Question 2:

(a)
$$O(2^n)$$

Question 3

(p)
$$O(N_s)$$

Question 4

(b)
$$O(2^n \cdot \eta^1)$$

Question 5:

a)
$$i=0$$
, $j=1$ to $n+1$ the 2^{n-d} for loop is executed $n+1$ times $i=1$, $j=2$ to $n+1$ $n+2$ times $i=n+2$, $j=n+1$ to $n+1$ 1 times

The loop body is executed at 1+2+.. + n+ times in total, and only one statement is executed by one iteration.

$$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$$
Thus the statement at the beginning: $\frac{1}{2} + 1 = \frac{1}{2} + 1 = \frac{1}{2}$

(b)
$$O\left(\frac{n(n+1)}{2}+1\right) = O(n^2)$$

Question 6:

The active operation is the for loop condition.

Number of executions of the active operation: $1+2+...+(n+1)=\frac{n(n+1)}{2}$ Cost of active operation: 1

$$O\left(\frac{n(n^2)}{2}\right) = O(n^2)$$