Feuille d'exercices nº 8 : équations complexes

Exercice 1. Pour chacun des nombres complexes a suivants, résoudre l'équation $z^3 = a$.

1.
$$a = e^{i\frac{5\pi}{12}}$$

2.
$$a = -8i$$

3.
$$a = \frac{\sqrt{3} + i}{1 + i}$$

Exercice 2. Résoudre dans \mathbb{C} les équations suivantes :

1.
$$iz^2 + 2z - 5i = 0$$

2.
$$\frac{1}{2}z^2 + (1+i)z - i = 0$$

3.
$$z^2 + (2+3i)z - 5 + 5i = 0$$

4.
$$iz^2 + (8+2i)z - 8 - 3i = 0$$
. (indication : il y a une solution évidente)

5.
$$z^4 - (5 - 14i)z^2 - 2(5i + 12) = 0$$
.

6.
$$z^2 - 2z\cos(a) + 1 = 0$$
.

7.
$$z^6 - (1-i)z^3 - i = 0$$
.

8.
$$\begin{cases} z_1 z_2 = i \\ z_1 + z_2 = \sqrt{3} \end{cases}$$

9.
$$z^3 - 2(1+i)z + (2+4i)z - 4i = 0$$
, sachant qu'une des racines est imaginaire pure.

Exercice 3. Résoudre dans \mathbb{C} en utilisant les racines nièmes :

$$(E_1): (z-2)^4 = (2z-1)^4$$
 $(E_2): 27(z+i)^6 + (z-i)^6 = 0$ $(E_3): (z+1)^n = (z-1)^n$

Indication : Se ramener à une équation du type $\mathbb{Z}^4=1$ que l'on sait résoudre.

Exercice 4. Soit
$$P(z) = z^4 + z^3 + z^2 + z + 1$$
, et $Q(z) = \frac{P(z)}{z^2} = z^2 + z + 1 + \frac{1}{z} + \frac{1}{z^2}$ (si $z \neq 0$).

- 1. On pose $u = z + \frac{1}{z}$. Calculer u^2 et utiliser ce résultat pour ramener l'équation Q(z) = 0, à une équation du second degré en u.
- 2. Déterminer les racines de P.
- 3. Montrer, sans utiliser la question précédente, que : ($P(z) = 0 \Longrightarrow z^5 = 1$).
- 4. Déduire de ces deux questions, en utilisant les racines cinquièmes de l'unité, $\cos \frac{2\pi}{5}$ et $\sin \frac{2\pi}{5}$.

Pour s'entrainer

Exercice 5. Résoudre dans \mathbb{C} chacune des équations suivantes (n est un entier naturel au moins égal à 2):

$$(E_1): (z+1)^n = (z-1)^n$$
 $(E_2): \left(\frac{z-1}{z+1}\right)^n + \left(\frac{z+1}{z-1}\right)^n = 0$ $(E_3): z^n + 2^n = 0$

Exercice 6. On considère l'application du plan complexe dans lui-même $f: z \mapsto z^2 + z + 1$.

- 1. Déterminer les images par f des nombres 1, 2i-5 et $e^{i\frac{\pi}{4}}$.
- 2. Déterminer les antécedents par f de 1+i.
- 3. Déterminer les nombres complexes invariants par f.
- 4. Déterminer l'ensemble des nombres complexes ayant une image réelle par f.
- 5. Déterminer le lieu des points M alignés avec leur image par f et avec 1.