DEGREE IN COMPUTER ENGINEERING

PHYSICS EXAM 10th JANUARY 2011

Surname:			
Name:			
Group 89			
E1 E2 E3	E4 Q1	Q2 Q3	

- 1.- The exam has 4 exercises and 3 questions.
- 2.- The corresponding marks are attached to each exercise or question.
- 3.- Each exercise or question must be solved on a separate sheet.
- 4.- On each square above, mark with an X the exercises or questions that have <u>NOT</u> been solved.

CONSTANTS:

Charge of the electron: $-1.6 \times 10^{-19} \ C$ Permittivity of free space: $\epsilon_0 = 8.85 \times 10^{-12} \ C^2 \ N^{-1} \ m^{-2}$

Permeability of free space: $\mu_0 = 4 \pi \times 10^{-7} \ N \ A^{-2}$ Mass of the electron: $9,11 \times 10^{-31} \ kg$.

 $h = 6.626 \times 10^{-34} \text{ Js}$ Mass of the proton: $1,67 \times 10^{-27} \text{ kg}$

EXERCISES:

- **E1.** (2p) A proton starting from rest is accelerated by a uniform electric field of magnitude 640 N/C. After some time, the speed of the proton is 1.2×10^6 m/s.
- a) How long does it take for the proton to reach that speed?

 $c = 2.998 \times 10^8 \text{ m/s}$

- b) Find the distance travelled by the proton until it reaches that speed.
- c) Find the kinetic energy of the proton when it reaches that speed in J and eV.
- **E2.** (2p) A small sphere of mass m and charge q hanging from a massless string is located inside a parallel-plate capacitor with plates of area A and distance between the plates d (as shown in the figure).
- a) Find the capacitance of the capacitor, the electric field inside the capacitor and the charge on the plates.
- b) Find the charge q of the sphere knowing that the pendulum is in equilibrium when the string forms an angle α with the vertical.

DATA: A= 1.13 m²; d= 4 cm; $V_0 = 500 \text{ V}$, m= 2 g; $\alpha = 30^{\circ}$

E3. (2p) A solid sphere of radius R_1 is uniformly charged with a volume charge density ρ_0 . A metallic spherical shell of inner radius R_2 and outer radius R_3 concentric with the solid sphere is charged with Q (see figure). Find the electric field \vec{E} (expressed in rectangular coordinates) at points: A (5,0,0); B (20,0,0); C (38,0,0) and D (25,35,0) (all coordinates are expressed in cm).

DATA:
$$\rho_0$$
 = - 4.8× 10^{-3} C/m³; R_1 = 10 cm; R_2 = 30 cm; R_3 = 40 cm; Q = 30 μC

E4. (2p) Three infinite conducting wires parallel to the Z axis carry currents $I_1 = 2$ A, $I_2 = 5$ A, $I_3 = 10$ A. The location of the wires and the direction of the current intensities are shown in the figure attached.

- a) Find \vec{B} at (0, 0, 0).
- b) Find the magnetic force \vec{F} exerted on an electron located at (0,0,0) knowing that it travels with a velocity $\vec{v} = 3 \times 10^4 \, \vec{i} + 5 \times 10^4 \, \vec{j}$ (m/s).

Express all vectors in rectangular coordinates.

QUESTIONS:

Q1. (1 p) Describe the conduction properties of an intrinsic semiconductor (both at 0 K and at T>0 K). Use the band theory of solids in the explanation.

Q2. (1p) Explain the physical behaviour of a semiconductor diode (see the characteristic curve attached). Consider both forward and reverse bias in the explanation.

