

空气质量气体传感器

(型号: MP503)

使用说明书

版本号: 1.4

实施日期: 2014.08.10

郑州炜盛电子科技有限公司 Zhengzhou Winsen Electronic Technology Co., Ltd 声明

本说明书版权属郑州炜盛电子科技有限公司(以下称本公司)所有,未经书面许可,本

说明书任何部分不得复制、翻译、存储于数据库或检索系统内,也不可以电子、翻拍、录音

等任何手段进行传播。

感谢您使用炜盛科技的系列产品。为使您更好地使用本公司产品,减少因使用不当造成

的产品故障,使用前请务必仔细阅读本说明书并按照所建议的使用方法进行使用。如果您不

依照本说明书使用或擅自去除、拆解、更换传感器内部组件,本公司不承担由此造成的任何

损失。

您所购买产品的颜色、款式及尺寸以实物为准。

本公司秉承科技进步的理念,不断致力于产品改进和技术创新。因此,本公司保留任何

产品改进而不预先通知的权力。使用本说明书时,请确认其属于有效版本。同时,本公司鼓

励使用者根据其使用情况,探讨本产品更优化的使用方法。

请妥善保管本说明书,以便在您日后需要时能及时查阅并获得帮助。

郑州炜盛电子科技有限公司

MP503 空气质量气体传感器

产品描述

MP503空气质量气体传感器采用多层厚膜制造工艺,在 微型A1₂0₃陶瓷基片的两面分别制作加热器和金属氧化物半 导体气敏层,封装在金属壳体内。当环境空气中有被检测气 体存在时传感器电导率发生变化,该气体的浓度越高,传感 器的电导率就越高。采用简单的电路即可将这种电导率的变 化转换为与气体浓度对应的输出信号。

传感器特点

本品对酒精、烟雾、异丁烷、甲醛灵敏度高; 具有响应恢复快、低功耗、检测电路简单、稳定性好、寿命长等优点。

主要应用

用于家庭环境及办公室有害气体检测、 自动排风装置、 空气清新机等。

技术指标

表1

			I
产品型号			MP503
产品类型			平面半导体气体传感器
标准封装			金属封装
检测气体			酒精、烟雾、异丁烷、甲醛
检测浓度			10~1000ppm(酒精)
标准	回路电压	V_{C}	≤24V DC
电路	加热电压	$V_{\scriptscriptstyle H}$	$5.0V \pm 0.1V$ AC or DC
条件	负载电阻	R_{L}	可调
标准 测试 条件 下气	加热电阻	R _H	95 Ω ±10 Ω (室温)
	加热功耗	P _H	≤300mW
	敏感体 电 阻	Rs	1KΩ~30KΩ(in 50ppm 酒精)
敏元 件特	灵敏度	S	Rs(in air)/Rs(in 50ppm酒 精)≥5
性	浓度斜率	α	≤0.6 (R _{100ppm} /R _{30ppm酒精})
标准 测试 条件	温度、湿度		20°C±2°C; 65%±5%RH
	标准测试电路		$V_c: 5.0V \pm 0.1V;$
			$V_H:5.~0V\pm0.~1V$
	预热时间		不少于48小时

图 1: 传感器结构图

基本电路

图 2: MP503 测试电路

说明:上图为 MP503 传感器的基本测试电路。该传感器需要施加 2 个电压:加热器电压 (V_L) 和测试电压 (V_C) 。其中 V_H 用于为传感器提供特定的工作温度,可用直流电源或交流电源。 V_R 是传感器串联的负载电阻 (R_L) 上的电压。 V_C 是为负载电阻 R_L 提供测试的电压,须用直流电源。

传感器特性描述

图3: 传感器典型的灵敏度特性曲线

图中Rs表示传感器在不同浓度气体中的电阻值; R_0 表示传感器在洁净空气中的电阻值。图中所有测试都是在标准试验条件下完成的。

图 5: 响应恢复曲线

图4: 传感器典型的温度、湿度特性曲线

图中Rs表示在含50ppm酒精、各种温/湿度下的电阻值; Rss表示在含50ppm酒精、20℃/65%RH下的电阻值。

图 6: 传感器线性曲线

长期稳定性

图 7: 长期稳定性曲线

注:图中所有测试都是在标准试验条件下完成的,横坐标为观察时间,纵坐标为 V_R值。

注意事项:

1、必须避免的情况

1.1 暴露于可挥发性硅化合物蒸气中

传感器要避免暴露于硅粘接剂、发胶、硅橡胶、腻子或其它存在可挥发性硅化合物的场所。如果传感器的表面吸附了硅化合物蒸气,传感器的敏感材料会被硅化合物分解形成的二氧化硅包裹,抑制传感器的敏感性,并且不可恢复。

1.2 高腐蚀性的环境

传感器暴露在高浓度的腐蚀性气体(如 H_2S , SO_x , Cl_2 ,HC1 等)中,不仅会引起加热材料及传感器引线的腐蚀或破坏,并会引起敏感材料性能发生不可逆的劣变。

1.3 碱、碱金属盐、卤素的污染

传感器被碱金属尤其是盐水喷雾污染后,或暴露在卤素如氟利昂中,也会引起性能劣变。

1.4 接触到水

溅上水或浸到水中会造成传感器敏感特性下降。

1.5 结冰

水在传感器敏感材料表面结冰会导致敏感层碎裂而丧失敏感特性。

1.6 施加电压过高

如果给传感器或加热器施加的电压高于规定值,即使传感器没有受到物理损坏或破坏,也会造成引线和/或加热器损坏,并引起传感器敏感特性下降。

以诚为本、信守承诺 创造完美、服务社会

1.7 电压加错管脚

如图 8 所示, 传感器 1、2 管脚连接加热电路, 3、4 管脚连接测量电路; 在满足传感器电性能要求的前提下, 加热和测量可共用同一个电源电路。

注:请注意传感器上的突出标志,紧邻该标志的两只管脚为加热电极。

图 8: 管脚示意图

2、 尽可能避免的情况

2.1 凝结水

在室内使用条件下,轻微凝结水对传感器性能会产生轻微影响。但是,如果水凝结在敏感层表面并保 持一段时间,传感器特性则会下降。

2.2 处于高浓度气体中

无论传感器是否通电,在高浓度气体中长期放置,均会影响传感器特性。如用打火机气直接喷向传感器,会对传感器造成极大损害。

2.3 长期贮存

传感器在不通电情况下长时间贮存,其电阻会产生可逆性漂移,这种漂移与贮存环境有关。传感器应贮存在不含可挥发性硅化合物的密封袋中。经长期贮存的传感器,在使用前需要更长时间通电以使其达到稳定。贮存时间及对应的老化时间建议如下:

贮存时间	建议老化时间
1 个月以下	不低于 48 小时
1-6 个月	不低于 72 小时
6 个月以上	不低于 168 小时

表 2

2.4 长期暴露在极端环境中

无论传感器是否通电,长时间暴露在极端条件下,如高湿、高温或高污染等极端条件,传感器性能将 受到严重影响。

2.5 振动

频繁、过度振动会导致传感器内部引线产生共振而断裂。在运输途中及组装线上使用气动改锥/超声

以诚为本、信守承诺 创造完美、服务社会

波焊接机会产生此类振动。

2.6 冲击

如果传感器受到强烈冲击或跌落会导致其引线断裂。

- 2.7 使用条件:
- 2.7.1 对传感器来说手工焊接为最理想的焊接方式,建议焊接条件如下:
 - 助焊剂:含氯最少的松香助焊剂
 - 恒温烙铁
 - 温度: 250℃
 - 时间: 不大于3秒
- 2.7.2 使用波峰焊时应满足以下条件:
 - 助焊剂:含氯最少的松香助焊剂
 - 速度: (1-2) 米/分钟
 - 预热温度: (100±20) ℃
 - 焊接温度: (250±10) °C
 - ●1次通过波峰焊机

违反以上使用条件将使传感器特性下降。

郑州炜盛电子科技有限公司

地址: 郑州市高新技术开发区金梭路 299 号 电话:0371-60932955/60932966/60932977

传真:0371-60932988 微信号: winsensor

E-mail:sales@winsensor.com

Http://www.winsensor.com

