ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ

ЗАДАНИЕ 1

Задание.

- 1) Вычислить интеграл по формулам левых и правых прямоугольников при n=10, оценивая точность с помощью сравнения полученных результатов.
- 2) Вычислить интеграл по формуле средних прямоугольников, используя для оценки точности двойной просчет при $n_1=8;$ $n_2=10.$

№ 1.	1)	$\int_{0.6}^{1.4} \frac{\sqrt{x^2 + 5} dx}{2x\sqrt{x^2 + 0.5}};$	2)	$\int_{0,2}^{0,8} \frac{\sin(2x+0.5)dx}{2+\cos(x^2+1)};$
№ 2.	1)	$\int_{0,4}^{1,2} \frac{\sqrt{0.5x + 2}dx}{\sqrt{2x^2 + 1} + 0.8};$	2)	$\int_{0,3}^{0,9} \frac{\cos(0.8x+1.2)dx}{1.5+\sin(x^2+0.6)};$
№ 3.	1)	$\int_{0.8}^{1.8} \frac{\sqrt{0.8x^2 + 1}dx}{x + \sqrt{1.5x^2 + 2}};$	2)	$\int_{0,4}^{1,0} \frac{\sin(x+1,4)dx}{0,8+\cos(2x^2+0,5)};$
№ 4.	1)	$\int_{1,0}^{2,2} \frac{\sqrt{1,5x+0,6}dx}{2x\sqrt{0,8x^2+2}};$	2)	$\int_{0.6}^{1.0} \frac{\cos(0.6x^2 + 0.4)dx}{1.4 + \sin^2(x + 0.7)};$
№ 5.	1)	$\int_{1,3}^{2,5} \frac{\sqrt{2x^2 + 1.6}dx}{2x + \sqrt{0.8x^2 + 1.3}};$	2)	$\int_{0,5}^{1,3} \frac{\sin(0.5x + 0.4)dx}{1.2 + \cos(x^2 + 0.4)};$
№ 6.	1)	$\int_{1,3}^{2,5} \frac{\sqrt{x^2 + 0.6} dx}{1.4 + \sqrt{0.8x^2 + 1.3}};$	2)	$\int_{0,4}^{0,8} \frac{\cos(x^2 + 0.6)dx}{0.7 + \sin(0.8x + 1)};$
№ 7.	1)	$\int_{0,8}^{1,6} \frac{\sqrt{0,3x^2 + 2,3}dx}{1,4 + \sqrt{2x + 1,6}};$	2)	$\int_{0,3}^{1,5} \frac{\sin(0.3x+1.2)dx}{1.3+\cos^2(0.5x+1)};$

№ 8.	1)	$\int_{0.8}^{1.6} \frac{\sqrt{0.3x^2 + 2.3}dx}{1.8 + \sqrt{2x + 1.6}};$	2)	$\int_{0.5}^{1.8} \frac{\cos(x^2 + 0.6)dx}{1.2 + \sin(0.7x + 0.2)}.$
№ 9.	1)	$\int_{1,2}^{2} \frac{\sqrt{0.6x + 1.7} dx}{2.1x + \sqrt{0.7x^2 + 1}};$	2)	$\int_{0,4}^{1,2} \frac{\sin(1,5x+0,3)dx}{2,3+\cos(0,4x^2+1)};$
№ 10.	1)	$\int_{0.8}^{2.4} \frac{\sqrt{0.4x^2 + 1.5}dx}{2.5 + \sqrt{2x + 0.8}};$	2)	$\int_{0,4}^{1,2} \frac{\cos(x^2 + 0.8)dx}{1.5 + \sin(0.6x + 0.5)};$
№ 11.	1)	$\int_{1,2}^{2,8} \frac{\sqrt{1,2x+0,7}dx}{1,4x+\sqrt{1,3x^2+0,5}};$	2)	$\int_{0,5}^{1,3} \frac{\sin(0.7x + 0.4)dx}{2.2 + \cos(0.3x^2 + 0.7)};$
№ 12.	1)	$\int_{0.6}^{2.4} \frac{\sqrt{1.1x^2 + 0.9} dx}{1.6 + \sqrt{0.8x^2 + 1.4}};$	2)	$\int_{0,4}^{1,4} \frac{\cos(0.8x^2 + 0.3)dx}{1.4 + \sin(0.3x + 0.5)};$
№ 13.	1)	$\int_{0,7}^{2,1} \frac{\sqrt{0,6x+1,5}dx}{2x+\sqrt{x^2+3}};$	2)	$\int_{0,2}^{1} \frac{\sin(0.8x^2 + 0.3)dx}{0.7 + \cos(1.2x + 0.3)};$
№ 14.	1)	$\int_{0.8}^{2.4} \frac{\sqrt{1.5x + 2.3}dx}{3 + \sqrt{0.3x + 1}};$	2)	$\int_{0,3}^{1,1} \frac{\cos(0.3x + 0.5)dx}{1.8 + \sin(x^2 + 0.8)};$
№ 15.	1)	$\int_{1,9}^{2,6} \frac{\sqrt{2x+1,7}dx}{2,4+\sqrt{1,2x^2+0,6}};$	2)	$\int_{0,3}^{1,1} \frac{\sin(0.6x^2 + 0.3)dx}{2.4 + \cos(x + 0.5)};$
№ 16.	1)	$\int_{0,5}^{1,9} \frac{\sqrt{0,7x^2 + 2,3}dx}{3,2 + \sqrt{0,8x + 1,4}};$	2)	$\int_{0,4}^{1,2} \frac{\cos(0,4x+0,6)dx}{0,8+\sin^2(x+0,5)};$
№ 17.	1)	$\int_{1}^{2,6} \frac{\sqrt{0,4x+3}dx}{0,7x+\sqrt{2x^2+0,5}};$	2)	$\int_{0,4}^{1,8} \frac{\sin(0.2x^2 + 0.7)dx}{1.4 + \cos(0.5x + 0.2)};$
№ 18.	1)	$\int_{0,7}^{2,1} \frac{\sqrt{1,7x^2 + 0,5}dx}{1,4 + \sqrt{1,2x + 1,3}};$	2)	$\int_{0,2}^{1} \frac{\cos(0.3x + 0.8)dx}{0.9 + 2\sin(0.4x + 0.3)};$

№ 19.	1)	$\int_{0.6}^{2.2} \frac{\sqrt{1.5x + 1}dx}{1.2x + \sqrt{x^2 + 1.8}};$	2)	$\int_{0,3}^{1,1} \frac{\sin(0.8x + 0.3)dx}{1.2 + \cos(x^2 + 0.4)};$
№ 20.	1)	$\int_{1,2}^{3} \frac{\sqrt{2x^2 + 0.7} dx}{1.5 + \sqrt{0.8x + 1}};$	2)	$\int_{0,5}^{1,3} \frac{\cos(x^2 + 0.2)dx}{1.3 + \sin(2x + 0.4)};$
№ 21.	1)	$\int_{1,3}^{2,7} \frac{\sqrt{1,3x^2 + 0.8} dx}{1,7x + \sqrt{2x + 0.5}};$	2)	$\int_{0,4}^{1,2} \frac{\sin(0.6x + 0.5)dx}{1.5 + \cos(x^2 + 0.4)};$
№ 22.	1)	$\int_{0.6}^{1.4} \frac{\sqrt{x^2 + 0.5} dx}{2x + \sqrt{x^2 + 2.5}};$	2)	$\int_{0,2}^{0,8} \frac{\cos(x^2 + 1)dx}{2 + \sin(2x + 0.5)};$
№ 23.	1)	$\int_{0,4}^{1,2} \frac{\sqrt{2x^2 + 1} dx}{0.8x + \sqrt{0.5x + 2}};$	2)	$\int_{0,3}^{0,9} \frac{\sin(x^2 + 0.6)dx}{1.5 + \cos(0.8x + 1.2)};$
№ 24.	1)	$\int_{0.8}^{1.8} \frac{\sqrt{1.5x^2 + 2} dx}{x + \sqrt{0.8x^2 + 1}};$	2)	$\int_{0,4}^{1} \frac{\cos(2x^2 + 0.5)dx}{0.8 + \sin(x + 1.4)};$
№ 25.	1)	$\int_{1}^{2,2} \frac{\sqrt{0.8x^2 + 2} dx}{1.6 + \sqrt{1.5x + 0.6}};$	2)	$\int_{0.6}^{1} \frac{\sin(x+0.7)dx}{1.4 + \cos(0.6x+0.4)};$
№ 26.	1)	$\int_{1,2}^{2,0} \frac{\sqrt{0.5x^2 + 3}dx}{2x + \sqrt{2x^2 + 1.6}};$	2)	$\int_{0,5}^{1,3} \frac{\cos(x^2 + 0.4)dx}{1.2 + \sin(0.5x + 0.4)};$
№ 27.	1)	$\int_{1,3}^{2,5} \frac{\sqrt{0.8x^2 + 1.3} dx}{1.4 + \sqrt{x^2 + 0.6}};$	2)	$\int_{0,4}^{0,8} \frac{\sin(0.8x+1)dx}{0.7 + \cos(x^2 + 0.6)};$
№ 28	1)	$\int_{1,2}^{2,6} \frac{\sqrt{x^2 + 1,3} dx}{1,5x + \sqrt{0,4x + 1,7}};$	2)	$\int_{0,3}^{1,5} \frac{\cos(0.5x^2 + 1)dx}{1.3 + \sin(0.3x + 1.2)};$

№29	1)	$\int_{0.9}^{1.6} \frac{\sqrt{2x+1.6}dx}{1.8+\sqrt{0.3x^2+2.3}};$	2)	$\int_{0,5}^{1,1} \frac{\cos(0.7x + 0.2)dx}{1.2 + \sin(x^2 + 0.6)};$
№30	1)	$\int_{1,2}^{2} \frac{\sqrt{0,7x+1}dx}{2,1x+\sqrt{0,6x+1,7}};$	2)	$\int_{0,4}^{1,2} \frac{\cos(0,4x^2+1)dx}{1,3+\sin(1,5x+0,3)};$

Образец выполнения задания

1)
$$\int_{1.5}^{2.3} \frac{\sqrt{0.3x+1.2}dx}{1.6x+\sqrt{x^2+0.5}};$$
 2) $I = \int_{0.4}^{1.2} \frac{\sin(0.6x+0.3)dx}{1.7+\cos(x^2+1.2)};$

1) Для вычислений по формулам левых и правых прямоугольников при n=10 разобьем отрезок интегрирования на 10 частей с шагом

$$h = \frac{b-a}{n} = \frac{2,3-1,5}{10} = 0,08$$

Составим таблицу значений подынтегральной функции в точках деления отрезка:

i	x_i	$0,3x_i+1,2$	$\sqrt{0.3x_i + 1.2}$	$\sqrt{x_i^2 + 0.5}$	$1,6x_i + \sqrt{x_i^2 + 0.5}$	Уi
0	1,5	1,65	1,2845	1,6583	4,0583	0,4066
1	1,58	1,674	1,2938	1,7310	4,2590	0,3930
2	1,66	1,698	1,3031	1,8043	4,4603	0,3807
3	1,74	1,722	1,3122	1,8782	4,6622	0,3694
4	1,82	1,746	1,3214	1,9525	4,8645	0,3589
5	1,9	1,77	1,3304	2,0273	5,0673	0,3493
6	1,98	1,794	1,3394	2,1025	5,2705	0,3404
7	2,06	1,818	1,3483	2,1780	5,4740	0,3321
8	2,14	1,842	1,3572	2,2538	5,6778	0,3244
9	2,22	1,866	1,3660	2,3299	5,8819	0,3172

10	2,3	1,89	1,3748	2,4062	6,0862	0,3105
						$\sum_{i} = 3,5721$
						\sum_{2} = 3,4760

В таблице найдены значения сумм:
$$\sum_{i=1}^{9} y_i = 3.5721$$
; $\sum_{i=1}^{10} y_i = 3.4760$.

Найдем приближенные значения интеграла. По формуле левых прямоугольников получим

$$I_1 = h \cdot \sum_{i=0}^{9} y_i = 0.08 \cdot 3.5721 = 0.28577$$

По формуле правых прямоугольников находим

$$I_2 = h \sum_{i=1}^{10} y_i = 0.08 \cdot 3.4760 = 0.27808.$$

Эти результаты отличаются уже в сотых долях. За окончательное значение примем полусумму найденных значений, округлив результат до тысячных:

$$I = \frac{I_1 + I_2}{2} = 0,282.$$

2) Для решения воспользуемся формулой средних прямоугольников:

$$\int_{a}^{b} f(x)dx \approx h \sum_{i=0}^{n-1} y(x_i + \frac{h}{2}).$$

Вычисления выполним дважды при n_1 =8 и n_2 =10 и соответственно при

$$h_I = (b-a)/n_I = (1,2-0,4)/8 = 0,1$$

И

$$h_2=(b-a)/n_2=(1,2-0,4)/10=0,08.$$

Результаты вычислений приведены в таблицах I и II.

Таблица I

i	x_i	$x_i + \frac{h}{2}$	$\sin(0.6x + 0.3)$	$1,7 + \cos(x^2 + 1,2)$	$y(x_i + \frac{h}{2})$
0	0,4	0,45	0,53963	1,86750	0,28896
1	0,5	0,55	0,58914	1,76824	0,33318
2	0,6	0,65	0,63654	1,64832	0,38618
3	0,7	0,75	0,68164	1,50947	0,45158
4	0,8	0,85	0,72429	1,35550	0,53433
5	0,9	0,95	0,76433	1,19300	0,64068
6	1,0	1,05	0,80162	1,03186	0,77687
7	1,1	1,15	0,83603	0,88559	0,94404
				$\sum_{1}=4.3$	5582

Таблица II

i	x_i	$x_i + \frac{h}{2}$	$\sin(0.6x + 0.3)$	$1,7 + \cos(x^2 + 1,2)$	$y\left(x_i + \frac{h}{2}\right)$
0	0,4	0,44	0,53457	1,87627	0,28491
1	0,48	0,52	0,57451	1,80022	0,31913
2	0,56	0,60	0,61312	1,71080	0,35838
3	0,64	0,68	0,65032	1,60852	0,40430
4	0,72	0,76	0,68602	1,49467	0,45898
5	0,80	0,84	0,72014	1,37142	0,52511
6	0,88	0,92	0,75260	1,24212	0,60590
7	0,96	1,00	0,78333	1,11150	0,70475
8	1,04	1,08	0,81225	0,98571	0,82403
9	1,12	1,16	0,83930	0,87241	0,96205

$$\sum_{2} = 5,44752$$

Найдем приближенные значения интеграла

$$I_1 = h_1 \sum_{1} = 0.1 \cdot 4.35582 = 0.43558;$$

$$I_2 = h_2 \sum_2 = 0.08 \cdot 5.44752 = 0.43580;$$

Значения различаются в десятичных долях, но второе значение точнее первого, поэтому принимаем $I \approx 0,4358$.

Ответ:

1)
$$\int_{1.5}^{2.3} \frac{\sqrt{0.3x+1.2}dx}{1.6x+\sqrt{x^2+0.5}} \approx 0.282.$$

$$2)\int_{1.5}^{1.2} \frac{\sin(0.6x+0.3)dx}{1.7+\cos(x^2+1.2)} \approx 0.4358.$$

ЗАДАНИЕ 2

Задание.

Вычислить интеграл по формуле трапеций с тремя десятичными знаками.

№ 1.	$\int_{0,8}^{1,6} \frac{dx}{\sqrt{2x^2 + 1}};$
№ 2.	$\int_{1,2}^{2,7} \frac{dx}{\sqrt{x^2 + 3,2}};$
№ 3.	$\int_{1}^{2} \frac{dx}{\sqrt{2x^2 + 1.3}};$
№ 4.	$\int_{0,2}^{1,2} \frac{dx}{\sqrt{x^2 + 1}};$
№ 5.	$\int_{0,8}^{1,4} \frac{dx}{\sqrt{2x^2 + 3}};$

№ 6.	$\int_{0,4}^{3} \frac{dx}{\sqrt{2 + 0.5x^2}};$
№ 7.	$\int_{1,4}^{2,1} \frac{dx}{\sqrt{3x^2 - 1}};$
№ 8.	$\int_{1,2}^{2,4} \frac{dx}{\sqrt{0,5+x^2}};$
№ 9.	$\int_{0,4}^{1,2} \frac{dx}{\sqrt{3+x^2}};$
№ 10.	$\int_{0,6}^{1,5} \frac{dx}{\sqrt{1+2x^2}};$

№ 11.	$\int_{2}^{3,5} \frac{dx}{\sqrt{x^2 - 1}};$
№ 12.	$\int_{0,5}^{1,3} \frac{dx}{\sqrt{x^2 + 2}};$
№ 13.	$\int_{1,2}^{2,6} \frac{dx}{\sqrt{x^2 + 0.6}};$
№ 14.	$\int_{1,4}^{2,2} \frac{dx}{\sqrt{3x^2 + 1}};$
№ 15.	$\int_{0,8}^{1,8} \frac{dx}{\sqrt{x^2 + 4}};$

№ 16.	$\int_{1,6}^{2,2} \frac{dx}{\sqrt{x^2 + 2.5}};$
№ 17.	$\int_{0.6}^{1.6} \frac{dx}{\sqrt{x^2 + 0.8}};$
№ 18.	$\int_{1,2}^{2} \frac{dx}{\sqrt{x^2 + 1,2}};$
№ 19.	$\int_{1,4}^{2} \frac{dx}{\sqrt{2x^2 + 0.7}};$
№ 20.	$\int_{3,2}^{4} \frac{dx}{\sqrt{0.5x^2 + 1}};$

$$\begin{array}{c|c}
N_{0} \\
21. & \int_{0,8}^{1,7} \frac{dx}{\sqrt{2x^{2} + 0,3}}; \\
N_{0} \\
22. & \int_{1,2}^{2.0} \frac{dx}{\sqrt{0,5x^{2} + 1,5}}; \\
N_{0} \\
23. & \int_{2,1}^{3,6} \frac{dx}{\sqrt{x^{2} - 3}}; \\
N_{0} \\
24. & \int_{1,3}^{2,5} \frac{dx}{\sqrt{0,2x^{2} + 1}}; \\
N_{0} \\
25. & \int_{0,6}^{1,4} \frac{dx}{\sqrt{12x^{2} + 0,5}}; \\
\end{array}$$

$$\frac{N_{\Theta}}{26.} \quad \int_{1,3}^{2,1} \frac{dx}{\sqrt{3x^2 - 0,4}};$$

$$\frac{N_{\Theta}}{27.} \quad \int_{1,4}^{2,6} \frac{dx}{\sqrt{1,5x^2 + 0,7}};$$

$$\frac{N_{\Theta}}{28.} \quad \int_{0,15}^{0,5} \frac{dx}{\sqrt{2x^2 + 1,6}};$$

$$\frac{N_{\Theta}}{29.} \quad \int_{2,3}^{0,5} \frac{dx}{\sqrt{x^2 - 4}};$$

$$\frac{N_{\Theta}}{30.} \quad \int_{0,32}^{0,66} \frac{dx}{\sqrt{x^2 + 2,3}};$$

Образец выполнения задания

$$I = \int_{0.7}^{1.3} \frac{dx}{\sqrt{2x^2 + 0.3}};$$

1) Для достижения заданной степени точности необходимо определить значение п так, чтобы

$$\frac{(b-a)^3}{12n^2} \cdot M_2 < 0.0005 \tag{*}$$

Здесь a=0,x; b=1,3; $M_2 \ge \max_{[0,7;1,3]} |f''(x)|$, где $f(x)=1/\sqrt{2x^2+0,3}$..

Находим

$$f'(x) = \frac{-2x}{\sqrt{(2x^2 + 0.3)^3}}, \ f''(x) = \frac{8x^2 - 0.6}{\sqrt{(2x^2 + 0.3)^5}};$$

$$\max_{[0.7; 1.3]} |f''(x)| < \frac{8 \cdot 1.3^2 - 0.6}{\sqrt{(2 \cdot 0.7^2 + 0.3)^5}} \approx 6.98.$$

Положим M2 = 7, тогда неравенство (*) примет вид $\frac{0.6^3 \cdot 7}{12n^2} < 0.0005$, откуда $n^2 > 252$, т.е. n > 16; возьмем n = 20.

Вычисление интеграла производим по формуле

$$I \approx h \cdot \left(\frac{y_0 + y_{20}}{2} + y_1 + y_2 + \dots + y_{19} \right),$$

где
$$h = (b-a)/n = 0.6/20 = 0.03;$$
 $y_i = y(x_i) = 1/\sqrt{2x_i^2 + 0.3}$ $x_i = 0.7 + ih$ $(i = 0.1, 2, ..., 20)$

Все расчеты приведены в табл. І.

Таблица I.

i	x_i	x_i^2	$2x_i^2 + 0,3$	$\sqrt{2x_i^2 + 0.3}$	yo, y20	<i>y</i> ₁ , <i>y</i> ₂ ,, <i>y</i> ₁₈ , <i>y</i> ₁₉
0	0,7	0,49	1,28	1,1314	0,88386	
1	0,73	0,5329	1,3658	1,1686		0,85572
2	0,76	0,5776	1,4552	1,2063		0,82898
3	0,79	0,6241	1,5482	1,2443		0,80366
4	0,82	0,6724	1,6448	1,2825		0,77973
5	0,85	0,7225	1,7450	1,3210		0,75700
6	0,88	0,7744	1,8488	1,3597		0,73546
7	0,91	0,8281	1,9562	1,3986		0,71501
8	0,94	0,8836	,2,0672	1,4378		0,69551
9	0,97	0,9409	2,1818	1,4771		0,67700
10	1,00	1,0000	2,3000	1,5166		0,65937
11	1,03	1,0609	2,4218	1,5562		0,64259
12	1,06	1,1236	2,5472	1,5960		0,62657
13	1,09	1,1881	2,6762	1,6356		0,61140
14	1,12	1,2544	2,8088	1,6759		0,59669
15	1,15	1,3225	2,9450	1,7161		0,58272

16	1,18	1,3924	3,0848	1,7564		0,56935
17	1,21	1,4641	3,2282	1,7967		0,55658
18	1,24	1,5376	3,3752	1,8372		0,54431
19	1,27	1,6129	3,5258	1,8777		0,53253
20	1,30	1,6900	3,6800	1,9187	0,52129	
Σ					1,40515	12,77022

Таким образом

$$I = 0.03 \left(\frac{1,40515}{2} + 12,77022 \right) = 0,40418 \approx 0,404.$$

Ответ:

$$I = \int_{0.7}^{1.3} \frac{dx}{\sqrt{2x^2 + 0.3}} \approx 0.404.$$