Poisson equation solution with DEAL.II

Dara Rahmat Samii

February 20, 2023

Abstract

In this Report theory behind solving Poisson's equation with Finite Element Method is discussed. Three different geometeries of a cube, a circle and a ring and their solution is visualized with GnuPlot and ParaView.

Theory

Poisson's equation strong formulation is defined as:

$$\begin{cases} -\Delta u = f & in & \Omega \\ u = 0 & in & \partial \Omega \end{cases}$$

The weak formulation of Poisson's equation can be defined as:

$$(u', \phi') = (f, \phi) \quad \forall \phi \in V$$
 (1.1)

where (f, ϕ) is the Scalar Product of f and ϕ is can be shown that the weak form and the strong form are equivalent:

$$-u'' = f \longrightarrow \times \phi dx \longrightarrow -u'' \phi dx = f \phi dx \longrightarrow \int \longrightarrow$$

$$\longrightarrow -\int_{\Omega} u' \phi' dx = \int_{\Omega} f \phi dx \longleftrightarrow \boxed{(u', \phi') = (f, \phi)}$$

After discretization of the domain it is achieved:

Find
$$u \in V : (u', \phi') = (f, \phi) \longrightarrow Find \ u_h \in V_h : (u'_h, \phi'_h) = (f, \phi_h)$$

$$\longrightarrow ((\sum_{j=1}^n u_j \phi_j)', \phi_h') = (f, \phi_h) \longrightarrow \sum_{j=1}^n u_j(\phi_j', \phi_h') = (f, \phi_h)$$

Rewriting in the Matrix format:

$$\begin{bmatrix} (\phi'_1, \phi'_1) & (\phi'_1, \phi'_2) & \dots & (\phi'_1, \phi'_n) \\ (\phi'_2, \phi'_1) & (\phi'_2, \phi'_2) & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ (\phi'_n, \phi'_1) & \dots & \dots & (\phi'_n, \phi'_n) \end{bmatrix} \times \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} (f, \phi'_1) \\ (f, \phi'_2) \\ \vdots \\ (f, \phi'_n) \end{bmatrix}$$

with solving the Matrix AU = F the solution can be achieved $U = FA^{-1}$

cube

In the first solution chapter, the simplest geometry will be solved. a square shape with width of 2 is generated with the code below:

Figure 2.1: mesh grid for square geometry

In the Poisson's equation there is a term of f. For the simplicity with assigned f=1. The surface 3D plot and contour plot are visualized with GnuPlot and ParaView, respectively.

"solution.gpl" -

Figure 2.2: 3D surface solution for Poisson's equation with f=1.0

Figure 2.3: Solution contour for Poisson's equation with f=1.0 on square geometry

circle

In the second case, the Poisson's equation will be solved on a circle domain with Radius of 1.0. The code which generates the circle mesh domain is:

Figure 3.1: mesh grid for circle geometry

For the simplicity with assigned f=1. The surface 3D plot and contour plot are visualized with GnuPlot and ParaView, respectively.

"solution.gpl" -

Figure 3.2: 3D surface solution for Poisson's equation with on circle domain

Figure 3.3: Solution contour for Poisson's equation on circle domain

ring

In the Final case, the Poisson's equation will be solved on more complex domain which consist of to hole in the middle of a circle domain with outer radius of 1.0 and inner radius of 0.2. The code which generates the circle mesh domain is:

Figure 4.1: mesh grid for Ring geometry

For the simplicity with assigned f=1. The surface 3D plot and contour plot are visualized with GnuPlot and ParaView, respectively.

Figure 4.2: 3D surface solution for Poisson's equation with on Ring domain

Figure 4.3: Solution contour for Poisson's equation on Ring domain