Decision Trees

Decision Tree Terminology

Predict whether someone will buy or sell stocks

Day	company_perf	exchange_rate	gold_price	Action	
1	High Increase		Stable	Sale	
2	Medium	Increase	Unstable	Purchase	
3	High	Increase	Unstable	Purchase	
4	Medium	Decrease	Stable	Purchase	
5	Low	Decrease	Unstable	Purchase	
6	Medium	Increase	Stable	Sale	
7	High	Decrease	Stable	Purchase	
8	Medium	Increase	Stable	Sale	
9	High	Increase	Stable	Sale	
10	Medium	Decrease	Unstable	Purchase	
11	High	Decrease	Stable	Purchase	
12	Medium	Increase	Stable	Sale	
13	Medium	Decrease	Unstable	Purchase	
14	Low	Increase	Stable	Purchase	
15	Low	Increase	Stable	Purchase	
16	Low	Decrease	Stable	????	

Company_perfHigh, Medium, LowExch_rateIncrease, DecreaseGold_priceStable, Unstable

Action 9 Purchase / 6 Sale

Da	company_perf	exchange_rate	gold_price	Action
16	Low	Decrease	Stable	????

Split criteria

Information Gain

- ☐ Significant variable to split is determined by **Information Gain**
- Measure that determines how well a given attribute splits the dataset
- ☐ This measure is used at every step to determine the next best attribute
- ☐ Information (I) is needed to classify an object
- $\Box \ \mathsf{Gain} \ (\mathsf{S}, \ \mathsf{A}) = \mathsf{E}(\mathsf{S}) \Sigma \left[\ (\mathsf{S}_\mathsf{a}/\mathsf{S}) \ ^* \ \mathsf{E}(\mathsf{S}_\mathsf{a}) \ \right]$

where

E(S) = Entropy calculation

S_a = Dataset having attribute value **a**

S = Total count of dataset of attribute **A**

 $E(S_a)$ = Entropy of Attribute value **a**

■ Maximum(Gain(A)) → Best Attribute

Entropy (I)

- Measures homogeneity of the sets
- ☐ Tells us how pure / impure a set is
- e.g. In a binary classification dataset, if S is the dataset having + and classes, then Entropy (*I*nformation) is measured as:

$$E(S) = -p_{(+)}log_2 p_{(+)} - p_{(-)}log_2 p_{(-)}$$

where

 $\mathbf{p_{(+)}} = \%$ of positive class

 $\mathbf{p}_{(-)} = \%$ of negative class

- Interpretation of Entropy
 - $\checkmark 0 <= I <= 1$
 - ✓ Number of bits that is needed to identify if an item in the given dataset is + or –
 - \checkmark For a pure subset, number of bits = 0
 - \checkmark For a tie, number of bits = 1

Which attribute to split on?

10 P / 5 S

company_perf	Purchase	Sale
High	3	2
Low	3	0
Medium	4	3

company_perf	Purchase (+)	Sale (-)	PS_Total	p ₍₊₎	$\log_2 p_{(+)}$	-p ₍₊₎ log ₂ p ₍₊₎	p ₍₋₎	$\log_2 p_{\scriptscriptstyle (-)}$	p ₍₋₎ log ₂ p ₍₋₎	Е
High	3	2	5	0.600	-0.737	0.442	0.400	-1.322	-0.529	0.971
Low	3	0	3	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Medium	4	3	7	0.571	-0.807	0.461	0.429	-1.222	-0.524	0.985
Set (Total)	10	5	15	0.667	-0.585	0.390	0.333	-1.585	-0.528	0.918
E(0)	6	6	5 ()	(C (C) + E(C)	6	5 /	(6, (6) * 5(6)	0 : (0]	
E(S)	5	$S_{(v=high)}$	E(_{v=high})	$(S_a/S) * E(S_a)$	S _(v=medium)	E(_{v=medium})	$(S_a/S) * E(S_a)$	Gain(S, company_perf)		
0.918	15	5 7	0.971	0.324	7	0.985	0.460	0.783		

10 P / 5 S

exchange_rate	Purchase	Sale
Decrease	6	0
Increase	4	5

exchange_rate	Purchase (+)	Sale (-)	PS_Total	p ₍₊₎	$\log_2 p_{(+)}$	-p ₍₊₎ log ₂ p ₍₊₎	p ₍₋₎	$\log_2 p_{\scriptscriptstyle (-)}$	p ₍₋₎ log ₂ p ₍₋₎	Е
Decrease	6	0	6	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Increase	4	5	9	0.444	-1.170	0.520	0.556	-0.848	-0.471	0.991
Set (Total)	10	5	15	0.667	-0.585	0.390	0.333	-1.585	-0.528	0.918
F/C)	C	c	r/ \	/C /C\ * F/C \	c	r/ \	/C /C\ * T/C \	Cain(C ayahanga rata)		
E(S)	3	O _(v=decrease)	C(_{v=decrease})	$(S_a/S) * E(S_a)$	S _(v=increase)	C(_{v=increase})	$(S_a/S) * E(S_a)$	Gain(S, exchange_rate)		
0.918	15	6	0.000	0.000	9	0.991	0.595	0.595		

1.000 0.000

0.918

10 P / 5 S

gold_price	Purchase	Sale
Stable	5	5
Unstable	5	0

gold_price	Purchase (+)	Sale (-)	PS_Total	p ₍₊₎	$\log_2 p_{(+)}$	$-p_{(+)} \log_2 p_{(+)}$	p ₍₋₎	$\log_2 p_{(-)}$	$p_{(-)} \log_2 p_{(-)}$
stable	5	5	10	0.500	-1.000	0.500	0.500	-1.000	-0.500
unstable	5	0	5	1.000	0.000	0.000	0.000	0.000	0.000
Set (Total)	10	5	15	0.667	-0.585	0.390	0.333	-1.585	-0.528
۲/۵)	c	c	- / \	/C /C) * F/C)	c	- / \	/C /C) * F/C)	Coin/C commons mont)	
E(S)	3	S _(v=stable)	E(_{v=stable})	$(S_a/S) * E(S_a)$	S _(v=unstable)	C(_{v=medium})	$(S_a/S) * E(S_a)$	Gain(S, company_perf)	
0.918	15	10	1.000	0.667	5	0.000	0.000	0.667	

