Particle System

HW1 2024 Computer Animation and Special Effects

Outline

- Overview
- Environment Setup
- Objective
- Report
- Scoring
- Submission
- Note

Overview (cont.)

- Use arrow keys to move, space bar to stop the sphere
- 1 ~ 4 to pin/unpin the corners

Overview (cont.)

- IDE: Visual studio 2019 / Visual studio 2022
- Graphics API: OpenGL
- Dependencies
 - o Eigen
 - o glfw
 - o glad
 - Dear ImGui

Environment Setup

Download <u>Visual Studio 2019 – Community</u> or <u>Visual Studio 2022 - Community</u>

Environment Setup (cont.)

Launch Visual Studio Installer

Environment Setup (cont.)

- Download HW1.zip and unzip
- Open HW1.sln

assets	3/16/2024 5:51 PM	File folder	
cmake cmake	4/5/2022 11:45 AM	File folder	
extern	3/14/2024 11:31 AM	File folder	
HW1	3/14/2024 12:27 PM	File folder	
include	3/16/2024 6:27 PM	File folder	
ib lib	3/12/2024 5:45 PM	File folder	
src src	3/16/2024 6:55 PM	File folder	
.clang-format	4/5/2022 11:45 AM	CLANG-FORMAT	1 KB
gitignore .gitignore	4/5/2022 11:45 AM	Git Ignore Source	1 KB
CMakeLists.txt	4/5/2022 11:45 AM	Text Document	4 KB
MW1.sln	4/5/2022 11:45 AM	Visual Studio Solu	3 KB
LICENSE	4/5/2022 11:45 AM	File	2 KB
README.md	4/5/2022 11:45 AM	Markdown Source	2 KB
README.md	4/5/2022 11:45 AM	Markdown Source	2

Environment Setup (cont.)

Run the project

- Select config then build (CTRL+SHIFT+B)
- Use F5 to debug or CTRL+F5 to run
 - It will spend a lot of time to debug so release is recommended unless you need debugger

Objective

- src
 - o main.cpp
 - cloth.cpp
 - void Cloth::initializeSpring()
 - void Cloth::computeSpringForce()
 - o sphere.cpp
 - void Spheres::collide(Cloth* cloth)
 - o integrator.cpp
 - void ExplicitEuler::integrate(...)
 - void ImplicitEuler::integrate(...)
 - void MidpointEuler::integrate(...)
 - void RungeKuttaFourth::integrate(...)

- int main()
 - Change the title to your student ID

```
// TODO: change the title to your student ID
GLFWwindow* window = context.createWindow("HW1 987654321", 1280, 720, GLFW_OPENGL_CORE_PROFILE);
```

- void Cloth::initializeSpring()
 - Goal
 - Construct the connection of springs
 - Hint
 - You should initialize three types of spring struct, shear and bending

- Put all springs in std::vector<Spring> _springs, which is a member in class
 Cloth
- Here is a sample code of connecting struct springs in the horizontal direction

```
float structrualLength = (_particles.position(0) - _particles.position(1)).norm();
for (int i = 0; i < particlesPerEdge; ++i) {
    for (int j = 0; j < particlesPerEdge - 1; ++j) {
        int index = i * particlesPerEdge + j;
        _springs.emplace_back(index, index + 1, structrualLength, Spring::Type::STRUCTURAL);
    }
}</pre>
```

- void Cloth::computeSpringForce()
 - Goal
 - Compute spring and damper forces
 - Hint
 - Review "particles.pptx" from p.9 p.13
 - Trace every spring and apply the force accordingly
 - Set acceleration to apply the force
 - You can use float Particles::inverseMass(int i) to get the inverse of mass
 - The parameter springCoef and damperCoef are defined in config.h

- void Spheres::collide(Cloth* cloth)
 - Goal
 - Handle collision between spheres and cloth
 - Hint
 - Review "particles.pptx" from p.14 p.19
 - You can use their radius and distance to determine whether they are collided
 - The radius of particles of cloth can be regarded as 0

- To compute the velocity after collision
 - You only need to worry about the component of the velocity that is in the direction of the collision
 - You can assume that the sphere is stationary
 - You can refer to this website for detailed information

$$v_{\mathrm{a}}=rac{m_{\mathrm{a}}u_{\mathrm{a}}+m_{\mathrm{b}}u_{\mathrm{b}}+m_{\mathrm{b}}C_{R}(u_{\mathrm{b}}-u_{\mathrm{a}})}{m_{\mathrm{a}}+m_{\mathrm{b}}}$$
 and
$$v_{\mathrm{b}}=rac{m_{\mathrm{a}}u_{\mathrm{a}}+m_{\mathrm{b}}u_{\mathrm{b}}+m_{\mathrm{a}}C_{R}(u_{\mathrm{a}}-u_{\mathrm{b}})}{m_{\mathrm{a}}+m_{\mathrm{b}}}$$

C_R is the coefficient of restitution

- Integrator
 - Update particles' position and velocity
 - void ExplicitEulerIntegrator::integrate(...)
 - Hint: review "ODE_basics.pptx" from p.15 p.16
 - void ImplicitEulerIntegrator::integrate(...)
 - Hint: review "ODE_implicit.pptx" from p.18 p.19
 - void MidpointEulerIntegrator::integrate(...)
 - Hint: review "ODE_basics.pptx" from p.18 p.20 and "pbm.pdf" from B.5 B.6
 - void RungeKuttaFourthIntegrator::integrate(...)
 - Hint: review "ODE_basics.pptx" p.21 and "pbm.pdf" from B.5 B.6

- Bonus constrained particles (optional)
 - Review "constrainedParticles.pptx", "clothAnimation.pptx" from p.48 p.52
 - For example
 - A flag (0 dof along an edge)
 - A curtain (1 dof along an edge)
 - Don't break original requirements (if it does, make an toggle for switching between requirement parts and bonus parts)
 - Mention it in your report

Report

- Suggested outline
 - Introduction/Motivation
 - Fundamentals
 - Implementation
 - Result and Discussion
 - The difference between integrators
 - Effect of parameters (springCoef, damperCoef, etc.)
 - Bonus (Optional)
 - Conclusion

Scoring

- Change window title to "HW1 STUDENT_ID" (0%)
 - -10% if title is wrong
- Construct the connection of springs 10%
- Compute internal force 25%
- Handle Collision 20%
- Integrator 25%
 - Explicit Euler 5%
 - Implicit and Midpoint Euler 5%
 - Runge-Kutta 4th 15%
- Report 20%
- Bonus up to 15%

Submission

- Please upload hw1_<your student ID>.zip and report_< your student ID>.pdf respectively
- hw1_<your student ID>.zip (root)
 - o src
 - o include
- Late policies
 - Penalty of 10 points on each day after deadline
- Cheating policies
 - o 0 points for any cheating on assignments
- Deadline
 - o Monday, 2024/04/01, 23:59

Note

Read TODOs in the template and follow TODOs' order

- How to contact TAs?
 - Please ask your questions on new E3 forum or send email to ALL TAs via new E3.
 - If you need to ask questions face-to-face, please send an email for appointment