TD12-Intégration

Exercice 1.

- 1. La fonction $t\mapsto \frac{1}{1+t+t^n}$ est continue sur $[1,+\infty[$. L'intégrale est donc impropre en $+\infty$.
 - Si $n \ge 2$. Pour tout $t \in [1, +\infty)$ on a

$$1+t+t^n \ge t^n \quad \text{donc} \quad \frac{1}{1+t+t^n} \le \frac{1}{t^n}.$$

Les fonctions $t\mapsto \frac{1}{1+t+t^n}$ et $t\mapsto \frac{1}{t^n}$ sont continues, positives sur $[1,+\infty[$ et $\int_1^{+\infty}\frac{1}{t^n}dt$ est une intégrale de Riemann convergente car n>1. D'après le critère de comparaison pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty}\frac{1}{1+t+t^n}dt$ converge aussi.

• Si n = 1. Pour tout $t \in [1, +\infty[$ on a

$$1+t+t^n = 1+2t \le 3t$$
 donc $\frac{1}{1+t+t^n} \ge \frac{1}{3t}$.

Les fonctions $t \mapsto \frac{1}{1+t+t^n}$ et $t \mapsto \frac{1}{3t}$ sont continues, positives sur $[1,+\infty[$ et $\int_1^{+\infty} \frac{1}{3t} dt$ est, à un facteur non nul près, une intégrale de Riemann divergente donc divergence elle-même. D'après le critère de comparaison pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty} \frac{1}{1+t+t^n} dt$ diverge aussi.

• Si n = 0. Pour tout $t \in [1, +\infty)$ on a

$$1 + t + t^n = 2 + t \le 3t$$
 donc $\frac{1}{1 + t + t^n} \ge \frac{1}{3t}$.

Et on conclut comme précédemment que l'intégrale $\int_1^{+\infty} \frac{1}{1+t+t^n} dt$ diverge.

2. La fonction $t \mapsto \frac{\ln(t)}{\sqrt{t}}$ est continue sur $[1, +\infty[$. L'intégrale est donc impropre en $+\infty$. De plus, pour tout $t \ge e$ on a

$$\frac{\ln(t)}{\sqrt{t}} \ge \frac{1}{\sqrt{t}}.$$

Les fonctions $t\mapsto \frac{\ln(t)}{\sqrt{t}}$ et $t\mapsto \frac{1}{\sqrt{t}}$ sont continues, positives sur $[1,+\infty[$ et $\int_1^{+\infty}\frac{1}{\sqrt{t}}dt$ est une intégrale de Riemann divergente. D'après le critère de comparaison pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty}\frac{\ln(t)}{\sqrt{t}}dt$ diverge.

3. La fonction $t\mapsto \frac{1}{t^3\ln(t)}$ est continue sur $[2,+\infty[$. L'intégrale est donc impropre en $+\infty$. De plus, pour tout $t\ge 2$ on a

$$\frac{1}{t^3 \ln(t)} \le \frac{1}{\ln(2)t^3}.$$

Les fonctions $t\mapsto \frac{1}{t^3\ln(t)}$ et $t\mapsto \frac{1}{t^3\ln(2)}$ sont continues, positives sur $[2,+\infty[$ et $\int_2^{+\infty}\frac{1}{t^3\ln(2)}dt$ est, à un facteur près, une intégrale de Riemann convergente donc converge elle-même. D'après le critère de comparaison pour les intégrales de fonctions continues positives, on en déduit que $\int_2^{+\infty}\frac{1}{t^3\ln(t)}dt$ converge aussi.

Exercice 2.

1. La fonction $x \mapsto e^{-\sqrt{x^2 + x}}$ est continue sur $[0, +\infty[$. L'intégrale est donc impropre en $+\infty$. De plus, par croissance comparée, $\lim_{x \to +\infty} x^2 e^{-\sqrt{x^2 + x}} = 0$.

Donc
$$e^{-\sqrt{x^2+x}} = o_{x\to +\infty}\left(\frac{1}{x^2}\right)$$
.

Les fonctions $x \mapsto e^{-\sqrt{x^2+x}}$ et $x \mapsto \frac{1}{x^2}$ sont continues, positives sur $[1, +\infty[$ et $\int_1^{+\infty} \frac{1}{x^2} dx$ est une intégrale de Riemann convergente. D'après le critère de négligeabilité pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty} e^{-\sqrt{x^2+x}} dx$ converge aussi.

Enfin, $\int_0^1 e^{-\sqrt{x^2+x}} dx$ est bien définie car $x \mapsto e^{-\sqrt{x^2+x}}$ est continue sur [0,1]. Donc finalement, $\int_0^{+\infty} e^{-\sqrt{x^2+x}} dx$ converge.

 \triangle On ne peut pas appliquer directement le critère sur [0, +∞[car la fonction $x \mapsto \frac{1}{x^2}$ n'est pas continue sur [0, +∞[(elle n'est pas définie en 0!).

2. La fonction $x \mapsto \frac{\ln(x)}{\sqrt{x}}$ est continue et positive sur $[1, +\infty[$. L'intégrale est donc impropre en $+\infty$.

De plus :
$$\lim_{x \to +\infty} x^{\frac{3}{4}} \frac{\ln(x)}{\sqrt{x}} = +\infty$$
.

Donc
$$\frac{1}{x^{\frac{3}{4}}} = o_{x \to +\infty} \left(\frac{\ln(x)}{\sqrt{x}} \right)$$
.

1

Les fonctions $x \mapsto \frac{\ln(x)}{\sqrt{x}}$ et $x \mapsto \frac{1}{x^{\frac{3}{4}}}$ sont continues, positives sur $[1, +\infty[$ et $\int_{1}^{+\infty} \frac{1}{x^{\frac{3}{4}}} dx$ est une intégrale de Riemann divergente. D'après le critère de négligeabilité pour les intégrales de fonctions continues positives, on en déduit que $\int_{1}^{+\infty} \frac{\ln(x)}{\sqrt{x}} dx$ diverge aussi.

3. La fonction
$$t \mapsto e^{\frac{1}{t}}$$
 est continue sur $[1, +\infty[$. L'intégrale est donc impropre en $+\infty$. Par composition de limite :

$$\lim_{t \to +\infty} t e^{\frac{1}{t}} = +\infty$$

donc
$$\frac{1}{t} = o_{t \to +\infty} \left(e^{\frac{1}{t}} \right)$$
.

Les fonctions $t \mapsto e^{\frac{1}{t}}$ et $t \mapsto \frac{1}{t}$ sont continues, positives sur $[1, +\infty[$ et $\int_1^{+\infty} \frac{1}{t} dt$ est une intégrale de Riemann divergente. D'après le critère de négligeabilité pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty} e^{\frac{1}{t}} dt$ diverge aussi.

4. Soit $k \in \mathbb{N}$. La fonction $t \mapsto t^k e^{-t^2}$ est continue sur $[0, +\infty[$. L'intégrale est donc impropre en $+\infty$.

De plus, par croissance comparée, $\lim_{t \to +\infty} t^2 t^k e^{-t^2} = 0$

Donc
$$t^k e^{-t^2} = o_{t \to +\infty} \left(\frac{1}{t^2}\right)$$
.

Les fonctions $t \mapsto t^k e^{-t^2}$ et $t \mapsto \frac{1}{t^2}$ sont continues, positives sur $[1, +\infty[$ et $\int_1^{+\infty} \frac{1}{t^2} dt$ est une intégrale de Riemann convergente. D'après le critère de négligeabilité pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty} t^k e^{-t^2} dt$ converge aussi.

Comme de plus, $t \mapsto t^k e^{-t^2}$ est continue sur [0,1] l'intégrale $\int_0^1 t^k e^{-t^2} dt$ existe.

Finalement $\int_0^{+\infty} t^k e^{-t^2} dt$ converge donc.

⚠On ne peut pas appliquer directement le critère sur $[0, +\infty[$ car la fonction $t \mapsto \frac{1}{t^2}$ n'est pas continue sur $[0, +\infty[$ (elle n'est pas définie en 0!).

5. La fonction $t \mapsto \frac{1+\ln(t)}{t+t^2+3t^4}$ est continue sur $[1,+\infty[$. L'intégrale est donc impropre en $+\infty$.

De plus, par croissance comparée, $\lim_{t \to +\infty} t^2 \frac{1 + \ln(t)}{t + t^2 + 3t^4} = 0$.

Donc
$$\frac{1+\ln(t)}{t+t^2+3t^4} = o_{t\to+\infty} \left(\frac{1}{t^2}\right)$$

Les fonctions $t\mapsto \frac{1+\ln(t)}{t+t^2+3t^4}$ et $t\mapsto \frac{1}{t^2}$ sont continues, positives sur $[1,+\infty[$ et $\int_1^{+\infty}\frac{1}{t^2}dt$ est une intégrale de Riemann convergente. D'après le critère de négligeabilité pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty}\frac{1+\ln(t)}{t+t^2+3t^4}dt$ converge aussi.

6. Exactement comme la question 4.

Exercice 3.

1. La fonction $t \mapsto \frac{t^2 + 2t}{t^4 + 1}$ est continue sur $[0, +\infty[$. L'intégrale est donc impropre en $+\infty$. De plus, par équivalent usuel et compatibilité des équivalents avec le quotient on a :

$$\frac{t^2 + 2t}{t^4 + 1} \underset{t \to +\infty}{\sim} \frac{1}{t^2}.$$

Les fonctions $t\mapsto \frac{t^2+2t}{t^4+1}$ et $t\mapsto \frac{1}{t^2}$ sont continues, positives sur $[1,+\infty[$. D'après le critère d'équivalence pour les intégrales de fonctions continues positives, on en déduit que et $\int_1^{+\infty} \frac{1}{t^2} dt$ et $\int_1^{+\infty} \frac{t^2+2t}{t^4+1} dt$ sont de même nature. Comme $\int_1^{+\infty} \frac{1}{t^2} dt$ est une intégrale de Riemann convergente., $\int_1^{+\infty} \frac{t^2+2t}{t^4+1} dt$ converge aussi.

Comme de plus, $t\mapsto \frac{t^2+2t}{t^4+1}$ est continue sur [0,1] l'intégrale $\int_0^1 \frac{t^2+2t}{t^4+1} dt$ existe.

Finalement $\int_0^{+\infty} \frac{t^2 + 2t}{t^4 + 1}$ converge donc.

 $\underline{\wedge}$ On ne peut pas appliquer directement le critère sur $[0, +\infty[$ car la fonction $t \mapsto \frac{1}{t^2}$ n'est pas continue sur $[0, +\infty[$ (elle n'est pas définie en 0!).

- 2. La fonction $x \mapsto \frac{1}{x^2 x + 1}$ est continue sur \mathbb{R} car pour tout réel x, $x^2 x + 1 > 0$. L'intégrale est donc impropre en $-\infty$ et en $+\infty$.
 - Étude de $\int_{-\infty}^{0} \frac{1}{x^2 x + 1} dx$.
 Par équivalent usuel et compatibilité des équivalents avec le quotient on a :

$$\frac{1}{x^2 - x + 1} \underset{x \to -\infty}{\sim} \frac{1}{x^2}.$$

Les fonctions $x \mapsto \frac{1}{x^2 - x + 1}$ et $x \mapsto \frac{1}{x^2}$ sont continues, positives sur $]-\infty,-1]$. D'après le critère d'équivalence pour les intégrales de fonctions continues positives, on en déduit que $\int_{-\infty}^{-1} \frac{1}{x^2} dx$ et $\int_{-\infty}^{-1} \frac{1}{x^2 - x + 1} dx$ sont de même nature. Comme $\int_{-\infty}^{-1} \frac{1}{x^2} dx$ est une intégrale de Riemann convergente., $\int_{-\infty}^{-1} \frac{1}{x^2 - x + 1} dx$ converge aussi.

Comme de plus, $x \mapsto \frac{1}{x^2 - x + 1}$ est continue sur [-1,0] l'intégrale $\int_{-1}^{0} \frac{1}{x^2 - x + 1} dx$ existe. Finalement $\int_{-\infty}^{0} \frac{1}{x^2 - x + 1} dx$ converge donc.

- On montre de la même façon que $\int_0^{+\infty} \frac{1}{x^2 x + 1} dx$ converge.
- Comme $\int_{-\infty}^{0} \frac{1}{x^2 x + 1} dx$ et $\int_{0}^{+\infty} \frac{1}{x^2 x + 1} dx$ convergent alors $\int_{-\infty}^{+\infty} \frac{1}{x^2 x + 1} dx$
- 3. La fonction $t \mapsto \frac{\frac{1}{t}}{e^{\frac{1}{t}}-1}$ est continue sur $[1, +\infty[$. L'intégrale est donc impropre en $+\infty$.

On sait par équivalent usuel:

$$e^{\frac{1}{t}}-1 \underset{t\to+\infty}{\sim} \frac{1}{t}.$$

D'où:

$$\frac{\frac{1}{t}}{e^{\frac{1}{t}}-1} \sim 1.$$

Les fonctions $t\mapsto \frac{\frac{1}{t}}{e^{\frac{1}{t}}-1}$ et $t\mapsto 1$ sont continues, positives sur $[1,+\infty[$. D'après le critère d'équivalence pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty} e^{\frac{1}{t}} dt$ et $\int_1^{+\infty} 1dt$ sont de même nature. Comme cette dernière est une intégrale divergente, $\int_1^{+\infty} \frac{\frac{1}{t}}{e^{\frac{1}{t}}-1} dt$ diverge aussi.

4. La fonction $t \mapsto \sqrt{\frac{t}{2t^2+1}}$ est continue sur $[0, +\infty[$. L'intégrale est donc impropre en $+\infty$. De plus, on vérifie à l'aide de la caractérisation que l'on a :

$$\sqrt{\frac{t}{2t^2+1}} \underset{t \to +\infty}{\sim} \frac{1}{\sqrt{2t}}.$$

Les fonctions $t\mapsto \sqrt{\frac{t}{2t^2+1}}$ et $t\mapsto \frac{1}{\sqrt{2t}}$ sont continues, positives sur $[c,+\infty[$ pour tout c>0. D'après le critère d'équivalence pour les intégrales de fonctions continues positives, on en déduit que et $\int_c^{+\infty} \sqrt{\frac{t}{2t^2+1}} dt$ et $\int_c^{+\infty} \frac{1}{\sqrt{2t}} dt$ sont de même nature. Comme cette dernière est une intégrale divergente, $\int_c^{+\infty} \sqrt{\frac{t}{2t^2+1}} dt$ diverge aussi pour tout c>0. Donc $\int_0^{+\infty} \sqrt{\frac{t}{2t^2+1}} dt$ diverge.

5. La fonction $t \mapsto \ln\left(1 + \frac{1}{t^2}\right)$ est continue sur $[1, +\infty[$. L'intégrale est donc impropre en $+\infty$. De plus par équivalent usuel, on a :

$$\ln\left(1+\frac{1}{t^2}\right) \underset{t\to+\infty}{\sim} \frac{1}{t^2}.$$

Les fonctions $t\mapsto \ln\left(1+\frac{1}{t^2}\right)$ et $t\mapsto \frac{1}{t^2}$ sont continues, positives sur $[1,+\infty[$. D'après le critère d'équivalence pour les intégrales de fonctions continues positives, on en déduit que et $\int_1^{+\infty} \ln\left(1+\frac{1}{t^2}\right) dt$ et $\int_1^{+\infty} \frac{1}{t^2} dt$ sont de même nature. Comme cette dernière est une intégrale convergente, $\int_1^{+\infty} \ln\left(1+\frac{1}{t^2}\right) dt$ converge aussi.

Exercice 4.

1. Soit x > 0. la fonction $t \mapsto \frac{e^{-t}}{t}$ est continue sur $[x, +\infty[$ donc l'intégrale est impropre en $+\infty$. Par croissance comparée, on sait que :

$$\lim_{t \to +\infty} t^2 \times \frac{e^{-t}}{t} = \lim_{t \to +\infty} t e^{-t} = 0.$$

Ainsi: $\frac{e^{-t}}{t} = o_{t \to +\infty} \left(\frac{1}{t^2}\right)$.

De plus, les fonctions $x \mapsto \frac{1}{t^2}$ et $t \mapsto \frac{e^{-t}}{t}$ sont continues et positives sur $[x, +\infty[$. D'après le théorème de comparaison pour les intégrales de fonctions continues positives, comme l'intégrale de Riemann $\int_{x}^{+\infty} \frac{1}{t^2} dt$ converge alors J(x) converge aussi.

2. (a) Soit $A \in [x, +\infty[$. On a:

$$\forall t \in [x, +\infty[, \quad \frac{e^{-t}}{t^2} \le e^{-t} \times \frac{1}{x^2}.$$

Donc:

$$\int_{x}^{A} \frac{e^{-t}}{t^{2}} dt \le \frac{1}{x^{2}} \int_{x}^{A} e^{-t} dt$$

$$\le \frac{1}{x^{2}} (e^{-x} - e^{-A})$$

$$\le \frac{1}{x^{2}} e^{-x}.$$

En particulier, la fonction $A \mapsto \int_x^A \frac{e^{-t}}{t^2} dt$ est croissante et majorée donc possède une limite en $+\infty$. On en déduit donc que l'intégrale $\int_x^{+\infty} \frac{e^{-t}}{t^2} dt$ converge et vérifie :

$$\int_{x}^{+\infty} \frac{e^{-t}}{t^2} dt \le \frac{1}{x^2} e^{-x}.$$

On en déduit l'encadrement :

$$0 \le \frac{\int_x^{+\infty} \frac{e^{-t}}{t^2} dt}{\frac{e^{-x}}{x}} \le \frac{1}{x}.$$

Ainsi:

$$\lim_{x \to +\infty} \frac{\int_x^{+\infty} \frac{e^{-t}}{t^2} dt}{\frac{e^{-x}}{x}} = 0.$$

Cela signifie: $\int_{x}^{+\infty} \frac{e^{-t}}{t^{2}} dt = o_{x \to +\infty} \left(\frac{e^{-x}}{x} \right)$

(b) Soient x > 0 et A > x. Les fonctions $u: t \mapsto \frac{1}{t}$ et $v: t \mapsto -e^{-t}$ sont de classe C^1 sur [x, A]. Par intégration par parties, on a donc :

$$\int_{x}^{A} \frac{e^{-t}}{t} dt = \int_{x}^{A} u(t)v'(t)dt$$

$$= [u(t)v(t)]_{x}^{A} - \int_{x}^{A} u'(t)v(t)dt$$

$$= -\frac{e^{-A}}{A} + \frac{e^{-x}}{x} - \int_{x}^{A} \frac{e^{-t}}{t^{2}} dt.$$

En faisant tendre A vers $+\infty$ et avec la question précédente on obtient donc :

$$J(x) = \frac{e^{-x}}{x} - \int_{x}^{+\infty} \frac{e^{-t}}{t^{2}} dt = \frac{e^{-x}}{x} + o_{x \to +\infty} \left(\frac{e^{-x}}{x}\right).$$

D'après la caractérisation de la relation d'équivalence, on a bien :

$$J(x) \underset{x \to +\infty}{\sim} \frac{e^{-x}}{x}.$$