## PGM Assignment 3

#### Ajita Shree 2015MCS2328

November 15, 2016

### Model Description

|     | _   | _  |   |
|-----|-----|----|---|
| TD. | ៶឴៶ | 1_ | 1 |
|     | an  |    |   |

| 1 | OCR                                                 |
|---|-----------------------------------------------------|
| 2 | OCR + Transition                                    |
| 3 | OCR + Transition + Skip Factors                     |
| 4 | OCR + Transition + Skip Factors + Pair-Skip Factors |

### Gibbs Sampling

Table 2: TestCase 1 : data-tree.dat

|       |           | Gibbs Sampling |           |           |
|-------|-----------|----------------|-----------|-----------|
| Model | CharAcc   | wordAcc        | LL        | time      |
| 1     | 58.445040 | 8.333333       | -6.986933 | 0.360586s |
| 2     | 67.828418 | 16.666667      | -6.749648 | 0.362549s |
| 3     | 67.828418 | 16.666667      | -6.749648 | 0.424486s |
| 4     | 68.096515 | 17.857143      | -6.603487 | 0.421195s |
|       |           | Loopy BP       |           |           |
| 1     | 60.053619 | 4.761905       | -6.988995 | 0.000310s |
| 2     | 67.560322 | 15.476190      | -6.746949 | 0.000259s |
| 3     | 67.560322 | 15.476190      | -6.746949 | 0.000306s |
| 4     | 67.560322 | 16.666667      | -6.606466 | 0.000245s |

Table 3: TestCase 2 : data-loops.dat

|       |           | Gibbs Sampling |           |           |
|-------|-----------|----------------|-----------|-----------|
| Model | CharAcc   | wordAcc        | LL        | time      |
| 1     | 51.079137 | 3.571429       | -7.977534 | 0.138204s |
| 2     | 56.834532 | 3.571429       | -7.804875 | 0.147725s |
| 3     | 56.834532 | 3.571429       | -7.804875 | 0.152705s |
| 4     | 57.553957 | 10.714286      | -7.485028 | 0.144800s |
|       |           | Loopy BP       |           |           |
| 1     | 53.956835 | 3.571429       | -7.996443 | 0.000073s |
| 2     | 56.115108 | 7.142857       | -7.817972 | 0.000090s |
| 3     | 56.115108 | 7.142857       | -7.817972 | 0.000090s |
| 4     | 56.834532 | 7.142857       | -7.546444 | 0.000095s |

Table 4: TestCase 3 : data-treeWS.dat

|       |           | Gibbs Sampling |           |           |
|-------|-----------|----------------|-----------|-----------|
| Model | CharAcc   | wordAcc        | LL        | time      |
| 1     | 57.505519 | 8.152174       | -7.778342 | 0.893264s |
| 2     | 64.128035 | 12.500000      | -7.509077 | 1.008133s |
| 3     | 64.017660 | 14.130435      | -7.342652 | 1.015450s |
| 4     | 63.686534 | 15.217391      | -7.223134 | 0.919674s |
|       |           | Loopy BP       |           |           |
| 1     | 57.836645 | 8.152174       | -7.778992 | 0.000536s |
| 2     | 65.894040 | 15.217391      | -7.517586 | 0.000587s |
| 3     | 66.114790 | 15.217391      | -7.344032 | 0.000662s |
| 4     | 66.556291 | 15.760870      | -7.213167 | 0.000646s |

Table 5: TestCase 4: data-loopsWS.dat

|       |           | Gibbs Sampling |           |           |
|-------|-----------|----------------|-----------|-----------|
| Model | CharAcc   | wordAcc        | LL        | time      |
| 1     | 55.709877 | 9.230769       | -7.846686 | 0.662152s |
| 2     | 66.049383 | 11.538462      | -7.524869 | 0.005747s |
| 3     | 66.203704 | 11.538462      | -7.331848 | 0.058373s |
| 4     | 67.592593 | 13.846154      | -6.919762 | 0.127113s |
|       |           | Loopy BP       |           |           |
| 1     | 60.030864 | 8.461538       | -7.816212 | 0.000319s |
| 2     | 64.197531 | 11.538462      | -7.548425 | 0.744294s |
| 3     | 66.049383 | 13.076923      | -7.346568 | 0.735013s |
| 4     | 66.512346 | 15.384615      | -6.944808 | 0.651548s |

# Parameter Learning in Probabilistic Graphical Models

Table 6: Accuracies

|           | Bayesian Network |            |
|-----------|------------------|------------|
| DataSet   | AvgAcc           | AvgLL      |
| Andes     | 77.900004        | -70.377605 |
| Hepan 2   | 78.552177        | -16.185782 |
| Insurance | 82.375771        | -5.811494  |
|           | Markov Network   |            |
| DataSet   | AvgAcc           | AvgLL      |
| Andes     | 78.774385        | -48.813523 |
| Hepar2    | 80.056651        | -16.521046 |
| Insurance | 80.077212        | -7.937592  |

From the above table, it is evident that the accuracies corresponding to Markov network model has increased corresponding every file.

Table 7: Andes File

| C-Value (x-axis) | Accuracy  | Log-likelihood(y-axis) |
|------------------|-----------|------------------------|
| 1                | 78.774385 | -48.813523             |
| 10               | 78.859131 | -48.815645             |
| 100              | 78.367441 | -49.832606             |
| 1000             | 79.557311 | -48.931437             |
| 10000            | 76.548906 | -49.642471             |
| 100000           | 77.033707 | -53.692681             |

Table 8: Hepar2 File

| C-Value (x-axis) | Accuracy  | Log-likelihood(y-axis) |
|------------------|-----------|------------------------|
| 1                | 80.056651 | -16.521046             |
| 10               | 80.056651 | -16.520643             |
| 100              | 79.431651 | -16.548352             |
| 1000             | 80.670204 | -16.502720             |
| 10000            | 78.891463 | -17.471397             |
| 100000           | 76.802064 | -18.415796             |

### Andes File----Avg-Log Likelihood vs. C-Value



Figure 1: Andes File

Table 9: Insurance File

| C-Value (x-axis) | Accuracy  | Log-likelihood(y-axis) |
|------------------|-----------|------------------------|
| 1                | 80.077212 | -7.937592              |
| 10               | 81.489806 | -7.561210              |
| 100              | 80.077212 | -7.926377              |
| 1000             | 81.400521 | -7.653545              |
| 10000            | 81.659413 | -8.202600              |
| 100000           | 76.455417 | -10.674843             |

### Hepar File---- Avg-Log Likelihood vs. C-Value



Figure 2: Hepar2 File

### Insurance File---Avg-Log Likelihood vs. C-Value



Figure 3: Insurance File