When will the power tower converge?

rule:

$$\left\{egin{aligned} a_1 &= a \ a_n &= a^{a_{n-1}}\{n \in \mathbb{N} \mid n > 1\} \end{aligned}
ight.$$

Then evaluate each term based on (1)

$$a_2=a^{a_1}=a^a,\ a_3=a^{a_2}=a^{a^a},\ a_4=a^{a_3}=a^{a^{a^a}}$$

When the number of terms get big enough,

the value of a_1 that a_n either converges or diverges can be assumed.

For instance, although $a_1=1$ leads a_{∞} to converge,

 $a_1=2$ let it diverge. And a_∞ converges in the range of $0< a_1 \le 1$.

But it doesn't mean a_{∞} diverges in the range of $1 < a_1$.

Therefore, there would be a border that the a_{∞} converges or diverges in the range of $1 < a_1 < 2$.

 $a^{a^a\cdots}$ can be given by repeating the function $y=a^x$. Whether $a^{a^a\cdots}$ will be converge or not depends on common points.

Then let's evaluate a that the function $y=a^x$ tangent to the function y=x.

First, differentiate $y = a^x$

$$y' = a^x \log a$$

And seems to appear a point that the derivative would be 1, on function y=x. Therefore, evaluate x that shows y'=1.

$$a^x \log a = 1$$
 $e^{a^x \log a} = e^1$
 $a^{a^x} = e$
 $x = \log_a(\log_a e)$

The point that the slope of function $y=a^{x}$ becomes to be 1, is

$$(\log_a(\log_a e),\ a^{\log_a(\log_a e)}) = (\log_a(\log_a e),\ \log_a e)$$

Then, if this point is on the y=x graph,

$$\log_a(\log_a e) = \log_a e$$

And solve for a.

$$egin{aligned} \log_a(\log_a e) &= \log_a e \ \log_a e &= e \ e &= a^e \ a &= e^{1/e} \end{aligned}$$