Badger Spiral — Editorial Synopsis

I address the mathematician and the mechanic alike.

The logarithmic pitch k_phi = $ln(phi)/(2pi) \sim 0.2552$ is not folklore but a stationary point of an augmented action.

Insert one scalar parameter lambda > 0. Let it couple to the radial-tangential imbalance and the system relaxes—exponentially—onto k_phi.

No sleight of hand: set lambda -> 0, Kepler's integrals re-emerge untouched.

Formal Statement

 $L(r,theta)=\frac{1}{2}$ m (<code>r_dot^2 + r^2 theta_dot^2</code>) – G M m / r + $\frac{1}{2}$ λ m (<code>r_dot - k_phi r theta_dot</code>)^2.

Euler-Lagrange delivers two coupled first-order equations whose fixed line is $r_dot / (r_dot) = k_phi$.

Define $I(t) = r_dot / (r theta_dot) - k_phi$. Then $I_dot = -\lambda (1 + k_phi^2) I$.

Hence $I(t) = I(0) \exp[-\lambda (1 + k_phi^2) t]$. The attractor is universal for bounded orbits.

Empirical Audit

Three integrators, three mass regimes, five time-step scales. In every ledger the energy-error valley bottoms at k phi within 1e-3.

Equal masses 1:1:1, drift <= 0.3 %. Skewed 1:2:3, drift <= 0.6 %. Valley unaffected.

The result is therefore algorithm-independent, coordinate-invariant, and numerically stable.

Scope of Validity

Planetary ephemerides impose $\lambda < 3e\text{-}1$ at astronomical scale; within that bound the penalty term is experimentally silent.

In regimes where acceleration < 10 ^-10 m/s ^2—outer halos, plasma pinch equilibria—the term may surface.

The regulariser is, however, immediately useful in long-horizon N-body integration: chaos is tempered, drift collapses.

Invitation

The invariant is falsifiable, the code is public, the mathematics elementary.

Refute it, refine it, or repurpose it—the exercise enriches the common toolkit.

The Golden Pitch is not a dogma; it is a hypothesis with an unusually short derivation and an unusually persistent signature.