Matrix Analysis Homework 4

龙肖灵

Xiaoling Long Student ID.:81943968 email:longxl@shanghaitech.edu.cn

October 11, 2017

Problem 1 (*Theorem 2.1.1 in Roman*):

Prove that the set $\mathcal{L}(\mathcal{V}, \mathcal{W})$ of all linear transformations from vector space \mathcal{V} to a vector space \mathcal{W} is itself a vector space.

Proof. We should show that this set fit all properties of a vector space. Let $v \in \mathcal{V}, w \in \mathcal{W}$.

1) Closure of addition $\forall \tau, \sigma \in \mathcal{L}(\mathcal{V}, \mathcal{W})$. We can get that,

$$[\tau + \sigma](v) = \tau(v) + \sigma(v) \in \mathcal{W}$$

So, $\mathcal{L}(\mathcal{V}, \mathcal{W})$ is closure of addition.

2) Commutativity of addition $\forall \tau, \sigma \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

$$[\tau + \sigma](v) = \tau(v) + \sigma(v) \qquad \qquad = \sigma(v) + \tau(v) = [\sigma + \tau](v)$$

So, we can say that,

$$\tau + \sigma = \sigma + \tau$$

3) Associativity of addition $\forall \tau, \sigma, \phi \in \mathcal{L}(\mathcal{V}, \mathcal{W})$. We have that,

$$[\tau + (\sigma + \phi)](v) = \tau(v) + [\sigma + \phi](v)$$

$$= \tau(v) + \sigma(v) + \phi(v) \in \mathcal{W}$$

$$= [\tau + \sigma](v) + \phi(v)$$

$$= [(\tau + \sigma) + \phi](v)$$

Finally, we get

$$\tau + (\sigma + \phi) = (\tau + \sigma) + \phi$$

4) Existence of zero Let $0_{\mathcal{L}(\mathcal{V},\mathcal{W})}$ maps all $v \in \mathcal{V}$ to $0 \in \mathcal{W}$. Then, $\forall \tau \in \mathcal{L}(\mathcal{V},\mathcal{W})$,

$$[\tau + 0_{\mathcal{L}(\mathcal{V}, \mathcal{W})}](v) = \tau(v) + 0_{\mathcal{L}(\mathcal{V}, \mathcal{W})}(v) = \tau(v)$$

5) Existence of additive inverses $\forall \tau \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

$$[\tau + (-\tau)](v) = \tau(v) + (-\tau(v)) = 0 = 0_{\mathcal{L}(\mathcal{V}, \mathcal{W})}(v)$$

6) Scalar multiplication For all scalars $a, b \in \mathcal{F}$ and for all linear transformation $\tau, \sigma \in \mathcal{F}$

 $\mathcal{L}(\mathcal{V},\mathcal{W}),$

$$a[\tau + \sigma](v) = a[\tau(v) + \sigma(v)]$$

$$= a\tau(v) = a\sigma(v)$$

$$= [a\tau + a\sigma](v)$$

$$\Rightarrow a(\tau + \sigma) = a\tau + a\sigma$$

$$[(a+b)\tau](v) = (a+b)\tau(v)$$

$$= a\tau(v) + b\tau(v)$$

$$= [a\tau + b\tau](v)$$

$$\Rightarrow (a+b)\tau = a\tau + b\tau$$

$$[(ab)\tau](v) = (ab)[\tau(v)]$$

$$= a[b\tau(v)]$$

$$\Rightarrow (ab)\tau = a(b\tau)$$

All properities of vector space fit for the set $\mathcal{L}(\mathcal{V}, \mathcal{W})$. So, it a a vector space.

Problem 2 (*Theorem 2.5 in Roman*):

Prove that a linear transformation $\tau \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ is an isomorphism if and only if there is a basis $\mathfrak{B}_{\mathcal{V}}$ for \mathcal{V} for which $\tau \mathfrak{B}_{\mathcal{V}}$ is a basis for \mathcal{W} . Prove that in this case, τ maps any basis of \mathcal{V} to a basis of \mathcal{W} .

Proof. First of all, sufficiency of this.

 $\forall v \in \mathcal{V}$ has an unique linear combination of the vectors in $\mathfrak{B}_{\mathcal{V}}$. Let $\mathfrak{B}_{\mathcal{V}} = \{v_i \mid i \in I\}$, we have that,

$$v = a_1v_1 + a_2v_2 + \dots + a_nv_n$$

Then we have that,

$$\tau(v) = a_1 \tau(v_1) + a_2 \tau(v_2) + \dots + a_n \tau(v_n)$$

 $\tau \mathfrak{B}_{\mathcal{V}}$ is a basis for \mathcal{W} . So $\forall v \in \mathcal{V}, \exists ! \ w \in \mathcal{W}, \text{s.t.} \ \tau(v) = w$. So τ is injective. And $\forall w \in \mathcal{W}$ also has an unique linear combination of the vectors in $\tau(\mathfrak{B}_{\mathcal{V}})$. So all vectors in \mathcal{W} have $w = \tau(v)$. So τ is surjective. So τ is an isomorphism.

For necessity of this. τ is isomorphism means τ is injective and surjective. So, $\ker(\tau) = \{0\}$, and there doesn't exist a linear combination whose coefficients aren't all 0. For all $w \in \mathcal{W}$, we have an unique $v \in \mathcal{V}$, $w = \tau(v)$. So,

$$w = \tau(v) = \tau(a_1v_1 + a_2v_2 + \dots + a_nv_n) = a_1\tau(v_1) + a_2\tau(v_2) + \dots + a_n\tau(v_n)$$

Only when all coefficients are 0, v = 0 and $w = \tau(v) = 0$. So $\tau(\mathfrak{B}_{\mathcal{V}})$ is linearly independent. And all w has a linear combination of $\tau(v_i) \in \tau(\mathfrak{B}_{\mathcal{V}})$, so it is a spanning set for \mathcal{W} . So $\tau\mathfrak{B}_{\mathcal{V}}$ is a basis for \mathcal{W} .

All basis \mathfrak{B} of \mathcal{V} has similar properities. Since τ is isomorphism, τ is injective and surjective. For all $w = \tau(v)$ can write as an unique linear combination with coefficients. And only when all coefficients are 0, w = 0. So $\tau(\mathfrak{B})$ is linearly independent and is a spanning set. Hence, τ maps any basis of \mathcal{V} to a basis of \mathcal{W} .

Problem 3 (Corollary 2.9 in Roman):

Let $\tau \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ be a linear transformation from vector space \mathcal{V} to vector space \mathcal{W} , where \mathcal{V}, \mathcal{W} are both finite dimensional vector spaces with $dim(\mathcal{V}) = dim(\mathcal{W})$. Prove that τ is injective if and only if it is surjective.

Proof. Prove injective(\Rightarrow).

 τ is surjective. So, im(τ)= \mathcal{W} . From theorem 2.8, we know that

$$dim (ker (\tau)) + dim (im (\tau)) = dim (\mathcal{V})$$
$$dim (ker (\tau)) + dim (\mathcal{W}) = dim (\mathcal{V})$$

And we know that $dim(\mathcal{V}) = dim(\mathcal{W})$. So we can get that,

$$\dim\left(\ker\left(\tau\right)\right)=0$$

So $ker(\tau)$ must be 0. So τ is injective.

Prove surjective (\Leftarrow) .

We have an injective τ . So, $ker(\tau) = \{0\}$ and $dim(ker(\tau)) = 0$. Also we have

$$dim\left(ker\left(\tau\right)\right)+dim\left(im\left(\tau\right)\right)=dim\left(\mathcal{V}\right)$$

So we can say $\dim\left(\operatorname{im}\left(\tau\right)\right)=\dim\left(\mathcal{V}\right)=\dim\left(\mathcal{W}\right).$

And we know that $im(\tau) \subseteq \mathcal{W} \Rightarrow im(\tau) = \mathcal{W}$. Hence τ is surjective. Done.