FONCTION LOGARITHME NÉPÉRIEN EN TERMINALE S

1. DÉFINITION DE LA FONCTION LOGARITHME NÉPÉRIEN

THÉORÈME ET DÉFINITION

Pour tout réel x > 0, l'équation $e^y = x$, d'inconnue y, admet une **unique** solution.

La fonction **logarithme népérien**, notée ln, est la fonction définie sur $]0;+\infty[$ qui à x>0, associe le réel y solution de l'équation $e^y=x$.

REMARQUE

Pour $x \le 0$, par contre, l'équation $e^y = x$ n'a **pas de solution**

PROPRIÉTÉS

- Pour tout réel x > 0 et tout $y \in \mathbb{R}$: $e^y = x \Leftrightarrow y = \ln(x)$
- Pour tout réel x > 0: $e^{\ln(x)} = x$
- Pour tout réel $x : \ln(e^x) = x$

REMARQUES

- Ces propriétés se déduisent immédiatement de la définition
- On dit que les fonctions «logarithme népérien» et «exponentielle» sont réciproques
- On en déduit immédiatement : $\ln(1) = 0$ et $\ln(e) = 1$

2. ETUDE DE LA FONCTION LOGARITHME NÉPÉRIEN

THÉORÈME

La fonction logarithme népérien est dérivable sur $]0;+\infty[$ et sa dérivée est définie par :

$$\ln'(x) = \frac{1}{x}$$

DÉMONSTRATION

On dérive l'égalité $e^{\ln(x)} = x$ membre à membre.

D'après le théorème de dérivation des fonctions composées ♂ on obtient :

$$\ln'(x) \times e^{\ln(x)} = 1$$

C'est à dire:

$$\ln'(x) \times x = 1$$

$$\ln'(x) = \frac{1}{x}$$

PROPRIÉTÉ

La fonction logarithme népérien est **strictement croissante** sur $]0;+\infty[$.

DÉMONSTRATION

Sa dérivée $\ln'(x) = \frac{1}{x}$ est strictement positive sur]0; + ∞ [

PROPRIÉTÉ

Soit u une fonction dérivable et **strictement positive** sur un intervalle I.

Alors la fonction $f: x \mapsto \ln(u(x))$ est dérivable sur I et :

$$f' = \frac{u'}{u}$$

DÉMONSTRATION

On utilise le théorème de dérivation de fonctions composées & .

EXEMPLE

Soit f définie sur \mathbb{R} par $f(x) = \ln(x^2 + 1)$

f est dérivable sur \mathbb{R} et $f'(x) = \frac{2x}{x^2 + 1}$

LIMITES

- $\lim_{x \to 0} \ln(x) = -\infty$
- $\lim_{x \to +\infty} \ln(x) = +\infty$

REMARQUES

• Ces résultats permettent de tracer le tableau de variation et la courbe représentative de la fonction logarithme népérien :

Tableau de variation de la fonction logarithme népérien

Graphique de la fonction logarithme népérien

THÉORÈME («CROISSANCE COMPARÉE»)

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to 0} \frac{\ln (1+x)}{x} = 1$$

REMARQUE

Comme dans le cas de la fonction exponentielle, on peut généraliser les deux premières formules :

Pour tout entier n > 1:

$$\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$$

THÉORÈME

Si a et b sont 2 réels strictement positifs :

- $\ln a = \ln b$ si et seulement si a = b
- $\ln a < \ln b$ si et seulement si a < b

REMARQUES

- Le théorème précédent résulte de la stricte croissance de la fonction logarithme népérien.
- En particulier, comme ln (1) = 0 : ln x < 0 ⇔ x < 1. N'oubliez donc pas que ln (x) **peut être négatif** (si 0 < x < 1); c'est une cause d'erreurs fréquente dans les exercices notamment avec des inéquations!

3. PROPRIÉTÉS ALGÉBRIQUES DE LA FONCTION LOGARITHME NÉPÉRIEN

THÉORÈME

Si a et b sont 2 réels strictement positifs et si $n \in \mathbb{Z}$:

•
$$\ln(ab) = \ln a + \ln b$$

•
$$\ln\left(\frac{1}{a}\right) = -\ln a$$

•
$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

•
$$\ln(a^n) = n \ln a$$

•
$$\ln\left(\sqrt{a}\right) = \frac{1}{2}\ln a$$

EXEMPLES

•
$$\ln(4) = \ln(2^2) = 2\ln(2)$$

• Pour
$$x > 1$$
: $\ln\left(\frac{x+1}{x-1}\right) = \ln(x+1) - \ln(x-1)$

Cette égalité peut être intéressante (pour calculer la dérivée par exemple) mais il faut que x>1.

Si
$$x < -1$$
, l'expression $\ln\left(\frac{x+1}{x-1}\right)$ est définie mais pas $\ln(x+1) - \ln(x-1)$.