

Instrument for the Identification of Live and Dead Bacteria

ECEN 403 - 970

Arjun Krishnamoorthi

Team 52 (URS)

Advisor: Dr. Peter Rentzepis

Problem Statement

- ▶ Bacteria are a serious threat to human life
 - ▶ Approximately 2 million people incur infections due to antibiotic-resistant bacteria per year
 - ► At least 23,000 people die each year following such infections
 - ► Health care-associated infection (HAI) was noted among the top 10 causes of death in the United States

- ► Current identification procedures are slow and laborious
 - ► Require specialized equipment
 - ► Require trained personnel
 - ▶ Require extensive time (~1 to 2 days)

ENGINEERING
TEXAS A&M UNIVERSITY

- ► This research shall:
 - ► Utilize normal fluorescence and synchronous fluorescence spectroscopy to detect bacteria
 - ► Apply PCA to distinguish live and dead bacteria

► Develop a portable prototype for the rapid identification of

live and dead bacteria

Control and Display Unit Subsystem

- ▶ Onboard, compact laptop executing MATLAB GUI
- ► Interfaces with user **Excitation Monochromator** ► Communicates with other subsystems Scanning Scan excitation wavelength **Excitation** Monochromator Set acquisition parameters **Emission** Monochromator Receive spectral data **Emission Monochromator**

- ► High-power UV LED
- **▶** Dual-function module
 - ► Disinfection source for inactivating bacteria
 - ► Excitation source for normal fluorescence

ENGINEERING TEXAS A&M UNIVERSITY

- ▶ Optical bench
 - ► Optimized for UV region
 - ► Scanning capability for synchronous fluorescence
 - ► Optical fiber ports
- ► Light source
 - ► High-power UV LED
- **▶** Controller and Driver
 - ► Rotate grating

- ▶ Optical bench
 - ► Optimized for UV region
 - ► Input optical fiber port
- ▶ Detector
 - ► Linear CCD detector array
 - ► High UV sensitivity
- **▶** Control electronics
 - ► Interface with computer

Execution and Validation Plan

► Currently: Have outlined needs for each subsystem, selected and received parts, and begun designing and machining enclosures for subsystems

	October 11th	October 18th	October 25th	November 1st	November 8th
Control and Display Unit	Develop MATLAB code for communicating with emission monochromator	Develop MATLAB code for communicating with excitation monochromator	Develop MATLAB code for processing data (plotting, PCA, etc.)	Develop simple GUI for interfacing with all subsystems	Validate GUI communication and processing requirements
Disinfection Unit	Select UV LED and optical fiber for subsystem	Design enclosure for subsystem	Machine enclosure for subsystem	Validate disinfection and excitation functions of subsystem	Couple with emission monochromator
Excitation Monochromator	Select UV LED and microcontroller for subsystem	Design enclosure for subsystem	Machine enclosure for subsystem	Validate scanning capability of subsystem	Couple with emission monochromator
Emission Monochromator	Optimize sensitivity characteristics of subsystem	Design enclosure for subsystem	Machine enclosure for subsystem	Validate usage with disinfection unit	Validate usage with excitation monochromator

Execution

Validation

Thank You!

Questions?