《大学物理 I》作业 No.05 狭义相对论基础(A 卷)

班级 ______ 学号 _____ 姓名 _____ 成绩 _____ 一、选择题 1.有下列几种说法: (1) 所有惯性系对物理基本规律都是等价的; (2) 在真空中, 光的速度与光的频率、光源的运动状态无关; (3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同。请问哪些说法是正确的 [] A. 只有(1)、(2)是正确的; B. 只有(1)、(3)是正确的; C. 只有(2)、(3)是正确的; D. 三种说法都是正确的。 2.在狭义相对论中下列说法中哪些是正确的?[] (1) 一切运动物体相对观察者的速度都不能大于真空中的光速 (2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的 (3) 在一惯性系中发生于同一时刻、不同地点的两个事件在其他一切惯性系中也是同时发生 (4) 惯性系中的观察者观察一个与他作匀速度相对运动的时钟时,会观测到这时钟比与他相 对静止的相同的时钟走得慢些 A. (1), (3), (4) B. (1), (2), (4) C. (1), (2), (3) D. (2), (3), (4) 3. 一宇宙飞船相对于地球以 0.8c (c 表示真空中光速)的速度飞行。现在一光脉冲从船尾传 到船头,已知飞船上的观察者测得飞船长为 90m,则地球上的观察者测得光脉冲从船尾发出 和到达船头两个事件的空间间隔为[] A. 270 m B. 150 m C. 90 m D. 54 m 4. 在某地发生两件事,静止位于该地的甲测得时间间隔为 4s, 若相对于甲作匀速直线运动 的乙测得时间间隔为 5s,则乙相对于甲的运动速度是[](c 表示真空中光速) A. (4/5) c B. (3/5) c C. (2/5) c D. (1/5) c5. 宇宙飞船相对于地面以速度 v 作匀速直线飞行, 某一时刻飞船头部的宇航员向飞船尾部 发出一个光讯号,经过 Δt (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的 固有长度为[] A. $c \cdot \Delta t$ B. $v \cdot \Delta t$ C. $c \cdot \Delta t \cdot \sqrt{1 - (v/c)^2}$ D. $\frac{c \cdot \Delta t}{\sqrt{1 - (v/c)^2}}$ (c 表示真空中光速)

6.K 系与 K' 系是坐标轴相互平行的两个惯性系,K' 系相对于 K 系沿 ox 轴正方向匀速运动。一根刚性尺静止在K'系中,与o'x' 轴成

 30° 角。今在 K 系中观察得该尺与 o X 轴成 45° 角,则 K' 系相对于

K 系的速度 u 是[]

A.
$$\frac{2}{3}c$$

B.
$$\frac{1}{3}c$$

A.
$$\frac{2}{3}c$$
 B. $\frac{1}{3}c$ C. $\sqrt{\frac{2}{3}}c$ D. $\sqrt{\frac{1}{3}}c$

D.
$$\sqrt{\frac{1}{3}} c$$

二、判断题

- 1. 经典力学规律具有伽利略变换不变性, 伽利略变换是经典力学的对称操作。[]
- 2. 狭义相对论的相对性原理告诉我们描述一切物理规律, 所有参考系等价。[]
- 3. 在同一参考系中,甲、乙两物体以相同的速率 0.9c 相向运动,则甲看来,相对他的速率 为 1.8c。[]
- 4. 考虑相对论效应,如果对一个惯性系的观察者,有两事件是同时发生的;则对相对于其运 动的惯性系中的观察者而言,这两事件可能不是同时发生的。[]
- 5. 光子的质量为 0, 所以光子的动量也为 0。[]
- 6. 相对论力学中质量、动量、动能的表达式分别是经典力学中相应物理量的 γ 倍。[]

三、填空题

1. 爱因斯坦狭义相对论的基本假设之一: ____ , 和经典的原理 一样, 都是假定物理定律在惯性系中有相同的数学形式, 不过所适用的物理定律 范围不同。

2. 半人马星座 α 星是距离太阳系最近的恒星, 它距离地球大约 4.2 光年。设有一宇宙飞船自 地球飞到半人马星座 α 星, 若以飞船上的时钟计算, 所需时间 4 年到达, 则飞船相对于地球 的速度为v = , 按地球上的时钟计算要用 年时间。

- 3. 一列高速火车以速度 u 驶过车站时,停在站台上的观察者观察到固定在站台上相距 1 m的两只机械手在车厢上同时划出两个痕迹,则车厢上的观察者应测出这两个痕迹之间的距离 为_____m。
- 4. 在惯性系中,两个光子火箭(以光速 c 运动的火箭)沿相互垂直的方向运动时,一个火箭 对中观察另一个火箭的运动速率为

(2) 在速度为 v =	的情况下粒子的动能等于它的静止能量。
6. 要把一个静止质量为 m ₀ 的粒子,由静	争止加速到 0.6c,则需作的功是静能的
四、计算题	
1 加测老田和7 公别盎止王西人牌州务	会昭亥 ₹ 和

- 1、观测者甲和乙分别静止于两个惯性参照系 K 和 K'中,甲测得在同一地点发生的两个事件的时间间隔为 4 s,而乙测得这两个事件的时间间隔为 5 s,求:
- (1) K'相对于 K 的运动速度;
- (2) 乙测得这两个事件发生的地点的距离。

2、设快速运动介子的能量约为 $E=3000 \, \mathrm{MeV}$,而这种介子在静止时的能量为 $E_0=100 \, \mathrm{MeV}$ 。若这种介子的固有寿命是 $\tau_0=2\times 10^{-6}\, \mathrm{s}$,求它能运动的距离(真空中光速度 $c=2.9979\times 10^8\, \mathrm{m\cdot s^{-1}}$)。

3、由于相对论效应,如果粒子的能量增加,粒子在磁场中的回旋周期将随能量的增加而增大。试计算动能为10⁴MeV的质子在磁感应强度为1T的磁场中的回旋周期。

(质子的静止质量为 $1.67 \times 10^{-27} \text{kg}$, $1 \text{eV} = 1.6 \times 10^{-19} \text{J}$)

五、问答或者讨论题

1、在参考系S中,有两个静止质量都是 m_0 的粒子A、B,分别以速度 $\vec{v}_A = \vec{v}$ 、 $\vec{v}_B = -\vec{v}$ 相向运动,两者碰撞后合在一起成为一个静止质量为 M_0 的粒子,在求 M_0 时有一种解答

为:
$$M_0 = m_0 + m_0 = 2m_0$$

这个解答对否? 为什么?