Tutorial

20/11/12

Identify function of the given set of instructions

INTS PROC FAR USES AX

ADD AX,BX

ADD AX,BP

ADD AX,DI

ADD AX,SI

IRET

INTS ENDP

Software Interrupt

- Whenever a software interrupt instruction executes, it
 - Pushes the flags onto the stack
 - Clears the T & I flag bits
 - Pushes CS on the stack
 - Fetches the new value for CS from the interrupt vector
 - Pushes IP onto the stack
 - Fetches the new value for IP from the vector
 - Jumps to the new location addressed by CS & IP

INT 10 H	Video Services
INT 11H	Equipment List
INT 12H	Usable memory size
INT 13H	Disk I/O
INT 14H	Serial Port I/O
INT 15H	AT service
INT 16H	Keyboard I/O
INT 17H	PrinterI/O
INT 18H	ROM-BASIC
INT 19H	Bootstrap
INT 1aH	Time I/O
INT 1bH	Keyboard Break
INT 1cH	User timer Interrupt
INT 20-2fH	DOS system calls
INT 67H	Expanded memory function
	Mrs. Jyotsna A.Kulkarni

INT 21H, FUNCTION 4CH

- Terminates with return code-EXIT(n)
- USED TO TERMINATE THE PROGRAM WITH RETURN CODE.
- AH=4C
- AL=RETURN CODE
- RETURN CODE 0: TERMINATION WITH SUCCESSFUL EXECUTION
- DOS sets the error level to the return code

INT 21H, Functionn 09H

- Display String
- AH=09H
- DS:DX=segment:offset of the string terminated by the symbol\$
- Writes a string terminated with \$ to the std. output device
- Pgm has to explicitly handle the disk space availability

Display a message on screen using MACROS

```
printstring
                        macro
                                     msg
            mov ah,09h
            mov dx,offset msg
            INT 21H
            endm
_DATA segment
                        0dH
            equ
    cr
    lf
                        0aH
            equ
    msg1 db 'HELLO WORLD', cr, If, '$'
    msg2 db 'HOPE YOU ALL ARE FINE', '$'
_DATA ends
CODE segment
    assume CS: CODE, ds: DATA
            mov ax, DATA
Start:
            mov ds,ax
            printstring msg1
            printstring msg2
            mov ah,4cH
            mov al,00H
            INT 21H
CODE ends
            end start
```

Write comment against each line of following program

MOV AX,30

MOV BX,40

PUSH AX

PUSH BX

0008 E8 0066 CALL ADDM

0071 ADDM PROC NEAR

PUSH BP

MOV BP,SP

MOV AX,[BP+4]

ADD AX, [BP+6]

POP BP

RET 4

ADDM ENDP

Hardware Interrupts

INT 00 H	Division by zero
INT 01H	Single step
INT 02H	Non-Maskable
INT 03H	Breakpoint
INT 04H	Overflow
INT 05H	Print Screen
INT 06H	Reserved
INT 07H	Reserved
INT 08H	Timer
INT 09H	Keyboard
INT 0a-0dH	Hardware interrupts
INT 0eH	Diskette
INT OfH	Hardware interrupt Mrs. Jyotsna A. Kulkarni

I/O device access

- To communicate with an I/O device, we need
 - Access to various registers (data, status,...)
 - This access depends on I/O mapping
 - Two basic ways
 - » Memory-mapped I/O
 - » Isolated I/O

Input Port Implementation

- The outputs of the gating device are high impedance when the processor is not accessing the input port
- When the processor is accessing the input port, the gating device transfers input data to CPU data bus
- The decoding circuit controls when the gating device has high impedance output and when it transfers input data to data bus

Input Port Implementation

- ☐ Circuit Implementation
 - Assume that the address of the input port is 9CH

Input Port Implementation

Output Port Implementation

- ☐ Circuit Implementation
 - Assume that the address of the output port is 9CH

Output Port Implementation

Decoder generates active low outputs for ports F0H–F7H.

Figure A PLD that generates part selection signals

