

AI 안심 비상벨 ECHO SAFE

엣지 컴퓨팅 기반 <u>음원 인식 및 위험 감지 시스템</u>

프로젝트 수행 기간: 2023.01~2024.12 후원기업상(한글과 컴퓨터상), SW중심대학 인재 페스티벌

프로젝트 배경

- ❖ 공중 화장실에서의 성범죄 및 범죄 발생률이 급증하고 있으나, 이를 위한 안전장치 부족 및 관리 미흡 등으로 인해 범죄 예방을 위한 대책이 요구됨
- 보안을 위한 CCTV 를 설치하는 경우가 다수, 하지만 개인정보보호위원회가 화장실 내부 영 상정보처리기기 학교 및 공공기관에 과태료 처분을 내림.
- CCTV의 사각지대에서 발생하는 범죄 예방의 어려움 및 개인정보보호법에 따라 화장실과 같은 특정 공간에서의 설치 제한으로 인해 이를 악용한 범죄에 대한 해결책이 필요함

프로젝트 개발

❖실내 및 화장실에서 Room Acoustics를 활용한 RIR 취득

- 단말에서 음원을 전달하여 서버에 저장하는 방식은 개인정보 보호법과 통신비밀보호법에저촉됨.
- 법에 저촉되지 않는 방법인, 단말에서 분석 하여 결과만을 서버에 전달.

그림 1, EchoSafe의 엣지 컴퓨팅 기반 단말간 통신

❖실내 및 화장실에서 Room Acoustics를 활용한 RIR 취득

- RIR 취득을 위해 시간에 따라 주파수가 증가하는 sine sweep 신호 사용
- 총 1800개의 Sine Sweep 신호총 1800개 수음

그림 2. 화장실과 유사한 공간에서의 RoomAcoustics 측정

♦음원 증강 기법 설계 및 적용

수집된 음원에 Time Stretch, Pitch Shift, Formant Shift, RIR, Air Absolution, Equalization 등 다양한 Augmentation 기법 적용

그림 3. 데이터 증강기법을 적용시킨 Waveform의 모습

물편이번드 이번드 경수 옵션이번드 이번드 경수 음션이번드 이번드 경수 (EA)

❖음원 증강 기법 설계 및 적용

- 수집된 음원에 Time Stretch, Pitch Shift, Formant Shift, RIR, Air Absolution. Equalization 적용
- 위급 상황이 잘 발생하지 않는 실제 상황을 모사하기 위해 위급 상황이 없는 데이터 1.484.127개를 그대로 사용

용원이벤트 이벤트 계수 유원이벤트 이벤트 계수 유원이벤트 이벤트 계수

1명/고함	1003	음악소리	14423	방궤소리	270		819	8/元章	131,989	음약소리	49,019	5소유명	103,587
1반 음성	135000	변기소리	1919	기점소리	1388		221	반옵성	59,245	변기소리	88,346	기침소리	112,410
5소음5	646	세면대 소리	138	타운송점	232		91	848	44,428	서만대 소리	67,945	部署全書信	56,290
당소말	2479	문 달는소리	2951	任務소리	384	, r	19	15.51	41,832	문문문소리	128,776	五百五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五	83,825
박수소리	646			배경소원 (Fan소리)	2581		MP	15소수	55,786	ALL_Zero	1,484,127		
1,500													1,484
1,000													
500	131												
0			.41	55	49	- 25	67	128	103	112	- 56	83	
pl	평/고함 열1	반음성 웃음소	리 발소리	박수소리	용약소리	변기소리	세면대 소리	문 닫는소	리 병취소리	기침소리	라뭄소리	퇴종소리	ALL_Zero

그림 4. Augmenation 기법 이전 데이터와 적용 이후 증강된 데이터의 양

❖CRNN(Convolution Recurrent Neural Network)기반 딥러닝 모델

- MCU에서 구동 가능하도록 적은 파라미터(5.3M)를 활용하도록 구성 CNN의 지역적 특징과 RNN의 전역적 특징을 포착하는 장점을 가진 CRNN 모델 사용

그림 5. Multi Label Classifier 을 위한 CRNN 모델 구조

❖성능 지표

성능지표	F1_Score	mAP	AUROC(Danger)		
Train	0.7768	0.8560	-		
Test	0.7108	0.7675	0.9744		

그림 6. 비상상황 감지 정확도 측정을 위한 F1 socre 과 mAP, AUROC (Danger)의 결과값

엣지컴퓨팅 비상벨 현장 적용 및 실증

❖ 현재 광주 시민의 숲 야영장 내 화장실과 조선대학교에 ai 기반 위급 상황 알림 시스템 (ECHO SAFE) 적용 중에 있음

그림 7. 광주 시민의 숲 야영장 내 화장실 Echo Safe 설치 모습

그림 8. 조선대학교 it 융합대학 10층 내 화장실 Echo Safe 설치 모습

기대효과

- 양질의 안전 관련 서비스 제공을 통해 비상벨 서비스에 대한 활용 저하를 방지하고, 공공 안전 관 리 시스템 설치에 대한 관심 증대
- ❖ 음원 분석 인공지능 시스템과 중앙 관제 시스템 간의 연동을 통해 실시간 상황별 대응 및 대처로 국민에게 안전한 환경 조성 제공 가능
- ❖ CCTV의 사각지대에서 발생할 수 있는 위험 상황을 실시간으로 감지하여 범죄 예방 효과를 높임으 로써 사각지대 최소화 및 촘촘한 안전망 구축