1 Formulaires ACP

1.1 Relations de la dualité en Analyse de Données : triplet (X, Q, D)

$T; n \times p$	n individus (actifs), p variables quantitatives (actives)			
$\mathbf{X} = (\mathbf{I}_n - \mathbf{11'D}) \mathbf{T}$	tableau des va	ariables centrées		
S = X'DX	matrice des covariances (des corrélations si variables réduites)			
	Analyse des Variables	Analyse des Individus		
Espace	$[\Omega]$ ou \mathbb{R}^n	$[\Delta]$ ou \mathbb{R}^p		
Dimension	n (nb d'indiv.)	p (nb de var.)		
Base	base canonique de \mathbb{R}^n	base canonique de \mathbb{R}^p		
Métrique	matrice diagonale $\mathbf{D} \in \mathcal{M}_{n \times n}$	matrice $\mathbf{Q} \in \mathcal{M}_{p \times p}$		
Poids	matrice $\mathbf{Q} \in \mathcal{M}_{p \times p}$	matrice diagonale $\mathbf{D} \in \mathcal{M}_{n \times n}$		
	Matrice des covariances entre var.	Matrice des produits scalaires entre ind.		
	S = X'DX	$\mathbf{W} = \mathbf{X}\mathbf{Q}\mathbf{X}'$		
	Matrice d'inertie	Intertie du nuage de pts		
	$\mathbf{S}_I \mathbf{=X'DXQ}$	$\ \mathbf{X}\ _{\mathbf{Q}\otimes\mathbf{D}} = tr\left(\mathbf{X}\mathbf{Q}\mathbf{X}'\mathbf{D}\right)$		
Valeurs propres $(\alpha \in \{1, \dots, r\})$				
λ_{α} (non nulle) λ_{α} (non nulle)				
Vecteurs propres	$\mathbf{b}_{\alpha} \in \mathbb{R}^{n}, \text{ tq } \mathbf{XQX'Db}_{\alpha} = \lambda_{\alpha} \mathbf{b}_{\alpha}$	$\mathbf{a}_{\alpha} \in \mathbb{R}^p$, tq $\mathbf{X}'\mathbf{D}\mathbf{X}\mathbf{Q}\mathbf{a}_{\alpha} = \lambda_{\alpha}\mathbf{a}_{\alpha}$		
		$=\mathbf{S}_I$		
Normés (\mathbf{Q} ou \mathbf{D})	$\sqrt{\mathbf{b}'_{\alpha}\mathbf{D}\mathbf{b}_{\alpha}} = 1$	$\mathbf{a}_{\alpha} \in \mathbb{R}^{p}, \text{ tq } \underbrace{\mathbf{X}'\mathbf{D}\mathbf{X}\mathbf{Q}}_{=\mathbf{S}_{I}} \mathbf{a}_{\alpha} = \lambda_{\alpha}\mathbf{a}_{\alpha}$ $\sqrt{\mathbf{a}'_{\alpha}\mathbf{Q}}\mathbf{a}_{\alpha} = 1$ Droite eng. par le v.p. \mathbf{a}_{α} ds \mathbb{R}^{n}		
i-ème axe principal	Droite eng. par le v.p. \mathbf{b}_{α} ds \mathbb{R}^{p}	Droite eng. par le v.p. \mathbf{a}_{α} ds \mathbb{R}^{n}		
	Formules de transition entre	$e \ a_{\alpha} \ et \ b_{\alpha}$		
	$\mathbf{b}_{\alpha} = \frac{1}{\sqrt{\lambda_{\alpha}}} \mathbf{X} \mathbf{Q} \mathbf{a}_{\alpha}$ λ_{α} $\sum_{1}^{r} \lambda_{\alpha}$	$\mathbf{a}_{\alpha} = \frac{1}{\sqrt{\lambda_{\alpha}}} \mathbf{X}' \mathbf{D} \mathbf{b}_{\alpha}$ λ_{α} $\sum_{\alpha=1}^{r} \lambda_{\alpha}$		
Inertie sur le i-ème axe	λ_{α}	λ_{α}		
Inertie tot.	$\sum_{r=1}^{r} \lambda_{r}$	$\sum_{r=1}^{r} \lambda_{r}$		
		$\alpha=1$		
Facteurs principaux $(\alpha \in \{1,, r\}) : \mathbf{u}_{\alpha} \text{ et } \mathbf{v}_{\alpha}$				
	$\mathbf{v}_{\alpha} = \mathbf{D}\mathbf{b}_{\alpha} \in \mathbb{R}^{n*} \text{ tq } \mathbf{D}\mathbf{W}\mathbf{v}_{\alpha} = \lambda_{\alpha}\mathbf{v}_{\alpha}$	$\mathbf{u}_{\alpha} = \mathbf{Q}\mathbf{a}_{\alpha} \in \mathbb{R}^{p*} \text{ tq } \mathbf{Q}\mathbf{S}\mathbf{u}_{\alpha} = \lambda_{\alpha}\mathbf{u}_{\alpha}$ $\sqrt{\mathbf{u}'_{\alpha}\mathbf{Q}^{-1}\mathbf{u}_{\alpha}} = 1$ $(\alpha \in \{1, \dots, r\})$		
Normés	$\sqrt{\mathbf{v}_{\alpha}'}\mathbf{D}^{-1}\mathbf{v}_{\alpha} = 1$	$\sqrt{\mathbf{u}_{\alpha}'\mathbf{Q}^{-1}\mathbf{u}_{\alpha}} = 1$		
	Composantes principales (CP)	$(\alpha \in \{1, \dots, r\})$		
	$\mathbf{G}^{\alpha} \in \mathbb{R}^p \text{ tq } \mathbf{G}^{\alpha} = \mathbf{X}' \mathbf{D} \mathbf{b}_{\alpha}$	$\mathbf{F}^{\alpha} \in \mathbb{R}^n \text{ tq } \mathbf{F}^{\alpha} = \mathbf{XQa}_{\alpha} \text{ et vp de } \mathbf{WD}$		
Normés	$\sqrt{(\mathbf{G}^{\alpha})'\mathbf{Q}\mathbf{G}^{\alpha}} = \sqrt{\lambda_{\alpha}}$	$\sqrt{(\mathbf{F}^{\alpha})' \mathbf{D} \mathbf{F}^{\alpha}} = \sqrt{\lambda_{\alpha}}$		
	Relations axes princ. et CP (au			
	$\mathbf{G}^{\alpha} = \sqrt{\lambda_{\alpha}} \mathbf{a}_{\alpha}$	$\mathbf{F}^{\alpha} = \sqrt{\lambda_{\alpha}} \mathbf{b}_{\alpha}$		
Orthogonalité	$\left\langle \mathbf{G}^{\alpha},\mathbf{G}^{\alpha}\right\rangle _{\mathbf{Q}}=\delta_{\alpha\widetilde{\alpha}}$	$\left\langle \mathbf{F}^{lpha},\mathbf{F}^{\widetilde{lpha}} ight angle _{\mathbf{D}}=\delta_{lpha\widetilde{lpha}}\lambda_{lpha}$		
normes	$\begin{aligned} \mathbf{G}^{\alpha} &= \sqrt{\lambda_{\alpha}} \mathbf{a}_{\alpha} \\ \left\langle \mathbf{G}^{\alpha}, \mathbf{G}^{\widetilde{\alpha}} \right\rangle_{\mathbf{Q}} &= \delta_{\alpha \widetilde{\alpha}} \\ \left\ \mathbf{G}^{\alpha} \right\ _{\mathbf{Q}}^{2} &= \lambda_{\alpha} \\ \mathbf{G}^{\alpha} \left(j \right), j &= 1,, p \end{aligned}$	$\ \mathbf{F}^{\alpha}\ _{\mathbf{D}}^{2} = var(\mathbf{F}^{\alpha}) = \lambda_{\alpha}$ $\mathbf{F}^{\alpha}(i), i = 1, \dots, n$		
Coord. sur les axes	$\mathbf{G}^{\alpha}\left(j\right),j=1,,p$	$\mathbf{F}^{\alpha}\left(i\right),i=1,\ldots,n$		
	Cor. entre CP \mathbf{F}^{α} et var. \mathbf{x}^{j}	Coord. de ts les ind. sur l'axe d'indice α		
	$cor\left(\mathbf{F}^{\alpha}, \mathbf{x}^{j}\right) = \frac{G^{\alpha}(j)}{\ \mathbf{x}^{j}\ _{D}}$	$(\alpha$ -ème CP $\mathbf{F}^{\alpha} \in \mathbb{R}^n)$		
	(cercle des corrélations)			
	$ACPN: \ x^j\ _{\mathbf{D}} = 1$			

1.2 ACP usuelle d'ordre k : triplet $(X, Q = I_p, D = n^{-1}I_n)$

	$\mathbf{F}^{lpha} = \mathbf{X}\mathbf{G}^{lpha}/\sqrt{\lambda_{lpha}}$	$\mathbf{G}^{lpha}=\mathbf{X}'\mathbf{F}^{lpha}/\left(n\sqrt{\lambda_{lpha}} ight)$		
Formules de transition				
ou qlt représentation	de la variable j sur l'axe k	$qtt_{k}(i) = \cos^{2}\left(\theta_{i}^{k}\right) = \sum_{\substack{n=1 \ G^{k}(i))^{2}}}^{r} \frac{\left(F^{n}(i)\right)^{2}}{\sum_{n=1}^{r}\left(G^{n}(j)\right)^{2}}$		
Contributions relatives	de l'individu i sur l'axe k	$ctr_k(i) = \frac{\left(F^k(i)\right)^2}{n\lambda_k}; \sum_{i=1}^n ctr_k(i) = 1$ $ctr_k(j) = \frac{\left(\mathbf{G}^k(j)\right)^2}{\lambda_k}; \sum_{j=1}^p ctr_k(j) = 1$ $qlt_k(i) = \cos^2\left(\theta_i^k\right) = \frac{\left(F^k(i)\right)^2}{\sum_{j=1}^n \left(F^k(j)\right)^2}$		
	de la variable j à l'axe k	$ctr_k(j) = \frac{\left(\mathbf{G}^k(j)\right)^2}{\lambda_k}; \sum_{j=1}^p ctr_k(j) = 1$		
Contributions absolues	de l'individu i à l'axe k	$ctr_k(i) = \frac{\left(F^k(i)\right)^2}{n\lambda_k}; \sum_{i=1}^n ctr_k(i) = 1$		
	Interprétation			
$\mathbf{X}^{(k)} = \sum_{\alpha=1}^{k} \frac{1}{\sqrt{\lambda_{\alpha}}} \mathbf{F}^{\alpha} \left(\mathbf{G}^{\alpha} \right)'$	Approximation de rg k de \mathbf{X} ; $\ \mathbf{X} - \mathbf{X}^{(k)}\ _{\mathbf{Q} \otimes \mathbf{D}}^2 = \sum_{\alpha = k+1}^r \lambda_{\alpha}$			
	$cor\left(\mathbf{F}^{\alpha}, \mathbf{x}^{j}\right) = \frac{G^{\alpha}(\mathbf{y})}{\ x^{j}\ _{D}} = \frac{G^{\alpha}(j)}{s_{j}}$ Approximation de rg k de \mathbf{X} ; $\ \mathbf{X} - \mathbf{X}^{(k)}\ _{\mathbf{Q} \otimes \mathbf{D}}^{2} = \sum_{\alpha = k+1}^{r} \lambda_{\alpha}$			
	\mathbf{F}^{α} vect. propre de $n^{-1}\mathbf{X}\mathbf{X}'$ associé à λ_{α}			
	$\operatorname{moy}(\mathbf{F}^{\alpha}) = 0; \operatorname{var}(\mathbf{F}^{\alpha}) = \lambda_{\alpha}; \operatorname{cov}(\mathbf{F}^{\alpha}, \mathbf{F}^{\widetilde{\alpha}}) = 0, \alpha \neq \widetilde{\alpha}$			
Comp. Princ. $\{\mathbf{F}^1, \dots, \mathbf{F}^r\}$	$\mathbf{F}^{\alpha} \in \mathbb{R}^{n} \text{ tq } \mathbf{F}^{\alpha} = \mathbf{X} \mathbf{a}_{\alpha} = \sum_{j=1}^{p} \mathbf{X}^{j} a_{\alpha}(j)$			
$\left\{ \mathbf{G}^{1},\mathbf{G}^{2},\ldots,\mathbf{G}^{r} ight\}$	$\mathbf{G}^{\alpha} \in \mathbb{R}^{p} \text{ tq } \mathbf{G}^{\alpha} = \sqrt{\lambda_{\alpha}} \mathbf{a}_{\alpha} , \ \mathbf{G}^{\alpha}\ = 1 ; (\mathbf{G}^{\alpha})' \mathbf{G}^{\widetilde{\alpha}} = 0$			
Axes principaux $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r\}$	$\sum_{\alpha=1}^{r} \lambda_{\alpha} = tr\left(\mathbf{S}\right) = \text{Variance totale=Inertie}$ $\mathbf{a}_{\alpha} \in \mathbb{R}^{p}, \text{ tq } \mathbf{S} \mathbf{a}_{\alpha} = \lambda_{\alpha} \mathbf{a}_{\alpha} \text{ tq } \ \mathbf{a}_{\alpha}\ = 1; \mathbf{a}'_{\alpha} \mathbf{a}_{\widetilde{\alpha}} = 0$			
valeurs propres (a C [1,,r])	γ propres $(\alpha \in \{1,, r\})$ $\gamma = \gamma + $			
Valeurs propres $(\alpha \in \{1,, r\})$	$\lambda_1 > \lambda_2 > \dots > \lambda_r > 0$			
roids	$\mathbf{G} \in \mathcal{N}t_{p \times p}$ = \mathbf{S} , on $\mathbf{a} : \mathbf{Sa} :_{\alpha} = \lambda_{\alpha}\mathbf{a}_{\alpha}$	$D \in \mathcal{N}l_{n \times n}$		
Métrique Poids	$\mathbf{D} = n^{-1}\mathbf{I}_n \in \mathcal{M}_{n \times n}$ $\mathbf{Q} \in \mathcal{M}_{p \times p}$	$\mathbf{Q} = \mathbf{I}_p \in \mathcal{M}_{p \times p}$ $\mathbf{D} \in \mathcal{M}_{n \times n}$		
Base	base canonique de \mathbb{R}^n	base canonique de \mathbb{R}^p		
Dimension	n (nb d'indiv.)	p (nb de var.)		
Espace	$[\Omega]$ ou \mathbb{R}^n	$[\Delta]$ ou \mathbb{R}^p		
	Analyse des Variables	Analyse des Individus		
	matrice de corrélations			
$\mathbf{X} = (\mathbf{I}_n - n^{-1}11')\mathbf{T}$ $\mathbf{S} = n^{-1}\mathbf{X}'\mathbf{X}$	matrice des covariances (des corrélations si variables réduites)			
$\mathbf{X} = (\mathbf{I}_n - n^{-1}11') \mathbf{T}$	n individus (actifs), p variables quantitatives (actives) tableau des variables centrées			
\mathbf{T} ; $n \times p$	n individus (actifs) n	variables quantitatines (actives)		

$$\begin{aligned} & \mathbf{ACP} \ \mathbf{norm\acute{e}e} : \\ & \left(\mathbf{X}_{C}, \mathbf{Q} = \left[diag\left(\mathbf{S} \right) \right]^{-1}, \mathbf{D} = n^{-1} \mathbf{I}_{n} \right) \Leftrightarrow \left(\mathbf{X}_{CR}, \mathbf{Q} = \mathbf{I}_{p}, \mathbf{D} = n^{-1} \mathbf{I}_{n} \right). \end{aligned}$$

1.3 Formulaire de DVS du triplet (X, Q, D)

Soit une matrice réelle $\mathbf{X}_{n\times p}$ de rang r et deux matrices $\mathbf{Q} \in \mathcal{M}_{p\times p}$ et $\mathbf{D} \in \mathcal{M}_{n\times n}$. On reprend le schéma ci-dessous correspondant à un schéma de dualité

$$\begin{array}{ccc}
\mathbb{R}^p & \xrightarrow{\mathbf{Q}} & \mathbb{R}^{p*} \\
\mathbf{X}' \uparrow & & \downarrow \mathbf{X} \\
\mathbb{R}^{n*} & \xrightarrow{\mathbf{D}} & \mathbb{R}^n
\end{array}$$

 ${\bf X}$: en ligne coord. des ind. et ${\bf X}'$: en ligne coord. des variables.

Il existe alors:

- Une matrice $\mathbf{U}_{p \times r} = [\mathbf{U}_1 \dots \mathbf{U}_r]$, \mathbf{Q} -orthonormée dont les colonnes sont les vecteurs propres associés aux valeurs propres $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r$ de $\mathbf{X}'\mathbf{D}\mathbf{X}\mathbf{Q} = \mathbf{S}\mathbf{Q} = \mathbf{S}_I$. $\mathbf{U}_{\alpha} \in \mathbb{R}^p$ = axes principaux espace des individus (soit \mathbf{a}_{α} 1er tableau §1.)
- Une matrice $\mathbf{V}_{n \times r} = [\mathbf{V}_1 \dots \mathbf{V}_r]$, \mathbf{D} -orthonormée dont les colonnes sont les vecteurs propres associés aux valeurs propres $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r$ de $\mathbf{XQX'D} = \mathbf{WD.V}_{\alpha} \in \mathbb{R}^n =$ axes principaux espace des variables (soit \mathbf{b}_{α} 1er tableau §1.)
- Une matrice diagonale Λ des r valeurs propres non nulles du triplet $(\mathbf{X}, \mathbf{Q}, \mathbf{D})$ rangées dans l'ordre décroissant $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_r$.

 ${f U}$ et ${f V}$ sont définies par :

1er schéma : $X'DXQU = U\Lambda$ avec $U'QU = I_r$, 2ème schéma : $XOX'DV = V\Lambda$ avec $V'DV = I_r$.

1.3.1 DVS du triplet (X, Q, D)

$$\mathbf{X} = \mathbf{V} \mathbf{\Lambda}^{1/2} \mathbf{U}' = \sum_{\alpha=1}^{r} \sqrt{\lambda_{\alpha}} \mathbf{V}_{\alpha} \mathbf{U}'_{\alpha}$$

1.3.2 Formules de transitions

$$\mathbf{V} = \mathbf{X}\mathbf{O}\mathbf{U}\mathbf{\Lambda}^{-1/2}$$
 et $\mathbf{U} = \mathbf{X}'\mathbf{D}\mathbf{V}\mathbf{\Lambda}^{-1/2}$

1.3.3 Résumé

- Pour tout α et α' , un plan factoriel est un espace de dimension 2 formé par l'un des couples d'axes principaux $(\mathbf{V}_{\alpha}, \mathbf{V}_{\alpha'})$ ou $(\mathbf{U}_{\alpha}, \mathbf{U}_{\alpha'})$
- Les facteurs principaux $\widetilde{\mathbf{U}}_{\alpha} \in \mathbb{R}^p$, \mathbf{Q}^{-1} -orthonormées sont tq $\widetilde{\mathbf{U}}_{\alpha} = \mathbf{Q}\mathbf{U}_{\alpha}$
- Les composantes principales $\mathbf{F}^{\alpha} \in \mathbb{R}^n$, D-orthoganales sont tq :

 $\mathbf{F}^{\alpha} = \mathbf{X}\widetilde{\mathbf{U}}_{\alpha} = \sum_{j=1}^{p} \mathbf{X}^{j}\widetilde{\mathbf{U}}_{\alpha}(j) = \sqrt{\lambda_{\alpha}}\mathbf{V}_{\alpha}$. Ce sont donc des combinaisons linéaires des p colonnes de \mathbf{X} , d'où :

Une composante principale peut-être considérée comme l'expression dans la base canonique, d'une variable "latente", notée \mathbf{F}^{α} ie une variable synthétique qui résume linéairement les variables naturelles $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^p$.

La 1ère composante principale, de variance λ_1 , est celle qui a la variance maximale car $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_r$.

- $\mathbf{G}^{\alpha} \in \mathbb{R}^{p}$, Q-orthogonales sont tq $\mathbf{G}^{\alpha} = \mathbf{X}' \mathbf{D} \mathbf{V}_{\alpha}$ et donc en utilisant la 1ère formule de transition $\mathbf{G}_{\alpha} = \sqrt{\lambda_{\alpha}} \mathbf{U}_{\alpha}$.
- Théorème d'approximation d'Eckart-Young

Soit $\mathbf{X} \in \mathcal{M}_{n \times p}$ de rang r, $\mathbf{X} = \mathbf{V} \mathbf{\Lambda}^{1/2} \mathbf{U}'$ la DVS de $(\mathbf{X}, \mathbf{Q}, \mathbf{D})$ et k un entier $\leq r \leq$. On note :

- $\mathbf{U}^{(k)} = [\mathbf{U}_1 \dots \mathbf{U}_k] \in \mathcal{M}_{n \times k}$ et $\mathbf{V}^{(k)} = [\mathbf{V}_1 \dots \mathbf{V}_k] \in \mathcal{M}_{n \times k}$ les matrices extraites de \mathbf{U} et \mathbf{V} et
- $\left(\mathbf{\Lambda}^{(k)}\right)^{1/2} = diag\left(\lambda_1^{1/2}, \lambda_2^{1/2}, \dots, \lambda_k^{1/2}\right)$ la diagonale des k premières valeurs propres singulières.

On recherche dans l'E.V. E_k des matrices $n \times p$, la matrice de rang $k \le rg(X) = r$, la plus proche de X, au sens de la norme $\|.\|_{\mathbf{O} \otimes \mathbf{D}}$:

$$\min_{E_k} \left\| \mathbf{X} - \mathbf{X}^{(k)} \right\|_{\mathbf{Q} \otimes \mathbf{D}}^2 = \left\| \mathbf{X} - \mathbf{Z}^{(k)} \right\|_{\mathbf{Q} \otimes \mathbf{D}}^2 = \sum_{\alpha = k+1}^r \lambda_{\alpha}$$

L'optimum est atteint par la DVS incomplète de rang k:

$$\mathbf{Z}^{(k)} = \mathbf{V}^{(k)} \left(\mathbf{\Lambda}^{(k)} \right)^{1/2} \left(\mathbf{U}^{(k)} \right)'.$$

1.4 Relation entre la DVS de (X, Q, D) et de $(Z = D^{1/2}XQ^{1/2}, I_p, I_n)$

La DVS du triplet (X, Q, D) est équivallente à la DVS usuelle de la matrice

$$\mathbf{Z} = \mathbf{D}^{1/2} \mathbf{X} \mathbf{Q}^{1/2}$$

au sens suivant : toutes deux ont les mêmes valeurs singulières ; si $\mathbf{Z} = \mathbf{V}_Z \mathbf{\Lambda}_r^{1/2} \mathbf{U}_Z'$ et $\mathbf{X} = \mathbf{V}_X \mathbf{\Lambda}_r^{1/2} \mathbf{U}_X'$ sont les deux décompositions

ALORS

$$\mathbf{U}_X = \mathbf{Q}^{-1/2}\mathbf{U}_Z$$

 $\mathbf{V}_X = \mathbf{D}^{-1/2}\mathbf{V}_Z$.

et on a alors l'écriture des CP :

$$\mathbf{F}^{\alpha} = \mathbf{X}\mathbf{Q}\left(\mathbf{U}_{X}\right)_{\alpha} = \mathbf{X}\mathbf{Q}^{1/2}\mathbf{U}_{Z} \text{ ainsi que des } \mathbf{G}^{\alpha} = \sqrt{\lambda_{\alpha}}\left(\mathbf{U}_{X}\right)_{\alpha} = \sqrt{\lambda_{\alpha}}\mathbf{Q}^{-1/2}\left(\mathbf{U}_{Z}\right)_{\alpha}.$$

2 Formulaire AFC

Formulaire AFC
$$\text{Soit } \mathbf{N} = \begin{bmatrix} n_{11} & \dots & n_{1J} \\ \vdots & \ddots & \vdots \\ n_{I1} & \dots & n_{IJ} \end{bmatrix} \text{ une table de contingence croisant les effectifs liés à deux variables.}$$
 On note :

- I : nb de lignes, J : nb de colonnes,
- n_{ij} : nb d'indiv. possédant à la fois la modalité i de la 1ère variable et la modalité j de la 2ème variable. $n = n_{++} = \sum_{i,j} n_{ij}$ nb total d'indiv.
- $\mathbf{P} = \frac{1}{n}\mathbf{N}$, le tableau des fréquences associé à \mathbf{N} , la matrice $I \times J$, d'élt courant $f_{ij} = \frac{n_{ij}}{n}$. On a : $\sum_{i,j} f_{ij} = 1$.

Transformation > Tableau des fréquences relatives définit une mesure de probabilité

$$f_{ij} = k_{ij} / n$$

$$f_{i \bullet} = \sum_{j} f_{ij}$$

$$f_{\bullet j} = \sum_{i} f_{ij}$$

$$\sum_{i} f_{i \bullet} = \sum_{j} f_{\bullet j} = \sum_{i} f_{ij} = 1$$

 $f_{i\bullet} = \text{profil-colonne moven}$

Selon que l'on s'intéresse aux lignes ou aux colonnes, on ne considère pas le même tableau transformé

Principe

Ressemblance entre profils

La ressemblance entre deux lignes ou entre deux colonnes est définie par une distance entre leurs profils : la distance du X2

distance entre 2 profils-lignes

distance entre 2 profils-colonnes

$$d^{2}(i,i') = \sum_{i} \frac{1}{f_{i,i}} \left(\frac{f_{ij}}{f_{i,k}} - \frac{f_{i',j}}{f_{i',k}} \right)^{2}$$

$$d^{2}(i,i') = \sum_{j} \frac{1}{f_{\bullet j}} \left(\frac{f_{ij}}{f_{\bullet \bullet}} - \frac{f_{i'j}}{f_{\bullet \bullet}} \right)^{2} \qquad d^{2}(j,j') = \sum_{i} \frac{1}{f_{\bullet}} \left(\frac{f_{ij}}{f_{\bullet j}} - \frac{f_{ij'}}{f_{\bullet j'}} \right)^{2}$$

L'AFC d'ordre k du tableau N correspond à la double ACP sur le triplet :

$$\left(\underbrace{\mathbf{L}}_{\in\mathcal{M}_{I\times J}} = \widetilde{\mathbf{D}}_{I}^{-1}\mathbf{P}, \mathbf{Q} = \widetilde{\mathbf{D}}_{J}^{-1}, \mathbf{D} = \widetilde{\mathbf{D}}_{I}\right) \text{ et } \left(\underbrace{\mathbf{C}'}_{\in\mathcal{M}_{J\times I}} = \left(\mathbf{P}\widetilde{D}_{J}^{-1}\right)', \mathbf{Q} = \widetilde{\mathbf{D}}_{I}^{-1}, \mathbf{D} = \widetilde{\mathbf{D}}_{J}\right)$$

qui se résume à l'ACP généralisée d'ordre k du triplet

$$\left(\mathbf{X} = \widetilde{\mathbf{D}}_{I}^{-1} \mathbf{P} \widetilde{\mathbf{D}}_{J}^{-1} = \left[\frac{f_{ij}}{f_{i\cdot} f_{\cdot j}} \right], \mathbf{Q} = \widetilde{\mathbf{D}}_{J}, \mathbf{D} = \widetilde{\mathbf{D}}_{I} \right)$$

$$\Leftrightarrow \left(\mathbf{Z} = \underbrace{\widetilde{\mathbf{D}}_{I}^{1/2} \widetilde{\mathbf{D}}_{I}^{-1} \mathbf{P} \widetilde{\mathbf{D}}_{J}^{-1} \widetilde{\mathbf{D}}_{J}^{1/2}}_{\widetilde{D}_{J}^{-1/2} \mathbf{P} \widetilde{\mathbf{D}}_{J}^{-1/2}} = \left[\frac{f_{ij}}{\sqrt{f_{i\cdot}} \sqrt{f_{\cdot j}}} \right], \mathbf{I}_{I}, \mathbf{I}_{J} \right)$$

- $\widetilde{\mathbf{D}}_I = diag(f_{1}, \dots, f_{I})$ et $\widetilde{\mathbf{D}}_J = diag(f_{1}, \dots, f_{J})$.
- L est la matrice des points lignes, C la matrice des points colonnes
- X et Z matrices de dimension $I \times J$.

1er schéma : $\mathbf{Z'ZU}_Z = \mathbf{U}_Z \mathbf{\Lambda}$ avec $\mathbf{U}_Z' \mathbf{U}_Z = \mathbf{I}_r$ axes principaux (= aux facteurs principaux car $\mathbf{Q} = \mathbf{I}_I$) et puis $\mathbf{U}_X = \widetilde{\mathbf{D}}_I^{-1/2} \mathbf{U}_Z$ et

les composantes principales $\mathbf{F}^{\alpha} = \mathbf{X}\mathbf{Q} (\mathbf{U}_{X})_{\alpha} = \mathbf{X}\mathbf{Q} \widetilde{\mathbf{D}}_{J}^{-1/2} (\mathbf{U}_{Z})_{\alpha} = \mathbf{L}\widetilde{\mathbf{D}}_{J}^{-1/2} (\mathbf{U}_{Z})_{\alpha}$ (coord. lignes) et $\mathbf{G}^{\alpha} = \sqrt{\lambda_{\alpha}} (\mathbf{U}_{X})_{\alpha} = \sqrt{\lambda_{\alpha}} (\widetilde{\mathbf{D}}_{J}^{-1/2} \mathbf{U}_{Z})_{\alpha}$.

$N, I \times J$	Table de contingence	
$\mathbf{P} = \mathbf{N}/n, I \times J$	Table des fréquences	
	Lignes	Colonnes
Profils	$\mathbf{L} = \widetilde{\mathbf{D}}_I^{-1} \mathbf{P}$	$\mathbf{C} = \mathbf{P} \widetilde{\mathbf{D}}_J^{-1}$ $\mathcal{N}_I = \left\{ \mathbf{C}^1, \dots, \mathbf{C}^J \right\}$
nuages	$\mathcal{N}_J = \{\mathbf{L}_1, \dots, \mathbf{L}_I\}$	$\mathcal{N}_I = \left\{ \mathbf{C}^1, \dots, \mathbf{C}^J \right\}$
espace	<u>II</u> V	
Métrique	$\mathbf{Q} = \widetilde{\mathbf{D}}_{J}^{-1} = diag\left(f_{\cdot 1}, \dots, f_{\cdot J}\right)^{-1}$	$\mathbf{Q} = \widetilde{\mathbf{D}}_{I}^{-1} = diag(f_{1\cdot}, \dots, f_{I\cdot})^{-1}$
Matrice des poids	$\mathbf{D} = \widetilde{\mathbf{D}}_I = diag\left(f_{1\cdot}, \dots, f_{I\cdot}\right) \in \mathcal{M}_{I \times I}$	$\mathbf{D} = \mathbf{D}_J = diag(f_{\cdot 1}, \dots, f_{\cdot J}) \in \mathcal{M}_{J \times J}$
Centre de gravité (point moyen)	$\overline{\mathbf{x}}_L = 1_I' \mathbf{P} = [f_1, \dots, f_I]$	$\overline{\mathbf{x}}_C = \mathbf{P}1_J = [f_{\cdot 1}, \dots, f_{\cdot J}]'$
Profils centrés	$\mathbf{L}0 = \widetilde{\mathbf{D}}_{I}^{-1}\mathbf{P} - 1_{I}\overline{L}$	$\mathbf{C0} = \mathbf{P}\widetilde{\mathbf{D}}_J^{-1} - \overline{C}1_J'$
Triplet DVS	$\left(\mathbf{L},\mathbf{Q}=\widetilde{\mathbf{D}}_{J}^{-1},\mathbf{D}=\widetilde{D}_{I}\right)$	$\left(\mathbf{C}', \mathbf{Q} = \widetilde{\mathbf{D}}_{I}^{-1}, \mathbf{D} = \widetilde{\mathbf{D}}_{J}\right)$
	$\text{DVS de } \left(\mathbf{X} = \widetilde{\mathbf{D}}_I^{-1} \mathbf{P} \widetilde{\mathbf{D}}_J^{-1} = \begin{bmatrix} f_{ij} \\ f_{i\cdot f_{i\cdot j}} \end{bmatrix}, \mathbf{Q} = \widetilde{\mathbf{D}}_J, \mathbf{D} = \widetilde{\mathbf{D}}_I \right)$	
	$d_{\chi^2}^2(\mathbf{L}_{i_1}, \mathbf{L}_{i_2}) = \sum_{j=1}^J \frac{1}{f_{.j}} \left(\frac{f_{i_1 j}}{f_{i_1}} - \frac{f_{i_2 j}}{f_{i_2}} \right)^2$	$ \frac{d_{\chi^2}^2 \left(\mathbf{C}^{j_1}, \mathbf{C}^{j_2} \right) = \sum_{i=1}^{I} \frac{1}{f_{i}} \left(\frac{f_{ij_1}}{f_{-f_1}} - \frac{f_{ij_2}}{f_{-f_2}} \right)^2}{\mathbf{P} \tilde{\mathbf{D}}_{J}^{-1} \mathbf{P}' \tilde{\mathbf{D}}_{I}^{-1}} $ $ \mathbf{P} \tilde{\mathbf{D}}_{J}^{-1} \mathbf{P}' \tilde{\mathbf{D}}_{I}^{-1} \mathbf{V} = \mathbf{V} \mathbf{\Lambda} $
matrice d'inertie \mathbf{S}_I	$\mathbf{P}'\mathbf{D}_{I}^{-1}\mathbf{P}\mathbf{D}_{J}^{-1}$	$\mathbf{P}\mathbf{D}_{J}^{-1}\mathbf{P}'\mathbf{D}_{I}^{-1}$
	$\mathbf{P}'\mathbf{D}_{I}^{-1}\mathbf{P}\mathbf{D}_{J}^{-1}\mathbf{U}=\mathbf{U}\mathbf{\Lambda}$	$\mathbf{P}\mathbf{D}_{J}^{-1}\mathbf{P}'\mathbf{D}_{J}^{-1}\mathbf{V}=\mathbf{V}\mathbf{\Lambda}$
	avec $\mathbf{H}'\mathbf{D}^{-1}\mathbf{H} = \mathbf{I}$	avec $\mathbf{V}'\mathbf{D}^{-1}\mathbf{V} = \mathbf{I}$
inertie	$I\left(\mathcal{N}_{J}\right) = \sum_{i=1}^{I} f_{i}.d_{\chi^{2}}^{2}\left(\mathbf{L}_{i}, \overline{\mathbf{x}}_{L}\right) = \frac{d^{2}}{2}$	$\frac{e^{2}}{f} = I\left(\mathcal{N}_{I}\right) = \sum_{j=1}^{J} f_{\cdot j} d_{\chi^{2}}^{2}\left(\mathbf{C}^{j}, \overline{\mathbf{x}}_{C}\right)$
Valeurs	propres $(\alpha \in \{1, \ldots, r = \min(I - 1; J - 1)\}$	$1)\}): 0 \le \lambda_{\alpha} \le 1$
$\mathbf{\Lambda} = diag\left(\lambda_1, \lambda_2, \dots, \lambda_r\right)$		
C	omposantes principales (CP) ($\alpha \in \{$	
	$\mathbf{F} = \mathbf{D}_I^{-1} \mathbf{P} \mathbf{D}_J^{-1} \mathbf{U}$	$\mathbf{G} = \widetilde{\mathbf{D}}_J^{-1} \mathbf{P}' \widetilde{\mathbf{D}}_I^{-1} \mathbf{V}$
		bien
		$\mathbf{G}^{\alpha} \in \mathbb{R}^{J} \operatorname{tq} \widetilde{\mathbf{D}}_{J}^{-1} \mathbf{P}' \widetilde{\mathbf{D}}_{I}^{-1} \mathbf{P} \mathbf{G}^{\alpha} = \lambda_{\alpha} \mathbf{G}^{\alpha}$
normées	$\sqrt{(\mathbf{F}^{\alpha})'\widetilde{\mathbf{D}}_{I}\mathbf{F}^{\alpha}}=1$	$\sqrt{(\mathbf{G}^{\alpha})'\widetilde{\mathbf{D}}_{J}\mathbf{G}^{\alpha}}=1$
	Formules de transition	~ 1 1/0
	$\mathbf{U} = \mathbf{P}' \widetilde{\mathbf{D}}_I^{-1} \mathbf{V} \mathbf{\Lambda}^{-1/2}$	$\mathbf{V} = \mathbf{P} \widetilde{\mathbf{D}}_J^{-1} \mathbf{U} \mathbf{\Lambda}^{-1/2}$ $\mathbf{G} = \widetilde{\mathbf{D}}_J^{-1} \mathbf{U} \mathbf{\Lambda}^{-1/2}$
	$\mathbf{F} = \widetilde{\mathbf{D}}_{I}^{-1} \mathbf{V} \mathbf{\Lambda}^{-1/2}$	
	Relations quasi-barycentrique	
	$\mathbf{F} = \mathbf{\tilde{D}}_{I}^{-1}\mathbf{PG}\mathbf{\Lambda}^{-1/2}$ $\mathbf{F}^{\alpha}(i) = \frac{1}{\sqrt{\lambda_{\alpha}}}\sum_{j=1}^{J}\frac{f_{ij}}{f_{i\cdot}}\mathbf{G}^{\alpha}(j)$	$\mathbf{G} = \widetilde{\mathbf{D}}_{J}^{-1} \mathbf{P}' \mathbf{F} \mathbf{\Lambda}^{-1/2}$ $\mathbf{G}^{\alpha}(j) = \frac{1}{\sqrt{\lambda_{\alpha}}} \sum_{i=1}^{I} \frac{f_{ij}}{f_{\cdot j}} \mathbf{F}^{\alpha}(i)$
	$\mathbf{F}^{\alpha}\left(i\right) = \frac{1}{\sqrt{\lambda_{\alpha}}} \sum_{j=1}^{J} \frac{J_{ij}}{f_{i}} \mathbf{G}^{\alpha}\left(j\right)$	$\mathbf{G}^{\alpha}\left(j\right) = \frac{1}{\sqrt{\lambda_{\alpha}}} \sum_{i=1}^{I} \frac{J_{ij}}{f_{\cdot j}} \mathbf{F}^{\alpha}\left(i\right)$
	$n_i, n_{i,j}$ $f : \longrightarrow K$	70(1) 60(1) (5
Reconstitution des données	$n_{ij} = \frac{n_{i} \cdot n_{\cdot j}}{n} \left(1 + \sum_{\alpha=1}^{K} \frac{1}{n} \right)$	$=_{1} \mathbf{F}^{\alpha} (i) \mathbf{G}^{\alpha} (j) / \sqrt{\lambda_{\alpha}}$
	Interprétation	
Contributions absolues	du profil-ligne i à l'axe k	du profil-colonne j à l'axe k
	$ctr_k(i) = \frac{f_i \cdot \left(F^{\kappa}(i)\right)}{\lambda_k}; \sum_{i=1}^{I} ctr_k(i) = 1$	$ctr_k(j) = \frac{f_{\cdot j}(\mathbf{G}^k(j))^2}{\lambda_k}; \sum_{j=1}^{J} ctr_k(j) = 1$ du profil-colonne j à l'axe k
Contributions relatives	du profil-ligne i sur l'axe k $qlt_k(i) = \cos^2(\theta_i^k)$	du profil-colonne j à l'axe k $qlt_k(j) = \cos^2(\theta_i^k)$
	$q_{ijk}(i) = cos(v_i)$	$q_{ijk}(j) = \cos(\sigma_j)$