$Segurança\ Computacional \\ U2FsdGVkX18+VqX7cccxEsilYKuWe1BKyo/9gQ5TwCM=$

Ricardo de la Rocha Ladeira {ricardo.ladeira@ifc.edu.br}

- ► U2FsdGVkX18+VqX7cccxEsilYKuWe1BKyo/9gQ5TwCM=
- ► O que é isso?

- ► U2FsdGVkX18+VqX7cccxEsilYKuWe1BKyo/9gQ5TwCM=
- ► O que é isso?
- ▶ sh blowfish_encryption.sh
- ► sh blowfish_decryption.sh
- ► A chave é **Chave**.

► PxlB4Gr/Nc6TigOdDxWu7Q==

- PxIB4Gr/Nc6TigOdDxWu7Q==
- 1. http:
 //www.tools4noobs.com/online_tools/decrypt/
- 2. Em Key, digite Chave
- 3. Algoritmo Blowfish, Modo CBC e Base64.
- 4. No textarea, digite PxlB4Gr/Nc6TigOdDxWu7Q== e pressione Decrypt this!

ATENÇÃO! diferencia letras maiúsculas e minúsculas!

- Escrita escondida.
- Conjunto de técnicas que tornam um texto (ou uma imagem, um arquivo etc.) ilegível.
- Criptografar ou cifrar é o ato de tornar ilegível uma mensagem. O oposto, ou seja, a partir da mensagem ilegível obter-se a original, é chamado de decifragem.
- ► Técnica extremamente antiga (do tempo dos egípcios).

Por que usar?

- ► Proteção de informações.
- ► Confidencialidade nas comunicações.
 - ► E integridade?

Por que usar?

- ► Sniffers¹(farejadores) podem interceptar pacotes que trafegam na rede.
- ► E se os seus dados, tais como número do cartão de crédito, mensagens de e-mail e senhas de banco, fossem capturados e estivessem em texto claro?
- ► Será que os mais populares serviços de mensagem criptografam as conversas?

¹Exemplos: Wireshark, Microsoft Network Monitor, Capsa Packet Sniffer, NetworkMiner, SniffPass

Aplicação

- Transações bancárias.
- Armazenamento e transporte de dados confidenciais.
- Comunicação (telefonema, e-mail, chats...).
- Está presente na maioria dos serviços que utilizam protocolos criptográficos (SSL/TLS).
- Ofuscadores

Aplicação

- Usada para geração de hashes.
- Base para a existência de protocolos que implementam soluções de segurança.
- ▶ Base para a tecnologia de certificação digital.

Criptoanálise

- Em oposição à criptografia está a criptoanálise.
- Consiste na arte de descobrir o texto cifrado ou a chave para sua codificação.

- ► Hash (resumo) é uma função ou um algoritmo que transforma um conjunto de dados de tamanho variável em um conjunto de dados de tamanho fixo, sem que seja possível retornar ao valor inicial.
- Usado para verificar a integridade de arquivos.
- ► Exemplo: função MOD (%) por um número *M* fixo.

- ▶ De acordo com Kauffman (2021), quando falamos em funções de hashes criptográficos, estamos falando de funções de hash que tenham as seguintes propriedades:
 - Fácil de computar o valor do hash para qualquer mensagem.
 - Inviável de gerar uma mensagem que tenha um determinado hash.
 - Inviável de modificar a mensagem sem modificar o *hash*.
 - Inviável encontrar duas mensagens diferentes com o mesmo hash.
- ▶ O hash deve ser resistente contra:
 - Colisões (duas mensagens diferentes gerando o mesmo *hash*).
 - Resistência à pré-imagem: dado um *hash*, deve ser difícil encontrar uma mensagem que possa ser resumida neste *hash*.
 - Resistência a segundas pré-imagens: dado m, é inviável encontrar m' ($m' \neq m$) tal que hash(m) = hash(m').

- ► Hashes criptográficos costumam ser utilizados para armazenamento de dados sensíveis em Bancos de Dados.
- ▶ A ideia é que, caso o BD seja acessado indevidamente, a tarefa de obter os dados em texto claro seja dolorosa para o invasor. Nesse caso o hash serve como uma contenção de danos.

- ► Algoritmos conhecidos:
 - ► MD4
 - ► MD5
 - ► SHA
 - ► Whirlpool

Hash

► Exemplos de uso:
 echo ''sdsdsdsdsdsdsdsdsdsdsdsds'' | md5sum
 echo ''sdsdsdsdsdsdsdsdsdsdsdsds'' | md5sum
 echo -n ''sdsdsdsdsdsdsdsdsdsdsdsds'' | md5sum
 echo -n ''sdsdsdsdsdsdsdsdsdsdsdsds'' | md5sum

► A resposta foi a mesma?

- ► Arquivos diferentes: diff message1.bin message2.bin
- Colisão no hash com MD5: md5sum message1.bin message2.bin
- ► Sem colisão com SHA256: sha256sum message1.bin message2.bin

- Arquivos diferentes: diff shattered-1.pdf shattered-2.pdf
- ► Colisão no hash com SHA1: sha1sum shattered-1.pdf shattered-2.pdf
- ► Sem colisão com SHA256: sha256sum shattered-1.pdf shattered-2.pdf

```
Segurança Computacional
Criptografia
Hash
```

Hash

Figura: Exemplo de hash.

Fonte: Source Forge, 2016.

Cifra de César

► Uma das primeiras formas de cifragem que se tem conhecimento é a Cifra de César.

Cifra de César

- Consistia em escrever uma mensagem com as letras do alfabeto três casas acima.
- ► Exemplo: IFC → LIF.
- Interceptamos o texto abaixo e sabemos que ele foi codificado com a Cifra de César. Qual é a mensagem original? HVWDPRV QR ODERUDWRULR GR LIF DSUHQGHQGR VREUH D FLIUD GH FHVDU!

Cifra de César

- ► Resposta:
- > echo HVWDPRV QR ODERUDWRULR GR LIF
 DSUHQGHQGR VREUH D FLIUD GH FHVDU!
 caesar
 - ► Ferramenta caesar (pacote bsdgames)

Suponha que você dispõe de uma máquina que só consegue testar 15 chaves por segundo. Em até quanto tempo ele obterá a mensagem original de um texto com 1024 caracteres criptografado com a Cifra de César? Despreze os tempos de leitura e escrita.

- Este tipo de criptografia, no entanto, é muito simples. Existem métodos mais sofisticados e que podem fazer com que bilhões de anos sejam necessários para decifrar uma mensagem.
- ▶ Filme sobre o assunto: O jogo da imitação. Mostra a importância da criptografia, mudando os rumos da Segunda Guerra Mundial.

- ► Se interceptamos a mensagem "LIF" e sabemos que ela está criptografada, o que mais precisamos saber?
- ▶ E se a mensagem fosse MHG? Se fosse uma espécie de variação da Cifra de César, onde uma letra fica 4 posições à frente no alfabeto, mas a letra seguinte fica 2 posições, depois novamente 4 posições e assim por diante?

- ▶ **Obter a chave** é importante para o processo de decifragem, ou seja, saber como descobrir o significado de qualquer mensagem criptografada. A chave tem papel semelhante ao de uma senha.
- No caso da Cifra de César, a chave é saber que o texto cifrado contém caracteres 3 posições à frente do caractere original. Sabendo isto, toda mensagem pode ser decifrada.

- Existem várias classificações para criptografia. A que nos interessa é a classificação entre simétrica e assimétrica.
- ► Simétrica: mais rápida.
- Assimétrica: mais segura.

- A criptografia simétrica utiliza a mesma chave para os processos de cifragem e decifragem.
- ► A Cifra de César é um exemplo de criptografia simétrica. Basta saber que um caractere deve ser substituído por outro três posições à frente para cifrar que, automaticamente, sabe-se que, a partir da mensagem cifrada, obtém-se o caractere original substituindo o caractere da mensagem criptografada por outro três posições para trás no alfabeto.

Criptografia Simétrica

Pense na fechadura da porta. Em geral, a chave que tranca é a mesma que destranca.

- Este tipo de criptografia é rápido, já que os procedimentos para cifragem e decifragem envolvem o mesmo algoritmo.
- Problema: para cada comunicação é necessário gerar uma chave diferente.
 - > Comunicação(A, B) = Chave 3
 - > Comunicação(A, C) = Chave 4
 - > Comunicação(A, N) = Chave 5
 - ...
 - > Comunicação(A, Z) = Chave 3 (!!!!) # Z poderia ler as mensagens destinadas a B e vice-versa, comprometendo a confidencialidade das informações.

- ▶ O problema é que para cada comunicação é necessário gerar uma chave diferente.
- No exemplo dado, estamos falando de 4 linhas de comunicação. Imagine um ambiente onde milhões de usuários precisam trocar informações seguras (exemplo: Internet).

- O que acontece se uma chave diferente for utilizada?
- ► Teste em http://www.tools4noobs.com/online_tools/decrypt/ ou nos arquivos do Blowfish.

- ► A Cifra de César é considerada uma cifra de substituição.
- Neste caso, uma cifra de substituição monoalfabética que obedece uma relação de ordem.

Criptografia Simétrica

Tabela: Exemplo de Cifragem com Substituição Monoalfabética.

Original	Α	В	С	D	Е	 Z
Chave	R	X	F	S	Ζ	 Q

ightharpoonup Mensagem: BECA ightharpoonup XZFR.

- ► Sem relação de ordem, a quantidade de chaves testadas é maior.
- Uma tabela de frequência ajuda a decifrar a mensagem.

- Na cifra de substituição polialfabética, símbolos são mapeados em múltiplos alfabetos (tabula recta).
- ▶ A Cifra de Vigenère é um exemplo.

Segurança Computacional
Criptografia
Criptografia Simétrica

Criptografia

Criptografia Simétrica

Texto Claro: MICHIGAN TECHNOLOGICAL UNIVERSITY. Chave: HOUGHTON.

Fonte: Michigan Technological University, 2016.

- MICHIGAN TECHNOLOGICAL UNIVERSITY (texto claro)
- ► HOUGHTON HOUGHTONHOUGH TONHOUGHTO (chave)
- TWWNPZOA ASWNUHZBNWWGS NBVCSLYPMM (texto cifrado)

Segurança Computacional
Criptografia
Criptografia Simétrica

Criptografia

Criptografia Simétrica

Decifre: ORC QCJR. Chave: GRUPO.

	Α	В	C	D	E	F	G	Н	Ι	J	K	L	M	N	0	P	Q	R	S	Т	U	٧	W	Х	Y	Z
A[Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	P	Q	R	S	T	U	V	W	Х	Y	Z
B	В	С	D	Е	F	G	н	I	J	К	L	М	N	0	P	Q	R	s	Т	U	V	W	Х	Y	Z	A
C[С	D	Е	F	G	Н	1	J	K	L	М	N	0	P	Q	R	S	Т	U	v	W	Х	Y	Z	A	В
D[D	Е	F	G	Н	I	J	К	L	М	N	0	P	Q	R	s	Т	U	V	W	Х	Y	Z	A	В	С
E[Е	F	G	Н	I	J	K	L	М	N	0	P	Q	R	s	T	U	V	W	Х	Y	Z	A	В	С	D
F	F	G	Н	I	J	K	L	M	N	0	P	Q	R	s	T	U	V	W	Х	Y	Z	A	В	С	D	Е
G[G	Н	I	J	K	L	М	N	0	P	Q	R	s	Т	U	٧	W	Х	Y	Z	A	В	С	D	Е	F
H	н	I	J	K	L	M	N	0	P	Q	R	S	Т	U	٧	W	Х	Y	Z	А	В	С	D	Е	F	G
I[I	J	К	L	М	N	0	P	Q	R	s	T	U	V	W	Х	Y	Z	Α	В	C	D	E	F	G	Н
J	J	K	L	М	N	0	P	Q	R	s	Т	U	V	W	Х	Y	Z	А	В	С	D	E	F	G	н	I
K[K	L	М	N	0	P	Q	R	S	Т	U	V	W	Х	Y	Z	A	В	С	D	E	F	G	Н	1	J
T[L	М	N	0	P	Q	R	s	Т	U	V	W	х	Y	Z	А	В	С	D	Ε	F	G	н	I	J	К
M[М	N	0	P	Q	R	s	Т	U	v	W	х	Y	Z	А	В	С	D	Е	F	G	н	I	J	К	L
И[N	0	P	Q	R	S	Т	U	v	W	Х	Y	Z	Α	В	С	D	E	F	G	н	I	J	K	L	М
0	0	P	Q	R	s	T	U	٧	W	X	Y	Z	А	В	С	D	Е	F	G	н	I	J	К	L	М	N
Ρ[P	Q	R	s	Т	U	v	W	Х	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
Q[Q	R	s	Т	U	v	W	Х	Y	Z	A	В	С	D	Е	F	G	н	I	J	К	L	М	N	0	P
R[R	s	T	U	V	W	Х	Y	Z	A	В	С	D	Е	F	G	Н	I	J	К	L	М	N	0	P	Q
S	\$	T	U	٧	W	Х	Y	Z	A	В	С	D	Е	F	G	Н	I	J	К	L	М	N	0	P	Q	R
T	T	U	٧	W	Х	Y	Z	A	В	C	D	E	F	G	н	I	J	К	L	М	N	0	P	Q	R	s
U[Ų	٧	W	Х	Y	Z	A	В	С	D	Е	F	G	н	I	J	К	L	M	N	0	P	Q	R	s	Т
V	٧	W	х	Y	z	A	В	С	D	E	F	G	н	1	J	К	L	М	N	0	P	Q	R	s	T	U
W[W	Х	Y	Z	A	В	С	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	Т	U	٧
X[Х	Y	Z	A	В	С	D	E	F	G	н	I	J	к	L	М	N	0	P	Q	R	s	Т	U	v	W
Υſ	Y	Z	A	В	С	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	т	U	v	W	Х
Z	Z	А	В	С	D	Е	F	G	н	I	J	К	L	М	N	0	P	Q	R	s	т	U	v	W	х	Y

Fonte: Michigan Technological University, 2016.

- Outros métodos
 - Transposição alfabética
 - Substituição por código

- A criptografia assimétrica, também chamada de criptografia de chave pública, utiliza os conceitos de chave pública e chave privada.
- Aqui, a chave que cifra não é a mesma que decifra!
- Pense em um tipo novo e mais moderno de fechadura. A chave que tranca não é a mesma que destranca!

- A criptografia assimétrica não possui o problema da distribuição de chaves, apresentado pela criptografia de chave simétrica.
- Aqui, a chave pública é distribuída livremente, não é necessária uma chave para cada comunicação!
- ► A desvantagem é o custo, pois, normalmente, possui chaves maiores e seus algoritmos são mais complexos, sendo mais lento criptografar de forma assimétrica.

- ► A chave pública é distribuída livremente.
- ► A chave privada não é distribuída, deve ser mantida em segredo pelo seu dono.

- Um exemplo de algoritmo de chave assimétrica é o PGP (Pretty Good Privacy – Privacidade muito boa).
- ▶ Utilizada para assinatura digital, cifragem e decifragem de textos, e-mails (hushmail), arquivos...

- ► Entre em https://onlinepgp.com/ e gere suas chaves:
 - Clique em CREATING NEW PGP KEYS PAIR.
 - Preencha as informações.
 - Clique em GENERATE NEW PGP KEYS PAIR.
- Utilize a chave pública e escreva uma mensagem a ser criptografada.
 - ► Clique em ENCRYPTION/DECRYPTION PGP MESSAGE.
 - Na seção ENCRYPTION, insira a chave pública e o texto a ser cifrado.
 - Clique em ENCRYPT TEXT.
- ► Utilize a mensagem cifrada e a chave privada para obter a mensagem original.
 - Clique em ENCRYPTION/DECRYPTION PGP MESSAGE.
 - Na seção DECRYPTION, insira a chave privada, a senha e o texto cifrado.
 - Clique em DECRYPT TEXT e o texto original aparecerá.

Criptografia Assimétrica – Exercício

- ▶ Utilizando a página citada (https://onlinepgp.com/), gere seu par de chaves e envie para o(a) seu(sua) colega do lado a sua chave pública. O(A) colega deverá criar uma mensagem e criptografá-la utilizando sua chave pública. A mensagem criptografada deve ser enviada a você. Utilizando sua chave privada, descubra qual era a mensagem.
- Outras opções caso a página esteja indisponível:
 - http://www.2pih.com/pgp.html
 - https://youritmate.us/pgp/
 - https://webencrypt.org/openpgpjs/
 - ▶ https://aliceandbob.io/online-pgp-tool
 - https://8gwifi.org/pgpencdec.jsp
 - https://codref.org/tools/pgp/
 - https://pgptool.org/

- ► AxCrypt
- miniLock
- ► Safe House Explorer USB Disk Encryption
- ► Ccrypt

- Ccrypt.
- ► Ferramenta para criptografar e descriptografar arquivos e pastas.
- ▶ Disponível para Linux (apt-get install ccrypt).

- ccrypt "/home/usuario/Termo.pdf"
- ► Coloca-se uma senha (chave) para criptografar o arquivo.
- ▶ O arquivo recebe a extensão .cpt.

- ccdecrypt "/home/usuario/Termo.pdf.cpt"
- Exige a senha para decifrar o arquivo e obter novamente o original.

- ccdecrypt "/home/usuario/Termo.pdf.cpt"
- Exige a senha para decifrar o arquivo e obter novamente o original.
- Que tipo de criptografia é essa que usa a mesma chave para cifrar e decifrar?

Exercícios

Leitura

- Ler a matéria abaixo:
- ► 5 DICAS DE EDWARD SNOWDEN PARA PROTEGER SUA PRIVACIDADE NA INTERNET

Concluindo

- A criptografia é importante para a segurança das informações.
- ▶ Possibilita o uso de hashes, criação de protocolos seguros, assinatura digital...
- "Criptografia é a melhor defesa contra as trevas" (SNOW-DEN, Edward)

Referências e Sugestões de Leituras

- https://cloud101.eu/
 about-secure-password-hashing-86e8e8ff338e
- www.tecmundo.com.br/seguranca/
 1795-confira-programas-para-criptografar-arquivos.htm
- https://exame.com/tecnologia/ criptografia-e-a-melhor-defesa-contra-as-trevas-diz-snowden
 - https://cartilha.cert.br/

$Segurança\ Computacional \\ U2FsdGVkX18+VqX7cccxEsilYKuWe1BKyo/9gQ5TwCM=$

Ricardo de la Rocha Ladeira {ricardo.ladeira@ifc.edu.br}

