Movie Recommendations

a project by:

Abdullah Adlouni Ben Healy Charles Dorman David Shackelford

Project Description

Purpose

- To get a better understanding of movie ratings
 - Explore recommendation systems
- Combine multiple data sources to try and get useful information
- Find interesting data which shows relationships in what people enjoy watching

Major Questions

- 1. Can we make recommendations of movies based on prior customer ratings?
- 2. Can we create inferences based on attributes of a movie?
- 3. Can we observe trends in the movie industry and how people enjoy movies?

Datasets

Description of Datasets

- Sources
 - Netflix 17,770 movies rated by 480,189 users, > 100M ratings.
 - IMDB 7,980,307 movies/shows/shorts objects with ratings,
 cast info, etc.
 - TMDB Subset of ~5k movies from IMDB, but with info on revenue and budget

Data Preparation

- Import data sets from csv and tsv files
- Merge data sets
 - Split titles into words, made all lowercase
 - Use ML model to encode titles as fixed-length vectors to allow for finding cosine-similarity
 - Merge sets based on titles' cosine similarity
- Reduce data
 - Drop unpopular titles in lower 30% of ratings
 - Drop low-activity users

Tools

Tools

Project Management

- Github
- AWS
- Discord

Data Analysis

- Pandas
- Numpy
- Regex
- Bash

Machine Learning

- Scikit-Learn
 - Sklearn-surprise:

SVD based

Recommendation

- Cosine Similarity
- Tensorflow
 - -Bert-as-Service

Results

Results - Integration

• 3 methods - 1:1, NLP + cosine similarity, algorithmic approach

	Mismatched Pairs (/100)	Unmatched Pairs	Time
1:1 Matching	0	11,213	15m
NLP + Cosine Similarity	6	6,516	3d 8h
Algorithmic	23	5,731	4h

Results - Recommendation

Fold	RMSE	MAE	Fit Time (s)	Test Time (s)
1	0.825	0.703	1045.862	432.187
2	0.824	0.701	1072.961	308.564
3	0.824	0.701	958.641	203.421
4	0.824	0.701	897.596	198.323
5	0.824	0.701	932.118	221.168
Avg.	0.824	0.701	981.436	272.73

Results - Recommendation

Fold	RMSE	MAE	Fit Time (s)	Test Time (s)
1	0.888	0.719	600.917	202.503
2	0.888	0.718	603.431	137.481
3	0.888	0.718	602.818	128.296
4	0.888	0.718	603.871	203.589
5	0.888	0.717	599.386	120.589
Avg.	0.888	0.718	602.085	158.491

Results - Recommendation

• Simple Ensemble: (Movie + Genre)/2 = Ensembled_Rating

	RMSE	MAE
Movie Recommender	0.824	0.701
Genre Recommender	0.888	0.718
Ensembled	0.749	0.603

Knowledge Gained

Knowledge Gained - Data Analysis

Achieved improved recommendation model performance by averaging the results of multiple models (ensemble methods)

Knowledge Gained - Data Analysis

- Newer movies tend to have greater variance in ratings than older movies (survivorship bias? selection bias?)
- Documentaries are trending well (visuals becoming cheaper?)

Knowledge Gained - Application

- Credibility-weighting users' rating by correlation with target user had significant benefit
- Breaking out movies by genre before finding correlation increased predictive value minimally (each movie listed in multiple genres-overlap loses distinction?)

Knowledge Gained - Application

- Producers could respond to trends in genres of increasing popularity uncovered in the IMDB ratings
- Our results: feature-length and TV documentaries and movies and TV serials about sports.

Thank you!