IST 722: DATAWAREHOUSE PROJECT REPORT THE SPECIAL ONES

Creating a Data Warehouse, ETL Pipeline and Reporting Tool for the New York Metro Authority

Team Members:

- 1. Keerthi Krishna Aiyappan
- 2. Sai Swetha Lakkoju
- 3. Sri Venkata Subhramanya Abhishek Namana
- 4. Harika Gangu

Introduction:

Through this project, we aim to set up a data warehouse, ETL processes and a reporting dashboard for the NY metro authority to track the usage of metro trains, monitoring their battery statuses and time delays in six of their stops for the first month of the year 2024. Our dataset has 10+ features spanning around 10,000 rows. We have tried to implement our learnings from IST 722 Datawarehouse and incorporate them while building this whole solution.

The reason for us choosing this database is to allow easy reporting of metro usage and enhancing the decision-making process of the Metro Authority and improve their real time analytics. This would help them when it comes to resource allocation, peak hour schedule management, identify high usage lines and provides advanced insights on expanding routes or adjusting schedules for example. The following document contains all documentation required for implementing such a project and has been created following the necessary project deliverables and artifacts.

We start by finalizing our requirements, then create database and the tables on Snowflake, load data into the stage. After this, we use dbT for ETL processes to load data into our tables before creating a dashboard in Power BI.

FUNCTIONAL REQUIREMENTS:

Category	Requirement	Туре
Data Collection	Collect real-time data on rider entries, exits, line delays, and stop utilizations.	Functional
	Integrate with sensors, ticketing systems, GPS, and remote monitoring devices.	Functional
	Support historical data import for trend analysis and forecasting.	Functional
Data Processing	Process data from multiple sources and ensure its integrity.	Functional
	Store processed data in a relational database with efficient indexing for queries.	Functional
Reporting	Provide real-time dashboards to monitor key metrics.	Functional
	Generate periodic reports for stakeholders.	Functional
Alert System	Send notifications for high rider volumes, device malfunctions, or delays.	Functional
	Generate predictive alerts for maintenance requirements.	Functional
Segmentation	Segment riders by demographic, travel patterns, and time-of-day behavior.	Functional
Service Optimization	Identify underutilized stops and recommend schedule adjustments.	Functional
	Detect overcrowded stops and recommend adding capacity or rerouting services.	Functional
Integration	Integrate seamlessly with new data sources, third-party systems and APIs.	Functional

NON FUNCTIONAL REQUIREMENTS:

Category	Requirement	Туре
Scalability	Handle large volumes of data across stops, riders, and remote units.	Non-Functional
	Support scaling to accommodate new cities or regions.	Non-Functional
Performance	Ensure real-time data processing with minimal latency.	Non-Functional
	Perform analytics on large datasets within seconds.	Non-Functional
Reliability	Implement fault-tolerant mechanisms to handle failures.	Non-Functional
	Guarantee high uptime (e.g., 99.9%) for critical systems.	Non-Functional
Data Security	Encrypt data in transit and at rest to protect rider and operational data.	Non-Functional
	Implement role-based access control (RBAC) for authorized personnel.	Non-Functional
Data Acuracy	Validate incoming data to ensure consistency and accuracy.	Non-Functional
	Regularly audit data pipelines to prevent anomalies.	Non-Functional
Usability	Ensure dashboards and interfaces are user-friendly and intuitive.	Non-Functional
	Provide customizable filters and views for different user roles.	Non-Functional

Compliance	Adhere to data protection	Non-Functional
•	laws like GDPR or CCPA.	
	Meet accessibility	Non-Functional
	standards for government	
	or public agency use.	
Interoperability	Support data exports in	Non-Functional
	standard formats (e.g., CSV,	
	JSON).	
	Allow integration with	Non-Functional
	existing transportation	
	systems or tools.	
Maintainability	Ensure modular	Non-Functional
	architecture to simplify	
	updates or additions of	
	features.	
	Provide clear	Non-Functional
	documentation for system	
	administrators and	
	developers.	
System Availability	Provide 24/7 availability	Non-Functional
	with robust failover	
	mechanisms.	
	Schedule maintenance	Non-Functional
	during non-peak hours with	
	minimal disruption.	

Business Processes:

1. Rider Volume Tracking

- **Improved Resource Allocation**: Helps identify high traffic stops and lines, enabling better deployment of resources such as additional trains during peak hours.
- **Revenue Optimization:** Tracks fare revenue associated with rider volumes and helps forecast future earnings.
- **Service Planning**: Provides insights into rider demand patterns, informing decisions on expanding routes or adjusting schedules.

2. Stop Utilization Analysis

- **Infrastructure Efficiency**: Measures how effectively each stop is being utilized, helping prioritize maintenance or upgrades for heavily used stops.
- **Operational Cost Management**: Reduces costs by identifying underutilized stops that may need schedule adjustments or alternative transport modes.
- **Customer Experience**: Ensures stops with high usage are equipped with adequate amenities like seating, shelters, and lighting.

3. Line Performance

- **Service Reliability**: Tracks delays, wait times, and on-time performance to improve schedule adherence and reliability.
- **Capacity Management:** Evaluates whether the number of vehicles and their capacity on each line meets passenger demand.
- **Public Satisfaction:** Identifies problem areas in service delivery, leading to better customer satisfaction by addressing bottlenecks.

4. Remote Unit Monitoring

- **Proactive Maintenance:** Monitors the health of remote devices like ticketing machines or digital displays, reducing downtime.
- Operational Uptime: Ensures critical equipment like signal systems and sensors are functioning, improving safety and efficiency.
- **Cost Savings:** Prevents costly failures through predictive maintenance by tracking health metrics like battery levels.

5. Rider Segmentation

 Targeted Marketing: Segments riders based on demographics or travel patterns, enabling personalized offers or campaigns.

- **Enhanced Service Design**: Tailors services to the needs of specific rider groups, like students, seniors, or commuters.
- **Policy and Planning**: Provides data for government or operator policies that focus on inclusivity and accessibility for diverse rider groups.

Project Timeline:

Weeks 1 and 2: Requirements and Planning

- Data Profiling
- Business Process identification
- Bus Matrix Creation

Weeks 3 and 4: Initial Design

- Dimensional Modelling
- Source to Target Mapping
- Technical Architecture Design

Weeks 5, 6, 7: Implementation

- Snowflake Setup
- Schema Creation
- ETL Development with dbT

Weeks 8,9,10: Analytics and Testing:

- Power BI Dashboard Development
- Testing and Validation
- Documentation

Weeks 11 and 12:

- Video presentation creation
- Final Documentation
- Project Delivery

Weeks 13 and 14: (Optional): To have extra time just in case.

Technical Stack:

- **Data Warehouse**: Snowflake

- **ETL Tool:** dbT

- Orchestration: Airflow (if needed)

- **BI Tool:** Power BI

- Version Control: Git

Deliverables:

- 1) Project Documentation
- 2) Bus Matrix
- 3) Dimensional Models
- 4) Source to Target Mappings
- 5) ETL Code
- 6) Bl Dashboards
- 7) 10-minute presentation video

2. HIGH LEVEL DIMENSIONAL MODELLING

2a. Bus Matrix

A	В	С	D	E	F	G	Н	1	J
1 Business Process	Fact Table	Fact Grain Type	Granularity	Facts	dim_stops	dim_lines	dim_remote_units	dim_time	dim_rider
2 Rider Volume Tracking	fact_rider_volume	Transaction	One row per stop and time	Rider_Count, Stop_ID, Line_ID	x	х	x	х	
3 Stop Utilization Analysis	fact_stop_utilization	Periodic Snapshot	One row per stop per hour	Utilization_Rate, Stop_ID	x			x	
4 Line Performance	fact_line_performance	Transaction	One row per line and time	Line_ID, Rider_Count, Avg_Wait_Time		x		x	
5 Remote Unit Monitoring	fact_remote_monitor	Accumulating Snapshot	One row per remote unit per event	Remote_Unit_ID, Maintenance_Flag			x	x	
6 Rider Segmentation	fact_rider_segments	Transaction	One row per rider segment (e.g., time of day)	Segment_ID, Rider_Count, Stop_ID	x			x	x
7									
8									
9									

2b. High Level Dimensional Modelling

	Α	В	С	
1	Table Type	Table Name	Description	
2	Dimension	Dim_Time	Time-related dimensions (Hour, Day, Month, Year)	
3	Dimension	Dim_Stops	Bus stops including IDs and names	
4	Dimension	Dim_Lines	Bus lines including IDs and additional attributes	
5	Dimension	Dim_Remote_Units	Details about remote units used in operations	
6	Dimension	Dim_Riders	Segments of riders based on demographics or travel patterns	
7	Fact	Fact_Rider_Volume	Records rider volume with details per stop and time	
8	Fact	Fact_Stop_Utilization	Utilization rates of bus stops per hour	
9	Fact	Fact_Line_Performance	Performance metrics per bus line and time	
10	Fact	Fact_Remote_Monitor	Monitoring data for remote units per event	
11	Fact	Fact_Rider_Segments	Rider segments data including counts and demographics per time and stop	
12				
13				

3. DETAIL-LEVEL DIMENSIONAL MODELING

DIM TABLES:

1) DIM_TIME

4	A	В	С	D	E	F
1	Column Name	Data Type	PK	Unique	Not Null	Description
2	time_key	INT	Yes	Yes	Yes	Surrogate key for time dimension
3	datetime	TIMESTAMP	No	No	Yes	Complete timestamp value
4	hour	INT	No	No	Yes	Hour of the day (0-23)
5	day	VARCHAR	No	No	Yes	Day of week (Monday-Sunday)
6	month	INT	No	No	Yes	Month of the year (1-12)
7	year	INT	No	No	Yes	Four-digit year
8	is_weekend	BOOLEAN	No	No	Yes	Flag indicating weekend (True/False)
9	is_peak_hour	BOOLEAN	No	No	Yes	Flag indicating peak transit hours
	day_type	VARCHAR	No	No	Yes	Classification of day (Weekday/Weekend/Holiday)
1						

2) DIM_STOPS

В	С	D	E	F	G
Data Type	PK	Unique	Not Null	Description	
INT	Yes	Yes	Yes	Primary identifier for the bus stop	
VARCHAR(255)	No	No	Yes	Name of the bus stop	
VARCHAR(50)	No	No	Yes	Operating division (e.g., BMT, IRT)	
VARCHAR(50)	No	No	Yes	Directional label for northbound	
VARCHAR(50)	No	No	Yes	Directional label for southbound	
BOOLEAN	No	No	Yes	Flag for proximity to commercial areas	
BOOLEAN	No	No	Yes	Flag for proximity to universities	
	Data Type INT VARCHAR(255) VARCHAR(50) VARCHAR(50) VARCHAR(50) BOOLEAN	Data Type PK INT Yes VARCHAR(255) No VARCHAR(50) No VARCHAR(50) No VARCHAR(50) No BOOLEAN No	Data Type PK Unique INT Yes Yes VARCHAR(255) No No VARCHAR(50) No No VARCHAR(50) No No VARCHAR(50) No No BOOLEAN No No	Data Type PK Unique Not Null INT Yes Yes Yes Yes VARCHAR(255) No No Yes VARCHAR(50) No No Yes VARCHAR(50) No No Yes VARCHAR(50) No No Yes BOOLEAN No No Yes	Data Type PK Unique Not Null Description INT Yes Yes Yes Primary identifier for the bus stop VARCHAR(255) No No Yes Name of the bus stop VARCHAR(50) No No Yes Operating division (e.g., BMT, IRT) VARCHAR(50) No No Yes Directional label for northbound VARCHAR(50) No No Yes Directional label for southbound BOOLEAN No No Yes Flag for proximity to commercial areas

3) DIM_LINES

		_ Ŭ		_	'
Column Name	Data Type	PK	Unique	Not Null	Description
line_id	INT	Yes	Yes	Yes	Primary identifier for the bus line
line	VARCHAR(255)	No	Yes	Yes	Name/code of the line
division	VARCHAR(50)	No	No	Yes	Operating division (e.g., BMT, IRT)

4) DIM_REMOTE_UNITS

	A	В	С	D	E	F
1	Column Name	Data Type	PK	Unique	Not Null	Description
2	remote_unit_id	INT	Yes	Yes	Yes	Primary identifier for the remote unit
3	remote_unit	VARCHAR(50)	No	Yes	Yes	Unit code (e.g., R450, R180)
4						

5) DIM_DAYTIME_ROUTES

	А	В	С	D	Е	F	G
1				Brid	ge Table		
2	Column Name	Data Type	PK	Unique	Not Null	FK	Description
3	route_id	int	Yes	Yes	Yes	No	Primary Identifier for routes
4	stop_id	int	No	No	Yes	Yes	Corresponding Stop ID
5	line_id	int	No	No	Yes	Yes	Corresponding Line ID

6) DIM_UNIT_LOCATIONS

	A	В	С	D	E	F	G	Н					
1	Bridge Table												
2	Column Name Data Type PK Unique Not Null FK Description												
3	location_id	int	Yes	Yes	Yes	No	Primary Identifier for unit locations						
4	stop_id	int	No	No	Yes	Yes	Corresponding Stop ID						
5	remote_unit_id	int	No	No	Yes	Yes	Corresponding Remote Unit ID						
6													

7) DIM_CONNECTING_LINES

	А	В	С	D	Е	F	G	н					
1	Bridge Table												
2 Colu	umn Name	Data Typ	PK	Unique	Not Null	FK	Description						
3 con	nection_id	int	Yes	Yes	Yes	No	Primary Identifier for the connec	ting line					
4 stop	o_id	int	No	No	Yes	Yes	Corresponding Stop ID						
5 line	_id	int	No	No	Yes	Yes	Corresponding Line ID						
6													
7													
8													

FACT TABLES

1) FACT_RIDER_VOLUME

A	В	С	D E	F	G
Column Name	Description	DataType	PKıniqu	ot_nu	FK Ref Dimension.col
Description: Each row records the volume of riders for a specific stop,					
line and time. This is a fact table					
fact_id	Unique identifier for each record	INT	Ye: Yes	Yes	
time_key	Foreign key to time dimension	INT	No No	Yes	Dim_Time.time_key
stop_id	Foreign key to stops dimension	INT	No No	Yes	Dim_Stops.stop_id
line_id	Foreign key to lines dimension	INT	No No	Yes	Dim_Lines.line_id
remote_unit_id	Foreign key to remote units dimension	INT	No No	Yes	Dim_Remote_Units.remote_unit_id
rider_count	Count of total riders	INT	No No	Yes	
entries	Count of riders entering	INT	No No	Yes	
exits	Count of riders exiting	INT	No No	Yes	
capacity	Capacity at time of measurement	INT	No No	Yes	
utilization_rate	Calculated utilization rate	FLOAT	No No	Yes	
		-			

2) FACT_STOP_UTILIZATION

^	v			٠.		,
Column Name	Description	DataType	PK	unique	not_null	FK Ref Dimension.col
Description: Each row represents the utilization rate of a bus stop per specific						
hour. This is a fact table.						
fact_id	Unique identifier for each record	INT	Yes	Yes	Yes	
time_key	Foreign key to time dimension	INT	No	No	Yes	Dim_Time.time_key
stop_id	Foreign key to stops dimension	INT	No	No	Yes	Dim_Stops.stop_id
utilization_rate	Calculated utilization rate of the bus stop	FLOAT	No	No	Yes	
scheduled_capacity	Planned capacity of the stop	INT	No	No	Yes	

3) FACT_LINE_PERFORMANCE

Column Name	Description	DataType	PKıniq	ueot_ni	FK Ref Dimension.col	
Description: Each row records performance metrics per bus line						
and time. This is a fact table.						
fact_id	Unique identifier for each record	INT	Ye: Yes	Yes		
time_key	Foreign key to time dimension	INT	No No	Yes	Dim_Time.time_key	
line_id	Foreign key to lines dimension	INT	No No	Yes	Dim_Lines.line_id	
schedule_status	Status of schedule (On-Time/Delayed)	VARCHAR	No No	Yes		
trip_timing	Actual trip time	FLOAT	No No	Yes		
delay_minutes	Calculated delay in minutes	INT	No No	Yes		
on_time_rate	Calculated on-time performance rate	FLOAT	No No	Yes		
o estimated_capacity	Estimated line capacity	INT	No No	Yes		
1						
2						

4) FACT_REMOTE_MONITOR

A	В	С	D	E	F	G	Н	1
1 Column Name	Description	DataType	PK	unique	not_null	FK Ref Dimension.col		
Description: Each row monitors data for remote units per event								
including status and health metrics. This is a fact table.								
3 fact_id	Unique identifier for each record	INT	Yes	Yes	Yes			
4 time_key	Foreign key to time dimension	INT	No	No	Yes	Dim_Time.time_key		
remote_unit_id	Foreign key to remote units dimension	INT	No	No	Yes	Dim_Remote_Units.remote_unit_id		
6 event_type	Type of monitoring event	VARCHAR(50)	No	No	Yes			
7 status	Operational status of unit	VARCHAR(50)	No	No	Yes			
8 battery_health	Battery health percentage	FLOAT	No	No	Yes			
9 location	Location of the remote unit	VARCHAR(50)	No	No	Yes			
10								

5) FACT_RIDER_SEGMENTS

Column Name	Description	DataType	PK	unique	not_null	FK Ref Dimension.col
Description: Each row records rider segment data including						
demographics and travel patterns. This is a fact table.						
fact_id	Unique identifier for each record	INT	Yes	Yes	Yes	
time_key	Foreign key to time dimension	INT	No	No	Yes	Dim_Time.time_key
stop_id	Foreign key to stops dimension	INT	No	No	Yes	Dim_Stops.stop_id
demographic	Direct demographic category	VARCHAR(50)	No	No	Yes	
travel_pattern	Direct travel pattern	VARCHAR(50)	No	No	Yes	
segment_count	Count of riders in this segment	INT	No	No	Yes	
location_type	Location classification	VARCHAR(50)	No	No	Yes	

3a. PHYSICAL MODEL ENTITY RELATIONSHIP DIAGRAM

3B. SOURCE TO TARGET MAPPING FOR BUSINESS PROCESSES

1) Rider Volume

Source System	Source Table/Field	Target Table	Target Field	Transformation Logic
Ticketing System	rider_entries	fact_rider_volume	entries	Aggregate rider entry counts by stop and time.
Ticketing System	rider_exits	fact_rider_volume	exits	Aggregate rider exit counts by stop and time.
Ticketing System	stop_id	fact_rider_volume	stop_id	Map to stops using dim_stops.
Geographic System	stop_name	dim_stops	stop_name	Enrich stop details for visualization and reporting.
Time Management	datetime	dim_time	datetime	Break into granular components like hour, day, and peak hours.

2) Stop Utilization

Source System	Source Table/Field	Target Table	Target Field	Transformation Logic
Sensor Data	utilization_rate	fact_stop_utilization	utilization_rate	Derive stop utilization as actual usage vs. capacity.
Sensor Data	scheduled_capacity	fact_stop_utilization	scheduled_capacity	Store scheduled capacity for each stop.
Ticketing System	stop_id	fact_stop_utilization	stop_id	Link stop utilization data with stops dimension.
Time Management	datetime	dim_time	is_peak_hour	Identify peak hours for utilization comparison.

3) Line Performance

Source System	Source Table/Field	Target Table	Target Field	Transformation Logic
GPS System	delay_minutes	fact_line_performance	delay_minutes	Aggregate delay data by line and time.
GPS System	trip_timing	fact_line_performance	trip_timing	Average trip timing by line.
Ticketing System	line_id	fact_line_performance	line_id	Map to line details using dim_lines.

Sensor Data	capacity	fact_line_performance	estimated_capacity	Evaluate capacity utilization on each line.
Time Management	datetime	dim_time		Link performance data with time dimension.

4) Remote Monitor Mapping

Source System	Source Table/Field	Target Table	Target Field	Transformation Logic
Remote Devices	battery_health	fact_remote_monitor	battery_health	Monitor device battery metrics for predictive maintenance.
Remote Devices	status	fact_remote_monitor	status	Track operational status of devices.
Remote Devices	event_type	fact_remote_monitor	event_type	Capture maintenance or alert events.
Geographic System	location	fact_remote_monitor	location	Map remote units to geographic coordinates.

5) Rider Segmentation

Source System	Source Table/Field	Target Table	Target Field	Transformation Logic
Rider Survey	demographic	fact_rider_segments	demographic	Group riders by demographics (e.g., seniors, youth).
Ticketing System	travel_pattern	fact_rider_segments	travel_pattern	Analyze travel patterns (frequent, occasional).
Ticketing System	stop_id	fact_rider_segments	stop_id	Map rider segments to specific stops.

Time Management	datetime	dim_time	time_of_day	Segment travel by time of day
				(morning, evening, etc.).

3C. ESTABLISHING NAMING CONVENTIONS AND PROJECT STANDARDS

Naming Conventions

1. Tables:

- Use prefixes like `dim_` for dimensions and `fact_` for fact tables.
- Table names should be lowercase and use underscores (`_`) for separation. Example: `fact_rider_volume`.

2. Columns:

- Use `snake_case` for column names (e.g., `rider_count`, `stop_id`).
- Foreign key columns should explicitly reference the dimension (e.g., `stop_id`, `line_id`).

3. Primary Keys:

- Use `id` or `key` as suffixes for primary keys (e.g., `fact_id`, `time_key`).

4. Time Attributes:

- Use consistent naming like `datetime`, `hour`, `is_peak_hour`.

Project Standards

1. Version Control:

- Use Git for all project code and schema changes.

2. ETL Design:

- Modular ETL scripts using dbT.
- Each fact table has a dedicated ETL script.

3. Documentation:

- Maintain documentation for all dimension and fact table definitions.
- Use Power BI dashboards to visually track KPIs and testing results.

4. Testing:

- Validate data at each ETL stage.
- Regularly audit metrics like rider counts and delay times for accuracy.

4A AND 4B. TRANSIT DATA WAREHOUSE IMPLEMENTATION

1. SAMPLE SOURCE TO TARGET MAPPING

Staging Layer

Source	Target	Transformations
CSV.Fact_ID	RAW_TRANSIT_DATA.Fact_ID	Direct Load
CSV.Datetime	RAW_TRANSIT_DATA.Datetime	Convert to TIMESTAMP
CSV.Stop_ID	RAW_TRANSIT_DATA.Stop_ID	Direct Load

Dimension Tables

Source	Target	Transformations	
stg_raw_transit.datetime,hour,day,month,year	DIM_TIME	Generate	
		time_key,	
		calculate	
		is_weekend	
stg_raw_transit.stop_*	DIM_STOPS	Direct mapping	
		with	
		deduplication	
stg_raw_transit.line_*	DIM_LINES	Direct mapping	
		with	
		deduplication	
stg_raw_transit.remote_unit_*	DIM_REMOTE_UNITS	Direct mapping	
		with	
		deduplication	

Fact Tables

Source	Target	Transformations
stg_raw_transit	FACT_RIDER_VOLUME	Join with dimensions,
		calculate utilization

stg_raw_transit	FACT_STOP_UTILIZATION	Aggregate by stop,	
		calculate metrics	
stg_raw_transit	FACT_LINE_PERFORMANCE	Calculate performance	
		metrics	
stg_raw_transit	FACT_REMOTE_MONITOR	Track events and status	
stg_raw_transit	FACT_RIDER_SEGMENTS	Segment analysis and	
		categorization	

2. LOADING SEQUENCE

1. Initial Load:

- Load CSV to RAW_TRANSIT_DATA
- Transform to staging view
- Load dimension tables
- Load fact tables

2. Incremental Updates:

- Append new data to RAW_TRANSIT_DATA
- Update staging view
- Update dimension tables (SCD Type 1)
- Append to fact tables

3. DATA QUALITY CHECKS

1. Staging Layer:

- No null keys
- Valid dates
- Valid numeric values

2. Dimension Tables:

- Unique keys
- No orphaned references
- Complete attributes

3. Fact Tables:

- Valid foreign keys
- Business rule validations
- Metric range checks

4. IMPLEMENTATION STANDARDS

1. Naming Conventions:

- Staging: stg_*
- Dimensions: dim_*
- Facts: fact_*
- Keys: *_id, *_key

2. Data Types:

- Keys: INTEGER

- Dates: TIMESTAMP

- Text: VARCHAR

- Metrics: FLOAT/INTEGER

3. Architecture:

- Three-layer architecture (STAGING, ODS, DWH)
- Star schema design
- Conformed dimensions

5. DATA PIPELINE (ETL/ELT):

5a. Code to load data into stage:

Create or replace TABLE TRANSIT_DWH.STAGING.RAW_TRANSIT_DATA (

"Unnamed: 0" NUMBER(38,0),

FACT_ID NUMBER(38,0),

DATETIME TIMESTAMP_NTZ(9),

STOP_ID NUMBER(38,0),

REMOTE_UNIT_ID NUMBER(38,0),

LINE_ID NUMBER(38,0),

RIDER_COUNT NUMBER(38,0),

STOP_NAME VARCHAR(255),

NORTH_DIRECTION_LABEL VARCHAR(50),

SOUTH_DIRECTION_LABEL VARCHAR(50),

DIVISION VARCHAR(50),

LINE VARCHAR(255),

CONNECTING_LINES VARCHAR(255),

DAYTIME_ROUTES VARCHAR(255),

REMOTE_UNIT VARCHAR(50),

HOUR NUMBER(38,0),

```
DAY VARCHAR(10),
MONTH NUMBER(38,0),
YEAR NUMBER(38,0),
CAPACITY NUMBER(38,0),
PEAK_OFF_PEAK VARCHAR(10),
SCHEDULE_ON_TIME VARCHAR(50),
TRIP_TIMING FLOAT,
EVENT_TYPE VARCHAR(50),
STATUS VARCHAR(50),
BATTERY_HEALTH FLOAT,
DEMOGRAPHIC VARCHAR(50),
TRAVEL_PATTERN VARCHAR(50),
ENTRIES NUMBER(38,0),
EXITS NUMBER(38,0),
NEAR_COMMERCIAL_AREA BOOLEAN,
NEAR_UNIVERSITY BOOLEAN
```

);

Data from our csv file was loaded through the data load wizard in snowflake.

5a. Data Lineage Chart

5b. Implementation from dBT file explorer

∨ File explorer Q
☐ transit_dwh
☐ analyses
☐ dbt_packages
☐ macros
□ models ···
☐ bridges transit_dwh/transit
connecting_lines.sqr
schema.yml
ψ unit_locations.sql
🗀 dashboards
dash_demographic_analysis
dash_hourly_ridership.sql
dash_performance_monitor.sql
🖹 schema.yml
☐ dimensions

5b. Snowflake Integration

5c. List of created tables in snowflake - generated via dbT documentation

Overview Project **Database** Group **Tables and Views** ■ TRANSIT_DWH T DWH connecting_lines analysis dash_demographic_analysis ash_hourly_ridership ash_kpi_metrics ash_performance_monitor daytime_routes dim_lines dim_remote_units dim_stops dim_time fact_line_performance fact_remote_monitor fact_rider_segments fact_rider_volume fact_stop_utilization stg_raw_tran fact_stop_utilization unit_locations T STAGING raw_transit_data

5d. Output from dbt build command to look for tests, data governance

>	✓ stg_raw_transit	0.48s
>	✓ dim_lines	1.78s
>	✓ dim_remote_units	1.41s
>	✓ dim_stops	1.76s
>	✓ dim_time	1.49s
>	✓ unit_locations	1.45s
>	ont_null_dim_remote_units_remote_unit	0.22s
>	not_null_dim_remote_units_remote_unit_id	0.44s
>	unique_dim_remote_units_remote_unit_id	0.20s
>	onot_null_unit_locations_location_id	0.24s
>	ont_null_unit_locations_remote_unit_id	0.15s
>	ont_null_unit_locations_stop_id	0.18s
>	relationships_unit_locations_remote_unit_idremote_unit_idref_dim_remote_units_	0.24s
>	✓ unique_unit_locations_location_id	0.15s
>	ont_null_dim_time_datetime	0.20s
>	ont_null_dim_time_time_key	0.16s
>	unique_dim_time_time_key	0.35s
>	ont_null_dim_stops_stop_id	0.30s

6. BUSINESS INTELLIGENCE

We have created an initial version of a dashboard that displays various key metrics to gain insights from our business processes. Some of this include segmenting riders based on their age, or by the nature of the stops they enter or exit in (commercial, educational etc.). Additionally, we have also created key metrics to analyze battery health, delays in time, utilization rate etc. While this is an initial version of the dashboard, the final expected output would be to have a dashboard for each of the business processes.

We built the dashboard using Power BI after creating OBT Views in dBT. Our warehouse and database on Snowflake was connected to Power BI and then the dashboard was built.

7. REFLECTIONS AND CHALLENGES

Through this project, we were able to showcase our ability to identify business requirements and convert them to a functional reporting tool that is easily reproducible and updatable with new data. The project allowed us to delve deep and gain knowledge about Snowflake, dbT, Dimensional Modelling, and creating documentation for such a project.

However, we did face challenges with respect to data quality. One of the columns, which is a good to have but not a must have column, ended up having erroneous values, stopping us from creating a bridge table for it. The quality of data remains the utmost predictor of how good a datawarehouse can be. This ended up being our primary and only challenge that we faced in the whole project.

The next steps in this project would be to orchestrate inflow of new data using Apache Airflow, and to create multiple dashboards for each of the business processes, instead of an all-in-one dashboard. That would allow more enhanced insights on each of the business processes.