ECE 275A Slides 13: The Unscented Kalman Filter

Florian Meyer

Electrical and Computer Engineering Department University of California San Diego

The Unscented Kalman Filter

- Consider a random vector x whose mean μ_x and covariance matrix Σ_x are known, and a transformed random vector z = q(x)
- So called sigma points (SPs) can be used to calculate approximations of the mean μ_z , covariance matrix Σ_z , and cross-covariance matrix Σ_{xz}
- The resulting approximations are at least as good as those obtained by linearizing $q(\cdot)$ using a first-order Taylor expansion (as done in the extended Kalman filter), since higher-order terms of the expansion are also partly taken into account [Julier, et al., 2000]
- In addition, contrary to an approximation based on the first-order Taylor expansion, an SP-based approximation can also be performed for models that are not differentiable

S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators, IEEE Trans. Automat. Contr., 2000

Calculation of Sigma Points

• For a *L*-dimensional random vector \mathbf{x} , SPs $\{(\mathbf{x}^{(j)})\}_{j=1}^{2L}$ can be calculated as

$$\mathbf{x}^{(j)} = \begin{cases} \mu_{\mathbf{x}} + \sqrt{L} \left(\boldsymbol{\Sigma}_{\mathbf{x}}^{1/2} \right)_{j}, & j = 1, \dots, L \\ \mu_{\mathbf{x}} - \sqrt{L} \left(\boldsymbol{\Sigma}_{\mathbf{x}}^{1/2} \right)_{j}, & j = L+1, \dots, 2L \end{cases}$$

Here, $(\Sigma_{\mathbf{x}}^{1/2})_j$ is the jth row or column of the matrix square root of $\Sigma_{\mathbf{x}}$

• SPs have the property that the sample mean $\tilde{\mu}_{\mathbf{x}} = \frac{1}{2L} \sum_{j=1}^{2L} \mathbf{x}^{(j)}$ and sample covariance matrix $\tilde{\Sigma}_{\mathbf{x}} = \frac{1}{2L} \sum_{j=1}^{2L} (\mathbf{x}^{(j)} - \tilde{\mu}_{\mathbf{x}}) (\mathbf{x}^{(j)} - \tilde{\mu}_{\mathbf{x}})^{\mathrm{T}}$ are exactly equal to $\mu_{\mathbf{x}}$ and $\Sigma_{\mathbf{x}}$, respectively

Unscented Transformation

• SPs $\{\mathbf{z}^{(j)}\}_{j=1}^{2L}$ of \mathbf{z} can be obtained by propagating each SP $\mathbf{x}^{(j)}$ through $\mathbf{q}(\cdot)$:

$$\mathbf{z}^{(j)} = \mathbf{q}(\mathbf{x}^{(j)}), \qquad j = 1, \dots, 2L$$

Calculation of Mean and Covariance

• From $\{(\mathbf{x}^{(j)},\mathbf{z}^{(j)})_{j=1}^{2L}$, one can calculate approximations of $\mu_{\mathbf{z}},\,\Sigma_{\mathbf{z}}$ and $\Sigma_{\mathbf{z}\mathbf{z}}$ as

$$\begin{split} \tilde{\boldsymbol{\mu}}_{\boldsymbol{z}} &= \frac{1}{2L} \sum_{j=1}^{2L} \boldsymbol{z}^{(j)} \\ \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{z}} &= \frac{1}{2L} \sum_{j=1}^{2L} (\boldsymbol{z}^{(j)} - \tilde{\boldsymbol{\mu}}_{\boldsymbol{z}}) (\boldsymbol{z}^{(j)} - \tilde{\boldsymbol{\mu}}_{\boldsymbol{z}})^{\mathrm{T}} \\ \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{x}\boldsymbol{z}} &= \frac{1}{2L} \sum_{i=1}^{2L} (\boldsymbol{x}^{(j)} - \tilde{\boldsymbol{\mu}}_{\boldsymbol{x}}) (\boldsymbol{z}^{(j)} - \tilde{\boldsymbol{\mu}}_{\boldsymbol{z}})^{\mathrm{T}} \end{split}$$

UKF Prediction Step

previously apply

We assume the following nonlinear state-transition model

$$\mathbf{x}_n = \mathbf{w}_n + \mathbf{u}_n$$
 with $\mathbf{w}_n = \mathbf{g}_n(\mathbf{x}_n)$ (1)
Here, the noise \mathbf{u}_n is zero-mean and has known covariance matrix $\Sigma_{\mathbf{u}_n}$; all assumptions of sequential Bayesian estimation discussed

 As derived in a previous class, the prediction step of sequential Bayesian estimation reads

$$f(\mathbf{x}_{n}|\mathbf{y}_{1:n-1}) \propto \int f(\mathbf{x}_{n}, \mathbf{x}_{n-1}|\mathbf{y}_{1:n-1}) d\mathbf{x}_{n-1}$$

$$= \int f(\mathbf{x}_{n}|\mathbf{x}_{n-1}, \mathbf{y}_{1:n-1}) f(\mathbf{x}_{n-1}|\mathbf{y}_{1:n-1})$$

$$= \int f(\mathbf{x}_{n}|\mathbf{x}_{n-1}) f(\mathbf{x}_{n-1}|\mathbf{y}_{1:n-1})$$

where $f(\mathbf{x}_n|\mathbf{x}_{n-1})$ is the state-transition model obtained from (2) and $f(\mathbf{x}_{n-1}|\mathbf{y}_{1:n-1})$ is the previous posterior pdf

• Even if the previous posterior $f(\mathbf{x}_{n-1}|\mathbf{y}_{1:n-1})$ is approximated by a Gaussian, a closed-form calculation of $f(\mathbf{x}_n|\mathbf{y}_{1:n-1})$ is usually infeasible

UKF Prediction Step

• A feasible special case is when $\mathbf{g}_n(\cdot)$ is linear, i.e., $\mathbf{w}_n = \mathbf{g}_n(\mathbf{x}_{n-1}) = \mathbf{G}_n\mathbf{x}_{n-1}$ and $f(\mathbf{x}_{n-1}|\mathbf{y}_{1:n-1})$ as well as $f(\mathbf{u}_n)$ are Gaussian PDFs. Then $f(\mathbf{x}_n|\mathbf{y}_{1:n-1})$ is also Gaussian, and its mean $\mu_{\mathbf{x}_n}^-$ and covariance matrix $\Sigma_{\mathbf{x}_n}^-$ can be calculated based on the Kalman prediction step, i.e.,

$$m{\mu}_{\mathbf{x}_n}^- = m{\mu}_{m{w}_n} \qquad ext{with} \qquad m{\mu}_{m{w}_n} = m{G}_n m{\mu}_{\mathbf{x}_{n-1}}$$
 $m{\Sigma}_{m{x}_n}^- = m{\Sigma}_{m{w}_n} + m{\Sigma}_{m{u}_n} \qquad ext{with} \qquad m{\Sigma}_{m{w}_n} = m{G}_n m{\Sigma}_{m{x}_{n-1}} m{G}_n^{\mathrm{T}}$

• If $g_n(\cdot)$ is nonlinear, the UKF prediction step can be applied; here μ_{w_n} and Σ_{w_n} are replaced by the SP approximations $\tilde{\mu}_{w_n}$ and $\tilde{\Sigma}_{w_n}$

UKF Update Step

We assume the following nonlinear measurement model

$$\mathbf{y}_n = \mathbf{z}_n + \mathbf{v}_n \quad \text{with } \mathbf{z}_n = \mathbf{h}_n(\mathbf{x}_n);$$
 (2)

here, the noise \mathbf{v}_n is zero-mean and has known covariance matrix $\Sigma_{\mathbf{v}_n}$; all assumptions of sequential Bayesian estimation discussed previously apply

 As derived in a previous class, the update step of sequential Bayesian estimation reads

$$f(\mathbf{x}_{n}|\mathbf{y}_{1:n}) \propto f(\mathbf{y}_{n}, \mathbf{x}_{n}|\mathbf{y}_{1:n-1})$$

$$= f(\mathbf{y}_{n}|\mathbf{x}_{n}, \mathbf{y}_{1:n-1})f(\mathbf{x}_{n}|\mathbf{y}_{1:n-1})$$

$$= f(\mathbf{y}_{n}|\mathbf{x}_{n})f(\mathbf{x}_{n}|\mathbf{y}_{1:n-1})$$

where $f(\mathbf{y}_n|\mathbf{x}_n)$ is the likelihood function obtained from (2) and $f(\mathbf{x}_n|\mathbf{y}_{1:n-1})$ is the predicted posterior pdf

• Even if the predicted posterior $f(\mathbf{x}_n|\mathbf{y}_{1:n-1})$ is approximated by a Gaussian, a closed-form calculation of $f(\mathbf{x}_n|\mathbf{y}_{1:n})$ is infeasible

UKF Update Step

• A feasible special case is when $h_n(\cdot)$ is linear, i.e., $z_n = h_n(x_n) = H_n x_n$ and $f(x_n|y_{1:n-1})$ as well as $f(v_n)$ are Gaussian PDFs. Then $f(x_n|y_{1:n})$ is also Gaussian, and its mean μ_{x_n} and covariance matrix Σ_{x_n} can be calculated based on the Kalman update step, i.e.,

$$\mu_{\mathbf{x}_n} = \mu_{\mathbf{x}_n}^- + \mathcal{K}_n(\mathbf{y}_n - \mu_{\mathbf{y}_n})$$
 $\Sigma_{\mathbf{x}_n} = \Sigma_{\mathbf{x}_n}^- - \mathcal{K}_n \Sigma_{\mathbf{x}_n \mathbf{y}_n}^{\mathrm{T}}$

with

$$egin{aligned} oldsymbol{\mathcal{K}}_n &= oldsymbol{\Sigma}_{oldsymbol{\mathsf{x}}_n oldsymbol{\mathsf{z}}_n} (oldsymbol{\Sigma}_{oldsymbol{\mathsf{z}}_n} + oldsymbol{\Sigma}_{oldsymbol{\mathsf{v}}_n})^{-1} \ oldsymbol{\mu}_{oldsymbol{\mathsf{y}}_n} &= oldsymbol{\mathsf{H}}_{oldsymbol{\mathsf{z}}_n} = oldsymbol{\mathsf{H}}_n^{\mathrm{T}} \ oldsymbol{\Sigma}_{oldsymbol{\mathsf{z}}_n oldsymbol{\mathsf{y}}_n} = oldsymbol{\Sigma}_{oldsymbol{\mathsf{x}}_n oldsymbol{\mathsf{z}}_n} = oldsymbol{\Sigma}_{oldsymbol{\mathsf{x}}_n} oldsymbol{\mathsf{H}}_n^{\mathrm{T}} \ oldsymbol{\Sigma}_{oldsymbol{\mathsf{x}}_n oldsymbol{\mathsf{y}}_n} = oldsymbol{\Sigma}_{oldsymbol{\mathsf{x}}_n oldsymbol{\mathsf{z}}_n} = oldsymbol{\Sigma}_{oldsymbol{\mathsf{x}}_n} oldsymbol{\mathsf{H}}_n^{\mathrm{T}} \end{aligned}$$

UKF Update Step

- In the case of nonlinear $h_n(\cdot)$, the SP prediction step can be applied
- This is done by using the closed-form expressions of the linear-Gaussian case, in which μ_{z_n} , Σ_{z_n} , and $\Sigma_{x_nz_n}$ are replaced by the SP approximations $\tilde{\mu}_{z_n}$, $\tilde{\Sigma}_{z_n}$, and $\tilde{\Sigma}_{x_nz_n}$
- ullet In particular, SP approximations $ilde{\mu}_{\mathbf{x}_n}$ and $ilde{\Sigma}_{\mathbf{x}_n}$ are obtained as

$$ilde{\mu}_{\mathbf{x}_n} = \mu_{\mathbf{x}_n}^- + ilde{K}_n(\mathbf{y}_n - ilde{\mu}_{\mathbf{z}_n})\,, \qquad ilde{\Sigma}_{\mathbf{x}_n} = \mathbf{\Sigma}_{\mathbf{x}_n}^- - ilde{K}_n ilde{\Sigma}_{\mathbf{x}_n\mathbf{z}_n}^{\mathrm{T}},$$
 with $ilde{K}_n = ilde{\Sigma}_{\mathbf{x}_n\mathbf{z}_n}(ilde{\Sigma}_{\mathbf{z}_n} + \mathbf{\Sigma}_{\mathbf{v}_n})^{-1}$