Statistics for Data Science -1

Lecture 9.2: Expectation of a Random Variable

Usha Mohan

Indian Institute of Technology Madras

1. Define what is a random variable.

- 1. Define what is a random variable.
- 2. Types of random variables: discrete and continuous.

- 1. Define what is a random variable.
- 2. Types of random variables: discrete and continuous.
- 3. Probability mass function, graph, and examples.

- 1. Define what is a random variable.
- 2. Types of random variables: discrete and continuous.
- 3. Probability mass function, graph, and examples.
- 4. Cumulative distribution function, graphs, and examples.

- 1. Define what is a random variable.
- 2. Types of random variables: discrete and continuous.
- 3. Probability mass function, graph, and examples.
- 4. Cumulative distribution function, graphs, and examples.
- 5. Expectation and variance of a random variable.

Statistics for Data Science -1

Expectation of a random variable

- ▶ If the outcome is even- you lose an amount equal to the outcome
- ▶ If the outcome is odd- you win an amount equal to the outcome.

- ▶ If the outcome is even- you lose an amount equal to the outcome
- ▶ If the outcome is odd- you win an amount equal to the outcome.
- ▶ In other words, the gains/losses are as per table

Outcome	1	2	3	4	5	6

- ▶ If the outcome is even- you lose an amount equal to the outcome
- ▶ If the outcome is odd- you win an amount equal to the outcome.
- ▶ In other words, the gains/losses are as per table

Outcome	1	2	3	4	5	6
Winning	+1	-2	+3	-4	+5	-6

- ▶ If the outcome is even- you lose an amount equal to the outcome
- ▶ If the outcome is odd- you win an amount equal to the outcome.
- In other words, the gains/losses are as per table

Outcome	1	2	3	4	5	6
Winning	+1	-2	+3	-4	+5	-6

- *: A winning of -x indicates a loss of x amount.
- Question: Would you play this game?

Simulating the game

Simulating the game

First, roll the dice 100 times. Observe the outcomes. They are summarised in the table.

table.			
5	4	6	4
4	3	1	5
2	1	6	2
5	4	5	
4	2	2	5 5
1	3	4	
1	5	2	5 5
6	6	5	2
6	5	6	3
3	2	5	4
3	5	4	4
1	2	3	4
2	1	1	6
3	4	3	4
4	5	6	1
3	5	1	1
6	5	4	3
1	4	6	5
4	4	3	6
5	4	1	3
	5 4 2 5 5 4 1 1 1 6 6 6 3 3 3 1 2 2 3 4 4 4 4 3 6 6 6 6 6 3 6 6 6 6 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	5 4 4 3 2 1 5 4 4 2 1 3 1 5 6 6 6 5 3 2 3 3 5 1 2 2 1 3 4 4 5 3 5 6 5 5 1 4 4 4 4 4	5 4 6 4 3 1 2 1 6 5 4 5 4 2 2 1 3 4 1 5 2 6 6 5 6 3 2 5 3 5 4 1 2 3 2 1 1 3 4 3 4 5 6 6 5 6 6 5 6 6 5 6 6 5 6 7 5 6 8 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Statistics for Data Science -1 Expectation of a random variable

► Rolling 100 times

Outcome	Winning	Frequency	Relative frequency
1	+1	16	0.16
2	-2	10	0.10
3	+3 -4	16	0.16
4	-4	21	0.21
5	+5 -6	23	0.23
6	-6	14	0.14
		100	1

► Rolling 100 times

Outcome	Winning	Frequency	Relative frequency
1	+1	16	0.16
2	-2	10	0.10
3	+3 -4	16	0.16
4	-4	21	0.21
5	+5 -6	23	0.23
6	-6	14	0.14
		100	1

Average winnings: -0.09

▶ Rolling 100 times

Outcome	Winning	Frequency	Relative frequency
1	+1	16	0.16
2	-2	10	0.10
3	+3 -4	16	0.16
4	-4	21	0.21
5	+5 -6	23	0.23
6	-6	14	0.14
		100	1

Average winnings: -0.09

► Rolling a 1000 times

Outcome	Winning	Frequency	Relative frequency
1	+1	177	0.177
2	-2	177	0.177
3	+3	167	0.167
4	-4	153	0.153
5	+5	163	0.163
6	-6	163	0.163
		1000	1

▶ Rolling 100 times

Outcome	Winning	Frequency	Relative frequency
1	+1	16	0.16
2	-2	10	0.10
3	+3 -4	16	0.16
4	-4	21	0.21
5	+5 -6	23	0.23
6	-6	14	0.14
		100	1

Average winnings: -0.09

► Rolling a 1000 times

Outcome	Winning	Frequency	Relative frequency
1	+1	177	0.177
2	-2	177	0.177
3	+3	167	0.167
4	-4	153	0.153
5	+5	163	0.163
6	-6	163	0.163
		1000	1

The relative frequency of each of the six possible outcomes is close to the probability of $\frac{1}{6}$ for the respective outcomes.

- The relative frequency of each of the six possible outcomes is close to the probability of $\frac{1}{6}$ for the respective outcomes.
- ► Hence, it suggests, that if I repeat rolling the dice for a very large number of times, our average gain should be

- The relative frequency of each of the six possible outcomes is close to the probability of $\frac{1}{6}$ for the respective outcomes.
- ► Hence, it suggests, that if I repeat rolling the dice for a very large number of times, our average gain should be

$$1\frac{1}{6} - 2\frac{1}{6} + 3\frac{1}{6} - 4\frac{1}{6} + 5\frac{1}{6} - 6\frac{1}{6} = -0.5$$

- The relative frequency of each of the six possible outcomes is close to the probability of $\frac{1}{6}$ for the respective outcomes.
- ► Hence, it suggests, that if I repeat rolling the dice for a very large number of times, our average gain should be

$$1\frac{1}{6} - 2\frac{1}{6} + 3\frac{1}{6} - 4\frac{1}{6} + 5\frac{1}{6} - 6\frac{1}{6} = -0.5$$

► This is close to what we got as the average winning for 1000 rolls of the dice.

Definition

Let X be a discrete random variable taking values x_1, x_2, \ldots . The expected value of X denoted by E(X) and referred to as Expectation of X is given by

$$E(X) = \sum_{i=1}^{\infty} x_i P(X = x_i)$$

Definition

Let X be a discrete random variable taking values x_1, x_2, \ldots . The expected value of X denoted by E(X) and referred to as Expectation of X is given by

$$E(X) = \sum_{i=1}^{\infty} x_i P(X = x_i)$$

► The Expectation of a random variable can be considered the "long-run-average" value of the random variable in repeated independent observations.

Definition

Let X be a discrete random variable taking values x_1, x_2, \ldots . The expected value of X denoted by E(X) and referred to as Expectation of X is given by

$$E(X) = \sum_{i=1}^{\infty} x_i P(X = x_i)$$

- ► The Expectation of a random variable can be considered the "long-run-average" value of the random variable in repeated independent observations.
- Lets apply the definition to the examples we have considered before

- Random experiment: Roll a dice once.
- ► Sample space: $S = \{1, 2, 3, 4, 5, 6\}$
- ▶ Random variable *X* is the outcome of the roll.
- ► The probability distribution is given by

X	1	2	3	4	5	6
$P(X=x_i)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- Random experiment: Roll a dice once.
- ► Sample space: $S = \{1, 2, 3, 4, 5, 6\}$
- ▶ Random variable *X* is the outcome of the roll.
- ▶ The probability distribution is given by

X	1	2	3	4	5	6
$P(X=x_i)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$$E(X) = 1\frac{1}{6} + 2\frac{1}{6} + 3\frac{1}{6} + 4\frac{1}{6} + 5\frac{1}{6} + 6\frac{1}{6} = 3.5.$$

- Random experiment: Roll a dice once.
- ► Sample space: $S = \{1, 2, 3, 4, 5, 6\}$
- Random variable X is the outcome of the roll.
- ▶ The probability distribution is given by

X	1	2	3	4	5	6
$P(X=x_i)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- $E(X) = 1\frac{1}{6} + 2\frac{1}{6} + 3\frac{1}{6} + 4\frac{1}{6} + 5\frac{1}{6} + 6\frac{1}{6} = 3.5.$
- ▶ Does this mean that if we roll a dice once, should we expect the outcome to be 3.5?

- Random experiment: Roll a dice once.
- ► Sample space: $S = \{1, 2, 3, 4, 5, 6\}$
- ▶ Random variable X is the outcome of the roll.
- The probability distribution is given by

X	1	2	3	4	5	6
$P(X=x_i)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- $E(X) = 1\frac{1}{6} + 2\frac{1}{6} + 3\frac{1}{6} + 4\frac{1}{6} + 5\frac{1}{6} + 6\frac{1}{6} = 3.5.$
- ▶ Does this mean that if we roll a dice once, should we expect the outcome to be 3.5?
- ► NO!!-

- Random experiment: Roll a dice once.
- ► Sample space: $S = \{1, 2, 3, 4, 5, 6\}$
- ▶ Random variable X is the outcome of the roll.
- The probability distribution is given by

X	1	2	3	4	5	6
$P(X=x_i)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- $E(X) = 1\frac{1}{6} + 2\frac{1}{6} + 3\frac{1}{6} + 4\frac{1}{6} + 5\frac{1}{6} + 6\frac{1}{6} = 3.5.$
- ▶ Does this mean that if we roll a dice once, should we expect the outcome to be 3.5?
- NO!!-the expected value tells us is what we would expect the average of a large number of rolls to be in the long run.

Summary of the rolling dice simulation

	100 rolls		1000	rolls	
Outcome	Freq	Rel. Freq	Freq	Rel. Freq	Probability
1	16	0.16	177	0.177	0.166667
2	10	0.1	177	0.177	0.166667
3	16	0.16	167	0.167	0.166667
4	21	0.21	153	0.153	0.166667
5	23	0.23	163	0.163	0.166667
6	14	0.14	163	0.163	0.166667
		3.67		3.437	3.5

Summary of the rolling dice simulation

	100 rolls		1000	rolls	
Outcome	Freq	Rel. Freq	Freq	Rel. Freq	Probability
1	16	0.16	177	0.177	0.166667
2	10	0.1	177	0.177	0.166667
3	16	0.16	167	0.167	0.166667
4	21	0.21	153	0.153	0.166667
5	23	0.23	163	0.163	0.166667
6	14	0.14	163	0.163	0.166667
		3.67		3.437	3.5

▶ Notice that average of the rolls need not be exactly 3.5.

Summary of the rolling dice simulation

	100 rolls		1000	rolls	
Outcome	Freq	Rel. Freq	Freq	Rel. Freq	Probability
1	16	0.16	177	0.177	0.166667
2	10	0.1	177	0.177	0.166667
3	16	0.16	167	0.167	0.166667
4	21	0.21	153	0.153	0.166667
5	23	0.23	163	0.163	0.166667
6	14	0.14	163	0.163	0.166667
		3.67		3.437	3.5

- ▶ Notice that average of the rolls need not be exactly 3.5.
- ▶ However, we can expect it to be close to 3.5.

Summary of the rolling dice simulation

	100 rolls		1000	rolls	
Outcome	Freq	Rel. Freq	Freq	Rel. Freq	Probability
1	16	0.16	177	0.177	0.166667
2	10	0.1	177	0.177	0.166667
3	16	0.16	167	0.167	0.166667
4	21	0.21	153	0.153	0.166667
5	23	0.23	163	0.163	0.166667
6	14	0.14	163	0.163	0.166667
		3.67		3.437	3.5

- Notice that average of the rolls need not be exactly 3.5.
- However, we can expect it to be close to 3.5.
- ► The expected value of *X* is a theoretical average.

Rolling a dice twice

X is a random variable which is defined as sum of outcomes

Rolling a dice twice

- X is a random variable which is defined as sum of outcomes
- Probability mass function

X	2	3	4	5	6	7	8	9	10	11	12
$P(X = x_i)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	4 36	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

▶ If I rolled two dice a large number of times, what can I expect the average of the sum of the outcomes to be?

Rolling a dice twice

- X is a random variable which is defined as sum of outcomes
- Probability mass function

X	2	3	4	5	6	7	8	9	10	11	12
$P(X=x_i)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

▶ If I rolled two dice a large number of times, what can I expect the average of the sum of the outcomes to be?

$$E(X) = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + \dots + 11 \times \frac{2}{36} + 12 \times \frac{1}{36} = 7$$

► Interpretation: When two dice are rolled over and over for a long time, the mean sum of the two dice is 7.

 $ightharpoonup S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$

- ► *S* = {*HHH*, *HHT*, *HTH*, *HTT*, *THH*, *THT*, *TTH*, *TTT*}
- ➤ X is the random variable which counts the number of heads in the tosses

- ► *S* = {*HHH*, *HHT*, *HTH*, *HTT*, *THH*, *THT*, *TTH*, *TTT*}
- X is the random variable which counts the number of heads in the tosses
 - Probability mass function

X	0	1	2	3
$P(X = x_i)$	$\frac{1}{8}$	<u>3</u> 8	<u>3</u> 8	$\frac{1}{8}$

- ► *S* = {*HHH*, *HHT*, *HTH*, *HTT*, *THH*, *THT*, *TTH*, *TTT*}
- X is the random variable which counts the number of heads in the tosses
 - ► Probability mass function

X	0	1	2	3
$P(X=x_i)$	$\frac{1}{8}$	<u>3</u> 8	<u>3</u>	$\frac{1}{8}$

$$E(X) = \sum_{i=0}^{3} x_i p(x_i) =$$

- ► *S* = {*HHH*, *HHT*, *HTH*, *HTT*, *THH*, *THT*, *TTH*, *TTT*}
- X is the random variable which counts the number of heads in the tosses
 - Probability mass function X $P(X = x_i)$

$$E(X) = \sum_{i=0}^{3} x_i p(x_i) = \frac{(0 \times 1) + (1 \times 3) + (2 \times 3) + (3 \times 1)}{8} = \frac{3}{2}$$

- ► *S* = {*HHH*, *HHT*, *HTH*, *HTT*, *THH*, *THT*, *TTH*, *TTT*}
- X is the random variable which counts the number of heads in the tosses
 - Probability mass function X $P(X = x_i)$

$$E(X) = \sum_{i=0}^{3} x_i p(x_i) = \frac{(0 \times 1) + (1 \times 3) + (2 \times 3) + (3 \times 1)}{8} = \frac{3}{2}$$

▶ Interpretation: When a coin is tossed three times over and over for a long time, the mean number of heads in the three tosses is 1.5.

Bernoulli random variable

- ► A random variable that takes on either the value 1 or 0 is called a Bernoulli random variable.
- ► Let X be a Bernoulli random variable that takes on the value 1 with probability p.
- The probability distribution of the random variable is

X	0	1
$P(X = x_i)$	1 - p	р

Expected value of a Bernoulli random varaible:

$$E(X) = 0 \times (1 - p) + 1 \times p = p$$

- Let X be a random variable that is equally likely to takes any of the values $1, 2, \ldots, n$
- Probability mass function

X	1	2	 n
$P(X = x_i)$	$\frac{1}{n}$	$\frac{1}{n}$	 $\frac{1}{n}$

- Let X be a random variable that is equally likely to takes any of the values $1, 2, \ldots, n$
- Probability mass function

X	1	2	 n
$P(X=x_i)$	$\frac{1}{n}$	$\frac{1}{n}$	 $\frac{1}{n}$

$$\triangleright$$
 $E(X) =$

- Let X be a random variable that is equally likely to takes any of the values $1, 2, \ldots, n$
- Probability mass function

X	1	2	 n
$P(X=x_i)$	$\frac{1}{n}$	$\frac{1}{n}$	 $\frac{1}{n}$

$$E(X) = \sum_{i=1}^n x_i p(x_i) =$$

- Let X be a random variable that is equally likely to takes any of the values $1, 2, \ldots, n$
- Probability mass function

$$\begin{array}{c|ccccc} X & 1 & 2 & \dots & n \\ \hline P(X = x_i) & \frac{1}{n} & \frac{1}{n} & \dots & \frac{1}{n} \end{array}$$

$$E(X) = \sum_{i=1}^{n} x_i p(x_i) = \frac{(1 \times 1) + (2 \times 1) + \dots + (n \times 1)}{n} = \frac{n(n+1)}{2 \times n} = \frac{(n+1)}{2}$$

Section summary

- ► Notion of expectation
- Bernoulli and Discrete uniform random variable.