Shortest Paths

Dijkstra's Algorithm & Bellman-Ford Algorithm

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024

Fall 2024

Outline

- Introduction
- Dijkstra's Algorithm
- 3 Bellman-Ford Algorithm for General Weights

Shortest path(s) from NTOU to Jiufen Old Street.

Shortest Paths

- Model the problem via a graph.
- vertices → locations (e.g., stations, restaurants, gas stations, etc.)
 - Including the source and the destination.
- edges → highways, railways, roads, etc.
 - edge weight: tolls, the distance, passing-through time, etc.

Shortest Paths

- Model the problem via a graph.
- vertices → locations (e.g., stations, restaurants, gas stations, etc.)
 - Including the source and the destination.
- edges → highways, railways, roads, etc.
 - edge weight: tolls, the distance, passing-through time, etc.

Questions

- Is there a path from NTOU to Jiufen?
- If it exists, which one is the shortest?

Single Source/All Destinations (Nonnegative Edge Costs)

	path	length (cost)
1	0, 3	10
2	0, 3, 4	25
3	0, 3, 4, 1	45
4	0, 2	45

Notations:

Shortest Paths

- A directed graph G = (V, E); a weight function w(e), w(e) > 0 for any edge $e \in E$.
- v₀: source vertex.
- If $(v_i, v_j) \notin E$, $w(v_i, v_j) = \infty$.

Outline

1 Introduction

- Dijkstra's Algorithm
- 3 Bellman-Ford Algorithm for General Weights

Greedy Method

The greedy method can help here!

Greedy Method

- The greedy method can help here!
- Let S denote the set of vertices, including v_0 , whose shortest paths have been found.

Greedy Method

- The greedy method can help here!
- Let S denote the set of vertices, including v_0 , whose shortest paths have been found.
- For $v \notin S$, let $\operatorname{dist}[v]$ be the length of the shortest path starting from v_0 , going through vertices ONLY in S, and ending in v.

• At the first stage, we add v_0 to S, set $dist[v_0] = 0$ and determine dist[v] for each $v \notin S$.

- At the first stage, we add v_0 to S, set $dist[v_0] = 0$ and determine dist[v] for each $v \notin S$.
- Next, at each stage, vertex w is chosen so that it has the minimum distance, dist[w], among all the vertices not in S.

- At the first stage, we add v_0 to S, set $dist[v_0] = 0$ and determine dist[v] for each $v \notin S$.
- Next, at each stage, vertex w is chosen so that it has the minimum distance, dist[w], among all the vertices not in S.
- Adding w to S, and updating dist[v] for v, where $v \notin S$ currently.

- At the first stage, we add v_0 to S, set $dist[v_0] = 0$ and determine dist[v] for each $v \notin S$.
- Next, at each stage, vertex w is chosen so that it has the minimum distance, dist[w], among all the vertices not in S.
- Adding w to S, and updating dist[v] for v, where $v \notin S$ currently.
- Repeat the vertex addition process until S = V(G)

- At the first stage, we add v_0 to S, set $dist[v_0] = 0$ and determine dist[v] for each $v \notin S$.
- Next, at each stage, vertex w is chosen so that it has the minimum distance, dist[w], among all the vertices not in S.
- Adding w to S, and updating dist[v] for v, where $v \notin S$ currently.
- Repeat the vertex addition process until S = V(G)

Time complexity: $O(n^2)$.

Illustration of Dijkstra's Algorithm

Basic Idea of Dijkstra's Algorithm

The Pseudo-code of Dijkstra's Algorithm

```
S = { v0 };
dist[v0] = 0;
for each v in V - {v0} do
    dist[v] = e(v0,v); // initialization
while (S != V) do
    choose a vertex w in V - S such that dist[w] is a minimum;
    add w to S;
    for each v in V - S do
        dist[v] = min(dist[v], dist[w]+e(w, v));
    endfor
endwhile
```


Dijkstra's Algorithm (Functions (1/2))

```
void shortestPath (int v, int cost[][MAX_VERTICES],
                   int distance [], int n, short int found []) {
/* distance[i]: the shortest path from vertex v to i
   found[i]: 0 if the shortest path from vertex i has not
   been found and a 1 otherwise
   cost: the adjacency matrix */
    int i, u, w;
    for (i=0; i<n; i++) {
        found[i] = false; distance[i] = cost[v][i];
    found[v] = true: //initialization
    distance[v] = 0: //initialization
    for (i=0; i<n-1; i++) {
        u = choose(distance, n, found):
        found[u] = true;
        for (w=0; w< n; w++)
        if (!found[w])
            if (distance[u] + cost[u][w] < distance[w])</pre>
                distance[w] = distance[u]+cost[u][w];
    }
```

Dijkstra's Algorithm (Functions (2/2))

```
int choose (int distance[], int n, short int found[]) {
/* find the smallest distance not yet checked */
   int i, min, min_pos;
   min = INT_MAX;
   min_pos = -1;
   for (i=0; i<n; i++)
        if (distance[i] < min && !found[i]) {
            min = distance[i];
            min_pos = i;
        }
    return min_pos;
}</pre>
```


	The second second	Distance								
Iteration	Vertex Select.	LA	SF	DEN	CHI	BOS	NY	MIA	NO	
		[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
initial	- 63	∞	∞	∞	1500	0	250	∞	∞	
			- 48		1// 1					
						47				
						344				

	The second second	Distance								
Iteration	Vertex Select.	LA	SF	DEN	CHI	BOS	NY	MIA	NO	
	ž	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
initial		∞	∞	∞	1500	0	250	∞	∞	
1	5	∞	∞	∞	1250	0	250	1150	1650	
	in the second							For a contract of		

	Total Control	Distance								
Iteration	Vertex Select.	LA	SF	DEN	CHI	BOS	NY	MIA	NO	
	ž l	[0]	[1]	[2]	[3]	[4]	[5]	MIA [6]	[7]	
initial		∞	∞	∞	1500	0	250	∞	∞	
1	5	∞	∞	∞	1250	0	250	1150	1650	
2	6	∞	∞	∞	1250	0	250	1150	1650	
							-Marie			

		Distance								
Iteration	Vertex Select.	LA	SF	DEN	CHI	BOS	NY	MIA	NO	
	ž l	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
initial		∞	∞	∞	1500	0	250	∞	∞	
1	5	∞	∞	∞	1250	0	250	1150	1650	
2	6	∞	∞	∞	1250	0	250	1150	1650	
3	3	∞	∞	2450	1250	0	250	1150	1650	

	Section 1	Distance								
Iteration	Vertex Select.	LA	SF	DEN	CHI	BOS	NY	MIA	NO	
	ž I	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
initial		∞	∞	∞	1500	0	250	∞	∞	
1	5	∞	∞	∞	1250	0	250	1150	1650	
2	6	∞	∞	∞	1250	0	250	1150	1650	
3	3	∞	∞	2450	1250	0	250	1150	1650	
4	7	3350	∞	2450	1250	0	250	1150	1650	

	A SECTION AND ADDRESS OF THE PARTY NAMED IN	Distance								
Iteration	Vertex Select.	LA	SF	DEN	CHI	BOS	NY	MIA	NO	
	Ž I	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
initial		∞	∞	∞	1500	0	250	∞	∞	
1	5	∞	∞	∞	1250	0	250	1150	1650	
2	6	∞	∞	∞	1250	0	250	1150	1650	
3	3	∞	∞	2450	1250	0	250	1150	1650	
4	7	3350	∞	2450	1250	0	250	1150	1650	
5	2	3350	3250	2450	1250	0	250	1150	1650	

	The second second	Distance								
Iteration	Vertex Select.	LA	SF	DEN	CHI	BOS	NY	MIA	NO	
	ž l	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
initial	-	∞	∞	∞	1500	0	250	∞	∞	
1	5	∞	∞	∞	1250	0	250	1150	1650	
2	6	∞	∞	∞	1250	0	250	1150	1650	
3	3	∞	∞	2450	1250	0	250	1150	1650	
4	7	3350	∞	2450	1250	0	250	1150	1650	
5	2	3350	3250	2450	1250	0	250	1150	1650	
6	1	3350	3250	2450	1250	0	250	1150	1650	

	A SECTION	Distance									
Iteration	Vertex Select.	LA	SF	DEN	CHI	BOS	NY	MIA	NO		
	Ž	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]		
initial		∞	∞	∞	1500	0	250	∞	∞		
1	5	∞	∞	∞	1250	0	250	1150	1650		
2	6	∞	∞	∞	1250	0	250	1150	1650		
3	3	∞	∞	2450	1250	0	250	1150	1650		
4	7	3350	∞	2450	1250	0	250	1150	1650		
5	2	3350	3250	2450	1250	0	250	1150	1650		
6	1	3350	3250	2450	1250	0	250	1150	1650		
7	0	3350	3250	2450	1250	0	250	1150	1650		

Fall 2024

Outline

- Bellman-Ford Algorithm for General Weights

• Focus: Some edges of the directed graph G have negative length.

- **Focus:** Some edges of the directed graph *G* have negative length.
- The function shortestPath may NOT work!

- Focus: Some edges of the directed graph G have negative length.
- The function shortestPath may NOT work!
- For example,

• dist[1] = 7, dist[2] = 5.

Fall 2024

- Focus: Some edges of the directed graph G have negative length.
- The function shortestPath may NOT work!
- For example,

- dist[1] = 7, dist[2] = 5.
- The shortest path from 0 to 2 is: $0 \rightarrow 1 \rightarrow 2$ (length = 2).

• Focus: Some edges of the directed graph G have negative length.

Shortest Paths

- The function shortestPath may NOT work!
- For example,

- dist[1] = 7, dist[2] = 5.
- The shortest path from 0 to 2 is: $0 \rightarrow 1 \rightarrow 2$ (length = 2).
- Dijkstra's "greedy" approach does not work here.

Fall 2024

Workaround Solution: NO negative cycle is permitted!

- When negative edge lengths are permitted, we require that the graph have no cycles of negative length.
- This is necessary so as the ensure that shortest paths consist of a finite number of edges.

Observations

• When there are NO cycles of negative length, there is a shortest path between any two vertices of an n-vertex graph that has $\leq n-1$ edges on it.

Observations

- When there are NO cycles of negative length, there is a shortest path between any two vertices of an n-vertex graph that has $\leq n-1$ edges on it.
 - Otherwise, the path must repeat at least one vertex, and hence must contain a cycle.
- So, eliminating the cycles from the path results in another path with the same source and destination.
 - The length of the new path is no more than that of the original.

Dynamic Programming Approach

 $\operatorname{dist}^k[u]$: the length of a shortest path from the source v to u under the constraint that the shortest path contains $\leq k$ edges.

Dynamic Programming Approach

 $\operatorname{dist}^k[u]$: the length of a shortest path from the source v to u under the constraint that the shortest path contains $\leq k$ edges.

• Hence, $dist^{1}[u] =$

Dynamic Programming Approach

 $\operatorname{dist}^k[u]$: the length of a shortest path from the source v to u under the constraint that the shortest path contains $\leq k$ edges.

- Hence, $\operatorname{dist}^{1}[u] = \operatorname{length}[v][u]$, for $0 \le u < n$.
- The goal: Compute dist $^{n-1}[u]$ for all u.
- □ Using Dynamic Programming.

Bellman-Ford Algorithm (Sketch)

• If the shortest path from v to u with $\leq k$ edges (k > 1) has no more than k-1 edges, then $\operatorname{dist}^k[u] = \operatorname{dist}^{k-1}[u]$.

Bellman-Ford Algorithm (Sketch)

- If the shortest path from v to u with $\leq k$ edges (k > 1) has no more than k-1 edges, then $\operatorname{dist}^k[u] = \operatorname{dist}^{k-1}[u]$.
- If the shortest path from v to u with $\leq k$ edges (k > 1) has exactly k edges, there exists a vertex i such that $\operatorname{dist}^{k-1}[i] + \operatorname{length}[i][u]$ is minimum.
- The recurrence relation:

Bellman-Ford Algorithm (Sketch)

- If the shortest path from v to u with $\leq k$ edges (k > 1) has no more than k-1 edges, then $\operatorname{dist}^k[u] = \operatorname{dist}^{k-1}[u]$.
- If the shortest path from v to u with $\leq k$ edges (k > 1) has exactly k edges, there exists a vertex i such that $\operatorname{dist}^{k-1}[i] + \operatorname{length}[i][u]$ is minimum.
- The recurrence relation:

$$\mathsf{dist}^k[u] = \min\{\mathsf{dist}^{k-1}[u], \ \min_i \{\mathsf{dist}^{k-1}[i] + \mathsf{length}[i][u]\}\}.$$

Shortest paths with negative edge lengths (cost)

$$\mathsf{dist}^k[\mathit{u}] = \min\{\mathsf{dist}^{k-1}[\mathit{u}], \ \min_{\mathit{i}}\{\mathsf{dist}^{k-1}[\mathit{i}] + \mathsf{length}[\mathit{i}][\mathit{u}]\}\}.$$

		111				
k dist ^k [u]						
0	1	2	3	4	5	6
0	6	5	5	oc	oc	-x
0	3	3	5	5	4	∞
0	1	3	5	2	4	7
0	1	3	5	0	4	5
0	1	3	5	0	4	3
0	1	3	5	0	4	3
	0 0 0 0	0 6 0 3 0 1 0 1 0 1	0 1 2 0 6 5 0 3 3 0 1 3 0 1 3	0 1 2 3 0 6 5 5 0 3 3 5 0 1 3 5 0 1 3 5 0 1 3 5	0 1 2 3 4 0 6 5 5 ∞ 0 3 3 5 5 0 1 3 5 2 0 1 3 5 0	0 1 2 3 4 5 0 6 5 5 ∞ ∞ 0 3 3 5 5 4 0 1 3 5 2 4 0 1 3 5 0 4 0 1 3 5 0 4

(a) A directed graph

(b) dist^k

Bellman-Ford Algorithm (Pseudo-Code)

```
BF(int u) { // assume that the source is vertex u
   for each vertex w in V - {u}, set dist[w] = INT_MAX
    set dist[u] = 0
   for (i=0; i< n-1; i++) { // n: the number of vertices (k)
        for each edge (p,q) in the graph {
        // we can choose p with dist[p] < INT_MAX
            if (dist[p] + length[p][q] < dist[q])
                dist[q] = dist[p] + length[p][q]
   // Now the distances from u to every other vertex is found.
   // Repeat the following to find nodes in a negative cycle
   for (i=0; i< n-1; i++) {
        for each edge (p,q) in the graph {
            if (dist[p] + length[p][q] < dist[q])</pre>
                dist[q] = -INT_MAX
```


0	0
1	∞
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞
9	∞

0	0
1	5
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞
9	∞

0	0
1	5
2	25
3	∞
4	∞
5	35
6	65
7	∞
8	∞
9	∞

0	0
1	5
2	25
3	35
4	60
5	35
6	40
7	15
8	85
9	∞

0	0
1	5
2	20
3	35
4	60
5	35
6	40
7	15
8	5
9	160

0	0
1	5
2	20
3	30
4	60
5	35
6	40
7	-10
8	5
9	160

0	0
1	5
2	5
3	30
4	60
5	35
6	40
7	-10
8	-20
9	160

0	0
1	5
2	5
3	15
4	60
5	35
6	40
7	-10
8	-20
9	160

0	0
1	5
2	-10
3	15
4	60
5	35
6	40
7	-10
8	-20
9	160

0	0
1	5
2	-10
3	0
4	60
5	35
6	40
7	-10
8	-20
9	160

0	0
1	5
2	-∞
3	-∞
4	-∞
5	35
6	40
7	-10
8	-20
9	-∞
_	

Discussions

