ET6501

Homework #2

Date: March 20, 2005. Due Date: April 17, 2005.

Instructor: M. B. Lin

Please note that **NO late homework** will be accepted.

- 1. Answer each the following questions:
 - (a) Prove that if a > b > 0 and c = a + b, then $c \mod a = b$.
 - (b) Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.
- 2. Compute the values (d, x, y) that the call EXTENDED-EUCLID(899, 493) returns.
- 3. Prove that if a and b are any positive integers such that $a \mid b$, then

$$(x \mod b) \mod a = x \mod a$$

for any x. Prove, under the same assumptions, that

$$x = y \pmod{b}$$
 implies $x = y \pmod{a}$

for any integers x and y.

4. Prove that if p is prime and 0 < k < p, then $p \mid \binom{p}{k}$. Calculate that for all integers a, b and primes p,

$$(a+b)^p = a^p + b^p \pmod{p}$$

- 5. Answer the following questions:
 - (a) Find all solutions to the equation $35x = 10 \pmod{50}$.
 - (b) Find all solutions to the equations $x = 4 \pmod{5}$ and $x = 5 \pmod{11}$.