Proof. Since we already know that $(\bigwedge^n(E^*)) \otimes F$ and $Alt^n(E; F)$ are isomorphic, it is enough to show that μ_F maps some basis of $(\bigwedge^n(E^*)) \otimes F$ to linearly independent elements. Pick some bases (e_1, \ldots, e_p) in E and $(f_j)_{j \in J}$ in F. Then we know that the vectors $e_I^* \otimes f_j$, where $I \subseteq \{1,\ldots,p\}$ and |I|=n, form a basis of $(\bigwedge^n(E^*)) \otimes F$. If we have a linear dependence

$$\sum_{I,j} \lambda_{I,j} \mu_F(e_I^* \otimes f_j) = 0,$$

applying the above combination to each $(e_{i_1}, \ldots, e_{i_n})$ $(I = \{i_1, \ldots, i_n\}, i_1 < \cdots < i_n)$, we get the linear combination

$$\sum_{j} \lambda_{I,j} f_j = 0,$$

and by linear independence of the f_j 's, we get $\lambda_{I,j} = 0$ for all I and all j. Therefore, the $\mu_F(e_I^* \otimes f_i)$ are linearly independent, and we are done. The second part of the proposition is checked using a simple computation.

The following proposition will be useful in dealing with vector-valued differential forms.

Proposition 34.34. If (e_1, \ldots, e_p) is any basis of E, then every element $\omega \in (\bigwedge^n(E^*)) \otimes F$ can be written in a unique way as

$$\omega = \sum_{I} e_{I}^{*} \otimes f_{I}, \qquad f_{I} \in F,$$

where the e_I^* are defined as in Section 34.2.

Proof. Since, by Proposition 34.7, the e_I^* form a basis of $\bigwedge^n(E^*)$, elements of the form $e_I^* \otimes f$ span $(\bigwedge^n(E^*)) \otimes F$. Now if we apply $\mu_F(\omega)$ to $(e_{i_1}, \ldots, e_{i_n})$, where $I = \{i_1, \ldots, i_n\} \subseteq$ $\{1,\ldots,p\}$, we get

$$\mu_F(\omega)(e_{i_1},\ldots,e_{i_n}) = \mu_F(e_I^* \otimes f_I)(e_{i_1},\ldots,e_{i_n}) = f_I.$$

Therefore, the f_I are uniquely determined by f.

Proposition 34.34 can also be formulated in terms of alternating multilinear maps, a fact that will be useful to deal with differential forms.

Corollary 34.35. Define the product \cdot : Altⁿ(E; \mathbb{R}) \times F \to Altⁿ(E; F) as follows: For all $\omega \in \operatorname{Alt}^n(E;\mathbb{R})$ and all $f \in F$,

$$(\omega \cdot f)(u_1, \dots, u_n) = \omega(u_1, \dots, u_n)f,$$

for all $u_1, \ldots, u_n \in E$. Then for every $\omega \in (\bigwedge^n(E^*)) \otimes F$ of the form

$$\omega = u_1^* \wedge \cdots \wedge u_n^* \otimes f,$$

we have

$$\mu_F(u_1^* \wedge \cdots \wedge u_n^* \otimes f) = \mu_F(u_1^* \wedge \cdots \wedge u_n^*) \cdot f.$$