高等线性代数 2019-2020 学年期末考试

吴玉椿

- 1. 群G,群元a, b,定义共轭为:若a与b共轭,则3 $g \in G$,使得 $b = g^{-1}ag$. 证明:共轭是一个等价关系.
- 2. 向量空间V中四个元素

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

- a) 证明 $I, \sigma_x, \sigma_y, \sigma_z$ 是线性无关的.
- b) 证明对任意自伴随、迹为 1 的矩阵A, 可以写成 $A = \frac{1}{2}(I + a\sigma_x + b\sigma_y + c\sigma_z)$ 的形式, 其中, a,b,c为实数, $a^2 + b^2 + c^2 \le 1$. 特别地, 当A的秩为 1 时, $a^2 + b^2 + c^2 = 1$.
- 3. V为向量空间, $\tau \in \mathcal{L}(V)$, $\mathcal{E} = \{e_1, e_2, e_3\}$ 为一组标准基,且

$$\begin{cases} \tau(e_1) = e_1 + e_2 \\ \tau(e_2) = e_2 + e_3 \\ \tau(e_3) = e_1 + e_3 \end{cases}$$

- a) 求标准基 \mathcal{E} 下 τ 的矩阵表示[τ] $_{\mathcal{E}}$.
- b) 若另一组基在标准基下表示为 $\mathcal{B} = \{(1,0,0), (1,1,0), (1,1,1)\}$,求 τ 在 \mathcal{B} 下的表示[τ] $_{\mathcal{B}}$.
- c) 写出t的极小多项式,并写出其有理标准型.再写出域为复时的约当标准型.
- 4. 映射 $f: M_1 \rightarrow M_2$
 - a) 证明f是连续的当且仅当闭集的原像集也是闭的.
 - b) 若f等距, (x_n) 是 M_1 中的柯西列,证明 $f((x_n))$ 也是柯西列.
- 5. V是有限维内积向量空间, $\tau \in \mathcal{L}(V)$
 - a) 若A是非空子集,证明 A^{\perp} 是完备的.
 - b) 设 $\tau = \lambda_1 \rho_1 + \lambda_2 \rho_2 + \dots + \lambda_k \rho_k$, 其中 $\rho_1 + \rho_2 + \dots + \rho_k = I$ 是单位分解. 证明:

$$f(\tau) = f(\lambda_1)\rho_1 + f(\lambda_2)\rho_2 + \dots + f(\lambda_k)\rho_k$$

- c) V的线性算子都是有界的.
- d) 求酉算子的范数.
- e) 证明 τ 是半正定的当且仅当 $3\sigma \in \mathcal{L}(V)$. 使得 $\tau = \sigma^* \sigma$. 并说明 σ 是不唯一的.
- 6. H是希尔伯特空间, B是其有界算子的集合, 证明

注: 由某考生考后回忆得来, 可能有些细节不准确。