Топология

Кононов Александр Михайлович 28.01.2025

Задача 1:

Условие:

Пусть $f:M\to N$ диффеоморфизм гладких многообразий. Определим $f_*:\Gamma(M)\to\Gamma(N)$ как

$$\forall X \in \Gamma(M), \forall g \in C^{\infty}(N), \forall m \in M, f_*(X)(g)_{f(m)} := X(g \circ f)_m$$

1. доказать, что $f_*[X,Y] = [f_*X, f_*Y], \, \forall X, Y \in \Gamma(M).$

Решение:

$$f_*(X)(g)_{f(m)} := X(g \circ f)_m$$
$$(f_*(X)(g) \circ f)_m = X(g \circ f)_m$$

Так как $\forall m$:

$$f_*(X)(g) \circ f = X(g \circ f)$$

Теперь для [X;Y]:

$$\begin{split} f_*([X;Y])(g)\circ f &= [X;Y](g\circ f) = ((XY)-(YX))(g\circ f) = \\ &= X(Y(g\circ f))-Y(X(g\circ f)) = X(f_*(Y)[g]\circ f)-Y(f_*(X)[g]\circ f) = \\ &= f_*(X)[f_*(Y)[g]]\circ f - f_*(Y)[f_*(X)[g]]\circ f = (f_*(X)[f_*(Y)[g]] - f_*(Y)[f_*(X)[g]])\circ f = \\ &= [f_*(X);f_*(Y)](g)\circ f \end{split}$$

Получили

$$f_*([X;Y])(g) \circ f = [f_*(X); f_*(Y)](g) \circ f \Rightarrow f_*([X;Y])(g) = [f_*(X); f_*(Y)](g)$$

Так как для $\forall g$:

$$f_*([X;Y]) = [f_*(X); f_*(Y)]$$

QED

Задача 2:

Условие:

Пусть G связная группа Ли. Пусть $p: \tilde{G} \to G$ ее унтверсальное накрытие. Доказать, что существует структура группы Ли на \tilde{G} такое что

- 1. $p: \tilde{G} \to G$ гладкая функция.
- 2. и $p: \tilde{G} \to G$ является гомоморфизьоь групп Ли.

Hint: использовать конкретное описание универсального накрытие (см лекции).

Решение:

1) Топология на \widetilde{G}

Из построения универсального накрытия известно, что \widetilde{G} — топологическое пространство. Нужно лишь подтвердить три условия для гладкого многообразия:

- **1.1) Хаусдорфовость.** Возьмём произвольные точки $x,y \in \widetilde{G}$. Пусть p(x)=a и p(y)=b в G.
 - Если a=b, то берём в G «хорошую» окрестность U(a), на которой p является гомеоморфизмом на соответствующих компонентах прообраза. Точки x и y попадают в разные компоненты, которые можно выбрать как непересекающиеся.
 - Если $a \neq b$, то в G найдутся непересекающиеся «хорошие» окрестности U(a) и U(b), а в \widetilde{G} их прообразы, которые тоже непересекаются благодаря тому, что p локально является гомеоморфизмом.

Поскольку G — хаусдорфово, то и в \widetilde{G} строятся непересекающиеся окрестности соответствующих точек.

1.2) Счётная база. Выберем в G счётный набор «хороших» окрестностей $\{U_i\}$, который возможен благодаря тому, что G имеет счётную базу. Тогда прообраз каждой U_i под p раскладывается в дизъюнктное объединение $U_{i,j}$:

$$p^{-1}(U_i) = \bigsqcup_j U_{i,j}.$$

Все такие $U_{i,j}$ вместе образуют счётную базу на \widetilde{G} .

1.3) Атлас на \widetilde{G} . Пусть $x \in \widetilde{G}$ и p(x) = a. Так как a имеет «хорошую» окрестность U(a) в G и p при этом локальный гомеоморфизм, рассмотрим соответствующий кусок $V_x \subset \widetilde{G}$, который отображается гомеоморфно на U(a).

В G уже есть гладкая структура с атласом $\{\varphi_i\}$. Тогда на каждом V_x зададим карты

$$\widetilde{\varphi}_i = \varphi_i \circ p \big|_{V_x}.$$

Композиция гомеоморфизма и гладкой карты даёт гладкую карту. Собирая такие карты по всем «хорошим» окрестностям и их прообразам, получаем полный атлас на \widetilde{G} . Согласованность новых карт получается из согласованности исходных φ_i .

2) Гладкость $p \colon \widetilde{G} \to G$

Чтобы проверить гладкость p, достаточно проверить гладкость его локальных версий в координатных картах. Но локально p — композиция уже гладких (или гомеоморфных) отображений, следовательно, гладкое.

3) Групповая операция и обращение

На \widetilde{G} определяется умножение

$$\widetilde{\mu}([\alpha(t)], [\beta(t)]) = [\alpha(t) \beta(t)],$$

где $[\alpha(t)]$ и $[\beta(t)]$ — классы петель в G. Корректность: гомотопные петли при умножении дают гомотопные результаты. Нейтральным элементом выступает класс $[e_c(t)]$, где $e_c(t)$ — постоянный путь в нейтральном элементе G. Обращение петли $[\alpha(t)]$ задаётся путём

$$[\alpha(t)]^{-1} = [\alpha(t)^{-1}].$$

4) Гладкость $\widetilde{\mu}$ и $\widetilde{\text{inv}}$

4.1) Гладкость $\widetilde{\mu}$. Умножение на G есть гладкое отображение $\mu\colon G\times G\to G$. На $\widetilde{G}\times\widetilde{G}$ по определению

$$\mu = p \circ \widetilde{\mu} \circ (p^{-1} \times p^{-1}),$$

и поскольку локально все карты согласованы с картами в $G \times G$, операция $\widetilde{\mu}$ получается гладкой.

4.2) Гладкость $\widetilde{\text{inv}}$. Аналогично, $\text{inv}: G \to G$ гладко. Тогда

inv =
$$p \circ \widetilde{\text{inv}} \circ p^{-1}$$
.

В локальных координатах эта композиция диффеоморфизмов также гладкая, значит, и \widetilde{inv} гладко.

Таким образом, на \widetilde{G} формируется структура группы Ли.

5) Гомоморфизм групп Ли

Наконец, покажем, что $p\colon \widetilde{G}\to G$ — гомоморфизм групп Ли. Мы уже доказали его гладкость. Для свойств гомоморфизма надо лишь проверить согласованность умножений:

$$p\Big([\alpha(t)]\cdot[\beta(t)]\Big) \ = \ p\Big([\alpha(t)\,\beta(t)]\Big) \ = \ \alpha(1)\,\beta(1) \ = \ p([\alpha(t)]) \cdot \ p([\beta(t)]).$$

Значит, p действительно переводит произведение в произведение, то есть является гомоморфизмом групп Ли. QED

Задача 3:

Условие:

- 1. пусть X,Y компактные топологические пространства. доказать, что $X \times Y$ компактное топологическое пространство (на $X \times Y$ декартово топология).
- 2. пусть X, Y связные топологические пространства. доказать, что $X \times Y$ связное топологическое пространство (на $X \times Y$ декартово топология).

Решение:

1) Покажем компактность:

$$(X imes Y, au)$$
 (X,Ω) — компакт (Y,Σ) — компакт

$$\forall \nu = \{U_i \in \Omega \mid i \in I \; ; \; \bigcup_{i \in I} U_i = X\} \; \exists U_{i_1}; ...; U_{i_n} \in \nu \; \bigcap_{i=1}^n U_i = X$$
-конеч подпокрытие

$$\forall \eta = \{V_j \in \Sigma \mid j \in J \; ; \; \bigcup_{j \in J} V_j = Y\} \; \exists V_{j_1}; ...; V_{j_m} \in \nu \; \bigcap_{j=1}^m V_j = Y$$
-конеч подпокрытие

$$\mu = \{W_k \in \tau \mid k \in K; \bigcup_{k \in K} W_k = X \times Y\}$$
 – покрытие

$$\forall W_k = U_k \times V_k$$
 — декартова топология

 $U_k;\ k\in K$ – откр покрытие $X\Rightarrow \exists U_{k_1};...;U_{k_n}$ – конеч подпокрытиеX

 $V_k; \ k \in K$ – откр покрытие $Y \Rightarrow \exists V_{k_1}; ...; V_{k_m}$ – конеч подпокрытиеY

$$\Rightarrow \tau \supset \tau_{n;m} = \{W_{k_{i;j}} = U_{k_i} \times V_{k_j} \mid i \in \{1;...;n\}; j \in \{1;...;m\}\}$$
—конеч подпокрытие $X \times Y$ QED

2) Покажем связность:

От противного. Пусть au - несвязна. Тогда:

$$\exists a = (x_1; y_1); b = (x_2; y_2) : \forall A \in \tau \ a; b \notin A$$

Связность X и Y:

$$\forall x_1; x_2 \in X \ \exists A_x \in \Omega: \ x_1; x_2 \in A_x$$

$$\forall y_1; y_2 \in Y \ \exists A_y \in \Sigma: \ y_1; y_2 \in A_y$$

$$\Rightarrow A' = \{(x;y) \in X \times Y \mid x = x_1\} \ A'' = \{(x;y) \in X \times Y \mid y = y_2\} - \text{связаны}$$

$$A' \bigcap A'' = \{(x_1;y_2)\} \neq \varnothing \Rightarrow_{\text{крит связ}} X \times Y - \text{связное}$$

QED

Задача 4:

Условие:

- 1. Доказать, что $SL(n, \mathbf{R})$ допускает структуру гладкого подмногообразие \mathbf{R}^{n^2} .
- 2. Доказать, что SU(2) допускает структуру гладкого многообразие.

Решение:

1) $SL_n(\mathbb{R})$:

$$det: \mathbb{R}^{n^2} \longrightarrow \mathbb{R}$$

$$M \longmapsto det(M) = \sum_{\sigma \in S_n} sgn(\sigma) \cdot \prod_{i=1}^n a_{i\sigma(i)}$$

$$SL_n(\mathbb{R}) = det^{-1}(1)$$

Докажем, что $1 \in \mathbb{R}$ - регулярное значение det.

$$D_M det = \nabla det(M) = \left(\frac{\partial det}{\partial x_{11}}; \dots; \frac{\partial det}{\partial x_{nn}}\right)(M)$$

 $\forall M \in SL_n(\mathbb{R}) \ \nabla det(M) \neq 0 \Rightarrow Rank \nabla det = 1$

Значит любая точка $SL_n(\mathbb{R})$ регулярная. По теореме о регулярном значении функции между многообразиями $SL_n(\mathbb{R})$ - гладкое подмногообразие \mathbb{R}^{n^2} . QED

2) SU(2):

$$SU(2) = \left\{ \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix} \middle| a; b \in \mathbb{C}; \quad |a|^2 + |b|^2 = 1 \right\}$$

$$SU(2) \subseteq \mathbb{C}^4 \cong \mathbb{R}^8$$

$$S^3 = \left\{ (x; y; z; t) \in \mathbb{R}^4 \mid x^2 + y^2 + z^2 + t^2 = 1 \right\}$$

$$f: S^3 \longrightarrow SU(2) \subseteq \mathbb{R}^8$$

$$(x; y; z; t) \longmapsto \begin{pmatrix} x + iy & -z + it \\ z + it & x - iy \end{pmatrix} - \text{непр, биекция}$$

$$\Rightarrow SU(2) \cong S^3$$

$$g: S^3 \longrightarrow \mathbb{R}$$

$$(x; y; z; t) \longmapsto x^2 + y^2 + z^2 + t^2$$

$$SU(2) = g^{-1}(1)$$

Докажем, что $1 \in \mathbb{R}$ - регулярное значение g.

$$\nabla g = (2x; 2y; 2z; 2t) \neq 0 \ \forall (x; y; z; t) \in SU(2)$$

Теорема регулярном значении функции между многообразиями ⇒ QED

Задача 5:

Условие:

Доказать что не существует гомеоморфизма между ${f R}^2$ и ${f R}^5$.

Решение:

От противного. Пусть $\mathbb{R}^2 \stackrel{f}{\simeq} \mathbb{R}^5$ - гомеоморфны.

Тогда

$$\mathbb{R}^2 - \{0\} \stackrel{f}{\simeq} \mathbb{R}^5 - \{f(0)\} \Leftrightarrow \mathbb{R}^2 - \{0\} \stackrel{f}{\simeq} \mathbb{R}^5 - \{0\}$$

Знаем

$$\mathbb{R}^{2} - \{0\} \simeq S^{1}$$

$$\mathbb{R}^{5} - \{0\} \stackrel{g}{\simeq} S^{4}$$

$$g : \vec{x} \longmapsto \frac{\vec{x}}{x}$$

$$S^{4} \hookrightarrow \mathbb{R}^{5}$$

$$\Rightarrow \mathbb{Z} = \pi_1 \left(S^1; \vec{x} \right) = \pi_1 \left(\mathbb{R}^2 - \{0\}; \vec{x} \right) = \pi_1 \left(\mathbb{R}^5 - \{0\}; f(\vec{x}) \right) = \pi_1 \left(S^4; \frac{f(\vec{x})}{|f(\vec{x})|} \right) = 0$$

Противоречие. QED

Задача 6:

Условие:

Пусть G линейно свявная группа Ли, размерности n.

Пусть

$$\Gamma(G) =$$
 Можество гладких полей на G.

1. доказать, что существует изоморфизм $C^{\infty}(G)$ -модулей:

$$\Omega^1(G) \cong \underbrace{C^{\infty}(G) \oplus \cdots \oplus C^{\infty}(G)}_{n-times}$$

где

$$\Omega^1(G)=\{\mathbf{f}:\Gamma(G) o C^\infty(G)|$$
такое что \mathbf{f} является $C^\infty(G)$ – линейная $\}$

Hint: использовать лево-инвариантные поля.

Решение:

Обозначим за $\mathfrak{g} = T_e G$ алгебру Ли в единице $e \in G$ и выберем базис $\{X_1; \ldots; X_n\} \subset \mathfrak{g}$. Для каждого i определим лево-инвариантное поле \widetilde{X}_i на G путём переноса X_i с помощью левых сдвигов. Тогда $\{\widetilde{X}_1; \ldots; \widetilde{X}_n\}$ образуют базис в $\Gamma(G)$.

Любое векторное поле $Y \in \Gamma(G)$ можно разложить в этом базисе:

$$Y[f](g) = \sum_{j=1}^n a_j(g) \, \widetilde{X}_j[f](g)$$
 где $a_j \in C^\infty(G) \, \forall f \in C^\infty(G) \, \forall g \in G$

Рассмотрим 1-форму $\omega \in \Omega^1(G)$. По опруделению:

$$\omega (hY + kZ) = h\omega (Y) + k\omega (Z) \ \forall h; k \in C^{\infty}(G) \ Y; Z \in \Gamma(G)$$

Определим ω на базисных полях X_j и получим n гладких функций:

$$\omega(X_j) \in C^{\infty}(G), \quad j = 1, \dots, n.$$

Зададим отображение

$$\Phi \colon \Omega^1(G) \longrightarrow (C^{\infty}(G))^n, \quad \omega \mapsto (\omega(X_1), \dots, \omega(X_n)).$$

Проверим биективнось:

1) Инъективность:

$$\omega(\widetilde{X}_j) = 0 \Rightarrow \omega\left(\sum_{j=1}^n a_j(g)\,\widetilde{X}_j[f](g)\right) = 0 \Rightarrow \omega = 0$$

2) Сюрьективность:

$$\omega(\widetilde{X}_j) = f_j \Rightarrow \forall Y = \sum_j a_j \widetilde{X}_j \ \omega(Y) = \sum_j a_j f_j \in \Omega^1(G)$$

Получили

$$\Omega^1(G) \cong \bigoplus_{i=1}^n C^{\infty}(G)$$

По сути доказали:

$$\Omega^1(G) = \Gamma(G)^*$$

QED

Задача 7:

Условие:

Пусть $T^2 = S^1 \times S^1$ тор размерности 2. Пусть $m \in T^2$.

Доказать через теорему Seifert-Van Kampen, что $\pi_1(T^2, m)$ изоморфно группе $\mathbf{Z} \oplus \mathbf{Z}$.

На ${f R}^2$ стандартная топология. $S^1=\{(x,y)\in {f R}^2|x^2+y^2=1\},$ с индуцированной топологией. На торе T^2 декартово топология.

Решение:

$$\mathbb{T}^2\cong [0;1] imes [0;1]/\sim$$
 с фактор топологией $(0;s)\sim (1;s)\; (t;0)\sim (t;1)\; orall t;s\in [0;1]$ $U_1=\mathbb{T}^2-\{M\}-$ откр, лин связ $U_2=B_{arepsilon}(M)-$ откр, лин связ

$$U_1 \bigcap U_2 = U_2 - \{M\}$$
 — откр, лин связ

По Теореме Ван-Кампана:

Чтобы получить генератор \mathbb{Z} - обойдем тор по петле

$$\Rightarrow 1 \stackrel{\pi_1(i_1)}{\longmapsto} aba^{-1}b^{-1}$$

$$\Rightarrow \pi_1(\mathbb{T}^2) = \{e\} \underset{\mathbb{Z}}{*} (\mathbb{Z} * \mathbb{Z}) = \langle a; b \mid aba^{-1}b^{-1} \rangle = \mathbb{Z} \oplus \mathbb{Z}$$

QED

Задача 8:

Условие:

Теорема Риманна утверждает следующее: Если M двухмерное топологическое многообразие такое, что M линейно связное и $\pi_1(M) = 0$ тогда существует гомеоморфизм межу M и \mathbf{R}^2 .

Определение : Пусть X топологическое пространство, пусть Γ группа действующая (непрерывно) на X гомеоморфизмами. Мы будет говорить, что Γ действует хорошо если

$$\forall x \in X, \exists U_x \subset X$$
 такое что $\forall g \in \Gamma - \{e\}$, следует что $g.U \cap U = \emptyset$

где e нейтральный элемент в Γ а U_x открытый в X и $x \in U_x$.

Цель этой задачи это доказать следующий результат:

Лемма: Пусть $F(2) = \mathbb{Z} * \mathbb{Z}$ свободная группа с двумя порождающими. Тогда существует хорошее (непрерывное) действо F(2) на \mathbf{R}^2 .

- 1. Пусть X двухмерное линейно-связное топологическое многообразие. Доказать, что универсальное накрытие \tilde{X} является двухмерным топологическим многообразием.
- 2. Пусть $x \in X$, найдите действие $\pi_1(X,x)$ на \tilde{X} такое, что это действие хорошее.
- 3. Пусть $T^2=S^1\times S^1$ и пусть $x,y\in T^2$. Доказать, что $\pi_1(T^2-\{y\},x)=\mathbb{Z}*\mathbb{Z}$
- 4. Доказать Лемму используя Теорему Риманна.

Решение: :(