Ingeniería concurrente y diseño axiomático

DISEÑO INTEGRADO DE PRODUCTO Y PROCESO

INGENIERÍA CONCURRENTE

DIFERENCIAS CON LA INGENIERÍA CONVENCIONAL

DIFERENCIAS CON LA INGENIERÍA CONVENCIONAL

Figura 1 : Ciclo de vida de un producto bajo el enfoque tradicional y concurrente

[2]

IMPLEMENTACIÓN

- Cambio cultural en la forma de trabajo.
- Introducción de nuevas tecnologías.
- Aumento y flexibilidad en la producción.
- Optimización de recursos disponibles.
- Integración de los diferentes puestos y conocimientos interdepartamentales.
- Reducción en los costos asociados a la fabricación.
- Alcanzar la satisfacción del cliente final mediante la consecución de los objetivos de calidad propuestos para el producto y los procesos

METODOLOGÍA RACE (EVALUACIÓN DE LA SITUACIÓN PARA LA INGENIERÍA

CONCURRENTE) ACTIVIDADES *Medida del proceso Mejora *Indicadores *Reingenierfa de procesos *Estrategias para gestión del cambio *Determinación del equipo *Directrices para la mejora de procesos Despliegue *Tecnologias de la información *Desarrollo de la visión y del colaborativas plan *Evaluación de la situación Análisis de la Modelización del proceso y situación recogida de información *Auditoria RACE *Herramientas de modelización de procesos Conocimiento *Estudio de los casos de la [2] empresa *Reuniones de trabajo MEDIOS *Estudio de casos *Modelos economicos

METODOLOGÍA DEL CENTRO PARA ESTUDIOS Y DESARROLLOS EMPRENDEDORES

METODOLOGÍA DEL CRANFIELD CIM INSTITUTE

[2]

METODOLOGÍA PACE (PRACTICAL APPROACH TO CONCURRENT ENGINEERING)

[2]

DISEÑO AXIOMÁTICO

CONCEPTOS DEL DISEÑO AXIOMÁTICO

- Cuatros dominios.
- Existencia de restricciones.
- El mapeado se expresa con vectores.
- Axiomas
 - Independencia.
 - Información.

REQUERIMIENTOS FUNCIONALES

- Acople rígido [Ar].
- Resistente
 - Resistencia a fatiga por flexión [Rff].
 - Resistencia a fatiga superficial [Rfs].
- Durable [D].
- Exacto [E].

PARÁMETROS DE DISEÑO

- Estriado [e].
- Tensiones residuales [tr].
- Módulo de elasticidad [me]
- Dureza [d]
- Concentradores de esfuerzo [c].
 - Modelado CAD [mc].
 - Porosidad [p].
 - Rugosidad [r].

$$\begin{pmatrix} Ar \\ Rff \\ Rfs \\ D \\ E \end{pmatrix} = \begin{pmatrix} x & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & x & x & 0 & 0 & 0 & 0 \\ 0 & 0 & x & x & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & x & x & x \\ 0 & 0 & 0 & 0 & 0 & 0 & x \end{pmatrix} \begin{pmatrix} e \\ tr \\ me \\ d \\ mc \\ p \\ r \end{pmatrix}$$

$$\begin{pmatrix} Ar \\ Rff \\ Rfs \\ D \\ E \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & x & x & 0 & 0 \\ 0 & 0 & x & x & 0 \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} tr \\ r \\ d \\ p \\ me \end{pmatrix}$$

VARIABLES DE PROCESO

- Potencia del láser [P].
- Velocidad de escaneo [V].
- Hatch distance [H].
- Distancia focal [F].
- Patrón de deposición [Pa].

$$\begin{pmatrix} \text{tr} \\ \text{r} \\ \text{d} \\ \text{p} \\ \text{me} \end{pmatrix} = \begin{pmatrix} x & 0 & 0 & 0 & 0 \\ x & 0 & 0 & 0 & 0 \\ x & x & x & 0 & 0 \\ 0 & x & 0 & x & x \end{pmatrix} \begin{pmatrix} P \\ V \\ H \\ F \\ Pa \end{pmatrix}$$

REFERENCIAS

- [1] ``¿Qué es la Ingeniería Concurrente?." https://www.ingenieriaindustrialonline.com/procesos-industriales/que-es-la-ingenieria-concurrente/, 2019. [Online; accessed 10-Septiembre-2021].
- [2] ``Ingeniería concurrente. 6 Metodologías de implantación.'' https://leancomponentes.com/ingenieria-concurrente/, 2021. [Online; accessed 10-Septiembre-2021].
- [3] B. M. Vallejo Díaz, C. J. Cortés Rodríguez, A. Espinosa, and H. J. Barbosa, ``Aplicación de la metodología de diseño axiomático en el desarrollo de productos de liberación modificada," Ingeniería e Investigación.