- 2. 【現在までの研究状況】(図表を含めてもよいので、わかりやすく記述してください。様式の変更・追加は不可(以下同様))
 - ① これまでの研究の背景、問題点、解決方策、研究目的、研究方法、特色と独創的な点について当該分野の重要文献を挙げて記述してください。
 - ② 申請者のこれまでの研究経過及び得られた結果について整理し、①で記載したことと関連づけて説明してください。その際、博士課程在学中の研究内容が分かるように記載してください。申請内容ファイルの「4.【研究成果】」欄に記載した論文、学会発表等を引用する場合には、同欄の番号を記載するとともに、申請者が担当した部分を明らかにして記述してください。

これまでの研究の背景、問題点、解決方策

[背景]2012年に世界最大の加速器施設である LHC が Higgs 粒子を発見したことで、素粒子の標準模型により予言される粒子全ての存在が確認された。一方で、標準模型の枠内では説明が出来ない現象は未だ多数残されており、宇宙の大半を占める**暗黒物質の正体**や、宇宙を構成するバリオンと反バリオンの数の非対称性、ニュートリノ質量の起源などがその例である。 (♣ こんなに例いる? ♣) こうした状況を受けて、素粒子の加速器実験は引き続き様々な角度から新物理の探索を続けているが、その中で最も重要な視点の一つが、**電弱相互作用の詳細な理解**である。

電弱相互作用が重要である理由として、Higgs が電弱相互作用に付随する対称性の破れを担う粒子であることが挙げられる。Higgs を実際に加速器で生成することが可能になったため、実験による Higgs の性質の検証を通じて、電弱相互作用の理解を深めるとともに、新物理の兆候を見出すという試みが多くなされている。また別の理由として、電弱相互作用を持つ新粒子が暗黒物質の有力な候補になる例が多く存在することも挙げられる。この事実の背景には、新粒子と標準模型粒子とが電弱相互作用を通じて相互作用すると仮定すると、現在の宇宙の暗黒物質残存量が、標準模型粒子に比較的近い質量を持つ新粒子により説明され、理論的に興味深い様々な新物理の模型に埋め込みやすい、という事情が存在する。以上に挙げた理由から、電弱相互作用を詳細に理解することは、現在の実験状況や理論的根拠を鑑みて、素粒子物理の非常に重要な課題であると言える。

【問題点】問題点は **電弱相互作用の理解が未だ不十分** なことである。これは、電弱相互作用が非常に弱い相互作用であること、また電弱対称性の破れのエネルギースケールが比較的高く、最後の構成要素である Higgs が最近発見されたばかりであることに起因する。

【解決方策】高いエネルギースケールにおける電弱対称性の破れやそれに関わる新物理のダイナミクスを明らかにする上で、そのエネルギーに到達可能な粒子加速器による実験を用いることは重要である。特にここでは、(1a)特徴的な信号を用いた新物理探索、および(1b)標準模型の精密測定といったアプローチでこの問題に取り組む。また、加速器実験のデータを元に(2)理論的な考察から新物理の模型を制限することも、電弱相互作用の理解を深める上で有用である。次の項目で、(1a)(1b)(2) それぞれのアプローチについてより具体的に説明する。

|研究目的、方法 │(詳細は「これまでの研究結果」も参照)

全体の研究目的は、電弱相互作用を有する様々な素粒子模型に対して、粒子加速器を用いてそれらを発見し、その性質を測定する、あるいは何らかの制限を与えることである。申請者はこれまで、将来の運営が計画されている、LHCの7倍のエネルギーを持つ100TeV粒子加速器を用いた新物理の探索、およびLHCによるHiggs発見が種々の素粒子模型に与える制限に着目し、上記の問題に取り組んだ。以下に、それぞれの研究の目的、および方法について具体的に述べる。

【A】100TeV **粒子加速器を用いた新物理の探索** (解決方策の(1a)(1b)に対応)

【背景】陽子を加速して衝突させる 100 TeV 粒子加速器の実験では、強い相互作用による標準模型の背景事象が観測される事象の圧倒的多数を占めることが予想される。この背景事象の中から新物理の効果を抜き出すためには、実験手法を工夫する必要がある。

【目的、方法】目的は、電弱相互作用を持つ新粒子の検出に高い感度を持つ実験手法を提案し、その手法により新物理の構造がどの程度まで明らかになるかを調べることである。次に、ここで用いた二つの手法を説明する。(a) 電気的に中性でない長寿命粒子が存在すると、これが検出器内をある程度の距離飛んでから崩壊することで、消失飛跡と呼ばれる特徴的な信号を残す。これを用いることで、背景事象の数を

減らし長寿命粒子への感度を高められる。(b) 電弱相互作用の電荷を持つ重い粒子を考えると、レプトン対生成過程に影響を与えるが、そのイベント数の変化は終状態エネルギースケールの関数として特徴的なピークを持つことが知られている。この関数形を用いてフィッティングを行うことで、膨大な背景事象から新粒子の情報を抜き出すことが出来る。(a)(b) いずれの手法についても、粒子の衝突、崩壊、検出過程をシミュレートし、得られたイベント数を元に統計処理を行うことで、新物理の検出効率を調べる。

【B】LHCによるHiggs発見が種々の素粒子模型に与える制限(解決方策の(2)に対応)

【背景】LHC において Higgs が発見され、その質量や結合の強さなども高精度で測定されている。これらの性質は種々の素粒子模型に対する低エネルギーでの境界条件に対応し、模型に制限を与える。

【目的、方法】目的は実験で測定された Higgs の性質との整合性から、素粒子模型に制限を与えることである。特に、Higgs 質量の測定値は、我々の宇宙が標準模型の準安定真空に対応する可能性を示唆する。この電弱真空の安定性を詳細に議論することで、模型への制限を得ることを考える。具体的には、調べる模型に対して Higgs の自己相互作用定数に関するくりこみ群方程式を解き、得られた解を用いて真空崩壊率を評価し、真空の寿命と宇宙の年齢の大小を比較することで、模型の妥当性を議論する。

これまでの研究結果

以下これまでの研究成果をアプローチ毎にまとめる。[4. 研究業績-(1)-3,4,7,8] および [4. 研究業績-(6)-2] の全ての研究が博士課程で行ったものである。全ての研究で申請者が中心となって解析を行った。

【ia】消失飛跡を用いた新物理の探索(上記【A】手法(a)に対応)

超対称性模型に含まれ、暗黒物質の有力候補でもある Wino の検出可能性を調べた。消失飛跡の信号を用いることで、標準模型の背景事象はほぼ存在せず、暗黒物質を説明出来る質量の Wino まで検出が可能であることを明らかにした。また Wino 飛跡の速度の情報を用いることで、Wino の質量測定が可能であることを示した。さらにゲージーノと呼ばれる他の新粒子が崩壊して Wino を作る過程を考えることで、他のゲージーノの質量を決定し、衝突イベントを完全に再構成出来ることを示した [4-(1)-8]。

【ib】新物理の信号の関数形を用いた背景事象との識別(上記【A】手法(b)に対応)

超対称性模型に含まれる Higgsino を始めとして、暗黒物質の残存量を正しく説明できる、電弱相互作用を持った新粒子の検出可能性を調べた。他の手法では観測しづらい短寿命 Higgsino に対してこの手法が特に有効で、現状で最も良い検出効率を与えることを示した [4-(1)-7]。また新物理のイベント数への寄与が持つピークの位置や高さから、新物理の質量や電荷、スピンなどの性質を抜き出せることを示した [4-(6)-2]。

【ii】電弱真空の安定性から導かれる素粒子模型への制限(上記【B】に対応)

標準模型と同様、一つのスカラー場が電弱相転移を引き起こす模型に対し、真空崩壊率を従来より精密に計算するための定式化を与えた。標準模型の場合に Higgs 自己相互作用定数のくりこみ群方程式を解いて真空崩壊率を計算し、電弱真空の準安定性を再導出した [4-(1)-3]。 さらに Higgs と結合する新粒子が存在する模型で同様の解析を行い、新粒子の質量と結合定数に対して制限を与えた [4-(1)-4]。

特色と独創的な点

3. 【これからの研究計画】

(1) 研究の背景

2. で述べた研究状況を踏まえ、これからの研究計画の背景、問題点、解決すべき点、着想に至った経緯等について参考文献を挙げて記入してください。

これからの研究計画の背景

問題点と解決すべき点、着想に至った経緯等

- (2) 研究目的・内容 (図表を含めてもよいので、わかりやすく記述してください)
 - ① 研究目的、研究方法、研究内容について記述してください。
 - ② どのような計画で、何を、どこまで明らかにしようとするのか、具体的に記入してください。
- ③ 共同研究の場合には、申請者が担当する部分を明らかにしてください。
- ④ 研究計画の期間中に異なった研究機関(外国の研究機関等を含む)において研究に従事することを予定している場合はその旨を記載してください。

全体の研究目的

具体的な研究目的と方法、内容

(研究目的・内容の続き)	

(研究目的・内容の続き)	
3) 研究の特色・独創的な点	

(3) 研究の特色・独創的な点

次の項目について記載してください。

- ① これまでの先行研究等があれば、それらと比較して、本研究の特色、着眼点、独創的な点② 国内外の関連する研究の中での当該研究の位置づけ、意義
- ③ 本研究が完成したとき予想されるインパクト及び将来の見通し

特色、独創的な点

位置付け、意義

インパクトおよび将来の見通し

(申請時点から採用までの準備		
(1年目)		
(2年目)		
(3年目)		

(4) 年次計画

(5) 受入研究室の選定理由	
採用後の受入研究室を選定した理由について、次の項目を含めて記載してください。	
① 受入研究室を知ることとなったきっかけ、及び、採用後の研究実施についての打合せ状況 ② 申請の研究課題を遂行するうえで、当該受入研究室で研究することのメリット、新たな発展・展開	
② 申請の明元課題を受付するプルで、国政文人明元至で明元することのグラッド、利にな発展・展開 ※ 個人的に行う研究で、指導的研究者を中心とするグループが想定されない分野では、「研究室」を	・「研究者」と読み恭えて記載し
てください。	
(6) 人権の保護及び法令等の遵守への対応	
本欄には、研究計画を遂行するにあたって、相手方の同意・協力を必要とする研究、個人情報の取り扱い	いの配慮を必要とする研究、生命
倫理・安全対策に対する取組を必要とする研究など法令等に基づく手続きが必要な研究が含まれている場合	ネに、どのような対策と措置を講
じるのか記述してください。 例えば、個人情報を伴うアンケート調査・インタビュー調査、国内外の文化 遺	建産の調査等、提供を受けた試料
の使用、侵襲性を伴う研究、ヒト遺伝子解析研究、遺伝子組換え実験、動物実験など、研究機関内外の情報	
承認手続きが必要となる調査・研究・実験などが対象となりますので手続きの状況も具体的に記述してく 7	
2 2 = 404x 2 : IP A : 2 = 4 = 10 = 20 C :	ぎさい。
なお、該当しない場合には、その旨記述してください。	ごさい。
なお、該当しない場合には、その旨記述してください。 該当しない。	ごさい。
	ごさい。
	ごさい。
	ざさい。
	ざさい。
	さい。
	さい。
	ごさい。
	ごさい。

- 4. 【研究成果】(下記の項目について申請者が中心的な役割を果たしたもののみ項目に区分して記載してください。その際、通し番号を付すこととし、該当がない項目は「なし」と記載してください。申請者にアンダーラインを付してください。論文数・学会発表等の回数が多くて記載しきれない場合には、主要なものを抜粋し、各項目の最後に「他○報」等と記載してください。 査読中・投稿中のものは除く)
- (1) **学術雑誌等(紀要・論文集等も含む)に発表した論文、著書**(査読の有無を区分して記載してください。査読のある場合、印刷済及び採録決定済のものに限ります。)

著者(申請者を含む全員の氏名(最大 20 名程度)を、論文と同一の順番で記載してください)、題名、掲載誌名、発行所、巻号、pp 開始頁-最終頁、発行年をこの順で記入してください。

- (2) 学術雑誌等又は商業誌における解説、総説
- (3) 国際会議における発表 (ロ頭・ポスターの別、査読の有無を区分して記載してください)

著者(申請者を含む全員の氏名(最大 20 名程度)を、論文等と同一の順番で記載してください)、題名、発表した学会名、論文等の番号、場所、月・年を記載してください。発表者に○印を付してください。(発表予定のものは除く。ただし、発表申し込みが受理されたものは記載しても構いません。)

- (4) 国内学会・シンポジウム等における発表
 - (3)と同様に記載してください。
- (5) 特許等 (申請中、公開中、取得を明記してください。ただし、申請中のもので詳細を記述できない場合は概要のみの記述で構いません。)
- (6) その他 (受賞歴等)
 - (1) 学術雑誌 (紀要・論文集等も含む) に発表した論文及び著書

(査読有り)

- 1. S. Chigusa and T. Moroi, "Bottom-tau unification in a supersymmetric model with anomaly-mediation," Phys. Rev. D **94** (2016) no.3, 035016
- 2. S. Chigusa and T. Moroi, "Bottom-Tau Unification in Supersymmetric SU(5) Models with Extra Matters," PTEP **2017** (2017) no.6, 063B05
- 3. S. Chigusa, T. Moroi and Y. Shoji, "State-of-the-Art Calculation of the Decay Rate of Electroweak Vacuum in the Standard Model," Phys. Rev. Lett. 119 (2017) no.21, 211801
- 4. S. Chigusa, T. Moroi and Y. Shoji, "Decay Rate of Electroweak Vacuum in the Standard Model and Beyond," Phys. Rev. D **97** (2018) no.11, 116012
- 5. S. Chigusa and K. Nakayama, "Anomalous Discrete Flavor Symmetry and Domain Wall Problem," Phys. Lett. B **788** (2019) 249
- 6. S. Chigusa, S. Kasuya and K. Nakayama, "Flavon Stabilization in Models with Discrete Flavor Symmetry," Phys. Lett. B **788** (2019) 494
- 7. S. Chigusa, Y. Ema and T. Moroi, "Probing electroweakly interacting massive particles with DrellYan process at 100 TeV hadron colliders," Phys. Lett. B **789** (2019) 106
- 8. S. Asai, S. Chigusa, T. Kaji, T. Moroi, M. Saito, R. Sawada, J. Tanaka, K. Terashi and K. Uno, "Studying gaugino masses in supersymmetric model at future 100 TeV pp collider," (Biblio??

♣)

(査読なし)

なし

(2) 学術雑誌等又は商業誌における解説・総説 なし

(3) 国際会議における発表

(口頭、査読有り)

- 1. <u>S. Chigusa</u>° and T. Moroi, "Bottom-Tau unification in Supersymmetric Model with Anomaly-Mediation", SUSY 2016, The University of Melbourne (Australia), 2016 年 7 月
- 2. S. Chigusa° and T. Moroi, "Bottom-Tau Unification in Supersymmetric Models", New Physics Forum, IPMU, 2017年2月

(研究成果の続き)

- 3. S. Chigusa^ω, T. Moroi and Y. Shoji, "Decay Rate of the Electroweak Vacuum in the Standard Model and Beyond", Planck 2018, University of Bonn (Germany), 2018年5月
- 4. S. Chigusa° and K. Nakayama, "Flavon Stabilization in Models with Discrete Flavor Symmetry", KEK-PH 2018 winter KEK, 2018 年 12 月

(ポスター、査読有り)

- 5. S. Chigusa° and T. Moroi, "Bottom Tau Unification in Supersymmetric Models", Les Houches Summer School 2017, Les Houches School of Physics (France), 2017年7月
- 6. S. Chigusa^ω, T. Moroi and Y. Shoji, "Decay Rate of the Electroweak Vacuum in the Standard Model and Beyond", Cargese 2018 International Summer School, Scientific Institute of Cargese (France), 2018 年 7 月
- 7. S. Chigusa°, Y. Ema and T. Moroi "Probing Electroweakly Interacting Massive Particles with Precision Measurements at 100 TeV Hadron Colliders", Higgs as a Probe of New Physics 2019, Osaka University, 2019年2月

(4) 国内学会・シンポジウムにおける発表(口頭、査読有り)

- 1. S. Chigusa° and T. Moroi, "Bottom-Tau unification in Supersymmetric Model with Anomaly-Mediation", 日本物理学会秋季大会, 宮崎大学, 2016 年 9 月
- 2. S. Chigusa^ω, T. Moroi and Y. Shoji, "Zero Mode Problem in the Calculation of Decay Rate of the SM Electroweak vacuum", 日本物理学会秋季大会, 信州大学, 2018 年 9 月

(ポスター、査読有り)

- 3. S. Chigusa° and T. Moroi, "Bottom Tau Unification in Supersymmetric Models", 素粒子物理学 の進展 2017, 京都大学, 2017 年 8 月
- 4. S. Chigusa°, Y. Ema and T. Moroi "Indirect Search of WIMP Dark Matter at Future 100 TeV Collider", 素粒子物理学の進展 2018, 京都大学, 2018 年 8 月

(5) 特許等

なし

(6) その他

(受賞歴)

1. 国際会議 "Higgs as a Probe of New Physics 2019" において、the Best Poster Award 受賞(発表 4-(3)-7 に基づく)

(arXiv 投稿済、査読中)

2. T. Abe, S. Chigusa, Y. Ema and T. Moroi " " (* Preprint?? *)

(対外講演)

3. 名古屋大学(2018/10/16) 北海道大学(2019/1/11) KEK (2019/4/9)で自身の研究内容に関するセミナーを行った。

(その他)

- 4. 学術振興会特別研究員 DC1 に採択: 2017 年 4 月-2020 年 3 月
- 5. 東京大学数物フロンティア・リーディング大学院 (FMSP) のコース生に採択: 2015 年 10 月-2020年 3 月