

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

CKE 2013	UZUP	EŁNIA ZDAJĄCY	miejsce
ny © (KOD	PESEL	miejsce na naklejkę
ıd graficzı			
Jkład g			

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania 1–12). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

ı	Ш	ш	Ш		Ш	Ш	Ш	ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	ш	Ш
ı	Ш	Ш	Ш	Ш	Ш	Ш	Ш	П	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш		Ш
ı	Ш	Ш	Ш	Ш	Ш	Ш	Ш	П	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	ш	Ш
ı	Ш	ш	Ш		Ш	Ш	Ш	ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	ш	Ш

UZUPEŁNIA ZESPÓŁ
NADZORUJĄCY

Uprawnienia zdającego do:

dostosowania
kryteriów oceniania

nieprzenoszenia zaznaczeń na kartę

7 MAJA 2020

Godzina rozpoczęcia: 9:00

Czas pracy: 180 minut

Liczba punktów do uzyskania: 50

MMA-R1_**1**P-202

Zadanie 1. (4 pkt)

Rozwiąż nierówność $\left(\frac{1}{x}-1\right)^{-1} \le 1$.

Zadanie 2. (3 pkt)

Wyznacz wszystkie wartości parametru a, dla których równanie $|x-5|=(a-1)^2-4$ ma dwa różne rozwiązania dodatnie.

	Nr zadania	1.	2.
Wypełnia	Maks. liczba pkt	4	3
egzaminator	Uzyskana liczba pkt		

Zadanie 3. (3 pkt)

Liczby dodatnie a i b spełniają równość $a^2 + 2a = 4b^2 + 4b$. Wykaż, że a = 2b .

Zadanie 4. (3 pkt)

Dany jest trójkąt równoramienny ABC, w którym |AC| = |BC| = 6, a punkt D jest środkiem podstawy AB. Okrąg o środku D jest styczny do prostej AC w punkcie M. Punkt K leży na boku AC, punkt L leży na boku BC, odcinek KL jest styczny do rozważanego okręgu oraz |KC| = |LC| = 2 (zobacz rysunek).

Wykaż, że
$$\frac{|AM|}{|MC|} = \frac{4}{5}$$

	Nr zadania	3.	4.
Wypełnia	Maks. liczba pkt	3	3
egzaminator	Uzyskana liczba pkt		

Zadanie 5. (5 pkt)

W trzywyrazowym ciągu geometrycznym (a_1, a_2, a_3) spełniona jest równość $a_1 + a_2 + a_3 = \frac{21}{4}$.

Wyrazy a_1 , a_2 , a_3 są – odpowiednio – czwartym, drugim i pierwszym wyrazem rosnącego ciągu arytmetycznego. Oblicz a_1 .

Odpowiedź:

	Nr zadania	5.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 6. (4 pkt)

Rozwiąż równanie $3\cos 2x + 10\cos^2 x = 24\sin x - 3$ dla $x \in \langle 0, 2\pi \rangle$.

	Nr zadania	6.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 7. (4 pkt)

Dane jest równanie kwadratowe $x^2 - (3m+2)x + 2m^2 + 7m - 15 = 0$ z niewiadomą x. Wyznacz wszystkie wartości parametru m, dla których różne rozwiązania x_1 i x_2 tego równania istnieją i spełniają warunek

$$2x_1^2 + 5x_1x_2 + 2x_2^2 = 2.$$

	Nr zadania	7.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 8. (4 pkt)

W trójkącie równoramiennym ABC: |AC| = |BC| = 10, a miara kąta ABC jest równa 30°.

Na boku *BC* wybrano punkt *P*, taki, że $\frac{|BP|}{|PC|} = \frac{2}{3}$. Oblicz sinus kąta α (zobacz rysunek).

Odpowiedź:

	Nr zadania	8.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 9. (5 pkt)

Prosta o równaniu x+y-10=0 przecina okrąg o równaniu $x^2+y^2-8x-6y+8=0$ w punktach K i L. Punkt S jest środkiem cięciwy KL. Wyznacz równanie obrazu tego okręgu w jednokładności o środku S i skali k=-3.

_	Nr zadania	9.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 10. (5 pkt)

Dany jest kwadrat ABCD o boku długości 2. Na bokach BC i CD tego kwadratu wybrano – odpowiednio – punkty P i Q, takie, że długość odcinka |PC| = |QD| = x (zobacz rysunek). Wyznacz tę wartość x, dla której pole trójkąta APQ osiąga wartość najmniejszą. Oblicz to najmniejsze pole.

	Nr zadania	10.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 11. *(4 pkt)*

Oblicz, ile jest wszystkich siedmiocyfrowych liczb naturalnych, w których zapisie dziesiętnym występują dokładnie trzy cyfry 1 i dokładnie dwie cyfry 2.

	Nr zadania	11.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 12. *(6 pkt)*

Podstawą ostrosłupa czworokątnego ABCDS jest trapez ABCD ($AB \parallel CD$). Ramiona tego trapezu mają długości |AD|=10 i |BC|=16, a miara kąta ABC jest równa 30° . Każda ściana boczna tego ostrosłupa tworzy z płaszczyzną podstawy kąt α , taki, że $\lg \alpha = \frac{9}{2}$. Oblicz objętość tego ostrosłupa.

Wypełnia egzaminator	Nr zadania	12.
	Maks. liczba pkt	6
	Uzyskana liczba pkt	

BRUDNOPIS (nie podlega ocenie)