## ПРИМЕНЕНИЕ МЕТОДА РАЦИОНАЛИЗАЦИИ ПРИ РЕШЕНИИ НЕРАВЕНСТВ



# Типичные ошибки при решении данного задания:

- невнимательное чтение математической записи неравенства;
- о непонимание алгоритма решения;
- небрежность при отображении множеств на координатной прямой;
- неумение применять метод интервалов при решении неравенств повышенного и высокого уровней сложности;
- некорректное использование систем и совокупностей;
- забыт знаменатель при решении дробнорационального неравенства.

## С чего начать подготовку к решению задачи 15

- равносильные неравенства неравенства, множества решений которых совпадают;
- равносильные преобразования такие действия с неравенством, при совершении которых мы заменяем данное неравенство равносильным ему, но более простым.

Рациональный метод решения неравенств — метод равносильных преобразований по знаку (метод декомпозиции — Моденов В.П., метод замены множителей — Голубев В.И.)

Суть метода рационализации для решения логарифмических и показательных неравенств состоит в том, что в ходе решения осуществляется переход от неравенства, содержащего логарифмические и показательные выражения, к равносильному рациональному неравенству(или равносильной системе рациональных неравенств).

#### Алгоритм метода рационализации

- 1. Выписать условия, задающие ОДЗ.
- 2. Привести исходное неравенство к виду  $\frac{u_1 \cdot u_2 \cdot \ldots \cdot u_n}{v_1 \cdot v_2 \cdot \ldots \cdot v_k} \vee 0$ ,

то есть справа должен стоять 0, а все возможные слагаемые в левой части необходимо привести к общему знаменателю (если среди них встречаются дроби).

- 3. Указать ограничения исходного неравенства.
- 4. По возможности заменить все выражения  $u_{\rm i}$  и  $u_{\rm k}$  на более простые, совпадающие по знаку с исходными.
- 5. Решить полученное неравенство.
- 6. Учитывая ограничения, записать ответ исходного неравенства.

### Метод рационализации в логарифмических неравенствах

□ Таблица работает при условии :f>o,g>o,h>o,h≠1

| $log_hf \ \lor \ log_hg$ | (h-1)(f-g) ∨ 0 |
|--------------------------|----------------|
| $log_h f \lor 1$         | (h-1)(f-h) ∨ 0 |
| $log_h f \ \lor \ 0$     | (h-1)(f-1) ∨ 0 |

- □ где f и g— функции от х,
- □ h— функция или число,
- □ V— один из знаков ≤,>,≥,<

Заметим также, вторая и третья строчки таблицы — следствия первой.

И еще несколько полезных следствий:

| $log_hf \cdot log_p \; g \; \; \lor \; 0$ | (h-1)(f-1)(p-1)(g-1) ∨ 0 |
|-------------------------------------------|--------------------------|
| $log_hf \!\!+\! log_hg \ \lor \ 0$        | (h-1)(fg-1) ∨ 0          |

- □ где f и g функции от х,
- □ h— функция или число,
- □ V— один из знаков ⟨,≥,≤,⟩

- Прассмотрим таблицы, позволяющие рационализировать показательный неравенства.
- □ Таблица для рационализации в показательных неравенствах:
- If и g— функции от x, h— функция или число, V— один из знаков
   >,≤,≥,<. Таблица работает при условии h>0,h≠1.

| $\mathbf{h^f} \ \lor \ \mathbf{h^g}$         | (h-1)(f-g) ∨ 0 |
|----------------------------------------------|----------------|
| $\mathbf{h^f} \ \lor \ 1$                    | (h-1)·f ∨ 0    |
| $f^h \lor g^h$                               | (f-g)·h ∨ 0    |
| $\sqrt{\mathbf{f}} \ \lor \sqrt{\mathbf{g}}$ | f ∨ g          |

 □ Опять же, по сути, нужно запомнить первую и третью строчки таблицы. Вторая строка -частный случай первой, а четвертая строка — частный случай третьей.

# Метод рационализации при решении неравенств, содержащих модуль

| №  | Выражение F              | Выражение G                    |
|----|--------------------------|--------------------------------|
| 1. | $ f(x)  -  g(x)  \vee 0$ | $(f(x)-g(x))(f(x)+g(x))\vee 0$ |
| 2. | $ f(x)  \vee 0$          | $f^2(x) \vee 0$                |

Решите неравенство:

$$|x^{2} - 8x + 15| \ge |x^{2} + 2x - 15|.$$

$$(x^{2} - 8x + 15 - x^{2} - 2x + 15) \times (x^{2} - 8x + 15 + x^{2} + 2x - 15) \ge 0.$$

$$(-10x + 30)(2x^{2} - 6x) \ge 0.$$

$$x(x - 3)^{2} \le 0.$$

$$x \in (-\infty; 0] \cup \{3\}$$

### МЕТОД РАЦИОНАЛИЗАЦИИ ПРИ РЕШЕНИИ НЕРАВЕНСТВ, СОДЕРЖАЩИХ ИРРАЦИОНАЛЬНОСТЬ

| No | Выражение <i>F</i>                 | Выражение <i>G</i>   |
|----|------------------------------------|----------------------|
| 1. | $\sqrt{f(x)} - \sqrt{g(x)} \vee 0$ | $f(x) - g(x) \vee 0$ |
| 2. | $\sqrt{f(x)} \vee 0$               | $f^2(x) \vee 0$      |

$$\frac{\sqrt{x^2 - 1} - \sqrt{3(5 - 2x)}}{\sqrt{x + 5} - 3} \ge 0$$

#### Решение

### Ограничения

$$\frac{\sqrt{x^{2}-1} - \sqrt{3(5-2x)}}{\sqrt{x+5}-3} \ge 0$$

$$\frac{\sqrt{x^{2}-1} - \sqrt{3(5-2x)}}{\sqrt{x+5}-\sqrt{9}} \ge 0$$

$$\frac{x^{2}-1-3(5-2x)}{x+5-9} \ge 0$$

$$\frac{x^{2}+6x-16}{x-4} \ge 0$$

$$\frac{(x+8)(x-2)}{x-4} \ge 0$$

$$\frac{x-4}{x-4} \ge 0$$

$$\begin{cases} x^2 - 1 \ge 0 \\ x + 5 \ge 0 \\ 3(5 - 2x) \ge 0 \end{cases}$$
$$\begin{cases} x \le \frac{5}{2} \\ (x - 1)(x + 1) \ge 0 \\ x \ge -5 \end{cases}$$





$$[-5;-1] \cup [1;2]$$

«Математические сведения могут применяться умело и с пользой только в том случае, если они усвоены творчески, так что учащийся видит сам, как можно было бы прийти к ним самостоятельно»

А.Н.Колмогоров.