Mostramos algunos ejemplos de códigos y planteamos ejercicios computacionales. No usar tildes en los comentarios de los códigos.

Mínimos cuadrados

En el siguiente código se compara la resolución de un problema de mínimos cuadrados usando Choleski, QR y SVD. La función $\mathbf{MatRank.m}$ se invoca $\mathbf{MatRank(m,n,r)}$ y genera una matriz de talla $m \times n$ y rango $r \le n \le m$.

```
function MinL2Comparacion(n)
%%
%% Comparamos la resolucion de un problema de
%% minimos cuadrados usando Choleski, QR y SVD
%%
%% Aplicamos Choleski
%%
A=MatRank(30*n,n,n);
b=rand(30*n,1);
tic;
Apb=A'*b;
B=chol(A'*A);
y1=B'\Lambda pb;
x1=B\y1;
t1=toc;
%%
%% Aplicamos QR
%%
tic;
[nA,p]=size(A);
[Q,R]=qr(A);
c=Q'*b;
x2=R(1:p,1:p)\c(1:p);
t2=toc;
%%
%% Aplicamos SVD
%%
tic:
[nA,p]=size(A);
[U,S,V]=svd(A);
u=U'*b;
x3=V*(u(1:p)./diag(S));
t3=toc;
```

```
fprintf('Tiempo con Choleski\n');
fprintf('Tiempo con QR\n');
fprintf('Tiempo con SVD\n');
fprintf('solucion con Choleski\n');
norm(A*x1-b)
fprintf('solucion con QR\n');
norm(A*x2-b)
fprintf('solucion con SVD\n');
norm(A*x3-b)
fprintf('Norma entre solucion Choleski vs QR\n');
norm(x1-x2)
fprintf('Norma entre solucion QR vs SVD\n');
norm(x2-x3)
fprintf('Norma entre solucion SVD vs Choleski\n');
norm(x1-x3)
y en el guión siguiente comparamos en el caso donde la matriz está mal condicionada.
eps=1.e-5;
P=[1 \ 1 \ 0; 0 \ 1 \ -1; 1 \ 0 \ -1];
A=P*diag([eps,1,1/eps])*inv(P);
b=ones(3,1);
tic;
Apb=A'*b;
B=chol(A'*A);
y1=B'\Lambda pb;
x1=B\y1;
t1=toc;
%%
%% Aplicamos QR
%%
tic;
[nA,p]=size(A);
[Q,R]=qr(A);
c=Q'*b;
x2=R(1:p,1:p)\c(1:p);
t2=toc;
%%
%% Aplicamos SVD
%%
tic;
```

```
[nA,p]=size(A);
[U,S,V]=svd(A);
u=U'*b;
x3=V*(u(1:p)./diag(S));
t3=toc;
fprintf('Tiempo con Choleski\n');
fprintf('Tiempo con QR\n');
fprintf('Tiempo con SVD\n');
fprintf('solucion con Choleski\n');
norm(A*x1-b)
fprintf('solucion con QR\n');
norm(A*x2-b)
fprintf('solucion con SVD\n');
norm(A*x3-b)
fprintf('Norma entre solucion Choleski vs QR\n');
norm(x1-x2)
fprintf('Norma entre solucion QR vs SVD\n');
norm(x2-x3)
fprintf('Norma entre solucion SVD vs Choleski\n');
norm(x1-x3)
fprintf('Cond A\n');
cond(A)
fprintf('Cond A^t*A\n');
cond(A'*A)
```

Práctica 1: Usando estos códigos analizar lo que ocurre con la siguiente matriz mal condicionada:

$$A = hilb(25); A = A(:, 1:7)$$

- 1. ¿Qué hacen estos comandos?
- 2. Definir el vector $x \in \mathbb{R}^7$ con todas sus entradas 1 y obtener b = Ax. Observar que x es la solución del sistema sobredeterminado Ax = b incluso en sentido usual. Comprobarlo con / de MATLAB.
- 3. Construir el sistema de ecuaciones normales para $Ax \sim b$, resolver y comparar con la solución conocida.
- 4. Resolver usando QR y SVD y comparar con el vector x.

Práctica 2:

- 1. Generar una tabla de valores para $f(x) = 8e^{-0.5x}$ con x = 1:30; y almacenar los valores en un vector y.
- 2. Supongamos de antemano que f es de la forma $f(x) = ae^{bx}$ para a, b desconocidas. Calcular estos valores a y b a partir de los datos (x, y) en el sentido de los mínimos cuadrados. Reformular el problema para que pueda ser tratado como un problema de mínimos cuadrados lineales.
- 3. Resolver usando QR y SVD y comparar.
- 4. Vamos a comparar la sensibilidad a una perturbación de los datos. Tomar una tabla de 30 números aleatorios usando err = rand(1,30) y construir z = y + err * 1e 6 como los valores tabulados de la función f donde se contemplan errores.
- 5. Volver a resolver los valores a y b y comparar.

Ejercicios de aproximación

- 1. (Sauer pp. 200) Sean $x_1 = 2.0, x_2 = 2.2, x_3 = 2.4, ..., x_{11} = 4.0$ puntos igualmente espaciados en el intervalo [2, 4] y establezcamos los valores $y_i = 1 + x_i + x_i^2 + x_i^3 + ... + x_i^d$. Usar las ecuaciones normales para encontrar el polinomio de mínimos cuadrados $\Pi(x) = c_1 + c_2 x + ... + c_{d+1} x^d$ que ajusta al conjunto de puntos (x_i, y_i) para d = 5, d = 6 y d = 8. ¿Cuántas posiciones correctas se pueden obtener? Usar el número de condición para explicar el resultado. Aplicar la factorización QR para resolver los problemas y comparar.
- 2. Sea A la matriz $10 \times n$ formada por las primeras columnas de la matriz de Hilbert 10×10 , sea c el vector de entradas [1,1,...,1] y establezca b=Ac. Usar las ecuaciones normales y resolver el problema de mínimos cuadrados Ax=b para n=6 y n=8. ¿Cuántas posiciones correctas se pueden obtener? Usar el número de condición para explicar el resultado. Aplicar la factorización QR para resolver los problemas y comparar.
- 3. Considera el sistema sobre determinado Ax = b con $A \in \mathcal{M}_{m \times n}$, $x \in \mathbb{R}^n$ y $b \in \mathbb{R}^m$ (vectores columna). La aproximación al espacio de soluciones, x minimiza las distancias $||b At||_2$ con $t \in \mathbb{R}^n$. Encuentra la expresión de x en términos de la factorización SVD de A

$$[U, S, V] = svd(A)$$
, que cumple $A = U * S * V^t$,

haciendo multiplicaciones por U y U^t y divisiones por los valores singulares.

4. Se define $f(x) = \sin(x) - \sin(2x)$ y consideramos X un vector aleatorio de 100 entradas escogidas arbitrariamente entre 0 y 4 por la función rand. Ordenar el vector X en orden creciente usando la función sort

Análisis Numérico Matricial. Curso 2021-2022. Grado en Matemáticas. Universidad de Murcia. Práctica computacional 3. (11/Marzo/2022)

a) Encontrar una aproximación de f en sentido de mínimos cuadrados por un polinomio de grado 2. Calcular el error discreto

$$\sqrt{\sum_{i=1}^{n} |f(x_i) - p(x_i)|^2}$$

- b) Encontrar otra aproximación de f en mínimos cuadrados por una función trigonometrica $q(x) = a + b\cos(x) + c\sin(x)$. Comparar p y q.
- 5. En los procesos adiabáticos de los gases, la presion P y el volumen V siguen la ley $PV^{\gamma}=C$, donde C es una constante a lo largo del proceso. Ajusta por mínimos cuadrados los valores de γ y C correspondientes al proceso adiabático del que se tomaron las siguientes medidas experimentales:

6. Encuentra las rectas que mejor aproximan a la función $f(x) = \sin x$ haciendo que sea mínima la norma euclídea del error en el conjunto de abcisas

$$\{-0.5, -0.25, 0, 0.25, 0.5\}$$

7. Encuentra, utilizando mínimos cuadrados, la función $f(x) = e^{-ax^2+b}$, que mejor aproxima a los valores de la tabla:

8. Ajusta por mínimos cuadrados los valores de la tabla

a funciones del tipo:

a)
$$y = a + bx + cx^2$$

$$b) \ y = ax^b$$

9. La tabla siguiente corresponde a la longitud-peso de una especie de salmón

$$\begin{array}{c|cccc} L & 0.50 & 1.0 & 2.00 \\ \hline P & 1.77 & 10 & 56.6 \end{array}$$

encontrar una función de la forma $P=\alpha L^{\beta}$ que mejor aproxime estos datos. Para ello, es mejor transformar los datos usando logaritmo natural. Encontrar usando mínimos cuadrados con QR la ley que mejor aproxima estos datos y comprobar que es $P=10.0062L^{2.4996}$.

10. Sea y = f(x) la función definida implícitamente por la ecuación $x - y^3 - y = 0$. Utilizando cuatro puntos arbitrarios de la gráfica de f y con el correspondiente sistema de ecuaciones sobredeterminado, aproxima f por mínimos cuadrados mediante una función del tipo $g(x) = a\sqrt[3]{x} + b$.

5

Análisis Numérico Matricial. Curso 2021-2022. Grado en Matemáticas. Universidad de Murcia. Práctica computacional 3. (11/Marzo/2022)

11. Hay tres cumbres de altura m_1, m_2 y m_3 cuyas alturas se han medido desde un punto dando valores (en metros) 2474, 3882 y 4834 respectivamente. Desde m_1 la cumbre m_2 parece 1422 mas alta y la cumbre m_3 parece 2354 mas alta. Desde m_2 , la cumbre m_3 parece 950 mas alta. Estos datos dan lugar al sistema sobredeterminado

$$m_1$$
 = 2474
 m_2 = 3882
 m_3 = 4834
 $-m_1$ + m_2 = 1422
 $-m_1$ + m_3 = 2354
 $-m_2$ + m_3 = 950.

Escribir en forma matricial este problema de mínimos cuadrados y resolverlo mediante QR comprobando que la solución viene dada por $m = (2472.0, 3886.0, 4832.0)^t$.