

В задаче требуется оценка погрешностей!

 ${\it Bhumahue!}$ Не подавайте на помпу напряжение более 12 V и включайте ее только погрузив в воду!

Теоретическая справка

В науке и технике одним из приборов, позволяющих определить скорость потока жидкости или газа, является трубка Пито. Этот прибор состоит из двух трубок, одна из которых располагается открытым концом навстречу потоку, а вторая — так, что вектор скорости движения среды параллелен плоскости открытого конца. Движущаяся среда создает в этих трубках отличающиеся друг от друга давления. По величине разности этих давлений можно определить скорость движения среды относительно трубок.

В предложенной вам работе рассматривается модель трубки Пито (в дальнейшем просто "трубка Пито") для измерения скорости движения воды (см рисунок 1) — игла, конец которой срезан под острым углом к ее оси с присоединенной к ней трубкой. Если поместить кончик иглы в поток воды, уровень воды в трубке Пито будет зависеть от ориентации иглы относительно потока (для удобства регистрации уровня воды к трубке приклеена линейка). Если вода течет параллельно плоскости среза иглы, в трубке устанавливается некоторый уровень h_1 , если же ее развернуть отверстием перпендикулярно набегающему потоку, он будет дополнительно нагнетать воду в трубку Пито, вследствие чего уровень жидкости h_2 в этом случае будет выше.

Рис. 1. Модель трубки Пито для измерения скорости потока набегающей среды

Задание

1. Наденьте гайки на трубку и распределите их по ней. Заранее зафиксировав гайки и измерив расстояние между ними, их можно использовать в качестве меток для

измерения координаты x в следующих упражнениях. Расположите трубку на дне ведра, наполненного водой примерно на треть. Следите за тем, чтобы все части трубки находились на одинаковом уровне (для этого согните трубку в виде спирали).

К одному из концов трубки присоедините помпу, предварительно проверив, что ее заслонка полностью открыта. Подключите помпу к источнику питания и установите напряжение в 9 В. Вставьте иглу в силиконовую трубку на расстоянии 15 см от выходного отверстия помпы. Убедитесь, что уровень нагнетаемой в трубку Пито воды зависит от ориентации иглы относительно набегающего потока. Протыкая трубку иголкой в разных местах, снимите зависимости величин h_1 и h_2 (высот уровней жидкости в трубке Пито при двух ориентациях) от расстояния до выходного отверстия помпы x для $x \ge 15$ см.

- 2. Оцените погрешность измерения высот h_1 и h_2 , проведя для нескольких расстояний x повторные измерения.
- 3. Постройте на одном листе миллиметровой бумаги графики снятых зависимостей $h_1(x)$ и $h_2(x)$. Какими функциями их можно описать? Можно ли считать величину $\Delta h = h_2 h_1$ не зависящей от координаты x с учетом точности проведения эксперимента?
- 4. Установите иголку на расстоянии 15 см от выходного отверстия помпы. Измерьте зависимость величины Δh от тока I текущего через помпу.
- 5. Измерьте зависимость объемного расхода воды Q от тока I текущего через помпу, при тех же значениях тока, при которых вы проводили измерения в предыдущем упражнении. Во время измерений старайтесь держать открытый конец трубки на высоте выходного отверстия помпы.
- 6. Измерьте площадь внутреннего сечения силиконовой трубки.
- 7. Объединяя результаты упражнений 3-5 постройте график зависимости разности высот Δh от величины v^2 , где v средняя скорость воды в силиконовой трубке. Рассчитайте угловой коэффициент полученного графика.

Примечания

- 1. Плотность воды $\rho = 1 \ {\rm г/cm^3}$ считайте известной точно.
- 2. Игла снабжена ограничителем, фиксирующим глубину ее погружения в трубку. Не снимайте его.

Оборудование. Лабораторный источник питания, помпа, мерная лента, гайки, силиконовая трубка, ведро, модель трубки Пито, стакан, весы, секундомер.

Решение

1. Измерим зависимости величин h_1 и h_2 от координаты x.

x, cm	h_1 , см	h_2 , см	Δh , cm
15.0	27.9	20.9	7.0
25.0	24.8	19.1	5.7
35.0	23.7	15.6	8.1
45.0	18.6	13.2	5.4
55.0	17.2	10.4	6.8
65.0	15.5	7.9	7.6

- 2. Повторно протыкая трубку на тех же расстояниях, что и в первом пункте, обнаруживаем, что отличие показаний может достигать $\delta h=2$ см, что и примем за оценку погрешности определения высоты уровня жидкости в трубке Пито. Погрешность измерения длины x вдоль трубки оценим как $\delta x=0.5$ см.
- 3. Построим графики зависимостей $h_1(x)$ и $h_2(x)$

Погрешность измерения Δh оценим, как погрешность разности двух величин, в 4 см. Это значит, что в пределах погрешностей эксперимента измеренные зависимости можно описывать двумя параллельными прямыми с постоянной по длине трубки разностью Δh .

4. Измерим зависимость разности уровней в трубке от текущего через помпу тока.

<i>I</i> , A	h_1 , cm	h_2 , cm	Δh , cm	m, г	t, c	q	v, cm/c	$v^2, ({\rm cm/c})^2$	Δv^2 , $(c_{\rm M}/c)^2$
104.00	14.7	18.7	4.0	257.36	10.3	25.0	68.5	0.5	0.0
123.00	17.0	21.5	4.5	246.96	8.8	28.1	76.9	0.6	0.0
130.00	22.5	16.5	6.0	233.97	7.5	31.2	85.5	0.7	0.1
147.00	26.6	18.3	8.3	235.82	6.9	34.2	93.6	0.9	0.1
155.00	20.9	27.8	6.9	234.53	7.1	33.0	90.5	0.8	0.1
167.00	30.3	19.9	10.4	226.53	5.9	38.4	105.2	1.1	0.1
183.00	34.6	23.9	10.7	222.40	5.5	40.4	110.8	1.2	0.1
218.00	40.7	28.1	12.6	223.50	5.3	42.6	116.6	1.4	0.2

5. Включим помпу, когда открытый конец трубки находится в ведре. Настроим ток через помпу на значение, совпадающее со значением тока в предыдущем упражнении. Выключим помпу. Поставим на весы стакан, выставим значение весов на нулевую отметку. Поместим в стакан открытый конец трубки. Включим помпу, одновременно включив секундомер. По прошествии некоторого времени t выключим секундомер и помпу. Измерим массу воды m, набравшуюся за это время в стакан. Рассчитаем объемный расход воды при данном токе:

$$Q = \frac{m}{\rho t},\tag{1}$$

где $\rho=1$ г/см - плотность воды. Изменим ток на следующее значение и повторим операцию.

6. Для измерения площади сечения трубки засосем в нее воду из ведра и выльем ее в стакан. Разделив массу воды $m_1 = 34, 12$ г плотность воды получим значение объема всей трубки. Длина трубки составляет l = 93.50 см. Тогда площадь сечения трубки:

$$S = \frac{m_1}{\rho l} = 0,365 \text{ cm}^2. \tag{2}$$

7. Для расчета средней скорости движения воды внутри трубки воспользуемся ее связью с объемным расходом воды:

$$v = \frac{Q}{S}. (3)$$

Наибольший вклад в относительную погрешность измерения скорости вносит погрешность измерения времени (оценим ее как $\delta t=0.3$ с), поэтому остальными вкладами (погрешностью измерения массы, площади сечения) на ее фоне можно пренебречь. Тогда $\delta v^2=2(\delta t/t)*v^2$. Построим требуемый в условии график.

График зависимости $\Delta h(v^2)$ Δh , cm 14.0 12.0 10.0 8.0 6.0 4.0 2.0 v^2 , $({\rm M/c})^2$ 1.6 0.20.40.6 0.8 1.0 1.2 1.4

Как видно, с учетом погрешностей точки хорошо описываются линейной зависимостью без смещения с угловым коэффициентом $k=(0.089\pm0.011)$. Теоретический расчет для трубки Пито классической конструкции дает значение k=1/2g. Отметим, что, поскольку в пределах погрешности смещением прямой можно пренебречь, коэффициент k можно оценить и по одному измерению.