	- 1	

KOD UCZNIA

ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2013/2014

ETAP SZKOLNY

Instrukcja dla ucznia

- 1. Zestaw konkursowy zawiera 6 zadań.
- 2. Przed rozpoczęciem pracy, sprawdź, czy zestaw zadań jest kompletny.
- 3. Jeżeli zauważysz usterki, zgłoś je Komisji Konkursowej.
- 4. Zadania czytaj uważnie i ze zrozumieniem.
- 5. Przedstaw pełne rozwiązania.
- 6. (Obliczenia zapisane w brudnopisie nie będą oceniane.)
- Rozwiązania zapisuj długopisem lub piórem.
 Rozwiązania zapisane ołówkiem nie będą oceniane.
- 8. W nawiasach obok numerów zadań podano liczbę punktów możliwych do uzyskania za dane zadanie.
- 9. Nie używaj kalkulatora.
- 10. Nie używaj korektora.

Pracuj samodzielnie.

Czas pracy: **60 minut**

Liczba punktów możliwych do uzyskania: 40 Do następnego etapu zakwalifikujesz się, jeżeli uzyskasz co najmniej 36 punktów.

POWODZENIA!

Wypełnia komisja konkursowa

Nr zadania	1	2	3	4	5	6	RAZEM
Liczba punktów							

Zatwierdzam

Przewodnicząca Wojewódzkiej Komisji Konkursowej E wa Zakościelna mgr Ewa Zakościelna

Zadania.

Zadanie 1 (6 p)

Gdy cenę biletu na mecz obniżono o 5 zł, okazało się, że na mecz przychodzi o 60% widzów więcej, a dochód uzyskany ze sprzedaży biletów wzrósł o 40%. Ile kosztował bilet przed obniżka?

Zadanie 2 (8p).

Dany jest kwadrat w którym wpisano wyrażenia według pewnej zasady.

а	<u>2a</u>	<u>a</u>
	3	$\overline{2}$
2 <i>a</i>	а	2 <i>a</i>
5	$\overline{3}$	7
а	2 <i>a</i>	а
$\frac{\overline{4}}{4}$	9	5

Znajdź najmniejszą liczbę naturalną a i uzupełnij ten kwadrat w ten sposób, aby wszystkie liczby występujące w tym kwadracie były naturalne.

Zadanie 3 (6p)

W trójkącie równoramiennym ABC, |AC| = |AB| poprowadzono dwusieczną kąta przy wierzchołku C, która przecięła bok AB w punkcie D. Długość odcinka CD jest równa długości podstawy CB. Oblicz miarę kąta CDA.

Zadanie 4 (7p).

Dane są dwa prostokąty ABCD i DBEF jak na rysunku.

Długości boków prostokąta ABCD są równe : AB = 4 cm i AD = 3 cm. Oblicz pole prostokąta DBEF.

Zadanie 5 (6p).

Pociąg o długości 150 m jadący z prędkością 90 *km/h* wjeżdża do tunelu o długości 0,5 km. Ile czasu potrzeba, żeby cały pociąg przejechał przez tunel? Podaj ten czas w sekundach.

Zadanie 6 (7p).

Liczby nieparzyste od 1 do 49 wpisano w tablicy

Wybieramy z tej tablicy 5 dowolnych liczb, ale tak , że żadne dwie nie leżą ani w tej samej kolumnie, ani w jednym wierszu.

Wyznacz wszystkie możliwe wartości, jakie może przyjąć suma wybranych liczb. Odpowiedź uzasadnij.