Project BEACON

(Bosccha Eclipse And OCcultation Observation)

Agus Triono P.J.

Sekilas Okultasi

- Obyek Ø sudut kecil ditutupi obyek Ø sudut besar
- Obyek penutup: obyek Tata Surya e.g. Bulan, Planet, Benda Kecil
- Fast photometry → kurva cahaya

PROS	CONS
Resolusi sampai milidetikbusur (mas)	Fixed time event
Tangguh terhadap polusi cahaya	Informasi 1D: projected separation
	Pengamatan simultan dianjurkan untuk mendapat <i>true separation</i> .
Pemberdayaan teleskop kecil (∅ ≥ 7cm)	
→ Resolusi tidak berhubungan langsung dengan diameter teleskop	
Penggunaan waktu teleskop (<i>telescope time</i>) yang efektif	

[1] https://www.planetary.org/space-images/20140209_occultation-eris-20101106-arrow

Aktivitas

- Sistem Pengamatan
- Program Pengamatan
- Reduksi & Analisis Data

Sistem Pengamatan

- 1 set instrumen khusus okultasi
 - Bosscha + Prodi: pengamatan simultan untuk event spesial
 - Ø(SNR, m_{lim})
- Memastikan timing dan time stamping yang akurat
 - Detektor ber-GPS
 - GPS terpisah: ada sistem retrieval dan time stamping ke data
 - NTP: akurasi ~ 12-15 ms (SSD+Win10+Meinberg NTP [2])
 - CMOS camera vs CCD Camera
- Acquisition Delay

Program Pengamatan

- Program rutin
 - Pengamatan rutin okultasi: exercises, database
 - Tujuan:
 - Deteksi binarity/ multiplicity: new, confirmed
 - Profil & ukuran asteroid: multi-obs, deteksi satelit asteroid/ring e.g. Chariklo [4]

Chariklo ring system [4]

Bintang variabel μ Sgr. Proyeksi separasi kedua komponen dari data ini adalah 9,5 \pm 5,6 mas [5]

[4] Braga-Ribas, F.+. A ring system detected around the Centaur (10199) Chariklo. Nature, **508**, 72-75 (2014)

[5] Jatmiko, A.T.P.+. Lunar Occultation of μ Sgr: a progress report. 2nd SEAYAC Meeting (2012)

PHEMU21

- Kampanye pengamatan okultasi dan gerhana satelit galilean Jupiter tahun 2021
- Program 6 tahun-an, dari 1973.
- Posisi astrometri yang akurat dari kurva cahaya fotometri

Contoh hasil pengamatan saat PHEMU15 [6]

Ilustrasi gerhana dan okultasi pada satelit Galilean Jupiter [6]

BEACON @ PHEMU21

- Pengamatan peristiwa dengan ∆m ≥ 0,2 (termasuk yang mendekati 0,2)
- Timing accuracy ≤ 0,1 s
- Koreksi Dark & flat
- Perlu dipikirkan soal storage : ada peristiwa yang berlangsung > 1 jam
- Citra satelit tersebar dalam beberapa pixel: defocus?
- Satelit referensi
- Filter R vs unfiltered

 Wacana untuk mengajak komunitas Astronomi, jejaring astronom amatir, JOPI, UNDANA, etc.

Reduksi & Analisis Data

- PyMovie [7], Tangra [8], LiMovie [9]
- PHEMU21: submit data ke IMCCE-SAI sebagai penggagas PHEMU15 dan PHEMU21
- Pengembangan program sendiri untuk analisis data (Python + PyMC3)
 - Generate synthetic data; fit data untuk mendapatkan parameter yang sudah ditetapkan
 - Aplikasi ke LC sebenarnya

- [7] http://occultations.org/observing/software/pymovie/
- [8] http://www.hristopavlov.net/Tangra3/
- [9] http://astro-limovie.info/limovie/limovie_en.html