VoroCNN: Deep convolutional neural network built on 3D Voronoi tessellation of protein structures

Ilia Igashov^{1,2}, Kliment Olechnovic³, Maria Kadukova^{1,2}, Česlovas Venclovas³, Elodie Laine⁴, Sergei Grudinin¹

¹Nano-D team, Inria & LJK CNRS, Grenoble, France; ²Moscow Institute of Physics and Technology, Life Sciences Center, Vilnius University; ⁴Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB)

Introduction

For the first time we present a deep convolutional neural network (CNN) constructed on a Voronoi tessellation of 3D molecular structures. Despite the irregular data domain, our data representation allows to efficiently introduce both convolution and pooling operations of the network. We trained our model, called VoroCNN, to predict local qualities of 3D protein folds. The prediction results are competitive to the state of the art and superior to the previous 3D CNN architectures built for the same task. We also discuss practical applications of VoroCNN, for example, in the recognition of protein binding interfaces.

Workflow

- 1. Voronoi tessellation of a 3D-model is computed with Voronota [1].
- 2. The graph is built based on Voronoi tessellation.
- 3. The graph neural network predicts local CAD-scores of all residues.

3D Graph

Nodes	Edges
1. One-hot vector representing atom type (167 in total)	1. Edges corresponding to covalent bonds (3 independent types)
 2. Geometric features: a. Surface of the contact area b. Volume of the Voronoi voxel c. Solvent-accessible surface area d. Topological distance in the graph to the nearest solvent-accessible atom 	2. Edges corresponding to contacts between Voronoi voxels (6 independent types according to the sequence-separation factor)

References

- [1] K. Olechnovič & C. Venclovas. *J Comput Chem.*, **2014**, 30;35(8):672-8.
- [2] A. Hoffmann & S. Grudinin. *J Chem Theory Comput.*, **2017**, 13 (5), pp.2123-2134.
- [3] I. Igashov, K. Olechnovič, M. Kadukova, Č. Venclovas, and S. Grudinin. *bioRxiv*, **2020**, doi: https://doi.org/10.1101/2020.04.27.063586.

CASP14 QA groups: VoroCNN, VoroCNN-GDT, VoroCNN-GEMME

Graph Neural Networks

Convolutional layer contains trainable vectors:

$$\mathbf{W} \in \mathbb{R}^{d_{\text{in}} \times d_{\text{out}}} \ \mathbf{W}^{\text{b}} \in \mathbb{R}^{d_{\text{in}} \times d_{\text{out}} \times d_{\text{b}}} \ \mathbf{W}^{\text{c}} \in \mathbb{R}^{d_{\text{in}} \times d_{\text{out}} \times d_{\text{c}}}$$

Each layer transforms input feature matrix $\mathbf{Z} \in \mathbb{R}^{N \times d_{\text{in}}}$ into $\mathbf{Z}' \in \mathbb{R}^{N \times d_{\text{out}}}$ according the following formula:

$$\mathbf{Z'} = \sigma \left[\mathbf{ZW} + \sigma_{\Sigma} (\hat{\mathbf{A}}^{b} \diamond \mathbf{Z} \diamond \mathbf{W}^{b}) + \sigma_{\Sigma} (\hat{\mathbf{A}}^{c} \diamond \mathbf{Z} \diamond \mathbf{W}^{c}) \right]$$

$$[\mathbf{X} \diamond \mathbf{Y}]_{ijk} = \begin{cases} \sum_{l} \mathbf{X}_{ilk} \mathbf{Y}_{lj}, & \text{if } \mathbf{Y} \text{ is an order-2 tensor (matrix)} \\ \sum_{l} \mathbf{X}_{ilk} \mathbf{Y}_{ljk}, & \text{if } \mathbf{Y} \text{ is an order-3 tensor,} \end{cases}$$

$$[\sigma_{\Sigma}(\mathbf{X})]_{ij} = \sum_{k} \sigma(\mathbf{X}_{ijk})$$

Training

Training was performed on CASP[8-11], the data was augmented with near-native conformations generated with NOLB [2]. We stored and processed the adjacency matrices in the sparse format, and the whole training process was conducted in 15 parallel CPU threads.

Experiments

CASP12 stage-2												
Method	z-score			rank			Pearson's r			Spearman's ρ		
	CAD	IDDT	GDT-TS	CAD	IDDT	GDT-TS	CAD	IDDT	GDT-TS	CAD	IDDT	GDT-TS
ProQ3	1.670	1.441	1.141	11.961	13.500	25.961	0.801	0.775	0.692	0.750	0.734	0.615
SBROD	1.282	1.234	1.034	23.579	18.842	27.329	0.762	0.726	0.694	0.685	0.670	0.581
VoroMQA	1.410	1.178	0.761	17.171	18.158	36.421	0.803	0.759	0.638	0.766	0.725	0.561
Ornate	1.780	1.440	1.180	10.776	13.355	24.539	0.828	0.729	0.573	0.781	0.686	0.499
VoroCNN	1.871	1.518	1.191	9.276	12.000	25.829	0.817	0.704	0.565	0.774	0.682	0.509
VoroCNN-conv	1.857	1.480	1.271	8.197	11.447	19.408	0.823	0.700	0.563	0.783	0.679	0.508

CASP13 stage-2												
Method -	z-score			rank			Pearson's r			Spearman's ρ		
	CAD	IDDT	GDT-TS	CAD	IDDT	GDT-TS	CAD	IDDT	GDT-TS	CAD	IDDT	GDT-TS
ProQ3	1.457	1.210	0.980	18.494	22.804	33.715	0.771	0.731	0.640	0.732	0.717	0.595
ProQ3-IDDT	1.495	1.257	1.023	15.620	20.873	30.044	0.832	0.782	0.712	0.792	0.773	0.666
SBROD	1.052	0.894	0.734	18.321	21.850	28.979	0.772	0.724	0.673	0.762	0.753	0.670
VoroMQA-B	1.363	1.185	0.976	21.513	23.696	33.816	0.802	0.776	0.661	0.762	0.731	0.608
Ornate	1.410	1.134	0.843	19.051	26.525	40.127	0.814	0.752	0.606	0.781	0.714	0.577
VoroCNN	1.581	1.149	0.948	13.625	27.042	36.333	0.763	0.671	0.541	0.728	0.630	0.531
/oroCNN-conv	1.508	1.219	1.004	15.297	21.810	29.778	0.832	0.756	0.648	0.798	0.734	0.610

Distribution of VoroCNN scores on target structures and models from CASP12 (left) and CASP13 (right).

Conclusion

We demonstrate the applicability of learning on 3D Voronoi tessellations using graph convolutional networks. Our results confirm a high potential of using 3D tessellation and graph representation in general in various learning tasks in structural bioinformatics. This work also illustrates a potential of methods that predict local folding accuracies for various structural bioinformatics applications. Indeed, we have demonstrated that VoroCNN can highlight structural inaccuracies in protein models, and can also distinguish protein binding interfaces.

