Differential Geometry

Aditya Dwarkesh

Smooth Manifolds

Definition (Manifold). A topological manifold M is a second countable Hausdorff space which is locally Euclidean, that is, given a point $p \in M$, there exists a neighbourhood $p \in U$ such that U is homeomorphic to some open subset of \mathbb{R}^n .

Definition (Atlas). An atlas is a collection of ordered pairs (U, ϕ) called coordinate charts such that $U \subseteq M$ and $\phi : U \to \tilde{U} \subseteq \mathbb{R}^n$ is a homeomorphism.

Definition. Two coordinate charts $(U, \phi), (V, \psi)$ are said to be **smoothly compatible** if either $U \cap V = \emptyset$ or $\phi \circ \psi^{-1} : \psi(U \cap V) \to \phi(U \cap V)$ is a diffeomorphism.

Definition. A smooth atlas for a manifold is an atlas such that all the charts are smoothly compatible with one another.

Lemma 1.1. Given a smooth atlas A, there is a unique maximal smooth atlas \tilde{A} containing A. We call this the **smooth structure** on M.

Remark. For $n \neq 4$, \mathbb{R}^n has a unique smooth structure (up to diffeomorphism). However, \mathbb{R}^4 has uncountably many distinct smooth structures.

Definition (Smoothness). A function $f: M \to N$ is called **smooth** at p if there exist coordinate charts $(U, \phi) \subseteq M, (V, \psi) \subseteq N$ such that $f(U) \subseteq V$, and $\psi \circ f \circ \phi^{-1} : \mathbb{R}^m \to \mathbb{R}^n$ is smooth at $\phi(p)$.

Tangent Spaces

Definition (Derivation). Given a smooth manifold M of dimension n, a **derivation** at a point $p \in M$ is a linear map $X : C^{\infty}(M) \to \mathbb{R}$ such that X(fg) = X(f)g(p) + f(p)X(g).

Definition (Tangent Space). The tangent space of a manifold at a point p, T_pM , is the vector space (over \mathbb{R}) of all derivations at p.

Definition (Pushforward). Given a smooth map $F: M \to N$, the **differential** of F at p, denoted by dF_p or $F_{*,p}: T_pM \to T_{F(p)}N$, is defined by $dF_p(X)(f) = X(f \circ F)$.

Theorem 2.1. $\{\frac{\partial}{\partial e^i}|_a\}$ form a basis for $T_a\mathbb{R}^n$.

Lemma 2.2. Let $\frac{\partial}{\partial x^i|_p} := d(\phi^{-1})_{\phi(p)}(\frac{\partial}{\partial e^i}|_{\phi(p)})$, where $\phi: U \to \tilde{U} \subseteq \mathbb{R}^n$ is a homeomorphism (making $d\phi_p: T_pU \cong T_pM \to T_{\phi(p)}U \cong T_{\phi(p)}\mathbb{R}^n$ an isomorphism). Then, $\{\frac{\partial}{\partial x^i}|_p\}$ forms a basis for T_pM .

Lemma 2.3. For a smooth map $F: M \to N$, the matrix representation of dF_p is given by $a_{ij} = \frac{\partial F^i}{\partial x^j}|_p := \frac{\partial (\psi \circ F \circ \phi^{-1})^i}{\partial e^j}|_{\phi(p)}$.

Definition. Given a curve $\gamma: I \to M$ such that $\gamma(0) = p$, define $\gamma_1 \sim \gamma_2 \iff (f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for all $f \in C^{\infty}(M)$.

Lemma 2.4. Given $\gamma: I \to M$, define $\gamma'(0) = d\gamma_0(\frac{d}{dt}|_0) \in T_{\gamma(0)}M$. Then, given $X \in T_pM$, there exists a smooth curve such that $\gamma'(0) = X$.

Theorem 2.5. Let V_pM be the vector space constituted by the equivalence classes of curves $[\gamma]$. Then, $V_pM \cong T_pM$ through the mapping $[\gamma] \mapsto \gamma'(0)$.

Remark. The above theorem offers a more geometric perspective on the tangent space. It is constituted by the set of 'curves' (initialized at the same point) on M pointing in all possible directions (wherein two curves are said to point in the same 'direction' if any function has the same derivative along them).

Definition (Tangent bundle). $TM = \sqcup_p T_p M$ is known as the **tangent bundle** of a manifold M.

Theorem 2.6. TM is a smooth manifold of dimension 2n.

Remark. n from the manifold M, and n more from T_pM .

Vector Fields

Definition (Vector field). A vector field on a smooth manifold is a map $X: M \to TM$ such that $\pi \circ X = id_M$. If X is a smooth map, we call it a smooth vector field.

Remark. X assigns a vector to each point on the manifold. The set of all smooth vector fields on a manifold, denoted by $\chi(M)$, forms a vector space over \mathbb{R} . The following theorem characterizes smooth vector fields.

Theorem 3.1. The following statements are equivalent:

- 1. X is a smooth vector field
- 2. $Xf \in C^{\infty}(M) \forall f \in C^{\infty}(M)$, where $(Xf)(p) := (X_p)f$
- 3. $\{f_i\}$ are smooth, where $X = \sum f_i \frac{\partial}{\partial x^i}$.

Remark. The expression in (3) is obtained by setting $f_i = X^i$, where $X_p = \sum X^i(p) \frac{\partial}{\partial x^i}|_p$ for a vector field X. The expression will be local, since the basis refers to a coordinate neighbourhood of p.

The next theorem offers an identification of elements of the vector space $\chi(M)$ with elements of the ring $C^{\infty}(M)$. Note that, as such, the former forms a module over the latter.

Theorem 3.2. Let X be any smooth vector field and $y: C^{\infty}(M) \to C^{\infty}(M)$ be any derivation. Then, the following hold:

- 1. $X \in C^{\infty}(M)$
- 2. There exists a $Y \in \chi(M)$ such that Yf = yf for all $f \in C^{\infty}(M)$

Definition (F-related). Let $F: M \to N$ be a smooth map. Then, $X \in \chi(M)$ is said to be **F-related** to $Y \in \chi(N)$ if $dF_p(X_p) = Y_{F(p)}$ for all $p \in M$.

Remark. The next lemma offers an equivalent characterization of F-relatedness.

Lemma 3.3. Let $F: M \to N$ be smooth. Then, $X \in \chi(M), Y \in \chi(N)$ are F-related $\iff \forall f \in C^{\infty}(N), X(f \circ F) = (Yf) \circ F$.

Remark. The next theorem essentially tells us when the pushforward of a vector field F_*X (defined as $F_*(X)(p) = dF_p(X_p)$) is smooth. The condition is slightly stronger than just having F be smooth.

Theorem 3.4. If $F: M \to N$ is a diffeomorphism, for every $X \in \chi(M)$, there is a unique $Y \in \chi(N)$ that is F-related to X.

Submersions, Immersions, Submanifolds

Definition (Rank). The rank of $F: M \to N$ at $p \in M$ is the rank of the linear map $dF_p: T_pM \to T_{F(p)}N$.

Definition (Submersion/Immersion). A smooth map $F: M \to N$ is said to be a submersion (immersion resp.) if it has constant rank n(m resp.).

Definition (Smooth embedding). A smooth embedding is an immersion homeomorphic on its image.

Theorem 4.1 (Rank theorem). Let $F: M \to N$ be of constant rank k. Given $p \in M$, there exists coordinate neighbourhoods around p, F(p) with $F(U) \subseteq V$ such that $\hat{F}(p)(u_1, ...u_m) = (u_1, ...u_k, 0, ...0)$.

Definition (Submanifold). Let M be a smooth n-manifold and $S \subseteq M$ be a subset with the subspace topology. Furthermore, suppose S is covered by charts (U, ϕ) such that $\phi(S \cap U)$ is a k-slice in \mathbb{R}^n . Then, S is a topological manifold with dimension k, and we call it an **embedded submanifold**.

Lemma 4.2. $i: S \to M$ is a smooth embedding.

Lemma 4.3. If $F: M \to N$ is a smooth embedding, F(M) is an embedded submanifold of N.

Definition. Let $\phi: M \to N$ be a map.

- 1. For any $c \in N$, the set $\phi^{-1}(c) \subseteq M$ is called a **level set** of ϕ .
- 2. If $p \in M$ is such that $d\phi_p$ is surjective, we call p a **regular point** of ϕ .
- 3. If $c \in N$ is such that every $p \in \phi^{-1}(c)$ is a regular point, we call c a **regular value** of ϕ .

If something is not a regular point (value resp.), we call it a critical point (value resp.).

Theorem 4.4 (Constant rank level set theorem). Let $\Phi: M \to N$ be a smooth map of constant rank k. Then, each level set of Φ is an embedded submanifold of M with codimension k.

Lemma 4.5. Let $\phi: M \to N$ be a smooth map of constant rank and S be any level set of ϕ . Then, $T_pS = \ker(d\phi_p)$ for all $p \in S$.

Differential Forms

Definition (Cotangent space). A cotangent vector is an element of the cotangent space $(T_pM)^* = T_p^*M$. The **cotangent bundle** is the collection $T^*M = \sqcup_p T_p^*M$.

Definition (Differential 1-form). A differential one-form is a map ω from $M \to T^*M$ such that $\pi \circ \omega = Id_M; p \mapsto \omega_p \in T_p^*M$.

Definition (Differential of a map). For $f \in C^{\infty}(M)$, the differential of f at $p \in M$ is the cotangent vector $df_p: T_pM \to \mathbb{R}$ defined by $df_p(X_p) := X_pf$.

Remark. We have already used the phrase 'differential of a map' in section 2 to refer to something slightly different. If we use the fact that $T_a\mathbb{R}\cong\mathbb{R}$, it can be seen that they actually amount to the same thing.

The cotangent bundle will be a manifold of dimension 2n with constructions largely identical to that of the tangent bundle.

Lemma 5.1. The dual basis of $\{\frac{\partial}{\partial x_i}|_p\}$ is given by $\{dx_{ip}\}$.

Remark. Much like the case of vector fields, we can, in some coordinate neighbourhood U, write a one-form as $\omega = \sum_i a_i dx_i$.

The next theorem characterizes smooth one-forms. Observe how the third statement allows us to recast one-forms as maps from $\chi(M)$ to $C^{\infty}(M)$.

Theorem 5.2. The following statements are equivalent:

- 1. ω is a smooth one-form
- 2. $\{a_i\}$ are all smooth
- 3. $\omega X \in C^{\infty}(M)$ for all $X \in \chi(M)$, where $\omega X(p) := \omega_p(X_p)$.

Definition (Tensors). A k-tensor is a multilinear map $T: \underbrace{V \times ... \times V}_{k \text{ times}} \to \mathbb{R}$.

An alternating k-tensor is a k-tensor such that $T(v_{\sigma(1)},...v_{\sigma(k)}) = sgn(\sigma)T(v_1,...v_k)$, where

The set of all alternating k-tensors on a vector space V forms a vector space $\Lambda^k(V)$.

Lemma 5.3. If V has dimension n, $\Lambda^k(V)$ has dimension nC_k .

Definition (Exterior bundle). We call $\Lambda^k(M) = \sqcup_{p \in M} \Lambda^k(T_pM)$ the **exterior bundle** on M.

Remark. The exterior bundle of a manifold is itself a smooth manifold of dimension $n + nC_k$ (n from the manifold M, and nC_k more from $\Lambda^k(T_pM)$).

Definition (Differential k-form). A differential k-form is a map $s: M \to \Lambda^k(M)$ such that $\pi \circ s = Id_M$.

Remark. Observe how $\Lambda^1(M) = T^*M$, making this consistent with our earlier understanding of one-forms.

We denote the space of smooth k-forms on M by $\Omega^k(M)$, and $\Omega^*(M) = \bigsqcup_k \Omega^k(M)$.

Definition (Pullback). Let $F: M \to N$ be a smooth map. Then, $F^{*,p}: \Lambda^k(T_{F(p)}N) \to \Lambda^k(T_pM)$, is defined by $(F^{*,p}s)(v_1,...,v_k) = s(F_{*,p}v_1,...F_{*,p}v_k)$ (where $s \in \Lambda^k(T_{F(p)}N), v_i \in T_pM$).

The **pullback** of $F, F^*: \Omega^*(N) \to \Omega^*(M)$, is defined by $(F^*\omega)_p = F^{*,p}\omega_{F(p)}$.

Definition (Wedge product). Let $\omega \in \Omega^k(M)$, $\eta \in \Omega^l(M)$. Then, $(\omega \wedge \eta)_p = \omega_p \wedge \eta_p$, where the right-hand side is the antisymmetrization of $\omega_p \cdot \eta_p$.

Remark. One could imagine the pullback as in contrast with the pushforward, which is as $F_*: \chi(M) \to \chi(N), (F_*X)_p = F_{*,p}X_p$.

The wedge product and pullback of smooth forms is smooth.

 $(\Omega^*(M), \wedge)$ forms a graded algebra, and on it, F^* is a graded algebra homomorphism.

Lemma 5.4. If $\{v_1, ..., v_n\}$ is a basis for V and $\{e_1, ..., e_n\}$ is the dual basis, then $\{e_{i_1} \wedge ... \wedge e_{i_k}\}_{1 \leq i_1 ... \leq i_k \leq n}$ is a basis for $\Lambda^k(V)$, and $(e_{i_1} \wedge ... \wedge e_{i_k})(v_1, ..., v_k) = \det[e_{i_l}(v_j)]_{l,j}$.

Remark. The formula will follow from the definition of the wedge product and the Leibniz formula for determinants. With it, we can write $df_1 \wedge ... \wedge df_k = \sum_{1 \leq i_1 \leq ... i_k \leq n} a_{i_1,...,i_k} dx_{i_1} \wedge ... \wedge dx_{i_k}$, where $a_{i_1,...,i_k} \in C^{\infty}(M)$.

From the same argument, one can write, for $f_i \in C^{\infty}(M), (df_1 \wedge ... \wedge df_k)(\frac{\partial}{\partial x_{\mu_1}}, ..., \frac{\partial}{\partial x_{\mu_k}}) = \det[\frac{\partial f_i}{\partial x_{\mu_i}}]_{i,j=1}^k$.

In the particular case of top forms, we have the following change-of-coordinates formula: $dx_1 \wedge ... \wedge dx_n = h dy_1 \wedge ... \wedge dy_n, h = \det \left[\frac{\partial x_i}{\partial y_i}\right]_{i,j=1}^k$.

Definition (Anti-derivation). An anti-derivation (of degree 1) $D: \Omega^*(M) \to \Omega^*(M)$ is an \mathbb{R} -linear map such that:

- 1. $D(\omega \wedge \eta) = (D\omega) \wedge \eta + (-1)^k \omega \wedge (D\eta), \omega \in \Omega^k(M), \eta \in \Omega^l(M)$
- 2. $D(\Omega^k(M)) \subseteq \Omega^{k+1}(M)$.

Definition (Exterior derivative). An *exterior derivative* on M is an antiderivation D on $\Omega^*(M)$ such that:

1.
$$D \circ D = 0$$

2.
$$(Df)(X) = Xf$$

Theorem 5.5. Given a smooth manifold M, a unique exterior derivative d exists.

Remark. We can write out the action of d explicitly. For $\omega \in \Omega^k(M)$, $dw = d(\sum_{1 \leq i_1 \leq \dots i_k \leq n} a_{i_1,\dots,i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k})$ $= \sum_{1 \leq i_1 \leq \dots i_k \leq n, 1 \leq j \leq n} \frac{\partial a_{i_1,\dots,i_k}}{\partial x_j} dx_j \wedge dx_{i_1} \wedge \dots \wedge dx_{i_k}.$

Lemma 5.6. F^* commutes with d.

Orientation

Definition (Orientation on a vector space). Let V be an n-dimensional vector space. $\beta \in \Lambda^n(V)$ induces the orientation $[v_1,...,v_n]$ if $\beta(v_1,...,v_n) > 0$, where $(v_1,...,v_n) \sim (u_1,...,u_n) \iff$ the two basis sets are related by a matrix of positive determinant.

Remark. Alternatively, we can define an equivalence class on $\Lambda^n(V)$ (which, recall, is one-dimensional) by deeming $\beta \sim \eta \iff \beta = c\eta, c > 0$. This allows us to define orientation as an equivalence class of covectors.

Definition (Orientation on a manifold). A pointwise/rough orientation on M is a collection of orientations $[\mu_p]$ on T_pM .

Definition (Frame). A frame for an n-dimensional manifold is a collection of vector fields $X_1, ..., X_n$ such that for all $p \in M, \{X_{1,p}, ..., X_{n,p}\}$ forms a basis for T_pM .

Definition (Smooth orientation). A pointwise orientation μ is said to be smooth at p if there exists a frame $X_1,...X_n$ smooth at p such that $[Y_{1,p},...,Y_{n,p}] \sim \mu_p$.

Definition (Orientable). A manifold M is **orientable** if it admits a smooth orientation.

Lemma 6.1. A connected orientable manifold has exactly two orientations.

Theorem 6.2. Let M be a smooth n-dimensional manifold. Then, the following statements are equivalent:

- 1. M is orientable
- 2. M admits a nowhere vanishing smooth n-form
- 3. The transition maps on M all have positive Jacobian

Remark. An orientation can be defined on an orientable manifold by making a choice of nowhere-vanishing top form; top forms can be partitioned into two elements through the equivalence relation $\omega \sim \omega' \iff \omega = f\omega'$ for some $f \in C^{\infty}(M)$ such that f > 0.

Definition (Orientation-preserving maps). Let $(M, [\omega_M])$, $(N, [\omega_N])$ be two oriented smooth manifolds, and $F: M \to N$ be a smooth map. We say F is **orientation-preserving** if $[F^*\omega_N] = [\omega_M]$.

Remark. It can be shown that the third statement in the above theorem amounts to saying precisely that all the transition maps of the manifold are orientation-preserving.

Definition (Contraction). The map $i_v : \Lambda^k(V) \to \Lambda^{k-1}(V), \omega \mapsto i_v \omega$, called interior multiplication or contraction with v, is defined as $i_v \omega(v_1, ..., v_{k-1}) = \omega(v, v_1, ..., v_{k-1})$.

Postscript

Lie groups & Lie algebras