

X3-Class HiPerFET™ **Power MOSFET**

IXFT140N20X3HV IXFQ140N20X3 **IXFH140N20X3**

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	200	V	
V _{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	200	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	140 250	A A	
I _A	T _C = 25°C	70	A	
E _{as}	$T_{c} = 25^{\circ}C$	1.7	J	
dv/dt	$I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 150^{\circ}C$	20	V/ns	
P_{D}	T _c = 25°C	480	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque (TO-247 & TO-3P)	1.13 / 10	Nm/lb.in	
Weight	TO-268HV TO-3P TO-247	4.0 5.5 6.0	g g g	

Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Charac Min.	teristic \ Typ.	Values Max.	
BV _{DSS}	$V_{GS} = 0V, I_{D} = 1mA$	200			V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 4mA$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100 r	ηA
l _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			10 μ 500 μ	
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$		8.0	9.6 m	ιΩ

200V 140A D25 $9.6 m\Omega$ $\mathbf{R}_{\mathrm{DS(on)}}$

TO-268HV (IXFT)

TO-3P (IXFQ)

G = Gate= Drain D S = SourceTab = Drain

Features

- International Standard Packages
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- · AC and DC Motor Drives
- Robotics and Servo Controls

Symbol	Symbol Test Conditions Cha			acteristic Values		
$(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		Тур.	Max			
g _{fs}	V _{DS} = 10V, I _D = 60A, Note 1	55	94	S		
R_{Gi}	Gate Input Resistance		1.6	Ω		
C _{iss}			7660	pF		
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1290	pF		
C _{rss}			4.6	pF		
	Effective Output Capacitance					
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		630	pF		
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		2000	pF		
t _{d(on)}	Resistive Switching Times		28	ns		
t,	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{DSS}$		20	ns		
t _{d(off)}	$R_{\rm G} = 5\Omega$ (External)		130	ns		
t,	Tig = 352 (External)		12	ns		
Q _{g(on)}			127	nC		
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		39	nC		
Q _{gd}			32	nC		
R _{thJC}				0.26 °C/W		
R _{thCS}	TO-247& TO-3P		0.25	°C/W		

Source-Drain Diode

Symbol	Test Conditions		cteristic		
$(1_{J} = 25^{\circ}C, C)$	Jnless Otherwise Specified)	Min.	Тур.	Max	
Is	$V_{GS} = 0V$			140	Α
SM	Repetitive, pulse Width Limited by $T_{_{\rm JM}}$			540	Α
V _{SD}	$I_F = 100A$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{c} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight. \right\}$	$I_{_{\rm F}} = 70 {\rm A}, -{\rm di}/{\rm dt} = 100 {\rm A}/\mu {\rm s}$ $V_{_{\rm R}} = 100 {\rm V}$		105 420 8		ns nC A

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

0.2

0.4

0.6

Fig. 2. Extended Output Characteristics @ T_J = 25°C V_{GS} = 10V

Fig. 3. Output Characteristics @ T_J = 125°C

8.0

V_{DS} - Volts

1.2

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 70A Value vs. **Junction Temperature**

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 70A$ Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages

Fig. 8. Input Admittance

Fig. 9. Transconductance

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Gate Charge

Fig. 12. Capacitance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

0.4 0.1 0.001 0.001 0.001 0.01 0.1 1

Fig. 15. Maximum Transient Thermal Impedance

SYM	INCH	HES	MILLIMETER	
STM	MIN	MAX	MIN	MAX
Α	.193	.201	4.90	5.10
Α1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
Ь	.045	.057	1.15	1.45
С	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D1	.465	.476	11.80	12.10
D2	.295	.307	7.50	7.80
D3	.114	.126	2.90	3.20
E	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
е	.215	BSC	5. 4 5 BSC	
(e2)	.374	.386	9.50	9.80
Н	.736	.752	18.70	19.10
L	.067	.079	1.70	2.00
L2	.039	.045	1.00	1.15
L3	.010	BSC		BSC
L4	.150	.161	3.80	4 .10

