Outline

Model Assumptions for SLR

Model Diagnostics: Graphical Techniques

Remedial Measures: Transformation

Model Assumptions

 A straight line relationship between the response variable Y and the explanatory variable X:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 where $E(\varepsilon_i) = 0$

Equal variance:

$$Var(\varepsilon_i) = \sigma^2.$$

Independence:

$$Cov(\varepsilon_i, \varepsilon_{i'}) = 0$$
 for $i \neq i'$.

Normal distribution:

$$\varepsilon_i \sim N(0, \sigma^2).$$

Robustness of Model Assumptions

Departure	$\hat{eta}/\hat{\mu}_{m{h}}$	s.e.	$\hat{Y}_{h(new)}$	s.e.
Linearity	S	S	S	S
Equal variance	R	S	R	S
Independence	R	S	R	S
Normality	R	R	R	S
Outliers	S	S	S	S

S = sensitive; R = robust.

Outline

Model Assumptions for SLF

Model Diagnostics: Graphical Techniques

Remedial Measures: Transformation

Model Diagnostics

- Correct inference hinges on model assumptions.
- Model diagnostics are to evaluate the model assumptions and determine how reasonably they are met.
- A main idea for model diagnostics is to examine the residuals.
- Consider graphical approaches: Subjective but informative.

Graphical Techniques

- Exploratory data analysis (EDA).
 - exploration of X and Y.
 - May not be as effective for model diagnostics.
- Recall for $i = 1, \ldots, n$
 - the *i*th fitted value: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
 - the *i*th residual: $e_i = Y_i \hat{Y}_i$

What does e_i estimate/predict:

$$\varepsilon_i = Y_i - \mathbb{E}(Y_i) \sim_{\text{i.i.d}} N(0, \sigma^2)$$

Properties of Residuals

• Sample mean: $\bar{e} = 0$. Why?

$$\bar{\mathbf{e}} = \frac{\sum_{i=1}^{n} \mathbf{e}_i}{n} = 0.$$

• Sample variance: $\hat{\sigma}^2$. Why?

MSE =
$$\frac{\text{SSE}}{n-2} = \frac{\sum_{i=1}^{n} e_i^2}{n-2} = \hat{\sigma}^2$$
.

Dependence (Assignment 3(a) and 3(b)) Why?

$$\sum_{i=1}^{n} e_i = 0$$
 and $\sum_{i=1}^{n} X_i e_i = 0$.

Residual Plots

- Departures from model assumptions can be difficult to detect directly from X and Y.
- Thus consider residual plots.
 - Plot e_i against X_i .
 - Plot $|e_i|$ against X_i .
 - Plot e_i^2 against X_i .
 - Plot e_i against \hat{Y}_i .
 - Plot e_i against time.
 - Box plot of e_i .
 - Normal QQ plot of e_i .

Example: Wetland Species Richness

Types of Residuals

Raw residual (or, ordinary least squares residual):

$$e_i = Y_i - \hat{Y}_i$$
.

standardized residual:

$$r_i = rac{Y_i - \hat{Y}_i}{\hat{\sigma}\sqrt{1 - p_{ii}}}, \quad ext{where} \quad p_{ii} = rac{1}{n} + rac{(x_i - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}.$$

where $\hat{\sigma}^2$ = MSE based on the entire sample. Why?

$$Var(\mathbf{e}) = Var(\mathbf{Y} - \hat{\mathbf{Y}}) = Var(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

$$= Var(\mathbf{Y} - \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y})$$

$$\hat{\boldsymbol{\beta}}$$

$$= Var\left(\underbrace{(\mathbf{I} - \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)}_{\text{non-random}}\mathbf{Y}\right)$$

Example: Wetland Species Richness

Nonlinearity of Regression Function

- Plot e_i against \hat{Y}_i (or X_i).
- Random scatter indicates no serious departure from linearity.
- Example of departure from linearity: Curved relationship.

Non-equal Error Variance

- Plot e_i against \hat{Y}_i (or X_i).
- Plot $|e_i|$ against \hat{Y}_i (or X_i).
- Plot e_i^2 against \hat{Y}_i (or X_i).
- Random scatter indicates no serious departure from constant variance.
- Example of departure from constant variance: Megaphone/funnel shape.

Nonindependence of Error Terms

- Possible forms of nonindependence.
 - Observations collected over time and/or across space.
 - Study done on sets of siblings.
- Example of departure from independence:
 - Trend effect
 - Cyclical non-independence

Examples: Corn Yield

For
$$i = 1, ..., n$$
,

- i = the index of the patch planted to corn.
- The patches are arranged in a long line at the edge of a field.
- X_i = the amount of fertilizer applied to the ith patch.
- Y_i = the corn yield in the ith patch.
- Plot e_i against location i.

Examples: Corn Yield

Nonnormality of Error Terms

Assess whether the residuals $\{e_i\}$ follow from normal.

- Box plot, histogram of e_i .
- Normal QQ plot: compared sorted residuals $e_{(1)}, \ldots, e_{(n)}$ to quantiles from standard normal N(0, 1).
- If the residuals are approximately normal, the normal QQ plot should be approximately linear.
- It is a good idea to examine other departures first.
 other departure affects the distribution
 e.g., distribution of {e_i} is subject to independence assumption especially in small sample size

Presence of Outliers

- An outlier refers to an extreme observation.
- Box plot, histogram plot of $\{e_i\}$.
- Plot e_i against \hat{Y}_i (or X_i).
- Random scatter indicates absence of outliers.
- Outliers may convey important information.
 An error. A different mechanism is at work. A significant discovery.

Graphical Techniques: Remarks

- We generally do not plot residuals (e_i) against response (Y_i). Why not?
- Residual plots may provide evidence against model assumptions, but do not generally validate assumptions.
- For data analysis in practice:
 - Fit model and check model assumptions (an iterative process).
 - Generally do not include residual plots in a report, but include a sentence or two to explain model diagnostics employed and findings obtained. such as "Standard model diagnostics did not indicate any violations of the assumptions for this model."
- For this class, include residual plots in homework assignments and reports.
- As much art as science.
 No golden rules. No magic formulas. Decision may be difficult for small sample size.

Outline

Model Assumptions for SLF

Model Diagnostics: Graphical Techniques

Remedial Measures: Transformation

Remedial Measures

Basic approaches: replace with a more complex model or transform so SLR model is appropriate.

- Nonlinearity of regression function:
 - Transformation.
 - Polynomial regression.
 - Nonlinear regression.
- Nonequal error variance:
 - Transformation.
 - Weighted least squares.
- Nonindependence of error terms:
 - Models with correlated error terms.
- Nonnormality of error terms.
 - Transformation.
 - Nonparametric methods.
 - Generalized linear models.
- Presence of outliers:
 - Removal of outliers (with caution).
 - Robust estimation.

Data consist of number of surviving bacteria after exposure to X-rays for different periods of time.

- Let *t* denote time (in number of 6-minute intervals)
- let n denote number of surviving bacteria (in 100s) after exposure to X-rays for t time.

	t	1	2	3 197	4	5	6	7	8
_	n	355	211	197	166	142	166	104	60
	t	9	10	11	12	13	14	15	
	n	56	38	36	32	21	19	15	

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	267.010	22.170	12.044	2.0e-08 ***
t	-19.893	2.438	-8.158	1.8e-06 ***

Residual standard error: 40.8 on 13 degrees of freedom Multiple R-squared: 0.8366, Adjusted R-squared: 0.824 F-statistic: 66.56 on 1 and 13 DF, p-value: 1.804e-06

• Here there is a theoretical model:

$$n_t = n_0 e^{\beta t},$$

where

- t is time,
- n_t is the number of bacteria at time t,
- n_0 is the number of bacteria at the start (t = 0), and
- β is a decay rate with β < 0.
- Consider a log transformation:

$$ln(n_t) = ln(n_0) + \beta t = \alpha + \beta t,$$

by setting $\alpha = \ln(n_0)$.

That is, we log-transformed n_t and the result is a linear model.

The transformed data are as follows.

	1							
In(<i>n</i>)	5.87	5.35	5.28	5.11	4.96	5.11	4.64	4.09
t	9	10	11	12	13	14	15	
In(<i>n</i>)	4.03	3.64	3.58	3.47	3.04	2.94	2.71	

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	6.028695	0.088259	68.31	< 2e-16 ***
t	-0.221629	0.009707	-22.83	7.1e-12 ***

Residual standard error: 0.1624 on 13 degrees of freedom Multiple R-squared: 0.9757, Adjusted R-squared: 0.9738 F-statistic: 521.3 on 1 and 13 DF, p-value: 7.103e-12

How to interpret β ? How to interpret α ? Inference for n_0 is not straightforward.

$$\hat{n}_0 = e^{\hat{\alpha}} = 415.30$$

but $E(\hat{n}_0) \neq n_0$.