Контролируемое обучение (обучение с учителем)

Сценарий разработки, валидации и внедрения модели ML

Подготовка

данных

Оценка

Описание
задачи

что хотим

сделать

какие признаки объектов доступны

подготовка признаков для решения задачи

Предобработка

данных

Выбор алгоритма

обучение и

алгоритма

выбор лучшего

а алгоритма

вывод о качестве по метрикам Валидация

модели

независимая, детальная проверка качества алгоритма Внедрение Мониторинг

в пром кач

включение в промышленные бизнес процессы

качества контроль качества работы решения в ПРОМ

Классическое Обучение

Контролируемое обучение

- Контролируемое обучение (обучение с учителем, supervised learning) это метод машинного обучения, при котором модель обучается на размеченных данных.
- Размеченные данные это данные с присвоенной выходной информацией, т.е. у наблюдений помимо входных параметров (независимых переменных) есть выходной параметр/показатель (зависимая/целевая переменная).

Задача обучения с учителем

Необходимо найти закономерности в имеющихся прецедентах и обобщить на объекты, для которых ответы неизвестны.

Имеются:

- ▶ Множество объектов (ситуаций) X со своими признаковыми описаниями.
- ▶ Множество возможных ответов (откликов, реакций) Ү.
- ▶ Между X и Y существует зависимость а: X \rightarrow Y, известная на конечной выборке прецедентов (исторических данных) (x_i , y_i) парах "объект-ответ".
- ► Множество прецедентов называется обучающей выборкой X_train.

На основе имеющихся прецедентов необходимо построить алгоритм а: $X \to Y$, способный построить достаточно точный ответ для любого допустимого x_i из X.

Алгоритмы/модели контролируемого обучения

- Классификация выходная переменная категоризирована.
- Регрессия выходная переменная является числовой величиной.

Процесс контролируемого обучения (sklearn)

metrics.precision score

Оценка модели (качества предсказания)

В задачах supervised learning принято делить выборку на 2 (A) или 3 (B) непересекающиеся части. Каждая выборка должна быть репрезентативна!

- Обучающая (training sample). На ней происходит обучение модели.
- Валидационная (validation sample). На ней считают метрики качества, а по ним уже подбирают гиперпараметры. Валидационную выборку используют не всегда.
- Тестовая (test sample). По ней оценивают качество обученной модели.

Стратификация — способ балансировки выборок в случае дисбаланса типов объектов.

Кросс-валидация (CV)

Переобучение

Явление, когда алгоритм хорошо приближает зависимость на обучающей выборке и только на ней, называется переобучением.

Проблема Bias-Variance (Смещение-Дисперсия)

Линейная модель и линейная классификация

Регрессия

Классификация

Линейные и нелинейные зависимости

Machine Learning Model	Category
Linear Regression (LR)	Linear
Linear Discriminant Analysis	Linear
(LDA)	
Support Vector Machine (SVM)	Linear
Quadratic Discriminant Analy-	Non-linear
sis (QDA)	
Random Forest (RF)	Non-linear
K-Nearest Neighbors (KNN)	Non-linear
Nearest Centroid	Linear
Naive Bayes	Linear
Perceptron	Linear
Decision Tree (DT)	Non-linear
Dummy	Non-linear
Neural Networks	Non-linear
	Linear Regression (LR) Linear Discriminant Analysis (LDA) Support Vector Machine (SVM) Quadratic Discriminant Analysis (QDA) Random Forest (RF) K-Nearest Neighbors (KNN) Nearest Centroid Naive Bayes Perceptron Decision Tree (DT) Dummy

Линейная регрессия

$$y = w_1 x_1 + w_2 x_2 + ... + w_k x_k + b,$$

где у - целевая переменная, x_i — i-й признак объекта x, w_i - вес i-го признака, b - свободный член

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$
 $MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y_i})^2} = \sqrt{MSE}$$

SS_{total} = SUM (y_i - y_{avg})²
$$R^2 = \frac{SSR}{SST} = \frac{\sum (\hat{y}_i - \bar{y})^2}{\sum (y_i - \bar{y})^2}$$

Виды регрессий

Исходные данные

Полиномиальная регрессия означает приближение данных (x_i, y_i) полиномом k-й степени.

Полиномиальная регрессия

Увеличение степени лучше описывает текущие данные, но не новые. Явление - переобучение.

Регуляризация – борьба с переобучением

Регуляризация - введение дополнительного ограничения на размер весов w_i

L1 (Lasso)
$$||w||_1 = \lambda_1 \sum_{j=1}^d |wj|$$

L2 (Ridge)
$$||w||^2 = \lambda_2 \sum_{j=1}^a w_j^2$$

ElasticNet
$$||w||_3 = \lambda_1 \sum_{j=1}^d |wj| + \lambda_2 \sum_{j=1}^d w_j^2$$

$$MSE + ||w|| \rightarrow min$$

Важность признаков

Дерево решений

Лист: среднее (регрессия) или класс (классификация)

Композиции моделей

Спросим мнение каждого эксперта по отдельности

Получим наиболее точный ответ

Композиции моделей

Композиции моделей: бэггинг, бустинг, стекинг.

Бэггинг:

Набирается m случайных объектов с повторением и на них обучается модель. Эти действия повторяются N раз. Затем усредняются ответы всех полученных моделей.

Случайный лес основан на данном подходе и представляет собой композицию деревьев.

Бустинг (градиентный):

Обучаются N простых моделей $b_n(x)$ с обучаемый весом (вкладом) каждой модели γ_n , ответ композиции a_N на объекте x определяется по формуле: $a_N(x) = \sum_{n=0}^N \gamma_n b_n(x)$. Каждая следующая модель обучается так, чтобы она уменьшала ошибку всех уже построенных.

Стекинг:

В начале обучаются базовые модели, а потом на их выходах обучается еще одна модель.

Логистическая регрессия

В логистической регрессии $\hat{y} \in [0, 1]$.

$$\widehat{y} = \frac{1}{1+e^{-(\mathsf{W}_1\mathsf{X}_1 + \mathsf{W}_2\mathsf{X}_2 + \dots + \mathsf{W}\mathsf{k}\mathsf{x}\mathsf{k} + \mathsf{b})}$$
 - уравнение логистической регрессии.

Классификация

Метод опорных векторов (SVM)

SVM - классификатор, который пытается построить такую линию, чтобы самым точным образом разделить между собой разные типы объектов.

Метод k-ближайших соседей

Будем относить к одному классу объекты, расстояние между которыми минимально.

Матрица ошибок (метрики качества модели классификации)

Матрица ошибок отражает количество ошибочно/верно определенных наблюдений.

По матрице ошибок можно вычислить такие метрики, как Accuracy, Precision, Recall, F1.

МАТРИЦА ОШИБОК

	$m{y} = m{1}$ (Фактический класс)	$m{y} = m{0}$ (Фактический класс)
$\widehat{oldsymbol{y}} = oldsymbol{1}$ (Прогнозный класс)	True Positive (TP)	Type 1 Error Ложная тревога
$\widehat{oldsymbol{y}} = oldsymbol{0}$ (Прогнозный класс)	Type 2 error Пропуск цели	True Negative (TN)

Метрики качества

Accuracy - доля верно определенных наблюдений.

Неинформативна в случае несбалансированности классов. Не учитывает цены разных типов ошибок. Из-за этого редко используется на практике.

Precision (точность прогноза) - отражает точность классификатора в определении единиц.

Используется для минимизации ложных срабатываний (ложных тревог), т.е. когда важно не ошибиться в прогнозе. И если модель отнесла объект к классу «1» то это действительно так.

Recall (полнота прогноза) - показывает процент фактических «единиц», определяемых моделью.

Используется для минимизации пропуска цели, т.е. когда важно определить все объекты истинного класса «1».

F1 (гармоническое среднее) - описывает качество модели в целом, в равной мере учитывая Precision и Recall. Чем ближе метрика к 1, тем модель лучше.

ROC-AUC (кривая ошибок)

МАТРИЦА ОШИБОК

	$m{y} = m{1}$ (Фактический класс)	$m{y} = m{0}$ (Фактический класс)
$\widehat{oldsymbol{y}} = oldsymbol{1}$ (Прогнозный класс)	True Positive Ratio	False Positive Ratio
$\widehat{oldsymbol{y}} = oldsymbol{0}$ (Прогнозный класс)	False Negative Ratio	True Negative Ratio

$$ROC = \frac{\text{площадь закрашенной фигуры}}{\text{площадь идеальной модели}}$$

$$ROC = [0, 1]$$

ROC = 1 — идеальная модель

ROC = 0,5 — соответствует случайному гаданию

ROC < 0.5 — классификатор действует с точностью до наоборот

ROC = 0 — полная противополождность идеальной модели

Использование Scikit-learn (sklearn) для линейной регрессии

```
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
model.score(X_test, y_test) #score для линейной регрессии определяет R<sup>2</sup>
r2_score(y_test, y_pred) #R² – коэффициент детерминации
mean_squared_error(y_test, y_pred) ** 0.5
```