Maintenance Data Analysis Report

This report provides a comprehensive analysis of server maintenance data, including predictive modeling, scheduling optimization, and integration of Power BI visuals. The following steps are covered:

1. Data Extraction:

Data was extracted from an SQLite database. The dataset includes various maintenance records, which were loaded into a pandas DataFrame for further analysis.

2. Data Analysis:

The extracted data was analyzed to compute summary statistics and identify trends. The date columns were converted to datetime format to facilitate time-based analysis. Summary statistics of the dataset:

Server_ID Timestamp CPU_Usage Memory_Usage Disk_Usage Network_Usage Downtime_Duration Maintenance_Cost count 27.000000 27 27.000000 27.0

3. Visualization:

Visualizations were created to depict downtime duration over time and average monthly downtime duration.

Downtime Duration Over Time:

Downtime Duration Over Time

Average Monthly Downtime Duration:

4. Predictive Maintenance Model:

A predictive model was developed to forecast downtime based on historical data. The model used features such as the number of days since the last maintenance and server type. Model Mean Squared Error: 68.73

5. Maintenance Scheduling Optimization:

An optimization model was used to determine the best schedule for maintenance activities to minimize downtime and costs.

Optimized Maintenance Schedule: [1. 0. 0. 0. 0.]

6. Power BI Dashboard Visuals:

The following visuals from the Power BI dashboard are included to provide additional insights:

rformance

Average CPU Usage, Average Memory Usage and Average Disk Usage by Server_ID

55.50

Goal: 56.50, 52.63

Earlie 5

3

Trends

Downtime_	Duration	by S
4	5	
2	3	

age	$Network_Usage$	CPU_Usage	Count of Server_II
50	91	44	
88	196	76	
91	138	98	
35	117	43	
84	146	99	
54 50	109	22	
	146	29	
80	119	22	
42	62	20	
			2

Total Downtime	Year	Quarter	Month	Day	Maint
83	2024	Qtr 1	January	- 1	0
35	2024	Qtr 1	January	2	0
0	2024	Qtr 1	January	- 1	Hardy
32	2024	Qtr 1	January	1	Routin
0	2024	Qtr 1	January	- 1	Softw
150					

ance Schedule

7. Recommendations:

Consider increasing server maintenance frequency during peak downtime periods. Analyze the cause of downtime for different servers to identify recurring issues. Optimize maintenance schedules to reduce average downtime duration.