P1 Chapter 6: Circles

The Circle Equation

Equation of a circle

Recall that a line can be a set of points (x, y) that satisfy some equation. Suppose we have a point (x, y) on a circle centred at the origin, with radius r. What equation must (x, y) satisfy?

(Hint: draw a right-angled triangle inside your circle, with one vertex at the origin and another at the circumference)

$$x^2 + y^2 = r^2$$

Equation of a circle

Now suppose we shift the circle so it's now centred at (a, b). What's the equation now?

(Hint: What would the sides of this rightangled triangle be now?)

The equation of a circle with centre (a, b) and radius r is:

$$(x-a)^2 + (y-b)^2 = r^2$$

Quickfire Questions

Centre	Radius	Equation
(0,0)	5	?
(1,2)	6	?
?	?	$(x+3)^2 + (y-5)^2 = 1$
?	?	$(x+5)^2 + (y-2)^2 = 49$
?	?	$(x+6)^2 + y^2 = 16$
?	?	$(x-1)^2 + (y+1)^2 = 3$
?	?	$(x+2)^2 + (y-3)^2 = 8$

Quickfire Questions

Centre	Radius	Equation
(0,0)	5	$x^2 + y^2 = 25$
(1,2)	6	$(x-1)^2 + (y-2)^2 = 36$
(-3,5)	1	$(x+3)^2 + (y-5)^2 = 1$
(-5,2)	7	$(x+5)^2 + (y-2)^2 = 49$
(-6,0)	4	$(x+6)^2 + y^2 = 16$
(1, -1)	$\sqrt{3}$	$(x-1)^2 + (y+1)^2 = 3$
(-2,3)	$2\sqrt{2}$	$(x+2)^2 + (y-3)^2 = 8$

Finding the equation using points

A line segment AB is the diameter of a circle, where A and B have coordinates (5,8) and (-7,4) respectively. Determine the equation of the circle.

Hint: What two things do we need to use the circle formula?

· !

Finding the equation using points

A line segment AB is the diameter of a circle, where A and B have coordinates (5,8) and (-7,4) respectively. Determine the equation of the circle.

Hint: What two things do we need to use the circle formula?

Centre: C(-1,6)

We can use the distance BC or AC as the radius. Using B(-7,4) and M(-1,6)

$$r = \sqrt{6^2 + 2^2} = \sqrt{40} = 2\sqrt{10}$$

$$\therefore (x+1)^2 + (y-6)^2 = 40$$

Test Your Understanding

Edexcel C2 Jan 2005 Q2

The points A and B have coordinates (5, -1) and (13, 11) respectively.

(a) Find the coordinates of the mid-point of AB.

(2)

Given that AB is a diameter of the circle C,

(b) find an equation for C.

(4)

Test Your Understanding

Edexcel C2 Jan 2005 Q2

The points A and B have coordinates (5, -1) and (13, 11) respectively.

(a) Find the coordinates of the mid-point of AB.

(2)

Given that AB is a diameter of the circle C,

(b) find an equation for C.

(4)

a)
$$(9,5)$$

b) $r = \sqrt{4^2 + 6^2} = \sqrt{52}$
 $(x-9)^2 + (y-5)^2 = 52$

Completing the square

When the equation of a circle is in the form $(x-a)^2+(y-b)^2=r^2$, we can instantly read off the centre (a,b) and the radius r. But what if the equation wasn't in this form?

Find the centre and radius of the circle with equation $x^2 + y^2 - 6x + 2y - 6 = 0$

Hint: Have we seen a method in a previous chapter that allows us to turn a x^2 term and a x term into a single expression involving x?

7

Completing the square

When the equation of a circle is in the form $(x-a)^2+(y-b)^2=r^2$, we can instantly read off the centre (a,b) and the radius r.

But what if the equation wasn't in this form?

Find the centre and radius of the circle with equation $x^2 + y^2 - 6x + 2y - 6 = 0$

Hint: Have we seen a method in a previous chapter that allows us to turn a x^2 term and a x term into a single expression involving x?

$$x^{2} - 6x + y^{2} + 2y - 6 = 0$$

$$(x - 3)^{2} - 9 + (y + 1)^{2} - 1 - 6 = 0$$

$$(x - 3)^{2} + (y + 1)^{2} = 16$$

Rearrange terms so that x terms are together and y terms are together.

Complete the square!

Further Example

Edexcel C2 June 2012 Q3a,b

The circle C with centre T and radius r has equation

$$x^2 + y^2 - 20x - 16y + 139 = 0$$

(a) Find the coordinates of the centre of C.

(3)

(b) Show that r = 5

(2)

Further Example

Edexcel C2 June 2012 Q3a,b

The circle C with centre T and radius r has equation

$$x^2 + y^2 - 20x - 16y + 139 = 0$$

(a) Find the coordinates of the centre of C.

(3)

(b) Show that r = 5

(2)

$$x^{2} - 20x + y^{2} - 16y + 139 = 0$$

$$(x - 10)^{2} - 100 + (y - 8)^{2} - 64 + 139 = 0$$

$$(x - 10)^{2} + (y - 8)^{2} = 25$$

$$C(10.8), \qquad r = \sqrt{25} = 5$$

Exercise 6.2

Pearson Pure Mathematics Year 1/AS Page 47

Extension:

[MAT 2009 1B] The point on the circle $x^2 + y^2 + 6x + 8y = 75$ which is closest to the origin, is at what distance from the origin?

[MAT 2007 1D] The point on the circle $(x-5)^2 + (y-4)^2 = 4$ which is closest to the circle $(x-1)^2 + (y-1)^2 = 1$

has what coordinates?

[MAT 2016 1I] Let a and b be positive real numbers. If $x^2 + y^2 \le 1$ then the largest that ax + by can equal is what? Give your expression in terms of a and b.

?

?

3

Exercise 6.2

Pearson Pure Mathematics Year 1/AS Page 47

Extension:

[MAT 2009 1B] The point on the circle $x^2 + y^2 + 6x + 8y = 75$ which is closest to the origin, is at what distance from the origin?

$$(x+3)^2 + (y+4)^2 = 100$$

 $\therefore C(-3,-4), r = 10$

The closest point P lies on the line between the circle centre and the origin. Since (-3, -4) is 5 away from the origin, the distance between the origin and P must be 10 - 5 = 5

[MAT 2007 1D] The point on the circle $(x-5)^2 + (y-4)^2 = 4$ which is closest to the circle $(x-1)^2 + (y-1)^2 = 1$ has what coordinates?

> Drawing the circles on the same axes, and drawing a straight line connecting their centres, the point is where the straight line intersects the first circle.

The circle centres are 5 apart, so we need to go $\frac{2}{5}$ of the way across this line, giving (3.4, 2.8)

[MAT 2016 1I] Let a and b be positive real numbers. If $x^2 + y^2 \le 1$ then the largest that

 $x^2 + y^2 \le 1$ then the largest that ax + by can equal is what? Give your expression in terms of a and b.

Many MAT questions consider maximising an expression in terms of x and y. Consider for example the simple case

x + y = k. As we increase k, the line stays in the same direction but 'sweeps' across:

If we similarly consider the line ax + by = k, ax + by is therefore maximised when the line is tangent to the unit circle.

Using similar triangles, we can obtain $k = \sqrt{a^2 + b^2}$

Homework Exercise

- 1 Write down the equation of each circle:
- **a** Centre (3, 2), radius 4 **b** Centre (-4, 5), radius 6 **c** Centre (5, -6), radius $2\sqrt{3}$
- **d** Centre (2a, 7a), radius 5a **e** Centre $(-2\sqrt{2}, -3\sqrt{2})$, radius 1
- 2 Write down the coordinates of the centre and the radius of each circle:

a
$$(x+5)^2 + (y-4)^2 = 9^2$$

a
$$(x+5)^2 + (y-4)^2 = 9^2$$
 b $(x-7)^2 + (y-1)^2 = 16$ **c** $(x+4)^2 + y^2 = 25$

$$c (x+4)^2 + y^2 = 25$$

d
$$(x + 4a)^2 + (y + a)^2 = 144a^2$$

d
$$(x + 4a)^2 + (y + a)^2 = 144a^2$$
 e $(x - 3\sqrt{5})^2 + (y + \sqrt{5})^2 = 27$

3 In each case, show that the circle passes through the given point:

a
$$(x-2)^2 + (y-5)^2 = 13$$
, point (4, 8)

b
$$(x+7)^2 + (y-2)^2 = 65$$
, point $(0, -2)$

$$x^2 + y^2 = 25^2$$
, point $(7, -24)$

d
$$(x-2a)^2 + (y+5a)^2 = 20a^2$$
, point $(6a, -3a)$

e
$$(x-3\sqrt{5})^2 + (y-\sqrt{5})^2 = (2\sqrt{10})^2$$
 point, $(\sqrt{5}, -\sqrt{5})$

4 The point (4, -2) lies on the circle centre (8, 1). Find the equation of the circle.

Hint First find the radius of the circle.

- 5 The line PQ is the diameter of the circle, where P and Q are (5, 6) and (-2, 2) respectively. Find the equation of the circle. (5 marks)
- 6 The point (1, -3) lies on the circle $(x 3)^2 + (y + 4)^2 = r^2$. Find the value of r. (3 marks)
- The points P(2, 2), $Q(2 + \sqrt{3}, 5)$ and $R(2 \sqrt{3}, 5)$ lie on the circle $(x 2)^2 + (y 4)^2 = r^2$.
 - a Find the value of r. (2 marks)
 - **b** Show that $\triangle POR$ is equilateral. (3 marks)

Homework Exercise

- 8 a Show that $x^2 + y^2 4x 11 = 0$ can be written in the form $(x a)^2 + y^2 = r^2$, where a and r are numbers to be found. (2 marks)
 - b Hence write down the centre and radius of the circle with equation $x^2 + y^2 4x 11 = 0$ (2 marks) Start by writing $(x^2 4x)$ in the form $(x a)^2 b$.
- 9 a Show that $x^2 + y^2 10x + 4y 20 = 0$ can be written in the form $(x a)^2 + (y b)^2 = r^2$, where a, b and r are numbers to be found. (2 marks)
 - **b** Hence write down the centre and radius of the circle with equation $x^2 + y^2 10x + 4y 20 = 0$. (2 marks)
- 10 Find the centre and radius of the circle with each of the following equations.

$$x^2 + v^2 - 2x + 8v - 8 = 0$$

b
$$x^2 + y^2 + 12x - 4y = 9$$

$$x^2 + y^2 - 6y = 22x - 40$$

d
$$x^2 + y^2 + 5x - y + 4 = 2y + 8$$

e
$$2x^2 + 2y^2 - 6x + 5y = 2x - 3y - 3$$

Hint Start by writing the equation in one of the following forms:

$$(x-a)^2 + (y-b)^2 = r^2$$

 $x^2 + y^2 + 2fx + 2gy + c = 0$

- 11 A circle C has equation $x^2 + y^2 + 12x + 2y = k$, where k is a constant.
 - a Find the coordinates of the centre of C.

(2 marks)

b State the range of possible values of k.

(2 marks)

A circle must have a positive radius.

Problem-solving

Homework Exercise

12 The point P(7, -14) lies on the circle with equation $x^2 + y^2 + 6x - 14y = 17$. The point Q also lies on the circle such that PQ is a diameter. Find the coordinates of point Q.

- (4 marks)
- 13 The circle with equation $(x k)^2 + y^2 = 41$ passes through the point (3, 4). Find the two possible values of k.

(5 marks)

Challenge

- **1** A circle with equation $(x k)^2 + (y 2)^2 = 50$ passes through the point (4, -5). Find the possible values of k and the equation of each circle.
- **2** By completing the square for x and y, show that the equation $x^2 + y^2 + 2fx + 2gy + c = 0$ describes a circle with centre (-f, -g) and radius $\sqrt{f^2 + g^2 c}$.

Homework Answers

1 **a**
$$(x-3)^2 + (y-2)^2 = 16$$

b $(x+4)^2 + (y-5)^2 = 36$
c $(x-5)^2 + (y+6)^2 = 12$
d $(x-2a)^2 + (y-7a)^2 = 25a^2$
e $(x+2\sqrt{2})^2 + (y+3\sqrt{2})^2 = 1$
2 **a** $(-5,4),9$ **b** $(7,1),4$
c $(-4,0),5$ **d** $(-4a,-a),12a$
e $(3\sqrt{5},-\sqrt{5}),3\sqrt{3}$
3 **a** $(4-2)^2 + (8-5)^2 = 4+9=13$
b $(0+7)^2 + (-2-2)^2 = 49+16=65$
c $7^2 + (-24)^2 = 49+576=625=25^2$
d $(6a-2a)^2 + (-3a+5a)^2 = 16a^2 + 4a^2 = 20a^2$
e $(\sqrt{5}-3\sqrt{5})^2 + (-\sqrt{5}-\sqrt{5})^2 = (-2\sqrt{5})^2 + (-2\sqrt{5})^2$
 $= 20+20=40=(2\sqrt{10})^2$
4 $(x-8)^2 + (y-1)^2 = 25$
5 $(x-\frac{3}{2})^2 + (y-4)^2 = \frac{65}{4}$
6 $\sqrt{5}$
7 **a** $r=2$
b Distance $PQ = PR = RQ = 2\sqrt{3}$, three equal length sides triangle is equilateral.
8 **a** $(x-2)^2 + y^2 = 15$

b Centre (2, 0) and radius = $\sqrt{15}$

9 **a**
$$(x-5)^2 + (y+2)^2 = 49$$

b Centre $(5, -2)$ and radius = 7
10 **a** Centre $(1, -4)$, radius 5
b Centre $(-6, 2)$, radius 7
c Centre $(11, -3)$, radius $3\sqrt{10}$
d 10 Centre $(-2.5, 1.5)$, radius $\frac{5\sqrt{2}}{2}$
e Centre $(2, -2)$, radius
11 **a** Centre $(-6, -1)$
b $k > -37$
12 $Q(-13, 28)$
13 $k = -2$ and $k = 8$

Challenge

1
$$k = 3$$
, $(x - 3)^2 + (y - 2)^2 = 50$
 $k = 5$, $(x - 5)^2 + (y - 2)^2 = 50$
2 $(x + f)^2 - f^2 + (y + g)^2 - g^2 + c = 0$
So $(x + f)^2 + (y + g)^2 = f^2 + g^2 - c$
Circle with centre $(-f, -g)$ and radius $\sqrt{f^2 + g^2 - c}$.