A PAC-Theory of Clustering with Advice

Hassan Ashtiani

School of Computer Science University of Waterloo

Postgraduate Affiliate Vector Institute

May 2018

Clustering

- Clustering is the task of automatically partitioning a set of instances into "meaningful" subsets.
- An essential tool for exploratory data analysis.
 - Marketing
 - Social Sciences
 - Data Management Systems
 - Computer Vision
 - Medicine
 - Urban Planning
 - ...
- Tons of algorithmic choices with conflicting outcomes
 - Clustering algorithms
 - Parameters, distances, preprocessing techniques

Clustering

- Clustering is the task of automatically partitioning a set of instances into "meaningful" subsets.
- An essential tool for exploratory data analysis.
 - Marketing
 - Social Sciences
 - Data Management Systems
 - Computer Vision
 - Medicine
 - Urban Planning
 - ...
- Tons of algorithmic choices with conflicting outcomes
 - Clustering algorithms
 - Parameters, distances, preprocessing techniques

Clustering is generally an under-specified task.

Clustering the consumers based on

- Demographic (age, sex, address, etc.)
- Behavior (rating, feedback, etc.)

Understand the market, send the right message to the right consumer.

Just feed the data to an off-the-shelf clustering algorithm (?!)

Just feed the data to an off-the-shelf clustering algorithm (?!)

- Usually impossible!
- The desired clustering is task-specific! (for movies or furnitures?)

Just feed the data to an off-the-shelf clustering algorithm (?!)

- Usually impossible!
- The desired clustering is task-specific! (for movies or furnitures?)

Model selection requires exploiting domain knowledge.

Outline

- Model Selection for Clustering
 - An expert provides some advice about the ground truth.
 - "Advice complexity" of clustering?

Outline

- Model Selection for Clustering
 - An expert provides some advice about the ground truth.
 - "Advice complexity" of clustering?

- Efficient Clustering with Advice
 - Optimizing K-means, K-median, K-center, ... objective functions is NP-hard
 - Can using advice have computational benefits?

Outline

- Model Selection for Clustering
 - An expert provides some advice about the ground truth.
 - "Advice complexity" of clustering?

- Efficient Clustering with Advice
 - Optimizing K-means, K-median, K-center, ... objective functions is NP-hard
 - Can using advice have computational benefits?

Learning Mixture Models

Trial-and-error/Intuitions

- Trial-and-error/Intuitions
- Off-line Models
 - Constrained Clustering (Wagstaff et. al (2000))
 - Demonstration-based Clustering (Ashtiani, Ben-David (2015))
- Interactive Clustering
 - Merge/split Model (Balcan and Blum (2008))
 - Same-cluster Queries (Ashtiani, Kushagra, Ben-David (2016))

- Trial-and-error/Intuitions
- Off-line Models
 - Constrained Clustering (Wagstaff et. al (2000))
 - Demonstration-based Clustering (Ashtiani, Ben-David (2015))
- Interactive Clustering
 - Merge/split Model (Balcan and Blum (2008))
 - Same-cluster Queries (Ashtiani, Kushagra, Ben-David (2016))

Demonstration-based Clustering

Goal: learn a mapping under which k-means outputs an approximation to the *ground truth*.

Protocol

- Take a small subset of data.
- Have a domain expert cluster that subset.
- Learn a "transformation" consistent with that clustering.
- Cluster the rest of data!

Demonstration-based Clustering

Goal: learn a mapping under which k-means outputs an approximation to the *ground truth*.

Protocol

- Take a small subset of data.
- Have a domain expert cluster that subset.
- Learn a "transformation" consistent with that clustering.
- Cluster the rest of data!

Looking for an agnostic guarantee.

$$d(C^*, \hat{C}) \leq \inf_{f \in \mathcal{F}} d(C^*, C^f) + \epsilon$$

Demonstration-based Clustering

Goal: learn a mapping under which k-means outputs an approximation to the *ground truth*.

Protocol

- Take a small subset of data.
- Have a domain expert cluster that subset.
- Learn a "transformation" consistent with that clustering.
- Cluster the rest of data!

Looking for an agnostic guarantee.

$$d(C^*, \hat{C}) \leq \inf_{f \in \mathcal{F}} d(C^*, C^f) + \epsilon$$

What is the distance?

$$d(C^*, \hat{C}) = \min_{\sigma \in \pi^k} \frac{1}{|X|} \sum_{i=1}^k |C_i^* \Delta \hat{C}_{\sigma(i)}|$$

Demonstration-based Clustering: Results

Advice complexity of end-to-end representation learning?

• Let $m_{\mathcal{F}}$ be the advice complexity w.r.t. class \mathcal{F} of mappings.

Demonstration-based Clustering: Results

Advice complexity of end-to-end representation learning?

• Let $m_{\mathcal{F}}$ be the advice complexity w.r.t. class \mathcal{F} of mappings.

Theorem

Under appropriate uniqueness conditions we have

$$m_{\mathcal{F}}(\epsilon, \delta) \leq \widetilde{O}\left(\frac{k + Pdim(\mathcal{F}) + \log(\frac{1}{\delta})}{\epsilon^2}\right)$$

ullet Pseudo-dimension measures the capacity of ${\cal F}$

Demonstration-based Clustering: Results

Advice complexity of end-to-end representation learning?

• Let $m_{\mathcal{F}}$ be the advice complexity w.r.t. class \mathcal{F} of mappings.

Theorem

Under appropriate uniqueness conditions we have

$$m_{\mathcal{F}}(\epsilon, \delta) \leq \widetilde{O}\left(\frac{k + Pdim(\mathcal{F}) + \log(\frac{1}{\delta})}{\epsilon^2}\right)$$

ullet Pseudo-dimension measures the capacity of ${\cal F}$

Corollary

Let \mathcal{F} be a set of *linear* mappings from \mathbb{R}^{d_1} to \mathbb{R}^{d_2} . Then

$$m_{\mathcal{F}}(\epsilon, \delta) \leq \widetilde{O}\left(\frac{k + d_1d_2 + \log(\frac{1}{\delta})}{\epsilon^2}\right)$$

- Trial-and-error/Intuitions
- Off-line Models
 - Constrained Clustering (Wagstaff et. al (2000))
 - Demonstration-based Clustering (Ashtiani, Ben-David (2015))
- Interactive Clustering
 - Merge/split Model (Balcan and Blum (2008))
 - Same-cluster Queries (Ashtiani, Kushagra, Ben-David (2016))

Clustering with Queries

- Learner interacts with an expert/oracle to get advice.
- Same-Cluster Query
 - Do x_1 and x_2 belong to the same cluster?
- A natural/user-friendly form of query
 - Record De-Duplication
 - Assisted Troubleshooting
 - ...

Key Takeaways

Interactive clustering in the form of same-cluster queries can help us in

- Dealing with under-specificity
- Reducing computational complexity (?!!)

Key Takeaways

Interactive clustering in the form of same-cluster queries can help us in

- Dealing with under-specificity
- Reducing computational complexity (?!!)

The use of a few queries can make an otherwise NP-hard clustering problem tractable!

Problem Setting

- Input is $X = \{x\}_{i=1}^n \subset \mathbb{R}^d$.
- Learner asks same-cluster queries from the oracle.
- Goal is to recover the target clustering $C^* = (C_1^*, \dots, C_k^*)$.

Problem Setting

- Input is $X = \{x\}_{i=1}^n \subset \mathbb{R}^d$.
- Learner asks same-cluster queries from the oracle.
- Goal is to recover the target clustering $C^* = (C_1^*, \dots, C_k^*)$.

Still need more structure/inductive-bias ...

- "No-free-lunch" in clustering!
 - Need to ask $\Omega(n)$ queries.
- Target C^* is "nice".

γ -Margin Property

$$C = \{C_1, \dots, C_k\}$$
 with centers $\{\mu_1, \mu_2, \dots, \mu_k\}$ satisfies the γ -margin property if for all $x \in C_i$ and $y \in X \setminus C_i$,

$$(1+\gamma)d(x,\mu_i) < d(y,\mu_i)$$

γ -Margin Property

- Query complexity?
- Computational complexity?

Positive Result (with Queries)

Theorem

There is an algorithm that finds C^* for any $\gamma>0$ (with constant probability) which

- Runs in $\widetilde{O}(knd + k^2)$.
- Asks $O(k^2 \log k + k \log n)$ queries.

- Works for any "nice" target.
- No need to know k.
- Query complexity is
 - Dimension-independent!
 - Only logarithmic in *n*.

Computational Complexity

- Special case: oracle's clustering is the solution of K-means.
 - $\min_{\{\mu\}_{i=1}^k} \sum_{x \in X} \min_j ||x \mu_j||_2^2$.
 - \bullet Additional structure: $\gamma\text{-margin}$ property.

Theorem

Solving Euclidean K-means clustering with no queries is NP-hard if $\gamma \leq 0.84.$

Computational Complexity

Without queries:

- NP-hard for realistic values of γ .
- Tractable only for unrealistically large values of γ .

Surprising Conclusion

For the realistic situation 0 $\leq \gamma \leq$ 0.84

Clustering is NP-hard without queries

BUT

tractable with a small number of queries

Hardness Result

Euclidean k-means is NP-hard even when the optimal solution satisfies the γ -margin property for $\gamma < 0.84$.

- True even with $O(\log n)$ same-cluster queries.
- Reduction from Exact Cover by 3-Sets.

Summary I

- Clustering is an under-specified problem.
- Domain knowledge can be conveyed using interaction.
- Same-cluster queries can also reduce computational complexity.
- Handling noisy oracles?
- Can we exploit same-cluster queries in other settings?

Summary I

- Clustering is an under-specified problem.
- Domain knowledge can be conveyed using interaction.
- Same-cluster queries can also reduce computational complexity.
- Handling noisy oracles?
- Can we exploit same-cluster queries in other settings?
 - Approximate k-means without γ -margin (Ailon et al. (2017))
 - Stochastic Block Model (Mazumdar, Saha (2017))
 - Correlation Clustering (Ailon et al. (2017))
 - Noisy Oracles (Kim and Ghosh (2017))
 - Mixture models? (rest of the talk!)

Density Estimation

Density Estimation:

• Given an i.i.d. sample from an unknown density g^* , find a density \hat{g} that is ϵ -close to g^* in **total variation distance**.

Density Estimation

Density Estimation:

• Given an i.i.d. sample from an unknown density g^* , find a density \hat{g} that is ϵ -close to g^* in **total variation distance**.

Density Estimation

Density Estimation:

• Given an i.i.d. sample from an unknown density g^* , find a density \hat{g} that is ϵ -close to g^* in **total variation distance**.

Density Estimation

Density Estimation:

• Given an i.i.d. sample from an unknown density g^* , find a density \hat{g} that is ϵ -close to g^* in **total variation distance**.

E.g., learning a Gaussian requires $\Theta\left(d^2/\epsilon^2\right) \approx (\# \text{params}/\epsilon^2)$ samples.

Mixture Models

How many samples is needed to learn a mixture of k Gaussian distributions?

Motivation

Mixture Models

- Have been studied for over a century!
- Are rich!
- Are building blocks of more complex models!

Motivation

Mixture Models

- Have been studied for over a century!
- Are rich!
- Are building blocks of more complex models!

Fundamental Open Problems:

- Sample complexity of learning mixtures of k Gaussian distributions over \mathbb{R}^d ?
- Sample complexity of other mixture classes?

Motivation

Mixture Models

- Have been studied for over a century!
- Are rich!
- Are building blocks of more complex models!

Fundamental Open Problems:

- Sample complexity of learning mixtures of k Gaussian distributions over \mathbb{R}^d ?
- Sample complexity of other mixture classes?

In practice, the data is never generated exactly from a GMM

Looking for an agnostic (robust) guarantee!

Mixture Learning Theorem

• Let $m_{\mathcal{F}}$ be the sample complexity of learning \mathcal{F} .

Mixture Learning with Queries

For any natural class \mathcal{F} , the class of k-mixtures of \mathcal{F} can be learned with $\widetilde{O}\left(k.m_{\mathcal{F}}\right)$ queries and $\widetilde{O}\left(k.m_{\mathcal{F}}/\epsilon^2\right)$ samples.

Mixture Learning Theorem

- One can remove the queries with a simulation trick!
 - Simulate all possible outcomes of queries.
 - Create a set of candidate pdfs.
 - Choose the best one based on a fresh new sample.

Mixture Learning Theorem

- One can remove the queries with a simulation trick!
 - Simulate all possible outcomes of queries.
 - Create a set of candidate pdfs.
 - Choose the best one based on a fresh new sample.

Mixture Learning (Ashtiani, Ben-David, Mehrabian (2018))

For any natural class \mathcal{F} , the class of k-mixtures of \mathcal{F} can be learned with $\widetilde{O}\left(k.m_{\mathcal{F}}/\epsilon^2\right)$ samples.

- So an increase by a factor of at most k/ϵ^2 .
- Generic but surprisingly tight!
- Robust (agnostic)!

Mixture Learning Theorem: Applications

Learning Mixture of Gaussians

Mixtures of k Gaussians in \mathbb{R}^d can be learned with $\widetilde{O}(kd^2/\epsilon^4)$ samples.

- Improvement over previous known upper bounds
 - $\widetilde{O}(d^2k^3/\epsilon^4)$ (Diakonikolas et al. (2017))
 - $\widetilde{O}(d^4k^4/\epsilon^2)$ (Karpinski and Macintyre (1997))

Mixture Learning Theorem: Applications

Learning Mixture of Axis-aligned Gaussians

The class of mixtures of k axis-aligned Gaussians in \mathbb{R}^d can be learned with $\widetilde{O}(kd/\epsilon^4)$ samples.

- Improvement over previous known upper bounds
 - $\widetilde{O}(dk^9/\epsilon^4)$ (Suresh et al. (2014))
 - $\widetilde{O}((d^2k^4+d^3k^3)/\epsilon^2)$ (Karpinski and Macintyre (1997))

Mixture Learning Theorem: Applications

Learning Mixture of Axis-aligned Gaussians

The class of mixtures of k axis-aligned Gaussians in \mathbb{R}^d can be learned with $\widetilde{O}(kd/\epsilon^4)$ samples.

- Improvement over previous known upper bounds
 - $\widetilde{O}(dk^9/\epsilon^4)$ (Suresh et al. (2014))
 - $\widetilde{O}((d^2k^4+d^3k^3)/\epsilon^2)$ (Karpinski and Macintyre (1997))

Learning Mixture of Log-concave Distributions

The class of mixtures of k log-concave distributions in \mathbb{R}^d can be learned with $\widetilde{O}(kd^{(d+5)/2}\epsilon^{-(d+9)/2})$ samples.

- If a class is learnable, so is its mixture.
- ullet Sample complexity is increased by a factor of $\widetilde{O}(k/\epsilon^2)$.
- Surprisingly sharp, e.g. for GMMs.

- If a class is learnable, so is its mixture.
- Sample complexity is increased by a factor of $\widetilde{O}(k/\epsilon^2)$.
- Surprisingly sharp, e.g. for GMMs.

Is it tight for GMMs?

• $\widetilde{O}(kd^2/\epsilon^4)$ is still loose in terms of $\epsilon!$

How about Axis-aligned GMMs?

• $\widetilde{O}(kd/\epsilon^4)$ is loose in terms of $\epsilon!$

- If a class is learnable, so is its mixture.
- Sample complexity is increased by a factor of $\widetilde{O}(k/\epsilon^2)$.
- Surprisingly sharp, e.g. for GMMs.

Is it tight for GMMs?

• $\widetilde{O}(kd^2/\epsilon^4)$ is still loose in terms of $\epsilon!$

How about Axis-aligned GMMs?

• $\widetilde{O}(kd/\epsilon^4)$ is loose in terms of ϵ !

Settling the sample complexity of learning GMMs?

- Idea: compression schemes!
- ullet $\Theta(kd/\epsilon^2)$ for axis-aligned GMMs (Ashtiani, Ben-David, Mehrabian)
- ullet $\Theta(kd^2/\epsilon^2)$ for general GMMs (Ashtiani, Ben-David, Harvey, Liaw, Mehrabian, Plan)

Density Estimation via Compression

1-dimensional Gaussians with unknown mean and variance

Density Estimation via Compression

Generate $1/\epsilon$ i.i.d. samples.

Density Estimation via Compression

1-dimensional Gaussians admit $(3, 1/\epsilon)$ compression!

Distribution Learning via Compression

Compression Implies Learnability

If ${\mathcal F}$ admits (t,m) compression, then ${\mathcal F}$ can be learned using

$$\widetilde{O}\left(m(rac{\epsilon}{6})+rac{t(\epsilon)}{\epsilon^2}
ight)$$
 samples.

Distribution Learning via Compression

Compression Implies Learnability

If ${\mathcal F}$ admits (t,m) compression, then ${\mathcal F}$ can be learned using

$$\widetilde{O}\left(m(rac{\epsilon}{6})+rac{t(\epsilon)}{\epsilon^2}
ight)$$
 samples.

Compressing Product Distributions

If \mathcal{F} admits $(t(\epsilon), m(\epsilon))$ compression, then \mathcal{F}^d admits $(dt(\epsilon/d), m(\epsilon/d) \log 3d)$ compression.

Distribution Learning via Compression

Compression Implies Learnability

If $\mathcal F$ admits (t,m) compression, then $\mathcal F$ can be learned using

$$\widetilde{O}\left(m(\frac{\epsilon}{6}) + \frac{t(\epsilon)}{\epsilon^2}\right)$$
 samples.

Compressing Product Distributions

If \mathcal{F} admits $(t(\epsilon), m(\epsilon))$ compression, then \mathcal{F}^d admits $(dt(\epsilon/d), m(\epsilon/d) \log 3d)$ compression.

Compressing Mixtures

Under natural conditions, if \mathcal{F} admits (t, m) compression, then k-mix (\mathcal{F}) admits $(kt + k \log(k/\epsilon), m(\epsilon)k \log k)$ compression.

Compressing 1-dimensional Gaussians

1-dimensional Gaussians admit $(O(1),1/\epsilon)$ compression.

Compressing 1-dimensional Gaussians

1-dimensional Gaussians admit $(O(1),1/\epsilon)$ compression.

Compressing axis-aligned Gaussians

Axis-aligned Gaussians over \mathbb{R}^d admit $(d,(d \log d)/\epsilon)$ compression.

Compressing 1-dimensional Gaussians

1-dimensional Gaussians admit $(O(1), 1/\epsilon)$ compression.

Compressing axis-aligned Gaussians

Axis-aligned Gaussians over \mathbb{R}^d admit $(d, (d \log d)/\epsilon)$ compression.

Compressing mixtures of axis-aligned Gaussians

Mixtures of k axis-aligned Gaussians over \mathbb{R}^d admit $(kd + k \log(k/\epsilon), (kd \log k \log d)/\epsilon)$ compression.

Compressing 1-dimensional Gaussians

1-dimensional Gaussians admit $(O(1), 1/\epsilon)$ compression.

Compressing axis-aligned Gaussians

Axis-aligned Gaussians over \mathbb{R}^d admit $(d, (d \log d)/\epsilon)$ compression.

Compressing mixtures of axis-aligned Gaussians

Mixtures of k axis-aligned Gaussians over \mathbb{R}^d admit $(kd + k \log(k/\epsilon), (kd \log k \log d)/\epsilon)$ compression.

Learning mixtures of axis-aligned Gaussians

Mixtures of k axis-aligned Gaussians over \mathbb{R}^d can be learned using $\widetilde{O}(kd/\epsilon^2)$ samples.

Compressing 1-dimensional Gaussians

1-dimensional Gaussians admit $(O(1), 1/\epsilon)$ compression.

Compressing axis-aligned Gaussians

Axis-aligned Gaussians over \mathbb{R}^d admit $(d, (d \log d)/\epsilon)$ compression.

Compressing mixtures of axis-aligned Gaussians

Mixtures of k axis-aligned Gaussians over \mathbb{R}^d admit $(kd + k \log(k/\epsilon), (kd \log k \log d)/\epsilon)$ compression.

Learning mixtures of axis-aligned Gaussians

Mixtures of k axis-aligned Gaussians over \mathbb{R}^d can be learned using $O(kd/\epsilon^2)$ samples.

• The first known tight result (up to logarithmic factors).

- Distribution compression implies learnability.
- Compression has nice closure properties.
- Mixtures of axis-aligned Gaussians can be effectively compressed.

- Distribution compression implies learnability.
- Compression has nice closure properties.
- Mixtures of axis-aligned Gaussians can be effectively compressed.

Also,

Mixtures of general Gaussians can be effectively compressed.

- Distribution compression implies learnability.
- Compression has nice closure properties.
- Mixtures of axis-aligned Gaussians can be effectively compressed.

Also,

- Mixtures of general Gaussians can be effectively compressed.
- Robust learning using "robust compression"!

- Distribution compression implies learnability.
- Compression has nice closure properties.
- Mixtures of axis-aligned Gaussians can be effectively compressed.

Also,

- Mixtures of general Gaussians can be effectively compressed.
- Robust learning using "robust compression"!

Open problems

- Compression with respect to other distances?
- Compressing deep generative models?

Thank You!

Bigger Picture

Filling the gap between supervised and unsupervised learning!

- Supervised learning
 - Not many labeled instances?
 - Noisy/malicous instances/labels?
 - Discrepancy between the train and test distributions?
 - Using unlabeled data?
- Unsupervised learning
 - Unsupervised representation learning?
 - Interactive clustering?
 - Computationally efficient clustering?
 - Sample-efficient density estimation?
- Reinforcement Learning
 - Non-i.i.d. samples.
 - Weaker form of supervision (i.e., reward function)
 - Delayed feedback.

- Parameter Learning/Identification
 - E.g., approximate μ_i, Σ_i, w_i for GMMs
 - Representation/parametrization dependent
 - Identifiability problems, separability assumptions

- Parameter Learning/Identification
 - E.g., approximate μ_i, Σ_i, w_i for GMMs
 - Representation/parametrization dependent
 - Identifiability problems, separability assumptions
- Density Estimation
 - ullet The output of the algorithm is a pdf, \hat{g}
 - The goal is to have $d(g,\hat{g})<\epsilon$
 - Various choices for dissimilarity

- Parameter Learning/Identification
 - E.g., approximate μ_i, Σ_i, w_i for GMMs
 - Representation/parametrization dependent
 - Identifiability problems, separability assumptions
- Density Estimation
 - ullet The output of the algorithm is a pdf, \hat{g}
 - The goal is to have $d(g,\hat{g})<\epsilon$
 - Various choices for dissimilarity
- Dissimilarity Measures
 - Total variation distance
 - KL-divergence
 - Hellinger distance
 - ...

- Parameter Learning/Identification
 - E.g., approximate μ_i, Σ_i, w_i for GMMs
 - Representation/parametrization dependent
 - Identifiability problems, separability assumptions
- Density Estimation
 - ullet The output of the algorithm is a pdf, \hat{g}
 - The goal is to have $d(g,\hat{g})<\epsilon$
 - Various choices for dissimilarity
- Dissimilarity Measures
 - Total variation distance
 - KL-divergence
 - Hellinger distance
 - ...
- Our focus: density estimation w.r.t. the total variation distance
 - $\|g \hat{g}\|_{TV} \coloneqq \sup_{A \subset \mathbb{R}^d} |g(A) \hat{g}(A)|$
 - $\|g \hat{g}\|_{TV} = \frac{1}{2} \|g \hat{g}\|_1 = \frac{1}{2} \int_z |g \hat{g}| dz$

Mixture Learning Theorem

Assume that \mathcal{F} can be learned with $m_{\mathcal{F}}(\epsilon, \delta) = \lambda(\mathcal{F}, \delta)/\epsilon^{\alpha}$ samples for some $\alpha \geq 1$ and some function $\lambda(\mathcal{F}, \delta) = \Omega(\ln(1/\delta))$. Then the class k-mix (\mathcal{F}) can be learned with

$$O\left(\frac{\lambda(\mathcal{F}, \delta/3k)k\log k}{\epsilon^{\alpha+2}}\right) = O\left(\frac{k\log k \cdot m_{\mathcal{F}}(\epsilon, \delta/3k)}{\epsilon^2}\right)$$

samples.

Furthermore, if the base learner is robust, then the mixture learner will be robust as well.

VC-Bound

Minimum Distance Estimator (e.g., Devroye and Lugosi (2001))

If VC-dim(SUBLEVEL(
$$\Delta \mathcal{F}$$
)) $\leq v$, then $m_{\mathcal{F}}^3(\epsilon, \delta) = O((v + \log \frac{1}{\delta})/\epsilon^2)$.

• VC-dim(SUBLEVEL(Δ k-mix(\mathcal{F}))) $\leq k$.VC-dim(SUBLEVEL($\Delta\mathcal{F}$))?

VC-Bound

Minimum Distance Estimator (e.g., Devroye and Lugosi (2001))

If VC-dim(SUBLEVEL($\Delta \mathcal{F}$)) $\leq v$, then $m_{\mathcal{F}}^3(\epsilon, \delta) = O((v + \log \frac{1}{\delta})/\epsilon^2)$.

- VC-dim(SUBLEVEL(Δ k-mix(\mathcal{F}))) $\leq k$.VC-dim(SUBLEVEL($\Delta\mathcal{F}$))?
- Bounding the VC-dimension is not easy even for GMMs over \mathbb{R}^n .
- This upper bound is in general loose.

Density Estimation via Compression

Distribution Decoder

A distribution decoder for $\mathcal F$ is a function $\mathcal J$ that takes a finite sequence of elements of the domain, and outputs a member of $\mathcal F$.

Distribution Compression Schemes

 $\mathcal F$ admits (d,m) compression if there exists a decoder $\mathcal J$ for $\mathcal F$ such that for any $g\in \mathcal F$, if $S\sim g^{m(\epsilon)}$, then with probability at least 2/3, there exists a sequence L of at most $d(\epsilon)$ elements of S such that $\|\mathcal J(L)-g\|_1\leq \epsilon$.

Distribution Learning via Compression

Compression Implies Learnability

If ${\mathcal F}$ admits (d,m) compression, then ${\mathcal F}$ can be learned using

$$O\left(m(\frac{\epsilon}{6})\log\frac{1}{\delta} + \frac{d(\epsilon)\log(m(\frac{\epsilon}{6})\log(1/\delta)) + \log(1/\delta)}{\epsilon^2}\right) \ = \widetilde{O}\left(m(\frac{\epsilon}{6}) + \frac{d(\epsilon)}{\epsilon^2}\right) \ \textit{samples}.$$

Distribution Learning via Compression

Compression Implies Learnability

If ${\mathcal F}$ admits (d,m) compression, then ${\mathcal F}$ can be learned using

$$O\left(m(\frac{\epsilon}{6})\log\frac{1}{\delta} + \frac{d(\epsilon)\log(m(\frac{\epsilon}{6})\log(1/\delta)) + \log(1/\delta)}{\epsilon^2}\right)$$

$$= \widetilde{O}\left(m(\frac{\epsilon}{6}) + \frac{d(\epsilon)}{\epsilon^2}\right) \text{ samples.}$$

Compressing Product Distributions

If \mathcal{F} admits $(d(\epsilon), m(\epsilon))$ compression, then \mathcal{F}^n admits $(nd(\epsilon/n), m(\epsilon/n) \log 3n)$ compression.

Distribution Learning via Compression

Compression Implies Learnability

If ${\mathcal F}$ admits (d,m) compression, then ${\mathcal F}$ can be learned using

$$O\left(m(\frac{\epsilon}{6})\log\frac{1}{\delta} + \frac{d(\epsilon)\log(m(\frac{\epsilon}{6})\log(1/\delta)) + \log(1/\delta)}{\epsilon^2}\right) = \widetilde{O}\left(m(\frac{\epsilon}{6}) + \frac{d(\epsilon)}{\epsilon^2}\right)$$
 samples.

Compressing Product Distributions

If \mathcal{F} admits $(d(\epsilon), m(\epsilon))$ compression, then \mathcal{F}^n admits $(nd(\epsilon/n), m(\epsilon/n) \log 3n)$ compression.

Compressing Mixtures

Under natural conditions, if $\mathcal F$ admits (d,m) compression, then $k\text{-mix}(\mathcal F)$ admits $(kd+k\log(k/\epsilon),m(\epsilon)k\log k)$ compression.

Compressing 1-dimensional Gaussians

1-dimensional Gaussians admit $(O(1), 1/\epsilon)$ compression.

Compressing 1-dimensional Gaussians

1-dimensional Gaussians admit $(O(1), 1/\epsilon)$ compression.

Compressing axis-aligned Gaussians

Axis-aligned Gaussians over \mathbb{R}^n admit $(n, (n \log n)/\epsilon)$ compression.

Compressing 1-dimensional Gaussians

1-dimensional Gaussians admit $(O(1), 1/\epsilon)$ compression.

Compressing axis-aligned Gaussians

Axis-aligned Gaussians over \mathbb{R}^n admit $(n, (n \log n)/\epsilon)$ compression.

Compressing mixtures of axis-aligned Gaussians

Mixtures of k axis-aligned Gaussians over \mathbb{R}^n admit $(kn + k \log(k/\epsilon), (kn \log k \log n)/\epsilon)$ compression.

Compressing 1-dimensional Gaussians

1-dimensional Gaussians admit $(O(1), 1/\epsilon)$ compression.

Compressing axis-aligned Gaussians

Axis-aligned Gaussians over \mathbb{R}^n admit $(n, (n \log n)/\epsilon)$ compression.

Compressing mixtures of axis-aligned Gaussians

Mixtures of k axis-aligned Gaussians over \mathbb{R}^n admit $(kn + k \log(k/\epsilon), (kn \log k \log n)/\epsilon)$ compression.

Learning mixtures of axis-aligned Gaussians

Mixtures of k axis-aligned Gaussians over \mathbb{R}^n can be learned using $\widetilde{O}(kn/\epsilon^2)$ samples.

Compressing 1-dimensional Gaussians

1-dimensional Gaussians admit $(O(1), 1/\epsilon)$ compression.

Compressing axis-aligned Gaussians

Axis-aligned Gaussians over \mathbb{R}^n admit $(n, (n \log n)/\epsilon)$ compression.

Compressing mixtures of axis-aligned Gaussians

Mixtures of k axis-aligned Gaussians over \mathbb{R}^n admit $(kn + k \log(k/\epsilon), (kn \log k \log n)/\epsilon)$ compression.

Learning mixtures of axis-aligned Gaussians

Mixtures of k axis-aligned Gaussians over \mathbb{R}^n can be learned using $\widetilde{O}(kn/\epsilon^2)$ samples.

• The first known tight result (up to logarithmic factors).

Mixture Learning Algorithm

- Create a set of candidate pdfs based on the sample.
- Choose the best one based on a fresh new sample.

Mixture Learning Algorithm

- Create a set of candidate pdfs based on the sample.
- Choose the best one based on a fresh new sample.

Learning Finite Classes (e.g., Devroye and Lugosi (2001))

If $|\mathcal{F}| \leq M$, then there is a polynomial time algorithm that learns \mathcal{F} with $O(\log(M/\delta)/\epsilon^2)$ samples.

Mixture Learning Algorithm

- Create a set of candidate pdfs based on the sample.
- Choose the best one based on a fresh new sample.

Learning Finite Classes (e.g., Devroye and Lugosi (2001))

If $|\mathcal{F}| \leq M$, then there is a polynomial time algorithm that learns \mathcal{F} with $O(\log(M/\delta)/\epsilon^2)$ samples.

Input: k, ϵ, δ and an iid sample S

- 0. Let \widehat{W} be an (ϵ/k) -cover for Δ_k in ℓ_{∞} distance.
- 1. $C = \emptyset$. (set of candidate distributions)
- 2. For each $(\widehat{w}_1, \dots, \widehat{w}_k) \in \widehat{W}$ do:
 - 3. For each possible partition of *S* into $A_1, A_2, ..., A_{k+1}$:
 - 4. Provide A_i to the \mathcal{F} -learner, and let G_i be its output.
 - 5. Add the candidate distribution $\sum_{i \in [k]} \widehat{w}_i G_i$ to C.
- 6. Apply the algorithm for finite classes to $\widetilde{\mathcal{C}}$ and output its result.

- ullet Prove that there is a "good" candidate in \mathcal{C} .
- Show that $\log |\mathcal{C}|$ is small.

- ullet Prove that there is a "good" candidate in \mathcal{C} .
- Show that $\log |\mathcal{C}|$ is small.
- Naive analysis
 - Ignore components whose weights smaller than ϵ/k .

- ullet Prove that there is a "good" candidate in \mathcal{C} .
- Show that $\log |\mathcal{C}|$ is small.
- Naive analysis
 - Ignore components whose weights smaller than ϵ/k .
 - We need *m* points from each of the "non-negligible" components.

- ullet Prove that there is a "good" candidate in \mathcal{C} .
- Show that $\log |\mathcal{C}|$ is small.
- Naive analysis
 - Ignore components whose weights smaller than ϵ/k .
 - We need *m* points from each of the "non-negligible" components.
 - If we generate $m\frac{k}{\epsilon}\log\frac{k}{\epsilon}\approx mk/\epsilon$ samples, we will get m from all non-negligible components.

- ullet Prove that there is a "good" candidate in \mathcal{C} .
- Show that $\log |\mathcal{C}|$ is small.
- Naive analysis
 - Ignore components whose weights smaller than ϵ/k .
 - We need *m* points from each of the "non-negligible" components.
 - If we generate $m\frac{k}{\epsilon}\log\frac{k}{\epsilon}\approx mk/\epsilon$ samples, we will get m from all non-negligible components.
 - We will have $\approx k^{mk/\epsilon}$ candidates.

- ullet Prove that there is a "good" candidate in \mathcal{C} .
- Show that $\log |\mathcal{C}|$ is small.
- Naive analysis
 - Ignore components whose weights smaller than ϵ/k .
 - We need *m* points from each of the "non-negligible" components.
 - If we generate $m\frac{k}{\epsilon}\log\frac{k}{\epsilon}\approx mk/\epsilon$ samples, we will get m from all non-negligible components.
 - We will have $\approx k^{mk/\epsilon}$ candidates.
 - Final sample complexity: $\frac{\log |\mathcal{C}|}{\epsilon^2} = \widetilde{O}\left(\frac{km}{\epsilon^3}\right)$

- ullet Prove that there is a "good" candidate in \mathcal{C} .
- Show that $\log |\mathcal{C}|$ is small.
- Naive analysis
 - Ignore components whose weights smaller than ϵ/k .
 - We need *m* points from each of the "non-negligible" components.
 - If we generate $m\frac{k}{\epsilon}\log\frac{k}{\epsilon}\approx mk/\epsilon$ samples, we will get m from all non-negligible components.
 - We will have $\approx k^{mk/\epsilon}$ candidates.
 - Final sample complexity: $\frac{\log |\mathcal{C}|}{\epsilon^2} = \widetilde{O}\left(\frac{km}{\epsilon^3}\right)$
 - More careful analysis gives $\widetilde{O}\left(\frac{km}{\epsilon^2}\right)$

Community Detection

Record Deduplication

- The ground truth seems obvious.
- What clustering method should we use?

Brain Segmentation

Clustering various regions in the brain, used for

- Visualizing and analyzing the brain structure
- Locating tumors
- Planing for surgery

Brain Segmentation

- No "single right" segmentation.
- Segmentation's validity is task-specific.
- Labeled data is scarce and expensive.

Brain Segmentation

- No "single right" segmentation.
- Segmentation's validity is task-specific.
- Labeled data is scarce and expensive.

A semi-supervised clustering framework?

Sketch of the Proof

- **1** Bound $Pdim(\mathcal{F})$
- **2** Bound $\mathcal{N}(\mathcal{F}, d_{L_1}^X, \epsilon)$ based on $Pdim(\mathcal{F})$ and ϵ
- **3** Bound $\mathcal{N}(\mathcal{F}, \Delta_X, \epsilon)$ based on $\mathcal{N}(\mathcal{F}, d_{L_1}^X, \epsilon)$
- **3** Bound the $m_{UC}^{\mathcal{F}}(\epsilon, \delta)$ based on δ and $\mathcal{N}(\mathcal{F}, \Delta_X, \epsilon)$
- **5** Bound $m^{\mathcal{F}}(\epsilon, \delta)$ based on $m_{UC}^{\mathcal{F}}(\epsilon, \delta)$

• k-means' solution may not be unique for some mappings

- k-means' solution may not be unique for some mappings
- Such mappings should not be selected!

- *k*-means' solution may not be unique for some mappings
- Such mappings should not be selected!
- ullet We should compare the the output of the algorithm only to those mappings in ${\mathcal F}$ that have unique solutions

- *k*-means' solution may not be unique for some mappings
- Such mappings should not be selected!
- ullet We should compare the the output of the algorithm only to those mappings in ${\mathcal F}$ that have unique solutions
- (η, ϵ) -Uniqueness: Every η -optimal solution to k-means' cost is ϵ -close to the optimal solution

- k-means' solution may not be unique for some mappings
- Such mappings should not be selected!
- ullet We should compare the the output of the algorithm only to those mappings in ${\mathcal F}$ that have unique solutions
- (η, ϵ) -Uniqueness: Every η -optimal solution to k-means' cost is ϵ -close to the optimal solution
- ullet For simplifying the presentation of the results, we assume the class ${\cal F}$ includes only the mappings under which the solution is unique.

Algorithm

Algorithm's Idea

- 1. Estimate a center.
 - Query uniformly till we have "enough" points from one cluster.
- 2. Prune points belonging to that cluster.
 - Binary search to find the "effective radius".
- 3. Repeat for the other clusters.

No need to know k in advance.

