MATH 442/551 Assignment #1

Due Thursday September 20, in class

- 1. Use the following Banach Fixed-Point Theorem to prove the Picard-Lindelof version fo teh Existence and Uniqueness Theorem (listed below).
 - Definition: Let X be a norned vector space, the map $T: X \to X$ is called a contraction mapping on X if there exists a constant $q \in [0, 1)$ such that $||T(x) T(y)|| \le q||x y||$ for all $x, y \in X$.
 - Banach Fixed-Point Theorem: Let X be a complete Banach space, and T be a contraction mapping on X, then T has a unique fixed point $x^* \in X$, i.e., $T(x^*) = x^*$.
 - Picard-Lindelof Theorem: Consider the initial value problem

$$\frac{dx}{dt} = f(t, x), \ x(t_0) = x_0,$$

, where $x \in \mathbb{R}^n$, $f: \mathbb{R}^{n+1} \to \mathbb{R}^n$ is continuous in t and Lipschitz continuous in X on a region $G \subset \mathbb{R}^{n+1}$ with non-empty interior, which interior contains (t_0, x_0) . Then, there exists a positive constatn $h \leq a$ such that the initial value problem has a unique solution on $[t_0 - h, t_0 + h]$.

• Hint: consider the vector space $C_{[t_0-h,t_0+h]}$, and show that for small enough h, the map

$$F(x) = x_0 + \int_{t_0}^t f(s, x(s))ds$$

is a contraction mapping.

2. Continuous Dependence on parameters: Consider the initial value problem

$$\frac{dx}{dt} = f(t, x; p), \ x(t_0) = x_0,$$

where $p \in \mathbb{R}^m$ is a parameter of the model (a constant vector), $x \in \mathbb{R}^n$, and $f : \mathbb{R}^{n+1} \to \mathbb{R}^n$ is a continuous function on a region $G \subset \mathbb{R}^{n+1}$ with non-empty interior, and Lipscitz continuous in x on G with a Lipschitz constant L. If $x_1(t; t_0, x_0, p_1)$ and $x_2(t; t_0, x_0, p_2)$ are two solutions to the IVP defined on an interval I, with parameter valuex $p = p_1$ and $p = p_2$, respectively.

(a) Show that, for all $t \in I$,

$$|x_1(t;t_0,x_0,p_1)-x_2(t;t_0,x_0,p_2)| \le |p_1-p_2|e^{L(t-t_0)}$$

- (b) Show that, for all fixed t, $x(t; t_0, x_0, p)$ is a continuous function of the parameter p.
 - Hint: Consider the system $\frac{dz}{dt} = f(t,z)$ where $z = (x^T, p^T)^T$, and $\frac{dp}{dt} = 0$. That is, extend the system to include p as constant state variables.
- 3. Consider the initial value problem

$$\frac{dx}{dt} = Ax + B(t)x, \ x(t_0) = x_0,$$

where $x \in \mathbb{R}^n$, A is a constant $n \times n$ matrix which eigenvalues all have negative real part; B(t) is an $n \times n$ continuous matrix function, with $\int_{t_0}^{\infty} \|B(s)\| ds < M$ for some constant M > 0 (note that this condition guarantees that $B(t) \to 0$ as $t \to \infty$). Here, for each t, the matrix norm is defined as

$$||B(t)|| = \max_{||x|| \neq 0} \frac{||B(t)x||}{||x||},$$

and thus $||B(t)x|| \le ||B(t)|| ||x||$ for all x.

(a) Show that its solution satisfies

$$x(t) = e^{A(t-t_0)}x_0 + \int_{t_0}^t e^{A(t-s)}B(s)x(s)ds$$
.

- (b) Note that all eigenvalues of A has negative real parts, thus $\exists C > 0$ such that $||e^{At}|| \leq C$ for all t. Use this fact to show that the origin is stable, i.e., $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $||x(t)|| \leq \varepsilon$ as long as $||x_0|| \leq \delta$.
 - Hint: Apply Gronwall's inequality to ||x(t)||.