cases	doc_1		doc_2		decision
	authors	Lukas Bommes Mathis Hoffmann Claudia Buerhop-Lutz Tobias Pickel Jens Hauch Christoph J. Brabec Andreas Maier Ian Marius Peters	authors	 Ian Marius Peters Andreas Maier Christoph Brabec Jens Hauch Tobias Pickel Claudia Buerhop-Lutz Mathis Hoffmann Lukas Bommes 	
			title	Anomaly Detection in IR Images of PV Modules using Supervised Contrastive Learning	
				2021-12-06 00:00:00	
	title	Anomaly detection in IR images of PV modules using supervised contrastive learning	source journal	SupportedSources.PAPERS_WITH_CODE	
	publication_date 2022-03-28 00:00:00		volume		
	source	SupportedSources.OPENALEX	doi		DUPLICATES 97
	journal volume	Progress in Photovoltaics 30	urls	 https://arxiv.org/pdf/2112.02922v1.pdf https://github.com/LukasBommes/PV-Mapper 	
	doi	10.1002/pip.3518	id	id8281621142106963327	
	urls	 https://openalex.org/W4220855124 https://doi.org/10.1002/pip.3518 https://opus4.kobv.de/opus4-fau/files/19638/PIP_PIP3518.pdf 		Increasing deployment of photovoltaic (PV) plants requires methods for automatic detection of faulty PV modules in modalities, such as infrared (IR) images. Recently, deep learning has become popular for this. However, related works typically sample train and test data from the same distribution ignoring the presence of domain shift between data of different PV plants. Instead, we frame fault detection as more realistic unsupervised domain adaptation problem where we train on labelled data of one source PV plant and make predictions on another target plant. We train a ResNet-34 convolutional neural network with a supervised contrastive loss, on top of which we employ a k-nearest neighbor classifier to detect anomalies. Our method achieves a satisfactory area under the receiver operating characteristic (AUROC) of 73.3 % to 96.6 % on nine	
	id	id-5142479000761068252	abstract	combinations of four source and target datasets with 2.92 million IR images of which 8.5 % are anomalous. It even outperforms a binary cross-entropy classifier in some cases. With a fixed decision threshold this results in 79.4 % and 77.1 % correctly classified normal and anomalous images, respectively. Most misclassified anomalies are of low	
	abstract			severity, such as hot diodes and small hot spots. Our method is insensitive to hyperparameter settings, converges quickly and reliably detects unknown types of anomalies	
	versions			making it well suited for practice. Possible uses are in automatic PV plant inspection systems or to streamline manual labelling of IR datasets by filtering out normal images. Furthermore, our work serves the community with a more realistic view on PV module fault detection using unsupervised domain adaptation to develop more performant methods with favorable generalization capabilities.	
			versions		