3D-CMCC-FEM

(Coupled Model Carbon Cycle)

BioGeoChemical and Biophysical Forest Ecosystem Model

User's Guide (v.5.x)

3D-CMCC-FEM Lab

Website: www.3d-cmcc-fem.com

National Research Council of Italy

Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM) Via Cavour, 4/6 - 87036 Rende (CS) Italy

University of Tuscia

Department for Innovation in Biological, Agro-food and Forest systems (DIBAF) Via S. Camillo de Lellis snc, 01100 Viterbo (VT) Italy

Lab contacts

Alessio Collalti (Lab. Head)

alessio.collalti@cnr.it

Institute for Agriculture and Forestry Systems in the Mediterranean of the National Research Council of Italy (CNR-ISAFOM)

Via Cavour, 4/6 - 87036 Rende (CS) Italy

Department for innovation in biological, agro-food and forest systems (DIBAF)

University of Tuscia

Via S. Camillo de Lellis snc, 01100 Viterbo (VT) Italy

Alessio Ribeca

a.ribeca@unitus.it

Department for innovation in biological, agro-food and forest systems (DIBAF) University of Tuscia

Via S. Camillo de Lellis snc, 01100 Viterbo (VT) Italy

Carlo Trotta

trottacarlo@unitus.it

Department for innovation in biological, agro-food and forest systems (DIBAF) University of Tuscia Via S. Camillo de Lellis snc, 01100 Viterbo (VT) Italy

Corrado Biondo

corrado.biondo@cmcc.it

Euro-Mediterranean Centre on Climate Changes (CMCC) Impacts on Agriculture, Forests and Ecosystem Services Division (IAFES) Viale Trieste 127, 01100 Viterbo (Italy)

Department for innovation in biological, agro-food and forest systems (DIBAF) University of Tuscia

Via S. Camillo de Lellis snc, 01100 Viterbo (VT) Italy

Daniela Dalmonech

daniela.dalmonech@gmail.com

Friesenstrasse 5, Potsdam 14482

Gina Marano

gina.marano@unina.it

Interdepartmental Research Center on the "Earth Critical Zone" Department of Agriculture, University of Naples

Via Universitá 100, 80055 Portici (NA) Italy

Index

1. How to ask for the code	4
2. Model description	4
3. Referencing the 3D-CMCC-FEM version 5.x	4
4. How to use the 3D-CMCC-FEM	6
4.1 Code characteristics	6
4.2 Eclipse usage instructions	6
4.3 How to increase Eclipse available heap size	7
4.6 How to work on Eclipse for bash scripts	7
4.7 3D-CMCC-FEM Usage	7
5. Run the model	11
6. Settings file	12
6.1 Initialization file	14
7. Parameterization file	16
8. Input files	19
8.1 Overview	19
8.2 Meteorological Data File	19
8.3 Soil file	21
8.4 Topo file	22
8.5 CO ₂ file	22
9. Output files	23
9.1 Overview	23
9.2 Annual Outputs	23
9.3 Monthly Outputs	27
9.4 Daily Outputs	28
10. Questions or comments	31

1. How to ask for the code

The 3D-CMCC-FEM (both versions: Light Use Efficiency and the fully BioGeoChemical version). Versions 5.x code are open. You can get a free copy of the code online from: (GitHub Repository) https://github.com/3D-CMCC-CNR-FEM/3D-CMCC-CNR

2. Model description

The 3D-CMCC-FEM model simulates the dynamics occurring in heterogeneous forests with different plant species, also if simultaneously composed by evergreen and deciduous, for different age, diameter, and height classes. The model is able to reproduce forests with a complex canopy structure constituted by cohorts competing with each other for light and water. The model simulates carbon fluxes, in terms of gross and net primary productivity (GPP and NPP, respectively), partitioning and allocation in the main plant compartments (stem, branch, leaf, fruit, fine and coarse root, non-structural carbon). In the recent versions, nitrogen fluxes and allocation, in the same carbon pools, are also reproduced. The 3D-CMCC-FEM also takes into account management practices, as thinning and harvest, to predict their effects on forest growth and carbon sequestration. The 3D-CMCC-FEM is written in Cprogramming language and divided into several subroutines. To run the model, some input data are required. The meteorological forcing variables, on a daily time step, are represented by average, minimum and maximum air temperature, shortwave solar radiation, precipitation, vapor pressure deficit (or relative humidity). The model also needs some basic information about soil, such as soil depth and texture (clay, silt and sand fractions), as well as the forest stand information referred to plant species, ages, diameters, heights and stand density. An additional input is represented by species-specific eco-physiological data for the model parameterization.

The 3D-CMCC-FEM is primarily a research tool, and many versions have been developed for particular purposes. The CNR and University of Tuscia maintain benchmark code versions for public release and update these benchmark versions periodically as new knowledge is gained on the research front. The code and executables accompanying this file represent the most recent benchmark version.

3. Referencing the 3D-CMCC-FEM versions 5.x

If you use 3D-CMCC-FEM in your research, please include the following acknowledgment in the relevant manuscript:

"3D-CMCC-FEM, Version 5.x was provided by Alessio Collalti, from:

- National Research Council of Italy, Institute for Agricultural and Forestry Systems in the Mediterranean (ISAFOM)
- University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems (DIBAF)

Please also reference the following citation as the most recent and complete description of the current model version:

v.4.0 (not more in use)

"A process-based model to simulate growth and dynamics in forests with complex structure: evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy". A. Collalti, L. Perugini, T. Chiti, A. Nolè, G. Matteucci, R. Valentini. Ecological modeling 2014. https://doi.org/10.1016/j.ecolmodel.2013.09.016.

Collalti, A. "Sviluppo di un modello dinamico ecologico-forestale per foreste a struttura complessa". April 2011. PhD Thesis, PhD Advisor: Riccardo Valentini. DOI: 10.13140/RG.2.2.17900.92800.

http://dspace.unitus.it/bitstream/2067/2398/1/acollalti tesid.pdf

v.5.1.1 (not more in use)

"Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against eddy covariance data for 10 European forest sites". A. Collalti, S. Marconi, A. Ibrom, C. Trotta, A. Anav, E. D'Andrea, G. Matteucci, L. Montagnani, B. Gielen, I. Mammarella, T. Grünwald, A. Knohl, F. Berninger, Y. Zhao, R. Valentini and M. Santini, Geosc. Model Dev., 9, 479-504, 2016. https://doi.org/10.5194/gmd-9-479-2016.

v.PSM (not more in use)

"The Role of Respiration in Estimation of Net Carbon Cycle: Coupling Soil Carbon Dynamics and Canopy Turnover in a Novel Version of 3D-CMCC Forest Ecosystem Model". S. Marconi, T. Chiti, A. Nolè, R. Valentini and A. Collalti. Forests 2017. https://doi.org/10.3390/f8060220.

<u>v.5.4</u>

"Thinning can reduce losses in carbon use efficiency and carbon stocks in managed forests under warmer climate". Collalti A., Trotta C., Keenan T.F., Ibrom A., Lamberty B.B., Gröte R., Vicca S., Reyer C.P.O., Migliavacca M., Veroustraete F., Anav A., Campioli M., Scoccimarro E., Šigut L., Grieco E., Cescatti A., and Matteucci G. Journal of Advances in Modelling Earth System 2018. https://doi.org/10.1029/2018MS001275.

"The sensitivity of the forest carbon budget shifts across processes along with stand development and climate change". Collalti A., Thornton P.E., Cescatti A., Rita A., Borghetti M., Nolè A., Trotta C., Ciais P., Matteucci G. Ecological Applications 2018. https://doi.org/10.1002/eap.1837.

Pellicone G. "Climate change mitigation by forests: a case study on the role of management on carbon dynamics of a pine forest in South Italy". 2018. Ph.D. Thesis.

v.5.5

"Plant respiration: Controlled by photosynthesis or biomass?" Collalti A., Tjoelker M.G., Hoch G., Mäkelä A., Guidolotti G., Heskel M., Petit G., Ryan M.G., Battipaglia G., Matteucci G., Prentice I.C. Global Change Biology. https://doi.org/10.1111/gcb.14857

If you have made any significant modifications to the code, please mention them in your manuscript.

This User's Guide is the only documentation released with 3D-CMCC-FEM.

The code itself contains extensive internal documentation, and users with specific questions about the algorithms used to estimate particular processes should read the comments in the appropriate source code files.

The file **treemodel.c** contains references to all the core science routines and is a good starting point for this kind of inquiry. The files **matrix.c** defines the data structures that are used to pass information between the process modules and includes both a short text description and the units for each internal variable.

Shall you have questions about the code, appropriate model applications, possible programming errors, etc., please read this entire guide first, then feel free to contact us.

4. How to use the 3D-CMCC-FEM

4.1 Code characteristics

3D-CMCC-FEM is primarily developed on UNIX-Linux, X-Ubuntu with Eclipse IDE Platforms and is compiled using GNU GCC 4.7.2.

<u>IMPORTANT</u>: Be sure to execute 3D-CMCC-FEM on a Linux machine with architecture X86_64 (64 bit), otherwise you firstly need to rebuild code to obtain the object files needed for runs.

4.2 Eclipse usage instructions

To Run the model in Eclipse CDT, using a sub-versioned version of the model simply follow these steps (be sure if you use Eclipse to have installed Git and Egit and to have an internet connection):

- 1) Save the 3D-CMCC-FEM Model directory in the path you are going to use as Eclipse Workspace;
- 2) to prevent error from netcdf libraries, open terminal:
 - \$ sudo apt-get install netcdf-bin
 - \$ sudo apt-get install libnetcdf-dev
- 3) To make the model work under Eclipse CDT (any version) using Git you shall follow this guide:
 - download from terminal Git and build-essential
 - \$ sudo apt-get install build-essential
 - \$ sudo apt-get install git
 - download from Ubuntu software center jre 7-8 or jdk (if not installed)
 - \$ sudo apt-get install default-jdk
- 4) Download from eclipse site the most recent version of Eclipse IDE for C/C++ Developers

5) Open Eclipse and set your Workspace as the same path in which you've placed the Model's folder - to do so click on File, then "switch Workspace" and click on "Other..."; here input your current path;

6) File -> Import -> Git -> Projects from Git -> Clone Url and in URL please paste the code version you find over the GitHub https://github.com/3D-CMCC-CNR-FEM/3D-CMCC-FEM

For NETCDF file you need to add libraries within eclipse through:

Project->Properties->C/C++ Build->Settings->Cross G++ Linker->Libraries-> in Libraries (-I) add "netcdf"->OK

4.3 How to increase Eclipse available heap size

Some JVMs put restrictions on the total amount of memory available on the heap. If you are getting OutOfMemoryErrors while running Eclipse, the VM can be told to let the heap grow to a larger amount by passing the -vmargs command to the Eclipse launcher (http://wiki.eclipse.org/FAQ_How_do_I_increase_the_heap_size_available_to_Eclipse%3F). Here follows a short how to:

- 1) Search for the location of your eclipse.ini file (usually usr/lib/eclipse);
- 2) Open eclipse.ini using gedit command from terminal as super user (sudo gedit eclipse.ini);
- 3) BE EXTREMELY CAREFUL TO FOLLOW ECLIPSE DEVELOPERS RULES
- Each option and each argument to an option must be on its own line.
- All lines after -vmargs are passed as arguments to the JVM, so all arguments and options for eclipse must be specified before -vmargs (just like when you use arguments on the command-line).
- Any use of -vmargs on the command-line replaces all -vmargs settings in the .ini file unless launcher .appendVmargs is specified either in the .ini file or on the command-line. (doc).
- 4) in line 12 change -Xms40m into -Xms512m (just replace 40 with 512 without changing the rest of the line).
- 5) in line 13 change -Xmx256m into -Xmx1024m (just replace 256 with 11024 without changing the rest of the line).
- 6) save eclipse.ini and restart eclipse.

4.6 How to work on Eclipse for bash scripts

To work in Bash Shell scripts within the ECLISPE IDE you need to install ShellED eclipse package through the web.

4.7 3D-CMCC-FEM Usage

3D-CMCC-FEM is a command line program, and its behavior is controlled by several command line options:

-i input path	i.e.: -i c:\input\directory\
-o output path	i.e.: -o c:\output\directory\
-p parameterization directory	i.e.: -i c:\parameterization\directory\
-d dataset filename stored into input directory	i.e.: -d input.txt
-m met filename list stored into input directory	i.e.: -m 1999.txt, 2003.txt, 2009.txt
-s soil filename stored into input directory	i.e.: -s soil.txt or soil.nc
-t topo filename stored into input directory	i.e.: -t topo.txt or topo.nc
-c settings filename stored into input directory	i.e.: -c settings.txt
-k CO ₂ atmospheric concentration file	i.e.: -k co2_conc.txt
-n ndep file	i.e.: -n ndep.txt
-r output vars list	i.e.: -r output_vars.lst
-u benchmark path	(for model developers)
-h	print this help

More specifically:

-i	this is not a mandatory parameter. if not used, input files will be searched where program is.
-0	this is not a mandatory parameter. If not used, output files will be created where program is.
-р	this is not a mandatory parameter. If not used, parameterization file will be searched where program is.
-d "stand"	This file will be searched in input path, if specified. It can be an ASCII or NETCDF file. You can use '//' for comment it. ASCII file must have following header,
mandatory parameter	separated by a comma:
•	Year, x, y, Age, Species, Management, N, Stool, AvDBH, Height, Lai
	Please see [SPECIES]* section and [MANAGEMENT]** section to check allowed values. Same columns name applies to variables name in NETCDF version of file.
-m "meteo" mandatory parameter	This file will be searched in input path, if specified. It can be an ASCII or NETCDF file. You can specify a .lst (list) file if you have separated values.
	List file must contain the name of NETCDF files to import, one row for variable i.e.:

6_TOT_PREC_2000_2001_123_456.nc

6_SWC_2000_2001_123_456.nc

6_TMAX_2M_2000_2001_123_456.nc

6_TMIN_2M_2000_2001_123_456.nc

6 TSOIL 2000 2001 123 456.nc

6_VPD_2000_2001_123_456.nc

6_ET_2000_2001_123_456.nc

6_LAI_2000_2001_123_456.nc

6 RADS 2000 2001 123 456.nc

ASCII file must have following header, separated by a tab (/t):

Year Month n_days Rg_f Ta_f Tmax Tmin Rh_f Ts_f Precip SWC LAI ET WS_f

Same columns name applies to variables name in NETCDF version of file.

-s "soil"

mandatory parameter

This file will be searched in input path, if specified. It can be an ASCII or NETCDF file. ASCII file must have following header, separated by a comma:

X,Y,LANDUSE,LAT,LON,CLAY PERC,SILT PERC, SAND_PERC,SOIL_DEPTH,FR,FN0,FNN,M0,LITTERC, LITTERN, SOILC, SOILN, DEADWOODC

Please see [LANDUSE] section to check allowed values. Same columns name applies to variables name in NETCDF version of file.

-t "topography" mandatory

parameter

This file will be searched in input path, if specified. It can be an ASCII or NETCDF file.

ASCII file must have following header, separated by a comma: X,Y,ELEV

Same columns name applies to variables name in NETCDF version of file.

-c "model setting"

mandatory parameter

This file will be searched in input path, if specified.

It must be an ASCII file. You can put comment using '//' token;

The file must contain the rows descripted in the "Settings file" section.

-k "atmospheric CO2"

concentration" mandatory parameter only if CO2_trans in settings file is

This file will be searched in input path, if specified.

It must be an ASCII file and must have following header, separated by a tab (/t):

CO₂ ppm year

setted on 'on' or 'var'

-n "nitrogen

This file will be searched in input path, if specified.

deposition"
mandatory

parameter only if

Ndep_fixed in settings file is setted on 'off' It must be an ASCII file and must have following header, separated by a tab $\,$

(/t):

year ndep

•

Use it if you want export variables values inside a NETCDF file.

not mandatory

You can specify more variables per row using a comma as delimiter.

Each variable must have "daily_", "monthly_" or "annual_" prefix. i.e.:

daily_gpp,

annual_GPP

daily_ar

monthly_ar

annual_npp

In previous example, daily values for GPP and AR are exported. Monthly values for AR are exported and annual values for GPP and NPP are exported. Files will be created in output path if any or where program is.

[SPECIES]*

Following species can be used on relative column inside an ASCII dataset (without indexes)

Please note that you must use their indexes if you use a NETCDF file.

0,Fagussylvatica

1,Castaneasativa

2,Larixdecidua

3,Piceaabies

4,Pinussylvestris

5,Quercuscerris

6,Quercusilex

7,Quercusrobur

8,quercus_deciduous

9,quercus_evergreen

[MANAGEMENT]**

Following type of management can be used on relative column inside as ASCII dataset (without indexes). Please note that you must use their indexes if you use a NETCDF file.

T is for timber

C is for coppice (under development)

0,T

1,C

[LANDUSE]***

Following type of landuse can be used on relative column inside as ASCII dataset (without indexes).

Please note that you must use their indexes if you use a NETCDF file.

F is for forest

Z is for crop (currently not implemented)

0,F

1,Z

5. Run the model

Be sure to set the right arguments passed to the project and go into bin directory:

cd bin

Run executable with default parameters:

```
3D-CMCC-Forest-Model -i input -o output -p parameterization -d sitename_stand.txt -m sitename_meteo_firstyear.txt -s sitename_soil.txt -t sitename_topo.txt -c sitename_settings.txt -k CO2_hist.txt > log.txt
```

6. Settings file

Example of settings file

The file "sitename_settings.txt" permits to set the model run, choosing:

SITENAME	Name of site
VERSION	Must be 'f' for FEM version or 'b', for BGC version for FOREST LANDUSE
SPATIAL	Must be 's' or 'u', spatial or un-spatial
TIME	Must be 'm' or 'd', monthly or daily
SPINUP	Must be 'on' or 'off'
SPINUP_YEARS	Number of years for spin-up (under development)
SCREEN_OUTPUT	Must be 'on' or 'off'
DEBUG_OUTPUT	Must be 'on' or 'off'
DAILY_OUTPUT	Must be 'on' or 'off'
MONTHLY_OUTPUT	Must be 'on' or 'off'
ANNUAL_OUTPUT	Must be 'on' or 'off'
SOIL_OUTPUT	Must be 'on' or 'off'
NETCDF_OUTPUT	Must be 'off'
YEAR_START	Starting year simulation
YEAR_END	Ending year simulation
YEAR_RESTART	Year to restart. Must be 'off'

PSN_mod Must be '0' (FvCB version) or '1' (LUE version) for photosynthesis approach

CO2_trans Must be 'on' or 'off'

YEAR_START_CO2_FIXED -9999 . When Co2_trans = var, year at which fix [CO2]

Ndep_fixed Must be 'on' or 'off' (under development)

Photo_accl Photosynthesis temperature acclimation Must be 'on' or 'off'

Resp_accl Q10 temperature acclimation. Must be 'on' or 'off'

regeneration Must be 'on' or 'off'

management Must be 'on' or 'off'

YEAR_START_MANAGEMENT First year of management

Progn_Aut_Resp Prognostic autotrophic respiration. Must be 'on' or 'off', if off Y values are used

SIZECELL Its value must be within 10 and 100 (unity measure is meter: 10 = 10x10 = 100m

²2)

Y 0.48 Fixed_Aut_Resp_rate Assimilate use efficiency-Respiration rate-GPP/NPP

CO2CONC 368.865 CO2 concentration refers to 2000 as ISIMIP PROTOCOL

CO2_INCR 0.01 1% increment

INIT_FRAC_MAXASW 1 0.1 Minimum fraction of asw based on maxasw (wilting point) (unchanged)

TREE_LAYER_LIMIT Define differences among tree heights in meters classes to d define number

of layers in un-spatial version

SOIL_LAYER Define soil layer/s to consider

THINNING_REGIME Thinning regime (Above or Below)

REPLANTED_SPECIES Species name of replanted trees (mandatory)

REPLANTED_MANAGEMENT (T) management of replanted trees (should be only T) (mandatory)

REPLANTED TREENumber of replanted trees (mandatory)

REPLANTED_AGE (yr) age of replanted trees (mandatory)

REPLANTED_AVDBH (cm) average dbh of replanted trees (mandatory)

REPLANTED_LAI (m²m⁻²) LAI for replanted trees (mandatory for evergreen useless for deciduous)

REPLANTED_HEIGHT (m) height of replanted trees (mandatory)

REPLANTED_WS (tDM ha⁻¹) stem biomass of replanted trees (optional)

REPLANTED_WCR (tDM ha⁻¹) coarse root biomass of replanted trees (optional)

REPLANTED WFR (tDM ha⁻¹) fine root biomass of replanted trees (optional)

REPLANTED_WL (tDM ha⁻¹) leaf biomass of replanted trees (optional for evergreen if LAI!= 0,

otherwise useless)

REPLANTED WBB (tDM ha⁻¹) branch biomass of replanted trees (optional)

REGENERATION_SPECIES none NOT USED it comes from species that produces seeds

REGENERATION_MANAGEMENT (T) management of replanted trees (should be only T) (mandatory)

REGENERATION_N_TREE -9999 number of replanted trees (mandatory) (NOT USED)

REGENERATION_AGE 1 (yr) age of regeneration trees (mandatory) (SHOULD BE ALWAYS 1)

REGENERATION_AVDBH (cm) average dbh of regeneration trees (mandatory)

REGENERATION_LAI 0.0 (m²m⁻²) LAI for regeneration trees (mandatory for evergreen, useless for

deciduous)

REGENERATION_HEIGHT (m) height of replanted trees (mandatory)

REGENERATION_WS 0.0 (tDM ha⁻¹) stem biomass of regeneration trees (optional)

REGENERATION_WCR 0.0 (tDM/ha) coarse root biomass of regeneration trees (optional)

REGENERATION_WFR 0.0 (tDM ha⁻¹) fine root biomass of regeneration trees (optional)

REGENERATION_WL 0.0 (tDM ha⁻¹) leaf biomass of regeneration trees (optional for evergreen if LAI!= 0,

otherwise useless)

REGENERATION WBB (tDM ha⁻¹) branch biomass of regeneration trees (optional)

PRUNING Must be 'on' or 'off'

IRRIGATION Must be 'on' or 'off'

6.1 Initialization file

Example of stand file

The first required input file is called the "*sitename_stand.txt*". It provides information about the stand conditions.

Example for a cell resolution of 10×10 meters cell X = 0, Y = 0:

Year,x,y,Age,Species,Management,N,Stool,AvDBH,Height,Wf,Wrc,Wrf,Ws,Wbb,Wres,Lai

1997,0,0,16,Piceaabies,T,2408,0,7.11,5.63139534883721,0,0,0,0,0,0,-9999

2015,0,0,34,Piceaabies,T,1252,0,19.51,14.2332268370607,0,0,0,0,0,0,-9999

The text file must be created following this logic architecture

- for each tree height class define the number of age classes and their values

-- for each height->dbh class

--- for each height->dbh->age class

---- for each height->dbh->age->species class define its state variables:

- **Year**: Reference year

- **X,Y**: 0,0

- Age: Age of trees (years)

- **Species**: Name of specie

- **Management**: (T = timber, C = coppice)

- **N**: N of trees per area for that class (Num tree cell size⁻¹)

- **Stool**: N of stool per area (if Management is set to C) (Num tree cell size⁻¹)

- AvDBH: Average diameter at breast height (cm) for that class

- **Height**: Tree height (m) for that class

- **Wf**: 0.0 (foliage biomass in tDM ha⁻¹) for that class

- **Wrc**: 0.0 (coarse root biomass in tDM ha⁻¹) for that class

- **Wrf**: 0.0 (fine root biomass in tDM ha⁻¹) for that class

- **Ws**: 0.0 (stem biomass in tDM ha⁻¹) for that class

- **Wbb**: 0.0 (branch and bark biomass in tDM ha⁻¹) for that class

- **Wres**: 0.0 (reserve in tDM ha⁻¹) for that class

- Lal: Leaf area index (m² m⁻²) for that class

7. Parameterization file

The parameterization file is the species eco-physiological constants file, named with specie to simulate (e.g." Fagussylvatica.txt").

Comments are allowed in the parameter file. Comments can appear almost anywhere, must begin with two forward slash characters '//', at the end of the line. Example parameter files are provided. Parameter definition and its value must be separated by one-tab character.

It contains the following parameters:

LIGHT_TOL Light Tolerance 4 = very shade intolerant (canopy coverage = 90%), 3 = shade

intolerant (canopy coverage 100%), 2 = shade tolerant (canopy coverage = 110%),

1 = very shade tolerant (canopy coverage = 120%)

PHENOLOGY 0.1 = deciduous broadleaf, 0.2 = deciduous needle leaf, 1.1 = broad leaf evergreen,

1.2 = needle leaf evergreen

ALPHA Canopy quantum efficiency (molC molPAR⁻¹)

EPSILONgCMJ Light Use Efficiency ($gC MJ^{-1}$) (used if ALPHA is not available)

K Extinction coefficient for absorption of PAR by canopy

ALBEDO Canopy albedo

INT_COEFF Precipitation interception coefficient

SLA_AVGO Average Specific Leaf Area m² KgC⁻¹ for sunlit/shaded leaves (juvenile)

SLA_AVG1 Average Specific Leaf Area m² KgC⁻¹ for sunlit/shaded leaves (mature)

TSLA Age at which $SLA_AVG = (SLA_AVG1 + SLA_AVG0)/2$

SLA_RATIO (DIM) ratio of shaded to sunlit projected SLA

LAI_RATIO (DIM) all-sided to projected leaf area ratio

FRACBBO Branch and Bark fraction at age $0 \text{ (m}^2 \text{ Kg}^{-1})$

FRACBB1 Branch and Bark fraction for mature stands ($m^2 Kg^{-1}$)

TBB Age at which fracBB = (FRACBB0 + FRACBB1)/2

RHOO Minimum Basic Density for young Trees (tDM m⁻³)

RHO1 Maximum Basic Density for mature Trees (tDM m⁻³)

TRHO Age at which rho = (RHOMIN + RHOMAX)/2

FORM_FACTOR Stem form factor (adim)

COEFFCOND Define stomatal response to VPD in m sec⁻¹

BLCOND Canopy Boundary Layer conductance m sec⁻¹

MAXCOND Maximum Leaf Conductance in m sec⁻¹

CUTCOND Cuticular conductance in m sec⁻¹

MAXAGE Maximum tree age (years)

RAGE Relative Age to give fAGE = 0.5

NAGE Power of relative Age in function for Age

GROWTHTMIN Minimum temperature for growth °C

GROWTHTMAX Maximum temperature for growth °C

GROWTHTOPT Optimum temperature for growth °C

GROWTHSTART Thermic sum value for starting growth in °C

MINDAYLENGTH Minimum day length for phenology (days)

SWPOPEN Soil water potential open (MPa)

SWPCLOSE Soil water potential close (MPa)

OMEGA_CTEM Allocation parameter control the sensitivity of allocation to changes in water and

light availability

SOCTEM Parameter controlling allocation to stem

ROCTEM Parameter controlling allocation to root

FOCTEM Parameter controlling allocation to foliage

FRUIT_PERC %age of npp to fruit

CONES_LIFE_SPAN Life span for cones (years)

FINE_ROOT_LEAF Allocation new fine root C:new leaf (ratio)

STEM_LEAF Allocation new stem C:new leaf (ratio)

COARSE_ROOT_STEM Allocation new coarse root C:new stem (ratio)

LIVE_TOTAL_WOOD Allocation new live wood C:new total wood C (ratio)

N_RUBISCO Fraction of leaf N in Rubisco (ratio)

CN_LEAVES CN of leaves $(kgC kgN^{-1})$

CN_FALLING_LEAVES CN of leaf litter (kgC kgN⁻¹)

CN_FINE_ROOTS CN of fine roots $(kgC kgN^{-1})$

CN_LIVEWOODS CN of live woods $(kgC kgN^{-1})$

CN_DEADWOOD CN of dead woods $(kgC kgN^{-1})$

LEAF_LITT_LAB_FRAC leaf litter labile fraction (dimension lees)

LEAF_LITT_CEL_FRAC leaf litter cellulose fraction (dimension lees)

LEAF_LITT_LIGN_FRAC leaf litter lignin fraction (dimension lees)

FROOT_LITT_LAB_FRAC fine root litter labile fraction (dimension lees)

FROOT_LITT_CEL_FRAC fine root litter cellulose fraction (dimension lees)

FROOT_LITT_LIGN_FRAC fine root litter lignin fraction (dimension lees)

DEADWOOD_CEL_FRAC dead wood litter cellulose fraction (dimension lees)

DEADWOOD_LIGN_FRAC dead wood litter lignin fraction (dimension lees)

BUD_BURST Days of bud burst at the beginning of growing season (only for deciduous) (days)

LEAF_FALL_FRAC_GROWING Proportions of the growing season of leaf fall

LEAF_FINEROOT_TURNOVER Average yearly leaves and fine root turnover rate

LIVEWOOD_TURNOVER Annual yearly live wood turnover rate

SAPWOOD_TURNOVER Annual yearly live wood turnover rate

DBHDCMAX Maximum dbh crown diameter relationship when minimum density

DBHDCMIN Minimum dbh crown diameter relationship when maximum density

SAP_A a coefficient for sapwood

SAP_B b coefficient for sapwood

SAP_LEAF sapwood_max leaf area ratio in pipe model $(m^2 m^{-2})$

SAP_WRES Sapwood-Reserve biomass ratio used if no Wres data are available

STEMCONST_P Constant in the stem mass vs. diameter relationship

STEMPOWER_P Power in the stem mass vs. diameter relationship

CRA Chapman-Richards a parameter (maximum height, meter)

CRB Chapman-Richards b parameter

CRC Chapman-Richards c parameter

HDMAX_A A parameter for Height (m) to Base diameter (m) ratio MAX

HDMAX_BB parameter for Height (m) to Base diameter (m) ratio MAX

HDMIN_A A parameter for Height (m) to Base diameter (m) ratio MIN

HDMIN_BB parameter for Height (m) to Base diameter (m) ratio MIN

CROWN_FORM_FACTOR Crown form factor (0 = cylinder, 1 = cone, 2 = sphere, 3 = ellipsoid)

CROWN_A Crown a parameter

CROWN_B Crown b parameter

MAXSEED Maximum seeds number (see TREEMIG)

MASTSEED Masting year (see TREEMIG)

WEIGHTSEED Single fruit weight in g

SEXAGE Age for sexual maturity

GERMCAPACITY Geminability rate (%)

ROTATION Rotation for final harvest (based on tree age)

THINNING Thinning regime (based on year simulation)

THINNING_REGIME Thinning regime (0 = above, 1 = below)

THINNING_INTENSITY Thinning intensity (% of Basal Area/N-tree to remove)

8. Input files

8.1 Overview

The 3D-CMCC-FEM model uses at least six input files, <u>meteo</u>, <u>soil</u>, <u>topo</u>, <u>CO</u>₂ and <u>management</u> each time it is executed. A brief description of all files is given first, followed by detailed discussions of each file.

8.2 Meteorological Data File

Example of meteo file

The second required input file is the meteorological data file, which is named using the start year of simulation (e.g. "sitename_meteo_2000.txt"), containing the daily meteorological data.

Years of simulation depends on the number years included in the met file.

Some met data are mandatory: temperature, precipitation, vapor pressure deficit (or relative humidity) and short-wave solar radiation, whereas others are optional.

If the model runs in "spatial version" daily or monthly LAI values are mandatory otherwise they are not considered in processes. Each variable must be separated by one-tab character. Model considers leap years, so 29th of February has to be included.

Example for year 2007-200x in daily/un-spatial version:

Year ET WS_f		n_days	Rg_f	f Ta_f	Tmax	Tmin	VPD_f	Ts_f	Precip	SWC	LAI
2007	1	1	5.1	-9999	13.1	7.1	0.2	7.8	1	-9999	0
2007	1	2	6.1	-9999	10.4	5.8	0.2	6.3	0.2	0.27	0
2007	1	3	6.1	-9999	9.9	3.1	0.2	3.3	0	0.39	0
2007	1	4	6.1	-9999	10	1.9	0.2	0.5	0	0.2	0

•••

Variables:

- **Rg_f**: Mean daily global radiation (MJ m⁻² day⁻¹)

- Ta_f: Daily average temperature (°C)

- **Tmax:** Daily Maximum temperature (°C)

- **Tmin:** Daily Minimum temperature (°C)

- **VPD_f** or **RH_f**: Daily Vapor Pressure Deficit (mbar-hPa) or Relative Humidity (%)

- Ts_f: Daily Soil temperature (°C)

- **Precip**: Cumulated daily precipitation (mm day⁻¹)

- **SWC**: Soil water content (mm m⁻²)

- LAI: Leaf area Index (m² m⁻²) (Only in spatial version)

- ET: Evapotranspiration (mm m⁻² day⁻¹)

- **WS_f**: Windspeed (m sec⁻¹)

NO DATA = -9999

8.3 Soil file

Example of soil file

The fourth required input file is "*sitename_soil.txt*". It contains information about soil and fertility of the test site.

Comments are allowed in the parameter file. Comments can appear almost anywhere, must begin with two forward slash characters '//', at the end of the line. Example parameter files are provided.

In general, the format of parameters file is one parameter per line, with the parameter name being enclosed in double quotes, with a tab character separating the parameter name and its value.

<u>IMPORTANT</u>: Values are referred to the *SIZECELL* dimensions specified in the setting.txt file (e.g. if SIZECELL = 100 meters -> tC ha⁻¹).

It contains the following parameters:

X,Y,LANDUSE,LAT,LON,CLAY_PERC,SILT_PERC,SAND_PERC,SOIL_DEPTH,FR,FN0,FNN,M,LITTERC, LITTERN,SOILC,SOILN,DEADWOODC

0,0,F,49.3,18.32,20.63,20.63,58.74,80,0.65,0.5,0.5,0.2,-9999,-9999,-9999,-9999

- **LANDUSE**: see the 'LANDUSE' section

- LAT: Latitude (°)

- **LON**: Longitude (°)

- CLAY_PERC: Soil clay (%)

- **SILT_PERC**: Soil silt (%)

- SAND PERC: Soil sand (%)

- **SOIL_DEPTH**: Soil depth (cm)

- **FR**: Fertility rating (dim)

- **FNO**: Value of fertility modifier when FR=0 (dim)

- **FNN**: Power of (1-FR) in fertility modifier (dim)

- M0: Value of 'm' when FR=0 (dim)

- **LITTERC**: Litter carbon

- **LITTERN**: Litter nitrogen

- **SOILC**: Soil carbon

- **SOILN**: Soil nitrogen

- **DEADWOODC**: Dead wood carbon

8.4 Topo file

Example of topo file

The fifth required input file is "*sitename_topo.txt*". It contains information about topography of the test site.

Comments are allowed in the parameter file. Comments can appear almost anywhere, must begin with two forward slash characters '//', at the end of the line. Example parameter files are provided.

In general, the format of parameters file is one parameter per line, with the parameter name being enclosed in double quotes, with a tab character separating the parameter name and its value.

It contains the following parameters:

- **X**: 0 - **Y**: 0

- **ELEV**: Elevation from ancillary data (m)

8.5 CO₂ file

Example of CO₂ file

9. Output files

9.1 Overview

For each simulation the Model creates or rewrites into the output folder a file named "output.txt".

In this folder 4 other subfolders based on time scale should created. These files contain every result for debug (if necessary) daily, monthly and annual simulations. It is also useful to check which model functions have been used. These results can be obtained at stand level or for each type of class level (layer, dbh, age or species class) on Unix like platforms, if you need to extrapolate a variable it is advised to use the "grep" tool.

E.g. open a terminal into the output folder and for the variable NPP type:

"cat output.txt | grep 'Stand NPP' " if you want to see grep output into terminal;

"cat output.txt | grep 'Stand NPP' > NPP.txt" if you want to redirect grep output into an NPP file inside the output folder

IMPORTANT: be sure to use the correct declaration of the output as grep parameter.

9.2 Annual Outputs

<u>At class level</u> :	
YEAR	Year of simulation
LAYER	Layer of tree class
HEIGHT	Average height of a species (m)
DBH	Average diameter at breast height of a species (cm)
AGE	Age of trees (years)
SPECIES	Tree Species
MANAGEMENT	T = Timber
GPP	Yearly Gross Primary Production (gC m ⁻² year ⁻¹)
GPP_SUN:GPP	Yearly Gross Primary Production for sun leaves (gC m ⁻² year ⁻¹)
GPP_SHADE:GPP	Yearly Gross Primary Production for shaded leaves (gC m ⁻² year ⁻¹)

Av_SUN:A_SUN

Ay_SUN:A_SUN

Ay_SUN:A_SUN

RuBP regeneration/Final assimilation rate ratio for sun leaves

Av_SHADE:A_SHADE

Ay SHADE:A SHADE

RuBP regeneration/Final assimilation rate ratio for shaded leaves

RuBP regeneration/Final assimilation rate ratio for shaded leaves

Av_TOT:A_TOT Carboxylation rate/Final assimilation rate ratio
Aj_TOT:A_TOT RuBP regeneration/Final assimilation rate ratio

GR Growth respiration (gC m⁻² year⁻¹)

MR Maintenance Respiration (gC m⁻² year⁻¹)

RA Autotrophic respiration (gC m⁻² year⁻¹)

NPP Net Primary Production (gC m⁻² year⁻¹)

BP Yearly Biomass Production (qC m⁻² year⁻¹)

reser_as_diff -

ResAllocAnnual reserve allocated (tNSC cell 1 year 1)ResDepleAnnual reserve depleted (tNSC cell 1 year 1)ResUsageAnnual reserve used (tNSC cell 1 year 1)

BP/NPP Biomass productivity vs. Net Primary Production ResAlloc/NPP Annual reserve allocated vs. Net Primary Production Annual reserve allocated vs. Biomass productivity ResAlloc/BP ResDeple/NPP Annual reserve depleted vs. Net Primary Production Annual reserve depleted vs. Biomass productivity ResDeple/BP Annual reserve used vs. Net Primary Production ResUsage/NPP Annual reserve used vs. Biomass productivity ResUsage/BP CUE Annual Carbon Use Efficiency (gC NPP gC GPP⁻¹) BPE Biomass Production Efficiency (qC BP qC GPP⁻¹)

diffCUE-BPE CUE - BPE
Y(PERC) RA/GPP * 100

PeakLAI Peak LAI (maximum attainable LAI) (m²m²)

MaxLAI Maximum of LAI (maximum reached LAI) (m²m²)

SLA Specific Leaf Area (m² Kg⁻¹)

SAPWOOD_AREA Tree sapwood area (cm²)

CC-Proj Projected Canopy Cover (frac)

DBHDC DBH/Crown diameter relationship

CROWN_DIAMETER Crown Projected Diameter (m)

CROWN_HEIGHT Crown Height (m)

CROWN AREA PROJ Crown Projected Area (at zenith angle) (m^2)

APAR Absorbed Photosynthetically Active Radiation (molPARm⁻²year⁻¹)

LIVETREENumber of live trees (ntree cell $^{-1}$)DEADTREENumber of dead trees (ntree cell $^{-1}$)THINNEDTREENumber of thinned trees (ntree cell $^{-1}$)

VEG_D

Annual number of vegetative days (days year⁻¹)

FIRST_VEG_DAY

First annual day of vegetative period (DIM)

CTRANSP

Canopy Transpiration (mm m⁻²year⁻¹)

CINT

Canopy Interception (mm m⁻²year⁻¹)

CLE

Canopy Latent Heat (W m⁻²year⁻¹)

WUE

Annual Water Use Efficiency (DIM)

 $MIN_RESERVE_C$ Current Minimum reserve carbon pool (tC cell¹)

RESERVE_CCurrent Reserve carbon pool (tC cell 1)STEM_CCurrent Stem carbon pool (tC cell 1)

STEMSAP_C Current Stem sapwood carbon pool (tC cell $^{-1}$)

STEMHEART_C Current Stem heartwood carbon pool (tC celf 1)

STEMSAP_PERC Stem Sapwood vs. Total Stem (%age)

STEMLIVE_CCurrent Stem live wood carbon pool (tC cell 1)STEMDEAD_CCurrent Stem dead wood carbon pool (tC cell 1)

STEMLIVE_PERC Live stem vs. Total stem (%age)

MAX_LEAF_C Maximum Current Leaf carbon pool (tC cell -1 year -1)

MAX_FROOT_C Maximum Current Fine Root carbon pool (tC cell -1 year -1)

 $CROOT_C$ Current Coarse Root carbon pool (tC cell¹)

CROOTLIVE_C Current Coarse root live wood carbon pool (tC cell 1)
CROOTDEAD C Current Coarse root dead wood carbon pool (tC cell 1)

CROOTLIVE_PERC Live Coarse Root vs. Total stem (%age) $BRANCH_C$ Current Branch carbon pool (tC cell⁻¹)

BRANCHLIVE_C Current Branch live wood carbon pool (tC cell 1)
BRANCHDEAD_C Current Branch dead wood carbon pool (tC cell 1)

BRANCHLIVE_PERC Live Branch vs. Total stem (%age) FRUIT_C Current Fruit carbon pool (tC cel Γ^1) Annual Fruit carbon pool (tC cell⁻¹year⁻¹) MAX FRUIT C Current Reserve nitrogen pool (tC cell¹) RESERVE N Current Stem nitrogen pool (tC cel Γ^1) STEM_N Current Live Stem nitrogen pool (tN cel Γ^1) STEMLIVE_N STEMDEAD N Current Dead Stem nitrogen pool (tN cel Γ^1) Current Coarse Root nitrogen pool (tN cel Γ^1) CROOT N

CROOTLIVE_N Current Coarse root live wood nitrogen pool ($tN cell^{-1}$)
CROOTDEAD_N Current Coarse root dead wood nitrogen pool ($tN cell^{-1}$)

BRANCH_N Current Branch nitrogen pool ($tN cell^{-1}$)

BRANCHLIVE_N Current Branch live wood nitrogen pool ($tN cell^1$)
BRANCHDEAD_N Current Branch dead wood nitrogen pool ($tN cell^1$)

FRUIT_NCurrent Fruit nitrogen pool (tN cell $^{-1}$)STANDING_WOODStanding wood carbon (tC cell $^{-1}$)DELTA_WOODAnnual wood increment (tC cell $^{-1}$)ear $^{-1}$)

CUM_DELTA_WOOD Cumulated annual wood increment (tC cell 1 year 1)

BASAL AREA Individual basal area (m²ha-¹)

TREE_CAI Single Tree Current Annual Volume Increment (m³tree-¹year¹)
TREE_MAI Single Tree Mean Annual Volume Increment (m³tree-¹year¹)

CAI Current Annual Volume Increment (m³class⁻¹year⁻¹)

MAI Mean Annual Volume Increment (m³class⁻¹year⁻¹)

VOLUME

Stem volume (m³class⁻¹)

TREE_VOLUME

Single tree volume (m³tree⁻¹)

DELTA_TREE_VOL (perc)

Tree volume increment (%)

DELTA_AGBAboveground biomass increment (tC cell 1 year 1)DELTA_BGBBelowground biomass increment (tC cell 1 year 1)

AGB Aboveground Biomass pool (tC cell¹)
BGB Belowground Biomass pool (tC cell¹)

BGB.AGB BGB/AGB

DELTA_TREE_AGB Aboveground biomass increment (tC cell¹year⁻¹)

DELTA_TREE_BGB Belowground biomass increment (tC cell¹year⁻¹)

C_HWP Annual harvested woody products removed from stand (tC cell $^{-1}$ year $^{-1}$)

VOLUME_HWP Annual volume harvested woody products removed from stand (m 3 cell $^{-1}$)

¹year⁻¹)

STEM_RA

Leaf autotrophic respiration (gC m⁻²year⁻¹)

LEAF_RA

Leaf autotrophic respiration (gC m⁻²year⁻¹)

FROOT_RA

Fine root autotrophic respiration (gC m⁻²year⁻¹)

CROOT_RA

Coarse root autotrophic respiration (gC m⁻²year⁻¹)

BRANCH_RA

Branch autotrophic respiration (gC m⁻²year⁻¹)

At cell level:

soilC

gppGross Primary Production (gC m²-year¹)nppNet Primary Production (gC m²-year¹)arAutotrophic respiration (gC m²-year¹)hrHeterotrophic Respiration (gC m²-year¹)rsoilSoil respiration flux (gC m²-year¹)rsoilCO2Soil respiration flux (gC m²-year¹)

reco Annual ecosystem respiration (gC m⁻²year⁻¹)

nee Annual net ecosystem exchange (gC m⁻²year⁻¹)

nep Annual net ecosystem production (gC m⁻²year⁻¹)

et Annual evapotranspiration (mm m⁻²year⁻¹)

le Latent heat flux (W m⁻²year⁻¹)

soil.evapo Annual soil evaporation (mm m⁻²year⁻¹)
asw Current available soil water (mm volume⁻¹)
iWue Annual intrinsic Water Use Efficiency (DIM)

vol Current volume (m⁻³cell) cum_vol Cumulated volume (m⁻³cell)

run_off Current amount of water outflow (runoff) (mm m⁻²year⁻¹)

Litter carbon (gC m⁻²) *litrC* Litter labile carbon (qC m⁻²) litr1C litr2C Litter unshielded carbon (gC m⁻²) litr3C Litter shielded carbon (gC m⁻²) Litter lignin carbon (gC m⁻²) litr4C Cwd carbon (gC m⁻²) cwd_C cwd_2C Cwd unshielded (gC m⁻²) Cwd shielded (gC m⁻²) cwd_3C Cwd lignin (gC m⁻²) cwd 4C

soil1C Microbial recycling pool carbon (fast) (gC m⁻²)
soil2C Microbial recycling pool carbon (medium) (gC m⁻²)
soil3C Microbial recycling pool carbon (slow) (gC m⁻²)
soil4C Recalcitrant SOM carbon (humus, slowest) (gC m⁻²)

Soil carbon (gC m⁻²)

litterN Litter nitrogen (gN m⁻²)
litter1N Litter labile nitrogen (qN m⁻²)

litter2N Litter unshielded cellulose nitrogen (gN m⁻²) litter3N Litter shielded cellulose nitrogen (gN m⁻²)

litter4N Litter lignin nitrogen (gN m⁻²) cwd_N Cwd nitrogen (gN m⁻²)

cwd_2NCwd unshielded nitrogen (gN m-2)cwd_3NCwd shielded nitrogen (gN m-2)cwd_4NCwd lignin nitrogen (gN m-2)soilNSoil nitrogen (gN m-2)

soil1N Microbial recycling pool nitrogen (fast) (gN m⁻²)

soil2N Microbial recycling pool nitrogen (medium) (gN m⁻²) soil3N Microbial recycling pool nitrogen (slow) (gN m⁻²) soil4N Recalcitrant SOM nitrogen (humus, slowest) (gN m⁻²)

Average air temperature (°C)

solar_rad Incoming short-wave radiation (MJ m⁻²year⁻¹)

tmax

Maximum air temperature (°C)

tmin

Minimum air temperature (°C)

tday

Daylight average air temperature (°C)

tnight

Nightime average air temperature (°C)

Vanous Pracsusa Deficit (PRa mbar)

tnight Nightime average air temperature (°C)

vpd Vapour Pressure Deficit (hPa-mbar)

prpc Cumulated Precipitation (mm m⁻² year⁻¹)

tsoil Average soil temperature (°C)

rh Relative Humidity (%)

avg_asw Average available soil water (mm volume⁻¹)

[co2] CO2 concentration (ppmv)

9.3 Monthly Outputs

tavg

At class level:

YEAR Year of simulation

MONTH Month of simulation

LAYER Layer of tree class

HEIGHT Average height of a species (m)

DBH Average diameter at breast height of a species (cm)

AGE Age of trees (years)

SPECIES Tree species

MANAGEMENT T = Timber

GPP Gross Primary Production (gC m⁻² month⁻¹)

NET_ASS Monthly net assimilation (gC m⁻² month⁻¹)

RA Autotrophic Respiration (gC m⁻² month⁻¹)

NPP Net Primary Production (gC m⁻² month⁻¹)

CUE Monthly Carbon Use Efficiency (0 \rightarrow 1) (gC_{NPP} gC_{GPP}⁻¹)

CTRANSP Canopy Transpiration (mm m⁻²month⁻¹)
CET Canopy Evapotranspiration (mm m⁻²month⁻¹)

CLE Canopy Latent Heat (W m⁻²month⁻¹)

CC Canopy Cover

DBHDC DBH/Crown diameter relationship
HD_EFF Effective Height/Diameter ratio (DIM)

HDMAX Height (m) to Base diameter (m) ratio MAX (DIM)
HDMIN Height (m) to Base diameter (m) ratio MIN (DIM)

N_TREE Number of trees (n tree cel Γ^1) WUE Monthly Water Use Efficiency (DIM) Reserve carbon pool (tC cell $^{-1}$) Wres Stem carbon pool (tC cel Γ^1) WS Stem live wood pool (tC cel Γ^1) WSL Stem dead wood (tC cel Γ^1) WSD **PWL** Maximum leaf wood (tC cel Γ^1) Maximum fine root wood (tC cell $^{-1}$) **PWFR** Coarse root biomass (tC cell $^{-1}$) **WCR**

WCRL Coarse root live wood biomass (tC cell 1)

WCRD Coarse root deadwood biomass ($tC cell^{-1}$)

WBB Branch biomass ($tC cell^{-1}$)

WBBL Branch live wood biomass (tC cell¹)
WBBD Branch dead wood biomass (tC cell¹)

At cell level:

gpp Gross Primary Production (gC m⁻²month⁻¹)
npp Net Primary Production (gC m⁻²month⁻¹)
ar Autotrophic respiration (gC m⁻²month⁻¹)
et Monthly evapotranspiration (gC m⁻²month⁻¹)

le Latent heat flux (W m⁻²)

asw Available soil water (mm volume⁻¹)
iWue Intrinsic Water Use Efficiency

9.4 Daily Outputs

At class level:

YEAR Year of simulation

MONTH Month of simulation

DAY Day of simulation

LAYER Layer of forest structure

HEIGHT Average height of a specie (m)

DBH Average diameter at breast height of a specie (cm)

AGE Age of trees (years)

SPECIES Tree species

MANAGEMENT T = Timber

GPP Gross Primary Production (gC m⁻²day⁻¹)

Av_TOT Carboxylation rate for limited assimilation (μ mol m⁻²s⁻¹) Aj_TOT RuBP regeneration limited assimilation (μ mol m⁻²s⁻¹)

Final assimilation rate (μmol m⁻²s⁻¹) $A_{_}TOT$ Growth respiration (qC m⁻²day⁻¹) RG Maintenance Respiration (gC m⁻²day⁻¹) RMAutotrophic respiration (gC m⁻²day⁻¹) RANet Primary Production (gC m⁻²day⁻¹) NPP Daily biomass production (qC m⁻²day⁻¹) ΒP Daily carbon Use Efficiency $(gC_{NPP} gC_{GPP}^{-1})$ CUE Daily biomass production efficiency (gC m⁻²day⁻¹) BPE

LAI_PROJ LAI for Projected Area covered (at zenith angle) ($m^2 m^{-2}$)
PEAK-LAI PROJ Peak Projected LAI (maximum attainable LAI) ($m^2 m^{-2}$)

LAI_EXP LAI for Exposed Area covered (m² m⁻²)

D-CC_P Projected Canopy Cover (frac)
DBH/Crown diameter relationship

CROWN_AREA_PROJ Crown Projected Area (at zenith angle) (m²)

PAR Photosynthetically Active Radiation (molPAR m⁻²day⁻¹)

APAR Absorbed Photosynthetically Active Radiation (molPAR m²day⁻¹)

fAPAR Fraction of Absorbed Photosynthetically Active Radiation (unitless)

NTREE Number of trees

VEG_D Day of vegetative period for class (Days/Year)

INT Canopy Interception (mm m⁻²day⁻¹)

WAT Canopy Water stored (mm m⁻²)

EVA Canopy Evaporation (mm m⁻²day⁻¹)

TRA Canopy Transpiration (mm m⁻²day⁻¹)

ET Canopy Evapotranspiration (mm m⁻²day⁻¹)

LE Canopy Latent Heat (W m⁻²)
WUE Water Use Efficiency (DIM)

RESERVE_CCurrent Reserve carbon pool (tC cell 1)STEM_CCurrent Stem carbon pool (tC cell 1)

STEMSAP_CCurrent Stem sapwood carbon pool (tC cell $^{-1}$)STEMLIVE_CCurrent Stem live wood carbon pool (tC cell $^{-1}$)STEMDEAD_CCurrent Stem dead wood carbon pool (tC cell $^{-1}$)

LEAF_CCurrent Leaf carbon pool (tC $cell^1$)FROOT_CCurrent Fine root carbon pool (tC $cell^1$)CROOT_CCurrent Coarse root carbon pool (tC $cell^1$)

CROOTSAP_CCurrent Coarse root sapwood carbon pool (tC cell 1)CROOTLIVE_CCurrent Coarse root live wood carbon pool (tC cell 1)CROOTDEAD_CCurrent Coarse root dead wood carbon pool (tC cell 1)

BRANCH C Current Branch carbon pool (tC cell¹)

BRANCHSAP_CCurrent Branch sapwood carbon pool (tC cell 1)BRANCHLIVE_CCurrent Branch live wood carbon pool (tC cell 1)BRANCHDEAD_CCurrent Branch dead wood carbon pool (tC cell 1)

Current Fruit carbon pool ((tC cel Γ^1) FRUIT C Daily allocation to reserve (tC cel Γ^1 day $^{-1}$) DELTARESERVE_C Daily allocation to stem (tC cell day 1) DELTA STEM C Daily allocation to leaf (tC cell⁻¹day⁻¹) DELTA LEAF C Daily allocation to fine root (tC cell 1 day $^{-1}$) DELTA FROOT C DELTA_CROOT_C Daily allocation to coarse root ($tC cell^{-1} day^{-1}$) Daily allocation to branch (tC cell $^{-1}$ day $^{-1}$) DELTA BRANCH C Daily allocation to fruit (tC cell day 1) DELTA FRUIT C Current reserve nitrogen pool (tN $cell^{1}$) RESERVE_N STEM N Current stem nitrogen pool (tN cell¹) Current Live Stem nitrogen pool (tN cel Γ^1) STEMLIVE N Current Dead Stem nitrogen pool (tN cell¹) STEMDEAD N Current leaf nitrogen pool (tN cell⁻¹) LEAF_N FROOT N Current Fine Root nitrogen pool (tN cell¹)

CROOTLIVE_N Current Coarse root live wood nitrogen pool (tN cell¹)
CROOTDEAD_N Current Coarse root dead wood nitrogen pool (tN cell¹)

Current Coarse Root nitrogen pool (tN cell⁻¹)

BRANCH_N Current Branch nitrogen pool (tN $cell^{1}$)

CROOT N

BRANCHLIVE_N Current Branch live wood nitrogen pool (tN cell 1)
BRANCHDEAD_N Current Branch dead wood nitrogen pool (tN cell 1)

Current Fruit nitrogen pool (tN cell⁻¹) FRUIT N DELTARESERVE N Daily allocation to reserve (tN cell 1 day $^{-1}$) Daily allocation to stem (tN cell day) DELTA_STEM_N Daily allocation to leaf $((tN cell^{-1}day^{-1})$ DELTA_LEAF_N Daily allocation to fine root (tN cel Γ^1 day $^{-1}$) DELTA FROOT N DELTA CROOT N Daily allocation to coarse root (tN cel Γ^1 day $^{-1}$) DELTA_BRANCH_N Daily allocation to branch (tN cell day $^{-1}$) DELTA_FRUIT_N Daily allocation to fruit (tN cell⁻¹day⁻¹)

Stem autotrophic respiration (gC m⁻²day⁻¹) STEM_AR Leaves autotrophic respiration (gC m⁻²day⁻¹) $LEAL_AR$ FROOT AR Fine Roots autotrophic respiration (gC m⁻²day⁻¹) Coarse Roots autotrophic respiration (gC m⁻²day⁻¹) CROOT AR Branch autotrophic respiration (gC m⁻²day⁻¹) BRANCH_AR CO2 fertilization effect (DIM) (as choiced in script) F_CO2 F CO2 VER CO2 fertilization effect (DIM) (Veroustraete's version) CO2 fertilization effect (DIM) (Franks et al's version) F_CO2_FRA CO2 fertilization effect (DIM) (for stomatal conductance) FCO2_TR

Light modifier **FLIGHT** Age modifier $(0\rightarrow 1)$ **FAGE**

FΤ Air temperature modifier $(0 \rightarrow 1)$

FVPD VPD modifier $(0\rightarrow 1)$

Soil nutrient modifier $(0\rightarrow 1)$ FΝ FSW Soil water modifier $(0 \rightarrow 1)$

LITR_C Current Litter Carbon Pool (tC cel Γ^1) Coarse Woody Debris Carbon (tC cell $^{-1}$) CWD C

At cell level:

litrC

soilC

Gross Primary Production (gC m⁻²day⁻¹) gpp Net Primary Productivity (gC m⁻²day⁻¹) npp Autotrophic respiration (gC m⁻²day⁻¹) ar Heterotrophic respiration (qC m⁻²day⁻¹) hr Soil respiration flux (gC m⁻²year⁻¹) rsoil Daily ecosystem respiration (gC m⁻²day⁻¹) reco Daily net ecosystem exchange (gC m⁻²day⁻¹) nee Daily net ecosystem production (gC m⁻²day⁻¹) nep Daily evapotranspiration (mm m⁻²day⁻¹) et

Daily latent heat flux (W m⁻²) le Daily soil evaporation (mm m⁻²day⁻¹) soil_evapo Current Amount of Snow (Kg m⁻²) snow_pack

Current available soil water (mm volume⁻¹) asw

Soil moisture ratio (DIM) moist ratio

Daily intrinsic Water Use Efficiency (DIM) iWue

Litter carbon (gC m⁻²) Litter labile carbon (gC m⁻²) litr1C Litter unshielded carbon (gC m⁻²) litr2C Litter shielded carbon (gC m⁻²) litr3C Litter lignin carbon (gC m⁻²) litr4C Cwd carbon (gC m^{-2}) cwd C cwd_2C Cwd unshielded (gC m⁻²) Cwd shielded (gC m⁻²) cwd_3C Cwd lignin (gC m⁻²) cwd_4C

Microbial recycling pool carbon (fast) (gC m⁻²) soil1C Microbial recycling pool carbon (medium) (gC m⁻²) soil2C Microbial recycling pool carbon (slow) (gC m⁻²) soil3C Recalcitrant SOM carbon (humus, slowest) (gC m⁻²) soil4C

Soil carbon (gC m⁻²)

Litter nitrogen (gN m⁻²) litterN

litter1N Litter labile nitrogen (gN m⁻²)

litter2N Litter unshielded cellulose nitrogen (gN m⁻²) litter3N Litter shielded cellulose nitrogen (gN m⁻²)

litter4N Litter lignin nitrogen (gN m⁻²) cwd_N Cwd nitrogen (gN m⁻²)

cwd_2NCwd unshielded nitrogen (gN m²)cwd_3NCwd shielded nitrogen (gN m²)cwd_4NCwd lignin nitrogen (gN m²)

soilN Soil nitrogen (gN m⁻²)

soil1NMicrobial recycling pool nitrogen (fast) (gN m-2)soil2NMicrobial recycling pool nitrogen (medium) (gN m-2)soil3NMicrobial recycling pool nitrogen (slow) (gN m-2)soil4NRecalcitrant SOM nitrogen (humus, slowest) (gN m-2)

tsoil Soil Temperature (°C)

daylenght Day length

10. Questions or comments

Shall you have issues with the code or for any suggestions, please let us know. For any questions on how to parameterize or run the code, please read this file first.

Contact:

Alessio Collalti alessio.collalti@cnr.it

Gina Marano gina.marano@unina.it