ACM ICPC NEERC 2010-2011 Northern Subregion

Разбор задач

Задачи

- A. Alien Communication Masterclass
- B. Bug2
- C. Commuting Functions
- D. Defense of a Kingdom
- E. Explicit Formula
- F. Frames
- G. Gadgets Factory
- H. Horrible Truth
- Ideal Contest
- J. Journey
- K. Kitchen Robot

Problem A

Alien Communication Masterclass

Автор: Михаил Дворкин

Условие: Михаил Дворкин

Тесты: Михаил Дворкин

Формулировка задачи

- Построить выражение
 - Верное в указанных системах счисления
 - Неверное в указанных системах счисления

Числа

- Двоичная система счисления
 - Цифры 0 и 1
- Числа
 - 0, 1, 10
- Что из этого можно построить?

Детектор

- Система счисления
 - Основание к
 - Детектор

$$10 - 1 - 1 - \dots - 1 = 0$$
 k вычитаний

Комбинация детекторов

$$(10 \underbrace{-1 - 1 - \cdots - 1}) \times a_1$$
 вычитаний $\times (10 \underbrace{-1 - 1 - \cdots - 1}) \times \cdots \times a_2$ вычитаний $\times (10 \underbrace{-1 - 1 - \cdots - 1}) = 0$ a_n вычитаний

Problem B

Bug2

Автор: Максим Буздалов

Условие: Максим Буздалов

Тесты: Максим Буздалов

Формулировка задачи

Точки в порядке обхода

Граф переходов

Точки по расстоянию

Сокращенные переходы

Многократный обход

Очень многократный обход

Решение за O(n²)

Сжатие путей

- C-A
- В-А с применением С-А

Problem C

Commuting Functions

Автор: Михаил Дворкин

Условие: Дмитрий Штукенберг

Тесты: Георгий Корнеев

Формулировка задачи

- Найти функцию g
 - Коммутирующую с f
 - С минимальным списком значений

Существование функции

- Функция g(x) = x
 - Коммутирует с любой функцией

Цепочки значений

•
$$g(f^i(a_1)) = f^i(g(a_1))$$

$$\begin{array}{cccc}
a_1 & \xrightarrow{f} a_2 & \xrightarrow{f} a_3 & \xrightarrow{f} & \cdots & \xrightarrow{f} a_i & \xrightarrow{f} \\
g & \downarrow & g & \downarrow & & g & \downarrow & \\
b_1 & \xrightarrow{f} b_2 & \xrightarrow{f} b_3 & \xrightarrow{f} & \cdots & \xrightarrow{f} b_i & \xrightarrow{f}
\end{array}$$

Циклы значений

• Циклы одинаковой длины

Циклы кратной длины

Решение

- 1. Взять неотображенную вершину
- 2. Найти длину цикла *k*
- 3. Минимальный элемент в циклах, делящих *k*
- 4. Отобразить весь цикл
- 5. Повторить

- 1. Взять неотображенную вершину
 - Последовательный перебор
 - Пометка отображенных

- 2. Найти длину цикла
 - Непосредственно
 - О(длина цикла)
 - O(n) в сумме

- 3. Минимальный элемент в циклах делящих *k*
 - Для каждой длины цикла минимальный элемент
 - Просмотр более коротких циклов – О(длина цикла)
 - O(n) в сумме

- 4. Отображение цикла
 - Последовательный перебор
 - О(длина цикла)
 - O(n) в сумме

- 4. Взять первую неотображенную вершину
 - Последовательный перебор
 - Пометка отображенных
 - O(n)

Problem D

Defense of a Kingdom

Автор: Георгий Корнеев

Условие: Георгий Корнеев

Тесты: Георгий Корнеев

Формулировка задачи

• Максимальный прямоугольник

Решение

- Отсортировать башни по х
- Рассмотреть промежутки
- Найти максимальный d_x

- Повторить по y: d_y
- Ответ $d_x \times d_y$

Problem E

Explicit Formula

Автор: Михаил Дворкин

Условие: Михаил Дворкин

Тесты: Михаил Дворкин

Формулировка задачи

- Найти четность числа
 - Пар и троек
 - Хотя бы одна единица

«Простые решения»

- Вбить формулу
- Сгенерировать формулу
 - Простая структура

Решения

- Перебрать пары и тройки
 - Три вложенных цикла
- Подсчитать
 - Формула симметрична
 - $(q(10) q(z)) \mod 2$, где $q(n) = n^2 / 2 + n^3 / 6$
- Ответ 0 при 2, 6 и 10 нулях

Problem F

Frames

Автор: Юрий Петров

Условие: Сергей Копелиович

Тесты: Сергей Копелиович

Формулировка задачи

- Найти сдвиг рамки
 - Площадь пересечения максимальна

Пересечение прямоугольников

- $-\max(x_{11}, x_{21}) \le x \le \min(x_{12}, x_{22})$
- $\max(y_{11}, y_{21}) \le y \le \min(y_{12}, y_{22})$

Пересечение с прямоугольником

•
$$F \cap R = F_o \cap R - F_i \cap R$$

Пересечение рамок

•
$$F_1 \cap F_2 = F_1 \cap F_{2o} - F_1 \cap F_{2i} = F_{1o} \cap F_{2o} - F_{1i} \cap F_{2o} - F_{1i} \cap F_{2o} - F_{1i} \cap F_{2i} = F_{1o} \cap F_{2i} + F_{1i} \cap F_{2i}$$

«Хорошие сдвиги»

•
$$|R_1 \cap R_2| =$$

= $(\min(x_{12}, x_{22}) - \max(x_{11}, x_{21})) \times$
× $(\min(y_{12}, y_{22}) - \max(y_{11}, y_{21}))$

«Хорошие сдвиги»

- Площадь
 - Линейна
- Максимум на крае
- Можно рассматривать только точки с совпадающими координатами

Решение

- Перебор сдвигов
 - По х
 - По у
- По 16 вариантов
 - Итого 256

Problem G

Gadgets Factory

Автор: Сергей Копелиович

Условие: Павел Маврин

Тесты: Павел Маврин

Формулировка задачи

- Найти положение фабрики
 - Ближайший поставщик
 - Сумма квадратов

- (1) 2 3 Existing factories
- ☐ New factory

Случай «одиноких» фабрик

• Оптимизируем

$$\circ$$
 S= $\sum (x - x_i)^2$

• Дифференцируем

$$-(\sum (x-x_i)^2)'=2\sum (x-x_i)=0$$

• Ответ

$$-x = \sum x_i / n$$

• Подставив

•
$$S = \sum x_i^2 - (\sum x_i)^2 / n$$

Переход между фабриками

• Граница

$$(x_1 + x_2) / 2$$

Полосы

- Несколько переходов
- O(m) полос

Подсчет функции

- Сумма для каждой полосы
 - O(n)
 - O(nm) в сумме
 - Time limit

Пересчет функции

•
$$S = \sum x_i^2 - (\sum x_i)^2 / n = R - T^2 / n$$

$$R = \sum x_i^2$$

•
$$T = \sum X_i$$

• Переход

$$R' = R - x_i^2 + x_i'^2$$

$$T = T - X_i + X_i'$$

Problem H Horrible Truth

Автор: Дмитрий Гозман

Условие: Юрий Петров

Тесты: Юрий Петров

Формулировка задачи

- Сценарий
 - 1. А *узнает* правду
 - 2. А узнает, что В *знает* правду
 - 3. А узнает, что В *не знает* правду
- Два эпизода одного типа не идут подряд

Теоретический максимум

- События І типа
 - Для каждого участника: n
- События II типа
 - Для каждой пары: n (n 1)
- События III типа
 - Для каждой пары: n (n 1)
- Итого: n + 2n(n 1)

Начало

До первого события І типа

- Событие II типа невозможно
- Событие III типа
 - Только одно
- Потери: (n 2) серии

Конец

• После последнего события I типа

- Событие II типа
 - Только одно
- Событие III типа невозможно
- Потери: (n 2) серии

- Между двумя событиями І типа
 - После *i*-го события

- События II типа
 - Все узнают, что *i*-й знает правду
- События III типа
 - Все узнают, что (*i*+1)-й не знает правды

Подсчет серий

- Серии
 - Начало: 1
 - Середина: 2(n-1)(n-1)+n
 - Конец: 1
- Итого
 - Теоретический максимум
 - Минус «обязательные потери»

Решение

- Начало
- (*n* − 1) блок
 - Событие I типа
 - События II и III типа
- Заключение

Problem I Ideal Contest

Автор: Жюри

Условие: Дмитрий Штукенберг

Тесты: Георгий Корнеев

Формулировка задачи

• Посчитать характеристики соревнования

```
The contest header may contain arbitrary number of lines

Team A B C D E = Time R

Revda STU + + +2 +1 -9 4 9274 1

Girvas NU #1 + + -1 . -11 2 321 2

Kargopol SU + -3 + . -4 2 321 2

Utorgosh SU . . . + -5 1 122 4

Dubrovno SU . + -1 . -4 1 123 5

Girvas NU - 2 . . . -5 -99 0 0
```

Спецэффекты

```
The contest header may contain arbitrary number of lines
```

Team A B C D E = Time R

```
Revda STU + + +2 +1 -9 4 9274 1
Girvas NU #1 + + -1 . -11 2 321 2
Kargopol SU + -3 + . -4 2 321 2
Utorgosh SU . . . + -5 1 122 4
Dubrovno SU . + -1 . -4 1 123 5
Girvas NU - 2 . . -5 -99 0 0
```

Заголовок

- Поиск заголовка
 - Буквы задач
 - Первое слово Теат
 - Линия из минусов
- Число задач
 - Из заголовка

Тело таблицы

- Разбиение на лексемы
- Просмотр с конца
 - По числу задач

Характеристики

- Vainness
 - Команды не решившие ни одной задачи
- Oversimplification
 - Команды решившие все задачи

Характеристики

- Evenness
 - Пропуски в числе решенных задач
- Unsolvability
 - Задачи не решенные ни одной командой

Характеристики

- Instability
 - Команды, занимающие место выше, но не решившие задачу

$$\frac{\text{Team}}{\text{Revda STU}} = \frac{\text{C}}{+2} = \frac{\text{Time R}}{9274}$$
 $\frac{\text{C}}{\text{Cirvas NU}} = \frac{1}{2} = \frac{1}{2}$
 $\frac{1}{2} = \frac{1}{2}$

Negidialness

- Формула
 - -1.030 V + 3.141 O +
 - 2.171 E + 1.414 U +
 - $-(I_1 + I_2 + \cdots + I_P) / P$
- Результат

Problem J Journey

Автор: Михаил Дворкин

Условие:Дмитрий Гозман

Тесты: Дмитрий Гозман

Формулировка задачи

- Запутать поляков
 - Дороги днем
 - Тропы ночью

Разрешенные переходы

- Сокращает расстояние
 - На соответствующей карте
- Найти кратчайшие расстояния
 - Алгоритм Дейкстры
- Оставить сокращающие переходы

Раздвоение деревень

- Деревни
 - Вечерняя
 - Утренняя
- Переходы
 - Вечерняя → утренняя
 - Утренняя → вечерняя

Длиннейшей путь

- Динамическое программирование
 - Топологическая сортировка
 - Обход в глубину
- Бесконечность
 - Цикл
 - Обход в глубину

Problem K Kitchen Robot

Автор: Федор Царев

Условие: Федор Царев

Тесты: Федор Царев

Формулировка задачи

- Убрать бутылки со стола
 - Как можно быстрее

Начало и конец

- Начало
 - К первой бутылке
 - Напрямую
- Конец
 - От последней бутылке
 - К ближайшему краю

• Между бутылками

• Между бутылками

• Свертка

Решение

- Длина переходов известна
 - Задача коммивояжера
- Динамическое программирование на подмножествах
 - Выбросить множество бутылок начиная с заданной
 - Переход на одно меньше
 - $O(n^2 2^n)$

Вопросы

Георгий Корнеев 80