Отчет по лабораторной работе №1

Измерение статических характеристик полевого транзистора

Работу выполнили студенты 440 группы радиофизического факультата

Сарафанов Ф.Г., Платонова М.В.

Содержание

Введение	2
1. Измерение статических характеристик	
1.2. Выходные характеристики	
2. Изучение режимов работы транзистора	5
3. Измерение коэффициента усиления	6
4. Измерение времен переключения	6
Заключение	7

Введение

В настоящей работе изучается *полевой транзистор*. Основной принцип работы — управление шириной канала «сток-исток», по которому текут основные носители заряда, поперечным электрическим полем, возникающим при подаче напряжения между истоком и затвором.

Затвор может быть изолирован от канала или образовывать с ним управляющий переход. В обоих случаях входное сопротивление полевого транзистора высоко $(10^6 - 10^{10} \text{ Om})$, поэтому можно считать полевой транзистор управляемым входным напряжением.

В работе измеряются статические характеристики транзистора, коэффициент усиления при включении по схеме с общим истоком, время переключения транзистора из режима отсечки в режим насыщения.

Установка. Для измерения характеристик собирается лабораторная установка, общий вид которой приведен на рис. 1. Для этого подается постоянное напряжение между затвором и истоком (или стоком и истоком) и фиксируется текущее значение тока в цепи сток-исток. При включении измерительного модуля так, как это показано на рис. 1, изучаются характеристики выходного сигнала усилительного каскада с помощью осциллографа.

Рис. 1. Лабораторная установка. 1 — осциллограф ОСУ-10A, 2 — генератор сигналов UNI-T UTG9010C, 3 — измерительный модуль, подключенный в режиме усилителя входного сигнала, 4 — мультиметр APPA-201N, 5,6 — источники питания GPS-3030D (в принципиальной схеме — E_2 , E_1).

1. Измерение статических характеристик

Для измерения статических характеристик измерительный модуль подключается по схеме, представленной на рис. 2.

Рис. 2. Принципиальная схема

1.1. Переходные характеристики

Измерено семейство переходных характеристик при различных фиксированных напряжениях на стоке.

Рис. 3. Семейство переходных характеристик

При построении графиков учитывались инструментальные погрешности:

$$\Delta U_z = \frac{1}{10} \Delta E_2 = \frac{1}{10} (0.005 \cdot E_2 + 0.2) \text{ B}, \qquad \Delta I_c = (0.01 \cdot I_c + 0.02) \text{ MA}$$

По обработанным данным рассчитана крутизна переходных характеристик. Для этого линейные участки характеристик аппроксимировались прямой с помощью MatLab:

$$S_{10} = \frac{\partial I_c}{\partial U_z} \Big|_{U_c = 10 \text{ B}} = (10.4 \pm 0.15) \text{ KOm}^{-1},$$

$$S_2 = \frac{\partial I_c}{\partial U_z} \Big|_{U_c = 2 \text{ B}} = (8.5 \pm 0.11) \text{ KOm}^{-1},$$

$$S_{0.5} = \frac{\partial I_c}{\partial U_z} \Big|_{U_c = 0.5 \text{ B}} = (2.5 \pm 0.09) \text{ KOm}^{-1}.$$

Здесь в качестве ошибки принято среднеквадратичное отклонение аппроксимации.

1.2. Выходные характеристики

Проведены измерения выходных характеристик $I_c(U_c)$ при фиксированных значениях напряжения между затвором и истоком $U_z = 0.1 \cdot E_2$.

Рис. 4. Семейство выходных характеристик

На семействе выходных характеристик можно проследить наличие двух режимов: *линейного* (омического), когда ток в канале растет почти прямо

пропорционально напряжению на канале, и *насыщения* — когда ток почти перестает зависеть от напряжения на канале.

2. Изучение режимов работы транзистора

Включив измерительный модуль в режиме усиления сигнала (см. рис. 5) измерили напряжение отсечки ($U_z=2.08~\mathrm{B}$, при этом $I_c=0$). Затем подали на вход усилителя с генератора гармонический сигнал с размахом 0.146 B, частотой 45.07 к Γ ц, а на сток транзистора подали постоянное напряжение $U_c=10~\mathrm{B}$.

Рис. 5. Принципиальная схема

Рис. 6. Режимы работы транзистора

Изменяя далее напряжение на затворе, получили:

- Линейный режим при $U_z = 0.37 \; \mathrm{B}, \, U_c = 0.2 \; \mathrm{B}$
- Режим насыщения при $U_z = 0.96$ В, $U_c = 4.5$ В

• Режим отсечки при $U_z = 2.08 \; \mathrm{B}, \, U_c = 10 \; \mathrm{B}$

Осциллограммы выходного сигнала в трех режимах приведены на рис. 6.

3. Измерение коэффициента усиления

Включив измерительный модуль в режиме однокаскадного усилителя с общим истоком в линейном режиме ($E_1=5~\mathrm{B},\,U_z=0.64~\mathrm{B},\,I_c=5.72~\mathrm{mA}$) и подавая с генератора гармонический сигнал с размахом $0.145~\mathrm{B}$ и частотой в диапазоне $0.1-10^7~\mathrm{\Gamma I}$, сняли AЧX усилителя:

Предельная частота усиления без искажений по амплитуде — 45 к Γ ц в области высоких частот и 60 Γ ц — в области низких. Частоты среза 10 Γ ц и 2 м Γ ц (на частотах среза усиление падает вдвое по сравнению с полосой безискажательного пропускания).

4. Измерение времен переключения

Включив измерительный модуль в режиме однокаскадного усилителя с общим истоком в линейном режиме, выставив напряжение отсечки на затворе, подали с генератора сигналов меандр с амплитудой 3.5 В на частоте 142.5 кГц.

На осциллографе, который подключён к выходу усилителя, при этом наблюдается периодический сигнал, отвечающий переходу транзистора из режима отсечки в режим насыщения при приходе фронта меандра.

Измеряя на осциллографе ширину заднего и переднего фронта, получаем времена переключения $t_{\uparrow},\,t_{\downarrow}.$

Меняя напряжение на затворе, сняли зависимость времени переключения транзистора из отсечки в насыщение и обратно (см. рис. выше).

Максимальное суммарное время переключений 3.2 мкс, что дает предельную частоту 1.92 м Γ ц. Это вполне согласуется с результатами предыдущего эксперимента.

Заключение

В настоящей работе мы изучили принципы работы полевого транзистора, различные режимы работы (отсечка, насыщение, линейный), сняли семейства переходных и выходных статических характеристик, рассчитали крутизну переходных характеристик. Сняли АЧХ усилителя по схеме с общим истоком, а также времена переключения транзистора.

Список литературы

- [1] Орлов И. Я., Односевцев В. А. и др. Основы радиоэлектроники: учебное пособие. Нижний Новгород: Нижегородский государственный университет им. Н.И. Лобачевского, 2011. 169 с.
- [2] Битюрин Ю. А. и др. Измерение статических характеристик полевого транзистора. Н.Новгород: ННГУ, 2003. 30 с.