$U_{20} \succ U_{2N}$  : الثانوي في حالة دارة مفتوحة إذن : 1.4 في الفراغ : الثانوي في حالة دارة مفتوحة إذن



$$m_0 = rac{U_{20}}{U_1} = rac{N_2}{N_1}$$
 : نسبة التحويل على فراغ

$$Cos\, arphi_{10} = rac{P_{10}}{S_{10}}$$
معامل الاستطاعة في الفراغ:

$$P_2=0 \implies P_{10}=P_{f_{er}}+P_J$$
 . الاستطاعات :  $P_{10}=P_2+P_{fer}+P_J$  لدينا :  $P_{10}\cong P_{f_{er}}$   $\Leftrightarrow I_{10}\prec\prec\prec I_{1N}$  بما أن  $P_J=R_1{I_{10}}^2+R_2{I_2}^2=R_1{I_{10}}^2(I_2=0)$  من جهة أخرى:



$$m=rac{I_{1CC}}{I_{2CC}}=rac{N_2}{N_1}$$
 می حالهٔ دارهٔ قصیره  $P_{1CC}=P_{f_{er}}+P_J$ : الاستطاعات  $P_{1CC}=P_{f_{er}}+P_J$ : بما أن  $P_{fer}pprox 0 \Leftarrow U_{1CC} \prec\prec\prec$  بما أن

$$P_{1CC} = P_{f_{er}} + P_J$$
: الاستطاعات

$$P_{1CC} \cong P_J$$





#### 1.5 - الإرجاع إلى الثانوى:

$$X_{S}=X_{2}+X_{1}{m_{0}}^{2}=L_{2}\omega+L_{1}\omega{m_{0}}^{2}$$
 المفاعلة الكلية المرجعة إلى الثانوي :

$$R_S = R_2 + R_1 m_0^{\ 2}$$
 المقاومة الكلية المرجعة إلى الثانوي :

$$Z_{S} = \sqrt{{X_{S}}^{2} + {R_{S}}^{2}}$$
 الممانعة الكلية المرجعة إلى الثانوي :

$$X_P = X_1 + rac{X_2}{m_0^2} = L_1\omega + rac{L_2\omega}{m_0^2}$$
 : المفاعلة الكلية المرجعة إلى الابتدائي - 1 المفاعلة الكلية المرجعة المرجعة إلى الابتدائي - 2.5

$$R_{P} = R_{1} + rac{R_{2}}{m_{0}^{2}}$$
: المقاومة الكلية المرجعة إلى الابتدائي -

$$Z_{P} = \sqrt{{X_{P}}^2 + {R_{P}}^2}$$
 . الممانعة الكلية المرجعة إلى الابتدائي

 $P_{1CC}, I_{2CC}, I_{1CC}, U_{1CC}$  عناصر التصميم المكافئ : تحسب انطلاقا من التجربة في حالة قصر وذلك بقياس عناصر التصميم المكافئ : تحسب انطلاقا من التجربة في حالة قصر وذلك بقياس عناصر التصميم المكافئ : 2.5

$$R_{P}=rac{P_{1CC}}{I_{1CC}},Z_{P}=rac{U_{1CC}}{I_{1CC}},X_{P}=\sqrt{{Z_{P}}^{2}-{R_{P}}^{2}}$$
 : العناصر المرجعة إلى الابتدائي: 1.3.5.

2.3.5. العناصر المرجعة إلى الثانوي: انطلاقا من العناصر المرجعة إلى الابتدائي يمكن حساب العناصر المرجعة إلى الثانوي:

$$R_S = R_2 + R_1 m_0^2 = m_0^2 \left(\frac{R_2}{m_0^2} + R_1\right) = m_0^2 R_P = \frac{P_{1CC}}{I_{2CC}} \Rightarrow P_{1CC} = R_S I_{2CC}^2$$

$$Z_{S} = m_{0}^{2} Z_{P} = m_{0} \frac{U_{1CC}}{I_{2CC}}, X_{S} = \sqrt{Z_{S}^{2} - R_{S}^{2}}$$

التوتر  $U_2$  و  $U_2$  بالهبوط في التوتر يسمي الفرق بين  $U_2$  و بالهبوط في التوتر ويعطى كما يلى :

$$rac{\Delta U_2}{U_{20}} = rac{U_{20} - U_2}{U_{20}} (100\%)$$
 و الهبوط النسبي بالعلاقة و  $\Delta U_2 = U_{20} - U_2$ 

$$\Delta U_2 = R_S.I_2.Cos\phi_2 + X_S.I_2.Sin\phi_2$$
 من جهة أخرى: 
$$\Delta U_2 = Z_S.I_{2N}$$
 
$$\Delta U_2 = m_0.U_1 - U_2$$

7- الحصيلة الطاقوية:

$$P_{1} = U_{1}.I_{1}.Cos\phi_{1}, P_{2} = U_{2}.I_{2}.Cos\phi_{2}, \eta = \frac{P_{2}}{P_{1}} = \frac{P_{2}}{P_{2} + P_{J} + P_{fer}}$$

$$Q_1=U_1.I_1.Sin\, arphi_1, Q_2=U_2.I_2.Sin\, arphi_2$$
یکون المردود أعظمی اذا کان  $P_J=P_{f_{or}}:$ یکون المردود أعظمی اذا کان

ونقول عن المحول أنه مثالي اذا كان:

$$P_J = P_{f_{er}} = 0 \Rightarrow P_1 = P_2 \Rightarrow \eta = 100\%$$

$$S_1 = S_2 \Rightarrow U_1.I_1 = U_2.I_2 \Rightarrow \frac{U_2}{U_1} = \frac{I_1}{I_2} = \frac{N_2}{N_1} = m$$

#### تمرین:

أجريت على محول أحادى الطور الاختبارات التالية:

- $U_1 = U_{1N} = 380 \text{V}$  , 50 HZ ,  $U_{20} = 26 \text{V}$  ,  $I_{10} = 0.2 \text{A}$  ,  $P_{10} = 15 \text{W}$  في الفراغ:
  - $U_{1CC} = 20V$  ,  $I_{2CC} = I_{2N} = 25A$  : في القصر

قياس مقاومتي الملفين الأولى ( $R_1$ =0.1 $\Omega$ ) والثانوي ( $R_2$ =0.02 $\Omega$ ) عند درجة حرارة التشغيل الاسمي.

1- <u>احسب</u>:

 $N_2 = 100$  أ- عدد لفات الأولى علما أن عدد لفات الثانوي

ب- معامل الاستطاعة في الفراغ.

2- أوجد قيم عناصر الدارة المكافئة المرجعة إلى الثانوي.

 $Cos\phi_2 = 0.8$  يصيب المحول تيار ا شدته 25A في حمولة حثية عامل إستطاعتها  $U_1 = 380V$  تحت توتر أولى  $U_1 = 380V$ 

أ- أحسب الإستطاعة الفعالة بالثانوي إذا علمت أن الهبوط في التوتر يقدر بـ 1.16V

 $\mathbf{P}_{10} = \mathbf{P}_{F}$  و  $\mathbf{P}_{1CC} = \mathbf{P}_{J}$  و  $\mathbf{P}_{10} = \mathbf{P}_{F}$ 

## ب – التقويم المتحكم فيه أحادي الطور: Redressement Commandé Monophasé

المقداح (thyristore): يتميز المقداح بحالتين: حالة التمرير Passant و حالة المنع

- \* عند المرور من حالة المنع الى حالة التمرير نسمي ب: الإقلاع L'amorçage
  - \* وعند المرور من حالة التمرير الى حالة المنع نسمي ب: الوقف Blocage

شرط إقلاع المقداح : (  $V_{AK}>0$  ) واعطاء نبضة تحكم موجبة في الزناد المقداح يمرر تطبيقيا: عندما يكون المقداح مستقطب عكسيا ( $V_{AK}<0$ ), المقداح موقف

عندما: 1<sub>0</sub>=0 لا يمكن ايقاف إقلاع المقداح



1- التقويم المتحكم فيه أحادي النوبة نحقق التركيب التالي:

t زاوية تأخر القدح : زمن تأخر القدح : زمن تأخر القدح :  $t_{lpha}=rac{lpha}{\omega}$ 

 $0 \le \alpha \le \pi$  : حيث ،



$$\hat{U}=\hat{V}$$
 : حیث  $ar{I}=rac{\overline{U}}{R}$  ,  $ar{U}=\hat{U}.rac{1+\coslpha}{2.\pi}$ 

2- التقويم المتحكم فيه ثنائي النوبة

1-2 تركيب بمحول ذو النقطة الوسطية:





$$\hat{m{U}} = \hat{m{V}}_1 = \hat{m{V}}_2 = \hat{m{V}}$$
 : حيث

$$ar{I} = \frac{\overline{U}}{R}$$
 ,  $\overline{U} = \hat{U} \cdot \frac{1 + \cos \alpha}{\pi}$  : القيم المتوسطة

المقداح : القيمة المتوسطة لتيار المباشر المار في المقداح :  $ar{I}_T = rac{ar{I}}{2}$  : التوتر العكسي الأعظمي بين طرفي كل مقداح :  $\hat{\mathcal{V}}_{AKT} = 2.\hat{\mathcal{V}}$ 

مثال: محول بنقطة وسيطية  $24V \times 24V \times 200$  يغذي مقوم مراقب ثنائي النوبة س1: أحسب التوتر العكسي الأعظمي بين طرفي كل مقداح إذاكان القوم يصب تيار قيمته المتوسطة 1.08A في حمولة مقاومية 1.08A س2: أحسب زاوية تأخر القدح ، إستنتج زاوية التمرير لكل مقداح

. نشاط: الشكل المقابل يمثل دارة التحكم في توتر حمولة نعتبرها مقاومية

 $R = 10 \Omega$ 

 $v = 220 \sqrt{2}.\sin \omega.t$  : حيث

س1- ماهو نوع و إسم المقوم المستعمل:
 س2- أكمل التصميم المكافئ للجسر في
 كل نوبة و بعد إرسال نبضات التحكم
 للمقاديح المعنية:







3 ماهي طبيعة كل من التوترات و التيارات التاليـة:

i, j, u, v

نشاط: الشكل المقابل يمثل دارة التحكم في توتر حمولة نعتبر ها مقاومية

$$R = 10 \Omega$$

 $v = 220 \sqrt{2} \cdot \sin \omega \cdot t$ :

س1- ماهو نوع و إسم المقوم المستعمل:

ج1- مقوم مراقب ثنائي النوبة بجسر غرايتس س2- أكمل التصميم المكافئ للجسر في كل نوبة و بعد إرسال نبضات التحكم









i , j , u ,v : ماهي طبيعة كل من التوترات و التيارات التالية : 3

متناوبة : متناوبة

: مقومة **u** , i

أحسب - القيمة المتوسطة لتيار المار في الحمول من أجل زاوية تأخر قدح قدرها 90 درجة ا - القيمة المتوسطة لتيار المار في كل مقداح

$$\bar{I} = \hat{U} \frac{1 + \cos \alpha}{\pi R} = 220 . \sqrt{2} \frac{1 + 0.}{\pi . 10} = 9.9 \text{V}$$

$$\bar{I}_T = \frac{I}{2} = \frac{7.}{2} = 4.95 \text{V}$$

## المحور 07: وظيفة الاستطاعة الموضوع 01: المحرك اللاتزامني ثلاثي الاطوار

#### مبدأ التشغيل:

$$n_S = rac{f}{p}$$
 عند تغذية وشيعات الساكن بالتيار المتناوب ثلاثي الاطوار تنتج مجالا مغناطيسيا دوارا يدور بالسرعة

 $\mathbf{p}(\prime)$  عدد أزواج أقطاب المحرك:  $\mathbf{p}^*$  ,  $\mathbf{n}_{\mathbf{S}}$  : التردد:  $\mathbf{p}^*$  ,  $\mathbf{n}_{\mathbf{S}}$  : التردد  $\mathbf{n}_{\mathbf{S}}$ إذا كان التواتر f = 50Hz ، السرعات المتزامنة الممكنة هي :

سرعة التزامن (المجال الدوار)  $\mathbf{n}_{\mathbf{S}}$ n: سرعة الدوار

| p | n (tr/s) | n (tr/min) |
|---|----------|------------|
| 1 | 50       | 3000       |
| 2 | 25       | 1500       |
| 3 | 16.67    | 1000       |
| 4 | 12.5     | 750        |
| 5 | 10       | 600        |
| 6 | 8.33     | 50         |

$$\Omega = 2\pi . n_S = rac{2\pi . f}{p}$$
: نستنتج سرعة الزاوية للمجال الدوار :

$$\Omega_S \succ \Omega$$
 و  $n_S \succ n$  يدور الجزء الدوار  $n_S \succ n$  يدور الجزء الدوار  $n_S \succ n$  يدور الجزء الدوار  $g = \frac{n_S - n}{n_S}$  يبدون وحدة  $g = \frac{n_S - n}{n_S}$  يستنتج من العلاقة:  $g = \frac{n_S - n}{n_S}$  :Glissement الانزلاق



- $P_a = \sqrt{3}.U.I.\cos{arphi}$  : الاستطاعة الممتصة

الضياع بمفعول جول في الساكن : 
$${\bf P}_{js}=\frac{3}{2}~{\bf R}.{\bf I}^2$$
 ( مهما يكن نوع الإقران ) . 
$${\bf P}_{js}=3.r.{\bf I}^2$$
 .  ${\bf C}_{js}=r.{\bf I}^2$  .  ${\bf C}_{js}=r.{\bf I}^2$  ( حالة إقران مثلثي ) .  ${\bf P}_{js}=r.{\bf I}^2$  ( مقاومة لف الساكن ) .  ${\bf R}$ 

- الضياعات في حديد الساكن : P<sub>fs</sub> : تكون عمليا مستقلة عن الحمولة ( ثابتة ) .

الضياعات في حديد الساكن 
$$P_{\rm fs}$$
 : تكون عمليا مستفله عن ال ${f P}_{
m tr}={f P}_{
m a}-{f P}_{
m js}+{f P}_{
m fs}$ 

ب) الحصيلة الطاقوية في الدوار:

- $\mathbf{P_{jr}} = \mathbf{g} \cdot \mathbf{P_{tr}}$ : الضياعات بمفعول جول في الدوار
  - $\mathbf{P}_{\mathrm{u}} = \mathbf{P}_{\mathrm{tr}} (\mathbf{P}_{\mathrm{jr}} + \mathbf{P}_{\mathrm{m}})$ : الاستطاعة المفيدة

$$\mathbf{P_a} = \mathbf{P_u} + \mathbf{P_{js}} + \mathbf{P_{jr}} + \mathbf{P_{fs}} + \mathbf{P_m}$$
 : الحصيلة الطاقوية الإجمالية :

د) مردود المحرك:

$$\eta = \frac{\mathbf{P_u}}{\mathbf{P_a}} = \frac{\mathbf{P_a} - (\mathbf{P_{js}} + \mathbf{P_{jr}} + \mathbf{P_{fs}} + \mathbf{P_m})}{\mathbf{P_a}}$$

$$N.m$$
(نيوتن $imes$  متر) وحدتها  $T_U=rac{P_U}{\Omega}$  العزم المفيد:  $T=rac{Ptr}{\Omega_S}$ 

$$T = \frac{Ptr}{\Omega_S}$$

ملاحظة: الضياعات الثابتة Pc=Pfs+Pm وتحدد بالإختبار في الفراغ

يمتص المحرك في الفراغ تيارا شدته  $I_0$  واستطاعة  $P_0$ :

 $P_0=Pc+Pis$   $P_0=Pfs+Pm+Pis$   $Pc=P_0-Pis$ 

## اقران المحرك اللاتزامني:

## الإقران النجمسي:





## لإقران المثلثي \_



تعطى اللوحة الإشارية لمحرك لامتزامن دائما توترين للتشغيل:

مشال: 220 / 380 V أو 380 / 660 V

تمثل القيمة الصغرى التوتر الاسمى للف واحد (طور واحد ) و منه يتم ربط المحرك كالتالى :

• إقران مثلثى : عندما يوافق التوتر بين طورين لشبكة التغذية التوتر الأصغر للتشغيل .

• إقران نجمى: عندما يوافق التوتر بين طورين لشبكة التغذية التوتر الأكبر للتشغيل.

#### مئال: أكمل الجدول التالي:

| اللوحة الإشهارية<br>الشبكة | 127/220 V | 220/380 V | 380/660 V |
|----------------------------|-----------|-----------|-----------|
| 127/220V                   |           |           |           |
| 220/380 V                  |           |           |           |

#### لوحة المواصفات لمحرك لاتزامني ثلاثي الطور



cos φ

تواتر التيارات الدوارة

الإستطاعة المفيدة Pu

السرعة الإسمية (الدوار)n

المردود

عدد الأطوار

الشدة الممتصة على خط الإقران المثلثي

الشدة الممتصة على خط الإقران النجمي

التوتر الأعظمي بين قطب التلفيف و الحيادي

التوتر الأعظمي بين طرفي التلفيف

#### تمارين حول المحرك اللاتز امنى ثلاثى الطور

#### **BAC 2009** تمرين 01:

■ المحرك M2 له الخصائص التالية: لامتزامن ثلاثي الطور M2 - 50 Hz المحرك - 220V/ 380 V 5A 1440 t/mn  $\cos \varphi = 0.85$ 

علما أن الضياعات الثابتة متساوية  $p_{
m f} = p_{
m mec} = 60~{
m W}$  و المقاومة المقاسة بين طورين  $2.5\Omega$  للساكن

س10: أرسم تصميم دارة الاستطاعة لهذا المحرك علما أن إقلاعه يكون مباشرا.

عند التشغيل الاسمى لهذا المحرك:

س11: أحسب الانزلاق وعدد الأقطاب.

س12: أحسب الاستطاعة الممتصة.

س13: أحسب الضياعات بفعل جول.

س14: أحسب الاستطاعة المفيدة و العزم المفيد.

تمرين 02:

تحمل اللوحة الإشهارية لمحرك لا متز امن ثلاثي الطور مايلي: 220V/380V

4= عدد أقطاب المحرك =4 ، 50HZ , 1450tr/mn - إشرح ماذا يحدث عند:

يغذي بشبكة ثلاثية الطور 127V/220V . 50HZ

- ماهو الإقران المناسب للمحرك مع التعليل

أحسب: - سرعة التزامن (سرعة الحقل الدوار).

- الإنز لاق

 $R.I^2$ 

- تغذية طورين فقط للمحرك

عند عكس طوري تغذية المحرك

عند عكس الأطوار الثلاثة.

- عند فتح دارة الدوار و تغذية المحرك

#### **BAC 2012 - S01** <u>تمرين 03:</u>

M1 محرك لا تزامني ثلاثي الطور 220V/380V,50Hz

 $Cos\phi=0.6$ , Pu=1200Wη=75% , عدد أزواج الأقطاب η=75%

g=1,5% الانزلاق

الاستطاعة: شبكة التغذية: 220v/380v, 50HZ

11. أنقل رسم لوحة المرابط للمحرك M1 على ورقة إجابتك وبين نوع الإقران، علل.



12. احسب النيار المستهلك و سرعة دوران المحرك M1.

#### <u>تمرین 04:</u> **BAC 2012 - S02**

### • دارة الاستطاعة للمحرك M4:

- تم قياس الاستطاعة للمحرك M4 باستعمال طريقة الواط مترين فأعطت النتائج التالية :

P2 = PB = 980 WP1=PA = 3260W

س10: احسب مختلف الإستطاعات لهذا المحرك (الممتصة، الارتكاسية والظاهرية).

س11: استنتج معامل الاستطاعة Cosφ.

# <u>حل تمارين المحرك:</u>

## تمرين 01:

| ı    | 220V        | <b>جمي</b> لأن توتر طوري الشبكة يساوي التوتر الأكبر للمحرك – كل لف يتحمل إ                                             | ج09: اقران <b>ن</b> ے |
|------|-------------|------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1.75 | 0.5         | حساب الانزلاق وعدد الأقطاب.<br>لدينا n = 1440 rpm و ان f = 50Hz إذن ns = 1500 rpm                                      | ج11                   |
|      | 0.5<br>0.25 | g = (ns - n)/ns<br>= $(1500 - 1440)/1500 = 60/1500 = 0.04$<br>g = 4%                                                   |                       |
|      | 0.5         | عدد أقطاب المحرك: ns = 60 f/p<br>منه p = 60f/ns = 3000/1500 = 2<br>عدد أقطاب المحرك هو : 2p = 2x2 = 4 pôles            |                       |
| 0.75 | 0.5<br>0.25 | $P_a = \sqrt{3} \ U \ I \cos \phi$ $P_a = \sqrt{3} \ \times 380 \times 5 \times 0.85 = 2797.26 \ W$ $P_a = 2,797 \ kW$ | ج12                   |
| 1.25 | 0.5         | حساب الضياعات بفعل جول $P_{js} = (3/2) \text{ r } I^2 = 1,5 . 2,5 . (5)^2 = 93.75$ $P_{js} = 93.75 \text{ W}$          | ج13                   |
|      | 0.5         | $P_{jr} = (P_a - p_f - p_{js})g = (2797.26 - 60 - 93.75)4\% = 105.74$<br>$P_{jr} = 105.74W$                            |                       |
|      | 0.25        | $P_j = p_{js} + p_{jr} = 93.75 + 105.74 = 199.49W$                                                                     | <br>ج14               |
| 1.5  | 0.5<br>0.25 | أحسب الاستطاعة المفيدة و العزم المفيد.<br>Pu = Pa - (pj + pf + pmec)<br>= 2797.26 -(199.49+60+60) = 2477.77W           |                       |
|      | 0.5<br>0.25 | $Cu = 60.Pu/2\pi n$<br>= 60 . 2797,26 / (6,28 . 1440) = 16.44 Nm                                                       |                       |

تمرین 02:

| 1   | 2×0.5 | نوع الإقران نجمي .                                                                                                                                                  | <u>تمرین 03:</u><br>11 ج |
|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|     | 0.5   | $I = \frac{P}{\sqrt{3}U \cdot \cos \varphi} \qquad P = \frac{Pu}{\eta} = \frac{1200}{0.75} = 1600W \qquad I = \frac{1600}{\sqrt{3} \times 380 \times 0.6}$ $I = 4A$ | 12₹                      |
| 1.5 | 0.5   | $n = \frac{3000}{p} = \frac{3000}{1} = \frac{3000tr}{mn} \qquad n' = (1 - g)n = (1 - 0,015)3000$ $n' = 2955tr / mn$                                                 |                          |
|     |       | •                                                                                                                                                                   | تمري <u>ن 04:</u>        |

|     |      | ــــــــــــــــــــــــــــــــــــ                                                          | ج9  |
|-----|------|-----------------------------------------------------------------------------------------------|-----|
| 1   | 0.50 | x x x x x x x x x x x x x x x x x x x                                                         |     |
|     | 0.50 |                                                                                               |     |
|     |      | التوتر الذي يتحمله كل ملف هو: 380٧                                                            |     |
|     | 0.75 | حساب الاستطاعة الفعالة الممتصبة من طرف المحرك.                                                | ج10 |
| 2   | 0.75 | Pa = P1 + P2 = 3260 + 980 = 4240Wحساب الاستطاعة المفاعلة ( الردية ، الإرتكاسية) (Q) للمحرك    |     |
|     | 0.5  | $Q = (P1 - P2)\sqrt{3} = (3260 - 980)\sqrt{3} = 3949VAR$ حساب الاستطاعة الظاهرية (S) للمحرك . |     |
|     |      | $S = \sqrt{Pa^2 + Q^2} = 5794 \text{ VA}$                                                     |     |
| 0.5 | 0.5  | معامل الاستطاعة (Cos(φ)) للمحرك .                                                             | 115 |
|     | H.   | $Cos(\varphi) = Pa/S = 4240/5794 = 0.73$                                                      |     |

#### إقلاع المحركات: إقلاع مباشر اتجاه واحد للدوران:



#### إقلاع مباشر اتجاهان للدوران:



#### إقلاع نجمي ـ مثلثي



Démarrage en 3 temps 1 : fermeture de KM1 et KM2

2 : ouverture de KM2

3 : fermeture de KM3



## المحرك خطوة \_خطوة :



المحرك ذو مغناطيس دائم:

الرمز: الس

الخصائـــص:

- التبديل أحادي القطبية: يغذي المحرك دون عكس التيار في اللفائف

- التبديل ثنائى القطبية: يستلزم عكس التيار في اللفائف.

ملاحظة: التبديل في المحرك خ/خ يعرف بمعامل 11 حيث

نبديل أجادي القطبية :  $k_1 = 1$ 

k<sub>1</sub> = 2 تبديل ثنائي القطبية

نمط التشغيل:

غير متناظر أو نصف خط وة: بين خطوتين متتاليتين لا نستعمل نفس عدد الأطوار المغذاة

ملاحظة: التبديل في المحرك خ/خ يعرف بمعامل k2 حيث

k2= 1 : خطوة كاملة

k2= 2 : نصف خطوة

3-5 عدد الأقطاب المغناطيسة لدوار:

يرمز لعدد أزواج أقطاب الدوار بـ: p

4-5 عدد الأطــــوار:

الطور هو لف أو نصف لف ( في حالة ملف بنقطة وسيطية )

و يرمز لعدد الأطوار بـــ: m

6-5 عدد الخط وات في الدورة:

نرمز له بـ : ـ بمز له

 $N_{plt} = k_1.k_2.m.p$ 

6-5 الخطوة الزاوية:

 $\alpha_p$ : برمز لها ب

 $\alpha_p = \frac{360}{N_{p/t}} \quad (\circ)$ 

 $\alpha_p = \frac{2.\pi}{N_{p/t}} \, (rad)$ 

## السرعـــة:

نرمز لها ب n عدد الدورات في الثانية

سرعة الدوران تتعلق: بتواتر نبضات التحكم

ليكن T و f على الترتيب دور و تواتر إشارة الساعة ( التوقيتية )

$$N_{p/t}T \longrightarrow 1tour$$

1s

$$n = \frac{1}{T N_{p/t}} = \frac{f}{N_{p/t}}$$

f: بالهرتز

المزدوجة المحرك :

 $T_U$ : نرمز له بــــن

$$P_U: W$$

$$T_{II}:N.m$$

$$T_U = \frac{P_U}{2\pi . n}$$

## . المحرك خ/خ ذو مقاومة مغناطيسية متغيرة:

## - مبدأ التشغيل و المميزات:

عند تغذية أطوار الساكن فإن الدوار المغناطيسة أصغر مايمكن ( ثغرة بين أسنان الساكن و أسنان الدوار أصغر ما یمکن )

دوار ذو أسنان طور الساكن (مادة حديدية مغناطيسية) يدور بحيث تصبح المقاومة

ساكن ذو أسنان

- عدد أطوار الساكن: 3 - عدد أسنان الـدوار: **4**
- عدد الوضعيات في الدورة : 12
- -الخطوة الزاويــة  $Np/t = \frac{360}{12} = 30^{\circ}$

ملاحظة: أسنان الدوار يجب أن تختلف عن عدد أسنان الساكن

## الحالة العامـــة:

عدد الخطوات (الوضعيات) في الدورة

Np/t = m.d

عدد أسنان الدوار : d

#### نشاطـــات:

#### نشـــاط 1 :

' يعطي التصميم المبدئي لمحرك خ/خ

- ■عين:
- نوع المحرك :.
- عدد أطوار الساكن
- عدد أقطاب الدوار:
- 2- نغذي علي التتابع كل نصف ملف
  - أكمل الجدول التالي :



| تعاقب التحكم | a | b | С | d | وضعية الدوار | a          |
|--------------|---|---|---|---|--------------|------------|
| 0            | 1 | 0 | 0 | 0 |              | الأبار     |
| 0            |   |   |   |   |              | 0 5<br>0 5 |
| 0            |   |   |   |   |              | مالا       |
| 0            |   |   |   |   |              | , 4        |

#### ٠ عـــد

- نوع التبديل:

- نمط التشغيل:

إستنتج: - عدد الخطوات في الدورة:

- الخطوة الزاوية:

# 3- نغذي علي التتابع كل نصفي ملف- أكمل الجدول التالي :



| تعاقب التحكم | a | b | С | d | وضعية الدوار |   |
|--------------|---|---|---|---|--------------|---|
| 0            | 1 | 1 | 0 | 0 |              | 1 |
| 0            |   |   |   |   |              | 0 |
| 8            |   |   |   |   |              | Ŋ |
| 0            |   |   |   |   |              | , |

#### : 77 -

- نوع التبديل:

- نمط التشغيل:

إستنتج: - عدد الخطوات في الدورة:

- الخطوة الزاوية :

## نشـــاط 2:



# 1- يعطي التصميم المبدئي لمحرك خ/خ

■عين :

نوع المحرك:

عدد أطوار الساكن:

-عدد أقطاب الدوار:

1. النم ط الأول: تغذية ملف واحد

| تعاقب التحكم | I <sub>1</sub> >0 | I <sub>1</sub> <0 | I <sub>2</sub> >0 | I <sub>2</sub> <0 | وضعية الدوار | اِنْج      |
|--------------|-------------------|-------------------|-------------------|-------------------|--------------|------------|
| 0            | 1                 | 0                 | 0                 | 0                 | 4            | ا م ا      |
| 0            | 0                 | 0                 | 1                 | 0                 | -            | ا<br>اسام  |
| 8            | 0                 | 1                 | 0                 | 0                 | _            | اقاً<br>ئى |
| 9            | 0                 | 0                 | 0                 | 1                 | •            | ] j.       |

#### : 77 -

- نوع التبديل:

- نمط التشغيل:

إستنتج: - عدد الخطوات في الدورة:

- الخطوة الزاوية:

النمط الثاني : تغذية ملفين

## ■أكمل الجدول التالي:



| تعاقب التحكم | I <sub>1</sub> >0 | I <sub>1</sub> <0 | I <sub>2</sub> >0 | I <sub>2</sub> <0 | وضعية الدوار | <b>1</b> 7. |
|--------------|-------------------|-------------------|-------------------|-------------------|--------------|-------------|
| 0            | 1                 | 0                 | 1                 | 0                 | 2            | ] 4         |
| 0            | 0                 | 1                 | 1                 | 0                 | N.           | 747         |
| 0            | 0                 | 1                 | 0                 | 1                 | 11           | _ું.યુ      |
| 9            | 1                 | 0                 | 0                 | 1                 |              |             |

: 77 -

- نوع التبديل:

- نمط التشغيل:

استنتج: - عدد الخطوات في الدورة:

- الخطوة الزاوية:

3 - نريد الحصول علي خطوة زاوية .°45 - أكمل الجدول التالي



| تعاقب التحكم | I <sub>1</sub> >0 | I <sub>1</sub> <0 | I <sub>2</sub> >0 | I <sub>2</sub> <0 | وضعية الدوار |              |
|--------------|-------------------|-------------------|-------------------|-------------------|--------------|--------------|
| 0            | 1                 | 0                 | 0                 | 0                 | 1            |              |
| 0            | 1                 | 0                 | 1                 | 0                 |              | ٦            |
| 8            | 0                 | 0                 | 1                 | 0                 |              | _ <u>.</u> j |
| 9            | 0                 | 1                 | 1                 | 0                 | A Comment    | 19           |
| 6            | 0                 | 1                 | 0                 | 0                 |              | ];           |
| 0            | 0                 | 1                 | 0                 | 1                 |              |              |
| 0            | 0                 | 0                 | 0                 | 1                 | -            | '3           |
| 8            | 1                 | 0                 | 0                 | 1                 | 姐            |              |
| 0            | 1                 | 0                 | 0                 | 0                 | 40 T         |              |

: 77 -

- نوع التبديل:

- نمط التشغيل:

إستنتج: - عدد الخطوات في الدورة:

- الخطوة الزاوية:

#### مقارنـــة

يمتاز المحرك خ/خ ذو مغناطيس دائم بمزدوجة أكبر من المحرك خ/خ بمقاومة مغناطيسية متغيرة بينما يمتاز الثاني بخطوة زاوية صغيرة ( دقيق )

لذا يستعمل الأول في الأنظمة الألية الصناعية بينما الثاني قي الأنظمة الدقيقة ( الطابعات ،الإنسان الألى ......)

للجمع بين الإيجابيات تم صنع محرك خ/خ هجين دواره مغناطيس دائم ذو أسنان.



#### مثال-1-: التحكم في محرك خطوة خطوة باستعمال دارة تعاقبية:



#### المطلوب:

- 1- إستخرج معادلات المداخل للقلابات ؟
- 2- إملاً جدول تحريض الأطوار للحصول على دورة كاملة ؟
- ( مع العلم أنه يتم شحن الدارة التعاقبية في الحالة الابتدائية بمعلومة ثنائية كما هو موضح في الشكل
  - 3- من الجدول السابق ، استنتج نوع الدارة التعاقبية ؟
  - 4- حدد : -عدد الأطوار ؟ عدد الأقطاب ؟ نوع التغنية ؟ نوع التبديل ؟
    - عدد وضعيات المحرك خلال دورة كاملة ؟
      - الخطوة الزاوية α ؟
    - 5- أرسم المخطط الزمني الموافق لمخارج الدارة التعاقيبة ؟

| الخطوة | مقبية | رة الت         | ج الدار | الأطوار المحرضة |                |                |       | حالات المقاحل    |       |       |       |                |
|--------|-------|----------------|---------|-----------------|----------------|----------------|-------|------------------|-------|-------|-------|----------------|
| الحصوة | $Q_1$ | Q <sub>2</sub> | $Q_3$   | Q <sub>4</sub>  | $\mathbf{L}_1$ | L <sub>2</sub> | $L_3$ | $L_4$            | $T_1$ | $T_2$ | $T_3$ | T <sub>4</sub> |
| 1      | 1     | 19.52          |         | 1837            |                | -              | L     |                  |       |       |       | ,              |
| 2      |       |                |         |                 |                |                | _     |                  | ,     |       |       | 4.             |
| 3.     |       | (A)            |         | 1 4             | v              | J              |       | \$ <sup>20</sup> | 4-    | Q     | - 3   |                |
| 4      |       |                | v       | _               |                | -              | v     | _                |       |       | ,     |                |

#### المطلوب:

- 1- إستخرج معادلات المداخل للقلابات ؟
- 2- إملأ جدول تحريض الأطوار للحصول على دورة كاملة ؟
- ( مع العلم أنه يتم شحن الدارة التعاقبية في الحالة الابتدائية بمعلومة تنائية كما هو موضح في الشكل
  - 3- من الجدول السابق ، استنتج نوع الدارة التعاقبية ؟
  - نوع التغذية ؟ - نوع التبديل ؟ -عدد الأطوار ؟ - عدد الأقطاب ؟
    - عدد وضعيات المحرك خلال دورة كاملة ؟
      - الخطوة الزاوية α ?
    - 5- أرسم المخطط الزمنى الموافق لمخارج الدارة التعاقبية ؟

      - 1- معادلات المداخل للقلابات ( تحليل الدارة التعاقبية ) :

$$\begin{cases} \mathbf{J_1} = \mathbf{Q_4} \\ \mathbf{K_1} = \mathbf{Q_2} \end{cases}$$

$$\begin{cases} J_2 = Q_1 \\ K_2 = Q_3 \end{cases} \qquad \begin{cases} J_3 = Q_2 \\ K_3 = Q_4 \end{cases}$$

$$\begin{cases} J_4 = Q_3 \\ K_4 = Q_1 \end{cases}$$

#### 2- جدول تحريض الأطوار:

5- المخط الزمني الموافق لمخارج الدارة التعاقبية:

| الخطوة | مقبية          | رة الت | الأطوار المحرضة |       |                  |                | حالات المقاحل  |       |       |                |                |                |
|--------|----------------|--------|-----------------|-------|------------------|----------------|----------------|-------|-------|----------------|----------------|----------------|
| الحصوة | $\mathbf{Q}_1$ | $Q_2$  | $Q_3$           | $Q_4$ | $\mathbf{L}_{1}$ | L <sub>2</sub> | L <sub>3</sub> | $L_4$ | $T_1$ | T <sub>2</sub> | T <sub>3</sub> | T <sub>4</sub> |
| 1      | 1              | 1      | 0.              | 0     | 1                | 1              | 0              | 0     | مشبع  | مشبع           | محصور          | محصور          |
| 2      | 0              | 1      | 1               | 0     | 0                | 1              | 1              | 0     | محصور | مشبع           | مشبع           | محصور          |
| 3.     | . 0            | 0      | 1               | 1     | 0                | 0              | 1              | 1     | محصور | محصور          | مشبع           | مشبع           |
| 4      | 1.             | 0      | 0               | 1     | 1                | 0              | 0              | 1     | مشبع  | محصور          | محصور          | مشيع           |

- 3- نوع الدارة التعاقبية: نستنتج من الدارة أن الدارة عبارة عن سجل حلقى إزاحة يمين.
  - 4- عدد الأطوار : m=4 ، عدد الأقطاب : 2 (P=1)

 $(K_{2}=1)$  ، نوع التبديل : متناظر  $(K_{1}=1)$  ، نوع التبديل : متناظر  $(K_{2}=1)$ 

 $N_p = m \cdot P \cdot K_1 \cdot K_2 = 4 \cdot 1 \cdot 1 \cdot 1 = 4pas/tour$  : عدد الوضعيات



- 7 -

#### ت قدیے

إيجابيات النظام ثلاثي الطور مقارنة مع النظام أحادي الطور:

- للآلات ثلاثية الطور إستطاعات تفوق نظيرتها أحادية الطور
  - ب 50% ، و منه يكون أثمنها أقل بكثير.
  - -هذا النظام يقلل من الضبياعات عند نقل الطاقة الكهربائية .

#### التوزيع

تتم عملية توزيع الطاقة من خلال أربعة أقطاب:

- ثلاثة أقطاب للأطوار معرفة ب: 1،2،3 أو A, B, C

۔ قطب حیادی N

#### التوترات البسيطة



## النظام ثلاثي الطور المتوازن

يكون النظام متوازن إذا كانت التوترات الثلاثة:

- لها نفس الطويلة.
  - لها نفس التردد .
- تكون مزاحة عن بعضها البعض بزاوية مقدارها 120°.

للتوترات المركبة نفس تردد التوترات البسيطة .



$$u_{12} = v_1 - v_2$$
  $\vec{U}_{12} = \vec{V}_1 - \vec{V}_2$   
 $u_{23} = v_2 - v_3$   $\vec{U}_{23} = \vec{V}_2 - \vec{V}_3$   
 $u_{31} = v_3 - v_1$   $\vec{U}_{31} = \vec{V}_3 - \vec{V}_1$ 

إذا كانت الشبكة متوازنة:

هذا يؤدي إلى ظهور نوعين من التوترات.

- توتر بين طورين و هو التوتر المركب و يرمز له ب: U.
- توتر بين الطور و الحيادي و هو التوتر البسيط و رمزه ٧ .



يكون فرق الطور بين كل توتر و آخر بي 021  $\left(\frac{2\pi}{3}\right)$ . - يكون فنس القيمة الفعالة .

#### تمثيل فرينل







العبارات اللحظية للتوترات المركبة

#### العلاقة بين التوتر المركب و التوتر البسيط



5- الأخذات ثلاثية الطور المتوازية:

#### 5-1 تعاریف:

- الأخذة ثلاثية الطور : هي أخذة مكونة من ثلاثة ثنائيات قطب

( 
$$oldsymbol{arphi}_1=oldsymbol{arphi}_2=oldsymbol{arphi}_3=oldsymbol{arphi}$$
 : نفس الممانعة  $Z_1=Z_2=Z_3=Z_3=Z_3$ 

- j: سيارات الطور : هي التيارات التي تجتاز عناصر الأخذة ويرمز لها ب-
- i: تيارات الخط: هي التيارات التي تجتاز نواقل أطوار الشبكة و يرمز لها ال

#### التمثيل:



#### 2-5 الإقران النجمي:

- التركيب: كل ثنائئ قطب يشتغل بتوتر بسيم





#### - العلاقة بين التيارات:

 $i_1 = j_1$  ;  $i_2 = j_2$  ;  $i_3 = j_3$  من الربط السابق يمكن أن نكتب  $I_1 = I_2 = I_3 = J_1 = J_2 = J_3 = I = J = rac{V}{Z}$  بمأن الأخذة متوازنة يصبح لدينا

- تمثیل فرینل لتیارات:

arphi  $(ec{I}, \ ec{V})$  : حيث





#### 2-5 الإقران المثلث

$$I_1 = I_2 = I_3 = I$$
 و  $J_{12} = J_{23} = J_{31} = J = rac{U}{Z}$  : الأخذة متوازنـــة



$$\dot{j}_{12}$$
  $\ddot{j}_{12}$   $\ddot{i}_{1}=\dot{j}_{12}-\dot{j}_{31}$   $\Rightarrow$   $\ddot{I}_{1}=\ddot{J}_{12}-\ddot{J}_{31}$   $\dot{i}_{2}=\dot{j}_{23}-\dot{j}_{12}$   $\dot{i}_{3}=\ddot{J}_{31}-\dot{J}_{23}$   $\ddot{i}_{3}=\ddot{J}_{31}-\ddot{J}_{23}$   $\ddot{i}_{3}=\ddot{J}_{31}-\ddot{J}_{23}$ 

$$\vec{i}_3 = \vec{j}_{31} - \vec{j}_{23} \implies \vec{J}_3 = \vec{J}_{31} - \vec{J}_{23}$$

- العلاقة بين | و J : من المخطط التالي نستنتج



# 6- الإستطاعة في ثلاثي الطور:

#### 6-1 تذكير: نظرية بوشرو

الإستطاعة الفعلية و الردية الممتصة من طرف مجموعة ثنائيات قطب تساوي علي الترتيب مجموع الإستطاعات الفعلية و الرديــة الممتصة من طرف كل عنصر من المجموعة



#### 2-6 حساب مختلف الاستطاعات:

$$V = rac{U}{\sqrt{3}}$$
 و  $P = 3 . P_1 = 3 VI \cos arphi$  : و الإقران النجمي  $P = 3 . P_1 = 3 VI$ 

$$P = \sqrt{3UI \cos \varphi}$$
 بالتعویض ینت ج

$$Q = \sqrt{3}UI \sin \varphi$$
 بنفس الطريقة نجد:

$$S = \sqrt{3}UI$$

$$\cos \ oldsymbol{arphi} = rac{P}{S}$$
 : عامل الإستطاعة

$$J=rac{I}{\sqrt{3}}$$
 و  $P=3$   $P_1=3UJ\cos arphi$  و الإقران المثلثي :

$$P = \sqrt{3UI \cos \varphi}$$
 بالتعویض ینت ج

$$Q = \sqrt{3UI \sin \varphi}$$
 بنفس الطريقة نجد:

$$S = \sqrt{3}UI$$

$$\cos \varphi = \frac{P}{S}$$
 : عامل الإستطاعة

#### 3-6 الضياعات بمفعول جول : نعتبر الجزء المقاومي للأخذة

- الإقران النجمي :

$$P_{J1} = rJ^2$$

$$R = 2r$$

الضياع في عنصر من الأخذة:

$$P = 3.P_{J1} = 3rI^{2}$$
$$= \frac{3}{2}RI^{2}$$



## - الإقران المثلثي:

$$P_{J1} = rJ^2$$

الضياع في عنصر من الأخذة:

$$R = \frac{2rr}{2r+r} = \frac{2}{3}r$$
: المقاومة المقاسة بين طوريي الأخذة



#### 6-4 قياس الإستطاعة:

#### - إستعمال واطمتر واحد:

الواطمتر مربوط بحيث يقيس  $P' = VI \cos \varphi$ 

 $P = \sqrt{3}UI\cos\varphi$ العلاقة بين القيمة المقاسة و الإستطاعة الممتصة





- طريقة الواطمترين:

P = 3P'

ملاحظات: - الطريقة تتطلب وجود حيادي

- القياس لا يتطلب معرفة نوع الإقران

 $\vec{I}_A = UI \cos \left( \vec{I}_1, \vec{U}_{31} \right) = UI \cos \alpha_1$ 

الواطمتر A يقيس :

الواطمتر B يقيس :

- الإستطاعة الظاهرية وعامل الإستطاعة:

 $P_{B} = UI\cos(\vec{I}_{2}, \vec{U}_{23}) = UI\cos\alpha_{2}$ 

$$S = \sqrt{P^2 + Q^2}$$

$$\cos \varphi = \frac{P}{S}$$

$$P = P_A + P_B$$

$$Q = \sqrt{3} \left( P_A - P_B \right)$$

- الإستطاعة الفعلية:

- الإستطاعة الرديــة: