

(1988)

Date Planned ://	Daily Tutorial Sheet - 1	Expected Duration : 90 Min		
Actual Date of Attempt ://	JEE Main (Archive)	Exact Duration :		

	(A)	protons	(B)	neutrons	(C)	electrons	(D)	photons		
2.	Uncert	ainty in position	of a mi	nute particle of	mass 25	g in space is 10	0 ⁻⁵ m . W	hat is the unce	rtainty ir	
its velocity $(\operatorname{in} \operatorname{m} \operatorname{s}^{-1})$?								(2002)		
	(A)	2.1×10^{-34}	(B)	0.5×10^{-34}	(C)	2.1×10^{-28}	(D)	0.5×10^{-23}		
3.	In a hy	drogen atom, if	energy o	of an electron in	ground :	state is 13.6 eV,	then th	at in the 2 nd exc	ited state	
	is								(2002)	
	(A)	1.51 eV	(B)	3.4 eV	(C)	6.04 eV	(D)	13.6 eV		
4.	The de	Broglie wavelen	gth of a	tennis ball of ma	ass 60 g	moving with a v	elocity o	f 10 metres per	second is	
	approx	approximately (Planck's constant, $h = 6.63 \times 10^{-34} \text{ Js}$) (2003)								
	(A)	10^{-33} metres	(B)	10^{-31} metres	(C)	10^{-16} metres	(D)	10^{-25} metres		
5.	In Boh	r series of lines of	of hydro	gen spectrum, tl	ne third	line from the red	end cor	responds to wh	ich one o	
	the foll	lowing inter-orbit	jumps	of the electron fo	r Bohr o	orbits in an atom	of hydro	ogen ?	(2003)	
	(A)	$3 \rightarrow 2$	(B)	$5 \rightarrow 2$	(C)	$4 \rightarrow 1$	(D)	$2 \rightarrow 5$		
6.	Consid	ler the ground s	tate of C	Cr atom (Z = 24)	. The n	umbers of electr	ons with	the azimuthal	quantum	
	numbe	ers, $l=1$ and 1 a	re, respe	ectively				((2004)	
	(A)	12 and 4	(B)	12 and 5	(C)	16 and 4	(D)	16 and 5		
7.	Uncert	ainty in the po	sition o	f an electron (n	nass = 9	$9.1 \times 10^{-31} \mathrm{kg}$) m	oving wi	ith a velocity 3	$800 \mathrm{ms}^{-1}$	
	accura	te upto 0.001% v	will be						(2006)	
	(h = 6.	$6 \times 10^{-34} \mathrm{Js}$)								
	(A)	$19.2 \times 10^{-2} \text{ m}$	(B)	$5.76\!\times\!10^{-2}m$	(C)	$1.92 \times 10^{-2} \text{ m}$	(D)	$3.84\times10^{-2}m$		
8. Which of the following sets of quantum numbers represents the highest energy of an at						of an atom?	(2007)			
	(A)	n = 3, 1 = 0, m	= 0, s = +	$-\frac{1}{2}$	(B)	n = 3, 1 = 1, m =	= 1, s = +	$\frac{1}{2}$		
	(C)	n = 3, 1 = 2, m	= 1, s = +	$\frac{1}{2}$	(D)	n = 4, l = 0, m	= 0, s = +	$-\frac{1}{2}$		
9.	In an a	atom, an electroi	n is mov	ring with a speed	d of 600	m/s with an ac	curacy o	of 0.005%. Certa	ainty with	
	which the position of the electron can be located is $(h = 6.6 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1})$, mass of electron									
	$e_{m} = 9$	$0.1 \times 10^{-31} \mathrm{kg}$)						((2009)	
	(A)	$1.52 \times 10^{-4} \text{ m}$			(B)	$5.10 \times 10^{-3} \mathrm{m}$				
	(C)	$1.92 \times 10^{-3} \text{ m}$			(D)	$3.84\times10^{-3}\text{m}$				
10.	Calcul	ate the waveleng	th (in na	nometer) associa	ated with	n a proton at 1.0	×10 ³ m s	s^{-1} .	(2009)	
(Mass of proton = 1.67×10^{-27} kg and h = 6.63×10^{-34} Js)										

(A)

0.032 nm

(B)

0.40 nm

*1.

The atomic nucleus contains:

(C)

2.5 nm

14.0 nm

(D)

- In Ionisation energy of He^+ is $19.6 \times 10^{-18} J$ atom⁻¹. The energy of the first stationary state (n = 1) of Li^{2+} is:
 - (A) $8.82 \times 10^{-17} \, \text{J} \, \text{atom}^{-1}$

- **(B)** $4.41 \times 10^{-16} \text{ J atom}^{-1}$
- (C) $-4.41 \times 10^{-17} \, \text{J} \, \text{atom}^{-1}$
- **(D)** $-2.2 \times 10^{-15} \, \text{J} \, \text{atom}^{-1}$
- **12.** A gas absorbs a photon of 355 nm and emits at two wavelengths. If one of the emission is at 680 nm, the other is at **(2011)**
 - (A) 1035 nm
- **(B)** 325 nm
- (C) 743 nm
- **(D)** 518 nm
- 13. The electrons, identified by quantum numbers $n \& \ell$, (i) n = 4, $\ell = 1$, (ii) n = 4, $\ell = 0$, (iii) n = 3, $\ell = 2$,
 - (iv) n = 3, $\ell = 1$ can be placed in order of increasing energy, from the lowest to highest, as:
 - (A) (iv) < (ii) < (iii) < (i)

(B) (ii) < (iv) < (i) < (iii)

(C) (i) < (iii) < (ii) < (iv)

- **(D)** (iii) < (i) < (iv) < (ii)
- **14.** The correct set of four quantum numbers of the valence electrons of Rubidium atom (Z = 37) is:
 - (A) 5, 0, 0, $+\frac{1}{2}$ (B) 5, 1, 0, $+\frac{1}{2}$ (C) 5, 1, 1, $+\frac{1}{2}$ (D) 5, 0, 1, $+\frac{1}{2}$ (2014)
- 15. Energy of an electron is given by $E = -2.178 \times 10^{-18} J \left(\frac{Z^2}{n^2} \right)$. Wavelength of light required to excite an

electron in an hydrogen atom from level $\,n=1$ to $\,n=2\,$ will be: $\left(h=6.62\times 10^{-34}\,\text{Js and }c=3.0\times 10^8\,\text{ms}^{-1}\right)$

(E) (2014)

(2012)

(A)
$$1.214 \times 10^{-7} \text{ m}$$

(B) $2.816 \times 10^{-7} \text{ m}$

(C)
$$6.500 \times 10^{-7} \text{ m}$$

(D) $8.500 \times 10^{-7} \text{ m}$