Lexical Analysis Programming Languages

Sujit Kumar Chakrabarti

IIITB

Algorithm-intuition

Algorithm – intuition

- Start with the initial set (its ϵ -closure).
- For every symbol a in Σ , compute the set of destination states (MOVE followed by ϵ -closure)
- Discover new sets of states reachable by repeating this process.
- Each new set of state is a distinct state in the resultant DFA.

Algorithm-pseudocode

 ${\bf procedure}\ {\rm NFA2DFA}(N)$

Algorithm - pseudocode

```
procedure NFA2DFA(N)
    s_0' \leftarrow \epsilon-CLOSURE(N.s_0)
    add s'_0 to D.states
    UNMARK(s'_0)
    while there is unmarked state T in D. states do
        MARK(T)
        for all a \in \sum do
            T' \leftarrow \text{MOVE}(T, a)
            \mathcal{U} \leftarrow \epsilon-CLOSURE(T')
            if \mathcal{U} \notin D.states then
                 add \mathcal{U} to D.states
                 UNMARK(\mathcal{U})
            end if
        end for
    end while
    return D
end procedure
```

Algorithm – Marking and Unmarking

- An unmarked DFA-state (a set of NFA-states) is one from which all outgoing transitions corresponding to each symbol in Σ has not been explored.
- For a marked DFA-state, responses to all symbols of Σ have been explored.
- A newly discovered DFA-state starts by being unmarked.
- Could be implemented by maintaining a stack.
- Algorithm terminates when the stack goes empty.

Example NFA:

Example

NFA:

Example

NFA:

Subset	DFA	Marked
{0,1,2,4,7}	A	×

Example

NFA:

 $DTrans(\{0,1,2,4,7\},a) = \{1,2,3,4,6,7,8\}$

Subset	DFA	Marked
$\{0, 1, 2, 4, 7\}$	A	×
{1,2,3,4,6,7,8}	B	×

Example

NFA:

 $DTrans(\{0,1,2,4,7\},b) = \{1,2,4,5,6,7\}$

Subset	DFA	Marked
{0,1,2,4,7}	A	√
{1,2,3,4,6,7,8}	В	×
{1, 2, 4, 5, 6, 7}	C	×

Example

NFA:

$$DTrans(\{1,2,3,4,6,7,8\},a) = \{1,2,3,4,6,7,8\}$$

Subset	DFA	Marked
{0,1,2,4,7}	A	√
{1,2,3,4,6,7,8}	B	×
$\{1, 2, 4, 5, 6, 7\}$	C	×

Example

NFA:

 $DTrans(\{1,2,3,4,6,7,8\},b) = \{1,2,4,5,6,7,9\}$

Subset	DFA	Marked
{0,1,2,4,7}	A	√
{1, 2, 3, 4, 6, 7, 8}	B	✓
{1, 2, 4, 5, 6, 7}	C	×
{1, 2, 4, 5, 6, 7, 9}	D	×

Example

NFA:

$$DTrans(\{1,2,4,5,6,7\},a) = \{1,2,3,4,6,7,8\}$$

Subset	DFA	Marked
{0,1,2,4,7}	A	√
{1, 2, 3, 4, 6, 7, 8}	В	√
{1, 2, 4, 5, 6, 7}	C	×
{1, 2, 4, 5, 6, 7, 9}	D	×

Example

NFA:

 $DTrans({1, 2, 4, 5, 6, 7}, b) = {1, 2, 4, 5, 6, 7}$

Subset	DFA	Marked
$\{0, 1, 2, 4, 7\}$	A	√
{1, 2, 3, 4, 6, 7, 8}	В	√
{1, 2, 4, 5, 6, 7}	C	√
{1, 2, 4, 5, 6, 7, 9}	D	×

Example

NFA:

$$DTrans(\{1,2,4,5,6,7,9\},a) = \{1,2,3,4,6,7,8\}$$

Subset	DFA	Marked
$\{0, 1, 2, 4, 7\}$	A	√
{1, 2, 3, 4, 6, 7, 8}	В	√
$\{1, 2, 4, 5, 6, 7\}$	C	√
$\{1, 2, 4, 5, 6, 7, 9\}$	D	×

Example

NFA:

$$DTrans({1, 2, 4, 5, 6, 7, 9}, b) = {1, 2, 3, 5, 6, 7, 10}$$

Subset	DFA	Marked
$\{0, 1, 2, 4, 7\}$	A	√
{1, 2, 3, 4, 6, 7, 8}	В	√
{1, 2, 4, 5, 6, 7}	C	√
{1, 2, 4, 5, 6, 7, 9}	D	√
{1, 2, 3, 5, 6, 7, 10}	E	×

Example

NFA:

$$DTrans({1, 2, 3, 5, 6, 7, 10}, a) = {1, 2, 3, 4, 6, 7, 8}$$

Subset	DFA	Marked
{0, 1, 2, 4, 7}	A	✓
{1, 2, 3, 4, 6, 7, 8}	B	✓
$\{1, 2, 4, 5, 6, 7\}$	C	√
{1, 2, 4, 5, 6, 7, 9}	D	√
{1, 2, 3, 5, 6, 7, 10}	E	×

Example

NFA:

$$DTrans({1, 2, 3, 5, 6, 7, 10}, b) = {1, 2, 4, 5, 6, 7}$$

Subset	DFA	Marked
{0,1,2,4,7}	A	√
{1, 2, 3, 4, 6, 7, 8}	В	√
$\{1, 2, 4, 5, 6, 7\}$	C	√
{1, 2, 4, 5, 6, 7, 9}	D	√
{1, 2, 3, 5, 6, 7, 10}	E	√

Next

Next

Implementation of FSAs