Lista 9

Questão 10.

Diz-se que um conjunto $X \subset \mathbb{R}$ tem conteúdo nulo quando, para todo $\epsilon > 0$ dado, existe uma cobertura (de intervalos abertos) $X \subset I_1 \cup \cdots \cup I_k$, com $\sum_{j=1}^k |I_j| < \epsilon$. Demonstre:

- (a) Se X tem conteúdo nulo, o mesmo ocorre com seu fecho \overline{X} .
- (b) Um conjunto compacto tem medida nula se, e somente se, tem conteúdo nulo.
- (c) Se uma função limitada $g:[a,b]\to\mathbb{R}$ coincide com uma função integrável $f:[a,b]\to\mathbb{R}$ exceto num conjunto de conteúdo nulo, prove que g é integrável e sua integral é igual à de f.

Prova:

(a) Dado $\varepsilon > 0$, achemos uma cobertura finita (de intervalos abertos) de \overline{X} tal que a soma dos seus comprimentos seja menor que ε . Sabemos que X tem conteúdo nulo, então existe uma cobertura finita (de intervalos abertos) $\{I_1, \dots I_n\}$ de X tal que

$$\sum_{j=1}^{n} |I_k| < \frac{\varepsilon}{2}.$$

Note que $\overline{X} \subset \overline{I_1 \cup \cdots \cup I_n} = \overline{I_1} \cup \cdots \cup \overline{I_n}$, então $\{\overline{I_1}, \cdots \overline{I_n}\}$ é uma cobertura (de intervalos fechados) de \overline{X} . Tomemos para cada I_j um intervalo aberto J_j com o dobro do comprimento de I_j e mesmo centro, assim $\overline{I_j} \subset J_j$ e $|J_j| = 2|I_j|$. Podemos afirmar que $\{J_1, \cdots J_n\}$ é uma cobertura (de intervalos abertos) de \overline{X} e satisfaz

$$\sum_{j=1}^{n} |J_j| = 2\sum_{j=1}^{n} |I_j| \le 2 \cdot \frac{\varepsilon}{2} = \varepsilon,$$

desta maneira concluímos que \overline{X} tem conteúdo nulo.

(b) Suponha X com medida nula, dado $\epsilon>0$ existe uma cobertura (de intervalos abertos) $\{I_1,I_2,\cdots\}$ de X tal que

$$X \subset \bigcup_{j=1}^{\infty} I_j$$
 e $\sum_{j=1}^{\infty} |I_j| < \epsilon$.

Encontremos uma cobertura finita (de intervalos abertos) de X tal que a soma dos seus comprimentos seja menor que ε . Como X é compacto, X admite uma subcobertura finita $\{I_j, j \in S\}$, onde S é um subconjunto finito de \mathbb{N} . Consequentemente

$$\sum_{j \in S} |I_j| \leq \sum_{j=1}^{\infty} |I_j| < \epsilon \text{ e portanto } X \text{ tem conteúdo nulo.}$$

O reciproco é óbvio, só precisa usar a definição de conteúdo nulo e medida nula. Em geral qualquer conjunto que tem conteúdo nulo também tem medida nula.