Homework requirements

- Digital format (can be typeset or photos) is preferred
- Submit by next lecture
- Each homework 10 points; 1 point deducted for each day of delay

Contact information

- Course Email:
 - optinml2019@163.com
- TA:
 - 陈程: jackchen1990@gmail.com (submit your homework here)
- zlin@pku.edu.cn
- http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm

1.

a) Solve the optimization problem

$$\min_{\mathbf{x}} f(x_1, x_2) := 2x_1 + 3x_2, \quad s.t. \quad \sqrt{x_1} + \sqrt{x_2} = 5,$$

using Lagrange multipliers.

b) Find all its KKT points. Do they all correspond to local minima?

2. With $f(\mathbf{x}) := x_1^2 + x_2^2$ for $\mathbf{x} \in \mathbb{R}^2$ consider

$$(P) \begin{cases} \min_{\mathbf{x}} f(\mathbf{x}) \\ -x_2 \le 0 \\ x_1^3 - x_2 \le 0 \\ x_1^3 (x_2 - x_1^3) \le 0 \end{cases}.$$

- a) Find all its KKT points. Do they all correspond to local minima?
- b) Check whether SCQ holds.
- c) Find its dual function, with the domain specified.

- 3. Determine a triangle with minimal area containing two disjoint disks with radius 1. Without loss of generalization, let (0,0), $(x_1,0)$ and (x_2,x_3) with $x_1,x_3 \geq 0$ be the vertices of the triangle; (x_4,x_5) and (x_6,x_7) denote the centers of the disks.
 - a) Formulate this problem as a minimization problem in terms of seven variables and nine constraints.
 - b) $\mathbf{x}^* = (4 + 2\sqrt{2}, 2 + \sqrt{2}, 2 + \sqrt{2}, 1 + \sqrt{2}, 1, 3 + \sqrt{2}, 1)^T$ is a solution of this problem; calculate the corresponding Lagrange multipliers $\boldsymbol{\lambda}^*$, such that the KKT conditions are fulfilled.

- 4. Find the point $\mathbf{x} \in \mathbb{R}^2$ that lies closest to the point $\mathbf{p} := (2,3)^T$ under the constraints $g_1(\mathbf{x}) := x_1 + x_2 \le 0$ and $g_2(\mathbf{x}) := x_1^2 4 \le 0$.
 - a) Verify that the problem is convex and fulfills SCQ.
 - b) Determine the KKT points by differentiating between three cases: none is active, exactly the first one is active, exactly the second one is active.
 - c) Find its dual function, with the domain specified.

5. Given a support vector machine:

$$\min_{\mathbf{w},\beta} \frac{1}{2} ||\mathbf{w}||^2,
s.t. \ y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + \beta) \ge 1, (i = 1, \dots, m).$$

- a) Check whether the problem fulfills SCQ. What does SCQ mean in this scenario?
- b) Find its dual function, with the domain specified.

6. Find the dual problem of the following problems and check whether the strong dualities hold:

$$\min_{x} x^{2} + 1$$
s.t. $(x-2)(x-4) \le 0$,

b)

$$\min_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$$

$$s.t. \ f(\mathbf{x}) \le 0,$$

with $\mathbf{c} \neq \mathbf{0}$.

c) (Regularized Empirical Risk Minimization)

$$\min_{\mathbf{x},\mathbf{y}} F(\mathbf{x}) \equiv \frac{1}{n} \sum_{i=1}^{n} \phi_i(y_i) + \frac{\mu}{2} ||\mathbf{x}||^2,$$

$$s.t. \ y_i = \mathbf{a}_i^T \mathbf{x}.$$