Written Exam for M.Sc. in Economics

Winter 2010/2011

Advanced Microeconomics

20. December 2010

Master course

3 hours written exam with closed books

Solution

1.1

For p and y (UMP) for consumer i is

$$\max_{x_i} \quad (x_i^1)^{a_i} (x_i^2)^{b_i}$$
s.t. $p \cdot x_i \leq p \cdot \omega_i + \delta_i p \cdot y$ and $x_i \in X_i$

For $p \in \mathbb{R}^2_{++}$ and $p \cdot y \geq -p \cdot \omega_i$ the demand function of consumer i is

$$x_i(p, p \cdot \omega_i + \delta_i p \cdot y) = \left(\frac{a_i}{a_i + b_i} \frac{p \cdot \omega_i + \delta_i p \cdot y}{p_1}, \frac{b_i}{a_i + b_i} \frac{p \cdot \omega_i + \delta_i p \cdot y}{p_2}\right).$$

1.2

The problem of the firm (PMP) is

$$\max_{y} \quad p \cdot y$$
 s.t. $y \in \{z \in \mathbb{R}^2 | z^1 \le 0 \text{ and } z^2 \le -z^1 \}$

There is constant returns to scale. For $p \in \mathbb{R}^2_{++}$ the supply correspondence is

$$y(p) = \begin{cases} (0,0) & \text{for } p_1 > p_2 \\ \{(-t,t) \in \mathbb{R}^2 | t \ge 0\} & \text{for } p_1 = p_2 \end{cases}$$
 $\emptyset & \text{for } p_1 < p_2.$

1.3

Definition 1 A Walrasian equilibrium is a price vector, consumption bundles for the two consumers and a production plan $(\bar{p}, \bar{x}_1, \bar{x}_2, \bar{y})$ such that

- \bar{x}_i is a solution to (UMP) given \bar{p} and \bar{y} for both i.
- \bar{y} is a solution to (PMP) given \bar{p} .
- $\sum_{i} \bar{x}_i = \sum_{i} \omega_i + \bar{y}$.

1.4

Suppose that $(\bar{p}, \bar{x}_1, \bar{x}_2)$ is a Walrasian equilibrium for the pure exchange part of economy. If $\bar{p}_1 \geq \bar{p}_2$, then $(\bar{p}, \bar{x}_1, \bar{x}_2, \bar{y})$, where $\bar{y} = 0$, is a Walrasian equilibrium for the economy. $(\bar{p}, \bar{x}_1, \bar{x}_2)$ is a Walrasian equilibrium for the pure exchange part of economy if and only if

$$\frac{a_1}{a_1 + b_1} \frac{\bar{p} \cdot \omega_1}{\bar{p}_1} + \frac{a_2}{a_2 + b_2} \frac{\bar{p} \cdot \omega_2}{\bar{p}_1} = \omega_1^1 + \omega_2^1$$

and this is equivalent to

$$\frac{\bar{p}_1}{\bar{p}_2} = \frac{\frac{a_1}{a_1 + b_1}\omega_1^2 + \frac{a_2}{a_2 + b_2}\omega_2^2}{\frac{b_1}{a_1 + b_1}\omega_1^1 + \frac{b_2}{a_2 + b_2}\omega_2^1}.$$

Therefore the righthand side is larger than or equal to one if and only if the economy has a Walrasian equilibrium $(\bar{p}, \bar{x}_1, \bar{x}_2, \bar{y})$ with $\bar{y} = 0$.

2.1

Since the preference relation \succeq_i is rational and continuous for every consumer i there exists a continuous utility function u_i that represents \succeq_i . Hence (UMP) for consumer i is

$$\max_{x_i} \ u_i(x_i)$$
s.t. $p \cdot x_i \leq p \cdot \omega_i$ and $x_i \in \mathbb{R}_+^L$.

The budget set is closed because it is the intersection of $\{x \in \mathbb{R}^L | p \cdot x \leq p \cdot \omega_i\}$ and R_+^L and both these sets are closed. For $p \in \mathbb{R}_{++}^L$ the budget set is bounded because it is bounded from below by 0 and from above by $(p \cdot \omega_i/p_1, \ldots, p \cdot \omega_i/p_L)$. All in all the budget set is compact. There exists a solution to (UMP) because u_i is continuous and the budget set is compact.

Suppose that x and x' both are solutions to (UMP) and $x' \neq x$. Then for all $t \in]0,1[,(1-t)x+tx']$ is in the budget set and $(1-t)x+tx' \succ_i x,x'$, because \succeq_i is strictly convex. This contradicts that x and x' both are solutions to (UMP). Therefore there is a unique solution.

2.2

Let $p_{\ell} = 0$ for some ℓ . Suppose that x is a solution to (UMP). Then $x + e_{\ell} \succ_i x$, where the ℓ 'th coordinate of e_{ℓ} is one and all other coordinates are zero, because \succeq_i is strongly monotone. This contradicts that x is a solution to (UMP), because $x + e_{\ell}$ is in the budget too.

2.3

Definition 2 An allocation is a list of consumption bundles $(x_1, ..., x_I)$ such that $x_i \in \mathbb{R}_+^L$ for all i.

Definition 3 A Walrasian equilibrium is a price vector and an allocation $(\bar{p}, \bar{x}_1, \dots, \bar{x}_I)$ such that

- \bar{x}_i is a solution to (UMP) given \bar{p} .
- $\sum_{i} \bar{x}_i = \sum_{i} \omega_i$.

2.4

Suppose that $(\bar{p}, \bar{x}_1, \dots \bar{x}_I)$ is a Walrasian equilibrium. Then $\bar{p} \cdot \bar{x}_i = \bar{p} \cdot \omega_i$ and $x_i \succ_i \bar{x}_i$ implies that $\bar{p} \cdot x_i > \bar{p} \cdot \bar{x}_i$. Thus if $x_i \succ_i \bar{x}_i$ for all $i \in C$, then $\bar{p} \cdot \sum_{i \in C} x_i > \bar{p} \cdot \sum_{i \in C} \omega_i$. Therefore $\sum_{i \in C} x_i \neq \sum_{i \in C} \omega_i$.

3.1

The utility function is somewhat special since (\bar{v}, \bar{v}) is minimum. Answering the exercise with either $u(x^y, x^o) = (\bar{v} - x^y)^2 + (\bar{v} - x^o)^2$ or $u(x^y, x^o) = -(\bar{v} - x^y)^2 - (\bar{v} - x^o)^2$ is perfectly fine. Below the exercise is answered with $u(x^y, x^o) = -(\bar{v} - x^y)^2 - (\bar{v} - x^o)^2$.

Indifference curves are the intersection of circles with center at (\bar{v}, \bar{v}) and \mathbb{R}^2_+ . The assumption $\omega^y, \omega^o \leq \bar{v}$ implies that ω is below the bliss point. The assumption $(\bar{v} - \omega^y)^2 + (\bar{v} - \omega^o)^2 \leq \bar{v}^2$ implies that ω on a circle that is contained in \mathbb{R}^2_+ .

3.2

The problem of consumer t is

$$\max_{x,m} -(\bar{v} - x^y)^2 - (\bar{v} - x^o)^2$$
s.t.
$$\begin{cases} p_t x^y + m \le p_t \omega^y \\ p_{t+1} x^o \le p_{t+1} \omega^o + m \\ x \in \mathbb{R}^2_+ \text{ and } m \in \mathbb{R} \end{cases}$$

The problem can be solved by using the second budget constraint to eliminate m in the first budget constraint, then maximizing utility using the modified budget constraint and finally finding m by use of the first or second budget constraint.

The first-order conditions are

$$2(\bar{v} - x^{y}) - \lambda p_{t} = 0$$

$$2(\bar{v} - x^{o}) - \lambda p_{t+1} = 0$$

$$p_{t}x^{y} + p_{t+1}x^{o} = p_{t}\omega^{y} + p_{t+1}\omega^{o}.$$

The demand function is

$$F((p_t, p_{t+1}), (p_t, p_{t+1}) \cdot \omega) = (\bar{v} - \lambda p_t, \bar{v} - \lambda p_{t+1})$$

where

$$\lambda = \frac{p_t(\bar{v} - \omega^y) + p_{t+1}(\bar{v} - \omega^o)}{p_t^2 + p_{t+1}^2}.$$

Let $x_t(p_t, p_{t+1}) = ((p_t\omega^y + p_{t+1}\omega^o)/p_t, (p_t\omega^y + p_{t+1}\omega^o)/p_{t+1})$, then for the other utility function the demand is

$$F((p_t, p_{t+1}), (p_t, p_{t+1}) \cdot \omega) = \arg \max_{x \in \{(0,0), (x_t^y(p_t, p_{t+1}), 0), (0, x_t^o(p_t, p_{t+1}))\}} (\bar{v} - x^y)^2 + (\bar{v} - x^o)^2$$

3.3

Definition 4 An ordinarily Pareto optimal allocation $(\tilde{x}_t)_{t\in\mathbb{Z}}$ is an allocation such that there is no other allocation $(x_t)_{t\in\mathbb{Z}}$ with

- $x_t = \tilde{x}_t$ for all $t \leq T_L 2$ and $x_t^y = \tilde{x}_t^y$ for $t = T_L 1$ for some T_L .
- $u_t(x_t) \ge u_t(\tilde{x}_t)$ for all t with at least one ">".

Consider the allocation $(x_t)_{t\in\mathbb{Z}}$ where $x_t=(\omega^y+\omega^o,0)$ for all t. Then $(a_t)_{t\in\mathbb{Z}}$ with $a_t=0$ for t<0 and $a_t=\varepsilon$ for $t\geq 0$ is an improving reallocation for $\varepsilon>0$ sufficiently small. This can be shown by considering the derivative of $-(\bar{v}-\omega^y-\omega^o+\varepsilon)^2-(\bar{v}-\varepsilon)^2$ with respect to ε .

For the other utility function consider an allocation, where \boldsymbol{x}_t is the solution to

$$\min_{x} \ (\bar{v} - x^{y})^{2} + (\bar{v} - x^{o})^{2}$$

s.t.
$$x^y + x^o = \omega^y + \omega^o$$
 and $x \in \mathbb{R}^2_+$

for all t. Then clearly it is not ordinarily Pareto optimal.

3.4

If $\bar{p}_t = 1$ for all t and $\bar{x}_t = ((\omega^y + \omega^o)/2, (\omega^y + \omega^o)/2)$ for all t, then $((\bar{p}_t)_{t \in \mathbb{Z}}, (\bar{x}_t)_{t \in \mathbb{Z}})$ is an equilibrium.

For the other utility function additional assumptions are needed to ensure the existence of an equilibrium.