

# COMPANY CREDIT RISK ANALYSIS MILESTONE - 2

**SUGANTHE RAMYA M K** 

# Case study

Build a machine learning model, to

predict Credit Defaulters from the

financial statement of a company

# **Table of contents**

| ♣ Project objective                                             |
|-----------------------------------------------------------------|
| - Assumptions                                                   |
| <b>♣ Exploratory data analysis</b>                              |
| <ul> <li>Summary of the dataset</li> </ul>                      |
| <ul> <li>Univariate, Bivariate and Multiple analysis</li> </ul> |
| ♣ Converting object data type into categorical                  |
| Splitting the data into train and test data                     |
| <ul> <li>Dimensions on the train and test data</li> </ul>       |
| ♣ Model building                                                |
| <b>♣ Model Prediction</b>                                       |
| ♣ Model evaluation                                              |
| <b>♣</b> Conclusion                                             |
| ♣ Recommendation                                                |
|                                                                 |

#### **Problem Statement**

Businesses or companies can fall prey to default if they are not able to keep up their debt obligations. Defaults will lead to a lower credit rating for the company which in turn reduces its chances of getting credit in the future and may have to pay higher interests on existing debts as well as any new obligations

Data that is available includes information from the financial statement of the companies for the previous year (2015). Also, information about the Net worth of the company in the following year (2016) is provided which can be used to drive the labelled field.

#### **Project Objective:**

The Objective of the report is to explore the dataset "Credit Risk Dataset" in Python (JUPYTER NOTEBOOK) and generate insights about the dataset. This exploration report will consist of the following:

- Importing the dataset in jupyter notebook.
- Understanding the structure of dataset.
- Exploratory Data analysis
- Graphical exploration
- Prediction using various machine learning models
- Insights from the dataset

Read the dataset. Do the descriptive statistics and do the null value condition check. Write an inference on it.

#### **Dataset: Credit Risk Dataset**

# Column names are changed for further analysis

|   | Co_Code | Co_Name    | Networth | Equity_Pa | Networth | Capital_Er | Total_Deb | Gross_Blo | Net_Work | Curr_Asse | <br>PBIDTM_p | PBITM_p | ePBDTM_p | CPM_perc | APATM_p | Debtors_\ | Creditors_ | Inventory | Value_of_ | Value_of_ | Output_to | _Gross_Blo |
|---|---------|------------|----------|-----------|----------|------------|-----------|-----------|----------|-----------|--------------|---------|----------|----------|---------|-----------|------------|-----------|-----------|-----------|-----------|------------|
| 0 | 16974   | Hind.Cabl  | -8021.6  | 419.36    | -7027.48 | -1007.24   | 5936.03   | 474.3     | -1076.34 | 40.5      | <br>0        | (       | 0        | 0        | 0       | 0         | 0          | 45        | 0         | 0         |           |            |
| 1 | 21214   | Tata Tele. | -3986.19 | 1954.93   | -2968.08 | 4458.2     | 7410.18   | 9070.86   | -1098.88 | 486.86    | <br>-10.3    | -39.74  | -57.74   | -57.74   | -87.18  | 29        | 101        | 2         | 0.31      | 0.24      |           |            |

#### Information on dataset:

| <class 'pandas.core.frame<="" th=""><th>.DataFrame'&gt;</th></class> | .DataFrame'>          |
|----------------------------------------------------------------------|-----------------------|
| RangeIndex: 3586 entries,                                            |                       |
| Data columns (total 67 co                                            |                       |
| # Column                                                             | Non-Null Count Dtype  |
|                                                                      |                       |
| 0 Co_Code                                                            | 3586 non-null int64   |
| 1 Co_Name                                                            | 3586 non-null object  |
| 2 Networth_Next_Year                                                 | 3586 non-null float   |
| 3 Equity_Paid_Up                                                     | 3586 non-null float64 |
| 4 Networth                                                           | 3586 non-null float64 |
| 5 Capital_Employed                                                   | 3586 non-null float64 |
| 6 Total_Debt                                                         | 3586 non-null float64 |
| 7 Gross_Block                                                        | 3586 non-null float64 |
| 8 Net_Working_Capital                                                | 3586 non-null floate  |
| 9 Curr_Assets                                                        | 3586 non-null float64 |
| 10 Curr_Liab_and_Prov                                                | 3586 non-null floate  |
| 11 Total_Assets_to_Liab                                              | 3586 non-null float   |
| 12 Gross_Sales                                                       | 3586 non-null float64 |
| 13 Net_Sales                                                         | 3586 non-null float64 |
| 14 Other_Income                                                      | 3586 non-null float64 |
| 15 Value_Of_Output                                                   | 3586 non-null float64 |
| 16 Cost_of_Prod                                                      | 3586 non-null float64 |
| 17 Selling_Cost                                                      | 3586 non-null float64 |
| 18 PBIDT                                                             | 3586 non-null float64 |
| 19 PBDT                                                              | 3586 non-null float64 |
| 20 PBIT                                                              | 3586 non-null float64 |
| 21 PBT                                                               | 3586 non-null float64 |
| 22 PAT                                                               | 3586 non-null float64 |
| 23 Adjusted_PAT                                                      | 3586 non-null float64 |
|                                                                      | 586 non-null float64  |
| 25 Rev_earn_in_forex                                                 | 3586 non-null float6  |
| 26 Rev_exp_in_forex                                                  | 3586 non-null float64 |
| 27 Capital_exp_in_forex                                              | 3586 non-null float   |
| 28 Book_Value_Unit_Cu                                                |                       |
| 29 Book_Value_Adj_Unit                                               |                       |
| 30 Market_Capitalisation                                             | n 3586 non-null float |
|                                                                      |                       |

| 31 | CEPS_annualised_Unit_Cui | r 3586 non-null fl    |
|----|--------------------------|-----------------------|
| 32 | Cash_Flow_From_Opr       | 3586 non-null floa    |
| 33 | Cash_Flow_From_Inv       | 3586 non-null float   |
| 34 | Cash_Flow_From_Fin       | 3586 non-null float   |
| 35 | ROG_Net_Worth_perc       | 3586 non-null flo     |
| 36 | ROG_Capital_Employed_p   | erc 3586 non-null     |
| 37 | ROG_Gross_Block_perc     | 3586 non-null floa    |
| 38 | ROG_Gross_Sales_perc     | 3586 non-null floa    |
| 39 | ROG_Net_Sales_perc       | 3586 non-null float   |
| 40 | ROG_Cost_of_Prod_perc    | 3586 non-null flo     |
| 41 | ROG_Total_Assets_perc    | 3586 non-null floa    |
| 42 | ROG_PBIDT_perc           | 3586 non-null float6  |
| 43 | ROG_PBDT_perc            | 3586 non-null float6  |
| 44 | ROG_PBIT_perc            | 3586 non-null float64 |
| 45 | ROG_PBT_perc             | 3586 non-null float64 |
| 46 | ROG_PAT_perc             | 3586 non-null float64 |
| 47 | ROG_CP_perc              | 3586 non-null float64 |
| 48 | ROG_Rev_earn_in_forex_p  | perc 3586 non-null    |
| 49 | ROG_Rev_exp_in_forex_p   | erc 3586 non-null     |
| 50 | ROG_Market_Capitalisatio | n_perc 3586 non-null  |
|    |                          | ·                     |

| 51 Curr_Ratio_Latest               | 3585 non-null float6 |
|------------------------------------|----------------------|
| 52 Fixed_Assets_Ratio_Latest       | 3585 non-null flo    |
| 53 Inventory_Ratio_Latest          | 3585 non-null floa   |
| 54 Debtors_Ratio_Latest            | 3585 non-null floa   |
| 55 Total_Asset_Turnover_Ratio      | o_Latest 3585 non-nu |
| 56 Interest_Cover_Ratio_Lates      | st 3585 non-null f   |
| 57 PBIDTM_perc_Latest              | 3585 non-null floa   |
| 58 PBITM_perc_Latest               | 3585 non-null float  |
| 59 PBDTM_perc_Latest               | 3585 non-null floa   |
| 60 CPM_perc_Latest                 | 3585 non-null float6 |
| 61 APATM_perc_Latest               | 3585 non-null floa   |
| 62 Debtors_Vel_Days                | 3586 non-null int64  |
| 63 Creditors_Vel_Days              | 3586 non-null int64  |
| 64 Inventory_Vel_Days              | 3483 non-null float  |
| 65 Value_of_Output_to_Total_       | Assets 3586 non-nu   |
| 66 Value_of_Output_to_Gross        | _Block 3586 non-nu   |
| dtypes: float64(63), int64(3), obj | ect(1)               |
| memory usage: 1.8+ MB              |                      |
|                                    |                      |

# **Summary of the dataset:**

|                      | count        | mean                 | std                  | min                | 25%                | 50%            | 75%              | max                  |
|----------------------|--------------|----------------------|----------------------|--------------------|--------------------|----------------|------------------|----------------------|
| Co_Code              | 3586         | 16065.39             | 19776.82             | 4                  | 3029.25            | 6077.5         | 24269.5          | 72493                |
| Networth_            | 3586         | 725.0453             | 4769.681             | -8021.6            | 3.985              | 19.015         | 123.8025         | 111729.1             |
| Equity_Pa            | 3586         | 62.96658             | 778.7617             | О                  | 3.75               | 8.29           | 19.5175          | 42263.46             |
| Networth             | 3586         | 649.7463             | 4091.989             | -7027.48           | 3.8925             | 18.58          | 117.2975         | 81657.35             |
| Capital_Er           | 3586         | 2799.611             | 26975.14             | -1824.75           | 7.6025             | 39.09          | 226.605          | 714001.3             |
| Total_Deb            |              | 1994.824             | 23652.84             | -0.72              | 0.03               | 7.49           | 72.35            | 652823.8             |
| Gross_Blo            |              | 594.1788             | 4871.548             | -41.19             | 0.57               | 15.87          | 131.895          | 128477.6             |
| Net_Work             |              | 410.8097             | 6301.219             | -13162.4           | 0.9425             | 10.145         | 61.175           | 223257.6             |
| Curr_Asse            | 3586         | 1960.349             | 22577.57             | -0.91              | 4                  | 24.54          | 135.2775         | 721166               |
| Curr_Liab_           | 3586         | 391.9921             | 2675.002             | -0.23              | 0.7325             | 9.225          | 65.65            | 83232.98             |
| Total_Asse           |              | 1778.454             | 11437.57             | -4.51              | 10.555             | 52.01          | 310.54           | 254737.2             |
| Gross_Sale           | 3586<br>3586 | 1123.739<br>1079.703 | 10603.7<br>9996.574  | -62.59<br>-62.59   | 1.4425             | 31.21<br>30.44 | 242.25<br>234.44 | 474182.9<br>443775.2 |
| Net_Sales Other_Inc  | 3586         | 48.72982             | 426.0407             | -448.72            | 0.02               | 0.45           | 3.635            | 14143.4              |
| Value_Of_            | 3586         | 1077.187             | 9843.88              | -119.1             | 1.4125             | 30.895         | 235.8375         | 435559.1             |
| Cost_of_P            |              | 798.5446             | 9076.703             | -22.65             | 0.94               | 25.99          | 189.55           | 419913.5             |
| Selling_Co           |              | 25.555               | 194.2445             | 0                  | 0.54               | 0.16           | 3.8825           | 5283.91              |
| PBIDT                | 3586         | 248.1753             | 1949.593             | -4655.14           | 0.04               | 2.045          | 23.525           | 42059.26             |
| PBDT                 | 3586         | 116.2688             | 956.1996             | -5874.53           | О                  | 0.795          | 12.945           | 23215                |
| PBIT                 | 3586         | 217.6594             | 1850.973             | -4812.95           | 0                  | 1.15           | 16.6675          | 41402.96             |
| PBT                  | 3586         | 85.75291             | 799.9258             | -6032.34           | -0.06              | 0.31           | 7.4225           | 16798                |
| PAT                  | 3586         | 61.21831             | 620.2984             | -6032.34           | -0.06              | 0.255          | 5.54             | 13383.39             |
| Adjusted_            | 3586         | 60.05896             | 580.4329             | -4418.72           | -0.09              | 0.21           | 5.3425           | 13384.11             |
| СР                   | 3586         | 91.7342              | 780.7906             | -5874.53           | О                  | 0.74           | 10.91            | 20760.2              |
| Rev_earn_            | 3586         | 131.1653             | 1150.73              | О                  | О                  | О              | 7.2              | 46158                |
| Rev_exp_i            | 3586         | 256.327              | 4132.34              | О                  | О                  | О              | 6.9875           | 193979.7             |
| Capital_ex           |              | 7.655689             | 111.4321             | О                  | О                  | О              | О                | 3722.1               |
| Book_Valu            |              | 157.2378             | 1622.664             | -3371.57           | 7.9625             | 21.665         | 71.6675          | 75790                |
| Book_Valu            |              | 2243.153             | 128283.7             | -33715.7           | 7.06               | 18.925         | 60.01            | 7677600              |
| Market_C             |              | 1664.092             | 12805.17             | 0                  | 0                  | 8.37           | 111.4575         | 260865.1             |
| CEPS_ann             | 3586         | 36.01871             | 828.4208             | -1808              | 0                  | 1.145          | 8.7725           | 45438.44             |
| Cash_Flow            |              | 65.77075             | 1455.048             | -25469.2           | -0.3075            | 0.45<br>-0.12  | 12.6475          | 44529.4              |
| Cash_Flow            |              | -60.8704<br>11.43645 | 701.9747<br>1272.257 | -23843.5<br>-38374 | -5.1175<br>-5.8475 | -0.12          | 0.12<br>0.4575   | 3732.98<br>28846     |
| ROG_Net_             | 3586         | 1237.625             | 41041.93             | -14485.7           | -1.4875            | 1.84           | 11.3625          | 2144020              |
| ROG_Capi             | 3586         | 2988.885             | 126472.9             | -8614.63           | -3.835             | 1.375          | 12.5875          | 7412700              |
| ROG_Gros             | 3586         | 37.55431             | 893.6194             | -116.12            | -3.833             | 0.25           | 6.72             | 47400                |
| ROG_Gros             | 3586         | 242.673              | 6103.528             | -5503.7            | -8.0775            | 3.31           | 21.525           | 320200               |
| ROG_Net_             | 3586         | 242.5885             | 6103.488             | -5503.7            | -8.1175            | 3.205          | 21.5675          | 320200               |
| ROG_Cost             | 3586         | 310.4884             | 5573.215             | -2130.23           | -7.2425            | 4.415          | 23.1225          | 267150               |
| ROG_Tota             | 3586         | 2793.283             | 125941.7             | -136.13            | -3.9725            | 1.475          | 12.5             | 7422120              |
| ROG_PBID             | 3586         | 375.8522             | 23278.4              | -52200             | -23.3625           | 4.57           | 47.875           | 1386200              |
| ROG_PBD              | 3586         | 336.3799             | 20353.4              | -52200             | -30.5975           | 3.365          | 52.915           | 1208700              |
| ROG_PBIT             | 3586         | 374.7                | 22462.79             | -58500             | -31.3525           | 2.13           | 50.1425          | 1338000              |
| ROG_PBT_             | 3586         | 224.0702             | 19659.23             | -78900             | -41.235            | 0.025          | 61.9575          | 1160500              |
| ROG_PAT_             | 3586         | 112.2317             | 13480.52             | -114500            | -43.7325           | 0              | 65.3475          | 774200               |
| ROG_CP_r             |              | 221.0915             | 13980.2              | -52200             | -29.505            | 4.615          | 52.9075          | 822400               |
| ROG_Rev_             | 3586         | 37.22784             | 658.666              | -100               | 0                  | 0              | 0                | 29084.77             |
| ROG_Rev_<br>ROG_Marl | 3586<br>3586 | 364.8632<br>63.68222 | 15233.64<br>1047.928 | -100<br>-98.05     | 0                  | 0              | 0<br>47.515      | 894591.7<br>61865.26 |
| Curr_Ratio           |              | 12.0566              | 1047.928             | -98.05             | 0.88               | 1.36           | 2.77             | 4813                 |
| Fixed Asse           |              | 51.53884             | 681.1509             | 0                  | 0.88               | 1.56           | 4.74             | 22172                |
| Inventory            |              | 37.79895             | 458.1894             | 0                  | 0.27               | 3.56           | 8.94             | 15472                |
| Debtors_R            |              | 33.027               | 489.5635             | 0                  | 0.42               | 3.82           | 8.52             | 22992.67             |
| Total_Asse           |              | 1.237236             | 2.673228             | О                  | 0.07               | 0.6            | 1.55             | 57.75                |
| Interest_C           |              | 16.38789             | 351.7378             | -5450              | О                  | 1.08           | 3.71             | 18639.4              |
| PBIDTM_p             | 3585         | -51.1629             | 1795.131             | -78870.5           | О                  | 8.07           | 18.99            | 19233.33             |
| PBITM_pe             | 3585         | -109.213             | 3057.636             | -141600            | О                  | 5.23           | 14.29            | 19195.7              |
| PBDTM_p              |              | -311.57              | 10921.59             | -590500            | О                  | 4.69           | 14.11            | 15640                |
| CPM_perc             |              | -307.006             | 10676.15             | -572000            | О                  | 3.89           | 11.39            | 15640                |
| APATM_p              | 3585         | -365.056             | 12500.05             | -688600            | 0                  | 1.59           | 7.41             | 15266.67             |
| Debtors_V            |              | 603.894              | 10636.76             | 0                  | 8                  | 49             | 106              | 514721               |
| Creditors_           | 3586         | 2057.855             | 54169.48             | 0                  | 8                  | 39             | 89               | 2034145              |
| Inventory            |              | 79.64456             | 137.8478             | -199               | 0                  | 35             | 96               | 996                  |
| Value_of_            | 3586         | 0.819757             | 1.2014               | -0.33              | 0.07               | 0.48           | 1.16             | 17.63                |
| Value_of_            | 3586         | 61.88455             | 976.8244             | -61                | 0.27               | 1.53           | 4.91             | 43404                |

# Inference

- > The number of rows (observations) is 3586
- > The number of columns (variables) is 67
- Minimum Networth\_Next\_Year (-8021)
- Maximum Networth\_Next\_Year (111729.10)
- Maximum Total Debt 652823.81
- > There are no duplicates in the dataset







#### Inference

None of None of the variables show perfect normal distribution. Most of the variables have left positive skewness only six variable right negative skewness

# **Bi-variate analysis**

#### Largest net worth company



NTPC has highest net worth followed by the Bharti Airtel

#### **Total debt of Top 10 company**



Highest debt Company is Bank of Baroda Second Highest is Bank of India

# **Current Assets of Top 10 company**



Highest current assets company is Bank of Baroda Second highest current assets company is Bank of India

# Creating a binary target variable using 'Networth\_Next\_Year'

<u>Dependent variable</u> - We need to create a default variable that should take the value of 1 when net worth next year is negative & 0 when net worth next year is positive.

|   | default | Networth_Next_Year |  |  |  |  |  |
|---|---------|--------------------|--|--|--|--|--|
| 0 | 1       | -8021.6            |  |  |  |  |  |
| 1 | 1       | -3986.19           |  |  |  |  |  |
| 2 | 1       | -3192.58           |  |  |  |  |  |
| 3 | 1       | -3054.51           |  |  |  |  |  |
| 4 | 1       | -2967.36           |  |  |  |  |  |
| 5 | 1       | -2519.4            |  |  |  |  |  |
| 6 | 1       | -2125.05           |  |  |  |  |  |
| 7 | 1       | -2100.56           |  |  |  |  |  |
| 8 | 1       | -1695.75           |  |  |  |  |  |
| 9 | 1       | -1677.18           |  |  |  |  |  |

#### Count of default in the dataset

0 3198 1 388

Name: default, dtype: int64

# Percentage of default

0 0.89 1 0.11

Name: default, dtype: float64



#### Inference

➤ Nearly 11% of defaulters observed and value count of the dataset is 388

# **Grouping by default:**

| default | Net  | etworth_ | Equity_Pa | Networth | Capital_Er | Total_Deb | Gross_Blo | Net_Work | Curr_Asse | Curr_Liab | Total_Asse | <br>PBIDTM_p | PBITM_pe | PBDTM_p | CPM_perc | APATM_p | Debtors_\ | Creditors_ | Inventory | Value_of_ | Value_of_ |
|---------|------|----------|-----------|----------|------------|-----------|-----------|----------|-----------|-----------|------------|--------------|----------|---------|----------|---------|-----------|------------|-----------|-----------|-----------|
|         | 0 26 | 667204   | 214372.5  | 2373939  | 9967573    | 7046659   | 2059120   | 1462211  | 6968271   | 1355095   | 6255114    | <br>-124452  | -193784  | -452373 | -463495  | -532827 | 1983309   | 5105452    | 243673    | 2757.62   | 220144.7  |
|         | 1 -6 | 57191.9  | 11425.65  | -43948.7 | 71832.61   | 106779.3  | 71605.22  | 10952.31 | 61541.12  | 50588.63  | 122421.2   | <br>-58966.7 | -197746  | -664606 | -637120  | -775899 | 182255    | 2274016    | 33729     | 182.03    | 1773.34   |

Dropping Networth\_Next\_Year variable for further analysis.

# **Outlier Treatment**

Significant number of outliers were present for almost all the variables.

| Equity_Paid_Up            | 448  |                                                           |            |
|---------------------------|------|-----------------------------------------------------------|------------|
| Networth                  | 650  |                                                           |            |
| Capital_Employed          | 596  |                                                           |            |
| Total Debt                | 583  |                                                           |            |
| Gross Block               | 540  |                                                           |            |
| Net Working Capital       | 625  | ROG_Net_Worth_perc                                        | 747        |
| Curr Assets               | 577  | ROG_Capital_Employed_perc                                 | 572        |
| Curr Liab and Prov        | 581  | ROG_Gross_Block_perc                                      | 830<br>671 |
| Total Assets to Liab      | 574  | ROG_Gross_Sales_perc<br>ROG Net Sales perc                | 667        |
| Gross Sales               | 554  | ROG Cost of Prod perc                                     | 675        |
| Net Sales                 | 556  | ROG Total Assets perc                                     | 483        |
| _                         | 603  | ROG_PBIDT_perc                                            | 611        |
| Other_Income              |      | ROG_PBDT_perc                                             | 628        |
| Value_Of_Output           | 559  | ROG_PBIT_perc                                             | 616        |
| Cost_of_Prod              | 560  | ROG_PBT_perc                                              | 611<br>598 |
| Selling_Cost              | 605  | ROG_PAT_perc<br>ROG CP perc                               | 637        |
| PBIDT                     | 671  | ROG Rev earn in forex perc                                | 1317       |
| PBDT                      | 815  | ROG Rev exp in forex perc                                 | 1615       |
| PBIT                      | 720  | ROG_Market_Capitalisation_perc                            | 497        |
| PBT                       | 941  | Curr_Ratio_Latest                                         | 565        |
| PAT                       | 959  | Fixed_Assets_Ratio_Latest                                 | 495        |
| Adjusted PAT              | 954  | Inventory_Ratio_Latest                                    | 375<br>371 |
| CP                        | 816  | Debtors_Ratio_Latest<br>Total Asset Turnover Ratio Latest | 201        |
| Rev earn in forex         | 738  | Interest Cover Ratio Latest                               | 725        |
| Rev exp in forex          | 693  | PBIDTM perc Latest                                        | 595        |
| Capital exp in forex      | 694  | PBITM_perc_Latest                                         | 717        |
| Book Value Unit Curr      | 485  | PBDTM_perc_Latest                                         | 695        |
| Book Value Adj Unit Curr  | 486  | CPM_perc_Latest                                           | 720        |
| . – – – –                 |      | APATM_perc_Latest                                         | 933        |
| Market_Capitalisation     | 639  | Debtors_Vel_Days<br>Creditors Vel Days                    | 398<br>391 |
| CEPS_annualised_Unit_Curr | 602  | Inventory Vel Days                                        | 262        |
| Cash_Flow_From_Opr        | 801  | Value of Output to Total Assets                           | 150        |
| Cash_Flow_From_Inv        | 876  | Value_of_Output_to_Gross_Block                            | 481        |
| Cash_Flow_From_Fin        | 1005 | dtype: int64                                              |            |

Since the outliers are too large in the number.it will affect the model. But also given the fact that this is a financial data and the outliers might very well reflect the information which is genuine in nature. Since data captured from different size of companies

# Missing values in the dataset

| Networth Capital_Employed Total_Debt Gross_Block Net_Working_Capital Curr_Assets Curr_Liab_and_Prov Total_Assets_to_Liab Gross_Sales Net_Sales Other_Income Value_Of_Output Cost_of_Prod Selling_Cost PBIDT PBDT PBT PAT Adjusted_PAT CP | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | 0<br>0<br>0<br>0<br>0<br>0 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------|
|                                                                                                                                                                                                                                          | O Inventory_Ratio_Latest O Debtors Ratio Latest | 1<br>1                     |
|                                                                                                                                                                                                                                          | 4 Total_Asset_Turnover_Ratio_Latest             | 1                          |
| Market_Capitalisation                                                                                                                                                                                                                    | O Interest_Cover_Ratio_Latest                   | 1                          |
| CEPS_annualised_Unit_Curr                                                                                                                                                                                                                | O PBIDTM_perc_Latest                            | 1                          |
|                                                                                                                                                                                                                                          | O PBITM_perc_Latest                             | 1                          |
|                                                                                                                                                                                                                                          | 0 PBDTM_perc_Latest                             | 1                          |
|                                                                                                                                                                                                                                          | O CPM_perc_Latest                               | 1                          |
|                                                                                                                                                                                                                                          | O APATM_perc_Latest                             | 1<br>0                     |
|                                                                                                                                                                                                                                          | O Debtors_Vel_Days<br>O Creditors_Vel_Days      | 0                          |
|                                                                                                                                                                                                                                          | O Inventory Vel Days                            | 103                        |
|                                                                                                                                                                                                                                          | O Value of Output to Total Assets               | 0                          |
|                                                                                                                                                                                                                                          | O Value_of_Output_to_Gross_Block                | 0                          |
| ROG_Total_Assets_perc                                                                                                                                                                                                                    | 0 default                                       | 0                          |
| ROG_PBIDT_perc                                                                                                                                                                                                                           | Odtype: int64                                   |                            |
| — — <del>-</del>                                                                                                                                                                                                                         | 0                                               |                            |
| ROG_PBIT_perc                                                                                                                                                                                                                            | 0                                               |                            |

Size of the dataset = 233090 There are 118 missing values

Although most outliers have nan values which is a missing data which should be treated with missing data imputation method here KNN imputation method is used

Sum of the missing values = 41473

#### Visual inspect the missing values in our data



We should inspect total missing values by each row.

```
19
0
1
         34
2
         43
3
         36
         35
3581
3582
         36
3583
         34
         30
3584
3585
         36
Length: 3586, dtype: int64
```

If we consider availability of features for deciding the observations to be considered, we will end up losing more than 90% of the actual defaulters.so, Dropping columns with more than 30% missing values

Dropping variables like ROG\_Rev\_exp\_in\_forex\_perc. ROG\_Rev\_earn\_in\_forex\_perc which has more than 30% missing values

Segregate the predictors and response variables

#### **Predictors:**

All independent variables except default variable

# **Response variable**

Dependent variable - Default variable which has binary variable 0 and 1

# Scale the predictors

It can also be a good idea to scale the target variable for regression predictive modelling problems to make the problem easier to target variable with a large spread of values, in turn, may result in large error gradient values causing weight values to change dramatically, making the learning process unstable.

Scaling variables is a critical step in regression

Here StandardScaler is used for pre-processing the data. We will use the default configuration and scale values to subtract the mean to centre them on 0.0 and divide by the standard deviation to give the standard deviation of 1.0. First, a StandardScaler instance is defined with default hyperparameters.

Once defined, we can call the fit\_transform() function and pass it to our dataset to create a transformed version of our dataset.

# Imputing the missing values KNNImputer

| Manipatei                |   |                                                     |   |
|--------------------------|---|-----------------------------------------------------|---|
|                          |   | Market_Capitalisation                               | 0 |
|                          | • | CEPS_annualised_Unit_Curr                           | 0 |
| Equity_Paid_Up           | 0 | Cash_Flow_From_Opr                                  | 0 |
| Networth                 | 0 | Cash_Flow_From_Inv<br>Cash Flow From Fin            | 0 |
| Capital Employed         | 0 | ROG_Net_Worth_perc                                  | 0 |
| Total Debt               | 0 | ROG_Capital_Employed_perc                           | 0 |
| Gross Block              | 0 | ROG_Gross_Block_perc                                | 0 |
| Net_Working_Capital      | 0 | ROG_Gross_Sales_perc<br>ROG_Net_Sales_perc          | 0 |
| Curr Assets              | 0 | ROG_Cost_of_Prod_perc                               | 0 |
| <del>_</del>             | 0 | ROG_Total_Assets_perc                               | 0 |
| Curr_Liab_and_Prov       | U | ROG_PBIDT_perc                                      | 0 |
| Total Assets to Liab     | 0 | ROG_PBDT_perc                                       | 0 |
| Gross Sales              | 0 | ROG_PBIT_perc                                       | 0 |
| <del>_</del>             | 0 | ROG_PBT_perc                                        | 0 |
| Net_Sales                | 0 | ROG_PAT_perc                                        | 0 |
| Other_Income             | 0 | ROG_CP_perc                                         | 0 |
| Value Of Output          | 0 | ROG_Market_Capitalisation_perc<br>Curr Ratio Latest | 0 |
| Cost of Prod             | 0 | Fixed Assets Ratio Latest                           | 0 |
| Selling Cost             | 0 | Inventory_Ratio_Latest                              | 0 |
| PBIDT                    | 0 | Debtors_Ratio_Latest                                | 0 |
|                          | 0 | Total_Asset_Turnover_Ratio_Latest                   | 0 |
| PBDT                     | U | Interest_Cover_Ratio_Latest                         | 0 |
| PBIT                     | 0 | PBIDTM_perc_Latest PBITM perc Latest                | 0 |
| PBT                      | 0 | PBDTM_perc_Latest                                   | 0 |
| PAT                      | 0 | CPM_perc_Latest                                     | 0 |
| Adjusted PAT             | 0 | APATM_perc_Latest                                   | 0 |
| CP _                     | 0 | <pre>Debtors_Vel_Days Creditors Vel Days</pre>      | 0 |
| Rev earn in forex        | 0 | Inventory_Vel_Days                                  | 0 |
| Rev exp in forex         | 0 | Value_of_Output_to_Total_Assets                     | 0 |
| — · · — —                | 0 | Value_of_Output_to_Gross_Block<br>default           | 0 |
| Capital_exp_in_forex     | 0 | dtype: int64                                        | U |
| Book_Value_Unit_Curr     | U | deype. Incoa                                        |   |
| Book Value Adj Unit Curr | 0 |                                                     |   |

Data is scaled and pre-processed before imputing missing data using KNN Imputer. Imputation for completing missing values using k-Nearest Neighbours.

Each sample's missing values are imputed using the mean value from n\_neighbors nearest neighbours found in the training set. Two samples are close if the features that neither is missing are close.



Some of the variable is high positively correlated and some of the variables are slightly negative correlated

#### Splitting the data into train and test sets

Test Train Split - Split the data into Train and Test dataset in a ratio of 67:33 and use random\_state =42

```
The training set for the independent variables: (2402, 62) The training set for the dependent variable: (2402,) The test set for the independent variables: (1184, 62) The test set for the dependent variable: (1184,)
```

#### Model using logistic regression

Logistic regression is one of the most important models for categorical response data. It is an example of a generalized linear model whose main use is to estimate the probability that a binary response occurs based on several predictor variables.

**Recursive Feature Elimination**, or RFE for short, is a popular feature selection algorithm.

RFE is popular because it is easy to configure and use and because it is effective at selecting those features (columns) in a training dataset that are more or most relevant in predicting the target variable. RFE is a wrapper-style feature selection algorithm that also uses filter-based feature selection internally. RFE works by searching for a subset of features by starting with all features in the training dataset and successfully removing features until the desired number remains.

This is achieved by fitting the given machine learning algorithm used in the core of the model, ranking features by importance, discarding the least important features, and re-fitting the model. This process is repeated until a specified number of features remains.

#### For modelling we will use Logistic Regression with recursive feature elimination

#### Important features found by RFE

Features are selected based on rank. Here we have taken 15 features with rank 1

| Feature | Rank                        |   |
|---------|-----------------------------|---|
| 1       | Networth                    | 1 |
| 2       | Capital_Employed            | 1 |
| 4       | Gross_Block                 | 1 |
| 7       | Curr_Liab_and_Prov          | 1 |
| 8       | Total_Assets_to_Liab        | 1 |
| 12      | Value_Of_Output             | 1 |
| 13      | Cost_of_Prod                | 1 |
| 15      | PBIDT                       | 1 |
| 17      | PBIT                        | 1 |
| 25      | Book_Value_Unit_Curr        | 1 |
| 26      | Book_Value_Adj_Unit_Curr    | 1 |
| 32      | ROG_Net_Worth_perc          | 1 |
| 33      | ROG_Capital_Employed_perc   | 1 |
| 46      | Curr_Ratio_Latest           | 1 |
| 51      | Interest_Cover_Ratio_Latest | 1 |
|         |                             |   |

These 15 features are used for stats model Logistic regression model

# Fit the model to the training set

We now fit our model to the GridSearchCV for Logistic Regression model by training the model with our independent variable and dependent variables.

#### Inference

Using GridsearchCV, we input various parameters like 'max\_iter', 'penalty', solver', 'tol' which will helps us to find best grid for prediction of the better model

max\_iter is an integer (100 by default) that defines the maximum number of iterations by the solver during model fitting.

solver is a string ('liblinear' by default) that decides what solver to use for fitting the model. Other options are 'newton-cg', 'lbfgs', 'sag', and 'saga'.

Best grid: {'max iter': 1000, 'penalty': '12', 'solver': 'saga', 'tol': 1e-05}

#### Confusion matrix on the training and test data



#### Inference

Training data:

True Negative: 2132 False Positive: 25

False Negative: 87 True Positive: 158

Test data:

True Negative: 1019 False Positive: 22

False Negative: 44 True Positive: 99

#### **Classification Report of training and test data**

# **Training data**

|                                       | precision    | recall       | f1-score             | support              |
|---------------------------------------|--------------|--------------|----------------------|----------------------|
| 0.0                                   | 0.96<br>0.86 | 0.99         | 0.97<br>0.74         | 2157<br>245          |
| accuracy<br>macro avg<br>weighted avg | 0.91<br>0.95 | 0.82<br>0.95 | 0.95<br>0.86<br>0.95 | 2402<br>2402<br>2402 |

# **Test data**

|                                       | precision    | recall       | f1-score             | support              |
|---------------------------------------|--------------|--------------|----------------------|----------------------|
| 0.0<br>1.0                            | 0.96<br>0.82 | 0.98<br>0.69 | 0.97<br>0.75         | 1041<br>143          |
| accuracy<br>macro avg<br>weighted avg | 0.89<br>0.94 | 0.84         | 0.94<br>0.86<br>0.94 | 1184<br>1184<br>1184 |

#### Inference

# **Train Data:**

Accuracy: 95%precision: 86%recall: 64%

> f1 :95%

#### **Test Data:**

Accuracy: 95%precision: 82%

recall:69%

> f1:75%

# AUC and ROC for the training data and test data

AUC for the Training Data: 0.965 AUC for the Test Data: 0.966



# Stats model Logistic regression modelling

**Statsmodels** is a Python module which provides various functions for estimating different statistical models and performing statistical tests

First, we define the set of dependent( $\mathbf{y}$ ) and independent( $\mathbf{X}$ ) variables. If the dependent variable is in non-numeric form, it is first converted to numeric using dummies. The file used in the example for training the model

Statsmodels provides a **Logit()** function for performing logistic regression. The *Logit()* function a ccepts **y** and **X** as parameters and returns the *Logit* object. The model is then fitted to the data.

| Logit Regression Res | sults       |                  |            |          |          |        |        |
|----------------------|-------------|------------------|------------|----------|----------|--------|--------|
| Dep. Variable:       | C           | default <b>N</b> | lo. Observ | /ations: | 24       | 402    |        |
| Model:               |             | Logit            | Df Res     | siduals: | 23       | 386    |        |
| Method:              |             | MLE              | Df         | Model:   |          | 15     |        |
| Date:                | Tue, 10 Aug | g 2021           | Pseudo     | R-squ.:  | 0.58     | 363    |        |
| Time:                | 13          | :28:48           | Log-Like   | elihood: | -327     | .37    |        |
| converged:           |             | True             | ı          | _L-Null: | -791     | .34    |        |
| Covariance Type:     | non         | robust           | LLR p      | o-value: | 3.686e-1 | 188    |        |
|                      |             | coef             | std err    | z        | P> z     | [0.025 | 0.975] |
|                      | Intercept   | -5.2239          | 0.292      | -17.872  | 0.000    | -5.797 | -4.651 |
|                      | Networth    | -1.5555          | 0.334      | -4.664   | 0.000    | -2.209 | -0.902 |
| Capital_             | _Employed   | -0.7493          | 0.309      | -2.424   | 0.015    | -1.355 | -0.143 |
| Gr                   | oss_Block   | 0.8500           | 0.228      | 3.733    | 0.000    | 0.404  | 1.296  |
| Curr_Liab            | _and_Prov   | 0.7379           | 0.236      | 3.125    | 0.002    | 0.275  | 1.201  |
| Total_Asse           | ts_to_Liab  | 0.7680           | 0.306      | 2.509    | 0.012    | 0.168  | 1.368  |
| Value_               | Of_Output   | -1.8154          | 0.552      | -3.290   | 0.001    | -2.897 | -0.734 |
| Cos                  | st_of_Prod  | 1.6849           | 0.489      | 3.447    | 0.001    | 0.727  | 2.643  |
|                      | PBIDT       | -1.2197          | 0.257      | -4.745   | 0.000    | -1.724 | -0.716 |
|                      | PBIT        | 0.9219           | 0.251      | 3.670    | 0.000    | 0.430  | 1.414  |
| Book_Value           | _Unit_Curr  | -2.0100          | 0.544      | -3.693   | 0.000    | -3.077 | -0.943 |
| Book_Value_Adj       | _Unit_Curr  | -1.5899          | 0.539      | -2.950   | 0.003    | -2.646 | -0.533 |
| ROG_Net_V            | Vorth_perc  | -0.5607          | 0.149      | -3.768   | 0.000    | -0.852 | -0.269 |
| ROG_Capital_Empl     | oyed_perc   | 0.4830           | 0.132      | 3.672    | 0.000    | 0.225  | 0.741  |
| Curr_Ra              | atio_Latest | -1.0811          | 0.163      | -6.639   | 0.000    | -1.400 | -0.762 |
| Interest_Cover_Ra    | atio_Latest | -0.7117          | 0.167      | -4.265   | 0.000    | -1.039 | -0.385 |

#### Inference:

- The sign of a regression coefficient tells you whether there is a positive or negative correlation between each independent variable the dependent variable. A positive coefficient indicates that as the value of the independent variable increases, the mean of the dependent variable also tends to increase. A negative coefficient suggests that as the independent variable increases, the dependent variable tends to decrease.
- ➤ Gross\_Block, Curr\_Liab\_and\_Prov, Total\_Assets\_to\_Liab, Cost\_of\_Prod, ROG\_Capital\_Employed\_perc has positive coefficients. When these features increase Credit Score also increases.
- ➤ Other features have negative coefficients. When these features increases then Credit score is decreases.
- > The parameter estimates table summarizes the effect of each predictor.
- > The ratio of the coefficient to its standard error, squared, equals the Wald statistic.
- If the significance level of the Wald statistic is small (less than 0.05) then the parameter is useful to the model.
- ➤ The predictors and coefficient Values shown in the last steps are used by the procedure to make predictions.

#### Confusion matrix on the training and test data

#### **Training data**





#### **Inference**

Training data:

True Negative: 2135 False Positive: 22

False Negative: 95 True Positive: 150

Test data:

True Negative: 1022 False Positive: 19

False Negative: 45 True Positive: 98

# **Classification Report of training and test data**

# **Training data**

|                                       | precision    | recall       | f1-score             | support              |
|---------------------------------------|--------------|--------------|----------------------|----------------------|
| 0.0                                   | 0.96<br>0.87 | 0.99<br>0.61 | 0.97<br>0.72         | 2157<br>245          |
| accuracy<br>macro avg<br>weighted avg | 0.91<br>0.95 | 0.80<br>0.95 | 0.95<br>0.85<br>0.95 | 2402<br>2402<br>2402 |

# **Test data**

| support              | f1-score             | recall       | precision    |                                       |
|----------------------|----------------------|--------------|--------------|---------------------------------------|
| 1041<br>143          | 0.97<br>0.75         | 0.98<br>0.69 | 0.96<br>0.84 | 0.0                                   |
| 1184<br>1184<br>1184 | 0.95<br>0.86<br>0.94 | 0.83<br>0.95 | 0.90         | accuracy<br>macro avg<br>weighted avg |

# Inference

# **Train Data:**

> Accuracy: 95%

> precision: 87%

> recall: 61%

> f1 :72%

# **Test Data:**

> Accuracy: 95%

> precision: 84%

> recall : 69%

> f1:75%

#### 1.8 Build a Random Forest Model on Train Dataset. Also showcase your model building approach

Using Scikit\_Learn RandomisedSearchCV method, we can define a grid of hyperparameter ranges and randomly sample from the grid, performing K-Fold CV with each combination of values

# Fit the model to the training set

We now fit our model to the GridSearchCV for Random Forest model by training the model with our independent variable and dependent variables

- > n estimators = number of trees in the forest
- > max features = max number of features considered for splitting a node
- > max depth = max number of levels in each decision tree
- > min samples split = min number of data points placed in a node before the node is split
- > min samples leaf = min number of data points allowed in a leaf node

```
Best grid: {'max depth': 15,
'min_samples_leaf': 20,
 'min samples split': 100,
 'n estimators': 701}
```

# The probabilities on the training set The probabilities on the test set

#### 0 1 0.98 0.02 1 0.99 0.01 2 0.93 0.07 3 0.95 0.05 4 1.00 0.00

|   | 0    | 1    |
|---|------|------|
| 0 | 0.99 | 0.01 |
| 1 | 0.97 | 0.03 |
| 2 | 0.86 | 0.14 |
| 3 | 0.20 | 0.80 |
| 4 | 0.93 | 0.07 |

#### **Feature importance**

| IMP                               |      |                                                                                            |      |
|-----------------------------------|------|--------------------------------------------------------------------------------------------|------|
| Book Value Unit Curr              | 0.23 | Creditors Vel Days                                                                         | 0.00 |
| Networth                          | 0.21 | Curr_Liab_and_Prov                                                                         | 0.00 |
| Book Value Adj Unit Curr          | 0.17 | ROG Total Assets nerc                                                                      | 0.00 |
| Curr Ratio Latest                 | 0.06 | ROG_Total_Assets_perc<br>Selling_Cost                                                      | 0.00 |
| Capital_Employed                  | 0.05 | Value_of_Output_to_Total_Assets                                                            |      |
| PBIDT                             | 0.03 | Net Sales                                                                                  | 0.00 |
| CEPS_annualised_Unit_Curr         | 0.02 | Value Of Output                                                                            | 0.00 |
| CP – –                            | 0.02 | Cash Flow From Inv                                                                         | 0.00 |
| PBDT                              | 0.02 | Equity Paid Up                                                                             | 0.00 |
| Net Working Capital               | 0.02 | Gross_Sales                                                                                | 0.00 |
| Total_Asset_Turnover_Ratio_Latest | 0.02 | Debtors_Vel_Days                                                                           | 0.00 |
| Adjusted PAT                      | 0.02 | Market_Capitalisation                                                                      | 0.00 |
| PBIT                              | 0.01 | Inventory_Vel_Days ROG_Capital_Employed_perc ROG_Gross_Sales_perc ROG_CP_perc Other Income | 0.00 |
| Interest_Cover_Ratio_Latest       | 0.01 | ROG_Capital_Employed_perc                                                                  | 0.00 |
| PAT – – –                         | 0.01 | ROG_Gross_Sales_perc                                                                       | 0.00 |
| ROG_Net_Worth_perc                | 0.01 | ROG_CP_perc                                                                                | 0.00 |
| Total Debt                        | 0.01 |                                                                                            | 0.00 |
| <del>_</del>                      | 0.01 | ROG_Net_Sales_perc Rev_exp_in_forex                                                        | 0.00 |
| PBT                               | 0.01 | ROG PBIDT perc                                                                             | 0.00 |
| Total Assets to Liab              | 0.00 | Cash Flow From Opr                                                                         | 0.00 |
|                                   | 0.00 | Debtors_Ratio_Latest                                                                       | 0.00 |
| PBDTM perc Latest                 | 0.00 | Inventory_Ratio_Latest                                                                     | 0.00 |
| CPM perc Latest                   | 0.00 | ROG PBIT perc                                                                              | 0.00 |
| APATM perc Latest                 | 0.00 | ROG Gross Block perc                                                                       | 0.00 |
| Value of Output to Gross Block    | 0.00 | ROG_PBDT_perc                                                                              | 0.00 |
| Curr Assets                       | 0.00 | ROG_Market_Capitalisation_perc                                                             |      |
| Fixed_Assets_Ratio_Latest         | 0.00 | ROG_PAT_perc                                                                               | 0.00 |
| Gross Block                       | 0.00 | ROG_PBT_perc                                                                               | 0.00 |
| Cost of Prod                      | 0.00 | Cash_Flow_From_Fin                                                                         | 0.00 |
| ROG Cost of Prod perc             | 0.00 | Rev_earn_in_forex                                                                          | 0.00 |
| Creditors Vel Days                | 0.00 | Capital_exp_in_forex                                                                       | 0.00 |
|                                   |      |                                                                                            |      |

Book Value Unit Curr, Networth, Book Value Adj Unit Curr are most important features

# 1.9 Validate the Random Forest Model on test Dataset and state the performance matrices. Also state interpretation from the model

#### Confusion matrix on the training and test data



# Inference

Training data:

True Negative: 2143 False Positive: 14

False Negative: 59 True Positive: 186

Test data:

True Negative: 1034 False Positive: 7

False Negative : 23 True Positive : 120

# **Classification Report of training and test data**

#### **Training data**

| 5            | precision    | recall       | f1-score     | support     |
|--------------|--------------|--------------|--------------|-------------|
| 0.0<br>1.0   | 0.97<br>0.93 | 0.99<br>0.76 | 0.98<br>0.84 | 2157<br>245 |
| accuracy     |              |              | 0.97         | 2402        |
| macro avg    | 0.95         | 0.88         | 0.91         | 2402        |
| weighted avg | 0.97         | 0.97         | 0.97         | 2402        |

#### **Test Data:**

|                                       | precision    | recall       | f1-score             | support              |
|---------------------------------------|--------------|--------------|----------------------|----------------------|
| 0.0                                   | 0.98<br>0.94 | 0.99<br>0.84 | 0.99<br>0.89         | 1041<br>143          |
| accuracy<br>macro avg<br>weighted avg | 0.96<br>0.97 | 0.92<br>0.97 | 0.97<br>0.94<br>0.97 | 1184<br>1184<br>1184 |

#### **Inference**

#### **Train Data:**

> Accuracy: 97%

> precision: 93%

> recall: 76%

> f1 :84%

#### **Test Data:**

> Accuracy: 97%

> precision: 94%

> recall: 84%

> f1:89%

#### AUC and ROC for the training data and test data

AUC for the Training Data: 0.991 AUC for the Test Data: 0.988



Here, recall has increased to 84% from 76% in test data even F1 Score is also increased to 89% with precision of 94%. It is good model

# 1.10 Build a LDA Model on Train Dataset. Also showcase your model building approach

- ➤ Linear Discriminant Analysis (LDA) is a dimensionality reduction technique which is commonly used for the supervised classification problems.
- It is used for modeling differences in groups i.e., separating two or more classes. It is used to project the features in higher dimension space into a lower dimension space.
- library used in LDA is sklearn
- Using GridsearchCV, we input various parameters like 'max\_iter', 'penalty', solver', 'tol' which will he lps us to find best grid for prediction of the better model

#### The probabilities on the training set The probabilities on the test set 0 1 0 0 0.96 0.04 0.02 0.98 1 1.00 0.00 1 0.95 0.05 2 0.55 0.45 0.86 0.14 0.92 0.08 3 1.00 0.00 4 1.00 0.00 1.00 0.00

1.11 Validate the LDA Model on test Dataset and state the performance matrices. Also state interpretation from the model

# Confusion matrix on the training and test data



# **Inference**

Training data:

True Negative : 2134 False Positive : 23 False Negative : 127 True Positive : 118

Test data:

True Negative : 1024 False Positive : 17 False Negative : 78 True Positive : 65

# **Classification Report of training and test data**

|                                       | precision    | recall       | f1-score             | support              |
|---------------------------------------|--------------|--------------|----------------------|----------------------|
| 0.0<br>1.0                            | 0.94<br>0.84 | 0.99<br>0.48 | 0.97<br>0.61         | 2157<br>245          |
| accuracy<br>macro avg<br>weighted avg | 0.89<br>0.93 | 0.74<br>0.94 | 0.94<br>0.79<br>0.93 | 2402<br>2402<br>2402 |

# **Test data**

|                           | precision    | recall       | f1-score     | support      |
|---------------------------|--------------|--------------|--------------|--------------|
| 0.0                       | 0.93<br>0.79 | 0.98<br>0.45 | 0.96<br>0.58 | 1041<br>143  |
| accuracy                  | 0.86         | 0.72         | 0.92<br>0.77 | 1184<br>1184 |
| macro avg<br>weighted avg | 0.91         | 0.72         | 0.77         | 1184         |

# AUC and ROC for the training and test data

AUC for the Training Data: 0.950 AUC for the Test Data: 0.935



# **Inference**

Train Data:

➤ AUC: 95%

> Accuracy: 94%

> precision: 84%

recall :48%

> f1 :61%

Test Data:

> AUC: 93%

> Accuracy: 92%

> precision: 79%

> recall: 45%

> f1:58%

In this model recall is very low with 48%. It is not a good model

# 1.12 Compare the performances of Logistics, Radom Forest and LDA models (include ROC Curve)

| MODEL                 | DATA  | ACCURACY | PRECISION | RECALL | F1-SCORE | AUC |
|-----------------------|-------|----------|-----------|--------|----------|-----|
| RANDOM                | TRAIN | 97       | 93        | 76     | 84       | 99  |
| FOREST                | TEST  | 97       | 94        | 84     | 89       | 98  |
| LDA                   | TRAIN | 94       | 84        | 48     | 61       | 95  |
|                       | TEST  | 92       | 79        | 45     | 58       | 93  |
| LOGISTIC<br>REGRSSION | TRAIN | 95       | 86        | 64     | 95       | 96  |
| WITH RFE              | TEST  | 95       | 82        | 69     | 75       | 96  |

Random forest with grid search performed well with highest recall and good f1 score. Roc Curve shows it's not unfitting or overfitting. While comparing other models, it is observed that Random Forest is best model for credit risk analysis with accuracy of 97%.

#### **Conclusion**

Credit report analysis provides information on the credit worthiness of a potential customer The model with selected features will predict a relatively high probability of default. Next step is to integrate with classification model where defaulters further classified into "very high risk", "high risk", "medium risk", etc. Later embed these models in Web and Database Integration



# **Problem:**

#### **Market Risk**

The dataset contains 6 years of information (weekly stock information) on the stock prices of 10 different Indian Stocks. Calculate the mean and standard deviation on the stock returns and share insights.

# **Project Objective:**

The Objective of the report is to explore the Market risk dataset in Python (JUPYTER NOTEBOOK) and generate insights about the dataset. This exploration report will consist of the following:

- > Importing the dataset in jupyter notebook.
- > Understanding the structure of dataset.
- > Exploratory Data analysis
- Graphical exploration
- Calculate the mean and standard deviation on the stock returns
- Insights from the dataset

#### **Load and Explore Data**

Import the market risk data using pandas with Parse\_date. We can use the parse\_dates parameter to convince pandas to turn things into real datetime types. parse\_dates take a list of columns (since you could want to parse multiple columns into datetimes. Changing the messy column names for further analysis

| Date       | Infosys | Indian_Hotel | Mahindra_&_Mahindra | Axis_Bank | SAIL | Shree_Cement | Sun_Pharma | Jindal_Steel | Idea_Vodafone | Jet_Airways |
|------------|---------|--------------|---------------------|-----------|------|--------------|------------|--------------|---------------|-------------|
| 2014-03-31 | 264     | 69           | 455                 | 263       | 68   | 5543         | 555        | 298          | 83            | 278         |
| 2014-07-04 | 257     | 68           | 458                 | 276       | 70   | 5728         | 610        | 279          | 84            | 303         |
| 2014-04-14 | 254     | 68           | 454                 | 270       | 68   | 5649         | 607        | 279          | 83            | 280         |
| 2014-04-21 | 253     | 68           | 488                 | 283       | 68   | 5692         | 604        | 274          | 83            | 282         |
| 2014-04-28 | 256     | 65           | 482                 | 282       | 63   | 5582         | 611        | 238          | 79            | 243         |

```
The number of rows (observations) is 314 The number of columns (variables) is 10
```

#### Information of dataset

memory usage: 27.0 KB

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 314 entries, 2014-03-31 to 2020-03-30
Data columns (total 10 columns):
```

| tea coramins (cocar ro coramins). |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Column                            | Non-Null Count                                                                                                                | Dtype                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                   |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Infosys                           | 314 non-null                                                                                                                  | int64                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Indian_Hotel                      | 314 non-null                                                                                                                  | int64                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Mahindra_&_Mahindra               | 314 non-null                                                                                                                  | int64                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Axis_Bank                         | 314 non-null                                                                                                                  | int64                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| SAIL                              | 314 non-null                                                                                                                  | int64                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Shree_Cement                      | 314 non-null                                                                                                                  | int64                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Sun_Pharma                        | 314 non-null                                                                                                                  | int64                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Jindal_Steel                      | 314 non-null                                                                                                                  | int64                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Idea_Vodafone                     | 314 non-null                                                                                                                  | int64                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Jet_Airways                       | 314 non-null                                                                                                                  | int64                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| dtypes: int64(10)                 |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                                   | Column Infosys Indian_Hotel Mahindra_&_Mahindra Axis_Bank SAIL Shree_Cement Sun_Pharma Jindal_Steel Idea_Vodafone Jet_Airways | Column Infosys Indian_Hotel Mahindra_&_Mahindra Axis_Bank SAIL Shree_Cement Sun_Pharma Jindal_Steel Jida_Vodafone Jet_Airways Jindon-Null Count Ann-Null Count 314 non-null 316 non-null 316 non-null 316 non-null 317 non-null 318 non-null 319 non-null 319 non-null 319 non-null |  |  |  |  |

There are information stock prices from 10 different countries

# **Summary of the dataset**

|       | Infosys  | Indian_Hotel | Mahindra_&_Mahindra | Axis_Bank  | SAIL     | Shree_Cement | Sun_Pharma | Jindal_Steel | Idea_Vodafone | Jet_Airways |
|-------|----------|--------------|---------------------|------------|----------|--------------|------------|--------------|---------------|-------------|
| count | 314      | 314          | 314                 | 314        | 314      | 314          | 314        | 314          | 314           | 314         |
| mean  | 511.3408 | 114.56051    | 636.678344          | 540.742038 | 59.09554 | 14806.41083  | 633.468153 | 147.627389   | 53.713376     | 372.659236  |
| std   | 135.9521 | 22.509732    | 102.879975          | 115.835569 | 15.81049 | 4288.275085  | 171.855893 | 65.879195    | 31.248985     | 202.262668  |
| min   | 234      | 64           | 284                 | 263        | 21       | 5543         | 338        | 53           | 3             | 14          |
| 25%   | 424      | 96           | 572                 | 470.5      | 47       | 10952.25     | 478.5      | 88.25        | 25.25         | 243.25      |
| 50%   | 466.5    | 115          | 625                 | 528        | 57       | 16018.5      | 614        | 142.5        | 53            | 376         |
| 75%   | 630.75   | 134          | 678                 | 605.25     | 71.75    | 17773.25     | 785        | 182.75       | 82            | 534         |
| max   | 810      | 157          | 956                 | 808        | 104      | 24806        | 1089       | 338          | 117           | 871         |

#### **Inference**

- > Shree Cements have highest stock price
- > SAIL Company have low stock price

# 2.1 Draw Stock Price Graph (Stock Price vs Time) for any 2 given stocks with inference

# **Sun Pharma Stock Price graph**

Sun\_Pharma Stock Price graph



# Inference:

Although in the year 2015 Sun Pharma showed increasing stock prices, but Stock prices begin to fall from 2016 leading to downward trend

# **Mahindra & Mahindra Stock Price graph**

Mahindra\_&\_Mahindra Stock Price graph



Mahindra & Mahindra maintained Stock Price from 500 - 700 between 2014 -2018. In the beginning of 2018 stock price is reached its peek above 900 and there is steep drop in the beginning for 2020

#### 2.2 Calculate Returns for all stocks with inference

# **Analysing returns**

# steps for calculating returns from prices:

Take logarithms Take differences

| Date       | Infosys  | Indian_Hotel | Mahindra_&_Mahindra | Axis_Bank | SAIL     | Shree_Cement | Sun_Pharma | Jindal_Steel | Idea_Vodafone | Jet_Airways |
|------------|----------|--------------|---------------------|-----------|----------|--------------|------------|--------------|---------------|-------------|
| 2014-03-31 | #N/A     | #N/A         | #N/A                | #N/A      | #N/A     | #N/A         | #N/A       | #N/A         | #N/A          | #N/A        |
| 2014-07-04 | -0.02687 | -0.014599    | 0.006572            | 0.048247  | 0.028988 | 0.032831     | 0.094491   | -0.065882    | 0.011976      | 0.086112    |
| 2014-04-14 | -0.01174 | 0            | -0.008772           | -0.021979 | -0.02899 | -0.013888    | -0.00493   | 0            | -0.011976     | -0.078943   |
| 2014-04-21 | -0.00395 | 0            | 0.072218            | 0.047025  | 0        | 0.007583     | -0.004955  | -0.018084    | 0             | 0.007117    |
| 2014-04-28 | 0.011788 | -0.04512     | -0.012371           | -0.00354  | -0.07637 | -0.019515    | 0.011523   | -0.140857    | -0.049393     | -0.148846   |

#### **Distribution of stock returns**



# 2.3 Calculate Stock Means and Standard Deviation for all stocks with inference

We now look at Means & Standard Deviations of these returns

**Stock Means**: Average returns that the stock is making on a week-to-week basis

| Shree_Cement        | 0.003681  |
|---------------------|-----------|
| Infosys             | 0.002794  |
| Axis_Bank           | 0.001167  |
| Indian_Hotel        | 0.000266  |
| Sun_Pharma          | -0.001455 |
| Mahindra_&_Mahindra | -0.001506 |
| SAIL                | -0.003463 |
| Jindal_Steel        | -0.004123 |
| Jet_Airways         | -0.009548 |
| Idea_Vodafone       | -0.010608 |
| -1+                 |           |

dtype: float64

#### Inference

Idea Vodafone has the lowest returns, while Shree cements have the highest returns

**Stock Standard Deviation**: It is a measure of volatility meaning the more a stock's returns vary from the stock's average return, the more volatile the stock

| Idea_Vodafone                          | 0.104315 |
|----------------------------------------|----------|
| Jet Airways                            | 0.097972 |
| Jindal_Steel                           | 0.075108 |
| SAIL                                   | 0.062188 |
| Indian_Hotel                           | 0.047131 |
| Axis_Bank                              | 0.045828 |
| Sun_Pharma                             | 0.045033 |
| Mahindra_&_Mahindra                    | 0.040169 |
| Shree_Cement                           | 0.039917 |
| Infosys                                | 0.035070 |
| d+:::::::::::::::::::::::::::::::::::: |          |

dtype: float64

Idea Vodafone has the highest risk factor for investment, while Infosys is the least risky investment option

Creating a data frame with companies, Stock means as Average and Stock standard deviation as volatility

|                     | Average  | Volatility |
|---------------------|----------|------------|
| Infosys             | 0.002794 | 0.03507    |
| Indian_Hotel        | 0.000266 | 0.047131   |
| Mahindra_&_Mahindra | -0.00151 | 0.040169   |
| Axis_Bank           | 0.001167 | 0.045828   |
| SAIL                | -0.00346 | 0.062188   |
| Shree_Cement        | 0.003681 | 0.039917   |
| Sun_Pharma          | -0.00146 | 0.045033   |
| Jindal_Steel        | -0.00412 | 0.075108   |
| Idea_Vodafone       | -0.01061 | 0.104315   |
| Jet_Airways         | -0.00955 | 0.097972   |

#### 2.4 Draw a plot of Stock Means vs Standard Deviation and state your inference



- Stocks higher up but on the far left indicate high volatility and low returns, while the stocks on the bottom right indicate low volatility and high returns.
- During the investment, this graph is very useful in analysing the risk from different companies.

#### Conclusion

Traders and analysts use several metrics to assess the volatility and relative risk of potential investments, but the most common metric is standard deviation.

- Standard deviation helps determine market volatility or the spread of asset prices from their average price.
- When prices move wildly, standard deviation is high, meaning an investment will be risky.
- Low standard deviation means prices are calm, so investments come with low risk.

In this data we are only left few stocks:

One with highest return and lowest risk & one with lowest risk and highest return

#### **Good Returns:**

Shree Cement, Infosys & Axis Bank may have good returns

#### less Risk (as measured by standard deviation):

Infosys, Shree Cement & Mahindra & Mahindra may have low risk

#### Recommendations

We would recommend using the stock means vs standard deviation plot to assess the risk to reward ratio. The smaller the standard deviation, an investment will be the less risky. On the other hand, the larger the variance and standard deviation, the more volatile a security. While investors can assume price remains within two standard deviations of the mean 95% of the time, this can still be a very large range. As with anything else, the greater the number of possible outcomes, the greater the risk of choosing the wrong one.