PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-032369

(43)Date of publication of application: 02.02.1996

(51)Int.Cl.

HO3F 3/45

H03F 3/34 HO3H 11/04

(21)Application number: 06-158847

MITSUMI ELECTRIC CO LTD

(22)Date of filing:

(71)Applicant: (72)Inventor:

ODA TOMOKI

(54) CURRENT OUTPUT AMPLIFIER AND ACTIVE FILTER USING IT

(57) Abstract:

PURPOSE: To obtain a stable characteristic of the current output amplifier

and the active filter using it.

CONSTITUTION: The amplifier has differential pair transistors(TRs) Q5, Q6 whose common emitters connect to a constant current source 31, 1st and TRs Q8, Q6 whose emitter connects to each collector of the differential pair TRs Q5, Q6 respectively and whose bases are connected in common and set to a prescribed potential, and a current mirror load 37 connecting to the collector of the TR Q9. An output current I. is extracted from the collector of the TR Q9.

LEGAL STATUS

[Date of request for examination]

27.06.2000

[Date of sending the examiner's decision of rejection]

06.08.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開平8-32369

(43)公開日 平成8年(1996)2月2日

H03F 3/45 A C 8943-5J H03H 11/04 G 8628-5J D 8628-5J B 628-5J B	(51) Int. Cl. 6	識別記号	庁内整理番号	FI	技術表示箇所
HO3H 11/04	H03F 3/45	A			
D 8628-5J 審査請求 未請求 請求項の数4 OL (全7頁) 21)出願番号 特願平6-158847 (71)出願人 000006220 22)出願日 平成6年(1994)7月11日 東京都調布市国領町8丁目8番地2 (72)発明者 織田 知己 神奈川県厚木市酒井1601 ミツミ電機株式会社厚木事業所内	3/34	c	8943-5J		· .
審査請求 未請求 請求項の数4 OL (全7頁) 21)出願番号 特願平6-158847 (71)出願人 000006220 ミツミ電機株式会社東京都調布市国領町8丁目8番地2 (72)発明者 織田 知己神奈川県厚木市酒井1601 ミツミ電機株式会社厚木事業所内	H03H 11/04	G	8628-5J		
21)出願番号 特願平6-158847 (71)出願人 000006220 ミツミ電機株式会社 東京都調布市国領町8丁目8番地2 (72)発明者 織田 知己 神奈川県厚木市酒井1601 ミツミ電機株式会社厚木事業所内		D	8628-5J		
ミツミ電機株式会社 東京都調布市国領町8丁目8番地2 (72)発明者 織田 知己 神奈川県厚木市酒井1601 ミツミ電機 株式会社厚木事業所内				審査請求	未請求 請求項の数4 OL (全7頁)
22)出願日 平成6年(1994)7月11日 東京都調布市国領町8丁目8番地2 (72)発明者 織田 知己 神奈川県厚木市酒井1601 ミツミ電機 株式会社厚木事業所内	21)出願番号	特願平6-158	8 4 7	(71)出願人	0 0 0 0 0 6 2 2 0
(72)発明者 織田 知己 神奈川県厚木市酒井1601 ミツミ電機 株式会社厚木事業所内					ミツミ電機株式会社
神奈川県厚木市酒井1601 ミツミ電機 株式会社厚木事業所内	22)出願日	平成6年(199	4) 7月11日		東京都調布市国領町8丁目8番地2
株式会社厚木事業所内				(72)発明者	織田 知己
					神奈川県厚木市酒井1601 ミツミ電機
(74)代理人 弁理士 伊東 忠彦					株式会社厚木事業所内
				(74)代理人	弁理士 伊東 忠彦

(54) 【発明の名称】電流出力型増幅器及びこれを用いたアクティブフィルタ

(57)【要約】

【目的】 電流出力型増幅器及びこれを用いたアクティブフィルタに関し、安定した特性を実現することを目的とする。

【構成】 共通エミッタが定電流源31に接続された差動対トランジスタQ,,Q,と、差動対トランジスタQ,,Q,と、差動対トランジスタQ,,Q,と、差動対トランジスタQ, 一スが共通接続されて一定電位に設定された第1及び第2のトランジスタQ,Q,Q,と、トランジスタQ,Q口口 レクタに接続されたカレントミラー負荷37とを有する。出力電流I,は、トランジスタQ,のコレクタから取り出される。

1

【特許請求の範囲】

【請求項1】 共通エミッタが定電流源に接続された差 動対トランジスタと、

前記差動対トランジスタの各コレクタに夫々のエミッタ が接続され、ペースが共通接続されて一定電位に設定さ れた第1及び第2のトランジスタと、

前記第1又は第2のトランジスタのコレクタに接続され たカレントミラー負荷とを有し、

前記カレントミラー負荷が接続された前記第1又は第2 のトランジスタのコレクタから出力電流を取り出すこと 10 を特徴とする電流出力型増幅器。

【請求項2】 前記定電流源は外部から制御可能な可変 電流源であり、かつ、前記カレントミラー負荷の電流値 が、前記定電流源の電流値に対応して変化することを特 徴とする請求項1記載の電流出力型増幅器。

【請求項3】 請求項1又は請求項2の電流出力型増幅 器の出力端子に積分用コンデンサを接続した積分手段を 用いて構成したことを特徴とするアクティブフィルタ。

【請求項4】 請求項1又は請求項2の電流出力型増幅 器を用いて構成され、

非反転入力端子に入力信号を供給される第1の電流出力 型増幅器を含んでなる第1の積分手段と、

前記第1の積分手段からの積分出力信号を非反転入力端 子に供給されて出力信号を出力する第2の電流出力型増 幅器を含んでなる第2の積分手段と、

前記第1及び第2の電流出力型増幅器それぞれの反転入 力端子に前記出力信号を帰還入力する帰還手段とを具備 してなるアクティブフィルタ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は電流出力型増幅器及びこ れを用いたアクティブフィルタに係り、特に可変コンダ クタンス増幅器を使用したアクティブフィルタに関す

[0002]

【従来の技術】映像信号回路には直流または数十Hzか ら数MHzまでの広い周波数帯域が必要であり、この間 の振幅周波数特性及び位相周波数特性が平坦であること が必要である。また非直線ひずみも重要であり、映像の 階調性を損なう要因となる。さらに、カラーテレビジョ ンの映像信号では色信号が色副搬送波で変調されて輝度 信号に重畳されているので、特にこの場合には、非直線 ひずみが大きいと色再現に悪影響を及ぼすことが知られ

【0003】このため、映像信号回路の性能として、微 分利得DG(Differential Gain) と微分位相DP(Diffe rential Phase)とが重視されている。直線性のよさを示 す微分利得DGは、増幅器の特定周波数における利得G が、それに重畳するほかの信号により変化する程度をパ ーセントで表現するものである。また微分位相DPは、

カラー映像信号の振幅変化に対する色副搬送波の位相変 化をその大きさで表現するものである。

【0004】上記のことから、映像信号用フィルタに も、良好なDG特性、DP特性が必要とされる。

【0005】図4は、アクティブフィルタを構成するの に使用される、従来の可変コンダクタンス増幅器の回路 図を示す。図4の可変コンダクタンス増幅器は、差動対 トランジスタQi,Qi、可変電流源31、ダイオード D, , D, 、電流値 I, の定電流源32、抵抗R, , R 、、入力トランジスタQ」、Q、、カレントミラー負荷 37から構成される。カレントミラー負荷37は、トラ ンジスタQ , , Q , , 、抵抗 R , , R , , 、可変電流源 3 3 から構成される。また、34は非反転入力端子、35は 反転入力端子である。

【0006】なお、可変電流源31の電流値1.は、外 部からの制御信号により設定され、可変電流源33の電 流値は I、/2に設定される。トランジスタQ,のコレ クタ電流は、可変電流源33の電流値と等しく、I₁/ 2となる。

20 【0007】また、抵抗R1,R1は、この増幅器の入 カダイナミックレンジを適当な範囲となるように決めら

【0008】非反転入力端子34に入来する入力信号V ia は、トランジスタQi,抵抗Riを介してトランジス タQ, のペースに到来し、反転入力端子35に入来する 入力信号 V:,, は、トランジスタQ:,抵抗R:を介して トランジスタQ、のペースに到来する。

 $[0009]V_{ini} = V_{in}$, \vec{v} , \vec{h} \vec{b} \vec{b} \vec{b} \vec{Q}_i , \vec{Q}_i の両ペース間の電位差が無いときは、トランジスタ

30 Q₁, Q₁ のコレクタ電流がバランスして共に I₁ / 2 であり、トランジスタQ, のコレクタから出力端子36 に出力される出力電流 I。=0となる。

【0010】入力信号V... とV... に差があるとき は、 $V_{i,j}$ と $V_{i,j}$ の差に応じて、トランジスタQ_i,Q 。の両ペース間に電位差が生じ、これにより、入力信号 V,,,とV,,,の差に対応した出力電流 1. がトランジ スタQ、のコレクタから取り出され、出力端子36から 出力される。

【0011】図5では、図4の可変コンダクタンス増幅 40 器を、可変コンダクタンス増幅器21として記号で表記 している。

【0012】可変コンダクタンス増幅器21のコンダク タンスをg. とすると、 $I_{\bullet} = g_{\bullet} \cdot \Delta V_{i}$. となる。 ここで、 $\Delta V_{i,j} = V_{i,j} - V_{i,j}$ である。コンダクタン スg。は、可変電流源31の電流値1. の増加に対応し て値が大きくなる。従って、外部からの制御信号により 電流値 I. を設定することによりコンダクタンスg.を 可変して設定することができる。

【0013】この可変コンダクタンス増幅器21の出力 50 端子36に積分用コンデンサC」を接続することで、可

変コンダクタンス積分器38を構成することができる。 【0014】可変コンダクタンス増幅器21の出力端子 でのDCインピーダンスR。が無限大であれば、可変コ ンダクタンス積分器38は、理想的な積分器となる。

【0015】しかし、実際には、有限のR。を持ち、可

$$T_{i}(s) = \frac{R_{0} g_{s}}{2 (1 + s C_{i} R_{0})}$$

$$= \frac{g_*}{2 / R_0 + 2 s C_1} \tag{1}$$

のようになる.

[0016]

【数1】

【0017】図6は、この可変コンダクタンス増幅器21を用いたアクティブフィルタ51の回路図を示す。図6において、可変コンダクタンス増幅器21、とコンデンサC:、により積分回路57を構成している。また、可変コンダクタンス増幅器21、とコンデンサC:、により積分回路58を構成している。

【0018】図示のとおり、可変コンダクタンス増幅器21、の反転入力端子には入力端子55からの入力信号Viが付与されており、積分回路57からの積分出力信20号は、エミッタフォロワなどで構成されるパッファ53を介して可変コンダクタンス増幅器21、の非反転入力端子に付与される。

【0019】一方、入力信号Viは入力端子55とグランド間に直列に接続された抵抗R、と抵抗R、とによって分圧される。得られた分圧信号は、エミッタフォロワなどで構成されるパッファ52とコンデンサCにとの直列回路を介して、エミッタフォロワなどで構成されるパッファ54の入力端子と可変コンダクタンス増幅器21、の出力端子との共通接続点に付与される。これにより、上記分圧信号の高周波成分が、パッファ54の入力信号に加算される。

【0020】バッファ54の出力端子は出力端子56に接続されており、出力端子56には出力信号Voが出力

される。また、バッファ54の出力端子とグランド間には抵抗R、と抵抗R。からなる直列回路が接続されており、帰還手段である抵抗R、と抵抗R、との共通接統点を可変コンダクタンス増幅器21、の反転入力端子に接続することで、出力信号V。の一部が負帰還入力されている。

変コンダクタンス積分器38の伝達関数は、下記(1)式

【0021】さらに、出力信号V。が、可変コンダクタンス増幅器21、の反転入力端子に負帰還入力されている。

【0022】上記の負帰還により、入力信号 Vi の直流 レベルの変動による、可変コンダクタンス増幅器 2 1,,21,の特性変化を抑えることができ、良好な D G特性,DP特性を実現している。

【0023】 ここで、上記のとおり構成されたアクティブフィルタ51において、出力端子56に得られる出力信号V。の入力信号V1 に対する伝達関数T2 (s) を計算により求める。

【0024】可変コンダクタンス増幅器21,,21,30 のコンダクタンスをg.とすると、伝達関数T.(s)は、下記(2)式で表せる。なお、コンデンサC;,,C;,の値を共にC,とする。

[0025]

$$T_{2}(s) = \frac{\frac{R_{B}}{R_{A} + R_{B}} S^{2} + \frac{1}{R_{o}} \cdot \frac{R_{B}}{R_{A} + R_{B}} S^{2} + \frac{g_{m}^{2}}{C_{x}^{2}}}{S^{2} + \frac{1}{C_{x}^{2}} \left(\frac{2}{R_{o}} + \frac{R_{D}}{R_{c} + R_{D}} \cdot g_{m}\right) S^{2} + \frac{g_{m}^{2}}{C_{x}^{2}} + \frac{R_{D}}{C_{x}^{2} R_{o} (R_{c} + R_{D})} g_{m} + \frac{1}{C_{x}^{2} R_{o}^{2}}}$$
(2)

【0026】このように、アクティブフィルタ51は、 伝送零点を有するローパスフィルタとなっている。 伝達 関数T: (s)は、(2)式のとおり、可変コンダクタ ンス増幅器21,,21,の出力DCインピーダンスR ・が関係してくる。

【0027】また、中心周波数 f , , 零点周波数 f , , 共振の鋭さQも、出力DCインピーダンスR , の値により変動する。

[0028]

【発明が解決しようとする課題】上記図4の可変コンダ 50 ッタに抵抗を設けることができない。このため、トラン

クタンス増幅器 2 1 の出力 D C インピーダンス R 。は、トランジスタ Q 。の出力インピーダンス及びトランジスタ Q 。の出力インピーダンスで決まる。この出力インピーダンスは、トランジスタ Q 。のアーリー電圧が関係するが、トランジスタ Q 。の場合、エミッタが抵抗 R 。を介して交流的に接地されているため、トランジスタ Q 。のコレクタを見た出力インピーダンスを非常に高くすることができる。

【0029】これに対して、トランジスタQ。は、エミッタに抵抗を設けることができない。このため、トラン

ジスタQ。の場合、アーリー電圧が直接影響し、トランジスタQ。のコレクタを見た出カインピーダンスはアーリー電圧のばらつきにより、ばらついてしまう。

【0030】このため、図6のアクティブフィルタ51を構成した場合、出力DCインピーダンスR,のばらつきにより、伝達関数T,(s)が変動してしまうという問題がある。この伝達関数T,(s)の変動により、中心周波数f,付近の特性がばらついて、ピークやリップルが生じる等の問題がある。

【0031】本発明は、上記の点に鑑みてなされたもので、出力DCインピーダンスのばらつきを抑えた電流出力型増幅器及びこの電流出力型増幅器を用いた特性の安定したアクティブフィルタを提供することを目的とする。

[0032]

【課題を解決するための手段】請求項1の発明の電流出力型増幅器は、共通エミッタが定電流源に接続された差動対トランジスタと、前記差動対トランジスタの各コレクタに夫々のエミッタが接続され、ベースが共通接続されて一定電位に設定された第1及び第2のトランジスタと、前記第1又は第2のトランジスタのコレクタに接続されたカレントミラー負荷とを有し、前記カレントミラー負荷が接続された前記第1又は第2のトランジスタのコレクタから出力電流を取り出す構成とする。

【0033】請求項2の電流出力型増幅器では、前記定電流源は外部から制御可能な可変電流源であり、かつ、前記カレントミラー負荷の電流値が、前記定電流源の電流値に対応して変化する構成とする。

【0034】請求項3の発明のアクティブフィルタは、 請求項1又は請求項2の電流出力型増幅器の出力端子に 積分用コンデンサを接続した積分手段を用いて構成する。

【0035】請求項4の発明のアクティブフィルタは、 請求項1又は請求項2の電流出力型増幅器を用いて構成 され、非反転入力端子に入力信号を供給される第1の電 流出力型増幅器を含んでなる第1の積分手段と、前記第 1の積分手段からの積分出力信号を非反転入力端子に供 給されて出力信号を出力する第2の電流出力型増幅器を 含んでなる第2の積分手段と、前記第1及び第2の電流 出力型増幅器それぞれの反転入力端子に前記出力信号を 場環入力する帰還手段とを具備してなる構成とする。

[0036]

【作用】請求項1の発明では、電流出力型増幅器の出力インピーダンスを非常に大きくでき、かつ、アーリー電圧に起因する出力インピーダンスのばらつきを大幅に小さくすることを可能とする。

【0037】請求項2の発明では、コンダクタンス可変の電流出力型増幅器において、出力インピーダンスのばらつきを大幅に小さくすることを可能とする。

【0038】請求項3の発明では、電流出力型増幅器の

50

出カインピーダンスのばらつきを大幅に小さくできるため、伝達特性が安定した極めて良好な特性を得ることを 可能とする。

【0039】請求項4の発明では、微分利得特性、微分位相特性を良好とした2次ローパスフィルタにおいて、 伝達特性が安定した極めて良好な特性を得ることを可能 とする。

[0040]

【実施例】図1は本発明の一実施例の可変コンダクタンス増幅器の回路図を示す。図1において、図4と同一構成部分には、同一符号を付し、適宜説明を省略する。図1の可変コンダクタンス増幅器は、差動対トランジスタQ、、Q、にカスケード接続されたトランジスタQ、、Q、(第1及び第2のトランジスタ)、可変電流源31、ダイオードD、、D、、電流値I、の定電流源32、抵抗R、、R、、入カトランジスタQ、、Q、、カレントミラー負荷37から構成される。

【0041】カレントミラー負荷37は、トランジスタ Q,,Q,,抵抗R,,R,,、可変電流源33から構成 される。また、44は非反転入力端子、45は反転入力 端子である。

【0042】なお、可変電流源31の電流値1,は、外部からの制御信号により設定され、可変電流源33の電流値は1,/2に設定される。トランジスタQ,のコレクタ電流は、可変電流源33の電流値と等しく、1,/2となる。また、トランジスタQ。,Q,の共通ベースは、一定電位V1,に設定されている。

【0043】また、抵抗R₁, R₂ は、この増幅器の入 30 カダイナミックレンジを適当な範囲となるように決められる。

【0044】非反転入力端子44に入来する入力信号V 1.1 は、トランジスタQ1,抵抗R1を介してトランジス タQ1のペースに到来し、反転入力端子45に入来する 入力信号V11には、トランジスタQ1,抵抗R1を介して トランジスタQ1のペースに到来する。

【0045】 $V_{111} = V_{111}$ で、トランジスタQ $_{11}$, Q $_{11}$ の両ペース間の電位差が無いときは、トランジスタQ $_{11}$, Q $_{11}$ のコレクタ電流がパランスして共に $_{11}$ / $_{11}$ であり、同時にトランジスタQ $_{11}$, Q $_{11}$ のコレクタ電流がパランスして共に $_{11}$ / $_{11}$ である。これにより、トランジスタQ $_{11}$ のコレクタから出力端子 $_{11}$ 4 6 に出力される出力電流 $_{11}$ = 0 となる。

【0046】入力信号 $V_{1,1}$ と $V_{1,1}$ に差があるときは、 $V_{1,1}$ と $V_{1,1}$ の差に応じて、トランジスタ Q_{1} , Q_{1} の両ペース間に電位差が生じ、これにより、入力信号 $V_{1,1}$ と $V_{1,1}$ に差に対応した出力電流 I_{1} がトランジスタ Q_{1} のコレクタから取り出され、出力端子46から出力される。

【0047】図2では、図1の可変コンダクタンス増幅

器を、可変コンダクタンス増幅器41として記号で表記 している。

【0048】この可変コンダクタンス増幅器41の出力 端子46にコンデンサC」を接続することで、可変コン ダクタンス積分器61を構成することができる。

【0049】可変コンダクタンス増幅器41の出カイン ピーダンスは、トランジスタQ,,Q,の出力インピー ダンスで決まる。出力インピーダンスには、トランジス タQ,,Q,のアーリー電圧が関係するが、トランジス タQ, の場合、エミッタが抵抗R, を介して交流的に接 10 地されているため、トランジスタQ、のコレクタを見た 出力インピーダンスを非常に高くすることができ、アー リー電圧のばらつきによる変動をほとんどなくせる。

【0050】また、トランジスタQ, のエミッタには、 トランジスタQ、のコレクタインピーダンスが付加され るため、トランジスタQ,のコレクタを見た出カインピ ーダンスを非常に高くすることができ、アーリー電圧の ばらつきによる変動をほとんどなくせる。

【0051】このため、可変コンダクタンス増幅器41 の出力端子46でのDCインピーダンスR. を非常に大 20 きくすることができ、ほとんど無限大と見なすことがで きる。従って、可変コンダクタンス積分器61は、ほ ぼ、理想的な積分器となる。

【0052】図1の回路は、集積回路として構成した場 合に、特に良好な特性の可変コンダクタンス増幅器とす ることができる。

【0053】図3は、この可変コンダクタンス増幅器4 1を用いたアクティブフィルタ62の回路図を示す。図 3の回路は、図6の回路と同様の構成であり、コンダク タンス増幅器21、の代わりに、可変可変コンダクタン ス増幅器41,を用いた回路である。

【0054】図3において、可変コンダクタンス増幅器 41、(第1の電流出力型増幅器)とコンデンサC;;に より積分回路67(第1の積分手段)を構成している。

また、可変コンダクタンス増幅器41、(第2の電流出 カ型増幅器)とコンデンサC11により積分回路68(第 2の積分手段)を構成している。

【0055】図示のとおり、入力端子65からの入力信 号Viは、積分回路67で積分され、積分出力信号は、 バッファ53を介して可変コンダクタンス増幅器41, の非反転入力端子に付与される。

【0056】一方、入力信号Viを抵抗R。と抵抗R。 とによって分圧した分圧信号が、バッファ52とコンデ ンサC:,との直列回路を介して、パッファ54の入力端 子と可変コンダクタンス増幅器 4 1, の出力端子との共 通接統点に付与される。これにより、上記分圧信号の高 周波成分が、バッファ54の入力信号に加算される。

【0057】パッファ54の出力端子は出力端子66に 接続されており、出力端子66には出力信号 Voが出力 される。また、帰還手段である抵抗R、と抵抗R。との 共通接続点を可変コンダクタンス増幅器41、の反転入 力端子に接続することで、出力信号V。の一部が負帰還 入力されている。さらに、出力信号V。が、可変コンダ クタンス増幅器 4 1 。の反転入力端子に負帰還入力され ている。

【0058】上記の負帰還により、入力信号Viの直流 レベルの変動による、可変コンダクタンス増幅器 4 1, 41, の特性変化を抑えることができ、良好なD G特性、DP特性を実現している。

【0059】アクティブフィルタ62において、出力端 子56に得られる出力信号V。の入力信号Vi に対する 伝達関数T: (s)は、前記(2)式でR。の代わりにR ・、を代入したものになる。図1の回路で説明したよう 30 に、R,, 与無限大とすることができるため、T, (s) は、下記(3) 式のようになる。

[0060]

【数3】

$$\Gamma_{1}(S) = \frac{\frac{R_{B}}{R_{A} + R_{B}} S^{2} + \frac{g_{m}^{2}}{Ct^{2}}}{S^{2} + \frac{g_{m}}{C_{1}} \cdot \frac{R_{D}}{R_{C} + R_{D}} S + \frac{g_{m}^{2}}{Ct^{2}}}$$
(3)

【0061】このアクティブフィルタ61は、-12d 40 せる。

B/ocl の2次ローパスフィルタである。

[0063]

【数4】

【0062】また、中心周波数f, は、下記(4) 式で表

 $f_{N} = \frac{R_{A} + R_{B}}{R_{A}} \cdot f_{A}$

$$f_0 = \frac{1}{2\pi} \cdot \frac{g_m}{C_1} \tag{4}$$

【0064】また、零点周波数f,はこの中心周波数f

【数 5】

[0065]

. に比例し、下記(5) 式で表せる。

9

【0066】さらに、共振の鋭さQは、下記(6) 式で表せる。

$$Q = \frac{R_c + R_n}{R_n}$$

【0069】従って、本実施例のアクティブフィルタ61は、従来回路のように、アーリー電圧のばらつきに起因する特性の変動を無くすことができる。特に、中心周波数f.付近の特性がばらついて、ピークやリップルが生じる等の、従来回路の問題を無くすことができ、極めて安定した特性を実現することができる。

【0070】したがって、映像信号用フィルタとして使用した場合でも、映像信号の微分利得DG及び微分位相DPを極めて良好で、かつ、安定した特性とすることができる。

[0071]

【発明の効果】上述の如く、請求項1の発明によれば、 電流出力型増幅器の出力インピーダンスを非常に大きく でき、かつ、アーリー電圧に起因する出力インピーダン スのばらつきを大幅に小さくすることができる。

【0072】請求項2の発明によれば、コンダクタンス可変の電流出力型増幅器において、出力インピーダンスのばらつきを大幅に小さくすることができる。

【0073】請求項3の発明によれば、電流出力型増幅器の出力インピーダンスのパラツキを大幅に小さくできるため、伝達特性が安定した極めて良好な特性を得るこ 30

【0067】 【数6】

(6)

10

とができる。

【図面の簡単な説明】

【図1】本発明の一実施例の可変コンダクタンス増幅器の回路図である。

【図2】本発明の一実施例の可変コンダクタンス増幅器 を記号表記した図である。

【図3】本発明の一実施例の可変コンダクタンス増幅器 を用いたアクティブフィルタの回路図である。

【図4】従来の一例の可変コンダクタンス増幅器の回路 図である。

20 【図5】従来の一例の可変コンダクタンス増幅器を記号表記した図である。

【図6】従来の一例の可変コンダクタンス増幅器を用いたアクティブフィルタの回路図である。

【符号の説明】

Q,,Q, 差動対トランジスタ

Q. 第1のトランジスタ

Q, 第2のトランジスタ

41, 41, 41, 可変コンダクタンス増幅器

67,68 積分回路

 $(\boxtimes 1)$ $(\boxtimes 2)$ $(\boxtimes 5)$ $(\boxtimes 2)$ $(\boxtimes 5)$ $(\boxtimes 5)$ $(\boxtimes 5)$ $(\boxtimes 1)$ $(\boxtimes 2)$ $(\boxtimes 5)$ $(\boxtimes 5)$ $(\boxtimes 5)$ $(\boxtimes 1)$ $(\boxtimes 1$

0

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
· ·
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.