Temat: Badanie regulatora trójstawnego

1. Zadanie do wykonania

Opracować układ pomiarowy, zmontować układ do badania regulatora, opracować algorytm sterowania w układzie regulacji trójstawnej i przetestować regulator w warunkach laboratoryjnych.

2. Założenia projektowe

2.1. Schemat blokowy typowego układu regulacji

Rys. 1. Schemat blokowy układu regulacji. Uzupełnij schemat o nazwy zmiennych, które wystąpią w Twoim programie (zmienne języka C, np. _pv_, _sp_, ..)

2.2. Schemat blokowy podłączenia sygnałów w układzie do badania regulatora

Rys. 2. Schemat blokowy połączeń elektrycznych układu do badania regulatora. Uzupełnij schemat o nazwy zmiennych z architektury wewnętrznej mikroprocesora (np. PD0-PD7, PA0, ..)

Zadawanie parametrów regulacji

Zakres pomiarowy (0-400)°C/(0-5)V, N=2H

- a) Po RESET SP=60%, H=8%
- b) Gdy SW1=1, SP=50%
- c) Gdy SW5=1, SP=40%
- d) Gdy SW9=1, H=4%
- e) Gdy SW13=1, H=10%

2.3. Projekt wykorzystania wyświetlacza LCD

Wariant I	SP=xx%	PV=xx.x%	Wariant II	SP=xxC	PV=xx.xC
	H=xx%	E=+xx.x%		H=xxC	E=+xx.xC

Uwaga:

Po sprawdzeniu poprawności działania algorytmu, przejść na widok w % albo w °C.

2.4. Schematy ideowe połączeń elektrycznych

- a) Podłączenie zasilania mikroprocesora
- b) Podłączenie wyświetlacza LCD do mikroprocesora

c) Podłączenie czterech przycisków (sw1, sw5, sw9 i sw13) do linii mikroprocesora

Rys. 5. Podłączenie przycisków SW1, SW5, SW9 i SW13 do linii PC0,..,PC3 mikroprocesora

d) Podłączenie potencjometru do zadawania napięcia Up (symulacja pomiaru zmiennej procesowej), podłączenie woltomierza do pomiaru napięcia oraz podłączenie wyjścia regulatora do D3.10 i D3.9.

3. Regulator trójstawny

Algorytm działania: E=SP-PV;

gdy E>N/2+H, set CV1; gdy E<N/2, reset CV1; gdy E<-N/2-H, set CV2; gdy E>-N/2, reset CV2.

Cv1

Cv2

Rys. 6. Charakterystyka regulatora trójstawnego (dla SP=300°C, H=10°C, zakres (0-400)oC)

4. Tabela pomiarowa (każda grupa oblicza dane do tabeli dla "własnych" danych)

Badanie			dla SP=		%, N=2H, zak		°C / (0-5)V
E [H]	E[°C]	PV[%]	PV[ADC]	PV[°C]	PV[V]	Pomiar	Stan diód D3.10 D3.9
-2,50 H							
-2,00 H							
-1,50H							
-1,05 H							
-1,00 H							
-0,95 H							
-0,50 H							
0,00 H							
0,50 H							
1,00 H							
1,50 H							
1,95 H							
2,00 H							
2,05 H							
2,50 H							
2,00 H							
1,50 H							
1,05 H							
1,00 H							
0,95 H							
0,50 H							
0,00 H							
-0,50 H							
-1,00 H							
-1,50 H							
-1,95 H							
-2,00 H							
-2,05 H							
-2,50 H							

_							
5.	U۱	พล	σi	ı	wr	ท่ด	ski

6. Załącznik nr 1: Kod programu

Wydruk programu musi być podpisany przez obu autorów

(wydrukować sfotografowany program, bez czarnych marginesów, nazwiska autorów jako komentarz w programie w miejscu obliczania błędu regulacji)