20 Funktionenkörper einer Prävarietät

Definition 46 (orig. 43). Für eine Prävarietät X sind die rationalen Funktionenkörper aller nicht-leeren affinen offenen Teilmengen in natürlicher Weise zu einander isomorph. Dieser Körper nennen wir den **rationalen Funktionenkörper** von X: K(X).

Proof. $\emptyset \neq U, V \subset X$ affine offene Untervarietät. Da X irreduzibel ist, gilt nach Satz 40:

$$\emptyset \neq U \cap V \subset U$$
 offen.

Nach Definition von \mathcal{O}_X ist

$$\mathcal{O}_X(U) \subseteq \mathcal{O}_X(U \cap V) \subset K(U) = \operatorname{Quot}(\mathcal{O}_X(U)).$$

Das impliziert $\operatorname{Quot}(\mathcal{O}_X(U\cap V))=K(U)$. Aus Symmetriegründen ist aber $K(V)=\operatorname{Quot}(\mathcal{O}_X(U\cap V))$.

Remark 47 (orig. 44). Das Bild K() des Funktionenkörpers ist **nicht** funktoriell! Für $X \xrightarrow{f} Y$ Morphismus affiner Varietäten ist die Abbildung auf den Koordinatenringen $\Gamma(Y) \to \Gamma(X)$ i.A. **nicht** injektiv, also gibt es kein $K(Y) \hookrightarrow K(X)$.

Jedoch: Eine Isomorphie $X \xrightarrow{\sim} Y$ induziert $K(Y) \xrightarrow{\sim} K(X)$. Allgemeiner sei $X \to Y$ Morphismus mit Bild $\subset Y$ offen (\Rightarrow dicht. Später $X \to Y$ dominant, d.h. Bild $\subset Y$ dicht.) induziert in funktioreller Weise eine Abbildung $K(Y) \hookrightarrow K(X)$.

Proposition 48 (orig. 45). Sei X eine Prävarietät, $V \subseteq U \subseteq X$ offen. Es folgt:

 $\mathcal{O}_X(U) \subset K(X)$ k-Unteralgebra.

 $\mathcal{O}(U) \to \mathcal{O}(V)$ ist Inklusion von Teilmengen des Funktionenkörpers K(X).

Insbesondere gilt für $U, V \subset X$ offen:

$$\mathcal{O}_X(U \cup V) = \mathcal{O}_X(U) \cap \mathcal{O}_X(V).$$

Proof.

2. Sei $\mathcal{O}(X) \ni f: X \to k$. Dann ist $f^{-1}(0) \subseteq X$ abgeschlossen, da für $W \subseteq X$ offen affin beliebig gilt:

$$f^{-1}(0) \cap W = V(f_{|_W}).$$

Dazu macht man sich klar: "abgeschlossen" ist eine lokale Eigenschaft, und die W bilden eine Basis der Topologie.

$$\Rightarrow \mathcal{O}(U) \hookrightarrow \mathcal{O}(V), \, f \mapsto \sigma$$
injektiv für $\emptyset \neq V \subseteq U \subset X$ offen.

$$\Rightarrow V \subset f^{-1}(0)$$

$$\Rightarrow f^{-1}(0) = U$$
$$\Rightarrow f \equiv 0.$$

1. (i) $U \supset W$ offen affine Varietät. \Rightarrow

$$\mathcal{O}(W) \subset \longrightarrow K(W)$$
 k-Varietät
$$\oint \mathcal{O}(U)$$

(i) Verklebungsaxiom: