Math 142: Section 11.1 - Notes

1 Parametrization of Plane Curves

Parametric Equations

FIGURE 11.1 The curve or path traced by a particle moving in the *xy*-plane is not always the graph of a function or single equation.

Figure 11.1 shows the path of a moving particle in the xy-plane. We can sometimes describe such a path by a pair of equations, x = f(t) and y = g(t), where f and g are continuous functions. Equations like these describe more general curves than those described by a single function, and they provide not only the graph of the path traced out but also the location of the particle (x, y) = (f(t), g(t)) at any time t.

Definition: If x and y are given as functions

$$x=f(t), \qquad y=g(t)$$
 over an interval I of t -values, then the set of points $(x,y)=(f(t),g(t))$ defined by these equations is a _______. The equations are _______ for the curve. The variable t is a ______ for the curve, and its domain I is the ______. If I is a closed interval, $a \leq t \leq b$, the point $(f(a),g(a))$ is the ______.

of the curve and (f(b), g(b)) is the _____

Example 1 Sketch the curve defined by the parametric equations

$$x = t^2,$$
 $y = t + 1,$ $-\infty < t < \infty$

Example 2 Identify geometrically the curve in Example 1 by eliminating the parameter t and obtaining an algebraic equation in x and y.

Example 3 Graph the parametric curves

a)
$$x = \cos t$$
.

$$y = \sin t$$
,

$$0 < t < 2\pi$$

a)
$$x = \cos t$$
, **b)** $x = a \cos t$,

$$y = \sin t,$$

$$y = a \sin t,$$

$$\begin{array}{c} 0 \leq t \leq 2\pi \\ 0 \leq t \leq 2\pi \end{array}$$

Example 4 The position P(x,y) of a particle moving in the xy-plane is given by the equations and parameter interval

$$x = \sqrt{t},$$
 $y = t,$ $t \ge 0$

Identify the path traced by the particle and describe the motion.

Example 6 Find a parametrization for the line through the point (a, b) having slope m.

Example 7 Sketch and identify the path traced by the point P(x,y) if

$$x = t + \frac{1}{t},$$

$$x = t + \frac{1}{t}, \qquad \qquad y = t - \frac{1}{t}, \qquad \qquad t > 0.$$

$$t > 0$$
.