实验六译码器及其应用

陈岳阳 21级计算机科学与技术 2022 年 11 月 6 日

目录

1	实验目的	2
2	实验原理	2
3	设计过程	2
4	实验结果	4
5	实验总结	4

1 实验目的

- 1.掌握中规模继承译码器的逻辑功能和使用方法。
- 2.熟悉数码管的使用。

2 实验原理

译码器是一个多输入,多输出的组合逻辑电路。它的作用是把给定的 代码进行"翻译",变成相应的状态,是输出通道中相应的一路有信号输 出。译码器在数字系统中有广泛的用途,不仅用于代码的转换,终端的数 字显示,还用于数据分配,存储器寻址和组合控制信号等。不同的功能可 选用不同种类的译码器。

3 设计过程

1.设计线路

使用两片3线-8线芯片设计4线-16芯片的设计线路如下:

图 1: 逻辑图

2.真值表 实验真值表如下:

表 1: True value table

X 1: True value table																			
D_3	D_2	D_1	D_0	y_0	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y_9	y_{10}	y_{11}	y_{12}	y_{13}	y_{14}	y_{15}
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
0	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
1	0	1	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0

4 实验结果

仅使用一片芯片控制 y_0 至 y_7 时,当 S_1 为高电平且 S_2 , S_3 均为低电平时,译码器可以将二进制译为十进制,对应小灯为暗。其余情况下,小灯全为亮。

用两片74LS138组合成一个4线-16线译码器,可以将二进制码译为十进制码,使对应的小灯变暗。当 D_1 为低电平时控制 y_0 至 y_7 的输出, D_1 为高电平时控制 y_8 至 y_{15} 的输出。输出结果与真值表情况相同。

5 实验总结

通过这次实验,我初步掌握了组合线路的设计方法,学会使用2片3线-8线译码器搭建4线-16线译码器,加深了对相关理论知识的理解。

但是,在使用两片3线-8线芯片设计4线-16线芯片时,会使一个使能端 失去作用,可以优化。