## Lecture Notes Winter 2019

# MATA37 - CALCULUS II FOR THE MATHEMATICAL SCIENCES

**LEC03**, Mar 11, 15, 1:00pm - 3:00pm, 2:00pm - 3:00pm



Instructor: Dr. Kathleen Smith smithk@utsc.utoronto.ca

Office: IC458 Office Hours: TBA

#### **Exercises**

Prove 
$$a_n = \frac{n^2 - 2}{n^2 + 2n + 2}$$
 converges

WTS: 
$$\forall l \in \mathbb{R} \epsilon > 0, \exists N > 0, \ni : n > N \Rightarrow |a_n - l| < \epsilon$$

given n > N

Choose 
$$l = 1 \ni$$

Choose 
$$l=1\ni$$
: 
$$|\frac{n^2-2}{n^2+2n+2}-1|=|\frac{-4-2n}{n^2+2n+2}|=2\frac{n+2}{n^2+2n+2}\le 2\frac{n+2}{n^2+2n}=\frac{2}{n}=\frac{2}{N}=\epsilon$$

#### Theorem

If  $\{a_n\}$  converges to a and  $\{b_n\}$  converges to b

Then  $\{a_n + b_n\}$  converges to a + b

### Proof

Suppose  $\{a_n\}$  converges to a and  $\{b_n\}$  converges to b

$$\forall \epsilon > 0, \exists N \geq 0, \ni : \forall n \in \mathbb{N}, n > 0 \Rightarrow |a_n + b_n - (a + b)| < \epsilon$$

Let  $\epsilon > 0$  be arbitrary, if  $\{a_n\}$  converges to a and  $\{b_n\}$  converges to b

Choose  $N = \max\{N_1, N_2\}$ 

- 1. Then  $\exists N_1 > 0, \ni : n > N_2 \Rightarrow |a_n a| < \epsilon/2$
- 2. Then  $\exists N_2 > 0, \ni : n > N_2 \Rightarrow |b_n b| < \epsilon/2$

Recall Triangle Inequality:  $|a \pm b| \le |a| + |b|$ 

1. 
$$\wedge$$
 2.  $\Longrightarrow |a_n + n_n - (a+b)| = |a_n - a + b_n - b| \le |a_n - a| + |b_n - b| < \epsilon/2 + \epsilon/2 = \epsilon$  QED

#### Theorem

IF  $\{a_n\}$  Converges, THEN it's limit is unique.

Suppose  $\{a_n\}$  converges, Suppose  $\{a_n\}$  converges to  $l_1, l_2, \in \mathbb{R}, \ni: l_1 \neq l_2$ 

Show  $\forall \epsilon > 0, |l_1 - l_2| < \epsilon$ , It will follow that  $l_1 - l_2 = 0 \Rightarrow l_1 = l_2$ 

Let  $\epsilon > 0$  be arbitrary

- 1. Then  $\exists N_1 > 0, \ni : n > N_2 \Rightarrow |a_n k_1| < \epsilon/2$
- 2. Then  $\exists N_2 > 0, \ni : n > N_2 \Rightarrow |a_n l_2| < \epsilon/2$

If  $n > \max\{N_1, N_2\}$  Then:

$$|l_1 - l_2| = |l_1 - l_2 + a_n - a_n| = |a_n - l_1 - a_n + l_2| = |a_n - l_2 - (a_n - l_1)| \le |a_n - l_2| + |-(a_n - l_1)| = |a_n - l_2| + |a_n - l_1| < \epsilon/2 + \epsilon/2 = \epsilon$$
Thus as  $|l_n - l_n| < \epsilon/2 + \epsilon/2 = \epsilon$ 

Thus as 
$$|l_1 - l_2| < \epsilon, l_1 = l_2$$
 QED

#### Recall

IF  $\{a_n\}$  converges, THEN  $\exists c \in \mathbb{R}, \ni : |\{a_n\}| < c, \forall n \in \mathbb{N}$ 

This is to be proven for an exercise.