

State:

$$s=(heta_1, heta_1', heta_1'', heta_2, heta_2', heta_2'', au_M)$$

$$heta_1, heta_2 \in [0, 180]$$

Goal state:

$$s_q = (180, 0, 0, 180, 0, 0, 0)$$

Normalized state:

$$s_n=(heta_{1n}, heta_{1n}', heta_{1n}'', heta_{2n}, heta_{2n}', heta_{2n}', au_{Mn})$$

$$orall 1 \leq i \leq 7: s_n^{(i)} \in [-1,1]$$

Normalized goal state:

$$s_{gn} = (1,0,0,1,0,0,0)$$

Reward strategy:

a) Green area (=balancing)

State boundaries: $heta_{1n} \in]0.8,1]$

Strategy: eliminate all remaining deltas...

Reward:

$$r_a(t) = |s_{gn} - s_n(t-1)| - |s_{gn} - s_n(t)|$$

b) Yellow area (=swinging up outer pole)

State boundaries: $heta_{1n} \in]0.5, 0.8]$

Strategy: mainly the state of outer pole is considered (75%), but the angle of inner pole as well (25%)...

State: $s_b = (heta_{1n}, heta_{2n}, heta'_{2n}, heta''_{2n})$

Goal state: $s_{gb}=\left(1,1,0,0\right)$

Reward:

$$r_b(t) = |s_{gb} - s_b(t-1)| - |s_{gb} - s_b(t)|$$

c) Red area (=swinging up)

State boundaries: $heta_{1n} \in [0, 0.5]$

Strategy: motion of inner pole in one direction is maximized...

Reward:

$$r_c(t) = (heta_{1n}(t) - heta_{1n}(t-1)) + (| heta_{1n}'(t) + heta_{1n}''(t)| - | heta_{1n}'(t-1) + heta_{1n}''(t-1)|)$$