## CSC 561: Neural Networks and Deep Learning

Logistic Regression

#### Marco Alvarez

Department of Computer Science and Statistics
University of Rhode Island

Spring 2024



# Logistic regression

# Logistic function

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$



mapping  $\mathbb{R}$  to [0,1]

continuous and differentiable

# Logistic regression

- Binary classifier
  - $\sqrt{\text{models } P(y \mid \mathbf{x}), \mathbf{x}} \in \mathbb{R}^d, y \in \{+1, -1\}$
  - a threshold (e.g.,  $\theta = 0.5$ ) may be used for a final binary classification
  - √ uses the logistic function
- · A linear classifier
  - ✓ although the "activation function" is nonlinear

4

# NN-like



# Probabilistic interpretation

$$P(y = -1 \mid \mathbf{x}; \mathbf{w}) = 1 - P(y = +1 \mid \mathbf{x}; \mathbf{w})$$
  $\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$ 

(probability of class +1) 
$$P(y = +1 \mid \mathbf{x}; \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}} = \sigma(\mathbf{w}^T \mathbf{x})$$

(probability of class -1) 
$$P(y = -1 \mid \mathbf{x}; \mathbf{w}) = \frac{1}{1 + e^{\mathbf{w}^T \mathbf{x}}} = \sigma(-\mathbf{w}^T \mathbf{x})$$

$$P(y \mid \mathbf{x}; \mathbf{w}) = \frac{1}{1 + e^{-y\mathbf{w}^T\mathbf{x}}} = \sigma(y\mathbf{w}^T\mathbf{x})$$

note that  $P(y | \mathbf{x}) > 0.5$  when  $y\mathbf{w}^T\mathbf{x} > 0$  (correct classifications)

# Linear decision boundary

$$P(y \mid \mathbf{x}; \mathbf{w}) = \frac{1}{1 + e^{-y\mathbf{w}^T\mathbf{x}}} = \frac{1}{2}$$

$$1 + e^{-y\mathbf{w}^T\mathbf{x}} = 2$$

$$e^{-y\mathbf{w}^T\mathbf{x}} = 1$$

$$\mathbf{w}^T\mathbf{x} = 0$$

Learning the parameters

## **MLE**

- Maximum likelihood estimation
  - choose parameters w that maximize the conditional **data likelihood**  $P(\mathbf{v} | X; \mathbf{w})$ , i.e., the probability of the observed values conditioned on the feature values

assumption 
$$P(\mathbf{y} \mid X; \mathbf{w}) = \prod_{i=1}^{n} P(y^{(i)} \mid \mathbf{x}^{(i)}; \mathbf{w})$$

✓ objective function:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg max}} \prod_{i=1}^{n} P(y^{(i)} \mid \mathbf{x}^{(i)}; \mathbf{w})$$

 $J(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log \left( 1 + e^{-y^{(i)} \mathbf{w}^{T} \mathbf{x}^{(i)}} \right)$ 

cross-entropy loss: no closed-form solution, but loss is convex

Applying gradient descent

### **MLE**

maximize the the likelihood 
$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \prod_{i=1}^n P(y^{(i)} \mid \mathbf{x}^{(i)}; \mathbf{w}) \xrightarrow{\text{maximize } P\left(y^{(i)} = +1 \mid \mathbf{x}^{(i)}\right) \text{ for any } \mathbf{x}^{(i)}} \text{ with a positive label, and maximize } P\left(y^{(i)} = -1 \mid \mathbf{x}^{(i)}\right) \text{ for any } \mathbf{x}^{(i)} \text{ with a positive label, and maximize } P\left(y^{(i)} = -1 \mid \mathbf{x}^{(i)}\right) \text{ for any } \mathbf{x}^{(i)} \text{ with a negative label}}$$

$$= \arg\max_{\mathbf{w}} \frac{1}{n} \log\left(\prod_{i=1}^n P(y^{(i)} \mid \mathbf{x}^{(i)}; \mathbf{w})\right)$$

$$= \arg\max_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^n \log\left(P(y^{(i)} \mid \mathbf{x}^{(i)}; \mathbf{w})\right)$$

$$= \arg\max_{\mathbf{w}} -\frac{1}{n} \sum_{i=1}^n \log\left(1 + e^{-y^{(i)}\mathbf{w}^T\mathbf{x}^{(i)}}\right)$$
minimize the negative log likelihood 
$$= \arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^n \log\left(1 + e^{-y^{(i)}\mathbf{w}^T\mathbf{x}^{(i)}}\right)$$

# Gradient descent and convex functions

- · Convex functions
  - for appropriate learning rates, GD will always find the minimum
- Non-convex functions
  - GD may find a local minimum (or inflection point)









## Show me the code

```
def __forward(self, X):
    z = X @ self.weights
    y_pred = self.__sigmoid(z)
    return y_pred

def __loss(self, X, y):
    inv = -y * (X @ self.weights)
    loss = np.log(1 + np.exp(inv)).mean()
    dw = self.__sigmoid(inv) * -y * X
    dw = np.mean(dw, axis=0, keepdims=True).T
    return loss, dw
```

# Understanding matrix form $\mathbf{y} = \mathbf{X}\mathbf{w}$ $\begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix} \approx \begin{bmatrix} \left(\mathbf{x}^{(1)}\right)^T \\ \vdots \\ \left(\mathbf{x}^{(n)}\right)^T \end{bmatrix} \cdot \begin{bmatrix} w_0 \\ \vdots \\ w_d \end{bmatrix}$

From binary to C>2 classes

Multinomial logistic regression

$$\downarrow \text{ models } P(y = c \mid \mathbf{x}; W), \mathbf{x} \in \mathbb{R}^d, y \in \{0, ..., c - 1\}$$

✓ uses the **softmax** function

 $P(y = c \mid \mathbf{x}; W) = \frac{e^{\mathbf{w}_{c}^{T}\mathbf{x}}}{\sum_{k=1}^{C} e^{\mathbf{w}_{k}^{T}\mathbf{x}}}$ 

 $W_{ extsf{C} imes(d+1)}$  is a matrix where rows are "per-class" weight vectors

# Extension to multiple classes

## One-hot encoding

|        | y |  |
|--------|---|--|
| red    | 0 |  |
| green  | 1 |  |
| blue   | 2 |  |
| blue   | 2 |  |
| green  | 1 |  |
| blue   | 2 |  |
| yellow | 3 |  |
| blue   | 2 |  |
| red    | 0 |  |
| red    | 0 |  |

| green | blue                                      | yellow                                                                                                                                |
|-------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 0     | 0                                         | 0                                                                                                                                     |
| 1     | 0                                         | 0                                                                                                                                     |
| 0     | 1                                         | 0                                                                                                                                     |
| 0     | 1                                         | 0                                                                                                                                     |
| 1     | 0                                         | 0                                                                                                                                     |
| 0     | 1                                         | 0                                                                                                                                     |
| 0     | 0                                         | 1                                                                                                                                     |
| 0     | 1                                         | 0                                                                                                                                     |
| 0     | 0                                         | 0                                                                                                                                     |
| 0     | 0                                         | 0                                                                                                                                     |
|       | 0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0 | 0     0       1     0       0     1       0     1       1     0       0     1       0     0       0     1       0     0       0     0 |

## 

## Multinomial logistic regression

• Predict the class with the highest probability

$$\hat{y} = \underset{c}{\text{arg max}} P(y = c \mid \mathbf{x}; \mathbf{W})$$

- How to learn the parameters?
  - vuse MLE to derive a loss function ... then apply gradient descent

$$\mathbf{W}^* = \arg\max_{\mathbf{W}} \frac{1}{n} \prod_{i=1}^{n} P(y^{(i)} \mid \mathbf{x}^{(i)}; \mathbf{W})$$

## **MLE**

$$\mathbf{W}^* = \arg\max_{\mathbf{W}} \frac{1}{n} \prod_{i=1}^n P(y^{(i)} \mid \mathbf{x}^{(i)}; \mathbf{W})$$

$$= \arg\max_{\mathbf{W}} \frac{1}{n} \prod_{i=1}^n \prod_{c=1}^C P\left(y^{(i)} = c \mid \mathbf{x}^{(i)}; \mathbf{W}\right)^{t_{i,c}} \xrightarrow{\text{Consider a matrix } T_{n,c}C \text{ where every row is a one-hot encoding of the target variable}}$$

$$= \arg\max_{\mathbf{W}} \frac{1}{n} \sum_{i=1}^n \sum_{c=1}^C t_{i,c} \log\left(P(y^{(i)} = c \mid \mathbf{x}^{(i)}; \mathbf{W})\right)$$

$$= \arg\min_{\mathbf{W}} -\frac{1}{n} \sum_{i=1}^n \sum_{c=1}^C t_{i,c} \log\left(P(y^{(i)} = c \mid \mathbf{x}^{(i)}; \mathbf{W})\right)$$

$$= \arg\min_{\mathbf{W}} \frac{1}{n} \sum_{i=1}^n \sum_{c=1}^C -t_{i,c} \log\left(\frac{e^{\mathbf{w}_c \mathbf{x}^{(i)}}}{\sum_{k=1}^C e^{\mathbf{w}_k \mathbf{x}^{(i)}}}\right) \xrightarrow{\text{per instance cross-entropy loss}}$$





# Regularization

# Regularization

- Adding a **penalty** to the weights to control the complexity of the model
  - ✓ usually penalizing higher weights (except intercept)
  - ✓ results in simpler or more sparse solutions
- Impact of regularization can be controlled by a hyperparameter (*lambda*)

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} l\left(h_{w}, x_{i}, y_{i}\right) + \lambda R(\mathbf{w})$$
better predictions control overfitting

24

## Regularization prefers simpler models





# Regularization

• L1

- rends to to drive weights to zero (sparse solution) effectively performing feature selection, which can be beneficial for interpretability and reducing model complexity
- less sensitive to outliers compared to L2 regularization
- $\checkmark$  absolute value function used in L1 regularization is not smooth, making the optimization process slightly more complex compared to L2

$$R(W) = \sum |W_{ij}|$$

· L2

- encourages smaller coefficients by penalizing large ones more heavily
- by shrinking weights, L2 regularization can improve the stability of the model, making it less sensitive to small changes in the data
- can be more sensitive to outliers compared to L1 regularization
- most common form of regularization (superior performance)

$$R(W) = \sum W_{ij}^2$$

- · Other forms of regularization in neural networks
  - elastic net, dropout, batch normalization, early stopping, data augmentation

The importance of using differentiable functions

## Differentiable activation functions

- · Continuous activation functions
  - √ sigmoid, tanh, RELU, etc.
  - √ differentiable (almost) everywhere



$$\frac{d\hat{y}}{dz} = \sigma'(z)$$

$$\frac{d\hat{y}}{dw_i} = \frac{d\hat{y}}{dz} \frac{dz}{dw_i} = \sigma'(z)x_i$$

$$\frac{d\hat{y}}{dx_i} = \frac{d\hat{y}}{dz} \frac{dz}{dx_i} = \sigma'(z)w_i$$

using the **chain rule** we can compute the change in the output for small changes to the input/weights

# A few examples



ReLU is a good default choice for most networks

https://medium.com/analytics-vidhya/understanding-activation-functions-data-science-for-the-rest-of-us-b652048a064f

Differentiable loss functions

Threshold activation

shifting threshold does not change classification error





· Continuous loss and activation

can quantify a loss between continuous output and the desired target

- the loss changes as the weights change, even if the classification error remains the same



