CSE330 Assignment-2 [Spring-2024] [CO4]

Instructions for submission: [Handwritten submission]

- Write your Name, Student_ID, Section No. in the cover page of the assignment.
- Mark the answers properly for each corresponding question.

1. Consider the following table of data points/nodal points:

Time t (sec)	Velocity (ms^-1) v(t)
2	10
4	20
6	25

- **a. [4+1 marks]** Find an interpolating polynomial of velocity that goes through the above data points by using **Vandermonde Matrix method**. Also compute an approximate value of acceleration at Time, **t = 7 sec**.
- **b.** [4 marks] Find an interpolating polynomial of velocity that goes through the above data points by using Lagrange method.
- **c.** [2 marks] If a new data point is added in the above scenario, which method should you use in finding a new interpolating polynomial? Also what will be the degree of that new polynomial?

2. Read the following and answer accordingly:

- a. (4 marks) Consider the nodes $[-\pi/2, 0, \pi/2]$. Find an interpolating polynomial of appropriate degree by using Newton's divided-difference method for $f(x) = x \sin(x)$.
- **b.** (1 mark) Use the interpolating polynomial to find an approximate value at node = $\pi/4$.
- c. (4 marks) Add a new node π to the above nodes, and find the interpolating polynomial of appropriate degree.
- 3. [5 marks] Derive the interpolating polynomial for the function $f(x) = x \ln x$ at the nodes (x0 = 1, x1 = 3) using the **Lagrange method**. Keep up to 4 significant figures.
- **4.** [5 marks] The function $f(x) = e^{3x} e^{-3x}$ has been interpolated at the nodes at (-1, 0, 1) using Vandermonde matrix method. Evaluate the upper bound of the interpolation error for the interval [-1.5, 1.5] using Cauchy's theorem. Keep up to 4 significant figures.