CHENNNAI INSTITUTE OF TECHNOLOGY (AUTONOMOUS)

Sarathy Nagar, kundrathur, Chennai-600069.

GATE 2025 - MATHEMATICS

Linear Algebra

1. Consider the system of linear equations x + 2y + z = 5; 2x + ay + 4z = 12; 2x + ay + 4z = 124y + 6z = b the values of a and b such that there exists a non-trivial null space and the system admits infinite solutions are

A.
$$a = 8, b = 14$$

B.
$$a = 4$$
, $b = 12$

C.
$$a = 8, b = 12$$

D.
$$a = 4$$
, $b = 14$

2. The matrix $\begin{bmatrix} 1 & \alpha \\ 8 & 3 \end{bmatrix}$ where $\alpha > 0$ has a negative eigenvalue of a is greater than

A.
$$^{3}/_{8}$$

B.
$$^{1}/_{8}$$

C.
$$^{1}/_{4}$$

D.
$$^{1}/_{5}$$

3. Consider the matrix $\begin{pmatrix} 1 & k \\ 2 & 1 \end{pmatrix}$, where k is a positive real number. Which of the following vectors is / are eigenvector(s) of this matrix?

A.
$$\begin{pmatrix} 1 \\ -\sqrt{\frac{2}{k}} \end{pmatrix}$$
 B. $\begin{pmatrix} 1 \\ \sqrt{\frac{2}{k}} \end{pmatrix}$ C. $\begin{pmatrix} \sqrt{2k} \\ 1 \end{pmatrix}$ D. $\begin{pmatrix} \sqrt{2k} \\ -1 \end{pmatrix}$

B.
$$\left(\int_{\frac{1}{k}}^{\frac{1}{k}} \right)$$

C.
$$\binom{\sqrt{2k}}{1}$$

D.
$$\binom{\sqrt{2k}}{-1}$$

- 4. If $A = \begin{bmatrix} 10 & 2K+5 \\ 3K-3 & K+5 \end{bmatrix}$ is a symmetric matrix, the value of K is _____
 - A. 8
 - B. 5
 - C. -0.4
 - D. $\frac{1+\sqrt{1561}}{12}$
- 5. The system of linear equations in real (x, y) given by $(x y)\begin{bmatrix} 2 & 5 2\alpha \\ \alpha & 1 \end{bmatrix} = (0 0)$ involves a real parameter α and has infinitely many non-trivial solutions for special

value(s) of α . Which one or more among the following options is/are non-trivial solution(s) of (x, y) for such special value(s) of α ?

A.
$$x = 2, y = -2$$

B.
$$x = -1$$
, $y = 4$

C.
$$x = 1, y = 1$$

D.
$$x = 4$$
, $y = -2$

- 6. A is a 3 \times 5 real matrix of rank 2. For the set of homogeneous equations = 0, where 0 is a zero vector and x is a vector of unknown variables, which of the following is/are true?
 - A. The given set of equations will have a unique solution
 - B. The given set of equations will be satisfied by a zero vector of appropriate size.
 - C. The given set of equations will have infinitely many solutions.
 - D. The given set of equations will have many but a finite number of solutions.
- 7. If the sum and product of eigenvalues of a 2×2 real matrix $\begin{bmatrix} 3 & P \\ P & O \end{bmatrix}$ are 4 and -1respectively, then |p| is (in integer)-----
- 8. The state equation of a second order system is $\dot{x}(t) = Ax(t)$, x(0) is the initial condition. Suppose λ_1 and λ_1 are two distinct eigenvalues of A and v_1 and v_2 are the corresponding eigenvectors. For constants α_1 and α_2 . The solution x(t), of the state equation is

A.
$$\sum_{i=1}^{2} \alpha_i e^{\lambda_i t} v_i$$

B.
$$\sum_{i=1}^{2} \alpha_i e^{2\lambda_i t} v_i$$

C.
$$\sum_{i=1}^{2} \alpha_i e^{3\lambda_i t} v_i$$

D.
$$\sum_{i=1}^{2} \alpha_i e^{4\lambda_i t} v_i$$

- A. $\sum_{i=1}^{2} \alpha_i e^{\lambda_i t} v_i$ B. $\sum_{i=1}^{2} \alpha_i e^{2\lambda_i t} v_i$ C. $\sum_{i=1}^{2} \alpha_i e^{3\lambda_i t} v_i$ D. $\sum_{i=1}^{2} \alpha_i e^{4\lambda_i t} v_i$ 9. Consider matrix $A = \begin{pmatrix} k & 2k \\ k^2 k & k^2 \end{pmatrix}$ and vector $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. The number of distinct real values of k for which the equation AX = 0 has infinitely many solutions is _____.
- 10. Consider the 5 x 5 matrix $A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \\ 4 & 5 & 1 & 2 & 3 \\ 3 & 4 & 5 & 1 & 2 \\ 2 & 2 & 3 & 5 & 5 \end{bmatrix}$. It is given that A has only one real

11. The rank of the matrix
$$M = \begin{pmatrix} 5 & 10 & 10 \\ 1 & 0 & 2 \\ 3 & 6 & 6 \end{pmatrix}$$
 is

12. The rank of the matrix
$$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$
 is _______

13. The value of x for which the matrix $A = \begin{bmatrix} 3 & 2 & 4 \\ 9 & 7 & 13 \\ -6 & -4 & -9 + x \end{bmatrix}$ has zero as an eigenvalue

is.....

14. The matrix	$\begin{bmatrix} a \\ 2 \\ 0 \\ 0 \end{bmatrix}$	0 5 0 0	3 1 2 0	7 3 4 <i>b</i>]	has $det(A) = 100$ and $trace(A)=14$. The value of $ a-b $ is
----------------	--	------------------	------------------	---------------------------	--

- 15. The value of p such that the vector $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ is an eigenvector of the matrix $\begin{pmatrix} 4 & 1 & 2 \\ p & 2 & 1 \\ 14 & -4 & 10 \end{pmatrix}$ is
- 16. Consider a system of linear equations: x 2y + 3z = -1, x 3y + 4z = 1 and -2x + 4y 6z = k. the value of k for which the system has infinitely many solutions is ____
- 17. The determinant of matrix A is 5 and the determinant of matrix B is 40. The determinant of matrix AB is _____.
- 18. The maximum value of the determinant among all 2×2 real symmetric matrices with trace 14 is _____
- 19. The minimum eigenvalue of the following matrix A is -----, where $A = \begin{pmatrix} 3 & 5 & 2 \\ 5 & 12 & 7 \\ 2 & 7 & 5 \end{pmatrix}$
 - A. 0 B. 1 C. 2 D. 3
- 20. Which one of the following is NOT true for a square matrix A?
 - A. If A is upper triangular, the eigenvalues of A are the diagonal elements of it
 - B. If A is real symmetric, the eigenvalues of A are always real and positive.
 - C. If A is real, the eigenvalues of A and A^{T} are always the same
 - D. If all the principal minors of A are positive, all the eigenvalues of A are also positive.
- 21. Consider an $n \times n$ matrix A and a non-zero $n \times 1$ vector p. Their product $Ap = \alpha^2 p$ where $\alpha \in R$ and $\alpha \notin \{-1,0,1\}$ based on the given information, the Eigen value of A^2 is:
 - Α. α
 - B. α^2
 - C. $\sqrt{\alpha}$
 - D. α^4
- 22. Multiplication of real valued square matrices of same dimension is
 - A. Associative
 - B. Commutative
 - C. Always positive definite
 - D. Not always possible to commute
- 23. A matrix P is decomposed into its symmetric part S and skew symmetric part V. If

$$S = \begin{pmatrix} -4 & 4 & 2 \\ 4 & 3 & 7/2 \\ 2 & 7/2 & 2 \end{pmatrix}, V = \begin{pmatrix} 0 & -2 & 3 \\ 2 & 0 & 7/2 \\ -3 & -7/2 & 0 \end{pmatrix}, \text{ then matrix P is}$$

$$A. \begin{pmatrix} -4 & 6 & -1 \\ 2 & 3 & 0 \\ 5 & 7 & 2 \end{pmatrix}$$

B.
$$\begin{pmatrix} -4 & 2 & 5 \\ 6 & 3 & 7 \\ -1 & 0 & 2 \end{pmatrix}$$

$$C. \begin{pmatrix} 4 & -6 & 1 \\ -2 & -3 & 0 \\ -5 & -7 & -2 \end{pmatrix}$$

D.
$$\begin{pmatrix} -2 & 9/2 & -1 \\ -1 & 81/4 & 11 \\ -2 & 45/2 & 73/4 \end{pmatrix}$$

- 24. Let *I* be a 100 dimensional identity matrix and *E* be the set of its distinct (no value appears more than once in *E*) real Eigen values. The number of elements in E is ____
- 25. Consider the matrix $P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ the number of distinct eigenvalues of P is
 - A. 0
 - B. 1
 - C. 2
 - D. 3
- 26. The set of equations x + y + z = 1; ax ay + 3y = 5; 5x 3y + az = 6 has infinite solutions, if a =
 - A. 3
 - B. **3**
 - C. 4
 - D. **-4**
- 27. In matrix equation [A] [X]=[R], $[A] = \begin{bmatrix} 4 & 8 & 4 \\ 8 & 16 & -4 \\ 4 & -4 & 15 \end{bmatrix}$, $[X] = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ and $[R] = \begin{bmatrix} 32 \\ 16 \\ 64 \end{bmatrix}$. One of the eigenvalues of matrix [A] is
 - A. 4
 - B. 8
 - C. 15

D. 16

- 28. The transformation matrix for mirroring a point in x-y plane about the line y = x is given by
 - $\mathbf{A.}\begin{bmatrix}1 & 0\\ 0 & -1\end{bmatrix}$
 - B. $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
 - $C.\begin{bmatrix}0&1\\1&0\end{bmatrix}$
 - $D.\begin{bmatrix}0 & -1\\ -1 & 0\end{bmatrix}$
- 29. The rank of the matrix $\begin{bmatrix} -4 & 1 & -1 \\ -1 & -1 & -1 \\ 7 & -3 & 1 \end{bmatrix}$ is
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- 30. The problem of maximizing $z = x_1 x_2$ subject to constraints $x_1 + x_2 \le 10$, $x_1 \ge 10$
 - $0, x_2 \ge 0$ and $x_2 \le 5$ has
 - A. No solution
 - B. One solution
 - C. Two solutions
 - D. More than two solutions
- 31. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 1 \end{bmatrix}$ then $\det(A^{-1})$ is _____ (correct to two decimal places).
- 32. The Product of the Eigen values of the matrix P is $\begin{pmatrix} 2 & 0 & 1 \\ 4 & -3 & 3 \\ 0 & 2 & -1 \end{pmatrix}$
 - A. 6
 - B. 2
 - C. 6
 - D. -2

33. Consider the matrix
$$P = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$
. Which one of the following statements about P

is INCORRECT?

- 34. The determinant of a 2×2 matrix is 50. If one Eigen value of the matrix is 10, the other Eigen value is _____
- 35. Consider the matrix $A = \begin{bmatrix} 50 & 70 \\ 70 & 80 \end{bmatrix}$ whose eigen vectors corresponding to Eigen values $\lambda 1$ and $\lambda 2$ are $X1 = \begin{bmatrix} 70 \\ \lambda 1 50 \end{bmatrix}$ and $X2 = \begin{bmatrix} \lambda 2 80 \\ 70 \end{bmatrix}$ respectively. The value of $X1^TX2$ is
- 36. The solution to the system of equations $\begin{bmatrix} 2 & 5 \\ -4 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{pmatrix} 2 \\ -30 \end{pmatrix}$ is
- 37. The condition for which the eigenvalues of the matrix $A = \begin{pmatrix} 2 & 1 \\ 1 & k \end{pmatrix}$ are positive is
- 38. A real square matrix A is called skew-symmetric if

A.
$$A^T = A$$

B.
$$A^{T} = A^{-1}$$

C.
$$A^T = -A$$

D.
$$A^{T} = A + A^{-1}$$

39. If any two columns of a determinant $P = \begin{bmatrix} 4 & 7 & 8 \\ 3 & 1 & 5 \\ 9 & 6 & 2 \end{bmatrix}$ are interchanged, which one of the

following statements regarding the value of the determinant is correct?

- A. Absolute value remains unchanged but sign will change.
- B. Both absolute value and sign will change.
- C. Absolute value will change but sign will not change.
- D. Both Absolute value and sign value will remain unchanged.
- 40. At least one Eigen value of a singular matrix is
 - A. Positive
 - B. Zero
 - C. Negative
 - D. Imaginary
- 41. For a given matrix $P = \begin{bmatrix} 4+3i & -i \\ i & 4-3i \end{bmatrix}$, where $i = \sqrt{-1}$, the inverse of matrix P is

$$A. \frac{1}{24} \begin{bmatrix} 4 - 3i & i \\ -i & 4 + 3i \end{bmatrix}$$

$$B. \frac{1}{25} \begin{bmatrix} i & 4-3i \\ 4+3i & -i \end{bmatrix}$$

C.
$$\frac{1}{24} \begin{bmatrix} 4+3i & -i \\ i & 4-3i \end{bmatrix}$$

D.
$$\frac{1}{25} \begin{bmatrix} 4+3i & -i \\ i & 4-3i \end{bmatrix}$$

- 42. The lowest eigenvalue of the 2 \times 2 matrix $\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$ is _____
- 43. Given that the determinant of the matrix $\begin{pmatrix} 1 & 3 & 0 \\ 2 & 6 & 4 \\ -1 & 0 & 2 \end{pmatrix}$ is -12, the determinant of the

$$\text{matrix} \begin{pmatrix} 2 & 6 & 0 \\ 4 & 12 & 8 \\ -2 & 0 & 4 \end{pmatrix} \text{is}$$

44. The matrix form of the linear system $\frac{dx}{dt} = 3x - 5y$ and $\frac{dy}{dt} = 4x + 8y$ is

A.
$$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & -5 \\ 4 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

B.
$$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & 8 \\ 4 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

C.
$$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 & -5 \\ 3 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

D.
$$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 & 8 \\ 3 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

45. One of the eigenvectors of the matrix $\begin{pmatrix} -5 & 2 \\ -9 & 6 \end{pmatrix}$ is

$$\mathbf{A} \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

B.
$$\binom{-2}{9}$$

$$C. \binom{2}{-1}$$

$$D. \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- 46. The eigenvalues of a symmetric matrix are all
 - A. Complex with non-zero positive imaginary part
 - B. Complex with non-zero negative imaginary par.
 - C. Real
 - D. Pure imaginary
- 47. Choose the CORRECT set of functions, which are linearly dependent
 - A. sinx, sin^2x and cos^2x
 - B. sinx, cosx and tanx
 - C. cos^2x , sin^2x and cos^2x
 - D. $\cos^2 x$, $\sin x$ and $\cos x$

- 48. For the matrix $A = \begin{pmatrix} 5 & 3 \\ 1 & 3 \end{pmatrix}$, one of the normalized Eigen vector is given by
 - $A. \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}$
 - $B.\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$
 - $C. \begin{pmatrix} \frac{3}{\sqrt{10}} \\ \frac{-1}{\sqrt{10}} \end{pmatrix}$
 - $D. \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix}$
- 49. x + 2y + z = 4; 2x + y + 2z = 5; x y + z = 1. The system of algebraic equations given above has
 - A. A unique solution of x = 1, y = 1 and z = 1
 - B. Only the two solutions of (x = 1, y = 1, z = 1) and (x = 2, y = 1, z = 0)
 - C. Infinite number of solutions
 - D. No feasible solution
- 50. Eigen values of a real symmetric matrix are always
 - A. Positive
 - B. Negative
 - C. Real
 - D. Complex
- 51. Consider the following system of equations: $2x_1 + x_2 + x_3 = 0$; $x_2 x_3 = 0$; $x_1 + x_2 = 0$. This system has
 - A. A unique solution
 - B. No solution
 - C. Five solutions
 - D. Infinite number of solutions
- 52. One of the Eigen vectors of the matrix $A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$ is
 - $A. \begin{pmatrix} 2 \\ -1 \end{pmatrix}$
 - $B. \binom{2}{1}$
 - $C. {4 \choose 1}$
 - $\mathrm{D.} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

53. The product of all Eigen values of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 is

- A. -1

- 54. Let A be any $n \times n$ matrix, where m > n. Which of the following statements is/are TRUE about the system of linear equations Ax = 0?
 - A. There exist at least m-n linearly independent
 - B. There exist m-n linearly independent vectors such that every solution is a linear combinations of these vectors.
 - C. There exist a non-zero solution in which at least m-n variables are 0
 - D. There exists a solution in which at least n variables are non-zero.
- 55. Let A be an $n \times n$ matrix over the set of all real numbers R. Let B be a matrix obtained from A by swapping two rows. Which of the following statements is/are TRUE?
 - A. The determinant of B is the negative of the determinant of A
 - B. If A is invertible, then B is also invertible
 - C. If a is symmetric, then b is also symmetric
 - D. If the trace of a is zero, then the trace of b is also zero

56. Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix}$ Let $det(A)$ and $det(B)$ denote the

determinants of the matrices A and B, respectively. Which one of the options given below is TRUE?

- A. det(A) = det(B)
- B. det(B) = -det(A)
- C. det(A) = 0
- D. det(AB) = det(A) + det(B)
- 57. Let $\lambda_1, \lambda_2, \lambda_3, \lambda_4$, and λ_5 be the five eigenvalues of A. Note that these eigenvalues need not be distinct.

The value of $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 =$ _____.

58. Consider the following two statements with respect to the matrices $A_{m\times n}$, $B_{n\times m}$, $C_{n\times n}$ and $D_{n \times n}$ Statement 1: tr(AB) = tr(BA)

Statement 2: tr(CD) = tr(DC)

where tr() represents the trace of a matrix. Which one of the following holds?

A. Statement 1 is correct and Statement 2 is wrong.

- B. Statement 1 is wrong and Statement 2 is correct.
- C. Both Statement 1 and Statement 2 are correct.
- D. Both Statement 1 and Statement 2 are wrong.
- 59. Consider solving the following system of simultaneous equations using LU decomposition. $x_1 + x_2 - 2x_3 = 4$; $x_1 + 3x_2 - x_3 = 7$; $2x_1 + x_2 - 5x_3 = 7$ where L and U are denoted as $L=\begin{pmatrix} L_{11} & 0 & 0 \\ L_{21} & L_{22} & 0 \\ L_{31} & L_{32} & L_{33} \end{pmatrix}$ and $U=\begin{pmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{32} \end{pmatrix}$ Which one of

the following is the correct combination of values for L_{32} , U_{33} , and x

A.
$$L_{32} = 2$$
, $U_{33} = -\frac{1}{2}$, $x_1 = -1$

B.
$$L_{32} = 2$$
, $U_{33} = 2$, $x_1 = -1$

C.
$$L_{32} = -\frac{1}{2}$$
, $U_{33} = 2$, $x_1 = 0$

D.
$$L_{32} = -\frac{1}{2}$$
, $U_{33} = -\frac{1}{2}$, $x_1 = 0$

- 60. Which of the following is/are the eigenvector(s) for the matrix given below?

 - $\begin{bmatrix} -9 & -0 & -2 & -4 \\ -8 & -6 & -3 & -1 \\ 20 & 15 & 8 & 5 \\ 32 & 21 & 7 & 12 \end{bmatrix}$ $B. \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} \qquad C. \begin{pmatrix} -1 \\ 0 \\ 2 \\ 3 \end{pmatrix} \qquad D. \begin{pmatrix} 0 \\ 1 \\ -3 \\ 2 \end{pmatrix}$
- 61. Consider the following matrix $\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix}$ the largest eigenvalue of the above
- matrix is 62. Suppose that P is a 4×5 matrix such that every solution of the equation matrix such that every solution of the equation $P_x = 0$ is a scalar multiple of $[2\ 5\ 4\ 3\ 1]^T$. The rank
 - of p is .
- 63. Let A and B be two $n \times n$ matrices over real numbers. Let rank(M) and det(M) denote the rank and determinant of a matrix M, respectively. Consider the following statements I. rank(AB) = rank(A)rank(b)

II.
$$det(AB) = det(A) det(B)$$

III.
$$rank(A + B) \le rank(A) + rank(B)$$

$$IV. \det(A+B) \le \det(A) + \det(B)$$

Which of the above statements are TRUE?

- A. I and II only B. I and IV only C. II and III only D. III and IV only
- 64. Let X be a square matrix. Consider the following two statements on X.

- I. X is invertible.
- II. Determinant of X is non-zero.

Which one of the following is TRUE?

- A. I implies II: II does not imply I
- B. II implies I; I does not imply II
- C. I does not imply II; II does not imply I
- D. I and II are equivalent statements.
- 65. Consider the following matrix:

$$R = \begin{bmatrix} 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \\ 1 & 5 & 25 & 125 \end{bmatrix}$$

The absolute value of the product of Eigen value of R is _____

- 66. Consider a matrix P whose only eigenvectors are the multiples of $\binom{1}{4}$. Consider the following statements.
 - I. P does not have an inverse
 - II. P has a repeated eigenvalue
 - III. P cannot be diagonalized

Which one of the following options is correct?

- A. Only I and III are necessarily true
- B. Only II is necessarily true
- C. Only I and II are necessarily true
- D. Only II and III are necessarily true
- 67. Consider a matrix $A = uv^T$ where $u = \binom{1}{2}$, $v = \binom{1}{1}$ Note that v^T denotes the transpose of v. The largest eigenvalue of A is _____.
- 68. Let C_1, \ldots, C_n be scalars, not all zero, such that $\sum_{i=1}^n c_i a_i = 0$ where a_i are column vectors in R^n consider the set of linear equations Ax = b where $A = [a_1 \ldots a_n]$ and $b = \sum_{i=1}^n a_i$. The set of equations has
 - A. A unique solution at $x = J_n$ where J_n denotes a n-dimensional vector of all 1
 - B. Infinitely many solutions
 - C. Finitely many solutions
 - D. No solution
- 69. Let u and v be two vectors in R^2 whose Euclidean norms satisfy ||u|| = 2||v||. What is the value of α such that $w = u = \alpha v$ bisects the angle between u and v?
 - A. 2
- B. ½
- C. -1
- D. -1/2
- 70. Let A be $n \times n$ real valued square symmetric matrix of rank 2 with $\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}^{2} = 50$, Consider the following statements

- I. One eigenvalue must be in [-5,5]
- II. The eigenvalue with the largest magnitude must be strictly greater than 5 Which of the above statements about eigenvalues of A is/are necessarily CORRECT?
- A. Both I and II
- B. I only
- C. II only
- D. Neither I nor II
- 71. Let $P = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$ and $Q = \begin{bmatrix} -1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{bmatrix}$ be two matrices. Then the rank of P +
- 72. Consider a quadratic equation $x^2 13x + 36 = 0$ with coefficients in a base b. The solutions of this equation in the same base b are x=5 and x=6. Then b=.
- 73. If the characteristic polynomial of a 3×3 matrix M over R (the set of real numbers) is $\lambda^3 - 4\lambda^2 + a\lambda \in R$, and one eigenvalue of M is 2, then the largest among the absolute values of the eigenvalues of M is .
- 74. Two eigenvalues of a 3×3 real matrix P are $(2 + \sqrt{-1})$ and 3. The determinant of P is
- 75. Consider the systems, each consisting of m linear equations in n variables.
 - I. If m < n, then all such systems have a solution
 - II. If m > n, then none of these systems has a solution
 - III. If m = n, then there exists a system which has a solution which one of the following is CORRECT?
 - A. I, II and III are true
 - B. Only II and III are true
 - C. Only III is true
 - D. None of them is true
- 76. Suppose that the eigenvalues of matrix A are 1,2,4. The determinant of $(A^{-1})^T$ is _____.
- 77. Consider the following 2×2 matrix A where two elements are unknown and are marked by a and b. The eigenvalues of this matrix are -1 and 7. What are the values of a and b?

$$A = \begin{pmatrix} 1 & 4 \\ b & a \end{pmatrix}$$

- A. a = 6, b = 4 B. a = 4, b = 6 C. a = 3, b = 5 D. a = 5, b = 3
- 78. In the LU decomposition of the matrix $\begin{bmatrix} 2 & 2 \\ 4 & 9 \end{bmatrix}$, if the diagonal elements of U are both 1, then the lower diagonal entry l_{22} of L is
- 79. The larger of the two eigenvalues of the matrix $\begin{bmatrix} 4 & 5 \\ 2 & 1 \end{bmatrix}$ is _____.

80. Perform the following operations on the matrix
$$\begin{bmatrix} 3 & 4 & 45 \\ 7 & 9 & 105 \\ 13 & 2 & 195 \end{bmatrix}$$

- (i)Add the third row to the second row
- (ii)Subtract the third column from the first column.

The determinant of the resultant matrix is ______.

81. In the given matrix
$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$
, one of the eigenvalues is 1. The eigenvectors

corresponding to the eigenvalue 1 are.....

- A. $\{\alpha(4,2,1)|\alpha \neq 0, \alpha \in R\}$
- B. $\{\alpha(-4,2,1) | \alpha \neq 0, \alpha \in R\}$
- C. $\{\alpha(\sqrt{2},0,1)|\alpha\neq 0, \alpha\in R\}$
- D. $\{\alpha(-\sqrt{2},0,1)|\alpha\neq 0, \alpha\in R\}$
- 82. Consider the following system of equations:

$$3x + 2y = 1$$
; $4x + 7z = 1$; $x + y + z = 3$; $x - 2y + 7z = 0$;

The number of solutions for this system is _____.

- 83. The value of the dot product of the eigenvectors corresponding to any pair of different eigenvalues of a 4 by 4 symmetric positive definite matrix is ______
- 84. If the matrix A is such that $A = \begin{bmatrix} 2 \\ -4 \\ 7 \end{bmatrix} \begin{bmatrix} 1 & 9 & 5 \end{bmatrix}$ then the determinant of A is equal to
- 85. The product of the non-zero eigenvalues of the matrix $\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$ is _
- 86. Which one of the following statements is TRUE about every $n \times n$ matrix with only real eigen values?
 - A. If the trace of the matrix is positive and the determinant of the matrix is negative, at least one of its eigenvalues is negative.
 - B. If the trace of the matrix is positive, all its eigenvalues are positive.
 - C. If the determinant of the matrix is positive, all its eigenvalues are positive.
 - D. If the product of the trace and determinant of the matrix is positive, all its eigenvalues are positive.

87. Which one of the following does **NOT** equal
$$\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix}$$
?

A.
$$\begin{vmatrix} 1 & x(x+1) & x+1 \\ 1 & y(y+1) & y+1 \\ 1 & z(z+1) & z+1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & (x+1) & x^2+1 \end{vmatrix}$$

B.
$$\begin{vmatrix} 1 & (y+1) & y^2 + 1 \\ 1 & (z+1) & z^2 + 1 \end{vmatrix}$$

C.
$$\begin{vmatrix} 0 & x - y & x^2 - y^2 \\ 0 & y - z & y^2 - z^2 \\ 1 & z & z^2 \end{vmatrix}$$
D.
$$\begin{vmatrix} 2 & x + y & x^2 + y^2 \\ 2 & y + z & y^2 + z^2 \\ 1 & z & z^2 \end{vmatrix}$$

$$|2 x + y x^2 + y^2|$$

D.
$$\begin{vmatrix} 2 & y+z & y^2+z^2 \\ 1 & z & z^2 \end{vmatrix}$$

- 88. Let A be the 2 \times 2 matrix with elements $a_{11}=a_{12}=a_{21}=+1$ and $a_{22}=-1$ the eigenvalues of the matrix A^{19} are
 - A. 1024 and -1024
 - B. $1024\sqrt{2}$ and $-1024\sqrt{2}$
 - C. $4\sqrt{2}$ and $-4\sqrt{2}$
 - D. $512\sqrt{2}$ and $-512\sqrt{2}$
- 86. Consider a 3 x 3 matrix A whose (i, j)-th element, $a_{i,j} = (i j)^3$. Then the matrix A will be
 - a) symmetric
- b) skew symmetric
- c) unitary
- d) null
- 87. Consider a matrix $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & -2 \\ 0 & 1 & 1 \end{pmatrix}$. The matrix A satisfies the equation 6A 1 = A2 + A
- cA + dI, where C & D are scalars and I is the identity matrix. Then (c + d) is equal to
- a) 5
- b) 17
- c) -6
- d) 11
- 88. Let A be a 10 \times 10 matrix such that A^5 is a null matrix, and let I be the 10 \times 10 identity matrix. The determinant of A + I is _____.
- 89. The number of purely real elements in a lower triangular representation of the 3×3 matrix, obtained through the given decomposition is ____

$$\begin{pmatrix} 2 & 3 & 3 \\ 3 & 2 & 1 \\ 3 & 1 & 7 \end{pmatrix} = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{12} & a_{22} & 0 \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} a_{11} & 0 & 0 \\ a_{12} & a_{22} & 0 \\ a_{13} & a_{23} & a_{33} \end{pmatrix}^{T}$$

- a) 5 b) 6
- c) 8
- d)9

90. Consider a 2 \times 2 matrix $M = [v_1 \ v_2]$, where v_1 and v_2 are the column vectors. Suppose $M^{-1} = \begin{bmatrix} u_1^T \\ u_2^T \end{bmatrix}$, where u_1^T and u_2^T are the row vectors. Consider the following statements:

Statement 1: $u_1^T v_1 = 1$ and $u_2^T v_2 = 1$

Statement 2: $u_1^T v_2 = 0$ and $u_2^T v_1 = 0$

Which of the following options is correct?

- Statement 1 is true and statement 2 is false a)
- b) Statement 2 is true and statement 1 is false
- c) Both the statements are true.
- Both the statements are false. d)
- 91. M is a 2 x2 matrix with eigenvalues 4 and 9. The Eigen values of M^2 are
 - b) 2 and 3 c) -2 and -3 d) 16 and 81
- 92. The rank of the matrix $M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ is _____
- 93. Consider a non-singular 2 x 2 square matrix A. If trace(A) = 4 and trace (A^2) = 5, the determinant of the matrix A is -----(up to 1 decimal place).
- 94. Let $A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ and $A = A^3 A^2 4A + 5I$, where I is the 3 \times 3 identity matrix.

The determinant of B is -----(up to 1 decimal place)

- 95. The matrix $A = \begin{bmatrix} \frac{3}{2} & 0 & \frac{1}{2} \\ 0 & -1 & 0 \\ \frac{1}{2} & 0 & \frac{3}{2} \end{bmatrix}$ has three distinct eigen values and one of its eigen vectors is
- $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, which one of the following can be another eigenvector of A?

$$\mathbf{a})\begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \qquad \mathbf{b}) \qquad \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \qquad \mathbf{c}) \quad \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \qquad \qquad \mathbf{d})\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

- 96. The eigenvalues of the matrix given below are $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -3 & -4 \end{pmatrix}$

 - a) (0,-1,-3) b) (0,-2,-3) c) (0,2,3) d) (0,1,3)

97. Let the eigenvalues of a 2 \times 2 matrix A be 1, -2 with eigenvectors x_1 and x_2 respectively. Then the eigenvalues and eigenvectors of the matrix $A^2 - 3A + 4I$ would, respectively, be

a) 2,14; x_1 , x_2 **b)** 2,14; $x_1 + x_2$, $x_1 - x_2$ **c)** 2,0; x_1 , x_2 **d)** 2,0; $x_1 + x_2$, $x_1 - x_2$ 98. Let A be a 4×3 real matrix with rank 2. Which one of the following statement is TRUE?

a) Rank of A^TA is less than 2 b) Rank of A^TA is equal to 2 c) Rank of A^TA is greater than 2 d) Rank of A^TA can be any number between 1 and 2

99. Consider a 3 \times 3 matrix with every element being equal to 1. Its only non-zero eigenvalue is

100. Let $P = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. Consider the set S of all vectors $\begin{pmatrix} x \\ y \end{pmatrix}$ such that $a^2 + b^2 = 1$ where $\begin{pmatrix} a \\ b \end{pmatrix} = P \begin{pmatrix} x \\ y \end{pmatrix}$ then S is

- **a**) a circle of radius $\sqrt{10}$ **b**) a circle of radius $\frac{1}{\sqrt{10}}$ **c**) an ellipse with major axis along $\binom{1}{1}$
- **d**) an ellipse with minor axis along $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$