ML Project Presentation

Varsou Penny

Machine Learning - G.Gianakopoulos

16/02/2021

Contents

- ML Project
 - Introduction and Overview
 - Project Presentation
 - Step-by-step
 - Text preprocessing Feature extraction
 - Models creation
 - Models tuning
 - Results
- 2 Final thoughts
 - Conclusion
- References

Introduction and Overview

- Probem statement:
 Detection of hate or offensive tweets in Greek language.
- Moitvation:

Twitter is a major social networking service with over 200 million tweets made every day. According to a variety of researches nowadays more and more young people read news and form an opinion throw social media

Step-by-step

- First step, found a csv with English tweets (https://github.com/t-davidson/hate-speech-and-offensive-language)
 and translate with google api code may be found in
 tweet_translator.py.
- Second step is about preprocessing our tweets using stopwords, find spaces, urls, retweets, tokensize.
- In third step we use Tfidf vectorize, pos tags and sentiment analysis in order to extract our final features..
- In fourth step we run our classification model and find for all classifiers run time and classification scores.
- In the last step we evaluate our scores with k-fold.

Text preprocessing - Feuature extraction

During text preprocessing end feature extraction the below were done:

- We remove stopwords, identify urls, whitespaces and mentions and get standarized counts of them.
- We set data set to lower case, we stemming it, and we tokenize our text.
- We use POS (part of speech tagging), and TF-IDF in order to extract our features.
- We apply sentiment analysis in our data set.
- We combine all the above features.

After all the aboves we have 18127 tweets and 5067 features.

Models creation

For model creation the below four classifiers were used.

- Logistic Regression
- Gaussian Naive Bayes
- KNearest Neighbors
- XGBoost

Models tuning

- We split our dataset on train and test.
- We try our four classifiers, and calculate scores and time.
- We create confusion matrix for each one.
- We evaluate our scores using k-fold.

In order to evaluate our models we use the below metrics:

- Accuracy: Due to the fact that our dataset is no a symmetric one and false positive and false negatives aren't almost same, we can evaluate our performance only with this. (TP+TN/TP+FP+FN+TN)
- F1-Score: Is the weighted average of Precision and Recall. Therefore, this score takes both false positives and false negatives into account. (2*(Recall * Precision) / (Recall + Precision))
- Recall: Is the ratio of correctly predicted positive observations to the all observations in actual class - yes (TP/TP+FN)
- Precision: Is the ratio of correctly predicted positive observations to the total predicted positive observations. (TP/TP+FP)
- Time: We need to know and evaluate the cost of each classifier, in train and test part.

		Logistic Regression	Gaussian NB	KNN	XGBoost
Accuracy		0.61	0.29	0.71	0.80
F1-Score	macro	0.44	0.28	0.39	0.44
	weighted	0.65	0.36	0.69	0 .75
Precision	macro	0.43	0.40	0.47	0.61
	weighted	0.72	0.67	0.70	0.76
Recall	macro	0.48	0.39	0.39	0.42
	weighted	0.61	0.29	0.71	0.80
Time		17.44	1.77	107.33	211.92

Logistic Regression:

KNN:

XGBoost:

Conclusion

Not a feasible project. The main problems occurs due to the fact that our dataset is inbalanced and the translation is not accurate. In general sentiment lexicons and word embeddings constitute well-established sources of information for sentiment analysis in online social media. Although their effectiveness has been demonstrated in state-of-the-art sentiment analysis and related tasks in the English language, such publicly available resources are much less developed and evaluated for the Greek language.

References

- https://github.com/t-davidson/hate-speech-and-offensive-language
- Machine Learning presentations
- https://towardsdatascience.com/cross-validation-430d9a5fee22
- https://medium.com/@datamonsters/text-preprocessing-inpython-steps-tools-and-examples-bf025f872908
- https://pypi.org/project/googletrans/