Galaxy ages from synthetic spectra

Outline (borrador)

- contexto científico
 - dificultad para calcular edades de galaxias
- descripción del proyecto
 - objetivo final: entrenar un modelo de ML que pueda predecir la edad de una galaxia a partir de su espectro
 - o generar espectros de galaxias sintéticas para poder entrenar el modelo
 - pasos para generar los espectros
- avances:
 - normalización espectros de estrellas
 - o imf

Contexto científico

Edad de las galaxias:

- Difícil de estimar:
 - Compuestas por muchos cuerpos
 - No hay una única definición

 Fundamental para estudiar su evolución

Objetivo:

Predecir la edad de una galaxia a partir de su espectro, usando Machine Learning

Necesitamos galaxias con edades conocidas para poder entrenar un modelo

Vamos a generar espectros de galaxias sintéticas

Pasos del proyecto

Obtener espectros de estrellas representativas y normalizarlos

Evolucionar las poblaciones en el tiempo

Calcular la edad para cada galaxia

Definir IMF y generar poblaciones estelares Definir una SFH y construir los espectros de galaxias

Construir y entrenar Red Neuronal

Descargar Spectra

Calcular luminosidad total

Encontrar Longitud de Onda

Luminosidad Intrínseca Library of Stellar Spectra - ESO archivos fits -> pixeles e intensidad de espectro

Integrar espectro c/r long onda

píxel de ref -> long de onda en píxel -> incremento.

<u>Luminosidades Intrínsecas:</u>

Spectral Type	Intrinsic Luminosity (L①)
O5	846,000
O9	95,000
В0	20,000
B1	4,600
A0	22
A2	18
F0	4.3
F2	3.3
G0	1.3
G2	1
К0	0.54
K2	0.38
М0	0.069
M1	0.064

Header:

CTYPE1	= 'LINEAR	*
CRVAL1	=	1150.
CRPIX1	=	1.
CDELT1	=	5.
CD1 1	=	5.

CRVAL1: valor de long. onda en pixel de ref.
CRPIX1: pixel de ref of the wavelength array.
CDELT1: incremento de long de onda por pixel

```
# Calcular el rango de longitud de onda
wavelength = crval1 + (np.arange(len(data)) - crpix1 + 1) * cdelt1
```

Spectral Data proveniente del fit:

Spectral Data luego de normalización:

Más ejemplos:

Salpeter IMF

$$\xi(m) = \xi_0 m^{-2.35}$$

$$\phi(M) = \int_{M_{min}}^{M} \xi_0 m^{-2.35} dm$$

$$1 = \int_{M}^{M_{max}} \xi_0 m^{-2.35} dn$$

$$1 = \xi_0 \left[\frac{M^{-2.35+1}}{-2.35+1} \right]_{M_{min}}^{M_{max}}$$

$$\xi_0 = \frac{-1.35}{M_{max}^{-1.35} - M_{min}^{-1.35}}$$

Salpeter IMF

$$pdf(m) = m^{-2.35} \times \frac{(-1.35)}{(M_{max})^{(-1.35)} - (M_{min})^{(-1.35)}} \times [\mathbb{I}_{(m \ge M_{min})}(m) \times \mathbb{I}_{(m \le M_{max}}(m)]$$

Créditos: Noll, et al.(2007)