Отчет по лабораторной работе №4

Электромагнитное экранирование

Работу выполнили студенты 430 группы радиофизического факультата

Сарафанов Ф.Г., Платонова М.В.

Содержание

Ві	ведение	2
1.	Цели работы	3
2.	Элементы теории	3
	2.1. Основные понятия	3
	2.2. Расчет экранирующего действия металлических оболочек	3
3.	Описание экспериментальной установки	5
4.	Практическая часть	6
	4.1. Задания 1,2	6
	4.2. Задание 3	7
5.	Вывод	7

Введение

В данной работе изучаются с помощью матричного анализа волноводные узлы – шестиполюсники. У них с помощью измерительной линии измеряются величины, позволяющие рассчитать коэффициенты матрицы рассеяния шестиполюсников S_{km} .

На основе рассчитанной матрицы рассеяния S конкретного шестиполюсников можно попытаться решить обратную задачу: сделать на основе полученных данных предположение о возможных конструктивных вариантах волноводных узлов, находящихся внутри шестиполюсников.

1. Цели работы

Настоящая работа преследует следующие две основные цели.

- Экспериментальное наблюдение явления экранирования переменного магнитного поля металлическими оболочками и выяснение роли основных физических факторов, определяющих степень проникновения поля через экран; к числу таких факторов относятся: свойства материала экрана (проводимость и магнитная проницаемость), толщина его стенок, частота поля.
- Теоретический расчет экранирующих свойств металлических оболочек на простой модели и сопоставление экспериментальных и теоретических данных.

2. Элементы теории

2.1. Основные понятия

Под электромагнитным экранированием понимается изоляция некоторой области пространства от проникновения электромагнитных полей, существующих в соседних областях. В статических или переменных квазистационарных полях (которым соответствуют длины волн, много большие характерных размеров используемых приборов и устройств) такая изоляция осуществляется обычно с помощью замкнутых металлических оболочек - экранов. Явление экранирования поля проводящими оболочками имеет большое практическое значение. В частности, оно широко используется в электро- и радиотехнике для уменьшения паразитных связей между различными элементами приборов. В некоторых случаях, напротив, может возникнуть необходимость принимать специальные меры для борьбы с этим явлением. Общей физической причиной ослабления поля внутри экрана является то обстоятельство, что наведенные в нем внешним полем токи (или заряды) создают во внутренней области поле, противоположное внешнему. В результате суммарное поле в этой области, складывающееся из нолей внешних и наведенных источников, уменьшается.

2.2. Расчет экранирующего действия металлических оболочек

В качестве экранов в работе используются оболочки цилиндрической формы. Строгий расчет их экранирующего действия представлял бы собой весьма сложную задачу, требующую использования численных методов. Однако для получения качественных оценок, ослабления поля в экранированной области и установления общего характера его зависимости от параметров можно ограничиться изучением более простых моделей, допускающих точное решение задачи в известных аналитических функциях. Моделями такого рода

являются, например, плоский, цилиндрический и сферический слои. Поскольку высота и диаметр внутренней полости используемых в работе цилиндров одинаковы и весьма малы по сравнению с длиной волны в свободном пространстве λ_0 , наиболее адекватной моделью, по-видимому, следует считать сферический слой, который имеет тот же объем внутренней полости и внешний радиус $a \ll \lambda_0$. Последнее условие означает, что вне металла (т.е. как во внешней, так и в экранируемоей областях) поле можно рассматривать как квазистатическое. Если замкнутая однородная сферическая оболочка помещена в квазистатическое внешнее поле с комплексным вектором напряженности $\vec{H}_0 e^{i\omega t}$, которое в ее отсутствие является однородным, то поле в ограничиваемой ею области $\vec{H}_1 e^{i\omega t}$ также однородно. Эффективность экранирования удобно характеризовать величиной отношения комплексных амплитуд этих полей:

$$\eta_m = H_0/H_1 \tag{1}$$

Величина $|\eta_m|$ показывает, в какое число раз ослабляется поле в экранированной области, и может быть названа коэффициентом ослабления. Она, естественно, сильно зависит от соотношения между толщиной экрана d и толщиной скин-слоя $\delta = c/(2\pi\sigma\mu\omega)^{\frac{1}{2}}$ (c-скорость света в вакууме, σ - проводимость, μ - магнитная проницаемость экрана). В двух предельных случаях ($\delta \ll d$ и $\delta \gg d$) выражение для η_m (в общем случае довольно громоздкое) существенно упрощается и при выполнении дополнительного условия $d \ll a$ принимает следующий вид:

1) $\delta \ll d$ (сильный скин-эффект):

$$\eta_m = \frac{1}{6} \left[(1-i)\frac{\mu\delta}{a} + 3 + (1+i)\frac{a}{\mu\delta} \right] \exp\left[(1+i)\frac{d}{\delta} \right]$$
 (2)

При $\mu = 1$

$$\eta_m = \frac{1}{6} (1+i) \frac{a}{\delta} \exp\left[(1+i) \frac{d}{\delta} \right]$$
 (3)

2) $\delta \gg d$ (скин-эффект отсутствует):

$$\eta_m = 1 + \frac{2}{3} \frac{d}{a} \frac{(\mu - 1)^2}{\mu} + i \frac{2}{3} \frac{ad}{\mu \delta^2}$$
 (4)

При $\mu = 1$

$$\eta_m = 1 + i \frac{2ad}{3\delta^2} \tag{5}$$

Для приближенных оценок величины η_m (с точностью $\sim 10\%$) выражения (2)—(5) можно использовать и в промежуточном случае ($\delta \simeq d$), разграничивая области применимости формул (2), (3), с одной стороны, и (4), (5), с другой стороны, точкой $\delta = d$.

Заметим, что приведенные результаты расчета позволяют описать также экранирующее действие сферической металлической оболочки по отношению к переменному электрическому полю. В частности, при $\delta \gg a$ выражение для комплексного коэффициента

ослабления электрического поля η_{ε} , легко получается на основании принципа перестановочной двойственности из выражения (4) путем замены в нем магнитной проницаемости μ на диэлектрическую проницаемость проводника $\varepsilon = 4\pi\sigma/i\omega$. В диапазоне радиочастот величина $|\varepsilon|$ для хороших проводников и определяемая ею величина $|\eta_{\varepsilon}|$ принимают чрезвычайно высокие значения, недоступные для измерений в условиях настоящей работы даже при весьма малой толщине экранов. Например, при $d/a \simeq 10^{-3}$, $\sigma \simeq 10^{17}c^{-1}$, $\omega \simeq 10^4c^{-1}$, пренебрегая в (4) малыми членами и заменяя μ на ε , получаем:

$$\eta_{\varepsilon} = 2\varepsilon d/3a = -i8\pi\sigma d/3\omega a \simeq -i \cdot 10^{11}$$
 (6)

В полном соответствии с законами электростатики при $\omega \to 0$ величина $\eta_{\varepsilon} \to \infty$, т.е. электрическое поле внутрь экрана не проникает.

3. Описание экспериментальной установки

Рис. 1. Схема экспериментальной установки

Лабораторная установка предусматривает проведение измерений коэффициентов ослабления для трех латунных и трех стальных экранов цилиндрической формы. Внутренние размеры всех цилиндров одинаковы (высота h = 50мм, диаметр основания D = 50мм), а толщина стенок различна (2мм, 5мм, 10мм). Значения проводимости σ и магнитной проницаемости μ латуни и стали приведены ниже (в гауссовой системе единиц). Латунь: $\sigma \simeq 1.5 \cdot 10^{17} c^{-1}, \mu \cong 1$. Сталь: $\sigma \simeq 0.7 \cdot 10^{17} c^{-1}, \mu \sim 10^2 \div 10^3$ (при $H \sim 10$ эрстед). Схема измерения коэффициента ослабления магнитного поля изображена на рисунке 1. Переменное магнитное поле создается внутри соленоида, подключенного к выходу звукового генератора. В качестве индикатора ноля используется второй соленоид (меньших размеров), с выхода которого переменное напряжение может подаваться на усилитель вольтметра. Надевая больший (генераторный) соленоид сначала на открытый (неэкранированный) индикатор, а затем на индикатор, закрываемый экраном, и измеряя, как изменяются при этом показания вольтметра, мы могли бы (при неизменности амплитуды тока в цепи внешнего соленоида) определить тем самым коэффициент ослабления $|\eta_u|$. Поскольку, однако, внесение металлического экрана внутрь внешнего соленоида, вообще говоря, изменяет его коэффициент самоиндукции, а следовательно, и его импеданс, сила тока в цепи внешнего соленоида и создаваемое этим током магнитное поле H_0 при наличии экрана и в его отсутствие могут быть различными. Это необходимо учитывать при определении величины $|\eta_u|$. В используемой схеме предусмотрено измерение относительных изменений токов как во внутреннем, так и во внешнем соленоидах. С этой целью в цепь внешнего соленоида введено сопротивление R, напряжение с которого подается на

вертикальный усилитель осциллографа. Величина $|\eta_{\mu}|$ должна определяться по формуле:

$$|\eta_{\mu}| = \frac{V_0 U_e}{V_e U_0} \tag{7}$$

где V и U - соответсвенно показания вольтметра и осциллографа, индексы 0 и e относятся соответственно к величинам измеренным без экрана и c экраном.

4. Практическая часть

4.1. Задания 1,2

Для каждого экрана(латунь, сталь) сняли экспериментальную зависимость коэффициента ослабления магнитного поля $|\eta_{\mu}|$ от частоты f.

	Без экрана		Латунь 2			Латунь 5			Латунь 10		
f, Гц	V_0	U_0	V_e	U_e	$ \eta_m $	V_e	U_e	$ \eta_m $	V_e	U_e	$ \eta_m $
20	1 000	16.70	930	16.30	1.05	910.0	16.30	1.07	870.00	16.30	1.12
50	1 000	5.59	870	5.59	1.15	820.0	5.59	1.22	620.00	5.19	1.50
100	1 000	4.40	770	4.40	1.30	650.0	4.40	1.54	490.00	4.40	2.04
200	1 000	1.90	680	2.09	1.62	540.0	2.24	2.18	380.00	2.40	3.32
500	1 000	1.14	500	1.30	2.28	300.0	1.46	4.27	180.00	1.60	7.80
1000	1 000	0.73	390	0.92	3.23	170.0	1.00	8.06	90.00	1.27	19.33
2000	1 000	0.65	240	0.92	5.90	80.0	1.00	19.23	34.00	1.30	58.82
5000	1 000	0.58	100	0.78	13.45	28.0	0.88	54.18	3.80	1.28	580.73
10000	700	0.31	39	0.32	18.53	5.2	0.33	143.30	0.45	0.62	3111.07

Таблица 1. Измерение экранирования латунными экранами

Таблица 2. Измерение экранирования стальными экранами

	Без э	крана		Сталь 2	2		Сталь 5	ı		Сталь 1	0
f, Гц	V_0	U_0	V_e	U_e	$ \eta_m $	V_e	U_e	$ \eta_m $	V_e	U_e	$ \eta_m $
20	1 000	16.70	52.00	16.00	18	20.000	15.60	47	18.000	15.10	50
50	1 000	5.59	68.00	4.50	12	9.000	4.20	83	1.500	4.00	477
100	1 000	4.40	54.00	3.20	13	7.500	2.79	85	0.350	1.60	1039
200	1 000	1.90	40.00	1.05	14	2.200	0.97	232	0.040	0.83	10921
500	1 000	1.14	22.00	0.68	27	0.250	0.60	2105	0.010	0.58	50877
1000	1 000	0.73	9.00	0.52	79	0.035	0.50	19568	0.005	0.48	131506
2000	1 000	0.65	3.20	0.54	260	0.030	0.48	24614	-	-	_
5000	1 000	0.58	0.18	0.54	5172	_	_	_	_	_	_
10 000	700	0.31	0.07	0.38	12258	_	-	_	_	-	_

Принимая в качестве модели цилиндрического экрана сферический слой той же толщины d и с тем же объемом внутренней полости $V=(4\pi/3)(a-d)^3=\pi R^2 h$ (отсюда, ввиду

 $a\gg d$, имеем $a\cong (3R^2h/4)^{1/3})$, построили для исследуемых экранов графики теоретической зависимости $|\eta_\mu(f)|$.

Качественное совпадение наблюдается в области малых частот (до 1000 Hz). Для более высоких частот теория от эксперимента отличается в 20 порядков.

4.2. Задание 3

Используя результаты измерений для стальных экранов, рассчитали приблизительно на основании той же сферической модели для случая $\delta(f) \ll d$ (формула (2)) значения магнитной проницаемости стали μ . Способ приближенного расчета состоял в численном решение уравнения для 3 нижних частот (для высоких частот модель **не совпадает**) частот и последующем усреднении результатов. По полученным данным можно сделать

Таблица 3. Магнитная проницаемость μ для разных частот f и толщины экрана d

f, Hz	μ , 2mm	μ , 5mm	μ , 10mm
20	306.25	13.05	18.64
50	179.35	38.76	32.26
100	94.83	102.01	146.13
$\langle \mu \rangle$	193.48	51.27	65.68

вывод о недостаточной точности эксперимента. Хотя качественно μ для стали действительно лежит в пределах 100-1000.

5. Вывод

- 1) Экспериментально наблюдали явление экранирования переменного магнитного поля металлическими оболочками и выяснили роль основных физических факторов, определяющих степень проникноваения поля через экран
- 2) Теоретически расчитали экранирующие свойства металлических оболочек на простой модели и сопоставили экспериментальные и теоретические данные.
 - В области малых частот простая модель действительно хорошо описывает экранирующие свойства цилиндрического экрана. В области высоких частот теория модели отличается на несколько порядков, что говорит о неприменимости модели.
 - Для стали магнитная проницаемость варьируется в достаточно широких пределах. Это говорит о том, что необходимо повысить чувствительность эксперимента для более точного определения μ .