Contents

1	Bas	isregels d	ifferentie	eren														2
2	Differentiaalquotient/analytisch differentieren															2		
	2.1	Notatie:																2
			anpak:															2
			oorbeeld: .															3
3	Productregel													3				
	3.1	Notatie:																3
			anpak															3
			oorbeeld: .															3
4	Kettingregel													3				
	4.1	Notatie:																3
			anpak:															4
			orbeeld: .															4
			ettingregel															4
			oorbeeld: .															4
5	Que	otientrege	el															5
	5.1 Notatie:													5				

1 Basisregels differentieren

- Met differentieren pak je de afgeleide van een functie, de helling. Hiermee kunnen veranderingen van de functie t.o.v de variabelen beredeneerd worden
- De afgeleide van een functie die constant is, is altijd 0:

$$-f(x) = 27, f'(x) = 0$$

ullet Voor n-de graads vergelijkingen geldt de volgende regel:

$$-f(x) = x^n \Rightarrow f'(x) = n \cdot x^{n-1}$$

• Dit geldt ook voor gebroken vormen:

$$- f(x) = \frac{1}{x} = x^{-1} \Rightarrow f'(x) = -1x^{-2} = \frac{-1}{x^2}$$

• En voor wortels:

$$-\sqrt{x} = x^{\frac{1}{2}} \Rightarrow f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2}\frac{1}{\sqrt{2}}$$

• Voor functies in de vorm $f(x) = a \cdot g(x)$ geldt de volgende regel:

$$- f(x) = a \cdot g(x) \Rightarrow f'(x) = a \cdot g'(x)$$

– Dus:

*
$$f(x) = 6x^3 \Rightarrow f'(x) = 6 \cdot 3x^2 = 18x^2$$

2 Differentiaalquotient/analytisch differentieren

2.1 Notatie:

$$\frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h}$$

2.1.1 Aanpak:

- 1: Vul in
- 2: Bepaal differentiaal quotient $\frac{\Delta y}{\Delta x}$
- 3: Bepaal differentiequotient $y'(x)\frac{dy}{dx}$

2.1.2 Voorbeeld:

1. TODO

3 Productregel

Gebruiken bij functies waarbij veel termen in haakjes staan. Zonder dat je de haakjes uitwerkt, kan je met deze regel de afgeleide bepalen.

3.1 Notatie:

$$p(x) = f(x) \cdot g(x) \Rightarrow p'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

3.1.1 Aanpak

- 1: leid f(x) af
- 2: leid g(x) af
- 3: plaats in formulevorm en laat deze onvereenvoudigd staan

3.1.2 Voorbeeld:

- $g(x) = (x^3 + 2x 5)(x^2 6x + 8)$
- $[x^3 + 2x 5]' = 3x^2 + 2$
- $[x^2 6x + 8]' = 2x 6$
- $g'(x) = f'(x) \cdot p(x) + f(x) \cdot p'(x)$ $- \Rightarrow (3x^2 + 2)(x^2 - 6x + 8) + (x^3 + 2x - 5)(2x - 6)$

4 Kettingregel

Gebruiken bij samengestelde functies, dus voor functies in functies

4.1 Notatie:

$$f(x) = g(h(x)) \Rightarrow f'(x) = g'(h(x)) \cdot h'(x)$$

4.1.1 Aanpak:

- 1: leid g(x) af
- 2: leid h(x) afgeleide
- 3: plaats in formulevorm

4.1.2 Voorbeeld:

- $f(x) = (2x 1)^6$
- $g'(x) = 6(2x-1)^5$
- h'(x) = 2
- $\bullet \ f'(x) = g'(h(x)) \cdot h'(x)$

$$- \Rightarrow f'(x) = 6(2x - 1)^5 \cdot 2$$

$$- f'(x) = 12(2x - 1)^5$$

4.1.3 Kettingregel met wortelfuncties

In het geval van een samengestelde wortelfunctie, kan er een standaardregel worden toegepast: $f(x) = \sqrt{p(x)} \Rightarrow f'(x) = \frac{1}{2\sqrt{p(x)}}$

4.1.4 Voorbeeld:

•
$$f(x) = \frac{3}{(x^7 - 5x^2)}$$

• omschrijven naar vorm $\frac{1}{x} \Rightarrow x^{-1}$

$$-3(x^7-5x)^{-2}$$

- $f'(x) = -2 \cdot 3(x^7 5x)^{-3}$
- differentieer h(x): $x^7 5x \Rightarrow 7x^6 5$
- Opstellen van vorm $f'(x) = g'(h(x)) \cdot h'(x)$

$$- f'(x) = -2 \cdot 3(x^7 - 5x)^{-3} \cdot (7x^6 - 5)$$

- 5 Quotientregel
- 5.1 Notatie: