ENGINEERING MECHANICS: STATICS

CHAPTER 12: KINEMATICS OF A PARTICLE

CHAPTER OUTLINE

- Introduction
- Rectilinear Kinematics: Continuous Motion
- Rectilinear Kinematics: Erratic Motion
- General Curvilinear
- Curvilinear Motion: Rectangular Motion
- Projectile

12.1 INTRODUCTION

Engineering Mechanics

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinear Kinematics: Erratic

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and Tangential components

12.8 Curvilinear: Cylindrical components **Dynamics:** Deals with the accelerated motion of a body

kinematics, which treats only the geometric aspects of the motion,

kinetics, which is the analysis of the forces causing the motion.

Involves calculus

We will study only particle dynamics

Kinematics of a Particle

12.1 INTRODUCTION

- Dynamics includes:
 - *Kinematics*: study of the geometry of motion. Kinematics is used to relate displacement, velocity, acceleration, and time without reference to the cause of motion.
 - *Kinetics*: study of the relations existing between the forces acting on a body, the mass of the body, and the motion of the body. Kinetics is used to predict the motion caused by given forces or to determine the forces required to produce a given motion.
- *Rectilinear* motion: position, velocity, and acceleration of a particle as it moves along a straight line.
- *Curvilinear* motion: position, velocity, and acceleration of a particle as it moves along a curved line in two or three dimensions.

12.1 INTRODUCTION

Kinematic relationships are used to help us determine the trajectory of a golf ball, the orbital speed of a satellite, and the accelerations during acrobatic flying.

12. 2 RECTILINEAR KINEMATICS: CONTINUOUS MOTION

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinear Kinematics: Erratic

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and Tangential components

12.8 Curvilinear: Cylindrical components

Rectilinear Kinematics: Continuous Motion

Rectilinear Kinematics. The kinematics of a particle is characterized by specifying, at any given instant, the particle's position, velocity, and acceleration.

Kinematics of a Particle

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinear Kinematics: Erratic

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and Tangential components

12.8 Curvilinear: Cylindrical components

Rectilinear Kinematics: Continuous Motion

Velocity. If the particle moves through a displacement Δs during the time interval Δt , the *average velocity* of the particle during this time interval is

If we take smaller and smaller values of Δt , the magnitude of Δs becomes smaller and smaller. Consequently, the *instantaneous velocity* is a vector defined as $v = \lim_{\Delta t \to 0} (\Delta s / \Delta t)$, or

If the particle is moving to the *right*, Fig. 12–1*c*, the velocity is *positive;* whereas if it is moving to the *left*, the velocity is *negative*.

Velocity.

$$v_{
m avg} = rac{\Delta s}{\Delta t}$$

it is generally expressed in units of m/s or ft/s.

instantaneous velocity

$$v = \lim_{\Delta t \to 0} (\Delta s / \Delta t)$$
, or

$$(\stackrel{+}{\to}) \qquad v = \frac{ds}{dt}$$

Kinematics of a Particle

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinear Kinematics: Erratic

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and Tangential components

12.8 Curvilinear: Cylindrical components

Rectilinear Kinematics: Continuous Motion

Average Velocity Vs Average Speed

Occasionally, the term "average speed" is used. The *average speed* is always a positive scalar and is defined as the total distance traveled by a particle, ^{S}T , divided by the elapsed time i.e Δt

$$(v_{\rm sp})_{\rm avg} = s_T/\Delta t$$

For example, the particle in Fig. 12–1d travels along the path of length s_T in time Δt , so its average speed is $(v_{\rm sp})_{\rm avg} = s_T/\Delta t$, but its average velocity is $v_{\rm avg} = -\Delta s/\Delta t$. $v_{\rm avg} = -\Delta s/\Delta t$.

$$\begin{array}{c|c}
 & -\Delta s - \\
\hline
P' & P \\
\hline
S_T
\end{array}$$

Average velocity and Average speed

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinear Kinematics: Erratic

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and Tangential components

12.8 Curvilinear: Cylindrical components

Rectilinear Kinematics: Continuous Motion

Acceleration.

$$a_{\mathrm{avg}} = \frac{\Delta v}{\Delta t}$$

interval Δt , i.e., $\Delta v = v' - v$,

The *instantaneous acceleration* at time t is a vector that is found by taking smaller and smaller values of Δt and corresponding smaller and smaller values of Δv , so that $a = \lim_{\Delta t \to 0} (\Delta v / \Delta t)$, or

$$a = \frac{dv}{dt} \qquad a = \frac{d^2s}{dt^2}$$

By eliminating the time differential a ds = v dv

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinear Kinematics: Erratic

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and Tangential components

12.8 Curvilinear: Cylindrical components

Rectilinear Kinematics: Continuous Motion

Constant Acceleration, $a = a_c$. When the acceleration is constant, each of the three kinematic equations $a_c = dv/dt$, v = ds/dt, and $a_c ds = v dv$ can be integrated to obtain formulas that relate a_c , v, s, and t.

Velocity as a Function of Time. Integrate $a_c = dv/dt$, assuming that initially $v = v_0$ when t = 0.

$$\int_{v_0}^v dv = \int_0^t a_c \, dt$$

 (\pm)

$$v = v_0 + a_c t$$

Constant Acceleration

(12-4)

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinear Kinematics: Erratic

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and Tangential components

 $(\stackrel{+}{\Rightarrow})$

12.8 Curvilinear: Cylindrical components

Rectilinear Kinematics: Continuous Motion

Position as a Function of Time. Integrate $v = ds/dt = v_0 + a_c t$, assuming that initially $s = s_0$ when t = 0.

$$\int_{s_0}^{s} ds = \int_{0}^{t} (v_0 + a_c t) dt$$

$$s = s_0 + v_0 t + \frac{1}{2} a_c t^2$$
Constant Acceleration

(12-5)

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinear Kinematics: Erratic

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and Tangential components

 $(\stackrel{+}{\Rightarrow})$

12.8 Curvilinear: Cylindrical components

Rectilinear Kinematics: Continuous Motion

Velocity as a Function of Position. Either solve for t in Eq. 12–4 and substitute into Eq. 12–5, or integrate $v \, dv = a_c \, ds$, assuming that initially $v = v_0$ at $s = s_0$.

$$\int_{v_0}^v v \, dv = \int_{s_0}^s a_c \, ds$$

$$v^2 = v_0^2 + 2a_c(s - s_0)$$

Constant Acceleration

$$(12-6)$$

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinear Kinematics: Erratic

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and Tangential components

12.8 Curvilinear: Cylindrical components

Rectilinear Kinematics: Continuous Motion

Constant Acceleration, $a = a_c$.

$$v = v_0 + a_c t$$

Constant Acceleration

$$s = s_0 + v_0 t + \frac{1}{2} a_c t^2$$
Constant Acceleration

$$v^2 = v_0^2 + 2a_c(s - s_0)$$

Constant Acceleration

Acceleration as a function of time, position, or velocity

If	Kinematic relationship	Integrate
a = a(t)	$\frac{dv}{dt} = a(t)$	$\int_{v_0}^{v} dv = \int_{0}^{t} a(t) dt$
a = a(x)	$dt = \frac{dx}{v} \text{ and } a = \frac{dv}{dt}$ $v dv = a(x) dx$	$\int_{v_0}^{v} v dv = \int_{x_0}^{x} a(x) dx$
a = a(v)	$\frac{dv}{dt} = a(v)$ $v\frac{dv}{dx} = a(v)$	$\int_{v_0}^{v} \frac{dv}{a(v)} = \int_{0}^{t} dt$ $\int_{x_0}^{x} dx = \int_{v_0}^{v} \frac{v dv}{a(v)}$

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinear Kinematics: Erratic

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and Tangential components

12.8 Curvilinear: Cylindrical components

Example 12. 1

The car on the left in the photo and in Fig. 12–2 moves in a straight line such that for a short time its velocity is defined by $v = (3t^2 + 2t)$ ft/s, where t is in seconds. Determine its position and acceleration when t = 3 s. When t = 0, s = 0.

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinear Kinematics: Erratic

 $(\stackrel{+}{\Rightarrow})$

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and Tangential components

12.8 Curvilinear: Cylindrical components **Coordinate System.** The position coordinate extends from the fixed origin *O* to the car, positive to the right.

Position. Since v = f(t), the car's position can be determined from v = ds/dt, since this equation relates v, s, and t. Noting that s = 0 when t = 0, we have*

$$v = \frac{ds}{dt} = (3t^2 + 2t)$$

$$\int_0^s ds = \int_0^t (3t^2 + 2t)dt$$

$$s \Big|_0^s = t^3 + t^2 \Big|_0^t$$

$$s = t^3 + t^2$$

When t = 3 s,

$$s = (3)^3 + (3)^2 = 36 \text{ ft}$$

The car on the left in the photo and in Fig. 12–2 moves in a straight line such that for a short time its velocity is defined by $v = (3t^2 + 2t)$ ft/s, where t is in seconds. Determine its position and acceleration when t = 3 s. When t = 0, s = 0.

$$a = \frac{dv}{dt} = \frac{d}{dt}(3t^2 + 2t)$$
$$= 6t + 2$$

$$a = 6(3) + 2 = 20 \text{ ft/s}^2 \rightarrow$$

NOTE: The formulas for constant acceleration *cannot* be used to solve this problem, because the acceleration is a function of time.

Ans.

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinear Kinematics: Erratic

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and Tangential components

12.8 Curvilinear: Cylindrical components

Rectilinear Kinematics: Continuous Motion

Example 12. 3

During a test a rocket travels upward at 75 m/s, and when it is 40 m from the ground its engine fails. Determine the maximum height s_B reached by the rocket and its speed just before it hits the ground. While in motion the rocket is subjected to a constant downward acceleration of 9.81 m/s² due to gravity. Neglect the effect of air resistance.

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinear Kinematics: Erratic

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and Tangential components

12.8 Curvilinear: Cylindrical components

SOLUTION

Coordinate System. The origin O for the position coordinate s is taken at ground level with positive upward, Fig. 12–4.

Maximum Height. Since the rocket is traveling *upward*, $v_A = +75$ m/s when t = 0. At the maximum height $s = s_B$ the velocity $v_B = 0$. For the entire motion, the acceleration is $a_c = -9.81$ m/s² (negative since it acts in the *opposite* sense to positive velocity or positive displacement). Since a_c is *constant* the rocket's position may be related to its velocity at the two points A and B on the path by using Eq. 12–6, namely,

Maximum Height.

(+
$$\uparrow$$
) $v_B^2 = v_A^2 + 2a_c(s_B - s_A)$
 $0 = (75 \text{ m/s})^2 + 2(-9.81 \text{ m/s}^2)(s_B - 40 \text{ m})$
 $s_B = 327 \text{ m}$

Velocity.

(+
$$\uparrow$$
) $v_C^2 = v_B^2 + 2a_c(s_C - s_B)$
= 0 + 2(-9.81 m/s²)(0 - 327 m)
 $v_C = -80.1$ m/s = 80.1 m/s \downarrow

Example 12. 4

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinea Kinematics: Erratic

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and Tangential components

12.8 Curvilinear: Cylindrical components A metallic particle is subjected to the influence of a magnetic field as it travels downward through a fluid that extends from plate A to plate B, Fig. 12–5. If the particle is released from rest at the midpoint C, s = 100 mm, and the acceleration is a = (4s) m/s², where s is in meters, determine the velocity of the particle when it reaches plate B, s = 200 mm, and the time it takes to travel from C to B.

Introduction

12.1

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinear Kinematics: Erratic

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and

Tangential components

12.8 Curvilinear: Cylindrical components A metallic particle is subjected to the influence of a magnetic field as it travels downward through a fluid that extends from plate A to plate B, Fig. 12–5. If the particle is released from rest at the midpoint C, s = 100 mm, and the acceleration is a = (4s) m/s², where s is in meters, determine the velocity of the particle when it reaches plate B, s = 200 mm, and the time it takes to travel from C to B.

SOLUTION

Coordinate System. As shown in Fig. 12–5, s is positive downward, measured from plate A.

Velocity. Since a = f(s), the velocity as a function of position can be obtained by using $v \, dv = a \, ds$. Realizing that v = 0 at s = 0.1 m, we have

$$v \, dv = a \, ds$$

$$\int_{0}^{v} v \, dv = \int_{0.1 \text{ m}}^{s} 4s \, ds$$

$$\frac{1}{2} v^{2} \Big|_{0}^{v} = \frac{4}{2} s^{2} \Big|_{0.1 \text{ m}}^{s}$$

$$v = 2(s^{2} - 0.01)^{1/2} \text{ m/s}$$
(1)

At s = 200 mm = 0.2 m,

$$v_B = 0.346 \, \text{m/s} = 346 \, \text{mm/s} \downarrow$$

The positive root is chosen since the particle is traveling downward, i.e., in the +s direction.

Ans.

12.2 Rectilinear Kinematics: Cont.

12.3 Rectilinear Kinematics: Erratic

12.4 General Curvilinear

12.5 Curvilinear: Rectangular components

12.6 Projectile

12.7 Curvilinear: Normal and Tangential components

12.8 Curvilinear: Cylindrical components **Time.** The time for the particle to travel from C to B can be obtained using v = ds/dt and Eq. 1, where s = 0.1 m when t = 0. From Appendix A,

$$(+\downarrow) ds = v dt$$

$$= 2(s^2 - 0.01)^{1/2} dt$$

$$\int_{0.1}^{s} \frac{ds}{(s^2 - 0.01)^{1/2}} = \int_{0}^{t} 2 dt$$

$$\ln(\sqrt{s^2 - 0.01} + s) \Big|_{0.1}^{s} = 2t \Big|_{0}^{t}$$

$$\ln(\sqrt{s^2 - 0.01} + s) + 2.303 = 2t$$

At
$$s = 0.2 \text{ m}$$
,
$$t = \frac{\ln(\sqrt{(0.2)^2 - 0.01} + 0.2) + 2.303}{2} = 0.658 \text{ s} \quad Ans.$$

NOTE: The formulas for constant acceleration cannot be used here because the acceleration changes with position, i.e., a = 4s.

HOME ASSIGNMENT

Example 12.2 & 12.5

