Designing and Building Applications for Extreme Scale Systems CS598 Spring 2016

Homework 1. Matrix-matrix multiply performance

Objectives

- 1. Gain experience running programs and checking performance
- 2. Use performance models to gain insight into the behavior of code.

Tasks

Measure the elapsed time for a single matrix-matrix product, and compute the performance in Millions of floating-point operations per second (MFLOP/s).

Run the code, available on line in either C or Fortran, for the following problem sizes:

$$N = 100, 200, 400, 800, 1000, 1200, 1400, 1600, 2000$$

Provide a table with the measured performance for each value of N.

Estimate the performance in the following two ways:

- 1. Use the measured time for N=100 to compute a value for c in the formula Time = $2cN^3$. With that value of c, use that same formula to compute what time this formula would predict for the other values of N.
- 2. Using any information that you can find on the clock speed of the system that you are using, compute c as 1/frequency. For example, if the clock frequency for the processor is 2.6GHz, $c = 1/(2.6 \times 10^9) = 0.38 \times 10^{-9}$. Again using the formula $T = 2\text{cN}^3$, compute the time that this formula predicts for each value of N.

To present your results, use a table such as the one below (the first two lines provide the values of c used for the 2 rightmost columns, and must be included in your submission).

C for #1 = C for #2 =

N	Measured	Measured Time	Formula Time c	Formula Time c
	Performance	(seconds)	for #1 (using	for #2 (using
	MFLOP/s		N=100)	clock speed)
100				
200				
400				
800				
1000				

1200		
1400		
1600		
2000		

Submission

A PDF file containing the performance table and proper plots reflecting all the necessary performance trends (measured time, measured performance in MFLOP/s, and formula time).

Notes

Run on any system that you like. You may use your laptop; however, this is a good opportunity to checkout any computational cluster that may be available for the class.

Questions (but you don't need to turn in)

- 1. How well does the formula work?
- 2. How close is c computed from the clock speed? Is there an integer k > 1 such that c/k is a better predictor for your machine? Why might c/k be a better value for the formula?
- 3. Graph the measured performance. Are there obvious sudden changes in performance? What might you do to efficiently find the value of N where the performance has a sudden change?