Estimation distribuée d'une espérance conditionnelle

Igor Colin

29 juin 2014

Rappels

Estimation de fonction

Objectif et formulation

- Objectif : regrouper les utilisateurs par centres d'intérêts communs
- Notations :
 - ▶ $(X_i)_{1 \le i \le n}$: caractéristiques des utilisateurs (musiques, historique des conversations, etc.)
 - ▶ $D:(X,Y)\mapsto D(X,Y)$: fonction de dissimilarité entre deux vecteurs de caractéristiques
 - ▶ P : partition des utilisateurs
 - $ightharpoonup \Phi_P$: fonction d'appartenance au même *cluster*

Problème

Nouvel objectif : trouver la solution du problème

$$\min_{P} w(P) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \sum_{i=1}^{n} D(X_i, X_j) \Phi_P(X_i, X_j)$$

- ▶ Idée : estimer $f: x \mapsto \mathbb{E}[D(x, X)\Phi_P(x, X)]$
- ► Contrainte : les $(X_i)_{1 \le i \le n}$ ne sont pas simultanément accessibles

Rappels

Estimation de fonction

- ► Notations :
 - ▶ *f* : fonction à estimer

- ▶ Notations :
 - ▶ *f* : fonction à estimer
 - $\{(x_i, f(x_i))\}_{1 \le i \le n}$: observations

- Notations :
 - f : fonction à estimer
 - $\{(x_i, f(x_i))\}_{1 \le i \le n}$: observations $\hat{f}: (x; \theta) \mapsto \hat{f}(x; \theta)$: estimateur

- Notations :
 - f : fonction à estimer

 - $\{(x_i, f(x_i))\}_{1 \le i \le n}$: observations $\hat{f}: (x; \theta) \mapsto \hat{f}(x; \theta)$: estimateur
 - $\hat{R}: \theta \mapsto \hat{R}(\theta)$: risque empirique

- ▶ Notations :
 - ▶ *f* : fonction à estimer
 - $\{(x_i, f(x_i))\}_{1 \le i \le n}$: observations
 - $\hat{f}:(x;\theta)\mapsto \hat{f}(x;\theta)$: estimateur
 - $\hat{R}: \theta \mapsto \hat{R}(\theta)$: risque empirique
 - ▶ Objectif : trouver θ^* solution de

Exemple

- ► Exemple : estimation polynomiale
 - $\hat{f}:(x;\theta)\mapsto\theta_0+\theta_1x+\theta_2x^2,$
 - $\hat{R}(\theta) = \sum_{i=1}^{n} \left(\hat{f}(x_i) f(x_i) \right)^2$
- lackbox Qualité dépendante du choix de \hat{f}

FIGURE: \hat{f} adaptée.

FIGURE: \hat{f} non adaptée.

Application au problème initial

- ▶ Fonction à estimer : $f: x \mapsto \mathbb{E}[D(x, X)\Phi_P(x, X)]$
- ► Risque empirique : moindres carrés
- Estimateur à noyaux :

$$\hat{f}(x; \theta, \mathbf{w}) = \sum_{k=1}^{K} w_k K(x - \theta_k)$$

où K est un noyau gaussien.