Mini-Project 2 Code

```
% Clean up to set up for new run
clc
clear
```

Setup control system + Servo setup

```
% Create arduno and arduino position servo ref-objects
   [robotArduino, tiltServo, panServo, blinkLED, rawRangeIn] = SETUPARDUINO('COM9');
% Turn on board LED on and off to signal program has started
   Blink(robotArduino,blinkLED,5);
   disp('Warning! Data Collection Active!')
```

Warning! Data Collection Active!

```
disp('Warning! Pan and Tilt Servos Active!')
```

Warning! Pan and Tilt Servos Active!

Run Robot Control Loop (code that runs over and over)

Robot Functions (store local functions here)

Clean shut down

finally, with most embedded robot controllers, its good practice to put all actuators into a safe position and then release all control objects and shut down all communication paths. This keeps systems from jamming when you want to run again.

Arduino program has ended

```
clear robotArduino
beep
```

```
function [robotArduino, panServo, tiltServo, blinkLED, rawRangeIn] = SETUPARDUINO(COMPORT)
% SETUPARDUINO creates and configures an arduino to be a simple robot
% controller. It requires which COM port your Arduino is attached to as an
% input and returns an Arduino object called robotArduino
% create a glocal arduino object so that it can be used in functions
robotArduino = arduino(COMPORT, 'Uno', 'Libraries', 'Servo');
% configure pin 13 as digital-out LED
blinkLED = 'D13';
configurePin(robotArduino, blinkLED, 'DigitalOutput');
% create a servo object driving PWM pin 9
% Min pulse duration: 1120 microseconds
% center: 1520 microseconds
% MaxPulseDuration: 1920 microseconds
panServo = servo(robotArduino, 'D9', 'MinPulseDuration', 10*10^-6,...
    'MaxPulseDuration', 1925*10^-6);
tiltServo = servo(robotArduino, 'D10', 'MinPulseDuration', 10*10^-6,...
    'MaxPulseDuration', 1925*10^-6);
% configure A0 pin as an analog input
    rawRangeIn = 'A0';
    configurePin(robotArduino,rawRangeIn,'AnalogInput');
% RC mode expects to start up with the joystick centered
% in MATLAB function servo position is 0-1 so 0.5 (1520) is centered
writePosition(panServo, 0); % always start servo-command at 0
writePosition(tiltServo, 0); % always start servo-command at 0
pause(5.0); % wait for arduino to send stable PWM
pause(2.0);
end
```

```
function [] = Blink(a, LED, n)
% Blink toggles Arduino a LED on and off to indicate program running
% input n is number of blinks
% no output is returned

for bIndex = 1:n
    writeDigitalPin(a, LED, 1);
    pause(0.2);
    writeDigitalPin(a, LED, 0);
    pause(0.2);
end
end
```

Act (store Act related local functions here)

```
function sensorData = ACTRCServoArduino(panServo, tiltServo, tilt, pan, robotArduino, rawRange)
% Code to move the pan and tilt servos as well as take in the data
% from the sharp and the positions of the pan and tilt servos
% Note that in setup we switched around the pan/tilt names
sensorData = [0;0;0;]; % Set up the blank matrix for data collection
savedPanAngles = []; % Set up pan angle collection
savedTiltAngles = []; % Set up tilt angle collection
for i = pan
    % write the pan angle based on the pan linspace
    panAngle = i;
    writePosition(tiltServo, panAngle); % Move pan servo
    pause(1.0); % Wait some time
    for j = tilt
        % write the tilt angle based on the tilt linspace
        tiltAngle = j;
        writePosition(panServo, tiltAngle); % Move tilt servo
        pause(1.0); % Wait some time
        % Save the data within the sensorData
        sensorData =[sensorData(1,:), readVoltage(robotArduino, rawRangeIn)
                     sensorData(2,:), tiltAngle
                     sensorData(3,:), panAngle];
    end
end
end
```