

Disease's character	Non-infectious	Infectious
Objective	Causality	Control
Cognitive approach	Induction	Deduction
Tools	Statistics	Mathematics
Models	Functional	Structural
Underlying aims	Risk Factors	Mechanisms of the dise

Inductive reasoning is concerned with conclusions that probabilistically (= with a certain likelihood) follow from their premises.

Deductive reasoning is concerned with conclusions that follow necessarily or with certainty from their premises.

Here are two premises:

Simon is the brother of Julie
Julie is the mother of Emma

Now I'm giving you two different conclusions:

a) Simon is the uncle of Emma
b) Simon is older than Emma

Reductionism Reductionism is a philosophical concept according to which a complex system is nothing but the sum of its parts, and that an account of it can be reduced to accounts of individual constituents. Modelling infectious diseases is quintessentially reductionist: very complex entities like diseases are reduced to a ser of mathematical equations!

A Model can be defined as 'a convenient representation of something important'

Ottobilità de Informatica Militica PMUSP

Definition of Modelling

A model can be defined as a "convenient representation of anything considered important". This is an operational definition and, when the representation consists of quantitative components, the model is called a mathematical model

The process of Modelling consists of "a set of complex activities associated with the designing of models representing a real-world system and their solution". As we shall see later on the solution may be analytical or numerical.

cin liberale de laboration Militian

A Model is composed by the following items:

<u>Variables</u>: the quantities of interest that varies with time or age, like the number (or proportion) of susceptibles to a given infection;

<u>Parameters</u>: quantities that determine the dynamical behavior of the systems, like the incidence rate;

Initial and boundary conditions: the initial values of the variables with time (initial conditions) or age (boundary conditions).

Models classification: Stochastic – include probability elements on its dynamics; Deterministic – once defined the value of the parameters and initial conditions, all the course of its dynamics is determined.

Purposes of Modelling

- to help the scientific understanding and precision in the expression of current theories and concepts;
- identification of areas in which epidemiological data is required;
- prediction.

em ettebba de lukumitten Milder

Forecasting vs Projection Models

- Forecasting: prediction before the happening;
- Projection: what would have happened if...

cin itterplan de Infermilien Militier Fillsier

The Reproductive Rate of Infections

The Basic Reproductive Number, R₀, is the number of secondary infections produced by a single infectee during his/hers entire infectiousness period in an entirely susceptible population.

con distribute de information Minister

Infection	Geographical	Time Period	R _o	
	Location			
Measles	England	1947-1950	13-14	
	USA	1918-1921	5-6	
Pertussis	England	1944-1978	16-18	
Chicken Pox	USA	1912-1921	7-8	
Diphtheria	USA	1918-1919	4-5	
Mumps	England	1960-1980	7-8	
Rubella	England	1960-1970	6-7	
Poliomyelitis	USA	1955	5-6	
Malaria	Nigeria	1972	80-200	
HIV	England	1981-1985	2-5	
	Kenya	1981-1985	11-12	
	USA	1981-1984	5-6	
	Brazil	1991	90	
Cincilline de information (Michael School)				

For microparasites, in a homogeneously mixing population, the reproductive value, R, is a function of the product of the number of potentially infective contacts, β , the proportion of susceptible hosts, x, and the time of permanence in the infective condition, T: $R(t) = \beta T x(t)$

 $R(t) = \beta T x(t)$

Com Charleton de Information Militi

