

Systems and Information Security SEGSI

Topic 6
Monitoring

- It is, unfortunately, more likely to have a reaction after a problem than to anticipate it
 - Anticipation is usually more difficult and more prone to human error
- ► However, it can be helped by a robust monitoring system
- Monitoring is a process of observing and tracking activities and progress
- It can be applied to every asset that is part of the infrastructure
 - Hardware
 - Software

- Since the introduction of Simple Network Management Protocol (SNMP) almost every hardware device state can be observed, thus allowing an intervention if needed and appropriate
 - Depending of the device, the interventions can be performed automatically, others requiring an human effort
 - By *automatically* it should be noted that an human intervention can be also required; automatism just provides a method of immediate troubleshooting
- Monitoring is more hardware-oriented than software-oriented, nevertheless some mix of hardware and software actions can be used
- ▶ The term *monitoring* can also be stated as *supervisioning*
- ▶ Talking about monitoring without the use of the word *evaluating* is naive

- Logging consists of registering events
 - On servers
 - In databases
 - In networks
 - In assets, in general
- Monitoring consists of analyzing events
 - Real-time (online) or time-delayed (offline)
 - That can be contained in logs (analysis)
 - With the aim of
 - Detect faults or anomalies
 - Detect trends

- In the context of security engineering
 - ▶ Why the occurrence log?
 - Registering users' actions later allows them to be held responsible for their actions (non-repudiation)
 - ▶ To do this, it is necessary to guarantee the integrity of the logs
 - ▶ It is also necessary to provide logging applications with security mechanisms, in order to exclude the possibility of someone impersonating another user
 - ► Can be used as evidence in legal proceedings
 - The knowledge that certain actions or events are recorded acts as a deterrent to possible offenders

- In the context of security
 - ▶ Why the occurrence log?
 - ▶ It is possible, using analysis and monitoring tools, to study behavior patterns of users, objects and networks
 - ▶ Behaviors that deviate from the pattern can signal possible security breaches
 - ► To assess the effectiveness of security features
 - ▶ Lets you discover repeated attempts to breach security
 - ► For attack analysis

- Outside the security context
 - ▶ Why the occurrence log?
 - ► Performance analysis
 - Accounting records
 - ▶ Data management (versions, transactions, etc.)
 - ► Compliance with legal requirements
 - Others...

- User account management events
 - Adding/removing accounts
 - Changes to security attributes
 - ► Access levels, login intervals, etc
 - Account suspensions/reactivations
 - Administrative password reset
 - Sudden increase in resource spent
 - Accesses in "abnormal" time periods
 - Etc.

- Access control events
 - Logins and logoffs (successful and unsuccessful)
 - Account access denied
 - Invalid passwords
 - Inactive sessions
 - Access using unauthorized interfaces
 - Attempts to login during unauthorized periods
 - ▶ Violation of the limit of simultaneous sessions
 - Changing passwords
 - Change frequency
 - ▶ Time of change

- Changing settings
 - ▶ Changing the configuration of critical functions for certain important applications
 - Examples
 - Interest rates
 - Prices
 - Changing system parameters
 - Examples
 - Password length
 - ▶ Maximum number of connections per user

- Attempts to access applications and system resources
 - Cryptographic key changes
 - Starting/stopping of
 - Services/process/applications
 - Unexpected application disruptions
 - Attempts to fail to connect to databases
 - ▶ Attempt to change critical information on operating systems (registry, LSB, etc.)

- Attempts to access applications and system resources...
 - ► Logins/logoffs due to system maintenance
 - ► Failures to verify the integrity of
 - Application data
 - Executables
 - Logs
 - Access to applications/resources without having the necessary licenses
- User-entered commands
 - su; rm -fR *; fdisk; ...
 - format C: ; ...

- Performance of the System / Network
 - Unusual indicators may be one of the first indicators of attacks or may suggest the imminence of an attack
 - Examples
 - Network
 - Packets of a certain type
 - ► Connections from the same remote IP
 - System
 - CPU load
 - Processes
 - Virtual memory

- Network traffic
 - Traffic arriving at the network (from an external network)
 - ▶ By default all traffic should be registered
 - Traffic leaving the network (for an external network)
 - ▶ Identify machines and services that are not initially expected to send packets out of the network
 - ▶ Log traffic for protocols considered unsafe and important to the company
 - ▶ Monitor source spoofing of IP addresses
 - ▶ Etc.

Level of detail

- Compromise between adequate level of detail and system performance
- For each event it is important to register
 - ► The event ID and its type
 - Date (timestamp)
 - Error message (if applicable)
 - Success or failure of the event
 - ▶ IP address of client (if applicable)
 - ▶ ID of user that originated/provoked the event
 - Accessed resources
 - Concrete actions

- Collect and aggregate logs
 - ▶ In order to allow
 - Log analysis
 - Set alerts
 - Archive logs
 - ▶ They must be collected and transported in a safe and reliable way
- Log volume can reach terabytes
- ► A solution is needed that
 - Automatically analyze logs
 - Automatically trigger alerts
 - Produce reports
- Dramatic reduction of data that must be analyzed manually is vital

- Log analysis
 - Pattern detection (grep, awk, perl)
 - Correlation of entries
 - Root Cause Analysis
 - ▶ The first time that an unknown or unexpected occurrence happened
 - ▶ It usually allows detection of what went wrong that allowed the situation
- Set alerts
 - Moving to "illegal" states
 - Significant deviations from "normal" standards
 - Exceeding thresholds
 - **Etc.**

- Archive Logs
 - In the USA the way they are archived is certified
 - Archived certified logs can serve as evidence in court
 - Generate two copies of logs (good practice)
 - One for monitoring
 - Another for security
 - Use secure encryption/compression
 - Automate (limit human intervention)
 - Reduce operating costs
 - Increase process reliability
 - Decrease the probability of tampering of logs
 - Possibility of faster reaction (in simple events)
 - ▶ Etc.

- Logs must not be stored on the system itself
 - If the system is compromised, the logs can be removed or tampered
- It is crucial to reinforce security in the system(s) where the logs are stored
- Restricted access to logs
 - Define to what, who and why
 - Secure encryption, integrity control and the need for strong authentication
- Never record security credentials along with logs (why?)
 - ▶ Passwords, PINs, encryption keys, etc
- The logs must be archived periodically
 - Rotating logs
 - Use remote storage locations
- Integrity control mechanisms must exist
 - Using cryptography is highly recommended

- Types of tools
 - Centralized
 - ▶ Each event is sent to a dedicated server
 - ▶ It is necessary to protect communications and access to the dedicated server
 - Server(s) timing is important
 - It is a "central point of failure"
 - Management is easier
 - Distributed
 - ► Each machine contains its share of the logs
 - ▶ There have to be synchronization mechanisms
 - ► Management is more difficult

- Storage mechanism
 - Text files
 - CSV
 - Binary format
 - In databases
- With / without graphical interface
 - ▶ Almost all of them support console interface
 - ► The graphical interface allows some advantageous forms of critical or consolidated visualization

- System Logs
 - Syslog / Syslog-ng -> Unix/Linux
 - Eventlog, perfmon -> Windows
 - ► SNMP traps -> Generic log mechanisms
- Logging applications
 - Logcheck (Unix/Linux)
 - Logwatch (Unix/Linux)
 - Logrotate (Unix/Linux)
- Network Logging
- Wireshark, tcpdump, iptables, arpwatch, etc.

- ▶ Allows message classification by level and by area
 - Levels
 - Warning
 - Error
 - Emergency
 - Area
 - Printing
 - ► Email
 - Network

- LOG_EMERG
 - Panic condition: the message is usually broadcast to all users
- LOG_ALERT
 - A situation that must be corrected immediately (example: corrupted database)
- LOG_CRIT
 - Critical situations (example: disk errors)
- LOG_ERR
 - Errors
- LOG_WARNING
 - Warning messages
- LOG_NOTICE
 - Messages that, not being errors, should be analyzed with special attention
- LOG_INFO
 - Informational messages
- LOG_DEBUG
 - Messages that contain debugging information

- LOG_KERN
 - Messages generated by kernel
- LOG_DAEMON
 - Messages related to system services (examples: ftpd and sshd)
- LOG_AUTH
 - Messages related with authentication (examples: login, su, sshd)
- LOG_USER
 - Messages generated by user process (by default)
- LOG_MAIL
 - Messages related to the email system
- LOG_LPR
 - Printing-related messages (examples: lpr, cups, lpd)
- LOG_LOCALO up to LOG_LOCAL7
 - Reserved for local use
- Others
 - Created by the administrator

- Daemon syslogd
- Configuration in /etc/syslog.conf <area>.<level> <destination>
 - ▶ It is possible to use wildcards (*)
 - ► The "none" level is used to eliminate area (example: area.none)

Use TCP instead of UDP

It is possible to combine several types and areas (with ";")

Examples

Append to file

Sends to port 10514 of the server

26

Syslog - example

Jun 7 23:44:19 tux sshd(pam_unix)[7529]: session opened for user pedro by (uid=500)

Jun 7 23:44:26 tux su(pam_unix)[7572]: session opened for user root by pedro (uid=500)

Jun 8 00:00:00 tux nagios: LOG ROTATION: DAILY

Jun 8 00:00:34 tux su(pam_unix)[7572]: session closed for user root Jun 8 00:00:37 tux sshd(pam_unix)[7529]: session closed for user pedro

Jun 8 01:43:38 tux nagios: Auto-save of retention data completed successfully.

Jun 8 02:00:04 tux nagios: Warning: A system time change of 1 seconds (backwards in time) has been detected. Compensating...

Jun 8 04:43:37 tux nagios: Auto-save of retention data completed successfully.

Jun 8 05:12:21 tux dhcpd: DHCPREQUEST for 192.168.100.7 from 00:11:d8:a5:6b:db via eth0

Jun 8 05:12:21 tux dhcpd: DHCPACK on 192.168.100.7 to 00:11:d8:a5:6b:db via eth0 Jun 8 05:12:24 tux dhcpd: DHCPINFORM from 192.168.100.7 via eth0: not authoritative

for subnet 192,168,100,0

Jun 8 05:13:52 tux last message repeated 2 times

Jun 8 05:13:55 tux dhcpd: DHCPINFORM from 192.168.100.7 via eth0: not authoritative for subnet 192.168.100.0

Jun 8 05:32:18 tux smbd[9446]: [2007/06/08 05:32:18, 0]

lib/util_sock.c:read_socket_data(342)

Jun 8 05:32:18 tux smbd[9446]: read_socket_data: recv failure for 4. Error = No route to host

Jun 8 05:43:37 tux nagios: Auto-save of retention data completed successfully.

- It describes all processes to measure and evaluate specific data under use of technical tools
- By using monitoring software (like Nagios, Icinga, among others) security (and, obviously, business) is being able to collect and evaluate specific data
- The question here is what, how, and for why that data is being collected and evaluated
- In addition of hardware monitoring (CPU temperature, RAM in use, disk occupation, etc.), it can / should get inputs from available logs
- ▶ In foreground Key Performance Indicators (KPI) must have been defined

- KPI's are quantifiable measurements that can help gauge a company's or an organization's progress towards its strategic objectives
 - Which leads, by its turn, to BCMS
- Some usual monitoring types are
 - Application performance
 - Business transaction
 - System

- Security and Incident Management (SIEM) is a security solution that can provide an overall view of security threats
- It collect logs from security information management (SIM) and security event management (SEM) thus allowing their correlation and to implement actions (at least, an alert) when a problem happens or is likely to happen

- Application performance monitoring
 - Its goal is to check functionality of applications and programs to improve user experience
- Business transaction monitoring
 - ▶ Its goal is to supervise business processes
 - By evaluating those outputs, an optimization of the processes that are directly connected to business transaction can be considered and implemented
- System monitoring
 - ▶ Its goal is to review the performance of the system
 - > System should be read as infrastructure, not as a single computer or similar

epartamento de ENGENHARIA INFORMÁTICA

Monitoring by itself is useless

Source: intec

 Appropriate mechanisms should be implemented to allow an action to be performed timely

32 Source: innotec

- Monitoring calls the alarmist to advise whoever is needed to carry out the tasks
- This does not mean that monitoring should only call alarmist when a problem is detected
- Instead, it can be configured to launch an alarm when controls reports environments that *can* probably result on critical situations including asset failure