Lecture 1 - Introduction in declarative programming. Recursion

Official web site: www.cs.ubbcluj.ro/~hfpop/pfl

Contents

References

Programming and programming languages

Recursion

Examples of recursion

References

Czibula, G., Pop, H.F., Elemente avansate de programare în Lisp și Prolog. Aplicații în Inteligența Artificială., Ed. Albastră, Cluj-Napoca, 2012

Programming and programming languages

> LANGUAGES

- Procedural (imperative) high level languages
 - o Fortran, Cobol, Algol, Pascal, C, ...
 - o program sequence of instructions
 - o the assignment statement, control structures for the control of sequential execution, branching and cycling
 - o the role of the programmer "what" and "how"
 - 1. to describe what is to be calculated
 - 2. to organize the calculation

HOW

- 3. to organize memory management
- !!! it is argued that the assignment instruction is dangerous in high-level languages, just as the GO TO instruction was considered dangerous for structured programming in the '68s.
- Declarative (descriptive, applied) very high level languages
 - based on expressions
 - o expressive, easy to understand (have a simple basis), extensible

- o programs can be seen as descriptions that state information about values, rather than instructions to determine values or effects.
- o they give up instructions
 - 1. thus they protect users from making too many mistakes
 - 2. they are generated from mathematical principles analysis, design, specification, implementation, abstraction and reasoning (deductions of consequences and properties) become more and more formal activities.
- o the role of the programmer "what" (not "how")
- o two classes of declarative languages
 - 1. **functional languages** (eg Lisp, ML, Scheme, Haskell, Erlang)
 - Focus on values of data described by expressions (built through applications of functions and definitions of functions), with automatic evaluation of expressions
 - 2. **logical languages** (e.g. Prolog, Datalog, Parlog),
 - ➤ focus on logical assertions that describe the relationships between data values and automatic derivations of answers to questions, starting from these assertions.
- o applications in Artificial Intelligence automated proofs, natural language processing and speech understanding, expert systems, machine learning, intelligent agents, etc.
- Multiparadigm languages: F#, Python, Scala (imperative, functional, object oriented)
- ➤ Interactions between declarative and imperative languages declarative languages that provide interfaces with imperative languages (eg C, Java): SWI Prolog, GNU Prolog, etc.
- ➤ Logtalk integrates logic and object-oriented programming
- ➤ Logic programming in **Python**:
 - o Karen
 - o **SymPy** library for simbolic computations

Recursion

- general mechanism to elaborate programs
- recursion arose from practical necessities (direct transcription of recursive mathematical formulas; see Ackermann's function)
- recursion is the mechanism by which a subprogram (function, procedure) calls itself
 - o two types of recursion: direct or indirect
- !!! Result
 - o any calculable function can therefore be expressed and programmed) in terms of recursive functions
- two things to consider in describing a recursive algorithm: **the recursive rule** and **the termination condition**
- advantage of recursion: source text that is extremely short and very clear.

- **disadvantage** of recursion: filling the stack segment if the number of recursive calls, respectively of the formal and local parameters of the recursive subprograms is high enough.
 - declarative languages have specific mechanisms to optimize the recursion (see the mechanism of tail recursion in Prolog).

Examples of recursion

Remarks

- a list is a sequence of items $(l_1 l_2 ... l_n)$
- the empty list (with 0 elements) is denoted by \bigcirc
- adding an item to a list is denoted by ⊕
- 1. Create list (1,2,3, ... n)
 - a) directly recursive

$$creareLista(n) = \begin{cases} \emptyset & daca \ n = 0 \\ creareLista(n-1) \oplus n & alt fel \end{cases}$$

b) using a recursive auxiliary function to create the sublist (i, i + 1, ..., n)

// create the list consisting of the elements i, i + 1,..., n

Recursive mathematical model

$$creare(i,n) = \begin{cases} \phi & daca \ i > n \\ i \oplus creare(i+1,n) & altfel \end{cases}$$

// create the list consisting of elements 1, 2, ..., n

$$creareLista(n) = creare(1, n)$$

Pseudocode

Data representation: singly linked list with dynamic allocation of nodes.

NodeLSI

e: TElement // useful information of node

urm: ^NodeLSI // address the following node is stored

```
LSI
```

```
prim: ^NodeLSI // address of the first node in the list
```

```
Function createNodeLSI(e)

{pre: e: TElement}

{post: return a ^NodeLSI having e as useful information }

{allocates a storing space for a NodeLSI }

{p: ^NodLSI}

allocate(p)

[p].e ← e

[p].urm ← NIL

{result returned by the function }

createNodeLSI ← p

EndFunction

Function create(i, n)

{post: return a ^NodLSI pointer towards the head of the linked list for the list for the li
```

```
{post: return a ^NodLSI, pointer towards the head of the linked list formed by }

{ elements i, i+1,..., n }

If i > n then

create ← NIL

else

{ allocate a storage space for a NodeLSI with usefun information e }

q ← createNodeLSI(i)

{ create the link between node q and the head of the linked list formed }

{ by elements i+1,..., n }

[q].urm ← create(i+1, n)

create ← q

EndIf
```

EndFunction

Function createList(n)

{post: return a ^NodeLSI, pointer towards the head of the linked list formed by } { elements 1, 2,..., n }

$$createList \leftarrow create(1, n)$$

EndFunction

- 2. Given a natural number n, calculate the sum 1+2+3+...+n.
 - a) directly recursive

$$suma(n) = \begin{cases} 0 & daca \ n = 0 \\ n + suma(n-1) & alt fel \end{cases}$$

b) using a recursive auxiliary function for calculating the sum i + (i + 1) + ... + n

$$suma_aux(n,i) = \begin{cases} 0 & daca \ i > n \\ i + suma(n,i+1) & alt fel \end{cases}$$

$$suma(n) = suma_aux(n, 0)$$

3. Add an item at the end of a list.

// build the list (l1, l2,..., ln, e)
$$adaug(e, l_1 l_2 \dots l_n) = \begin{cases} (e) & daca \quad l \ e \ vida \\ l_1 \oplus adaug(e, l_2 \dots l_n) & alt fel \end{cases}$$

4. Search for an element in a list.

$$apare(E, l_1 l_2 \dots l_n) = \begin{cases} fals & daca \ l \ e \ vida \\ adevarat & daca \ \ l_1 = E \\ apare(E, l_2 \dots l_n) & alt fel \end{cases}$$

5. Count the number of occurrences of an item in the list.

$$nrap(E, l_1 l_2 \dots l_n) = \begin{cases} 0 & daca \ l \ e \ vida \\ 1 + nrap(E, l_2 \dots l_n) & daca \ \ l_1 = E \\ nrap(E, l_2 \dots l_n) & alt fel \end{cases}$$

6. Check if a numeric list is set.

$$eMultime(l_1l_2...l_n) = \begin{cases} adevarat & daca \ l \ e \ vida \\ fals & daca \ \ l_1 \in (l_2...l_n) \\ eMultime(l_2...l_n) & altfel \end{cases}$$

7. Transform a numeric list into a set.

$$\mathit{multime}(l_1l_2\ldots l_n) = \begin{cases} \phi & \textit{daca } l \; e \; \textit{vida} \\ \mathit{multime}(l_2\ldots l_n) & \textit{daca } \quad l_1 \in (l_2\ldots l_n) \\ l_1 \oplus \mathit{multime}(l_2\ldots l_n) & \textit{altfel} \end{cases}$$

8. Return the inverse of a list.

$$\mathit{invers}(l_1 l_2 \dots l_n) = \begin{cases} \phi & \mathit{daca} \ l \ e \ \mathit{vida} \\ \\ \mathit{invers}(l_2 \dots l_n) \oplus l_1 & \mathit{altfel} \end{cases}$$

9. Remove all occurrences of an item from a list.

$$sterger(E, l_1 l_2 ... l_n) = \begin{cases} \phi & daca \ l \ e \ vida \\ l_1 \oplus sterger(E, l_2 ... l_n) & daca \ \ l_1 \neq E \\ sterger(E, l_2 ... l_n) & alt fel \end{cases}$$

10. Return the k-th element of a list (k > 1).

$$element(l_1l_2...l_n,k) = \begin{cases} \phi & daca \ l \ e \ vida \\ l_1 & daca \ k = 1 \\ element(l_2,...l_n,k-1) & alt fel \end{cases}$$

11. Return the difference between two sets represented as lists.

$$\textit{diferenta}(l_1l_2\dots l_n,p_1p_2\dots p_m) = \begin{cases} \phi & \textit{daca } l \ e \ vida \\ \textit{diferenta}(l_2...l_n,p_1p_2...p_m) & \textit{daca } \ l_1 \in (p_1p_2...p_m) \\ l_1 \oplus \textit{diferenta}(l_2...l_n,p_1p_2...p_m) & \textit{altfel} \end{cases}$$

Homework

- 1. Verify whether a natural number is prime.
- 2. Calculate the sum of the first k elements in a numeric list ($l_1 l_2 \dots l_n$)
- 3. Remove the first k even numbers from a numeric list.