#### **AIM**

To study the open loop characteristics of a DC motor and experiment it with Matlab simulation File.

#### **REQUIREMENTS**

A Laptop, MATLAB Simulink software by MathWorks INC.

#### THEORY

The electric circuit of the armature and the free body diagram of the rotor for the DC motor are shown in the following figure:



- Moment of inertia of the rotor (J)
- Damping ratio of the mechanical system (b)
- Electromotive force constant (Kt = Km= K)
- Armature resistance (R)
- Armature inductance (L)
- Input (V): source Voltage
- Output (dθ/dt): rotating speed

#### Assumptions in Modeling a DC Motor

- Demagnetizing effect of armature is neglected.
- Magnetic Circuit is assumed linear (no hysteresis and saturation). As a result all inductances (which came into play in dynamic analysis) are regarded as constant.
- The rotor and shaft is assumed to be rigid.

The transfer function of the motor system is given by:

$$\frac{\dot{\theta}(s)}{V(s)} = \frac{K/LJ}{s^2 + \frac{(RJ + bL)s}{LJ} + \frac{(bR + K^2)}{LJ}}$$

$$or$$

$$\frac{\dot{\theta}(s)}{V(s)} = \frac{K}{LJ s^2 + (RJ + Lb)s + (bR + K^2)}$$

In the experiment, the following values of parameters are being taken:

## SIMULINK MODELS





Ishan Khanna 2K19/EE/120 EE2 P3

## **OBSERVATIONS**

#### 1) IMPULSE RESPONSE



#### 2) STEP RESPONSE





Ishan Khanna 2K19/EE/120 EE2 P3



### **RESULT**

We obtained the graphs for responses of DC motors for both impulse and step inputs.

### **PRECAUTIONS**

Enter the input readings of impulse input carefully in the signal builder.

Ishan Khanna 2K19/EE/120 EE2 P3