Circuitos sequenciais

Um circuito combinacional é aquele em que a(s) saída(s) depende(m) de uma combinação das entradas.

Um circuito sequencial, além de uma combinação das entradas, depende de uma combinação de outras variáveis que definem o estado em que o sistema se encontrava. Isto significa que um sistema deverá ter *memória*; para passar ao próximo estado, precisará guardar informações sobre o estado atual.

Basicamente, há dois tipos de circuitos sequenciais:

- assíncronos em que os estados podem mudar a qualquer instante
- síncronos em que os estados mudam em instantes bem determinados

As mudanças de estados que ocorrerão em instantes determinados serão orientadas por um sinal de temporização (*clock*). Se ocorrerem as transições ocorrerem durante uma variação de 0 para 1 (↑ - borda de subida), o sistema será dito de *nível alto*; caso contrário, durante uma variação de 1 para 0 (↓ - borda de descida), o sistema será dito de *nível baixo*. As especificações de tempo para circuitos sequenciais também incluirão o tempo para a transição se estabilizar (*setup time*) e o tempo, após a transição, em que o sinal deve se mantiver constante (*hold time*).

Máquinas de estados finitos (Finite State Machines)

Uma máquina de estados finitos, ou simplesmente autômato finito, é um modelo de comportamento composto de estados, transições e ações. Um estado armazena uma informação sobre a história de um sistema (reflete como as mudanças nas entradas trouxeram o sistema até o estado atual). Uma transição indica uma mudança de estado e é descrita por uma condição que a permite. Uma ação é a descrição de uma atividade executada em certo instante.

Máquinas de estados finitos podem ser usadas para descrever circuitos sequenciais pois suas saídas e seus novos estados são funções de suas entradas e de seus estados atuais.

Os modelos de Mealy e Moore são comumente usados para descrever máquinas de estados finitos. Se a saída for função apenas do estado, o modelo de Moore é melhor empregado. Caso a saída seja função do estado da máquina e de suas entradas, então o modelo de Mealy é melhor empregado. Na prática, esses dois modelos são combinados para oferecer uma descrição do funcionamento de uma máquina de estados finitos.

Exemplo:

Considerar um circuito capaz de identificar a sequência binária 1101.

Modelo de Mealy:

	,		Tabela de	Estados
estado	\	entradas		Х
atual	código	nome		
	У		0	1
	0 0	início	início / 0	id1 / 0
	0 1	id1	início / 0	id11 / 0
	1 0	id11	id110 / 0	id11 / 0
	1 1	id110	início / 0	id1 / 1

Diagrama de estados (Mealy)

Modelo de Moore:

			Tabela de	Estados
estado	\	entradas		X
atual	código	nome		
	У		0	1
	000	início	início / 0	id1 / 0
	0 0 1	id1	início / 0	id11 / 0
	010	id11	id110 / 0	id11 / 0
	0 1 1	id110	início / 0	id1101 / 0
	100	id1101	início / 0	id1 / 1

Diagrama de estados (Moore)

Latches

Um *latch* é uma estrutura lógica capaz de armazenar um *bit*. Constitui-se de um circuito que muda de estado apenas devido às variações das entradas.

Os *latches* são geralmente empregados para se construir chaveadores sem ressaltos (*debounced*). Os ressaltos são variações de natureza oscilatória que podem ocorrer durante uma transição, e poderão ser interpretados erroneamente por um circuito.

O esquema abaixo ilustra a composição de um *latch* implementado com dois inversores.

Se for imposto que a saída (Q) tenha valor igual a (1), o seu complemento (Q') terá valor igual a (0). Caso contrário, se (Q) for igual a (0), então (Q') será igual a (1). Dessa forma, uma unidade mínima de informação (**bit**) poderá ser guardada.

Um *latch* constitui um elemento básico de memória e opera enquanto determinado nível de sinal (0 ou 1) for mantido.

De modo geral, um elemento de memória pode ser descrito como um circuito capaz de receber (escrita), armazenar um valor binário e fornecer cópia (leitura) do valor armazenado.

Construção de um latch do tipo set-reset.

- Com porta OR:

- Substituindo por porta NOR:

$$S = 0$$

$$Q$$

$$Q'$$

$$S = 0$$

$$Q$$

$$Q'$$

$$R = 1$$

$$Q$$

$$Q'$$

$$R = 0$$

- No mapa de Karnaugh:

- Na tabela de estados:

	Q ^{t+1}	Q ^t	R	S
hold	0	0	0	0
	1	1	0	0
reset	0	0	1	0
	0	1	1	0
set	1	0	0	1
	1	1	0	1
unused	Х	0	1	1
	Χ	1	1	1

Latch SR

Um latch SR (Set-Reset) pode ser construído com portas NOR.

	Tabela característica				
S	R	Q_{t+1}	Q' _{t+1}	Obs.:	
0	0	Qt	Q' _t	hold	
0	1	0	1	reset	
1	0	1	0	set	
1	1	?	?	unused (X)	

Equação característica

Um latch SR (Set-Reset) também pode ser construído com portas NAND.

	Tabela característica					
S'	R'	Q_{t+1}	Q' _{t+1}	Obs.:		
0	0	?	?	unused (X)		
0	1	1	0	set		
1	0	0	1	reset		
1	1	Qt	Q' _t	hold		

Equação característica

Um problema que pode ser observado pelas tabelas é a indicação de estado indefinido (não utilizado ou X). Uma tentativa de solução é o acréscimo de uma entrada de controle (habilitação), cujo objetivo é tentar evitar que valores das entradas (S e R) possam levar ao estado não definido (X).

Latch SR com habilitação

Tabela característica					
Obs.:	Q' _{t+1}	Q_{t+1}	R	S	С
no change	Q' _t	Q _t	X	Х	0
hold	Q' _t	Qt	0	0	1
reset	1	0	1	0	1
set	0	1	0	1	1
unused (X)	Х	Х	1	1	1

A representação genérica do *latch* SR com habilitação pode ser a mostrada abaixo.

O *latch* SR também pode ser construído com mais duas entradas assíncronas: uma para estabelecer certo valor inicial (PReset), e outra para limpar (CLear) o conteúdo armazenado.

Latch SR com entradas assíncronas

	Tabela característica						
PR'	CĽ.	O	S	R	Q_{t+1}	Q' _{t+1}	Obs.:
0	0	Χ	Χ	Χ	?	?	Χ
0	1	0	Χ	Χ	1	0	set
1	0	0	Χ	Χ	0	1	reset
1	1	0	Χ	Χ	Q_t	Q' _t	hold
0	1	1	0	1	?	?	Χ
1	0	1	1	0	?	?	Χ
1	1	1	0	0	Qt	Q' _t	hold
1	1	1	0	1	0	1	reset
1	1	1	1	0	1	0	set
1	1	1	1	1	?	?	Χ

A configuração com habilitação tem como vantagem não necessitar de uma configuração especial dos sinais (S) e (R) para manter o estado anterior. Contudo, ainda há desvantagem: a existência de um estado não utilizado. O circuito a seguir procura resolver esse problema vinculando as entradas.

Latch tipo D

Um *latch* tipo D mantém a vantagem de manter o estado atual (*hold*), mesmo que desabilitado, além disso, é capaz de impedir a ocorrência do estado inválido por vincular as entradas (S e R) em uma única (D) e sua inversão.

Há, entretanto, uma desvantagem: se o sinal de controle for mantido em (1) e o sinal de entrada flutuar, as saídas também o farão. O *latch* tipo D não oferece estabilidade.

A representação genérica do *latch* tipo D pode ser a mostrada abaixo.

Flip-flops

Flip-flop é um elemento de memória cujas atualizações de estado ocorrem somente durante as transições (positiva/subida ou negativa/descida) de um sinal de temporização (**clock**). Isso permite que os sinais possam ter pequenas variações arbitrárias, sem que isto possa afetar seus estados. Dessa forma, é possível ditar, com maior precisão, o momento em que os dados poderão ser armazenados no dispositivo. A detecção de variação de borda do pulso é normalmente associada ao sinal de habilitação.

Flip-flop SR

A representação genérica do *flip-flop* SR com *clock* (CLK) pode ser a mostrada abaixo.

OLIN	
Equação carad	cterística
$Q_{t+1} = S + R' Q_t$	(S.R = 0)

	Tabela característica					
S	R	Q_{t+1}	Q' _{t+1}	Obs.:		
0	0	Qt	Q' _t	hold		
0	1	0	1	reset		
1	0	1	0	set		
1	1	?	?	unused		

Tabela de transição				
Qt	Q_{t+1}	S	R	
0	0	0	Χ	
0	1	1	0	
1	0	0	1	
1	1	Х	0	

O diagrama de estados do *flip-flop* SR está mostrado abaixo.

Diagrama de estados do flip-flop SR

Obs.: Carta de tempo obtida com flip-flop sensível à borda de descida, sem atraso (lag).

Flip-flop D

A representação genérica do *flip-flop* tipo D com *clock* pode ser a mostrada abaixo.

Tabela característica				
D	Q_{t+1}	Q' _{t+1}	Obs.:	
0	0	1	reset	
1	1	0	set	

Tabela de transição					
Q_t	Q_{t+1}	D			
0	0	0			
0	1	1			
1	0	0			
1	1	1			

Equação característica $Q_{t+1} = D$

O diagrama de estados do *flip-flop* tipo D está mostrado abaixo.

Diagrama de estados do *flip-flop* tipo D

Obs.: Carta de tempo obtida com *flip-flop* sensível à borda de subida, sem atraso (*lag*).

Flip-flop T (toggle)

O *flip-flop* tipo T é um circuito com apenas uma entrada. Toda vez que a entrada for igual a 1, ou seja, quando houver variação de *clock* de 0 para 1, as saídas serão invertidas.

A representação genérica do *flip-flop* tipo T com *clock* pode ser a mostrada abaixo.

Flip-flop tipo T

Q
T
Q'
CLK

Tabela característica					
Т	Q_{t+1}	Q' _{t+1}	Obs.:		
0	Qt	Q' _t	hold		
1	Q' _t	Q _t	toggle		

Equação característica $Q_{t+1} = T \text{ xor } Q_t$

Tabela de transição				
Qt	Q_{t+1}	T		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

O diagrama de estados do *flip-flop* tipo T está mostrado abaixo.

Diagrama de estados do flip-flop tipo T

Carta de tempo

Obs.: Carta de tempo obtida com *flip-flop* sensível à borda de descida, sem atraso (*lag*).

Flip-flop JK

O *flip-flop* tipo JK é uma modificação do flip-flop SR que é capaz de inverter (*toggle*) as entradas quando ambas forem iguais a 1.

Tabela de transição					
Qt	Q _{t+1}	J	K		
0	0	0	Х		
0	1	1	Х		
1	0	Х	1		
1	1	Χ	0		

O diagrama de estados do *flip-flop* tipo JK está mostrado abaixo.

Diagrama de estados do flip-flop JK

Obs.: Carta de tempo obtida com *flip-flop* sensível à borda de descida, sem atraso (*lag*).

O *flip-flop* tipo JK é considerado modelo universal e usado para construir os outros tipos.

O *flip-flop* tipo JK também pode apresentar um comportamento indesejado quando entra no estado de *toogle*: as saídas Q e Q' podem entrar em oscilação até que as entradas voltem a zero. Isso pode ser resolvido através do uso de arranjos do tipo mestre-escravo (a seguir).

Flip-flop mestre-escravo

Em um *flip-flop* mestre-escravo, o primeiro bloco (mestre) é utilizado para receber uma entrada de dados e armazená-lo. Em um instante posterior, o dado será transferido ao escravo. Ambas as ações são sincronizadas pelo sinal de *clock*.

Flip-flop mestre-escravo tipo D

Flip-flop mestre-escravo tipo JK

