P2 de Álgebra Linear I-2010.2

Data: 6 de Outubro de 2010.

Nome:	Matrícula:					
Assinatura:	Turma:					

Preencha CORRETA e COMPLETAMENTE todos os campos (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota ZERO.

Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Duração: 1 hora 50 minutos

Q	1.a	1.b	1.c	2.a	2.b	2.c	2.d	3.a	3.b	3.c	soma
\mathbf{V}	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.5	1.0	0.5	10.0
N											

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas.
- Escreva de forma clara, ordenada e legível.
- Justifique de forma <u>ordenada</u>, <u>cuidadosa</u> e <u>completa</u> suas respostas. Respostas sem justificativa não serão consideradas.

Questão 1) Considere as retas r_1 e r_2 de \mathbb{R}^3 cujas equações paramétricas são

$$r_1: (1+t, 1+2t, 1), t \in \mathbb{R},$$

$$r_2: (a+2t, 1, 1+t), t \in \mathbb{R},$$

e os planos

$$\pi$$
: $2x + y + 2z = 1$, τ : $2x + y + 2z = 3$.

- a) Determine <u>todos</u> os valores de a para que a distância entre as retas r_1 e r_2 seja 1.
- **b)** Determine um ponto P que seja equidistante de π e τ , isto é, tal que a distância entre P e π e entre P e τ sejam iguais.
- c) Determine um plano η tal que a distância entre η e π seja 3.

Resposta:

Questão 2) Considere a base de \mathbb{R}^3

$$\beta = \{v_1, v_2, v_3\}$$

e os vetores

$$w_1 = v_1 + v_2 + v_3$$
, $w_2 = v_1 + v_3$, e $w_3 = v_2 + v_3$.

- a) Comprove que $\gamma = \{w_1, w_2, w_3\}$ é uma base de \mathbb{R}^3 .
- b) Sabendo que as coordenadas do vetor u na base β são

$$(u)_{\beta} = (1, 1, 1),$$

determine as coordenadas de u na base γ .

c) Sabendo que as coordenadas do vetor n na base γ são

$$(n)_{\gamma} = (1, 1, 1),$$

determine as coordenadas de n na base β .

d) Considere o subespaço vetorial \mathbb{W} de \mathbb{R}^3 gerado pelos vetores

$$u_1 = (1, -1, 0), u_2 = (2, 0, 1), u_3 = (1, 1, 1), u_4 = (0, 2, 1), u_5 = (1, 3, 2).$$

Determine uma base α de \mathbb{W} e as coordenadas do vetor v=(1,5,3) de \mathbb{W} na base α .

+

Resposta:

Questão 3) Considere a base de \mathbb{R}^3

$$\beta = \{u_1 = (1, 0, 1), u_2 = (1, 1, 1), u_3 = (0, 2, 1)\}\$$

e a transformação linear $T\colon \mathbb{R}^3 \to \mathbb{R}^3$ que verifica

$$T(u_1) = (0,0,0), \quad T(u_2) = (2,1,3), \quad T(u_3) = (2,1,3).$$

a) Determine a forma geral de T, isto é, determine $a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3$, tais que

$$T(x,y,z) = (a_1 x + a_2 y + a_3 z, b_1 x + b_2 y + b_3 z, c_1 x + c_2 y + c_3 z).$$

b) Determine uma base δ do espaço imagem de T. Lembre que o espaço imagem de T é definido como

$$\operatorname{im}(T) = \{ w \text{ tal que existe } v \in \mathbb{R}^3 \text{ tal que } w = T(v) \}.$$

c) Determine, se possível, dois vetores u e v de \mathbb{R}^3 não paralelos e diferentes de $\bar{0}$ tais que $T(u) = T(v) = \bar{0}$.

Resposta: