AMENDMENTS TO THE CLAIMS

Please amend claims 1, 7, 13, 19, and 25. This listing of claims will replace all prior versions, and listings, of claims in the application.

CLAIMS

What is claimed is:

		•								
i	1. (Currently	Amended)	A radio	frequen	cy ampli	fier that p	orovides	an electr	ical
2	power to an elec	ctrode adaj	pted to be p	laced in	contact v	vith a co	mea havi	ng a tiss	ue imped	lance,
3	comprising:									
4	a radio f	requency e	electrical ci	rcuit that	t is preca	librated e	alibratec	ł to prov	ride an ac	tual
5	power curve to	the comea	within +/-	10% of a	a desired	power cı	ırve over	an oper	ating ran	ge of
5	the tissue impedance, without feedback.									
1	2. (Original)	The radio	frequenc	y amplifi	er of cla	im 1, wh	erein sai	id radio	
2	frequency electr	rical circui	t includes a	ın transfc	ormer, a c	apacitor	, and a pi	e-load r	esistor in	parallel
3	with a patient lo	ad resistar	ice.							
			•				•			
							• •			
l	3. (Original)	The radio	frequenc	y amplifi	er of cla	im 1, wh	erein the	actual p	ower
2	curve varies bet	ween .6 to	.15 watts.							

Application No. 10/718,164 155694-0125 P008 1465455_1

ohms.

1

2

3

electrical circuit applies power to a load with an impedance that varies between 330 to 2600

(Original) The radio frequency amplifier of claim 3, wherein radio frequency

1	5. (Original) The radio frequency amplifier of claim 1, wherein said radio								
2	frequency electrical circuit generates a series of damped waveforms.								
1	6. (Original) The radio frequency amplifier of claim 1, wherein the operating range								
2	of the actual power curve has a time duration less than 1 second.								
1	7. (Currently Amended) A radio frequency amplifier that provides an electrical								
2	power to an electrode adapted to be placed in contact with a cornea having a tissue impedance,								
3	comprising:								
)	comprising.								
4	radio frequency circuit means that is precalibrated calibrated for providing an actual								
5	power curve to the cornea within +/- 10% of a desired power curve over an operating range of								
6	the tissue impedance, without feedback.								
1	8. (Original) The radio frequency amplifier of claim 7, wherein said radio								
2	frequency circuit means includes an transformer, a capacitor, and a pre-load resistor in parallel								
3	with patient load resistance.								
1	9. (Original) The radio frequency amplifier of claim 7, wherein the actual power								
2	curve varies between .6 to .15 watts.								
_	curve varies convenient to the water								
1	10. (Original) The radio frequency amplifier of claim 9, wherein radio frequency								
2	circuit means applies power to a load with an impedance that varies between 330 to 2600 ohms.								

1

2

11.

frequency circuit means generates a series of damped waveforms.

(Original) The radio frequency amplifier of claim 7, wherein said radio

(Original) The power supply of claim 7, wherein the operating range of the 1 12. 2 actual power curve has a time duration less than 1 second. (Currently Amended) A medical system that is adapted to denature a cornea 1 13. 2 having a tissue impedance, comprising: a radio frequency electrical circuit that is precalibrated ealibrated to provide an actual 3 power curve to the cornea within +/- 10% of a desired power curve over an operating range of 4 the tissue impedance, without feedback; 5 an electrode coupled to said radio frequency electrical circuit and which is placed into 6 7 contact with the cornea; and, a ground element coupled to said radio frequency electrical circuit. 8 (Original) The system of claim 13, wherein said radio frequency electrical circuit 1 14. includes a transformer, a capacitor, and a pre-load resistor in parallel with patient load resistance. 2 (Original) The system of claim 13, wherein the actual power curve varies 15. 1 2 between .6 to .15 watts. 16. (Original) The system of claim 15, wherein said radio frequency electrical circuit 1 2 applies power to a load with an impedance that varies between 330 to 2600 ohms. (Original) The system of claim 13, wherein said radio frequency electrical circuit 1 17. 2 generates a series of damped waveforms.

(Original) The system of claim 13, wherein the operating range of the actual 1 18. power curve has a time duration less than 1 second. 2. (Currently Amended) A medical system that is adapted to denature a cornea 19. 1 2 having a tissue impedance, comprising: 3 an electrode that is placed into contact with the cornea; radio frequency circuit means that is precalibrated ealibrated for providing an actual 4 power curve to said electrode and the cornea within +/- 10% of a desired power curve over an 5 6 operating range of the tissue impedance, without feedback; and, a ground element coupled to said radio frequency circuit means. 7 (Original) The system of claim 19, wherein said radio frequency circuit means 1 20. includes a transformer, a capacitor, and a pre-load resistor in parallel with patient load resistance. 2 (Original) The system of claim 19, wherein the actual power curve varies 21. 1 2 between .6 to .15 watts. 1 22. (Original) The system of claim 21, wherein radio frequency circuit means 2 applies power to a load with an impedance that varies between 330 to 2600 ohms. (Original) The system of claim 19, wherein said radio frequency circuit means 1 23. 2 generates a series of damped waveforms.

(Original) The power supply of claim 19, wherein the operating range of the 1 24. 2 actual power curve has a time duration less than 1 second. (Withdrawn) A method for correcting a vision of a cornea having a tissue 25. 1 2 impedance, comprising: applying power to the cornea with a power curve that is within +/- 10% of a desired 3 power curve over an operating range of the tissue impedance. 4 (Withdrawn) The method of claim 25, wherein the power is applied in a circular 1 26. 2 pattern about the cornea. 1 27. (Withdrawn) The method of claim 26, wherein the circular pattern has a 2 diameter between 6 to 8 millimeters. (Withdrawn) The method of claim 25, wherein a tip of the electrode is inserted 1 28. 2 into the cornea. 1 29. (Withdrawn) The method of claim 25, wherein the applied power varies between 2 .6 to .15 watts. (Withdrawn) The method of claim 25, wherein the power is applied to a load 30. 1 2 with an impedance that varies between 330 to 2600 ohms.