Answer 7.26

The hypothesis is given by: H_0 : $p = p_0 = 0.04$, H_1 : p > 0.04.

Since $np_0q_0 = 50 \times 0.04 \times 0.96 = 1.92 < 5$, we will use the exact test.

$$p = \sum_{k=5}^{50} {}_{50}C_k (0.04)^k (0.96)^{50-k} = 1 - \sum_{k=0}^{4} C_k (0.04)^k 0.96^{50-k}$$
$$\Pr(X \le 4 | n = 50, p = 0.04) = 0.9510$$

Answer 7.30

Let p= true proportion of death lung cancer for workers in the plant. The hypothesis is: H_0 : p = 0.12, H_1 : $p \neq 0.12$.

Answer 7.31

A two-sided test is appropriate as there is no prior information to determine whether the proportion of lung cancer deaths is higher or lower than in the general population.

Answer 7.32

As $np_0q_0=20\times 0.12\times 0.88=2.1<5$, we will use the exact test. Since $\hat{p}=0.25>0.12$

$$p = 2 \times \sum_{k=5}^{20} C_k (0.12)^k 0.88^{20-k}$$

$$Pr(X \le 4 | n = 20, p = 0.12) = 0.917$$

$$p = 2 \times (1 - 0.917) = 0.166$$

Answer 7.48

$$SMR = \frac{17}{6.3} = 270\%$$

Answer 7.49

Since the expectation of number of events is less than 10, we will use the exact test. When x = 17, the 95% confidence level for mean is (9.90, 27.22). Therefore, we will reject H_0 .

$$p = 2 \times \sum_{k=17}^{\infty} \frac{e^{-6.3} 6.3^k}{k!} = 2 \times (1 - \sum_{k=0}^{16} \frac{e^{-6.3} 6.3^k}{k!})$$

$$\Pr(X \le 16 | \mu = 6.3) = 0.9997$$

$$p = 2 \times (1 - 0.9997) < 0.001$$

Answer 7.109

No. A two-sided p-value of 0.03 means that we will reject the null hypothesis at 0.05 level. However, if the 95% CI contains the null value 2, we should not reject the null hypothesis at the 0.05 level.

Answer A1

The hypothesis is given by: H_0 : $\mu = 400$, H_1 : $\mu \neq 400$.

$$t = \frac{388 - 400}{\sqrt{\frac{37}{35}}} = -11.671$$

The t_{34} critical value at 0.05 significant level (two tail) is 2.032

Since 11.671>2.032, we will reject the null hypothesis and conclude that the intake of women whose income is below the poverty level differs from the recommended amount.

Answer A2

The sample size estimation is performed in STATA:

. power onemean 400 388, power(0.9) sd(37)

Performing iteration ...

Estimated sample size for a one-sample mean test t test

H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500 power = 0.9000 delta = -0.3243 m0 = 400.0000 ma = 388.0000 sd = 37.0000

Estimated sample size:

N = 102

Answer B1

The lighter smoking twin is labelled as twin 1. We are only interested in one variable, which is the density of the femoral neck bone fn1. A one-sample t test will be appropriate.

Answer B2

The hypothesis is given by H_0 : $\mu = 0.77$, H_1 : $\mu \neq 0.77$.

Answer B3

. ttest fn1 == 0.77

One-sample t test

interval]	[95% conf.	Std. dev.	Std. err.	Mean	Obs	Variable
.69781	.6319461	.1043341	.0162943	.664878	41	fn1
-6.4515 40	t = of freedom =	Degrees			= mean(fn1) = 0.77	mean =
n > 0.77 = 1.0000	Ha: mea Pr(T > t)	Ha: mean != 0.77 Pr(T > t) = 0.0000			Ha: mean < 0.77 Pr(T < t) = 0.0000	
				. 0.025)	invttail(40	. displav

. display invitali(40, 0.025)

2.0210754

Since $t_{40}=2.02<6.45$, we will reject the null hypothesis and conclude that the lighter smoking twins do not have a healthy bone density.

Answer B4

There is only one variable we interested in, which is the density of the femoral neck bone fn1. We will choose the one-sample test and test the normality of this variable.

. swilk fn1

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	Z	Prob>z
fn1	41	0.98740	0.508	-1.428	0.92340

The result shows that this variable is normally distributed. The hypothesis is given by: H_0 : $\mu =$ 0.77, H_1 : $\mu < 0.77$.

. ci means fn1, level(99)

Variable	0bs	Mean	Std. err.	[99% conf	. interval]
fn1	41	.664878	.0162943	.6208109	.7089452

Since the upper bound of confidence interval is 0.709 < 0.77, we can reject the null hypothesis and conclude that we are 99% confident that the bone density of the lighter smoking twin lower than heathy levels.