# Diagrams using tikz

## Diogo Ferrari Department of Political Science University of California, Riverside

## Contents

| 1 | Instructions and Information                                                | 2    |
|---|-----------------------------------------------------------------------------|------|
| 2 | Nodes and Edges                                                             | 3    |
|   | 2.1 Basic shapes                                                            | . 3  |
|   | 2.2 Template                                                                | . 5  |
|   | 2.3 Examples                                                                | . 5  |
| 3 | Plate and Parametric Models                                                 | 7    |
|   | 3.1 Basic shapes                                                            | . 7  |
|   | 3.2 Examples                                                                | . 7  |
| 4 | DAG                                                                         | 9    |
|   | 4.1 Nodes as Text and box                                                   | . 9  |
|   | 4.2 Nodes as text                                                           | . 10 |
|   | 4.3 Nodes as variables (relative position)                                  | . 10 |
|   | 4.4 Nodes as variables and circles                                          | . 10 |
|   | 4.5 Nodes as variables and circles (closer)                                 | . 11 |
|   | 4.6 Nodes as variables and circles (closer, no edge labels)                 | . 11 |
|   | 4.7 Nodes as variables and circles (closer, no edge labels, and subfigures) |      |
|   | 4.8 Large DAG                                                               | . 13 |
|   | 4.9 Large DAG (using latent var notation)                                   | . 13 |
|   | 4.10 Large DAG (using latent var notation alternative)                      |      |
| 5 | Undirected Graphs                                                           | 14   |
| 6 | Tree                                                                        | 15   |

## 1. Instructions and Information

This document uses a few packages and configurations:

- \usepackage{tikz}
- \usetikzlibrary{decorations.pathreplacing}
- \usepackage{forest}

The files ./sty/basic-article.sty and ./sty/math-commands contain all the packages and commands required to create this document. If you are trying to compile this file locally in your computer, you need to create a subfolder ./sty/ in the folder of the .tex file you are trying to compile, save both the file math-commands.sty and basic-article.sty on that subfolder, and include \usepackage{./sty/math-commands} in your main .tex file.

You can check the .tex file used to create this .pdf for details.

See documentation of TikZ here.

## 2. Nodes and Edges

## 2.1. Basic shapes

Some predefined nodes on math-commands.sty

- c name:const; constant node; Snippet: dagn or dagnr
- $\left(\begin{array}{c} U_1 \end{array}\right)$  name:latent; latent node; Snippet: dagn or dagnr (for relative position)
- $U_2$  name:latent2; latent node (notation 2); Snippet: dagn or dagnr (for relative position)
- $\overbrace{X}$  name:obs; observed node; Snippet: dagn or dagnr (for relative position)
- X  $x = \tilde{x}$ name:potential; potential variable node (for single world graphs); Snippet: dagn or dagnr (for relative position)
  - name:factor; factor node; Snippet: dagn or dagnr (for relative position)
  - $\widetilde{x}$  name:manipulated; manipulated node ; Snippet: dagn or dagnr (for relative position)
  - $\widetilde{\chi}$  name:det; deterministic node ; Snippet: dagn or dagnr (for relative position)
  - $\|\cdot\|$  name:operation; operations node ; Snippet: dagn or dagnr (for relative position)

Figure 1: Some possible notation for types of nodes



Figure 2: Some edge types

### 2.2. Template

#### 2.3. Examples

```
\begin{figure}[ht]\centering
\begin{tikzpicture}
\node at (0, 0) [
 circle,
                             % rectangle/diamond
  draw
               = black,
                             % border
             = .5pt,
                             % border width
 line width
 minimum size = 20pt,
                             % minimum size of node
  inner sep
               = 1pt,
                             % sep b/w border and inner text
               = \normalsize, %
              = black,
                             % inner label color
 text
 fill
               = white,
  node distance = 1pt,
  (beta1)
  {\(\beta_{1}\\)};
\end{tikzpicture}
\end{figure}
```



```
\begin{figure}[ht]\centering
\begin{tikzpicture}
\node at (0, 0) [
```

```
circle,
                            % rectangle/diamond
              = black,
                           % border
 draw
             = .5pt,
                            % border width
 line width
 minimum size = 20pt,
                            % minimum size of node
 inner sep
                            % sep b/w border and inner text
              = 1pt,
 font
              = \normalsize, %
              = black,
                           % inner label color
 text
              = white,
 node distance = 1pt,
 (beta1)
 {\(\beta_{1}\\)}; %
\node at (1, 0) [
 circle,
                            % rectangle/diamond
              = black,
                           % border
 draw
 ]
 ()
 {\(\Sigma\\)};
\node at (3, 0) [latent ] (id) {<label>} ; %
\node at (5, 0) [obs ] (mu) \{ ( \mu ) \} ; 
\node at (7, 0) [const ] (id-x) {X}; %
\end{tikzpicture}
\end{figure}
```



## 3. Plate and Parametric Models

#### 3.1. Basic shapes



#### 3.2. Examples

```
\begin{figure}[ht]\centering
\begin{tikzpicture}[thick,scale=1, every node/.style={transform shape}]
%% Nodes
\node at (2, 0) [obs
                           ] (yi)
                                          {\( y_i \)} ; %
\node at (0, 0) [latent
                           ] (fi)
                                          {\(f_i\)}; %
\node at (-2, 0) [latent
                           ] (betai)
                                          {\(\beta_ {i} \)}; %
\node at (-2, 2) [const
                          [ ] (Sigmabeta) {\(\Sigma_{\beta}\)}; %
\node at (-4, 0) [const
                                         {\(\mu_ {\beta } \)}; %
                          ] (mubeta)
\node at (0, 2) [latent
                          ] (theta)
                                          {\(\theta\)}; %
\node at (-1, 4) [const
                           ] (mutheta)
                                          {\( \mu_ {\theta } =0 \)} ; %
\node at (1, 4) [const
                           [ ] (Sigmatheta) {\(\Sigma_{\theta}=I\)\); %
\node at (-1, -2.5) [const ] (1)
                                          {\( 1=1 \)} ; %
\node at (1, -2.5) [const ] (sigmaf)
                                          {\(\sigma_{f} =1 \)}; %
%% plate
\plate {plate1} {(betai) (fi) (yi)} {\( i=1,...n \)};
%% arrows
\edgesimple {fi} {yi}
\edgesimple {betai} {fi}
\edgesimple {mubeta} {betai}
\edgesimple {1} {fi}
\edgesimple {sigmaf} {fi}
\edgesimple {Sigmabeta} {betai}
\edgesimple {mutheta} {theta}
\edgesimple {Sigmatheta} {theta}
\edgesimple {theta} {fi}
\end{tikzpicture}
\end{figure}
\begin{figure}[ht]\centering
\begin{tikzpicture}[thick,scale=1, every node/.style={transform shape}, on grid, auto]
%% Nodes
\node at (-6, 0) [const
                                                      {\(\mu_ {\beta } \)}; %
\node at (-4, 2) [const
                                      [ ] (Sigmabeta) {\(\Sigma_{\beta}\)\) ; *
```



```
\node at (-4, 0) [dist, label={[red
                                 \node at (2, 0) [obs
                                  ] (yi)
                                               {\( y_i \)} ; %
\node at (0, 0) [latent
                                  ] (fi)
                                               {\(f_i\)}; %
\node at (-2, 0) [latent
                                 ] (betai)
                                               {\(\beta_ {i} \)}; %
\node at (0, 2) [latent
                                 ] (theta)
                                               {\(\theta\)}; %
\node at (-1, 5) [const
                                  ] (mutheta)
                                               \node at ( 1, 5) [const
                                  [ ] (Sigmatheta) {\(\Sigma_{\theta} = I \)}; %
\node at (-1, -4) [const
                                ] (1)
                                             {\(1
                                                              =1 \)}; %
\node at (1, -4) [const
                                ] (sigmaf)
                                             {\(\sigma_{f}}
                                                              =1 \)}; %
\node at (2, 2) [operation
                                 ] (dot) {\(\norm{.}}
                                                     \node at (4, 3) [latent
                                 ] (x) {\( X \)}; %
\node at (4, 1) [latent
                                 ] (z) {\( Z \)}; %
\node at (0, 3.5) [dist, label={[black]right:\normalsize\( \No \)} ] (normaltheta) {}
   ; 용
%% arrows
\edgesimple [-] {mubeta} {normal}
\edgesimple [-] {Sigmabeta} {normal}
\edgesimple {normal} {betai} ;
\edgesimple {fi} {yi}
\edgesimple {betai} {fi}
\edgesimple [-] {1} {g}
\edgesimple [-] {sigmaf} {g}
\edgesimple {g} {fi} ;
\edgesimple [-] {mutheta} {normaltheta}
\edgesimple [-] {Sigmatheta} {normaltheta}
\edgesimple {normaltheta} {theta} ;
\edgesimple {theta} {fi}
\edgesimple [-] {x} {dot} ;
\edgesimple [-] {z} {dot} ;
\edgesimple {dot} {theta} ;
%% plate
\plate {plate1} {(betai) (fi) (yi)} {\( i=1,...n \)};
\end{tikzpicture}
```



## 4. DAG

#### 4.1. Nodes as Text and box



#### 4.2. Nodes as text



### 4.3. Nodes as variables (relative position)



## 4.4. Nodes as variables and circles

```
\node at (5, 0) [latent, ] (out) {Y}; %

%% edges

\path[->] (ind) edge node[el,left,rotate=0] {\(\lambda \quad \\)} (med);

\path[->] (med) edge node[el,right,rotate=0] {\(\quad \beta \\)} (out);

\path[->] (ind) edge node[el,above,rotate=0] {\(\alpha \\)} (out);

\end{tikzpicture}

\end{figure}
```



### 4.5. Nodes as variables and circles (closer)

```
\begin{figure}[ht]\centering
\begin{tikzpicture}[thick,scale=1, every node/.style={transform shape}, on grid, auto]
\node at (0, 0)
                            ] (ind) {X}; %
                 [latent
\node at (2, 1.5) [latent,
                             ] (med) {Z} ; %
\node at (4, 0)
                 [latent,
                             ] (out) {Y}; %
%% edges
\path[->] (ind) edge node[el,left,rotate=0] {\(\lambda \quad \\) }
                                                                    (med);
\path[->] (med) edge node[el,right,rotate=0] {\(\quad \beta \)}
\path[->] (ind) edge node[el,above,rotate=0] {\(\alpha\\)}
\end{tikzpicture}
\end{figure}
```



## 4.6. Nodes as variables and circles (closer, no edge labels)

```
\path[->] (ind) edge node[el,above,rotate=0] {} (out);
\end{tikzpicture}
\end{figure}
```



## 4.7. Nodes as variables and circles (closer, no edge labels, and subfigures)

```
\begin{figure}[ht]
\begin{subfigure}{.5\textwidth}
  \centering
  \begin{tikzpicture}[thick,scale=1, every node/.style={transform shape}, on grid, auto]
  \node at (0, 0) [latent ] (ind) \{X\}; %
  \node at (2, 1.5) [latent, ] (med) \{Z\}; %
  \node at (4, 0) [latent, ] (out) {Y}; %
  %% edges
  \path[->] (ind) edge node[el,left,rotate=0] {}
                                                    (med);
  \path[->] (med) edge node[el,right,rotate=0] {}
                                                    (out);
  \path[->] (ind) edge node[el,above,rotate=0] {}
                                                    (out);
  \end{tikzpicture}
  \caption{Put your sub-caption here}
  \label{fig:sub-first}
\end{subfigure}
\begin{subfigure}{.5\textwidth}
  \centering
  \begin{tikzpicture}[thick,scale=.7, every node/.style={transform shape}, on grid,
                             ] (ind) {X}; %
  \node at (0, 0) [latent
  \node at (2, 1.5) [latent, ] (med) \{Z\}; %
  \node at (4, 0) [latent,
                             ] (out) {Y} ; %
  %% edges
  \path[->] (ind) edge node[el,left,rotate=0] {}
                                                    (med);
  \path[<-] (med) edge node[el,right,rotate=0] {}</pre>
                                                    (out);
  \path[->] (ind) edge node[el,above,rotate=0] {}
                                                    (out);
  \end{tikzpicture}
  \caption{Put your sub-caption here}
  \label{fig:sub-second}
\end{subfigure}
\caption{Put your caption here}
\label{fig:fig}
\end{figure}
```



Figure 3: Put your caption here

## 4.8. Large DAG



## 4.9. Large DAG (using latent var notation)



## 4.10. Large DAG (using latent var notation alternative)



## 5. Undirected Graphs

```
\begin{figure}[ht]
\scalebox{.75}{ % to reduce the size of the figure (package graphix)
% nodes: latent, obs, det, const, factor, plate, gate
\centering
\tikz{ %
\label{eq:latent} $$ \node[latent] (x1) {\( X_1 \) } ; $$
\label{latent} $$ \node[latent, right=of x1] (x2) {\(X_2 \)} ; $$
\label{latent} $$ \ \ (x_3 \ ) ; $$
\node[latent, above=of x3] (x4) {\( X_4 \) } ; %
\edgesimple [-] \{x1\} \{x2\}; %
\edgesimple [-] {x2} {x3} ; %
\edgesimple [-] \{x3\} \{x4\} ; %
\edgesimple [-] \{x2\} \{x4\}; %
\edgesimple[bend right, -] {x1} {x3} ; %
\tikz{ %
\label{eq:latent} $$ \node[latent] (x1) {\( X_1 \) } ; $$
\label{latent} $$ \node[latent, right=of x1] (x2) {\( X_2 \) } ; $$
\node[latent, right=of x2] (x3) {\( X_3 \)}; %
\node[latent, right=of x3] (x4) {\( X_4 \)}; %
% second row
\node[latent, below=of x1] (x5) {\( X_5 \)} ; %
\node[latent, below=of x2] (x6) {\( X_6 \)} ; %
\label{latent} $$ \ \end{area} $$ \ \end{area} \ \ \end{area} \ \end{area} \ \end{area} $$ \
\label{lambda} $$ \ \end{area} $$ \ \end{area} \ \end{area} \ \end{area} \ \end{area} $$ \ \end{area} \ \end{area} $$ \end{area} $$ \end{area} $$ \end{area} $$ \end{area} $$ \end{area} $$ \end{area} $$\en
  % third row
\node[latent, below=of x5] (x9) {\( X_9 \)} ; %
\label{latent} $$ \ \end{area} $$ \end{area} $$ \end{area} $$ \end{area} $$ \end{area} $$ \end{area} $$ \end
\node[latent, below=of x7] (x11) \{\ (X_{11} \ )\}; %
\node[latent, below=of x8] (x12) \{\ (X_{12} \ )\}; %
\edgesimple [-] {x1} {x2} ; %
\edgesimple [-] \{x2\} \{x3\}; %
\edgesimple [-] {x3} {x4} ; %
\edgesimple [-] {x1} {x5} ; %
\edgesimple [-] \{x2\} \{x6\} ; %
\edgesimple [-] \{x3\} \{x7\} ; %
\edgesimple [-] {x4} {x8} ; %
\edgesimple [-] \{x5\} \{x6\} ; %
\edgesimple [-] \{x6\} \{x7\}; %
\edgesimple [-] \{x7\} \{x8\} ; \$
```

```
\edgesimple [-] {x5} {x9}; %
\edgesimple [-] {x6} {x10}; %
\edgesimple [-] {x7} {x11}; %
\edgesimple [-] {x8} {x12}; %
\edgesimple [-] {x9} {x10}; %
\edgesimple [-] {x10} {x11}; %
\edgesimple [-] {x11} {x12}; %
\edgesimple [-] {x12} {x12}; %
\edgesimple [-] {x12} {x12}; %
\edgesimple [-] {x12} {x12}; %
\
```



## 6. Tree

It uses the package forest, so you need to include  $\usepackage{forest}$  in the latex header. Snippet: dagtree

```
left left ··· right

lleft lright lleft rleft rright

leaf left leaf right
```

```
[root
    [left node[ another left][ another right]]
    [right node]
]
\end{forest}
\end{figure}
```

