2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

0/2

Ha Bertrand Note: 9/20 (score total : 33.4/72)

+290/1/36+

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas):	
HA Bertrand		
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ②, ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. [Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. [Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.		
Q.2 Un mot est:		
☐ un ensemble ordonné ☐ un ensemb	le fini 🔲 un ensemble 📕 une suite finie	
Q.3 Que vaut $L \cdot \{\varepsilon\}$?		
\square $\{\varepsilon\}$ \square 1	L	
Q.4 Que vaut $L \cdot \emptyset$?		
□ ε □ {ε	}	
Q.5 Que vaut $Suff(\{ab,c\})$:		
	\square \emptyset \square $\{b, \varepsilon\}$ \square $\{b, c, \varepsilon\}$	
Q.6 Que vaut $Fact(\{a\}\{b\}^*)$ (l'ensemble des facteu	rs)	
$\Box \{a,b\}^*\{b\}\{a,b\}^* \qquad \Box \{a\}\{b\}^*\{a\} \Box \{a\}\{b\}^*\{a\}\}$		
Q.7 Pour toutes expressions rationnelles e, f , on	$a e + f \equiv f + e.$	
	☐ faux	
Q.8 À quoi est équivalent ε^* ?		
□ Ø	■ ε □ Σ*	
Q.9 Pour $e = (a + b)^*, f = a^*b^*$:		
$\Box L(e) \subseteq L(f) \qquad \Box L(e) \stackrel{\not\subseteq}{\prec} L(f)$	f) \Box $L(e) = L(f)$ \blacksquare $L(e) \supseteq L(f)$	
-		
Q.10 Soit Σ un alphabet. Pour tout $A, L_1, L_2 \subseteq \Sigma^*$, on a $A \cdot L_1 = A \cdot L_2 \implies L_1 = L_2$.		
□ vrai		
Q.11 L'expression Perl'[-+]?[0-9]+(,[0-9]+)?		
	′	

0/2

 \square $(a^n)^m$ avec $m \in \mathbb{N}^*$

 \Box a^{n+1}

Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la *n*-ième lettre avant la fin est un *a* (i.e., $(a+b+c+d)^*a(a+b+c+\tilde{d})^{n-1}$):

2/2

☐ Il n'existe pas.

 2^n

Déterminiser cet automate.

2/2

Quelle(s) opération(s) préserve(nt) la rationnalité?

1.6/2

Pref

Fact

Sous – mot

Transpose

Quelle(s) opération(s) préserve(nt) la rationnalité?

0.8/2

Complémentaire

☑ Différence symétrique ☐ Aucune de ces réponses n'est correcte. Union

Différence

Intersection

Soit Rec l'ensemble des langages reconnaissables par DFA, et Rat l'ensemble des langages définissables par expressions rationnelles.

Aucune de ces réponses n'est correcte.

-1/2

☐ Rec ⊈ Rat

 \boxtimes Rec = Rat

Rec ⊆ Rat

Rec ⊇ Rat

On peut tester si un automate déterministe reconnaît un langage non vide. O.25

2/2

Seulement si le langage n'est pas rationnel

☐ Cette question n'a pas de sens Oui

□ Non

On peut tester si un automate nondéterministe reconnaît un langage non vide. Q.26

0/2

jamais

souvent

oui, toujours

rarement

Q.27 Si L_1, L_2 sont rationnels, alors:

0/2

 $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$ aussi $L_1 \subseteq L_2$ ou $L_2 \subseteq L_1$

 $\bigcup_{n\in\mathbb{N}} L_1^n \cdot L_2^n$ aussi

Si L et L' sont rationnels, quel langage ne l'est pas nécessairement? O.28

2/2

 $\square \{u \in \Sigma^* \mid u \in L\}$

 $[u^nv^n \mid u \in L, v \in L', n \in \mathbb{N}]$ 0/2

O 29	Quel mot reconnait le	produit de ces automates?

Q.32

2/2

2/2

0/2

Q.30 Combien d'états a l'automate minimal qui accepte le langage $\{a, b, c, \dots, y, z\}^+$?

2/2 ☐ Il en existe plusieurs! ☐ 2 ☐ 52 ☐ 26 ☐ 1

Q.31 Considérons \mathcal{P} l'ensemble des *palindromes* (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

-1/2 \square Il existe un DFA qui reconnaisse \mathcal{P} \square Il existe un ε -NFA qui reconnaisse \mathcal{P} \square P ne vérifie pas le lemme de pompage

a b c Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

 $\blacksquare a^*b^*c^* \qquad \Box (a+b+c)^* \qquad \Box (abc)^* \qquad \Box a^*+b^*+c^*$

Q.33 & Quels états peuvent être fusionnés sans changer le langage reconnu.

Q.34 Sur $\{a, b\}$, quel est le complémentaire de \xrightarrow{a} ?

Q.36 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de \xrightarrow{a}

-1/2

$$\boxtimes \longrightarrow \bigcirc \stackrel{a,b}{\longrightarrow} \stackrel{a}{\longrightarrow}$$

Fin de l'épreuve.

