Discrete Structures Chapter 4.6 — Cryptography

Example 1 (Student Worksheet): Caesar Cipher, shift k = 3

Learning goals. Practice converting letters \leftrightarrow numbers, computing (p + k) mod 26, and translating back.

Alphabet convention (zero-based).

$$A = 0, B = 1, ..., Z = 25$$

We work in \mathbb{Z}_{26} (mod 26). Spaces and punctuation are carried through unchanged; we use uppercase.

Encryption rule. For plaintext number $p \in \{0, \dots, 25\}$ and shift k, the ciphertext number is

$$c \equiv p + k \pmod{26}$$
.

For this worksheet we use k = 3 (the classic "Caesar +3").

Fast tips (use 'em shamelessly):

- Add 3 quickly by doing +1, +2, +3 as you scan, or use the wrap trick: adding 3 to 24, 25 wraps to 1, 2.
- Decrypting a +3 cipher is the same as adding -3, i.e., adding $23 \mod 26$.
- Common wrap cases: $24+3 \rightarrow 1 \text{ (Y} \rightarrow \text{B)}, 25+3 \rightarrow 2 \text{ (Z} \rightarrow \text{C)}.$

Guided task. Encrypt the message:

MEET YOU IN THE PARK

Step 1 — Letters \rightarrow numbers (A=0,...,Z=25). Fill the *plaintext numbers p* under each letter.

(write numbers p here)

Step 2 — Add the shift $k = 3 \mod 26$. Compute $c \equiv p + 3 \pmod{26}$ for each position and write the results:

Step 3 — **Numbers** \rightarrow **letters.** Translate each c back to letters to form the ciphertext:

Neatness check. Your ciphertext should be readable in groups (keep the spaces from the original). If you decrypt with -3 you should land back on MEET YOU IN THE PARK.

Quick reference table (optional). If you like a visual:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 29

Practice (still Caesar, but you drive):

P1. Encrypt (easy). Use k = 5 to encrypt:

DOGS AND CATS

Hint: D=3 so D \mapsto 3+5=8 \Rightarrow I. Keep spaces.

P2. Decrypt (easy). The ciphertext below was made with a k=5 Caesar. Recover the plaintext.

YMNX NX FQ YJXY

Tip: Decrypt by adding -5 (or +21) mod 26.

P3. Crack the shift (harder). The message below is a Caesar cipher with $unknown \ k$:

L ORYH PDWKP

Clues: Try common words; guess that "PDWKP" might be "MATH?" or "MATHS?". Also, a one-letter word is often A or I. Determine k and decrypt.

Reflection. In one sentence: why does "mod 26" make the Caesar cipher *wrap* from Z back to A?

Discrete Structures Chapter 4.6 — Cryptography

Example 1: Caesar Cipher (k = 3)

Question. Encrypt the message MEET YOU IN THE PARK using the Caesar cipher with shift k=3.

Step 1 — Letters \rightarrow numbers.

We use zero-based numbering: A=0, B=1, ..., Z=25.

MEET YOU IN THE PARK \Rightarrow 12, 4, 4, 19, 24, 14, 20, 8, 13, 19, 7, 4, 15, 0, 17, 10

Step 2 — Apply $f(p) = (p+3) \mod 26$.

Add 3 to each number, wrapping around if the result exceeds 25:

$$(12+3) = 15, (4+3) = 7, (4+3) = 7, (19+3) = 22,$$

 $(24+3) = 27 \equiv 1, (14+3) = 17, (20+3) = 23,$
 $(8+3) = 11, (13+3) = 16, (19+3) = 22, (7+3) = 10, (4+3) = 7,$
 $(15+3) = 18, (0+3) = 3, (17+3) = 20, (10+3) = 13.$

Step 3 — Numbers \rightarrow letters.

Convert the ciphertext numbers back to letters:

$$15, 7, 7, 22, 1, 17, 23, 11, 16, 22, 10, 7, 18, 3, 20, 13$$

 \Rightarrow PHHW BRX LQ WKH SDUN

Final Answer. The encrypted message is:

PHHW BRX LQ WKH SDUN

(Translation: "MEET YOU IN THE PARK" shifted +3.)

Quick Reflection. The Caesar cipher uses modular arithmetic in \mathbb{Z}_{26} so letters "wrap around" after Z. The function $f(p) = (p+k) \mod 26$ keeps all results in 0–25.

Practice Solutions

P1 — Encrypt (easy). Use k = 5 to encrypt: DOGS AND CATS.

Step 1 — Convert to numbers:

3, 14, 6, 18, 0, 13, 3, 2, 0, 19, 18

Step 2 — Add $5 \mod 26$:

Step 3 — Back to letters:

P2 — **Decrypt (easy).** Decrypt YMNX NX FQ YJXY that was made with k = 5.

We reverse the shift: $c - 5 \pmod{26}$.

$$Y=24 \rightarrow 19=T, M=12 \rightarrow 7=H, N=13 \rightarrow 8=I, X=23 \rightarrow 18=S$$
 \Rightarrow THIS IS AN TEST

So the message is "THIS IS AN TEST." (It should probably read "THIS IS A TEST.")

P3 — Crack the shift (harder). Ciphertext: L ORYH PDWKP!

Try guessing common English patterns.

ORYH looks like "LOVE," and the one-letter word "L" likely corresponds to "I."

That suggests a shift of k = 3 backward (since $L \to I$ is -3).

Decrypting with k = 3:

L ORYH PDWKP!
$$\Rightarrow$$
 I LOVE MATH!

Summary of Key Takeaways

- The Caesar cipher is modular addition in \mathbb{Z}_{26} .
- Encryption: $E_k(p) = (p+k) \mod 26$
- Decryption: $D_k(c) = (c k) \mod 26$
- $\bullet\,$ If you can add or subtract mod 26, you can encrypt or decrypt.
- This cipher is historically important but easily broken by frequency analysis or brute force (26 possibilities).

Going Deeper. You can extend this same math to more complex ciphers:

$$f(p) = (a \cdot p + b) \bmod 26$$

where a must have a multiplicative inverse mod 26. This leads directly into the Affine Cipher—our next example.

Discrete Structures Chapter 4.6 — Cryptography

Example 2 (Worksheet) — Shift Cipher with k = 11

Goal. Encrypt the message STOP GLOBAL WARMING using Caesar's shift cipher with k = 11.

Big idea (the "why"):

We model letters as numbers in \mathbb{Z}_{26} so that a shift is just *modular addition*. This keeps us in the alphabet and gives the wrap-around from Z back to A.

$$A = 0, B = 1, ..., Z = 25$$
 $E_k(p) = (p + k) \mod 26.$

For this example, k = 11.

Step 1 — Normalize and map letters \rightarrow numbers

We use uppercase and keep spaces. Convert each letter of STOP GLOBAL WARMING to its number:

Step 2 — Apply the shift k = 11 (add 11 mod 26)

Compute $c \equiv p + 11 \pmod{26}$ for each number. Do the wrap when you go past 25.

STOP: $18, 19, 14, 15 \mapsto 3, 4, 25, 0$

GLOBAL: $6, 11, 14, 1, 0, 11 \mapsto 17, 22, 25, 12, 11, 22$

WARMING: $22, 0, 17, 12, 8, 13, 6 \mapsto 7, 11, 2, 23, 19, 24, 17$.

Step 3 — Map numbers \rightarrow letters and keep spaces

$$3, 4, 25, 0 \mid 17, 22, 25, 12, 11, 22 \mid 7, 11, 2, 23, 19, 24, 17 \Rightarrow | DEZA RWZMLW HLCXTYR |$$

Helpful tips & common pitfalls

- A=0, not 1. Off-by-one mistakes are the #1 bug.
- Wrap cleanly: if $p + k \ge 26$, subtract 26 (i.e., reduce mod 26).

- Spaces/punctuation pass through unchanged; only letters get shifted.
- **Decrypting** with k = 11 is the same as adding -11 (or +15) mod 26.

Practice (your turn!)

Problem A (easier). Encrypt with k = 4: MATH IS FUN

Why: smaller shift, shorter phrase—perfect confidence builder.

Problem B (similar). Decrypt with k = 11: SPWWZ HZCWO

Tip: subtract 11 mod 26 or add 15.

Problem C (harder). Unknown k. Decrypt the Caesar ciphertext: P HT HA AOL WHYR *Hints:* a one-letter word is often I or A. The block AOL frequently shows up when "THE" is

encrypted with k = 7.

Reflection. In one sentence: explain why modular arithmetic guarantees a valid letter after every shift.

Solutions for Example 2 Practice

Problem A (easier). Encrypt with k = 4: MATH IS FUN

Map to numbers (A=0):

MATH IS FUN \Rightarrow 12, 0, 19, 7, 8, 18, 5, 20, 13.

Add 4 mod 26:

$$12, 0, 19, 7 \mapsto 16, 4, 23, 11$$
 (M \rightarrow Q, A \rightarrow E, ...)
 $8, 18 \mapsto 12, 22$ $5, 20, 13 \mapsto 9, 24, 17.$

Back to letters:

$$16, 4, 23, 11, 12, 22, 9, 24, 17 \Rightarrow \boxed{\text{QEXL MW JYR}}$$

Why it works: Every step is addition in \mathbb{Z}_{26} ; wrap ensures letters stay in 0-25.

Problem B (similar). Decrypt with k = 11: SPWWZ HZCWO

Numbers for ciphertext:

SPWWZ HZCWO \Rightarrow 18, 15, 22, 22, 25, 7, 25, 2, 22, 14.

Subtract 11 (or add 15) mod 26:

$$18, 15, 22, 22, 25 \mapsto 7, 4, 11, 11, 14 \quad (H,E,L,L,O)$$

$$7, 25, 2, 22, 14 \mapsto 22, 14, 17, 11, 3 \quad (W,O,R,L,D).$$

Plaintext: | HELLO WORLD |

Problem C (harder). Unknown k: P HT HA AOL WHYR

Strategy (the why): Look for patterns. A one-letter word is probably I or A. Also, AOL famously appears when "THE" is shifted by k = 7 (since $19+7 = 26 \equiv 0 = A$, etc.).

Infer k: If AOL is THE, then the shift is k = 7.

Decrypt by subtracting 7:

$$P \mapsto I$$
, $HT \mapsto AM$, $HA \mapsto AT$, $AOL \mapsto THE$, $WHYR \mapsto PARK$.

\Rightarrow I AM AT THE PARK.

Key takeaways.

- Encryption: $E_k(p) = (p+k) \mod 26$, Decryption: $D_k(c) = (c-k) \mod 26$.
- Unknown k can be cracked with educated guesses ("THE", one-letter words) or brute force (only 26 options).
- \bullet Thinking in \mathbb{Z}_{26} explains the wrap-around and keeps errors low.

Caesar Cipher Decryption

Student Worksheet

Understanding Decryption

Previously, we learned how to **encrypt** messages using the Caesar cipher. Now we'll learn to **decrypt** them—convert the secret message back to the original!

The key insight: Decryption is the reverse of encryption.

- Encryption: We shifted letters forward by k positions using $f(p) = (p + k) \mod 26$
- **Decryption:** We shift letters backward by k positions using $f(p) = (p k) \mod 26$

Key Concept: Negative Numbers and Mod

When we subtract and get a negative number, we need to "wrap around" the other direction. For example, if we try to go back 7 from the letter E (position 4), we get 4-7=-3.

To handle this, we compute: $-3 \mod 26 = 23$ (which is the letter X).

Quick trick: If you get a negative number, just add 26 to make it positive!

$$-3 + 26 = 23$$

Example 3: Worked Solution

Question: Decrypt the ciphertext message "LEWLYPLUJL PZ H NYLHA HSOHOLY" that was encrypted with the shift cipher with shift k = 7.

Solution:

Step 1: Convert letters to numbers

We use our standard A=0, B=1, C=2, ..., Z=25 system. Let's convert the ciphertext:

- LEWLYPLUJL: L=11, E=4, W=22, L=11, Y=24, P=15, L=11, U=20, J=9, L=11
- **PZ:** P=15, Z=25

• **H**: H=7

• **NYLHA:** N=13, Y=24, L=11, H=7, A=0

• **HSOHOLY:** A=0, L=11, H=7, O=14, L=11, Y=24

Our number sequence is:

Step 2: Apply the decryption function

We apply $f(p) = (p-7) \mod 26$ to shift backward by 7. Let's work through each number:

$$f(11) = (11 - 7) \mod 26 = 4 \mod 26 = 4$$

 $f(4) = (4 - 7) \mod 26 = -3 \mod 26 = 23$ (add 26: $-3 + 26 = 23$)
 $f(22) = (22 - 7) \mod 26 = 15 \mod 26 = 15$
 $f(11) = (11 - 7) \mod 26 = 4 \mod 26 = 4$
 $f(24) = (24 - 7) \mod 26 = 17 \mod 26 = 17$
 $f(15) = (15 - 7) \mod 26 = 8 \mod 26 = 8$
 $f(11) = (11 - 7) \mod 26 = 4 \mod 26 = 4$
 $f(20) = (20 - 7) \mod 26 = 13 \mod 26 = 13$
 $f(9) = (9 - 7) \mod 26 = 2 \mod 26 = 2$
 $f(11) = (11 - 7) \mod 26 = 4 \mod 26 = 4$

Continuing for the remaining letters:

$$f(15) = 8$$
, $f(25) = 18$, $f(7) = 0$
 $f(13) = 6$, $f(24) = 17$, $f(11) = 4$, $f(7) = 0$, $f(0) = 19$
 $f(0) = 19$, $f(11) = 4$, $f(7) = 0$, $f(9) = 2$, $f(14) = 7$, $f(11) = 4$, $f(24) = 17$

Our decrypted numbers are:

Pro Tip: Handling Negative Results

Whenever (p - k) gives you a negative number:

- 1. Notice it's negative
- 2. Add 26 to make it positive
- 3. That's your answer!

Example: (4-7) = -3, so -3 + 26 = 23

Step 3: Convert numbers back to letters

Using A=0, B=1, ..., Z=25:

- 4=E, 23=X, 15=P, 4=E, 17=R, 8=I, 4=E, 13=N, 2=C, 4=E
- 8=I, 18=S
- \bullet 0=A
- 6=G, 17=R, 4=E, 0=A, 19=T
- 19=T, 4=E, 0=A, 2=C, 7=H, 4=E, 17=R

Final Answer: The decrypted message is **EXPERIENCE IS A GREAT TEACHER**

Why This Works

If someone encrypted a message by shifting forward 7, we decrypt by shifting backward 7. It's like walking 7 steps forward, then 7 steps back—you end up where you started!

Practice Problems

Problem A (Easier Warm-up)

Decrypt the ciphertext "**FDW**" that was encrypted with shift k = 3.

Hint: This is a short message. Remember to subtract 3 from each letter's position. If you get negative numbers, add 26!

Problem B (Standard Practice)

Decrypt the ciphertext "MJQQT BTWQI" that was encrypted with shift k = 5.

Hint: You encrypted this message in the previous worksheet! Now decrypt it to get back the original message.

Problem C (Challenge)

Decrypt the ciphertext "EJKKR ZRUOJ" that was encrypted with shift k = 5.

Challenge: Some of these letters will give negative results when you subtract 5. Practice your wrapping-around skills!

Caesar Cipher Decryption

Teacher Solutions Manual

Problem A Solution: Decrypt "CAT" with shift k = 3

Step 1: Convert letters to numbers

$$F = 5$$
$$D = 3$$
$$W = 22$$

Number sequence: 5 3 22

Step 2: Apply decryption function $f(p) = (p-3) \mod 26$

$$f(5) = (5-3) \mod 26 = 2 \mod 26 = 2$$

 $f(3) = (3-3) \mod 26 = 0 \mod 26 = 0$
 $f(22) = (22-3) \mod 26 = 19 \mod 26 = 19$

Decrypted numbers: 2 0 19

Step 3: Convert back to letters

$$2 = C$$
$$0 = A$$
$$19 = T$$

Answer: CAT

Teaching Note

This is the easiest problem because: (1) short message, (2) all results are positive (no negative numbers to handle), and (3) it's the reverse of Problem A from the encryption worksheet. Students can verify their answer by re-encrypting CAT with k=3 to get FDW.

Problem B Solution: Decrypt "MJQQT BTWQI" with shift k = 5

Step 1: Convert letters to numbers

Breaking down by word:

- MJQQT: M=12, J=9, Q=16, Q=16, T=19
- **BTWQI:** B=1, T=19, W=22, Q=16, I=8

Number sequence:

Step 2: Apply decryption function $f(p) = (p-5) \mod 26$

$$f(12) = (12 - 5) \mod 26 = 7 \mod 26 = 7$$

 $f(9) = (9 - 5) \mod 26 = 4 \mod 26 = 4$
 $f(16) = (16 - 5) \mod 26 = 11 \mod 26 = 11$
 $f(16) = (16 - 5) \mod 26 = 11 \mod 26 = 11$
 $f(19) = (19 - 5) \mod 26 = 14 \mod 26 = 14$
 $f(1) = (1 - 5) \mod 26 = -4 \mod 26 = 22 \quad (-4 + 26 = 22)$
 $f(19) = (19 - 5) \mod 26 = 14 \mod 26 = 14$
 $f(22) = (22 - 5) \mod 26 = 17 \mod 26 = 17$
 $f(16) = (16 - 5) \mod 26 = 11 \mod 26 = 11$
 $f(8) = (8 - 5) \mod 26 = 3 \mod 26 = 3$

Decrypted numbers:

$$7 \quad 4 \quad 11 \quad 11 \quad 14 \qquad 22 \quad 14 \quad 17 \quad 11 \quad 3$$

Step 3: Convert back to letters

- 7=H, 4=E, 11=L, 11=L, 14=O
- 22=W, 14=O, 17=R, 11=L, 3=D

Answer: HELLO WORLD

Teaching Note

This problem introduces negative numbers! When we decrypt B (position 1) with shift 5, we get: 1-5=-4.

To handle negative results in modular arithmetic: $-4 \mod 26 = 22$

Students can calculate this by adding 26: -4 + 26 = 22, which corresponds to the letter W.

Connection: Students encrypted "HELLO WORLD" in the previous worksheet and got "MJQQT BTWQI". Now they're decrypting it back—reinforcing the inverse relationship between encryption and decryption.

Problem C Solution: Decrypt "EJKKR ZRUOJ" with shift k = 5

Step 1: Convert letters to numbers

Breaking down by word:

• **EJKKR:** E=4, J=9, K=10, K=10, R=17

• **ZRUOJ:** Z=25, R=17, U=20, O=14, J=9

Number sequence:

 $4 \quad 9 \quad 10 \quad 10 \quad 17 \qquad 25 \quad 17 \quad 20 \quad 14 \quad 9$

Step 2: Apply decryption function $f(p) = (p-5) \mod 26$

$$f(4) = (4-5) \mod 26 = -1 \mod 26 = 25$$
 $(-1+26=25)$
 $f(9) = (9-5) \mod 26 = 4 \mod 26 = 4$
 $f(10) = (10-5) \mod 26 = 5 \mod 26 = 5$
 $f(10) = (10-5) \mod 26 = 5 \mod 26 = 5$
 $f(17) = (17-5) \mod 26 = 12 \mod 26 = 12$
 $f(25) = (25-5) \mod 26 = 20 \mod 26 = 20$
 $f(17) = (17-5) \mod 26 = 12 \mod 26 = 12$
 $f(20) = (20-5) \mod 26 = 15 \mod 26 = 15$
 $f(14) = (14-5) \mod 26 = 9 \mod 26 = 9$
 $f(9) = (9-5) \mod 26 = 4 \mod 26 = 4$

Decrypted numbers:

Step 3: Convert back to letters

- 25=Z, 4=E, 5=F, 5=F, 12=M
- 20=U, 12=M, 15=P, 9=I, 4=E

Answer: ZEFFM UMPIE

Teaching Note

This is the *challenge* problem because it starts with E (position 4), which requires wrapping around when decrypted.

When we compute f(4) = (4-5) = -1, we need to wrap around to the *end* of the alphabet:

$$-1 \mod 26 = 25$$
 (the letter Z)

Students can think of it this way: going back 1 from A brings you to Z (the last letter). Mathematically: -1 + 26 = 25

Multiple negative cases: This problem is harder because it has multiple instances where students need to handle negative results, giving them more practice with this crucial concept.

Pattern recognition: Students might notice that letters early in the alphabet (A, B, C, D, E) will always produce negative results when the shift is larger than their position number.

Common Student Errors to Watch For

- 1. Forgetting to handle negative numbers: Students might write 4-5=-1 and stop there, not realizing they need to add 26. Watch for students who leave negative numbers in their final answer.
- 2. Adding instead of subtracting: Some students confuse encryption and decryption, using (p+k) instead of (p-k).
- 3. Incorrect negative arithmetic: Students might compute -4 + 26 incorrectly. Emphasize: start at 26, count backward 4.
- 4. **Off-by-one errors with A=0:** Remind students that A=0, not A=1. When they decrypt to position 0, that's the letter A.

5. **Not checking their work:** Students can verify decryption by re-encrypting their answer with the same shift—they should get back the original ciphertext.

Extension Activity

Have students encrypt a message with one shift value, then decrypt it with the same shift value to verify they get back the original message. This reinforces the inverse relationship:

Message
$$\xrightarrow{+k}$$
 Ciphertext $\xrightarrow{-k}$ Message

Example 4 — Affine Cipher Warm-Up

Goal. Determine which letter replaces K when the encryption function

$$f(p) = (7p + 3) \mod 26$$

is used.

Big idea (the why):

The affine cipher multiplies the plaintext value by a "stretch" factor and then shifts it. It combines multiplication and addition inside modular arithmetic.

Encryption: $E(p) = (ap + b) \mod 26$ Decryption: $D(c) = a^{-1}(c - b) \mod 26$.

The constants a and b are keys. a must be coprime to 26 so that a^{-1} exists.

Step 1 — Convert letter K to a number

$$K \rightarrow 10$$

Step 2 — Apply the function $f(p) = (7p + 3) \mod 26$

$$f(10) = (7 \cdot 10 + 3) \mod 26 = 73 \mod 26 = 21.$$

Step 3 — Convert number 21 back to a letter

$$21 \rightarrow V$$

Result: K is encrypted as V.

Why it works:

Multiplying by 7 mixes up the order of letters more effectively than a simple shift, yet because 7 and 26 are coprime, every letter still maps to exactly one output.

Practice (your turn!)

Problem A (easier). Using $f(p) = (3p + 1) \mod 26$, find what letter replaces C. *Hint:*

$$C=2.$$

Problem B (similar). Using $f(p) = (5p + 7) \mod 26$, find what letter replaces H. Hint:

compute carefully, mod 26.

Problem C (harder). Encrypt the word DOG using $f(p) = (11p + 8) \mod 26$. Write each step clearly: letter \rightarrow number \rightarrow formula \rightarrow result \rightarrow letter.

Reflection. Why must a be coprime with 26 for this cipher to be reversible?

Solutions — Example 4 Affine Cipher

Example Walk-Through

 $K \to 10, f(p) = (7p + 3) \mod 26.$

$$f(10) = (7 \cdot 10 + 3) \mod 26 = 73 \mod 26 = 21.$$

21 corresponds to V. $K \to V$

Problem A

C=2.

$$f(2) = (3 \cdot 2 + 1) \mod 26 = 7.$$

 $7 \to H.$ $C \to H$

Problem B

H = 7.

$$f(7) = (5 \cdot 7 + 7) \mod 26 = 42 \mod 26 = 16.$$

 $16 \to Q. \, \boxed{H \to Q}$

Problem C

Encrypt DOG with $f(p) = (11p + 8) \mod 26$.

$$D = 3 \Rightarrow (11 \cdot 3 + 8) \mod 26 = 41 \mod 26 = 15 \rightarrow P$$

$$O = 14 \Rightarrow (11 \cdot 14 + 8) \mod 26 = 162 \mod 26 = 6 \rightarrow G$$

$$G = 6 \Rightarrow (11 \cdot 6 + 8) \mod 26 = 74 \mod 26 = 22 \rightarrow W$$

 $\mathtt{DOG} o \mathtt{PGW}$

Reflection Answer

If a shares a factor with 26, then some letters collapse to the same output (no unique inverse), making decryption impossible. Only when gcd(a, 26) = 1 does the cipher remain bijective and reversible.

Example 5 (Worksheet) — Cracking a Shift Cipher by Frequency

Problem. We intercepted the ciphertext ZNK KGXRE HOXJ MKZY ZNK CUXS produced by a shift cipher. What was the original plaintext?

Why this works

In English text, some letters appear more often (E, T, A, O, I, N). A shift cipher preserves relative frequencies, just moves them around the alphabet. If a letter occurs most often in the ciphertext, it likely corresponds to one of the most common plaintext letters. Hypothesize a mapping, compute the shift k, and test by decrypting.

Step 1 — Count letter frequencies

Ignore spaces/punctuation and count:

K S	Z	X	N	G	R	Е	Н	О	J	М	Y	С	U
4 1	3	3	2	1	1	1	1	1	1	1	1	1	1

The most frequent letter is K.

Step 2 — Form a hypothesis

In normal English, E is often the most frequent letter. Hypothesize that E (which is 4 with A=0) was shifted to K (which is 10). Then the encryption used

$$k \equiv 10 - 4 \equiv 6 \pmod{26}.$$

So decryption should be $p \equiv c - 6 \pmod{26}$.

Step 3 — Test by decrypting

Try a few letters to check the hypothesis:

$$Z(25) \mapsto 25 - 6 = 19 \Rightarrow T$$
, $N(13) \mapsto 7 \Rightarrow H$, $K(10) \mapsto 4 \Rightarrow E$.

The first three letters become THE, which is promising. Decrypt the whole string with k=6.

Step 4 — Conclusion

Full decryption yields:

THE EARLY BIRD GETS THE WORM

Because this makes excellent English, our hypothesis k = 6 is accepted.

Tips, tricks, and pitfalls

- **A=0** convention: E=4, K=10. Off-by-one mistakes derail the shift quickly.
- Test, then trust. A frequency guess is just a hypothesis; always decrypt a chunk to confirm.
- One-letter words in ciphertext often map to A or I; common bigrams like TH, HE, TO are great anchors.
- Decrypt rule: $p \equiv c k \pmod{26}$. Negative values? Add 26.

Practice — Your Turn

Problem A (easier). Decrypt the ciphertext URYYB JBEYQ given it was made with a shift k = 13.

Hint: subtract 13 from each letter mod 26.

Problem B (similar). The ciphertext below was made with an *unknown* shift:

ZHOFRPH WR FODVV

Find k and the plaintext.

 ${\it Hints:}\ {\it the\ block\ WR\ might\ be\ TO},\ {\it or\ FODVV\ looks\ like\ CLASS}.$

Problem C (harder). The ciphertext was produced by a shift cipher with unknown k:

YMJ VZNHP GWTBS KTC OZRUX TAJW YMJ QFED ITL

Determine k using a smart guess (look for a repeated common word), then decrypt t	the whole
message.	

Reflection. Briefly explain why frequency analysis defeats a shift cipher but not a one-time pad.

Solutions — Example 5 Practice

Problem A (easier)

Ciphertext: URYYB JBEYQ; shift k = 13 (ROT13). Decrypt by $p \equiv c - 13 \pmod{26}$ (or apply ROT13 again):

HELLO WORLD

Problem B (similar)

Ciphertext: ZHOFRPH WR FODVV, unknown k.

Guess that WR is T0. Then W=22 should map to T=19, so $k\equiv 22-19\equiv 3$ and decryption uses $p\equiv c-3\pmod{26}$. Check also that FODVV becomes CLASS:

$$F(5) \to C(2), \ O(14) \to L(11), \ D(3) \to A(0), \ V(21) \to S(18), \ V(21) \to S(18).$$

Hence k = 3 and

WELCOME TO CLASS

Problem C (harder)

 $\label{eq:continuous} {\bf Ciphertext} \hbox{: {\tt YMJ}} \ {\tt VZNHP} \ {\tt GWTBS} \ {\tt KTC} \ {\tt OZRUX} \ {\tt TAJW} \ {\tt YMJ} \ {\tt QFED} \ {\tt ITL}.$

The trigram YMJ repeats and often corresponds to THE. If so,

$$Y(24) \to T(19) \Rightarrow k \equiv 24 - 19 \equiv 5$$
, so decrypt with $p \equiv c - 5 \pmod{26}$.

Applying k = 5 across the text yields:

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

Takeaways.

- Shift ciphers preserve frequency shape; a good guess (E, T, A, O) usually cracks k.
- Decryption rule: $p \equiv c k \pmod{26}$; verify the guess by reading for sensible English.
- Longer texts make frequency clues stronger; short texts can be ambiguous, so test multiple hypotheses.

Example 6 (Worksheet) — Transposition Cipher with a Permutation

Cipher rule (why it's cool). A transposition cipher keeps the letters but shuffles their positions. We split plaintext into blocks of 4 and apply the permutation

$$\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{bmatrix}.$$

That is: $\underline{1st} \rightarrow 3rd$, $\underline{2nd} \rightarrow 1st$, $\underline{3rd} \rightarrow 4th$, $\underline{4th} \rightarrow 2nd$. (So for plaintext block $p_1p_2p_3p_4$ the ciphertext block is $c_1c_2c_3c_4 = p_2 p_4 p_1 p_3$.)

(a) Encrypt PIRATE ATTACK

Step 1 — Normalize and block (remove spaces, then group 4).

 $PIRATEATTACK \Rightarrow PIRA TEAT TACK.$

Step 2 — Apply σ to each block.

PIRA: $p_1 = P$, $p_2 = I$, $p_3 = R$, $p_4 = A \Rightarrow c = p_2 p_4 p_1 p_3 = IAPR$,

 $\mathtt{TEAT}:\ p=\mathtt{T,E,A,T}\Rightarrow c=\mathtt{E}\ \mathtt{T}\ \mathtt{T}\ \mathtt{A},$

 ${\tt TACK}:\ p={\tt T,A,C,K} \Rightarrow c={\tt A}\ {\tt K}\ {\tt T}\ {\tt C}.$

Ciphertext: [IAPR ETTA AKTC].

(b) Decrypt SWUE TRAE OEHS

To undo the shuffle, use σ^{-1} :

$$\sigma^{-1} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{bmatrix} \quad \text{(so } c_1 \to p_2, \ c_2 \to p_4, \ c_3 \to p_1, \ c_4 \to p_3 \text{)}.$$

Block and apply σ^{-1} :

SWUE \rightarrow USEW, TRAE \rightarrow ATER, OEHS \rightarrow HOSE.

Plaintext (grouped): USE WATER HOSE.

Tips & pitfalls

- Always block first. Remove spaces, then group in 4s. If the last block is short, pad (e.g., with X).
- Keep "from" vs "to" straight: here σ says where each plaintext position lands in ciphertext.
- Decrypt with σ^{-1} : move each ciphertext position back to the correct plaintext spot.

Practice — Your Turn

Use the same permutation $\sigma = [3, 1, 4, 2]$. Work neatly: show the block, show $p_1p_2p_3p_4$, then the rearranged $c_1c_2c_3c_4$.

Problem A (easier). Encrypt MATH NERD. (No padding needed.)

Problem B (similar). Decrypt the ciphertext OEHM OKWR.

Problem C (harder). Encrypt DATA SCIENCE. If needed, pad the last block with X to fill

4 letters. Show every block and the final ciphertext.

Reflection. Why does transposition preserve letter frequencies but still hide the message structure?

Solutions — Example 6 Practice (Transposition, $\sigma = [3, 1, 4, 2]$)

Permutation recap. Encryption (per block): $c_1c_2c_3c_4 = p_2 p_4 p_1 p_3$. Decryption uses σ^{-1} : $c_1 \to p_2$, $c_2 \to p_4$, $c_3 \to p_1$, $c_4 \to p_3$.

Problem A (easier) — Encrypt MATH NERD

Remove space and block: MATH NERD.

$$\begin{array}{ll} \text{MATH}: & p = \texttt{M,A,T,H} \Rightarrow c = \texttt{A} \text{ H M T,} \\ \text{NERD}: & p = \texttt{N,E,R,D} \Rightarrow c = \texttt{E} \text{ D N R.} \\ \hline \text{AHMT EDNR} \end{array}$$

Problem B (similar) — Decrypt OEHM OKWR

Blocks: OEHM OKWR. Use σ^{-1} .

$$\begin{array}{c} \text{OEHM}: c_1 \rightarrow p_2 = O, \ c_2 \rightarrow p_4 = E, \ c_3 \rightarrow p_1 = H, \ c_4 \rightarrow p_3 = M \Rightarrow \text{HOME}. \\ \\ \text{OKWR}: c_1 \rightarrow p_2 = O, \ c_2 \rightarrow p_4 = K, \ c_3 \rightarrow p_1 = W, \ c_4 \rightarrow p_3 = R \Rightarrow \text{WORK}. \\ \\ \hline \text{HOME WORK} \end{array}$$

Problem C (harder) — Encrypt DATA SCIENCE (pad with X)

Normalize: DATASCIENCE (11 letters) \rightarrow pad: DATASCIENCEX. Blocks: DATA SCIE NCEX.

Key takeaways.

- Transposition ciphers permute positions, not letters—so frequencies are unchanged.
- Always decrypt with the inverse permutation σ^{-1} .
- \bullet Padding guarantees all blocks are full; document your padding rule (e.g., use X).

Example 7 (Worksheet) — Shift Ciphers as a Cryptosystem

Goal. Describe the family of shift ciphers in the formal language of a cryptosystem.

The Big Idea: What's a Cryptosystem?

A **cryptosystem** is a mathematical framework describing how messages are encrypted and decrypted. Formally, it's written as a 5-tuple:

$$(\mathcal{P}, \ \mathcal{C}, \ \mathcal{K}, \ \mathcal{E}, \ \mathcal{D})$$

where each symbol represents a part of the encryption ecosystem:

- ullet \mathcal{P} the set of possible *plaintexts*
- C the set of possible *ciphertexts*
- K the keyspace, all keys that can be used
- \mathcal{E} the set of encryption functions
- \mathcal{D} the set of decryption functions

The golden rule of any cryptosystem is:

$$D_k(E_k(p)) = p$$
 for every plaintext p .

That means: decrypting an encrypted message must always give you back the original.

Step 1 — Translate the Language of Letters into Math

Each letter of the alphabet is assigned a number in \mathbb{Z}_{26} (the integers 0–25 mod 26).

$$A = 0, B = 1, ..., Z = 25$$

A message like $\tt HELLO$ becomes [7,4,11,11,14].

Step 2 — Define the Shift Cipher Functions

To encrypt, we add a fixed key $k \mod 26$:

$$E_k(p) = (p+k) \mod 26.$$

To decrypt, we *subtract* the same $k \mod 26$:

$$D_k(c) = (c - k) \mod 26.$$

Step 3 — Describe the Family of Shift Ciphers as a Cryptosystem

Putting it all together:

$$\mathcal{P} = \mathcal{C} = \text{all strings of elements in } \mathbb{Z}_{26},$$
 $\mathcal{K} = \mathbb{Z}_{26},$

$$\mathcal{E} = \{ E_k(p) = (p+k) \bmod 26 \mid k \in \mathbb{Z}_{26} \},$$

$$\mathcal{D} = \{ D_k(c) = (c-k) \bmod 26 \mid k \in \mathbb{Z}_{26} \}.$$

This means each possible shift k defines one member of the family of shift ciphers.

Step 4 — Check the "Undo" Property

To verify that encryption and decryption work as a matched pair:

$$D_k(E_k(p)) = (p + k - k) \mod 26 = p.$$

So every message can be perfectly recovered.

Tips & Common Pitfalls

- Don't confuse the "keyspace" K with a single key k. The keyspace is the entire set of possible shifts.
- Forgetting to take mod 26 is a very common mistake.
- A shift cipher is *not secure* only 26 possible keys! We study it to understand the structure of more complex systems.

Practice — Your Turn!

Problem A (Easier). For a shift cipher with k = 5, write down $E_k(p)$ and $D_k(c)$. Explain in your own words what "mod 26" ensures.

Problem B (Similar). Let p = 19 (the letter T) and k = 7. Compute $E_k(p)$ and translate it back into a letter. Then apply D_k to check that you get back T.

Problem C (Harder). Write the complete 5-tuple $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ for a system that works on uppercase English letters and digits (0-9). What changes?

Reflection. How does writing cryptography in formal notation help us build new systems in the future?

Example 7 (Solutions) — Shift Ciphers as a Cryptosystem

Goal. Describe the family of shift ciphers as a formal cryptosystem and verify that encryption and decryption are inverses.

Full Walkthrough and Explanation

We want to represent the shift cipher in the five-part framework

$$(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D}).$$

Step 1 — Mapping letters to numbers. Each letter is represented as an integer between 0 and 25:

$$A = 0, B = 1, \dots, Z = 25.$$

This lets us use modular arithmetic instead of alphabet juggling.

Step 2 — Defining encryption and decryption.

$$E_k(p) = (p+k) \mod 26,$$
 $D_k(c) = (c-k) \mod 26.$

Here k is the key (the amount of shift).

Step 3 — Building the formal 5-tuple.

$$\mathcal{P} = \mathcal{C} = \text{all strings of elements in } \mathbb{Z}_{26},$$

$$\mathcal{K} = \mathbb{Z}_{26},$$

$$\mathcal{E} = \{ E_k(p) = (p+k) \bmod 26 \mid k \in \mathbb{Z}_{26} \},$$

$$\mathcal{D} = \{ D_k(c) = (c-k) \bmod 26 \mid k \in \mathbb{Z}_{26} \}.$$

Step 4 — Verifying the "undo" property.

$$D_k(E_k(p)) = ((p+k) - k) \mod 26 = p.$$

So decryption perfectly reverses encryption.

Key Insight. Shift ciphers show how a single idea—addition mod 26—can define a whole family of related ciphers, one for each k in \mathbb{Z}_{26} .

Common pitfalls

- Students sometimes treat "keyspace" \mathcal{K} as just one value instead of the full set of possible k.
- Forgetting the modulus (especially when p + k > 25) leads to wrong letters.
- Because there are only 26 possible k, a brute-force attack breaks the cipher immediately—this motivates more sophisticated systems.

Practice Problem Solutions

Problem A (Easier). Given k = 5:

$$E_k(p) = (p+5) \mod 26,$$
 $D_k(c) = (c-5) \mod 26.$

"Mod 26" guarantees we stay inside the alphabet—after Z (25), we wrap around to A (0).

Problem B (Similar). Let p = 19 (the letter T) and k = 7.

$$E_k(p) = (19+7) \mod 26 = 0 \Rightarrow A.$$

Encrypting T gives A. Decrypting:

$$D_k(0) = (0-7) \mod 26 = 19 \Rightarrow T.$$

We return to the original plaintext, confirming correctness.

Problem C (Harder). If we expand the system to include digits 0–9, we now have 36 symbols. So the modulus becomes 36 and each component adjusts:

$$\mathcal{P} = \mathcal{C} = \text{all strings of elements in } \mathbb{Z}_{36},$$
 $\mathcal{K} = \mathbb{Z}_{36},$
 $\mathcal{E} = \{E_k(p) = (p+k) \mod 36\},$
 $\mathcal{D} = \{D_k(c) = (c-k) \mod 36\}.$

The idea is identical—just a larger alphabet!

Reflection Answer. Writing cryptography formally gives us a reusable structure: we can swap in new alphabets, key spaces, or modular groups and instantly define new families of ciphers. It's mathematics as blueprint—one small idea, infinitely extendable.

Example 8 (Worksheet) — Encrypting with the RSA Cryptosystem

Goal. Encrypt the message STOP using the RSA cryptosystem with key (n, e) = (2537, 13).

Background idea

RSA is a **public key cryptosystem**. Anyone can use the public key (n, e) to encrypt, but only the private key (involving d) can decrypt. Each letter is first turned into a number (A=00, B=01, ..., Z=25), grouped into blocks that fit under n, and then encrypted using

$$c \equiv m^e \pmod{n}$$
.

Step 1 — Convert letters to numbers

We map STOP as:

S T O P
$$\Rightarrow$$
 18 19 14 15.

Group into four-digit blocks:

(because 2525 < 2537 < 252525, so 4 digits per block fits safely).

Step 2 — Apply RSA encryption

For each block m, compute

$$c \equiv m^{13} \pmod{2537}.$$

You can use fast modular exponentiation (successive squaring) to simplify:

$$1819^{13} \pmod{2537} = 2081, \qquad 1415^{13} \pmod{2537} = 2182.$$

Hence, the ciphertext is:

2081 2182

Step 3 — Interpretation

We transmit 2081 2182. Only someone with the private key d (that satisfies $ed \equiv 1 \pmod{(p-1)(q-1)}$) can decrypt the message.

Tips & tricks

- Why 13? Because gcd(13, (p-1)(q-1)) = 1, ensuring encryption is reversible.
- Always check block size. m must be smaller than n.
- Decryption uses the inverse of e It "undoes" the exponentiation by modular arithmetic symmetry.
- RSA loves primes. Choosing p, q large keeps n hard to factor.

Practice — Your Turn

Problem A (easier). Encrypt GO using RSA with (n,e)=(2537,13). Hint: Convert GO $\rightarrow 06014 \rightarrow$ use 4-digit block 0601, compute $c\equiv m^{13} \pmod{2537}$.

Problem B (similar). Encrypt HELP using RSA with (n, e) = (2537, 13). Show all modular

exponentiation steps clearly.

Problem C (challenge). Encrypt SAVE THE PLANET using RSA with (n, e) = (2537, 13). Break your message into 4-digit blocks and compute each ciphertext block. (Hint: spaces

can be ignored or replaced by 26.)

Reflection. In one or two sentences, explain why RSA's security depends on factoring large primes.