601261 1 188

R82AEB406

NASA CR-168289

National Aeronautics and Space Administration

NASA Lewis Research Center

P-173 #304579

ENERGY EFFICIENT ENGINE HIGH PRESSURE TURBINE COMPONENT TEST PERFORMANCE REPORT

By

L.P. TIMKO

GENERAL ELECTRIC COMPANY

Contract NAS3-20643

Prepared for

National Aeronautics and Space Administration

(NASA-CR-168289) ENERGY EFFICIENT ENGINE HIGH PRESSURE TURBINE COMPONENT TEST PERFORMANCE REPORT (GE) 173 p CSCL 21E N90-28553

Unclas 0304579

G3/07

considered void after two (2) years after date of such data. This legend shall be marked on any reproduction of these data in whole or in part.

"Cspy Control Number_

1. Report No. NASA CR-168289	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle Energy Efficient Engine High Pressure Turbine Component Test		Report Date Report Date Report Date Report Date
Performance Report 7. Author(s) L. P. Timko		8. Performing Organization Report No. R82AEB406
9. Performing Organization Name and Address General Electric Company Aircraft Engine Group Cincinnati, Ohio 45215		10. Work Unit No.
		11. Contract or Grant No. NAS3-20643
12. Sponsoring Agency Name and Address NASA-Lewis Research Cente		13. Type of Report and Period Covered
21000 Brookpark Road Cleveland, Ohio 44135		14. Sponsoring Agency Code

15. Supplementary Notes

NASA Project Manager - Mr. C.C. Ciepluch NASA Project Engineer - Mr. R.P. Dengler G.E. Project Manager - Mr. R.W. Bucy

16. Abstract

The high pressure turbine for the General Electric Energy Efficient Engine is a two stage design of moderate loading. Results of detailed system studies led to selection of this configuration as the most appropriate in meeting the efficiency goals of the component development program.

To verify the design features of the high pressure turbine, a full scale warm air turbine test rig with cooling flows simulated was run. Prior to this testing, an annular cascade test was run to select vane unguided turn for the first stage nozzle. Results of this test showed the base configuration to exceed the lower unguided turning configuration by 0.48 percent in vane kinetic energy efficiency.

The air turbine test program, consisting of extensive mapping and cooling flow variation as well as design point evaluation, demonstrated a design point efficiency level of 90.0% based on the thermodynamic definition. In terms of General Electric cycle definition, this efficiency was 92.5%. Based on this test, it is concluded that efficiency goals for the Flight Propulsion System have been met.

17. Key Words (Suggested by Author(s))

Vane Annular Cascade Test
Air Turbine Test
Two Stage, Cooled Vane

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
22. Price*

TABLE OF CONTENTS

<u>Section</u>		Page
1.0	SUMMARY	1
2.0	INTRODUCTION	2
3.0	TURBINE DESCRIPTION	4
	3.1 Turbine Aerodynamic Design	4
	3.2 Annular Cascade 3.3 Air Turbine Rig	9 26
4.0	INSTRUMENTATION	38
	4.1 Annular Cascade	38
	4.2 Rotating Rig	44
5.0	TEST PROCEDURES	51
	5.1 Annular Cascade	51
	5.2 Rotating Rig	54
6.0	RESULTS	62
	6.1 Annular Cascade	62
	6.2 Air Turbine Rig	81
	6.2.1 Performance	81
	6.2.2 Stage Exit Survey	102
	6.2.3 Reynolds Number Variation	103
	6.2.4 Tip Clearance Variation	108
	6.2.5 Cooling Flow Variation	108
7.0	CONCLUSIONS	112
8.0	REFERENCES	113
	APPENDICES	115
	A. Airfoil Coordinates	116
	B. Significance of Blade-Jet Speed Ratio	133
	C. Reynolds Number Calculation	134
	D. Nozzle Efficiency Definition	136
	E. Data Tabulation for Annular Cascade Tests	137
	F. Turbine Efficiency Definitions	140
	G. Data Tabulation for Turbine Rig Test	144

LIST OF ILLUSTRATIONS

Figure		Page
1	High Pressure Turbine Aerodynamic Flowpath	6
2	Blading Flow Angles and Mach Numbers	8
3	Final Airfoil Shapes and Velocity Distributions	10
4	Airfoil Contour and Velocity Distribution for LUT Vane	11
5	Base Stage 1 Vane Cooling Hole Definition	16
6	Stage 1 Nozzle with Base Vane Showing Cooling Holes and	
	Band Saw-Cuts	17
7	LUT Stage 1 Vane Cooling Hole Definition	18
8	Stage 1 Nozzle Inner Band Cooling Hole Definition	19
9	Stage 1 Nozzle Outer Band Cooling Hole Definition	20
10	Stage 1 Blade Cooling Hole Definition	21
11	Stage 1 and Stage 2 Blades	22
12	Stage 2 Vane Cooling Hole Definition	23
13	Stage 2 Nozzle Showing Trailing Edge Cooling Holes	24
14	Stage 2 Blade Cooling Hole Definition	25
15	Annular Cascade Test Rig	27
16	Vane Arrangement for Annular Cascade Nozzle	28
17	Warm Air Turbine Rig	29
18	Two Stage Rotor Assembly	31
19	Stage 1 Nozzle Assembly (Forward Looking Aft)	32
20	Stage 1 Nozzle Assembly (Aft Looking Forward)	33
21	Stage 2 Nozzle Assembly (Forward Looking Aft)	34
22	Stage 2 Nozzle Assembly (Aft Looking Forward)	35
23	Stage 1 Shroud Assembly	36
24	Stage 2 Shroud Assembly	37
25	Schematic of Annular Cascade Instrumentation	40
26	Schematic of Annular Cascade Inlet Radial Rakes Showing	
	Relative Location to Inlet Frame Struts	41

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
27	Sting Probe Schematic	42
28	Cobra Probe Schematic	43
29	Location of Airfoil Surface and Band Static Pressure	
	Taps in Annular Cascade	45
30	Schematic of Turbine Rig Instrumentation	46
31	Front View of Turbine Rig Showing Locations of Inlet Radial	
	Rakes Relative to Inlet Frame Struts	48
32	Arc Rake Schematic	50
33	Annular Cascade Coolant Supply Schematic	52
34	Turbine Rig Cooling Flow Schematic	58
35	Turbine Rig Test Matrix	60
36	Vane Efficiency Versus Cascade Pressure Ratio, Base vs LUT	63
37	Radial Variation of Vane Efficiency and Temperature Ratio at	
	Design Point, Base vs LUT	64
38	Radial Variation of Vane Efficiency and Temperature Ratio at	
	Off Design Pressure Ratios, Base vs LUT	65
39	Base Vane Flow Angle	66
40	Effect of Reduced Cooling Flow on Base Vane Efficiency and	
	Temperature Ratio	67
41	Radial Variation of Vane Efficiency and Temperature Ratio at	
	Design Pressure Ratio for Base Vane, Cooled vs Solid	69
42	Radial Variation of Vane Efficiency at Off-Design Pressure	
	Ratios for Solid Base Vane	70
43	Vane Efficiency vs Cascade Pressure Ratio for Solid Base Vane	72
44	Radial Variation of Vane Efficiency and Temperature Ratio	
	for Cooling Flow Diagnostic Tests	73
45	Airfoil Surface Mach Number Distribution for Base Vane	74
46	Efficiency Contours for Base Vane (Cooled)	75
47	Temperature Contours for Base Vane (Cooled)	76
48	Efficiency Contours for LUT Vane (Cooled)	77

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
49	Temperature Contours for LUT Vane (Cooled)	78
50	Efficiency Contours for Base Vane (Solid)	79
51	Temperature Contours for Base Vane (Solid)	80
52	Efficiency (GE) vs Blade-Jet Speed Ratio	84
53	Efficiency (Thermo) vs Blade-Jet Speed Ratio (Power from	
	shaft torque)	85
54	Efficiency (Thermo) vs Blade-Jet Speed Ratio (Power from shaft	
	torque plus rotor coolant pumping)	. 86
55	Efficiency (GE) vs Loading	88
56	Efficiency (Thermo) vs Loading (Power from shaft torque)	89
57	Efficiency (Thermo) vs Loading (Power from shaft torque plus	
	rotor coolant pumping)	90
58	Energy Function vs Corrected Speed (Power from shaft torque)	91
59	Energy Function vs Corrected Speed (Power from shaft torque	
	plus rotor coolant pumping)	92
60	Torque Function vs Corrected Speed (Based on shaft torque and	
	rotor coolant pumping)	93
61	Total-to-Total Pressure Ratio vs Corrected Speed	94
62	Flow Function vs Corrected Speed (Five higher pressure ratios)	96
63	Flow Function vs Corrected Speed (Four lower pressure ratios)	97
64	Stage One Hub Reaction vs Corrected Speed	98
65	Stage One Tip Reaction vs Corrected Speed	99
66	Static Pressure vs Axial Station at Design Point Conditions	100
67	Turbine Exit Swirl vs Corrected Speed	101
68	Turbine Exit Radial Profiles	103
69	Turbine Exit Normalized Pressure Contours at Design Point	104
70	Turbine Exit Absolute Flow Angle Contours at Design Point	105
71	Turbine Exit Normalized Temperature Contours at Design Point	106
72	Efficiency vs Reynolds Number	107

LIST OF ILLUSTRATIONS (Continued)

<u>Figure</u>		<u>Page</u>
73	Efficiency vs Tip Clearance	107
74	Effect of Cooling Flow Variation on Efficiency	109
75	Effects of Simulated Compressor Discharge Leakage on Flow	
	Function and Reaction	111

LIST OF TABLES

<u>Table</u>	•	Page
I	Turbine Design Requirements at ICLS Max Climb	5
II	Stage Aerodynamic Parameters	5
III	Final Design Vector Diagram Angles and Mach Numbers	7
IV	Stage 1 Vane Section Design Data	12
v	Stage 1 Blade Section Design Data	13
VI	Stage 2 Vane Section Design Data	14
VII	Stage 2 Blade Section Design Data	15
VIII	Annular Cascade Instrumentation	39
IX	Two Stage Rotating Rig Instrumentation	47
X	Annular Cascade Test Conditions	53
XI	Design Point Parameters Compared, ICLS vs. Two Stage Rig	55
XII	Comparison of Inlet Angles, Reaction, and Loading for ICLS	
	and Two Stage Rig	56
XIII	Summary of Turbine Performance Parameters at Design	
	Operating Point	82
XIV	Comparison of Coolant Flow Ratios and Temperatures at	
	Two Stage Rig Design Point Conditions	83

LIST OF SYMBOLS

```
Theoretical velocity obtained by expanding flow from turbine
C_{o}
              inlet total enthalpy to ideal exit enthalpy, m/sec (ft/sec)
              Specific heat at constant pressure, Joules/(kgK), (Btu/(1bm °R))
C_{\mathcal{D}}
              Gravitational constant, 32.2 \text{ (1bm ft)/(1bf sec}^2\text{)}
g
Н
              Turbine shaft power, Watts (Btu/sec)
H,
              Power to pump rotor coolant, Watts (Btu/sec)
ħ
              Specific enthalpy, Joules/kg, (Btu/lbm)
J.
              Joule's constant, 778.2 ft-1bf/Btu
1
              Characteristic length, Cm, (in.)
              Mach number
M
              Rotational speed, radians/sec. (rpm)
N
P
              Pressure, Pascals (psia)
              Radius, cm, (in.)
r
Re
              Reynolds Number
Rx
              Reaction
T
              Temperature, K (°R)
TO
              Shaft torque, Joules (Btu)
U
              Wheel speed, m/sec (ft/sec)
V
              Velocity, m/sec (ft/sec)
              Mainstream flow rate, kg/sec (lbm/sec)
W
              Coolant flow rate, kg/sec (lbm/sec)
Wc .
X
              Axial distance, cm, (in.)
Y
              Tangential distance, cm, (in.)
Γ
              Turbine exit absolute flow angle, degrees
              Ratio of specific heats
Y
              Efficiency, Nozzle, local
\eta_{\mathbf{V}}
              Efficiency, Nozzle, average
n<sub>v</sub>
              Efficiency, General Electric
ηGE
              Efficiency, Thermodynamic
nTH
              Efficiency, Thermodynamic with rotor coolant pump power
ηтнр
              Absolute viscosity, kg/(sec. m), (lbm/(sec.ft))
              Mass density, kg/cm^3, (1bm/in^3)
              Aerodynamic loading at pitchline, (\Delta h)/(2\Sigma U_n^2)
\Psi_{\mathbf{p}}
```

Subscripts

а	Isentropic available
c	Coolant
CDL	Simulated Compressor Discharge
equ	Equivalent
ħ	Hub
IND, ind	Inducer (tangential accelerator)
NC	Non-chargeable (flow going through stage one vane throat)
OB2	Stage two outer band
p	Pitchline, peak
S	Static conditions
T	Total conditions
t	Tip
u	Tangential component
0,4	Turbine inlet plane
1,41	Rotor inlet plane
2	Stage exit plane, airfoil exit plane
42	Turbine exit plane

1.0 SUMMARY

The high pressure turbine for the General Electric Energy Efficient Engine is a two stage, low thru-flow design of moderate loading. Results of detailed system studies led to selection of this configuration as the most appropriate in meeting the efficiency goals of the component development program.

To verify the design features of the high pressure turbine, a full scale warm air turbine test rig with cooling flows simulated was run. Prior to this testing, an annular cascade test was run to select vane unguided turning for the first stage nozzle. Results of this test showed the base configuration of 8.4 degrees to exceed the lower unguided turning configuration by 0.48 percent in vane kinetic energy efficiency.

The air turbine test program, consisting of extensive mapping and cooling flow variation as well as design point evaluation, demonstrated a design point efficiency level of 90.0% based on the thermodynamic definition with pump power credited to the turbine. In terms of General Electric cycle definition, efficiency was 92.5%. Based on this test, it is concluded that efficiency goals for the Flight Propulsion System (FPS) have been met.

2.0 INTRODUCTION

The NASA/GE Energy efficient Engine (E³) Component Development and Integration Program was initiated on January 2, 1978. The program objective is to develop technology that will improve the energy efficiency of propulsion systems for subsonic commercial aircraft of the late 1980's or early 1990's.

The goals of the program are: a reduction in Flight Propulsion System (FPS) cruise installed sfc of at least 12% compared to the reference CF6-50C engine; a reduction in direct operating cost (DOC) of at least 5% based on advanced aircraft with E³-type improvements compared to a scaled CF6-50C; to meet noise and emissions standards per FAR-Part 36 (as amended July 1978) and EPA new engine standards for January, 1981 respectively.

Four major technical tasks have been established for the 3 program. Task 1 addresses the design and evaluation of the E³ Flight Propulsion System; this propulsion system and associated flight nacelle is designed to meet the requirements for commercial service. The Task 1 results will establish the requirements for the experimental test hardware including the components, core, and integrated core/low spool. Task 2 consists of the design, fabrication, and testing of the components and includes supporting technology efforts. The supporting technology efforts are to be performed where required to provide verification of advanced concepts included in the propulsion system design. In addition, more advanced technologies that are not specifically included in the propulsion system design but which provide the potential for added performance improvements are to be explored also. Task 3 involves the design, fabrication, and test evaluation of a core engine consisting of the compressor, combustor, and high pressure turbine. Integration of the core with the low spool components and test evaluation of the integrated core/low spool (ICLS) comprise the Task 4 efforts. At the conclusion of the program, all performance data obtained for the experimental hardware (ICLS, core and component efforts) will be appraised and factored into a final propulsion system/aircraft design (as part of continual, ongoing evaluations in Task 1) to ascertain achievable performance as compared to program goals.

One major element of Task 2 was the aerodynamic evaluation of the high pressure turbine. This evaluation consisted of full scale, warm air annular cascade testing of the stage one vane and warm air turbine testing of the two stage group.

The objective of the stage one nozzle annular cascade program was to select a vane configuration for the air turbine rig. This selection was based on efficiency level determined by cascade testing. To this purpose, two vane configurations were designed to the same vector diagrams and flowpath. The primary difference between the two vanes was the amount of unguided turning. The base vane had a nominal value of 8.4° at the pitch-line. The alternate candidate had a lower unguided turning (LUT) of 5.5°. Each airfoil configuration was tested over a range of pressure ratios to determine the performance characteristics. Since the base vane exhibited a higher performance at design pressure ratio, it was selected for the air turbine rig and the ICLS.

The objective of the air turbine rig test was to evaluate the aerodynamic performance of the high pressure turbine. This was accomplished by
determining the design point efficiency and by mapping the turbine over a
large range of operation extending into the sub-idle, starting regions of the
engine. Additional testing included blade tip clearance variation, Reynolds
number variation, and cooling flow variation. Rig hardware was full scale at
rig running conditions.

This report presents the results of the annular cascade and two-stage turbine rig testing.

3.0 TURBINE DESCRIPTION

3.1 Turbine Aerodynamic Design

To meet the requirements of the E³ engine cycle, a two stage, low thru-flow high pressure turbine design of moderate loading was selected. Aerodynamic design point was the integrated core/low spool (ICLS) cycle point at maximum climb (M .8, 10.67km (35,000 ft)). These design reguirements are presented in Table I.

The turbine flowpath geometry and number of airfoils per stage were determined from preliminary design and subsequent trade studies. These trade studies also provided data and information for the selection of annulus area and the work split for the two stages. Details of these studies are found in Reference 1. Stage reaction levels were initially set consistent with other GE commercial engines with final values reflecting adjustment to trim rotor thrust balance. A summary of stage aerodynamic parameters is presented in Table II. The final hot flowpath developed is shown in Figure 1. The hot radii dimensions are the same for both the engine and rig designs.

The through-flow analysis was performed using a method that solves the full three-dimensional, radial equilibrium equation for circumferentially averaged flow. The procedure accounts for streamline slope and curvature, effect of radial blade force component due to airfoil sweep and dihedral, airfoil blockage, and radial gradients of flow properties. Calculations were made with radial gradients of blading losses, and also with local flow addition to simulate cooling flow injection. Temperature dilution, and momentum mixing losses associated with coolant addition were accounted for. Airfoil inlet angle selection considered mixing between streamtubes, combustor temperature profile and secondary flow effects. Final blading flow angles and Mach numbers are presented in Table III and the radial distributions are shown in Figure 2.

Airfoil cascade analysis was accomplished by a streamtube curvature method which calculated along a stream surface determined from the throughflow analysis, accounting for variations in streamtube thickness. Airfoil

Table I. Turbine Design Requirements at ICLS Max Climb (MO.8, 10.67 km (35000 ft))

<u>Item</u>	<u>Units</u>	ICLS	
Rotor Inlet Tempera TT,41	ture, K , (°R)	1588	(2858)
Flow Function, W41 TT,41 PT,4	$\frac{\text{kg}\sqrt{K}}{\text{sec kPa}}$, $\left(\frac{1\text{bm}\sqrt{R}}{\text{sec psia}}\right)$	0.866	(17.66)
Corrected Speed, $N\sqrt{T_{T,4}}$	$\frac{\operatorname{rad}}{\operatorname{sec}\checkmark\mathrm{K}},\left(\begin{array}{c}\operatorname{rpm}\\\checkmark^\circ\mathrm{R}\end{array}\right)$		(236.2)
Energy Function $\Delta h/T_{T,41}$	$\frac{\text{Joules}}{\text{kg K}}, \qquad \left(\begin{array}{c} \underline{\text{Btu}} \\ \underline{\text{1bm } ^{\circ}\text{R}} \end{array}\right)$	353.3	(0.0844)
Pressure Ratio, P _{T,4} /P _{T,42}	-	4.933	
Pitchline Loading Δh/2U ²	-	0.65	

Table II. Stage Aerodynamic Parameters (ICLS at MO.8, 10.67 km (35000 ft)

Max Climb Condition)

Stage	1	2
$P_{T,4}^{P}$,2, $P_{T,2}^{P}$,42 Pitchline $\Delta h/2U^2$	2.25	2.11
Pitchline \Delta h/2U^2	0.74	0.56
Tip Speed (takeoff) m/sec (ft/sec)	514 (1686)	535 (1756)
Exit Mach Number, M ₂ , M ₄₂	0.34	0.42
Reaction, Rx	0.34	0.33
Swirl, r	16°	0°
No. of Vanes	46	48
No. of Blades	76	70
Radius Ratio, (rh/rt)	0.88	0.82
Tip Clearance, (% of blade height)	1.0	0.6
Work Fraction, (Stage Δh)/(Total Δh)	0.57	0.43

Figure 1. High Pressure Turbine Aerodynamic Flowpath.

6

Table III. Final Design Vector Diagram Angles and Mach Numbers

	Stage 1		<u>s</u>	tage 2	
<u>Tip</u>	Mean	Hub	<u>Tip</u>	Mean	<u>Hub</u>
	•				
0.0	0.0	0.0	7.4	21.8	11.5
75.4	74.2	73.1	69.0	69.0	69.0
29.7	43.2	38.6	-18.2	17.0	31.5
64.4	66.9	65.6	59.8	59.8	59.9
5.2	17.7	9.7	-1.0	1.5	-4.6
.084	.109	.114	. 249	.276	.269
.815	.878	.910	.728	.828	.892
.220	.324	.343	.286	.306	.339
.822	.819	.745	.934	.836	.724
.357	.338	.314	.469	.421	.365
	0.0 75.4 29.7 64.4 5.2 .084 .815 .220	Tip Mean 0.0 0.0 75.4 74.2 29.7 43.2 64.4 66.9 5.2 17.7 .084 .109 .815 .878 .220 .324 .822 .819	Tip Mean Hub 0.0 0.0 0.0 75.4 74.2 73.1 29.7 43.2 38.6 64.4 66.9 65.6 5.2 17.7 9.7 .084 .109 .114 .815 .878 .910 .220 .324 .343 .822 .819 .745	Tip Mean Hub Tip 0.0 0.0 7.4 75.4 74.2 73.1 69.0 29.7 43.2 38.6 -18.2 64.4 66.9 65.6 59.8 5.2 17.7 9.7 -1.0 .084 .109 .114 .249 .815 .878 .910 .728 .220 .324 .343 .286 .822 .819 .745 .934	Tip Mean Hub Tip Mean 0.0 0.0 7.4 21.8 75.4 74.2 73.1 69.0 69.0 29.7 43.2 38.6 -18.2 17.0 64.4 66.9 65.6 59.8 59.8 5.2 17.7 9.7 -1.0 1.5 .084 .109 .114 .249 .276 .815 .878 .910 .728 .828 .220 .324 .343 .286 .306 .822 .819 .745 .934 .836

o All Flow Angles are in Degrees.

a. Flow Angles

b. Mach Numbers

Figure 2. Blading Flow Angles and Mach Numbers.

contours and velocity distributions are shown in Figures 3 and 4. The stage one wane in Figure 3 is the base configuration. Section design data are presented in Tables IV thru VII. Airfoil coordinate data are provided in Appendix A.

Airfoil cooling hole definition for the base stage one vane is illustrated in Figure 5. The forward cavity is fed from the inner coolant supply circuit, while the aft cavity is supplied from the outer circuit. A photograph of a section of the rig nozzle is presented in Figure 6 where the vane cooling holes for the base vane are evident. The alternate, low unguided turning (LUT) stage one vane cooling hole definition is shown in Figure 7, where it is seen to be similar to the base vane. Stage one nozzle band cooling hole definitions for both base and LUT configurations are shown in Figures 8 and 9 for inner and outer band respectively. Stage one blade cooling hole definition is presented in Figure 10. A photograph of the blade showing these holes is found in Figure 11. The stage two vane cooling geometry is described in Figure 12. Figure 13 shows the arrangement of the trailing edge cooling holes and slots. Cooling hole geometry for the stage two blade is shown in Figure 14. All cooling air is supplied through the forward cavity with crossover slots connecting to the aft cavity. Flow in the aft cavity is discharged through the blade tip. A photograph of the blade showing the two pressure side slots is shown in Figure 11. The cooling hole geometries for the air turbine rig and annular cascade airfoils matched the engine design at the time the rig design was performed. Subsequently, some changes were made in the engine design involving number and size of the holes. Details of the engine design can be found in Reference 1.

3.2 Annular Cascade

The annular cascade consisted of a single row of forty-six stage one vane airfoils of two types differing in the level of unguided turning. The base vane had an unguided turning of 8.4° while the alternate candidate had a lower unguided turning (LUT) of 5.5°. The test philosophy of the annular cascade was to match the ICLS aerodynamic and cooling geometry as closely as practicable. The engine nozzle flowpath was used, vane and band cooling hole patterns matched then-current engine design. Test hardware was full scale.

ORIGINAL PAGE IS

Figure 3. Final Airfoil Shapes and Velocity Distributions with Peak Mach Number Specified.

Figure 4. Airfoil Contour and Velocity Distribution for LUT Vane with Peak Mach Number Specified.

12

Table IV. Stage 1 Vane Section Design Data

		Base		Lo	w Unguided Tu	rning
	Hub	Pitch	Tip	Hub	Pitch	Tip
Number		— 46 ———			<u>46</u>	
Radius, cm (in.)	32.5755 (12.825)	34.576 (13.6125)	36.576 (14.400)	32.5755 (12.825)	34.576 (13.6125)	36.576 (14.400)
Axial Width, cm (in.)	3.376 (1.329)	3.378 (1.330)	3.383 (1.332)	3.373 (1.328)	3.421 (1.347)	3.470 (1.366)
Trailing Edge Thickness, cm (in.)	0.0965 (0.038)	0.0965 (0.038)	0.0965 (0.038)	0.0965 (0.038)	0.0965 (0.038)	0.0965 (0.038)
Uncovered Turning, degrees	9.2	8.4	8.7	4.9	5.5	5.2
Trailing Edge Wedge Angle, degrees	10.2	9.2	9.0	9.0	9.0	9.3

Table V. Stage 1 Blade Section Design Data

	<u>Hub</u>	<u>Pitch</u>	<u>Tip</u>
Number		76 ———	
Radius, cm (in.)	32.337 (12.731)	34.468 (13.570)	36.601 (14.410)
Axial Width, cm (in.)	2.87 (1.13)	2.87 (1.13)	2.87 (1.13)
Trailing Edge Thickness, cm (in.)	0.0965 (0.038)	0.0965 (0.038)	0.0965 (0.038)
Uncovered Turning, degrees	13.0	13.0	13.0
Trailing Edge Wedge Angle, degrees	12.5	12.5	12.5

Table VI. Stage 2 Vane Section Design Data

	<u>Hub</u>	<u>Pitch</u>	Tip
Number		48	
Radius, cm (in.)	31.217 (12.290)	34.633 (13.635)	38.049 (14.980)
Axial Width, cm (in.)	4.503 (1.773)	4.905 (1.931)	5.309 (2.090)
Trailing Edge Thickness, cm (in.)	0.0965 (0.038)	0.0965 (0.038)	0.0965 (0.038)
Uncovered Turning, degrees	10.5	11.0	11.5
Trailing Edge Wedge Angle, degrees	9.0	9.5	10.0

Table VII. Stage 2 Blade Section Design Data

•	<u>Hub</u>	<u>Pitch</u>	Tip
Number		70	,
Radius, cm (in.)	31.115 (12.25)	34.6075 (13.625)	38.100 (15.000)
Axial Width, cm (in.)	3.353 (1.32)	3.073 (1.21)	2.794 (1.10)
Trailing Edge Thickness, cm (in.)	0.1575 (0.062)	0.1118 (0.044)	0.1270 (0.050)
Uncovered Turning, degrees	14.5	15.5	12.0
Trailing Edge Wedge Angle, degrees	14.0	14.0	9.0

Figure 5. Base Stage 1 Vane Cooling Hole Definition.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 6. Stage 1 Nozzle with Base Vane Showing Cooling Holes and Band Saw-Cuts.

ORIGINAL PAGE IS

Figure 7. LUT Stage 1 Vane Cooling Hole Definition.

Figure 8. Stage 1 Nozzle Inner Band Cooling Hole Definition.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 9. Stage 1 Nozzle Outer Band Cooling Hole Definition.

Figure 10. Stage 1 Blade Cooling Hole Definition.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 11. Stage 1 and Stage 2 Blades.

ORIGINAL PAGE IS OF POOR QUALITY

Trailing Edge Pressure Side Cooling Holes

10 Slots $.048 \times .152 \text{ cm}$ (.019 x .060 in.)

Figure 12. Stage 2 Vane Cooling Hole Definition.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 13. Stage 2 Nozzle Showing Trailing Edge Cooling Holes.

Figure 14. Stage 2 Blade Cooling Hole Definition.

In an effort to simulate the flowpath gaps between the two-vane segmented engine stator, saw cuts were made in both the outer and inner bands of the 360° annular cascade nozzle. These saw cuts are evident in Figure 6. Leakage flows between segments were not simulated. A cross-sectional view of the annular cascade rig is shown in Figure 15.

As stated previously, both base and LUT vanes were installed in the same nozzle ring. Thirty-four of the vanes were the base configuration which occupied a 266° sector; the twelve LUT vanes covered the remaining 94°. For reduced cost, only seven of the base vanes and five of the LUT vanes were cooled. The remaining airfoils were solid. In similar fashion, band cooling holes were drilled only in the cooled vane sectors. The arrangement of vane configurations is shown schematically in Figure 16. This technique of having several vane configurations in a single nozzle had been used in other cascade test programs and considered acceptable in determining total pressure losses.

3.3 Air Turbine Rig

The air turbine rig was a full scale design of the two stage high pressure turbine and fully cooled. The intent of the rig design was to match the ICLS aerodynamic and cooling geometry. As in the annular cascade, flowpath and cooling hole patterns matched the then-current engine design. Inter-blade row leakage and purge flows were also simulated including arrangement and type of seals used. In addition, wheel space geometry was matched in order to simulate windage effects. The cooling system film hole aerodynamic geometry was matched. The inducer (tangential accelerator) for rotor coolant delivery was at the same diameter and geometry as in the engine to give similar pumping characteristics. Stage one and two shrouds are segmented as is the engine design. Stage one nozzle is a continuous ring; in order to facilitate assembly, stage two nozzle is a split ring. To simulate the segmented construction, saw cuts were made in both nozzle bands. Leakage flow between segments was not simulated however, since the cost of drilling the necessarily large number of very small diameter holes was prohibitive. Endwall axial gap geometry was matched. Independent blade tip clearance control was provided for each stage. A cross-section of the rig is shown in Figure 17.

Figure 15. Annular Cascade Test Rig.

Figure 16. Vane Arrangement for Annular Cascade Nozzle.

Figure 17. Warm Air Turbine Rig.

All rotor parts including blades were machined from 410 stainless steel. The stators were of the same material. Casings were nickel plated carbon steel. Standard facility frames and bearing cartridge were used.

Photographs of major rig sub-assemblies are presented in Figures 18 through 24.

Figure 18. Two-Stage Rotor Assembly.

Figure 19. Stage 1 Nozzle Assembly (Forward Looking Aft)

Figure 20. Stage 1 Nozzle Assembly (Aft Looking Forward)

ယ

Figure 21. Stage 2 Nozzle Assembly (Forward Looking Aft)

34

Figure 22. Stage 2 Nozzle Assembly (Aft Looking Forward)

w

Figure 23. Stage 1 Shroud Assembly.

Figure 24. Stage 2 Shroud Assembly.

4.0 INSTRUMENTATION

4.1 Annular Cascade

Instrumentation for the annular cascade provided for the measurement of mainstream flow, cooling flow, inlet total pressure and temperature, coolant supply pressure and temperature, discharge total pressure and temperature, static pressure, flow angle, and airfoil surface static pressures. A summary of the instrumentation is presented in Table VIII. A schematic is shown in Figure 25.

Airflow measurements were made with choked, circular arc venturis. Inlet total pressure and temperature were measured by five radial rakes, each having a combination of five pressure and five temperature elements. These rakes were 12.7 cm (5.0 inches) upstream of the vane leading edge plane. Rake elements were located radially at the centers of equal flow streamtubes, determined by axisymmetric analysis. A schematic of the annular cascade inlet radial rakes is shown in Figure 26 where their location is shown relative to the six struts of the inlet frame.

Discharge total pressure and temperature were measured using a radially and circumferentially traversing sting probe. A schematic of the sting probe is shown in Figure 27. The sting sensing element was located 1.016 cm (0.4 inches) axially aft of the vane trailing edge and had 18 of circumferential travel.

Flow angle measurements were made with a self-nulling cobra probe. A schematic of this probe is shown in Figure 28. This probe used the same casing slot as the sting probe. Consequently, its sensing element was 2.464 cm (0.97 inches) aft of the vane trailing edge. With the probe element in this axial position, a precise angle measurement was not expected.

Discharge static pressure was measured by forty-two taps in the plane of the sting sensing element. Twenty-one were on the inner case and twenty-one on the outer case.

Table VIII. Annular Cascade Instrumentation

LOCATION	MEASUREMENT	QUANTITY
-		
Inlet	P _T ,T _T	25 each (5 radial rakes, 5 dual elements per rake)
Inlet	P _S	10 total (5 each wall)
Vane Outer Cavity	PS	3 total
Vane Outer Coolant Supply	$\mathbf{r_r}$	3 total
Vane Surface	PS	45 total (10 suction surface, 5 pressure surface
	J	3 radial locations)
Bands	P _S	12 total (6 each wall, between two trailing edges)
Exit	PS	42 total (21 each wall)
Exit	P _T , T _T	1 radially and circumferentially traversing sting probe
Exit	Flow Angle	1 radially and circumferentially traversing cobra probe

Figure 25. Schematic of Annular Cascade Instrumentation

Fwd Looking Aft

Figure 26. Schematic of Annular Cascade Inlet Radial Rake Showing Relative Location to Inlet Frame Struts

Figure 27. Sting Probe Schematic

Figure 28. Cobra Probe Schematic.

Airfoil static pressure taps were installed at three radial locations, 0.254 cm (0.1 inch) from both walls and at the meanline. Ten taps were used on the suction surfaces and five on the pressure surfaces. The relative location of these taps on the airfoil surface are shown in Figure 29. Static pressures in the plane of the trailing edge on both walls are also depicted.

4.2 Rotating Rig

Instrumentation was provided to measure flows, pressures, temperatures, shaft speed, torque, tip clearance and exit flow angle. A schematic of the rig instrumentation is presented in Figure 30. The instrumentation is summarized in Table IX.

Main airflow was measured with a choked, circular arc venturi. Coolant flows were measured with choked or calibrated venturis and each coolant circuit had its own venturi.

Two independent strain gage torque meters mounted in the turbine shafting for direct readout were used as the primary torque measurement. This instrumentation provided the prime measurement of turbine power output in evaluating performance.

Speed measurements were made by an indicating system consisting of a 60-tooth gear attached to the turbine drive shaft and a stationary magnetic sensor mounted with its sensing head very close to the gear teeth. Electrical impulses resulting from the passing of each tooth yield an electrical frequency proportional to speed.

Inlet temperature and pressure were measured with the same radial rakes as used in the annular cascade. These provide twenty-five elements each for inlet total presure and total temperature. A frontal view of the rotating rig is shown in Figure 31, where the inlet rakes are seen in relation to the ten struts of the inlet frame.

ORIGINAL PAGE 19 OF POOR QUALITY

Airfoil surface pressures were measured at three radial locations:

- 1) 0.254 cm (0.10 in.) from outer wall
- 2) meanline
- 3) 0.254 cm (0.10 in.) from inner wall

Pressures in trailing edge plane measured on both inner and outer band surfaces.

Figure 29. Location of Airfoil Surface and Band Static Pressure Taps in Annular Cascade.

Figure 30. Schematic of Turbine Rig Instrumentation.

ŧ

	LOCATION	MEASUREMENT	QUANTITY
			·
	Inlet	P _T , T _T	25 Each (5 radial rakes, 5 dual elements per rake)
	Inlet	P _S	10 total (5 each wall)
	Vane 1 Exit	PS	8 total (4 in each cavity, outer and inner)
	Blade 1 Exit	PS	8 total (4 in each cavity, outer and inner)
	Vane 2 Exit	PS	4 in vane inner cavity
	Blade 2 Exit	PS	8 total (4 in each cavity, outer and inner)
	Exit	P _T , T _T	72 total each (12 element, combination arc
			rakes at 6 radial locations)
47	Exit	P _S	12 total (6 each wall in rake plane)
	Exit	PS	8 total (4 each wall in traverse plane)
	Exit	Flow Angle,	Radially and circumferentially traversing
		PT, TT	cobra probe
	Outer Case	Tip Clearance	8 wire brush touch probes (4 each stage)
	Various Cavities	Ps, T	~200 for setting coolant conditions and
			monitoring coolant paths
	Vehicle Shafting	Torque	2 independent strain gage torque meters
	Inlet Piping	Flow	1 circular arc venturi
	Coolant Piping	Flow	5 circular arc venturis (1 for each circuit)

Figure 31. Front View of Turbine Rig Showing Location of Inlet Radial Rakes Relative to Inlet Frame Struts.

Turbine discharge total pressure and temperature were measured by arc rakes located 5.08 cm (2.0 inches) downstream of last bladerow. Six combination type arc rakes of twelve elements each were employed. A schematic of this rake is presented in Figure 32.

WAR THE AL

Turbine discharge static pressure was measured by twelve taps (six on outer wall, six on inner wall) in the plane of the exit arc rakes.

Stage exit flow angle was measured using a traversing cobra probe. This probe was located 3.02 cm (1.19 inches) aft of the stage two blade. The circumferential travel was 18° of arc. A schematic of this probe was shown previously in Figure 28.

Blade tip clearance measurements were obtained by means of wire brush touch probes. Four touch probes were used for each rotor. These probes physically contact the blade tips; an electrical signal indicates actual contact. The depth of the probe was determined from prior calibration of a radial motion actuator holding the probe. Rotor running tip clearance was determined from the difference between the rotor touch reading and a shroud reference point touch reading.

In addition to the primary performance instrumentation, the rig was heavily instrumented to obtain pressure and temperature data along the various coolant paths to the flowpath and interstage locations. The total number of these type items is on the order of 200 pieces of instrumentation.

RAKE	GROUP	S	T	U	V	W	· x	Y	Z
A	G01	.422	1.270	2.113 (.832)	2.960 (1.165)	3.805 (1.498)	4.651 (1.831)	4.928 (1.940)	1.016 (.400)
В	G02	.409	1.277	2.045 (.805)	2.863 (1.127)	3.680 (1.149)	4.498 (1.771)	4.775 (1.880)	2.210 (.870)
C	G03	.396 (.156)	1.189	1,981 (,780)	2.774 (1.092)	3.566 (1.404)	4.359 (1.716)	4.636 (1.825)	3.429 (1.350)
D	G04	.381	1.146 (.451)	1.910 (.752)	2.675 (1.053)	3.439 (1.354)	4.204 (1.655)	4.483 (1.765)	4.674 (1.840)
E	G05	.368	1.105	1.842 (.725)	2.578 (1.015)	3.315 (1.305)	4.051 (1.595)	4.331 (1.705)	5.994 (2.360)
F	G06	.353 (.139)	1.059 (.417)	1.765 (.695)	2.471 (.973)	3.178 (1.251)	3.884 (1.529)	4.166 (1.640)	7.341 (2.890)

Figure 32. Arc Rake Schematic.

5.0 TEST PROCEDURES

5.1 Annular Cascade

Test conditions for the annular cascade were intended to simulate the engine conditions at the maximum climb aerodynamic design point. Vane pressure ratio (upstream total to downstream static), ratio of cooling air supply pressure to mainstream pressure, and ratio of cooling air temperature to mainstream temperature were to be the same as in the engine. Coolant supply pressure was selected so that the pressure in the vane internal cavities would correspond to the pressure between the impingement insert and vane shell in the engine design.

Initially, vane coolant was supplied from both the outer and inner band circuits. The first run of the cascade however, revealed that too much heat was picked up by the inner circuit cooling air. The inner circuit cooling air was delivered through the inlet frame struts and dumped into the bullet nose region of the test vehicle. The air flow rate was low since only twelve of the forty-six vanes and thirty-five percent of the bands were cooled. The inlet struts and bullet nose were exposed to the mainstream temperature; this coupled with the low flow (high residence time) allowed a large heat pick-up by the cooling flow. This resulted in the inner circuit coolant flow to be significantly lower than design intent. In order to alleviate this condition, the inner circuit was blocked and the outer circuit was then used to supply all the cooling flow which required a slight increase in the outer circuit coolant pressure. A cavity pressure of 350.95 kPa (50.9 psia) was set to get a design intent flow of 0.3509 kg/sec (0.7736 lbs/sec). Setting cooling flow in this manner caused a slight over-pressure on the outer band and a similar under pressure on the inner band. The coolant supply scheme is illustrated in Figure 33.

Test point was established by setting cascade inlet pressure and temperature, coolant pressure and temperature, and total-to-static pressure ratio across the cascade. The test point schedule is presented in Table X.

ORIGINAL PAGE IS OF POOR QUALITY

Original Cooling Supply Scheme

Revised Cooling Supply Scheme

Figure 33. Annular Cascade Coolant Supply Schematic.

Table X. Annular Cascade Test Conditions

P _{T,0} /P _{s,1}	P T,0 Pa (psia)	T,0 K (°R)	P c Pa (psia)	T,c K (°R)	Traverse Type
1.5	3.4474×10 ⁵	709	3.5095x10 ⁵	339	В
1.67*	(50.0)	(1277)	(50.9)	(611)	A
1.8	·				В
1.9			1 1/1		В
2.0		1			Aug.
2.1					B
2.2					В
2.3					В
2.5	1	L	1		A
2.7	Y		T		В

^{*} Design point conditions.

A = Circumferential traverses at 15 radial locations.

B = Circumferential traverses at pitchline.

In addition to testing the two vane configurations, several diagnostic runs were made. The purpose of these runs was to isolate the source of some larger than expected pitchline losses. The following configurations were tested:

Base vane - fully cooled

LUT vane - fully cooled

Base vane - solid vanes and bands

Base vane - last row of suction side holes sealed

Base vane - trailing edge sealed (1st test)

Base vane - trailing edge sealed (2nd test)

For the last three configurations, data were taken only at design pressure ratio.

5.2 Rotating Rig

In order to account for the hot-gas to warm-air difference in specific heat ratio (γ) in determining the equivalent aerodynamic operating point of the air turbine rig, a series of vector diagram calculations were made at rig test conditions from which plots of stage reaction, bladerow inlet angles and stage loadings were prepared. From these plots, turbine pressure ratio and corrected speed were selected that resulted in minimum deviation of the three named parameters from engine turbine design values. As in past experience, the resultant operating point $(P_{T,4}/P_{T,42}$ and $N/\sqrt{T_{T,41}})$ closely matches the engine turbine design point value of energy function $(\Delta h/T_{T,41})$. A comparison of design point parameters for ICLS with those of the rig at facility inlet conditions is shown in Table XI. A comparison of blading inlet angles and stage hub reaction is presented in Table XII.

$$R_{X} = 1 - \left\{ \left[\frac{P_{S,1}}{P_{T,0}} \right]^{\frac{\delta-1}{\delta}} \right] \left[\frac{1 - \left(\frac{P_{S,2}}{P_{T,0}}\right)^{\frac{\delta-1}{\delta}}}{2} \right] \right\}.$$

^{*}Reaction is defined as the ratio of static enthalpy drop across the rotor to the total-to-static drop across the stage. For the first stage, this can be approximated as

Table XI. Design Point Parameters Compared, ICLS vs. Two Stage Rig

,				
<u>item</u>	<u>UNITS</u>	ICLS	RIG	
Rotor Inlet Temperature, T _{T,41}	K •R	1588 2858	683 1230	
Energy Extraction, Δh/T _{T,41}	Joules/kg/K Btu/1bm/°R	340.74 0.0814	339.90 0.0812	
Corrected Speed, N/ √T _{T,41}	rad/s/√K rpm/ √°R	33.19	33.19	
Flow Function, $W_{41} \sqrt{T_{T,41}}/P_{T,4}$	kg√K/sec/kPa lbm√k/sec/psia	0.867 17.678	0.885 18.026	
Pressure Ration, Total-to-Total, P _{T,4} /P _T	,42 -	4.933	5.04	
Pressure Ratio, Total-to-Static, P _{T,4} /P _S	,42 -	5.289	5.66	
Velocity Ratio, U/Co	. –	0.575	0.575	
Pitchline Aerodynamic Loading, ψ_p	-	0.648	0.646	

Table XII. Comparison of Inlet Angles, Reaction, and Loading, for ICLS and Two Stage Rig.

At		as Angle e, Degrees	HU		eaction,		Aerodyn Loading <u>Pitchlin</u>	at
	<u>ICLS</u>	RIG	ICLS	RIG	ICLS	RIG	ICLS	RIG
Vane 1	0	0	distribution and	NAME STATE STATE			(i)	
Blade 1	46.2	46.7	0.345	0.337	0.467	0.460	0.746	0.748
Vane 2	20.3	19.9						
Blade 2	18.8	17.9	0.330	0.334	0.513	0.516	0.550	0.545

Rig inlet temperature and pressure were set at 709K (1277°R) and 344.74 kPa (50 psia) respectively, as in the annular cascade. Ratio of cooling air temperature to mainstream temperature were maintained at engine levels. Pressures and temperatures to be set for each cooling circuit along with predicted cooling flows at design point were:

- a) Stage 1 Outer Band, Vane and Shroud

 P_c = 3.4667 x 10⁵ Pa (50.28 psia)

 T_{T,c} = 352K (633°R)

 W_c = 0.656 kg/sec (1.447 lb/sec)
- b) Stage 1 Inner Band and Vane

 P_C = 3.5019 x 10⁵ Pa (50.79 psia)

 T_{T,C} = 352K (633°R)

 W_C = 0.598 kg/sec (1.318 lb/sec)
- c) Inducer

 P_c = 3.4660 x 10⁵ Pa (50.27 psia)

 T_{T,c} = 344K (620°R)

 W_c = 0.586 kg/sec (1.293 lb/sec)
- d) CDP Seal Leakage

 P_C = 2.6642 x 10⁵ Pa (38.64 psia)

 T_{T,C} = 361K (649°R)

 W_C = 0.176 kg/sec (0.388 lb/sec)
- e) Stage 2 Vane and Shroud $P_{c} = 1.6327 \times 10^{5} \text{ Pa } (23.68 \text{ psia}) \text{ (at des. pt.),}$ will be set to give $W_{c}/W_{41} = \text{constant}$ $T_{T,c} = 300 \text{K } (540^{\circ}\text{R})$ $W_{c} = 0.28 \text{ kg/sec } (0.617 \text{ lb/sec}) \text{ (at des. pt.)}$

These flows are illustrated schematically in Figure 34.

ORIGINAL PAGE IS OF POOR QUALITY

Cooling Flow Legend	Design Intent Flows				
	kg/sec	(1b/sec)	w_{c}/w_{41}		
1) Outer Band, Aft Vane	0.656	(1.447)	0.0565		
2) Inner Band, Fwd Vane	0.598	(1.318)	0.0511		
3) Inducer, Blade 1 & 2	0.586	(1.293)	0.0503		
4) Compressor Discharge Leakage	0.176	(0.388)	0.0151		
5) Stage 2 Nozzle	0.280	(0.617)	0.0236		

Figure 34. Turbine Rig Cooling Schematic.

Test points were established by setting turbine inlet total-to-exit static pressure ratio, inlet temperature, speed, tip clearance and coolant circuits. The turbine pressure ratio was measured for inlet rakes to discharge rake plane statics. Cooling flows were established by setting pressure and temperature in the various cavities and thus allowing flow rate to fall out. If flows deviated from design intent, no attempt was made to adjust the pressure to get the design intent flow. This criterion was followed since in an engine, the supply pressure and temperature are fixed. Furthermore, for small deviations on the order of 0 to 5%, the flowrate mismatch is more readily reconciled analytically than a mismatch in coolant source pressure or temperature.

In addition to design point operation, performance mapping, clearance variation, cooling flow variation, and Reynolds number excursion were accomplished. Details of these tests are discussed below.

Performance Map

The test plan was defined to include off-design performance mapping covering a wide range of operation. The test matrix was defined by specifying values of turbine total-to-static pressure ratio and blade-jet speed ratio, U/C_O. These parameters are independent dimensionless variables. They are independent in the sense that they are not functions of how the turbine performs. Further, total-to-static pressure ratio can be set directly by the cell operator, whereas total-to-total cannot. The pressure ratio is defined from inlet rake total pressure to static pressure at the exit rake plane. Lines of constant U/C_O are roughly parallel to the turbine operating line on a Δ/T vs N/\sqrt{T} map. The definition and significance of blade-jet speed ratio are presented in Appendix B. The test matrix selected for the two stage group is shown graphically in Figure 35.

Reynolds Number Excursion

In addition to performance mapping, a Reynolds number excursion was made. This was accomplished by modulating inlet pressure at design point values of pressure ratio and speed to change flow density and thereby Reynolds

Figure 35. Turbine Rig Test Matrix

number. Sufficient points were taken to define efficiency variation with Reynolds number. In particular, it was intended to define the transition point where efficiency becomes independent of Reynolds number. The definition of Reynolds number used in this report is detailed in Appendix C.

Clearance Variation

Turbine efficiency as a function of blade clearance was determined by varying the radial clearance over each rotor separately. Clearance was varied by heating (or cooling) the shroud support, to control shroud diameter. Nominal running clearance was 0.041 cm (0.016 inches). The clearance variation was accomplished at design point conditions. In order to achieve the desired range of variation, it was necessary to reduce the temperature of the rotor coolant from 344K (620°R) to 317K (570°R).

Cooling Flow Variation

Effect of cooling flow variation on turbine performance was investigated by varying total flow to the first stage vane and flow to the following three circuits separately: compressor discharge leakage, rotor, and stage 2 nozzle. This variation was done at design speed and pressure ratio by increasing or decreasing the particular coolant supply pressure. The primary objective of the coolant flow variation tests was the acquisition of data for use in comparing with coolant effects prediction procedures.

6.0 RESULTS

6.1 Annular Cascade

As stated previously, the purpose of the annular cascade test was to evaluate the two vane configurations over a range of pressure ratios and select one for use in the air turbine and engine. The results of this testing are shown in Figure 36, where vane cascade efficiency is plotted versus cascade total-to-static pressure ratio. The definition of vane efficiency is presented in Appendix D. Pitchline efficiency is plotted in Figure 36a and overall efficiency in 36b. At the pitchline, base vane efficiency is 0.14% better than the LUT at design pressure ratio of 1.67. Overall efficiency of the base design is 93.59%, while that of the LUT design is 93.14% from which it follows that the base vane shows an advantage of 0.48% in vane efficiency at design conditions. At higher than design pressure ratios, the LUT design has better performance, probably due to less recompression shock loss. Because of its higher performance at design pressure ratio, the base vane was selected for air turbine evaluation and in the engine.

In Figure 37, the radial variations of efficiency and temperature for the two configurations are compared. From this figure it is seen that the base vane outperforms the LUT vane by about 1 point for the lower half of the annulus. Off-design performance in the spanwise direction is compared in Figure 38. Measured vane exit flow angle was adjusted to satisfy continuity using measured flow, pressure and temperature. Adjusted values are compared to design intent in Figure 39. Since this measurement was made relatively far downstream, the gradient shown is not necessarily considered indicative of that at the trailing edge. No flow angle measurement was made for the LUT vane.

The effect of reduced cooling flow was investigated for the base vane. This was accomplished by reducing the coolant supply pressure from 1.6% greater than inlet pressure to 0.2% greater. This brought about a reduction in total coolant flow to the nozzle assembly from 4.28% of inlet flow to 2.72%. The effect on vane efficiency is shown in Figure 40, where it is seen that while the integrated mass averaged efficiency did not change, there was a general increase in the outer annulus and decrease in the inner. Although the

Figure 36. Vane Efficiency Versus Cascade Pressure Ratio, Base vs. LUT.

Figure 37. Radial Variation of Vane Efficiency and Temperature Ratio at Design Point, Base vs. LUT.

Figure 38. Radial Variation of Vane Efficiency and Temperature Ratio at Off Design Pressure Ratios, Base vs. LUT.

Figure 39. Base Vane Flow Angle.

Figure 40. Effect of Reducing Cooling Flow on Base Vane Efficiency and Temperature Ratio.

result of no efficiency change is possible, and increase in efficiency was expected, that is the increase in efficiency due to reduced coolant flow was expected to be greater than the decrease due to reduced coolant pressure. The effect of the reduced cooling flow was also reflected in the higher temperature of the flow at the stator exit. In connection with the radial variation in efficiency change, it is noted that there is a gradient in temperature change, indicating that the cooling flow change tended to be concentrated toward the outer wall.

Results of base vane testing indicated that pitchline efficiency was lower than previous experience which prompted additional, diagnostic testing of the base design. The first diagnostic test was to determine whether this deficit was due to aerodynamics or cooling. This was done by traversing behind an all-solid base vane sector with solid bands.

This test of solid hardware showed a pitchline efficiency of 97.66% and an overall efficiency of 96.67%; these values are considered to be in the range of normal expectation of similar applications. Figure 41 compares the spanwise variation in efficiency and temperature for the solid and fully cooled base vanes. Secondary flow effects are confined to the inner and outer 10% of the annulus. It must also be pointed out that, during testing of the solid vane, cooling air was still being supplied to the rest of the nozzle assembly. This accounts in part for the temperature gradient at the outer wall of the solid vane in Figure 41. There was also evidence of a small leak where the vane was brazed to the outer band, thus allowing the lower temperature coolant from the supply cavity into the flowpath. This would also contribute to the temperature gradient. It is also observed that temperature ratios are greater than 1.0 for the solid vane. A reason for this is that the inlet temperature used for normalizing is a spanwise average of the inlet rakes. Since the average is less than the peak of the profile, temperature ratios greater than one can occur. Also, the inlet temperature level was observed to increase during the course of the traversing. This increase was observed in the inlet reference temperature which was recorded during each traverse and is most obvious at the four lowest traverse locations.* Solid vane performance at higher pressure ratios is shown in Figure 42. No temperature data were

*Efficiency results are not effected by the temperature anomally

Radial Variation of Vane Efficiency and Temperature Figure 41. Ratio at Design Pressure Ratio for Base Vane, Cooled vs. Solid.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 42. Radial Variation of Vane Efficiency at Off-Design Pressure Ratios for Solid Base Vane

taken at higher pressure ratios due to failure of the probe thermocouple. Solid vane performance as a function of total-to-static pressure ratio across the vane is presented in Figure 43 for both pitchline and overall vane efficiency. It is observed that efficiency is constant up to a pressure ratio of 2.0, then decreases with increasing pressure ratio.

Results of the solid vane test indicate that the higher-than-predicted loss obtained with the cooled vane was due to cooling flow effects. The largest cooling flow mixing losses are predicted for the suction side shaped holes and the trailing edge slots (These holes were shown in Figure 5). In an effort to identify the region of high loss, two tests were planned. The first of these tests was to determine the effect of sealing only the aft row of suction side holes. The second test was to determine the effect of sealing the trailing edge slots. Two attempts were made for the latter test. The first attempt yielded unsatisfactory results as some of the slots opened up. A second attempt provided a better test except near the endwalls where some of the cement had eroded and possible pinhole size leaks were noted.

The results of these tests are presented in Figure 44 where comparisons to the fully cooled and solid vanes are made. The mass averaged loss associated with the aft row of suction surface shaped holes was 0.7 points in vane efficiency, which agrees with prediction for this hole geometry. The predicted loss for the trailing edge slots was 0.9 points in vane efficiency; the indicated loss from Figure 44 substantially exceeds this predicted value. An inspection of the trailing edge slots revealed most to be tapered (small end upstream) and oversized. The resultant loss in coolant total pressure causes greater mixing loss and tends to account for the larger than expected loss in the cooled base vane.

Surface static pressure measurements were taken for the base vane. Taps were installed at hub, pitch, and tip of a solid vane and pitchline of a cooled vane. Results are compared to design intent in Figure 45. Surface taps on the LUT vane were installed but not hooked up for data acquisition in order to expedite testing.

Figure 43. Vane Efficiency vs. Cascade Pressure Ratio for Solid Base Vane.

O Fully Cooled

Figure 44. Radial Variation of Vane Efficiency and Temperature Ratio for Cooling Flow Diagnostic Test

Figure 45. Base Vane - Surface Mach Number Distributions

Figure 46. Efficiency Contours For Base Vane (Cooled)

76

Figure 47. Temperature Contours For Base Vane (Cooled)

Figure 48. Efficiency Contours For LUT Vane (Cooled)

78

Figure 49. Temperature Contours For LUT Vane (Cooled)

Figure 50. Efficiency Contours For Base Vane (Solid)

Figure 51. Temperature Contours For Base Vane (Solid)

Contour plots of vane efficiency and exit temperature ratio are presented in Figures 46 through 51 for the base cooled, LUT cooled and base solid configurations. These countours were constructed from circumferential traverses covering two nozzle passages at fifteen radial locations.

A tabulation of test readings is presented in Appendix E.

6.2. Air Turbine Rig

6.2.1 Performance

A summary of the air turbine performance parameters at design operating point is shown in Table XIII compared to E^3 program goals and pre-test predictions. Here it is seen that the E^3 FPS efficiency goal was met during this first test, exceeding expectations for the component test phase of the E^3 program. A comparison of efficiency definitions is presented in Appendix F.

Coolant flowrates were obtained by setting pressure and temperature in the various coolant supply circuits. A comparison of design intent vs measured flows and temperature is presented in Table XIV. Actual flows are close to design intent with the exception of two circuits, vane one forward and the inducer (rotor) circuit. A schematic of the cooling circuits was shown in Figure 34.

In the case of the rotor circuit, the higher than intended flowrate is believed to be due to a larger inducer (tangential accelerator) flow area than design intent and a higher resulting flow coefficient than assumed in sizing the inducer. For the vane forward cavity, the lower flowrate is probably due to heat pick-up from the inlet frame struts. The impact of these on performance will be discussed in Section 6.2.5.

In Table XIV it is also observed that the stage two vane coolant temperature is 56K (100°R) hotter than design intent. This is due to heat pick-up from the clearance control air circuits which supply hot air to the shroud housing to maintain blade tip clearances.

Table XIII. Summary of Turbine Performance Parameters at Design Operating Point

	ICLS	FPS	PREDICTION 1	TEST
P _{T,4} /P _{T,42}	4.933	4.897	5.04	5.01
$\Psi_{\mathbf{p}}$	0.648	0.635	0.646	0.657
η _{GE}	0.919	0.924	0.916	0.925
W_{41}^{T} , 41 , 41 , 4 sec kP a	0.866 (17.66)	0.865 (17.64)	0.844 (18.03)	0.892 (18.19)
$\begin{pmatrix} \frac{1\text{bs }\checkmark^{\bullet}R}{\text{sec psia}} \end{pmatrix}$				

 $[\]widehat{\mbox{\em 1}}$ Corrected to rig conditions.

Table XIV. Comparison of Coolant Flow Ratios and Temperatures at Two Stage Rig Design Point Condition.

Coolant Circuit	Flow Ratio,	Wc/W41	Tempe	rature,	K (OR)	
	Test	Design Intent	T	est	Desig	n Intent
Vane 1 Fwd Cavity	0.0332	0.0511	328	(590)	352	(633)
and Inner Band						
Vane 1 Aft Cavity	0.0528	0.0565				
Outer Band, and	0.0478*	0.0500*	352	(633)	352	(633)
Stage 1 Shroud						
Rotor	0.0642	0.0503	346	(622)	344	(620)
Simulated Compressor	0.0140	0.0151	344	(620)	361	(649)
Discharge Leakage						
Vane 2 and	0.0224	0.0236	356	(640)	300	(540)
Stage 2 Shroud	•			·		

^{* =} Excluding Shroud air

Blade-Jet Speed Ratio, U/Co

Figure 52. Efficiency (GE) vs. Blade-Jet Speed Ratio (Power from Shaft Torque)

Blade-Jet Speed Ratio, U/Co

Figure 53. Efficiency (Thermo) vs. Blade-Jet Speed Ratio (Power from Shaft Torque)

Figure 54. Efficiency (Thermo) vs. Blade-Jet Speed Ratio (Power from shaft torque plus rotor coolant pumping)

Results of the turbine mapping are presented in plots of efficiency versus blade-jet speed ratio. These are shown in Figures 52 to 54 for GE torque efficiency, torque thermodynamic efficiency and torque-plus-pumping thermodynamic efficiency respectively. These same efficiencies are also plotted versus group pitchline loading in Figures 55 to 57. At design point operation, P_{T,4}/P_{S,42} =5.55, U/C =0.575, the following efficiencies are noted:

GE,	η _{GE}	92.5%
Thermo,	η TH	88.4%
Thermo plus Pumping,	η _{THP}	90.0%

At design pressure ratio, efficiency is seen to be increasing as loading is decreasing below design point level, indicating normal off-design trend and incidence tolerance of the blading. Less incidence tolerant blading would exhibit a tendency for efficiency to peak at or near design point and then decrease with decreasing loading.

Energy extraction as a function of corrected speed is shown in Figure 58 for shaft torque and in Figure 59 for torque with pump work included. A comparison of the two figures shows the effect of including the pumping term in the power output. A shift in level is observed and this delta is seen to increase with speed. This increase with speed is because the pumping power term is a function of speed squared.

The torque characteristics (expressed as torque divided by inlet total pressure) of the turbine are presented in Figure 60. The torque parameter includes the additional torque due to pumping the rotor coolant. In addition to the quantitative aspects, this plot can also be used to judge the quality of the torque measurement. The plot shows a smooth family of curves, as expected. This gives credibility that the torque measurements are consistent over the range of conditions investigated.

Turbine total-to-total pressure ratio as a function of corrected speed and total-to-static pressure ratio is shown in Figure 61. The total pressures are determined with measurements obtained from inlet and exit rakes. This figure is included mainly to present the total-to-total pressure ratio data in a graphical form for those who use total-to-total pressure ratio rather than total-to-static in defining a test map matrix.

Figure 55. Efficiency (GE) vs. Loading.

Figure 56. Efficiency (Thermo) vs. Loading (Power based on shaft torgue).

Figure 57. Efficiency (Thermo) vs. Loading (Power from shaft torque plus rotor coolant pumping).

.

Figure 58. Energy Function vs. Corrected Speed (Power from shaft torque).

Figure 59. Energy Function vs. Corrected Speed (Power from shaft torque plus rotor coolant pumping).

Figure 60. Torque Function vs. Corrected Speed (Based on shaft torque plus rotor coolant pumping).

Corrected Speed, $N/\sqrt{T_{T,41}}$

Figure 61. Total-to-Total Pressure Ratio vs. Corrected Speed.

Turbine flow function is presented in Figure 62 for the five higher pressure ratios and in Figure 63 for the four lower pressure ratios. At design point, the measured flow function is 18.19 which slightly exceeds the design intent of 18.026 by 0.9 percent. In Figure 62, two trends are noted. First, for a constant total-to-static pressure ratio and decreasing speed, flow function is seen to increase, as is normal, but them falls off at the lowest speed. A probable explanation for the fall-off is that the flow coefficient for one or more bladerows downstream of the stage one nozzle decreases (reducing effective flow area) due to incipient separation as loading and incidence increase at lower speeds. A second trend is seen at constant speed and increasing pressure ratio. For this situation, flow function increases up to a presume ratio of 5.5, but then drops off at the highest pressure ratio of 7.0. The difference in flow function is on the order of 0.1% and is probably due to the amount of leakage flow up the forward face of the rotor. This flow was seen to have an effect on turbine flow function and will be addressed in Section 6.2.5.

Stage one reaction, defined as the ratio of the static enthalpy drop across the rotor to the total-to-static enthalpy drop across the stage, is presented in Figure 64 and 65 for hub and tip respectively. The typical trend for reaction is to decrease with decreasing speed. This is observed to be the case at higher speeds for a given pressure ratio but not at lower speeds. Again, this may be due to separation in one or more bladerows at far offdesign operating points and also to the amount of wheel space leakage flow injected between the first stage nozzle and rotor. The effect of this flow on stage one reaction will be discussed in Section 6.2.5.

Static pressure drop through the turbine at design point conditions is illustrated in Figure 66. Good agreement with design intent was observed. It is noted that there is no value for the static pressure at the outer wall at vane two exit. Although this instrumentation was installed, apparently all pressure leads were damaged during assembly of the nozzle to the support casing.

Turbine exit swirl for the range of conditions investigated is presented in Figure 67. (Positive swirl is backward running.) These data were derived from two sources: (1) continuity calculation using measured flows, average

Figure 62. Flow Function vs. Corrected Speed (Five Higher Pressure Ratios).

Figure 63. Flow Function vs. Corrected Speed (Four Lower Pressure Ratios).

Figure 64. Stage One Hub Reaction vs. Corrected Speed. Solid Lines Show Expected Trend.

Figure 65. Stage One Tip Reaction vs. Corrected Speed. Solid Lines Show Expected Trend.

Figure 66. Static Pressure vs. Axial Station at Design Point Conditions

Figure 67. Turbine Exit Swirl vs. Corrected Speed.

exit static pressure, average exit rake total pressure and average exit rake total temperature; and (2) radial traverses. The reasons for using two sources were that the continuity calculation was insensitive between plus and minus ten degrees and the direction of the swirl (backward or forward running) cannot be determined from continuity, and the fact that traverses were not obtained at all points. In particular, no traversing was done at the four lower pressure ratios. This was due to an interference between the traversing probe and an arc rake after the rakes had been rotated to be more aligned with expected levels of swirl. Levels and trends agree well with expected values.

A tabulation of the pertinent data parameters is presented in Appendix G.

6.2.2 Stage Exit Survey

A set of detailed traverses was taken at design point operating conditions. Circumferential traverses covering two stage two vane spacings were taken at twenty-one radial locations to measure absolute levels of total temperature, total pressure, and flow angle. The radial variation of these parameters is shown in Figure 68. Arc rake averages of pressure and temperature show good agreement with the traverse data. Design intent swirl profile is compared to measured values and good agreement is observed over most of the annulus with some overturning in the hub region. In the case of the swirl profile, design intent is at blade trailing edge plane.

Contour plots were constructed from the circumferential traverses and are presented in Figures 69 through 71 for pressure, swirl and temperature respectively. Stage two vane wakes are observed at approximately twenty-five and sixty-five percent of circumferential arc. The circumferential travel was 18 degrees of arc.

6.2.3 Reynolds Number Variation

Energy averaged Reynolds number, based on vane throat dimension, was varied from 115,000 to 186,000 where rig design point Reynolds number is 176,000. Reynolds number was varied by changing inlet pressure while holding inlet temperature constant. The effect of Reynolds number on efficiency (thermodynaminc with pump work) is shown in Figure 72. It is observed that

Figure 68. Turbine Exit Radial Profiles

Figure 69. Turbine Exit Normalized Pressure $(P_T/P_{T,4})$ Contours at Design Point

ORIGINAL PAGE IS OF POOR QUALITY

Figure 70. Turbine Exit Absolute Flow Angle Contours at Design Point

OF POOR QUALITY

Figure 71. Turbine Exit Normalized Temperature $(T_T/T_{T,4})$ Contours at Design Point

Figure 72. Efficiency Variation with Reynolds Number

Figure 73. Efficiency vs. Tip Clearance

the rig design point is beyond the critical Reynolds number. Since the Reynolds number at all significant engine operating points is above critical, no efficiency correction is required.

6.2.4 Tip Clearance Variation

Blade tip clearance was varied on each stage independently. The range of clearance variation was from 0.028 cm (0.011 in.) to 0.056 cm (0.022 in.), where the nominal was 0.041 cm (0.016 in.). The minimum clearance was set so as to not rub the shroud and damage the blade hardware. The maximum clearance resulted when a temperature limit on a sealing ring in the clearance control air circuit was reached. The effect on overall turbine efficiency for stage one clearance is 0.0074 per one percent of blade height. Effect of stage two tip clearance is 0.0047 per one percent blade height. The observed trends are presented in Figure 73 for the thermodynamic with pumping definition of efficiency. As previously stated in Section 5.2, this variation was done at design point conditions except for reduced rotor coolant temperature. It is noted that the clearance effect on turbine efficiency of stage one is approximately fifty—seven percent greater than that of stage two. In view of the 57/43 work split for the 2 stage turbine, this general trend was expected.

6.2.5 Cooling Flow Variation

The following cooling flows were varied: stage one nozzle, rotor inducer, simulated compressor discharge leakage, and stage two vane. Flow rates were changed by increasing or decreasing the particular coolant circuit supply pressure. All variations were done at design point conditions. The effect of these variations on turbine efficiency (thermodynamic plus pump power) is shown in Figure 74. In each case the "zero" delta efficiency is defined where design intent coolant supply pressure was set. Flows are expressed as percent of stage one nozzle exit flow (W_{A1}).

Stage one stator cooling flows were increased from 8.1% W (coolant supply pressure at design intent) to 8.8% with no change in turbine efficiency observed. This can be attributed to the fact that the increased coolant pressure tends to "supercharge" the flow and counters the increased mixing

ORIGINAL PAGE 19 OF POOR QUALITY

Figure 74. Effect of Cooling Flow Variation on Efficiency

losses of the additional coolant. This agrees well with prediction where an increase of 0.03 points was estimated and is consistent with annular cascade test results of Figure 40.

Simulated compressor discharge leakage was increased from 1.35% to 2.5% which resulted in a decrease in turbine efficiency of nearly one-half percent. This is approximately 0.2 points larger than predicted. This increase in flow was also seen to have a significant effect on both turbine flow function and stage one reaction as shown in Figure 75. Flow function decreases approximately 0.25% (from 18.165 to 18.12) and reaction increases from 0.37 to 0.44 at the hub. Somewhat less of an increase in tip reaction is also noted. These effects are a result of a reduction in stator one effective area due to the increased leakage flow blockage. The changes in flow function and reaction due to the increase in simulated compressor discharge leakage is of sufficient magnitude to account for the apparent anomalies in Figures 62, 64 and 65 for flow function, hub reaction and tip reaction respectively.

Rotor coolant flow was reduced to 5.6% and increased to 6.6% from a base of 6.4% (Figure 74). As expected, turbine efficiency increased 0.32 points with the reduction in rotor cooling flow and decreased 0.06 points with the increase in cooling flow and agrees well with prediction.

An estimate was made of what efficiency would have resulted if design intent rotor cooling flow was achieved at the correct supply pressure. This is based on the test results with the effect of the lower coolant supply pressure factored out. In terms of the thermodynamic definition of efficiency with credit for rotor coolant pumping, n_{THP} , and additional 0.3 points is estimated. For the General Electric cycle definition, n_{GE} , virtually no change is expected.

Stage two vane coolant flow was varied from 1.2% to 2.6%; flowrate at design coolant supply pressure was 2.25%. The total change in efficiency was on the order of 0.2 points. A trend of decreasing efficiency with increasing flowrate is observed as expected. Predicted values were +0.1 points at 1.2% and -0.1 points at 2.6%.

Figure 75. Effect of Simulated Compressor Discharge Leakage on Flow Function and Reaction

7.0 CONCLUSIONS

Full scale rig testing with simulated cooling flows has verified the aerodynamic design of the high pressure turbine for the General Electric Energy Efficient Engine. Rig thermodynamic efficiency with credit for rotor coolant pumping was demonstrated to be 90.0%. In terms of General Electric cycle definition, this efficiency was 92.5%, exceeding ICLS goal by 0.6 points and the FPS goal by 0.1 points.

The performance of the turbine was mapped over a wide range of operating conditions to evaluate off-design capabilities. Adequate definition of the off-design performance characteristic was accomplished. At very low pressure ratios (sub-idle and start region), the turbine exceeded expectations by two to five points in efficiency.

Rotor tip clearances were successfully varied independently on each stage to obtain the effect on two stage turbine efficiency.

Reynolds number was varied over a range of 115,000 to 186,000. It was verified that significant turbine operating points are at Reynolds numbers greater than critical and that no efficiency correction is required.

All cooling flow circuits were varied and changes in turbine efficiency agreed well with prediction.

Annular cascade testing of two stage one vane candidates showed the base configuration to have better performance than the lower unguided turning configuration by 0.48 percent in vane kinetic energy efficiency. Predicted level of efficiency would be met with trailing edge slots drilled per design intent.

Efficiency goals for the high pressure turbine in the FPS have been met.

8.0 REFERENCES

1. Halila, E.E., Lenahan, D.T., and Thomas, T.T., "Energy Efficient Engine High Pressure Turbine Test Hardware Detailed Design Report", NASA CR-167955.

•						
				•		
	9					,
÷						e e
		=				
¥						
						~

						- P
					3	
	•					
					•	•
						10 × 10
		4.				
			•	•		
			Ÿ			:
•						
					·	
	**				4	
				٠.		
					- S	
	6.				•	
	9					
						0.40
	1.7					
		* *				
			÷		••	

APPENDICES

Α	AIRFOIL COORDINATES
В	BLADE JET SPEED RATIO
С	REYNOLDS NUMBER CALCULATION
D	NOZZLE EFFICIENCY DEFINITION
E	DATA TABULATION FOR ANNULAR CASCADE
F	TURBINE EFFICIENCY DEFINITIONS
G	DATA TABULATION FOR TURBINE RIG TEST

PRECEDING PAGE BLANK NOT FILMED

PAGE 14 INTENTIONALLY BLANK

APPENDIX A

AIRFOIL COORDINATES

ORIGINAL PAGE IS OF POOR QUALITY

Typical Airfoil Coordinate Definition

X = Axial distance

Y = Tangential distance on radius

CTION SURFACE	CONRDINATES	PRESSURE SURFACE COORDINATES
ICITOM SOKENCE	200001144 E3	FRESSORE SORT ADE GOODELIATES

PT.	x	Y	PT.	X	Υ	PT.	×	Y	PT.	X	Y
1	-12.949311	- 18 . 49 1997	42	-6.302391	-18.508307	83	0.047216	0.183629	123	-6.561592	-11.029343
2	-13.014145	-18.637451	43	-6.043191,	-18.087966	84	0.023026	0,188138	124	-6.820793	-11.386360
3	-13.060081	-18.783015	44	-5.783990	-17.635204	85	-0.001553	0.189490	125	-7.079994	-11.738000
4	-13.087528	- 18.928686	45	-5.524789	-17.149553	86	-0.026109	0.187661	126	-7.339194	-12.083879
5	-13.096202	- 19.074464	46	-5.265588	-16.631778	87	-0.050231	0.182681	127	-7.598395	-12.423695
6	-13.094451	- 19. 128685	47	-5.006387	-16.082417	86	-0.073514	0.174633	128	-7.857596	-12.757027
7	-13.089885	- 19. 182922	48	-4.747187	- 15.502349	89	-0.095569	0.163652	129	-8.116797	-13.084601
8	-13.083085	-19.237173	49	-4.487986	-14.892743	90	-0.116025	0.149922	130	-8.375998	-13.405879
9	-13.075554	- 19.291427	50	-4,228785	-14.254215	91	-0.134539	0.133673	131	-8.635199	-13.722966
10	-13.067484	- 19.345685	51	-3.969584	-13.586929	92	-0.150801	0.115178	132	-8.894399	-14,035432
11	-13.057946	-19,399951	52	-3.710383	-12.891267	93	-0.164538	0.094745	133	-9.153600	-14.345715
12	-13.046259	-19.454229	53	-3.451183	-12.167556	94	-0.193910	0.003247	134	-9.412801	-14.653858
13	-13.032628	- 19.508519	54	-3.191982	-11.416392	95	-0.223283	-0.053901	135	-9.672002	-14,961177
14	-13.018450	-19.562812	55	-2.932781	- 10.638920	96	-0.252655	-0.113932	136	-9.931203	-15.267179
15	-13.004502	-19.617103	56	-2.673580	-9.837220	37	-0.282028	-0.177720	137	-10, 190403	-15.571901
16	-12.989823	-19.671399	57	-2.414379	-9.014562	98	-0.311400	-0.241855	138	-10.449604	-15.872428
17	-12.973824	-19.725702	58	-2.155179	-8.174962	99	-0.340773	-0.307068	139	-10.708805	-16.168200
18	-12.956734	-19.780010	59	-1.895978	-7.322318		-0.599974	-0.863073	140	-10.968006	-16.454952
19	-12.589152	-20, 492955	60	-1.636777	-6.460058	100	-0.859175	-1.402345	141	-11,227206	-16.731870
20	-12.221571	-20.907595	61	-1.377576	-5.590808	102	-1.118375	-1.937034	142	-11.486407	-16.998446
21	-11.853989	-21, 179417	62	-1.118375	-4.715737	103	-1.377576	-2.462909	143	-11.797863	-17.304954
	-11.486407	-21.357978	63	-0.859175	-3.832921	104	-1.636777	-2.978862	144	-12,109318	-17.602627
22 23	-11.227206	-21.444828	64	-0.599974	-2.936548	105	-1.895978	-3.484983	145	-12.420773	-17.896405
24	-10.958006	-21.494044	65	-0.340773	-2.020067	106	-2.155179	-3.980920	146	-12.732228	-18.194148
25	-10.708805	-21.517666	66	-0.253179	-1.706302	107	-2.414379	-4.466231	147	-12.747580	-18,209788
	-10.449604	-21.518070	67	-0.165585	-1.389960	108	-2.673580	-4.940662	148	-12.762559	-18.225698
26 27	-10.190403	-21.494884	68	-0.077991	-1.068811	109	-2,932781	-5.404243	149	-12,777158	-18.241886
	-9.931203	-21.451423	69	0.009603	-0.740281	110	-3, 191982	-5.857514	150	-12.791319	-18.258392
28		-21.387636	70	0.097197	-0.400206	111	-3.451183	-6.300999	151	-12.805035	-18.275223
29	-9.672002	-21,304597	71	0.184792	-0.043980	112	-3.710383	-6.735004	152	-12.803033	-18.292280
30	-9.412801	-21,201770	72	0.188966	-0.019791	113	-3.969584	-7.160073	153	-12.831587	-18.309525
31	-9.153600	-21.201770	73	0.189972	0.004731	114	-4.228785	-7.576902	154	-12.844396	-18.327017
32	-8.894399		74	0.187794	0.029175	115	-4.487986	-7.985707	155	-12.856845	-18.344771
33	-8.635199	-20.935980	75	0.182468	0.053131	116	-4.747187	-7.983707 -8.387099	156	-12.869056	-18.362698
34	-8,375998	-20.771165	76	0.174083	0.076196						
35	-8 . 116797	-20.583659			0.070190	117	-5.006387	-8.781797	157	-12.881095	-18.380751
36	-7.857596	-20.371500	77	0.162779		118	-5.265588	-9.169753	158	-12.892946	-18.398941
37	-7.598395	-20, 134159	78	0.148746	0.118128	119	-5.524789	-9.552010	159	-12.904601	-18.417274
38	-7,339194	-19.868904	79	0.132217	0, 136291	120	-5.783990	-9.928782	160	-12.916064	-18,435746
39	-7.079994	- 19.575184	80	0.113471	0.152167	121	-6.043191	-10.300467	161	-12.927338	-18.454357
40	-6.820793	- 19 . 25 13 15	81	0.092820	0.165491	122	-6.302391	-10.667312	162	-12.938421	-18.473107
41	-6.561592	- 18.895593	82	0.070611	0. 176037						

Stage 1 Vane Base Airfoil Coordinates (10X), inches
Radius = 12.825 inches

	SUCTION SURFACE COORDINATES						PRESSURE SURFACE COORDINATES					
-	PT.	X	Y	PT.	x	Y	PT.	×	Y	PT.	×	Y
	1	-12.942957	- 19.799971	42	-6.312592	-19.852351	83	0.040791	0. 185776	123	-6.572194	-11.955824
	2	-13.013612	-19.953000	43	-6.052990	-19.422969	84	0.016146	0.189543	124	-6.831797	-12.334520
	3	-13.064935	-20.105434	44	-5.793388	-18.956640	85	-0.008776	0.190049	125	-7.091399	-12.707168
	4	-13.097440	-20.257288	45	-5.533785	-18.453685	86	-0.033545	0.187283	126	-7.351001	-13.073563
	5	-13.111089	-20.408559	46	-5.274183	-17.915023	87	-0.057735	0.181294	127	-7.610603	-13.433851
_	6	-13,110943	-20.476942	47	-5.014581	-17.342881	88	-0.080928	0.172185	128	-7.870206	-13.787884
	7	-13.106848	-20.545204	48	-4.754979	-16.738790	89	-0.102726	0.160114	129	-8.129808	-14.136202
	8	-13.099622	-20.613369	49	-4.495376	-16.104472	90	-0.122752	0.145287	130	-8.389410	-14.478579
	9	-13.090294	-20.681469	50	-4.235774	-15.440556	91	-0.140663	0.127962	131	-8.649012	-14.816192
_	10	-13.078575	-20.749495	51	-3.976172	-14.746072	92	-0.156149	0.108435	132	-8.908615	-15.148799
	11	-13.063840	-20.817429	52	-3.716570	-14.019245	93	-0.168944	0.087044	133	-9.168217	-15.477708
	12	-13.046160	-20.885271	53	-3.456967	-13.258736	94	-0.197744	-0.002012	134	-9.427819	-15.802881
	13	-13.025968	-20.953036	54	-3.197365	-12.464388	95	-0.226543	-0.064700	135	-9.687421	-16.125017
_	14	-13.003759	-21.020739	55	-2,937763	-11.638025	96	-0.255342	-0.129176	136	-9.947024	-16,443793
_	15	-12.979899	-21.088391	56	-2.678161	-10.783344	97	-0.284142	-0.196822	137	-10.206626	-16.759222
	16	-12.954256	-21.155988	57	-2.418558	-9.904717	98	-0.312941	-0.264790	138	-10.466228	-17.069736
	17	-12.926634	-21.223524	58	-2.158956	-9.005728	99	-0.341740	-0.333592	139	-10.725830	-17.375046
_	18	-12.896968	-21.290996	59	-1.899354	-8,088330	100	-0.601343	-C.936988	140	-10.985433	-17.672894
-	19	-12.548885	-21.898292	60	-1.639752	-7.153419	101	-0.860945	-1.524639	141	-11.245035	-17.963017
	20	-12.200803	-22.269748	61	-1.380149	-6.201463	102	-1.120547	-2.107268	142	-11.504637	-18.245342
	21	-11.852720	-22.518510	62	-1.120547	-5.233051	103	-1.380149	-2.680952	143	-11.819782	-18.577701
_	22	-11.504637	-22.684880	63	-0.860945	-4.248126	104	-1.639752	-3.244199	144	-12.134926	- 18 . 903065
	23	-11.245035	-22.770484	64	-0.601343	-3.244450	105	-1.899354	-3.796756	145	-12.450071	-19.225145
	24	-10.985433	-22.820995	65	-0.341740	-2.219621	106	-2.158956	-4.33B122	146	-12.765215	-19.549276
9	25	-10.725830	-22.845917	66	-0.253893	-1.868701	107	-2.418558	-4.867640	147	-12.777618	-19.562641
_	26	-10.466228	-22.847495	67	-0.166045	-1.515489	108	-2.678161	-5.384844	148	-12.789746	-19.576202
_	27	-10.205626	-22.826589	68	-0.078198	-1.158975	109	-2.937763	-5.889666	149	-12.801595	-19.589961
	28	-9.947024	-22.784890	69	0.009650	-0.797049	110	-3.197365	-6.382517	150	-12.813138	-19.603937
	29	-9.687421	-22.723023	70	0.097497	-0.426094	111	-3.456967	-6.864143	151	-12.824369	-19.618133
_	30	-9.427819	-22.641474	71	0.185345	-0.041901	112	-3.716570	-7.335151	152	-12.835344	-19.632512
	31	-9.168217	-22.540171	72	0.189215	-0.017240	113	-3.976172	-7.796085	153	-12.846089	-19.647053
	32	-8.908615	-22.419021	73	0.189826	0.007717	114	-4.235774	-8.247611	154	-12.856587	-19.661770
	33	-8.649012	-22.277191	74	0.187168	0.032541	115	-4.495376	-8.690095	155	-12.866840	-19.676660
_	34	-8.389410	-22.114122	75	0.181286	0.056803	116	-4.754979	-9.123951	156	-12.876910	-19.691680
-	35	-8.129808	-21.928319	76	0.172281	0.080087	117	-5.014581	-9.549795	157	-12.886827	-19.706808
	36	-7.870206	-21.718725	77	0.160309	0.101992	118	-5.274183	-9.967814	158	-12.896586	-19.722049
	37	-7.610603	-21.483099	78	0.145577	0.122140	119	-5.533785	-10.378614	159	-12.906181	-19.737406
	38	-7.351001	·21.220293	79	0.128338	0.140186	120	-5.793388	-10.782546	160	-12.915616	-19.752876
•	39	-7.091399	-20.927305	80	0.108889	0.155817	121	-6.052990	-11.179904	161	-12.924890	-19.768461
	40	-6.831797	-20.603391	81	0.087566	0.168766	122	-6.312592	-11.570915	162	-12.934003	-19.784159
	41	-6.572194	-20.245184	82	0.064735	0. 1788 10					1	

Stage 1 Vane Base Airfoil Coordinates (10X), inches
Radius = 13.612 inches

ORIGINAL PAGE IS

SUCTION SURFACE COORDINATES	PRESSURE SURFACE COORDINATE

PT.	¥	v	PT.	X	Y	PT.	x	Y	PT.	Х,	Υ
	-12.936602	-21,127869	42	-6.322793	-21,220362	83	0.034366	0.186866	123	-6.582797	-12.911101
2	-13.012840	-21.287954	43	-6.062789	-20.783871	84	0.009265	0.189774	124	-6.842800	-13.311446
3	-13.069766	-21.446915	44	-5.802786	-20.305617	85	-0.016000	0.189325	125	-7.102804	-13.705032
Ă	-13.107378	-21.604753	45	-5.542782	-19,786800	86	-0.040982	0.185528	126	-7.362808	-14.091858
5	-13.125677	-21.761466	46	-5.282778	- 19,228510	87	-0.065238	0.178449	127	-7.622812	-14.472574
Ř	-13.127529	-21.845534	47	-5.022774	-18.634851	88	-0.088342	0.168214	128	-7.882815	-14.847331
	-13.123761	-21,929275	48	-4.762771	-18.008075	89	-0.109882	0.155003	129	-8.142819	-15.216465
8	-13.115957	-22.012782	49	-4.502767	- 17 . 3505 13	90	-0.129479	0.139051	130	-8.402823	-15.580097
ğ	-13.105007	-22.096105	50	-4,242763	-16.662804	91	-0.146786	0.120640	131	-8.662827	-15.938357
10	-13.089524	-22, 179165	51	-3.982760	-15.942713	92	-0.161497	0.100094	132	-8,922830	-16.291213
11	-13.069571	-22.261964	52	-3.722756	-15.186055	93	-0.173351	0.077779	133	-9.182834	-16.638699
12	-13.045741	-22.344538	53	-3.462752	-14.389634	94	-0.201577	-0.007902	134	-9.442838	-16.980683
13	-13.019129	-22.426950	54	-3.202749	-13.552444	95	-0.229803	-0.076366	135	-9.702842	-17.317168
14	-12.988881	-22.509151	55	-2.942745	-12.677064	96	-0.258029	-0.145373	136	-9.962845	-17.648023
15	-12.955045	-22.591142	56	-2.682741	-11,768975	97	-0.286255	-0.216872	137	-10.222849	-17.973236
16	-12.918536	-22.672979	57	-2.422737	-10.833757	98	-0.314482	-0.288661	138	-10.482853	-18.292761
17	-12.879393	-22.754662	58	-2.162734	-9.874481	99	-0.342708	-0.361002	139	-10.742856	-18.606612
18	-12.837202	-27.836169	59	-1.902730	-8.890903	100	-0.602712	-1.013322	140	-11.002860	-18.914808
19	-12.508619	-23.320608	60	-1.642726	-7.881071	101	-0.862715	-1.651120	141	-11,262864	-19.217695
20	-12.180035	-23.640960	61	-1.382723	-6.843028	102	-1.122719	-2.283436	. 142	-11,522867	-19.515698
21	-11.851451	-23.862068	62	-1.122719	-5.776701	103	-1.382723	-2.906725	143	-11.841701	-19.874716
22	-11.522867	-24.013570	63	-0.862715	-4.684132	104	-1.642726	-3.519072	144	-12.160535	-20.228854
23	-11.262864	-24.097165	64	-0.602712	-3.567110	105	-1.902730	-4.119839	145	-12.479369	-20.580418
24	-11.002860	-24.148772	65	-0.342708	-2.427912	106	-2.162734	-4.708367	146	-12.798202	-20.931869
25	-10.742856	-24, 174976	66	-0.254607	-2.037768	107	-2.422737	-5.283758	147	-12.807594	-20.942515
26	-10.482853	-24.177862	67	-0.166506	-1.645667	108	-2.682741	-5.845312	148	-12.816820	-20,953279
— <u>- 27</u> —	-10.222849	-24.159666	68	-0.078405	-1.251978	109	-2.942745	-6.392851	149	-12.825882	-20.964158
28	-9.962845	-24.120241	69	0.009696	-0.855125	110	-3.202749	-6.926640	150	-12.834778	-20.975154
29	-9.702842	-24.060968	70	0.097797	-0.452133	111	-3.462752	-7.447668	151	-12.843510	-20.986266
30	-9.442838	-23.981669	71	0.185898	-0.039269	112	-3.722756	-7.956873	152	-12.852057	-20.997509
31	-9.182834	-23.882798	72	0.189465	-0.014253	113	-3.982760	-8.454797	153	-12.860383	-21.008908
32	-8.922830	-23.763958	73	0.189680	0.011015	114	-4.242763	-8.942072	154	-12.868581	-21.020397
33	-8.662827	-23.624840	74	0.186541	0.036088	115	-4.502767	-9.419224	155	-12.876652	-21.031977
34	-8.402823	-23.464886	75	0.180103	0.060522	116	-4.762771	-9.886447	156	-12.884594	-21.043647
35	-8.142819	-23,282314	76	0.170479	0.083887	117	-5.022774	-10.344233	157	-12.892408	-21,055408
36	-7.882815	-23.077085	77	0.157840	0.105767	118	-5.282778	- 10.793033	158	-12.900094	-21.067258
37	-7.622812	-22.845054	78	0.142408	.0.125777	119	-5.542782	-11.232961	159	-12.907652	-21.079200
38	-7.362808	-22.586859	79	0.124458	0.143562	120	-5.802786	-11.664517	160	-12.915082	-21.091231
39	-7.102804	-22,296770	80	0.104307	0.158808	121	-6.062789	-12.087874	161	-12.922383	-21.103354
40	-6.842800	-21.975099	81	0.082311	0.171245	122	-6.322793	-12.503240	162	-12.929557	-21.115566
			82	0.058859	0.180653						

Stage 1 Vane Base Airfoil Coordinates (10X), inches

Radius = 14.40 inches

PRESSURE SURFACE COORDINATES

_							PT.			PT.		
	PŢ.	X		PT.	×	10,004441	83	0.042543	0.185176	123	-8.566645	-11,673133
	1	-12.930217	-19.354575	42	-6.307253	-18.964441	84	0.042543	0.189151	124	-6,826037	-12.064484
	2	-13.010558	-19.520508	43	-6.047861	-18.484285		-0.003976			-7.085429	-12.449409
	3	-13.062741	-19.682486	44	-5.788469	-17.964422	85		0.189872	125		
-	4	-13.036768	-19.840509	45	-5.529077	-17,406503	66	-0.031770	0.187325	126	-7.344821	-12.827408
	5	-13.091432	-19.995311	46	-5.269684	-16.813921	87	-0.055017	0.181555	127	-7.604214	-13.198881
	6	-13 087802	-20.082001	47	-5.010292	-16.190830	88	-0.079300	0.172660	128	-7.863606	-13.564098
	7	-13.078033	-20.167337	. 48	-4.750900	-15.538470	89	-0.101218	0.160794	129	-8.122998	-13.923632
_	8	-13.062304	-20.251619	49	-4.491508	-14.855622	90	-0.121395	0.146162	130	-8.302390	-14.277818
	9	-13.042436	-20.335728	50	-4.232116	-14.146109	91	-0.139483	0.129014	131	-8.641782	-14.626334
	10	-13.019042	-20.419141	51	-3.972724	-13.411351	92	-0.155170	0.109646	132	-8.901174	-14.969367
	11	-12.991006	-20.501903	52	-3.713332	-12.659957	93	-0.168137	0.088391	133	-9.160566	-15.305530
	12	-12.959366	-20.584017	53	-3.453940	-11.897461	94	-0.197029	-0.025939	134	- 9 ,419958	-15.634390
	13	-12.921637	-20.665385	54	-3.194548	-11.123473	95	-0.223870	-0.097031	135	-9 .679350	-15.954489
	14	-12.682101	-20,746703	55	-2.935155	-10,333581	96	-0.254711	-0.155817	136	-9.938743	-16.265489
	15	-12.838393	-20,827263	56	-2.675763	-9.524851	97	-0.283552	-0.215990	137	-10.198135	-16.566736
-	16	-12.791446	-20,907367	57	-2.416371	-8.699468	98	-0.312393	-0.275919	138	-10.457527	-16.859031
	17	-12.742139	-20.987140	58	-2.156979	-7.861456	99	-0.341235	-0.333036	139	-10.716919	-17.142615
	18	-12.689717	-21.066475	59	-1.897587	-7.012364	100	-0.600627	-0.886362	140	-10.976311	-17.417768
	19	-12.391062	-21,435821	60	-1.633195	-6.155925	101	-0.860019	-1.424928	141	-11.235703	-17.684619
-	20	-12.002406	-21.694109	61	-1.378803	-5.302683	102	-1.119411	-1.963928	142	-11.495095	-17.942642
	21	-11,793751	-21,878202	62	-1.119411	-4.453942	103	-1.378603	-2.503301	143	-11.801226	-18.235798
	22	-11.495095	-22.010190	63	-0.860019	-3.604297	104	-1.638195	-3.044718	144	-12.107356	-18.519887
	23	-11,235703	-22.093143	64	-0.600627	-2.733097	105	~1.897587	-3.577397	145	-12.413487	-18,797321
-	24	-10.976311	-22.150148	65	-0.341235	-1,605042	106	-2.150979	-4.160015	146	-12.719617	-19.072175
	25	-10.716919	-22.182647	66	-0.253532	-1.574704	107	-2.415371	-4.610233	147	-12.734858	-19.086659
_	26	-10.457527	-22.191645	67	-0.165829	-1.281192	103	-2.675763	-5.107540	148	-12.749713	-19.101431
12	27	-10.198135	-22.178150	68	-0.078126	-0.986629	109	-2.933155	-5.593574	149	-12.764184	-19.116490
<u> </u>	- <u>2</u> 3	-9.955743	-22.142653	69	0.000577	-0.691106	110	-3.194548	-6.070599	150	-12.778270	-19.131835
•	23	-9.679250	-22.006164	70	0.697280	-0.381971	111	-3.453940	-6.540140	151	-12.791864	-19.147548
	30	-9.419958	-22.008271	71	0.184983	-0.043375	112	-3.713332	-7,003560	152	-12.804609	-19.163894
	31	-9,150556	-21,908576	72	0.189069	-0.018788	113	-3.972724	-7.460795	153	-12.617133	-19.180404
-	32	-8.901174	-21.786616	73	0.183901	0.006122	114	-4.232116	-7.911386	154	-12,829436	-19.197080
	33	-8.641782	-21.640565	74	0.187466	0.030327	115	-4.491508	-8.354727	155	-12.841518	-19.213920
	34	-8.382390	-21.468534	75	0.181805	0.055200	116	-4.750900	-8.790445	156	-12.853379	-19.230925
	35	-8.122998	-21.269430	76	0.173015	0.078523	117	-5.010292	-9.218802	157	-12.865019	-19.248095
			-21.040364	 //-	0.151248	0.100494	118	-5.269884	-9.640128	158	-12.876438	-19.265429
	36	-7.665676		78	0.146706	0.120737	119	-5.529077	-16.055963	159	-12.867636	-19.282029
	37	-7.604214	-20.782155		0.129540	0.120737	120	-5.788459	-10.466699	160	-12.898613	-19.300593
	38	-7.344821	-20.490296	79		0.154676	121	-6.047861	-10.873437	161	-12.909369	-19:318422
	39	-7.085429	-20.165185	80	0.110342		122	-6.307253	-11.275613	162	-12.919903	-19.336416
	40	-6.820037	-19.603366	81	0.089146	0.167788		0.30/233	-11.2/3013	102	-12.919903	- 19.000410
	41	-6.566645	-19.403726	82	0.066416	0.178014						

Stage 1 Vane Lut Airfoil Coordinates (10X), inches

Radius = 12.825 inches

							PT.			PT.	X	
_	PT.	×	Υ	PT.	-6, 395740	-20.585848	83	0.039004	0.186500	123	-6.658665	-12.481453
	1	-13.113632	-20.552516	42	-6. 132815	-20.000010	84	0.013972	0.190063	124	-6.921590	-12.891469
	2	-13.191887	-20.721208	43		-19.553080		-0.013972	0.190265	125	-7.184515	-13.295599
	3	-13.244186	-20,885838	44	-5.869891		85		0.187104	126	-7.447440	-13.693789
_	4	-13.272940	-21.046782	45	-5,605966	-18,968540 -18,342449	66	-0.030330	0.180634	127	-7.710364	-14.085573
	5	-13.280536	-21.204424	46	-5.344041	-17.680420	87	-0.060809	0.170970	128	-7.973289	-14.470844
	6	-13,275037	-21.306874	47	-5.081116	-16.986319	88	-0.084157	0.158285	129	-8.236214	-14.849339
	7	-13,262555	-21.408223	48	-4.818191		69	-0.107013	0.142802	130	-8.499139	-15.220333
-	8	-13.244839	-21.508764	49	-4,555266	-16.261248	90	-0.125939	0.124796	131	-8.762064	-15.585966
	9	-13.221721	-21,608454	50	-4.292341	-15.506794	91	-0.143730	0.124796	132	-9.024989	-15.944415
	10	-13.192856	-21.707247	51	-4.029417	-14.725310	92	-0.153924		133	-9.287913	-16.296386
	11	-13.159112	-21.805277	52	-3.766492	-13,924446	93	-0.171301	0.082530	134	-9.550838	-16.641645
_	12	-13,120900	-21.902607	53	-3,503567	-13,103031	94	-0.203829	-0.030393		-9.813763	-16.979563
	13	-13.078251	-21.999243	54	-3.240642	-12,259814	95	-0.230357	-0.105264	135	-10.076688	-17.309484
	14	-13.031682	-22,095265	55	-2.977717	-11.392910	96	-0.259885	-0.170444	136		-17.630279
	15	-12,981586	-22.190736	56	-2.714792	-10.505217	97	-0.289413	-0.236940	137	-10.339613	-17.941247
_	- 16 -	-12.928198	-22.285692	57	-2.451868	-9.602876	\$8	-0.318341	-0.303914	138	-10.602538	-18.241216
	17	-12.871941	-22.380198	58	-2.188943	-8.639239	99	-0.348459	-0.370998	139	-10.865462	
	18	-12.812892	-22.474266	59	-1.92601 8	-7.763373	100	-0.611394	-0.953997	140	-11.128387	-18.530634
	19	-12.523221	-22.858906	60	-1.€63093	-6.826519	101	-0.874319	-1 536311	141	-11.391312	-18.808201
	-20	-12,233559	-23.140350	61	-1.400168	-5.886790	102	-1.137243	-2,119736	142	-11.654237	-19.078167
	21	-11.943838	-23.352753	62	-1,137243	-4.949913	103	-1.400168	-2.714139	143	-11.952761	-19.385303
	22	-11.634237	-23.513394	63	-0.874319	-4.006643	104	-1.663093	-3,308339	144	-12.271284	-19.686281
	23	-11.391312	-23.624010	64	-0.611394	-3.042129	105	-1.926018	-3.890997	145	-12.579908	-19.981368
		-11.126387	-23.703815	€5	-0.348459	-2.064774	106	-2.188343	-4.457503	146	-12.888332	-20.265576
122	24	-10.865462	-23.754799	66	-0.259588	-1.735034	107	-2.451868	-5.008750	147	-12.904223	-20.280384
2	23	-10.602539	-23.778324	67	-0.170707	-1,403677	108	-2.714792	-5.544931	148	-12.919772	-20.295460
10	26	-10.832613	-23,775602	68	-0.081825	-1,071836	109	-2.977717	-6.069210	149	-12.934995	-20.310792
_	27	-10.078638	-23.748054	69	0.007056	-0.739538	110	-3.240642	-6.580255	150	-12.949387	-20.326384
	28		-23.696447	70	0.095937	-0.399751	. 111	-3,500567	-7.081718	151	-12.964370	-20.342297
	29	-9.813763	-23.621405	71	0.184818	-0.044174	112	-3.766492	-7.573463	152	-12.978403	-20.358563
	30	-9.550838	-23.523091	72	0.109034	-0.019180	113	-4.029417	-8,055946	153	-12.992097	-20.375095
_	31	-9.237913	-23.401218	73	0.189901	0.006153	114	-4.292341	-8.529160	154	-13.005525	-20.39163/
	32	-9.024939		74	0.187405	0.031377	115	-4.555266	-8.994195	155	-13.018675	-20.408797
	33	-8.762064	-23.255223	75	0.181589	0.056047	116	-4.818191	-9.451G04	156	-13.031536	-20.425983
	34	-8.499139	-23.034057	75 76	0.172558	0.079724	117	-5.081116	-9.902120	157	-13.044114	-20.443392
_	35	-8,236214	-22.886537		0.160470	0.101992	- - iiii -	-5.344041	-10.346242	158	-13.056409	-20.461023
-	36	-7.973239	-22,660695	77	0.145540	0.122455	119	-5.606966	-10.784583	159	-13,068420	-20.478376
	37	-7.710364	-22.405683	78	0.128033	0.122453	120	-5.869891	-11,217160	160	-13,080148	-20.496953
	38	-7.447440	-22.117790	79		0.156560	121	-6.132815	-11.644224	161	-13,091593	-20.515251
	39	-7.184515	-21.795358	80	0.108259	0.169599	- 122	-6.395740	-12.065714	162	-13.102754	-20.533772
	40	-6.921590	-21.434602	81	0.086569	0.179638	166	-0.353740	12.000717			
	41	-6.658665	-21.032161	82	0.063347	0.179036						

Stage 1 Vane Lut Airfoil Coordinates (10X), inches
Radius = 13.612 inches

ORIGINAL PAGE IS

	PT.	X	Υ	PT.	X	· •	PT.	X		PT.	X	
	1	-13.297047	-21.751557	42	-6.484227	-22.259871	83	0.035465	0.186661	123	-6.750685	-13.300360
	2	-13.372479	-21.921818	43	-6.217770	-21.755452	84	0.010006	0.189736	124	-7.017143	-13.728420
	3	-13.426350	-22.088449	.44	-5.951312	-21.197654	85	-0.015635	0.189356	125	-7.283600	-14.151244
	4	-13.456658	-22.251448	45	-5.C84855	-20,587376	86	-0.040991	0.185526	126	-7.550058	
	5	-13.469403	-22.410815	46	-5.418397	-19.928114	87	-0.065600	0.178316	127	-7.816515	-14.569275
	6	-13.463007	-22.530835	47	-5.151940	-19.227080	88	-0.089015	0.167858	128	-8.082973	-14.981080
	7	-13,446235	-22,649107	48	-4.685482	-18,491056	89	-0.110808	0.154343			-15.386132
	8	-13.427859	-22.767110	49	-4.619025	-17,722616	- 9 9	-0.130582	0.134343	129	-8.349431	-15.783226
	9	-13.401186	-22.883715	50	-4.352567	-16.924195	91	-0.130362	0.133013		-8.615888	-16.171727
	10	-13.363545	-22.998978	51	-4.086109	-16.097928	92	-0.162678		131	-8.682346	-16.552714
	11	-13.327314	-23.113469	52	-3.819652	-15,245107	93	-0.174415	0.098162	132	-9.148803	-16.925926
	12	-13.283756	-23,227231	53	-3.553194	-14.363394	- 93		0.075362	133	-9,415261	-17.293146
	13	-13.234651	-23.340058	54	-3.286737	-13.448460	97 95	-0.204630	-0.035177	134	-9.681718	-17.654365
	14	-13.181358	-23.452181	55	-3.020279	-12.501273		-0.234844	-0.113760	135	-9.948176	-18.009889
	15	-13.125062	-23,563797	56	-2.753821	-11,531250	96	-0.265059	-0.185656	136	-10.214634	-18.358710
	16	-13.064857	-23,674756	57	-2.487364	-10.548930	97	-0.295274	-0.258779	137	-10.481091	-18.699175
	17	-13.001887	-23.785248	58	-2.220906	-9.556887	98	-0.325489	-0.332065	138	-10.747549	-19.028899
	18	-12.936047	-23.895257	59	-1.954449	-8.551411	99	-0.353703	-0.405373	139	-11.014006	-19.345137
	19	-12.655380	-24 293217	60	-1.687991	-7.530934	100	-0.622161	-1.035854	140	-11.280464	-19.648515
	20	-12.374713	-24.599761	61	-1.421534	-6.500765	101	-0.865618	-1.650458	141	-11.546921	-19 936141
	21	-12.094046	-24.842455	62	-1.155076		102	-1.155076	-2.279619	142	-11.813379	-20.217600
	22	-11.813379	-25.034118	63	-0.888618	-5.468243	103	-1.421534	-2.929341	143	-12,124296	-20.538250
	53	-11.516921	-25.175000	64		-4.429928	104	-1.687991	-3.580829	144	-12.435213	-20.856053
	24	-11.280464	-25.279828	65	-0.622161	-3,367496	105	-1.954449	-4.2154G4	145	-12.746130	-21.168864
	25	-11.014006	-25.279020		-0.355703	-2.274365	108	-2.220306	-4.828067	146	-13.057047	-21.461557
-	26	-10.747549		66	-0.265644	-1.902727	107	-2.487354	-5.420620	147	-13.073580	-21.476620
12	27		-25.390836	67	-0.175584	-1.531232	108	-2.753821	-5.996426	148	~13.089826	-21.491917
Ĺ	28	-10.431091	-25.400240	68	-0.085525	-1.159892	109	-3.020279	-6.558016	149	-13.105788	-21.507450
		-10.214634	-25.381803	69	0.004534	-0.783665	110	-3,285737	-7.105/43	150	-13.121464	-21.523219
	29	-9.948176	-25.336042	70	0.094594	-0.416874	111	-3.553194	-7.639485	151	-13.136899	-21.539187
	30	-9.681718	-23.264730	71	0.184653	-0.044757	112	-3.819652	-8.159539	152	-13.152147	-21.555311
	31	-9.415261	-25.168323	72	0.188998	-0.019484	113	-4.086109	-8.666309	153	-13.167048	-21.571721
	32	-9.148803	-25.047746	73	0.189901	0.006143	114	-4.352567	-9.162197	154	-13,181604	-21,588117
	33	-8.882346	-24.902843	74	0.187344	0.031659	115	-4.619025	-9.648285	155	-13.195814	-21.605399
	34	-8.615858	-24.733858	75	0.181374	0.056593	116	-4.885182	-10.126799	156	-13.209378	-21.622667
	35	-8.349431	-24.539508	76	0.172101	0.080507	117	-5.151940	-10.598997	157	-13.223197	-21.640222
	36	-8.082973	-24.318738	77	0.159592	0.102949	118	-5.418397	-11.065558	158	-13.236269	-21.658062
	37	-7.316515	-24.069251	78	0.144375	0.123515	119	-5.684855	-11,526055	159	-13.249196	-21.676189
	38	-7.530058	-23.787838	79	0.126427	0.141831	120	-5.951312	-11.980100	160	-13.261678	-21.694602
	39	1-7.283600	-23,470687	80	0.106177	0.157564	121	-6.217770	-12.426934	161	-13,273813	-21.713301
	40	-7.017143	-23.114089	81	0.083992	0.170427	122	-6.484227	-12.867117	162.	-13.285603	-21.732286
	41	-6.750685	-22.710922	82	0.060277	0.180185		~····	. 2.007.77	, 02.	10.20000	21.702200

Stage 1 Vane Lut Airfoil Coordinates (10X), inches

Radius = 14.400 inches

124

_		X	~	PT.	X	Y	PT.	X	Y	PT.	X	Y
	PT.	-5.140494	-0, 136228	42	0.350044	2,999536	83	5.863318	-7.071335	123	0.134465	-1.349190
	1	-5. 235531	0.004528	43	0.565623	2.855710	84	5.839205	-7.078583	124	-0.081114	-1.251061
	2	-5.288572	0.147249	44	0.781202	2.696068	85	5.814346	-7.082580	125	-0.296693	-1.156565
-	_3	-5.314007	0.291261	45	0.998781	2.512956	86	5.789178	-7.083255	126	-0.512272	-1.071701
	4	-5.314007 -5.318106	0.436272	46	1.212360	2.311299	87	5.764141	-7.080596	127	-0.727851	-0.991252
	5		0.476823	47	1.427939	2.091152	88	5.739676	-7.074650	128	-0.943430	-0.916014
	6	-5.316315 -5.313033	0.521443	48	1.643518	1.652515	89	5.716211	-7.065322	129	-1.159009	-0.845899
_			0.564133	49	1.859097	1.590063	90	5.694160	-7.053371	130	-1.374508	-0 .78090 7
	5	-5.308261	0.606892	50	2.074676	1.305524	91	5.673909	-7.038411	131	-1.590167	-0.721428
	. 9	-5.301997	0.649721	51	2,290255	0.999871	92	5.655813	-7.020905	132	-1.805746	-0.6 3697 7
	10	-5.294261 -5.265771	0.692584	52	2.505834	0.672754	93	5.640192	-7.001159	133	-2.021325	-0.617297
_	11		0.735506	53	2.721413	0.323838	94	5,584886	-6.920846	134	-2.236904	-0.572388
	12	-5.273041	0.73556	54	2.936992	-0.046462	95	5.529581	-6.840478	135	-2.452483	-0.532193
	13	-5.265070	0.821524	55	3,152570	-0.438297	96	5.474278	-6.760055	136	-2.668062	-0.496796
	14	-5.252659	0.864611	56	3.368149	-0.847570	97	5.418971	-6,679577	137	-2.883641	-0.466239
_	_15	5.23058Z	0.907746	67	3.583728	-1.274374	98	5.363666	-6.599045	138	-3,099220	-0.440101
	16	-5.225306	0.950933	58	3.799307	-1.720078	99	5,308360	-6.518458	139	-3.314799	-0.419018
	17	-5.209908	0.994172	59	4.014886	-2,184684	100	5.092781	-6,203495	140	-3,530378	-0.403847
	18	-5.193394	1.611306	60	4.230455	-R.657639	101	4.877202	-5.885720	141	-3.745957	-0.395535
-		-4.E83430	2.045373	61	4.446044	-3.142337	102	4.661623	-5.571445	142	-3,961536	-0.390059
	20	-4.577465	2.045373	62	4.661623	-3,640508	103	4.446044	-5.257657	143	-4.110301	-0.388217
	21	-4.269501	2.668682	63	4.877202	-4.147542	104	4,230465	-4.952578	144	-4.259065	-0.386940
	22	-3.961536	2.830360	64	5.092781	-4.659508	105	4.014885	-4.65/459	145	-4.407830	-D.387518
	_23	<u>-3.745957</u>	2.987761	65	5.303360	-5.180191	106	3,799307	-4.363324	146	-4.555594	-0.383628
•	24	-3.530378	3,115315	66	5.419168	-5,450856	107	3,533728	-4.096248	147	-4.596512	-0.382221
	25	-3.314799	3, 227980	67	5.522975	-5.722041	108	3.368149	-3.835775	148	-4.635750	-0.379212
	26	-3,029220	3.324920	68	5.640783	-5.994916	109	3.152570	-3.590719	149	-4.674309	-0.374501
-	27	-2.683641	3.404873	69	5.751591	-6.269482	110	2,936392	-3.358080	150	-4.712189	-0.338386
	28	-2.668062	3,471350	70	5.852398	-6.545557	111	2.721413	-3.141272	151	-4.749390	-0.360569
	29	-2,452483	3,523150	71	5.973206	-6.823128	112	2.505834	-2.936096	152	-4.785912	-0.351149
	30	-2.236904	3.560004	72	5.980948	-6.847085	113	2.200255	-2.742198	153	-4.821755	-0.340126
-	31	-2.021325	3.582818	73	5,985454	-6.871856	114	2.074676	-2.561894	154	-4.857102	-0.327934.
	32	-1.805746	3,591323	74	5.996646	-6.897006	115	1,659097	-2.393143	155	-4.891843	-0.314311
	33	-1.590167	3,585334	75	5.994502	-6.922092	116	1.643518	-2.233014	156	-4.925771	-0.298769
	34	-1.374568	3,564828	76	5.970059	-8.946674	117	1.427939	-2.081508	157	-4.958886	-0.281308
٠.	35	-1.150000	3.529704	77	5.970414	-6.970321	118	1,212360	-1.940656	158	-4.991187	-0.261926
	36	-0.943430	3.529704	78	5.958719	-8.992617	119	0.996781	-1.808611	159	-5.022676	-0.240628
	37	-0.727851	3.4/9/5/	79 79	5.944178	-7.013171	120	0.781202	-1.633253	160	-5.053350	-0.217405
	38	-0.512272	3.415095	80	5.927047	-7.031622	121	0.565623	-1.564582	161	-5.083212	-0.192268
	39	-0.206693	3,335719	81	5.907626	-7.047646	122	0.350044	-1.452951	162	-5.112260	-0.165208
	40	-0.081114	3.239755	82	5.886258	-7.060961						
	41	0.134465	9.12/000	04								

Stage 1 Blade Airfoil Coordinates (10X), inches

Radius = 12.731 inches

ORIGINAL PAGE IS

	PT.	X	Υ	· PT.	X	Y	PT.	X	Y	PT.	X	<u> </u>
	1	-5.258417	0.595922	42	0.209663	2,944553	83	5.720659	-7.849662	123	-0.005970	-0.882253
	2	-5.362502	0.732809	43	0.425295	2.762122	84	5.696519	-7.856364	124	-0.221602	-0.727541
	3	-5 424432	0.875621	44	0.640928	2.562310	85	5.671706	-7.859832	125	-0.437235	-0.583097
	4	-5.453530	1.023049	45	0.856560	2.345131	86	5.646653	-7.860006	126	-0.652867	-0.448236
	5	-5.461378	1.173464	46	1.072193	2.110587	87	5.621795	-7.856381	127	-0.668500	-0.322566
	6	-5.460690	1.202943	47	1.287826	1,857761	88	5.597565	-7.850513	128	-1.084132	-0.206086
	7	-5.453219	1 232332	48	1.503458	1.583543		5.574382	-7.841012	129	-1.299765	-0.009758
	8	-5.456966	1.262232	49	1.719091	1.290372	90	5.552652	-7.828343	130	-1.515398	-0.000638
	9	-5.453931	1.292041	50	1.934723	0.978248	91	5.532751	-7.813324	131	-1.731030	0.088297
	10	-5.450113	1.321960	51	2.150356	0.647108	92	5.515025	-7.795619	132	-1.946663	0.167995
	11	-5.443526	1.351938	52	2.365988	0.296878	93	5.499763	-7.775735	133	-2.162295	0.238459
	12	-5.440407	1.382090	53	2.581621	-0.072373	94	5.444688	-7.695087	134	-2.377928	0.300747
	13	-5,434587	1.412291	54	2.797253	-D.460647	95	5.389593	-7.614277	135	-2.593560	0.353020
	14	-5.428040	1.442593	55	3.012886	-0.867944	96	5.334497	-7.533303	136	-2,809193	0.395269
	15	-5.420768	1.472098	56	3.220518	-1.292444	97	5,279402	-7.452166	137	-3.024825	0.426958
	16	-5.412774	1.503505	57	3.444151	-1.733800	98	5.224307	-7.370865	138	-3,240458	0.448204
	17	-5.404057	1.534113	58	3.659784	-2.193045	99	5.169212	-7.289402	139	-3.456090	0.460653
	18	-5.394617	1.564822	59	3.875416	-2 .670177	100	4.953579	-6.969002	140	-3.671723	0.462461
	19	-5.071709	2,263659	60	4.001048	-3.161523	_101	4.737946	-6,639338	141	-3.887356	0.449740
	20	-4.748802	2.699115	61	4.306681	-3.665605	102	4.522314	-0.311225	142	-4.102988	0.441592
	21	-4.425895	3.016525	62	4.522314	-4.184704	103	4.305681	-5.986125	143	-4.254770	0.400420
	55	-4.102988	3.263797	63	4.737946	-4.710820	104	4.091049	-5.662287	144	-4.403552	0.419302
12	23	-3.807256	3.410319	64	4.953579	-5.261392	1.05	3.875416	-5.334372	145	-4.553334	0.411957
5	24	-3.671723	3.520609	65	5.169212	-5.819520	106	3.659784	-5.014036	146	-4.710117	0.411722
٠.	25	-3.455090	3.622144	66	5.280407	-6.110355	107	3.444151	-4.701281	147	-4.746189	0.411187
	26	-3.240458	3.704931	67	5.391602	-8.401372	108	3,228518	-4.396105	148	-4.781807	0.412007
-	27	-3.024825	3.768971	68	5.502797	-6.701495	109	3.012886	-4.006510	149	-4.816969	0.414182
	28	-2.809193	3.814263	69	5.613993	-7.000143	1.10	2.797253	-3.603307	150	-4.851677	0.417711
	29	-2.593530	3.849164	70	5.725188	-7.301449	111	2.581621	-3.518313	151	-4.865929	0.422595
	30	-2.377928	3.860733	71	5.836383	-7.605278	112	2.365988	-3.243368	152	-4.919726	0.423833
-	31	-2.162295	3.872860	72	5.643391	-7.623331	_113	2.150356	-2.979030	153	-4.953143	D. 436204
	32	-1.946663	3.861596	73	5.847174	-7.834097	114	1.934723	-2.724040	154	-4.986322	0.444283
	33	-1,731030	3.837266	74	5.847665	-7.679146	115	1.719091	-2.478352	155	-5.018912	0.454115
	34	-1.515398	3.798313	75	5.844856	-7.704042	116	1.503459	-2.243226	156	-5.050912	0.465702
	35	-1.299765	3,744336	76	5.833795	-7.728351	_117	1.207626	-2.016080	157	-5.082324	0.479043
	36	-1.094132	3.676336	77	5.829589	-7.751652	118	1.072193	-1.803116	158	-5.113146	0.494138
	37	-0.869500	3.593346	78	5.817397	-7.773539	119	0.855560	-1.598334	159	-5.143378	0.510937
	38	-0.652867	3.494012	79	5.802432	-7.793632	120	0.640928	-1.404265	160	-5.173022	0.529590
	39	-0.437235	3 379467	80	5,784953	-7.811581	121	0.425295	-1.220525	161	-5,202076	0.549347
	40	-0.221602	3.249708	81	5.765264	-7.627074	122	0.209663	-1.046615	162	-5.230541	0.572057
	41	-0.005970	3.104737	82	5.743708	-7.839841						

Stage 1 Blade Airfoil Coordinates (10X),inches

Radius = 13.571 inches

PT.	Х	Y	PT.	X	Y	PT.	X	Y	PT.	X	Y
1	-5,376128	1.735771	42	0.209051	2.557211	83	5.726103	-7.994607	123	-0.006517	-0.818394
ż	-5.419189	1.819716	43	0.424619	2.327819	84	5.702175	-8.002408	124	-0.222088	-0.620959
3	-5.444262	1.903916	44	0.640187	2.082685	85	5.677425	-8.006279	125	-0.437654	-D. 433645
	-5.457868	1.988305	45	0.855758	1.822652	86	5.652288	-8.008238	126	-0.653222	-0.257197
5	-5.458817	2.072871	46	1.071324	1.547878	87	5.627205	-8.006163	127	-0.868790	-0.090481
ě	-5,457612	2.098560	47	1,286892	1,257761	88	5.602617	-8.000792	128	-1.084359	0.067171
7	-5.455537	2.124252	48	1.502460	0.254075	89	5.578954	-7.992217	129	-1.299927	0.215036
8	-5.452590	2.149977	49	1.718028	0.635371	90	5.556632	-7.980590	130	-1.515495	0.354287
Š	-5.448772	2.175704	50	1.933397	0.304430	91	5 .53604 3	-7.966115	131	-1.731063	0.485353
10	-5.444083	2.201445	51	2.149165	-0.040164	92	5.517548	-7.949046	132	-1.946632	0.608181
11	-5.438816	2.227194	52	2.364733	-b.398100	93	5.501471	-7.929531	133	-2.152200	0.722075
12	-5.433217	2.252948	53	2.580301	-0.769420	94	5.445746	-7.853540	134	-2.377768	0.823832
13	-5.426970	2.278711	54	2.795870	-1.153888	95	5.390021	-7.777167	135	-2.593336	0.928746
14	-5.420077	2.304484	55	3.011438	-1.551531	96	5.334296	-7.700564	136	-2.808205	1.018618
15	-5.412536	2.330267	56	3.227006	-1.952401	97	5.275571	<u>-7.623729</u>	137	-3.024473	1.100200
16	-5.404347	2.356059	57	3,442574	-2,386500	98	5.222845	-7.546564	138	-3.240041	1,171869
17	-5,335511	2.381860	58	3.658143	-R.822582	99	5.167120	-7.469235	139	-3.455609	1.233337
18	-5.386028	2.407671	59	3.873711	-3.271117	100	4.951552	-7.167141	140	-3.671178	1.284537
19	-5.065100	3.003115	60	4.082279	-3.732268	101	4.735984	-6.863098	141	-3.866746	1.324955
20	-4.744171	3,354969	61	4.304847	-4.204353	102	4.520416	-6.555766	142	-4.102314	1.356271
21	-4.423243	1,825078	62	4.520416	-4,695155	103	4.304847	-6.247874	143	-4.307968	1.378316
22	-4,102314	3.816893	63	4.735984	-5.176440	104	4.069279	-5.939367	144	-4.513621	1.397165
23	-3.806745	3.916130	64	4.951552	-5,675100	_105	3.873711	-5.630760	145	-4.719275	1.419802
24	-3.671178	3,993459	65	5,167120	-6.178046	106	3.658143	-5.324674	146	-4.924928	1.436071
25	-3.455609	4.047932	68	5,277646	-8,438441	107	3.442574	-5.020116	147	-4.957138	1.463360
26	-3.240041	4,087191	67	5.388171	-6.700576	108	3.227003	-4.718708	148	-4.988385	1.471757
27	-3.024473	4.107821	68	5.498696	-6.961215	109	3.011438	-4.421555	149	-5.019571	1.481201
28	-2.806005	4,112199	69	5.60\$221	-7.222266	110	2.795870	-4.123118	150	-5.049795	1.491714
29	-2.593336	4.100811	70	5.719746	-7.403594	111	2.580301	-3.839236	151	-5.079358	1.503295
30	-2.377768	4.074163	71	5.830272	-7.744029	112	2.364733	-3.554675	152	-5.108256	1.515943
31	-2.162200	4.032432	72	5.833549	-7.767797	113	2,149165	-3.274924	153	-5.136781	1.529198
32	-1.946632	3.975567	73	5.643612	-7.792451	114 .	1.933597	-2.999237	154	-5.164559	1.843652
33	-1.731063	3,903395	74	5.845372	-7.817558	115	1.718028	-2.728444	155	-5.191521	1.559427
34	-1,515495	3.817240	75	5.843798	-7.842677	116	1.502460	-2.464199	156	-5.217665	1.576520
34	-1.293927	3.715301	76	5.838918	-7.867368	_117	1.206692	-2.205724	157	-5.242993	1.594931
36	-1.084359	3.597363	77	5.830017	-7,891197	118	1.071324	-1.952504	158	-5.267710	1,614327
37	-0.868790	3.464687	78	5.819638	-7.913748	119	0.855756	-1.708065	159	-5.291570	1.635104
38	-0.653222	3,315426	79	5.805577	-7.934620	120	0.640187	-1.472406	160	-5.314342	1.657637
	-0.633222	3.150271	80	5.788879	-7.953452	121	0.424619	-1.244237	161	-5.339026	1.681926
39	-0.222086	2,968748	81	5.769839	-7,969912	122	0.209051	-1.026171	162	-5.358621	1.707971
40	-0.222000	2.770965	82	5.748791	-7.983711		3.23001		.02	-0.00061	1.70/9/1
41	-0.006517	2.770903	O.E.	01140101							

Stage 1 Blade Airfoil Coordinates (10X) ,inches

Radius = 14.410 inches

PRESSURE SURFACE COORDINATES

•	PT.	X	Y	PT.	X	Y	PT.	X	Y	PT.	X	Y
	` i `	-17,502286	-15.266567	42	-8,488698	-17.634830	83	0.052526	0.182595	123	-8.835173	-11.409414
	ż	-17.525151	-15,353746	43	-8.142224	-17,351857	84	0.027453	0.188006	124	-9.181647	-11.665326
	3	-17.539410	-15.437642	44	-7.793750	-17.038839	85	0,001880	0,189991	125	-9,528121	-11.904488
-	4	-17.546352	-15,318746	45	-7.440273	-16.687872	86	-0.023728	0.188513	126	-9.874595	-12,130353
	5	-17.546522	-15.597267	46	-7.102802	-16.304417	87	-0.048903	0.183599	127	-10.221069	-12.342922
	Ř	-17.537134	-15,709865	47	-6.756323	-15,886059	88	-0.073187	0.175339	128	-10.567543	-12.542196
	7	-17.516626	-15,818222	48	-6,409853	-15,428842	69	<u>-0,096137</u>	0.163883	129	-10,914017	-12.723703
_	8	-17,487207	-15.923178	49	-6.063379	-14.935334	50	-0.117335	0.149441	130	-11.260491	-12.091407
	9	-17,449637	-18.025025	50	-5.7 16905	-14.405536	91	-0.136394	0.132275	131	-11.606966	-13.049002
	10	-17.405806	-16.124483	51	-5.370431	-13.840060	92	-0,152968	0.112698	132	-11,953440	-13.196489
	11	-17,355507	-16,221474	52	-5.023957	-13,239672	93	<u>-0,166754</u>	0.091067	133	-12,299914	-13.333866
_	12	-17.301112	-16.316902	53	-4.677462	-12.603793	94	-0.225593	-0.016163	134	-12.646390	-13.458653
	13	-17.241548	-16.410358	54	-4.331008	-11.934453	95	-0.284433	-0.123039	135	-12.992862	-13,569469
	14	-17,178446	-16 502465	55	-3,98 4534	-11.230807	96	-0.343273	-0.229560	136	-13.339336	-13.674003
	15	-17,112138	-16,593348	56	-3.638060	-10.492685	97	-0,402112	-0,335725	137	-13,685810	-13,772254
_	16	-17.042107	-16.682811	57	-3.291586	-9.709340	98	-0.460952	-0.441535	138	-14.032284	-13.864224
	17	-16,969785	-18.771400	58	-2.945111	-8.886272	99	-0.519792	-0.546990	139	-14.378759	-13.947671
	18	-16.894786	-16.358968	59	-2.598637	-8.020456	100	-0.866266	-1.160747	140	-14.725233	-14.024230
	19	-16,525635	-17,247974	60	-2,252163	-7,109666	<u> </u>	-1,212740	-1.762187	141	-15,071707	-14.098371
_	20	-16.156484	-17.573762	61	-1.905669	-6.155534	102	-1.559215	-2.352213	142	-15.418181	-14.170095
	21	-15,787332	-17.861675	62	-1.559215	-5.177572	103	-1.905689	-2,929692	143	-15.599907	-14.206748
	22	-15.418181	-18,103673	63	-1.212740	-4.170307	104	-2.252163	-3.494042	144	-15,781633	-14.242736
_	23	-15.071707	-18.311940	64	-0.866266	-3,133559	105	-2,598637	-4,045262	145	-15,963360	-14,278533
	24	-14.725233	-18.478802	65	-0.519792	-2.111373	106	-2.945111	-4.585359	146	-16.145086	-14.315067
	25	-14.378759	-18.620065	66	-0.403208	-1.765829	107	-3.291586	-5.111746	147	-16.247406	-14.338966
:	26	-14.032284	-18.742450	67	-0.286623	-1.419485	108	-3.638060	-5.623073	146	-16.347266	-14.366373
	27	-13,685810	-18,839960	68	-0.170039	-1.077831	109	-3,984534	-6.119340	149	-16.444214	-14,397936
•	28	-13.339336	-18.912598	69	-0.053403	-0.737906	110	-4.331008	-6.602919	150	-16,539190	-14.432309
	29	-12.992862	-18.965003	70	0.063130	-0.399185	111	-4.677482	-7.070647	151	-16,632296	-14.469351
	30	-12.646388	-18,999082	71	0.179714	-0.061668	112	-5.023957	-7.522045	152	-16.723546	-14.509039
_	31	-12,299914	-19.010631	72	0,180303	-0,036899	713	-6,370431	-7,957115	153	•16.81256G	-14.551909
	32	-11.953440	-19.001052	73	0,189954	-0,011459	114	-5.716905	-8.375856	154	-16.900150	-14.596828
	33	-11.606966	-18.969866	74	0.189469	0.014191	115	-6.063379	-8.770202	155	-16.984401	-14.646499
	34	-11.260491	-18.917229	75	0.183831	0.039582	116	-6.409853	-9.164223	156 157	-17.065469	-14.700712
	33	-10.914017	-18,843123	76	0.170806	0.064251	117	-6.756328	-9.533962		-17.143903	-14.758681
	36	-10.567543	-18.747549	77	0.168523	0.087750	118	-7.102802	-9.887418	158	-17.217536 -17.287515	-14.823471 -14.893529
	37	-10.221069	-18.626704	78	0.155168	0.109649	119	-7.449276	-10.224593	159		
	38	-9.874595	-18.480784	79	0.138985	0.129550	120	-7.795750	-10.544296	160	-17.351580	-14.971994
_	39	-9,528121	-18.311132	80	0.120269	0.147090	121	-8,142224	-10.848031	161	-17,409513	-15,059205
	40	-9.181647	-18,117020	81	0.099331	0.161949	122	-8.488698	-11.136403	162	-17.460337	-15.156556
	41	-8.835173	-17.809885	82	0.078642	0.173856						

Stage 2 Vane Airfoil Coordinates (10X), inches

Radius = 12.290 inches

			PT.	X		PT.	x	Υ	PT.	X	Υ
PT.	X	•	42	-8,701757	-17.851505	83	0.600227	1.483655	123	-9.078695	-11.497548
1	-18.482700	-15.642400	43	-8.324820	-17.515865	84	0.574780	1.488789	124	-9,455632	-11.793264
2	-18.515603	-15.734322	44	-7,947802	-17, 149190	85	0.548871	1,490406	125	-9,832569	-12.071554
3	-18,538097	-15.823651	45	-7,5709/15	-16.749287	85	0.522983	1.488476	126	-10.209507	-12.332944
4	-18.551014	-15.910597	46	-7.194008	-16.317750	87	0.497600	1.483036	127	-10.586444	-12.579202
5	-18.537187	-15.995862	47	-6.817070	-15,853871	88	0.473195	1.474186	128	-10.963382	-12.010327
6	-18,556556	-16,097007	48	-6.440133	-15.356081	- 89	0,450225	1,462093	129	-11,340319	-13,023597
7	-18,548003	-16,196179	49	-6,063195	-14.825396	90	0.429117	1,446981	130	-11.717257	-13.222889
8	-18.531551	-16.203385	50	-5.686258	-14.250728	91	0,410266	1.429133	131	-12.094194	-13,409249
9	-18.508627	-16.388978	51	-5.309321	-13,656664	92	0.394024	1.408882	132	-12.471131	-13.582679
10	-18.479333	-16.482986	52	-4.932383	-13.014526	93	0,380694	1,385606	133	-12,848069	-13,739650
1.1	-18,444482	-16,575610	53	-4.555416	-12.331770	94	0.311880	1.266923	134	-13,225006	-13.885326
12	-18.405045	-16.667092	54	-4.178509	-11.608601	95	0.243064	1.146729	135	-13.601943	-14.020855
13	-18,361280	-16.757496	55	-3.801571	-10.837677	96	0.174249	1.026026	136	-13.978881	-14.146238
14	-18.314256	-16.847089	56	-3.424634	-10.022544	97	0.105433	0.904814	137	-14.355818	-14,258666
15	-18,263915	-16,935855	57	-3.047696	-9,160843	98	0.036618	0.783094	138	-14,732756	-14.362879
16	-18.210895	-17.023955	58	-2.670759	-8,252621	99	-0.032197	0.660864	139	-15.109693	-14.459633
17	-18.154751	-17.111277	59	-2.293822	-7.300721	100	-0.409135	-0.032685	140	-15,486631	-14.548167
18	-18.095400	-17,197800	60	-1.916804	-6,305382	101	-0.786072	-0,710064	141	-15.863568	-14,630019
19	-17,631676	-17,767897	61	-1.539947	-5,276666	102	-1,163009	-1,366455	142	-16,240505	-14.706399
20	-17,167953	-18.224562		-1.163009	-4.213700	103	-1.539947	-2,007922	143	-18.414954	-14.739897
21	-16.704229	-18,594451	62	-0.786072	-3.134179	104	-1.916884	-2,634535	144	-16.589403	-14.772221
22	-16,240505	-18.895605	63 64	-0,409135	-2.040186	105	-2,293022	-3,246644	145	-16,763851	-14.803447
_23	-15,063568	-19,109602		-0.032197	-0.946143	106	-2.670759	-3.843472	146	-16,938300	-14.833600
24	-15.406631	-19.275544	65	0.094719	-0.579514	107	-3.047696	-4,425017	147	-17,044501	-14.851859
25	-15.109693	-19.413484	66	0.094719	-0,212936	108	-3.424634	-4.991764	148	-17, 150361	-14.870768
26	-14,732756	-19,525151	67	0.221633	0.153272	109	-3.801371	-5,544775	149	-17,255439	-14.891171
27_	-14,355818	-19,606339	68	0.475467	0.515956	110	-4.178509	-6,081968	150	-17.359932	-14.912689
28	-13.978881	-19.663440	69	0.602384	0.877366	111	-4.555446	-6.600644	151	-17,463261	-14,936434
29	-13.601943	-19.696692	70	0.729330	1.237500	112	-4.932383	-7.103512	152	-17.564551	-14.96406 8
30	-13,225006	-19.704287	71	0.729390	1.262525	113	-5.309321	-7.591029	153	-17,663804	-14.995594
- <u>31</u> 32	-12,848069	-19,688639	72	0.739628	1.208258	114	-5.686258	-8.060935	154	-17.761914	-15,029302
32	-12.471131	-19.649384	73	0.739525	1.314217	115	-6,063195	-8.513229	155	-17.857064	-15.068661
33	-12.094194	-19.586088	74	0.735864	1.339919	116	-6.440133	-8.947912	156	-17,949360	-15,113471
34	-11.717257	-19.496158	75	0.728744	1.364883	117	-6,817070	-9.364666	157	-18.039478	-15.162440
35	-11,340319	-19,383374	76		1,388643	118	-7,194008	-9.763973	158	-18,125406	-15.219408
36	-10.963382	-19.248029	77	0.718287 0.704689	1.410757	119	-7.570945	-10.145871	159	-18,207291	-15.284098
37	-10,586444	-19.086123	78	0.704609	1.430810	120	-7.947882	-10.510359	160	-18.285639	-15.355542
38	-10,209507	-18.895253	79		1.448429	121	-8.324820	-10.856537	161	-18,358059	-15.438304
39	-9,832569	<u>-18.677151</u>	80	0,669139	1.463285	122	-8.701757	-11,185306	162	-18.424629	-15.531857
40	-9.455632	-18,432303	81	0.647851	1.475101				,		
41	-9.078695	-18, 157566	82	0.624736	1,4/5101						
		•									

Stage 2 Vane Airfoil Coordinates (10X), inches

Radius = 13.635 inches

							PT.	X		PT.	x	
	PT.	X	Y	PT.	-8.928748	-18.385532	83	1.148731	2.783736	123	-9. 3387 36	-11,381916
	1	-19,567800	-16.203300	42		-18.033902	84					
	2	-19,578087	-16.250330	43	-8.520761 -8.112773	-17.649821	05	1.123537	2.788559 2.780944	124 125	-9.744723	-11.705280
	3	-19.705001	<u>-16,296307</u>	44		-17,231427		1.097922			-10,152711	-12,010718
	4	-19.591541	-16,341430	45	-7.704786	-16,779721	86	1.072354 1.047300	2.787865	126	-10.560699	-12.296585
	5	-19.594708	-16.385700	46	-7.296798	-16.292898	87 88		2.782362	127	-10.968686	-12.564932
	6	-19.594650	-16.494176	47	-6.888811	-15.770463		1.023215	2.773533	128 129	-11.376674	-12.617161
	. 7	-19.583952	-16,598627	40	-6,480823	-15.213049		1.000539 0.979604	2,761541		-11.784661	-13.053188
•	8	-19.563851	-16,700095	49	-6.072836	-14.613460	90 91	0.961032	2.746604	130	-12.192649	-13.270273
	9	-19.536073	-16.798603	50	-5.664848	-13.974831	92	0.944922	2.728994 2.709032	131	-12.600636	-13.473947
	10	-19.501562	-16.894689	51	-5.256861	-13.290217		0,944922	2.709032	132	-13.008824	-13.664209
	11	-19.461423	-16,988751	52	-4.848873	-12.556676	93			133	-13,416611	-13.837556
_	12	-19,415108	-17.080592	53	-4.440885	-11,770082	94	0.852201	2.531913	134	-13,824599	-13.999863
	13	-19.365211	-17,171145	54	-4.032898	-10.924921	95	0.772754	2.377626	135	-14.232586	-14.152126
	14	-19.311023	-17.260155	55	-3,624910	-10.022179	96	0.693307	2.224224	136	-14.640574	-14.292107
	15	-19,253285	-17,347868	56	-3,216923	-9.057752	- <u>97</u>	0.613859	2,071706	137	-15.048561	-14.422072
-	16	-19.192545	-17.434541	57	-2.808935	-8.036089	98	0.534412	1.920071	138	-15.456549	-14.545034
	17	-19.129329	-17.520304	58	-2.400948	-6.967292	99	0.454965	1.769321	139	-15, 864537	-14.660863
	18	-19,063700	-17,605200	59	-1.992960	-5.856587	100	0.046977	1.009095	140	-18.272521	-14.768043
	19	-18,569900	-18,171791	60	-1,584973			-0.351010	0.276338	141	-16,680512	-14,869944
-	20	-18,076100	-18.639942	61	-1.176985	-4.719135	102	-0.760998	-0.435687	142	-17.088499	-14.966865
	21	-17.582299	-19,029839	62	-0.768998	-3,556898 -2,383907	103	-1.176985	-1.128941	143	-17.279449	-15.009976
	22	-17,088499	-19.351600	63	-0.361010	-1.192198	104	-1.584973	-1.799380	144	-17.470400	-15.052228
12	23	-16,680512	-19.580042	64	0,046977			-1.992960	-2,450736	145	-17,661350	-15,093357
<i>√</i> 2 -	24	-16.272524	-19.767903	65	0.454965	0.014707	106	-2.400948	-3.087075	146	-17.852300	-15.133600
9	25	-15,864537	-19,925330	66	0.592737	0.427766	107	-2.808935	-3.708397	147	-17,976172	-15.159720
	26	-15.456549	-20.048942	67	0.730510	0.843910	108	-3.216923	-4.315218	148	-18,099564	-15.186611
	27	-15,048561	-20.145 <u>141</u>	68	0.868282	1.262717	<u> </u>	-3,624910	-4,909535	149	-18,221671	-15,215561
•	23	-14,640574	-20.215036	69	1,006055	1.684289	110	-4,032098	-5.486831	150	-18,343099	-15.245599
	29	-14.232386	-20,256395	70	1,143828	2,111439	111	-4.440885	-6.047045	151	-18.462468	-15.278941
	30	-13,824599	-20.273314	71	1,281600	2.542500	112	-4.848873	-6,590199	152	-18.579084	-15.316695
	_ 31	-13,416611	-20.264933	72	1,287690	2,567419	iia	-5,256861	-7.11A555	153	-18,693597	-15,357822
	32	-13.008624	-20, 230675	73	1.290367	2,592931	114	-5.664848	-7.628742	154	-18,805532	-15.403082
	33	-12.600636	-20,170722	74	1,289584	2.618571	115	-6.072836	-8,120405	155	-18,913307	-15,455014
	34	-12, 192649	-20.085192	75	1.285353	2.643871	116	-6.480823	-8.593546	156	-19.017068	-15.512097
	33	-11,784661	-19,970965	76	1.277754	2.660372	117	-3,889811	-9,048581	157	-19.117902	-15.576296
	36	-11.376674	-19,834329	77	1.266923	2.691625	118	-7.296798	-9.405165	158	-19.212117	-15,650113
	37	-10.968686	-19.667284	78	1.253059	2.713208	119	-7.704786	-9.902830	159	-19.301509	-15.731520
	38	-10.560699	-19,472865	79	1,236414	2.732726	120	-8.112773	-10.301574	160	-19.382975	-15.825635
	39	-10, 152711	-19,246569	80	1,217291	2,749825	121	-8.520761	-10.681398	161	-19,456476	-15,932520
	40	-9.744723	-18,990630	81	1.196040	2.764191	122	-8.928748	-11.040625	162	-19.519306	-16.056517
	41	-9.336736	-18,705048	82	1.173047	2.775564						

Stage 2 Vane Airfoil Coordinates (10%), inches

Radius = 14.980 inches

SUCTION SURFACE COORDINATES

PRESSURE SURFACE COORD' NATES

PT. X					x		PT.	×	γ	PT.	X	Υ
1 -6, 379320 0.559896 43 0.481247 2.475933 0.4 6.537737 -6, 726546 124 -0, 283457 -6, 736945 2.47593 0.440737 44 0.736146 2.280310 3.6 4.489194 -6, 736146 125 -0, 5393539 -6, 639375 4.4 0.736146 2.280310 3.6 4.489194 -6, 736146 125 -0, 5393539 -6, 639374 1.48030 0.74046 45 0.991650 2.091605 86 6.457640 -6, 736160 126 -0, 739280 -0, 639375 6.441439 126 -0, 739280 -0, 639375 6.441439 126 -0, 739280 -0, 639375 6.441439 126 -0, 739280 -0, 27102 6 -6, 435779 0.98030 47 1.500852 1.64097 89 6.29300 -6, 726775 129 -1, 587965 -0, 18397 6 -6, 435339 0.996280 49 1.000854 6 -0, 60080 6 -	PT.		Υ	PT.		2.645723		6.575580	-6.711132		-0.028556	-0.925081
2 -6. 414679 0.72693 44 0.736148 2.280310 53 6.488194 -0.736046 123 -0.53639	1									124	-0.283457	-0.778339
9 -6.442473	2										-0.538359	
4 -6.408040	. 3						-00			126	-0.793260	-0.508790
5 -6.456972	4									127	-1.048162	-0,385986
6 - 6.435779	5	-8,456372									-1.303063	-0.271020
7 - 6.454767 0.900500 48 0.10055 1.199037 90 6.299400 - 6.700662 130 - 1.812866 - 0.06507 91 - 6.453339 0.995209 4.5 2.265557 0.862364 91 8.264200 - 6.667773 131 - 2.02766 0.02578 9 - 6.451492 1.011846 93 2.265557 0.862364 91 8.262216 - 6.662447 132 - 2.322669 0.10849 11 - 6.44927 1.027520 52 2.775360 0.262793 93 6.203764 - 6.03122 133 - 2.322669 0.10849 11 - 6.445547 1.02520 52 2.775360 0.262793 93 6.203764 - 6.03122 133 - 2.5757570 0.18326 11 - 6.445547 1.012520 53 3.000261 - 0.060118 94 6.104650 - 6.610663 134 - 2.632472 0.25003 13 - 6.440400 1.074765 54 3.28516 - 0.398527 95 6.165530 - 6.586623 135 - 0.3632472 0.25003 13 - 6.440400 1.090555 55 3.540064 - 0.752378 96 6.146421 - 6.566402 136 - 3.342275 0.38834 14 - 6.43276 1.105374 56 3.794065 - 1.121671 97 6.127307 - 6.544201 137 - 3.587176 0.38834 14 - 6.43276 1.105374 56 3.794065 - 1.121671 97 6.127307 - 6.544201 137 - 3.587176 0.30843 15 - 6.422639 1.122223 57 4.049867 - 1.506282 98 6.100193 - 6.522018 138 - 3.86979 0.48785 17 - 6.424807 1.131010 58 4.304766 - 1.904451 99 6.089079 - 6.489855 139 - 4.66979 0.48785 17 - 6.424807 1.131010 59 4.558670 - 2.317284 100 5.634177 - 6.205447 144 - 6.16782 0.48907 19 - 6.03086 1.950528 60 4.51457 - 2.744788 101 5.578276 - 5.265651 142 - 4.616702 0.48907 19 - 6.03086 1.950528 60 4.51457 - 2.744788 101 5.578276 - 5.265651 142 - 4.616702 0.48907 12 - 6.640959 0.48908 12 - 6.640959 0.48908 12 - 6.640959 0.48908 12 - 6.640959 0.48908 12 - 6.640959 0.48908 12 - 6.640959 0.48908 12 - 6.640959 0.48908 12 - 6.640959 0.48908 12 - 6.640959 0.48908 12 - 6.640959 0.48908 12 - 6.640959 0.440908 12 - 6.640959 0.440908 12 - 6.640959 0.440908 12 - 6.640959 0.440908 12 - 6.640959 0.440908 12 - 6.640959 0.440908 12 - 6.640959 0.440908 12 - 6.640959 0.440908 12 - 6.640959 0.440908 12 - 6.640959 0.440908 12 - 6.640959 0.440908 12 - 6.640959 0.440908 12 - 6.640959 0.440908 12 - 6.640959 0.440908 12 - 6.640959 0.440908 0.440908 0.440908 0.440908 0.440908 0.440908 0.440908 0.440908 0.440908 0.440908 0.440908 0.440908 0.440908 0.440908 0.44	6	-6.455779									-1.557965	-0.163973
8 -6.451439	7						- 65				-1.812866	-0.065039
9 - 6.451492	- 8									131	-2.067768	0.025784
10 - 6.449227 1.027329 31 2.778360 0.262739 53 6.203764 - 6.033122 133 - 2,577870 0.18326 11 - 6.446851 1.0143250 52 2.778360 0.26273	9	-6.451492										0.108495
11 -6,446545	- 10	-6.449227									-2.577570	0.183262
12 - 6, 443504	11	-6.446545										0,250004
13 - 6.440409	12	-6,443504										0.308431
14 -6.439700 1.090555 56 3.794955 -1.121671 97 6.127307 -6.544201 137 -3.597176 0.40028 15 -6.439229 1.122223 57 4.049867 -1.506292 98 6.109109 -6.52018 139 -3.597176 0.40029 16 -6.424887 1.130101 58 4.04768 -1.904451 98 6.089079 -6.490855 139 -4.106979 0.45765 16 -6.420221 1.154010 59 4.559670 -2.317498 100 3.534177 -6.205447 140 -4.361881 0.47569 19 -6.033086 1.950528 60 4.14571 -2.744788 101 5.579276 -5.914609 141 -4.616762 0.48907 20 -5.643952 2.405939 61 5.069473 -3.185327 102 5.324974 -5.620561 142 -4.671604 4.489171 -2.640202 -2.471198 62 5.24374 -3.637634 103 5.692761 14		-6.440409										0.358544
15 -6.439276 1.106374 55 3.7,9353 1.506292 98 6.100193 -6.522018 198 -3.652078 0.43269 1.6 -6.42929 1.12223 57 4.049667 -1.904451 99 6.089079 -6.499855 139 -4.106979 0.45765 17 -6.424887 1.138101 58 4.304768 -1.904451 99 6.089079 -6.499855 139 -4.106979 0.45765 18 -6.420821 1.154010 59 4.559670 -2.317284 100 5.834177 -6.205447 140 -4.361881 0.47569 19 -6.03088 1.950528 60 4.614571 -2.744788 101 5.579276 -5.914609 141 -4.616782 0.48305 19 -6.033088 1.950528 60 4.614571 -2.744788 101 5.579276 -5.914609 141 -4.616782 0.48305 19 -6.5645352 0.405939 61 5.069473 -3.185327 102 5.924374 -5.626361 142 -4.871684 0.46622 11 -5.250818 0.773119 62 5.324374 -3.637634 103 5.069473 -5.346734 143 -5.145718 0.48622 12 -5.250818 0.737119 62 5.324374 -3.637634 103 5.069473 -5.346734 143 -5.145718 0.48622 12 -4.671684 0.91868 63 5.579276 -4.102980 104 4.814571 -5.069946 144 -5.419752 0.48200 122 -4.671684 0.91868 63 5.579276 -4.102980 104 4.814571 -5.069946 144 -5.419752 0.48200 123 -4.616702 3.130029 64 5.834177 -4.578264 105 4.559670 -4.798342 145 -5.689786 0.47468 123 -4.616702 3.130029 64 5.834177 -4.578264 105 4.559670 -4.798342 145 -5.689786 0.47468 123 -4.616702 3.130029 64 5.834177 -4.578264 105 4.049067 -4.269988 147 -5.996302 0.47316 125 -4.106979 3.340856 66 6.193746 -5.265103 107 4.049067 -4.269988 147 -5.996302 0.47316 125 -4.106979 3.340856 66 6.193746 -5.265103 107 4.049067 -4.269988 147 -5.996302 0.47316 125 -4.106979 3.340856 66 6.09070 -5.660603 100 3.794965 -4.013144 148 -6.024223 0.47505 125 -4.006979 3.526128 69 6.007746 -5.877902 110 3.250577 -4.000000000000000000000000000000000000		-6.437000										0.400239
16		-6.433276										0.432699
17 -6, 424887 1, 139101 58 4, 558670 -2, 317284 100 3, 844177 -5, 291869 141 -4, 616881 0, 475889 18 -6, 420221 1, 154010 59 4, 558670 -2, 317284 100 3, 844177 -5, 291869 141 -4, 616782 0, 48305 19 -6, 033088 1, 950528 60 4, 814571 -2, 744788 101 5, 579276 -5, 914609 141 -4, 616782 0, 48305 19 -6, 643952 2, 405939 61 5, 069473 -3, 185327 102 5, 324374 -5, 625661 142 -4, 871684 0, 48620 19 -5, 258818 2, 737119 62 5, 324374 -3, 637634 103 5, 069473 -5, 346734 143 -5, 145718 0, 48620 19 -6, 64305 19 -6, 14 -6, 14 -7,		-6.429239										0.457852
18		-6.424887	1.138101									0,475699
19		-6.420221	1.154010									0.483058
20 -5, 643952			1.950528									0.489473
21 -5.285818 2.737119 62 5.324374 -3.575836 103 3.093473 -5.565936 144 -5.419752 0.48200 22 -4.871684 2.991866 63 5.579276 -4.102980 104 4.814571 -5.069948 144 -5.419752 0.48200 23 -4.616702 3.130929 64 5.834177 -4.578264 105 4.579670 -4.798342 145 -5.693706 0.47486 23 -4.616702 3.130929 65 6.099070 -5.063022 106 4.304766 -4.531923 146 -5.967021 0.47281 24 -4.381081 3.243081 65 6.099070 -5.063022 106 4.304766 -4.531923 146 -5.967021 0.47281 25 -4.106979 3.340856 66 6.193746 -5.265103 107 4.049867 -4.269986 147 -5.996302 0.47316 25 -4.106979 3.340856 66 6.193746 -5.265103 107 4.049867 -4.013144 148 -6.024223 0.47505 26 -3.052070 3.410477 67 6.298412 -5.468063 108 3.794965 -4.013144 148 -6.024223 0.47505 27 -3.597176 3.479244 66 6.403079 -5.672276 109 3.540064 -3.762137 149 -6.051502 0.47818 28 -3.342275 3.526128 69 6.500746 -5.877902 110 3.285162 -3.516966 150 -6.078379 0.40255 29 -3.007373 3.857012 70 6.612413 -6.084940 111 3.030261 -3.277595 151 -6.104616 0.48815 29 -3.007373 3.857012 70 6.612413 -6.084940 111 3.030261 -3.277595 151 -6.104616 0.48815 30 -2.352469 3.561043 73 6.743732 -6.331044 13 2.520458 -2.815240 153 -6.155521 0.50281 31 -2.577570 3.574120 72 6.739551 -6.331044 13 2.520458 -2.815240 153 -6.155521 0.50281 31 -2.577596 3.561043 73 6.743732 -6.370459 114 2.265557 -2.594216 154 -6.180402 0.51140 31 -2.5775963 3.561043 73 6.743732 -6.410949 115 2.010655 -2.379941 155 -8.204598 0.52150 33 -2.067766 3.553752 74 6.749255 -6.410949 115 2.010655 -2.379941 155 -8.204598 0.52150 33 -2.067766 3.543752 74 6.749255 -6.410949 115 2.010655 -2.379941 155 -8.204598 0.52150 33 -2.067766 3.543752 75 6.749265 -6.410949 115 2.010655 -2.379941 155 -6.228110 0.53311 34 -1.012866 3.492077 75 6.749265 -6.410949 115 2.010655 -2.379941 155 -6.228110 0.53311 34 -1.012866 3.492077 75 6.749265 -6.410949 115 0.991050 -1.591106 159 -6.228110 0.53311 34 -1.012866 3.492077 75 6.749265 -6.410949 115 0.091050 -1.591106 159 -6.228110 0.53311 34 -1.012866 3.492077 75 6.749265 -6.410949 115 0.091050 -1.591106 159 -6.294596 0.59496			2.405939									0.486209
22 -4,871684 2,991866 63 5,57926 4,10293 104 4,1599670 -4,786342 145 -5,693786 0,47466 24 -4,616702 3,130929 64 5,834177 -4,578264 105 4,599670 -4,786342 145 -5,693786 0,47466 24 -4,361081 3,243081 65 6,089079 -5,063022 106 4,304766 -4,531923 146 -5,967821 0,47251 24 -4,361081 3,243081 65 6 6,193746 -5,265103 107 4,049867 -4,269988 147 -5,966302 0,47316 25 -4,106979 3,340856 66 6,193746 -5,265103 107 4,049867 -4,269988 147 -5,966302 0,47316 26 -3,052070 3,410477 67 6,298412 -5,468063 100 3,794965 -4,013144 148 -6,024223 0,47505 27 -3,597176 3,479244 68 6,403079 -5,672276 109 3,540064 -3,762137 149 -6,081502 0,47818 27 -3,597176 3,479244 68 6,403079 -5,672276 109 3,540064 -3,762137 149 -6,081502 0,47818 29 -3,047373 3,557012 70 6,612413 -6,084940 111 3,030261 -3,277595 151 -6,104616 0,48815 29 -3,047373 3,557012 70 6,612413 -6,084940 111 3,030261 -3,277595 151 -6,104616 0,48815 30 -2,032472 3,572404 71 6,717079 -6,293390 112 2,775360 -3,040033 152 -6,130291 0,49499 30 -2,032472 3,572404 71 6,717079 -6,293390 112 2,775360 -3,040033 152 -6,130291 0,49499 30 -2,032472 3,574120 72 6,732951 -6,331044 113 2,520458 -2,815240 153 -6,185521 0,50281 30 -2,577570 3,574120 72 6,732951 -6,331044 113 2,520458 -2,815240 153 -6,180402 0,51140 30 -2,577570 3,574120 72 6,732951 -6,331044 113 2,520458 -2,815240 153 -6,180402 0,51140 30 -2,577570 3,574120 75 6,749365 -6,410949 115 2,016555 -2,370941 155 -6,204598 0,52150 30 -2,067768 3,533752 74 6,749365 -6,451811 116 1,755754 -2,170684 156 -6,228110 0,53311 34 -1,812666 3,482077 75 6,749365 -6,451811 116 1,755754 -2,170684 156 -6,228110 0,53311 34 -1,812666 3,482077 75 6,749365 -6,451811 116 1,755754 -2,170684 156 -6,228110 0,53311 34 -1,812666 3,482077 75 6,749365 -6,451811 116 1,755754 -2,170684 156 -6,228110 0,53311 34 -1,812666 3,482077 75 6,749365 -6,565872 119 0,991050 -1,591106 159 -6,294596 0,57698 37 -1,040162 3,201307 78 6,749365 -6,569572 119 0,991050 -1,591106 159 -6,294596 0,57698 39 -0,536359 3,070090 0 80 6,672560 -6,667314 121 0,481247 -1,242221 161 -8,335398 0,613			2,737119									
23 -4,616702 3,130929 64 5,834177 -4,37629-103 4,359070 51,75032 146 -5,967021 0.47251 24 -4,361081 3,243081 65 6,099070 -5,063022 106 4,304766 -4,531923 146 -5,967021 0.47251 25 -4,106979 3,340056 66 6,193746 -5,265103 107 4,049867 -4,269988 147 -5,996302 0.47316 25 -4,106979 3,340056 66 6,193746 -5,265103 107 4,049867 -4,013144 148 -6,024223 0.47505 26 -3,052070 3,410477 67 6,298412 -5,468063 100 3,794965 -4,013144 148 -6,024223 0.47505 27 -3,597176 3,479244 68 6,403079 -5,672276 109 3,540064 -3,762137 149 -8,051502 0.47618 26 -3,342275 3,526128 69 6,507746 -5,677902 110 3,285162 -3,516966 150 -6,078379 0.40255 29 -3,007373 3,557012 70 6,612413 -6,084940 111 3,030261 -3,277595 151 -6,104616 0.48815 29 -3,007373 3,557012 70 6,612413 -6,084940 111 3,030261 -3,277595 151 -6,104616 0.48815 29 -3,007373 3,557012 70 6,612413 -6,084940 111 3,030261 -3,277595 151 -6,104616 0.48815 29 -2,032472 3,572404 71 6,717079 -6,293390 112 2,775360 -3,043033 132 -6,130291 0.49499 30 -2,032472 3,572404 71 6,717079 -6,293390 112 2,775360 -3,043033 132 -6,135521 0.50281 31 -2,577570 3,574120 72 6,732951 -6,331044 113 2,520458 -2,815240 153 -6,155521 0,50281 31 -2,577570 3,574120 72 6,732951 -6,331044 113 2,520458 -2,815240 153 -6,155521 0,50281 32 -2,067768 3,533752 74 6,749265 -6,410949 115 2,010655 -2,370941 155 -6,204598 0,52150 33 -2,067768 3,533752 74 6,749265 -6,410949 115 2,010655 -2,370941 155 -6,204598 0,52150 34 -1,812866 3,492077 75 6,749265 -6,410949 115 2,010655 -2,370941 155 -6,250937 0,54622 35 -1,557965 3,435990 76 6,749265 -6,451811 116 1,755754 -2,170684 156 -6,250937 0,54622 35 -1,557965 3,435990 76 6,749265 -6,451811 116 1,755754 -2,170684 156 -6,250937 0,54622 35 -1,557965 3,435990 76 6,749265 -6,569572 119 0,991050 -1,591106 159 -6,250937 0,54622 35 -1,557965 3,435990 76 6,733590 -6,531818 118 1,245951 -1,776909 158 -6,250937 0,54622 35 -1,557965 3,182841 79 6,697496 -6,669341 121 0,481247 -1,242221 161 -6,335398 0,61378 40 -0,203457 2,942883 81 6,643583 -6,666125 122 0,226345 -1,079683 162 -6,3354801 0,69444			2.991866									
24 -4.361081 3.243081 65 6.089079 -5.085022 100 4.349667 -4.269888 147 -5.996302 0.47216 25 -4.106979 3.340056 66 6.193746 -5.265103 107 4.049667 -4.269888 147 -5.996302 0.47216 25 -4.106979 3.340056 66 6.193746 -5.265103 107 4.049667 -4.269888 147 -5.996302 0.47216 26 -3.052070 3.410477 67 6.298412 -5.468063 100 3.794965 -4.013144 148 -6.024223 0.47505 27 -3.597176 3.479244 66 6.403079 -5.672276 109 3.540064 -3.762137 149 -6.051502 0.47218 27 -3.597176 3.479244 66 6.403079 -5.672276 109 3.540064 -3.762137 149 -6.051502 0.47218 29 -3.007373 3.5520128 69 6.507746 -5.677902 110 3.283162 -3.516966 150 -6.076379 0.40255 29 -3.007373 3.557012 70 6.612413 -6.084940 111 3.030261 -3.277595 151 -6.104016 0.48919 30 -2.032472 3.572404 71 6.717079 -6.293390 112 2.775360 -3.043033 152 -6.130291 0.49499 31 -2.577570 3.574120 72 6.732951 -6.331044 113 2.520458 -2.815240 153 -6.155521 0.50281 31 -2.577570 3.574120 72 6.749255 -6.410949 115 2.010655 -2.370941 155 -6.204598 0.52150 33 -2.067760 3.533752 74 6.749365 -6.410949 115 2.010655 -2.370941 155 -6.204598 0.52150 33 -2.067760 3.533752 75 6.749365 -6.451811 116 1.755754 -2.170684 156 -6.228110 0.53311 34 -1.812866 3.492077 75 6.749365 -6.451811 116 1.755754 -2.170684 156 -6.228110 0.53311 34 -1.812866 3.492077 75 6.739590 -6.531818 118 1.245951 -1.776909 158 -6.273079 0.56085 37 -1.557965 3.435990 76 6.7444120 -6.492336 117 1.500852 -1.970007 157 -6.250937 0.54622 35 -1.557965 3.435990 76 6.74944120 -6.559572 119 0.991050 -1.591106 159 -6.294539 0.57946 30 -0.538659 3.070090 80 6.672560 -6.659731 12 0.736148 -1.412695 160 -6.315309 0.59462 30 -0.538659 3.070090 80 6.6672560 -6.659314 121 0.481247 -1.242221 161 -6.335598 0.51978 40 -0.280457 2.942883 81 6.643583 -6.6604944 121 0.481247 -1.242221 161 -6.335598 0.51978 40 -0.280457 2.942883 81 6.663583 -6.6604943 120 0.736148 -1.412695 160 -6.315309 0.59462 30 -0.538659 3.070090 80 6.6672560 -6.6672560 -6.667314 121 0.481247 -1.242221 161 -6.335598 0.61378 40 -0.280457 2.942883 81 6.6643583 -6.6668125 122 0.226345 -1.079685			3,130929									0.472510
25			3,243081									
26 -3.052070 3.410477 67 6.298412 -5.465063 106 3.794965 -1.075063 107 4.065162 0.47818 27 -3.597176 3.479244 68 6.403079 -5.672276 109 3.540064 -3.762137 149 -6.051502 0.47818 27 -3.597176 3.479244 68 69 6.507746 -5.877902 110 3.285162 -3.516966 150 -6.070379 0.40255 120 -3.007373 3.526128 69 6.507746 -5.877902 110 3.285162 -3.516966 150 -6.070379 0.40255 120 -3.007373 3.557012 70 6.612413 -6.084940 111 3.030261 -3.277595 151 -6.104616 0.48819 152 -6.130291 0.49499 152 -2.032472 3.572404 71 6.717079 -6.293990 112 2.775360 -3.043033 151 -6.130291 0.49499 13 -2.577570 3.574120 72 6.732951 -6.331044 113 2.520458 -2.815240 153 -6.155521 0.50281 162 -2.322669 3.561043 73 6.743732 -6.370459 114 2.265557 -2.594216 154 -6.180402 0.51140 163 -2.067760 3.533752 74 6.749255 -6.410949 115 2.010655 -2.370941 155 -8.204598 0.52150 163 -2.067760 3.533752 74 6.749255 -6.410949 115 2.010655 -2.370941 155 -8.204598 0.52150 163 -1.612666 3.492077 75 6.749365 -6.451811 116 1.755754 -2.170684 156 -6.228110 0.53311 163 -1.612666 3.492077 75 6.744120 -6.492336 117 1.500852 -1.970007 157 -6.250937 0.54622 15.57965 3.435990 76 6.744120 -6.492336 117 1.500852 -1.970007 157 -6.250937 0.54622 15.57965 3.435990 76 6.744120 -6.492336 117 1.500852 -1.970007 157 -6.250937 0.54622 11.500853 -2.000000000000000000000000000000000000			3.340856									
27 -3,597176 3.479244 66 6.403079 -5.87276 109 3.265162 -3.516966 150 -6.078379 0.40255 28 -3,342275 3.526128 69 6.507746 -5.877902 110 3.265162 -3.516966 150 -6.078379 0.40255 29 -3.087373 3.557012 70 6.612413 -6.084940 111 3.030261 -3.277595 151 -6.104616 0.48615 30 -2.032472 3.572404 71 6.717079 -6.293390 112 2.775360 -3.043033 152 -6.130291 0.49499 30 -2.032472 3.57404 71 6.717079 -6.293390 112 2.775360 -3.043033 152 -6.130291 0.49499 31 -2.577570 3.574120 72 6.732951 -6.331044 113 2.520458 -2.815240 153 -6.155521 0.50281 32 -2.322669 3.561043 73 6.743732 -6.370459 114 2.265557 -2.594216 154 -6.180402 0.51140 32 -2.067760 3.533752 74 6.749265 -6.410949 115 2.010655 -2.378941 155 -6.204598 0.52150 33 -2.067760 3.533752 74 6.749265 -6.410949 115 2.010655 -2.378941 155 -6.204598 0.52150 34 -1.812866 3.492077 75 6.749365 -6.451811 116 1.755754 -2.170684 156 -6.228110 0.53311 34 -1.812866 3.492077 75 6.749365 -6.451811 116 1.755754 -2.170684 156 -6.228110 0.53311 35 -1.557965 3.435990 76 6.744120 -6.49236 117 1.500852 -1.970007 157 -6.250927 0.54622 36 -1.303063 3.365727 77 6.733590 -6.531818 118 1.245951 -1.776909 158 -6.294596 0.57698 37 -1.040162 3.281307 78 6.717958 -6.569572 119 0.991050 -1.591106 159 -6.294596 0.57698 39 -0.538359 3.070090 80 6.672560 -6.604943 120 0.736148 -1.412693 160 -6.315309 0.59462 30 -0.793260 3.182041 79 6.697496 -6.604943 120 0.736148 -1.424221 161 -6.335398 0.61378 39 -0.538359 3.070090 80 6.672560 -6.667314 121 0.481247 -1.24221 161 -6.335398 0.61378 40 -0.283457 2.942983 81 6.643583 -6.666125 122 0.226345 -1.079683 162 -6.354801 0.63444			3.418477									
28 -3.942275 3.526128 69 6.507746 -6.084940 111 3.030261 -3.277595 151 -6.104616 0.48815 29 -3.007373 3.557012 70 6.612413 -6.084940 111 3.030261 -3.277595 151 -6.104616 0.48815 30 -2.832472 3.572404 71 6.717079 -6.293390 112 2.775360 -3.043033 152 -6.130291 0.4993 31 -2.577570 3.574120 72 6.732951 -6.331044 113 2.520458 -2.815240 153 -6.155521 0.50281 32 -2.322669 3.561043 73 6.743752 -6.370459 114 2.265557 -2.594216 154 -6.180402 0.51140 33 -2.067760 3.533752 74 6.749255 -6.410949 115 2.010655 -2.370941 155 -6.204598 0.52150 34 -1.812866 3.492077 75 6.749365 -6.451811 116 1.755754 -2.170684 156 -6.228110 0.53311 34 -1.812866 3.492077 75 6.749365 -6.451811 116 1.755754 -2.170604 156 -6.228110 0.53311 35 -1.557965 3.435990 76 6.744120 -6.492336 117 1.500852 -1.970007 157 -6.250937 0.54622 36 -1.303063 3.365727 77 6.733590 -6.531818 118 1.245951 -1.776909 158 -6.279379 0.56083 37 -1.040162 3.281307 78 6.717958 -6.569572 119 0.991050 -1.591106 159 -6.294596 0.57698 38 -0.538359 3.070090 80 6.672560 -6.637314 121 0.481247 -1.242221 161 -6.335398 0.61378 40 -0.203457 2.942983 81 6.643583 -6.666125 122 0.226345 -1.079683 162 -6.354801 0.63444			3.479244									0.482552
29 -3.087373 3.557012 70 6.512413 5.084840 111 3.03024 5.044949 30 -2.032472 3.572404 71 6.717079 -6.293390 112 2.775360 -3.043033 132 -6.130291 0.49499 30 -2.032472 3.572404 71 6.732951 -6.331044 113 2.520458 -2.815240 153 -6.155521 0.50281 31 -2.577570 3.574120 72 6.732951 -6.331044 113 2.520458 -2.815240 153 -6.155521 0.50281 32 -2.322669 3.561043 73 6.743722 -6.370459 114 2.265557 -2.594216 154 -6.180402 0.51140 32 -2.067768 3.533752 74 6.749265 -6.410949 115 2.010655 -2.370941 155 -6.204598 0.52150 33 -2.067768 3.533752 74 6.749265 -6.451811 116 1.755754 -2.170684 156 -6.228110 0.53311 34 -1.812866 3.492077 75 6.749365 -6.451811 116 1.755754 -2.170684 156 -6.228110 0.53311 35 -1.557965 3.435990 76 6.744120 -6.492336 117 1.500852 -1.970007 157 -6.250937 0.54623 35 -1.303063 3.365727 77 6.733590 -6.531818 118 1.245951 -1.776909 158 -6.273079 0.56085 36 -1.303063 3.281387 78 6.717958 -6.569572 119 0.991050 -1.591106 159 -6.294596 0.57698 37 -1.040162 3.281387 78 6.717958 -6.6569572 119 0.991050 -1.591106 159 -6.294596 0.57698 39 -0.538359 3.070090 80 6.672560 -6.637314 121 0.481247 -1.242221 161 -6.335398 0.61378 39 -0.538359 3.070090 80 6.672560 -6.666125 122 0.226345 -1.079683 162 -6.354801 0.63444 40 -0.283457 2.942983 81 6.643583 -6.666125 122 0.226345 -1.079683 162 -6.354801 0.63444			3,526128									
30 -2.832472 3.572404 71 6.717079 -6.293390 112 2.773360 -3.043033 132 -6.155521 0.50281 31 -2.577570 3.574120 72 6.732951 -6.331044 113 2.5220458 -2.815240 153 -6.180402 0.51150 152 -2.322669 3.561043 73 6.749252 -6.410949 114 2.265557 -2.594216 154 -6.180402 0.51150 153 -2.067768 3.533752 74 6.749255 -6.410949 115 2.010655 -2.378941 155 -8.204598 0.52150 154 -1.812866 3.492077 75 6.749365 -6.451811 116 1.755754 -2.170684 156 -6.228110 0.53311 155 -1.557965 3.435990 76 6.744120 -6.49236 117 1.500852 -1.970007 157 -6.250927 0.54622 17.557965 3.435990 76 6.744120 -6.49236 117 1.500852 -1.970007 157 -6.250927 0.54622 17.557965 3.365727 77 6.733590 -6.531818 118 1.245951 -1.776909 158 -6.294596 0.57698 17 -1.040162 3.281387 78 6.717958 -6.569572 119 0.991050 -1.591106 159 -6.294596 0.57698 17 -1.040162 3.281387 78 6.717958 -6.569572 119 0.991050 -1.591106 159 -6.294596 0.57698 17 -1.040162 3.281387 78 6.717958 -6.569572 119 0.991050 -1.591106 159 -6.294596 0.57698 17 -1.040162 3.281387 78 6.717958 -6.569572 119 0.991050 -1.591106 159 -6.294596 0.57698 17 -1.040162 3.281387 78 6.694583 -6.604943 120 0.796148 -1.412693 160 -6.315309 0.59462 17 -1.040162 3.281387 79 6.697496 -6.604943 120 0.796148 -1.412693 160 -6.315309 0.59462 17 -1.040162 3.281387 79 6.697496 -6.604943 120 0.796148 -1.412693 160 -6.315309 0.59462 17 -1.040162 3.281387 79 6.697496 -6.604943 120 0.796148 -1.412693 160 -6.315309 0.59462 17 -1.040162 3.281387 79 6.697496 -6.604943 120 0.796148 -1.412693 160 -6.315309 0.61378 17 -1.040162 3.281387 79 6.697496 -6.604943 120 0.796148 -1.412693 160 -6.315309 0.61378 17 -1.040162 3.281387 79 6.697496 -6.604943 120 0.796148 -1.412693 160 -6.315309 0.61378 17 -1.040162 3.281387 79 6.697496 -6.604943 120 0.796148 -1.412693 160 -6.335398 0.61378 17 -1.040162 3.281387 79 6.697496 -6.604943 120 0.796148 -1.412693 160 -6.335398 0.61378 17 -1.040162 1.040162 1.040162 1.040162 1.040162 1.040162 1.040162 1.040162 1.040162 1.040162 1.040162 1.040162 1.040162 1.040162 1.040162 1.040162 1.040162 1.040162 1.040162 1.040			3.557012	70								
31 -2.577570 3.574120 72 6.732951 -6.370459 114 2.265557 -2.594216 154 -6.180402 0.51140 32 -2.322669 3.561043 73 6.743752 -6.370459 114 2.265557 -2.594216 154 -6.180402 0.52130 33 -2.067760 3.533752 74 6.749255 -6.410949 115 2.010655 -2.378941 155 -8.204598 0.52150 34 -1.812866 3.492077 75 6.749365 -6.451811 116 1.755754 -2.170684 156 -6.228110 0.53311 35 -1.557965 3.492077 75 6.749365 -6.451811 116 1.755754 -2.170684 156 -6.250937 0.54622 35 -1.557965 3.495990 76 6.744120 -6.49236 117 1.500852 -1.970007 157 -6.250937 0.54622 36 -1.303063 3.365727 77 6.733590 -6.531818 118 1.245951 -1.776909 158 -6.273079 0.56085 37 -1.040162 3.281397 78 6.717958 -6.569572 119 0.991050 -1.591106 159 -6.294536 0.576985 38 -0.793260 3.182041 79 6.697496 -6.604943 120 0.736148 -1.412693 160 -6.315309 0.59462 39 -0.538359 3.070090 60 6.672560 -6.637314 121 0.481247 -1.242221 161 -8.335398 0.61378 40 -0.283457 2.942983 81 6.643583 -6.660125 122 0.226345 -1.079683 162 -6.354801 0.63444				71								
32 -2.322669 3.561043 73 6.743732 -6.37049 114 2.25357 -2.370941 155 -6.204598 0.52150 33 -2.067768 3.533752 74 6.749235 -6.410949 115 2.010655 -2.370941 155 -6.204598 0.52150 34 -1.612866 3.492077 75 6.749365 -6.451811 116 1.755754 -2.170684 156 -6.226110 0.53311 35 -1.557965 3.435990 76 6.744120 -6.492336 117 1.500852 -1.970007 157 -6.250937 0.54625 36 -1.303063 3.365727 77 6.733590 -6.531818 118 1.245951 -1.776909 158 -6.273079 0.56085 37 -1.040162 3.281387 78 6.717958 -6.569572 119 0.991050 -1.591106 159 -6.294556 0.57698 37 -1.040162 3.281387 78 6.6957496 -6.604943 120 0.736148 -1.412693 160 -6.315309 0.59462 39 -0.538359 3.070090 80 6.672560 -6.637314 121 0.481247 -1.24221 161 -6.335398 0.61378 40 -0.283457 2.942983 81 6.643583 -6.666125 122 0.226345 -1.079683 162 -6.354801 0.63444				72								
33 -2.067768 3.533752 74 6.749255 -6.41083 115 2.01083 -2.170884 156 -6.228110 0.53311 34 -1.812866 3.492077 75 6.749365 -6.451811 116 1.755754 -2.170684 156 -6.228110 0.53311 35 -1.557965 3.435990 76 6.744120 -6.492336 117 1.500852 -1.970007 157 -6.250937 0.54622 119 0.991050 -1.591106 159 -6.294539 0.57693 100 -0.59462 117 1.500852 -1.970007 157 -6.250937 0.54622 119 0.991050 -1.591106 159 -6.294539 0.57693 100 -6.315309 0.59462 117 1.500852 -1.970007 157 -6.250937 119 0.59462 117 1.500852 -1.970007 157 -6.250937 119 0.59462 117 1.500852 -1.970007 157 -6.250937 119 0.59462 117 1.500852 -1.970007 157 -6.250937 119 0.59462 117 1.500852 -1.970007 157 -6.250937 119 0.59462 117 1.500852 -1.970007 157 -6.250937 119 0.59462 117 1.500852 -1.970007 157 -6.250937 119 0.59462 117 1.500852 -1.970007 157 -6.250937 119 0.59462 117 119 0.991050 -1.591106 159 -6.294539 117 1.500852 -1.970007 117 117 117 117 117 117 117 117 11												
34 -1.812866 3.492077 75 6.749365 -6.431811 116 1.75374 -2.170007 157 -6.250937 0.54622 35 -1.557965 3.495090 76 6.744120 -6.492336 117 1.500852 -1.970007 157 -6.250937 0.54622 36 -1.303063 3.365727 77 6.733590 -6.531818 118 1.245951 -1.776909 158 -6.273079 0.56089 37 -1.048162 3.281387 78 6.717958 -6.569572 119 0.991050 -1.591106 158 -6.294596 0.567698 38 -1.048162 3.281387 78 6.597496 -6.604943 120 0.736148 -1.412693 160 -6.315309 0.59462 39 -0.538359 3.070090 80 6.672560 -6.637314 121 0.481247 -1.242221 161 -8.335398 0.61378 40 -0.283457 2.942983 81 6.643583 -6.666125 122 0.226345 -1.079683 162 -6.354801 0.63444			3.533752	74								
35 -1.557965 3,435990 76 6,744120 -6,492396 117 1,500852 -1,97007 157 -6,273079 0,56085 36 -1.303063 3,365727 77 6,733590 -6,531818 118 1,245951 -1,776909 158 -6,273079 0,56085 37 -1.040162 3,201307 78 6,717950 -6,569572 119 0,991050 -1,591106 159 -6,294536 0,57698 37 -0,793260 3,182041 79 6,697496 -6,604943 120 0,736148 -1,412693 160 -6,315309 0,59462 39 -0,538359 3,070090 80 6,672560 -6,637314 121 0,481247 -1,24221 161 -6,335398 0,61378 39 -0,538359 3,070090 80 6,643583 -6,666125 122 0,226345 -1,079683 162 -8,354801 0,63444 40 -0,203457 2,942983 81 6,643583 -6,666125 122 0,226345 -1,079683 162 -8,354801 0,63444												
36 -1,303063 3,365727 77 6,733590 -6,531818 118 1,243951 -1,76909 -6,294596 0,57698 37 -1,040162 3,281307 78 6,717958 -6,569572 119 0,991050 -1,591106 159 -6,294596 0,57698 30 -0,793260 3,182041 79 6,697496 -6,604943 120 0,736148 -1,412693 160 -6,315309 0,59462 39 -0,536359 3,070090 80 6,672560 -6,637314 121 0,481247 -1,242221 161 -6,335398 0,61378 40 -0,203457 2,942983 81 6,643583 -6,666125 122 0,226345 -1,079683 162 -6,354801 0,63444				76								
37 -1.040162 3.281307 78 6.717958 -6.569572 119 0.991050 -1.591106 159 -6.294309 0.59462 30 -0.793260 3.182041 79 6.697496 -6.604943 120 0.736148 -1.412693 160 -6.315309 0.59462 39 -0.538359 3.070090 80 6.672560 -6.637314 121 0.481247 -1.242221 161 -6.335398 0.61378 40 -0.203457 2.942983 81 6.643583 -6.666125 122 0.226345 -1.079683 162 -6.354801 0.63444				77								
30 -0.793260 3.182841 79 6.697496 -6.604943 120 0.736148 -1.412893 10 -0.536359 3.070090 80 6.672560 -6.637314 121 0.481247 -1.242221 161 -6.335398 0.61378 40 -0.283457 2.942983 81 6.643583 -6.666125 122 0.226345 -1.079683 162 -8.354801 0.63444				78								
39 -0.538359 3.070090 80 6.672560 -6.697314 121 0.481247 -1.24221 101 -0.3534801 0.63444 40 -0.283457 2.942983 81 6.643583 -6.666125 122 0.226345 -1.079683 162 -8.354801 0.63444				79								
40 -0.283457 2.942983 81 6,643583 -6,656125 122 0.226345 -1.079663 162 -0.334001 0.00444				80								
40 -0.200070.000070.000070.690874				81	6,643583		122	0.226345	-1.079683	162	-6,354801	0.034441
41 -0.020000 -2.000000					6.611068	-6.690874				•		
	41	-0,028556	2.001000	-	• • • • • • • • • • • • • • • • • • • •							

Stage 2 Blade Airfoil Coordinates (10X), inches

Radius = 12.25 inches

PRESSURE SURFACE COORDINATES

							PT.	X	· ·	PŤ.	X	
	PT.	X	Υ	PT.	X	2.328202	83	6,017537	-7.007879	123	-0.011803	-1.168934
	F	-5.925176	2.319816	42	0.224491	2.124270	84	5.990311	-7.018391	124	-0.248097	-0.979782
	<u> </u>	-5.939076	2,361680	43	0.460785			5.961904	-7.025397	125	-0.484391	-0.795591
	2	~5.948961	2,402586	44	0,697079	1,906732	85	5.932818	-7,028570	126	-0.720685	-0.616488
		-5.954830	2.442533	45	0.933373	1.675288	86		-7.027857	127	-0.956978	-0.442501
	4	-5.955683	2,481522	46	1.169667	1.429599	87	5.903569		128	-1,193272	-0.273868
	2	-5.954748	2.517438	47	1.405960	1.169468	88	5.874673	-7.023268	129	-1.429566	-0.110076
	6	-5,950666	2,552841	48	1.642254	0.894651	69	5,846641	-7.014805		-1.665860	0.048868
	7		2,587931	49	1.878548	0.604944	90	5.819970	-7.002857	130	-1.902154	0.202723
	8	-5.945270	2,622430	50	2.114842	0.300383	91	5.795131	-6.987396	131		0.202723
	9	-5.937401	2.656366	51	2,351136	-0.019063	92	5.772563	-6.968775	132	-2,138448	
	10	-5.927169	2,638333	52	2.587430	-0.353241	93	5,752665	-6.947325	133	-2.374742	0.496353
_	_1.1	-5,914575	2.722582	53	2.823724	-0.702053	94	5.737096	-6,928444	134	-2,611036	0.636405
	12	-5,899770		54	3,060018	-1.065235	95	5.721527	-6.909584	135	-2.847330	0.771950
	13	-5,883880	2.755167	55	3.296312	-1.442478	96	5,705958	-6.890746	136	-3.083624	0.902996
	14	-5.866909	2,787494	56	3,532606	-1,833445	97	5,690388	-6.871930	137	-3,319917	1.029611
	15	-5.848113	2,819386	57 57	3,768899	-2,237085	98	5,674819	-6,853135	138	-3.556211	1,151785
_	16	-5.827833	2.850923	58	4.005193	-2.653239	99	5,659250	-6,834362	139	-3.792503	1.269242
	17	-5.806383	2.882181		4.241487	-3.079684	100	5,422956	-6.552080	140	-4.028799	1.381884
	18	-5.783576	2,913116	59	4.477781	-3.516579	101	5,186662	-6.274866	141	-4.265093	1.489913
	19	-5,463028	3,222294	60	4,714075	-3.961127	102	4,950369	-6.002309	142	-4.501387	1.593447
-	20	-5.142481	3,425484	61	4.950369	-4.413412	103	4.714075	-5.734725	143	-4.795909	1,716203
-	21	-4.821934	3,579436	62	5.186662	-4.871088	104	4.477781	-5.471416	144	-5.090431	1.833112
ίω.	22	-4.501387	3.691915	63	5,422956	-5.333239	103	4.241487	-5.213337	145	-5,384953	1.948747
- -	23	-4.265093	3.754021	64		-5.798603	106	4.005193	-4.959071	146	-5.679476	2.081316
	24	-4.028799	3,799048	65	5.659250	-5,950092	107	3.768899	-4.708487	147	-5.698206	2.090939
	25	-3.792505	3,827716	66	5.736029	-6,101801	108	3.532606	-4.461715	148	-5.716478	2.101034
	26	-3.556211	3.842382	67	5.812800	-6, 253731	109	3.296312	-4.219387	149	-5.734292	2,111601
	27	-3.319917	3,842725	68	5,889587	-6,405605	110	3.060018	-3,980236	150	-5.751740	2.122545
	28	-3.083624	3.830023	69	5.966367			2,823724	-3,744262	151	-5.768900	2.133785
	29	-2.847330	3.804182	70	6.043146	-6.557549	111	2.587430	-3.511464	152	-5,785451	2.145654
	30	-2.611036	3.765839	71	6.119924	-6.709584	112	2.351136	-3.201031	153	-5.801391	2.158151
	31	-2.374742	3.715014	72	6.131349	-6,736520	113		-3.055367	154	-5.816722	2.171276
_		-2,138448	3,651878	73	6.139098	-6,764733	114	2.114842	-2.832099	155	-5.831590	2.184878
	32	-1.902154	3.576381	74	6.143035	-6.793725	115	1.878548		156	-5.846085	2,198863
	33	-1.665860	3.488540	75	6.143090	-6.822983	116	1.642254	-2.612028	157	-5,859781	2.213672
	34	-1.429566	3,388193	76	6.139262	-6.851990	_11.7	1,405960	-2.394454		-5.872678	2.229305
_	35		3,275030	77	6,131619	-6.880232	118	1.169667	-2,180496	158		2.245760
	36	-1.193272	3,1/9736	78	6.120295	-6.907210	113	0.933373	-1.970440	159	-5.884776	2,263039
	37	-0.956978	3.011400	79	6.105492	-6.932447	120	0.697079	-1.763697	160	-5.896075	
	38	-0.720685	2.860181	80	6.087471	-6,955496	121	0.460785	-1.560691	161	-5,906574	2.281141
_	_39	-0.484391		81	6.066551	-6.975950	122	0.224491	-1.362437	162	-5.916274	2.300067
	. 40	-0.248097	2,695974	82	6.043101	-6.993448				•		
	41	-0.011803	2.518710	VE	•.•							

Radius = 13.625 inches

	x		PT.	X	Ψ	PT.	X	Y	PT.	X	Ψ
PŢ.	-5.224293	4,340588	42	0.322067	1.742200	83	5.601040	-7.498908	123	0.110145	-1.416499
	-5.219653	4.358210	43	0.533990	1.473725	84	5.569444	-7.511081	124	-0.101778	-1.193767
2	-5.214390	4.375430	44	0.745913	1,196079	05	5,536492	-7.518872	125	-0.313701	-0.971683
3	-5.208505	4,392248	45	0.957836	0.909022	86	5,302790	-7,522140	126	-0.525624	-0.750258
4		4,408664	46	1,169758	0.613330	87	5.468955	-7.520823	127	-0.737546	-0.529425
5	-5.201997	4.424677	47	1,381681	0.308770	88	5,435609	-7.514947	128	-0.949469	-0.309093
6	-5,194865 .	4,440289	48	1.593604	-0.003711	89	5.403363	-7.504G18	129	-1,161392	-0.089342
7	-5, 187111	4,455499	49	1,805527	-0.324287	90	5.372808	-7,490026	130	-1.373315	0.129616
8	-5.178735	4.470306	50	2.017449	-0.651318	91	5,344505	-7.471440	131	-1.585238	0.347813
9	-5,169735	4.484712	51	2,229372	-0.986352	92	5.318973	-7,449199	132	-1.797160	0.565200
10	-5,160113	4,498715	52	2,441295	-1.326822	93	5.296681	-7.423712	133	-2,009083	0.781744
	-5,149867	4,512494	53	2.653218	-1.673109	94	5,279950	-7,401702	134	-2.221006	0.997167
12	-5.139274	4.525944	54	2.865140	-2.024602	95	5.263218	-7,379713	135	-2,432929	1.211993
13	-5.128172	4.525944	55	3.077063	-2,381100	96	5.246486	-7.357746	136	-2.644851	1,426308
14	-5.116532		56	3.288906	-2.742490	97	5.229754	-7.335800	137	-2.856774	1.639871
15	-5,104354	4,551803	57	3.500909	-3.108636	98	5,213023	-7.313876	138	-3.068697	1.853161
16	-5,091638	4.564212	58	3.712831	-3,479559	99	5, 196291	-7,291973	139	-3.280620	2.066201
17	-5,078385	4.576274	59	3.924754	-3,855130	100	4,984368	-7.016421	140	-3,492542	2.279328
18	-5,064593	4.587988	60	4.136677	-4,235122	101	4.772445	-6.744408	141	-3.704465	2.491610
<u>19</u> 20	-4.777541	4,752642	61	4.348599	-4.619328	102	4.560522	-6.475874	142	-3.916388	2.703046
	-4,490490	4.823709	62	4,560522	-5,006807	103	4.348599	-6,210503	143	-4.227214	3.011252
21	-4.203439	4,839615	63	4,772445	-5.397394	103	4,136677	-5.948385	144	-4.538040	3.315042
22	-3.916388	4.815120	64	4.984368	-5.790072	105	3.924754	-5.689143	145	-4.848866	3.620289
23	-3,704465	4.779469	65	5,196291	-6, 184199	106	3,712831	-5,432972	146	-5.159693	3,996580
	-3.492542	4,724647	66 66	5,282910	-6.345609	103	3.500909	-5,179449	147	-5.170846	4.015435
25	-3.280620	4,657193	67	5,369530	-6,507244	108	3,288986	-4.928632	148	-5.181117	4.034448
13 26 27 27	-3,068697	4,574927	68	5.456149	-6,668051	109	3.077063	-4.680411	149	-5.190507	4.053627
	-2.856774	4.480081	69	5.542768	-6, 830557	110	2.865140	-4.434529	150	-5.199002	4,072974
28	-2.644851	4,374569		5.629308	-6.992377	111	2.653218	-4,191189	151	-5,206722	4,092466
29	-2.432929	4.257229	70 ·	5,716007	-7,154312	112	2,441295	-3,950105	152	-5,213552	4, 112126
30	-2.221006	4.130118	71	5.729922	-7, 185181	113	2.229372	-3.711010	153	-5,219437	4.131962
31	-2.009083	3.992328	72	5.739537	-7,217647		2.017449	-3,474519	154	-5.224349	4.151982
32	-1.797160	3.843801	73	5.744677	-7,251115	114	1.805527	-3,239796	155	-5,228406	4.172162
33	-1.585238	3.684542	74		-7,284970	115		-3.203790	156	-5.231627	4, 192499
34	-1.373315	3.513976	75	5.745247	-7.318592	116	1.593604	-2.774970	157	-5,233867	4,213020
35	-1,161392	3.331878	76	5,741238	-7.351364	_117	1.301681	-2.545339	158	-5,23507	4,233747
36	-0.949469	3.138200	77	5.732722	-7,351364 -7,382685	118	1,169758		159	-5,235013 -5,235064	4.254680
37	-0.737546	2.932794	78	5.719855		119	0.957836	-2.317402	160	-5,235064 -5,234018	4.275848
38	-0.525624	2.716057	79	5.702874	-7.411979	120	0.745913	-2.090513	161	-5.234016 -5.231874	4.297222
39	-0,313701	2.408127	80	5,682090	-7.438710	121	0.530000	-1.864671		-5,231874 -5,228632	4.318802
40	-0.101778	2.249678	81	5.657885	-7,462387	122	0.322067	-1.639878	162	-5,228032	4.316002
41	0.110145	2.000778	82	5.630702	-7.482577				•		_p a
											(C

Stage 2 Blade Airfoil Coordinates (10X), inches

Radius = 15.000 inches

APPENDIX B

Significance of the Blade-Jet Speed Ratio

The blade-jet speed ratio is defined as the ratio of the average pitch-line wheel speed, U, to the velocity, C_o, which would theoretically be obtained by expanding the turbine flow from stage inlet total enthalpy to the ideal stage exit enthalpy. This can be expressed in terms of quantities measurable directly in the rig as follows:

$$\frac{\frac{1}{\sum_{i=1}^{n} r_{p,i}^{2} N_{i}^{2}}{1=1}}{\sqrt{\frac{1}{C_{o}}}} = \frac{(Constant) \times (N/\sqrt{T_{T,41}})}{1-\left(\frac{P_{S,42}}{P_{T,4}}\right)} = \frac{1/2}{1-\left(\frac{P_{S,42}}{P_{T,4}}\right)}$$

where

i = stage indicator

n = number of stages

For a given set of turbine inlet conditions, we see that the blade-jet speed ratio is a function of pressure ratio and speed only. Consequently, once the rig has been set at the desired total-to-static pressure ratio, the second independent parameter in the test matrix, U/C_0 , may be set by adjusting rig speed.

APPENDIX C

Reynolds Number Calculation

The standard expression for Reynolds number is:

$$Re = \frac{\rho V 1}{u}$$
 (C1)

For application to a turbine stage, ρV is replaced by W/A, where A is defined as the vane flow area, or

$$W/A = W/(n d_0 h)$$
 (C2)

where n = number of vanes

d = throat dimension of vanes

h = trailing edge height of vanes

Combining (C1) and C2) yields

$$Re = \frac{W1}{\mu n \ d \ h}$$
 (C3)

Defining the characteristic length, 1, to be the vane throat dimension, d_0 , equation (C3) reduces to

$$Re = \frac{W}{u + h}$$
 (C4)

For multistage turbines, the individual stage Reynolds numbers are energy weighted. The energy averaged Reynolds numer is deined as

$$\frac{\overline{Re}}{Re} = \frac{\sum_{i=1}^{n} (\Delta h)_{i}^{Re}_{i}}{\sum_{i=1}^{n} (\Delta h)_{i}}$$
(C5)

where N = total number of stages

 $(\Delta h)_{i}$ = energy extraction of ith stage

Re; = Reynolds number of ith stage.

From equation (C4), observe that Reynolds number can be modulated by changing the flow, W. In order to change Reynolds number in the rig and still retain the required flow function, $W_{41}\sqrt{T_{T,41}}/P_{T,4}$, inlet total temperature was held constant while inlet total pressure was varied in direct proportion to the desired change in Reynolds number.

Table C-1 compares the Reynolds number for the rig test at 50 psia inlet pressure with those of ICLS. Included for reference is the takeoff Reynolds number.

Table C-1. Reynolds Number

	Two Stage Group
Re for Rig	1.76×10^5
at $P_{T_0} = 50$	
Re for ICLS at max climb	2.50×10^5
Re for ICLS at takeoff	4.66 x 10 ⁵

APPENDIX D

Nozzle Efficiency Definition

Nozzle performance is expressed in terms of kinetic energy efficiency

$$\eta_{v} = \left(\frac{v_{1}}{v_{1, isen}}\right)^{2}$$

where

V₁ = actual vane exit velocity

 $V_{l,isen}$ = isentropic velocity at vane exit.

This can be expressed as

$$\eta_{\mathbf{v}} = \frac{1 \cdot - \left({}^{\mathbf{P}}\mathbf{S}, \mathbf{1}/{}^{\mathbf{P}}\mathbf{T}, \mathbf{1}\right) \qquad \frac{\mathbf{x} - 1}{\mathbf{x}}}{1 \cdot - \left({}^{\mathbf{P}}\mathbf{S}, \mathbf{1}/{}^{\mathbf{P}}\mathbf{T}, \mathbf{0}\right) \qquad \frac{\mathbf{x} - 1}{\mathbf{x}}}$$

This equation is used to calculate performance at any radial position traversed. The overall nozzle performance is obtained by using the same basic equations for radially mass averaged parameters.

APPENDIX E

DATA TABULATIONS FOR ANNULAR CASCADE TESTS

138

Appendix E. Data Tabulation For Annular Cascade Tests.

BASE VANE - COOLED

RDG	P _{T,0} /P _{S,1}	wo	T _{T,0}	P _T ,0	$^{ m W}_{ m c}$	$^{\mathrm{P}}_{\mathbf{c}}$	T _{T,c}	$^{\eta}$ PITCH	η_{OVERALL}
2	1.628	24.602	1294.1	49.771	1.053	50.583	686.5	. 9510	. 9359
4	1.867	25.765	1289.8	50.029	1.073	50.738	682.9	. 9460	. 9335
7	1.482	26.204	1293.6	49.758	1.070	50.761	676.7	. 9521	-
8	1.729	27.138	1295.5	49.983	1.069	50.746	682.4	. 9518	•
9	1.795	27.211	1294.6	49.840	1.069	50.632	683.5	. 9520	-
10	1.922	27.355	1291.4	49.800	1.120	50.687	677.4	. 9495	-
11	2.003	27.494	1295.5	49.885	1.121	50.695	676.4	. 9427	-
12	2.104	27.640	1292.1	50.033	1.127	50.785	674.4	. 9402	-
15	2.508	27.642	1295.9	49.868	1.178	50.617	667.8	. 92 90	. 9157
17	1.631	27.686	1291.1	49.869	1.071	50.721	677.3	. 9532	-
18	1.629	28.042	1291.6	50.038	. 764	50.158	734.0	. 9543	. 9358
LUT VA	NE - COOLED			·					
47	1.672	25.178	1291.8	50.235	. 790	51.107	702.0	. 9504	. 9314
49	2.397	25.655	1295.6	50.020	.815	50.884	715.8	. 9444	. 9262
52	1.794	25.349	1281.3	49.558	.810	50.518	700.0	. 9523	•
53	1.800	25.542	1287.7	49.917	.817	50.801	700.4	. 9498	-
54	2.106	25.556	1291.0	49.810	.837	50.734	698.6	. 9526	-
55	2.010	25.626	1288.0	49.827	.837	50.644	696.5	. 9429	-
56	2.234	25.672	1278.3	49.794	.877	50.672	689.5	. 9480	-
57 ·	2.659	25.643	1285.8	49.845	. 922	50.715	683.2	. 9311	-
58	2.158	25.666	1284.4	49.792	.866	50.719	687.7	. 9480	. 9355
60	1.664	25.382	1280.0	49.927	.791	50.843	704.9	. 9513	-

BASE VANE - SOLID

RDG	$P_{T,0}/P_{S,0}$	WO	T _{T,0}	P _{T,0}	W _C	$\mathbf{P_c}$	T, c	$\eta_{ t PITCH}$	η _{OVERALL}
67	1.664	25.095	1277.6	50.200	.786	50.428	765.7	. 9766	. 9667
69	1.660	25.235	1281.4	50.482	. 904	50.629	715.3	. 9757	•
70	2.427	25,482	1277.4	50.125	. 989	50.383	717.6	. 9590	.9451
72	2.610	25.040	1282.4	50.089	. 975	50.175	721.9	. 9481	-
73	2.247	25.268	1280.9	49.992	, 974	50.221	722.5	. 9670	-
74	2.162	25.182	1282.0	49.853	.975	50.142	724.5	. 9703	-
75	2.075	25.213	1281.8	49.888	. 939	50.103	728.7	. 9727	_
76	1.878	25.116	1281.4	49.794	.892	49.935	735.1	. 9784	-
77	1.789	25.035	1282.1	49.832	.888	49.990	738.1	. 9773	-
78	1.493	24.151	1282.9	49.977	.830	50.201	747.8	. 9782	-
79 80	1.660	24.890	1283.5	49.968	.869	50.209	744.5	. 9772	-
₩ 80	1.982	25.219	1282.2	49.954	. 928	50.256	736.1	. 9784	. 9678
BASE VA	ANE - LAST ROW	OF S.S. HOL	ES SEALED						
85	1.661	24.848	1278.9	50.018	. 966	50.801	737.8	. 9585	. 9445
BASE VA	ANE - T.E. SEAI	LED 1st TEST	•						
93	1.670	25.018	1284.1	49.967	.810	50.630	-	. 9624	· -
BASE VA	ANE - T.E. SEAI	LED 2nd TEST							
99	1.661	25. 128	1274.5	49.963	.759	50.730	641.7	. 9670	-

APPENDIX F

Turbine Efficiency Definitions

o GE Definition

$$\eta_{GE} = \frac{H}{W_{41}^{\Delta h} a}$$

o Thermodynamic Efficiency

$$\eta_{\text{TH}} = \frac{H}{W_{41} \Delta h_{a} + \Sigma W_{c} \Delta h_{a,c}}$$

o Thermodynamic Efficiency with rotor coolant pump power credited to turbine

$$\eta_{\text{THP}} = \frac{\text{H} + \text{H}'}{\text{W}_{41} \, \Delta h_{a} + \Sigma \, \text{W}_{c} \, \Delta h_{a,c}}$$

The coolant available energy was calculated by expanding the flow isentropically from the source pressure and temperature. In the case of rotor coolant, the source pressure was the pressure upstreat of the inducer (tangential accelerator).

The power to pump the rotor coolant from its entry on the rotor to its injection into the flowpath was calculated as:

$$H' = W_c \left[U_{equ}^2 - \left(UV_u \right)_{ind} \right]$$
, Watts

Since flowrate, speed, and inducer radius were known from measurements, the "equivalent" radius and tangential velocity at the inducer could be determined. The total rotor coolant flow was considered to enter the flowpath at six locations. For stage one, these were blade tip, blade pitchline, and blade hub. For stage two, blade tip, 88%, and hub were used. The total power required to pump the rotor coolant is equal to the sum of the powers to pump the six individual flows. By equating the total to the sum, an "equivalent" radius can be calculated. The "equivalent" radius was determined to be 35.194 cm (13.856 in.).

The ideal absolute velocity leaving the inducer nozzle can be calculated from the pressure ratio across the inducer and the temperature. The actual velocity was calculated assuming an efficiency of 0.90 (reasonable for small height, low aspect ratio nozzle). To calculate the tangential component, the flow angle must be determined. Using the measured inducer nozzle area and assuming a flow coefficient of 0.90, a flow angle of 72.5° was calculated.

The variation of inducer pressure ratio (inlet to exit) over the range of test conditions is presented in Figure F-1. The calculated inducer tangential velocity is shown in Figure F-2 where it is normalized by the inducer wheel speed. These tangential velocities were used in calculating the power to pump the rotor coolant.

Figure F-1. Inducer Pressure Ratio vs. Blade-Jet Speed Ratio

§ •

ORIGINAL PAGE IS

Figure F-2. Inducer Tangential Velocity vs. Blade-Jet Speed Ratio

APPENDIX G

DATA TABULATION FOR TURBINE RIG TEST

P_T expressed in psia P_C expressed in psia P_{T,0} expressed in psia T_T expressed in °R T_{T,c} expressed in °R T_{T,0} expressed in °R

Definition of Units

W_c expressed in 1bm/sec
W₀ expressed in 1bm/sec
W expressed in 1bm/sec

O.606503E-01

0.592252E-01

0.602171E-01

0.575678

18.1110

16

3.09273

3.26216

202.002

			$N/\sqrt{T_{T,41}}$	1	$W_{41}\sqrt{T_{T,41}}$	^P τ,4 Δh/T	
			$N/\sqrt{T_{m}}$ λ_1				T,41
RDG.	p /p	p /p	1,41	U/C	1bm√°R	Rtu/(1bm °R)
TOO 4	P _{T,4} /P _{S,42}	T.4'T.42	rpm/√°R	", o -	sec psia	•	•
	-,,	-,,	- F,	•	sec bara	Measured	w/Pumping
17	3.26273	3.09240	201,979	0.575526	18.1323	0.591488E-01	0.601386E-01
18	3.25952	3.10639	176.362	0.502612	18.1878	0.582029E-01	0.589208E-01
19	3.25973	3.10653	176.262	0.502324	18.1946	0.582919E-01	0.590059E-01
20	3.26360	3.12317	149.624	0.426088	18.2292	0.559908E-01	0.564369E-01
21	3.26234	3.12322	149.629	0.426141	18.2326	0.559840E-01	0.564284E-01
219	3.25681	3.00435	230.070	0.656281	18.0566	0.584970E-01	0.598881E-01
220	3.25883	3.00473	230.334	0.656910	18.0460	0.585331E-01	0.599223E-01
222	3.25774	2.93471	253.760	0.723635	18.0239	0.570078E-01	0.587619E-01
22	2.50665	2.42638	158.935	0.505012	17.9723	0.458405E-01	0.463682E-01
23	2.50003	2.42033	158.829	0.504091	17.9744	0.458403E-01	0.464343E-01
		2.43909		0.430092	17.9599		0.442440E-01
181	2.51315		135.474		•	0.438965E-01	
182	2.51460	2.44370	135.382	0.429680	17.9613	0.439665E-01	0.443136E-01
224	2.51038	2.39468	182.014	0.577915	17.8930	0.464039E-01	0.471631E-01
225	2.50123	2.34225	206.012	0.655247	17.8570	0.458093E-01	0.468779E-01
226	2.50164	2.34293	206.326	0.656267	17.8480	0.458045E-01	0.468670E-01
227	2.49716	2.28590	229.318	0.730199	17.7956	0.443510E-01	0.457334E-01
228	2.50169	2.29096	228.718	0.727468	17.8148	0.443971E-01	0.457744E-01
229	2.20542	2.02822	220.986	0.750610	17.5826	0.378099E-01	0.390622E-01
230	2.20626	2.02835	220.720	0.749360	17.5790	0.378142E-01	0.390746E-01
231	2.20829	2.11084	175.983	0.596996	17.6694	0.398998E-01	0.406065E-01
232	2.20471	2.10756	175.809	0.597168	17.6639	0.399045E-01	0.406134E-01
233	2.20928	2.15170	138.902	0.471186	17.7942	O.389264E-01	0.393031E-01
234	2.20535	2.14834	138.909	0.471808	17.7803	0.387620E-01	0.391376E-01
235	1.80770	1.74502	154.468	0.598183	16.9650	0.299649E-01	0.304843E-01
236	1.80618	1.74467	153.903	0.596370	16.9716	O.298911E-01	0.304072E-01
237	1.80695	1.77262	122.708	0.475474	17.0906	O.292273E-01	0.295070E-01
238	1.80599	1.77149	122.375	0.474148	17.0872	0.292566E-01	0.295357E-01
239	1.80616	1.69461	191.851	0.743444	16.8920	O.278230E-01	0.287280E-01
240	1.80691	1.69685	191.124	0.740564	16.8908	O.280240E-01	0.289413E-01
241	1.40668	1.37741	118.246	0.593443	14.9171	O.172132E-01	O.174930E-01
242	1.40501	1.37535	118.643	0.596730	14.8962	O.171253E-01	0.174040E-01
243	1.40408	1.38810	93.7277	0.471742	15.0019	O.165513E-01	O.166986E-01
244	1.40361	1.38911	93.8171	0.472374	14.9914	O. 166227E-O1	O.167692E-01
245	1.40294	1.35168	147.644	0.743993	14.8173	O.160917E-01	O.165947E-01
246	1.40286	1.35087	147.911	0.745165		O.160082E-01	O.165099E-01
247	1.20611	1.19067	91.4197	0.614250	12.1344	O.939882E-O2	0.956051E-02
248	1.20494	1.18975	91.2987	0.614554	12.1128	O.940476E-02	O.956450E-02
249	1.20611	1.19820	70.6717	0.474213	12.3618	O.902636E-02	O.910499E-02
250	1.20568	1.19777	70.6947	0.474567	12.3620	0.900419E-02	O.908275E-02
251	1.20500	1.18541	100.363	0.675175	× 11.9800	O.896460E-02	0.916613E-02
252	1.20492	1.18508	100.283	0.674422	11.9800	0.896510E-02	0.916613E-02
253	1.20488	1.17901	111.553	0.751502	11.8800	O.828045E-02	0.855043E-02
254	1.20416	1.17855	111.627	0.752220	11.8800	O.825614E-02	0.852740E-02
			•				

146

OR POOR

CANTILL IS

TOON NOON

 $\eta_{ ext{TH}}$

Clearance

Corrected to 0.016 in. Tip

0.8890

0.8910

0.8811

0.8825

 $oldsymbol{\eta}_{\mathtt{THP}}$

0.9054

0.9076

0.8927

0.8941

 $\eta_{
m GE}$

0.9308

0.9337

0.9229

0.9244

0.8910

0.8887

0.8298

0.8283

0.7780

0.7780

0.9259

0.9251

0.9231

0,9237

0.9204

0.9205

0.9258

0.9274

0.9258

0.9270

0.9277

0.9282

0.9207

0.9133

0.9137

0.8773

0.8786

0.8215

0.8235

0.7874

0.7872

0.9231

0.9243 0.9256

0.9254

0.9261

0.9248

0.9263

0.9255

0,9262

0.9256

0.9236

0.9244

0.9249

0.9226

0.9075

0.9070

0.9032

0.9088

0.9048

0.9043

0.8888

0.8895

0.8478

0.8487

0.8001

0.8009

0.8893

0.8882

0.8718

0.7633

0.8523

0.7676

0.8665

ï	Ξ	
۰	•	

Average Clearance

Stg 2

14.0

12.8

17.2

17.7

15.4

15.7

13.4

13.5

14.2

14.4

15.5

15.5

15.2

15.4

16.9

17.0

15.7

16.0

16.8

16.3

15.5

16.0

14.6

15.2

15.1

14.5

14.6

15.0

16.3

14.8

13.5

15.0

14.0

14.2

15.9

15.7

15.8

15.7

15.8

15.9

16.0

15.5

15.4

15.2

15.2

12.2

12.4

13.6

13.4

14.6

14.5

14.7

14.8

14.1

14.3

15.0

14.9

15.5

15.6

17.4

 $\eta_{ ext{GE}}$

0.931205

0.934408

0.921593

0.922733

0.891618

0.889492

0.831982

0.830461

0.779266

0.779350

0.925915

0.925307

0.923374

0.923767

0.919800

0.919901

0.925547

0.926771

0.925318

0.926545

0.927575

0.927900

0.920500

0.913092

0.913539

0.877200

0.878328

0.820781

0.820467

0.787424

0.787220

0.922503

0.923983

0.925269

0.925449

0.926178

0.924939

0.926557

0.925811

0.926327

0.925814

0.924137

0.924842

0.925390

0.923428

0.907800

0.907400

0.909400

0.909000

0.904835

0.904307

0.888962

0.889496

0.848429

0.849242

0.800037

0.800777

0.888800

0.887700

0.870573

 $oldsymbol{\eta}_{ ext{TH}}$

0.889413

0.891723

0.879795

0.880790

0.848337

0.846229

0.792163

0.790751

0.742298

0.742065

0.885437

0.884742

0.882624

0.882784

0.879300

0.879258

0.884607

0.885645

0.884442

0.885547

0.886053

0.887200

0.880100

0.872980

0.873382

0.839000

0.839852

0.785185

0.785191

0.752113

0.751951

0.881825

0.883550

0.884645

0.884206

0.884879

0.883936

0.885155

0.884435

0.884905

0.884497

0.883064

0.883639

0.884248

0.881793

0.856069

0.855864

0.862551

0,862355

0.866378

0.865837

0.850939

0.851455

0.812392

0.813015

0.762537

0.763187

0.851800

Measured

(inches $\times 10^3$)

RDG. Stg 1

50

51

52

53

54

55

56

57

58

59

10

11

12

13

14

15

29

31

32

33

34

35

36

38

39

40

41

42

43

44

45

47

48

49

185

186

187

188

189

190

191

206

208

209

217

67

68

69

70

71

72

73

74

75

76

77

78

16

17

18

15.8

15.6

18.6

19.1

14.9

14.4

12.0

11.9

13.8

13.4

16.3

15.7

15.6

16.1

17.0

16.8

16.9

17.3

17.0

17.0

16.5

16.7

16.9

16.7

16.8

16.9

17.2

18.0

22.7

16.4

16.8

17.9

17.4

17.3

15.9

15.9

15.7

15.6

15.4

15.7

15.5

15.1

15.3

15.2

14.3

16.7

16.4

16.4

16.4

16.5

16.6

16.1

16.5

15.3

15.6

16.6

16.6

17.3

17.4

18.2

	Average	Clearance			$\boldsymbol{\eta}_{GE}$	$oldsymbol{\eta}_{ ext{TH}}$	$oldsymbol{\eta}_{\mathtt{THP}}$
	(inches	$x 10^3$)	$oldsymbol{\eta}_{ ext{GE}}$	$oldsymbol{\eta}_{ ext{TH}}$	Corrected	to 0.016	
DDC	Stg 1	Stg 2	Moad	sured	C1e	earance	
RDG.	_			0.799300	0:8344	0.7996	0.8060
20	16.9	15.7	0.833973 0.897626	0.799300	0,8343	0.7997	0.8061
21	16.8	15.3	0.898119	0.859650	0.8970	0.8591	0.8795
219	15.6	13.8	0.891092	0.860120	0.8973	0.8593	0.8797
220		13.8	0.848879	0.852674	0.8901	0.8517	0.8779
222		10.9	0.848694	0.814941	0.8491	0.8151	0.8245
22		16.0 15.9	0.808698	0.814738	0.8489	0.8149	0.8243
23	16.5	15.9	0.00000	0,014.00			
181							
182 224		14.7	0.808459	0.835148	0.8707	0.8351	0.8488
224		16.0	0.870743	0.844500	0.8796	0.8447	0.8644
226		16.4	0.879400	0.844123	0.8792	0.8442	0.8638
227		16.5	0.879093	0.838500	0.8744	0.8393	0.8654
228		15.5	0.873600	0.837328	0.8735	0.8383	0.8643
229		14.3	0.872518	0.823300	0.8567	0.8229	0.8502
230		14.1	0.857100	0.822800	0.8567	0.8224	0.8498
231		14.5	0.857100	0.826223	0,8605	0.8260	0.8407
232		14.4	0.860734	0.828263	0.8621	0.8279	0.8426
233		13.8	0.862460	0.788650	0.8201	0.7881	0.7957
234		14.1	0.820745	0.787019	0.8182	0.7864	0.7940
235		14.5	0.818778	0.813100	0.8456	0.8132	0.8273
236	16.9	14.5	0.845500	0.811110	0.8438	0.8112	0.8252
237	15.7	14.2	0.843695	0.773610	0.8033	0.7732	0.7806
238	15.7	14.1	0.803748	0.774300	0.8050	0.7739	0.7813
239	16.1	14.0	0.805400	0.793011	0.8252	0.7927 0.7962	0.8185 0.8223
240	15.8	13.9	0.825528	0.796700	0.8291	0.7893	0.8223
241	16.2	15.6	0.829600	0.789313	0.8187	0.7898	0.8021
242		15.7	0.818717	0.789988	0.8180 0.7696	0.7426	0.7492
243		15.1	0.818182	0.742406	0.7716	0.7443	0.7509
244		14.9	0.769449	0.743819	0.7718	0.7817	0.8061
245		13.9	0.771139	0.781757	0.8083	0.7784	0.8028
246		14.1	0.811233	0.778688	0.8049	0.7796	0.7930
247		15.1	0,808571 0,804564	0.779327 0.781700	0.8097	0.7827	0.7959
248		15.9	0.808700	0.781700	0.7474	0.7232	0.7295
249		14.5	0.746600	0.722400	0,7465	0.7213	0.7275
250		14.0	0.745959	0.720701	0.8068	0.7791	0.7967
25		13.5 13.5	0.806700	0.780500	0.8086	0.7807	0.7982
252		16.1	0.808400	0.727217	0.7782	0.7534	0.7779
253 254		10.0	0.776000	0.748300	0.7739	0.7470	0.7717
204	1 13.4				-		

148

							ling, ψ_P	$\frac{T,4}{C}$		D	Exit	
		Inlet		Vane :	l Exit	Load		ft. in ²	Keac	tion R _x	Swir1	
	PT	TT	W	W	TT		With	With	Hub	Tip	ſ, degre	
RDG.	${f r}$	T	•			Meas.	Pumping	Pumping				
50	50,2355	1281.20	24.0062	25.9994	1231.35	0.651698	0.663726	49.9341		0.451309	12.0000	
51	50.1864	1275.00	24.0256	26.0146	1225.75	0.648219	0.660245	49.7922		0.451903	12.0000	
52	50.2421	1281.47	24.0687	26.0825	1231.42	0.845698	0.856891	56.2251		0.430330	22.0000	
53	50.2428	1276.49	24.1093	26.1158 26.1599	1227.08 1226.70	0.843827	0.854988	56.1718	0.367122		22.0000	
54	50.2288 50.2356	1275.84 1278.41	24.1571 24.1446	26.1355	1228.99	1.12439	1.13451	63.2678 63.2074	0.397818 0.397661		31.5000 31.5000	
55 56	50.2521	1275.89	24.2151	26.2261	1226.57	1.12421 1.45361	1.13434 1.46266	69.1644	0.387768		37.5000	
57	50.2585	1278.88	24.1879	26.1966	1229.34	1.45553	1.46460	69.1552	0.388045		37.5000	
58	50.8430	1275.27	24.5249	26.5033	1227.37	1.78097	1.78911	73.7460	0.402937		44.0000	
59	50.8355	1278.53	24.5055	26.4779	1230.51	1.77577	1.78394	73.4733	0.402854		44.0000	
10	50.1630	1280.95	24.0150	26.0136	1231.29	0.661546	0.673318	48.2804	0.360272		00.0000	
11	50.1760	1280.66	24.0198	26.0188	1230.98	0.660747	0.672529	48.2181	0.360328	0.440347	00.0000	
12	50.2020	1277.34	24.0532	26.0488	1228.09	0.656544	0.668191	47.9471	0.362096	0.440859	00.0000	
13	50.1770	1277.90	24.0400	26.0207	1228.91	0.656667	0.668329	47.9368	0.362241		00.0000	
14	50.1840	1276.81	24.0925	26.0983	1227.38	0.747267	0.758558	51.0175	0.351563		3.0000	
15	50.1690	1276.89	24.0818	26.0879	1227.44	0.747472	0.758747	51.0219	0.351551		3.0000	
29	50.1789	1276.87	24.0368	26.0317	1227.85	0.655070	0.666728	47.9127	0.363311		00.0000	
31	50.1955	1278.32	24.0238	26.0172	1229.23	0.611355	0.623245	46.3624	0.367252		-5.0000	
32	50.2223	1278.19	24.0431 24.0438	26.0286 26.0268	1229.35 1229.94	0.611456 0.612166	0.623359 0.624067	46.3683 46.4208	0.366923 0.366655		-5.0000 -5.0000	
33	50.2234 50.2212	1278.78 1275.58	24.0438	26.0055	1227.54	0.569097	0.581206	44.7349	0.300033		-10.000	
34 35	50.2266	1277.07	24.0397	26.0176	1228.37	0.568675	0.581200	44.7285	0.371225		-10.000	
36	50.2140	1275.93	24.1336	26.1019	, 1227.71	0.746843	0.758092	51.0151	0.350170		3.0000	
38	50.2128	1277.25	24.1525	26.1404	1228.53	0.855181	0.866038	54.2648	0.338078		12.5000	9
39	50.2153	1277.31	24.1506	26.1447	1228.45	0.856201	0.867047	54.3161	0.338158		12.5000	23
40	50.2077	1277.44	24.2541	26.2207	1229.34	1.13145	1.14123	60.9234	0.341206	0.401313	24.0000	"0
41	50.2032	1277.57	24.2211	26.2019	1229.34	1.13138	1.14120	60.8945	0.341207	0.401097	24.0000	0
42	50.1960	1276.10	24.2454	26.2292	1227.94	1.46980	1.47860	66.8193	0.352322		35.0000	\circ
43	50.1883	1276.59	24.2294	26.2182	1228.23	1.47041	1.47917	66.8270	0.352522		35.0000	20
44	50.1840	1277.52	24.1922	26.1793	1229.21	1.68905	1.69716	69.8825	0.373612		40.0000	KLIVAD
45	50.1994	1277.04	24.2278	26.1880	1229.27	1.68844	1,69658	69.8747	0.373870		40.0000	C
47	50.2285	1277.33	24,0904	26.0525 25.9983	1229.03 1234.43	0.653282	0.664906	47.7747	0.360919		00.0000	(0000
48	50.2404	1284.20 1281.10	24.0117 24.0408	26.0199	1231.54	0.657547	0.669304	48.0046 47.9918	0.367743		00.0000	8000E
49	50.2165 50.2070	1278.06	23.9176	26.1142	1224.47	0.656508 0.655764	0.668255 0.667464	48.0357	0.383498		00.0000	
185 186	50.2157	1281.76	23.8746	26.0762	1227.70	0.658445	0.670174	48.1452	0.384022		00.0000	
187	50.2173	1280.00	23.8913	26.1023	1225.87	0.656955	0.668637	48.0713	0.383603		00.0000	
188	50.2350	1275.95	23.9324	26.1389	1222.34	0.655101	0.666775	48.0379	0.384291		00.0000	
189	50.2350	1274.60	23.9490	26.1567	1221.12	0.653940	0.665595	47.9817	0.384318	0.448807	00.0000	
190	50,2257	1277.20	23.9237	26.1171	1223.79	0.656012	0.667694	48.0609	0.384284	0.448955	00.0000	
191	50.2286	1273.52	23.9557	26.1498	1220.45	0.653193	0.664843	47.9331	0.384460		00.0000	
206	50.1953	1279.83	23.9194	26.0835	1226.84	0.657143	0.668849	48.0736	0.380655		00.0000	
208	50.2053	1279.75	23.9186	26.0760	1226.96	0.658122	0.669827	48.1154	0.380648		00.0000	
209	50.2053	1274.19	23.9835	26.1308	1222.20	0.655975	0.667605	48.0629	0.380323		00.0000	
217	50.1372	1282.91	23.8751	26.0191	1230.30	0.659095	0.670757	48.1012	0.381033	0.439300	00.0000	
67	50.1755	1274.42	23.9195	25.9385 25.9266	1224.44 1226.66	0.464743	0.476959	36.6660	0.368867 0.368633	0.443214	-31.0000	
68	50.1777	1276.76 1278.49	23.9089 23.8906	25.9471	1227.59	0.465576 0.507046	0.477804 0.519046	30.7070	0.364813	0.439667	-29.0000	
69 70	50,2036 50,2019	1274.48	23.9399	25.9678	1224.56	0.505226	0.517194	38.2801	0.361095		-29.0000	
70 71	50.2143	1278.20	23.9964	26.0184	1228.38	0.653255	0.664443	43.5883	0.342150		-16.2395	
72	50.2215	1276.01	24.0252	26.0387	1226.59	0.651871	0.663084	43.5234	0.342393		-16.2900	
73	50.1375	1276.98	24.0371	26.0838	1226.89	0.850508	0.860864	49.3343			00.0000	
74	50.1373	1276.80	24.0408	26.0836	1226.81	0.850758	0.861118	49.3480	0.325076		00.0000	
75	50.1415	1276.15	24.1159	26.1579	1226.38	1.11696	1.12631		0.334339		8.0000	
76	50.1387	1271.51	24.1571	26.2044	1222.03	1.11809	1.12741	55.1940	0.334172		8.0000	•
77	50.1942	1277.40	24.0783	26.1103	1227.37	1.47800	1.48634	61.1031	0.393802		23.0000	
78	50.1878	1273.74	24.1087	26.1436	1223.94	1.47466	1.48298		0.393695		23.0000	
16	50.1640	1276.67	23.9378	25.9666	1224.16	0.645723	0.656537	40.1087	0.302028	0.395592	-21.4883	

								$\frac{\text{TQ/P}_{\text{T,4}}}{}$			Exit	
						Load	lng ,ψ _P	ft. in ²			Swirl	
	I	nlet		Vane 1		1040.	With	With	React	tion, R _x	OWILI	
nnc.	$\overline{P}_{\overline{T}}$	T _T	W	W	$\overline{\mathbf{T}}_{\mathbf{T}}$	Meas.	Pumping	Pumping	Hub	Tip	「, degree	9
RDG.	_	T			•	meas •	r dmpriig	1 cmp 1116			. ,	
17	50.1560	1276.35	23.9338	25.9753	1225.83	0.645036	0.655831	40.1123		0.393535	-21.8271	
18	50.1470	1277.23	24.0082	26.0480	1226.03	0.832501	0.842769	45.1437	0.296743	0.378837	-10.0309	
19	50.1440	1278.13	24.0032	26.0488	1226.72	0.834721	0.844945	45.2515	0.295889	0.378522	-9.89170	
20	50.1380	1277.06	24.0596	26.0924	1226.98	1.11266	1.12153	51.0825	0.309008	0.381673	00.0000	
21	50.1530	1277.90	24.0642		1227.87	1.11245	1.12128	51.0837	0.309598		00.0000	
219	50.1515	1280.63	23.6549	25.8684	1225.47	0.491658	0.503350	34.9197	0.364241		-41.1852	
220	50.1622	1278.35	23.6698	25.8792		0.490836	0.502485	34.8791		0.425136	-41.3592	
222	50.1280	1280.63	23.6061	25.8030	1226.07	0.393856	0.405975	31.0080	0.383945		-48.6772	
22	50.1520	1277.95	23.7282		1228.06	0.807349	0.816643	38.9545		0.347729	-19.9700	
23	50.1600	1278.75	23.7327	25.7183	1228.96	0.809615	0.818899	39.0407		0.347632	-21.4238	
181	50.2099	1275.58	23.7461	25.7592		1.06407	1.07249	43.5770		0.364927	-8.30888	
182	50.2114	1277.01	23.7409	25.7468	1226.97	1.06721	1.07564	43.6787		0.365025	00.0000	
224	50.1738	1282.68	23.4466	25.6124		0.623156	0.633351	34.4457	0.290588	0.368078	-38.9744	
225	50.0971	1277.01	23.4050		1222.32	0.480196	0.491399	30.1815	0.292513	0.387175	-49.2477	
226	50.0998	1276.76	23.3926	25.5808		0.478687	0.489791	30.1202	0.292977	0.387773	-49.2085	
227	50.1311	1276.78	23.3389		1222.11	0.376152	0.387821	26.3700	0.317500	0.400571	-55.9090	~
228	50.1406	1280.56	23.3434	25.5135		0.377575	0.389288	26.4884		0.400612	-55.7217	$\mathcal{Q}\mathcal{Q}$
229	50.1916	1273.64	23.1131		1218.99	0.344451	0.355859	23.0922	0.298230	0.391452	-59.3490	on on
230	50.1929	1276.90	23.0850	25.2390		0.345321	0.356830	23.1173	0.297216	0.390825	-59.3650	TO
231	50,1875	1278.96	23.1912	25.3413		0.573167	0.583319	30.2902	0.252974	0.353370	-45.5647	NOOS JO
232	50.1562	1277.76	23.1971	25.3235		0.574369	0.584572	30.3159	0.254139	0.354658	-45.6436	2
233	50.1786	1285.81	23.2948	25.4517		0.897586	0.906272	37.4068		0.337902	-22.2356	Sea Born
234	50.1757	1285.46	23.2792	25.4324		0.893711	0.902371	37.2184		0.337369	-22.0435	Q T
235	50.1777	1284.59	22.1956	24.2819		0.558707	0.568390	24.8744		0.342976	-50.4335	C. >
236	50.1844	1289.39	22.1704	24.2491		0.561432	0.571125	24.9118		0.345466	-50.0012	
237	50.1940	1285.15	22.3666		1229.80	0.863569	0.871832	30.5328		0.329153	-29.3727	2 1.5
238	50.1932	1284.92	22.3684	24.4572		0.869144	0.877433	30.6366		0.328623	-29.7787	73
239	50.2121	1279.86	22.1652	24.2329		0.336301	0.347240	18.7921		0.373569	-61.8477	-0 000
240	50,2026	1287.91	22.0884	24.1547		0.341311	0.352483	18.9906		0.374168	-61.6243	
241	50.2204	1281.19	19.5112	21.4197		0.547699	0.556602	16.3952		0.362449	-54.5461	
242	50.2190	1271.39	19.5691	21.4649		0.541253	0.550062	16.2343		0.361263	-54.9578	
243	50.2225	1284.26	19.6048	21.5074		0.838196	0.845655	19.8569	0.207888	0.347361	-37.8862	
244	50.2173	1280.81	19.6164	21.5171		0.840209	0.847616	19.9080	0.213581	0.346354	-34.1283	
245	50.2112	1286.74	19.3261	21.2246		0.328413	0.338679	12.3730		0.395126	-64.3313	
246	50.2183	1282.28	19.3548	21.2491		0.325530	0.335731	12.2808		0.393042	-64.5486	
247	50.2346	1278.60	15.8048	17.4709		0.500316	0.508923	9.42778	0.210518		-58.2492	
248	50.2221	1282.42	15:7496	17.4083		0.501959	0.510485	9.42868		0.455252	-58.0537	
249	50.1811	1285.97	16.0861		1226.06	0.804028	0.811032	11.8314		0.421219	-41.6199	
250	50.1718	1286.29	16.0798	17.7116		0.801533	0.808526	11.7997		0.422130	-41.6533	
251	50.1718	1282.09	15.9952		1222.23	0.395941	0.404874	8.33634		0.450004	-61.8398	
252	50,1635	1283.86	15.9842	17.6171		0.396600	0.405494	8.34539		0.448555	-62.0417	
253	50.1631	1283.55	15.9825	17.6271		0.296032	0.305684	6.99739		0.455699	-65.7565	
254	50.1665	1281.86	15.9885	17.6352	1221.12	0.294775	0.304508	6.97129	0.23/2/1	0.454853	-65.6592	

150

				2			
	Inlet Rake Plane	Vane 1 Exit	Blade 1 Exit	Exit	Blade 2 Exit	Exit Ral	ce Plane
RDG.	Outer Inner	Outer Inner	Outer Inner	Inner	Outer Inner	Outer	Inner
		30,5932 28,8259	20,1368 20,0346	12.8061			
50 51	50.1513 50.1793 50.1051 50.1320	30,6052 29.0225	20.1308 20.0340	12.8074	6.81699 7.23909 6.86549 7.29701	7.02623	7.26890
52	50.1605 50.1831	30,0665 28.5103	20.2126 20.0127	12.7558	6.84705 7.24130	7,08265 7,06876	7.31456 7.27023
53	50.1509 50.1799	30,0611 28.5076	20.2072 20.0074	12.7558	6.85244 7.24265	7.06473	7.26127
54	50.1436 50.1770	29.8499 29.2925	20.1642 19.9741	12.7677	6.78484 7.16159	7.08330	7.18404
55	50.1512 50.1813	29.8659 29.3006	20.1829 19.9920	12.7825	6.78125 7.15351	7.08330	7.15449
56	50.1591 50.1935	29.7926 28.9829	20.1871 19.9132	13.1930	6.98749 7.21560	7.26878	7.22491
57	50.1666 50.1978	29.8086 28.9977	20.1871 19.9256	13.1930	6.97491 7.19943	7.26341	7.20790
58	50.7469 50.7780	30,3826 29,4835	19.9645 19.8195	13.5922	7.06571 7.19503	7.38258	7.20171
59	50.7469 50.7770	30.3947 29.4889	19,9766 19,8320	13.6057	7.26328 7.36341	7.55046	7.36289
10 11	50.0852 50.1077	30.3143 28.3358 30.3156 28.3479	20.1825 20.0397 20.1905 20.0469	12.9287 12.9341	8.72400 9.03993	8.85671	9.07686
12	50.0905 50.1281 50.1174 50.1453	30.3156 28.3479 30.3517 28.4247	20.1903 20.0403	12.9542	8.72400 9.04531 8.76700 9.08302	8.87282	9.09476
13	50.0933 50.1309	30.3766 28.4269	20.1874 20.0768	12.9538	8.75400 9.07446	8.91309	9.12071
14	50.0997 50.1245	30.0654 28.0983	20.2169 20.0161	12.9000	8.75700 9.09332	8.90726 8.90592	9.13368 9.11220
15	50.0686 50.1105	30.0694 28.0956	20.2115 20.0161	12.9067	8,75900 9,08389	8.89384	9.11489
29	50,0940 50,1230	30.3418 28.4524	20.2114 20.0699	12.9617	8.74711 9.11204	8.94472	9.12773
31	50.1182 50.1461	30.4735 28.5650	20.2162 20.0766	12.9720	8.80408 9.08731	8.93349	9.12366
32	50.1396 50.1772	30,4703 28,5509	20.1902 20.0608	12.9457	8.77555 9.03814	8,91538	9.09347
33	50.1363 50.1707	30.4529 28.5468	20.1862 20.0608	12.9498	8.76657 9.04891	8.90196	9.10332
34	50.1392 50.1747	30,6013 28.7396	20.1876 20.0707	12.9554	8.80897 9.04508	8.95045	9.12764
35 36	50.1478 50.1747	30,5705 28,6588 30,0683 28,0932	20.1635 20.0493 20.2077 20.0293	12.9540 12.9205	8.83950 9.09355	8.92897	9.15001
38	50,1352 50,1643 50,1352 50,1664	29,7410 27,7268	20.1462 19.9686	12.8653	8.72962 9.09230 8.76014 9.11788	8.90219	9.10668
39	50.1320 50.1632	29.7130 27.7268	20.1448 19.9668	12.8599	8.76193 9.14212	8.91964 8.90487	9.15321 9.10668
40	50,1163 50,1550	29,2710 27,6718	20,1718 19,8059	12.8910	8.76702 9.10995	8.93994	9.12519
41	50,1238 50,1550	29.2696 27.6758	20.1798 19.8113	12.8923	8.79574 9.13284	8,97484	9.12250
42	50.1074 50.1483	29.4649 27.8027	20.0127 19.6197	13.2747	8.78970 9.03209	8.97373	9.01355
43	50.1020 50.1354	29.4556 27.7878	19,9900 19,5982	13.2666	8.76456 9.01458	8.95762	9.00371
44	50.1026 50.1348	29.7647 28.1736	19.6385 19.3864	13.4891	8.80277 9.00162	9,02795	9.01587
45 47	50.1069 50.1445	29.7620	19,6465 19,3900 20,2260 20,0685	13,4972 12,9576	8,80098 8,99623	9.01318	9.00960
48	50.1430 50.1785 50.1664 50.1943	30.3310 28.4031	20.2200 20.0003	12.9877	8.79234 9.12001 8.75474 9.10171	8.93925	9.12629
49	50.1331 50,1674	30.4209 28.5552	20.2238 20.0863	12.9891	8.75115 9.09363	8.93034 8 .92497	9.13081 9.14333
185	50,1255 50,1588	30,5444 29,0064	20,2443 20,1266	12.9650	8.78041 9.08294	8,90648	9.11097
186	50.1320 50.1631	30,5551 29.0199	20,2470 20,1283	12,9609	8.76963 9,07487	8,88366	9.10918
187	50,1330 50,1696	30,5497 29,0064	20.2390 20.1248	12.9569	8.76245 9.07083	8.89574	9.11276
188	50.1466 50.1853	30.5644 29.0413	20,2536 20.1341	12.9555	8.75920 9,06937	8.88758	9.11580
189	50.1488 50.1853	30,5657 29,0360	20.2496 20.1269	12.9555	8.76279 9.06937	8.88087	9.10774
190	50.1541 50.1756	30.5680 29.0383	20.2479 20.1315	12.9564	8.75659 9.06900	8.88051	9.10783
191	50.1476 50.1766	30,5653 29.0410	20.2412 20.1261	12.9497	8.74761 9.06766	8.88186	9.10783
206 208	50.1197 50.1423 50.1143 50.1433	30.3877 28.9117 30.3877 28.9225	20.2519 20.0993 20.2586 20.1047	12.9524 12.9551	8.73504 9.07843 8.72966 9.07304	8.87649 8.86575	9.10514 9.11588
209	50,1251 50,1508	30,3837 28.9103	20.2300 20.1047	12.9564	8.72606 9.07304	8,86037	9.10962
217	50.0371 50.0822	30,2989 28.9043	20,2579 20.0866	12.9612	8.74743 9.06972	8.88925	9,10225
67	50.0933 50.1223	30,9481 29,2468	20.9527 20.8862	14.8638	12.4255 12.3587	12.5283	12.4693
68	50.0933 50.1320	30.9508 29.2454	20.9487 20.8952	14.8571	12.4255 12.3601	12.5176	12.4586
69	50.1139 50.1472	30,8713 29,1680	20,9855 20,9163	14,8860	12.3966 12.4025	12.5129	12.4968
70	50.1214 50.1450	30.8646 29.0994	20,9855 20,9413	14.9035	12.4236 12.4132	12.5223	12.5138
71 70	50.1390 50.1659	30,4537 28,6217	21,0154 20.9364	14.9148	12.3523 12.4931	12.4476	12.5429
72 73	50.1401 50.1659 50.0461 50.0794	30.4617 28.6298 29.8240 28.0461	21.0194 20.9364 20.8556 20.7735	14.9188 14.7784	12.3541 12.4971 12.2907 12.5478	12.4530	12.5491
73 74	50.0461 50.0794 50.0547 50.0848	29,8240 28,0461 29,8266 28,0501	20.8596 20.7842	14.77824	12.2943 12.5532	12.4203 12.4257	12.5718 12.5781
75	50.0524 50.0847	29.5992 28.0875	20.8887 20.5497	14.7390	12.2702 12.6039	12.4253	12.5809
76	50.0578 50.0868	29.6005 28.0942	20,8860 20.5586	14.7457	12.2845 12.6147	12.4333	12.5871
77	50.1062 50.1406	30.2831 29.5542	20,5300 20.4569	15.2179	12.2576 12.6268	12.4253	12.5594
78	50.1094 50.1384	30,2751 29,5595	20.5434 20.4658	15.2246	12.2702 12.6416	12.4427	12.5746
16	50.0684 50.1082	30.8101 28.8343	22,4762 22,3821	17.2356	15.2430 15.3019	15.3751	15,3800

PERFORMANCE Flowpath Static Pressures (psia)

				Vane 2			
	Inlet Rake Plane	Vane 1 Exit	Blade 1 Exit	Exit	Blade 2 Exit	Exit Rak	e Plane
RDG.		Outer Inner	Outer Inner	Inner	Outer Inner	Outer	Inner
17		30.7887 28.8451	22,4815 22,3660	17.2343	15.2480 15.3073	15.3657	15.3791
18	50.0488 50.0918	30,3136 28,6002	22,3508 22,2442	17.1862	15.2100 15.3937	15,3339	15.4357
19		30.2936 28.5908	22,3401 22,2585	17.1875	15.2120 15.3896	15.3326	15.4331
20		30,2905 28,6618	22,2126 21,9687	17.0688	15.1606 15.4323	15.2960	15.4296
21	50,0687 50,1042	30,3208 28,6735	22,2229 21,9629	17.0778	15.1670 15.4399	15.3076	15.4390
219		31,4452 30,2874	22,4419 22,3902	17.1914	15.3527 15.2039	15.4680	15.3299
220		31,4665 30,3144	22,4245 22,3920	17.1888	15.3455 15.2012	15.4626	15.3228
222		31,5665 30,6333	22,2731 22,2071	17.0420	15,3928 15,0799	15.5254	15.2493
22		31,9699 30,4924	25.4508 25.3488	21.3770	19.8870 19.9674	19.9931	20.0221
23		31,9538 30,4789	25.4268 25.3363	21.3313	19.8490 19.9405	19.9476	19.9757
181		32,2144 30,8893	25.2518 25.1796	21.3190	19.8167 20.0357	19.9544	20.0034
182	50,1229 50,1562	32,1957 30,8718	25,2210 25,1457	21.3002	19.7880 20.0169	19.9289	20.0070
224		32,3704 31,1315	25.4587 25.4614	21.3497	19.9119 19.8407	20.0264	19.9466
225		32,6756 31,0205	25.3271 25.2955	21.2417	20.0211 19.7554	20.1517	19.9063
226		32,6850 31.0299	25.3245 25.2955	21.2336	20.0121 19.7474	20.1517	19.9018
227	50.0472 50.0805	32.8591 31.3859	25,1526 25,0853	21.0837	20.1484 19.6861	20.2968	19.8537
228		32,8564 31,3604	25,1432 25.0692	21.0797	20,1162 19,6687	20,2566	19.8288
229	50.1121 50.1444	34,0118 32,5012	27.0151 26.9483	23.4942	22.8665 22.3081	23.0066	22.5099
س 230	50,1100 50,1433	34,0024 32,5052	27.0165 26.9750	23.4888	22,8683 22,3135	22.9986	22.5019
رِي _ّ 231	50,1204 50,1516	33,5607 32.0585	27.4764 27.4787	23.8437	22.7010 22.5596	22.8062	22.6475
N 232		33,5874 32,0733	27.4831 27.4787	23.8611	22.7046 22.5663	22.8330	22.6662
233	50,0973 50.1284	33,2861 31,9903	27.5517 27.4060	23.9140	22.5708 22.7064	22.6836	22.7416
234	50.0973 50.1295	33,2968 32,0118	27.5838 27.4114	23.9422	22.6120 22.7373	22.7264	22.7772
235	50.0953 50.1243	36,2116 34,8178	31.4106 31.4262	28.5775	27.7627 27.5775	27.8397	27.6757
236	50.1157 50.1404	36,2529 34,8555	31.4133 31.4404	28,6003	27.7556 27.5829	27.8691	27.7007
237	50.1095 50.1503	36,0791 34.8915	31.5438 31.4178	28.7033	27.6506 27.7343	27.7698	27.7868
238		36,0898 34.9104	31.5612 31.4303	28.7141	27.6703 27.7383	27.7859	27.7992
239	50,1432 50,1668	36,4662 35,0639	30.9830 30.9473	28.2565	27.9402 27.3504	28.0399	27.5610
240	50,1346 50,1550	36,4449 35,0505	30.9629 30.9527	28,2538	27.9205 27.3451	28.0198	27.5476
241	50,1608 50,1888	40.9766 39.9497	37.9386 37.9680	36.1799	35,7003 35,5658	35.7793	35.6236
242	50,1469 50,2017	41.0152 40.0048	37.9920 37.9875	36.1772	35.7647 35.6033	35.8514	35.6342
243	50,1721 50,1926	40.9053 40.1267	38.0675 38.0475	36.3403	35.7230 35.7516	35.7707	35.7672
244	50.1732 50.1861	40.9013 40.1307	38.0688 37.9799	36,3550	35.7087 35.6953	35.7721	35.7823
245	50,1703 50,1843	41.1268 40.0394	37.5952 37.6165	35.9730	35.9390 35.4581	35.9804	35.5995
246	50,1747 50,1983	41.1295 40.0515	37,6085 37,6183	35.9770	35.9783 35.4634	35.9937	35.6004
247	50.1996 50.2178	44,7661 44.0998	42.8856 42.9278	41.8879	41.6672 41.5354	41.7051	41.5948
248	50.2049 50.2060	44.7781 44.1146	42.8909 42.9438	41.9187	41.6815 41.5501	41.7291	41.6313
249	50.1462 50.1623	44.5595 44.1497	42.8951 42.9435	41.9309	41.5775 41.5824	41.6039	41.6079
250	50.1462 50.1623	44.5702 44.1524	42.9044 42.9417	41.9376	41.5811 41.5905	41.6119	41.6141
251		44.6733 44.0506	42.7461 42.7896	41.8254	41.6820 41.4689	41.7203	41.5527
252		44.6600 44.0412	42.7501 42.7985	41.8187	41.6963 41.4810	41.7177	41.5465
253		44.6209 44.0125	42.6349 42.6470	41.6883	41.7923 41.4390	41.7639	41.5025 41.5275
254	50.1415 50.1587	44.6405 44.0336	42.6586 42.6586	41.7134	41.8148 41,4601	41.7943	41.02/0

	0
000	
Ĭ	100
C	AC
200	

		lant Circ			Nozzle 1 Inner			Compressor Discharge Leakage		
	W	2	Pc	T _{T,c}	W _C	Pc	T,c	Wc	P _c	T _{T,c}
RDG.	Nozzle	Shroud								
50	1.14265	0.129376	50.0761	624.136	0.850488	51.0809	584.620	0.350135	40.1799	590.542
51	1.13933	0.129055	50.0009	624.617	0.849614	51.0218	584.865	0.382229	40.2418	600.244
52	1.16305	0.129500	50.1509	628.004	0.850731	51.0697	584.770	0.441506	40.7174	609.134
53	1.15627	0.129354	50.1374	629.079	0.850292	51.0644	584.739	0.442990	40.6825	609.363
54	1.14831	0.129718	50.0700	627.546	0.854438	51.0883	588.509	0.745691	41.7393 41.7527	588.793 588.711
55	1.14213	0.129587	50.0378	624.914	0.858498 0.854835	51.0883 51.1059	588.485 589.378	0.744259 0.750009	42.0742	588.917
56	1.15614	0.129832	50.0930	624.548		51, 1140	589.260	0.751547	42.1146	588.834
57	1,15334 1,13422	0.129845 0.130627	50.0957	624.434 626.242	0.855341 0.844239	51.5904	589.544	0.812690	42,9734	588.510
58 59	1.13254	0.130327	50.5884 50.5266	626.242	0.839924	51.5743	589.600	0.822791	43.0568	587.818
10	1.14936	0.128881	50.0749	629.697	0.849162	51.0825	586.256	0.302624	40.0012	592.917
11	1.14871	0.128786	50.0454	628.621	0.850292	51.0905	586.280	0.303726	40.0335	593.203
12	1.14347	0.128831	50.0857	629.765	0.852113	51.1066	586.920	0.353488	40.5042	594.610
13	1.12859	0.128539	50.0154	628.919	0.852090	51.1008	587.647	0.354359	40.5522	595.971
14	1.15612	0.129154	50.0772	627.523	0.849652	51.0928	587.647	0.353737	40.6302	596.464
15	1,15518	0.129037	50.0315	627.637	0.850945	51.0874	587.711	0.354547	40.5952	596.715
29	1.15042	0.128257	50.1267	633.953	0.844432	51.0026	587.513	0.345082	40.2440	598.218
31	1.15099	0.128154	50. 1370	634.777	0.842342	51.0236	587.031	0.338321	40.3404	593.061 593.138
32	1.14307	0.127941	50.1068	635.691	0.842470	51.0391	586.968	0.327584 0.328305	40.1218 40.1433	593.068
33	1.13995	0.127922	50.1041	635.463	0.843026	51.0525 51.0473	586.912 586.604	0.326343	40.0574	593.143
34	1.11616	0.127770 0.128086	50.0505	634.479 633.678	0.839540 0.842171	51.0554	586.580	0.320242	39.5275	591.225
35	1.13575	0.128249	50.1231 50.0278	632.786	0.837241	51.0138	587.568	0.352616	40.5861	594.969
36 38	1.13102 1.13663	0.128428	50.0573	632.832	0.851220	51.0756	587.971	0.350714	40.7018	595.100
39	1.13344	0.128388	50.0519	633.152	0.860662	51, 1239	588.145	0.350354	40.7072	595.243
40	1.12778	0.128393	49.9970	632.008	0.838815	50.9938	587.624	0.430206	41.7011	596.463
41	1.14306	0.127934	50.1314	638.081	0.837696	50.9857	587.655	0.430472	41.7281	596.486
42	1.14757	0.127880	50.0591	637.292	0.836160	50.9752	588.074	0.430924	42.2231	596.851
43	1.15114	0.128076	50.1020	637.044	0.837655	50.9779	587.995	0.431831	42.1344	596.866
44	1.16106	0.128068	50.1563	637.878	0.825972	50.9435	590.797	0.564023	42.6136	616.434
45	1.14050	0.128601	50.0112	633.607	0.819648	50.9274	591.482	0.562662	42.6835	617.182
47	1.13539	0.128556	50.0527	629.674	0.826741	50.9931	589.939	0.328341	40.2318 40.2391	595.683 589.322
48	1.13971	0.129584	50.0653	628.141	0.846840	51.0756	583.348	0.350647	40.1557	587.815
49	1.12973	0.129452	50.0170	623.793	0.849405	51.0433	581.822 591.730	Q.348311 Q.355185	40.2406	598.711
185	1.30983	0.130030	50.3625	636.639	0.886812	51.0879 51.1363	591.893	0.355590	40.2890	598.925
186	1.31122	0.130025	50.3652	636.864 636.098	0.890321	51.1470	591.986	0.356344	40.2245	599.136
187	1.31609	0.130052 0.130340	50.3786 50.4524	636.233	0.882413	51.1053	591.994	0.366155	40.3441	599.377
188	1.32407 1.32342	0.130340	50.4228	636.481	0.884302	51.1026	592.118	0.365212	40.3199	599.379
189 190	1.30986	0.130022	50.3916	636.909	0.883583	51.1062	592.126	0.367370	40.3773	599.449
191	1.31174	0.129981	50.3862	636.886	0.882303	51.0982	592.219	0.366773	40.3289	599.458
206	1.30329	0.129571	50.3217	637.270	0.860836	50.9961	589.947	0.359396	40.2079	597.839
208	1,29916	0.129687	50.3620	637.224	0.858218	50.9934	591.505	0.356969	40.2321	599.026
209	1,29282	0.129588	50.3298	637.608	0.854457	50.9719	591.722	0.355229	40.1352	599.172
217	1,28967	0.129091	50.2364	640.176	0.854311	50.9431	593.949	0.388831	40.5125	602.955
67	1.15232	0.128940	50.0245	623.381	0.866696	51.0213	590.640	0.309308	39.7274 39.7274	594.211 594.269
68	1.15345	0.128903	50.0541	624.434	0.864277	51.0428	590.593	0.310269 0.345707	40.3522	596.965
69	1.18406	0,129481	50.2213	629.720	0.872420	51.0730	590.984	0.343707	39.8142	595.254
70	1.15816	0.128328	50. 1085 50. 1224	628.621 631.665	0.869710 0.870650	51.0865 51.0789	590.867 591.078	0.347850	40.3338	597.284
71	1.15139	0.128504	50. 1224 50. 1036	631.505	0.864783	51.0735	590.953	0.347830	40.4038	597.176
72	1.14871	0.128442 0.128185	50.0386	634.754	0.882459	51.0542	590.976	0.414149	41.1483	598.810
73 74	1.1642 8 1.16030	0.128231	50.0520	634.434	0.882450	51.0649	590.945	0.413733	41.1376	598.778
7 4 75	1.15689	0.128233	50.0342	635.349	0.885050	51.0605	590.617	0.446889	41.7625	599.199
75 76	1.16039	0.128227	50.0234	635.029	0.886872	51,0659	590.624	0.446042	41.7464	599.017
77	1,15785	0.128078	50.0960	630.269	0.874148	51.0605	586.541	0.839958	42.8087	586.172
78	1.15891	0.128079	50.0852	629.949	0.876054	51.0578	586.296	0.839766	42.8195	585.855
16	1.16840	0.128839	50.1329	573.324	0.860379	51,1243	588.390	0.356876	41.0222	596.806

154

PERFORMANCE

	Coolant Circuits Nozzle 1 Outer				Nozzle 1 Inner			Compressor Discharge Leakage		
	W	c	Pc	T _{T,c}	Wc	P _c	T _{T,c}	W _C	Pc	T _{T,c}
RDG.	Nozzle	Shroud								
17	1,18107	0.128996	5Ò. 1813	626.882	0.860394	51.1350	588.319	0.357119	41.1540	596.715
18	1.16315	0.129075	50.0983	626.242	0.876703	51.1300	564.263	0.357037	41.1355	573.446
19	1.16852	0.129220	50.1305	626.356	0.877053	51.1461	564.069	0.339282	41.0225	572.367
20	1.18046	0.129397	50.1987	626.150	0.852383	51.0611	590.780	0.412836	42.3548	597.972
21	1.18055	0.129061	50.1203	626.905	0.850941	51.0848	591.916	0.412112	42.2064	599.021
219	1.32996	0.128914	50.4166	630.544	0.883483	50.9513	586.661	0.414171	40.3808	
219		0.129078	50.4623	630.612	0.883747	50.9566	587.495	0.425747		615.339
222	1.32563	0.128482	50.3922	633.757	0.870970	50.8892	591.796		40.4346	616.514
	1.32586		50.3322	624.846	0.848131	51.0978	591.908	0.410960	39.9394	621.807
22	1.14426	0.126944		624.662	0.846858	51.1005	591.769	0.404824	42.5825	597.669
23	1.13873	0.126975	50.1413		0.805473	51.0224	588.620	0.404208	42.5878	597.710
181	1.20763	0.128363	50.3776	628.118	0.303473	50.9472	588.683	0.563795	42.9749	614.691
182	1.21333	0.128501	50.3830	626.859	0.752382	50.9537	597.154	0.564726	42.9507	614.874
224	1.29475	0.128545	50.2982	636.713	0.862213	50.8309	585.839	0.439972	41.4054	624.281
225	1.32035	0.128814	50.3016	630.921	0.860429	50.8255	586.156	0.311694	40.8117	588.358
226	1.32773	0.129040	50.3338	629.269	0.869179	50.8255	587.458	0.312587	40.7687	589.422
227	1.31095	0.127927	50.4943	632.011			583.445	0.357261	41.1096	596.202
228	1.30102	0.127413	50.3573	632.864	0.869098	50.9161		0.356554	40.9455	591.899
229	1.30923	0.127600	50.3873	628.187	0.854051 0.855930	50.9596 50.9515	588.691 588.706	0.359634	41.5377	595.512
230	1.29804	0.127610	50.4061	628.782				0.365436	41.5995	596.524
231	1.29830	0.128034	50.4305	631.001	0.851851	50.9464	590.381	0.371092	42.1592	598.376
232	1.27610	0.127127	50.2236	631.139	0.850290	50.8953	589.892	0.364293	42.1162	597.643
233	1.29966	0.128523	50.3047	626.402	0.857274	50.9361	591.028	0.431989	42.9960	598.806
234	1.29938	0.128633	50.3450	626.653	0.853784	50.9361	592.560	0.431146	42.9880	600.044
235	1.24478	0.122310	50.3511	632.672	0.841463	50.9636	588.145	0.394063	43.5802	595.363
236	1,23743	0.122142	50.3349	633.702	0.841274	50.9824	588.746	0.394067	43.5883	595.495
237	1.25865	0.122398	50.3239	632.878	0.836761	50.9553	590.248	0.411033	44.0667	598.127
238	1.25208	0.122379	50.3373	632.786	0.836707	50.9499	590.397	0.411233	44.0989	598.600
239	1.23074	0.121450	50.2474	632.924	0.837015	50.9943	588.951	0.375528	42.9764	600.742
240	1.23077	0.121747	50.3065	633.084	0.835565	50.9916	589.655	0.375471	42.9602	601.076
241	1.12180	0.107466	50.3419	625.807	0.786683	51.0136	580.660	0.371278	45.6252	589.982
242	1.10930	0.107216	50.3231	624.594	0.786574	51.0512	578.993	0.373021	45.6978	588.784
243	1.12020	0.106593	50.3871	636.571	0.782385	51.0023	587.339	0.369805	46.0306	596.147
244	1.12012	0.106397	50.3495	636.594	0.780591	51.0023	587.300	0.369470	46.0280	596.141
245	1.11377	0.106836	50.4369	635.760	0.784700	51.0199	585.656	0.370618	45.2283	594.788
246	1.11403	0.106899	50.4476	635.349	0.780317	51.0199	587.782	0.369277	45.1987	596.802
247	0.962893	0.869807E-01	50.4779	635.811	0.703198	51.0314	583.498	0.361887	47.6805	590.849
248	0.939012	0.866234E-01	50.4725	639.951	0.699762	51.0314	584.810	0.357928	47.7370	591.327
249	0.931151	0.865569E-01	50.3128	632.603	0.698693	50.9684	583.158	0.356608	47.8782	590.312
250	0.932061	0.364741E-01	50.3074	632.260	0.699669	50.9764	583.205	0.355830	47.8728	590.396
251	0.926587	0.866188E-01	50.3602	636.204	0.703444	50.9862	579.886	0.358727	47.5897	586.357
252	0.931686	0.863463E-01	50.3333	638.306	0.701256	50.9782	580.186	0.357374	47.5870	587.497
253	0.939009	0.867713E-01	50.3732	633.976	0.705563	50.9831	577.080	0.359752	47.5542	583.652
254	0.940246	0.867447E-01	50.3849	633.130	0.706459	50.9840	575.049	0.360132	47.5525	581.345

OF POOR QUALITY

Coolant Circuits

	***************************************	Indu	ıcer		Nozzle 2 Outer			
	t.T	Р.	P	т	Wc	P _c	T	
3	Wc	c,in	c,out	T _{T,c}	"c	C	T _{T,c}	
	1.69476	49.4598	40.4857	618.343	0.583629	23.6773	640.530	
	1.69327	49.4939	40.5538	618.335	0.589734	23.7861	639.464	
	1.65847	49.5883	41.1254	618.547	0.558424	23.2739	643.991	
	1.65677	49.5597	41.0859	618.616	0.559784	23.2417	643.855	
	1.58834	49.6875	42.1176	620.495	0.548112	23.1072	646.096	
	1.59003	49.6911	42.1068	620.548	0.560265	23.4483	645.833	
	1.55182	49.6281	42.5063	621.775	0.537620	22.9783	651.175	
	1.55338	49.6747	42.5440	621.675	0.539418	23.0052	651.363	
	1.50630	49.9999	43.4682	622.832	0.534207	22.9484	650.703	
1	1.51245	50. 1056	43.5381	622.955	0.546395	23.2627	650.141	
1	1.69930	49.6262	40.5446	619.715	0.577137	23.4720	641.632	
	1.70073	49.6494	40.5697	619.571	0.575808	23.6037	641.975	
	1.66640	49.5312	40.8602	620.306	0.586072	23.5137	641.705	
	1.66603	49.6078	40.9530	621.464	0.598425 0.576073	23.4138 23.9443	641.136 640.497	
	1.65916	49,5594	40.9888	621.503	0.582486	24.0800	641.374	
	1.65717	49.5308	41.0336	621.450 621.514	0.579754	23.5467	641.567	
	1.67066 1.68098	49.4433 49.5198	40.6933 40.6766	621.224	0.582707	23.7248	642.808	
:	1.68663	49.4502	40.5459	621.195	0.576657	23.6436	645.420	
	1.68575	49.4627	40.5675	621.379	0.577476	23.5992	645.140	
	1.69509	49.4530	40.4269	621.020	0.599661	23.9620	642.207	
	1.69408	49.1628	40.0377	620.968	0.582996	23.5766	643.129	
	1,64888	49.4634	40.9914	621.966	0.570905	23.5001	642.655	
1	1.64855	49.5906	41.2317	622.255	0.576891	23.5793	642.482	
1	1.64854	49.5924	41.2119	622.240	0.580904	23.6639	641.687	
)	1.58134	49.6405	42.1601	622.496	0.564525	23.3847	645.679	
	1.58188	49.6692	42.1799	622.381	0.567082	23.4250	645.665	
!	1.55150	49.7581	42.7225.	622.832	0.569107	23.5381	649.563	
1	1.54221	49.6291	42.6328	622.977	0.556052	23.1418	651.008	
1	1.49358	49.6654	43.1299	626.911	0.558815 0.558679	23.2203	650.094	
	1.50106	49.8016	43.2214	627.521 623.852	0.584319	23.2109 23.7923	649.486 643.316	
	1.66965	49.4347 49.4365	40.6577 40.6363	617.079	0.581478	23.7136	642.844	
	1.68185 1.68221	49.3595	40.5484	615.820	0.592121	23.9057	641.334	
			40.6620	624.415	0.583519	23.7703	639.304	
•	1.67359	49.1093 49.1613	40.6997	624.522	0.583976	23.8670	639.408	
	1.67565	49.0412	40.6333	624.737	0.574579	23.6118	639.789	
	1.66944 1.66752	49.0917	40.7251	624.540	0.583629	23.7702	638.202	
	1.66637	49.0738	40.7090	625.099	0.586083	23.8561	638.225	
,	1.66759	49.1178	40.7512	625.136	0.579504	23.7470	638.857	
í	1.66462	49.0712	40.7154	624.992	0.580086	23.6422	638.712	
,	1.67160	49.0372	40.6149	623.545	0.577029	23.5939	639.995	
)	1.67146	49.0766	40.6526	624.801	0.573258	23.5858	640.967	
•	1.66491	48.9548	40.5378	624.854	0.571319	23.5388	640.597	
,	1.65740	49.0477	40.7690	627.287	0.573393	23.5972	644.716	
1	1.70905	49.2953	40.2421	623.690	0.613642	25.2359	641.820	
3	1.70888	49.2666	40.2493	623.888	0.610346	24.9378	642.506	
•	1.68916	49.4814	40.8014	624.125	0.558641	24.1650	645.882	
)	1.69421	49.2055	40.3800	624.128	0.606987	24.8606	642.959	
1	1.65188	49.2311	40.9130	624.499	0.578614	24.6167 24.5966	643.618 643.771	
2	1.65844	49.2974	40.9381	624.370	0.578651 0.575130	24.3946	645.066	
3	1.60894	49.3596	41.6818	624.520 624.505	0.575657	24.4027	644.890	
	1.60916	49.3506	41.6800 42.3067	624.687	0.574831	24.3150	648.769	
5	1.56470	49.4125 49.3802	42.2780	624.534	0.579407	24.3123	648.490	
; ,	1.56393	49.5666	43.3035	620.474	0.567017	24.1673	649.777	
, 3	1.49611	49.5702	43.2945	620.122	0.565061	24.2089	649.077	
	1.62472	49.6384	41.6023	622.436	0.587115	25.9485	646.853	

PERFORMANCE

Coolant Circuits

		Indi	ıcer		Nozzle 2 Outer				
RDG	Wc	P _{c,in}	P _{c,out}	T _{T,c}	Wc	P _c	T,c		
17	1.63686	49.6976	41.5592	622.161	0.568643	26.2318	646.470		
18	1.62783	49.4551	41.8814	600.913	0.580395	25.9072	647.801		
19	1.63154	49.5985	41.8455	600.844	0.603328	25.6816	647.087		
20	1.54034	49.9649	42.8828	625.065	0.598355	25.5859	649.140		
21	1.53243	49.6653	42.7192	626.506	0.585213	25.9373	649.843		
219	1.66086	49.0533	40.8928	618.944	0.606693	26.3757	637.269		
220	1.65248	49.0407	40.9502	619.614	0.608810	26.0361	637.215		
222	1.66422	48.7744	40.4021	.623.605	0.627151	26.3728	637.038		
22	1.50743	49.7365	43.0127	626.766	0.568939	28.3787	656.308		
23	1.50615	49.8117	43.0773	626.963	0.570026	28.1867	656.664		
181	1.45604	49.4030	43.5503	625.566	0.552894	28.1168	657.914		
182	1.45531	49.3887	43.5449	625.695	0.547933	28.0564	657.932		
224	1.55012	49.0199	41.9944	629.515	0.580609	28.5313	648.227		
225	1.60856	48.9320	41.3954	618.517	0.606208	28.7428	643.559		
226	1.60892	48.9123	41.3793	618.785	0.604586	28.7629	643.159		
227	1.62458	49.2044	41.5498	620.035	0.618992	28.3797	644.480		
228	1.61797	49.0074	41.4153	· 616.567	0.623715	28.9326	643.723		
229	1.57132	49.0902	41.9339	621.954	0.614419	30.7675	643.953		
230	1.57023	49.1547	42.0128	622.230	0.649542	30.6508	644.520		
231	1.52664	49.3744	42.7114	624.073	0.602358	30.3719	652.068		
232	1.53459	49.3225	42.6558	623.462	0.598978	30.7771	650.084		
233	1.44664	49.3015	43.5491	625.646	0.571303	30.3173	656.205		
234	1.44190	49.3122	43.5652	627.239	0.569385	30.3522	655.898		
235	1.41350	49.4965	44.0562	623.796	0.566303	33.8503	659.493		
236	1.41325	49.5109	44.0598	624.320	0.578193	34.1655	659.220		
237	1.34754	49.5133	44.7397	627.016	0.543414	33.7722	667.056		
238	1.34770	49,5312	44.6967	627.458	0.541099	33.7936	667.007		
239	1.47398	49.3893	43.2856	624.238	0.623991	34.3450	652.600		
240	1.46947	49.3947	43.3376	624.645	0.612698	34.2216	654.381		
241	1.18529	49.7212	46.0643	621.134	0.471553	39.4658	679.581		
242	1.18357	49.6245	45.8869	619.902	0.465073	39.4363	681.256		
243	1.14231	49.8586	46.5136	627.113	0.444603	39.3821	690.241		
244	1.14215	49.8855	46.4921	627.214	0.443990	39.3835	689.919		
245	1.23854	49.6738	45.5975	624.438	0.516829	39.6637	671.756		
246	1.23263	49.6433	45.5706	625.946	0.518709	39.6597	671.547		
247	0.918375	50.1609	48.0828	626.231	0.357765	43.7209	705.320		
248	0.922240	50.2612	48.1150	627.385	0.360291	43.7584	706.500		
249	0.866014	50.1587	48.2831	628.130	0.347702	43.6916	711.568		
250	0.867076	50.1444	48.2903	628.015	0.346219	43.6929	711.836		
251	0.936955	50.0879	47.8987	622.826	0.382450	43.7844	702.137		
252	0.933702	50.0969	47.8969	623.612	0.382886	43.7911	701.843		
253	0.962470	50.0875	47.7549	620.820	0.384746	43.6915	704.059		
254	0.962353	50.0777	47.7559	618.850	0.384524	43.7193	703.982		

ORIGINAL PAGE IS

	COOLING 1	LOW VARIATIO	<u> </u>		$W_{41}\sqrt{T_{T,41}}/P_{T,41}$,4	Δh/T _T	r. 41
	D /D	n /n	$N/\sqrt{T_{T,41}}$	11/0	1bm√°R		Btu/(1	lbm °R)
Rdg	$P_{T,4}/P_{S,42}$	$_{\rm T,4}^{/\rm P}_{\rm T,42}$	rpm/√°R	u/c _o	sec psia	Meas		w/Pumping
111	5.57269	5.00357	1 pm/V K 236.998	0.579579	18.1669	0.000004		
112	5.58017	5.00984	236.704	0.578774	18.1677	0.8233211		0.838170E-01 0.839703E-01
113	5.57257	5.01067	236.919	0,579454	18.1728	0.823347		0.838191E-01
114	5.57038	5.00545	236.712	0.578956	18.1623	0.822758		O.837568E-01
115 116	5.57994	5.00861	236.933	0.579388	18.1654	0.824174		0.839002E-01
117	5.56298 5.56606	4.99786 5.00074	236.882 236.793	0.579623 0.579276	18.1709	0.8229351		0.837767E-01
118	5.56590	4.99614	236.968	0.579677	18.1664 18.1647	0.821988		0.836805E-01
119	5.56637	4.99322	237.215	0.580322	18.1669	0.824610		0.839430E-01 0.837238E-01
120	5.57850	5.00579	237.121	0.579716	18, 1613	0.8271721		0.841966E-01
121	5.56856	4.99660	237.030	0.579819	18.1614	0.827535		0.842332E-01
122	5.56273	4.98710	237.023	0.579821	18.1578	0.8265961	E-01	O.841396E-01
123 124	5.56092	4.98769	237.021	0.579922	18.1611	0.826788		0.841537E-01
125	5.57252 5.56844	4.99952 4.99771	236.860 237.092	0.579250	18.1643	0.824240		0.839015E-01
126	5.57082	4.99774	237.193	0.579978 0.580073	18.1711 18.1665	0.8245481		0.839323E-01
127	5.57535	4.99889	236.963	0.579430	18.1676	0.8258721 0.8256381		0.840640E-01 0.840422E-01
129	5.55460	4.98404	236.738	0.579423	18.1208	0.8236031		0.838277E-01
130	5.54622	4.97641	236.645	0.579333	18.1556	0.8238391		O.838990E-01
131	5.53682	4.96990	236.742	0.579834	18.1626	0.824259	E-01	O.839367E-01
132 133	5.56578	5.00038	236.634	0.578834	18.1790	0.826989		0.839918E-01
134	5.56068 5.57808	4.99510 5.00203	236.718 237.162	0.579170	18.1902	0.8245961		0.837547E-01
135	5.57756	5.00248	237.182	0.579865 0.579940	18.1688 18.1666	0.8255331 0.8267641	_	0.840233E-01 0.841431E-01
138	5.54823	4.98272	236.681	0.579362	18.1626	0.8243621		0.839054E-01
139	5.55401	4.98147	236.272	0.578227	18.1649	0.824070		0.838759E-01
	Average Clea				η_{an}	n 1	n	
	Average Cleating (inches x			$oldsymbol{\eta}_{ ext{ iny TH}}$	$\eta_{_{ m GE}}$	η_{TH}	7 _{THP}	
Rdg	(inches x	$\boldsymbol{\eta}_{\mathrm{GE}}$	Massured	$oldsymbol{\eta}_{ ext{TH}}$	Corrected	to 0.016 i	7 _{THP}	
Rdg	(inches x) Stg 1 Stg	$\eta_{\rm GE}$	Measured		Corrected (to 0.016 i arance	n. Tip	
111	(inches x : Stg 1 Stg 1 18.1 14.1	$oldsymbol{\eta}_{ ext{GE}}$	Measured	O.884147	Corrected (Clea 0.9228	to 0.016 i arance 0.8847	n. Tip 0.9007	
111 112	(inches x : Stg 1 Stg 1 Stg 1 14.1 18.2 14.1	$ \begin{array}{ccc} & & & & & & & & \\ & & & &$	Measured	O.884147 O.885484	Corrected (Clea 0.9228 0.9242	to 0.016 i arance 0.8847 0.8863	n. Tip 0.9007 0.9022	
111	(inches x : Stg 1 Stg 1 18.1 14.1	10 ³) η_{GE} 2 0 0.922 6 0.923 3 0.921	Measured 2234 3381 1595	0.884147 0.885484 0.883564	Corrected (Clea 0.9228	to 0.016 1 arance 0.8847 0.8863 0.8842	n. Tip 0.9007 0.9022 0.9001	
111 112 113 114 115	(inches x : Stg 1 Stg 18.1 14.1 18.2 14.1 18.0 14.1 17.7 13.1 17.8 13.1	103) η_{GE} 3 2 0 0.923 6 0.923 5 0.921 5 0.922	Measured 2234 3381 1595 1425	O.884147 O.885484	Corrected (Clea 0.9228 0.9242 0.9222	to 0.016 i arance 0.8847 0.8863 0.8842 0.8828	n. Tip 0.9007 0.9022	
111 112 113 114 115 116	(inches x : Stg 1 Stg 1 Stg 1 14. 18.2 14. 18.0 14. 17.7 13. 17.8 13. 18.3 13.	103) η_{GE} 3 2 0 0.923 6 0.923 5 0.921 5 0.923 6 0.923	Measured 2234 3381 1595 1425 2741 2299	0.884147 0.885484 0.883564 0.882533	Corrected (Clea 0.9228 0.9242 0.9222 0.9217 0.9231 0.9228	to 0.016 interpretation of the contract of the	n. Tip 0.9007 0.9022 0.9001 0.8987	
111 112 113 114 115 116	(inches x : Stg 1	10 ³) η_{GE} 2 0 0.922 6 0.923 3 0.921 5 0.923 6 0.923 0.923	Measured 2234 3381 1595 1425 2741 2299	0.884147 0.885484 0.883564 0.882533 0.882533 0.883732 0.882490 0.881226	Corrected (Clean Corrected (Corrected (Corre	to 0.016 i arance 0.8847 0.8863 0.8842 0.8828 0.8841 0.8830 0.8817	n. Tip 0.9007 0.9022 0.9001 0.8987 0.9000 0.8989 0.8976	
111 112 113 114 115 116 117	(inches x : Stg 1 St; 18.1 14.1 18.2 14.1 18.0 14.1 17.7 13.1 18.3 18.3	103) η_{GE} 2 0 0.922 6 0.923 3 0.921 5 0.923 3 0.923 3 0.923 3 0.923	Measured 2234 3381 1595 1425 2741 2299	0.884147 0.885484 0.883564 0.882533 0.882533 0.882490 0.881226 0.883650	Corrected (Clean Corrected (Corrected (Corre	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8828 0.8841 0.8830 0.8817 0.8841	n. Tip 0.9007 0.9022 0.9001 0.8987 0.9000 0.8989 0.8976 0.9000	
111 112 113 114 115 116 117 118	(inches x : Stg 1	10 ³) η_{GE} 2 0 0.922 6 0.923 3 0.921 5 0.923 3 0.923 3 0.923 3 0.924 1 0.922	Measured 2234 3381 1595 1425 2741 2299 1959 1347	0.884147 0.885484 0.883564 0.882533 0.882533 0.882490 0.881226 0.883650 0.881614	Corrected (Clean Control Contr	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8828 0.8841 0.8830 0.8817 0.8841 0.8821	n. Tip 0.9007 0.9022 0.9001 0.8987 0.9000 0.8989 0.8976 0.9000 0.8980	
111 112 113 114 115 116 117	(inches x : Stg 1 St; 18.1 14.1 18.2 14.1 18.0 14.1 17.7 13.1 18.3 18.3	103) η_{GE} 2 0 0.922 3 0.921 5 0.922 3 0.922 3 0.922 3 0.922 1 0.922 5 0.925	Measured 2234 3381 1595 1425 2741 2299 1947 2097	0.884147 0.885484 0.88564 0.882533 0.882533 0.882490 0.881226 0.883650 0.881614 0.884188	Corrected (Clean Control Contr	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8828 0.8841 0.8830 0.8817 0.8841 0.8821 0.8850	n. Tip 0.9007 0.9022 0.9001 0.8987 0.9000 0.8989 0.9000 0.8980 0.9008	
111 112 113 114 115 116 117 118 119 120 121	(inches x : Stg 1	103) η_{GE} 2 0 0 0 0 923 0 0 923 0 921 0 923 0 924 0 925 0 926 0 927	Measured 2234 3381 5595 425 2741 2299 0959 1347 2097 6320	0.884147 0.885484 0.883564 0.882533 0.882533 0.882490 0.881226 0.883650 0.881614	Corrected (Clean Control Contr	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8828 0.8841 0.8830 0.8817 0.8841 0.8821 0.8350 0.8861	n. Tip 0.9007 0.9022 0.9001 0.8987 0.9000 0.8989 0.8989 0.9000 0.8980 0.9008	
111 112 113 114 115 116 117 118 119 120 121 122	(inches x : Stg 1	10 ³) η_{GE} 2 0 0.922 6 0.923 7 0.921 5 0.923 0.923 0.923 0.923 0.924 1 0.922 1 0.925 7 0.927	Measured 2234 3381 1595 1425 2741 2299 0959 1347 2097 6320 7535	0.884147 0.885484 0.885564 0.882533 0.883732 0.882490 0.881626 0.883650 0.881614 0.884188 0.885400 0.885400	Corrected (Clean Color) 0.9228 0.9242 0.9222 0.9217 0.9231 0.9228 0.9215 0.9248 0.9226 0.9271 0.9283	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8828 0.8841 0.8830 0.8817 0.8821 0.8350 0.8861 0.8852	n. Tip 0.9007 0.9022 0.9001 0.8987 0.9000 0.8989 0.9000 0.8980 0.9008	
111 112 113 114 115 116 117 118 119 120 121 122 123	(inches x : Stg 1 St; 18.1 14.1 18.2 14.1 18.0 14.1 17.7 13.1 18.3 13.1 18.3 13.1 18.3 13.1 18.3 13.1 18.3 13.1 18.3 13.1 18.4 13.1 18.4 13.1 18.5 13.1 18.5 13.1 18.5 13.1 18.3 13.1 18.5 13.1 18.3 13.1 18.3 13.1 18.3 13.1	103) η_{GE} 2 0 0.923 6 0.923 7 0.923 7 0.923 8 0.924 9 0.925 9 0.925 7 0.925 7 0.925	Measured 2234 3381 1595 1425 2741 2299 19347 2097 6320 7555 7371 7537	0.884147 0.885484 0.885564 0.882533 0.882490 0.881226 0.883650 0.881614 0.884188 0.885400 0.884435 0.884682 0.882110	Corrected (Clester Corrected (Corrected (Cor	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8828 0.8841 0.8830 0.8817 0.8841 0.8821 0.8350 0.8861 0.8852 0.8854 0.8827	n. Tip 0.9007 0.9022 0.9001 0.8987 0.9000 0.8989 0.8976 0.9000 0.8980 0.9011 0.9012 0.8985	
111 112 113 114 115 116 117 118 119 120 121 122 123 124	(inches x : Stg 1 St; 18.1 14.1 18.2 14.1 18.0 14.1 17.7 13.1 18.3 13.1 18.3 13.1 18.3 13.1 18.4 13.1 18.4 13.1 18.4 13.1 18.5 13.1 18.5 13.1 18.6 13.1 18.6 13.1	103) η_{GE} 2 0 0.923 6 0.925 3 0.921 5 0.923 3 0.923 3 0.923 3 0.926 9 0.927 7 0.927 7 0.927 8 0.924	Measured 2234 3381 1595 1425 2741 2299 19347 2097 6320 7555 7371 7537	0.884147 0.885484 0.88564 0.882533 0.882533 0.882490 0.881226 0.883650 0.881614 0.884188 0.884488 0.885400 0.884485 0.884682 0.882110 0.882803	Corrected (Clean Colored Color	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8828 0.8841 0.8830 0.8817 0.8841 0.8821 0.8350 0.8861 0.8852 0.8852	n. Tip 0.9007 0.9022 0.9001 0.8987 0.9000 0.8989 0.8976 0.9000 0.8980 0.9011 0.9011 0.9012 0.8985 0.8993	
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	(inches x : Stg 1 St; 18.1 14.1 18.2 14.1 18.0 14.1 17.7 13.1 17.8 13.1 18.3 13.1 18.3 13.1 18.3 13.1 18.4 13.1 18.4 13.1 18.8 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1	10 ³) η_{GE} 2 0 0.923 6 0.925 3 0.921 5 0.923 3 0.923 3 0.926 3 0.926 6 0.927 7 0.927 7 0.927 8 0.925	Measured 2234 3381 1595 1425 2741 2299 3959 1347 2097 6320 7555 7371 7537	0.884147 0.885484 0.88564 0.882533 0.882490 0.881226 0.881650 0.881614 0.884188 0.885400 0.884435 0.884482 0.882110 0.882803 0.882803	Corrected (Clean Colorected (Colorected (C	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8841 0.8830 0.8817 0.8841 0.8821 0.8850 0.8852 0.8854 0.8852	n. T1p 0.9007 0.9022 0.9001 0.8987 0.9000 0.8980 0.9008 0.9019 0.9011 0.8985 0.8993 0.9010	
111 112 113 114 115 116 117 118 119 120 121 122 123 124	(inches x : Stg 1 St; 18.1 14.1 18.2 14.1 18.0 14.1 17.7 13.1 18.3 13.1 18.3 13.1 18.3 13.1 18.4 13.1 18.4 13.1 18.4 13.1 18.5 13.1 18.5 13.1 18.6 13.1 18.6 13.1	103) η_{GE} 2 0 0.923 3 0.921 5 0.923 3 0.923 3 0.923 3 0.924 5 0.925 6 0.925 7 0.927 7 0.927 7 0.927 8 0.925 6 0.925 6 0.925	Measured 2234 3381 1595 1425 2741 2299 1347 2097 6320 7555 7371 7537	0.884147 0.885484 0.883564 0.882533 0.882533 0.882490 0.881626 0.883650 0.881614 0.884188 0.885400 0.884485 0.882110 0.882803 0.882405 0.882405	Corrected (Clean Colorected (Colorected (C	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8828 0.8841 0.8830 0.8817 0.8821 0.8850 0.8852 0.8854 0.8852 0.8855	n. T1p 0.9007 0.9022 0.9001 0.8987 0.9000 0.8989 0.9008 0.9019 0.9011 0.9011 0.9012 0.8983 0.9008 0.9008	
111 112 113 114 115 116 117 118 120 121 122 123 124 125 126	(inches x : 18.1 14.1 18.2 14.1 18.2 14.1 18.0 14.1 17.7 13.1 17.8 13.1 18.3 13.1 18.3 13.1 18.4 13.1 18.4 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 13.1 18.6 14.1 19.1 13.1	103) η_{GE} 2 0 0 0 923 0 0 924 0 0 925 0 926 0 927 0 927 0 927 0 927 0 927 0 927 0 928 0 928	Measured 2234 3381 1595 1425 2741 2299 1959 1347 2097 5320 7555 7371 7537 15632 1104 16632	0.884147 0.885484 0.88564 0.882533 0.882490 0.881226 0.881650 0.881614 0.884188 0.885400 0.884435 0.884482 0.882110 0.882803 0.882803	Corrected (Clean Colorected (Clean Colorected (Colorected (Colorec	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8828 0.8841 0.8830 0.8817 0.8821 0.8850 0.8861 0.8852 0.8852 0.8852 0.8852 0.8852 0.8852	n. Tip 0.9007 0.9022 0.9001 0.8987 0.9000 0.8989 0.9000 0.8980 0.9019 0.9011 0.9012 0.8983 0.9010 0.908	
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 129 130	(inches x : Stg 1	10 ³) η_{GE} 2 0 0 0 922 6 0 0 923 0 0 923 0 924 0 0 925 0 926 0 927 0 927 0 927 0 927 0 927 0 927 0 928 0 928 0 928	Measured 2234 3381 1595 1425 2741 2299 0959 1347 2097 6320 7555 7371 7537 3580 1104 6632 6632 6632	0.884147 0.885484 0.883564 0.882533 0.883732 0.881226 0.881626 0.883650 0.881614 0.884188 0.885400 0.884435 0.884435 0.882110 0.882110 0.882803 0.883936 0.879181	Corrected (Clean Colorected (Colorected (C	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8828 0.8841 0.8830 0.8817 0.8841 0.8851 0.8852 0.8854 0.8852 0.8854 0.8852 0.8854 0.8852 0.8854 0.8852 0.8853	n. T1p 0.9007 0.9022 0.9001 0.8987 0.9000 0.8989 0.9008 0.9019 0.9011 0.9011 0.9012 0.8983 0.9008 0.9008	
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 129 130 131	(inches x : Stg 1 St; 18.1 14.1 18.2 14.1 18.0 14.1 17.7 13.1 18.3 13.1 18.3 13.1 18.3 13.1 18.4 13.1 18.4 13.1 18.6 13.1 18.9 13.1 17.5 12.1	10 ³) η_{GE} 2 0 0 0 923 6 0 0 923 0 0 924 6 0 0 925 0 0 926 0 0 926 0 0 927 0 927 0 927 0 927 0 928 0 0 928 0 0 928 0 0 928 0 0 928 0 0 928 0 0 928 0 0 928 0 0 928 0 0 928 0 0 928	Measured 2234 3381 1595 1425 2741 2299 1959 1347 2097 6320 7555 7371 7537 8580 1104 6632 6217 1264 6203	0.884147 0.885484 0.88564 0.882533 0.882533 0.882490 0.881226 0.883650 0.881614 0.884188 0.884488 0.885400 0.884435 0.882110 0.882803 0.882110 0.882803 0.882803 0.882803 0.882803 0.882803 0.882803 0.882803 0.882803 0.882803 0.882803 0.882803 0.882803 0.882803 0.882803	Corrected (Clest Corrected (Clest Corrected (Clest Corrected (Corrected (Corr	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8841 0.8830 0.8817 0.8841 0.8850 0.8852 0.8854 0.8852 0.8852 0.8852 0.8852 0.8852 0.8852 0.8853	n. Tip 0.9007 0.9022 0.9001 0.8987 0.9000 0.8989 0.8976 0.9000 0.8980 0.9011 0.9012 0.8985 0.8993 0.9010 0.9008	
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 129 130 131 132	(inches x : Stg 1 St; 18.1 14.1 18.2 14.1 18.0 14.1 17.7 13.1 18.3 13.1 18.3 13.1 18.3 13.1 18.4 13.1 18.5 13.1 18.6 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 14.1 19.1 13.1 18.6 13.1 18.9 13.1 18.9 13.1 18.9 13.1 18.9 13.1 17.5 12.1 17.5 12.1 17.5 12.1	10 ³) η_{GE} 2 0 0 0 923 0 0 924 0 0 925 0 926 0 926 0 927 0 927 0 926 0 927 0 927 0 927 0 927 0 927 0 927 0 927 0 927 0 927 0 927 0 927	Measured 2234 3381 1595 1425 2741 2299 3959 1347 2097 5320 7555 7371 7537 15632 1104 5632 1264 56203 5289 6542	0.884147 0.885484 0.88564 0.882533 0.882533 0.882490 0.881226 0.881614 0.884188 0.885400 0.884435 0.884435 0.882110 0.882803 0.882110 0.882936 0.883936 0.879181 0.882256 0.883450 0.883450 0.889664 0.887580	Corrected (Clest Corrected (Clest Corrected (Clest Corrected (Corrected (Corr	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8841 0.8830 0.8817 0.8841 0.8821 0.8852 0.8852 0.8852 0.8854 0.8852 0.8852 0.8852 0.8849 0.8852 0.8849 0.8852 0.8849 0.8877	n. Tip 0.9007 0.9022 0.9001 0.8987 0.9000 0.8989 0.9906 0.9008 0.9011 0.9012 0.9012 0.9010 0.9008 0.9008 0.9010 0.9008	
111 112 113 114 115 116 117 118 120 121 122 123 124 125 126 127 129 130 131 132 133	(inches x : Stg 1 St; 18.1 14.1 18.2 14.1 18.0 14.1 17.7 13.1 18.3 13.1 18.3 13.1 18.3 13.1 18.4 13.1 18.4 13.1 18.5 13.1 18.6 13.1 18.6 13.1 18.6 14.1 19.1 13.1 18.6 15.1 18.6	10 ³) 3 2 0 0.923 6 0.925 3 0.925 5 0.926 3 0.926 3 0.927 6 0.927 7 0.927 7 0.927 7 0.925 8 0.926 9 0.925 7 0.925 9 0.925 9 0.925 9 0.925 9 0.925 9 0.925 9 0.925 9 0.925	Measured 2234 3381 1595 1425 2741 2299 3959 4347 2097 5320 7555 7371 7537 3580 1104 5632 5217 1264 52289 5289 5542	0.884147 0.885484 0.88564 0.882533 0.882533 0.882490 0.881226 0.881620 0.881614 0.884188 0.885400 0.884485 0.882110 0.882803 0.882110 0.882903 0.883936 0.879181 0.882256 0.883936	Corrected (Clean Colorected (Clean Colorected (Colorected (Colorec	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8841 0.8830 0.8841 0.8821 0.8850 0.8852 0.8852 0.8852 0.8852 0.8852 0.8852 0.8852 0.8852 0.8852 0.8853	n. T1p 0.9007 0.9022 0.9001 0.8987 0.9000 0.8980 0.9008 0.9019 0.9011 0.8985 0.8993 0.9010 0.9088 0.8958 0.8993 0.9010 0.9088 0.8993	
111 112 113 114 115 116 117 118 120 121 122 123 124 125 126 127 129 130 131 132 133 134	(inches x : Stg 1	10 ³) 3 2 0 0.923 15 0.921 5 0.925 3 0.926 3 0.926 3 0.926 6 0.927 7 0.927 7 0.927 8 0.928 1 0.928 1 0.928 2 0.928 3 0.928 3 0.928 3 0.928 4 0.928 5 0.928 6 0.928 7 0.925 7 0.925 8 0.928	Measured 2234 3381 1595 1425 2741 2299 3959 4347 2097 6320 7555 7371 7537 3580 1104 6632 6217 1264 6203 6218 65218	0.884147 0.885484 0.883564 0.882533 0.882533 0.882490 0.881626 0.883650 0.881614 0.884188 0.885400 0.884485 0.882110 0.882803 0.882903 0.882903 0.882903 0.882903 0.883936 0.882903 0.883936 0.883936	Corrected (Clean Colorected (Clean Colorected (Colorected (Colorec	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8828 0.8841 0.8830 0.8817 0.8821 0.8850 0.8852 0.8852 0.8852 0.8852 0.8852 0.8853 0.8852 0.8853 0.8852 0.8853 0.8853	n. T1p 0.9007 0.9022 0.9001 0.8987 0.9000 0.8989 0.9008 0.9019 0.9011 0.9011 0.9012 0.908 0.8983 0.9000 0.9088 0.9000 0.9008 0.9008	
111 112 113 114 115 116 117 118 120 121 122 123 124 125 126 127 129 130 131 132 133	(inches x : Stg 1 St; 18.1 14.1 18.2 14.1 18.0 14.1 17.7 13.1 18.3 13.1 18.3 13.1 18.3 13.1 18.4 13.1 18.4 13.1 18.5 13.1 18.6 13.1 18.6 13.1 18.6 14.1 19.1 13.1 18.6 15.1 18.6	10 ³) 3 2 0 0 0.923 6 0.923 7 0.923 8 0.924 8 0.923 8 0.924 9 0.925 7 0.925 7 0.925 8 0.926 9 0.926 1 0.926 1 0.927 1 0.927 2 0.927 3 0.928 4 0.928 5 0.928 5 0.928 6 0.928 6 0.928 7 0.928 8 0.928 9 0.928 9 0.928	Measured 2234 3381 1595 1425 2741 2299 0959 1347 2097 3537 3580 1104 5632 6217 1264 5203 5289 1542 1357	0.884147 0.885484 0.88564 0.882533 0.882533 0.882490 0.881226 0.881620 0.881614 0.884188 0.885400 0.884485 0.882110 0.882803 0.882110 0.882903 0.883936 0.879181 0.882256 0.883936	Corrected (Clean Colorected (Clean Colorected (Colorected (Colorec	to 0.016 1 arance 0.8847 0.8863 0.8842 0.8828 0.8841 0.8830 0.8817 0.8841 0.8852 0.8854 0.8852 0.8852 0.8854 0.8852 0.8853 0.8852 0.8861 0.8861 0.8852 0.8852 0.8852 0.8852 0.8852 0.8852 0.8852 0.8852 0.8852 0.8852 0.8852	n. T1p 0.9007 0.9022 0.9001 0.8987 0.9000 0.8980 0.9008 0.9019 0.9011 0.8985 0.8993 0.9010 0.9088 0.8958 0.8993 0.9010 0.9088 0.8993	

	Inlet			t Vane 1 Exit		Loading, ψ_P		$\frac{\text{TQ/P}_{\text{T,4}}}{\text{ft. in}^2}$	Reaction, R Exit		
Rdg	$\mathbf{P}_{\mathbf{T}}$	T _T	W	W	T _T	Meas.	With Pumping	With Pumping	Hub	Tip C,	wirl degrees
111	50. 1851	1274.80	23.9598	26.0732	1222.71	0.652122	0.663883	47.7333	0.382288	0.448137	0.
112	50.1938	1276.62	23.9403	26.0639	1224.12	0.654983	0.666755	47.8824	0.382786	0.447831	0.
113	50. 1902	1276.10	23.9600	26.0707	1223.99	0.652576	0.664341	47.7659	0.382753	0.448405	0.
114	50. 1942	1274.79	23.9703	26.0665	1223.16	0.653256	0.665015	47.7446	0.379684	0.446769	0.
115	50.1867	1273.86	23.9788	26.0762	1222.30	0.653158	0.664909	47.7899	0.379885	0.446957	0.
116	50.1828	1275.55	23.9632	26.0666	1223.76	0.652456	0.664216	47.7444	0.377536	0.446243	0.
117	50.1819	1276.57	23.9458	26.0498	1224.68	0.652194	0.663951	47.6954	0.377487	0.446102	0.
118	50, 1770	1274.90	23.9537	26.0615	1223.12	0.653310	0.665051	47.8054	0.376047	0.444844	0.
119	50.1837	1275.39	23.9608	26.0618	1223.71	0.650185	0.661934	47.6367	0.376402	0.444787	0.
120	50.1819	1275.50	23.9589	26.0493	1224.04	0.654492	0.666197	47.9098	0.372707	0.443364	0.
121	50.1938	1275.23	23.9801	26.0500	1224.57	0.655285	0.667002	47.9494	0.372216	0.442764	0.
122	50.1225	1276.60	23.8968	26.0072	1224.63	0.654578	0.666298	47.8880	0.371789	0.442410	0.
123	50, 1211	1276.07	23.9110	26.0141	1224.36	0.654740	0.666420	47.9051	0.371412	0.442185	0.
124	50.1198	1277.25	23.8999	26.0075	1225.34	0.653615	0.665332	47.8025	0.374400	0.443869	0.
125	50.1329	1276.41	23.9238	26.0319	1224.61	0.652575	0.664268	47.7911	0.374588	0.444202	0.
126	50.1431	1274.01	23.9397	26.0554	1222.27	0.653068	0.664746	47.8335	0.372156	0.443956	0.
127	50, 1365	1276.51	23.9163	26.0277	1224.71	0.654150	0.665863	47.8706	0.372590	0.443597	0.
129	50. 1823	1277.05	23.8933	25.9696	1226.10	0.653778	0.665427	47.6706	0.440304	0.452683	0.
130	50.1947	1277.84	23.9532	26.0119	1227.42	0.654483	0.666519	47.8216	0.379433	0.444199	О.
131	50.1876	1277.03	23.9658	26.0257	1226.71	0.654281	0.666273	47.8420	0.378699	0.444139	0.
132	50.1630	1278.38	23.9429	26.0303	1227.29	0.657044	0.667316	47.9382	0.367157	0.441546	Ο.
133	50. 1730	1277.63	23.9674	26.0590	1226.59	0.654681	0.664963	47.8157	0.366860	0.441300	0.
134	50. 1885	1279.09	23.7767	26.0812	1222.37	0.652973	0.664600	47.8228	0.375966	0.445532	0.
135	50. 1950	1278.03	23.7915	26.0904	1221.54	0.653831	0.665430	47.8810	0.375325	0.445228	0.
138	50.1907	1278.24	23.9386	26.0262	1226.83	0.654699	0.666368	47.8364	0.373326	0.442123	0.
139	50. 1945	1282.76	23.9004	25.9861	1231.10	0.656736	0.668442	47.9084	0.373353	0.441896	0.

COOLING FLOW VARIATION - Flowpath Static Pressures (psia)

	·						Vane 2				
	Inlet	Rake Pla	ne Vane	1 Exit	Blade	1 Exit	Exit	Blade	2 Exit	Exit R	ake Plane
Rdg	Outer	Inner	Outer	Inner	Outer	Inner	Inner	Outer	Inner	Outer	Inner
111	50.1028	50. 1393	30.3633	28.6943	19.9838	19.7656	12.8671	8.68646	9.10616	6.89882	9.11226
112	50, 1082	50.1415	30.3432	28.6903	19.9758	19.7478	12.8604	8.66491	9.08461	8.88405	9.10600
113	50.1092	50.1350	30.3659	28.7010	19.9771	19.7585	12.8671	8.66491	9.08731	8.89747	9.11584
114	50.1060	50.1339	30.3713	28.7078	20.0373	19.8638	12.8953	8.67748	9.08596	8.90687	9.11495
115	50.1049	50.1393	30.3726	28.7145	20.0320	19.8656	12.8927	8.67928	9.08192	8.89210	9.09615
116	50.1016	50.1328	30.3936	28.7195	20.0919	19.9504	12.9246	8.71617	9.09367	8.90517	9.13651
117	50.0984	50. 1253	30.3883	28.7168	20.0905	19.9486	12.9206	8.70360	9.08425	8.90651	9.12488
118	50.0989	50.1290	30.3901	28.7281	20.1379	20.0080	12.9439	8.74000	9.09686	8.91103	9.11911
119	50, 1064	50.1354	30.3901	28.7375	20, 1392	20.0080	12.9426	8.75616	9.09955	8.91372	9.11732
120	50.1020	50.1342	30.4149	28.7301	20.2202	20.1153	12.9755	8.75455	9.07191	8.88618	9.10499
121	50.1121	50.1369	30.4194	28.7306	20.2354	20, 1266	12.9841	8.78020	9.08049	8.91758	9.10999
122	50.0397	50.0719	30.3789	28.7072	20.2457	20.1422	12.9877	8.79409	9.09348	8.90504	9.11580
123	50.0375	50.0676	30.3749	28.7018	20.2417	20.1440	12.9903	8.79049	9.09618	8.90772	9.11848
124	50.0369	50.0638	30.3646	28.7036	20.1685	20.0516	12.9491	8.74608	9.08184	8.88804	9.10015
125	50.0734	50.0810	30.3727	28.7063	20.1658	20.0481	12.9518	8.74429	9.08588	8.90147	9.10462
126	50.0705	50.0845	30.3671	28.6468	20.1576	20.0469	12.9489	8.75033	9.08968	8.89318	9.10887
127	50.0501	50.0877	30.3644	28,6563	20.1710	20.0469	12.9475	8.75751	9.09507	8.88782	9.09724
129	50.1009	50.1289	30.7556	30.6195	20.3273	20.2172	13.0522	8.76177	9.11503	8.91712	9.15160
130	50.1020	50.1353	30.4564	28.9065	20.2230	20.1047	12,9971	8.79947	9.12984	8.94263	9.15786
131	50.1031	50.1278	30.4470	28.8796	20.2149	20.0976	12.9971	8.80127	9.13523	8.96008	9.16860
132	50.0772	50.1062	30.2623	28.4738	20.0888	19,9861	12.9119	8.76634	9.10389	8.90602	9.11947
133	50.0836	50.1180	30.2637	28.4779	20.0941	19.9968	12.9173	8.77711	9.11601	8.91810	9.12752
134	50.1063	50.1428	30.3816	28.7463	20.1868	20.0690	12.9634	8.73483	9.06521	8.88893	9.10596
135	50.1095	50.1461	30.3762	28.7274	20.1828	20.0619	12.9607	8.74561	9.07329	8.89296	9.10596
138	50.1059	50.1327	30.3666	28.7124	20. 1973	20.0710	12.9727	8.78720	9.11218	8.93706	9.15543
139	50.1091	50.1381	30.3573	28.7165	20.1946	20.0746	12.9781	8.79258	9.11756	8.93572	9.13932

	Nozz1e	1 Outer
	V	l c
Rdg	Nozzle	Shroud
111	1.23987	0.129701
112	1.24829	0.129712
113	1.24494	0.129751
114	1,23295	0.129605
115	1.23608	0.129495
116	1.24468	0.129710
117	1.24620	0.129772
118	1,24908	0.129695
119	1.24191	0.129531
120	1.23854	0.129553

Ma	1	A 1	Te

	Compressor	Discharge	Leakag
			

ORIGINAL PAGE IS

	-	H _C	Pc	T _{T,c}	Wc	P _C	T,c	W _c	P _C	T _{T,c}
Rdg	Nozzle	Shroud								
111	1.23987	0.129701	50.3924	628.278	0.873529	51.0560	582.162	0.357480	40.1549	591.699
112	1.24829	0.129712	50.4139	628.141	0.875347	51.0910	582.099	0.350984	40.1145	591.520
113	1.24494	0.129751	50.4220	628.324	0.865802	51.0131	582.194	0.358985	40.1898	591.916
114	1,23295	0.129605	50.3951	628.713	0.863216	51.0023	582.992	0.366411	40.2705	592.833
-	1.23608	0.129495	50.3629	628.965	0.861274	50.9943	582.889	0.365700	40.2517	592.508
115		0.129710	50.4391	629.285	0.858685	50.9872	584.051	0.364187	40.2608	593.476
116	1.24468	0.129772	50.4552	629.949	0.857856	50.9818	583.948	0.363754	40.2392	593.529
117	1.24620	0.129772	50.4369	630.635	0.858767	50.9877	584.731	0.364163	40.2182	594.184
118	1.24908		50.3993	630.200	0.859079	50.9957	584.707	0.364344	40.2505	594.144
119	1.24191	0.129531	50.4040	628.896	0.851857	50.9628	586.043	0.362832	40.1664	595.346
120	1.23854	0.129553	50.3749	634.860	0.845173	50.9391	586.209	0.362993	40.1911	595.461
121	1.22476	0.128272	50.3749	631.230	0.864266	51.0085	587.884	0.356790	40.1046	596.848
122	1.24613	0.129276		631.436	0.860452	50.9843	588.098	0.355320	40.0400	596.953
123	1.24265	0.129192	50.3610	632.489	0.866445	51.0144	587.236	0.366271	40.2207	596.300
124	1.24112	0.129197	50.3561		0.871743	51.0385	587.489	0.365203	40.1535	596.315
125	1.23632	0.129133	50.3534	632.809	0.876786		587.734	0.350351	40.1263	593.147
126	1.23895	0.129155	50.3559	633.130		51.0786		0.350282	40.1667	593.337
127	1.23612	0.129115	50.3639	634.548	0.875209	51.1001	588.066	0.350282	40.3144	587.119
129	1.21640	0.128597	50.3449	635.006	0.859894	51.0461	591.932	.	41.2585	597.119
130	1,21738	0.128478	50.3288	638.351	0.841296	50.9602	588.738	0.391829 0.389809	41.1644	597.113
131	1.22063	0.128427	50.3153	639.275	0.839286	50.9279	588.793		36.4167	626.859
132	1.22609	0.128922	50.3727	637.878	0.861320	51.0337	590.993	0.351741	36.4490	627.123
133	1,23216	0.128967	50.3889	638.847	0.859468	51.0310	590.946	0.351580		597.605
134	1.37571	0.132931	51.2718	630.017	0.928782	51.4276	591.365	0.354917	40.1960	
135	1.37134	0.132799	51.2315	629.560	0.927512	51.4142	591.668	0.353549	40.1315	598.031
138	1.25029	0.130475	50.4213	629.445	0.837304	50.9909	592.001	0.356036	40.2107	598.715
139	1.24842	0.130478	50.4428	632,306	0.837322	51.0231	591.932	0.356540	40.2564	598.982

Nozzle 2 Outer

		Induc	er	-	MODBLE I COLO				
Rdg	Wc	P _{c,in}	P c,out	T _{T,c}	W _c	P _C	T _{T,c}		
111	1.67888	49.:0963	40.5628	616.408	0.322828	19.8033	677.486		
112	1.68147	49.1196	40.5503	616,103	0.315733	19.7455	678.826		
	1.67900	49.1375	40.5987	616.225	0.322224	19.8288	679:158		
113	1.67680	49.1464	40.6579	617.105	0.398305	20.7090	664.455		
114		49.1411	40.6435	617.097	0.400076	20.7037	664.232		
115	1.67638	49.1492	40.6499	618.093	0.467798	21.7231	653.448		
116	1.67730		40.6212	618.085	0.466530	21.7043	653.479		
117	1.67615	49.1241	40.6212	618.714	0.525962	22.6626	645.485		
118	1.67433	49.1103		618.691	0.520566	22.6223	645.448		
119	1.67641	49.1569	40.6217	619.878	0.633612	24.6296	633.013		
120	1.66941	49.0352	40.5394	619.878	0.637982	24.6785	633.358		
121	1.67191	49.0859	40.5686		0.684488	25.6703	628.757		
122	1.67252	49.0711	40.5072	621.393	0.682668	25.6059	628.948		
123	1.66757	48.9851	40.4354	621.768		23.7155	638.212		
124	1.66890	49.1003	40.6027	620.880	0.585539	23.7115	638.953		
125	1.66612	49.0125	40.5435	621.064	0.585344	23.6549	639.361		
126	1.66790	49.0346	40.5173	621.233	0.580894	23.6670	639.578		
127	1.67143	49.0920	40.5585	621.294	0.582573	23.7057	641.900		
129	1.65412	49.0568	40.6560	622.951	0.579000	23.6560	641.847		
130	1.71627	50.3645	41.6225	621.543	0.578821	23.6479	642.009		
131	1.71089	50.2463	41.5257	621.703	0.579305		639.873		
132	1.45702	44.1710	36.7880	628.905	0.589360	23.7873			
133	1.45876	44.1979	36.8401	628.972	0.586312	23.7389	640.315		
134	1.66319	49.0658	40.5664	624.487	0.584903	23.7608	640.100		
135	1.65931	48.9833	40.5161	624.810	0.583449	23.7003	640.117		
138	1.66652	49.1108	40.6007	625.697	0.583781	23.7525	641.297		
139	1.66923	49.1860	40.6671	625.873	0.586536	23.7821	641.695		
						23.7821	6		

					$W_{41}\sqrt{T_{T,41}}/T$	T,4 \Darks h/I	, Τ. Δ1
Rdg	P _{T,4} /P _{S,42}	P _{T,4} /P _{T,42}	$\frac{N}{\sqrt{T_{41}}}$	U/C _o	lbm√°R sec psia	Btu/(Measured	(1bm °R) w/Pumping
142	5.58631	5.02745	236.887	0.579441	18.1502	O.830335E-01	O.844806E-01
143	5.59349	5.03320	237.096	0.579864	18.1416	0.830553E-01	O.845077E-01
144	5.56649	4.98279	236.790	0.579427	18.1137	O.825693E-01	O.840333E-01
145	5.56746	4.98298	236.761	0.579380	18.1150	0.825434E-01	0.840067E-01
146	5.56961	5.00373	236.409	0.577957	18.1014	O.828167E-01	O.842734E-01
147	5.57235	5.00103	236.391	0.577867	18.1057	O.827257E-01	O.841778E-01
148	5.58059	5.00238	236.258	0.577658	18.0909	O.825967E-01	0.840332E-01
149	5.57734	5.00264	236.214	0.577433	18.0949	O.825630E-01	0.839994E-01
152	5.55067	4.96512	236.124	0.577901	18.0738	O.822686E-01	0.837151E-01
153	5.55602	4.97780	236.145	0.577907	18.0599	O.824778E-01	0.839143E-01
154	5.55496	4.97426	236.213	0.578737	18.1246	0.823196E-01	0.837640E-01
155	5.57748	5.00897	236.248	0.578308	18.1264	O.827390E-01	O.841813E-01
156	5.57901	5.00435	236.192	0.577704	18.1409	0.829063E-01	O.843717E-01
157	5.57349	4.99183	236.358	0.578274	18.1366	O.827585E-01	O.842236E-01

		Clearance s x 10 ³)	n	n	$oldsymbol{\eta}_{ ext{GE}}$	$oldsymbol{\eta}_{\mathtt{TH}}$	$oldsymbol{\eta}_{ ext{THP}}$
Rdg	(Thene	3 X 10-)	$oldsymbol{\eta}_{ ext{GE}}$ $oldsymbol{\eta}_{ ext{TH}}$		Corrected	to 0.016	in. Tip
	Stg 1	Stg 2	Mea	sured	Cle	earance	
142	16.3	16,5	0.927879	0.883909	0.9281	0.8841	0.8995
143	16.3	16.6	0.927630	0.883624	0.9278	0.8838	0.8993
144	16.0	15.0	0.926703	0.884197	0.9265	0.8840	0.8997
145	16.1	15.8	0.926377	0.883964	0.9264	0.8840	0.8996
146	17.3	15.7	0.927523	0.884639	0.9280	0.8851	0.9007
147	15.7	15.7	0.926766	0.884073	0.9266	0.8839	0.8994
148	15,3	15.6	0.925179	0.882677	0.9248	0.8823	0.8976
149	15.3	15.4	0.924763	0.882164	0.9244	0.8818	0.8971
152	17.1	15.5	0.924895	0.882254	0.9253	0.8827	0.8982
153	16.7	15,6	0.926070	0.883805	0.9263	0.8840	0.8994
154	16.0	15.6	0.924588	0.882217	0.9245	0.8821	0.8976
155	16.5	15.5	0.926129	0.883670	0.9262	0.8838	0.8992
156	17.6	16,2	0.928473	0.884999	0.9292	0.8857	0.9013
157	16.7	16.5	0.927987	0.884516	0.9284	0.8849	0.9006

C T T C N	ORIGINAL
VIII AUG	PAGE 16

	Inlet			Vane 1	Loading , ψ P			TQ/P _{T,4}	Reaction, R_{x}			
Rdg.	P _T	T _T	W	W	T _T	Meas.	With Pumping	ft. in ² With Pumping	Hub	Tip	Exit Swirl T, degrees	
142	53.1707	1275.18	25.3800	27.5772	1224.64	0.658293	0.669766	48.0896	0.411907	0.452670	0.	
143	53.1727	1273.57	25.3888	27.5808	1223.25	0.657308	0.668802	48.0398	0.412756	0.452488	o.	
144	45.2455	1276.62	21.5684	23.3954	1227.17	0.655151	0.666767	47.7583	0.395172	0.450257	Ö.	
145	45.2459	1277.67	21.5579	23.3890	1228.04	0.655107	0.666720	47.7525	0.395611	0.450816	0.	
146	40.1803	1279.78	19.1013	20.7469	1228.98	0.659234	0.670830	47.9395	0.396713	0.450738	0.	
147	40.1789	1279.04	19.1074	20.7579	1228.18	0.658608	0.670169	47.8999	0.397044	0.450992	0.	
148	35.1905	1279.11	16.7372	18.1587	1229.15	0.658326	0.669776	47.8057	0.393524	0.451652	0.	
149	35.1900	1280.01	16.7323	18.1570	1229.88	0.658301	0.669754	47.8058	0.393636	0.451450	0.	
152	32.6719	1279.33	15.5315	16.8371	1230.02	0.656452	0.667994	47.6064	0.394207	0.450737	O.	
153	32.6735	1279.66	15.5194	16.8225	1230.39	0.658006	0.669466	47.6789	0.393473	0.449293	0.	
154	37.6471	1280.75	17.9558	19.4401	1231.97	0.656368	0.667885	47.7503	0.391734	0.448991	Ö.	
155	37.6474	1279.99	17.9626	19.4479	1231.25	0.659511	0.671007	47.9856	0.391721	0.449188	0.	
156	50.1520	1279.27	23.8882	25.9542	1228.79	0.661163	0.672850	48.1443	0.393350	0.446864	0.	
157	50.1510	1277.73	23.9004	25.9602	1227.59	0.659058	0.670725	48.0146	0.392900	0.446830	o.	

Flowpath Static Pressures (psia)

	Inlet Rake Plane		Vane	1 Exit	Blade	1 Exit	Vane 2 Exit			Exit Rake Plane	
Rdg	Outer	Inner	Outer	Inner	Outer	Inner	Inner	Outer	Inner	Outer	Inner
142	53.0872	53.1248	32.4811	31.5485	21.4126	21.3306	13.7317	9.24475	9.58092	9.37084	9.66524
143	53.0915	53.1216	32.4784	31.5714	21.4140	21.3288	13.7263	9.20884	9.55130	9.34802	9.66434
144	45.1479	45.1695	27.5354	26.3981	18.1154	18.0797	11.7089	7.97264	8.27299	8.06418	8.19219
145	45.1479	45.1652	27.5461	26.4048	18.1181	18.0797	11.7089	7.99239	8.27568	8.06149	8.19219
146	40.0733	40.1250	24.4776	23.4925	16.0937	16.0700	10.4107	7.05078	7.31750	7.11145	7.31696
147	40.0841	40.1250	24.4776	23.4965	16.0870	16.0664	10.4080	7.05437	7.31750	7.10474	7.31606
148	35.1840	35.1840	21.4577	20.5303	14.0706	14.0817	9.13618	6.17464	6.44366	6.22123	6.39052
149	35.1840	35.1840	21.4523	20.5317	14.0706	14.0817	9.13618	6.17284	6.44366	6.22123	6.39769
152	32.6011	32.6022	19.9268	19.0663	13.0746	13.0607	8.51146	5.80063	6.00724	5.82632	5.94591
153	32.5882	32.6032	19.8960	19.0528	13.0692	13.0607	8.51685	5.77727	6.03958	5.81557	5.94591
154	37.6061	37.6104	22.9280	21.9363	15.0852	15.0718	9.79461	6.63812	6.88690	6.70892	6.84550
155	37.5985	37.6104	22.9280	21.9336	15.0785	15.0682	9.78922	6.56806	6.85053	6.65250	6.84729
156	50.0688	50.0957	30.4757	29.2386	20.1554	20.0635	12.9978	8.79390	9.10093	8.86948	9.10933
157	50.0699	50.0903	30.4784	29.2332	20.1540	20.0688	12.9991	8.82084	9.12113	8.88693	9.10933

Nozzle 1 Inner Compressor Discharge Leakage

		Nozzle 1 Out	er		No	zzle 1 Inne	er	Compressor Discharge Leakage		
Rdg	Nozzle	C Shroud	P _c	T,c	W _C	P _c	T _{T,c}	W _C	Pc	T _{T,c}
. 142	1.31626	0.137164	53.4073	635.918	0.880930	54.0304	592.164	0.613877	43.5283	618.505
143	1.31341	0.137193	53.4100	635.418	0.878543	54.0304	592.118	0.621480	43.5767	613.951
144	1.09285	0.114958	45.3308	639.500	0.734167	45.9545	593.608	0.394268	36.2175	627.025
145	1.09591	0.114943	45.3308	639.703	0.735166	45.9545	593.755	0.396330	36.2175	627.245
146	0.996020	0.103175	40.4063	630.795	0.649569	40.8044	594.329	0.354710	32.3810	629.552
147	1.00048	0.103209	40.4171	630.887	0.649984	40.8125	594.415	0.353865	32.3272	629.492
148	0.844161	0.897459E-01	35.2943	633.953	0.577328	35.8111	594.818	0.307070	28.3230	630.843
149	0.844557	O.897210E-01	35.2916	634.297	0.580147	35.8138	594.865	0.313611	28.3203	632.387
152	0.775245	0.826926E-01	32.7357	639.725	0.530401	33.1719	593.064	0.286859	26.3766	633.144
153	0.773492	O.825738E-01	32.7142	640.176	0.529535	33.1719	592.987	0.280450	26.2796	631.575
154	0.899027	0.956142E-01	37.7083	636.098	0.585281	38.1550	592.467	0.325214	30.2434	628.767
155	0.900841	O.957220E-01	37.7352	636,098	0.584505	38.1550	592.498	0.331197	30.2299	630.089
156	1.22822	0.127831	50.3859	642.925	0.837714	51.0253	593.072	0.440809	40.2425	623.807
157	1.22488	0.127752	50.3725	644.029	0.834972	51.0253	593.258	0.440655	40.2344	624.151

		Induc	er		Nozzle 2 Outer				
Rdg	Wc	P _{c,in}	P _{c,out}	T _{T,c}	Wc	P _c	T,c		
142	1.70630	51.9424	43.6234	625.523	0.615877	25.0970	636.969		
143	1.70817	52.0176	43.7112	625.077	0.615877	25,0715	636.806		
144	1.49203	44.2176	36.5781	629.799	0.520176	21.3692	644.009		
145	1.49197	44.2194	36.5638	630.078	0.518955	21.3840	644.361		
146	1.32163	39.4656	32.6727	633.094	0.449982	18.8799	650.791		
147	1.31842	39.4082	32.6279	633,110	0.445128	18.8100	651.107		
148	1.13949	34.4374	28.5959	635.249	0.396672	16.6661	657.033		
149	1.13970	34.4374	28.5959	635.378	0.394654	16.6352	657.280		
152	1.06729	32.1487	26.6523	635.728	0.365067	15.4667	661.469		
153	1.05975	32.0266	26.5284	635.984	0.366736	15.4573	661.594		
154	1.22953	36.8579	30.5172	632.986	0.423590	17.8049	655.267		
155	1.22683	36.7987	30.4939	633.107	0.420486	17.7122	655.358		
156	1.66643	49.1838	40.6469	626.444	0.582331	23.7346	640.572		
157	1.66454	49.1372	40.6002	626.848	0.582594	23.7722	640.446		

OF POOR QUALITY

CLEARANCE VARIATION $W_{41}\sqrt{T_{T,41}}/P_{T,4}$ $\Delta h/T_{\Upsilon,41}$ Btu/(1bm °R) $P_{T,4}/P_{T,42} \text{ rpm}/\sqrt{^{\circ}R}$ Rdg sec psia Measured w/Pumping 5.57872 192 5.00208 237.434 0.580749 18.2038 0.823673E-01 0.839516E-01 193 5.58020 5.00336 237.210 0.580193 18.2034 O.824243E-01 0.840083E-01 194 5.58834 5.00879 237.444 0.580612 18.1873 0.826492E-01 0.842340E-01 195 5.58643 5.00922 237.130 0.579880 18.1893 0.826542E-01 0.842389E-01 196 5.57600 4.99343 237.700 0.581520 18.2315 0.820825E-01 O.836766E-O1 197 18.2276 5.57617 5.00239 237.488 0.581028 0.821368E-01 0.837303E-01 200 5.58540 5.01365 237.190 0.580087 18.2046 0.824570E-01 0.840450E-01 201 5.58683 5.01082 237.244 0.580194 18.2064 0.824142E-01 O.840020E-01 202 18.2063 5.58344 5.00751 237.313 0.580339 0.825304E-01 0.841177E-01 203 18.2026 5.58026 5.00799 237.202 0.580204 O.825627E-01 0.841497E-01

	Average	Clearand	e		•	•
	(inches	$\times 10^3$)	$oldsymbol{\eta}_{ ext{GE}}$	$oldsymbol{\eta}_{ ext{TH}}$	$\eta_{_{\mathrm{THP}}}$	
Rdg.	Stg 1	Stg 2	Meas	sured	Calculated	
192	15.9	16.6	0.922878	0.883213	0.900202	
193	16.0	16,6	0.923362	0.883634	0.900616	
194	10.9	16.0	0.925435	0.885685	0.902668	
195	10.9	16.0	0.925392	0.885660	0.902640	
196	22.3	16.2	0.920479	0.880798	0.897904	
197	22.3	16,3	0.920234	0.880496	0.897578	
200	16.8	21.0	0.922788	0.883071	0.900077	
201	16.6	20,8	0.922578	0.882890	0.899900	•
202	16.1	11,2	0.924200	0.884443	0.901454	
203	15.4	11,3	0.924486	0.884804	0.901812	

Original page 18

	Inlet			Vane 1	Exit	Loading ψ_P		$\frac{\text{TQ/P}_{\text{T,4}}}{\text{ft. in}^2}$	Reac	tion , R	Exit Swirl
Rdg	$\mathbf{P}_{\mathbf{T}}$	$\mathbf{T_{T}}$	W	W	T _T	Meas.	With Pumping	With Pumping	Hub	Tip	Γ, degrees
192	50.2276	1273.81	23.9413	26.2101	1216.94	0.650007	0.662510	47.8190	0.384711	0.463883	0.
193	50.2272	1276.02	23.9192	26.1885	1218.87	0.651685	0.664209	47.8954	0.385056	0.464140	Q.
194	50.2218	1273.57	23.9183	26.1889	1216.43	0.652178	0.664684	47.9346	0.390698	0.474176	0.
195	50.2209	1276.95	23.8876	26.1590	1219.44	0.653948	0.666486	48.0062	0.390554	0.473908	0.
196	50.2147	1273.64	23.9651	26.2471	1216.60	0.646311	0.658863	47.6818	0.377933	0.440906	0.
197	50.2087	1275.96	23.9339	26.2162	1218.65	0.647896	0.660465	47.7447	0.377907	0.441939	0.
200	50.2156	1276.88	23.8982	26.1805	1219.23	0.652056	0.664613	47.9238	0.386560	0.465142	0.
201	50.2123	1276.34	23.9007	26.1878	1218.63	0.651419	0.663970	47.8931	0.387129	0.465472	0.
202	50.2113	1274.65	23.9314	26.1986	1217.56	0.651963	0.664502	47.9449	0.383086	0.455975	0.
203	50.2077	1276.44	23.9079	26.1739	1219.18	0.652826	0.665375	47.9756	0.382877	0.456021	0.

CLEARANCE VARIATION

Flowpath Static Pressures (psia)

	Inlet Ra	ke Plane	Vane	1 Exit	Blade	1 Exit	Yane 2 <u>Exit</u>	Blade	2 Exit	Exit Ra	ke Plane
Rđg	Outer	Inner	Outer	Inner	Outer	Inner	Inner	Outer	Inner	Outer	Inner
192	50.1465	50.1765	30.9202	29.0312	20.2181	20.1324	13.0099	8.75578	9.09288	8.89626	9.11060
193	50.1422	50, 1776	30.9256	29.0393	20.2221	20.1342	12.9951	8.73423	9.08211	8.89492	9.10702
194	50.1394	50.1684	31.1143	29.1596	20.0941	20.1008	12.9713	8.73111	9.07719	8.88061	9.09316
195	50.1394	50.1684	31.0996	29.1583	20.0954	20.1097	12.9700	8.73111	9.07854	8.88195	9.09764
196	50.1281	50.1592	30.3949	28.8746	20.3837	20.1673	13.0431	8.73161	9.08442	8.90392	9.10708
197	50.1227	50.1560	30.4189	28.8732	20.3837	20.1691	13.0445	8.72263	9.08173	8.89318	9.11513
200	50.1331	50.1675	30.9013	29.0512	20.1671	20.1095	12.9452	8.75429	9.07119	8.87462	9.10641
201	50.1321	50.1643	30.9027	29.0620	20.1590	20.1059	12.9492	8.75788	9.07523	8.87328	9.10194
202	50.1308	50.1641	30.7389	29.0061	20.2841	20.1614	13.0494	8.69160	9.08526	8.88192	9.10387
203	50.1308	50.1609	30.7389	28.9980	20.2908	20.1632	13.0507	8.69160	9.08526	8.88461	9.11013

CLEARANCE VARIATION

	Coolant	Circuits	Nozzle 1 Ou	iter		Noza	zle 1 Inner		Compresso	Compressor Discharge Leakage			
	Rdg	Nozzle	c Shroud	Pc	T _{T,c}	Wc	P _c	T _{T,c}	Wc	P _C	T _{T,c}		
164	192 193 194 195 196 197 200 201 202	1.36955 1.36888 1.37123 1.36984 1.37705 1.37817 1.37893 1.38279 1.36899	0.129948 0.129921 0.130020 0.130078 0.130201 0.130133 0.130226 0.130272 0.130232	50.3818 50.3738 50.3689 50.3769 50.3478 50.3505 50.4099 50.4206 50.3823	633.793 633.130 630.292 630.109 635.782 635.601 632.031 631.825 631.436	0.899271 0.900404 0.899431 0.901564 0.904996 0.904152 0.903391 0.904329 0.897429 0.897429	51.0293 51.0374 51.0163 51.0190 51.0330 51.0437 51.0574 51.0493 51.0136 51.0271	531.445 531.067 530.534 530.452 530.313 530.264 530.009 529.623 529.623	0.377233 0.378657 0.376587 0.377610 0.382425 0.382523 0.383071 0.383791 0.380434 0.380612	40.2492 40.2815 40.2335 40.2685 40.2986 40.3147 40.3284 40.3176 40.2604 40.2711	543.874 543.906 543.040 542.971 543.249 543.252 542.496 542.886 542.496 542.630		

		Induce	r		1	er		
Rdg	Wc	P _{c,in}	P c,out	T _{T,c}	Wc	P _c	T,c	ORIGINAL OF POOR
192	1.76099	49.0077	40.6105	570.681	0.573907	23.5384	635.529	0 8
193	1.76356	49.0686	40,6356	570.353	0.576378	23.5707	635.126	Z F
194	1.75911	48.9759	40.5931	569.697	0.583221	23.6517	630.042	
195	1.76181	49.0118	40.6182	569.635	0.585024	23.6786	629.916	~ ~ ~
196	1.77036	49.0947	40.6491	569.249	0.579494	23.6643	637.077	Page is
197	1.77124	49.1287	40.6671	569.298	0.578981	23.6925	638.206	
200	1.76422	49.0349	40.6736	569.522	0.580433	23.6095	635.103	2000 6002
201	1.76359	49.0420	40.6790	569.178	0.579214	23.6068	634.894	« 🕨
202	1.76502	49.0171	40.6074	569.041	0.576775	23.6168	633.272	
202	1.76443	49.0368	40.6271	569.137	0.574530	23.6181	633.456	

DISTRIBUTION

MS 86-2 MS 86-6

MS 501-3 MS 302-2

```
NASA Headquarters
600 Independence Avenue, SW
Washington, DC 20546
Attention: RTP-6/R.S. Colladay
           RTP-6/C.C. Rosen
           RTP-6/J. Facey (2 copies)
           RTM-6/L. Harris
NASA-Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135
Attention: D.L. Nored
                                     MS 301-2
                                     MS 301-4
           C.C. Ciepluch
                                               (18 copies)
           J.W. Schaefer
                                    MS 301-4
                                    MS 301-4
           P.G. Batterton
           G.K. Sievers
                                     MS 301-2
                                     MS 3-5
           M.A. Beheim
           M.J. Hartmann
                                    MS 3-7
                                    MS 86-5
           R.A. Rudey
           W.C. Strack
                                    MS 501-10
                                     MS 77-2
           T.P. Moffitt
                                    MS 86-6
           R.E. Jones
           L.J. Kiraly
                                    MS 23-2
           D.C. Mikkelson
                                     MS 86-1
                                    MS 500-305
           A.
                Long
                                    MS 54-3
           J.F. Groeneweg
           W.M. Braithwaite
                                    MS 500-208
                                     MS 500-211
           J.C. Williams
           R.L. Davies
                                     MS 106-1
                                     MS 49-6
           R.H. Johns
           L.J. Kaszubinski
                                    MS 86-2
           J.F. Sellers
                                     MS 100-1
                                     MS 100-1
           J.R. Mihaloew
                                     MS 5-9
           L. Reid
```

NASA Ames Research Center Moffett Field, CA 94035 Attention: 202-7/M.H. Waters

D.W. Drier

R.W. Niedzwiecki AFSC Liaison Office

ARMY R&T Propulsion Lab

p.

ķ

NASA Langley Research Center Langley Field, VA 23365

Attention: R. Leonard
D. Maiden
L.J. Williams

NASA Dryden Flight Research Center

P.O. Box 273

Edwards, CA 93523

Attention: J.A. Albers

Department of Defense Washington, DC 20301

Attention: R. Standahar 3D1089 Pentagon

Wright-Patterson Air Force Base

Dayton, OH 45433

Attention: APL Chief Scientist

E.E. Abell H.I. Bush

E.E. Bailey (NASA Liaison)

R.P. Carmichael R. Ellis W.H. Austin, Jr.

Eustis Directorate U.S. Army Air Mobility

R&D Laboratory

Fort Eustis, VA 23604

Attention: J. Lane, SAVDL-EU-Tapp

NAVY Department

Naval Air Systems Command Washington, DC 20361

Attention: W. Koven AIR-03E

J.L. Byers AIR-53602 E.A. Lichtman AIR-330E G. Derderian AIR-5362C

NAVAL Air Propulsion Test Center

Trenton, NJ 08628
Attention: J.J. Curry
A.A. Martino

U.S. Naval Air Test Center

Code SY-53

Patuxent River, MD 20670 Attention: E.A. Lynch

USAVRAD Command P.O. Box 209

St. Louis, MO 63166

Attention: Robert M. Titus

Detroit Diesel Allison Div. G.M.C.

333 West First St. Dayton, OH 45202

Attention: F.H. Walters

AFWAL/PS ASD/YZE AFWAL/POT AFWAL/NASA ASD/XRHI ASD/YZN ASD/ENF

Department of Transportation NASA/DOT Joint Office of Noise Abatement Washington, D.C. 20590 73 8

Attention: C. Foster

Federal Aviation Administration Noise Abatement Division Washington, DC 20590

Attention: E. Sellman AEE-120

Rohr Corporation P.O. Box 1516

Chuyla Vista, CA 92012 Attention: James C. Fuscoe

TRW Equipment

TRW Inc.

23555 Euclid Ave.

Cleveland, Ohio 44117 Attention: I. Toth

Federal Aviation Administration 12 New England Executive Park

Burlington, MA 18083

Attention: Jack A. Sain, ANE-200

Curtiss Wright Corporation Woodridge, NJ 07075
Attention: S. Lombardo S. Moskowitz

AVCO/Lycoming 550 S. Main Street Stratford, CN 06497 Attention: H. Moellmann

Williams Research Co. 2280 W. Maple Road Walled Lake, MI 48088 Attention: R. VanNimwegen R. Horn

Teledyne CAE, Turbine Engines 1330 Laskey Road Toledo, OH 43612 Attention: R.H. Gaylord

Pratt & Whitney Aircraft Group/UTC Government Products Division P.O. Box 2691 West Palm Beach, FL 33402 Attention: B.A. Jones

Boeing Commercial Airplane Co.
P.O. Box 3707
Seattle, WA 98124
Attention: P.E. Johnson MS 9H-46
D.C. Nordstrom MS-73-01

Brunswick Corporation 2000 Brunswick Lane Deland, FL 32720 Attention: A. Erickson

Delta Airlines, Inc. Hartsfield-Atlanta International Airport Atlanta, GA 30320 Attention: C.C. Davis

FluiDyne Engineering Corp. 5900 Olson Memorial Highway Minneapolis, MN 55422 Attention: J.S. Holdhusen

Massachusetts Inst. of Technology Dept. of Astronautics & Aeronautics Cambridge, MA 02139 Attention: Mames Mar Detroit Diesel Allison Div. G.M.C. P.O. Box 894 Indianapolis, IN 46202 Attention: W.L. McIntire

The Garrett Corporation AIResearch Manufacturing Co. Torrance, CA 90509 Attention: F.E. Faulkner

The Garrett Corporation AIResearch Manufacturing Co. 402 S. 36 Street Phoenix, AZ 85034 Attention: Library

General Electric Co./AEG 1000 Western Avenue Lynn, MA 01910 Attention: R.E. Nietzel

Pratt & Whitney Aircraft Group/UTC Commercial Products Division
East Hartford, CT 06108
Attention: W. Gardner (3 copies)
I. Mendelson

Douglas Aircraft Co.
McDonnell Douglas Corp.
3855 Lakewood Boulevard
Long Beach, CA 90846
Attention: R.T. Kawai Code 36-41
M. Klotzsche 36-41

AIResearch Manufacturing Co. 111 South 34th Street P.O. Box 5217 Phoenix, AZ 85010 Attention: C.E. Corrigan (930120/503-4F)

American Airlines Maint. & Engrg. Center Tulsa, OK 74151 Attention: W.R. Neeley

Lockheed California Co.
Burbank, CA 91502
Attention: J.F. Stroud, Dept. 75-42
R. Tullis, Dept. 74-21

Grumman Aerospace Corp. South Oyster Bay Road Bethpage, NY 11714 Attention: C. Hoeltzer á.

THIS DOCUMENT ADDITIONAL REPRODUCTION OF THIS DOCUMENT.