GESTION E/S

GESTIÓN DE LA E/S

- Dispositivos de Entrada/Salida
- Organización de las funciones de E/S
- Aspectos de diseño en los sistemas operativos
- Almacenamiento intermedio de E/S
- Entrada/Salida a disco
- Sistemas de ejemplo Resumen
- Lecturas recomendadas
- Problemas

Clasificacion

- Dispositivos legibles por los humamos
- Dispositivos legibles por la máquina
- Dispositivos de comunicaciones
- Velocidad de los datos
- Aplicaciones
- Complejidad del control
- Unidad de transferencia
- Representación de los datos
- Condiciones de error

Dispositivo	Comportamiento	Interacción	Velocidad de Transmisión
Teclado	Entrada	Humano	0,01
Ratón	Entrada	Humano	0,02
Micrófono	Entrada	Humano	0,02
Escáner	Entrada	Humano	200
Altavoces	Salida	Humano	0,6
Impresora de línea	Salida	Humano	1
Impresora láser	Salida	Humano	1 00
Pantalla gráfica	Salida	Humano	30.000
CPU a buffer	Salida	Humano	200
Terminal de red	Entrada/Salida	Máquina	0,05
Adaptador de LAN	Entrada/Salida	Máquina	200
Disco óptico	Almacenamiento	Máquina	500
Cinta magnética	Almacenamiento	Máquina	2.000
Disco magnético	Almacenamiento	Máquina	2.000

Por velocidad de Transmision

DMA

" "acceso directo a memoria" (DMA) es apropiado porque todos contemplan un control directo de la memoria principal por parte del módulo de E/S

plo de Ratios de Transferencia Mb/s

(Sun Enterprise 6000)

- Device Rates vary over many orders of magnitude
 - System better be able to handle this wide range
 - Better not have high overhead/byte for fast devices!
 - Better not waste time waiting for slow devices

Gestión de entradas/salidas

Interrupciones Intel 8086

ORGANIZACIÓN DE LAS FUNCIONES DE E/S

- E/S programada
- E/S dirigida por interrupciones
- Acceso directo u memoria (DMA)

- Un módulo de DMA controla el intercambio de datos entre la memoria principa I y un módulo de E/S.
 - El procesador envía una petición de transferencia de un bloque de datos al módulo

Diagrama de bloques de un DMA típico

Punto de Ruptura por DMA

Configuraciones Posibles de DMA

Objetivos de Diseño

Hay dos objetivos primordiales en el diseño de la E/S: eficiencia y generalidad

Características para diseñar un sistema operativo.

- 1. Eficiencia.
- 1.1. Muchos dispositivos E/S son extremadamente lentos en comparación con la memoria principal.
- 1.2. El uso de la multiprogramación permite a un proceso esperar termine su E/S mientras otro proceso se ejecuta en el procesador.
- 1.3. E/S no puede competir con la velocidad del procesador.
- 2. Generalidad
- 2.1. Es deseable que maneje todos los dispositivos E/S de manera uniforme.
- 2.2. Esconde los detalles del manejo de un E/S en rutinas de bajo nivel, de tal manera que los procesos y las aplicaciones usen funciones generales como leer, escribir, abrir, cerrar, bloquear, desbloquear.

Un modelo para organizar E/S

Buffering de E/S

- 1. Razones para el buffering
- 1.1. Los procesos deben esperar se termine el E/S antes de continuar.
- 1.2. Algunas páginas deben conservarse en memoria mientras ocurre el E/S.
- 2. Orientados al bloque.
- 2.1. La información se almacena en bloques de tamaño fijo
- 2.2. Se transfiere a la vez un bloque, antes que un solo dato.
- 2.3. Se usa sobretodo en discos duros y cintas.
- 3. Orientados al flujo de datos
- 3.1. Se transfiere la información como un flujo de bytes.
- 3.2. Usada por monitores, impresoras, comunicaciones, puertos, mouse, y otros dispositivos que no son de almacenamiento secundario.

Buffer simple

- 1. El sistema operativo asigna un buffer en la memoria principal para los pedidos E/S.
- 2. Orientado al bloque.
- 2.1. Los input de los dispositivos se transfieren al buffer de E/S.
- 2.2. Se mueven los bloques a la memoria asignada al proceso cuando se requiera.
- 2.3. Otro bloque se moverá al buffer desde el dispositivo E/S.
- 2.4. El proceso del usuario se puede ir procesando un bloque mientras la E/S esta leyendo otro.
- 2.5. Puede ocurrir swaping puesto que el buffer esta en la memoria correspondiente al sistema operativo y no en la memoria del proceso.
- 2.6. El sistema operativo controla la asignación de buffer a los procesos del usuario.

Buffer simple

- 3. Orientados al flujo de datos.
- 3.1. Usado como una línea de tiempo.
- 3.2. El input desde un terminal es una línea de bytes hasta que un retorno de carro indique la finalización del input.

Perfomance del Disco Duro

- 1. Para leer o para escribir, el cabezal del disco se debe colocar en la pista deseada y al principio del sector deseado.
- 2. Tiempo de búsqueda. Tiempo que toma colocar el cabezal en la pista deseada.
- 3. Retraso o latencia rotacional. Tiempo adicional para colocar el cabezal en el sector deseado.
- 4. Tiempo de acceso. La suma de los dos tiempos anteriores. El tiempo que toma colocarse justo en posición de lectura o escritura.
- 5. La transferencia de datos ocurre cuando el sector se mueve bajo el cabezal.

Políticas de acceso a disco

- 1. La perfomance del disco se mide por el tiempo de acceso.
- 2. El disco puede tener varios pedidos en cola de BLOQUEADOS para cumplir, sean de lectura o escritura.
- 3. Si seleccionamos aleatoriamente un pedido tendrán una pésima perfomance.

Políticas de acceso a disco

Nombre	Descripción	Consideraciones		
En base al proceso				
RSS	Aleatorio	Solo para análisis y simulación		
FIFO	Primero en entrar, primero en salir	Al parecer el más adecuado		
PRI	En base a la prioridad del proceso	No optimiza la perfomance del disco, sino de la cola de procesos preparados		
LIFO	Ultimo en entrar, primero en salir	Maximiza la utilización de recursos; puesto que el pedido debe ser del mismo usuario		
En base al tiem	po de respuesta			
SSTF	Primero el de menor tiempo de acceso	Colas pequeñas, alta utilización del buffer		
SCAN	El cabezal se mueve hacia el centro del disco, cumpliendo los pedidos que encuentre y luego al borde, cumpliendo el resto.	Se distribuye mejor la atención a los procesos.		
C-SCAN	Una sola dirección del cabezal hacia el centro del disco y retorna rápidamente al borde	Servicio de atención desfavorable para los procesos.		
F-SCAN	Se subdivide los pedidos en una subcola de N procesos y se atiende con política SCAN; los siguientes procesos que ingresen formaran una nueva cola.	Servicio de atención garantizado		

RAID (Redundant Array of Independent Disks)

- 1. Es un arreglo de discos que operan en paralelo pero independientemente.
- 2. Distribuyen la información en diferentes discos.
- 3. Un pedido E/S puede se atendido en paralelo.
- 4. RAID es un conjunto de discos físicos vistos por el sistema operativo como un único drive.
- 5. Los datos son distribuidos en todos los discos físicos del arreglo.
- 6. Se guarda información redundante para garantizar una rápida recuperación en caso de falla de un disco duro.

RAID 1

- 1. Discos espejados.
- 2. Al escribirse en disco, se copia dos veces.
- 3. Al leerse de disco, puede leerse de cualquiera de los 2 discos
- 4. Es excelente la tolerancia de errores.

(b) RAID 1 (mirrored)

Cache de Disco

- 1. Buffer en memoria principal de los sectores de disco más visitados.
- 2. Contiene una copia de algunos sectores del disco.

Usado menos recientemente.

- 1. El bloque que ha estado en el cache mucho tiempo sin ser consultado, será reemplazado
- 2. El cache consiste en una pila de bloques.
- 3. El bloque mas recientemente referenciado estará en la cima de la pila.
- 4. Cuando un bloque es consultado del cache o es cargado al cache, se coloca en la cima de la pila.
- 5. El bloque en la base de la pila se remueve cuando se requiere cargar un nuevo bloque.
- 6. Los bloques del cache no se mueven de posición en la memoria, sino que se controlan a través de una pila de punteros.

Cache de Disco

Usado menos frecuentemente.

- 1. El bloque con menos cantidad de consultas será reemplazado.
- 2. Se asociara un contador a cada bloque.
- 3. El contador se incrementara cada vez que se consulta el bloque.
- 4. El bloque con el menor contador será seleccionado para ser reemplazado.
- 5. Algunos bloques son referenciados muchas veces en un periodo corto y luego no se requiere consultar mas.

E/S Notificacion al SO

- El sistema necesita conocer>
 - -E/S termino su operacion.
 - –E/S presento un error.
- E/S Interrupcion:
 - -Los dispositivos presentan una interrupcion al solicitar
 - -un servicio
- Polling:
 - OS preriodicamente se registra el estatus
- Actualmente los dispositivos combinan ambos

Subsistema de I/O con interrupciones

FIN