國立交通大學 106 學年度碩士班考試入學試題

科目: 線性代數與離散數學(1102) 考試日期: 106年2月10日 第 2 節

系所班別:資訊聯招 第 | 頁,共 3 頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

First you need to write down your answers clearly and then explain how to compute the answers. You also need to answer the questions in order. Do not jump around.

- 1. (a) (10 points) Please translate the following two assertions into logical formulae. We consider natural numbers only. Assume that there is a predicate IsPrime(x), which is true if and only if x is a prime number. Hence you do not need to define prime numbers. An *interval*, denoted as [a,b], is defined as the set $\{n|n \in N, a \le n \le b\}$. The size of this interval is b-a+1.
 - There is a prime number in every interval whose size is 10⁸.
 - There are infinite pairs of consecutive prime numbers (p,q) satisfying $|p-q| \leq 10^8$.
- (b) (5 points) Are the above two assertions logically equivalent? Which must be false? Why?
- 2. (10 points) Assume $n = 2^k$, $k \in \mathbb{N}$. The straightforward way to multiply two $n \times n$ matrices takes time $O(n^3)$.
- (a) (5 points) Please describe an asymptotically faster multiplication method.
- (b) (5 points) Use the recurrence relation to analyze the time complexity of your method.
- 3. Assume that each person i is asked to arbitrarily select n_i different integer(s) from the range $\{1, 2, ..., r_i\}$. (a) (5 points) If $r_u = r_v = k$ for two persons u and v, what is the maximal value of k (expressed in terms of n_u , n_v and/or other constants if needed) that guarantees at least one common integer selected by both u and v?
 - (b) (5 points) If $r_u = 5$, $n_u = 3$, $r_v = 7$, and $n_v = 3$, what is the number of combinations of u's and v's choices in which u and v share exactly one common integer?
- 4. (5 points) Consider a relation \angle represented by the following digraph, where a directed edge from node i to node j exists if and only if $i \angle j$. Consider another relation \approx defined as $i \approx j$ if and only if neither $i \angle j$ nor $j \angle i$. If we represent \approx using a zero-one matrix, how many 1s are there in the matrix?

國立交通大學 106 學年度碩士班考試入學試題

科目:線性代數與離散數學(1102)

考試日期:106年2月10日 第 2節

系所班別:資訊聯招

第2頁,共3頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

5. (5 points) Determine whether the following two graphs are isomorphic or not. Exhibit an isomorphism (i.e., $u_1 = v_1$, $u_2 = v_4$, etc.) or provide a rigorous argument that none exists.

- 6. (5 points) Solve the following recurrence relation together with the initial condition given. $a_n = 4a_{n-1} 4a_{n-2}$ for $n \ge 2$, $a_0 = 4$, $a_1 = 4$
- 7. Let A be a non-symmetric n by n matrix. Determine and explain whether the following matrix (B, C):

 ① must be symmetric, ② must be skew-symmetric, or ③ otherwise.
 - a. (2 points) $B = A A^T$
 - b. (2 points) $C = (I + A)(I A^T)$
- 8. a. (5 points) Suppose A is a 4 by 5 matrix and B is a 5 by 7 matrix and AB = 0. If rank(B) = 2, what is the maximum possible rank(A)? and why?
 b. (5 points) Let u, v, and w be vectors in Rⁿ. Suppose A is the sum of three matrices: A = uv^T + vw^T + wu^T. If x₁u + x₂v + x₃w = 0 has a nonzero solution (x₁, x₂, x₃), what is the maximum possible rank(A)? and why?
- 9. (6 points) Given a matrix

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & 2 & 2 & 1 \\ 2 & 4 & 5 & 3 \\ -1 & -2 & 2 & 3 \end{array} \right],$$

we can split $x = \begin{bmatrix} 5 \\ 1 \\ 1 \\ 4 \end{bmatrix}$ into $x_r + x_n$, where $x_r \in C(\mathbf{A}^T)$ and $x_n \in N(\mathbf{A})$. What are x_r and x_n ?

- 10. (5 points) Given 3 points (t, b): (-1, -7), (1, 7), and (2, 21), what is the sum of squared error $\|e\|^2$ if we fit the closest line b = C + Dt by the least square approximation?
- 11. Answer true (T) or false (F) to each of the following statements.
 - a. (1 point) Let $L: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator. If $L(\mathbf{x}_1) = L(\mathbf{x}_2)$, then the vectors \mathbf{x}_1 and \mathbf{x}_2 must be equal.
 - b. (1 point) An orthogonal matrix must have an eigenvalue $\lambda = 1$.
 - c. (1 point) A Markov matrix must have an eigenvalue $\lambda = 1$.
 - d. (1 point) A projection matrix has only two eigenspaces and each is an orthogonal complement to the other.

國立交通大學 106 學年度碩士班考試入學試題

科目:線性代數與離散數學(1102)

考試日期:106年2月10日 第 2節

系所班別:資訊聯招

第3頁,共3頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

- e. (1 point) Singular matrices are never diagonalizable.
- f. (1 point) For a real symmetric matrix, all of its eigenvalues are always real and all of its eigenvectors corresponding to different eigenvalues are always mutually orthogonal.
- g. (1 point) For a square matrix, the product of its pivots is always equal to the product of its eigenvalues.
- h. (1 point) A symmetric matrix cannot be similar to a non-symmetric matrix.
- i. (1 point) If $AA^T = A^TA$, then A and A^T always share the same eigenvalues.
- j. (1 point) Singular values of any matrix are all nonnegative real numbers.
- 12. (5 points) Let A, B, C, and D be $n \times n$ matrices with A invertible. Prove that $\det \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = (\det \mathbf{A}) \det (\mathbf{D} \mathbf{C} \mathbf{A}^{-1} \mathbf{B})$.
- 13. (10 points) Political affiliations change from one generation to the next. We consider three parties, labeled D, K, and T. In one generation, membership in D goes 80% to D, 10% to K, and 10% to T; membership in K goes 20% to D, 80% to K, and none to T; and membership in T goes 50% to D, 10% to K, and 40% to T. What is the long-term steady state for the three parties (membership ratios among these three parties)?