# صفحه وب برای دسترسی سریع به Playground ها

استاد: دکتر میرسامان تاجبخش محمد مهدی فرح بخش

# بسم الله الرحمن الرحيم

#### ۱.۰ مقدمه

در یک صفحه وب به شش شبیه ساز انواع الگوریتم های ماشین لرنینگ دسترسی داشته باشید.

## ۲.۰ نیازمندی ها و نصب

- ۱. دستورات زیر را در دایرکتوری Neual Network Tensorflow playground اجرا کنید:
  - 'npm i': برای نصب نیازمندی ها
  - 'npm run build: برای کامپایل : 'npm run build
- ۲. برنامه app.py در دایرکتوری SVM-Visualizer-Web-App بایستی در پسزمینه در حال اجرا باشد و همچنین نیازمندی ها نصب شده باشند.
  - 'pip install -r requirement.txt' برای نصب نیازمندی ها
    - 'py app.py' : برای اجرا

## ۳.۰ بخش های برنامه

#### Tree Decision •

شما باید بتوانید با استفاده از الگوریتم Decision Tree قارچ های سمی را از خوراکی تفکیک کنید. با انتخاب رئوس مختلف entropy و gini محاسبه شده حاصل از انتخاب رأس را خواهید دید. با هر بار Refresh صفحه با داده های جدید روبرو خواهید شد.

- k-means با کلیک بر روی صفحه داده سمپل ایچاد کنید و از نوار بالا پارامتر های الگوریتم k-means را تنظیم کرده و دکمه Run را بزنید.
- GNN در این بخش قدم در دنیای شبکه های عصبی گرافی بگذارید و با برخی مفاهیم آن آشنا شوید.

### KNN •

در کنسول زاویه دوربین و داده ها را دستکاری کنید و در محیط سه بعدی اتفاقات را مشاهده نمایید.

#### SVM •

ابتدا نوع مسئله (خطی یا غیر خطی) را انتخاب نموده و با تغییر پارامتر ها اثر هر یک را ببینید. با هر بار رفرش داده ها تغییر می کنند.

Neural Network TensorFlow playground •

یک شبکه عصبی در اختیار شماست. لایه اضافه کنید هایپر پارامتر ها را تغییر دهید تا به کمترین خطا دست پیدا کنید.



شکل ۱: نمایی از Decision Tree



شکل ۲: نمایی از k-means



In (b), above, the original image (a) has been segmented into five entities: each of the fighters, the referee, the audience and the mat. (C) shows the relationships between those entities

شکل ۳: نمایی از GNN



شکل ۴: نمایی از KNN



شکل ۵: نمایی از SVM



شکل ۶: نمایی از Neural Network