COP 5536 Advanced Data Structures

Summer 2016

Instructor: Dr. Sartaj K Sahni (sahni@cise.ufl.edu)

Office Hours: By Appointment

Phone: 352-450-1490

Office: E536 Computer Science and Engineering Building

TA (Office Hours):

Kiana Alikhademi (kalikhademi @ufl.edu): Wednesday 3-4:30, Thursday 2-3:30 at E309.

Tentative Class Schedule:

Week 1(May 9 - May 13): Lecture 1 - Lecture 4

Week 2 (May 16 – May 20): Lecture 5 - Lecture 8

Week 3 (May 23 – May 27): Lecture 9 - Lecture 12

Week 4 (May 30 – Jun 3): Lecture 13 - Lecture 16

Week 5 (Jun 6 – Jun 10): Lecture 17 - Lecture 20 **Exam 1: Date: June 9 (Lec 1-13)**

Week 6 (Jun 13 - Jun 17): Lecture 21 - Lecture 24

Week 7 (Jun 20 - Jun 24): Summer Break – No Classes

Week 8 (Jun 27 – July 1): Lecture 25 - Lecture 28

Week 9 (July 4 - July 8): Lecture 29 - Lecture 32 **Exam 2: Date: July 7 (Lec 14-28)**

Week 10 (July 11 – July 15): Lecture 33 - Lecture 35

Week 11 (July 18 - July 22): Lecture 36 - Lecture 39

Week 12 (July 25 – July 29): Lecture 40 Exam 3: Date: August 3(Lec 29-40)

Note: - The exam dates are tentative subject to room availability. These exams will most probably be held in the evening.

Pre-requisites:

You should know the following:

- 1. C, C++, or Java. Since the text is in C++, you should at least be able to read C++.
- 2. Algorithm analysis methods (in particular asymptotic complexity).
- 3. Basic data structures such as stacks, queues, linked lists, trees, and graphs. Basic sorting methods such as insertion sort, heap sort, merge sort, and quick sort.

Course Requirements:

There will be two assignments and three exams. The exams will be closed book exams. The programming assignment(s) may be done in any high level language. Some possibilities are C, C++, and Java. Please have the use of any other language approved by the instructor or the TA. C++ is the preferred language.

Grading:

Exam 1: 25% (TBD) Exam 2: 25% (TBD) Exam 3: 25% (TBD) Assignment 1: 20% Assignment 2: 5%

Course Outline

The specific topics are:

- 1. Amortized complexity
- 2. External sorting & tournament trees
- 3. Buffering
- 4. Run generation & optimal merge patterns
- 5. Priority queues and merging
- 6. Leftist trees, Binomial heaps and Fibonacci heaps
- 7. Pairing heaps
- 8. Double ended priority queues
- 9. Static and dynamic weighted binary search trees
- 10. AVL-trees
- 11. Red-black trees
- 12. Splay trees
- 13. B-, B+- and B*-trees
- 14. Tries and digital search trees
- 15. Tries and packet forwarding
- 16. Suffix trees
- 17. Bloom filters
- 18. Segment trees
- 19. Interval trees
- 20. Priority search trees
- 21. k-d trees
- 22. Quad and oct trees
- 23. BSP trees
- 24. R-trees

Lecture	Content
1	Amortized complexity.
2	Amortized Complexity.

3	Introduction to external sorting.
4	Introduction to external sorting.
5	Selection trees & k-way merging.
6	Run generation.
7	Optimal merging of runs.
8	Buffering.
9	Double-ended priority queues. General methods.
10	Double-ended priority queues. Interval heaps.
11	Leftist trees.
12	Binomial heaps.
13	Binomial heaps.
14	Fibonacci heaps.
15	Pairing heaps.
16	Dictionaries.
17	Optimal binary search trees.
18	AVL trees.
19	AVL trees
20	Red-black trees.
21	Red-black trees.
22	B-Trees.
23	B-trees.

24	B+ and B*-trees.
25	Splay Trees.
26	Splay Trees.
27	Binary Tries.
28	Compressed Binary Tries.
29	High-order Tries.
30	Tries and Packet Forwarding.
31	Suffix Trees.
32	Bloom Filters.
33	Segment Trees.
34	Interval Trees.
35	Priority Search Trees.
36	Priority Search Trees.
37	Multidimensional Search Trees.
38	Quad Trees.
39	BSP Trees.
40	R-trees.
40	R-trees.

Course Policies:

- $1. \ \ \, Every \ \ \, student \ \ \, is \ \ \, expected \ \ \, to \ \ \, follow \ \ \, the \ \ \, University \ \ \, of \ \ \, Florida \ \ \, Honor \ \ \, Code. \ \ \, (See \ \ \, \underline{http://www.dso.ufl.edu/STG/default.html})$
- 2. Handouts, assignments, solutions, and others will be posted on Sakai. Students should check Sakai regularly, at least once per week.
- 3. When submitting homework for grading, your answers should be written neatly and contain an explanation that is clear and reasonably concise.
- 4. All requests for re-grading must be made to a teaching assistant within 2 weeks of the date that scores are posted.