MACHINE LEARNING

PROBLEM 1: Sales data

Multiple Linear Regression is the best suitable model for this problem because it is satisfying the below assumptions:

1) Linear relationship between variables- since data points are less though we have linear relationship among the variables we find bit difficult to plot it in scatter

2) No multi-collinearity: When correlation is less than 0.5% then we can choose those variables for model

	CPI	DISCOUNTS	OFFERS
CPI	1.000000	0.664772	-0.445300
DISCOUNTS	0.664772	1.000000	-0.816902
OFFERS	-0.445300	-0.816902	1.000000

Here though discounts and offers have high correlation our model is performing good. When we leave anyone variable between the two our model accuracy is decreasing.

RESULT SUMMARY:

OLS Regression Results

Dep. Variable:	Sales	R-squared:	0.952
Model:	OLS	Adj. R-squared:	0.879
Method:	Least Squares	F-statistic:	13.14
Date:	Mon, 22 Jan 2024	Prob (F-statistic):	0.0716
Time:	15:27:51	Log-Likelihood:	-68.476
No. Observations:	6	AIC:	145.0
Df Residuals:	2	BIC:	144.1
Df Model:	3		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	2.648e+05	1.64e+05	1.613	0.248	-4.41e+05	9.71e+05
CPI	128.4351	39.639	3.240	0.083	-42.120	298.990
discounts	5913.5196	2.99e+04	0.198	0.861	-1.23e+05	1.34e+05
offers	-4902.5460	3641.815	-1.346	0.311	-2.06e+04	1.08e+04

 Omnibus:
 nan
 Durbin-Watson:
 2.185

 Prob(Omnibus):
 nan
 Jarque-Bera (JB):
 0.238

 Skew:
 -0.031
 Prob(JB):
 0.888

 Kurtosis:
 2.026
 Cond. No.
 3.69e+04

Given below information find out the Sales that has

- 1. 5000 cpi, 3 percentage discounts, 20 rewards offers
- 2. 4000 cpi, 8 percentage discounts, 19 rewards offers

Sales for I is 826645.348382 Sales for II is 732680.364860

PROBLEM 2: Loan data

Logistic Regression is the best suitable to solve this problem

This data has the null values:

Customer id	0
Cards	12
Debit card	41
Insurance	48
Age	189
Cibil Score	0
Loan offer	0

NULL VALUE INPUTATION:

Since age is right skewed its better to go with median replacemet

Since Debit card, Insurance, Cards are binary in nature its good to choose Mode Replacement or bfill or ffill

After null imputation this is the result:

Cutomer id	0	
Cards	0	
Debit card	0	
Insurance	0	
Age	0	
Cibil Score	0	
Loan offer	0	

TRAIN TEST SPLIT:

MODEL FIT:

```
Model=sm.Logit(y_train,x_train)
res=Model.fit()
res.summary()
Optimization terminated successfully.
          Current function value: 0.617064
          Iterations 7
                    Logit Regression Results
  Dep. Variable:
                      Loan offer No. Observations:
                                                         1072
         Model:
                                      Df Residuals:
                                                         1066
                           Logit
        Method:
                                         Df Model:
                            MLE
           Date: Fri, 26 Jan 2024
                                    Pseudo R-squ.:
                                                       0.1097
          Time:
                        13:37:07
                                    Log-Likelihood:
                                                       -661.49
     converged:
                                           LL-Null:
                                                       -743.04
                            True
Covariance Type:
                      nonrobust
                                       LLR p-value: 2.173e-33
              coef std err
                                 z P>|z| [0.025 0.975]
     const -0.1664
                      0.247 -0.672 0.501
                                            -0.651
                                                    0.319
    Cards
           0.2629
                      0.133
                            1.983 0.047
                                           0.003
                                                    0.523
Debit card
           0.5825
                      0.229
                             2.549 0.011
                                            0.135
                                                    1.030
Insurance -0.5287
                      0.585 -0.903 0.366
                                           -1.676
                                                    0.619
      Age
           0.0059
                      0.004
                             1.670 0.095
                                            -0.001
                                                    0.013
Cibil Score -0.2972
                      0.032 -9.319 0.000
                                            -0.360
                                                   -0.235
```

Accuracy score: 73%

Accuracy metrics

- 1. ROC curve
- 2. Confusion matrix

1) ROC curve

PROBLEM 3:

Customer data has many null values which has to be treated

age	0
workclass	963
fnlwgt	0
education	0
education-num	0
marital-status	0
occupation	966
relationship	0
race	0
sex	0
capital-gain	0
capital-loss	0
hours-per-week	0
native-country	274
income	0
. 11 1	•

since null values are in categorical type we have imputed using Bfill,Ffill

Variables in the data set are categorical in nature treated using

- One-hot encoding →pd.get dummies
- Label encoding → from sklearn.preprocessing import LabelEncoder

KNN MODEL

Accuracy score \rightarrow 79%

Confusion matrix:

DECISION TREE

Accuracy score →82%

Confusion matrix:

RANDOM FOREST

Accuracy score →84%

Confusion matrix: Array ([[6891, 515], [960, 1403]]

Support Vector Machine

Accuracy score →79%

Confusion matrix:

array([[7362, 19], [2002, 386]],

Elbow plot:

To decide how many clusters we must have:

It gives us an idea to opt 2 or 3

MODELS	ACCURACY SCORE
KNN	79%
Decision tree	82%
Random forest	84%
K-means	40%
SVM	79%

By seeing the above table we conclude that RANDOM FOREST is the suitable model for customer data because it has high accuracy score