Logistic regression analysis

Predicting occurrences of events

Learning goals

- 1. Learn to apply a logistic regression model to predict an outcome of an event.
- 2. Learn to carry out the analysis in Python environment.

Linear vs. logistic regression

- Earlier we focused on linear regression.
 - In linear regression, the response variable is a continuous variable that can ideally vary in the interval]-∞,∞[.
 - In practice, the applicability of the model is limited.

Linear vs. logistic regression

- In logistic regression, the response variable is not a numerical variable but a binary class variable (yes/no).
- The goal of logistic regression analysis is to predict whether an event occurs or no.
- Technically the target of prediction is the probability p of an event.
 - Example: predict the probability for a subject experiencing a stroke, or, whether he/she will buy a car.

Logistic regression as a classifier

- As a consequence of estimating the probability of an event, logistic regression model can be used as a binary classifier.
 - Rule: If the probability of an event is estimated to be greater than 0.5, classify as "yes"; otherwise "no".
 - Such binary classification based on the outcomes loses information on the uncertainty.

Probability as a response variable

 Recall that the equation in a generalized linear model is of form:

$$y_i = \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$$

- The probability p of an event would be a bad choice for a response variable y, since its value is always in the interval [0,1].
- A linear model is designed to provide predictions within an unlimited range.
- Key question: how could the response variable be transformed in such a way that the range becomes [0,1]?

Odds

- Odds describes the ratio between an event and its complement.
 - Denote the probability of an event by p.
 - Odds is then defined as $\frac{p}{1-p}$.
- Let's assume that the probability of a person winning a running contest is 0,15.
- The odds are $\frac{0.15}{1-0.15} = \frac{0.15}{0.85} \approx 0.176$.
 - The probability of a win is 0,176 times as big as that of a loss.
 - Or, expressed in reverse terms, the probability of a loss is appxroximately
 - 5,67-fold in comparison to that of a win.
- The range of odds is $[0, \infty[$.
 - It is still constrained from the lower edge.
 - In addition, the values of interest are often "packed" close to the zero.

Logit

- If we take a natural logarithm of the odds, we have made a logit transformation for the probability p.
- Thus, logit transformation is expressed as: $\ln \frac{p}{1-p}$
- E.g. the probability p = 0.15 of a win corresponds to the logit value:
- $\ln \frac{0.15}{1-0.15} \approx -1.735$

Logit

р	1-p	In(p/1-p))	
0,001	0,999	-6,90675	
0,002	0,998	-6,21261	
0,003	0,997	-5,80614	
0,004	0,996	-5,51745	
0,005	0,995	-5,2933	
0,006	0,994	-5,10998	
0,007	0,993	-4,95482	
0,008	0,992	-4,82028	
0,009	0,991	-4,70149	
0,01	0,99	-4,59512	
0,011	0,989	-4,4988	
0,012	0,988	-4,41078	
0,013	0,987	-4,32972	
0,498	0,502	-0,008	
0,499	0,501	-0,004	
0,5	0,5	0	
0,501	0,499	0,004	
0,502	0,498	0,008	
0,998	0,002	6,212606	
0,999	0,001	6,906755	

• Note that the value of the logit function is >0, when p>0,5.

Logistic regression model

A logistic regression model is of form:

$$\ln \frac{p}{1-p} = \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$$

- The transformed response variable can vary between $]-\infty,\infty[$.
 - The corresponding probabilities p are in range [0,1].
- If the predicted value of a logit response variable is positive:
 - The prediction for p > 0.5
 - The event is predicted to happen (prediction "1")
- Likewise, a negative predicted value of the logit response variable corresponds to predicted non-occurrence of an event (predicted "0").

Limitations

- Many of the limitations of linear regression can be relaxed for logistic regression. For example:
 - The relationships needs not be linear.
 - The residuals don't need to be normally distributed.
 - The variances of the residuals need not be constant.

However:

- The response variable needs to be binary.
- The observations should be independent of each other.
- There should not be much collinearity (dependence between variables).
- The log odds of the response variable should be linearly related to the explanatory variables.

Limitations

- There is no simple way to calculate the relative importances of the variables.
 - Regression coefficients from normalized data don't provide the answer.
 - This is due to the inherent non-linearities in the model

Log loss function

Actual	Predicted P(X=1)	Predicted P(X=actual)	Log of P(X=actual)
0	0,9	0,1	-1
1	0,62	0,62	-0,207608311
1	0,93	0,93	-0,031517051
1	0,42	0,42	-0,37675071
0	0,13	0,87	-0,060480747
0	0,21	0,79	-0,102372909
1	0,78	0,78	-0,107905397
0	0,14	0,86	-0,065501549

- If a set of regression coefficients is fixed, the value of logit-transformed response variable can be computed for each observation.
- This, in turn, can be transformed to a probability of belonging to class 1. That is, P(X = 1) by inverse logit transformation.
- Above, P(X = actual), is 1 P(X = 1) for actual class 0, and P(X = 1) for actual class 1.
- Log loss function is the negative mean of logarithms of P(X = actual) values.

Python example

- The Stroke data contains information about people who have experienced a stroke.
- The patients have been monitored for a one-year period.
- During the monitoring period, some patients have suffered a second stroke.
 - The occurrence of the second stroke is the response variable.
 - Ideally, the model could be used as a predictive tool for spotting the individuals with a high risk for the second stroke.

Python example

 The Python source code can be found in the Methods / Data / Stroke (demo) folder in the course's Oma workspace.

sklearn specifics

- Logistic regression can also be used as a multiclass classifier.
- By default sklearn uses one-vs-rest (OvR) scheme.
 - A binary classifier is built for each value of the categorical response variable.
 - For each binary classifier, all remaining values of the response variable are lumped together.
 - Finally, for each observation, the classifier that provides a classification with a highest confidence score, outputs the final class.
- Regularization is applied by default.
 - It adds a penalty for non-zero regression coefficients

One-vs-Rest classification

	Classifier-specific response variables				
Orig. resp. variable	C1_class	C2_class	C3_class	C4_class	
1	1	0	0	0	
2	0	1	0	0	
3	0	0	1	0	
4	0	0	0	1	
2	0	1	0	0	
2	0	1	0	0	
1	1	0	0	0	
4	0	0	0	1	
3	0	0	1	0	

• For logistic regression, **sklearn** implements the OvR schema automatically, under the hood.

Regularization

- Regularization forces the regression coefficients towards zero.
 - In effect, that shrinks the number of exploratory variables in the model.
 - It may make the model less prone to overfitting.
- Idea of regularization: add penalty term to the log loss function:

$$logloss' = logloss + \lambda \sum_{j=1}^{p} \beta_j^2$$

• This is called L2 regularization (or Ridge regression).

