Graphen und biologische Netze $(WS\ 2016/17)$

Inhaltsverzeichnis

1	Vor	esung 14.10.2016
	1.1	Grundlagen der Graphen und biologische Netze
	1.2	Gleichheit von Graphen
	1.3	Eigenschaften von Graphen
	1.4	Graph-Invarianten
	1.5	Pfade und Zusammenhänge
2	Vor	esung 21.10.2016
3	Vor	esung 28.10.2016
	3.1	Inzidenzstrukturen
		3.1.1 Inzidenzmatrize - ungerichtete Graphen
		3.1.2 Inzidenzmatrize - gerichtete Graphen
	3.2	Laplace-Matrix
		3.2.1 Algebraische Konnektivität
		3.2.2 Fiedler Vektor
		3.2.3 Interlacing Theorem
		3.2.4 Anzahl nicht-isomorpher Graphen
		3.2.5 Isomorphismus auf Bäumen
4	Vor	esung 11.11.2016 15
5	Vor	esung 18.11.2016 16
6	Vor	esung 25.11.2016 17
7	Vor	esung 02.12.2016 18
•	7.1	Cographen & Cotrees
8	Vor	esung 09.12.2016 24
9	Vor	esung 16.12.2016 25
10	Vor	esung 21.12.2016 31
	10.1	neighbor joining
		Neighbor Net

1 Vorlesung 14.10.2016

1.1 Grundlagen der Graphen und biologische Netze

Graph: Knoten, Kanten (binäre Relationen)

<u>Transitivität:</u> implizite Verbindung (abhängig vom Kontext) Labeled Graphs:

- Graph: (V, E)
- Labels: L_V (Knotenlabel), L_E (Kantenlabel)

 $e \in E \Rightarrow \exists x, y \in V : x \text{ und y sind die Endpunkte von e}$

<u>Knoten-Labelfunktion</u> α : $\alpha: V \to L_V: v \mapsto \alpha(v)$ <u>Kanten-Labelfunktion</u> β : $\beta: E \to L_E: e \mapsto \beta(e)$

ungerichtete Graphen

- Kante ist eine Menge von 2 (verschiedenen) Knoten
- $e = \{x,y\} = \{y,x\} \rightarrow$ Reihenfolge egal
- $E \subseteq V^{(2)} \to$ Kante ist Teilmenge von 2 Knoten

gerichtete Graphen

- Kante ist ein geordnetes Paar von 2 (verschiedenen) Knoten
- e = (x, y) entspricht $x \to y$, (y, x) entspricht $y \to x$
- $E \subseteq V \times V$
- gerichtete Kante besteht aus head (in Pfeilrichtung) und tail

Funktionen gerichteter Graphen:

 $h: E \to V: e \mapsto head(e)$ $t: E \to V: e \mapsto tail(e)$

Graphen in denen Kanten zwei verschiedenen Endpunkte haben **UND** zu jeden Paar von Kanten höchstens eine Kante gehört hießen <u>EINFACH</u> oder <u>SIMPLE</u> im gerichteten Fall:

trotzdem einfacher Graph!

 $\overset{\text{erst:}}{\mathsf{X}} \bigvee \mathsf{Y}$

ist Multigraph

Loops:

Abbildung 1: links: gerichtet; rechts: ungerichtet

⇒ einfacher Graph mit Loops

Durch Unterteilung der Kanten in Multigraphen kann eine Transformation in Graphen erzeugt werden:

- ungerichtet: zweifache Unterteilung mittels zweier Knoten
- gerichtet: einfache Unterteilung mittels Knoten

1.2 Gleichheit von Graphen

als labeled graphs: $G_1=G_2=G_4\neq G_3$

 \Rightarrow 2 Graphen $G_1=(V_1, E_1)$ und $G_2=(V_2, E_2)$ sind isomorph wenn es einen bijektive Abbildung¹ $\pi: V_1 \to V_2$ gibt, sodass $\{x, y\} \in E_1 \Leftrightarrow \{\pi(x), \pi(y)\} \in E_1$

¹https://de.wikipedia.org/wiki/Bijektive_Funktion

bijektive Abbildung: jedes Element von

1. wird zu genau einem Element von 2. zugeordnet

$$\pi(a) = w, \pi(b) = u, \pi(c) = x, \pi(d) = v$$

 \rightarrow hier ergibt bijektive Abbildung keinen Isomorpismus, da Bild(d) und Bild(c) Kante haben, jedoch v und x keine Kante haben

Durch folgende bijektive Abbildung wird aber Isomorphie erreicht:

$$\pi(a) = w, \pi(b) = x, \pi(c) = u, \pi(d) = v$$

Bezogen auf die Labels kann es mehrere mögliche Isomorphien geben.

Schreibweise: $G \simeq H$ (G ist isomorph zu H) mit $G \to^{\pi} H, G \leftarrow^{-\pi} H$ sodass π isomorph ist

Reflexivität: Ein Graph ist zu sich selbst immer isomorph: $G \simeq G$ Symmetrie: $G \simeq H \Leftrightarrow H \simeq G$ Transitivität: $G \simeq H, H \simeq K \Rightarrow G \simeq K$

 \simeq ist eine Äquivalenz
relation \to Isomorphie teilt Graphen in Klassen ein (Isomorphie
klassen)

Nebenbemerkung: Labeled Graphen?

Zusätliche Bedingung benötigt: $\lambda(\pi(x)) = \lambda(x) \to \text{Labels müssen erhalten bleiben!}$

Testen auf Gleichheit

Gegeben: $G_1=(V_1, E_1), G_2=(V_2, E_2)$ Frage: Sind die Graphen isomorph?

Grundbedingungen:

1. $|V_1| = |V_2| \rightarrow$ gleiche Anzahl von Knoten

2. $|E_1| = |E_2| \rightarrow$ gleiche Anzahl von Kanten

Eigenschaften von Graphen

Nachbarknoten von v
: $N(v):=\{y\in V|\{v,y\}\in E\}$

deg(v) := |N(v)|

$$\begin{split} \delta(G) &:= \min_{v \in V} deg(v) \\ \Delta(G) &:= \max_{v \in V} deg(v) \end{split}$$

<u>Def:</u> Ein Graph heißt **REGULÄR** wenn $\Delta(G) = \delta(G)$ (wenn alle Knoten gleichen Grad haben)

Gradfolge von G:

 $\mathcal{F} = (n_0, n_1, n_2, \dots, n_{|V|-1}) \text{ mit } n_k := |\{x \in V | deg(x) = k\}|$

 $\delta(G) \ge 0$

 $\Delta(G) < |V| - 1$

Beispiel:

0 1 2 3 4 F= (0 4 0 0 1)

 $F = (0 \ 4 \ 0 \ 0)$

bei Isomorphie: $\mathcal{F}_1 = \mathcal{F}_2 \to \text{Isomorphismus } \pi$ erhält Grad der Knoten!

1.4 Graph-Invarianten

Eigenschaften, die unter Isomorphie erhalten bleiben

 \mathcal{G} ... Menge aller Graphen

F...ist ein Graph invariant wenn

$$F: \mathcal{G} \to X \tag{1}$$

die Eigenschaft hat, dass

$$G \simeq H \Rightarrow F(G) = F(H)$$
 (2)

Invarianten bis jetzt: |V|, |E|, Gradfolge \mathcal{F}

Wenn $F(G) \neq F(H)$ für irgendeine Grapheninvariante $\Rightarrow G \neg \simeq H$

1.5 Pfade und Zusammenhänge

<u>Kantenzug:</u> Folge von Kanten in G" $\overline{x_o, e_1, x_1, e_2}, x_2, \dots, e_l, x_l \text{ sodass } e_i := \{x_{i-1}, x_i\}$

Beispiel:

Weg: Kantenzug sodass $e_i \neq e_j$ für $i \neq j$ (keine Kante doppelt verwenden)

<u>Pfad:</u> Kantenzug sodass $x_i \neq x_j$ für $(i, j) \neq (0, l)$ mit 0=Startknoten und l=Endknoten des Pfades (keinen Knoten mehrfach bis auf x_0, x_l)

- offen: $x_o \neq x_e$
- \bullet geschlossen: $x_0=x_e$ (nur hier 1 Knoten doppelt benutzt!)

<u>Definition:</u> G ist zusammenhängend wenn es zwischen je zwei Knoten $x,y \in V$ einen Kantenzug gibt

Frage:

- 1. Ist Zusammenhang eine Grapheninvariante?
- 2. Kann man in der Definition Kantenzug durch Weg, Pfad oder Kreis ersetzt?

2 Vorlesung 21.10.2016

3 Vorlesung 28.10.2016

3.1 Inzidenzstrukturen

Struktur aus Punktmenge und Menge von Blöcken.

Tripel: (p,B,I)

- $p \cap B = \emptyset$
- $I \subseteq p \times B$
- p = Punkte z.B. Vertices
- \bullet B = Blöcke z.B. Kanten
- I = Inzidenzmatrix

Die Punkte p "inzidieren" demnach mit den Blöcken B, "liegen auf" einem Block. Dieser Block kann, wie in unserem Fall bei Graphen, eine Gerade sein.

3.1.1 Inzidenzmatrize - ungerichtete Graphen

- n Knoten, m Kanten
- n x m Marix B=b_{i,j}
- G=(V,E) V={v₁, ..., v_n} E={e₁, ..., e_m} $b_{i,j}$ $\begin{cases}
 1, v_i \in e_j \\
 0, sonst
 \end{cases}$

$$3 \ 0 \ 1 \ 0$$

In dieser Inzidenzmatrize steht Vertex 1 nur auf Kante a, Vertex 2 auf Kante a und b (kann nicht auf c liegen) und Vertex 3 auf Kante b. In Form einer Bildes

könnte das so aussehen:

3.1.2 Inzidenzmatrize - gerichtete Graphen

•
$$b_{i,j}$$

$$\begin{cases} 1, e_{j} = (v_{i}, x) \\ 0, v_{i} \ni e_{j} \\ -1, e_{j} = (x, v_{i}) \end{cases}$$

a b c 1 -1 0 0

 $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{0}$

3 0 -1 0

Hier sind die Kanten gerichtet. Im Gegensatz zur ungerichteten Inzidenzmatrize erhalten "ankommende" Kanten hier ein negatives Vorzeichen. Siehe Kante a zu Vertex 1 und Kante b zu Vertex 3.

3.2 Laplace-Matrix

- G = (V,E)
- \bullet Gradmatrix D=d_{i,j}
- Adjazenzmatrix A=a_{i,j}
- Laplace-Mazrix $L=\operatorname{D-A}=\operatorname{l}_{i,j}$

$$d_{i,j} \begin{cases} deg(v_i), \ i = j \\ 0, \ sonst \end{cases}$$

$$a_{i,j} \begin{cases} 1, \ (i,j) \in E \\ 0, \ sonst \end{cases}$$

- A ist symmetrisch für ungerade Graphen

$$L \begin{cases} deg(v_i), \ i = j \\ -1, \ i \neq j, (i, j) \in E \\ 0, \ sonst \end{cases}$$

- Zusammenhang zur Inzidenzmatrix: $L\!\!=\!\!\mathrm{B} \times \mathrm{B}^{\mathrm{T}}$

Beispiel:

1 0 0

Gradmatrix: 0 2 0

0 0 1

0 1 0

Adjazenzmatrix: 1 0 1

0 1 0

1 -1 0

Laplace-Matrix: -1 2 -1

0 -1 1

Eigenschaften:

- symmetrisch
- die Zeilen- und Spaltensumme = 0
- Eigenwert $\lambda_0=0, v_0=(1,\ldots,1) \Rightarrow 2 \ v_0=\lambda_0$
- \bullet Anzahl der 0 Eigenwerte \Rightarrow Anzahl der connected components
- special gap: kleinster Eigenwert $\neq 0$
- algebraische Konnektivität (Fiedler-Wert)
 - zweit-kleinster Eigenwert positiv-semidifinit
 - $-\lambda_i \geq 0$

3.2.1 Algebraische Konnektivität

- beschreibt wie gut verbunden der Graph, global gesehen, ist
- $\bullet\,$ algebraische Konnektivität \leq Vertex-Konnektivität
- $\bullet \ |V|{=}n,$ min. Durchmesser von d
(längster Pfad)
 - alg. Konn $\geq 4/\mathrm{nd}$

Beispiel:

- \bullet |V|=3
- \bullet d=2
- vert. conn = 1
- alg. conn = $\lambda_z = 0.666$

3.2.2 Fiedler Vektor

- Eigenvektor zur Alg. Konn.
- eignet sich zur Graphpartitionierung

Beispiel:

- $F = \langle 0.4, 0.3, 0.1, -0.2, 0.2, -0.8 \rangle$
- {4,6},{1,2,3,5}

3.2.3 Interlacing Theorem

- Sei A eine reelle, symmetrische Matrix
- mit Eigenvektoren $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$
- sei A' principal Submatrix von A
- \bullet Beispiel: principal Submatrix \Leftrightarrow induzierter Subgraph, ein Vertex weniger $(G\text{-}\{v_i\})$
 - Eigenwerte zu A': $\eta_1 \geq \eta_2 \geq \ldots \geq \eta_{n-1}$
 - dann gilt: $\lambda_i \geq \eta_i \geq \lambda_{i+1}$... $i=1,\,2,\ldots,\,n\text{--}1$

3.2.4 Anzahl nicht-isomorpher Graphen

- $\bullet \ V = \{1, \dots, n\}$
- $E \subseteq \begin{pmatrix} V \\ 2 \end{pmatrix} = [v]^2$
- wie viele versch. Graphen gibt es? $\Rightarrow 2^{\binom{n}{2}}$
 - einige dieser Graphen sind isomorph zueinander
 - wie viele Äquivalenzklassen gibt es für (≅) auf $V = \{1,-, n\}$?

Approximation:

- wie viele isomorphe Graphen gibt es für 6?
- Isomorpge-Bijektion π V \rightarrow V
- Anzahl Permutationen: n!
- Es gib maximal n! isomorphe Graphen auf G

$$\frac{2^{\frac{n}{2}}}{n!} = \frac{\text{Anzahl Graphen}}{\text{mgl. Bijektion fur einen einzelnen Graphen}}$$

• wir haben mit $\frac{2^{\frac{n}{2}}}{n!}$ paarweise nicht-isomorphe Graphen $n! \le n^n$

$$log_2(2^{\binom{n}{2}}) = \binom{n}{2} = \frac{n^2}{2}(1 - \frac{1}{n})$$

$$n! \leq n^{n}$$

$$log_{2}(2^{\binom{n}{2}}) = \binom{n}{2} = \frac{n^{2}}{2}(1 - \frac{1}{n})$$

$$log_{2}(\frac{2^{\binom{n}{2}}}{n!}) = \binom{n}{2} - log(n!) \geq \frac{1}{2}n^{2} - \frac{1}{2}n - nlog_{2}(n)$$

$$= \frac{n^{2}}{2}(1 - \frac{1}{n} - \frac{2log_{2}(n)}{n})$$
Fehler geht gegen $0(2^{O(n^{2})})$

3.2.5 Isomorphismus auf Bäumen

- \bullet das "das ist einfach" \to Programm mit polynomieller Zeit bauen
- Baum codieren via 2n 0en und 1en \hookrightarrow das sei der Code von Baum T
- zu beweisen: isomorph Bäume haben gleiche codes
- drei Klassen von Bäumen:
 - Bäume
 - gewurzelte Bäume
 - gewurzelte Bäume mit Geschwisterordnung

Beispiel:

Algorithmus (gewurzelt, geordnet):

- $\bullet\,$ K1: Blätter werden kodiert als 01
- K2: $v \in V$ mit Kiner $c_1, \dots, c_n \in V$
- $\bullet\,$ Sei A_i der Code von c_i
- \bullet Dann codiert 0 A₁₋A_n 1
 - Isomorphe Bäume werden mit gleichem Code codiert
 - $-\,$ Baum aus Code: Zeigt das nicht-isomorphe Bäume verschiedenen Code haben

Beispiel:

Induktion:

- $\bullet\,$ einzelne Wurzel ,01"
- Schritt: Code K, Länge 2(n+1) mit Form 0A1, $A=A_{1-n}$ bestimme A_1 : Kleinster 0/1 kann mit gleicher Zahl von 0 und 1
- \bullet A_i ist via Induktion des Codes für dazugehörigen gewurzelten, geordneten Baum T_i

"Kleinste maximale Entfernung zwischen den Blättern als Wurzel wählen "

4 Vorlesung 11.11.2016

5 Vorlesung 18.11.2016

6 Vorlesung 25.11.2016

7 Vorlesung 02.12.2016

7.1 Cographen & Cotrees

Phylogenetik

- Erforschung von Abstammung
- Rekonstruktion von phylogenetischen Bäumen ("Stammbäume")
- Speziesbäume/Genbäume

Ergebnisse:

- Genverlust (loss)
- Aufspaltung zu einer neuen Spezies (speciation)
- Duplikation von Genen (ducplication)
- horizontaler Gentransfer (HGT)

<u>Def.:</u> Baum (tree)

Ein Baum T=(V,E) ist ein zusammenhängender Graph, der keine Kreise enthält (azyklisch).

<u>Def.:</u> Zusammenhang

Ein Graph G=(V,E) ist zusammenhängend, wenn es zwischen jedem möglichen Paar von Knoten einen Pfad gibt.

Theorem:

T=(V, E) ist ein Baum $\Leftrightarrow \exists !$ Pfad zwischen zwei zufällig gewählten Knoten existiert. ($\Leftrightarrow \ldots$ aus dem folgt; $\exists ! \ldots$ genau einem)

Beweis:

 \Rightarrow : Da T zusammenhängend ist, gibt es einen Pfad zwischen v, u \in V(T), \forall v, u \in V(T). Angenommen es gäbe noch einen 2. Pfad, dann gibt es einen Kreis; Widerspruch zur Definition.

←: Wenn genau ein Pfad existiert, ist T zusammenhängend, Also gibt es auch keine Kreise; T ist ein azyklischer Graph = Baum.

Def.: Distanz

Die Distanz d(u,v) zwischen zwei Knoten $u, v \in V$ ist gleich der Anzahl der Kanten im kürzesten Pfad zwischen u und v.

<u>Def.:</u> Lowest Common Ancester (lca)

Seien x,y \in V(T) Blätter im Baum T mit Wurzel r. Sei $P_x = \{x, x_1, x_2, ..., r\}$ der Pfad von x nach r und $P_y = \{y, y_1, y_2, ..., r\}$ der Pfad von y nach r. Dann $lca(x, y) = min(d(d, v_i), d(y, v_i))$ mit $v_i \in (P_x \cap P_y)$

 $v_i \dots$ mehrere v's (kann auch r sein)

r ... root (Wurzel)

•
$$P_{b_2r} = \{b_2, v_3, v_2, r\}$$

•
$$P_{dr} = \{d, v_5, v_4, v_2, r\}$$

•
$$P_{b_2r} \cap P_{dr} = \{v_2, r\}$$

- $d(b_2, v_2) = 2$
- $d(b_2, r) = 3$

Def.:

- Homologie: 2 Gene sind homolog, wenn sie die selben Vorfahren haben
- Orthologie: 2 Gene sind ortholog, wenn ihr lca eine Speziation (Artaufteilungsereignis) ist
- Paralogie: 2 Gene sind paralog, wenn ihr lca eine Duplikation ist

<u>Def.:</u> Θ-Relation (Orthologie-Relation)

Seien $x,y \in H$, H = Menge von Genen

 $(x,y) \in \Theta \Leftrightarrow lca(x,y)$ ist eine Speziation.

Diese Relation ist reflexiv (rückbezüglich), symmetrisch, aber <u>nicht</u> transitiv (mit sich ziehend).

Bestimmung von Orthologie:

Sequenzähnlichkeit

• Syntenie ("Gemeinsamkeiten in der Reihenfolge von Genen oder Gensegmenten auf verschiedenen chromosomalen Abschnitten. [...] ist ein Maß für die genetische Verwandtschaft der beiden Arten. "[Wikipedia])

z.B. Tool: ProteinOrtho

 $\underline{\text{Def.:}} \sim \text{-Relation (fast-Orthologie)}$

 $(x,y) \in \sim$, wenn x,y als ortholog eingestuft werden.

Ziel: Korrigieren \sim sodass wir Θ erhalten. Dazu stellen wir \sim und Θ als Graphen dar.

$$G_{\Theta} = (V_{\Theta}, E_{\Theta}) \qquad G_{\sim} = (V_{\sim}, E_{\sim})$$

$$V_{\Theta} = V_{\sim} = Gene$$

$$E_{\Theta} = \{(x, y) \in \binom{V}{2} \mid x\Theta y\} \qquad E_{\sim} = \{(x, y) \in \binom{V}{2} \mid x \sim y, y \sim x\}$$

$$\binom{V}{2} \dots \text{ alle m\"{o}glichen Kombinationen von zwei Knoten}$$

Def.: Komplementgraph (complement)

Sei G=(V,E) ein Graph. Das Komplement \overline{G} von G ist der Graph $\overline{G}=(V,\overline{E})$ mit $\overline{E}=\{(u,v)\in\binom{V}{2}\mid (u,v)\notin E\}$

Def.: Teilgraph

Sei G=(V,E) ein Graph und $H\subseteq G$. H ist Teilgraph von G, wenn $V(H)\subseteq V(G)$, $E(H)\subseteq E(G)$. Ein induzierter Teilgraph ist ein Teilgraph H von G bei dem alle Knoten die in G benachbart sind, auch in H benachbart sein müssen.

$$(v,u) \in E(G) \, \wedge \, u,v \in V(H) \Leftrightarrow (v,u) \in E(H)$$

 $\wedge \dots$ Konjunktion

Def.: disjunkte Vereinigungen

Graphen G,H: G+H ist ein Graph mit $V(G) \cup V(H)$ und $E(G) \cup E(H)$.

a
 $^{+}$ H = $^{\setminus}$ $^{\setminus}$

Def.: Cograph

- 1. K_1 ist ein Cograph ${}^{\bullet}K_1$
- 2. G ist ein Cograph $\Leftrightarrow \overline{G}$ ist ein Cograph
- 3. G, H sind Cographen \Leftrightarrow G+H ist ein Cograph

Erstellung von Cographen:

Eigenschaften von Cographen: Sei G=(V,E) ein Cograph und $H\subseteq G,H$ Cograph

- i) G enthält \underline{keine} induzierten P_4 's
- ii) H
 ist zusammenhängend $\Leftrightarrow \overline{H}$ ist nicht zusammenhängend

iii) G kann aus einzelnen Knoten (K_1) zusammengesetzt werden

$$\Rightarrow P_4 = \overline{P_4}$$

Ein Cograph muss jedoch ein P_4 -freier Graph sein.

 $Cograph = P_4$ -free graphs = complement reducible graphs

Test ob G=(V,E) ein Cograph ist:

```
Input: Graph G i \leq \operatorname{Cograph} (G) \{ if (|V(G)| < 4) \{ \text{return true}; \} c = \{ \operatorname{Zusammenhangskomponenten von } G \} if(|c| = 1) \{ c' = \{ \text{Komponenten von } \overline{G} \} \} if (|c'| = 1) \{ \text{return false}; \} else \{ foreach (c \in C) \{ \text{isCograph } (c) \} \}
```

Bei isCograph: je nachdem ob c oder c' rausgekommen ist, muss c oder c' geprüft werden.

Theorem:

 $\sim = \Theta \Leftrightarrow G_{\Theta} = G_{\sim} \text{ und } G_{\Theta} \text{ ist ein Cograph}$

Damit können wir testen, ob G_{\sim} ein Orthologiegraph ist.

Was passiert wenn $\sim \neq \Theta$ bzw. G_{\sim} kein Graph?

 \Rightarrow aktuelle Forschung \Rightarrow Es gibt Lösungen G_{\sim} zu editieren mit optimalen Kriterien, sodass der editierte G_{\sim} ein Cograph ist. Z.B. ILP (integer linear program), Cograph-editing. Alle Algorithmen, die exakte Möglichkeiten liefern, brauchen sehr lange und sind in der Praxis nicht nutzbar.

Weitere Literatur: Marc Hellmuth

Theorem:

Für jeden Cographen gibt es einen eindeutigen Cotree (Cobaum)

1. Schritt: Komplement

2. Schritt: umgekehrte disjunkte Vereinigung

3. Schritt: Komplement

8 Vorlesung 09.12.2016

9 Vorlesung 16.12.2016

Metrik:

1. $d_{uu} = 0$

 $2. d_{uv} = 0 \Rightarrow u = v$

 $3. \ d_{uv} = d_{vu}$

4. $d_{uv} + d_{vw} \ge d_{uw}$ (Dreiecksungleichung)

Pseudometrik: -,1,2,3

Metrik: 0,1,2,3

Distanzfunktion: 1,2

4-Punkte-Bedingung:

Eine Distanzfunktion d ist eine additive (Baum) Metrik wenn je vier Punkte so geordnet werden können, daß:

 $d_{xy} + d_{uv} \le d_{xu} + d_{yv} = d_{xv} + d_{yu} \Leftrightarrow \forall x,y,u,v \text{ gilt:}$

 $d_{xy} + d_{uv} \le max\{d_{xu} + d_{yv}, d_{xv} + d_{yu}\}$

Isolations index:

Isolations index:
$$l(e) = \alpha(A|B) = \max(0, \min_{\substack{x,y \in A \\ u,v \in B}} \frac{1}{2} [\max\{d_{xu} + d_{yv}, d_{xv} + d_{yu}\} - (d_{xy} + d_{uv})])$$

=Länge der Baumkante, die A,B trennt oder ≤ 0 wenn A|B keine Teilbäume bestimmt.

Wenn d eine additive Distanzfunktion:

- $\alpha(A|B) \geq 0$
- A|B entspricht einer Kante im Baum $\Leftrightarrow \alpha(A|B) > 0$

Splitpseudometrik:

$$\delta_{A|B}(x,y) = \begin{cases} 1 : x \in A, y \in B \\ 1 : x \in B, y \in A \\ 0 : x, y \in A \\ 0 : x, y \in B \end{cases}$$
 (3)

x,y durch A|B getrennt $\Leftrightarrow \delta_{A|B}(x,y) = 1$

$$d_T(x,y) = \sum_{(A|B)\in\Sigma(T)} \alpha(A|B) \cdot \delta_{A|B}(x,y)$$

Genau die splits entlang des Pfades von x und y trennen x,y

Splits $\Sigma(T) \to \mathbf{Baum}$

wir wissen $\Sigma(T)$ ist kompatible

 $A|B,C|D \in \Sigma(T)$ dann mindestens einer der vier Durchschnitte:

 $A \cap C, A \cap D, B \cap C, B \cap D$ leer

jeder split-Teil <u>GENAU</u> eine der Mengen

Frage: Wie können Isolationsindizes, schnell und und alle Möglichkeiten durchzuprobieren, erzeugt werden?

Lösung: effiziente Berechnung von $\alpha(A|B) > 0$

Idee: erweitere X schrittweise

$$|A|, |B| = 1$$

$$X' \leftarrow X \cup \{w\}$$

$$A \cup B = X$$

in X':

- $X|\{w\}$
- $A \cup \{w\}|B$
- $B \cup \{w\} | A$

$$\begin{split} \beta_{xy|uv} &:= \frac{1}{2} max \{d_{xu} + d_{yv}, d_{xv} + d_{yu}\} - (d_{xy} + d_{uv}) \\ \text{erster Fall:} \\ \alpha(\{x\}|X) &= \min_{u,v \in X} \beta_{ww|uv} = \min_{u,v \in X} \frac{1}{2} (d_{wu} + d_{wv} - d_{uv}) \\ \text{zweiter Fall:} \end{split}$$

$$\alpha(A|B) = \min_{x,y \in A} \beta_{xy|uv}$$

$$\alpha(A \cup \{w\}|B) = \min\{\min_{\substack{x,y \in A \\ u,v \in B}} \beta_{xy|uv}, \min_{\substack{y \in A \\ u,v \in B}} \beta_{yw|uv}, \min_{\substack{x \in A \\ u,v \in B}} \beta_{xw|uv}\}$$

$$\Rightarrow \alpha(A \cup \{w\}|B) \le \alpha(A|B)$$

Also: wenn $\alpha(A|B) \leq 0 \Rightarrow \alpha(A \cup \{w\}|B)$ auch ≤ 0

 \Rightarrow nur Splits auf X mit $\alpha(A|B) > 0$ müssen erwartet werden

Wenn d additiv \Rightarrow Baum \Rightarrow splits $\Sigma(T)$ kompatibel \Rightarrow es gibt nicht mehr als 2|X|splits

 \Rightarrow Die Isolationsindizes aller Splits mit $\alpha(A|B) > 0$ können in $\mathcal{O}(|x|^5)$ berechnet

|x| Erweiterungsschritte für $\mathcal{O}(|x|)$ splits mit Aufwand $\mathcal{O}(|x|^3)$

Theorem:[Bandelt,Dress]

Sei d eine Peusometrik auf X. Dann gibt es eine Pseudometrik d^0 auf X sodaß $d(x,y) = \sum_{A|B} \underbrace{\alpha(A|B)}_{*} \cdot \delta_{A|B}(x,y) + d^{0}(x,y)$ $* \alpha(A|B) = 0 \text{ wenn } \min_{\substack{x,y \in A \\ x,y \in B}} \beta_{xy|uv} < 0$

*
$$\alpha(A|B) = 0$$
 wenn $\min_{\substack{x,y \in A \\ u,v \in B}} \beta_{xy|uv} < 0$

außerdem gilt: $\Sigma(d) = \{(A|B)\}$

alpha(A|B) > 0 hat höchstens $\mathcal{O}(|x|^2)$ Elemente

alle $\alpha(A|B) > 0$ können in $\mathcal{O}(|x|^6)$ Elemente berechnet werden.

- d additiv $\Rightarrow d^0 = 0$
- d⁰ heißt split-primer
- d heißt total zerlegbar wenn $d^0 = 0$

allgemeine Pseudometrik auf 4 Punkten

Anzahl unabhängigen Distanzen: 6

Baum mit 4 Blättern: 5

$$\begin{aligned} d_{xu} + d_{xy} - d_{duy} \\ (l_x + a + l_u) + (l_x + b + l_y) - l_u - a - b - l_y &= 2l_x \\ l_x &= \frac{1}{2} \begin{bmatrix} d_{xu} + d_{xy} - d_{uy} \end{bmatrix} \\ &\geq 0 (Dreieck sungleichung) \end{aligned}$$

Split 1:

$$\begin{aligned} d_{xv} + d_{yu} - (d_{xy} + d_{uv}) &= \\ l_x + a + b + l_v \\ + l_y + a + b + l_u \\ - l_x - b - l_y \\ - l_u - b - l_v &= 2a \end{aligned}$$

Split 2:

$$d_{xu} + d_{yv} - (d_{xy} + d_{uv}) = l_x + a + l_u + l_y + a + l_v - l_x - b - l_y - l_y - b - l_u = 2(a - b) \le 2a$$

$$\begin{array}{l} \alpha(\{xy\}|\{uv\}) = a \\ \alpha(\{xu\}|\{yv\}) = b \\ \mathrm{Baum} \Rightarrow \mathrm{b}{=}0 \end{array}$$

Messung der Baumartigkeit:

Wiessung der Baumartig
$$B := \frac{1}{\binom{n}{4}} \sum_{\substack{i < j < k < l \\ i,j,k,l \in X}} \frac{b_{ijkl}}{a_{ijkl} + b_{ijkl}}$$
Mittelwerte von in der Boy

Mittelwerte von in der Box

 $B \approx Baumartig$

 $B \approx \frac{1}{2}$ völlig verrauscht, netzwerk-artig

Travelling sales person problem (TSP)

geschlossene Tour Voraussetzung

|X| > 1 (Anzahl der Städte größer 1)

Metrik d auf X gegeben

Tour: Permutation von $X:\pi$

$$L(\pi) = \sum_{i=1}^{|X|} d_{\pi(i-1)\pi(i)} \text{ (lesen als indices modulo } |X|)$$

Definition Mastertour:

Einschränkung von π auf $X'\subseteq X$ löst das TSP auf X

Wenn d eine additive Metrik (Baum) ist dann existiert eine Mastertour (optimale Lösung) die genau ein Mal um den Baum herum führt.

Eine Metrik hat die KALMANSON-Eigenschaft, wenn man X so ordnen kann, daß

$$d_{ij} + d_{kl} \le d_{ik} + d_{jl} \forall i < j < k < l$$

und

$$d_{il} + d_{jk} \le d_{ik} + d_{jl} \forall i < j < k < l$$

→ für jedes Quadrupel tauchen höchstens die Splits ij|kl, il|jk auf d ist Kalmanson ⇔ das TSP mit Distanz d einen Mastertour hat

Wenn d
 Kalmanson ist (zirkulär zerlegbar) \Rightarrow d splitzerlegbar (planar darstellbar)

≠ (Umkehr falsch)

$$d = \sum_{\substack{A|B\\fast\ immer\ Kalmanson}} \alpha(A|B) \cdot \delta_{A|B} + \underbrace{\delta^0}_{\substack{Rauschen\\Primaeranteil)}}$$

Anteil der Distanz ohne phylogenetische Information:

$$\frac{\sum_{x \neq y} \delta^{0}(x, y)}{\sum_{x \neq y} \delta(x, y)}$$

Anten der Distanz ome phytogenetische $\sum_{x\neq y} \delta^0(x,y)$ $\sum_{x\neq y} \delta(x,y)$ (Maß für die Größe des Rauschens \to keine phylogenetische Information)

10 Vorlesung 21.12.2016

10.1 neighbor joining

geg: Distanzmatrix (d) auf Menge X von Taxa \to Baum (ungewurzelt) Iteration:

- 1. suche $argmin_{x,y}\tilde{d}_{xy} = \{u, v\}$
- 2. ersetze $\{u, v\} \to \text{no (neuer Knoten)}$
- 3. brechne d_{wz} für $z \neq u, v \rightarrow$ Schritt 1

 $d \rightarrow T$

 \tilde{d} Transformation von d

$$F: d \mapsto \tilde{d}$$

$$d_{wz} = \phi(d_{uz}, d_{vz}, d_{uz})$$

Ein Baumrekonstruktionsalgorithmus $\mathcal{A}:d\mapsto T$ ist konsistent wenn: Falls d ein additive Baum-Metrik mit Baum \hat{T} ist, dann ist $\mathcal{A}(d)=\hat{T}$ Beispiel:

$$\begin{aligned}
\tilde{d} &= d \\
d_{wz} &= \frac{1}{2} \cdot d_{uz} + \frac{1}{2} \cdot d_{vz} \text{ (WPGMA)} \\
d_{wz} &= \frac{|u|}{|u|+|v|} \cdot d_{uz} + \frac{|u|}{|u|+|v|} \cdot d_{vz} \text{ (UPGMA)}
\end{aligned}$$

Ist der zugehörige Alogrithmus konsistent? Gegenbeispiel:

$$l_a, \tilde{l_b}, q \ll l_c, l_d \Rightarrow argmin_{x,y}\tilde{d}_{xy} = \{a, b\}$$

(Problem: LBA - long branch attraction)

Lösung:

Abstand eines Punktes von allen anderen Punkten berechnen: $r(u) = \sum_{x \neq u} d(x, u)$

$$\tilde{d}_{xy} = d_{xy} - \alpha \cdot r(x) - \beta \cdot r(y)$$

 $\alpha = \beta = \frac{1}{n-2}$ mit n=Zahl der Taxa

Lemma: Wenn d eine additive Baum-Metrik ist und $\{u,v\} = argmin_{x,y}\tilde{d}_{xy} = \{u,v\} \Rightarrow u,v$ wird cherry genannt.

 $\begin{aligned} &\{u,v\}\mapsto w \text{ (u und v mittels Vaterknoten w vereinigen)}\\ &d(u,w)=\tfrac{1}{2}\cdot d(u,v)+\tfrac{1}{2}\cdot \tfrac{1}{n-2}[r(u)-r(v)]\\ &\text{durch Symmetrie: }d(v,w)=\tfrac{1}{2}\cdot d(u,v)+\tfrac{1}{2}\cdot \tfrac{1}{n-2}[r(v)-r(u)]\\ &d(w,z)=\tfrac{1}{2}\cdot [d(u,z)-d(u,w)]+\tfrac{1}{2}\cdot [d(v,z)-d(u,w)]\\ &=\tfrac{1}{2}\cdot [d(u,z)+d(v,z)]-d(u,w) \end{aligned}$

[Paper: Gascuel + Steel, Mol Biol Evol, 23 Seite 1997-2000 (2006)²]

10.2 Neighbor Net

Kalmanson Metrik

→ zirkuläre Ordnung der Taxa

- Auswahl der Nachbarn
- Update der Distanzen

Initialisierung: Jeder Punkt ist in einem separaten Cluster C_i , mit Punkten x,y,...

$$d(C_i, C_j) := \frac{1}{|C_i||C_j|} \sum_{\substack{x \in C_i \\ y \in C_j}} d(x, y)$$

²http://mbe.oxfordjournals.org/content/23/11/1997.long

$$Q(C_i, C_j) := (m-2) \cdot d(C_i, C_j) - \underbrace{\sum_{k \neq i} d(C_i, C_k)}_{(m-2) \cdot r(C_i)} - \underbrace{\sum_{k \neq j} d(C_j, C_k)}_{(m-2) \cdot r(C_j)}$$

mit m= Anzahl Cluster

(NI-Formale für Cluster)

Bestimme $i^*, j^* = argmin_{i,j}Q(C_i, C_j)$

 C_i, C_j enthält jeweils entweder 1 oder 2 Knoten

für Punkte in
$$x_i \in C_i^*$$
 und $x_j \in C_j^*$
$$\hat{Q}(x_i, x_j) = (\hat{m} - 2) \cdot d(x_i, x_j) - \sum_k d(x_i, C_k) - \sum_k d(x_j, C_k)$$

$$\hat{m} = m - \underbrace{2}_{i*,j*} + |C_{i*}| + |C_{j*}|$$

Erkläre x^*, y^* mit $x^* \in C_{i^*}, y^* \in C_{j^*}$ (mit jedem Schritt eine Kante mehr)

y hat 2 (verschiedene) Nachbarn x,z

 $a\neq x,y,z,u,v$

$$d(u, a) = \alpha \cdot d(x, a) + \beta \cdot d(y, a)$$

$$d(v, a) = \beta \cdot d(y, a) + \gamma \cdot d(z, a)$$

$$d(u,v) = \alpha \cdot d(x,y) + \beta \cdot d(x,z) + \gamma \cdot d(y,z)$$

mit
$$\alpha + \beta + \gamma = 1$$
; $\alpha, \beta, \gamma \ge 0$; $\alpha = \beta = \gamma = \frac{1}{3}$

Theorem: Wenn d Kalmanson Eigenschaften hat

⇒ Neighbor Net erzeugt die zugehörige zirkuläre Ordnung und identifiziert damit alle Splits mit nichtnegativen $\beta_{A|B}$

letzter Schritt im Neighbor Net Algorithmus:

$$\min_{\substack{\beta_{A|B} \forall A|B \\ cirkul\"{a}re\ Splits}} (\sum_{x,y} (d(x,y) - \sum_{splits} \beta_{A|B} \cdot \delta_{A|B}(x,y))^2) \text{ mit } \beta_{A|B} \geq 0$$