8.2

Suite géométrique

SPÉ MATHS 1ÈRE - JB DUTHOIT

8.2.1 Approche

Pliages d'une feuille de papier...

L'idée est d'évaluer l'épaisseur obtenue après avoir plié une feuille de papier plusieurs fois en deux. L'épaisseur du papier à lettres est de 0,1 mm.

Quelle est l'épaisseur obtenue après 3 pliages? Et après 10,23 pliages?

8.2.2 Définition

une suite géométrique, c'est exactement ça!

Définition

On dit qu'une suite (u_n) est une <u>suite géométrique</u> si pour tout $n \in \mathbb{N}$, on a $u_{n+1} = q \times u_n$, où q est un réel.

q est appelé **raison** de la suite géométrique (u_n) .

Exemple

- 2;4;8;16 est une suite géométrique de raison 2.
- 2;-6,18 est une suite géométrique de raison -3

Savoir-Faire 8.41

SAVOIR DÉMONTRER QU'UNE SUITE EST UNE SUITE GÉOMÉTRIQUE OU NON. Exemple: Les suites suivantes sont-elles des suites géométriques?

- Soit le suite (u_n) définie pour tout entier naturel n par $u_n = 3n$
- Soit le suite (u_n) définie pour tout entier naturel n par $u_n = 3n + 1$.
- Soit le suite (u_n) définie pour tout entier naturel n par $u_n = 3n^2$
- Soit le suite (u_n) définie pour tout entier naturel n par $u_n = 3 \times 2^n$

8.2.3 Formules explicites

∠Démonstration 8.7

Calcul du terme général d'une suite géométrique.

 $\begin{cases} \text{Calcul d} \\ \text{Soit } (u_n) \\ u_0 \times q^n. \end{cases}$ Soit (u_n) une suite géométrique de premier terme u_0 et de raison q. Montrer que $u_n =$

Propriété

- Soit (u_n) une suite géométrique de premier terme u_0 et de raison q. Alors, pour tout $n \in \mathbb{N}$, on a $u_n = u_0 \times q^n$.
- Soit (u_n) une suite géométrique de premier terme u_1 et de raison q. Alors, pour tout $n \in \mathbb{N}$, on a $u_n = u_1 \times q^{n-1}$.
- Généralisation Soit p un entier naturel. Soit (u_n) une suite géométrique de premier terme u_p et de raison q. Alors, pour tout $n \in \mathbb{N}$, on a $u_n = u_p \times q^{n-p}$.

Savoir-Faire 8.42

SAVOIR UTILISER LES FORMULES EXPLICITES AVEC LES SUITES GÉOMÉTRIQUES. Exemple :

- Soit u la suite géométrique de raison q=3 et de premier terme $u_0=4$. Calculer u_7 . Rép : 8748
- Soit u la suite géométrique de raison $q = \frac{1}{2}$ telle que $u_6 = 512$. Calculer u_9 . Rép : 64.
- Soit (u_n) la suite géométrique définie par q=5 et $u_0=10$. Exprimer u_n en fonction de n.
- Soit (u_n) la suite géométrique de premier terme u_0 et de raison q, telle que $u_4 = 48$ et $u_7 = 384$. Calculer u_0 et q.

Substitution selvente sel

- Soit (u_n) la suite géométrique de premier terme u_0 et de raison q, telle que $u_4 = 324$ et $u_7 = -8748$. Calculer u_0 et q. (Réponse : $u_0 = 4$ et q = -3)
- Soit (u_n) la suite géométrique la suite géométrique de premier terme u_0 et de raison q, telle que $u_2 = 0.5$ et $u_5 = 0.0625$. Calculer u_0 et q.(Réponse $:u_0 = 2$ et q = 0.5)
- Soit (u_n) la suite géométrique la suite géométrique de premier terme u_1 et de raison q, telle que $u_5 = 2048$ et $u_7 = 32768$. Calculer u_1 et q, en sachant que q < 0.(Réponse $: u_1 = 8$ et q = -4)
- Soit (u_n) la suite géométrique la suite géométrique la suite géométrique de premier terme u_1 et de raison q, telle que $u_5 = -32$ et $u_9 = -512$. Calculer u_1 et q, en sachant que q > 0.(Réponse : $u_1 = -2$ et q = 2)

8.2.4 Somme des termes consécutifs d'une suite géométrique

✓Démonstration 8.8

 $\mbox{\Large ξ}$ Démonstration : calcul de $1+q+q^2+\ldots+q^n$:

Propriété

Soit (u_n) une suite géométrique de raison q, avec $q \neq 1$.

Somme des termes conséctifs = $(1er\ terme) \times \frac{1-q^{nb}\ de\ termes}{1-q}$

∢SG et somme des termes

SAVOIR CALCULER LA SOMME DES TERMES CONSÉCUTIFS D'UNE SUITE GÉOMÉTRIQUE EXEMPLES :

- Calculer $S = 1 + 2 + 4 + 8 + \ldots + 256$
- Calculer $S' = 1 + 3 + 9 + \ldots + 2187$

Substitution Substitution

Voici quelques exercices corrigés

- On considère la suite géométrique de raison -2 telle que $u_7=-256$. Calculer $S=u_7+\ldots+u_{14}$. Rép : 21760
- On considère la suite géométrique de raison 1 telle que $u_2=-4$. Calculer $S=u_2+\ldots+u_9$. Rép: -32
- On considère une suite géométrique de raison 3 telle que $u_2=-72$. Calculer $S=u_2+\ldots+u_{11}$.Rép : -2125728
- Calculer la somme S telle que $S = 1 + 3 + 3^2 + ... + 3^{13}$. Rép : 2391484
- Calculer $S = 7 + 14 + 28 + \ldots + 114688$. Rép : 229369

♡Défi!

Écrire une fonction Python nommée defi2 qui :

- a pour paramètres 4 nombres :
 - q (réel, qui correspond à la raison de la SG)
 - u_0 (réel, premier terme)
 - p1 (entier)
 - p2 (entier, strictement supérieur à p1)
- renvoie la somme u_p1+...+u_p2, en considérant que la suite est une suite géométrique.

Pour tester la fonction, on vérifiera par exemple que l'appel de defi2(3,1,0,13) renvoie 2391484.

Savoir-Faire 8.44

SAVOIR UTILISER LES SUITES GÉOMÉTRIQUES POUR ÉTUDIER LES ÉVOLUTIONS SUCCESSIVES À TAUX CONSTANT

Rappels de la classe de seconde :

Lien entre pourcentage d'évolution et coefficient multiplicateur :

- Augmenter une valeur de t % revient à la multiplier par $1 + \frac{t}{100}$
- Diminuer une valeur de t % revient à la multiplier par $1 \frac{t}{100}$
- $1 + \frac{t}{100}$ et $1 \frac{t}{100}$ sont appelés les coefficients multiplicateurs.

Exemple 1:

On place une somme de 5000 euros sur un compte rémunéré à 3 % par an (intérêts composés).

- Quelle est la somme au bout de 1 an?
- au bout de 10 ans?
- Au bout de combien de temps la somme aura-t-elle doublée? triplée?

Exemple 2:

Corriger ce présentateur télé!

Erreur dans le JT de France 2

Cliquez ici pour voir la vidéo du JT de France 2...