Zweite Kenntnisüberprüfung mit Lösungen

im Vorkurs Mathematik 2020, RWTH Aachen University

Lösen Sie die folgenden Aufgaben:

A 1: Bestimmen Sie alle Primfaktoren von 195.

3, 5, 13

A 2: Berechnen Sie $\left(\frac{1}{9} + \frac{2}{10}\right)$: $\frac{8}{45}$ in vollständig gekürzter Form.

 $\frac{-}{4}$

A 3: Seien $a,b\in\mathbb{R}$ mit $a\neq 0,\pm b$. Vereinfachen Sie $\frac{a(a+b)^2-4a^2b}{a^3-ab^2}$ so weit wie möglich.

A 4: Seien $r, s \in \mathbb{Q}$ und $x, y \in \mathbb{R}$, x, y > 0. Vereinfachen Sie $\frac{x^{2r-1}}{y^{1-s}} : \frac{x^{r-s}}{y^{3s}}$.

A 5: Bestimmen Sie alle Lösungen der Gleichung $x^3 + 5x^2 - 6x = 0$. $x_1 = -6$, $x_2 = 0$, $x_3 = 1$

A 6: Bestimmen Sie alle Lösungen der Gleichung |x+1| = 2x - 1.

x = 2

A 7: Bestimmen Sie alle Lösungen der Ungleichung $x^2 - x \leqslant x - 1$.

x = 1

A 8: Seien A und B Aussagen. Ergänzen Sie die Wahrheitstafel:

A	В	$\neg A$	$B \vee (\neg A)$	$(B \lor (\neg A)) \land B$
F	F	W	W	F
F	W	W	W	W
W	F	F	F	F
W	W	F	W	W

A 9: Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar und $x_0 \in \mathbb{R}$. Sei A = f hat in x_0 ein lokales Extremum." sowie B = "Es gilt $f'(x_0) = 0$.". Welche der folgenden Aussagen sind immer (für jedes solche f) wahr?

 $\Box A \Longrightarrow B \qquad \Box B \Longrightarrow A \qquad \Box A \Longleftrightarrow B$

ja, nein, nein

A 10: Kreuzen Sie alle wahren Aussagen über die Funktion $f: \mathbb{N} \to \mathbb{N}$, $n \mapsto n+1$ an.

 \Box f ist injektiv

 \Box f ist surjektiv

 \Box f ist bijektiv

ja, nein, nein

A 11: Seien $A = \{1, 2\}, B = \{2, 3\}$ und $C = \{3, 4\}$. Bestimmen Sie $\mathfrak{P}((A \cup B) \setminus C), |\{\emptyset, \{1\}, \{2\}, \{1, 2\}\}\}$

Bitte wenden!

- A 12: Geben Sie den maximalen Definitionsbereich $D\subseteq\mathbb{R}$ einer durch die Abbildungsvorschrift $f(x)=\sqrt{(x-2)(x+4)}$ definierten Funktion f an. $\boxed{(-\infty,-4]\cup[2,\infty)}$
- A 13: Bestimmen Sie die Ableitung der Funktion $f:D\setminus\{-4,2\}\to\mathbb{R}, x\mapsto\sqrt{(x-2)(x+4)}$ (wobei D der maximale Definitionsbereich aus der letzten Aufgabe sei). $\boxed{f'(x)=\frac{x+1}{\sqrt{(x-2)(x+4)}}}$
- A 14: Kreuzen Sie alle wahren Aussagen über die Funktion $f:\mathbb{R}\to\mathbb{R},\,x\mapsto\begin{cases} -x^2 & \text{, }x<0\\ x^2 & \text{, }x\geqslant0 \end{cases}$ an.
 - \square f ist streng monoton steigend \square f ist streng monoton fallend \square f ist streng monoton fallend \square \square f ist streng monoton fallend
- A 15: Bestimmen Sie $\sin\left(\frac{\pi}{2}\right)$.
- A 16: Bestimmen Sie alle Lösungen der Gleichung $5\log_x 9 = 10$. $\boxed{x = 3}$
- A 17: Bestimmen Sie die Ableitung von $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R}, x \mapsto \frac{e^x + 1}{1 + x}.$ $f'(x) = \frac{xe^x 1}{(1 + x)^2}$
- A 18: Bestimmen Sie f'(1) für $f: \mathbb{R} \to \mathbb{R}, x \mapsto \ln(x^2 + 1)$.
- A 19: Bestimmen Sie eine Stammfunktion von $f: \mathbb{R} \to \mathbb{R}, x \mapsto x \cos(x)$. $F(x) = x \sin(x) + \cos(x)$
- A 20: Bestimmen Sie eine Stammfunktion von $f:\mathbb{R}\to\mathbb{R},\,x\mapsto \frac{e^x}{1+e^x}.$ $\boxed{F(x)=\ln(1+e^x)}$
- A 21: Geben Sie die Matrix $A=(a_{ij})\in\mathbb{R}^{2\times 3}$ mit Einträgen $a_{ij}:=\sum_{k=1}^i j\cdot k$ explizit an. $\boxed{\begin{pmatrix}1&2&3\\3&6&9\end{pmatrix}}$
- A 22: Bestimmen Sie die Lösungsmenge des nebenstehenden x-2y=8 Gleichungssystems. x+y+10z=9 x+5z=7 x=2 und y=-3 sowie z=1
- A 23: Für welche reellen Zahlen a hat das nebenstehende lineare Gleichungssystem genau eine Lösung? $ax + ay = 1 \\ ax + y = a^2$ für alle a mit $a \neq 1$ und $a \neq -1$