Cours Cours de graphes

L'algorithme de Dijkstra est un parcours en largeur d'un graphe **pondéré** et orienté. Il permet de calculer l'ensemble des plus courts chemins entre un sommet vers tous les autres sommets du graphe.

Pour modéliser le graphe, on utilisera une matrice d'adjacence M pour laquelle $M_{ij} = w(i,j)$ et w(i,j) représente le poids de l'arête de i vers j. Lorsqu'il n'y a pas d'arc entre deux sommets, on aura $M_{ij} = \infty$.

Exemple

JulesSvartz

Colonne j, sommet d'arrivée					
	Γ0	1	2	∞	∞
Ligne <i>i,</i> sommet de départ	2	0	2	1	∞
	∞	∞	0	∞	3
	3	∞	∞	0	1
_	L∞	∞	∞	∞	0]

Définition Poids d'un chemin Soit un un graphe pondéré G = (V, E, w) où V désigne l'ensemble des sommets, E l'ensemble des arêtes et w, la fonction poids définie par $w : E \to \mathbb{R}$ (w(u, v) est le poids de l'arête de u vers v).

On appelle poids du chemin C et on note w(C) la somme des poids des arêtes du chemin.

Un chemin de $u \in V$ à $v \in V$ est un plus court chemin s'il n'existe pas de chemin de poids plus petit.

Définition Distance La distance d(u, v) est le poids d'un plus court chemin de u à v. On peut alors noter $d(u, v) = \inf\{w(C)|C \text{ est un chemin de } u \text{ à } v\}$.

Si v n'est pas atteignable depuis u on poser $d(u, v) = \infty$.

Propriéfé Sous-optimalité – Soit C un plus court chemin de u à v ainsi que u' et v' deux sommets de C. Alors le sous-chemin de C de u' à v' est aussi un plus court chemin.

Objectif Soit un graphe pondéré G = (V, E, w) où V désigne l'ensemble des sommets, E l'ensemble des arêtes et w, la fonction poids.

Soit s un sommet de V. L'objectif est de déterminer la liste de l'ensemble des distances entre s et l'ensemble des sommets de V.

Pour répondre à l'objectif, on peut formuler l'algorithme de Dijkstra ainsi.

```
Entrées: un graphe pondéré donné par liste ou marrice d'adjacence, un sommet s du graphe Sortie: D liste des distances entre s et chacun des sommets

Initialisation de D: D[i] = \infty

Initialisation de D: D[s] = 0

Initialisation de T: D[i] = False liste des sommets traités

Initialisation d'une file de priorité avec le sommet de départ F = {s}

Tant que F n'est pas vide:

Recherche du sommet u tel que d [u] minimal parmi les sommets de F

Pour tout voisin v de u faire:

Si v n'est ni dans F ni dans H alors

Ajouter v à F

D=min(d[v], d[u] + w(u, v))

Ajouter u à H
```

Une des étapes qui diffère avec le parcours en largeur notamment, est l'utilisation d'une file de priorité et la recherche du sommet vérifiant d[u] minimal. Cela signifie que lorsqu'on partira d'un sommet $\mathfrak s$. On déterminera alors l'ensemble des distances permettant d'atteindre les voisins de $\mathfrak s$. Á l'itération suivante, on vistera alors le sommet ayant la distance la plus faible.

■ Exemple La figure suivante représente le déroulement de l'algorithme de Dijkstra sur un graphe à 5 sommets, depuis la source s. Pour chaque sommet u on a fait figurer la valeur d[u] à l'intérieur du cercle. Les arcs en gras représentent l'évolution de la liste des prédecesseurs.

On peut donc commencer par implémenter une fonction cherche_min permettant de trouver le sommet i vérifiant d[i] minimal parmi les sommets tels que traites[i] est faux (s'il existe un tel sommet vérifiant d[i] $<+\infty$, sinon -1 est renvoyé.

On donne alors l'algorithme de Dijkstra.

Sources

- Cours de Quentin Fortier.
- Cours de Jules Svartz, Lycée Masséna.