Rapport bioreactor

Wouter Raateland en Diederik van Engelenburg

17 maart 2015

Inhoudsopgave

1	Inleiding	2
2	Introductie in de vergelijkingen.	3
	2.1 Interpretatie van de vergelijkingen	3
	2.2 Berekening evenwicht	
3	Bepaling van constanten.	7
	3.1 α_1 , specifieke-groeifactor	7
	$3.2 \alpha_2$, toevoer van voedsel	8
	3.3 $X(0), S(0)$ beginwaarde van de bacterië- en voedselconcentratie.	. 8
4	Fasevlak en Linearisatie.	9
	4.1 Het fasevlak	9
	4.2 Linearisatie.	9

Inleiding

Het onderzoek zoals \dots

Introductie in de vergelijkingen.

2.1 Interpretatie van de vergelijkingen.

De vergelijkingen zoals beschreven in hoofdstuk 1, de inleiding, komen niet uit de lucht vallen. We zullen de interpretatie van deze vergelijkingen hier analyseren.

Bacterie-concentratie

We beginnen met de analyse van de bacterie-groei. In eerste instantie beschouwen we hiertoe vat bacteriën in optima-forma, oftewel: er is geen enkele beperkende factor met betrekking tot de groei van de kolonie en we bekijken een omgeving waarin geen bacteriën worden weggenomen. We weten dat de groei van de bacteriën dan slechts afhangt van het aantal aanwezige bacteriën en de soort bacterie. Ofwel $\frac{\mathrm{d}X}{\mathrm{d}t} = \alpha_1 X$ met $\alpha_1 > 0$ is de maximale groei specifiek voor deze bacterie. Het oplossen van deze differentiaalvergelijking geeft de vergelijking

$$X(t) = X(0)e^{\alpha_1 t}.$$

waarbij X(t) de concentratie bacteriën is t.o.v. de tijd t.

Een van de meest voor de hand liggende beperkende factoren is de voedsel-concentratie S. We noemen de functie van de beperkende factor ten opzichte van de voedselconcentratie b(S), zodat de hele vergelijking nu $\frac{\mathrm{d}X}{\mathrm{d}t} = \alpha_1 b(S) X$ wordt. Deze functie moet aan een aantal voorwaarden voldoen. Als er geen voedsel is kunnen de bacteriën niet groeien, ofwel b(0) = 0. Als er heel veel voedsel is, worden de bacteriën niet beperkt in hun groei en is deze groei dus gelijk aan de groei zonder beperkingen, ofwel $\lim_{S\to\infty}b(S)=1$. Een functie die aan deze voorwaarden voldoet is de functie $b(S)=\frac{S}{1+S}$. We kiezen deze functie als functie van de beperkende

factor, zo dat de totale vergelijking de volgende wordt:

$$\frac{\mathrm{d}X}{\mathrm{d}t} = \alpha_1 \frac{S}{1+S} X$$

Het vat bacteriën, of de bioreactor, is echter niet alleen een plaats waar bacteriën groeien. We willen namelijk ook constant een deel van de bacteriën wegnemen. Dit weghalen gebeurt door middel van een uitstroom. Bij deze bioreactor stroomt er elke tijdseenheid t, X(t) bacteriën weg. Als we dit toevoegen aan de vergelijking krijgen we de totale vergelijking:

$$\frac{\mathrm{d}X}{\mathrm{d}t} = \alpha_1 \frac{S}{1+S} X - X \tag{2.1}$$

Dit is precies de vergelijking zoals beschreven in hoofdstuk 1.

Voedselconcentratie

Vervolgens analyseren we de vergelijking van de voedselconcentratie S in de bioreactor. Wederom beschouwen we eerst een reactor zonder in- of uitstroom. De voedselconcentratie hangt dan enkel af van de concentratie bacteriën aanwezig in de reactor en de eetlust van deze bacteriën. De vergelijking is nu $\frac{\mathrm{d}S}{\mathrm{d}t} = -e(S)X$, met e(S) is de eetlust van de bacteriën ten opzichte van de concentratie voedsel. e(S) moet weer voldoen aan een aantal voorwaarden. Als S=0, dan kan de voedselconcentratie niet afnemen, dus e(0)=0. Ook willen we dat naarmate het voedselconcentratie groter wordt, de eetlust toeneemt en dat de eetlust nooit groter wordt dan 1. Een functie die hieraan voldoet is $e(S)=\frac{S}{1+S}$. De totale vergelijking wordt nu

$$\frac{\mathrm{d}S}{\mathrm{d}t} = -\frac{S}{1+S}X.$$

We zien nu, dat de voedselconcentratie alleen maar af kan nemen. Dit willen we niet, want, dan zou op een gegeven moment het voedsel op zijn. Om te compenseren voor dit moeten we dus voedsel toevoeren aan de reactor. Als we per tijdseenheid α_2 voedsel toevoeren, krijgen we nu de vergelijking

$$\frac{\mathrm{d}S}{\mathrm{d}t} = -\frac{S}{1+S}X + \alpha_2.$$

Als we de bioreactor nu zo uitbreiden dat er ook nog uitstroom is, dan weten we dat (aangezien de eenheden gelijk zijn) moet gelden dat er een afname van voedsel is, die een recht-evenredig verband heeft met de voedselconcentratie op tijdstip t. Dus is er een afname van aS(t) op ieder tijdstip. Afhankelijk van de eenheden en de grootte van de uitstroom wordt de constante a gekozen. In dit geval kiezen we a = 1, vanwege onder andere de hoeveelheid bacteriën die uitstroomt op tijdstip t. Bovendien gebruiken we voor zowel

de bacterieconcentratie als de voedselconcentratie dezelfde eenheden. Dus volgt er dat de vergelijking voor de verandering in voedselconcentratie er als volgt uitziet:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = -\frac{S}{1+S}X - S + \alpha_2. \tag{2.2}$$

Wat precies de vergelijking is zoals beschreven in hoofdstuk 1.

2.2 Berekening evenwicht.

We beschouwen de differentiaalvergelijkingen zoals beschreven in hoofdstuk 1:

$$\frac{\mathrm{d}X}{\mathrm{d}t} = \alpha_1 \frac{S}{1+S} X - X \tag{2.3}$$

$$\frac{\mathrm{d}S}{\mathrm{d}t} = -\frac{S}{1+S}X - S + \alpha_2 \tag{2.4}$$

Dit reactor is in even wicht als zowel de concentratie bacteriën als de concentratie voedsel constant is. Of wel, als $\frac{\mathrm{d}X}{\mathrm{d}t}=0$ en $\frac{\mathrm{d}S}{\mathrm{d}t}=0.$

We bekijken eerst vergelijking (2.3).

Uit $\frac{dX}{dt} = 0$, volgt dat X = 0 en $S \in \mathbb{R}$ of $X \neq 0$ en

$$\alpha_{1} \frac{S}{1+S} X - X = 0 \iff$$

$$X = \alpha_{1} \frac{S}{1+S} X \iff$$

$$\alpha_{1} = \frac{1+S}{S} \iff$$

$$\alpha_{1}S - S = 1 \iff$$

$$S(\alpha_{1} - 1) = 1$$

Ofwel

$$S = \frac{1}{\alpha_1 - 1} \tag{2.5}$$

Deze vergelijking nemen we mee naar het evenwicht van het voedsel. Immers, als we te maken hebben met een evenwicht, moet zowel $\frac{\mathrm{d}X}{\mathrm{d}t}=0$ als $\frac{\mathrm{d}S}{\mathrm{d}t}=0$ gelden. We weten dat de bacterie-concentratie in evenwicht is als X(t)=0. In dat geval volgt uit $\frac{\mathrm{d}S}{\mathrm{d}t}=0$, dat $-S+\alpha_2=0$, ofwel $S=\alpha_2$.

Uit $X \neq 0$ en vergelijkingen (2.4) en (2.5) vinden we dan dat, als $\frac{\mathrm{d}S}{\mathrm{d}t} = 0$,

$$-\frac{S}{1+S}X - S + \alpha_2 = 0 \iff$$

$$\frac{S}{1+S}X = \alpha_2 - S \iff$$

$$X = \frac{\alpha_2 + \alpha_2 S - S - S^2}{S} \iff$$

$$X = \alpha_2 \left(\frac{1}{S} + 1\right) - 1 - S$$

Substitueren van $S = \frac{1}{\alpha_1 - 1}$ geeft

$$X = \alpha_2 \left(\frac{\alpha_1 - 1}{1} + 1 \right) - 1 - \frac{1}{\alpha_1 - 1} = \alpha_1 \alpha_2 - \frac{1}{\alpha_1 - 1} - 1$$
 (2.6)

De evenwichten van het stelsel zijn dus

$$(X,S) = (0,\alpha_2)$$

en

$$(X,S) = (\alpha_1 \alpha_2 - \frac{1}{\alpha_1 - 1} - 1, \frac{1}{\alpha_1 - 1})$$

Bepaling van constanten.

De vergelijking voor de groei van bacteriën zoals eerder beschreven hangt natuurlijk af van het type bacterie waarmee we rekenen en van een aantal factoren naast het voedsel, zoals licht, warmte en dergelijken. We spreken bij bacteriën ook wel van een 'specific growth rate', gemeten per uur.

3.1 α_1 , specifieke-groeifactor

Algemeen bekend is dat bacteriën zich vermenigvuldigen doormiddel van celdeling. Daarbij ontstaan uit één bacterie twee nieuwe, identieke bacteriën. In dit model rekenen we met gewicht per inhoudsmaat, maar die zijn min of meer evenredig met de hoeveelheid bacteriën in de reactor. Hierdoor weten we dus dat er, uitgaande van het gegeven dat er een beginhoeveelheid X(0) bacteriën is, $X(t) = X(0) \cdot 2^{t_d \cdot t}$, waarbij t_d een constante delingsfactor is, die verschilt per type bacterie. We kunnen dit natuurlijk herschrijven tot $X(t) = X(0) \cdot e^{\alpha_1}$, waarbij α_1 weer een constante is. Dit is ook de vergelijking zoals we die beschrijven in hoofdstuk 2. Deze α_1 word de specifieke, maximale groeifactor genoemd.

In het vervolg zullen enkel nog gegevens gebruiken van de bacteriesoort E. Coli (vanwege veelvuldig onderzoek naar deze bacteriesoort). De precieze keuze van de groeifactor α_1 is dan ook niet van enorm belang voor ons onderzoek, aangezien we de meeste berekeningen doen zonder α_1 vast te kiezen. We laten hier een aantal waarden voor de groeifactor zien, zodat er een realistischer context voor het onderzoek wordt geschapen.

Afhankelijk van een aantal factoren, zoals licht, warmte etc. is onderzoek gedaan naar verschillende groei-waarden voor E. Coli ¹. We zien dan dat de waardes sterk verschillen. In ons onderzoek hebben we niet zoveel aan waarden voor α_1 die kleiner zijn dan 1, aangezien dan de hoeveelheid bacteriën constant aan het dalen is. Dus moet er gebruik worden gemaakt van een

¹namen hier.. (2006), Stad: , American Society for Microbiology

omgeving, zodat we bijvoorbeeld $\alpha_1 = 2.4$ krijgen. We zien dat er waarden bestaan tussen 1 en 2.4 2 . De precieze waarde zal dus afhangen van een omstandigheden waarvoor gekozen wordt.

3.2 α_2 , toevoer van voedsel.

De toevoer van voedsel wordt in de bioreactor zoals wij die beschrijven als een constante factor beschouwd. De precieze samenstelling van dit voedsel zal natuurlijk afhangen van de bacteriesoort. Duidelijk mag zijn dat kosten het laagst zijn, wanneer er zo min mogelijk voedsel wordt toegevoegd en de beginwaarde voor het voedsel zo laag mogelijk is. In die zien zullen we kijken naar een optimale waarde voor α_2 , de voedseltoevoer. Uiteraard kan dit van ondergeschikt belang zijn, wanneer het voedsel erg goedkoop is of makkelijk te verkrijgen is.

Bovendien moet rekening worden gehouden met de tijd die het kost om tot een evenwicht te komen. Het zou immers kunnen zijn dat een evenwicht enkele uren op zich laat wachten. Mede om deze reden zullen we blijven rekenen met α_2 , zonder hem direct vast te kiezen. We zullen wel een aantal voorbeelden verschaffen, die een realistische waarde bevat, zodat er een duidelijke interpretatie van ons onderzoek kan plaatsvinden.

3.3 X(0), S(0) beginwaarde van de bacterië- en voedselconcentratie.

Het moge duidelijk zijn dat X(0) = 0 een niet al te veelzeggende beginwaarde is (immers, dan zou ook $S(t) = S(0) + \alpha_2 t$ zijn). De beginwaarde zal echter erg afhangen van α_1 en α_2 . Als we kijken naar optimalisatie, zal dit afhangen van factoren als de mogelijkheid tot het verkrijgen van de bacteriën, hun specifieke groeifactor, de voedseltoevoer enz.

Om dieper in te gaan op de beginwaarde van de bacterië- en de voedselconcentratie, moeten we eerst verder gaan kijken naar het fasevlak bij verschillende standaardwaarden α_1 en α_2 . We gaan opzoek naar beginwaarden, zodat evenwicht bereikt wordt.

 $^{^2}$ N.B. volgt uit het onderzoek van de A.S.M. dat er ook maximale-groeiconstanten bestaan die kleiner zijn dan 1, zoals 0.7 bij bepaalde licht-waarden. Deze waarden resulteren bij ons onderzoek in een krimp van bacteriën, dus het evenwicht $(X(t), S(t)) = (0, \alpha_2 t + S(0))$

Fasevlak en Linearisatie.

4.1 Het fasevlak.

We bekijken eerst een aantal fase-vlakken voor verschillende constanten α_1 en α_2 , respectievelijk de maximale bacterie-groei en de toename van voedsel. Hiertoe nemen we α_1 zoals we die vinden in hoofdstuk 3. Zoals we al eerder zagen, in hoofdstuk 2, leveren alle waarden $\alpha_1 \leq 1$ wel een evenwicht op, maar altijd zo dat $X(t) \to 0$ als t groter wordt. Daarom kiezen we waarden $1 < \alpha_1 < 2.4$ (zie hiertoe weer hoofdstuk 3). Voor het berekenen van het fase-vlak gebruiken we de methode van Euler¹.

Uit de bovenstaande fasevlakken zien we drie duidelijke evenwichten ontstaan.

4.2 Linearisatie.

We beschouwen de vergelijkingen voor bacterie-groei en voedseltoename zoals in hoofdstuk 2. Om de evenwichten zoals we die vinden bij het berekenen van de evenwichten nader te beschouwen, maken we een linearisatie van de vergelijkingen. Hiertoe berekenen we eerst de partiële afgeleiden van de twee vergelijkingen.

We beschouwen de volgende jacoba-matrix, met partiële afgeleiden ²:

$$A = \begin{pmatrix} \frac{\alpha_1 S}{S+1} - 1 & \frac{\alpha_1 X}{(1+S)^2} \\ -\frac{S}{1+S} & \frac{-X}{(1+S)^2} - 1 \end{pmatrix}$$

Hierin vullen we de twee evenwichten in. Eerst de triviale; $S(t) = \alpha_2$ en X(t) = 0. Dan volgt de volgende matrix:

$$A_0 = \begin{pmatrix} \frac{\alpha_1 \alpha_2}{\alpha_2 + 1} - 1 & 0\\ \frac{-\alpha_2}{\alpha_2 + 1} & -1 \end{pmatrix}$$

¹Zie bijlage?? voor de precieze implementatie van deze methode.

²Zie voor de precieze berekening bijlage 2.

We zien dan gelijk dat $\det(A_0) = \frac{-\alpha_1 \alpha_2}{\alpha_2 + 1} + 1$