Introduction to Machine

Learning

# Traditional Computer Science vs. Machine Learning



Traditional Way

1

# Traditional Computer Science vs. Machine Learning



Traditional Way



Machine Learning

# Machine Learning: Definition

• Term introduced in 1959 by Arthur L. Samuel [1]



Arthur Samuel (1901-1990)



Tom M. Mitchell Computer Scientist and Professor @CMU

# **Machine Learning: Definition**

- Term introduced in 1959 by Arthur L. Samuel [1]
- Formal definition (Tom M. Mitchell [2]):
  A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.



Arthur Samuel (1901-1990)



Tom M. Mitchell Computer Scientist and Professor @CMU

# **Machine Learning: Definition**

- Term introduced in 1959 by Arthur L. Samuel [1]
- Formal definition (Tom M. Mitchell [2]):
  A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.
- In simple words: Algorithms that improve on a task with experience





Arthur Samuel (1901-1990)



Tom M. Mitchell Computer Scientist and Professor @CMU

# **Key Issues in Machine Learning**

- What data (E) to use?
- How to represent it?
- Which algorithm should be used to learn?
- How to pick the best model?
- Can we be confident in the results?
- How to model a problem as a Machine Learning problem?

# Types of Learning



# Supervised Learning (80%)



Unsupervised Learning (20%)

# **Supervised Learning: Procedure**

# Condensed View of Supervised Learning:



#### **Decompressed View:**



**Training Phase** 

**Testing Phase** 

# **Training Data**

The training data comes in input pairs  $(\mathbf{x}, \mathbf{y})$ , with  $\mathbf{x} \in \mathbb{R}^D$  and  $\mathbf{y} \in \mathcal{C}$ .

The entire training set is denoted as:

$$\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N \subseteq \mathbb{R}^D \times \mathcal{C}$$

with

- ullet  $\mathbb{R}^D$  D-dimensional feature space
- ullet C label space
- $x_i$  input vector of the  $i^{th}$  training sample
- $y_i$  label of the  $i^{th}$  training sample
- *N* number of training samples

Question: In the previous slide, what is x? and y?

# **Training Data**

The **training set** points  $(\mathbf{x}_i, \mathbf{y}_i)$  are drawn from an unknown probability distribution  $\mathcal{P}(X, Y)$ .

# **Training Data**

The **training set** points  $(\mathbf{x}_i, \mathbf{y}_i)$  are drawn from an unknown probability distribution  $\mathcal{P}(X, Y)$ .

#### **Goal of Supervised Learning:**

Use  $\mathcal{D}$  to learn a function h, such that for an **unseen point**  $(\mathbf{x}, \mathbf{y}) \sim \mathcal{P}$ :

$$h(\mathbf{x}) \approx \mathbf{y}$$

with high probability

5

- $y \in C$ : Output, Target, Label, Dependent Variable.
- $\bullet$  The output or label space  ${\cal C}$  can take different forms.
- Depending on this, we use a specific term to refer to the supervised learning task

# The Output Space ${\cal C}$

- $y \in C$ : Output, Target, Label, Dependent Variable.
- $\bullet$  The output or label space  ${\cal C}$  can take different forms.
- Depending on this, we use a specific term to refer to the supervised learning task

#### **Binary Classification**

$$\mathcal{C} = \{0,1\}$$
 or  $\mathcal{C} = \{-1,+1\}$ 

- $y \in C$ : Output, Target, Label, Dependent Variable.
- ullet The output or label space  ${\mathcal C}$  can take different forms.
- Depending on this, we use a specific term to refer to the supervised learning task

#### **Binary Classification**

$$\mathcal{C} = \{0,1\}$$
 or  $\mathcal{C} = \{-1,+1\}$ 

```
Example: 1) Red/blue ball labeling - red (1/+1), blue (0/-1) 2) Spam filtering (how?)
```

- $y \in C$ : Output, Target, Label, Dependent Variable.
- ullet The output or label space  ${\cal C}$  can take different forms.
- Depending on this, we use a specific term to refer to the supervised learning task

### **Binary Classification**

$$\mathcal{C} = \{0,1\}$$
 or  $\mathcal{C} = \{-1,+1\}$ 

Example: 1) Red/blue ball labeling - red (1/+1), blue (0/-1) 2) Spam filtering (how?)

#### **Multi-class Classification**

$$\label{eq:continuity} \begin{split} \mathcal{C} &= \{1, 2, \dots, K\} \text{ with } \\ K &> 2 \end{split}$$

**Example:** Fruit classification from photos (how?)

- $y \in C$ : Output, Target, Label, Dependent Variable.
- ullet The output or label space  ${\mathcal C}$  can take different forms.
- Depending on this, we use a specific term to refer to the supervised learning task

### **Binary Classification**

$$\mathcal{C} = \{0,1\}$$
 or  $\mathcal{C} = \{-1,+1\}$ 

Example: 1) Red/blue ball labeling - red (1/+1), blue (0/-1) 2) Spam filtering (how?)

#### Multi-class Classification

$$\label{eq:continuity} \begin{split} \mathcal{C} &= \{1, 2, \dots, K\} \text{ with } \\ K &> 2 \end{split}$$

# **Example:** Fruit classification from photos (how?)

# Regression

$$\mathcal{C}=\mathbb{R}^O$$
  
In this course,  $O=1$ 

Example: Predict MALIS grades (O = 1)Predict weight and height of a person (O = 2)

# Setup: Where are we?

#### Training data

A computer program is said to learn from experience E with respect to some class of tasks  $\underline{T}$  and performance measure P if its performance at tasks in  $\underline{T}$ , as measured by P, improves with experience E (Tom M. Mitchell).

# The Hypothesis Class

**Recall:** The goal of supervised learning is to use  $\mathcal{D}$  to learn a function  $h: \mathbb{R}^D \to \mathcal{C}$  that can predict y from x.



# The Hypothesis Class

**Recall:** The goal of supervised learning is to use  $\mathcal{D}$  to learn a function  $h: \mathbb{R}^D \to \mathcal{C}$  that can predict y from x.



#### **Example:**



- D=
- h(x) = +1
- Is this a hypothesis?
- Is this a good hypothesis?

# The Hypothesis Class

- We have  $h \in \mathcal{H}$ , where  $\mathcal{H}$  denotes the hypothesis class
- Examples:
  - Linear Classifiers
  - Decision Trees
  - Neural Networks
  - Support Vector Machines
- First task: Pick a hypothesis class
- Warning: No Free Lunch Theorem

#### No Free Lunch

- Which hypothesis class  $\mathcal{H}$  to choose?
- Every ML algorithm has to make assumptions
- The choice will depend on the data
- $oldsymbol{ ilde{\mathcal{H}}}$  encodes assumptions about the data and its distribution



No Free Lunch: There is no single perfect choice for all problems

ullet First task: Pick a hypothesis class  ${\cal H}$ , i.e. pick a type of machine learning algorithm.

- ullet First task: Pick a hypothesis class  $\mathcal{H}$ , i.e. pick a type of machine learning algorithm.
- **Second task:** Find the best function within the hypothesis class,  $h \in \mathcal{H}$ .

- First task: Pick a hypothesis class  $\mathcal{H}$ , i.e. pick a type of machine learning algorithm.
- **Second task:** Find the best function within the hypothesis class,  $h \in \mathcal{H}$ .
- Finding the best  $h \in \mathcal{H}$  using  $\mathcal{D}$  is denoted the **learning process**.



- ullet First task: Pick a hypothesis class  $\mathcal{H}$ , i.e. pick a type of machine learning algorithm.
- **Second task:** Find the best function within the hypothesis class,  $h \in \mathcal{H}$ .
- Finding the best  $h \in \mathcal{H}$  using  $\mathcal{D}$  is denoted the **learning process**.



How?

- First task: Pick a hypothesis class  $\mathcal{H}$ , i.e. pick a type of machine learning algorithm.
- **Second task:** Find the best function within the hypothesis class,  $h \in \mathcal{H}$ .
- Finding the best  $h \in \mathcal{H}$  using  $\mathcal{D}$  is denoted the **learning process**.



#### How?

• Idea: Pick  $h \in \mathcal{H}$  making the least mistakes in  $\mathcal{D}$  and, preferably, the simplest.

- First task: Pick a hypothesis class  $\mathcal{H}$ , i.e. pick a type of machine learning algorithm.
- **Second task:** Find the best function within the hypothesis class,  $h \in \mathcal{H}$ .
- Finding the best  $h \in \mathcal{H}$  using  $\mathcal{D}$  is denoted the **learning process**.



#### How?

- Idea: Pick  $h \in \mathcal{H}$  making the least mistakes in  $\mathcal{D}$  and, preferably, the simplest.
- Measure: Loss function

• A loss or risk function  $I: \mathbb{R} \to \mathbb{R}$  quantifies how well  $h(\mathbf{x})$  approximates y.

I(a,b)

• A loss or risk function  $I: \mathbb{R} \to \mathbb{R}$  quantifies how well  $h(\mathbf{x})$  approximates y.

- The lower the value of I(y, h(x)) the better the approximation
- I(y, y) = 0
- Typically (but not always)  $I(y, h(x)) \ge 0$  for all y, h(x)

• A loss or risk function  $I: \mathbb{R} \to \mathbb{R}$  quantifies how well  $h(\mathbf{x})$  approximates y.

- The lower the value of I(y, h(x)) the better the approximation
- I(y,y) = 0
- Typically (but not always)  $I(y, h(x)) \ge 0$  for all y, h(x)

| Loss           | Expression                                                                                  | Task           |
|----------------|---------------------------------------------------------------------------------------------|----------------|
| 0/1 Loss       | $I(y, h(x)) = \begin{cases} 1 & \text{if } h(x) \neq y \\ 0 & \text{otherwise} \end{cases}$ | Classification |
| Quadratic loss | $I(y, h(x)) = (y - h(x))^{2}$                                                               | Regression     |
| Absolute loss  | $I(y, h(\mathbf{x})) =  y - h(\mathbf{x}) $                                                 | Regression     |

Table 2: Common loss functions

#### **Loss Minimization**

• Using the training data  $\mathcal{D}$ , we can compute the average loss over all the data points

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} I(\mathbf{y}_i, h(\mathbf{x}_i))$$

#### **Loss Minimization**

ullet Using the training data  $\mathcal{D}$ , we can compute the average loss over all the data points

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} I(\mathbf{y}_i, h(\mathbf{x}_i))$$

- Finding the best hypothesis means finding the *h* that minimizes the loss.
- This can be formalized as

$$h^* = \arg\min_{h \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} I(y_i, h(\mathbf{x}_i))$$

**Summary: Supervised Learning** 

**Formalization** 

#### **Back to the Definition**



# **Back to the Supervised Learning Process**



**Training Phase** 



**Testing Phase** 

Suppose the following hypothesis:

$$h(\mathbf{x}) = \begin{cases} y_i & \text{if } \exists (\mathbf{x}_i, y_i) \in \mathcal{D} \text{ s.t.} \mathbf{x} = \mathbf{x}_i \\ 0 & \text{otherwise} \end{cases}$$

Suppose the following hypothesis:

$$h(\mathbf{x}) = \begin{cases} y_i & \text{if } \exists (\mathbf{x}_i, y_i) \in \mathcal{D} \text{ s.t.} \mathbf{x} = \mathbf{x}_i \\ 0 & \text{otherwise} \end{cases}$$

#### **Questions:**

- What is the value of the loss  $\mathcal{L}$ ? Pick the loss you prefer.
- When new samples arrive  $\mathbf{x} \notin \mathcal{D}$ , how will  $h(\cdot)$  perform?

When  $h(\cdot)$  has a very low loss, but it does not perform well in unseen data, we say there is **overfitting** causing that our model does not **generalize** well.

# **Overfitting**

#### Reminder...

- Overfitting occurs when a model fits the data too well
- It is associated to models of high complexity
- It will lead to failure to generalize Training error < Testing error



# **Overfitting**

#### Reminder...

- Overfitting occurs when a model fits the data too well
- It is associated to models of high complexity
- It will lead to failure to generalize
  Training error < Testing error</li>
- Underfitting occurs when a model cannot adequately capture the underlying structure of the data



Reminder: The goal is to find h such that, for an unseen point  $(x, y) \sim \mathcal{P}$ ,  $h(x) \approx y$ .

In other words, we want h to **generalize**.

Reminder: The goal is to find h such that, for an unseen point  $(x, y) \sim \mathcal{P}$ ,  $h(x) \approx y$ .

In other words, we want h to generalize.

However, the loss over the training set does not give us information about the generalization capabilities of the trained model.

Reminder: The goal is to find h such that, for an unseen point  $(x, y) \sim \mathcal{P}$ ,  $h(x) \approx y$ .

In other words, we want h to generalize.

However, the loss over the training set does not give us information about the generalization capabilities of the trained model.

#### **Generalization loss:**

$$\epsilon = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{P}}[I(\mathbf{y}, h(\mathbf{x}))]$$

We can resort to data splitting to obtain an estimate of the generalization loss.

# Train/Test Splits

- We split D into three sets:
  - Training set  $\mathcal{D}_{TR}$  Used to learn h
  - Validation set  $\mathcal{D}_{VAL}$  To check for overfitting
  - Test set  $\mathcal{D}_{TEST}$  Used to evaluate the chosen h and have an estimate of the **generalization** error or loss

- Typical splits are 70/10/20, 80/10/10, 60/20/20.
- If the samples are drawn i.i.d. from the same distribution P, then the testing loss is an unbiased estimator of the true generalization loss.

# Train/Test Splits

 It is important to split the data properly to simulate a real life scenario and to avoid data leakage.

- How to split?
  - By time: if the data is collected temporally, the split needs to be done in time. Example: First 70% point will be for training, next 10% for validation, last 20% for test.
  - Uniformly at random if the data is independent and identically distributed

# Validation

## **Generalization and Model Selection**

• Generalization: Ability of a model to perform well on unseen data

$$\epsilon = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{P}}[I(\mathbf{y}, h(\mathbf{x}))]$$

#### **Generalization loss**

 Model Selection: Task of selecting a model from a set of candidate models given the data

## **Model Selection**

- For a set of candidate models we choose that one with the smallest test error
- Reminder: We prefer simpler models
- Therefore, we might choose:
  - Slightly higher validation errors
  - Simpler models



## **Validation**

- 1. Split  $\mathcal{D}$  into  $\mathcal{D}_{TR}$ ,  $\mathcal{D}_{VAL}$  and  $\mathcal{D}_{TEST}$
- 2. Train candidate models using  $\mathcal{D}_{TR}$ , e.g. different  $\lambda$  for regularization, network hyper-parameters
- 3. Use  $\mathcal{D}_{VAL}$  to evaluate the candidate models
- 4. Pick the best
- 5. Retrain the best using  $\mathcal{D}_{TR} + \mathcal{D}_{VAL}$
- 6. Test the generalization capabilities using  $\mathcal{D}_{TEST}$

#### **Validation**

- 1. Split  $\mathcal{D}$  into  $\mathcal{D}_{TR}, \mathcal{D}_{VAL}$  and  $\mathcal{D}_{TEST}$
- 2. Train candidate models using  $\mathcal{D}_{TR}$ , e.g. different  $\lambda$  for regularization, network hyper-parameters
- 3. Use  $\mathcal{D}_{VAL}$  to evaluate the candidate models
- 4. Pick the best
- 5. Retrain the best using  $\mathcal{D}_{TR} + \mathcal{D}_{VAL}$
- 6. Test the generalization capabilities using  $\mathcal{D}_{TEST}$

#### **Drawback**

- Easy when there is a very large amount of data
- Was the split the good one?

#### **Cross-Validation**

Better known as K-fold cross-validation

## **Algorithm**

- 1. Split the data into  $\mathcal{D}_{TR}$ ,  $\mathcal{D}_{TEST}$
- 2. Split  $\mathcal{D}_{TR}$  into K-folds
- 3. For each fold  $k \in \{1, \dots, K\}$ , a candidate model is trained in all but the  $k^{th}$  fold
- 4. Test on the  $k^{th}$  fold
- 5. Average the error across folds
- 6. Use the resulting average error of each candidate model to select one
- 7. Retrain the chosen one using  $\mathcal{D}_{TR}$
- 8. Test the generalization capabilities using  $\mathcal{D}_{TEST}$

#### **Cross-Validation**

Better known as K-fold cross-validation

#### **Algorithm**

- 1. Split the data into  $\mathcal{D}_{TR}$ ,  $\mathcal{D}_{TEST}$
- 2. Split  $\mathcal{D}_{TR}$  into K-folds
- 3. For each fold  $k \in \{1, ..., K\}$ , a candidate model is trained in all but the  $k^{th}$  fold
- 4. Test on the  $k^{th}$  fold
- 5. Average the error across folds
- 6. Use the resulting average error of each candidate model to select one
- 7. Retrain the chosen one using  $\mathcal{D}_{TR}$
- 8. Test the generalization capabilities using  $\mathcal{D}_{TEST}$

#### Note

If K = N, it is denoted leave-one-out CV (LOOCV)

## K-fold Cross-validation

- CV gives an idea of the variability of the test error
- It can assess stability of the method by looking at the models parameter obtained for each fold
- A common value for K is 5



# **Using CV Properly**

- Checking generalization and doing model selection should be two different tasks
- Model selection: Estimates the performance of different models in order to choose the best one (validation set via CV)
- Model assessment: Having chosen a final model, estimates its prediction error (generalization) on new data (test set)



# Further Reading and Useful Material

| Source                                         | Notes                                   |
|------------------------------------------------|-----------------------------------------|
| The Elements of Statistical Learning           | Ch 3, 4, 7                              |
| The Elements of Statistical Learning           | Sec. 11.5 - Training of Neural Networks |
| Sci-kit Learn                                  | Model Selection and Evaluation          |
| Selection bias in the reported performances of |                                         |
| AD classification pipelines                    | (link)                                  |

