Change Of Variables - Practice Problems

Dr.P.M.Bajracharya

July 3, 2022

For problems 1 - 3 compute the Jacobian of each transformation.

- 1. $x = 4u 3v^2$ $y = u^2 6v$
- **2.** $x = u^2 v^3$ $y = 4 2\sqrt{u}$
- 3. $x = \frac{v}{u}$ $y = u^2 4v^2$
- **4.** If R is the region inside $\frac{x^2}{4} + \frac{y^2}{36} = 1$ determine the region we would get applying the transformation x = 2u, y = 6v to R.
- **5.** If R is the parallelogram with vertices (1,0), (4,3), (1,6) and (-2,3) determine the region we would get applying the transformation $x = \frac{1}{2}(v-u)$, $y = \frac{1}{2}(v+u)$ to R.
- **6.** If R is the region bounded by xy=1, xy=3, y=2 and y=6 determine the region we would get applying the transformation $x=\frac{v}{6u}, y=2u$ to R.
- 7. Evaluate $\iint_R xy^3 dA$ where R is the region bounded by xy = 1, xy = 3, y = 2 and y = 6 using the transformation $x = \frac{v}{6u}, y = 2u$.
- **8.** Evaluate $\iint_R (6x-3y) dA$ where R is the parallelogram with vertices (2,0), (5,3), (6,7) and (3,4) using the transformation $x = \frac{1}{3}(v-u)$, $y = \frac{1}{3}(4v-u)$ to R.
- **9.** Evaluate $\iint_R (x+2y) dA$ where R is the triangle with vertices (0,3), (4,1) and (2,6) using the transformation $x = \frac{1}{2}(u-v), y = \frac{1}{4}(3u+v+12)$ to R.
- 10. Derive the transformation used in problem 8.
- 11. Derive a transformation that will convert the triangle with vertices (1,0), (6,0) and (3,8) into a right triangle with the right angle occurring at the origin of the uv system.