

NUC972 Development Board

Introduction

Jan. 9th, 2015

Nuvoton Technology Corp.

Lecturer: Cliff Huang

Tel.: +886-3-5786612 #7608

Email: yshuang@nuvoton.com

Overview

- System Block Diagram
- Features
- Development Board Outline
- Mainboard Block
- Pin Definition (Excel file)
- Board Description
- Phenomenon
- Packaged Item & Naming Rule
- FAQ
 - RTC for power control
 - **Layout Guideline in Ethernet**

Mainboard Outline

Accessory Board Outline

5" 24-bit LCD board

CMOS sensor board

Back to continue

Assembled Board Outline

Back to continue

System Block Diagram

6

Features I

- CAN Bus x 2
- EBI (External Bus Interface)
 - 10-bit address bus
 - 16-bit data bus
- IIS
 - Audio codec, NUC8822L.
 - **Dual microphone.**
- Human Interface:
 - Power Key x 1, Reset Key x 1
 - 3 x 2 matrix function
 - 5" LCD with 24-bit RGB with resistor type touch panel
 - CMOS sensor

Features II

- Memory eMMC card, SD card, NAND flash, SPI flash.
- PWM x 4
- JTAG ICE
- UART x 5
 - Default is UART 0 for debugging message
- USB
 - **USB0 is OTG**
 - USB1 is Host
- ADC x 8
 - ADC0 is for battery detection.
 - ADC [3:7] for touch panel.

Mainboard Block

9

Board Description I

- Power Block
 - System power control by RTCWkUp & RTCPWREn.
 - RTC power input
 - ◆ LDO NUC3705
 - ◆ Battery paddle CR2032.
 - JATAG ICE port
 - ◆ U-Link Not to system reset.
- Peripheral Device 1
 - eMMC bus is shared with NAND flash.

 - NAND bus is conflicted with eMMC.
 - SPI flash 4-bit.

Dev. Board Description II

- Peripheral Device 3
 - CAN Bus x 2
 - ◆ Slew rate setting by SW19.
 - PWM x 4
- Peripheral Device 2
 - IIS NUC8822L
 - Ethernet RMII
 - USB
 - ◆ USB OTG Control power chip by GPIO.
 - **♦** USB host
 - SIM card

Dev. Board Description III

- Peripheral Device 4
 - 3 x 2 matrix Keypads.
 - CMOS sensor.
 - LCD 5" RGB888.
 - ◆ Touch panel ADC[3:7].
 - ◆ PWM Backlight control.
 - EBI pin header.
- Peripheral Device 6
 - UART0 Debugging message
 - UART[1:4]

Dev. Board Description IV

- Peripheral Device 5
 - Power On Setting
 - ◆ PA[0:9] (= Cfg[0:9])
 - Setting pin has to be pulled low with a $10K\Omega$.

Cfg[1:0] =	00 : Boot from USB. 01 : Boor from eMMC. 10 : Boot from NANA Flash. 11 : Boot from SPI Flash.
Cfg2 =	0 : System clock is from 12 MHz crystal. 1 : System clock is from UPLL output.
Cfg3 =	0 : WDT is OFF after power-on. 1 : WDT is ON after power-on.
Cfg4 =	0 : Pin PJ[4:0] used as GPIO pin. 1 : Pin PJ[4:0] used as JTAG interface.

Cfg[7:6] =	00: NAND Flash page size is 2KB. 01: NAND Flash page size is 4KB. 10: NAND Flash page size is 8KB. 11: Ignore Power-On Setting.
Cfg[9:8] =	00: NAND Flash ECC type is BCH T12. 01: NAND Flash ECC type is BCH T15. 10: NAND Flash ECC type is BCH T24. 11: Ignore Power-On Setting.

Phenomenon I

- Power Block
 - ICE port reset
 - ◆ U-Link Not to system reset. Open J4 on 2nd Dev. Board.
 - ◆ JTAG 1st version is traced to system reset. 2nd one adds one switch (J4) for shorting to system reset.
 - USB 0
 - ◆ Recognize device and host by software driver.
 - ◆ Power is controlled by software.

Phenomenon II

- ICE Link
 - 1st to Turbo writer connection, link to ICE
 - Install WinUSB4NuCom
- IIC
 - Use PG[3:2], PH[3:2]
- ADC
 - Vref tied with band gap.
 - ADC0
 - Battery detection
 - ♦ Leakage current \rightarrow 0.5mA.
 - ◆ Add one switch circuit for detection.

Packaged Item & Naming Rule

- Packaged Item:
 - NUC972DF62Y
 - NUC973DF62Y
 - NUC976DK51Y
 - NUC976DK52Y
 - NUC976DK62Y
 - NUC977DK62Y

FAQ

- Pin Header
 - VD33 is at the first 2-pin, VS is at the last 2-pin.
- UARTO
 - No message
 - SW31.1 must be turned on.
- NAND fail
 - Bus is shared with eMMC.
 - Turn off SW11.
- SIM card fail
 - Is shared with IIS.
 - Turn off SW15.

RTC Power Control

- RTC's register setting
 - PCLR_TIME
 - ◆ the period of the power core will be cleared after the power key is pressed. Its time scalar is 1S and the default is 5 second.
 - ◆ Key_Pressed_Period_To_Power_Off = (PCLR_TIME+3) sec.
 - EDGE_TRIG
 - ◆ 1 = Edge trigger
 - ◆ 0 = Level trigger (\ge programming time).
 - HW_PCLR_EN
 - ◆ = 1, the RPWR pin will clear to low when the power key is pressed over the PCLR_TIME second.
 - \bullet = 0, the RPWR pin isn't influenced by the pressed time of power key.
 - PWR_ON
 - ightharpoonup PWRCE = 1 when PWR_ON = 1.
 - ◆ PWRCE = 0 when PWR_ON = 0, HW_PCLR_EN = 1 and PowerKey is pressed over setting time.

RTC Control Waveform

RTC Checking List

Part No.	Ext. RTC	Int. RC	V_{RTC}
	OSC.	for RTC	
N3290x	$\sqrt{}$	×	1.8V
N3291x	$\sqrt{}$		3.3V
N3292x			3.3V
NUC97x		×	3.3V

20

Layout Guideline in Ethernet Phy

- The trace impedance (Tx+/Tx-, Rx+/Rx-) should be 100Ω , as short as possible between phy and transformer.
- The signal traces (red line) of Tx/Rx should be symmetry.
- The trace of Tx/Rx (red line) is not longer than 12 cm.
- Surround with ground
 - \blacksquare Tx+/Tx-, Rx+/Rx- Iset, Crystal
 - If necessary the trace routing is under transformer, $D2 \ge 60$ mil.

• The distance is 30mil bet

• D1 \geq 60mil, D2 \geq 80mil

