Theoretical Statistics STAT 210A

Instructor: Will Fithian

KELVIN LEE

Contents

1	Mea	asure Theory	3	
	1.1	Basics	3	
		1.1.1 Measures	3	
		1.1.2 Densities	4	
		1.1.3 Probability Space and Random Variables	5	
2	Risk	and Estimation	6	
	2.1	Estimation	6	
	2.2	Loss and Risk	6	
3	Exponential Families 9			
	3.1	s-parameter Exponential Family	9	
	3.2	Differential Identities		
		3.2.1 Moment Generating Functions	2	
4	Suff	iciency 1	4	
	4.1	Sufficient Statistics	4	
		4.1.1 Interpretations of Sufficiency	4	
	4.2	Sufficiency Principle		
	4.3	Factorization Theorem		
	4.4	Minimal Sufficiency		
	4.5	Completeness		
	4.6	Ancillarity		

1 Measure Theory

1.1 Basics

1.1.1 Measures

Definition 1.1.1 (Measure). Given a set \mathcal{X} , a measure μ maps subsets $A \subseteq \mathcal{X}$ to nonnegative numbers $\mu(A) \in [0, \infty]$.

Example 1.1.2. Let \mathcal{X} be a countable set $(\mathcal{X} = \mathbb{Z} \text{ for example})$. Then the **counting measure** ia

$$\mu(A) = \#A = \#$$
 of points in A.

Example 1.1.3. Consider $\mathcal{X} = \mathbb{R}^n$. The Lebesgue measure is

$$\lambda(A) = \int \cdots \int_A dx_1 \cdots dx_n = \operatorname{Vol}(A).$$

Example 1.1.4 (Standard Gaussian Distribution).

$$\mathbb{P}(A) = \mathbb{P}(Z \in A) = \int \cdots \int_{A} \phi(x) dx_{1} \cdots dx_{n}$$

where
$$Z \sim \mathcal{N}_n(0, I_n)$$
 and $\phi(x) = \frac{e^{-\frac{1}{2} \sum x_i^2}}{\sqrt{(2\pi)^n}}$.

Because of pathological sets, $\lambda(A)$ is only defined for some subsets $A \subseteq \mathbb{R}^n$. In other words, it is often impossible to assign measures to all subsets A of \mathcal{X} . This leads to the idea of a σ -field(σ -algebra).

Definition 1.1.5 (σ -field). A σ -field is a collection of sets on which μ is defined, satisfying certain closure properties.

In general, the domain of a measure μ is a collection of subsets $\mathcal{F} \subseteq 2^{\mathcal{X}}$ (power set), and \mathcal{F} must be a σ -field.

Example 1.1.6. Let \mathcal{X} be a countable set. Then $\mathcal{F} = 2^{\mathcal{X}}$. (Counting measure is defined for all subsets).

Example 1.1.7. Let $\mathcal{X} = \mathbb{R}^n$, then \mathcal{F} is the **Borel** σ -field \mathcal{B} , the smallest σ -field containing all open rectangles $(a_1, b_1) \times \cdots \times (a_n, b_n)$ where $a_i < b_i \quad \forall i$.

Given a measurable space $(\mathcal{X}, \mathcal{F})$, a measure is any map $\mu : \mathcal{F} : [0, \infty]$ with $\mu \left(\sum_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} \mu(A_i)$ if $A_i \in \mathcal{F}$ are disjoint. If $\mu(\mathcal{X}) = 1$, then μ is a **probability measure**.

Measures let us define integrals that put weight $\mu(A)$ on $A \subseteq \mathcal{X}$.

Define

$$\int \mathbf{1}\{x \in A\} d\mu(x) = \mu(A) \qquad \text{(indicator)}$$

extend to other functions by linearity and limits:

$$\int \left(\sum c_i \mathbf{1}\{x \in A_i\}\right) d\mu(x) = \sum c_i \mu(A_i) \qquad \text{(simple function)}$$

$$\int f(x) d\mu(x) \qquad \text{(approx. by simple functions)}$$

Example 1.1.8.

- Counting: $\int f d\# = \sum_{x \in \mathcal{X}} f(x)$.
- Lebesgue: $\int f d\lambda = \int \cdots \int f(x) dx_1 \cdots dx_n$.
- Gaussian: $\int f dP = \int \cdots \int f(x) \phi(x) dx_1 \cdots dx_n = \mathbb{E}[f(Z)].$

1.1.2 Densities

The λ and \mathbb{P} above are closely related and we now want to make this precise.

Given $(\mathcal{X}, \mathcal{F})$, two measures \mathbb{P}, μ , we say that \mathbb{P} is **absolutely continuous** with respect to μ if $\mathbb{P}(A) = 0$ whenever $\mu(A) = 0$.

Notation: $P \ll \mu$ or we say μ dominates \mathbb{P} .

If $\mathbb{P} \ll \mu$, then (under mild conditions) we can always define a **density function** $p : \mathcal{X} \to [0, \infty)$ with

$$\mathbb{P}(A) = \int_A p(x) d\mu(x)$$
$$\int f(x) d\mathbb{P}(x) = \int f(x) p(x) d\mu(x).$$

The density function is also defined as

$$p(x) = \frac{d\mathbb{P}}{d\mu}(x),$$

known as Radon-Nikodyan derivative.

Remark. It is useful to turn $\int f d\mathbb{P}$ into $\int f p d\mu$ if we know how to calculate integrals $d\mu$.

If \mathbb{P} is a probability measure, μ is a Lebesgue measure, then p(x) is called **probability density** function (pdf). If μ is a counting measure, then p(x) is called the **probability mass function** (pmf).

1.1.3 Probability Space and Random Variables

Typically, we set up a problem with multiple random variables having various relationships to one another. It is convenient to think of them as functions of an abstract outcome ω .

Definition 1.1.9. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a **probability space**. $\omega \in \Omega$ is called **outcome**. $A \in \mathcal{F}$ is called **event**. $\mathbb{P}(A)$ is called **probability of** A.

Definition 1.1.10. A random variable is a function $X : \Omega \to \mathcal{X}$. We say \mathcal{X} has distribution Q, denoted as $X \sim Q$ if $\mathbb{P}(X \in B) = \mathbb{P}(\{\omega : X(\omega) \in B\}) = Q(B)$.

More generally, we could write events involving many random variables $X(\omega), Y(\omega), Z(\omega)$:

$$\mathbb{P}(X \ge Y + Z) = \mathbb{P}(\{\omega : X(\omega) \ge Y(\omega) + Z(\omega)\})$$

Definition 1.1.11. The **expectation** is an integral with respect to \mathbb{P} :

$$\mathbb{E}[f(X,Y)] = \int_{\Omega} f(X(\omega), Y(\omega)) d\mathbb{P}(\omega).$$

To do real calculations, we must eventaully boil \mathbb{P} or \mathbb{E} down to concrete integrals/sums/etc. If $\mathbb{P}(A) = 1$, we say that A occurs almost surely.

2 Risk and Estimation

2.1 Estimation

Definition 2.1.1 (Statistical Model). A **statistical model** is a family of candidate probability distributions

$$\mathcal{P} = \{ P_{\theta} : \theta \in \Theta \}$$

for some random variable $X \sim P_{\theta}$. $X \in \mathcal{X}$ is called **data** (observed). θ is the **parameter** (unobserved).

The goal of estimation is to observe $X \sim P_{\theta}$ and guess value of some **estimand** $g(\theta)$.

Example 2.1.2. Suppose we flip a biased coin n times. Let $\theta \in [0,1]$ be the probability of getting a head and let X be the number of heads after n flips. Then $X \sim \text{Binom}(n,\theta)$ with $p_{\theta}(x) = \binom{n}{x} \theta^{x} (1-\theta)^{n-x}$, which is the density with respect to counting measure on $\mathcal{X} = \{0,\ldots,n\}$. A natural estimator would be $\delta_{0}(X) = \frac{X}{n}$.

Question. Is the natural estimator a good estimator? Is there a better one?

Definition 2.1.3 (Statistic). A statistic is any function T(x) of data X (not of both X and θ).

Definition 2.1.4 (Estimator). An **estimator** $\delta(X)$ of $g(\theta)$ is a statistic which is intended to guess $g(\theta)$.

2.2 Loss and Risk

Definition 2.2.1 (Loss function). A loss function $L(\theta, d)$ measures how bad an estimate is.

Example 2.2.2. One common loss function is the squared-error loss $L(\theta, d) = (d - g(\theta))^2$.

Typical properties of loss functions:

- (i) $L(\theta, d) \geq 0 \ \forall \theta, d$
- (ii) $L(\theta, q(\theta)) = 0 \ \forall \theta$.

Definition 2.2.3 (Risk function). The **risk function** is the expected loss (risk) as a function of θ for an estimator $\delta(\cdot)$.

$$R(\theta; \delta(\cdot)) = \mathbb{E}_{\theta}[L(\theta, \delta(X))].$$

Remark. The subscript θ under \mathbb{E} tells us which parameter value is in effect, NOT what randomness to integrate over.

Example 2.2.4 (Coin flip cont'd). We have $\delta_0(X) = \frac{X}{n}$. Then $\mathbb{E}_{\theta}\left[\frac{X}{n}\right] = \theta$ (unbiased). Then

$$R(\theta, \delta) = MSE(\theta; \delta_0) = Var_{\theta}\left(\frac{X}{n}\right) = \frac{\theta(1-\theta)}{n}.$$

Other choices:

$$\delta_1(X) = \frac{X+3}{n}$$
$$\delta_2(X) = \frac{X+3}{n+6}.$$

Figure 2.1: Risks for $\delta_0, \delta_1, \delta_2$.

 δ_1 is bad but δ_0, δ_2 are ambiguous.

Definition 2.2.5 (Inadmissible). An estimator δ is inadmissible if $\exists \delta^*$ with

- (i) $R(\theta; \delta^*) \leq R(\theta; \delta) \ \forall \theta \in \Theta$
- (ii) $R(\theta; \delta^*) < R(\theta; \delta)$ for some $\theta \in \Theta$

From the previous example, we see that δ_1 is inadmissible.

Back to the issue regarding the ambiguity of the comparison between two estimators. Here are some strategies to resolve that ambiguity:

- 1. Summarize $R(\theta)$ by a scalar
 - (i) Average-case risk: minimize

$$\int_{\Theta} R(\theta;\delta) d\Lambda(\theta)$$

with some measure Λ . This is called the **Bayes estimator**, and Λ is the **prior**.

(ii) Worst-case risk: minimize

$$\sup_{\theta \in \Theta} R(\theta, \delta).$$

over $\delta: \mathcal{X} \to \mathbb{R}$. This is a **minimax estimator**, which is closely related to Bayes.

Remark. We do not consider the best-case risk because the constant estimator would always ignore the data, which makes it a bad estimator.

- 2. Constrain the choice of estimator.
 - (i) Only consider unbiased δ . $\mathbb{E}_{\theta}[\delta(X)] = g(\theta) \, \forall \theta \in \Theta$.

3 Exponential Families

3.1 s-parameter Exponential Family

Definition 3.1.1 (s-parameter exponential family). An s-parameter exponential family is a family of probability densities $\mathcal{P} = \{p_{\eta} : \eta \in \Xi\}$ with respect to a common measure μ on \mathcal{X} of the form

$$p_{\eta}(x) = \exp\left[\sum_{i=1}^{s} \eta_i T_i(x) - A(\eta)\right] h(x), \quad x \in \mathcal{X}$$

where

- $T: \mathcal{X} \to \mathbb{R}^s$ is a sufficient statistic
- $h: \mathcal{X} \to \mathbb{R}$ is a carrier/base density
- $\eta \in \Xi \subseteq \mathbb{R}^s$ is a natural parameter
- $A: \mathbb{R}^s \to \mathbb{R}$ is a cumulant generating function (CGF)

Note that the CGF $A(\eta)$ is totally determined by h, T since we must have $\int_{\mathcal{X}} p_{\eta} d\mu = 1 \,\forall \eta$. Hence,

$$A(\eta) = \log_{\mathcal{X}} \int \exp\left[\sum_{i=1}^{s} \eta_i T_i(x)\right] h(x) d\mu(x).$$

 p_{η} is only normalizable iff $A(\eta) < \infty$.

Definition 3.1.2 (Natural parameter space). The **natural parameter space** is the set of all allowable (normalizable) η :

$$\Xi_1 = \{ \eta : A(\eta) < \infty \}.$$

We say \mathcal{P} is in **canonical form** if $\Xi = \Xi_1$.

Remark. Note that Ξ_1 is determined by T, h, η . We could take $\Xi \subset \Xi_1$ if we wanted. $A(\eta)$ is convex $\Longrightarrow \Xi_1$ is convex (from homework).

Interpretation of Exponential Families:

- Start with a base density p_0 .
- Apply an **exponential tilt**:
 - 1. multiply by $e^{\eta^{\top}T}$

2. renormalize (if possible)

An exponential family in canonical form is all possible tilts of h (or any p_{η}) using any linear combination of T.

Sometimes it is more convenient to use a different parameterization:

$$p_{\theta}(x) = \exp\left\{\eta(\theta)^{\top} T(x) - B(\theta)\right\} h(x), \text{ where } B(\theta) = A(\eta(\theta)).$$

Example 3.1.3 (Gaussian Family). Consider $X \sim \mathcal{N}(\mu, \sigma^2)$ where $\mu \in \mathbb{R}, \sigma^2 > 0$. $\theta = (\mu, \sigma^2)$.

$$p_{\theta}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

$$= \exp\left\{\underbrace{\frac{\mu}{\sigma^2} x - \frac{1}{2\sigma^2} x^2}_{\eta(\theta)^\top T(x)} - \underbrace{\left(\frac{\mu^2}{2\sigma^2} + \frac{1}{2}\log(2\pi\sigma^2)\right)}_{B(\theta)}\right\} \cdot \underbrace{1}_{h(x)}$$

This is a two-parameter exponential family with $\eta(\theta) = \begin{pmatrix} \mu/\sigma^2 \\ -1/2\sigma^2 \end{pmatrix}$ and $T(x) = \begin{pmatrix} x \\ x^2 \end{pmatrix}$, h(x) = 1, and $B(\theta) = \frac{\mu^2}{2\sigma^2} + \frac{1}{2}\log(2\pi\sigma^2)$.

Remark. h(x) can also be $1/\sqrt{2\pi}$ if we did not include the factor $1/(\sqrt{2\pi}\sigma)$ into the exponentiation. In that case, $B(\theta) = \mu^2/(2\sigma^2) + \log \sigma$.

In canonical form,

$$p_{\eta}(x) = \exp\left\{\eta^{\top} \begin{pmatrix} x \\ x^2 \end{pmatrix} - A(\eta)\right\}$$
$$A(\eta) = -\frac{\eta_1^2}{4\eta_2} + \frac{1}{2}\log\left(-\frac{\pi}{\eta_2}\right)$$

Example 3.1.4. Suppose $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Then their joint density is

$$p_{\theta}(x_{1},...,x_{n}) = \prod_{i=1}^{n} p_{\theta}^{(1)}(x_{i})$$

$$= \prod_{i=1}^{n} \left[\frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x_{i} - \mu)^{2}}{(2\sigma^{2})}\right\} \right]$$

$$= \exp\left\{ \sum_{i=1}^{n} \left[\frac{\mu}{\sigma^{2}} x_{i} - \frac{1}{2\sigma^{2}} x_{i} - \left(\frac{\mu}{2\sigma^{2}} + \frac{1}{2}\log(2\pi\sigma^{2})\right) \right] \right\}$$

$$= \exp\left\{ \frac{\mu}{\sigma^{2}} \sum_{i=1}^{n} x_{i} - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} x_{i}^{2} - n\left(\frac{\mu}{2\sigma^{2}} + \frac{1}{2}\log(2\pi\sigma^{2})\right) \right\}.$$

These densities also form a two-parameter exponential family with $\eta(\theta) = \begin{pmatrix} \mu/\sigma^2 \\ -1/2\sigma^2 \end{pmatrix}$, $T(x) = \begin{pmatrix} \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i^2 \end{pmatrix}$, $B(\theta) = nB^{(1)}(\theta)$.

Generally, suppose $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} p_{\eta}^{(1)}(x) = \exp\{\eta^{\top} T(x) - A(\eta)\}h(x)$. Then

$$X \sim \prod_{i=1}^{n} p_{\eta}^{(1)}(x_i) = \prod_{i=1}^{n} \exp\left\{\eta^{\top} T(x_i) - A(\eta)\right\} h(x_i)$$

$$= \exp\left\{\eta^{\top} \sum_{i=1}^{n} T(x_i) - \underbrace{nA(\eta)}_{\text{cgf}}\right\} \underbrace{\prod_{i=1}^{n} h(x_i)}_{\text{carrier density}}.$$

Suppose $X \in \mathcal{X}$ follows an exponential family. Then T(X) also follows a closely related exponential family. $T(X) \in \mathcal{T} \subseteq \mathbb{R}^s$. If $X \sim p_{\eta}(x) = \exp\left\{\eta^{\top} T(x) - A(\eta)\right\}$ (WLOG assume h(x) = 1) with respect to μ .

For a set $B \subseteq \mathcal{T}$, define $\nu(B) = \mu(T^{-1}(B))$. Then $T(X) \sim q_{\eta}(t) = \exp\{\eta^{\top}t - A(\eta)\}$ with respect to ν .

Discrete case:

$$\begin{split} \mathbb{P}_{\eta}(T(X) \in B) &= \sum_{x:T(x) \in B} \exp\left\{\eta^{\top} T(x) - A(\eta)\right\} \mu(\{x\}) \\ &= \sum_{t \in B} \sum_{x:T(x) = t} \exp\{\eta^{\top} t\} \mu(\{x\}) \\ &= \sum_{t \in B} \exp\left\{\eta^{\top} t - A(\eta)\right\} \mu(T^{-1}(\{t\})) \\ &= \sum_{t \in B} \exp\left\{\eta^{\top} t - A(\eta)\right\} \nu(\{t\}). \end{split}$$

Thus, $T \sim \exp\{\eta^{\top} t - A(\eta)\}\$ with respect to ν .

Example 3.1.5 (Binomial). Let $X \sim \text{Binom}(n, \theta)$. n is fixed and so the parameter is $\theta \in [0, 1]$. Then

$$p_{\theta}(x) = \binom{n}{x} \theta^{x} (1 - \theta)^{n - x}$$

$$= \binom{n}{x} \left(\frac{\theta}{1 - \theta}\right)^{x} (1 - \theta)^{n}$$

$$= \binom{n}{x} \exp\left\{x \log\left(\frac{\theta}{1 - \theta}\right) + n \log(1 - \theta)\right\}$$

with natural parameter $\eta(\theta) = \log\left(\frac{\theta}{1-\theta}\right)$ called the *log odds ratio*.

Example 3.1.6 (Poisson). Let $X \sim \text{Poisson}(\lambda)$. Then

$$p_{\lambda}(x) = \frac{\lambda^{x} e^{-\lambda}}{x!} \qquad i = 0, 1, 2, \dots$$
$$= \exp\{x \log(\lambda) - \lambda\} \frac{1}{x!}$$

with natural parameter $\eta(\lambda) = \log(\lambda)$.

3.2 Differential Identities

Write

$$e^{A(\eta)} = \int \exp\left\{\eta^{\top} T(x)\right\} h(x) d\mu(x).$$

Theorem 3.2.1.

For $f: \mathcal{X} \to \mathbb{R}$, let

$$\Xi_f = \left\{ \eta \in \mathbb{R}^s : \int |f| \exp\{\eta^\top T\} h d\mu < \infty \right\}.$$

Then the function

$$g(\eta) = \int f \exp\{\eta^{\top} T\} h d\mu$$

has continuous partial derivatives of all orders for $\mu \in \Xi_f^{\circ}$ (interior of Ξ_f), which can be computed by differentiating under the integral.

Differentiating $e^{A(\eta)}$ once:

$$\begin{split} \frac{\partial}{\partial \eta_j} e^{A(\eta)} &= \frac{\partial}{\partial \eta_j} \int e^{\eta^\top T(x)} h(x) d\mu(x) \\ e^{A(\eta)} \frac{\partial A}{\partial \eta_j}(\eta) &= \int T_j(x) e^{\eta^\top T(x) - A(\eta)} h(x) d\mu(x) \\ \frac{\partial A}{\partial \eta_j}(\eta) &= \mathbb{E}_{\eta}[T_j(X)]. \end{split}$$

Thus, we have

$$\nabla A(\eta) = \mathbb{E}_{\eta}[T(X)].$$

Differentiating it again:

$$\frac{\partial^{2}}{\partial \eta_{j} \partial \eta_{k}} e^{A(\eta)} = \int \frac{\partial^{2}}{\partial \eta_{j} \partial \eta_{k}} e^{\eta^{\top} T(x)} h(x) d\mu(x)$$

$$e^{A(\eta)} \left(\frac{\partial^{2} A}{\partial_{i} \partial \eta_{k}} + \underbrace{\frac{\partial A}{\partial \eta_{j}} \cdot \underbrace{\frac{\partial A}{\partial \eta_{k}}}_{\mathbb{E}_{\eta}[T_{j}]} \cdot \underbrace{\frac{\partial A}{\partial \eta_{j}}}_{\mathbb{E}_{\eta}[T_{k}]} \right) = \underbrace{\int T_{j} T_{k} e^{\eta^{\top} T - A(\eta)} h d\mu}_{\mathbb{E}_{\eta}[T_{j} T_{k}]}$$

$$\frac{\partial^{2} A}{\partial \eta_{j} \partial \eta_{k}} (\eta) = \mathbb{E}_{\eta}[T_{j} T_{k}] - \mathbb{E}_{\eta}[T_{j}] \mathbb{E}_{\eta}[T_{k}]$$

$$= \operatorname{Cov}_{\eta}(T_{j}, T_{k}).$$

Thus, we have

$$\nabla^2 A(\eta) = \operatorname{Var}_{\eta}(T(X))$$

3.2.1 Moment Generating Functions

Differentiating $e^{A(\eta)}$ repeatedly, we get

$$e^{-A(\eta)}\left(\frac{\partial^{k_1+\cdots+k_s}}{\partial \eta_1^{k_1}\cdots\partial \eta_s^{k_s}}e^{A(\eta)}\right) = \mathbb{E}_{\eta}[T_1^{k_1}\cdots T_s^{k_s}]$$

since $M_{\eta}^{T(X)}(u) = e^{A(\eta+u)-A(\eta)}$ is the moment generating function (MGF) of T(X) when $X \sim p_{\eta}$.

$$\begin{split} M_{\eta}^{T(X)}(u) &= \mathbb{E}_{\eta}[\mathrm{e}^{u^{\top}T(X)}] \\ &= \int \mathrm{e}^{u^{\top}T} e^{\eta^{\top}T - A(\eta)} h d\mu \\ &= \mathrm{e}^{-A(\eta)} e^{A(u+\eta)} \\ &= \mathrm{e}^{A(\eta+u) - A(\eta)}. \end{split}$$

4 Sufficiency

4.1 Sufficient Statistics

Motivation: Coin flipping. Suppose $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(\theta)$. Then the vector

$$X \sim \prod_{i} \theta^{x_i} (1 - \theta)^{1 - x_i}$$
 on $\{0, 1\}^n$,

and

$$T(X) = \sum_{i} X_i \sim \operatorname{Binom}(n, \theta)$$

with density

$$\binom{n}{t} \theta^t (1-\theta)^{n-t}$$
 on $\{0, 1, \dots, n\}$.

The map $(X_1, \ldots, X_n) \mapsto T(X)$ is throwing away data because we do not know if heads come first or tails come first. How do we justify this? Why does it not matter?

Definition 4.1.1 (Sufficient Statistics). Let $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ be a statistical model for data X. Then T(X) is **sufficient** for \mathcal{P} if $P_{\theta}(X \mid T)$ does not depend on θ .

Example 4.1.2 (Cont'd).

$$\mathbb{P}_{\theta}(X = x \mid T = t) = \frac{\mathbb{P}_{\theta}(X = x, T = t)}{\mathbb{P}(T = t)}$$

$$= \frac{\theta^{\sum_{i} x_{i}} (1 - \theta)^{n - \sum_{i} x_{i}} \mathbf{1}\{\sum_{i} x_{i} = t\}}{\binom{n}{t} \theta^{t} (1 - \theta)^{n - t}}$$

$$= \frac{\mathbf{1}\{\sum_{i} x_{i} = t\}}{\binom{n}{t}}.$$

So given T(x) = t, X is uniform on all sequences with $\sum_i x_i = t$.

4.1.1 Interpretations of Sufficiency

Recall we only care about X in the first place because it is (indirectly) informative about θ . Sufficiency means only T(X) is informative We can think of the data as being generated in two stages:

1. Generate $T(X) \sim P_{\theta}(T(X))$ (Pick a slice of X, depends on θ)

2. Generate $X \sim P(X \mid T)$ (Generate within the slice, does not depend on θ)

So we only care about the first step if T(X) is sufficient.

4.2 Sufficiency Principle

Theorem 4.2.1 (Sufficiency Principle).

If T(X) is sufficient for \mathcal{P} , then any statistical procedure should depend on X only through T(X).

In fact, we could throw away X and generate a new $\widetilde{X} \sim P(X \mid T)$ and it would be just as good as X, i.e. $\widetilde{X} \stackrel{D}{=} X$ implies $\delta(\widetilde{X}) \stackrel{D}{=} \delta(X)$.

4.3 Factorization Theorem

There is a very convenient way to verify sufficiency of a statistic based only on the density:

Theorem 4.3.1 (Factorization Theorem).

Let $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ be a family of distributions dominated by μ . T is sufficient for \mathcal{P} iff there exist functions $g_{\theta}, h \geq 0$ such that the densities p_{θ} for the family satisfy

$$p_{\theta}(x) = g_{\theta}(T(x))h(x),$$

for almost every x under μ .

"Proof". (\Leftarrow):

$$p_{\theta}(X = x \mid T = t) = \frac{\mathbf{1}\{T(x) = t\}g_{\theta}(t)h(x)}{\int_{T(z) = t} g_{\theta}(t)h(z)d\mu(z)}$$
$$= \frac{\mathbf{1}\{T(x) = t\}h(x)}{\int_{T(z) = t} h(z)d\mu(z)},$$

which does not depend on θ and so T is sufficient.

 (\Longrightarrow) : Take

$$g_{\theta}(t) = \mathbb{P}_{\theta}(T(x) = t) = \int_{T(x)=t} p_{\theta}(x) d\mu(x)$$
$$h(x) = \mathbb{P}_{\theta_0}(X = x \mid T(x) = t) = \frac{p_{\theta_0}(x)}{\int_{T(z)=t} p_{\theta_0}(z) d\mu(z)}.$$

Then

$$g_{\theta}(T(x))h(x) = \mathbb{P}_{\theta}(T = T(x))\mathbb{P}(X = x \mid T = T(x))$$
$$= p_{\theta}(x).$$

Example 4.3.2 (Exponential Families).

$$p_{\theta}(x) = \underbrace{\exp\left\{\eta(\theta)^{\top} T(x) - B(\theta)\right\}}_{q_{\theta}(T(x))} h(x)$$

Example 4.3.3. $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} P_{\theta}^{(1)}$ for any model $\mathcal{P}^{(1)} = \{P_{\theta}^{(1)} : \theta \in \Theta\}$ on $\mathcal{X} \subseteq \mathbb{R}$. P_{θ} is invariant to permuting $X = (X_1, \ldots, X_n)$. Thus, the **order statistics** $(X_{(1)}, X_{(2)}, \ldots, X_{(n)})$ (where $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$) with $X_{(k)}$ being the kth smallest value (counting repeats) are sufficient.

Remark. $(X_1,\ldots,X_n)\mapsto (X_{(1)},X_{(2)},\ldots,X_{(n)})$ loses information about the original ordering.

For more general \mathcal{X} , we say the **empirical distribution** $\hat{P}_n(\cdot) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}(\cdot)$ is sufficient where $\delta_{x_i}(A) = \mathbf{1}\{x_i \in A\}$.

4.4 Minimal Sufficiency

Consider $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1)$. Then

$$T(X) = \sum_{i=1}^{n} X_i$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$S(X) = (X_{(1)}, \dots, X_{(n)})$$

$$X = (X_1, \dots, X_n)$$

are all sufficient statistics.

Proposition 4.4.1. If T(X) is sufficient and T(X) = f(S(X)), then S(X) is sufficient.

Proof. By Factorization Theorem,

$$p_{\theta}(x) = g_{\theta}(T(x))h(x)$$
$$= (g_{\theta} \circ f)(S(x))h(x).$$

Definition 4.4.2 (Minimal Sufficient). T(X) is **minimal sufficient** if T(X) is sufficient and for any other sufficient statistic S(X), T(X) = f(S(X)) for some f (a.s. in \mathcal{P}).

If \mathcal{P} has densities $p_{\theta}(x)$ with respect to μ , then the log-likelihood function (denoted by $\ell(\theta; X)$) is the log-density function reframed as a random function of θ .

If T(X) is sufficient, then

$$L(\theta; X) = \underbrace{g_{\theta}(T(X))}_{\text{determines shape scalar multiple}} \cdot \underbrace{h(X)}_{\text{scalar multiple}}.$$

Theorem 4.4.3.

Assume \mathcal{P} has densities p_{θ} and T(X) is sufficient for \mathcal{P} . If $L(\theta; X) \propto_{\theta} L(\theta; Y) \implies T(X) = T(Y)$, then T(X) is minimal sufficient.

Proof. For the sake of contradiction, suppose S is sufficient and there is no f such that f(S(X)) = T(X). Then there exist x, y with $S(x) = S(y), T(x) \neq T(y)$. $L(\theta; x) = g_{\theta}(S(x))h(x) \propto_{\theta} g_{\theta}(S(y))h(y) = L(\theta; y)$, a contradiction since we must have T(x) = T(y) but we don't.

Remark. The key takeaway is that if a sufficient statistic determine the likelihood shape in a one-to-one way, then we can recover it from the likelihood shape and so it's minimal sufficient.

Example 4.4.4.
$$p_{\theta}(x) = e^{\eta(\theta)^{\top} T(x) - B(\theta)} h(x)$$
. Is $T(x)$ minimal?

Answer. Assume $L(\theta; x) \propto_{\theta} L(\theta; y)$. We want to show that T(x) = T(y). For any θ , we have

$$\begin{split} L(\theta;x) &\propto L(\theta;y) \iff e^{\eta(\theta)^\top T(x) - B(\theta)} h(x) \propto_{\theta} e^{\eta(\theta)^\top T(y) - B(\theta)} h(y) \\ &\iff e^{\eta(\theta)^\top T(x)} = e^{\eta(\theta)^\top T(x)} c(x,y) \\ &\iff \eta(\theta)^\top T(x) = \eta(\theta)^\top T(y) + a(x,y) \\ &\iff \eta(\theta)^\top (T(x) - T(y)) = a(x,y). \end{split}$$

To get rid of a(x, y), we can use arbitrary θ_1, θ_2 to get

$$(\eta(\theta_1) - \eta(\theta_2))^{\top} (T(x) - T(y)) = 0.$$

This implies that $\eta(\theta_1) - \eta(\theta_2)$ and T(x) - T(y) are orthogonal to each other, which is equivalent to saying that

$$T(x) - T(y) \perp \operatorname{span} \{ \eta(\theta_1) - \eta(\theta_2) : \theta_1, \theta_2 \in \Theta \}.$$

Unfortunately, we are not able to conclude that T(x) is minimal. However, if

$$\operatorname{span}\{\eta(\theta_1) - \eta(\theta_2) : \theta_1, \theta_2 \in \Theta\} = \mathbb{R}^s,$$

then T(x) - T(y) = 0 as desired.

4.5 Completeness

Definition 4.5.1 (Complete). T(X) is complete for $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ if $\mathbb{E}_{\theta}[f(T(X))] = 0 \ \forall \theta$ implies

$$f(T(X)) \stackrel{a.s.}{=} 0 \quad \forall \theta.$$

Definition 4.5.2 (Full-rank). Let $\mathcal{P} = \{p_{\theta} : \theta \in \Theta\}$ be an exponential family of densities (with respect to μ),

$$p_{\theta}(x) = e^{\eta(\theta)^{\top} T(x) - B(\theta)} h(x)$$

Assume WLOG that there does not exist $\alpha \in \mathbb{R}, \beta \in \mathbb{R}^s$ with $\beta^{\top} T(X) \stackrel{a.s.}{=} \alpha$. If

$$\Xi = \eta(\Theta) = \{\eta(\theta) : \theta \in \Theta\}$$

contains an open set, we say that \mathcal{P} is full-rank. Otherwise, \mathcal{P} is curved.

Theorem 4.5.3.

If \mathcal{P} is full rank, then T(X) is complete sufficient.

Proof. Proof in Lehmann & Romano, Theorem 4.3.1.

Theorem 4.5.4.

If T(X) is complete sufficient for \mathcal{P} , then T(X) is minimal.

Proof. Assume S(X) is minimal sufficient. Then $S(X) \stackrel{a.s.}{=} f(T(X))$ since T(X) is sufficient. Note that

$$\mu(S(X)) = \mathbb{E}_{\theta}[T(X) \mid S(X)]$$

does not depend on θ . Define $g(t) = t - \mu(f(t))$. Then

$$\mathbb{E}_{\theta}[g(T(X))] = \mathbb{E}_{\theta}[T(X)] - \mathbb{E}_{\theta}[\mu(S(X))]$$
$$= \mathbb{E}_{\theta}[T(X)] - \mathbb{E}_{\theta}[\mathbb{E}[T \mid S]]$$
$$= 0.$$

Thus, $g(T(X)) \stackrel{a.s.}{=} 0$ by completeness. Hence,

$$T(X) \stackrel{a.s.}{=} \mu(S(X)).$$

4.6 Ancillarity

Definition 4.6.1 (Ancillary). V(X) is **ancillary** for $\mathcal{P} = \{p_{\theta} : \theta \in \Theta\}$ if its distribution does not depend on θ (in other words, V carries no information about θ).