Lecture Notes for Machine Learning in Python

Professor Eric Larson Week One, Lecture One

Class Logistics and Agenda

- Syllabus
- Data Mining and Machine Learning
- Types of Data and Data Categorization

Course Syllabus

Introductions

- Me
 - Eric Larson
- You
 - Name, department, grad/ugrad
 - Something true or false
- My approach to this course
 - programming
 - math
 - applications and analytics

The course syllabus

- Text: None
 - Recommended: Python Machine Learning, Sebastian Raschka
- Use Canvas for posted course material
- Prerequisite: ability to learn quickly these topics
 - Linear Algebra, Calculus
 - Basic statistics and probability
 - Python programming
- Grading:
 - Lab Assignments: 75% of grade (3 labs @ 25% each)
 - In Class: 20% of grade (4 at 5% each)
 - In Class Participation: 5% (yes, actually graded)

How will you grade participation

- Choose to respond to the question:
- Do you think this will work?
- A: Yes this is going to work
- B: This is not going to work:
- C: Wait, what...

Lab Assignments

- Lab assignments will be submitted electronically. Late labs will not be accepted.
- Lab assignments must be completed as a team.
- Lab assignments should be turned in as rendered jupyter notebook
- Most assignments are turned in during a week where formal lecture does not take place: use this extra time to complete time consuming analyses of the data
- There is a high expectation for these assignments. Comment code and explain reasoning in detail

Grading Rubric

- In all assignments specific deliverables are asked and should be completed to the best of your ability.
- Each deliverable will be worth a certain percentage of the lab grade and you will be graded in terms of the quality of your analysis.
- Markup code so that it is readable and immediately understandable.
- The sum total of the these deliverables will be 90% of the points possible for each assignment. If you complete all the project deliverables satisfactorily you should expect a grade of 90%.
- The remaining 10% of the points are reserved for exceptional work and/or work that is above and beyond in one or more elements of the analysis.

Machine Learning and Data Mining

A History of Machine Learning

- Historically builds from disciplines statistics and computer science (algorithms)
- Its really just algorithms for learning

- 1952: Arthur Samuel IBM creates checker program
- 1957: Rosenblatt, Neural Network Perceptron
- 1967: Nearest Neighbor Pattern Recognition
- 1970's: Al Winter
- 1990's: Volley of new Machine learning Algorithms
- 2001: Breiman's Random Forests
- ~2004: Modern Support Vector Machines with Kernels
- ~2010: Deep Learning Convolutional Networks
- 2015: Deep Learning becomes buzz word, you hear about it and take this course for 2016

What is Machine Learning?

Many Definitions

- Non-trivial extraction of implicit, previously unknown, and potentially useful information from data
- Exploration & analysis, by automatic or semi-automatic means over large quantities of data in order to discover

Data

meaningful patterns

Interpretation/ Evaluation

Contemporary problems in Machine Learning

Data Mining and Machine Learning

- Prediction Methods
 - Use some variables to predict unknown or future values of other variables
- Description Methods
 - Find human-interpretable patterns that describe the data.
 - Classification [Predictive]
 - Regression [Predictive]
 - Deviation Detection [Predictive]
 - Clustering [Descriptive]
 - Association Rule Discovery [Descriptive]
 - Sequential Pattern Discovery [Descriptive]

Classification: Definition

- Given a collection of records (training set)
 - Each record contains a set of attributes, one of the attributes is the class.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible.

Classification: Definition

Classification: Application 1

- Direct Marketing
- Goal: Reduce cost of mailing by targeting a set of consumers likely to buy a new cell-phone product.
- Approach:
 - Use the data for a similar product introduced before.
 - {buy, don't buy} decision forms the class attribute.
 - Collect various demographic, lifestyle, and company-interaction related information about all such customers.

Training Set

TID	Job	Earning	Class
1	Lawyer	\$310k	Buy
2	Doctor	\$265k	Don't Buy
3	Student	\$20k	Buy
4	Prof.	\$1M	Buy

Unknown

TID	Job	Earning
1	Student	\$3k

From [Berry & Linoff] Data Mining Techniques, 1997

Classification: Application 2

- Sky Survey Cataloging
- Goal: To predict class (star or galaxy) of sky objects, especially visually faint ones, based on the telescopic survey images (from Palomar Observatory).
 - 3000 images with 23,040 x 23,040 pixels per image.
- Approach:
 - Segment the image.
 - Measure image attributes (features) 40 of them per object.
 - Model the class based on these features.
 - Success Story: Could find 16 new high red-shift quasars, some of the farthest objects that are difficult to find!

Classifying Galaxies

Courtesy: http://aps.umn.edu

Early

Class:

Stages of Formation

Intermediate

Attributes: • Image fea

- Image features,
- Characteristics of light waves received, etc.

Late

Data Size:

- 72 million stars, 20 million galaxies
- Object Catalog: 9 GB
- Image Database: 150 GB

Regression

- Predict a value of a given continuous valued variable based on the values of other variables
- Examples:
 - Predicting sales amounts of new product based on advertising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Predicting lung function as a function of gender, weight, height

Training Set

TI	Gende	Weight	Asthma	LF
1	M	175lbs	N	85%
2	F	150lbs	N	87.3%
3	F	155lbs	Y	90%
4	M	225lbs	Y	65.2 %

Unknown

TI	Gende	Weight	Asthma
1	M	160lbs	N

Self Test

- (A. classification)
 - (B. regression)
 - (C. not Machine Learning)
 - Dividing up customers by potential profitability?
 - classification/regression
 - Extracting frequency of sound?
 - NOT ML
 - Finding someone's adipose tissue measure from waist circumference?
 - regression
 - Deciding if a person has diabetes based upon their history and diet?
 - classification
 - Finding the genre of an online article based on the words in it?
 - classification

Types of Data and Categorization

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
- A collection of attributes describe an **object**

Objects, records, points, samples, cases, entities, instances

Attributes, variables, fields, characteristics, features

	I			1
TID	Pregnant	ВМІ	Age	Diabetes
1	Υ	33.6	41-50	positive
2	N	26.6	31-40	negative
3	Y	23.3	31-40	positive
4	N	28.1	21-30	negative
5	N	43.1	31-40	positive
6	Υ	25.6	21-30	negative
7	Y	31.0	21-30	positive
8	Υ	35.3	21-30	negative
9	N	30.5	51-60	positive
10	Υ	37.6	51-60	positive

Types of Attributes

- There are different types of attributes
- Nominal
 - Examples: ID numbers, eye color, zip codes
- Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
- Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
- Ratio
 - Examples: temperature in Kelvin, length, time, counts

Properties of Attribute Values

 The type of an attribute depends on which of the following properties it possesses:

- Addition: + -
- Multiplication: * /
- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order, & addition
- Ratio attribute: distinctness, order, addition, multiplication

Attribute Type	Description	Examples	Operations
Nominal	The values are different names, i.e., only enough information to distinguish one object from another. (=, ≠)	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, χ ² test
Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, t and F tests
Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation

Feature Type Representation

	Attribute	Representation Transformation	Comments
ete	Nominal	Any permutation of values one hot encoding	If all employee ID numbers were reassigned, would it make any difference?
Discrete	Ordinal	An order preserving change of values, i.e., new_value = f(old_value) where f is a monotonic function. integer	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Continuous	Interval	new_value =a * old_value + b where a and b are constants float	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
Co	Ratio	new_value = a * old_value float	Length can be measured in meters or feet. section 4: so

Self Test

- Are these A. interval or B. ratio:
 - Angle measured 0-360 degrees
 - ratio
 - Height above sea level
 - interval or ratio depending on if sea level is considered arbitrary
- Are these A. ordinal, B. nominal, or C. binary?
 - military rank
 - ordinal
 - coat check number
 - nominal
 - time as AM or PM
 - binary

Before Next Lecture

- Before next class:
 - install python on your laptop
 - install anaconda distribution of python
- Look at Python primer if you need an intro to Python

Demo

If time:
Jupyter Notebooks
and Numpy

