Math 302/401/600 Fall 2010 Homework #5

Due Oct. 13, Wed. in class

- 1. Let A be a sequentially compact set in the metric space (M, d). Show that any closed subset of A is also sequentially compact.
- 2. In $(\mathbb{R}^n, \|\cdot\|)$, where $\|\cdot\|$ is an arbitrary norm on \mathbb{R}^n , show that any sequence in a bounded set of \mathbb{R}^n has a subsequence that converges in \mathbb{R}^n . And illustrate by an example that the statement does not hold in a general metric space.
- 3. Use the definition of compactness (i.e. the open cover definition) to show that the following two sets are *not* compact:
 - (1) the open ball B(x,1) with the radius 1 contained in the metric space (M,d), where $x \in M$;
 - (2) the set $A = \{(x,y) \in \mathbb{R}^2 : -1 < x \le 1, \ 0 \le y \le 2\}$ (using the standard metric on \mathbb{R}^2).
- 4. Use the definition of compactness to show that the union of two (nonempty) compact sets is compact.
- 5. What are compact and connected sets in \mathbb{R} ?
- 6. Which of the following sets are connected in \mathbb{R} :

$$\{\sqrt{2}\}, \{3, -10\}, [0, 1), (-7, \infty), \mathbb{Z}, \mathbb{Q}, \mathbb{R},$$

where \mathbb{Z} and \mathbb{Q} are the sets of integers and rational numbers, respectively.