Instituto Tecnológico Buenos Aires

Matemática I - 93.17

Resumen Práctico

Alejandro Nahuel Heir aheir@itba.edu.ar

Resumen

Usar el presente material a modo de refuerzo y/o repaso de los contenidos; no contiene ninguna justificación teórica profunda. Fue realizado principalmente a modo de práctica para con LAT_EX. Cualquier sugerencia, correción y/o similar, es bienvenida.

$\acute{\mathbf{I}}\mathbf{ndice}$

Ι	Primer Parcial	5
1.	Límites	5
	1.1. Cambio de variable	5
	1.2. Cero por acotada	5
	1.3. Lema del Sandwich	5
	1.4. Sobre límites laterales	5
	1.5. Límites importantes	5
	1.5.1. Trigonométricos	5
	1.5.2. Relativos a e	6
	1.6. Sobre límites infinitos	6
2.	Continuidad	6
	2.1. Definición	6
	2.2. Propiedades	6
	2.3. Funciones continuas en todo su dominio	6
	2.4. Composición	7
	2.5. Discontinuidades	7
	2.5.1. Evitables	7
	2.5.2. No evitables o esenciales	7
	2.6. Teorema de Bolzano - T.B	8
	2.6.1. Uso	8
	2.7. Corolario del Teorema de Bolzano - C.T.B	8
	2.7.1. Uso	8
	2.8. Teorema del Valor Intermedio - T.V.I	8
	2.9. Teorema para evaluar sobreyectividad	9
3.	Derivadas	9
	3.1. Ecuaciones de rectas	9
	3.1.1. Recta tangente	9
	3.1.2. Recta normal	9
	3.2. Derivada por definición	9
	3.3. Teorema en relación a la continuidad	9
	3.4. Reglas de derivación	10
	3.5. Regla de la cadena	10
	3.6. Derivadas notables	10
	3.7. Sobre funciones partidas	10
	3.8. Teorema de la Función Inversa	11
	3.9. Aproximación lineal de un función	11
	3.10. Aproximación diferencial de una función	11
4.	Teorema del Valor Medio	11
1.	4.1. Teorema del Valor Intermedio - T.V.I	11
	4.2. Teorema de Fermat	11
	4.3. Teorema de Weierstrass - T.W	12
	4.4. Teorema de Rolle - T.R	12
	T.T. Icorema de Itorie - I.It	14
II	Segundo Parcial	13
Ap	péndice A. Trigonometría 1	13

	Índice	de	figuras
--	--------	----	---------

,				
T-2	1:	4~	cuad	1
1111	116.6	α	CHAC	11115

Parte I

Primer Parcial

1. Limites

1.1. Cambio de variable

Sean $\lim_{y\to b} g(y) = L, \lim_{x\to a} f(x) = b, f(x) \neq b$ en un entorno reducido de a, entonces

$$\lim_{x \to a} g(f(x)) = \lim_{y \to b} g(y) = L \tag{1}$$

1.2. Cero por acotada

Sean $\lim_{x\to a} g(x) = 0, \nexists \lim_{x\to a} f(x)$, con f acotada en un entorno reducido de a, entonces

$$\lim_{x \to a} \overbrace{f(x)}^{acotada} g(x) = 0 \tag{2}$$

1.3. Lema del Sandwich

Sean $f(x) \leq g(x) \leq h(x), \forall x \in E^*_{(a,r)} \text{con } r > 0$. Si $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, entonces

$$\lim_{x \to a} g(x) = L \tag{3}$$

Observación

Sea $\lim_{x\to a} |f(x)| = 0$, y sabiendo que $-|f(x)| \le f(x) \le |f(x)|$, se deduce por Lema del Sandwich que

$$\lim_{x \to a} |f(x)| = 0 \Rightarrow \lim_{x \to a} f(x) = 0 \tag{4}$$

1.4. Sobre límites laterales

$$\sharp \lim_{x \to a} f(x) \text{ si } \begin{cases}
\lim_{x \to a^{+}} f(x) = L_{1} \\
\lim_{x \to a^{-}} f(x) = L_{2}
\end{cases}$$

$$L_{1} \neq L_{2}$$

$$\sharp \lim_{x \to a} f(x) \text{ si } \begin{cases}
\lim_{x \to a^{+}} f(x) = L \\
\sharp \lim_{x \to a^{-}} f(x)
\end{cases}$$

$$\therefore \lim_{x \to a} f(x) = L \Leftrightarrow \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \tag{5}$$

1.5. Límites importantes

1.5.1. Trigonométricos

a.
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 c. $\lim_{x\to 0} \frac{\tan x}{x} = 1$ e. $\lim_{x\to 0} \frac{\arctan x}{x} = 1$ b. $\lim_{x\to 0} \frac{x}{\sin x} = 1$ d. $\lim_{x\to 0} \frac{x}{\tan x} = 1$

1.5.2. Relativos a e

Igualdad importante

$$f(x)^{g(x)} = e^{g(x)\ln(f(x))}$$
 (6)

a.
$$\lim_{x \to a} \left(1 + \frac{1}{f(x)} \right)^{f(x)} = e$$
, $\sin \lim_{x \to a} f(x) = \infty$

b.
$$\lim_{x \to a} (1 + f(x))^{\frac{1}{f(x)}} = e$$
, $\sin \lim_{x \to a} f(x) = 0$

c.
$$\lim_{x \to a} \frac{\ln(1 + f(x))}{f(x)} = 1$$
, $\sin \lim_{x \to a} f(x) = 0$

d.
$$\lim_{x \to a} \frac{e^{f(x)} - 1}{f(x)} = 1$$
, $\sin \lim_{x \to a} f(x) = 0$

1.6. Sobre límites infinitos

a.
$$\lim_{x \to 0} \frac{k}{x} = \infty$$
, con $k \in \mathbb{R} - \{0\}$

c.
$$\lim_{x \to \infty} kx = \infty$$
, $\operatorname{con} k \in \mathbb{R} - \{0\}$

b.
$$\lim_{x \to \infty} \frac{k}{x} = 0$$
, $\cos k \in \mathbb{R}$

d.
$$\lim_{x \to \infty} k + x = \infty$$
, con $k \in \mathbb{R}$

2. Continuidad

2.1. Definición

f es continua en $a \in \mathbb{R}$ si:

- $a \in Dom(f)$
- $\exists \lim_{x \to a} f(x)$
- $\lim_{x\to a} f(x) = f(a)$

2.2. Propiedades

Sean f y g continuas en $a \in \mathbb{R}$:

- cf es continua en $a, \forall c \in \mathbb{R}$
- $f \pm g$ es continua en a

- \bullet fg es continua en a
- $\frac{f}{g}$ es continua en a, si $g(a) \neq 0$

2.3. Funciones continuas en todo su dominio

- Polinómicas
- Trigonométricas (directas o inversas)
- Exponenciales

- Logarítmicas
- Raíces (excepto $\sqrt[n]{x}$ en x = 0 para n pares)

2.4. Composición

Si f es continua en x = a, y g(z) es continua en z = f(a), entonces $h(x) = (g \circ f)(x)$ es continua en a.

2.5. Discontinuidades

f es discontinua en $a \in \mathbb{R}$ si se cumple <u>al menos una</u> de las siguientes condiciones:

- $a \notin Dom(f)$
- $\nexists \lim_{x\to a} f(x)$
- $\lim_{x\to a} f(x) \neq f(a)$

2.5.1. Evitables

 $a \in \mathbb{R}$ es discontinuidad evitable si se cumple simultáneamente

•
$$f(a) = L_1 \in \mathbb{R}$$

$$\exists \lim_{x \to a} f(x) = L_2 \in \mathbb{R} \qquad \qquad L_1 \neq L_2 \neq \infty$$

$$L_1 \neq L_2 \neq \infty$$

Si se redefine f(x) en x = a como $f(a) = L_2$, f pasa a ser continua en a.

2.5.2. No evitables o esenciales

Tipo salto

 $a \in \mathbb{R}$ es discontinuidad esencial tipo salto si

$$\lim_{x \to a^{-}} f(x) = L_1 \neq \lim_{x \to a^{+}} f(x) = L_2, \quad L_1, L_2 \in \mathbb{R}$$

Tipo asíntota (vertical)

 $a \in \mathbb{R}$ es discontinuidad esencial tipo asíntota si se cumple alguna de las siguientes igualdades

$$\lim_{x \to a^{-}} f(x) = \infty \qquad \text{o} \qquad \lim_{x \to a^{+}} f(x) = \infty$$

"De otro tipo"

 $a \in \mathbb{R}$ es discontinuidad esencial de otro tipo si no es ninguna de las anteriores. Por ejemplo, $a = 0, f(a), \text{ con } f(x) = \sin \frac{1}{x}$

Figura 1: Gráfico de la función $\sin \frac{1}{x}$

2.6. Teorema de Bolzano - T.B.

Si f es continua en [a, b], y f(a)f(b) < 0 (tienen signos opuestos), entonces

$$\exists c \in (a,b)/f(c) = 0 \ (al \ menos \ una \ raiz) \tag{7}$$

Si f es continua en un intervalo abierto (a, b), se debe cumplir que $\lim_{x\to a^+} f(x) = f(a)$, y que $\lim_{x\to b^-} f(x) = f(b)$.

2.6.1. Uso

Hallar raíces mínimas de una función

Dada una f(x) igualada a 0, continua en un intervalo dado, hallar por tanteo dos valores de x (que pertenezcan al intervalo donde f es continua) para los cuales f(x) tenga distinto signo. Luego, por T.B., esa función tendrá al menos una raíz entre esos dos valores de x elegidos.

Cabe resaltar que esto puede emplearse también para conocer soluciones mínimas de una ecuación igualada a 0.

2.7. Corolario del Teorema de Bolzano - C.T.B.

Sea f continua en (a, b), con $f(x) \neq 0 \ \forall x \in (a, b)$, entonces f mantiene su signo en (a, b). Es decir:

$$f(x) > 0 \ \forall x \in (a,b) \qquad 6 \qquad f(x) < 0 \ \forall x \in (a,b) \tag{8}$$

2.7.1. Uso

Hallar conjuntos de positividad y negatividad de una función

Dada una función, y conociendo su dominio y conjunto de ceros, se puede "partir" el dominio de la función en intervalos donde la misma es continua y no nula (esto último sabiendo el conjunto de ceros). A lo largo de cada intervalo, si la función es continua en él, mantendrá su signo; basta tomar una x cualquiera en ese intervalo y evaluarla en la función para saber el signo en todo ese intervalo.

2.8. Teorema del Valor Intermedio - T.V.I.

Sea f continua en [a, b], f(a) = c, f(b) = d, $c \neq d$, entonces:

a.
$$c < d \Rightarrow [c, d] \subset f([a, b])$$

b.
$$d < c \Rightarrow [d, c] \subset f([a, b])$$

Generalización

Sea f continua en (a,b), $\lim_{x\to a^+} f(x) = c$, $\lim_{x\to b^-} f(x) = d$, entonces:

a.
$$c < d \Rightarrow [c, d] \subset f([a, b])$$

b.
$$d < c \Rightarrow [d, c] \subset f([a, b])$$

2.9. Teorema para evaluar sobreyectividad

Sea f continua en (a,b), donde a podría ser $-\infty$ y $b+\infty$. Si

$$\lim_{x \to a^+} f(x) = -\infty \quad \wedge \quad \lim_{x \to b^-} f(x) = +\infty$$

0

$$\lim_{x \to a^+} f(x) = +\infty \quad \wedge \quad \lim_{x \to b^-} f(x) = -\infty$$

entonces

$$f((a,b)) = \mathbb{R}, : f \text{ es sobreyectiva}$$

3. Derivadas

3.1. Ecuaciones de rectas

Sea $x_0 \in \mathbb{R}$ el punto en el cual la recta es tangente o normal a la función f.

3.1.1. Recta tangente

$$r_T(x) = f(x_0) + f'(x_0)(x - x_0)$$
(9)

3.1.2. Recta normal

$$r_N(x) = f(x_0) + \left(\frac{-1}{f'(x_0)}\right)(x - x_0) \tag{10}$$

3.2. Derivada por definición

La derivada de f en x_0 es, si existe, el valor del límite del siguiente cociente incremental:

$$f'(x_0) = \lim_{x \to x_0} \frac{\Delta f}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$= \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
(11)

3.3. Teorema en relación a la continuidad

- Si $\exists f'(x_0) \Rightarrow f$ es continua en x_0
- Si f es discontinua en $x_0 \Rightarrow \nexists f'(x_0)$

f continua en x_0 NO necesariamente implica $\exists f'(x_0)$. Por ejemplo:

$$f(x) = |x|$$
 es continua en \mathbb{R}

$$\lim_{x \to 0} \frac{|x| - 0}{x} = \lim_{x \to 0} sg(x), \quad \text{pero} \quad \nexists \lim_{x \to 0} sg(x)$$

$$|x|$$
 NO es derivable en $x_0 = 0$

3.4. Reglas de derivación

Sean f y g derivables en $x_0 \in \mathbb{R}$:

1.
$$(cf)'(x_0) = cf'(x_0), \quad \forall c \in \mathbb{R}$$

2.
$$(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0)$$

3.
$$(fg)' = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

4.
$$\left(\frac{f}{g}\right)' = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}, \quad g(x_0) \neq 0$$

3.5. Regla de la cadena

Sea f(x) derivable en x_0 , y g(y) derivable en y_0 , entonces $h(x) = (g \circ f)(x)$ es derivable en x_0 , y:

$$h'(x_0) = (g \circ f)'(x) = g'(f(x_0)) \cdot f'(x_0)$$
(12)

3.6. Derivadas notables

f(x)	f'(x)	f(x)	f'(x)
$c \in \mathbb{R}$	0	$\cosh x$	$\sinh x$
x	1	$\sinh x$	$\cosh x$
a^x	$\ln(a)a^x, a > 0$	$\tanh x$	$\frac{1}{\cosh^2 x}$
$\ln x$	$\frac{1}{x}$	$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}, x \in (-1,1)$
$\log_a x$	$\frac{1}{x \ln a}$	$\arccos x$	$\frac{1}{\sqrt{1-x^2}}, x \in (-1,1)$ $\frac{-1}{\sqrt{1-x^2}}, x \in (-1,1)$
x	$sg(x), x \neq 0$	$\arctan x$	$\frac{1}{1+x^2}, x \in \ \mathbb{R}$
x^n	$nx^{n-1}, x > 0, \ n \in \mathbb{R}$	$\arcsin x$	$\frac{1}{\sqrt{1+x^2}}, x \in \mathbb{R}$
$\sin x$	$\cos x$	$\operatorname{arccosh} x$	$\frac{1}{\sqrt{x^2 - 1}}, x > 1$
$\cos x$	$\sin x$	$\operatorname{arctanh} x$	$\frac{1}{x^2 - 1}, x \in (-1, 1)$
$\tan x$	$\frac{1}{\cos^2 x}$		

Cuadro 1: Derivadas notables

3.7. Sobre funciones partidas

Siempre se debe analizar por definición la continuidad y derivabilidad en los valores de x donde la función se parte.

3.8. Teorema de la Función Inversa

Sea $f:(a,b)\to\mathbb{R}$ continua e inyectiva, entonces:

1° Im(f) es un intervalo (c,d), y $\exists f^{-1}:(c,d)\to(a,b)$, la cual es continua.

2° Si f es derivable en $x_0 \in (a, b)$, y $f'(x_0) \neq 0$, entonces f' es derivable en $y_0 = f(x_0)$, y

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$$
(13)

3.9. Aproximación lineal de un función

$$L(x)=f(x_0)+f'(x_0)(x-x_0), \qquad \text{aproximación lineal de f en x_0}$$

$$f(x)\simeq L(x) \text{ cuando } x-x_0\ll 1$$

3.10. Aproximación diferencial de una función

$$df = f'(x_0) \cdot \Delta x$$
, diferencial de f en x_0 (15)
$$\Delta f \simeq df \text{ cuando } \Delta x \ll 1$$

4. Teorema del Valor Medio

4.1. Teorema del Valor Intermedio - T.V.I.

Sea f continua en [a, b], f(a) = c, f(b) = d, $c \neq d$:

a.
$$c < d \Rightarrow [c, d] \subset f([a, b])$$

b.
$$d < c \Rightarrow [d, c] \subset f([a, b])$$

Generalización

Sea f continua en (a,b), $\lim_{x\to a^+} f(x) = c \neq \lim_{x\to b^-} f(x) = d$, entonces:

a.
$$c < d \Rightarrow [c, d] \subset f([a, b])$$

b.
$$d < c \Rightarrow [d, c] \subset f([a, b])$$

4.2. Teorema de Fermat

Sea $f:(a,b)\to\mathbb{R}/f$ alcanza un extremo en un $x_0\in(a,b)$, entonces

$$\nexists f'(x_0) \qquad \acute{0} \qquad f'(x_0) = 0 \tag{16}$$

4.3. Teorema de Weierstrass - T.W.

Sea $f:[a,b]\to\mathbb{R}$ continua, entonces f alcanza un M (máximo) y m (mínimo) en [a,b]. Además, por T.V.I.:

$$Im(f) = [m, M]$$

$$m \le f(x) \le M, \ \forall x \in [a, b]$$

Si $m = M \Rightarrow f(x)$ es constante en [a, b]

4.4. Teorema de Rolle - T.R.

Hipótesis

- $f:[a,b] \to \mathbb{R}$ continua; derivable en (a,b).
- $\bullet \ f(a) = f(b)$

 \mathbf{Tesis}

$$\exists c \in (a,b)/f'(c) = 0$$
, se afirma al menos unas raiz de f' (17)

Parte II Segundo Parcial

A. Trigonometría 1

B. Trigonometría 2