

영등포구 청년을 위한

생성형AI 활용 데이터시각화교육

파이썬의 이해

목차

01 파이썬

02 개발 환경

01 파이썬

파이썬의 이해

- 1990년 귀도 반 로섬(Guido Van Rossum)이 개발한 인터프리터 언어
 - Life is short, you need Python.

파이썬의 이해

■ 파이썬은 다른 언어보다 배우기 쉬움

파이썬의 이해

■ 다양한 영역에서 사용 가능

02 개발 환경

파이썬 개발 환경(Jupyter)

■ 데이터 분석에 가장 많이 사용되는 통합 개발 환경(IDE, Integrated Development Environment)

- 오픈소스 기반의 데이터분석 전용 IDE
- 로컬머신의 자원을 활용
- 웹 서비스로 열어서 외부에서도 활용가능

아나콘다(anaconda)

- 파이썬 기본패키지에 각종 수학/과학 라이브러리들을 같이 패키징해서 배포
- 데이터 시각화를 위한 다양한 도구들(pandas, numpy, matplotlib 등)이 존재

아나콘다(anaconda) 다운로드

■ https://www.anaconda.com/download/success 링크에서 아나콘다 다운로드

아나콘다(anaconda) 설치

아나콘다(anaconda) 설치

아나콘다(anaconda) 설치

아나콘다(Anaconda) 설치 확인

- 아나콘다 실행하기
 - 시작 메뉴 → Anaconda Prompt 실행

아나콘다(Anaconda) 가상환경

- 서로 다른 버전의 Python 및 패키지를 운영하고자 하는 경우 유용함
- 각 가상환경이 독립적으로 존재하여 다른 환경에 영향을 주지 않음
- 가상환경 생성 및 삭제가 용이함

아나콘다(Anaconda) 가상환경 구축 (1/6)

- 아나콘다 가상환경 목록 확인
 - conda env list

아나콘다(Anaconda) 가상환경 구축 (2/6)

- 아나콘다 가상환경 생성
 - conda create -n [가상환경이름] [설치할패키지]

```
Anaconda Prompt - conda de X
(base) C:\Users\juneerconda create -n test python=3.7
Channels:
- defaults
Platform: win-64
Collecting package metadata (repodata.json): done
Solving environment: done
## Package Plan ##
  environment location: C:\Users\junee\anaconda3\envs\tes
  added / updated specs:
    - python=3.7
The following NEW packages will be INSTALLED:
```

```
Anaconda Prompt - conda de X
                     pkgs/main/win-64::openssl-1.1.1w-h2
  openssl
                     pkgs/main/win-64::pip-22.3.1-py37ha
  pip
                     pkgs/main/win-64::python-3.7.16-h62
  python
                     pkgs/main/win-64::setuptools-65.6.3
  setuptools
                     pkgs/main/win-64::sqlite-3.45.3-h2b
  sqlite
                     pkgs/main/win-64::vc-14.2-h2eaa2aa_
  vc
  vs2015_runtime
                     pkgs/main/win-64::vs2015_runtime-14
  wheel
                     pkgs/main/win-64::wheel-0.38.4-py37
                     pkgs/main/win-64::wincertstore-0.2-
  wincertstore
Proceed ([y]/n)? y
Downloading and Extracting Packages:
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
```

아나콘다(Anaconda) 가상환경 구축 (3/6)

- 아나콘다 가상환경 삭제
 - conda remove --name [가상환경이름] --all

```
Anaconda Prompt - deactivate × + v

(base) C:\Users\junee: conda remove --name test --all

Remove all packages in environment C:\Users\junee\anach

## Package Plan ##

environment location: C:\Users\junee\anaconda3\envs
```

```
xz-5.4.6-h8cc25b3_1
zlib-1.2.13-h8cc25b3_1
zstd-1.5.5-hd43e919_2

Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
Everything found within the environment (ions and any non-conda files, will be del (y/[n])? y

(base) C:\Users\junee>
```

아나콘다(Anaconda) 가상환경 구축 (4/6)

- 아나콘다 가상환경 활성화
 - conda activate [가상환경이름]

```
Anaconda Prompt - deactivate X
(base) C:\Users\junee conda activate test
(test) C:\Users\junee>
```

아나콘다(Anaconda) 가상환경 구축 (5/6)

- 아나콘다 가상환경 비활성화
 - conda deactivate

```
Anaconda Prompt - deactivate × + v

(test) C:\Users\junee: conda deactivate

(base) C:\Users\junee>
```

아나콘다(Anaconda) 가상환경 구축 (6/6)

- 현재 활성화된 가상환경에 설치된 패키지 확인
 - conda list

- JupyterLab 실행
 - jupyter lab
 - jupyter lab 입력 후 프롬프트 창에 생기는 URL 중 하나를 Ctrl 키와 함께 클릭해도 접속 가능
- 아나콘다 프롬프트 창은 JupyterLab을 사용하는 동안에는 종료하면 안 되니 주의!

```
(test) C:\Users\juneerjupyter lab
[W 2024-08-05 10:22:58.453 ServerApp] A `_jupyter_server_extend, a `_jupyter_server_extension_paths` function was found and d in future releases of Jupyter Server.
[W 2024-08-05 10:22:58.489 ServerApp] A `_jupyter_server_extenead, a `_jupyter_server_extension_paths` function was found an ted in future releases of Jupyter Server.
[I 2024-08-05 10:23:00.235 ServerApp] Extension package panel.
[I 2024-08-05 10:23:00.235 ServerApp] jupyter_lsp | extension li 2024-08-05 10:23:00.245 ServerApp] jupyter_server_terminals
[I 2024-08-05 10:23:00.253 ServerApp] jupyterlab | extension was li 2024-08-05 10:23:00.261 ServerApp] notebook | extension was
```

```
Anaconda Prompt - deactivate X
                                      Serving notebooks from local directory: C:\Users\junee
                                      Jupyter Server 2.14.1 is running at:
                                      http://localhost:8888/lab?token=e0d4552b705e3254914cb3f
                                          http://127.0.0.1:8888/lab?token=e0d4552b705e3254914
                                      Use Control-C to stop this server and shut down all ker
ation).
    To access the server, open this file in a browser:
        file:///C:/Users/junee/AppData/Roaming/jupyter/runtime/jpserver-1152-open.html
        http://localhost:8888/lab?token=e0d4552b705e3254914cb3f8f1e47b2cfba73d1f5f273afb
        http://127.0.0.1:8888/lab?token=e0d4552b705e3254914cb3f8f1e47b2cfba73d1f5f273afb
                                  Appl Skipped non-installed server(s): basn-language-server,
nodejs, javascript-typescript-langserver, jedi-language-server, julia-language-server, pyrigh
r-languageserver, sql-language-server, texlab, typescript-language-server, unified-language-s
erver-bin, vscode-html-languageserver-bin, vscode-json-languageserver-bin, yaml-language-serve
0.03s - Debugger warning: It seems that frozen modules are being used, which may
```

- 화면 구성
- ① 메인 메뉴
- ② 사이드 메뉴
- ③ 작업 영역

- 사이드 메뉴
- ① File Browser
 - 현재 디렉터리의 파일들을 보여줌
 - 상단의 버튼을 이용해 파일, 폴더를 추가하거나 업로드, 동기화 할 수 있음
- ② Running Terminal and Kernels
 - 열려 있는 탭이나 커널을 보여주고 종료 시킬 수 있음
- ③ Table of Contents
 - 코드, 마크다운 등의 컨텐츠를 요약해서 보여줌
- - 추가 Extension들을 설치하고 관리할 수 있음

2

4

■ 작업영역

- 상단의 탭을 이용하여 여러 개의 파일을 이동
- 저장, 추가, 복사, 실행 등 버튼으로 사용가능
- ipynb이나 markdown등을 활용하여 다양한 작업이 가능한 영역
- 화면구성을 분할하여 사용도 가능
- 대부분의 작업을 하는 영역이기 때문에, 단축키를 숙지해 두는 것이 좋음

마크다운(Markdown)

- 마크다운(Markdown)은 일반 텍스트 기반의 경량 마크업 언어
 - 마크업 언어는 태그 등을 이용하여 문서나 데이터의 구조를 명기하는 언어의 한 가지
- 일반 텍스트로 서식이 있는 문서를 작성하는 데 사용되며, 일반 마크업 언어에 비해 문법이 쉽고 간단한 것이 특징

■ Launcher에서 Notebook 항목의 python3 클릭하여 notebook 생성

■ 코드를 입력할 수 있는 부분을 '셀(cell)' 이라고 함

Edit mode

• 셀에 코드를 입력하거나 수정할 수 있는 상태

[]:|

Command mode

- 셀을 편집할 수 있는 상태
- 셀을 추가하거나 삭제할 수 있는 상태

[]:

■ command mode 단축키

a: above 위에 셀 생성 d : delete 삭제(두번) enter: 셀 수정

b : below 아래 셀 생성 z : undo 되돌리기 shift + enter : 셀 실행

c : copy 셀 복사 shift + z : 다시 실행 y : code로 변경

v: paste 셀 붙여넣기 00: restart kernel m: 마크다운으로 변경

03 파이썬 기초

변수(변하는 수) 이해하기

- 다양한 값을 지닌 하나의 속성 → 소득, 성별, 학점
- 변수 간의 관계를 파악하여 데이터 분석을 진행 ⇒ 데이터 분석의 대상
- 상수
 - 하나의 값으로만 되어 있는 속성
 - 변수와 달리 분석 대상이 될 수 없음

변수		상수	
소득	성별	학점	국적
1,000만 원	남자	3.8	대한민국
2,000만 원	남자	4.2	대한민국
3,000만 원	여자	2.6	대한민국
4,000만 원	여자	4.5	대한민국

변수(변하는 수) 이해하기

- 변수를 생성한 후 변수를 이용하여 연산 가능
- 변수끼리는 연산할 수도 있고, 변수와 숫자를 조합해 연산도 가능

```
[5]: b = 2 b

[5]: 2

[6]: a+b

[6]: 3

[7]: 4/b

[7]: 2.0
```

함수 이해하기

■ 함수에 값을 넣으면 특정한 기능을 수행해 처음과 다른 값을 결과값으로 확인 가능

함수 이해하기

■ 함수에 값을 넣으면 특정한 기능을 수행해 처음과 다른 값을 결과값으로 확인 가능

패키지(함수 꾸러미) 이해하기

- 패키지에는 다양한 함수가 내장되어 있음
- 패키지 설치는 한 번만 진행하면 되지만 로드하는 작업은 JupyterLab을 새로 시작할 때마다 반복

패키지 설치하기 하수 사용하기

- 아나콘다에는 데이터 분석에 필요한 주요 패키지가 포함
- 아나콘다에 포함된 패키지를 사용할 경우 설치 과정 생략 후 진행 가능

- 패키지에는 함수의 기능을 테스트할 수 있는 예제 데이터가 내장되어 있음
- seaborn 패키지에 들어있는 titanic 데이터를 이용하여 그래프 만들기

데이터 불러오기

그래프 그리기

■ 패키지라는 큰 꾸러미에 비슷한 함수들을 넣어둔 작은 꾸러미 → 비슷한 함수끼리 묶어 놓은 것

■ 모듈 불러오기 → 패키지명.모듈명

import sklearn.metrics

■ 패키지명.모듈명.함수명()으로 함수 사용하기

sklearn.metrics.accuracy_score()

■ 모듈명.함수명()으로 함수 사용하기

from sklearn import metrics metrics.accuracy_score()

■ 함수명()으로 함수 사용하기

from sklearn.metricsimport accuracy_score accuracy_score()

- 패키지 설치 방법
 - pip install [원하는 패키지]

■ 파이썬 기초 실습(https://wikidocs.net/book/1)

점프 투 파이썬

지은이: 박응용

최종 편집일시: 2022년 8월 6일 7:21 오후

저작권 : (cc) BY-NC-ND

e-book 판매가 : **5,000**원 (**구매하기**)

I૾ 4,072 명이 추천

점프 투 파이썬 오프라인 책(개정판) 출간 !! (2019.06)

• 책 구입 안내

이 책은 파이썬이란 언어를 처음 접해보는 독자들과 프로그래밍을 한 번도 해 본적이 없는 사람들을 대상으로 한다. 프로그래밍을 할 때 사용되는 전문적인 용어들을 알기 쉽게 풀어서 쓰려고 노력하였으며, 파이썬이란 언어의 개별적인 특성만을 강조하지 않고 프로그래밍 전반에 관한 사항을 파이썬이란 언어를 통해 알 수 있도록 알기 쉽게 설명하였다.

파이썬에 대한 기본적인 지식을 알고 있는 사람이라도 이 책은 파이썬 프로그래밍에 대한 흥미를 가질 수 있는 좋은 안내서가 될 것이다. 이 책의 목표는 독자가 파이썬을 통해 프로그래밍에 대한 전반적인 이해를 갖게하는 것이며, 또 파이썬이라는 도구를 이용하여 원하는 프로그램을 쉽고 재미있게 만들 수 있게 하는 것이다.

"점프 투 파이썬" 이나 파이썬에 대한 질문은 최근 오픈한 파이썬 게시판 서비스인 파이보를 활용해 보자.

■ 데이터를 다룰 때 가장 많이 사용하는 데이터 형태로 행과 열로 구성되어 있음

■ 열

- 세로로 나열되며 속성을 나타냄
- 컬럼(Column) 또는 변수(Variable)이라고 불림

■ 행

- 가로로 나열되며 각 항목의 정보를 나타냄
- 로(row) 또는 케이스(case)라고 불림

		열 						
	성별	연령	학점	연봉				
Γ	남자	26	3.8	2,700만원				
행	여자	42	4.2	4,000만원				
	남자	35	2.6	3,500만원				

- 행이 늘어나더라도 분석 기술 면에서는 별다른 차이가 생기지 않음
- 반면 열이 늘어난다면 변수를 조합할 수 있는 경우의 수가 늘어남
- ⇒ 데이터 분석에서는 데이터의 양을 의미하는 행보다 데이터의 다양성을 의미하는 열이 많은 것이 더 중요

- pandas을 이용하여 데이터 프레임 만들기
 - pandas : 데이터 가공 시 사용하는 패키지


```
import pandas as pd
```

```
df = pd.DataFrame({'name' : ['김지훈', '이유진', '박동현', '김민지'],
                 'english': [90, 80, 60, 70],
                 'math' : [50, 60, 100, 20]})
df
  name english math
0 김지훈
           90
                50
1 이유진
                60
           80
2 박동현
           60 100
3 김민지
           70
                20
```

특정 변수의 값 추출

변수의 값을 이용하여 연산하기

```
df['english']

0 90
1 80
2 60
3 70
Name: english, dtype: int64
```

```
sum(df['english'])
300

sum(df['english'])/4
75.0
```

■ CSV(Comma-Separated Values)는 몇 가지 필드를 쉼표(,)로 구분한 텍스트 데이터 및 텍스트 파일

CSV 파일 확인

CSV 파일 불러오기

<pre>df_exam = pd.read_csv('excel_exam.c df_exam</pre>								
	id	nclass	math	english	science			
0	1	1	50	98	50			
1	2	1	60	97	60			
2	3	1	45	86	78			
3	4	1	30	98	58			
4	5	2	25	80	65			
5	6	2	50	89	98			
6	7	2	80	90	45			
7	8	2	90	78	25			
8	9	3	20	98	15			
9	10	3	50	98	45			
10	11	3	65	65	65			
11	12	3	45	85	32			

CSV 파일 확인

첫 번째 행이 변수명이 아니라면?

	Α	В	С	D	Е
1	1	1	50	98	50
2	2	1	60	97	60
3	3	1	45	86	78
4	4	1	30	98	58
5	5	2	25	80	65
6	6	2	50	89	98
7	7	2	80	90	45
8	8	2	90	78	25
9	9	3	20	98	15
10	10	3	50	98	45
11	11	3	65	65	65
12	12	3	45	85	32

CSV 파일 불러오기

'header = None' 사용

```
df_exam = pd.read_csv('excel_exam.csv', header = None)
df_exam
   0 1 2 3 4
0 1 1 50 98 50
1 2 1 60 97 60
2 3 1 45 86 78
3 4 1 30 98 58
4 5 2 25 80 65
5 6 2 50 89 98
6 7 2 80 90 45
7 8 2 90 78 25
8 9 3 20 98 15
9 10 3 50 98 45
10 11 3 65 65 65
11 12 3 45 85 32
```

데이터 프레임 만들기

CSV 파일로 저장

df.to_csv('output_data.csv')

CSV 파일 확인

인덱스 번호 제외

자	동 저장 💽	副 日 9	· G · •		output_	_data.csv ~	
파일	일 홈	삽입 페	이지 레이아	운 수식	데이터	검토	보
G1:	5 *	: ×	√ f _x				
4	Α	В	С	D	Е	F	
1	english	math	nclass				
2	90	50	1				
3	80	60	1				
4	60	100	2				
5	70	20	2				

head()

- 앞부분 출력하는 함수
- ()에 값을 입력하지 않은 경우 앞에서부터 다섯 번째 행까지 출력

df	.he	ad()		
	id	nclass	english	science
0	1	1	80	50
1	2	- 1	90	60
2	3	- 1	95	78
3	4	2	45	58
4	5	2	10	65
df	.he	ad(3)		
	id	nclass	english	science
0	1	- 1	80	50
1	2	1	90	60
2	3	1	95	78

tail()

- 뒷부분 출력하는 함수
- ()에 값을 입력하지 않은 경우 뒤에서부터 다섯 번째 행까지 출력

shape

- 행, 열 개수를 출력하는 속성
- 데이터 프레임의 크기를 알아볼 때 사용

- info()
 - 데이터에 들어 있는 변수들의 속성 파악

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20 entries, 0 to 19
Data columns (total 4 columns):
    Column Non-Null Count Dtype
        20 non-null
    id
                            int64
    nclass 20 non-null
                            int64
    english 20 non-null
                            int64
    science 20 non-null
                            int64
dtypes: int64(4)
memory usage: 768.0 bytes
```

describe()

- '평균'처럼 변수의 값을 요약한 '요약 통계량'을 구하는 함수
- 변수의 특징을 파악하는데 도움

df.de	df.describe()						
	id	nclass	english	science			
count	20.00000	20.000000	20.000000	20.000000			
mean	10.50000	3.050000	51.250000	57.400000			
std	5.91608	1.316894	33.594917	24.839273			
min	1.00000	1.000000	5.000000	10.000000			
25%	5.75000	2.000000	23.750000	45.000000			
50%	10.50000	3.000000	45.000000	57.000000			
75%	15.25000	4.000000	82.500000	76.500000			
max	20.00000	5.000000	100.000000	98.000000			

함수

■ 내장 함수

- 가장 기본적인 함수로 함수 이름과 괄호를 입력하여 사용
- 파이썬에 내장되어 있기 때문에 별도의 과정 불필요

sum(var) max(var)

■ 패키지 함수

- 패키지 이름을 먼저 작성 후 점을 찍고 함수 이름과 괄호를 입력하여 사용
- 패키지 함수는 패키지 로드 시에만 사용 가능

import pandas as pd pd.read_csv('exam.csv')

메서드(method)

- 변수를 지니고 있는 함수
- 변수명 입력 후 점을 찍고 메소드 이름과 괄호를 입력하여 사용
- 변수의 자료 구조에 따라 사용할 수 있는 메서드가 다름 → type()을 이용하여 변수의 자료 구조 확인 가능

어트리뷰트(attribute)

- 변수가 지니고 있는 값
- 메서드와 마찬가지로 변수가 지니고 있으므로 변수명 뒤에 점을 찍고 입력
- 메서드와 달리 괄호는 입력하지 않아도 됨 ⇒ 괄호가 있으면 메서드, 없으면 어트리뷰트

파생변수

■ 기존의 변수를 변형해 만든 변수

이름	영어 점수	수학 점수
김지훈	90	50
이유진	80	50
박동현	60	100
김민지	70	20

파생변수

이름	영어 점수	수학 점수	평균
김지훈	90	50	70
이유진	80	50	70
박동현	60	100	80
김민지	70	20	45

파생변수

데이터 프레임 생성

파생변수 생성

```
df['var_sum'] = df['var1'] + df['var2']
df

var1 var2 var_sum

0  4  2  6
1  3  6  9
2  8  1  9
```

데이터 전처리

- 분석에 적합하게 데이터를 가공하는 작업
- 일부를 추출하거나, 종류별로 나누는 등 데이터를 자유롭게 가공할 수 있어야 목적에 맞게 분석 가능

파생변수

id	nclass	english	science
1	1	98	50
2	1	97	60
3	2	86	78
4	2	80	58
5	3	76	65
6	3	96	98
7	3	98	45

 \rightarrow

추출하기

nclass	english
1	98
1	97
2	86
2	80
3	76
3	96
3	98

nclass	english
1	97.5
2	83
3	90

조건에 맞는 데이터만 추출하기

- 전체 데이터를 사용하기도 하지만 관심 있는 일부를 추출해 분석하기도 함
- 원하는 데이터만 추출하기 위해 pandas의 df.query() 사용

데이터프레임 확인

조건에 맞는 데이터 추출

df	df.query('nclass == 1')							
	id	nclass	math	english	science			
0	1	1	50	98	50			
1	2	1	60	97	60			
2	3	1	45	86	78			
3	4	1	30	98	58			

필요한 변수만 추출하기

■ 데이터 분석 시 데이터에 들어 있는 모든 변수를 사용하기보다는 관심 있는 변수만 추출하거나 필요하지 않는 변수를 제거하여 사용하는 경우가 많음

변수 추출하기

변수 제거하기

<pre>df.drop(columns = 'math')</pre>				
	id	nclass	english	science
0	1	1	98	50
1	2	1	97	60
2	3	1	86	78
3	4	1	98	58
4	5	2	80	65

순서대로 정렬하기

■ 데이터를 순서대로 정렬하면 값이 매우 크거나 매우 작아서 두드러지는 데이터 확인 가능

오름차순 정렬

내림차순 정렬

여러 정렬 기준 적용

df	<pre>df.sort_values(['nclass', 'math'])</pre>					
	id	nclass	math	english	science	
3	4	1	30	98	58	
2	3	- 1	45	86	78	
0	1	- 1	50	98	50	
1	2	- 1	60	97	60	
4	5	2	25	80	65	

파생변수 추가하기

■ 데이터에 들어 있는 변수만 이용해 분석할 수도 있지만, 변수를 조합하거나 함수를 이용해 새 변수를 만들어 분석하기도 함

집단별로 요약하기

- '집단별 평균'이나 '집단별 빈도'처럼 각 집단을 요약한 값을 구할 때는 df.groupby()와 df.agg() 사용
- 집단별로 요약할 경우 집단 간에 어떤 차이가 있는지 쉽게 파악 가능

df.agg()

```
df.agg(mean_math = ('math', 'mean'))

math

mean_math 42.0
```

df.groupby()

```
df.groupby('nclass') \
    .agg(mean_math = ('math', 'mean'))

mean_math
nclass

1     46.25
2     25.00
```

데이터 합치기

■ 가로로 합치기

id	midterm
1	60
2	80
3	70

id	final
1	70
2	83
3	65

데이터 합치기

■ 세로로 합치기

id	midterm
1	60
2	80
3	70

id	midterm
4	50

id	midterm
1	60
2	80
3	70
4	50

감사합니다.

