

MAX77958

Click here to ask an associate for production status of specific part numbers.

Standalone USB Type-C and USB Power Delivery Controller

General Description

The MAX77958 is a robust solution for USB Type-C CC detection and power delivery (PD) protocol implementation. It detects connected accessories or devices by using Type-C CC detection and USB PD messaging. The IC protects against overvoltage and overcurrent, and detects moisture and prevents corrosion on the USB Type-C connector. The IC also has a D+/D- USB switch and BC1.2 detection to support legacy USB standards. It contains V_{CONN} switches for USB PD and an enable pin for an external V_{CONN} boost or buck converter. When the USB PD negotiation is complete, the IC configures an alternate mode setting for external multiplexers.

The IC is compliant with USB Type-C Specification Release 1.3 and PD 3.0. It can be customized easily without affecting the compliance.

The IC has an I²C master that can read and write to other devices in the system so that its firmware can configure related devices without the main processor's assistance. For example, it can configure an external charger based on BC1.2 detection, CC detection, and PD communication.

The IC has an interrupt output pin to report event detection and status changes. It also has an I²C interface that the system can use to read/write and configure internal registers

The IC has nine configurable GPIOs that can be used for detection, as interrupts, and as the enable/disable pin for external devices, or as ADC inputs.

The IC is available in a 3.10mm x 2.65mm, 0.5mm pitch, wafer-level package (WLP).

Applications

- Smartphones
- Tablets
- Cameras
- Game Players
- Power Banks
- Industrial Equipment PoE to USB Type-C Adapters
- Handheld Devices
- Portable Devices
- Monitors
- Healthcare and Medical Devices
- Other USB Type-C Devices

Benefits and Features

- Supports Autonomous or MCU Based Configuration
 - No Firmware Development Needed in Autonomous Configuration
 - Customizable Based on Application Requirements
- Customizable Firmware
 - USB Compliant Default Embedded Firmware
 - Supports Customizable Actions on Events
 - Firmware Updates for Future Specification Revisions
- USB Type-C Support and USB-PD Support
 - USB Type-C Version 1.3 and PD3.0 Compliant
 - Mode Configuration: Sink/Source/Dual Role Port
 - Programmable Power Supply (PPS) Sink Support
 - Fast Role Swap (FRS) Initial Sink Support
 - Alternate Mode Support
 - · Cable Orientation and Power Role Detection
 - Integrated V_{CONN} Switch with OCP
 - Support Try.Snk State
 - Audio and Debug Accessory Sink/Source Mode
- Supports BC1.2 Legacy/Proprietary Charger Detection
 - Supports HVDCP
 - · Integrated D+/D- Switches
- Moisture Detection/Corrosion Prevention
- High Voltage V_{BUS} (28V)
- Short to V_{BUS} Protection on CC Pins (22V)
- Dead Battery Support
- Dual Supply Inputs from SYS and V_{BUS}
- I²C Programmable Configuration
- I²C Master to Control External Charger or Direct Charge IC
- Nine Configurable GPIOs
 - SuperSpeed Mux/Detection/IRQ
 - · Configuration for Alternate Mode
 - ENABLE/DISABLE External Switches or Devices
- 30-Bump, 6x5, 0.5mm Pitch WLP

Simplified Block Diagram

TABLE OF CONTENTS

General Description	1
Applications	1
Benefits and Features	1
Simplified Block Diagram	2
Absolute Maximum Ratings	7
Package Information	7
WLP	7
Electrical Characteristics	9
Pin Configuration	25
MAX77958	25
Pin Description	25
Detailed Description	27
USB Type-C Interface and Control	28
CC/USB PD Interface	28
USB Type-C Definitions	28
DRP	28
Detecting Connected DFP	29
Detecting Connected UFP	29
Controls	29
Try.SNK Support	29
Audio Accessory Mode Support	29
DebugAcessory.SRC Support	29
DebugAcessory.SNK Support	29
Moisture Detection	
USB BC1.2 D+/D- Adapter Detection	30
Description	
Charger Type Detection Table	31
V _{CONN} Switch	
Description	
USB Type-C Interface and Control	
Automatic Accessory Detection	
Autoconfiguration Details	
USB Power Delivery	
Description	
IC Wakeup events	
Interrupt Output (INTB)	
Interconnected Block Diagram	
System Faults	
Undervoltage Lockout	

TABLE OF CONTENTS (CONTINUED)

Controller

VIO Fault	. 33
Reset Conditions	. 34
WDT Reset	. 34
I ² C Serial Interface	. 34
System Configuration	. 34
Bit Transfer	. 35
START and STOP Conditions	. 35
Acknowledge	. 36
Slave Address	. 36
Clock Stretching	. 36
General Call Address	. 36
Communication Speed	. 36
Communication Protocols	
Writing to a Single Register	. 37
Writing to Sequential Registers	
Reading from a Single Register	
Reading from Sequential Registers	
Engaging HS-Mode for Operation up to 3.4MHz	
Register Map	
Register Map	
Register Details	
Applications Information	
D+/D- USB 2.0 Switch Control	
HVDCP Configuration	
Push-Button Function	
External Interrupt	
MAX77958 IC Firmware Update with Dongle Board	
FW Recovery Function	
Typical Application Circuits	
2/3-Cell Configurable Charger Application	
2/3-Cell Autonomous Charger Application	
Autonomous DC-DC Application	
PD Power Adapter Application	
Ordering Information	
Revision History	. 82

Analog Devices | 4 www.analog.com

LIST OF FIGURES

Figure 1. Standalone System	27
Figure 2. MCU Based System	28
Figure 3. SBU Configuration	30
Figure 4. V _{CONN} Overcurrent Protection Operation	31
Figure 5. Interconnected Block Diagram	33
Figure 6. Functional Logic Diagram for Communications Controller	34
Figure 7. I ² C Bit Transfer	35
Figure 8. I ² C Start and Stop	35
Figure 9. Writing to a Single Register	37
Figure 10. Writing to Sequential Registers	38
Figure 11. Reading from a Single Register	39
Figure 12. Reading from Sequential Registers	40
Figure 13. Engaging HS-Mode	40
Figure 14. I ² C Operating Mode State Diagram	41
Figure 15. Configurable Charger Application	77
Figure 16. Autonomous Charger Application	78
Figure 17. Autonomous DC-DC Application	79
Figure 18. Adapter Application	80

MAX77958

Standalone USB Type-C and USB Power Delivery Controller

LIST OF TABLES	
Table 1. Rp/Rp Charging Current Values for a DTS Source	. 30
Table 2. BC1.2 Adapter Detection	. 3
Table 3. I ² C Slave Address	. 36
Table 4. D+/D- Configuration	. 76

Absolute Maximum Ratings

TOP and Interface Logic	
SYS to GND	0.3V to +22.0V
V _{BUS} to GND	0.3V to +30.0V
AVL to GND	0.3V to +6.0V
VDD1P8 to GND	0.3V to +2.2V
VIO1 to GND	0.3V to +6.0V
VIO2 to GND	0.3V to +6.0V
SCL, SDA, INTB to GND	0.3V to VIO1 + 0.3V
GND_A, GND_D to GND	0.3V to +0.3V
USB Type-C	
VCIN to GND	0.3V to +6.0V
DN, DP, DN1, DP2 to GND	0.3V to +6.0V

CC1, CC2 to GND	0.3V to +22.0V
VDD1P1 to GND	0.3V to VDD1P8 + 0.3V
SCL_M, SDA_M to GND	0.3V to VIO2 + 0.3V
GPIO0, GPIO1, GPIO2, GPI	O3, GPIO8 to GND0.3V to
	VIO2 + 0.3V
GPIO4, GPIO5, GPIO6, GPI	O7 to GND0.3V to VIO1 + 0.3V
Thermal Absolute Maximum Ra	ating
Continuous Power Dissipation	on (Multilayer Board) (T _A = +70°C,
derate 24.4mW/°C above +7	0°C.) 21.0mW to 24.4mW
Operating Temperature Rang	ge40°C to +85°C
Storage Temperature Range	65°C to +150°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

WLP

Package Code	W302B3+1			
Outline Number	<u>21-0016</u>			
Land Pattern Number	Refer to Application Note 1891			
Thermal Resistance, Four-Layer Board:				
Junction to Ambient (θ _{JA})	41°C/W			
Junction to Case (θ_{JC})	N/A			

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

(Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
GENERAL ELECTRICAL	CHARACTERIS	TICS		•			•
SYS Operating Voltage	V _{SYS}			AVL _{UVL} OR		+20	V
AVL UVLO Rising	AVL _{UVLOR}	AVL		2.6	2.7	2.8	V
AVL UVLO Falling	AVLUVLOF	AVL		2.4	2.5	2.6	V
AVL UVLO Hysteresis	AVLUVLOHYS	AVL			200		mV
AVL Operating Voltage	V _{AVL}			AVL _{UVL} OF		+5.5	V
SYS OV HR Rising	SYS_OV_HR_ R	SYS		4.60	4.87	5.15	V
SYS OV HR Falling	SYS_OV_HR_ F	SYS		4.40	4.71	5.05	V
SYS OV HR Hysteresis	SYS_OV_HR_ H	SYS			160		mV
SYS OV LR Rising	SYS_OV_LR_ R	SYS		3.60	3.87	4.15	V
SYS OV LR Falling	SYS_OV_LR_ F	SYS		3.50	3.75	4.00	V
SYS OV LR Hysteresis	SYS_OV_LR_ H	SYS			115		mV
	CCdetEn = 0,	SYS = 4.2V		7			
		CCdetEn = 0, chgDetEn =	SYS = 8.4V		14		
SYS Factory Ship		0,V _{BUS} = 0V	SYS = 12.6V		19		
Supply Current	I _{FSHIP}	VIO1 = VIO2 = 0V, CCdetEn = 0, chgDetEn = 0,VBUS = 0V	SYS = 16.8V		25		- μΑ
		VIO1 = VIO2 = 0V,	SYS = 4.2V, SYS_OV_HR		87		
SYS Dead Battery	I _{DEADBAT}	CCdetEn = 0,	SYS = 8.4V		51		μA
Supply Current	32,133,11	chgDetEn = 0,V _{BUS} = 0V	SYS = 12.6V	59			
		SYS = 16.8		67			
			SYS = 4.2V, SYS_OV_HR		146		
SYS Shutdown Supply Current		SYS = 8.4V		109		μΑ	
Current		chgDetEn = 0, V _{BUS} = 0V	SYS = 12.6V		117		
			SYS = 16.8V		124		

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
SYS Standby Supply Current		C'al and de	SYS = 4.2V, SYS_OV_LR		110		
	ISTANDBY	Sink mode, CCdetEn = 1, chgDetEn = 1,	SYS = 4.2V, SYS_OV_HR		158		μА
	STANDET	VIO1 = VIO2 =	SYS = 8.4V		120		
		1.8V, V _{BUS} = 0V	SYS = 12.6V		128		
			SYS = 16.8V		135		
V _{BUS} Operating Voltage	V _{BUS}			V _{BDET} _ R		+28	V
V _{BUS} Detect Rising	V _{BDET_R}	550mV hysteresis	V _{BUS}	3.6	3.8	4.0	V
V _{BUS} Detect Falling	V _{BDET_} F	550mV hysteresis	V _{BUS}	2.95	3.25	3.55	V
V _{BUS} Detect Hysteresis	V _{BDET_H}	550mV hysteresis	V _{BUS}		525		mV
		V _{BUS} = 5V, VIO1 =	V _{SYS} = 4.2V		150		
V _{BUS} Supply Current	I _{STANDBY}	1.8V, VIO2 = 1.8V, CCdetEn = 1, sink only, STOP mode	V _{SYS} = 16.8V		192		μА
V _{BUS} Debounce	t _{VBDeb}			9	10	11	ms
VIO Low Voltage	VIO_LV	VIO1, VIO2		1.7	1.8	1.9	V
VIO High Voltage	VIO_HV	VIO1, VIO2		2.4	3.8	5.5	V
	VIO_OK_LV_ R	VIO1, VIO2, rising		1.0	1.30	1.65	- V
	VIO_OK_LV_ F	VIO1, VIO2, falling		0.8	1.0	1.4	
	VIO_OK_LV_ H	VIO1, VIO2, hystere	sis		225		mV
VIO_OK	VIO_OK_HV_ R	VIO1, VIO2, rising		1.3	1.55	1.80	.,
	VIO_OK_HV_ F	VIO1, VIO2, falling		1.25	1.52	1.8	V
	VIO_OK_HV_ H	VIO1, VIO2, hystere	sis		25		mV
	tVIO_OK_DEB	Debounce			50		μs
Output Low Voltage INTB		I _{SINK} = 1mA				0.4	V
Output High Leakage		V _{INTB} = 5.5V, T _A = +	-25°C	-1000	0	+1000	nA
INTB		V _{INTB} = 5.5V, T _A = -	-85°C		100		
	VDD_OK_R	VDD1P8, rising		1.30	1.65	1.70	V
VDD_OK	VDD_OK_F	VDD1P8, falling		1.15	1.55	1.65	
	VDD_OK_H	VDD1P8, hysteresis			100		mv
INTERFACE / I ² C INTER	FACE AND INTE	RRUPT		•			
SCL, SDA Input Low Level		T _A = +25°C				0.3 x VIO1	V

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCL, SDA Input High Level		T _A = +25°C	0.7 x VIO1			V
SCL, SDA Input Hysteresis		T _A = +25°C		0.05 x VIO1		V
SCL, SDA Logic Input Current		SDA = SCL = 5.5V	-10		+10	μA
SDA Output Low Voltage		Sinking 20mA			0.4	V
Output Low Voltage INTB		I _{SINK} = 1mA			0.4	V
Output High Leakage INTB		V _{INTB} = 5.5V, T _A = +25°C	-1000		+1000	nA
INTERFACE / I ² C-COMPA	ATIBLE INTERF	ACE TIMING FOR STANDARD, FAST, AN	D FAST-MC	DE PLUS		
Clock Frequency	f_{SCL}				1000	kHz
Hold Time (Repeated) START Condition	t _{HD;STA}		260			ns
CLK Low Period	t_{LOW}		500			ns
CLK High Period	tHIGH		260			ns
Setup Time Repeated START Condition	t _{SU;STA}		260			ns
DATA Hold Time	t _{HD:DAT}		0			ns
DATA Valid Time	t _{VD:DAT}				450	ns
DATA Valid Acknowledge Time	t _{VD:ACK}				450	ns
Rise/Fall Time of SCL	t _{SCL}				120	ns
Rise/Fall Time of SDA	t _{SDA}				120	ns
DATA Setup time	t _{SU;DAT}		50			ns
Setup Time for STOP Condition	t _{SU;STO}		260			ns
Bus-Free Time Between STOP and START	t _{BUF}		500			ns
Pulse Width of Spikes that Must be Suppressed by the Input Filter				50		ns
INTERFACE / I ² C-COMPA	ATIBLE INTERF	ACE TIMING FOR HS-MODE (CB = 100pF)			
Clock Frequency	f _{SCL}				3.4	MHz
Setup Time Repeated START Condition	t _{SU;STA}		160			ns
Hold Time (Repeated) START Condition	t _{HD;STA}		160			ns
CLK Low Period	t_{LOW}		160			ns
CLK High Period	tHIGH		60			ns

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DATA Set-Up time	t _{SU;DAT}		10			ns
DATA Hold Time	t _{HD:DAT}		0			ns
Rise/Fall time of SCL	tscL		10		40	ns
Rise/Fall time of SDA	t _{SDA}		10		80	ns
Set-Up Time for STOP Condition	t _{SU;STO}		160			ns
Pulse Width of Spikes that Must be Suppressed by the Input Filter				10		ns
INTERFACE / I ² C-COMP	ATIBLE INTERF	ACE TIMING FOR HS-MODE (CB = 400pF)			
Clock Frequency	f _{SCL}				1.7	MHz
Setup Time Repeated START Condition	tsu;sta		160			ns
Hold Time (Repeated) START Condition	t _{HD;STA}		160			ns
CLK Low Period	t _{LOW}		320			ns
CLK High Period	tHIGH		120			ns
DATA Set-Up time	t _{SU;DAT}		10			ns
DATA Hold Time	t _{HD:DAT}		0			ns
Rise/Fall Time of SCL	t _{SCL}		20		80	ns
Rise/Fall Time of SDA	t _{SDA}		10		160	ns
Setup Time for STOP Condition	tsu;sto		160			ns
Pulse Width of Spikes that Must be Suppressed by the Input Filter				10		ns
USB TYPE-C / CHARGE	R DETECTION					
BC1.2 State Timeout	t _{TMO}		180	200	220	ms
Data Contact Detect Timeout	t _{DCDtmo}	DCDCpl = 0b1 (default), DCDCpl = 0b0	700	800	900	ms
Primary to Secondary Timer	^t PDSDWait		27	35	39	ms
Charger Detection Debounce	t _{CDDeb}		45	50	55	ms
I _{WEAK} Current	I _{WEAK}		10	100	500	nA
R _{DM_DWN} Resistor	R _{DM_DWN}		14.25	20	24.8	kΩ
I _{DP_SRC} Current	I _{DP_SRC} /I _{DCD}	Accurate over 0V to 2.5V	-13	-10	-7	μA
I _{DM_SINK} Current	I _{DM_SINK} /I _{DAT}	Accurate over 0.15V to 3.6V	50	80	110	μА
V _{LGC} Threshold	V _{LGC}		1.62	1.7	1.9	V
V _{LGC} Hysteresis	V _{LGC_H}			0.015		V

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
V _{DAT_REF} Threshold	V _{DAT_REF}		0.25	0.32	0.4	V
V _{DAT_REF} Hysteresis	V _{DAT_REF_H}			0.015		V
OVDX Comparator Falling Threshold	V _{OVDX_THF}	Falling DP/DN threshold with respect to AVL	-40		+80	mV
OVDX Comparator Rising Threshold	V _{OVDX_THR}	Rising DP/DN threshold with respect to AVL	0		150	mV
DP/DN Overvoltage Debounce	t _{OVDxDeb}		90	100	110	μs
DN/DP Load Resistor	R _{USB}	Load resistor on DP/DN	3	6.1	12	МΩ
VD33 Voltage	V _{DP/} DM_3p3VSRC [/] VSRC33	Tested at zero load and at 200µA load	2.6	3.0	3.3	V
VSRC33ILIM Current Limit	I _{LIMVSRC33}	Force 1.6V on DP/DN, measure current		1.5	3	mA
VDN_SRC Voltage	V _{DN_SRC} /V _{SR} C06	Accurate over I _{LOAD} = 0 to 200μA	0.5	0.6	0.7	V
VDP_SRC Voltage	V _{DP_SRC} /V _{SR}	Accurate over I _{LOAD} = 0 to 200μA	0.5	0.6	0.7	V
USB TYPE-C / CC DETE	CTION					
CC Pin Voltage, in DFP 1.5A Mode	V _{CC_PIN}	Measured at CC pins with 126kΩ load, IDFP1.5_CC enable and V _{AVL} ≥ 2.6V	1.85			V
CC Pin Voltage, in DFP 3.0A Mode	VCC_PIN	Measured at CC pins with 126kΩ load, IDFP3.0_CC enable and AVL ≥ 3.65V	3.1			V
CC Pin Clamp Voltage	V _{CC_CIAMP}	60μA ≤ I _{CC} ≤ 600μA	0.88	1.1	1.32	V
CC UFP Pulldown Resistance	R _{PD_UFP}		-10%	5.1	+10%	kΩ
CC DFP Low-Power Mode	V _{DFPLP_CC}	AVL ≥ 2.6V, I _{DFPULP_CC} current source enabled, 1.1V	1.2			V
		Measured at CC = 0.5V	-10%	1	+10%	
CC DFP Ultra-Low- Power Current Source	I _{DFPULP_CC}	Measured at CC = 1.0V, T _A = +25°C	-10%	1	+10%	μA
1 ower durient doubte		Measured at CC = 1.0V	-12%	1	+12%	
CC DFP 0.5A Current Source	I _{DFP0.5} _CC		-20%	80	+20%	μA
CC DFP 1.5A Current Source	I _{DFP1.5} _CC		-8%	180	+8%	μA
CC DFP 3A Current Source	I _{DFP3A_CC}		-8%	330	+8%	μA
CC RA RD Threshold	V _{RA_RD0.5}		0.15	0.2	0.25	V
CC UFP 0.5A RD Threshold	V _{UFP_RD0.5}		0.61	0.66	0.7	V
CC UFP 0.5A RD Hysteresis	V _{UFP_RD0.5_H}			0.015		V
CC UFP 1.5A RD Threshold	V _{UFP_RD1.5}		1.16	1.23	1.31	V

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CC UFP 1.5A RD Hysteresis	V _{UFP_RD1.5_H}			0.015		V
CC DFP V _{OPEN} Detect Threshold	V _{DFP_VOPEN}		1.5	1.575	1.65	V
CC DFP V _{OPEN} Detect Hysteresis	V _{DFP_VOPEN_}			0.030		V
CC DFP V _{OPEN} With 3.0A Detect Threshold	V _{DFP_VOPEN3}	V _{AVL} ≥ 3.5V	2.45	2.6	2.75	V
CC DFP V _{OPEN} With 3.0A Detect Hysteresis	V _{DFP_VOPEN3} A_H	V _{AVL} ≥ 3.5V		0.030		V
V _{BUS} Discharge Value Threshold	V _{SAFE0V}	Falling voltage level where a connected UFP finds the V _{BUS} removed	0.6	0.67	0.75	V
V _{BUS} Discharge Value Hysteresis	V _{SAFE0V_h}	Rising hysteresis		40		mV
CC Pin Power-Up Time	t _{ClampSwap}	Max time allowed from removal of voltage clamp until a $5.1k\Omega$ resistor attached			15	ms
CC Detection Debounce	tCCDeb		100	119	200	ms
Type-C Debounce	t _{PDDeb}		10	15	20	ms
Type-C Quick Debounce	t _{QDeb}		0.9	1	1.1	ms
VSAFE0V Debounce	t _{VSAFE0VDeb}		9	10	11	ms
Type-C Error Recovery Delay	tErrorRecovery		25			ms
Type-C DRP Toggle Time	t _{DRP}		50	75	100	ms
DFP Duty Cycle at DRP		Programmable from 35% to 50% in 5% step, CCDRPPhase = 0b00		35		%
Type-C DRP Try	t _{DRPtry}		90	100	110	ms
DRP Transition Time	t _{DRPTrans}	Time for a role swap from DFP to UFP or the reverse is completed			1	ms
V _{CONN} Enable Time	tvconnon				2	ms
V _{CONN} Disable Time	tvconnoff	Time from UFP detached or as directed by I ² C command until V _{CONN} is removed			35	ms
CC Pin Current Change Time	ISINKADJ	Time from CC pin changes state in UFP mode until current drawn from DFP reaches a new value			60	ms
V _{BUS} On Time	tvbuson	Time from UFP is attached until V _{BUS} ON			275	ms
V _{BUS} Off Time	tvbusoff	Time from UFP is detached until V _{BUS} reaches V _{SAFE0V}			650	ms
V _{BUS} Input Self- Discharge Resistance	R _{VBUS_SD_} US B			10		kΩ

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		1.0V Comp	-8%	1.00	+8%	
CC1/2 Water Comp	V	0.8V Comp	-8%	8.0	+8%	V
Threshold	V _{CC_Comp}	0.6V Comp	-8%	0.6	+8%	_ v
		0.4V Comp	-8%	0.4	+8%	
CC1/2 Water Comp Hysteresis	VCC_Comp_ H			0.015		V
CC_OVP Threshold	CC_OVP	Rising	5.375	5.735	6.325	V
CO_OVF Threshold	CC_OVF	Falling	5.175	5.670	6.275	V
CC_OVP Hysteresis	CC_OVP_H			85		mV
USB TYPE-C / V _{CONN} S	WITCH					
	V _{CIN_PRES_R}	Rising	0.75	1.38	2.45	- v
	V _{CIN_PRES_F}	Falling	0.45	0.75	1.75	
V _{CIN_PRES}	V _{CIN_PRES_H}	Hysteresis		600		mV
	tvcin_pres_d EB	Debounce		50		μs
	CC_V _{CIN_OK_}	Rising	2.40	2.75	3.00	3.00 V
V _{CIN} _ok	CC_V _{CIN_OK_}	Falling	2.35	2.72	3.00	
	CC_V _{CIN_OK_}	Hysteresis		30		mV
	tVCIN_OK_DEB	Debounce		50		μs
V _{CONN} Source Requirements			3.0		5.5	V
V _{CONN} SW Ron	R _{ONVCONNS} W	VCIN = 5.0V, ICC = 0.5A		500	900	mΩ
OCP Accuracy		VCIN = 5.0V, T _A = +25°C	-40	-20		%
OCP_ShortCircuit Protection	I _{SCP}			700		mA
OCP Programmable Step	ISTEP	Programmable range is 200mA to 500mA		100		mA
OCP Interrupt Debounce Time T1	t _{Deb1}	From detecting OCP to generating INT		2		ms
Wait Time Before Turn Off T2	t _{Deb2}	From generating INT to turning OFF VCONN switch		12		ms
Startup Time At 90%		Time from V _{CONN} switch enable to CC settled at 90% of final value with VCIN = 3.0V		0.05	0.2	ms
Turn Off Time At 10%		Time from V _{CONN} switch disable to CC settled at 10% of final value with VCIN = 3.0V		0.05	0.06	ms
VCIN Leakage Current		VCIN detection disabled, VCIN = 4.4V	-2000		+2000	nA

Electrical Characteristics (continued)

(Limits are 100% tested at $T_A = +25$ °C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
USB TYPE-C / PD CONT	ROLLER						
Time Until BMC Bus Drive End	^t EndDriveBMC	end of the last bit o	ne to cease driving the line after the d of the last bit of the frame, Min value imited by t _{HoldLowBMC}			23	μs
Transmit Hold Time	tHoldLowBMC		ne to cease driving the line after the al high-to-low transition				μs
BMC TX Rise Time	t _{Rise}	10% to 90% with no	o load on CC wires	300	410	540	ns
BMC TX Fall Time	t _{Fall}	90% to 10% with no	o load on CC wires	300	410	540	ns
BMC TX Swing	V _{SWING}	Applies to no load a defined by cable/re Sink and Source	and with max load ceiver model for both	1.05	1.125	1.2	V
BMC Driver Output Impedance	Z _{Driver}		Source output impedance at the Nyquist requency of [USB 2.0] low speed			75	Ω
BMC Receiver Noise Filter	t _{RXFilter}	Time constant of no	pise filter in RX path	100			ns
Time To Detect Non-Idle Bus	t _{TransitionWind}			12		20	μs
Receiver Detect Rising Threshold in SRC Mode				0.63	0.66	0.68	V
Receiver Detect Falling Threshold in SRC Mode				0.56	0.58	0.61	V
Receiver Detect Rising Threshold SNK Mode				0.51	0.54	0.56	V
Receiver Detect Falling Threshold in SNK Mode				0.44	0.46	0.49	V
Hysteresis of BMC RX	RX_Hys				60		mV
USB TYPE-C / V _{BUS} AD		1					'
V _{BUS} ADC Threshold 1	THV _{BUS} _01	ADCIN_SEL = 0	VBADC = 0b00000	3.0	3.5	4.0	V
V _{BUS} ADC Threshold 2	THV _{BUS} _02	ADCIN_SEL = 0	VBADC = 0b00001	4.0	4.5	5.0	V
V _{BUS} ADC Threshold 3	THVBUS_03	ADCIN_SEL = 0	VBADC = 0b00010	5.0	5.5	6.0	V
V _{BUS} ADC Threshold 4	THV _{BUS} _04	ADCIN_SEL = 0	VBADC = 0b00011	6.0	6.5	7.0	V
V _{BUS} ADC Threshold 5	THV _{BUS} _05	ADCIN_SEL = 0	VBADC = 0b00100	7.0	7.5	8.0	V
V _{BUS} ADC Threshold 6	THV _{BUS} _06	ADCIN_SEL = 0	VBADC = 0b00101	8.0	8.5	9.0	V
V _{BUS} ADC Threshold 7	THV _{BUS} _07	ADCIN_SEL = 0	VBADC = 0b00110	9.0	9.5	10.0	V
V _{BUS} ADC Threshold 8	THV _{BUS} _08	ADCIN_SEL = 0	VBADC = 0b00111	10.0	10.5	11.0	V
V _{BUS} ADC Threshold 9	THV _{BUS} _09	ADCIN_SEL = 0	VBADC = 0b01000	11.0	11.5	12.0	V
V _{BUS} ADC Threshold 10	THV _{BUS} _10	ADCIN_SEL = 0	VBADC = 0b01001	12.0	12.5	13.0	V
V _{BUS} ADC Threshold 11	THV _{BUS} _11	ADCIN_SEL = 0	VBADC = 0b01010	13.0	13.5	14.0	V
V _{BUS} ADC Threshold 12	THV _{BUS} _12	ADCIN_SEL = 0	VBADC = 0b01011	14.0	14,5	15.0	V

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS
V _{BUS} ADC Threshold 13	THV _{BUS} _13	ADCIN_SEL = 0	VBADC = 0b01100	15.0	15.5	16.0	V
V _{BUS} ADC Threshold 14	THV _{BUS} _14	ADCIN_SEL = 0	VBADC = 0b01101	16.0	16.5	17.0	V
V _{BUS} ADC Threshold 15	THV _{BUS} _15	ADCIN_SEL = 0	VBADC = 0b01110	17.0	17.5	18.0	V
V _{BUS} ADC Threshold 16	THV _{BUS} _16	ADCIN_SEL = 0	VBADC = 0b01111	18.0	18.5	19.0	V
V _{BUS} ADC Threshold 17	THV _{BUS} _17	ADCIN_SEL = 0	VBADC = 0b10000	19.0	19.5	20.0	V
V _{BUS} ADC Threshold 18	THV _{BUS} _18	ADCIN_SEL = 0	VBADC = 0b10001	20.0	20.5	21.0	V
V _{BUS} ADC Threshold 19	THV _{BUS} _19	ADCIN_SEL = 0	VBADC = 0b10010	21.0	21.5	22.0	V
V _{BUS} ADC Threshold 20	THV _{BUS} _20	ADCIN_SEL = 0	VBADC = 0b10011	22.0	22.5	23.0	V
V _{BUS} ADC Threshold 21	THV _{BUS} _21	ADCIN_SEL = 0	VBADC = 0b10100	23.0	23.5	24.0	V
V _{BUS} ADC Threshold 22	THV _{BUS} _22	ADCIN_SEL = 0	VBADC = 0b10101	24.0	24.5	25.0	V
V _{BUS} ADC Threshold 23	THV _{BUS} _21	ADCIN_SEL = 0	VBADC = 0b10110	25.0	25.5	26.0	V
V _{BUS} ADC Threshold 24	THV _{BUS} _24	ADCIN_SEL = 0	VBADC = 0b10111	26.0	26.5	27.0	V
V _{BUS} ADC Threshold 25	THV _{BUS} _25	ADCIN_SEL = 0	VBADC = 0b11000	27.0	27.5	28.0	V
V _{BUS} ADC Hysteresis	HV _{BUS}	ADCIN_SEL = 0			150		mV
USB TYPE-C / ADCIN AL	С						
GPIO ADC Threshold 1	THGPIO_01	ADCIN_SEL = 1	VBADC = 0b00000	0.6	0.7	8.0	V
GPIO ADC Threshold 2	THGPIO_02	ADCIN_SEL = 1	VBADC = 0b00001	0.8	0.9	1.0	V
GPIO ADC Threshold 3	THGPIO_03	ADCIN_SEL = 1	VBADC = 0b00010	1.0	1.1	1.2	V
GPIO ADC Threshold 4	THGPIO_04	ADCIN_SEL = 1	VBADC = 0b00011	1.2	1.3	1.4	V
GPIO ADC Threshold 5	THGPIO_05	ADCIN_SEL = 1	VBADC = 0b00100	1.4	1.5	1.6	V
GPIO ADC Threshold 6	THGPIO_06	ADCIN_SEL = 1	VBADC = 0b00101	1.6	1.7	1.8	V
GPIO ADC Threshold 7	THGPIO_07	ADCIN_SEL = 1	VBADC = 0b00110	1.8	1.9	2.0	V
GPIO ADC Threshold 8	THGPIO_08	ADCIN_SEL = 1	VBADC = 0b00111	2.0	2.1	2.2	V
GPIO ADC Threshold 9	THGPIO_09	ADCIN_SEL = 1	VBADC = 0b01000	2.2	2.3	2.4	V
GPIO ADC Threshold 10	THGPIO_10	ADCIN_SEL = 1	VBADC = 0b01001	2.4	2.5	2.6	V
GPIO ADC Threshold 11	THGPIO_11	ADCIN_SEL = 1	VBADC = 0b01010	2.6	2.7	2.8	V
GPIO ADC Threshold 12	THGPIO_12	ADCIN_SEL = 1	VBADC = 0b01011	2.8	2.9	3.0	V

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
GPIO ADC Threshold 13	THGPIO_13	ADCIN_SEL = 1	VBADC = 0b01100	3.0	3.1	3.2	V
GPIO ADC Threshold 14	THGPIO_14	ADCIN_SEL = 1	VBADC = 0b01101	3.2	3.3	3.4	V
GPIO ADC Threshold 15	THGPIO_15	ADCIN_SEL = 1	VBADC = 0b01110	3.4	3.5	3.6	V
GPIO ADC Threshold 16	THGPIO_16	ADCIN_SEL = 1	VBADC = 0b01111	3.6	3.7	3.8	V
GPIO ADC Threshold 17	THGPIO_17	ADCIN_SEL = 1	VBADC = 0b10000	3.8	3.9	4.0	V
GPIO ADC Threshold 18	THGPIO_18	ADCIN_SEL = 1	VBADC = 0b10001	4.0	4.1	4.2	٧
GPIO ADC Threshold 19	THGPIO_19	ADCIN_SEL = 1	VBADC = 0b10010	4.2	4.3	4.4	٧
GPIO ADC Threshold 20	THGPIO_20	ADCIN_SEL = 1	VBADC = 0b10011	4.4	4.5	4.6	٧
GPIO ADC Threshold 21	THGPIO_21	ADCIN_SEL = 1	VBADC = 0b10100	4.6	4.7	4.8	٧
GPIO ADC Threshold 22	THGPIO_22	ADCIN_SEL = 1	VBADC = 0b10101	4.8	4.9	5.0	V
GPIO ADC Threshold 23	THGPIO_23	ADCIN_SEL = 1	VBADC = 0b10110	5.0	5.1	5.2	٧
GPIO ADC Threshold 24	THGPIO_24	ADCIN_SEL = 1	VBADC = 0b10111	5.2	5.3	5.4	٧
GPIO ADC Threshold 25	THGPIO_25	ADCIN_SEL = 1	VBADC = 0b11000	5.4	5.5	5.6	٧
GPIO ADC Hysteresis	HGPIO	ADCIN_SEL= 1			25		mV
USB TYPE-C / CC ADC	RANGE 1						
CC ADC Threshold 1	THCC_01	ADCIN_SEL = 001 or 011	VBADC = 0b00000	0.312	0.362	0.416	V
CC ADC Threshold 2	THCC_02	ADCIN_SEL = 001 or 011	VBADC = 0b00001	0.416	0.468	0.520	V
CC ADC Threshold 3	THCC_03	ADCIN_SEL = 001 or 011	VBADC = 0b00010	0.520	0.573	0.624	V
CC ADC Threshold 4	THCC_04	ADCIN_SEL = 001 or 011	VBADC = 0b00011	0.624	0.682	0.728	V
CC ADC Threshold 5	THCC_05	ADCIN_SEL = 001 or 011	VBADC = 0b00100	0.728	0.783	0.832	V
CC ADC Threshold 6	THCC_06	ADCIN_SEL = 001 or 011	VBADC = 0b00101	0.832	0.885	0.936	V
CC ADC Threshold 7	THCC_07	ADCIN_SEL = 001 or 011	VBADC = 0b00110	0.936	0.988	1.040	V
CC ADC Threshold 8	THCC_08	ADCIN_SEL = 001 or 011	VBADC = 0b00111	1.040	1.093	1.144	V

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
CC ADC Threshold 9	THCC_09	ADCIN_SEL = 001 or 011	VBADC = 0b01000	1.144	1.196	1.248	V
CC ADC Threshold 10	THCC_10	ADCIN_SEL = 001 or 011	VBADC = 0b01001	1.248	1.308	1.352	V
CC ADC Threshold 11	THCC_11	ADCIN_SEL = 001 or 011	VBADC = 0b01010	1.352	1.408	1.456	V
CC ADC Threshold 12	THCC_12	ADCIN_SEL = 001 or 011	VBADC = 0b01011	1.456	1.513	1.560	V
CC ADC Threshold 13	THCC_13	ADCIN_SEL = 001 or 011	VBADC = 0b01100	1.560	1.618	1.664	V
CC ADC Threshold 14	THCC_14	ADCIN_SEL = 001 or 011	VBADC = 0b01101	1.664	1.725	1.768	V
CC ADC Threshold 15	THCC_15	ADCIN_SEL = 001 or 011	VBADC = 0b01110	1.768	1.823	1.872	V
CC ADC Threshold 16	THCC_16	ADCIN_SEL = 001 or 011	VBADC = 0b01111	1.872	1.930	1.976	V
CC ADC Threshold 17	THCC_17	ADCIN_SEL = 001 or 011	VBADC = 0b10000	1.976	2.026	2.080	V
CC ADC Threshold 18	THCC_18	ADCIN_SEL = 001 or 011	VBADC = 0b10001	2.080	2.143	2.184	V
CC ADC Threshold 19	THCC_19	ADCIN_SEL = 001 or 011	VBADC = 0b10010	2.184	2.240	2.288	V
CC ADC Threshold 20	THCC_20	ADCIN_SEL = 001 or 011	VBADC = 0b10011	2.288	2.345	2.392	V
CC ADC Threshold 21	THCC_21	ADCIN_SEL = 001 or 011	VBADC = 0b10100	2.392	2.450	2.496	V
CC ADC Threshold 22	THCC_22	ADCIN_SEL = 001 or 011	VBADC = 0b10101	2.496	2.550	2.600	V
CC ADC Threshold 23	THCC_23	ADCIN_SEL = 001 or 011	VBADC = 0b10110	2.600	2.660	2.704	V
CC ADC Threshold 24	THCC_24	ADCIN_SEL = 001 or 011	VBADC = 0b10111	2.704	2.757	2.808	V
CC ADC Threshold 25	THCC_25	ADCIN_SEL = 001 or 011	VBADC = 0b11000	2.808	2.858	2.912	V
CC ADC Hysteresis	HCC	ADCIN_SEL = 001 o	or 011		15		mV
USB TYPE-C / CC ADC RANGE 2							
CC ADC Threshold 1	THCC_01	ADCIN_SEL = 001 or 011	VBADC = 0b00000	0.189	0.220	0.252	V
CC ADC Threshold 2	THCC_02	ADCIN_SEL = 001 or 011	VBADC = 0b00001	0.252	0.284	0.315	V
CC ADC Threshold 3	THCC_03	ADCIN_SEL = 001 or 011	VBADC = 0b00010	0.315	0.347	0.378	V
CC ADC Threshold 4	THCC_04	ADCIN_SEL = 001 or 011	VBADC = 0b00011	0.378	0.413	0.441	V

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
CC ADC Threshold 5	THCC_05	ADCIN_SEL = 001 or 011	VBADC = 0b00100	0.441	0.475	0.504	V
CC ADC Threshold 6	THCC_06	ADCIN_SEL = 001 or 011	VBADC = 0b00101	0.504	0.536	0.567	V
CC ADC Threshold 7	THCC_07	ADCIN_SEL = 001 or 011	VBADC = 0b00110	0.567	0.599	0.630	V
CC ADC Threshold 8	THCC_08	ADCIN_SEL = 001 or 011	VBADC = 0b00111	0.630	0.662	0.693	V
CC ADC Threshold 9	THCC_09	ADCIN_SEL = 001 or 011	VBADC = 0b01000	0.693	0.724	0.756	V
CC ADC Threshold 10	THCC_10	ADCIN_SEL = 001 or 011	VBADC = 0b01001	0.756	0.792	0.819	V
CC ADC Threshold 11	THCC_11	ADCIN_SEL = 001 or 011	VBADC = 0b01010	0.819	0.853	0.882	V
CC ADC Threshold 12	THCC_12	ADCIN_SEL = 001 or 011	VBADC = 0b01011	0.882	0.917	0.945	V
CC ADC Threshold 13	THCC_13	ADCIN_SEL = 001 or 011	VBADC = 0b01100	0.945	0.980	1.008	V
CC ADC Threshold 14	THCC_14	ADCIN_SEL = 001 or 011	VBADC = 0b01101	1.008	1.045	1.071	V
CC ADC Threshold 15	THCC_15	ADCIN_SEL = 001 or 011	VBADC = 0b01110	1.071	1.104	1.134	V
CC ADC Threshold 16	THCC_16	ADCIN_SEL = 001 or 011	VBADC = 0b01111	1.134	1.166	1.197	V
CC ADC Threshold 17	THCC_17	ADCIN_SEL = 001 or 011	VBADC = 0b10000	1.197	1.227	1.260	V
CC ADC Threshold 18	THCC_18	ADCIN_SEL = 001 or 011	VBADC = 0b10001	1.260	1.293	1.323	V
CC ADC Threshold 19	THCC_19	ADCIN_SEL = 001 or 011	VBADC = 0b10010	1.323	1.357	1.386	V
CC ADC Threshold 20	THCC_20	ADCIN_SEL = 001 or 011	VBADC = 0b10011	1.386	1.421	1.449	V
CC ADC Threshold 21	THCC_21	ADCIN_SEL = 001 or 011	VBADC = 0b10100	1.449	1.484	1.512	V
CC ADC Threshold 22	THCC_22	ADCIN_SEL = 001 or 011	VBADC = 0b10101	1.512	1.545	1.575	V
CC ADC Threshold 23	THCC_23	ADCIN_SEL = 001 or 011	VBADC = 0b10110	1.575	1.612	1.638	V
CC ADC Threshold 24	THCC_24	ADCIN_SEL = 001 or 011	VBADC = 0b10111	1.638	1.671	1.701	V
CC ADC Threshold 25	THCC_25	ADCIN_SEL = 001 or 011	VBADC = 0b11000	1.701	1.731	1.764	V
CC ADC Hysteresis	HCC	ADCIN_SEL = 001 c	or 011		15		mV

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
USB TYPE-C / CC ADC I	RANGE 3						•
CC ADC Threshold 1	THCC_01	ADCIN_SEL = 001 or 011	VBADC = 0b00000	0.150	0.175	0.200	V
CC ADC Threshold 2	THCC_02	ADCIN_SEL = 001 or 011	VBADC = 0b00001	0.200	0.225	0.250	V
CC ADC Threshold 3	THCC_03	ADCIN_SEL = 001 or 011	VBADC = 0b00010	0.250	0.275	0.300	V
CC ADC Threshold 4	THCC_04	ADCIN_SEL = 001 or 011	VBADC = 0b00011	0.300	0.325	0.350	V
CC ADC Threshold 5	THCC_05	ADCIN_SEL = 001 or 011	VBADC = 0b00100	0.350	0.375	0.400	V
CC ADC Threshold 6	THCC_06	ADCIN_SEL = 001 or 011	VBADC = 0b00101	0.400	0.425	0.450	V
CC ADC Threshold 7	THCC_07	ADCIN_SEL = 001 or 011	VBADC = 0b00110	0.450	0.475	0.500	V
CC ADC Threshold 8	THCC_08	ADCIN_SEL = 001 or 011	VBADC = 0b00111	0.500	0.525	0.550	V
CC ADC Threshold 9	THCC_09	ADCIN_SEL = 001 or 011	VBADC = 0b01000	0.550	0.575	0.600	V
CC ADC Threshold 10	THCC_10	ADCIN_SEL = 001 or 011	VBADC = 0b01001	0.600	0.625	0.650	V
CC ADC Threshold 11	THCC_11	ADCIN_SEL = 001 or 011	VBADC = 0b01010	0.650	0.675	0.700	V
CC ADC Threshold 12	THCC_12	ADCIN_SEL = 001 or 011	VBADC = 0b01011	0.700	0.725	0.750	V
CC ADC Threshold 13	THCC_13	ADCIN_SEL = 001 or 011	VBADC = 0b01100	0.750	0.775	0.800	V
CC ADC Threshold 14	THCC_14	ADCIN_SEL = 001 or 011	VBADC = 0b01101	0.800	0.825	0.850	V
CC ADC Threshold 15	THCC_15	ADCIN_SEL = 001 or 011	VBADC = 0b01110	0.850	0.875	0.900	V
CC ADC Threshold 16	THCC_16	ADCIN_SEL = 001 or 011	VBADC = 0b01111	0.900	0.925	0.950	V
CC ADC Threshold 17	THCC_17	ADCIN_SEL = 001 or 011	VBADC = 0b10000	0.950	0.975	1.000	V
CC ADC Threshold 18	THCC_18	ADCIN_SEL = 001 or 011	VBADC = 0b10001	1.000	1.025	1.050	V
CC ADC Threshold 19	THCC_19	ADCIN_SEL = 001 or 011	VBADC = 0b10010	1.050	1.075	1.100	V
CC ADC Threshold 20	THCC_20	ADCIN_SEL = 001 or 011	VBADC = 0b10011	1.100	1.125	1.150	V
CC ADC Threshold 21	THCC_21	ADCIN_SEL = 001 or 011	VBADC = 0b10100	1.150	1.175	1.200	V
CC ADC Threshold 22	THCC_22	ADCIN_SEL = 001 or 011	VBADC = 0b10101	1.200	1.225	1.250	V

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
THCC_23	ADCIN_SEL = 001 or 011	VBADC = 0b10110	1.250	1.275	1.300	V
THCC_24	ADCIN_SEL = 001 or 011	VBADC = 0b10111	1.300	1.325	1.350	V
THCC_25	ADCIN_SEL = 001 or 011	VBADC = 0b11000	1.350	1.375	1.400	V
HCC	ADCIN_SEL = 001 c	r 011		7		mV
LOG SWITCH (E	N1/DP2)					
V_{DN1}, V_{DP2}			0		V_{AVL}	V
R _{ONUSB}	AVL = 3.0V, I _{DN} /I _{DP} 0V to 3.0V	= 10mA, V _{DN} /V _{DP} =		3	6	Ω
ΔR _{ONUSB}	AVL = 3.0V, I _{DN} /I _{DP} 400mV	= 10mA, V _{DN} /V _{DP} =			0.5	Ω
R _{FLATUSB}	AVL = 3.0V, I _{DN} /I _{DP} 0V to 3.0V	= 10mA, V _{DN} /V _{DP} =		0.1	0.4	Ω
lusboff		$V_{DP2} = 0.3V$, 2.5V; V_{DN} or $V_{DP} = 2.5V$,			+360	nA
PERFORMANC	E					
t _{ON}	I ² C stop to switch on	; RL = 50Ω		0.1	0.3	ms
t _{OFF}	I ² C stop to switch of	F; RL = 50Ω		0.1	0.3	ms
2, 3, 8						
V _{IL}					0.3 x VIO2	V
V_{IH}			0.7 x VIO2			V
V _{IHYS}				250		mV
V_{OL}	I _{SINK} = 2mA				0.4	V
V _{OH}	I _{SINK} = 2mA		0.7 x VIO2			V
IL	T _A = +25°C			100		nA
R _{PU}				100		kΩ
R_{PD}				100		kΩ
6, 7						
V _{IL}					0.3 x VIO1	V
V _{IH}			0.7 x VIO1			V
V _{IHYS}				250		mV
	THCC_23 THCC_24 THCC_25 HCC LOG SWITCH (E V_DN1, V_DP2 RONUSB ARONUSB ARONUSB ILUSBOFF PERFORMANC ton toff 2, 3, 8 VIL VIH VIHYS VOL VOH IL RPU RPD 6, 7 VIL VIH	THCC_23	THCC_23 ADCIN_SEL = 001 or 011 VBADC = 0b10110 THCC_24 ADCIN_SEL = 001 or 011 VBADC = 0b10111 THCC_25 ADCIN_SEL = 001 or 011 VBADC = 0b11000 HCC ADCIN_SEL = 001 or 011 VBADC = 0b11000 LOG SWITCH (DN1/DP2) AVL = 3.0V, IDN/IDP = 10mA, VDN/VDP = 0V to 3.0V ARONUSB AVL = 3.0V, IDN/IDP = 10mA, VDN/VDP = 10V to 3.0V AVL = 3.0V, IDN/IDP = 10mA, VDN/VDP = 0V to 3.0V AVL = 4.2V; Switch opened; VDN1 or VDP2 = 0.3V, 2.5V; VDN or VDP = 2.5V, 0.3V PERFORMANCE toN I²C stop to switch on; RL = 50Ω toFF I²C stop to switch off; RL = 50Ω 2, 3, 8 VIL VIH VIHYS VOH ISINK = 2mA VOH ISINK = 2mA IL TA = +25°C RPU RPD 6, 7 VIL	THCC_23	THCC_23 ADCIN_SEL = 001 or 011 VBADC = 0b10110 1.250 1.275 THCC_24 ADCIN_SEL = 001 or 011 VBADC = 0b10111 1.300 1.325 THCC_25 ADCIN_SEL = 001 or 011 VBADC = 0b11000 1.350 1.375 HCC ADCIN_SEL = 001 or 011 7 LOG SWITCH (DN1/DP2) 0 0 VDN1, VDP2 0 0 RONUSB AVL = 3.0V, I _{DN} /I _{DP} = 10mA, V _{DN} /V _{DP} = 0V to 3.0V 0 ARONUSB AVL = 3.0V, I _{DN} /I _{DP} = 10mA, V _{DN} /V _{DP} = 0.1 0.1 FLATUSB AVL = 3.0V, I _{DN} /I _{DP} = 10mA, V _{DN} /V _{DP} = 0.1 0.1 ILUSBOFF AVL = 4.2V; Switch opened; V _{DN} or V _{DP} = 2.5V, 0.3V -360 PERFORMANCE toN I ² C stop to switch on; RL = 50Ω 0.1 toFF I ² C stop to switch off; RL = 50Ω 0.1 VIH 0.7 × VIO2 VOL I _{SINK} = 2mA 0.7 × VIO2 VOL I _{SINK} = 2mA 0.7 × VIO2 RPU 100 0.7 × VIO1 RPD 0.7 × VIO1	THCC_23 or 011 THCC_24 ADCIN_SEL = 001 or 011 THCC_25 ADCIN_SEL = 001 or 011 THCC_26 ADCIN_SEL = 001 or 011 THCC_27 ADCIN_SEL = 001 or 011 THCC_28 ADCIN_SEL = 001 or 011 THCC_29 ADCIN_SEL = 001 THCC_29 ADCIN_SEL

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CON	NDITIONS	MIN	TYP	MAX	UNITS
Output Low Voltage	V _{OL}	I _{SINK} = 2mA				0.4	V
Output High Voltage	V _{OH}	I _{SINK} = 2mA		0.7 x VIO1			V
Input Leakage Current	IL	T _A = +25°C			100		μA
Input Pullup Resistor	R _{PU}				100		kΩ
Input Pulldown Resistor	R _{PD}				100		kΩ
USB TYPE-C / I ² C MAST	ER / I ² C LOGIC	LEVEL					
SCL_M, SDA_M Input Low Level		T _A = +25°C				0.3 x VIO2	V
SCL_M, SDA_M Input High Level		T _A = +25°C		0.7 x VIO2		VIO2	V
SCL_M, SDA_M Input Hysteresis		T _A = +25°C			0.05 x VIO2		V
SCL_M, SDA_M Logic Input Current		SCL_M = SD_AM	= VIO2 = 5.5V	-1000		+1000	nA
SCL_M, SDA_M Input Capacitance					10		pF
CCL M CDA M Output			VIO = HV			0.4	0.4
SCL_M, SDA_M Output Low Voltage		Sinking 3mA	VIO = LV			0.2 x VIO	V
SCL_M, SDA_M Input	l	T _A = +25°C	•	-1000		+1000	nA
Leakage Current	llk	T _A = +85°C			100		
USB TYPE-C / I ² C MAST	ER / I ² C TIMINO	FOR STANDARD,	FAST, AND FAST-	MODE PLUS			
Clock Frequency	f _{SCL}					1000	kHz
Hold Time (Repeated) START Condition	t _{HD;STA}			0.26			μs
CLK Low Period	t _{LOW}			0.5			μs
CLK High Period	tHIGH			0.26			μs
Setup Time Repeated START Condition	t _{SU;STA}			0.26			μs
DATA Hold Time	t _{HD:DAT}			0			μs
DATA Valid Time	t _{VD:DAT}					0.45	μs
DATA Valid Acknowledge Time	t _{VD:ACK}					0.45	μs
DATA Setup time	t _{SU;DAT}			50			ns
Setup Time for STOP Condition	tsu;sто			0.26			μs
Bus-Free Time Between STOP and START	t _{BUF}			0.5			μs
Pulse Width of Spikes that Must be Suppressed by the Input Filter					50		ns

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
USB TYPE-C / MTP							
VCIN Input Supply	VCIN_MTP	Reading, erasing, programming	4.7	5.15	5.5	V	
VCIN Current	IVCIN_MTP_E RASE	Erasing	8			- mA	
Consumption	IVCIN_MTP_P ROG	Programming		16		IIIA	
MTP Erasing/	t _{MTP_ERASE}	Erasing (1 page = 128 x 32-bits word)		100		ms	
Programming Time	t _{MTP_PROG}	Programing		500		μs/32-bit word	
MTP Write Capacity	NWrite	VDD1P8 = 2V, VCIN = 5.5V		100		Write	
MTP Data Retention	t _{MTP}	VDD1P8 = 2V, VCIN = 5.5V		10		Year	
USB TYPE-C / POWER S	SUPPLY						
LDO—Output Voltage		I _L = 1mA	1.05	1.125	1.2	V	
LDO—Current Limit			-19	-11	-5	mA	
LDO—Power Up Consumption				5	12	μА	
LDO—Turn On Time		From BMC_PWDN_LDO = 0 to V1P1 = 95% of final value			300	μs	
LDO—Output Pulldown Current		VDD1P1 = 1.125V and BMC_LDO_LOAD = 1	330			μА	
ESD RATINGS	•		•				
Human Body Model (HBM)		All pins			± 4000	V	
Charged Device Model (CDM)		All pins			± 1000	V	
JEO Os at ast Disaste		CC1 and CC2			± 4000	V	
IEC Contact Discharge		DP and DN			± 2000		
IEC Air Discharge		CC1 and CC2			± 14000	V	
IEO All Discharge		DP and DN			± 2000	\ \ \	

Pin Configuration

MAX77958

Pin Description

PIN	NAME	FUNCTION
B1	VIO1	System IO Voltage Input. Connect a 1µF/6.3V ceramic capacitor to GND.
C1	VIO2	System IO Voltage Input. Connect a 1µF/6.3V ceramic capacitor to GND.
A6	V _{BUS}	V_{BUS} Input. V_{BUS} provides power for internal circuitry when SYS is less than V_{BUS} . Bypass V_{BUS} to GND with a 1µF (min) ceramic capacitor.
В6	SYS	Power Input. SYS provides power for internal circuitry when V_{BUS} is less than SYS. Bypass SYS to GND with a $1\mu F$ (min) ceramic capacitor.
C6	AVL	Analog Voltage Level. Output of the on-chip LDO is used to power the on-chip and low-noise circuits. Bypass with a 2.2μF/10V ceramic capacitor to GND. Powering external loads from AVL is not recommended, other than pullup resistors.
B5	VDD1P8	1.8V Internal LDO Output. Bypass the pin to ground with a 1µF/6.3V ceramic capacitor.
A2	VDD1P1	Digital Supply Voltage of 1.1V. Bypass with a 1µF/6.3V ceramic capacitor.
В3	SDA	I ² C Serial Data. Add an external 2.2kΩ pullup resistor to VIO1.
B2	SCL	I ² C Serial Clock. Add an external 2.2kΩ pullup resistor to VIO1.

Pin Description (continued)

PIN	NAME	FUNCTION			
A1	INTB	Interrupt Output. Active-low open-drain output. Add a 200kΩ pullup resistor to VIO1.			
E1	DN1	USB Input 1 for D-			
E2	DP2	USB Input 2 for D+			
D1	DN	Common Negative Output 1. Connect to D- on USB Type-C connector.			
D2	DP	Common Positive Output 2. Connect to D+ on USB Type-C connector.			
A3	CC1	USB Type-C CC Pin 1			
A4	CC2	USB Type-C CC Pin 2			
A5	VCIN	MTP and V _{CONN} power supply input. Apply 5V power to V _{CIN} . Required for MTP program and to generate V _{CONN} power supply to unused CC pin if required.			
E6	GPIO0	GPIO0—ADC Input 0. Used for Moisture detection functionality as default. If Moisture detection is disabled, this pin is freed up for use as GPIO.			
B4	GPIO1	GPIO1—ADC Input 1. Used for Moisture detection functionality as default. If Moisture detection is disabled, this pin is freed up for use as GPIO.			
E5	GPIO2	GPIO2			
D5	GPIO3	GPIO3. Used for Moisture detection functionality as default. If Moisture detection is disabled, this pin is freed up for use as GPIO.			
E4	GPIO4	GPIO4			
E3	GPIO5	GPIO5			
D4	GPIO6	Used for I ² C Slave ID (SID) Selection at Power Up. Tie this pin to GND, pullup, pulldown with an external $470k\Omega \pm 10\%$ resistor. See <u>Table 3</u> . After power up is complete, this pin can be used for GPIO.			
D3	GPIO7	GPIO7			
C4	GPIO8	GPIO8			
C5	GND_A	Analog GND			
D6	GND_D	Digital GND			
C3	SDA_M	Master I ² C Serial Data. Add an external 2.2kΩ pullup resistor to VIO2.			
C2	SCL_M	Master I ² C Serial Clock. Add an external 2.2kΩ pullup resistor to VIO2.			

Detailed Description

The MAX77958 is a robust solution for USB Type-C CC detection and power delivery (PD) protocol implementation. It detects connected accessories or devices by using Type-C CC detection and USB PD messaging. The IC protects against overvoltage and overcurrent, and detects moisture and prevents corrosion on the USB Type-C connector. The IC also has a D+/D- USB switch and BC1.2 detection to support legacy USB standards. It contains V_{CONN} switches for USB PD and an enable pin for an external V_{CONN} boost or buck converter.

The IC can be used in sink mode to determine the source capabilities of the connected device to optimize power into the sink device. The IC can also be used in source mode to advertise the power capabilities of the source to connected devices and accessories.

The IC is compliant with USB Type-C Version 1.3 and PD 3.0. It can be further customized without affecting the compliance. The embedded default firmware in the MAX77958 is able to support operations that are expected in the Type-C and PD applications.

The default firmware operations are as follows:

- BC1.2, Type-C, and PD adapter detection
- Automatic PD negotiation
- Default sink PDOs: 5V/3A, 9V/3A, and 15V/3A. If there are multiple source PDOs matching to the MAX77958 sink PDO list, the MAX77958 requests the highest power of PDO.
- Automatic role setting according to port partner's role

In addition to the default operation, operation of the IC can be customized for specific applications. This is accomplished using the customization script in the evaluation kit (EV kit) GUI to support different Maxim chargers.

The MAX77958 supports both standalone and MCU based systems. In the standalone system (see <u>Figure 1</u>), the MAX77958 plays a role as system MCU along with the customization script that can be generated through the GUI SW. The customization script is stored in the MTP. In response to events that are happening in the Type-C connector, the customization script automatically executes commands specified by the designer. All sequential control operations are possible without the need for MCU.

Figure 1. Standalone System

In the MCU based system (see Figure 2), the MCU controls the peripheral ICs. In response to port events, the MAX77958 interrupts the MCU and controls the MAX77958 and MAX77962 according to system needs.

Figure 2. MCU Based System

USB Type-C Interface and Control

The MAX77958 is a complete solution for USB port charger detection and High-Power USB charging on a single USB Type-C connector. It can also be used in any power sink or source application.

The USB Type-C is an internal block that detects connected accessories by using USB Type-C, USB PD messaging and USB BC1.2 charger detection. The USB Type-C block auto-configures switches for common connected accessories including USB cables (SDP/CDP/DCP).

CC/USB PD Interface

The MAX77958 works as a Dual Role Port (DRP) compliant to USB Type-C Version 1.3. The USB Type-C functions are controlled by a logic state machine which follows the USB Type-C requirements. There is support for the optional Try. Sink function which places priority on the sink role. This creates the appearance of legacy operation when the device is connected to another DRP. The IC automatically becomes a sink and draws power from the source. The IC firmware can optionally set an external charger's input current limit based on the current advertised on the CC lines through the master I²C interface.

USB Type-C Definitions

- UFP—Upstream Facing Port. Typical USB device role for data transfer.
- DFP—Down Stream Facing Port. Typical USB host role for data transfer.
- DRP—Dual Role Port. USB Type-C port that can operate in either DFP or UFP roles.
- Source—Initial power state for a DFP. Power role can be swapped by USB Power Delivery command.
- Sink—Initial power state for a UFP. Power role can be swapped by USB Power Delivery command.

DRP

The USB Type-C connector management block supports DRP operation. The port cycles between advertising DFP/source and UFP/sink operations while waiting for a port to be connected. The internal state machine handles all the

tasks of detecting and configuring the CC pins for the correct mode. A manual mode allows forcing either DFP or UFP operation in cases where the DRP operation is not appropriate

Detecting Connected DFP

When a DFP is detected (either from DRP mode or force UFP mode), the USB Type-C Connection State Machine detects the active CC line and reports this with an interrupt to the host application processor (AP). The AP then uses this information to de-mux the SuperSpeed USB lines as required. The USB Type-C Connection State Machine also auto detects the DFP advertised current (default, 1.5A and 3.0A). Upon detection of a change in the advertised current, an interrupt is sent to the AP.

Detecting Connected UFP

When a UFP is detected (either from DRP mode or force DFP mode), the USB Type-C State Machine detects the active CC line. If the Interrupt is enabled, and an AP is present, the IC toggles the INT line to report this to the host AP. Additionally, if an active cable is connected, the IC detects the presence of R_A on the unconnected CC line to determine if it is necessary to turn on V_{CONN} . The advertised initial supply current is the default USB current (500mA/900mA depending on if SuperSpeed is active). The advertised current can be changed through an I²C command or automatically to 1.5A. 3.0A is optionally available but is disabled by default.

Controls

Reported Status and Interrupts

- · Connected Device Detection
- Active CC Line
- V_{CONN} Enabled (R_A Present)
- Advertised Current in UFP (Source) Mode
- Error State

Operation Controls

- Force Source (DFP) or Sink (UFP) State
- Control Swap of Power Role or V_{CONN} Role
- Enable/Disable of Audio or Debug Accessories
- Set Advertisement of CC Pin Current in Source Role

Try.SNK Support

The MAX77958 operates as a DRP by default. This type of port can act as either a Power Sink/USB Data Peripheral or a Power Source/USB Data Host. The USB Type-C logic state machine cycles between Source and Sink at a rate typically around 75ms. This means that when the IC is connected to another device, which is also a DRP (for example, PC with a C port), the source and sink roles are randomly assigned. The customer prefers that the mobile phone assumes the sink role if connected to a PC. The IC includes support for Try.SNK, which allows it to be set to strongly prefer the sink role if connected to a standard DRP. If two devices with Try.SNK enable are connected, the role setting is again random.

Audio Accessory Mode Support

The IC detects an audio accessory device when both the CC1 and CC2 pins are pulled down to ground by an R_A resistor from the connected device.

DebugAcessory.SRC Support

The IC detects a connection to a debug and test system (DTS) when it operates in source power role. A debug accessory device is detected when the CC1 and CC2 pins are pulled down to ground by an R_D resistor from the connected device.

DebugAcessory.SNK Support

The IC detects a connection to a DTS when it operates in sink power role. A debug accessory device is detected when the CC1 and CC2 pins are pulled up by an Rp resistor from the connected device.

The voltage levels on the CC1 and CC2 pins give the orientation and current capability.

Table 1. R	Rp/Rp Charging	Current Values	for a DTS Source
------------	----------------	-----------------------	------------------

MODE OF OPERATION	CC1	CC2
Default USB Power	Rp for 3A	Rp for 1.5A
USB Type-C Current at 1.5A	Rp for 1.5A	Rp for Default
USB Type-C Current at 3A	Rp for 3A	Rp for Default

Moisture Detection

The MAX77958 features Moisture and Dry detection on the USB Type-C receptacle. When the Moisture detection feature is enabled (enabled as default), the MAX77958 is monitoring CC1/CC2 and SBU1/SBU2 for 1 DRP source cycle periodically. In case the impedance on these pins are less than Moisture threshold, the MAX77958 runs its unique algorithm until Dry is detected on the receptacle.

When Moisture and Dry are detected, the MAX77958 reports to the AP by setting CC_STATUS1[1].

To take advantage of the MAX77958 Moisture detection feature, external resistor configuration on the SBU1 and SBU2 are required.

Figure 3. SBU Configuration

USB BC1.2 D+/D- Adapter Detection

Description

The USB adapter detection is USB BC1.2 compliant with the ability to automatically detect common charger types. USB adapter detection has the following controls in the I²C register file:

- Charger detection enable (ChgDetEn)
- Charger detection manual—request a new run of charger detection (ChgDetMan)

The Adapter Detection State Machine follows USB BC1.2 requirements and detects SDP, CDP, and DCP types. If the D+/D- lines are detected as open, the adapter detection state machine indicates SDP as required by BC1.2 requirements.

With a USB BC1.2 compliant state machine, the IC reports that a DCP is detected based on the bias voltage. The IC default firmware can automatically set an external charger's input current limit based on the BC1.2 adapter type that was detected.

The IC also reports the operation status of the Adapter Detection State Machine in the ChgTypRun interrupt bit in the I²C register map.

Charger Type Detection Table

Table 2. BC1.2 Adapter Detection

USB BC1.2 DETECTED ADAPTER TYPE					
ChgTyp VALUE	CHARGER DETECTED				
00	No V _{BUS}				
01	SDP				
10	CDP				
11	DCP				

Note: Adapter Detect running state is indicated until the Adapter Detection State Machine is complete.

VCONN Switch

Description

The MAX77958 integrates the V_{CONN} switch which connects V_{CIN} to one of CC1 and CC2. Once CC detection identifies Ra/Ra on CC1 and CC2, the V_{CONN} switch routes V_{CIN} to the pin that is not connected to the CC line in the cable.

The MAX77958 also provides programmable V_{CONN} switch current limit from 200mA to 500mA in 100mA step. If V_{CONN} load current exceeds the current limit for 3ms, then an interrupt is generated to the Application Processor (AP). If AP wants to keep supplying V_{CONN} power, then the AP must configure a higher current limit or no current limit within 12ms. If not, the V_{CONN} switch is turned OFF in 12ms after an Interrupt is generated.

Figure 4. V_{CONN} Overcurrent Protection Operation

USB Type-C Interface and Control

Automatic Accessory Detection

Autoconfiguration Details

CCDetEn = 0 or ChgDetEn = 0

1. Nothing happens when V_{BUS} is attached. Nothing occurs when ChgDetMan is set to 1.

CCDetEn = 1 and ChgDetEn = 1

- 1. Charger detection runs automatically when V_{BUS} is attached
- 2. If V_{BUS} voltage enters the valid range, all switches connected to DP/DN are opened
- 3. Charger detection algorithm begins.
- 4. When charger detection finishes, DP/DN switch settings are restored.

USBAuto = 0

1. No automatic switch configuration happens

USBAuto = 1

- 1. Operates only after charger detection completes, SDP or CDP is found, and if no special charger is found (SpChgTyp = 000 unknown).
- 2. Set DP/DN connected to DP2/DN1, over-riding any previous switch setting.
- 3. At any time, the AP is allowed to change these switch settings.
- 4. If AP has not changed the switch settings when V_{BUS} drops below the valid level, DP/DN sets to Hi-Z.

USB Power Delivery

Description

The IC supports USB Power Delivery Revision 3.0. The power delivery subsystem is separated into 2 parts: Automatic Power Control and Application Processor Message Passthrough.

Application Processor Message Passthrough

There are many USB PD messages that are unrelated to power control. These messages pass on to the AP to decode and reply. USB PD messages have time critical components and the IC automatically handles these time critical events.

IC Wakeup events

The IC automatically operates in the lowest possible power state. The IC power consumption depends on the following conditions:

- Request has been made across the I²C bus
- USB Type-C end-to-end detection is valid
- V_{BUS} is present

The lowest possible power consumption state is no V_{BUS} , CCDetEn = 0, and no I²C traffic requests.

Interrupt Output (INTB)

INTB is an open-drain and active-low output. It reports an interrupt event to the main microprocessor. Individual interrupt sources can be masked. Once the main microprocessor reads the interrupt registers, the INTB pin is cleared.

Interconnected Block Diagram

Figure 5. Interconnected Block Diagram

System Faults

The IC monitors the system for the following faults:

- Undervoltage lockout
- VIO fault

Undervoltage Lockout

When the V_{AVL} falls below AVL_{UVLOF} (2.6V max) for more than 8ms, the MAX77958 enters into a shutdown state. Once the V_{AVL} voltage is higher than AVL_{UVLOR} (2.8V max), the MAX77958 exits shutdown state to be functional.

VIO Fault

When VIO1 and VIO2 fall below 1.0V, the IC goes into shutdown state. Once VIO1 and VIO2 voltages rise higher than 1.3V, the IC comes out of shutdown state.

Reset Conditions

The IC has different levels of reset as follows:

- Type S: Registers are reset each time when VDD1P8 < VDD OK_F
- Type O: Registers are reset each time when VDD1P8 < VDD_OK_F or when the software reset command is transmitted (SW RESET = 0x0F)

WDT Reset

- 1. Firmware restarts a watchdog timer in 1.86s.
- 2. If the watchdog timer is not kicked in 1.86s, it executes the following actions:
 - a.) MAX77958 reboots
 - b.) MAX77958 notifies MA SYSERROR BOOT WDT

I²C Serial Interface

The I 2 C serial bus consists of a bidirectional serial-data line (SDA) and a serial clock (SCL). I 2 C is an open-drain bus. SDA and SCL require pullup resistors (500 Ω or greater). Optional 24 Ω resistors in series with SDA and SCL help to protect the device inputs from high voltage spikes on the bus lines. Series resistors also minimize crosstalk and undershoot on bus lines.

System Configuration

The I²C bus is a multi-master bus. The maximum number of devices that can attach to the bus is only limited by bus capacitance.

<u>Figure 6</u> shows an example of a typical I²C system. A device on the I²C bus that sends data to the bus is called a transmitter. A device that receives data from the bus is called a receiver. The device that initiates a data transfer and generates SCL clock signals to control the data transfer is a master. Any device that is being addressed by the master is considered a slave. When the MAX77958 I²C-compatible interface is operating, it is a slave on the I²C bus and it can be both a transmitter and a receiver.

Figure 6. Functional Logic Diagram for Communications Controller

Bit Transfer

One data bit is transferred for each SCL clock cycle. The data on SDA must remain stable during the high portion of the SCL clock pulse. Changes in SDA while SCL is high are control signals (START and STOP conditions).

Figure 7. I²C Bit Transfer

START and STOP Conditions

When the I²C serial interface is inactive, SDA and SCL idle high. A master device initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA, while SCL is high.

A START condition from the master signals the beginning of a transmission to the IC. The master terminates transmission by issuing a NOT ACKNOWLEDGE followed by a STOP condition.

A STOP condition frees the bus. To issue a series of commands to the slave, the master can issue REPEATED START (Sr) commands instead of a STOP command in order to maintain control of the bus. In general, a REPEATED START command is functionally equivalent to a regular START command.

When a STOP condition or incorrect address is detected, the IC internally disconnects SCL from the I²C serial interface until the next START condition, minimizing digital noise and feed-through.

Figure 8. I²C Start and Stop

Acknowledge

Both the I²C bus master and the IC (slave) generate acknowledge bits when receiving data. The acknowledge bit is the last bit of each nine bit data packet. To generate an ACKNOWLEDGE (A), the receiving device must pull SDA low before the rising edge of the acknowledge-related clock pulse (ninth pulse) and keep it low during the high period of the clock pulse. To generate a NOT-ACKNOWLEDGE (nA), the receiving device allows SDA to be pulled high before the rising edge of the acknowledge-related clock pulse and leaves it high during the high period of the clock pulse.

Monitoring the acknowledge bits allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master should reattempt communication at a later time.

Slave Address

The IC acts as a slave transmitter/receiver. The slave address of the IC is 0x4Ah/0x4Bh,0x4Ch/0x4Dh and 0x4Eh/0x4Fh depending on configuration of GPIO6. The least significant bit is the read/write indicator (1 for read, 0 for write).

Table 3. I²C Slave Address

GPIO6	SLAVE ADDRESS (7-BIT)	SLAVE ADDRESS (WRITE)	SLAVE ADDRESS (READ)
GND	010 0101	0x4A (0100 1010)	0x4B (0100 1011)
Pullup (470kΩ ±10%) to VIO1	010 0110	0x4C (0100 1100)	0x4D (0100 1101)
Pulldown (470kΩ ±10%) to GND	010 0111	0x4E (0100 1110)	0x4F (0100 1111)

Clock Stretching

In general, the clock signal generation for I²C bus is the responsibility of the master device. I²C specification allows slow slave devices to alter the clock signal by holding down the clock line. The process in which a slave device holds down the clock line is typically called clock stretching. The IC does not use any form of clock stretching to hold down the clock line.

General Call Address

The IC does not implement an I^2 C specification general call address. If the IC sees general call address (00000000b), it does not issue an ACKNOWLEDGE (A).

Communication Speed

The IC provides I²C 3.0-compatible (1MHz) serial interface.

- I²C Revision 3 Compatible Serial Communications Channel
 - 0Hz to 100kHz (Standard Mode)
 - 0Hz to 400kHz (Fast Mode)
 - 0Hz to 1MHz (Fast-Mode Plus)
- Does not Support I²C Clock Stretching

Operating in standard mode, fast mode, and fast-mode plus does not require any special protocols. The main consideration when changing the bus speed through this range is the combination of the bus capacitance and pullup resistors. Higher time constants created by the bus capacitance and pullup resistance (C x R) slow the bus operation. Therefore, when increasing bus speeds the pullup resistance must be decreased to maintain a reasonable time constant. Refer to the "Pullup Resistor Sizing" section of the I²C revision 3.0 specification for detailed guidance on the pullup resistor selection. In general, for bus capacitance of 200pF, a 100kHz bus needs $5.6k\Omega$ pullup resistors, a 400kHz bus needs about $1.5k\Omega$ pullup resistors, and a 1MHz bus needs 680Ω pullup resistors. Note that the pullup resistor dissipates power when the open-drain bus is low. The lower the value of the pullup resistor, the higher the power dissipation (V²/R).

Operating in high-speed mode requires some special considerations. For the full list of considerations, see the I²C 3.0 specification. The major considerations with respect to the IC are:

- I²C bus master uses current source pullups to shorten the signal rise times.
- I²C slave must use a different set of input filters on its SDA and SCL lines to accommodate for the higher bus speed.
- The communication protocols need to utilize the high-speed master code.

At power-up and after each STOP condition, the IC input filters are set for standard mode, fast mode, or fast-mode plus (i.e., 0Hz to 1MHz). To switch the input filters for high-speed mode, use the high-speed master code protocols that are described in the <u>Communication Protocols</u> section.

Communication Protocols

The IC supports both writing and reading from its registers.

Writing to a Single Register

<u>Figure 9</u> shows the protocol for the I²C master device to write one byte of data to the IC. This protocol is the same as SMBus specification's "Write Byte" protocol.

The "Write Byte" protocol is as follows:

- 1. The master sends a START command (S).
- 2. The master sends the 7-bit slave address followed by a write bit $(R/\overline{W} = 0)$.
- 3. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 4. The master sends an 8-bit register pointer.
- 5. The slave acknowledges the register pointer.
- 6. The master sends a data byte.
- 7. The slave acknowledges the data byte. At the rising edge of SCL, the data byte is loaded into its target register and the data becomes active.
- 8. The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

Figure 9. Writing to a Single Register

Writing to Sequential Registers

<u>Figure 10</u> shows the protocol for writing to sequential registers. This protocol is similar to the "Write Byte" protocol, except the master continues to write after it receives the first byte of data. When the master is done writing, it issues a STOP or REPEATED START.

The "Writing to Sequential Registers" protocol is as follows:

- 1. The master sends a START command (S).
- 2. The master sends the 7-bit slave address followed by a write bit $(R/\overline{W} = 0)$.
- 3. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 4. The master sends an 8-bit register pointer.
- 5. The slave acknowledges the register pointer.
- 6. The master sends a data byte.
- 7. The slave acknowledges the data byte. At the rising edge of SCL, the data byte is loaded into its target register and the data becomes active.
- 8. Steps 6 to 7 are repeated as many times as the master requires.
- 9. During the last acknowledge related clock pulse, the slave issues an ACKNOWLEDGE (A).
- 10. The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

Figure 10. Writing to Sequential Registers

Reading from a Single Register

The I²C master device reads one byte of data to the IC. This protocol is the same as SMBus specification's "Read Byte" protocol.

The "Read Byte" protocol is as follows:

- 1. The master sends a START command (S).
- 2. The master sends the 7-bit slave address followed by a write bit $(R/\overline{W} = 0)$.
- 3. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 4. The master sends an 8-bit register pointer.
- 5. The slave acknowledges the register pointer.
- 6. The master sends a REPEATED START command (Sr).
- 7. The master sends the 7-bit slave address followed by a read bit $(R/\overline{W} = 1)$.
- 8. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 9. The addressed slave places 8-bits of data on the bus from the location specified by the register pointer.
- 10. The master issues a NOT-ACKNOWLEDGE (nA).
- 11. The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

Figure 11. Reading from a Single Register

Reading from Sequential Registers

<u>Figure 12</u> shows the protocol for reading from sequential registers. This protocol is similar to the "Read Byte" protocol except the master issues an ACKNOWLEDGE (A) to signal the slave that it wants more data—when the master has all the data it requires, it issues a NOT-ACKNOWLEDGE (nA) and a STOP (P) to end the transmission.

The "Continuous Read from Sequential Registers" protocol is as follows:

- 1. The master sends a START command (S).
- 2. The master sends the 7-bit slave address followed by a write bit $(R/\overline{W} = 0)$.
- 3. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 4. The master sends an 8-bit register pointer.
- 5. The slave acknowledges the register pointer.
- 6. The master sends a REPEATED START command (Sr).
- 7. The master sends the 7-bit slave address followed by a read bit $(R/\overline{W} = 1)$.
- 8. The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 9. The addressed slave places 8-bits of data on the bus from the location specified by the register pointer.
- 10. The master issues an ACKNOWLEDGE (A) signaling the slave that it wishes to receive more data.
- 11. Steps 9 to 10 are repeated as many times as the master requires. Following the last byte of data, the master must issue a NOT-ACKNOWLEDGE (nA) to signal that it wishes to stop receiving data.
- 12. The master sends a STOP condition (P) or a REPEATED START condition (Sr). Issuing a STOP (P) ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

Figure 12. Reading from Sequential Registers

Engaging HS-Mode for Operation up to 3.4MHz

<u>Figure 13</u> shows the protocol for engaging HS-Mode operation. HS-Mode operation allows for a bus operating speed up to 3.4MHz.

The "Engaging HS-Mode" protocol is as follows:

- 1. Begin the protocol while operating at a bus speed of 1MHz or lower.
- 2. The master sends a START command (S).
- 3. The master sends the 8-bit master code of 0000 1xx0b, where 'xx' are don't care bits.
- 4. The addressed slave issues a NOT-ACKNOWLEDGE (nA).
- 5. The master may now increase its bus speed up to 3.4MHz and issue any read/write operation.

The master may continue to issue high-speed read/write operations until a STOP (P) is issued. Issuing a STOP (P) ensures that the bus input filters are set for 1MHz or slower operation.

Figure 13. Engaging HS-Mode

The MAX77958 I²C supports the HS mode extension feature. The HS extension feature keeps the high-speed operation even after a 'STOP' condition. This eliminates the need for HS master code issued by the I²C master controller when the I²C master controller wants to stay in HS mode for multiple read/write cycles.

As shown in <u>Figure 14</u>, the HS extension mode can be enabled by setting HS_EXT bit in I2C_CFG register (ADDR 0x15) from LS mode only (entering HS extension mode from HS mode is not supported).

Figure 14. I²C Operating Mode State Diagram

Register Map

Register Map

I²C Slave Address

The MAX77958 has a total of 3 slave addresses. See <u>Table 3</u> for more information.

Functional Reset Conditions

The IC has different levels of reset as follows:

- Type S: Registers are reset each time when VDD1P8 < VDD_OKF
- Type O: Registers are reset each time when VDD1P8 < VDD_OK_F or when the software reset command is transmitted (SW_RESET = 0x0F)

Functional Register Reset Type Summary

	REGISTER ADDRESS (HEX)	REGISTER FUNCTION	REGISTER NAME	RESET TYPE
USBC SID (functional reg	gisters)			
USBC	0x00	USBC	DEVICE_ID	S
USBC	0x01	USBC	DEVICE_REV	S
USBC	0x02	USBC	FW_REV	S
USBC	0x03	USBC	FW_SUB_VER	S
USBC	0x04	USBC	UIC_INT	0
USBC	0x05	USBC	CC_INT	0
USBC	0x06	USBC	PD_INT	0
USBC	0x07	USBC	ACTION_INT	0
USBC	0x08	USBC	USBC_STATUS1	S
USBC	0x09	USBC	USBC_STATUS2	S
USBC	0x0A	USBC	BC_STATUS	S
USBC	0x0B	USBC	DP_STATUS	S
USBC	0x0C	USBC	CC_STATUS0	S
USBC	0x0D	USBC	CC_STATUS1	S
USBC	0x0E	USBC	PD_STATUS0	S
USBC	0x0F	USBC	PD_STATUS1	S
USBC	0x10	USBC	UIC_INT_M	0
USBC	0x11	USBC	CC_INT_M	0
USBC	0x12	USBC	PD_INT_M	0
USBC	0x13	USBC	ACTION_INT_M	0
USBC	0x21	USBC	AP_DATAOUT0	0
USBC	0x22	USBC	AP_DATAOUT1	0
USBC	0x23	USBC	AP_DATAOUT2	0
USBC	0x24	USBC	AP_DATAOUT3	0
USBC	0x25	USBC	AP_DATAOUT4	0
USBC	0x26	USBC	AP_DATAOUT5	0
USBC	0x27	USBC	AP_DATAOUT6	0
USBC	0x28	USBC	AP_DATAOUT7	0

	REGISTER ADDRESS (HEX)	REGISTER FUNCTION	REGISTER NAME	RESET TYPE
USBC	0x29	USBC	AP_DATAOUT8	0
USBC	0x2A	USBC	AP_DATAOUT9	0
USBC	0x2B	USBC	AP_DATAOUT10	0
USBC	0x2C	USBC	AP_DATAOUT11	0
USBC	0x2D	USBC	AP_DATAOUT12	0
USBC	0x2E	USBC	AP_DATAOUT13	0
USBC	0x2F	USBC	AP_DATAOUT14	0
USBC	0x30	USBC	AP_DATAOUT15	0
USBC	0x31	USBC	AP_DATAOUT16	0
USBC	0x32	USBC	AP_DATAOUT17	0
USBC	0x33	USBC	AP_DATAOUT18	0
USBC	0x34	USBC	AP_DATAOUT19	0
USBC	0x35	USBC	AP_DATAOUT20	0
USBC	0x36	USBC	AP_DATAOUT21	0
USBC	0x37	USBC	AP_DATAOUT22	0
USBC	0x38	USBC	AP_DATAOUT23	0
USBC	0x39	USBC	AP_DATAOUT24	0
USBC	0x3A	USBC	AP_DATAOUT25	0
USBC	0x3B	USBC	AP_DATAOUT26	0
USBC	0x3C	USBC	AP_DATAOUT27	0
USBC	0x3D	USBC	AP_DATAOUT28	0
USBC	0x3E	USBC	AP_DATAOUT29	0
USBC	0x3F	USBC	AP_DATAOUT30	0
USBC	0x40	USBC	AP_DATAOUT31	0
USBC	0x41	USBC	AP_DATAOUT32	0
USBC	0x51	USBC	AP_DATAIN0	S
USBC	0x52	USBC	AP_DATAIN1	S
USBC	0x53	USBC	AP_DATAIN2	S
USBC	0x54	USBC	AP_DATAIN3	S
USBC	0x55	USBC	AP_DATAIN4	S
USBC	0x56	USBC	AP_DATAIN5	S
USBC	0x57	USBC	AP_DATAIN6	S
USBC	0x58	USBC	AP_DATAIN7	S
USBC	0x59	USBC	AP_DATAIN8	S
USBC	0x5A	USBC	AP_DATAIN9	S
USBC	0x5B	USBC	AP_DATAIN10	
USBC	0x5C	USBC	AP_DATAIN11	
USBC	0x5D	USBC	AP_DATAIN12	
USBC	0x5E	USBC	AP_DATAIN13	S
USBC	0x5F	USBC	AP_DATAIN14	S
USBC	0x60	USBC	AP_DATAIN15	S

		REGISTER ADDRESS (HEX)		GISTER NCTION		REG	SISTER NAM	ИΕ	RE	SET TYPE	
USBC		0x61		USBC		AF	_DATAIN16	3		S	
USBC		0x62		USBC		AF	_DATAIN17	7		S	
USBC		0x63		USBC		AF	_DATAIN18	3		S	
USBC		0x64	USBC			AP_DATAIN19				S	
USBC		0x65		USBC		AP_DATAIN20				S	
USBC		0x66		USBC		AF	_DATAIN2	1		8	
USBC	0x67			USBC		AF	_DATAIN22	2		S	
USBC		0x68		USBC		AF	_DATAIN23	3		S	
USBC		0x69		USBC		AF	_DATAIN24	1		S	
USBC		0x6A		USBC		AF	_DATAIN2	5		S	
USBC		0x6B		USBC		AF	_DATAIN26	3		S	
USBC		0x6C		USBC		AF	_DATAIN27	7		S	
USBC		0x6D		USBC		AF	_DATAIN28	3		S	
USBC	0x6E			USBC		AF	_DATAIN29	9		S	
USBC	0x6F			USBC		AF	_DATAIN30)		S	
USBC				USBC		AP_DATAIN31				S	
USBC				USBC		AP_DATAIN32				S	
USBC	0x80			USBC		S	W_RESET			S	
ADDRESS	S NAME		MSB							LSB	
USBC_FUN	ic						•		•	•	
0x00	DEVICE_ID	0[7:0]	DeviceId[7:0]								
0x01	DEVICE_R	EV[7:0]	DeviceRev[7:0]								
0x02	FW_REV[7	<u>:0]</u>	FwRev[7:0]								
0x03	FW_SUB_\	/ER[7:0]				FwSubl	Rev[7:0]				
0x04	UIC_INT[7:	0]	APCmdR esl	SYSMsgI	VBUSDe tl	VbADCI	DCDTmo I	StopMod el	ChgTypI	Attached HoldI	
0x05	CC_INT[7:0	<u>D]</u>	VCONN OCPI	VSAFE0 VI	DetAbrtI	Wtrl	CCPinSt atl	CCIStatl	CCVcnSi atl	CCStatI	
0x06	PD_INT[7:0	<u>)</u>	PDMsgl	PSRDYI	DataRole I	RSVD	RSVD	DisplayP ortl	_	_	
0x07	ACTION_IN	NT[7:0]	_	_	_	_	Extende dActionI	Action2I	Action1I	Action0I	
0x08	USBC_STA	ATUS1[7:0]			VbADC[4:0]]			RSVD[2:0]	
0x09	USBC_STA	ATUS2[7:0]				SYSM	sg[7:0]				
0x0A	BC_STATU	STATUS[7:0] V _{BUSD}		RSVD	P	rChgTyp[2:	0]	DCDTmo	Chg ⁻	Typ[1:0]	
0x0B	DP_STATUS[7:0]		DP_Exit Mode	DP_Atte ntion	DP_Conf igure	DP_Stat us	DP_Ente rMode	DP_Disc overMod e	DP_Disc overSVI D	DP_Disc overIdent ity	
0x0C	CC_STATU	JS0[7:0]	CCPins	Stat[1:0]	CCISt	CCIStat[1:0] CCVcnSt at		CCSta)]	
0x0D	CC_STATU	JS1[7:0]	RSVI	D[1:0]	V _{CONN} OCP	V _{CONN} S C	VSafeOV	DetAbrt	Wtr	RSVD	

www.analog.com Analog Devices | 44

PDMsg[7:0]

PD_STATUS0[7:0]

0x0E

ADDRESS	NAME	MSB							LSB	
0x0F	PD_STATUS1[7:0]	DataRole	PowerRo le	VCONN S	PSRDY	-	_	-	_	
0x10	UIC_INT_M[7:0]	APCmdR esM	SYSMsg M	VBUSDe tM	VbADCM	DCDTmo M	StopMod eM	ChgTyp M	Attached HoldM	
0x11	CC_INT_M[7:0]	VCONN OCPM	VSAFE0 VM	DetAbrt M	WtrM	CCPinSt atM	CCIStat M	CCVcnSt atM	CCStatM	
0x12	PD_INT_M[7:0]	PDMsgM	PSRDY M	DataRole M	RSVD	RSVD	DisplayP ortM	_	_	
0x13	ACTION_INT_M[7:0]		RSVI	D[3:0]		Extende dActionM	Action2M	Action1M	Action0M	
0x21	AP_DATAOUT0[7:0]			AP_	_REQUEST	_OPCODE[7:0]			
0x22	AP_DATAOUT1[7:0]			OP	CODE_DAT	AOUT_01[7:0]			
0x23	AP_DATAOUT2[7:0]		OPCODE_DATAOUT_02[7:0]							
0x24	AP_DATAOUT3[7:0]			OP	CODE_DAT	AOUT_03[7:0]			
0x25	AP_DATAOUT4[7:0]		OPCODE_DATAOUT_04[7:0]							
0x26	AP_DATAOUT5[7:0]			OP	CODE_DAT	AOUT_05[7:0]			
0x27	AP_DATAOUT6[7:0]		OPCODE_DATAOUT_06[7:0]							
0x28	AP_DATAOUT7[7:0]			OP	CODE_DAT	AOUT_07[7:0]			
0x29	AP_DATAOUT8[7:0]			OP	CODE_DAT	TAOUT_08[7:0]			
0x2A	AP_DATAOUT9[7:0]		OPCODE_DATAOUT_09[7:0]							
0x2B	AP_DATAOUT10[7:0]		OPCODE_DATAOUT_10[7:0]							
0x2C	AP_DATAOUT11[7:0]	OPCODE_DATAOUT_11[7:0]								
0x2D	AP_DATAOUT12[7:0]	OPCODE_DATAOUT_12[7:0]								
0x2E	AP_DATAOUT13[7:0]			OP	CODE_DAT	AOUT_13[7:0]			
0x2F	AP_DATAOUT14[7:0]			OP	CODE_DAT	AOUT_14[7:0]			
0x30	AP_DATAOUT15[7:0]			OP	CODE_DAT	AOUT_15[7:0]			
0x31	AP_DATAOUT16[7:0]			OP	CODE_DAT	AOUT_16[7:0]			
0x32	AP_DATAOUT17[7:0]			OP	CODE_DAT	AOUT_17[7:0]			
0x33	AP_DATAOUT18[7:0]			OP	CODE_DAT	AOUT_18[7:0]			
0x34	AP_DATAOUT19[7:0]			OP	CODE_DAT	AOUT_19[7:0]			
0x35	AP_DATAOUT20[7:0]			OP	CODE_DAT	AOUT_20[7:0]			
0x36	AP_DATAOUT21[7:0]			OP	CODE_DAT	AOUT_21[7:0]			
0x37	AP_DATAOUT22[7:0]			OP	CODE_DAT	AOUT_22[7:0]			
0x38	AP_DATAOUT23[7:0]			OP	CODE_DAT	AOUT_23[7:0]			
0x39	AP_DATAOUT24[7:0]			OP	CODE_DAT	AOUT_24[7:0]			
0x3A	AP_DATAOUT25[7:0]			OP	CODE_DAT	AOUT_25[7:0]			
0x3B	AP_DATAOUT26[7:0]			OP	CODE_DAT	AOUT_26[7:0]			
0x3C	AP_DATAOUT27[7:0]			OP	CODE_DAT	AOUT_27[7:0]			
0x3D	AP_DATAOUT28[7:0]			OP	CODE_DAT	AOUT_28[7:0]			
0x3E	AP_DATAOUT29[7:0]	OPCODE_DATAOUT_29[7:0]								
0x3F	AP_DATAOUT30[7:0]	OPCODE_DATAOUT_30[7:0]								
0x40	AP_DATAOUT31[7:0]		OPCODE_DATAOUT_31[7:0]							
0x41	AP_DATAOUT32[7:0]			OP	CODE_DAT	AOUT_32[7:0]			
0x51	AP_DATAIN0[7:0]			USBC	 _RESPONS	SE_OPCOD	E[7:0]			
	1	1								

ADDRESS	NAME	MSB							LSB	
0x52	AP_DATAIN1[7:0]			OF	PCODE_DA	TAIN_01[7	' :0]	•		
0x53	AP_DATAIN2[7:0]			OF	PCODE_DA	ATAIN_02[7	' :0]			
0x54	AP_DATAIN3[7:0]			OF	PCODE_DA	ATAIN_03[7	' :0]			
0x55	AP_DATAIN4[7:0]			OF	PCODE_DA	ATAIN_04[7	' :0]			
0x56	AP_DATAIN5[7:0]			OF	PCODE_DA	ATAIN_05[7	' :0]			
0x57	AP_DATAIN6[7:0]			OF	PCODE_DA	ATAIN_06[7	' :0]			
0x58	AP_DATAIN7[7:0]		OPCODE_DATAIN_07[7:0]							
0x59	AP_DATAIN8[7:0]			OF	PCODE_DA	ATAIN_08[7	' :0]			
0x5A	<u>AP_DATAIN9[7:0]</u>			OF	PCODE_DA	ATAIN_09[7	' :0]			
0x5B	AP_DATAIN10[7:0]			OF	PCODE_DA	ATAIN_10[7	' :0]			
0x5C	AP_DATAIN11[7:0]			OF	PCODE_DA	ATAIN_11[7	' :0]			
0x5D	AP_DATAIN12[7:0]			OF	PCODE_DA	ATAIN_12[7	' :0]			
0x5E	AP_DATAIN13[7:0]			OF	PCODE_DA	ATAIN_13[7	' :0]			
0x5F	AP_DATAIN14[7:0]			OF	PCODE_DA	ATAIN_14[7	' :0]			
0x60	AP_DATAIN15[7:0]			OF	PCODE_DA	ATAIN_15[7	' :0]			
0x61	AP_DATAIN16[7:0]			OF	PCODE_DA	ATAIN_16[7	' :0]			
0x62	AP_DATAIN17[7:0]			OF	PCODE_DA	ATAIN_17[7	' :0]			
0x63	AP_DATAIN18[7:0]			OF	PCODE_DA	ATAIN_18[7	' :0]			
0x64	AP_DATAIN19[7:0]			OF	PCODE_DA	ATAIN_19[7	' :0]			
0x65	AP_DATAIN20[7:0]			OF	PCODE_DA	ATAIN_20[7	' :0]			
0x66	AP_DATAIN21[7:0]			OF	PCODE_DA	ATAIN_21[7	' :0]			
0x67	AP_DATAIN22[7:0]			OF	PCODE_DA	ATAIN_22[7	' :0]			
0x68	AP_DATAIN23[7:0]			OF	PCODE_DA	ATAIN_23[7	' :0]			
0x69	AP_DATAIN24[7:0]			OF	PCODE_DA	ATAIN_24[7	' :0]			
0x6A	AP_DATAIN25[7:0]			OF	PCODE_DA	ATAIN_25[7	' :0]			
0x6B	AP_DATAIN26[7:0]			OF	PCODE_DA	ATAIN_26[7	' :0]			
0x6C	AP_DATAIN27[7:0]			OF	PCODE_DA	ATAIN_27[7	' :0]			
0x6D	AP_DATAIN28[7:0]			OF	PCODE_DA	ATAIN_28[7	' :0]			
0x6E	AP_DATAIN29[7:0]			OF	PCODE_DA	ATAIN_29[7	' :0]			
0x6F	AP_DATAIN30[7:0]			OF	PCODE_DA	ATAIN_30[7	' :0]			
0x70	AP_DATAIN31[7:0]		OPCODE_DATAIN_31[7:0]							
0x71	AP_DATAIN32[7:0]		OPCODE_DATAIN_32[7:0]							
0x80	SW_RESET[7:0]	UIC_SWRST[7:0]								
I2C_FUNC										
0xE0	<u>I2C_CNFG[7:0]</u>	RSVD		PAIR[2:0]			RSVD[2:0]		HS_EXT _EN	

Register Details

DEVICE_ID (0x0)

BIT	7	6	5	4	3	2	1	0		
Field				Device	ld[7:0]					
Reset	0x58									
Access Type	Read Only									
BITFIELD	BITS	DESCRIPTION DECODE								

BITFIELD	BITS	DESCRIPTION	DECODE
DeviceId	7:0	Device ID	0x00: Reserved 0x01: Reserved 0x58: MAX77958

DEVICE_REV (0x1)

BIT	7	6	5	4	3	2	1	0				
Field		DeviceRev[7:0]										
Reset	0x02											
Access Type				Read	Read Only							

BITFIELD	BITS	DESCRIPTION	DECODE
DeviceRev	7:0	FW Revision	0x01: Initial release 0x02: Second release

FW_REV (0x2)

BIT	7	6	5	4	3	2	1	0			
Field		FwRev[7:0]									
Reset		0x00									
Access Type		Read Only									

BITFIELD	BITS	DESCRIPTION	DECODE
FwRev	7:0	FW Revision	0x00: Initial release 0x01: Second release

FW_SUB_VER (0x3)

BIT	7	6	5	4	3	2	1	0			
Field		FwSubRev[7:0]									
Reset		0x00									
Access Type		Read Only									

BITFIELD	BITS	DESCRIPTION	DECODE
FwSubRev	7:0	FW Revision	0x00: Initial release 0x01: Second release

UIC_INT (0x4)

BIT	7	6	5	4	3	2	1	0
Field	APCmdResI	SYSMsgl	VBUSDetI	VbADCI	DCDTmol	StopModel	ChgTypl	AttachedHol dl
Reset	0b0							
Access Type	Read Clears All							

BITFIELD	BITS	DESCRIPTION	DECODE		
APCmdResI	7	AP Command Response Interrupt	0b0: No interrupt. 0b1: AP command response pending.		
SYSMsgI	6	USBC System Message Interrupt	0b0: No interrupt. 0b1: USBC system message pending.		
VBUSDetI	5	V _{BUS} Detection Interrupt	0b0: No interrupt. 0b1: New V _{BUSDet} status interrupt.		
VbADCI	4	V _{BUS} Voltage ADC Interrupt	0b0: No interrupt. 0b1: New VbADC status interrupt.		
DCDTmol	3	DCD Timer Interrupt	0b0: No interrupt. 0b1: New DCDTmo status interrupt.		
StopModel	2	Stop Mode Interrupt	0b0: No interrupt. 0b1: New stop mode status interrupt.		
ChgTypl	1	Charger Type Interrupt	0b0: No interrupt. 0b1: New ChgTyp status interrupt.		
AttachedHold I	0	Attached Hold Interrupt	0b0: No interrupt. 0b1: New attached hold status interrupt.		

CC_INT (0x5)

BIT	7	6	5	4	3	2	1	0
Field	VCONNOC PI	VSAFE0VI	DetAbrtl	Wtrl	CCPinStatI	CCIStatl	CCVcnStatl	CCStatl
Reset	0b0							
Access Type	Read Clears All							

BITFIELD	BITS	DESCRIPTION	DECODE		
VCONNOCPI	7	V _{CONN} OCP Interrupt	0b0: No interrupt. 0b1: New V _{CONN} OCP status interrupt.		
VSAFE0VI	6	VSAFE0V Interrupt	0b0: No interrupt. 0b1: New VSAFE0V status interrupt.		
DetAbrtl	5	CC Detection Abort Interrupt	0b0: No interrupt. 0b1: New CC detection abort interrupt.		
Wtrl	4	Moisture/Dry Interrupt	0b0: No interrupt. 0b1: New moisture/dry status interrupt.		
CCPinStatI	3	CC Pin State Interrupt	0b0: No interrupt. 0b1: New CCPinStat status interrupt.		
CCIStatI	2	CCIStat Interrupt	0b0: No interrupt. 0b1: New CCIStat status interrupt.		
CCVcnStatl	1	CCVcnStat Interrupt	0b0: No interrupt. 0b1: New CCVcnStat status interrupt.		

BITFIELD	BITS	DESCRIPTION	DECODE
CCStatl	0	CCStat Interrupt	0b0: No interrupt. 0b1: New CCStat status interrupt.

PD_INT (0x6)

BIT	7	6	5	4	3	2	1	0
Field	PDMsgI	PSRDYI	DataRolel	RSVD	RSVD	DisplayPortl	_	-
Reset	0b0	0b0	0b0	0b0	0b0	0x0	_	-
Access Type	Read Clears All	Read Clears All	Read Clears All	Read Only	Read Only	Read Clears All	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
PDMsgl	7	PD Message Interrupt	0b0: No interrupt. 0b1: New PD message issued.
PSRDYI	6	PSRDY Interrupt	0b0: No interrupt. 0b1: New PSRDY message issued.
DataRolel	5	Data Role Change Interrupt	0b0: No interrupt. 0b1: DataRole status is changed.
RSVD	4	Spare	
RSVD	3	Spare	
DisplayPortl	2	Display Port Interrupt	0x0: No interrupt. 0x1: New DisplayPort status update interrupt.

ACTION_INT (0x7)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	ExtendedAc tionI	Action2I	Action1I	Action0I
Reset	_	_	_	_	0b0	0b0	0b0	0b0
Access Type	_	_	_	_	Read Clears All	Read Clears All	Read Clears All	Read Clears All

BITFIELD	BITS	DESCRIPTION	DECODE		
ExtendedActi onl	3	Extended Action Table Interrupt	0b0: No interrupt. 0b1: Extended action table interrupt.		
Action2I	2	Action Table Interrupt 2	0b0: No interrupt. 0b1: Action table set interrupt 2.		
Action1I	1	Action Table Interrupt 1	0b0: No interrupt 0b1: Action table set interrupt 1.		
Action0I	0	Action Table Interrupt 0	0b0: No interrupt. 0b1: Action table set interrupt 0.		

USBC_STATUS1 (0x8)

BIT	7	6	5	4	3	2	1	0
Field			VbADC[4:0]	RSVD[2:0]				
Reset			0x0	0b111				
Access Type			Read Only		Read Only			

BITFIELD	BITS	DESCRIPTION	DECODE
VbADC	7:3	Indicates Value on V _{BUS} Input	$ 0x00: V_{BUS} < 3.5V $
RSVD	2:0		

USBC_STATUS2 (0x9)

BIT	7	6	5	4	3	2	1	0
Field		SYSMsg[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION	DECODE
SYSMsg	7:0	SYSMsg	0x00: SYSERROR_NONE 0x01: Reserved 0x02: Reserved 0x03: SYSERROR_BOOT_WDT 0x04: SYSERROR_BOOT_SWRSTREQ 0x05: SYSMSG_BOOT_POR 0x10: SYSERROR_HV_NOVBUS 0x11: SYSERROR_HV_FMETHOD_RXPERR 0x12: SYSERROR_HV_FMETHOD_RXBUFOW 0x13: SYSERROR_HV_FMETHOD_RXTFR 0x14: SYSERROR_HV_FMETHOD_MPNACK 0x15: SYSERROR_HV_FMETHOD_MPNACK 0x15: SYSERROR_HV_FMETHOD_RESET_FAIL 0x20: SYSMSg_AFC_Done 0x30: SYSERROR_SYSPOS 0x31: SYSERROR_APCMD_UNKNOWN 0x32: SYSERROR_APCMD_INPROGRESS 0x33: SYSERROR_APCMD_FAIL

BC_STATUS (0xA)

BIT	7	6	5	4	3	2	1	0
Field	V _{BUSDet}	RSVD	PrChgTyp[2:0]		DCDTmo	ChgTyp[1:0]		
Reset	0b0	0b0		0b000		0b0	0b	00
Access Type	Read Only	Read Only		Read Only		Read Only	Read	Only

BITFIELD	BITS	DESCRIPTION	DECODE
V _{BUSDet}	7	Status of V _{BUS} Detection	0b0: V _{BUS} < V _{BDET} 0b1: V _{BUS} > V _{BDET}
RSVD	6	Spare	
PrChgTyp	5:3	Output of Proprietary Charger Detection	0b000: Unknown 0b001: RSVD 0b010: RSVD 0b011: RSVD 0b100: RSVD 0b101: RSVD 0b101: RSVD 0b111: ASVD 0b110: 3A DCP (If enabled AND chgTyp=DCP) 0b111: Nikon TA (If enabled AND chgTyp=SDP)
DCDTmo	2	During Charger Detection, DCD Detection Timed Out. Indicates D+/D- are open. BC1.2 detection continues as required by BC1.2 specification but SDP most likely is found.	0b0: No timeout or detection has not run. 0b1: DCD timeout occurred.
ChgTyp	1:0	Output of Charger Detection	0b00: Nothing attached. 0b01: SDP, USB cable attached. 0b10: CDP, Charging Downstream Port: current depends on USB operating speed. 0b11: DCP, Dedicated Charger: current up to 1.5A.

DP STATUS (0xB)

BIT	7	6	5	4	3	2	1	0
Field	DP_ExitMo de	DP_Attentio n	DP_Configu re	DP_Status	DP_EnterM ode	DP_Discove rMode	DP_Discove rSVID	DP_Discove rldentity
Reset	0b0	0b0	0b0	0b000	0b0	0b0	0b0	0x00
Access Type	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
DP_ExitMod e	7	Display Port Exit Mode	0b0: No interrupt. 0b1: DisplayPort Exit mode message.
DP_Attention	6	Display port Attention Message	0b0: No interrupt. 0b1: DisplayPort Attention message.
DP_Configur e	5	Display port Configure message	0b0: No interrupt. 0b1: DisplayPort Configure message.
DP_Status	4	Display Port Status message	0b0: No interrupt. 0b1: DisplayPort Status message.
DP_EnterMo de	3	Display Port Enter Mode	0b0: No interrupt 0b1: DisplayPort Enter mode message.
DP_Discover Mode	2	Display Port Discover Mode	0b0: No interrupt 0b1: DisplayPort Discover mode message.

BITFIELD	BITS	DESCRIPTION	DECODE	
DP_Discover SVID	1	Display Port Discover SVID	0b0: No interrupt 0b1: DisplayPort Discover SVID message.	
DP_Discover Identity	0	Display Port Discover Identity	0b0: No interrupt. 0b1: DisplayPort Discovers Identity message.	

CC_STATUS0 (0xC)

BIT	7	6	5	4	3	2	1	0
Field	CCPinS	Stat[1:0]	CCIStat[1:0]		CCVcnStat	CCStat[2:0]		
Reset	0b	00	0b	0b00		0b000		
Access Type	Read	Only	Read	Read Only			Read Only	

BITFIELD	BITS	DESCRIPTION	DECODE
CCPinStat	7:6	Output of Active CC Pin	0b00: No determination 0b01: CC1 Active 0b10: CC2 Active 0b11: RFU
CCIStat	5:4	CC Pin Detected and Allows V _{BUS} Current in UFP Mode	0b00: Not in UFP mode 0b01: 500mA 0b10: 1.5A 0b11: 3.0A
CCVcnStat	3	Status of V _{CONN} Output	0b0: V _{CONN} disabled 0b1: V _{CONN} enabled
CCStat	2:0	CC Pin State Machine Detection	0b000: No connection 0b001: SINK 0b010: SOURCE 0b011: Audio accessory 0b100: DebugSrc accessory 0b101: Error 0b110: Disabled 0b111: DebugSnk accessory

CC_STATUS1 (0xD)

BIT	7	6	5	4	3	2	1	0
Field	RSVD[1:0]		V _{CONN} OCP	V _{CONN} SC	VSafeOV	DetAbrt	Wtr	RSVD
Reset	0b00		0b0	0b0	0b0	0b0	0b0	0b0
Access Type	Read Only		Read Only	Read Only	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7:6	Spare	
V _{CONN} OCP	5	V _{CONN} Overcurrent Detection	0b0: V _{CONN} current < V _{CONN} _ILIM 0b1: V _{CONN} current > V _{CONN} _ILIM
V _{CONN} SC	4	V _{CONN} Short-Circuit Detection	0b0: V _{CONN} current < V _{CONN} _SC 0b1: V _{CONN} current > V _{CONN} _SC
VSafeOV	3	Status of V _{BUS} Detection. Valid only in Attached.SRC_CCx, Attached.SNK_CCx state.	0b0: V _{BUS} < V _{SAFE0V} 0b1: V _{BUS} > V _{SAFE0V}

MAX77958

Standalone USB Type-C and USB Power Delivery Controller

BITFIELD	BITS	DESCRIPTION	DECODE
DetAbrt	2	Charger Detection Abort Status	0b0: Charger detection runs if CHGDetEn = 1 and V _{BUS} is valid for the debounce time. 0b1: Charger detection is aborted by USB Type-C State Machine. Charger does not run if CHGDetEn = 1 and V _{BUS} is valid for the debounce time. CHGDetMan allows manual run of charger detection. If charger detection is in progress, DetAbrt = 1 immediately stops the in progress detection.
Wtr	1	Moisture/Dry Status	0x0: Dry 0x1: Moisture
RSVD	0	Spare	

PD_STATUS0 (0xE)

BIT	7	6	5	4	3	2	1	0
Field		PDMsg[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION	DECODE
PDMsg	7:0	PD Message	0x00: Nothing happened 0x01: Sink_PD_PSRdy_Received 0x02: Sink_PD_Error_Recovery 0x03: Sink_PD_SenderResponseTimer_Timeout 0x04: Source_PSRdy_Sent 0x05: Source_PD_Error_Recovery 0x06: Source_PD_SenderResponseTimer_Timeout 0x07: PD_DR_Swap_Request_Received 0x08: PD_PR_Swap_Request_Received 0x09: PD_VCONN_Swap_Request_Received 0x09: PD_VCONN_Swap_Request_Received 0x04: Received PD Message in illegal state 0x0B: Sink_PD_Evaluate_State, SrcCap_Received 0x11: VDM Attention Message Received 0x11: VDM Attention Message Received 0x13: Not Supported_Received 0x14: PD_PR_Swap_SNKTOSRC_Cleanup 0x15: PD_PR_Swap_SRCTOSNK_Cleanup 0x16: HardReset_Received 0x17: PD_PowerSupply_VbusEnable 0x19: HardReset_Sent 0x1A: PD_PR_Swap_SRCTOSWAP 0x18: PD_PowerSupply_VbusDisable 0x19: HardReset_Sent 0x1A: PD_PR_Swap_SRCTOSWAP 0x1B: PD_PR_Swap_SNKTOSWAP 0x1B: PD_PR_Swap_SNKTOSWAP 0x1B: PD_PR_Swap_SNKTOSWAP 0x1B: PD_PR_Swap_SNKTOSWAP 0x1D: PD_PR_Swap_ROMTOSMAP 0x1D: PD_PR_Swap_ROMTOSMAP 0x1D: PD_PR_Swap_ROMTOSMAP 0x1D: PD_PR_Swap_ROMT

PD_STATUS1 (0xF)

BIT	7	6	5	4	3	2	1	0
Field	DataRole	PowerRole	VCONNS	PSRDY	_	_	_	_
Reset	0b0	0b0	0b0	0b0	_	_	-	_
Access Type	Read Only	Read Only	Read Only	Read Only	_	_	-	_

BITFIELD	BITS	DESCRIPTION	DECODE		
DataRole	7	Current Data Role	0b0: UFP 0b1: DFP		
PowerRole	6	Power Role	0b0: Sink 0b1: Source		
VCONNS	5	VCONNS	0b0: V _{CONN} Sink 0b1: V _{CONN} Source		
PSRDY	4	PSRDY Received as Sink	0b0: Nothing happened 0b1: PSRDY received		

UIC_INT_M (0x10)

BIT	7	6	5	4	3	2	1	0
Field	APCmdRes M	SYSMsgM	VBUSDetM	VbADCM	DCDTmoM	StopModeM	ChgTypM	AttachedHol dM
Reset	0b1	0b0	0b1	0b1	0b1	0b1	0b1	0b1
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
APCmdResM	7	APCmdRes Interrupt Mask	0b0: Unmask 0b1: Mask
SYSMsgM	6	SYSMsg Interrupt Mask	0b0: Unmask 0b1: Mask
VBUSDetM	5	VBUSDet Interrupt Mask	0 = Unmask 1 = Mask
VbADCM	4	VbADC Interrupt Mask	0 = Unmask 1 = Mask
DCDTmoM	3	DCDTmo Interrupt Mask	0 = Unmask 1 = Mask
StopModeM	2	Fake V _{BUS} Interrupt Mask	
ChgTypM	1	ChgTyp Interrupt Mask	0 = Unmask 1 = Mask
AttachedHold M	0	UIDADC Interrupt Mask	0 = Unmask 1 = Mask

CC_INT_M (0x11)

BIT	7	6	5	4	3	2	1	0
Field	VCONNOC PM	VSAFE0VM	DetAbrtM	WtrM	CCPinStatM	CCIStatM	CCVcnStat M	CCStatM
Reset	0b1	0b1	0b1	0b1	0b1	0b1	0b1	0b1
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
VCONNOCP M	7	VCONNOCP Interrupt Mask	0b0: Unmask 0b1: Mask
VSAFE0VM	6	VSAFE0V Interrupt Mask	0b0: Unmask 0b1: Mask
DetAbrtM	5	DetAbrt Interrupt Mask	0b0: Unmask 0b1: Mask
WtrM	4	Wtr Interrupt Mask	0b0: Unmask 0b1: Mask
CCPinStatM	3	CCPinStat Interrupt Mask	0b0: Unmask 0b1: Mask
CCIStatM	2	CCIStat Interrupt Mask	0b0: Unmask 0b1: Mask
CCVcnStatM	1	CCVcnStat Interrupt Mask	0b0: Unmask 0b1: Mask
CCStatM	0	CCStat Interrupt Mask	0b0: Unmask 0b1: Mask

PD_INT_M (0x12)

BIT	7	6	5	4	3	2	1	0
Field	PDMsgM	PSRDYM	DataRoleM	RSVD	RSVD	DisplayPort M	_	-
Reset	0b1	0b1	0b1	0b1	0b1	0b1	_	-
Access Type	Write, Read	-	-					

BITFIELD	BITS	DESCRIPTION	DECODE
PDMsgM	7	PDMsg Interrupt Mask	0b0: Unmask 0b1: Mask
PSRDYM	6	PDRDY Interrupt Mask	0b0: Unmask 0b1: Mask
DataRoleM	5	DataRole Interrupt Mask	0b0: Unmask 0b1: Mask
RSVD	4	Spare	0b0: Unmask 0b1: Mask
RSVD	3	Spare	0b0: Unmask 0b1: Mask
DisplayPortM	2	Display Port Interrupt Mask	0b0: Unmask 0b1: Mask

ACTION_INT_M (0x13)

BIT	7	6	5	4	3	2	1	0
Field		RSVI	D[3:0]		ExtendedAc tionM	Action2M	Action1M	Action0M
Reset		0:	xF		0b1	0b1	0b1	0b1
Access Type		Write,	, Read		Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7:4		
ExtendedActi onM	3	Extended Action Table Interrupt Mask	0b0: Unmask 0b1: Mask
Action2M	2	Action Table Interrupt 2 Mask	0b0: Unmask 0b1: Mask
Action1M	1	Action Table Interrupt 1 Mask	0b0: Unmask 0b1: Mask
Action0M	0	Action Table Interrupt 0 Mask	0b0: Unmask 0b1: Mask

AP_DATAOUT0 (0x21)

BIT	7	6	5	4	3	2	1	0	
Field		AP_REQUEST_OPCODE[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
AP_REQUEST_OPCO DE	7:0	All configuration and control commands to the USBC are sent and received as a packet using an opcode to identify the packet. A. Messages sent to the USBC Ox21—Opcode sent to USBC. Message size can be as short as 1 byte (Opcode only) and up to 33 bytes (Opcode plus 32 bytes). But all messages must write to all bytes even if the rest of the message is stuffed with 0s. Registers 0x21 to 0x41 act as a scratch pad for writing the message to the USBC. The message is latched in when a value is written to register 0x41. All messages are acknowledged by the USBC by sending and generating an interrupt. Data written to 0x21 to 0x41 is not auto cleared—the data remains in the registers until the application processor overwrites it with a new message. B. Messages received from USBC Ox51—Opcode identifying the message type. Ox52 to 0x71—Message sent to application processor. Message size can be as short as 1 byte (Opcode only) and up to 33 bytes (Opcode plus 32 bytes). Data written to 0x51 to 0x71 is not auto cleared—the data remains in the registers until the USBC overwrites them with a new message.

AP_DATAOUT1 (0x22)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_01[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_0 1	7:0	

AP_DATAOUT2 (0x23)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_02[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_0 2	7:0	

AP_DATAOUT3 (0x24)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_03[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_0 3	7:0	

AP_DATAOUT4 (0x25)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_04[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_0 4	7:0	

AP_DATAOUT5 (0x26)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_05[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_0 5	7:0	

AP_DATAOUT6 (0x27)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAOUT_06[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_0	7:0	

AP_DATAOUT7 (0x28)

BIT	7	6	5	4	3	2	1	0
Field	OPCODE_DATAOUT_07[7:0]							
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_0 7	7:0	

AP_DATAOUT8 (0x29)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAOUT_08[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_0 8	7:0	

AP_DATAOUT9 (0x2A)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_09[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_0 9	7:0	

AP_DATAOUT10 (0x2B)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_10[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_1	7:0	

AP_DATAOUT11 (0x2C)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_11[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_1 1	7:0	

AP_DATAOUT12 (0x2D)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_12[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_1 2	7:0	

AP_DATAOUT13 (0x2E)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_13[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_1 3	7:0	

AP_DATAOUT14 (0x2F)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_14[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_1	7:0	

AP_DATAOUT15 (0x30)

BIT	7	6	5	4	3	2	1	0
Field	OPCODE_DATAOUT_15[7:0]							
Reset		0x00						
Access Type				Write,	Read			

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_1 5	7:0	

AP_DATAOUT16 (0x31)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_16[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_1 6	7:0	

AP_DATAOUT17 (0x32)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_17[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_1 7	7:0	

AP_DATAOUT18 (0x33)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAOUT_18[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_1 8	7:0	

AP_DATAOUT19 (0x34)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_19[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_1	7:0	

AP_DATAOUT20 (0x35)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAOUT_20[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_2 0	7:0	

AP_DATAOUT21 (0x36)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_21[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_2	7:0	

AP_DATAOUT22 (0x37)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_22[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_2 2	7:0	

AP_DATAOUT23 (0x38)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_23[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_2	7:0	

AP_DATAOUT24 (0x39)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_24[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_2	7:0	

AP_DATAOUT25 (0x3A)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_25[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_2 5	7:0	

AP_DATAOUT26 (0x3B)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_26[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_2	7:0	

AP_DATAOUT27 (0x3C)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_27[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_2 7	7:0	

AP_DATAOUT28 (0x3D)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_28[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_2 8	7:0	

AP_DATAOUT29 (0x3E)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_29[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_2	7:0	

AP_DATAOUT30 (0x3F)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAOUT_30[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_3	7:0	

AP_DATAOUT31 (0x40)

BIT	7	6	5	4	3	2	1	0	
Field	Id OPCODE_DATAOUT_31[7:0]								
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_3	7:0	

AP_DATAOUT32 (0x41)

BIT	7	6	5	4	3	2	1	0
Field	OPCODE_DATAOUT_32[7:0]							
Reset		0x00						
Access Type				Write,	Read			

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAOUT_3 2	7:0	

AP_DATAIN0 (0x51)

BIT	7	6	5	4	3	2	1	0	
Field	USBC_RESPONSE_OPCODE[7:0]								
Reset		0x00							
Access Type		Read Only							

BITFIELD	BITS	DESCRIPTION
USBC_RESPONSE_O PCODE	7:0	

AP_DATAIN1 (0x52)

BIT	7	6	5	4	3	2	1	0
Field	OPCODE_DATAIN_01[7:0]							
Reset		0x00						
Access Type				Read	Only			

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_01	7:0	

AP_DATAIN2 (0x53)

BIT	7	6	5	4	3	2	1	0
Field	OPCODE_DATAIN_02[7:0]							
Reset		0x00						
Access Type				Read	Only			

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_02	7:0	

AP_DATAIN3 (0x54)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_03[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_03	7:0	

AP_DATAIN4 (0x55)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_04[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_04	7:0	

AP_DATAIN5 (0x56)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_05[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_05	7:0	

AP_DATAIN6 (0x57)

BIT	7	6	5	4	3	2	1	0
Field	OPCODE_DATAIN_06[7:0]							
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_06	7:0	

AP_DATAIN7 (0x58)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_07[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_07	7:0	

AP_DATAIN8 (0x59)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAIN_08[7:0]							
Reset		0x00							
Access Type		Read Only							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_08	7:0	

AP_DATAIN9 (0x5A)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_09[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE DATAIN 09	7:0	

AP_DATAIN10 (0x5B)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_10[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_10	7:0	

AP_DATAIN11 (0x5C)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_11[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_11	7:0	

AP_DATAIN12 (0x5D)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_12[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_12	7:0	

AP_DATAIN13 (0x5E)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_13[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_13	7:0	

AP_DATAIN14 (0x5F)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_14[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_14	7:0	

AP_DATAIN15 (0x60)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_15[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_15	7:0	

AP_DATAIN16 (0x61)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_16[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_16	7:0	

AP_DATAIN17 (0x62)

BIT	7	6	5	4	3	2	1	0
Field	OPCODE_DATAIN_17[7:0]							
Reset		0x00						
Access Type				Read	Only			

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_17	7:0	

AP_DATAIN18 (0x63)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAIN_18[7:0]							
Reset		0x00							
Access Type		Read Only							

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_18	7:0	

AP_DATAIN19 (0x64)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_19[7:0]						
Reset		0x00						
Access Type				Read	Only			

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_19	7:0	

AP_DATAIN20 (0x65)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAIN_20[7:0]							
Reset		0x00							
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_20	7:0	

AP_DATAIN21 (0x66)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_21[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_21	7:0	

AP_DATAIN22 (0x67)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAIN_22[7:0]							
Reset		0x00							
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_22	7:0	

AP_DATAIN23 (0x68)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_23[7:0]						
Reset		0x00						
Access Type				Read	Only			

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_23	7:0	

AP_DATAIN24 (0x69)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAIN_24[7:0]							
Reset		0x00							
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_24	7:0	

AP_DATAIN25 (0x6A)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_25[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_25	7:0	

AP_DATAIN26 (0x6B)

BIT	7	6	5	4	3	2	1	0
Field		OPCODE_DATAIN_26[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_26	7:0	

AP_DATAIN27 (0x6C)

Field OPCODE_DATAIN_27[7:0] Reset 0x00 Access Type Read Only	0	1	2	3	4	5	6	7	BIT	
		OPCODE_DATAIN_27[7:0]								
Access Read Only		0x00							Reset	
Type		Read Only								

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_27	7:0	

AP_DATAIN28 (0x6D)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAIN_28[7:0]							
Reset		0x00							
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_28	7:0	

AP_DATAIN29 (0x6E)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAIN_29[7:0]							
Reset		0x00							
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION
OPCODE DATAIN 29	7:0	

AP_DATAIN30 (0x6F)

BIT	7	6	5	4	3	2	1	0	
Field		OPCODE_DATAIN_30[7:0]							
Reset		0x00							
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_30	7:0	

AP_DATAIN31 (0x70)

BIT	7 6 5 4 3 2 1 (0	
Field		OPCODE_DATAIN_31[7:0]							
Reset		0x00							
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_31	7:0	

AP_DATAIN32 (0x71)

BIT	7 6 5 4 3 2 1 0							0			
Field		OPCODE_DATAIN_32[7:0]									
Reset		0x00									
Access Type				Read	Read Only						

BITFIELD	BITS	DESCRIPTION
OPCODE_DATAIN_32	7:0	

SW_RESET (0x80)

BIT	7	6	5	4	3	2	1	0
Field		UIC_SWRST[7:0]						
Reset	0x00							
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
UIC_SWRST	7:0	UIC (and MAXQ) Software Reset	When AP writes 0x0F, UIC is reset (registers and MAXQ).

I2C_CNFG (0xE0)

Spare mask register.

spare mask register.								
BIT	7	6	5	4	3	2	1	0
Field	RSVD		PAIR[2:0]			RSVD[2:0]		
Reset	0b0		0b000			0b000		
Access Type	Write, Read		Write, Read			Write, Read		
		1						

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Spare	

BITFIELD	BITS	DESCRIPTION	DECODE
PAIR	6:4	I ² C Pair Address Mode Control	PAIR[2]: Pair address mode of Shared Bus 3 channel: Slave ID 3 Functional Pair address mode option at burst write operation on customer registers. 1 = Pair address mode is enabled for the channel. 0 = Pair address mode is disabled and sequential mode is used. PAIR[1]: Pair address mode of Shared Bus 2 channel: Slave ID 2 Functional Pair address mode option at burst write operation on customer registers. 1 = Pair address mode is enabled for the channel. 0 = Pair address mode is disabled and sequential mode is used. PAIR[0]: Pair address mode of Shared Bus 1 channel: Slave ID 1 Functional Pair address mode option at burst write operation on customer registers. 1 = Pair address mode option at burst write operation on customer registers. 1 = Pair address mode is enabled for the channel. 0 = Pair address mode is enabled and sequential mode is used.
RSVD	3:1	Spare	
HS_EXT_EN	0	HS-mode Extension Control	0x0: HS-mode Extension is disabled. (I ² C Rev. 4 Compliant) 0x1: HS-mode Extension is enabled. HS-mode is enabled without HS-mode entrance code and keeps HS-mode during STOP condition.

Applications Information

D+/D- USB 2.0 Switch Control

The integrated D+/D- switches in the MAX77958 are automatically configured by BC1.2 detection results.

Table 4. D+/D- Configuration

PART NUMBER	BC1.2 DETECTION RESULTS	D+/D- SWITCH CONFIGURATION	
MAX77958	SDP and CDP	- OPEN	
IVIAX77956	DCP		
MAX77958C/D	SDP and CDP	CLOSED	
WAX77956C/D	DCP	OPEN	

The configured D+/D- switch based on the BC1.2 detection result can be overridden by the AP through OP-Command 0x05. Refer to the *User Guide* for more information.

HVDCP Configuration

The MAX77958 supports adjustable high voltage adaptor (HVDCP) configuration, and the device provides D+/D- manual control. To control D+/D-, OP-Command 0x03 should be set by AP. Refer to the <u>User Guide</u> for more information.

Push-Button Function

The MAX77958C/D supports the Push-Button function with GPIO7. When the Push-Button function is enabled by AP or MCU, the GPIO7 pin starts the monitoring status. When a Falling Edge or Rising Edge transition is detected, the MAX77958C/D interrupts AP through ACTION_INT[1]=1. See the <u>Ordering Information</u> table and the OP-Command 0x64 in the <u>User Guide</u> for more information.

External Interrupt

The MAX77958C/D supports an external interrupt function with GPIO8. This is useful when an external device such as a companion charger needs to interrupt the MAX77958C/D to perform an operation specified by the application. When the external interrupt function is enabled by AP or MCU, the GPIO8 pin starts the monitoring interrupt request. When the interrupt request is detected, the MAX77958C/D sets the register ACTION_INT[0]=1. See the <u>Ordering Information</u> table and the OP-Command 0x64 in the <u>User Guide</u> for more information.

MAX77958 IC Firmware Update with Dongle Board

The MAX77958C/D provides a firmware update capability through the dongle board. To update firmware through the dongle board, the dongle board and evaluation kit GUI are required. Refer to the <u>User Guide</u> for more information.

FW Recovery Function

The MAX79758D features a FW recovery function. When the FW update fails, the FW version reads as FF.00, and it can be recovered as ROM FW 58.03.

To retrieve production FW, the AP requires the following:

Case 1: The FW update fails while the AP is updating (battery is a power source in the system)

1) The AP sends an Op command: 0xDF 0xDA 0xA5 0xAD 0xC3 or Plug TA (apply VBUS)

Case 2: The FW update fails due to a dead battery event

- 1) Insert TA to provide VBUS for the system to power-up
- 2) The AP sends an Op command: 0xDF 0xDA 0xA5 0xAD 0xC3

The FW recovery Op command is only valid for the FW FF.00 case. Analog Devices provides a sample kernel driver to achieve the FW recovery.

Typical Application Circuits

2/3-Cell Configurable Charger Application

<u>Figure 15</u> illustrates a configurable charger application diagram using the MAX77958 and buck-boost charger devices. In this application, the USB Type-C connector is used for SINK as well as SOURCE. The SINK role is automatically active when the battery is charged using USB Type-C SOURCE that is connected to the USB Type-C connector in <u>Figure 15</u>. Based on the CC detection result, the SOURCE advertises its capability. The IC negotiates power contract with the SOURCE connected to the USB Type-C connector. AP can choose appropriate SOURCE PDO and configure charging current in the buck-boost charger accordingly.

The SOURCE role is active when SINK device is attached to the UBS Type-C connector as shown in <u>Figure 15</u>. The IC becomes a power provider with the SOURCE role and advertises its capability to a device connected to USB Type-C connector.

In this scenario, AP configures the buck-boost charger as reverse-buck mode to provide OTG voltage to the device connected to the USB Type-C connector. The communication between the IC.

Figure 15. Configurable Charger Application

Typical Application Circuits (continued)

2/3-Cell Autonomous Charger Application

Figure 16 illustrates an autonomous charger application diagram using the MAX77958 and a buck-boost charger device. In this application, the USB Type-C connector is used for SINK as well as SOURCE. The SINK role is automatically active when the battery is charged using the USB Type-C SOURCE that is connected to the USB Type-C connector. Based on the CC detection result, the SOURCE advertises its capability. The IC negotiates a power contract with the SOURCE connected to the USB Type-C connector. The IC chooses an appropriate SOURCE PDO, and configures charging current in the buck-boost charger accordingly through the master I²C interface in the IC.

The SOURCE role is active when a SINK device is attached to the USB Type-C connector as shown in <u>Figure 16</u>. The IC becomes a power provider with the SOURCE role and advertises its capability to a device connected to USB Type-C connector. In this scenario, the IC configures the buck-boost charger to reverse-buck mode to provide OTG voltage to the device connected to the USB Type-C connector.

Figure 16. Autonomous Charger Application

Typical Application Circuits (continued)

Autonomous DC-DC Application

<u>Figure 17</u> illustrates an autonomous DC-DC application diagram using the MAX77958. In this application, the USB Type-C connector is used for SINK. Based on the CC detection result, the SOURCE advertises its capability. The IC negotiates a power contract with the SOURCE connected to the USB Type-C connector. The IC chooses an appropriate SINK PDO among PDOs as shown in <u>Figure 17</u>. The IC then sets the Enable on the DC-DC converter to supply power to the application device.

Figure 17. Autonomous DC-DC Application

Typical Application Circuits (continued)

PD Power Adapter Application

Figure 18 illustrates an adapter application diagram using the MAX77958 device. In this application, the USB Type-C connector is only used for SOURCE. The IC negotiates a power contract with the SINK connected to the USB Type-C connector. When SINK is attached, the IC advertises its SOURCE PDO to the SINK. Based on contracts, the IC controls GPIOs to adjust V_{BUS} that the SINK is requesting. When disconnection happens, the IC also controls GPIOs to disconnect the power path on the V_{BUS} path and discharges capacitors on the V_{BUS} path to meet the USB Type-C specification.

Figure 18. Adapter Application

Ordering Information

PART NUMBER	TEMP RANGE	PIN- PACKAGE	FW VERSION	DP/DN SWITCH SETTING	GPIO7/GPIO8 FUNCTIONALITY	DONGLE BOARD FIRMWARE UPDATE FUNCTIONALITY	FW Recovery
MAX77958EWV+T	-40°C to +85°C	6x5 WLP, 0.5mm pitch, 3.1mm x	06.2C*	SDP/CDP: Open	GPO	Disabled	No
		2.65mm		DCP: Open			
MAX77958EWV+	-40°C to	6x5 WLP, 0.5mm pitch,	06.2C*	SDP/CDP: Open	GPO	Disabled	No
	+85°C	3.1mm x 2.65mm		DCP: Open			
MAX77958CEWV+T	-40°C to +85°C	6x5 WLP, 0.5mm pitch, 3.1mm x 2.65mm	06.54*	SDP/CDP: Close	GPIO8: External Interrupt GPIO7: Push- button (Falling/Rising Edge)	Enabled	No
				DCP: Open			
	-40°C to (6x5 WLP, 0.5mm pitch, 3.1mm x 2.65mm	06.54*	SDP/CDP: Close	GPIO8: External Interrupt GPIO7: Push- button (Falling/Rising Edge)	Enabled	No
MAX77958CEWV+				DCP: Open			
		6x5 WLP,		SDP/CDP: Close	GPIO8: External		
MAX77958DEWV+T	-40°C to 0 +85°C	0.5mm pitch, 3.1mm x 2.65mm	58.04**	DCP: Open	GPIO7: Push- button (Falling/Rising Edge)	Enabled	Yes
MAX77958DEWV+		6x5 WLP, 0.5mm pitch, 3.1mm x 2.65mm	58.04**	SDP/CDP: Close	GPIO8: External Interrupt GPIO7: Push- button (Falling/Rising Edge)	Enabled	Yes
	-40°C to +85°C			DCP: Open			

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

^{*}Not compatible with MAX77958DEWV+

^{**}Not compatible with MAX77958EWV+ and MAX77958CEWV+

MAX77958

Standalone USB Type-C and USB Power Delivery Controller

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	12/19	Initial release	_
1	4/20	Updated data sheet title, updated VCIN_OK and added USB Type-C/MTP section to the Electrical Characteristics table, updated AVL in the Pin Description section, updated the Detailed Description and Register Map sections, updated Typical Application Circuits Figures 11, 12, and 13	1–73
2	1/21	Updated General Description and Benefits and Features sections, Simplified Block Diagram, Electrical Characteristics tables, Pin Description table, Detailed Description section, Register Map tables, Detecting Connected DFP section, and Figures 11, 12, 13, added Moisture Detection section	1, 2, 15, 24, 25, 27, 29, 30, 33, 35, 41, 45, 51, 72–75
3	5/21	Updated General Description and Benefits and Features sections, added USB BC1.2 D+/D- Adapter Detection, V _{CONN} Switch, and Applications Information section, updated decode in PD_STATUSO (0xE) table, updated Ordering Information table	1, 30, 31, 42, 54, 75, 76, 80, 81
4	3/22	Updated Benefits and Features, Package Information table outline number, and Ordering Information table, added HVDCP Configuration section	1, 7, 8, 77, 82
5	11/22	Added FW Recovery Function section, deleted Automatic Power Control section, updated Table 4, Push-Button Function, External Interrupt, MAX77958 IC Firmware Update with Dongle Board, and Ordering Information table	32, 76, 81

