

Konnektivität im Gehirn

Lutz Althüser, Tobias Frohoff-Hülsmann, Victor Kärcher, Lukas Splitthoff, Timo Wiedemann

NiMoNa 2016 08. Juni, 2016

Überblick

Motivation und Ziel

Die Modelle

Lineares Modell

Bilineraes Modell

Hämodynamisches Modell

Numerische Methoden

Euler-Verfahren

Runge-Kutta-Verfahren (4. Ordnung)

Numerische Simulation

FPPlung in ein Ar 2_{y} Regionen-System

tivität Literatur

Einleitung in DCM - <u>Dynamic Causal Model</u>

Interaktion zwischen verschiedenen Hirnregionen

Konnektivität im Gehirn

Über die Mathematische Modellierung von Interaktionen zwischen mehreren Regionen des Gehirns.

Ziel

Das Aufstellen eines einfachen und realistischen neuronalen Modells aller interagierenden Gehirnregionen.

Lineares Modell

u Inputs $\rightarrow z$ Outputs pro Hirnregion

Inputs

- direkten Input: Veränderung des neuronalen Zustands
- ▶ latenten Input: Veränderung der Vernetzung

Outputs

- ▶ neuronale Aktivität in der Hirnregion
- ▶ ...

 $\dot{z} = A + Cu$

Vernetzung von Hirnregionen

Matrix A: Konnektivitätsmatrix - Verschaltung der Hirnregionen

Matrix C: Einfluss der Inputs auf die neuronale Aktivität einer Hirnregion

Modell

- ▶ n verschiedene Gehirnregionen mit der Zustandsvariablen z_i mit i = 1, ..., n
- Aktivität durch vorgegebene Eingangssignale bestimmt

Input u_1 , u_2

- direkten Input u₁: Veränderung des neuronalen Zustands
- ► latenten Input *u*₂: Veränderung der Vernetzung

Mathematische Beschreibung

- Modellierung basierend auf Taylorentwicklung
- Dynamik und Konnektivität durch drei Parameter beschrieben

Taylorentwicklung

$$f(z,u)\approx f(0,0)+\tfrac{\partial f}{\partial z}z+\tfrac{\partial f}{\partial u}u+\tfrac{\partial^2 f}{\partial z\partial u}zu$$

Mathematische Beschreibung

- Modellierung basierend auf Taylorentwicklung
- Dynamik und Konnektivität durch drei Parameter beschrieben

Taylorentwicklung

$$f(z, u) \approx f(0, 0) + \frac{\partial f}{\partial z}z + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial z \partial u}zu$$

Bsp: Aktivität der Region 1

$$\dot{z}_1 = a_{11}z_1 + a_{12}z_2 + a_{13}z_3 + u_2b_{13}^{(2)} + c_{11}u_1$$

Mathematische Beschreibung

- Modellierung basierend auf Taylorentwicklung
- Dynamik und Konnektivität durch drei Parameter beschrieben

Taylorentwicklung

$$f(z, u) \approx f(0, 0) + \frac{\partial f}{\partial z}z + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial z \partial u}zu$$

Bsp: Aktivität der Region 1

$$\dot{z}_1 = a_{11}z_1 + a_{12}z_2 + a_{13}z_3 + u_2b_{13}^{(2)} + c_{11}u_1$$

$$\dot{z} = (A + \sum_{i} u_{i}B^{(i)})z + Cu$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 & b_{13} \\ 0 & 0 & b_{23} \\ 0 & 0 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} c_{11} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Parameter A, B, C

- ► A: feste Verknüpfung der Hirnregionen
- ▶ B: Einfluss des Inputs auf Konnektivität
- ► C: Einfluss des Inputs auf neuronale Aktivität der Hirnregionen

Taylorentwicklung

$$f(z, u) \approx f(0, 0) + \frac{\partial f}{\partial z}z + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial z \partial u}zu$$

Bsp: Aktivität der Region 1

$$\dot{z}_1 = a_{11}z_1 + a_{12}z_2 + a_{13}z_3 + u_2b_{13}^{(2)} + c_{11}u_1$$

$$\dot{z} = (A + \sum_{i} u_{i} B^{(i)}) z + Cu$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 & b_{13} \\ 0 & 0 & b_{23} \\ 0 & 0 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} c_{11} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Vergleichbarkeit

Bilineare Modell \Rightarrow Gehirnaktivitäten $z_i(t)$

Experiment (funktionelle MRT) \Rightarrow BOLD-Signal/Kontrast $y_i(t)$ \approx Sauerstoffgehalt der roten Blutkörperchen

Hämodynamisches Modell

4 biophysikalische Zustandsvariablen übermitteln $z_i(t) \rightarrow y_i(t)$:

 $s_i(t)$: Zusammenfassung mehrerer neurogener Signale

 $f_i^{in}(t)$: (sauerstoffreicher) Blutzufluss

 $v_i(t)$: Venenvolumen

 $q_i(t)$: Desoxyhämoglobinkonzentration

Biophysikalisch:

$$\begin{split} \dot{s}_{i} &= z_{i} - \kappa s_{i} - \gamma (f_{i}^{in} - 1) \\ \dot{f}_{i}^{in} &= s_{i} \\ \dot{v}_{i} &= \frac{1}{\tau} (f_{i}^{in} - f_{i}^{out}) = \frac{1}{\tau} (f_{i}^{in} - v_{i}^{1/\alpha}) \\ \dot{q}_{i} &= \frac{1}{\tau} (f_{i}^{in} E_{i} / \rho - v_{i}^{1/\alpha} q_{i} / v_{i}) \end{split}$$

BOLD-Signal (fMRT):

$$y_i = V_0(k_1(1-q_i) + k_2(1-q_i/v_i) + k_3(1-v_i))$$

Euler-Verfahren

explizites Verfahren

Runge-Kutta-Verfahren (4. Ordnung)

Analyse der effektiven Konnektivität

$$\dot{z} = \left(A + \sum_{j} u_{j} B^{j}\right) z + Cu$$

$$A = \begin{pmatrix} -1 & 0 \\ 0.5 & -1 \end{pmatrix}$$
 $B_1 = 0$ $B_2 = \begin{pmatrix} 0 & 0 \\ 0.8 & 0 \end{pmatrix}$ $C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Vielen Dank für die Aufmerksamkeit!

Literatur

► Dynamic causal modelling

K.J. Friston et al. / NeuroImage 0 (2003)

 $\verb|web.mit.edu/swg/ImagingPubs/connectivity/Dcm_Friston.pdf|\\$