第2章	1	采样和量化:原理及产生的效果
相关图像基础	2	像素间关系,连通悖论,距离测度
	3	图像增强和图像恢复的区别
	4	2D DFT 性质: 图像空域的变换对频谱的影响
	5	图像增强方法: 直方图修正、锐化、平滑、伪彩色
	6	图像恢复方法: 空域滤波、时域滤波、运动恢复建模估计、几何
		校正
第3章	1	图像网格采集效率
数字化的图像	2	方盒量化、网格量化原理
	3	数字弦、紧致弦的判定
	4	2D 距离变换
第4章	1	边缘模型,边缘参数描述
边缘检测	2	边缘检测算子(Marr 算子、Canny 算子、SUSAN 算子)
第5章	1	阈值分割,区域生长法,分裂合并法
图像分割	2	分水岭分割算法,聚类分割算法
	3	水平集分割 的基本思想和优势,从曲线演化到水平集演化推导,
		利用变分法和梯度下降法推导演化方程; 如何基于演化实现图像
		分割
	4	Graph Cut 分割的基本思想
第6章	1	相似性度量准测,分层搜索策略
模板匹配	2	Hough 变换原理,如何基于 Hough 变换检测直线、圆、椭圆等
第7章	1	基于边界的表达:链码,多边形近似
目标表达	2	基于区域的表达: 四叉树、骨架
	3	基于变换的表达: 傅里叶描述子(如何预处理、实现平移、旋转、
		缩放不变性)
第8章	1	基于边界的描述:连通悖论、形状数
简单目标描述	2	基于区域的描述: 拓扑描述符, 欧拉数, 不变矩
	3	区域标记和计数法
第9章	1	局部特征点检测方法: 角点检测和块检测
局部视觉特征	2	局部区域描述方法: SIFT 特征描述子生成方法;
	3	Harris 角点检测子推导过程
	4	SIFT(亮度、平移、旋转、缩放变换) 不变性 原理;
	5	图像发生灰度变换(如反色)后,图像 SIFT 特征如何变化
	6	主方向估计方法(共三种)
	7	BOW 和 VLAD
	8	乘积量化原理
第 10 章	1	紧凑型描述符,复杂性描述符,拓扑结构描述
形状分析	2	距离变换,如何基于 Chamfer Distance 进行目标检测
	3	Shape Context 原理
第 11 章	1	纹理描述的统计方法: 局部二值模式、自相关、灰度共生矩阵
纹理分析	2	分形计算方法
第 12 章	1	二值形态学基本运算:腐蚀、膨胀、开启、闭合;
二值形态学	2	二值形态学运算的几何解释
	l _	マナ / 田 トトト 2 プロ日
	3	对偶性证明

	4	基于击中-击不中运算的目标检测
	5	基于基本形态学的组合运算及实用算法
第 13 章	1	相机运动建模
运动分析	2	光流定义,方程推导以及二义性问题
	3	运动表达方法:全局、基于像素的、基于块的、基于区域的
	4	运动参数估计准则
	5	穷举块匹配算法(MBMA)
	6	层级块匹配算法(HBMA)
	7	相位相关法