

Image credit: The Linux Foundation



# AI6128 Urban Computing

Course Project 1 Tutorial

A real-world case study: smartphonebased indoor localization



# Course Project 1

#### Topic

 Use a publicly available dataset to study indoor localization for smartphone

#### Objective

- Reinforce understanding on various sensors
- Get familiar with spatiotemporal data
- Able to pre-process and visualize spatiotemporal data
- Understand challenges of indoor localization



## Overview of this tutorial

- Background
- Modalities & sensors
- A general workflow
- Tasks & report
- Dataset & sample code



## Smartphone & localization

- Why "smart"? sensors integrated
- Ubiquitous and accessible to everyone.
- Locate your phone → Locate you!
- Why do "localization"?
  - Navigation
  - Emergency
  - Advertisement
  - Entertainment
  - .....



#### Outdoor vs. Indoor

- Outdoor localization
   Indoor localization
  - ✓ Global positioning system (GPS)



https://spaceplace.nasa.gov/gps/en/

- - **×** GPS
  - Smartphone sensors



https://www.redpointpositioning.com/blog-gps/



# Indoor is challenging

- Complicated environment
- Various scenarios/requirements
  - Accuracy?
  - Scale?
  - Infrastructure deployment?
  - Cost?
  - Privacy?
  - **—** ...
- No dominant technology/solution for indoor localization

Survey link: https://arxiv.org/abs/2006.02251





https://www.movisens.com/en/solutions/mobile-sensing/



#### Wi-Fi

- Received signal strength (RSS)
- Channel state information (CSI)
- WifiManager API (Android)



Heatmap

https://osx86project.org/blog/wifiheatmaps/



#### Bluetooth Low Energy (BLE)

- Received signal strength (RSS)
- Approximate location to the transmitter (beacon)
- <u>Bluetooth API</u> (Android)



https://www.seatssoftware.com/ibeacon/



#### Motion (Inertial)

- Accelerometer
  - Acceleration in three dimension (x, y, z)
- Gyroscope
  - Angular velocity
- Inertial Measurement Unit (IMU)
- Motion sensor API (Android)







#### Geo-magnetic field

- Magnetometer: Measure magnetic field: X, Y, Z
- Motion sensor API (Android)







### Sensor data from Android

- TYPE ACCELEROMETER
- TYPE GYROSCOPE
- TYPE ROTATION VECTOR
- TYPE\_MAGNETIC\_FIELD
- TYPE\_MAGNETIC\_FIELD\_UNCALIBRATED
- TYPE GYROSCOPE UNCALIBRATED
- TYPE ACCELEROMETER UNCALIBRATED
- TYPE\_WIFI
- TYPE\_BEACON
- Details can be found in <u>https://developer.android.com/reference/android/h</u> ardware/Sensor



#### **Acoustics**

- Microphone
- Infrastructure-assisted
- Infrastructure-Free
  - Emit inaudible sound & capture the reverberations

(Ubicomp'18) Deep Room Recognition Using Inaudible Echos.

(SenSys'21 Demo) Infrastructure-Free Smartphone Indoor Localization Using Room Acoustic Responses. (SenSys'22) Indoor Smartphone SLAM with Learned Echoic Location Features.



chirp

echo

#### Ultra-Wideband (UWB):

- Precise timing
- Time-of-Flight (ToF) → Travelled distance



Source: https://www.embedded.com/



#### Visible light

Camera/light sensor



Source: xiaomi

# Localization: modeling





## Localization: inference

raw data from one sensor or multiple sensors (e.g.,  $x_{acc}(t, x_{acc}, y_{acc}, z_{acc}), x_{wifi}(t, \{ssid_1, RSSI_1\}, \{ssid_2, RSSI_2\}, \dots), \dots)$ 



data preprocessing



input data

(e.g.,  $x(x_{acc}, y_{acc}, z_{acc}, \{ssid_2, RSSI_2\})$ )

indoor localization model



predict

location (x, y, z)



#### Dataset

- Microsoft Indoor Location Competition 2.0 Dataset (<a href="https://github.com/location-competition/indoor-location-competition-20">https://github.com/location-competition/indoor-location-competition-20</a>)
- Data collected by smartphones in two multi-story commercial buildings



Site 1 has 5 floors



Site 2 has 9 floors.



# Essential tasks (100%)

- Essential tasks (100%)
  - Visualize way points (ground-truth locations)
  - Visualize geomagnetic heat map
  - Visualize Wi-Fi RSS heat maps of 3 Wi-Fi APs
  - Visualize iBeacon RSS heat map
  - Requirements
    - You can choose any programming language
    - You can refer to the sample code in Python, write your own code to pre-process the data and use a basic plotting tool (e.g., matplotlib) to visualize the data
    - No need to superimpose your visualization onto map
    - 2-person group to cover 2 essential tasks
    - 3-person group to cover 3 essential tasks
    - 4-person group to cover 4 essential tasks



# Data preprocessing

#### **Essential tasks**

- Visualize way points (ground-truth locations)
- Visualize geomagnetic heat map
- Visualize Wi-Fi RSS heat maps of 3 Wi-Fi Aps
- Visualize iBeacon RSS heat map

Ground-truth location collected by volunteers

Sensor data with timestamp (Accelerometer, Gyroscope, Magnetic, Wifi RSSI, iBeacon RSSI)



sensor data with position (ready for training)



#### Visualization

- Various plotting packages
  - E.g., Matplotlib for Python codes
  - Matlab
  - -R
  - **—** ...

#### Bonus tasks

- Build a deep learning-based location fingerprint model
- Study the performance improvement brought by multi-modal machine learning
- Study the performance improvement brought by integrating temporal relationship via SLAM
- Any other you can claim



# Project 1 Report

- Format
  - Use IEEE A4-size two-column conference templates <a href="https://www.ieee.org/conferences/publishing/templates.html">https://www.ieee.org/conferences/publishing/templates.html</a>
  - Don't change page margins and font sizes
- Submit the writeup in PDF format
  - Submission deadline: by the end of Week 9 (Oct 20<sup>th</sup> 2024)
  - Via NTULearn under Content folder
- One-week grace period for late submissions
  - No penalty if a valid excuse provided; otherwise, a penalty of 20% reduction will be applied to the mark of the late submission
  - Zero mark for submissions after the grace period
- Policy on plagiarism
  - Write by yourselves based on your own understanding
  - We will use a tool to check submissions against databases
  - Obvious plagiarism cases will have zero scores



# Suggested Project 1 Report Content

- Section 1: Introduction (0.5 page)
- Section 2: Dataset (0.5 page)
- Section 3: Essential tasks (1 page each)
  - Subsection 3.1: Visualization of waypoints

**—** ...

- Section 4 (optional): Bonus tasks (1 page each)
- Section 5: Group member contributions (within 1 page)
- Appendix: source code



#### Introduction:

- Essential parts to be covered:
  - What topic is this report about?
  - What are the challenges/problems to be solved?
  - A brief introduction of used approaches
  - A short presentation of the results.
- Things to be noted:
  - An overview of the whole report.
  - The text shall be super concise and contain no technical details.
  - Can be understood by a non-technical reader.



## For each task

- Approach description:
  - Contain enough details so that others can reproduce.
- Result presentation:
  - Each figure/result shall be:
    - a) described (what do the points/lines mean?);
    - b) explained (why does it look like this? Possible reasons?)



# Project 1 Assessment

- Purely based on report
- Overall achievement and quality (70%)
  - Coverage of essential tasks
  - Pre-processing result quality
  - Depth of discussion on the results (e.g., what challenges experienced, <u>how they are addressed or why they cannot be addressed, etc.</u>)
- Individual contribution (30%)



# Dataset & Sample code

- Raw data explanation
  - https://github.com/location-competition/indoorlocation-competition-20
- Prerequisites:
  - Python 3
  - Required python packages: numpy, scipy, dataclasses, plotly, pillow.
- Run sample code on your own computer: pip3 install wheel pip3 install numpy scipy dataclasses plotly pillow
- Run sample code on Google Colab (cloud):

https://colab.research.google.com/drive/1z3EhIBNwuZbqffw36hizQ1I4iiVOl6d2

