(1)

(a)
$$D_{|\mathcal{L}} = [p(x)||q(x)] = D_{|\mathcal{L}} = [p(x)||q(x)]$$

(b) $E_p[\log \frac{p(x)}{q(x)}] = E_q[\log \frac{q(x)}{p(x)}]$

(c) $E_p[\log \frac{p(x)}{q(x)}] = E_q[\log \frac{q(x)}{p(x)}]$

(d) $E_p[\log \frac{p(x)}{q(x)}] = E_q[\log \frac{q(x)}{p(x)}]$

(e) $E_p[\log \frac{p(x)}{q(x)}] = E_q[\log \frac{q(x)}{p(x)}]$

(o) $E_p[\log \frac{p(x)}{q(x)}] = E_q[\log \frac{q(x)}{p(x)}]$

(i) $E_p[\log \frac{q(x)}{q(x)}] = E_q[\log \frac{q(x)}{q(x)}]$

(i) $E_p[\log \frac{q(x)}{q(x)}] = E_q[\log \frac{q(x)}{q$

5>

$$L(\theta) = -\frac{1}{N} \sum_{n=1}^{N} \rho(x_n | \theta)$$