MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	ype:
J#:	Quiz	
Date: 2017 June 20		
Standard: This student is able to C04: VectFuncSTNB. Compute and apply the arclength parameter and TNB frame for a vector function.		Mark:
4/4 * reat	tempt due on:	

Sketch the curve parameterized by $\mathbf{r}(t) = \langle 4 + 2\cos(t), -1 + 2\sin(t) \rangle$. Compute **T** and **N** at the point $\langle 4, 1 \rangle$ where $t = \pi/2$, and add them to your sketch at that point.

MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type:	
J#:	Quiz	
Date: 2017 June 20		
Standard: This student is able to S05: MulivarFunc. Sketch and analyze the domain, level curves, and graph of a two-variable real-valued function.		Mark:
3/3 * reat	tempt due on:	

Sketch the domain of $g(x,y) = \sqrt{xy}$. Then plot the four level curves where k = 0, 1, 2, 3.

MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	'ype:
J#:	Quiz	
Date: 2017 June 20		
Standard: This student is able to		Mark:
C05: MulivarCalc. Compute and apply the partial deriva- tives, gradient, and directional derivatives of a multivariable	-	
real-valued function. $2/4$ * reat	tempt due on:	

Find the maximal value of the directional derivative for the function $f(x,y) = xe^y + y$ at the point $\langle 1, \ln 3 \rangle$, and the direction that yields this value.