Homework 2

ECE 269: Linear Algebra and Applications Homework #1

Instructor: Behrouz Touri

Due Date: Friday Jan 24th, 8 pm (submission through Gradescope)

1. Integrator! Let $U = \{u_1, \ldots, u_m\}$ be a set of m vectors in a vector space V and $W = \{w_1, \ldots, w_m\}$ where

$$w_k = u_1 + \dots + u_k$$

for k = 1, 2, ..., m.

- (a) Show that span(U) = span(W).
- (b) Show that U is a basis if and only if W is a basis.
- 2. Suppose U, W are both five-dimensional subspaces of \mathbb{R}^9 . Show that $U \cap W \neq \{\underline{0}\}$.
- 3. Properties of Matrices over Fields. Let $(\mathbb{F}, +, \cdot)$ be a field.
 - (a) Show that $0 \cdot a = 0$ for all $a \in \mathbb{F}$.
 - (b) We define a left inverse of a matrix $A \in \mathbb{F}^{n \times n}$ (if exists), to be a matrix $B \in \mathbb{F}^{n \times n}$ such that BA = I (I is the identity matrix). Similarly, we define the right inverse of A to be a matrix $C \in \mathbb{F}^{n \times n}$ such that AC = I. Show that left and right inverse of a matrix are equal. (we denote that matrix by A^{-1})
 - (c) We say that a matrix $A \in \mathbb{F}^{n \times n}$ is a lower-triangular matrix if $A_{ij} = 0$ for j > i. Show that for such a matrix if A is an invertible matrix, its inverse is also a lower-triangular matrix.
 - (d) Suppose that \mathbb{F} is a finite-field. Show that if A is invertible, then $A^k = I$ for some $k \geq 1$.
- 4. Linear functions over \mathbb{F}^n . A function (operator) $L: V \to W$ from a vector space V to a vector space W (both on a common field \mathbb{F}) is called *linear* if (i) L(x+y) = L(x) + L(y), and (ii) $L(\alpha x) = \alpha L(x)$ for all $x, y \in V$ and $\alpha \in \mathbb{F}$.
 - (a) Show that the function $f: \mathbb{F}^n \to \mathbb{F}^m$ defined by f(x) = Ax, where $A \in \mathbb{F}^{m \times n}$, is linear.
 - (b) Show than any linear function $f: \mathbb{F}^n \to \mathbb{F}^m$ has a representation f(x) = Ax for some $A \in \mathbb{F}^{m \times n}$.
 - (c) Show that the representation in part (b) is unique by proving that Ax = Bx for every x implies that A = B.
- 5. Differentiation of polynomials. Let \mathcal{P}_n be the vector space consisting of all polynomials of degree $\leq n$ with real coefficients.
 - (a) Show that the monomials x^i , i = 0, 1, ..., n, form a basis for \mathcal{P}_n .

(b) Consider the transformation $T: \mathcal{P}_n \to \mathcal{P}_n$ defined by

$$T(p(x)) = \frac{dp(x)}{dx}.$$

For example, $T(1+3x+x^2)=3+2x$. Show that T is linear.

- (c) Using $\{1, x, \dots, x^n\}$ as a basis, represent the transformation in part (b) by a matrix $A \in \mathbb{R}^{(n+1)\times (n+1)}$. Find the rank of A.
- (d) Characterize the nullspace of A.
- 6. Zero nullspace. Let $A \in \mathbb{R}^{m \times n}$. Prove that the following statements are equivalent.
 - (a) $\mathcal{N}(A) = \{0\}.$
 - (b) $\mathcal{R}(A') = \mathbb{R}^n$.
 - (c) The columns of A are independent.
 - (d) A is tall (i.e., $n \le m$) and full-rank (i.e., rank $(A) = \min(m, n) = n$).
- 7. Rank of AA'. Let $A \in \mathbb{F}^{m \times n}$.
 - (a) Suppose that $\mathbb{F} = \mathbb{R}$. Prove that $\operatorname{rank}(AA') = \operatorname{rank}(A)$ or provide a counterexample.
 - (b) Suppose that $\mathbb{F} = \mathbb{Z}_2$. Repeat part (a).
 - (c) Suppose that $\mathbb{F} = \mathbb{C}$. Repeat part (a).
 - (d) Suppose that $\mathbb{F} = \mathbb{C}$. Prove that $\operatorname{rank}(AA^*) = \operatorname{rank}(A)$ or provide a counterexample.
- 8. Rank of a sum. Let $A, B \in \mathbb{F}^{m \times n}$. Show that

$$rank(A + B) \le rank(A) + rank(B)$$
.

- 9. Rank of a product. Let $A \in \mathbb{R}^{6\times 4}$ has rank 2 and $B \in \mathbb{R}^{4\times 5}$ has rank 3.
 - (a) Find the smallest possible value r_{\min} of rank(AB). Find specific A and B such that rank $(AB) = r_{\min}$.
 - (b) Find the largest possible value r_{max} of rank(AB). Find specific A and B such that rank $(AB) = r_{\text{max}}$.
- 10. Parity check codes. Let

$$G = \begin{bmatrix} I \\ A \end{bmatrix} \in \mathbb{Z}_2^{n \times k},$$

where $A \in \mathbb{Z}_2^{(n-k)\times k}$ and $n \geq k$, where I is the $k \times k$ identity matrix. Suppose that a k-bit message $x \in \mathbb{Z}_2^k$ is encoded into an n-bit codeword $y = Gx \in \mathbb{Z}_2^n$. This is an example of an (n,k) binary linear parity check code. In this context, G is referred to as a generator matrix of the code and its range $\mathcal{R}(G)$ is referred to as the set of codewords or the codebook. The additional n-k bits, or parity bits, provide redundant information that can be used for correction (or detection) of errors that occur to the codewords.

(a) Find $|\mathcal{R}(G)|$ and interpret this value in terms of the codewords of the (n,k) code.

- (b) Let $H = \begin{bmatrix} A & I \end{bmatrix} \in \mathbb{Z}_2^{(n-k) \times n}$. Show that HG = 0.
- (c) Show that $\mathcal{N}(H) = \mathcal{R}(G)$, namely, y is a codeword if and only if Hy = 0. For this reason, H is referred to as a parity check matrix of the code.
- (d) Consider the code with generator matrix H' that encodes (n-k)-bit messages into n-bit codewords. This (n, n-k) code is said to be dual to the original (n, k) code with generator matrix G. Find a parity check matrix P of the dual code, that is, a matrix P that satisfies Py = 0 if and only if y is a codeword of the dual code.