Question number	Answer	Notes	Marks
7 (a)	correct substitution KE = $\frac{1}{2}$ (mass) × (speed) ² ; re-arrangement to give v; evaluation to show 5.8(4) (m/s); e.g. KE = $\frac{1}{2}$ m v ² 0.29 = 0.5 × 0.017 × v ² v ² = 0.29 ÷ (0.5 × 0.017) = 34.1176471 v = $\int 34.1176471 = 5.8(4)$ (m/s)	allow use of standard symbols e.g. KE = ½ m v ² allow mass = 17 at this point	3
(b)	 idea of conservation of momentum; idea that momentum before release was zero; evidence of re-arrangement; evaluation of large block speed giving 1.3 m/s; e.g. momentum of small block = 17 × 6 = 102 g m/s therefore momentum of large block = 102 g m/s momentum = mass × velocity = 75 v so v = 102/75 = 1.36 m/s 	however expressed allow idea that momenta of two blocks is equal in magnitude allow 1.4 if v _{small} = 6 m/s ignore mass unit provided both masses consistent v=1.31 if v _{small} = 5.8 m/s v=1.32 if v _{small} = 5.84 m/s	3
	idea of initial momentum = 0; evaluation; correct answer = 0.93 (N) e.g. force = change in momentum ÷ time taken force = ((0.017 × 6) - 0) ÷ 0.11 force = 0.102 ÷ 0.11 force = 0.9272 (N)	allow use of init velocity = 0	
(d)	substitution and re-arrangement of given equation; conversion of 17.6 cm to 0.176 m; evaluation; correct answer = 0.18(41) (s) $ e.g. \text{ orbital speed} = (2\pi \times \text{ orbital radius}) \div \text{ time period} \\ 6 = (2\pi \times 0.176) \div T \\ T = (2\pi \times 0.176) \div 6 \\ T = 0.1843 \text{ (s)} $	accept 0.2 (s) accept use of v=5.84(m/s) -1 POT error 0.092 (s) for using 17.6 cm as a diameter scores 2 marks	3

Total for Question 7: 13 marks