

Kompressionsmethoden für strukturierte Gleitkommazahlen und ihre Anwendung in den Klimawissenschaften

von Uğur Çayoğlu

STEINBUCH CENTRE FOR COMPUTING (SCC) und INSTITUT FÜR METEOROLOGIE UND KLIMAFORSCHUNG (IMK-ASF)

Verlustfreie Kompression von Klimadaten

Hohes Datenaufkommen durch Klimasimulationen

ERA5

Datensatz für die Initialisierung und Validierung von Simulationsläufen umfasst 10.89 PiB

IMK-ASF

Einer der größten Speicherplatzbenutzer am SCC mit >770 TiB (steigend)

Verlustfreie Kompression von Klimadaten

Problem

Hohes Datenaufkommen durch Klimasimulationen (ERA5, 10.89 PiB)

Aktuelle Lösung

Reduzierung der zeitlichen Auflösung und gespeicherten Variablen

Folgen

- Benutzung von Interpolationen
- Klimaereignisse (z.B. Entstehung von Stürmen) möglicherweise nicht abgebildet
- Neuberechnung von Simulationen

Ziel

Verlustfreies Kompressionsverfahren mit hohem Kompressionsfaktor

Kompressionsfaktor und Durchsatz

Kompressionsfaktor = $\frac{\text{Ursprüngliche Dateigröße [Bytes]}}{\text{Komprimierte Dateigröße [Bytes]}}$

Durchsatz = Ursprüngliche Dateigröße [Bytes]
Kompressionszeit [Sek.]

- Generelle
 Kompressionsverfahren
- Gleitkommazahlkompressionsverfahren

Verlustfreie Kompression von strukturierten Gleitkommazahlen

Klimadaten

4D Daten (Längen- u. Breitengrad, Höhe, Zeit)

Quelle[1]

Verlustfreie Kompression von strukturierten Gleitkommazahlen

Dekorrelation: Entfernung von redundanter Information

Kodierung: Darstellung von Informationen in kompakter Form

Annäherung: Zusammenfassung oder Entfernung von unwichtigen Informationen

Quelle[2]

Verlustfreie Kompression von strukturierten Gleitkommazahlen

Dekorrelation: Entfernung von redundanter Information **Kodierung:** Darstellung von Informationen in kompakter Form

Annäherung: Zusammenfassung oder Entfernung von unwichtigen Informationen

Quelle[2]

Überblick zum Forschungsfeld Datenkompression

Anwendungsgebiete

Kompressionsverfahren

Verlustbehaftete

Verlustfreie

Datentypen

Integer

Gleitkommazahlen

Bytes

Audio

Video

Bild

Zeitreihen

Strukturierte Daten

Text

Kodierung mit variabler Länge

Lauflängenkodierung

Wörterbuch-Verfahren

Transformation

Vorhersagebasierte Verfahren

Entropie-basierte Verfahren

Überblick zum Forschungsfeld **Datenkompression**

JPEG

Kompressionsarten

Anwendungsgebiete

Audio

Video

Kompressionsverfahren

Verlustbehaftete

Verlustfreie

Bild

Zeitreihen

Strukturierte Daten

Text

Kodierung mit variabler Länge

Lauflängenkodierung

Wörterbuch-Verfahren

Transformation

Vorhersagebasierte Verfahren

Entropie-basierte Verfahren

Datentypen

Integer

Überblick zum Forschungsfeld Datenkompression

Anwendungsgebiete

Kompressionsverfahren

Verlustbehaftete

Verlustfreie

Datentypen

Integer

Gleitkommazahlen

Bytes

Audio

Video

Bild

Zeitreihen

Strukturierte Daten

Text

Kodierung mit variabler Länge

Lauflängenkodierung

Wörterbuch-Verfahren

Transformation

Vorhersagebasierte Verfahren

Entropie-basierte Verfahren

Beiträge zur Informatik

pzip

Kompressionsarten

Anwendungsgebiete

Kompressionsverfahren

Verlustbehaftete

Verlustfreie

Datentypen

Integer

Gleitkommazahlen

Bytes

Audio

Video

Bild

Zeitreihen

Strukturierte Daten

Text

Kodierung mit variabler Länge

Lauflängenkodierung

Wörterbuch-Verfahren

Transformation

Vorhersagebasierte Verfahren

Entropie-basierte Verfahren

Direkter Beitrag

Einflussbereich

Pascal Zip (pzip)

Vorhersagebasiertes Kompressionsverfahren

Für jeden einzelnen Datenpunkt wird (basierend auf vorhergehenden Werten) eine Vorhersage gegeben und die Differenz zum wahren Wert (Residuum) gespeichert

Kompressionsverfahren im Vergleich

- Generelle
 Kompressionsverfahren
- Gleitkommazahlkompressionsverfahren

Publikationen und Konferenzbeiträge

Cayoglu et al. (2018a). Towards an optimised environmental data compression method for structured model output EGU 2018

Cayoglu et al. (2019). On Advancement of Information Spaces to Improve Prediction-Based Compression GI INFORMATIK 2019

Cayoglu et al. (2018). Concept and Analysis of Information Spaces to improve Prediction-Based Compression IEEE Big Data 2018 Cayoglu et al. (2019b). Data Encoding in Lossless Prediction-Based Compression Algorithms

IEEE eScience 2019

Cayoglu et al. (2018b). A Modular Software Framework for Compression of Structured Climate Data

ACM SIGSPATIAL 2018

Cayoglu et al. (2017). Adaptive Lossy Compression of Complex Environmental Indices Using Seasonal Auto-Regressive Integrated Moving Average Models IEEE eScience 2017

Kerzenmacher et al. (2017). QBO influence on the ozone distribution in the extra-tropical stratosphere **EGU 2018**

Publikationen und Konferenzbeiträge

Cayoglu et al. (2018a). Towards an optimised environmenta data compression method for structured model output EGU 2018

Cayoglu et al. (2019). On Advancement of Information Spaces to Improve Prediction-Based Compression GI INFORMATIK 2019

Cayoglu et al. (2018). Concept and Analysis of Information Spaces to improve Prediction-Based Compression IEEE Big Data 2018

Cayoglu et al. (2019b). Data Encoding in Lossless Prediction-Based Compression Algorithms

IEEE eScience 2019

Cayoglu et al. (2018b). A Modular Software Framework for Compression of Structured Climate Data

ACM SIGSPATIAL 2018

Cayoglu et al. (2017). Adaptive Lossy Compression of Complex Environmental Indices Using Seasonal Auto-Regressive Integrated Moving Average Models IEEE eScience 2017

Kerzenmacher et al. (2017). QBO influence on the ozone distribution in the extra-tropical stratosphere **EGIL 2018**

Datenkodierung bei der verlustfreien vorhersagebasierten Kompression

Datenkodierung bei der verlustfreien vorhersagebasierenden Kompression

Datenkodierung bei der verlustfreien vorhersagebasierenden Kompression

Zwei Arten der Berechnung von Residuen

Abs. Differenz

$$d = |v - w|$$

- Kleine Residuen
- Underflow
- Zwei Operationen
- Bit für Vorzeichen

XOR

$$d = v \oplus w$$

- Eine Operation
- Kein Underflow
- Bitflip-Problem (große Residuen)

Frage

Kann ich im Vorfeld bestimmen wie stark die Kompression vom Bitflip betroffen sein wird?

Prämisse: Normalverteilung der Vorhersagen

Prämisse: Normalverteilung der Vorhersagen

Prämisse: Normalverteilung der Vorhersagen

- Verschiedene normalverteilte Datensätze (100 Datenpunkte)
 - Erwartungswert (Wahrheit) $\mu \in [0; 1000]$ mit $\mu \in \mathbb{R}$
 - Standardabweichung (Vorhersagen) $\sigma \in \{0.2\mu, 0.1\mu, 0.05\mu, 0.01\mu\}$
- Berechnen des durchschnittlichen LZC

Lösung zum Bitflip-Problem

 Verschiebung der Differenzberechnung in einen anderen Wertebereich

Vorhersage = V
$$V + Shift = V'$$

Wahrheit = W $W + Shift = W'$ $V + Shift = ?$
 $V \oplus W = R$ $V' \oplus W' = R'$

- Eigenschaften vom Zielwert
 - Größtmögliche Distanz zu Zweierpotenzen
 - Minimale Fortpflanzung von Bitflips (durch Addition/Subtraktion einer <u>beliebigen Zahl</u>)
- Verschiebung darf keinen großen Overhead erzeugen
- Verschiebung muss reproduzierbar sein für den Dekompressor

Lösung zum Bitflip-Problem

 Verschiebung der Differenzberechnung in einen anderen Wertebereich

Vorhersage = V
$$V + Shift = V'$$

Wahrheit = W $W + Shift = W'$ $V + Shift = ?$
 $V \oplus W = R$ $V' \oplus W' = R'$

- Eigenschaften vom Wertebereich
 - Größtmögliche Distanz zu Zweierpotenzen
 - Minimale Fortpflanzung von Bitflips (durch Addition/Subtraktion einer <u>beliebigen Zahl</u>)
- Verschiebung darf keinen großen Overhead erzeugen
- Verschiebung muss reproduzierbar sein für den Dekompressor

Vermeidung des Bitflip-Problems

Verschiebung anhand eines Beispiels

Vorhersage (V): 256.321 Wahrer Wert (W): 255.931

LZC: 8 -> 16

Verschiebung anhand eines Beispiels

Vorhersage (V): 256.321

Wahrer Wert (W): 255.931 LZC: 8 -> 16

Es funktioniert besser, je näher die Zahlen an Zweierpotenzen liegen

Vorhersage (V): 256.002

Wahrer Wert (W): 255.991 LZC: $8 \rightarrow 21$

Es funktioniert besser, je größer die Zahlen sind

Vorhersage (V): 1024.002

Wahrer Wert (W): 1023.991 LZC: 8 -> 24

Datenkodierung bei der verlustfreien vorhersagebasierenden Kompression

 $m: \mathbb{R} \to \mathbb{N}$

256.321 -> 1132472599 255.931 -> 1132457558

. . .

Cayoglu et al. (2018). Concept and Analysis of Information Spaces to improve Prediction-Based Compression IEEE Big Data 2018 Cayoglu et al. (2019). On Advancement of Information Spaces to Improve Prediction-Based Compression GI INFORMATIK 2019

Cayoglu et al. (2018a). Towards an optimised environmental data compression method for structured model output EGU 2018
Cayoglu et al. (2017). Adaptive Lossy Compression of Complex Environmental Indices Using SARIMA IEEE eScience 2017
Cayoglu et al. (2018). Concept and Analysis of Information Spaces to improve Prediction-Based Compression IEEE Big Data 2018

Cayoglu et al. (2019b). Data Encoding in Lossless Prediction-Based Compression Algorithms IEEE eScience 2019

Kompressionsfaktor

Kompressionsfaktor

Durchsatz und Komplexität

- Engpass in der aktuellen Implementierung ist BWT/RE
- Laufzeit- und Speicherplatzkomplexität von fpzip $\mathcal{O}(n)$
- Laufzeitkomplexität $\mathcal{O}(n+4 \cdot \tau \cdot n + n)$
- Speicherkomplexität $\mathcal{O}(\tau \cdot \left(1 + \frac{n}{d_3} \left(\frac{1}{d_2} \left(\frac{1}{d_1} + 1\right) + 1\right)\right) + n \log \sigma)$

$$au = ext{Nachbarschaft}$$
 $n = d_0 d_1 d_2 d_3$
 $\sigma = | ext{Alphabet} |$

Kompressionsverfahren im Vergleich

- Generelle
 Kompressionsverfahren
 - Gleitkommazahlkompressionsverfahren

Verlustfreie Kompression von Klimadaten

Reduktion

ERA5:

10.89 PiB -> 4.19 PiB

~2.6

770 TiB => 296 TiB IMK-ASF:

Open Source Alle Programmbeispiele und Daten sind öffentlich zugänglich (github.com, GPLv3)

Beitrag

Andere Kompressionsverfahren können einzelne Entwicklungen aus der Arbeit aufgreifen und einbauen

Ziel

Verlustfreies Kompressionsverfahren mit hohem Kompressionsfaktor erfüllt

Verlustfreie Kompression von Klimadaten

Vielen Dank