Adatbázisok 1. Relációs adatbázis tervezés – 3. rész

Funkcionális függőségek

Felbontások

Normálformák

Ismétlés

- Lezárás (R reláció, F FF halmaz, Y attr. halmaz, Y tezárt)
- "Normalizálás": relációséma több sémára való felbontása (R(A_1 , A_2 , ..., A_n) helyett $S(B_1, B_2, ..., B_m)$ és $T(C_1, C_2, ..., C_k)$)
- Következmény FF-ek megtalálása, exponenciális algoritmus

Az FF-k geometriai reprezentációja

- Vegyük egy reláció összes lehetséges előfordulásainak halmazát.
- Azaz az összes olyan sorhalmazt, mely sorok komponensei "megfelelőek".
- Minden ilyen halmaz egy pont a térben.

Példa: R(A,B)

Egy FF az előfordulásoknak egy részhalmaza

- Minden X -> A FF megadható azon előfordulások részhalmazaként, mely teljesíti FF-t.
- Így minden FF egy régióval jellemezhető a térben
- A triviális FF-k azok, melyeknél ez a régió a teljes tér.
 - Példa: A -> A.

Példa: A -> B R(A,B) fölött

FF-k halmazának reprezentálása

- Ha egy-egy FF előfordulásoknak egy halmazával reprezentálható, akkor az FF-ek halmaza az előbbi halmazok metszetével lesz egyenlő.
 - Azaz a metszet = azon előfordulások, amelyekre mindegyik FF teljesül.

Példa

FF-k következtetése

- Ha $Y \rightarrow B$ FF következik $X_1 \rightarrow A_1,..., X_n \rightarrow A_n$ FF-ekből, akkor az $Y \rightarrow B$ régiójának tartalmaznia kell az $X_i \rightarrow A_i$ FF-ekhez tartozó régiók metszetét.
 - Azaz: minden előfordulás, ami teljesíti $X_i -> A_i$ -t,Y -> B -t is teljesíti.
 - Ugyanakkor ha egy előfordulásra teljesül $Y \rightarrow B$, $X_i \rightarrow A_i$ nem feltétlen teljesül.

Példa

