Отчет по лабораторной работе 5

Мандатное разграничение прав в Linux

Шалыгин Георгий Эдуардович

Содержание

1	Цель работы	5
2	Теоретическое введение 2.0.1 Изменение владельца	6 7 7
3	Выполнение лабораторной работы	9
4	Выводы	16
Сп	исок литературы	17

Список иллюстраций

3.1	Файл httpd.conf	9
3.2	Задание имени сервера	9
3.3	Проверка работы	10
	Запуск веб-сервера	10
		11
3.6	Состояние переключателей	11
3.7	Статистика по политике	12
3.8	Проверка контекста	12
3.9	Доступ к серверу	13
3.10	Изменение контекста	13
3.11	Доступа нет	13
3.12	Лог файл	14
3.13	Добавление порта	14
3.14	Возвращение контекста	14
3.15	Сервер доступен	15
3.16	Окончание работы	15

Список таблиц

1 Цель работы

Развить навыки администрирования ОС Linux. Получить первое практическое знакомство с технологией SELinux1 . Проверить работу SELinx на практике совместно с веб-сервером Apache.

2 Теоретическое введение

В Linux, как и в любой многопользовательской системе, абсолютно естественным образом возникает задача разграничения доступа субъектов — пользователей к объектам — файлам дерева каталогов.

Один из подходов к разграничению доступа — так называемый дискреционный (от англ, discretion — чье-либо усмотрение) — предполагает назначение владельцев объектов, которые по собственному усмотрению определяют права доступа субъектов (других пользователей) к объектам (файлам), которыми владеют.

Дискреционные механизмы разграничения доступа используются для разграничения прав доступа процессов как обычных пользователей, так и для ограничения прав системных программ в (например, служб операционной системы), которые работают от лица псевдопользовательских учетных записей.

B Linux у каждого файла и каждого каталога есть два владельца: пользователь и группа.

Эти владельцы устанавливаются при создании файла или каталога. Пользователь, который создаёт файл становится владельцем этого файла, а первичная группа, в которую входит этот же пользователь, так же становится владельцем этого файла. Чтобы определить, есть ли у вас как у пользователя права доступа к файлу или каталогу, оболочка проверяет владение ими.

Это происходит в следующем порядке:

1. Оболочка проверяет, являетесь ли вы владельцем файла, к которому вы хотите получить доступ. Если вы являетесь этим владельцем, вы получаете разрешения и оболочка прекращает проверку.

- 2. Если вы не являетесь владельцем файла, оболочка проверит, являетесь ли вы участником группы, у которой есть разрешения на этот файл. Если вы являетесь участником этой группы, вы получаете доступ к файлу с разрешениями, которые для группы установлены, и оболочка прекратит проверку.
- 3. Если вы не являетесь ни пользователем, ни владельцем группы, вы получаете права других пользователей (Other).

Чтобы увидеть текущие назначения владельца, вы можете использовать команду **ls -l**. Эта команда показывает пользователя и группу-владельца. Подробнее в [1].

2.0.1 Изменение владельца

Чтобы применить соответствующие разрешения, первое, что нужно учитывать, это владение. Для этого есть команда **chown**. Синтаксис этой команды несложен для понимания:

chown кто что

Например, следующая команда меняет владельца каталога /home/account на пользователя linda:

chown linda /home/account

2.1 Использование chmod

Для управления правами используется команда **chmod**. При использовании **chmod** вы можете устанавливать разрешения для пользователя (user), группы (group) и других (other). Вы можете использовать эту команду в двух режимах: относительный режим и абсолютный режим. В абсолютном режиме три цифры используются для установки основных разрешений.

При настройке разрешений рассчитайте необходимое вам значение. Если вы хотите установить чтение, запись и выполнение для пользователя, чтение и выполнение для группы, а также чтение и выполнение для других в файле /somefile, то вы используете следующую команду **chmod**:

chmod 755 /somefile

Подробнее в [2].

3 Выполнение лабораторной работы

1. Файл /etc/httpd/httpd.conf (fig. 3.1).

```
[rootegeshalygin conf]# cat httpd.conf

# This is the main Apache HTTP server configuration file. It contains the
# configuration directives that give the server its instructions.
# See <URL:http://httpd.apache.org/docs/2.4/ for detailed information.
# In particular, see
# <URL:http://httpd.apache.org/docs/2.4/mod/directives.html>
# for a discussion of each configuration directive.
#
# See the httpd.conf(5) man page for more information on this configuration,
# and httpd.service(8) on using and configuring the httpd service.
#
# Do NOT simply read the instructions in here without understanding
# what they do. They're here only as hints or reminders. If you are unsure
# consult the online docs. You have been warned.
#
# Configuration and logfile names: If the filenames you specify for many
# of the server's control files begin with "/" (or "drive:/" for Win32), the
# server will use that explicit path. If the filenames do *not* begin
# with "/", the value of ServerRoot is prepended -- so 'log/access_log'
# with ServerRoot set to '/www' will be interpreted by the
# server as '/www/log/access_log', where as '/log/access_log' will be
# interpreted as '/log/access_log', where as '/log/access_log' will be
# interpreted as '/log/access_log'.
```

Рис. 3.1: Файл httpd.conf

2. Также необходимо проследить, чтобы пакетный фильтр был отключён или в своей рабочей конфигурации позволял подключаться к 80-у и 81-у портам протокола tcp. Отключить фильтр можно командами (fig. 3.2)

```
[root@geshalygin conf]# echo "ServerName test.ru" > httpd.conf
[root@geshalygin conf]#
```

Рис. 3.2: Задание имени сервера

3. Убедимся, что SELinux работает в режиме enforcing политики targeted с помощью команд getenforce и sestatus.(fig. 3.3).

```
[root@geshalygin conf]# getenforce
Enforcing
[root@geshalygin conf]# sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Memory protection checking: actual (secure)
Max kernel policy version: 33
[root@geshalygin conf]#
```

Рис. 3.3: Проверка работы

4. Запустим веб-сервер: service httpd start (fig. 3.4).

Рис. 3.4: Запуск веб-сервера

5. Найдем веб-сервер Apache в списке процессов, определим его контекст безопасности. Например, можно использовать команду ps auxZ | grep httpd (fig. 3.5).

```
[root@geshalygin conf]# echo "ServerName test.ru" > httpd.conf
[root@geshalygin conf]# ps auxZ | grep httpd
system_u:system_r:httpd_t:s0 root 40060 0.0 0.5 20328 11672 ? Ss 20:32 0:00

/usr/sbin/httpd -DFOREGROUND
system_u:system_r:httpd_t:s0 apache 40061 0.0 0.3 21664 7552 ? S 20:32 0:00

(/usr/sbin/httpd -DFOREGROUND
system_u:system_r:httpd_t:s0 apache 40065 0.0 0.8 1079476 17248 ? Sl 20:32 0:00

/usr/sbin/httpd -DFOREGROUND
system_u:system_r:httpd_t:s0 apache 40066 0.0 0.8 1210612 17252 ? Sl 20:32 0:00

/usr/sbin/httpd -DFOREGROUND
system_u:system_r:httpd_t:s0 apache 40068 0.0 0.6 1079476 13160 ? Sl 20:32 0:00

/usr/sbin/httpd -DFOREGROUND
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 root 40385 0.0 0.1 221664 2244 pts/0 S+ 20:

[root@geshalygin conf]#
```

Рис. 3.5: Контекст сервера

6. Посмотрите текущее состояние переключателей SELinux для Apache с помощью команды sestatus -bigrep httpd. Многие отключены (fig. 3.6).

```
[root@geshalygin conf]# sestatus -b | grep httpd
   d_anon_write
                                             off
    _builtin_scripting
                                             on
                                             off
    _can_check_spam
    _can_connect_ftp
                                             off
    _can_connect_ldap
                                             off
    _can_connect_mythtv
                                             off
    _can_connect_zabbix
                                             off
    l_can_manage_courier_spool
                                             off
    _can_network_connect
                                             off
    _can_network_connect_cobbler
                                             off
    _can_network_connect_db
                                             off
    _can_network_memcache
                                             off
    l can network relay
    _can_sendmail
                                             off
    _dbus_avahi
    _dbus_sssd
                                             off
    _dontaudit_search_dirs
                                             off
    _enable_cgi
                                             on
    _enable_ftp_server
                                             off
    _enable_homedirs
    _execmem
    _graceful_shutdown
    _manage_ipa
    _mod_auth_ntlm_winbind
     _mod_auth_pam
    _read_user_content
    _run_ipa
```

Рис. 3.6: Состояние переключателей

7. Посмотрим статистику по политике с помощью команды seinfo (fig. 3.7).

```
[root@geshalygin conf]# seinfo
Statistics for policy file: /sys/fs/selinux/policy
Policy Version: 33 (MLS enabled)
Target Policy: selinux
Handle unknown classes: allow
                 135 Permissions:
  Classes:
  Sensitivities:
                         1 Categories:
                                                       1024
  Types:
Users:
                       5100 Attributes:
                                                       258
                      8 Roles:
                                                        14
  Booleans:
Allow:
                        353 Cond. Expr.:
                                                        384
  Allow: 65000 Neverallow:
Auditallow: 170 Dontaudit:
Type_trans: 265341 Type_change:
Type_member: 35 Range_trans:
Role allow: 38 Role_trans:
                                                         Θ
                                                       8572
                                 Type_change:
                                                       6164
                                                       420
  Constraints:
                         70 Validatetrans:
                                                         Θ
  MLS Constrain:
                         72 MLS Val. Tran:
  Permissives:
                                                          6
                               Polcap:
                                                          Θ
  Defaults:
                                Typebounds:
  Allowxperm:
                                Neverallowxperm:
                                                          0
  Auditallowxperm:
Ibendportcon:
Initial SIDs:
                                 Dontauditxperm:
                                                          0
                                 Ibpkeycon:
                                                          Θ
  Initial SIDs:
                          27
                                 Fs_use:
                                                         35
  Genfscon:
                         109
                                 Portcon:
                                                        660
  Netifcon:
                           0
                                 Nodecon:
                                                          Θ
 root@geshalygin conf]#
```

Рис. 3.7: Статистика по политике

8. Определим тип файлов и поддиректорий, находящихся в директории /var/www, с помощью команды ls -lZ /var/www. (fig. 3.8). Проверим что guest не имеет доступ к файлу.

```
[root@geshalygin conf]# ls -lZ /var/www
total 0
drwxr-xr-x. 2 root root system_u:object_r:httpd_sys_script_exec_t:s0 6 May 16 23:21 cgi-bin
drwxr-xr-x. 2 root root system_u:object_r:httpd_sys_content_t:s0 6 May 16 23:21 html
[root@geshalygin conf]# ls -lZ /var/www/html
total 0
[root@geshalygin conf]#
```

Рис. 3.8: Проверка контекста

9. Создадим от имени суперпользователя (так как в дистрибутиве после установки только ему разрешена запись в директорию) html-файл /var/www/html/test.html

Обратичс к файлу через веб-сервер, введя в браузере адрес http://127.0.0.1/test.html. Убедичс учто файл был успешно отображён. (fig. 3.9).

Рис. 3.9: Доступ к серверу

10. Измениv контекст файла /var/www/html/test.html c httpd_sys_content_t на samba_share_t: chcon -t samba_share_t /var/www/html/test.html ls -Z /var/www/html/test.html (fig. 3.10).

```
[root@geshalygin conf]# chcon -t samba_share_t /var/www/html/test.html
[root@geshalygin conf]# ls -Z /var/www/html/test.html
ls: cannot access '/var/www/html/test.html': No such file or directory
[root@geshalygin conf]# ls -Z /var/www/html/test.html
unconfined_u:object_r:samba_share_t:s0 /var/www/html/test.html
[root@geshalygin conf]#
```

Рис. 3.10: Изменение контекста

11. После этого файл недоступен (fig. 3.11).

Рис. 3.11: Доступа нет

12. Просмотрим системный лог-файл: tail /var/log/messages (fig. 3.12).

Рис. 3.12: Лог файл

13. Выполним команду semanage port -a -t http_port_t -p tcp 81. После этого проверим список портов командой semanage port -l | grep http_port_t. Убедимся, что порт 81 появился в списке. Теперь доступ к серверу есть, мы добавили порт 81. (fig. 3.13).

Рис. 3.13: Добавление порта

14. Вернем контекст httpd_sys_content_t к файлу /var/www/html/ test.html: chcon -t httpd_sys_content_t /var/www/html/test.html После этого попробуем получить доступ к файлу через веб-сервер, введя в браузере адрес http://127.0.0.1:81/test.html. (fig. 3.14).

```
[root@geshalygin conf]# chcon -t httpd_sys_content_t /var/www/html/test.html
[root@geshalygin conf]#
```

Рис. 3.14: Возвращение контекста

15. Сервер снова доступен (fig. 3.15).

Рис. 3.15: Сервер доступен

16. Исправим конфигурацию, удалим привязку к 81 порту и файл test (fig. 3.16).

```
[root@geshalygin conf]# rm /var/www/html/test.html
rm: remove regular file '/var/www/html/test.html'? y
[root@geshalygin conf]#
```

Рис. 3.16: Окончание работы

4 Выводы

В результате выполнения работы мы развили навыки администрирования ОС Linux. Получили первое практическое знакомство с технологией SELinux1 . Проверили работу SELinx на практике совместно с веб-сервером Apache.

Список литературы

- 1. Кетов Д.В. Внутреннее устройство Linux. BHV, 2017. 124 с.
- 2. Л. М. Ухлинов. Управление доступом в ОС GNU /Linux . ОКБ САПР», Москва, Россия, 2010.