

Things to Memorize: Impulse and Momentum

Momentum

- Momentum is a vector. It is symbolized by the letter \vec{p} .
- Momentum is defined as mass times velocity: $\vec{p} = m \cdot \vec{v}$
- The units for momentum are $\frac{kg \cdot m}{s}$
- The direction of the momentum is always the same as the direction of the object's velocity.
- Momentum is extremely useful for *collisions* and *explosions*.

Impulse

- Impulse is a vector. It is symbolized by the letter \vec{J} or sometimes \vec{I} .
- Impulse is defined as force times time: $\vec{J} = \vec{F} \cdot t$
- The units for impulse are $N \cdot s$, which reduce to $\frac{kg \cdot m}{s}$.
- The direction of the impulse is always the same as the direction of the force acting on the object.
- Impulse causes an object's momentum to change.

Conservation of Momentum

- The Law of Conservation of Momentum states that momentum can neither be created, nor destroyed.
 - This means that whatever total momentum a system has at the beginning must equal to the total momentum the system has at the end.
 - If Impulse causes an object's momentum to change, it must be accounted for as well.
 - A basic equation for the law of conservation of momentum: $\vec{p_i} + \vec{J} = \vec{p_f}$
- To apply the law of conservation of momentum to a system:
 - 1. Draw the system in its before and after states.
 - 2. Write a momentum term for each object that is moving before and after.
 - 3. Determine if there is any impulse on the system.
 - 4. Plug in the formulas for impulse and momentum to each term.
 - 5. Manipulate the equation to solve for the variable you want.
 - 6. Substitute numbers into the equation and calculate the final answer with units.

Impulse and Momentum in 2 Dimensions

• test