Canny Edge Detector

1. Good detection.

모든 에지가 검출되어야 하며, Spurious response가 없어야 한다. 검출된 에지가 true 에지와 가까워야 한다.

2. Good localization.

검출된 에자가 true 에지와 가능한 가까워야 한다. 즉, 중심간의 거리가 최소

3. Only one response to a single edge.

1. Gauss 필터를 이용한 스무딩

<Gaussian function> $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \ (\mu = 평균, \sigma = 표준편차)$

$$G(x,y) = e^{-\frac{x^2+y^2}{2\sigma^2}}$$

$$f_{s}(x,y) = G(x,y) * f(x,y)$$

2. 그래디언트(기울기)의 크기와 방향 계산

$$\nabla f \equiv grad(f) \equiv \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$M(x,y) = \text{mag}(\nabla f) = \sqrt{g_x^2 + g_y^2}$$

$$\alpha(x,y) = \tan^{-1} \left[\frac{g_y}{g_x} \right]$$

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$(-10 \le x, y \le 10)$$

$$<\sigma=0.2$$
 일 때 $>$

15

0.2 >

-10 -10

- 2. 그래디언트(기울기)의 크기와 방향 계산
 - Example

Z_1	Z_2	Z_3
Z_4	Z ₅	<i>z</i> ₆
Z_7	Z_8	Z_9

$$g_{x} = \frac{\partial f}{\partial x} = (z_{7} + z_{8} + z_{9}) - (z_{1} + z_{2} + z_{3})$$

$$= (0 + 0 + 0) - (0 + 1 + 1) = -2$$

$$g_{y} = \frac{\partial f}{\partial y} = (z_{3} + z_{6} + z_{9}) - (z_{1} + z_{4} + z_{7})$$

$$= (1 + 1 + 0) - (0 + 0 + 0) = 2$$

$$\nabla f = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} \qquad M(x, y) = 2\sqrt{2}$$

$$\alpha(x, y) = \tan^{-1}(\frac{g_y}{g_x}) = -45^\circ = 135^\circ$$

3. Non-maximum suppression

$$\alpha(x,y) = \tan^{-1}(\frac{g_y}{g_x}) = +12^{\circ}$$

3. Non-maximum suppression

$$d_1$$
: 수평, d_2 : 수직, d_3 : -45° , d_4 : $+45^\circ$

- $(1) \alpha(x,y)$ 에 가장 가까운 방향 d_k 를 찾는다.
- (2) M(x,y)의 값이 d_k 방향에 있는 그 두 이웃 중 적어도 하나보다 작다면, $g_N(x,y) = 0$ 으로 놓는다. 아니면, $g_N(x,y) = M(x,y)$ 로 놓는다.

$$\nabla f \equiv \operatorname{grad}(f) \equiv \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$M(x,y) = \text{mag}(\nabla f) = \sqrt{g_x^2 + g_y^2}$$

$$\alpha(x,y) = \tan^{-1}\left[\frac{g_y}{g_x}\right]$$

p_1	p_2	p_3
p_4	p_5	p_6
p_7	p_8	p_8

4. Hysteresis thresholding

$$g_{NL}(x,y) = g_N(x,y) \ge T_L$$

$$g_{NH}(x,y) = g_N(x,y) \ge T_H$$

$$g_{NL}(x,y) = g_{NL}(x,y) - g_{NH}(x,y)$$

4. Hysteresis thresholding

- $(1)g_{NH}(x,y)$ 에서 방문되지 않은 그 다음 에지 화소 p를 찾아낸다
- $(2)8이웃으로 p에 연결된 <math>g_{NL}(x,y)$ 의 모든 약한 화소들을 유효에지 화소로 표시한다.
- $(3)g_{NH}(x,y)$ 에 있는 0이 아닌 모든 화소들이 방문되었다면 단계 (4)로 간다. 아니면 단계 (1)로 간다.
- (4)유효 에지 화소로 표시되지 않은 $g_{NL}(x,y)$ 에 있는 모든 화소를 0으로 만든다.
- 최종 출력 영상은 $g_{NL}(x,y)$ 에서 0이 아닌 모든 화소를 $g_{NH}(x,y)$ 에 덧붙여서 나타낸다.

Canny Edge

LoG Image

Q & A

$$H_{G} = \int_{-W}^{+W} G(-x)f(x)dx \qquad SNR = \frac{\left| \int_{-W}^{+W} G(-x)f(x)dx \right|}{n_{0} \sqrt{\int_{-W}^{+W} f^{2}(x)dx}}$$

$$H_{n} = n_{0} \left[\int_{-W}^{+W} f^{2}(x)dx \right]^{1/2} \qquad H'_{n}(x_{0}) + H'_{G}(x_{0}) = 0$$

$$H'_{G}(x_{0}) = H'_{G}(x_{0}) + H''_{G}(0)x_{0} + O(x_{0}^{2})$$

$$H''_{G}(x_{0}) \approx -H'_{n}(x_{0})$$

$$E[H'_{n}(x_{0})^{2}] = n_{0}^{2} \int_{-W}^{+W} f'^{2}(x)dx$$

$$E[x_{0}^{2}] \approx \frac{n_{0}^{2} \int_{-W}^{+W} f'^{2}(x)dx}{\left[\int_{-W}^{+W} G'(-x)f'(x)dx \right]^{2}} = \delta x_{0}^{2}$$

$$Localization = \frac{\left| \int_{-W}^{+W} G'(-x)f'(x)dx \right|}{n_{0} \sqrt{\int_{-W}^{+W} f'^{2}(x)dx}}$$