Collision and Contact

David Baraff

Collision and Contact

We want objects to behave as if they were solid and not interpenetrate. When collisions or contacts occur we need to:

- Detect them.
- Fix them (if they're wrong).
- Maintain them.

Simulations with Collisions

$$\mathbf{X}(t_0)_{\mathsf{O}}$$

Simulations with Collisions

$$\mathbf{X}(t_0 + \Delta t)$$
 $\mathbf{X}(t_0)$

Simulations with Collisions

An Illegal State X

Plan 1: Gradual Repair

Plan 2: Backstep

Plan 3: Just Lie About It!

Penalty-Method Approach

Collision Process

A Soft Collision

A Harder Collision

A Very Hard Collision

An Infinitely Hard Collision

$$f_{imp} = \infty$$
$$\Delta t = 0$$

$$\Delta t = 0$$

Colliding Contact

$$\hat{n} \bullet \dot{p}_a < 0 \qquad \qquad \dot{p}_a^+ = \frac{J}{m_a} + \dot{p}_a$$

Resting Contact

$$\hat{n} \bullet \dot{p}_a = 0$$

Computing Impulses

Coefficient of Restitution

$$\hat{n} \bullet \dot{p}_a^+ = -\varepsilon (\hat{n} \bullet \dot{p}_a^-)$$

Computing j

$$\hat{n} \bullet \dot{p}_a^+ = -\varepsilon (\hat{n} \bullet \dot{p}_a^-)$$

$$\dot{p}_a^+ = \frac{j\hat{n}}{m_a} + \dot{p}_a^-$$

$$aj = b$$

Computing j

$$\hat{n} \bullet \dot{p}_a^+ = -\varepsilon(\hat{n} \bullet \dot{p}_a^-)$$

$$\dot{p}_a^+ = (m_a, \mathbf{I}_a, v^-, \omega^-, j)$$

$$aj = b$$

In the Course Notes — Collision Response

Data structures to represent contacts (found by the collision detection phase).

Derivations and code for computing the impulse between two colliding frictionless bodies for a particular coefficient of ε .

Code to detect collisions and apply impulses.

Separating Planes

Separating Planes

Separating Planes (in 3D)

Does It Really Work?

Yes, but...

- Requires convex decomposition
- Needs a good decomposition:

An Actual Implementation

- CoriolisTM—rigid body dynamics engine in Alias|Wavefront's *Maya*TM
- Fast and reliable
- Compares pairs of polygons from non-convex topologically specified polyhedra (using a coherence-based separating plane approach)
- Hierarchical bounding-box tree to eliminate most false hits

Resting Contact

$$F_{\text{contact}} = f \hat{n}$$

$$= \left(-F_{ext} \bullet \hat{n} \right) \hat{n}$$

$$f = -F_{ext} \bullet \hat{n}$$

$$(\text{if } f \ge 0)$$

Resting Contact

$$\mathbf{r} = \mathbf{J} \mathbf{W} \mathbf{J}^T \begin{pmatrix} \boldsymbol{\lambda} \\ \lambda_a \\ \lambda_b \end{pmatrix} - \mathbf{c} = \mathbf{0}$$

Resting Contact: Quadratic Program

$$\mathbf{r} = \mathbf{JWJ}^T \begin{pmatrix} \boldsymbol{\lambda} \\ \lambda_a \\ \lambda_b \end{pmatrix} - \mathbf{c} \ge \begin{pmatrix} \mathbf{0} \\ 0 \\ 0 \end{pmatrix}$$

$$\lambda_a \ge 0$$

$$\lambda_b \ge 0$$

$$\lambda_a = 0 \text{ if } a_{n+1} > 0$$
$$\lambda_b = 0 \text{ if } a_{n+2} > 0$$

Rigid Bodies: Same Thing!

Cloth/Fur Collision Detection

Cloth/Fur Collision Detection

Leaf-level Bounding Boxes

Mid-level Bounding Boxes

Root-level Bounding Box

- New contacts: generally inside
- Too many for partial time steps.
- Gradual correction—bad.
- Arbitrary displacements—worse.
- Solution: combine information about displacements with implicit step method.

