Contrôle de cours 1 (1 heure)

Nom:	Prénom :	Classe:
durer 30 m	e comporte deux parties distinctes associées aux I ninutes mais c'est à vous de gérer votre temps. les deux parties est sur 20 points. Il y aura deux	
1 Contrôle	e de cours sur l'ECUE LE (durée : 3	30 minutes). Note LE: /20
Cours 1 : sur l	la logique (9 points)	
Traduire en des pointillés	<i>'</i>	
` '	nien aboie alors je pars en courant »:en n'aboie pas ou je pars en courant »:	
` '	en aboie et je ne pars pas en courant »:	
· /	en n'aboie pas si et seulement si je pars en courant » :	
	e deux assertions A et B . de $A \Longrightarrow B$ est et la contraposée de A =	$\Rightarrow B \text{ est } \dots$
La négation	: soit $x \in \mathbb{R}$. On prend $A : \ll 0 \le x < \pi$ » et $B : \ll \sin(x)$ de $A \Longrightarrow B$ est	
3. Soit $x \in \mathbb{R}$.	Mettre le symbole \Longrightarrow , \Longleftrightarrow à la place des point	illés :
4. Soit l'asserti	$x > 2$ (b) $x = \pi$ $\sin(x) = 0$ (c) \sqrt{x} ion $P : \ll \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^2 > x$ ». e vraie ou fausse? Justifiez votre réponse.	$\overline{2} = 1 \cdots x = 1$ (d) $\frac{x^2}{3} = 0 \cdots x = 0$
(b) Donner l	la négation de P .	
Cours 2 : sur 1	les ensembles (4 points)	
	nsembles $A = \{x \in \mathbb{R}, -1 < x < 10\}$ et $B = \{n \in \mathbb{N}, n + 1\}$	1 < 8}.
	emble commun A et B sont-ils deux sous-ensembles? réj	
	ne des phrases suivantes, remplacer les pointillés afin de	
	Exemple: pour $\cdots \in B$, on peut remplacer les point	illés par $0 \ car \ 0 \in B$.
(a) · · · · · ·	$\cdot \in A$ (b) $\cdot \cdot \cdot \cdot \cdot \cdot \notin A \cup B$ (c) $\cdot \cdot \cdot \cdot \cdot \cdot \subset A \cup B$	(d) $\cdots \cdots \in A \cap B$ (e) $\cdots \subset A \times B$.
3. Quel est le c	complémentaire de B dans \mathbb{Z} ?	

Cours 3: sur les fonctions (7 points)

Soient E et F deux ensembles et $f: E \longrightarrow F$. 1. Donner la définition mathématique de « f surjective » 2. Donner la définition mathématique de « f injective » 3. Dessiner (graphe, patate...) une fonction $f: [1,4] \longrightarrow [1,5]$ qui n'est pas injective mais qui vérifie $f^{-1}(\{2,3\}) = \{1\}$ Contrôle de cours sur l'ECUE DP (durée : 30 minutes). Note DP : /20Cours 1 : dénombrement (6 points) Dans une urne, il y a 10 boules numérotées de 1 à 10 indiscernables au toucher. On effectue des tirages de ces boules. On se donne les réponses suivantes : $3-\binom{10}{7}$ **1**- $7 \times 8 \times 9 \times 10$ **2**- 10! On se donne les modèles suivants : A- On effectue un tirage successif et sans remise de 10 boules. B- On effectue un tirage successif et avec remise de 3 boules. C- On effectue un tirage successif et sans remise de 4 boules. D- On effectue un tirage successif et avec remise de 4 boules. E- On effectue un tirage simultané de 7 boules. F- On effectue un tirage simultané de 3 boules. 1. Compléter chacune des phrases suivantes. — La réponse 1 est le nombre de tirages possibles pour le(s) modèle(s) · · · · · · — La réponse **2** est le nombre de tirages possibles pour le(s) modèle(s) · · · · · · — La réponse 3 est le nombre de tirages possibles pour le(s) modèle(s) · · · · · · — La réponse 4 est le nombre de tirages possibles pour le(s) modèle(s) · · · · · · 2. Donner le nombre de tirages possibles au(x) modèle(s) ci-dessus dont la réponse n'était ni 1, ni 2, ni 3, ni 4.

Cours 2: sur les combinaisons (8 points)

Soient $n \in \mathbb{N}$ et $k \in [0, n]$.
1. Que comptez-vous si vous calculez $\binom{n}{k}$? Donner son expression avec les factoriels.
2. Soit E un ensemble ayant 7 éléments. Calculer le nombre N de sous-ensembles de E ayant 3 éléments. Vos calc doivent être détaillés et simplifiés.
3. Soient $(a,b) \in \mathbb{R}^2$ et $n \in \mathbb{N}$. Donner la formule du binôme de Newton.
4. Soit E un ensemble à n éléments $(n \in \mathbb{N}^*)$. Expliquer, via le dénombrement , pourquoi le cardinal de $\mathcal{P}(E)$ $\sum_{k=1}^{n} \binom{n}{k}.$
$\sum_{k=0}^{\infty} \langle k \rangle^{k}$
$\frac{n}{n}$ (n)
5. En utilisant la formule du binôme de Newton, trouver la valeur de : $\sum_{k=0}^{n} \binom{n}{k}$. Vous détaillerez votre calcul.
Cours 3 : probabilités (6 points) Soient A, B et C trois événements d'un espace probabilisé $(\Omega, \mathcal{P}(\Omega), P)$ de probabilités non nulles.
1. Compléter les formules :
(a) $P(A \cup B) =$ (b) $P(\Omega) =$ (c) $P(\emptyset) =$ (d) $P(A \mid B) =$ 2. Que signifie (mathématiquement) que « A et B sont indépendants » ?
2. Que signific (machematiquement) que «11 et 2 sont independants ».
3. Que signifie que « A, B et C forment une partition de Ω » ?