Operációkutatás

2. A kétfázisú szimplex módszer (vázlatos bemutatása)

Dósa György

Pannon Egyetem / Matematika Tanszék

2025

A kétfázisú szimplex módszer

- Az első fázis feladata: megengedett bázismegoldás előállítása
- A második fázis feladata: a megengedett bázismegoldásból kiindulva, optimális bázismegoldás előállítása
- A kétfázisú szimplex módszert egy feladat megoldásán keresztül mutatjuk be (részletesebben megtalálható az ajánlott irodalomban).

(Megint) egy termelési probléma

Adott a következő táblázat:

	T_1	T_2	<i>T</i> ₃	T_4	T_5	Készlet	a feltétel típusa
Erőf ₁	1	2	1	3	0	15	<u> </u>
Erőf ₂	0	1	1	5	1	40	<u> </u>
Erőf ₃	1	0	0	2	2	18	=
Haszon	25	28	18	40	33		

Vagyis, most az első erőforrásból **legalább** 15-öt, a másodikból **legfeljebb** 40-et, a harmadikból **pontosan** 18-at kell felhasználni!

Megint ezek a kérdések merülnek fel, mint múltkor: Hogyan keressünk optimális megoldást?

- Van-e egyáltalán?
- Ha igen, akkor mennyi van?
- Hogyan találjuk meg? De van még egy fontos kérdés: **Hogyan induljunk**????

	T_1	T_2	T_3	T_4	T_5	Készlet	a feltétel típusa
Erőf ₁	1	2	1	3	0	15	<u> </u>
Erőf ₂	0	1	1	5	1	40	\leq
Erőf ₃	1	0	0	2	2	18	=
Haszon	25	28	18	40	33		

A feladat modellje most a következő lesz:

$$x_1 + 2x_2 + x_3 + 3x_4 \ge 15$$

$$x_2 + x_3 + 5x_4 + x_5 \le 40$$

$$x_1 + 2x_4 + 2x_5 = 18$$

$$x_i \ge 0, 1 \le i \le 5$$

$$25x_1 + 28x_2 + 18x_3 + 40x_4 + 33x_5 = z \to \max$$

$$x_1 + 2x_2 + x_3 + 3x_4 \ge 15$$

$$x_2 + x_3 + 5x_4 + x_5 \le 40$$

$$x_1 + 2x_4 + 2x_5 = 18$$

$$x_i \ge 0, 1 \le i \le 5$$

$$25x_1 + 28x_2 + 18x_3 + 40x_4 + 33x_5 = z \to \max$$

Kezdjük el megoldani. Első lépésként alakítjuk át = feltételekké (maradék-, és többletváltozók bevezetésével):

$$x_1 + 2x_2 + x_3 + 3x_4$$
 $-x_6 = 15$
 $x_2 + x_3 + 5x_4 + x_5$ $+x_7 = 40$
 $x_1 + 2x_4 + 2x_5 = 18$
 $x_i \ge 0, 1 \le i \le 7$
 $25x_1 + 28x_2 + 18x_3 + 40x_4 + 33x_5 = z \to \max$

Ez a sztenderd alak.

Baj van! Nincs elég bázisvektorunk! Hát akkor csináljunk!

$$x_1 + 2x_2 + x_3 + 3x_4 - x_6 + y_1 = 15$$
 $x_2 + x_3 + 5x_4 + x_5 + x_7 = 40$
 $x_1 + 2x_4 + 2x_5 + y_2 = 18$
 $x \ge 0, y \ge 0$
 $25x_1 + 28x_2 + 18x_3 + 40x_4 + 33x_5 = z \to \max$
 $-y_1 - y_2 = z^* \to \max$

- Az első (induló) bázis ez lesz: $B = \{q_1, a_7, q_2\}$, ahol az x-ek oszlopait a-val, az y-ok oszlopait q-val jelöltük (mesterséges vektorok).
- Csakhogy az y-okat nem lenne szabad használnunk! Akkor meg kell hogy szabaduljunk tőlük. Erre szolgál a z* célfüggvény, neve: mesterséges (vagy másodlagos) célfüggvény.

Következik az **első fázis**. Ez addig tart, amíg van q vektor a bázisban. (Jelenleg van kettő is.)

$$x_1 + 2x_2 + x_3 + 3x_4 - x_6 + y_1 = 15$$
 $x_2 + x_3 + 5x_4 + x_5 + x_7 = 40$
 $x_1 + 2x_4 + 2x_5 + y_2 = 18$
 $x \ge 0, y \ge 0$
 $25x_1 + 28x_2 + 18x_3 + 40x_4 + 33x_5 = z \to \max$
 $-y_1 - y_2 = z^* \to \max$

Az első fázis első szimplex táblája:

	В	x _B	a ₁	a 2	a 3	a 4	a 5	a 6	a 7	q_1	q_2
$\overline{-1}$	q_1	15	1	2	1	3	0	-1	0	1	0
0	<i>u</i> ₇	40	0	1	1	5	1	0	1	0	0
-1	q ₂	18	1	0	0	2	2	0	0	0	1
	z^*	-33	-2	-2	-1	-5	-2	1	0	0	0

	В	x _B	a ₁	a 2	a 3	a_4	a 5	a 6	a 7	q_1	q_2
$\overline{-1}$	q_1	15	1	2	1	3	0	-1	0	1	0
0	U 7	40	0	1	1	5	1	0	1	0	0
$\overline{-1}$		18									
	z^*	-33	-2	-2	-1	-5	-2	1	0	0	0

Hogyan kaptuk ezt meg:

- ullet baloldalon a q vektorok szorzója -1, az a vektoroknak 0
- a legalsó sorban: a bázisvektorok alatt 0 van.
- a többi szám a legalsó sorban: skalárszorzással. Például $-33=(-1,0,-1)\cdot(15,40,18).$

Vagy
$$a_1$$
 alatt a lagalsó sorban: $-2=(-1,0,-1)\cdot(1,0,1)$. Vagy a_4 alatt a lagalsó sorban: $-5=(-1,0,-1)\cdot(3,5,2)$.

A Szimplex módszer első fázisa

- A szokásos módon báziscseréket végzünk:
- Fenntartjuk a bázismegoldás megengedettségét: minimum szabály!!!
- A célfüggvény növekedjen (ha lehet), olyan oszlop megy a bázisba, ahol a redukált költség negatív.
- "Örülünk" ha mesterséges vektor megy ki a bázisból.
- Ha már a célfüggvény nem tud növekedni, az akkor van ha a redukált költség vektora csupa nemnegatív számból áll, ekkor megállunk.
- Állítás: Ha z* maximális értéke negatív (marad), akkor az (eredeti) feladatnak nincs megengedett mgoldása. Ha viszont "felmegy" 0-ra, akkor az (eredeti) feladatnak van megengedett megoldása, és áttérünk majd a második fázisra.

Lássuk a báziscseréket. Ebből:

В	ΧB	<i>a</i> ₁	a 2	a 3	a_4	a 5	a 6	a 7	q_1	q_2
q_1	15	1	2	1	3	0	-1	0	1	0
	40									
q 2	18	1	0	0	2	2	0	0	0	1
z^*	-33	-2	-2	-1	-5	-2	1	0	0	0

Ezt kapjuk (q_1 kimegy a bázisból, ő többé már nem is kell, oszlopát is töröljük):

В	ХB	a 1	a 2	a 3	a_4	a 5	a 6	a 7	q_2
			2						
a ₇	40	0	1	1	5	1	0	1	0
q ₂	3	0	-2	-1	-1	2	1	0	1
z^*	-3	0	2	1	1	-2	-1	0	0

Még egy báziscsere: ez volt:

В	ΧB	a ₁	a 2	a 3	a_4	a 5	a 6	a 7	q_2
			2						
a ₇	40	0	1	1	5	1	0	1	0
q ₂	3	0	-2	-1	-1	2	1	0	1
z^*	-3	0	2	1	1	-2	-1	0	0

ez lett (q_2 is kimegy a bázisból, ő sem kell már, az oszlopát töröljük):

В		a_1				a 5	•	
<i>a</i> ₁	18	1	0	0	2	2	0	0
a ₇	40		1					1
a ₆	3	0	-2	-1	-1	2	1	0
z^*	0	0	0	0	0	0	0	0

Látjuk hogy z^* értéke felment 0-ra, ez azért van mert nincs mesterséges vektor a bázisban, **vége van az első fázisnak**.

Hogyan tovább? (Második fázis)

Itt tartunk:

В	ΧB	<i>a</i> ₁	a 2	a 3	a 4	a 5	a 6	a 7
a ₁	18	1	0	0	2	2	0	0
a ₇			1					
a ₆	3	0	-2	-1	-1	2	1	0
z^*	0	0	0	0	0	0	0	0

- az alsó sorra már nincs szükségünk, helyette "visszatérünk" az igazi célfüggvényhez
- az alsó sor számolása megint skalárszorzattal megy majd, de vigyázni kell!

			25	28 a ₂	18	40	33	0	0
	В	х _В	<i>a</i> ₁	a 2	a 3	a_4	a 5	a 6	a 7
25	<i>a</i> ₁	18	1	0	0	2	2	0	0
0	a 7			1					
0	a 6	3	0	-2	-1	-1	2	1	0
	Z	?	?	?	?	?	?	?	?

az alsó sor számolása (skalárszorzással):

			25	28	18	40	33	0	0
	В	х _В	<i>a</i> ₁	a 2	a 3	a 4	a 5	a 6	a 7
25	a_1	18	1	0	0	2	2	0	0
0	a ₇	40	0	1	1	5	1	0	1
0	a 6	3	0	-2	-1	-1	2	1	0
	Z	450	0	-28	-18	10	17	0	0

Például $z = 25 \cdot 18 + 0 \cdot 40 + 0 \cdot 3$

DE !!!

pl. a_2 alatt: $-28 = 25 \cdot 0 + 0 \cdot 1 + 0 \cdot (-2) - 28$, vagyis a skalárszorzat eredményéből a fölső számot ki kell vonni.

Ugyanígy pl. a_4 alatt: $10 = 25 \cdot 2 + 0 \cdot 5 + 0 \cdot (-1) - 40$.

Innentől ugyanúgy megy tovább, mint korábban, végrehajtjuk a második fázist. ebből:

В	х _В	<i>a</i> ₁	a 2	a 3	a_4	a 5	a 6	a ₇
a 1	18	1	0	0	2	2	0	0
a ₇	40	0	1	1	5	1	0	1
			-2					
Z	450	0	-28	-18	10	17	0	0

ez lett:

В	ΧB	<i>a</i> ₁	a 2	a 3		a 5	a 6	a 7
a_1	18	1	0	0	2	2	0	0
a ₂	40	_		1	-	1	0	1
a ₆	83	0	0	1	9	4	1	2
Z	1570	0	0	10	150	45	0	28

Kész is van a második fázis is.

Értékeljük ki a feladat megoldását:

В	x _B	<i>a</i> ₁	a 2	a 3	a_4	a 5	a 6	a ₇
a ₁	18	1	0	0	2	2	0	0
a 2	40	0	1	1	5	1	0	1
a 6	83	0	0	1	9	4	1	2
Z	1570	0	0	10	150	45	0	28

- egyedüli optimális megoldást kaptunk!
- $x_{opt}(18, 40, 0, 0, 0 | 83, 0)$, vagyis az első termékből gyártunk 18, a másodikból pedig 40 egységnyit.
- Az első erőforrás készletéből $x_6=83$ -mal többet használunk fel, mint amennyit kötelező. A másik kettőből pontosan annyit amennyi van.
- A célfüggvény értéke 1570.