"Plus/minus" confidence intervals and thresholding

P. Zietkiewicz

December 4, 2023

Table of contents

$$\begin{aligned} \bullet \ (Y,X) \in \mathbb{R}^d \times \mathbb{R}^p \ \text{and} \ D_N &= \{(Y_i,X_i): i=1,\ldots,N\} \\ \theta_* &= \mathsf{argmin}_{\theta \in \Theta} \mathbb{E}[\ell(\theta,Y,X)] \\ \hat{\theta}_N &= \mathsf{argmin}_{\theta \in \Theta} \sum_{i=1}^N \ell(\theta,Y_i,X_i) \\ F_* &= \mathbb{E}[\nabla \ell(\theta,Y,X) \nabla \ell(\theta,Y,X)^\top] \end{aligned}$$

- SGD: $\theta_n = \theta_{n-1} \gamma_n \nabla \ell(\theta_{n-1}; Y_i, X_i)$ for i = 1, ..., N and γ_n is the learning rate typically $\gamma_n = \gamma_1/n$. Let θ_N be the one-pass estimator of θ_* .
- Advantages of one-pass over multi-pass: (1) Asymptotic covariance matrix is known in closed form (2) Covariance matrix can be bounded by a factor that depends only on the learning rate γ_1 .

"Plus/minus" Cls

 \bullet Propose the SGD-based CIs for each component $\theta_{*,j}$

$$heta_{{\sf N},j}\pm 2\sqrt{rac{\gamma_1^*}{{\sf N}}} ext{ for } j=1,\ldots,{\sf p}.$$

• Define $\Sigma_*=\gamma_1^2(2\gamma_1F_*-I)^{-1}F_*$ where γ_1 is large enough such that $2\gamma_1F_*-I\succ 0$. And has eigenvalues

$$\mathsf{eigen}(\Sigma_*) = \{rac{2\gamma_1^2\lambda_j}{2\gamma_1\lambda_j - 1} : j = 1, \dots, p\}$$

where λ_j is the *j*th eigenvalue of F_* .

"Plus/minus" Cls

Results:

Theorem 3.1. Let $\theta_{N,j}$, denote the j-th component of θ_N in Eq. [4], for $j=1,\ldots,p$. Suppose that $\gamma_1^*\geq 1/\min_j\{\lambda_j\}$, then $\gamma_1^*I-\Sigma_\star\succ 0$. Define the interval

$$C_{N,j}(D_N) = \left[\theta_{N,j} - z_{\frac{\alpha}{2}} \sqrt{\frac{\gamma_1^*}{N}}, \ \theta_{N,j} + z_{\frac{\alpha}{2}} \sqrt{\frac{\gamma_1^*}{N}}\right], \ (9)$$

where $z_{\frac{\alpha}{2}} = \Phi^{-1}(1 - \alpha/2)$ is the critical value of the standard normal. Then, for every $j = 1, \dots, p$,

$$\liminf_{N \to \infty} P(\theta_{\star,j} \in C_{N,j}(D_N)) \ge 1 - \alpha.$$
 (10)

Theorem 3.2. Let θ_N be the one-pass SGD in Eq. [4], and suppose that $\gamma_1^* \geq 1/\min_j \{\lambda_j\}$. Define the following confidence region:

$$\widehat{\Theta} = \left\{ \theta \in \Theta : (1/\gamma_1^*) ||\theta - \theta_N||^2 < \chi_{\alpha, p} \right\}, \quad (11)$$

where $\chi_{\alpha,p} = \sup\{x \in \mathbb{R} : P(\chi_p^2 \ge x) \le \alpha\}$ is the α -critical value of a chi-squared random variable with p degrees of freedom. Then,

$$\liminf_{N \to \infty} P(\theta_{\star} \in \widehat{\Theta}) \ge 1 - \alpha.$$
(12)

Selecting γ_1^* :

Linear asymptote in Σ_* . At a high level, the variance bound in Theorem [3.1] holds in the regime where the covariance matrix of θ_N is linear with respect to γ_1 . One idea is therefore to try and estimate when such regime has been reached. The idea is visualized in Figure [3] Recall from Eq. [8] that the eigenvalues of Σ_* asymptote to $\gamma_1/2$, and so the trace of Σ_* should asymptote to $p\gamma_1/2$, as shown in the figure. The idea is then to slowly increase the learning rate γ_1 and at the same time monitor the trace of $NVar(\theta_N)$. When γ_1 is large enough for Theorem [3.1] we expect that a linear regression of $Targetander (NVar(\theta_N))$ with respect to $Targetander (NVar(\theta_N))$ with profidence. Only a crude estimate of the variance trace is needed, which can be done via bootstrap. See Appendix [D.1] for more details, and a practical example.

An eigenvalue bound. In some settings, an estimate \tilde{F} of F_* exists that may be too crude to be used directly for inference, but may be acceptable for estimating a bound on λ_{\min} . Then, an alternative way of selecting γ_1^* is to numerically find the maximum eigenvalue of \tilde{F}^{-1} , which implies the minimum eigenvalue of F_* . To this end, we propose using inverse power iteration (Trefethen and Bau III] [1997), which is a simple iterative algorithm. More details of this algorithm and its implementation are in Appendix $\boxed{\mathbb{D}.2}$

Thresholding and SGD

• In the context of thresholding we define the pivots

$$\frac{\hat{\beta}_j}{\sqrt{\frac{\gamma_1^*}{N}}}$$

where we have the usual behaviour for $\hat{\beta}_j$ and the same behaviour from $\sqrt{\frac{\gamma_1^*}{N}} = O(N^{-1/2})$.

- Seems to work.
- Next steps: implementing an iterative version so we can build confidence sets.

References

Chee, J., H. Kim, and P. Toulis (2023, 25–27 Apr). "plus/minus the learning rate": Easy and scalable statistical inference with sgd. In F. Ruiz, J. Dy, and J.-W. van de Meent (Eds.), *Proceedings of The 26th International Conference on Artificial Intelligence and Statistics*, Volume 206 of *Proceedings of Machine Learning Research*, pp. 2285–2309. PMLR.