Pipelinening: Report

Saarang S-112001035 Sujit Mandava- 112001043

Statistics:

Program	Instructions Executed	Clock Cycles Taken	Speed of Processor	Data Hazards*	Control Hazards
1-even.asm	83	3386	0.02488	12 (0)	760
2-prime.asm	7	289	0.02422	5 (0)	40
3.descending. asm	386	15624	0.02470	180 (0)	2840
4-histogram.a sm	163	6728	0.02423	204 (0)	800
5-fibonnaci.a sm	83	3330	0.02492	6 (0)	280
6-arithematic.	54	2164	0.02495	0 (0)	280
evenorodd.as m	6	250	0.024	6 (0)	0
descending.as m	365	14784	0.02469	180 (0)	3520

Observations:

- 1. The number of cycles taken by the processor increases dramatically from the pipelined processor due to the added latency of the main memory and ALU.
- 2. One cycle is now equivalent to 40 (or more) cycles due to main memory latency.
- 3. Thus, the number of data hazards is theoretically 0 as the previous instruction is processed fully before the next instruction is executed, preventing conflicts. The number shows the count of the number of times there is a possible data hazard occurring.
- 4. More complicated programs, i.e, programs with a higher number of read and write instructions and high branching encounter a higher number of data hazards (RAW hazard) and control hazards
- 5. Stalling the processor due to mentioned data and control hazards (due to RAW hazards or branching conditions being true) increases the number of cycles taken by the processor.