RESEARCH PLANS - ABRIDGED

ALEXEI LATYNTSEV

For a **full** (13 pp.) version, see https://alyoshalatyntsev.github.io/plan/plan.pdf.

For a non-technical summary (2 pp.), see https://alyoshalatyntsev.github.io/plansummary/plansummary.pdf.

1. Research statement

I am a mathematician working in geometric representation theory.

A central problem of geometric representation theory and enumerative geometry is understanding structures attached to *Calabi-Yau threefolds*: Donaldson-Thomas invariants, mirror symmetry, quantum groups, Most of my research is in this area, making physics-inspired rigorous geometric constructions of such structures and proving new relations between them.

1.1. Algebraic structures attached to CY3s (CV, CY3, FJ, Stab)

Cohomological Hall algebras are associative algebras attached to Calabi-Yau varieties or categories [Da; KS; KPS]. They relate to DT theory [KS; Sz], algebraic structures previously appearing in representation theory [BD; RSYZ; YZ] (e.g. quantum groups [MO]), wall crossing, 3d mirror symmetry, instantons, skeins, Thus the following question is important and useful: what are all the algebraic structures on CoHAs?

Global critical CY3 vertex quantum groups. Let \mathcal{C} be the CY3 category $\operatorname{Rep}(Q,W)$, the representations of a Jacobi algebra of a quiver with potential, or $\operatorname{Coh}_0(K_{T^*C})$, zero dimensional coherent sheaves on a local curve [KK], or more generally a deformed CY3 completion.

Theorem. [CY3] The critical cohomology of the moduli stack of objects M has a vertex coproduct

$$H^{\bullet}(\mathcal{M}, \varphi) \to H^{\bullet}(\mathcal{M}, \varphi) \hat{\otimes} H^{\bullet}(\mathcal{M}, \varphi)((z^{-1}))$$

compatible with the CoHA: it forms a vertex quantum group (see FQG).

Theorem. [CY3] There is a functor Φ from Q-localised bialgebras [Da] to vertex bialgebras. The former is equivalent to the category of factorisation bialgebras on the coloured configuration space $Conf_{Q_0}\mathbf{A}^1$.

Theorem. [CY3; CV for W=0] For any quiver Q, the vertex coproduct on the preprojective CoHA $H_{\mathbf{G}_m}^{\bullet}(\mathfrak{M}_{Q^{(3)}}, \varphi_{W^{(3)}})^{ext} \stackrel{[\mathrm{BD}]}{\simeq} Y_{\hbar}(\mathfrak{b}_Q)$ is identified by Φ with the Davison/Yang-Zhao localised coproduct [Da; YZ], and (when defined) Drinfeld's meromorphic coproduct [Dr; GLW].

This generalises **Joyce-Liu's vertex coproduct** [Joa; Li], shows that all these well-known coproducts on the Yangian are **equal**, and gives a **geometric** definition using moduli stacks and configuration spaces. Finally, Theorem 1.1 points to a new Ran space definition of vertex-vertex *bi*algebras.

Lift to factorisation algebra and relation to stable envelopes. To move towards arbitrary CY3s, we first interpret the above in terms of factorisation algebras; second, we relate to the W-algebras for surfaces of [MMSV], thus understanding the structure for K_S . Let Q be a quiver with torus $T = \prod T_d$.

Conjecture. [FJ] Given $\mathfrak{M}^f = \{(m,\lambda) : \lambda \in \mathfrak{t}, m \in \mathfrak{M}^{\lambda}\} \xrightarrow{\pi} \operatorname{colim}(\mathfrak{t}_d) = \operatorname{Ran}_{Q_0} \mathbf{A}^1$, its relative BM-homology $\mathcal{A} = \pi_* \omega$ is a factorisation algebra over the coloured Ran space. Its restriction to the colour-diagonal recovers the vertex quantum group structure on the nilpotent CoHA [SV].

Conjecture. [FJ] For S a smooth algebraic surface, there is a braided factorisation category RepW over Ran $_SK_S$ (c.f. FQG). Applying Bos/CD allows us to construct $W(S)^{\geqslant 0}$ and W(S) from [MMSV]'s $W(S)^{\geqslant 0}$.

The definition of M^f is clearly reminiscent of [MO, §5.1.1]'s stable envelope construction, and suggests a resolution to their question: "we view this definition as provisional; perhaps a better set of axioms will emerge later". Let \mathbf{w} be a multidimension vector of quiver Q and $M(\mathbf{w})$ the quiver variety.

Conjecture. [Stab] There is a factorisation space $\pi_{\mathbf{w}}: M(\mathbf{w})^f \to \operatorname{Ran}_Q \mathbf{A}^1$ and the factorisation category \mathcal{E} spanned by $\pi_{\mathbf{w},*}\omega$ is acted on by $\mathcal{A} = \pi_*\omega$. Applying chiral Tannakian reconstruction $\mathcal{E} \simeq \operatorname{Rep} \mathbf{D} \mathcal{A}$ gives the double of \mathcal{A} with its (two) coproducts.

The above is a Drinfeld-Kohno Theorem for [MO]'s Yangians $Y_h(\mathfrak{g}_Q)$ (see qVA for relations to qKZ).

¹i.e. $\mathcal{M} = \operatorname{Crit}(W)$ is a critical locus inside a *smooth* moduli stack; we take the vanishing cycle sheaf $\varphi = \varphi_W$.

1.2. The structure of factorisation quantum groups (FQG, Bos, CD)

Historically the definitions of (double) affine quantum groups $U_q(\hat{\mathfrak{g}})$, $Y_h(\mathfrak{g})$, $\mathcal{E}_{h,\tau}(\mathfrak{g})$, $Y_h(\hat{\mathfrak{g}})$, $W_{1+\infty}(\mathfrak{g})$ were (ingeniously) made very explicitly [Dr; MO], and still much of the modern (e.g. CoHA) literature is based on explicit shuffle computations, e.g. [MMSV; SV; YZ]. This series of projects *axiomatises* (operadically) these structures, allowing us to import techniques from the theory of ordinary *quantum groups*, ² to recover the above formulas as a *consequence* of these definitions.

Factorisation quantum groups. In FQG we develop a theory of \mathbf{E}_n -factorisation categories over factorisation spaces X (including ordinary groups G, configuration spaces $\mathrm{Conf}_{Q_0}\mathbf{A}^1$, and algebraic-topological Ran spaces $\mathrm{Ran}(\mathbf{A}^n\times\mathbf{R}^m)$). We first give basic structure results for braided factorisation categories \mathbb{C} :

Theorem. [FQG] Let \mathcal{A} is a factorisation algebra in \mathcal{C} over X, a (braided) factorisation structure on \mathcal{A} -FactMod(\mathcal{C}) induces a factorisation bialgebra structure on \mathcal{A} (and a factorisation R-matrix $R: \mathcal{A} \otimes_{\mathcal{C},X} \mathcal{A} \xrightarrow{\sim} \mathcal{A} \otimes_{\mathcal{C},X} \mathcal{A}$).

Theorem. [FQG] When $X = \text{Ran}\mathbf{A}^1$ (resp. Conf \mathbf{A}^1), Theorem 1.2 recovers classical notions [EK; FR] of quantum vertex algebras (resp. localised algebras) and their R-matrices R(z) satisfying the spectral YBE.

For instance, the structure [GLW] for **Yangians** (e.g. two (meromorphic) coproducts and R-matrices R^- , $R^{0,\epsilon}$, R^{ϵ} relating them) are equivalent to: $Y_{\hbar}(\mathfrak{g})$ -Mod is a lax braided factorisation category. This makes rigorous the physics claim [CWY] that $Y_{\hbar}(\mathfrak{g})$ -Mod from 4d Chern-Simons is a topological-holomorphic factorisation category over $\mathbf{R} \times \mathbf{C}$. The above may help understand **affine Yangians** (e.g. [GRZ]; qVA for relation to q-WZW) and the **new KL equivalences** [BCDN]. Finally, in principle we may get lots of examples from:

Theorem. [FQG] A generalisation of Borcherds' twist construction [Bo] to arbitrary decomposition algebra.

Factorisation bosonisation. In the CoHA literature, a lot of algebraic effort needs to be expended each time [Da; RSYZ; YZ], [CY3; OSp] to add in the Cartan piece $H^{\bullet}(\mathcal{M}, \varphi) \rightsquigarrow H^{\bullet}(\mathcal{M}, \varphi)^{ext}$, e.g. to obtain Yangians of Borels $Y_{\hbar}(\mathfrak{b}_{Q})$. In the finite groups case, a clean construction is Tannakian reconstruction

$$U_q(\mathfrak{n}) \iff U_q(\mathfrak{n}) \quad \text{via} \quad U_q(\mathfrak{b})\text{-Mod} \stackrel{\sim}{\to} U_q(\mathfrak{n})\text{-Mod}(\text{Rep}_q T),$$

c.f. [Ga; Maa; Mab]; in Bos we apply the same to vertex and factorisation bialgebras to obtain:

Theorem. [Bos, in preparation] There is a "factorisation" **Tannakian reconstruction** functor from (braided) factorisation categories \mathcal{C} to (quasitriangular) factorisation quantum groups \mathcal{A} . In the preprojective case of Theorem 1.1,

$$Y_{\hbar}(\mathfrak{b}_Q)$$
-Mod $\simeq Y_{\hbar}(\mathfrak{n}_Q)$ -Mod $(Y_{\hbar}(\mathfrak{t}_Q)$ -Mod)

we Tannakian reconstruct $Y_{\hbar}(\mathfrak{b}_Q) \simeq \mathrm{H}^{\bullet}(\mathcal{M}, \varphi)^{ext}$ and its localised/vertex bialgebra structure.

Applying this to $H^{\bullet}(\mathcal{M}, \varphi)$ -Mod $(H^{\bullet}(\mathcal{M})$ -Mod $^{\cup})$ automates the process of extending CoHAs.

Factorisation Drinfeld doubling. An active problem is how the structures in CY3 relate to **wall crossing** and stability conditions, see [Br; Job]. As a first attempt, we use FQG to understand **doubling**, where the CoHA of heart \mathcal{A} and its opposite $\mathcal{A}[1]$ are glued, in a similar way to Bos:

Conjecture. [CD] There is a "factorisation" **Drinfeld centre** construction $Z_{E_1}(\mathbb{C})$ of a chiral factorisation category \mathbb{C} , which carries compatible chiral and ordinary monoidal structures, Tannakian reconstruction gives

$$Z_{\mathsf{E}_1}^{Y_\hbar(\mathfrak{t}_Q)\text{-}\mathsf{Mod}}(Y_\hbar(\mathfrak{b}_Q)\text{-}\mathsf{Mod}) \ \simeq \ Y_\hbar(\mathfrak{g}_Q)\text{-}\mathsf{Mod},$$

and likewise we recover the Takiff algebra double construction of [AN].

1.3. Orthosymplectic structures (OSp, SA, AGT)

What happens if we apply the above techniques to orbifolds? What do boundary Chern-Simons, outer automorphisms of Lie algebras, twisted Yangians, boundary KZ equations, orthosymplectic quiver varieties, . . . have in common?

²Namely, when $X = \text{Ran}\mathbf{R}^2$ in the below, via Lurie [Lu].

Orthosymplectic CoHAs. We define orthosymplectic moduli stacks \mathcal{M}^{OSp} , including **perverse-coherent sheaves** with a sympletic/orthogonal bilinear form, and quivers and potential with involution.

Theorem. [OSp] For \mathfrak{M} as in CY3 the vertex quantum group $H^{\bullet}(\mathfrak{M}, \varphi)$ acts on $H^{\bullet}(\mathfrak{M}^{\tau}, \varphi^{\tau})$, i.e.

- (1) there is a left module action a of the **CoHA** respecting the involution, i.e. it **factorises** over \mathbf{R}/\pm , compatible with
- (2) a symplectic vertex algebra structure (factorisation coalgebra over symplectic Ran space $\operatorname{Ran}_{\operatorname{Sp}} \mathbf{A}^1 = \operatorname{colimt}_{\operatorname{\mathfrak{sp}}_{2n}}$, see SA). The defining R-/K-matrices satisfy the Cherednik reflection equation.

Theorem. [OSp] There is an action of $H^{BM}_{\bullet}(\mathcal{M})$ of the CoHA of zero-dimensional coherent sheaves on surface S on $H^{BM}_{\bullet}(\mathcal{M}^{OSp}_{\sigma-ss})$ the BM homology of a compactification of the stack of $G \in \{Sp, O\}$ -bundles.

This gives a rigorous definition of the objects coming from boundary 4d Chern-Simons theory [BS], should relate to work in ι **quantum groups** [LW] and Finkelberg-Hanany-Nakajima's ongoing work on **orthosymplectic Coulomb branches** (see also AGT). In the quiver with potential case (resp. in the conjecture, type A_{2n+1} preprojective), we have: Theorem. [OSp] An explicit shuffle formula for the CoHA action and vertex coaction on $H^{\bullet}(\mathcal{M}_{Q,W}^{OSp}, \varphi^{OSp})$.

Conjecture. The preprojective orthosymplectic CoHA³ is isomorphic to the **twisted Yangian** $Y_h(\mathfrak{gl}_n)^{tw}$ from [BR].

Dynkin QFT and shuffle structures. The structures (2) in OSp are defined over the symplectic configuration space⁴ Conf_{Sp}(\mathbf{A}^1) = Spec H ullet (BSp), with singularities on root hyperplanes; alternatively over Ran_{Sp} \mathbf{A}^1 = colimt_{sp_{2n}}. To give examples: Theorem. [OSp] Restricting along $\mathfrak{t}_{sp_{2n}} \hookrightarrow \mathfrak{t}_{\mathfrak{gl}_{2n}}$ gives an **invariants** functor ι : FactAlg_{GL}(\mathbf{A}^2) \rightarrow FactAlg_{Sp}(\mathbf{A}^1). n.b. we expect the structures in OSp come from applying ι to \mathcal{M}^f (see FJ).

In SA, we **generalise** the above to systems of **arbitrary Kac-Moody groups** G_i [Ku, $\S V$]; this forms a category K_{KM} with morphisms the parabolics. Write K_{GL}, K_{Sp}, \ldots for the appropriate subcategories.

Fact. [SA] A shuffle algebra [KS; Gr] is equivalent to a monoidal functor $K_{GL} \xrightarrow{A} \text{Vect.}$

There are KM analogues of vertex algebra and localised bialgebra, quiver representation with moduli stack $\mathcal{M}_Q = \sqcup \mathfrak{u}_e/G_i$, quiver varieties, and (factorisation) braided monoidal categories (generalising the G_2 -reflection equation [Ku]). We generalise Chen's Theorem [Ch] on the shuffle structure on cohomology $H^{\bullet}(LX)$ of loop spaces; leading to the Question. [SA] Can we recover Dynkin/q-analogues of multiple zeta values [KMT; Mi] using this KM-shuffle structure?

We produce G_2, C_n, \ldots structures by **folding** D_4, A_{2n+1}, \ldots structures by outer automorphisms $\mathbb{Z}/3, \mathbb{Z}/2, \ldots$ **Conjecture.** [SA] We may recover $\{\emptyset$, boundary, G_2 -, ... $\}$ spherical (or trigonometric) KZ equations [ES] by constructing a $K_{GL}, K_{Sp}, K_{G_2} \ldots$ (or $K_{\widehat{GL}}, \ldots$) affine vertex algebra via BD Grassmannians, and taking conformal blocks. Question. [SA] Can we recover Dynkin/q-analogues of stable envelopes (see [MO], Stab)?

A twisted AGT correspondence. A foundational result in geometric representation theory is the AGT correspondence linking \mathcal{W} -vertex algebras and surfaces, first by Grojnowski and Nakajima [Gr; Na] then in [AGT; BFN] and [RSYZ]. Conjecture. [AGT] The equivariant intersection homology of the invariant locus $\mathcal{U}^{\mathbf{Z}/2}_{\mathbf{P}^2,\mathrm{GL}_n}$ in the Uhlenbeck space is a Verma module for an orthosymplectic analogue $\mathcal{W}^k(\mathfrak{gl}_n)^{\mathrm{OSp}}$ of a \mathfrak{gl}_n W-algebra (proof sketch: use SA-techniques on [BFN]). Conjecture. [AGT] The dimension zero CoHA of \mathbf{A}^3 , which is $U_h(\mathcal{D}(\mathbf{C}/\pm))$ and admits $\mathcal{W}^{k_n}(\mathfrak{gl}_n)^{\mathrm{OSp}}$ as quotients, acts on $\mathrm{IH}^{\bullet}_T(M^{\mathbf{Z}/2})$, the equivariant intersection cohomology of \mathbf{A}^3 -instantons (see [RSYZ]). Likewise for any quiver with potential.

1.4. q-vertex algebras (qVA, KL)

q-vertex algebras. Our understanding of double affine quantum groups or Kazhdan Lusztig equivalences, qKZ equations, . . . is seriously hampered by the abscence of a good definition of q-affine vertex algebra.

³i.e. the image of the CoHA in End($H_{\bullet}^{BM}(\mathcal{M}^{OSp})$).

 $^{^4}$ As opposed to the ordinary configuration space $\mathrm{Conf}\mathbf{A}^1 = \sqcup \mathbf{A}^n / \mathfrak{S}_n = \mathrm{Spec}\, \mathrm{H}^ullet (\mathrm{BGL}).$

⁵Replacing the *n*-simplex Δ^n with $\Delta_G = T_G/W_G$.

The many attempts [FJW; FR; EK] to define q-affine vertex algebras have not yet been conceptual enough to apply factorisation techniques [CF] or physics heuristics [Co; GR; Wi] to relate to q**KZ** connections or the (conjecturally, **affine**) **Kazhdan-Lusztig equivalence**, or the new KL equivalences [BCDN].

Our goal is to build this, inspired by Costello's physics work on deformed spacetimes for 5d Chern-Simons in physics and using techniques of FQG.

Conjecture. [qVA] There is a factorisation category \mathcal{D} -Mod over the noncommutative plane 6 \mathbf{A}_q^2 , a factorisation algebra in which induces a q-vertex algebra (i.e. ordinary vertex algebra with poles on the q-diagonals, e.g. [FR], [EK] for $\mathfrak{g} = \mathfrak{sl}_n$).

Conjecture. [qVA] There is an analogue of the BD Grassmannian $Gr_{G,q} \to Ran A_q^2$ (this induces a q-affine VOA $V_q^k(\mathfrak{g})$).

The physics heuristic for this is: $V^k(\mathfrak{g})$ comes from 3d Chern-Simons with boundary \mathbb{C} [Wi]; $V_q^k(\mathfrak{g})$ comes from 5d Chern-Simons with noncommutative boundary \mathbb{C}_{nc}^2 [Co; GR; GRZ]. The category \mathcal{D} -Mod will be related to q-difference modules of \mathbb{C} on \mathbb{A}^1 , so the above directly generalises the usual factorisation definition of vertex algebras.

Conjecture. [KL] The restriction of conformal blocks of $V_q^k(\mathfrak{g})$ -modules to $(\mathbf{A}^1)^n_{\circ} \subseteq (\mathbf{A}_q^2)^n_{\circ}$ equal to the qKZ connection.

Conjecture. [KL] There is a **Zhu algebra** functor, Zhu: $V_q^k(\mathfrak{g}) \mapsto U_q(\mathfrak{g})$, and the functor RH: $V^k(\mathfrak{g})$ -Mod $\mapsto U_q(\mathfrak{g})$ -Mod in the proof [CF] of KL is "parallel transport" along a factorisation category $V_q^k(\mathfrak{g})$ -Mod on $\mathbf{C} \times \mathbf{R}_{\geqslant 0}$.

The above would help understand **affine KL** and the **new KL equivalences** [BCDN] from 3d mirror symmetry.

1.5. Sheaf methods (Con, Loc, Eu)

Localisation methods. One of the main techniques in enumerative geometry are the *torus localisation* and *Graber-Panharipande formulas* [GP]. We generalise these to the Artin moduli stacks appearing in modern enumerative/algebraic geometry.

Theorem. [Conc; Loc] We give conditions for the cohomology of an Artin stack X to be **concentrated** on a closed substack Z; when $Z = X^T$ is fixed points of a quasismooth dg scheme we give **Atiyah-Bott** id $= i_* (i^!(-)/e(N_{vir}))$ and **Graber-Pandharipande localisation** formulas $[X]^{vir} = i_* ([X^T]^{vir}/e(N_{vir}))$.

Theorem. [Eu] We strengthen both parts of the theorem to **critical cohomology** of **arbitrary** closed embeddings $\mathbb{Z} \hookrightarrow \mathbb{X}$ quasismooth over a common base. As a result, for \mathbb{M} as in CY3, we have the following Theorem:

Theorem. [Eu] For any "split locus" map $\pi: \mathcal{M}^s \to \mathcal{M}$, we have CoHA = CoHA^s/ $e(N_{i,vir})$.

Taking \mathcal{M}^s a *shuffle space*⁸, this gives a **universal, geometric** way of producing/interpreting shuffle products for CoHAs [Da; SV; YZ]. Taking $\mathcal{M}^s = \mathcal{M} \times \mathcal{M} \xrightarrow{\oplus} \mathcal{M}$ proves **compatibility** [CV,CY3,Li] between **coproducts** and the CoHA (c.f. CY3). This easily **generalises** to the OSp/Dynkin SA cases.

1.6. Liouville quantum gravity to vertex algebras (LQG)

Probabilists are beginning construct Feynman measures (GFF [BPR], LQG [KRV]) **rigorously** to understand 2d CFTs [CRV; DS; Sh]. There is almost no intereaction with the algebraic geometry/functorial school to QFT, and they understand/have access to techniques (e.g. SLE curves [MS; SS], combinatorial approximations) that the latter school does not. We want to build a bridge:

Conjecture. [LQG] There is a **chiral part** functor F^{ch} : CFT \rightarrow VertexAlg, from Segal-style full 2d CFTs to vertex algebras. It sends [GKRV]'s LQG (resp. GFF) to the Virasoro (resp. Heisenberg) VOA, and [KRV]'s DOZZ formula to the Virasoro OPE.

We will then use **free field embeddings** to produce a probabilistic CFT analogue of the **g-affine vertex algebra**.

⁶Its with ring of functions $\mathbf{C}\langle x,y,q\rangle/(yx-xyq)$ with q central.

⁷e.g. a q-difference operator ∂_x on \mathbf{A}^1 induces a derivation $y\partial_x$ on \mathbf{A}^2_q .

⁸i.e. shuffle algebra in the category of spaces, see SA.

References

- [AGT] Luis F Alday, Davide Gaiotto, and Yuji Tachikawa. "Liouville correlation functions from four-dimensional gauge theories". In: *Letters in Mathematical Physics* 91.2 (2010), pp. 167–197.
- [AN] Raschid Abedin and Wenjun Niu. "Yangian for cotangent Lie algebras and spectral *R*-matrices". In: *arXiv* preprint arXiv:2405.19906 (2024).
- [BCDN] Andrew Ballin, Thomas Creutzig, Tudor Dimofte, and Wenjun Niu. "3d mirror symmetry of braided tensor categories". In: *arXiv preprint arXiv:2304.11001* (2023).
- [BD] Tommaso Maria Botta and Ben Davison. "Okounkov's conjecture via BPS Lie algebras". In: *arXiv preprint arXiv:2312.14008* (2023).
- [BFN] Alexander Braverman, Michael Finkelberg, and Hiraku Nakajima. "Instanton moduli spaces and W-algebras". In: $arXiv\ preprint\ arXiv:1406.2381\ (2014)$.
- [Bo] R. E. Borcherds. "Quantum Vertex Algebras". In: *Advanced Studies in Pure Mathematics*. Vol. 31. Mathematical Society of Japan, 1999, pp. 51–74.
- [BPR] Roland Bauerschmidt, Jiwoon Park, and Pierre-François Rodriguez. "The Discrete Gaussian model, II. Infinite-volume scaling limit at high temperature". In: *The Annals of Probability* 52.4 (2024), pp. 1360–1398.
- [BR] Samuel Belliard and Vidas Regelskis. "Drinfeld J presentation of twisted Yangians". In: SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 13 (2017), p. 011.
- [Br] Tom Bridgeland. "Geometry from donaldson-thomas invariants". In: arXiv preprint arXiv:1912.06504 (2019).
- [BS] Roland Bittleston and David Skinner. "Gauge theory and boundary integrability". In: *Journal of High Energy Physics* 2019.5 (2019), pp. 1–53.
- [CF] Li Chen and Yuchen Fu. "An Extension of the Kazhdan-Lusztig Equivalence". PhD thesis. Harvard University, 2022.
- [Ch] Kuo-tsai Chen. "Iterated integrals of differential forms and loop space homology". In: *Annals of Mathematics* 97.2 (1973), pp. 217–246.
- [Co] Kevin Costello. "M-theory in the Omega-background and 5-dimensional non-commutative gauge theory". In: *arXiv preprint arXiv:1610.04144* (2016).
- [CRV] Baptiste Cerclé, Rémi Rhodes, and Vincent Vargas. "Probabilistic construction of Toda conformal field theories". In: *arXiv preprint arXiv:2102.11219* (2021).
- [CWY] Kevin Costello, Edward Witten, and Masahito Yamazaki. "Gauge theory and integrability, I". In: *arXiv preprint arXiv:1709.09993* (2017).
- [Da] Ben Davison. "The critical CoHA of a quiver with potential". In: *Quarterly Journal of Mathematics* 68.2 (2017), pp. 635–703. arXiv: arXiv:1311.7172 [math.AG].
- [Dr] Vladimir Gershonovich Drinfeld. "Hopf algebras and the quantum Yang-Baxter equation". In: *Doklady Akademii Nauk*. Vol. 283. 5. Russian Academy of Sciences. 1985, pp. 1060–1064.
- [DS] Bertrand Duplantier and Scott Sheffield. "Liouville quantum gravity and KPZ". In: *Inventiones mathematicae* 185.2 (2011), pp. 333–393.
- [EK] P. Etingof and D. Kazhdan. "Sel. Math., New Ser. 6, No. 1, 105–130". In: *Selecta Mathematica, New Series* 6.1 (2000), pp. 105–130.
- [ES] Pavel I Etingof and Olivier Schiffmann. "Lectures on quantum groups". In: (*No Title*) (1998).
- [FJW] Igor B Frenkel, Naihuan Jing, and Weiqiang Wang. "Quantum Vertex Representations via Finite Groups and the McKay Correspondence". In: *Communications in Mathematical Physics* 211 (2000), pp. 365–393.
- [FR] Edward Frenkel and Nicolai Reshetikhin. "Towards deformed chiral algebras". In: *arXiv preprint* (1997). arXiv: q-alg/9706023 [q-alg].
- [Ga] Dennis Gaitsgory. "On factorization algebras arising in the quantum geometric Langlands theory". In: *Advances in Mathematics* 391 (2021), p. 107962.

REFERENCES

- [GKRV] Colin Guillarmou, Antti Kupiainen, Rémi Rhodes, and Vincent Vargas. "Segal's axioms and bootstrap for Liouville Theory". In: *arXiv preprint arXiv:2112.14859* (2021).
- [GLW] Sachin Gautam, Valerio Toledano Laredo, and Curtis Wendlandt. "The meromorphic R-matrix of the Yangian". In: Representation Theory, Mathematical Physics, and Integrable Systems: In Honor of Nicolai Reshetikhin. Springer, 2021, pp. 201–269.
- [GP] Tom Graber and Rahul Pandharipande. "Localization of virtual classes". In: *arXiv preprint alg-geom/9708001* (1997).
- [GR] Davide Gaiotto and Miroslav Rapčák. "Miura operators, degenerate fields and the M2-M5 intersection". In: *Journal of High Energy Physics* 2022.1 (2022), pp. 1–80.
- [Gr] James Alexander Green. *Shuffle algebras, Lie algebras and quantum groups*. Vol. 9. Departamento de Matemática da Universidade de Coimbra, 1995.
- [GRZ] Davide Gaiotto, Miroslav Rapčák, and Yehao Zhou. "Deformed Double Current Algebras, Matrix Extended $W_{1+\infty}$ Algebras, Coproducts, and Intertwiners from the M2-M5 Intersection". In: *arXiv preprint arXiv:2309.16929* (2023).
- [Joa] Dominic Joyce. "Ringel–Hall style vertex algebra and Lie algebra structures on the homology of moduli spaces". In: *Incomplete work* (2018).
- [Job] Dominic Joyce. "Enumerative invariants and wall-crossing formulae in abelian categories". In: *arXiv* preprint *arXiv*:2111.04694 (2021).
- [KK] Tasuki Kinjo and Naoki Koseki. Cohomological χ -independence for Higgs bundles and Gopakumar-Vafa invariants. 2023. arXiv: 2112.10053 [math.AG].
- [KMT] Yasushi Komori, Kohji Matsumoto, and Hirofumi Tsumura. "A study on multiple zeta values from the view-point of zeta-functions of root systems". In: *Functiones et Approximatio Commentarii Mathematici* 51.1 (2014), pp. 43–46.
- [KPS] Tasuki Kinjo, Hyeonjun Park, and Pavel Safronov. "Cohomological Hall algebras for 3-Calabi-Yau categories". In: *arXiv preprint arXiv:2406.12838* (2024).
- [KRV] Antti Kupiainen, Rémi Rhodes, and Vincent Vargas. "Integrability of Liouville theory: proof of the DOZZ formula". In: *Annals of Mathematics* 191.1 (2020), pp. 81–166.
- [KS] Maxim Kontsevich and Yan Soibelman. "Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants". In: *arXiv preprint arXiv:1006.2706* (2010).
- [Ku] Atsuo Kuniba. "Matrix product solutions to the G 2 reflection equation". In: *Journal of Integrable Systems* 3.1 (2018), xyy008.
- [Li] Henry Liu. "Multiplicative vertex algebras and quantum loop algebras". In: *arXiv preprint arXiv:2210.04773* (2022).
- [Lu] Jacob Lurie. Higher Algebra. Preprint, available at http://www.math.harvard.edu/~lurie. 2016.
- [LW] Ming Lu and Weiqiang Wang. " ι Hall algebras and ι quantum groups". In: *arXiv preprint arXiv:2209.12416* (2022).
- [Maa] Shahn Majid. "Transmutation theory and rank for quantum braided groups". In: *Mathematical Proceedings of the Cambridge Philosophical Society*. Vol. 113. 1. Cambridge University Press. 1993, pp. 45–70.
- [Mab] Shahn Majid. "Double-bosonization of braided groups and the construction of $U_q(\mathfrak{g})$ ". In: Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 125. 1. Cambridge University Press. 1999, pp. 151–192.
- [Mi] Antun Milas. "Generalized multiple q-zeta values and characters of vertex algebras". In: *arXiv preprint arXiv:2203.156* (2022).
- [MMSV] Anton Mellit, Alexandre Minets, Olivier Schiffmann, and Eric Vasserot. "Coherent sheaves on surfaces, COHAs and deformed $W_{1+\infty}$ -algebras". In: *arXiv preprint arXiv:2311.13415* (2023).

8 REFERENCES

- [MO] Davesh Maulik and Andrei Okounkov. "Quantum groups and quantum cohomology". In: arXiv preprint arXiv:1211.1287 (2012).
- [MS] Shahn Majid and Francisco Simão. "Quantum jet bundles". In: *Letters in Mathematical Physics* 113.6 (2023), p. 120.
- [Na] Hiraku Nakajima. "Instantons and affine Lie algebras". In: arXiv preprint alg-geom/9510003 (1995).
- [RSYZ] Miroslav Rapčák, Yan Soibelman, Yaping Yang, and Gufang Zhao. "Cohomological Hall algebras, vertex algebras and instantons". In: *Communications in Mathematical Physics* 376.3 (2020), pp. 1803–1873.
- [Sh] S Sheffield. "Gaussian free fields for mathematicians. preprint". In: arXiv preprint math.PR/0312099 (2003).
- [SS] O. Schramm and S. Sheffield. "Contour lines of the two-dimensional discrete Gaussian free field. preprint". In: *Annals of Probability* 33.6 (2005), pp. 2127–2148.
- [SV] Olivier Schiffmann and Eric Vasserot. "On cohomological Hall algebras of quivers: generators". In: *Journal für die reine und angewandte Mathematik* (Crelles Journal) 2020.760 (2020), pp. 59–132.
- [Sz] Balázs Szendroi. "Cohomological Donaldson-Thomas theory". In: *Proceedings of String-Math* 2015 (2014).
- [Wi] Edward Witten. "Quantum field theory and the Jones polynomial". In: *Communications in Mathematical Physics* 121.3 (1989), pp. 351–399.
- [YZ] Yaping Yang and Gufang Zhao. "Cohomological Hall algebras and affine quantum groups". In: *Selecta Mathematica* 24.2 (2018), pp. 1093–1119.