WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: A61K 31/12, 31/13, 31/16, 31/33, A61K 31/34, 31/35, 31/38, 31/40, A61K 31/41, 31/46, 31/47, 31/50 A61K 31/55, 31/395, 31/405, 31/415, A61K 31/495, 31/535, C07C 71/00, C07C 211/00, 237/00, 255/00 C07D 205/12, 209/04, 213/00,	A1	(11) International Publication Number: WO 91/01724
C07D 215/12, 233/54, 237/00, C07D 241/36, 243/00, 245/00, C07D 265/36, 285/14, 295/00, C07D 307/02, 315/00, 333/20		. (43) International Publication Date: 21 February 1991 (21.02.91)
(21) International Application Number: PCT/US (22) International Filing Date: 25 July 1990 (30) Priority data: 386,527 27 July 1989 (27.07.89)	(25.07.9	
(60) Parent Application or Grant (63) Related by Continuation	527 (C) (27.07.8	(81) Designated States: AT (European patent), BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), TE (European pat
(72) Inventors; and (75) Inventors/Applicants (for US only): REITZ, David US]; 14814 Pleasant Ridge Court, Chesterfi 63017 (US). KOEPKE, John, P. [US/US]; 93 Avenue, St. Louis, MO 63144 (US). BLAINE, H. [US/US]; 7301 Mayland Avenue, Univer, MO 63130 (US). SCHUH, Joseph, R. [US/US], Rurline Drive, St. Louis, MO 63100 (US). MA Robert, E. [US/US]; 1298 South Mason Road, i MO 63131 (US). SMITS, Glenn, J. [US/US]; 2: dise Peak Circle, Ellisville, MO 63011 (US).	eld, M 38 Ber Edwar sity Cir IS]; 20 NNIN	With international search report. TY Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. G, in the content of the receipt of amendments.
(54) Title: RENAL-SELECTIVE PRODRUGS FOR	TUE	DEATMENT OF HADEDTENION

(54) Title: RENAL-SELECTIVE PRODRUGS FOR THE TREATMENT OF HYPERTENSION

(57) Abstract

Renal-selective prodrugs are described which are preferentially converted in the kidney to compounds capable of inhibiting synthesis of catecholamine-type neurotransmitters involved in renal sympathetic nerve activity. The prodrugs described herein are derived from inhibitor compounds capable of inhibiting one or more of the enzymes involved in catecholamine synthesis, such compounds being classifiable as tyrosine hydroxylase inhibitors, or as depa-decarboxylase inhibitors, or as dopamine-β-hydroxylase inhibitors. These inhibitors compounds are linked to a chemical moiety, such as a glutamic acid derivative, by a cleavable bond which is recognized selectively by enzymes located predominantly in the kidney. The liberated inhibitor compound is then available in the kidney to inhibit one or more of the enzymes involved in catecholamine synthesis. Inhibition of renal catecholamine synthesis can suppress heightened renal nerve activity associated with sodium-retention related disorders such as hypertension. Conjugates of particular interest are glutamyl derivatives of dopamine-β-hydroxylase inhibitors, of which N-acetyl-Y-glutamyl fusaric acid is preferred.

DESIGNATIONS OF "DE"

Until further notice, any designation of "DE" in any international application whose international filing date is prior to October 3, 1990, shall have effect in the territory of the Federal Republic of Germany with the exception of the territory of the former German Democratic Republic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

АT	Austria	ES	Spain	MC	Monaco
AU	Australia	·Fi	Finland	MG	Madagascar
BB	Barbados	FR	France	ML	Mali
BE	Belgium	GA	Gabon	MR	Mauritania
BP	Burkina Fasso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GR	Greece	NL	Netherlands
BJ	Benin	HU	Hungary	NO	Norway
BR	Brazil	IT	Italy	PL	Poland
CA	Canada	JP	Japan	RO	Romania
CF	Central African Republic :	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SB	Sweden
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CM	Cameroon .	Li	Liechtenstein	SU	Soviet Union
DE	Germany	LK	Sri Lanka	TD	Chad
DK	Denmark	LU	Luxembourg	TG	Togo
			-	US	United States of America

RENAL-SELECTIVE PRODRUGS FOR THE TREATMENT OF HYPERTENSION

5

Related Application

This application is a continuation-in-part of U.S. Application Ser. No. 07/386,527 filed 27 July 1989.

10

Field of the Invention

This invention is in the field of cardiovascular therapeutics and relates to a class of compounds useful in control of hypertension. Of particular interest is a class of compounds which prevent or control hypertension by selective action on the renal sympathetic nervous system.

Background of the Invention

20 Hypertension has been linked to increased sympathetic nervous system activity stimulated through any of four mechanisms, namely (1) by increased vascular resistance, (2) by increased cardiac rate, stroke volume and output, (3) by vascular muscle defects or (4) by sodium retention and renin release [J. P. Koepke et al, The Kidney 25 in Hypertension, B. M. Brenner and J. H. Laragh (Editors), Vol. 1, p. 53 (1987)]. As to this fourth mechanism in particular, stimulation of the renal sympathetic nervous system can affect renal function and maintenance of homeostasis. For example, an increase in efferent renal 30 sympathetic nerve activity may cause increased renal vascular resistance, renin release and sodium retention [A. Zanchetti et al, Handbook of Hypertension, Vol. 8, Ch. 8, pp. 151-172 (1986)]. Such sympathetically mediated renal vasoconstriction has been identified as an element in the 35

pathogenesis of early essential hypertension in man. [R. E. Katholi, Amer. J. Physiol., 245, F1-F14 (1983)].

Proper renal function is essential to 5 maintenance of homeostasis so as to avoid hypertensive conditions. Excretion of sodium is key to maintaining extracellular fluid volume, blood volume and ultimately the effects of these volumes on arterial pressure. Under steady-state conditions, arterial pressure rises to that pressure level which will cause balance between urinary 10 output and water/salt intake. If a perturbation in normal kidney function occurs causing renal sodium and water retention, as with sympathetic stimulation of the kidneys, arterial pressure will increase to a level to maintain sodium output equal to intake. In hypertensive patients, 15 the balance between sodium intake and output is achieved at the expense of an elevated arterial pressure.

During the early stages of genetically spontaneous or desoxycorticosterone acetate-sodium chloride 20 (DOCA-NaCl) induced hypertension in rats, a positive sodium balance has been observed to precede hypertension. Also, surgical sympathectomy of the kidneys has been shown to reverse the positive sodium balance and delay the onset of hypertension [R. E. Katholi, Amer. J. Physiol., 245, F1-F14 25 (1983)]. Other chronic sodium retaining disorders are linked to heightened sympathetic nervous system stimulation of the kidneys. Congestive heart failure, cirrhosis and nephrosis are characterized by abnormal chronic sodium retention leading to edema and ascites. These studies 30 support the concept that renal selective pharmacological inhibition of heightened sympathetic nervous system activity to the kidneys may be an effective therapeutic treatment for chronic sodium-retaining disorders, such as

WO 91/01724 PCT/US90/04168

hypertension, congestive heart failure, cirrhosis, and nephrosis.

One approach to reduce sympathetic nervous 5 system effects on renal function is to inhibit the synthesis of one or more compounds involved as intermediates in the "catecholamine cascade", that is, the pathway involved in synthesis of the neurotransmitter norepinephrine. Stepwise, these catecholamines are 10 synthesized in the following manner: (1) tyrosine is converted to dopa by the enzyme tyrosine hydroxylase; (2) dopa is converted to dopamine by the enzyme dopa decarboxylase; and (3) dopamine is converted to norepinephrine by the enzyme dopamine-β-hydroxylase. 15 Inhibition of dopamine-\beta-hydroxylase activity, in particular, would increase the renal vasodilatory, diuretic and natriuretic effects due to dopamine. Inhibition of the action of any of these enzymes would decrease the renal vasoconstrictive, antidiuretic and antinatriuretic effects 20 of norepinephrine. Therapeutically, these effects oppose chronic sodium retention.

Many compounds are known to inhibit the action of the catecholamine-cascade-converting enzymes. For example, the compound a-methyltyrosine inhibits the action of the enzyme tyrosine hydroxylase. The compound a-methyldopa inhibits the action of the enzyme dopadecarboxylase, and the compound fusaric acid inhibits the action of dopamine-β-hydroxylase. Such inhibitor compounds often cannot be administered systemically because of the adverse side effects induced by such compounds. For example, the desired therapeutic effects of dopamine-β-hydroxylase inhibitors, such as fusaric acid, may be offset by hypotension-induced compensatory stimulation of the

renin-angiotensin system and sympathetic nervous system, which promote sodium and water retention.

To avoid such systemic side effects, drugs may be targetted to the kidney by creating a conjugate compound 5 that would be a renal-specific prodrug containing the targetted drug modified with a chemical carrier moiety. Cleavage of the drug from the carrier moiety by enzymes predominantly localized in the kidney releases the drug in the kidney. Gamma glutamyl transpeptidase and acylase are examples of such cleaving enzymes found in the kidney which have been used to cleave a targetted drug from its prodrug carrier within the kidney.

10

Renal targetted prodrugs are known for delivery 15 of a drug selectively to the kidney. For example, the compound L-y-glutamyl amide of dopamine when administered to dogs was reported to generate dopamine in vivo by specific enzymatic cleavage by γ -glutamyl transpeptidase 20 [J. J. Kyncl et al, Adv. Biosc., 20, 369-380 (1979)]. In another study, γ -glutamyl and N-acyl- γ -glutamyl derivatives of the anti-bacterial compound sulfamethoxazole were shown to deliver relatively high concentrations of sulfamethoxazole to the kidney which involved enzymatic cleavage of the prodrug by acylamino acid deacylase and γ-glutamyl 25 transpeptidase [M. Orlowski et al, J. Pharmacol. Exp. Ther., 212, 167-172 (1980)]. The N-y-glutamyl derivatives of 2-, 3-, or 4-aminophenol and p-fluoro-L-phenylalanine have been found to be readily solvolyzed in vitro by yglutamyl transpeptidase [S.D.J. Magnan et al, J. Med. 30 Chem., 25, 1018-1021 (1982)]. The hydralazine-like vasodilator 2-hydrazino-5-g-butylpyridine (which stimulates guanylate cyclase activity) when substituted with the Nacetyl-y-glutamyl residue resulted in a prodrug which provided selective renal vasodilation [K. G. Hofbauer et 35

WO 91/01724 5 PCT/US90/04168

al, J. Pharmacol. Exp. Ther., 212, 838-844 (1985)]. The dopamine prodrug γ-L-glutamyl-L-dopa ("gludopa") has been shown to be relatively specific for the kidney and to increase renal blood flow, glomerular filtration and urinary sodium excretion in normal subjects [D. P. Worth et al, Clin. Sci. 69, 207-214 (1985)]. In another study, gludopa was reported to an effective renal dopamine prodrug whose activity can be blocked by the dopa-decarboxylase inhibitor carbidopa [R. F. Jeffrey et al, Br. J. Clin.
Pharmac., 25, 195-201 (1988)].

BRIEF DESCRIPTION OF THE DRAWING FIGURES

15

Ŧ

₹

Figure 1 shows the acute effects of i.v. injection of vehicle and Example #3 conjugate on mean arterial pressure in rats.

20 Figure 2 shows the acute effects of i.v. injection of vehicle and Example #3 conjugate on renal blood flow in rats.

Figure 3 shows the chronic effects of i.v.
25 infusion of vehicle and Example #464 conjugate on mean arterial pressure in spontaneously hypertensive rats.

Figure 4 shows time-dependent formation of the dopamine-8-hydroxylase inhibitor fusaric acid from the Example #859 conjugate incubated with rat kidney homogenate.

Figure 5 shows time-dependent formation of fusaric acid from the Example #859 conjugate incubated with a mixture of purified acylase I and gamma-glutamyl transpeptidase at pH 7.4 and 8.1.

5

Figure 6 shows the concentration-dependent effect of fusaric acid and the Example #859 conjugate on norepinephrine production by dopamine-ß-hydroxylase in vitro.

10

25

30

Figure 7 shows dopamine-ß-hydroxylase inhibition in vitro by fusaric acid, the Example #859 conjugate and possible metabolites at a concentration of 20 μM .

15 Figure 8 shows the acute effects of i.v. injection of fusaric acid and Example #859 conjugate on mean arterial pressure in spontaneously hypertensive rats.

Figure 9 shows the acute effects of i.v.
20 injection of fusaric acid and Example #859 conjugate on renal blood flow in spontaneously hypertensive rats.

Figure 10 shows the effects of chronic i.v. infusion of vehicle, fusaric acid, and Example #859 conjugate for 5 days on mean arterial pressure in spontaneously hypertensive rats.

Figure 11 shows the effects of chronic i.v. infusion of vehicle and Example #863 conjugate for 4 days on mean arterial pressure in spontaneously hypertensive rats.

Figure 12 shows the heart tissue concentrations of norepinephrine following the 5 day infusion experiment described in Figure 10.

WO 91/01724 PCT/US90/04168

Figure 13 shows the kidney tissue concentrations of norepinephrine following the 5 day infusion experiment described in Figure 10.

5

20

25

30

35

٢

ŧ

Figure 14 shows the effects of Example #859 conjugate on mean arterial pressure in anesthetized dogs after i.v. injection at two doses.

Figure 15 shows the effects of Example #859 conjugate on renal blood flow in anesthetized dogs after i.v. injection at two doses.

15 DESCRIPTION OF THE INVENTION

Treatment of chronic hypertension or sodiumretaining disorders such as congestive heart failure,
cirrhosis and nephrosis, may be accomplished by
administering to a susceptible or afflicted subject a
therapeutically-effective amount of a renal-selective
prodrug capable of causing selective blockage of heightened
sympathetic nervous system effects on the kidney. An
advantage of such renalselective prodrug therapy resides in
reduction or avoidance of adverse side effects associated
with systemically-acting drugs.

A renal-selective prodrug capable of providing renal sympathetic nerve blocking action may be provided by a conjugate comprising a first residue and a second residue connected together by a cleavable bond. The first residue is derived from an inhibitor compound capable of inhibiting formation of a benzylhydroxyamine intermediate in the biosynthesis of an adrenergic neurotransmitter, and wherein said second residue is capable of being cleaved from the

first residue by an enzyme located predominantly in the kidney.

The first and second residues are provided by precursor compounds having suitable chemical moieties which 5 react together to form a cleavable bond between the first and second residues. For example, the precursor compound of one of the residues will have a reactable carboxylic acid moiety and the precursor of the other residue will have a reactable amino moiety or a moiety convertible to a 10 reactable amino moiety, so that a cleavable bond may be formed between the carboxylic acid moiety and the amino moiety. An inhibitor compound which provides the first residue may be selected from tyrosine hydroxylase inhibitor compounds, dopa-decarboxylase inhibitor compounds, 15 dopamine-β-hydroxylase inhibitor compounds, and mimics of any of these inhibitor compounds.

It is understood that the inhibitor compounds

described herein have been classified as tyrosine
hydroxylase inhibitors, or as dopa-decarboxylase
inhibitors, or as dopamine-β-hydroxylase inhibitors, for
convenience of description. Some of the inhibitor compounds
may be classifiable in more than one of these classes. For
example, 2-vinyl-3-phenyl-2-aminopropionic acid derivatives
are classified herein as tyrosine hydroxylase inhibitors,
but such derivatives may also act as dopa-decarboxylase
inhibitors.

A class of compounds from which a suitable tyrosine hydroxylase inhibitor compound may be selected to provide the conjugate first residue is represented by Formula I:

$$A = \begin{bmatrix} R^{1} \\ I \\ C \\ R^{2} \end{bmatrix}_{m} \begin{bmatrix} R^{3} & O \\ I & I \\ N-R^{4} \\ I \end{bmatrix}$$
(I)

5

ŝ

wherein each of R¹ through R³ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aryloxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein R⁴ selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein R⁵ is selected from -CR⁶ and

$$R^7$$
 , wherein R^6 is selected from hydrido, alkyl,

20

25

cycloalkyl, cycloalkylalkyl, aralkyl and aryl, and wherein each of R⁷ and R⁸ is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein m is a number selected from zero through six;

wherein A is a phenyl ring of the formula

wherein each of R⁹ through R¹³ is independently selected 5 from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, carboxyl, cyano, 10 thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, carboxyalkoxy, formyl and a substituted or unsubstituted 5- or 6-membered heterocyclic ring selected from the group consisting of pyrrol-1-yl, 2-15 carboxypyrrol-l-yl, imidazol-2-ylamino, indol-l-yl, carbozol9-yl, 4,5-dihydro-4-hydroxy-4trifluoromethylthiazol3-yl, 4-trifluoromethylthiazol-2-yl, imidazol-2-yl and 4,5-dihydroimidazol-2-yl; wherein any two of the R⁹ through R¹³ groups may be taken together to form a benzoheterocylic ring selected from the group consisting 20 of indolin-5-yl, 1-(N-benzoylcarbamimidoyl)indolin5-yl, 1carbamimidoylindolin-5-yl, lH-2-oxindol-5-yl, insol-5-yl, 2-mercaptobenzimidazol-5(6)-yl, 2-aminobenzimidazol-5-(6)yl, 2-methanesulfonamidobenzimidazol-5(6)-yl, lHbenzoxanol-2-on-6-yl, 2aminobenzothiazol-6-yl, 2-amino-4-25 mercaptobenzothiazol6-yl, 2,1,3-benzothiadiazol-5-yl, 1,3dihydro-2,2-dioxo-2,1,3-benzothiadiazol-5-yl, 1,3-dihydro-1,3-dimethyl2,2-dioxo-2,1,3-benzothiadiazol-5-yl, 4-methyl-2(H) oxoquinolin-6-yl, quinoxalin-6-yl, 2-hydroxyquinoxalin-6-yl, 2-hydroxquinoxalin-7-yl, 2,3-dihydroxyquinoxalin6-yl 30 and 2,3-didydro-3(4H)-oxo-1,4-benzoxazin-7-yl; 5-hydroxy5

10

15

ð

4H-pyran-4-on-2-yl, 2-hydroxypyrid-4-yl, 2-aminopyrid-4-yl, 2-carboxypyrid-4-yl and tetrazolo-[1,5-a]pyrid-7-yl; and wherein A may be selected from

wherein each of R¹⁴ through R²⁰ is independently selected from hydrido, alkyl, hydroxy, hydroxyalkyl, alkoxy, cycloalkyl, cycloalkylalkyl, halo, haloalkyl, aryloxy, alkoxycarboxyl, aryl, aralkyl, cyano, cyanoalkyl, amino, monoalkylamino and dialkylamino, wherein each of R²¹ and R²² is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; or a pharmaceutically-acceptable salt thereof.

A preferred class of tyrosine hydroxylase inhibitor compounds within Formula I is provided by compounds of Formula II:

wherein each of R¹ and R² is hydrido; wherein m is one or two; wherein R³ is selected from alkyl, alkenyl and alkynyl; wherein R⁴ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein R⁵ is selected from -OR⁶ and

 R^7 , wherein R^6 is selected from

hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenalkyl and phenyl, and wherein each of R⁷ and R⁸ is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, 15 monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein each of R9 through R13 is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxycarbonyl, alkoxycarbonyl, alkoxy, arykoxy, aralkoxy, alkoxyalkyl, 20 haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, pyrrol-1-yl 2carboxypyrrol-1-yl, imidazol-2-ylamino, indol-1-yl, carbazol-9-yl, 4,5-dihydro-4-trifluoromethylthiazol-3-yl, 25 4-trifluoromethylthiazol-2-yl, imidazol-2-yl and 4,5dihydroimidazol-2-yl, and wherein any two of the R9 through R¹³ groups may be taken together to form a benzoheterocyclic ring selected from the group consisting of indolin-5-yl, 1-(N-benzoylcarbamimidoyl)indolin-5-yl, 1-30 carbamimidoylindolin-5-yl, 1H-2-oxindol-5-yl, indol-5-yl, 2-mercaptobenzimidazol-5(6)-yl, 2-aminobenzimidazol5-(6)yl, 2-methanesulfonamidobenzimidazol-5(6)-yl, lH-

benzoxanol-2-on-6-yl, 2-amino-benzothiazol-6-yl, 2-amino-4-mercaptobenzothiazol-6-yl, 2,1,3-benzothiadiazol-5-yl, 1,3-dihydro-2,2-dioxo-2,1,3-benzothiadiazol-5-yl, 1,3-dihydro-1,3-dimethyl-2,2-dioxo-2,1,3-benzothiadiazol-5-yl, 4-methyl-2(H)-oxoquinolin-6-yl, quinoxalin-6-yl, 2-hydroxquinoxalin-7-yl, 2,3-dihydroxyquinoxalin-6-yl and 2,3-didydro-3(4H)-oxo-1,4-benzoxazin-7-yl; wherein R³ is -CH=CH² or -C=CH; wherein R⁵ is selected from -OR⁶ and

 R^7 , wherein R^6 is selected from

15

hydrido, alkyl, hydroxy, hydroxyalkyl, alkoxy, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, amino, monoalkylamino, dialkylamino; and wherein each of R7 and R8 independently is selected from hydrido, alkyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, aryl and aralkyl; or a pharmaceutically-acceptable salt thereof.

A first sub-class of preferred tyrosine hydroxylase inhibitor compounds consists of the following 20 specific compounds within Formula II: 4-cyanoamino-α-methylphenyalanine; 3-carboxy-α-methylphenylalanine; 3-cyano-α-methylphenylalanine methyl ester; α -methyl-4-thiocarbamoylphenylalanine methyl ester; 25 4-(aminomethyl)- α -methylphenylalanine; 4-guanidino- α -methylphenylalanine; 3-hydroxy-4-methanesulfonamido- α -methylphenylalanine; 3-hydroxy-4-nitro-α-methylphenylalanine; 4-amino-3-methanesulfonyloxy- α -methylphenylalanine; 30 3-carboxymethoxy-4-nitro-α-methylphenylalanine; α-methyl-4-amino-3-nitrophenylalanine; 3,4-diamino- α -methylphenylalanine; α-methyl-4-(pyrrol-l-yl)phenylalanine;

```
\cdot4-(2-aminoimidazol-1-yl)-\alpha-methylphenylalanine;
    4-(imidazol-2-ylamino)-α-methylphenylalanine;
    4-(4,5-dihydro-4-hydroxy-4-trifluoromethyl-thiazol-2yl)-a-
    methylphenylalanine methyl ester;
 5 α-methyl-4-(4-trifluoromethylthiazol-2-yl)phenylalanine;
    \alpha-methyl-3-(4-trifluoromethylthiazol-2-yl)-phenylalanine;
    4-(imidazol-2-yl)-\alpha-methylphenylalanine;
    4-(4,5-dihydroimidazol-2-yl)-\alpha-methylphenylalanine;
    3-(imidazol-2-yl)-\alpha-methylphenylalanine;
    3-(4,5-dihydroimidazol-2-yl)-a-methylphenylalanine;
10
    4-(imidazol-2-yl)phenylalanine;
    4,5-dihydroimidazol-2-yl)phenylalanine;
    3-(imidazol-2-yl)phenylalanine;
    3-(2,3-dihydro-1H-indol-4-yl)-\alpha-methylalanine;
15
    α-methyl-3-(lH-2-oxindol-5-yl)alanine;
    3-[1-(N-benzoylcarbamimidoyl)-2,3-dihydro-1Hindol-5-yl)-\alpha-
    methylalanine;
    3-(1-carbamimidoyl-2,3-dihydro-1H-indol-5-yl-\alpha-
    methylalanine:
20
    3-(lH-indol-5-yl-α-methylalanine;
    3-(benzimidazol-2-thione-5-yl)-\alpha-methylalanine;
     3-(2-aminobenzimidazol-5-yl-2-methylalanine;
     2-methyl-3-(benzoxazol-2-on-6-yl)alanine;
     3-(2-aminobenzothiazol-6-yl)-2-methylalanine;
   3-(2-amino-4-mercaptobenzothiazol-6-yl)-2methylalanine;
25
     3-(2-aminobenzothiazol-6-yl)alanine;
     2-methyl-3-(2,1,3-benzothiadiazol-5-yl)alanine;
     3-(1,3-dihydrobenzo-2,1,3-thiadiazol-5-yl)-2methylalanine-
     2,2-dioxide;
     3-(1,3-dihydrobenzo-2,1,3-thiadiazol-5-yl)-2-methylalanine-
30
     2,2-dioxide methyl ester;
     3-(1,3-dihydrobenzo-2,1,3-thiadiaxol-5-yl)alanine 2,2-
     3-(1,3-dihydro-1,3-dimethylbenzo-2,1,3-thiadiazol-5yl-)-2-
```

35

methylalanine 2,2-dioxide;

```
\alpha-methyl-3-[4-methyl-2(lH)-oxoquinolin-6-yl]alanine;
     3-[4-methyl-2(lH)-oxoquinolin-6-yl]alanine;
     2-methyl-3-(quinoxalin-6-yl)alanine;
     2-methyl-3-(2-hydroxyquinoxalin-6-yl)alanine;
     2-methyl-3-(2-hydroxyquinoxalin-7-yl)alanine;
     3-(2,3-dihydroxyquinoxalin-6-yl)-2-methylalanine;
     3-(quinoxalin-6-yl)alanine;
     3-(2,3-dihydroxyquinoxalin-6-yl)alanine;
     3-(1,4-benzoxazin-3-one-6-yl)-2-methylalanine;
     3-(1,4-benzoxazin-3-one-7-yl)alanine;
10
     3-(5-hydroxy-4H-pyran-4-on-2-yl)-2-methylalanine;
     3-(2-hydroxy-4-pyridyl)-2-methylalanine;
     3-(2-carboxy-4-pyridyl)-2-methylamine;
     α-methyl-4-(pyrrol-1-yl)phenylalanine;
     \alpha-ethyl-4-(pyrrol-1-yl)phenylalanine;
15
     α-propyl-4-(pyrrol-l-yl)phenylalanine;
     4-[2-(carboxy)pyrrol-1-yl)phenylalanine;
     α-methyl-4-(pyrrol-1-yl)phenylalanine;
     3-hydroxy-\alpha-4-(pyrrol-l-yl)phenylalanine;
20
     3-methoxy-\alpha-4-(pyrrol-l-yl)phenylalanine;
     4-methoxy-\alpha-3-(pyrrol-1-yl)phenylalanine;
     4-(indol-l-yl)-\alpha-methylphenylalanine;
     4-(carbazol-9-yl)-α-methylphenylalanine;
     2-methyl-3-(2-methanesulfonylamidobenzimidazol-5-
25
     yl) alanine;
     2-methyl-3-(2-amino-4-pyridyl)alanine;
     2-methyl-3[tetrazolo-(1,5)-\alpha-pyrid-7-yl]alanine;
     D,L-\alpha-\beta-(4-hydroxy-3-methyl)phenylalanine;
     D, L-\alpha-\beta-(4-hydroxy-3-phenyl) phenylalanine;
30
    D, L-\alpha-\beta-(4-hydroxy-3-benzyl) phenylalanine;
     D,L-\alpha-\beta-(4-methoxy-3-cyclohexyl)phenylalanine;
     \alpha, \beta, \beta trimethyl-\beta-(3,4-dihydroxyphenyl)alanine;
     \alpha, \beta, \beta trimethyl-\beta-(4-hydroxyphenyl)alanine;
    N-methyl \alpha, \beta, \beta trimethyl-\beta-(3,4-dihydroxphenyl) alanine;
35
     D,L \alpha, \beta, \beta trimethyl-\beta-(3,4-dihyroxyphenyl) alanine;
```

```
trimethyl-\beta-(3,4-dimethoxyphenyl) alanine;
     L-\alpha-methyl-\beta-3,4-dihydroxyphenylalanine;
     L-\alpha-ethyl-\beta-3, 4-dihydroxyphenylalanine;
     L-\alpha-propyl-\beta-3,4-dihydroxyphenylalanine;
     L-\alpha-butyl-\beta-3, 4-dihydroxyphenylalanine;
     L-\alpha-methyl-\beta-2, 3-dihydroxphenylalanine;
     L-\alpha-ethyl-\beta-2, 3-dihydroxphenylalanine;
     L-\alpha-propyl-\beta-2, 3-dihydroxphenylalanine;
     L-\alpha-butyl-\beta-2, 3-dihydroxphenylalanine;
10
     L-α-methyl-4-chloro-2,3-dihydroxyphenylalanine;
     L-g-ethyl-4-chloro-2,3-dihydroxyphenylalanine;
     L-a-propyl-4-chloro-2, 3-dihydroxyphenylalanine;
     L-α-butyl-4-chloro-2,3-dihydroxyphenylalanine;
     L-\alpha-ethyl-\beta-4-methyl-2, 3-dihydroxyphenylalanine;
     L-\alpha-methyl-\beta-4-methyl-2, 3-dihydroxyphenylalanine;
15
     L-\alpha-propyl-\beta-4-methyl-2, 3-dihydroxyphenylalanine;
     L-\alpha-butyl-\beta-4-methyl-2, 3-dihydroxyphenylalanine;
     L-\alpha-methyl-\beta-4-fluoro-2, 3-dihydroxyphenylalanine;
     L-\alpha-ethyl-\beta-4-fluoro-2, 3-dihydroxyphenylalanine;
     L-\alpha-propyl-\beta-4-fluoro-2, 3-dihydroxyphenylalanine;
20
     L-\alpha-butyl-\beta-4-fluoro-2, 3-dihydroxyphenylalanine;
     L-α-methyll-b-4-trifluoromethyl-2,3-dihydroxyphenylalanine
     L-\alpha-ethyl-\beta-4-trifluoromethyl-2,3-dihydroxyphenylalanine
     L-\alpha-propyl-\beta-4-trifluoromethyl-2, 3-dihydroxyphenyl alanine
25
     L-\alpha-butyl-\beta-4-trifluoromethyl-2, 3-dihydroxyphenyl alanine
     L-\alpha-methyl-\beta-3,5-dihydroxyphenylalanine;
     L-\alpha-ethyl-\beta-3,5-dihydroxyphenylalanine;
    L-\alpha-propyl-\beta-3,5-dihydroxyphenylalanine;
     L-\alpha-butyl-\beta-3,5-dihydroxyphenylalanine;
     L-\alpha-methyl-\beta-4-chloro-3,5-dihydroxphenylalanine;
30
     L-\alpha-ethyl-\beta-4-chloro-3,5-dihydroxphenylalanine;
     L-\alpha-propyl-\beta-4-chloro-3,5-dihydroxphenylalanine;
     L-\alpha-butyl-\beta-4-chloro-3,5-dihydroxphenylalanine;
     L-\alpha-methyl-\beta-4-fluoro-3,5-dihydroxyphenylalanine;
35
     L-\alpha-ethyl-\beta-4-fluoro-3,5-dihydroxyphenylalanine;
```

WO 91/01724 17 PCT/US90/04168

```
L-\alpha-propyl-\beta-4-fluoro-3,5-dihydroxyphenylalanine;
      L-\alpha-butyl-\beta-4-fluoro-3,5-dihydroxyphenylalaninei
      L-\alpha-methyl-\beta-4-trifluoromethyl-3,5-dihydroxyphenyl alanine;
      L-\alpha-ethyl-\beta-4-trifluoromethyl-3,5-dihydroxyphenylalanine;
     L-\alpha-propyl-\beta-4-trifluoromethyl-3,5-dihydroxyphenylalanine;
     L-\alpha-butyl-\alpha-4-trifluoromethyl-3,5-dihydroxyphenylalanine;
      L-\alpha-methyl-2,5-dihydroxphenylalanine;
     L-\alpha-ethyl-2,5-dihydroxphenylalanine;
     L-\alpha-propyl-2,5-dihydroxphenylalanine;
10
     L-\alpha-butyl-2,5-dihydroxphenylalanine;
     L-\alpha-methyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
     L-\alpha-ethyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
     L-\alpha-propyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
     L-\alpha-butyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
15
     L-\alpha-methyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
     L-\alpha-ethyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
     L-\alpha-propyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
     L-\alpha-butyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
     L-\alpha-methyl-\beta-methyl-2,5-dihydroxyphenylalanine;
20
     L-\alpha-ethyl-\beta-methyl-2,5-dihydroxyphenylalanine;
     L-\alpha-propyl-\beta-methyl-2,5-dihydroxyphenylalanine;
     L-\alpha-butyl-\beta-methyl-2,5-dihydroxyphenylalanine;
     L-\alpha-methyl-\beta-4-trifluoromethyl-2,5-dihydroxyphenylalanine;
     L-\alpha-ethyl-\beta-4-trifluoromethyl-2,5-dihydroxyphenylalanine;
     L-\alpha-propyl-\beta-4-trifluoromethyl-2,5-dihydroxyphenylalanine;
25
     L-\alpha-butyl-\beta-4-trifluoromethyl-2,5-dihydroxyphenylalanine;
     L-\alpha-methyl-\beta-3,4,5-trihydroxyphenylalanine;
     L-\alpha-ethyl-\beta-3,4,5-trihydroxyphenylalanine;
     L-\alpha-propyl-\beta-3,4,5-trihydroxyphenylalanine;
30
     L-\alpha-butyl-\beta-3,4,5-trihydroxyphenylalanine;
     L-\alpha-methyl-\beta-2,3,4-trihydroxyphenylalanine;
     L-\alpha-ethyl-\beta-2,3,4-trihydroxyphenylalanine;
     L-\alpha-propyl-\beta-2,3,4-trihydroxyphenylalanine;
     L-\alpha-butyl-\beta-2,3,4-trihydroxyphenylalanine;
35
     L-\alpha-methyl-\beta-2,4,5-trihydroxyphenylalanine;
```

```
L-\alpha-ethyl-\beta-2,4,5-trihydroxyphenylalanine;
     L-\alpha-propyl-\beta-2,4,5-trihydroxyphenylalanine;
     L-\alpha-butyl-\beta-2,4,5-trihydroxyphenylalanine;
     L-phenylalanine;
    D, L-\alpha-methylphenylalanine;
     D, L-3-iodophenylalanine;
     D, L-3-iodo-\alpha-methylphenylalanine;
     3-iodotyrosine;
     3,5-diiodotyrosine;
     L-\alpha-methylphenylalanine;
10
     D, L-\alpha-\beta- (4-hydroxy-3-methylphenyl) alanine;
     D, L-\alpha-\beta-(4-methoxy-3-benzylphenyl) alanine;
     D, L-\alpha-\beta-(4-hydroxy-3-benzylphenyl) alanine;
     D, L-\alpha-\beta-(4-methoxy-3-cyclohexylphenyl) alanine;
     D, L-\alpha-\beta-(4-hydroxy-3-cyclohexylphenyl) alanine;
15
     D, L-\alpha-\beta-(4-methoxy-3-methylphenyl) alanine;
     D, L-\alpha-\beta-(4-hydroxy-3-methylphenyl) alanine;
     N, O-dibenzyloxycarbonyl-D, L-α-β-(4-hydroxy-3-
     methylphenyl) alanine;
     N, O-dibenzyloxycarbonyl-D, L-\alpha-\beta- (4-hydroxy-3-
20
     methylphenyl) alanine amide;
     D_{r}L-\alpha-\beta-(4-hydroxy-3-methylphenyl) alanine amide;
     N, O-diacetyl-D, L-\alpha-\beta- (4-hydroxy-3-methylphenyl) alanine;
     D, L-N-acetyl-\alpha-\beta-(4-hydroxy-3-methylphenyl) alanine;
     L-3, 4-dihydroxy-q-methylphenylalanine;
25
     L-4-hydroxy-3-methoxy-α-methylphenylalanine;
     L-3, 4-methylene-dioxy-α-methylphenylalanine;
     2-vinyl-2-amino-3-(2-methoxyphenyl) propionic acid;
     2-vinyl-2-amino-3-(2,5-dimethoxyphenyl) propionic acid;
30
     2-vinyl-2-amino-3-(2-imidazolyl) propionic acid;
     2-vinyl-2-amino-3-(2-methoxyphenyl)propionic acid ethyl
     ester;
     \alpha-methyl-\beta-(2,5-dimethoxyphenyl) alanine;
     \alpha-methyl-B-(2,5-dihydroxyphenyl) alanine;
     \alpha-ethyl-\beta-(2,5-dimethoxyphenyl) alanine;
35
```

WO 91/01724 19 PCT/US90/04168

```
\alpha-ethyl-\beta-(2,5-dihydroxyphenyl)alanine;
     \alpha-methyl-\beta-(2,4-dimethoxyphenyl) alanine;
     \alpha-methyl-\beta-(2,4-dihydroxyphenyl) alanine;
     \alpha-ethyl-\beta-(2,4-dimethoxyphenyl)alanine;
     \alpha-ethyl-\beta-(2,4-dihydroxyphenyl)alanine;
     \alpha-methyl-\beta-(2,5-dimethoxyphenyl)alanine ethyl ester;
     2-ethynyl-2-amino-3-(3-indolyl) propionic acid;
     2-ethynyl-2,3-(2-methoxyphenyl)propionic acid;
     2-ethynyl-2,3-(5-hydroxyindol-3-yl)propionic acid;
     2-ethynyl-2-amino-3-(2,5-dimethoxyphenyl)propionic acid;
     2-ethynyl-2-amino-3-(2-imidazolyl)propionic acid;
     2-ethynyl-2-amino-3-(2-methoxyphenyl)propionic acid ethyl
     ester;
     3-carbomethoxy-3-(4-benzyloxybenzyl)-3-aminoprop-1-yne;
15
     α-ethynyltyrosine hydrochloride;
     a-ethynyltyrosine;
     a-ethynyl-m-tyrosine;
     \alpha-ethynyl-\beta-(2-methoxyphenyl) alanine;
     \alpha-ethynyl-\beta-(2,5-dimethoxyphenyl) alanine; and
20
     \alpha-ethynylhistidine.
                 A second sub-class of preferred tyrosine
     hydroxylase inhibitor compounds consists of compounds
     wherein at least one of R^{10}, R^{11} and R^{12} is selected from
```

hydroxylase inhibitor compounds consists of compounds wherein at least one of R¹⁰, R¹¹ and R¹² is selected from hydroxy, alkoxy, aryloxy, aralkoxy and alkoxycarbonyl. More preferred compounds of this second sub-class are α-methyl-3-(pyrrol-l-yl)tyrosine; α-methyl-3-(4-trifluoromethylthiazol-2-yl)tyrosine; 3-(imidazol-2-yl)-α-methyltyrosine; 1-α-methyl-m-tyrosine; 1-α-ethyl-m-tyrosine; 1-α-propyl-m-tyrosine; 1-α-propyl-m-tyrosine; 1-α-butyl-m-tyrosine; 1-α-butyl-m-tyrosine; 1-α-p-chloro-m-tyrosine; 1-α-ethyl-p-chloro-m-tyrosine;

20

L-α-butyl-p-chloro-m-tyrosine; La-p-bromo-m-tyrosine; L-α-ethyl-p-bromo-m-tyrosine; L-α-butyl-p-bromo-m-tyrosine; Lα-p-fluoro-m-tyrosine; La-p-iodo-m-tyrosine; L-α-ethyl-p-iodo-m-tyrosine; La-p-methyl-m-tyrosine; La-p-ethyl-m-tyrosine; 10 L-α-ethyl-p-ethyl-m-tyrosine; L-a-ethyl-p-methyl-m-tyrosine; La-p-butyl-m-tyrosine; La-p-trifluoromethyl-m-tyrosine; L-3-iodotyrosine; L-3-chlorotyrosine; 15 L-3,5-diiodotyrosine; $L-\alpha$ -methyltyrosine; $D, L-\alpha$ -methyltyrosine; D, L-3-iodo- α -methyltyrosine; 20 L-3-bromo- α -methyltyrosine; D, L-3-bromo- α -methyltyrosine; L-3-chloro- α -methyltyrosine; D, L-3-chloro- α -methyltyrosine; and 2-vinyl-2-amino-3-(4-hydroxyphenyl) propionic acid.

Another preferred class of tyrosine hydroxylase inhibitor compounds within Formula I consists of compounds

30

25

WO 91/01724 21 PCT/US90/04168

wherein R³ is selected from alkyl, alkenyl and alkynyl; wherein R⁴ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein m is a number selected from zero through five, inclusive; wherein R⁵ is selected from OR⁶ and

-N $^{R^7}$, wherein $^{R^6}$ is selected from

hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenalkyl and 10 phenyl, and wherein each of R^7 and R^8 is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, 15 arylsulfinyl and arylsulfonyl; wherein each of R 9 through R¹³ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxycarbonyl, alkoxy, aryloxy, aralkoxy, alkoxyalkyl, haloalkyl, alkoxycarbonyl, hydroxyalkyl, halo, cyano, amino, 20 monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl.

A preferred sub-class of compounds within

Formula III consists of compounds wherein at least one of R¹⁰, R¹¹ and R¹² is selected from hydroxy, alkoxy, aryloxy, aralkoxy and alkoxycarbonyl. More preferred compounds of this sub-class are methyl(+)-2-(4-hydroxyphenyl)glycinate; isopropyl and 3-methyl butyl esters of (+)-2-(4-hydroxyphenyl)glycine; (+)-2-(4-hydroxyphenyl)glycine; (-)-2-(4-hydroxyphenyl)glycine; (+)-2-(4-methoxyphenyl-glycine; and (+)-2-(4-hydroxyphenyl)glycinamide.

15

20

25

Still another preferred class of tyrosine hydroxylase inhibitor compounds within Formula I is provided by compounds of Formula IV:

wherein each of R1 and R2 is hydrido; wherein m is a number selected from zero through five, inclusive; wherein R3 is selected from alkyl, alkenyl and alkynyl; wherein R4 is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein each of R¹⁴ through R¹⁷ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, carboxyl, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, carboxyalkoxy and formyl.

WO 91/01724 23 PCT/US90/04168

A preferred sub-class of compounds within Formula IV consists of L-α-methyltryptophan; D,L-5-methyltryptophan; D,L-5-chlorotryptophan; D,L-5-bromotryptophan; D,L-5-iodotryptophan; L-5-hydroxytryptophan; D,L-5-hydroxy-α-methyltryptophan; α-ethynyltryptophan; 5-methoxymethoxy-α-ethynyltryptophan; and 5-hydroxy-α-ethynyltryptophan.

Still another preferred class of tyrosine

10 hydroxylase inhibitor compounds within Formula I is
provided by compounds wherein A is

-N
$$^{R^{21}}$$
 , wherein R6 is selected from $^{R^{22}}$

٠,

15

30

three, inclusive. More preferred compounds in this class are 2-vinyl-2-amino-5-aminopentanoic acid and 2-ethynyl-2-amino-5-aminopentanoic acid.

Still another preferred class of tyrosine hydroxylase inhibitor compounds within Formula I is provided by compounds of Formula V:

wherein each of R^{23} and R^{24} is independently selected from hydrido, hydroxy, alkyl, cycloakyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, aryloxy, alkoxyalkyl,

haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein R²⁵ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, 5 alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein each of R²⁶ through R³⁵ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, 10 aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, carboxyl, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, alkoxy and 15 formyl; wherein n is a number selected from zero through five, inclusive; or a pharmaceutically-acceptable salt thereof. A more preferred compound of this class is benzoctamine.

20

A class of compounds from which a suitable dopadecarboxylase inhibitor compound may be selected to provide the conjugate first residue is represented by Formula VI:

25

30

35

wherein each of R³⁶ through R⁴² is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl,

WO 91/01724 25 PCT/US90/04168

hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, carboxyalkoxy and formyl; wherein n is a number from zero through four; wherein each of \mathbb{R}^{43} and \mathbb{R}^{44} is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, 10 monoalkylamino, dialkylamino, monoalkylcarbonylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl, arylsulfonyl, alkenyl, cycloalkenyl and alkynyl, wherein any R43 and R44substituent having a substitutable position may be further substituted with one or more groups selected from 15 hydroxyalkyl, halo, haloalkyl, carboxyl, alkoxyalkyl, alkoxycarbonyl; with the proviso that R^{43} and R^{44} cannot both be carboxyl at the same time, and with the further proviso that at least one of R^{43} through R^{44} is a primary or secondary amino group; or a pharmaceutically-acceptable 20 salt thereof.

٠

A preferred class of compounds within Formula VI consists of compounds wherein each of R36 through ${\ensuremath{\mathsf{R}}}^{42}$ is independently selected from hydrido, hydroxy, alkyl, 25 cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, cyano, aminomethyl, carboxyalkoxy and formyl; wherein n is a number from one through three; wherein each 30 of ${\bf R}^{43}$ and ${\bf R}^{44}$ is independently selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxyalkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl and alkanoyl; and wherein any R^{43} and R^{44} substituent having a 35

substitutable position may be further substituted with one or more groups selected from hydroxyalkyl, halo, haloalkyl, carboxyl, alkoxyalkyl, alkoxyarbonyl.

5 A more preferred class of compounds within Formula VI consists of those compounds wherein each of R³⁶ through R42 is independently selected from hydrido, hydroxy, alkyl, benzyl, phenyl, alkoxy, benzyloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, 10 alkanoyl, cyanoamino, cyano, aminomethyl, carboxyl, carboxyalkoxy and formyl; wherein n is one or two; wherein each of R^{43} and R^{44} is independently selected from hydrido, alkyl, benzyl, phenyl, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, 15 carboxyl, carboxyalkyl and alkanoyl; and wherein any R43 and R^{44} substituent having a substitutable position may be further substituted with one or more groups selected from hydroxyalkyl, halo, haloalkyl, carboxyl, alkoxyalkyl, alkoxycarbonyl. 20

An even more preferred class of compounds within Formula VI consists of those compounds wherein each of R³⁶ through R⁴² is independently selected from hydrido,

25 hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl, carboxyalkyl, aminomethyl, carboxyalkoxy and formyl; wherein n is one or two; wherein each of R⁴³ and R⁴⁴ is independently selected from hydrido, alkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino,

30 carboxyl and carboxyalkyl; and wherein any R⁴³ and R⁴⁴ substituted having a substitutable position may be further substituted with one or more groups selected from hydroxyalkyl, halo, haloalkyl, carboxyl, alkoxyalkyl, alkoxyarbonyl.

WO 91/01724 27 PCT/US90/04168

A more highly preferred class of compounds within Formula VI consists of those compounds wherein each of R^{36} and R^{37} is hydrido and n is one; wherein each of R^{38} through R^{42} is independently selected from hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl, carboxyalkyl, aminomethyl, carboxyalkoxy and formyl; wherein each of R^{43} and R^{44} is independently selected from hydrido, alkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl and carboxyalkyl; and wherein any ${\bf R}^{43}$ and ${\bf R}^{44}$ substituent having a substitutable position may be further substituted with one or more groups selected from hydroxyalkyl, halo, haloalkyl, carboxyl, alkoxyalkyl, alkoxycarbonyl. Compounds of specific interest are (2,3,4-trihydroxy)-benzylhydrazine, 1-(D,Lseryl-2 (2, 3, 4-trihydroxybenzyl) hydrazine (Benserazide) and 1-(3-hydroxylbenzyl)-1-methylhydrazine.

4

10

15

Another more highly preferred class of compounds consists of those compounds wherein each of R36 and R37 is 20 independently selected from hydrido, alkyl and amino and n is two; wherein each of R^{38} through R^{42} is independently selected from hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl, carboxyalkyl, aminomethyl, carboxyalkoxy and formyl; 25 wherein each of R^{43} and R^{44} is independently selected from hydrido, alkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl and carboxyalkyl. Compounds of specific interest are 2-hydrazino-2-methyl-3-(3,4dihydroxyphenyl)propionic acid (Carbidopa), α-(monofluoro-30 methyl) dopa and α -(difluoromethyl) dopa.

Another class of compounds from which a suitable dopa-decarboxylase inhibitor compound may be selected to provide the conjugate first residue is represented by Formula VII

5

$$\begin{array}{c}
R^{46} \\
R^{47} \\
R^{48} \\
R^{49} \\
R^{50}
\end{array}$$
(VII)

10

15

20

wherein each of R⁴⁵ through R⁴⁸ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, carboxyalkoxy and formyl; wherein each of R⁴⁹ and R⁵⁰ is independently selected from hydrido, alkyl, cycloalkyl, cycloalkyl, aralkyl, aryl, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl and

25

30

-CR⁵¹ wherein R⁵¹ is selected from hydroxy, alkoxy, aryloxy, aralkoxy, amino, monoalkylamino and dialkylamino with the proviso that R⁴⁹ and R⁵⁰ cannot both be carboxyl at the same time, and with the further proviso that at least one of R⁴⁵ through R⁴⁸ is a primary or secondary amino group or a carboxyl group; or a pharmaceutically-acceptable salt thereof.

WO 91/01724 PCT/US90/04168 29

A preferred class of compounds within Formula VII consists of those compounds wherein each of \mathbb{R}^{45} through R⁴⁸ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, cyano, aminomethyl, carboxyalkoxy and formyl; wherein each of ${\rm R}^{49}$ and ${\rm R}^{50}$ is independently selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, carboxyalkyl and alkanoyl and

4

10

20

30

 $-\mathbb{C}^{51}$ wherein \mathbb{R}^{51} is selected from hydroxy, alkoxy, phenoxy, benzyloxy, amino, monoalkylamino and dialkylamino. 15

A more preferred class of compounds within Formula VII consists of those compounds wherein each of R^{45} through \mathbf{R}^{48} is independently selected from hydrido, hydroxy, alkyl, benzyl, phenyl, alkoxy, benzyloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, cyanoamino, cyano, aminomethyl, carboxyalkoxy and formyl; wherein each of \mathbb{R}^{49} and \mathbb{R}^{50} s independently selected from hydrido, alkyl, benzyl, phenyl, alkoxyalkyl, 25 haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, carboxyalkyl and alkanoyl and

-CR⁵¹ wherein R⁵¹ is selected from hydroxy, alkoxy, amino and monoalkylamino.

An even more preferred class of compounds of Formula VII consists of those compounds wherein each of R^{45} through R^{48} is independently selected from hydrido, hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl, carboxyalkyl aminomethyl, carboxyalkoxy and formyl; wherein each of R^{49} and R^{50} is independently selected from hydrido, alkyl, amino, monoalkylamino, carboxyalkyl and

-CR⁵¹ wherein R⁵¹ is selected from hydroxy, alkoxy, amino and monoalkylamino.

10

15

A highly preferred class of compounds within Formula VII consists of those compounds wherein each of R^{45} through R^{48} is independently selected from hydrido, hydroxy, alkyl, alkoxy and hydroxyalkyl; wherein each of R^{49} and R^{50} is independently selected from alkyl, amino, monoalkylamino, and

-CR⁵¹ wherein R⁵¹ is selected from hydroxy, methoxy, ethoxy, propoxy, butoxy, amino, methylamino and ethylamino.

20

A more highly preferred class of compounds within Formula VII consists of those compounds wherein said inhibitor compound is selected from endo-2-amino1,2,3,4-tetrahydro-1,2-ethanonaphthalene-2-carboxylic acid; ethylendo-2-amino-1,2,3,4-tetra-hydro-1,4-ethano-naphthalene-2-carboxylate hydrochloride; exo-2-amino1,2,3,4-tetrahydro-1,4-ethanonaphthalene-2-carboxylic acid; and ethyl-exo-2-amino-1,2,3,4-tetrahydro-1,4-ethano-naphthalene-2-carboxylate hydrochloride.

30

25

Another family of specific dopa-decarboxylase inhibitor compounds consists of 2,3-dibromo-4,4-bis(4-ethylphenyl)-2-butenoic acid;

WO 91/01724 31 PCT/US90/04168

```
3-bromo-4-(4-methoxyphenyl)-4-oxo-2-butenoic acid;
     N-(5'-phosphopyridoxyl)-L-3,4-dihydroxyphenylalanine;
     N-(5'-phosphopyridoxyl)-L-m-aminotyrosine;
     D, L-β-(3, 4-dihydroxyphenyl) lactate;
    D, L-β-(5-hydroxyindolyl-3) lactate;
    2,4-dihydroxy-5-(1-oxo-2-propenyl)benzoic acid;
     2,4-dimethoxy-5-[1-oxo-3-(2,3,4-trimethoxyphenyl-2-
    propenyl]benzoic acid;
    2,4-dihydroxy-5-[1-oxo-3-(2-thienyl)-2-propenyl] benzoic
10
    acid;
    2,4-dihydroxy-5-[3-(4-hydroxyphenyl)-l-oxo-2-propenyl]
    benzoic acid;
    5-[3-(4-chlorophenyl)-1-oxo-2-propenyl]-2,4-dihydroxy
    benzoic acid;
    2,4-dihydroxy-5-(1-oxo-3-phenyl-2-propenyl)benzoic acid;
    2,4-dimethoxy-5-[l-oxo-3-(4-pyridinyl)-2-propenyl] benzoic
    5-[3-(3,4-dimethoxyphenyl)-l-oxo-2-propenyl]-2,4 dimethoxy
    benzoic acid;
    2,4-dimethoxy-5-(1-oxo-3-phenyl-2-propenyl)benzoic acid;
20
    5-[3-(2-furanyl)-l-oxo-2-propenyl]-2,4-dimethoxy benzoic
    acid;
    2,4-dimethoxy-5-[1-oxo-3-(2-thienyl)-2-propenyl] benzoic
    acid;
25
    2,4-dimethoxy-5-[3-(4-methoxyphenyl)-l-oxo-2-propenyl]
    benzoic acid:
    5-[3-(4-chlorophenyl)-1-oxo-2-propenyl]-2,4-dimethoxy
    benzoic acid; and
    5-[3-[4-(dimethylamino)phenyl]-l-oxo-2-propenyl]-2,4
```

dimethoxy benzoic acid.

3

Another class of compounds from which a suitable dopa-decarboxylase inhibitor may be selected to provide the conjugate first residue is represented by Formula VIII:

5

10

wherein R^{52} is selected from hydrido, OR^{64} and

$$R^{65}$$
, wherein R^{64} is selected from

hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenalkyl and 15 phenyl, and wherein each of R⁶⁵ and R⁶⁶ is independently selected from hydrido, alkyl, alkanoyl, amino, monoalkylamino, dialkylamino, phenyl and phenalkyl; wherein each of R⁵³, R⁵⁴ and R⁵⁷ through R⁶³ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, 20 cycloalkylalkyl, aralkyl, aryl, alkoxycarbonyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein each of ${\ensuremath{\text{R}}}^{55}$ and ${\ensuremath{\text{R}}}^{56}$ is independently selected from hydrido, alkyl, cycloalkyl, 25 cycloalkylalkyl, aralkyl, aryl, alkoxyalkyl, halo, haloalkyl, hydroxyalkyl and carboxyalkyl; wherein each of m and n is a number independently selected from zero through six, inclusive; or a pharmaceutically-acceptable salt 30 thereof.

A preferred class of compounds of Formula VIII consists of those compounds wherein $\ensuremath{\text{R}^{52}}$ is $\ensuremath{\text{OR}^{64}}$ wherein $\ensuremath{\text{R}^{64}}$

is selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, benzyl and phenyl; wherein each of R⁵³, R⁵⁴ and R⁵⁷ through R⁶³ is independently selected from hydrido, alkyl, cycloalkyl, hydroxy, alkoxy, benzyl and phenyl; wherein each of R⁵⁵ and R⁵⁶ is independently selected from hydrido, alkyl, cycloalkyl, benzyl and phenyl; wherein each of m and n is a number independently selected from zero through three, inclusive.

A more preferred class of compounds of Formula VIII consists of those compounds wherein R⁵² is OR⁶⁴ wherein R⁶⁴ is selected from hydrido and lower alkyl; wherein each of R⁵³ through R⁵⁸ is hydrido; wherein each of R⁵⁹ through R⁶³ is independently selected from hydrido, alkyl, hydroxy and alkoxy, with the proviso that two of the R⁵⁹ through R⁶³ substituents are hydroxy; wherein each of m and n is a number independently selected from zero through two, inclusive.

20 A preferred compound within Formula IX is 3-(3,4-dihydroxyphenyl)-2-propenoic acid, also known as caffeic acid.

Another class of compounds from which a suitable dopa-decarboxylase inhibitor compound may be selected to provide the conjugate first residue is a class of aromatic amino acid compounds comprising the following subclasses of compounds:

- amino-haloalkyl-hydroxyphenyl propionic acids, such as 2-amino-2-fluoromethyl-3hydroxyphenylpropionic acid;
- alpha-halomethyl-phenylalanine derivatives such as alpha-fluoroethylphenethylamine; and

20

25

30

35

- indole-substituted halomethylamino acids.

Still other classes of compounds from which a suitable dopa-decarboxylase inhibitor compound may be selected to provide the conjugate first residue are as follows:

- isoflavone extracts from fungi and
 streptomyces, such as 3',5,7-trihydroxy-4',6dimethoxyisoflavone, 3',5,7-trihydroxy-4',8dimethoxyisoflavone and 3',8-dihydroxy-4',6,7trimethoxyisoflavone;
- sulfinyl substituted dopa and tyrosine derivatives such as shown in U.S. Patent No. 4,400,395 the content of which is incorporated herein by reference;
 - hydroxycoumarin derivatives such as shown in U.S. Patent No. 3,567,832, the content of which is incorporated herein by reference;
 - 1-benzylcyclobutenyl alkyl carbamate derivatives such as shown in U.S. Patent No. 3,359,300, the content of which is incorporated herein by reference;
 - arylthienyl-hydroxylamine derivatives such as shown in U.S. Patent No. 3,192,110, the content of which is incorporated herein by reference; and
 - β-2-substituted-cyclohepta-pyrrol-8-1H-on-7-yl alanine derivatives.

10

Suitable dopamine- β -hydroxylase inhibitors may be generally classified mechanistically as chelating-type inhibitors, time-dependent inhibitors and competitive inhibitors.

A class of compounds from which a suitable dopamine- β -hydroxylase inhibitor may be selected to provide the conjugate first residue consists of time-dependent inhibitors represented by Formula IX:

$$B = \begin{bmatrix} R^{67} \\ C \\ R^{68} \end{bmatrix}_{n} \times \begin{bmatrix} R^{69} \\ H \end{bmatrix}$$
 (IX)

wherein B is selected from aryl, an ethylenic moiety, an acetylenic moiety and an ethylenic or acetylenic moiety substituted with one or more radicals selected from substituted or unsubstituted alkyl, aryl and heteroaryl; wherein each of R⁶⁷ and R⁶⁸ is independently selected from hydrido, alkyl, alkenyl and alkynyl; wherein R⁶⁹ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; and wherein n is a number selected from zero through five.

A preferred class of compounds of Formula IX consists of those compounds wherein B is phenyl or hydroxyphenyl; wherein R⁶⁷ is ethenyl or ethynyl; or an

acetylenic moiety substituted with an aryl or heteroaryl radical; and wherein n is a number from zero through three.

Another preferred class of compounds of Formula IX consists of those compounds wherein B is an ethylenic or acetylenic moiety incorporating carbon atoms in the betaand gamma-positions relative to the nitrogen atom; and wherein n is zero or one. More preferred are compounds wherein the ethylenic or acetylenic moiety is substituted at the gamma carbon with an aryl or heteroaryl radical. 10 Even more preferred are compounds wherein said aryl radical is selected from phenyl, 2-thiophene, 3-thiophene, 2furanyl, 3-furanyl, oxazolyl, thiazolyl and isoxazolyl, any one of which radicals may be substituted with one or more 15 groups selected from halo, hydroxyl, alkyl, haloalkyl, cyano, alkoxy, alkoxyalkyl and cycloalkyl. More highly preferred are compounds wherein said aryl radical is selected from phenyl, hydroxyphenyl, 2-thiophene and 2furanyl; and wherein each of R⁶⁷, R⁶⁸ and R⁶⁹ is hydrido.

20

A family of specifically-preferred compounds within Formula IX consists of the compounds 3-amino-2-(2'-thienyl) propene; 3-amino-2-(2'-thienyl) butene; 3-(N-methylamino)-2-(2'-thienyl) propene; 3-amino-2-(3'-thienyl) propene; 3-amino-2-(2'furanyl) propene; 3-amino-2-(3'-furanyl) propene; 1-phenyl-3aminopropyne; and 3-amino-2-phenylpropene. Another family of specifically-preferred compounds of Formula VIII consists of the compounds (±)4-amino-3-phenyl-1butyne; (±)4-amino-3-(3'-hydroxyphenyl)-1-butyne; (±)4-amino3-phenyl-1-butene; (±)4-amino-3-(3'-hydroxyphenyl)-1-butene; and (±)4-amino-3-(4'-hydroxyphenyl)-1-butene.

10

Another class of compounds from which a suitable dopamine- β -hydroxylase inhibitor may be selected to provide the conjugate first residue is represented by Formula X:

wherein W is selected from alkyl, cycloalkyl, alkenyl, alkynyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aralkyl, heterocycloalkyl and heteroaryl; wherein Y is selected from

wherein R⁷⁰ is selected from hydrido, alkyl, cycloalkyl,
hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl,
aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino,
cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl,
alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein each
of Q and T is one or more groups independently selected
from

wherein each of R⁷¹ through R⁷⁴ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino,

monoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; or a pharmaceutically-acceptable salt thereof.

A preferred class of compounds within Formula X consists of compounds wherein W is heteroaryl and Y is

15

10

5

wherein R⁷⁰ is selected from hydrido, alkyl, amino, monoalkylamino, dialkylamino, phenyl and phenalkyl; wherein each of R⁷¹ and R⁷² is independently selected from hydrido, hydroxy, alkyl, phenalkyl, phenyl, alkoxy, benzyloxy, phenoxy, alkoxyalkyl, hydroxyalkyl, halo, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl and alkanoyl; and wherein each of p and q is a number independently selected from one through six, inclusive.

25

30

35

20

A more preferred class of compounds of Formula X consists of wherein R⁷⁰ is selected from hydrido, alkyl, amino and monoalkylamino; wherein each of R⁷¹ and R⁷² is independently selected from hydrido, hydroxy, alkyl, alkoxy, amino, monoalkylamino, carboxy, carboxyalkyl and alkanoyl; and wherein each of p and q is a number indpendently selected from two through four, inclusive. Even more preferred are compounds wherein R⁷⁰ is selected from hydrido, alkyl and amino; wherein each of R⁷¹ and R⁷² is independently selected from hydrido, amino,

monoalkylamino and carboxyl; and wherein each of p and q is independently selected from the numbers two and three. Most preferred are compounds wherein R^{70} is hydrido; wherein each of R^{71} and R^{72} is hydrido; and wherein each of p and q is two.

Another class of compounds from which a suitable dopamine- β -hydroxylase inhibitor may be selected to provide the conjugate first residue is represented by Formula XI:

10

5

wherein E is selected from alkyl, cycloalkyl, alkenyl,
alkynyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl,
aralkyl, heterocycloalkyl and heteroaryl; wherein F is
selected from

wherein Z is selected from 0, S and N-R⁷⁸; wherein each of R⁷⁵ and R⁷⁶ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, minoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein R⁷⁵ and R⁷⁶ may form oxo or thio; wherein r is a number selected from zero through six, inclusive; wherein each of R⁷⁷ and R⁷⁸ is independently selected from hydrido, alkyl, cycloalkyl,

25

hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; or a pharmaceuticallyacceptable salt thereof.

Another class of compounds from which a suitable dopamine- β -hydroxylase inhibitor may be selected to provide the conjugate first residue is represented by Formula XII:

wherein each of R⁸² through R⁸⁵ is independently selected from hydrido, alkyl, haloalkyl, mercapto, alkylthio, cyano, alkoxy, alkoxyalkyl and cycloalkyl; wherein Y is selected from oxygen atom and sulfur atom; wherein each of R⁷⁹ and R⁸⁰ is independently selected from hydrido and alkyl; wherein R⁸¹ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; and wherein m is a number from one through six; or a pharmaceutically-acceptable salt thereof.

A preferred family of compounds of Formula XII consists of those compounds wherein each of R⁸² through R⁸⁵ is independently selected from hydrido, alkyl and haloalkyl; wherein Y is selected from oxygen atom or sulfur atom; wherein each of R⁷9, R⁸⁰ and R⁸¹ is independently

hydrido and alkyl; and wherein m is a number selected from one through four, inclusive.

A family of preferred specific compounds within Formula XII consists of the following compounds: 5 aminomethyl-5-n-butylthiopicolinate; aminomethyl-5-n-butylpicolinate; 2'-aminoethyl-5-n-butylthiopicolinate; 2'-aminoethyl-5-n-butylpicolinate; (2'-amino-1',1'-dimethyl)ethyl-5-n-butylthiopicolinate; 10 (2'-amino-1',1'-dimethyl)ethyl-5-n-butylpicolinate; (2'-amino-1'-methyl)ethyl-5-n-butylthiopicolinate; (2'-amino-1'-methyl)ethyl-5-n-butylpicolinate; 3'-aminopropyl-5-n-butylthiopicolinate; 3'-aminopropyl-5-n-butylpicolinate; 15 (2'-amino-2'-methyl)propyl-5-n-butylthiopicolinate; (2'-amino-2'-methyl)propyl-5-n-butylpicolinate; (3'-amino-1',1'-dimethyl)propyl-5-n-butylthiopicolinate; (3'-amino-1',1'-dimethy1) propyl-5-n-butylpicolinate; 20 (3'-amino-2',2'-dimethyl)propyl-5-n-butylthiopicolinate; (3'-amino-2',2'-dimethyl)propyl-5-n-butylpicolinate; 2'-aminopropyl-5-n-butylthiopicolinate; 2'-aminopropyl-5-n-butylpicolinate; 4'-aminobutyl-5-n-butylthiopicolinate; 4'-amino-3'-methyl) butyl-5-n-butylthiopicolinate; 25 (3'-amino-3'-methyl)butyl-5-n-butylthiopicolinate;

and (3'-amino-3'-methyl)butyl-5-n-butylpicolinate.

Another preferred class of compounds within Formula XII consists of those compounds of Formula XIII:

wherein each of R86, R87 and R90 through R93 is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, 15 aralkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein R⁸⁶ and R⁸⁷ together may form oxo or thio; wherein r is a number selected from zero through six, 20 inclusive; wherein each of R⁸⁸ and R⁸⁹ is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, 25 arylsulfinyl and arylsulfonyl.

A more preferred class of compounds within

Formula XIII consists of those compounds wherein each of

R86, R87 and R90 through R93 is independently selected from
hydrido, hydroxy, alkyl, phenalkyl, phenyl, alkoxy,
benzyloxy, phenoxy, alkoxyalkyl, hydroxyalkyl, halo, amino,
monoalkylamino, dialkylamino, carboxy, carboxyalkyl and
alkanoyl; wherein r is a number selected from zero through
four, inclusive; wherein each of R88 and R89 is

independently selected from hydrido, alkyl, amino, monoalkylamino, dialkylamino, phenyl and phenalkyl.

An even more preferred class of compounds within Formula XIII consists of those compounds wherein each of R^{86} , R^{87} and R^{90} through R^{93} is independently selected from hydrido, hydroxy, alkyl, alkoxy, amino, monoalkylamino, carboxy, carboxyalkyl and alkanoyl; and wherein r is a number selected from zero through three, inclusive; and wherein each of \mathbf{R}^{88} and \mathbf{R}^{89} is selected from hydrido, alkyl, amino and monoalkylamino. Most preferred are compounds wherein each of R^{90} through R^{93} is independently selected from hydrido and alkyl; wherein each of R86 and R^{87} is hydrido; wherein r is selected from zero, one and two; wherein R^{88} is selected from hydrido, alkyl and amino; and wherein R^{89} is selected from hydrido and alkyl. Especially preferred within this class is the compound 5-nbutylpicolinic acid hydrazide (fusaric acid hydrazide) shown below:

20

25

15

Another class of compounds from which a suitable dopamine-\beta-hydroxylase inhibitor compound may be selected to provide the conjugate first residue is represented by Formula XIV:

5

10

wherein each of R⁹⁴ through R⁹⁸ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, aryloxy, alkoxy, alkylthio, aralkoxy, 15 alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, amido, alkylamido, hydroxyamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, carboxyl, tetrazolyl, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, 20 alkylsulfonyloxy, formoyl and alkoxycarbonyl; with the proviso that at least one of R⁹⁴ through R⁹⁸ is

$$+ (CH_2)_t A'$$

wherein A' is $-CR^{99}$ or -N wherein R^{99} is selected

from hydrido, alkyl, hydroxy, alkoxy, alkylthio, phenyl, phenoxy, benzyl, benzyloxy,

-OR 100 and -N , wherein R 100 is selected from

hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenyl and benzyl; each of R^{101} , R^{102} , R^{103} and R^{104} is independently 30

selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein t is a number selected from zero through four, inclusive; or a pharmaceutically-acceptable salt thereof.

A preferred family of compounds within Formula

XIV consists of those compounds characterized as chelatingtype inhibitors of Formula XV:

wherein each of R95 through R⁹⁸ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, phenyl, benzyl, alkoxy, phenoxy, benzyloxy, alkoxyalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, amido, alkylamido, hydroxyamino, carboxyl, carboxyalkyl, alkanoyl, cyanoamino, carboxyl, thiocarbamoyl, aminomethyl, nitro, formoyl, formyl and alkoxycarbonyl; and wherein R¹⁰⁰ is selected from hydrido, alkyl, phenyl and benzyl.

A class of specifically-preferred compounds of

Formula XV consists of

5-n-butylpicolinic acid (fusaric acid);

5-ethylpicolinic acid;

picolinic acid;

5-nitropicolinic acid;

5-aminopicolinic acid;

5-N-acetylaminopicolinic acid; 5-N-propionylaminopicolinic acid; 5-N-hydroxyaminopicolinic acid; 5-iodopicolinic acid; 5 5-bromopicolinic acid; 5-chloropicolinic acid; 5-hydroxypicolinic acid 5-methoxypicolinic acid; 5-N-propoxypicolinic acid; 5-N-butoxypicolinic acid; 10 5-cyanopicolinic acid; 5-carboxylpicolinic acid; 5-n-butyl-4-nftropicolinic acid; 5-n-butyl-4-methoxypicolinic acid; 5-n-butyl-4-ethoxypicolinic acid; 15 5-n-butyl-4-aminopicolinic acid; 5-n-butyl-4-hydroxyaminopicolinic acid; and 5-n-butyl-4-methylpicolinic acid.

20 Especially preferred of the foregoing class of compounds of Formula XV is the compound 5-n-butylpicolinic acid (fusaric acid) shown below:

Another class of compounds from which a suitable dopamine-\beta-hydroxylase inhibitor may be selected to provide the conjugate first residue consists of azetidine-2-carboxylic acid derivatives represented by Formula XVI:

5

$$R^{109} - S - \begin{bmatrix} R^{108} \\ | \\ CH \end{bmatrix} CH - C - N - CH - CR^{106} \\ | CR^{106} \\ | CH \\ | CR^{105}$$
 (XVI)

10

wherein R^{105} is hydrido, hydroxy, alkyl, amino and alkoxy; wherein R^{106} is selected from hydrido, hydroxy and alkyl; wherein each of R^{107} and R^{108} is independently selected from hydrido, alkyl and phenalkyl; wherein R^{109} is selected from hydrido and

R110 C- with R110 selected from alkyl, phenyl and phenalkyl; wherein u is a number from one to three, inclusive; and wherein v is a number from zero to two, inclusive; or a pharmaceutically-acceptable salt thereof.

A preferred class of compounds within Formula XVI consists of those compounds wherein R¹⁰⁵ is selected from hydroxy and lower alkoxy; wherein R¹⁰⁶ is hydrido; wherein R¹⁰⁷ is selected from hydrido and lower alkyl; wherein R¹⁰⁸ is hydrido; wherein R¹⁰⁹ is selected from hydrido and

R110C- with R110 selected from lower alkyl and phenyl; wherein u is two; and wherein v is a number from zero to two, inclusive.

20

25

A more preferred class of compounds within Formula XVI consists of those compounds of Formula XVII:

$$R^{109} S = \begin{bmatrix} CH_2 \\ V \end{bmatrix}_{V}^{R^{107}} C - N = \begin{bmatrix} CR^{111} \\ CR^{111} \end{bmatrix}$$
 (XVII)

wherein R^{111} is selected from hydroxy and lower alkyl; wherein R^{107} is selected from hydrido and lower alkyl; wherein R^{109} is selected from hydrido and

 $R^{110}\overset{"}{C}$ - with R^{110} selected from lower alkyl and phenyl and v is a number from zero to two, inclusive.

A more preferred class of compounds within Formula XVII consists of those compounds wherein R^{111} is hydroxy; wherein R^{107} is hydrido or methyl; wherein R^{109} is hydrido or acetyl; and wherein n is a number from zero to two, inclusive.

Most preferred within the class of compounds of Formula XVII are the compounds 1-(3-mercapto-2-methyl-1-oxopropyl)-L-proline and 1-(2-mercaptoacetyl)-L-proline (also known as captopril).

Another class of compounds from which a suitable dopamine- β -hydroxylase inhibitor compound may be selected to provide the conjugate first residue is represented by Formula XVIII:

5

wherein each of R¹¹² through R¹¹⁹ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkyl, alkoxy, alkoxyalkyl, aralkyl, aryl, alkoxycarbonyl, hydroxyalkyl, halo, haloalkyl, cyano, amino, aminoalkyl, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, mercapto and alkylthio; or a pharmaceutically-acceptable salt thereof.

15

20

25

10

A first preferred class of compounds within Formula XVIII consists of those compounds wherein R¹¹² is selected from mercapto and alkylthio; wherein each of R¹¹³ and R¹¹⁴ is independently selected from hydrido, amino, aminoalkyl, monoalkylamino, monoalkylaminoalkyl, carboxyl and carboxyalkyl; wherein each of R¹¹⁵ and R¹¹⁹ is hydrido; and wherein each of R¹¹⁶, R¹¹⁷ and R¹¹⁸ is independently selected from hydrido, hydroxy, alkyl, halo and haloalkyl; or a pharmaceutically-acceptable salt thereof.

A second preferred class of compounds within Formula XVIII consists of those compounds wherein R¹¹² is selected from amino, aminoalkyl, monoalkylamino, monoalkylaminoalkyl, carboxy and carboxyalkyl; wherein each of R¹¹³, R¹¹⁴, R¹¹⁵ and R¹¹⁹ is hydrido; and wherein each of R¹¹⁶, R¹¹⁷ and R¹¹⁸ is independently selected from hydrido, hydroxy, alkyl, halo and haloalkyl; or a pharmaceutically-acceptable salt thereof.

10 Compounds which fall within any of the aforementioned inhibitor compounds, but which lack a reactive acid or amino moiety to form a cleavable bond, may be modified or derivatized to contain such acid of amino moiety. Examples of classes of such compounds lacking an amino on acidic moiety are the following: 1-(3,5-dihaloaryl)imidazol-2-thione derivatives such as 1-(3,5-difluorobenzyl)imidazol-2thione; and hydroxyphenolic derivatives such as resorcinol.

The first component used to form the conjugate of the invention provides a first residue derived from an inhibitor compound capable of inhibiting formation of a benzylhydroxylamine intermediate involved in the biosynthesis of an adrenergic neurotransmitter. This inhibitor compound must contain a moiety convertible to a primary or secondary amino terminal moiety. An example of a moiety convertible to an amino terminal moiety is a carboxylic acid group reacted with hydrazine so as to convert the acid moiety to carboxylic acid hydrazide. The hydrazide moiety thus contains the terminal amino moiety which may then be further reacted with

the carboxylic acid containing residue of the second component to form a hydrolyzable amide bond. Such hydrazide moiety thus constitutes a "linker" group between the first and second components of a conjugate of the invention.

5

Suitable linker groups may be provided by a class of diamino-terminated linker groups based on hydrazine as defined by Formula XIX:

$$-N - (CH2) - N - (XIX)$$

10

15

wherein each of R²⁰⁰ and R²⁰¹ may be independently selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, alkoxyalkyl, hydroxyalkyl, aralkyl, aryl, haloalkyl, amino, monoalkylamino, dialkylamino, cyanoamino, carboxyalkyl, alkylsulfino, alkylsulfonyl, arylsulfinyl and arylsulfonyl; and wherein n is zero or a number selected from three through seven, inclusive. In Table I there is shown a class of specific examples of diamino-terminated linker groups within Formula XIX,

identified as Linker Nos. 1-73. These linker groups would be suitable to form a conjugate between a carbonyl moiety of an AII antagonist (designated as "I") and a carbonyl moiety of a carbonyl terminated second residue such as the carbonyl moiety attached to the gamma carbon of a glutamyl residue (designated as "T").

TABLE I

I = inhibitor
T = acetyl-γ-glutamyl

10	LINKER	n	R ²⁰⁰	- 201	 1
-•	NO.		Keon	R ²⁰¹	
15	1	0	Н	Н	
	2	0	СНЗ	Н	
20	3	0	C2H5	'H	
25	4	0	С3Н7	н -	
25	5	0	CH (CH3) 2	н	
30	6	0	C4H9	н	
	7	0	CH (CH3) CH2CH3	Н .	
35	8	0	C(CH3)3	н .	
40	9	0	C5H9	Н	
40	10	0	C6H11 (cyclo)	Н	
45	11	0	C6H5	Н	
	12	0	CH ₂ C ₆ H ₅	н	
50	13	0	Н	CH3	

	LINKER NO.	n .	R ²⁰⁰	R ²⁰¹
	14	0	н	C2H5
5	15	0	Н	С3Н7
	16	0	Н	CH (CH ₃) ₂
10	17	. 0	н	C4H9
15	18	. 0	H	CH (CH3) CH2CH3
	19	0	н	C(CH3)3
20	20	0	н	С5Н9
	21	0	Н	C6H13
25	22	0	н	С6Н5
30	23	0	н	CH2C6H5
	24	0	н	C6H11 (CYClo)
35	25	0	C6H13	н
	26	0	СНЗ	CH3
40	27	0	C2H5	C ₂ H ₅
45	28	0	C3H7	С3Н7
	29	0	CH (CH3) 2	CH (CH3) 2

	LINKER NO.	n	R ²⁰⁰	R ²⁰¹
	30	0	C4H9	C4H9
5	31	0	CH (CH3) CH2CH3	СН (СН3) СН 2СН3
	32	0	C(CH3)3	C(CH3)3
10	33	0	С5Н9	С5Н9
15	34	0	C6H13	C6H13
13	35	0	C ₆ H ₁₁ (cyclo)	C ₆ H ₁₁ (cyclo)
20	36	0	C6H5	С6Н5
	37	0	CH2C6H5	CH2C6H5
25	38	3	Н	Н
30	39	3	CH3	н
30	40	3	Н	СН3
35	41	3	C6H5	Н
	42	3	H	C6H5
40	43	3	СН3	С6Н5
	44	3	C6H5	СН3

	LINKER NO.	n	R ²⁰⁰	R ²⁰¹
	45	3	CH2C6H5	Н
5	46	3	н	СH2С6H5
	47	4	н	н
10	48	4	СН3	. H
	49	4	н	CH3
15	50	4	C6H5	H
20	51.	4	н	C6H5
	52	4	СНЗ	C6H5
25	53	4	C6H5	CH3
	54	4	CH2C6H5	н
30	55	4	Н	CH ₂ C ₆ H ₅
35	56	5	Н	Н
	57	5	CH3	н
40	58	5	Н	CH3
	59	5	С6Н5	н
45	60	5	н	C6H5

	Linker No.	n	R ²⁰⁰	R201
	61	5 .	CH ₃	C6H5
5	62	5	C6H5	СНЗ
	63	5	CH ₂ C ₆ H ₅	н
10	64	5	Н	CH2C6H5
15	65	6	н	н
	66	6.	CH3	Н
20	67	6	Н	CH3
	68	6	С6Н5	H
25	· 69	6	H	C6H5
30	70	.	СНЗ	C6H5
30	71 .	6	C6H5	CH3
35	72	6	CH2C6H5	н
	73	6	Н	CH2C6H5

Another class of suitable diamino terminal linker groups is defined by Formula XX:

5

wherein each of ${\tt Q}$ and ${\tt T}$ is one or more groups independently selected from

$$\begin{bmatrix}
R^{202} \\
C \\
R^{203}
\end{bmatrix}$$
and
$$\begin{bmatrix}
R^{204} & R^{205} \\
C \\
C
\end{bmatrix}$$

10

15

wherein each of R²⁰² through R²⁰⁵ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl.

A preferred class of linker groups within Formula IV is defined by Formula XXI:

20

WO 91/01724 59 PCT/US90/04168

wherein each of R²⁰² and R²⁰³ is independently selected from hydrido, hydroxy, alkyl, phenalkyl, phenyl, alkoxy, benzyloxy, phenoxy, alkoxyalkyl, hydroxyalkyl, halo, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl and alkanoyl; and wherein each of p and q is a number independently selected from one through six, inclusive; with the proviso that when each of R²⁰² and R²⁰³ is selected from halo, hydroxy, amino, monoalkylamino and dialkylamino, then the carbon to which R²⁰² or R²⁰³ is attached in Formula XXI is not adjacent to a nitrogen atom of Formula XXI.

A more preferred class of linker groups of Formula V consists of divalent radicals wherein each of R^{202} and R^{203} is independently selected from hydrido, hydroxy, alkyl, 15 alkoxy, amino, monoalkylamino, carboxy, carboxyalkyl and alkanoyl; and wherein each of p and q is a number independently selected from two through four, inclusive. Even more preferred are linker groups wherein each of R^{202} and R^{203} is independently selected from hydrido, amino, monoalkylamino 20 and carboxyl; and wherein each of p and q is independently selected from the numbers two and three. Most preferred is a linker group wherein each of R²⁰² and R²⁰³ is hydrido; and wherein each of p and q is two; such most preferred linker group is derived from a piperazinyl group and has the 25 structure

In Table II there is shown a class of specific examples of cyclized, diamino-terminated linker groups within Formula XXI. These linker groups, identified as Linker Nos. 74-95, would be suitable to form a conjugate between a carbonyl moiety of an AII antagonist (designated as "I") and a carbonyl moiety of carbonyl terminated second residue such as the carbonyl moiety attached to the gamma carbon of a glutamyl residue (designated as "T").

10

TABLE II

5

I = inhibitor $T = acetyl-\gamma-glutamyl$

10	LINKER NO.	R ²⁰⁶	R ²⁰⁷	R ²⁰⁸	R ²⁰⁹	R ²¹⁰	R ²¹¹	R ²¹²	R ²¹³	
	74	н	Н	Н	Н	Н	Н	Н	Н	
15	75	СНЗ	н	. н	Н	Н	н	н	Н	
20	76	H	Н	Н	Н	CH3	Н	H .	н	
	77	СНЗ	Н	Н	Н	CH3	н	н	Н	
25	78	СНЗ	Н	СНЗ	Н	н .	Н	Н	Н	
	79	СНЗ	Н	Н	Н	Н	Н	СНЗ	Н	
30	80	CH3	СНЗ	Н	Н	Н	Н	н	Н	
35	81	Н	н	Н	Н	СНЗ	снз	н	Н	
	82	CH3	СНЗ	Н	Н	СНЗ	СНЗ	н	Н	
40	83	СНЗ	СНЗ	СНЗ	CH3	Н	н	н	н	
45	84	CH3	СНЗ	H	Н	Н	Н	CH3	СНЗ	

45

	Linker No.	R ²⁰⁶	R ²⁰⁷	R ²⁰⁸	R ²⁰⁹	R ²¹⁰	R ²¹	R212	R ²¹³
	85	Н	Н	Н	Н	СНЗ	СНЗ	СНЗ	СНЗ
5	86	С6Н5	Н	н	Н	Н	Н	Н	Н
	87	Н	Н	Н	Н	C6H5	H	Н	Н
10	88	С6Н5	Н	Н	Н	C6H5	н	н	н
	89	С6Н5	Н	H ·	Н	H	Н	C6H5	Н
15	90 .	С6Н5	H	C6H5	H	Н	Н	Н	н
20	91	CH2C6H5	Н	н	H	Н	Н	н .	Н
	92	н	н	н	H	CH2C6H5	H	н	н
25	93	CH ₂ C ₆ H ₅	Н	Н	Н	CH ₂ C ₆ H ₅	Н	Н	н
	94	СН2С6Н5	н	H	H	н	Н	CH2C6H5	Н
30	95	CH 2C 6H 5	Н	CH ₂ C ₆ H ₅	н	н	Н	н	Н

WO 91/01724 PCT/US90/04168

Another class of suitable diamino terminal linker groups is defined by Formula XXII:

63

$$-N = \begin{bmatrix} R^{216} \\ I \\ C \\ R^{217} \end{bmatrix}_{D} R^{215}$$
(XXII)

5

10

wherein each of R²¹⁴ through R²¹⁷ is independently selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, hydroxyalkyl, alkoxyalkyl, aralkyl, aryl, haloalkyl, amino, monoalkylamino, dialkylamino, cyanoamino, carboxyalkyl, alkylsulfino, alkylsulfonyl, arylsulfinyl and arylsulfonyl; and wherein p is a number selected from one through six inclusive.

A preferred class of linker groups within Formula VI consists of divalent radicals wherein each of R^{214} and R^{215} 15 is hydrido; wherein each of \mathbb{R}^{62} and \mathbb{R}^{63} is independently selected from hydrido, alkyl, phenalkyl, phenyl, alkoxyalkyl, hydroxyalkyl, haloalkyl and carboxyalkyl; and wherein p is two or three. A more preferred class of linker groups within Formula XXII consists of divalent radicals wherein each of 20 ${\rm R}^{214}$ and ${\rm R}^{215}$ is hydrido; wherein each of ${\rm R}^{216}$ and ${\rm R}^{217}$ is independently selected from hydrido and alkyl; and wherein p is two. A specific example of a more preferred linker within Formula XXII is the divalent radical ethylenediamino. In Table III there is shown a class of specific examples of 25 diamino-terminated linker gorups within Formula XXII. linker groups, identified as Linker Nos. 96-134, would be suitable to form a conjugate between a carbonyl moiety of an AII antagonist (designated as "I") and a carbonyl moiety of carbonyl terminated second residue such as the carbonyl moiety 30 attached to the gamma carbon of a glutamyl residue (designated as "T").

TABLE III

R²²⁰ R²²²
I I
I- N - C - C - N - T
I I I
R²¹⁸ R²²¹ R²²³ R²¹⁹

5

I = inhibitor
G = acetyl-γ-glutamyl

						,		
10	LINKER NO.	R ²¹⁸	R ²¹⁹	R220	R ²²¹	R ²²²	R223	Ì
	96	н	Н	Н	Н	Н	Н	-
15	97	н	н	н	H .	Н	CH3	
20	98	Н	H	н .	СН3	Н	Н	
	99	H .	н	н	СНЗ	Н	СН3	
25	100	CH3	н	н	Н	H	н	
	101	Н	CH3	Н	н	н	Н	
30	102	н	н	. н.	н	СНЗ	CH3	
35	103 .	н	н	СН3	CH3	Н	Н	
	104	СНЗ	CH3	Н	Н	н	Н	
40	105	H .	н	H	Н	н	C6H5	
	106	н	H	H	C6H5	Н	н	
45	107	Н	H	н	C6H5	н	C6H5	
	108	C6H5	Н	н	Н	H	Н	

	LINKER NO.	R ²¹⁸	R ²¹⁹	R220	R ²²¹	R ²²²	R223
					•	,	
_	109	Н	С6Н5	Н	Н	н	Н
5	110	Н	Н	Н	н	C6H5	С6Н5
10	111	н	Н	С6Н5	C6H5	H	Н
	112	С6Н5	C6H5	Н	H	Н	Н
15	113	Н	н	Н	H	Н	С2Н5
	114	Н	Н	н	C2H5	Н	н
20	115	Н	н	н	C2H5	н	С2H5
25	116	С2Н5	н	н	Н	н	н
	117	H	C ₂ H ₅	н	н .	н	н
30	118	H	Н	Н	Н	C2H5	С2Н5
	119	Н	н	C ₂ H ₅	С2Н5	Н	Н
35	120	C2H5	С2Н5	н	H	. H	н
40	121	CH3	Н	С6Н5	Н	н	н
	. 122	СНЗ	н	Ή	. Н	C6H5	Н
45	123	н	СНЗ	С6Н5	Н	Н	н

				•			
	LINKER NO.	R ²¹⁸	R ²¹⁹	R ²²⁰	R ^{:221}	R ²²²	R223
	124	H	CH3	Н	H	· C6H5	н
5	125	CH3	CH3	Н	C6H5	н	Н
	126	CH3	СН3	Н	Н	Н	C6H5
10	127	Н	н	Н	н	H	CH ₂ C ₆ H ₅
	128	Н	Н	Н	СН2С6Н5	н	Н
15	129	CH2C6H5	н	Н	н	Н	Н
20	130	H	CH2C6H5	Н	H	Н	Н
	131	сн3	H	CH2C6H5	H	н -	н
25	132	CH ₃	H	н	н сі	H2C6H5	Н
	133	H.	СН3	CH ₂ C ₆ H ₅	н	н	Н
.30	134	Н	СН3	Н	н с	H2C6H5	Н

WO 91/01724 PCT/US90/04168

The term "hydrido" denotes a single hydrogen atom (H) which may be attached, for example, to an oxygen atom to form a hydroxyl group. Where the term "alkyl" is used, either alone or within other terms such as "haloalkyl", "aralkyl" and "hydroxyalkyl", the term "alkyl" embraces linear or branched radicals having one to about ten carbon atoms unless otherwise specifically described. Preferred alkyl radicals are "lower alkyl" radicals having one to about five carbon atoms. The term "cycloalkyl" embraces radicals having three to ten carbon atoms, such as 10 cyclopropyl, cyclobutyl, cyclohexyl and cycloheptyl. The term "haloalkyl" embraces radicals wherein any one or more of the carbon atoms is substituted with one or more halo groups, preferably selected from bromo, chloro and fluoro. Specifically embraced by the term "haloalkyl" are 15 monohaloalkyl, dihaloalkyl and polyhaloalkyl groups. A monohaloalkyl group, for example, may have either a bromo, a chloro, or a fluoro atom within the group. Dihaloalkyl and polyhaloalkyl groups may be substituted with two or 20 more of the same halo groups, or may have a combination of different halo groups. Examples of a dihaloalkyl group are dibromomethyl, dichloromethyl and bromochloromethyl. Examples of a polyhaloalkyl are trifluoromethyl, 2,2,2trifluoroethyl, perfluoroethyl and 2,2,3,3tetrafluoropropyl groups. The term "alkoxy", embraces linear or branched oxy-25 containing radicals having an alkyl portion of one to about ten carbon atoms, such as methoxy, ethoxy, isopropoxy and butoxy. The term "alkylthio" embraces radicals containing a linear or branched alkyl group, of one to about ten carbon atoms attached to a divalent sulfur atom, such as a 30 methythio group. The term "aryl" embraces aromatic radicals such as phenyl, naphthyl and biphenyl. The term "aralkyl" embraces aryl-substituted alkyl radicals such as benzyl, diphenylmethyl, triphenylmethyl, phenylethyl, phenylbutyl 35 and diphenylethyl. The terms "benzyl" and "phenylmethyl" are interchangeable. The terms "aryloxy" and "arylthio"

denote radical respectively, aryl groups having an oxygen or sulfur atom through which the radical is attached to a nucleus, examples of which are phenoxy and phenylthio. The terms "sulfinyl" and "sulfonyl", whether used alone or linked to other terms, denotes respectively divalent radicals >SO and >SO₂ The term "acyl" whether used alone, or within a term such as acyloxy, denotes a radical provided by the residue after removal of hydroxyl from an organic acid, examples of such radical being acetyl and benzoyl. "Lower alkanoyl" is an example of a more preferred sub-class of acyl.

Within the classes of conjugates of the invention described herein are the pharmaceutically-15 acceptable salts of such conjugates including acid-addition salts and base addition salts. The term "pharmaceuticallyacceptable salts" embraces salts commonly used to form alkali metal salts and to form addition salts of free acids or free bases. The nature of the salt is not critical, 20 provided that it is pharmaceutically-acceptable. Suitable pharmaceutically-acceptable acid addition salts of conjugates of the invention may be prepared from an inorganic acid or from an organic acid. Examples of such inorganic acids are hydrochloric, hydrobromic, hydroiodic, 25 nitric, carbonic, sulfuric and phosphoric acid. Appropriate organic acids may be selected from aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclic, carboxylic and sulfonic classes of organic acids, example of which are formic, acetic, propionic, succinic, glycolic, 30 gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, p-hydroxybenzoic, salicyclic, phenylacetic, mandelic, embonic (pamoic), methansulfonic, ethane sulfonic, 2-hydroxyethane sulfonic, pantothenic, 35 benzenesulfonic, toluenesulfonic, sulfanilic, mesylic, cyclohexylaminosulfonic, stearic, algenic, β-hydroxyWO 91/01724 69 PCT/US90/04168

butyric, malonic, galactaric and galacturonic acid. Suitable pharmaceutically-acceptable base addition salts of the conjugates include metallic salts made from aluminium, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from N,N'dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. All of these salts may be prepared by conventional means from the corresponding conjugates described herein by reacting, for example, the appropriate acid or base with the conjugate.

10

15

20

25

30

35

Conjugates of the invention can possess one or more asymmetric carbon atoms and are thus capable of existing in the form of optical isomers as well as in the form of racemic or non-racemic mixtures thereof. The optical isomers can be obtained by resolution of the racemic mixtures according to conventional processes, for example by formation of diastereoisomeric salts by treatment with an optically active acid or base. Examples of appropriate acids are tartaric, diacetyltartaric, dibenzoyltartaric, ditoluoyltartaric and camphorsulfonic acid and then separation of the mixture of diastereoisomers by crystallization followed by liberation of the optically active bases from these salts. A different process for separation of optical isomers involves the use of a chiral chromatography column optimally chosen to maximize the separation of the enantiomers. Still another available method involves synthesis of covalent diastereoisomeric molecules by reacting conjugates with an optically pure acid in an activated form or an optically pure isocyanate. The synthesized diastereoisomers can be separated by conventional means such as chromatography, distillation, crystallization or sublimation, and then hydrolyzed to deliver the enantiomerically pure compound. The optically active conjugates can likewise be obtained by utilizing optically active starting materials. These isomers may be

in the form of a free acid, a free base, an ester or a salt.

Synthetic Procedures

5

10

15

20

25

30

Conjugates of the invention are synthesized by reaction between precursors of the first and second residues. One of such precursors must contain a reactive acid moiety, and the other precursor must contain a reactive amino moiety, so that a conjugate is formed having a cleavable bond. Either precursor of the first and second residues may contain such reactive acid or amino moieties. Preferably, the precursors of the first residue are inhibitors of benzylhydroxyamine biosynthesis and will contain a reactive amino moiety or a moiety convertible to a reactive amino moiety. Many of the tyrosine hydroxylase inhibitors and dopa-decarboxylase inhibitors are characterized in having a reactive amino moiety. Inhibitor compounds lacking a reactive amino moiety, such as the dopamine-β-hydroxylase inhibitor fusaric acid, may be chemically modified to provide such reactive amino moiety. Chemical modification of these inhibitor compounds lacking a reactive amino group may be accomplished by reacting an acid or an ester group on the inhibitor compound with an amino compound, that is, a compound having at least one reactive amino moiety and another reactive hetero atom selected from 0, S and N. A suitable amino compound would be a diamino compound such as hydrazine or urea. Hydrazine, for example, may be reacted with the acid or ester moiety of the inhibitor compound to form a hydrazide derivative of such inhibitor compound.

The dopamine- β -hydroxylase inhibitor compound 5-butyl-n-butylpicolinic acid (fusaric acid) may be used as a model compound to illustrate the chemical modification of an acid-containing inhibitor compound to make a reactive

amino-containing precursor for synthesizing a conjugate of the invention. In the following General Synthetic Procedures, the substituents and reagents are defined as follows: each of R⁷⁹, R⁸⁰, R⁸¹, R⁸⁶, R⁸⁷, R⁸⁸, R⁸⁹ and R¹¹⁵ is as defined above; W is selected from alkyl, cycloalkyl, alkenyl, alkynyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aralkyl, heterocycloalkyl and heteroaryl; and Z is selected from oxygen and sulfur. DCC is an abbreviation for dicyclohexylcarbodiimide.

General Synthetic Procedures

Procedure 1:

5

Procedure 2:

Procedure 3:

ĊH₃

Procedure 4:

Procedure 5:

Procedure 6:

Procedure 7:

WO 91/01724 79 PCT/US90/04168

The following Examples 1-1857 shown in Tables IV-XVII are highly preferred conjugates of the invention. These conjugates fall within three classes, namely, conjugates of tyrosine hydroxylase inhibitors of Tables IV-VI, conjugates of dopa-decarboxylase inhibitors of Tables VII-XI, and conjugates of dopamine- β -hydroxylase inhibitors of Tables XII-XVII. These conjugates may be prepared generally by the procedures outlined above in Schemes 1-7. Also, specific procedures for preparation of Examples 1-1857 are found in the conjugate preparations described in the examples appearing with the tables of conjugates.

The following Examples #1-#461 comprise three classes of highly preferred conjugates formed from tyrosine hydroxylase inhibitor compounds and glutamic acid derivatives. Examples #1-#3 are descriptions of specific preparations of such conjugates. Examples #4-#461, as shown in Tables IV-VI, may be prepared by procedures shown in these specific examples and in the foregoing general synthetic procedures of Schemes 1-7.

10

Example 1

5

4-amino-4-carboxy-4-oxobutyl-α-methyl-L-tyrosine, methyl ester.

10

25

30

Step. 1. <u>Preparation of methyl α-methyl-L-tyrosinate</u>, hydrochloride.

A solution of 11.0 g (56.4 mmol) of α-methyl-L
tyrosine in 100 mL of absolute methanol was cooled to 0°C and treated with 20.1 g (169 mmol) of thionyl chloride under a nitrogen atmosphere. The reaction was allowed to warm to ambient temperature and stir at reflux for 2 days.

Concentration followed by trituration with 150 mL of ether gave 13.3 g (96%) of colorless product: NMR (DMSO-d₆) δ 1.49 (s, 3H), 3.02 (s, 2H), 3.73 (s, 3H), 6.73 (d, J = 11 Hz, 2H), 6.97 (d, J = 11 Hz, 2H), 8.50-8.70 (br s, 3H), 9.50 (s, 1H).

Step. 2. <u>Preparation of 4-amino-4-carboxy-4-oxobutyl-α-methyl-L-tyrosine</u>, methyl ester.

Under nitrogen, a solution of 35.1 g (116 mmol) of N-Boc-L- γ -glutanic acid- α -t-butyl ester (BACHEM) in 200 mL of methylene chloride was treated with 11.95 g (58 mmol) of solid dicyclohexylcarbodiimide (DCC). The reaction was allowed to stir for 2 hr prior to filtration under a nitrogen atmosphere. The methylene chloride was removed in vacuo and the residue

dissolved in 100 mL of anhydrous dimethylformamide (DMF). anhydride solution was slowly added to a solution of 7.0 g (29 mmol) of the α -methyl tyrosine ester from step 1 and 18.73 g (145 mmol) of diisopropylethylamine (DIEA) in 100 mL of anhydrous DMF. The reaction was allowed to stir overnight and was concentrated in vacuo. The residue was dissolved in ethyl acetate, washed with cold 1M K2CO3 followed by water, dried (MgSO₄), and concentrated in vacuo to give the protected coupled product; a solution of this material in 150 mL of methylene chloride was cooled to 0°C and treated with 150 mL 10 of trifluoracetic acid (TFA) under nitrogen. The reaction was allowed to warm to ambient temperatures and stir overnight. Concentration in vacuo gave 4-amino-4-carboxy-4-oxobutyl- α methyl-L-tyrosine, methyl ester: NMR (DMSO-d $_6$) δ 1.20 (s, 3H), 1.90-2.20 (m, 2H), 2.23-2.38 (m, 2H), 2.95 (d, \underline{J} = 13 Hz, 15 1H), 3.26 (d, J = 13 Hz), 3.57 (s, 3H), 3.92-4.06 (m, 1H), 7.06 (d, $\underline{J} = 9 \text{ Hz}$, 2H), 7.12 (d, $\underline{J} = 9 \text{ Hz}$, 2H).

Example 2

5

$N-[4-(acetylamino)-4-carboxy-4-oxobutyl]-\alpha-methyl-L-tyrosine, methyl ester.$

10 The compound of Example 1 was dissolved in 100 mL of water and the pH adjusted to 9 with 1 M K₂CO₃. solution was cooled to 0°C and 3.30 mL (35 mmol) of acetic anhydride and 35 mL (35 mmol) of 1 M K_2CO_3 was added every 30 min. for 5 h; the pH was maintained at 9 and the reaction temperature kept below 5°C. After the last addition, the 15 reaction was allowed to warm to ambient temperature overnight. The pH was adjusted to 4 with 6 M HC1 and concentrated to 100 mL. Purification by reverse phase chromatography (Waters Deltaprep-3000) using isocratic 25% acetonitrile/water (0.05% 20 TFA) gave 9.0 g (82%) of colorless product: NMR (DMSO-d₆) δ 1.18 (s, 3H), 1.72-2.03 (m, 2H), 1.85 (s, 3H), 2.15 (t, $\underline{J} = 8$ Hz, 2H), 2.93 (d, J = 13 Hz, 1H), 3.38 (d, J = 13 Hz, 1H), 3.57 (s, 3H), 4.12-4.23 (m, 1H), 7.02 (d, $\underline{I} = 9$ Hz, 2H), 7.09 (d, $\underline{J} = 9 \text{ Hz}$, 2H), 8.06 (s, 1H), 8.12 (d, $\underline{J} = 8 \text{ Hz}$, 1H).

25

Example 3

5

N-[4-(acetylamino)-4-carboxy-4-oxobutyl]-α-methyl-L-tyrosine.

A solution of 9.0 g (23.7 mmol) of the compound of Example 2 in 225 mL of water was cooled to 0°C and treated 10 with 3.3 g (82.5 mmol) of solid NaOH in portions over 15 min. The reaction was stirred at 0-5°C overnight, the pH adjusted to pH 5 with 6N HCl, and concentrated to 100 mL. Purification by reverse phase chromatography (Waters Deltaprep-3000) using isocratic 15% acetonitrite/water (0.05% TFA) gave 5.50 g (63%) 15 of colorless product: NMR (DMSO-d₆) δ 1.17 (s, 3H), 1.70-2.00 (m, 2H), 1.85 (s, 3H), 2.14 (t, $\underline{J} = 8 \text{ Hz}$, 2H), 2.83 (d, $\underline{J} = 13$ Hz, 1H), 3.14 (d, $\underline{J} = 13$ Hz, 1H), 4.12-4.23 (m, 1H), 6.56 (d, J = 9 Hz, 2H), 6.85 (d, J = 9 Hz, 2H), 7.69 (s, 1H), 8.12 (d, J = 8 Hz, 1H); MS (FAB) m/e (rel intensity) 367 (70), 196 20 (52), 179 (58) 150 (100), 130 (80); HRMS. Calcd for M + H: 367.1505. Found: 367.1547. Anal. Calcd for C₁₇H₂₂N₂O₇•H₂O•0.125 TFA: C, 52.00; H, 6.03; N, 7.03; F, 1.60. Found: C, 51.96; H, 6.25; N, 7.12; F, 1.60.

25

30

The following Examples #4-#109 of Table IV are highly preferred conjugates formed from tyrosine hydroxylase inhibitor compounds and glutamic acid derivatives. These tyrosine hydroxylase inhibitors utilized to make these conjugates are embraced by generic Formula I and II, above.

TABLE IV

EXAMPLE NO.	R ¹	R ⁹	R ¹⁰	R ¹¹	R ¹²	R ⁵	E	P
4	СНЗ	н	Н	OH	н	OCH 3	СНЗ	сосн 3
5	СН3	Н	H	OH	Н	OH	н	Н
6	СНЗ	н	H	OH	Н	OCH 3	СН3	H
7	СН3	Н	н	OH	Н	QH	СНЗ	Н
8	СНЗ	Н	Н	OH	Н	OH -	СН3	COCH 3
9	CH ₂ F	н	н	OH .	н	00H3	Н.	Н
10	CH ₂ F	Н	H	OH	н	OCH 3	н	COCH 3
11	CH ₂ F	H	Н	OH	н	OCH 3	СНЗ	Н
12	CH ₂ F	H	Н	ОH	Н	OCH3	СНЗ	COCH3
13	CH ₂ F	H	H	OH .	н	OH	н	Н
14	CH ₂ F	Н	H	OH	н	OH	Н	COCH 3

EXAMPLE NO.	\mathbb{R}^1	R ⁹	R ¹⁰	R ¹¹	R ¹²	R 5	E	P
15	CH ₂ F	Н	Н	OH	. Н	· OH	Cue	
				Ca.	. 41	Cn	· CH3	Н
16	CH ₂ F	Н	Н	OH	H	OH	CH3	COCH 3
17	CHF ₂	Н	Н	ОН	н	0CH3	Н	н
18	CHF ₂	Н	Н	OH	Н	0CH3	Н	сосн3
19	CHF ₂	Н	H	OH	Н	OCH 3	СНЗ	Н
20	CHF ₂	Н	Н	OH	Н	OCH 3	СНЗ	COCH 3
21	CHF ₂	Н	Н	ОН	Н	OH .	н	Н
22	CHF ₂	н	Н	ОН	Н	OH	н	сосн 3
23	CHF ₂	H	н	OH	Н	OH	СНЗ	Н
24	CHF ₂	н	н	OH	H	OH	СН3	COCH 3
25	CF3	н	H	OH	н	0CH 3	н	Н
26	CF3	H	н	OH	Н	0СН3	н	COCH 3
27	CF3	H .	Н	ОН	н .	OCH 3	СНЗ	н
28	CF3	Н	Н	OH	Н	OCH 3	СНЗ	сосн 3
29	CF3	Н	Н	OH	Н	OН	н	Н
30	CF3	н	Н	QH	н.	OH	н	COCH 3

EXAMPLE NO.	R ¹	R ⁹	R ¹⁰	R11	R ¹²	R 5	E	P
	• • • • • • • • • • • • • • • • • • •					-		•
31	CF3	H	Н	OH	H	OH .	СНЗ	H
32	CF3	H	Н	OH	н	OH	СНЗ	COCH 3
33	C ₂ H ₅	Н	H	OH	Н	OCH 3	H	Н
34	C2H5	H	н	OH	H	OCH 3	Н	COCH 3
35	C ₂ H ₅	H	Н	OH	Н	0CH3	СНЗ	Н
36	C ₂ H ₅	H	H	OH	Н	OCH 3	СН3	COCH 3
37	C ₂ H ₅	H	H	OH	H	OH	н	Н
38	С2Н5	н	H	OH	н .	OH	Н	COCH 3
39	C ₂ H ₅	H	Н	ОН	н	OH .	СНЗ	Н
40	C2H5	н	Н	OH	н	OH	СНЗ	COCH 3
41	C3H7	H .	н	OH	н	0CH3	н	н
42	C3H7	н	н	OH	н	0CH 3	Н	COCH 3
43	С3Н7	н	Н	ОН	Н	0CH3	СНЗ	Н
44	С3Н7	Н	н	OH	Н	OCH 3	СНЗ	COCH 3
45	С3Н7	Н	Н	OН	Н	OH	Н	Н

EXAMPLE NO.	R ¹	R ⁹	R ¹⁰	R ¹¹	R ¹²	R 5	E	P
			10					
46	С3Н7	Н	Н	ОН	Н	OН	H	COCH 3
47	СЗН7	Н	н	OH	н	OH	СНЗ	Н
48	С3Н7	Н .	н	OH	H	OH	СНЗ	COCH 3
49	СНЗ	H	Н	NHCN	Н	ОН	Н	COCH 3
50	СНЗ	Н	СО2Н	Н	Н	н	OH	COCH 3
51	СНЗ	Н	C N	н	H.	OH	н	COCH 3
52	СН3	н	н	CH2NH2	Н	OH	н	COCH 3
53	CH3	н	н с	H2CH2CN	Н	OH	н	COCH 3
54	СН3	н	OH C	H3SO2NH	Н	OH ·	н	COCH3
55	СНЗ	Н	OH	NO ₂	Н	ОН	Н	COCH 3
56	СНЗ	Н	CH3 SO3	NH2	Н	OH	н	COCH 3
57	СНЗ	Н	CO2CH3	NO2	Н	OH	н	COCH 3
58	CH3	Н	NO2	NH2	H .	OH	н	COCH 3
59	CH3	Н	NH2	NH ₂	Н	OH	н	COCH 3
60	СНЗ	Н	СН3	OH	Н	OH	н	COCH 3

EXAMPLE NO.	R ¹	R ⁹	R ¹⁰	R ¹¹	R ¹²	_R 5	E	P
61	CH3	H	С6Н5	OH	Н	OH	н	COCH 3
62	СНЗ	Ħ	CH ₂ C ₆ H ₅	OH	н	ОН	Н	COCH 3
63	CH3	H	C6H ₁₁ (cyclo)	CH30	Н	OH	H	COCH 3
64	CH3	OH	OH	н	н	OH	н	COCH 3
65	CH3	OH	OH	CI	н	OH	H	COCH 3
66	СНЗ	OH	OH	СНЗ	Н	OH	Н	COCH 3
67	СНЗ	ŒН	OH	F	н	OH	н	COCH 3
68	CH3	ŒН	OH	CF3	н	OH	н	COCH 3
69	CH3	H	OH.	н	OH	OH	Н	COCH 3
70	CH3	Н	OH	Cl	OH	OH	н	COCH 3
71 ·	СНЗ	H	OH .	F	OH	OH	Н	COCH 3
72	CH3	Н	OH	CF3	OH	OH	Н	COCH 3
73	СНЗ	OH	Н	Н	OH	OH	н	COCH 3
74	CH3	OH	н	cı	OH	QH	н	COCH 3
75	СН3	ОH	Н	СНЗ	OH	OH	Н	COCH 3
76	СНЗ	ÖН	н	CF3	OH ·	OH	Н	COCH 3

EXAMPLE NO.	R ¹	R	9 R ¹⁰	R ¹¹	R12	R 5	E	P
						•		
7 7	CH3	Н	OH	ОH	OH	OH	Н	COCH 3
78	СНЗ	Ož	H OH	ОΉ	Н	OH	н	COCH 3
79	СНЗ	O I	н н	ОН	O H	OH	н	COCH 3
80	СН3	• н	Н	H	н	OH	н	COCH 3
81	н	Н	Н	Н	H	OH	Н	COCH 3
82	Н	Н	I	H.	Н	Н	н	COCH 3
83	сн3	Н	I	н	• Н	н	н	COCH 3
84	Н	Н	ı	OH	Н	н	н	COCH 3
85	Н	Н	·	Н	I	н .	н	COCH 3
86	CH3	н	CH3	OH .	н	н	н	COCH 3
87	СНЗ	Н	С ₆ н ₅ Сн ₂	CH30	н	н	Н	COCH 3
88	СНЗ	Н	С 6Н5СН2	OH	н	н	н	COCH 3
89	СН3	· H	C ₆ H ₁₁ (cyclo)	СН30	Н	Н	Н	COCH 3
90	СН3	Н	C 6H11 (cyclo)	OH	н	н	н	COCH 3
91	СНЗ	Н	СНЗ	CH30	H	Н	Н	COCH 3

EXAMPLE NO.	R ¹	R ⁹	R10	R ¹¹	R ¹²	R ⁵	E	P
92	CH3	H	CH3	OH	н	Н	Н	COCH 3
93	СНЗ	H _.	СНЗ С6	H5CH2CO2	н	н	Н	COCH 3
94	CH3	H	СНЗ	OH	н	н	н	COCH 3
95	СНЗ	H	CH3 C6	H5CH2CO2	,H	н	Н	COCH 3
96	CH3	Н	СНЗ	СН3СО2	н	н	Н	COCH 3
97	CH3	Н	CH30	OH	Н	н	Н	COCH 3
98	CH3	Ħ	-0CH ₂	0-	H	н	Н	COCH 3
99	CH3	CH30	Н	H	СНЗО	н	Н	COCH 3
100	СН3	ĊН	Н	Н	OH	н .	H.	COCH 3
101	СНЗ	CH30	Н	CH30	Н	H	Н	COCH 3
102	CH3	OH	Н	OH	Н	Н	н	COCH 3
103	CH3	CH30	н	н	СНЗО	OC2H5	Н	COCH 3
104	C == CH	СНЗО	Н	Н	H	Н	Н	COCH 3
105	C = CH	СН30	H	н	CH30	H	Н	COCH 3
106	C == CH	н	н	OH .	н	Н	н	COCH 3

EXAMPLE NO.	R ¹	R ⁹	R ¹⁰	R ¹¹	R12	R ⁵	E	P
107	C ≡ CH	Н	OH	Н	Н	H	'H	COCH 3
108	CH = CH ₂	СН30	Н	H	Н	Н	Н	сосн 3
109	СН = СН₂	CH30	н	н	CH30	н	н	сосн 3

The following Examples #110-#413 of Table V are highly preferred conjugates formed from tyrosine hydroxylase inhibitor compounds and glutamic acid derivatives. These tyrosine hydroxylase inhibitors utilized to make these conjugates are embraced by generic Formula I, above.

TABLE V

EXAMPLE	Δ .	5 3	p 5	70	70
N. Company		27	N -	Es	P
NO.			•		

Н

EXAMPLE	A	R ³	R ⁵	Z	P
NO.					_

114 CH3 CH H

115 CH3 OH H COCH3

116 CH₃ CH₃ H

117 CH3 OH CH3 COCH3

118 H O CH3 OCH3 H H

EXAMPLE NO.	A	R ³	R 5	E	P	
119	T N H	≃о снз	och 3	H	сосн3	
120	H-H	≻o ch₃	OCH 3	CH3	Н	
121	H N H	≻o ch3	OCH 3	СНЗ	сосн3	
122	T N H	►o ch3	OH	Н	Н	
123	T Z-H	O CH3	ΟH	Н	COCH 3	
124		о снз	OH	CH3	Н	

EXAMPLE	A	R ³	R 5	₽.	D	
NO.						ŀ

EXAMPLE NO.	Α	R ³	R 5	E	P	
130	H-Z-H	CH3	ĊН		н	
131	H-Z-H	СН3	OH	Н	соснз	
132	H-H	СН3	OH	CH3		
133	H-H	CH3	ОН	СН3	соснз	
134	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	z CH3	OCH 3	H	н	
135	N NI	H₂ CH3	OCH 3	н	COCH3	

EXAMPLE NO.	A	R ³	R ⁵	E	P	
136		-NH₂ CH3	OCH 3	СН3	Н	
137	TIN N	-NH ₂ CH3	OCH 3	СНЗ	COCH 3	
138	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-NH₂ CH3	OH	Н	н	
139		·NH ₂ CH ₃	ŒН	Н	COCH 3	
140	TIN-	NH₂ CH3	ОН	СН3	Н	
141	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NH₂ CH3	CH	СН3	COCH3	
142	N-H	=0 CH3	OCH 3	Н	н	
143	N-H	=O CH3	осн 3	н	сосн3	

EXAMPLE	A	R ³	R ⁵	E	P
NO.					

EXAMPLE NO.	À	R ³	R ⁵	E	P
151	NI S	^H ₂ CH3	OCH 3	Н	COCH3
152	NI	H₂ CH3	OCH 3	СНЗ	н
153	NI-	d₂ CH3	осн 3	СНЗ	COCH 3
154	NH S	l₂ CH3	CΗ	н	. Н
155	NH S	г СН3	OH	н	COCH ₃
156	NH	г СН3	OН	СН3	н
157	NH,	· CH3	° OH	СНЗ	COCH3

EXAMPLE NO.	A	R ³	R 5	E	P	
158	SH	NH₂ CH3	0СН3	н	Н	
159	SH	-NH ₂ CH3	OCH3	Н	соснз	
160	SH	-NH₂ CH3	OCH 3	CH3	н	
161	SH	-NH ₂ CH3	OCH 3	CH3	COCH 3	
162	SH	-NH ₂ CH3	OH .	н	Н	
163	SH	-NH ₂ CH3	OH	н	COCH 3	

EXAMPLE NO.	A	R3	R 5	E	P
110.					

EXAMPLE NO.	A	_R 3	R ⁵	E	P	
170		-NH₂ CH3	OH	Н	, . H	
171	II,	-NH₂ CH3	OH	Н	COCH3	
172		-NH₂ CH3	ОН	СНЗ	Н	
173	II.s	-NH₂ CH3	OH	СН3	COCH3	
174		-н 'S сн ₃ -н	OCH 3	H.	Н	
175	W N	-н S сн ₃ -н	0СН 3	н	сосн3	
176	W N	-н S сн ₃ -н	OCH 3	СНЗ	Н	
177	W N	-н `s сн ₃ -н	OCH 3	СН3	COCH 3	

EXAMPLE NO.	A	R3	R 5	E	P

			•		,
178	N-H S N-H	CH3	OH	Н	н
179	N-H N-H	I H3	OH .	. H	сосн 3
180	N-H N-H	, IH3	OН	СНЗ	H
181	N-H C	НЗ	OH .	CH3	COCH3
182	CH ₃	нз	ОСН 3	Н	н .
183	CH. CT	1 3	осн з	н	сосн3

EXAMPLE	A	RЗ	R 5	E	P
NO.	•		•		

TYAMDID					
EXAMPLE	A	R3	5.5	173	
170		••	K -	<i>E</i> i	P
NO.					

EXAMPLE	A	R3	R 5	E	P
NO.					

TVXIMT TO		3				
EXAMPLE	A	22	50	7		
***		•••		25	P	
NO.						

EXAMPLE	A	R 3	R 5	E	P
NO.					

	•			•	
204	CH ₃	ОН	СНЗ	н	
205	CH ₃	OH	СН3	СОСН3	
206	CH ₃	0СН3	н	н	
207	CH ₃	OCH 3	Н .	сосн3	
208	N CH3	OCH 3	СН3	Н	
209	N OH CH3	ŒH3	СН3	COCH 3	
210	N OH CH3	OH	н	H	

WELDER OF	_				
EXAMPLE	A	R3	R 5	R	Ð
NO.				-	-
110.					

EXAMPLE	A	R ³	R ⁵	E	P
NO.					

EXAMPLE NO.	A	R ³	R ⁵	E	P	
222	N _N	OH CH3.	OCH 3	Н	Н	
223	N _N	OH CH3	OCH 3	Н	сосн3	
224	N N	OH CH3	осн 3	СНЗ	H	
225		OH CH3	OCH 3	Сн3	COCH 3	
226		OH CH3	OH	Н	Н	
227		OH CH3	ОН	н	COCH 3	
228	II, I	OH CH3	ОН	СН3	Н	

		للتواسط في المراجع الم	<u> </u>		
EXAMPLE	A	R 3	p 5	129	D
NO		••	•	44	£
NO.					

EXAMPLE NO.	λ	R ³	R ⁵	E	P	٦
235		Н	OH	Н	COCH3	
236		н	OH	CH3	н	
237	N.	н	OH .	СНЗ	COCH3	
238	LII	ОН ^Н	OCH 3	Н	Н	
: 239		OH H	OCH 3	н	сосн3	
240		HC	о с н 3	СН3	н	
241		DH H	OCH 3	СНЗ	COCH 3	

EXAMPLE NO.	A	R ³	R ⁵	E	P
242	N.	OH H	ОН	н	H
243	N _N	OH H	OH	Н	COCH 3
244	N _N	OH H	C H	СНЗ	Н
245	N N	OH H	OH	CH3	соснз
246	N H	Сн3	OCH 3	H	Н
247	N. N	СН3	OCH 3	н	соснз

EXAMPLE	A	R 3	ъ5	77	
NO.		••	6 \ -	<u> </u>	P
		*** ***			

CH3

ОСН 3

СНЗ

Н

249

CH₃

ΩН3

СНЗ

COCH 3

250

СНЗ

OH.

H

Н

251

СНЗ

ОH

н соснз

252

СНЗ

OH

СНЗ

H·

EXAMPLE NO.	λ	R ³	R 5	E	P
253	N. H	CH ₃	OH .	СН3	СОСНЗ
254	N-H	н	OCH 3	н	Н
255	N-H	н	OCH 3	Н .	СОСН3
		•			

PYAMDIB	_	- 3			
EXAMPLE NO	A	23	5 5	***	
310		• • •	W	<u> </u>	P
NO.					_

258 H OH H H

259 H OH H COCH 3

260 H CH3 H

261 H OH CH3 COCH3

262 CH3 OCH3 H H

EXAMPLE A R ³ R ⁵ E P						
NO	CAMPLE	A	R3	R5	E	P
NO.	NO.					_

EXAMPLE NO.	A	R3	R ⁵	E	P

СНЗ

OН

СНЗ

Н

269

СНЗ

OH

СН3 СОСН3

. 270

СНЗ

0CH3

H

Н

271

СНЗ

OCH 3

Н

сосн3

272

СНЗ

CH3

СНЗ

H

				A CAMPAGE AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY.	
EXAMPLE	A	R ³	R5	E	P
NO.					_

EXAMPLE	A	23	D 5	77	D
	4.5	•/	W.		
NO.					
110.					

EXAMPLE NO.	A	R ³	R ⁵	E	P
283	CO ₂	н ^{СН3}	OH.	Н	COCH 3
284	CO ₂	н СН3	QΉ	СНЗ	H
285	CO ₂ I	CH3	OH	CH3	сосн3
286	H-N-H	СН3	OCH 3	H	н

OCH 3

H

COCH3

EXAMPLE NO.	λ	R ³	R ⁵	E	P
288	H-N-H	СНЗ	CCH 3	СНЗ	Н
289	H-Z-H	СНЗ	OCH 3	СНЗ	COCH 3
29 0	H-H	СН3	OH .	н	H .
291	H-N-N-H	CH3	C ₩	Н	COCH 3
292	T N H	СНЗ	OH .	СНЗ	н

EXAMPLE NO.	A	R ³	R ⁵	E	P

NO.	EXAMPLE	A	р3	p 5	77	*
			••	W.		P
	NO.					

298 CH₃ CH₃

OH H H

299 CH₃ OH H COCH₃

300 CH₃ CH₃ H

301 CH₃ CH₃ OH CH₃ COCH₃

C=CH OCH3 H H

EXAMPLE NO.	A	R ³	R ⁵	E	Р
303	N I H	С≕СН	OCH 3	н	сосн3
304	N I H	С≖СН	OCH 3	СН3	Н
305	H N N N N N N N N N N N N N N N N N N N	С≡СН	OCH 3	СН3	COCH 3
306	H N N	C≡CH	ОН	н	Н
307	N H	C≖CH	OH .	н	COCH 3

	 					
EXAMPLE	A	R 3	p 5	77	70	\neg
NO.			••		2	- []
L						H

СНЗ

309

C= CH

СНЗ

310

0CH3

311

OCH 3

H

COCH3

312

C≡CH OCH3

CH3

EXAMPLE	*	ъ3	n.5	-	
NO.			K-	E	,

ΩН3

СНЗ

COCH 3

314

OH

Н

Н

315

OH

Н COCH 3

316

OH

СНЗ

H

317

OН

СНЗ

СОСН3

XAMPLE	A	p3	n 5	-	
***		N -	K.		P
NO.					

ОСН 3

H

Н

319

C≡CH₂ OCH₃

Н

COCH3

320

 $C = CH_2$

СНЗ

Н

321

СНЗ

COCH 3

322

 $C = CH_2$

OH

Н

	The Real Property lies and the Person lies and the Person lies are not to the Person lies and the Person lies are not to the Pers				
EXAMPLE	A	R3	R 5	E	P
NO.					

 $C = CH_2$

OH

H COCH 3

324

 $C = CH_2$

.. OH

СНЗ

Н

325

C= CH

OН

СНЗ

СОСНЗ

326

C== CH

OCH 3

н

Н

327

C≔ CH

OCH 3

Н

COCH3

EXAMPLE	A	ъ3	25		
370	•	K-	Ro	E	P
NO.					_ II
					11

OCH 3

ж н

329

TH OCH 3

CH3 COCH3

330

CH

Н

331

≔ CH

OH

н соснз

332

H

СНЗ

H

						· · · · · · · · · · · · · · · · · · ·
EXAMPLE	•	A	R ³	R5	E	P
NO.						

EXAMPLE	A	R 3	p 5	-	2
NO.			• • • • • • • • • • • • • • • • • • • •	₽	P

EXAMPLE	A	R ³	R ⁵	E	P
NO.	•				
NO.					

EXAMPLE NO.	A	R ³	R 5	E	P
NO.					

EXAMPLE	A	R ³	R 5	E	P
NO.	 	· · · · · · · · · · · · · · · · · · ·			

Ro	D 2	77	
		25	P
		_	•
	R ³	K- DJ	

OH

358

н

Н

359

CH3 .

Н

COCH 3

360

Н

H

0CH3

CH3

361

0CH3

СНЗ

COCH 3

-:::				**************************************	
EXAMPLE	A,	R3	R 5	E	P
NO.					

EXAMPLE NO.	A	R ³	R ⁵	E	P	
		<u> </u>				[]

н

осн з

Н

H

367

0CH3

Н

COCH3

368

осн з

СНЗ

Н

369

H

Н

ОСН 3

СНЗ

СОСН 3

370

OH

H

EXAMPLE	A	R ³	R ⁵	E	P	
NO.				_	_	

371 H OH H COCH 3

372 H CH3 H

373 H OH CH3 COCH3

TVALDITE		2			
EXAMPLE	A	23	b 5	79	
110		••	W -	<u></u>	P
NO.					_

EXAMPLE	A.	R3	R 5	E	P
NO.		1.,.	•		
-					

380 CI H CH3 H

381 CI H OH CH3 COCH3

382 CH₃ H OCH₃ H H

383 H COCH3

384 H OCH 3 CH3 H

EXAMPLE	3	~ 3			
area and	A	K	R-J	E	ו ס
NO.				_	- 1
L NO.					ii ii

385 CH₃ CCH₃ CCH₃ CCCH₃

386 CH₃ H OH H

387 CH₃ H OH H COCH₃

388 CH₃ H CH₃ H

EXAMPLE	A	R ³	R 5	E	Þ
NO.					

EXAMPLE NO.	A	R3	R ⁵	E	P
394	H-H	СНЗ	CH	Н	H
395	T _N -H	СН3	OH	Н	соснз
396	H	СНЗ	OĦ	Н .	COCH 3
397	L L	СНЗ	OH.	СНЗ	сосн3
398	С2Н	CH=CH2	СН3	н	Н
399	C ₂ H ₅	CH=CH2	OCH 3	н	COCH3

EXAMPLE NO.	λ	R ³	R 5	E	P	
400	С2Н5	CH=CH2	OCH 3	. СН3	, н	
401	С2Н5	СН=СН ₂	OCH 3	СНЗ	COCH 3	
402	С2Н5	CH=CH2	ОН	н	н	
403	С2Н5	CH=CH ₂	OH	н	COCH 3	
404	C2H5	CH=CH2	CH CH	н	COCH3	
405	С2Н5	CH=CH ₂	ОН	СН3	COCH3	
406	С2Н5	C≖CH	OCH 3	Н	н	
407	С2Н5	C≔CH	OCH 3	н	сосн3	
408	C ₂ H ₅	C≡ CH	0СН 3	СНЗ	н	
409	C ₂ H ₅	C≔ CH	OCH 3	СНЗ	COCH 3	

EXAMPLE NO.	A	R ³	R ⁵	E	P	
412	С2Н5	C≡CH	OH .	Н	COCH 3	
413	С2Н5	C≡ CH	OH .	CH ₃	сосн3	

5

The following Examples #414-#461 of Table VI are highly preferred conjugates formed from tyrosine hydroxylase inhibitor compounds and glutamic acid derivatives. These tyrosine hydroxylase inhibitors utilized to make these conjugates are embraced by generic Formula III, above.

TABLE VI

EXAMPLE NO.	R ¹¹	_R 3	_R 5	E	P
414	OH	н	OH	н	Н
415	OH	Н	OH	Н	COCH ₃
416	OH	Н	ОН	СН3	Н
417	CH CH	н	OH	CH ₃	COCH 3
418	OH	Н	0CH 3	Н	Н
419	OH .	Н	OCH 3	н	COCH ₃
420	ОН	Н	OCH 3	CH ₃	Н
421	OH	Н	OCH 3	CH ₃	COCH 3
422	OH	СН3	OH	Н	Н
423	OH	СН3	ОН	Н	COCH 3
424	OH	CH ₃	· OH	СНЗ	Н

EXAMPLE NO.	R ¹¹	R ³	R ⁵	E	P
425	OH .	CH ₃	OH .	СНЗ	COCH 3
426	ОH	CH ₃	OCH 3	Н	н
427	OH	CH ₃	OCH 3	н	COCH 3
428	ОН	CH ₃	OCH 3	CH ₃	н
429	OH	CH ₃	OCH 3	СНЗ	COCH 3
430	ОН ·	Н	NH ₂	Н	Н
431	OH	Н	NH ₂	н	COCH 3
432	OH	H	NH ₂	СН3	H
433	OH	H	NH ₂	CH ₃	COCH ₃
434	OH	CH ₃	NH ₂	Н	Н
435	ОH	CH ₃	NH ₂	н	COCH3
436	OH	CH ₃	NH ₂	CH ₃	H
437	OH	CH ₃	NH ₂	СНЗ	COCH 3
438	OCH 3	Н	OH	н	н
439	OCH 3	Н	OH	Н	COCH ₃
440	OCH 3	Н	ОH	СН3	H
441	OCH 3	Н	OH	СН3	COCH 3

EXAMPLE NO.	R ¹¹	R ³	_R 5	E	P
442	OCH 3	Н	OCH 3	H	. · H
443	осн ₃	н			
· ·			OCH 3	Н	COCH 3
444	OCH 3	H	OCH 3	СН3	Н
445	OCH 3	Н	OCH 3	СНЗ	COCH 3
446	0CH3	СНЗ	OH	Н	н
447	OCH 3	CH ₃	OH	Н	COCH3
448	OCH 3	CH ₃	OH	CH ₃	. н
449	OCH 3	CH ₃	OH	CH ₃	COCH 3
450	OCH 3	СН3	OCH3	н	Н
451	OCH 3	CH ₃	осн ₃	н .	COCH 3
452	OCH 3	CH ₃	OCH 3	CH ₃	Н
453	OCH 3	СНЗ	OCH 3	CH ₃	COCH 3
454	OCH 3	Н	NH ₂	Н	Н
455	OCH 3	Н	NH ₂	Н	COCH 3
456	OCH 3	Н	NH ₂	CH3	Н
457	0CH ₃	Н	NH ₂	CH ₃	COCH 3

151

EXAMPLE NO.	R11	R3	R5	E	P
458	OCH 3	CH ₃	NH ₂	., Н	Н
459	OCH 3	СН3	NH ₂	Н	COCH ₃
460	OCH 3	CH ₃	NH ₂	СН3	Н
461	OCH 3	СНЗ	NH ₂	CH ₃	COCH ₃

The following Examples #462-#857 comprise five classes of highly preferred conjugates composed of dopa-decarboxylase inhibitor compounds and glutamic acid derivatives. Examples #462-#464 are descriptions of specific preparations of such conjugates. Examples #465-#857, as shown in Tables VII-XI, may be prepared by procedures shown in these specific examples and in the foregoing general synthetic procedures of Schemes 1-7.

10

Example 462

15

20

25

30

4-amino-4-carboxy-4-oxobutyl-3-hydroxy- α -methyl-L-tyrosine, methyl ester.

Step. 1: <u>Preparation of α-methyl-L-DOPA, methyl ester,</u> <u>hydrochloride</u>.

A suspension of 29.7 g (141 mmol) of α -methyl-L-DOPA in 300 mL of absolute methanol was cooled to -15°C and treated with 125.8 g (1.06 mol) thionyl chloride under a nitrogen atmosphere. The reaction was allowed to warm to ambient temperature and stir at reflux for 3 days. Concentration followed by trituration with ether gave 31.7g (97%) as an off-white solid: NMR (DMSO-d₆) δ 1.47 (s, 3H), 2.92 (d, J = 12 Hz, 1H), 2.98 (d, J = 12 Hz, 1H), 3.74 (s, 3H), 6.41 (d of d, J = 9 Hz AND 2 Hz, 1H), 6.54 (d, J = 2 Hz, 1H), 6.68 (d, J = 9 Hz, 1H), 8.46-8.90 (br s, 3H), 8.93 (s, 1H), 8.96 (s, 1H).

Step 2: Preparation of 4-amino-4-carboxy-4-oxobutyl-3-hydroxy-q-methyl-L-tyrosine, methyl ester.

Under nitrogen, a solution of 32.7 g (108 mmol) of N-Boc-L- γ -glutamic acid- α -t-butyl ester (BACHEM) in 150 mL of methylene chloride was treated with 11.14 g (54 mmol) of solid dicyclohexylcarbodiimide (DCC). The reaction was allowed to stir for 2 hr prior to filtration under a nitrogen atmosphere. methylene chloride was removed in vacuo and the residue dissolved in 110 mL of dimethylformamide (DMF). The anhydride solution was 10 slowly added to a solution of 12.9 g (49 mmol) of the α -methyl-DOPA ester from step 1 and 12.6 g (98 mmol) of diisopropylethylamine (DIEA) in 50 mL of anhydrous DMF. reaction was allowed to stir overnight and was concentrated in vacuo. The residue was dissolved in ethyl acetate, washed with 15 1N citric acid, 1N NaHCO3, water, and brine, dried (Na₂SO₄), and concentrated in vacuo to give the protected coupled product; a solution of this material in 100 mL of methylene chloride was cooled to 0°C and treated with 400 mL of trifluoroacetic acid (TFA) under nitrogen. The reaction was allowed to warm to 20 ambient temperature and stir for 72 hr. Concentration in vacuo gave 4-amino-4-carboxy-4-oxobutyl-3-hydroxy-α-methyl-L-tyrosine, methyl ester: NMR (DMSO-d₆) δ 1.40 (s, 3H), 1.85-2.30 (m, 2H), 2.30-2.50 (m, 2H), 2.77 (d, $\underline{J} = 12 \text{ Hz}$, 1H), 3.00 (d, $\underline{J} = 12 \text{ Hz}$, 25 1H), 3.58 (s, 3H), 3.85-4.10 (m, 1H), 6.29 (d of d, \underline{I} = 9 Hz and 2 Hz, 1H), 6.45 (d, \underline{J} = 2 Hz, 1H), 6.62 (d, \underline{J} = 9 Hz, 1H); MS (FAB) m/e (rel intensity) 355 (92), 225 (51), 148 (35).

Example 463

N-[4-(acetylamino)-4-carboxy-4-oxobutyl]-3-hydroxy-α-methyl-L-tyrosine, methyl ester.

The compound of Example 462 was dissolved in 100 mL of degassed water and under nitrogen the pH adjusted to 9 with 1 ${\rm M}$ ${\rm K_2CO_3}$. The solution was cooled to 0°C and 12 mL (127 mmol) of 10 acetic anhydride and 180 mL (180 mmol) of 1 M K₂CO₃ was added every 30 min. for 5h; the pH was maintained at 9 and the reaction temperature kept below 5°C. After the last addition, the reaction was allowed to warm to ambient temperature overnight. The pH was adjusted to 3 with 3M HCl and concentrated to 100 mL. 15 Purification by reverse phase chromatography (Waters Deltaprep-3000) using a 5-15% gradient of acetonitrile/water (0.05% TFA) gave 14.0g (49%) of colorless product: NMR (DMSO-d₆) δ 1.15 (s, 3H), 1.70-1.83 (m, 2H), 1.85 (s, 3H), 1.87-2.00 (m, 2H), 2.15 (t, 20 J = 7 Hz, 2H), 2.75 (d, J = 12 Hz, 1H), 3.00 (d, J = 12 Hz, 1H), 3.55 (s, 3H), 4.10-4.22 (m, 1H), 6.29 (d of d, J = 9 Hz and 2Hz, 1H), 6.43 (d, $\underline{J} = 2Hz$, 1H), 6.60 (d, $\underline{J} = 9 Hz$, 1H), 7.96 (s, 1H), 8.12 (d, J = 8 Hz, 1H); MS (FAB) m/e (rel intensity) 397 (100), 365 (10), 226 (70), 166 (90), 153 (22), 130 (72), 102 (28).

Example 464

5 N-[4-(acetylamino)-4-carboxy-4-oxobutyl]-3-hydroxy- α -methyl-L-tyrosine.

A solution of 13.5 g (102 mmol) of the compound of Example 463 in 34 mL of water was cooled to 0°C and treated with 102 mL (102 mmol) of 1N NaOH (all solutions were degassed in 10 vacuo and flushed with nitrogen prior to use). The reaction was stirred at ambient temperature for 5 hr and the pH adjusted to pH 1 with 6N HCl. Purification by reverse phase chromatography (Waters Deltaprep-3000) using a 2-10% gradient of acetonitrile/water (0.05% TFA) gave 8.9 g (68%) of colorless 15 product: NMR (DMSO-d₆) & 1.18 (s, 3H), 1.70-1.83 (m, 2H), 1.85 (s, 3H), 1.87-2.00 (m, 2H), 2.15 (t, $\underline{J} = 7$ Hz, 2H), 2.75 (d, $\underline{J} =$ 12 Hz, 1H), 3.05 (d, J = 12 Hz, 1H), 4.10-4.23 (m, 1H), 6.31 (d of d, J = 9 Hz and 2 Hz, 1H), 6.47 (d, J = 2 Hz, 1H), 6.60 (d, J= 9 Hz, 1H), 7.71 (s, 1H), 8.15 (d, \underline{J} = 8 Hz, 1H); MS (FAB) m/e 20 (rel intensity) 383 (23), 212 (10), 166 (18), 130 (21), 115 (23); HRMS. Calcd for M + H: 383.1454. Found: 383.1450. Anal:

25

30

The following Examples #465-#541 of Table VII are highly preferred conjugates composed of dopa-decarboxylase inhibitor compounds and glutamic acid derivatives. These dopa-decarboxylase inhibitors utilized to make these conjugates are embraced by generic Formula IV, above.

Calcd for $C_{17}H_{22}N_2O_8 \cdot 1.06 H_2O \cdot 0.85$ TFA: C, 48.67; H, 5.59; N, 6.46; F, 3.73. Found: C, 49.02; H, 5.73; N, 6.40; F, 3.70.

TABLE VII

EXAMPLE	:	78	71	-	
170		~	K-	15	P #
NO.					i i
i annual de la constitución de l					

EXAMPLE NO.	Α	R ¹	E	P
468	OH OH -N-CH₂ OH	H	СН3	Н
469	OH OH -N-CH ₂ OH	Н	CH3	COCH 3
470 ·	-N-CH ₂ OH CH ₃	н	н	Н
471	-N-CH ₂ -OH	Н	н	сосн з

EXAMPLE NO.	λ	R ¹	E	P
472	-N-CH ₂ OH	Н	СНЗ	н
473	-N-CH ₂ OH CH ₃	н	СНЗ	COCH 3
474	OH OH -CH ₂ OH	NH2	н .	н
475	OH OH -CH ₂ OH	NH2	н	COCH 3
476	OH OH -CH ₂ OH	NH2	СН3	н

EXAMPLE NO.	A	R ¹	E	P
				

NH2

СНЗ

COCH 3

478

Н

H

Н

479

Н

Н

COCH 3

480

Н

CH3

н

481

н .

СНЗ

COCH 3

	_ <u>::</u>				
EXAMPLE		A	_R 1	E	2
NO.	•		-,	_	-

NH2

Н

Н

483

NH2

Н

COCH 3

484

NH2

СНЗ

н

485

NH2

СНЗ

COCH 3

EXAMPLE NO.	A	R ¹	E	P
486	CH ₂ F -C-CH ₂ OH -CO ₂ H	Н		Н
487	CH ₂ F C-CH ₂ OH CO ₂ H	Н	н	COCH ₃
488	CH ₂ F -C-CH ₂ OH CO ₂ H	н	СНЗ	н
489	CH ₂ F -C-CH ₂ -OH CO ₂ H	Н	СН3	COCH 3

EXAMPLE NO.	A	R ¹	E	P
490	CHF ₂ OH -C-CH ₂ OH CO ₂ H	н	Н	Н
491	CHF ₂ OH C-CH ₂ OH CO ₂ H	н	Н	COCH 3
492	CHF ₂ OH C-CH ₂ OH CO ₂ H	н	CH3	H
493	CHF ₂ OH -C-CH ₂ OH CO ₂ H	Н	СНЗ	сосн з

EXAMPLE NO.	A	R ¹	E .	P
494	CH ₃ -N-C-CH ₂ -N-C-CH ₂ -OH H CO ₂ CH ₃	Н	н	Н
495	CH ₃ OH -N-C-CH ₂ OH H CO ₂ CH ₃	н .	Н	COCH 3
496	CH ₃ OH -N-C-CH ₂ OH H CO ₂ CH ₃	Н	СНЗ	Н

EXAMPLE NO.	A	R ¹	E	p
498	CH ₃ -C-CH ₂ -CO ₂ CH ₃ OH CO ₂ CH ₃	NH2	Н	Н
499	CH ₃ C-C-CH ₂ OH CO ₂ CH ₃	NH2	Н	COCH 3
500	CH ₃ OH -C-CH ₂ OH CO ₂ CH ₃	NH2	CH 3	Н .
501	CH ₃ CC-CH ₂ OH CO ₂ CH ₃	NH2	СН3	COCH 3

EXAMPLE NO.	A	R ¹	E	P
502	CH ₂ F C-CH ₂ OH CO ₂ CH ₃	н	н	Н
503	CH ₂ F -C-CH ₂ -C-CH ₂ CO ₂ CH ₃	Н	H	СОСН 3
504	CH ₂ F C-CH ₂ OH CO ₂ CH ₃	н	СН3	Н
05	CH ₂ F C-CH ₂ OH CO ₂ CH ₃	Н	СН3	сосн з

EXAMPLE NO.	A	R ¹	E	P
506	CHF ₂ OH -C-CH ₂ OH CO ₂ CH ₃	н	Н	Н
507	CHF ₂ OH C-C-CH ₂ OH CO ₂ CH ₃	н	H	COCH 3
508	CHF ₂ OH -C-CH ₂ OH CO ₂ CH ₃	н	СН3	Н
509	CHF ₂ OH -C-CH ₂ OH CO ₂ CH ₃	н .	СН3	COCH 3

EXAMPLE NO.	A	R ¹	E	P
510	CH ₃ -C-CH ₂ OH CO ₂ CH ₃	Ħ	н	Н
511	CH ₃ OH -C-CH ₂ OH CO ₂ CH ₃	н	Н	COCH 3
512	CH ₃ OH CC-CH ₂ OH CO ₂ CH ₃	н	CH3	Н
513	CH ₃ OH -C-CH ₂ OH	H	СН3	COCH 3

EXAMPLE NO.	A	R ¹	E	P
514	CH ₃ -C-CH ₂ CO ₂ CH ₃	Н	Н	Н
515	CH₃ -C-CH₂ -C-CH₂ CO₂H	Н	H	COCH 3
516	CH ₃ -C-CH ₂ OH -CO ₂ H	Н .	СНЗ	н
517	CH ₃ OH -C-CH ₂ OH CO ₂ H	н	СНЗ	COCH 3

EXAMPLE NO.	Α	R ¹	E	P
518	CF ₃ OH -C-CH ₂ OH CO ₂ CH ₃	н	Н	Н
519	CF ₃ C-C-CH ₂ OH CO ₂ CH ₃	Н .	H	COCH 3
520	CF ₃ CC-CH ₂ OH CO ₂ CH ₃	н	СНЗ	Н
521	CF ₃ OH -C-CH ₂ OH CO ₂ CH ₃	Н	СНЗ	COCH 3

EXAMPLE NO.	A	R ¹	E	P
				

EXAMPLE NO.	Α	R ¹	E	P
526	C ₂ H ₅ OH OH CO ₂ CH ₃	Н	н	н
527	C ₂ H ₅ OH C-C-CH ₂ OH CO ₂ CH ₃	н	H	COCH 3
528	C ₂ H ₅ OH -C-CH ₂ OH CO ₂ CH ₃	H	CH3	н
529	C ₂ H ₅ OH -C-CH ₂ OH -CO ₂ CH ₃	н	СНЗ	COCH 3

EXAMPLE NO.	A	R ¹	E	P
530	C ₂ H ₅ OH -C-CH ₂ OH CO ₂ H	. Н	Н	Н
531	C ₂ H ₅ OH -C-CH ₂ OH CO ₂ H	н	Н	COCH 3
532	C ₂ H ₅ OH -C-CH ₂ OH CO ₂ H	H	СНЗ	Н
533	C ₂ H ₅ OH -C-CH ₂ OH CO ₂ H	н	СНЗ	сосн з

EXAMPLE NO.	Α	\mathbb{R}^{1}	E	P
534	C ₃ H ₇ OH -C-CH ₂ OH CO ₂ CH ₃	Н		H
535	C ₃ H ₇ OH -C-CH ₂ OH CO ₂ CH ₃	н	Н	COCH 3
536	C ₃ H ₇ -C-CH ₂ 	Н	СН3	н
537	C ₃ H ₇ OH -C-CH ₂ OH -CO ₂ CH ₃	Н	СНЗ	COCH 3

EXAMPLE NO.	A	R ¹	E	P
538	С ₃ Н ₇ ОН -C-CH ₂ ОН -CO ₂ H	Н	Н	Н
539	C ₃ H ₇ OH -C-CH ₂ OH CO ₂ H	н	H	COCH 3
540	C ₃ H ₇ OH I-C-CH ₂ OH CO ₂ H	н	СНЗ	н
541	C ₃ H ₇ OH -C-CH ₂ OH CO ₂ H	н	СНЗ	COCH 3

The following Examples #542-#577 of Table VIII are highly preferred conjugates composed of dopa-decarboxylase inhibitor compounds and glutamic acid derivatives. These dopa-decarboxylase inhibitors utilized to make these conjugates are embraced by generic Formula VIII, above.

10

TABLE VIII

EXAMPLE	; L	M	R56	_R 55	E	P
NO.						

NHNH

EXAMPLE NO.	L	М	R56	_R 55	Ë	P
545	NHNH	ОН	н	н	СН3	сосн 3
546	NHNH	°C → OCH₃	Br	Н	н	н
547	NHNH	-C OCH3	Br	н	н	COCH 3
548	NHNH	-C OCH₃	Br	Н	СНЗ	н

Br

H

снз соснз

EXAMPLE NO.	L	М	_R 56	_R 55	E	P
550	NHNH	-CH-C ₂ I	Br	Br	Н	Н
551	NHNH	-CH-C ₂ H	Br 2	Br	н	COCH 3
552	NHNH	-CH-C ₂ H	Br 2	. Br	сн3	Н
553	NHNH	-CHC ₂ H	Br 2	Br	СНЗ	COCH 3
554	NHCH 2CH2NH	ОН	н	Н	н	Н

EXAMPLE	7					
NO.	77	М	Roo	R 55	E	P

EXAMPLE	L	M	_R 56	_R 55	E	P
NO.			•			

561 NHCH 2CH2NH
$$\stackrel{\circ}{-C}$$
 Br H CH3 COCH 3

562 NHCH 2CH2NH $\stackrel{\circ}{-C}$ $\stackrel{\circ}{-C}$ Br Br H H

EXAMPLE NO.	L	М	_R 56	_R 55	E	P

· · · · · · · · · · · · · · · · · · ·					
EXAMPLE L	M	_R 56	_R 55	E	P
_NO.					

piperazinyl -CH
$$C_2H_5$$
 Br Br H H

EXAMPLE	L	M ·	ъ56	_R 55	17	2
NO.		••	.10	Koo	Ľ	P

The following Examples #578-#757 of Table IX are highly preferred conjugates composed of dopa-decarboxylase inhibitor compounds and glutamic acid derivatives. These dopa-decarboxylase inhibitors utilized to make these conjugates are benzoic acid type derivatives based on the list of similar compounds described earlier.

TABLE IX

EXAMPLE NO.	L	_R 130	R131	R132	E	P
578	NHNH	Н	OH	OН	Н	н
579	NHNH	Н	OH	OH	н	COCH 3
580	NHNH	н	OH	OH	СН3	Н
581	NHNH	н	OH	OH	СНЗ	COCH 3
582	NHNH		OH .	OH	н	н
583	NHNH		OH	ОН	Н	COCH 3
584	NHNH		OН	OH	СНЗ	н

EXAMPLE NO.	L	R130	R131	R132	E	P
585	NHNH		OН	OH	СН3	COCH ₃
586	ИНИН		CI OH	ÓН	Н	Н
587	NHNH		CI OH	ОН	н	COCH 3
588	NHNH		CH CH	OH	СНЗ	Н
589	NHNH		el OH	. OH	СН3	COCH 3
590	NHNH	OCH3 OCI	OCH ₃	OCH 3	н	н .
591	NHNH	OCH3 OCI	OCH ₃	OCH 3	н	COCH 3

EXAMPLE NO.	L	R130	R131	R132 E	P
592	NHNH	OCH OCH	OCH 3	осн₃ сн₃	Н
593	NHNH	OCH3 OCH	осн ₃ осн ₃	осн з снз	COCH 3
594	NHNH	— N	OCH 3	оснз н	. H
595	NHNH	— N	OCH 3	оснз н	COCH 3
596	NHNH	- N	OCH 3	осн з снз	Н
597	NHNH	— N	0СН 3	осн з снз	сосн з
598	NHNH	OCH ₃	OCH 3	осн з н	Н

EXAMPLE NO.	L	_R 130	R131	R ¹³²	E P
599	NHNH		— ОСН ₃ ОСН 3 ОСН ₃		COCH 3
600	NHNH		—OCH₃ OCH₃	OCH3 C	Н3 Н
601	NHNH		-OCH ₃ OCH ₃	OCH 3 C	нз соснз
602	NHNH		OCH 3	осн з н	Н
603	NHNH		OCH 3	осн з н	COCH 3
604	NHNH		OCH 3	OCH3 C	н3 н
605	NHNH		OCH 3	OCH3 C	нз соснз
606	NHNH		—он _{он}	он н	н

R131

R130

L

R¹³² E

NO.	— - <u></u>				_	£	
			•				=
607	NHNH		—он а	н он	Н	COCH 3	
608	NHNH		—OH O£	н он	СНЗ	H	
609	NHNH		— ОН _{ОЕ}	i OH	СН3	COCH 3	
610	NHNH		—c। ос	нз оснз	н	·H	
611	NHNH		c ı oc	нз оснз	Н	COCH 3	
612	NHNH	•	–c i oc	нз оснз	СН3	н	
613	. NHNH		CI 001	нз оснз	СН3	COCH 3	
614	NHNH		 -och₃ ∞	нз оснз	н	Н	

EXAMPLE NO.	L	R130	R131	_R 132	E	P
615	NHNH		OCH3	OCH 3	н	COCH 3
616	NHNH		OCH ₃ OCH ₃	OCH 3	СНЗ	H .
617	NHNH		OCH _{3 OCH 3}	ОСН 3	СН3	COCH 3
618	NHNH	—	CH₂ OCH3	OCH 3	Н	н
619	NHNH	—	CH₃ CCH3	ОСH 3	Н	сосн 3
620	NHNH	-__N_\(\)	CH₂ OCH3	OCH 3	СН3	н
621	NHNH	—	CH ₂ OCH 3	OCH 3	СНЗ	COCH 3
622	инин		OH .	OH	н	H .

EXAMPLE NO.	L	R130	R131	R132 E	P
623	NHNH		OH .	ОН Н	СОСН 3
624	NHNH		ОH	он снз	Н
625	NHNH		ОН	он снз	COCH 3
626	NHNH		осн ₃	осн з н	H
627	ИНИН		OCH 3	осн3 н	COCH 3
628	NHNH		осн 3	осн з снз	Н
629	NHNH		0CH3	осн з снз	COCH 3
630	NHNH	~~s>	OCH 3	оснз н	н
631	NHNH	$ \langle s \rangle$	OCH 3	осн з н	COCH ₃

R131

_R130

NO.							
622		~\s\		••			
632	NHNH	.s	· OCH3	OCH 3	СНЗ	H	
633	NHNH		0CH3	OCH 3	СНЗ	COCH 3	
634	NHNH		ОН	OH	Н	Н	
635	NHNH	$ \langle s \rangle$	OH	OH	H	· COCH 3	
636	NHNH	-\s\sqrt{s}	CH	OН	СН3	н	
637	NHNH	~\s\	OH .	OН	СН3	COCH 3	
638	NHCH 2CH2NH	· H	OH	OH	Н	н .	
639	NHCH2CH2NH	н	OH .	OH	Н	COCH 3	
640	NHCH 2 CH2 NH	н	OH	OH	СНЗ	Н	
641	NHCH 2CH2NH	Н	OH	OH	СНЗ	COCH 3	

EXAMPLE NO.	L	R130	R131	_R 132	E	P
642	NHCH 2CH2NH		OH		Н	Н
643	NHCH 2CH2NH		OH	OH ·	- Н	COCH 3
644	NHCH 2CH2NH		CH	OH .	СНЗ	н
645	NHCH 2 CH2 NH		ОН	OH	СНЗ	COCH ₃
646	NHCH 2 CH2 NH	-CI	ОН	OH	н	н
647	NHCH 2CH2NH	-CI	ОН	ОН	н	COCH 3
648	NHCH 2 CH2 NH	CI CI	ΟΉ	ОН	СНЗ	Н
649	NHCH 2 CH2 NH	-Ci	OН	ОH	СНЗ	СОСН 3

	_								
EXAMPLE		Ŀ	:	R130	R131	R132	E	P	
NO.									

٠			Ha		
650	NHCH 2 CH2 NH	OCH ₃	OCH 3	OCH3 H	н
651	NHCH 2CH2NH	OCH3 OCH3	H ₃ OCH 3	оснз н	COCH 3
652	NHCH2CH2NH	OCH ₃ OCH ₃	H ₃ 0CH 3	OCH 3 CH3	Н
653	NHCH 2CH2NH	OCH ₃	H ₃ . OCH 3	OCH 3 CH3	COCH 3
654	NHCH2CH2NH		0CH3	оснз н	н
655	NHCH 2CH2NH		OCH 3	оснз н	COCH 3
656	NHCH2CH2NH	— N	OCH 3	OCH 3 CH3	н

EXAMPLE NO.	L	R130	R ¹³¹	R132 E	P
657	NHCH 2 CH2 NH	— N	осн 3	ОСН 3 СН3	COCH 3
658	NHCH 2 CH2 NH	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ОСН ₃ ОСН 3 Н ₃	осн з н	Н
659	NHCH 2CH2NH	OCI	OCH 3 H3	оснз н	COCH 3
660	NHCH 2CH2NH	OCH	OCH3	осн з снз	н
661	NHCH 2 CH2 NH	OCH	OCH 3	осн з снз	COCH 3
662	NHCH 2CH2NH		OCH 3	осн з н	н
663	NHCH 2 CH2 NH		OCH 3	оснз н	COCH 3

EXAMPLE NO.	L	_R 130	R131	R132	E	P
664	NHCH2CH2NH		0СН 3	 OCH 3	СНЗ	н
665	NHCH 2 CH2 NH		0СН3	OCH 3	СНЗ	COCH 3
666	NHCH 2 CH2 NH	ОН	ОН	OH	H .	н .
667	NHCH 2 CH2 NH	——————он	OH .	OH	Н	COCH 3
668	NHCH 2 CH2NH	—————он	OH	ОН	СНЗ	н
669	NHCH 2 CH2 NH		OH	OH	СНЗ	COCH 3
670	NHCH 2 CH2 NH	-CI	OCH 3	OCH 3	н	н
671	NHCH 2CH2NH	cı	OCH 3	OCH 3	Н	COCH 3
672	NHCH 2 CH2NH	-CI	OCH 3	OCH 3	СНЗ	·H

7171 M	_	100				
EXAMPLE	L	R130	R131	R132	E	Þ
NO.						•

		·		
673	NHCH 2 CH2 NH	CI OCH 3	осн з снз	сосн 3
674	NHCH 2 CH2 NH	OCH3 OCH3	осн з н	н
675	NHCH 2 CH2 NH	OCH 3	оснз н	COCH 3
676	NHCH 2CH2NH	OCH3 OCH3	ОСН 3 СН3	H
677	NHCH 2 CH2 NH	OCH ₃ OCH ₃	OCH 3 CH3	COCH 3
678	NHCH 2 CH2 NH	CH3 OCH 3	оснз н	н
679	NHCH 2CH2NH	CH3 OCH 3	оснз н	COCH 3
680	NHCH 2CH2NH	CH ₃ OCH 3	OCH 3 CH3	н

EXAMPLE	L	R130	R131	R132	E	P
NO.						
					- 7	

681	NHCH 2 CH2 NH		OH₃ OCH3	ОСН 3	Снз	COCH 3
682	NHCH 2CH2NH		OH .	OH	н	н
683	NHCH 2CH2NH		ΟΉ	OH	н	COCH 3
684	NHCH 2CH2NH		OH .	OH	СНЗ	Н
685	NHCH 2 CH2 NH		QH .	OН	СН3	COCH 3
686	NHCH2CH2NH		OCH 3	OCH 3	н	н
687	NHCH2CH2NH		. 0CH3	OCH 3	Н	COCH 3
688	NHCH 2 CH2 NH		OCH 3	OCH 3	СНЗ	н
689	NHCH 2 CH2 NH	~~~	OCH 3	OCH 3	СНЗ	COCH 3

EXAMPLE NO.	L	R130	R131	R132	E	P
690	NHCH 2 CH2 NH	S .	0CH3	OCH 3	Н	Н
691	NHCH 2 CH2 NH	~s>	0CH3	OCH 3	н	COCH 3
692	NHCH 2CH2NH		OCH 3	OCH 3	СНЗ	н
693	NHCH 2CH2NH	$ \langle s \rangle$	ОСН 3	OCH 3	СН3	COCH 3
694	NHCH2CH2NH	s	СH	OH	н	Н
695	NHCH 2CH2NH	\longrightarrow s	ОН	ОН	н	COCH 3
696	NHCH 2CH2NH	$\prec \sim$	ОН	OH	СН3	н
697	NHCH 2CH2NH	s	ОH	OH	СН3	COCH 3
698	piperazinyl	н	ÓН	OH	н	Н

•

EXAMPLE NO.	L	R130	R ¹³¹	R132	E	P
		•				
699	piperazinyl	H	OH .	OH	Н	COCH 3
700	piperazinyl	Н	OH	OH	СНЗ	Н
701	piperazinyl	н .	OH	OH .	СНЗ	COCH 3
702	piperazinyl		ОН	ОН	Н	н
703	piperazinyl		ОН	ОH	Н	COCH 3
704	piperazinyl		OH	OH	СНЗ	Н
705	piperazinyl		OH	OН	СН3	COCH 3
706	piperazinyl		l OH	OH	н	H
707	piperazinyl		CH OH	OH	н	COCH 3

EXAMPLE NO.	L	R130	R131	R132	E	P
708	piperazinyl		C OH	 ОН (СНЗ	Н
709	piperazinyl)—с ⊢он	OH C	ЭНЗ	COCH 3
710	piperazinyl	OCH,	OCH3	осн з н	I :	H
711	piperazinyl	осн	OCH3	осн з н	(COCH 3
712	piperazinyl	оснз	—осн₃ ^{ссн 3}	OCH 3 CI	нз г	H
713	piperazinyl	OCH ₃	— осн ₃	OCH 3 CH	I3 (COCH 3
714	piperazinyl	$-\sqrt{}$	OCH 3	оснз н	Н	

EXAMPLE NO.	L	R130	R ¹³¹	R ¹³² E	P
715	piperazinyl		OCH3	осн з н	COCH 3
716	piperazinyl		0CH3	OCH 3 CH3	Н
717	piperazinyl		OCH 3	OCH 3 CH3	COCH 3
718	piperazinyl	OCH.	OCH 3 ○CH 3	оснз н	н
719	piperazinyl	OCH,	OCH 3	OCH3 H	COCH 3
720	piperazinyl	OCH ₃	OCH3	осн з снз	Н
721	piperazinyl	OCH3	OCH 3	осн з снз	COCH 3

EXAMPLE NO.	L	R130	R131	R132	E	P
722	piperazinyl		OCH 3	OCH 3	} H	Н
723	piperazinyl		OCH 3	OCH 3	н	COCH 3
724	piperazinyl		OCH 3	OCH 3	СНЗ	Н
725	piperazinyl		0СН3	OCH 3	СНЗ	· COCH 3
726	piperazinyl	ОН	ОН	ОН	н	н
727	piperazinyl	-С->-ОН	OH	ОН	Н	COCH 3
728	piperazinyl	ОН	ОН	OH	СНЗ	Н
729	piperazinyl	————он	ОĦ	ОН	СН3	COCH 3
730	piperazinyl	-CI	OСН 3	OCH 3	н	н

EXAMPLE	L	R130	R131	R132	E	P
NO.					_	_

	•	•		
731	piperazinyl	OCH 3	оснз н	COCH 3
732	piperazinyl — CI	0СН3	осн з снз	Н
733	piperazinyl	OCH 3	OCH 3 CH3	сосн 3
734	piperazinyl —————OCH3	OCH 3	оснз н	н
735	piperazinyl ————OCH ₃	OCH 3	осн з н	COCH 3
736	piperazinyl ————OCH ₃	OCH 3	осн з снз	Н
737	piperazinyl ——OCH ₃	OCH 3	осн з снз	COCH 3
738	piperazinyl CH		осн з н	Н

Example	L	R130	R131	_R 132	tr.	D
NO.				*	-	E

739	piperazinyl	-__\	CH3 OCH3	OCH :	3 Н	COCH 3
740	piperazinyl	~__N	CH₃ ^{CCH} 3	осн з	CH ₃	н
741	piperazinyl		CH³ CCH3	OCH 3	СНЗ	COCH 3
742	piperazinyl		OH	ОН	н	Н
743	piperazinyl		OH	ОН	Н	COCH 3
744	piperazinyl		ОН	ОН	СНЗ	н
745	piperazinyl		ОН	ОН	СН3	COCH 3
746	piperazinyl		OCH 3	OCH 3	н	н

•

EXAMPLE NO.	L	R130	R131	R132	E	P
747	piperazinyl		OCH 3	осн з	Н	сосн 3
748	piperazinyl		OCH 3	OCH 3	СНЗ	н
749	piperazinyl		OCH 3	OCH3	СНЗ	COCH 3
750	piperazinyl		OCH 3	OCH 3	H	·H
751	piperazinyl	s	OCH 3	осн з 1	H	COCH 3
752	piperazinyl	$ \left\langle \right\rangle$	OCH3	0СН3	CH3	Н
753	piperazinyl		OCH 3	OCH 3	СНЗ	COCH 3
754	piperazinyl		ОН	OH 1	Н	Н
755	piperazinyl	s	ОН	OH :	Н	сосн 3

EXAMPLE NO.	L	R130	R131	R132	E	P
756	piperazinyl	s ·	OH.	OH	СНЗ	Н
757	piperazinyl	$ \langle s \rangle$	ОH	ОН	СНЗ	COCH 3

The following Examples #758-#809 of Table X are highly preferred conjugates composed of dopa-decarboxylase inhibitor compounds and glutamic acid derivatives. These dopa-decarboxylase inhibitors utilized to make these conjugates are propenoic acid derivatives based on the list of similar compounds described earlier.

TABLE X

EXAMPLE NO.	R ¹³³	R ¹³⁴	_R 135	E	P
758	н	~\s\	Н	н .	Н
759	н		.H	н	COCH 3
760	н	~\s\	Н	CH3	Н
761	н	~s	Н	CH ₃	COCH 3
762	СН3	~s	Н	н	н

EXAMPLE NO.	R133	R ¹³⁴	_R 135	E	P
763	СНЗ	$ \langle s \rangle$	Н	Н	COCH 3
764	СНЗ		н	СН3	н
765	СН3	s	н	CH ₃	COCH 3
766	Н		CH3	Н	Н
767	Н	~s>	CH ₃	н	COCH 3
768	н	~\s\	СН3	CH3	н
769	н	s	СН₃	CH ₃	COCH 3
770	н		н	н	Н

EXAMPLE NO.	R133	R134	_R 135	E	P
		· .o			
771	Н		н	н .	COCH 3
772	Н		н	CH3	Н
773	Н		Н	CH ₃	COCH 3
774	CH3		н	н.	Н .
775	CH ₃		н _,	H	COCH 3
776	CH ₃		H	СН3	Н
777	CH3		н	СН3	COCH 3

EXAMPLE NO.	R133	_R 134	R135	E	P
778	н	s	н ;	Н	Н
779	Н	s	н	н	COCH 3
780	H	s s	Н	СН3	н
781	н	s	Н	СН3	COCH 3
782	СНЗ	s	н	н	H
783	Сн3	\int_{s}	н	н	COCH ₃
784	CH ₃	<u></u> s	н	CH ₃	Н

EXAMPLE NO.	_R 133	R134	R135	E	P
785	CH ₃	<u></u>	H	СН3	COCH 3
786	Н		н	·. H	н
787	Н		н	н	COCH 3
788	Н		н	CH ₃	н
789	H		Н	CH ₃	COCH ₃
790	СН3		Н	н .	Н
791	СН3		Н	H ·	COCH ₃

EXAMPLE NO.	R133	R134	R135	E	P
792	СН3		H	CH ₃	Н
793	CH ₃		н	CH ₃	COCH ₃
794	Н		CH3	Н	Н
795	· н		CH ₃	н	COCH ₃
796	- Н		CH ₃	СН3	н
797	Н		СНЗ	CH ₃	COCH ₃
798	Н		Н	H	Н

EXAMPLE	R133	R134	R135	D	
NO.	N-0-0	V	- K	E	P
799	Н		Н	н	COCH 3
800	Н		н	СН3	н
801	Н		Н .	СН3	COCH 3
802	СНЗ		н	н	н
803	CH3		н	H	COCH ₃
804	СН3		н	СН3	Н .
805	СН3		н	СН3	COCH 3

EXAMPLE NO.	R133	R134	R135	E	P
806	Н		СН3	н	н
807	н		CH ₃	н	COCH 3
808	н		CH ₃	СНЗ	Н
809	н		СНЗ	СН3	COCH 3

The following Examples #810-#833 of Table XI are highly preferred conjugates composed of dopa-decarboxylase inhibitor compounds and glutamic acid derivatives. These dopa-decarboxylase inhibitors utilized to make these conjugates are embraced by generic Formula IX, above.

CH3

TABLE XI

$$R^{136} \longrightarrow C = C \cdot C \cdot N \cdot C \cdot C \cdot H_2 \cdot C \cdot H_2 \cdot C \cdot H_2 \cdot H_1 + H_1 + H_2 \cdot H_2 \cdot H_2 \cdot H_1 + H_2 \cdot H_2 \cdot H_2 \cdot H_2 \cdot H_2 \cdot H_3 \cdot H_1 \cdot H_1 \cdot H_2 \cdot H_2 \cdot H_3 \cdot H_3$$

EXAMPLE	_R 67	_R 136	E	P
NO.				
810	H	н	н	н
811	Н	Н	н	COCH 3
812	Н	н	СН3	H
813	Н	н	СНЗ	COCH 3
814	н	ОН	Н	Н
815	H	ОН	. H .	COCH 3
816	H	OH.	CH3	н
817	H	OH	CH3	COCH 3
818	Н	OCH 3	Н	Н
819	н	0CH3	н	COCH 3
820	н	OCH 3	СНЗ	Н
821	Н	OCH 3	CH3	COCH 3

Н

H

H

EXAMPLE NO.	_R 67	_R 136	E	P
823	CH3	Н	Н	COCH 3
824	CH3	н	СНЗ	Н
825 、	СНЗ	н	СНЗ	COCH 3
826	СНЗ	ОH	Н	Н
827	СНЗ	OH ·	Н	COCH 3
828	CH3	ОH	CH3	Н
829	CH3	OH	СНЗ	COCH 3
830	CH3	OCH 3	Н	н
831	CH3	och 3	H	COCH 3
832	CH3	OCH 3	СНЗ	н
833	СНЗ	ОСН 3	СНЗ	COCH 3

The following Examples #834-#857 of Table XII are highly preferred conjugates composed of dopa-decarboxylase inhibitor compounds and glutamic acid derivatives. These dopa-decarboxylase inhibitors utilized to make these conjugates are embraced by generic Formula IX, above.

TABLE XII

EXAMPLE NO.	_R 138	_R 139	_R 67	E	P	
834	Н	Н	C≡CH	Н	н	
835	H H	Н	C≡CH	н	COCH 3	
836	. H	Н	CECH	СНЗ	н	
837	Н	Н	C≡CH	СНЗ	COCH 3	
838	OH	Н	CEECH	H	н	
839	OH	н	C≅CH	H	COCH 3	
840	CH	Н	C ≕ CH	СНЗ	Н	•
841	OH	Н	CEECH	СНЗ	COCH 3	
842	Н	OH	CECH	Н	Н	
843	Н	OН	C=CH	н	COCH 3	
	•					

OH

CECH

СНЗ

Н

EXAMPLE NO.	R138	R139	R67	E	P
845	Н	OH	C≡Œ	СНЗ	COCH 3
846	Н	H	CH=CH ₂	н "	Н
847	Н	н	CH=CH ₂	Н	COCH 3
848	H	Н	CH=CH ₂	СНЗ	Н
849	Н	Н	CH=CH ₂	СНЗ	COCH 3
850	OH	Н	CH=CH ₂	н	Н
851	QH	Н	CH=CH ₂	H	COCH 3
852	OH	Н	CH=CH ₂	CH3	н
853	OH .	Н	CH=CH ₂	CH3	COCH 3
854	Н	OH .	CH=CH ₂	Н	н
855	Н	OH	CH=CH ₂	Н	COCH 3
856	H	OH	CH=CH ₂	CH3	Н
857	H	OH	CH=CH ₂	СНЗ	COCH 3

The following Examples #858-#1857 comprise five classes of highly preferred conjugates composed of dopamine-β-hydroxylase inhibitor compounds and glutamic acid derivatives. Examples #858-#863 are descriptions of specific preparations of such conjugates. Examples #864-#1857, as shown in Tables XIII-XVII, may be prepared by procedures shown in these specific examples and in the foregoing general synthetic procedures of Schemes 1-7.

10

Example 858

L-glutamic acid, 5-[(5-butyl-2-pyridinyl)carbonyl]-hydrazide

15

Step. 1: <u>Preparation of 5-n-Butylpicolinic (Fusaric) Acid</u> <u>Hydrazide</u>.

A solution of 36.0 g (0.20 mol) of fusaric acid 20 (Sigma) in 800 ml of absolute methanol was cooled to -10°C by means of an ice/methanol bath and 120 ml (199 g, 1.67 mol) of SOC12 was added dropwise over a 1 hr period. The reaction was allowed to slowly warm to ambient temperature and then stirred at reflux for 72 hr. The reaction was concentrated; the addition of 100 ml of toluene (twice) followed by reconcentration insured the 25 complete removal of any unreacted SOC12. The viscous syrup thus formed was dried in vacuo (0.01mm) overnight prior to treatment with cold NaHCO3(sat). The ester was extracted with ether and dried (MgSO₄). Concentration gave 32.3 g (83%) of crude methyl 30 fusarate which was redissolved in 100 ml of absolute methanol and cooled to 0°C. Under a nitrogen atmosphere, 5.5 ml (0.174 mol) of anhydrous hydrazine was slowly added by syringe. The reaction was allowed to slowly warm to ambient temperature and stir

overnight. The methanol was removed and the yellow-brown residue was dried in yacuo (0.01 mm) overnight where it solidified producing 31.7g (98%) based on ester) of crude hydrazide. Recrystallization from ether/hexane gave colorless needles: mp 51-53°C NMR (CDCl₃) δ 0.95 (t, J = 7 Hz, 3H, CH₂CH₃); 1.30-1.45 (m, 2H, CH₂CH₃); 1.55-1.70 (m, 2H, CH₂CH₂CH₂); 2.67 (t, J = 7 Hz, 2H, ArCH₂); 7.65 (d of d, J₃,₄ = 7 Hz and J₄,₆ = 2 Hz, 1H, ArH); 8.05 (d, J₃,₄ = 7 Hz, 1H, ArH); 8.37 (d, 1H, ArH, J₄,₆ = 2 Hz); HRMS. Calcd for M + H: 194.1270. Found: 194.1293.

Step 2: Preparation of L-glutamic acid. 5-[(5-butyl-2-pyridinyl)carbonyllhydrazide.

A solution of 7.27 g (24.0 mmol) of Boc-L- γ glutamic acid- α -t-butyl ester (BACHEM) in 150 ml of anhydrous THF was 15 cooled to 0°C under static nitrogen and treated with 2.7 ml (2.46 g, 24.4 mmol) of anhydrous N-methyl morpholine. The mixture was then slowly treated with 3.1 ml (3.26 g, 23.9 mmol) of isobutyl chloroformate and allowed to stir for 1 hr prior to the dropwise 20 addition of a solution of 3.86 g (20.0 mmol) of fusaric acid hydrazide from step 1 in 30 ml of anhydrous THF. The reaction mixture was stirred at 0°C for 2 hr and then allowed to warm to ambient temperature and stir overnight. The N-methylmorpholine hydrochloride was removed by filtration and the filtrate concentrated in vacuo to give 11.5 g of crude product which was a 25 colorless glass. This material was dissolved in 50 ml of CH2Cl2 and treated with 50 ml of CF3CO2H. After 4 hr at ambient temperataure, the volitiles were removed in vacuo. The addition of acetonitrile caused the product to precipitate producing 3.97 g (46%) of colorless material: mp 162-164°C (dec.); NMR (DMSO-30 d₆) δ 1.90 (t, J = 7 Hz, 3H, CH₂CH₃); 1.30-1.45 (m, 2H, CH₂CH₃); 1.50-1.65 (m, 2H, $CH_2CH_2CH_2$); 2.00-2.20 (m, 1H, CH_2CH); 2.30-2.50 (m, 1H, CH₂CH); 2.70 (t, $\underline{J} = 7$ Hz, 2H, ArCH₂); 3.60 (t, $\underline{J} = 7$ Hz, 2H, $COCH_2$); 3.95-4.05 (M, 1H, CH_2CH); 7.85 (d of d, $I_{3,4} = 7 Hz$

and $J_{4,6} = 2$ Hz, 1H, ArH); 7.95 (d, $J_{3,4} = 7$ Hz, 1H, ArH); 8.55 (d, $J_{4,6} = 2$ Hz, 1H, ArH).

5

Example 859

N-acetyl-L-glutamic acid, 5-[(5-butyl-2-pyridinyl)-carbonyl]hydrazide

A suspension of 2.85 g (6.54 mmol) of the compound of Example 858 in CH_3CN/H_2O (1:1) was treated with 2 equiv. of 1 M K_2CO_3 at 0°C. With efficient stirring, 1 ml (10.6 mmol) of 15 acetic anhydride and 11 ml (11 mmol) of 1M K_2CO_3 were added every 10 min for 1 hr; since the product is soluble, the mixture became homogenous as the reaction proceeded. The reaction mixture was stirred for 1 hr, filtered, and the filtrate cooled to 0°C. The pH was adjusted to pH 4 by the careful addition of cold dilute 20 HC1. All volitiles were removed in vacuo and the product dissolved in ethanol. Recrystallization from ethanol/petroleum ether produced 2.16g (69%) of colorless material: mp 191.5-192.0°C; NMR (D₂O and NaOD) δ 1.85 (t, \underline{J} = 7 Hz, 3H, CH₂CH₃); 1.20-1.35 (m, 2H, CH₂CH₃); 1.55-1.70 (m, 2H, CH₂CH₂CH₂); 1.95-25 2.10 (m, 1H, CH₂CH); 2.05 (s, 3H, COCH₃); 2.20-2.35 (m, 1H, CH_2CH); 2.45 (t, J = 7 Hz, 2H, $COCH_2$); 2.75 (t, 2H, $ArCH_2$); 3.45-3.55 (m, 1H, CH₂CH); 8.05 (s, 2H, ArH); 8.55 (s, 1H, ArH); HRMS. Calcd for M + H: 365.1825. Found 365.1860. Anal.

Calcd. for $C_{17}H_{24}N_{4}O_{5}$: C, 55.98; H, 6.58; N, 15.36. Found: C, 55.96; H, 6.64; N, 15.30.

5

Example 860

N-[2-[[(5-butyl-2-pyridinyl)carbonyl]amino]ethyl]-L-glutamine.

10

Step 1: <u>Preparation of the ethylene diamine amide of fusaric acid.</u>

A solution of 7.8 g (130 mmol) of ethylene diamine in 15 400 mL of anhydrous THF under nitrogen was treated with 27 mmol of n-butyllithium at 0° C. The solution was allowed to stir for 30 min and was treated with 5.0 g (26 mmol) of neat methyl fusarate (from step 1 of Example 690) by syringe. The reaction was kept at 0°C for 2 hr and stirred at ambient temperature overnight. The reaction was quenched with water, filtered, and 20 concentrated in vacuo. Purification by silica gel chromatography gave 3.8 g (66%) of pure amide: NMR (DMSO-d₆) δ 0.90 (t, \underline{J} = 8 Hz, 3H), 1.23-1.38 (m, 2H), 1.52-1.64 (m, 2H), 2.67 (t, J = 8 Hz, 2H), 2.74 (t, J = 8 Hz, 2H), 3.18-3.30 (br s, 2H), 3.34 (q, J = 8Hz, 2H), 7.82 d of d, \underline{J} = 9 Hz and 2 Hz, 1H), 7.96 (d, \underline{J} = 9 Hz, 25 1H), 8.47 (d, J = 2 Hz, 1H), 8.75 (t, J = 8 Hz, 1H).

Step 2: <u>Preparation of N-[2-[[(5-butyl-2-pyridinyl)carbonyllaminolethyll-L-gluatmine.</u>

30

Under nitrogen, a solution of 26.8 g (88.5 mmol) of N-Boc-L- γ -glutamic acid- α -t-butyl ester (BACHEM) in 125 mL of

methylene chloride was treated with 9.14 g (44.3 mmol) of solid dicyclohexylcarbodiimide (DCC). The reaction was allowed to stir for 2 hr prior to filtration under a nitrogen atmosphere. anhydride solution was slowly added to a solution of 8.5 g (38.5 mmol) of the ethylene diamine amide from step 1 in 100 mL of methylene chloride. The reaction was allowed to stir overnight and was concentrated in vacuo. The residue was dissolved in ethyl acetate, washed with 1M K2CO3 followed by water, dried (MgSO₄) and reconcentrated in vacuo to give the protected coupled product; a solution of this material in 250 mL of methylene chloride was cooled to 0°C and treated with 250 mL of trifluoroacetic acid (TFA). The reaction was allowed to warm to ambient temperature and stir overnight; the course of the reaction was monitored by analytical LC. Concentration in vacuo gave N-[2-[[(5-butyl-2-pyridinyl)carbonyl]amino]ethyl]-Lglutamine.

Example 861

20

30

10

15

N2-acetyl-N-[2-[[(5-butyl-2-pyridinyl)carbonyl]-aminolethyl]-L25 glutamine.

The compound of Example 860 was dissolved in 150 mL of acetonitrile/water (1:1) and the pH adjusted to 9 with 2 M $\rm K_2CO_3$. The solution was cooled to 0°C and 2.27 mL (24 mmol) of acetic anhydride and 12 mL (24 mmol) of 2 M $\rm K_2CO_3$ was added every 30

min. for 5 h; the pH was maintained at 9 and the reaction temperature kept below 5°C. After the last addition, the reaction was allowed to warm to ambient temperature overnight. The pH was adjusted to 3 with 3 M HCl and concentrated to 300 mL. Purification by reverse phase chromatography (Waters Deltaprep-3000) using isocractic 30% acetonitrile/water (0.05% TFA) gave 7.8 g (52% overall yield from the amide of step 1) of colorless product; an analytical sample was recrystallized from acetonitrile and then water: mp 156-158°C; Anal. Calcd for C19H28N4O5·0.83 TFA: C, 57.32; H, 7.00; N, 13,96; F, 1.14%. Found: C, 57.22; H, 7.07; N, 13.88; F, 1.07.

Example 862

15

10

2-amino-5-[4-[(5-butyl-2-pyridinyl)carbonyl]-1-piperazinyl]-5-oxopentanoic acid.

20

25

30

Step 1: Preparation of the piperizine amide of fusaric acid.

A solution of 11.20 g (130 mmol) of piperazine in 400 mL of anhydrous THF under nitrogen was treated with 27.3 mmol of n-buytyllithium at 0°C. The solution was allowed to stir for 30 min and was treated with 5.0 g (26 mmol) of neat methyl fusarate (from step 1 of Example 690) by syringe. The reaction was kept at 0°C for 2 hr and stirred at ambient temperature overnight. The reaction was quenched with water, filtered, and concentrated in vacuo. Purification by silica gel chromatography using chloroform/methanol (70:30) gave 5.82 g (90%) of pure amide: NMR (CDC13)8 0.94 (t, J = 8 Hz, 3H), 1.28-1.45 (m, 2H), 1.55-1.67 (m, 2H), 1.66-1.72 (br s, 1H), 2.64 (t, J = 8 Hz, 2H), 2.86 (t, J = 6

Hz, 2H), 2.97 (t, J = 6 Hz, 2H), 3.58 (t, J = 6 Hz, 2H) 3.77 (t, J = 6 Hz, 2H), 7.54-7.63 (m, 2H), 8.37-8.43 (br s, 1H).

Step 2: <u>Preparation of 2-amino-5-[4-[(5-butyl-2-</u>
5 <u>pyridinyl)carbonyll-1-piperazinyll-5-oxopentanoic acid.</u>

Under nitrogen, a solution of 17.4 g (57 mmol) of N-Boc-L- γ -glutamic acid- α -t-butyl ester (BACHEM) in 100 mL of anhydrous THF was treated with 5.57 g (27 mmol) of solid dicyclohexylcarbodiimide (DCC). The reaction was allowed to stir 10 for 2 hr prior to filtration under a nitrogen atmosphere. The anhydride solution was slowly added to a solution of 5.82 g (23.5 mmol) of the piperazine amide from step 1 in 50 mL of anhydrous THF. The reaction was allowed to stir overnight and was 15 concentrated in vacuo. The residue was dissolved in ethyl acetate, washed with 1M K2CO3 followed by water, dried (MgSO4), and reconcentrated in vacuo to give the protected coupled product; a solution of this material in 150 mL of methylene chloride was cooled to 0°C and treated with 150 mL of 20 trifluoroacetic acid (TFA) under nitrogen. The reaction was allowed to warm to ambient temperature and stir overnight; the course of the reaction was monitored by analytical LC. Concentration in vacuo gave 2-amino-5-[4-[(5-butyl-2pyridinyl)carbonyl]-1-piperazinyl]-5-oxopentanoic acid.

Example 863

5 2-(acetylamino)-5-(4-[(5-butyl-2-pyridinyl)carbonyl]-1piperazinyl]-5-oxopentanoic acid.

The compound of Example 862 was dissolved in 150 mL of acetonitrile/water (1:1) and the pH adjusted to 9 with 1 M K_2CO_3 . The solution was cooled to 0°C and 2.36 mL (25 mmol) of acetic 10 anhydride and 25 mL (25 mmol) of 1 M K₂CO₃ was added every 30 min. for 5 h; the pH was maintained at 9 and the reaction temperature kept below 5°C. After the last addition, the reaction was allowed to warm to ambient temperature overnight. The pH was adjusted to 4 with 3 M HCl and concentrated to 300 mL. 15 Purification by reverse phase chromatography (Waters Deltaprep-3000) using isocratic 25% acetonitrile/water (0.05% TFA) gave 8.13 g (78%) of colorless product: MS (FAB) m/e (rel intensity) 419 (100), 258 (10), 248 (37), 205 (28); HRMS. Calcd for M+H: 20 419.2294. Found: 419.2250.

The following Examples #864-#1097 of Table XIII are highly preferred conjugates composed of dopamine- β -hydroxylase inhibitor compounds and glutamic acid derivatives. These dopamine- β -hydroxylase inhibitors utilized to make these conjugates are embraced by generic Formula XIV and XV, above.

TABLE XIII

EXAMPLE NO.	L	R97	E	Р	
864	NHNH	С2Н5	CH3	Н	
865	NHNH	C2H5	CH3	COCH 3	
866	NHNH	C3H7	н	H	
867	NHNH	С3Н7	Н	COCH 3	
868	NHNH	C3H7	CH3	н	
869	NHNH	С3Н7	CH3	COCH 3	
870	NHNH	СН3	н	Н	
871	NHNH	СН3	H	COCH 3	
872	NHNH	C4H9	СНЗ	н	
873	NHNH	C4H9	СНЗ	COCH 3	
874	NHNH	C5H11	H	н	
875	NHNH	C5H11	H	COCH 3	

EXAMPLE NO.	L	R97	E	P	
876	NHNH	C5H11	CH3	т.	
877	NHNH	C5H11	СНЗ	COCH 3	
878	NHNH	C6H13	Н	, . Н	
879	NHNH	C6H13	Н	COCH 3	
880	NHNH ·	C6H13	СНЗ	н	
881	NHNH	C6H13	СНЗ	COCH 3	
882	NHNH	OCH 3	Н	H	
883	NHNH	OCH 3	Н	COCH 3	
884	NHNH	0 С Н3	СНЗ	Н	
885	NHNH	OCH 3	СНЗ	COCH 3	
886	NHNH	ос ₂ н ₅	H	н	
887	NHNH	ос ₂ н ₅	Н	COCH 3	
888	NHNH	0С2Н5	СНЗ	н	
889	NHNH	0C2H5	CH3	COCH 3	
890	NHNH	∞3н7	н	н	
891	NHNH	∞3H ₇	H	COCH 3	

	A ₁ · · · ·					
EXAMPLE NO.	L	R ⁹⁷	E	P		
892	NHNH	осзн7	СНЗ	н		
893	NHNH	0С3Н7	СНЗ	COCH 3		
894	NHNH	OC4H9	Н	H		
895	NHNH	OC4H9	· H	COCH 3		
896	NHNH	OC4H9	CH3	Н		
897	NHNH	OC4H9	СНЗ	COCH 3		
898	NHNH	SCH 3	H	Н		
899	NHNH	SCH 3	н	COCH 3		
900	NHNH	SCH 3	СНЗ	Н		
901	NHNH	SCH3	СНЗ	COCH 3		
902	NHNH	SC2H5	. Н	Н		
903	NHNH	SC2H5	Н	COCH 3		
904	NHNH	SC2H5	CH3	Н		
905	NHNH	SC2H5	СНЗ	COCH 3		
906	NHNH	SC3H7	H	H	•	
907	NHNH	SC3H7	· H	COCH 3		

EXAMPLE NO.	L	R ⁹⁷	E	P	
908	NHNH	SC3H7	СН3	. н	
909	ИНИН	SC3H7	Снз	COCH 3	
910	NHNH	F	Н	н	
911	NHNH	F	н	COCH 3	
912	NHNH	F	СНЗ	Н	
913	NHNH	F	СНЗ	COCH 3	
914	NHNH	CI	Н	н	
915	NHNH	cı	Н	COCH 3	
916	NHNH	Cl	СНЗ	н	
917	NHNH	CI	СН3	COCH 3	
918	NHNH.	Br	Н	Н	
919.	NHNH	. Br	Н	COCH 3	-
920	NHNH	Br	СНЗ	Н	
921	NHNH	Br	СНЗ	COCH 3	
922	NHNH	I	. н	н	
923	NHNH	I	H	COCH 3	

EXAMPLE	L	R97	E	P	
NO.					
924	NHNH	I	СН3	н	
925	NHNH .	I	CH3	COCH 3	
926	NHNH	C 1	н	Ħ	
927	NHNH	CN	.H.	COCH 3	
928	NHNH	C 21	СНЗ	Н	
929	ИНИН	C N	CH3	COCH 3	
930	NHNH	NO ₂	Н	Н	
931	NHNH	NO2	H	COCH 3	
932	NHNH	NO2	СНЗ	Н	
933	NHNH	NO2	СНЗ .	COCH 3	
934	NHNH	OH	н	Н	
935	NHNH	OH	н	COCH 3	
936	NHNH	OH	СН3	Н	
937	NHNH	OH	СНЗ	COCH 3	
938	NHCH 2CH2NH	СНЗ	н	Н	
939	NHCH 2CH2NH	СН3	н	COCH 3	

EXAMPLE	L	R97	E	P	
NO.					
940	NHCH 2 CH2 NH	СНЗ	СНЗ	. н	
941	NHCH 2 CH2 NH	Cua	Otto		
	111017 017141	CH3	CH3	COCH 3	
942	NHCH 2CH2NH	C2H5	н	Н	
943	MUCH - CH- NV				
343	NHCH 2CH2NH	C ₂ H ₅	Н	COCH 3	
944	NHCH 2CH2NH	C2H5	СНЗ	н	
0.45		•			
945	NHCH 2 CH2 NH	C2H5	CH3	COCH 3	
946	NHCH 2 CH2 NH	СЗН7	H	Н	
			· ·	 ·	
947	NHCH 2 CH2 NH	С3Н7	H	COCH 3	
948	NHCH 2 CH2 NH	С3Н7	СНЗ	Н	
	2 2	-57	 3	n	
949	NHCH2CH2NH	C3H7	СН3	COCH 3	
950	NHNH	СНЗ	CU.		
	***************************************	Ch3	CH ₃	CH ₃	
951	NHNH	CH3	CH ₃	COCH 3	
952	NUCLI e CILO NI				
	NHCH 2 CH2 NH	C4H9	. СНЗ	Н	
953	NHCH 2 CH2 NH	C4H9	СНЗ	COCH 3	
054			-	-	
954	NHCH 2CH2NH	C5H11	Н	Н	
955	NHCH 2CH2NH	C5H ₁₁	H	COCH	
		- 2-211	π	COCH 3	

example no.	L	R ⁹⁷	E	P	
956	NHCH 2 CH2 NH	C5H11	CH3	. Н	
957	NHCH 2 CH2 NH	C5H11	СНЗ	COCH 3	
958	NHCH 2CH2NH	C6H13	н	н	
959	NHCH 2CH2NH	C6H13	н	COCH 3	
960	NHCH 2CH2NH	C6H13	СНЗ	H	
961	NHCH 2CH2NH	C6H13	CH3	COCH 3	
962	NHCH 2 CH2 NH	OCH 3	Н	Н	
963	NHCH 2 CH2 NH	OCH 3	Н	COCH 3	
964	NHCH 2 CH2 NH	OCH 3	СНЗ	Н	
965	NHCH 2 CH2 NH	OCH 3	СНЗ	COCH 3	
966	NHCH 2CH2NH	0С2Н5	н	Н	
967	NHCH 2 CH2 NH	OC2H5	н	COCH 3	
968	NHCH 2 CH2 NH	OC2H5	СНЗ	Н	
969	NHCH 2 CH2 NH	OC2H5	CH3	COCH 3	
970	NHCH2CH2NH	OC3H7	н	H	
971	NHCH2CH2NH	OC3H7	H	COCH 3	

EXAMPLE NO.	L	R97	E	P	
972	NHCH 2 CH2 NH	0С3Н7	СНЗ	н	
973	NHCH 2 CH2 NH	OC3H7	СНЗ	COCH 3	
974	NHCH 2 CH2 NH	OC4H9	н	н	
975	NHCH 2 CH2 NH	OC4H9	н	COCH 3	
976	NHCH 2 CH2 NH	OC4H9	CH ₃	н	
977	NHCH 2CH2NH	OC4H9	CH3	COCH 3	
978	NHCH 2CH2NH	SCH3	H	H	
979	NHCH 2CH2NH	SCH 3	н	COCH 3	
980	NHCH 2CH2NH	SCH3	СНЗ	н	
981	NHCH 2CH2NH	SCH3	снз .	COCH 3	
982	NHCH 2 CH2 NH	SC2H5	Н	н	
983	NHCH 2CH2NH	SC2H5	H	COCH 3	
984	NHCH 2CH2NH	SC ₂ H ₅	CH3	H	
985	NHCH 2CH2NH	SC2H5	CH3	COCH 3	
986	NHCH 2 CH2 NH	SC3H7	Н	н	
987	NHCH 2 CH2 NH	SC3H7	H	COCH 3	

EXAMPLE NO.	L	R97	E	P	
988	NHCH 2 CH2 NH	SC3H7	СН3	. Н	
989	NHCH 2 CH2 NH	SC3H7	СНЗ	COCH 3	
990	NHCH 2 CH2 NH	F	Н	н	
991	NHCH 2 CH2 NH	F	Н	COCH 3	
992	NHCH 2 CH2 NH	F	CH3	Н	
993	NHCH 2CH2NH	F	CH3	COCH 3	
994	NHCH 2 CH2 NH	Cl	Н	Н	
995	NHCH 2CH2NH	cı .	Н	COCH 3	
996	NHCH 2CH2NH	CI	СНЗ	н	
997	NHCH 2CH2NH	CI	СНЗ .	COCH 3	
998	NHCH 2 CH2 NH	Br	н	н	
999	NHCH 2 CH2 NH	Br	н	COCH 3	
1000	NHCH 2 CH2 NH	Br	СНЗ	н	
1001	NHCH 2CH2NH	Br	СНЗ	COCH 3	
1002	NHCH 2CH2NH	I	Н	Н	
1003	NHCH 2CH2NH	I	н	COCH 3	

EXAMPLE NO.	L	R ⁹⁷	E	P
1004	NHCH 2CH2NH	Ī	Сн3	н
1005	NHCH 2 CH2 NH	I	СН3	COCH 3
1006	NHCH 2 CH2 NH	CN	н	Н
1007	NHCH 2 CH2 NH	CN	н	COCH 3
1008	NHCH 2 CH2 NH	CN	CH3	н
1009	NHCH 2 CH2 NH	ON	СНЗ	COCH 3
1010	NHCH 2 CH2 NH	NO2	н	Н
1011	NHCH 2CH2NH	NO2	н	COCH 3
1012	NHCH 2CH2NH	NO ₂	СНЗ	Н
1013	NHCH 2 CH2 NH	NO2	СН3	COCH 3
1014	NHCH 2 CH2 NH	OH	Н	н
1015	NHCH 2CH2NH	OH	н	COCH 3
1016	NHCH 2 CH2 NH	OH	СНЗ	н
1017	NHCH 2 CH2 NH	OH	СНЗ	COCH 3
1018	piperzinyl	СНЗ	н	н
1019	piperzinyl	CH3	н	COCH 3

EXAMPLE NO.	L	R ⁹⁷	E	P
1020	piperzinyl	CH3	CH3	. Н
1021	piperzinyl	CH3	СНЗ	COCH 3
1022	piperzinyl	С ₂ Н ₅	Н	н
1023	piperzinyl	C2H5	H	COCH 3
1024	piperzinyl	C2H5	СНЗ	н
1025	piperzinyl	C2H5	СН3	COCH 3
1026	piperzinyl	С3Н7	H	H .
1027	piperzinyl	C3H7	Н	COCH 3
1028	piperzinyl	C3H7	СНЗ	н
1029	piperzinyl	C3H7	СН3	COCH 3
1030° .	NHNH	C ₂ H ₅	Н	н
1031	NHNH	C ₂ H ₅	H _.	COCH 3
1032	piperzinyl	C4H9	СНЗ	н
1033	piperzinyl	C4H9	СНЗ	COCH 3
1034	piperzinyl	C5H11	Н	Н
1035	piperzinyl	C5H11	Ħ	COCH 3

EXAMPLE NO.	L	R97	E	P	
1036	piperzinyl	С ₅ н ₁₁	CH3	., Н	السينة.
1037	piperzinyl	C5H11	СН3	COCH 3	
1038	piperzinyl	C6H13	Н	н	
1039	piperzinyl	C6H13	Н	COCH 3	
1040	piperzinyl	C6H13	СНЗ	н	
1041	piperzinyl	C6H13	СНЗ	COCH 3	
1042	piperzinyl	OCH 3	Н	н	
1043	piperzinyl	OCH3	Н	COCH 3	
1044	piperzinyl	OCH 3	CH3	Н	
1045	piperzinyl	OCH 3	СНЗ .	COCH 3	
1046	piperzinyl	0С2Н5	н	Н	
1047	piperzinyl	OC2H5	н	COCH 3	
1048	piperzinyl	OC2H5	CH3	Н	
1049	piperzinyl	OC2H5	СНЗ	COCH 3	
1050	piperzinyl	осзн7	Н	н	
1051	piperzinyl	∞3н7	Н	COCH 3	

EXAMPLE NO.	L	R97	E	Р
1052	piperzinyl	осзн7	CH3	Н
1053	piperzinyl	OC3H7	СНЗ	COCH 3
1054	piperzinyl	OC4H9	Н.	н
1055	piperzinyl	OC4H9	Н	COCH 3
1056	piperzinyl	OC4H9	СН3	н
1057	piperzinyl	OC4H9	СНЗ	COCH 3
1058	piperzinyl	SCH 3	Н	н
1059	piperzinyl	SCH 3	Н	COCH 3
1060	piperzinyl	SCH3	СНЗ	Н
1061	piperzinyl	SCH 3	снз .	COCH 3
1062	piperzinyl	SC2H5	н	н
1063	piperzinyl	SC2H5	н	COCH 3
1064	piperzinyl	SC2H5	СНЗ	н
1065	piperzinyl	SC2H5	СНЗ	COCH 3
1066	piperzinyl	SC3H7	Ħ	н .
1067	piperzinyl	SC3H7	н	COCH 3

EXAMPLE NO.	L	R97	E	P
1068	piperzinyl	SC3H7	CH3	, H
1069	piperzinyl	SC3H7	СНЗ	COCH 3
1070	piperzinyl	F	Н	Н
1071	piperzinyl	F .	н	COCH 3
1072	piperzinyl	F	СНЗ	Н
1073	piperzinyl	F	СНЗ	COCH 3
1074	piperzinyl	cı	н	н
1075	piperzinyl	CI	H	COCH 3
1076	piperzinyl	cı	CH3	Н
1077	piperzinyl	cī	CH ₃	COCH 3
1078	piperzinyl	Br	Н	н
1079	piperzinyl	Br	Н	COCH 3
1080	piperzinyl	Br	СНЗ	н
1081	piperzinyl	Br	СНЗ	COCH 3
1082	piperzinyl	I	. Н	H
1083	piperzinyl	I	H	COCH 3

EXAMPLE NO.	Ĺ	R97	E	P	1~
1084	piperzinyl	I	СНЗ	. Н	
1085	piperzinyl	ı	СН3	COCH 3	
1086	piperzinyl	CN	н	H	
1087	piperzinyl	CN	H	COCH 3	
1088	piperzinyl	C N	СНЗ	. Н	
1089	piperzinyl	C N	СНЗ	COCH 3	
1090	piperzinyl	NO2	Н	· H	
1091	piperzinyl	NO2	Н	COCH 3	
1092	piperzinyl	NO ₂	CH3	H	
1093	piperzinyl	NO ₂	CH ₃	COCH 3	
1094	piperzinyl	OH	н	Н	
1095	piperzinyl	OH	н	COCH 3	
1096	piperzinyl	OH	CH3	Н	
1097	piperzinyl	OH	CH3	COCH 3	

EXAMPLE	L	R97	¥.	D
NO.				•

The following Examples #1098-#1137 of Table XIV are highly preferred conjugates composed of dopamine- β -hydroxylase inhibitor compounds and glutamic acid derivatives. These dopamine- β -hydroxylase inhibitors utilized to make these conjugates are embraced by generic Formula XIV, above.

TABLE XIV

EXAMPLE NO.	R ⁹⁴	t	E	P
1098	СО2Н	0	Н	Н
1099	CO2H	0	Н	COCH 3
1100	СО2Н	0	СНЗ	Н
1101	СО2Н	0	СНЗ	COCH 3
1102	CN4H	0	н	Н
1103	CN4H	0	Н	сосн 3
1104	CN4H	0	СНЗ	Н
1105	CN4H	. 0	СНЗ	COCH 3
1106	СО2Н	1	Н	н
1107	CO ₂ H	1	н	COCH 3
1108	СО2Н	1	CH3	, H
1109	CO ₂ H	1	СНЗ	COCH 3

EXAMPLE NO.	R94	t	E	P
		•		
1110	CN4H	1	. н	н
1111	CN4H	1	н	COCH 3
1112	CN4H	1	CH3	Н
1113	CN4H	1	СН3	COCH 3
1114	СО2Н	2	Н	н
1115	СО2Н	2	Н.	COCH 3
1116	СО2Н	2	СН3	Н
1117	CO ₂ H	2.	СНЗ	COCH 3
1118	CN4H	2	н	Н
1119	CN4H	2	Н	COCH 3
1120	CN4H	2	СН3	Н
1121	CN4H	2	СНЗ	COCH 3
1122	CO ₂ H	3	Н	н
1123	СО2Н	3	H	COCH 3
1124	С02Н	3	СНЗ	, H
1125	СО2Н	3 .	СНЗ	COCH 3

example No.	R ⁹⁴	t	E	P
1126	CN4H	3 .	H.	н
1127	CN4H	3	Н	СОСН3
1128	CN4H	. 3	CH3	н
1129	CN4H	3	CH3	COCH 3
1130	СО2Н	4	н	Н
1131	СО2Н	4	н	COCH3
1132	СО2Н	4	CH3	. н
1133	СО2Н	4	СН3	COCH 3
1134	CN4H	4	н	Н
1135	CN4H	4	н .	СОСНЗ
1136	CN4H	4	СНЗ	н
1137	CN4H	4	СНЗ	COCH 3

The following Examples #1138-#1377 of Table XV are highly preferred conjugates composed of dopamine- β -hydroxylase inhibitor compounds and glutamic acid derivatives. These dopamine- β -hydroxylase inhibitors utilized to make these conjugates are embraced by generic Formula XVIII, above.

$$S = \bigvee_{\substack{N \\ CH_2}} H^{113}$$

$$CH_2$$

$$R^{114}$$

$$CH_2$$

$$R^{116}$$

$$R^{116}$$

$$X = -(CH_2)_n \quad N - C - CH_2CH_2CH$$

$$H$$

$$N - H$$

EXAMPLE NO.	n	R ¹¹	R114	R116	R117	R118	E	Þ
1138	0	х	Н	Н	QН	Н	Н	Н
1139	0	x	Н	н	OH	Н	н	COCH 3
1,140	0	x	Н	Н	OH	н	СНЗ	Н
1141	0	x	Н	Н	OH	Н	СНЗ	COCH 3
1142	0	x	Н	Н	F	H.	н	Н .
1143	0	x	н	Н	F	н	Н	COCH 3
1144	0	X -	Н	Н	F	н	СНЗ	Н
1145	0	x	H	Н	F	H	CH3	COCH 3
1146	0	x	Н	H	CF3	Н	Н	Н
1147	0	x	Н	Н	CF3	Н	H	COCH 3
1148	0	x	Н	H	CF3	Н	СНЗ	Н
1149	0 .	x	Н	Н	CF3	H	CH3	COCH 3
1150	0	x	Н	OH	OH	H	Н	н
1151	0	X	H	OH	OH .	Н	Н	COCH 3

EXAMPLE NO.	n	R11	R ¹¹⁴	R ¹¹⁶	R ¹¹⁷	R ¹¹⁸	E	P	
1152	0	X	Н	OH	OH .	Н	СНЗ	Н	
1153	0	x	H ·	OH	OH	Н	СНЗ	COCH 3	
1154	0	x	Н	F	H	F	H	Н	•
1155	0	x	Н	F '	Н	F	Н	COCH 3	
1156	0	x	Н	F	H	F	СНЗ	н	
1157	0	X	Н	F	H	F	СН3	COCH 3	
1158	. 0	x	Н	CF3	Н	CF3	Н	Н	•
1159	0 ·	X	H .	CF3	Н	CF3	Н	COCH 3	
1160	0	x	Н	CF3	н	CF3	СНЗ	н	
1161	0	x	н	CF3	н	CF3	CH3	COCH 3	
1162	0	H	x	Н	OH	Н	H	H	
1163	0	Н	x	Н	OH	Н	Н	COCH 3	
1164	0'.	H	x	H	OH	Н	СНЗ	Н	
1165	0	H	x	Н	OH .	н	СНЗ	COCH 3	
1166	0	Н	x	Н	F	H	Н	н	•
1167	0 .	H	x	H	F	Н .	Н	COCH 3	
1168	0	H	x	H	F	Н	СНЗ	Н	
1169	0.	Н	x	Н	F	Н	CH3	COCH 3	
1170	o ,	H	x	H	CF3	н	H	Н	
1171	Ö	Н	x	Н	CF3	Н	Н	COCH 3	
1172	0	н	x	Н	CF3	н	СНЗ	H	
1173	0	H	x	Н	CF3	Н	CH3	COCH 3	•
1174	0 .	H .	x	OH	OH	н	Н	н	
1175	0	H	x	OН	OH.	Н	H	COCH 3	

EXAMPLE NO.	n	R ¹¹	`R ¹¹⁴	R116	R117	R118	E	P
1176	0	H	x	OH	OH	- н	СНЗ	Н
1177	0	Н	X	OH	ОH	Н	. СН3	COCH 3
1178	0.	Н	x	F	H	F	Н	Н
1179	. 0	Н	X	F	Н	F	Н	COCH 3
1180	0	Н	x	F	Н	F	СНЗ	Н
1181	0	Н	x	F	Н	F	СНЗ	COCH 3
1182	0	Н	x	CF3	Н	CF3	Н	Н
1183	0	Н	X	CF3	Н	CF3	H	COCH 3
1184	0	Н	X	CF3	н	CF3	СНЗ	Н
1185	0	H	x	CF3	Н	CF3	СНЗ	COCH 3
1186	1	x	H	H	OH	Н	Н	H
1187	1	x	H	Н	OH	H	н	COCH 3
1188	1	x	Н	Н	OH	H	СНЗ	Н
1189 ·	1	x	н	Н	OH	Н	СНЗ	COCH 3
1190	1	x	H	н	F	H	H	. H
1191	1	x	Н	Н	F	Н	Н	COCH 3
1192	1	x	н .	Н	F.	Н	СНЗ	H
1193	1	x	Н	Н	F	Н	СНЗ	COCH 3
1194	1	x	Н	Н	CF3	Н	Н	н
1195	1	x	H	н .	CF3	Н	Н	COCH 3
1196	1	X	Н	Н	CF3	Н	СНЗ	н
1197	1	x	Н	H	CF3	Н	CH3	COCH 3
1198	1	x	H	OH	OH	Н	Н	Н
1199	1	x	н	OH	OH	н	н	COCH 3

example No.	מ	R ¹¹	R ¹¹⁴	R116	R117	R118	E	P
1200	1	x	Н	OH	OH .	н	СНЗ	. Н
1201	1	, x ,	н	OH	OH	Н	СНЗ	COCH 3
1202	1.	x	н	F	H	F	Н	н
1203	1	x	H	F	H	F	Н	COCH 3
1204	1	X .	Н	F	H	F	. CH3	Н
1205	1.	×	Н	F .	H	F	СНЗ	COCH 3
1206	1	x	H	CF3	Н	CF3	Н	Н
1207	1	x	Н	CF3	Н	CF3	Н	COCH 3
1208	1	x	Н	CF3	H	CF3	СН3	Н
1209	1 ,	x	н	CF3	н	CF3	СНЗ	COCH 3
1210	1	Н	x	Н	OH ,	H	H	H
1211	1	H.	x	н .	OH	Н	H	COCH 3
1212	1	Н	x ·	н	OH	Н	СНЗ	Н
1213	1	H	x	H	OH	H	СНЗ	COCH 3
1214	1 ,	Н	x	H	F	Н	Н.	Н
L215	1	H	x	H .	F	H	H	COCH 3
1216	1	H	x	Н	F	H	СНЗ	Н
1217	1	Н	x	H	F	Н	СНЗ	COCH 3
1218	1	H	X .	H	CF3	Н	H	Н
219	1	Н	x	Н	CF3	H	Н	COCH 3
1220	1.	H	x	Н	CF3	H	СНЗ	Н
	1	H	x	Н	CF3	Н	СНЗ	COCH 3
.222	1	H	x	1H	OH	Н	Н	Н
.223	· 1	H	X	1H	OH .	H	Н	COCH 3

EXAMPLE NO.	n	R ¹¹	R114	R116	R117	R118	E	P	
1224	1	H	х	1H	OH	. Н	СНЗ	Н	
1225	1	Н	x	1H	OH	H	Снз	COCH 3	
1226	1	H	x	F	н	F	Н	Н	
1227	1	Н	X	F	Н	F	H	COCH 3	
1228	1	Н	x	F	н	F	СНЗ	н .	
1229	1	Н	x	F	н	F	СНЗ	COCH 3	
1230	1	Н	x	CF3	Н	CF3	Н	н	
1231	1	Н	x	CF3	H	CF3	H	COCH 3	
1232	1	Н	x	CF3	Н	CF3	СНЗ	Н	
1233	. 1	H	x	CF3	Н	CF3	СНЗ	COCH 3	
1234	2	x	Н	Н	OH	Н	Н	H	
1235	2	x	Н	H	OH	Н	Н	COCH 3	
1236	2	x	Н	H	OH	Н	СНЗ	Н	
1237	2	x	Н	н	OH	н	СНЗ	COCH 3	
1238	2	x	Н	Н	F	Н	H	Н	
1239	2	x	Н	Н	F	Н	Н	COCH 3	
1240	2	x	Н	Н	F	н	СНЗ	н	
1241	2	x	H	H.	F	Н	CH ₃		
1242	2	x	Н	Н	CF3	H	н	н	
1243	2	x	Н	н	CF3	H	Н	COCH 3	
L244	2	x	Н	Н	CF3	H	СНЗ	H	
.245	2	x	Н	Н	CF3	н	CH3	COCH 3	
.246	2	x	Н	OH	OH	н	H.	н	
.247	2	x	Н	OH	OH .	н	н	COCH 3	

. "

1254 2 X H CF3 H CF3 H CCA3 1255 2 X H CF3 H CF3 H CCCA3 1256 2 X H CF3 H CF3 CA3 H 1257 2 X H CF3 H CF3 CA3 CCCA3 1258 2 H X H CA H H H H 1259 2 H X H CA H CA CCCA3 1260 2 H X H CA H CA CCA3 1261 2 H X H CA H CA CCCA3 1262 2 H X H CA H CA CCCA3 1262 2 H X H F H H CCCCA3 1263 2 H X H F H H CCCCA3 1264 2 H X H F H CA3 CCCCA3 1265 2 H X H F H CCA3 H 1265 2 H X H F H CCA3 CCCCA3 1266 2 H X H F H CCA3 CCCCA3 1266 2 H X H F H CCA3 CCCCCA3 1266 2 H X H CCA3 H CCCCCA3 1267 2 H X H CCA3 H CCCCCA3 1268 2 H X H CCA3 H CCCCCCA3 1268 2 H X H CCA3 H CCCCCCCA3 1269 2 H X H CCA3 H CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	EXAMPLE NO.	n	R ¹¹	R ¹¹⁴	R116	R ¹¹⁷	R ¹¹⁸	E	P
1250	1248	2	x	н	0H	OH .	Н	CH3	Н
1251 2 X H F H F CH3 H 1252 2 X H F H F CH3 COCH3 1252 2 X H F H F CH3 COCH3 1253 2 X H F H F CH3 COCH3 1254 2 X H CF3 H CF3 H H 1255 2 X H CF3 H CF3 H COCH3 1256 2 X H CF3 H CF3 CH3 H 1257 2 X H CF3 H CF3 CH3 COCH3 1258 2 H X H CH H H H 1259 2 H X H CH H H CCH3 H 1260 2 H X H CH H CH3 COCH3 1260 2 H X H CH H CH3 COCH3 1261 2 H X H CH H CH3 COCH3 1262 2 H X H F H H H 1263 2 H X H F H H H 1265 2 H X H F H H H 1265 2 H X H CF3 H CCH3 H 1266 2 H X H F H CH3 COCH3 1266 2 H X H F H CH3 COCH3 1266 2 H X H F H CH3 COCH3 1266 2 H X H CF3 H H H 1267 2 H X H CF3 H H H 1268 2 H X H CF3 H H H 1268 2 H X H CF3 H CH3 H 1269 2 H X H CF3 H CH3 COCH3 1269 2 H X H CF3 H CH3 COCH3 1269 2 H X H CF3 H CH3 COCH3 1269 2 H X H CF3 H CH3 COCH3 1269 2 H X H CF3 H CH3 COCH3	1249	,2 ,	X	н	OH	0H	Н	СНЗ	COCH 3
1252	1250	2	x	H.	F	Н	F	Н	Н
1253 2 X H F H F CH3 COCH3 1254 2 X H CF3 H CF3 H H 1255 2 X H CF3 H CF3 H COCH3 1256 2 X H CF3 H CF3 CH3 H 1257 2 X H CF3 H CF3 CH3 COCH3 1258 2 H X H CH H H H 1259 2 H X H CH H CH3 H 1260 2 H X H CH H CH3 COCH3 1261 2 H X H CH H CH3 COCH3 1262 2 H X H F H H H 1263 2 H X H F H H CH3 COCH3 1264 2 H X H F H CH3 H 1265 2 H X H F H CH3 H 1265 2 H X H F H CH3 COCH3 1266 2 H X H F H CH3 COCH3 1266 2 H X H CF3 H CH3 H 1267 2 H X H CF3 H H CH3 COCH3 1268 2 H X H CF3 H H CH3 COCH3 1269 2 H X H CF3 H CH3 COCH3 1269 2 H X H CF3 H CH3 H 1269 2 H X H CF3 H CH3 COCH3 1269 2 H X H CF3 H CH3 COCH3 1269 2 H X H CF3 H CH3 COCH3 1269 2 H X H CF3 H CH3 COCH3	1251	2	x	Н	F	H	F	Н	COCH 3
1254 2 X H CF3 H CF3 H CCA3 1255 2 X H CF3 H CF3 H CCCH3 1256 2 X H CF3 H CF3 CH3 H 1257 2 X H CF3 H CF3 CH3 CCCH3 1258 2 H X H CH H H H 1259 2 H X H CH H CH CCCH3 1260 2 H X H CH H CCCCH3 1261 2 H X H CH H CH CCCCH3 1262 2 H X H CH H CCCCCCCCCCCCCCCCCCCCCCCCC	1252	2	x	H	F	Н	F.	СНЗ	Н
1255 2 X H CF3 H CF3 H COCH3 1256 2 X H CF3 H CF3 CH3 H 1257 2 X H CF3 H CF3 CH3 COCH3 1258 2 H X H CH H H H 1259 2 H X H CH H CH3 H 1260 2 H X H CH H CH3 H 1261 2 H X H CH H CH3 COCH3 1262 2 H X H F H H H 1263 2 H X H F H H CH3 H 1264 2 H X H F H CH3 H 1265 2 H X H CF3 H CH3 H 1265 2 H X H CF3 H CH3 COCH3 1266 2 H X H CF3 H H H 1267 2 H X H CF3 H H H 1268 2 H X H CF3 H H H 1269 2 H X H CF3 H CH3 H 1269 2 H X H CF3 H CH3 COCH3 1269 2 H X H CF3 H CH3 COCH3 1269 2 H X H CF3 H CH3 COCH3 1269 2 H X H CF3 H CH3 COCH3	1253	2	x	Н	F	Н	F	CH3	COCH 3
1256 2 X H CF3 H CF3 CH3 H 1257 2 X H CF3 H CF3 CH3 COCH3 1258 2 H X H CH H H H 1259 2 H X H CH H CH3 H 1260 2 H X H CH H CH3 COCH3 1261 2 H X H CH H CH3 COCH3 1262 2 H X H F H H H 1263 2 H X H F H CH3 H 1264 2 H X H F H CH3 H 1265 2 H X H F H CH3 COCH3 1266 2 H X H F H CH3 COCH3 1266 2 H X H F H CH3 COCH3 1267 2 H X H CF3 H H H 1267 2 H X H CF3 H H CCH3 H 1268 2 H X H CF3 H CCH3 H 1269 2 H X H CF3 H CCH3 COCH3 1269 2 H X H CF3 H CCH3 COCH3 1270 2 H X H CF3 H CCH3 COCH3	1254	2	x	Н	CF3	Н	CF3	Н	Н
1257 2 X H CF3 H CF3 CH3 COCH3 1258 2 H X H CH H H H 1259 2 H X H CH H H CCCH3 1260 2 H X H CH H CH3 H 1261 2 H X H CH H CH3 COCH3 1262 2 H X H F H H H 1263 2 H X H F H CCCH3 1264 2 H X H F H CCCH3 1265 2 H X H F H CCCH3 1266 2 H X H CF3 H H H 1267 2 H X H CF3 H H CCCCH3 1268 2 H X H CF3 H CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	1255	2	x	Н	CF3	Н	CF3	Н	COCH 3
1258 2 H X H CH H H H CCCH3 1259 2 H X H CH H H CCCH3 1260 2 H X H CH H CH3 H 1261 2 H X H CH H CH3 CCCH3 1262 2 H X H F H H H 1263 2 H X H F H CCCH3 1264 2 H X H F H CH3 H 1265 2 H X H F H CH3 CCCH3 1266 2 H X H CF3 H H H 1267 2 H X H CF3 H CCCCH3 1268 2 H X H CF3 H CH3 H 1269 2 H X H CF3 H CH3 CCCCH3 1269 2 H X H CF3 H CH3 CCCCH3	1256	2 :	x	Н	CF3	Н	CF3	СНЗ	Н
1259 2 H X H CH H H CCCH3 1260 2 H X H CH H CH3 H 1261 2 H X H CH H CH3 COCH3 1262 2 H X H F H H H 1263 2 H X H F H CCCH3 1264 2 H X H F H CCCH3 1265 2 H X H F H CCCCH3 1266 2 H X H CF3 H H H 1267 2 H X H CF3 H CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	1257	2	· X	Н	CF3	Н	CF3	СНЗ	COCH 3
1260 2 H X H CH H CH3 H 1261 2 H X H CH H CH3 COCH3 1262 2 H X H F H H H 1263 2 H X H F H CH3 H 1264 2 H X H F H CH3 H 1265 2 H X H F H CH3 COCH3 1266 2 H X H CF3 H H H 1267 2 H X H CF3 H C CCH3 1268 2 H X H CF3 H CH3 H 1269 2 H X H CF3 H CH3 COCH3 1270 2 H X H CF3 H CH3 COCH3	1258	2	H	x	Н	OH	Н	Н	н
1261 2 H X H CH H CH3 COCH3 1262 2 H X H F H H H 1263 2 H X H F H CH3 H 1264 2 H X H F H CH3 H 1265 2 H X H F H CH3 COCH3 1266 2 H X H CF3 H H H 1267 2 H X H CF3 H CH3 H 1268 2 H X H CF3 H CH3 H 1269 2 H X H CF3 H CH3 COCH3 1270 2 H X CH CH H H H	1259	2	н	x	Н	OН	н	Н	COCH 3
1262 2 H X H F H H H H 1263 2 H X H F H H CCCH3 1264 2 H X H F H CH3 H 1265 2 H X H F H CH3 COCH3 1266 2 H X H CF3 H H H 1267 2 H X H CF3 H CCCH3 1268 2 H X H CF3 H CCCH3 1269 2 H X H CF3 H CCCH3 1270 2 H X H CF3 H CCCCH3	1260	2	н	x	Н	OH	Н	СНЗ	н
1263 2 H X H F H H CCCH3 1264 2 H X H F H CH3 H 1265 2 H X H F H CH3 COCH3 1266 2 H X H CF3 H H H 1267 2 H X H CF3 H CCH3 1268 2 H X H CF3 H CH3 H 1269 2 H X H CF3 H CH3 COCH3 1270 2 H X H CF3 H CH3 COCH3	1261	2	Н	x	, H	OH	H	CH3	COCH 3
1264 2 H X H F H CH3 H 1265 2 H X H F H CH3 COCH3 1266 2 H X H CF3 H H H 1267 2 H X H CF3 H CH3 H 1268 2 H X H CF3 H CH3 H 1269 2 H X H CF3 H CH3 COCH3 1270 2 H X OH OH H H H	1262	2 .	H.	x	н	F	H	н	н
1265 2 H X H F H CH3 COCH3 1266 2 H X H CF3 H H H 1267 2 H X H CF3 H H COCH3 1268 2 H X H CF3 H CH3 H 1269 2 H X H CF3 H CH3 COCH3 1270 2 H X OH OH H H H	1263	2	H	x	Н	F	Н	н	COCH 3
1266 2 H X H CF3 H H H 1267 2 H X H CF3 H H COCH3 1268 2 H X H CF3 H CH3 H 1269 2 H X H CF3 H CH3 COCH3 1270 2 H X OH OH H H H	1264	2	Н	X	Н	F	Н	СНЗ	Ħ
1266 2 H X H CF3 H H H 1267 2 H X H CF3 H H COCH3 1268 2 H X H CF3 H CH3 H 1269 2 H X H CF3 H CH3 COCH3 1270 2 H X OH OH H H H	1265		н	x	Н	F	Н	СНЗ	COCH 3
1268 2 H X H CF ₃ H CH ₃ H 1269 2 H X H CF ₃ H CH ₃ COCH ₃ 1270 2 H X OH OH H H H	1266	2	н	x	н	CF3	н	Н	Н
1269 2 H X H CF3 H CH3 COCH3 1270 2 H X OH OH H H H	1267	2	Н	x	H	CF3	Н	н	COCH 3
1270 2 н х он он н н н	1268	2	Н	x	H	CF3	Н	СНЗ	Н
	1269	2	Н	x	Н	CF3	H ·	СНЗ	COCH 3
1271 2 H X OH OH H H COCH 3	1270	2	Н	x	OH	OH	Н	Н	Н ,
	1271	2	Н	x	OH	OH .	H	н	COCH 3

EXAMPLE	n	R ¹¹	R114	R116	R117	_R 118	E	P
NO.		· · · · · · · · · · · · · · · · · · ·						
1272	2	Н	x	OH	OH	· H	. СН3	Н
1273	2	Н	X	OH	OH	н	СНЗ	COCH 3
1274	2	Н	x	F	н	F	H	Н
1275	2	H	X	F	Н	F	Н	COCH 3
1276	2	Н	x	F	H	F .	СНЗ	H
1277	2	H	x	F	H	F	СНЗ	COCH 3
1278	. 2	H	x	CF3	Н	CF3	H	Н
1279	2	Н	x	CF3	Н	Œ3	Н	COCH 3
1280	2	H	x	CF3	H	CF3	СНЗ	н
1281	2	H	x	CF3	H.	CF3	CH3	COCH 3
1282	3	x	H	H	OH	H ·	Н	H
1283	3	· x	H	H	OH	Н	Н	COCH 3
1284	3	x	Н	H	OH	Н	СНЗ	н
1285	3	x	н	Н	OH.	Н	СНЗ	COCH 3
1286	3	x	Н .	. н	F	Н	Н	Н
1287	3	x	н	H	F	Н	Н	COCH 3
1288	3	x	Н	Н	F	Н	СНЗ	н
1289	3	x	Н	Н	F	Н	СНЗ	COCH 3
1290	· 3	x	Н	H	CF3	H 1	Н	Н
1291	3	X	Н	H	CF3	Н	Н	COCH 3
1292	3	x	Н	Н	CF3	H	СНЗ	Н .
1293	3	x	Н	Н	CF3	H	СНЗ	COCH 3
1294	3	x	Н	OH	OH	Н	Н	Н
1295	3	x	Н	OH	OH	Н	Н	COCH 3

, "

EXAMPLE	'n	Ŕ ¹¹	R114	R116	R117	R118	E	P
NO.		**************************************				e e e escrito		·
1296	3	X .	H	CH	OH .	. Н	СH3	Н
1297	3	X	H	OH	OH	H	CH3	COCH 3
1298	3	x	H	F	H	F	·H	Н
1299	3	X .	H	F	H	F	Н	COCH 3
1300	3	x	H	F	н	F	CH3	н
1301	3 .	x	. н	F	Н	F	СНЗ	COCH 3
1302	,3	X	H	CF3	Н	CF3	н	Н
1303	3	x	H	CF3	Н	CF3	Н	COCH 3
1304	3	x	H	CF3	н	CF3	СНЗ	Н
1305	3	x	H	CF3	Н	CF3	CH3	COCH 3
1306	3	H	x	Н	QH	H	Н	н
1307	3	Н	x	Н	OH	Н	н	COCH 3
1308	3	Н	x	Н	OH	Н	СНЗ	Н
1309	3	. Н	x	Н	ОН	Н	СНЗ	COCH 3
1310	. 3	H	x	Н	F	Н .	H.	Н
1311	3	H	x	H	F	H	н	COCH 3
1312	3	Н	x	Н	F	Н	СНЗ	H.
1313	3	н	X	Н	F	Н	СНЗ	COCH 3
1314	3	Н	x	Н	CF3	Н	н	н
1315	3	н	x	Н	CF3	н	Н	COCH 3
1316	3	Н	×	Н	CF3	н	СНЗ	н
1317	3	H	x	н	CF3	Н	СНЗ	COCH 3
1318	3	Н	· X	OH	OH	Н	н	Н
1319	3	н	x	OH	OH .	н	н	COCH 3

EXAMPLE NO.	n	R ¹¹	R ¹¹⁴	R116	R ¹¹⁷	R118	E	P	
1320	3	Н	x	OH	OH	. Н	СНЗ	Н	
1321	3	Н	x	OH	OH .	H .	СH3	COCH 3	
1322	3	Н	X	F	H	F	Н	Н	
1323	3	H	x	F	H	F	H	COCH 3	
1324	3	H	x	F	Н	F	СНЗ	Н	
1325	. 3	Н	x	F	Н	F	СНЗ	COCH 3	
1326	3	H	x	CF3	н	CF3	Н	Н	
1327	3	H	x	CF3	H	CF3	Н	COCH 3	
1328	3	H	x	CF3	Н	CF3	СНЗ	Н	
1329	3	H	x	CF3	Н	CF3	CH3	COCH 3	
1330	4	x	Н	H	OH	H .	Н	Ĥ	
1331	4	x	Н	H.	OH	H	H	COCH 3	
1332	4	x	Н	Н	OH	Н	СНЗ	н	
1333	4	x	Н	н	OH	Н	СНЗ	COCH 3	
1334	4	x	Н	Н	F	н	н	Н	
1335	4	x	Н	н .	F	Н	н	COCH 3	
L336	4	x	Н	н	F	Н	СНЗ	н	
1337	4	x	Н	н	F	Н	СНЗ	COCH 3	
1338	4	x	H	Н	CF3	н	H	н	
.339	4	x	H	Н	CF3	н	Н	COCH 3	
.340	4	x	Н	H	CF3	Н	СНЗ	н	
.341	4	x	Н	H	CF3	Н	СНЗ	COCH 3	
342	4 .	x	Н	OH	OH	Н	н	н	
343	4	x	Н	OH	OH .	Н	Н	COCH 3	
								_	

EXAMPLE NO.	ָ ה	R ¹¹	R ¹¹⁴	R ¹¹⁶	R ¹¹⁷	R ¹¹⁸	E	P
1344	4 -	x	Н	OH .	OH	. H	СН3	Н
1345	4	x	н	OH	OH	H	CH3	COCH 3
1346	4	X	Н	F	H	F	Н	н
1347	4	X	H	F	H	F	н	COCH 3
1348	4	X	Н	F	Н	F	СНЗ	Н
1349	4	x	H	F ·	Н	F	СНЗ	COCH 3
1350	4	X	Н	CF3	н	CF3	Н	Н
1351	4	. x	Н	CF3	Н	CF3	Н	COCH 3
1352	4	X	H	CF3	Н	CF3	СНЗ	Н
1353	4, 4	x	Н	CF3	н	CF3	СНЗ	COCH 3
1354	4	H	x	Н	OH	н	н	H [']
1355	4	н	x	H	OH	н	н	COCH 3
1356	4	H	x	Н	OH	Н	СНЗ	Н
1357	4	Н	x	H	OH	Н	СН3.	COCH 3
1358	4	Н	x	Н	F	H .	н	н
1359	4 %	H ,	x	H.	F	Н	Н	COCH 3
1360	4	. Н	x	H	F	Н	СНЗ	н
1361	4	. H	x	н	F	H	СНЗ	COCH 3
1362	4 .	Н	X	H	CF3	н	Н	Н
1363	4	Н	x	H	CF3	Н	н	COCH 3
1364	4	Н	x	Н	CF3	Н	CH3	н
1365	4	Н	x	H	CF3	Н	СНЗ	COCH 3
1366	4	H	X .	OH	OH	Н	Н	Н
1367	4 .	Н	x	OH	OH .	н	н	COCH 3

EXAMPLE NO.	n	R ¹¹	R114	R116	R117	R118	E	P
1368	4	Н	х	OH	OH	. Н	СНЗ	Н
1369	4	Н	x	OН	OH .	H	CH3	COCH 3
1370	4	Н	x .	F	н	F	Н	Н
1371	4	Н	x	F	H	F	Н	COCH 3
1372	4	H	x	F	Н	F	СНЗ	Н
1373	4	H	x	F	Н	F	CH3	COCH 3
1374	4	Н	x	CF3	н	CF3	Н	Н
1375	4	H	x	CF3	Н	CF3	H	COCH 3
1376	4	н	x	CF3	Н	CF3	СНЗ	Н
1377	4	Н	x	CF3	н	CF3	СНЗ	COCH 3

The following Examples #1378-#1497 of Table XVI are highly preferred conjugates composed of dopamine- β -hydroxylase inhibitor compounds and glutamic acid derivatives. These dopamine- β -hydroxylase inhibitors utilized to make these conjugates are embraced by generic Formula XVIII, above.

TABLE XVI

EXAMPLE NO.	'n	_R 116	R117	R118	E	P
1378	0	Н	ОΉ	н	Н	н
1379	0	H	OH	н	Н	COCH 3
1380	0	H	ОН	н	СН3	H
1381	0	H	OH	н , .	CH3	COCH 3
1382	0	Н	F	н	Н	Н
1383	0	н	F	н	н	COCH 3
1384	0	Н	F	н	СНЗ .	Н
1385	0	н	F	н	СНЗ	COCH 3
1386	Ö	H	CF3	н	Н	Н
1387	0	H	CF3	Н -	Н	COCH 3
1388	0	н	CF3	н	СНЗ	Н

EXAMPLE	n	R116	R ¹¹⁷	R118	E	P
NO.			•		-	
				· .	••	
1389	0	H	CF3	H	CH3	COCH 3
1390	0	ОH	OH	H	H	Н
1391	0	OH	OH .	н	н	COCH 3
1392 `	0	OH	OH	н	CH3	Н
1393	0 .	OH	OH	н	СН3	COCH 3
1394	0	F	Н	F	н	Н
1395	0	F	Н	F	н	COCH 3
1396	0	F	H	F	СН3	Н
1397	0	F	Н	F .	СНЗ	COCH 3
1398	0	CF3	н .	CF3	Н	Н
1399	0	CF3	н	CF3	Н	COCH 3
1400	0	CF3	н	CF3	СНЗ	Н
1401	0	CF3	н	CF3	СНЗ	COCH 3
1402	1	Н	OH	Н	н	Н
1403	1	Н	OH .	Н	Н	COCH 3
1404	1	Н	OH	H	CH3	H.

, I

EXAMPLE NO.	n	R116	R117	R118	E	P	
					٠.	•	•
1405	1	Ĥ	OH .	Н	CH3	COCH 3	•
1406	1	н	F	Н	н	Н	4
1407	1	н	F	Н	н	COCH 3	
1408	1	Н	F	н	CH3	Н	
1409	1	н .	F	н	СНЗ	COCH 3	
1410	1	н	CF3	. Н	H.	н	
1411	1	н	CF3	Н	н .	COCH 3	
1412	1	н	CF3	н	СН3	н	
1413	1	· н	CF3	Н	CH3	COCH 3	
1414	1	OH	OH	Н	н	н	•
1415	1	OH	OH	H	Н	COCH 3	
1416	1	OH	OH	H	CH3	н	
1417	1	OH .	OH.	Н	CH3	COCH 3	
1418	1	F	н	F	н	н	•
1419	1	F	н	F	Н	COCH 3	ť
1420	1	F	н	F	CH3	Н	

EXAMPLE	n	R116	R117	R118	E	P
NO.						
		•		· .	٠,	
1421	1	F	H	F	CH3	COCH 3
1422	1	CF3	Н	CF3	Н	Н
1423	1	CF3	Н	CF3	н -	COCH 3
1424	1	CF3	H	CF3	СНЗ	Н
1425	1	CF3	Н	CF3	СНЗ	COCH 3
1426	2	н	OH	н	Н	Н
1 427	. 2	Н	OH.	Н	Н	COCH 3
1428	2	Н	OH	Н	СНЗ	Н
1429	2	Н	OH	н .	СНЗ	COCH 3
1430	2	Н	F	н	Н	Н
1431	2	н	F	н	H	COCH 3
1432	2	н	F	H	СНЗ	Н
1433	2	Н	F	Н	CH3	COCH 3
1434	2	H	CF3	Н	н	н
1435	2	H	CF3	Н	Н	COCH 3
1436	2	H	CF3	H	CH3	н

EXAMPLE NO.	n	R116	R ¹¹⁷	R118	E	P
	·					
1437	2	H	CF3	Н	CH3.	COCH 3
1438	2	OH	OH	Н	н	Н
1439	2	OH	OH	Н	Н.	COCH 3
1440	2	ОH	ОН	Н	CH3	Н
1441	2	OH	OH	н	СН3	COCH 3
1442	2	F	H	F	Н	Н
1443	2	F	H	F	н	COCH 3
1444	2	F	H	F	СНЗ	Н
1445	2	F	H	F	CH3	COCH 3
1446	2	CF3	H	CF3	H.	Н
1447	2	CF3	H ·	CF3	н	COCH 3
1448	2	CF3	Н	CF3	СН3	Н
1449	2	CF3	Н	CF3	CH3	COCH 3
1450	3	н	OH	H	Н	н
1451	3	Н	OH	н	H	COCH 3
1452	3	Н	OH	Н	СН3	н

EXAMPLE NO.	n	R116	R ¹¹⁷	R118	E	P
		···				
1453	.3	Н	ОH	н	СНЗ	COCH 3
1454	3	Н	F,	Н	н	н
1455	3	Н	F	н	H -	COCH 3
1456	3	Н	F	н	СНЗ	H
1457	3	Н	F	Н	СНЗ	COCH 3
1458	3	н	CF3	н	н	н
1459	3	н	CF3	н	H	COCH 3
1460	3	H	CF3	H	СНЗ	Н
1461	3	н	CF3	н	СНЗ	COCH 3
1462	3	, OH	OН	H .	Н	H
1463	3	OH	OH	н	H	COCH 3
1464	3	ОH	OH	н	СНЗ	н
1465	. 3	OH	OH	H	СНЗ	COCH 3
1466	3	F	н	F	Н	н
1467	3	F ·	н	F	н	COCH 3
1468	3	F	н	F	CH3	Н

ا م

EXAMPLE NO.	n	R116	R117	R118	E	P
					٠.	
1469	3	F	H	F	CH3	COCH 3
1470	3	CF3	н	CF3	Н	н
1471	3	CF3	н.	CF3	н -	COCH 3
1472	3	CF3	Н	CF3	СНЗ	н
1473	3 .	CF3	н	CF3	СНЗ	COCH 3
1474	4	H	OH	н	Н	Н
1475	4	. н	OH.	Н	н	COCH 3
1476	4	н	OH	н	СНЗ	Н
1477	4	н	ОН	н .	СНЗ	COCH 3
1478	4	н	F.	н	н	Н
1479	4	Н	F	н	н	COCH 3
1480	4	н	F	H	СНЗ	н
1481	4	Ħ	F	Н	СН3	COCH 3
1482	4	н	CF3	н	Н	Н
1483	4	Н	CF3	H	Н	COCH 3
1484	4	н	CF3	· H	СНЗ	н

EXAMPLE NO.	n	R116	R ¹¹⁷	R118	E	Ъ
			•		,	.•
1485	4	Н	CF3	H	СНЗ	COCH 3
1486	4	OH	OH	H	н	Н
1487	4	OH	OH	н	H	COCH 3
1488	4	ОH	ОН	Н	СН3	Н
1489	4	OH	ОН	н	СНЗ	COCH 3
1490	4	F	Н	F	H.	Н
1491	4	F	Н	F	Н	COCH 3
1492	4	F	н	F	СНЗ	н
1493	4	F	H	F	СНЗ	COCH 3
1494	4	CF3	н	CF3	H	н
1495	4	CF3	н	CF3	н	COCH 3
1496	4	CF3	Ĥ	CF3	СНЗ	Н
1497	4	CF3	н	CF3	СН3	COCH 3

The following Examples #1498-#1857 of Table XVII are highly preferred conjugates composed of dopamine- β -hydroxylase inhibitor compounds and glutamic acid derivatives. These dopamine- β -hydroxylase inhibitors utilized to make these conjugates are embraced by generic Formula XVIII, above.

TABLE XVII

example No.	'n	L	R ¹¹⁶	R ¹¹⁷	R118	E	P
1498	0	NHNH	Н	OH	Н	Н	Н
1499	0	NHNH	Ĥ	ОН	H	Н	COCH 3
1500	0	NHNH	Н	OH	Н	СНЗ	н
1501	0	NHNH	Н	O H	н	CH ₃	COCH 3
1502	0	NHNH	Н	F	H.	н	н
1503	0 .	NHNH	Н	F	н	Н	COCH 3
1504	0	NHNH	Н	F	H	СН3	н
1505	0	NHNH	Н	F	H	СН3	COCH3
1506	0	NHNH	Н	CF3	• Н	Н	Н
1507	0	NHNH	Н	CF3	H	н	COCH 3
1508	0 .	NHNH	Н	CF3	Н	CH ₃	Н

EXAMPLE NO.	n	L	R116	R117	R118	E	P
1509	0	NHNH	Н	CF3	H .	СН3	COCH 3
1510	0	NHNH	.OH	OН	н	Н	Н
1511	0	NHNH	OH	OH	н	Н	сосн 3
1512	0	ИНИН	OH	OH	н	CH ₃	н
1513	0	NHNH	OH .	OH .	Н	СНЗ	COCH 3
1514	0	NHNH	F	Н	F	н	Н
1515	0	NHNH	F	Н	F	Н	COCH 3
1516	0	NHNH	F	н	F ·	СНЗ	н
1517	0	NHNH	F	Н	F	СНЗ	COCH 3
1518	0	NHNH	CF3	н	CF3	Н	Н
1519	0	NHNH	CF3	н	CF3	Н	COCH 3
1520	0	NHNH	CF ₃	Н	CF ₃	CH3	Н
1521	0	NHNH	CF3	н	CF3	CH3	COCH 3
1522	0	NHCH 2CH2NH	н	OH	H	н	н
1523	0	NHCH 2CH2NH	н	OH	н	н	COCH 3
1524	0	NHCH 2CH2NH	Н	OH .	н	СН3	Н

				•			
EXAMPLE NO.	n	L	R116	R ¹¹⁷	R118	E	P
1525	0	NHCH 2CH2NH	Н	OH	н.	CH ₃	COCH 3
1526	0	NHCH 2CH2NH	Н	F	Н	Н	Н
1527	0	NHCH 2CH2NH	н	, F	H	Н	COCH 3
1528	0	NHCH 2CH2NH	Н	F	Н	СН3	н
1529	0	NHCH 2CH2NH	н	F	н	СН3	COCH 3
1530	0	NHCH 2CH2NH	H	CF3	Н	Н	н
1531	0	NHCH 2CH2NH	н	CF3	Н	н	COCH 3
1532	0	NHCH 2CH2NH	н	CF3	н	CH ₃	Н
1533	0	NHCH 2CH2NH	Н	CF3	н	CH ₃	COCH 3
1534	0	NHCH 2CH2NH	OH	·OH	н .	н	н
1535	0	NHCH 2CH2NH	Œ	OH	н	н	COCH 3
1536	0	NECH 2CH2NH	OH	OH	н	CH3	н
1537	0	NHCH 2CH2NH	OH	OH	н	СНЗ	COCH 3
1538	0	NHCH 2CH2NH	F	H	F	Н	Н
1539	0	NHCH 2CH2NH	F	Н	F	Н	COCH 3
1540	0	NHCH 2CH2NH	F	Н	F	CH3	Н

EXAMPLE NO.	n	L	R116	R117	R ¹¹⁸	E	P
			- 1, , , , , , , , , , , , , , , , , , ,	•		-	
1541	0	NHCH 2CH2NH	F	H .	F	СНЗ	COCH 3
1542	0	NHCH 2CH2NH	CF3	Н	CF3	Н	н
1543	0	NHCH 2CH2NH	CF3	Н	CF ₃	Н	COCH 3
1544	0	NHCH 2CH2NH	CF3	Н	CF3	СНЗ	Н
1545	0	NHCH 2CH2NH	CF3	H	CF3	СН3	COCH 3
1546	0	piperazinyl	Н	OH	Н	н	н
1547	0	piperazinyl	Н	OH	Н	н	COCH 3
1548	0	piperazinyl	Н	OH	H	СНЗ	н
1549	0	piperazinyl	Н	OH	н	CH ₃	COCH 3
1550	0	piperazinyl	Н	F	H	н	Н
1551	0	piperazinyl	Н	F	Н	Н	COCH 3
1552	0	piperazinyl	Н	F	Н	СНЗ	н
1553	0	piperazinyl	Н	F	, H	CH ₃	COCH 3
1554	0	piperazinyl	H	CF ₃	Н	н	Н
1555	0	piperazinyl	Н	CF3	Н	н	COCH 3
1556	0	piperazinyl	Н	CF3	Н	СНЗ	н

EXAMPLE NO.	n	L	R116	R117	R ¹¹⁸	E	P
1557	0	piperazinyl	Н	CF ₃	Н	CH3	COCH 3
1558	0	piperazinyl	OH	OH	Н	Н	н
1559	0	piperazinyl	OH	OH	Н	Н	COCH 3
1560	0	piperazinyl	OH	OH	H	CH ₃	н
1561	0	piperazinyl	OH	OH	Н	CH ₃	COCH 3
1562	0	piperazinyl	F	н	F .	н	Н
1563	0	piperazinyl	F	Н	F	н	COCH 3
1564	0	piperazinyl	F	H	F	СНЗ	Н
1565	0	piperazinyl	F	н	F	СН3	COCH 3
1566	0	piperazinyl	CF3	Н	CF3	. н	Н
1567	0	piperazinyl	CF ₃	H .	CF3	Н	COCH 3
1568	0.	piperazinyl	CF3	Н	CF3	CH3	н
1569	0	piperazinyl	CF3	Н	CF3	CH ₃	COCH 3
1570	1	NHNH	н	OH	Н	н	н
1571	1	NHNH	н	OH	н	н	COCH 3
1572	1	NHNH	Н	QH	н	CH3	н

EXAMPLE NO.	n	L	R116	R117	R118	E	P
1573	1	NHNH	Н	OH	Н	. СН3	COCH 3
1574	1	NHNH	Н	F	н	Н	н
1575	1	NHNH	н	F	н	Н	сосн 3
1576	1	NHNH	н	F	Н	СНЗ	Н
1577	1	NHNH	Н	F	н	СНЗ	COCH 3
1578	1	NHNH	н	CF3	Н	н	н
1579	1	NHNH	н	CF3	Н	н	COCH 3
1580	1	NHNH	Н	CF3	Н	CH3	Н
1581	1	NHNH	Н	CF ₃	Н	CH ₃	COCH 3
1582	1	NHNH	OH .	OH	н .	Н	Н
1583	1	NHNH	OH	OH	н	н	COCH 3
1584	1	NHNH	OH	OH	Н	CH3	Н
1585	1	NHNH	ОH	OH	Н	СН3	COCH 3
1586	1	NHNH	F	н	F	Н	н
1587	1	NHNH	F	н	F	Н	COCH 3
1588	1	NHNH	F	н	F	CH3	н

EXAMPLE NO.	n	L	R116	R117	R118	E	P
1589	1	NHNH	F	Н	F	СН3	COCH 3
1590	1	NHNH	CF3	н	CF3	н	Н
1591	1	NHNH	CF3	H	CF3	Н	COCH 3
1592	1	NHNH	CF3	Н	CF3	CH ₃	Н
1593	1	NHNH	CF3	Н	CF ₃	СН3	COCH 3
1594	1	NHCH 2CH2NH	н	OH .	Н	н	Н
1595	1	NHCH 2CH2NH	Н	OH	н	н	COCH 3
1596	1	NHCH 2CH2NH	н	OH	Н	CH3	н
1597	1	NHCH 2CH2NH	н	OH	H _.	CH ₃	COCH 3
1598	1	NHCH 2CH2NH	Н	F	H.	н	н
1599	1	NHCH 2CH2NH	Н	F	н	Н	COCH 3
1600	1	NHCH 2CH2NH	н	F	н	CH ₃	н
1601	1	NHCH 2CH2NH	Н	F	Н	СНЗ	COCH 3
1602	1	NHCH 2CH2NH	н	CF3	н	н	н
1603	1;	NHCH 2CH2NH	н	CF3	Н	н	COCH 3
1604	1	NHCH 2CH2NH	. н	CF3	Н	CH3	Н

EXAMPLE NO.	n	L	R116	R117	R118	E	P
1605	1	NHCH 2CH2NH	Н	CF3	н	CH ₃	сосн 3
1606	1	NHCH 2CH2NH	OH.	OH	Н	Н	Н
1607	1	NHCH 2CH2NH	OH	, OH	Н	н	COCH 3
1608	1	NHCH 2CH2NH	OH	OH	Н	СНЗ	Н
1609	1	NHCH 2CH2NH	ΟΉ	ОН	Н	СНЗ	COCH 3
1610	1	NHCH 2CH2NH	F	н	F	Н	H T
1611	• 1	NHCH 2CH2NH	F	H	F	Н	COCH 3
1612	1	NHCH 2CH2NH	F	н	F	СНЗ	H
1613	1	NHCH 2CH2NH	F	Н	F	CH ₃	COCH 3
1614	1	NHCH 2CH2NH	CF3	н	CF ₃	Н	H
1615	1	NHCH 2CH2NH	CF3	Н	CF3	Н	COCH 3
1616	1	NHCH 2CH2NH	CF3	Н	CF3	CH3	H
1617	1	NHCH 2CH2NH	CF3	н	CF3	СНЗ	COCH 3
1618	1	piperazinyl	н	OH	Н	н	Н
1619	1	piperazinyl	Н	OH	H	Н	сосн 3
1620	1	piperazinyl	н	OH	Н	СНЗ	н

EXAMPLE NO.	n	L	R ¹¹⁶	R ¹¹⁷	R ¹¹⁸	E	P
1621	1	piperazinyl	Н	OH.	H	СНЗ	COCH 3
1622	1	piperazinyl	Н	F	н	Н	Н
1623	1	piperazinyl	Н	F	H	H	COCH 3
1624	1	piperazinyl	н	F	н	CH ₃	н
1625	1	piperazinyl	Н	F	н	CH ₃	COCH 3
1626	1	piperazinyl	H	CF3	H	Н	Н
1627	1	piperazinyl	н .	CF3	H .	Н	COCH 3
1628	1,	piperazinyl	Н	CF3	н	CH3	Н
1629	1	piperazinyl	H	CF ₃	н	CH ₃	COCH 3
1630	1	piperazinyl	OH	OH	H.	н	Н
1631	1	piperazinyl	OH	. OH	н	н	COCH 3
1632	1	piperazinyl	OH	OH	н	CH ₃	Н
1633	1	piperazinyl	OH	OH	Н	CH ₃	COCH 3
1634		piperazinyl	F	н	F	Н	Н
1635	1	piperazinyl	F	н	F	н	COCH 3
1636	1	piperazinyl	F	H	F	СНЗ	Н
1637	1	piperazinyl	F	н	F	CH ₃	COCH 3

EXAMPLE NO.	n	L	R ¹¹⁶	R117	R118	E	P
1638	1	piperazinyl	CF3	Н	CF3	Н	н
1639	1	piperazinyl	CF3	Н	CF3	Н	COCH 3
1640	1	piperazinyl	CF3	Н	CF ₃	. CH ₃	Н
1641	1	piperazinyl	CF3	н	CF3	СНЗ	COCH 3
1642	2	NHNH	Н	OH	H	н	н
1643	2	NHNH	Н	OH	H .	Н	COCH 3
1644	2	NHNH	Н	OH	Н	СН3	Н
1645	2	ИНИН	Н	OH.	Н	СНЗ	COCH 3
1646	2	ИНИН	Н	F	н	н	н
1647	2	NHNH	Н	F	н	Н	COCH 3
1648	2	NHNH	н	F	н	СН3	н
1649	2	NHNH	Н	F	Н	СН3	COCH 3
1650	2	NHNH	Н	CF3	Н	Н	H
1651	2 .	NHNH	H	CF3	н	н	COCH 3
1652	2	NHNH	, H .	CF3	н	СН3	н
1653	2	NHNH	Н	CF3	н	СН3	COCH 3

				•			
EXAMPLE NO.	n	" L	R116	R117	R118	E	P
1654	2	NHNH	OH	OH :	н	Н	н
1655	2	NHNH	OH	OH	Н	Н	COCH 3
1656	2	NHNH	OH	OH	Н	. CH3	Н
1657	2	NHNH	OH	OH	Н	СНЗ	COCH 3
1658	2	NHNH	F	Н	F	Н	н
1659	2	NHNH	F	н	F	Н	COCH 3
1660	2	NHNH	F	Н	F	CH ₃	н
1661	2	NHNH	F	н	F	CH ₃	COCH 3
1662	2	· NHNH	CF3	н	CF ₃	Н	н
1663	2	NHNH	CF3	Н	CF ₃	H	COCH 3
1664	2	NHNH	CF3	Н	CF3	СНЗ	н
1665	2	NHNH	CF3	Н	CF ₃	СН3	COCH 3
1666	2 1	HCH2CH2NH	Н	OH	Н	н	Н
1667	2 h	HCH2CH2NH	н	OH	Н	н	COCH 3
1668	2 N	IHCH 2CH2NH	н	OH	н	CH ₃	Н
1669	2 N	IHCH 2CH2NH	н	OH .	Н	СН3	COCH 3

EXAMPLE NO.	n	L	R116	R117	R118	E	P
				•			
1670	2	NHCH 2CH2NH	н	F	н	H	н
1671	2	NHCH 2CH2NH	H	F	Н .	Н	COCH 3
1672	2	NHCH 2CH2NH	Н	F	Н	CH ₃	Н
1673	2	NHCH 2CH2NH	Н	F	Н	СНЗ	COCH 3
1674	2	NHCH 2CH2NH	н .	CF ₃	н	. н	Н
1675	2	NHCH 2CH2NH	н	CF3	н	н	COCH 3
1676	2	NHCH 2CH2NH	н	CF3	н	СН3	Н
1677	2	NHCH 2CH2NH	н .	CF3	Н	СН3	COCH 3
1678	2	NHCH 2CH2NH	OН	OH	Н	Н	H
1679	2	NHCH 2CH2NH	ОH	OН	н	Н	COCH 3
1680	2	NHCH 2CH2NH	OH	ОН	н	СН3	н
1681	2	NHCH 2CH2NH	OH	OH	н	CH ₃	сосн 3
1682	2	NHCH 2CH2NH	F	Н	F	Н	Н
1683	2	NHCH 2CH2NH	F	Н	F	н	COCH 3
1684	2	NHCH 2CH2NH	F	Н	F	СНЗ	н
1685	2	NHCH 2CH2NH	F	Н	F	СН3	COCH 3

EXAMPLE NO.	'n	L	R116	R ¹¹⁷	R118	E	P
	•						
1686	2	NHCH 2CH2NH	CF3	Н	CF3	H	Н
1687	2	NHCH 2CH2NH	CF3	, н	CF3	Н	COCH 3
1688	2	NHCH 2CH2NH	CF3	Н	CF3	СН3	Н
1689	2	NHCH 2CH2NH	CF3	H	CF3	СНЗ	соснз
1690	2	piperazinyl	Н	OH ·	Н	Н	н
1691	2	piperazinyl	Н	OH	Н	н	COCH 3
1692	2	piperazinyl	Н	OH	Н	CH ₃	Н
1693	2	; piperazinyl	Н	OH	Н	CH ₃	COCH 3
1694	2	piperazinyl	Н	F	н	Н	Н
1695	2	piperazinyl	Н	F	н	н	COCH 3
1696	2	piperazinyl	Н	F	н	СН3	н
1697	2	piperazinyl	Н	F .	н	CH ₃	COCH 3
1698	2	piperazinyl	Н	CF3	н	Н	Н
1699	2	piperazinyl	Н	CF3	н	н	COCH 3
1700	2	piperazinyl	н	CF3	Н	CH3	Н
1701	2	piperazinyl	Н	CF3	н	СН3	COCH 3

EXAMPLE NO.	n	L	R116	R117	R ¹¹⁸	E	P
1702	2	piperazinyl	OH	OH	Н	H	Н
1703	2	piperazinyl	OH	ОH	Н	Н	COCH 3
1704	2	piperazinyl	OH	OH ·	н	CH ₃	Н
1705	2	piperazinyl	OH	OH	Н	СНЗ	COCH 3
1706	2	piperazinyl	F	Н	F	Н	Н
1707	2	piperazinyl	F	H	F	н	COCH 3
1708	2	piperazinyl	F	н	F	СНЗ	·H
1709	2	piperazinyl	F	Н	F	СНЗ	COCH 3
1710	2	piperazinyl	CF3	н	CF3	Н	Н
1711	2	piperazinyl	CF3	Н	CF ₃	Н	COCH 3
1712	2	piperazinyl	CF3	Н	CF3	СНЗ	Н
1713	2	piperazinyl	CF3	Н	CF3	СН3	COCH 3
1714	3	ИНИН	н	OH	н	н	н
1715	3	NHNH	Н	OH of the	н	н	COCH 3
1716	3	NHNH	H	ОН	н	CH3	Н
1717	3	NHNH	Н	OH .	н	CH3	COCH 3

EXAMPLE NO.	n	L	R116	R ¹¹⁷	R ¹¹⁸	E	P
1718	3	NHNH	н	F	н	Н	Н
1719	3	NHNH	н	F	Н	н	COCH 3
1720	3	NHNH	н	F	Н	СН3	н
1721	3	NHNH	Н	F	Н	CH ₃	COCH 3
1722	3	NHNH	Н	CF3	н	Н	Н
1723	3 , ,	NHNH	Н	CF3	н .	Н	COCH 3
1724	3	NHNH	н	CF3	Н	СНЗ	. Н
1725	3	NHNH	H	CF3	н	СН3	COCH 3
1726	3	NHNH	OH	OH	Н	Н	н
1727	3	NHNH	OH	OH.	H	H	COCH 3
1728	3	NHNH	OH	OH.	н	CH ₃	Н
1729	3	NHNH	OH	OH	Н	СН3	COCH 3
1730	3	NHNH	F	н	F	Н	н
1731	3	NHNH	F	н	F	Н	COCH 3
1732		NHNH	F	.	F	CH3	Н
1733	3	NHNH	F	H .	F	СНэ	COCH 3

EXAMPLE NO.	n	L	R ¹¹⁶	R117	R118	E	P
1734	3	NHNH	CF3	н	CF3	Н	Н
1735	3	NHNH	CF3	н	CF ₃	Н	COCH 3
1736	3	NHNH	CF3	н	CF ₃	СН3	н
1737	3	NHNH	CF3	Н	CF ₃	CH ₃	COCH 3
1738	3	NHCH2CH2NH	Н	OH	Н	Н	н
1739	3	NHCH 2CH2NH	Н	OH .	H	н	COCH 3
1740	3	NHCH 2CH2NH	н	OH	н	СНЗ	• Н
1741	3	NHCH 2CH2NH	H	OH	H	СН3	сосн 3
1742	3	NHCH 2CH2NH	н	F	H	Н	H
1743	3	NHCH 2CH2NH	н .	F	H	Н	COCH 3
1744	3	NHCH 2CH2NH	H	F	Н	СН3	Н
1745	3	NHCH 2CH2NH	Н	F	Н	СНЗ	COCH 3
1746	3	NHCH 2CH2NH	н	CF3	н	Н	н
1747	3	NHCH 2CH2NH	н	CF3 ·	H	н	COCH 3
1748	3	NHCH 2CH2NH	н	CF3	Н	CH3	Н
1749	3	NHCH 2CH2NH	Н	CF ₃	н	CH ₃	COCH 3

EXAMPLE NO.	n	L	R ¹¹⁶	R117	R ¹¹⁸	E	P
1750	3	NHCH 2CH2NH	OH	OH	H	H	н
1751	3	NHCH 2CH2NH	. OH	OH	Н	H	COCH 3
1752	3	NHCH 2CH2NH	OH	QH	H .	CH ₃	Н
1753	3	NHCH 2CH2NH	ОН	OH.	Н	СНЗ	COCH 3
1754	3	NHCH 2CH2NH	F.	Н	F	н	Н
1755	3	NHCH 2CH2NH	F	Н	F	н	COCH 3
1756	3	NHCH 2CH2NH	F	н	F	СН3	. Н
1757	3	NHCH 2CH2NH	F	H.	F	СН3	COCH 3
1758	. 3	NHCH 2CH2NH	CF ₃	H	CF3	н	Н
1759	3	NHCH 2CH2NH	CF ₃	н	CF3	н	COCH 3
1760	3	NHCH 2CH2NH	CF3	н	CF3	СН3	Н
1761	3	NHCH 2CH2NH	CF3	Н	CF3	CH3	COCH 3
1762	3	piperazinyl	Н	OH	Н	Н	н
1763	3	piperazinyl	Н	OH	Н	Н	COCH 3
1764	3	piperazinyl	Н	CH	Н	CH ₃	н
1765	3	piperazinyl	H	OH	н	СН3	COCH 3

EXAMPLE	n	L	R116	R117	R118	E	P
NO.							
1766	3	piperazinyl	н	F	. H	Н	Н
1767	3	piperazinyl	Ĥ	F	н	н	сосн 3
1768	3	piperazinyl	Н	F	Н	СНЗ	н
1769	3	piperazinyl	H	F	Н	СН3	сосн 3
1770	3	piperazinyl	Н	CF ₃	н	н	н
1771	3	piperazinyl	н	CF3	Н	Н	сосн 3
1772	3	piperazinyl	Н	CF3	Н	СН3	, H
1773	3	piperazinyl	Н	CF3	н	СНЗ	COCH 3
1774	3	piperazinyl	OH.	OH	Н	н	Н
1775	3	piperazinyl	OH	OH .	H.	н	COCH 3
1776	3 1	piperazinyl	OH	OH	Н	CH ₃	Н
1777	3	piperazinyl	OH	OH	Н	CH3	COCH 3
1778	3	piperazinyl	F	Н	F	н	Н
1779	3	piperazinyl	F	н	F	Н	COCH 3
1780	3	piperazinyl	F	н	F	CH3	н
1781 .	3	piperazinyl	F	H	F	CH3	COCH 3

				*			
EXAMPLE NO.	n	L	R116	R ¹¹⁷	R ¹¹⁸	E	P
1782	3	piperazinyl	CF3	Н .	CF3 .	Н	н
1783	3	piperazinyl	CF3	н .	CF ₃	Н	COCH 3
1784	3	piperazinyl	CF3	н	CF3	СН3	н .
1785	3	piperazinyl	CF3	Н	CF3	СН3	COCH 3
1786	4	NHNH	Н	CH	Н	Н	н
1787	4	NHNH	Н	OH.	Н	н	COCH 3
1788	4	NHNH	н	OH	н	СНЗ	. H
1789	4	NHNH	н	OH	н	CH3	COCH 3
1790	4	NHNH	Н	F	н	н	н
1791	4	NHNH	Н	F	H.	н	COCH 3
1792	4	NHNH	Н	· F	н	СНЗ	н
1793	4	NHNH	Н	F	Н	СНЗ	COCH 3
1794	4	NHNH	Н	CF3	H	Н	н
1795	4	NHNH	Н	CF3	н	Н	COCH 3
1796	4	NHNH	Н	CF3	н	СН3	н
1797	4	NHNH	Н	CF3	Н	· CH3	COCH 3

EXAMPLE NO.	D	L	.R ¹¹⁶	R117	R118	E	P
1798	4	NHNH	ОH	OH	· H	н	Н
1799	4	NHNH	CH	OН	Н	н	СОСН 3
1800	4	NHNH	OH	ОН	Н	CH ₃	Н
1801	4	NHNH	OH	OH	Н	СН3	сосн 3
1802	4	NHNH	F	Н	F	Н	Н
1803	4	NHNH	F	Н	F	Н	COCH 3
1804	4	NHNH	F	Н	F	СНЗ	н
1805	4	NHNH	F	н	F	СНЗ	COCH 3
1806	4	ИНИН	CF3	Н	CF ₃	Н	Н
1807	4	NHNH	CF3	Н	CF ₃	Н	COCH 3
1808	4	NHNH	CF3	H	CF ₃	CH ₃	н
1809	4	NHNH	· CF3	н	CF3	CH ₃	COCH 3
1810	4	NHCH 2CH2NH	н	OH	Н	Н	Н
1811	4	NHCH 2CH2NH	H	OH	Н	н	COCH 3
1812	4	NHCH 2CH2NH	н	OH	Н	СНЗ	Н
1813	4	NHCH 2CH2NH	н	OH	н	СН3	COCH 3

EXAMPLE NO.	n	L	R116	R ¹¹⁷	R118	Ė	P
1814	4	NHCH 2CH2NH	Н	F	. Н	Н	Н
1815	4	NHCH 2CH2NH	н	F	Н -	н	COCH 3
1816	4	NHCH 2CH2NH	Н	F	Н	СН3	н
1817	4	NHCH 2CH2NH	Н	F .	н	СНЗ	COCH 3
1818	4	NHCH 2CH2NH	н	CF3	н	Н	Н
1819	4	NHCH 2CH2NH	н	CF3	Н	н	COCH 3
1820	. • 4	NHCH 2CH2NH	H	CF3	Н	СНЗ	Н
1821	4	NHCH 2CH2NH	н	CF ₃	Н	СНЗ	COCH 3
1822	4	NHCH 2CH2NH	OH	O H	н	н	н
1823	4.	NHCH 2CH2NH	OH	ОН	н.	н	COCH 3
1824	4	NHCH 2CH2NH	OH	OH	Н	СН3	Н
1825	4	NHCH 2CH2NH	. OH	CH	Н	CH3	COCH 3
1826	4	NHCH 2CH2NH	F	Н	F	н	Н
1827	4	NHCH 2CH2NH	F	н	F	Н	COCH 3
1828	4	NHCH 2CH2NH	F	H	F	CH3	н
1829	4	NHCH 2CH2NH	F	н	F	СН3	COCH 3

EXAMPLE NO.	n	L	R116	R ¹¹⁷	R118	E	P
1830	4	NHCH 2CH2NH	CF3	н	CF3	Н	Н
1831	4	NHCH 2CH2NH	CF3	н	CF3	Н	сосн 3
1832	4	NHCH 2CH2NH	CF3	Н	CF3	СН3	н
1833	4	NHCH 2CH2NH	CF3	Н	CF3	СН3	сосн 3
1834	4	piperazinyl	н	OH	Н	н	н
1835	4	piperazinyl	H	OH ·	н	Н	COCH 3
1836	4	piperazinyl	н	OH.	н	СНЗ	Н
1837	4	piperazinyl	н	OH	н	СН3	COCH 3
1838	4	piperazinyl	H	F	н	н	н
1839	4.	piperazinyl	н	F	н	Н	сосн 3
1840	4	piperazinyl	н	F	н	СН3	H
1841	4	piperazinyl	. H	F	Н	CH ₃	COCH 3
1842	4	piperazinyl	H	CF _{3.}	н	н	н
1843	4	piperazinyl	н	CF3	Н	Н	COCH 3
1844	4	piperazinyl	Н	CF3	Н	СН3	н
1845	4	piperazinyl	н	CF3	Н	CH ₃	COCH 3

EXAMPLE NO.	n	L	R116	R117	R118	E	P
1846	4	piperazinyl	OH	OH	Н .	Н,	Н
1847	4	piperazinyl	OH.	OH	H	Н	COCH 3
1848	4	piperazinyl	OH	OH	Н	СНЗ	н
1849	٠ 4	piperazinyl	OH	OH	Н	СНЗ	COCH 3
1850	4	piperazinyl	. F	н	F	Н	H
1851	4	piperazinyl	F	н	F	Н	COCH 3
1852	4	piperazinyl	F	н	F	CH3	Н
1853	4	piperazinyl	F	Н	F	СНЗ	COCH 3
1854	4	piperazinyl	CF3	Н	CF3	Н	н
1855	4	piperazinyl	CF3	Н	CF3	н	COCH 3
1856	4	piperazinyl	CF ₃	н	CF3	CH ₃	н
1857	4	piperazinyl	CF3	н	CF3	СН3	COCH3

BIOLOGICAL EVALUATION

Conjugates of the invention were evaluated biologically by in vitro and in vivo assays to determine the ability of the conjugates to selectively inhibit renal sympathetic nerve activity and lower blood pressure. Three classes of conjugates of the invention were evaluated for their ability to inhibit the enzymes of the catecholamine cascade selectively within the kidney. These inhibitor conjugates variously inhibit tyrosine hydroxylase, dopadecarboxylase and dopamine- β -hydroxylase in order to interfere ultimately with the synthesis of norepinephrine in the kidney.

÷

10

35

Assays I and II evaluate in vivo the acute and chronic effects of Ex. #3 conjugate (a tyrosine hydroxylase inhibitor conjugated with N-acetyl-γ-glutamyl) in rats.

Assay III evaluates the chronic effects of Ex. #464 conjugate (a dopa-decarboxylase inhibitor conjugated with N-acetyl-γ-glutamyl) in rats.

Assay IV and V describes in vitro experiments performed to determine if the Ex. #859 conjugate was capable of being specifically metabolized by enzymes known to be abundant in the kidney. In Assay IV, the Ex. #859 conjugate was incubated with either rat kidney homogenate or a solution containing purified kidney enzymes to characterize resulting metabolites. In Assay V, experiments were performed to determine the potency of the Ex. #858 and Ex. #859 conjugates and potential metabolites as inhibitors of purified dopamine-β-hydroxylase.

Assays VI through IX describe in vivo experiments performed to characterize and compare the effects of fusaric acid and various conjugates of fusaric acid (Ex. #859, Ex. #861 and Ex. #863) on spontaneously hypertensive rats (SHR) by

acute administration i.v. and i.d. and by chronic administration i.v. Assay X describes analysis of catecholamine levels in tissue from rats used in the chronic administration experiment of Assay VIII. Assays XI and XII describe in vivo experiments in dogs to determine the renal and mean arterial pressure effects of fusaric acid and Ex. #859 conjugate.

Assay I: Acute In Vivo Effects of Ex. #3 Conjugate

10

Sprague-Dawley rats were anesthetized with inactin (100 mg/kg, i.p.) and catheters were implanted into a carotid artery for measurement of mean arterial pressure (Gould model 3800 chart recorder; Statham pressure transducer model no. P23DB) and into a jugular vein for 15 compound administrations (i.v.). In addition, a flow probe was implanted around the left renal artery for measurement of renal blood flow using Carolina Medical Electronics flow probes. Rats were allowed 60 min to stabilize before 10 minutes of control recordings of mean arterial pressure and 20 renal blood flow were obtained. Control measurements were followed by intravenous injection of Ex. #3 conjugate and saline vehicle. As shown in Table XVIII and in Figs. 1 and 2, the Ex. #3 conjugate had no acute effects on mean 25 arterial pressure (MAP), but increased renal blood flow (RBF).

TABLE XVIII

Acute In Vivo Effects of Ex. #3 Conjugate

5		Ti	me After]	Injection	(min)	
		Zero	15	30	45	60
10		Vel	hicle (0.5	ml 0.9% 1	NaCliv)	_
	MAP (mm Hg)	78	76	75	80	82
	RBF (ml/min)	4.9	4.5	4.2	4.6	4.7
15		Ex.#	3 Conjuga	te (100 mg	/kg i.v.)	
	MAP (mm Hg)	76 <u>+</u> 5	77 <u>±</u> 5	73±4	70 <u>±</u> 2	71±6
	RBF (ml/min)	4.8 ± 0.8	7.1 ± 0.1	6.2 <u>±</u> 0.3	5.9 <u>±</u> 0.1	5.9±0.1

20

Assay II: Chronic In Vivo Effects of Ex. #3 Conjugate

The Ex. #3 conjugate and saline vehicle were
infused continuously for four days in spontaneously
hypertensive rats. Mean arterial pressure was measured
(Gould Chart Recorder, model 3800; Statham P23Db pressure
transducer) via an indwelling femoral artery catheter
between 10:00 a.m. and 2:00 p.m. each day. The Ex. #3
conjugate was infused at 5 mg/hr and the saline vehicle was
infused at 300 µL/hr. via a jugular vein catheter with a
Harvard infusion pump. Results are shown in Table XIX.

25

30

TABLE XIX

Chronic In Vivo Effects of Ex. #3 Conjugate

5		Time After Injection (days)							
		Zero	1	2	3	4			
10			Vehicle	(300 µL,	/hr)	·.			
	MAP (mm Hg)	181 <u>±</u> 8	172±6	170±7	174 <u>±</u> 6	182±3			
••	٠.		Ex. #3	Conjugate	e (5 mg/	hr)			
15	MAP (mm Hg)	164 <u>+</u> 3	175 <u>+</u> 5	174 <u>±</u> 5	172 <u>+</u> 2	N.A.			

20 Assay III: Chronic In Vivo Effects of Ex. #464 Conjugate

The Ex. #464 conjugate and saline vehicle were infused continuously for four days in spontaneously hypertensive rats. Mean arterial pressure was measured (Gould Chart Recorder, model 3800; Statham P23Db pressure transducer) via an indwelling femoral artery catheter between 10:00 a.m. and 2:00 p.m. each day. The Ex. #464 conjugate was infused at 10 mg/hr and the saline vehicle was infused at 300 μ L/hr. As shown in Table XX and in Fig. 3, mean arterial pressure was lowered significantly over the four-day period.

TABLE XX

Chronic In Vivo Effects of Ex. #464 Conjugate

5			Time 7	fter Inj	ection (d	iays)	
		Zero	1	2	3	4	
10	MAP (mm Hg)	181±8	172±6	: (300 μ <u>τ.</u> 170±7	174±6	182 <u>±</u> 3	
			Ex. #46	4 Conjuga	ate (10 m	g/hr)	
15	MAP (mm Hg)	179±6	169±5	161±4	163 <u>±</u> 5	159 <u>±</u> 8	•

20 Assay IV: In Vitro Evaluation of Enzyme Metabolism Effects of Ex. #859 Conjugate

A freshly excised rat kidney was homogenized in 10 ml cold buffer (100 mM Tris, 15mM glycylglycine, pH 7.4) with a Polytron Tissue Homogenizer (Brinkmann). The 25 resulting suspension, diluted with buffer, was incubated in the presence of the Ex. #859 conjugate at 37°C. At various times aliquots were removed, deproteinized with an equal volume of cold trichloroacetic acid (25%) and centrifuged. The supernatant was injected onto a C-18 reverse-phase HPLC 30 column and eluted isocratically with a mixture of acetonitrile and water (20:80 v/v) containing trifluoroacetic acid (0.05%). Eluted compounds were monitored by absorbance at 254 nm and compared to standards 35 run under identical conditions. In the assay using pure kidney enzyme homogenate,, the Ex. #859 conjugate was also

incubated under the same conditions as described except that 5 mg of gamma-glutamyl transpeptidase (Sigma, 23 units/mg) and 10 mg of acylase I (Sigma, 4800 units/mg) were added in place of the homogenate. Analysis by HPLC was performed in a manner identical to that used for the kidney 5 homogenate experiment. Following incubation of the Ex. #859 conjugate with kidney homogenate, there was a linear increase in the amount of fusaric acid liberated, as shown in Figure 4. No fusaric acid hydrazide or gamma-10 glutamyl fusaric acid hydrazide was observed; nor was any metabolism observed in the buffer control incubations. These data (Table XXI, Figure 4) show that renal tissue is able to metabolize the Ex. #859 conjugate to fusaric acid, which then remains stable under these conditions. Data from experiments using the purified enzymes show results similar 15 to those seen for the kidney homogenate experiment, with only fusaric acid and the unreacted compound being present (see Table XXII, Figure 5).

20

TABLE XXI

							•	
5						Acid Fro		
		<u> </u>	<u>ປວກຕິ</u>	ate In	cubated	with Kid	ney Homog	renate
	Time	(hrs.)	•	0.00	0.17	1.25	17.00	41.00
10								
	Fusar Acid):	0.00	0.27	0.57	2.37	5.94
15								
					TAB	LE XXII		
								Conjugate
20		Incubat	ed r	with P	urified	Transpept	idase an	d Acylase
	Time	(hrs.)		3	0.4			
	Time	(IIIS.)	:		24	72	96	.120
25	Fusar	ic						
			:	0.00	2.56·	12.15	15.44	18.75
	Hq 9	7.4					ı	
	Fusar	ic						
30	Acid @ pH		:	0.00	1.12	4.46	5.22	6.55

Assay V: In Vitro Evaluation of DBH Inhibition by Ex. #859 Conjugate

In order to characterize the relative potency of 5 the Ex. #859 conjugate and its various potential metabolites as inhibitors of dopamine beta-hydroxylase (DBH; EC 1.14.17.1), the enzyme activity was determined in vitro in the presence of these compounds. DBH, purified from bovine adrenals (Sigma) was incubated at 37°C in 10 buffer containing 20 mM dopamine as substrate. The reaction was stopped by addition of 0.5 M perchloric acid. The precipitate was removed and the product of the enzyme activity (norepinephrine), contained in the clear supernatant, was analyzed by HPLC. The chromatographic 15 separation used a reversed phase C-18 column run isocratically with 0.2 M ammonium acetate (pH 5.2) as the mobile phase. The amount of norepinephrine produced by the enzyme-substrate mixture was analyzed by measuring the peak intensity (absorbance) at 280 nm for norepinephrine as it 20 was eluted at 4.5 minutes, using a photo-diode array detector. The result of adding either fusaric acid or the Ex. #859 conjugate to the incubate at various concentrations is shown in Table XXIII and Figure 6. Above concentrations of 1 uM, fusaric acid inhibits the enzyme, 25 while at concentrations up to 100 uM the Ex. #859 conjugate has no appreciable activity (Table XXIII and Figure 6). Fusaric acid and Ex. #859 and two more possible metabolites (Ex #858 and fusaric acid hydrazide) were tested at 20 uM. Only fusaric acid had significant inhibitory effects on dopamine- β -hydroxylase activity (Table XXIV and Figure 7). 30

TABLE XXIII

DBH Inhibition by Fusaric Acid and the Ex. #859 Conjugate

Concentration (µM):	0.01	0.10	0.50	1.00	5.00	10.00	0.01 0.10 0.50 1.00 5.00 10.00 50.00 100.00	100.00
(Abs 280) in the presence of								
Fusaric Acid:	0.59	0.59 0.59 0.60	09.0	0.53	0.25	0.53 0.25 0.14 0.00	00.00	0.00
Norepinephrine								•
(Abs 280) in the								
presence of								
Ex. #859 Conjugate		0.51		0.52		0.61		0,53

5

TABLE XXIV

DBH Inhibition by Fusaric Acid. Ex. #859 Conjugate and Various Potential Metabolites

0.	Test	Ex.	Ex.	Fusaric Acid	Fusaric
	Compound (20μM):	#859	#858	Hydrazide	Acid
10	% Inhibition :	1.5	0.0	13.8	75.4

15

Assay VI: Acute In Vivo Effects of Ex. #859 and Ex. #863 Conjugates

Spontaneously hypertensive rats were anesthetized with inactin (100 mg/kg, i.p.) and catheters were implanted 20 into a carotid artery for measurement of mean arterial pressure (Gould model 3800 chart recorder; Statham pressure transducer model no. P23DB) and into a jugular vein for compound administrations (i.v. or i.d.). In addition, a flow 25 probe was implanted around the left renal artery for measurement of renal blood flow using pulsed Doppler flowmetry. Rats were allowed 60 min to stabilize before 10 minutes of control recordings of mean arterial pressure and renal blood flow were obtained. Control measurements were 30 followed by intravenous injection of 50 mg/kg of fusaric acid or the Ex. #859 conjugate. As shown in Figures 8 and 9 and Table XXV, fusaric acid (a systemic dopamine-β-hydroxylase inhibitor) decreased mean arterial pressure and increased renal blood flow throughout the 60 minute post-injection observation period. In sharp contrast, the Ex. #859 conjugate had no acute effects on mean arterial pressure, but increased

renal blood flow to a greater degree than fusaric acid (Table XXV and Figures 8 and 9). Similar results were found when these compounds were administered through a catheter implanted into the duodenum (i.d.). The Ex. #859 conjugate had no effect on mean arterial pressure at a dose of 100 mg/kg (n=4)during a 60 minute observation period. Renal blood flow (n=4) was unchanged 15 minutes after injection of the Ex. #859 conjugate but increased from 1.1 KHz (control period) to 3.5 KHz at 30 minutes postinjection. Renal blood flow remained at this level for the following 30 minute observation period. These data indicate that the Ex. #859 conjugate is active and displays renal selectivity whether administered i.d. or i.v. Results for Ex. #863 conjugate were similar to Ex. #859 and are shown in Table XXVI: Ex. #863 had no effect on mean arterial pressure, but increased renal blood flow, indicating renal selectivity.

TABLE XXV

Pressure and Renal Blood Flow

5

10

15

20

Acute Effects of Fusaric Acid and Ex. #859 conjugate on Blood

				Time (mi	<u>n)</u>	
25		Zero	15	30.	45	60
			Fusaric	Acid (50mg/	kg i.v.)	
	MAP (mm Hg)	155	111	106	103	99
30	RBF (KHz)	2.5	3.1	3.2	3.4	3.9
		. :	Ex. #859) Conjugate	(50 mg/kg	1.V.)
	MAP (mm Hg)	156	163	164	157	159
35	RBF (KHz)	2.4	3.8	4.0	4.6	4.8

<u>Table XXVI</u>

Acute Effects of Ex. #863 Conjugate

5					Time (min	<u>)</u>	
			Zero	15	30	45	60
		··	Ŧ,	Ex.	#863 (100 r	ng/kg i.v	·.)
10		: .	•				
	MAP	(mm Hg)	149 <u>+</u> 14	N.A.	N.A.	N.A.	147 <u>+</u> 14
	RBF	(KHz)	1.6 ± 0.2	N.A.	N.A.	N.A.	4.3 <u>+</u> 0.3

15 N.A. = Not Available

Assay VII: Comparison of Fusaric Acid, Fusaric Acid Hydrazide

20 and Ex. #859 Conjugate on Arterial Pressure in Spontaneously

Hypertensive Rats (SHR)

Mean arterial pressure effects of fusaric acid hydrazide (100 mg/kg, i.v.), fusaric acid (100 mg/kg, i.v.)

25 and Ex. #859 conjugate (250 mg/kg, i.v.) are shown in Table XXVII during a vehicle control period and 60 min post-injection of compound in anesthetized SHR. Rats were prepared as described above, minus the renal artery flow probe.

Table XXVII

	COMPOUND	ZERO	60 MIN
5	Fusaric Acid (n=4)	164 ± 10 mmHg	110 ± 21 mmHg
	Fusaric Acid Hydrazide (n=4)	159 ± 8 mmHg	104 ± 13 mmHg
10	Ex. #859 Conjugate (n=4)	151 ± 9 mmHg	146 ± 15 mmHg

The data show that the hypotensive effects of the fusaric acid hydrazide is similar to fusaric acid. The Ex.

#859 conjugate had no effect on mean arterial pressure (Table XXV and Figure 8).

20 Assay VIII: Chronic In Vivo Effects of Ex. #859 Conjugate

The Ex. #859 conjugate and saline vehicle were infused continuously for 5 days in SHR. Mean arterial pressure was measured (Gould Chart Recorder, model 3800; Statham P23Db pressure transducer) via an indwelling femoral artery catheter between 10:00 a.m. and 2:00 p.m. each day. The Ex. #859 conjugate (5 mg/hr), fusaric acid (2.5 mg/hr), and saline (100 µl/hr) were infused via a jugular vein catheter with a Harvard infusion pump. Compared to the control vehicle fusaric acid and the Ex. #859 conjugate lowered mean arterial pressure similarly. Mean arterial pressure did not change in the saline vehicle group. Results are shown in Table XXVIII.and Figure 10.

302

TABLE XXVIII

Chronic Effects of Fusaric Acid and Ex. #859 Conjugate on Blood Pressure

5

-	•					
	•		Time	(days)		
	Zero	1	2	3	4	5
	·			. **		
			Vehicle	(25 μL/t	r)	
MAP (mm Hg)	139±2	139 <u>+</u> 4	143 <u>+</u> 4	146±4	145 <u>+</u> 7	146 <u>±</u> 4
(SE)		•				
		F	rusaric A	cid (2.5	mg/hr)	
MAP (mm Hg)	148±6	118 <u>±</u> 5	114 <u>+</u> 7	122 <u>±</u> 5	114±6	114±3
(SE)			£			
		Ex.	#859 Cor	ijugate (5 mg/hr)	
MAP (mm Hg)	146±5	122 <u>+</u> 9	115 <u>±</u> 9	119 <u>±</u> 11	121 <u>±</u> 7	115 <u>+</u> 8
(SE)	:				•	

25

Assay IX: Chronic In Vivo Effects of Ex. #861 and Ex. #863 Conjugates

The conjugates of Ex. #861 and #863 and saline 5 vehicle were infused continuously for 4 days in spontaneously hypertensive rats. Mean arterial pressure was measured (Gould Chart Recorder, model 3800; Statham P23Db pressure transducer) via an indwelling femoral artery catheter between 10:00 a.m. and 2:00 p.m. each day. The Ex. #861 and Ex. #863 conjugates were infused at 5 mg/hr and the saline vehicle was infused at 10 100 µl/hr via a jugular vein catheter with a Harvard infusion pump. Results are shown in Table XXIX. The Ex. #863 conjugate lowered mean arterial pressure as shown in Fig. 11. Mean arterial pressure did not change for the Ex. #861 conjugate and the saline vehicle group (Table XXIX). It is 15 believed that at a higher dose of the Ex. #861 conjugate, blood pressure lowering effects would be observed.

TABLE XXIX

20 -

Chronic Effects of Ex. #861 and Ex. #863 Conjugates on Blood Pressure

		Time (days)						
25		Zero	1	2	3	4		
	Vehicle	171±6	172 <u>±</u> 6	164 <u>+</u> 6	169 <u>+</u> 4	162 <u>+</u> 4		
	Ex. #861	177±3	173 <u>±</u> 3	172 <u>+</u> 4	172 <u>+</u> 3	163±9		
30	Ex. #863	177 <u>±</u> 5	152 <u>±</u> 6	146 <u>±</u> 7	142 <u>+</u> 7	154 <u>+</u> 7		

Assay X: Catecholamine Analysis of Tissue from Rats Treated with Ex. #859 Conjugate

In order to evaluate the renal selectivity of DBH inhibition by the Ex. #859 conjugate, the catecholamine levels of heart and kidneys, both of which have been shown to be highly sensitive to DBH inhibition [Racz, K. et al., Europ. J. Pharmacol., 109, 1 (1985)], were measured following chronic infusion of the Ex. #859 conjugate, 10 fusaric acid and saline vehicle in rats. Following 5 days of infusion, the kidney was exposed through a small flank incision, made in the anesthetized rat, and the renal artery and vein were ligated. Following this the kidney was rapidly excised distal to the ligation and frozen in 15 liquid nitrogen. Similarly, the heart was excised and frozen subsequent to the removal of both kidneys. The frozen tissues were stored in closed containers at -80°C. Tissue samples were thawed on ice and their weight recorded prior to being placed in a flat bottom tube. The cold 20 extraction solvent (2 ml/g tissue) was then added and the sample was homogenized with a Polytron. Extraction Solvent: 0.1 M perchloric acid (3 ml of 70% PCA to 500 ml); 0.4 mM Na metabisulphite (38 mg/500 ml). The volume was then measured and 0.05 ml of a 1 uM/L solution of 25 dihydroxybenzylamine (DHBA) in extraction solvent was added for every 0.95 ml of homogenate to yield a 50 nM/L internal standard concentration. The homogenate was then mixed and centrifuged at 4°C, 3000 rpm for 35 minutes. A 2 ml aliquot of the supernatant was then neutralized by adding 0.5 ml of 30 2 M Tris, pH 8.8 and mixing. The sample was then placed on an alumina column (40 mg, Spe-ed CAT cartridge; Applied Separations; Bethlehem, PA) and the catecholamines were bound, washed and eluted using a vacuum manifold system (Adsorbex SPU, EM Science, Cherry Hill, NJ) operating at 35 ca. 4 ml/min. until the column was dry. Washes of 1 ml H₂0 - 0.5 ml MeOH - 1 ml H_2O were followed by elution with 1 ml

5

of extraction solvent. A 200 μ l sample of the eluant was injected onto a C-18 reversed phase analytical HPLC column, 5 um, 4.6 mm x 250 mm (e.g., Beckman #235335, LKB 2134-630 Spherisorb ODS-2) and eluted with a recycled mobile phase run at ambient temperature and a flow rate of 0.5 ml/min (ca. 75 bar).

Mobile Phase: 0.02 M Na₂HP0₄ in 75/25 (v/v) H₂0/MeOH 0.007% SDS pH 3.5 (conc. H₃P0₄). The separated catecholamines were detected with a LKB 2143

- electrochemical detector at a potential setting of 500 mV using a teflon flow cell spacer of 2.2 µl and a time constant of 2 sec. Peak heights were measured and recorded along with the chromatogram tracing using a Spectra-Physics 4270 integrator. Sample runs were preceded by injection of
- a mixture of calibration standards (200 ul) containing 50 nM/L of epinephrine (Epi), norepinephrine (NE), dopamine (DA), and DHBA in extraction solvent. The peak heights for each sample run were corrected by dividing the peak height of the DHBA in the standard by the peak height of the DHBA
- in each sample. The resulting factor (calculated for each sample) was used to correct for losses due to dilution, non-specific binding to the tissue precipitate, incomplete elution, etc. Concentrations were calculated by multiplying the peak heights for Epi, NE and DA by that
- samples correction factor and then dividing this value by the peak height of the respective standard. When this number is multiplied by the concentration of the standard (in this case 50 nM/L) the concentration of the catecholamine in the homogenate is obtained. This value is multiplied by the value of the homogenate.
 - multiplied by the volume of the homogenate (determined previously) to get the total catecholamine content of the tissue expressed in moles/g tissue. The resolution and retention times for a mixture of standards run under the conditions described in the previous section are shown in
- 35 Table XXX.

TABLE XXX

	Retention Time (min.)	Compound
5	12.10	3,4-dihydroxylphenylacetic acid (DOPAC)
10	18.24	norepinephrine (NE)
10	21.82	epinephrine (Epi)
	23.19	homovanillic acid (HVA)
15	30.56	dihydroxybenzylamine (DHBA)
	42.58	dopamine (DA)

infusion.

The linear response to various standards run over a 100 fold concentration range was excellent with values for both the correlation coefficient (r) and the coefficient of determination (r-squared) being >.9999 for all standards, while the rank correlation (Spearman's rho) was 1.0. To confirm the precision and accuracy of the values, tissue analysis was performed on a control group of Sprague-Dawley rats. The cumulative results are within the range of values reported in the literature [(e.g. Racz, K. et al, <u>J. Cardiovasc. Pharmacol.</u>, <u>8</u>, 676 (1986)]. 10 precision in the efficiency of extraction measured by the addition of an internal standard (DHBA) was also excellent with a fractional efficiency of 0.779(SE=.066) for the kidney extraction and 0.771 (SE=.083) for the heart extracts. Relative to vehicle administration, both the 15 Ex. #859 conjugate and fusaric acid decreased kidney norepinephrine concentration; however, only fusaric acid decreased heart norepinephrine concentration (see Table XXXI and Figures 12 and 13). These data indicate that the Ex. #859 conjugate is renal selective with chronic 20

TABLE XXXI

Effect of Fusaric Acid and Ex. #859 conjugate on Tissue Norepinephrine Concentration Following 5 Days of Infusion

5

Tissue:

Kidney

Heart

10

Vehicle (25 UL/hr)

Norepinephrine:

2,248 (164)

(pMol/g) (SD)

15

Fusaric Acid (2.5 mg/hr)

Norepinephrine:

519 (42)

889 (72)

862 (147)

(pMol/g) (SD)

20 .

Ex. #859 Conjugate (5 mg/hr)

Norepinephrine:

(pMol/g) (SD)

589 (54)

2,444 (534)

Assay XI: Intrarenal Administration of Fusaric Acid in Anesthetized Dogs

In one anesthetized dog, bolus doses of fusaric acid (0.1-5.0 mg/kg) were administered into the renal artery. Mean arterial pressure (MAP), renal blood flow (RBF) and urinary sodium excretion (UNaV) were measured. Bolus intrarenal injection of isotonic saline or 0.1 mg/kg of fusaric acid had no effect on any measure; however, 0.5, 1.0, and 5.0 mg/kg fusaric acid caused dose-related increases in renal blood flow, but had no significant effect on mean arterial pressure or urinary sodium excretion (see Table XXXII).

15

TABLE XXXII

Effect of Intrarenal Injection of Fusaric Acid on Blood Pressure, Sodium Excretion and Renal Blood Flow in the Dog

	Dose (mg/kg):	Saline	0.1	0.5	1.0	5.0	
25	Δ RBF (ml/min):	0	0	+46	+58	+132	-
	U _{Na} V(µEq/min):	42.8	21.2	23.8	21.1	34.8	
30	MAP (mm Hg):	136	136	136	138	140	

30

Similar results were also found in a second experiment where non-depressor doses of fusaric acid were infused into the renal arteries of two dogs (see Table XXXIII).

5

TABLE XXXIII

Effect of Intrarenal Infusion of Fusaric Acid on Blood Pressure, Sodium Excretion and Renal Blood Flow in the Dog

15	Infusion:		Dog #1 Fusaric Acid (1.25 mg/kg/min)	Saline	Dog #2 . Fusaric Acid (0.75mg/kg/min)
	Δ RBF (ml/min):	140	240	236	315
20 -	U _{Na} V(µEqlmin):	95	82	. 44	13
	MAP (mm Hg):	136	136	140	148

These data indicate that intrarenal
administration of fusaric acid increases renal blood flow
in anesthetized dogs without altering systemic mean
arterial pressure.

Assay XII: Acute In Vivo Effects of Ex. #859 Conjugate

This experiment was run to determine the renal selectivity of conjugate of the invention in dogs. Male mongrel dogs (15-20 kg/ n=8; Antech, Inc., Barnhard, MO) were anesthetized with sodium pentobarbital (30 mg/kg as i.v. bolus, and 4-6 mg/kg/hr infusion) and catheters were placed in the femoral veins for compound injection or pentobarbital infusion, and the femoral artery for arterial pressure recording. An electromagnetic flow probe (Carolina Medical Electronics, Inc., King, NC) was placed around the left renal artery for measurement of renal blood flow. Renal blood flow and arterial pressure were recorded on a Gould chart recorder. After surgery, 20-30 minutes were allowed for variables to stabilize. Then a 20 minute control measurement was followed by injection of Ex. #859 conjugate at doses of 20 and 60 mg/kg, i.v., to two different groups of dogs. Variables were monitored for the next three hours. Results are shown in Table XXXIV and Figures 14 and 15.

20

15

10

TABLE XXXIV

Renal Selectivity of Ex. #859 Conjugate in Dogs

	Time Aft	<u>er Injectio</u>	n of Ex. #8	<u>59 Conjugate</u>
į.	Zero	1 Hour	2 Hour	3 Hour
Mana Antonia				·
Mean Arteri	• • •			
Pressure (m	mHg)			
20 mg/kg	138±6	139±7	139±8	140±8
60 mg/kg	123±3	124±1	126±3	127±10
Renal Blood		* .		
Flow (ml/mi	n)		,	
20 mg/kg	88±19	107±23	123±29	125±29
60 mg/kg	131±21	145±21	168±28	176±32

Compositions of the Invention

Also embraced within this invention is a class of pharmaceutical compositions comprising one or more conjugates described above in association with one or more 5 non-toxic, pharmaceutically acceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as "carrier" materials) and, if desired, other active ingredients. The conjugates of the present invention may be 10 administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. Therapeutically effective doses of the conjugates of the present invention required to prevent or arrest the progress of the 15 medical condition are readily ascertained by one of ordinary skill in the art. The conjugates and composition may, for example, be administered intravascularly, intraperitoneally, subcutaneously, intramuscularly or topically.

20

25

30

For oral administration, the pharmaceutical composition may be in the form of, for example, a tablet, capsule, suspension or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient. Examples of such dosage units are tablets or capsules. These may with advantage contain an amount of active ingredient from about 1 to 250 mg, preferably from about 25 to 150 mg. A suitable daily dose for a human may vary widely depending on the condition of the patient and other factors. However, a dose of from about 0.1 to 3000 mg/kg body weight, particularly from about 1 to 100 mg/kg body weight, may be appropriate.

35 The active ingredient may also be administered by injection as a composition wherein, for example, saline,

dextrose solutions or water may be used as a suitable carrier. A suitable daily dose is from about 0.1 to 100 mg/kg body weight injected per day in multiple doses depending on the disease being treated.

5

10

15

20

35

A preferred daily dose would be from about 1 to 30 mg/kg body weight. Conjugates indicated for prophylactic therapy will preferably be administered in a daily dose generally in a range from about 0.1 mg to about 100 mg per kilogram of body weight per day. A more preferred dosage will be a range from about 1 mg to about 100 mg per kilogram of body weight. Most preferred is a dosage in a range from about 1 to about 50 mg per kilogram of body weight per day. A suitable dose can be administered, in multiple sub-doses per day. These sub-doses may be administered in unit dosage forms. Typically, a dose or sub-dose may contain from about 1 mg to about 100 mg of conjugate per unit dosage form. A more preferred dosage will contain from about 2 mg to about 50 mg of conjugate per unit dosage form. Most preferred is a dosage form containing from about 3 mg to about 25 mg of active compound per unit dose.

The dosage regimen for treating a disease

condition with the conjugates and/or compositions of this invention is selected in accordance with a variety of factors, including the type, age, weight, sex and medical condition of the patient, the severity of the disease, the route of administration, and the particular compound

employed, and thus may vary widely.

For therapeutic purposes, the conjugates of this invention are ordinarily combined with one or more adjuvants appropriate to the indicated route of administration. If administered per os, the conjugates may be admixed with lactose, sucrose, starch powder, cellulose

esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets may contain a controlled-release formulation as may be provided in a dispersion of conjugate in hydroxypropylmethyl cellulose. Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules having one or more of the carriers or diluents mentioned for use in the formulations for oral administration. The conjugates may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride solutions, and/or various buffer solutions. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art. Appropriate dosages, in any given instance, of course depend upon the nature and severity of the condition treated, the route of administration, including the weight of the patient.

10

15

20

Representative carriers, diluents and adjuvants include for example, water, lactose, gelatin, starches, magnesium stearate, talc, vegetable oils, gums, polyalkylene glycols, petroleum jelly, etc. The pharmaceutical compositions may be made up in a solid form such as granules, powders or suppositories or in a liquid form such as solutions, suspensions or emulsions. The pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional pharmaceutical adjuvants such as preservatives, stabilizers, wetting agents, emulsifiers, buffers, etc.

WO 91/01724 PCT/US90/04168

Although this invention has been described with respect to specific embodiments, the details of these embodiments are not to be construed as limitations. Various equivalents, changes and modifications may be made without departing from the spirit and scope of this invention, and it is understood that such equivalent embodiments are part of this invention.

10

WHAT IS CLAIMED IS:

- A conjugate comprising a first residue and a second residue, said first and second residues connected 5 together by a cleavable bond, wherein said first residue is provided by an inhibitor compound capable of inhibiting biosynthesis of an adrenergic neurotransmitter, and wherein said second residue is capable of being cleaved from said first residue by an enzyme located predominantly in the kidney.
- 2. Conjugate of Claim 1 wherein said first and second residues are provided by precursor compounds wherein the precursor compound of one of said first and second residues has a reactable carboxylic acid moiety and the 15 precursor of the other of said first and second residues has a reactable amino moiety or a moiety convertible to a reactable amino moiety, whereby a cleavable bond may be formed between said carboxylic acid moiety and said amino 20 moiety.
- Conjugate of Claim 2 wherein said inhibitor 3. compound providing said first residue is selected from tyrosine hydroxylase inhibitor compounds, dopa-25 decarboxylase inhibitor compounds, dopamine-β-hydroxylase inhibitor compounds, and mimics of said inhibitor compounds.
- Conjugate of Claim 3 wherein said tyrosine hydroxylase inhibitor compound is of the formula 30

$$A = \begin{bmatrix} R^{1} \\ I \\ C \\ R^{2} \end{bmatrix}_{m} \begin{bmatrix} R^{3} & O \\ I & R^{3} \\ R^{2} \end{bmatrix}_{m} \begin{bmatrix} R^{3} & O \\ R^{4} & R^{4} \\ I & R^{4} \end{bmatrix}_{m}$$

wherein each of R¹ through R³ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aryloxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein R⁴ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein R⁵ is selected from -OR⁶ and

 $-N < \frac{R^7}{R^8}$, wherein R^6 is selected from hydrido, alkyl,

cycloalkyl, cycloalkylalkyl, aralkyl and aryl, and wherein each of R⁷ and R⁸ is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkyl, alkoyyalkyl, aralkyl

haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; aralkyl; wherein m is a number selected from zero through six;

wherein A is a phenyl ring of the formula

wherein each of R⁹ through R¹³ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano,

amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, carboxyl, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, carboxyalkoxy, formyl and a substituted or unsub-5 stituted 5- or 6-membered heterocyclic ring selected from the group consisting of pyrrol-1-yl, 2-carboxypyrrol-1-yl, imidazol-2-ylamino, indol-1-yl, carbozol-9-yl, 4,5-dihydro-4-hydroxy-4-trifluoromethylthiazol-3-yl, 4-trifluoromethylthiazol-2-yl, imidazol-2-yl 10 and 4,5-dihydroimidazol-2-yl; wherein any two of the R9 through R13 groups may be taken together to form a benzoheterocylic ring selected from the group consisting of indolin-5-yl, 1-(N-benzoylcarbamimidoyl)indolin-5-yl, 1-carbamimidoylindolin-5-yl, 1H-2-oxindol-5-yl, 15 insol-5-yl, 2-mercaptobenzimidazol-5(6)-yl, 2-aminobenzimidazol-5-(6)-yl, 2-methanesulfonamidobenzimidazol-5(6)-yl, 1H-benzoxanol-2-on-6-yl, 2aminobenzothiazol-6-yl, 2-amino-4-mercaptobenzothiazol-6-yl, 2,1,3-benzothiadiazol-5-yl, 1,3-dihydro-2,2-dioxo-20 2,1,3-benzothiadiazol-5-yl, 1,3-dihydro-1,3-dimethyl-2,2-dioxo-2,1,3-benzothiadiazol-5-yl, 4-methyl-2(H)oxoquinolin-6-yl, quinoxalin-6-yl, 2-hydroxyquinoxalin-6-yl, 2-hydroxquinoxalin-7-yl, 2,3-dihydroxyquinoxalin-6-yl and 2,3-didydro-3(4H)-oxo-1,4-benzoxazin-7-yl; 25 5-hydroxy-4H-pyran-4-on-2-yl, 2-hydroxypyrid-4-yl, 2-aminopyrid-4-yl, 2-carboxypyrid-4-yl or tetrazolo-[1,5-a]pyrid-7-yl; and wherein A may be selected from

and
$$-N < R^{21}$$

wherein each of R¹⁴ through R²⁰ is independently selected from hydrido, alkyl, hydroxy, hydroxyalkyl, alkoxy, cycloalkyl, cycloalkylalkyl, halo, haloalkyl, aryloxy, alkoxycarboxyl, aryl, aralkyl, cyano, cyanoalkyl, amino, monoalkylamino and dialkylamino, wherein each of R²¹and R²² is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; or a pharmaceutically-acceptable salt thereof.

5. Conjugate of Claim 4 wherein said inhibitor compound is of the formula

wherein each of R¹ and R² is hydrido; wherein m is one; wherein R³ is selected from alkyl, alkenyl and alkynyl; wherein R⁴ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein R⁵ is selected from OR⁶ and

$$-N < \frac{R^7}{R^8}$$
 , wherein R^6 is selected from

hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenalkyl and phenyl, and wherein each of R⁷ and R⁸ is independently selected from hydrido, alkyl, cycloalkyl,

hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and aryl-5 sulfonyl; wherein each of R9 through R13 is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxycarbonyl, alkoxycarbonyl, alkoxy, arykoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, dialkylamino, carboxyl, carboxyalkyl, 10 alkanoyl, alkenyl, cycloalkenyl, alkynyl, pyrrol-1-yl 2-carboxypyrrol-1-yl, imidazol-2-ylamino, indol-1-yl, carbazol-9-yl, 4,5-dihydro-4-trifluoromethylthiazol-3-yl, 4-trifluoromethylthiazol-2-yl, imidazol-2-yl 15 and 4,5-dihydroimidazol-2-yl, and wherein any two of the R9 through R13 groups may be taken together to form a benzoheterocyclic ring selected from the group consisting of indolin-5-yl, 1-(N-benzoylcarbamimidoyl)indolin-5-yl, 1-carbamimidoylindolin-5-yl, 1H-2oxindol-5-yl, indol-5-yl, 2-mercaptobenzimidazol-5(6)-20 yl, 2-aminobenzimidazol-5-(6)-yl, 2-methanesulfonamidobenzimidazol-5(6)-yl, 1H-benzoxanol-2-on-6-yl, 2-aminobenzothiazol-6-yl, 2-amino-4-mercaptobenzothiazol-6-yl, 2,1,3-benzothiadiazol-5-yl, 1,3-dihydro-2,2-dioxo-2,1, 3-benzothiadiazol-5-yl, 1,3-dihydro-1,3-dimethyl-25 2,2-dioxo-2,1,3-benzothiadiazol-5-yl, 4-methyl-2(H)oxoquinolin-6-yl, quinoxalin-6-yl, 2-hydroxyquinoxalin-6-yl, 2-hydroxquinoxalin-7-yl, 2,3-dihydroxyquinoxalin-6-yl and 2,3-didydro-3(4H)-oxo-1,4-benzoxazin-7-yl; wherein R^5 is $-CH=CH_2$ or $-C\equiv CH$; wherein R^6 is 30 selected from hydrido, alkyl, hydroxy, hydroxyalkyl, alkoxy, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, amino, monoalkylamino, dialkylamino; and wherein each of \mathbb{R}^7 and \mathbb{R}^8 independently is selected from hydrido, alkyl, hydroxyalkyl, 35 cycloalkyl, cycloalkylalkyl, aryl and aralkyl; or a

pharmaceutically-acceptable salt thereof.

```
Conjugate of Claim 5 wherein said
      inhibitor compound is selected from the group consisting
      of
      4-cyanoamino-α-methylphenyalanine;
 5
      3-carboxy-α-methylphenylalanine;
      3-cyano-α-methylphenylalanine methyl ester;
      \alpha-methyl-4-thiocarbamoylphenylalanine methyl ester;
      4-(aminomethyl)-α-methylphenylalanine;
      4-guanidino-\alpha-methylphenylalanine;
      3-hydroxy-4-methanesulfonamido-a-methylphenylalanine;
10
      3-hydroxy-4-nitro-α-methylphenylalanine;
      4-amino-3-methanesulfonyloxy-\alpha-methylphenylalanine;
      3-carboxymethoxy-4-nitro-α-methylphenylalanine;
      a-methyl-4-amino-3-nitrophenylalanine;
      3,4-diamino-α-methylphenylalanine;
15
      α-methyl-4-(pyrrol-1-yl)phenylalanine;
      4-(2-aminoimidazol-l-yl)-α-methylphenylalanine;
      4-(imidazol-2-ylamino)-α-methylphenylalanine;
      4-(4,5-dihydro-4-hydroxy-4-trifluoromethyl-thiazol-2-yl)-
        α-methylphenylalanine methyl ester;
20
      α-methyl-4-(4-trifluoromethylthiazol-2-yl)phenylalanine;
      \alpha-methyl-3-(4-trifluoromethylthiazol-2-yl)-phenyl-
        alanine;
      4-(imidazol-2-yl)-α-methylphenylalanine;
      4-(4,5-dihydroimidazol-2-yl)-\alpha-methylphenylalanine;
      3-(imidazol-2-yl)-α-methylphenylalanine;
      3-(4,5-dihydroimidazol-2-yl)-\alpha-methylphenylalanine;
      4-(imidazol-2-yl)phenylalanine;
     4,5-dihydroimidazol-2-yl)phenylalanine;
      3-(imidazol-2-yl)phenylalanine;
30
      3-(2,3-dihydro-lH-indol-4-yl)-α-methylalanine;
      \alpha-methyl-3-(1H-2-oxindol-5-yl)alanine;
      3-[1-(N-benzoylcarbamimidoyl)-2,3-dihydro-1H-
        indol-5-yl)]-\alpha-methylalanine;
      3-(1-carbamimidoy1-2,3-dihydro-1H-indo1-5-y1-\alpha-
35
        methylalanine;
```

```
3-(1H-indol-5-yl)-\alpha-methylalanine;
       3-(benzimidazol-2-thione-5-yl)-α-methylalanine;
       3-(2-aminobenzimidazol-5-yl-2-methylalanine;
       2-methyl-3-(benzoxazol-2-on-6-yl)alanine;
       3-(2-aminobenzothiazol-6-yl)-2-methylalanine;
  5
       3-(2-amino-4-mercaptobenzothiazol-6-yl)-2-
         methylalanine;
       3-(2-aminobenzothiazol-6-yl)alanine;
       2-methyl-3-(2,1,3-benzothiadiazol-5-yl)alanine;
       3-(1,3-dihydrobenzo-2,1,3-thiadiazol-5-yl)-2-
10 .
         methylalanine-2,2-dioxide;
       3-(1,3-dihydrobenzo-2,1,3-thiadiazol-5-yl)-2-methyl-
         alanine-2,2-dioxide methyl ester;
      3-(1,3-dihydrobenzo-2,1,3-thiadiaxol-5-yl)alanine
15
         2,2-dioxide;
      3-(1,3-dihydro-1,3-dimethylbenzo-2,1,3-thiadiazol-5-
        yl-)-2-methylalanine 2,2-dioxide;
      \alpha-methyl-3-[4-methyl-2(1H)-oxoquinolin-6-yl]alanine;
      3-[4-methyl-2(1H)-oxoquinolin-6-yl]alanine;
      2-methyl-3-(quinoxalin-6-yl)alanine;
20 .
      2-methyl-3-(2-hydroxyquinoxalin-6-yl)alanine;
      2-methyl-3-(2-hydroxyquinoxalin-7-yl)alanine;
      3-(2,3-dihydroxyquinoxalin-6-yl)-2-methylalanine;
      3-(quinoxalin-6-yl)alanine;
      3-(2,3-dihydroxyquinoxalin-6-yl)alanine;
25
      3-(1,4-benzoxazin-3-one-6-yl)-2-methylalanine;
      3-(1,4-benzoxazin-3-one-7-yl)alanine;
      3-(5-hydroxy-4H-pyran-4-on-2-yl)-2-methylalanine;
      3-(2-hydroxy-4-pyridyl)-2-methylalanine;
      3-(2-carboxy-4-pyridyl)-2-methylamine;
30
      \alpha-methyl-4-(pyrrol-1-yl)phenylalanine;
      \alpha-ethyl-4-(pyrrol-1-yl)phenylalanine;
      α-propyl-4-(pyrrol-1-yl)phenylalanine;
      4-[2-(carboxy)pyrrol-1-yl)phenylalanine;
      \alpha-methyl-4-(pyrrol-1-yl)phenylalanine;
35
      3-hydroxy-α-methyl-4-(pyrrol-1-yl)phenylalanine;
      3-methoxy-\alpha-methyl-4-(pyrrol-1-yl)phenylalanine;
```

```
4-methoxy-α-methyl-3-(pyrrol-1-yl)phenylalanine;
       4-(indol-1-yl)-α-methylphenylalanine;
       4-(carbazol-9-yl)-α-methylphenylalanine;
       2-methyl-3-(2-methanesulfonylamidobenzimidazol-
5
         5-yl)alanine;
       2-methyl-3-(2-amino-4-pyridyl)alanine;
       2-methyl-3[tetrazolo-(1,5)-α-pyrid-7-yl]alanine;
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-methyl) phenylalanine;
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-phenyl)phenylalanine;
10
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-benzyl)phenylalanine;
       D, L-\alpha-methyl-\beta-(4-methoxy-3-cyclohexyl)phenyl-
         alanine;
       \alpha, \beta, \beta-trimethyl-\beta-(3,4-dihydroxyphenyl)alanine;
       \alpha, \beta, \beta-trimethyl-\beta-(4-hydroxyphenyl)alanine;
15
       N-methyl-\alpha, \beta, \beta-trimethyl-\beta-(3, 4-dihydroxphenyl)-
         alanine:
       D, L-\alpha, \beta, \beta-trimethyl-\beta-(3, 4-dihyroxyphenyl) alanine;
       \alpha, \beta, \beta-trimethyl-\beta-(3,4-dimethoxyphenyl)alanine;
       L-\alpha-methyl-\beta-3,4-dihydroxyphenylalanine;
20
       L-\alpha-ethyl-\beta-3, 4-dihydroxyphenylalanine;
       L-\alpha-propyl-\beta-3, 4-dihydroxyphenylalanine;
       L-\alpha-butyl-\beta-3,4-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-2,3-dihydroxphenylalanine;
       L-\alpha-\text{ethyl}-\beta-2, 3-dihydroxphenylalanine;
25
       L-\alpha-propyl-\beta-2,3-dihydroxphenylalanine;
       L-\alpha-butyl-\beta-2,3-dihydroxphenylalanine;
       L-α-methyl-4-chloro-2,3-dihydroxyphenylalanine;
       L-\alpha-ethyl-4-chloro-2,3-dihydroxyphenylalanine;
       L-\alpha-propyl-4-chloro-2,3-dihydroxyphenylalanine;
30
       L-α-butyl-4-chloro-2,3-dihydroxyphenylalanine;
       L-\alpha-\text{ethyl}-\beta-4-\text{methyl}-2, 3-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-4-methyl-2,3-dihydroxyphenylalanine;
       L-\alpha-propyl-\beta-4-methyl-2,3-dihydroxyphenylalanine;
       L-\alpha-butyl-\beta-4-methyl-2,3-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-4-fluoro-2,3-dihydroxyphenylalanine;
35
       L-\alpha-ethyl-\beta-4-fluoro-2,3-dihydroxyphenylalanine;
       L-\alpha-propyl-\beta-4-fluoro-2,3-dihydroxyphenylalanine;
```

```
L-\alpha-butyl-\beta-4-fluoro-2,3-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-4-trifluoromethyl-2,3-dihydroxyphenyl-
          alanine
       L-\alpha-ethyl-\beta-4-trifluoromethyl-2,3-dihydroxyphenyl-
 5
          alanine
       L-\alpha-propyl-\beta-4-trifluoromethyl-2,3-dihydroxyphenyl-
          alanine
       L-\alpha-butyl-\beta-4-trifluoromethyl-2,3-dihydroxyphenyl-
          alanine
       L-\alpha-methyl-\beta-3,5-dihydroxyphenylalanine;
10
       L-\alpha-ethyl-\beta-3,5-dihydroxyphenylalanine;
       L-\alpha-propyl-\beta-3,5-dihydroxyphenylalanine;
       L-\alpha-butyl-\beta-3,5-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-4-chloro-3,5-dihydroxphenylalanine;
15
       L-\alpha-ethyl-\beta-4-chloro-3,5-dihydroxphenylalanine;
       L=\alpha-propyl=\beta-4-chloro-3, 5-dihydroxphenylalanine;
       L-\alpha-butyl-\beta-4-chloro-3, 5-dihydroxphenylalanine;
       L-\alpha-methyl-\beta-4-fluoro-3,5-dihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-4-fluoro-3,5-dihydroxyphenylalanine;
       L-\alpha-propyl-\beta-4-fluoro-3,5-dihydroxyphenylalanine;
20
       L-\alpha-butyl-\beta-4-fluoro-3,5-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-4-trifluoromethyl-3,5-dihydroxyphenyl-
         alanine:
       L-\alpha-ethyl-\beta-4-trifluoromethyl-3,5-dihydroxyphenyl-
25
       L-\alpha-propyl-\beta-4-trifluoromethyl-3,5-dihydroxyphenyl-
         alanine:
      L-\alpha-butyl-\beta-4-trifluoromethyl-3,5-dihydroxyphenyl-
         alanine:
       L-\alpha-methyl-2,5-dihydroxphenylalanine;
30
       L-\alpha-ethyl-2, 5-dihydroxphenylalanine;
       L-\alpha-propyl-2,5-dihydroxphenylalanine;
      L-\alpha-butyl-2, 5-dihydroxphenylalanine;
      L-\alpha-methyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
      L-\alpha-ethyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
35
      L-\alpha-propyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
```

```
L-\alpha-butyl-\beta-4-chloro-2, 5-dihydroxyphenylalanine;
      L-\alpha-methyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
      L-\alpha-ethyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
      L-\alpha-propyl-\beta-4-chloro-2.5-dihydroxyphenylalanine;
      L-\alpha-butyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
 5
      L-\alpha-methyl-\beta-methyl-2,5-dihydroxyphenylalanine;
      L-\alpha-ethyl-\beta-methyl-2,5-dihydroxyphenylalanine;
      L-α-propyl-β-methyl-2,5-dihydroxyphenylalanine;
      L-\alpha-butyl-\beta-methyl-2,5-dihydroxyphenylalanine;
10
      L-\alpha-methyl-\beta-4-trifluoromethyl-2,5-dihydroxyphenyl-
         alanine:
      L-\alpha-ethyl-\beta-4-trifluoromethyl-2,5-dihydroxyphenyl-
         alanine:
       L-α-propyl-β-4-trifluoromethyl-2,5-dihydroxyphenyl-
15
         alanine:
      L-\alpha-butyl-\beta-4-trifluoromethyl-2,5-dihydroxyphenyl-
         alanine
       L-\alpha-methyl-\beta-3,4,5-trihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-3,4,5-trihydroxyphenylalanine;
20
       L-α-propyl-3-3,4,5-trihydroxyphenylalanine;
       L-\alpha-butyl-\beta-3,4,5-trihydroxyphenylalanine;
       L-\alpha-methyl-\beta-2,3,4-trihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-2,3,4-trihydroxyphenylalanine;
       L-\alpha-propyl-\beta-2,3,4-trihydroxyphenylalanine;
25
       L-\alpha-butyl-\beta-2,3,4-trihydroxyphenylalanine;
       L-\alpha-methyl-\beta-2,4,5-trihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-2,4,5-trihydroxyphenylalanine;
       L-\alpha-propyl-\beta-2,4,5-trihydroxyphenylalanine;
       L-\alpha-butyl-\beta-2,4,5-trihydroxyphenylalanine;
30
       L-phenylalanine;
       D, L-α-methylphenylalanine;
       D, L-3-iodophenylalanine;
       D, L-3-iodo-α-methylphenylalanine;
       3-iodotyrosine;
       3,5-diiodotyrosine;
35
       L-a-methylphenylalanine;
```

```
D, L-\alpha-methyl-\beta-(4-hydroxy-3-methylphenyl)alanine;
        D, L-\alpha-methyl-\beta-(4-methoxy-3-benzylphenyl)alanine;
        D, L-\alpha-methyl-\beta-(4-hydroxy-3-benzylphenyl)alanine;
       D, L-\alpha-methyl-\beta-(4-methoxy-3-cyclohexylphenyl)alanine;
  5
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-cyclohexylphenyl)alanine;
       D, L-\alpha-methyl-\beta-(4-methoxy-3-methylphenyl)alanine;
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-methylphenyl)alanine;
       N, O-dibenzyloxycarbonyl-D, L-\alpha-methyl-\beta-(4-hydroxy-3-
          methylphenyl)alanine;
       N, O-dibenzyloxycarbonyl-D, L-\alpha-methyl-\beta-(4-hydroxy-3-
10
          methylphenyl)alanine amide;
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-methylphenyl)-
          alanine amide:
       N, O-diacetyl-D, L-\alpha-methyl-\beta-(4-hydroxy-3-methyl-
15
         phenyl)alanine:
       D, L-N-acetyl-\alpha-methyl-\beta-(4-hydroxy-3-methylphenyl)-
          alanine:
       L-3,4-dihydroxy-\alpha-methylphenylalanine;
       L-4-hydroxy-3-methoxy-\alpha-methylphenylalanine;
       L-3,4-methylene-dioxy-\alpha-methylphenylalanine;
20
       2-vinyl-2-amino-3-(2-methoxyphenyl)propionic acid;
       2-vinyl-2-amino-3-(2,5-dimethoxyphenyl)propionic acid;
       2-vinyl-2-amino-3-(2-imidazolyl)propionic acid;
       2-vinyl-2-amino-3-(2-methoxyphenyl)propionic acid
25
         ethyl ester:
       \alpha-methyl-\beta-(2,5-dimethoxyphenyl)alanine;
       \alpha-methyl-\beta-(2,5-dihydroxyphenyl)alanine;
       \alpha-ethyl-\beta-(2,5-dimethoxyphenyl)alanine;
       \alpha-ethyl-\beta-(2,5-dihydroxyphenyl)alanine;
       \alpha-methyl-\beta-(2,4-dimethoxyphenyl)alanine;
30
       \alpha-methyl-\beta-(2,4-dihydroxyphenyl)alanine;
       \alpha-ethyl-\beta-(2,4-dimethoxyphenyl)alanine;
       \alpha-ethyl-\beta-(2,4-dihydroxyphenyl)alanine;
       \alpha-methyl-\beta-(2,5-dimethoxyphenyl)alanine
35
         ethyl ester:
       2-ethynyl-2-amino-3-(3-indolyl)propionic acid;
```

```
2-ethynyl-2,3-(2-methoxyphenyl)propionic acid;
      2-ethynyl-2,3-(5-hydroxyindol-3-yl)propionic acid;
      2-ethynyl-2-amino-3-(2,5-dimethoxyphenyl)propionic acid;
      2-ethynyl-2-amino-3-(2-imidazolyl)propionic acid;
      2-ethynyl-2-amino-3-(2-methoxyphenyl)propionic acid
5
        ethyl ester;
      3-carbomethoxy-3-(4-benzyloxybenzyl)-3-aminoprop-1-vne;
      α-ethynyltyrosine hydrochloride;
      a-ethynyltyrosine;
10
      a-ethynyl-m-tyrosine;
      \alpha-ethynyl-\beta-(2-methoxyphenyl)alanine;
      \alpha-ethynyl-\beta-(2,5-dimethoxyphenyl)alanine; and
      a-ethynylhistidine.
                   Conjugate of Claim 5 wherein at least
      one of R<sup>10</sup>, R<sup>11</sup> and R<sup>12</sup> is selected from hydroxy,
15
      alkoxy, aryloxy, aralkoxy and alkoxycarbonyl.
                8. Conjugate of Claim 7 wherein said
      inhibitor compound is selected from the group
      consisting of
20
      α-methyl-3-(pyrrol-1-yl)tyrosine;
      \alpha-methyl-3-(4-trifluoromethylthiazol-2-yl)tyrosine;
      3-(imidazol-2-yl)-α-methyltyrosine;
      L-\alpha-methyl-m-tyrosine;
      L-α-ethyl-m-tyrosine;
25
      L-α-propyl-m-tyrosine;
      L-α-butyl-m-tyrosine;
      L-α-methyl-p-chloro-m-tyrosine;
      L-α-ethyl-p-chloro-m-tyrosine;
      L-α-butyl-p-chloro-m-tyrosine;
30
      L-α-methyl-p-bromo-m-tyrosine;
      L-α-ethyl-p-bromo-m-tyrosine;
      L-α-butyl-p-bromo-m-tyrosine;
      L-α-methyl-p-fluoro-m-tyrosine;
      L-α-methyl-p-iodo-m-tyrosine;
```

L-α-ethyl-p-iodo-m-tyrosine; L-α-methyl-p-methyl-m-tyrosine; $L-\alpha$ -methyl-p-ethyl-m-tyrosine; L-α-ethyl-p-ethyl-m-tyrosine; $L-\alpha-ethyl-p-methyl-m-tyrosine;$ 5 L-α-methyl-p-butyl-m-tyrosine; L-α-methyl-p-trifluoromethyl-m-tyrosine; L-3-iodotyrosine; L-3-chlorotyrosine; L-3,5-diiodotyrosine; 10 L-α-methyltyrosine; D, L-α-methyltyrosine; D, L-3-iodo-α-methyltyrosine; L-3-bromo-a-methyltyrosine; D, L-3-bromo- α -methyltyrosine; 15 L-3-chloro-a-methyltyrosine; D,L-3-chloro- α -methyltyrosine; and 2-vinyl-2-amino-3-(4-hydroxyphenyl)propionic acid.

9. Conjugate of Claim 4 wherein said inhibitor compound is of the formula

wherein R³ is selected from alkyl, alkenyl and alkynyl; wherein R⁴ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein m is a number selected from zero through five, inclusive; wherein R⁵ is selected from OR⁶ and

-N R^7 , wherein R^6 is selected from

hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenalkyl and phenyl, and wherein each of R7 and R8 is independ-5 ently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, 10 alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein each of R9 through R13 is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxycarbonyl, alkoxy, aryloxy, aralkoxy, alkoxyalkyl, haloalkyl, 15 alkoxycarbonyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl.

- 10. Conjugate of Claim 9 wherein at least one of \mathbb{R}^{10} , \mathbb{R}^{11} and \mathbb{R}^{12} is selected from hydroxy, alkoxy, aryloxy, aralkoxy and alkoxycarbonyl.
- 11. Conjugate of Claim 10 wherein said inhibitor compound is selected from the group consisting of methyl(+)-2-(4-hydroxyphenyl)glycinate; isopropyl and 3-methyl butyl esters of (+)-2-(4-hydroxyphenyl)-glycine; (+)-2-(4-hydroxyphenyl)glycine; (-)-2-(4-hydroxyphenyl)glycine; (+)-2-(4-methoxyphenyl-glycine; and (+)-2-(4-hydroxyphenyl)glycinamide.

12. Conjugate of Claim 4 wherein said inhibitor compound is of the formula

wherein each of \mathbb{R}^1 and \mathbb{R}^2 is hydrido; wherein \mathbb{R}^3 is selected from alkyl, alkenyl and alkynyl; wherein R4 15 is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and 20 arylsulfonyl; wherein m is a number selected from zero through five, inclusive; wherein each of R14 through R¹⁷ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cyclo-alkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, 25 halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, carboxyl, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, carboxyalkoxy and formyl.

D, L-5-iodetryptophan;

L-5-hydroxytryptophan;

D, L-5-hydroxy-α-methyltryptophan;

α-Ethynyltryptophan;

5 5-Methoxymethoxy-α-ethynyltryptophan; and

5-Hydroxy- α -ethynyltryptophan.

14. Conjugate of Claim 4 wherein A is

 $-N \stackrel{R^{21}}{\underset{R^{22}}{\stackrel{}{\sim}}}$, and m is a number selected from zero to three, inclusive.

15. Conjugate of Claim 14 wherein said inhibitor compound is selected from the group consisting of 2-vinyl-2-amino-5-aminopentanoic acid and 2-ethynyl-2-amino-5-aminopentanoic acid.

16. Conjugate of Claim 4 wherein said inhibitor compound is of the formula

wherein each of R²³ and R²⁴ is independently selected from hydrido, hydroxy, alkyl, cycloakyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxy,

carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein R^{25} is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, 5 dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein each of R26 through R35 is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, 10 hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, carboxyl, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, alkoxy and formyl; wherein n 15 is a number selected from zero to five, inclusive; or a pharmacuetically-acceptable salt thereof.

17. Conjugate of Claim 16 wherein said inhibitor compound is benzoctamine.

20 18. Conjugate of Claim 3 wherein said inhibitor compound is a dopa-decarboxylase inhibitor of the formula

wherein each of R³⁶ through R⁴² is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl,

alkynyl, cyanoamino, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, carboxyalkoxy and formyl; wherein n is a whole number from zero through four; wherein each of \mathbb{R}^{43} and \mathbb{R}^{44} is 5 independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, . 10 arylsulfinyl, arylsulfonyl, alkenyl, cycloalkenyl and alkynyl, with the proviso that R43 and R44 cannot both be carboxyl at the same time, and with the further proviso that at least one of R43 through R44 is a primary or secondary amino group; or a pharma-15 ceutically-acceptable salt thereof.

- 19. Conjugate of Claim 18 wherein each of ${\bf R^{36}}$ through ${\bf R^{42}}$ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, 20 haloalkyl, hydroxyalkyl, halo, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, cyano, aminomethyl, carboxyalkoxy and formyl; wherein n is a whole number from one through three; wherein each of R^{43} and R^{44} is independently selected from 25 hydrido, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxyalkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl and alkanoyl.
- 20. Conjugate of Claim 19 wherein each of R36 through R42 is independently selected from hydrido, hydroxy, alkyl, benzyl, phenyl, alkoxy, benzyloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, cyanoamino, cyano,

10

15

aminomethyl, carboxyl, carboxyalkoxy and formyl; wherein n is one or two; wherein each of R⁴³ and R⁴⁴ is independently selected from hydrido, alkyl, benzyl, phenyl, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl and alkanoyl.

- 21. Conjugate of Claim 20 wherein each of R³⁶ through R⁴² is independently selected from hydrido, hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl, carboxyalkyl, aminomethyl, carboxyalkoxy and formyl; wherein n is one or two; wherein each of R⁴³ and R⁴⁴ is independently selected from hydrido, alkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl and carboxyalkyl.
- 22. Conjugate of Claim 21 wherein each of R³⁶ and R⁴² is hydrido and n is one; wherein each of R³⁸ through R⁴² is independently selected from hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl, carboxyalkyl, aminomethyl, carboxyalkoxy and formyl; wherein each of R⁴³ and R⁴⁴ is independently selected from hydrido, alkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl and carboxyalkyl.
- 23. Conjugate of Claim 22 wherein said inhibitor compound is selected from (2,3,4-trihydroxy)benzylhydrazine; 1-(D,L-seryl-2-(2,3,4-trihydroxybenzyl)hydrazine; and 1-(3-hydroxylbenzyl)-1-methylhydrazine.
- 24. Conjugate of Claim 21 wherein each of \mathbb{R}^{36} and \mathbb{R}^{37} is independently selected from hydrido, alkyl and amino and n is two; wherein each of \mathbb{R}^{38}

through R⁴² is independently selected from hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl, carboxyalkyl, aminomethyl, carboxyalkoxy and formyl; wherein each of R⁴³ and R⁴⁴ is independently selected from hydrido, alkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl and carboxyalkyl.

25. Conjugate of Claim 24 wherein said inhibitor compound is selected from
 2-hydrazino-2-methyl-3-(3,4-dihydroxyphenyl)propionic acid; α-(monofluoromethyl)dopa and α-(difluoromethyl)-dopa.

26. Conjugate of Claim 3 wherein said inhibitor compound is a dopa-decarboxylase inhibitor of the formula

20

25

30

15

wherein each of R⁴⁵ through R⁴⁸ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, carboxyalkoxy and formyl; wherein each of R⁴⁹ and R⁵⁰ is independently selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxyalkyl, haloalkyl, hydroxyalkyl,

cyano, amino, monoalkylamino, dialkylamino, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl and

- O
 ||
 -CR⁵¹ wherein R⁵¹ is selected from hydroxy, alkoxy,
 aryloxy, aralkoxy, amino, monoalkylamino and dialkylamino; with the proviso that R⁴⁹ and R⁵⁰ cannot both
 be carboxyl at the same time, and with the further
 proviso that at least one of R⁴⁵ through R⁴⁸ is a
 primary or secondary amino group or a carboxyl group;
 or a pharmaceutically-acceptable salt thereof.
- 27. Conjugate of Claim 26 wherein each of R45 through R48 is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, 15 aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, 20 cyano, aminomethyl, carboxyalkoxy and formyl; wherein each of $\mathbf{R}^{4\,9}$ and $\mathbf{R}^{5\,0}$ is independently selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, carboxyalkyl and 25 alkanoyl and
- O
 ||
 -CR⁵¹ wherein R⁵¹ is selected from hydroxy, alkoxy,
 phenoxy, benzyloxy, amino, monoalkylamino and
 dialkylamino.
 - 28. Conjugate of Claim 27 wherein each of R⁴⁵ through R⁴⁸ is independently selected from hydrido, hydroxy, alkyl, benzyl, phenyl, alkoxy, benzyloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, carboxyl,

15

carboxyalkyl, alkanoyl, cyanoamino, cyano, aminomethyl, carboxyalkoxy and formyl; wherein each of R⁴⁹ and R⁵⁰ is independently selected from hydrido, alkyl, benzyl, phenyl, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, carboxyalkyl and alkanoyl and

10 -CR⁵¹ wherein R⁵¹ is selected from hydroxy, alkoxy, amino and monoalkylamino.

- 29. Conjugate of Claim 28 wherein each of R⁴⁵ through R⁴⁸ is independently selected from hydrido, hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl, carboxyalkyl aminomethyl, carboxyalkoxy and formyl; wherein each of R⁴⁹ and R⁵⁰ is independently selected from hydrido alkyl, amino, monoalkylamino, carboxyalkyl and
- 20 || -CR⁵¹ wherein R⁵¹ is selected from hydroxy, alkoxy, amino and monoalkylamino.
- 30. Conjugate of Claim 29 wherein each of R45 through R48 is independently selected from hydrido, hydroxy, alkyl, alkoxy and hydroxyalkyl; wherein each of R49 and R50 is independently selected from alkyl, amino, monoalkylamino, and
- -CR⁵¹ wherein R⁵¹ is selected from hydroxy, methoxy, ethoxy, propoxy, butoxy, amino, methylamino and ethylamino.

- 31. Conjugate of Claim 30 wherein said inhibitor compound is selected from endo-2-amino-1,2,3,4-tetrahydro-1,4-ethanonaphthalene-2-carboxylic acid;
- 5 ethyl-endo-2-amino-1,2,3,4-tetrahydro-1,4-ethanonaphthalene-2-carboxylate hydrochloride;
 - exo-2-amino-1,2,3,4-tetrahydro-1,4-ethanonaphthalene-2-carboxylic acid; and
- ethyl-exo-2-amino-1,2,3,4-tetrahydro-1,4-ethanonaphth-10 alene-2-carboxylate hydrochloride.
 - Conjugate of Claim 3 wherein said 32. inhibitor compound is a dopa-decarboxylase inhibitor selected from
 - 2,3-dibromo-4,4-bis(4-ethylphenyl)-2-butenoic acid;
- 15 3-bromo-4-(4-methoxyphenyl)-4-oxo-2-butenoic acid;
 - N-(5'-phosphopyridoxyl)-L-3,4-dihydroxyphenylalanine; N-(5'-phosphopyridoxyl)-L-m-aminotyrosine;

 - D, L-β-(3,4-dihydroxyphenyl)lactate;
 - D, L-β-(5-hydroxyindolyl-3)lactate;
- 20 2,4-dihydroxy-5-(1-oxo-2-propenyl)benzoic acid;
 - 2,4-dimethoxy-5-[1-oxo-3-(2,3,4-trimethoxyphenyl-2propenyl]benzoic acid;
 - 2,4-dihydroxy-5-[1-oxo-3-(2-thienyl)-2-propenyl] benzoic acid;
- 2,4-dihydroxy-5-[3-(4-hydroxyphenyl)-1-oxo-2-propenyl] 25 benzoic acid:
 - 5-[3-(4-chlorophenyl)-1-oxo-2-propenyl]-2,4-dihydroxy benzoic acid;
 - 2,4-dihydroxy-5-(1-oxo-3-phenyl-2-propenyl)benzoic acid;
 - 2,4-dimethoxy-5-[1-oxo-3-(4-pyridinyl)-2-propenyl] benzoic acid;
 - 5-[3-(3,4-dimethoxyphenyl)-1-oxo-2-propenyl]-2,4 dimethoxy benzoic acid;
- 2,4-dimethoxy-5-(1-oxo-3-phenyl-2-propenyl)benzoic 35 acid;

- 5-[3-(2-furanyl)-1-oxo-2-propenyl]-2,4-dimethoxy benzoic acid;
- 2,4-dimethoxy-5-[1-oxo-3-(2-thienyl)-2-propenyl] benzoic acid;
- 5 2,4-dimethoxy-5-[3-(4-methoxyphenyl)-1-oxo-2-propenyl] benzoic acid;
 - 5-[3-(4-chlorophenyl)-1-oxo-2-propenyl]-2,4-dimethoxy benzoic acid; and
 - 5-[3-[4-(dimethylamino)phenyl]-1-oxo-2-propenyl]-2,4 dimethoxy benzoic acid.
 - 33. Conjugate of Claim 3 wherein said inhibitor compound is a dopa-decarboxylase inhibitor of the formula:

wherein $R^{5\,2}$ is selected from hydrido, $OR^{6\,4}$ and $-N < R^{6\,5}$, wherein $R^{6\,4}$ is selected from

hydrido, alkyl, cycloalkyl, cycloalkylalkyl,
phenalkyl and phenyl, and wherein each of R⁶⁵ and R⁶⁶
is independently selected from hydrido, alkyl,
alkanoyl, amino, monoalkylamino, dialkylamino, phenyl
and phenalkyl; wherein each of R⁵³, R⁵⁴ and R⁵⁷
through R⁶³ is independently selected from hydrido,
hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl,
aryl, alkoxycarbonyl, hydroxyalkyl, halo, cyano,
amino, monoalkylamino, dialkylamino, carboxyl,
carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and
alkynyl; wherein each of R⁵⁵ and R⁵⁶ is independently

selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxyalkyl, haloalkyl, hydroxyalkyl and carboxyalkyl; wherein each of m and n is a number independently selected from zero through six, inclusive; or a pharmaceutically-acceptable salt thereof.

- is OR⁶⁴ wherein R⁶⁴ is selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, benzyl and phenyl;
 wherein each of R⁵³, R⁵⁴ and R⁵⁷ through R⁶³ is independently selected from hydrido, alkyl, cycloalkyl, hydroxy, alkoxy, benzyl and phenyl; wherein each of R⁵⁵ and R⁵⁶ is independently selected from hydrido, alkyl, cycloalkyl, benzyl and phenyl; wherein each of m and n is a number independently selected from zero through three, inclusive.
- is OR⁶⁴ wherein R⁶⁴ is selected from hydrido and lower alkyl; wherein each of R⁵³ through R⁵⁸ is hydrido; wherein each of R⁵⁹ through R⁶³ is independently selected from hydrido, alkyl, hydroxy and alkoxy, with the proviso that two of the R⁵⁹ through R⁶³ substituents are hydroxy; wherein each of m and n is a number independently selected from zero through two, inclusive.
 - 36. Conjugate of Claim 35 which is 3-(3,4-dihydroxyphenyl)-2-propenoic acid.

10

- 37. Conjugate of Claim 26 wherein said dopa-decarboxylase inhibitor is a compound selected from amino-haloalkyl-hydroxyphenyl propionic acids; alpha-halomethyl-phenylalanine derivatives; and indole-substituted halomethylamino acids.
- 38. Conjugate of Claim 26 wherein said dopa-decarboxylase inhibitor is a compound selected from isoflavone extracts from fungi and streptomyces; sulfinyl substituted dopa and tyrosine derivatives; hydroxycoumarin derivatives; 1-benzylcyclobutenyl alkyl carbamate derivatives; aryl/thienyl-hydroxylamine derivatives; and β-2-substituted-cyclohepta-pyrrol-8-1H-on-7-yl alanine derivatives.
- 39. Conjugate of Claim 3 wherein said dopamine-β-hydroxylase inhibitor compound is of the formula

 $\begin{array}{c|c}
R^{67} \\
C \\
C \\
R^{68} \\
n
\end{array}$

20

25

30

15

wherein B is selected from an ethylenic moiety, an acetylenic moiety and an ethylenic or acetylenic moiety substituted with one or more radicals selected from substituted or unsubstituted alkyl, aryl and heteroaryl; wherein each of R⁶⁷ and R⁶⁸ is independently selected from hydrido and alkyl; wherein R⁶⁹ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; and wherein n is a number selected from one through five.

35

40. Conjugate of Claim 39 wherein B is an ethylenic or an acetylenic moiety substituted with an aryl or heteroaryl radical; and wherein n is a number from one through three.

- 41. Conjugate of Claim 39 wherein B is an ethylenic or acetylenic moiety incorporating carbon atoms in the beta- and gamma-positions relative to the nitrogen atom; and wherein n is one.
- 42. Conjugate of Claim 41 wherein said ethylenic or acetylenic moiety is substituted at the gamma carbon with an aryl or heteroaryl radical.
- 43. Conjugate of Claim 42 wherein said aryl radical is selected from phenyl, 2-thiophene,
 3-thiophene, 2-furanyl, 3-furanyl, oxazolyl, thiazolyl and isoxazolyl, any one of which radicals may be substituted with one or more groups selected from halo, hydroxyl, alkyl, haloalkyl, cyano, alkoxy, alkoxyalkyl and cycloalkyl.
- 15
 44. Conjugate of Claim 43 wherein said aryl radical is selected from phenyl, hydroxyphenyl, 2-thiophene and 2-furanyl; and wherein each of R⁶⁷, R⁶⁸ and R⁶⁹ is hydrido.
- 45. Conjugate of Claim 44 wherein said inhibitor compound is selected from the group consisting of 3-amino-2-(2'-thienyl)propene; 3-amino-2-(2'-thienyl)butene; 3-(N-methylamino)-2-(2'-thienyl)propene; 3-amino-2-(3'-thienyl)propene;
- 3-amino-2-(2'-furanyl)propene; 3-amino-2-(3'-furanyl)propene; 1-phenyl-3-aminopropyne; and 3-amino-2-phenylpropene.

20

25

- 46. Conjugate of Claim 44 wherein said inhibitor compound is selected from the group consisting of
- (±)4-amino-3-phenyl-1-butyne;
- (±)4-amino-3-(3'-hydroxyphenyl)-1-butyne;
 - (±)4-amino-3-(4'-hydroxyphenyl)-1-butyne;
 - (±)4-amino-3-phenyl-1-butene;
 - (±)4-amino-3-(3'-hydroxyphenyl)-1-butene; and
 - $(\pm)4$ -amino-3-(4'-hydroxyphenyl)-1-butene.
- 10 47. Conjugate of Claim 3 wherein said inhibitor compound is of the formula

wherein W is selected from alkyl, cycloalkyl, alkenyl, alkynyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aralkyl, heterocycloalkyl and heteroaryl; wherein Y is selected from

wherein R⁷⁰ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein each of Q and T is one or more groups independently selected from

30
$$\begin{bmatrix} R^{71} \\ I \\ C \\ R^{72} \end{bmatrix}, \begin{bmatrix} R^{73} & R^{74} \\ I & I \\ C & C \end{bmatrix}$$
 and
$$\begin{bmatrix} C & E & C \end{bmatrix}$$

35

wherein each of R⁷¹ through R⁷⁴ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; or a pharmaceutically-acceptable salt thereof.

48. Conjugate of Claim 47 wherein W is heteroaryl and Y is

wherein R⁷⁰ is selected from hydrido, alkyl, amino, monoalkylamino, dialkylamino, phenyl and phenalkyl; wherein each of R⁷¹ and R⁷² is independently

selected from hydrido, hydroxy, alkyl, phenalkyl, phenyl, alkoxy, benzyloxy, phenoxy, alkoxyalkyl, hydroxyalkyl, halo, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl and alkanoyl; and wherein each of p and q is a number independently selected from one through six, inclusive.

49. Conjugate of Claim 48 wherein R⁷⁰ is selected from hydrido, alkyl, amino and monoalkylamino; wherein each of R⁷¹ and R⁷² is independently selected from hydrido, hydroxy, alkyl, alkoxy, amino, monoalkylamino, carboxy, carboxyalkyl and alkanoyl; and wherein each of p and q is a number indpendently selected from two through four, inclusive.

- 50. Conjugate of Claim 49 wherein R⁷⁰ is selected from hydrido, alkyl and amino; wherein each of R⁷¹ and R⁷² is independently selected from hydrido, amino, monoalkylamino and carboxyl; and wherein each of p and q is independently selected from the numbers two and three.
- 51. Conjugate of Claim 50 wherein \mathbb{R}^{70} is hydrido; wherein each of \mathbb{R}^{71} and \mathbb{R}^{72} is hydrido; and wherein each of p and q is two.
- 10 52. Conjugate of Claim 3 wherein said inhibitor compound is of the formula

wherein E is selected from alkyl, cycloalkyl, alkenyl, alkynyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aralkyl, heterocycloalkyl and heteroaryl; wherein F is selected from

20

wherein Z is selected from O, S and N-R⁷⁸; wherein each of R⁷⁵ and R⁷⁶ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, minoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein R⁷⁵ and R⁷⁶ may form oxo or thio; wherein r is a number selected from zero through six, inclusive; wherein each of R⁷⁷ and R⁷⁸

35

is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; or a pharmaceutically-acceptable salt thereof.

53. Conjugate of Claim 3 wherein said dopamine-β-hydroxylase inhibitor compound is of the formula

wherein each of R82 through R85 is independently 20 selected from hydrido, alkyl, haloalkyl, mercapto, alkylthio, cyano, alkoxy, alkoxyalkyl and cycloalkyl; wherein Y is selected from oxygen atom and sulfur atom; wherein each of R79 and R80 is independently selected from hydrido and alkyl; wherein R⁵⁹ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, 25 haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; and wherein m is a number from one through six; or a 30 pharmaceutically-acceptable salt thereof.

54. Conjugate of Claim 53 wherein each of R⁸² through R⁸⁵ is independently selected from hydrido, alkyl and haloalkyl; wherein Y is selected from oxygen atom or nitrogen atom; wherein each of R⁷⁹,

R⁸⁰ and R⁸¹ is independently hydrido and alkyl; and wherein m is a number selected from one through four, inclusive.

```
55. Conjugate of Claim 54 wherein said
      inhibitor compound is selected from
      aminomethyl-5-n-butylthiopicolinate;
      aminomethyl-5-n-butylpicolinate;
      2'-aminoethyl-5-n-butylthiopicolinate;
      2'-aminoethyl-5-n-butylpicolinate;
10
      (2'-amino-1',1'-dimethyl)ethyl-5-n-butylthiopicolinate:
      (2'-amino-1',1'-dimethyl)ethyl-5-n-butylpicolinate;
      (2'-amino-1'-methyl)ethyl-5-n-butylthiopicolinate;
      (2'-amino-1'-methyl)ethyl-5-n-butylpicolinate;
      3'-aminopropyl-5-n-butylthiopicolinate;
15
      3'-aminopropyl-5-n-butylpicolinate;
      (2'-amino-2'-methyl)propyl-5-n-butylthiopicolinate;
      (2'-amino-2'-methyl)propyl-5-n-butylpicolinate;
      (3'-amino-1',1'-dimethyl)propyl-5-n-butylthiopicolinate;
      (3'-amino-1',1'-dimethyl)propyl-5-n-butylpicolinate;
20
      (3'-amino-2',2'-dimethyl)propyl-5-n-butylthiopicolinate;
      (3'-amino-2',2'-dimethyl)propyl-5-n-butylpicolinate;
      2'-aminopropyl-5-n-butylthiopicolinate;
      2'-aminopropyl-5-n-butylpicolinate;
      4'-aminobutyl-5-n-butylthiopicolinate;
      4'-amino-3'-methyl)butyl-5-n-butylthiopicolinate;
25
      (3'-amino-3'-methyl)butyl-5-n-butylthiopicolinate; and
```

(3'-amino-3'-methyl)butyl-5-n-butylpicolinate.

56. Conjugate of Claim 47 wherein said inhibitor compound is of the formula

wherein each of \mathbb{R}^{86} , \mathbb{R}^{87} and \mathbb{R}^{90} through \mathbb{R}^{93} is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, 15 aralkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein R⁸⁶ and R⁸⁷ together may form oxo or thio; wherein r is a number selected from zero through six, inclusive; wherein each of R^{88} and R^{89} is 20 independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and 25. arylsulfonyl.

57. Conjugate of Claim 56 wherein each of R⁸⁶, R⁸⁷ and R⁹⁰ through R⁹³ is independently selected from hydrido, hydroxy, alkyl, phenalkyl, phenyl, alkoxy, benzyloxy, phenoxy, alkoxyalkyl, hydroxyalkyl, halo, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl and alkanoyl; wherein r is a number selected from zero through four, inclusive; wherein each of R⁸⁸ and R⁸⁹ is independently selected from hydrido, alkyl, amino, monoalkylamino, dialkylamino, phenyl and phenalkyl.

- 58. Conjugate of Claim 57 wherein each of R⁸⁶, R⁸⁷ and R⁹⁰ through R⁹³ is independently selected from hydrido, hydroxy, alkyl, alkoxy, amino, monoalkylamino, carboxy, carboxyalkyl and alkanoyl; and wherein r is anumber selected from zero through three, inclusive; and wherein each of R⁸⁸ and R⁸⁹ is selected from hydrido, alkyl, amino and monoalkylamino.
- 59. Conjugate of Claim 58 wherein each of R⁹⁰ through R⁹³ is independently selected from hydrido and alkyl; wherein each of R⁸⁶ and R⁸⁷ is hydrido; wherein r is selected from zero, one and two; wherein R⁸⁸ is selected from hydrido, alkyl and amino; and wherein R⁸⁹ is selected from hydrido and alkyl.
- 15 60. Conjugate of Claim 59 wherein said inhibitor compound is 5-n-butylpicolinic acid hydrazide.
 - 61. Conjugate of Claim 3 wherein said dopamine-β-hydroxylase inhibitor compound is of the formula

20

wherein each of R⁹⁴ through R⁹⁸ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, aryloxy, alkoxy, alkylthio, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, amido, alkylamido, hydroxyamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, carboxyl,

thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, formoyl and alkoxycarbonyl; with the proviso that at least one of \mathbb{R}^{94} through \mathbb{R}^{98} is

$$\begin{array}{c}
CH_2 \downarrow CR^99
\end{array}$$

wherein R⁹⁹ is selected from hydrido, alkyl, hydroxy, alkoxy, alkylthio, phenyl, phenoxy, benzyl, benzyloxy,

-OR¹⁰⁰ and -N R¹⁰¹, wherein R¹⁰⁰ is selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenyl and benzyl and each of R¹⁰¹ and R¹⁰² is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein t is a number selected from zero through four, inclusive; or a pharmaceutically-acceptable salt thereof.

62. Conjugate of Claim 61 wherein said inhibitor compound is of the formula

wherein each of R⁹⁵ through R⁹⁸ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, phenyl, benzyl, alkoxy, phenoxy, benzyloxy, alkoxyalkyl, hydroxyalkyl, halo, cyano, amino,

monoalkylamino, dialkylamino, amido, alkylamido, hydroxyamino, carboxyl, carboxyalkyl, alkanoyl, cyanoamino, carboxyl, thiocarbamoyl, aminomethyl, nitro, formoyl, formyl and alkoxycarbonyl; and wherein R¹⁰⁰ is selected from hydrido, alkyl, phenyl and benzyl.

63. Conjugate of Claim 62 wherein said inhibitor compound is selected from 5-n-butylpicolinic acid; 10 5-ethylpicolinic acid; picolinic acid; 5-nitropicolinic acid; 5-aminopicolinic acid; 5-N-acetylaminopicolinic acid; 15 5-N-propionylaminopicolinic acid; 5-N-hydroxyaminopicolinic acid; 5-iodopicolinic acid; 5-bromopicolinic acid; 5-chloropicolinic acid; 5-hydroxypicolinic acid 20 5-methoxypicolinic acid; 5-N-propoxypicolinic acid; 5-N-butoxypicolinic acid; 5-cyanopicolinic acid: 25 5-carboxylpicolinic acid; 5-n-butyl-4-nitropicolinic acid; 5-n-butyl-4-methoxypicolinic acid; 5-n-butyl-4-ethoxypicolinic acid; 5-n-butyl-4-aminopicolinic acid; 3.0 5-n-butyl-4-hydroxyaminopicolinic acid; and

5-n-butyl-4-methylpicolinic acid.

15

20

- 64. Conjugate of Claim 63 wherein said inhibitor compound is 5-n-butylpicolinic acid.
- 65. Conjugate of Claim 3 wherein said dopamine- β -hydroxylase inhibitor compound is of the formula

wherein R^{103} is hydrido, hydroxy, alkyl, amino and alkoxy; wherein R^{104} is selected from hydrido, hydroxy and alkyl; wherein each of R^{105} and R^{106} is independently selected from hydrido, alkyl and phenalkyl; wherein R^{107} is selected from hydrido and

R¹⁰⁸C- with R¹⁰⁸ selected from alkyl, phenyl and phenalkyl; wherein u is a number from one to three, inclusive; and wherein v is a number from zero to two, inclusive; or a pharmaceutically-acceptable salt thereof.

- 66. Conjugate of Claim 65 wherein R¹⁰³ is selected from hydroxy and lower alkoxy; wherein R¹⁰⁴ is hydrido; wherein R¹⁰⁵ is selected from hydrido and lower alkyl; wherein R¹⁰⁶ is hydrido; wherein R¹⁰⁷ is selected from hydrido and
- R¹⁰⁸ C- with R¹⁰⁸ selected from lower alkyl and phenyl; wherein u is two; and wherein v is a number from zero to two, inclusive.

67. Conjugate of Claim 66 wherein said inhibitor compound is of the formula

$$R^{107}S = \begin{bmatrix} CH_2 \end{bmatrix}_{V} \begin{bmatrix} R^{105} & O & O & \\ & || & || & || \\ CR^{109} \end{bmatrix}$$

wherein R^{109} is selected from hydroxy and lower alkyl; wherein R^{105} is selected from hydrido and lower alkyl; wherein R^{107} is selected from hydrido and

- 10 0 $\|R^{108}C$ with R^{108} selected from lower alkyl and phenyl and v is a number from zero to two, inclusive.
- 68. Conjugate of Claim 67 wherein R¹⁰⁹ is hydroxy; wherein R¹⁰⁵ is hydrido or methyl; wherein R¹⁰⁷ is hydrido or acetyl; and wherein n is a number from zero to two, inclusive.
- 69. Conjugate of Claim 68 wherein said inhibitor compound is 1-(3-mercapto-2-methyl-1- oxopropyl)-L-proline.
 - 70. Conjugate of Claim 2 wherein said precursor compound providing the second residue has a reactable acid moiety.

25

71. Conjugate of Claim 70 wherein said second residue precursor compound of said conjugate is selected from a class of glutamic acid derivatives of the formula

wherein each of R¹¹⁰ and R¹¹¹ may be independently selected from hydrido, alkylcarbonyl, alkoxycarbonyl, alkoxyalkyl, hydroxyalkyl and haloalkyl; and wherein

G is selected from hydroxyl, halo, mercapto, -OR¹¹², -SR¹¹³ and >NR¹¹⁴ with each of R¹¹², R¹¹³ and R¹¹⁴ independently selected from hydrido and alkyl; with the proviso that said glutamic acid is selected such that formation of the cleavable amide bond occurs at the gamma-position carbon of said gamma-glutamic acid residue.

- 72. Conjugate of Claim 71 wherein said second residue precursor compound of said conjugate is the glutamic acid derivative gamma-glutamic acid.
- 73. Conjugate of Claim 72 wherein ${\tt R}^{1\,1\,0}$ is hydrido, and $\dot{{\tt R}}^{1\,1\,1}$ is selected from
- -CR¹¹⁵ wherein R¹¹⁵ is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, neopentyl, n-hexyl and chloromethyl.

WO 91/01724 PCT/US90/04168

356

- 74. Conjugate of Claim 73 wherein said second residue precursor compound of said conjugate is the glutamic acid derivative is N-acetyl-γ-glutamic acid.
- 75. Conjugate of Claim 3 which comprises a first residue provided by a dopamine-β-hydroxylase inhibitor compound and a second residue provided by a gamma glutamic acid derivative.
- 76. Conjugate of Claim 75 wherein said
 10 dopamine-β-hydroxylase inhibitor is fusaric acid or
 fusaric acid hydrazide and said gamma glutamic acid
 derivative is N-acetyl-γ-glutamic acid.
 - 77. Conjugate of Claim 76 which is $N-acetyl-\gamma-glutamyl$ fusaric acid hydrazide.
- 78. A pharmaceutical composition comprising one or more pharmaceutically-acceptable carriers or diluents and a therapeutically-effective amount of a conjugate, said conjugate comprising a first residue and a second residue, said first and second residues connected together by a cleavable bond, wherein said first residue is derived from an inhibitor compound capable of inhibiting biosynthesis of an adrenergic neurotransmitter, and wherein said second residue is capable of being cleaved from the first residue by an enzyme located predominantly in the kidney.
 - 79. The composition of Claim 78 wherein said first and second residues are provided by precursor compounds wherein the precursor compound of one of said first and second residues has a reactable carboxylic acid moiety and the precursor of the other of said first and second residues has a reactable

30

amino moiety or a moiety convertible to a reactable amino moiety, whereby a cleavable bond may be formed between said carboxylic acid moiety and said amino moiety.

- 80. The composition of Claim 79 wherein said inhibitor compound providing said first residue is selected from tyrosine hydroxylase inhibitor compounds, dopa-decarboxylase inhibitor compounds, dopamine-β-hydroxylase inhibitor compounds, and mimics of said inhibitor compounds.
 - 81. The composition of Claim 80 wherein said tyrosine hydroxylase inhibitor compound is of the formula

wherein each of R¹ through R³ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aryloxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein R⁴ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein R⁵ is selected from -OR⁶ and

35 $-N < R^7$, wherein R^6 is selected from hydrido, alkyl,

cycloalkyl, cycloalkylalkyl, aralkyl and aryl, and wherein each of R⁷; and R⁸ is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfinyl; aralkyl; wherein m is a number selected from zero through six;

wherein A is a phenyl ring of the formula

wherein each of R9 through R13 is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, 15 cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, 20 alkynyl, cyanoamino, carboxyl, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, carboxyalkoxy, formyl and a substituted or unsubstituted 5- or 6-membered heterocyclic ring selected from the group consisting of pyrrol-1-yl, 2-carboxypyrrol-1-yl, imidazol-2-ylamino, indol-1-yl, carbozol-25 9-yl, 4,5-dihydro-4-hydroxy-4-trifluoromethylthiazol-3-yl, 4-trifluoromethylthiazol-2-yl, imidazol-2-yl and 4,5-dihydroimidazol-2-yl; wherein any two of the R9 through R13 groups may be taken together to form a benzoheterocylic ring selected from the group consist-30 ing of indolin-5-yl, 1-(N-benzoylcarbamimidoyl)indolin-5-yl, 1-carbamimidoylindolin-5-yl, 1H-2-oxindol-5-yl, insol-5-yl, 2-mercaptobenzimidazol-5(6)-yl,

2-aminobenzimidazol-5-(6)-yl, 2-methanesulfonamido-benzimidazol-5(6)-yl, 1H-benzoxanol-2-on-6-yl, 2-aminobenzothiazol-6-yl, 2-amino-4-mercaptobenzothiazol-6-yl, 2,1,3-benzothiadiazol-5-yl, 1,3-dihydro-2,2-dioxo-2,1,3-benzothiadiazol-5-yl, 1,3-dihydro-1,3-dimethyl-2,2-dioxo-2,1,3-benzothiadiazol-5-yl, 4-methyl-2(H)-oxoquinolin-6-yl, quinoxalin-6-yl, 2-hydroxyquinoxalin-6-yl, 2-hydroxquinoxalin-6-yl, 2-hydroxquinoxalin-6-yl and 2,3-didydro-3(4H)-oxo-1,4-benzoxazin-7-yl; 5-hydroxy-4H-pyran-4-on-2-yl, 2-hydroxypyrid-4-yl, 2-aminopyrid-4-yl, 2-carboxypyrid-4-yl or tetrazolo-[1,5-a]pyrid-7-yl; and wherein A may be selected from

and $-N < \frac{R^{21}}{R^{22}}$

wherein each of R¹⁴ through R²⁰ is independently

selected from hydrido, alkyl, hydroxy, hydroxyalkyl,
alkoxy, cycloalkyl, cycloalkylalkyl, halo, haloalkyl,
aryloxy, alkoxycarboxyl, aryl, aralkyl, cyano,
cyanoalkyl, amino, monoalkylamino and dialkylamino,
wherein each of R²¹and R²² is independently

selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl,
haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl,
aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino,
cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl,
alkylsulfonyl, arylsulfinyl and arylsulfonyl;
or a pharmaceutically-acceptable salt thereof.

25

30

35

82. The composition of Claim 81 wherein said inhibitor compound is of the formula

$$\begin{array}{c|cccc}
R^{10} & & & & R^{9} & & R^{1} & & R^{3} & & 0 \\
R^{11} & & & & & & & & & & & & & \\
R^{12} & & & & & & & & & & & & \\
R^{13} & & & & & & & & & & & \\
R^{13} & & & & & & & & & & & \\
R^{13} & & & & & & & & & & & \\
R^{13} & & & & & & & & & & \\
R^{13} & & & & & & & & & & \\
R^{13} & & & & & & & & & & \\
R^{13} & & & & & & & & & \\
R^{13} & & & & & & & & & \\
R^{13} & & & & & & & & & \\
R^{13} & & & & & & & & & \\
R^{13} & & & & & & & & \\
R^{13} & & & & & & & & \\
R^{13} & & & & & & & & \\
R^{13} & & & & & & & \\
R^{13} & & & & & & & \\
R^{13} & & & & & & & \\
R^{13} & & & & & & & \\
R^{13} & & & & & & & \\
R^{13} & & & & & & & \\
R^{13} & & & & & & & \\
R^{13} & & & & & & & \\
R^{13} & & & & & & & \\
R^{13} & & & & & & & \\
R^{13} & & & & & & & \\
R^{13} & & & & & & & \\
R^{13} & & & & & & & \\
R^{13} & & & & & \\
R^{13} & & & & & & \\
R^{13} & & & & \\
R^{1$$

wherein each of R¹ and R² is hydrido; wherein m is one; wherein R³ is selected from alkyl, alkenyl and alkynyl; wherein R⁴ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein R⁵ is selected from OR⁶ and

20
$$-N < \frac{R^7}{R^8}$$
, wherein R^6 is selected from

hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenalkyl and phenyl, and wherein each of R⁷ and R⁸ is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein each of R⁹ through R¹³ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxycarbonyl, alkoxycarbonyl, alkoxy, arykoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, pyrrol-1-yl, 2-carboxypyrrol-1-yl, imidazol-2-ylamino, indol-1-yl,

carbazol-9-yl, 4,5-dihydro-4-trifluoromethylthiazol-3-yl, 4-trifluoromethylthiazol-2-yl, imidazol-2-yl and 4,5-dihydroimidazol-2-yl, and wherein any two of the R^9 through $R^{1\,3}$ groups may be taken together to form a benzoheterocyclic ring selected from the group 5 consisting of indolin-5-yl, 1-(N-benzoylcarbamimidoyl)indolin-5-yl, 1-carbamimidoylindolin-5-yl, 1H-2oxindol-5-yl, indol-5-yl, 2-mercaptobenzimidazol-5(6)yl, 2-aminobenzimidazol-5-(6)-yl, 2-methanesulfonamido-10 benzimidazol-5(6)-yl, 1H-benzoxanol-2-on-6-yl, 2-aminobenzothiazol-6-yl, 2-amino-4-mercaptobenzothiazol-6-yl, 2,1,3-benzothiadiazol-5-yl, 1,3-dihydro-2,2-dioxo-2,1, 3-benzothiadiazol-5-yl, 1,3-dihydro-1,3-dimethyl-2,2-dioxo-2,1,3-benzothiadiazol-5-yl, 4-methyl-2(H)oxoquinolin-6-yl, quinoxalin-6-yl, 2-hydroxyquinoxalin-15 6-yl, 2-hydroxquinoxalin-7-yl, 2,3-dihydroxyquinoxalin-6-yl and 2,3-didydro-3(4H)-oxo-1,4-benzoxazin-7-yl; wherein R^5 is $-CH=CH_2$ or $-C\equiv CH$; wherein R^6 is selected from hydrido, alkyl, hydroxy, hydroxyalkyl, 20 alkoxy, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, amino, monoalkylamino, dialkylamino; and wherein each of \mathbb{R}^7 and \mathbb{R}^8 independently is selected from hydrido, alkyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, aryl and aralkyl; or a pharmaceutically-acceptable salt thereof. 25

83. The composition of Claim 82 wherein said inhibitor compound is selected from the group consisting of

4-cyanoamino- α -methylphenyalanine;

3-carboxy-α-methylphenylalanine;
3-cyano-α-methylphenylalanine methyl ester;
α-methyl-4-thiocarbamoylphenylalanine methyl ester;
4-(aminomethyl)-α-methylphenylalanine;
4-guanidino-α-methylphenylalanine;

35 3-hydroxy-4-methanesulfonamido-α-methylphenylalanine; 3-hydroxy-4-nitro-α-methylphenylalanine;

```
4-amino-3-methanesulfonyloxy-α-methylphenylalanine;
      3-carboxymethoxy-4-nitro-a-methylphenylalanine;
      α-methyl-4-amino-3-nitrophenylalanine;
      3,4-diamino-α-methylphenylalanine;
5
      α-methyl-4-(pyrrol-1-yl)phenylalanine;
      4-(2-aminoimidazol-l-yl)-α-methylphenylalanine;
      4-(imidazol-2-ylamino)-α-methylphenylalanine;
      4-(4,5-dihydro-4-hydroxy-4-trifluoromethyl-thiazol-2-yl)-
      α-methylphenylalanine methyl ester;
10
      α-methyl-4-(4-trifluoromethylthiazol-2-yl)phenylalanine;
      α-methyl-3-(4-trifluoromethylthiazol-2-yl)-phenyl-
        alanine:
      4-(imidazol-2-yl)-α-methylphenylalanine;
      4-(4,5-dihydroimidazol-2-yl)-\alpha-methylphenylalanine;
15
      3-(imidazol-2-yl)-α-methylphenylalanine;
      3-(4,5-dihydroimidazol-2-yl)-α-methylphenylalanine;
      4-(imidazol-2-yl)phenylalanine;
      4,5-dihydroimidazol-2-yl)phenylalanine;
      3-(imidazol-2-yl)phenylalanine;
20
      3-(2,3-dihydro-1H-indol-4-yl)-\alpha-methylalanine;
      \alpha-methyl-3-(1H-2-oxindol-5-yl)alanine;
      3-[1-(N-benzoylcarbamimidoyl)-2,3-dihydro-1H-
        indol-5-yl)]-\alpha-methylalanine;
      3-(1-carbamimidoyl-2,3-dihydro-1H-indol-5-yl-\alpha-
25
        methylalanine;
      3-(1H-indol-5-yl)-α-methylalanine;
      3-(benzimidazol-2-thione-5-yl)-α-methylalanine;
      3-(2-aminobenzimidazol-5-yl-2-methylalanine;
      2-methyl-3-(benzoxazol-2-on-6-yl)alanine;
30
      3-(2-aminobenzothiazol-6-yl)-2-methylalanine;
      3-(2-amino-4-mercaptobenzothiazol-6-yl)-2-
        methylalanine;
      3-(2-aminobenzothiazol-6-yl)alanine;
      2-methyl-3-(2,1,3-benzothiadiazol-5-yl)alanine;
      3-(1,3-dihydrobenzo-2,1,3-thiadiazol-5-yl)-2-
35
        methylalanine-2,2-dioxide:
```

```
3-(1,3-dihydrobenzo-2,1,3-thiadiazol-5-yl)-2-methyl-
         alanine-2,2-dioxide methyl ester;
       3-(1,3-dihydrobenzo-2,1,3-thiadiaxol-5-yl)alanine
         2,2-dioxide:
       3-(1,3-dihydro-1,3-dimethylbenzo-2,1,3-thiadiazol-5-
 5
         yl-)-2-methylalanine 2,2-dioxide;
      \alpha-methyl-3-[4-methyl-2(1H)-oxoquinolin-6-yl]alanine;
       3-[4-methyl-2(1H)-oxoquinolin-6-yl]alanine;
      2-methyl-3-(quinoxalin-6-yl)alanine;
10
      2-methyl-3-(2-hydroxyquinoxalin-6-yl)alanine;
      2-methyl-3-(2-hydroxyquinoxalin-7-yl)alanine;
      3-(2,3-dihydroxyquinoxalin-6-yl)-2-methylalanine;
      3-(quinoxalin-6-yl)alanine;
      3-(2,3-dihydroxyquinoxalin-6-yl)alanine;
      3-(1,4-benzoxazin-3-one-6-yl)-2-methylalanine;
15
      3-(1,4-benzoxazin-3-one-7-yl)alanine;
      3-(5-hydroxy-4H-pyran-4-on-2-yl)-2-methylalanine;
      3-(2-hydroxy-4-pyridyl)-2-methylalanine;
      3-(2-carboxy-4-pyridyl)-2-methylamine;
      \alpha-methyl-4-(pyrrol-1-yl)phenylalanine;
20
      \alpha-ethyl-4-(pyrrol-1-yl)phenylalanine;
      α-propyl-4-(pyrrol-1-yl)phenylalanine;
      4-[2-(carboxy)pyrrol-1-yl)phenylalanine;
      \alpha-methyl-4-(pyrrol-1-yl)phenylalanine;
      3-hydroxy-α-methyl-4-(pyrrol-1-yl)phenylalanine;
25
      3-methoxy-\alpha-methyl-4-(pyrrol-1-yl)phenylalanine;
      4-methoxy-\alpha-methyl-3-(pyrrol-1-yl)phenylalanine;
      4-(indol-1-yl)-\alpha-methylphenylalanine;
      4-(carbazol-9-yl)-α-methylphenylalanine;
      2-methyl-3-(2-methanesulfonylamidobenzimidazol-
30
        5-yl)alanine;
      2-methyl-3-(2-amino-4-pyridyl)alanine;
      2-methyl-3[tetrazolo-(1,5)-\alpha-pyrid-7-yl]alanine;
      D, L-\alpha-methyl-\beta-(4-hydroxy-3-methyl)phenylalanine;
      D, L-\alpha-methyl-\beta-(4-hydroxy-3-phenyl)phenylalanine;
35
      D, L-\alpha-methyl-\beta-(4-hydroxy-3-benzyl)phenylalanine;
```

```
D, L-\alpha-methyl-\beta-(4-methoxy-3-cyclohexyl)phenyl-
          alanine;
       \alpha, \beta, \beta-trimethyl-\beta-(3,4-dihydroxyphenyl)alanine;
       \alpha, \beta, \beta-trimethyl-\beta-(4-hydroxyphenyl)alanine;
       N-methyl-\alpha, \beta, \beta-trimethyl-\beta-(3, 4-dihydroxphenyl)-
 5
          alanine:
       D, L-\alpha, \beta, \beta-trimethyl-\beta-(3, 4-dihyroxyphenyl) alanine;
       \alpha, \beta, \beta-trimethyl-\beta-(3,4-dimethoxyphenyl)alanine;
       L-\alpha-methyl-\beta-3,4-dihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-3.4-dihydroxyphenylalanine;
10
      L-\alpha-propyl-\beta-3,4-dihydroxyphenylalanine;
       L-\alpha-butyl-\beta-3,4-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-2,3-dihydroxphenylalanine;
       L-\alpha-ethyl-\beta-2,3-dihydroxphenylalanine;
       L-\alpha-propyl-\beta-2,3-dihydroxphenylalanine;
15
       L-\alpha-buty1-\beta-2.3-dihydroxphenylalanine;
       L-\alpha-methyl-4-chloro-2, 3-dihydroxyphenylalanine;
       L-α-ethyl-4-chloro-2,3-dihydroxyphenylalanine;
       L-\alpha-propyl-4-chloro-2,3-dihydroxyphenylalanine;
       L-\alpha-butyl-4-chloro-2,3-dihydroxyphenylalanine;
20
       L-\alpha-ethyl-\beta-4-methyl-2,3-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-4-methyl-2,3-dihydroxyphenylalanine;
       L-\alpha-propyl-\beta-4-methyl-2,3-dihydroxyphenylalanine;
       L-\alpha-butyl-\beta-4-methyl-2,3-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-4-fluoro-2,3-dihydroxyphenylalanine;
25
       L-\alpha-ethyl-\beta-4-fluoro-2,3-dihydroxyphenylalanine;
       L-\alpha-propyl-\beta-4-fluoro-2,3-dihydroxyphenylalanine;
       L-\alpha-butyl-\beta-4-fluoro-2,3-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-4-trifluoromethyl-2,3-dihydroxyphenyl-
30
         alanine
       L-\alpha-ethyl-\beta-4-trifluoromethyl-2,3-dihydroxyphenyl-
       L-\alpha-propyl-\beta-4-trifluoromethyl-2,3-dihydroxyphenyl-
         alanine
35
       L-\alpha-butyl-\beta-4-trifluoromethyl-2,3-dihydroxyphenyl-
         alanine
```

```
L-\alpha-methyl-\beta-3,5-dihydroxyphenylalanine;
         L-\alpha-\text{ethyl}-\beta-3.5-\text{dihydroxyphenylalanine};
        L-\alpha-propyl-\beta-3,5-dihydroxyphenylalanine;
        L-\alpha-butyl-\beta-3,5-dihydroxyphenylalanine;
        L-\alpha-methyl-\beta-4-chloro-3,5-dihydroxphenylalanine;
   5
        L-\alpha-ethyl-\beta-4-chloro-3, 5-dihydroxphenylalanine;
        L-\alpha-propyl-\beta-4-chloro-3,5-dihydroxphenylalanine;
        L-\alpha-butyl-\beta-4-chloro-3,5-dihydroxphenylalanine;
        L-\alpha-methyl-\beta-4-fluoro-3,5-dihydroxyphenylalanine;
        L-\alpha-ethyl-\beta-4-fluoro-3,5-dihydroxyphenylalanine;
 10
        L-\alpha-propyl-\beta-4-fluoro-3,5-dihydroxyphenylalanine;
        L-\alpha-butyl-\beta-4-fluoro-3,5-dihydroxyphenylalanine;
        L-\alpha-methyl-\beta-4-trifluoromethyl-3,5-dihydroxyphenyl-
           alanine:
 15
        L-\alpha-ethyl-\beta-4-trifluoromethyl-3,5-dihydroxyphenyl-
           alanine:
        L-\alpha-propyl-\beta-4-trifluoromethyl-3,5-dihydroxyphenyl-
           alanine:
        L-\alpha-butyl-\beta-4-trifluoromethyl-3,5-dihydroxyphenyl-
 20
           alanine:
        L-\alpha-methyl-2,5-dihydroxphenylalanine;
        L-\alpha-ethyl-2,5-dihydroxphenylalanine;
        L-\alpha-propyl-2,5-dihydroxphenylalanine;
        L-\alpha-butyl-2,5-dihydroxphenylalanine;
        L-\alpha-methyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
. 25
        L-\alpha-ethyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
        L-\alpha-propyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
        L-\alpha-butyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
        L-\alpha-methyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
30
       L-\alpha-propyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
       L-\alpha-butyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-methyl-2,5-dihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-methyl-2,5-dihydroxyphenylalanine;
       L-\alpha-propyl-\beta-methyl-2,5-dihydroxyphenylalanine;
35
       L-\alpha-butyl-\beta-methyl-2,5-dihydroxyphenylalanine;
```

```
L-\alpha-methyl-\beta-4-trifluoromethyl-2,5-dihydroxyphenyl-
         alanine;
       L-\alpha-ethyl-\beta-4-trifluoromethyl-2,5-dihydroxyphenyl-
         alanine:
 5
       L-\alpha-propyl-\beta-4-trifluoromethyl-2,5-dihydroxyphenyl-
       L-\alpha-butyl-\beta-4-trifluoromethyl-2,5-dihydroxyphenyl-
         alanine:
       L-\alpha-methyl-\beta-3,4,5-trihydroxyphenylalanine;
10
       L-\alpha-ethyl-\beta-3,4,5-trihydroxyphenylalanine;
       L-\alpha-propyl-\beta-3,4,5-trihydroxyphenylalanine;
       L-\alpha-butyl-\beta-3,4,5-trihydroxyphenylalanine;
       L-\alpha-methyl-\beta-2,3,4-trihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-2,3,4-trihydroxyphenylalanine;
15
       L-\alpha-propyl-\beta-2,3,4-trihydroxyphenylalanine;
       L-\alpha-butyl-\beta-2,3,4-trihydroxyphenylalanine;
       L-\alpha-methyl-\beta-2,4,5-trihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-2,4,5-trihydroxyphenylalanine;
       L-\alpha-propyl-\beta-2,4,5-trihydroxyphenylalanine;
20
       L-\alpha-butyl-\beta-2,4,5-trihydroxyphenylalanine;
       L-phenylalanine;
       D, L-α-methylphenylalanine;
       D, L-3-iodophenylalanine;
       D, L-3-iodo-α-methylphenylalanine;
25
       3-iodotyrosine;
       3,5-diiodotyrosine;
       L-\alpha-methylphenylalanine;
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-methylphenyl) alanine;
       D, L-\alpha-methyl-\beta-(4-methoxy-3-benzylphenyl)alanine;
30
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-benzylphenyl) alanine;
       D, L-\alpha-methyl-\beta-(4-methoxy-3-cyclohexylphenyl)alanine;
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-cyclohexylphenyl)alanine;
       D, L-\alpha-methyl-\beta-(4-methoxy-3-methylphenyl)alanine;
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-methylphenyl)alanine;
35
       N, O-dibenzyloxycarbonyl-D, L-α-methyl-β-(4-hydroxy-3-
         methylphenyl)alanine;
```

```
N, O-dibenzyloxycarbonyl-D, L-\alpha-methyl-\beta-(4-hydroxy-3-
         methylphenyl)alanine amide;
      D, L-\alpha-methyl-\beta-(4-hydroxy-3-methylphenyl)-
         alanine amide;
       N, O-diacetyl-D, L-\alpha-methyl-\beta-(4-hydroxy-3-methyl-
  5
         phenyl)alanine;
       D, L-N-acetyl-\alpha-methyl-\beta-(4-hydroxy-3-methylphenyl)-
         alanine:
       L-3,4-dihydroxy-\alpha-methylphenylalanine;
       L-4-hydroxy-3-methoxy-\alpha-methylphenylalanine;
10
       L-3,4-methylene-dioxy-\alpha-methylphenylalanine;
       2-vinyl-2-amino-3-(2-methoxyphenyl)propionic acid;
       2-vinyl-2-amino-3-(2,5-dimethoxyphenyl)propionic acid;
       2-vinyl-2-amino-3-(2-imidazolyl)propionic acid;
       2-vinyl-2-amino-3-(2-methoxyphenyl)propionic acid
15
         ethyl ester:
       \alpha-methyl-\beta-(2,5-dimethoxyphenyl)alanine;
       \alpha-methyl-\beta-(2,5-dihydroxyphenyl)alanine;
       \alpha-ethyl-\beta-(2,5-dimethoxyphenyl)alanine;
       \alpha-ethyl-\beta-(2,5-dihydroxyphenyl)alanine;
20
       \alpha-methyl-\beta-(2,4-dimethoxyphenyl)alanine;
       \alpha-methyl-\beta-(2,4-dihydroxyphenyl)alanine;
       \alpha-ethyl-\beta-(2,4-dimethoxyphenyl)alanine;
       \alpha-ethyl-\beta-(2,4-dihydroxyphenyl)alanine;
25
      \alpha-methyl-\beta-(2,5-dimethoxyphenyl)alanine
         ethyl ester;
       2-ethynyl-2-amino-3-(3-indolyl)propionic acid;
       2-ethynyl-2,3-(2-methoxyphenyl)propionic acid;
      2-ethynyl-2,3-(5-hydroxyindol-3-yl)propionic acid;
      2-ethynyl-2-amino-3-(2,5-dimethoxyphenyl)propionic acid;
30
      2-ethynyl-2-amino-3-(2-imidazolyl)propionic acid;
      2-ethynyl-2-amino-3-(2-methoxyphenyl)propionic acid
         ethyl ester;
      3-carbomethoxy-3-(4-benzyloxybenzyl)-3-aminoprop-1-yne;
      α-ethynyltyrosine hydrochloride;
35
      a-ethynyltyrosine;
      a-ethynyl-m-tyrosine;
```

```
\alpha-ethynyl-\beta-(2-methoxyphenyl)alanine; \alpha-ethynyl-\beta-(2,5-dimethoxyphenyl)alanine; and \alpha-ethynylhistidine.
```

- 84. The composition of Claim 82 wherein at least one of R¹⁰, R¹¹ and R¹² is selected from hydroxy, alkoxy, aryloxy, aralkoxy and alkoxycarbonyl.
 - 85. The composition of Claim 84 wherein said inhibitor compound is selected from the group consisting of
- a-methyl-3-(pyrrol-1-yl)tyrosine;
 a-methyl-3-(4-trifluoromethylthiazol-2-yl)tyrosine;
 3-(imidazol-2-yl)-α-methyltyrosine;
 L-α-methyl-m-tyrosine;
- 15 L-α-propyl-m-tyrosine;
 - L-α-butyl-m-tyrosine;

L-\alpha-ethyl-m-tyrosine;

- L-α-methyl-p-chloro-m-tyrosine;
- $L-\alpha-ethyl-p-chloro-m-tyrosine;$
- L-α-butyl-p-chloro-m-tyrosine;
- 20 L-α-methyl-p-bromo-m-tyrosine;
 - L-α-ethyl-p-bromo-m-tyrosine;
 - L-α-butyl-p-bromo-m-tyrosine;
 - L-α-methyl-p-fluoro-m-tyrosine;
 - $L-\alpha$ -methyl-p-iodo-m-tyrosine;
- 25 L-α-ethyl-p-iodo-m-tyrosine;
 - L-α-methyl-p-methyl-m-tyrosine;
 - L-α-methyl-p-ethyl-m-tyrosine;
 - $L-\alpha-ethyl-p-ethyl-m-tyrosine;$
 - L-α-ethyl-p-methyl-m-tyrosine;
- 30 L-α-methyl-p-butyl-m-tyrosine;
 - L-α-methyl-p-trifluoromethyl-m-tyrosine;
 - L-3-iodotyrosine;
 - L-3-chlorotyrosine;
 - L-3,5-diiodotyrosine;

L-α-methyltyrosine;

D, L-α-methyltyrosine;

D,L-3-iodo- α -methyltyrosine;

L-3-bromo-a-methyltyrosine;

5 D, L-3-bromo-α-methyltyrosine;

L-3-chloro-α-methyltyrosine;

D,L-3-chloro- α -methyltyrosine; and

2-vinyl-2-amino-3-(4-hydroxyphenyl)propionic acid.

86. The composition of Claim 81 wherein said inhibitor compound is of the formula

wherein R³ is selected from alkyl, alkenyl and alkynyl; wherein R⁴ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein m is a number selected from zero through five, inclusive; wherein R⁵ is selected from OR⁶ and R⁷
-N
, wherein R⁶ is selected from

hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenalkyl and phenyl, and wherein each of R⁷ and R⁸ is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl,

amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein each of R⁹ through R¹³ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxycarbonyl, alkoxy, aryloxy, aralkoxy, alkoxyalkyl, haloalkyl, alkoxycarbonyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl.

- 10 87. The composition of Claim 86 wherein at least one of \mathbb{R}^{10} , \mathbb{R}^{11} and \mathbb{R}^{12} is selected from hydroxy, alkoxy, aryloxy, aralkoxy and alkoxycarbonyl.
- 88. The composition of Claim 87 wherein said inhibitor compound is selected from the group consisting of methyl(+)-2-(4-hydroxyphenyl)glycinate; isopropyl and 3-methyl butyl esters of (+)-2 (4-hydroxyphenyl)glycine; (+)-2-(4-hydroxyphenyl)glycine; (+)-2-(4-methoxyphenyl-glycine; and (+)-2-(4-methoxyphenyl-glycine; and (+)-2-(4-hydroxyphenyl)glycinamide.
 - 89. The composition of Claim 81 wherein said inhibitor compound is of the formula

wherein each of R¹ and R² is hydrido; wherein R³ is selected from alkyl, alkenyl and alkynyl; wherein R⁴ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl,

- aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein m is a number selected from zero through five, inclusive; wherein each of R¹⁴ through
- R¹⁷ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cyclo-alkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl,
- alkynyl, cyanoamino, carboxyl, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, carboxyalkoxy and formyl.
 - 90. The composition of Claim 89 wherein said inhibitor compound is selected from the group consisting of L- α -methyltryptophan;
- D, L-5-methyltryptophan;

20

- D,L-5-chlorotryptophan;
- D, L-5-bromotryptophan;
- D,L-5-iodotryptophan;
- 25 L-5-hydroxytryptophan;
 - D, L-5-hydroxy- α -methyltryptophan;
 - a-Ethynyltryptophan;
 - 5-Methoxymethoxy- α -ethynyltryptophan; and
 - $5-Hydroxy-\alpha-ethynyltryptophan.$
- 30 91. The composition of Claim 81 wherein A is
 - $-N < \frac{R^{21}}{R^{22}}$, and m is a number selected from zero to
- 35 three, inclusive.

- 92. The composition of Claim 91 wherein said inhibitor compound is selected from the group consisting of 2-vinyl-2-amino-5-aminopentanoic acid and 2-ethynyl-2-amino-5-aminopentanoic acid.
- 5 93. The composition of Claim 81 wherein said inhibitor compound is of the formula

wherein each of R²³ and R²⁴ is independently 20 selected from hydrido, hydroxy, alkyl, cycloakyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein R25 is selected from hydrido, alkyl, 25 cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, 30 arylsulfinyl and arylsulfonyl; wherein each of R²⁶ through R³⁵ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, 35

10

alkenyl, cycloalkenyl, alkynyl, cyanoamino, carboxyl, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, alkoxy and formyl; wherein n is a number selected from zero to five, inclusive; or a pharmacuetically-acceptable salt thereof.

94. The composition of Claim 93 wherein said inhibitor compound is benzoctamine.

95. The composition of Claim 80 wherein said inhibitor compound is a dopa-decarboxylase inhibitor of the formula

wherein each of R36 through R42 is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, 20 alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, 25 carboxyalkoxy and formyl; wherein n is a whole number from zero through four; wherein each of $\mathbb{R}^{4\,3}$ and $\mathbb{R}^{4\,4}$ is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, 30 carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl, arylsulfonyl, alkenyl, cycloalkenyl and alkynyl, with the proviso that \mathbb{R}^{43} and \mathbb{R}^{44} cannot

both be carboxyl at the same time, and with the further proviso that at least one of R⁴³ through R⁴⁴ is a primary or secondary amino group; or a pharmaceutically-acceptable salt thereof.

- 5 The composition of Claim 95 wherein each of R³⁶ through R⁴² is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, 10 alkenyl, cycloalkenyl, alkynyl, cyanoamino, cyano, aminomethyl, carboxyalkoxy and formyl; wherein n is a whole number from one through three; wherein each of R43 and R44 is independently selected from hydrido, 15 alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxyalkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl and alkanoyl.
- each of R³⁶ through R⁴² is independently selected from hydrido, hydroxy, alkyl, benzyl, phenyl, alkoxy, benzyloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, cyanoamino, cyano,

 aminomethyl, carboxyl, carboxyalkoxy and formyl; wherein n is one or two; wherein each of R⁴³ and R⁴⁴ is independently selected from hydrido, alkyl, benzyl, phenyl, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl and alkanoyl.

- 98. The composition of Claim 97 wherein each of R³⁶ through R⁴² is independently selected from hydrido, hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl, carboxyalkyl, aminomethyl, carboxyalkoxy and formyl; wherein n is one or two; wherein each of R⁴³ and R⁴⁴ is independently selected from hydrido, alkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl and carboxyalkyl.
- 99. The composition of Claim 98 wherein each of R³⁶ and R⁴² is hydrido and n is one; wherein each of R³⁸ through R⁴² is independently selected from hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl, carboxyalkyl, aminomethyl, carboxyalkoxy and formyl; wherein each of R⁴³ and R⁴⁴ is independently selected from hydrido, alkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl and carboxyalkyl.
- 100. The composition of Claim 99 wherein said inhibitor compound is selected from (2,3,4-trihydroxy)benzylhydrazine; 1-(D,L-seryl-2-(2,3,4-trihydroxybenzyl)hydrazine; and 1-(3-hydroxylbenzyl)-1-methylhydrazine.
- each of R³⁶ and R³⁷ is independently selected from hydrido, alkyl and amino and n is two; wherein each of R³⁸ through R⁴² is independently selected from hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl, carboxyalkyl, aminomethyl, carboxyalkoxy and formyl; wherein each of R⁴³ and R⁴⁴ is independently selected from hydrido, alkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl and carboxyalkyl.

102. The composition of Claim 101 wherein said inhibitor compound is selected from 2-hydrazino-2-methyl-3-(3,4-dihydroxyphenyl)propionic acid; α-(monofluoromethyl)dopa; and α-(difluoromethyl)dopa.

103. The composition of Claim 80 wherein said inhibitor compound is a dopa-decarboxylase inhibitor of the formula

10

5

wherein each of R45 through R48 is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, 15 cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, 20 alkynyl, cyanoamino, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, carboxyalkoxy and formyl: wherein each of \mathbb{R}^{49} and \mathbb{R}^{50} is independently selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxyalkyl, haloalkyl, hydroxyalkyl, 25 cyano, amino, monoalkylamino, dialkylamino, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl and

alkanoyl and

be carboxyl at the same time, and with the further proviso that at least one of R⁴⁵ through R⁴⁸ is a primary or secondary amino group or a carboxyl group; or a pharmaceutically-acceptable salt thereof.

104. The composition of Claim 103 wherein each of R⁴⁵ through R⁴⁸ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, cyano, aminomethyl, carboxyalkoxy and formyl; wherein each of R⁴⁹ and R⁵⁰ is independently selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano,

amino, monoalkylamino, dialkylamino, carboxyalkyl and

O || 20 -CR⁵¹ wherein R⁵¹ is selected from hydroxy, alkoxy, phenoxy, benzyloxy, amino, monoalkylamino and dialkylamino.

each of R⁴⁵ through R⁴⁸ is independently selected from hydrido, hydroxy, alkyl, benzyl, phenyl, alkoxy, benzyloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, cyanoamino, cyano, aminomethyl, carboxyalkoxy and formyl; wherein each of R⁴⁹ and R⁵⁰ is independently selected from hydrido, alkyl, benzyl, phenyl, alkoxyalkyl,

haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, carboxyalkyl and alkanoyl and

- 5 || -CR⁵¹ wherein R⁵¹ is selected from hydroxy, alkoxy, amino and monoalkylamino.
- 106. The composition of Claim 105 wherein each of R⁴⁵ through R⁴⁸ is independently selected from hydrido, hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl, carboxyalkyl aminomethyl, carboxyalkoxy and formyl; wherein each of R⁴⁹ and R⁵⁰ is independently selected from hydrido alkyl, amino, monoalkylamino, carboxyalkyl and
 - || -CR⁵¹ wherein R⁵¹ is selected from hydroxy, alkoxy, amino and monoalkylamino.
- 20 107. The composition of Claim 106 wherein each of R⁴⁵ through R⁴⁸ is independently selected from hydrido, hydroxy, alkyl, alkoxy and hydroxyalkyl; wherein each of R⁴⁹ and R⁵⁰ is independently selected from alkyl, amino, monoalkylamino, and
- 25 0
 ||
 -CR⁵¹ wherein R⁵¹ is selected from hydroxy, methoxy, ethoxy, propoxy, butoxy, amino, methylamino and ethylamino.
- 108. The composition of Claim 107 wherein said inhibitor compound is selected from endo-2-amino-1,2,3,4-tetrahydro-1,4-ethanonaphthalene-2-carboxylic acid; ethyl-endo-2-amino-1,2,3,

```
4-tetrahydro-1,4-ethano-naphthalene-2-carboxylate hydrochloride; exo-2-amino-1,2,3,4-tetrahydro-1,4-ethanonaphthalene-2-carboxylic acid; and ethyl-exo-2-amino-1,2,3,4-tetrahydro-1,4-ethanonaphthalene-2-carboxylate hydrochloride.
```

The composition of Claim 80 wherein said inhibitor compound is a dopa-decarboxylase inhibitor selected from 2,3-dibromo-4,4-bis (4-ethylphenyl)-2-butenoic acid;3-bromo-4-(4-methoxyphenyl)-4-oxo-2-butenoic acid; 10 N-(5'-phosphopyridoxyl)-L-3,4-dihydroxyphenylalanine; N-(5'-phosphopyridoxyl)-L-m-aminotyrosine; D, L-β-(3, 4-dihydroxyphenyl)lactate; D, L-β-(5-hydroxyindolyl-3)lactate; 2,4-dihydroxy-5-(1-oxo-2-propenyl)benzoic acid; 15 2,4-dimethoxy-5-[1-oxo-3-(2,3,4-trimethoxyphenyl-2propenyl]benzoic acid; 2,4-dihydroxy-5-[1-oxo-3-(2-thienyl)-2-propenyl] benzoic acid: 2,4-dihydroxy-5-[3-(4-hydroxyphenyl)-1-oxo-2-propenyl] 20 benzoic acid; 5-[3-(4-chlorophenyl)-1-oxo-2-propenyl]-2,4-dihydroxy benzoic acid; 2,4-dihydroxy-5-(1-oxo-3-phenyl-2-propenyl)benzoic 25 acid; 2,4-dimethoxy-5-[1-oxo-3-(4-pyridinyl)-2-propenyl] benzoic acid; 5-[3-(3,4-dimethoxyphenyl)-1-oxo-2-propenyl]-2,4dimethoxy benzoic acid; 2,4-dimethoxy-5-(1-oxo-3-phenyl-2-propenyl)benzoic 30 5-[3-(2-furanyl)-1-oxo-2-propenyl]-2,4-dimethoxy

2,4-dimethoxy-5-[1-oxo-3-(2-thienyl)-2-propenyl]

benzoic acid;

10

15

benzoic acid;

- 2,4-dimethoxy-5-[3-(4-methoxyphenyl)-1-oxo-2-propenyl]
 benzoic acid;
- 5-[3-(4-chlorophenyl)-1-oxo-2-propenyl]-2,4-dimethoxy benzoic acid; and
- 5-[3-[4-(dimethylamino)phenyl]-1-oxo-2-propenyl]-2,4 dimethoxy benzoic acid.

110. The composition of Claim 80 wherein said inhibitor compound is a dopa-decarboxylase inhibitor of the formula

wherein $R^{5\,2}$ is selected from hydrido, $OR^{6\,4}$ and $-N < R^{6\,5}$, wherein $R^{6\,4}$ is selected from

hydrido, alkyl, cycloalkyl, cycloalkylalkyl,
phenalkyl and phenyl, and wherein each of R⁶⁵ and R⁶⁶
is independently selected from hydrido, alkyl,
alkanoyl, amino, monoalkylamino, dialkylamino, phenyl
and phenalkyl; wherein each of R⁵³, R⁵⁴ and R⁵⁷
through R⁶³ is independently selected from hydrido,
hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl,
aryl, alkoxycarbonyl, hydroxyalkyl, halo, cyano,
amino, monoalkylamino, dialkylamino, carboxyl,
carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and
alkynyl; wherein each of R⁵⁵ and R⁵⁶ is independently
selected from hydrido, alkyl, cycloalkyl,
cycloalkylalkyl, aralkyl, aryl, alkoxyalkyl,

haloalkyl, hydroxyalkyl and carboxyalkyl; wherein each of m and n is a number independently selected from zero through six, inclusive; or a pharmaceutically-acceptable salt thereof.

- 111. The composition of Claim 110 wherein R⁵² is OR⁶⁴ wherein R⁶⁴ is selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, benzyl and phenyl; wherein each of R⁵³, R⁵⁴ and R⁵⁷ through R⁶³ is independently selected from hydrido, alkyl, cycloalkyl, hydroxy, alkoxy, benzyl and phenyl; wherein each of R⁵⁵ and R⁵⁶ is independently selected from hydrido, alkyl, cycloalkyl, benzyl and phenyl; wherein each of m and n is a number independently selected from zero through three, inclusive.
- 112. The composition of Claim 111 wherein R⁵² is OR⁶⁴ wherein R⁶⁴ is selected from hydrido and lower alkyl; wherein each of R⁵³ through R⁵⁸ is hydrido; wherein each of R⁵⁹ through R⁶³ is independently selected from hydrido, alkyl, hydroxy and alkoxy, with the proviso that two of the R⁵⁹ through R⁶³ substituents are hydroxy; wherein each of m and n is a number independently selected from zero through two, inclusive.
- 113. The composition of Claim 112 wherein said inhibitor compound is 3-(3,4-dihydroxyphenyl)-2-propenoic acid.
- 114. The composition of Claim 103 wherein said dopa-decarboxylase inhibitor is a compound selected from amino-haloalkyl-hydroxyphenyl propionic acids; alpha-halomethyl-phenylalanine derivatives; and indole-substituted halomethylamino acids.

15

20

25

30

115. The composition of Claim 103 wherein said dopa-decarboxylase inhibitor is a compound selected from isoflavone extracts from fungi and streptomyces; sulfinyl substituted dopa and tyrosine derivatives; hydroxycoumarin derivatives; 1-benzylcyclobutenyl alkyl carbamate derivatives; aryl/thienyl-hydroxylamine derivatives; and β-2-substituted-cyclohepta-pyrrol-8-1H-on-7-yl alanine derivatives.

116. The composition of Claim 80 wherein said dopamine- β -hydroxylase inhibitor compound is of the formula

$$B = \begin{bmatrix} R^{67} \\ C \\ R^{68} \\ n \end{bmatrix} \times \begin{bmatrix} R^{69} \\ H \end{bmatrix}$$

wherein B is selected from an ethylenic moiety, an acetylenic moiety and an ethylenic or acetylenic moiety substituted with one or more radicals selected from substituted or unsubstituted alkyl, aryl and heteroaryl; wherein each of R⁶⁷ and R⁶⁸ is independently selected from hydrido and alkyl; wherein R⁶⁹ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; and wherein n is a number selected from one through five.

117. The composition of Claim 116 wherein B is an ethylenic or an acetylenic moiety substituted with an aryl or heteroaryl radical; and wherein n is a number from one through three.

- 118. The composition of Claim 116 wherein B is an ethylenic or acetylenic moiety incorporating carbon atoms in the beta- and gamma-positions relative to the nitrogen atom; and wherein n is one.
- 119. The composition of Claim 118 wherein said ethylenic or acetylenic moiety is substituted at the gamma carbon with an aryl or heteroaryl radical.
- 120. The composition of Claim 119 wherein said aryl radical is selected from phenyl,

 2-thiophene, 3-thiophene, 2-furanyl, 3-furanyl, oxazolyl, thiazolyl and isoxazolyl, any one of which radicals may be substituted with one or more groups selected from halo, hydroxyl, alkyl, haloalkyl, cyano, alkoxy, alkoxyalkyl and cycloalkyl.
- 121. The composition of Claim 120 wherein said aryl radical is selected from phenyl, hydroxyphenyl, 2-thiophene and 2-furanyl; and wherein each of R⁶⁷, R⁶⁸ and R⁶⁹ is hydrido.
- 122. The composition of Claim 121 wherein
 said inhibitor compound is selected from the group
 consisting of 3-amino-2-(2'-thienyl)propene;
 3-amino-2-(2'-thienyl)butene;
 3-(N-methylamino)-2-(2'-thienyl)propene;
 3-amino-2-(3'-thienyl)propene;
 25 3-amino-2-(2'-furanyl)propene;
- 3-amino-2-(2'-furany1)propene; 3-amino-2-(3'-furany1)propene; 1-phenyl-3-aminopropyne; and 3-amino-2-phenylpropene.

123. The composition of Claim 121 wherein said inhibitor compound is selected from the group consisting of (±)4-amino-3-phenyl-1-butyne; (±)
4-amino-3-(3'-hydroxyphenyl)-1-butyne;

- (±)4-amino-3-(4'-hydroxyphenyl)-1-butyne;
- (±)4-amino-3-phenyl-1-butene;
- (±)4-amino-3-(3'-hydroxyphenyl)-1-butene; and
- (±)4-amino-3-(4'-hydroxyphenyl)-1-butene.

124. The composition of Claim 80 wherein said inhibitor compound is of the formula

wherein W is selected from alkyl, cycloalkyl,
alkenyl, alkynyl, cycloalkenyl, cycloalkynyl,
cycloalkylalkyl, aryl, aralkyl, heterocycloalkyl and
heteroaryl; wherein Y is selected from

20

25

wherein R⁷⁰ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein each of Q and T is one or more groups independently selected from

wherein each of R⁷¹ through R⁷⁴ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; or a pharmaceutically-acceptable salt thereof.

125. The composition of Claim 124 wherein W is heteroaryl and Y is

15

5

20

25

30

35

wherein R⁷⁰ is selected from hydrido, alkyl, amino, monoalkylamino, dialkylamino, phenyl and phenalkyl; wherein each of R⁷¹ and R⁷² is independently selected from hydrido, hydroxy, alkyl, phenalkyl, phenyl, alkoxy, benzyloxy, phenoxy, alkoxyalkyl, hydroxyalkyl, halo, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl and alkanoyl; and wherein each of p and q is a number independently selected from one through six, inclusive.

R⁷⁰ is selected from hydrido, alkyl, amino and monoalkylamino; wherein each of R⁷¹ and R⁷² is independently selected from hydrido, hydroxy, alkyl, alkoxy, amino, monoalkylamino, carboxy, carboxyalkyl and alkanoyl; and wherein each of p and q is a number indpendently selected from two through four, inclusive.

127. The composition of Claim 126 wherein R^{70} is selected from hydrido, alkyl and amino; wherein each of R^{71} and R^{72} is independently selected from hydrido, amino, monoalkylamino and carboxyl; and wherein each of p and q is independently selected from the numbers two and three.

128. The composition of Claim 127 wherein \mathbb{R}^{70} is hydrido; wherein each of \mathbb{R}^{71} and \mathbb{R}^{72} is hydrido; and wherein each of p and q is two.

10 129. The composition of Claim 80 wherein said inhibitor compound is of the formula

wherein E is selected from alkyl, cycloalkyl, alkenyl, alkynyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aralkyl, heterocycloalkyl and heteroaryl; wherein F is selected from

$$Z = \begin{bmatrix} R^{75} \\ i \\ C \\ R^{76} \end{bmatrix}_{r} N \begin{bmatrix} R^{7} \\ H \end{bmatrix}$$

wherein Z is selected from O, S and N-R⁷⁸; wherein each of R⁷⁵ and R⁷⁶ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, minoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein R⁷⁵ and R⁷⁶ may form oxo or thio; wherein r is a number selected from zero through six, inclusive; wherein each of R⁷⁷ and R⁷⁸

is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; or a pharmaceutically-acceptable salt thereof.

130. The composition of Claim 80 wherein said dopamine-β-hydroxylase inhibitor compound is of the formula

wherein each of R82 through R85 is independently 20 selected from hydrido, alkyl, haloalkyl, mercapto, alkylthio, cyano, alkoxy, alkoxyalkyl and cycloalkyl; wherein Y is selected from oxygen atom and sulfur atom; wherein each of R79 and R80 is independently selected from hydrido and alkyl; wherein R⁵⁹ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, 25 haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; and wherein m is a number from one through six; or a 30 pharmaceutically-acceptable salt thereof.

131. The composition of Claim 130 wherein each of R⁸² through R⁸⁵ is independently selected from hydrido, alkyl and haloalkyl; wherein Y is selected from oxygen atom or nitrogen atom; wherein each of R⁷⁹, R⁸⁰ and R⁸¹ is independently hydrido and alkyl; and wherein m is a number selected from one through four, inclusive.

132. The composition of Claim 131 wherein said inhibitor compound is selected from 10 aminomethyl-5-n-butylthiopicolinate; aminomethyl-5-n-butylpicolinate; 2'-aminoethyl-5-n-butylthiopicolinate; 2'-aminoethyl-5-n-butylpicolinate: (2'-amino-1',1'-dimethyl)ethyl-5-n-butylthiopicolinate; 15 (2'-amino-1',1'-dimethyl)ethyl-5-n-butylpicolinate; (2'-amino-1'-methyl)ethyl-5-n-butylthiopicolinate; (2'-amino-1'-methyl)ethyl-5-n-butylpicolinate; 3'-aminopropyl-5-n-butylthiopicolinate; 3'-aminopropyl-5-n-butylpicolinate; (2'-amino-2'-methyl)propyl-5-n-butylthiopicolinate; 20 (2'-amino-2'-methyl)propyl-5-n-butylpicolinate; (3'-amino-1',1'-dimethyl)propyl-5-n-butylthiopicolinate; (3'-amino-1',1'-dimethyl)propyl-5-n-butylpicolinate; (3'-amino-2',2'-dimethyl)propyl-5-n-butylthiopicolinate; (3'-amino-2',2'-dimethyl)propyl-5-n-butylpicolinate; 25 2'-aminopropyl-5-n-butylthiopicolinate; 2'-aminopropyl-5-n-butylpicolinate; 4'-aminobuty1-5-n-butylthiopicolinate; 4'-amino-3'-methyl)butyl-5-n-butylthiopicolinate; (3'-amino-3'-methyl)butyl-5-n-butylthiopicolinate; and 30 (3'-amino-3'-methyl)butyl-5-n-butylpicolinate.

133. The composition of Claim 124 wherein said inhibitor compound is of the formula

wherein each of \mathbb{R}^{86} , \mathbb{R}^{87} and \mathbb{R}^{90} through \mathbb{R}^{93} is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, 15 · halo, cyano, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein R86 and R87 together may form oxo or thio; wherein r is a number selected from zero through six, inclusive; wherein each of R^{88} and R^{89} is 20 independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, 25 alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl.

each of R⁸⁶, R⁸⁷ and R⁹⁰ through R⁹³ is independently selected from hydrido, hydroxy, alkyl, phenalkyl, phenyl, alkoxy, benzyloxy, phenoxy, alkoxyalkyl, hydroxyalkyl, halo, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl and alkanoyl; wherein r is a number selected from zero through four, inclusive; wherein each of R⁸⁸ and R⁸⁹ is independently selected from hydrido, alkyl, amino, monoalkylamino, dialkylamino, phenyl and phenalkyl.

135. The composition of Claim 134 wherein each of R⁸⁶, R⁸⁷ and R⁹⁰ through R⁹³ is independently selected from hydrido, hydroxy, alkyl, alkoxy, amino, monoalkylamino, carboxy, carboxyalkyl and alkanoyl; and wherein r is anumber selected from zero through three, inclusive; and wherein each of R⁸⁸ and R⁸⁹ is selected from hydrido; alkyl, amino and monoalkylamino.

each of R⁹⁰ through R⁹³ is independently selected from hydrido and alkyl; wherein each of R⁸⁶ and R⁸⁷ is hydrido; wherein r is selected from zero, one and two; wherein R⁸⁸ is selected from hydrido, alkyl and amino; and wherein R⁸⁹ is selected from hydrido and alkyl.

137. The composition of Claim 136 wherein said inhibitor compound is 5-n-butylpicolinic acid hydrazide.

138. The composition of Claim 80 wherein
20 said dopamine-β-hydroxylase inhibitor compound is of
the formula

25

30

wherein each of R⁹⁴ through R⁹⁸ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkyl, aralkyl, aryl, aryloxy, alkoxy, alkylthio, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, amido, alkylamido, hydroxyamino,

30

٠..

carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, carboxyl, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, formoyl and alkoxycarbonyl; with the proviso that at least one of R⁹⁴ through R⁹⁸ is

wherein R⁹⁹ is selected from hydrido, alkyl, hydroxy, alkylthio, phenyl, phenoxy, benzyl, benzyloxy,

-OR¹⁰⁰ and -N , wherein R¹⁰⁰ is selected from

hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenyl
and benzyl and each of R¹⁰¹ and R¹⁰² is independently
selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl,
haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl,
aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino,
cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl,
alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein
t is a number selected from zero through four,
inclusive; or a pharmaceutically-acceptable salt
thereof.

25 139. The composition of Claim 138 wherein said inhibitor compound is of the formula

wherein each of R95 through R98 is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, phenyl, benzyl, alkoxy, phenoxy, benzyloxy, alkoxyalkyl, hydroxyalkyl, halo, cyano, amino, 5 monoalkylamino, dialkylamino, amido, alkylamido, hydroxyamino, carboxyl, carboxyalkyl, alkanoyl, cyanoamino, carboxyl, thiocarbamoyl, aminomethyl, nitro, formoyl, formyl and alkoxycarbonyl; and wherein R100 is selected from hydrido, alkyl, phenyl and benzyl. 10

140. The composition of Claim 139 wherein said inhibitor compound is selected from 5-n-butylpicolinic acid; 5-ethylpicolinic acid; 15 picolinic acid: 5-nitropicolinic acid; 5-aminopicolinic acid; 5-N-acetylaminopicolinic acid; 5-N-propionylaminopicolinic acid; 20 5-N-hydroxyaminopicolinic acid; 5-iodopicolinic acid; 5-bromopicolinic acid; 5-chloropicolinic acid; 5-hydroxypicolinic acid 25 5-methoxypicolinic acid; 5-N-propoxypicolinic acid; 5-N-butoxypicolinic acid; 5-cyanopicolinic acid; 5-carboxylpicolinic acid; 30 5-n-butyl-4-nitropicolinic acid; 5-n-butyl-4-methoxypicolinic acid; 5-n-butyl-4-ethoxypicolinic acid; 5-n-butyl-4-aminopicolinic acid; 5-n-butyl-4-hydroxyaminopicolinic acid; and 5-n-butyl-4-methylpicolinic acid.

35

15

- 141. The composition of Claim 140 wherein said inhibitor compound is 5-n-butylpicolinic acid.
- 142. The composition of Claim 80 wherein said dopamine- β -hydroxylase inhibitor compound is of the formula

wherein R^{103} is hydrido, hydroxy, alkyl, amino and alkoxy; wherein R^{104} is selected from hydrido, hydroxy and alkyl; wherein each of R^{105} and R^{106} is independently selected from hydrido, alkyl and phenalkyl; wherein R^{107} is selected from hydrido and

R¹⁰⁸C- with R¹⁰⁸ selected from alkyl, phenyl and
phenalkyl; wherein u is a number from one to three,
inclusive; and wherein v is a number from zero to
two, inclusive; or a pharmaceutically-acceptable salt
thereof.

- 143. The composition of Claim 142 wherein
 R103 is selected from hydroxy and lower alkoxy;
 wherein R104 is hydrido; wherein R105 is selected from
 hydrido and lower alkyl; wherein R106 is hydrido;
 wherein R107 is selected from hydrido and
- R¹⁰⁸ C- with R¹⁰⁸ selected from lower alkyl and phenyl; wherein u is two; and wherein v is a number from zero to two, inclusive.

144. The composition of Claim 143 wherein said inhibitor compound is of the formula

wherein R^{109} is selected from hydroxy and lower alkyl; wherein R^{105} is selected from hydrido and lower alkyl; wherein R^{107} is selected from hydrido and

- 10 0 || $R^{108}C$ with R^{108} selected from lower alkyl and phenyl and v is a number from zero to two, inclusive.
- 145. The composition of Claim 144 wherein R¹⁰⁹ is hydroxy; wherein R¹⁰⁵ is hydrido or methyl; wherein R¹⁰⁷ is hydrido or acetyl; and wherein n is a number from zero to two, inclusive.
- 146. The composition of Claim 145 wherein said inhibitor compound is 1-(3-mercapto-2-methyl-1-oxopropyl)-L-proline.
 - 147. The composition of Claim 79 wherein said precursor compound providing the second residue has a reactable acid moiety.

148. The composition of Claim 147 wherein said second residue precursor compound of said conjugate is selected from a class of glutamic acid derivatives of the formula

wherein each of R¹¹⁰ and R¹¹¹ may be independently selected from hydrido, alkylcarbonyl, alkoxycarbonyl, alkoxyalkyl, hydroxyalkyl and haloalkyl; and wherein G is selected from hydroxyl, halo, mercapto, -OR¹¹², -SR¹¹³ and >NR¹¹⁴ with each of R¹¹², R¹¹³ and R¹¹⁴ independently selected from hydrido and alkyl; with the proviso that said glutamic acid is selected such that formation of the cleavable amide bond occurs at the gamma-position carbon of said gamma-glutamic acid residue.

- 149. The composition of Claim 148 wherein said second residue precursor compound of said conjugate is the glutamic acid derivative gamma-glutamic acid.
 - 150. The composition of Claim 149 wherein ${\bf R}^{110}$ is hydrido, and ${\bf R}^{111}$ is selected from

- 151. The composition of Claim 150 wherein said second residue precursor compound of said conjugate is the glutamic acid derivative is N-acetyl- γ -glutamic acid.
- 5 152. The composition of Claim 80 wherein said conjugate comprises a first residue provided by a dopamine-β-hydroxylase inhibitor compound and a second residue provided by a gamma glutamic acid derivative.
- 153. The composition of Claim 152 wherein said dopamine-β-hydroxylase inhibitor is fusaric acid or fusaric acid hydrazide and said gamma glutamic acid derivative is N-acetyl-γ-glutamic acid.
- 154. The composition of Claim 153 wherein said conjugate is N-acetyl-γ-glutamyl fusaric acid hydrazide.
- related disorder or a sodium-retaining disorder, said method comprising administering to a patient afflicted with or susceptible to said disorder a therapeutically-effective amount of a conjugate comprising a first residue and a second residue, said first and second residues connected together by a cleavable bond, wherein said first residue is derived from an inhibitor compound capable of inhibiting biosynthesis of an adrenergic neurotransmitter, and wherein said second residue is capable of being cleaved from the first residue by an enzyme located predominantly in the kidney.

10

15

first and second residues are provided by precursor compounds wherein the precursor compound of one of said first and second residues has a reactable carboxylic acid moiety and the precursor of the other of said first and second residues has a reactable amino moiety or a moiety convertible to a reactable amino moiety, whereby a cleavable bond may be formed between said carboxylic acid moiety and said amino moiety.

157. The method of Claim 156 wherein said inhibitor compound providing said first residue is selected from tyrosine hydroxylase inhibitor compounds, dopa-decarboxylase inhibitor compounds, dopamine- β -hydroxylase inhibitor compounds, and mimics of said inhibitor compounds.

158. The method of Claim 157 wherein said tyrosine hydroxylase inhibitor compound is of the formula

20

25

30

35

wherein each of R¹ through R³ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aryloxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein R⁴ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl,

carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein R⁵ is selected from -OR⁶ and

5
$$-N < \frac{R^7}{R^8}$$
, wherein R^6 is selected from hydrido, alkyl,

cycloalkyl, cycloalkylalkyl, aralkyl and aryl, and wherein each of R⁷ and R⁸ is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfinyl; aralkyl; wherein m is a number selected from zero through six;

wherein A is a phenyl ring of the formula

20

25

30

wherein each of R⁹ through R¹³ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monbalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, carboxyl, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, carboxyalkoxy, formyl and a substituted or unsubstituted 5- or 6-membered heterocyclic ring selected from the group consisting of pyrrol-1-yl, 2-carboxy-pyrrol-1-yl, imidazol-2-ylamino, indol-1-yl, carbozol-

9-yl, 4,5-dihydro-4-hydroxy-4-trifluoromethylthiazol-3-yl, 4-trifluoromethylthiazol-2-yl, imidazol-2-yl and 4,5-dihydroimidazol-2-yl; wherein any two of the ${\bf R}^9$ through ${\bf R}^{1\,3}$ groups may be taken together to form a benzoheterocylic ring selected from the group consist-5 ing of indolin-5-yl, 1-(N-benzoylcarbamimidoyl)indolin-5-yl, 1-carbamimidoylindolin-5-yl, 1H-2-oxindol-5-yl, insol-5-yl, 2-mercaptobenzimidazol-5(6)-yl, 2-aminobenzimidazol-5-(6)-yl, 2-methanesulfonamido-10 benzimidazol-5(6)-yl, 1H-benzoxanol-2-on-6-yl, 2aminobenzothiazol-6-yl, 2-amino-4-mercaptobenzothiazol-6-yl, 2,1,3-benzothiadiazol-5-yl, 1,3-dihydro-2,2-dioxo-2,1,3-benzothiadiazol-5-yl, 1,3-dihydro-1,3-dimethyl-2,2-dioxo-2,1,3-benzothiadiazol-5-yl, 4-methyl-2(H)oxoquinolin-6-yl, quinoxalin-6-yl, 2-hydroxyquinoxalin-15 6-yl, 2-hydroxquinoxalin-7-yl, 2,3-dihydroxyquinoxalin-6-yl and 2,3-didydro-3(4H)-oxo-1,4-benzoxazin-7-yl; 5-hydroxy-4H-pyran-4-on-2-yl, 2-hydroxypyrid-4-yl, 2-aminopyrid-4-yl, 2-carboxypyrid-4-yl or tetrazolo-20 [1,5-a]pyrid-7-yl; and wherein A may be selected from

and
$$-N < \frac{R^{21}}{R^{22}}$$

25

35

wherein each of R¹⁴ through R²⁰ is independently selected from hydrido, alkyl, hydroxy, hydroxyalkyl, alkoxy, cycloalkyl, cycloalkylalkyl, halo, haloalkyl, aryloxy, alkoxycarboxyl, aryl, aralkyl, cyano, cyanoalkyl, amino, monoalkylamino and dialkylamino,

wherein each of R²¹ and R²² is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; or a pharmaceutically-acceptable salt thereof.

159. The method of Claim 158 wherein said inhibitor compound is of the formula

10

$$R^{10}$$
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{2}

wherein each of R¹ and R² is hydrido; wherein m is one; wherein R³ is selected from alkyl, alkenyl and alkynyl; wherein R⁴ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein R⁵ is selected from OR⁶ and

$$-N < \frac{R^7}{R^8}$$
 , wherein R^6 is selected from

hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenalkyl and phenyl, and wherein each of R⁷ and R⁸ is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino,

alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein each of R⁹ through R¹³ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxycarbonyl,

- alkoxycarbonyl, alkoxy, arykoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, pyrrol-1-yl 2-carboxypyrrol-1-yl, imidazol-2-ylamino, indol-1-yl,
- carbazol-9-yl, 4,5-dihydro-4-trifluoromethylthiazol-3-yl, 4-trifluoromethylthiazol-2-yl, imidazol-2-yl and 4,5-dihydroimidazol-2-yl, and wherein any two of the R⁹ through R¹³ groups may be taken together to form a benzoheterocyclic ring selected from the group
- consisting of indolin-5-yl, 1-(N-benzoylcarbamimidoyl)indolin-5-yl, 1-carbamimidoylindolin-5-yl, 1H-2oxindol-5-yl, indol-5-yl, 2-mercaptobenzimidazol-5(6)yl, 2-aminobenzimidazol-5-(6)-yl, 2-methanesulfonamidobenzimidazol-5(6)-yl, 1H-benzoxanol-2-on-6-yl, 2-amino-
- benzothiazol-6-yl, 2-amino-4-mercaptobenzothiazol-6-yl, 2,1,3-benzothiadiazol-5-yl, 1,3-dihydro-2,2-dioxo-2,1, 3-benzothiadiazol-5-yl, 1,3-dihydro-1,3-dimethyl-2,2-dioxo-2,1,3-benzothiadiazol-5-yl, 4-methyl-2(H)-oxoquinolin-6-yl, quinoxalin-6-yl, 2-hydroxyquinoxalin-
- 6-yl, 2-hydroxquinoxalin-7-yl, 2,3-dihydroxyquinoxalin-6-yl and 2,3-didydro-3(4H)-oxo-1,4-benzoxazin-7-yl; wherein R⁵ is -CH=CH₂ or -C=CH; wherein R⁶ is selected from hydrido, alkyl, hydroxy, hydroxyalkyl, alkoxy, halo, haloalkyl, cycloalkyl, cycloalkyl,
- aryl, aralkyl, amino, monoalkylamino, dialkylamino; and wherein each of R⁷ and R⁸ independently is selected from hydrido, alkyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, aryl and aralkyl; or a pharmaceutically-acceptable salt thereof.

```
The method of Claim 159 wherein said
      inhibitor compound is selected from the group consisting
      of
      4-cyanoamino-α-methylphenyalanine;
 5
      3-carboxy-α-methylphenylalanine;
      3-cyano-α-methylphenylalanine methyl ester;
      α-methyl-4-thiocarbamoylphenylalanine methyl ester;
      4-(aminomethyl)-\alpha-methylphenylalanine;
      4-guanidino-\alpha-methylphenylalanine;
      3-hydroxy-4-methanesulfonamido-a-methylphenylalanine;
10
      3-hydroxy-4-nitro-q-methylphenylalanine;
      4-amino-3-methanesulfonyloxy-α-methylphenylalanine;
      3-carboxymethoxy-4-nitro-α-methylphenylalanine;
      α-methyl-4-amino-3-nitrophenylalanine;
      3,4-diamino-a-methylphenylalanine;
15
      α-methyl-4-(pyrrol-1-yl)phenylalanine;
      4-(2-\text{aminoimidazol-l-yl})-\alpha-\text{methylphenylalanine};
      4-(imidazol-2-ylamino)-\alpha-methylphenylalanine;
      4-(4,5-dihydro-4-hydroxy-4-trifluoromethyl-thiazol-2-yl)-
20
        α-methylphenylalanine methyl ester;
      \alpha-methyl-4-(4-trifluoromethylthiazol-2-yl)phenylalanine;
      \alpha-methyl-3-(4-trifluoromethylthiazol-2-yl)-phenyl-
        alanine:
      4-(imidazol-2-yl)-α-methylphenylalanine;
25
      4-(4,5-dihydroimidazol-2-yl)-\alpha-methylphenylalanine;
      3-(imidazol-2-yl)-α-methylphenylalanine;
      3-(4,5-dihydroimidazol-2-yl)-\alpha-methylphenylalanine;
      4-(imidazol-2-yl)phenylalanine;
      4,5-dihydroimidazol-2-yl)phenylalanine;
30
      3-(imidazol-2-yl)phenylalanine;
      3-(2,3-dihydro-1H-indol-4-yl)-α-methylalanine;
      α-methyl-3-(1H-2-oxindol-5-yl)alanine;
      3-[1-(N-benzoylcarbamimidoyl)-2,3-dihydro-1H-
        indol-5-yl)]-a-methylalanine;
35
      3-(1-carbamimidoyl-2,3-dihydro-1H-indol-5-yl-\alpha-
```

```
methylalanine;
      3-(1H-indol-5-yl)-\alpha-methylalanine;
      3-(benzimidazol-2-thione-5-yl)-α-methylalanine;
      3-(2-aminobenzimidazol-5-yl-2-methylalanine;
      2-methyl-3-(benzoxazol-2-on-6-yl)alanine;
 5
      3-(2-aminobenzothiazol-6-yl)-2-methylalanine;
      3-(2-amino-4-mercaptobenzothiazol-6-yl)-2-
        methylalanine:
      3-(2-aminobenzothiazol-6-yl)alanine;
      2-methyl-3-(2,1,3-benzothiadiazol-5-yl)alanine;
10
      3-(1,3-dihydrobenzo-2,1,3-thiadiazol-5-yl)-2-
        methylalanine-2,2-dioxide;
      3-(1,3-dihydrobenzo-2,1,3-thiadiazol-5-yl)-2-methyl-
        alanine-2,2-dioxide methyl ester;
      3-(1,3-dihydrobenzo-2,1,3-thiadiaxol-5-yl)alanine
15
        2,2-dioxide;
      3-(1,3-dihydro-1,3-dimethylbenzo-2,1,3-thiadiazol-5-
        yl-)-2-methylalanine 2,2-dioxide;
      \alpha-methyl-3-[4-methyl-2(1H)-oxoquinolin-6-yl]alanine;
      3-[4-methyl-2(1H)-oxoquinolin-6-yl]alanine;
20
      2-methyl-3-(quinoxalin-6-yl)alanine;
      2-methyl-3-(2-hydroxyquinoxalin-6-yl)alanine;
      2-methyl-3-(2-hydroxyquinoxalin-7-yl)alanine;
      3-(2,3-dihydroxyquinoxalin-6-yl)-2-methylalanine;
25
      3-(quinoxalin-6-yl)alanine;
      3-(2,3-dihydroxyquinoxalin-6-yl)alanine;
      3-(1,4-benzoxazin-3-one-6-yl)-2-methylalanine;
      3-(1,4-benzoxazin-3-one-7-yl)alanine;
      3-(5-hydroxy-4H-pyran-4-on-2-yl)-2-methylalanine;
      3-(2-hydroxy-4-pyridyl)-2-methylalanine;
30
      3-(2-carboxy-4-pyridyl)-2-methylamine;
      α-methyl-4-(pyrrol-1-yl)phenylalanine;
      \alpha-ethyl-4-(pyrrol-1-yl)phenylalanine;
      α-propyl-4-(pyrrol-1-yl)phenylalanine;
35
     4-[2-(carboxy)pyrrol-1-yl)phenylalanine;
```

```
a-methyl-4-(pyrrol-l-yl)phenylalanine;
       3-hydroxy-α-methyl-4-(pyrrol-1-yl)phenylalanine;
       3-methoxy-α-methyl-4-(pyrrol-1-yl)phenylalanine;
       4-methoxy-\alpha-methyl-3-(pyrrol-1-yl)phenylalanine;
       4-(indol-1-yl)-α-methylphenylalanine;
 5
       4-(carbazol-9-yl)-\alpha-methylphenylalanine;
       2-methyl-3-(2-methanesulfonylamidobenzimidazol-
         5-yl)alanine;
       2-methyl-3-(2-amino-4-pyridyl)alanine;
10
       2-methyl-3[tetrazolo-(1,5)-α-pyrid-7-yl]alanine;
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-methyl)phenylalanine;
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-phenyl)phenylalanine;
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-benzyl)phenylalanine;
       D, L-\alpha-methyl-\beta-(4-methoxy-3-cyclohexyl)phenyl-
15
         alanine;
       \alpha, \beta, \beta-trimethyl-\beta-(3, 4-dihydroxyphenyl) alanine;
      \alpha, \beta, \beta-trimethyl-\beta-(4-hydroxyphenyl)alanine;
       N-methyl-\alpha, \beta, \beta-trimethyl-\beta-(3, 4-dihydroxphenyl)-
         alanine:
20
       D, L-\alpha, \beta, \beta-trimethyl-\beta-(3, 4-dihyroxyphenyl) alanine;
       \alpha, \beta, \beta-trimethyl-\beta-(3,4-dimethoxyphenyl)alanine;
       L-\alpha-methyl-\beta-3,4-dihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-3, 4-dihydroxyphenylalanine;
       L-\alpha-propyl-\beta-3,4-dihydroxyphenylalanine;
       L-\alpha-butyl-\beta-3,4-dihydroxyphenylalanine;
25
       L-\alpha-methyl-\beta-2,3-dihydroxphenylalanine;
       L-\alpha-ethyl-\beta-2, 3-dihydroxphenylalanine;
       L-\alpha-propyl-\beta-2,3-dihydroxphenylalanine;
       L-\alpha-butyl-\beta-2,3-dihydroxphenylalanine;
30
       L-α-methyl-4-chloro-2,3-dihydroxyphenylalanine;
       L-\alpha-ethyl-4-chloro-2,3-dihydroxyphenylalanine;
       L-\alpha-propyl-4-chloro-2,3-dihydroxyphenylalanine;
       L-α-butyl-4-chloro-2,3-dihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-4-methyl-2,3-dihydroxyphenylalanine;
35
       L-\alpha-methyl-\beta-4-methyl-2,3-dihydroxyphenylalanine;
```

```
L-\alpha-propyl-\beta-4-methyl-2,3-dihydroxyphenylalanine;
       L-\alpha-butyl-\beta-4-methyl-2,3-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-4-fluoro-2,3-dihydroxyphenylalanine;
       L-\alpha-e thyl-\beta-4-fluoro-2,3-dihydroxyphenylalanine;
       L-\alpha-propyl-\beta-4-fluoro-2,3-dihydroxyphenylalanine;
  5
       L-\alpha-butyl-\beta-4-fluoro-2,3-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-4-trifluoromethyl-2,3-dihydroxyphenyl-
          alanine
       L-\alpha-ethyl-\beta-4-trifluoromethyl-2,3-dihydroxyphenyl-
10
          alanine
       L-\alpha-propyl-\beta-4-trifluoromethyl-2,3-dihydroxyphenyl-
          alanine
       L-\alpha-butyl-\beta-4-trifluoromethyl-2,3-dihydroxyphenyl-
          alanine
       L-\alpha-methyl-\beta-3, 5-dihydroxyphenylalanine;
15
       L-\alpha-ethyl-\beta-3,5-dihydroxyphenylalanine;
       L-\alpha-propyl-\beta-3,5-dihydroxyphenylalanine;
       L-\alpha-butyl-\beta-3,5-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-4-chloro-3,5-dihydroxphenylalanine;
       L-\alpha-ethyl-\beta-4-chloro-3, 5-dihydroxphenylalanine;
20
       L-\alpha-propyl-\beta-4-chloro-3,5-dihydroxphenylalanine;
       L-\alpha-butyl-\beta-4-chloro-3,5-dihydroxphenylalanine;
       L-\alpha-methyl-\beta-4-fluoro-3,5-dihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-4-fluoro-3,5-dihydroxyphenylalanine;
       L-\alpha-propyl-\beta-4-fluoro-3,5-dihydroxyphenylalanine;
25
       L-\alpha-butyl-\beta-4-fluoro-3,5-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-4-trifluoromethyl-3,5-dihydroxyphenyl-
         alanine;
      L-\alpha-ethyl-\beta-4-trifluoromethyl-3,5-dihydroxyphenyl-
30
         alanine;
      L-\alpha-propyl-\beta-4-trifluoromethyl-3,5-dihydroxyphenyl-
         alanine:
      L-\alpha-butyl-\beta-4-trifluoromethyl-3,5-dihydroxyphenyl-
         alanine:
      L-\alpha-methyl-2,5-dihydroxphenylalanine;
35
```

```
L-\alpha-ethyl-2, 5-dihydroxphenylalanine;
       L-\alpha-propyl-2,5-dihydroxphenylalanine;
       L-α-butyl-2,5-dihydroxphenylalanine;
       L-\alpha-methyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
 5
       L-\alpha-propyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
       L-\alpha-butyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
       L-\alpha-propyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
10
       L-\alpha-butyl-\beta-4-chloro-2,5-dihydroxyphenylalanine;
       L-\alpha-methyl-\beta-methyl-2,5-dihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-methyl-2, 5-dihydroxyphenylalanine;
       L-\alpha-propyl-\beta-methyl-2,5-dihydroxyphenylalanine;
       L-\alpha-butyl-\beta-methyl-2,5-dihydroxyphenylalanine;
15
       L-\alpha-methyl-\beta-4-trifluoromethyl-2,5-dihydroxyphenyl-
         alanine:
       L-\alpha-ethyl-\beta-4-trifluoromethyl-2,5-dihydroxyphenyl-
         alanine:
20
       L-\alpha-propyl-\beta-4-trifluoromethyl-2,5-dihydroxyphenyl-
         alanine:
       L-\alpha-butyl-\beta-4-trifluoromethyl-2,5-dihydroxyphenyl-
         alanine:
       L-\alpha-methyl-\beta-3,4,5-trihydroxyphenylalanine;
25
       L-\alpha-ethyl-\beta-3,4,5-trihydroxyphenylalanine;
       L-\alpha-propyl-\beta-3,4,5-trihydroxyphenylalanine;
       L-\alpha-butyl-\beta-3,4,5-trihydroxyphenylalanine;
       L-\alpha-methyl-\beta-2,3,4-trihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-2,3,4-trihydroxyphenylalanine;
       L-\alpha-propyl-\beta-2,3,4-trihydroxyphenylalanine;
30
       L-\alpha-butyl-\beta-2,3,4-trihydroxyphenylalanine;
       L-\alpha-methyl-\beta-2,4,5-trihydroxyphenylalanine;
       L-\alpha-ethyl-\beta-2,4,5-trihydroxyphenylalanine;
       L-\alpha-propyl-\beta-2,4,5-trihydroxyphenylalanine;
35
       L-\alpha-butyl-\beta-2,4,5-trihydroxyphenylalanine;
```

```
L-phenylalanine;
       D, L-α-methylphenylalanine;
       D, L-3-iodophenylalanine;
       D, L-3-iodo-\alpha-methylphenylalanine;
  5
        3-iodotyrosine;
       3,5-diiodotyrosine;
       L-\alpha-methylphenylalanine;
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-methylphenyl)alanine;
       D, L-\alpha-methyl-\beta-(4-methoxy-3-benzylphenyl)alanine;
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-benzylphenyl)alanine;
10
       D, L-\alpha-methyl-\beta-(4-methoxy-3-cyclohexylphenyl)alanine;
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-cyclohexylphenyl)alanine;
       D, L-\alpha-methyl-\beta-(4-methoxy-3-methylphenyl)alanine;
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-methylphenyl)alanine;
15
       N,O-dibenzyloxycarbonyl-D,L-\alpha-methyl-\beta-(4-hydroxy-3-
         methylphenyl)alanine;
       N,O-dibenzyloxycarbonyl-D,L-\alpha-methyl-\beta-(4-hydroxy-3-
         methylphenyl)alanine amide;
       D, L-\alpha-methyl-\beta-(4-hydroxy-3-methylphenyl)-
20
         alanine amide;
       N, O-diacetyl-D, L-\alpha-methyl-\beta-(4-hydroxy-3-methyl-
         phenyl)alanine;
      D, L-N-acetyl-\alpha-methyl-\beta-(4-hydroxy-3-methylphenyl)-
         alanine:
      L-3,4-dihydroxy-\alpha-methylphenylalanine;
25
      L-4-hydroxy-3-methoxy-\alpha-methylphenylalanine;
      L-3,4-methylene-dioxy-\alpha-methylphenylalanine;
      2-vinyl-2-amino-3-(2-methoxyphenyl)propionic acid;
      2-vinyl-2-amino-3-(2,5-dimethoxyphenyl)propionic acid;
      2-vinyl-2-amino-3-(2-imidazolyl)propionic acid;
30
      2-vinyl-2-amino-3-(2-methoxyphenyl)propionic acid
         ethyl ester;
      \alpha-methyl-\beta-(2,5-dimethoxyphenyl)alanine;
      \alpha-methyl-\beta-(2,5-dihydroxyphenyl)alanine;
      \alpha-ethyl-\beta-(2,5-dimethoxyphenyl)alanine;
35
```

```
\alpha-ethyl-\beta-(2,5-dihydroxyphenyl)alanine;
      \alpha-methyl-\beta-(2,4-dimethoxyphenyl)alanine;
      \alpha-methyl-\beta-(2,4-dihydroxyphenyl)alanine;
      \alpha-ethyl-\beta-(2,4-dimethoxyphenyl)alanine;
      \alpha-ethyl-\beta-(2,4-dihydroxyphenyl)alanine;
 5
      \alpha-methyl-\beta-(2,5-dimethoxyphenyl)alanine
         ethyl ester:
      2-ethynyl-2-amino-3-(3-indolyl)propionic acid;
      2-ethynyl-2,3-(2-methoxyphenyl)propionic acid;
      2-ethynyl-2,3-(5-hydroxyindol-3-yl)propionic acid;
10
      2-ethynyl-2-amino-3-(2,5-dimethoxyphenyl)propionic acid;
      2-ethynyl-2-amino-3-(2-imidazolyl)propionic acid;
      2-ethynyl-2-amino-3-(2-methoxyphenyl)propionic acid
         ethyl ester;
      3-carbomethoxy-3-(4-benzyloxybenzyl)-3-aminoprop-1-yne;
15
      \alpha-ethynyltyrosine hydrochloride;
      a-ethynyltyrosine;
      α-ethynyl-m-tyrosine;
      \alpha-ethynyl-\beta-(2-methoxyphenyl)alanine;
20
      \alpha-ethynyl-\beta-(2,5-dimethoxyphenyl)alanine; and
      \alpha-ethynylhistidine.
                 161. The method of Claim 159 wherein at least
```

one of \mathbb{R}^{10} , \mathbb{R}^{11} and \mathbb{R}^{12} is selected from hydroxy, alkoxy, aryloxy, aralkoxy and alkoxycarbonyl.

162. The method of Claim 161 wherein said inhibitor compound is selected from the group consisting of α-methyl-3-(pyrrol-1-yl)tyrosine; α-methyl-3-(4-trifluoromethylthiazol-2-yl)tyrosine; 3-(imidazol-2-yl)-α-methyltyrosine; L-α-methyl-m-tyrosine; L-α-ethyl-m-tyrosine; L-α-propyl-m-tyrosine;

```
L-α-butyl-m-tyrosine;
      L-α-methyl-p-chloro-m-tyrosine;
      L-α-ethyl-p-chloro-m-tyrosine;
      L-α-butyl-p-chloro-m-tyrosine;
 5
      L-α-methyl-p-bromo-m-tyrosine;
      L-α-ethyl-p-bromo-m-tyrosine;
      L-α-butyl-p-bromo-m-tyrosine;
      L-α-methyl-p-fluoro-m-tyrosine;
      L-α-methyl-p-iodo-m-tyrosine;
      L-\alpha-ethyl-p-iodo-m-tyrosine;
10
      L-α-methyl-p-methyl-m-tyrosine;
      L-\alpha-methyl-p-ethyl-m-tyrosine;
      L-\alpha-ethyl-p-ethyl-m-tyrosine;
      L-\alpha-ethyl-p-methyl-m-tyrosine;
      L-\alpha-methyl-p-butyl-m-tyrosine;
15
      L-a-methyl-p-trifluoromethyl-m-tyrosine;
      L-3-iodotyrosine;
      L-3-chlorotyrosine:
      L-3,5-diiodotyrosine;
20
      L-α-methyltyrosine;
      D, L-α-methyltyrosine;
      D, L-3-iodo-\alpha-methyltyrosine;
      L-3-bromo-\alpha-methyltyrosine;
      D, L-3-bromo-\alpha-methyltyrosine;
25
      L-3-chloro-\alpha-methyltyrosine;
      D, L-3-chloro-α-methyltyrosine; and
      2-vinyl-2-amino-3-(4-hydroxyphenyl)propionic acid.
```

163. The method of Claim 158 wherein said inhibitor compound is of the formula

30

$$R^{10}$$
 R^{9}
 R^{3}
 C
 C
 C
 R^{5}
 R^{10}
 R^{10}

15

20

25

wherein R³ is selected from alkyl, alkenyl and alkynyl; wherein R⁴ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein m is a number selected from zero through five, inclusive; wherein R⁵ is selected from OR⁶ and

-N R^7 , wherein R^6 is selected from

hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenalkyl and phenyl, and wherein each of R⁷ and R⁸ is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein each of R⁹ through R¹³ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkyl, aralkyl, aryl, alkoxycarbonyl, alkoxy, aryloxy, aralkoxy, alkoxyalkyl, haloalkyl, alkoxycarbonyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl.

164. The method of Claim 163 wherein at least one of \mathbb{R}^{10} , \mathbb{R}^{11} and \mathbb{R}^{12} is selected from hydroxy, alkoxy, aryloxy, aralkoxy and alkoxycarbonyl.

165. The method of Claim 164 wherein said inhibitor compound is selected from the group consisting of methyl(+)-2-(4-hydroxyphenyl)glycinate; isopropyl and 3-methyl butyl esters of (+)-2-(4-hydroxyphenyl)-glycine; (+)-2-(4-hydroxyphenyl)glycine;

(-)-2-(4-hydroxyphenyl)glycine; (+)-2-(4-methoxyphenyl-glycine; and (+)-2-(4-hydroxyphenyl)glycinamide.

166. The method of Claim 158 wherein said inhibitor compound is of the formula

wherein each of \mathbb{R}^1 and \mathbb{R}^2 is hydrido; wherein \mathbb{R}^3 is selected from alkyl, alkenyl and alkynyl; wherein R4 is selected from hydrido, alkyl, cycloalkyl, hydroxy-15 alkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein m is a number selected from zero 20 through five, inclusive; wherein each of R14 through R¹⁷ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cyclo-alkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, 25 carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, carboxyl, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, carboxyalkoxy and formyl.

167. The method of Claim 166 wherein said
inhibitor compound is selected from the group
consisting of
L-α-methyltryptophan;
D,L-5-methyltryptophan;
D,L-5-chlorotryptophan;

D, L-5-bromotryptophan;

D, L-5-iodotryptophan;

L-5-hydroxytryptophan;

D, L-5-hydroxy-α-methyltryptophan;

a-Ethynyltryptophan;

5-Methoxymethoxy-α-ethynyltryptophan; and

5-Hydroxy- α -ethynyltryptophan.

168. The method of Claim 158 wherein A is

10 $-N \stackrel{R^{21}}{\underset{R^{22}}{}}$, and m is a number selected from zero to three, inclusive.

169. The method of Claim 168 wherein said inhibitor compound is selected from the group consisting of 2-vinyl-2-amino-5-aminopentanoic acid and 2-ethynyl-2-amino-5-aminopentanoic acid.

170. The method of Claim 158 wherein said inhibitor compound is of the formula

wherein each of R^{23} and R^{24} is independently selected from hydrido, hydroxy, alkyl, cycloakyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy,

aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein R25 is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, 5 alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein each of R^{26} through R³⁵ is independently selected from hydrido, 10 hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, 15 alkenyl, cycloalkenyl, alkynyl, cyanoamino, carboxyl, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, alkoxy and formyl; wherein n is a number selected from zero to five, inclusive; or a pharmacuetically-acceptable salt thereof.

20 171. The method of Claim 170 wherein said inhibitor compound is benzoctamine.

172. The method of Claim 157 wherein said inhibitor compound is a dopa-decarboxylase inhibitor of the formula

wherein each of R^{36} through R^{42} is independently selected from hydrido, hydroxy, alkyl, cycloalkyl,

cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, cyano, thiocarbamoyl, 5 aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, carboxyalkoxy and formyl; wherein n is a whole number from zero through four; wherein each of R^{43} and R^{44} is independently selected from hydrido, alkyl, 10 cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl, arylsulfonyl, alkenyl, cycloalkenyl 15 and alkynyl, with the proviso that R43 and R44 cannot both be carboxyl at the same time, and with the further proviso that at least one of R^{43} through R^{44} is a primary or secondary amino group; or a pharmaceutically-acceptable salt thereof.

20 The method of Claim 172 wherein each of 173. ${\bf R^{36}}$ through ${\bf R^{42}}$ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, 25 alkenyl, cycloalkenyl, alkynyl, cyanoamino, cyano, aminomethyl, carboxyalkoxy and formyl; wherein n is a whole number from one through three; wherein each of $\mathbb{R}^{4\,3}$ and $\mathbb{R}^{4\,4}$ is independently selected from 30 hydrido, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxyalkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl and alkanoyl.

174. The method of Claim 173 wherein each of R³⁶ through R⁴² is independently selected from hydrido, hydroxy, alkyl, benzyl, phenyl, alkoxy, benzyloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, cyanoamino, cyano, aminomethyl, carboxyl, carboxyalkoxy and formyl; wherein n is one or two; wherein each of R⁴³ and R⁴⁴ is independently selected from hydrido, alkyl, benzyl, phenyl, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl and alkanoyl.

175. The method of Claim 174 wherein each of R³⁶ through R⁴² is independently selected from hydrido, hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl, carboxyalkyl, aminomethyl, carboxyalkoxy and formyl; wherein n is one or two; wherein each of R⁴³ and R⁴⁴ is independently selected from hydrido, alkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl and carboxyalkyl.

176. The method of Claim 175 wherein each of R³⁶ and R⁴² is hydrido and n is one; wherein each of R³⁸ through R⁴² is independently selected from hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl, carboxyalkyl, aminomethyl, carboxyalkoxy and formyl; wherein each of R⁴³ and R⁴⁴ is independently selected from hydrido, alkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl and carboxyalkyl.

25

177. The method of Claim 176 wherein said inhibitor compound is selected from (2,3,4-trihydroxy)-benzylhydrazine; 1-(D,L-seryl-2-(2,3,4-trihydroxybenzyl)-hydrazine; and 1-(3-hydroxylbenzyl)-1-methylhydrazine.

178. The method of Claim 175 wherein each of R³⁶ and R³⁷ is independently selected from hydrido, alkyl and amino and n is two; wherein each of R³⁸ through R⁴² is independently selected from hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl, carboxyalkyl, aminomethyl, carboxyalkoxy and formyl; wherein each of R⁴³ and R⁴⁴ is independently selected from hydrido, alkyl, haloalkyl, hydroxyalkyl, amino, monoalkylamino, carboxyl and carboxyalkyl.

179. The method of Claim 178 wherein said inhibitor compound is selected from 2-hydrazino-2-methyl-3-(3,4-dihydroxyphenyl)propionic acid; α-(monofluoromethyl)dopa; and α-(difluoromethyl)dopa.

180. The method of Claim 157 wherein said inhibitor compound is a dopa-decarboxylase inhibitor of the formula

wherein each of R45 through R48 is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, 5 amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, cyano, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, carboxyalkoxy and formyl; wherein each of ${\bf R}^{4\,9}$ and ${\bf R}^{5\,0}$ is independently selected 10 from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, 15 alkynyl and

C | CR⁵¹ wherein R⁵¹ is selected from hydroxy, alkoxy, aryloxy, aralkoxy, amino, monoalkylamino and dialkylamino; with the proviso that R⁴⁹ and R⁵⁰ cannot both be carboxyl at the same time, and with the further proviso that at least one of R⁴⁵ through R⁴⁸ is a primary or secondary amino group or a carboxyl group; or a pharmaceutically-acceptable salt thereof.

181. The method of Claim 180 wherein each of R45 through R48 is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, cyano, aminomethyl, carboxyalkoxy and formyl; wherein each of R49 and R50 is independently selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano,

amino, monoalkylamino, dialkylamino, carboxyalkyl and alkanoyl and

O
||
5 -CR⁵¹ wherein R⁵¹ is selected from hydroxy, alkoxy,
phenoxy, benzyloxy, amino, monoalkylamino and
dialkylamino.

182. The method of Claim 181 wherein each of R⁴⁵ through R⁴⁸ is independently selected from hydrido, hydroxy, alkyl, benzyl, phenyl, alkoxy, benzyloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, cyanoamino, cyano, aminomethyl, carboxyalkoxy and formyl; wherein each of R⁴⁹ and R⁵⁰ is independently selected from hydrido, alkyl, benzyl, phenyl, alkoxyalkyl, haloalkyl, hydroxyalkyl, cyano, amino, monoalkylamino, dialkylamino, carboxyalkyl and alkanoyl and

183. The method of Claim 182 wherein each of
R45 through R48 is independently selected from hydrido,
hydroxy, alkyl, alkoxy, haloalkyl, hydroxyalkyl, amino,
monoalkylamino, carboxyl, carboxyalkyl aminomethyl,
carboxyalkoxy and formyl; wherein each of R49 and R50
is independently selected from hydrido alkyl, amino,
monoalkylamino, carboxyalkyl and

O \parallel -CR⁵¹ wherein R⁵¹ is selected from hydroxy, alkoxy, amino and monoalkylamino.

5.

10

184. The method of Claim 183 wherein each of R⁴⁵ through R⁴⁸ is independently selected from hydrido, hydroxy, alkyl, alkoxy and hydroxyalkyl; wherein each of R⁴⁹ and R⁵⁰ is independently selected from alkyl, amino, monoalkylamino, and

O || -CR⁵¹ wherein R⁵¹ is selected from hydroxy, methoxy, ethoxy, propoxy, butoxy, amino, methylamino and ethylamino.

185. The method of Claim 184 wherein said inhibitor compound is selected from endo-2-amino-1,2,3,4-tetrahydro-1,4-ethanonaphthalene-2-carboxylic acid;

- ethyl-endo-2-amino-1,2,3,4-tetrahydro-1,4-ethanonaphthalene-2-carboxylate hydrochloride; exo-2-amino-1,2,3,4-tetrahydro-1,4-ethanonaphthalene-2-carboxylic acid; and
- ethyl-exo-2-amino-1,2,3,4-tetrahydro-1,4-ethanonaphthalene-2-carboxylate hydrochloride.
 - 186. The method of Claim 157 wherein said inhibitor compound is a dopa-decarboxylase inhibitor selected from
 - 2,3-dibromo-4,4-bis(4-ethylphenyl)-2-butenoic acid;
- 3-bromo-4-(4-methoxyphenyl)-4-oxo-2-butenoic acid;
 - N-(5'-phosphopyridoxyl)-L-3,4-dihydroxyphenylalanine;
 - N-(5'-phosphopyridoxyl)-L-m-aminotyrosine;
 - D, L-β-(3,4-dihydroxyphenyl)lactate;
 - D, L-β-(5-hydroxyindolyl-3)lactate;
- 30 2,4-dihydroxy-5-(1-oxo-2-propenyl)benzoic acid;
 - 2,4-dimethoxy-5-[1-oxo-3-(2,3,4-trimethoxyphenyl-2-propenyl]benzoic acid;
 - 2,4-dihydroxy-5-[1-oxo-3-(2-thienyl)-2-propenyl] benzoic acid;

20

- 2,4-dihydroxy-5-[3-(4-hydroxyphenyl)-1-oxo-2-propenyl] benzoic acid;
- 5-[3-(4-chlorophenyl)-1-oxo-2-propenyl]-2,4-dihydroxy benzoic acid;
- 5 2,4-dihydroxy-5-(1-oxo-3-phenyl-2-propenyl)benzoic acid;
 - 2,4-dimethoxy-5-[1-oxo-3-(4-pyridinyl)-2-propenyl]
 benzoic acid;
 - 5-[3-(3,4-dimethoxyphenyl)-1-oxo-2-propenyl]-2,4 dimethoxy benzoic acid;
 - 2,4-dimethoxy-5-(1-oxo-3-phenyl-2-propenyl)benzoic acid;
 - 5-[3-(2-furanyl)-1-oxo-2-propenyl]-2,4-dimethoxy benzoic acid;
- 2,4-dimethoxy-5-[1-oxo-3-(2-thienyl)-2-propenyl] benzoic acid;
 - 2,4-dimethoxy-5-[3-(4-methoxyphenyl)-1-oxo-2-propenyl]
 benzoic acid;
 - 5-[3-(4-chlorophenyl)-1-oxo-2-propenyl]-2,4-dimethoxy benzoic acid; and
 - 5-[3-[4-(dimethylamino)phenyl]-1-oxo-2-propenyl]-2,4 dimethoxy benzoic acid.

187. The method of Claim 157 wherein said inhibitor compound is a dopa-decarboxylase inhibitor of the formula

- 1

wherein $R^{5\,2}$ is selected from hydrido, $OR^{6\,4}$ and $-N < R^{6\,5}$, wherein $R^{6\,4}$ is selected from

- 5 hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenalkyl and phenyl, and wherein each of $R^{6\,5}$ and $R^{6\,6}$ is independently selected from hydrido, alkyl, alkanoyl, amino, monoalkylamino, dialkylamino, phenyl and phenalkyl; wherein each of \mathbb{R}^{53} , \mathbb{R}^{54} and \mathbb{R}^{57} through $R^{6\,3}$ is independently selected from hydrido, 10 hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxycarbonyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein each of R⁵⁵ and R⁵⁶ is independently 15 selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxyalkyl, haloalkyl, hydroxyalkyl and carboxyalkyl; wherein each of m and n is a number independently selected from zero through six, inclusive; or a 20 pharmaceutically-acceptable salt thereof.
- is OR⁶⁴ wherein R⁶⁴ is selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, benzyl and phenyl;
 wherein each of R⁵³, R⁵⁴ and R⁵⁷ through R⁶³ is independently selected from hydrido, alkyl, cycloalkyl, hydroxy, alkoxy, benzyl and phenyl; wherein each of R⁵⁵ and R⁵⁶ is independently selected from hydrido, alkyl, cycloalkyl, benzyl and phenyl; wherein each of m and n is a number independently selected from zero through three, inclusive.
 - 189. The method of Claim 188 wherein R⁵² is OR⁶⁴ wherein R⁶⁴ is selected from hydrido and lower alkyl; wherein each of R⁵³ through R⁵⁸ is hydrido; wherein each of R⁵⁹ through R⁶³ is

independently selected from hydrido, alkyl, hydroxy and alkoxy, with the proviso that two of the R⁵⁹ through R⁶³ substituents are hydroxy; wherein each of m and n is a number independently selected from zero through two, inclusive.

190. The method of Claim 189 wherein said inhibitor compound is 3-(3,4-dihydroxyphenyl)-2-propenoic acid.

191. The method of Claim 180 wherein said dopa-decarboxylase inhibitor is a compound selected from amino-haloalkyl-hydroxyphenyl propionic acids; alpha-halomethyl-phenylalanine derivatives; and indole-substituted halomethylamino acids.

192. The method of Claim 180 wherein said dopa-decarboxylase inhibitor is a compound selected from isoflavone extracts from fungi and streptomyces; sulfinyl substituted dopa and tyrosine derivatives; hydroxycoumarin derivatives; l-benzylcyclobutenyl alkyl carbamate derivatives; aryl/thienyl-hydroxylamine derivatives; and β -2-substituted-cyclohepta-pyrrol-8-1H-on-7-yl alanine derivatives.

193. The method of Claim 157 wherein said dopamine- β -hydroxylase inhibitor compound is of the formula

25

15

20

$$\begin{array}{c|c}
R^{67} \\
\hline
C \\
R^{68} \\
\end{array}$$

$$\begin{array}{c}
R^{69} \\
\end{array}$$

30

wherein B is selected from an ethylenic moiety, an acetylenic moiety and an ethylenic or acetylenic moiety substituted with one or more radicals selected

25

from substituted or unsubstituted alkyl, aryl and heteroaryl; wherein each of R⁶⁷ and R⁶⁸ is independently selected from hydrido and alkyl; wherein R⁶⁹ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; and wherein n is a number selected from one through five.

- 194. The method of Claim 193 wherein B is an ethylenic or an acetylenic moiety substituted with an aryl or heteroaryl radical; and wherein n is a number from one through three.
- 195. The method of Claim 193 wherein B is an ethylenic or acetylenic moiety incorporating carbon atoms in the beta- and gamma-positions relative to the nitrogen atom; and wherein n is one.
- 196. The method of Claim 195 wherein said ethylenic or acetylenic moiety is substituted at the gamma carbon with an aryl or heteroaryl radical.
 - 197. The method of Claim 196 wherein said aryl radical is selected from phenyl, 2-thiophene, 3-thiophene, 2-furanyl, 3-furanyl, oxazolyl, thiazolyl and isoxazolyl, any one of which radicals may be substituted with one or more groups selected from halo, hydroxyl, alkyl, haloalkyl, cyano, alkoxy, alkoxyalkyl and cycloalkyl.
- 198. The method of Claim 197 wherein said aryl radical is selected from phenyl, hydroxyphenyl, 2-thiophene and 2-furanyl; and wherein each of R⁶⁷, R⁶⁸ and R⁶⁹ is hydrido.

199. The method of Claim 198 wherein said inhibitor compound is selected from the group consisting of

3-amino-2-(2'-thienyl)propene;

5 3-amino-2-(2'-thienyl)butene;

3-(N-methylamino)-2-(2'-thienyl)propene;

3-amino-2-(3'-thienyl)propene;

3-amino-2-(2'-furanyl)propene;

3-amino-2-(3'-furanyl)propene;

10 1-phenyl-3-aminopropyne; and

3-amino-2-phenylpropene.

200. The method of Claim 198 wherein said inhibitor compound is selected from the group consisting of

- 15 (±)4-amino-3-phenyl-1-butyne;
 - (±)4-amino-3-(3'-hydroxyphenyl)-1-butyne;
 - (±)4-amino-3-(4'-hydroxyphenyl)-1-butyne;
 - (±)4-amino-3-phenyl-1-butene;
 - (±)4-amino-3-(3'-hydroxyphenyl)-1-butene; and
- (\pm)4-amino-3-(4'-hydroxyphenyl)-1-butene.

201. The method of Claim 157 wherein said inhibitor compound is of the formula

0 || W-C-V

25

wherein W is selected from alkyl, cycloalkyl, alkenyl, alkynyl, cycloalkenyl, cycloalkynyl, cycloalkylalkyl, aryl, aralkyl, heterocycloalkyl and heteroaryl; wherein Y is selected from

30

wherein R⁷⁰ is selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl,

15

20

aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein each of Q and T is one or more groups independently selected from

wherein each of R⁷¹ through R⁷⁴ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; or a pharmaceutically-acceptable salt thereof.

202. The method of Claim 201 wherein W is heteroaryl and Y is

wherein R⁷⁰ is selected from hydrido, alkyl, amino, monoalkylamino, dialkylamino, phenyl and phenalkyl; wherein each of R⁷¹ and R⁷² is independently selected from hydrido, hydroxy, alkyl, phenalkyl, phenyl, alkoxy, benzyloxy, phenoxy, alkoxyalkyl, hydroxyalkyl, halo, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl and alkanoyl; and

30

wherein each of p and q is a number independently selected from one through six, inclusive.

203. The method of Claim 202 wherein R⁷⁰ is selected from hydrido, alkyl, amino and monoalkylamino; wherein each of R⁷¹ and R⁷² is independently selected from hydrido, hydroxy, alkyl, alkoxy, amino, monoalkylamino, carboxy, carboxyalkyl and alkanoyl; and wherein each of p and q is a number indpendently selected from two through four, inclusive.

204. The method of Claim 203 wherein R⁷⁰ is selected from hydrido, alkyl and amino; wherein each of R⁷¹ and R⁷² is independently selected from hydrido, amino, monoalkylamino and carboxyl; and wherein each of p and q is independently selected from the numbers two and three.

205. The method of Claim 204 wherein R^{70} is hydrido; wherein each of R^{71} and R^{72} is hydrido; and wherein each of p and q is two.

206. The method of Claim 157 wherein said inhibitor compound is of the formula

wherein E is selected from alkyl, cycloalkyl,
alkenyl, alkynyl, cycloalkenyl, cycloalkynyl,
cycloalkylalkyl, aryl, aralkyl, heterocycloalkyl and
heteroaryl; wherein F is selected from

wherein Z is selected from O, S and N-R⁷⁸; wherein each of \mathbf{R}^{75} and \mathbf{R}^{76} is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, 5 amino, minoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; wherein R⁷⁵ and R⁷⁶ may form oxo or thio; wherein r is a number selected from zero through six, inclusive; wherein each of $R^{7\,7}$ and $R^{7\,8}$ 10 is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, 15 arylsulfinyl and arylsulfonyl; or a pharmaceuticallyacceptable salt thereof.

207. The method of Claim 157 wherein said dopamine-β-hydroxylase inhibitor compound is of the formula

wherein each of R⁸² through R⁸⁵ is independently

selected from hydrido, alkyl, haloalkyl, mercapto,
alkylthio, cyano, alkoxy, alkoxyalkyl and cycloalkyl;
wherein Y is selected from oxygen atom and sulfur
atom; wherein each of R⁷⁹ and R⁸⁰ is independently
selected from hydrido and alkyl; wherein R⁵⁹ is

selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl,
haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl,

10

aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; and wherein m is a number from one through six; or a pharmaceutically-acceptable salt thereof.

208. The method of Claim 207 wherein each of R⁸² through R⁸⁵ is independently selected from hydrido, alkyl and haloalkyl; wherein Y is selected from oxygen atom or nitrogen atom; wherein each of R⁷⁹, R⁸⁰ and R⁸¹ is independently hydrido and alkyl; and wherein m is a number selected from one through four, inclusive.

209. The method of Claim 208 wherein said inhibitor compound is selected from aminomethyl-5-n-butylthiopicolinate; 15 aminomethyl-5-n-butylpicolinate; 2'-aminoethyl-5-n-butylthiopicolinate; 2'-aminoethyl-5-n-butylpicolinate; (2'-amino-1',1'-dimethyl)ethyl-5-n-butylthiopicolinate; (2'-amino-1',1'-dimethyl)ethyl-5-n-butylpicolinate; 20 (2'-amino-l'-methyl)ethyl-5-n-butylthiopicolinate; (2'-amino-1'-methyl)ethyl-5-n-butylpicolinate; 3'-aminopropyl-5-n-butylthiopicolinate; 3'-aminopropyl-5-n-butylpicolinate; 25 (2'-amino-2'-methyl)propyl-5-n-butylthiopicolinate; (2'-amino-2'-methyl)propyl-5-n-butylpicolinate; (3'-amino-1',1'-dimethyl)propyl-5-n-butylthiopicolinate; (3'-amino-1',1'-dimethyl)propyl-5-n-butylpicolinate: (3'-amino-2',2'-dimethyl)propyl-5-n-butylthiopicolinate; (3'-amino-2',2'-dimethyl)propyl-5-n-butylpicolinate; 30 2'-aminopropyl-5-n-butylthiopicolinate; 2'-aminopropyl-5-n-butylpicolinate; 4'-aminobutyl-5-n-butylthiopicolinate; 4'-amino-3'-methyl)butyl-5-n-butylthiopicolinate;

(3'-amino-3'-methyl)butyl-5-n-butylthiopicolinate; and (3'-amino-3'-methyl)butyl-5-n-butylpicolinate.

210. The method of Claim 201 wherein said inhibitor compound is of the formula

wherein each of R^{86} , R^{87} and R^{90} through R^{93} is independently selected from hydrido, hydroxy, alkyl, 15 cycloalkyl, cycloalkylalkyl, aralkyl, aryl, alkoxy, aralkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl 20 and alkynyl; wherein R⁸⁶ and R⁸⁷ together may form oxo or thio; wherein r is a number selected from zero through six, inclusive; wherein each of R88 and R89 is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, 25 amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl.

211. The method of Claim 210 wherein each of

R⁸⁶, R⁸⁷ and R⁹⁰ through R⁹³ is independently selected
from hydrido, hydroxy, alkyl, phenalkyl, phenyl, alkoxy,
benzyloxy, phenoxy, alkoxyalkyl, hydroxyalkyl, halo,
amino, monoalkylamino, dialkylamino, carboxy,
carboxyalkyl and alkanoyl; wherein r is a number
selected from zero through four, inclusive; wherein

each of R⁸⁸ and R⁸⁹ is independently selected from hydrido, alkyl, amino, monoalkylamino, dialkylamino, phenyl and phenalkyl.

- 212. The method of Claim 211 wherein each of R⁸⁶, R⁸⁷ and R⁹⁰ through R⁹³ is independently selected from hydrido, hydroxy, alkyl, alkoxy, amino, monoalkylamino, carboxy, carboxyalkyl and alkanoyl; and wherein r is anumber selected from zero through three, inclusive; and wherein each of R⁸⁸ and R⁸⁹ is selected from hydrido, alkyl, amino and monoalkylamino.
- 213. The method of Claim 212 wherein each of R⁹⁰ through R⁹³ is independently selected from hydrido and alkyl; wherein each of R⁸⁶ and R⁸⁷ is hydrido; wherein r is selected from zero, one and two; wherein R⁸⁸ is selected from hydrido, alkyl and amino; and wherein R⁸⁹ is selected from hydrido and alkyl.
 - 214. The method of Claim 213 wherein said inhibitor compound is 5-n-butylpicolinic acid hydrazide.
- 215. The method of Claim 157 wherein said dopamine-β-hydroxylase inhibitor compound is of the formula

$$\begin{array}{c}
R^{97} \\
R^{98}
\end{array}$$

$$\begin{array}{c}
R^{96} \\
R^{95}
\end{array}$$

wherein each of R⁹⁴ through R⁹⁸ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, cycloalkyl, aralkyl, aryl, aryloxy, alkoxy, alkylthio, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino,

5

dialkylamino, amido, alkylamido, hydroxyamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, carboxyl, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, formoyl and alkoxycarbonyl; with the proviso that at least one of R⁹⁴ through R⁹⁸ is

$$\frac{O}{\left(CH_{2}\right)_{t}^{CR^{99}}}$$

wherein R⁹⁹ is selected from hydrido, alkyl, hydroxy, alkoxy, alkylthio, phenyl, phenoxy, benzyl, benzyloxy,

-OR¹⁰⁰ and -N , wherein R¹⁰⁰ is selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenyl and benzyl and each of R¹⁰¹ and R¹⁰² is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein t is a number selected from zero through four, inclusive; or a pharmaceutically-acceptable salt thereof.

216. The method of Claim 215 wherein said inhibitor compound is of the formula

wherein each of R⁹⁵ through R⁹⁸ is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, phenyl, benzyl, alkoxy, phenoxy, benzyloxy, alkoxyalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, amido, alkylamido, hydroxyamino, carboxyl, carboxyalkyl, alkanoyl, cyanoamino, carboxyl, thiocarbamoyl, aminomethyl, nitro, formoyl, formyl and alkoxycarbonyl; and wherein R¹⁰⁰ is selected from hydrido, alkyl, phenyl and benzyl.

217. The method of Claim 216 wherein said inhibitor compound is selected from 5-n-butylpicolinic acid; 5-ethylpicolinic acid; 15 picolinic acid; 5-nitropicolinic acid: 5-aminopicolinic acid; 5-N-acetylaminopicolinic acid; 5-N-propionylaminopicolinic acid; 5-N-hydroxyaminopicolinic acid; 20 5-iodopicolinic acid; 5-bromopicolinic acid; 5-chloropicolinic acid; 5-hydroxypicolinic acid 25 5-methoxypicolinic acid; 5-N-propoxypicolinic acid; 5-N-butoxypicolinic acid: 5-cyanopicolinic acid: 5-carboxylpicolinic acid; 30 5-n-butyl-4-nitropicolinic acid; 5-n-butyl-4-methoxypicolinic acid; 5-n-butyl-4-ethoxypicolinic acid; 5-n-butyl-4-aminopicolinic acid; 5-n-butyl-4-hydroxyaminopicolinic acid; and 5-n-butyl-4-methylpicolinic acid. 35

5

15

20

- 218. The method of Claim 217 wherein said inhibitor compound is 5-n-butylpicolinic acid.
- 219. The method of Claim 157 wherein said dopamine- β -hydroxylase inhibitor compound is of the formula

wherein R^{103} is hydrido, hydroxy, alkyl, amino and alkoxy; wherein R^{104} is selected from hydrido, hydroxy and alkyl; wherein each of R^{105} and R^{106} is independently selected from hydrido, alkyl and phenalkyl; wherein R^{107} is selected from hydrido and

R¹⁰⁸C- with R¹⁰⁸ selected from alkyl, phenyl and phenalkyl; wherein u is a number from one to three, inclusive; and wherein v is a number from zero to two, inclusive; or a pharmaceutically-acceptable salt thereof.

- 220. The method of Claim 219 wherein R¹⁰³ is selected from hydroxy and lower alkoxy; wherein R¹⁰⁴ is hydrido; wherein R¹⁰⁵ is selected from hydrido and lower alkyl; wherein R¹⁰⁶ is hydrido; wherein R¹⁰⁷ is selected from hydrido and
- R¹⁰⁸ C- with R¹⁰⁸ selected from lower alkyl and phenyl; wherein u is two; and wherein v is a number from zero to two, inclusive.

221. The method of Claim 220 wherein said inhibitor compound is of the formula

wherein R^{109} is selected from hydroxy and lower alkyl; wherein R^{105} is selected from hydrido and lower alkyl; wherein R^{107} is selected from hydrido and

- 10 0 || $R^{108}C$ with R^{108} selected from lower alkyl and phenyl and v is a number from zero to two, inclusive.
- 222. The method of Claim 221 wherein R¹⁰⁹ is hydroxy; wherein R¹⁰⁵ is hydrido or methyl; wherein R¹⁰⁷ is hydrido or acetyl; and wherein n is a number from zero to two, inclusive.
- 223. The method of Claim 222 wherein said inhibitor compound is 1-(3-mercapto-2-methyl-1-oxopropyl)-L-proline.
 - 224. The method of Claim 156 wherein said precursor compound providing the second residue has a reactable acid moiety.
- 225. The method of Claim 224 wherein said second residue precursor compound of said conjugate is

30

35

selected from a class of glutamic acid derivatives of the formula

5 O C-G

O C-G

GCCH₂ CH₂ CH

N

R¹¹⁰

wherein each of R¹¹⁰ and R¹¹¹ may be independently selected from hydrido, alkylcarbonyl, alkoxycarbonyl, alkoxyalkyl, hydroxyalkyl and haloalkyl; and wherein G is selected from hydroxyl, halo, mercapto, -OR¹¹², -SR¹¹³ and >NR¹¹⁴ with each of R¹¹², R¹¹³ and R¹¹⁴ independently selected from hydrido and alkyl; with the proviso that said glutamic acid is selected such that formation of the cleavable amide bond occurs at the gamma-position carbon of said gamma-glutamic acid residue.

226. The method of Claim 225 wherein said second residue precursor compound of said conjugate is the glutamic acid derivative gamma-glutamic acid.

227. The method of Claim 226 wherein R^{110} is hydrido, and R^{111} is selected from

O
||
-CR¹¹⁵ wherein R¹¹⁵ is selected from methyl, ethyl,
n-propyl, isopropyl, n-butyl, sec-butyl, iso-butyl,
tert-butyl, n-pentyl, neopentyl, n-hexyl and
chloromethyl.

228. The method of Claim 227 wherein said second residue precursor compound of said conjugate is the glutamic acid derivative is N-acetyl- γ -glutamic acid.

- 229. The method of Claim 157 wherein said conjugate comprises a first residue provided by a dopamine- β -hydroxylase inhibitor compound and a second residue provided by a gamma glutamic acid derivative.
- 5 230. The method of Claim 229 wherein said dopamine-β-hydroxylase inhibitor is fusaric acid or fusaric acid hydrazide and said gamma glutamic acid derivative is N-acetyl-γ-glutamic acid.
- 231. The method of Claim 230 wherein said conjugate is N-acetyl-y-glutamyl fusaric acid hydrazide.
 - 232. The method of Claim 155 wherein said hypertensive-related disorder is chronic hypertension.
- 233. The method of Claim 155 wherein said sodium-retaining disorder is congestive heart failure, or cirrhosis, or nephrosis.

Figure 1

Acute In Vivo Effects of Example #3 Conjugate

Figure 2

Chronic Infusion of Example #464 Conjugate

Figure 3

Formation of Fusaric Acid From Example #859 Conjugate by Rat Kidney Homogenate

Figure 4

Enzymatic Formation of Fusaric Acid From Example #859 Conjugate

Figure 5

Effect of Fusaric Acid and Example #859 Conjugate on Dopamine-B-Hydroxylase Activity In Vitro

Figure 6

Dopamine-B-Hydroxylase Inhibition by Example #859 Conjugate and Related Compounds

Figure 7

Acute In Vivo Effects of Fusaric Acid or Example #859 Conjugate on Mean Arterial Pressure

Figure 8

Acute In Vivo Effects of Fusaric Acid and Example #859 Conjugate on Renal Blood Flow

Figure 9

Chronic In Vivo Effects of Saline, Fusaric Acid and Example #859 Conjugate

Figure 10

Chronic Infusion of Example #863 Conjugate

Figure 11

Heart Norepinephrine Levels Following 5 Day Infusion of Vehicle, Fusaric Acid, and Example #859 Conjugate

Figure 12

Kidney Norepinephrine Levels Following 5 Day Infusion of Vehicle, Fusaric Acid, and Example #859 Conjugate

Figure 13

Figure 14

Renal Blood Flow Response to Example #859 Conjugate After I.V. Injection in Dogs

Figure 15

INTERNATIONAL SEARCH REPORT

International Application No. RCT/US90/04168 I. CLASSIFICATION OF SUBJECT MATTER (II several classification symbols apply, indicate all) Ecoding to International Patent Classification (IPC) or to both National Classification and UPC I.P.C. (5)
K 31/12, 13, 16, 33, 34, 35, 38, 40, 41, 46, 47, 50, 55, 395, 405, 415, 495, 535 71/00, 211/00, 237/00, 255/00, 0070 - continue next page II. FIELDS SEARCHED Minimum Documentation Sourched 4 Classification System . Classification Symbols US 514 163,210,216,230.5,247,249,311,353,361,396,415,423,438,443,451,461,613,659,663,678,680 US 540 203.470.553 continue next nece Documentation Searched other than Minimum Documentation to the Extent that such Documents are included in the Fields Searched & III. DOCUMENTS CONSIDERED TO BE RELEVANT !* Category . Citation of Document, 15 with indication, where appropriate, of the relevant passages 17 Relevant to Claim No. 1" X DT. A, 2,450,161 Apr 24, 1975 1-3,70-74, 78-80, p. Jones, J. Kyncl, W. Carrol 147-151, 155-157 X N, Clin. and Exper. — Theory and Practice, A9(586),977-986, 1987 1-3,70-74,78-80 "Dopamine, the kidney and essential hypertension studies with 147-151 155-157 GLIDOPA". 32-36,110-113,186-192 M.R. Lee 47-51,172-179 N, Br. J. Clin. Phermac, 25 195-201, 1988 X 1-3, 70-74, 78-89 R.F. Jeffrey, T.M. McDonald, K. Marvdok, M.R. Lee 147-151, 155-157 The effect of cartildops and indonstructin on the renal. 32-36,110-113, 186-192 response to r-L-glutanyi-L-dops in normal man 47-51, 172-179 X N, Chemical Abstract, volume 87, No. 19, p.180, 1977 4-25.78-80.81-102 abet. No. 147351v (Columbus Otrio, USA)Oleada, K., Kasese, M., 32-36,47-51 "Hans spectral differentiation of:a- and r-linkages in glutanyl cliscopolides and tis application for structure elucidation of naturally occurring paptides" Chem. Phasis. Bull 25(7) 1497-508, 1977 "T" later document published after the international Fling date or priority date and not in conflict with the application out cited to understand the principle or theory underlying the Special categories of cited documents: 13 "A" document defining the general state of the art which is not considered to be of particular relevance INVENTION "E" earlier document but published on or after the international filing data document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a parson satisfactory. "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "A" document member of the same patent family IV. CERTIFICATION Date of Mailing of this International Search Report 4 Date of the Actual Completion of the International Search 1 23 JAN 1991 06 DECEMBER 1990 Signature of Authorized Officer to International Searching Authority t ISA/US

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET					
ghtal	t matter classification — con	dine			
IRC O	77D 205/12, 209/04, 213/00, 2	15/12, 233/54,237/00, 241/36, 243/00, 245/00, 265/36			
]	285/14, 295/00 307/02, 31	5/00, 333/20			
i					
ļ	+ 4				
1		:			
i					
. Legal	of search continue				
	US 544/105,224,349	TO 550 000			
į	US 546/176,267	US 558/303 '			
į	US 548/127,335,469,538	US 564/123,453,463 US 568/306,326			
:	US 549/58,74,426,491	(2) 200/200 ₁ 320			
v. 🔲 🔾 🖰 1	SERVATIONS WHERE CERTAIN CLA	IMS WERE FOUND UNBEARCHABLE '			
This intern	ational search report has not been establish	had in respect of certain claims under Article 17(2) (a) for the following reasons:			
1. Clain	n numbers . Decause they relate to s	subject matter? not required to be searched by this Authority, namely:			
		•			
2. Clain	m numbers , because they raise to p	arts of the international application that go not comply with the prescribed require-			
mant	re to such an extent that no meaningth; inter	regional search can be carried out -, appointedly:			
	· •				
. —		nandam waiting and dealers in accordance with the second star their sentences of			
3. Clair	n numbers because they are de Rule 6.4(a).	pendent claims not drafted in accordance with the second and third sentences of			
VI.XI OF	SERVATIONS WHERE UNITY OF IN	/ENTION IS LACKING*			
This Intern	national Searching Authority found multiple	inventions in this international application as follows:			
	attachment pages.				
ieck	of unity of invention has been	n found to exist because each group on the attached			
	the state of the s	turally different, independent and distinct invention.			
Bon	bing accepting represents state	y paid by the applicant, this international acords report covers as people come			
	in required additional search ress were since	y paid by the approprint, this mental and a south			
2. As a	only some of the required additional search	fees were timely paid by the applicant, this international search report access only			
thos	e claims of the international application for	which fees were paid, specifically claims:			

		to state to the sealings Canasangail, this misprominel eagen tanner is they			
3. Ne r	equired additional search fees were timely r nyention first mentioned in the claims; it is	paid by the applicant. Consequently, this international search report is restricted to covered by claim numbers:			
4141		• • • • •			
	•				
4 🗆 🗛	li searchable claims could be searched with	out effort justifying an additional fee, the International Searching Authority (1997)			
	e payment of any anaittonal fee.				
Remark of	•	tu analisani'a nistati.			
=	additional search ites were accompanied b orginal accompanied the payment of additio	•			
I I NO.	scores escorsoentes the pevinent of ecolus	//+=: ===: ·· · · · · · · · · · · · · · · ·			

The following groups of inveniton have been identified:

- I. Claims 53-64, 130-141, drawn to dopamine -B-hydroxylase inhibitor and composition when the inhibitor has a six member heteroring with one nitrogen, classified in classes 546, 514, subclasses 267, 353.
- II. Claims 65-69, 142-146, drawn to dopamine- B-hydroxylase inhibitor and composition when the inhibitor has a five member heteroring with one nitrogen, classified in classes 548, 514, subclasses 538, 423.
 - III. Claims 47-52, 124-129, drawn to dopamine -B-hydroxylase inhibitor and composition when the inhibitor has a four member heteroring with two nitrogens, classified in classes 540, 514, subclasses 203, 210.
- IV. Claims 47-52, 124-129, drawn to dopamine 5hydroxylase inhibitor and composition when the inhibitor has a five member heteroring with two nitrogens, classified in classes 548, 514, subclasses 335, 396.
- V. Claims 47-52, 124-129, drawn to dopamine -B-hydroxylase inhibitor and composition when the inhibitor has a six member heteroring with two nitrogens, classified in classes 544, 514, subclasses 224, 247.
- VI. Claims 47-52, 124-129, drawn to dopamine -B-hydroxylase inhibitor and composition when the inhibitor has a seven member heteroring with two nitrogens, classified in classes 540, 514, subclasses 553, 218.
- VII. Claims 47-52, 124-129, drawn to dopamine -B-hydroxylase inhibitor and composition when the inhibitor has a eight member heteroring with two nitrogens, classified in classes 540, 514, subclasses 470, 183.

VIII. Claims 39-46, 116-123, drawn to dopamine -B-hydroxylase inhibitor and composition when the inhibitors are amines with non heterocyclic substituents, classified in classes 564, 514, subclasses 123, 613.

- IX. Claims 4-17 and 81-94, drawn to tyrosin hydroxylase inhibitors and compositions when A and R⁵ are nonheterocyclic substituted phenyls, classified in Class 568, 514, subclass 306, 678.
- X. Claims 4-17 and 81-94 drawn to tyrosin hydroxylase inhibitors and compositions when A and R² are imidazole, classified in Class 548, 514, subclass 335, 396.
- XI. Claims 4-17, 81-94, drawn to tyrosin hydroxalse inhibitor and composition when A or R^a is indole, classified in classes 548, 514 subclasses 469, 415.
- XII. Claims 14-17, 81-94, drawn to tyrosin hydroxalse inhibitor and composition when A and R^s are nonheterocyclic polycycles, classified in Classes 568, 514, subclasses 326, 680.
- XIII. Claims 18-38, 95-102, drawn to dopa-decarboxylase inhibitor and composition when the inhibitor is of the formula as claim 95, classified in classes 564, 558, 514, subclasses 463, 303, 663.
- XIV. Claims 18-38, 110-115, drawn to dopadecarboxylase inhibitor and composition when the inhibitor is of the formula as claim 110, classified in classes 568, 514, subclasses 306, 678.
- xv. Claims 18-38, 103-109, drawn to dopa-decarboxylase inhibitor and composition when the inhibitor is of the formula as claim 103, classified in classes 558, 564, 514, subclasses 303, 453, 659.
- XVI. Claims 158-171, drawn to method of treating chronic hypertension, congestive heart failure, nephrosis, cirrhosis, sodium retaining disorder using a tyrosin hydroxylase inhibitor.

- XVII. Claims 172-192 drawn to method of treating chronic hypertension, congestive heart failure, nephrosis, cirrhosis, sodium retaining disorder using a dopa-decarboxylase inhibitor.
- XVIII. Claims 193-233 drawn to method of treating chronic hypertension, congestive heart failure, nephrosis, cirrhosis, sodium retaining disorder using a dopamine -B- hydroxylase inhibitor.

The following claims are generic to all the componds and methods: claimss 1-3, 70-80, 147-157, 233.

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)			
Category *	Citation of Document, 14 with Indication, where appropriate, of the relevant passages 17	Relevant to Claim No 14	
X	N.Chemical Abstracts, volume 88, No. 2, 1978, page 683, Abst. No. 2366g (Columbus, Onio, U.S.A.) A. Yasutska, H. Acyagi, N. Izamiya, "Strikes on separation of amino acids and related compounds viii. Preparative separation of isomeric L-esp-iphenylalamine methyl esters and related dipeptide esters by ion-exchanger chromatography" Bill. Chem. Soc. Jpn. 50(9) 2413-16, 1977 (Eng.)	4-25,78-80,81-102 32-36,47-51	
x	N, Chemical Abstracts, volume 93, No. 5, 1980, page 987 Abst. No. 471591 (Columbus, Onio, U.S.A.)	4-25, 78-80, 81-10 32-36, 47-51	
n	K. OKSM., Y. ITMGANT "Identification of amino acid thickydentoin derivatives and differentiation of a- and r-linkages in glutamy! peptides by mass spectrometry: comparision of electron impact and chami- cal indization methods" Koenshu-Iyo Mass 3, 249-55, 1978, (Japan)		
x .	N, Chemical Abstracts, volume 111, No. 15, 1989, page 395 Abst. No. 130174f (Columbus Crio, U.S.A.) H. Kungai, T. Edrigo, H. Hideyuid, T. Tochikura "Przymic synthesis of r-glutamyltyrosine methyl ester from L-glutamine and L-tyrosine methyl ester with Escherichia coli K-12 r-glutamyltranspeptionse" Agric. Biol. chem. 53(5), 1429-30, 1989 (Eng)	4-25, 78-80, 81-10 32-36, 47-51	
x	N, Chemical Abstracts, volume(.67, No.25, 1967, page 11067 Abst. No. 117279x (Columbus Chic, U.S.A.) L.A. MCFRiche, N.N.Savrov A.D. Nakdyudov "Amino acid and peptide derivatives of indoles. II. Synthesis and properties of 5-methosytryptamine analogs" Zh. Chench. Enim. 37(3) 578-82, 1967 (Russ)	4 25, 78-80, 81- 32-36, 47-51	
x	R, Chemical Abstracts, volume 86, No. 5, 1977, page 395 Abst. No. 30059t (Columbus Onio, U.S.A.) K. Ckada, M. Kanatae, R. Tekeuchi, S. Negai "synthesis of H-decampi-a- and r- glutamyl oligopeptide methyl esters" Takagaku Zasahi 96(8) 1038-43, 1976 (Japan)	4-25, 78-80, 81-10 32-36, 47-51	
x	N. Chemical Abstracts, volume 86, No. 23, page 319 Abst. No. 168466n (Columbus, Onio, U.S.A.) H. Kondsid, Y. kakimoto "Romation of reglutamylhistinde from histories in ratbrain" J. Neuroches 27(6) 1461-1463, 1976, (Eng.)	4-25,78-80.81-10 32-36, 47-51	

X		OCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)			
Wintern et al	Calegory '	Citation of Document, 14 with indication, where appropriate, of the relevant passages 15	Relevant to Claim No 14		
Durlach et al U.S. A. 3.998,955 Dec. 21, 1976 Ritmis et al U.S. A. 3.998,955 Dec. 21, 1976 Ritmis et al U.S. A. 3.998,955 Dec. 21, 1976 Ritmis et al U.S. A. 3.998,955 Dec. 21, 1976 Ritmis et al U.S. A. 3.998,955 Dec. 21, 1976 Ritmis et al U.S. A. 3.998,955 Dec. 21, 1976 Ritmis et al U.S. A. 4,833,152 May 21, 1988 U.S. A. 4,833,152 May 17, 1988 U.S. A. 4,845,124 May 17, 1988	X	US, A, 4,296,119, October 20, 1981 Wurtmen et al	4-25, 78-102, 155- 47-51, 81-102, 158		
No. No.	x	US, A. 4,299,838, Nov. 10, 1981 Durlach et al	4-25, 78-102, 155-19 47-51, 158-171		
1. 1. 1. 1. 1. 1. 1. 1.	X	US, A, 3,998,995 Dec. 21, 1976 Nubruls et al	52-64, <i>7</i> 5-77, 152 - 15		
Technological in spontaneously hypertensive and nonsaturative rates after fursaric acid and hypercenside and nonsaturative rates after fursaric acid and hypercenside and processes, M. Matauzaid 116-141, 152-154, 193 (Cin., Exper. France, and Hypercenside, 3, p. 199-206, 1976, (Eng.) N. T. Regatzu, E. Mizutzui, I., Regatzu, H. Unezzua, M. Matauzaid and R. T. Teleschil. "Catachological synthesis enzymes of spontaneously hypertenside rates and microbial hypotenside products." Molecular and Callular Biochemicstry, p. 107-113, 1973 Ruhlished by the Hegge, the Netherlands N. K.G. Hofomer, C. Synteturg, R. Stalder, L. Criscione, J. Kreeck, W. Ruhrer and E. Henicht "CIP 22979A, a recel vanofilator with netrimentic properties." J. Pherm. Exp. Therapy 232 p. 838-844, 1985 (Eng.) N. Ryan et al. N. L. 4,745,124 May 17, 1988	x .		39-46, 116-141, 52-6 75-77, 152-154,193-2		
 N. T. Regatau, E. Mizutani, I., Regatau, H. Unezana, M.Matauzaki and R. T. Takauchi. "Catacholomine synthesis enzymes of spontaneously hypertensive rates and microbial hypotensive products." Molecular and Callular Biochemicstry, p. 107-113, 1973 Published by the Hegge, the Netherlands N. K.G. Hofomer, C. Symentung, R. Stalder, L. Criscione, J. Kreetz, W. Matrer and E. Hentent "CLP 22979A, a recal vascolilator with natrimetric properties." J. Pherm. Exp. Therapy 232 p. 838-844, 1985 (Eng) IE, A. 4,833,152 May 23, 1989 Ryan et al. IE, A. 4,745,124 May 17, 1988 	X	rats after fursaric acid and bupicanide [®] Clin. Exper. Pharms, and Physiology, 3, p. 199-206.	39-46, 52-64, 75-77 116-141, 152-154, 19		
J. Kreetz, W. Patrer and E. Hendent "CCP 22979A, a recent vascotilator with natricetic properties" J. Plenn. Exp. Therapy 232 p. 838-844, 1925 (Eng) X US, A. 4,833,152 May 23, 1989 Ryan et al. X US, A. 4,745,124 May 17, 1988	x	"Catacholamine synthesis enzymes of spontaneously hypertensive raiss and microbial hypotensive products" Molecular and Callular Biochamicstry. p. 107-113, 1073	116-141, 152-154,		
Ryan et al. X US, A, 4.745,124 May 17, 1988	x	"COP 229794, a recal vaccillator with rebrigatio reconsticut	116-141, 152-154		
	x	US, A. 4,833,152 May 23, 1989 Ryman et al	65-69,142-146		
	x	US, A., 4.745,124 May 17, 1988 Ryan et al	65-69, 142-146		
		,			
		•			