Algorithms for Decision Support

Online Algorithms (3/3)

Bin Packing and Paging

Outline

- Bin Packing problem
 - Assume that we know the ALG cost

- Paging problem
 - We know very little about the ALG or the OPT

There are infinite number of capacity-1 bins

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with *size* r_i between (0,1]

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with *size* r_i between (0,1]

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with *size* r_i between (0,1]

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with *size* r_i between (0,1]

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with *size* r_i between (0,1]

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with *size* r_i between (0,1]
- Once an item arrives, we have to put it into a bin without exceeding the bin capacity

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with *size* r_i between (0,1]
- Once an item arrives, we have to put it into a bin without exceeding the bin capacity

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with *size* r_i between (0,1]
- Once an item arrives, we have to put it into a bin without exceeding the bin capacity

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with *size* r_i between (0,1]
- Once an item arrives, we have to put it into a bin without exceeding the bin capacity

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with *size* r_i between (0,1]
- Once an item arrives, we have to put it into a bin without exceeding the bin capacity

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with size r_i between (0,1]
- Once an item arrives, we have to put it into a bin without exceeding the bin capacity

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with *size* r_i between (0,1]
- Once an item arrives, we have to put it into a bin without exceeding the bin capacity

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with *size* r_i between (0,1]
- Once an item arrives, we have to put it into a bin without exceeding the bin capacity (we may need to open a new bin)

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with *size* r_i between (0,1]
- Once an item arrives, we have to put it into a bin without exceeding the bin capacity (we may need to open a new bin)

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with size r_i between (0,1]
- Once an item arrives, we have to put it into a bin without exceeding the bin capacity (we may need to open a new bin)

- There are infinite number of capacity-1 bins
- The *items* i arrive online, each with size r_i between (0,1]
- Once an item arrives, we have to put it into a bin without exceeding the bin capacity (we may need to open a new bin)
- The objective is to put all items in a minimum number of bins

Outline

- Bin Packing problem
 - Assume that we know the ALG cost

- Paging problem
 - We know very little about the ALG or the OPT

FirstFit:

Once an item arrives:

Outline

- Bin Packing problem
 - Assume that we know the ALG cost

- Paging problem
 - We know very little about the ALG or the OPT

<Proof idea>

• Observation: There is at most one bin at least half empty

<Proof idea>

• Observation: There is at most one bin at least half empty (that is, let s_j be the total size of the items in bin B_j . There is at most one bin B_j such that $s_j \le 1/2$)

<Proof idea>

• Observation: There is at most one bin at least half empty (that is, let s_j be the total size of the items in bin B_j . There is at most one bin B_j such that $s_j \le 1/2$)

<Proof idea>

• Observation: There is at most one bin at least half empty (that is, let s_j be the total size of the items in bin B_j . There is at most one bin B_j such that $s_j \le 1/2$)

Prove by contradiction: Assume that there are two bins with size less than 1/2

<Proof idea>

• Observation: There is at most one bin at least half empty (that is, let s_j be the total size of the items in bin B_j . There is at most one bin B_j such that $s_j \le 1/2$)

Prove by contradiction: Assume that there are two bins with size less than 1/2

<Proof idea>

• Observation: There is at most one bin at least half empty (that is, let s_j be the total size of the items in bin B_j . There is at most one bin B_j such that $s_j \le 1/2$)

Prove by contradiction: Assume that there are two bins with size less than 1/2

According to the FirstFit algorithm, the items in the second bing can be put in the first (half-empty) bin

<Proof idea>

- Observation: There is at most one bin at least half empty (that is, let s_j be the total size of the items in bin B_j . There is at most one bin B_j such that $s_j \le 1/2$)
 - Let k be the number of bins opened by FirstFit.

<Proof idea>

- Observation: There is at most one bin at least half empty (that is, let s_j be the total size of the items in bin B_j . There is at most one bin B_j such that $s_j \le 1/2$)
 - Let k be the number of bins opened by FirstFit. Total size of all items $\geq (k-1) \cdot \frac{1}{2}$

<Proof idea>

- Observation: There is at most one bin at least half empty (that is, let s_j be the total size of the items in bin B_j . There is at most one bin B_j such that $s_j \le 1/2$)
 - Let k be the number of bins opened by FirstFit. Total size of all items $\geq (k-1) \cdot \frac{1}{2}$

Even when the optimal algorithm has superpower to cut the items, it needs Total size of bins to accommodate all the items

<Proof idea>

- Observation: There is at most one bin at least half empty (that is, let s_j be the total size of the items in bin B_j . There is at most one bin B_j such that $s_j \le 1/2$)
 - Let k be the number of bins opened by FirstFit. Total size of all items $\geq (k-1) \cdot \frac{1}{2}$
- OPT ≥ (total size of all items)/1

Even when the optimal algorithm has superpower to cut the items, it needs Total size of bins to accommodate all the items

<Proof idea>

- Observation: There is at most one bin at least half empty (that is, let s_j be the total size of the items in bin B_j . There is at most one bin B_j such that $s_j \le 1/2$)
 - Let k be the number of bins opened by FirstFit. Total size of all items $\geq (k-1) \cdot \frac{1}{2}$
- OPT \geq (total size of all items)/1 $\geq (k-1)/2$

<Proof idea>

- Observation: There is at most one bin at least half empty (that is, let s_j be the total size of the items in bin B_j . There is at most one bin B_j such that $s_j \le 1/2$)
 - Let k be the number of bins opened by FirstFit. Total size of all items $\geq (k-1) \cdot \frac{1}{2}$
- OPT \geq (total size of all items)/1 $\geq (k-1)/2 \iff \text{FirstFit} = k \leq 2 \cdot \text{OPT} + 1$

<Proof idea>

- Observation: There is at most one bin at least half empty (that is, let s_j be the total size of the items in bin B_j . There is at most one bin B_j such that $s_j \le 1/2$)
 - Let k be the number of bins opened by FirstFit. Total size of all items $\geq (k-1) \cdot \frac{1}{2}$
- OPT \geq (total size of all items)/1 $\geq (k-1)/2 \iff \text{FirstFit} = k \leq 2 \cdot \text{OPT} + 1$

Even when the optimal algorithm has superpower to cut the items,

it needs Total size of bins to accommodate all the items

<Proof idea>

- Observation: There is at most one bin at least half empty (that is, let s_j be the total size of the items in bin B_j . There is at most one bin B_j such that $s_j \le 1/2$)
 - Let k be the number of bins opened by FirstFit. Total size of all items $\geq (k-1) \cdot \frac{1}{2}$
- OPT \geq (total size of all items)/1 $\geq (k-1)/2 \iff \text{FirstFit} = k \leq 2 \cdot \text{OPT} + 1$

What Happened

To analyze the competitive ratio of FirstFit, we assume that it takes k
bins

- By the property of FirstFit, at most one bin is half-empty
 - The total size of all items is bounded by below, so is the number of bins optimal solution needs

Outline

- Bin Packing problem
 - Assume that we know the ALG cost

- Paging problem
 - We know very little about the ALG or the OPT

- Consider a sequence of requests
 - 6k items, each with size $\frac{1}{6} 2\epsilon$

- Consider a sequence of requests
 - 6k items, each with size $\frac{1}{6} 2\epsilon$

- Consider a sequence of requests
 - 6k items, each with size $\frac{1}{6} 2\epsilon$
 - 6k items, each with size $\frac{1}{3} + \epsilon$

- Consider a sequence of requests
 - 6k items, each with size $\frac{1}{6} 2\epsilon$
 - 6k items, each with size $\frac{1}{3} + \epsilon$

- Consider a sequence of requests
 - 6k items, each with size $\frac{1}{6} 2\epsilon$
 - 6k items, each with size $\frac{1}{3} + \epsilon$
 - 6k items, each with size $\frac{1}{2} + \epsilon$

- Consider a sequence of requests
 - 6k items, each with size $\frac{1}{6} 2\epsilon$
 - 6k items, each with size $\frac{1}{3} + \epsilon$
 - 6k items, each with size $\frac{1}{2} + \epsilon$

- Consider a sequence of requests
 - 6k items, each with size $\frac{1}{6} 2\epsilon$
 - 6k items, each with size $\frac{1}{3} + \epsilon$
 - 6k items, each with size $\frac{1}{2} + \epsilon$

- Consider a sequence of requests
 - 6k items, each with size $\frac{1}{6} 2\epsilon$
 - 6k items, each with size $\frac{1}{3} + \epsilon$
 - 6k items, each with size $\frac{1}{2} + \epsilon$

OPT = 6k

- Consider a sequence of requests
 - 6k items, each with size $\frac{1}{6} 2\epsilon$

- Consider a sequence of requests
 - 6k items, each with size $\frac{1}{6} 2\epsilon$

- Consider a sequence of requests
 - 6k items, each with size $\frac{1}{6} 2\epsilon$
 - 6k items, each with size $\frac{1}{3} + \epsilon$

- Consider a sequence of requests

- Consider a sequence of requests

 - 6k items, each with size $\frac{1}{2} + \epsilon$

- Consider a sequence of requests

 - 6k items, each with size $\frac{1}{3} + \epsilon$
 - 6k items, each with size $\frac{1}{2} + \epsilon$

- Consider a sequence of requests
 - 6k items, each with size $\frac{1}{6} 2\epsilon$
 - 6k items, each with size $\frac{1}{3} + \epsilon$
 - 6k items, each with size $\frac{1}{2} + \epsilon$

FirstFit is at least 1.667-competitive

- Consider a sequence of requests
 - 6k items, each with size $\frac{1}{6} 2\epsilon$
 - 6k items, each with size $\frac{1}{3} + \epsilon$
 - 6k items, each with size $\frac{1}{2} + \epsilon$

Outline

- Bin Packing problem
 - Assume that we know the ALG cost

- Paging problem
 - We know very little about the ALG or the OPT

<Proof idea>

<Proof idea>

<Proof idea > Assume ALG is $(4/3-\epsilon)$ -competitive

$$\mathsf{OPT}(I) = \frac{m}{2}$$

<Proof idea > Assume ALG is $(4/3-\epsilon)$ -competitive

$$OPT(I) = \frac{m}{2}$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2}$$

<Proof idea > Assume ALG is $(4/3-\epsilon)$ -competitive

$$OPT(I) = \frac{m}{2}$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

<Proof idea > Assume ALG is $(4/3-\epsilon)$ -competitive

Prove by contradiction: design an instance such that any algorithm ALG that is $(4/3-\epsilon)$ -competitive for the first half of the instance, it cannot be $(4/3-\epsilon)$ -competitive for the whole instance. Consider the adversarial input:

$$OPT(I) = \frac{m}{2}$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

$$= a_1 + a_2$$

 a_1 : #bins with 1 item in ALG(I)

 a_2 : #bins with 2 items in ALG(/)

<Proof idea> Assume ALG is $(4/3-\epsilon)$ -competitive

<Proof idea > Assume ALG is $(4/3-\epsilon)$ -competitive

Prove by contradiction: design an instance such that any algorithm ALG that is $(4/3-\epsilon)$ -competitive for the first half of the instance, it cannot be $(4/3-\epsilon)$ -competitive for the whole instance. Consider the adversarial input:

OPT(I) =
$$\frac{m}{2}$$

$$\frac{1}{2} - \epsilon, \frac{1}{2} - \epsilon, \cdots, \frac{1}{2} - \epsilon$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

$$= a_1 + a_2 = m - a_2$$

 a_1 : #bins with 1 item in ALG(I)

 a_2 : #bins with 2 items in ALG(1)

$$m = a_1 + 2a_2$$

<Proof idea > Assume ALG is $(4/3-\epsilon)$ -competitive

Prove by contradiction: design an instance such that any algorithm ALG that is $(4/3-\epsilon)$ -competitive for the first half of the instance, it cannot be $(4/3-\epsilon)$ -competitive for the whole instance. Consider the adversarial input:

$$OPT(I) = \frac{m}{2}$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

$$= a_1 + a_2 = m - a_2$$

 a_1 : #bins with 1 item in ALG(/)

 a_2 : #bins with 2 items in ALG(I)

$$m = a_1 + 2a_2$$

<Proof idea > Assume ALG is $(4/3-\epsilon)$ -competitive

Prove by contradiction: design an instance such that any algorithm ALG that is $(4/3-\epsilon)$ -competitive for the first half of the instance, it cannot be $(4/3-\epsilon)$ -competitive for the whole instance. Consider the adversarial input:

OPT(I) =
$$\frac{m}{2}$$

$$\frac{1}{2} - \epsilon, \frac{1}{2} - \epsilon, \cdots, \frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon, \frac{1}{2} + \epsilon, \cdots, \frac{1}{2} + \epsilon$$

$$M = a_1 + a_2 = m - a_2$$

 a_1 : #bins with 1 item in ALG(/)

 a_2 : #bins with 2 items in ALG(I)

$$m = a_1 + 2a_2$$

<Proof idea> Assume ALG is $(4/3-\epsilon)$ -competitive

Prove by contradiction: design an instance such that any algorithm ALG that is $(4/3-\epsilon)$ -competitive for the first half of the instance, it cannot be $(4/3-\epsilon)$ -competitive for the whole instance. Consider the adversarial input:

$$OPT(I) = \frac{m}{2}$$

$$\frac{1}{2} - \epsilon, \frac{1}{2} - \epsilon, \cdots, \frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon, \frac{1}{2} + \epsilon, \cdots, \frac{1}{2} + \epsilon$$

$$OPT(I) = m$$

$$4 \quad m \quad 2$$

ALG(I)
$$< \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

= $a_1 + a_2 = m - a_2$

 a_1 : #bins with 1 item in ALG(I)

 a_2 : #bins with 2 items in ALG(/)

$$m = a_1 + 2a_2$$

<Proof idea > Assume ALG is $(4/3-\epsilon)$ -competitive

Prove by contradiction: design an instance such that any algorithm ALG that is $(4/3-\epsilon)$ -competitive for the first half of the instance, it cannot be $(4/3-\epsilon)$ -competitive for the whole instance. Consider the adversarial input:

OPT(I) =
$$\frac{m}{2}$$

$$\frac{\frac{1}{2} - \epsilon, \frac{1}{2} - \epsilon, \cdots, \frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon, \frac{1}{2} + \epsilon, \cdots, \frac{1}{2} + \epsilon}{m}$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

$$= a_1 + a_2 = m - a_2$$

ALG(I+I) = $a_1 + a_2 + x$

 a_1 : #bins with 1 item in ALG(I)

 a_2 : #bins with 2 items in ALG(/)

$$m = a_1 + 2a_2$$

<Proof idea> Assume ALG is $(4/3-\epsilon)$ -competitive

 a_2 : #bins with 2 items in ALG(1)

 $m = a_1 + 2a_2$

Prove by contradiction: design an instance such that any algorithm ALG that is $(4/3-\epsilon)$ -competitive for the first half of the instance, it cannot be $(4/3-\epsilon)$ -competitive for the whole instance. Consider the adversarial input:

OPT(I) =
$$\frac{m}{2}$$

$$\frac{\frac{1}{2} - \epsilon, \frac{1}{2} - \epsilon, \cdots, \frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon, \frac{1}{2} + \epsilon, \cdots, \frac{1}{2} + \epsilon}{m}$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

$$= a_1 + a_2 = m - a_2$$

$$a_1$$
: #bins with 1 item in ALG(I)

<Proof idea> Assume ALG is $(4/3-\epsilon)$ -competitive

 $m = a_1 + 2a_2$

$$\frac{1}{2} - \epsilon, \frac{1}{2} - \epsilon, \cdots, \frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon, \frac{1}{2} + \epsilon, \cdots, \frac{1}{2} + \epsilon$$

$$\text{OPT}(I) = \frac{m}{2}$$

$$\text{ALG}(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

$$= a_1 + a_2 = m - a_2$$

$$a_1: \text{#bins with 1 item in ALG}(I)$$

$$a_2: \text{#bins with 2 items in ALG}(I)$$

<Proof idea > Assume ALG is $(4/3-\epsilon)$ -competitive

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3- ϵ)-competitive for the first half of the instance, it cannot be $(4/3-\epsilon)$ -competitive for the whole instance. Consider the adversarial input:

$$OPT(I) = \frac{m}{2}$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

$$= a_1 + a_2 = m - a_2$$

$$a_1: \#bins with 2 items in ALG(I)$$

$$m = a_1 + 2a_2$$

$$OPT(I+I) = m$$

$$ALG(I+I) = a_1 + a_2 + x \ge a_2 + m$$

$$a_1: \#bins with 2 items in ALG(I)$$

$$a_2: \#bins with 2 items in ALG(I)$$

<Proof idea> Assume ALG is $(4/3-\epsilon)$ -competitive

Prove by contradiction: design an instance such that any algorithm ALG that is $(4/3-\epsilon)$ -competitive for the first half of the instance, it cannot be $(4/3-\epsilon)$ -competitive for the whole instance. Consider the adversarial input:

OPT(I) =
$$\frac{m}{2}$$

$$\frac{1}{2} - \epsilon, \frac{1}{2} - \epsilon, \cdots, \frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon, \frac{1}{2} + \epsilon, \cdots, \frac{1}{2} + \epsilon$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

$$= a_1 + a_2 = m - a_2$$

ALG(I+I) = $a_1 + a_2 + x \ge a_2 + m$

ALG(I+I) < $\frac{4}{3} \cdot \text{OPT}(I+I)$

ALG(I+I) < $\frac{4}{3} \cdot \text{OPT}(I+I)$

 a_2 : #bins with 2 items in ALG(I)

$$m = a_1 + 2a_2$$

<Proof idea> Assume ALG is $(4/3-\epsilon)$ -competitive

Prove by contradiction: design an instance such that any algorithm ALG that is $(4/3-\epsilon)$ -competitive for the first half of the instance, it cannot be $(4/3-\epsilon)$ -competitive for the whole instance. Consider the adversarial input:

OPT(I) =
$$\frac{m}{2}$$

$$\frac{1}{2} - \epsilon, \frac{1}{2} - \epsilon, \cdots, \frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon, \frac{1}{2} + \epsilon, \cdots, \frac{1}{2} + \epsilon$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

$$= a_1 + a_2 = m - a_2$$

ALG(I+I) = $a_1 + a_2 + x \ge a_2 + m$

$$ALG(I+I) < \frac{4}{3} \cdot OPT(I+I) = \frac{4}{3} \cdot m$$

ALG(I+I) < $\frac{4}{3} \cdot OPT(I+I) = \frac{4}{3} \cdot m$

 $m = a_1 + 2a_2$

 a_2 : #bins with 2 items in ALG(1)

<Proof idea> Assume ALG is $(4/3-\epsilon)$ -competitive

Prove by contradiction: design an instance such that any algorithm ALG that is $(4/3-\epsilon)$ -competitive for the first half of the instance, it cannot be $(4/3-\epsilon)$ -competitive for the whole instance. Consider the adversarial input:

OPT(I) =
$$\frac{m}{2}$$

$$\frac{1}{2} - \epsilon, \frac{1}{2} - \epsilon, \cdots, \frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon, \frac{1}{2} + \epsilon, \cdots, \frac{1}{2} + \epsilon$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

$$= a_1 + a_2 = m - a_2$$

$$ALG(I+I) = a_1 + a_2 + x \ge a_2 + m$$

$$ALG(I+I) < \frac{4}{3} \cdot OPT(I+I) = \frac{4}{3} \cdot m$$

 a_1 : #bins with 1 item in ALG(I)

 a_2 : #bins with 2 items in ALG(I)

$$m = a_1 + 2a_2$$

<Proof idea> Assume ALG is $(4/3-\epsilon)$ -competitive

 a_2 : #bins with 2 items in ALG(1)

 $m = a_1 + 2a_2$

Prove by contradiction: design an instance such that any algorithm ALG that is $(4/3-\epsilon)$ -competitive for the first half of the instance, it cannot be $(4/3-\epsilon)$ -competitive for the whole instance. Consider the adversarial input:

OPT(I) =
$$\frac{m}{2}$$

$$\frac{1}{2} - \epsilon, \frac{1}{2} - \epsilon, \cdots, \frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon, \frac{1}{2} + \epsilon, \cdots, \frac{1}{2} + \epsilon$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

$$= a_1 + a_2 = m - a_2$$

$$a_1: \#bins with 1 item in ALG(I)$$

$$OPT(I+I) = m$$

$$ALG(I+I) = a_1 + a_2 + x \ge a_2 + m$$

$$ALG(I+I) < \frac{4}{3} \cdot OPT(I+I) = \frac{4}{3} \cdot m$$

<Proof idea > Assume ALG is $(4/3-\epsilon)$ -competitive

 $m = a_1 + 2a_2$

Prove by contradiction: design an instance such that any algorithm ALG that is (4/3- ϵ)-competitive for the first half of the instance, it cannot be $(4/3-\epsilon)$ -competitive for the whole instance. Consider the adversarial input:

$$OPT(I) = \frac{m}{2}$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

$$= a_1 + a_2 = m - a_2$$

$$a_1: \#bins with 1 item in ALG(I)$$

$$m = a_1 + 2a_2$$

$$m = a_1 + 2a_2$$

$$ALG(I+I) = a_1 + a_2 + x \ge a_2 + m$$

$$ALG(I+I) < \frac{4}{3} \cdot OPT(I+I) = \frac{4}{3} \cdot m$$

$$a_2 < \frac{m}{3} \iff ALG(I) = m - a_2 > \frac{2}{3} \cdot m$$

<Proof idea> Assume ALG is $(4/3-\epsilon)$ -competitive

 $m = a_1 + 2a_2$

Prove by contradiction: design an instance such that any algorithm ALG that is $(4/3-\epsilon)$ -competitive for the first half of the instance, it cannot be $(4/3-\epsilon)$ -competitive for the whole instance. Consider the adversarial input:

$$OPT(I) = \frac{m}{2}$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

$$= a_1 + a_2 = m - a_2$$

$$a_1: \#bins with 1 item in ALG(I)$$

$$a_2: \#bins with 2 items in ALG(I)$$

$$a_2 < \frac{m}{2} \iff ALG(I) = m - a_2 > \frac{2}{3} \cdot m$$

$$a_2 < \frac{m}{2} \iff ALG(I) = m - a_2 > \frac{2}{3} \cdot m$$

<Proof idea > Assume ALG is $(4/3-\epsilon)$ -competitive

$$OPT(I) = \frac{m}{2}$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

$$= a_1 + a_2 = m - a_2$$

$$a_1: \#bins with 1 item in ALG(I)$$

$$a_2: \#bins with 2 items in ALG(I)$$

$$m = a_1 + 2a_2$$

$$OPT(I+I) = m$$

$$ALG(I+I) = a_1 + a_2 + x \ge a_2 + m$$

$$ALG(I+I) < \frac{4}{3} \cdot OPT(I+I) = \frac{4}{3} \cdot m$$

$$a_2 < \frac{m}{3} \Leftrightarrow ALG(I) = m - a_2 > \frac{2}{3} \cdot m$$

<Proof idea> Assume ALG is $(4/3-\epsilon)$ -competitive

Prove by contradiction: design an instance such that any algorithm ALG that is $(4/3-\epsilon)$ -competitive for the first half of the instance, it cannot be $(4/3-\epsilon)$ -competitive for the whole instance. Consider the adversarial input:

OPT(I) =
$$\frac{m}{2}$$

$$\frac{1}{2} - \epsilon, \frac{1}{2} - \epsilon, \cdots, \frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon, \frac{1}{2} + \epsilon, \cdots, \frac{1}{2} + \epsilon$$

$$ALG(I) < \frac{4}{3} \cdot \frac{m}{2} = \frac{2}{3} \cdot m$$

$$= a_1 + a_2 = m - a_2$$

ALG(I+I) = $a_1 + a_2 + x \ge a_2 + m$

$$ALG(I+I) < \frac{4}{3} \cdot OPT(I+I) = \frac{4}{3} \cdot m$$

 a_1 : #bins with 1 item in ALG(/)

 a_2 : #bins with 2 items in ALG(I)

$$m = a_1 + 2a_2$$

$$a_2 < \frac{m}{3} \iff ALG(I) = m - a_2 > \frac{2}{3} \cdot m \quad \square$$

Outline

- Bin Packing problem
 - Assume that we know the ALG cost

- Paging problem
 - We know very little about the ALG or the OPT

- In computer systems, the memory system is two-level
 - Data (in blocks) are stored in the memory, which cannot accessed directly
 - A block of data is called a page
 - The cache can be accessed directly and is fast, but very small

Memory

- In computer systems, the memory system is two-level
 - Data (in blocks) are stored in the memory, which cannot accessed directly
 - A block of data is called a page
 - The cache can be accessed directly and is fast, but very small

Memory

- When the processor needs a page p_i ...
 - If p_i is in the cache (called a **hit**), the system needs not do anything
 - If p_i is not in the cache (a **miss**), the system incurs one **page fault** and must copy the page p_i from the slow memory to the fast cache

- When the processor needs a page p_i ...
 - ullet If p_i is in the cache (called a **hit**), the system needs not do anything
 - If p_i is not in the cache (a **miss**), the system incurs one **page fault** and must copy the page p_i from the slow memory to the fast cache

1 2 3 4 5 Memory

Cache

- When the processor needs a page p_i ...
 - If p_i is in the cache (called a **hit**), the system needs not do anything
 - If p_i is not in the cache (a **miss**), the system incurs one **page fault** and must copy the page p_i from the slow memory to the fast cache

- When the processor needs a page p_i ...
 - If p_i is in the cache (called a **hit**), the system needs not do anything
 - If p_i is not in the cache (a **miss**), the system incurs one **page fault** and must copy the page p_i from the slow memory to the fast cache

- When the processor needs a page p_i ...
 - If p_i is in the cache (called a **hit**), the system needs not do anything
 - If p_i is not in the cache (a **miss**), the system incurs one **page fault** and must copy the page p_i from the slow memory to the fast cache

- When the processor needs a page p_i ...
 - If p_i is in the cache (called a **hit**), the system needs not do anything
 - If p_i is not in the cache (a **miss**), the system incurs one **page fault** and must copy the page p_i from the slow memory to the fast cache

- When the processor needs a page p_i ...
 - ullet If p_i is in the cache (called a **hit**), the system needs not do anything
 - If p_i is not in the cache (a **miss**), the system incurs one **page fault** and must copy the page p_i from the slow memory to the fast cache

- When the processor needs a page p_i ...
 - If p_i is in the cache (called a **hit**), the system needs not do anything
 - If p_i is not in the cache (a **miss**), the system incurs one **page fault** and must copy the page p_i from the slow memory to the fast cache
 - If the cache is full, one of the pages in the cache has to be evicted

- When the processor needs a page p_i ...
 - If p_i is in the cache (called a **hit**), the system needs not do anything
 - If p_i is not in the cache (a **miss**), the system incurs one **page fault** and must copy the page p_i from the slow memory to the fast cache
 - If the cache is full, one of the pages in the cache has to be evicted

- When the processor needs a page p_i ...
 - If p_i is in the cache (called a **hit**), the system needs not do anything
 - If p_i is not in the cache (a **miss**), the system incurs one **page fault** and must copy the page p_i from the slow memory to the fast cache
 - If the cache is full, one of the pages in the cache has to be evicted

- When the processor needs a page p_i ...
 - If p_i is in the cache (called a **hit**), the system needs not do anything
 - If p_i is not in the cache (a **miss**), the system incurs one **page fault** and must copy the page p_i from the slow memory to the fast cache
 - If the cache is full, one of the pages in the cache has to be evicted

- Given a sequence of n requests of pages r_1, r_2, \dots, r_n , revealed one by one
 - Set of pages = $\{1, 2, 3, \dots, n\}$
- ullet With a size-k cache, the algorithm has to serve all the requests with a minimum number of page faults
 - Choose which page to evict wisely

Paging Algorithms

- LIFO (Last-In-First-Out)
- FIFO (First-In-First-Out)
- LFU (Least-Frequently-Used)
- LRU (Least-Recently-Used)
- CLOCK (CLOCK-replacement)
- LFD (Longest-Forward-Distance)

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache 1 1

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU (Least-Frequently-Used) algorithm:

Every page has a counter that keep the number of times it has been accessed

Once a page fault is incurred, evict the one with the lowest counter value (break tie arbitrarily)

Cache

LFU competitive ratio is unbounded

LFU competitive ratio is unbounded

Consider the sequence of requests:

1, 1, ..., 1, 2, 2, ..., 2, 3, 3, ..., 3, ...,
$$k-1$$
, $k-1$, ..., $k-1$, k , $k+1$, k , $k+1$, ..., k , $k+1$ m x 1's $m \times 2$'s $m \times 3$'s $m \times k-1$'s $m \times (k, k+1)$'s

LFU competitive ratio is unbounded

Consider the sequence of requests:

1, 1, ..., 1, 2, 2, ..., 2, 3, 3, ..., 3, ...,
$$k-1$$
, $k-1$, ..., $k-1$, k , $k+1$, k , $k+1$, ..., k , $k+1$ m x 1's $m \times 2$'s $m \times 3$'s $m \times k-1$'s $m \times (k, k+1)$'s

1, 1, ..., 1, 2, 2, ..., 2, 3, 3, ...,
$$k-1, k-1, ..., k-1, k, k+1, k, k+1, ..., k, k+1$$

 $m \times 1$'s $m \times 2$'s $m \times 3$'s $m \times k-1$'s $m \times (k, k+1)$'s

Cache
$$\begin{bmatrix} 1 & 2 & \dots & k-1 \\ m & m & \end{bmatrix}$$
 $\begin{bmatrix} k+1 \\ 1 \end{bmatrix}$

1, 1, ..., 1, 2, 2, ..., 2, 3, 3, ..., 3, ...,
$$k-1$$
, $k-1$, ..., $k-1$, k , $k+1$, k , $k+1$, ..., k , $k+1$ $m \times 1$'s $m \times 2$'s $m \times 3$'s $m \times k-1$'s $m \times (k, k+1)$'s

1, 1, ..., 1, 2, 2, ..., 2, 3, 3, ..., 3, ...,
$$k-1$$
, $k-1$, ..., $k-1$, k , $k+1$, k , $k+1$, ..., k , $k+1$ m x 1's $m \times 2$'s $m \times 3$'s $m \times k-1$'s $m \times (k, k+1)$'s

1, 1, ..., 1, 2, 2, ..., 2, 3, 3, ...,
$$k - 1, k - 1, ..., k - 1, k, k + 1, k, k + 1, ..., k, k + 1$$

 $m \times 1$'s $m \times 2$'s $m \times 3$'s $m \times k - 1$'s $m \times (k, k + 1)$'s

1, 1, ..., 1, 2, 2, ..., 2, 3, 3, ..., 3, ...,
$$k-1$$
, $k-1$, ..., $k-1$, $k+1$, $k+1$, $k+1$, ..., $k+1$ $m \times 1$'s $m \times 2$'s $m \times 3$'s $m \times k-1$'s $m \times (k, k+1)$'s

$$LFU = (k - 1) + 2m$$

Cache
$$\begin{bmatrix} 1 & 2 & \dots & k-1 & k+1 \\ m & m & m \end{bmatrix}$$

$$LFU = (k - 1) + 2m$$

Cache
$$\begin{bmatrix} 1 & 2 & \dots & k-1 & k+1 \\ m & m & m \end{bmatrix}$$

$$\mathbf{LFU} = (k-1) + 2m$$

$$\mathbf{OPT} = k + 1$$

Consider the sequence of requests:

1, 1, ..., 1, 2, 2, ..., 2, 3, 3, ...,
$$k - 1, k - 1, ..., k - 1, k, k + 1, k, k + 1, ..., k, k + 1$$

 $m \times 1$'s $m \times 2$'s $m \times 3$'s $m \times k - 1$'s $m \times (k, k + 1)$'s

$$LFU = (k - 1) + 2m$$

$$\mathbf{OPT} = k + 1$$

When m is large enough, $\frac{\text{LFU}}{\text{OPT}} \approx O(\frac{m}{k})$

The ratio grows with the input \Rightarrow unbounded

What Happened

 By a special requests sequence, we can force LFU to incur page faults frequently while the optimal assignment is still efficient

The competitive ratio of LFU grows with the input size — unbounded

LRU (Least-Recently-Used) algorithm:

LRU (Least-Recently-Used) algorithm:

LRU (Least-Recently-Used) algorithm:

LRU (Least-Recently-Used) algorithm:

LRU (Least-Recently-Used) algorithm:

Once a page fault is incurred, evict the one that was used the least recently

Cache 1

LRU (Least-Recently-Used) algorithm:

Once a page fault is incurred, evict the one that was used the least recently

Cache 1

LRU (Least-Recently-Used) algorithm:

Once a page fault is incurred, evict the one that was used the least recently

Cache 1 3

LRU (Least-Recently-Used) algorithm:

Once a page fault is incurred, evict the one that was used the least recently

Cache 1 3

LRU (Least-Recently-Used) algorithm:

Once a page fault is incurred, evict the one that was used the least recently

Cache 1 3 5

LRU (Least-Recently-Used) algorithm:

Once a page fault is incurred, evict the one that was used the least recently

Cache 1 3 5

LRU (Least-Recently-Used) algorithm:

LRU (Least-Recently-Used) algorithm:

LRU (Least-Recently-Used) algorithm:

Once a page fault is incurred, evict the one that was used the least recently

Cache 4 3 5

LRU (Least-Recently-Used) algorithm:

LRU (Least-Recently-Used) algorithm:

LRU (Least-Recently-Used) algorithm:

LRU (Least-Recently-Used) algorithm:

Once a page fault is incurred, evict the one that was used the least recently

Cache 4 3 2

LRU (Least-Recently-Used) algorithm:

LRU (Least-Recently-Used) algorithm:

LRU (Least-Recently-Used) algorithm:

LRU (Least-Recently-Used) algorithm:

Once a page fault is incurred, evict the one that was used the least recently

Cache 5 3 2

LRU (Least-Recently-Used) algorithm:

LRU (Least-Recently-Used) algorithm:

LRU is k-competitive

LRU is k-competitive

<Proof idea>

<Proof idea>

- Phase 0 is empty
- Phase i is the maximal sequence following phase i-1 that contains at most k distinct page requests (that is, phase i+1 begins on the request that is the (k+1)-th distinct page)

<Proof idea>

Phase partitioning: partition the request sequence into phases and bound the cost of LRU and OPT in each phase

- Phase 0 is empty
- Phase i is the maximal sequence following phase i-1 that contains at most kdistinct page requests (that is, phase i+1 begins on the request that is the (k+1)-th distinct page)

1, 3, 3, 5, 4, 3, 2, 5, 2, 1, 1, 3, 2, 3, 1, 3, 3, 5, 3, 5, 2, 1

<Proof idea>

- Phase 0 is empty
- Phase i is the maximal sequence following phase i-1 that contains at most k distinct page requests (that is, phase i+1 begins on the request that is the (k+1)-th distinct page)

<Proof idea>

- Phase 0 is empty
- Phase i is the maximal sequence following phase i-1 that contains at most k distinct page requests (that is, phase i+1 begins on the request that is the (k+1)-th distinct page)

<Proof idea>

- Phase 0 is empty
- Phase i is the maximal sequence following phase i-1 that contains at most k distinct page requests (that is, phase i+1 begins on the request that is the (k+1)-th distinct page)

<Proof idea>

- Phase 0 is empty
- Phase i is the maximal sequence following phase i-1 that contains at most k distinct page requests (that is, phase i+1 begins on the request that is the (k+1)-th distinct page)

<Proof idea>

- Phase 0 is empty
- Phase i is the maximal sequence following phase i-1 that contains at most k distinct page requests (that is, phase i+1 begins on the request that is the (k+1)-th distinct page)

<Proof idea>

<Proof idea>

Phase partitioning: partition the request sequence into phases and bound the cost of LRU and OPT in each phase

• Claim (a): In phase i, LRU only incurs at most k page faults

<Proof idea>

Phase partitioning: partition the request sequence into phases and bound the cost of LRU and OPT in each phase

ullet Claim (a): In phase i, LRU only incurs at most k page faults

<Proof> Since LRU evicts the page that was used the longest time ago, it never evicts a page that was requested earlier in the same phase. Hence, LRU incurs at most k page faults in a phase as there are at most k distinct pages in each phase i.

<Proof idea>

Phase partitioning: partition the request sequence into phases and bound the cost of LRU and OPT in each phase

• Claim (a): In phase i, LRU only incurs at most k page faults

<Proof> Since LRU evicts the page that was used the longest time ago, it never evicts a page that was requested earlier in the same phase. Hence, LRU incurs at most k page faults in a phase as there are at most k distinct pages in each phase i.

4 3 2

<Proof idea>

Phase partitioning: partition the request sequence into phases and bound the cost of LRU and OPT in each phase

• Claim (a): In phase i, LRU only incurs at most k page faults

<Proof> Since LRU evicts the page that was used the longest time ago, it never evicts a page that was requested earlier in the same phase. Hence, LRU incurs at most k page faults in a phase as there are at most k distinct pages in each phase i.

5 3 2

<Proof idea>

Phase partitioning: partition the request sequence into phases and bound the cost of LRU and OPT in each phase

• Claim (a): In phase i, LRU only incurs at most k page faults

<Proof> Since LRU evicts the page that was used the longest time ago, it never evicts a page that was requested earlier in the same phase. Hence, LRU incurs at most k page faults in a phase as there are at most k distinct pages in each phase i.

5 3 2

<Proof idea>

Phase partitioning: partition the request sequence into phases and bound the cost of LRU and OPT in each phase

• Claim (a): In phase i, LRU only incurs at most k page faults

<Proof> Since LRU evicts the page that was used the longest time ago, it never evicts a page that was requested earlier in the same phase. Hence, LRU incurs at most k page faults in a phase as there are at most k distinct pages in each phase i.

<Proof idea>

Phase partitioning: partition the request sequence into phases and bound the cost of LRU and OPT in each phase

• Claim (a): In phase i, LRU only incurs at most k page faults

<Proof> Since LRU evicts the page that was used the longest time ago, it never evicts a page that was requested earlier in the same phase. Hence, LRU incurs at most k page faults in a phase as there are at most k distinct pages in each phase i.

<Proof idea>

Phase partitioning: partition the request sequence into phases and bound the cost of LRU and OPT in each phase

• Claim (a): In phase i, LRU only incurs at most k page faults

<Proof> Since LRU evicts the page that was used the longest time ago, it never evicts a page that was requested earlier in the same phase. Hence, LRU incurs at most k page faults in a phase as there are at most k distinct pages in each phase i.

j-1 pa \Rightarrow There cache the

At the moment when the j-th distinct page in phase i is requested, there are j-1 pages accessed in phase i.

 \Rightarrow There are k-(j-1) pages in the cache that haven't been accessed recently. Hence, LRU will evict one of them.

<Proof idea>

• Claim (b): In phase i, **OPT** incurs at least 1 page fault

<Proof idea>

 \bullet Claim (b): In phase i, **OPT** incurs at least 1 page fault

<Proof> Consider the cache just before phase i. At this moment, there are k pages in the cache. Since the first request in phase i is different from any of the pages in phase i-1, any feasible algorithm has to evict one page to accommodate this request, and so does **OPT**.

<Proof idea>

 \bullet Claim (b): In phase i, **OPT** incurs at least 1 page fault

<Proof> Consider the cache just before phase i. At this moment, there are k pages in the cache. Since the first request in phase i is different from any of the pages in phase i-1, any feasible algorithm has to evict one page to accommodate this request, and so does **OPT**.

<Proof idea>

• Claim (b): In phase i, **OPT** incurs at least 1 page fault

<Proof> Consider the cache just before phase i. At this moment, there are k pages in the cache. Since the first request in phase i is different from any of the pages in phase i-1, any feasible algorithm has to evict one page to accommodate this request, and so does **OPT**.

<Proof idea>

• Claim (b): In phase i, **OPT** incurs at least 1 page fault

<Proof> Consider the cache just before phase i. At this moment, there are k pages in the cache. Since the first request in phase i is different from any of the pages in phase i-1, any feasible algorithm has to evict one page to accommodate this request, and so does **OPT**.

<Proof idea>

 \bullet Claim (b): In phase i, **OPT** incurs at least 1 page fault

<Proof> Consider the cache just before phase i. At this moment, there are k pages in the cache. Since the first request in phase i is different from any of the pages in phase i-1, any feasible algorithm has to evict one page to accommodate this request, and so does **OPT**.

<Proof idea>

• Claim (b): In phase i, **OPT** incurs at least 1 page fault

<Proof> Consider the cache just before phase i. At this moment, there are k pages in the cache. Since the first request in phase i is different from any of the pages in phase i-1, any feasible algorithm has to evict one page to accommodate this request, and so does **OPT**.

<Proof idea>

• Claim (b): In phase i, **OPT** incurs at least 1 page fault

<Proof> Consider the cache just before phase i. At this moment, there are k pages in the cache. Since the first request in phase i is different from any of the pages in phase i-1, any feasible algorithm has to evict one page to accommodate this request, and so does **OPT**.

Let LRU $_i$ and OPT $_i$ denote the page fault incurred by **LRU** and **OPT** in phase i, respectively. By Claim (a) and Claim (b),

$$\frac{\text{LRU}(I)}{\text{OPT}(I)} = \frac{\sum_{i} \text{LRU}_{i}}{\sum_{i} \text{OPT}_{i}} \leq \frac{k}{1} = k$$

What Happened

• Phase partitioning: partition the request sequence into phases such that each phase has k distinct pages

• By arguing that an algorithm incurs at most k page faults and OPT incurs at least 1 page fault in any phase, we can conclude that the algorithm is at most $O(\frac{n}{k})$ -competitive

 \bullet Arguing that an algorithm incurs at most k page faults is the key!

<Proof idea>

Assume that the cache size is k. Consider any algorithm **ALG** and design the adversary as follows: First request pages $1, 2, 3, \dots, k$

<Proof idea>

Assume that the cache size is k. Consider any algorithm **ALG** and design the adversary as follows: First request pages $1, 2, 3, \dots, k, k + 1$.

1 2 3 ... k

<Proof idea>

Assume that the cache size is k. Consider any algorithm **ALG** and design the adversary as follows: First request pages $1, 2, 3, \dots, k, k + 1$. At this moment, **ALG** evicts a page $i \in [1,k]$.

1 2 3 k+1 ... k

<Proof idea>

Assume that the cache size is k. Consider any algorithm **ALG** and design the adversary as follows: First request pages $1, 2, 3, \dots, k, k+1$. At this moment, **ALG** evicts a page $i \in [1,k]$. Then, the adversary requests page i.

<Proof idea>

Assume that the cache size is k. Consider any algorithm **ALG** and design the adversary as follows: First request pages $1, 2, 3, \dots, k, k+1$. At this moment, **ALG** evicts a page $i \in [1,k]$. Then, the adversary requests page i. The adversary repeatedly requests the page evicted by **ALG** for n-1 rounds.

<Proof idea>

Assume that the cache size is k. Consider any algorithm **ALG** and design the adversary as follows: First request pages $1, 2, 3, \dots, k, k+1$. At this moment, **ALG** evicts a page $i \in [1,k]$. Then, the adversary requests page i. The adversary repeatedly requests the page evicted by **ALG** for n-1 rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs k + n.

<Proof idea>

Assume that the cache size is k. Consider any algorithm **ALG** and design the adversary as follows: First request pages $1, 2, 3, \dots, k, k+1$. At this moment, **ALG** evicts a page $i \in [1,k]$. Then, the adversary requests page i. The adversary repeatedly requests the page evicted by **ALG** for n-1 rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs k + n.

Because there are only k+1 pages involved, **OPT** incurs at most 1 page fault per k pages.

<Proof idea>

Assume that the cache size is k. Consider any algorithm **ALG** and design the adversary as follows: First request pages $1, 2, 3, \dots, k, k+1$. At this moment, **ALG** evicts a page $i \in [1,k]$. Then, the adversary requests page i. The adversary repeatedly requests the page evicted by **ALG** for n-1 rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs k + n.

Because there are only k+1 pages involved, **OPT** incurs at most 1 page fault per k pages.

Therefore,
$$\frac{\mathrm{ALG}(I)}{\mathrm{OPT}(I)} \geq \frac{k+n}{k+n/k} \approx \Omega(k)$$

Even when every page requests change dramatically, the optimal solution can keep the k pages that will be used in the most recent future and evict the one that will be used later.

<Proof idea>

Assume that the cache size is k. Consider any algorithm **ALG** and design the adversary as follows: First request pages $1, 2, 3, \dots, k, k+1$. At this moment, **ALG** evicts a page $i \in [1,k]$. Then, the adversary requests page i. The adversary repeatedly requests the page evicted by **ALG** for n-1 rounds.

In this instance, each request incurs a page fault for ALG. Therefore, ALG costs k+n.

Because there are only k+1 pages involved, **OPT** incurs at most 1 page fault per k pages.

Therefore,
$$\frac{\mathrm{ALG}(I)}{\mathrm{OPT}(I)} \geq \frac{k+n}{k+n/k} \approx \Omega(k)$$

Research cycle of online algorithms

