# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ) ФИЗТЕХ-ШКОЛА ЭЛЕКТРОНИКИ, ФОТОНИКИ И МОЛЕКУЛЯРНОЙ ФИЗИКИ

Лабораторная работа № 4.1.2

# Моделирование оптических приборов и определение их увеличения

выполнил студент 2 курса группы Б04-006 **Белостоцкий Артемий** 

# Цель работы

Изучить модели зрительных труб (астрономической трубы Кеплера и земной трубы Галилея) и микроскопа, определить их увеличения.

# В работе используются

- оптическая скамья
- набор линз
- экран
- осветитель со шкалой
- зрительная труба
- диафрагма
- линейка

## Ход работы

#### Определение фокусных расстояний линз

Центрируем оптическую систему. Настроим зрительную трубу на бесконечность. Установим собирающую линзу на на расстоянии от сетки примерно равном фокусному. На небольшом расстоянии от линзы закрепим трубу и отцентрируем по высоте.

Передвигая линзу вдоль скамьи, получим в окуляре зрительной трубы изображение миллиметровой сетки. При этом расстояние между сеткой и серединой линзы равно фокусному.



Рис. 1: Определение фокусного расстояния собирающих линз

Повернем линзу другой стороной к источнику и повторим измерения фокусного расстояния. Занесем полученные данные в Таблицу 1.

Таблица 1: Значения фокусных расстояний для собирающих линз

| Линза | f, cm | $f_{\text{обр}}, \mathbf{c}\mathbf{m}$ |
|-------|-------|----------------------------------------|
| №1    | 8,3   | 8,2                                    |
| №2    | 10,3  | 10,2                                   |
| №3    | 19,5  | 19,5                                   |
| №4    | 32    | 31                                     |



Рис. 2: Определение фокусного расстояния рассеивающей линзы

Для определения фокусного расстояния тонкой рассеивающей линзы получим изображение сетки на экране при помощи короткофокусной собирающей линзы (причем  $a_0 = 31 \text{cm}$ ). Разместим за экраном трубу, настроенную на бесконечность, закрепим ее и уберем экран.

Перемещая рассеивающую линзу, найдем в окуляре зрительной трубы резкое изображение сетки. Измерив расстояние между линзами l, рассчитаем

фокусное расстояние рассеивающей линзы  $f=l-a_0$ . Перевернем рассеивающую линзы другой стороной к источнику и повторим измерения. Полученные данные занесем в Таблицу 2.

Таблица 2: Значения фокусных расстояний для рассеивающих линз

| Линза | l, см | $l_{ m ofp}$ , см | f, см | $f_{\mathrm{ofp}},\mathbf{c}\mathbf{m}$ |
|-------|-------|-------------------|-------|-----------------------------------------|
| №5    | 22    | 20,5              | 9     | 10,5                                    |

Сделаем вывод о тонкости линз. Так как для линз №1 - №3:  $f - f_{\text{обр}} \sim \sigma_f = 0, 1$  см – погрешность линейки, эти линзы можно считать тонкими.

#### Телескоп Кеплера

Соберем модель телескопа: линза с максимальным фокусным расстоянием — объектив модели — расположим вплотную к линзе коллиматора, окуляр — на расстоянии, примерно равном сумме фокусных расстояний обеих линз телескопа.

Закрепим зрительную трубу за окуляром модели и отцентрируем световое пятно. Перемещая окуляр вдоль оптической скамьи получим изображение миллиметровой сетки в окуляре трубы.



Рис. 3: Модель телескопа

Рассчитаем увеличение исследуемой модели телескопа по формуле:

$$N_{T1} = \frac{f_1}{f_2} \approx 3,86 \pm 0,05$$

, где 
$$f_1 = 32$$
 см;  $f_2 = 8, 3$  см.

Определим размер изображения  $h_1$  – одного миллиметра шкалы осветителя в делениях окулярной шкалы зрительной трубы (без телескопа) и  $h_2$  – аналогичный размер с телескопом. Тогда:

$$N_{T2} = \frac{h_2}{h_1} \approx 3,89 \pm 0,45$$

, где 
$$h_1 = 9$$
 дел;  $h_2 = 35$  дел.

Погрешности рассчитывались по формулам:

$$\sigma_{N_{T1}}=N_{T1}\sqrt{\left(rac{\sigma_f}{f_1}
ight)^2+\left(rac{\sigma_f}{f_2}
ight)^2}$$
  $\sigma_{N_{T2}}=N_{T2}\sqrt{\left(rac{\sigma_h}{h_1}
ight)^2+\left(rac{\sigma_h}{h_2}
ight)^2},\sigma_h=1$  дел

#### Труба Галилея

Вместо собирающей окулярной линзы поставим рассеивающую на расстоянии от объектива, равном разности фокусов объектива и окуляра. Дальнейшие измерение выполним аналогично телескопу Кеплера.

$$N_{\Gamma 1} = \frac{f_1}{f_2} \approx 3,56 \pm 0,04$$

, где  $f_1 = 32$  см;  $f_2 = 9$  см.

$$N_{\Gamma 2} = \frac{h_2}{h_1} \approx 3,67 \pm 0,42$$

, где  $h_1 = 9$  дел;  $h_2 = 33$  дел.

#### Модель микроскопа

Отберем самые короткофокусные линзы  $(f_1 = 8, 3 \text{ см}; f_2 = 10, 3 \text{ см})$ , расположим объектив и окуляр на расстоянии  $l_{12} = 35 \text{ см}$  (подбираем так, чтобы увеличение было примерно равно 5) друг от друга. Сфокусируем модель микроскопа на сетке.

Получим изображение сетки на окуляре зрительной трубки. Измерим величину изображения  $h_2$  миллиметрового деления предметной шкалы. Рассчитаем увеличение микроскопа двумя способами:



Рис. 4: Модель микроскопа

$$N_{M1} = \frac{(l_{12} - f_1 - f_2)L}{f_1 f_2} \approx 4,80$$

$$N_{M2} = \frac{h_2 L}{h_1 f_2} \approx 4,69 \pm 0,34$$

, где  ${
m L}=25~{
m cm},\,h_1=16~{
m дел};\,\,h_2=30~{
m дел}$ 

Погрешности рассчитывались по формулам:

$$\sigma_{N_{M2}} = N_{M2} \sqrt{\left(\frac{\sigma_f}{f}\right)^2 + \left(\frac{\sigma_f}{L}\right)^2 + \left(\frac{\sigma_h}{h_1}\right)^2 + \left(\frac{\sigma_h}{h_2}\right)^2}$$

### Выводы

- 1.В результате работы, несколькими способами были получены увеличения оптических приборов.
- 2.Для всех приборов увеличения, рассчитанные разными способами совпадают в пределах погрешности.