CS 251 — Lecture 5

Bartosz Antczak Instructor: Stephen Mann January 17, 2017

Review of Multiplexors

A multiplexor takes in n select lines, and 2^n inputs, and based on the value of the select lines, the multiplexor selects which input D_i to output.

5.1 RAM

32 bits of memory isn't enough, so that's why we have *Random Access Memory* (RAM). Static RAM (SRAM) uses D latches to store data. This memory is very slow compared to CPU speed; it's also not clocked.

5.1.1 Three-state Buffers

Has three outputs: 0, 1, and *floating* (which means neither connected to power or ground). Uses a control (which can either be 1 or 0) to connect or disconnect data flow. When connected, the data is either 0 or 1 (obviously) and when it's disconnected, the data is floating (which means that there is not connection)

Figure 5.1: The mechanics of a three-state buffer. If control (C) is 1, F copies X (i.e., there is a connection); otherwise, F is floating (i.e., there is no connection). Courtesy of Prof. Mann's slides.

On notes and assignments, a three-state buffer is drawn as

Figure 5.2: C defines the control, and X and F are the input and output respectively. Courtesy of Prof. Mann's slides.

Example 5.1.1. An XOR from three-state buffers:

Figure 5.3: Courtesy of Prof. Mann's slides.

If we fill in the truth table for this diagram we have

X	Y	\bar{X}	\bar{Y}	F_0	F_1	F
0	0		1	0	_	0
0	0	1	0	_	1	1
0	0	0	1	1	_	1
0	0	0	0		0	0

With three-state buffers, if we have multiple lines leading to one output (such as the previous figure, where F_0 and F_1 both lead to F), you must ensure that at most one select input is 1, or a short-circuit may result.