Package 'GRIDCOPULA'

April 5, 2024

Type Package
Title Bivariate Copula Functions Based on Regular Grid
Description Estimates grid type bivariate copula functions, calculates some association measures and provides several copula graphics.
Version 1.0.1
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.1
Imports Rsolnp, fields, limSolve, ggplot2, pracma, reshape2, evmix
NeedsCompilation no
Author Rogelio Salinas Gutiérrez [aut, cre, cph] (https://orcid.org/0000-0002-1669-4460), Angélica Hernández Quintero [aut, cph] (https://orcid.org/0009-0000-0400-1244), Pedro Abraham Montoya Calzada [aut, cph]
Maintainer Rogelio Salinas Gutiérrez <rsalinas@correo.uaa.mx></rsalinas@correo.uaa.mx>
Repository CRAN
Date/Publication 2024-04-05 15:23:09 UTC
2440/2 43444404
R topics documented:
aic.grid 2 bic.grid 3 contour_grid 3 contour_image_grid 5 d.grid 6 data.grid 7 estimate.gridCopula 8 image_color_grid 9 measures.grid 10 mosaic.grid 11 p.grid 12

aic.grid

perspective.grid	1
r.grid	4

Index 16

aic.grid Calculates the Akaike Information Criterion "AIC" of a grid type cop-

Description

This function receives a grid type copula as a parameter and returns the value of the AIC.

Usage

```
aic.grid(gc)
```

Arguments

gc

a grid type copula object.

Value

Returns a number with the AIC of a grid type copula.

```
# Generating simulated data with a transformation to the copula domain n <- 500 x <- rgamma(n,4,1/2) e <- rnorm(n,0,.3) y <- \sin(x+e) Fx <- ecdf(x) Fy <- ecdf(y) u <- Fx(x) v <- Fy(y) df <- cbind(u,v) copula.grid <- ecdf(u,v) copula.grid <- ecdf(u,v) estimate.gridCopula(U = ecdf(u,v) transformation is not mandatory copula.grid <- ecdf(u,v) estimate.gridCopula(X = ecdf(u,v) transformation is not mandatory copula.grid <- ecdf(u,v) estimate.gridCopula(X = ecdf(u,v) transformation is not mandatory copula.grid <- ecdf(u,v) estimate.gridCopula(X = ecdf(u,v) transformation is not mandatory copula.grid (copula.grid)
```

bic.grid 3

bic.grid

Calculates the Bayesian Information "BIC" of a grid type copula

Description

This function receives a grid type copula as a parameter and returns the value of the BIC.

Usage

```
bic.grid(gc)
```

Arguments

gc

a grid type copula object.

Value

Returns a number with the BIC of a grid type copula.

Examples

```
# Generating simulated data with a transformation to the copula domain n <- 500  
x <- rgamma(n,4,1/2)  
e <- rnorm(n,0,.3)  
y <- \sin(x+e)  
Fx <- \gcd(x)  
Fy <- \gcd(y)  
u <- Fx(x)  
v <- Fy(y)  
df <- \gcd(u,v)  
copula.grid <- \gcd(u,v)  
copula.grid <- \gcd(u,v)  
# Using the Iris dataset, transformation is not mandatory  
copula.grid <- \gcd(u,v)  
copula.grid <- \gcd(u,v)  
copula.grid <- \gcd(u,v)  
# Using the Iris dataset, transformation is not mandatory  
copula.grid <- \gcd(u,v)  
copula.grid <- \gcd(u,v)  
# Using the Iris dataset, transformation is not mandatory  
copula.grid <- \gcd(u,v)  
copula.grid (copula.grid)
```

 ${\tt contour_grid}$

Draws the density / distribution function of a grid copula with contours and colors

Description

Draws the density / distribution function of a grid copula with contours and colors

4 contour_grid

Usage

```
contour_grid(gc,
FUN = "d.grid",
color.name = "none",
color.size = 7,
show.points = FALSE,
copula.domain = TRUE,
normal.marginal = TRUE)
```

Arguments

gc a grid type copula object.

FUN the name of the function to be applied (d.grid for density, p.grid for distribution),

default is 'd.grid'.

color.name indicates the palette of colors color.size indicates the number of colors.

show.points a logical value indicating if the data must be showed or not, default is FALSE.

copula. domain Indicates whether it is going to be graphed in the domain of the copulas U(0,1)

or in the domain of the original of the variables.

normal.marginal

Indicates whether the marginals should be taken as normal distributions. The default value is TRUE, otherwise the gaussian kernel is used as marginal distribution. This argument is neccesary only if the argument copula.domain is FALSE.

Value

Returns a graph of the density / distribution.

```
n <- 500
x < - rgamma(n, 4, 1/2)
e <- rnorm(n,0,.3)
y <- \sin(x+e)
Fx \leftarrow ecdf(x)
Fy <- ecdf(y)
u \leftarrow Fx(x)
v \leftarrow Fy(y)
df <- cbind(u,v)</pre>
k <- 10
m < -10
copula.grid <- estimate.gridCopula(U = df, k = k, m = m , method = "ml")</pre>
contour_grid(gc = copula.grid, FUN = 'd.grid', color.name = "rainbow")
contour_grid(gc = copula.grid, FUN = 'p.grid', color.name = "rainbow")
#Iris
copula.grid <- estimate.gridCopula(X = iris[,1:2], k = k, m = m , method = "ls")</pre>
```

contour_image_grid 5

```
contour_grid(gc = copula.grid, FUN = 'd.grid', color.name= "rainbow",
color.size = 10, copula.domain=FALSE)
contour_grid(gc = copula.grid, FUN = 'p.grid', color.name = "rainbow",
color.size = 10, copula.domain=FALSE)
```

contour_image_grid

Draws the density / distribution function of a grid copula with contours and colors

Description

Draws the density / distribution function of a grid copula with contours and colors

Usage

```
contour_image_grid(
   gc,
   FUN = "p.grid",
   u1 = seq(0, 1, length.out = 100),
   u2 = seq(0, 1, length.out = 100),
   color.name = "heat.colors",
   color.size = 40
)
```

Arguments

```
gc a grid type copula object. 

FUN the name of the function to be applied (d.grid, p.grid), default is 'p.grid'. 

u1 indicates the place for lines on axis u_1. 

u2 indicates the place for lines on axis u_2. 

color.name indicates the palette of colors. 

color.size indicates the number of colors.
```

Value

Returns a graph of the density / distribution.

```
n <- 500
x <- rgamma(n,4,1/2)
e <- rnorm(n,0,.3)
y <- sin(x+e)
Fx <- ecdf(x)
Fy <- ecdf(y)
u <- Fx(x)
v <- Fy(y)</pre>
```

6 d.grid

```
df <- cbind(u,v)
k <- 10
m <- 10
copula.grid <- estimate.gridCopula(U = df, k = k, m = m , method = "ls")
contour_image_grid(gc = copula.grid, FUN = 'd.grid', color.name= "rainbow", color.size = 10)
contour_image_grid(gc = copula.grid, FUN = 'p.grid', color.name = "rainbow", color.size = 10)
#Iris
copula.grid <- estimate.gridCopula(X = iris[,1:2], k = k, m = m , method = "ls")
contour_image_grid(gc = copula.grid, FUN = 'd.grid', color.name= "rainbow", color.size = 10)
contour_image_grid(gc = copula.grid, FUN = 'p.grid', color.name = "rainbow", color.size = 10)</pre>
```

d.grid

Evaluates the density of a grid type copula

Description

Returns the corresponding density values of a grid type copula.

Usage

```
d.grid(U, V = NULL, gc)
```

Arguments

U a matrix of size nx2 with the observed values. It can also be a vector of size kx1 with the values of the U_1 variable.

V optional, a vector of size kx1 with the values of the U_2 variable.

gc a grid type copula object.

Value

Returns a vector with the corresponding density.

```
# Generating simulated data with a transformation to the copula domain n <- 500 x <- rgamma(n,4,1/2) e <- rnorm(n,0,.3) y <- \sin(x+e) Fx <- ecdf(x) Fy <- ecdf(y) u <- Fx(x) v <- Fy(y) df <- cbind(u,v) copula.grid <- ecdf(u,v) copula.grid <- ecdf(u,v) copula.grid (- ecdf(u,v)
```

data.grid 7

```
# Using the Iris dataset, transformation is not mandatory
copula.grid <- estimate.gridCopula(X = iris[,1:2], k = 3, m = 7 , method = "ml")
d.grid(copula.grid$U,gc=copula.grid)</pre>
```

data.grid

Draws the scatter plot of bivariate data in the unit square

Description

Draws the scatter plot of bivariate data in the unit square

Usage

```
data.grid(U, draw.lines = TRUE, k = 4, m = 4)
```

Arguments

U matrix of size kx2 with the values of both variables. draw.lines draws lines inside the unit square or not. k positive integer indicating the number of subintervals for the U_2 variable. m positive integer indicating the number of subintervals for the U_1 variable.

Value

Returns a scatter plot of bivariate data in the unit square.

```
n <- 500
x <- rgamma(n,4,1/2)
e <- rnorm(n,0,.3)
y <- sin(x+e)
Fx <- ecdf(x)
Fy <- ecdf(y)
u <- Fx(x)
v <- Fy(y)
df <- cbind(u,v)
k <- 10
m <- 10
data.grid(U=df, draw.lines = FALSE, k = k, m = m)
data.grid(U=df, draw.lines = TRUE, k = k, m = m)</pre>
```

8 estimate.gridCopula

Description

This function estimates grid type copulas by one of the following methods: maximum likelihood or least squares (See reference).

Usage

```
estimate.gridCopula(
  X = NULL,
  U = NULL,
  k = NULL,
  m = NULL,
  method = "ml",
  D.ini = NULL,
  criterion = "AIC"
)
```

Arguments

X	a matrix of size $nx2$ with the observed values in any domain, optional if U is provided.
U	a matrix of size $nx2$ with the observed values in the copula domain, optional if X is provided.
k	a positive integer indicating the number of subintervals for the \mathcal{U}_2 variable.
m	a positive integer indicating the number of subintervals for the U_1 variable.
method	the selected method for estimation, can be least squares "ls" or maximum likelihood "ml". By default "ml".
D.ini	an optional matrix with initial density values for the estimation through maximum likelihood.
criterion	If the values of k and m are not specified, they will be obtained by the "AIC" or "BIC" criteria, by default "AIC".

Value

Returns a list with a matrix with the density over the grid, a matrix with the quantity of data over the grid, the number of subintervals for the U_2 variable, the number of subintervals for the U_1 variable, a matrix with the values of u_1 and u_2 in the copula domain and a matrix with the original values X.

References

Pfeifer, D., Strassburger, D., & Philipps, J. (2020). Modelling and simulation of dependence structures in nonlife insurance with Bernstein copulas. *arXiv*. Retrieved from https://arxiv.org/abs/2010.15709

image_color_grid 9

Examples

```
# Generating simulated data with a transformation to the copula domain n <-500 x <- \operatorname{rgamma}(n,4,1/2) e <- \operatorname{rnorm}(n,0,.3) y <- \sin(x+e) Fx <- \operatorname{ecdf}(x) Fy <- \operatorname{ecdf}(y) u <- Fx(x) v <- Fy(y) df <- \operatorname{cbind}(u,v) df <- \operatorname{cbind}(u,v) df <- \operatorname{cbind}(u,v) df <- \operatorname{copula.grid}(u,v) df <-
```

image_color_grid

Draws the density of a grid copula with colors

Description

Draws the density of a grid copula with colors

Usage

```
image_color_grid(gc, color.name = "heat.colors", color.size = 7)
```

Arguments

gc a grid type copula object.

color.name indicates the palette of colors.

color.size indicates the number of colors.

Value

Returns a graph of the density.

```
n <- 500
x <- rgamma(n,4,1/2)
e <- rnorm(n,0,.3)
y <- sin(x+e)
Fx <- ecdf(x)
Fy <- ecdf(y)
u <- Fx(x)</pre>
```

10 measures.grid

```
v <- Fy(y)
df <- cbind(u,v)
k <- 10
m <- 10
copula.grid <- estimate.gridCopula(U = df, k = k, m = m , method = "ml")
image_color_grid(gc = copula.grid, color.name = "rainbow", color.size = 10)
#Iris
copula.grid <- estimate.gridCopula(X = iris[,1:2], k = k, m = m , method = "ml")
image_color_grid(gc = copula.grid, color.name = "rainbow", color.size = 10)</pre>
```

measures.grid

Returns dependency measures for a grid type copula

Description

Returns dependency measures for a grid type copula

Usage

```
measures.grid(gc, measures = "all")
```

Arguments

```
gc a grid type copula object.

measures A vector of the measurements to calculate: "gini", "blomqvist", "tail_U", "tail_L", "rho", "tau", "mi", by default "all".
```

Details

```
"tau" Kendall's \tau, see Nelsen (2007). 
"rho" Spearman's \rho, see Nelsen (2007). 
"blomqvist" Blomqvist's \beta; computed as 4C(0.5,0.5)-1, see Nelsen (2007). 
"gini" Gini's \gamma, see Nelsen (2007). 
"mi" Mutual information, see Joe (1989). 
"tail_U/tail_L" Tail dependency, see Nelsen (2007).
```

Value

A list with dependence measures

References

Nelsen, R. (2007). An introduction to copulas. Springer Science & Business Media.

Joe, H. (1989). Relative Entropy Measures of Multivariate Dependence. Journal of the American Statistical Association.

mosaic.grid 11

Examples

```
# Generating simulated data with a transformation to the copula domain
n <- 500
x < - rgamma(n, 4, 1/2)
e \leftarrow rnorm(n,0,.3)
y <- sin(x+e)
Fx \leftarrow ecdf(x)
Fy <- ecdf(y)
u \leftarrow Fx(x)
v \leftarrow Fy(y)
df <- cbind(u,v)</pre>
copula.grid <- estimate.gridCopula(U = df, k = 5, m = 4 , method = "ml")</pre>
measures.grid(copula.grid)
measures.grid(copula.grid, measures = c("rho","tau","mi"))
# Using the Iris dataset, transformation is not mandatory
copula.grid <- estimate.gridCopula(X = iris[,1:2], k = 3, m = 7 , method = "ml")</pre>
measures.grid(copula.grid, measures = c("gini", "blomqvist", "tail\_U", "tail\_L", "rho"))
```

mosaic.grid

Draws the density of a grid copula with mosaics

Description

Draws the density of a grid copula with mosaics

Usage

```
mosaic.grid(gc, number.size = 5)
```

Arguments

gc a grid type copula object. number.size indicates the size of numbers.

Value

Returns a graph.

```
n <- 500
x <- rgamma(n,4,1/2)
e <- rnorm(n,0,.3)
y <- sin(x+e)
Fx <- ecdf(x)
Fy <- ecdf(y)
u <- Fx(x)
v <- Fy(y)</pre>
```

p.grid

```
df <- cbind(u,v)
k <- 10
m <- 10
copula.grid <- estimate.gridCopula(U = df, k = k, m = m , method = "ml")
mosaic.grid(gc = copula.grid, number.size = 5)
#Iris
copula.grid <- estimate.gridCopula(X = iris[,1:2], k = k, m = m , method = "ml")
mosaic.grid(gc = copula.grid, number.size = 5)</pre>
```

p.grid

Evaluates the distribution function of a grid type copula

Description

Returns the corresponding distribution function values.

Usage

```
p.grid(U, V = NULL, gc)
```

Arguments

U a matrix of size nx2 with the observed values. It can also be a vector of size kx1 with the values of the U_1 variable.

V optional, a vector of size kx1 with the values of the U_2 variable.

gc a grid type copula object.

Value

Returns a vector with the corresponding distribution.

```
# Generating simulated data with a transformation to the copula domain
n <- 500
x <- rgamma(n,4,1/2)
e <- rnorm(n,0,.3)
y <- sin(x+e)
Fx <- ecdf(x)
Fy <- ecdf(y)
u <- Fx(x)
v <- Fy(y)
df <- cbind(u,v)
copula.grid <- estimate.gridCopula(U = df, k = 5, m = 4 , method = "ml")
p.grid(df,gc=copula.grid)

# Using the Iris dataset, transformation is not mandatory
copula.grid <- estimate.gridCopula(X = iris[,1:2], k = 3, m = 7 , method = "ml")
p.grid(copula.grid$U,gc=copula.grid)</pre>
```

perspective.grid 13

perspective.grid	Draws the density / distribution function of a grid copula with perspective
------------------	---

Description

Draws the density / distribution function of a grid copula with perspective

Usage

```
perspective.grid(
   gc,
   FUN = "d.grid",
   u1 = seq(0, 1, length.out = 21),
   u2 = seq(0, 1, length.out = 21),
   ang.theta = -30,
   ang.phi = 25,
   distancia = 10
)
```

Arguments

```
gc a grid type copula object. FUN the name of the function to be applied (d.grid, p.grid), default is 'd.grid'. u1 indicates the place for lines on axis u_1. u2 indicates the place for lines on axis u_2. ang. theta angle for the azimuthal direction. ang. phi angle for the colatitude. distancia the distance of the eyepoint from the centre of the box.
```

Value

Returns a graph of the density / distribution.

```
n <- 500
x <- rgamma(n,4,1/2)
e <- rnorm(n,0,.3)
y <- sin(x+e)
Fx <- ecdf(x)
Fy <- ecdf(y)
u <- Fx(x)
v <- Fy(y)
df <- cbind(u,v)
k <- 10</pre>
```

14 r.grid

```
m <- 10
copula.grid <- estimate.gridCopula(U = df, k = k, m = m , method = "ml")
perspective.grid(gc = copula.grid, ang.theta = 90 , ang.phi = 80, distancia = 3)
perspective.grid(gc = copula.grid, FUN = "p.grid")

#Iris
copula.grid <- estimate.gridCopula(X = iris[,1:2], k = k, m = m , method = "ml")
perspective.grid(gc = copula.grid, ang.theta = 90 , ang.phi = 80, distancia = 3)
perspective.grid(gc = copula.grid, FUN = "p.grid")</pre>
```

r.grid

Generates a random sample from a grid type copula

Description

Generates a random sample from a grid type copula

Usage

```
r.grid(n, gc)
```

Arguments

n an integer number indicating the size of the sample.

gc a grid type copula object.

Value

Returns a matrix of size nx2 with the random sample.

```
# Generating simulated data with a transformation to the copula domain
n <- 500
x < - rgamma(n, 4, 1/2)
e <- rnorm(n,0,.3)
y < - \sin(x+e)
Fx \leftarrow ecdf(x)
Fy <- ecdf(y)
u \leftarrow Fx(x)
v \leftarrow Fy(y)
df <- cbind(u,v)</pre>
copula.grid <- estimate.gridCopula(U = df, k = 15, m = 15 , method = "ml")</pre>
df2 <- r.grid(n = n, gc = copula.grid)</pre>
data.grid(copula.grid$U, k = 15, m = 15)
data.grid(df2, k = 15, m = 15)
# Using the Iris dataset, transformation is not mandatory
copula.grid <- estimate.gridCopula(X = iris[,1:2], k = 3, m = 7 , method = "ml")</pre>
```

r.grid

```
df2 <- r.grid(n = n, gc = copula.grid)
data.grid(copula.grid$U, k = 3, m = 7)
data.grid(df2, k = 3, m = 7)</pre>
```

Index

```
aic.grid, 2
bic.grid, 3
contour_grid, 3
contour_image_grid, 5
d.grid, 6
data.grid, 7
estimate.gridCopula, 8
image_color_grid, 9
measures.grid, 10
mosaic.grid, 11
p.grid, 12
perspective.grid, 13
r.grid, 14
```