

华为模块

UART 串口设计指导

文档版本 03

发布日期 2014-09-12

版权所有 © 华为技术有限公司 2014。保留一切权利。

未经华为技术有限公司书面同意,任何单位和个人不得擅自摘抄、复制本手册内容的部分或全部,并不得以任 何形式传播。

本手册描述的产品中,可能包含华为技术有限公司及其可能存在的许可人享有版权的软件。除非获得相关权利 人的许可,否则,任何人不能以任何形式对前述软件进行复制、分发、修改、摘录、反编译、反汇编、解密、 反向工程、出租、转让、分许可等侵犯软件版权的行为,但是适用法禁止此类限制的除外。

商标声明

♥♥ HUAWEI、HUAWEI、华为、♥♥是华为技术有限公司的商标或者注册商标。

在本手册以及本手册描述的产品中,出现的其他商标、产品名称、服务名称以及公司名称,由其各自的所有人 拥有。

注意

本手册描述的产品及其附件的某些特性和功能,取决于当地网络的设计和性能,以及您安装的软件。某些特性 和功能可能由于当地网络运营商或网络服务供应商不支持,或者由于当地网络的设置,或者您安装的软件不支 持而无法实现。因此,本手册中的描述可能与您购买的产品或其附件并非完全一一对应。

华为技术有限公司保留随时修改本手册中任何信息的权利,无需提前通知且不承担任何责任。

责任限制

本手册中的内容均"按照现状"提供,除非适用法要求,华为技术有限公司对本手册中的所有内容不提供任何 明示或暗示的保证,包括但不限于适销性或者适用于某一特定目的的保证。

在适用法律允许的范围内,华为技术有限公司在任何情况下,都不对因使用本手册相关内容及本手册描述的产 品而产生的任何特殊的、附带的、间接的、继发性的损害进行赔偿,也不对任何利润、数据、商誉或预期节约 的损失进行赔偿。

在相关法律允许的范围内,在任何情况下,华为技术有限公司对您因为使用本手册描述的产品而遭受的损失的 最大责任(除在涉及人身伤害的情况中根据适用的法律规定的损害赔偿外)以您购买本产品所支付的价款为 限。

进出口管制

若需将本手册描述的产品(包括但不限于产品中的软件及技术数据等)出口、再出口或者进口,您应遵守适用 的进出口管制法律法规。

隐私保护

为了解我们如何保护您的个人信息,请访问 http://consumer.huawei.com/privacy-policy 阅读我们的隐私政 策。

关于本文档

修改记录

文档版本	日期	章节	说明	
01	2011-05-17		第一次发布	
02	2011-06-27	4	删除 UART 多路复用	
03	2014-09-12	3	增加串口连接注意事项	
		4	增加 UART 配置命令说明	

目录

1	概述	
	串口特性	
3	电路设计	9
	3.1 串口逻辑电平	g
	3.2 模块与标准 RS-232-C 接口连接	
	3.3 模块与其它 DTE 设备连接	11
4	配置命令	14
	4.1 AT&C 设置 DCD	14
	4.2 AT&D 设置 DTR 使用状态	15
	4.3 AT&S 设置 DSR 使用状态	15
	4.4 AT+IPR 设置 DTE-DCE 波特率	
	4.5 AT+ICF 设置字符帧格式	17
	4.6 AT+IFC 设置本地流控方式	18
	4.7 AT\Q 设置软/硬件流控方式	
	4.8 AT^HRIM 设置 RI 脚状态	20
5	缩略语	21

1 概述

UART(Universal Asynchronous Receiver-Transmitter)串口作为一种方便可靠的通信方式,被大量应用在华为模块中。本设计指导介绍华为模块 UART 串口规范和外围电路推荐设计方案,为客户 UART 设计提供参考。

华为模块一般对外提供8线带流控功能的全串口,客户也可根据其实际需求只使用其中的2线或4线串口。

本文档适用于以下产品:

模块型号	描述
MC509, MC509-a	EVDO/CDMA2000 1X
MU509-b, MU509-c, MU509-g	UMTS/HSDPA/GSM/GPRS/EDGE
MU609	UMTS/HSPA/GSM/GPRS/EDGE
MU709s-2, MU709s-6	UMTS/HSPA+/GSM/GPRS/EDGE
ME909u-521. ME909u-523	FDD-LTE/DC- HSPA+/HSPA+/HSPA/UMTS/GSM/GPRS/E DGE

2 串口特性

华为模块一般提供8线全串口,可向下兼通4线和2线,客户可根据自身产品特性选择使用。

以 HUAWEI MU509 模块 8 线全串口为例,其主要规格包括:

- 支持全双工
- 支持可编程的数据宽度
- 支持可编程的数据停止位
- 支持可编程的奇/偶校验或者没有校验
- 支持不同的波特率,最高支持波特率为 230.4 kbit/s, 默认支持波特率为 115.2 kbit/s

UART 信号定义如表 2-1 所示,其中华为模块作为数据通信设备 DCE(Data Communication Equipment),客户侧主机作为数据终端设备 DTE(Data Terminal Equipment)。不同华为模块产品串口引脚定义,请参考其硬件手册描述。

表2-1 UART接口信号

名称	描述	特性	信号方向
UART_TX	模块数据发送端	DTE 接收串行数据	DCE→DTE
UART_RX	模块数据接收端	DTE 发送串行数据	DTE→DCE
UART_RING	模块振铃指示	通知 DTE 有远程呼叫或 短信息	DCE→DTE
UART_RTS	请求发送	DTE 通知 DCE 请求发送	DCE→DTE
UART_DTR	设备就绪	DTE 准备就绪	DTE→DCE
UART_CTS	模块清除发送	DCE 已切换到接收模式	DTE→DCE
UART_DCD	模块载波检测	数据链路已连接,用于 指示数据连接状态	DCE→DTE
UART_DSR	模块就绪	DCE 准备就绪	DCE→DTE

华为模块 UART 的 DCE-DTE 各种连接关系示意图如图 2-1 至图 2-3 所示。

图2-1 8线 DCE-DTE 连接关系示意图

图2-2 4线 DCE-DTE 连接关系示意图

□ 说明

4线串口连接中,DTE 使用 TXD、RXD、CTS 和 RTS 四条信号线。

图2-3 2线 DCE-DTE 连接关系示意图

□ 说明

- 2线串口连接中,DTE 使用 TXD 和 RXD 两条信号线,无法实现硬件流控功能,在做大量数据传输应用时,建议使用带有硬件流控功能的 4线或 8线串口连接;
- 使用 2 线串口连接时,不能使用 AT+IFC 来激活硬件流控功能。否则,将会导致串口无法正常通讯。

3 电路设计

3.1 串口逻辑电平

华为模块串口均为 CMOS(Complementary Metal Oxide Semiconductor)逻辑电平,不同模块支持的逻辑电平 V_{IO}不同,如 1.8 V、2.6 V 或 2.8 V 等,具体规格可参照各产品硬件指南。

逻辑电平门限如下表所示:

参数	解释	最小值	最大值	单位
V _{IH}	输入高电平	0.7 x V _{IO}	V _{IO} + 0.3	V
V _{IL}	输入低电平	-0.3	0.35 x V _{IO}	V
V _{OH}	输出高电平	0.7 x V _{IO}	V _{IO} + 0.3	V
V _{OL}	输出低电平	0	0.45	V

其中:

- 输入高电平 V_{IH}: 保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入 电平高于 V_{IH}时,则认为输入电平为高电平。
- 输入低电平 V_{IL}: 保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入 电平低于 V_I 时,则认为输入电平为低电平。
- 输出高电平 V_{OH}: 保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的 输出为高电平时的电平值都必须大于此 V_{OH}。
- 输出低电平 Vol: 保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此 Vol。

3.2 模块与标准 RS-232-C 接口连接

PC 机上的 COM1 和 COM2 使用的是 EIA-RS-232-C 接口规范, 其逻辑电平为: TxD 和 RxD:

- 逻辑 0=-15 V~-3 V
- 逻辑 1=+3 V~+15 V

RTS/CTS/DSR/DTR/DCD/RING 等控制线:

- 信号有效(接通, ON 状态,正电压) =+3 V~+15 V
- 信号无效(断开, OFF 状态, 负电压) =-15 V~-3 V

模块可以通过使用 232 类芯片与标准 RS-232-C 的接口连接。

使用 2 线串口时,推荐使用 MAX3232 芯片。模块的 UART_RXD 引脚通过 MAX3232 芯片转换后接 DTE 设备的 RXD 管脚; DTE 设备的 TXD 通过 MAX232 芯片转换后接 模块的 UART_TXD 管脚。

由于 MAX3232 供电电压为 3.3 V,与华为模块串口逻辑电平 V_{IO} 不兼容。因此, UART_RXD 引脚经 RS232 芯片输出后,需增加一个电阻分压电路,将 3.3 V 降低至 V_{IO} ,保证模块接收正常。

图3-1 2线串口连接示意图

使用 4 线或 8 线全串口时,推荐使用 MAX3232、SP3238 或 MAX3238 等芯片。参考电路如图 3-2 和图 3-3 所示。

同理,当经过串口转换芯片输入到华为模块的串口相关输入信号与 VIO 不兼容时,也需要考虑加电平转换电路,保证模块接收正常。

图3-2 4线流控串口电气连接示意图

图3-3 8线流控串口电气连接示意图

3.3 模块与其它 DTE 设备连接

客户侧 DTE 主机多使用单片机作为 CPU。常见的串口逻辑电平状态有: 5 V、3.3 V、3 V、2.85 V、2.6 V 和 1.8 V 等。此时需要根据实际情况,设计电平转换电路进行匹配。

● DTE 与 DCE 电平兼容

DTE 电压与模块串口电平 V_{IO} 相等或近似相等,即双方的 $V_{OH} > V_{IH}$ 和 $V_{OL} < V_{IL}$ 时,可视为 DTE 与 DCE 电平兼容,直接使用电阻或缓冲器连接即可。

● DTE 与 DCE 电平不兼容

DTE 电压与模块串口电平 V_{IO} 相差较大无法兼容时,须考虑搭建电平转换电路进行匹配。电平匹配的方法较多,各种方案也比较成熟,如:使用电平转换芯片、电阻分压、晶体管+上拉电阻法等,客户可根据自身产品特性进行选择。

本文提供一种使用晶体管+上拉电阻的电平转换电路供客户参考。为防止电流倒灌,需针对模块的输入输出方向分别设计。

模块输入信号包括: UART_RX、UART_CTS 和 UART_DTR 等。该部分信号的推荐电路如图 3-4 所示,其中 VDD_IO 为模块提供的串口电平参考电压。

图3-4 模块串口输入信号电平转换示意图

模块输出信号包括: UART_TX、UART_RTS、UART_DSR、UART_DCD 和 UART_RING 等。该部分信号的推荐电路如图 3-5 所示,其中 VDTE_IO 为客户主机 DTE 提供的串口电平参考电压。

图3-5 模块串口输出信号电平转换示意图

□ 说明

- 建议客户应用硬件设计上保留串口的对外接口,方便后期模块软件版本的维护升级,以及发生问题后的 log 获取。
- 建议客户应用在模块开机成功(Vcc_1.8或 Vcc_2.8输出)后,再进行模块串口与应用的连通,避免串口连接上的电流倒灌影响到模块的正常开机。
- 建议将模块串口上不使用的引脚保持悬空状态。

4 配置命令

本章介绍常用的 UART 配置命令,具体实现规格请参考模块对应的 AT 命令手册。

4.1 AT&C 设置 DCD

4.1.1 语法结构

ΔͲϫϹ	[<value>]</value>
$A \perp \alpha \cup$	

可能的返回结果

<CR><LF>OK<CR><LF>

4.1.2 接口说明

AT&C 用于设置 DCD (Data Carrier Detect) 线路状态与远端接收线路信号检测之间的联系。

4.1.3 参数说明

<value>:整数类型,AT&C等同于AT&C0。

- 0 DCD 线路打开
- 1 DCD 线路只在有数据载波时打开(默认值)
- 2 当华为内部协议栈正在使用时,DCD 线路只在当前有一个或多个 TCP/UDP 连接时打开;当 FTP/HTTP 正在使用时,DCD 线路只在有数 据连接时有效

4.2 AT&D 设置 DTR 使用状态

4.2.1 语法结构

AT&D[<value>]

可能的返回结果

<CR><LF>OK<CR><LF>

4.2.2 接口说明

AT&D 设置在数据业务状态下 DTR(Data Terminal Ready)线路从打开变为关闭时 TA 的返回结果。

4.2.3 参数说明

<value>: 整数类型, AT&D 等同于 AT&D0。

- 0 TA 忽略 DTR 的状态
- 1 在保持当前数据通话的同时,转为命令模式
- 2 释放数据通话或语音通话,转为命令模式(默认值)

4.3 AT&S 设置 DSR 使用状态

4.3.1 语法结构

AT&S[<value>]

可能的返回结果

<CR><LF>OK<CR><LF>

4.3.2 接口说明

AT&S 根据 ME 所处的不同通信状态设置 DSR(Data Set Ready)线路的状态。

4.3.3 参数说明

<value>: 整数类型, AT&S 等同于 AT&S0。

0 DSR 一直有效 (默认值)

1 ME 处于命令模式时, DSR 无效; ME 处于数据模式时, DSR 有效

4.4 AT+IPR 设置 DTE-DCE 波特率

4.4.1 语法结构

AT+IPR=<rate>

可能的返回结果

<CR><LF>OK<CR><LF>

与 MT 相关错误时:

<CR><LF>+CME ERROR: <err><CR><LF>

AT+IPR?

可能的返回结果

<CR><LF>+IPR: <rate><CR><LF>OK<CR><LF>

AT+IPR=?

可能的返回结果

<CR><LF>+IPR: (list of supported auto-detectable <rate>s)[, (list of supported fixed-only <rate>s)]CR><LF>OK<CR><LF>

4.4.2 接口说明

AT+IPR 命令用于设置 DTE-DCE(Data Terminal Equipment-Data Connection Equipment)的波特率。

设置命令用于设置 DTE-DCE 波特率。

读命令用于读取当前 DTE-DCE 波特率。

测试命令用于查询支持的 DTE-DCE 波特率。

4.4.3 参数说明

<rate>:整数类型,掉电保存。

0 表示自适应波特率

波特率自适应范围为 9600, 19200, 38400, 57600, 115200。

固定波特率: 9600, 19200, 38400, 57600, 115200, 230400。默认值为 115200。

🔲 说明

- 若设置为固定波特率,必须保证 TE 和 TA 所配置的波特率相同。
- 若设置为自适应波特率,则使用 AT+IPR=0。
- 若设置为波特率自适应,应用初始化模块时,必须首先发送"AT""命令来和模块进行波特率同步,"AT"需要为大写。
- 在开启波特率自适应后,若应用侧要改变波特率,需先设置波特率,再重启单板。
- 在多路复用 CMUX 模式下,只支持固定波特率的设定。
- 使用 2 线串口连接时,不能使用 AT+IFC 来激活硬件流控功能。否则,将会导致串口无法正常通讯。

4.5 AT+ICF 设置字符帧格式

4.5.1 语法结构

AT+ICF=<format>,<parity>

可能的返回结果

<CR><LF>OK<CR><LF>

与 MT 相关错误时:

<CR><LF>+CME ERROR: <err><CR><LF>

AT+ICF?

可能的返回结果

AT+ICF=?

可能的返回结果

4.5.2 接口说明

AT+ICF 命令用于设置串口的字符帧格式。

4.5.3 参数说明

<format>:整数类型。

0 自动检测

1 8数据位,2停止位

- 2 8数据位,1停止位,1校验位
- **8** 数据位, **1** 停止位 (默认值)
- 4 7数据位, 2停止位
- 5 **7**数据位, **1**停止位, **1**校验位
- **7** 数据位, **1** 停止位

<partity>: 整数类型。

- 0 奇校验(默认值)
- 1 偶校验

4.6 AT+IFC 设置本地流控方式

4.6.1 语法结构

AT+IFC=<DCE by DTE>, <DTE by DCE>

可能的返回结果

<CR><LF>OK<CR><LF>

与 MT 相关错误时:

<CR><LF>+CME ERROR: <err><CR><LF>

AT+IFC?

可能的返回结果

<CR><LF>+IFC:

<DCE_by_DTE>,<DTE_by_DCE><CR><LF>OK<CR><LF>

AT+IFC=?

可能的返回结果

 $\label{eq:cross} $$ < CR > < LF > + \mbox{IFC: (list of supported } < \mbox{DCE_by_DTE} > \mbox{s), (list of supported } < \mbox{DTE by DCE} > \mbox{s)} < CR > < LF > \mbox{CR} > < LF > < LF > \mbox{CR} > < LF > < LF > \mbox{CR} > < LF > < LF$

4.6.2 接口说明

该命令用于设置串口的本地流控方式。

4.6.3 参数说明

<DCE by DTE>:整数类型,指定 DCE 从 DTE 接收数据时的流控方式。

- 0 无流控(默认值)
- 1 XON/XOFF 软流控
- 2 RTS 线路

<DTE_by_DCE>:整数类型,指定 DTE 从 DCE 接收数据时的流控方式。

- 0 无流控(默认值)
- 1 XON/XOFF 软流控
- 2 CTS 线路

4.7 AT\Q 设置软/硬件流控方式

4.7.1 语法结构

$AT\Q[<n>]$

可能的返回结果

<CR><LF>OK<CR><LF>

当<n>=2,如果不支持 RTS/CTS 流控,则返回:

<CR><LF>ERROR<CR><LF>

与 MT 相关错误时:

<CR><LF>+CME ERROR: <err><CR><LF>

4.7.2 接口说明

该命令用于设置软/硬件流控方式。

4.7.3 参数说明

<n>: 整数类型,指定 DCE 从 DTE 接收数据时的流控方式。

- 0 无流控(默认值)
- 1 XON/XOFF 软流控
- 2 Only CTS by DCE (TA)
- 3 RTS/CTS 硬流控

4.8 AT^HRIM 设置 RI 脚状态

4.8.1 语法结构

AT^HRIM=<RI_Type>,<RI_Time>

可能的返回结果

<CR><LF>OK<CR><LF>

与 MT 相关错误时:

<CR><LF>+CME ERROR: <err><CR><LF>

AT^HRIM?

可能的返回结果

<CR><LF>^HRIM: <RI_Type>,<RI_Time><CR><LF>^HRIM:
<RI Type>,<RI Time><CR><LF>>CR><LF>OK<CR><LF>

与 MT 相关错误时:

<CR><LF>+CME ERROR: <err><CR><LF>

AT^HRIM=?

可能的返回结果

<CR><LF>^HRIM: (list of supported <RI_Type>s), (list of supported
<RI Time>s)<CR><LF><CR><LF>OK<CR><LF>

与 MT 相关错误时:

<CR><LF>+CME ERROR: <err><CR><LF>

4.8.2 接口说明

AT^HRIM 可以设置数据模式下,当来短信或语音电话时,RI 脚的拉低时长。

设置命令用于设置RI脚。

读命令用于读取当前的 RI 脚配置。

测试命令用于查询支持的 RI 脚设置。

4.8.3 参数说明

<RI Type>:整数类型,语音通道编号,取值范围 0~1,0表示第一通路。

0 表示来短信时允许拉低 RI 脚

1 表示来语音电话时允许拉低 RI 脚

<RI_Type>: 整数类型,表示 RI 脚的拉低时长,取值 1 ms~50000 ms。

5 缩略语

缩略语	英文全名	中文解释
CMOS	Complementary Metal Oxide Semiconductor	互补型金属氧化物半导体
DCD	Data Carrier Detect	数据载波检测
DCE	Data Communication Equipment	数据通讯设备
DTE	Data Terminal Equipment	数据终端设备
DSR	Data Set Ready	数据集准备就绪
UART	Universal Asynchronous Receiver Transmitter	通用异步收/发器(机)