${\bf Fourth\text{-}order\ Runge\text{-}Kutta\ Method:}$

$\frac{dy'}{dx} = f(x, y, y')$	$\frac{dy}{dx} = y'$
$y'_{i+1} = y_i + \frac{1}{6} (f_1 + 2f_2 + 2f_3 + f_4) h$	$y_{i+1} = y_1 + \frac{1}{6} (F_1 + 2F_2 + 2F_3 + F_4) h$
$f_1 = f\left(x_i, \ y_i, \ y_i'\right)$	$F_1=y_i'$
$f_2 = f\left(x_i + \frac{1}{2}h, \ y_i + F_1 \frac{1}{2}h, \ y_i' + f_1 \frac{1}{2}h\right)$	$F_2=y_i'+f_1\tfrac{1}{2}h$
$f_3 = f\left(x_i + \frac{1}{2}h, \ y_i + F_2 \frac{1}{2}h, \ y_i' + f_2 \frac{1}{2}h\right)$	$F_3 = y_i' + f_2 \frac{1}{2} h$
$f_4 = f(x_i + h, y_i + F_3 h, y'_i + f_3 h)$	$F_4=y_i^\prime+f_3h$
$y'_{i+1} = y_i + \frac{1}{6} (f_1 + 2f_2 + 2f_3 + f_4) h$	$y_{i+1} = y_i + y_i'h + \frac{1}{6} \{f_1 + f_2 + f_3\} h^2$
$f_1 = f\left(x_i,\ y_i,\ y_i' ight)$	
$f_2 = f\left(x_i + \frac{1}{2}h, \ y_i + y_i'\frac{1}{2}h, \ y_i' + f_1\frac{1}{2}h\right)$	
$f_3 = f\left(x_i + \frac{1}{2}h, \ y_i + y_i'\frac{1}{2}h + f_1\frac{1}{4}h^2, \ y_i' + f_2\frac{1}{2}h\right)$	
$f_4 = f\left(x_i + h, \ y_i + y_i'h + f_2\frac{1}{2}h, \ y_i' + f_3h\right)$	