Exercises: LL(1) Parsing

Exercises: LL(1) Parsing

Notations

Let grammar $G = \langle V, T, P, S \rangle$ where

- \bullet V is the set of non-terminals
- \bullet T is the set of terminals
- $S \in V$ is the start symbol
- P is the set of derivation rules of the form $X \to \alpha$ where $X \in V$ and $\alpha \in (V \cup T)^*$ is a sequence of symbols from $V \cup T$. Empty sequence is denoted by ϵ .

Recall the following definitions:

- Nullable(X) = true if and only if $X \to^* \epsilon$
- $First(t) = \{t\}$
- First(X) = $\{t \mid X \to^* t\alpha\}$
- First(α) = { $t \mid \alpha \to^* t\beta$ }
- Follow(X) = $\{t \mid S \to^* \alpha X t \beta\}$

where $t \in T$, $X \in V$, $\alpha, \beta \in (T \cup V)^*$ and \rightarrow^* denotes a sequence of derivation steps using the rules in R.

A parsing table denoted by Table [A, t] is defined for every $A \in V$ and $t \in T$. It can be constructed as follows.

For every derivation rule $A \to \alpha$, for every $t \in \text{First}(\alpha)$, add α to Table[A, t]if $\text{Nullable}(\alpha)$ then for every $t \in \text{Follow}(A)$, add α to Table[A, t]

Table cells that do not contain any entries denote parse errors. Table cells that contain more than one (distinct) entry are LL(1) conflicts.

Exercises

For each of the following grammars,

- Compute Nullable, First, Follow sets.
- Fill in the LL(1) parsing table.
- Is the grammar in LL(1)? Justify your answer.
- If not, is there an LL(1) grammar that accepts the same language? Justify your answer.

$$G_1: S \to XY \mid YX$$

$$X \to ab$$

$$Y \to bc$$

Non-terminals: SXYTerminals: abc

 $G_2: \quad S \quad \to \quad AB\$$ $A \quad \to \quad a \mid \epsilon$ $B \quad \to \quad b$

Non-terminals: SABTerminals: ab\$

 $\begin{array}{cccc} G_3\colon & A & \to & BaC \mid Bad \\ & B & \to & a \mid \epsilon \\ & C & \to & D \mid b \\ & D & \to & Cc \end{array}$

Non-terminals: ABCDTerminals: abcd

 $G_4: \quad Z \quad \rightarrow \quad d$ $Y \quad \rightarrow \quad \epsilon$ $X \quad \rightarrow \quad Y$ $Z \quad \rightarrow \quad XYZ$ $Y \quad \rightarrow \quad c$ $X \quad \rightarrow \quad a$

Non-terminals: XYZTerminals: acd