Denavit-Hartenberg Bedingungen

• Zn-1 Achse liegt entlang (auf) der Bewegungsachse des n-ten Gelenks

• Xn-1 Achse ist Kreuzprodukt zwischen Zn-1 und Zn Achsen

 Das Koordinatensystem wird durch die Yn Achse so ergänzt, dass ein rechtshändiges System entsteht

• Für das erste Gelenk wird die x-Achse vom zweiten Gelenk übernommen

Anmerkungen zum Verständnis

v1 x v2 ergibt ein Rechtssystem mit v1 als x-Achse und v2 als y-Achse
 v2 x v1 ergibt ein Rechstssystem mit v2 als x-Achse und v1 als y-Achse

 Die Rotation um eine Koordinatenachse erfolgt bei positiven Winkeln immer in mathematisch positive Richtung (entgegen dem Uhrzeigersinn) und umgekehrt

• Ich nehme dies nur der Volständigkeit halber auf, da dies selbstverständlich jedem Beteiligten bekannt ist :)

Allgemeines Vorgehen

Die eigentliche DH-Transformation vom Objektkoordinatensystem (OKS) T_{n-1} in das OKS T_n besteht in der Hintereinanderausführung folgender Einzeltransformationen:

• einer Rotation θ_n (Gelenkwinkel) um die z_{n-1} -Achse, damit die x_{n-1} -Achse parallel zu der x_n -Achse liegt

$$\mathrm{Rot}(z_{n-1}, heta_n) = egin{pmatrix} \cos heta_n & -\sin heta_n & 0 & 0 \ \sin heta_n & \cos heta_n & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

ullet einer Translation d_n (Gelenkabstand) entlang der z_{n-1} - Achse bis zu dem Punkt, wo sich z_{n-1} und x_n schneiden

$$\operatorname{Trans}(z_{n-1}, d_n) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & d_n \ 0 & 0 & 0 & 1 \end{pmatrix}$$

ullet einer Translation a_n (Armelementlänge) entlang der x_n -Achse, um die Ursprünge der Koordinatensysteme in Deckung zu bringen

$$\operatorname{Trans}(x_n,a_n) = egin{pmatrix} 1 & 0 & 0 & a_n \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

ullet einer Rotation $lpha_n$ (Verwindung) um die x_n -Achse, um die z_{n-1} -Achse in die z_n -Achse zu überführen

$$\mathrm{Rot}(x_n,lpha_n) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & \coslpha_n & -\sinlpha_n & 0 \ 0 & \sinlpha_n & \coslpha_n & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Matrix einer Transformation

In Matrixschreibweise lautet die Gesamttransformation dann (von links nach rechts zu interpretieren):

$$^{n-1}T_n = \operatorname{Rot}(z_{n-1}, \theta_n) \cdot \operatorname{Trans}(z_{n-1}, d_n) \cdot \operatorname{Trans}(x_n, a_n) \cdot \operatorname{Rot}(x_n, \alpha_n)$$

$$= \begin{pmatrix} \cos \theta_n & -\sin \theta_n \cos \alpha_n & \sin \theta_n \sin \alpha_n & a_n \cos \theta_n \\ \sin \theta_n & \cos \theta_n \cos \alpha_n & -\cos \theta_n \sin \alpha_n & a_n \sin \theta_n \\ 0 & \sin \alpha_n & \cos \alpha_n & d_n \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Denavit-Hartenberg-Parameter des Roboters

Transformation (n)	Theta (Drehgelenksw inkel°)	d (Länge Drehgelenk mm)	a (Länge Gelenkarm mm)	Alpha (Rotationswink el Zn-1 -> Zn °)
1	-1 * Theta0	675	260	270 (-90)
2	Theta1	0	680	0
3	Theta2 - 90	0	-35	90
4	Theta3	-670	0	270 (-90)
5	Theta4	0	0	90
6	Theta5	-115 (-158 bei KR 16-2)	0	180

Die Parameter der Transformation n dienen der Transformation von KS Tn-1 zu KS Tn

Die Notwendigkeit das Vorzeichen von Theta zu ändern resultiert aus der unterschiedlichen Definition der Drehrichtung beim Roboter und im DH Model

Insgesamt

• Transformationsmatritzen für alle Transformationen n-1 -> n mit Hilfe ihrer Denavit-Hartenberg-Koeffizienten aufstellen

• Die Transformationsmatritzen multiplizieren um Transformationen zu verketten

• Richtung beachten: n -> n-1 mit
$$= \begin{pmatrix} \cos\theta_n & \sin\theta_n & 0 & -a_n \\ -\sin\theta_n\cos\alpha_n & \cos\theta_n\cos\alpha_n & \sin\alpha_n & -d_n\sin\alpha_n \\ \sin\alpha_n\sin\theta_n & -\cos\theta_n\sin\alpha_n & \cos\alpha_n & -d_n\cos\alpha_n \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Euler Winkel

- Euler Winkel, auch Roll-Nick-Gier Winkel dienen der Überführung eines erdfesten - in ein körperfestes System unter Verwendung der Schnittgeraden der xy- und XY-Ebenen
- Die Schnittgerade N entspricht z x Z
- α (auch ϕ) ist der Winkel zwischen x und N, gemessen in Richtung der y-Achse
- β (auch θ) ist der Winkel zwischen z- und Z-Achse
- γ (auch ψ) ist der Winkel zwischen N und der X-Achse

Roll-Nick-Gier-Winkel

- Synonym für die Eulerwinkel werden die Namen Roll Nick und Gier Winkel verwendet
- Im erdfesten System wird der Gierwinkel ψ gemessen. Durch eine Rotation um die z-Achse um diesen Winkel wird die y-Achse zur Knotenachse N(y'). $(-\pi < \psi <= \pi)$
- Der in der xy-Ebene gemessene Nickwinkel θ wird um die Knotenachse N(y') gedreht. Somit entsteht die körperfeste X-Achse. (- $\pi/2 < \theta <= \pi/2$)
- Der Rollwinkel ϕ beschreibt die Drehung um die körperfeste X-Achse. So entstehen die körperfesten Y- und Z-Achsen. $(-\pi < \phi <= \pi)$
- Alle Drehungen erfolgen im mathematisch positiven Sinn (gegen den Uhrzeigersinn)

Berechnung der Winkel aus einer Rotationsmatrix

Ist eine Rotationsmatrix gegeben:

$$R = egin{pmatrix} r_{11} & r_{12} & r_{13} \ r_{21} & r_{22} & r_{23} \ r_{31} & r_{32} & r_{33} \end{pmatrix}$$

Dann können die Winkel in der XYZ-Konvention folgendermaßen berechnet werden

$$eta = an2ig(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2}ig)$$
 $lpha = an2(r_{21}/\cos(eta), r_{11}/\cos(eta))$
 $\gamma = an2(r_{32}/\cos(eta), r_{33}/\cos(eta))$

Im allgemeinen Fall ist die gegebene Berechnung gültig. Es gibt jedoch Sonderfälle, die eine Fallunterscheidung notwendig machen.

Bei β = +/- π /2 treten sogenannte Singularitäten auf, was dazu führt, dass es für α und γ unendlich viele Lösungen gibt.

$$\left(egin{array}{ccc} 0 & \sin(\gamma-lpha) & \cos(\gamma-lpha) \ 0 & \cos(\gamma-lpha) & -\sin(\gamma-lpha) \ -1 & 0 & 0 \end{array}
ight)$$

Im Falle von $\beta = \pi/2$

$$\begin{pmatrix} 0 & -\sin(\gamma + \alpha) & -\cos(\gamma + \alpha) \\ 0 & \cos(\gamma + \alpha) & -\sin(\gamma + \alpha) \\ 1 & 0 & 0 \end{pmatrix}$$

Im Falle von $\beta = -\pi/2$

Ist
$$eta=+\pi/2$$
, setzt man zweckmäßigerweise $lpha=0$ $\gamma= an2(r_{12},r_{22})$ Ist stattdessen $eta=-\pi/2$, setzt man analog zweckmäßigerweise $lpha=0$ $\gamma=- an2(r_{12},r_{22})$