DS 440 Data Mining

Instructor: Prashant Shekhar, PhD

Tentative Schedule for Fall 2022

Week Number:	<i>m</i> :	77 1	Learning
Starting Date (days)	Topic	Homework	Outcome
Unit I: Data Mining Basics			
	Course introduction		1,2
1: 29 th Aug (M,W,F)	Python basics		5
	Computations in python: numpy		5
	Computations in python: scipy		5
2: 5^{th} Sept (W,F)	Data visualization in python: matplotlib		5
	Data characteristics	HW1 released	1,2
3: 12^{th} Sept (M,W,F)	Data quality and preprocessing	111/11/11/00/00/04	1,2,5
	Machine Learning in python: sklearn		1,2,5
	Unit II: Supervised Learning		1,2,0
	Introduction to regression		4,5,7
4: 19 th Sept (M,W,F)	Linear regression		$\begin{array}{c c} 4,5,7 \\ 4,5,7 \end{array}$
	~		
	Ridge regression		4,5,7
5: 26 th Sept (M,W,F)	Lasso regression	TTXX71 1	4,5,7
	Other regression models	HW1 due	3
	Overfitting & model selection in regression	HW2 released	4,5,7
6: 3 rd Oct (M,W,F)	Introduction to classification		4,5,7
	Logistic regression		4,5,7
	Decision trees		4,5,7
7: 10 th Oct (M,W,F)	Random forest		4,5,7
	Classifier evaluation	Project details due	6
	Overfitting and classifier model selection	HW2 due	3
8: 17 th Oct (M,W)	Ensemble methods: bagging	HW3 released	3,4,7
	Ensemble methods: boosting		3,4,7
9: 24 th Oct (M,W,F)	K-nearest neighbor classification		4,5,7
	Support vector machines I		4,5,7
	Support vector machines II		4,5,7
	Unit III: Unsupervised Learning		
	Association analysis: apriori		4,5,7
10: 31 st Oct (M,W,F)	Clustering: K-means		4,5,7
	Cluster evaluation	HW3 due	4,5,7
11: 7 th Nov (M,W)	Anomaly detection I	HW4 released	4,5,7
	Anomaly detection II		4,5,7
12: 14 th Nov (M,W,F)	Test review		3, 10
	Test		3, 10
	Project day 1		6
13: 21 th Nov (M)	Project day 2		6
	Thanksgiving Break		
	Course Conclusion	TTXX7.4 1	
14: 28 th Nov (M,W,F)	Course review	HW4 due	
	Project presentation I		6
	Project presentation II		6
15: 5^{th} Dec (M,W)	Project presentation III		6
15: $5^{th} \text{ Dec } (M.W)$	Project presentation IV	Project due	6

Learning outcome: After successful completion of this course, you will acquire knowledge to:

- 1. Understand the main goals and types of data mining.
- 2. Identify a broad variety of real-world applications of data mining.
- 3. Identify the strengths and limitations of popular data mining techniques.
- 4. Explain the mathematics concepts behind several data mining methods such as decision trees, k-nearest neighborhood, Bayesian method, support vector machine, neural network, etc.
- 5. Gain hands-on experience in the use of machine learning software tools in Python.
- 6. Gain teamwork experience to handle real-world data-mining projects and expand their expertise beyond traditional book learning exercises.
- 7. Demonstrate the ability to solve problems beyond the scope of textbook exercises.