1. Given $\vec{u} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$, find the orthogonal decomposition $\vec{u} = \vec{u}_1 + \vec{u}_2$, where \vec{u}_1 is parallel to \vec{v} , and \vec{u}_2 is orthogonal to \vec{v} . Include a rough diagram.

To get a vector parallel to \vec{v} , we project \vec{u} onto \vec{v} , so that $u_1 = \operatorname{proj}_{\vec{v}} \vec{u}$. Since $\vec{u}_1 + \vec{u}_2 = \vec{u}$, it then follows that $\vec{u}_2 = \vec{u} - \vec{u}_1 = \vec{u} - \operatorname{proj}_{\vec{v}} \vec{u}$: see the diagram to the right. Since $\operatorname{proj}_{\vec{v}} \vec{u} = \left(\frac{\vec{v} \cdot \vec{u}}{||\vec{v}||^2}\right) \vec{v}$, we compute

$$\vec{v} \cdot \vec{u} = 2(1) + (-1)(-1) + 1(3) = 2 + 1 + 3 = 6,$$

and $\|\vec{v}\|^2 = 1^2 + (-1)^2 + 3^2 = 11$. Thus,

$$\vec{u}_1 = \operatorname{proj}_{\vec{v}} \vec{u} = \left(\frac{6}{11}\right) \begin{bmatrix} 1\\-1\\3 \end{bmatrix} = \begin{bmatrix} 6/11\\-6/11\\18/11 \end{bmatrix}.$$

We then have

$$\vec{u}_2 = \vec{u} - \vec{u}_1 = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} - \begin{bmatrix} 6/11 \\ -6/11 \\ 18/11 \end{bmatrix} = \begin{bmatrix} 16/11 \\ -5/11 \\ -7/11 \end{bmatrix},$$

and we can verify that $\vec{v} \cdot \vec{u}_2 = 1(16/11) - 1(-5/11) + 3(-7/11) = 16/11 + 5/11 - 21/11 = 0$, as required.

2. Find the point of intersection (if any) of the line $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} + t \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix}$ with the plane x - 2y + 3z = -6

If (x, y, z) is a point that lies on both the line and the plane, then we know that (on the one hand)

$$x = 1 + 3t$$
, $y = -2 + 5t$, and $z = 3 - t$, (1)

since (x, y, z) lies on the line, and (on the other hand)

$$x - 2y + 3z = -6, (2)$$

since (x, y, z) lies on the plane. Substituting (1) into (2), we get

$$(1+3t) - 2(-2+5t) + 3(3-t) = -6,$$

which simplifies to -10t + 14 = -6, so -10t = -20, and thus t = 2. Plugging this value for t into (1), we get

$$x = 1 + 3(2) = 7$$
, $y = -2 + 5(2) = 8$, and $z = 3 - 2 = 1$.

Thus, the point of intersection is (7, 8, 1). We can verify that this point is indeed on the plane, since 7 - 2(8) + 3(1) = -6.

3. Find the shortest distance from the point P = (1, 3, -2) to the line through the point $P_0 = (2, 0, -1)$ in the direction of $\vec{v} = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^T$. Also find the point P_1 on the line that is closest to P. **Include a diagram.**

We label a generic diagram as shown to the right, with the points P_0 , P_1 on the line labelled, as well as the point P not on the line. From the diagram, we can see that the projection of the vector $\overrightarrow{P_0P}$ onto the line (which is the same as the projection of $\overrightarrow{P_0P}$ onto the vector \overrightarrow{v} , since \overrightarrow{v} is parallel to the line) gives us the vector $\overrightarrow{P_0P_1}$: we have $\overrightarrow{P_0P_1} = \operatorname{proj}_{\overrightarrow{v}} \overrightarrow{P_0P}$.

We're given
$$\vec{v} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, and we compute $\overrightarrow{P_0P} = \overrightarrow{OP} - \overrightarrow{OP_0} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} - \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ -1 \end{bmatrix}$. Since $\vec{v} \cdot \overrightarrow{P_0P} = 1(-1) + (-1)(3) + (0)(-1) = -4$ and $\|\vec{v}\|^2 = \vec{v} \cdot \vec{v} = 1^2 + (-1)^2 + 0^2 = 2$, we have

$$\overrightarrow{P_0P_1} = \operatorname{proj}_{\overrightarrow{v}} \overrightarrow{P_0P} = \left(\frac{\overrightarrow{v} \cdot \overrightarrow{P_0P}}{\|\overrightarrow{v}\|^2}\right) \overrightarrow{v} = \frac{-4}{2} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix}.$$

Since $\overrightarrow{P_0P_1} = \overrightarrow{OP_1} - \overrightarrow{OP_0}$, we have

$$\overrightarrow{OP_1} = \overrightarrow{OP_0} + \overrightarrow{P_0P_1} = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} + \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix},$$

and thus $P_1 = (0, 2, -1)$. Finally, since P_1 is the closest point on our line to the point P (as per the diagram above), the distance from the point P to the line is the same as the distance from P to P_1 . Thus,

$$d = d(P, P_1) = \sqrt{(1-0)^2 + (3-2)^2 + (-2+(-1))^2} = \sqrt{1+1+1} = \sqrt{3}.$$

Note: if we wanted only the distance but didn't need to find the point P_1 , we can notice (from – guess what? – the diagram!) that the distance from the point P to the line is given by the length of the vector $\overrightarrow{P_1P}$, and that

$$\overrightarrow{P_1P} = \overrightarrow{P_0P} - \overrightarrow{P_0P_1} = \begin{bmatrix} -1\\3\\-1 \end{bmatrix} - \begin{bmatrix} -2\\2\\0 \end{bmatrix} = \begin{bmatrix} 1\\1\\-1 \end{bmatrix},$$

and thus
$$d = \|\overrightarrow{P_1P}\| = \sqrt{1^2 + 1^2 + (-1)^2} = \sqrt{3}$$
.

Two observations: first, note that if we let $\vec{u} = \overrightarrow{P_0P}$, then we have the orthogonal decomposition $\vec{u} = \vec{u}_1 + \vec{u}_2$ just as in the first problem, where $\vec{u}_1 = \overrightarrow{P_0P_1}$ and $\vec{u}_2 = \overrightarrow{P_1P}$, so once we've set up our diagram, Problem 3 is turned into Problem 1, which we already know how to solve. Second, note that our diagram isn't actually accurate: since $\vec{v} \cdot \overrightarrow{P_0P}$ is negative, the projection of $\overrightarrow{P_0P}$ onto \vec{v} actually points in the opposite direction from \vec{v} . However, this fact doesn't in any way effect the ability of our diagram to help us solve the problem – it's just there as a visual aid to help us set up the equations we need to solve.

4. Find the shortest distance from the point P = (2, 8, 5) to the plane given by the equation x - 2y - 2z = 1. Also find the point P_1 on the plane that is closest to P. Hint: Begin by finding any point P_0 that lies on the plane. Include a diagram.

We'll give two solutions. The first one uses the hint, along with vectors and projections, as with the previous problem. We first choose a point on the plane x - 2y - 2z = 1. If we set y = z = 0 in this equation, we're left with x = 1, so we can take $P_0 = (1, 0, 0)$.

Now, referring to the diagram above, we see that the desired distance is given by the length of the vector $\overrightarrow{P_1P}$, where P_1 is the point on the plane closest to P. Moreover, this vector is the projection of the vector $\overrightarrow{P_0P}$ onto the normal vector \overrightarrow{n} : $\overrightarrow{P_1P} = \operatorname{proj}_{\overrightarrow{n}} \overrightarrow{P_0P}$. (Your answer will not depend on the point P_0 that you choose. Changing P_0 will change the vectors $\overrightarrow{P_0}$ and $\overrightarrow{P_0P_1}$, but it will not change the vector $\overrightarrow{P_1P}$.)

Recalling that for a general plane ax + by + cz = d, the normal vector is given by $\vec{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$,

we conclude from the equation x - 2y - 2z = 1 that our normal vector is $\vec{n} = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix}$. Since

we chose $P_0 = (1, 0, 0)$, we have

$$\overrightarrow{P_0P} = \overrightarrow{OP} - \overrightarrow{OP_0} = \begin{bmatrix} 2 \\ 8 \\ 5 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \\ 5 \end{bmatrix}.$$

Since $\vec{n} \cdot \overrightarrow{P_0P} = 1(1) - 2(8) - 2(5) = -25$ and $||\vec{n}|| = \sqrt{1^2 + (-2)^2 + (-2)^2} = \sqrt{9} = 3$, we have

$$\overrightarrow{P_1P} = \operatorname{proj}_{\vec{n}} \overrightarrow{P_0P} = \left(\frac{\vec{n} \cdot \overrightarrow{P_0P}}{\|\vec{n}\|^2}\right) \vec{n} = \left(\frac{-25}{9}\right) \begin{bmatrix} 1\\ -2\\ -2 \end{bmatrix} = \begin{bmatrix} -25/9\\ 50/9\\ 50/9 \end{bmatrix}.$$

The distance from P to the plane is therefore

$$d = \|\overrightarrow{P_1P}\| = \left\| \left(\frac{-25}{9} \right) \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix} \right\| = \frac{25}{9} \left\| \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix} \right\| = \frac{25}{9} (3) = \frac{25}{3}.$$

To find the point P_1 , we note that $\overrightarrow{P_1P} = \overrightarrow{OP} - \overrightarrow{OP_1}$, so

$$\overrightarrow{OP_1} = \overrightarrow{OP} - \overrightarrow{P_1P} = \begin{bmatrix} 2\\8\\5 \end{bmatrix} - \begin{bmatrix} -25/9\\50/9\\50/9 \end{bmatrix} = \begin{bmatrix} 2+25/9\\8-50/9\\5-50/9 \end{bmatrix} = \begin{bmatrix} 43/9\\22/9\\-5/9 \end{bmatrix},$$

so
$$P_1 = \left(\frac{43}{9}, \frac{22}{9}, -\frac{5}{9}\right)$$
.

The second solution is to turn Problem 2 in to Problem 4. Referring again to the diagram above, if we construct the line L that passes through the point P in the direction of the normal vector \vec{n} , then the point P_1 we're looking for is exactly the point where L intersects

the plane x - 2y - 2z = 1. As above, we have $\vec{n} = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix}$, so the line L is given by the

vector equation

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 5 \end{bmatrix} + t \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix}.$$

Substituting x = 2 + t, y = 8 - 2t, and z = 5 - 2t into the equation x - 2y - 2z = 1 of the plane, we have

$$(2+t) - 2(8-2t) - 2(5-2t) = 9t - 24 = 1,$$

so 9t = 25, and thus $t = \frac{25}{9}$. Putting this value for t back into the equations of our normal line through P, we get

$$P_1 = \left(2 + \frac{25}{9}, 8 - \frac{50}{9}, 5 - \frac{50}{9}\right) = \left(\frac{43}{9}, \frac{22}{9}, -\frac{5}{9}\right),$$

which is the same result we found using the other method. The distance from the point P to the plane is then the same as the distance from P to P_1 , so using the distance formula we get

$$d = d(P_1, P) = \sqrt{\left(2 + \frac{25}{9} - 2\right)^2 + \left(8 - \frac{50}{9} - 8\right)^2 + \left(5 - \frac{50}{9} - 5\right)^2}$$

$$= \sqrt{\left(\frac{25}{9}\right)^2 + \left(-\frac{50}{9}\right)^2 + \left(-\frac{50}{9}\right)^2}$$

$$= \sqrt{\left(\frac{25}{9}\right)^2 (1^2 + (-2)^2 + (-2)^2)}$$

$$= \frac{25}{9}\sqrt{1^2 + (-2)^2 + (-2)^2} = \frac{25}{9}(3) = \frac{25}{3},$$

which is the same distance as above.