Data Science Bootcamp - Week 7 Follow Up Questions - Pooja Mahesh

1. How do you assess the statistical significance of an insight?

To assess statistical significance:

- Formulate Hypotheses: Define the null hypothesis (H₀) and the alternative hypothesis (H₁).
- Choose a Significance Level (α): Typically 0.05 (5%).
- Select an Appropriate Test: Example: t-test, chi-square test, ANOVA, etc.
- Calculate the Test Statistic: Compute the statistic (like t-value) based on the data.
- **Find the p-value**: Determine the probability of observing the data (or something more extreme) assuming the null hypothesis is true.
- Compare p-value and α:
 - If $\mathbf{p} < \mathbf{\alpha}$, reject $H_0 \rightarrow$ statistically significant.
 - ∘ If $\mathbf{p} \ge \mathbf{\alpha}$, fail to reject $H_0 \rightarrow$ not statistically significant.

Key point: Statistical significance tells us how unlikely the result is under the null hypothesis but does not directly confirm the truth of the alternative hypothesis.

2. What is the Central Limit Theorem (CLT)? Explain it. Why is it important?

The Central Limit Theorem (CLT) states:

If you take sufficiently large random samples from any population (regardless of the population's original distribution), the distribution of the sample means will approximate a normal distribution.

Why is it important?

- Enables the use of **normal-based statistical tests** (like t-tests and z-tests) even when the population is not normally distributed.
- Supports confidence intervals and hypothesis testing.
- Allows generalization from a sample to the population.

3. What is statistical power?

Statistical power is:

The probability of correctly rejecting the null hypothesis when it is false (i.e., detecting a true effect).

Mathematically:

Power = 1 - \beta, where β is the probability of a Type II error (failing to reject a false null hypothesis).

Why is it important?

- Higher power reduces the risk of false negatives.
- Common target for power is **80% or higher**, meaning there's an 80% chance of detecting an effect if it exists.
- Influenced by:
 - Sample size (larger samples = higher power).
 - Effect size (larger effect = higher power).
 - Significance level (α).
 - Variance in the data.

4. How do you control for biases?

To control for biases:

Randomization: Randomly assign participants to groups to reduce selection bias.

Blinding:

- Single-blind: Participant doesn't know which group they're in.
- Double-blind: Neither participant nor experimenter knows group assignment.
- Control Groups: Include placebo or baseline groups for comparison.
- **Matching**: Match participants on key variables (e.g., age, gender).
- Statistical Controls: Use regression techniques to control for covariates.
- Pre-registration: Document analysis plans before data collection to avoid data dredging.

5. What are confounding variables?

Confounding variables are:

External factors that influence both the independent variable (IV) and the dependent variable (DV), creating a false association between them.

Why are they problematic?

- They can lead to incorrect conclusions about causality.
- Example: Studying the effect of exercise on heart health without controlling for diet.

Market How to handle confounders?

- Randomization.
- Stratification.
- Statistical adjustment (like ANCOVA or multiple regression).
- Matching groups on confounding variables.

6. What is A/B testing?

A/B Testing is:

A randomized controlled experiment where two versions (A and B) are compared to see which performs better.

✓ How it works:

- A: Control group (current version).
- **B**: Treatment group (new version).
- Users are **randomly assigned** to either group.
- Outcome (like click rate, conversion rate) is measured.
- Use statistical tests (e.g., t-test) to determine if the difference is significant.

7. What are confidence intervals?

A confidence interval (CI) is:

A range of values, derived from the sample data, that is likely to contain the true population parameter with a specified probability (e.g., 95%).

Interpretation:

• A 95% CI means that if we repeated the experiment many times, 95% of the calculated intervals would contain the true parameter.

Why use Cls?

- Provides a range estimate (not just a single value like the mean).
- Gives information about the **precision and uncertainty** of the estimate.
- Complements p-values by showing the size of the effect and the reliability of the estimate.