is defined as cov (x, y) = IE (xy) - IE(x) IE(y)

Properties:

- $0 cov (x, x) = V(x) \leftarrow variance of x$
- @ If C is a constant, then Cou(x+C, Y) = Cov(x, Y)
- 3 x, y, z are vandom variables COV(X+Y, Z) = COV(X,Z) + COV(Y,Z)
- @ x, y are r.v. and a etr, then Cov(dx, y) = d cov(x, y)
- 5 COV (X, Y) = COV (Y, X)

Remark (about independence):

OIF cov (x, v) = 0, then we say that x and y are uncorrelated independent r.v. are uncorrelated; However uncorrelated r.v. are not necessarily independent.

ex:

() y	-1	0	l	Py (y)	(OVCX, Y) = (E (XY) - (E (X) (E(Y)
-1	1/4	0	114	1/2	$\mathbb{E}(XY) = 0 = \mathbb{E}(X) = \mathbb{E}(X)$
0	O	0	Ð	0	
	1/4	0	(14	1/2	X and Y are uncorrelated, but X and Y are
(x) x9	1/2	0	1/2		not independent

2 y L -1	0 1		E(x) = E(y) = 0						
	114 0	1/4	E(xy)=0						
0 1/4	0 114	1/2	Cov(x,y)=0, but X and Y are not						
1 0	1/4 0	1/2	independen+.						
11/4 1/2 1/4									
$3f(x,y) = \begin{cases} 6x & \text{if } 0 < x < y < 1 \\ 0 & \text{otherwise} \end{cases}$									
$\times \wedge \text{Beta}(2,2) \longrightarrow \mathbb{E}(x) = \frac{2}{2+2} = \frac{1}{2}, \mathbb{E}(y) = \frac{3}{1+3} = \frac{3}{4}$									
Y~ Beta (3,4)									
$E(XY) = \int_{0}^{1} \left(\int_{0}^{Y} xy \frac{6x}{6x} dx \right) dy = \int_{0}^{1} 2y^{4} dy = \frac{2}{5}$									
2 3 1									
Cov $(x, y) = \overline{\xi} - \overline{\delta} = \overline{40}$ Strength of $-1 \le P(x, y) \le 1$ Imear association by $x \perp y$ correlation coefficient									
$\overrightarrow{x}_{x}\overrightarrow{y} = \ \overrightarrow{x}\ \ \overrightarrow{y}\ \cos(\Theta) \text{Cov}(x,y) = \overline{\sqrt{(x)}} \sqrt{y(y)} \cdot \underline{p(x,x)}$									
Proposition:									
•	$O(cov(x,y)) \leq Jv(x) Jv(y)$ (cauchy-Schwarz Inequality)								
	(は・マ 5 ぱ 1 1 1 1 1 1 1 1 1								
2 The correlation coefficient defined as:									
$P(x,y) = \frac{(ov Cx,y)}{\sqrt{y}} $ is such that $-1 \le P(x,y) \le 1$									
3 $p(x, y) = 1 \rightarrow Y = dx + \beta$ where $d > 0$ (thear perfect positive assoc.									
btw. X & Y)									
$p(x,y) = -1 \rightarrow Y = dx + \beta \text{ where } d < 0$									

Ex: Criven that Cov(x,y) = -2. E(x) = 1, V(x) = 4 and E(y) = -3.

Find the relationship between 1 and 4.

$$-3 = \mathbb{E}(Y) = \mathbb{E}(-2X + B) = -2\mathbb{E}(X) + B \rightarrow B = -3 + 2\mathbb{E}(X) = -1$$

$$\text{relationship}: Y = -2X + 1 \text{ (perfectly linear assoc.)}$$

(X14) -) (Xi, yi)

4 collect data points plot scatter plot

Application: Variance of Imear combination of r.v.: let X1, ..., Xn be

n r.v. and di,..., dn be scalars.

$$\mathbb{O} \operatorname{Cov} \left(\underset{i=1}{\overset{n}{\succeq}} \operatorname{dix}_{i} , \underset{j=1}{\overset{n}{\succeq}} \left(\beta_{j} \times_{j} \right) = \underset{i=1}{\overset{n}{\succeq}} \underset{j=1}{\overset{n}{\succeq}} \operatorname{di} \left(\beta_{j} \operatorname{Cov} \left(\times_{i}, \times_{j} \right) \right).$$

in particular 2

$$\xi_{x}$$
: $V(x) = 2$. $V(x) = 3$. $COV(x, x) = 1$.

then
$$V(3X+2Y) = 9V(X) + 4V(Y) = 2 \times 6 (0V(X,Y)$$

Multinomial Distributions

Discovery Ex: An urn contains 3 red balls, 2 blue ball, and I green ball. Draw successively with replacement 5 balls from the urn. $X_1 = \#$ of red $X_2 = \#$ of blue $X_3 = \#$ of green

→ X1~ Binomial (n=5, p1= =) X2~ Bin (n=5, p2==3) X3~ Bin (n=5, p=6)
X ₁ +X ₂ + X ₃ = 5
what is the joint probability function of ± 1 , ± 2 , ± 3 :
$p(x_1 = k_1, x_2 = k_2, x_3 = k_3) $ # $k_1 + k_2 + k_3 = 5$