Abdullah Shumail

22108165

Fraud Detection model using Logistic Regression.

```
In [1]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        df = pd.read_csv(r"C:\Users\lenovo\Downloads\creditcard (1).csv")
        df.head()
Out[1]:
           Time
                      V1
                                V2
                                                  V4
                                                            V5
                                                                     V6
                                                                              V7
                                                                                                 V9 ...
                                                                                                             V21
                                                                                                                      V22
             0.0 -1.359807 -0.072781 2.536347
                                             1.378155 -0.338321
                                                                0.462388
                                                                         0.239599
                                                                                   0.098698
                                                                                            0.363787 ... -0.018307
                                                                                                                  0.277838
             0.0 1.191857
                          0.266151 0.166480
                                             0.448154
                                                      0.060018
                                                              -0.082361 -0.078803
                                                                                   0.085102
                                                                                            -0.255425 ... -0.225775
                                                                                                                  -0.638672
                                             0.379780 -0.503198
                                                                                           -1.514654 ...
        2
             1.0 -1.358354 -1.340163 1.773209
                                                               1.800499
                                                                         0.791461
                                                                                   0.247676
                                                                                                         0.247998
                                                                                                                  0.771679
        3
             1.0 -0.966272 -0.185226 1.792993 -0.863291 -0.010309
                                                                         0.237609
                                                                                   0.377436
                                                                                           -1.387024 ...
                                                                                                        -0.108300
                                                                                                                  0.005274
                                                               1.247203
             2.0 -1.158233
                          0.877737 1.548718 0.403034 -0.407193 0.095921
                                                                         0.592941 -0.270533
                                                                                           0.817739 ... -0.009431
                                                                                                                  0.798278
        5 rows × 31 columns
In [2]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 284807 entries, 0 to 284806
       Data columns (total 31 columns):
            Column Non-Null Count Dtype
        #
       - - -
                    -----
        0
            Time
                    284807 non-null
                                     float64
        1
            ٧1
                    284807 non-null
                                     float64
        2
            ٧2
                    284807 non-null float64
        3
            ٧3
                    284807 non-null float64
        4
            ٧4
                    284807 non-null
                                      float64
                    284807 non-null
        5
            V5
                                     float64
                    284807 non-null float64
        6
            ٧6
                    284807 non-null float64
        7
            ٧7
        8
            ٧8
                    284807 non-null
                                      float64
                    284807 non-null
        9
            ۷9
                                     float64
                    284807 non-null float64
        10
            V10
                    284807 non-null float64
        11
            V11
        12
            V12
                    284807 non-null
                                      float64
                    284807 non-null
            V13
        13
                                      float64
            V14
                    284807 non-null
                                      float64
        15
            V15
                    284807 non-null float64
            V16
                    284807 non-null
        16
                                      float64
            V17
                    284807 non-null float64
        17
                    284807 non-null float64
            V18
        19
            V19
                    284807 non-null float64
        20
            V20
                    284807 non-null
                    284807 non-null float64
        21
            V21
            V22
                    284807 non-null float64
                    284807 non-null float64
        23
            V23
        24
            V24
                    284807 non-null
                                      float64
                    284807 non-null
        25
            V25
                                      float64
            V26
                    284807 non-null float64
            V27
                    284807 non-null float64
        27
        28
            V28
                    284807 non-null
                                      float64
           Amount 284807 non-null
                                      float64
        30 Class
                    284807 non-null int64
       dtypes: float64(30), int64(1)
       memory usage: 67.4 MB
In [3]: df.describe().T
```

max	75%	50%	25%	min	std	mean	count	
172792.000000	139320.500000	84692.000000	54201.500000	0.000000	47488.145955	9.481386e+04	284807.0	Time
2.454930	1.315642	0.018109	-0.920373	-56.407510	1.958696	1.168375e-15	284807.0	V1
22.057729	0.803724	0.065486	-0.598550	-72.715728	1.651309	3.416908e-16	284807.0	V2
9.382558	1.027196	0.179846	-0.890365	-48.325589	1.516255	-1.379537e-15	284807.0	V3
16.875344	0.743341	-0.019847	-0.848640	-5.683171	1.415869	2.074095e-15	284807.0	V4
34.801666	0.611926	-0.054336	-0.691597	-113.743307	1.380247	9.604066e-16	284807.0	V5
73.301626	0.398565	-0.274187	-0.768296	-26.160506	1.332271	1.487313e-15	284807.0	V6
120.589494	0.570436	0.040103	-0.554076	-43.557242	1.237094	-5.556467e-16	284807.0	V 7
20.007208	0.327346	0.022358	-0.208630	-73.216718	1.194353	1.213481e-16	284807.0	V8
15.594995	0.597139	-0.051429	-0.643098	-13.434066	1.098632	-2.406331e-15	284807.0	V9
23.745136	0.453923	-0.092917	-0.535426	-24.588262	1.088850	2.239053e-15	284807.0	V10
12.018913	0.739593	-0.032757	-0.762494	-4.797473	1.020713	1.673327e-15	284807.0	V11
7.848392	0.618238	0.140033	-0.405571	-18.683715	0.999201	-1.247012e-15	284807.0	V12
7.126883	0.662505	-0.013568	-0.648539	-5.791881	0.995274	8.190001e-16	284807.0	V13
10.526766	0.493150	0.050601	-0.425574	-19.214325	0.958596	1.207294e-15	284807.0	V14
8.877742	0.648821	0.048072	-0.582884	-4.498945	0.915316	4.887456e-15	284807.0	V15
17.315112	0.523296	0.066413	-0.468037	-14.129855	0.876253	1.437716e-15	284807.0	V16
9.253526	0.399675	-0.065676	-0.483748	-25.162799	0.849337	-3.772171e-16	284807.0	V17
5.041069	0.500807	-0.003636	-0.498850	-9.498746	0.838176	9.564149e-16	284807.0	V18
5.591971	0.458949	0.003735	-0.456299	-7.213527	0.814041	1.039917e-15	284807.0	V19
39.420904	0.133041	-0.062481	-0.211721	-54.497720	0.770925	6.406204e-16	284807.0	V20
27.202839	0.186377	-0.029450	-0.228395	-34.830382	0.734524	1.654067e-16	284807.0	V21
10.503090	0.528554	0.006782	-0.542350	-10.933144	0.725702	-3.568593e-16	284807.0	V22
22.528412	0.147642	-0.011193	-0.161846	-44.807735	0.624460	2.578648e-16	284807.0	V23
4.584549	0.439527	0.040976	-0.354586	-2.836627	0.605647	4.473266e-15	284807.0	V24
7.519589	0.350716	0.016594	-0.317145	-10.295397	0.521278	5.340915e-16	284807.0	V25

-2.604551

-22.565679

-15.430084

0.000000

0.000000

-0.326984

-0.070840

-0.052960

5.600000

0.000000

-0.052139

0.001342

0.011244

22.000000

0.000000

0.240952

0.091045

0.078280

77.165000

0.000000

3.517346

31.612198

33.847808

1.000000

25691.160000

V26 284807.0 1.683437e-15

V27 284807.0 -3.660091e-16

V28 284807.0 -1.227390e-16

Amount 284807.0 8.834962e+01

Class 284807.0 1.727486e-03

0.482227

0.403632

0.330083

0.041527

250.120109

```
Out[6]: Time
                   0
         ٧1
                   0
        ٧2
                   0
         ٧3
                   0
         ٧4
                   0
         ۷5
                   0
         ۷6
                   0
         ٧7
                   0
         ٧8
                   0
        ۷9
                   0
        V10
                   0
         V11
                   0
         V12
                   0
         V13
                   0
         V14
                   0
         V15
                   0
         V16
                   0
        V17
                   0
         V18
                   0
         V19
                   0
         V20
                   0
        V21
                   0
         V22
                   0
         V23
                   0
         V24
                   0
        V25
                   0
         V26
                   0
         V27
                   0
         V28
                   0
         Amount
                   0
         Class
         dtype: int64
In [7]: df.duplicated().sum()
Out[7]: 1081
In [8]: df.drop_duplicates(inplace=True)
        df['Class'].value counts()
Out[8]: Class
              283253
        0
         1
                473
        Name: count, dtype: int64
In [9]: plt.figure(figsize=(10,8))
labels = ['Not fraud','Fraud']
        explode=[.01,.01]
        color= 'green','red'
        sizes= df.Class.value counts().values
        plt.pie(sizes,explode,labels,autopct='%1.1f%%',colors=color)
        plt.show()
```


In [13]: from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test = train_test_split(x,y,train_size= 0.75,random_state=101)

Out[11]: (283726, 30)

In [14]: x_train.shape
Out[14]: (212794, 30)

In [12]: y.shape
Out[12]: (283726,)

```
In [15]: y_train.shape
Out[15]: (212794,)
In [16]: x_test.shape
Out[16]: (70932, 30)
In [17]: y_test.shape
Out[17]: (70932,)
In [18]: from sklearn.linear_model import LogisticRegression
         logit = LogisticRegression()
         logit.fit(x_train,y_train)
        C:\Users\lenovo\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.py:458: ConvergenceWarning: lbfgs fai
        led to converge (status=1):
        STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
        Increase the number of iterations (max_iter) or scale the data as shown in:
            https://scikit-learn.org/stable/modules/preprocessing.html
        Please also refer to the documentation for alternative solver options:
            https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
          n_iter_i = _check_optimize_result(
Out[18]: ▼ LogisticRegression
         LogisticRegression()
In [19]: y_predict_train=logit.predict(x_train)
         y_predict_test=logit.predict(x_test)
In [20]: from sklearn.metrics import confusion_matrix,classification_report,accuracy_score
In [21]:
         cm_tr=confusion_matrix(y_train,y_predict_train)
         cm tr
Out[21]: array([[212365,
                              72],
                 [ 144,
                             213]], dtype=int64)
In [22]: cm tst=confusion matrix(y test,y predict test)
         cm tst
Out[22]: array([[70793,
                            231.
                            77]], dtype=int64)
                [ 39,
In [23]: cl_rep_train = classification_report(y_train,y_predict_train)
         cl_rep_train
Out[23]:
                        precision
                                      recall f1-score
                                                                               0
                                                                                        1.00
                                                                                                  1.00
                                                                                                            1.00
                                                         support\n\n
                                                                                                                    212437
                       1
                               0.75
                                         0.60
                                                   0.66
                                                                                                            1.00
                                                                                                                     21279
          \n
                                                              357\n\n
                               0.87
                                          0.80
                                                    0.83
                                                                                                                    212794
                                                            212794\nweighted avg
                                                                                        1.00
                                                                                                  1.00
                                                                                                            1.00
          4\n
               macro avo
In [24]: print(f'classification report: {cl_rep_train}')
        classification report:
                                             precision
                                                           recall f1-score
                                                                              support
                                     1.00
                                                        212437
                   0
                           1.00
                                               1.00
                   1
                           0.75
                                     0.60
                                               0.66
                                                          357
            accuracy
                                               1.00
                                                        212794
                           0.87
                                     0.80
                                               0.83
                                                       212794
           macro avo
        weighted avg
                           1.00
                                     1.00
                                               1.00
                                                        212794
In [25]: cl_rep_tst= classification_report(y_test,y_predict_test)
         cl_rep_tst
                                      recall f1-score
Out[25]:
                        precision
                                                                               0
                                                                                                  1.00
                                                                                                            1.00
                                                                                                                     70816
                                                         support\n\n
                                                                                        1.00
          \n
                       1
                               0.77
                                         0.66
                                                   0.71
                                                              116\n\n
                                                                         accuracy
                                                                                                            1.00
                                                                                                                      7093
                                0.88
                                          0.83
                                                    0.86
                                                             70932\nweighted avg
                                                                                        1.00
                                                                                                  1.00
                                                                                                            1.00
                                                                                                                     70932
          2\n
               macro avg
          \n'
In [26]: print(f'classification report: {cl_rep_tst}')
```

```
70816
                                                                                                      1.00
                                                                                                                                           1.00
                                                                                                                                                                                1.00
                                                                                                     0.77
                                                                                                                                           0.66
                                                                                                                                                                                0.71
                                                                                                                                                                                                                         116
                                                                                                                                                                                                                  70932
                                                                                                                                                                                1 00
                                             accuracy
                                                                                                      0.88
                                                                                                                                           0.83
                                                                                                                                                                                0.86
                                                                                                                                                                                                                  70932
                                          macro avq
                               weighted avg
                                                                                                      1.00
                                                                                                                                           1.00
                                                                                                                                                                                1.00
                                                                                                                                                                                                                  70932
In [27]: ac train = accuracy score(y train,y predict train)
                                   ac train per = ac train*100
                                   print(f'The accuracy for training data: {ac_train_per}')
                               The accuracy for training data: 99.89849337857271
In [28]: ac_tst = accuracy_score(y_test,y_predict_test)
                                   ac tst per = ac tst*100
                                   print(f'The accuracy for testing data: {ac_tst_per}')
                               The accuracy for testing data: 99.91259234196131
In [30]: !pip install joblib
                                   import joblib
                               Requirement already satisfied: joblib in c:\users\lenovo\anaconda3\lib\site-packages (1.2.0)
In [31]: joblib.dump(logit, 'credit card fraud detection model.pkl')
Out[31]: ['credit card fraud detection model.pkl']
In [32]: loaded model = joblib.load('credit card fraud detection model.pkl')
 In [33]: predictions = loaded model.predict(x test)
                                   print(predictions)
                                [0 0 0 ... 0 0 0]
 In [34]: import os
                                  print(os.listdir())
                               ['.anaconda', '.conda', '.condarc', '.continuum', '.ipynb_checkpoints', '.ipython', '.jupyter', '.matplotlib', '
                               .packettracer', '.vscode', '22108165ANN1B.ipynb', '3D Objects', 'anaconda3', 'AppData', 'Application Data', 'Cis co Packet Tracer 8.2.2', 'Contacts', 'Cookies', 'credit_card_fraud_detection_model.pkl', 'dataset.csv', 'dataset
                               .txt', 'Desktop', 'Dev-C++.lnk', 'Documents', 'Downloads', 'Favorites', 'gawkk.txt', 'IntelGraphicsProfiles', 'L
                               inks', 'Local Settings', 'mobile_phone_price_data.csv', 'Music', 'My Documents', 'NetHood', 'NTUSER.DAT', 'ntuse r.dat.LOG1', 'ntuser.dat.LOG2', 'NTUSER.DAT{a6ff422c-8561-11eb-93f8-89d69fd718b3}.TM.blf', 'NTUSER.DAT{a6ff422c-
                              ures', 'PrintHood', 'Recent', 'Saved Games', 'scikit_learn_data', 'Searches', 'SendTo', 'sendu', 'Start Menu', 'Templates', 'Untitled10.ipynb', 'Untitled11.ipynb', 'Untitled12.ipynb', 'Untitled13.ipynb', 'Untitled14.ipynb', 'Untitled15.ipynb', 'Untitled16.ipynb', 'Untitled16.ipynb', 'Untitled17.ipynb', 'Untitled17.ipynb', 'Untitled18.ipynb', 'U
                               ntitled17.ipynb', 'Untitled18.ipynb', 'Untitled19.ipynb', 'Untitled20.ipynb', 'Untitled20.ipynb', 'Untitled21.ipy
                               nb', 'Untitled22.ipynb', 'Untitled23.ipynb', 'Untitled24.ipynb', 'Untitled25.ipynb', 'Untitled26.ipynb', '
                               ed27.ipynb', 'Untitled28.ipynb', 'Untitled3.ipynb', 'Untitled4.ipynb', 'Untitled5.ipynb', 'Untitled6.ipynb', 'Untitled6.ipynb',
                               titled7.ipynb', 'Untitled8.ipynb', 'Untitled9.ipynb', 'Videos', 'yele']
In [36]: from IPython.display import FileLink
                                   FileLink('credit card fraud detection model.pkl')
out [36] credit_card_fraud_detection_model.pkl
```

precision

recall f1-score support

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

In []:

classification report: