Текст к слайдам

Гусев Владислав БПМИ187 14 мая 2020 г.

1 Слайд: общими словами про модель и ученых:

Модель ценообразования опционов была впервые представлена общественности в 1973 году двумя учеными: Фишером Блэком (Fisher Black) и Майраном Шоулзом (Myron Scholes). В настоящее время она широко известна как «модель Блэка-Шоулза» (англ. Black-Scholes Option Pricing Model). Авторами была предложена математическая модель описывающая рынок финансовых деривативов (в нашем случае только опционы). Практическим результатом модели стала формула Блэка-Шоулза, которая позволила рассчитать цену опциона колл европейского типа. Ее появление привело к буму торговли опционами, а сама она получила широкое применение среди участников рынка.

2 Слайд: Что такое опционы и их характеристики:

Опцион — это договор, по которому покупатель опциона получает право купить/продать какой-либо актив (товар, ценная бумага, валюта и др.) в определенный момент времени по заранее обусловленной цене.

При этом Обязанность по исполнению опциона ложится на его продавца, который может выступать как покупателем (put option), так и продавцом (call option) базового актива. В то время как покупатель, имея опцион, имеет право не использовать его.

По времени исполнения выделяются следующие типы инструмента:

- европейский может быть исполнен только в последний день срока;
- американский реализуется в любое время до окончания контракта;
- квазиамериканский, который погашается владельцем в определенные временные промежутки (договор предусматривает один или более отрезков).

Также опционы делятся на два главных класса: CALL и PUT: Опцион колл дает его покупателю право на покупку базового актива по фиксированной цене в определенное время. Соответственно, опцион пут дает право на продажу актива по заданной цене в заданное время.

Также стоит отметить, что приобретая опцион, покупатель платит продавцу премию — денежное вознаграждение за право покупки (продажи) базового актива по опционному договору — и именно эту стоимость рассчитывает «модель Блэка-Шоулза»

Самый понятный пример опциона из реальной жизни:

Рассмотрим такую ситуацию: Человек N приходит в автосалон и ему нравится какая-то машина с ценой X, но на данный момент у него не хватает денежных средств на ее приобретение, поэтому дилерская компания предлагает такую сделку:

N вносит какую-то сумму х(которая навсегда остается у автосалона), за которую компания будет готова не продавать данную машину Т времени, в течение которого человек может забрать данный автомобиль по цене Х. Но если N не воспользуется своим правом в течение времени Т, то компания будет вправе продать машину другому покупателю. (Не путать с предоплатой, так как в данном случае х не входит в стоимость автомобиля)

3 Слайд: вывод модели Блэка-Шоулза

Уравнение Блэка-Шоулза является дифференциальным уравнением в частных производных, которое описывает цену опциона колл во времени.

Вывод модели основывается на концепции безрискового хеджирования. Покупая акции и одновременно покупая опционы PUT на эти акции, инвестор может конструировать безрисковую позицию, где прибыли по акциям будут точно компенсировать убытки по опционам, и наоборот.

Безрисковая хеджированная позиция должна приносить доход по ставке, равной безрисковой процентной ставке, в противном случае существовала бы возможность извлечения арбитражной прибыли и инвесторы, пытаясь получить преимущества от этой возможности, приводили бы цену опциона к равновесному уровню, который определяется моделью.

Вывод формулы:

Предполагается, что стоимость опциона зависит только от цены акции и времени, а также переменных, которые считаются константами. w(x,t) – значение опциона, как функция цены акции x и времени t. Поэтому

количество опционов, которые должны быть проданы по отношению к купленной акции равно: $\frac{1}{(w(x,t)'_x)}.$ (если цена акции изменить на $\Delta x \Rightarrow$ цена опциона измениться на $w(x,t)'_x \cdot \Delta x$, а количество опционов измениться на Δx . Что показывает компенсацию изменения цены стоимостью опционов.

Так как x и t постоянно изменяются, то поддержание хеджируемой позиции должно быть непрерывным.

В целом, если на одну акцию имеет $\frac{1}{w(x,t)_x'}$ опционов, то количество капитала в позе: $x-\frac{w}{w(x,t)_x'}$.

Изменение капитала в хеджируемой за короткий интервал $\Delta t:\Delta x-\frac{\Delta w}{w(x,t)_x'}$

Так как позиция изменяется непрерывно, то расчитать $\Delta w = w(x + \Delta x, t + \Delta t) - w(x, t)$:

$$\Delta w = w_x' \Delta x + \frac{1}{2} (w_x')_x' v^2 x^2 \Delta t + w_t' \delta t$$

где v^2 – коэффицент доходности акций.

Подставим полученное выражение в формулу изменения капитала за Δt и получим:

 $-\left(\frac{1}{2}(w_x')_x'v^2x^2 + w_t'\right)\frac{\Delta t}{w_x'}$

Так как доходность капитала в хеджирумой позиции определена, то возвратный коэффицент будет равен $r\Delta t$, чтобы выполнялось условие доходности только по процентной ставке r. Следовательно изменение капитала должно быть равно значиню капитала, умноженного на $r\Delta t$:

$$-\left(\frac{1}{2}(w'_x)'_x v^2 x^2 + w'_t\right) \frac{\Delta t}{w'_x} = (x - \frac{w}{w'_x}) \cdot r \Delta t$$

делим на Δt с обеих сторон и получаем дифференцальное уравнение для стоимости опциона:

$$w'_{t} = rw - rxw'_{x} - \frac{1}{2}v^{2}x^{2}(w'_{x})'_{x}$$

Берем t^* – дата экспирации опциона, c – цена исполнения опциона, тогда знаем такие ограничения:

$$\begin{cases} w(x, t^*) = x - c, & x \ge c \\ 0, & x < c \end{cases}$$

Далее делается замена:

$$w(x,t) = e^{r(t-t^*)}y\left[\left(\frac{2}{v^2}\right)\left(r - \frac{1}{2}v^2\right)\left[ln(\frac{x}{c}) - \left(r - \frac{1}{2}v^2\right)(t-t^*)\right], -\left(\frac{2}{v^2}\right)\left(r - \frac{1}{2}v^2\right)^2(t-t^*)\right]$$

где y – функия от двух переменных.

И после замены дифференцальное уравнение будет выглядеть так:

$$y'_t = (y'_x)'_x$$

А ограничения будут выглядеть так:

$$\begin{cases} y(u,0) = 0, & u < 0 \\ c \left[e^{u \left(\frac{1}{2}v^2\right) / \left(r - \frac{1}{2}v^2\right)} - 1 \right], & u \ge 0 \end{cases}$$

Данное уравнение является физическим уравнением теплопередачи. Его решение:

$$y(u,s) = \frac{1}{\sqrt{2\pi}} \int_{\frac{-u}{\sqrt{2s}}}^{\infty} \left(c \left[e^{(u+q\sqrt{2s})} \left(\frac{1}{2} v^2 \right) / \left(r - \frac{1}{2} v^2 \right) - 1 \right] e^{\frac{-q^2}{2}} dq \right)$$

производим обратную замену, упрощаем и получаем:

$$w(x,t) = xN(d_1) - ce^{r(t-t^*)}N(d_2)$$

$$d_1 = \frac{\ln\left(\frac{x}{c}\right) + \left(r + \frac{1}{2}v^2\right)(t*-t)}{v\sqrt{t^* - t}}$$
$$d_2 = \frac{\ln\left(\frac{x}{c}\right) + \left(r - \frac{1}{2}v^2\right)(t*-t)}{v\sqrt{t^* - t}}$$

Формула Блэка-Шоулза позволяет рассчитать цену опциона колл европейского типа.

 $N(d_1)$ является вероятностью того, что опцион колл окажется «в деньгах», то есть цена базового актива на момент исполнения T будет выше или равна страйку $(S_T \ge K)$. В свою очередь $N(d_2)$ является вероятностью того, что опцион колл окажется «вне денег», то есть $(S_T < K)$.

Есть формула паритета: (A = C - P), где A – акция, C –опцион CALL, P– опцион PUT. где знак "+" – означает покупку, а зна "-" – продажу. Тогда данная формула дает идеальное хеджирование при покупке акции: Нужно продать CALL и купить PUT.

4 Слайд: простое решение для дискретных и непрерывных дивидендов:

Данная модель может быть расширена до расчетов стоимости европейских опционов на акции, или другие инструменты, имеющие выплату дивидендов (только в том случае, когда известен процент дивидендов от стоимости акции):

Рассматривают два случая вычисления стоимости опционов на инструменты с выплатой дивидендов:

1)

Дивиденды выплачиваются дискретно, то есть рассматривается опцион на какую-то одну акцию или на один инструмент, в таком случае становиться известен точный день выплаты дивидендов, что упрощает вычисления стоимости опционов:

В результате выплаты дивидендов цена акции снижается, следовательно цена опциона колл также уменьшается, а цена соответствующего ему опциона пут увеличивается. Чтобы учесть это в формуле текущая спотовая цена акции (S_t) должна быть уменьшена на величину стоимости ожидаемых дивидендов, которые будут выплачены до наступления даты исполнения опциона.

2)

В данном случае рассматриваются опционы на индексы, включающие в себя большое множество компаний, дивиденды по которым выплачиваются в разное время, поэтому делается предположение о непрерывной выплате дивидендов. Вторым факторов в данном вычислении является предположение о постоянной ставке дивидендной доходности. Что в сумме дает следующую формулу: тут слайд

5 Слайд: минусы модели Блэка-Шоулза:

Как и любой математической модели, модель Блэка-Шоулза имеет свои преимущества и недостатки:

- 1. <u>Отсутствие арбитража</u>: Ни один из участников рынка не может получить прибыль за счет разницы цен на один и тот же актив на разных рынках. То есть другими словами, цена актива одинакова на всех рынках.
- **2.** Безрисковая процентная ставка: Любой участник рынка может взять в долг или одолжить любую сумму в любой момент времени под безрисковую процентную ставку.
- **3.** Отсутствие ограничений на торговлю: В любой момент времени у участников рынка есть возможность купить или продать любое количество акций, включая дробное. Также не существует ограничений на сделку short.
- **4.** Отсутствие транзакционных издержек: При осуществлении покупки или продажи участники рынка не несут каких-либо дополнительных затрат, как, например, комиссионные или налоги.
- **5.** <u>Цена актива изменяется случайным образом</u>: Изначально предполагается, что курс акций изменяется случайным образом (подчиняется закону нормального распределения) с постоянным направлением и волатильностью.
- **6.** <u>Отсутствие дивидендов</u>: Предполагается, что по акции, являющейся базовым активом для опциона, не выплачиваются дивиденды.
- 7. Нейтральность к риску: Все участники рынка являются нейтральными по отношению к риску, то есть принимают решение в пользу актива с максимальной доходностью не принимая при этом во внимание фактор риска. Другими словами, если существует два актива с одинаковой доходностью, но разным уровнем риска, нейтральному к риску инвестору будет безразлично какой из них выбрать.

!6 Слайд: какие существуют модели:

Для случаев, когда процент дивидендов от стоимости акции неизвестен, применяют следующие модели для вычисления стоимости опционов:

Модель Ятса (Len Yates): усовершенствованная версия модели Black - Scholes (гораздо более точная, но и более сложная в вычислениях), учитывающая дивиденды и возможность досрочного исполнения. Модель Мертона (Merton): представляет собой усовершенствование модели Black - Scholes и рассматривает динамический процесс определения процентной ставки и корреляции между ценой базового актива и ценой опциона. Модель обычно используется для оценки европейских опционов на ценные бумаги. Модель

Whaley (Barone-Adesi-Whaley): квадратичная модель ценообразования опционов. Модель Whaley была разработана для оценки американских опционов. Она оценивает стоимость досрочного погашения американского опциона. Используется для коррекции вычислений по моделям Black-Scholes.

7 Слайд: модель Норина Вольфсона:

В данной модели используются точно такие же предположения (минусы), что и в модели Блэка-Шоулза, за исключением трех факторов:

- **1.** Данная модель может учитывать выплату дивидендов по инструменту, что дает ей более широкое применение.
- 2. Выплата дивидендов считается непрерывной.
- **3.** Модель учитывает возможное уменьшение стоимости опциона до момента его исполнения. Модель имеет ту же форму и использует те же определения переменных, которые использовались в модели Блэка-Шоулза, за исключением некоторых различий:

$$V = \frac{K}{K+k} \left[Se^{-qt} \cdot K(d_1) - Xe^{rt} \cdot K(d_2) \right]$$

К – количество выпущенных обыкновенных акций.

k – количество обыкновенных акций, которые будут выпущены.

q – постоянный дивидендный доход.

$$d_1 = \frac{\ln\left(\frac{S}{X}\right) + (r - q + 0.5 \cdot \sigma^2)T}{\sigma\sqrt{T}}$$

$$d_2 = d_1 - \sigma\sqrt(T)$$

где S — текущая рыночная цена базового актива;

X — цена исполнения опциона;

r — безрисковая процентная ставка;

 σ – среднее квадратическое отклонение цены акции;

T — период времени до исполнения опциона, выраженный как доля года (количество дней до даты истечения/365);

8 Слайд: Аналитическое решение для американских CALL опционов с одним дискретным дивидендом:

В случае, когда актив выплачивает ровно один известный дискретный дивиденд в течение срока действия опциона, точное решение уравнения Блэка-Шоулза для американского колл опциона было найдено Роллом, Geske и Уэйли. Это возможно, потому что экспирации опционов до окончания их действия оптимальны только в один момент времени (а именно на дату выплаты дивидендов).

Для дивидендов q и времени их выплаты t' цена CALL выражается таким образом: $V = \left(S - qe^{-r(t'-t)}\right) \left(N(b_1) + M\left(a_1, -b_1, -\sqrt{\frac{t'-t}{T-t}}\right)\right) - Xe^{-r(T-t)}M\left(a_2, -b_2, -\sqrt{\frac{t'-t}{T-t}}\right) - (X-q)e^{-r(t'-t)}N(b_2)$ $a_1 = \frac{ln\left(\frac{S-qe^{r(t'-t)}}{X}\right) + (r+\frac{\sigma^2}{2})(T-t)}{\sigma\sqrt(T-t)}$ $a_2 = a_1 - \sigma\sqrt{T-t}$ $b_1 = \frac{ln\left(\frac{S-qe^{r(t'-t)}}{I}\right) + (r+\frac{\sigma^2}{2})(t'-t)}{\sigma\sqrt(t'-t)}$ $b_2 = b_1 - \sigma\sqrt{t'-t}$

где M(x,y,p) – кумулятивное двумерное нормальное распределение I – критическая цена акции до выплаты дивидендов, которая решает уравнение $V_{call}(I,X,T-t')=I+q-X$,

где V — стоимость европейского опциона CALL с ценой акции I и временем до погашения $T-t^{\prime}.$

Если $q \leq X(1-e^{-r(T-t')})$ или $I=\infty$, то будет не оптимально эксперировать опцион заранее.

Тогда цена данного опциона равна цене эквивалентного европейского опциона. Если в течение срока действия опциона существует несколько ожидаемых дивидендов, то в большинстве случаев оптимальным является только раннее исполнение в последнюю дату выплаты дивидендов. Таким образом, в качестве приближения можно использовать формулу Ролла, Geske и Уэйли, рассматривая все дивиденды.

!9 Слайд: две аппроксимации:

Арргохіmation of Barone-Adesi and Whaley Бароне-Адези и Уэйл формула приближения. Здесь стохастическое дифференциальное уравнение (то есть какая-то часть уравнения – явлется случайными величинами) (работающее для стоимости любого из деривативов) делится на две составляющие: стоимость европейского опциона и премия за досрочное исполнение. С некоторыми допущениями, будет получено квадратное уравнение, которое приближает решение для цены за досрочное исполнение. Это решение включает в себя поиск критического значения S^* , которое не отличается при ранней экспирации и удержании до даты экспирации.

$$V_{call} = \begin{cases} V_{call}(S, X, T) + A_1 \left(\frac{S}{S^*}\right)^{q_1}, & S < S^* \\ S - X, & S \le S^* \end{cases}$$

где:

$$A_{1} = \frac{S^{*}}{q_{1}} \left(1 - e^{-q(T-t)} N(d_{1}(S^{*})) \right)$$

$$d_{1}(S) = \frac{\ln\left(\frac{S}{X}\right) + (r - q + \frac{\sigma^{2}}{2})(T - t)}{\sigma\sqrt{T - t}}$$

$$q_{1} = \frac{-\left(\frac{2(r - q)}{\sigma^{2} - 1}\right) + \sqrt{\left(\frac{2(r - q)}{\sigma^{2} - 1}\right)^{2} + \frac{8r}{\sigma^{2}(1 - e^{-r(T - t)})}}}{2}$$

s* – цена, для которой выполнено следующее ограничение:

$$S^* - X = V_{call}(S^*, X, T) + \frac{1 - e^{-q(T-t)}N(d_1(S^*))S^*}{q_1}$$

Также цена для PUT:

$$V_{put} = \begin{cases} V_{put}(S, X, T) + A_2 \left(\frac{S}{S^{**}}\right)^{q_2}, & S < S^{**} \\ S - X, & S \le S^{**} \end{cases}$$

где:

$$A_2 = -\frac{S^{**}}{q_2} \left(1 - e^{-q(T-t)} N(-d_1(S^{**})) \right)$$

$$q_2 = \frac{-\left(\frac{2(r-q)}{\sigma^2 - 1}\right) - \sqrt{\left(\frac{2(r-q)}{\sigma^2 - 1}\right)^2 + \frac{8r}{\sigma^2(1 - e^{-r(T-t)})}}}{2}$$

 s^{**} – цена, для которой выполнено следующее ограничение:

$$S^{**} - X = V_{put}(S^{**}, X, T) - \frac{1 - e^{-q(T-t)}N(d_1(S^{**}))S^{**}}{q_2}$$

Арргохітаtion of Bjerksundand Stensland — Bjerksund и Stensland обеспечивают приближение, основанное на стратегии экспирации, соответствующей триггерной цене. Здесь, если цена базового актива больше или равна цене определенного триггера, его оптимально экпирировать, значение должно быть равно S - X, в противном случае опцион «сводится к: (i) европейскому call-and-out коллу» опциоу и (ii) скидка, полученная на дату knock-out, если опцион knocked out до даты погашения ». Формула легко модифицируется для оценки опциона пут, используя паритет пут-колл. Это приближение является недорогим в вычислительном отношении, и метод является быстрым, и есть свидетельства того, что это приближение может быть более точным при оценке вариантов с длинными датами, чем Barone-Adesi и Whaley.

Данное приближение может быть записано так: $V_{call} = \alpha S^{\beta} - \alpha \Phi(S,T-t,\beta,I,I) + \Phi(S,T-t,1,I,I) - \Phi(S,T-t,1,X,I) - X\Phi(S,T-t,0,I,I) + X\Phi(S,T-t,0,X,I)$ где

$$\alpha = (I - X)I^{-\beta}$$

$$\beta = \left(\frac{1}{2} - \frac{b}{\sigma^2}\right) + \sqrt{\left(\frac{b}{\sigma^2} - \frac{1}{2}\right)^2 + 2\frac{r}{\sigma^2}}$$
$$b = r - q$$

А функция Ф выражается так:

$$\Phi(S, T, \gamma, H, I) = e^{\lambda} S^{\gamma} \left(N(d) - \left(\frac{I}{S}\right)^k N \left(d - \frac{2ln(I/S)}{\sigma\sqrt{T}}\right) \right)$$

$$\lambda = \left(-r + \gamma b + \frac{1}{2}\gamma(\gamma - 1)\sigma^2\right) T$$

$$d = -\frac{ln(S/H) + (b + (\gamma - \frac{1}{2})\sigma^2)T}{\sigma\sqrt{T}}$$

$$k = \frac{2b}{\sigma^2} + (2\gamma - 1)$$

$$I = B_0 + (B_{\infty} - B_0) \left(1 - e^{h(T)}\right)$$

$$h(T) = -(bT + 2\sigma\sqrt{T}) \left(\frac{B_0}{B_{\infty - B_0}}\right)$$

$$B_{\infty} = \frac{\beta}{\beta - 1} X$$

$$B_0 = \max\left(X, \frac{r}{q}X\right)$$

Формула опциона PUT может быть записана через фморулу паритета таким образом:

$$V_{put}(S, X, T, r, q, \sigma) = V_{call}(S, X, T, q, q - r, \sigma)$$

!10 Слайд: Обзор на реальных данных:

Нами была проделана работа обработки данных с сайта: https://ycharts.com, в ходе которой мы смогли взять реальные данные на торгующиеся инструменты, а также получить информацию о влиянии дивидендов на опционы.

После чего мы смогли аккумулировать полученные данные и составить следующую таблицу: (описать словами)

	company	ticker	dividend release day	stock price day before	stock price on release day	stock price day after	dividend payment	put options day before	put options on release day	put options day after
0	American Airlines-US	AAL	22.01.2020	27.20	29.24	26.66	increased	decreased	decreased	increased
1	Occidental Petroleum	OXY	11.02.2020	40.50	42.18	38.52	increased	decreased	decreased	increased
2	Entergy	ETR	31.01.2020	131.72	130.82	129.94	decreased	decreased	increased	increased
3	FedEx	FDX	14.02.2020	161.48	162.22	161.28	not changed	decreased	decreased	increased
4	American Electric Power	AEP	22.10.2019	94.48	94.26	93.44	decreased	decreased	increased	increased
5	Pacific Gas and Electric Company	PCG	19.09.2017	69.65	69.76	69.42	not changed	decreased	increased	increased

Рис. 1: Информация об изменениях стоимости опционов в зависимости от дивидендов

11: Итоги, выводы:

Все представленные модели приближают стоимость опциона к «идеальной» цене в зависимости от выплаты дивиденов. То есть дивиденды по инструменту будут влять негативно на цену CALL опционов и позитивно на опционы PUT. Но так как все модели — это только приближения к нужной цене, то иногда происходят ошибки, одной из самых популярных является сильная погрешность при расчете стоимости опционов, экспирация которых будет через 1-2 недели.

12: Спасибо за внимание так сказать

вот ссылка на все данные из презентации: $https://github.com/PankillerG/differential_equations_project$

!13: Источники:

- ${\bf 1.} \quad https://bcs-express.ru/novosti-i-analitika/kak-ustroeny-optsiony-i-chto-oni-iz-sebia-predstavliaiut$
- 2. https://allfi.biz/model-bljeka-shoulza/
- **3.** $http://www.sfu.ca/kkasa/BlackScholes_73.pdf$
- 4. https://ycharts.com