

Cross Validation and Maximum Likelihood estimations of hyperparameters of Gaussian processes with model misspecification

PARIS DIDEROT

François Bachoc^{†‡}, Josselin Garnier[‡] and Jean-Marc Martinez[†] †CEA-Saclay, DEN, DM2S, SFME, LGLS, F-91191 Gif-sur-Yvette, France. ‡Laboratoire de Probabilités et Modèles Aléatoires, Université Paris VII

Introduction

- Main Context: Estimation of the variance hyperparameter in Kriging in case of Model misspecification.
- Goals:
- Comparison of Maximum Likelihood (ML) and Cross Validation (CV) in case of model misspecification
- Comparison based on Predictive Variance reliability

Framework

- Observation of a centered, unit variance, stationary Gaussian process Y on \mathcal{X} with covariance function C_1 .
- Vector y of observations on $x_1, ..., x_n \in \mathcal{X}$.
- Kriging metamodel $x_0 \to (\hat{y}_0, \hat{\sigma}^2(y)\sigma_{x_0}^2)$ given by the set \mathcal{C} of covariance functions:

$$\mathcal{C} = \left\{ \sigma^2 C_2, \sigma \in \mathbb{R}^+ \right\}$$

with C_2 stationary correlation function. $C_2 \neq C_1$: model misspecification

• Quantity of interest for $\hat{\sigma}$: the Risk at x_0 :

$$R_{\hat{\sigma},x_0} = \mathbb{E}\left[\left(\mathbb{E}\left[(\hat{y_0} - y_0)^2 | y\right] - \hat{\sigma}^2(y)\sigma_{x_O}^2\right)^2\right].$$

Analytical expression of the risk for an estimator $\hat{\sigma}^2$ of the form $y^t M y$:

$$R_{\hat{\sigma},x_0} = f(M_0, M_0) + 2c_1 tr(M_0) - 2c_2 f(M_0, M_1) + c_1^2 - 2c_1 c_2 tr(M_1) + c_2^2 f(M_1, M_1)$$

With:

f(A,B) = tr(A)tr(B) + 2tr(AB) for $A, B, n \times n$ real symmetric matrices,

$$M_{0} = R_{1}^{\frac{1}{2}} (R_{2}^{-1} r_{2} - R_{1}^{-1} r_{1}) (r_{2}^{t} R_{2}^{-1} - r_{1}^{t} R_{1}^{-1}) R_{1}^{\frac{1}{2}},$$

$$M_{1} = R_{1}^{\frac{1}{2}} M R_{1}^{\frac{1}{2}},$$

$$c_{1} = 1 - r_{1}^{t} R_{1}^{-1} r_{1},$$

$$c_{2} = 1 - r_{2}^{t} R_{2}^{-1} r_{2},$$

CV and ML estimation

• Maximum Likelihood (ML) estimator:

$$\hat{\sigma}_{ML}^2 = \frac{1}{n} y^t R_2^{-1} y.$$

• Cross Validation (CV) estimator:

$$\hat{\sigma}_{CV}^2 = \frac{1}{n} \sum_{i=1}^{n} \frac{(y_i - \hat{y}_{i,-i})^2}{\hat{\sigma}_{i,-i}^2}.$$

with $\hat{y}_{i,-i}$, $\hat{\sigma}_{i,-i}^2$ the Kriging predictive mean and variance of y_i based on $(y_1, ..., y_{i-1}, y_{i+1}, y_n)$ with covariance function C_2 .

• Thanks to the virtual Leave One Out formulas [Dub83] we have:

$$\hat{\sigma}_{CV}^2 = \frac{1}{n} y^t R_2^{-1} \left[diag(R_2^{-1}) \right]^{-1} R_2^{-1} y.$$

- Case $C_1 = C_2$: ML reaches the Cramer Rao bound $(\frac{2}{n})$
- Case $C_1 \neq C_2$: numerical evaluation of the risk formulas

Numerical results

• Quantities of interest for an estimator $\hat{\sigma}$:

Quantity of interest	Expression
Risk on Target Ratio (RTR)	$RTR(x_0) = \frac{\sqrt{R_{\hat{\sigma},x_0}}}{\mathbb{E}[(\hat{y_0} - y_0)^2]}$
Integrated Risk on Target Ratio (IRTR)	$IRTR = \int_{\mathcal{X}} RTR(x_0) d\mu(x_0)$
Bias on Target Ratio (BTR)	$BTR(x_0) = \frac{ \mathbb{E}[(\hat{y_0} - y_0)^2] - \mathbb{E}(\hat{\sigma}^2(y))\sigma_{x_0}^2 }{\mathbb{E}[(\hat{y_0} - y_0)^2]}$
Integrated Bias on Target Ratio (IBTR)	$IBTR = \int_{\mathcal{X}} BTR(x_0) d\mu(x_0)$

- Procedure: We take $\mathcal{X} = [0, 1]^d$ with uniform measure. We generate n_p designs $(x_1, ..., x_n)$ using the LHS-Maximin technique, compute each time the four criteria above (analytical formultation and Monte Carlo for integration) and plot the average.
- Setting for the figures:

Figure	C_1, C_2	n	d	n_p	x_0
Influence model error	Isotropic Power Exponential (l_c, p)	70	5	50	Integration
(Power Exponential)	$ l_{c,1} = l_{c,2} = 1.2, p_1 = 1.5, p_2 \text{ varying} $				
Influence model error	Isotropic Matern (l_c, ν)	70	5	50	Integration
(Matern)	$ l_{c,1} = l_{c,2} = 1.2, \nu_1 = 1.5, \nu_2 \text{ varying} $				
Influence n	Isotropic Power Exponential (p, l_c)	varying	5	500	center
	$l_{c,1} = l_{c,2} = 1.2, p_1 = 1.5, p_2 = 1.7$				
Influence x_0	Isotropic Power Exponential (p, l_c)	70	10	500	varying
	$l_{c,1} = l_{c,2} = 1.2, p_1 = 1.5, p_2 = 1.7$				

• Plot of the Quantities of interest:

Top left: Influence model error (Power Exponential). Top right: Influence model error (Matern) Bot left: influence n. Bot right: influence x_0 , x_0 has nb_x component at 0.1 and $10 - nb_x$ at 0.5, plot of BTR and RTR as a function of nb_x .

Study on analytical functions

Procedure

- Function f on $[0,1]^d$
- Building of a Kriging Model with training sample $(x_{a,1},...,x_{a,n})$ with two different covariance estimation procedures:
- -Case 1: covariance model $\{\sigma^2 C, \sigma^2 \ge 0\}$, with C a given correlation function. Estimation of σ by ML and CV as before.

-Case 2: covariance model $\{\sigma^2 C_{\theta}, \sigma^2 \geq 0, \theta \in \Theta\}$. Classical ML estimators $\hat{\theta}_{ML}$ and $\hat{\sigma}_{ML}$ of θ and σ . CV estimation of θ minimizing the Leave One Out Mean Square Error and, given $\hat{\theta}_{CV}$, CV estimation of σ as before.

- Quantities of interest on a Monte Carlo test sample $(x_{t,1},...,x_{t,n_t})$:
 - Mean Square Error (MSE): $\frac{1}{n_t} \sum_{i=1}^{n_t} (y_{t,i} \hat{y}_{t,i}(y_a))^2$
 - Predictive Variance Adequation (PVA): $\left| \log \left(\frac{1}{n_t} \sum_{i=1}^{n_t} \frac{(y_{t,i} \hat{y}_{t,i}(y_a))^2}{\sigma_{t,i}^2(y_a)} \right) \right|$

with $\hat{y}_{t,i}(y_a)$ and $\sigma_{t,i}^2(y_a)$ the predictive mean and variance at $x_{t,i}$ of the built Kriging model.

• Quantities of interest are averaged over n_p LHS Maximin designs.

Results

- We consider the Ishigami (d=3) and Morris (d=10) functions:
- Ishigami: $\sin(-\pi + 2\pi x_1) + 7\sin((-\pi + 2\pi x_2)^2) + 0.1\sin(-\pi + 2\pi x_1) \cdot (-\pi + 2\pi x_3)^4$
- Morris: see [GCI06] p. 17 for the exact expression.
- For Case 1 we take C isotropic exponential with fixed unit correlation length. For Case 2, C_{θ} is isotropic exponential (case 2.i) or anisotropic exponential (case 2.a).
- Results:

Function	n, n_p	Case for	MSE	PVA
	_	correlation model		
Ishigami	n = 70	1	ML: 2.75	ML: 0.41
	$n_p = 100$		CV: 2.75	CV: 0.35
Ishigami	n = 70	2.i	ML: 2.87	ML: 0.36
	$n_p = 100$		CV: 2.86	CV: 0.42
Ishigami	n = 70	2.a	ML: 3.21	ML: 0.39
	$n_p = 100$		CV: 2.84	CV: 0.40
Morris	n = 100	1	ML: 6.23	ML: 0.51
	$n_p = 100$		CV: 6.23	CV: 0.25
Morris	n = 100	2.i	ML: 3.14	ML: 0.27
	$n_p = 100$		CV: 3.05	CV: 0.25
Morris	n = 100	2.a	ML: 2.17	ML: 0.28
	$n_p = 100$		CV: 2.18	CV: 0.33

• When model misspecification (high MSE) CV performs better than ML. Model misspecification can come from a too large model (over parametrization) for Ishigami and a too small model (under parametrization) for Morris.

Conclusion

- In our studies: when the model misspecification becomes important, the CV performs better than ML.
- Other Cross Validation criteria?

References

[Dub83] O. Dubrule. Cross validation of kriging in a unique neighborhood. *Mathematical Geology*, 15, 1983. [GCI06] J. Garnier, C. Cannamela, and B. Iooss. Estimation de quantiles. Technical report, 2006.