Частичный и линейный порядок, отношение строгого порядка. Топологическая сортировка. Міп и тах элементы

Руслан Назирович Мокаев

Математико-механический факультет, Санкт-Петербургский государственный университет

Санкт-Петербург, 19.09.2023

Содержание лекции

- Бинарные отношения, свойства бинарных отношений
- Отношения порядка
- Топологическая сортировка (определение и пример)
- Минимальный, наименьший, максимальный, наибольший элементы в множестве
- ▶ Лемма о существовании минимального элемента в множестве

Определение: Бинарным (двуместным) отношением R на непустых и конечных множествах A и B называют $R \subseteq A \times B$. Замечание: Одноместные (унарные) и многоместные отношения.

Определение: Бинарным (двуместным) отношением R на непустых и конечных множествах A и B называют $R \subseteq A \times B$.

Замечание: Одноместные (унарные) и многоместные отношения.

Определение: Отношение \mathbb{R}^{-1} называют обратным к \mathbb{R} , если

$$\forall (a,b) \in R (b,a) \in R^{-1}$$

Определение: Бинарным (двуместным) отношением R на непустых и конечных множествах A и B называют $R \subseteq A \times B$. Замечание: Одноместные (унарные) и многоместные отношения.

Определение: Отношение ${\cal R}^{-1}$ называют обратным к ${\cal R}$, если

$$\forall (a,b) \in R (b,a) \in R^{-1}$$

Определение: Бинарное отношение R на множествах A и B называют отображением, если $\forall~a\in A~\exists!b\in B:~(a,b)\in R.$

Определение: Бинарным (двуместным) отношением R на непустых и конечных множествах A и B называют $R \subseteq A \times B$. Замечание: Одноместные (унарные) и многоместные отношения.

Определение: Отношение ${\cal R}^{-1}$ называют обратным к ${\cal R}$, если

$$\forall (a,b) \in R (b,a) \in R^{-1}$$

Определение: Бинарное отношение R на множествах A и B называют отображением, если $\forall~a\in A~\exists!b\in B:~(a,b)\in R.$

Примеры: Отношение >, \in , достижимость в шахматах

Определение: Бинарным (двуместным) отношением R на непустых и конечных множествах A и B называют $R \subseteq A \times B$. Замечание: Одноместные (унарные) и многоместные отношения.

Определение: Отношение ${\cal R}^{-1}$ называют обратным к ${\cal R}$, если

$$\forall (a,b) \in R (b,a) \in R^{-1}$$

Определение: Бинарное отношение R на множествах A и B называют отображением, если $\forall~a\in A~\exists!b\in B:~(a,b)\in R.$

Примеры: Отношение >, \in , достижимость в шахматах

Определение: $W\subseteq A\times B$ — композиция (произведение) отношений U на $A\times C$ и V на $C\times B$, если $W=\{(a,b)\mid \exists c\in C: (a,c)\in U, (c,b)\in V\}$

Определение: Бинарным (двуместным) отношением R на непустых и конечных множествах A и B называют $R\subseteq A\times B$.

Замечание: Одноместные (унарные) и многоместные отношения.

Определение: Отношение \mathbb{R}^{-1} называют обратным к \mathbb{R} , если

$$\forall (a,b) \in R (b,a) \in R^{-1}$$

Определение: Бинарное отношение R на множествах A и B называют отображением, если $\forall~a\in A~\exists!b\in B:~(a,b)\in R.$

Примеры: Отношение >, \in , достижимость в шахматах

Определение: $W\subseteq A\times B$ — композиция (произведение) отношений U на $A\times C$ и V на $C\times B$, если $W=\{(a,b)\mid \exists c\in C: (a,c)\in U, (c,b)\in V\}$

Задача 1: Докажите, что $(V^{-1})^{-1} = V$.

Задача 2: Докажите, что $(V_1V_2)V_3=V_1(V_2V_3)$.

Типы бинарных отношений

Определение: R — сюръективно, если $\forall b \in B \; \exists a \in A : (a,b) \in R$.

R — инъективно, если $(a_1,b) \in R, (a_2,b) \in R \Rightarrow a_1 = a_2.$ R — биективно, если оно сюръективно и инъективно.

Типы бинарных отношений

Определение: R — сюръективно, если $\forall b \in B \ \exists a \in A : (a,b) \in R$.

R — инъективно, если $(a_1,b) \in R, (a_2,b) \in R \Rightarrow a_1 = a_2.$

 $R-{\sf биективно}$, если оно сюръективно и инъективно.

Типы бинарных отношений.

Определение: Бинарное отношение R над множеством A называется рефлексивным, если $\forall a \in A \ (a,a) \in R$. Например, \geq – да, > – нет. Бинарное отношение R над множеством A называется антирефлексивным, если $\forall a \in A \ (a,a) \notin R$.

Определение: Бинарное отношение R над множеством A называется рефлексивным, если $\forall a \in A \ (a,a) \in R$. Например, \geq – да, > – нет. Бинарное отношение R над множеством A называется антирефлексивным, если $\forall a \in A \ (a,a) \notin R$.

Определение: Бинарное отношение R над множеством A называется **транзитивным**, если $\forall a,b,c\in A\ (a,b)\in R, (b,c)\in R\Rightarrow (a,c)\in R.\ (>,<)$ Бинарное отношение R над множеством A называется антитранзитивным, если $\forall a,b,c\in A\ (a,b)\in R, (b,c)\in R\Rightarrow (a,c)\notin R.$

Определение: Бинарное отношение R над множеством A называется рефлексивным, если $\forall a \in A \ (a,a) \in R$. Например, \geq – да, > – нет. Бинарное отношение R над множеством A называется антирефлексивным, если $\forall a \in A \ (a,a) \notin R$.

Определение: Бинарное отношение R над множеством A называется **транзитивным**, если $\forall a,b,c\in A\ (a,b)\in R, (b,c)\in R\Rightarrow (a,c)\in R.\ (>,<)$ Бинарное отношение R над множеством A называется антитранзитивным, если $\forall a,b,c\in A\ (a,b)\in R, (b,c)\in R\Rightarrow (a,c)\notin R.$

Определение: Бинарное отношение R над множеством A называется симметричным, если $\forall a,b \in A \ (a,b) \in R \Rightarrow (b,a) \in R$. (=, родство) Бинарное отношение R над множеством A называется антисимметричным, если $\forall a,b \in A \ (a,b) \in R, (b,a) \in R \Rightarrow a=b$. (?) Бинарное отношение R над множеством A называется асимметричным, если $\forall a,b \in A \ (a,b) \in R \Rightarrow (b,a) \notin R$.

Определение: Бинарное отношение R над множеством A называется рефлексивным, если $\forall a \in A \ (a,a) \in R$. Например, \geq – да, > – нет. Бинарное отношение R над множеством A называется антирефлексивным, если $\forall a \in A \ (a,a) \notin R$.

Определение: Бинарное отношение R над множеством A называется **транзитивным**, если $\forall a,b,c\in A\ (a,b)\in R, (b,c)\in R\Rightarrow (a,c)\in R.\ (>,<)$ Бинарное отношение R над множеством A называется антитранзитивным, если $\forall a,b,c\in A\ (a,b)\in R, (b,c)\in R\Rightarrow (a,c)\notin R.$

Определение: Бинарное отношение R над множеством A называется симметричным, если $\forall a,b \in A \ (a,b) \in R \Rightarrow (b,a) \in R.$ (=, родство) Бинарное отношение R над множеством A называется антисимметричным, если $\forall a,b \in A \ (a,b) \in R, (b,a) \in R \Rightarrow a=b.$ (?) Бинарное отношение R над множеством A называется асимметричным, если $\forall a,b \in A \ (a,b) \in R \Rightarrow (b,a) \notin R.$

Определение: Бинарное отношение R над множеством A называется эквивалентностью, если оно рефлексивно, симметрично и транзитивно. $x \in A, E_x = \{y \in A \mid y \sim x\}$ — класс эквивалентности отношения R.

Определение (Частичный порядок)). Бинарное отношение R над множеством A называется частичным порядком на A (или говорят, что A частично упорядочено R), если R:

- рефлексивно
- транзитивно
- антисимметрично

Определение (Частичный порядок)). Бинарное отношение R над множеством A называется частичным порядком на A (или говорят, что A частично упорядочено R), если R:

- рефлексивно
- транзитивно
- антисимметрично

Определение (Строгий частичный порядок)). Бинарное отношение R над множеством A называется **строгим частичным порядком** на A (или говорят, что A строго частично упорядочено R), если R:

- транзитивно
- асимметрично

Определение (Частичный порядок)). Бинарное отношение R над множеством A называется частичным порядком на A (или говорят, что A частично упорядочено R), если R:

- рефлексивно
- транзитивно
- антисимметрично

Определение (Строгий частичный порядок)). Бинарное отношение R над множеством A называется **строгим частичным порядком** на A (или говорят, что A строго частично упорядочено R), если R:

- транзитивно
- асимметрично

Определение ((Строгий) линейный порядок)). Бинарное отношение R над множеством A называется (строгим) линейным порядком на A (или говорят, что A (строго) линейно упорядочено R), если R является (строгим) частичным порядком на A и \forall $a,b\in A:a\neq b$ верно, что либо $(a,b)\in R$, либо $(b,a)\in R$.

Определение (Частичный порядок)). Бинарное отношение R над множеством A называется частичным порядком на A (или говорят, что A частично упорядочено R), если R:

- рефлексивно
- транзитивно
- антисимметрично

Определение (Строгий частичный порядок)). Бинарное отношение R над множеством A называется **строгим частичным порядком** на A (или говорят, что A строго частично упорядочено R), если R:

- транзитивно
- асимметрично

Определение ((Строгий) линейный порядок)). Бинарное отношение R над множеством A называется (строгим) линейным порядком на A (или говорят, что A (строго) линейно упорядочено R), если R является (строгим) частичным порядком на A и \forall $a,b \in A: a \neq b$ верно, что либо $(a,b) \in R$, либо $(b,a) \in R$.

Примеры. ⊆ – частичный, но не линейный порядок, ≤ – линейный порядок на \mathbb{N} , < – строгий линейный порядок на \mathbb{N} .

Топологическая сортировка. Min и max элементы

Определение: Топологической сортировкой множества A, (строго) частично упорядоченного отношением R, называется такой (строгий) линейный порядок Q на A, что $(a,b) \in R \Rightarrow (a,b) \in Q$.

Топологическая сортировка. Min и max элементы

Определение: Топологической сортировкой множества A, (строго) частично упорядоченного отношением R, называется такой (строгий) линейный порядок Q на A, что $(a,b) \in R \Rightarrow (a,b) \in Q$.

Определение: A – множество, R – (строгий) частичный порядок на A

- $m m \in A$ минимальный элемент, если $otan x \in A : x
 eq m$, такой что $(x,m) \in R$
- $m{m}_0\in A$ наименьший элемент, если $orall\ x\in A:x
 eq m_0$, верно что $(m_0,x)\in R$
- $igwedge M\in A$ максимальный элемент, если $otan x\in A: x
 eq M$, такой что $(M,x)\in R$
- $lackbox{$lackbox{$\cal M$}}_0\in A$ наибольший элемент, если $orall\ x\in A: x
 eq M_0$, верно что $(x,M_0)\in R$

Топологическая сортировка. Min и max элементы

Определение: Топологической сортировкой множества A, (строго) частично упорядоченного отношением R, называется такой (строгий) линейный порядок Q на A, что $(a,b) \in R \Rightarrow (a,b) \in Q$.

Определение: A – множество, R – (строгий) частичный порядок на A

- $\blacktriangleright m \in A$ минимальный элемент, если $\nexists \ x \in A : x \neq m$, такой что $(x,m) \in R$
- $m{m}_0\in A$ наименьший элемент, если $orall\ x\in A:x
 eq m_0$, верно что $(m_0,x)\in R$
- $igwedge M\in A$ максимальный элемент, если $otan x\in A: x
 eq M$, такой что $(M,x)\in R$
- $lackbox{$lackbox{$\cal M$}}_0\in A$ наибольший элемент, если $orall\ x\in A: x
 eq M_0$, верно что $(x,M_0)\in R$

Замечание. В ЧУМ-е минимальных элементов м.б. несколько, но наименьших не более одного (аналогично с максимальными и наибольшими). Замечание. В ЛУМ-е минимальный элемент всего один, и он также является наименьшим (аналогично с максимальным и наибольшим).

Частичный порядок на множестве $A = \{1, 2, 3, 4\}$

Частичный порядок на множестве $A=\{1,2,3,4\}$

1,2 — минимальные, но не наименьшие; 4 — максимальный и наибольший.

Частичный порядок на множестве $A = \{1, 2, 3, 4\}$

1,2 — минимальные, но не наименьшие; 4 — максимальный и наибольший.

Построим топологическую сортировку на A:

Частичный порядок на множестве $A = \{1, 2, 3, 4\}$

1,2 — минимальные, но не наименьшие; 4 — максимальный и наибольший.

Построим топологическую сортировку на A:

Лемма: Во всяком конечном частично упорядоченном непустом множестве X существует минимальный элемент.

Лемма: Во всяком конечном частично упорядоченном непустом множестве X существует минимальный элемент.

Доказательство.

Воспользуемся методом математической индукции (по |X|).

База индукции: $X = \{x\}$. Минимальный элемент существует и равен x. Переход индукции: пусть $|X| = n+1, n \geq 1$ и известно, что в любом

множестве мощности n существует минимальный элемент. Тогда выберем какой-то $x \in X$ и рассмотрим $X' \coloneqq X \setminus \{x\}$.

По предположению индукции в X' есть минимальный элемент, обозначим его x_0 . Если $(x,x_0)\in R$, то x — минимальный элемент X, так как $\forall\;x'\in X\;\;(x',x)\notin R$ (в противном случае $(x',x_0)\in R$, из чего следует, что x_0 — не минимальный элемент X'). Иначе x_0 остаётся минимальным элементом.

Лемма: Во всяком конечном частично упорядоченном непустом множестве X существует минимальный элемент.

Доказательство.

Воспользуемся методом математической индукции (по |X|).

База индукции: $X=\{x\}$. Минимальный элемент существует и равен x. Переход индукции: пусть $|X|=n+1, n\geq 1$ и известно, что в любом множестве мощности n существует минимальный элемент. Тогда выберем какой-то $x\in X$ и рассмотрим $X'\coloneqq X\backslash\{x\}$.

По предположению индукции в X' есть минимальный элемент, обозначим его x_0 . Если $(x,x_0)\in R$, то x — минимальный элемент X, так как $\forall\;x'\in X\;\;(x',x)\notin R$ (в противном случае $(x',x_0)\in R$, из чего следует, что x_0 — не минимальный элемент X'). Иначе x_0 остаётся минимальным элементом.

Замечание: Для максимального элемента существует аналогичная лемма и её доказательство.

Лемма: Во всяком конечном частично упорядоченном непустом множестве X существует минимальный элемент.

Доказательство.

Воспользуемся методом математической индукции (по |X|).

База индукции: $X=\{x\}$. Минимальный элемент существует и равен x. Переход индукции: пусть $|X|=n+1, n\geq 1$ и известно, что в любом множестве мощности n существует минимальный элемент. Тогда выберем какой-то $x\in X$ и рассмотрим $X'\coloneqq X\backslash\{x\}$.

По предположению индукции в X' есть минимальный элемент, обозначим его x_0 . Если $(x,x_0)\in R$, то x — минимальный элемент X, так как $\forall\; x'\in X \quad (x',x)\notin R$ (в противном случае $(x',x_0)\in R$, из чего следует, что x_0 — не минимальный элемент X'). Иначе x_0 остаётся минимальным элементом.

Замечание: Для максимального элемента существует аналогичная лемма и её доказательство.

Задача 4: Докажите без индукции.