تمرين جيد في الحساب للمراجعة و التدرب

نـص التمرين:

- . 4x = 33[5] : عين مجموعة الأعداد الصحيحة x حيث (1
- . 4x-5y=33....(E) : التالية (x,y) التالية ذات المجادلة ذات المجهول (x,y) التالية (x,y)

$$\lambda \in \mathbb{Z}$$
 مع $\lambda = 55[5]$ عبر (ب $\lambda \in \mathbb{Z}$) مع $\lambda = 22[4]$ عبر (ب

- . |x+y+3| < 27 : قق تحقق (x,y) حلول المعادلة (x,y) عين كل الثنائيات
 - 3) أ) أدرس حسب قيم العدد الطبيعي n بواقي قسمة العدد 5^n على 11

.
$$10^{10n} + 16^{5n-4} + 27^{5n+2} + 38^{5n+3} + 49^{5n-1} \equiv 0$$
ب) بر هن أنه من أجل كل عدد طبيعي غير معدوم n يكون يكون الماء

.
$$\begin{cases} n-5^n\equiv 0 \\ [11] \end{cases}$$
 : عين مجموعة قيم العدد الطبيعي n التي تحقق الجملة $n\equiv 2$

. $\alpha \neq 0$: عدد طبیعی یکتب $N = \overline{\alpha \beta \beta \alpha \beta \alpha}$ فی نظام التعداد ذو الأساس 4 حیث (4

عين α و β يحيث يكون N قابلا للقسمة على 33 ، ثم أكتب العدد N في النظام العشري .

حل مقترح للتمرين:

- - . $\boxed{x=5k+2}$: منه : 4x-33=5y و منه : 4x-5y=33 و منه : (2) أ) المعادلة : 5y=4k-5 تكافئ 4x-33=5y تكافئ 4x-5y=33 : بالتعويض نجد : 4(5k+2)-5y=33 : أي 4(5k+2)-5y=33 : بالتعويض نجد : 4(5k+2)-5y=33 : إذن حلول المعادلة هي : 4x-5y=33=3 مع 4x-5y=33=3 مع الذن حلول المعادلة هي : 4x-5y=33=3 مع الدن حلول المعادلة هي : 4x-5y=33=3
- 4v-5u=33 : أي $\lambda=5u+55=4v+22$ أي يكون $\lambda=5u+55=4v+22$ و منه $\lambda=5u+55=4v+22$ و منه (ب) لدينا $\lambda=5u+50=4v+50=4v+22$

. u = 4k - 5 و v = 5k + 2 : لكن حسب (أ) يكون

 $\lambda \in \mathbb{Z}$ مع $\lambda = 5u+55$ ادينا $\lambda = 5u+55$ مع $\lambda = 5(4k-5)+55$ مع $\lambda = 5u+55$ دينا

|x+y+3| < 27 بحيث $(E) _{(x,y)} (x,y)$

-3 < k < 3 : ای |k| < 3 : ای |9k| < 27 : ای |5k + 2 + 4k - 5 + 3| < 27 : الدینا $\begin{cases} x = 5k + 2 \\ y = 4k - 5 \end{cases}$

. (x,y)=(-8,-13),(-3,-9),(2,-5),(7,-1),(12,3) : و بالتالي $k \in \{-2,-1,0,1,2\}$: الإذن

3) أ) بو اقى قسمة العدد "5 على 11.

. $5^5 \equiv 1[11]$ و $5^4 \equiv 9[11]$ ، $5^3 \equiv 4[11]$ ، $5^2 \equiv 3[11]$ ، $5^1 \equiv 5[11]$ ، $5^0 \equiv 1[11]$: نجد

و نلخصها في الجدول التالي:

قيم العدد الطبيعي n	5 <i>k</i>	5 <i>k</i> +1	5k + 2	5k + 3	5 <i>k</i> + 4
بواقي قسمة العدد °5 على 11	1	5	3	4	9

.
$$10^{10n} + 16^{5n-4} + 27^{5n+2} + 38^{5n+3} + 49^{5n-1} \equiv 0[11]$$
: نبر هن أن (ب

.
$$[5n-4=5k+1] :$$
 و منه $(n-1)+1 :$ و منه $(n-4)+1 :$ (*)

$$. \ [5n-1=5k+4]:$$
 و منه $5n-1=5(n-1)+4:$ و منه $5n-1=5n-5+5-1:$ لدينا $(*$

$$10^{10n} + 16^{5n-4} + 27^{5n+2} + 38^{5n+3} + 49^{5n-1} \equiv \left(-1\right)^{10n} + 5^{5k+1} + 5^{5n+2} + 5^{5n+3} + 5^{5k+4} \left[11\right] \div \frac{1}{2} \left[11\right] \div \frac{1}{2} \left[11\right] + \frac{1}{2} \left[11\right] \div \frac{1}{2} \left[11\right]$$

$$10^{10n} + 16^{5n-4} + 27^{5n+2} + 38^{5n+3} + 49^{5n-1} \equiv 1 + 5 + 3 + 4 + 9[11]$$
 : أي

.
$$10^{10n} + 16^{5n-4} + 27^{5n+2} + 38^{5n+3} + 49^{5n-1} \equiv 22[11]$$
 : أي

. و منه
$$10^{10^n} + 16^{5n-4} + 27^{5n+2} + 38^{5n+3} + 49^{5n-1} \equiv 0$$
 هو المطلوب

$$5k+2-3\equiv 0$$
 [11] : و منه $\begin{cases} n-5^n\equiv 0$ [11] : أي $k+2-3\equiv 0$ [11] $\begin{cases} n-5^n\equiv 0$ [11] $n=5k+2 \end{cases}$ و منه $\begin{cases} n-5^n\equiv 0$ [11] $n=5k+2 \end{cases}$

$$k \equiv 9[11]$$
 و منه : $10k \equiv 2[11]$ و منه : $10k \equiv 2[11]$ و منه : $10k \equiv 2[11]$ و منه : $10k \equiv 2[11]$

$$\cdot$$
 $n = 55\alpha + 47$: إذن \cdot $n = 5(11\alpha + 9) + 2$ أي \cdot $n = 5k + 2$ و نعلم أن \cdot \cdot $t = 11\alpha + 9$

.
$$(0 \le \beta < 4)$$
 و $(0 < \alpha < 4)$: أي $N = \overline{\alpha \beta \beta \alpha \beta \alpha}^4$: لدينا (4

$$4 \equiv 1[3]$$
: و نعلم أن $N = \alpha \times 4^5 + \beta \times 4^4 + \beta \times 4^3 + \alpha \times 4^2 + \beta \times 4 + \alpha$: لدينا

.
$$N\equiv 0$$
[3] : و منه $N\equiv 3\alpha+3\beta$ [3] : أي $N\equiv \alpha+\beta+\beta+\alpha+\beta+\alpha$ و منه

. 11 يقبل القسمة على 3 مهما كان α و β و بالتالي يقبل القسمة على 33 إذا قبل القسمة على N

$$4^5 \equiv 1 \begin{bmatrix} 11 \end{bmatrix}$$
 ، $4^4 \equiv 3 \begin{bmatrix} 11 \end{bmatrix}$ ، $4^3 \equiv 9 \begin{bmatrix} 11 \end{bmatrix}$ ، $4^2 \equiv 5 \begin{bmatrix} 11 \end{bmatrix}$ ، $4^1 \equiv 4 \begin{bmatrix} 11 \end{bmatrix}$ ، $4^0 \equiv 1 \begin{bmatrix} 11 \end{bmatrix}$: 11 على 11 على 11

$$N\equiv 7\,\alpha+5\,\beta \left[11\right]$$
 :
 $N\equiv 7\,\alpha+16\,\beta \left[11\right]$:
 $N\equiv \alpha\times 1+\beta\times 3+\beta\times 9+\alpha\times 5+\beta\times 4+\alpha \left[11\right]$:
 $N\equiv 0$

.
$$\begin{cases} 7 = -4[11] \\ 5 = -6[11] \end{cases}$$
 لأن : $N = -4\alpha - 6\beta[11]$:

$$2\alpha \equiv -3\beta[11]$$
 : $\alpha \equiv 3\beta[11]$: أي $\alpha = 3\beta[11]$ أي $\alpha = -4\alpha = 6\beta[11]$ أي $\alpha = -4\alpha = 6\beta[11]$ أي $\alpha = -6\beta = 0$

$$\alpha - 4\beta \equiv 0$$
و منه : $\alpha = 4\beta$ ای یکون : $\alpha = 4\beta$ ای یکون : $\alpha = 8\beta$

α β	0	1	2	3
1	1	8	4	0
2	2	9	5	1
3	3	10	6	2

$$eta=3$$
 و $lpha=1$: إذ يكون $lpha-4$ $eta=0$

و منه بالتعويض نجد أن :
$$N = 2013$$

بواقى القسمة على 11:

كتابة الأستاذ: بلقاسم عبدالرزاق