ALUMNO:	GRUPO:	NIF:

ALEM

(11/12/2013)

aciertos	0	1	2	3	4
calificación	0.0	0.5	1.1	1.7	2.3
aciertos	5	6	7	8	9
calificación	2.8	3.4	4.0	4.6	5.0
aciertos	10	11	12	13	14
calificación	5.7	6.4	7.1	8.0	9.0
aciertos	15				
calificación	10				

tipo 01						
	a	b	С	d		
01						
02						
03						
04						
05						
06						
07						
08						
09						
10						
11						
12						
13						
14						
15						

ALEM prueba 01

PREGUNTAS

1. Sea $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ e $Y = \{0, 2, 4, 6, 8, 9\}$. En $\mathcal{P}(X)$ definimos la siguiente relación binaria:

$$AR_YB$$
 sii $A + B \subseteq Y$

Entonces el conjunto cociente $\mathcal{P}(X)/R_Y$:

- a) tiene 6 elementos
- b) tiene 16 elementos
- c) tiene 64 elementos
- d) tiene 1024 elementos
- 2. Sean A y B conjuntos tales que card A = 8 y card B = 9. De los siguientes conjuntos, ¿cuál tiene cardinal distinto a los restantes?:
 - a) $\mathcal{P}(A \times B)$
 - b) $\mathcal{P}(A)^{B}$
 - c) $\mathcal{P}(B)^A$
 - *d*) $\mathcal{P}(A) \times \mathcal{P}(B)$
- 3. Sea $X = \{0, 1\}$ y R la relación de pertenencia definida sobre X. Entonces:
 - a) $R \subseteq (\bigcup \bigcup R) \times (\bigcup \bigcup R)$
 - b) $R \subseteq \bigcup \bigcup R$
 - c) card $\bigcup \bigcup R = 6$
 - *d*) $\mathcal{P}(X) = \bigcup \bigcup R$
- 4. En $\mathbb Z$ definimos la relación de equivalencia R por

xRy sii, por def.,
$$9 \mid (x^2 - y^2)$$

El conjunto cociente \mathbb{Z}/R tiene:

- a) infinitos elementos, tantos como números naturales
- b) 5 elementos
- c) 4 elementos
- d) 9 elementos
- 5. La función $f: \mathbb{N}^2 \longrightarrow \mathbb{N}$ definida por $f(m,n) = 5^m 7^n$ es:
 - a) inyectiva
 - b) sobreyectiva
 - c) la función característica del conjunto {2,3}
 - d) biyectiva
- 6. Sean $m,n \in \mathbb{N}^*$. Para que $D(m) \times D(n)$ y D(mn) sean isomorfos es condición necesaria y suficiente:
 - a) (m, n) = 1
 - b) que m y n sean ambos primos y distintos
 - c) que (m, n)|[m, n]
 - *d*) que [m, n] = 1
- 7. ¿Cuál de las siguiente afirmaciones es cierta?:

11 de diciembre de 2013 (1)

prueba 01 ALEM

- a) \mathbb{Z}_1 tiene infinitos elementos y \mathbb{Z}_0 tiene uno sólo
- b) \equiv_0 es la relación $\Delta(\mathbb{Z})$ y \equiv_1 es la relación $\nabla(\mathbb{Z})$
- c) \equiv_0 no está definida, pues no se puede dividir por 0
- *d*) \mathbb{Z}_1 es cuerpo
- 8. Sean $m, n \in \mathbb{N}$ y supongamos que existen $u, v \in \mathbb{N}$ tales que

$$1 = mu + nv$$

¿Cuál de las siguientes afirmaciones **no** es consecuencia de ello?:

- a) (m, n) = 1
- b) (m + n, n) = 1
- c) (m + n, mn) = 1
- $d) (\varphi(\mathfrak{m}), \varphi(\mathfrak{n})) = 1$
- 9. Sea $m \in \mathbb{Z}$. ¿Cuál de los siguientes hechos es imposible?:
 - a) $m^2 \equiv 0 \pmod{8}$
 - b) $m^2 \equiv 1 \pmod{8}$
 - c) $m^2 \equiv 4 \pmod{8}$
 - d) $m^2 \equiv n \pmod{8}$, para algún $n \in \{2, 3, 5, 6, 7\}$
- 10. ¿Cuántas soluciones tiene La ecuación:

$$98y - 199x = 68$$

con el valor de y comprendido entre -400 y 300?

- *a*) 1
- *b*) 4
- c) 24
- d) 77
- 11. El sistema

$$48x \equiv 12 \pmod{14}$$

$$6x - 1 \equiv 11 \pmod{10}$$

$$x \equiv 10 \pmod{3}$$

tiene entre -1119 y 5183:

- a) ninguna, pues el sistema no tiene solución
- b) 41 soluciones enteras
- c) 61 soluciones enteras
- d) 81 soluciones enteras
- 12. El resto de dividir $7^{1789544}$ entre 100 es:
 - a) 10
 - *b*) 56
 - c) 1
 - d) 95

ALEM prueba 01

13. El término independiente del inverso (para el producto) de $2x^2+2$ en $\mathbb{Z}_3[x]_{x^3+2x^2+2}$ vale:

- *a*) 2
- *b*) 0
- c) no existe tal inverso, pues $\mathbb{Z}_3[x]_{x^3+2x^2+2}$ no es un cuerpo.
- d) 1
- 14. ¿Cuál de los siguientes anillos es un cuerpo?
 - a) $\mathbb{Z}_7[x]$
 - b) $\mathbb{Z}_{5}[x]_{x^{2}-1}$
 - c) $\mathbb{Z}_2[x]_{x^2+1}$
 - $d) \mathbb{Z}_3[x]_{x^2+1}$
- 15. ¿Cuántas soluciones tiene la ecuación

$$x + y + z + t = 9$$

para las que los valores de x, y, z y t sean números naturales?

- a) 190
- *b*) 220
- c) 240
- d) 270

11 de diciembre de 2013 (3)