Objetivos de aprendizaje Tema 7

Análisis Matemático II

Javier Gómez López

10 de mayo de 2022

1. Conocer y comprender la definición de función integrable y de integral de una tal función Trabajamos en un conjunto medible $\Omega \subset \mathbb{R}^N$, que mantenemos fijo. Para una función medible $f: \Omega \to \mathbb{R}$, es decir, para $f \in \mathcal{L}(\Omega)$, pretendemos definir, cuando sea posible, la integral de f sobre un conjunto medible $E \subset \Omega$.

Decimos que una función $f \in \mathcal{L}(\Omega)$ es **integrable** sobre un conjunto medible $E \subset \Omega$, cuando verifica que

$$\int_{E} |f| < \infty$$

En tal caso tenemos $f^+, f^- \in \mathcal{L}^+(\Omega)$ y el crecimiento de la integral ya definida en $\mathcal{L}^+(\Omega)$ nos dice que

$$\int_E f^+ \leq \int_E |f| < \infty, \qquad \text{y también}, \qquad \int_E f^- \leq \int_E |f| < \infty$$

Podemos por tanto definir la **integral** de f sobre E como el número real dado por

$$\int_E f = \int_E f^+ - \int_E f^-$$

- 2. Conocer y comprender el enunciado de los siguientes resultados:
 - a) Teorema de la convergencia absoluta

Teorema 1. Sea $\{f_n\}$ una sucesión de funciones integrables, tal que $\sum_{n=1}^{\infty} \int_{\Omega} |f_n| < \infty$. Entonces, la serie $\sum_{n\geq 1} f_n$ converge absolutamente en un conjunto $E \subset \Omega$, con $\lambda(\Omega \setminus E) = 0$. Además, definiendo $f(x) = \sum_{n=1}^{\infty} \chi_E(x) f_n(x)$ para todo $x \in \Omega$, se tiene que $f \in \mathcal{L}_1(\Omega)$ con $\int_{\Omega} f = \sum_{n=1}^{\infty} \int_{\Omega} f_n$.

Donde $\mathcal{L}_1(\Omega)$ es el conjunto de todas las funciones integrables en Ω .

1

b) Continuidad absoluta de la integral

Continuidad absoluta. Dada una función integrable $f \in \mathcal{L}_1(\Omega)$, para cada $\varepsilon > 0$ puede encontrarse $\delta > 0$ verificando que, si E es un subconjunto medible de Ω con $\lambda(E) < \delta$, entonces se tiene $\int_E |f| < \varepsilon$, y por tanto $|\int_E f| < \varepsilon$.

3. Conocer y comprender el teorema de la convergencia dominada, incluyendo su demostración.

Teorema (Convergencia dominada de Lebesgue). Sea $\{f_n\}$ una sucesión de funciones reales medibles, que converge puntualmente en Ω a una función $f: \Omega \to \mathbb{R}$. Supongamos que existe una función integrable $g: \Omega \to \mathbb{R}_0^+$ tal que:

$$|f_n(x)| \le g(x) \quad \forall x \in \Omega, \quad \forall n \in \mathbb{N}$$

Entonces f es integrable y se verifica que

$$\lim_{n \to \infty} \int_{\Omega} |f_n - f| = 0, \qquad de \ donde, \qquad \int_{\Omega} f = \lim_{n \to \infty} \int_{\Omega} f_n$$
 (1)

Demostración. Para cada $n \in \mathbb{N}$, de $|f_n| \leq g$ y $g \in \mathcal{L}_1(\Omega)$ se deduce que $f_n \in \mathcal{L}_1(\Omega)$. Por otra parte, para cada $x \in \Omega$, vemos que $|f(x)| = \lim_{n \to \infty} |f_n(x)| \leq g(x)$. Por tanto, se tiene también $|f| \leq g$, de donde deducimos igualmente que $f \in \mathcal{L}_1(\Omega)$. Se trata ahora de probar la primera afirmación de (1), de la que fácilmente obtendremos la segunda.

Sea pues $\rho_n = \int_{\Omega} |f_n - f|$, para todo $n \in \mathbb{N}$, con lo que $\{\rho_n\}$ es una sucesión de números reales no negativos, y queremos probar que $\{\rho_n\} \to 0$. Para abreviar la notación, escribimos también $\rho = \int_{\Omega} (2g)$. La idea clave será usar el lema de Fatou para una conveniente sucesión de funciones. Concretamente tomamos $g_n = 2g - |f_n - f|$ para todo $n \in \mathbb{N}$.

Como $|f_n - f| \le |f_n| + |f| \le 2g$ para todo $n \in \mathbb{N}$, vemos que $\{g_n\}$ es una sucesión de funciones medibles positivas que converge puntualmente en Ω a la función 2g. De paso vemos que $\rho_n \le \rho$ para todo $n \in \mathbb{N}$. El lema de Fatou y la linealidad de la integral nos dicen que

$$\rho = \int_{\Omega} (2g) = \int_{\Omega} \liminf_{n \to \infty} g_n \le \liminf_{n \to \infty} \int_{\Omega} g_n = \liminf_{n \to \infty} (\rho - \rho_n)$$
 (2)

lo que nos llevará inmediatamente al resultado que buscamos.

Para todo $n \in \mathbb{N}$ se tiene que $\inf\{\rho - \rho_k : k \ge n\} = \rho - \sup\{\rho_k : k \ge n\}$ de donde, al tomar límites, obtenemos que lím $\inf_{n \to \infty} (\rho - \rho_n) = \rho - \limsup_{n \to \infty} \rho_n$. Por tanto en (2) teníamos

$$\rho \le \rho - \limsup_{n \to \infty} \rho_n, \quad \text{es decir}, \quad \limsup_{n \to \infty} \rho_n \le 0$$

pero siendo $\rho_n \geq 0$ para todo $n \in \mathbb{N}$, esto significa que $\{\rho_n\} \to 0$.

La segunda afirmación de (1) se deduce claramente de la primera, usando la linealidad y positividad de la integral, que nos permiten escribir:

$$\left| \int_{\Omega} f_n - \int_{\Omega} f \right| = \left| \int_{\Omega} (f_n - f) \right| \le \int_{\Omega} |f_n - f| \qquad \forall n \in \mathbb{N}$$