Engineering Analytics Project HI-B Visa Petitions (2011 - 2016)

Final Report

JASWANTH BABU BANDI U64670654 Engineering Management jaswanthbabu@mail.usf.edu

Exploring the Data

HI-B Petitions, 2011 - 2016

Overview

The H1B visa is issued to foreign nationals who:

- In most cases have at least a college degree.
- Are skilled workers, have expertise in the field being hired.
- 3. Have on demand skills
- 4. Usually finished their studies in US

Requirements:

Job Offer, Salary, Position and Bachelor's degree

Preparing the Data

Key Variables:

- a) CASE_STATUS > 6 levels (mainly CERTIFIED and DENIED)
- b) EMPLOYER_NAME (for our exploration, I have considered only top employers)
- JOB_TITLE (for our exploration, I have considered only top job titles)
- d) SOC_NAME (this was eliminated by simple inspection)
- e) FULL_TIME_POSITION > Y or N (binary 1 and 0)
- f) PREVAILING_WAGE (key metric)

Dimensions:

> dim(petitions) [1] 3002458 1

Size of the .csv file: 469.5 MB

```
> str(petitions)
'data.frame':
                3002458 obs. of 11 variables:
 $ X
                     : int 1 2 3 4 5 6 7 8 9 10 ...
 $ CASE STATUS
                     : Factor w/ 7 levels "CERTIFIED", "CE
                     : Factor w/ 236014 levels "'K' LINE
 $ EMPLOYER_NAME
2 70183 121781 ...
 $ SOC NAME
                     : Factor w/ 2133 levels "<FONT><FONT
 $ JOB TITLE
                     : Factor w/ 287550 levels "'ACCOUNTA
 $ FULL_TIME_POSITION: Factor w/ 2 levels "N","Y": 1 2 2
 $ PREVAILING_WAGE
                     : num 36067 242674 193066 220314 15
 $ YEAR
                     : int 2016 2016 2016 2016 2016 2016
 $ WORKSITE
                     : Factor w/ 18622 levels "# 19100 DI
 10181 17217 ...
 $ lon
                     : num -83.7 -96.7 -74.1 -105 -90.2
 $ lat
                     : num 42.3 33 40.7 39.7 38.6 ...
```

Problems

a) Missing Values

> sapply(petitions,	function(x) sum(is.n	ia(x)))			
X	CASE_STATUS	EMPLOYER_NAME	SOC_NAME	JOB_TITLE FULL_T	IME_POSITION
0	13	45	17733	38	15
PREVAILING_WAGE	YEAR	WORKSITE	lon	lat	III.
85	13	0	107242	107242	
& I					

b) PREVAILING_WAGE

```
> min(petitions$PREVAILING_WAGE)
[1] 0
> mean(petitions$PREVAILING_WAGE)
[1] 145166.2
> max(petitions$PREVAILING_WAGE)
[1] 6997606720
```


- Certified = 1558571
- Denied = 38858

The value for DENIED cases are low compared to CERTIFIED.

My Solution

Subsetting

Since the data was spread over 6 years, split the data into 6 parts to analyze the year-over-year effect and changes.

- 2011 => 159314 cases
- 2012 => 194803 cases
- 2013 => 225095 cases
- 2014 => 282617 cases
- 2015 => 351301 cases
- 2016 => 384299 cases

Setting Limits

From basic statistics and box plot diagram of PREVAILING_WAGE, I saw that there are too many outlying values. Since the values were too widely spread out, it was best to take an assumption.

- Minimum wage for H1B => \$ 60K
- Maximum wage for H1B => \$150K

Reason: In 98% cases where the wages are above \$150K, the CASE_STATUS is NOT DENIED.

Analysis - 2015 v/s 2016

Employers & Titles in 2015

Employers & Titles in 2016

	EMPLOYER_NAME	count	percent			EMPLOYER_NAME	count	percent
1	INFOSYS LIMITED	23391	6.7		1	INFOSYS LIMITED	18553	4.8
2	TATA CONSULTANCY SERVICES LIMITED	10642	3.0		2	CAPGEMINI AMERICA INC	13906	3.6
3	WIPRO LIMITED	8351	2.4	EMPLOYER	3	TATA CONSULTANCY SERVICES LIMITED	8826	2.3
4	ACCENTURE LLP	8039	2.3		4	ACCENTURE LLP	7983	2.1
5	IBM INDIA PRIVATE LIMITED	7409	2.1		5	WIPRO LIMITED	7832	2.0

1000	JOB_TITLE	count	percent			JOB_TITLE	count	percent
1	PROGRAMMER ANALYST	21780	6.2		1	PROGRAMMER ANALYST	23886	6.2
2	SOFTWARE ENGINEER	19567	5.6	TITLES	2	SOFTWARE ENGINEER	22236	5.8
3	TECHNOLOGY LEAD - US	7988	2.3	IIILES	3	SOFTWARE DEVELOPER	9465	2.5
4	SOFTWARE DEVELOPER	7218	2.1		4	SYSTEMS ANALYST	7525	2.0
5	SYSTEMS ANALYST	7035	2.0		5	COMPUTER PROGRAMMER	5920	1.5

Classification Trees

Seed = 134

Data = sampleTest and sampleTest

Libraries: rpart & rpart.plot

Split is 0.7 for 2015 and 0.6 for 2016

Regressor: CASE_STATUS

The decision tree plot was complicated. Our inference was that there were too many levels for variables. This is why the image wasn't proper.

Accuracy: 98.13%

Random Forest

rf <- randomForest(CASE_STATUS ~ EMPLOYER_NAME + FULL_TIME_POSITION + PREVAILING_WAGE, data = sampleTrain, ntree = 500)

Seed = 134

Data = sampleTrain and sampleTest
 Libraries: randomForest

Split is 0.7 for 2015 and 0.6 for 2016

This was run on a sample from 2015 petitions and 2016 petitions.

Accuracy: 99.8%

Visualization

Employers in 2015 v/s 2016

- In 2016 Infosys made 6.7% of the total petitions which was 1.9% more than the previous year
- Capgemini America Inc is one company that heavily brought down their HIB visa employment
- Companies such as Microsoft, Tech Mahindra and Deloitte remained unchanged.

Visualization

Job Titles in 2015 v/s 2016

- HIB Visa holders were primarily holding software programming positions.
- There is hardly any change in the ratio of top job titles for the petitions.
- There is a lack of managerial roles in case of HIB Visa petitioners.

CASE_STATUS as DENIED

J	OB TITLES	
1	SOFTWARE ENGINEER	1769
2	PROGRAMMER ANALYST	1506
3	SOFTWARE DEVELOPER	655
4	SENIOR SOFTWARE ENGINEER	516
5	COMPUTER PROGRAMMER	472
6	SYSTEMS ANALYST	441
7	PHYSICAL THERAPIST	418
8	COMPUTER SYSTEMS ANALYST	409
9	SENIOR CONSULTANT	388
10	BUSINESS ANALYST	316

Exploring Further

I attempted to explore the data further by splitting the WORKSITE into CITY and STATE.

This would diversify the model and allow us to study the relation of petitions with different cities and states.

We can also try to explore the change in wages for a particular position from City A to City B. (East Coast to West Coast)

Thank You:)