

Instituto de Ciências Exatas Departamento de Ciência da Computação

Análise Quantitativa sobre o Desempenho na Indexação de Big Geospatial Data em Ambiente de Nuvem Computacional

João Bachiega Jr.

Seminário da Disciplina Métodos Quantitativos em Computação

SUMÁRIO

- 1. Introdução
- 2. Spatial Cloud Computing
- 3. SpatialHadoop
- 4. Indexação para Big Geospatial Data
- 5. Testes e Resultados
- 6. Conclusão

OBJETIVO

Fazer uma análise quantitativa sobre o desempenho da tarefa de indexação para grandes volumes de dados geográficos, executados em ambiente de nuvem computacional, realizando comparações entre tipos diferentes de indexações e entre configurações distintas de cluster.

Spatial Cloud Computing

É um *framework* que está incorporado no *Hadoop*, ou seja, implementa as funcionalidades espaciais no interior do núcleo do *Hadoop*, tornando-se mais eficiente no processamento de consultas espaciais.

INFRAESTRUTURA

BASES DE DADOS

Dataset	Conteúdo	Qtde. Registros	
BUILDINGS	Contornos de construções no mundo	115 milhões	
WAYS	Estradas mapeadas no mundo	164 milhões	
RAILS	Ferrovias mapeadas no mundo	181 milhões	
OBJECTS	Objetos geográficos mapeados no mundo	263 milhões	

TESTE 1: INTERVALO DE CONFIANÇA

OBJETIVO: Avaliar se o desempenho das indexações Grid e e R-Tree são significativamente diferentes.

Dados Coletados

Experimento	Grid (minutos)	R-Tree (minutos)
1	56	56
2	58	57
3	56	56
4	59	57
5	55	56

Base: Rails – 181 milhões de registros Cluster com 4 datanodes

Resultados Obtidos

Métrica	Grid	R-Tree	
Média	56,80	56,40	
Desvio Padrão	1,64	0,55	
Diferença das médias	0,40		
Desvio padrão das diferenças (s)	0,77		
IC	0,40	± 1,65	

TESTE 2: REGRESSÃO LINEAR

OBJETIVO: Estabelecer um modelo de regressão linear entre o tempo de execução e o tamanho da base de dados.

Dados Coletados

Base	Registros	Exp	erim	entos	(em	seg)
de Dados	em milhões	1	2	3	4	5
Buildings	115	51	50	51	50	50
Ways	164	76	76	76	77	75
Rails	181	79	79	80	80	79
Objects	263	86	87	87	87	87

Indexação Grid
Cluster com 2 datanodes

Resultados Obtidos

$$n = 4$$
 $b_0 = 32, 25$ $\overline{x} = 180, 75$ $SST = 751, 07$ $\overline{y} = 73, 15$ $SSE = 169, 04$ $\Sigma xy = 55460, 00$ $R2 = 0, 77$ $\Sigma x^2 = 142051, 00$ $MSE = 84, 52$ $\Sigma x = 723, 00$ $se = 9, 19$ $\Sigma y = 292, 60$ $t = 1, 886$ $\Sigma y^2 = 22155, 00$ $s_{b_0} = 16, 25$ $s_{b_1} = 0, 23$ $s_{b_1} = 0, 09$

TESTE 2: REGRESSÃO LINEAR

Mas...

TESTE 2: REGRESSÃO LINEAR

Mas...

TESTE 3: FATORIAL 2²

OBJETIVO: Determinar qual fator é mais significativo para o tempo de indexação.

Dados Coletados

	2 Datanodes (-1)	4 Datanodes (+1)
Baixo (-1)	59	40
Alto (+1)	90	56

Resultados Obtidos

$$q_0 = 61, 25$$

 $q_A = -13, 25$
 $q_B = 11, 75$
 $q_{AB} = -3, 75$

O fator (X_A) , que representa o número de *datanodes*, é o que tem o maior impacto (+/-13,25).

- A indexação tem papel fundamental no desempenho de aplicações que processam Big Geospatial Data;
- Não existem diferenças significativas entre as indexações *Grid* e *R-Tree*;
- Não foi possível estabelecer um modelo linear que seja capaz de estimar o tempo da indexação de uma base de dados geográfica considerando a quantidade de registros a ser processado;
- Na análise do Projeto Fatorial 2², a variação da quantidade de *datanodes* em um cluster *SpatialHadoop* é significativo para o tempo da indexação.

Perguntas e Feedback

https://github.com/joaobachiegajr/MetQuant