MAT137 Lecture 8

Huan Vo

University of Toronto

October 2, 2017

Agenda

- ▶ The definition of continuity.
- Limits and composition of functions.

Definition of Continuity

- ▶ Let f be a function defined on an interval that contains a, write down the formal definition, i.e. using ε - δ , of the statement
 - \bullet f is continuous at a.

 - **3** f is continuous from the right at a.
- ▶ What does it mean to say that f is continuous on an interval [c, d]?

Continuity

Find all values of x so that the following function is continuous

$$f(x) = |x| + \sqrt{\frac{\log(1-x^2)}{(x-2)^3}}.$$

Compositions and Limits

What is wrong with the following proof?

Theorem??

Suppose that

- $\lim_{x \to a} f(x) = b,$
- $\lim_{u \to b} g(u) = L.$

Then $\lim_{x\to a}g(f(x))=L.$

Compositions and Limits

Proof?

Let $\varepsilon>0$ be given. Since $\lim_{u\to b}g(u)=L$ there exists $\delta>0$ such that

$$0 < |u - b| < \delta \Longrightarrow |g(u) - L| < \varepsilon.$$

Since $\lim_{x\to a} f(x) = b$ there exists $\sigma > 0$ such that

$$0 < |x - a| < \sigma \Longrightarrow |f(x) - b| < \delta.$$

It then follows that if $0<|x-a|<\sigma$, then $|f(x)-b|<\delta$, then $|g(f(x))-L|<\varepsilon$. Thus $\lim_{x\to a}g(f(x))=L$.

Impossible Functions?

Can you find two functions f and g such that

- $\lim_{x \to 1} f(x) = 2,$
- $\lim_{x \to 1} g(f(x)) = 4.$

7 / 9

Compositions and Limits

Can you provide a proof of the following theorem?

Theorem

Suppose that

- $\mathbf{0} \lim_{x \to a} f(x) = b,$
- \mathbf{Q} g is continuous at b

Then $\lim_{x\to a}g(f(x))=g(b)$.

Next Class: Thursday Oct 5

Watch videos 16, 17, 18, 19, 20 in Playlist 2.