NLP Lab-6 205229118 Mahalakshmi.S

April 27, 2021

0.0.1 Lab6. Spam Filtering using Multinomial NB

In this lab, you will build Naïve Bayes classifier using SMS data to classify a SMS into spam or not. Once the model is built, it can be used to classify an unknown SMS into spam or ham.

0.0.2 STEPS

0.0.3 1. Open "SMSSpamCollection" file and load into DataFrame. It contains two columns "label" and "text"

```
[1]: import pandas as pd
     from nltk.corpus import stopwords
[2]: df = pd.read_csv("SMSSpamCollection.csv",encoding='ISO-8859-1')
     spam=df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'],axis=1)
     spam
[3]:
          label
                                                                 text
     0
                 Go until jurong point, crazy.. Available only ...
            ham
     1
                                       Ok lar... Joking wif u oni...
     2
           spam Free entry in 2 a wkly comp to win FA Cup fina...
     3
                 U dun say so early hor... U c already then say...
     4
            ham
                 Nah I don't think he goes to usf, he lives aro ...
     5567
                 This is the 2nd time we have tried 2 contact u...
           spam
                              Will I b going to esplanade fr home?
     5568
            ham
                 Pity, * was in mood for that. So...any other s...
     5569
     5570
                 The guy did some bitching but I acted like i'd...
     5571
                                          Rofl. Its true to its name
            ham
     [5572 rows x 2 columns]
```

0.0.4 2. How many sms messages are there?

```
[4]: len(spam)
```

[4]: 5572

0.0.5 3. How many "ham" and "spam" messages?. You need to groupby() label column.

```
[5]: lab=spam.groupby('label').count() lab
```

- [5]: text
 label
 ham 4825
 spam 747
 - 0.0.6 4. Split the dataset into training set and test set (Use 20% of data for testing).

```
[6]: X = spam.text
y = spam.label
```

- [7]: from sklearn.model_selection import train_test_split
- [8]: X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, test_size=0.
 →2)
 - **0.0.7 5.** Create a function that will remove all punctuation characters and stop words, as below

```
[9]: def process_text(msg):
    punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~'''
    nopunc =[char for char in msg if char not in punctuations]
    nopunc=''.join(nopunc)
    return [word for word in nopunc.split()
    if word.lower() not in stopwords.words('english')]
```

0.0.8 6. Create TfIdfVectorizer as below and perform vectorization on X_train, using fit_perform() method.

```
[10]: from sklearn.feature_extraction.text import TfidfVectorizer
```

- [11]: tfv=TfidfVectorizer(use_idf=True,analyzer=process_text,ngram_range=(1,3),min_df

 ⇒= 1,stop_words = 'english')
 tfv
- [17]: t1=tfv.fit_transform(X_train)
 tf2=tfv.transform(X_test)
- [18]: t1.shape

```
[18]: (4457, 9895)
[19]: tf2.shape
[19]: (1115, 9895)
     0.0.9 7. Create MultinomialNB model and perform training on X_train and y_train
            using fit() method
[20]: x_train,x_test,Y_train,Y_test = train_test_split(X,y,train_size=0.8,test_size=0.
       ⇒2)
[21]: from sklearn.naive_bayes import MultinomialNB
[22]: clf = MultinomialNB()
[23]: clf.fit(t1,y_train)
[23]: MultinomialNB()
     0.0.10 8. Predict labels on the test set, using predict() method
[24]: y_predict = clf.predict(tf2)
      y_predict
[24]: array(['ham', 'ham', 'ham', ..., 'spam', 'ham', 'spam'], dtype='<U4')
     0.0.11 9. Print confusion matrix and classification report
[25]: from sklearn.metrics import confusion_matrix
[26]: confusion_matrix(y_test,y_predict)
[26]: array([[969,
             [ 51, 95]], dtype=int64)
[27]: from sklearn.metrics import classification_report
[29]: target_names = ['class 0', 'class 1']
      print(classification_report(y_test,y_predict,target_names=target_names))
                   precision
                                recall f1-score
                                                    support
          class 0
                         0.95
                                   1.00
                                             0.97
                                                        969
                         1.00
                                   0.65
          class 1
                                             0.79
                                                        146
                                             0.95
         accuracy
                                                       1115
                        0.97
                                  0.83
                                             0.88
                                                       1115
        macro avg
```

weighted avg 0.96 0.95 0.95 1115

```
0.0.12 10. Modify ngram_range=(1,2) and perform Steps 7 to 9.
```

```
[30]: tf_2=TfidfVectorizer(use_idf=True,analyzer=process_text,ngram_range=(1,2),min_df_

→= 1,stop_words = 'english')

tf_2
```

[30]: TfidfVectorizer(analyzer=<function process_text at 0x00000180F9A2D8B0>, ngram_range=(1, 2), stop_words='english')

```
[31]: t3=tf_2.fit_transform(X_train)
tf_ng=tf_2.transform(X_test)
```

[32]: t3.shape

[32]: (4457, 9895)

[33]: tf_ng.shape

[33]: (1115, 9895)

[35]: clf.fit(t3,y_train)

[35]: MultinomialNB()

[36]: y_predict2 = clf.predict(tf_ng)
y_predict2

[36]: array(['ham', 'ham', 'ham', ..., 'spam', 'ham', 'spam'], dtype='<U4')

[37]: confusion_matrix(y_test,y_predict2)

[37]: array([[969, 0], [51, 95]], dtype=int64)

[38]: target_names = ['class 0', 'class 1']
print(classification_report(y_test,y_predict2,target_names=target_names))

	precision	recall	f1-score	support
class 0	0.95	1.00	0.97	969
class 1	1.00	0.65	0.79	146
			0.95	1115
accuracy	2 25			
macro avg	0.97	0.83	0.88	1115
weighted avg	0.96	0.95	0.95	1115