$$\{H_i\}_{k=1}^N$$
 — полная группа событий $P(A) = \sum\limits_{i=1}^N P\{A|H_i\}P\{H_i\} \ P(H_i|A) = rac{P(A|H_i)P(H_i)}{P(A)}$

Первое задание

- **28.** Из урны, содержащей W белых, B черных и R красных шаров, без возвращения по одному извлекают шары до появления первого красного шара. Воспользовавшись задачей 11, с. 77, найти вероятность того, что:
 - i) будет вынуто w белых шаров и b черных;
 - іі) не появится ни одного белого шара;
 - iii) всего будет вынуто k шаров.

і) будет вытянуто w белых шаров и w черных:

 H_i —вытянули w белых шаров и b черных \Longrightarrow действием $\mathcal{N}\!\!\!_2(w+b)$ вытянули красный $P(H_i) = rac{R}{W+B+R-(w+b)}$

$$P(A|H_i) = 1$$

Первым вытянули либо белый $\frac{W}{W+B}*\frac{W+B}{W+B+R}$ или черный $\frac{B}{W+B}*\frac{W+B}{W+B+R}$

$$\frac{W}{W+B}*\frac{W+B}{W+B+R}+\frac{B}{W+B}*\frac{W+B}{W+B+R}=\left(\frac{W}{W+B}+\frac{B}{W+B}\right)*\frac{W+B}{W+B+R}=\frac{W+B}{W+B+R}$$

$$\frac{W+B}{W+B+R}$$

Вторым тоже:

$$\frac{W-1}{W+B-1}*\frac{W+B-1}{W+B+R-1}+\frac{B-1}{W+B-1}*\frac{W+B-1}{W+B+R-1}=\frac{W-1}{W+B+R-1}+\frac{B-1}{W+B+R-1}=\frac{W+B-1}{W+B+R-1}$$

$$\frac{W+B-2i}{W+B+R-i}$$

Таким образом вероятность вытащить w+b не красных шаров будет:

$$P(A) = \sum_{i=0}^{w+b} rac{W+B-2i}{W+B+R-i}$$

а итоговая вероятность:

$$P(H_i|A) = rac{rac{R}{W+B+R-(w+b)}}{\displaystyle\sum_{i=0}^{w+b}rac{W+B-2i}{W+B+R-i}}$$

іі) Не появиться ни одного белого шара:

 H_i вытянули b черных шаров и не вытянули белых шаров

Второе задание

- <u>6.</u> В круге единичного радиуса случайно проводится хорда. Обозначим ρ ее длину. Найти вероятность $\mathbf{P}\{\rho < x\}$ как функцию x, если середина хорды равномерно распределена в круге.
- <u>7.</u> Решить задачу 6, если один конец хорды закреплен, а другой равномерно распределен на окружности.
- 1. Рассмотрим окружностьс центром в O

a — закреплённая точка

 b_n- точки, которые образуют хорду

B- точка, в которой aB образует диаметр

Мы можем разделить окрудность O по диаметру, который проходит через точку

a

- 2. $x>2 \implies \hat{P}(A)=1$ таким образом наша функция выглядит: $P(x)=egin{cases} \frac{1;}{P}(x)=x>2\\ \overline{P}(x); & x<2 \end{cases}$; где $\overline{P}(x)$ некотарая функция вероятности для x<2
- 3. Теперь получим функцию $\overline{P}(x)$:

4.

• Вписанный угол равен половине центрального угла, опирающегося на ту же дугу:
$$\beta = \frac{\alpha}{2}.$$

$$egin{aligned} & Длина хорды: \ l = 2r \cdot sinrac{lpha}{2} = 2r \cdot sineta. \end{aligned}$$

• Длина дуги:
$$l=lpha\cdot r$$
, угол $lpha$ в радианах.

• Длина окружности:
$$L=2\pi\cdot r$$

• Площадь круга: $S=\pi r^2$.

$$\overline{P}(x) = \frac{\mid a\widehat{b_n} \mid}{\mid a\widehat{B} \mid} = \frac{\alpha}{\pi}$$

$$2r * \sin \frac{\alpha}{2} = x$$

$$\alpha = 2 \arcsin \frac{x}{2r}$$

$$\overline{P}(x) = \frac{2}{\pi} \arcsin \frac{x}{2r}$$

4. Таким образом функция вероятности от x выглядит:

$$P(x) = egin{cases} 1; & x > 2 \ rac{2}{\pi} rcsin rac{x}{2r}; & x < 2 \end{cases}$$