Week 5 lecture notes - PSYC 3330

Sept 25-29, 2017

So far this semester, we have used statistics to **describe** data. Now, we will begin using statistics as an **inference tool**. To do this, we need to discuss **probability**.

Definition

Suppose we have a list of possible *outcomes*, labeled A, B, C, D, and so on. Then:

$$p(A) =$$
 "the probability of A" = $\frac{\text{number of outcomes classified as A}}{\text{total number of possible outcomes}}$

Example: What is the probability of picking a king of spades from a standard deck of 52 cards?

Answer:

$$p(\text{king of spades}) = \frac{\text{of times king of spades appears}}{\text{number of cards in the deck}} = \frac{1}{52}$$

Example: What is the probability of picking a heart from a deck? Answer:

$$p(\text{heart}) = \frac{\text{hearts in a deck}}{\text{number of cards in the deck}} = \frac{13}{52} = \frac{1}{4} = 0.25$$

Probability distributions

The more common way we will encounter probability is as part of a *probability* distribution.

Example: Suppose we have 40 slips of paper, each labeled with one of the numbers 1,2,3,4,5. Specifically, assume they are labeled with the following frequencies:

X	f
5	2
4	10
3	16
2	8
1	4

If we compute the *relative frequencies* (as percentages of the total frequency), we get the following:

X	\mathbf{f}	p
5	2	0.05
4	10	0.25
3	16	0.40
2	8	0.20
1	4	0.10

Visually, this distribution looks like the following graph:

This graph represents the *probability distribution*. Essentially, it tells us everything we would want to know about this particular situation. For example, suppose our task is to randomly select a slip of paper. We can then ask lots of questions, such as:

• What is the probability of selecting a 3?

- Answer: p(3) = 0.40

• What is the probability of selecting a 5?

- Answer: p(5) = 0.05

We can also ask more complex questions:

• What is the probability of selecting a slip of paper with a value greater than 2?

- Answer: p(x > 2) = 0.40 + 0.25 + 0.05 = 0.70

 \bullet What is the probability of selecting a slip of paper with a value less than 5?

- Answer: p(x < 5) = 0.10 + 0.20 + 0.40 + 0.25 = 0.95

- \bullet What is the probability of selecting a value greater than 1 and less than 4?
 - Answer: p(1 < x < 4) = 0.20 + 0.40 = 0.60

The normal distribution

The probability distribution that we will use quite a bit this semester is known as the *normal distribution*. It is defined by the following equation:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

where μ is the mean and σ is the standard deviation. More importantly for us, it looks like the following:

Technically, this curve depends on μ and σ . However, if we transform to z-scores, we can use ONE standardized distribution, known as the *standard normal distribution*.

We know lots of things about the standard normal curve:

- ullet it is unimodal and symmetric
- $\bullet~34\%$ of the distribution lies within one standard deviation of the mean

 $\bullet~95\%$ of the distribution lies within two standard deviations of the mean

This is helpful. For example, consider that IQ scores are normally distributed with mean $\mu=100$ and standard deviation $\sigma=15$. Then we know the following:

- \bullet 68% of the population scores between 85 and 115
- 95% of the population scores between 70 and 130
- 2.5% of the population scores above 130
- 2.5% of the population scores below 70

In fact, we can modify this to have a nice "intuitive" rule for probabilities under the normal curve:

50-34-14 rule:

- 50% of the curve is above the mean
- \bullet 34% of the curve is between the mean and 1 SD
- 14% of the curve is between 1 SD and 2 SD

50%-34%-14% rule

Examples:

- suppose a data set is normally distributed with $\mu = 40$ and $\sigma = 5$. Use the 50-34-14 rule to approximate the percentage of that data that is:
 - above 45
 - above 30
 - above 35
 - below 40
 - below 45
 - below 30
 - below 35
- suppose a data set is normally distributed with $\mu=45$ and $\sigma=6$. Use the 50-34-14 rule to approximate the minimum score needed for a data point to be in the top:
 - -2%
 - -16%
 - -50%

To make more exact computations, we will need to learn how to use the *unit normal table*. You can download one on our blackboard site, or use the one in the back of your textbook.

Using the unit normal table

- \bullet Column A: the z score
- Column B: probability of being LESS than z (proportion in **body**)
- Column C: probability of being GREATER than z (proportion in tail)

Finding probabilities:

- 1. sketch the normal distribution, showing the mean & standard deviation
- 2. sketch the score in question, being sure to place it on the correct side of the mean and roughly the correct distance from the mean
- 3. decide if you need the probability of getting a score GREATER or LESS. Shade this area on your sketch.
- 4. translate the X score into a Z-score
- 5. Use the correct column (and sign) to find the probability in the unit normal table.

Example: Recall that IQ scores are normally distributed with $\mu = 100$ and $\sigma = 15$.

- What is the probability of having an IQ of 125 or above?
- What is the probability of having an IQ of 80 or less?

Another type of problem: finding scores required for a certain probability: Example: what IQ score do you need in order to be in top 5% of population?

Steps:

- 1. sketch the normal distribution
- 2. shade the region corresponding to the required probability
- 3. locate the probability in the correct column of the table
- 4. label the edge of the shaded region with the z-score from the table
- 5. compute the corresponding raw score.

For this example, note that the upper tail is needed. So, we need to find p=0.05. From the table, this tells us z=1.65. So, $X=M+Z\cdot SD=100+1.65(15)=124.75$.

Final example: On a particular test, assume that $\mu = 50$ and $\sigma = 10$. If a person is in the bottom 30% of the class on this test, what is the highest score the person could have scored?