Chapitre 13. Équations différentielles linéaires (1ère partie)

1 Équations scalaires d'ordre 1

 $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et I intervalle tel que $I \neq \emptyset$

1.1 Généralités

Définition 1.1. Une équation différentielle linéaire scalaire d'ordre 1 est une équation du type

$$(E) \quad a(x)y' + b(x)y = c(x)$$

avec $a, b, c: I \to \mathbb{K}$ continues, données et $y: I \to \mathbb{K}$ dérivable, inconnue.

On dit que (E) est régulière si a ne s'annule pas : (E) peut être mis sous la forme

(E)
$$y' + \varphi(x)y = \psi(x)$$

1.2 Solutions des équation régulières

Théorème 1.2. Soit φ , ψ : $I \to \mathbb{K}$ continues et

(E)
$$y' + \varphi y = \psi$$

$$(E_0) \quad y' + \varphi y = 0$$

Soit $x_0 \in I$

Les solutions de (E_0) $y' + \varphi y = 0$ sont les fonctions

$$x \mapsto C \exp\left(-\int_{x_0}^x \varphi(t) \, dt\right)$$

où C est une constante arbitraire dans K

Théorème 1.3 (Méthode de variation de la constante).

Soit

(E)
$$y' + \varphi y = \psi$$

avec $\varphi, \psi: I \to \mathbb{K}$ continues.

Soit *Y* une solution non nulle de (E_0) $y' + \varphi y = 0$

Les solutions non nulles de (E) sont les fonctions $x \mapsto \lambda(x)Y(x)$ avec $\lambda : I \to \mathbb{K}$ C^1 vérifiant $\forall x \in I$

$$\lambda'(x)Y(x) = \psi(x)$$

ie.

$$\lambda' Y = \psi$$

Théorème 1.4 (Théorème de Cauchy-Lipschitz).

Soit

(E)
$$y' + \varphi y = \psi$$

avec $\varphi, \psi \in \mathcal{C}(I, \mathbb{K})$

L'espace des solutions de (E) est une droite affine de $C^1(I, \mathbb{K})$

De plus, si on se donne $x_0 \in I$, $y_0 \in \mathbb{K}$ alors il existe une unique solution y de (E)

vérifiant $y(x_0) = y_0$ (Condition fe Cauchy)

1.3 Exemples d'équations non régulières

Pour les équations non régulières on procède par analyse-synthèse.

Exercice : Résoudre sur $\mathbb R$

$$(E) \quad x^2y' + y = 1$$

2 Équations scalaires d'ordre 2

Définition 2.1. Une équation différentielle linéaire scalaire d'ordre 2 est une équation du type

(E)
$$a(x)y'' + b(x)y' + c(x)y = d(x)$$

avec $a, b, c, d : I \to \mathbb{K}$ continues, données et $y : I \to \mathbb{K}$ dérivable 2 fois, inconnue. On dit que (E) est régulière si a ne s'annule pas : (E) peut être mis sous la forme

(E)
$$y'' + \varphi(x)y' + \psi(x)y = \theta(x)$$

2.1 Cas des équations régulières

Théorème 2.2 (Théorème de Cauchy-Lipschitz). Soit $\varphi, \psi, \theta: I \to \mathbb{K}$ continues, $x_0 \in I$ et $y_0, y_1 \in \mathbb{K}$ Soit

(E)
$$y'' + \varphi(x)y' + \psi(x)y = \theta(x)$$

avec $x \in I$

Alors il existe une uniques solution y de (E) vérifiant $y(x_0) = y_0$, $y'(x_0) = y_1$ (conditions de Cauchy)

Corollaire 2.3 (Théorème de Cauchy-Lipschitz). Soit $\varphi, \psi, \theta: I \to \mathbb{K}$ continues. Soit

$$(E) \quad y'' + \varphi y' + \psi y = \theta$$

$$(E_0) \quad y'' + \varphi y' + \psi y = 0$$

Alors les solutions de (E_0) constituent un sec de dimension 2 S_0 de $\mathcal{C}^2(I,\mathbb{R})$

Les solutions de l'équation complète constituent un sous-espace affine de dimension 2 de $\mathcal{C}^2(I,\mathbb{K})$ dont la direction est S_0

2.2 Méthode de variations de la constante

Définition 2.4. Soit

$$(E_0) \quad y'' + \varphi y' + \psi y = 0$$

avec $\varphi, \psi: I \to \mathbb{K}$ continues.

Soit y, z deux solutions de (E_0)

- 1. Si (y, z) est libre, on dit que (y, z) est un couple de solutions indépendantes (c'est alors la base de S_0 ens. des solutions)
- 2. On définit le wronskien de (y, z) par

$$W_{(y,z)}: egin{cases} I
ightarrow \mathbb{K} \ x \mapsto egin{bmatrix} y(x) & z(x) \ y'(x) & z'(x) \end{bmatrix}$$

Théorème 2.5. Soit

$$(E_0) \quad y'' + \varphi y + \psi y = 0$$

avec $\varphi, \psi: I \to \mathbb{K}$ continues.

Soit y, z deux solutions de (E_0)

Si (y,z) sont indépendantes alors $\forall x \in I, W_{(y,z)}(x) \neq 0$

S'il existe $x_0 \in I$ avec $W_{(y,z)}(x_0) \neq 0$ alors (y,z) sont indépendantes (et le wronskien ne s'annule jamais). En particulier un wronskien est identiquement nul ou il ne s'annule jamais.

Théorème 2.6 (Méthode de variations des constantes). Soit $\varphi, \psi, \theta: I \to \mathbb{K} \ \mathcal{C}^0$ et

(E)
$$y'' + \varphi y' + \psi y = \theta$$

$$(E_0) \quad y'' + \varphi y + \psi y = 0$$

Soit (y,z) un système fondamental de solutions de (E_0)

Alors les solutions de (*E*) sont les fonctions

$$\lambda y + \mu z$$

avec $\lambda, \mu: I \to \mathbb{K} C^1$ vérifiant

$$\begin{pmatrix} y & z \\ y' & z' \end{pmatrix} \begin{pmatrix} \lambda' \\ \mu' \end{pmatrix} = \begin{pmatrix} 0 \\ \theta \end{pmatrix}$$

2.3 Étude qualitative de solutions d'équation d'ordre 2

Lemme 2.7 (Lemme de Gromwall (HP)). Soit $a \in \mathbb{R}$, $C \in \mathbb{R}_+$, $u, v : [a, +\infty[\to \mathbb{R}_+ \text{ continues }]]$

On suppose que $\forall x \ge a$

$$u(x) \le C + \int_a^x u(t)v(t) dt$$

Alors

$$u(x) \le C \exp \int_a^x v(t) \, dt$$

Exercice : Soit y une solution sur \mathbb{R}_+ de

$$(E) \quad y'' + xy = 0$$

Montrer que y est bornée.

2.4 Exemples d'équations non régulières

Pour les équations non régulières on procède par analyse-synthèse.

Exercice : Résoudre sur $\mathbb R$

(E)
$$(x+1)y'' + (x-1)y' - 2y = 0$$

3 Exercices classiques

3.1 Caractère isolé des zéros d'un système d'équations d'ordre 2 - Entrelacement

Soit

$$(E) \quad y'' + q(x)y = 0$$

avec $q: I \to \mathbb{R}$ continue.

- 1. Que peut-on dire d'une solution y de E telle que $y(x_0) = y'(x_0) = 0$? Soit y une solution non identiquement nulle.
- 2. Montrer que les zéros de y sont isolés ie. sur un voisinage de x_0 avec $y(x_0) = 0$ y ne s'annule qu'en x_0 En déduire que sur un segment y ne possède qu'un nombre fini de zéros. Montrer qu'il y a une quantité au plus dénombrable de zéros.
- 3. On suppose que y possède deux zéros $\alpha < \beta$ dans ISoit z solution tel que (y,z) sont indépendantes. Montrer que z s'annule entre α et β

3.2 Exercice type: Le changement de variables

Pour une équation du second ordre on peut tenter un changement de variables pour se ramener à une équation à coefficients constantes.

Exemple:

$$(1+x^2)y'' + xy' + k^2y = 0$$

avec k > 0 (indication : faire un changement de variable $x = \sinh(t)$)