Sobre la Clasificación

- Técnica utilizada en minería de datos.
- Viene del área de Machine Learning.
- Método de "aprendizaje supervisado".

Aprendizaje Supervisado

Debemos mostrar ejemplos a la máquina para que aprenda de ellos

¿Qué es la Clasificación?

- Técnica que "aprende" automáticamente cómo clasificar objetos en dos o más clases determinadas.
- Este aprendizaje se basa en datos previamente etiquetados (clasificados).
- Se aplica en caso en que "etiquetar" tiene un alto costo (por ejemplo: trabajo humano experto).

Ejemplo de aplicación

2,50) <u> </u>
	¿Relevante para la crisis?

Aprendizaje

Mensajes	¿Relevante para la crisis?
Ascienden 52 los muertos y 1,2 millones de afectados por terremoto en Guatemala: La cifra de muertos por el http://t.co/YyCHBArU	Sí
No sé si preocuparme porque no sentí el temblor de ahorita o qué.	No

Nuevos mensajes	¿Relevante para la crisis?
Fuerte terremoto de 6,5 magnitud en #Ecuador. https://t.co/vU4N7babRb	?

¿Qué es la Clasificación?

Objetivo: Asignar objetos no vistos anteriormente a una clase dentro de un conjunto determinado de clases con la mayor precisión posible.

La clase usualmente es denotada por los valores 0,1 para el caso binario o bien $\{1,2,3,...K\}$ para cuando se tienen K categorías.

Enfoque:

- Dada una colección de registros (conjunto de entrenamiento)
 - cada registro contiene un conjunto de atributos
 - uno de los atributos es la clase (etiqueta) que debe predecirse
- Aprender un modelo para el atributo de clase como función de los otros atributos.

Tarea de mapear set X a una clase y

¿Qué es la Clasificación?

Variantes:

- Clasificación **binaria** (fraude/no fraude o verdadero/falso)
- Clasificación **multi-clase** (bajo, medio, alto)
- Clasificación **multi-etiqueta** (más de una clase por registro, por ejemplo, intereses del usuario)

Machine learning vs Data Mining

- Cuando hacemos clasificación queremos automatizar una rostros en imágenes).
 Muchas veces usamos los mismos tipos de modelos pero con objetivos distintos.
- Cuando hacemos clasificación en Data Mining queremos encontrar un patrón en los datos (i.e., queremos entender cómo se relaciona x con y por medio de un modelo predictivo).

Componentes principales

- Conjunto de entrenamiento
- Algoritmo de clasificación
- Conjunto de validación
- Producen un "Modelo de Clasificación"

Ejemplos de clasificación

Evaluación del riesgo crediticio

- Atributos: su edad, ingresos, deudas, ...
- Clase: ¿recibes crédito de tu banco?

Marketing

- Atributos: productos comprados anteriormente, comportamiento de navegación
- Clase: ¿es usted un cliente objetivo para un nuevo producto?

Detección de SPAM

- Atributos: palabras y campos de la cabecera de un correo electrónico
- Clase: ¿correo electrónico normal o correo basura?

Detección de sentimiento

- Atributos: palabras del mensaje.
- Clase: ¿el texto transmite un sentimiento negativo?

Identificación de células tumorales

- Atributos: características extraídas de radiografías o resonancias magnéticas
- Clase: células malignas o benignas

Actividad

Mencionen 3 tareas de clasificación, ¿cuáles serían los atributos y cuál la clase objetivo para cada tarea?

Reunirse y discutir en grupo (5 minutos)

Proceso de Clasificación

Test Set

Usos de los modelos

Descriptivo: el modelo se utiliza como una herramienta descriptiva.

Ayuda a describir las clases

¿Cuáles atributos influyen más?

Descubrir los patrones o
asociaciones interesantes que
relacionan los datos.

Predictivo: se utiliza para predecir la clase de objetos nuevos.

Nota sobre la clasificación

- es mejor para datos binarios y nominales,
- no es tan bueno para ordinales, ya que no consideran relación de orden entre clases (ej. alto, mediano, bajo), también ignora información de subclases-superclases (mamíferos -> primates -> {humanos, monos}).
- Nos enfocamos en clases binarias y nominales.

Técnicas de clasificación

- Basados en Árboles de Decisión
- Métodos basados en Reglas
- Razonamiento en base a memoria
- Redes Neuronales
- Naïve Bayes y Redes de Soporte Bayesianas
- Support Vector Machines

La Clave del Éxito

• El modelo construido debe ser "generalizable", es decir, debe aprender bien con muchos tipos de datos nuevos.

¿Cómo saber si un modelo es bueno o no?

- Lo más importante es la capacidad predictiva del modelo.
- Hacer predicciones correctas sobre los datos de entrenamiento no es suficiente para determinar la capacidad predictiva.
- El modelo construido debe **generalizar**, es decir, debe ser capaz de realizar predicciones correctas en datos distintos a los datos de entrenamiento.
- Otros factores importantes: interpretabilidad, eficiencia, fairness.

¿Cómo saber si un modelo es bueno o no?

- Resumimos la capacidad predictiva de un modelo mediante métricas de desempeño (performance metrics).
- 2. Las métricas se calculan **contrastando** los valores predichos versus los valores reales de la variable objetivo.
- 3. Este se hace con datos no usados durante entrenamiento.
- 4. Diseñamos experimentos en que comparamos las métricas de desempeño para varios modelos distintos y nos quedamos con el mejor.

Performance Metrics (métricas de desempeño)

- Basadas en contar datos correcta e incorrectamente clasificados.
- Accuracy (Exactitud): métrica más usada, o
- Error rate (Tasa de error)

Matriz de Confusión

Es una forma estándar de mostrar visualmente los resultados de la clasificación. Detalla el número de aciertos (TP, TN) y errores (FP, FN). Las métricas se pueden calcular directamente a partir de esta matriz de confusión.

		Predicted Class		
		1	0	
Actual Class	1	True Positives (TP)	False Negatives (FN)	
Class	0	False Positives (FP)	True Negatives (TN)	

Accuracy (Exactitud)

		Predicted Class		
		1 0		
Actual Class	1	True Positives (TP)	False Negatives (FN)	
Class	0	False Positives (FP)	True Negatives (TN)	

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

 $Accuracy = \frac{TP + TN}{TP + FP + TN + FN} \qquad \text{N\'umero de casos clasificados correctamente dividido por el n\'umero total de casos evaluados.}$

Limitaciones del Accuracy

Consideren un problema de 2-clases

- Num. de ejemplos de la Clase 0 = 9990
- Num. de ejemplos de la Clase 1 = 10

¿Cuál es el problema?

- Modelo que clasifica todo como Clase 0, accuracy es 9990/10000 = 99.9%
- Pero el modelo no detecta nada de la Clase 1 podría ser una f(x)=0.
- No es una buena métrica cuando tenemos clases desbalanceadas.

Precisión y Recall

En un problema de clasificación binaria tenemos que escoger cual es la clase positiva. Podemos pensar que clasificar algo como "positivo" es equivalente a "seleccionarlo".

- Precision: % de los casos "seleccionados" que son correctos.
- Recall: % de los casos "positivos" que son "seleccionados".
- Existe un trade-off entre Precision y Recall.

Falsos Positivos y Falsos Negativos

Precisión

		Predicted Class			
		1 0			
Actual Class	1	True Positives (TP)	False Negatives (FN)		
Class	0	False Positives (FP)	True Negatives (TN)		

$$P = \frac{TP}{TP + FP}$$

Proporción de <u>verdaderos positivos</u> sobre el número de casos <u>predichos</u> <u>como positivos</u>.

Determina lo bueno que es un clasificador para evitar los falsos positivos.

Recall

		Predicted Class			
		1 0			
Actual Class	1	True Positives (TP)	False Negatives (FN)		
Class	0	False Positives (FP)	True Negatives (TN)		

$$R = \frac{TP}{TP + FN}$$

Proporción de <u>verdaderos positivos</u> sobre el número de <u>positivos reales</u>. Determina lo bueno que es un clasificador para evitar los falsos negativos.

F1-score

		Predicted Class			
		1 0			
Actual Class	1	True Positives (TP)	False Negatives (FN)		
Class	0	False Positives (FP)	True Negatives (TN)		

$$F1 = 2 \cdot \frac{P \cdot R}{P + R}$$

Media armónica de la precisión y recall. Es conservadora y tiende a estar más cerca del mínimo. Generalmente usamos la F1 measure.

Ejercicio: reincidencia de cáncer

Considere 286 mujeres: 201 no tienen reincidencia de cáncer después de 5 años y 85 sí tienen. Compare los modelos:

M1: "todas reinciden"

	Clase predicha			
	+ -			
Clase	+	85	0	

201

real

M2: "ninguna reincide"

	Clase predicha		
		+	-
Clase real	+	0	85
	-	0	201

Calcular accuracy, precision, recall y F1. Reunirse y discutir en grupo (5 minutos)

Ejercicio: reincidencia de cáncer

Considere 286 mujeres: 201 no tienen reincidencia de cáncer después de 5 años y 85 sí tienen. Compare los modelos:

M1: "todas reinciden"

	Clase predicha		
		+	-
Clase	+	85	0
real	-	201	0

Accuracy: 85/286= 0.3 Precision: 85/286= 0.3

Recall: 1

F1: 2*0.3/(0.3+1)=0.46

M2: "ninguna reincide"

	Clase predicha		
Clase real		+	-
	+	0	85
	-	0	201

Accuracy: 201/286 = 0.7Precision: 0/0 =undef

Recall: 0/85=0

F1: undef

Matriz de Costo

A veces yo se cuales errores son más costosos y cuales aciertos son más valiosos. Puedo hacer una evaluación sensible al costo.

	Clase predicha		
	C(i j)	clase = +	clase = -
Clase real	clase = +	C(+ +)	C(- +)
	clase = -	C(+ -)	C(- -)

C(i|j): Costo de clasificar un objeto como clase j dado que es clase i

Calculando el costo de la clasificación

A mayor costo peor el modelo.

Matrix Costo	Clase predicha		
	C(i j)	+	-
Clase	+	-1	100
real	-	1	0

Modelo M1	Clase predicha		
		+	-
Clase real	+	150	40
	-	60	250

Accuracy(M1) =
$$400/500 = 0.8$$
 C(M1) = $-1*150+100*40+1*60+0*250 = 3910$

Modelo M2	Clase predicha		
		+	-
Clase real	+	250	45
	-	5	200

Accuracy(M2) =
$$450/500 = 0.9$$

C(M2) = $-1*250+100*45+1*5+0*200 = 4255$

Clasificación Multi-clase

Cuando tenemos k etiquetas, la matriz de confusión es una matriz de k X k.

Docs in test set	Assigned UK	Assigned poultry	Assigned wheat	Assigned coffee	Assigned interest	Assigned trade
True UK	95	1	13	0	1	0
True poultry	0	1	0	0	0	0
True wheat	10	90	0	1	0	0
True coffee	0	0	0	34	3	7
True interest	-	1	2	13	26	5
True trade	0	0	2	14	5	10

Métricas de desempeño por clase

Es posible agregarlas para tener una sola

métrica que resuma el desempeño del

Clasificador binario: One-Vs-Rest

Recall: Fracción de ejemplos de la clase i correc

Precision: Fracción de ejemplos asignados a la clase i que realimente son de la clase i.

Accuracy: (1 - error rate). Fracción total de ejemplos correctamente clasificados.

Micro- vs. Macro-Averaging

Si tenemos más de una clase, ¿cómo combinamos múltiples métricas de desempeño en un solo valor?

Macroaveraging: computar métrica para cada clase y luego promediar.

Microaveraging: crear matriz de confusión binaria para cada clase, combinar las matrices y luego evaluar.

Promedio ponderado por soporte (cantidad de ejemplos) por clase

	precision	recall	f1-score
1	1.00	0.67	0.80
2	0.00	0.00	0.00
3	0.00	0.00	0.00
micro avg	1.00	0.67	0.80
macro avg	0.33	0.22	0.27
weighted avg	1.00	0.67	0.80

sklearn.metrics.classification_report

Micro- vs. Macro-Averaging: Ejemplo clasificación de Spam

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of classes (c_1, c_2) , how many documents from c_1 were (in)correctly assigned to c_2

Fuente: https://web.stanford.edu/~jurafsky/slp3/4.pdf

Micro- vs. Macro-Averaging: Ejemplo clasificación de Spam

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contingency table and the microaveraged and macroaveraged precision.

- Los micro-promedios son dominados por las clases más frecuentes.
- Los macro-promedios pueden sobre-representar a clases minoritarias.

Fuente: https://web.stanford.edu/~iurafskv/slp3/4.pdf