Definition 1. Several functions are defined below.

- $W(f) = \frac{f-3}{f-4}$ with domain $(-\infty, 4) \cup (4, \infty)$.
- k(c) = 2|c 8| 3 with domain [-4, 10)].
- $y(p) = -\sqrt{2p-8} + 3$ with domain $[5, \infty)$.
- x(T) = 6 3T with domain $(-\infty, \infty)$.

Exercise 1 Decide if the following function definition is well-defined.

$$F(n) = W(n) + k(n)$$
 with domain $(-\infty, 4) \cup (4, \infty)$.

Multiple Choice:

- (a) Well-Defined
- (b) Not Well-Defined ✓

Exercise 2 Decide if the following function definition is well-defined.

$$F(n) = W(n) + k(n)$$
 with domain [-4, 10)].

Multiple Choice:

- (a) Well-Defined
- (b) Not Well-Defined ✓

Exercise 3 Decide if the following function definition is well-defined.

$$F(n) = W(n) + k(n)$$
 with domain $[-4, 4) \cup (4, 10)]$.

Multiple Choice:

- (a) Well-Defined ✓
- (b) Not Well-Defined

Exercise 4 Decide if the following function definition is well-defined.

$$F(n) = \frac{x(n)}{k(n)} \text{ with domain } [-4, 10)].$$

Multiple Choice:

- (a) Well-Defined
- (b) Not Well-Defined \checkmark