Cálculo II / Análisis II

Lic. en Cs. de la Computación / Lic. Matemática Aplicada - 2024

Práctico 5 - Funciones de varias variables

Dominios y gráficos

(1) Determinar el dominio $D \subseteq \mathbb{R}^2$ de las siguientes funciones y graficarlo.

(a)
$$f(x,y) = \frac{x+y}{x-y}$$

(c)
$$f(x,y) = \frac{xy}{x^2 - y^2}$$

(b)
$$f(x,y) = \sqrt{xy}$$

(d)
$$f(x,y) = \sqrt[3]{4x^2 + 9y^2 - 36}$$

(2) Bosquejar la gráfica de las siguientes funciones.

(a)
$$f(x,y) = y^2$$
, donde $-1 \le x \le 1$, $-1 \le y \le 1$

(b)
$$f(x,y) = x^2 + y^2$$
 (paraboloide)

(c)
$$f(x,y) = x^2 - y^2$$
 (silla de montar)

(d)
$$f(x,y) = \sqrt{x^2 + y^2}$$
 (cono)

Derivadas parciales

(3) Calcular las derivadas parciales de las siguientes funciones y evaluarlas en el punto dado.

(a)
$$f(x,y) = x - y$$
, $p = (3, 2)$

(d)
$$w = e^{y \ln z}$$
, $p = (e, 2, e)$

(a)
$$f(x,y) = x - y$$
, $p = (3,2)$ (d) $w = e^{y \ln z}$, $p = (e,2,e)$
(b) $f(x,y,z) = \frac{xz}{y+z}$, $p = (1,1,1)$ (e) $f(x,y,z) = x^3y^4z^5$, $p = (0,-1,-1)$
(c) $f(x,y) = xy + x^2$, $p = (2,0)$ (f) $w = \ln(1 + e^{xyz})$, $p = (2,0,-1)$

(e)
$$f(x, y, z) = x^3 y^4 z^5$$
, $p = (0, -1, -1)$

(c)
$$f(x,y) = xy + x^2$$
, $p = (2,0)$

(f)
$$w = \ln(1 + e^{xyz}), \qquad p = (2, 0, -1)$$

(4) Obtener las ecuaciones de la recta normal al plano tangente y del plano tangente al gráfico de las siguientes funciones en los puntos dados.

(a)
$$f(x,y) = \cos\left(\frac{x}{y}\right)$$
, en $p = (\pi, 4)$. (b) $f(x,y) = \frac{x}{x^2 + y^2}$, en $p = (1, 2)$.

(b)
$$f(x,y) = \frac{x}{x^2 + y^2}$$
, en $p = (1,2)$.

(5) Obtener la ecuación del plano tangente a la superficie de nivel de la función f que pasa por el punto dado.

(a)
$$f(x, y, z) = x^2y + y^2z + z^2x$$
, en $p = (1, -1, 1)$.

(b)
$$f(x, y, z) = \cos(x + 2y + 3z)$$
, en $p = (\pi/2, \pi, \pi)$.

(6) Para las siguientes funciones f(x, y) encontrar:

- (a) El gradiente en el punto p indicado.
- (b) Una ecuación del plano tangente al gráfico de f en el punto dado.

(c) una ecuación de la recta tangente a la curva de nivel que pasa por el punto dado.

1

(a)
$$f(x,y) = \frac{x-y}{x+y}$$
, en $p = (1,1)$.

(a)
$$f(x,y) = \frac{x-y}{x+y}$$
, en $p = (1,1)$. (b) $f(x,y) = \frac{2xy}{x^2+y^2}$, en $p = (0,2)$.

- (7) Calcular la derivada direccional de f en el punto P y en la dirección del vector \vec{u} dado.
 - (a) $f(x,y) = xe^{2y}$, P = (2,0), $\vec{u} = (\frac{1}{2}, \frac{\sqrt{3}}{2})$.
 - (b) $f(x,y) = \ln(x^2 + y^2 + z^2)$, P = (1,3,2), $\vec{u} = (\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$.
- (8) ¿En qué dirección debemos movernos, partiendo de (1,1), para obtener la más alta y la más baja tasa de crecimiento de la función $f(x,y) = (x+y-2)^2 + (3x-y-6)^2$?

Regla de la cadena

- (9) Calcular las derivadas parciales segundas de las siguientes funciones.
 - (a) $z = x^2(1+y^2)$

- (b) $w = x^3 y^3 z^3$
- (10) Aplique la regla de la cadena para hallar dz/dt

 - (a) $z = x^2 + y^2 + xy$, $x = \sin t$, $y = e^t$ (c) $z = \sqrt{1 + x^2 + y^2}$, $x = \ln t$, $y = \cos t$
 - (b) $z = \cos(x+4y), x = 5t^4, y = 1/t$ (d) $\arctan(y/x), x = e^t, y = 1 e^{-t}$
- (11) Sea $u = \sqrt{x^2 + y^2}$ donde $x = e^{st}$, $y = 1 + s^2 \cos t$. Calcular $\frac{\partial u}{\partial t}$ usando la regla de la cadena y comparar con el resultado que se obtiene reemplazando x e y en u y luego derivar.
- (12) Sea z = f(x, y), x = 2s + 3t, y = 3s 2t. Calcular:
 - (a) $\frac{\partial^2 z}{\partial s^2}$

(b) $\frac{\partial^2 z}{\partial s \partial t}$

(c) $\frac{\partial^2 z}{\partial t^2}$

Puntos críticos

- (13) Encontrar y clasificar los puntos críticos de las siguientes funciones:
 - (a) $f(x,y) = x^2 + 2y^2 4x + 4y$
- (b) $f(x,y) = \frac{xy}{2 + x^2 + y^2}$
- (14) Encontrar los valores máximos y mínimos locales de $f(x,y) = \frac{x}{1+x^2+y^2}$
- (15) Encontrar los valores máximos y mínimos locales de $f(x,y) = xye^{-x^2-y^4}$
- (16) Calcular la distancia más corta desde el punto (1,0,-2) al plano x+2y+z=4.
- (17) Calcular los valores máximo y mínimo relativos o puntos sillas de las siguientes funciones
 - (a) $f(x,y) = 9 2x + 4y x^2 4y^2$ (c) $f(x,y) = x^4 + y^4 4xy + 2$ (d) $f(x,y) = y^2 2y \cos x$ en
- (d) $f(x,y) = y^2 2y \cos x$ en 1 < x < 7.