BME Gépészmérnöki Kar	BMEGEMMBXVE	Név:		
Műszaki Mechanikai Tanszék	Végeselem módszer alapjai	NEPTUN-kód:		
Félév: 2022/23/02	1. kötelező HF.	Aláírás:		

	ÁBRA	В	\mathbf{C}	D
Feladatkód:				

FELADAT ISMERTETÉSE: Az ábrákon vázolt tartókat a p_1 állandó intenzitású megoszló erőrendszer, az F_1 koncentrált erő és az M_1 koncentrált erőpár terheli. A tartók két különböző átmérőjű ($d_1=d$, illetve $d_2=2d$) kör keresztmetszetű tartókból vannak összeépítve. A tartók anyaga lineárisan rugalmas, homogén, izotrop. A d_1 átmérőjű rész rugalmassági modulusza 4E, míg a d_2 átmérővel rendelkező részé E.

FELADATOK:

- 1. Készítsen méretarányos ábrát a tartóról a terhelések feltüntetésével.
- 2. Határozza meg a tartó súlypontvonalának eltolódását leíró $v\left(x\right)$ lehajlásfüggvényt, valamint a hajlítónyomatéki igénybevételt leíró $M_h\left(x\right)$ függvényt az alábbi két módszer mindegyikével: a) Rugalmas szál differenciálegyenletének felhasználásával; b) Végeselemes módszerrel. Ábrázolja jelleghelyesen a kapott megoldásokat a jellemző függvényértékek feltüntetésével! A végeselemes megoldásnál 3 db síkbeli egyenes gerendaelemet használjon!
- 3. Számítsa ki az x = c/2 keresztmetszetben a tartó súlypontvonalának eltolódását (v_K) , valamint a hajlító igénybevétel nagyságát (M_{hK}) mindkét módszerrel, és határozza meg a végeselemes módszerrel kapott értékek relatív hibáját úgy, hogy egzakt megoldásnak a rugalmas szál differenciálegyenletével kapott megoldást tekinti.

	Feladatkód	В		C		D			
		E	d	a	b	c	p_1	F_1	M_1
		[GPa]	[mm]	[mm]	[mm]	[mm]	[N/m]	[kN]	[kNm]
	1	50	23	220	540	730	2500	4	0,6
A	2	40	27	230	460	610	-2500	-3	-0,75
D	3	30	31	430	550	890	3000	2	0,9
A	4	20	35	330	440	680	-3000	-1	-1, 1
T	5			370	580	780	3500	1	1, 2
О	6			290	540	810	-3500	-2	-0,7
K	7			350	710	890	-4000	3	0,85
	8			270	530	830	4000	-4	-0,6

EREDMÉNYEK:

EREDMEN YEK:				
Végeselemes módszer relatív hibája				
v_K rel. hibája [%]	M_{hK} rel. hibája [%]			