--- Apr.16, 2012 ---

Manual for subroutines DC3D0 and DC3D

to calculate displacement, strain and tilt at depth due to a point/rectangular strike/dip/tensile source in a half-space

Reference

Okada, Y., 1992, Internal deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., 82, 1018-1040.

DC3D0: Internal deformation due to a point source

(1) Calling sequence

CALL DC3D0 (ALPHA, X, Y, Z, DEPTH, DIP, POT1, POT2, POT3, POT4, UX, UY, UZ, UXX, UYX, UZX, UXY, UYY, UZY, UXZ, UZZ, IRET)

Input arguments (REAL*4)

ALPHA: Medium constant, $(\lambda + \mu)/(\lambda + 2\mu) = 1 - (Vs/Vp)^{**}2$, [Vp, Vs = P-, S-velocity]

X, Y, Z : Coordinate of observation point (Z should be Z<=0) 断层坐标系下的坐标

DEPTH: Depth of point source (DEPTH>=0)

DIP : Dip-angle of the source (degree)

POT1 : Potency for strike-slip fault = (moment of double-couple) / μ = LWU

POT2 : Potency for dip-slip fault = (moment of double-couple) / μ =LWU POT3 : Potency for tensile fault = (moment of isotropic part of dipole) / λ

POT4 : Potency for explosive source = (moment of dipole) / μ

Output arguments (REAL*4)

UX, UY, UZ : Displacement UXX,UYX, UZX : X-derivative UXY, UYY, UZY : Y-derivative UXZ, UYZ, UZZ : Z-derivative

IRET: Return code

: =0...normal

: =1...singular point

: =2...positive Z was given

(IRET=1 occurs when the observation point coincides to the source position)

(2) Unit of output

Unit for UX,UY,UZ = (Unit of potency) / (Unit of X,Y,Z,DEPTH)**2 Unit for UXX..UZZ = (Unit of potency) / (Unit of X,Y,Z,DEPTH)**3

So, if potency is given in unit of cm**3 and X, Y, Z, DEPTH are given in unit of km, UX, UY, UZ (in cm) can be obtained by multiplication of 10**(-10) to the output, while UXX, UYX,..., UZZ in correct unit can be obtained by multiplication of 10**(-15).

(3) Subroutines called by DC3D0 : DCCON0, DCCON1, UA0, UB0, UC0

DC3D: Internal deformation due to a rectangular fault source

(1) Calling sequence

CALL DC3D (ALPHA, X,Y,Z, DEPTH, DIP, AL1,AL2, AW1,AW2, DISL1,DISL2,DISL3, UX, UY, UZ, UXX, UYX, UZX, UXY, UYY, UZY, UXZ, UYZ, UZZ, IRET)

Input arguments (REAL*4)

ALPHA: Medium constant, $(\lambda + \mu)/(\lambda + 2\mu) = 1 - (Vs/Vp)^{**}2$, [Vp, Vs = P-, S-velocity]

X, Y, Z : Coordinate of observation point (Z should be $Z \le 0$)

DEPTH: Depth of reference point on the fault surface (DEPTH>=0)

DIP : Dip-angle of the fault surface (degree)

AL1, AL2 : Coordinate range in strike direction of the fault surface

AW1,AW2: Coordinate range in up-dip direction of the fault surface taking reference point as the origin of the fault surface

DISL1: Dislocation in strike-slip component

DISL2: Dislocation in dip-slip component DISL3: Dislocation in tensile component

If 0<DIP<90, positive DISL1 gives left-lateral movement and positive DISL2 gives reverse-fault movement

while positive DISL3 gives open-type movement

Output arguments (REAL*4)

UX, UY, UZ : Displacement UXX,UYX, UZX : X-derivative UXY, UYY, UZY : Y-derivative UXZ, UYZ, UZZ : Z-derivative

IRET: Return code

: =0...normal

: =1...singular point

: =2...positive Z was given

(IRET=1 occurs when the observation point lies on the fault edges)

(2) Unit of output

Unit for UX,UY,UZ = (Unit of DISL)Unit for UXX..UZZ = (Unit of DISL) / (Unit of X,Y,..,AW2)

So, if dislocation is given in unit of cm and X, Y, Z, DEPTH, AL1, AL2, AW1, AW2 are given in unit of km, UX,UY,UZ(in cm) can be obtained by output itself, while UXX, UYX,...,UZZ in correct unit can be obtained by multiplication of 10**(-5).

(3) Subroutines called by DC3D: DCCON0, DCCON2, UA, UB, UC

By adopting AL1, AL2, AW1, AW2, this subroutine can be easily applied to inhomogeneous source, i.e. a source composed by multi segment faults, each of which may have different dislocations.

Appendix-1: Fault model in a geographical coordinate system

A geographical coordinate system may be adopted in actual application.

In such a case, follow the steps below.

- (1) Select reference point on the fault surface as (ALATO, ALNGO).
- (2) Convert station's coordinate, (ALAT, ALNG) to EW and NS position, (XEW, YNS) using the subroutine, PRTOXY.
- (3) Convert (XEW, YNS) to the position (X, Y) In the fault coordinate system according To the strike direction.


```
SUBROUTINE PRTOXY ( ALATDG, ALNGDG, ALATO, ALNGO, X, Y,
C****
                                                    ****
C****
        Conversion between (lat, long) and (X, Y)
C****
                     using Gauss-Krueger projection
                                                    ****
C**** Input/Output
C****
        ALATDG, ALNGDG : latitude, longitude (deg)
C****
                   : EW, NS coordinates (km)
C**** Input
        ALATO, ALNGO: origin of projection (deg)
C****
        IND : =0 ... transform (lat, lng) to (\ddot{X}, Y)
C****
C****
            :=1... transform ( X , Y ) to (lat, lng)
     parameter ( A=6378.160, E2=6.6946053E-3, E12=6.7397251E-3 )
     parameter ( D=57.29578, RD=1./57.29578 )
    — IND=0 : transform (lat,lng) to (X,Y) --
     IF (IND . EQ. 0) THEN
         RLAT = ALATDG*RD
         SLAT = SIN(RLAT)
         CLAT = COS(RLAT)
            = 1. + E12*CLAT*CLAT
             = ALNGDG - ALNGO
         PH1 = ALATDG + 0.5*V2*AL*AL*SLAT*CLAT*RD
         RPH1 = PH1*RD
         RPH2 = (PH1 + ALAT0)/2.*RD
         SRPH1 = SIN(RPH1)
         SRPH2 = SIN(RPH2)
         R = A*(1. - E2) / SQRT(1. - E2*SRPH2*SRPH2)**3
         AN = A / SQRT(1. - E2*SRPH1*SRPH1)
         C1 = D / R
         C2 = D / AN
         Y = (PH1 - ALATO) / C1
X = AL*CLAT/C2*( 1. + AL*AL*COS(2.*RLAT)/(6.*D*D) )
     - IND=1 : transform (X,Y) to (LAT,LNG) ---
     ELSEIF (IND . EQ. 1) THEN
         RLATO = ALATO*RD
         SLATO = SIN(RLATO)
```

```
CLATO = COS(RLATO)
    DEN = SQRT(1. - E2*SLAT0*SLAT0)
    R = A*(1. - E2) / DEN**3
    AN = A / DEN
    V2 = 1. + E12*CLAT0*CLAT0
    C1 = D / R

C2 = D / AN
    PH1 = ALATO + C1*Y
    RPH1 = PH1*RD
    TPH1 = TAN(RPH1)
    CPH1 = COS(RPH1)
         = C2*X
    BL
    ALATDG = PH1 - 0.5*BL*BL*V2*TPH1*RD
    ALNGDG = ALNGO+BL/CPH1*(1. - BL*BL*(1. +2. *TPH1*TPH1)/(6. *D*D))
ENDIF
RETURN
END
```

Appendix-2: Test routine to check displacement calculation by DC3D

```
C---- Check DC3D
X=10.
Y=20.
```

```
Z = -30.
DEPTH=50.
DIP=70.
AL1=-80.
AL2=120.
AW1 = -30.
AW2=25.
DISL1=200.
DISL2=-150.
DISL3=100.
WRITE(6, *) ' *** OUTPUT OF DC3D ***'
WRITE(6, *)
WRITE (6, *) 'DEPTH, DIP=', DEPTH, DIP
WRITE (6, *) 'AL1, AL2, AW1, AW2=', AL1, AL2, AW1, AW2
WRITE (6, *) 'DISL1, DISL2, DISL3=', DISL1, DISL2, DISL3
WRITE (6, *) 'X=', X, 'Y=', Y, 'Z=', Z
ALPHA=2. /3.
CALL DC3D (ALPHA, X, Y, Z, DEPTH, DIP,
                 AL1, AL2, AW1, AW2, DISL1, DISL2, DISL3,
                 UX, UY, UZ, UXX, UYX, UZX, UXY, UYY, UZY, UXZ, UYZ, UZZ, IRET)
WRITE(6, *)
WRITE(6, *) 'IRET=', IRET
WRITE (6, *) 'UX, UY, UZ=', UX, UY, UZ
WRITE (6, *) 'ANSWER = -37.8981 63.1789 14.9607'
STOP
END
```

.....

Yoshimitsu OKADA

Natl.Res.Inst. for Earth Sci. & Disas.Prev. Tennodai 3-1, Tsukuba, Ibaraki, 305-0006 JAPAN TEL: +81-29-863-7771, FAX: +81-29-863-7770

e-mail: okada@bosai.go.jp