Power series

Nguyen Thu Huong

School of Applied Mathematics and Informatics Hanoi University of Science and Technology

April 25, 2023

Content

- Definition
- 2 Theorems on power series
- 3 Expansion of functions into power series

Content

Definition

2 Theorems on power series

3 Expansion of functions into power series

Definition

A power series (centered at x_0) is a **function series** of the form

$$\sum_{n=0}^{\infty} a_n(x-x_0)^n = a_0 + a_1(x-x_0) + \ldots + a_n(x-x_0)^n + \ldots$$

where $a_n \in \mathbb{R}$ are the coefficients, x is the variable.

Set $X = x - x_0$, in the following we consider power series of the form $\sum_{n=0}^{\infty} a_n x^n$.

Example

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \ldots = \frac{1}{1-x}, \, |x| < 1.$$

Theorem (Abel Theorem)

If the series $\sum_{n=1}^{\infty} a_n x^n$ converges at $x_0 \neq 0$ then the series converges absolutely at all x that $|x| < |x_0|$.

Proof.

Assume that the series converges at $x_0 \neq 0$. Neccessary condition implies that $\lim_{n \to \infty} a_n x_0^n = 0 \Rightarrow \exists M > 0 : |a_n x_0^n| \leq M$ for all n.

If
$$|x| < |x_0|$$
, we estimate $|a_n x^n| = |a_n x_0^n| \left| \frac{x}{x_0} \right|^n \le M \left| \frac{x}{x_0} \right|^n$, the series $\sum M \left| \frac{x}{x_0} \right|^n$ converges. Hence, the series $\sum_{n=1}^{\infty} a_n x^n$ converges

absolutely.

Corollary

If the series $\sum_{n=1}^{\infty} a_n x^n$ diverges at $x_1 \neq 0$ then the series diverges at all x that $|x| > |x_1|$.

Assume that the series diverges at x_1 and converges at x_2 where $|x_2| > |x_1|$. The previous part implies that, the series converges at x_2 then converges absolutely at x where $|x| < |x_2|$, in particular, it converges at x_1 (contradiction).

The series
$$\sum_{n=1}^{\infty} a_n x^n$$
 always converges at $x = 0$.

$$\alpha: \Sigma hh_{\gamma}$$
 $f(x) = \frac{h + T + \theta}{2}$
 $\alpha: \Sigma hh_{\gamma}$
 $f(x) = \frac{h + T + \theta}{2}$
 $\alpha: \Sigma hh_{\gamma}$
 $\alpha: \Sigma hh_{\gamma}$

 $\exists R > 0$ such that the power series converges absolutely in (-R,R) and diverges in $(-\infty,-R) \cup (R,\infty)$. At the end points $x=\pm R$, the series may converge or diverge.

Definition

R is called the radius of convergence of the series.

$$D = \lim_{n \to \infty} \left| \frac{a_{n+1} x^{n+1}}{a_n x^n} \right| = |x| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

D < 1, the series converges; D > 1 the series diverges.

Denote
$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
.

Compare $|x| \cdot \rho$ vs 1 or equivalently, compare |x| vs $\frac{1}{\rho}$.

Similarly, if we use the root test, we will compare |x| vs $\frac{1}{\bar{\rho}}$, where

$$\bar{\rho} = \lim_{n \to \infty} \sqrt[n]{|a_n|}.$$

Theorem

The radius of convergence of the series $\sum_{n=1}^{\infty} a_n x^n$ is determined by

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \text{ or } R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}.$$

Example

Find the domain of convergence of the following power series

a)
$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{n+2}$$
 b) $\sum_{n=1}^{\infty} n! x^n$ c) $\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$

- a) Power series with coefficients $a_n = \frac{1}{n+2}$, X = x 3.
 - $R = \lim_{n \to \infty} \frac{n+3}{n+2} = 1$. |X| < 1: the series converges. |X| > 1: the series diverges.
 - At X = 1: the series becomes $\sum \frac{1}{n+2}$, which diverges.
 - At X = -1: the series becomes $\sum \frac{(-1)^n}{n+2}$, which converges.

The series is convergent $\Leftrightarrow -1 \le x - 3 < 1 \Leftrightarrow 2 \le x < 4$.

b) Power series with $a_n = n!$.

$$R = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0.$$

Domain of convergence {0}.

c) Power series with $a_n = \frac{(-1)^n}{(2n)!}$, $X = x^2$.

$$R = \lim_{n \to \infty} \left| \frac{(-1)^n}{(2n)!} \frac{(2n+2)!}{(-1)^{n+1}} \right| = \lim_{n \to \infty} (2n+1)(2n+2) = \infty.$$

Domain of convergence \mathbb{R} .

We do not consider X = x, $a_{2n} = \frac{(-1)^n}{(2n)!}$, $a_{2n-1} = 0$, so $\frac{a_{2n}}{a_{2n-1}}$ is undefined, we need more general formula for R.

Content

Definition

2 Theorems on power series

3 Expansion of functions into power series

Proposition

Assume that $\sum_{n=0}^{\infty} a_n x^n = S(x)$ has the radius of convergence $R \neq 0$. Then

- $\bullet \sum_{n=0}^{\infty} a_n x^n \text{ converges uniformly on } [a;b] \subset (-R;R).$
- **3** S(x) is integrable on $[a,b] \subset (-R,R)$.

$$\int \left(\sum_{n=0}^{\infty} a_n x^n\right) dx = \sum_{n=0}^{\infty} \frac{a_n x^{n+1}}{n+1} + C.$$

9 S(x) is differentiable on $(a,b) \subset (-R,R)$.

$$\big(\sum_{n=0}^{\infty}a_nx^n\big)'=\sum_{n=1}^{\infty}na_nx^{n-1}.$$

Remark

These series have the same radius of convergence R. But their domains of convergence might be different, because of the convergence at the endpoints $x = \pm R$.

Example

$$\sum_{n=1}^{\infty} \frac{x^n}{n} \operatorname{DoC} = [-1, 1].$$

$$\sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)} \operatorname{DoC} = [-1, 1].$$

$$\sum_{n=1}^{\infty} x^{n-1} \operatorname{DoC} = (-1, 1).$$
although they have the same radius of convergence $R = 1$.

Nguyen Thu Huong

Power series

Example

- Find the sum $\sum_{n=1}^{\infty} (3n+1)x^{3n}$, $x \in (-1,1)$.
- **2** (K60) Find the sum $\sum_{n=1}^{\infty} \frac{(-1)^n (3n+1)}{8^n}$.

a)

• Domain of convergence (-1,1). Set $S(x) = \sum_{n=1}^{\infty} (3n+1)x^{3n}$.

•
$$S(x) = \sum_{n=1}^{\infty} [x^{3n+1}]' = \left[\sum_{n=1}^{\infty} x^{3n+1}\right]' = \left[x \sum_{n=1}^{\infty} (x^3)^n\right]'$$
, so
$$S(x) = \left[\frac{x^4}{1 - x^3}\right]' = \frac{4x^3 - x^6}{(1 - x^3)^2}, x \in (-1, 1).$$

b) Obviously,
$$\sum_{n=1}^{\infty} \frac{(-1)^n (3n+1)}{8^n} = S\left(-\frac{1}{2}\right) = ?$$

Content

Definition

2 Theorems on power series

3 Expansion of functions into power series

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \ldots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}) \text{ as } x \to 0.$$

Now

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \ldots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \ldots$$

If
$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
, formally we obtain

$$a_n = \frac{f^{(n)}(x_0)}{n!}$$

Taylor series

Definition

Let f(x) be an infinitely differentiable function at x_0 .

The Taylor series of f(x) at x_0 is the series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

If $x_0 = 0$, the series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

is called the Maclaurin series of f(x).

Example

Consider
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

f(x) has derivatives of all orders and $f^{(n)}(0) = 0$, the Maclaurin series of f(x) is 0.

Remark

The Taylor series of f(x) at x_0 may converge or diverge. In case it converges, the sum may not equal f(x).

Theorem

Let f(x) have the derivatives of all orders in $I = (x_0 - R; x_0 + R)$. If there is M > 0 such that $|f^{(n)}(x)| \le M$ for all $x \in I$, $n \in \mathbb{N}$.

Then the Taylor series
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$$
 converges to $f(x)$ in $(x_0-R;x_0+R)$.

Ways to expand a function to Taylor series

- Using definition: calculate $f^{(n)}(x_0)$ and substitute in the series.
- 2 Using fundamental expansion.
- Via differentiation or integration.

Some important Maclaurin expansions

Example (using definition)

•
$$f(x) = e^x$$
, $f^{(n)}(x) = e^x \Rightarrow f^{(n)}(0) = 1$.

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \ldots + \frac{x^{n}}{n!} + \ldots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, x \in \mathbb{R}.$$

•
$$f(x) = \sin x$$
, $f^{(k)}(x) = \sin \left(x + \frac{k\pi}{2}\right)$
 $\Rightarrow f^{(k)}(0) = \sin \frac{k\pi}{2} = \begin{cases} 0 & \text{if } k = 2n, \\ (-1)^n & \text{if } k = 2n + 1 \end{cases}$

$$\sin x = x - \frac{x^3}{3!} + \ldots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \ldots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, x \in \mathbb{R}.$$

Some important Maclaurin expansions

•
$$\cos x = 1 - \frac{x^2}{2!} + \ldots + \frac{(-1)^n x^{2n}}{(2n)!} + \ldots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!},$$

 $x \in \mathbb{R}.$

$$x \in \mathbb{R}$$
.
• $(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} x^n, |x| < 1$.

In particular,

$$\frac{1}{1+x} = 1 - x + x^2 - \dots + (-1)^n x^n + \dots, |x| < 1$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots, |x| < 1.$$

Example (using fundamental expansion)

$$e^{X} = \sum_{n=0}^{\infty} \frac{X^{n}}{n!}, X \in \mathbb{R} \Rightarrow e^{x^{2}} = \sum_{n=0}^{\infty} \frac{x^{2n}}{n!}, e^{2x} = \sum_{n=0}^{\infty} \frac{2^{n}.x^{n}}{n!}$$

Example (via integration)

$$\frac{1}{1+x} = 1 - x + x^2 - \ldots + (-1)^n x^n + \ldots$$

Integrating both sides, we obtain

$$\ln(1+x)+C=x-\frac{x^2}{2}+\ldots+(-1)^n\frac{x^{n+1}}{n+1}+\ldots,|x|<1.$$

Evaluating at x = 0 yields that C = 0.

$$\ln(1+x) = x - \frac{x^2}{2} + \ldots + (-1)^n \frac{x^{n+1}}{n+1} + \ldots, |x| < 1.$$

Example

Expand the following functions into Maclaurin series

a)
$$f(x) = \frac{1}{x^2 - 3x + 2}$$
 b) $f(x) = \frac{1}{(1 - x)^2}$

a) 1st way:

$$f(x) = \frac{1}{x-2} - \frac{1}{x-1} \Rightarrow f^{(n)}(x) = \frac{(-1)^n \cdot n!}{(x-2)^{n+1}} - \frac{(-1)^n \cdot n!}{(x-1)^{n+1}}.$$

Hence,

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{(-1)^n \cdot n!}{(-2)^{n+1}} - \frac{(-1)^n \cdot n!}{(-1)^{n+1}} \right) x^n = \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^{n+1}} \right) x^n.$$

2nd way:
$$f(x) = \frac{1}{1-x} - \frac{1}{2} \cdot \frac{1}{1-\frac{x}{2}}$$

$$\Rightarrow f(x) = \sum_{n=0}^{\infty} x^n - \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{x}{2} \right)^n = \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^{n+1}} \right) x^n, |x| < 1.$$

b) 1st way

$$\frac{1}{(1-x)^2} = (1-x)^{-2} = 1 + \sum_{n=0}^{\infty} \frac{(-2)(-3)\dots(-2-n+1)}{n!} (-x)^n, |x| < 1.$$

2nd way
$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots, |x| < 1.$$

$$\Rightarrow \frac{1}{(1-x)^2} = \left(\frac{1}{1-x}\right)' = 1 + 2x + \dots + nx^{n-1} + \dots, |x| < 1.$$

Example

Expand the function $f(x) = \sqrt{x}$ into Taylor series at x = 4.

1st way:

$$f(x) = x^{\frac{1}{2}} \Rightarrow f^{(n)}(x) = \frac{1}{2} \left(\frac{1}{2} - 1\right) \dots \left(\frac{1}{2} - n + 1\right) x^{\frac{1}{2} - n}. \text{ We get}$$

$$f(x) = 2 + \sum_{n \ge 1} \frac{1}{n!} \frac{1}{2} \left(\frac{1}{2} - 1\right) \dots \left(\frac{1}{2} - n + 1\right) 4^{\frac{1}{2} - n} (x - 4)^{n}.$$

$$f(x) = 2 + \sum_{n \ge 1} \frac{(-1)^{n-1} (2n - 3)!!}{n! \cdot 2^{3n-1}} (x - 4)^{n}, |x - 4| < 1.$$

2nd way: set X = x - 4, we need to write the Maclaurin expansion of the function $g(X) = \sqrt{X + 4} = 2\left(1 + \frac{X}{4}\right)^{\frac{1}{2}}$.

Applications of power series

We aim at estimating the value f(x) at certain x in U_{x_0} with an indicated error. We assume that, in U_{x_0} , f(x) is expanded into power series as follows

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \ldots$$

If we approximate

$$f(x) \approx f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n,$$

then the error is

$$|R_n(x)| = \left| \frac{f^{(n+1)}(\bar{x})}{(n+1)!} (x - x_0)^{n+1} \right|$$

Estimating a definite integral

Example (GK20191)

Estimate $\int_{1}^{2} \frac{\sin x}{x} dx$ by approximating $\sin x$ by the fifth partial sum (up to x^{9}) in its Maclaurin series.

We have

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} + \dots$$

So

$$\int_{1}^{2} \frac{\sin x}{x} dx \approx \int_{1}^{2} \left(1 - \frac{x^{2}}{3!} + \frac{x^{4}}{5!} - \frac{x^{6}}{7!} + \frac{x^{8}}{9!} \right) dx$$

$$\approx \left(x - \frac{x^{3}}{18} + \frac{x^{5}}{600} - \frac{x^{7}}{35280} + \frac{x^{9}}{3265920} \right) \Big|_{1}^{2} \approx 0,6593344689.$$