Lecture 2

Distributions and Frequentist Statistics

So far:

Probability and Bayes Theorem

Today:

- Distributions
- Frequentist Statistics
- Maximum Likelihood Estimation
- Sampling Distribution

A Random Variable is a mapping

$$X:\Omega o\mathbb{R}$$

that assigns a real number $X(\omega)$ to each outcome ω in a sample space Ω .

Example: the number of heads in a sequence of N coin tosses.

Cumulative distribution Function

The **cumulative distribution function**, or the **CDF**, is a function

$$F_X: \mathbb{R} o [0,1],$$

defined by

$$F_X(x)=p(X\leq x).$$

Sometimes also just called distribution.

Let X be the random variable representing the number of heads in two coin tosses. Then x = 0, 1 or 2.

CDF:

Probability Mass Function

X is called a **discrete random variable** if it takes countably many values $\{x_1, x_2, \ldots\}$.

We define the **probability function** or the **probability mass function** (**pmf**) for X by:

$$f_X(x) = p(X=x)$$

The pmf for the number of heads in two coin tosses:

Probability Density function (pdf)

A random variable is called a **continuous random variable** if there exists a function f_X such that

$$f_X(x) \geq 0$$
 for all x, $\displaystyle \int_{-\infty}^{\infty} f_X(x) dx = 1$ and for every a \leq b,

$$p(a < X < b) = \int_a^b f_X(x) dx$$

Note: p(X = x) = 0 for every x. Confusing!

CDF for continuous random variables

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

and $f_X(x)=rac{dF_X(x)}{dx}$ at all points x at which F_X is differentiable.

Continuous pdfs can be > 1. cdfs bounded in [0,1].

A continuous example: the Uniform(0,1) Distribution

pdf:

$$f_X(x) = egin{cases} 1 & ext{for } 0 \leq x \leq 1 \ 0 & ext{otherwise.} \end{cases}$$

cdf:

$$F_X(x) = egin{cases} 0 & x \leq 0 \ x & 0 \leq x \leq 1 \ 1 & x > 1. \end{cases}$$

cdf:

Bernoulli Distribution

Distribution a coin flip represented as X, where X=1 is heads, and X=0 is tails. Parameter is probability of heads p.

$$X \sim Bernoulli(p)$$

is to be read as X has distribution Bernoulli(p).

pmf:

$$f(x) = egin{cases} 1-p & x=0 \ p & x=1. \end{cases}$$

for p in the range 0 to 1.

$$f(x) = p^x (1-p)^{1-x}$$

for x in the set $\{0,1\}$.

What is the cdf?

```
from scipy.stats import bernoulli
#bernoulli random variable
brv=bernoulli(p=0.3)
print(brv.rvs(size=20))

[1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1
0]
```


Marginals

Marginal mass functions are defined in analog to probabilities:

$$f_X(x) = p(X = x) = \sum_y f(x,y); \,\, f_Y(y) = p(Y = y) = \sum_x f(x,y).$$

Marginal densities are defined using integrals:

$$f_X(x) = \int dy f(x,y); \,\, f_Y(y) = \int dx f(x,y).$$

Conditionals

Conditional mass function is a conditional probability:

$$f_{X|Y}(x \mid y) = p(X = x \mid Y = y) = rac{p(X = x, Y = y)}{p(Y = y)} = rac{f_{XY}(x, y)}{f_{Y}(y)}$$

The same formula holds for densities with some additional requirements $f_Y(y) > 0$ and interpretation:

$$p(X \in A \mid Y = y) = \int_{x \in A} f_{X\mid Y}(x,y) dx.$$

Election forecasting

- Each state has a Bernoulli coin.
- p for each state can come from prediction markets, models, polls
- Many simulations for each state. In each simulation:
 - rv = Uniform(0,1) If. rv < p say Obama wins
 - or rv = Bernoulli(p). 1=Obama.

Empirical pmf and cdf

Frequentist Statistics

Answers the question: What is Data? with

"data is a sample from an existing population"

- data is stochastic, variable
- model the sample. The model may have parameters
- find parameters for our sample. The parameters are considered fixed.

Data story

- a story of how the data came to be.
- may be a causal story, or a descriptive one (correlational, associative).
- The story must be sufficient to specify an algorithm to simulate new data.
- a formal probability model.

tossing a globe in the air experiment

- toss and catch it. When you catch it, see whats under index finger
- mark W for water, L for land.
- figure how much of the earth is covered in water
- thus the "data" is the fraction of W tosses

Probabilistic Model

- 1. The true proportion of water is p.
- 2. Bernoulli probability for each globe toss, where p is thus the probability that you get a W. This assumption is one of being **Identically Distributed**.
- 3. Each globe toss is **Independent** of the other.

Assumptions 2 and 3 taken together are called **IID**, or **Independent and Identially Distributed** Data.

Likelihood

How likely it is to observe k W given the parameter p?

$$P(X=k\mid n,p)=inom{n}{k}p^k(1-p)^{n-k}$$

Likelihood

How likely it is to observe values x_1, \ldots, x_n given the parameters λ ?

$$L(\lambda) = \prod_{i=1}^n P(x_i|\lambda)$$

How likely are the observations if the model is true?

Or, how likely is it to observe k out of n W

Maximum Likelihood estimation

Example Exponential Distribution Model

$$f(x;\lambda) = egin{cases} \lambda e^{-\lambda x} & x \geq 0, \ 0 & x < 0. \end{cases}$$

Describes the time between events in a homogeneous Poisson process (events occur at a constant average rate). Eg time between buses arriving.

log-likelihood

Maximize the likelihood, or more often (easier and more numerically stable), the log-likelihood

$$\ell(\lambda) = \sum_{i=1}^n ln(P(x_i \mid \lambda))$$

In the case of the exponential distribution we have:

$$\ell(lambda) = \sum_{i=1}^n ln(\lambda e^{-\lambda x_i}) = \sum_{i=1}^n \left(ln(\lambda) - \lambda x_i
ight).$$

Maximizing this:

$$rac{d\ell}{d\lambda} = rac{n}{\lambda} - \sum_{i=1}^n x_i = 0$$

and thus:

$$\hat{\lambda_{MLE}} = rac{1}{n} \sum_{i=1}^n x_i,$$

which is the sample mean of our sample.

Globe Toss Model

$$P(X=k\mid n,p)=inom{n}{k}p^k(1-p)^{n-k}$$

$$\ell = log(\binom{n}{k}) + klog(p) + (n-k)log(1-p)$$

$$\frac{d\ell}{dp} = \frac{k}{p} - \frac{n-k}{1-p} = 0$$

thus
$$p_{MLE}=rac{k}{n}$$

Point Estimates

If we want to calculate some quantity of the population, like say the mean, we estimate it on the sample by applying an estimator F to the sample data D, so $\hat{\mu} = F(D)$.

Remember, The parameter is viewed as fixed and the data as random, which is the exact opposite of the Bayesian approach which you will learn later in this class.

True vs estimated

If your model describes the true generating process for the data, then there is some true μ^* .

We dont know this. The best we can do is to estimate $\hat{\mu}$.

Now, imagine that God gives you some M data sets **drawn** from the population, and you can now find μ on each such dataset.

So, we'd have M estimates.

Sampling distribution

As we let $M \to \infty$, the distribution induced on $\hat{\mu}$ is the empirical sampling distribution of the estimator.

 μ could be λ , our parameter, or a mean, a variance, etc

We could use the sampling distribution to get confidence intervals on λ .

But we dont have M samples. What to do?

Bootstrap

- If we knew the true parameters of the population, we could generate M fake datasets.
- we dont, so we use our estimate lambda to generate the datasets
- this is called the Parametric Bootstrap
- usually best for statistics that are variations around truth

simulated data

re-estimate

 $q_{0.01} = -0.0323$

Problems

- simulation error: the number of samples M is finite. Go large M.
- statistical error: resampling from an estimated parameter is not the "true" data generating process. Subtraction helps.
- specification error: the model isnt quite good. *Use the parametric bootstrap*: sample with replacement the X from our original sample D, generating many fake datasets.

Linear Regression MLE

Gaussian Distribution assumption

Each y_i is gaussian distributed with mean $\mathbf{w} \cdot \mathbf{x}_i$ (the y predicted by the regression line) and variance σ^2 :

$$y_i \sim N(\mathbf{w} \cdot \mathbf{x}_i, \sigma^2).$$

$$N(\mu,\sigma^2)=rac{1}{\sigma\sqrt{2\pi}}e^{-(y-\mu)^2/2\sigma^2},$$

We can then write the likelihood:

$$\mathcal{L} = p(\mathbf{y}|\mathbf{x},\mathbf{w},\sigma) = \prod_i p(\mathbf{y}_i|\mathbf{x}_i,\mathbf{w},\sigma)$$

$$\mathcal{L} = (2\pi\sigma^2)^{(-n/2)}e^{\frac{-1}{2\sigma^2}\sum_i(y_i-\mathbf{w}\cdot\mathbf{x}_i)^2}$$
.

The log likelihood ℓ then is given by:

$$\ell = rac{-n}{2}log(2\pi\sigma^2) - rac{1}{2\sigma^2}\sum_i (y_i - \mathbf{w}\cdot\mathbf{x}_i)^2.$$

Maximizing gives:

$$\mathbf{w}_{MLE} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y},$$

where we stack rows to get:

$$\mathbf{X} = stack(\{\mathbf{x}_i\})$$

$$\sigma_{MLE}^2 = rac{1}{n} \sum_i (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2.$$

Next time

- Expectation values
- Law of large numbers
- How it enables empirical distributions and the bootstrap
- And Monte Carlo
- Central Limit theorem for sampling and error on expectations

