Introduction to Linux and C++

49274 Advanced Robotics

Overview

- We will use Linux for the assignments
- The FEIT computer labs use Red Hat Linux, but we need to use Ubuntu Linux
- We will use an Ubuntu container on the Red Hat systems
- If you want to install Ubuntu Linux on your own computers use version 18.04

Using the FEIT computers

- First make sure you are in Linux: Ctrl+Alt then Ctrl+Alt+F1
- Enter your student number in the *Username* field
- Enter your password
- Open a terminal:

Applications -> System Tools -> Terminal

Start a shell in the Singularity container:

```
singularity shell /images/singularity_containers/ros-melodic-ar.sif
```

The Singularity image is on all the Linux computers on level B1

Linux

Using Linux

- The main applications you will need are:
 - Terminal (found in "System Tools")
 - Text editor (found in "Favorites")
- You can open a file manager from the "Places" menu

Useful terminal commands

Command	Description	Example
cd <directory></directory>	Change directory	cd ~/catkin_ws
ls	List files	ls
mkdir <directory></directory>	Make directory	mkdir new_directory
rm <file></file>	Remove file	rm new_file
rm -rf <directory></directory>	Remove directory	rm new_directory
man <command/>	Manual for a command	man ls

Linux paths

- Paths can be relative or absolute
- Absolute paths:
 - ~/ is your home directory
 - / is the system root directory
- Relative path:
 - . / is the current directory
 - o . . / is the directory above your current location
 - Anything not beginning with / or ~/

Other things

- You can press the up and down arrows on your keyboard to scroll through previous commands
- Tab will autocomplete commands, paths and some command parameters.
- Ctrl+R will search through your command history
- Ctrl+C will kill a running program

Additional resources

- Lynda: <u>Learning Linux Command Line</u>
 - 1. Command-Line Basics
 - 2. Files, Folders, and Permissions

C++

Tutorials

- Lynda: <u>Learning C++</u> (Beginner)
- Lynda: <u>C++ Essential Training</u> (Intermediate)
- C++ Language C++ Tutorials

If statement

```
double a = 0.3;
if (a >= 0.5)
    doSomething();
else
    doSomethingElse();
```

For loop

```
for (int i = 0; i < 10; ++i)
{
    printf("%d\n", i);
}</pre>
```

C++ References

- C++ references are a way of avoiding copying
- They are defined with an "&" after the type
- They are commonly used to pass data into functions:

```
void initialiseState(std::vector<double>& state)
```

References can also be "const", the data can't be changed:

```
void printState(const std::vector<double>& state)
```

STL Containers

- <u>std::vector</u> dynamic array of values of the same type
- The <u>range-based for loop</u> can be convenient for vectors:

```
std::vector<double> state(10);
for (auto& s : state)
{
   s = 1.;
}
```

- "auto" selects the correct type for you
- Make sure you use a reference if you want to modify data

Accessing a vector

```
std::vector<double> v;
// Reserve storage for 10 elements
v.reserve(10);
// Add some elements
v.push back(0.4);
v.push back(0.6);
v.push back(0.2);
// Access the second element
printf("%.2f\n", v[1]);
```

Accessing a vector

```
std::vector<double> v;
// Resize vector to 10 elements
v.resize(10);
// Add some elements
v[0] = 0.4;
v[1] = 0.6;
v[2] = 0.2;
// Access the second element
printf("%.2f\n", v[1]);
```

Writing to the Console

You can print static text with "printf" from cstdio:

```
printf("Text string");
```

• "printf" can also print variables:

```
printf("int a: %i, double b: %.2f\n", a, b);
```

Another way:

```
std::cout << "Text string" << std::endl;</pre>
```