Galois Theory

MATH 440

Steven Xia

February 12, 2023

Galois Theory is the study of symmetries among roots of polynomials.

— Professor (Spring 2023)

1

Contents

1 Exploration of Fields

2 Groups and Actions

3 Back to Fields	. 6
1 Exploration of Fields	
Definition 1.1. The degree of K over L is written $[K:L]$.	
Theorem 1.1. Let $F \subseteq K$ and $K \subseteq L$ be field extensions.	Then,

Definition 1.6. A $F \subseteq K$ is an algebraic field extension if every $\alpha \in K$ is algebraic. **Theorem 1.2.** $A F \subseteq K$ is finite if and only if it is finitely generated and algebraic.

Proof. Suppose $F \subseteq K$ is finite. We will show K is algebraic over F (finitely generated follows from Theorem 1.1). Let $\alpha \in K$ be nonzero and see that $\alpha^0, \ldots, \alpha^m \in K$ is linearly dependent if $m \ge \deg(m_{\alpha,F}) = [K:F]$.

Now, suppose $K = F(\alpha_1, \ldots, \alpha_m)$ is algebraic and define $K_i = K_{i-1}(\alpha_i)$ with $K_0 = F$. By an implicit induction on i, we see that $K_m = K$ is finite.

Definition 1.7. A field F is **algebraically closed** if every non-constant

 $f \in F[x]$ has a root in F.

Proof. We may assume [L:K] and [K:F] are finite. Then, L has K-basis $\{a_1, \ldots, a_k\}$ and K has F-basis $\{b_1, \ldots, b_f\}$. We can show

Definition 1.2. A field extension $F \subseteq K$ is **finite** if the degree of K

Definition 1.3. A field extension $F \subseteq K$ is **finitely generated** if there

Definition 1.4. For $F \subseteq K$, some $\alpha \in K$ is algebraic over F if there

Definition 1.5. The minimal polynoimial of α over F is written $m_{\alpha,F}(\alpha)$

Remark 1.1. A $F \subseteq K$ is finitely generated if it is finite.

exists a non-constant $f \in F[x]$ such that $f(\alpha) = 0$.

0. Then, the degree of α over F is $deg(m_{\alpha} F)$.

 $\{a_ib_i\}$ is an *F*-basis of *L*.

exists a finite set S such that F(S) = K.

over F is finite.

Remark 1.2. If F is algebraically closed, every $f \in F[x]$ can be written as a product of linear factors.

Theorem 1.3. A field F is algebraically closed if and only if every field extension K of F satisfies [K:F]=1.

Proof. Assume F is algebraically closed. Then, the minimal polynomial of every element over F is linear, so any field extension over F is of degree one.

Now suppose every algebraic extension is of degree one. Consider some irreducible factor f of a polynomial in F[x] and the algebraic extension $F \to F[x]/\langle f \rangle$. Since the extension is of degree one, the degree of f is also one.

Theorem 1.4 (Kronecker). Let F be a field and $f \in F[x]$ be non-constant. There exists a finite extension $F \subseteq K$ such that f has a root in K.

Definition 1.8. An **algebraic closure** of a field F is an algebraic extension $F \subseteq K$ such that K is algebraically closed.

Theorem 1.5. Every field F has an algebraic closure.

Proof. Define *S* as the set of monic and irreducible polynomials in F[x], $R = F[y_f \mid f \in S]$, and $I = \langle f(y_f) \mid f \in S \rangle$.

We claim that I is a proper ideal, that is, $1 \notin I$. Towards a contradiction, suppose $1 \in I$. Then, we can write $1 = \sum a_i f_i(y_{f_i})$ for $f_i \in S$ and $a_i \in R$. However, repeating Kronecker's Theorem for each f_i generates a field extension for which there exist α_i such that $f_i(\alpha_i) = 0$ for all i, so we can plug these values into the sum to give 1 = 0, a contradiction.

Since every proper ideal is contained in a maximal ideal, there exists some $M\subseteq R$ such that $I\subseteq M$. Then, we define $F\subseteq K$ where K=R/M as an algebraic field extension of F generated by the y_f .

Theorem 1.6. All algebraic closures of a field are isomorphic.

Definition 1.9. A symmetric polynomial $p \in F[x_1, ..., x_n]$ satisfies $p(x_1, ..., x_n) = p(x_{\sigma(1)}, ..., x_{\sigma(n)})$ for all $\sigma \in S_n$.

Definition 1.10. The elementary symmetric polynomials in n variables are written e_i for $1 \le i \le n$ and are the sum of the ith degree monomials in the expansion of $\prod_{i=1}^{n} (1 + x_j)$.

Theorem 1.7 (Symmetric Polynomials). All symmetric polynomials can be uniquely written as a polynomial in the elementary symmetric polynomials.

Definition 1.11. The descriminant of a polynomial f with roots α_1, \ldots , is $\Delta(f) = \prod_{i < j} (\alpha_i - \alpha_j)^2$.

Remark 1.3. The **discriminant** of f is a symmetric polynomial in its roots, and the elementary symmetric polynomials are (up to negation) the coefficients of f.

Theorem 1.8 (Algebra). Every non-constant polynomial with complex coefficients has at least one complex root.

2 Groups and Actions

Definition 2.1. The **automorphism group** of K, denoted Aut(K), is the set of automorphisms of K.

Definition 2.2. The **Galois group** of a field extension $F \subseteq K$, denoted Gal(K/F), is the set of automorphisms of K such that F is fixed pointwise.

Definition 2.3. A **left action** of a group G on a set X is a map $G \times X \to X$ written $(g, x) \mapsto g.x$ such that $e \in G$ satisfies e.x = x for all x and g.(h.x) = (gh).x for all $g, h \in G$.

Definition 2.4. The standard left action of $H \leq G$ on G is the left action defined $(h, g) \mapsto hg$.

Definition 2.5. The **conjugation action** of $H \leq G$ on G is the left action defined $(h, g) \mapsto hgh^{-1}$.

Definition 2.6. The **orbit** of $x \in X$ under group action G is defined $G.x = \{g.x : g \in G\}.$

Theorem 2.1. The orbits under an action form a partition.

Definition 2.7. The **stabilizers** of $x \in X$ under group action G is defined $G_x = \{g \in G : g.x = x\}$.

Theorem 2.2. Every stabilizer forms a group.

Definition 2.8. For groups $H \le G$ and $g \in G$, a **left coset** of H in G is defined $gH = \{gh : h \in H\}$. We write G/H to denote the set of left cosets of H in G.

Definition 2.9. The **index** of H in G is the number of left cosets of H in G. We write [G:H] to denote this value.

Theorem 2.3 (Orbit-stabilizer). Let $H \leq G$ be groups. For all $x \in G$, there is a bijection $G.x \to G/G_x$.

Proof. Define $\phi: G \to G.x$ where $\phi(g) = g.x$, a surjective map. We see $\phi(g) = \phi(h) \iff g.x = h.x \iff g^{-1}h \in G_x \iff g^{-1}hG_x = g.x$

Theorem 2.4 (Lagrange). For $H \le G$, |G| = [G : H]|H|.

 $G_x \iff hG_x = gG_x$, so $gG_x \mapsto g.x$ is bijective.

Definition 2.10. Orbits under a conjugation action $H \leq G$ are called **conjugacy classes** under conjugation by H.

Definition 2.11. The **center** of a group G is defined $Z(G) = \{z \in G : \forall g \in G, gz = zg\}.$

Theorem 2.5 (Class Equation). For a finite group G, $|G| = Z(G) + \sum_{H \in O} [G:H]$ for O the set of all conjugacy classes disjoint from the center of G.

Definition 2.12. A **normal subgroup** $H \le G$ is one which satisfies $gHg^{-1} = H$ for all $g \in G$. We then denote $H \le G$.

Remark 2.1. A subgroup $H \leq G$ is normal if and only if $ghg^{-1} \in H$ for all $h \in H$ and $g \in G$.

Theorem 2.6. The quotient by a normal subgroup is a group.

Theorem 2.7. The normal subgroups of G are exactly those which arise as kernels of group homomorphisms from G.

group homomorphism, $G/\ker \phi$ and H are isomorphic. Remark 2.2. A group action $\rho: G \times X \to X$ can be viewed as a

group homomorphism $\phi: G \to S_X$, where $g \in G$ is mapped to the

Theorem 2.8 (Group Isomorphism). For $\phi : G \to H$ a surjective

permutation of X that its associated action does. **Theorem 2.9** (Cayley). Every finite group of order n is isomorphic to a subgroup of S_n .

3 Back to Fields

Definition 3.1. Let F be a field and $S \subseteq F[x]$. A **splitting field** of S is an extension $F \to K$ where every $f \in S$ splits into linear factors.

Theorem 3.1 (Isomorphism Extension). Let F be a field and K, K' be isomorphic field extensions of F. If $K \to L \subseteq \overline{K}$, there exists an extension from K' to L.

Definition 3.2. A field extension $F \to K$ is **normal** if the minimal polynomial of every $\alpha \in K$ splits in K[x].

Theorem 3.2. Let $F \to K \subseteq \overline{F}$ be an algebraic extension. The following are equivalent statements:

- (i) K is a splitting field,
- (ii) every $K \to \overline{F}$ fixing F induces an automorphism of K, and
- (iii) K is a normal extension.

Theorem 3.3. Let F be a field and $S \subseteq F[x]$. All splitting fields of S over F are isomorphic.

Remark 3.1. Let $F \to \{K, K'\} \to L$ be field extensions. We see $F \to KK'$ is normal if $F \to K$ and $F \to K'$ are normal.

Remark 3.2. Let $F \to K \to L$ be field extensions. We see $K \to L$ is normal if $F \to L$ is normal.

Definition 3.3. Let $F \to K$ be a normal extension. The **normal closure** of K over F is the subfield of \overline{F} generated by all $\sigma(K)$ where $\sigma: K \to \overline{F}$ fixes F.

Remark 3.3. The normal closure of $F \to K$ is the smallest normal extension of F containing K.

Definition 3.4. Let $F \to K$ be an algebraic field extension. Define the **separable degree** of K over F as the number of $\sigma: K \to \overline{F}$ fixing F, and is denoted $[K:F]_S$.

Lemma 3.1. Let $F \to K$ be an algebraic extension, and $\phi : F \to F' \subseteq \overline{F}$. We can define $[K : F]_S$ as the number of $\sigma : K \to \overline{F}$ where $\sigma = \phi$ over F.

Theorem 3.4. Let $F \to K \to L$ be algebraic field extensions, then $[L:F]_S = [L:K]_S[K:F]_S$.

Theorem 3.5. Let $F \to K$ be algebraic, then $[K : F] \ge [K : F]_S$.

Definition 3.5. Let $F \to K$ be a finite field extension. It is said to be separable if $[K : F] = [K : F]_S$.

Theorem 3.6. Let $F \to K$ be finite, normal, and separable. Then, #Gal(K/F) = [K : F].

Definition 3.6. Let $F \to K \subseteq \overline{F}$. Then, $\alpha \in K$ is **separable** over F if $F \to F(\alpha)$ is separable, that is, $m_{\alpha,F}$ has no multiple roots.

Theorem 3.7. Let $F \to K$ be finite. Then, $F \to K$ is separable if and only if every $\alpha \in K$ is separable over F.

Remark 3.4. Let $F \to K$ where be in characteristic 0. Then, every $\alpha \in K$ is separable over F, so $F \to K$ is separable.

Theorem 3.8 (Primitive Element). Let $F \to K$ be finite and separable. Then, there exists $\alpha \in K$ where $K = F(\alpha)$.

Theorem 3.9. A finite field of order p^n is the splitting field of $x^{p^n} - x$.

Corollary 3.9.1. An extension of finite fields is normal and separable.

Theorem 3.10. There exists a finite field of order p^n .

Definition 3.7. For a finite field F of characteristic p, define the **Frobenius endomorphism** to be the map $\phi : F \to F$ where $a \mapsto a^p$.

Theorem 3.11. The multiplicative group of a finite field is cyclic. **Theorem 3.12.** Let ϕ be the Frobenius endomorphism in character-

Theorem 3.12. Let φ be the Frobenius endomorphism in characteristic p. Then, $\langle \varphi \rangle = \operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) \cong \mathbb{Z}_n$.

Remark 3.5. The subfield $\mathbb{F}_{p^k} \subseteq \mathbb{F}_{p^n}$ exists if and only if $k \mid n$.