RISC-V Single Cycle Microarchitecture for S-Type Instructions (ISA)

1. S-Type Instructions The name S-type is short for store-type. S-type instructions use two register operands and one immediate operand. Figure below shows the S-type machine instruction format. The 32-bit instruction has five fields: op, rs1, rs2, funct3 and imm. The first three fields op, rs1, and rs2 are like those of R-type instructions. The imm fields hold the 12-bit immediate. The 12-bit immediate is split into two sets as shown below. The operation is determined by the opcode and funct3, highlighted in blue. The operands are specified in the three fields rs1, rs2 and imm.

31:25	24:20	19:15	14:12	11:7	6:0	
imm _{11:5}	rs2	rs1	funct3	imm _{4:0}	op	S-Type

2. Instruction format for some of the I-type instructions are shown below:

imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	SB
imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH
imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	sw

3. ALU

4. CONTROL UNIT

• MAIN Decoder The table below is a truth table for the main decoder that summarizes the control signals as a function of the opcode. All R-type instructions use the same main decoder values; they differ only in the ALU decoder output. Recall that, for instructions that do not write to the register file (e.g., S-type and B-type), the ResultSrc control signals is don't care (X); the address and data to the register write port do not matter because RegWrite is not asserted. The logic for the decoder can be designed using your favorite techniques for combinational logic design.

Instruction	Op	RegWrite	ImmSrc	ALUSrc	MemWrite	ResultSrc	Branch	ALUOp
lw	0000011	1	00	1	0	1	0	00
SW	0100011	0	01	1	1	X	0	00
R-type	0110011	1	xx	0	0	0	0	10
beq	1100011	0	10	0	0	X	1	01

ALU Decoder

ALUOp	funct3	{op ₅ , funct7 ₅ }	ALUControl	Instruction	
00	X	X	000 (add)	lw, sw	
01	X	X	001 (subtract)	beq	
10	000	00, 01, 10	000 (add)	a dd	
	000	11 001 (subtract)		sub	
	010	x 101 (set less than)		slt	
	110	x 011 (or)		or	
	111	X	010 (and)	and	

5. Store instructions are S-type instructions. The store word instruction, sw, copies data from a register to memory. The register is not changed. The memory address is specified using a base/register pair. The name S-type is short for Store-type. S-type instructions use two register operands and one immediate operand. The figure below shows the S-type machine instruction format. The 32-bit instruction has five fields: op, rs1, rs2, funct3, and imm. The first four fields, op, rs1, rs2, and funct3 are like those of R-type instructions. The imm field holds the 12-bit immediate. The operation is determined by the opcode and funct3, highlighted in blue. The operands are specified in the three fields rs1, rs2, and imm. rs and imm are always used as source operands. rs2 is used as another source for store instructions.

6. SIMULATION RESULTS

			149.760 ns			
Name	Value	148 ns	150 r	ns	152 ns	154 ns
୍ଲା clk	1					
₽ rst	0					
PC_TOP[31:0]	00000000			00000000		х
PCPlus4[31:0]	00000004			00000004		х
RD_Instr[31:0]	00000000	00000000			0064a423	X
RD1_Top[31:0]	00000000	00000000			00000020	X
RD2_Top[31:0]	00000000	00000000			00000040	X
ALUControl_Top[2:	:0] 0			0		X
☐ RegWrite	0					
MemWrite	0					
▶ ■ ImmSrc[1:0]	z					Z
New Divider						
▶ ■ PC_Next[31:0]	00000004			00000004		Х
୍ଲା rst	0					
ใ₁ clk	1					
▶ ■ PC[31:0]	00000000			00000000		$+ \times$
▶ ■ A[31:0]	00000000			00000000		 x
ใ₁ rst	o					
▶ ■ RD[31:0]	00000000	00000000	$\exists \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		0064a423	— х
▶ ■ A1[4:0]	00	00	FX=		09	X
▶ ■ A2[4:0]	00	00	FX=		06	X
▶ ■ A3[4:0]	00	00	FX=		08	 x
7.0						
l <mark>∎</mark> WE3	0					
🖫 clk	1					
l <mark>∎</mark> rst	0					
▶ ■ RD1[31:0]	00000000	00000000		₹	00000020	
▶ ■ RD2[31:0] ▶ ■ Instr_in[31:0]	00000000	0000000		-↓	00000040 0064a423	
ImmSrc	00000000	0000000			00044425	
▶ ■ A_in[31:0]	00000000	0000000		\downarrow	00000020	
alu_ctrl_in[2:0]	0			0		
▶ ■ Op[6:0]	00	00		\star	23	
▶ 📑 funct7[6:0]	zz				ZZ	
▶ 📑 funct3[2:0]	0	0		X	2	
RegWrite	0					
ALUSTC	Z					
MemWrite	0					
ାଲ ResultSrc ାଲ Branch	0					
Lm Branch	0					