Ashutosh Mukherjee

Email: ashutosh.mukherjee@rwth-aachen.de Phone: +4915901950326 Github Page Projects Website

Education

10/2021 - Ongoing	M.Sc. CAME	CGPA: 2,0
	RWTH Aachen University, Aachen	
8/2016 - 6/2020	B.Tech in Mechanical Engineering	CGPA: 8.3/10
	Punjab Engineering College, Chandigarh	·
4/2014 - 3/2016	High School (10+2)	Percent : 94.4%
	Bhavan Vidyalaya, Chandigarh	

Research Experience

Research Associate

September 2020 - July 2021

Thapar Institute of Engineering and Technology, Patiala, India

Dynamic Modelling and Control Design of Augmentative Lower Extremity Exoskeleton

- Dynamic modelling of a strength augmentation exoskeleton designed by Defence Bio-Engineering and Electro-Medical Laboratory (DEBEL), a branch of Defence Research and Development Organization (DRDO), India
- Modeling of Human and Lower Extremity Exoskeleton in the form of coupled multi-body systems in which the Human is the master and the exoskeleton is the slave.
- Development of a Model-Based control algorithm making use of Control Partitioning for Strength Augmentation of the Pilot wearing the Lower Extremity Exoskeleton.

Professional Experience

Intern, Order Management and Assembly Department

January 2019 - June 2019

- Siemens Ltd., Vadodara, India
 - Developed a solver in C for allocation of jobs (processes) to different machines present in the shop floor in order to optimize the aggregate machining lead times
 - Designed an induction heating apparatus for heating of rotor wheel discs of steam turbines
 - Increased robustness of fixtures for machining of stator guide blade carriers of steam turbines
 - Redesigned and fabricated a machining and blading stand for rotor wheel discs of steam turbines

Other Relevant Experience

Undergraduate Thesis Project

September 2019 - May 2020

- 1. Development of a Test Rig for measuring propeller thrust
 - Built a test stand acting as an alternative to the wind tunnel for measuring the thrust produced by a propeller mounted on it.
 - Implemented Arduino Uno controlled circuits for driving the propeller motor using a brush-less DC motor and capturing and displaying the speed of the propeller using an IR sensor based tachometer.

2. Design and Analysis of a propeller for slow-flying Quad-copters

- Generated and modified propeller designs iteratively based on required flying conditions and propeller thrust using QMIL, a first order propeller design tool
- Used QPROP, a solver for calculating propeller performance to generate propeller efficiency and thrust curves for the designed propellers and reiterated the designing process until a design giving desirable propeller performance was achieved.
- Assisted in second order design validation using computational fluid dynamics (CFD) once the propeller design showed better performance than a market standard propeller.
- Developed a solver acting as an alternative to QPROP in MATLAB for calculating the performance characteristics of a propeller based on Blade Element Momentum Theory.

Relevant Independent Projects

1. Impact Location Prediction for Structural Health Monitoring with the aid of Convolutional Neural Network (CNN)

- Building regression models based on CNN to predict the locations of impact of steel balls on an aluminium plate. The input data was simulated and experimental piezoelectric sensor data.
- Simulation input data was augmented and experimental data was cleaned and pre-processed before feeding into the CNN.
- Three convolutional layers were used in the CNN to extract the relevant features from the input data.

2. Solver development for vibration analysis of a simple car

- Developed a simple car model as a 2 degree of freedom system to analyse its vertical dynamics in the form of bounce and pitch motions using MATLAB and Simulink
- Provided excitations to the model in the form of frequency independent harmonic forces and base excitations in the form of road bumps modelled as waves with constant wavelengths and amplitudes.
- Applied Fast Fourier transforms to analyse the natural frequencies and mode shapes of the system
- Optimized location of force application and amount of damping in the system for minimal excitations

Technical Skills

Programming	Softwares	Miscellaneous
1. Scripting Languages	1. Multi-Body Dynamics	• Simulink
 MATLAB Python Programming Languages C 	 MSC ADAMS Altair Hyperworks Motionview Finite Element Analysis 	 Arduino Uno QMIL, QPROP XFOIL Geometric Dimensioning and
 Java 3. Markup Languages HTML LaTeX 	 ANSYS Workbench 3. Computer Aided Design SolidWorks Autodesk Fusion 360 	Tolerances (GD&T)