Let T(n) running time of MATRIX MULTIPLY.

$$T(n) = C_{1}(n+1) + C_{2} \sum_{i=1}^{n} (n-i+2) + C_{3} \sum_{i=1}^{n} (n-i+1) + C_{4} \sum_{i=1}^{n} \sum_{j=i}^{n} (j-i+2) + C_{5} \sum_{i=1}^{n} \sum_{j=i}^{n} (j-i+1) + C_{6}$$

$$= C_{1}(n+1) + C_{2} \frac{n(n+3)}{2} + C_{3} \frac{n(n+1)}{2} + C_{4} \left(\frac{n(n+1)(2n+4)}{12} + 3 \frac{n(n+1)}{4} \right) + C_{5} \left(\frac{n(n+1)(2n+1)}{12} + \frac{n(n+1)}{4} \right) + C_{6}$$

$$= (C_{4} + C_{5}) \frac{n^{3}}{6} + (\frac{C_{2}}{2} + \frac{C_{3}}{2} + C_{4} + \frac{C_{5}}{2})n^{2} + (C_{4} + \frac{3C_{2}}{2} + \frac{C_{3}}{2} + \frac{5C_{4}}{6} + \frac{C_{5}}{3})n + (C_{1} + C_{6})$$

$$T(n) = O(n^{3}). \text{ (If fact, } T(n) = \Theta(n^{3}).)$$

Question

For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

	t						
f(n)	1	1	1	1	1	1	1
	second	minute	hour	day	month	year	century
$\log_2 n$	2^{10^6}	$2^{6 \times 10^7}$	$2^{3.6\times10^9}$	$2^{8.64 \times 10^{10}}$	$2^{2.59\times10^{12}}$	$2^{3.11\times10^{13}}$	$2^{3.11\times10^{15}}$
\sqrt{n}	10^{12}	3.6×10^{15}	1.29×10^{19}	$7.46*10^{21}$	6.71×10^{24}	9.67×10^{26}	9.67×10^{30}
n	10^{6}	6×10^7	3.6×10^9	8.64×10^{10}	2.59×10^{12}	3.11×10^{13}	3.11×10^{15}
$n\log_2 n$	6.27×10^4	2.80×10^{6}	1.33×10^{8}	2.75×10^9	7.18×10^{10}	7.87×10^{11}	6.76×10^{13}
n^2	1.00×10^{3}	7.74×10^{3}	6×10^4	2.93×10^{5}	1.60×10^{6}	5.57×10^{6}	5.57×10^{7}
n^3	1.00×10^{2}	3.91×10^{2}	1.53×10^{3}	4.42×10^{3}	1.37×10^4	3.14×10^4	1.45×10^5
2^n	19	25	31	36	41	44	51
n!	9	11	12	13	15	16	17

Assumptions: 1 month has 30 days, and 1 year has 12 months. The answers would be slightly different if you make different assumptions.

I also truncated the results so that they fit in the table.

Guestin

Rank the following functions by order of growth, i.e., $g_i = \Omega(g_{i+1})$:

- \bullet n^2
- n
- a n3
- $(\log_2 n)^2$

- $\log_2(n!)$
- $n2^n$
- $2^{\log_2 n}$
- $n^{1/\log_2 n}$

Justify your answer.

The ranked list (with justification):

1.
$$n! (= n \times (n-1) \times ... \times 2 \times 1)$$

2.
$$n2^n (= n \underbrace{\times 2 \times 2 \times ... \times 2 \times 2}_{n} < n! \text{ when } n \ge 6)$$

- 3. n^3
- 4. n^2

5.
$$\log_2(n!) (= \log_2 n + \log_2(n-1) + ... \log_2(1) = O(n \log n))$$

6.
$$2^{\log_2 n} (= n)$$

7.
$$(\log_2 n)^2$$
 (see lecture notes)

8.
$$n^{1/\log_2 n} (= 2 = O(1))$$

Since b > 0, the inequality still holds when all parts are raised to the power b:

$$0 = \left(\frac{1}{2}n\right)^b \le (n+a)^b \le (2n)^b$$

$$0 \le \left(\frac{1}{2}\right)^b n^b \le (n+a)^b \le 2^b n^b$$

Thus, $c_1 = (1/2)^b$, $c_2 = 2^b$, and $n_0 = 2|a|$ satisfy the definition.

Solution to Exercise 3.1-3

Let the running time be T(n). $T(n) \ge O(n^2)$ means that $T(n) \ge f(n)$ for some function f(n) in the set $O(n^2)$. This statement holds for any running time T(n), nee the function f(n) = 0 for all n is in $O(n^2)$, and running times are always nonnegative. Thus, the statement tells is nothing about the running time.

Calvi

Question 3

 $2^{n+1} = O(2^n)$, but $2^{2n} \neq O(2^n)$.

To show that $2^{n+1} = O(2^n)$, we must find constants $c, n_0 > 0$ such that

 $0 \le 2^{n+1} \le c \cdot 2^n$ for all $n \ge n_0$.

Since $2^{n+1} = 2 \cdot 2^n$ for all n, we can satisfy the definition with c = 2 and $n_0 = 1$.

To show that $2^{2n} \neq O(2^n)$, assume there exist constants $c, n_0 > 0$ such that

 $0 \le 2^{2n} \le c \cdot 2^n$ for all $n \ge n_0$.

Then $2^{2n} = 2^n \cdot 2^n \le c \cdot 2^n \Rightarrow 2^n \le c$. But no constant is greater than all 2^n , and so the assumption leads to a contradiction.

Solution to Exercise 3.1-8

 $\Omega(g(n,m)) = \{f(n,m) : \text{ there exist positive constants } c, n_0, \text{ and } m_0 \text{ such that } 0 \le cg(n,m) \le f(n,m) \text{ for all } n \ge n_0 \text{ and } m \ge m_0 \}$.

 $\Theta(g(n,m)) = \{f(n,m) : \text{ there exist positive constants } c_1, c_2, n_0, \text{ and } m_0 \text{ such that } 0 \le c_1 g(n,m) \le f(n,m) \le c_2 g(n,m) \text{ for all } n \ge n_0 \text{ and } m \ge m_0 \}$.

Question 4.

From $f(n) = \Theta(g(n))$, we have that:

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n > n_0$$

We can choose the constants c_1 and c_2 from here and use them in the definitions of O and Ω to show that both hold.

From $f(n) = \Omega(g(n))$ and f(n) = O(g(n)):

$$0 \le c_3 g(n) \le f(n), \forall n > n_1;$$

$$0 \le f(n) \le c_4 g(n), \forall n > n_2$$

If we let $n_3 = max(n_1, n_2)$ and merge the two inequalities, we get:

$$0 \le c_3 g(n) \le f(n) \le c_4 g(n), \forall n > n_3$$
, which is the definition of Θ .