Formelsammlung — Signale und Systeme

bei Prof. Thao Dang

Tim Hilt

1. Februar 2019

Inhaltsverzeichnis

1	Grundlagen	2	
2	LTI-Systeme	4	
3	Fourierreihen	6	
4	4 Fouriertransformation, Laplacetransformation		
5	Faltung	8	
6	5 Filter und Übertragungsfunktionen		
7	Bode-Diagramm	11	
8	Anhang	12	
	A Tabellen aus Buch von Prof. Koch und Prof. Stämpfle	12	
	B Tabelle aus Vorlesung	18	

Seite 2 Tim Hilt

1 Grundlagen

Eigenschaften Allgemeine Cosinusfunktion

$$f(t) = A\cos(\omega \cdot t + \varphi)$$

$$T = \frac{2\pi}{\omega} \quad ; \quad \omega = \frac{2\pi}{T}$$

si(x)- und sinc(x)-Funktionen

$$\mathbf{si}(x) = \begin{cases} \frac{\sin(x)}{x} & x \in \mathbb{R} \setminus 0 \\ 1 & x = 0 \end{cases}$$

$$\operatorname{sinc}(x) = \begin{cases} \frac{\sin(\pi x)}{\pi x} & x \in \mathbb{R} \setminus 0\\ 1 & x = 0 \end{cases}$$

Betrag einer komplexen Zahl

$$Z = a + jb$$
$$|Z| = \sqrt{a^2 + b^2}$$

Winkel einer komplexen Zahl

$$\arg(Z) = \varphi = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{für } x > 0, y \text{ bel.} \\ \arctan\left(\frac{y}{x}\right) + \pi & \text{für } x < 0, y \text{ bel.} \\ \frac{\pi}{2} & \text{für } x = 0, y > 0 \\ -\frac{\pi}{2} & \text{für } x = 0, y < 0 \end{cases}$$

Dämpfung zweier Pegel

$$a = 20 \cdot \log \left(\frac{\mathsf{Eingang}}{\mathsf{Ausgang}} \right) \mathsf{dB}$$

und wenn Eingang = 1:

$$= -20 \cdot \log(\text{Ausgang}) dB$$

Phasengang

$$b(f) = -\arg(Z)$$

Die Phase muss dem negativen Winkel entsprechen, um bei nachlaufendem Signal eine positive Zeitverzögerung zu erhalten.

Phasenlaufzeit/Zeitverzögerung

$$t_p = \frac{b(f)}{\omega}$$

Seite 4 Tim Hilt

2 LTI-Systeme

Abbildung 1: LTI-System

Linearität

Ein System gilt als linear, wenn zum Signal nichts addiert wird, sondern dass Signal nur entweder verschoben entlang der *t*-Achse oder skaliert in *y*-Richtung ist.

Zeitinvarianz

Wird das Signal x(t) noch mit einer anderen Funktion, die von t abhängt multipliziert, dann ist das System **nicht** zeitinvariant, da diese Funktion sich mit der Zeit verändert und x(t) somit immer mit anderen Werten multipliziert wird.

Bsp.:

$$y(t) = \sqrt{2}x(t)$$
 zeitinvariant $y(t) = x(t) \cdot \sin(t)$ zeitvariant! $y(t) = x^2(t)$ auch zeitvariant

Kausalität

Ein Signal ist kausal, wenn gilt y(t) = 0 für t < 0

Stabilität

Beim Betrachten der Stabilität unterscheidet man 3 Fälle:

- 1. Das System ist stabil, wenn alle Pole im Pol-Nullstellen-Diagramm in der linken Halbebene liegen
- 2. Das System ist grenzstabil, wenn nur einfache Pole im Pol-Nullstellen-Diagramm auf der imaginären Achse liegen
- 3. Das System ist instabil, wenn Pole in der rechten Halbebene des Pol-Nullstellen-Diagramms liegen und/oder mehrfache Pole auf der imaginären Achse liegen

Sprungantwort und Impulsantwort

Die Sprungantwort ist das Ausgangssignal eines Systems wenn am Eingang die Sprungfunktion $\sigma(t)$ angelegt wird. Sie wird allgemein auch mit a(t) bezeichnet.

$$\begin{array}{c|c}
\sigma(t) & \text{LTI} \\
\hline
h(t) & a(t)
\end{array}$$

Ein Rechteckimpuls ist die Kombination mehrerer skalierter und verschobener Sprungfunktionen. Aufgrund der Eigenschaften von LTI-Systemen kann die Systemantwort auf einen Rechteckimpuls daher durch die Addition mehrerer Sprungantworten konstruiert werden.

Die Impulsantwort hingegen ist das Ausgangssignal eines Systems, wenn am Eingang die Impulsfunktion $\delta(t)$ angelegt wird. Sie wird allgemein auch mit h(t) bezeichnet.

$$\begin{array}{c|c} \delta(t) & h(t) \\ \hline & h(t) \end{array}$$

Um von der Sprungantwort auf die Impulsantwort zu schließen muss Die Sprungantwort einmal abgeleitet werden, da gilt:

$$\sigma(t)' = \delta(t) \iff a(t)' = h(t)$$

Demnach gilt auch:

$$\int h(t)dt = a(t)$$

Die Impulsantwort h(t) beschreibt das gesamte System. Wird die Impulsantwort transformiert, so ergibt sich die Übertragungsfunktion H(f).

$$h(t) \circ H(f)$$

Wird ein beliebiges Eingangssignal x(t) mit der Impulsantwort gefaltet, so ergibt sich das Ausgangssignal.

$$x(t) \star h(t) = y(t)$$

Seite 6 Tim Hilt

3 Fourierreihen

$$f(t) = s_G + \sum_{n=1}^{\infty} (a_n \cos(n\omega t) + b_n \sin(n\omega t)), \quad \omega = \frac{2\pi}{T}/2\pi \cdot f_0$$

Gleichanteil

$$s_G = rac{a_0}{2} = c_0 = rac{ ext{Integral "über eine Periode}}{ ext{Periodendauer}}$$

Reelle Fourier-Koeffizienten a_n und b_n

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\omega t) dt$$

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(n\omega t) dt$$

Umrechnung von c_n zu a_n und b_n

$$a_n = 2\operatorname{Re}(c_n)$$

$$b_n = -2\operatorname{Im}(c_n)$$

$$\rightarrow c_n = \frac{a_n - \mathbf{j}b_n}{2}$$

4 Fouriertransformation, Laplacetransformation

Fourierreihe aus Fouriertransformation

Achtung: stetiges f der Fouriertransformation wird durch diskretes $\frac{k}{T}$ ersetzt

$$\frac{1}{T} = f_0$$

$$s(t) \circ - \bullet \quad S(f)$$

$$c_n = \frac{1}{T} \cdot S\left(\frac{n}{T}\right) = f_0 \cdot S(n \cdot f_0)$$

Demnach lässt sich der Gleichanteil berechnen durch:

$$c_0 = s_G = \frac{1}{T} \cdot S\left(\frac{0}{T}\right) = f_0 \cdot S(0 \cdot f_0)$$

Spezielle Rücktransformationen

Zu der Funktion

$$\frac{p}{p+1}$$

ergibt die Korrespondenzentabelle keine Einträge. Hier hilft das Erweitern des Zählers mit 1-1:

$$\frac{p}{p+1} = \frac{p+1-1}{p+1}$$

$$\rightarrow = \frac{p+1}{p+1} - \frac{1}{p+1}$$

$$\rightarrow = 1 - \frac{1}{p+1}$$

Seite 8 Tim Hilt

5 Faltung

Werden zwei Signale $u_1(t),u_2(t)$ unterschiedlicher Bandbreiten T_1,T_2 gefaltet, so beträgt die Bandbreite des neuen Signals T_1+T_2 .

Faltung mit $\sigma(t)$

Wird eine Funktion mit $\sigma(t)$ gefaltet, so ergibt sich für das Faltungsintegral:

$$n(t) \star \sigma(t) = \int_{-\infty}^{\infty} n(\tau) \cdot \sigma(t - \tau) d\tau = \int_{-\infty}^{t} n(\tau) d\tau$$

6 Filter und Übertragungsfunktionen

Im Fourierbereich: $\omega=2\pi f$, im Laplacebereich: $j\omega=p$

	RC-Tiefpass	RC-Hochpass	RL-Tiefpass	RL-Hochpass
$\overline{rac{U_a}{U_e} = H(j\omega)}$	$\frac{1}{1 + j\omega RC}$	$\frac{j\omega RC}{1+j\omega RC}$	$\frac{R}{R + j\omega L}$	$\frac{j\omega L}{R + j\omega L}$
f_G/ω_G	$\frac{1}{2\pi RC}; \frac{1}{RC}$	$\frac{1}{2\pi RC}; \frac{1}{RC}$	$\frac{R}{2\pi L}; \frac{R}{L}$	$\frac{R}{2\pi L}; \frac{R}{L}$

Abbildung 2: RC-Tiefpass

Abbildung 4: RC-Hochpass

Abbildung 3: RL-Tiefpass

Abbildung 5: RL-Hochpass

Frequenz	Spule	Kondensator
0 Hz	$Z_L=0\Omega$; Kurzschluss	$Z_C=\infty$ Ω ; Leerlauf
∞ Hz	$Z_L = \infty \Omega$; Leerlauf	$Z_C = 0$ Ω; Kurzschluss

Tabelle 1: Spule und Kondensator im Frequenzbereich

Seite 10 Tim Hilt

Vorgehen, wenn nach $H(p), p \to \infty$ gefragt ist

- 1. Stelle H(p) auf
- 2. Löse so auf, dass ps einzeln stehen
- 3. Setze $p=\infty$ ein
- 4. Kürze soweit wie möglich
- 5. Betrachte Rest

7 Bode-Diagramm

Für Pol- Nullstellendiagramm:

- 1. ps im Nenner und im Zähler isolieren
- 2. Pol- und Nullstellen des Bruchs für p finden
- 3. Polstellen als imes und Nullstellen als imes in ein Re / Im-Diagramm (p-Ebene) eintragen

Das Bode-Diagramm besteht aus dem Amplitudengang und dem Phasengang. Der Amplitudengang a(f) lässt sich berechnen durch

$$a(f) = -20\log(|H(f)|)$$

während sich der Phasengang b(f) berechnen lässt über

$$b(f) = -\arctan\left(\frac{\operatorname{Im}(H(f))}{\operatorname{Re}(H(f))}\right) + \begin{cases} 0 & \operatorname{Re}(H(f)) > 0 \\ \pm \pi & \operatorname{Re}(H(f)) < 0 \end{cases}$$

Zudem kann die lineare Dämpfungsfunktion als

$$A(f) = |H(f)|$$

dargestellt werden.

Schrittweise Konstruktion des Bode-Diagramms

- 1. |H(f)| bestimmen
- 2. f_G berechnen
- 3. Werte für f in |H(f)| einsetzen (für f=0 und zwei Werte im Sperrbereich) und $20 \cdot \log(|H(f)|)$ berechnen
- 4. Asymptoten zeichnen
- 5. Bode Diagramm zeichnen, f_G befindet sich am Schnittpunkt beider Asymptoten

Sprungantwort schnell berechnen

$$a(t) = (a(0) - a(\infty)) \cdot e^{-\frac{t}{T}} + a(\infty)$$

714 A Anhang

A.9 Korrespondenzen der Fourier-Transformation

Fourier-Transformation S(f) = R(f) + i I(f)

$$s(t) = \operatorname{sgn}(t)$$

$$S(f) = -\mathbf{i} \, \frac{1}{\pi f}$$

$$s(t) = \sigma(t)$$

$$s(t) = \delta(t)$$

$$S(f) = 1$$

$$s(t) = 1$$

$$S(f) = \delta(f)$$

Zeitfunktion s(t)

Fourier-Transformation S(f) = R(f) + i I(f)

$$s(t) = \sigma(t+1) - \sigma(t-1)$$

$$S(f) = 2 \frac{\sin(2\pi f)}{2\pi f}$$

$$s(t) = (1+t)(\sigma(t+1) - \sigma(t)) + (1-t)(\sigma(t) - \sigma(t-1))$$

$$s(t) = e^{-t}\sigma(t)$$

$$S(f) = \frac{1}{1 + \mathbf{i} 2\pi f} = \frac{1}{1 + 4\pi^2 f^2} - \mathbf{i} \frac{2\pi f}{1 + 4\pi^2 f^2}$$

$$s(t) = \cos\left(2\pi t\right)$$

$$S(f) = \frac{1}{2} \Big(\delta(f-1) + \delta(f+1) \Big)$$

A.10 Eigenschaften der Fourier-Transformation

Eigenschaft	Zeitfunktion	Bildfunktion
Linearität	$C_1 s_1(t) + C_2 s_2(t)$	$C_1 S_1(f) + C_2 S_2(f)$
Zeitverschiebung	$s(t-t_0)$	$e^{-\mathrm{i}2\pift_0}S(f)$
Frequenzverschiebung	$\mathrm{e}^{\mathrm{i}2\pif_0t}s(t)$	$S(f-f_0)$
Amplitudenmodulation	$s(t)\cos(2\pi f_0 t)$	$\frac{1}{2}\left(S(f-f_0)+S(f+f_0)\right)$
Ähnlichkeit	s(at)	$\frac{1}{ a } S\left(\frac{f}{a}\right)$
Zeitumkehr	s(-t)	S(-f)
Differenziation in \boldsymbol{t}	$\dot{s}(t)$	$\mathrm{i}2\pifS(f)$
	$\ddot{s}(t)$	$(\mathrm{i} 2\pi f)^2 S(f)$
	:	:
	$\frac{\mathrm{d}^n}{\mathrm{d}t^n}s(t)$	$(\mathrm{i} 2\pi f)^n S(f)$
Differenziation in f	$(-\mathrm{i}2\pit)s(t)$	S'(f)
	$\left (-\mathbf{i} 2 \pi t)^2 s(t) \right $	S''(f)
	:	:
	$\left(-\mathrm{i}2\pit\right)^n s(t)$	$S^{(n)}(f)$
Multiplikation in t	t s(t)	S'(f)
	$\int t^2 s(t)$	$\frac{S''(f)}{-i 2 \pi}$
	:	-12 <i>n</i>
	$\left \begin{array}{c}t^ns(t)\end{array}\right $	$\frac{S^{(n)}(f)}{(-\mathrm{i}2\pi)^n}$
Integration	$\int_{-\infty}^{t} s(\tau) \mathrm{d} \tau$	$\frac{1}{\mathrm{i}2\pif}S(f) + \frac{1}{2}S(0)\delta(f)$
Faltung in t	$s_1(t) \star s_2(t)$	$S_1(f) \cdot S_2(f)$
Faltung in f	$s_1(t) \cdot s_2(t)$	$S_1(f) \star S_2(f)$

A.11 Korrespondenzen der Laplace-Transformation

Bildfunktion $F(s)$	Zeitfunktion $f(t)$	Bildfunktion $F(s)$	Zeitfunktion $f(t)$
1	$\delta(t)$	$\frac{a}{s^2 + a^2}$	$\sin at$
$\frac{1}{s}$	1	$\frac{s}{s^2 + a^2}$	$\cos at$
$\frac{1}{s^2}$	$oxed{t}$	$\frac{a}{s^2 - a^2}$	$\sinh at$
$\frac{n!}{s^{n+1}}$	t^n	$\frac{s}{s^2 - a^2}$	$\cosh at$
$\frac{1}{s-a}$	e^{at}	$\frac{a}{(s-b)^2 + a^2}$	$e^{bt} \sin at$
$\frac{1}{(s-a)^2}$	$t e^{at}$	$\frac{s-b}{(s-b)^2+a^2}$	$e^{bt}\cos at$
$\frac{a}{s(s-a)}$	$e^{at} - 1$	$\frac{a}{(s-b)^2 - a^2}$	$e^{bt} \sinh at$
$\frac{a-b}{(s-a)(s-b)}$	$e^{at} - e^{bt}$	$\frac{s-b}{(s-b)^2 - a^2}$	$e^{bt} \cosh at$
$\frac{a}{1+as}$	$e^{-\frac{t}{a}}$ $(a \neq 0)$	$\frac{2as}{(s^2+a^2)^2}$	$t \sin at$
$\frac{a^2}{(1+as)^2}$	$t e^{-\frac{t}{a}} (a \neq 0)$	$\frac{s^2 - a^2}{(s^2 + a^2)^2}$	$t\cos at$
$\frac{1}{s(1+as)}$	$1 - e^{-\frac{t}{a}} (a \neq 0)$	$\frac{2as}{(s^2 - a^2)^2}$	$t \sinh at$
$\frac{a-b}{(1+as)(1+bs)}$	$e^{-\frac{t}{a}} - e^{-\frac{t}{b}} (a, b \neq 0)$	$\frac{s^2 + a^2}{(s^2 - a^2)^2}$	$t \cosh at$
$\frac{s}{(s-a)^2}$	$(1+at)e^{at}$	$\frac{2}{(s-a)^3}$	$t^2 e^{at}$
$\frac{(a-b)s}{(s-a)(s-b)}$	$a e^{at} - b e^{bt}$	$\frac{2s}{(s-a)^3}$	$\left(at^2 + 2t\right)e^{at}$
$\frac{a^3 s}{(1+as)^2}$	$(a-t)e^{-\frac{t}{a}} (a \neq 0)$ $a e^{-\frac{t}{b}} - b e^{-\frac{t}{a}} (a, b \neq 0)$	$\frac{2s^2}{(s-a)^3}$	$\left (a^2t^2 + 4at + 2)e^{at} \right $
$\frac{ab(a-b)s}{(1+as)(1+bs)}$	$a e^{-\frac{t}{b}} - b e^{-\frac{t}{a}} (a, b \neq 0)$	$\frac{a^2}{s^2(s-a)}$	$e^{at} - at - 1$

A.12 Eigenschaften der Laplace-Transformation

Eigenschaft	Zeitfunktion	Bildfunktion
Linearität	$C_1 f_1(t) + C_2 f_2(t)$	$C_1 F_1(s) + C_2 F_2(s)$
Ähnlichkeit $(a > 0)$	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$
Zeitverschiebung	$\sigma(t-t_0)f(t-t_0)$	$e^{-t_0 s} F(s)$
Dämpfung	$= e^{-s_0 t} f(t)$	$F(s+s_0)$
Differenziation in \boldsymbol{t}	f'(t)	sF(s)-f(0)
	$\int f''(t)$	$s^2 F(s) - s f(0) - f'(0)$
	:	:
		$s^{n} F(s) - \sum_{k=0}^{n-1} s^{n-k-1} f^{(k)}(0)$
Differenziation in s	-t f(t)	F'(s)
	$\int t^2 f(t)$	F''(s)
	:	:
	$(-t)^n f(t)$	$F^{(n)}(s)$
Multiplikation mit t	t f(t)	-F'(s)
	$\int t^2 f(t)$	F''(s)
	:	:
	$\int t^n f(t)$	$(-1)^n F^{(n)}(s)$
Integration im Zeitbereich	$\int_0^t f(\tau) \mathrm{d} \tau$	$\frac{1}{s}F(s)$
Integration im Bildbereich	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) \mathrm{d} u$
Faltung im Zeitbereich	$f_1(t) \star f_2(t)$	$F_1(s) \cdot F_2(s)$
Periodische Funktion	f(t+T)=f(t)	$\frac{1}{1 - e^{-Ts}} \int_0^T f(t) e^{-st} dt$

A.13 Korrespondenzen der z-Transformationen

Bildfunktion $F(z)$	${\sf Zeitfolge}\;(f_k)$	Bildfunktion $F(z)$	${\sf Zeitfolge}\;(f_k)$
1	δ_k	$\frac{1}{z^n}$	1 für $k = n$, 0 sonst
$\frac{z}{z-1}$	1	$\frac{z}{(z-1)^2}$	$oxed{k}$
$\frac{z}{z-a}$	a^k	$\frac{az}{(z-a)^2}$	$igg k a^k$

A.14 Eigenschaften der z-Transformationen

Eigenschaft	Zeitfolge	Bildfunktion
Linearität	$C_1\left(f_k\right) + C_2\left(g_k\right)$	$C_1 F(z) + C_2 G(z)$
Dämpfung	$(a^{-k}f_k)$	F(az)
Indexverschiebung	(f_{k-n})	$z^{-n}F(z)$
	(f_{k+1})	$z(F(z)-f_0)$
	(f_{k+2})	$z^2(F(z) - f_0 - f_1 z^{-1})$
	:	:
	(f_{k+n})	$z^n \left(F(z) - \sum_{k=0}^{n-1} f_k z^{-k} \right)$
Differenzen	(Δf_k)	$(z-1)F(z)-zf_0$
	$\left(\Delta^2 f_k\right)$	$(z-1)^2F(z)-z((z-1)f_0+\Delta f_0)$
	:	:
	$(\Delta^n f_k)$	$(z-1)^n F(z) - z \sum_{k=0}^{n-1} (z-1)^{n-k-1} \Delta^k f_0$
Multiplikation mit k	$(k f_k)$	-z F'(z)
	$\left(\left(k^{2}f_{k} ight)$	$z F'(z) - z^2 F''(z)$
	:	:
Faltung im Zeitbereich	$(f_k)\star(g_k)$	$F(z) \cdot G(z)$

Korrespondenzen der FT

Skript, Tabelle 2.2.

22.10.18 Signale und Systeme, VL1