ACTL3142 Week 8 - Moving Beyond Linearity

Tadhg Xu-Glassop 2025T2

Polynomial Regression

Polynomial Regression

Allow covariates to be non-linear wrt y by letting it be a polynomial of degree d in x. So,

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d,$$

where β_i are estimated as usual.

This is just linear regression, but adding polynomial terms for our data.

The degree of the polynomial *d* is a *hyperparameter* that controls the flexibility of the model and thus the bias-variance tradeoff.

Step Functions

Step Functions

Use indicator functions that take a value of ${\bf 1}$ if the covariate is in a specified range. So,

$$y_i = \beta_0 + \beta_1 \, \mathbb{1}_{\{c_1 \le x < c_2\}} + \beta_2 \, \mathbb{1}_{\{c_2 \le x < c_3\}} + \dots + \beta_k \, \mathbb{1}_{\{x \ge c_k\}},$$

where β_i are the average value of x in the specified domain.

The number of breaks / steps is a *hyperparameter* that controls the flexibility of the model, and thus the bias-variance tradeoff.

Step Functions demo

Step functions essentially convert numeric features to categorical, so interpretation becomes that of categorical.

hours studied =
$$\beta_0 + \beta_1 \, \mathbbm{1}_{\{60 \leq \mathsf{wam} < 70\}} + \cdots + \beta_4 \, \mathbbm{1}_{\{90 \leq \mathsf{wam} \leq 100\}}$$

Splines

Regression Splines

- 1. Split the data into c + 1 sections with c 'knots.'
- 2. Between each knot, fit a d degree regression polynomial under the restriction that the entire fit is continuous up until the d-1th derivative.

The number of knots *c* and the degree of the polynomials fitted *d* are *hyperparameters* which control the bias-variance tradeoff.

Splines (cont.)

Natural Spline

Very similar to a regression spline, but force the fit in the outer knots to be linear to prevent overfitting at extreme values.

Splines (cont.)

Smoothing Spline

A smoothing spline is the model g that minimises:

$$\frac{1}{n}\sum_{i=1}^{n}(y_{i}-g((x_{i}))^{2}+\lambda\int(g''(x))^{2}\ dx,$$

where λ is a hyperparameter.

Think about $g''(x_i)$ as the concavity / curvature of the graph at x_i , and an integral as an infinitesimal sum. So, the extra penalty is an infitesimal sum of the 'bumpiness' over the graph.

Thus, λ is a *hyperparameter* that controls the flexibility of the model and thus the bias-variance tradeoff.

Local Regression

Local Regresion Method

Given a new observation x_0 which we want to predict y_0 for,

- 1. Gather the nearest k training points closest to x_0 .
- 2. Assign each of these a weight K_i based upon some kernel K (points closer to x_0 have more weight).
- 3. Fit a weighted least squares with these observations and weights. That is, find β_i that minimises

$$\sum_{i=1}^k K_i (y_i - \beta_0 - \beta_1 x_i)^2.$$

4. The predicted value is thus $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$.

Local Regression (cont.)

The choice of the number of nearest points to consider k, and the kernel K used to assign weights, control the flexibility of the model and thus the bias-variance tradeoff.

Generalised Additive Models

Generalised Additive Models

Suppose that

$$y_i = \beta_0 + f_1(x_{i,1}) + f_2(x_{i,2}) + \cdots + f_p(x_{i,p}) + \epsilon_i,$$

where all f_i are any function!

This just says we can combine all the models we have seen so far in this course into one big additive model :)

This works with GLM's as well, where our systematic component is a GAM.