Réactions d'oxydo-réduction

Au programme

Savoirs

- Oxydants et réducteurs, réactions d'oxydoréduction, nombre d'oxydation, dismutation et médiamutation.
- ♦ Exemples d'oxydants et de réducteurs minéraux usuels : nom, nature et formule des ions thiosulfate, permanganate, hypochlorite, du peroxyde d'hydrogène.
- ♦ Pile, tension à vide, potentiel d'électrode, formule de NERNST, électrodes de référence.
- ♦ Diagrammes de prédominance ou d'existence.
- ♦ Aspect thermodynamique des réactions d'oxydo-réduction.

Savoir-faire

- ♦ Relier la position d'un élément dans le tableau périodique et le caractère oxydant ou réducteur du corps simple correspondant.
- ♦ Prévoir les nombres d'oxydation extrêmes d'un élément à partir de sa position dans le tableau périodique.
- ♦ Identifier l'oxydant et le réducteur d'un couple.
- ♦ Décrire le fonctionnement d'une pile à partir d'une mesure de tension à vide ou à partir des potentiels d'électrode.
- ♦ Utiliser les diagrammes de prédominance ou d'existence pour prévoir les espèces incompatibles ou la nature des espèces majoritaires.
- Prévoir qualitativement ou quantitativement le caractère thermodynamiquement favorisé ou défavorisé d'une réaction d'oxydo-réduction à partir des potentiels standard des couples.

Sommaire

І Оху	dants et réducteurs
I/A	Couples oxydo-réducteurs
I/B	Nombre d'oxydation
II Dist	tribution des espèces d'un couple
II/A	Potentiel d'un couple
II/B	Diagramme de prédominance
III Réa	actions entre couples
III/A	Réactions d'oxydoréduction
$\mathrm{III/B}$	Sens de réaction
III/C	Cas particuliers
III/D	Calcul de constantes d'équilibre
IV Pile	s électrochimiques
IV/A	Présentation
IV/B	Potentiel d'électrode
IV/C	Charge totale d'une pile

-		
	Liste des définitions	
	Définition 6.1 : Oxydant et réducteur	3
	Définition 6.2 : Nombre d'oxydation	4
	Définition 6.3 : Force des oxydants et des réducteurs	7
	Définition 6.4 : Réaction d'oxydoréduction	7
	Définition 6.5 : Dismutation	9
	Définition 6.6 : Médiamutation	9
	Définition 6.7 : Piles électrochimiques	10
	Définition 6.8 : Force électromotrice	11
	Définition 6.9 : Électrodes de référence	11
Ω	Liste des propriétés	
~	Propriété 6.1 : Nombre d'oxydation	5
	Propriété 6.2 : Formule de Nernst	5
	Propriété 6.3 : Potentiel en solution	10
	Propriété 6.4 : Quantité d'électricité d'une pile	11
. .	Liste des applications	
	Application 6.1 : Équilibrage d'une équation rédox	3
_	Application 6.2 : Calculs de nombres d'oxydation	5
	Application 6.3 : Calcul de potentiels	6
	Application 6.4 : Stabilité par dismutation ou médiamutation	9
	Application 6.5 : Calcul de constante d'équilibre	10
	Application 6.6 : Calcul de la f.e.m. de la pile Daniell	11
	Application 6.7 : Charge de la pile Daniell	11
•	Liste des remarques	
'ን	Remarque 6.1 : Autour des demi-équations	4
	Remarque 6.2 : Autour de la formule de NERNST	6
_ '	Liste des exemples	
	Exemple 6.1 : Couples simples	3
_	Exemple 6.2 : Couples à connaître	4
	Exemple 6.3: Illustrations simples du nombre d'oxydation	4
	Exemple 6.4 : Nombre d'oxydation et structure électronique	5
	Exemple 6.5 : Équilibrage d'équations redox	8
	Exemple 6.6 : Dismutation du fer	9
ı	Liste des points importants	
\mathcal{V}		_
·/	Important 6.1 : Règles de calcul nombre d'oxydation	5
	Important 6.2 : Diagramme de prédominance	(
	Important 6.3 : Sens spontané de réaction	8
A	Liste des erreurs communes	
B	Attention 6.1 : Utilisation des diagrammes redox	7
	Attention 6.2 : Réactions d'oxydoréduction	8
	Attention 6.3 : Calcul de constantes	10
'		

I | Oxydants et réducteurs

I/A Couples oxydo-réducteurs

目

Définition 6.1 : Oxydant et réducteur

- \diamond Un oxydant est une espèce chimique capable de capter un ou plusieurs électrons;
- \diamond Un réducteur est une espèce chimique capable de
 $\underline{\text{c\'eder}}$ un ou plusieurs électrons ;
- ♦ Un couple oxydant-réducteur, noté Ox/Red¹, est associé via la demi-équation électronique :

$$Red = Ox + ne^-$$

Exemple 6.1 : Couples simples

♦ Le cuivre : $Cu_{(s)} = Cu_{(aq)}^{2+} + 2e^{-}$ Cu^{2+} oxydant, Cu <u>réducteur</u>

♦ Le zinc : $Zn_{(s)} = Zn_{(aq)}^{2+} + 2e^{-}$ De même

 $\diamond \ \ \text{Le dichlore}: \\ 2 \ \text{Cl}^-_{(aq)} = \text{Cl}_{2(g)} + 2 \, \text{e}^- \\ \hline \text{Cl}_2 \ \underline{\text{oxydant}}, \ \text{Cl}^- \ \underline{\text{r\'educteur}}$

Outils 6.1 : Équilibrer une demi-réaction

Pour équilibrer une demi-équation en milieu acide :

- 1 Équilibrer les éléments autres que O ou H;
- 2 Équilibrer l'oxygène avec $H_2O_{(l)}$;
- $\boxed{3}$ Équilibrer les hydrogènes avec $H_{(aq)}^+$;
- $\boxed{4}$ Équilibrer les charges avec e^-

Si le **milieu est basique**, écrire une équation avec des $H_{(aq)}^+$ n'est pas représentatif de la réalité :

 $\boxed{5}$ On **remplace** \mathbf{H}^+ **par** \mathbf{HO}^- grâce à l'autoprotolyse de l'eau :

$$H_2O_{(s)} = H_{(aq)}^+ + HO_{(aq)}^-$$

Application 6.1 : Équilibrage d'une équation rédox

- 1) Équilibrer la demi-équation du couple ${\rm MnO_{4(aq)}^-/MnO_{2(s)}}$ en milieu basique.
- 2) Équilibrer la demi-équation du couple $\operatorname{Cr_2O_{7(aq)}^{2-}/Cr_{(aq)}^{3+}}$
- 1) $\boxed{1}$ $\mathrm{MnO}_{2(s)} = \mathrm{MnO}_{4(aq)}^{-}$
 - $MnO_{2(s)} + 2 H_2O_{(l)} = MnO_{4(aq)}^{-}$
 - $\operatorname{MnO}_{2(s)} + 2 \operatorname{H}_2 \operatorname{O}_{(l)} = \operatorname{MnO}_{4(aq)}^- + 4 \operatorname{H}_{(aq)}^+$
 - $\mathrm{MnO}_{2(\mathrm{s})} + 2\,\mathrm{H}_2\mathrm{O}_{(\mathrm{l})} = \mathrm{MnO}_{4(\mathrm{aq})}^- + 4\,\mathrm{H}_{(\mathrm{aq})}^+ + 3\,\mathrm{e}^- \qquad \qquad \mathrm{milieu\ acide}$
 - $MnO_{2(s)} + 4HO_{(aq)}^{-} = MnO_{4(aq)}^{-} + 2H_2O_{(l)} + 3e^{-}$ milieu basique

^{1.} On fera donc particulièrement au sens qui n'est pas « redox »!

	$2 \operatorname{Cr}_{(aq)}^{3+} = \operatorname{Cr}_2 \operatorname{O}_{7(aq)}^{2-}$	2) 1
	$2 \operatorname{Cr_{(aq)}^{3+}} + 7 \operatorname{H_2O_{(l)}} = \operatorname{Cr_2O_{7(aq)}^{2-}}$	2
	$2 \operatorname{Cr_{(aq)}^{3+}} + 7 \operatorname{H_2O_{(l)}} = \operatorname{Cr_2O_{7(aq)}^{2-}} + 14 \operatorname{H_{(aq)}^{+}}$	3
milieu acide	$2 \operatorname{Cr_{(aq)}^{3+}} + 7 \operatorname{H_2O_{(l)}} = \operatorname{Cr_2O_{7(aq)}^{2-}} + 14 \operatorname{H_{(aq)}^{+}} + 6 e^{-}$	4
milieu basique	$2 \operatorname{Cr}_{(aq)}^{3+} + 14 \operatorname{HO}_{(aq)}^{-} = \operatorname{Cr}_2 \operatorname{O}_{7(aq)}^{2-} + 7 \operatorname{H}_2 \operatorname{O}_{(l)} + 6 \operatorname{e}^{-}$	5

Exemple 6.2 : Couples à connaître

♦ Ions tétrathionate/ion thiosulfate

$$2S_2O_{3(aq)}^{2-} = S_4O_{6(aq)}^{2-} + 2e^{-}$$

♦ Ion permanganate/ion manganèse II

$$Mn_{(aq)}^{2+} + 4 H_2 O_{(l)} = MnO_{4(aq)}^- + 8 H_{(aq)}^+ + 5 e^-$$

♦ Ion hypochlorite/ion chlorure

$$Cl_{(aq)}^- + H_2O_{(l)} = ClO_{(aq)}^- + 2H_{(aq)}^+ + 2e^-$$

♦ Ion dichromate/ion chrome III

$$2\,Cr_{(aq)}^{3+} + 7\,H_2O_{(l)} = Cr_2O_{7(aq)}^{2-} + 14H_{(aq)}^+ + 6\,e^-$$

♦ Peroxyde d'hydrogène ²/eau

$$2 H_2 O_{(l)} = H_2 O_{2(aq)} + 2 H_{(aq)}^+ + 2 e^-$$

dioxygène/eau

$$2 H_2 O_{(l)} = O_{2(g)} + 4 H_{(aq)}^+ + 4 e^-$$

dioxygène/peroxyde d'hydrogène

$$H_2O_{2(aq)} = O_{2(g)} + 2 H_{(aq)}^+ + 2 e^-$$

♦ Eau/dihydrogène

$$H_{2(g)} = 2 H_{(aq)}^+ + 2 e^-$$

Remarque 6.1 : Autour des demi-équations

- ♦ Ces demi-équation ne représentent pas de réelles transformations chimiques, on ne peut faire intervenir explicitement des électrons libres : ce sont des outils.
- ♦ Comme pour les réactions acide-base, certaines espèces sont à la fois oxydante et réductrice.

Nombre d'oxydation

Définition 6.2 : Nombre d'oxydation

Le nombre d'oxydation ³ d'un atome dans une molécule est le nombre de charges élémentaires *e* qu'il porterait si on venait à répartir les électrons des liaisons aux plus électronégatifs. Il s'écrit en chiffres romains.

Exemple 6.3: Illustrations simples du nombre d'oxydation

Oxygène dans dioxygène :

$$\langle O = O \rangle \longrightarrow \langle O : :O \rangle$$

Après répartition fictive des électrons, chaque oxygène est neutre : n.o.(O) = 0

♦ Oxygène et hydrogène dans l'eau :

Après la répartition fictive des électrons, n.o.(O) = -II et n.o.(H) = +I

^{2.} Aussi appelée « eau oxygénée »

^{3.} Aussi degré d'oxydation

Propriété 6.1 : Nombre d'oxydation

- ♦ Le nombre d'oxydation d'un élément est lié à sa structure électronique : dans un édifice chaque élément cherche à se rapprocher de la structure des gaz nobles en remplissant ou vidant sa couche de valence, et son nombre d'oxydation est donc borné.
- \diamond Lors d'une **oxydation**, **n.o.** \nearrow ; lors d'une <u>réduction</u>, n.o. \searrow .

Exemple 6.4 : Nombre d'oxydation et structure électronique

- \diamond Oxygène : $\chi_0 \nearrow \Rightarrow$ souvent chargé -2e
- ♦ **Alcalins** : facilement +I
- ♦ Alcalinos-terreux : facilement +II
- Halogènes : facilement -I
- ♦ Gaz nobles : pas d'oxydation ou de réduction

Important 6.1 : Règles de calcul nombre d'oxydation

- 1) Le n.o. d'un élément seul est égal à sa charge;
- 2) La somme des n.o. des élements d'une molécule est égale à la charge de la molécule;
- 3) En général, dans les molécules et ions complexes, n.o.(H) = +I;
- 4) En général, dans les molécules et ions complexes, n.o.(O) = -II (sauf si cela met en défaut les règles précédentes).

Application 6.2: Calculs de nombres d'oxydation

- \diamond Cu: n.o.(Cu) = 0
- \Rightarrow H₂O₂: n.o.(H) = +I \Rightarrow 2 · 1 + 2 · n.o.(O) = 0 \Leftrightarrow n.o.(O) = -I

Transition

Ainsi, l'équilibre entre les espèces d'un couple repose sur la capacité du milieu à recevoir ou perdre des électrons : les couples oxydant-réducteur ont donc des caractéristiques électriques.

II | Distribution des espèces d'un couple

Propriété 6.2 : Formule de NERNST

Pour une demi-équation d'oxydoréduction

$$\alpha \text{Red} + \beta \text{H}_2 \text{O}_{(l)} = \gamma \text{Ox} + \delta \text{H}_{(aq)}^+ + ne^-$$

le potentiel électrique d'une solution à l'équilibre est donné par la formule de NERNST :

$$E(\text{Ox/Red}) = E^{\circ}(\text{Ox/Red}) + \frac{RT}{n\mathcal{F}} \ln \frac{a_{\text{Ox}}^{\gamma}[\text{H}^{+}]^{\delta}}{a_{\text{Red}}^{\alpha}c^{\circ\delta}}$$

- \diamond E est le potentiel, et s'exprime en <u>volts</u>;
- \diamond E° est le potentiel standard du couple à la température T;
- \diamond n le nombre d'électrons échangés (variation du degré d'oxydation);
- $\diamond R$ la constante des gaz parfaits en $\underline{J\cdot K^{-1}\cdot mol^{-1}}$;
- \diamond T la température en <u>kelvins</u>;
- \diamond $\mathcal F$ la constante de Faraday, représentant la charge électrique d'une mole de protons :

$$\mathcal{F} = e\mathcal{N}_A = 96485 \,\mathrm{C \cdot mol^{-1}} \quad \Rightarrow \quad \boxed{\frac{RT}{\mathcal{F}} \ln 10 \approx 0,059 \,\mathrm{V}}$$

D'où la forme commune :

$$E(\text{Ox/Red}) = E^{\circ}(\text{Ox/Red}) + \frac{0.06}{n} \log \frac{a_{\text{Ox}}^{\gamma}[\text{H}^{+}]^{\delta}}{a_{\text{Red}}^{\alpha}c^{\circ\delta}}$$

Remarque 6.2: Autour de la formule de NERNST

 \diamond Faites attention au passage du logarithme en base e (ln) au logarithme décimal :

$$\log x = \frac{\ln x}{\ln 10}$$

♦ Le potentiel seul n'a pas de sens de manière absolue : il est défini à une constante près. Il faut donc choisir une référence arbitraire afin de fixer toutes les valeurs. On choisit pour cela le premier couple de l'eau

$$E^{\circ}(\mathrm{H}_{(\mathrm{aq})}^{+}/\mathrm{H}_{2(\mathrm{g})}) = 0\,\mathrm{V}$$

Application 6.3: Calcul de potentiels

Donner les potentiels des couples suivants :

$$\Phi = Fe_{(aq)}^{2+} / Fe_{(s)} :$$
 $Fe_{(s)} = Fe_{(aq)}^{2+} + 2e^{-}$

$$E = E^{\circ} \left(\text{Fe}^{2+} / \text{Fe} \right) + \frac{0.06}{2} \log[\text{Fe}^{2+}]$$

$$Fe_{(aq)}^{3+}/Fe_{(aq)}^{2+} Fe_{(aq)}^{3+} + e^{-}$$

$$E = E^{\circ} \left(Fe^{3+}/Fe^{2+} \right) + 0.06 \log \left(\frac{[Fe^{3+}]}{[Fe^{2+}]} \right)$$

$$+ H_{(s)}^{+}/H_{2(g)}$$

$$H_{2(g)} = 2 H_{(aq)}^{+} + 2 e^{-}$$

$$E = E^{\circ} \left(H^{+}/H_{2} \right) + \frac{0.06}{2} \log \left(\frac{[H^{+}]^{2} p^{\circ}}{p_{H_{2}}} \right)$$

Diagramme de prédominance

Important 6.2 : Diagramme de prédominance

Pour
$$\alpha \text{Red} = \gamma \text{Ox} + ne$$

$$\alpha \mathrm{Red} = \gamma \mathrm{Ox} + n \mathrm{e}^{-} \qquad \text{on a} \qquad E = E^{\circ}(\mathrm{Ox}/\mathrm{Red}) + \frac{0.06}{n} \log \left(\frac{a_{\mathrm{Ox}}^{\gamma}}{a_{\mathrm{Red}}^{\alpha}} \right)$$

On utilisera alors une **convention de tracé** donnant la valeur de $(a_{Ox}^{\gamma})/(a_{Red}^{\alpha})$ à la limite pour trouver E_{\lim} , afin de tracer le diagramme de prédominance :

 ${\bf Figure} \ \, {\bf 6.1} - {\rm Diagramme} \ \, {\rm de} \ \, {\rm pr\'edominance} \ \, {\rm g\'en\'erique}$

Attention 6.1: Utilisation des diagrammes redox

Ce raisonnement n'est valable que pour un couple simple, sans autres espèces dans la demi-réaction. À partir du moment où les protons H⁺ interviennent, les diagrammes seront à 2 dimensions: ce sont les diagrammes potentiel-pH (cf. chapitre suivant).

Définition 6.3 : Force des oxydants et des réducteurs

Comme dans le cas des couples acide-base, on peut parler de la force d'un oxydant ou d'un réducteur selon la valeur du potentiel standard:

E°	Oxydant	Réducteur
Élevé	fort	faible
Bas	faible	fort

FIGURE 6.2 -Échelle des E°

III Réactions entre couples

Réactions d'oxydoréduction

Définition 6.4 : Réaction d'oxydoréduction

Une réaction d'oxydoréduction est une réaction de **transfert d'électrons** entre deux espèces :

$$Ox_1 + Red_2 = Red_1 + Ox_2$$

- ♦ L'oxydant capte un (des) électrons, il subit une réduction et son n.o. diminue;
- ♦ Le réducteur cède un (des) électrons, il subit une oxydation et son n.o. augmente.

Attention 6.2: Réactions d'oxydoréduction

- ♦ Il n'y a jamais d'électrons dans la réaction bilan;
- ♦ La somme des n.o. est conservée pendant une réaction redox.

Exemple 6.5 : Équilibrage d'équations redox

- 1) Écrire et équilibrer la réaction entre $Fe_{(aq)}^{2+}$ et $Cu_{(s)}$. Les couples mis en jeu sont $Cu_{(aq)}^{2+}/Cu_{(s)}$ et $Fe_{(aq)}^{3+}/Fe_{(aq)}^{2+}$.
- 2) Écrire et équilibrer la réaction entre $Fe^{2+}_{(aq)}$ et $MnO_{4(aq)}^{-}$. Les couples mis en jeu sont $MnO_{4(aq)}^{-}/Mn^{2+}_{(aq)}$ et $Fe^{3+}_{(aq)}/Fe^{2+}_{(aq)}$
- 1) On écrit les deux demi-équations :

$$Cu_{(s)} = Cu_{(aq)}^{2+} + 2e^{-}$$
 (1)

$$Fe_{(aq)}^{3+} = Fe_{(aq)}^{2+} + e^{-}$$
 (2)

$$2 \cdot (2) - (1) \Rightarrow$$

$$Fe_{(aq)}^{3+} = Fe_{(aq)}^{2+} + e^{-}$$

$$2 Fe_{(aq)}^{2+} + Cu_{(s)} = Cu_{(aq)}^{2+} + 2 Fe_{(aq)}^{2+}$$

2) On écrit les deux demi-équations :

$$\operatorname{Mn}_{(aq)}^{2+} + 4 \operatorname{H}_2 O_{(l)} = \operatorname{Mn} O_{4(aq)}^- + 8 \operatorname{H}_{(aq)}^+ + 5 e^-$$
 (1)

$$Fe_{(aq)}^{3+} = Fe_{(aq)}^{2+} + e^{-}$$
 (2)

$$(2) - 5 \cdot (1) \Rightarrow \boxed{5 \operatorname{Fe}_{(aq)}^{2+} + \operatorname{MnO}_{4(aq)}^{-} + 8 \operatorname{H}_{(aq)}^{+} = 5 \operatorname{Fe}_{(aq)}^{2+} + \operatorname{Mn}_{(aq)}^{2+} + 4 \operatorname{H}_{2} \operatorname{O}_{(l)}}$$

III/B Sens de réaction

Ainsi, comme pour les réactions acide-base, on peut déterminer la stabilité de certains ions en solution, que ce soit par la superposition des diagrammes de prédominance ou par la règle du gamma sur une échelle en E° :

Important 6.3 : Sens spontané de réaction

Au cours d'une réaction d'oxydoréduction, l'oxydant le plus fort (de E° le plus élevé) réagit avec le **réducteur le plus fort** (de E° le plus faible). Cette règle schématise avec la **règle du gamma**, voir Figure 6.4.

Cela se détermine aussi avec un diagramme de prédominance. En effet, deux espèces de **domaines disjoints** vont réagir ensemble pour donner les espèces qui peuvent exister ensemble au même potentiel, voir Figure 6.3.

FIGURE 6.3 – Domaines disjoints.

III/C Cas particuliers

Définition 6.5 : Dismutation

Une réaction dans laquelle le **réactif** est **à la fois oxydant et réducteur** est appelée **dismutation**. On la schématise par la règle du gamma ci-contre, et on écrit cette réaction

$$2 A = B^+C$$

Exemple 6.6 : Dismutation du fer

C'est le cas de l'ion ${\rm Fe^{2+}}$ qui intervient dans les couples ${\rm Fe^{3+}/Fe^{2+}}$ et ${\rm Fe^{2+}/Fe}$: les potentiels standard donnent

$$2 \operatorname{Fe_{(aq)}^{2+}} + \operatorname{Fe_{(s)}} = 3 \operatorname{Fe_{(aq)}^{2+}}$$

Définition 6.6: Médiamutation

Une réaction dans laquelle le **produit** est à la fois oxydant et réducteur est appelée médiamutation. On la schématise par la règle du gamma ci-contre, et on écrit cette réaction

$$A + B = 2 C$$

Application 6.4 : Stabilité par dismutation ou médiamutation

Montrer que l'eau oxygénée H_2O_2 est instable et que l'eau est stable. On donne $E^{\circ}(H_2O_2/H_2O) = 1,78 \text{ V}, E^{\circ}(O_2/H_2O_2) = 0,68 \text{ V}, E^{\circ}(O_2/H_2O) = 1,23 \text{ V}$ et $E^{\circ}(H_2O/H_2) = 0,0 \text{ V}$.

Spontanément, H_2O_2 réagit avec lui-même pour former H_2O et O_2 .

Spontanément, H_2 réagit avec O_2 lui-même pour former H_2O .

III/D Calcul de constantes d'équilibre

Propriété 6.3: Potentiel en solution

Il y a unicité du potentiel en solution : en présence de plusieurs couples rédox dans la solution, les potentiels rédox des différents couples sont égaux à l'équilibre. On trouve ainsi la constante d'équilibre d'une réaction :

$$Ox_1 + Red_2 = Red_1 + Ox_2 \Rightarrow K = \frac{a_{Red_1} a_{Ox_2}}{a_{Ox_1} a_{Red_2}} \Leftrightarrow \boxed{K = 10^{\frac{n}{0.06}(E_1^\circ - E_2^\circ)}}$$

Attention 6.3 : Calcul de constantes

Ne vous précipitez pas avec les formules, s'il est demandé de **déterminer** il faut faire le calcul! De même, ne vous trompez pas de sens dans la soustraction : tout dépend du sens de la réaction étudiée.

Application 6.5 : Calcul de constante d'équilibre

Calculer la constante de réaction entre l'eau oxygénée et l'ion permanganate.

\mathbf{IV}

Piles électrochimiques

Par essence, les réactions d'oxydoréduction sont le siège de l'échange d'électrons : en imposant que le transfert se fasse par un circuit électrique extérieur à la solution, on pourra mettre en évidence et utiliser cette énergie en réalisant une pile.

Présentation

Définition 6.7: Piles électrochimiques

On appelle

 $\mathrm{Cu}^{2+} + 2 e^{-} \to \mathrm{Cu}$ réduction : cathode

 $\operatorname{Zn} \to \operatorname{Zn}^{2+} + 2e^$ oxydation : anode

IV/B Potentiel d'électrode

Définition 6.8 : Force électromotrice

Application 6.6: Calcul de la f.e.m. de la pile Daniell

Définition 6.9 : Électrodes de référence

$\overline{ m IV/C}$

Charge totale d'une pile

Propriété 6.4 : Quantité d'électricité d'une pile

$$Q = n\xi_{\rm eq}\mathcal{F}$$

Application 6.7: Charge de la pile Daniell