System Anaylsis Exams

CHEN SHANG

October 2022

Personal answers.

May not always be right.

2018-2019

1

(a)

(b)

initial solution:

	1	2	3
1		60	
2	40		30
3		5	45

optimal solution:

$$\begin{cases} u_1 + v_2 = 24 \\ u_2 + v_1 = 18 \\ u_2 + v_3 = 20 \\ u_3 + v_2 = 25 \end{cases} \begin{cases} u_1 = 1 \\ u_2 = -4 \\ u_3 = 2 \end{cases} \begin{cases} v_1 = 22 \\ v_2 = 23 \\ v_3 = 24 \end{cases}$$

$$\begin{cases} x_{11} = -3 \\ x_{13} = -1 \\ x_{22} = 4 \\ x_{31} = -4 \end{cases}$$

	1	2	3		1	2	3
1	40	15	5	1		55	5
2			70	2			70
3		50		3	40	10	

(c)

$$\Delta \geq -1$$

$\mathbf{2}$

(a)

Min
$$8x_1^2 + 28x_1x_2$$

Subject to:

$$\frac{x_1^2 x_2}{2.5} \ge 98$$

$$x_1 \ge 0, \ x_1 \ge 0$$

$$L = 8x_1^2 + 28x_1x_2 + \lambda(\frac{2x_1^2x_2}{5} - 98)$$

We have

$$\frac{\partial L}{\partial x_1} = 16x_1 + 28x_2 + \lambda \left(\frac{4x_2x_1}{5}\right) = 0$$

$$\frac{\partial L}{\partial x_2} = 28x_1 + \lambda \left(\frac{2x_1^2}{5}\right) = 0$$

$$\frac{\partial L}{\partial \lambda} = \frac{2x_1^2x_2}{5} - 98 = 0$$

$$\begin{cases} x_1 = 7.541 \\ x_2 = 4.309 \\ \lambda = -0.928 \end{cases}$$

$$\text{Hessian matrix } H = \begin{bmatrix} \frac{\partial^2 L}{\partial x_1^2} & \frac{\partial^2 L}{\partial x_1 \partial x_2} \\ \\ \\ \frac{\partial^2 L}{\partial x_2 \partial x_1} & \frac{\partial^2 L}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} -16 & -28 \\ -28 & 0 \end{bmatrix}$$

$$|\lambda E - H| = |\begin{bmatrix} \lambda + 16 & 28 \\ 28 & \lambda \end{bmatrix}| = 0$$

$$\lambda_1 = -37.12, \ \lambda_2 = 21.12$$

3

(a)

Yes, As the shop carries only 1 car in the shop, B_k only depends on the current week.

4

(a)

State space $S = \{0, 1, 2\}$

0: baking

1: preparation

2: repairting

(b)

 $\pi_j(\sum_{k \neq j} q_{jk}) = \sum_{k \neq j} q_{kj} \pi_k$

$$Q = \begin{bmatrix} -b - f & b & f \\ p & -p & 0 \\ 0 & r & -r \end{bmatrix}$$

$$\pi Q = 0$$

$$\begin{cases} (-b-f)\pi_0 + p\pi_1 = 0 \\ b\pi_0 - p\pi_1 + r\pi_2 = 0 \\ f\pi_0 - r\pi_2 = 0 \end{cases}$$

$$\pi_0 + \pi_1 + \pi_2 = 1$$

(c)

Average production rate $R=b\pi_0$

(d)

R increase, as π_0 increase

5

(a)

	MP	TR
MP	1	0.2
TR	5	1
SUM	6	1.2

	MP	TR
MP	1/6	1/6
TR	5/6	5/6
SUM	6	1.2

	MP	TR	Priority
MP	1/6	1/6	1/6
TR	5/6	5/6	5/6

Level 3 priority matrix:

composite priority:

$$\begin{bmatrix} 0.129 & 0.545 \\ 0.277 & 0.273 \\ 0.595 & 0.182 \end{bmatrix} \times \begin{bmatrix} 1/6 \\ 5/6 \end{bmatrix} = \begin{bmatrix} 0.476 \\ 0.274 \\ 0.251 \end{bmatrix}$$

I recommend company choose company U1.

(b)

$$\begin{bmatrix} 1 & 0.2 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 1/6 \\ 5/6 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 5/3 \end{bmatrix}$$

$$\lambda_{max} = (\frac{1}{3}/\frac{1}{6} + \frac{5}{3}/\frac{5}{6})/2 = 2$$

$$C.I. = \frac{\lambda_{max} - n}{n - 1} = 0$$

$$CR = \frac{CI}{RI} = 0$$

Matrix $A_{\mathbf{MP}}$ is perfectly consistent.

(c)

	MP	TR
MP	1	2
TR	0.5	1
SUM	1.5	3

2020-2021

1

(a)

Supposing that the factory sells x_1, x_2, x_3 packages of PA, PB, PC.

 $\mathbf{Max}\ 2.5x_1 + 2.2x_2 + 2.1x_3$

Subject to:

$$\begin{cases} 0.2x_1 + 0.18x_2 + 0.16x_3 \le 10 \\ 1.5x_1 + 1.7x_2 + 1.8x_3 \le 100 \\ 0.5x_1 + 0.35x_2 + 0.6x_3 \le 30 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

(b)

 $\mathbf{Max}\ 2.5x_1 + 2.2x_2 + 2.1x_3$

Subject to:

$$\begin{cases} 0.2x_1 + 0.18x_2 + 0.16x_3 + x_4 = 10\\ 1.5x_1 + 1.7x_2 + 1.8x_3 + x_5 = 100\\ 0.5x_1 + 0.35x_2 + 0.6x_3 + x_6 = 30\\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

		2.5	2.2	2.1	0	0	0		
C_B	X_B	x_1	x_2	x_3	x_4	x_5	x_6	b	θ
0	x_4	0.2	0.18	0.16	1	0	0	10	50
0	x_5	1.5	1.7	1.8	0	1	0	100	66.67
0	x_6	0.5	0.35	0.6	0	0	1	30	60
	σ	2.5	2.2	2.1	0	0	0		

		2.5	2.2	2.1	0	0	0		
C_B	X_B	x_1	x_2	x_3	x_4	x_5	x_6	b	θ
2.5	x_1	1	0.9	0.8	5	0	0	50	62.5
0	x_5	0	0.35	0.6	-7.5	1	0	25	41.67
0	x_6	0	-0.1	0.2	-2.5	0	1	5	25
	σ	0	-0.05	0.1	-12.5	0	0		

		2.5	2.2	2.1	0	0	0		
C_B	X_B	x_1	x_2	x_3	x_4	x_5	x_6	b	θ
2.5	x_1	1	1.3	0	15	0	-4	30	
0	x_5	0	0.65	0	0	1	-3	10	
2.1	x_3	0	-0.5	1	-12.5	0	5	25	
	σ	0	0	0	-11.25	0	-0.5		

$$x_1 = 30, \ x_2 = 0, \ x_3 = 25$$

$$b' = B^{-1}b = \begin{bmatrix} 15 & 0 & -4 \\ 0 & 1 & -3 \\ -12.5 & 0 & 5 \end{bmatrix} \begin{bmatrix} 10 \\ 100 \\ 30 - \Delta \end{bmatrix} = \begin{bmatrix} 30 + 4\Delta \\ 10 + 3\Delta \\ 25 - 5\Delta \end{bmatrix}$$

$$x_1 = 30 + 4\Delta, \ x_2 = 0, \ x_3 = 25 - 5\Delta$$

Previous solution is neither optimal nor feasible.

$\mathbf{2}$

(a)

Min
$$z = 2\pi C x_1^2 + 2\pi C x_1 x_2$$

Subject to:

$$\pi x_1^2 x_2 = V$$
$$x_1 \ge 0, \ x_2 \ge 0$$

(b)

$$L = 2\pi C x_1^2 + 2\pi C x_1 x_2 + \lambda (\pi x_1^2 x_2 - V)$$

$$\frac{\partial L}{\partial x_1} = 4\pi C x_1 + 2\pi C x_2 + \lambda (2\pi x_1 x_2) = 0$$

$$\frac{\partial L}{\partial x_2} = 2\pi C x_1 + \lambda (\pi x_1^2) = 0$$

$$\frac{\partial L}{\partial \lambda} = \pi x_1^2 x_2 - V = 0$$

$$\begin{cases} x_1 = \frac{V(-\frac{16\pi C^3}{V})^{\frac{2}{3}}}{8C^2\pi} \\ x_2 = \frac{V(-\frac{16\pi C^3}{V})^{\frac{2}{3}}}{4C^2\pi} \\ \lambda = (-\frac{16\pi C^3}{V})^{\frac{1}{3}} \end{cases}$$

Hessian matrix
$$H = \begin{bmatrix} \frac{\partial^2 L}{\partial x_1^2} & \frac{\partial^2 L}{\partial x_1 \partial x_2} \\ \\ \frac{\partial^2 L}{\partial x_2 \partial x_1} & \frac{\partial^2 L}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} -4\pi C & -2\pi C \\ -2\pi C & 0 \end{bmatrix}$$

$$|\lambda E - H| = |\begin{bmatrix} \lambda + 4\pi C & 2\pi C \\ 2\pi C & \lambda \end{bmatrix}| = 0$$

$$\lambda = (-2 \pm 2\sqrt{2})\pi C$$

(c)

$$z = 2\pi Cx_1^2 + 2\pi Cx_1x_2 = \frac{3V^2(-\frac{16\pi C^3}{V})^{\frac{4}{3}}}{32C^3\pi}$$

If
$$V' = 0.95V$$
, $z' = 0.966z$

3

$$P_A = egin{bmatrix} rac{1}{5} & rac{4}{5} \ rac{1}{3} & rac{2}{3} \end{bmatrix}, \; P_B = egin{bmatrix} rac{1}{2} & rac{1}{2} \ rac{1}{10} & rac{9}{10} \end{bmatrix}$$

(b)

Strategy (A):

$$E(T_0) = \frac{1}{1 - p_{00}} = \frac{5}{4}$$

$$E(T_1) = \frac{1}{1 - p_{11}} = 3$$

Strategy (B):

$$E(T_0) = \frac{1}{1 - p_{00}} = 2$$

$$E(T_0) = \frac{1}{1 - p_{00}} = 2$$

$$E(T_1) = \frac{1}{1 - p_{11}} = 10$$

(c)

Strategy (A):

$$|\lambda E - P| = 0$$

$$\lambda_1 = -\frac{2}{15}, \ \lambda_2 = 1$$

$$Q = \begin{bmatrix} -12 & 1 \\ 5 & 1 \end{bmatrix}, \ Q^{-1} = \begin{bmatrix} -\frac{1}{17} & \frac{1}{17} \\ \frac{5}{17} & \frac{12}{17} \end{bmatrix}, \ D = \begin{bmatrix} -\frac{5}{12} & 0 \\ 0 & 1 \end{bmatrix}$$

when n goes to infinity:

$$P^{n} = QD^{n}Q^{-1} = \begin{bmatrix} \frac{5}{17} & \frac{12}{17} \\ \frac{5}{17} & \frac{12}{17} \end{bmatrix}$$

$$\pi(n) = \pi(0)P^n = \begin{bmatrix} \frac{5}{17} & \frac{12}{17} \end{bmatrix}$$

Strategy (B):

(d)

Strategy (A):

Expected profit = $\frac{5}{17} \times (500,000 - 200,000) + \frac{12}{17} \times 2,000,000 = 1,500,000$

Strategy (B):

2021-2022

1

- (a)
- (b)

 $\mathbf{2}$

- (a)
- (b)

3

- (a)
- $$\begin{split} \text{(i)} \ P(a,b) &= \sum_{i=a}^b P(X=i) = e^{-\lambda} \sum_{i=a}^b \frac{\lambda^i}{i!} \\ \text{(ii)} \ P(a,b) &= \sum_{i=0}^b P(X=i) = e^{-\lambda} \sum_{i=0}^b \frac{\lambda^i}{i!} \\ \text{(iii)} \ P(a,b) &= 1 \sum_{i=0}^{a-1} P(X=i) = 1 e^{-\lambda} \sum_{i=0}^{a-1} \frac{\lambda^i}{i!} \end{split}$$

(b)

4

- (a)
- (b)
- (c)

5

- (a)
- (b)
- (c)