FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL)

Alessandro Artale

Faculty of Computer Science – Free University of Bolzano

artale@inf.unibz.it http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of: M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R.Sebastiani.

Summary of Lecture IV

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

Computation Tree logic Vs. LTL

LTL implicitly quantifies universally over paths.

```
\langle \mathcal{KM}, s \rangle \models \phi iff for every path \pi starting at s \langle \mathcal{KM}, \pi \rangle \models \phi
```

- Properties that assert the existence of a path cannot be expressed. In particular, properties which mix existential and universal path quantifiers cannot be expressed.
- The Computation Tree Logic, CTL, solves these problems!
 - CTL explicitly introduces path quantifiers!
 - CTL is the natural temporal logic interpreted over Branching Time Structures.

CTL at a glance

- CTL is evaluated over branching-time structures (Trees).
- CTL explicitly introduces path quantifiers:

All Paths: P

Exists a Path: .

- Every temporal operator $(\Box, \diamondsuit, \bigcirc, u)$ preceded by a path quantifier $(P \text{ or } \diamondsuit)$.
- Universal modalities: ℙ◊, ℙ□, ℙ□, ℙ□
 The temporal formula is true in all the paths starting in the current state.
- Existential modalities: ���,��□,��□,��ʊ
 The temporal formula is true in some path starting in the current state.

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

CTL: Syntax

Countable set Σ of *atomic propositions*: p,q,... the set FORM of formulas is:

$$\phi, \psi \rightarrow p \mid \top \mid \bot \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid$$

$$\mathbb{P} \bigcirc \phi \mid \mathbb{P} \square \phi \mid \mathbb{P} \diamondsuit \phi \mid \mathbb{P} (\phi \mathcal{U} \psi)$$

$$\diamondsuit \bigcirc \phi \mid \diamondsuit \square \phi \mid \diamondsuit \Diamond \phi \mid \diamondsuit (\phi u \psi)$$

CTL: Semantics

We interpret our CTL temporal formulas over Kripke Models linearized as trees.

- Universal modalities ($\mathbb{P}\diamondsuit$, \mathbb{P} \square , \mathbb{P} \bigcirc , \mathbb{P} u): the temporal formula is true in **all** the paths starting in the current state.
- Existential modalities $(\diamondsuit\diamondsuit,\diamondsuit\Box,\diamondsuit\bigcirc,\diamondsuit\upsilon)$: the temporal formula is true in **some** path starting in the current state.

CTL: Semantics (Cont.)

Let Σ be a set of atomic propositions. We interpret our CTL temporal formulas over Kripke Models:

$$\mathcal{KM} = \langle S, I, R, \Sigma, L \rangle$$

The semantics of a temporal formula is provided by the *satisfaction* relation:

$$\models$$
: $(\mathcal{KM} \times S \times FORM) \rightarrow \{true, false\}$

CTL Semantics: The Propositional Aspect

We start by defining when an atomic proposition is true at a state/time " s_i "

$$\mathcal{KM}, s_i \models p$$
 iff $p \in L(s_i)$ (for $p \in \Sigma$)

The semantics for the classical operators is as expected:

$$\mathcal{KM}, s_i \models \neg \varphi$$
 iff $\mathcal{KM}, s_i \not\models \varphi$
 $\mathcal{KM}, s_i \models \varphi \land \psi$ iff $\mathcal{KM}, s_i \models \varphi$ and $\mathcal{KM}, s_i \models \psi$
 $\mathcal{KM}, s_i \models \varphi \lor \psi$ iff $\mathcal{KM}, s_i \models \varphi$ or $\mathcal{KM}, s_i \models \psi$
 $\mathcal{KM}, s_i \models \varphi \Rightarrow \psi$ iff if $\mathcal{KM}, s_i \models \varphi$ then $\mathcal{KM}, s_i \models \psi$
 $\mathcal{KM}, s_i \models \top$
 $\mathcal{KM}, s_i \not\models \bot$

CTL Semantics: The Temporal Aspect

Temporal operators have the following semantics where $\pi = (s_i, s_{i+1}, ...)$ is a generic path outgoing from state $s_i \text{in } \mathcal{KM}$.

$$\mathcal{K}\mathcal{M}, s_{i} \models \mathbb{P} \bigcirc \varphi \qquad \text{iff} \quad \forall \pi = (s_{i}, s_{i+1}, \dots) \quad \mathcal{K}\mathcal{M}, s_{i+1} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models \mathbb{P} \bigcirc \varphi \qquad \text{iff} \quad \exists \pi = (s_{i}, s_{i+1}, \dots) \quad \mathcal{K}\mathcal{M}, s_{i+1} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models \mathbb{P} \bigcirc \varphi \qquad \text{iff} \quad \forall \pi = (s_{i}, s_{i+1}, \dots) \quad \forall j \geq i.\mathcal{K}\mathcal{M}, s_{j} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models \mathbb{P} \bigcirc \varphi \qquad \text{iff} \quad \exists \pi = (s_{i}, s_{i+1}, \dots) \quad \forall j \geq i.\mathcal{K}\mathcal{M}, s_{j} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models \mathbb{P} \Diamond \varphi \qquad \text{iff} \quad \forall \pi = (s_{i}, s_{i+1}, \dots) \quad \exists j \geq i.\mathcal{K}\mathcal{M}, s_{j} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models \mathbb{P} \Diamond \varphi \qquad \text{iff} \quad \exists \pi = (s_{i}, s_{i+1}, \dots) \quad \exists j \geq i.\mathcal{K}\mathcal{M}, s_{j} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models \mathbb{P} (\varphi \mathcal{U} \psi) \quad \text{iff} \quad \forall \pi = (s_{i}, s_{i+1}, \dots) \quad \exists j \geq i.\mathcal{K}\mathcal{M}, s_{j} \models \psi \text{ and}$$

$$\forall i \leq k < j : \mathcal{M}, s_{k} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models \mathbb{P} (\varphi \mathcal{U} \psi) \quad \text{iff} \quad \exists \pi = (s_{i}, s_{i+1}, \dots) \quad \exists j \geq i.\mathcal{K}\mathcal{M}, s_{j} \models \psi \text{ and}$$

$$\forall i \leq k < j : \mathcal{M}, s_{k} \models \varphi$$

$$\mathcal{K}\mathcal{M}, s_{i} \models \mathbb{P} (\varphi \mathcal{U} \psi) \quad \text{iff} \quad \exists \pi = (s_{i}, s_{i+1}, \dots) \quad \exists j \geq i.\mathcal{K}\mathcal{M}, s_{j} \models \psi \text{ and}$$

$$\forall i \leq k < j : \mathcal{K}\mathcal{M}, s_{k} \models \varphi$$

CTL Semantics: Intuitions

CTL is given by the standard boolean logic enhanced with temporal operators.

- > "Necessarily Next". $\mathbb{P} \bigcirc \varphi$ is true in s_t iff φ is true in every successor state s_{t+1}
- > "Possibly Next". $\diamondsuit \bigcirc \varphi$ is true in s_t iff φ is true in one successor state s_{t+1}
- > "Necessarily in the future" (or "Inevitably"). $\mathbb{P} \diamondsuit \varphi$ is true in s_t iff φ is inevitably true in some $s_{t'}$ with $t' \ge t$
- > "Possibly in the future" (or "Possibly"). $\diamondsuit \diamondsuit \phi$ is true in s_t iff ϕ may be true in some $s_{t'}$ with $t' \ge t$

CTL Semantics: Intuitions (Cont.)

- > "Globally" (or "always"). $\mathbb{P} \square \varphi$ is true in s_t iff φ is true in all $s_{t'}$ with $t' \ge t$
- > "Possibly henceforth". $\diamondsuit \Box \varphi$ is true in s_t iff φ is possibly true henceforth
- > "Necessarily Until". $\mathbb{P}\left(\varphi \mathcal{U} \psi\right)$ is true in s_t iff necessarily φ holds until ψ holds.
- > "Possibly Until". \diamondsuit (φ u ψ) is true in s_t iff possibly φ holds until ψ holds.

CTL Alternative Notation

Alternative notations are used for temporal operators.

```
ho 
ho 
ho 
ho 
ho there Exists a path

ho 
ho 
ho in All paths

ho 
ho 
ho 
ho sometime in the Future

ho 
ho 
ho Globally in the future

ho 
ho
```

CTL Semantics: Intuitions (Cont.)

A Complete Set of CTL Operators

All CTL operators can be expressed via: $\diamondsuit \bigcirc, \diamondsuit \square, \diamondsuit u$

•
$$\diamondsuit \diamondsuit \phi \equiv \diamondsuit (\top u \phi)$$

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

Safety Properties

Safety:

"something bad will not happen"

Typical examples:

$$\square \neg (reactor_temp > 1000)$$

$$\square \neg (one_way \land \square \bigcirc other_way)$$

$$\mathbb{P} \ \Box \neg ((x=0) \land \mathbb{P} \ \bigcirc \mathbb{P} \ \bigcirc \mathbb{P} \ \bigcirc (y=z/x))$$

and so on.....

Usually:
□ □¬....

Liveness Properties

Liveness:

"something good will happen"

Typical examples:

$$\mathbb{P} \diamondsuit rich$$

$$\mathbb{P} \diamondsuit (x > 5)$$

$$\mathbb{P} \left[(start \Rightarrow \mathbb{P} \lozenge terminate) \right]$$

and so on.....

Usually: ₽♦...

Fairness Properties

Often only really useful when scheduling processes, responding to messages, etc.

Fairness:

"something is successful/allocated infinitely often"

Typical example:

$$\mathbb{P} \left[\left(\mathbb{P} \left\langle \right\rangle enabled \right) \right]$$

Usually: P □ P♦...

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

The CTL Model Checking Problem

The CTL Model Checking Problem is formulated as:

$$\mathcal{KM} \models \emptyset$$

Check if \mathcal{KM} , $s_0 \models \phi$, for **every initial state**, s_0 , of the Kripke structure \mathcal{KM} .

Example 1: Mutual Exclusion (Safety)

Example 1: Mutual Exclusion (Safety)

YES: There is no reachable state in which $(C_1 \wedge C_2)$ holds! (Same as the $\Box \neg (C_1 \wedge C_2)$ in LTL.)

Example 2: Liveness

Example 2: Liveness

YES: every path starting from each state where T_1 holds passes through a state where C_1 holds.

(Same as $\Box(T_1 \Rightarrow \diamondsuit C_1)$ in LTL)

Example 3: Fairness

Example 3: Fairness

NO: e.g., in the initial state, there is the blue cyclic path in which C_1 never holds! (Same as $\Box \diamondsuit C_1$ in LTL)

Example 4: Non-Blocking

Example 4: Non-Blocking

YES: from each state where N_1 holds there is a path leading to a state where T_1 holds. (No corresponding LTL formulas)

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

LTL Vs. CTL: Expressiveness

- Many CTL formulas cannot be expressed in LTL (e.g., those containing paths quantified existentially)
 - E.g., $\mathbb{P} \left[(N_1 \Rightarrow \diamondsuit \diamondsuit T_1) \right]$
- > Many LTL formulas cannot be expressed in CTL E.g., $\square \diamondsuit T_1 \Rightarrow \square \diamondsuit C_1$ (Strong Fairness in LTL) i.e, formulas that select a range of paths with a property

$$(\diamondsuit p \Rightarrow \diamondsuit q \text{ Vs. } \mathbb{P} \square (p \Rightarrow \mathbb{P} \diamondsuit q))$$

- Some formluas can be expressed both in LTL and in CTL (typically LTL formulas with operators of nesting depth 1)
 - E.g., $\square \neg (C_1 \land C_2)$, $\diamondsuit C_1$, $\square (T_1 \Rightarrow \diamondsuit C_1)$, $\square \diamondsuit C_1$

LTL Vs. CTL: Expressiveness (Cont.)

CTL and LTL have incomparable expressive power.

The choice between LTL and CTL depends on the application and the personal preferences.

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

The Computation Tree Logic CTL*

- CTL* is a logic that combines the expressive power of LTL and CTL.
- Temporal operators can be applied without any constraints.
 - P (φ ν φ φ).
 Along all paths, φ is true in the next state or the next two steps.
 - \diamondsuit (\square \diamondsuit φ). There is a path along which φ is infinitely often true.

CTL*: Syntax

Countable set Σ of atomic propositions: p, q, \ldots we distinguish between *States Formulas* (evaluated on states):

$$\begin{array}{ccc} \phi, \psi & \rightarrow & p \mid \top \mid \bot \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid \\ & & & & \\ \hline \mathbb{P} \alpha \mid \diamondsuit \alpha \end{array}$$

and *Path Formulas* (evaluated on paths):

The set of CTL* formulas FORM is the set of state formulas.

CTL* Semantics: State Formulas

We start by defining when an atomic proposition is true at a state " s_0 "

$$\mathcal{KM}, s_0 \models p$$
 iff $p \in L(s_0)$ (for $p \in \Sigma$)

The semantics for *State Formulas* is the following where $\pi = (s_0, s_1, ...)$ is a generic path outgoing from state s_0 :

$$\mathcal{K}\mathcal{M}, s_0 \models \neg \varphi$$
 iff $\mathcal{K}\mathcal{M}, s_0 \not\models \varphi$
 $\mathcal{K}\mathcal{M}, s_0 \models \varphi \land \psi$ iff $\mathcal{K}\mathcal{M}, s_0 \models \varphi$ and $\mathcal{K}\mathcal{M}, s_0 \models \psi$
 $\mathcal{K}\mathcal{M}, s_0 \models \varphi \lor \psi$ iff $\mathcal{K}\mathcal{M}, s_0 \models \varphi$ or $\mathcal{K}\mathcal{M}, s_0 \models \psi$
 $\mathcal{K}\mathcal{M}, s_0 \models \varphi \land \alpha$ iff $\exists \pi = (s_0, s_1, \ldots)$ such that $\mathcal{K}\mathcal{M}, \pi \models \alpha$
 $\mathcal{K}\mathcal{M}, s_0 \models \varphi \land \alpha$ iff $\forall \pi = (s_0, s_1, \ldots)$ then $\mathcal{K}\mathcal{M}, \pi \models \alpha$

CTL* Semantics: Path Formulas

The semantics for *Path Formulas* is the following where $\pi = (s_0, s_1, ...)$ is a generic path outgoing from state s_0 and π^i denotes the suffix path $(s_i, s_{i+1}, ...)$:

$$\mathcal{K}\mathcal{M}, \pi \models \varphi$$
 iff $\mathcal{K}\mathcal{M}, s_0 \models \varphi$
 $\mathcal{K}\mathcal{M}, \pi \models \neg \alpha$ iff $\mathcal{K}\mathcal{M}, \pi \not\models \alpha$
 $\mathcal{K}\mathcal{M}, \pi \models \alpha \land \beta$ iff $\mathcal{K}\mathcal{M}, \pi \models \alpha$ and $\mathcal{K}\mathcal{M}, \pi \models \beta$
 $\mathcal{K}\mathcal{M}, \pi \models \alpha \lor \beta$ iff $\mathcal{K}\mathcal{M}, \pi \models \alpha$ or $\mathcal{K}\mathcal{M}, \pi \models \beta$
 $\mathcal{K}\mathcal{M}, \pi \models \Diamond \alpha$ iff $\exists i \geq 0$ such that $\mathcal{K}\mathcal{M}, \pi^i \models \alpha$
 $\mathcal{K}\mathcal{M}, \pi \models \Box \alpha$ iff $\forall i \geq 0$ then $\mathcal{K}\mathcal{M}, \pi^i \models \alpha$
 $\mathcal{K}\mathcal{M}, \pi \models \Box \alpha$ iff $\mathcal{K}\mathcal{M}, \pi^1 \models \alpha$
 $\mathcal{K}\mathcal{M}, \pi \models \alpha u \beta$ iff $\exists i \geq 0$ such that $\mathcal{K}\mathcal{M}, \pi^i \models \beta$ and $\forall j. (0 \leq j \leq i)$ then $\mathcal{K}\mathcal{M}, \pi^j \models \alpha$

CTLs Vs LTL Vs CTL: Expressiveness

CTL* subsumes both CTL and LTL

```
> \varphi in CTL \Longrightarrow \varphi in CTL* (e.g., \mathbb{P} \square (N_1 \Rightarrow \diamondsuit \diamondsuit T_1))

> \varphi in LTL \Longrightarrow \mathbb{P} \varphi in CTL* (e.g., \mathbb{P} (\square \diamondsuit T_1 \Rightarrow \square \diamondsuit C_1))

> \mathsf{LTL} \cup \mathsf{CTL} \subset \mathsf{CTL}^* (e.g., \diamondsuit (\square \diamondsuit p \Rightarrow \square \diamondsuit q))
```


CTL* Vs LTL Vs CTL: Complexity

The following Table shows the Computational Complexity of checking *Satisbiability*

Logic	Complexity
LTL	PSpace-Complete
CTL	ExpTime-Complete
CTL*	2ExpTime-Complete

CTL* Vs LTL Vs CTL: Complexity (Cont.)

The following Table shows the Computational Complexity of *Model Checking* (M.C.)

• Since M.C. has 2 inputs – the model, \mathcal{M} , and the formula, ϕ – we give two complexity measures.

Logic	Complexity w.r.t.	$ \varphi $ Complexity w.r.t. $ \mathcal{M} $
LTL	PSpace-Complete	P (linear)
CTL	P-Complete	P (linear)
CTL*	PSpace-Complete	P (linear)

Summary of Lecture IV

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.