Oppgavesett 1

naturlig deduksjon av setningslogikk

Severin Gartland og OpenAI o3-mini

Innhold

1	Opp	Oppavesett 1					
	1.1	Oppva	rmingsoppgaver	3			
		1.1.1	Øvelse	3			
		1.1.2	Øvelse	3			
		1.1.3	Øvelse	3			
		1.1.4	Øvelse	3			
		1.1.5	Øvelse	3			
		1.1.6	Løsningsforslag	4			
			Øvelse 1.1.1	4			
			Øvelse 1.1.2	4			
			Øvelse 1.1.3	4			
			Øvelse 1.1.4	5			
			Øvelse 1.1.5	5			
	1.2	Nivå 1		6			
		1.2.1	Øvelse	6			
		1.2.2	Øvelse	6			
		1.2.3	Øvelse	6			
		1.2.4	Øvelse	6			
		1.2.5	Øvelse	6			
		1.2.6	Løsningsforslag	7			
			Øvelse 1.2.1	7			
			Øvelse 1.2.2	7			
			Øvelse 1.2.4	8			
			Øvelse 1.2.5	8			
	1.3	Nivå 2		10			
		1.3.1	Øvelse	10			
		1.3.2	Øvelse	10			
		1.3.3	Øvelse	10			

	1.3.4	Øvelse	10	
	1.3.5	Løsningsforslag	11	
		Øvelse 1.3.1	11	
		Øvelse 1.3.2	11	
		Øvelse 1.3.3	12	
		Øvelse 1.3.4	12	
1.4	Nivå 3		14	
	1.4.1	Øvelse	14	
	1.4.2	Øvelse	14	
	1.4.3	Øvelse	14	
	1.4.4	Løsningsforslag	15	
		Øvelse 1.4.1	15	
		Øvelse 1.4.2	15	
		Øvelse 1.4.3	16	
1.5	Uintuitive deduksjoner			
	1.5.1	Øvelse	18	
	1.5.2	Øvelse	18	
	1.5.3	Løsningsforslag	19	
		Øvelse 1.5.1	19	
		Øvelse 1.5.2	19	

Oppavesett 1

1.1 Oppvarmingsoppgaver

Øvelse 1.1.1

Vis at fra p og q kan man konkludere $p \wedge q$.

Øvelse 1.1.2

Vis at fra $p \wedge q$ kan man konkludere p.

Øvelse 1.1.3

Vis at fra p kan man konkludere $p \vee q$.

Øvelse 1.1.4

Vis at $p \rightarrow p$.

Øvelse 1.1.5

Vis at fra p og $p \rightarrow q$ kan man konkludere q.

Løsningsforslag 1.1.6

Øvelse 1.1.1

Vis at fra p og q kan man konkludere $p \wedge q$.

Bevis:

$$\begin{array}{c|cccc} 1 & p & & & \\ 2 & q & & & \\ 3 & p & & 1 \text{ Reit} \\ 4 & q & & 2 \text{ Reit} \\ 5 & p \wedge q & & 3, 4 \wedge \text{Intro} \end{array}$$

Øvelse 1.1.2

Vis at fra $p \wedge q$ kan man konkludere p.

Bevis:

$$\begin{array}{c|c} 1 & p \wedge q \\ \hline 2 & p & 1 \wedge \text{Elim} \end{array}$$

Øvelse 1.1.3

Vis at fra p kan man konkludere $p \vee q$.

28.02.2025 4

5

Bevis:

$$\begin{array}{c|cccc}
1 & p \\
\hline
2 & p \lor q & 1 \lor Intro
\end{array}$$

Øvelse 1.1.4

Vis at $p \to p$.

Bevis:

$$\begin{array}{c|cccc} 1 & & p & \\ \hline 2 & & p & \\ \hline 3 & p \rightarrow p & 1-2 \rightarrow Intro \end{array}$$

Øvelse 1.1.5

Vis at fra p og $p \rightarrow q$ kan man konkludere q.

Bevis:

$$\begin{array}{c|cccc} 1 & p & & & \\ 2 & p \rightarrow q & & \\ 3 & q & & 1, 2 \rightarrow \text{Elim} \end{array}$$

1.2 Nivå 1

Øvelse 1.2.1

Vis at $p \to (p \lor q)$.

Øvelse 1.2.2

Vis at fra $p \to q$ og $\neg q$ kan man konkludere $\neg p$.

Øvelse 1.2.3

Vis at fra $p \to q$, kan man konkludere $\neg q \to \neg p$.

Øvelse 1.2.4

Bevis at fra $p \to q$ og $q \to r$, kan man konkludere $p \to r$.

Øvelse 1.2.5

Vis at fra $p \lor q$, $p \to r$ og $q \to r$ kan man konkludere r.

Løsningsforslag 1.2.6

Øvelse 1.2.1

Vis at $p \to (p \lor q)$.

Bevis

$$\begin{array}{c|cccc} 1 & & p \\ \hline 2 & & p \lor q & 1 \lor \text{Intro} \\ \hline 3 & p \to (p \lor q) & 1-3 \to \text{Intro} \\ \end{array}$$

Øvelse 1.2.2

Vis at fra $p \to q$ og $\neg q$ kan man konkludere $\neg p$.

Bevis

$$\begin{array}{c|cccc} 1 & p \rightarrow q \\ 2 & \neg q \\ \hline 3 & p \\ 4 & q & 3, 1 \rightarrow Elim \\ 5 & \neg q & 2 Reit \\ 6 & \neg p & 3-5 \neg Intro \\ \end{array}$$

Øvelse 1.2.3

Vis at fra $p \to q$, kan man konkludere $\neg q \to \neg p$.

Øvelse 1.2.4

Bevis at fra $p \to q$ og $q \to r$, kan man konkludere $p \to r$.

Bevis

Øvelse 1.2.5

Vis at fra $p \lor q$, $p \to r$ og $q \to r$ kan man konkludere r.

1.3 Nivå 2

Øvelse 1.3.1

Bevis at fra $p \to (q \to r)$ kan man konkludere $(p \land q) \to r$.

Øvelse 1.3.2

Bevis at fra $p \lor q$, $p \to r$ og $q \to r$ kan man konkludere r.

Øvelse 1.3.3

Bevis at fra $p \to q$ og $\neg q$ kan man konkludere $\neg p$.

Øvelse 1.3.4

Vis at $\neg (p \land q) \rightarrow (\neg p \lor \neg q)$.

Løsningsforslag 1.3.5

Øvelse 1.3.1

Bevis at fra $p \to (q \to r)$ kan man konkludere $(p \land q) \to r$.

Bevis

Øvelse 1.3.2

Bevis at fra $p \lor q$, $p \to r$ og $q \to r$ kan man konkludere r.

Øvelse 1.3.3

Bevis at fra $p \to q$ og $\neg q$ kan man konkludere $\neg p$.

Bevis

Øvelse 1.3.4

Vis at $\neg (p \land q) \rightarrow (\neg p \lor \neg q)$.

1.4 Nivå 3

Øvelse 1.4.1

Bevis at fra $p \wedge (q \vee r)$ kan man konkludere $(p \wedge q) \vee (p \wedge r)$.

Øvelse 1.4.2

Bevis at fra $(p \wedge q) \to r$ kan man konkludere $p \to (q \to r)$.

Øvelse 1.4.3

Vis at $\neg(p \to q) \to p$.

Her kan vi vise at dette er en logisk sannhet.

Løsningsforslag 1.4.4

Øvelse 1.4.1

Bevis at fra $p \wedge (q \vee r)$ kan man konkludere $(p \wedge q) \vee (p \wedge r)$.

Bevis

Øvelse 1.4.2

Bevis at fra $(p \wedge q) \rightarrow r$ kan man konkludere $p \rightarrow (q \rightarrow r)$.

Øvelse 1.4.3

Vis at
$$\neg(p \to q) \to p$$
.

Her kan vi vise at dette er en logisk sannhet.

1		$\neg (p$	ρo	q)		
2			$\neg p$		_	
3				p	_	
4					$\neg q$	
5					p	3 Reit
6					$\neg p$	2 Reit
7				q		4–6 ¬E
8						3–7 →Intro
9						1 Reit
10		p				2 – 9 ¬ E
11	¬(1	$p \rightarrow$	q) –	$\rightarrow p$	1– 10 →Intro	

1.5 Uintuitive deduksjoner

Øvelse 1.5.1

Bevis at fra p kan man konkludere $q \to p$.

Øvelse 1.5.2

Bevis at fra $\neg p$ kan man konkludere $p \rightarrow q$.

Løsningsforslag 1.5.3

Øvelse 1.5.1

Bevis at fra p kan man konkludere $q \rightarrow p$.

Bevis:

$$\begin{array}{c|cccc} 1 & p & & & \\ 2 & p & & 1 \text{ Reit} \\ 3 & & q & & \\ 4 & & p & 2 \text{ Reit} \\ 5 & q \rightarrow p & 3-4 \rightarrow \text{Intro} \end{array}$$

Øvelse 1.5.2

Bevis at fra $\neg p$ kan man konkludere $p \rightarrow q$.

Bevis: