Contents

3	The	Hartr	ree-Fock Approximation 3
	3.1		artree-Fock Equations
		3.1.1	The Coulomb and Exchange Operators
		3.1.2	The Fock Operator
			Exercise 3.1
	3.2	Deriva	tion of the Hartree-Fock Equations
		3.2.1	Functional Variation
		3.2.2	Minimization of the Energy of a Single Determinant
			Exercise 3.2
			Exercise 3.3
		3.2.3	The Canonical Hartree-Fock Equations
	3.3	Interp	retation of Solutions to the Hartree-Fock Equations
	0.0	3.3.1	Orbital Energies and Koopmans' Theorem
		0.0	Exercise 3.4
			Exercise 3.5
			Exercise 3.6
		3.3.2	Brillouin's Theorem
		3.3.3	The Hartree-Fock Hamiltonian
		0.0.0	Exercise 3.7
			Exercise 3.8
	3.4	Rostri	cted Closed-Shell Hartree-Fock: The Roothaan Equations
	0.4	3.4.1	Closed-Shell Hartree-Fock: Restricted Spin Orbitals
		0.4.1	Exercise 3.9
		3.4.2	Introduction of a Basis: The Roothaan Equations
		0.4.2	Exercise 3.10
		3.4.3	The Charge Density
		0.4.0	Exercise 3.11
			Exercise 3.12
			Exercise 3.13
		3.4.4	Expression for the Fock Matrix
		9.4.4	Exercise 3.14
		3.4.5	Orthogonalization of the Basis
		5.4.5	Exercise 3.15
			Exercise 3.16
		3.4.6	The SCF Procedure
		3.4.7	Expectation Values and Population Analysis
		0.4.1	Exercise 3.17
			Exercise 3.18
	3.5	Model	Calculations on H_2 and HeH^+
	5.5	3.5.1	The 1s Minimal STO-3G Basis set
		3.3.1	Exercise 3.19
			Exercise 3.20
		2 5 2	
		3.5.2	2
			Exercise 3.21
			Exercise 3.22
			Exercise 3.23
			Exercise 3.24
			Exercise 3.25
			Exercise 3.26

2 CONTENTS

		Exercise 3.27	6
	3.5.3	An SCF Calculation on STO-3G HeH^+	6
		Exercise 3.28	6
		Exercise 3.29	7
3.6	Polyat	tomic Basis Sets	7
	3.6.1	Contracted Gaussian Functions	7
	3.6.2	Minimal Basis Sets: STO-3G	7
	3.6.3	Double Zeta Basis Sets: 4-31G	7
		Exercise 3.30	7
	3.6.4	Polarized Basis Sets: 6-31G* and 6-31G**	8
		Exercise 3.31	8
3.7	Some	Illustrative Closed-Shell Calculations	9
	3.7.1	Total Energies	9
		Exercise 3.32	9
	3.7.2	Ionization Potentials	9
	3.7.3	Equilibrium Geometries	9
	3.7.4	Population Analysis and Dipole Moments	9
3.8	Unres	tricted Open-Shell Hartree-Fock: The Pople-Nesbet	
	Equat	ions	9
	3.8.1	Open-Shell Hartree Fock: Unrestricted Spin Orbitals	9

CHAPTER 3

The Hartree-Fock Approximation

3.1 The Hartree-Fock Equations

3.1.1 The Coulomb and Exchange Operators

3.1.2 The Fock Operator

Exercise 3.1

Show that the general matrix element of the Fock operator has the form

$$\langle \chi_i | f | \chi_j \rangle = \langle i | h | j \rangle + \sum_b [ij|bb] - [ib|bj] = \langle i | h | j \rangle + \sum_b \langle ib||jb \rangle.$$

Solution 3.1

From (3.10) and (3.11), we find that

$$\langle i|\mathscr{J}_b|j\rangle = \int d\mathbf{x}_1 \chi_i^*(\mathbf{x}_1) \left[\int d\mathbf{x}_2 \, \chi_b^*(\mathbf{x}_2) r_{12}^{-1} \chi_b(\mathbf{x}_2) \right] \chi_j(\mathbf{x}_1)$$

$$= \int d\mathbf{x}_1 \int d\mathbf{x}_2 \, \chi_i^*(\mathbf{x}_1) \chi_b^*(\mathbf{x}_2) r_{12}^{-1} \chi_j(\mathbf{x}_1) \chi_b(\mathbf{x}_2) = \langle ib|jb\rangle,$$

$$\langle i|\mathscr{K}_b|j\rangle = \int d\mathbf{x}_1 \chi_i^*(\mathbf{x}_1) \left[\int d\mathbf{x}_2 \, \chi_b^*(\mathbf{x}_2) r_{12}^{-1} \chi_j(\mathbf{x}_2) \right] \chi_b(\mathbf{x}_1)$$

$$= \int d\mathbf{x}_1 \int d\mathbf{x}_2 \, \chi_i^*(\mathbf{x}_1) \chi_b^*(\mathbf{x}_2) r_{12}^{-1} \chi_b(\mathbf{x}_1) \chi_j(\mathbf{x}_2) = \langle ib|bj\rangle.$$

Thus, we get that

$$\begin{split} \langle \chi_i | f | \chi_j \rangle &= \langle i | h | j \rangle + \sum_b \langle i | \mathscr{J}_b | j \rangle - \langle i | \mathscr{K}_b | j \rangle = \langle i | h | j \rangle + \sum_b \langle i b | j b \rangle - \langle i b | b j \rangle \\ &= \langle i | h | j \rangle + \sum_b [i j | b b] - [i b | b j] = \langle i | h | j \rangle + \sum_b \langle i b | | j b \rangle. \end{split}$$

3.2 Derivation of the Hartree-Fock Equations

3.2.1 Functional Variation

3.2.2 Minimization of the Energy of a Single Determinant

Exercise 3.2

Prove Eq.(3.40).

From (3.38), we find that

$$\mathscr{L}^*[\{\chi_a\}] = E_0^*[\{\chi_a\}] - \sum_{a=1}^N \sum_{b=1}^N \varepsilon_{ba}^* \left([a|b] - \delta_{ab} \right)^* = E_0^*[\{\chi_a\}] - \sum_{a=1}^N \sum_{b=1}^N \varepsilon_{ab}^* \left([a|b] - \delta_{ab} \right). \tag{a}$$

As \mathscr{L} and $E_0[\{\chi_a\}]$ are real, we obtain that

$$\mathscr{L}^*[\{\chi_a\}] = \mathscr{L}[\{\chi_a\}] = E_0^*[\{\chi_a\}] - \sum_{a=1}^N \sum_{b=1}^N \varepsilon_{ba} \left([a|b] - \delta_{ab} \right).$$
 (b)

The equation (b) can be substracted by the equation (a), we obtain that

$$\sum_{a=1}^{N} \sum_{b=1}^{N} (\varepsilon_{ab}^* - \varepsilon_{ba}) \left([a|b] - \delta_{ab} \right) = 0.$$

Due to the linear independence of $[a|b] - \delta_{ab}$, we obtain that

$$\varepsilon_{ba} = \varepsilon_{ab}^*. \tag{3.2-1}$$

Exercise 3.3

Manipulate Eq.(3.44) to show that

$$\delta E_0 = \sum_{a=1}^{N} [\delta \chi_a | h | \chi_a] + \sum_{a=1}^{N} \sum_{b=1}^{N} [\delta \chi_a \chi_a | \chi_b \chi_b] - [\delta \chi_a \chi_b | \chi_b \chi_a] + \text{complex conjugate.}$$

Solution 3.3

Note that

$$\sum_{a=1}^{N} \sum_{b=1}^{N} [\chi_a \chi_a | \delta \chi_b \chi_b] = \sum_{a=1}^{N} \sum_{b=1}^{n} [\chi_b \chi_b | \delta \chi_a \chi_a] = \sum_{a=1}^{N} \sum_{b=1}^{n} [\delta \chi_a \chi_a | \chi_b \chi_b],$$

$$\sum_{a=1}^{N} \sum_{b=1}^{N} [\chi_a \chi_a | \chi_b \delta \chi_b] = \sum_{a=1}^{N} \sum_{b=1}^{n} [\chi_b \chi_b | \chi_a \delta \chi_a] = \sum_{a=1}^{N} \sum_{b=1}^{n} [\chi_a \delta \chi_a | \chi_b \chi_b],$$

$$\sum_{a=1}^{N} \sum_{b=1}^{N} [\chi_a \chi_b | \delta \chi_b \chi_a] = \sum_{a=1}^{N} \sum_{b=1}^{n} [\chi_b \chi_a | \delta \chi_a \chi_b] = \sum_{a=1}^{N} \sum_{b=1}^{n} [\delta \chi_a \chi_b | \chi_b \chi_a],$$

$$\sum_{a=1}^{N} \sum_{b=1}^{N} [\chi_a \chi_b | \chi_b \delta \chi_a] = \sum_{a=1}^{N} \sum_{b=1}^{n} [\chi_b \chi_a | \chi_a \delta \chi_b] = \sum_{a=1}^{N} \sum_{b=1}^{n} [\chi_a \delta \chi_b | \chi_b \chi_a].$$

Hence, from (3.44), we obtain that

$$\delta E_{0} = \sum_{a=1}^{N} [\delta \chi_{a} | h | \chi_{a}] + [\chi_{a} | h | \delta \chi_{a}]$$

$$+ \frac{1}{2} \sum_{a=1}^{N} \sum_{b=1}^{N} [\delta \chi_{a} \chi_{a} | \chi_{b} \chi_{b}] + [\chi_{a} \delta \chi_{a} | \chi_{b} \chi_{b}] + [\chi_{a} \chi_{a} | \delta \chi_{b} \chi_{b}] + [\chi_{a} \chi_{a} | \chi_{b} \delta \chi_{b}]$$

$$- \frac{1}{2} \sum_{a=1}^{N} \sum_{b=1}^{N} [\delta \chi_{a} \chi_{b} | \chi_{b} \chi_{a}] + [\chi_{a} \delta \chi_{b} | \chi_{b} \chi_{a}] + [\chi_{a} \chi_{b} | \delta \chi_{b} \chi_{a}] + [\chi_{a} \chi_{b} | \chi_{b} \delta \chi_{a}]$$

$$= \sum_{a=1}^{N} [\delta \chi_{a} | h | \chi_{a}] + [\chi_{a} | h | \delta \chi_{a}]$$

$$+ \sum_{a=1}^{N} \sum_{b=1}^{N} [\delta \chi_{a} \chi_{a} | \chi_{b} \chi_{b}] + [\chi_{a} \delta \chi_{a} | \chi_{b} \chi_{b}] - \sum_{a=1}^{N} \sum_{b=1}^{N} [\delta \chi_{a} \chi_{b} | \chi_{b} \chi_{a}] + [\chi_{a} \delta \chi_{b} | \chi_{b} \chi_{a}]$$

$$=\sum_{a=1}^{N}[\delta\chi_{a}|h|\chi_{a}]+\sum_{a=1}^{N}\sum_{b=1}^{N}[\delta\chi_{a}\chi_{a}|\chi_{b}\chi_{b}]-[\delta\chi_{a}\chi_{b}|\chi_{b}\chi_{a}]+\text{complex conjugate}.$$

3.2.3 The Canonical Hartree-Fock Equations

3.3 Interpretation of Solutions to the Hartree-Fock Equations

3.3.1 Orbital Energies and Koopmans' Theorem

Exercise 3.4

Use the result of Exercise 3.1 to show that the Fock operator is a Hermitian operator, by showing that $f_{ij} = \langle \chi_i | f | \chi_j \rangle$ is an element of a Hermitian matrix.

Solution 3.4

The verification is direct. We find that

$$\begin{split} (\langle i|f|j\rangle)^* &= (\langle i|h|j\rangle)^* + \sum_b (\langle ib|jb\rangle)^* - (\langle ib|bj\rangle)^* = \langle j|h|i\rangle + \sum_b \langle jb|ib\rangle - \langle bj|ib\rangle \\ &= \langle j|h|i\rangle + \sum_b \langle jb|ib\rangle - \langle jb|bi\rangle = \langle j|h|i\rangle + \sum_b \langle jb||ib\rangle = \langle j|f|i\rangle. \end{split}$$

Thus, $(f_{ij})^* = f_{ji}$, which means that the Fock operator is a Hermitian operator.

Exercise 3.5

Show that the energy required to remove an electron from χ_c and one from χ_d to produce the (N-2)-electron single determinant $|^{N-2}\Psi_{cd}\rangle$ is $-\varepsilon_c - \varepsilon_d + \langle cd|cd\rangle - \langle cd|dc\rangle$.

Solution 3.5

With (3.78) and (3.79), the ionization potential is

$$\begin{split} ^{N-2}E_{c,d} - ^{N}E_{0} &= \left[\sum_{a \neq c,d} \langle a|h|a \rangle + \frac{1}{2}\sum_{a \neq c,d} \sum_{b \neq c,d} \langle ab||ab \rangle \right] - \left[\sum_{a} \langle a|h|a \rangle + \frac{1}{2}\sum_{a}\sum_{b} \langle ab||ab \rangle \right] \\ &= - \left[\sum_{a} \langle a|h|a \rangle - \sum_{a \neq c,d} \langle a|h|a \rangle \right] - \frac{1}{2} \left[\sum_{a}\sum_{b} \langle ab||ab \rangle - \sum_{a \neq c,d} \sum_{b \neq c,d} \langle ab||ab \rangle \right] \\ &= - \left(\langle c|h|c \rangle + \langle d|h|d \rangle \right) \\ &- \frac{1}{2} \left[\sum_{a}\sum_{b \neq c,d} \langle ab||ab \rangle + \sum_{a} \langle ac||ac \rangle + \sum_{a} \langle ad||ad \rangle - \sum_{a \neq c,d} \sum_{b \neq c,d} \langle ab||ab \rangle \right] \\ &= - \langle c|h|c \rangle - \langle d|h|d \rangle - \frac{1}{2}\sum_{a} \langle ac||ac \rangle - \frac{1}{2}\sum_{a} \langle ad||ad \rangle \\ &- \frac{1}{2} \left[\sum_{a \neq c,d} \sum_{b \neq c,d} \langle ab||ab \rangle + \sum_{b \neq c,d} \langle cb||cb \rangle + \sum_{b \neq c,d} \langle db||db \rangle - \sum_{a \neq c,d} \sum_{b \neq c,d} \langle ab||ab \rangle \right] \\ &= - \langle c|h|c \rangle - \langle d|h|d \rangle - \frac{1}{2}\sum_{a} \langle ac||ac \rangle - \frac{1}{2}\sum_{a} \langle ad||ad \rangle \\ &- \frac{1}{2} \left[\sum_{b} \langle cb||cb \rangle - \langle cc||cc \rangle - \langle cd||cd \rangle + \sum_{b} \langle db||db \rangle - \langle dc||dc \rangle - \langle dd||dd \rangle \right] \\ &= - \langle c|h|c \rangle - \langle d|h|d \rangle - \frac{1}{2}\sum_{a} \langle ac||ac \rangle - \frac{1}{2}\sum_{a} \langle ad||ad \rangle \end{split}$$

$$\begin{split} &-\frac{1}{2}\sum_{a}\langle ca||ca\rangle - \frac{1}{2}\sum_{a}\langle da||da\rangle + \frac{1}{2}\langle cd||cd\rangle + \frac{1}{2}\langle dc||dc\rangle \\ &= -\langle c|h|c\rangle - \langle d|h|d\rangle - \sum_{a}\langle ac||ac\rangle - \sum_{a}\langle ad||ad\rangle + \langle cd||cd\rangle \\ &= -\left[\langle c|h|c\rangle + \sum_{b}\langle bc||bc\rangle\right] - \left[\langle d|h|d\rangle + \sum_{b}\langle bd||bd\rangle\right] + \langle cd||cd\rangle \\ &= -\varepsilon_c - \varepsilon_d + \langle cd|cd\rangle - \langle cd|dc\rangle. \end{split}$$

Exercise 3.6

Use Eq.(3.87) to obtain an expression for $^{N+1}E^r$ and then subtract it from NE_0 (Eq.(3.88)) to show that

$$^{N}E_{0} - {^{N+1}E^{r}} = -\langle r|h|r\rangle - \sum_{b}\langle rb||rb\rangle.$$

Solution 3.6

The proof is direct.

$$\begin{split} {}^{N}E_{0} - {}^{N+1}E^{r} &= \left[\sum_{a} \langle a|h|a \rangle + \frac{1}{2} \sum_{a} \sum_{b} \langle ab||ab \rangle \right] - \left[\sum_{a+r} \langle a|h|a \rangle + \frac{1}{2} \sum_{a+r} \sum_{b+r} \langle ab||ab \rangle \right] \\ &= - \left[\sum_{a+r} \langle a|h|a \rangle - \sum_{a} \langle a|h|a \rangle \right] - \frac{1}{2} \left[\sum_{a+r} \sum_{b+r} \langle ab||ab \rangle - \sum_{a} \sum_{b} \langle ab||ab \rangle \right] \\ &= - \langle r|h|r \rangle - \frac{1}{2} \left[\sum_{a+r} \sum_{b} \langle ab||ab \rangle + \sum_{a+r} \langle ar||ar \rangle - \sum_{a} \sum_{b} \langle ab||ab \rangle \right] \\ &= - \langle r|h|r \rangle - \frac{1}{2} \left[\sum_{a} \sum_{b} \langle ab||ab \rangle + \sum_{b} \langle rb||rb \rangle + \sum_{a} \langle ar||ar \rangle + \langle rr||rr \rangle - \sum_{a} \sum_{b} \langle ab||ab \rangle \right] \\ &= - \langle r|h|r \rangle - \frac{1}{2} \left[\sum_{b} \langle rb||rb \rangle + \sum_{b} \langle br||br \rangle \right] = - \langle r|h|r \rangle - \sum_{b} \langle rb||rb \rangle. \end{split}$$

3.3.2 Brillouin's Theorem

3.3.3 The Hartree-Fock Hamiltonian

Exercise 3.7

Use definition (2.115) of a Slater determinant and the fact that \mathcal{H}_0 commutes with any operator that permutes the electron labels, to show that $|\Psi_0\rangle$ is an eigenfunction of \mathcal{H}_0 with eigenvalue $\sum_a \varepsilon_a$. Why

does \mathcal{H}_0 commute with the permutation operator?

Solution 3.7

The proof is not fundamentally different from that of Exercise 2.15; it only requires replacing $\mathcal{H} = \sum_{i=1}^{N} h(i)$ with $\mathcal{H}_0 = \sum_{i=1}^{N} f(i)$. The reason why \mathcal{H}_0 commutes with the permutation operator is that it is invariant to permutations of the electron labels.

Exercise 3.8

Use expression (3.108) for \mathcal{V} , expression (3.18) for the Hartree-Fock potential $v^{\mathrm{HF}}(i)$, and the rules for evaluating matrix elements to explicitly show that $\langle \Psi_0 | \mathcal{V} | \Psi_0 \rangle = -\frac{1}{2} \sum_a \sum_b \langle ab | |ab \rangle$ and hence that

 $E_0^{[1]}$ cancels the double counting of electron-electron repulsions in $E_0^{(0)} = \sum_a \varepsilon_a$ to give the correct Hartree-Fock energy E_0 .

Solution 3.8

From (2.107), (3.18), (3.73) and (3.74), we find that

$$\begin{split} E_0^{[1]} &= \langle \Psi_0 | \mathscr{V} | \Psi_0 \rangle = \langle \Psi_0 | \mathscr{O}_2 | \Psi_0 \rangle - \langle \Psi_0 | \sum_a v^{\mathrm{HF}}(a) | \Psi_0 \rangle = \langle \Psi_0 | \mathscr{O}_2 | \Psi_0 \rangle - \sum_{a=1}^N \langle \chi_a | \sum_b \mathscr{J}_b - \mathscr{K}_b | \chi_a \rangle \\ &= \frac{1}{2} \sum_{ab} \langle ab | |ab \rangle - \sum_{ab} \langle \chi_b | \mathscr{J}_a | \chi_b \rangle - \langle \chi_b | \mathscr{K}_a | \chi_b \rangle = \frac{1}{2} \sum_{ab} \langle ab | |ab \rangle - \sum_{ab} \langle ba | ba \rangle - \langle ba | ab \rangle \\ &= \frac{1}{2} \sum_{ab} \langle ab | |ab \rangle - \sum_{ab} \langle ba | |ba \rangle = \frac{1}{2} \sum_{ab} \langle ab | |ab \rangle - \sum_{ab} \langle ab | |ab \rangle = -\frac{1}{2} \sum_{ab} \langle ab | |ab \rangle. \end{split}$$

Hence, $E_0^{[1]}$ cancels the double counting of electron-electron repulsions in $E_0^{(0)} = \sum_a \varepsilon_a$ to give the correct Hartree-Fock energy E_0 .

3.4 Restricted Closed-Shell Hartree-Fock: The Roothaan Equations

3.4.1 Closed-Shell Hartree-Fock: Restricted Spin Orbitals

Exercise 3.9

Convert the spin orbital expression for orbital energies

$$\varepsilon_i = \langle \chi_i | h | \chi_i \rangle + \sum_b^N \langle \chi_i \chi_b | | \chi_i \chi_b \rangle$$

to the closed-shell expression

$$\varepsilon_i = (\psi_i | h | \psi_i) + \sum_{b=0}^{N/2} 2(ii|bb) - (ib|bi) = h_{ii} + \sum_{b=0}^{N/2} 2J_{ib} - K_{ib}.$$
 (3.128)

Solution 3.9

When χ_i is a spatial orbital ψ_i multiplied by α , namely, $\chi_i = \psi_i$, we obtain that

$$\varepsilon_{i} = \langle i|h|i\rangle + \sum_{b}^{N} \langle ib||ib\rangle = \langle i|h|i\rangle + \sum_{b}^{N} \langle ib|ib\rangle - \langle ib|bi\rangle = \langle i|h|i\rangle + \sum_{b}^{N} [ii|bb] - [ib|bi]
= (i|h|i) + \sum_{b}^{N/2} [ii|bb] - [ib|bi] + \sum_{\bar{b}}^{N/2} [ii|\bar{b}\bar{b}] - [i\bar{b}|\bar{b}i] = (i|h|i) + \sum_{b}^{N/2} (ii|bb) - (ib|bi) + \sum_{b}^{N/2} (ii|bb)
= (i|h|i) + \sum_{b}^{N/2} 2(ii|bb) - (ib|bi) = h_{ii} + \sum_{b}^{N/2} 2J_{ib} - K_{ib}.$$

When χ_i is a spatial orbital ψ_i multiplied by β , namely, $\chi_i = \bar{\psi}_i$, we obtain that

$$\begin{split} \varepsilon_{\overline{i}} &= \langle \overline{i}|h|\overline{i}\rangle + \sum_{b}^{N} \langle \overline{i}b||\overline{i}b\rangle = \langle \overline{i}|h|\overline{i}\rangle + \sum_{b}^{N} \langle \overline{i}b|\overline{i}b\rangle - \langle \overline{i}b|b\overline{i}\rangle = \langle \overline{i}|h|\overline{i}\rangle + \sum_{b}^{N} [\overline{i}\overline{i}|bb] - [\overline{i}b|b\overline{i}] \\ &= (i|h|i) + \sum_{b}^{N/2} [\overline{i}\overline{i}|bb] - [\overline{i}b|b\overline{i}] + \sum_{\overline{b}}^{N/2} [\overline{i}\overline{i}|\overline{b}\overline{b}] - [\overline{i}\overline{b}|\overline{b}\overline{i}] = (i|h|i) + \sum_{b}^{N/2} (ii|bb) + \sum_{b}^{N/2} (ii|bb) - (ib|bi) \end{split}$$

$$= (i|h|i) + \sum_{b}^{N/2} 2(ii|bb) - (ib|bi) = h_{ii} + \sum_{b}^{N/2} 2J_{ib} - K_{ib}.$$

In conclusion, we conclude that in the closed-shell structure,

$$\varepsilon_i = (\psi_i | h | \psi_i) + \sum_{b=0}^{N/2} 2(ii|bb) - (ib|bi) = h_{ii} + \sum_{b=0}^{N/2} 2J_{ib} - K_{ib}.$$
(3.9-1)

3.4.2 Introduction of a Basis: The Roothaan Equations

Exercise 3.10

Show that $\mathbf{C}^{\dagger}\mathbf{SC} = \mathbf{1}$. Hint: Use the fact that the molecular orbitals $\{\psi_i\}$ are orthonormal.

Solution 3.10

As the molecular orbitals $\{\psi_i\}$ are orthonormal, we can find that

$$\delta_{ij} = \langle \psi_i | \psi_j \rangle = \left(\sum_{\mu=1}^K C_{\mu i}^* \langle \phi_\mu | \right) \left(\sum_{\nu=1}^K C_{\nu j} | \phi_\nu \rangle \right) = \sum_{\mu=1}^K \sum_{\nu=1}^K C_{\mu i}^* C_{\nu j} \langle \phi_\mu | \phi_\nu \rangle$$
$$= \sum_{\mu=1}^K \sum_{\nu=1}^K \mathbf{C}_{i\mu}^\dagger \mathbf{C}_{\nu j} S_{\mu\nu} = (\mathbf{C}^\dagger \mathbf{S} \mathbf{C})_{ij}.$$

Thus, we conclude that $\mathbf{C}^{\dagger}\mathbf{SC} = \mathbf{1}$.

3.4.3 The Charge Density

Exercise 3.11

Use the density operator $\hat{\rho}(\mathbf{r}) = \sum_{i=1}^{N} \delta(\mathbf{r}_i - \mathbf{r})$, the rules for evaluating matrix elements in Chapter 2, and the rules for converting from spin orbitals to spatial orbitals, to derive (3.142) from $\rho(\mathbf{r}) = \langle \Psi_0 | \hat{\rho}(\mathbf{r}) | \Psi_0 \rangle$.

Solution 3.11

Using the rules for evaluating matrix elements in Chapter 2, we can obtain that

$$\langle \Psi_0 | \hat{\rho}(\mathbf{r}) | \Psi_0 \rangle = \sum_a \langle a | \delta(\mathbf{r}_i - \mathbf{r}) | a \rangle = \sum_a \int d\mathbf{x}_1 \int d\mathbf{x}_2 \, \langle a | \mathbf{x}_1 \rangle \langle \mathbf{x}_1 | \delta(\mathbf{r}_2 - \mathbf{r}) | \mathbf{x}_2 \rangle \langle \mathbf{x}_2 | a \rangle$$
$$= \sum_a \int d\mathbf{r}_1 \, \psi_a^*(\mathbf{r}_1) \psi_a(\mathbf{r}_1) \delta(\mathbf{r}_1 - \mathbf{r}) \int d\omega \langle a | \omega \rangle \langle \omega | a \rangle = \sum_a |\psi_a(\mathbf{r})|^2.$$

We find that $\langle \Psi_0 | \hat{\rho}(\mathbf{r}) | \Psi_0 \rangle$ is independent of the spin of these spin orbitals. Thus, in a closed-shell molecule, the sum of the spin functions is converted into twice the sum of their spatial functions, viz.,

$$\rho(\mathbf{r}) = \langle \Psi_0 | \hat{\rho}(\mathbf{r}) | \Psi_0 \rangle = \sum_a |\psi_a(\mathbf{r})|^2 = 2 \sum_a^{N/2} |\psi_a(\mathbf{r})|^2.$$
 (3.11-1)

Exercise 3.12

A matrix **A** is said to be idempotent if $\mathbf{A}^2 = \mathbf{A}$. Use the result of Exercise 3.10 to show that $\mathbf{PSP} = 2\mathbf{P}$, i.e., show that $\frac{1}{2}\mathbf{P}$ would be idempotent in an orthonormal basis.

Using the conclusion of Exercise 3.10, we know that with an orthonormal basis, we get that

$$\delta_{ij} = (\mathbf{C}^{\dagger} \mathbf{S} \mathbf{C})_{ij} = \sum_{\lambda \sigma} C_{\lambda i}^* S_{\lambda \sigma} C_{\sigma j}$$

With an orthonormal basis, namely, $\langle \psi_a | \psi_b \rangle = \delta_{ab}$, we find that

$$(\mathbf{PSP})_{\mu\nu} = \sum_{\lambda} \sum_{\sigma} \mathbf{P}_{\mu\lambda} \mathbf{S}_{\lambda\sigma} \mathbf{P}_{\sigma\nu} = \sum_{\lambda} \sum_{\sigma} \left(2 \sum_{a}^{N/2} C_{\mu a} C_{\lambda a}^* \right) S_{\lambda\sigma} \left(2 \sum_{b}^{N/2} C_{\sigma b} C_{\nu b}^* \right)$$

$$= 4 \sum_{a}^{N/2} \sum_{b}^{N/2} C_{\mu a} C_{\nu b}^* \sum_{\lambda \sigma} C_{\lambda a}^* S_{\lambda\sigma} C_{\sigma b} = 4 \sum_{a}^{N/2} \sum_{b}^{N/2} C_{\mu a} C_{\nu b}^* \delta_{ab} = 4 \sum_{a}^{N/2} C_{\mu a} C_{\nu a}^* = 2 \mathbf{P}.$$

Exercise 3.13

Use the expression (3.122) for the closed-shell Fock operator to show that

$$f(\mathbf{r}_1) = h(\mathbf{r}_1) + v^{HF}(\mathbf{r}_1) = h(\mathbf{r}_1) + \frac{1}{2} \sum_{\lambda \sigma} P_{\lambda \sigma} \left[\int d\mathbf{r}_2 \, \phi_{\sigma}^*(\mathbf{r}_2) (2 - \mathscr{P}_{12}) r_{12}^{-1} \phi_{\lambda}(\mathbf{r}_2) \right].$$

Solution 3.13

From (3.122), we obtain that

$$f(\mathbf{r}_{1}) = h(\mathbf{r}_{1}) + \sum_{a}^{N/2} \int d\mathbf{r}_{2} \, \psi_{a}^{*}(\mathbf{r}_{2})(2 - \mathcal{P}_{12})r_{12}^{-1} \psi_{a}(\mathbf{r}_{2})$$

$$= h(\mathbf{r}_{1}) + \sum_{a}^{N/2} \int d\mathbf{r}_{2} \left(\sum_{\sigma} \phi_{\sigma}^{*}(\mathbf{r}_{2})C_{\sigma a}^{*} \right) (2 - \mathcal{P}_{12})r_{12}^{-1} \left(\sum_{\lambda} \phi_{\lambda}(\mathbf{r}_{2})C_{\lambda a} \right)$$

$$= h(\mathbf{r}_{1}) + \sum_{a}^{N/2} C_{\sigma a}^{*} C_{\lambda a} \sum_{\sigma} \sum_{\lambda} \int d\mathbf{r}_{2} \, \phi_{\sigma}^{*}(\mathbf{r}_{2})(2 - \mathcal{P}_{12})r_{12}^{-1} \phi_{\lambda}(\mathbf{r}_{2})$$

$$= h(\mathbf{r}_{1}) + \frac{1}{2} \left(2 \sum_{a}^{N/2} C_{\sigma a}^{*} C_{\lambda a} \right) \sum_{\lambda \sigma} \int d\mathbf{r}_{2} \, \phi_{\sigma}^{*}(\mathbf{r}_{2})(2 - \mathcal{P}_{12})r_{12}^{-1} \phi_{\lambda}(\mathbf{r}_{2})$$

$$= h(\mathbf{r}_{1}) + \frac{1}{2} \sum_{\lambda \sigma} P_{\lambda \sigma} \left[\int d\mathbf{r}_{2} \, \phi_{\sigma}^{*}(\mathbf{r}_{2})(2 - \mathcal{P}_{12})r_{12}^{-1} \phi_{\lambda}(\mathbf{r}_{2}) \right].$$

3.4.4 Expression for the Fock Matrix

Exercise 3.14

Assume that the basis functions are real and use the symmetry of the two-electron integrals $[(\mu\nu|\lambda\sigma) = (\nu\mu|\lambda\sigma) = (\lambda\sigma|\mu\nu)$, etc.] to show that for a basis set of size K = 100 there are 12,753,775 = $O(K^4/8)$ unique two-electron integrals.

Solution 3.14

Due to 8-fold symmetry of real two-electron integrals, what we have to consider is just the number of unique "electron pairs" $(\mu\nu)$. If the number of electrons is denoted as K, the number of unique electron pairs will be $\frac{K(K+1)}{2}$. For example, if there are 3 electrons, there will be 6 unique electron pairs, (11), (12), (13), (22), (23) and (33). For two-electron integrals, in the same way, their number is

$$\frac{1}{2} \left[\frac{K(K+1)}{2} \left(\frac{K(K+1)}{2} + 1 \right) \right] = \frac{1}{8} K(K+1)(K^2 + K + 2) = \frac{K(K+1)(K^2 + K + 2)}{8}.$$

Substituting the above formula into K = 100, we get 12753775.

3.4.5 Orthogonalization of the Basis

Exercise 3.15

Use the definition of $S_{\mu\nu} = \int d\mathbf{r} \, \phi^*_{\mu} \phi_{\nu}$ to show that the eigenvalues of \mathbf{S} are all positive. *Hint*: consider $\sum_{\nu} S_{\mu\nu} c^i_{\nu} = s_i c^i_{\mu}$, multiply by c^{i*}_{μ} and sum, where \mathbf{c}^i is the *i*th column of \mathbf{U} .

Solution 3.15

From (3.166).

$$\mathbf{SU} = \mathbf{Us} \Leftrightarrow (\mathbf{SU})_{\mu i} = (\mathbf{Us})_{\mu i} \Leftrightarrow \sum_{\nu} S_{\mu \nu} c_{\nu}^{i} = c_{\mu}^{i} s_{i},$$

which can be multiplied by c_{μ}^{i*} and sum, leading to

$$\sum_{\mu\nu} c_{\mu}^{i*} S_{\mu\nu} c_{\nu}^{i} = \sum_{\mu} s_{i} c_{\mu}^{i*} c_{\mu}^{i} = s_{i} \sum_{\mu} c_{\mu}^{i*} c_{\mu}^{i} = s_{i} \sum_{\mu} |c_{\mu}^{i}|^{2}.$$

For any nontrivial wave function, its inner product is always positive. We can find that

$$\sum_{\mu\nu} c_{\mu}^{i*} S_{\mu\nu} c_{\nu}^{i} = \sum_{\mu\nu} c_{\mu}^{i*} c_{\nu}^{i} \int d\mathbf{r} \phi_{\mu}^{*}(\mathbf{r}) \phi_{\nu}(\mathbf{r}) = \int d\mathbf{r} \left(\sum_{\mu} c_{\mu}^{i*} \phi_{\mu}^{*}(\mathbf{r}) \right) \left(\sum_{\nu} c_{\nu}^{i} \phi_{\nu}(\mathbf{r}) \right) > 0.$$

Thus, we get that

$$s_i = \frac{\sum_{\mu\nu} c_{\mu}^{i*} S_{\mu\nu} c_{\nu}^i}{\sum_{\mu} |c_{\mu}^i|^2} > 0, \, \forall i = 1, 2, \dots, K.$$
(3.1)

In other words, the eigenvalues of S are all positive.

Exercise 3.16

Use (3.179), (3.180), and (3.162) to derive (3.174) and (3.177).

Solution 3.16

From (3.133), (3.162) and (3.179), we find that

$$\psi_i = \sum_{\mu=1}^K C'_{\mu i} \phi'_{\mu} = \sum_{\mu=1}^K C'_{\mu i} \sum_{\nu=1}^K X_{\nu \mu} \phi_{\nu} = \sum_{\nu=1}^K \left(\sum_{\mu=1}^K X_{\nu \mu} C'_{\mu i} \right) \phi_{\nu} = \sum_{\nu=1}^K C_{\nu i} \phi_{\nu}.$$

Due to the linear independence of $\{\phi_{\nu}\}$, we get that

$$C_{\nu i} = \sum_{\mu=1}^{K} X_{\nu \mu} C'_{\mu i},$$

which equals

$$\mathbf{C} = \mathbf{XC}'. \tag{3.16-1}$$

If X is reversible, we can obtain

$$\mathbf{C}' = \mathbf{X}^{-1}\mathbf{C}.$$

Thus (3.174) has been verified.

From (3.162) and (3.180), we can find that

$$F'_{\mu\nu} = \int d\mathbf{r}_1 \phi'^*_{\mu}(1) f(1) \phi'_{\nu}(1) = \int d\mathbf{r}_1 \left(\sum_{\lambda} \phi^*_{\lambda}(1) X^*_{\lambda\mu} \right) f(1) \left(\sum_{\sigma} X_{\sigma\nu} \phi_{\sigma}(1) \right)$$
$$= \sum_{\lambda\sigma} X^*_{\lambda\mu} \int d\mathbf{r}_1 \phi^*_{\lambda}(1) f(1) \phi_{\sigma}(1) X_{\sigma\nu} = \sum_{\lambda\sigma} X^*_{\lambda\mu} f_{\lambda\sigma} X_{\sigma\nu} = \sum_{\lambda\sigma} X^{\dagger}_{\mu\lambda} F_{\lambda\sigma} X_{\sigma\nu}.$$

In other words,

$$\mathbf{F}' = \mathbf{X}^{\dagger} \mathbf{F} \mathbf{X}.$$

Thus (3.177) has been verified.

3.4.6 The SCF Procedure

3.4.7 Expectation Values and Population Analysis

Exercise 3.17

Derive Equation (3.184) from (3.183).

Solution 3.17

With (3.145) and (3.149), we find that

$$E_{0} = \sum_{a}^{N/2} h_{aa} + f_{aa} = \sum_{a}^{N/2} \left[\int d\mathbf{r}_{1} \psi_{a}^{*}(1) h(1) \psi_{a}(1) + \int d\mathbf{r}_{1} \psi_{a}^{*}(1) f(1) \psi_{a}(1) \right]$$

$$= \sum_{a}^{N/2} \left[\int d\mathbf{r}_{1} \left(\sum_{\mu} C_{\mu a}^{*} \phi_{\mu}^{*}(1) \right) h(1) \left(\sum_{\nu} C_{\nu a} \phi_{\nu}(1) \right) + \int d\mathbf{r}_{1} \left(\sum_{\mu} C_{\mu a}^{*} \phi_{\mu}^{*}(1) \right) f(1) \left(\sum_{\nu} C_{\nu a} \phi_{\nu}(1) \right) \right]$$

$$= \frac{1}{2} \sum_{\mu \nu} \left(\int d\mathbf{r}_{1} \phi_{\mu}^{*}(1) h(1) \phi_{\nu}(1) + \int d\mathbf{r}_{1} \phi_{\mu}^{*}(1) f(1) \phi_{\nu}(1) \right) \sum_{a}^{N/2} 2 C_{\mu a}^{*} C_{\nu a}$$

$$= \frac{1}{2} \sum_{\mu \nu} P_{\nu \mu} \left(H_{\mu \nu}^{\text{core}} + F_{\mu \nu} \right).$$

Exercise 3.18

Derive the right-hand side of Eq.(3.198), i.e., show that $\alpha = 1/2$ is equivalent to a population analysis based on the diagonal elements of \mathbf{P}' .

Solution 3.18

From (3.144) and (3.200), we find that

$$\begin{split} \rho(\mathbf{r}) &= \sum_{\lambda\sigma} P_{\lambda\sigma} \phi_{\lambda}(\mathbf{r}) \phi_{\sigma}^{*}(\mathbf{r}) = \sum_{\lambda\sigma} (\mathbf{S}^{-\frac{1}{2}} \mathbf{S}^{\frac{1}{2}} \mathbf{P} \mathbf{S}^{\frac{1}{2}} \mathbf{S}^{-\frac{1}{2}})_{\lambda\sigma} \phi_{\lambda}(\mathbf{r}) \phi_{\sigma}^{*}(\mathbf{r}) \\ &= \sum_{\lambda\sigma} \phi_{\lambda}(\mathbf{r}) \phi_{\sigma}^{*}(\mathbf{r}) \sum_{\mu\nu} S_{\lambda\mu}^{-\frac{1}{2}} (\mathbf{S}^{\frac{1}{2}} \mathbf{P} \mathbf{S}^{\frac{1}{2}})_{\mu\nu} S_{\nu\sigma}^{-\frac{1}{2}} = \sum_{\mu\nu} (\mathbf{S}^{\frac{1}{2}} \mathbf{P} \mathbf{S}^{\frac{1}{2}})_{\mu\nu} \sum_{\lambda\sigma} \phi_{\lambda}(\mathbf{r}) \phi_{\sigma}^{*}(\mathbf{r}) S_{\lambda\mu}^{-\frac{1}{2}} S_{\nu\sigma}^{-\frac{1}{2}} \\ &= \sum_{\mu\nu} (\mathbf{S}^{\frac{1}{2}} \mathbf{P} \mathbf{S}^{\frac{1}{2}})_{\mu\nu} \left(\sum_{\lambda} S_{\lambda\mu}^{-\frac{1}{2}} \phi_{\lambda}(\mathbf{r}) \right) \left(\sum_{\sigma} S_{\nu\sigma}^{-\frac{1}{2}} \phi_{\sigma}^{*}(\mathbf{r}) \right) = \sum_{\mu\nu} (\mathbf{S}^{\frac{1}{2}} \mathbf{P} \mathbf{S}^{\frac{1}{2}})_{\mu\nu} \phi_{\mu}'(\mathbf{r}) \phi_{\nu}'(\mathbf{r}). \end{split}$$

Compared to (3.199), due to the linear independence of $\{\phi'_{\mu}(\mathbf{r})\phi'_{\nu}(\mathbf{r})\}\$, we get that

$$\mathbf{P}'_{\mu\nu} = (\mathbf{S}^{\frac{1}{2}}\mathbf{P}\mathbf{S}^{\frac{1}{2}})_{\mu\nu}.\tag{3.18-1}$$

Hence, we get

$$\sum_{\mu} \mathbf{P}'_{\mu\mu} = \sum_{\mu} (\mathbf{S}^{\frac{1}{2}} \mathbf{P} \mathbf{S}^{\frac{1}{2}})_{\mu\mu}.$$
 (3.18-2)

3.5 Model Calculations on H₂ and HeH⁺

3.5.1 The 1s Minimal STO-3G Basis set

Exercise 3.19

Derive Eq.(3.207).

Note that

$$\phi_{1s}^{GF}(\alpha, \mathbf{r} - \mathbf{R}_A)\phi_{1s}^{GF}(\beta, \mathbf{r} - \mathbf{R}_B) = \left(\frac{2\alpha}{\pi}\right)^{\frac{3}{4}} e^{-\alpha|\mathbf{r} - \mathbf{R}_A|^2} \left(\frac{2\beta}{\pi}\right)^{\frac{3}{4}} e^{-\beta|\mathbf{r} - \mathbf{R}_B|^2}$$

$$= \left(\frac{4\alpha\beta}{\pi^2}\right)^{\frac{3}{4}} e^{-\alpha|\mathbf{r} - \mathbf{R}_A|^2 - \beta|\mathbf{r} - \mathbf{R}_B|^2} = \left(\frac{2\alpha\beta}{(\alpha + \beta)\pi}\right)^{\frac{3}{4}} \left(\frac{2(\alpha + \beta)}{\pi}\right)^{\frac{3}{4}} e^{-\alpha|\mathbf{r} - \mathbf{R}_A|^2 - \beta|\mathbf{r} - \mathbf{R}_B|^2}.$$

The coefficients of the exponential part are simplified as follows.

$$\begin{split} &-\alpha(\mathbf{r}-\mathbf{R}_{A})^{2}-\beta|\mathbf{r}-\mathbf{R}_{B}|^{2}=-\alpha(|\mathbf{r}|^{2}-2\mathbf{r}\cdot\mathbf{R}_{A}+|\mathbf{R}_{A}|^{2})-\beta(|\mathbf{r}|^{2}-2\mathbf{r}\cdot\mathbf{R}_{B}+|\mathbf{R}_{B}|^{2})\\ &=-(\alpha+\beta)|\mathbf{r}|^{2}+2(\alpha\mathbf{R}_{A}+\beta\mathbf{R}_{B})\cdot\mathbf{r}-(\alpha|\mathbf{R}_{A}|^{2}+\beta\mathbf{R}_{B}|^{2})\\ &=-(\alpha+\beta)\left[|\mathbf{r}|^{2}-2\frac{\alpha\mathbf{R}_{A}+\beta\mathbf{R}_{B}}{\alpha+\beta}+\left(\frac{\alpha\mathbf{R}_{A}+\beta\mathbf{R}_{B}}{\alpha+\beta}\right)^{2}\right]+\frac{(\alpha\mathbf{R}_{A}+\beta\mathbf{R}_{B})^{2}}{\alpha+\beta}-(\alpha|\mathbf{R}_{A}|^{2}+\beta|\mathbf{R}_{B}|^{2})\\ &=-(\alpha+\beta)\left(\mathbf{r}-\frac{\alpha\mathbf{R}_{A}+\beta\mathbf{R}_{B}}{\alpha+\beta}\right)^{2}+\frac{(\alpha\mathbf{R}_{A}+\beta\mathbf{R}_{B})^{2}-(\alpha+\beta)(\alpha|\mathbf{R}_{A}|^{2}+\beta|\mathbf{R}_{B}|^{2})}{\alpha+\beta}\\ &=-(\alpha+\beta)\left(\mathbf{r}-\frac{\alpha\mathbf{R}_{A}+\beta\mathbf{R}_{B}}{\alpha+\beta}\right)^{2}-\frac{\alpha\beta}{\alpha+\beta}|\mathbf{R}_{A}-\mathbf{R}_{B}|^{2}\end{split}$$

With (3.208), (3.209), and (3.210), we obtain that

$$\begin{split} \phi_{1s}^{\text{GF}}(\alpha, \mathbf{r} - \mathbf{R}_A) \phi_{1s}^{\text{GF}}(\beta, \mathbf{r} - \mathbf{R}_B) &= \left(\frac{2\alpha\beta}{(\alpha + \beta)\pi}\right)^{\frac{3}{4}} \left(\frac{2(\alpha + \beta)}{\pi}\right)^{\frac{3}{4}} e^{-\alpha|\mathbf{r} - \mathbf{R}_A|^2 - \beta|\mathbf{r} - \mathbf{R}_B|^2} \\ &= \left(\frac{2\alpha\beta}{(\alpha + \beta)\pi}\right)^{\frac{3}{4}} e^{-\frac{\alpha\beta}{\alpha + \beta}|\mathbf{R}_A - \mathbf{R}_B|^2} \left(\frac{2(\alpha + \beta)}{\pi}\right)^{\frac{3}{4}} e^{-p(\mathbf{r} - \mathbf{R}_p)^2} \\ &= K_{AB} \phi_{1s}^{\text{GF}}(p, \mathbf{r} - \mathbf{R}_p). \end{split}$$

In a nutshell, we have verified (3.207).

Exercise 3.20

Calculate the values of $\phi(\mathbf{r})$ at the origin for the three STO-LG contracted functions and compare with the value of $(\pi)^{-1/2}$ for a Slater function $(\zeta = 1.0)$.

Solution 3.20

The value of $\phi(\mathbf{r})$ at the origin for the three STO-LG contracted functions are:

$$\begin{split} &\phi_{1s}^{\text{CGF}}(\zeta=1.0,\text{STO}-1\text{G},(0,0,0)) = \left(\frac{2\times0.270950}{\pi}\right)^{\frac{3}{4}} = 0.267656,\\ &\phi_{1s}^{\text{CGF}}(\zeta=1.0,\text{STO}-2\text{G},(0,0,0))\\ &= 0.678914\times\left(\frac{2\times0.151623}{\pi}\right)^{\frac{3}{4}} + 0.430129\times\left(\frac{2\times0.851819}{\pi}\right)^{\frac{3}{4}} = 0.389383,\\ &\phi_{1s}^{\text{CGF}}(\zeta=1.0,\text{STO}-3\text{G},(0,0,0))\\ &= 0.444635\times\left(\frac{2\times0.109818}{\pi}\right)^{\frac{3}{4}} + 0.535328\times\left(\frac{2\times0.405771}{\pi}\right)^{\frac{3}{4}} + 0.154329\times\left(\frac{2\times2.22766}{\pi}\right)^{\frac{3}{4}}\\ &= 0.454986, \end{split}$$

while the value of $\phi(\mathbf{r})$ at the origin for a Slater function ($\zeta = 1.0$) is

$$\phi_{1s}^{SF}(\zeta = 1.0, (0, 0, 0)) = \left(\frac{1.0^3}{\pi}\right)^{\frac{1}{2}} = \pi^{-\frac{1}{2}} = 0.564189.$$

At the origin, the difference between the STO-LG contracted functions (L=1,2,3) and the Slater function is very large.

3.5.2 STO-3G H_2

Exercise 3.21

Use definition (3.219) for the STO-1G function and the scaling relation (3.224) to show that the STO-1G overlap for an orbital exponent $\zeta = 1.24$ at R = 1.4 a.u., corresponding to result (3.229), is $S_{12} = 0.6648$. Use the formula in Appendix A for overlap integrals. Do not forget normalization.

Solution 3.21

Since $1.24^2 \times 0.270950 = 0.416613$, we get that

$$\phi_{1s}^{CGF}(\zeta = 1.24, STO - 1G) = \phi_{1s}^{GF}(0.416613),$$

and thus using (A.1-5),

$$S_{12} = \int d\mathbf{r} \,\phi_{1s}^{GF}(0.416613, \mathbf{r} - \mathbf{R}_A) \phi_{1s}^{GF}(0.416613, \mathbf{r} - \mathbf{R}_B)$$
$$= \left(\frac{4 \times 0.416613 \times 0.416613}{(0.416613 + 0.416613)^2}\right)^{\frac{3}{4}} e^{-\frac{0.416613 \times 0.416613}{0.416613 + 0.416613} \times 1.4^2} = 0.6648.$$

Exercise 3.22

Derive the coefficients $[2(1+S_{12})]^{-1/2}$ and $[2(1-S_{12})]^{-1/2}$ in the basis function expansion of ψ_1 and ψ_2 by requiring ψ_1 and ψ_2 to be normalized.

Solution 3.22

The solution to this exercise is not essentially different from that of Exercise 2.6.

Exercise 3.23

The coefficients of minimal basis H_2^+ are also determined by symmetry and are identical to those of minimal basis H_2 . Use the above result for the coefficients to solve Eq.(3.234) for the orbital energies of minimal basis H_2^+ at R=1.4 a.u. and show they are

$$\begin{split} \varepsilon_1 &= \frac{H_{11}^{\rm core} + H_{12}^{\rm core}}{1 + S_{12}} = -1.2528 \, {\rm a.u.}, \\ \varepsilon_2 &= \frac{H_{11}^{\rm core} - H_{12}^{\rm core}}{1 - S_{12}} = -0.4756 \, {\rm a.u.}. \end{split}$$

Solution 3.23

From (3.234), we know that

$$\begin{pmatrix} H_{11}^{\mathrm{core}} & H_{12}^{\mathrm{core}} \\ H_{12}^{\mathrm{core}} & H_{22}^{\mathrm{core}} \end{pmatrix} \begin{pmatrix} c_1 & c_2 \\ c_1 & -c_2 \end{pmatrix} = \begin{pmatrix} 1 & S_{12} \\ S_{12} & 1 \end{pmatrix} \begin{pmatrix} c_1 & c_2 \\ c_1 & -c_2 \end{pmatrix} \begin{pmatrix} \varepsilon_1 & 0 \\ 0 & \varepsilon_2 \end{pmatrix}.$$

Thus,

$$H_{11}^{\text{core}}c_1 + H_{12}^{\text{core}}c_1 = (H_{11}^{\text{core}} + H_{12}^{\text{core}})c_1 = \varepsilon_1 c_1 + S_{12}\varepsilon_1 c_1 = (1 + S_{12})\varepsilon_1 c_1,$$

 $H_{11}^{\text{core}}c_2 - H_{12}^{\text{core}}c_2 = (H_{11}^{\text{core}} - H_{12}^{\text{core}})c_2 = \varepsilon_2 c_2 - S_{12}\varepsilon_2 c_2 = (1 - S_{12})\varepsilon_2 c_2,$

which equals

$$\varepsilon_{1} = \frac{H_{11}^{\text{core}} + H_{12}^{\text{core}}}{1 + S_{12}} = \frac{(-1.1204 \,\text{a.u.}) + (-0.9584 \,\text{a.u.})}{1 + 0.6593} = -1.2528 \,\text{a.u.},$$

$$\varepsilon_{2} = \frac{H_{11}^{\text{core}} - H_{12}^{\text{core}}}{1 - S_{12}} = \frac{(-1.1204 \,\text{a.u.}) - (-0.9584 \,\text{a.u.})}{1 - 0.6593} = -0.4755 \,\text{a.u.}$$

Here, using data from (3.229) and (3.233), the final result is a little different from the result delivered by this exercise.

Exercise 3.24

Use the general definition (3.145) of the density matrix to derive (3.239). What is the corresponding density matrix for H_2^+ ?

Solution 3.24

Using (3.145), we calculate the matrix elements of the density matrix:

$$P_{11} = 2C_{11}C_{11}^* = 2 \times \frac{1}{\sqrt{2(1+S_{12})}} \times \frac{1}{\sqrt{2(1+S_{12})}} = \frac{1}{1+S_{12}},$$

$$P_{12} = 2C_{11}C_{21}^* = 2 \times \frac{1}{\sqrt{2(1+S_{12})}} \times \frac{1}{\sqrt{2(1+S_{12})}} = \frac{1}{1+S_{12}},$$

$$P_{21} = 2C_{21}C_{11}^* = 2 \times \frac{1}{\sqrt{2(1+S_{12})}} \times \frac{1}{\sqrt{2(1+S_{12})}} = \frac{1}{1+S_{12}},$$

$$P_{22} = 2C_{21}C_{21}^* = 2 \times \frac{1}{\sqrt{2(1+S_{12})}} \times \frac{1}{\sqrt{2(1+S_{12})}} = \frac{1}{1+S_{12}}.$$

Thus the final density matrix of H_2 is

$$\mathbf{P} = \begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix} = \begin{pmatrix} \frac{1}{1+S_{12}} & \frac{1}{1+S_{12}} \\ \frac{1}{1+S_{12}} & \frac{1}{1+S_{12}} \end{pmatrix} = \frac{1}{1+S_{12}} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Due to the same symmetry as H_2 but only one electron in H_2^+ , we get its final density matrix is

$$\mathbf{P} = \frac{1}{2} \begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \frac{1}{1+S_{12}} & \frac{1}{1+S_{12}} \\ \frac{1}{1+S_{12}} & \frac{1}{1+S_{12}} \end{pmatrix} = \frac{1}{2(1+S_{12})} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Exercise 3.25

Use the general definition (3.154) of the Fock matrix to show that the converged values of its elements for minimal basis H_2 are

$$F_{11} = F_{22} = H_{11}^{\text{core}} + \frac{\frac{1}{2}(\phi_1\phi_1|\phi_1\phi_1) + (\phi_1\phi_1|\phi_2\phi_2) + (\phi_1\phi_1|\phi_1\phi_2) - \frac{1}{2}(\phi_1\phi_2|\phi_1\phi_2)}{1 + S_{12}} = -0.3655 \text{ a.u.},$$

$$F_{12} = F_{21} = H_{12}^{\text{core}} + \frac{-\frac{1}{2}(\phi_1\phi_1|\phi_2\phi_2) + (\phi_1\phi_1|\phi_1\phi_2) + \frac{3}{2}(\phi_1\phi_2|\phi_1\phi_2)}{1 + S_{12}} = -0.5939 \text{ a.u.}$$

Solution 3.25

From (3.154) and (3.235), we get that

$$G_{11} = \sum_{\lambda=1}^{2} \sum_{\sigma=1}^{2} P_{\lambda\sigma} \left[(11|\sigma\lambda) - \frac{1}{2}(1\lambda|\sigma1) \right]$$

$$= P_{11} \left[(11|11) - \frac{1}{2}(11|11) \right] + P_{12} \left[(11|21) - \frac{1}{2}(11|21) \right]$$

$$+ P_{21} \left[(11|12) - \frac{1}{2}(12|11) \right] + P_{22} \left[(11|22) - \frac{1}{2}(12|21) \right]$$

$$= \frac{1}{1+S_{12}} \left[\frac{1}{2}(11|11) + (11|12) + (11|22) - \frac{1}{2}(12|12) \right] = 0.7549 \text{ a.u.},$$

$$F_{11} = H_{11}^{\text{core}} + G_{11} = H_{11}^{\text{core}} + \frac{1}{1+S_{12}} \left[\frac{1}{2}(11|11) + (11|12) + (11|22) - \frac{1}{2}(12|12) \right]$$

$$= -1.1204 \text{ a.u.} + 0.7549 \text{ a.u.} = -0.3655 \text{ a.u.}$$

Similarly, we get other matrix elements as follows. Note that $P_{\lambda\sigma} = P_{\sigma\lambda}$, and thus

$$G_{\mu\nu} = \sum_{\lambda\sigma} P_{\lambda\sigma} \left[(\mu\nu|\sigma\lambda) - \frac{1}{2} (\mu\lambda|\sigma\nu) \right] = \sum_{\lambda\sigma} P_{\lambda\sigma} \left[(\nu\mu|\sigma\lambda) - \frac{1}{2} (\sigma\nu|\mu\lambda) \right]$$

$$=\sum_{\lambda\sigma}P_{\sigma\lambda}\left[(\nu\mu|\lambda\sigma)-\frac{1}{2}(\nu\lambda|\sigma\mu)\right]=\sum_{\lambda\sigma}P_{\lambda\sigma}\left[(\nu\mu|\lambda\sigma)-\frac{1}{2}(\nu\lambda|\sigma\mu)\right]=P_{\nu\mu}.$$

Besides, note that $H_{\lambda\sigma}^{\text{core}} = H_{\sigma\lambda}^{\text{core}}$.

• The calculation of F_{12} :

$$\begin{split} G_{12} &= \sum_{\lambda=1}^2 \sum_{\sigma=1}^2 P_{\lambda\sigma} \left[(12|\sigma\lambda) - \frac{1}{2}(1\lambda|\sigma2) \right] \\ &= P_{11} \left[(12|11) - \frac{1}{2}(11|12) \right] + P_{12} \left[(12|21) - \frac{1}{2}(11|22) \right] \\ &\quad + P_{21} \left[(12|12) - \frac{1}{2}(12|12) \right] + P_{22} \left[(12|22) - \frac{1}{2}(12|22) \right] \\ &= \frac{1}{1+S_{12}} \left[\frac{1}{2}(11|12) + \frac{3}{2}(12|12) - \frac{1}{2}(11|22) + \frac{1}{2}(12|22) \right] \\ &= \frac{1}{1+S_{12}} \left[\frac{1}{2}(11|12) + \frac{3}{2}(12|12) - \frac{1}{2}(11|22) + \frac{1}{2}(11|12) \right] \\ &= \frac{1}{1+S_{12}} \left[(11|12) + \frac{3}{2}(12|12) - \frac{1}{2}(11|22) \right] = 0.3645 \, \text{a.u.}, \\ F_{12} &= H_{12}^{\text{core}} + G_{12} = H_{12}^{\text{core}} + \frac{1}{1+S_{12}} \left[(11|12) + \frac{3}{2}(12|12) - \frac{1}{2}(11|22) \right] \\ &= -0.9584 \, \text{a.u.} + 0.3645 \, \text{a.u.} = -0.5939 \, \text{a.u.} \end{split}$$

• The calculation of F_{21} :

$$\begin{split} F_{21} &= H_{21}^{\text{core}} + G_{21} = H_{12}^{\text{core}} + G_{12} \\ &= H_{12}^{\text{core}} + \frac{1}{1 + S_{12}} \left[(11|12) + \frac{3}{2} (12|12) - \frac{1}{2} (11|22) \right] = -0.5939 \, \text{a.u.} \end{split}$$

• The calculation of F_{22} :

$$\begin{split} G_{22} &= \sum_{\lambda=1}^2 \sum_{\sigma=1}^2 P_{\lambda\sigma} \left[(22|\sigma\lambda) - \frac{1}{2}(2\lambda|\sigma2) \right] \\ &= P_{11} \left[(22|11) - \frac{1}{2}(21|12) \right] + P_{12} \left[(22|21) - \frac{1}{2}(21|22) \right] \\ &\quad + P_{21} \left[(22|12) - \frac{1}{2}(22|12) \right] + P_{22} \left[(22|22) - \frac{1}{2}(22|22) \right] \\ &= \frac{1}{1+S_{12}} \left[\frac{1}{2}(22|22) + (11|22) + (12|22) - \frac{1}{2}(12|12) \right] \\ &= \frac{1}{1+S_{12}} \left[\frac{1}{2}(11|11) + (11|22) + (11|12) - \frac{1}{2}(12|12) \right] = 0.7549 \, \text{a.u.}, \\ F_{22} &= H_{22}^{\text{core}} + G_{22} = H_{11}^{\text{core}} + \frac{1}{1+S_{12}} \left[\frac{1}{2}(11|11) + (11|22) + (11|12) - \frac{1}{2}(12|12) \right] = -0.3655 \, \text{a.u.} \end{split}$$

Exercise 3.26

Use the result of Exercise 3.23 to show that the orbital energies of minimal basis H_2 , that are a solution to the Roothaan equations $FC = SC\varepsilon$, are

$$\begin{split} \varepsilon_1 &= \frac{F_{11} + F_{12}}{1 + S_{12}} = -0.5782 \, \text{a.u.}, \\ \varepsilon_2 &= \frac{F_{11} - F_{12}}{1 - S_{12}} = +0.6703 \, \text{a.u.}, \end{split}$$

Similar to Exercise 3.23, we obtain that

$$\begin{split} \varepsilon_1 &= \frac{F_{11} + F_{12}}{1 + S_{12}} = \frac{-0.3655\,\mathrm{a.u.} + (-0.5939\,\mathrm{a.u.})}{1 + 0.6593} = -0.5782\,\mathrm{a.u.}, \\ \varepsilon_2 &= \frac{F_{11} - F_{12}}{1 - S_{12}} = \frac{-0.3655\,\mathrm{a.u.} - (-0.5939\,\mathrm{a.u.})}{1 - 0.6593} = 0.6704\,\mathrm{a.u.} \end{split}$$

Here, using data from Exercise 3.25, the final result is a little different from the result delivered by this exercise.

Exercise 3.27

Use the general result (3.184) for the total electronic energy to show that the electronic energy of minimal basis H_2 is

$$E_0 = \frac{F_{11} + H_{11}^{\rm core} + F_{12} + H_{12}^{\rm core}}{1 + S_{12}} = -1.8310 \, {\rm a.u.}$$

and that the total energy including nuclear repulsion is

$$E_{\text{tot}} = -1.1167 \,\text{a.u.}$$

Solution 3.27

From (3.184) and Exercise 3.25, we find that

$$E_{0} = \frac{1}{2} \sum_{\mu=1}^{2} \sum_{\nu=1}^{2} P_{\nu\mu} (H_{\mu\nu}^{\text{core}} + F_{\mu\nu})$$

$$= \frac{1}{2} \left[P_{11} (H_{11}^{\text{core}} + F_{11}) + P_{21} (H_{12}^{\text{core}} + F_{12}) + P_{12} (H_{21}^{\text{core}} + F_{21}) + P_{22} (H_{22}^{\text{core}} + F_{22}) \right]$$

$$= \frac{1}{2} \frac{1}{1 + S_{12}} (H_{11}^{\text{core}} + F_{11} + H_{12}^{\text{core}} + F_{12} + H_{12}^{\text{core}} + F_{12} + H_{11}^{\text{core}} + F_{11})$$

$$= \frac{H_{11}^{\text{core}} + F_{11} + H_{12}^{\text{core}} + F_{12}}{1 + S_{12}}$$

$$= \frac{-1.1204 \text{ a.u.} + (-0.3655 \text{ a.u.}) + (-0.9584 \text{ a.u.}) + (-0.5939 \text{ a.u.})}{1 + 0.6593} = -1.8311 \text{ a.u.}$$

The nuclear repulsion energy is

$$E_{\text{nucl}} = \frac{1 \times 1}{1.4} \text{a.u.} = 0.7143 \text{ a.u.},$$

and thus the total energy is

$$E_{\text{tot}} = E_0 + E_{\text{nucl}} = -1.8311 \,\text{a.u.} + 0.7143 \,\text{a.u.} = -1.1168 \,\text{a.u.}$$

The final result is a little different from the result delivered by this exercise.

3.5.3 An SCF Calculation on STO-3G HeH⁺

Exercise 3.28

Show that the above transformation produces orthonormal basis functions.

Solution 3.28

From (3.258), we know that

$$\phi_1' = \sum_{\nu=1} X_{\nu 1} \phi_{\nu} = X_{11} \phi_1 + X_{21} \phi_2 = \phi_1,$$

$$\phi_2' = \sum_{\nu=1} X_{\nu 2} \phi_{\nu} = X_{12} \phi_1 + X_{22} \phi_2 = \frac{-S_{12}}{\sqrt{1 - S_{12}^2}} \phi_1 + \frac{1}{\sqrt{1 - S_{12}^2}} \phi_2.$$

To prove that the above transformation produces orthonormal basis functions, verifying the inner product

of new basis functions is enough.

$$\begin{split} \langle \phi_1'|\phi_1'\rangle &= \langle \phi_1|\phi_1\rangle = 1, \\ \langle \phi_1'|\phi_2'\rangle &= \langle \phi_1| \left(\frac{-S_{12}}{\sqrt{1-S_{12}^2}}|\phi_1\rangle + \frac{1}{\sqrt{1-S_{12}^2}}|\phi_2\rangle\right) = \frac{-S_{12}}{\sqrt{1-S_{12}^2}} \langle \phi_1|\phi_1\rangle + \frac{1}{\sqrt{1-S_{12}^2}} \langle \phi_1|\phi_2\rangle \\ &= \frac{-S_{12}}{\sqrt{1-S_{12}^2}} + \frac{S_{12}}{\sqrt{1-S_{12}^2}} = 0, \\ \langle \phi_2'|\phi_1'\rangle &= \left(\frac{-S_{12}}{\sqrt{1-S_{12}^2}} \langle \phi_1| + \frac{1}{\sqrt{1-S_{12}^2}} \langle \phi_2|\right) |\phi_1\rangle = \frac{-S_{12}}{\sqrt{1-S_{12}^2}} \langle \phi_1|\phi_1\rangle + \frac{1}{\sqrt{1-S_{12}^2}} \langle \phi_2|\phi_1\rangle \\ &= \frac{-S_{12}}{\sqrt{1-S_{12}^2}} + \frac{S_{12}}{\sqrt{1-S_{12}^2}} = 0, \\ \langle \phi_2'|\phi_2'\rangle &= \left(\frac{-S_{12}}{\sqrt{1-S_{12}^2}} \langle \phi_1| + \frac{1}{\sqrt{1-S_{12}^2}} \langle \phi_2|\right) \left(\frac{-S_{12}}{\sqrt{1-S_{12}^2}}|\phi_1\rangle + \frac{1}{\sqrt{1-S_{12}^2}}|\phi_2\rangle\right) \\ &= \frac{S_{12}^2}{1-S_{12}^2} \langle \phi_1|\phi_1\rangle + \frac{-S_{12}}{1-S_{12}^2} \langle \phi_1|\phi_2\rangle + \frac{-S_{12}}{1-S_{12}^2} \langle \phi_2|\phi_1\rangle + \frac{1}{1-S_{12}^2} \langle \phi_2|\phi_2\rangle \\ &= \frac{S_{12}^2}{1-S_{12}^2} - \frac{-S_{12}^2}{1-S_{12}^2} - \frac{-S_{12}^2}{1-S_{12}^2} + \frac{1}{1-S_{12}^2} = \frac{1-S_{12}^2}{1-S_{12}^2} = 1. \end{split}$$

Thus, we conclude that the above transformation produces orthonormal basis functions.

Exercise 3.29

Use expression (3.184) for the electronic energy, expression (3.154) for the Fock matrix, and the asymptotic density matrix (3.281) to show that

$$E_0(R \to \infty) = 2T_{11} + 2V_{11}^1 + (\phi_1\phi_1|\phi_1\phi_1).$$

This is just the proper energy of the He atom, for the minimal basis, as discussed previously in the text.

Solution 3.29

Note that only P_{11} in **P** is nonzero. Thus we care about G_{11} , which is

$$G_{11} = \sum_{\lambda=1}^{2} \sum_{\sigma=1}^{2} P_{\lambda\sigma} \left[(11|\sigma\lambda) - \frac{1}{2} (1\lambda|\sigma1) \right] = P_{11} \left[(11|11) - \frac{1}{2} (11|11) \right] = 2 \times \frac{1}{2} (11|11) = (11|11).$$

Thus,

$$E_0 = \frac{1}{2} \sum_{\mu=1}^{2} \sum_{\nu=1}^{2} P_{\nu\mu} (2H_{\mu\nu}^{\text{core}} + G_{\mu\nu}) = \frac{1}{2} P_{11} (2H_{11}^{\text{core}} + G_{11}) = 2T_{11} + 2V_{11}^{1} + (11|11).$$

3.6 Polyatomic Basis Sets

- 3.6.1 Contracted Gaussian Functions
- 3.6.2 Minimal Basis Sets: STO-3G
- 3.6.3 Double Zeta Basis Sets: 4-31G

Exercise 3.30

A 4-31G basis for He has not been officially defined. Huzinaga,⁸ however, in an SCF calculation on the He atom using four uncontracted 1s Gaussians, found the coefficients and optimum exponents of the normalized 1s orbital of He to be

α_{μ}	$C_{\mu i}$
0.298073	0.51380
1.242567	0.46954
5.782948	0.15457
38.47497	0.02373

Use the expression for overlaps given in Appendix A to derive the contraction parameters for a 4-31G He basis set.

Solution 3.30

We choose the outer basis function as

$$\phi_{2s} = g_{1s}(0.298073, \mathbf{r}),$$

and the unnormalized inner basis function as

$$\phi_{1s}'(\mathbf{r}) = N[0.46954g_{1s}(1.242567, \mathbf{r}) + 0.15457g_{1s}(5.782948, \mathbf{r}) + 0.02373g_{1s}(38.47497, \mathbf{r})].$$

Note that

$$\langle g_{1s}(1.242567, \mathbf{r})|g_{1s}(5.782948, \mathbf{r})\rangle = 0.666622,$$

 $\langle g_{1s}(1.242567, \mathbf{r})|g_{1s}(38.47497, \mathbf{r})\rangle = 0.205445,$
 $\langle g_{1s}(5.782948, \mathbf{r})|g_{1s}(38.47497, \mathbf{r})\rangle = 0.553419.$

Therefore, we can get the norm of $\phi'_{1s}(\mathbf{r})$, namely,

$$\langle \phi_{1s}'|\phi_{1s}'\rangle = N^2 \begin{pmatrix} 0.46954, 0.15457, 0.02373 \end{pmatrix} \begin{pmatrix} 1 & 0.666622 & 0.205445 \\ 0.666622 & 1 & 0.553419 \\ 0.205445 & 0.553419 & 1 \end{pmatrix} \begin{pmatrix} 0.46954 \\ 0.15457 \\ 0.02373 \end{pmatrix} = 0.35032N^2.$$

And we can obtain the normalization parameter N, viz.,

$$N = \sqrt{\frac{1}{0.35032}} = 1.6895,$$

and then

$$\phi_{1s}' = 1.6895[0.46954g_{1s}(1.242567, \mathbf{r}) + 0.15457g_{1s}(5.782948, \mathbf{r}) + 0.02373g_{1s}(38.47497, \mathbf{r})]$$

= 0.79328 $g_{1s}(1.242567, \mathbf{r}) + 0.26115g_{1s}(5.782948, \mathbf{r}) + 0.04009g_{1s}(38.47497, \mathbf{r}).$

The information of 4-31G basis set for He atoms can be seen in subdirectory ./basis_sets/He. These information is generated by "Basis Set Exchange" whose url is https://www.basissetexchange.org.

3.6.4 Polarized Basis Sets: 6-31G* and 6-31G**

Exercise 3.31

Determine the total number of basis functions for STO-3G, 4-31G, 6-31G*, and 6-31G** calculations on benzene.

Solution 3.31

The total number of uncontracted basis functions for STO-3G, 4-31G, 6-31G*, and 6-31G** calculations on benzene has been summarized in the table below.

basis set	STO-3G	4-31G	6-31G*(Cartesian)	6-31G**(Cartesian)
Number of basis functions for C	$2+3\times1$	$3+3\times 2$	$3 + 3 \times 2 + 6 \times 1$	$3+3\times2+6\times1$
Number of basis functions for H	1	2	2	$2+3\times1$
Total number of basis functions	36	66	102	120

3.7 Some Illustrative Closed-Shell Calculations

3.7.1 Total Energies

Exercise 3.32

Use the results of Tables 3.11 to 3.13 to calculate, for each basis set and at the Hartree-Fock limit, the energy difference for the following two reactions,

$$N_2 + 3H_2 \rightarrow 2NH_3$$
 $\Delta E = ?$
 $CO + 3H_2 \rightarrow CH_4 + H_2O$ $\Delta E = ?$

Are the results consistent for different basis sets? Does Hartree-Fock theory predict these reactions to be exoergic or endoergic? The experimental hydrogenation energies (heats of reaction ΔH°) at zero degrees Kelvin are -18.604 kcal \cdot mol⁻¹ (N₂) and -45.894 kcal \cdot mol⁻¹ (CO), with 1 a.u. of energy equivalent to 627.51 kcal \cdot mol⁻¹.

Differences in the zero-point vibrational energies of reactants and products also contribute to reaction energies. From the experimental vibrational spectra, the 3N-6 (or 3N-5) zero-point energies $(h\nu_0/2)$ for the relevant molecules (with degeneracies in parenthesis) are:

Molecule	$h\nu_0/2 \; (\mathrm{kcal} \cdot \mathrm{mol}^{-1})$
H_2	6.18
N_2	3.35
CO	3.08
$_{\mathrm{H_2O}}$	2.28
	5.13
	5.33
NH_3	1.35
	2.32(2)
	4.77
	4.85(2)
CH_4	1.86(3)
	2.17(2)
	4.14
	4.2(3)

Calculate the contribution of zero-point vibrations to the energy of the above two reactions. Is it a reasonable approximation to neglect the effect of zero-point vibrations?

Solution 3.32						
	molecules	STO-3G	4-31G	6-31G*	6-31G**	HF-limit
	H_2	1.117	-1.127	-1.127	-1.131	-1.134

- 3.7.2 Ionization Potentials
- 3.7.3 Equilibrium Geometries
- 3.7.4 Population Analysis and Dipole Moments

3.8 Unrestricted Open-Shell Hartree-Fock: The Pople-Nesbet Equations

3.8.1 Open-Shell Hartree Fock: Unrestricted Spin Orbitals