

# On the Parameterized Complexity of SEMITOTAL DOMINATING SET On Graph Classes

### **Lukas Retschmeier**

Informatik 7 - Theoretical Foundations of Artificial Intelligence Faculty of Informatics Technical University of Munich

February 28th, 2023

**Creative Introduction** 



Mativatio

wotivatio

. . . . . .

Kerne

Kerne

Dulo 1

Rule:

## **Our Plan for Today**



Motivation

2 Theory Intractability

3 Kernel

Rule 1

Rule 2

Rule 3

Retschmeier

#### Motivation

### **Motivation**



### DOMINATING SET

Question

Graph  $G = (V, E), k \in \mathbb{N}$ Input

Is there a set  $D \subseteq V$  of size at most k such that

$$N[D] = V$$
?

- The domination number is the minimum cardinality of a ds of G, denotes as  $\gamma(G)$
- **Observation:** In connected G every  $v \in D$  has another  $z \in D$  with d(v,z) < 3.

Lukas Retschmeier

#### Motivation

Theor Intractal

Kerne

Kerne

Rule 2 Rule 3

Reference:

### **Motivation**



### TOTAL DOMINATING SET

Input

Graph  $G = (V, E), k \in \mathbb{N}$ 

Question

Is there a set  $D \subseteq V$  of size at most k such that for

all 
$$d_1 \in X$$
 exists  $d_2 \in X \setminus \{d_1\}$  s.t.  $d(d_1, d_2) \leq 1$ ?

• The total domination number is the minimum cardinality of a tds of G, denoted as  $\gamma_t(G)$ .

Lukas Retschmeier

#### Motivation

Theory

Kerne

Kerne Rule 1

References

### **Motivation**



### SEMITOTAL DOMINATING SET

Input Graph  $G = (V, E), k \in \mathbb{N}$ Question Is there a subset  $D \subseteq V$ 

Is there a subset  $D\subseteq V$  with  $|D|\leq k$  such that

N[D] = V and for all  $d_1 \in X$  there exists another

 $d_2 \in X$  such that  $d(d_1, d_2) \leq 2$ ?

- The semitotal domination number is the minimum cardinality of a sds of G, denoted as  $\gamma_{2t}(G)$ .
- Observation:  $\gamma(G) \leq \gamma_{2t}(G) \leq \gamma t(G)$

Lukas Retschmeier

### Motivation

Theory

### Manua .

Rule 1

Rule

Reference:

## Example: $\gamma(G) < \gamma_{2t}(\mathbf{G}) < \gamma_t(G)$



### DOMINATING SET



### SEMITOTAL DOMINATING SET



### TOTAL DOMINATING SET



Lukas Retschmeier

### Motiv

Theory

Kerne Rule 1 Rule 2

Reference

## **Parameterized Complexity**



- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- Goal: Find an algorithm running in time  $\mathcal{O}(f(k) \cdot n^c)$  for some parameter k
- In this work: by solution size
- **Techniques:** Kernelization, Bounded Search Trees, ...

If possible, the problem is **fixed-parameter tractable**.

Lukas Retschmeie

Motiva

Theory

Intractabi

Rule 1 Rule 2

Reference

## **Complexity Comparison**



| Graph Class             | DOMINATING SET   |               | SEMITOTAL DOMINATING SET |               | TOTAL DOMINATING SET |                     |
|-------------------------|------------------|---------------|--------------------------|---------------|----------------------|---------------------|
|                         | classical        | Parameterized | classical                | Parameterized | classical            | Parameterized       |
| bipartite               | NPc [4]          | $W_2$ [39]    | NPc [25]                 | $W_2$ (this)  | NPc [32]             | $W_2$ (cite!)       |
| line graph of bipartite | NPc [28]         | ?             | NPc [19]                 | ? (?)         | NPc [35]             | ?                   |
| circle                  | NPc [26]         | $W_1$ [7]     | NPc [27]                 | ? (?)         | NPc [35]             | $W_1$ [7]           |
| chordal                 | NPc [6]          | $W_2$ [39]    | NPc [25]                 | $W_2$ (this)  | NPc [37]             | $W_1$ [11] by split |
| s-chordal , $s > 3$     | NPc [33]         | $W_2$ [33]    | ? (?)                    | ? (?)         | NPc [33]             | $W_1$ [33]          |
| split                   | NPc [4]          | $W_2$ [39]    | NPc [25]                 | $W_2$ this    | NPc [37]             | $W_1$ [11]          |
| 3-claw-free             | NPc [14]         | FPT [14]      | Prob. Unk                | Prob. Unk     | NPc [35]             | Unknown             |
| t-claw-free, $t > 3$    | NPc [14]         | $W_2$ [14]    | Prob. Unknown            | Unknown       | NPc [35]             | Prob. Unknown       |
| chordal bipartite       | NPc [36]         | ? (?)         | NPc [25]                 | ?             |                      | P [15]              |
| planar                  | NPc (Sources!)   | FPT [2]       | NPc                      | FPT (this)    | NPc                  | FPT [20]            |
| undirected path         | NPc [6]          | FPT [18]      | NPc [24]                 | ?             | NPc [31]             | ?                   |
| dually chordal          | P [8]            |               | ? (attempted [19])       |               |                      | P [30]              |
| strongly chordal        | P [17]           |               | P [40]                   |               | NPc [17]             |                     |
| AT-free                 | P [29]<br>P [22] |               | P [27]<br>?              |               |                      | P [29]              |
| tolerance               |                  |               |                          |               | ?                    |                     |
| block                   | P [              | 17]           | P [                      | 24]           |                      | P [10]              |
| interval                | P [              | 12]           | P [                      | 38]           |                      | P [5]               |
| bounded clique-width    | P [13]           |               | P [13]                   |               | P [13]               |                     |
| bounded mim-width       | P [3, 9]         |               | P [19]                   |               | P [3, 9]             |                     |

## Status SEMITOTAL DOMINATING SET



Retschmeie

Motivati

### Theory

Intracta

Kerne

Rule 1

Rule 2



Lukas Retschmeier

wouvanc

Intractability

Kerne

Rule 1

Rule 2 Rule 3

Reference

## **Fixed-Parameter Intractability**



- Class NP corresponds to whole hierarchy W[i] in parameterized setting.
- Problems at least W[1]-hard considered **fixed-parameter intractable**
- Dominating Set is W[2]-complete
- Tool for Proving Hardness: FPT Reductions, preserving the parameter

Lukas Retschmeie

Motivatio

I neory Intractability

Kerne

Kerne

Rule

Rule

Reference



## Warmup: Intractability Results

 $\omega_2$  hard on split, chordal and bipartite graphs

• Split Graph:  $G = \mathtt{Clique} + \mathtt{IndependentSet}$ 

Lukas Retschmeier

Motivation

Theory

Kerne

Rule 1

Rule

References

## **Split Graphs**



### Semitotal Dominating Set on *split* and *chordal* graphs is $\omega_2$ -hard



### **Proof by fpt-reduction from Planar Dominating Set on split graphs:**

- **1** Construct  $G^*$  by adding v with pendant z to clique.  $G^*$  split
- 2 If ds D in G,  $D* = D \cup \{v\}$  is sds D\*.
- 3 If sds D\* in G\*,  $D \setminus \{v\}$  is D in G
- 4 Parameter k only changed by constant

Lukas Retschmeier

Motivotio

Theory

Intractability

Rule 2

References

## **Bipartite Graphs**



### Semitotal Dominating Set on bipartite graphs is $\omega_2$ -hard



### **Proof by fpt-reduction from Planar Dominating Set on bipart. graphs:**

- **1 Construct** Add new neighbor to each vertex and add  $d_1, d_2, u_1, u_2$
- 2 If ds D in G, then  $D* = D \cup \{d_1, d_2\}$  is sds in G\*
- **3** Assume sds D\* in G\*. If  $a_i \in D*$   $(b_i)$ , flip.  $D = D* \setminus \{d_1, d_2\}$  is ds in G

Lukas Retschmeie

Motivation

Ineory

#### Kernel

Rule 1

Rule :

nuie

Reference



# A Linear Kernel for Planar Semitotal Dominating Set Another Explicit kernel for a Dominating Problem

## Kernelization



16 / 42

Kernel

Idea: Preprocess an instance using Reduction Rules until hard kernel is found.

Lukas Retschmeier

Motivation

Motivatio

Theory

### Kernel

Rule 1

Rule 2

Rule

References

### Kernelization



• Idea: Preprocess an instance using Reduction Rules until hard kernel is found.



## **Related Works**



Kernel

| Problem PLANAR DOMINATING SET PLANAR TOTAL DOMINATING SET PLANAR SEMITOTAL DOMINATING SET                                          | $\begin{array}{c} \textbf{Size} \\ 67k \\ 410k \\ xxxxk \end{array}$ | Source<br>[16]<br>[20]<br>This work |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------|
| PLANAR EDGE DOMINATING SET<br>PLANAR EFFICIENT DOMINATING SET<br>PLANAR RED-BLUE DOMINATING SET<br>PLANAR CONNECTED DOMINATING SET | 14k $84k$ $43k$ $130k$                                               | [23]<br>[23]<br>[21]<br>[34]        |
| PLANAR DIRECTED DOMINATING SET                                                                                                     | Linear                                                               | [1]                                 |

Lukas Retschmeier

Mativation

Motivatioi

### Intracta

#### Kernel

Rule 1

Rule

Rule

References

### **Main Theorem**



### The Main Theorem

SEMITOTAL DOMINATING SET parameterized by solution size admits a linear kernel on planar graphs. There exists a polynomial-time algorithm that, given a planar graph (G,k), either correctly reports that (G,k) is a NO-instance or returns an equivalent instance (G',k) such that  $|V(G')| \leq xxx \cdot k$ .

Lukas Retschmeier

Motivat

Theory

### Kernel

Rule 2

References

## The xxxStone: Regions



Introduced by Alber et al. [2], decomposition technique for planar graph.

## Region (Simplified)

Given plane G and  $v, w \in V$ , a region is a closed subset, such that

- there are two non-crossing (but possibly overlapping) boundary paths
- Every vertex in R belongs to N(v, w)



Lukas Retschmeier

Motivat

Theory

### Kernel

Rule 2

References

## The xxxStone: Regions



Introduced by Alber et al. [2], decomposition technique for planar graph.

### Region (Simplified)

Given plane G and  $v, w \in V$ , a region is a closed subset, such that

- there are two non-crossing (but possibly overlapping) boundary paths
- Every vertex in R belongs to N(v, w)



Retschmeier

## Introducing *D*-region decomposition



### Kernel

## D-region decomposition [2]

Given G = (V, W) and  $D \subseteq V$ , a *D-region decomposition* is a set  $\Re$  with poles in D such that:

Lukas Retschmeier

## Splitting up N(v)



Motivatio

Theory

. . . . .

Kerne

Kerne

Rule 1

Rule 2

Rule 1

Retschmeier

Rule 1

## Rule 1, Appetizer: Shrinking $N_3(v)$



Let G = (V, E) be a graph and let  $v \in V$ . If  $|N_3(v)| > 1$ :

- remove  $N_{2,3}(v)$  from G,
- add a vertex v' and an edge  $\{v, v'\}$ .



- Idea: Removing isolated vertices
- Correctness: Omitted

## Rule 2



Retschmei

Motiva

Theory

.....

Kern

Rule 2

Rule



#### Lukas Retschmeier

Rule 3

## Rule 3: Shrinking the size of simple regions



Let G = (V, E) be a plane graph,  $v, w \in V$  and R be a simple region between v and w. If  $|V(R) \setminus \{v, w\}| \ge 5$  apply the following:

**Case 1:** If  $G[R \setminus \partial R] \cong P_3$ , then:

- remove  $V(R \setminus \partial R)$
- add vertex y with edges  $\{v, y\}$  and  $\{y, w\}$

**Case 2:** If  $G[R \setminus \partial R] \ncong P_3$ , then

- remove  $V(R \setminus \partial R)$
- add vertices y, y' and four edges  $\{v, y\}, \{v, y'\}, \{y, w\}$  and  $\{y', w\}$

Retschmeier

Rule 3

## Rule 3: Shrinking the size of simple regions



Case 1: If  $G[R \setminus \partial R] \cong P_3$ , then:

- remove  $V(R \setminus \partial R)$
- add vertex y with edges  $\{v, y\}$  and  $\{y, w\}$

**Case 2:** If  $G[R \setminus \partial R] \ncong P_3$ , then

- remove  $V(R \setminus \partial R)$
- add vertices y, y' and four edges  $\{v, y\}, \{v, y'\}, \{y, w\}$  and  $\{y', w\}$



Lukas Retschmeier

Motivat

\_.

Kerne

Rule 1

Rule 2

Reference

## Rule 3: Shrinking the size of simple regions



**Case 1:** If  $G[R \setminus \partial R] \cong P_3$ , then:

- remove  $V(R \setminus \partial R)$
- add vertex y with edges  $\{v,y\}$  and  $\{y,w\}$

Case 2: If  $G[R \setminus \partial R] \ncong P_3$ , then

- remove  $V(R \setminus \partial R)$
- add vertices y, y' and four edges  $\{v,y\}$ ,  $\{v,y'\}$ ,  $\{y,w\}$  and  $\{y',w\}$



Retschmeier

### **Notes**



Motivotio

Theory

Kerne

Rule 1 Rule 2 Rule 3

- All the rule are sound
- and only change the solution size by a constant factor
- they can be applied in pplynomial-time
- Rule 3 is a swiss-army-knife to be found on many surprising places

## **Bounding the Kernel: Idea 1**



Bankingain.

\_\_\_\_

.....

Korn

Dute

Rule



## **Bounding the Kernel: Idea 2**



Mativation

intract

Kern

Rule

Rule 3



## **Bounding the Kernel: Idea 3**



Motivatio

Thoony

Kern

....

Rule



#### Lukas Retschmeier

## **Summary: Bounding Kernel Size**



Motivatio

Theory

Intracta

Rule

Rule 3

Referenc

Let D be sds of size k. There exists a maximal D-region decomposition  $\Re$  such that:

- $\bullet$   $\bullet$  has only at most 3k-6 regions ([2]);
- 2 There are at most  $97 \cdot k$  vertices outside of any region;
- **3** Each region  $R \in \mathfrak{R}$  contains at most 87 vertices.

**Hence:**  $87 \cdot (3k-6) + 97 \cdot k + k < 359 \cdot k$ 

Lukas Retschmeier

Motivotio

Theory

Kerne

Kerne Rule 1

Rule 3

### **Main Theorem**



### The Main Theorem

The Semitotal Dominating Set problem parameterized by solution size admits a linear kernel on planar graphs. There exists a polynomial-time algorithm that, given a planar graph (G,k), either correctly reports that (G,k) is a NO-instance or returns an equivalent instance (G',k) such that  $|V(G')| \leq xxx \cdot k$ .

Proof: Add Proof here.

Lukas Retschmeie

Motivat

Theory

Korn

Rule

Rule 2

Reference

### **Conclusions**



### Results:

### **Future Work:**

- Improve Kernel Size
- Solve complexities for...

### References I





Jochen Alber, Britta Dorn, and Rolf Niedermeier. "A General Data Reduction Scheme for Domination in Graphs". In: SOFSEM 2006: Theory and Practice of Computer Science, 32nd Conference on Current Trends in Theory and Practice of Computer Science, Merin, Czech Republic, January 21-27, 2006, Proceedings. Ed. by Jiri Wiedermann et al. Vol. 3831. Lecture Notes in Computer Science. Springer, 2006, pp. 137–147.



Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. "Polynomial-time data reduction for dominating set". In: (May 2004), pp. 363–384.



Rémy Belmonte and Martin Vatshelle. "Graph Classes with Structured Neighborhoods and Algorithmic Applications". In: *Proceedings of the 37th International Conference on Graph-Theoretic Concepts in Computer Science*. WG'11. Teplá Monastery, Czech Republic: Springer-Verlag, 2011, pp. 47–58.



Alan A. Bertossi. "Dominating sets for split and bipartite graphs". English. In: *Information Processing Letters* 19 (1984), pp. 37–40.



Alan A. Bertossi. "Total domination in interval graphs". In: *Information Processing Letters* 23.3 (1986), pp. 131–134.

### References II





Kellogg S. Booth and J. Howard Johnson. "Dominating Sets in Chordal Graphs". In: *SIAM J. Comput.* 11.1 (Feb. 1982), pp. 191–199.



Nicolas Bousquet et al. "Parameterized Domination in Circle Graphs". In: *Proceedings of the 38th International Conference on Graph-Theoretic Concepts in Computer Science*. WG'12. Jerusalem, Israel: Springer-Verlag, 2012, pp. 308–319.



Andreas Brandstädt, Victor D. Chepoi, and Feodor F. Dragan. "The Algorithmic Use of Hypertree Structure and Maximum Neighbourhood Orderings". In: *Discrete Appl. Math.* 82.1–3 (Mar. 1998), pp. 43–77.



Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. "Fast Dynamic Programming for Locally Checkable Vertex Subset and Vertex Partitioning Problems". In: *Theor. Comput. Sci.* 511 (Nov. 2013), pp. 66–76.



Gerard J Chang. "Total domination in block graphs". In: *Operations Research Letters* 8.1 (1989), pp. 53–57.



Gerard J. Chang. "Algorithmic Aspects of Domination in Graphs". In: *Handbook of Combinatorial Optimization: Volume1–3.* Ed. by Ding-Zhu Du and Panos M. Pardalos. Boston, MA: Springer US, 1998, pp. 1811–1877.

### **References III**





Maw-Shang Chang. "Efficient Algorithms for the Domination Problems on Interval and Circular-Arc Graphs". In: *SIAM Journal on Computing* 27.6 (1998), pp. 1671–1694. eprint: https://doi.org/10.1137/S0097539792238431.



Bruno Courcelle. "The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs". In: *Inf. Comput.* 85.1 (Mar. 1990), pp. 12–75.



Marek Cygan et al. "Dominating set is fixed parameter tractable in claw-free graphs". In: *Theoretical Computer Science* 412.50 (2011), pp. 6982–7000.



Peter Damaschke, Haiko Müller, and Dieter Kratsch. "Domination in Convex and Chordal Bipartite Graphs". In: *Inf. Process. Lett.* 36.5 (Dec. 1990), pp. 231–236.



Volker Diekert and Bruno Durand, eds. STACS 2005, 22nd Annual Symposium on Theoretical Aspects of Computer Science, Stuttgart, Germany, February 24-26, 2005, Proceedings. Vol. 3404. Lecture Notes in Computer Science. Springer, 2005.



Martin Farber. "Domination, independent domination, and duality in strongly chordal graphs". In: *Discrete Applied Mathematics* 7.2 (1984), pp. 115–130.

### **References IV**





Celina M. H. de Figueiredo et al. "Parameterized Algorithms for Steiner Tree and Dominating Set: Bounding the Leafage by the Vertex Leafage". In: WALCOM: Algorithms and Computation: 16th International Conference and Workshops, WALCOM 2022, Jember, Indonesia, March 24–26, 2022, Proceedings. Jember, Indonesia: Springer-Verlag, 2022, pp. 251–262.



Esther Galby, Andrea Munaro, and Bernard Ries. "Semitotal Domination: New Hardness Results and a Polynomial-Time Algorithm for Graphs of Bounded Mim-Width". In: *Theor. Comput. Sci.* 814.C (Apr. 2020), pp. 28–48.



Valentin Garnero and Ignasi Sau. "A Linear Kernel for Planar Total Dominating Set". In: *Discrete Mathematics & Theoretical Computer Science* Vol. 20 no. 1 (May 2018). Sometimes we explicitly refer to the arXiv preprint version: https://doi.org/10.48550/arXiv.1211.0978. eprint: 1211.0978.



Valentin Garnero, Ignasi Sau, and Dimitrios M. Thillikos. "A linear kernel for planar red-blue dominating set". In: *Discret. Appl. Math.* 217 (2017), pp. 536–547.



Archontia C. Giannopoulou and George B. Mertzios. "New Geometric Representations and Domination Problems on Tolerance and Multitolerance Graphs". In: *SIAM Journal on Discrete Mathematics* 30.3 (2016), pp. 1685–1725. eprint: https://doi.org/10.1137/15M1039468.

### References V





Jiong Guo and Rolf Niedermeier. "Linear Problem Kernels for NP-Hard Problems on Planar Graphs". In: *Automata, Languages and Programming*. Ed. by Lars Arge et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 375–386.



Michael A. Henning, Saikat Pal, and D. Pradhan. "The semitotal domination problem in block graphs". English. In: *Discussiones Mathematicae. Graph Theory* 42.1 (2022), pp. 231–248.



Michael A. Henning and Arti Pandey. "Algorithmic aspects of semitotal domination in graphs". In: *Theoretical Computer Science* 766 (2019), pp. 46–57.



J. Mark Keil. "The Complexity of Domination Problems in Circle Graphs". In: *Discrete Appl. Math.* 42.1 (Feb. 1993), pp. 51–63.



Ton Kloks and Arti Pandey. "Semitotal Domination on AT-Free Graphs and Circle Graphs". In: Algorithms and Discrete Applied Mathematics: 7th International Conference, CALDAM 2021, Rupnagar, India, February 11–13, 2021, Proceedings. Rupnagar, India: Springer-Verlag, 2021, pp. 55–65.



D. V. Korobitsin. "On the complexity of domination number determination in monogenic classes of graphs". In: 2.2 (1992), pp. 191–200.

### **References VI**





Dieter Kratsch. "Domination and Total Domination on Asteroidal Triple-Free Graphs". In: *Proceedings of the 5th Twente Workshop on on Graphs and Combinatorial Optimization.* Enschede, The Netherlands: Elsevier Science Publishers B. V., 2000, pp. 111–123.



Dieter Kratsch and Lorna Stewart. "Total domination and transformation". In: *Information Processing Letters* 63.3 (1997), pp. 167–170.



James K. Lan and Gerard Jennhwa Chang. "On the algorithmic complexity of k-tuple total domination". In: Discrete Applied Mathematics 174 (2014), pp. 81–91.



J. Pfaff; R. Laskar and S.T. Hedetniemi. *NP-completeness of Total and Connected Domination, and Irredundance for bipartite graphs*. Technical Report 428. Department of Mathematical Sciences: Clemson University, 1983.



Chunmei Liu and Yinglei Song. "Parameterized Complexity and Inapproximability of Dominating Set Problem in Chordal and near Chordal Graphs". In: *J. Comb. Optim.* 22.4 (Nov. 2011), pp. 684–698.



Weizhong Luo et al. "Improved linear problem kernel for planar connected dominating set". In: *Theor. Comput. Sci.* 511 (2013), pp. 2–12.

### **References VII**





Alice Anne McRae. "Generalizing NP-Completeness Proofs for Bipartite Graphs and Chordal Graphs". UMI Order No. GAX95-18192, PhD thesis, USA, 1995.



Haiko Müller and Andreas Brandstädt. "The NP-Completeness of Steiner Tree and Dominating Set for Chordal Bipartite Graphs". In: *Theor. Comput. Sci.* 53.2 (June 1987), pp. 257–265.



R. Laskar; J. Pfaff. *Domination and irredundance in split graphs*. Technical Report 428. Department of Mathematical Sciences: Clemson University, 1983.



D. Pradhan and Saikat Pal. "An \$\$O(n+m)\$\$time algorithm for computing a minimum semitotal dominating set in an interval graph". In: *Journal of Applied Mathematics and Computing* 66.1 (June 2021), pp. 733–747.



Venkatesh Raman and Saket Saurabh. "Short Cycles Make W-hard Problems Hard: FPT Algorithms for W-hard Problems in Graphs with no Short Cycles". In: *Algorithmica* 52.2 (2008), pp. 203–225.



Vikash Tripathi, Arti Pandey, and Anil Maheshwari. A linear-time algorithm for semitotal domination in strongly chordal graphs. 2021.