Assignment 3

Texas A&M University AERO-430-500 Numerical Simulation Andrew Hollister

November 9, 2021

Due: November 11, 2021

Contents

1	Al	bstract	3
2	Aı	nalytical Solution	3
	2.1	The Orthotropic Diffusion Equation	3
	2.2	Boundary Conditions	4
3	Nι	umerical Solution	5
	3.1	Second Order Central Difference Scheme FDM	5
	3.2	Application Across a 2D Mesh	5
4	Н	eat Flux Through the Top Boundary	6
	4.1	Analytical Solution	6
	4.2	Numerical Computation	7
5	Pe	erformance Analysis	7
	5.1	Error	7
	5.2	Percent Error	7
	5.3	Extrapolation and Convergence	7
6	Re	esults	9
	6.1	Temperature Analytical Results	9
	6.2	Temperature FDM Results	16
	6.3	Heat Flux FDM Results	22
	6.4	Heat Flux Richardson Extrapolation	24
	6.5	Convergence of FDM Solution	25
7	Di	scussion	28
8	Re	eferences	29
9	Αį	ppendix B: Code	30

1 Abstract

The purpose of this assignment was to solve the problem of the two-dimensional orthotropic heat conduction problem for the case of an infinite bar under Dirichlet boundary conditions. The analytical solution was derived and was used to investigate the accuracy of the Finite Element Method (FDM). The FDM solution was derived at an accuracy of a second order solution and its convergence was determined at various values of thermal conductivity and number of nodes used.

2 Analytical Solution

2.1 The Orthotropic Diffusion Equation

A visualization of the problem to be solved within this report is given below:

For the first case, the following boundary conditions apply:

$$T_1(0,y) = T_2(x,0) = T_3(1,y) = 0$$
°C
 $T_4(x,1) = 100 * \sin(\pi x)$ °C

Likewise, for the second case, the boundary conditions are:

$$T_1(0,y) = T_2(x,0) = T_3(1,y) = 0^{\circ}C$$

$$T_4(x,1) = \frac{du}{dy} = K\pi * \cosh(K\pi) * 100 * \frac{\sin(\pi x)}{\sinh(K\pi)} {^{\circ}C}$$

Where K is a conductivity constant.

The equations that describe heat flow across the surface are:

$$\nabla Q = 0$$

$$Q = -K_x * \frac{du}{dx}, 0, -K_y * \frac{du}{dx}$$

$$\nabla Q = -K_{xx} * \frac{d^2 u}{dx^2} - K_{yy} * \frac{d^2 u}{dy^2} = 0$$

Simplifying this expression by expressing $\frac{K_{xx}}{K_{yy}}$ as K^2 yields:

$$K^{2} * \frac{d^{2}u}{dx^{2}}(x, y) + \frac{d^{2}u}{dy^{2}}(x, y) = 0$$

Separation of variables must now take place in order to solve the Dirichlet 2^{nd} order homogenous differential equation. Separating the heat function into two separate functions, one for each variable turns the function u(x, y) into f(x)g(y). Substituting this into the partial differential equation will yield the following:

$$\frac{1}{f} * \frac{d^2 f}{dx^2} + \frac{1}{K^2} * \frac{1}{g} * \frac{d^2 g}{dy^2} = 0 \text{ or } -\frac{1}{f} * \frac{d^2 f}{dx^2} = \frac{1}{K^2} * \frac{1}{g} * \frac{d^2 g}{dy^2} = \lambda$$

2.2 Boundary Conditions

Applying the boundary conditions for case 1 produces:

$$f(0)g(y) = f(1)g(y) = 0^{\circ}C$$

$$f(x)g(0) = 0$$
°C, $f(x)g(1) = 100 * \sin(\pi x)$ °C

Applying boundary conditions for case 2 yields:

$$f(0)g(y) = f(1)g(y) = 0$$
°C

$$f(x)g(0) = 0$$
° C , $f(x)g'^{(1)} = K\pi * \cosh(K\pi) * 100 * \frac{\sin(\pi x)}{\sinh(K\pi)}$ ° C

The general solutions for these functions can be derived by utilizing these boundary conditions.

$$f(x) = \sin(\pi x)$$

$$g(y) = 100 * \frac{\sinh(K\pi y)}{\sinh(K\pi)}$$

Multiplying these equations together produces the general solution to the heat equation:

$$u(x, y) = 100 * \frac{\sinh(K\pi y)}{\sinh(K\pi)}$$

3 Numerical Solution

The following section outlines the procedure for deriving the numerical solution utilized within this analysis.

3.1 Second Order Central Difference Scheme FDM

The second order FDM solution derivation commences with an Ordinary Taylor Series Expansion.

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{3!}f''' + \cdots$$
$$f(x) = f(x)$$
$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{3!}f''' + \cdots$$

Adapting this equation for a point in 2D space.

$$\begin{split} U_{i-\Delta x,j} &= U_{i,j} - \Delta x U_{i,j}' + \frac{\Delta x^2}{2} U_{i,j}'' + \cdots \\ U_{i,j} &= U_{i,j} \\ U_{i+\Delta x,j} &= U_{i,j} + \Delta x U_{i,j}' + \frac{\Delta x^2}{2} U_{i,j}'' + \cdots \\ U_{i,j-\Delta y} &= U_{i,j} - \Delta y U_{i,j}' + \frac{\Delta y^2}{2} U_{i,j}'' + \cdots \\ U_{i,j+\Delta y} &= U_{i,j} + \Delta y U_{i,j}' + \frac{\Delta y^2}{2} U_{i,j}'' + \cdots \end{split}$$

Subtracting the Taylor series yields the second order approximation of U':

$$U_{i,j-\Delta y} - U_{i,j+\Delta y} = U_{i,j} - \Delta y U'_{i,j} + \frac{\Delta y^2}{2} U''_{i,j} - (U_{i,j} + \Delta y U'_{i,j} + \frac{\Delta y^2}{2} U''_{i,j} + \cdots)$$

Dividing both sides of this equation by $2\Delta y$ produces $\frac{dU}{dy}$:

$$U'_{i,j} pprox \frac{U_{i,j-\Delta y} - U_{i,j+\Delta y}}{2\Delta y}$$

Applying a similar process of adding Taylor Series will result in U'':

$$\frac{d^2U}{dx^2} \approx \frac{U_{i+\Delta x,j} + U_{i-\Delta x,j} - 2U_{i,j}}{\Delta x^2}$$
$$\frac{d^2U}{dy^2} \approx \frac{U_{i,j+\Delta y} + U_{i,j-\Delta y} - 2U_{i,j}}{\Delta y^2}$$

3.2 Application Across a 2D Mesh

For the derivation of the FDM solution, a uniform 2D mesh with increments of 0.25 will be utilized. The points are oriented such that the point in the top-left is point 0,0 and the furthest point on the bottom right is 4,4.

Applying the heat conduction equations produces:

$$K^{2} * \frac{\partial^{2} u}{\partial x^{2}}(x, y) + \frac{\partial^{2} u}{\partial y^{2}}(x, y) = 0$$

$$K^{2} * \frac{U_{i+\Delta x, j} + U_{i-\Delta x, j} - 2U_{i, j}}{\Delta x^{2}} + \frac{U_{i, j+\Delta y} + U_{i, j-\Delta y} - 2U_{i, j}}{\Delta y^{2}} = 0$$

Since $\Delta x = \Delta y$:

$$-2(K^{2}+1) * U_{i,j} + K^{2}(U_{i+\Delta x,j} + U_{i-\Delta x,j}) + U_{i,j+\Delta y} + U_{i,j-\Delta y} = 0$$

$$U_{\Delta x \Delta y} = \frac{100}{2(K^{2}+1)}$$

Applying the system of equations to $\Delta x = \Delta y = 0.25$ produces the following set of equations:

$$-2(K^{2}+1)*T_{1,1}+K^{2}(T_{2,1}+T_{0,1})+\sin(\pi*0.25)+T_{1,2}=0$$

$$-2(K^{2}+1)*T_{2,1}+K^{2}(T_{3,1}+T_{1,1})+\sin(\pi*0.25)+T_{2,2}=0$$

$$-2(K^{2}+1)*T_{3,1}+K^{2}(T_{3,1}+T_{2,1})+\sin(\pi*0.25)+T_{2,2}=0$$

Using this pattern, a global matrix can be constructed that can be solved for the

This matrix pattern can be used to generate the general case to be used in code.

4 **Heat Flux Through the Top Boundary**

4.1 **Analytical Solution**

The analytical solution to the total heat flux through the top boundary can be calculated using 1/3 Simpson Integration:

$$\dot{q} = \int_0^x -k * thickness * \frac{dT}{dy} * dx$$

Here,

$$\frac{dT}{dy} = \frac{d}{dy} \left(\frac{100 \sinh(K\pi y)}{\sinh(K\pi)} * \sin(\pi x) \right)$$

Integrating yields:

$$\dot{q} = -200 * \frac{K}{\tanh(K * \pi)}$$

4.2 Numerical Computation

For the numerical computation of the heat flux through the upper boundary, the same equation used for the analytical solution can be used. However, $\frac{dT}{dy}$ must be derived with the following expression:

$$\frac{dT}{dy} \approx \frac{T_{i,jmax-2} - 4 * T_{i,jmax-1} + 3 * T_{i,jmax}}{2 * \Delta x}$$

The heat flux is then derived by applying Simpson integration with this equation.

5 Performance Analysis

5.1 Error

The errors of the numerical solutions are calculated using the equations below:

$$e_h = u(x) - u_h(x)$$

5.2 Percent Error

The percent error of an estimated quantity $Q_{Estimated}$ (calculated using FDM) against its exact values Q_{Exact} is calculated using the equation below:

$$\%Error = \left| \frac{Q_{Exact} - Q_{Estimated}}{Q_{Exact}} \right| \times 100\%$$

5.3 Extrapolation and Convergence

Richardson's Extrapolation was used to extrapolate an approximate of the exact value from a series of approximated values. In general, error is modeled as:

$$Q_{ex} - Q_h = Ch^{\beta}$$

Where Q is the quantity of interest, Q_h is the approximate value at some mesh size h, C is some constant, and β is the convergence rate. In general, it is rare for the exact value to be known, and it is often difficult or impossible to obtain analytical solutions. In this case it is possible to use Richardson's Extrapolation to obtain reasonably accurate approximate value of the exact solution. If we write this equation at another mesh size, say h/2, the two can be divided and the unknown β can be found.

$$Q_{ex} - Q_h = C(h)^{\beta}$$

$$Q_{ex} - Q_{\frac{h}{2}} = C\left(\frac{h}{2}\right)^{\beta}$$

$$\frac{Q_{ex} - Q_h}{Q_{ex} - Q_{\frac{h}{2}}} = \frac{C(h)^{\beta}}{C(\frac{h}{2})^{\beta}}$$

$$log\left(\frac{Q_{ex} - Q_h}{Q_{ex} - Q_{\frac{h}{2}}}\right) = log\left(\frac{C(h)^{\beta}}{C(\frac{h}{2})^{\beta}}\right)$$

$$log(Q_{ex} - Q_h) - log(Q_{ex} - Q_{\frac{h}{2}}) = \beta log(h) - \beta log\left(\frac{h}{2}\right)$$

$$\beta = \frac{log(Q_{ex} - Q_h) - log(Q_{ex} - Q_{\frac{h}{2}})}{log(h) - log(\frac{h}{2})}$$

Again, Richardson's Extrapolation will be used to derive an expression for an extrapolated value. Here we will have to utilize three mesh sizes rather than the previous two.

$$\begin{split} Q_{ex} - Q_h &= C(h)^{\beta} \approx 2^{\beta} \\ Q_{ex} - Q_{\frac{h}{2}} &= C\left(\frac{h}{2}\right)^{\beta} \approx 2^{\beta} \\ Q_{ex} - Q_{\frac{h}{4}} &= C\left(\frac{h}{4}\right)^{\beta} \approx 2^{\beta} \\ \frac{Q_{ex} - Q_h}{Q_{ex} - Q_{\frac{h}{2}}} \approx 2^{\beta} \approx \frac{Q_{ex} - Q_{\frac{h}{2}}}{Q_{ex} - Q_{\frac{h}{4}}} \\ \frac{Q_{extr} - Q_h}{Q_{extr} - Q_{\frac{h}{2}}} &= 2^{\beta} = \frac{Q_{extr} - Q_{\frac{h}{2}}}{Q_{extr} - Q_{\frac{h}{4}}} \\ (Q_{extr} - Q_h)(Q_{extr} - Q_{\frac{h}{4}}) &= (Q_{extr} - Q_{\frac{h}{2}})^2 \\ Q_{extr} &= \frac{Q_{\frac{h}{2}}^2 - Q_h * Q_{\frac{h}{4}}}{2Q_{\frac{h}{2}} - Q_h - Q_{\frac{h}{4}}} \end{split}$$

From here Q_{extra} can be substituted to solve for β , which yields:

$$\frac{\log\left(\frac{Q_{extr}-Q_h}{Q_{extr}-Q_{\frac{h}{2}}}\right)}{\log(2)} = \beta = \frac{\log\left(\frac{Q_{extr}-Q_{\frac{h}{2}}}{Q_{extr}-Q_{\frac{h}{4}}}\right)}{\log(2)}$$

6 Results

6.1 Temperature Analytical Results

The following 2-dimensional and 3-dimensional heat maps show the temperature distribution of the bar under various thermal conductivity. It can be observed that as the value of K increases, the temperature distribution across the beam decreases as the material prevents more heat transfer:

K = 0.25

K = 0.5

K = 0.75

K = 1

K = 2

K = 5

K = 10

6.2 Temperature FDM Results

The following section outlines the results of the 2^{nd} Order FDM solution of the infinite bar at various mesh sizes and a thermal conductivity value of K=0.75. Additional charts and graphs performed at different thermal conductivity values are generated by the code referenced in Appendix A: Code.

6.3 Heat Flux FDM Results

The following section presents the results of the heat flux through the upper boundary of the bar at various mesh sizes and thermal conductivity values. In addition, the convergence of these solutions is provided.

Num. Elements	dx	Exact Heat Flux	Approx. Heat Loss	Percent Error	Beta
2	0.5	-76.2434	-74.5098	2.27381	n/a
4	0.25	-76.2434	-74.922	1.73313	0.39172944097167783
8	0.125	-76.2434	-75.859	0.504218	1.781259498021684
16	0.0625	-76.2434	-76.1432	0.131412	1.9399456525572434
32	0.03125	-76.2434	-76.218	0.0333101	1.98007139942149
64	0.015625	-76.2434	-76.237	0.00837129	1.992437330814078
Convergence of H	Heat Flux (F	K = 0.5):			
Num. Elements	dx	Exact Heat Flux	Approx. Heat Loss	Percent Error	Beta
2	0.5	-109.033	-93.3333	14.3991	n/a
4	0.25	-109.033	-102.761	5.75292	1.323613579792871
8	0.125	-109.033	-107.211	1.67154	1.783112953893871
16	0.0625	-109.033	-108.549	0.444083	1.912281475247534
32	0.03125	-109.033	-108.909	0.114042	1.961263047507916
64	0.015625	-109.033	-109.002	0.0288698	1.981934453755900
onvergence of H	Heat Flux (F	<pre>< = 0.75):</pre>			
Num. Elements	dx	Exact Heat Flux	Approx. Heat Loss	Percent Error	Beta
4	0.5	-152.719	-114.667	24.9168	n/a
	0.5 0.25	-152.719 -152.719	-114.667 -137.009		n/a 1.276310140243971
4				10.2869	,
4 8	0.25	-152.719	-137.009	10.2869 3.17583	1.276310140243971 1.695601252472833
4 8 16	0.25 0.125	-152.719 -152.719	-137.009 -147.869	10.2869 3.17583 0.873308	1.276310140243971 1.695601252472833 1.862572167244878
4 8 16 32	0.25 0.125 0.0625	-152.719 -152.719 -152.719	-137.009 -147.869 -151.386	10.2869 3.17583 0.873308 0.228281	1.276310140243971 1.695601252472833 1.862572167244878 1.935676623071239
4 8 16 32 64	0.25 0.125 0.0625 0.03125 0.015625	-152.719 -152.719 -152.719 -152.719 -152.719	-137.009 -147.869 -151.386 -152.371	10.2869 3.17583 0.873308 0.228281	1.276310140243971 1.695601252472833 1.862572167244878
4 8 16 32 64 onvergence of H	0.25 0.125 0.0625 0.03125 0.015625	-152.719 -152.719 -152.719 -152.719 -152.719	-137.009 -147.869 -151.386 -152.371	10.2869 3.17583 0.873308 0.228281 0.0583083	1.276310140243971 1.695601252472833 1.862572167244878 1.935676623071239 1.969038882527844
4 8 16 32 64 onvergence of H Num. Elements	0.25 0.125 0.0625 0.03125 0.015625	-152.719 -152.719 -152.719 -152.719 -152.719	-137.009 -147.869 -151.386 -152.371 -152.63 Approx. Heat Loss	10.2869 3.17583 0.873308 0.228281 0.0583083 Percent Error	1.276310140243971 1.695601252472833 1.862572167244878 1.935676623071239 1.969038882527844
4 8 16 32 64 onvergence of H Num. Elements	0.25 0.125 0.0625 0.03125 0.015625 Heat Flux (K	-152.719 -152.719 -152.719 -152.719 -152.719 = 1): Exact Heat Flux	-137.009 -147.869 -151.386 -152.371 -152.63 Approx. Heat Loss	10.2869 3.17583 0.873308 0.228281 0.0583083 Percent Error 	1.27631014024397; 1.69560125247283; 1.86257216724487; 1.93567662307123; 1.96903888252784; Beta
4 8 16 32 64 onvergence of H Num. Elements	0.25 0.125 0.0625 0.03125 0.015625 Heat Flux (K dx 	-152.719 -152.719 -152.719 -152.719 -152.719 -152.719 = 1): Exact Heat Flux	-137.009 -147.869 -151.386 -152.371 -152.63 Approx. Heat Loss 	10.2869 3.17583 0.873308 0.228281 0.0583083 Percent Error 	1.27631014024397 1.69560125247283 1.86257216724487 1.93567662307123 1.96903888252784 Beta
4 8 16 32 64 onvergence of H Num. Elements 2 4	0.25 0.125 0.0625 0.03125 0.015625 deat Flux (K dx 0.5 0.25	-152.719 -152.719 -152.719 -152.719 -152.719 -152.719 = 1): Exact Heat Flux -200.748 -200.748	-137.009 -147.869 -151.386 -152.371 -152.63 Approx. Heat Loss 	10.2869 3.17583 0.873308 0.228281 0.0583083 Percent Error 33.5819 15.0476 4.96237	1.27631014024397 1.69560125247283 1.86257216724487 1.93567662307123 1.96903888252784 Beta n/a 1.158150058574231 1.600430811455807
4 8 16 32 64 Convergence of H Num. Elements 2 4 8	0.25 0.125 0.0625 0.03125 0.015625 deat Flux (K dx 0.5 0.25 0.125	-152.719 -152.719 -152.719 -152.719 -152.719 -152.719 (= 1): Exact Heat Flux -200.748 -200.748 -200.748	-137.009 -147.869 -151.386 -152.371 -152.63 Approx. Heat Loss -133.333 -170.541 -190.786 -197.91	10.2869 3.17583 0.873308 0.228281 0.0583083 Percent Error 33.5819 15.0476 4.96237 1.41408	1.27631014024397; 1.69560125247283; 1.86257216724487; 1.93567662307123; 1.96903888252784; Beta

			Approx. Heat Loss		
	0.5		-173.333		
4	0.25	-400.003	-265.909	33.5232	0.75734769137366
8	0.125	-400.003	-343.985	14.0043	1.2592882588058265
16	0.0625	-400.003	-381.704	4.57473	1.61411253483227
32	0.03125	-400.003	-394.781	1.30555	1.8090320490738938
64	0.015625	-400.003	-398.609	0.348365	1.905984022430321
Convergence of H	eat Flux (K	= 5):			
			Approx. Heat Loss		
	0.5		-194.872		
4	0.25	-1000	-352.527	64.7473	0.31439911677174426
8	0.125	-1000	-591.087	40.8913	0.6630243806977204
16	0.0625	-1000	-812.802	18.7198	1.1272280368091916
32	0.03125	-1000	-934.863	6.51369	1.5230201904232348
64	0.015625	-1000	-980.757	1.92425	1.7591784712191902
Convergence of H	eat Flux (K	(= 10):			
Num. Elements	dx	Exact Heat Flux	Approx. Heat Loss	Percent Error	Beta
_	0.5		-198.68		•
	0.25		-374.449		
8	0.125	-2000			0.3286059404502064
1.6	0.0625	2000	-1184.24	40.7878	0.6661120414729824

1/3 Simpson Integration Heat Flux $-log_{10}(\Delta x)$ vs $-log_{10}(Relative\ Error)$

-2000

-2000

-1626.94

-1870.22

18.6528

1.1287498517795977

6.48882 1.523361198648693

32 0.03125

64 0.015625

6.4 Heat Flux Richardson Extrapolation

The exact solution is not always available in modern problems. As such, the Richardson Extrapolation was also performed to be compared against the approximate solution. The following section presents this data at various values of thermal conductivity.

Convergence of E	xtrapolat	ted Heat Flux (K = 0.25):			
Num. Elements	dx	Extrapolated Heat Flux	Approx. Heat Loss	Percent Error	Beta
2	0.5	-74.186	-74.5098	0.436534	1.18454
4	0.25	-76.267	-74.922	1.76352	1.72089
_	0.125	-76.2447	-75.859		1.92606
_	0.0625	-76.2435	-76.1432	0.131542	
16	0.0625	-70.2433	-70.1432	0.131342	1.5/35
Convergence of E	_	ted Heat Flux (K = 0.5):			
Num. Elements	dx	Extrapolated Heat Flux	Approx. Heat Loss	Percent Error	Beta
2	0.5	-111.189	-93.3333	16.0591	1.08301
4	0.25	-109.125	-102.761	5.83188	1.73338
8	0.125	-109.041	-107.211	1.67876	1.89496
	0.0625	-109.034		0.444835	
			100.015	0.111000	1.50115
_	_	ted Heat Flux $(K = 0.75)$:			
Num. Elements	dx	Extrapolated Heat Flux	Approx. Heat Loss	Percent Error	Beta
2	0.5	-158.14	-114.667	27.4906	1.04078
4	0.25	-153.07	-137.009	10.4921	1.62685
	0.125	-152.754			
	0.0625				
16	0.0625	-152.723	-151.386	0.075793	1.92405
C	_				
convergence of E	xtrapolat	ted $Heat Flux (K = 1)$:			
Num. Elements	_		Approx. Heat Loss	Percent Error	Beta
-	_	Extrapolated Heat Flux	Approx. Heat Loss	Percent Error	Beta
Num. Elements	_		Approx. Heat Loss		Beta
Num. Elements	dx	Extrapolated Heat Flux		37.9709	
Num. Elements	dx 0.5 0.25	Extrapolated Heat Flux	-133.333 -170.541	37.9709 15.4803	0.877954 1.50705
Num. Elements 2 4	dx 0.5 0.25 0.125	Extrapolated Heat Flux -214.953 -201.776 -200.854	-133.333 -170.541 -190.786	37.9709 15.4803 5.01234	0.877954 1.50705 1.77368
Num. Elements 2 4	dx 0.5 0.25	Extrapolated Heat Flux	-133.333 -170.541	37.9709 15.4803	0.877954 1.50705
Num. Elements 2 4 8 16	dx 0.5 0.25 0.125 0.0625	Extrapolated Heat Flux -214.953 -201.776 -200.854	-133.333 -170.541 -190.786	37.9709 15.4803 5.01234	0.877954 1.50705 1.77368
Num. Elements 2 4 8 16	dx 0.5 0.25 0.125 0.0625	Extrapolated Heat Flux -214.953 -201.776 -200.854 -200.76	-133.333 -170.541 -190.786 -197.91	37.9709 15.4803 5.01234 1.4199	0.877954 1.50705 1.77368 1.89328
Num. Elements 2 4 8 16 Convergence of E Num. Elements	dx 0.5 0.25 0.125 0.0625 Extrapolat dx	Extrapolated Heat Flux	-133.333 -170.541 -190.786 -197.91 Approx. Heat Loss	37.9709 15.4803 5.01234 1.4199 Percent Error	0.877954 1.50705 1.77368 1.89328
Num. Elements 2 4 8 16 Convergence of E Num. Elements	dx 0.5 0.25 0.125 0.0625 Extrapolat dx 0.5	Extrapolated Heat Flux	-133.333 -170.541 -190.786 -197.91 Approx. Heat Loss	37.9709 15.4803 5.01234 1.4199 Percent Error	0.877954 1.50705 1.77368 1.89328 Beta
Num. Elements 2 4 8 16 Convergence of E Num. Elements 2 4	dx 0.5 0.25 0.125 0.0625 Extrapolar dx 0.5 0.25	Extrapolated Heat Flux -214.953 -201.776 -200.854 -200.76 ted Heat Flux (K = 2): Extrapolated Heat Flux -764.403 -416.956	-133.333 -170.541 -190.786 -197.91 Approx. Heat Loss -173.333 -265.909	37.9709 15.4803 5.01234 1.4199 Percent Error 77.3243 36.2261	0.877954 1.50705 1.77368 1.89328 Beta 0.245752 1.0496
Num. Elements 2 4 8 16 Convergence of E Num. Elements 2 4 8	dx 0.5 0.25 0.125 0.0625 Extrapolar dx 0.5 0.25 0.125	Extrapolated Heat Flux -214.953 -201.776 -200.854 -200.76 ted Heat Flux (K = 2): Extrapolated Heat Flux -764.403 -416.956 -401.72	-133.333 -170.541 -190.786 -197.91 Approx. Heat Loss -173.333 -265.909 -343.985	37.9709 15.4803 5.01234 1.4199 Percent Error 77.3243 36.2261 14.372	0.877954 1.50705 1.77368 1.89328 Beta 0.245752 1.0496 1.52826
Num. Elements 2 4 8 16 Convergence of E Num. Elements 2 4 8	dx 0.5 0.25 0.125 0.0625 Extrapolar dx 0.5 0.25	Extrapolated Heat Flux -214.953 -201.776 -200.854 -200.76 ted Heat Flux (K = 2): Extrapolated Heat Flux -764.403 -416.956	-133.333 -170.541 -190.786 -197.91 Approx. Heat Loss -173.333 -265.909	37.9709 15.4803 5.01234 1.4199 Percent Error 77.3243 36.2261 14.372	0.877954 1.50705 1.77368 1.89328 Beta 0.245752 1.0496 1.52826
Num. Elements 2 4 8 16 Convergence of E Num. Elements 2 4 8 16	dx 0.5 0.25 0.125 0.0625 Extrapolar dx 0.5 0.25 0.125 0.0625	Extrapolated Heat Flux -214.953 -201.776 -200.854 -200.76 ted Heat Flux (K = 2): Extrapolated Heat Flux -764.403 -416.956 -401.72	-133.333 -170.541 -190.786 -197.91 Approx. Heat Loss -173.333 -265.909 -343.985	37.9709 15.4803 5.01234 1.4199 Percent Error 77.3243 36.2261 14.372	0.877954 1.50705 1.77368 1.89328 Beta 0.245752 1.0496 1.52826
Num. Elements 2 4 8 16 Convergence of E Num. Elements 2 4 8 16	dx 0.5 0.25 0.125 0.0625 Extrapolat dx 0.5 0.25 0.125 0.0625	Extrapolated Heat Flux -214.953 -201.776 -200.854 -200.76 ted Heat Flux (K = 2): Extrapolated Heat Flux -764.403 -416.956 -401.72 -400.194	-133.333 -170.541 -190.786 -197.91 Approx. Heat Loss -173.333 -265.909 -343.985 -381.704	37.9709 15.4803 5.01234 1.4199 Percent Error 	0.877954 1.50705 1.77368 1.89328 Beta 0.245752 1.0496 1.52826 1.77206
Num. Elements 2 4 8 16 Convergence of E Num. Elements 2 4 8 16 Convergence of E Num. Elements	dx 0.5 0.25 0.125 0.0625 Extrapolat dx 0.5 0.25 0.125 0.0625 extrapolat dx	Extrapolated Heat Flux -214.953 -201.776 -200.854 -200.76 ted Heat Flux (K = 2): Extrapolated Heat Flux -764.403 -416.956 -401.72 -400.194	-133.333 -170.541 -190.786 -197.91 Approx. Heat Loss -173.333 -265.909 -343.985 -381.704 Approx. Heat Loss	37.9709 15.4803 5.01234 1.4199 Percent Error 77.3243 36.2261 14.372 4.62043	0.877954 1.50705 1.77368 1.89328 Beta 0.245752 1.0496 1.52826 1.77206
Num. Elements 2 4 8 16 Convergence of E Num. Elements 2 4 8 16 Convergence of E Num. Elements	dx 0.5 0.25 0.125 0.0625 Extrapolat dx 0.5 0.25 0.125 0.0625 extrapolat dx	Extrapolated Heat Flux -214.953 -201.776 -200.854 -200.76 ted Heat Flux (K = 2): Extrapolated Heat Flux -764.403 -416.956 -401.72 -400.194 ted Heat Flux (K = 5): Extrapolated Heat Flux	-133.333 -170.541 -190.786 -197.91 Approx. Heat Loss -173.333 -265.909 -343.985 -381.704 Approx. Heat Loss	37.9709 15.4803 5.01234 1.4199 Percent Error 77.3243 36.2261 14.372 4.62043 Percent Error	0.877954 1.50705 1.77368 1.89328 Beta 0.245752 1.0496 1.52826 1.77206 Beta
Num. Elements 2 4 8 16 Convergence of E Num. Elements 2 4 8 16 Convergence of E Num. Elements	dx 0.5 0.25 0.125 0.0625 Extrapolat dx 0.5 0.25 0.125 0.0625 extrapolat dx 	Extrapolated Heat Flux -214.953 -201.776 -200.854 -200.76 ted Heat Flux (K = 2): Extrapolated Heat Flux -764.403 -416.956 -401.72 -400.194 ted Heat Flux (K = 5): Extrapolated Heat Flux	-133.333 -170.541 -190.786 -197.91 Approx. Heat Loss -173.333 -265.909 -343.985 -381.704 Approx. Heat Loss	37.9709 15.4803 5.01234 1.4199 Percent Error 77.3243 36.2261 14.372 4.62043 Percent Error	0.877954 1.50705 1.77368 1.89328 Beta 0.245752 1.0496 1.52826 1.77206 Beta 0.597573
Num. Elements 2 4 8 16 Convergence of E Num. Elements 2 4 8 16 Convergence of E Num. Elements 2 4 8 16	dx 0.5 0.25 0.125 0.0625 Extrapolat dx 0.5 0.25 0.125 0.0625 Extrapolat dx 0.5 0.25 0.125 0.0625	Extrapolated Heat Flux -214.953 -201.776 -200.854 -200.76 ted Heat Flux (K = 2): Extrapolated Heat Flux -764.403 -416.956 -401.72 -400.194 ted Heat Flux (K = 5): Extrapolated Heat Flux 112.348 -3731.14	-133.333 -170.541 -190.786 -197.91 Approx. Heat Loss -173.333 -265.909 -343.985 -381.704 Approx. Heat Loss -194.872 -352.527	37.9709 15.4803 5.01234 1.4199 Percent Error 77.3243 36.2261 14.372 4.62043 Percent Error 273.454 90.5518	0.877954 1.50705 1.77368 1.89328 Beta 0.245752 1.0496 1.52826 1.77206 Beta 0.597573 0.105642
Num. Elements 2 4 8 16 Convergence of E Num. Elements 2 4 8 16 Convergence of E Num. Elements	dx 0.5 0.25 0.125 0.0625 Extrapolat dx 0.5 0.25 0.125 0.0625 extrapolat dx 	Extrapolated Heat Flux -214.953 -201.776 -200.854 -200.76 ted Heat Flux (K = 2): Extrapolated Heat Flux -764.403 -416.956 -401.72 -400.194 ted Heat Flux (K = 5): Extrapolated Heat Flux	-133.333 -170.541 -190.786 -197.91 Approx. Heat Loss -173.333 -265.909 -343.985 -381.704 Approx. Heat Loss	37.9709 15.4803 5.01234 1.4199 Percent Error 77.3243 36.2261 14.372 4.62043 Percent Error 273.454 90.5518	0.877954 1.50705 1.77368 1.89328 Beta 0.245752 1.0496 1.52826 1.77206 Beta 0.597573 0.105642 0.8611

Convergence of Extrapolate	ed Heat Flux (K = 10):	
----------------------------	------------------------	--

Num. Elements	dx	Extrapolated Heat Flux	Approx. Heat Loss	Percent Error	Beta
2	0.5	0.196153	-198.68	101388	0.913655
4	0.25	368.54	-374.449	201.603	0.531722
8	0.125	-7074.43	-705.565	90.0265	0.112723
16	0.0625	-2167	-1184.24	45.3511	0.863724

6.5 Convergence of FDM Solution

64 0.015625

The following section presents the convergence of 2^{nd} Order FDM solution by comparing the temperature of a point within the middle of the bar derived from the FDM solution with the analytical solution.

Convergence	of	2nd	Order	FDM	Temperature	Solution	(K =	0.25):
-------------	----	-----	-------	-----	-------------	----------	------	--------

Num. Elements	dx	Exact Midpoint Temp	Approx. Midpoint Temp	Percent Error	Beta
2	0.5	46.3778	47.0588	1.46845	n/a
4	0.25	46.3778	46.5596	0.391918	1.9056726734563847
8	0.125	46.3778	46.424	0.0996266	1.975947176276953
16	0.0625	46.3778	46.3894	0.0250112	1.9939545513403978
32	0.03125	46.3778	46.3807	0.00625937	1.9984865746513485
64	0.015625	46.3778	46.3785	0.00156525	1.9996215153853052
01	0.010020				
		1 Temperature Solution	(K = 0.5): Approx. Midpoint Temp	Percent Error	Beta
onvergence of 2 Num. Elements	nd Order FDI	1 Temperature Solution		Percent Error 5.96873	Beta n/a
onvergence of 2 Num. Elements	nd Order FDI dx	1 Temperature Solution Exact Midpoint Temp	Approx. Midpoint Temp		
onvergence of 2 Num. Elements	nd Order FDI dx 	4 Temperature Solution Exact Midpoint Temp	Approx. Midpoint Temp	5.96873	n/a
onvergence of 2 Num. Elements 2 4	dx 0.5	4 Temperature Solution Exact Midpoint Temp 37.747 37.747	Approx. Midpoint Temp 40 38.3548	5.96873 1.61033	n/a 1.890064341048055

37.7494

37.747

0.00646322 1.9995310196004619

Convergence of 2	2nd Order FDM	Temperature Solution	(K = 0.75)):		
		Exact Midpoint Temp		-	Percent Error	Beta
	0.5	28.1211		32	13.7937	n/a
4	0.25	28.1211		29.1835	3.77806	1.8682863441294335
8	0.125	28.1211		28.3936	0.969265	1.9626833381613211
16	0.0625	28.1211		28.1897	0.243947	1.9903227976580664
32	0.03125	28.1211		28.1383	0.0610901	1.9975574278793857
64	0.015625	28.1211		28.1254	0.015279	1.999387876879413
Convergence of	2nd Order FDN	M Temperature Solution	(K = 1):			
Num. Elements	dx	Exact Midpoint Temp	Approx.	Midpoint Temp	Percent Error	Beta
2	0.5	19.9268		25	25.4589	n/a
	0.25	19,9268			7.08589	
	0.125	19.9268			1.8301	1.9530246988447173
16	0.0625	19.9268				1.9875349860890625
32	0.03125	19.9268		19.9499	0.115627	1.9968339145515912
64	0.015625	19.9268		19.9326	0.0289228	1.9992052803820966
-		1 Temperature Solution				_
Num. Elements	dx	Exact Midpoint Temp	Approx.	Midpoint Temp	Percent Error	Beta
2	0.5	4.31334		10	131.839	n/a
4	0.25	4.31334		5.93017	37.4846	1.814409081914657
8	0.125	4.31334		4.73837	9.85402	1.9275126560263582
16	0.0625	4.31334		4.4212		1.9784039340079103
32	0.03125	4.31334		4.34041	0.627635	1.9943110148969143
64	0.015625	4.31334		4.32011	0.157066	1.9985580156492015
Convergence of 2	2nd Order FDM	Temperature Solution	(K = 5):			
Num. Elements	dx	Exact Midpoint Temp	Approx.	Midpoint Temp	Percent Error	Beta
2	0.5	0.0388203		1.92308	4853.79	n/a
4	0.25	0.0388203		0.363577	836.564	2.5365633634160085
8	0.125	0.0388203		0.0996494	156.694	2.4165267143029645
16	0.0625	0.0388203		0.0522322	34.5485	2.1812534660952503
32	0.03125	0.0388203		0.0420473	8.31268	2.0552396238446007
64	0.015625	0.0388203		0.0396189	2.05722	2.0146146625571846
• • •						

Convergence	of	2nd	Order	FDM	Temperature	Solution	(K =	10)	١:

Num. Elements	dx	Exact Midpoint Temp	Approx. Midpoint Temp	Percent Error	Beta
2	0.5	1.50702e-05	0.49505	3.28486e+06	n/a
4	0.25	1.50702e-05	0.0272645	180817	4.183230529085337
8	0.125	1.50702e-05	0.0011517	7542.26	4.583390150663314
16	0.0625	1.50702e-05	9.40808e-05	524.285	3.846573806219785
32	0.03125	1.50702e-05	2.68226e-05	77.9849	2.7490846449177506
64	0.015625	1.50702e-05	1.75987e-05	16.7786	2.216569741450256

7 Discussion

This report investigated the application of FDM to solve a 2-dimensional boundary condition problem. Furthermore, this report investigated the effect that varying the number of nodes and the value of the thermal conductivity had on the resulting temperature distribution and the convergence and accuracy of the results.

It was observed that the temperature distribution within the bar varied drastically as the value of K increased. This result is expected as highly values of K represent a greater ability of the material to resist a change in temperature. In addition, the convergence of the results consistently approximated to a value of 2. This result is also expected as the FDM solution was derived to a second order. One of the limiting factors experienced with the code was the number of nodes that could be used in calculations. For nodes used beyond 129, the performance of the code significantly decreased. Utilizing a greater number of nodes beyond this value quickly become impractical due to the computation time required.

8 References

The following reports and codes were used to assist in the creation of this report and the code utilized within.

- Antonio Diaz's Code and Report
- Valentina Musu's Report

9 Appendix B: Code

```
 \label{eq:linalg.solve} $$ temps = np.reshape(np.linalg.solve(A, B), [n_nodes, n_nodes]) $$ temps = np.row_stack((-bc_temp_func(np.linspace(0, length, n_nodes+2))[1:-1], temps)) $$ $$ temps = np.row_stack((-bc_temp_func(np.linspace(0, length, n_nodes+2))[1:-1], temps)) $$ $$ temps = np.row_stack((-bc_temp_func(np.linspace(0, length, n_nodes+2))[1:-1], temps) $$ $$ temps = np.row_stack((-bc_temp_func(np.linspace(0, length, n_nodes+2))[1:-1], temps = np.r
A = np.log(abs(exact - approx.))
B = np.log(abs(exact - approx.2))
C = np.log(h) - np.log(h_2)
return -(A - B) / C
```

```
midpoint_index = int(len(2) / 2)
midpoint = length / (n_nodes + 1) * midpoint_index
approx_t = 2[midpoint_index] [midpoint_index]
exact_t = exact_temp(midpoint, midpoint, k)
```

```
plt.plot(re_dx_err[i], re_log_err[i], label='K = '+str(k_list[i]))
plt.title('Extrapolated Heat Flux\n' + r'-$log_{10}$($\Delta$x) vs -$log_{10}$(Relative Error)')
plt.xlabel(r'$-log_{10}$($\Delta$x)')
plt.ylabel(r'$-log_{10}$(Relative Error)')
plt.plot(tc_dx_err[i], tc_log_err[i], label='K = '+str(k_list[i]))
plt.title('2nd order FDM\n' + r'-$log_{10}$($\Delta$x) vs -$log_{10}$(Relative Error)')
plt.xlabel(r'$-log_{10}$($\Delta$x)')
plt.ylabel(r'$-log_{10}$(Relative Error)')
```