COMP9418: Advanced Topics in Statistical Machine Learning

Bayesian Networks

Instructor: Gustavo Batista

University of New South Wales

Introduction

- This lecture introduces Bayesian networks as a modelling tool to specify joint probability distributions
 - The size of a joint distribution is exponential in the number of variables
 - This causes modelling and computational difficulties
 - The specification of a joint distribution may hide some relevant properties such as independencies
- Bayesian networks is a graphical modelling tool for specifying probability distributions
 - It relies on the insight that independence is a significant aspect of beliefs, and
 - Independencies can be elicited using the language of graphs

Graphs and Independence

- This figure is a directed acyclic graph (DAG)
 - Nodes represent variables
 - Let us assume (for now) that edges represent "direct causal influence"
 - For example, alarm triggering (A) causes a call for a neighbour (C)
- Given this representation, we expect the belief dynamic to satisfy some properties
 - For instance, *C* is influenced by evidence on *R*
 - A radio report would increase belief in Alarm. In turn, increase belief in a call from a neighbour
 - However, the belief in *C* would not increase if we knew the alarm did not trigger
 - $C \perp R \mid \neg A$

Notation

- Given a variable V in a DAG G
 - Parents(V) are the parents of V in DAG G, that is, the set of variables N with an edge from N to V
 - Descendants(V) are the descendants of V in G, that is,
 the set of variables N with a direct path from V to N
 - Non_Descendants(V) are all variables in G other than V,
 Parents(V), and Descendants(V)
- A DAG G is a compact representation of the following independence statements
 - $V \perp Non_Descendants(V) \mid Parents(V)$
 - Every variable is conditionally independent of its nondescendants given its parents
 - Markovian assumptions of G denoted by Markov(G)

Markovian Assumptions

- If we view DAG G as a causal structure
 - Parents(V) are direct causes of V
 - Descendants(V) denotes the effects of V
- Given the direct causes of a variable, our beliefs in that variable will no longer be influenced by any other variable except possibly by its effects
- These are all the statements in this DAG

Markov Assumptions

- If we view DAG G as a causal structure
 - Parents(V) are direct causes of V
 - Descendants(V) denotes the effects of V
- Given the direct causes of a variable, our beliefs in that variable will no longer be influenced by any other variable except possibly by its effects
- These are all the statements in this DAG
 - \bullet $C \perp B, E, R \mid A$
 - \blacksquare $R \perp A, B, C \mid E$
 - \blacksquare $A \perp R \mid B, E$
 - \blacksquare $B \perp E, R$
 - \blacksquare $E \perp B$

Markov Assumptions

- Suppose we want to make a probability distribution that captures the state of belief
 - The first step is to construct the graph, ensuring the independences on *G* matches our beliefs
 - The DAG G is a partial specification. It says that P must satisfy Markov(G)
- The specification of G restricts the choices for the distribution P
 - However, it does not uniquely define it
 - We need to augment G with a set of conditional probabilities
 - The conditional probabilities and G are guaranteed to uniquely define the distribution P

Causality

- The formal interpretation of a DAG is a set of conditional independences
 - It makes no reference to causality
 - However, we used causality to motivate this interpretation
- It is perfectly possible to have a DAG that does not match our causal perception
 - We will see that every independence in the first graph is also present in the second
 - We discuss next the graph parametrization (quantifying dependencies between notes and parents)
 - This process is much easier to accomplish by an expert if the DAG corresponds to causal perceptions

Parametrisation

- The conditional probabilities we need to specify are
 - For every variable X in DAG G and its parents U
 - Provide the probabilities P(x|u) for every value x of X and every instantiation u of parents U
- For example, for this graph, we need to specify
 - P(B|A), P(E|C), P(C|A), P(A), P(D|B, C)
 - Each table is known as a conditional probability table (CPT)
 - Notice that $\sum_{x} P(x|u) = 1$ for each $u \in U$
- Therefore, we only need 11 probabilities to specify the CPTs of this graph

A	В	 _(P)	B A		Wir	nter?	<u>A</u>	Θ	
				(A)	a).	6
a	_		.2				\bar{a}	٠. ا	4
a	b		.8					1	
ā	b	.	75 (sp.	inkler?		R	ain?	\	
\bar{a}	_		25	(B))		(C)	/	
и	D	•'					$\overline{}$		
			l .			_/			_
<u>B</u>	<u>C</u>	D	$\Theta_{D B,C}$		Wet	Grass?	6	lipper	y Road?
b	С	d	.95			(D)			E)
b	С	\bar{d}	.05	C	r	ا ۵	1	С	_@ .
b	\bar{C}	d	.9	<u>C</u>	<u>E</u>	$\Theta_{E C}$	<u>A</u>	L	$\Theta_{C A}$
b	\bar{c}	\bar{d}	.1	С	e	.7	a	С	.8
_				С	$ar{e}$.3	a	\bar{c}	.2
b	С	d	.8	\bar{c}	e	0	\bar{a}	С	.1
\overline{b}	С	$ar{d}$.2						.9
\overline{b}	\bar{C}	d	0	\bar{c}	$ar{e}$	1	ā	\overline{C}	.9
\overline{b}	\bar{c}	$ar{d}$	1						

Bayesian Networks: Definition

- A Bayesian network for variables Z is a pair (G,Θ) , where
 - G is a directed acyclic graph over variables Z,
 called the network structure
 - Θ is a set of CPTs, one for each variable in \mathbf{Z} , called the *network parametrization*
- We use
 - $\Theta_{X|U}$ to denote the CPT for variable X and its parents U
 - XU to denote a set of variables known as network family
 - $\theta_{x|u}$ is the value of P(x|u) known as *network* parameter

$\frac{A}{a}$ a \bar{a} \bar{a}	$\frac{b}{b}$			inkler?			$\frac{A}{a}$ \bar{a} $\frac{1}{\bar{a}}$ $\frac{1}{\bar{a}}$	Θ. 	6
$\frac{B}{b}$	<i>C c</i>	$\frac{D}{d}$	$\Theta_{D B,C}$		Wet	Grass?	É		y Road?
b	<i>C</i>	\bar{d}	.05	С	Е	$\Theta_{E C}$	\boldsymbol{A}	С	$\Theta_{C A}$
b	\bar{c}	$\frac{d}{\overline{d}}$.9	$\frac{}{c}$	\overline{e}	.7	\overline{a}	С	.8
$\frac{b}{\tau}$	\bar{C}	\bar{d}	.1	С	$ar{e}$.3	a	\bar{c}	.2
$\frac{\overline{b}}{\overline{\cdot}}$	С	$\frac{d}{\overline{d}}$.8	\bar{C}	e	0	\bar{a}	С	.1
\overline{b}	<i>C</i>	$ar{d}$.2	\bar{c}	$ar{e}$	1	\bar{a}	\bar{C}	.9
\overline{b}	\overline{C}	$\frac{d}{-}$	0		-	I			
\overline{b}	\bar{c}	$ar{d}$	1						

Bayesian Networks: More Definition

- Network instantiation is an assignment of all network variables
 - A network parameter $\theta_{x|u}$ is compatible with a network instantiation z when xu and z agree on common variables
 - We write $\theta_{x|u} \sim z$
 - For instance, θ_a , $\theta_{b|a}$, $\theta_{\bar{c}|a}$, $\theta_{d|b,\bar{c}}$, and $\theta_{\bar{e}|\bar{c}}$ are parameters compatible with the instantiation $a, b, \bar{c}, d, \bar{e}$.

4		10					A	Θ	A
<u>A</u>			B A	(nter?	\overline{a}	. (6
a	b		.2			An)	\bar{a}	۷. ا	4
a	b		.8					l	
\bar{a}	b	•	75 Spr	inkler?			ain?)	
\bar{a}	$ar{b}$			(B)			(C)		
		'							
В	С	D	$\Theta_{D B,C}$		Wet	Grass?	6	ipper	y Road?
\overline{b}	С	d	.95			(D)			(E)
b	С	$ar{d}$.05	C	г		1	C	۱۵
b	\bar{c}	d	.9	<u></u>	<u>E</u>	$\Theta_{E C}$	<u>A</u>	<u>C</u>	$\Theta_{C A}$
b	\bar{c}	$ar{d}$.1	С	e	.7	a	С	.8
$\frac{b}{b}$		d	.8	С	$ar{e}$.3	a	\bar{c}	.2
	С			\bar{c}	e	0	\bar{a}	С	.1
\overline{b}	С	\overline{d}	.2	\bar{c}	$ar{e}$	1	\bar{a}	\bar{c}	.9
\overline{b}	\overline{C}	d	0	J	J	1 —			I
\overline{b}	\bar{c}	$ar{d}$	1						

Bayesian Networks: More Definition

- Only one probability distribution satisfies the constrains imposed by a Bayesian network
 - The distribution is given by

$$P(\mathbf{z}) \stackrel{\text{def}}{=} \prod_{\mathbf{\Theta}_{\mathbf{x}|\mathbf{u}\sim\mathbf{z}}} \theta_{\mathbf{x}|\mathbf{u}}$$

- This equation is known as the chain rule for Bayesian networks
- For instance,

■
$$P(a, b, \bar{c}, d, \bar{e}) = \theta_a \theta_{b|a} \theta_{\bar{c}|a} \theta_{d|b,\bar{c}} \theta_{\bar{e}|\bar{c}}$$

= $(.6)(.2)(.2)(.9)(1)$
= $.0216$

Bayesian Networks: Complexity

- The size of the CPT $\Theta_{X|U}$ is exponential in the number of parents U
 - If the maximal number of parents for every variable is k then the size of any CPT is $O(d^{k+1})$, where d is the number of values
 - With n network variables, the total number of variables is bounded by $O(nd^{k+1})$
- This number is reasonable if the number of parents is small
 - We will discuss techniques to represent CPTs when the number of parents is large

$\frac{A}{a}$ a \bar{a} \bar{a}	$egin{array}{c} B \ \hline \end{array}$			inkler?		nter?	$\frac{A}{a}$ \bar{a} Rain?		<u>4</u> 6 4	
$\frac{B}{b}$	<i>C</i>	$\frac{D}{d}$	$\Theta_{D B,C}$.95		Wet	Grass?	6		y Road?	
b	<i>C</i>	\bar{d}	.05	С	E	$\Theta_{E C}$	\boldsymbol{A}	С	$\Theta_{C A}$	
b	\overline{c}	$\frac{d}{\overline{I}}$.9	$\frac{}{c}$	\overline{e}	.7	\overline{a}	С	.8	
$\frac{b}{\overline{l}}$	\bar{C}	$ar{d}$.1	С	$ar{e}$.3	a	\bar{C}	.2	
$\frac{\overline{b}}{\overline{l}}$	C	$\frac{d}{\overline{I}}$.8	\bar{c}	e	0	\bar{a}	С	.1	
$rac{\overline{b}}{\overline{b}}$	с <u>с</u>	$ar{d} \ d$.2 0	\bar{c}	$ar{e}$	1	\bar{a}	\bar{C}	.9	
$\frac{b}{b}$	\bar{c}	$\frac{a}{\bar{d}}$	1							

Properties of Independence

- The distribution P specified by a Bayesian network (G,Θ) satisfies the independence assumptions in Markov(G)
 - However, these are not the only independences satisfied by P
 - For example, $R \perp A \mid E$
- This independence and other ones follow the ones in Markov(G)
 - If we use a set of properties known as *graphoid axioms*
 - These properties include symmetry, decomposition, weak union and contraction

 $X \perp Non_Descendants(X) | Parents(X)$

Properties of Independence: Symmetry

- Symmetry is the simplest property of probabilistic independence
 - If learning y does not influence our belief in x, then learning x does not influence our belief in y.
- In the example graph
 - $A \perp R \mid B, E$ (Markovian property for A)
 - $R \perp A \mid B, E$ (using symmetry)

 $X \perp Y \mid Z$ if and only if $Y \perp X \mid Z$

Properties of Independence: Decomposition

- The second property is decomposition
 - If learning yw does not influence our belief in x, then learning y alone, or learning w alone, does not influence our belief in y.
- In the example graph
 - $R \perp A, C, B \mid E$ (Markovian property for A)
 - $R \perp A \mid E$ (using decomposition)
 - $R \perp C \mid E$ (using decomposition)
 - $R \perp B \mid E$ (using decomposition)
- Decomposition allow us to state the following
 - $X \perp W$ for every $W \subseteq \text{Non_Descendants}(X)$
 - Notice **W** can be any subset of Non_descendants(X)

 $X \perp Y \cup W \mid Z$ only if $X \perp Y \mid Z$ and $X \perp W \mid Z$

Properties of Independence: Decomposition

 Decomposition allow us to prove the chain rule for Bayesian networks

$$P(\mathbf{z}) \stackrel{\text{def}}{=} \prod_{\mathbf{\Theta}_{\mathbf{x}|\mathbf{y} \sim \mathbf{z}}} \theta_{\mathbf{x}|\mathbf{y}}$$

- For this example network we have
 - $P(e,b,r,a,c) = \theta_e \theta_b \theta_{r|e} \theta_{a|e,b} \theta_{c|a}$
 - P(e,b,r,a,c) = P(e)P(b)P(r|e)P(a|e,b)P(c|a)
- By the chain rule
 - P(e,b,r,a,c) = P(e)P(b|e)P(r|b,e)P(a|e,b,r)P(c|a,e,b,r)

Properties of Independence: Weak Union

- The next property is weak union
 - If the information yw is not relevant to our belief in x, then the partial information y will not make the rest of the information, w, relevant
- In the example graph
 - $C \perp B, E, R \mid A$ (Markovian property for A)
 - $C \perp R \mid A, B, E$ (using decomposition)
- Decomposition allow us to state the following
 - $X \perp \text{Non_Descendants}(X) \setminus W \mid Parents(X) \cup W$ for every $W \subseteq \text{Non_Descendants}(X)$
 - This can be viewed as strengthening of the independences declared by Markov(G)

 $X \perp Y \cup W \mid Z$ only if $X \perp W \mid Z \cup Y$

Properties of Independence: Contraction

The fourth property is contraction

If after learning the irrelevant information y the information w is found to be irrelevant to our belief in x, then the combined information yw must have been irrelevant from the beginning

$$X \perp Y \mid Z$$
 and $X \perp W \mid Z \cup Y$ only if $X \perp Y \cup W \mid Z$

Properties of Independence: Intersection

- The final axiom is intersection
 - It holds only for the class strictly positive distributions
 - If information w is irrelevant given y and information y is irrelevant given w, then the combined information yw is irrelevant to start with
- Symmetry, decomposition, weak union and contraction
 - Plus the property of triviality $(X \perp \emptyset \mid Z)$
 - Form the *graphoid axioms*
 - Plus intersection, the set is known as positive graphoid axioms

Graphical Test of Independence

- P is a distribution induced by the Bayesian network (G, Θ)
 - P satisfies independences that go beyond what is in Markov(G)
 - Graphoid axioms derive new independences
 - However, this derivation is not trivial
- A graphical test known as *d-separation* can capture the inferential power of graphoid axioms
 - Let X, Y, and Z be three disjoint sets of variables
 - X and Y are d-separated by Z in DAG G, if every path between a node in X and a node in Y is blocked by Z
 - If X and Y are d-separated by Z then $X \perp Y \mid Z$ for every probability distribution induced by G

Graphical Test of Independence: Blocking

- Consider this path (note that it ignores the edges direction)
 - lacktriangle We will view this path as a pipe and each variable W on the path as a valve
 - A valve W is either open or closed, depending on some condition
 - If at least one of the valves on the path is closed, then the whole path is blocked
 - Otherwise the path is not blocked
- There are three types of valves
 - They are determined by its relationship to its neighbours on the path

Graphical Test of Independence: Blocking

- Consider this path (note that it ignores the edges direction)
 - lacktriangle We will view this path as a pipe and each variable W on the path as a valve
 - A valve W is either open or closed, depending on some condition
 - If at least one of the valves on the path is closed, then the whole path is blocked
 - Otherwise the path is not blocked
- There are three types of valves
 - They are determined by its relationship to its neighbours on the path

Graphical Test of Independence: Blocking

- To gain more intuition, let us use a causal interpretation
 - A sequential valve $N_1 \rightarrow W \rightarrow N_2$ declares W as an intermediary between cause N_1 and its effect N_2
 - A divergent valve $N_1 \leftarrow W \rightarrow N_2$ declares W as a common cause of two effects N_1 and N_2
 - A convergent valve $N_1 \rightarrow W \leftarrow N_2$ declares W as a common effect of two causes N_1 and N_2
- Now, we can better motivate the conditions for closed valves
 - A sequential valve is closed if W appears in Z
 - A divergent valve is closed if W appears in Z
 - A convergent valve is closed iff neither W nor any of its descendants appears in Z

D-Separation: Definition

Formal definition of d-separation

- Let X, Y, and Z be disjoint sets of nodes in a DAG G. We will say that X and Y are d-separated by Z, written $dsep_G(X, Z, Y)$, iff every path between a node in X and a node in Y is blocked by Z.
- A path is blocked by Z iff at least one valve on the path is closed given Z
- Notice that a path with no valves $(X \rightarrow Y)$ is never blocked

D-Separation: Complexity

- The definition of d-separation calls for considering all paths connecting a node in X with a node in Y
 - The number of paths can be exponential
 - But we can implement a test without enumerating these paths
- Testing whether X and Y are d-separated by Z in DAG G is equivalent to testing whether X and Y are disconnected in a new DAG G', obtained as follows
 - We delete any leaf node W from G if W does not belong to $X \cup Y \cup Z$. This process is repeated until no more nodes can be deleted
 - We delete all edges outgoing from nodes in Z
 - The connectivity test on DAG G' ignores edge direction
 - This procedure time and space are linear in the size of the DAG G

A, S d-separated from D, X by B, P? T, C d-separated from B by S, X?

D-Separation: Soundness and Completeness

The d-separation test is sound

- If P is a probability distribution induced by a Bayesian network (G,Θ) then $dsep_G(X,Z,Y)$ only if $X\perp Y\mid Z$
- We can safely use d-separation test to derive independence statements about the probability distributions induced by Bayesian networks
- The proof is constructive and shows that every independence claimed by d-separation can be derived using the graphoid axioms
- The d-separation test is not complete
 - It is not capable of inferring every possible independence statement that holds in the induced distribution *P*
 - The explanation is that some independences may be hidden in the network parameters

A	$ heta_A$
а	.6
\bar{a}	.4

Α	B	$\theta_{B A}$
a	b	.8
а	\overline{b}	.2
\bar{a}	b	.8
\bar{a}	\overline{b}	.2

В	$\boldsymbol{\mathcal{C}}$	$\theta_{C B}$
b	С	.7
\overline{b}	$\bar{\mathcal{C}}$.3
b	С	.1
\overline{b}	\bar{C}	.9

D-Separation: Soundness and Completeness

- Therefore, if we choose the parametrization carefully, we establish independences that d-separation cannot detect
 - This is not surprising since d-separation has no access to the graph parametrization
- We can conclude that, given a distribution P induced by a Bayesian network (G, Θ)
 - If X and Y are d-separated by Z, then X and Y are independent given Z for any parametrization Θ
 - If X and Y are not d-separated by Z, then whether X and Y are dependent given Z depends on the specific parametrization Θ

A	θ_A
а	.6
\bar{a}	.4

A	В	$\theta_{B A}$
a	b	.8
а	\overline{b}	.2
\bar{a}	b	.8
\bar{a}	\overline{b}	.2

D-Separation: Soundness and Completeness

- We can always parametrize a DAG G in such a way to ensure the completeness of d-separation
- d-separation satisfies the following weak notion of completeness
 - For every DAG G, there is a parametrization Θ such that $dsep_G(X, Z, Y)$ if and only if $X \perp Y \mid Z$
- This weaker notion of completeness implies that one cannot improve on the d-separation test
 - There is no other graphical test that can derive more independencies from *G*

A	θ_A
а	.6
\bar{a}	.4

Α	B	$\theta_{B A}$
а	b	.8
а	\overline{b}	.2
\bar{a}	b	.8
\bar{a}	\overline{b}	.2

Independence Maps: I-MAPs

- Independence maps describe the relationship between independence in a DAG and in a probability distribution
 - They are useful to understand the expressive power of DAGs as a language for independence statements
- Let G be a DAG and P a probability distribution over the same variables
 - G is an independence map (I-MAP) of P iff
 - It means that every independence declared by d-separation holds in P
- An I-MAP is minimal if G ceases to be an I-MAP if we delete any edges from G
 - If P is induced by a Bayesian network (G, Θ) , then G must be an I-MAP of P
 - But it may not be minimal

 $dsep_G(X, Z, Y)$ only if $X \perp Y \mid Z$

Independence Maps: D-MAPs

- G is a dependency map (D-MAP) of P iff
 - It means that the lack of d-separation in G implies a dependence in P
 - If P is induced by the Bayesian network (G, Θ) , then G is not necessarily a D-MAP of P
 - G can be made a D-MAP of P if we choose the parametrization Θ carefully

 $X \perp Y \mid Z$ only if $dsep_G(X, Y, Z)$

Independence Maps: Perfect MAPs

- If a DAG G is both an I-MAP and a D-MAP of P, then G is a perfect map
 - We want *G* to be a P-MAP of the induced distribution to make all independences of *P* accessible to d-separation
 - However, there are probability distributions for which there are no P-MAPs
- Suppose we have four variables and a distribution P that only satisfies these dependencies
 - There is no DAG that is a P-MAP of P in this case

$$X_1 \perp X_2 \mid Y_1, Y_2$$

 $X_2 \perp X_1 \mid Y_1, Y_2$
 $Y_1 \perp Y_2 \mid X_1, X_2$
 $Y_2 \perp Y_1 \mid X_1, X_2$

- Given a distribution P, how can we construct a DAG that is guaranteed to be a minimal I-MAP of P
 - Minimal I-MAPs tend to exhibit more independences
 - Therefore, requiring fewer parameters and leading to more compact networks
- Procedure to build a minimal I-MAP
 - Given ordering X_1, \dots, X_n of variables in P
 - Start with an empty DAG G and consider the variable X_i for $i=1\dots n$
 - For each X_i , identify a minimal subset \boldsymbol{P} of variables X_1, \dots, X_{i-1} such that $X_i \perp X_1 \dots, X_{i-1} \setminus \boldsymbol{P} \mid \boldsymbol{P}$
 - Make P the parents of X_i in G

A, B, C, E, R

Suppose this graph is a P-MAP of some distribution P

A, B, C, E, R

Suppose this graph is a P-MAP of some distribution P

A, B, C, E, R

$$P = \emptyset$$

$$P = A$$

$$\mathbf{P} = A$$

$$P = A$$
 $P = A$ $P = A, B$ $P = E$

$$\mathbf{P} = E$$

Causal

Suppose this graph is a P-MAP of some distribution P

I-MAP procedure

- The resulting DAG G' is guaranteed to be minimal
 - d-separation in G' leads to d-separation in G and independence in P
 - This ceases to hold if we delete any edges of G'
- G' is incompatible with causal relationships
 - Yet it is sound from an independence viewpoint
 - A person that agrees with G cannot disagree with the independences in G'
- Minimal I-MAP is not unique
 - It depends of the variable ordering
 - But also we may have multiple I-MAPs for a single ordering
 - Since we may find multiple minimal sets P for the same variable X_i

Blankets and Boundaries

- An important notion for independence is the Markov blanket
 - Let P be a distribution over variables X. A Markov blanket for a variable $X \in X$ is the set of variables $B \subseteq X$ such that $X \notin B$ and $X \perp X \setminus (B \cup \{X\}) \mid B$
 - lacktriangle A Markov blanket for X will render every other variable irrelevant to X
 - A minimal Markov blanket is known as a Markov boundary. A
 blanket is minimal iff no strict subset of B is also a Markov blanket
- If P is a distribution induced by a DAG G, then a Markov blanket for X can be constructed with its parents, children, and spouses in G.
 - A variable Y is a spouse of X if the two variables have a common child in G

Conclusion

- Bayesian networks are a graphical model with a DAG
 - The graph represents the independencies between variables
 - The parametrisation expresses the strength of the dependencies
- D-separation provides a convenient and efficient approach to detect independencies
 - However, additional independencies may be hidden in the graph parametrisation
 - We also discussed the concepts of I-MAP, D-MAP and P-MAP
- Tasks
 - Read Chapter 4 from the textbook (Darwiche)