CORRECTION SÉANCE 8 (25 MARS)

Feuille de TD 2

Exercice 11. Supposons qu'un tel morphisme φ existe, soit $e+F \in E/F$, on doit avoir $\varphi(e+F) = \varphi(\pi(e)) = p(e)$, donc les valeurs de φ sont entièrement déterminées, montrons que φ est ainsi bien défini : si e+F = e'+F (autrement dit $e \equiv e'[F]$, alors $e-e' \in F$, donc

$$\varphi(e) = p(e) = p(e') = \varphi(e')$$

justement car p(e-e')=0 par hypothèse $(F\subset \operatorname{Ker} p)$. Il est clair que φ ainsi défini est un morphisme de modules.

À nouveau, cela veut dire que n'importe quel autre module qui respecterait cette propriété universelle serait canoniquement isomorphe à E/F (si F = Ker f est le noyau d'un morphisme, on peut voir que Im f respecte également cette propriété universelle : c'est ce qu'on prouve dans la preuve du premier théorème d'isomorphisme).

Feuille de TD 3

Exercice 7.

1. On a $\langle \lambda \varphi + \psi, x \rangle = \lambda \langle \varphi, x \rangle + \langle \psi, x \rangle = 0$ si $\varphi, \psi \in A^{\perp}$, qui est donc un sous-espace vectoriel de E^* , pour F^o , on a $F^o = \bigcap_{\varphi \in F} \operatorname{Ker} \varphi$, il s'agit donc d'un sous-espace vectoriel de E.

2.

- a) Soit $\varphi \in A'^{\perp}$ et $x \in A$, on a $x \in A'$, donc $\langle \varphi, x \rangle = 0$ par hypothèse, d'où $\varphi \in A^{\perp}$.
- b) Soit $x \in B'^o$ et $\varphi \in B$, on a $\varphi \in B'$, donc $\langle \varphi, x \rangle = 0$ par hypothèse, d'où $x \in B^o$.
- c) Soit $\varphi \in E^*$, on a

$$\varphi \in A^{\perp} \Leftrightarrow A \subset \operatorname{Ker} \varphi \Leftrightarrow \operatorname{Vect} A \subset \operatorname{Ker} \varphi \Leftrightarrow \varphi \in (\operatorname{Vect} A)^{\perp}$$

- d) On a $B \subset \operatorname{Vect} B$, donc $(\operatorname{Vect} B)^o \subset B^o$, réciproquement si $x \in B^o$, alors $\forall \varphi \in B, \varphi(x) = 0$, comme les éléments de $\operatorname{Vect} B$ sont des combinaisons linéaires d'éléments de B, ils valent tous 0 en x, d'où $B^o \subset \operatorname{Vect}(B)^o$ et le résultat.
- 3. On pose $n=\dim E$, et $r=\dim A$, on considère une base (e_1,\cdots,e_r) de A, que l'on complète en une base (e_1,\cdots,e_n) de E. Soit $\varphi=\sum_{i=1}^n\lambda_ie_i^*$ une forme linéaire sur E, on a $\varphi\in A^\perp$ si et seulement si

$$\forall k \in [1, r], 0 = \varphi(e_k) = \lambda_k$$

autrement dit si $\varphi \in \text{Vect}(e_{r+1}^*, \dots, e_n^*)$, d'où $A^{\perp} = \text{Vect}(e_{r+1}^*, \dots, e_n^*)$ est de dimension n-r comme annoncé. On a également clairement

$$A^{\perp o} = (\operatorname{Vect}(e_{r+1}^*, \cdots, e_n^*)^o = \operatorname{Vect}(e_1, \cdots, e_r) = A$$

Exercice 8.

1. On a

$$\varphi \in \operatorname{Ker}^t f \Leftrightarrow \varphi \circ f = 0 \Leftrightarrow \operatorname{Im} f \subset \operatorname{Ker} \varphi \Leftrightarrow \varphi \in (\operatorname{Im} f)^{\perp}$$

la conclusion sur le rang découle alors de l'exercice précédent. (celle sur les matrices découle à son tour de l'exercice 6).

- 3.a) On a ${}^t\partial(\varphi)=\varphi\circ\partial$, qui à un polynôme P associe $\varphi(P')$, si P est constant, P'=0 et ${}^t\partial(\varphi)(P)=0$, d'où le résultat.
- b) On sait que ∂ est surjective car tout polynôme admet des primitives (qui sont encore des polynômes), en revanche, $\operatorname{Im}^t \partial$ ne contient que des formes linéaires s'annulant sur les constante, elle n'est donc pas égale à $\mathbb{k}[X]^*$.

Feuille de TD 4

Exercice 1. Grâce au théorème de Bézout, il existe $u, v \in \mathbb{Z}$ tels que pu + qv = 1, soit $k \otimes \ell$ un tenseur pur dans $\mathbb{Z}/p\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/q\mathbb{Z}$ (on rapelle que tout élément de cet anneau n'est pas forcément un tenseur pur, mais comme les tenseurs purs engendrent l'anneau, si ils sont tous nuls, l'anneau est nul). On a par définition pk = 0 et $q\ell = 0$, donc

$$k \otimes \ell = 1.(k \otimes \ell)$$

$$= (pu + qv).(k \otimes \ell)$$

$$= pu.(k \otimes \ell) + qv.(k \otimes \ell)$$

$$= (puk) \otimes \ell + k \otimes (qv\ell)$$

$$= 0 \otimes \ell + k \otimes 0 = 0$$

D'où le résultat voulu.

De façon générale (si pgcd(m,n)=d), on peut montrer de la même manière que $d.(\mathbb{Z}/n\mathbb{Z}\otimes_{\mathbb{Z}}\mathbb{Z}/m\mathbb{Z})=0$, autrement dit que l'annulateur de ce \mathbb{Z} -module contient $d\mathbb{Z}$.