What Short Rate Model Should I use?

林雅琪 Aki Lin June 9, 2023

Outline

- Introduction
- Process
- Experiment
- Conclusion

Introduction

- CIR
 - $dr(t) = a(b r(t))dt + \sigma / r(t)dW(t)$
- Vasicek
 - $dr(t) = a(b r(t))dt + \sigma dW(t)$
- CIR
 - Includes the square root of the interest rate level r(t), which makes the
 interest rate unable to take negative values, and at levels close to zero, the
 model responds more smoothly to changes in interest rates
- Compare to real par yield

- Not Rolling
- Rolling

Source: U.S. DEPARTMENT OF THE TREASURY

Experiments

- Not Rolling
 - Training: 30 days
 - Testing: 90 days

Experiment: No Rolling

• Start Time: 2010-05-13

	CIR	Vasicek
MSE	0.1459	0.0034

- Rolling
 - Training: 30 days
 - Rolling Testing: 1 days

Experiment: Rolling

• Start Time: 2010-05-13

	CIR	Vasicek
MSE	0.0009	0.0007

Experiment: Yield Curve

• Time: 2023-06-06

V	CIR	Vasicek
MSE	0.0244	0.0340

Conclusion

- Influenced by parameters' setting
- Sensitivity analysis
- Collect different countries' data
- Test different timeframe

Thanks!

林雅琪 Aki Lin June 9, 2023