l_1 Trend Filtering

name: Jaehyun Lim

Student ID: 2017311490

Introduction

Trend Filtering: Estimate a trend component x_t , t = 1, ..., n, (slowly varying) from y_t where $y_t = x_t + z_t$. z_t is a random component (rapidly varying compared to x_t)

Application: macroeconomics, geophysics, financial time series analysis, etc...

Previous Methods: Hodrick-Prescott (H-P) filtering, moving average filtering, bandpass filtering, smoothing splines...

Hodrick-Prescott filtering

the trend estimate with regularization:

$$\frac{1}{2}\sum_{t=1}^{n}(y_t-x_t)^2 + \lambda\sum_{t=2}^{n-1}(x_{t-1}-2x_t+x_{t+1})^2$$

Regularizing the square sum of the second-order difference.

The objective function can be written in matrix form as

$$\frac{1}{2}||y-x||_2^2 + \lambda ||Dx||_2^2$$

Where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^n$, $D \in \mathbb{R}^{(n-2)\times n}$ is the second-order difference matrix

$$D = \begin{bmatrix} 1 & -2 & 1 & & & \\ & & \ddots & & \\ & & 1 & -2 & 1 \end{bmatrix}$$

The analytic solution of H-P trend estimate is

$$x^{hp} = \left(I - 2\lambda D^T D\right)^{-1} y$$

l_1 trend filtering

Variation of H-P filtering which regularize the sum of absolute value of the second-order difference of the time series values.

$$\frac{1}{2} \sum_{t=1}^{n} (y_t - x_t)^2 + \lambda \sum_{t=2}^{n-1} |x_{t-1} - 2x_t + x_{t+1}|$$

Which can be written in matrix form as

$$\frac{1}{2} \|y - x\|_2^2 + \lambda \|Dx\|_1$$

Properties of l_1 trend filtering

O(n) arithmetic operations

$$x^{lt} \to y \text{ as } \lambda \to 0$$

 x^{lt} is not a linear function of the original data y (x^{hp} is a linear function of y)

$$x^{lt} = x^{ba} \text{ for } \lambda = \lambda_{max} \geq \left\| \left(DD^T \right)^{-1} Dy \right\|_{\infty}$$

$$x^{lt} = \frac{\lambda_i - \lambda}{\lambda_i - \lambda_{i+1}} x^{(i+1)} + \frac{\lambda - \lambda_{i+1}}{\lambda_i - \lambda_{i+1}} x^{(i)}, \lambda_{i+1} \leq \lambda \leq \lambda_i, i = 1, \dots, k - 1, \text{ where } x^{(i)} \text{ is } x^{lt} \text{ with } \lambda = \lambda_i, \lambda_1 = 0, \lambda_k = \lambda_{max}$$
Let \tilde{x}^{lt} denote the l_1 trend estimate for (y_1, \dots, y_{n+1}) . There is an interval $[l, u]$ with $l < u$, for which $\tilde{x}^{lt} = (x^{lt}, 2x_n^{lt} - x_{n-1}^{lt})$, provided $y_{n+1} \in [u, l]$

Properties of l_1 trend filtering

 l_1 trend filtering problem is equivalent to the l_1 regularized least squares problem

minimize
$$\frac{1}{2} \|A\theta - y\|_2^2 + \lambda \sum_{i=3}^n |\theta_i|$$

Where $\theta = (\theta_1, ..., \theta_n) \in \mathbb{R}^n$ is the variable and A is the lower triangular matrix

$$A = \begin{bmatrix} 1 & & & & & \\ 1 & 1 & & & & \\ 1 & 2 & 1 & & & \\ 1 & 3 & 2 & \ddots & & \\ \vdots & \vdots & \vdots & \ddots & 1 & \\ 1 & n-1 & n-2 & \dots & 2 & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

From a standard result in l_1 -regularized least squares, the solution θ is a piecewise-linear function of the regularization parameter λ

Optimality condition

First-order optimality condition based on subdifferential calculus

$$\exists \nu \in \mathbb{R}^{n-2} \text{ s. t. } y - x = D^T \nu, \ \nu_t \in \begin{cases} \{+\lambda\}, \ (Dx)_t > 0, \\ \{-\lambda\}, \ (Dx)_t < 0, \ t = \\ [-\lambda, \lambda], \ (Dx)_t = 0, \end{cases}$$

 $1, \dots, n-2.$

can be written as

$$((DD^T)^{-1}D(y-x))_t \in \begin{cases} \{+\lambda\}, & (Dx)_t > 0, \\ \{-\lambda\}, & (Dx)_t < 0, t \\ [-\lambda, \lambda], & (Dx)_t = 0, \end{cases}$$

$$= 1, \dots, n-2.$$

Dual problem

Reformulation with new variable $z \in \mathbb{R}^{n-2}$ and new equality constraint z = Dx

minimize
$$\frac{1}{2} \|y - x\|_2^2 + \lambda \|z\|_1$$

subject to $z = Dx$

The Lagrangian is

$$L(x, z, \nu) = \frac{1}{2} \|y - x\|_2^2 + \lambda \|z\|_1 + \nu^T (Dx - z)$$

The dual function is

$$\inf_{x,z} L(x,z,\nu) = \begin{cases} -\frac{1}{2} \nu^T D D^T \nu + y^T D^T \nu, & -\lambda \mathbf{1} \le \nu \le \lambda \mathbf{1}, \\ -\infty, & \text{otherwise} \end{cases}$$

The dual problem is

minimize
$$g(v) = \frac{1}{2}v^T D D^T v - y^T D^T v$$

subject to $-\lambda \mathbf{1} \le v \le \lambda \mathbf{1}$

from the solution v^{lt} of the dual problem, $x^{lt} = y - D^T v^{lt}$.

Dual and central residual

$$r_t(v, \mu_1, \mu_2) = \begin{bmatrix} r_{dual} \\ r_{cent} \end{bmatrix} =$$

$$\begin{bmatrix} \nabla g(\nu) + D(\nu - \lambda \mathbf{1})^T \mu_1 - D(\nu + \lambda \mathbf{1})^T \mu_2 \\ -\mu_1(\nu - \lambda \mathbf{1}) + \mu_2(\nu + \lambda \mathbf{1}) - \left(\frac{1}{t}\right) \mathbf{1} \end{bmatrix}$$

is the residual, where $\mu_1, \mu_2 \in \mathbb{R}^{n-2}$ are dual variable for the inequality constraint. As $t \to \infty$, $r_t(v, \mu_1, \mu_2) = 0$ reduces to the KKT-condition.

Primal-dual interior point method

The Newton step is characterized by

$$r_t(\nu + \Delta \nu, \mu_1 + \Delta \mu_1, \mu_2 + \Delta \mu_2)$$

 $\approx r_t(\nu, \mu_1, \mu_2) + Dr_t(\nu, \mu_1, \mu_2)(\Delta \nu, \Delta \mu_1 \Delta \mu_2) = 0$

Where Dr_t is the derivative of r_t . This can be written as

$$\begin{bmatrix} DD^{T} & I & -I \\ I & J_{1} & 0 \\ -I & 0 & J_{2} \end{bmatrix} \begin{bmatrix} \Delta \nu \\ \Delta \mu_{1} \\ \Delta \mu_{2} \end{bmatrix} = \begin{bmatrix} DD^{T}z - Dy + \mu_{1} - \mu_{2} \\ f_{1} + \left(\frac{1}{t}\right) \operatorname{diag}(\mu_{1})^{-1} \mathbf{1} \\ f_{2} + \left(\frac{1}{t}\right) \operatorname{diag}(\mu_{2})^{-1} \mathbf{1} \end{bmatrix},$$

where

$$f_1 = \nu - \lambda \mathbf{1} \in \mathbb{R}^{n-2}$$

$$f_2 = -\nu - \lambda \mathbf{1} \in \mathbb{R}^{n-2}$$

$$J_i = \operatorname{diag}(\mu_i)^{-1} \operatorname{diag}(f_i) \in \mathbb{R}^{(n-2)\times(n-2)}$$

Eliminating $(\Delta \mu_1, \Delta \mu_2)$,

By eliminating $(\Delta \mu_1, \Delta \mu_2)$, the reduced system is:

$$(DD^{T} - J_{1}^{-1} + J_{2}^{-1}) \Delta \nu$$

$$= -\left(DD^{T}z - Dy - \left(\frac{1}{t}\right) \operatorname{diag}(f_{1})^{-1}\mathbf{1} + \left(\frac{1}{t}\right) \operatorname{diag}(f_{2})^{-1}\mathbf{1}\right)$$

 $\Delta\mu_1$ and $\Delta\mu_2$ can be computed as

$$\Delta \mu_1 = -\left(\mu_1 + \left(\frac{1}{t}\right) \operatorname{diag}(f_1)^{-1} \mathbf{1} + J_1^{-1} d\nu\right)$$

$$\Delta \mu_2 = -\left(\mu_2 + \left(\frac{1}{t}\right) \operatorname{diag}(f_2)^{-1} \mathbf{1} - J_2^{-1} d\nu\right)$$

Algorithm

Repeat

- 1. Compute $\Delta \nu$, $\Delta \mu_1$, $\Delta \mu_2$ by primal-dual interior point method
- 2. Backtracking line search with $\alpha = 0.01, \beta = 0.5$
- 3. Update $t = \max\left(\frac{2(n-2)\mu}{p-d}, 1.2t\right)$ where μ is the parameter for update t
- 4. Compute

$$p_{1} = \frac{1}{2} (Dy - \mu_{1} + \mu_{2})^{T} (DD^{T})^{-1} (Dy - \mu_{1} + \mu_{2}) + \lambda(\mu_{1} + \mu_{2})$$

$$p_{2} = \frac{1}{2} \nu^{T} DD^{T} \nu + \lambda ||Dy - DD^{T} \nu||_{1}$$

$$p = \max(p_{1}, p_{2})$$

$$d = -\frac{1}{2} \nu^{T} DD^{T} \nu + y^{T} D\nu$$

Until $p - d < \epsilon$

Trend estimate and regularization parameter $\boldsymbol{\lambda}$

$l_{ m 1}$ trend filter and H-P filter

Daily closing values of the S&P 500 Index

Application to robotics

