Package 'mlrv'

July 22, 2024

Type Package

```
Title Long-Run Variance Estimation in Time Series Regression
Version 0.1.2
Description Plug-in and difference-based long-run covariance matrix estimation for time series re-
      gression. Two applications of hypothesis testing are also provided. The first one is for test-
      ing for structural stability in coefficient functions. The second one is aimed at detect-
      ing long memory in time series regression.
License MIT + file LICENSE
Depends R (>= 3.6.0)
Encoding UTF-8
LazyData true
Imports Rcpp,
      numDeriv,
      magrittr,
      foreach,
      doParallel,
      RcppArmadillo,
      mathjaxr,
      xtable,
      stats
LinkingTo Rcpp,
      RcppArmadillo
RoxygenNote 7.2.3
Roxygen list(markdown = TRUE)
Suggests knitr,
      rmarkdown,
      spelling,
      testthat (>= 3.0.0)
VignetteBuilder knitr
RdMacros mathjaxr
Config/testthat/edition 3
Language en-US
```

2 bregress2

R topics documented:

breg	ress2 Simulate data from time-varying time series regression model with
Index	1
	sim_T
	rule_of_thumb
	Qt_data
	Qct_reg
	MV_ise_heter_critical
	MV_critical_cp
	MV_critical
	lrv_measure
	loc_constant
	LocLinear
	hk_data
	Heter_LRV
	heter_gradient
	heter_covariate
	gcv_cov
	bregress2

b change points

Description

Simulate data from time-varying time series regression model with change points

Usage

```
bregress2(nn, cp = 0, delta = 0, type = "norm")
```

Arguments

nn	sample size
ср	number of change points. If cp is between 0 and 1 , it specifies the location of the single change point
delta	double, magnitude of the jump
type	type of distributions of the innovations, default normal. It can also be "t4", "t5" and "t6".

Value

a list of data, x covariates, y response and e error. n = 300 data = bregress2(n, 2, 1) # time series regression model with 2 changes points

gcv_cov 3

gcv_	COV

Generalized Cross Validation

Description

Given a bandwidth, compute its corresponding GCV value

Usage

```
gcv_cov(bw, t, y, X, verbose = 1L)
```

Arguments

bw	double, bandwidth
t	vector, scaled time $[0,1]$
у	vector, response
Χ	matrix, covariates matrix
verbose	bool, whether to print the numerator and denominator in GCV value

Details

Generalized cross validation value is defined as

$$n^{-1}|Y - \hat{Y}|^2/[1 - \operatorname{tr}(Q(b))/n]^2$$

When computing $\operatorname{tr}(Q(b))$, we use the fact that the first derivative of coefficient function is zero at central point The ith diagonal value of Q(b) is actually $x^T(t_i)S_n^{-1}x(t_i)$ where S_n^{-1} means the top left p-dimension square matrix of $S_n(t_i) = X^TW(t_i)X$, $W(t_i)$ is the kernel weighted matrix. Details on the computation of S_n could be found in LocLinear and its reference

Value

GCV value

Examples

```
param = list(d = -0.2, heter = 2, tvd = 0,
  tw = 0.8, rate = 0.1, cur = 1, center = 0.3,
  ma_rate = 0, cov_tw = 0.2, cov_rate = 0.1,
    cov_center = 0.1, all_tw = 1, cov_trend = 0.7)
data = Qct_reg(1000, param)
value <- gcv_cov(0.2, (1:1000)/1000, data$y, data$x)</pre>
```

4 heter_covariate

heter_covariate

Long memory tests for non-stationary time series regression

Description

Test for long memory of e_i in the time series regression

$$y_i = x_i \beta_i + e_i, 1 \le i \le n$$

where x_i is the multivariate covariate process with first component 1, β_i is the functional coefficient, e_i is the error term which can be long memory. In particular, covariates and the error term are allowed to be dependent.

Usage

```
heter_covariate(
  data,
  param = list(B = 2000, lrvmethod = 1, gcv = 1, neighbour = 1, lb = 3, ub = 11, tau_n =
     0.3, type = "KPSS"),
  mvselect = -1,
  bw = 0.2,
  shift = 1,
  verbose_dist = FALSE,
  hyper = FALSE
)
```

Arguments

data a list with the vector y and the matrix x, for example, list(x=...,y=...).

param a list of parameters, list(B =..., lrvmethod =...,gcv = ..., neighbour =..., lb = ...,

 $ub = ..., tau_n = ..., type = ..., ind = ...)$

myselect the value of moving window parameter m. In addition, myselect=-1 provides

data-driven smoothing parameters via Minimum Volatility of the long-run covariance estimator as proposed in Chapter 9 of Politis et al.(1999), while myselect = -2 provides data-driven smoothing parameters via Minimum Volatility of

the bootstrap statistics, see Bai and Wu (2023a).

bw the bandwidth parameter in the local linear regression, default 0.2.

shift modify bw by a factor, default 1.

verbose_dist whether to print intermediate results, i.e., the bootstrap distribution and statis-

tics, default FALSE.

hyper whether to only print the selected values of the smoothing parameters, m and τ_n ,

default FALSE.

Details

param

• B, the number of bootstrap simulation, say 2000 *Irvmethod, the method of long-run variance estimation, Irvmethod = 0 uses the plug-in estimator in Zhou (2010), Irvmethod = 1 offers the debias difference-based estimator in Bai and Wu (2023b), Irvmethod = 2 provides the plug-in estimator using the β , the pilot estimator proposed in Bai and Wu (2023b)

heter_covariate 5

• gcv, 1 or 0, whether to use Generalized Cross Validation for the selection of b, the bandwidth parameter in the local linear regression

- neighbour, the number of neighbours in the extended minimum volatility, for example 1,2 or
- lb, the lower bound of the range of m in the extended minimum volatility Selection
- \bullet ub, the upper bound of the range of m in the extended minimum volatility Selection
- bw_set, the proposed grid of the range of bandwidth selection. if not presented, a rule of thumb method will be used for the data-driven range
- tau_n, the value of τ when no data-driven selection is used. if τ is set to 0, the rule of thumb $n^{-2/15}$ will be used
- type, c("KPSS", "RS", "VS", "KS") type of tests, see Bai and Wu (2023a).
- ind, types of kernels
- 1 Triangular $1 |u|, u \le 1$
- 2 Epanechnikov kernel $3/4(1-u^2)$, $u \le 1$
- 3 Quartic $15/16(1-u^2)^2$, u < 1
- 4 Triweight $35/32(1-u^2)^3$, $u \le 1$
- 5 Tricube $70/81(1-|u|^3)^3$, $u \le 1$

Value

p-value of the long memory test

mlry functions

Heter_LRV, heter_covariate, heter_gradient, gcv_cov, MV_critical

References

Bai, L., and Wu, W. (2023a). Detecting long-range dependence for time-varying linear models. To appear in Bernoulli

Bai, L., and Wu, W. (2023b). Difference-based covariance matrix estimate in time series nonparametric regression with applications to specification tests.

Zhou, Z. and Wu, W. B. (2010). Simultaneous inference of linear models with time varying coefficients. J. R. Stat. Soc. Ser. B. Stat. Methodol., 72(4):513–531.

Politis, D. N., Romano, J. P., and Wolf, M. (1999). Subsampling. Springer Science & Business Media.

Examples

```
param = list(d = -0.2, heter = 2, tvd = 0,
    tw = 0.8, rate = 0.1, cur = 1,
    center = 0.3, ma_rate = 0, cov_tw = 0.2,
    cov_rate = 0.1, cov_center = 0.1, all_tw = 1, cov_trend = 0.7)
data = Qct_reg(1000, param)
### KPSS test B
heter_covariate(data, list(B=20, lrvmethod = 1,
gcv = 1, neighbour = 1, lb = 3, ub = 11, type = "KPSS"), mvselect = -2, verbose_dist = TRUE)
```

6 heter_gradient

heter_gradient

Structural stability tests for non-stationary time series regression

Description

Test for long memory of e_i in the time series regression

$$y_i = x_i \beta_i + e_i, 1 \le i \le n$$

where x_i is the multivariate covariate process with first component 1, β_i is the coefficient, e_i is the error term which can be long memory. The goal is to test whether the null hypothesis

$$\beta_1 = \ldots = \beta_n = \beta$$

holds. The alternative hypothesis is that the coefficient function β_i is time-varying. Covariates and the error term are allowed to be dependent.

Usage

heter_gradient(data, param, mvselect = -1, verbose_dist = FALSE, hyper = FALSE)

Arguments

1. 4	11 / 1/1 /1	(1.1	/ · · · · · · · · · · · · · · · · · · ·
data	a list with the vector	v (response)) and the matrix x ((covariates), for example,

list(x=...,y=...).

param a list of parameters, list(B =..., lrvmethod =...,gcv = ..., neighbour =..., lb = ...,

 $ub = ..., tau_n = ..., type = ..., ind = ...)$

myselect the value of moving window parameter m. In addition, myselect=-1 provides

data-driven smoothing parameters via Minimum Volatility of the long-run covariance estimator, while myselect = -2 provides data-driven smoothing param-

eters via Minimum Volatility of the bootstrap statistics.

verbose_dist whether to print intermediate results, i.e., the bootstrap distribution and statis-

tics, default FALSE.

hyper whether to only print the selected values of the smoothing parameters, m and τ_n ,

default FALSE.

Details

param

- B, the number of bootstrap simulation, say 2000
- Irvmethod the method of long-run variance estimation, Irvmethod = -1 uses the ols plug-in estimator as in Wu and Zhou (2018), Irvmethod = 0 uses the plug-in estimator in Zhou (2010), Irvmethod = 1 offers the debias difference-based estimator in Bai and Wu (2023), Irvmethod = 2 provides the plug-in estimator using the β , the pilot estimator proposed in Bai and Wu (2023)
- gcv, 1 or 0, whether to use Generalized Cross Validation for the selection of b, the bandwidth parameter in the local linear regression, which will not be used when lrvmethod is -1, 1 or 2.
- neighbour, the number of neighbours in the extended minimum volatility, for example 1,2 or

Heter_LRV 7

- \bullet lb, the lower bound of the range of m in the extended minimum volatility Selection
- \bullet ub, the upper bound of the range of m in the extended minimum volatility Selection
- bw_set, the proposed grid of the range of bandwidth selection, which is only useful when lrvmethod = 1. if not presented, a rule of thumb method will be used for the data-driven range.
- tau_n, the value of τ when no data-driven selection is used. if tau is set to 0, the rule of thumb $n^{-1/5}$ will be used
- type, default 0, uses the residual-based statistic proposed in Wu and Zhou (2018). "type" can also be set to -1, using the coefficient-based statistic in Wu and Zhou (2018).
- ind, types of kernels
- 1 Triangular $1 |u|, u \le 1$
- 2 Epanechnikov kernel $3/4(1-u^2)$, $u \le 1$
- 3 Quartic $15/16(1-u^2)^2$, $u \le 1$
- 4 Triweight $35/32(1-u^2)^3$, $u \le 1$
- 5 Tricube $70/81(1-|u|^3)^3$, u < 1

Value

p-value of the structural stability test

References

Bai, L., and Wu, W. (2023). Difference-based covariance matrix estimate in time series nonparametric regression with applications to specification tests.

Wu, W., and Zhou, Z. (2018). Gradient-based structural change detection for nonstationary time series M-estimation. The Annals of Statistics, 46(3), 1197-1224.

Politis, D. N., Romano, J. P., and Wolf, M. (1999). Subsampling. Springer Science & Business Media.

Examples

```
# choose a small B for tests
param = list(B = 50, bw_set = c(0.15, 0.25), gcv = 1, neighbour = 1, lb = 10, ub = 20, type = 0)
n = 300
data = bregress2(n, 2, 1) # time series regression model with 2 changes points
param$lrvmethod = 0 # plug-in
heter_gradient(data, param, 4, 1)
param$lrvmethod = 1 # difference based
heter_gradient(data, param, 4, 1)
```

Heter_LRV

Long-run covariance matrix estimators

Description

The function provides a wide range of estimators for the long-run covariance matrix estimation in non-stationary time series with covariates.

8 Heter_LRV

Usage

```
Heter_LRV(
    e,
    X,
    m,
    tau_n = 0,
    lrv_method = 1L,
    ind = 2L,
    print_deg = 0L,
    rescale = 0L,
    ncp = 0L
)
```

Arguments

e, vector, if the plug-in estimator is used, e should be the vector of residuals, OLS or nonparametric ones. If the difference-based debiased method is adopted, e should be the response time series, i.e., y. Specially, e should also be the response time series, i.e., y, if the plug-in estimator using the β , the pilot estimator proposed in Bai and Wu (2023).

X, a matrix $n \times p$

m, integer, the window size.

tau_n, double, the smoothing parameter in the estimator. If tau_n is 0, a rule-of-thumb

value will be automatically used.

lrv_method, the method of long-run variance estimation, lrvmethod = 0 uses the plug-in estimator in Zhou (2010), lrvmethod = 1 offers the debias difference-based estima-

tor in Bai and Wu (2023), Irvmethod = 2 provides the plug-in estimator using

the $\dot{\beta}$, the pilot estimator proposed in Bai and Wu (2023)

ind, types of kernels

print_deg, bool, whether to print information of non-positiveness, default $0n \times p$

rescale, bool, whether to use rescaling to correct the negative eigenvalues, default 0

ncp, 1 no change points, 0 possible change points

• 1 Triangular 1 - |u|, $u \le 1$

• 2 Epanechnikov kernel $3/4(1-u^2)$, $u \le 1$

• 3 Quartic $15/16(1-u^2)^2$, $u \le 1$

• 4 Triweight $35/32(1-u^2)^3$, $u \le 1$

• 5 Tricube $70/81(1-|u|^3)^3$, $u \le 1$

Value

a cube. The time-varying long-run covariance matrix $p \times p \times n$, where p is the dimension of the time series vector, and n is the sample size.

References

Bai, L., & Wu, W. (2023). Difference-based covariance matrix estimate in time series nonparametric regression with applications to specification tests.

Zhou, Z. and Wu, W. B. (2010). Simultaneous inference of linear models with time varying coefficients. J. R. Stat. Soc. Ser. B. Stat. Methodol., 72(4):513–531.

hk_data 9

Examples

```
param = list(d = -0.2, heter = 2, tvd = 0,
tw = 0.8, rate = 0.1, cur = 1, center = 0.3,
ma_rate = 0, cov_tw = 0.2, cov_rate = 0.1,
cov_center = 0.1, all_tw = 1, cov_trend = 0.7)
data = Qct_reg(1000, param)
sigma = Heter_LRV(data$y, data$x, 3, 0.3, lrv_method = 1)
```

hk_data

This is data to be included in my package

Description

This is data to be included in my package

Author(s)

T. S. Lau

References

Fan, J., and Zhang, W. (1999). Statistical estimation in varying coefficient models. The annals of Statistics, 27(5), 1491-1518.

LocLinear

Local linear Regression

Description

Local linear estimates for time varying coefficients

Usage

```
LocLinear(bw, t, y, X, db_kernel = 0L, deriv2 = 0L, scb = 0L)
```

Arguments

bw	double, bandwidth
t	vector, time, 1:n/n
У	vector, response series to be tested for long memory in the next step
Χ	matrix, covariates matrix
db_kernel	bool, whether to use jackknife kernel, default 0
deriv2	bool, whether to return second-order derivative, default 0
scb	bool, whether to use the result for further calculation of simultaneous confidence bands.

loc_constant

Details

The time varying coefficients are estimated by

$$(\hat{\beta}_{b_n}(t), \hat{\beta}_{b_n}'(t)) = \mathbf{argmin}_{\eta_0, \eta_1} [\sum_{i=1}^n y_i - \mathbf{x}_i^\mathrm{T} \eta_0 - \mathbf{x}_i^\mathrm{T} \eta_1 (t_i - t)^2 \pmb{K}_{b_n}(t_i - t)]$$

where beta0 is $\hat{\beta}_{b_n}(t)$, mu is $X^T\hat{\beta}_{b_n}(t)$

Value

a list of results

· mu: the estimated trend

• beta0: time varying coefficient

• X_reg: a matrix whose j'th row is $x_i^T \hat{M}(t_j)$

• t: 1:n/n

• bw: bandwidth used

• X: covariates matrix

• y: response

• n: sample size

• p: dimension of covariates including the intercept

• invM: inversion of M matrix, when scb = 1

References

Zhou, Z., & Wu, W. B. (2010). Simultaneous inference of linear models with time varying coefficients. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(4), 513-531.

Examples

```
param = list(d = -0.2, heter = 2, tvd = 0,
  tw = 0.8, rate = 0.1, cur = 1, center = 0.3,
  ma_rate = 0, cov_tw = 0.2, cov_rate = 0.1,
    cov_center = 0.1, all_tw = 1, cov_trend = 0.7)
n = 500
t = (1:n)/n
data = Qct_reg(n, param)
result = LocLinear(0.2, t, data$y, data$x)
```

loc constant

Nonparametric smoothing

Description

Nonparametric smoothing

Usage

```
loc\_constant(bw, x, y, db\_kernel = 0L)
```

Irv_measure 11

Arguments

```
bw, double, bandwidth, between 0 and 1.
x, vector, covariates
y, matrix, response variables
db_kernel, bool, whether to use jackknife kernel, default 0
```

Value

a matrix of smoothed values

Examples

```
n <- 800
p <- 3
t <- (1:n)/n
V <- matrix(rnorm(n * p), nrow = p)
V3 <- loc_constant(0.2, t, V,1)</pre>
```

lrv_measure

Comparing bias or mse of lrv estimators based on numerical methods

Description

Comparing bias or mse of lrv estimators based on numerical methods

Usage

```
lrv_measure(
  data,
  param,
  lrvmethod,
  mvselect = -1,
  tau = 0,
  verbose_dist = FALSE,
  mode = "mse"
)
```

Arguments

```
data a list of data
param a list of parameters

1rvmethod int, method of long-run variance estimation
```

mvselect int, method of MV selection

tau double, value of tau. If tau is 0, a rule-of-thunk value will be applied

verbose_dist bool, whether to output distributional information

mode default "mse", It can be set as "bias".

Value

empirical MSE of the estimator.

12 MV_critical

Examples

```
n = 300
param = list(gcv = 1, neighbour = 1,lb = 6, ub = 13, ind = 2)  # covariates heterskadecity
data = bregress2(n, 2, 1) # with 2 change pointa
lrv_measure(data, param, lrvmethod = -1, mvselect = -2) #ols plug-in
#debiased difference-based
lrv_measure(data, param, lrvmethod = 1, mvselect = -2)
```

MV_critical

Statistics-adapted values for extended minimum volatility selection.

Description

Calculation of the variance of the bootstrap statistics for the extended minimum volatility selection.

Usage

```
MV_critical(
   y,
   data,
   R,
   gridm,
   gridtau,
   type = 1L,
   cvalue = 0.1,
   B = 100L,
   lrvmethod = 1L,
   ind = 2L,
   rescale = 0L
)
```

Arguments

```
vector, as used in the Heter_LRV
у,
data,
                   list, a list of data
                   a cube of standard.normal random variables.
R,
                   vector, a grid of candidate m's.
gridm,
                   vector, a grid of candidate tau's.
gridtau,
                   integer, 1 KPSS 2 RS 3 VS 4 KS
type,
cvalue,
                   double, 1-quantile for the calculation of bootstrap variance, default 0.1.
                   integer, number of iterations for the calculation of bootstrap variance
Β,
1rvmethod,
                   integer, see also Heter_LRV
                   integer, the type of kernel, see also Heter_LRV
ind,
                   bool, whether to rescale when positiveness of the matrix is not obtained. default
rescale,
```

Value

a matrix of critical values

MV_critical_cp 13

References

Bai, L., and Wu, W. (2023). Detecting long-range dependence for time-varying linear models. To appear in Bernoulli

See Also

Heter LRV

Examples

```
###with Long memory parameter 0.2
param = list(d = -0.2, heter = 2,
    tvd = 0, tw = 0.8, rate = 0.1, cur = 1,
    center = 0.3, ma_rate = 0, cov_tw = 0.2,
    cov_rate = 0.1, cov_center = 0.1,
    all_tw = 1, cov_trend = 0.7)
n = 1000
data = Qct_reg(n, param)
p = ncol(data$x)
t = (1:n)/n
B_c = 100 ##small value for testing
Rc = array(rnorm(n*p*B_c),dim = c(p,B_c,n))
result1 = LocLinear(0.2, t, data$y, data$x)
critical <- MV_critical(data$y, result1, Rc, c(3,4,5), c(0.2, 0.25, 0.3))</pre>
```

MV_critical_cp

Statistics-adapted values for extended minimum volatility selection.

Description

Smoothing parameter selection for bootstrap tests for change point tests

Usage

```
MV_critical_cp(
  y,
  X,
  t,
  gridm,
  gridtau,
  cvalue = 0.1,
  B = 100L,
  lrvmethod = 1L,
  ind = 2L,
  rescale = 0L
)
```

Arguments

```
y, vector, as used in the Heter_LRVX, matrix, covariatest, vector, time points.
```

gridm, vector, a grid of candidate m's. gridtau, vector, a grid of candidate tau's.

cvalue, double, 1-quantile for the calculation of bootstrap variance, default 0.1.

B, integer, number of iterations for the calculation of bootstrap variance

1rvmethod, integer, see also Heter_LRV

ind, integer, the type of kernel, see also Heter_LRV

rescale, bool, whether to rescale when positiveness of the matrix is not obtained. default

0

Value

a matrix of critical values

References

Bai, L., and Wu, W. (2023). Detecting long-range dependence for time-varying linear models. To appear in Bernoulli

Examples

```
 n = 300 \\ t = (1:n)/n \\ data = bregress2(n, 2, 1) \# time series regression model with 2 changes points \\ critical = MV_critical_cp(data$y, data$x,t, c(3,4,5), c(0.2,0.25, 0.3))
```

```
MV_ise_heter_critical MV method
```

Description

Selection of smoothing parameters for bootstrap tests by choosing the index minimizing the volatility of bootstrap statistics or long-run variance estimators in the neighborhood computed before.

Usage

```
MV_ise_heter_critical(critical, neighbour)
```

Arguments

critical, a matrix of critical values neighbour, integer, number of neighbours

Value

a list of results,

• minp: optimal row number

• minq: optimal column number

• min_ise: optimal value

Qct_reg 15

References

Bai, L., and Wu, W. (2023). Detecting long-range dependence for time-varying linear models. To appear in Bernoulli

Examples

```
param = list(d = -0.2, heter = 2,
 tvd = 0, tw = 0.8, rate = 0.1,
cur = 1, center = 0.3, ma_rate = 0,
cov_tw = 0.2, cov_rate = 0.1,
cov_center = 0.1, all_tw = 1, cov_trend = 0.7)
n = 1000
data = Qct_reg(n, param)
p = ncol(data$x)
t = (1:n)/n
B_c = 100 \text{ ##small value for testing}
Rc = array(rnorm(n*p*B_c),dim = c(p,B_c,n))
result1 = LocLinear(0.2, t, data$y, data$x)
gridm = c(3,4,5)
gridtau = c(0.2, 0.25, 0.3)
critical <- MV_critical(data$y, result1, Rc, gridm, gridtau)</pre>
mv_result = MV_ise_heter_critical(critical, 1)
m = gridm[mv_result$minp + 1]
tau_n = gridtau[mv_result$minq + 1]
```

Qct_reg

Simulate data from time-varying time series regression model

Description

Simulate data from time-varying time series regression model

Usage

```
Qct_reg(T_n, param, type = 1)
```

Arguments

T_n int, sample size

param list, a list of parameters

type = 1 means the long memory expansion begins from its infinite past, type =

2 means the long memory expansion begins from t = 0

Value

list, a list of data, covariates, response and errors.(before and after fractional difference)

rule_of_thumb

Examples

```
param = list(d = -0.2, heter = 2, tvd = 0,
tw = 0.8, rate = 0.1, cur = 1, center = 0.3,
ma_rate = 0, cov_tw = 0.2, cov_rate = 0.1,
cov_center = 0.1, all_tw = 1, cov_trend = 0.7)
n = 500
data = Qct_reg(n, param)
```

Qt_data

Simulate data from time-varying trend model

Description

Simulate data from time-varying trend model

Usage

```
Qt_data(T_n, param)
```

Arguments

T_n integer, sample size param a list of parameters

- tw double, squared root of variance of the innovations
- rate double, magnitude of non-stationarity
- center double, the center of the ar coefficient
- ma rate double, ma coefficient

Value

a vector of non-stationary time series

Examples

```
param = list(d = -0.2, tvd = 0, tw = 0.8, rate = 0.1, center = 0.3, ma_rate = 0, cur = 1) data = Qt_data(300, param)
```

rule_of_thumb

rule of thumb interval for the selection of smoothing parameter b

Description

The function will compute a data-driven interval for the Generalized Cross Validation performed later, see also Bai and Wu (2023).

Usage

```
rule_of_thumb(y, x)
```

sim_T 17

Arguments

y a vector, the response variable.

x a matrix of covariates. If the intercept should be includes, the elements of the first column should be 1.

Value

c(left, right), the vector with the left and right points of the interval

References

Bai, L., and Wu, W. (2023). Detecting long-range dependence for time-varying linear models. To appear in Bernoulli

Examples

```
param = list(d = -0.2, heter = 2, tvd = 0,
tw = 0.8, rate = 0.1, cur = 1, center = 0.3,
ma_rate = 0, cov_tw = 0.2, cov_rate = 0.1,
cov_center = 0.1, all_tw = 1, cov_trend = 0.7)
data = Qct_reg(1000, param)
rule_of_thumb(data$y, data$x)
```

sim_T

bootstrap distribution

Description

bootstrap distribution of the gradient based structural stability test

Usage

```
sim_T(X, t, sigma, m, B, type = 0L)
```

Arguments

X, matrix of covariates
t, vector of time points
sigma, a cube of long-run covariance function.
m, int value of window size
B, int, number of iteration

type, type of tests, residual-based or coefficient-based

Value

a vector of bootstrap statistics

18 sim_T

Examples

```
param = list(B = 50, bw_set = c(0.15, 0.25), gcv =1, neighbour = 1, lb = 10, ub = 20, type = 0) n = 300 data = bregress2(n, 2, 1) # time series regression model with 2 changes points sigma = Heter_LRV(data\$y, data\$x, 3, 0.3, lrv_method = 1) bootstrap = sim_T(data\$x, (1:n)/n, sigma, 3, 20) ### 20 iterations
```

Index

```
* data
     hk_data, 9
bregress2, 2
gcv_cov, 3
heter_covariate, 4
heter_gradient, 6
Heter_LRV, 7
hk_data, 9
\texttt{loc\_constant},\, \textcolor{red}{10}
LocLinear, 9
lrv\_measure, 11
MV_critical, 12
MV_critical_cp, 13
MV_ise_heter_critical, 14
Qct_reg, 15
\mathsf{Qt\_data},\, \textcolor{red}{16}
\verb"rule_of_thumb", \\ 16
sim_T, 17
```