Standard matrix stuff

$(AB)^T = B^T A^T$	Symmetric: $A^T = A$	Skew-symmetric: $A^T = -A$	Orthogonal: $A \times A^T = I$; $A^T = A^{-1}$	
Reduced Row Echelon Form: Each leading 1 is the only one in its column				
Rank: Number of unique column/row		$\begin{aligned} \mathit{Minor}(A) &= \mathit{M}_{ij} \\ &= \left A_{ij} \right \end{aligned}$	$Cofactor(A) = C_{ij}$ $= (-1)^{i+j} M_{ij}$	
$ \begin{vmatrix} R_1 \\ R_2 \\ R_3 \end{vmatrix} = - \begin{vmatrix} R_1 \\ R_3 \\ R_2 \end{vmatrix} $	$ \begin{vmatrix} R_1 \\ k(R_2) \\ R_3 \end{vmatrix} = k \begin{vmatrix} R_1 \\ R_2 \\ R_3 \end{vmatrix} $	$\begin{vmatrix} R_1 \\ R_{2a} + R_{2b} \\ R_3 \end{vmatrix}$	$= \begin{vmatrix} R_1 \\ R_{2a} \\ R_3 \end{vmatrix} + \begin{vmatrix} R_1 \\ R_{2b} \\ R_3 \end{vmatrix}$	
AB = A B	$ RREF(A) = \prod A_{ii}$	$[A I] \sim [I A^{-1}]$	$A^{-1} = \frac{(C_A)^T}{ A }$	
adj(A) A = A adj(A) = A I		☺		

Vector & Space stuff

Linear Independence:
$$(c_1 \ c_2 \ c_3)\begin{pmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}; \begin{vmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \end{vmatrix} \neq 0$$

Span: (Basis vectors: v_n)
$$\{\alpha \overrightarrow{v_1} + \beta \overrightarrow{v_2} + \cdots : \alpha, \beta, \dots \in \mathbb{R}\} = \{(\alpha v_{1x} + \beta v_{2x} + \cdots, \alpha v_{1y} + \beta v_{2y} + \cdots, \dots) : \alpha, \beta, \dots \in \mathbb{R}\}$$

Orthogonalisation: (Basis: $\overrightarrow{w_n}$)
$$\overrightarrow{v_n} = \overrightarrow{w_n} - \left(\frac{\overrightarrow{w_n} \cdot \overrightarrow{v_1}}{\overrightarrow{v_1} \cdot \overrightarrow{v_1}}\right) \overrightarrow{v_1} - \left(\frac{\overrightarrow{w_n} \cdot \overrightarrow{v_2}}{\overrightarrow{v_2} \cdot \overrightarrow{v_2}}\right) \overrightarrow{v_2} - \cdots - \left(\frac{\overrightarrow{w_n} \cdot \overrightarrow{v_{n-1}}}{\overrightarrow{v_{n-1}} \cdot \overrightarrow{v_{n-1}}}\right) \overrightarrow{v_{n-1}}$$

$$\overrightarrow{u} = \left(\frac{\overrightarrow{u} \cdot \overrightarrow{v_1}}{\overrightarrow{v_1} \cdot \overrightarrow{v_1}}\right) \overrightarrow{v_1} + \left(\frac{\overrightarrow{u} \cdot \overrightarrow{v_2}}{\overrightarrow{v_2} \cdot \overrightarrow{v_2}}\right) \overrightarrow{v_2} + \cdots$$
Subspace: $0 \in S$; $(\overrightarrow{S_1} + \overrightarrow{S_2}) \in S$; $k \overrightarrow{S} \in S$

$$\overrightarrow{b} \in col(A)$$
: $(A|\overrightarrow{b})$ is consistent
$$Nul(A) = \{\overrightarrow{x} : A \overrightarrow{x} = 0\} \quad rank(A) + N(A) = n_A$$
Linear transformation:
$$t(\overrightarrow{u} + \overrightarrow{v}) = t(\overrightarrow{u}) + t(\overrightarrow{v})$$
; $t(k\overrightarrow{u}) = k \cdot t(\overrightarrow{u})$

$$A \overrightarrow{x} = t(\overrightarrow{x})$$
: $A = \begin{pmatrix} t \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} & t \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} & \dots & t \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$

Eigen stuff

$A\vec{x} = \lambda \vec{x} : \vec{x} \neq 0$	$(A - \lambda I)\vec{x} = 0$	Eigenvalue: $ A - \lambda I = 0$	$S(\lambda) = \{k\overrightarrow{x_{\lambda}}\} + \overrightarrow{0}$	
Multiplicity: Root repeatedness/ Number of eigenvectors per λ				
Diagonalisation: $P = (\overrightarrow{x_{\lambda_1}} \ \overrightarrow{x_{\lambda_2}} \ \cdots) : \overrightarrow{x_{\lambda_n}}$ are orthogonal				
$D = P^{-1}AP$; $D = P^{T}AP$: P is orthonormal				

Mathematics fundamentals

Dot product	$\vec{a} \cdot \vec{b} = \vec{a} \vec{b} \cos\theta = i_a i_b + j_a j_b + k_a k_b$	
Cross product	$\vec{a} \times \vec{b} = \hat{n} \vec{a} \vec{b} \sin \theta = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ i_a & j_a & k_a \\ i_b & j_b & k_b \end{vmatrix}$	
Vector projection	$\vec{a} \xrightarrow{proj.} \vec{b} = (\vec{a} \cdot \hat{b}) \hat{b}$	