1)

i.

$$B \setminus \bigcup_{i \in \mathbb{I}} A_i = \bigcap_{i \in \mathbb{I}} (B \setminus A_i)$$

Proof. \subseteq) Sabemos $x \in B$ y $x \notin \bigcup_{i \in \mathbb{I}} A_i$

Luego $x \in B$ y $x \notin \bigcup A_i \quad \forall i \in \mathbb{I}$

Entonces $x \in B \setminus A_i \quad \forall i \in \mathbb{I}$

 $\Rightarrow x \in \bigcap B \setminus A_i$

 \supseteq) Sabemos $x \in B \setminus A_i \quad \forall i \in \mathbb{I}$

Luego para cada $i \in \mathbb{I}$ sabemos $x \in B$ y $x \not\in A_i$

$$\Rightarrow x \in B \setminus \bigcup A_i$$

ii.

$$B \setminus \bigcap_{i \in \mathbb{I}} A_i = \bigcup_{i \in \mathbb{I}} (B \setminus A_i)$$

Proof. \subseteq) Sabemos $x \in B$ y $x \notin \bigcap A_i$

Luego existe algún $i \in \mathbb{I}$ tal que $x \notin A_i$ (quizas para todos los $i \in I$ sucede que $x \notin A_i$ pero con uno alcanza)

Entonces existe algún $i \in \mathbb{I}$ tal que $x \in B$ y $x \notin A_i \Rightarrow B \setminus A_i$

$$\Rightarrow x \in \bigcup (B \setminus A_i)$$

 \supseteq) Tenemos $x \in B \setminus A_i$ para algún $i \in \mathbb{I}$

Luego $x \in B$ y $x \notin A_i$ para algún $i \in \mathbb{I}$

Entonces $x \in B$ y $x \notin \bigcap A_i \quad \forall i \in \mathbb{I}$

$$\Rightarrow x \in B \setminus \bigcap A_i$$

iii.

$$\bigcup_{i\in\mathbb{I}} (A_i \cap B) = B \cap (\bigcup_{i\in\mathbb{I}} A_i)$$

Proof. \subseteq) Tenemos $x \in A_i \cap B$ para algún $i \in \mathbb{I}$

Luego $x \in B$ y $x \in A_i$ para algún $i \in \mathbb{I} \Rightarrow x \in \bigcup A_i$

Entonces $x \in B$ y $x \in \bigcup A_i$

$$\Rightarrow x \in B \cap (\bigcup A_i)$$

3) Sea $f:X\to Y$ una función, A,B subconjuntos de X

i. $f(A \cup B) = f(A) \cup f(B)$

Proof.
$$\subseteq$$
) Sea $y \in f(A \cup B)$ entonces $\exists x \in A \cup B/f(x) = y$

Luego $x \in A$ y $x \in B$

Entonces $y = f(x) \in f(A)$ y por otro lado $y = f(x) \in B$

Finalmente $y = f(x) \in f(A) \cup f(B)$

 \supseteq) Sea $y \in f(A) \cup f(B)$ luego $y \in f(A)$ e $y \in f(B)$

Entonces $\exists x \in A \text{ tal que } f(x) = y \text{ luego } x \in A \cup B$

Luego
$$y = f(x) \in f(A \cup B)$$

ii. $f(A \cap B) \subseteq f(A) \cap f(B)$

Proof. Sea
$$y \in f(A \cap B)$$
 luego $\exists x \in A \cap B$ tal que $f(x) = y$

Luego $x \in A$ y $x \in B$ luego $y = f(x) \in f(A)$ e $y = f(x) \in f(B)$

Finalmente
$$y = f(x) \in f(A) \cap f(B)$$

iii. Sea $f(x) = 3 \quad \forall x \in X \text{ y } A = 1, B = 2$

Luego
$$3 = f(A) \cap f(B) = 3 = \{3\}$$
 que es distinto a $f(A \cap B) = f(\{\emptyset\}) = \emptyset$