INLIGHN TECH

Website: https://www.inlighntech.com/

LinkedIn: https://www.linkedin.com/company/inlighn-tech/

Contact: support@inlighntech.com

Project Title:

Air Quality Prediction Using Machine Learning

Technologies:

Python, Google Colab

Difficulty Level:

Medium

Project Description:

This project focuses on predicting air quality using machine learning techniques. You will build a model to analyze and forecast air pollution levels based on historical data. This hands-on experience will help you understand how to preprocess time-series data, build predictive models, and evaluate their performance.

Project Requirements:

Tools and Environment

- **Platform:** Use Google Colab to run your code. It is pre-installed with necessary libraries and simplifies collaboration and sharing.
- Dataset: Download the Air Quality Dataset from the <u>UCI Machine Learning Repository</u>.

Libraries Required:

- 1. Data Manipulation and Analysis:
 - o **pandas**
 - o numpy

2. Data Visualization:

- o matplotlib
- o seaborn

3. Machine Learning:

o scikit-learn

4. Forecasting:

o fbprophet

Step-by-Step Guide:

1. Set Up Your Workspace

- Open Google Colab.
- Create a new notebook and name it Air Quality Prediction.
- Upload the dataset to Colab.

2. Data Understanding

- Load the dataset into a pandas DataFrame.
- Explore the data:
 - View the first few rows using .head().
 - o Check for missing values using .isnull().sum().
 - Display data types and statistics using .info() and .describe().

3. Data Preprocessing

- Handle missing values:
 - o Replace invalid or missing values (-200) with NaN.
 - Use the column mean to fill missing values.
- Convert Date and Time columns into a single datetime column. Ensure it follows the YYYY-MM-DD HH:MM:SS format.

4. Feature Engineering

- Retain important columns, such as pollutant levels and weather conditions.
- Scale the data using StandardScaler or MinMaxScaler.

5. Model Development

- Split the data into training and testing sets using train_test_split.
- Build a time-series forecasting model using fbprophet:
 - o Rename the datetime column to ds and the target column to y.
 - o Train the model on ds and y.
 - Predict future air quality levels.

6. Model Evaluation

- Use evaluation metrics such as:
 - Mean Absolute Error (MAE)
 - Root Mean Square Error (RMSE)
 - o R-squared (R²)
- Visualize actual vs. predicted pollutant levels using matplotlib.

Extra Challenges (Optional):

- 1. Predict air quality for a specific future period (e.g., one week ahead).
- 2. Create a dashboard for interactive visualization.
- 3. Use additional models like LSTM for comparison.

Submission Guidelines:

1. Repository Structure:

- o Create a folder or GitHub repository containing the following:
 - .ipynb file of your Colab notebook
 - The dataset used

2. Documentation:

- o Add markdown cells in your notebook to explain each step.
- o Ensure your code is well-commented.

3. Testing:

- o Ensure your model runs end-to-end without errors.
- o Validate that your model generates accurate predictions.

Assessment Criteria:

- 1. Code Quality: Clear, modular, and well-commented code.
- 2. **Data Preprocessing:** Appropriate handling of missing values and feature transformations.
- 3. **Model Accuracy:** Use metrics to evaluate performance.
- 4. Visualization: Effective plots to explain data and results.
- 5. **Submission Quality:** Structured and error-free notebook submission.

Deliverables:

- 1. .ipynb notebook with all required code and outputs.
- 2. Visualizations of predicted vs. actual air quality levels.
- 3. Explanation of results.

This project will prepare you for real-world applications of machine learning in environmental analysis. Let's create impactful predictions! Good luck!