Seri bahan kuliah Algeo #17

Ruang Vektor Umum (bagian 4) dan Transformasi Linier

Bahan kuliah IF2123 Aljabar Linier dan Geometri

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI-ITB

Sumber:

Howard Anton & Chris Rores, *Elementary Linear Algebra*, 10th Edition

Transformasi Linier

Transformasi = fungsi = pemetaan (mapping)

DEFINISI 1: Misalkan V dan W adalah ruang vektor. Transformasi yang memetakan ruang vektor V ke ruang vektor W ditulis sebagai

$$T:V\to W$$

V adalah daerah asal (domain) transformasi T dan W adalah daerah hasil transformasi (kodomain) fungsi. Jika V = W, maka T dinamakan **operator** pada V.

• Jika $\mathbf{v} \in V$ dan $\mathbf{w} \in W$, maka $\mathbf{w} = T(\mathbf{v})$

Contoh 1: Misalkan T : $R^3 \rightarrow R^3$ didefinisikan sebagai berikut:

$$T(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}) = \begin{bmatrix} x_1 + 2x_2 + x_3 \\ x_1 + 5x_2 \\ x_3 \end{bmatrix}$$

Tentukan bayangan vektor $\mathbf{v} = (3, 2, 0)$.

Jawaban:

$$T(\begin{bmatrix} 3\\2\\0 \end{bmatrix}) = \begin{bmatrix} 3+2(2)+0\\3+5(2)\\0 \end{bmatrix} = \begin{bmatrix} 7\\13\\0 \end{bmatrix}$$

Jadi, bayangan vektor (3, 2, 0) adalah (7, 13, 0).

DEFINISI 2: Misalkan V dan W adalah ruang vektor. Transformasi

$$T:V\to W$$

dinamakan **transformasi linier** jika untuk semua **u** dan **v** di dalam **V** dan *k* sebuah skalar berlaku:

(1)
$$T(u + v) = T(u) + T(v)$$

(2)
$$T(k\mathbf{u}) = kT(\mathbf{u})$$

Jika V = W, maka T dinamakan **operator** linier pada V.

Contoh 2: Diberikan fungsi T : $R^2 \rightarrow R^2$ yang dalam hal ini T(x,y) = (2x, y), maka akan ditunjukkan bahwa T adalah transformasi linier.

Misalkan **u** dan **v** adalah dua buah vektor di R^2 , **u** = (u_1, u_2) dan **v** = (v_1, v_2) .

(1)
$$T(\mathbf{u} + \mathbf{v}) = T(u_1 + v_1, u_2 + v_2) = (2(u_1 + v_1), u_2 + v_2) = (2u_1 + 2v_1, u_2 + v_2)$$

$$= \begin{bmatrix} 2u_1 + 2v_1 \\ u_2 + v_2 \end{bmatrix} = \begin{bmatrix} 2u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} 2v_1 \\ v_2 \end{bmatrix} = T(\mathbf{u}) + T(\mathbf{v})$$

(2)
$$T(k\mathbf{u}) = T(k\mathbf{u}_1, k\mathbf{u}_2) = (2k\mathbf{u}_1, k\mathbf{u}_2)$$
$$= \begin{bmatrix} 2k\mathbf{u}_1 \\ k\mathbf{u}_2 \end{bmatrix} = k \begin{bmatrix} 2u_1 \\ u_2 \end{bmatrix} = kT(\mathbf{u})$$

Karena $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ dan $T(k\mathbf{u}) = kT(\mathbf{u})$, maka T adalah transformasi linier

Contoh 3: Diberikan fungsi T : $R^2 \rightarrow R^2$ yang dalam hal ini T(x,y) = (x, y + 1), maka akan ditunjukkan bahwa T <u>bukan</u> transformasi linier.

Misalkan **u** dan **v** adalah dua buah vektor di R^2 , **u** = (u_1, u_2) dan **v** = (v_1, v_2) .

(1)
$$T(\mathbf{u} + \mathbf{v}) = T(u_1 + v_1, u_2 + v_2) = (u_1 + v_1, u_2 + v_2 + 1)$$

= $\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 + 1 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 + 1 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = T(\mathbf{u}) + ?$

Karena $T(\mathbf{u} + \mathbf{v}) \neq T(\mathbf{u}) + T(\mathbf{v})$ maka T bukan transformasi linier

• Jika T : V \rightarrow W adalah transformasi linier, $\mathbf{v_1}$ dan $\mathbf{v_2} \in \mathbf{V}$, dan k_1 dan k_2 adalah skalar maka

$$T(k_1 \mathbf{v_1} + k_2 \mathbf{v_2}) = T(k_1 \mathbf{v_1}) + T(k_2 \mathbf{v_2}) = k_1 T(\mathbf{v_1}) + k_2 T(\mathbf{v_2})$$

• Secara umum, jika $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_n} \in ..\mathbf{V}$, dan k_1 , k_2 , ..., k_n adalah skalar maka $T(k_1\mathbf{v_1} + k_2\mathbf{v_2} + ... + k_n\mathbf{v_n}) = k_1T(\mathbf{v_1}) + k_2T(\mathbf{v_2}) + ... + k_nT(\mathbf{v_n})$

Teorema 1: Jika T : $V \rightarrow W$ adalah transformasi linier, maka

- (1) T(0) = 0
- $(2) T(-\mathbf{v}) = -T(\mathbf{v})$
- (3) T(u v) = T(u) T(v)

Transformasi Matriks dari Rⁿ ke R^m

• Jika V = R^n dan W = R^m , maka $T: R^n \rightarrow R^m$

• Jika $\mathbf{x} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ dan $\mathbf{w} = (w_1, w_2, ..., w_m) \in \mathbb{R}^m$ maka $(w_1, w_2, ..., w_m) = T(x_1, x_2, ..., x_n)$ yang dalam hal ini,

$$w_{1} = f_{1}(x_{1}, x_{2}, ..., x_{n})$$

$$w_{2} = f_{2}(x_{1}, x_{2}, ..., x_{n})$$
...
$$w_{m} = f_{m}(x_{1}, x_{2}, ..., x_{n})$$

• Jika f₁, f₂, ..., f_m linier maka

$$w_1 = a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n$$

 $w_2 = a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n$

...

$$W_m = a_{m1}X_1 + a_{m2}X_2 + ... + a_{mn}X_n$$

yang dapat ditulis dengan notasi matriks:

$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

atau dalam bentuk ringkas

$$\mathbf{w} = A\mathbf{x}$$

A disebut matriks standard transformasi sedangkan transformasi T dinamakan transformasi matriks, sehingga w = Ax dapat ditulis sebagai

$$\mathbf{w} = \mathsf{T}_\mathsf{A}(\mathbf{x})$$

Contoh 4. Tranformasi matriks $T: \mathbb{R}^4 \to \mathbb{R}^3$ didefinisikan sebagai berikut

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Matriks standard transformasi adalah

$$A = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix}$$

Jika $\mathbf{x} = (1, -3, 0, 2)$, maka hasil transformasi T adalah

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 8 \end{bmatrix}$$

Jadi, $\mathbf{w} = (1, 3, 8)$

Teorema. Untuk setiap matriks A, transformasi matriks $T_A : \mathbb{R}^n \to \mathbb{R}^m$ memiliki sifat-sifat sebagai berikut untuk semua vektor **u** dan **v** di dalam \mathbb{R}^n dan untuk setiap skalar k:

(a)
$$T_A(0) = 0$$

(b)
$$T_A(k\mathbf{u}) = kT_A(\mathbf{u})$$

(c)
$$T_A(u + v) = T_A(u) + T_A(v)$$

(d)
$$T_A(\mathbf{u} - \mathbf{v}) = T_A(\mathbf{u}) - T_A(\mathbf{v})$$

Prosedur Menemukan Matriks Standard

Step 1: Tentukan bayangan dari semua vektor basis standard $\mathbf{e_1}$, $\mathbf{e_2}$, ..., $\mathbf{e_n}$ di $\mathbf{R}^{\mathbf{n}}$, yaitu

$$T(e_1), T(e_2), ..., T(e_n)$$

dalam bentuk kolom.

Step 2: Konstruksi matriks yang memiliki bayangan-bayangan hasil dari Step1 sebagai kolom-kolom yang berurutan. Matriks tersebut adalah matriks standard untuk transformasi.

Secara umum, jika

$$\mathsf{T}(\mathbf{e_1}) = \begin{bmatrix} a_{11} \\ a_{22} \\ \vdots \\ a_{m1} \end{bmatrix}, \, \mathsf{T}(\mathbf{e_2}) = \begin{bmatrix} a_{11} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \, \dots, \, \mathsf{T}(\mathbf{e_n}) = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

maka

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$T(\mathbf{e_1}) \quad T(\mathbf{e_2}) \quad \dots \quad T(\mathbf{e_n})$$

adalah matriks standard untuk T : $R^n \rightarrow R^m$

Contoh 5: Tentukan matriks standard untuk pencerminan vektor di R² terhadap sumbu-Y.

Pencerminan vektor $\mathbf{x} = (x, y)$ terhadap sumbu-Y Hasil pencerminan adalah $\mathbf{x'} = T(\mathbf{x}) = (-x, y)$

$$e_1 = (1, 0) \rightarrow T(e_1) = (-1, 0)$$

 $e_2 = (0, 1) \rightarrow T(e_2) = (0, 1)$

Matriks standard: A =
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Contoh 6: Carilah matriks standard dari transformasi T : $R^3 \rightarrow R^3$ yang didefinisikan sebagai berikut:

$$T(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}) = \begin{vmatrix} x_1 + 2x_2 + x_3 \\ x_1 + 5x_2 \\ x_3 \end{vmatrix}$$

Lalu tentukan bayangan vektor $\mathbf{v} = (3, 2, 0)$.

Jawaban:

$$\mathbf{e_1} = (1, 0, 0) \to \mathsf{T}(\mathbf{e_1}) = \mathsf{T}(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}) = \begin{pmatrix} 1 + 2(0) + 0 \\ 1 + 5(0) \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$\mathbf{e_2} = (0, 1, 0) \to \mathsf{T}(\mathbf{e_2}) = \mathsf{T}(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}) = \begin{pmatrix} 0 + 2(1) + 0 \\ 0 + 5(1) \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 0 \end{pmatrix}$$

$$\mathbf{e_3} = (0, 0, 1) \rightarrow \mathsf{T}(\mathbf{e_3}) = \mathsf{T}(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}) = \begin{pmatrix} 0 + 2(0) + 1 \\ 0 + 5(0) \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Matriks standard adalah

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Jika $\mathbf{v} = (3, 2, 0)$, maka bayangan \mathbf{v} adalah \mathbf{w} ,

$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 7 \\ 13 \\ 0 \end{bmatrix}$$

Table 1

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Reflection about the y-axis T(x, y) = (-x, y)	$(-x, y) \qquad \qquad (x, y)$ $T(x) \qquad \qquad x$	$T(\mathbf{e}_1) = T(1, 0) = (-1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 1)$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection about the x-axis $T(x, y) = (x, -y)$	$T(\mathbf{x})$ (x, y) $(x, -y)$	$T(\mathbf{e}_1) = T(1, 0) = (1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, -1)$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection about the line $y = x$ T(x, y) = (y, x)	y = x (y, x) $x = x$ (x, y)	$T(\mathbf{e}_1) = T(1, 0) = (0, 1)$ $T(\mathbf{e}_2) = T(0, 1) = (1, 0)$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Table 2

Operator	Illustration	$\mathbf{e_1},\mathbf{e_2},\mathbf{e_3}$	Standard Matrix
Reflection about the xy-plane T(x, y, z) = (x, y, -z)	x (x, y, z) $(x, y, -z)$	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, -1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
Reflection about the xz-plane $T(x, y, z) = (x, -y, z)$	(x, -y, z) $T(x)$ x (x, y, z) x	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, -1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Reflection about the yz-plane T(x, y, z) = (-x, y, z)	$T(\mathbf{x}) = \begin{cases} (-x, y, z) \\ (x, y, z) \end{cases}$	$T(\mathbf{e}_1) = T(1, 0, 0) = (-1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Table 3

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix
Orthogonal projection on the <i>x</i> -axis $T(x, y) = (x, 0)$	$T(\mathbf{x})$ (x, y) $(x, 0)$ x	$T(\mathbf{e}_1) = T(1, 0) = (1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 0)$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Orthogonal projection on the y-axis $T(x, y) = (0, y)$	$T(\mathbf{x})$ $T(\mathbf{x})$ $T(\mathbf{x})$ $T(\mathbf{x})$ $T(\mathbf{x})$	$T(\mathbf{e}_1) = T(1, 0) = (0, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 1)$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Table 4

Operator	Illustration	Images of e ₁ , e ₂ , e ₃	Standard Matrix
Orthogonal projection on the xy-plane T(x, y, z) = (x, y, 0)	x (x, y, z) y $(x, y, 0)$	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 0)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Orthogonal projection on the xz -plane T(x, y, z) = (x, 0, z)	(x, 0, z) $T(x)$ x x y	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 0, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Orthogonal projection on the yz-plane T(x, y, z) = (0, y, z)	T(x) $(0, y, z)$ (x, y, z) y	$T(\mathbf{e}_1) = T(1, 0, 0) = (0, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Operator Rotasi

Table 5

Operator	Illustration	Rotation Equations	Standard Matrix
Rotation through an angle θ	θ (w_1, w_2) (x, y)	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$	$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

Table 6

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the positive x -axis through an angle θ	y x	$w_1 = x$ $w_2 = y \cos \theta - z \sin \theta$ $w_3 = y \sin \theta + z \cos \theta$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$
Counterclockwise rotation about the positive y-axis through an angle θ	x y y	$w_1 = x \cos \theta + z \sin \theta$ $w_2 = y$ $w_3 = -x \sin \theta + z \cos \theta$	$\begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$
Counterclockwise rotation about the positive z-axis through an angle θ	x w y	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$ $w_3 = z$	$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Dilatasi dan Kontraksi

Table 7

Table 8

Operator	Illustration $T(x, y, z) = (kx, ky, kz)$	Standard Matrix
Contraction with factor k on R^3 $(0 \le k \le 1)$	$T(\mathbf{x}) = \begin{cases} \mathbf{x} & (x, y, z) \\ (kx, ky, kz) & y \end{cases}$	$\begin{bmatrix} k & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
Dilation with factor k on R^3 $(k \ge 1)$	$T(x) = \begin{cases} (kx, ky, kz) \\ T(x) = \begin{cases} x \\ (x, y, z) \end{cases} \end{cases}$	$\begin{bmatrix} 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}$

Ekspansi dan Kompresi

Table 9

Shear

Table 10

Operator	Effect on the Standard Basis	Standard Matrix
Shear of R^2 in the x -direction with factor k $T(x, y) = (x + ky, y)$	$(0,1) \begin{picture}(0,1) \cline{(k,1)} \$	$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$
Shear of R^2 in the y-direction with factor k T(x, y) = (x, y + kx)	$(0,1) \begin{picture}(0,1) \line(0,1) \line(1,k) \line(1,k) \line(k > 0) \end{picture} (0,1) \begin{picture}(0,1) \line(0,1) \line(1,k) \line(k < 0) \end{picture}$	$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$

Geometri Operator Matriks di R²

Operator	Standard Matrix	Effect on the Unit Square
Reflection about the y-axis	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$	y (1, 1) (-1, 1) x
Reflection about the x-axis	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	y (1, 1) x (1, -1)
Reflection about the line $y = x$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	y (1, 1) (1, 1) x
Counterclockwise rotation through an angle θ	$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$	$(\cos\theta - \sin\theta, \sin\theta + \cos\theta)$ x $(\cos\theta - \sin\theta, \sin\theta + \cos\theta)$

Compression in the x -direction by a factor of k $(0 < k < 1)$	$\left[\begin{array}{cc} k & 0 \\ 0 & 1 \end{array}\right]$	y (1, 1) (k, 1) x
Expansion in the x -direction by a factor of k $(k > 1)$	$\left[\begin{array}{cc} k & 0 \\ 0 & 1 \end{array}\right]$	y (k, 1) x
Shear in the x -direction with factor $k > 0$	$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$	$(1,1) \qquad \qquad (x+ky,y)$

Komposisi Transformasi

• Misalkan $T_A: R^n \to R^k$ dan $T_B: R^k \to R^m$ maka jika sebuah vektor \mathbf{x} ditransformasikan oleh T_A lalu bayangannya ditransformasikan lagi oleh T_B , maka hasilnya adalah transformasi dari R^n ke R^m yang dinamakan **komposisi** T_B **dengan** T_A dan dinyatakan dengan simbol:

$$T_B \circ T_A$$

• Urutan pengerjaan adalah T_A dulu baru kemudian T_B, atau dinyatakan sebagai:

$$(T_B \circ T_A)(\mathbf{x}) = T_B(T_A(\mathbf{x}))$$

 Komposisi transformasi ini sendiri adalah trransformasi matriks sebab:

$$(\mathsf{T}_\mathsf{B} \circ \mathsf{T}_\mathsf{A})(\mathbf{x}) = \mathsf{T}_\mathsf{B}(\mathsf{T}_\mathsf{A}(\mathbf{x})) = \mathsf{B}(\mathsf{T}_\mathsf{A}(\mathbf{x})) = (\mathsf{B}\mathsf{A})\mathbf{x}$$

yang memperlihatkan bahwa ini adalah perjalian matriks BA.

Jadi,

$$T_B \circ T_A = T_{BA}$$

Perhatikan bahwa komposisi tranformasi tidak komutatif, jadi

$$T_B \circ T_A \neq T_A \circ T_B$$

Contoh 7: Carilah matriks transformasi dari R^2 ke R^2 jika mula-mula vektor **v** diregang (*shear*) dengan faktor sebesar 3 dalam arah-x kemudian hasilnya dicerminkan terhadap y = x.

Jawaban:

Matriks standard peregangan dalam arah x dengan faktor k = 3 adalah

$$A_1 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

Matriks standard pencerminan terhadap y = x adalah

$$A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Jadi, matriks standard untuk peregangan lalu diikuti pencerminan adalah

$$A_2 A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}$$

Jadi,
$$T(\mathbf{v}) = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}$$

• Contoh kombinasi transformasi lainnya: rotasi sejauh θ lalu diikuti dengan kompresi dalam arah x dengan factor ½.

Rotasi:
$$A_1 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Kompresi:
$$A_2 = \begin{bmatrix} 1/2 & 1 \\ 0 & 1 \end{bmatrix}$$

Matriks standard rotasi lalu diikuti kompresi adalah

$$A_2 A_1 = \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \cos \theta & -\frac{1}{2} \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

• Secara umum, jika T₁, T₂, ..., T_k adalah transformasi

$$\mathsf{T}_1(\mathbf{x}) = A_1 \mathbf{x}$$

$$\mathsf{T}_2(\mathbf{x}) = A_2 \mathbf{x}$$

• • •

$$T_k(\mathbf{x}) = A_k \mathbf{x}$$

dari R^n ke R^n dan dilakukan secara berturut-turut $(T_1, T_2, ..., T_k)$, maka hasil yang sama dicapai dengan sebuah transformasi

$$T(x) = Ax$$

yang dalam hal ini,

$$A = A_k A_{k-1} \dots A_2 A_1$$

Latihan

1. Soal UAS 2017

Transformasi $T: \mathbb{R}^4 \to \mathbb{R}^3$ didefinisikan:

$$T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 7x_1 + 2x_2 - x_3 + x_4 \\ x_2 + x_3 \\ -x_1 + 2x_3 \end{pmatrix}$$

- a). Tentukan matriks transformasi T. (Perlihatkan cara perhitungan dengan menggunakan vektor basis satuan).
- b). Dengan menggunakan jawab a), tentukan bayangan vektor (3,-1,4,5).
- c). Jika hasil dari langkah b) diregang (shear) dalam arah x, tentukan bayangan akhirnya.

2. (Soal kuis 2017)

Tentukan bayangan dari vektor (-2,1,2) jika dirotasikan sebesar 30^o pada sumbu x.

3. (Soal UTS 2015)

Tinjaulah basis $S = \{ \mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3} \}$ untuk R^3 yang dalam hal ini $\mathbf{v_1} = (1, 2, 3), \mathbf{v_2} = (2, 5, 3), \text{ dan } \mathbf{v_3} = (1, 0, 10).$ Carilah sebuah rumus untuk tansformasi lanjar $T : R^3 \to R^2$ sehingga $T(\mathbf{v_1}) = (1, 0), T(\mathbf{v_2}) = (1, 0), \text{ dan } T(\mathbf{v_3}) = (0, 1), \text{ lalu hitunglah } T(1, 1, 1).$ (20)

Materi Pelengkap (Opsional)

Aplikasi Transformasi Linier di dalam *Computer Graphics*

Oleh: Rinaldi Munir

Program Studi Informatika Sekolah Teknik Elektro dan Informatika ITB

Aplikasi Transformasi Linier di dalam Computer Graphics

- **Definisi**: Jika $T:V\to W$ adalah sebuah fungsi dari ruang vektor V ke ruang vektor W, maka T dinamakan transformasi linier jika
 - (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ untuk semua vektor \mathbf{u} dan \mathbf{v} di dalam \mathbf{V}
 - (ii) $T(k\mathbf{u}) = kT(\mathbf{u})$ untuk semua vektor \mathbf{u} di dalam V

• Transformasi linier $T: \mathbb{R}^n \to \mathbb{R}^m$ dapat dinyatakan sebagai sebuah perkalian matriks

$$T(\mathbf{x}) = A\mathbf{x}$$

Jenis-Jenis Tranformasi Linier 2D (T : $R^2 \rightarrow R^2$)

1. Translasi

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

atau

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

2. Rotasi

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

3. Penskalaan (scaling)

$$x' = x \cdot s_x, \quad y' = y \cdot s_y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$P' = S \cdot P$$

4. Pencerminan (reflection)

Pencerminan pada sumbu-X:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

5. Peregangan (shear)

Peregangan sepanjang sumbu-X:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & k_x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Koordinat Homogen

- Di dalam grafika computer, sebuah gambar dapat dibangun dari dari sekumpulan bentuk terdefinisi (kotak, lingkaran, segitiga, dll).
- Tiap bentuk mungkin diskalakan, dirotasi, atau ditranslasi ke posisi gambar yang sebenarnya.
- Agar perhitungan koordinat akhir dapat langsung dihitung dari koordinat awal dengan efisien, maka diperlukan sebuah sistem koordinat yang homogen
- Pada koordinat homogen, setiap titik direpresentasikan dengan tiga angka:
 - $(x, y) \rightarrow (x \cdot w, y \cdot w, w)$ dengan syarat $w \neq 0$

Translasi 2D
$$\begin{vmatrix} x' \\ y' \\ 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}, \quad \mathbf{P}' = \mathbf{T}(t_x, t_y) \cdot \mathbf{P}$$

Rotasi 2D
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}, \quad \mathbf{P}' = \mathbf{R}(\theta) \cdot \mathbf{P}$$

Penskalaan 2D
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}, \quad \mathbf{P}' = \mathbf{S}(S_x, S_y) \cdot \mathbf{P}$$

Transformasi inverse:

$$\mathbf{T}^{-1} = \begin{bmatrix} 1 & 0 & -t_x \\ 0 & 1 & -t_y \\ 0 & 0 & 1 \end{bmatrix}, \ \mathbf{R}^{-1} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \mathbf{S}^{-1} = \begin{bmatrix} 1/S_x & 0 & 0 \\ 0 & 1/S_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Komposisi tranformasi: $\mathbf{P}' = \mathbf{M}_2 (\mathbf{M}_1 \cdot \mathbf{P}) = (\mathbf{M}_2 \cdot \mathbf{M}_1) \cdot \mathbf{P} = \mathbf{M} \cdot \mathbf{P}$

$$\mathbf{P'} = \mathbf{T}\left(t_{2x}, t_{2y}\right) \left\{ \mathbf{T}\left(t_{1x}, t_{1y}\right) \cdot \mathbf{P} \right\} = \left\{ \mathbf{T}\left(t_{2x}, t_{2y}\right) \cdot \mathbf{T}\left(t_{1x}, t_{1y}\right) \right\} \cdot \mathbf{P}$$

Komposisi translasi: $\begin{vmatrix} 1 & 0 & t_{2x} \\ 0 & 1 & t_{2y} \\ 0 & 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} 1 & 0 & t_{1x} \\ 0 & 1 & t_{1y} \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & t_{1x} + t_{2x} \\ 0 & 1 & t_{1y} + t_{2y} \\ 0 & 0 & 1 \end{vmatrix}$

$$\mathbf{T}(t_{2x}, t_{2y}) \cdot \mathbf{T}(t_{1x}, t_{1y}) = \mathbf{T}(t_{1x} + t_{2x}, t_{1y} + t_{2y})$$

$$\mathbf{P}' = \mathbf{R}(\theta_2) \{ \mathbf{R}(\theta_1) \cdot \mathbf{P} \} = \{ \mathbf{R}(\theta_2) \cdot \mathbf{R}(\theta_1) \} \cdot \mathbf{P}$$

Komposisi rotasi:

$$\mathbf{R}(\theta_2) \cdot \mathbf{R}(\theta_1) = \mathbf{R}(\theta_1 + \theta_2)$$

$$\mathbf{P'} = \mathbf{R} (\theta_1 + \theta_2) \cdot \mathbf{P}$$

$$\begin{bmatrix} S_{2x} & 0 & 0 \\ 0 & S_{2y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} S_{1x} & 0 & 0 \\ 0 & S_{1y} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} S_{1x} \cdot S_{2x} & 0 & 0 \\ 0 & S_{1y} \cdot S_{2y} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Komposisi penskalaan:
$$\mathbf{S}\left(S_{2x}, S_{2y}\right) \cdot \mathbf{S}\left(S_{1x}, S_{1y}\right) = \mathbf{S}\left(S_{1x} \cdot S_{2x}, S_{1y} \cdot S_{2y}\right)$$

General 2D Rotation

$$\begin{bmatrix} 1 & 0 & x_r \\ 0 & 1 & y_r \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -x_r \\ 0 & 1 & -y_r \\ 0 & 0 & 1 \end{bmatrix} =$$

$$\begin{bmatrix} \cos \theta & -\sin \theta & x_r (1 - \cos \theta) + y_r \sin \theta \\ \sin \theta & \cos \theta & y_r (1 - \cos \theta) - x_r \sin \theta \\ 0 & 0 & 1 \end{bmatrix}$$

General 2D Scaling

$$\begin{bmatrix} 1 & 0 & x_f \\ 0 & 1 & y_f \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -x_f \\ 0 & 1 & -y_f \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & x_f (1-S_x) \\ 0 & S_y & y_f (1-S_y) \\ 0 & 0 & 1 \end{bmatrix}$$

Transformation 3D

Mirip dengan transformasi 2D. Menggunakan matriks 4x4

$$x' = x + t_{x}$$

$$y' = y + t_{y}$$

$$z' = z + t_{z}$$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Penskalaan 3D

$$x' = x \cdot S_x$$

$$y' = y \cdot S_y$$

$$z' = x \cdot S_z$$

$$\mathbf{P'} = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{S} \cdot \mathbf{P}$$

Sumber: http://www.codinglabs.net/public/contents/article_world_view_projection_matrix/images/order_dependency.png

Referensi

- 1. Shmuel Wimer, Geometric Transformations for Computer Graphics, Bar Ilan Univ., School of Engineering
- 2. Larry F. Hodges, 2D Transformation