

Amendments to the Claims:

The listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

Claim 1 (original): A process for the manufacture of a tetrazole of formula

or a tautomer or a salt thereof, wherein R represents an organic residue;
comprising

- (i) reacting a compound of formula $\text{R}-\text{CN}$ (II a) with an azide of formula $(\text{R}_1)(\text{R}_2)\text{M}-\text{N}_3$ (IIb),
wherein R has the meaning as defined above; R_1 and R_2 , independently of another, represent
an organic residue such as an aliphatic residue, an alicyclic residue, a heteroalicyclic residue;
an alicyclic-aliphatic residue; a heteroalicyclic-aliphatic residue; a carbocyclic or a heterocyclic
aromatic residue; an araliphatic residue or an heteroaraliphatic residue, each residue,
independently of another, being unsubstituted or substituted; and M is boron or aluminium; and
- (ii) isolating the resulting compound of formula (I).

Claim 2 (original): A process according to claim 1 for the manufacture of said angiotensin II
receptor antagonists having as structural feature a tetrazol ring, e.g. of formula (IV),

or a tautomeric form thereof, wherein Rx represents a structural element selected from the
group consisting of

(derived from irbesartan - cf. EP 454511);

(derived from UR-7247);

459136); (derived from candesartan-cilexetil- EP

(derived from candesartan); and

(derived from valsartan - cf. EP 443983);

(derived from olmesartan)

or, in each case, a salt thereof;
characterized by reacting a compound of formula (IV a)

wherein Rx has the meanings as given above,
with a compound of formula $(\text{R}_1)(\text{R}_2)\text{M-N}_3$ (II b), wherein R_1 and R_2 , independently of one another, represent an organic residue; and isolating the resulting compound of formula (IV).

Claim 3 (original): A process according to claim 1 for the manufacture of a compound of formula (IV b) comprising reacting a compound of formula (IV c)

or an ester thereof with an azide of formula $(\text{R}_1)(\text{R}_2)\text{M-N}_3$ (IIb), wherein R_1 and R_2 , independently of each other, have the meanings as defined above, and isolating the compound of formula (IV-b).

Claim 4 (original): A process according to claim 1 for the manufacture of a compound of formula
manufacture of a compound of formula

a tautomeric form thereof wherein Ry represents $\text{C}_1\text{-C}_8\text{-alkyl}$ such as methyl; $\text{C}_1\text{-C}_8\text{-alkyl}$ substituted by X' and X' being halogen, sulphonyloxy, hydroxyl, protected hydroxyl, such as bromomethyl, or an acetal of formyl; and X_1 being in a benzylic position, comprising reacting a compound of formula (IV a)

with a compound of formula $(R_1)(R_2)M-N_3$ (II b), wherein R_1 and R_2 , independently of one another, represent an organic residue; and isolating the resulting compound of formula (V).

Claim 5 (original): A process for the manufacture of the compound of formula (VI)

or a tautomer or salt thereof, comprising

(a) treating a compound of formula (VI a)

wherein X represents a leaving group, first with a nucleophilic agent and then with a "solvolytic" base resulting in a compound of formula (VI b)

(b) reacting a compound of formula (VI b) with an azide of formula $(R_1)(R_2)M-N_3$ (II b), wherein the variables R_1 and R_2 , independently of one another, have the meanings as defined above; resulting in a compound of formula (VI c)

(c) oxidizing a compound of formula (VI c) or a tautomer or salt thereof resulting in a compound of formula (VI)

or a tautomer or salt thereof; and

(d) isolating the compound of formula (VI) or a tautomer or salt thereof.

Claim 6 (original): A process for the manufacture of a compound of formula (V d)

comprising oxidizing a compound of formula (VI c)

or a tautomer or salt thereof resulting in a compound of formula (VI) or a tautomer or salt thereof; and isolating a resulting compound of formula (VI).

Claim 7 (currently amended): A process according to claim 5 or 6, wherein the oxidation is carried out in the presence of an oxidation agent selected from the group consisting of HNO_2 , HNO_3 or a corresponding anhydride thereof, and a peroxodisulfate, and wherein as solvent an alkylated aromatic hydrocarbon solvent such as toluene is used.

Claim 8 (original): A process according to claim 1 for the manufacture of a compound of formula

a tautomeric form thereof, wherein Ry represents C₁-C₈-alkyl such as methyl; C₁-C₈-alkyl substituted by X' and X' being halogen, sulphonyloxy, hydroxyl, protected hydroxyl, such as bromomethyl, formyl or an acetal thereof; comprising reacting a compound of formula (VII a)

with a compound of formula (R₁)(R₂)M-N₃ (II b), wherein R₁ and R₂, independently of one another, represent an organic residue; and isolating the resulting compound of formula (VI).

Claim 9 (currently amended): A process according to ~~any one of claims claim 1 to 5 and 8~~, wherein a compound of formula (R₁)(R₂)M-N₃ (II b) is used, wherein M is aluminium or boron; and R₁ and R₂, independently of one another, is C₁-C₈-alkyl such as methyl, ethyl, propyl, diisobutyl, tert-butyl or n-octyl; C₃-C₇alkenyl such as allyl or crotyl, C₃-C₇-cycloalkyl such as cyclohexyl; phenyl-C₁-C₄-alkyl such as benzyl or 2-phenethyl; phenyl-C₃-C₅alkenyl such as cinnamyl, or C₃-C₈-cycloalkyl-C₁-C₈-alkyl such as cyclopropylmethyl or cyclohexylmethyl.

Claim 10 (original): A compound of formula (R₁)(R₂)M-N₃ (II b), wherein M is aluminium or boron; and R₁ and R₂, independently of one another, is C₃-C₇alkenyl such as allyl or crotyl, C₃-C₇-cycloalkyl such as cyclohexyl; phenyl-C₁-C₄-alkyl such as benzyl or 2-phenethyl; phenyl-C₃-C₅alkenyl such as cinnamyl, or C₃-C₈-cycloalkyl-C₁-C₈-alkyl such as cyclopropylmethyl or cyclohexylmethyl.

Claim 11 (new): A process according to claim 6, wherein the oxidation is carried out in the presence of an oxidation agent selected from the group consisting of HNO₂, HNO₃ or a corresponding anhydride thereof, and a peroxodisulfate, and wherein as solvent an alkylated aromatic hydrocarbon solvent such as toluene is used.

Claim 12 (new): A process according to any one of claim 2, wherein a compound of formula $(R_1)(R_2)M-N_3$ (II b) is used, wherein M is aluminium or boron; and R_1 and R_2 , independently of one another, is C_1-C_8 -alkyl such as methyl, ethyl, propyl, diisobutyl, tert-butyl or n-octyl; C_3-C_7 alkenyl such as allyl or crotyl, C_3-C_7 -cycloalkyl such as cyclohexyl; phenyl- C_1-C_4 -alkyl such as benzyl or 2-phenethyl; phenyl- C_3-C_5 alkenyl such as cinnamyl, or C_3-C_8 -cycloalkyl- C_1-C_8 -alkyl such as cyclopropylmethyl or cyclohexylmethyl.

Claim 13 (new): A process according to claim 3, wherein a compound of formula $(R_1)(R_2)M-N_3$ (II b) is used, wherein M is aluminium or boron; and R_1 and R_2 , independently of one another, is C_1-C_8 -alkyl such as methyl, ethyl, propyl, diisobutyl, tert-butyl or n-octyl; C_3-C_7 alkenyl such as allyl or crotyl, C_3-C_7 -cycloalkyl such as cyclohexyl; phenyl- C_1-C_4 -alkyl such as benzyl or 2-phenethyl; phenyl- C_3-C_5 alkenyl such as cinnamyl, or C_3-C_8 -cycloalkyl- C_1-C_8 -alkyl such as cyclopropylmethyl or cyclohexylmethyl.

Claim 14(new): A process according to claim 4, wherein a compound of formula $(R_1)(R_2)M-N_3$ (II b) is used, wherein M is aluminium or boron; and R_1 and R_2 , independently of one another, is C_1-C_8 -alkyl such as methyl, ethyl, propyl, diisobutyl, tert-butyl or n-octyl; C_3-C_7 alkenyl such as allyl or crotyl, C_3-C_7 -cycloalkyl such as cyclohexyl; phenyl- C_1-C_4 -alkyl such as benzyl or 2-phenethyl; phenyl- C_3-C_5 alkenyl such as cinnamyl, or C_3-C_8 -cycloalkyl- C_1-C_8 -alkyl such as cyclopropylmethyl or cyclohexylmethyl.

Claim 15 (new): A process according to any one of claim 5, wherein a compound of formula $(R_1)(R_2)M-N_3$ (II b) is used, wherein M is aluminium or boron; and R_1 and R_2 , independently of one another, is C_1-C_8 -alkyl such as methyl, ethyl, propyl, diisobutyl, tert-butyl or n-octyl; C_3-C_7 alkenyl such as allyl or crotyl, C_3-C_7 -cycloalkyl such as cyclohexyl; phenyl- C_1-C_4 -alkyl such as benzyl or 2-phenethyl; phenyl- C_3-C_5 alkenyl such as cinnamyl, or C_3-C_8 -cycloalkyl- C_1-C_8 -alkyl such as cyclopropylmethyl or cyclohexylmethyl.

Claim 16 (new): A process according to claim 8, wherein a compound of formula $(R_1)(R_2)M-N_3$ (II b) is used, wherein M is aluminium or boron; and R_1 and R_2 , independently of one another, is C_1-C_8 -alkyl such as methyl, ethyl, propyl, diisobutyl, tert-butyl or n-octyl; C_3-C_7 alkenyl such as allyl or crotyl, C_3-C_7 -cycloalkyl such as cyclohexyl; phenyl- C_1-C_4 -alkyl such as benzyl or 2-phenethyl; phenyl- C_3-C_5 alkenyl such as cinnamyl, or C_3-C_8 -cycloalkyl- C_1-C_8 -alkyl such as cyclopropylmethyl or cyclohexylmethyl.