Encrypted Postgres RDS instance Migration

1. The initial Database configurations:

Database info

Configuration: Encryption managed by AWS KMS (Encryption at rest)

2. Creating snapshot:

Ref:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/share-encrypted-snapshot.html

"You can't share a snapshot that has been encrypted using the default KMS key of the AWS account that shared the snapshot."

So with the official documentation, I've made a workflow with some internal operations, here's the overview.

Note: The steps 5 and 9 happens in the background

Customer Managed Keys Configuration:

Make alias and have labels

Heres a youtube video for sharing KMS keys: https://youtu.be/AjhaqY1GOrc

Skip through this page

This is the important part:

In **Other AWS accounts**, insert ID of the destination account so that the destination account can also use the customer managed key

Critical Note: The Key does not appear in the console of the destination account even though it's shared. But we can use it for the actions described in the KMS policy(Source account).

```
Edit key policy - optional

Sep 2 - And takes

Sep 3 - And takes

Sep 3 - And takes

Sep 4 - And takes

Sep 5 - And takes

Sep 6 - And takes

Sep 7 - And takes

Sep
```

3. Snapshot Sharing:

Now for the most important part, snapshot sharing.

First make an original snapshot,

Now make a **copy snapshot** (necessary for encryption with our customer managed KMS key). First while copying, make sure that the snapshot is in the **same region** as the key.

Then select the KMS key as our newly created customer managed KMS Key.

Now we can go ahead and share our newly encrypted snapshot with the destination account.

Add the account number of destination account:

Confirm that you can see the snapshot in Shared with me section,

Now again copy the snapshot, now we are using the default KMS dey for encryption:

The snapshot has been copied

Now we restore the snapshot, we use the default KMS key.

Now the database has been successfully restored.

Checking the database Integrity:

```
psql (14.18 (Ubuntu 14.18-OubuntuO.22.04.1), server 17.4)
WARNINC: psql major version 14, server major version 17.
Some psql features might not work.

SSL connection (pretocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.

testdb=> SELECT COUNT(*) FROM users;
count
10000000
(1 row)

testdb=>
```

id	name	email	created_at
1	User 1	user1@example.com	2025-07-25 05:35:05.353613
2	User 2	user2@example.com	2025-07-25 05:35:04.353613
3	User 3	user3@example.com	2025-07-25 05:35:03.353613
4	User 4	user4@example.com	2025-07-25 05:35:02.353613
5	User_5	user5@example.com	2025-07-25 05:35:01.353613
6	User_6	user6@example.com	2025-07-25 05:35:00.353613
7	User_7	user7@example.com	2025-07-25 05:34:59.353613
8	User_8	user8@example.com	2025-07-25 05:34:58.353613
9	User_9	user9@example.com	2025-07-25 05:34:57.353613
10	User_10	user10@example.com	2025-07-25 05:34:56.353613
11	User_11	user11@example.com	2025-07-25 05:34:55.353613
12	User_12	user12@example.com	2025-07-25 05:34:54.353613
13	User_13	user13@example.com	2025-07-25 05:34:53.353613
14	User_14	user14@example.com	2025-07-25 05:34:52.353613
15	User_15	user15@example.com	2025-07-25 05:34:51.353613
16	User_16	user16@example.com	2025-07-25 05:34:50.353613
17	User_17	user17@example.com	2025-07-25 05:34:49.353613
18	User_18	user18@example.com	2025-07-25 05:34:48.353613
19	User_19	user19@example.com	2025-07-25 05:34:47.353613
20	User_20	user20@example.com	2025-07-25 05:34:46.353613
21	User_21	user21@example.com	2025-07-25 05:34:45.353613
22	User_22	user22@example.com	2025-07-25 05:34:44.353613
23	User_23	user23@example.com	2025-07-25 05:34:43.353613[
24	User_24	user24@example.com	2025-07-25 05:34:42.353613
25	User_25	user25@example.com	2025-07-25 05:34:41.353613
26	User_26	user26@example.com	2025-07-25 05:34:40.353613
27	Luces 27	ucoc270ovample com	2025 07 25 05.24.20 252612

This deems our procedure as success!