Normalverteilung

Die Normalverteilung oder Gauß-Verteilung ist eine der wichtigsten Verteilungen in der Stochastik und Statistik.

Definition
Dichtefunktion
Definition
Hat eine Zufallsgröße
X den Erwartungswert
μ, Varianz
σ
2
und die Wahrscheinlichkeitsdichte
f(x)=
σ
2π
1
e
-
2
1
(
σ
х-µ

)
2
,
so heißt sie normalverteilt, mit den Parametern
σ und
μ , kurz auch
$N(\mu,\sigma$
2
)-verteilt. Man schreibt
$X \sim N(\mu, \sigma$
2
).
Für
μ =0 und
σ=1 heißt die Zufallsgröße standardnormalverteilt.
Im Graphen rechts ist die Funktion der Standardnormalverteilung abgebildet. Er heißt allgemeir Gaußsche Glockenfunktion.
Verteilungsfunktion
Die Verteilungsfunktion einer Normalverteilung ist gegeben durch
F(x)=
σ
2π

-∞

ſ

Х

е

_

2

1

(

σ

t-µ

)

2

dt

Substituiere

z=

σ

t-µ

.

F(x)=

2π

1

-∞

ſ

σ

x-µ

е

_

2

1

Z

2

dz

=Ф(

σ

x-µ

)

Ф(х)=

2π

1

-∞
ſ
x
е
_
2
1
t
2
dt
Φ ist die Verteilungsfunktion der Standardnormalverteilung.
Die Werte der Standardnormalverteilung lassen sich im Tafelwerk der Stochastik nachlesen.
Eigenschaften
$N(\mu,\sigma$
2
hat Erwartungswert
μ.
hat Standardabweichung
σ.

ist symmetrisch zur Symmetrieachse
y=μ.
ist nie 0.
Für
Φ(x):
$\Phi(-x)=1-\Phi(x)$
Annäherung der Binomialverteilung durch die Normalverteilung
Für große
n kann die Binomialverteilung durch die (Standard-)Normalverteilung angenähert (approximiert) werden. Ist
$X \sim B(n;p;k)$ so gilt:
P(X≤k)≈Φ(
σ
k+0,5-µ
) und
P(I≤X≤k)≈Φ(
σ
k+0,5-μ
)-Ф(
σ
Ι-0,5-μ

```
)
Beachte
Wie bei jeder Binomialverteilung ist
der Erwartungswert
µ=n∙p
die Standardabweichung
σ=
σ
2
Var(x)
n \cdot p \cdot (1-p)
Nur bei großen Zahlen ist der Fehler durch die Näherung klein.
Achte darauf
+0,5 und
-0,5 richtig in die Formel einzusetzen.
```

Anwendung

Zufallsgrößen, bei denen die meisten Werte innerhalb eines gewissen Bereichs liegen und wenige Ausreißer nach oben und unten haben, sind meistens annähernd normalverteilt. Wie zum Beispiel bei
der Größe von Menschen
dem Gewicht von Kaffeepackungen
Messfehlern von Experimenten
Übungsaufgaben
Eine Maschine produziert 500 mm lange Schrauben mit einer Standardabweichung von 10 mm. Die Länge der Schrauben kann als normalverteilt angesehen werden.
Berechne die Wahrscheinlichkeit dafür, dass eine Schraube kürzer ist als 485 mm.
▼ Lösung ausblenden
Für diese Aufgabe benötigst Du folgendes Grundwissen: Normalverteilung
Die Länge der Schrauben ist normalverteilt mit Erwartungswert
μ=500 und Standardabweichung
σ =10. Gesucht ist die Wahrscheinlichkeit dafür, dass eine Schraube kürzer ist als 485 mm, also
P(X<485). Da Randwerte die Wahrscheinlichkeit nicht ändern ist
P(X<485)=P(X≤485).
P(X≤k)
≈
Φ(
σ
k-µ

```
\downarrow
```

Setz die Werte ein.

```
P(X≤485)
≈
Φ(
10
485-500
```

Vereinfache.

Lies den Wert im Tafelwerk der Stochastik ab.

≈

1-0,93319=0,06681

Die Wahrscheinlichkeit dafür, dass eine Schraube kürzer als

4,85cm ist, beträgt also etwa

6,7 %