Neural Network Assignment - 2

Information Retrieval

Submitted toDr. Syed Khaldoon Khurshid

Submitted By

Shahzaib Irfan

2021-CS-07

University of Engineering and Technology Lahore, Pakistan

Contents

1	Inti	roduction
	1.1	Project Overview
	1.2	Objectives
2	Sys	tem Design
	2.1	System Architecture
3	Imp	blementation
	3.1	Libraries and Tools
	3.2	Core Components and Algorithms
		3.2.1 Neural Network Implementation
		3.2.2 Semantic Understanding
		3.2.3 Query Expansion and Feature Extraction
		3.2.4 Search and Retrieval
4	Res	ults and Evaluation
	4.1	Model Performance
5	Cor	nclusion
	5.1	Future Enhancements

1 Introduction

1.1 Project Overview

This project develops an advanced Tech Trend Information Retrieval System using a sophisticated Python-based framework with Streamlit. The system leverages cutting-edge techniques in semantic search, neural networks, and information retrieval to provide intelligent and context-aware technology trend insights.

1.2 Objectives

The main objectives of this project are:

- Implement an intelligent semantic search mechanism for technology articles
- Develop a neural network-based relevance ranking system
- Create an interactive web application for technology trend discovery
- Demonstrate advanced machine learning and natural language processing techniques

2 System Design

2.1 System Architecture

The system comprises multiple interconnected components:

1. Semantic Understanding Module

- Maintains a semantic dictionary of technology terms
- Performs query expansion and semantic mapping

2. Neural Network Inference Engine

- Implements a custom neural network for relevance scoring
- Handles forward propagation and prediction
- Manages model training and feature extraction

3. Information Retrieval Processor

- Processes user queries
- Performs semantic understanding
- Retrieves and ranks relevant articles

4. Interactive Web Interface

- Built using Streamlit
- Allows dynamic query processing
- Provides interactive result visualization

3 Implementation

3.1 Libraries and Tools

The project utilizes the following Python libraries:

- Streamlit: Web application framework
- Math: Mathematical computations
- Random: Weight initialization

3.2 Core Components and Algorithms

3.2.1 Neural Network Implementation

The NeuralNetwork class represents a custom neural network with key functionalities:

Listing 1: Neural Network Class

```
class NeuralNetwork:
def __init__(self, input_size=4, hidden_size=5,
    output_size=1):
    # Network architecture initialization
    # Random weight and bias generation
```

Key Features:

- Supports configurable input, hidden, and output layer sizes
- Uses sigmoid activation function
- Implements forward propagation
- Supports training with backpropagation

3.2.2 Semantic Understanding

The semantic_understanding() method creates a semantic map of technology terms:

Listing 2: Semantic Understanding Method

Key Capabilities:

- Expands query terms with related semantic concepts
- Uses a predefined semantic dictionary
- Enables context-aware search

3.2.3 Query Expansion and Feature Extraction

The query_expansion() and extract_features() methods enhance query processing:

Listing 3: Query Expansion and Feature Extraction

Key Features:

- Semantically enriches initial query terms
- Generates numerical features for neural network prediction
- Captures query complexity and semantic richness

3.2.4 Search and Retrieval

The search_and_retrieve() method ranks articles based on neural network predictions:

Listing 4: Search and Retrieval Method

Key Capabilities:

- Matches articles against expanded query terms
- Uses neural network to predict article relevance
- Ranks and returns most relevant articles

4 Results and Evaluation

4.1 Model Performance

- Successfully implemented a neural network-based relevance ranking system
- Developed a semantic search mechanism
- Created an interactive Streamlit web interface
- Demonstrated advanced query expansion techniques

5 Conclusion

The project successfully developed an intelligent Tech Trend Information Retrieval System, showcasing advanced techniques in:

- Neural network-based relevance scoring
- Semantic query expansion
- Interactive information retrieval

5.1 Future Enhancements

- Integrate more sophisticated natural language processing models
- Expand semantic dictionary with machine learning
- Implement more advanced feature extraction techniques
- Add support for more complex query structures
- Enhance neural network architecture for improved predictions