Chapitre 19

Convexité

19 (Convexité	1
1	19.7 Position du graphe d'une fonction convexe par rapport à ses sécantes	2
1	19.8 Inégalités des pentes	2
1	19.9 Continuité et dérivabilité des fonctions convexes	9
1	19.11 Caractérisation des fonctions convexes par les variations de la dérivée	4
1	19.13 Caractérisation des fonctions convexes par les tangentes	4
	19.17Somme de fonctions convexes	
	19.18Composition de fonctions convexes	
	19.19Réciproque de fonctions convexes	
	19.20Extrema des fonctions convexes	
	19.24Inégalité de Jensen	
	19.25Exemple - Inégalité arithmético-géométrique	
	19.26Inégalités de Holder et Minkowski	

19.7 Position du graphe d'une fonction convexe par rapport à ses sécantes

Propostion 19.7

Soit $f: I \to \mathbb{R}$ une fonction convexe et $(x,y) \in I^2$ avec x < y. Le graphe de f est situé en-dessous de sa sécante sur l'intervalle [x,y] et au-dessus à l'extérieur, soit sur $I \cap]-\infty,x] \cup [y,+\infty[$.

On pose $g: \mathbb{R} \to \mathbb{R}; t \mapsto \frac{f(y) - f(x)}{y - x}(t - x) + f(x)$. g paramètre la sécante passant par les points (x, f(x)) et (y, f(y)).

- Sur [x, y], RAF car f est convexe.
- Soit t > y. On pose $\lambda = \frac{y-x}{t-x} \neq 0 \in [0,1]$. On a :

$$\lambda t + (1 - \lambda)x = \frac{y - x}{t - x}t + \left(1 - \frac{y - x}{t - x}\right)x$$
$$= \frac{t(y - x) + x(t - y)}{t - x}$$
$$= y$$

Par convexité de f:

$$f(y) = f(\lambda t + (1 - \lambda)x)$$

$$\leq \lambda f(t) + (1 - \lambda)f(x)$$

$$\operatorname{donc} f(t) \geq \frac{1}{y}f(y) - \left(\frac{1}{y} - 1\right)f(x)$$

$$= \frac{t - x}{y - x}f(y) - \left(\frac{t - x}{y - x} - 1\right)f(x)$$

$$= \frac{t - x}{y - x} \times (f(y) - f(x)) + f(x)$$

$$= g(t)$$

— On raisonne de la même manière si $t \le x < y$.

19.8 Inégalités des pentes

Propostion 19.8

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I.

- 1. f est convexe si et seulement si pour tout $a \in I$, la fonction $x \mapsto \frac{f(x) f(a)}{x a}$ est croissante sur $I \setminus \{a\}$.
- 2. Si f est convexe, alors pour tout $(a, b, c) \in I^3$ avec a < b < c,

$$\frac{f(b)-f(a)}{b-a} \leq \frac{f(c)-f(a)}{c-a} \leq \frac{f(c)-f(b)}{c-b}$$

 $1. \Rightarrow$

On suppose f convexe. Soit $a \in I$ et x < y dans $I \setminus \{a\}$.

— On suppose x < a < y. D'après (19.7) :

$$f(y) \le \frac{f(a) - f(x)}{a - x} \times (y - a) + f(a)$$

Donc:

$$\frac{f(y) - f(a)}{y - a} \ge \frac{f(a) - f(x)}{a - x}$$

— Si x < a < y, d'après (19.7) :

$$f(y) \ge \frac{f(a) - f(x)}{a - x} \times (y - a) + f(a)$$

Donc:

$$\frac{f(y) - f(a)}{y - a} \ge \frac{f(a) - f(x)}{a - x}$$

— Les autres cas s'y ramènent.

 \Leftarrow

On suppose que pour tout $a \in I$, $g_a : I \setminus \{a\} \to \mathbb{R}$; $x \mapsto \frac{f(x) - f(a)}{x - a}$ est croissante. Soit x < y et $\lambda \in]0, 1[$. On pose $a = \lambda y + (1 - \lambda)x$. g_a est croissante sur $I \setminus \{a\}$, donc :

$$g_a(x) \le g_a(y)$$

Donc:

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(y) - f(a)}{y - a}$$

Donc:

$$x - a < 0 \text{ et } y - a > 0$$

$$(f(x) - f(a))(y - a) \le (f(y) - f(a))(x - a)$$

$$\text{donc } f(a)(y - x) \le f(x)(y - a) - f(y)(x - a)$$

$$\text{soit } f(a) \le f(x)\frac{y - a}{y - x} + f(y)\frac{a - x}{y - x}$$

$$= (1 - \lambda)f(x) + \lambda f(y)$$

2. Soit a < b < c.

$$g_a(b) \le g_a(c) = g_c(a) \le g_c(b)$$

19.9 Continuité et dérivabilité des fonctions convexes

Théorème 19.9

Soit f une fonction convexe sur un intervalle I ouvert. La fonction f est alors continue et possède des dérivées à gauche et à droite en tout point (où les limites osnt envisageables). Pour tout $a \in I$, on a

$$f'_g(a) \le f'_d(a)$$

Pour $a \in I$, on note encore $g_a : I \setminus \{a\} \to \mathbb{R}; x \mapsto \frac{f(x) - f(a)}{x - a}$.

Comme g est définie à gauche et à droite de a (I est ouvert) et que g est croissante sur $I \setminus \{a\}$, d'après le TLM g admet des limites finies à gauche et à droite de a et :

$$\lim_{a^{+}} g = f'_{d}(a) \ge f'_{g}(a) = \lim_{a^{-}} g$$

$$\forall x \ne a, f(x) = \frac{f(x) - f(a)}{x - a} (x - a) + f(a)$$

$$\xrightarrow[x \to a^{+}]{} f(a)$$

$$\xrightarrow[x \to a^{-}]{} f(a)$$

19.11 Caractérisation des fonctions convexes par les variations de la dérivée

Théorème 19.11

Soit $f: I \to \mathbb{R}$ une fonction dérivable sur I. Alors f est convexe si et seulement si f' est croissante.

 \Rightarrow

On suppose f convexe. Soit x < y. Soit a tel que x < a < y.

D'après l'inégalité des pentes (f est convexe), on a :

$$\frac{f(a) - f(x)}{a - x} \le \frac{f(y) - f(x)}{y - x} \le \frac{f(y) - f(a)}{y - a}$$

En considérant les limiets $a \to x^+$ et $a \to y^-$ et par TCILPPL :

$$f'(x) \le \frac{f(y) - f(x)}{y - x} \le f'(y)$$

Donc f' est croissante.

 \Leftarrow

On suppose f' croissante sur I. Soit x < y. Soit $a \in]x, y[$.

On applique deux fois le TAF : on choisit $\alpha \in]x, a[$ et $\beta \in]a, y[$ tels que :

$$\frac{f(a) - f(x)}{-x + a} = f'(\alpha) \text{ et } \frac{f(y) - f(a)}{y - a} = f'(\beta)$$

Comme f' est croissante, on a $f'(\alpha) \leq f'(\beta)$, soit :

$$\frac{f(a) - f(x)}{a - x} \le \frac{f(y) - f(a)}{y - a}$$
$$\operatorname{donc} f(a) \le \frac{a - x}{y - x} f(y) + \frac{y - a}{y - x} f(x)$$

Comme $a \in]x, y[$, $a = \lambda y + (1 - \lambda)x$ et aussi :

$$f(a) = f(\lambda y + (1 - \lambda)x) \le \lambda f(y) + (1 - \lambda)f(x)$$

Donc f est convexe (sur I).

19.13 Caractérisation des fonctions convexes par les tangentes

Propostion 19.13

Soit $f:I\to\mathbb{R}$ une fonction dérivable. Alors f est convexe sur I si et seulement si le graphe de f est situé au-dessus de toutes ses tangentes.

 \Rightarrow

On suppose f convexe. Soit $a \in I$ et soit $\varphi : \mathbb{R} \to \mathbb{R}; t \mapsto f'(a)(t-a) + f(a)$.

On pose $h = f - \varphi \in \mathcal{D}^1(I, \mathbb{R})$ et h' = f' - f'(a).

Or f est convexe donc f' est croissante sur I. Donc :

a			
h'	_	0	+
h	×	0	7
h		+	

 \Leftarrow

Soit x < y et $a = \lambda y + (1 - \lambda)x \in]x, y[$.

Par hypothèse, le graphe de f est situé au-dessus de sa tangente en a.

$$\forall t \in I, f(t) \ge f'(a)(t-a) + f(a)$$

En particulier:

$$f(x) \ge f'(a)(x-a) + f(a)$$

$$f(y) \ge f'(a)(y-a) + f(a)$$

Donc:

$$(y-a)f(x) + (a-x)f(y) \ge (y-a)f(a)$$
$$\operatorname{donc} f(a) \le \frac{y-a}{y-x}f(x) + \frac{a-x}{y-x}f(y)$$
$$= (1-\lambda)f(x) + \lambda f(y)$$

19.17 Somme de fonctions convexes

Propostion 19.17

La somme de deux fonctions convexes et convexe.

Soit f et g convexes. Soit x < y et $a = \lambda x + (1 - \lambda)y \in]x, y[$. On a :

$$f(a) \le \lambda f(x) + (1 - \lambda)f(y)$$

$$g(a) \le \lambda g(x) + (1 - \lambda)g(y)$$

Donc:

$$(f+g)(a) \le \lambda(f+g)(x) + (1-\lambda)(f+g)(y)$$

Donc f + g est convexe.

19.18 Composition de fonctions convexes

Propostion 1918

Soit $f: I \to J$ et $g: J \to \mathbb{R}$ deux fonctions convexes avec g croissante. Alors $g \circ f$ est convexe sur I.

Soit x < y et $a = \lambda x + (1 - \lambda)y \in]x, y[$. On a :

$$f(a) \le \lambda f(x) + (1 - \lambda) f(y)$$

donc $g \circ f(a) \le g(\lambda f(x) + (1 - \lambda) f(y))$
 $\le \lambda (g \circ f(x)) + (1 - \lambda) (g \circ f(y))$

Donc $g \circ f$ est convexe.

19.19 Réciproque de fonctions convexes

Propostion 19.19

Soit $f: I \to J$ une fonction convexe bijective avec I ouvert. Alors $g = f^{-1}$ est soit concave, soit convexe sur J.

Comme f est convexe sur I ouvert, f est continue sur I (19.9). Or f est bijective, donc f est strictement monotone sur I (15.72).

— Supposons f strictement croissante sur I. Soit x < y dans J = f(I). Soit $\lambda \in]0,1[$. Alors g est strictement croissante

On pose x = f(a) et y = f(b). On a :

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$

$$\le \lambda x + (1 - \lambda)y$$

Or g est strictement croissante, donc :

$$\lambda g(x) + (1 - y)g(y) = \lambda a + (1 - \lambda)b$$

$$\leq g(\lambda x + (1 - \lambda)y)$$

Donc g est concave sur J.

Si f est strictement décroissante (et donc g strictement décroissante), alors g est concave sur J.

Extrema des fonctions convexes 19.20

Soit f une fonction convexe définie par un intervalle I ouvert. Alors f admet un minimum global en un point a si et seulement si a est un point critique.

On suppose que a est un point critique. Donc f'(a) = 0.

Or le graphe de f est situé au-dessus de sa tangente en a, soit :

$$\forall x \in I, f(x) \ge \underbrace{f'(a)}_{0}(x-a) + f(a) = f(a)$$

Donc f(a) est un minimum global de f.

19.24Inégalité de Jensen

Soit $f: I \to \mathbb{R}$ une fonction convexe. Soit $n \geq 2$. Pour tout $(x_1, \dots, x_n) \in I^n$ et $(\lambda_1, \dots, \lambda_n) \in [0, 1]^n$ avec $\sum_{k=1}^{n} \lambda_k = 1$, alors

$$f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \le \sum_{k=1}^{n} \lambda_k f(x_k)$$

Par récurrence.

Soit
$$(x_1, \ldots, x_{n+1}) \in I^{n+1}, (\lambda_1, \ldots, \lambda_{n+1}) \in [0, 1]^{n+1}$$
 avec $\sum_{i=1}^{n+1} \lambda_i = 1$.

Si $\lambda_{n+1} = 0$, on applique directement l'hypothèse au rang n (RAF).

On suppose $\lambda_{n+1} \neq 0$. On a :

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left(\sum_{i=1}^{n-1} \lambda_i x_i + \lambda_n x_n + \lambda_{n+1} x_{n+1}\right)$$

$$= f\left(\sum_{i=1}^{n-1} \lambda_i x_i + (\lambda_n + \lambda_{n+1}) \times \left(\frac{\lambda_n}{\lambda_n + \lambda_{n+1}} x_n + \frac{\lambda_{n+1}}{\lambda_n + \lambda_{n+1}} x_{n+1}\right)\right)$$

$$\leq \sum_{i=1}^{n-1} \lambda_i f(x_i) + (\lambda_n + \lambda_{n+1}) \times f\left(\frac{\lambda_n}{\lambda_n + \lambda_{n+1}} x_n + \frac{\lambda_{n+1}}{\lambda_n + \lambda_{n+1}} x_{n+1}\right)$$

$$\leq \sum_{i=1}^{n-1} \lambda_i f(x_i) + (\lambda_n + \lambda_{n+1}) \times \left(\frac{\lambda_n}{\lambda_n + \lambda_{n+1}} f(x_n) + \frac{\lambda_{n+1}}{\lambda_n + \lambda_{n+1}} f(x_{n+1})\right)$$

$$= \sum_{i=1}^{n} \lambda_i f(x_i)$$

19.25 Exemple - Inégalité arithmético-géométrique

Exemple 19.25

Soit $n \ge 1$. Pour tout $(x_1, \ldots, x_n) \in (\mathbb{R}_+^*)^n$

$$\frac{n}{\sum_{k=1}^{n} \frac{1}{x_k}} \le \sqrt[n]{\prod_{k=1}^{n} x_k} \le \frac{1}{n} \sum_{k=1}^{n} x_k$$

La fonction logarithme est concave sur \mathbb{R}_+^* . Soit $(x_1,\ldots,x_n)\in(\mathbb{R}_+^*)^n$.

On remarque que $\sum_{k=1}^{n} \frac{1}{n} = 1$. D'après l'inégalité de Jensen :

$$\ln\left(\frac{1}{n}\sum_{k=1}^{n}x_{k}\right) \ge \frac{1}{n}\sum_{k=1}^{n}\ln(x_{k})$$

$$= \frac{1}{n}\ln\left(\prod_{k=1}^{n}x_{k}\right)$$

$$= \ln\left(\sqrt[n]{\prod_{k=1}^{n}x_{k}}\right)$$

On compose alors par exp (strictement croissante).

D'après le résultat précédent appliqué à $\left(\frac{1}{x_1}, \dots, \frac{1}{x_n}\right)$:

$$0 < \frac{1}{\sqrt[n]{\prod_{k=1}^{n} x_k}} = \sqrt[n]{\prod_{k=1}^{n} \frac{1}{x_k}} \le \frac{1}{n} \sum_{k=1}^{n} \frac{1}{x_k}$$

Donc $(x \mapsto \frac{1}{x} \text{ est strictement décroissante sur } \mathbb{R}_+^*)$:

$$\frac{n}{\sum_{k=1}^{n} \frac{1}{x_k}} \le \sqrt[n]{\prod_{k=1}^{n} x_k}$$

19.26 Inégalités de Holder et Minkowski

Théorème 19.26

Soit $n \in \mathbb{N}^*$, p et q deux nombres réels strictement positifs vérifiant

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Soit $(a_1,\ldots,a_n)\in(\mathbb{R}_+^*)^n$ et $(b_1,\ldots,b_n)\in(\mathbb{R}_+^*)^n$. On a

$$\sum_{k=1}^n a_k b_k \leq \sqrt[p]{\sum_{k=1}^n a_k^p} \sqrt[q]{\sum_{k=1}^n b_k^q}$$
 Inégalité de Holder

$$\sqrt[p]{\sum_{k=1}^n (a_k+b_k)^p} \leq \sqrt[p]{\sum_{k=1}^n a_k^p} + \sqrt[p]{\sum_{k=1}^n b_k^p} \text{ Inégalité de Minkowski}$$

— On rappelle que le logarithme est concave sur \mathbb{R}_+^* , donc pour tout u>0 et v>0, on a :

$$\ln\left(\frac{u^p}{p} + \frac{v^q}{q}\right) \ge \frac{1}{p}\ln(u^p) + \frac{1}{q}\ln(v^q) = \ln(uv)$$

Donc:

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}$$

Et en particulier:

$$u^{\frac{1}{p}}v^{\frac{1}{q}} \le \frac{u}{p} + \frac{v}{q}$$

En particulier, pour tout $k \in [1, n]$:

$$\underbrace{\left[\frac{a_k^p}{\sum\limits_{i=1}^n a_i^p}\right]^{\frac{1}{p}}}_{p} \times \left[\frac{b_k^q}{\sum\limits_{i=1}^n b_i^q}\right]^{\frac{1}{q}} \leq \frac{1}{p} \frac{a_k^p}{\sum\limits_{i=1}^n a_i^p} + \frac{1}{q} \frac{b_k^q}{\sum\limits_{i=1}^n b_i^q}$$

Donc:

$$\sum_{k=1}^{n} \frac{a_k b_k}{\sqrt[p]{\sum_{i=1}^{n} a_i^p \sqrt[q]{\sum_{i=1}^{n} b_i^q}}} \le \frac{1}{p} \sum_{k=1}^{n} \frac{a_k^p}{\sum_{i=1}^{n} a_i^p} + \frac{1}{q} \sum_{k=1}^{n} \frac{b_k^q}{\sum_{i=1}^{n} b_i^q}$$

$$= \frac{1}{p} + \frac{1}{q}$$

$$= 1$$

Donc:

$$\frac{\sum_{k=1}^{n} a_k b_k}{\sqrt[p]{\sum_{k=1}^{n} a_k^p} \sqrt[q]{\sum_{k=1}^{n} b_k^q}} \le 1$$

$$\sum_{k=1}^{n} (a_k + b_k)^p = \sum_{k=1}^{n} (a_k + b_k)(a_k + b_k)^{p-1} \quad (p \neq 1)$$
$$= \sum_{k=1}^{n} a_k (a_k + b_k)^{p-1} + \sum_{k=1}^{n} b_k (a_k + b_k)^{p-1}$$

D'après l'inégalité de Holder $\left(q = \frac{p}{p-1}\right)$:

$$\sum_{k=1}^{n} (a_k + b_k)^p \le \sqrt[p]{\sum_{k=1}^{n} a_k^p} \sqrt[q]{\sum_{k=1}^{n} (a_k + b_k)^{(p-1)q}} + \sqrt[p]{\sum_{k=1}^{n} b_k^p} \sqrt[q]{\sum_{k=1}^{n} (a_k + b_k)^{(p-1)q}}$$

$$= \sqrt[p]{\sum_{k=1}^{n} a_k^p} \sqrt[q]{\sum_{k=1}^{n} (a_k + b_k)^p} + \sqrt[p]{\sum_{k=1}^{n} b_k^p} \sqrt[q]{\sum_{k=1}^{n} (a_k + b_k)^p}$$

donc
$$\left[\sum_{k=1}^{n} (a_k + b_k)\right]^{\left(1 - \frac{1}{q}\right)} = \sqrt[p]{\sum_{k=1}^{n} a_k^p} + \sqrt[p]{\sum_{k=1}^{n} b_k^p}$$

Pour p = 1, RAF.