### Digitaltechnik Wintersemester 2017/2018 14. Vorlesung





#### Inhalt



- 1. Einleitung
- 2. Lehrevaluation der FB 20 Fachschaft
- 3. Field Programmable Gate Arrays (FPGAs)
- 4. Abschluss Digitaltechnik
- 5. Zusammenfassung

### **Agenda**



- 1. Einleitung
- 2. Lehrevaluation der FB 20 Fachschaft
- 3. Field Programmable Gate Arrays (FPGAs)
- 4. Abschluss Digitaltechnik
- 5. Zusammenfassung



#### **Organisatorisches**



- ► Ende von Übungen und Testaten in KW 5
- Testatsergebnisse (485 Anmeldungen für Studienleistung):

| bestandene Testate | 1   | 2   | 3 | 4 |
|--------------------|-----|-----|---|---|
| Anzahl Studierende | 105 | 333 | 9 | 1 |

- ▶ 104 Teilnehmer haben noch Chance auf Klausurzulassung
- davon aber nur 31 für Testat in KW 5 angemeldet
- ⇒ letzte Chance bis 02.02.18 nutzen

### Rückblick auf die letzte Vorlesung



- Weitere arithmetische Grundschaltungen
  - Schnelle Additionen
  - kombinatorische und sequentielle Multiplikation
- Ausblick Rechnerorganisation
  - Von-Neumann- und Harvard-Architektur
  - Speicher
  - Arithmetisch-Logische Einheit
  - Steuerwerk



Harris 2013 Kap. 5.2 + 7.3

# Wiederholung: Schnelle Übertragsketten Generate und Propagate





# Wiederholung: Schnelle Übertragsketten Generate und Propagate







Unsigned

55ne1





- ▶  $1010_2 < 0011_2 = 0$  für  $u_{2,4}$  bzw. 1 für  $s_2$  Interpretation
- ⇒ unterschiedliche Hardware (Vorzeichenexpansion) für Differenz-Bildung bei signed und unsigned nötig
  - für signed:





- ▶  $1010_2 < 0011_2 = 0$  für  $u_{2,4}$  bzw. 1 für  $s_2$  Interpretation
- ⇒ unterschiedliche Hardware (Vorzeichenexpansion) für Differenz-Bildung bei signed und unsigned nötig
  - für signed:









- ▶  $1010_2 < 0011_2 = 0$  für  $u_{2,4}$  bzw. 1 für  $s_2$  Interpretation
- ⇒ unterschiedliche Hardware (Vorzeichenexpansion) für Differenz-Bildung bei signed und unsigned nötig
- für signed:





### Wiederholung: Rechnerarchitektur





## Wiederholung: Rechnerarchitektur Von-Neumann





### Wiederholung: Rechnerarchitektur





#### Wiederholung: Rechnerarchitektur Harvard





# Wiederholung: Rechnerarchitektur Harvard Details (Ü13.2)





# Wiederholung: Instruktionssatz für Modellprozessor (Ü13.2)



| Befehl                | kodierte Instruktion                               | Registeränderung        | nächster PC            |
|-----------------------|----------------------------------------------------|-------------------------|------------------------|
| ADD(r,a,b)            | {4'b0000,7'bx,r,a,b}                               | R[r] = R[x] + R[b]      | pc+1                   |
| SUB(r,a,b)            | {4'b <mark>0</mark> 00 <mark>1,</mark> 7'bx,r,a,b} | R[r] = R[a] - R[b]      | pc+1                   |
| AND(r,a,b)            | {4'b0010,7'bx,r,a,b}                               | R[r] = R[a] & R[b]      | pc+1                   |
| OR(r,a,b)             | {4'b0011,7'bx,r,a,b}                               | $R[r] = R[a] \mid R[b]$ | pc+1                   |
| <pre>XOR(r,a,b)</pre> | {4'b <mark>0</mark> 10 <mark>0,</mark> 7'bx,r,a,b} | $R[r] = R[a] ^ R[b]$    | pc+1                   |
| SHL(r,a,b)            | {4'b <mark>0</mark> 10 <mark>1</mark> ,7'bx,r,a,b} | R[r] = R[a] << R[b]     | pc+1                   |
| SHR(r,a,b)            | {4'b <mark>0</mark> 1 <mark>10</mark> ,7'bx,r,a,b} | R[r] = R[a] >> R[b]     | pc+1                   |
| ASHL(r,a,b)           | {4'b <mark>0</mark> 1 <mark>11</mark> ,7'bx,r,a,b} | R[r] = R[a] <<< R[b]    | pc+1                   |
| ASHR(r,a,b)           | {4'b <mark>1</mark> 0 <mark>00</mark> ,7'bx,r,a,b} | R[r] = R[a] >>> R[b]    | pc+1                   |
| ARED(r,a,b)           | {4'b <mark>1</mark> 0 <mark>01</mark> ,7'bx,r,a,b} | R[r] = & R[a]           | pc+1                   |
| ORED(r,a,b)           | {4'b <mark>1</mark> 0 <mark>10</mark> ,7'bx,r,a,b} | R[r] =   R[a]           | pc+1                   |
| MOV(r,a)              | {4'b <mark>1</mark> 0 <mark>11</mark> ,7'bx,r,a,0} | R[r] = R[a]             | pc+1                   |
| LDI(immediate)        | {4'b1100,immediate}                                | R[0] = immediate        | pc+1                   |
| JMP(immediate)        | {4' <mark>b1</mark> 10 <mark>1</mark> ,immediate}  |                         | pc+ immediate          |
| JN(immediate)         | {4'b1110,immediate}                                |                         | pc+(n ? immediate : 1) |
| JZ(immediate)         | {4'b1111,immediate}                                |                         | pc+(z ? immediate : 1) |

## Ergänzung: Assembler-Programm Beispiel für Minimum von drei Zahlen



```
/*PC*/
  /* 0*/ LDI(10); // R[0] = 10,
                                                N=0. PC=1
  /* 1*/ MOV(1,0); // R[1] = R[0] = 10,
                                                N=0, PC=2
  /* 2*/ LDI(15); // R[0] = 15,
                                                N=0, PC=3
  /* 3*/ MOV(2,0); // R[2] = R[0] = 15,
                                                N=0. PC=4
  /* \frac{4}{4}*/ LDI(-8); // R[0] = -8,
                                                N=1, PC=5
  /* 5*/ MOV(3,0); // R[3] = R[0] = -8,
                                               N=1, PC=6
7
  /* 6*/ MOV(4,1); // R[4] = R[1] = 10,
                                             N=0, PC=7
10
  /* 7*/ SUB(0,4,2); // R[0] = R[4] - R[2] = -5, N=1, PC=8
11
  /* 8*/~JN(2); //
                                               N = 0, PC = 10
12
  /* 9* MOV(4,2); /{R[4]} = R[2] = 15 N=0, PC=10}
13
14
  /*10*/30B(0.4.3); // R[0] = R[4] - R[3] = 18, N=0, PC=11
15
  /*11*/ JN(2); //
                                               N=0. PC=13
16
  /*12*/ MOV (4,3); // R[4] = R[3] = -8 N=0, PC=13
17
18
  /*13*/ JMP(0): // Endlosschleife
```

## Ergänzung: Assembler-Programm Simulation der Abarbeitung





# Wiederholung: Rechnerarchitektur Harvard Details (Ü13.2)





### Überblick der heutigen Vorlesung



Anwendungs-Programme Lehrevaluation der FB 20 Fachschaft software Retriebs-Gerätetreiber Field Programmable Gate Arrays systeme Befehle Architektur Register Abschluss Digitaltechnik Mikro-Datenpfade Steuerung architektur Addierer Logik Speicher Digital-UND Gatter schaltungen Inverter Analog-Verstärker schaltungen Filter Iransistore Rauteile Dioden Physik Elektronen

### **Agenda**



- 1. Einleitung
- 2. Lehrevaluation der FB 20 Fachschaft
- 3. Field Programmable Gate Arrays (FPGAs)
- 4. Abschluss Digitaltechnik
- 5. Zusammenfassung



#### Lehrevaluation

http://d120.de/feedback-new



- Ziel / Nutzen
  - mittel-/langfristige Verbesserung der Lehre
  - Diskussionsgrundlage f
    ür Kontrollgremien des FB 20
  - wird zum Teil der Bewerbungsunterlagen des Dozenten
  - Bewertungsgrundlage f
    ür Vergabe von "Preis f
    ür gute Lehre" des FB 20
  - ⇒ kommt Studierenden und Lehrenden zugute

#### Lehrevaluation

#### http://d120.de/feedback-new



#### Ziel / Nutzen

- mittel-/langfristige Verbesserung der Lehre
- Diskussionsgrundlage f
  ür Kontrollgremien des FB 20
- wird zum Teil der Bewerbungsunterlagen des Dozenten
- Bewertungsgrundlage für Vergabe von "Preis für gute Lehre" des FB 20
- kommt Studierenden und Lehrenden zugute

#### Ablauf

- anonymisierte Fragebögen
- ein oder zwei Freiwillige für Einsammeln und Abgabe bei Fachschaft (D120)
- jetzt ausfüllen (später/online nicht möglich)

### **Abschnitt 5: Freie Fragen**



- Haben Sie bereits Erfahrungen mit moderneren didaktischen Konzepten (bspw. Flipped Classroom, Peer Instructions/Feedback, oder E-Teaching) gesammelt?
- Wären Sie bereit, für den Einsatz modernerer didaktischer Konzepte den Anteil des Selbststudiums zu erhöhen?

### **Agenda**



- 1. Einleitung
- 2 Lehrevaluation der FB 20 Fachschaft
- 3. Field Programmable Gate Arrays (FPGAs)
- 4. Abschluss Digitaltechnik
- 5. Zusammenfassung



#### Performanz vs. Flexibilität



- Anwendungsspezifische integrierte Schaltungen (ASICs)
  - ► führen für eine Anwendung optimierte (parallele) Datenpfade aus
  - Basisgatterschaltungen (bspw. als CMOS) durch optische/chemische Prozesse auf Silikon-Wafer realisiert
  - ⇒ zur Laufzeit nicht an neue Anwendung anpassbar

#### Performanz vs. Flexibilität



- Anwendungsspezifische integrierte Schaltungen (ASICs)
  - führen für eine Anwendung optimierte (parallele) Datenpfade aus
  - Basisgatterschaltungen (bspw. als CMOS) durch optische/chemische Prozesse auf Silikon-Wafer realisiert
  - ⇒ zur Laufzeit nicht an neue Anwendung anpassbar
- Software-Prozessoren
  - führen generische Instruktionen sequentiell aus
  - nur generische (Mikro-)Architektur in Hardware realisiert
  - ⇒ zur Laufzeit durch Austauschen der Instruktionssequenz an neue Anwendung anpassbar

#### Performanz vs. Flexibilität



- Anwendungsspezifische integrierte Schaltungen (ASICs)
  - ▶ führen für eine Anwendung optimierte (parallele) Datenpfade aus
  - Basisgatterschaltungen (bspw. als CMOS) durch optische/chemische Prozesse auf Silikon-Wafer realisiert
  - ⇒ zur Laufzeit nicht an neue Anwendung anpassbar
- Software-Prozessoren
  - führen generische Instruktionen sequentiell aus
  - nur generische (Mikro-)Architektur in Hardware realisiert
  - zur Laufzeit durch Austauschen der Instruktionssequenz an neue Anwendung anpassbar
- ⇒ Field Programmable Gate Arrays (FPGAs) vereinen
  - Flexibilität von Software-Prozessoren ("im Feld programmierbar")
  - mit Performanz von ASICs (optimierte "Basisgatter-Schaltungen")

### FPGA Konfigurationsspeicher



- ► FPGAs verwenden feingranulare (bitweise) Konfigurationsspeicher statt wortweise Instruktionsspeicher
- kann mit verschiedenen Speicher-Technologien realisiert werden:
  - volatil (bspw. SRAM): schnell beschreibbar, benötigt aber permanente Spannungsversorgung (statische Leistungsaufnahme)

 nicht-volatil (bspw. Flash): aufwendiger Schreibzugriff, aber Zustand bleibt auch ohne Spannungsversorgung erhalten





### **Programmierbare Schalter**







## Programmierbare Leitungskreuzungen Switch Matrix





## Programmierbare Logikfelder Programmable Logic Array (PLA)



- realisiert kombinatorische Logik
- zweistufige Logik mit programmierbaren Schaltern in Ein- und Ausgabestufe
- Varianten:
  - Programmable ROM: nur Ausgabefeld programmierbar
  - Programmable Array Logic: nur Eingabefeld programmierbar



## Programmierbare Tabellen Lookup Table (LUT)



- realisiert kombinatorische Logik
- 2 bis 6 Eingänge
- häufig auch aufteilbar in kleinere LUTs bspw. zwei LUT mit n – 1 gemeinsam genutzten Eingängen



## Programmierbare Logikzelle Logic Cell (LC)



- kann als kombinatorische Logik und/oder Speicher verwendet werden
- häufig auch spezielle Carry In/Out für schnelle Arithmetik



# Programmierbare Ein-/Ausgänge Input-/Output Blocks (IOB)



 Ausgabetreiber kann permanent oder zur Laufzeit steuerbar (OEN) deaktiviert werden

P wird mit physikalischen Pad verbunden

- häufig auch konfigurierbar:
  - Spannungs-Level
  - maximale Stromstärke
  - Flanken-Steilheit



### Fiel Programmable Gate Array (FPGA)





### Funktionsblöcke (FB)



- häufig verwendete Logikbausteine als begrenzte Ressourcen verfügbar
  - Block RAM (BRAM): kleine SRAM Speicher (wenige Kilobit)
  - Digitale Signalverarbeitung (DSP): Multiplizierer, MAC
  - Phase-Locked Loop (PLL): Taktmodifikation
  - Kommunikations-Treiber (USART, USB, Ethernet)
  - kleine Prozessoren
  - ..

#### Marktrelevante FPGA Hersteller



- Xilinx
  - Zynq, Virtex, Kintex
  - 7-series, UltraScale+
- Intel (hat Altera aufgekauft)
  - Cyclone, Aria, Stratix
- Microsemi
  - IGLOO, SmartFusion, PolarFire, ProAsic
- Lattice
  - iCE, Mach









#### Xilinx Virtex UltraScale Familie



|                                                               |                                   | Device Name             | XCVU065                                    | XCVU080         | XCVU095         | XCVU125         | XCVU160         | XCVU190         | XCVU440       |
|---------------------------------------------------------------|-----------------------------------|-------------------------|--------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------|
| Logic Resources                                               | System Logic Cells (K)            |                         | 783                                        | 975             | 1,176           | 1,567           | 2,027           | 2,350           | 5,541         |
|                                                               | CLB Flip-Flops                    |                         | 716,160                                    | 891,424         | 1,075,200       | 1,432,320       | 1,852,800       | 2,148,480       | 5,065,920     |
|                                                               | CLB LUTs                          |                         | 358,080                                    | 445,712         | 537,600         | 716,160         | 926,400         | 1,074,240       | 2,532,960     |
| Memory Resources                                              | Maximum Distributed RAM (Kb)      |                         | 4,830                                      | 3,980           | 4,800           | 9,660           | 12,690          | 14,490          | 28,710        |
|                                                               | Block RAM/FIFO w/ECC (36Kb each)  |                         | 1,260                                      | 1,421           | 1,728           | 2,520           | 3,276           | 3,780           | 2,520         |
|                                                               | Block RAM/FIFO (18Kb each)        |                         | 2,520                                      | 2,842           | 3,456           | 5,040           | 6,552           | 7,560           | 5,040         |
|                                                               | Total Block RAM (Mb)              |                         | 44.3                                       | 50.0            | 60.8            | 88.6            | 115.2           | 132.9           | 88.6          |
| Clock Resources                                               | CMT (1 MMCM, 2 PLLs)              |                         | 10                                         | 16              | 16              | 20              | 28              | 30              | 30            |
|                                                               | I/O DLL                           |                         | 40                                         | 64              | 64              | 80              | 120             | 120             | 120           |
|                                                               | Transceiver Fractional PLL        |                         | 5                                          | 8               | 8               | 10              | 13              | 15              | 0             |
| I/O Resources                                                 | Maximum Single-Ended HP I/Os      |                         | 468                                        | 780             | 780             | 780             | 650             | 650             | 1,404         |
|                                                               | Maximum Differential HP I/O Pairs |                         | 216                                        | 360             | 360             | 360             | 300             | 300             | 648           |
|                                                               | Maximum Single-Ended HR I/Os      |                         | 52                                         | 52              | 52              | 52              | 52              | 52              | 52            |
|                                                               | Maximum Differential HR I/O Pairs |                         | 24                                         | 24              | 24              | 24              | 24              | 24              | 24            |
| Integrated IP<br>Resources                                    | DSP Slices                        |                         | 600                                        | 672             | 768             | 1,200           | 1,560           | 1,800           | 2,880         |
|                                                               | System Monitor                    |                         | 1                                          | 1               | 1               | 2               | 3               | 3               | 3             |
|                                                               | PCle® Gen1/2/3                    |                         | 2                                          | 4               | 4               | 4               | 4               | 6               | 6             |
|                                                               | Interlaken                        |                         | 3                                          | 6               | 6               | 6               | 8               | 9               | 0             |
|                                                               | 100G Ethernet                     |                         | 3                                          | 4               | 4               | 6               | 9               | 9               | 3             |
|                                                               | GTH 16.3Gb/s Transceivers         |                         | 20                                         | 32              | 32              | 40              | 52              | 60              | 48            |
|                                                               | GTY 30.5Gb/s Transceivers         |                         | 20                                         | 32              | 32              | 40              | 52              | 60              | 0             |
| Speed Grades                                                  | Commercial                        |                         | -                                          | -               | -               | -               | -               | _               | -1            |
|                                                               | Extended                          |                         | -1H -2 -3                                  | -1H -2 -3       | -1H -2 -3       | -1H -2 -3       | -1H -2 -3       | -1H -2 -3       | -2 -3         |
|                                                               |                                   | Industrial              | -1 -2                                      | -1 -2           | -1 -2           | -1 -2           | -1 -2           | -1 -2           | -1 -2         |
|                                                               | Package<br>Footprint(1, 2, 3)     | Package Dimensions (mm) | HR I/O, HP I/O, GTH 16.3Gb/s, GTY 30.5Gb/s |                 |                 |                 |                 |                 |               |
| Footprint<br>Compatible with<br>Kintex® UltraScale<br>Devices | C1517                             | 40x40                   | 52, 468, 20, 20                            | 52, 468, 20, 20 | 52, 468, 20, 20 |                 |                 |                 |               |
|                                                               | D1517                             | 40x40                   |                                            | 52, 286, 32, 32 | 52, 286, 32, 32 | 52, 286, 40, 32 |                 |                 |               |
|                                                               | B1760                             | 42.5x42.5               |                                            | 52, 650, 32, 16 | 52, 650, 32, 16 | 52, 650, 36, 16 |                 |                 |               |
|                                                               | A2104                             | 47.5x47.5               |                                            | 52, 780, 28, 24 | 52, 780, 28, 24 | 52, 780, 28, 24 |                 |                 |               |
|                                                               | B2104                             | 47.5x47.5               |                                            | 52, 650, 32, 32 | 52, 650, 32, 32 | 52, 650, 40, 36 | 52, 650, 40, 36 | 52, 650, 40, 36 |               |
|                                                               | C2104                             | 47.5x47.5               |                                            |                 | 52, 364, 32, 32 | 52, 364, 40, 40 | 52, 364, 52, 52 | 52, 364, 52, 52 |               |
|                                                               | B2377                             | 50x50                   |                                            |                 |                 |                 |                 |                 | 52, 1248, 36, |

#### **FPGA Toolflow**





#### **Agenda**



- 1. Einleitung
- 2. Lehrevaluation der FB 20 Fachschaft
- 3. Field Programmable Gate Arrays (FPGAs)
- 4. Abschluss Digitaltechnik
- 5. Zusammenfassung





Digitaltechnik: digitale Abstraktion und ihre technische Umsetzung,
 Zahlensysteme, Logikgatter, MOSFET Transistoren und CMOS Gatter,
 Leistungsaufnahme



- Digitaltechnik: digitale Abstraktion und ihre technische Umsetzung,
   Zahlensysteme, Logikgatter, MOSFET Transistoren und CMOS Gatter,
   Leistungsaufnahme
- Kombinatorische Schaltungen: Boole'sche Gleichungen und Algebra, Abbildung auf Gatter, mehrstufige Schaltungen, vierwertige Logik (0,1,X,Z), Minimierung von Ausdrücken, kombinatorische Grundelemente, Zeitverhalten



- Digitaltechnik: digitale Abstraktion und ihre technische Umsetzung,
   Zahlensysteme, Logikgatter, MOSFET Transistoren und CMOS Gatter,
   Leistungsaufnahme
- Kombinatorische Schaltungen: Boole'sche Gleichungen und Algebra, Abbildung auf Gatter, mehrstufige Schaltungen, vierwertige Logik (0,1,X,Z), Minimierung von Ausdrücken, kombinatorische Grundelemente, Zeitverhalten
- Sequentielle Schaltungen: Latches, Flip-Flops, Entwurf synchroner Schaltungen, endliche Automaten, Zeitverhalten, Parallelität



- Digitaltechnik: digitale Abstraktion und ihre technische Umsetzung,
   Zahlensysteme, Logikgatter, MOSFET Transistoren und CMOS Gatter,
   Leistungsaufnahme
- Kombinatorische Schaltungen: Boole'sche Gleichungen und Algebra, Abbildung auf Gatter, mehrstufige Schaltungen, vierwertige Logik (0,1,X,Z), Minimierung von Ausdrücken, kombinatorische Grundelemente, Zeitverhalten
- Sequentielle Schaltungen: Latches, Flip-Flops, Entwurf synchroner Schaltungen, endliche Automaten, Zeitverhalten, Parallelität
- Hardware-Beschreibungssprachen: Modellierung kombinatorischer und sequentieller Schaltungen, Strukturbeschreibungen, Modellierung endlicher Automaten, Datentypen, parametrisierte Module, Testrahmen



- Digitaltechnik: digitale Abstraktion und ihre technische Umsetzung,
   Zahlensysteme, Logikgatter, MOSFET Transistoren und CMOS Gatter,
   Leistungsaufnahme
- Kombinatorische Schaltungen: Boole'sche Gleichungen und Algebra,
   Abbildung auf Gatter, mehrstufige Schaltungen, vierwertige Logik (0,1,X,Z),
   Minimierung von Ausdrücken, kombinatorische Grundelemente, Zeitverhalten
- Sequentielle Schaltungen: Latches, Flip-Flops, Entwurf synchroner Schaltungen, endliche Automaten, Zeitverhalten, Parallelität
- Hardware-Beschreibungssprachen: Modellierung kombinatorischer und sequentieller Schaltungen, Strukturbeschreibungen, Modellierung endlicher Automaten, Datentypen, parametrisierte Module, Testrahmen
- Grundelemente digitaler Schaltungen: arithmetische Schaltungen,
   Fest-/Gleitkommadarstellung, sequentielle Grundelemente, Speicherfelder,
   Logikfelder

# Aus TUCaN / Modulhandbuch: Qualifikationsziele und Lernergebnisse



- Studierende verstehen nach erfolgreichem Besuch der Veranstaltung die Konzepte und Grundelemente der digitalen Logik sowie ihre technologische Realisierung.
- Sie können diese Kenntnisse selbständig anwenden, um zielgerichtet kombinatorische und sequentielle Schaltungen zu konstruieren und in einer Hardware-Beschreibungssprache zu implementieren.
- Sie k\u00f6nnen digitale Schaltungen bez\u00fcglich \u00edrunktionaler und nicht-funktionaler Eigenschaften analysieren.

vgl. didaktische Kompetenzhierarchie:
 verstehen → anwenden → analysieren/bewerten → erzeugen



- Rechnerorganisation
  - ⇒ Prozessorarchitekturen, Befehlssätze, Assemblerprogramme, Mikroarchitekturen, Speicherhierarchie, virtuelle Speicher, Leistungsbewertung



- Rechnerorganisation
  - ⇒ Prozessorarchitekturen, Befehlssätze, Assemblerprogramme, Mikroarchitekturen, Speicherhierarchie, virtuelle Speicher, Leistungsbewertung
- Architekturen und Entwurf von Rechnersystemen
  - → Technologische Trends der Mikroelektronik, Hardware-Entwurfstechniken (mit Bluespec-Verilog), Architekturen für parallele Ausführung, Heterogene Systems-on-Chip, On-Chip und Off-Chip Kommunikationsstrukturen



- Rechnerorganisation
  - ⇒ Prozessorarchitekturen, Befehlssätze, Assemblerprogramme, Mikroarchitekturen, Speicherhierarchie, virtuelle Speicher, Leistungsbewertung
- Architekturen und Entwurf von Rechnersystemen
  - ⇒ Technologische Trends der Mikroelektronik, Hardware-Entwurfstechniken (mit Bluespec-Verilog), Architekturen für parallele Ausführung, Heterogene Systems-on-Chip, On-Chip und Off-Chip Kommunikationsstrukturen
- (Fortgeschrittener) Compilerbau
  - ⇒ Hochsprachen-Programme (bspw C, Java) nach Assembler übersetzen, ISA-spezfische Optimierungen (bspw. Registerallokation, Schleifenoptimierung)



- Rechnerorganisation
  - ⇒ Prozessorarchitekturen, Befehlssätze, Assemblerprogramme, Mikroarchitekturen, Speicherhierarchie, virtuelle Speicher, Leistungsbewertung
- Architekturen und Entwurf von Rechnersystemen
  - Technologische Trends der Mikroelektronik, Hardware-Entwurfstechniken (mit Bluespec-Verilog), Architekturen für parallele Ausführung, Heterogene Systems-on-Chip, On-Chip und Off-Chip Kommunikationsstrukturen
- (Fortgeschrittener) Compilerbau
  - ⇒ Hochsprachen-Programme (bspw C, Java) nach Assembler übersetzen, ISA-spezfische Optimierungen (bspw. Registerallokation, Schleifenoptimierung)
- Embedded-Systems Hands-On
  - Praxis-naher Einsatz von Mikroprozessoren / FPGAs in kleinen Projekten

#### **Agenda**



- 1. Einleitung
- 2. Lehrevaluation der FB 20 Fachschaft
- 3. Field Programmable Gate Arrays (FPGAs)
- 4. Abschluss Digitaltechnik
- 5. Zusammenfassung



### **Zusammenfassung und Ausblick**



- Lehrevaluation der FB 20 Fachschaft
- Field Programmable Gate Arrays
- Abschluss Digitaltechnik

Nächste Vorlesung: Klausurvorbereitung