

Polymer, Tantalum and Niobium Oxide Capacitors

IMPORTANT INFORMATION/DISCLAIMER

All product specifications, statements, information and data (collectively, the "Information") in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on AVX's knowledge of typical operating conditions for such applications, but are not intended to constitute and AVX specifically disclaims any warranty concerning suitability for a specific customer application or use.

ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY.

The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by AVX with reference to the use of AVX's products is given without regard, and AVX assumes no obligation or liability for the advice given or results obtained.

Although AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Unless specifically agreed to in writing, AVX has not tested or certified its products, services or deliverables for use in high risk applications including medical life support, medical device, direct physical patient contact, water treatment, nuclear facilities, weapon systems, mass and air transportation control, flammable environments, or any other potentially life critical uses. Customer understands and agrees that AVX makes no assurances that the products, services or deliverables are suitable for any high-risk uses. Under no circumstances does AVX warrant or guarantee suitability for any customer design or manufacturing process.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

Polymer, Tantalum and Niobium Oxide Capacitors

Table of Contents

SECTION 1: SOLID TANTALUM & NIOBIUM OXIDE CHIP CAPACITORS	SECTION 2: SOLID CONDUCTIVE POLYMER ELECTROLYTIC CHIP CAPACITORS	
Tantalum and Niobium Oxide Products Introduction and Road Map3	TCJ Series – Standard and Low Profile - J-Lead	187
Resin Molded Solid Tantalum Chip, J-Lead	TCM Series - Multianode Ultra Low ESR - J-Lead	200
TAJ - Standard & Low Profile	TCN Series – High CV/cc - Undertab	204
TAJ Series – Automotive Product Range	J-CAP™ Series – Highest Joules/cc - Undertab	210
F92 Series – Low Profile	F38 Series - Miniature - Undertab	
	TCO Series – High Temperature Automotive Polymer	
F93 Series	Chip Capacitors	222
F93-AJ6 Series – Automotive Product Range35	TCQ Series - Automotive - J-Lead	226
High CV Resin Molded Solid Tantalum Chip	SECTION 3: LEADED TANTALUM	
TLJ Series - J-Lead40	Introduction	
TLN Series - Undertab46	Dipped Radial Capacitors	
TLN PulseCap™ Series – High Capacitance - Undertab	TAP/TEP Series Wire Form Outline	232
F98 Series - Undertab54	TAP Series	
F98-AS1 Series – Fused Tantalum Chip - Undertab58	TEP Series	
F98-AJ6 Series – Resin-Molded Chip, High CV Facedown -	TAP/TEP Series Tape & Reel	239
Automotive Range61	SECTION 4: TECHNICAL SUMMARY AND	
Low ESR Resin Molded Solid Tantalum Chip, J-Lead	APPLICATION GUIDELINES	
TPS Series - Standard & Low Profile	Introduction	241
TPS Series – Automotive Product Range77	Section 1: Electrical Characteristics And Explanation Of Terms	243
F91 Series	Section 2: A.C. Operation, Ripple Voltage And Ripple Current	248
F91-AJ6 Series – Automotive Product Range	Section 3: Reliability And Calculation Of Failure Rate	251
TPM Series - Multianode, Ultra Low ESR	Section 4: Application Guidelines for Tantalum and Oxicap® Capacitors	254
	Section 5: Terminations	
High Performance Resin Molded Solid Tantalum Chip	Section 6: Mechanical And Thermal Properties Of Capacitors	
TRJ Series – Enhanced Reliability Professional &	Section 7: Epoxy Flammability	
Automotive Grade - J-Lead97	Section 8: Qualification Approval Status	
F97 Series - Enhanced Reliability Professional &	Product Safety and Environmental Information Data	261
Automotive Grafe - J-Lead	Tantalum & Niobium Oxide Capacitors	060
F97-HT3 Series - High Temperature (135°C max) - J-Lead	(excluding F-series) – Tape & Reel Packaging	
TRM Series – Enhanced Reliability Professional Grade Multianode - J-Lead	F-Series Capacitors - Tape & Reel Packaging	266
	TAP/TEP TECHNICAL SUMMARY AND	
TMJ SMD S1gma™ Series - LAT* Professional Grade - J-Lead	APPLICATION GUIDELINES	
THJ Series – High Temperature (175°C max.) - J-Lead		
THJ Extended Series – High Temperature (200°C max.) - J-Lead133	Section 2: A.c. Operation — Ripple Voltage And Ripple Current	
TACmicrochip®	Section 3: Reliability And Calculation Of Failure Rate	
TAC Series – Standard and Low Profile TACmicrochip®137	Section 4: Application Guidelines For Tantalum Capacitors	
TLC Series - High CV TACmicrochip®144	Section 5: Mechanical And Thermal Properties, Leaded Capacitors Questions and Answers	
TPC Series – Low ESR TACmicrochip®149	·	
Conformal Coated Tantalum Chip	Software Tools	280
F95 Series - Standard154	Products Listing	281
F95 Audio Series – Optimized for Audio Applications	Available Range of Sample Kits	282
F72/F75 Series – Low Profile and High CV	*LAT = Lot Acceptance Tested	
Resin Molded OxiCap® Solid Niobium Oxide Chip, J-Lead		
NOJ Series – Standard and Low Profile OxiCap®165		
NLJ Series – High CV OxiCap®172		

Section 1: Solid Tantalum & Niobium Oxide Chip Capacitors

Tantalum and Niobium Oxide Products Introduction and Road Map

APPLICATIONS

AVX - FOCUS ON QUALITY

AVX is committed to Total Customer Satisfaction by meeting or exceeding expectations in product performance and product innovation while providing comprehensive technical support combined with matchless service.

AVX Corporation Goals:

- To provide world class service in the manufacture and supply of electronic components, while maintaining a positive return on investment.
- Consistently supplying product of the highest quality with exceptional service throughout the entire supply chain.
- New or improved products, processes or services will be qualified to established standards of quality and reliability.

The above objectives shall be achieved by the following codes of practice:

- Continuous evaluation of all customer expectations, bringing to bear all AVX resources to meet their future needs.
- 2. Continually fostering and promoting a culture of continuous improvement through training and empowered participation of employees at all levels of the company.
- 3. Continuous Process Improvement using sound engineering principles to enhance existing equipment, materials and processes. This includes the application of the science of SPC focused on improving the Process Capability Index, Cpk.

All Tantalum division plants are approved to ISO 9001:2015 quality standard; IATF 16949:2016 (Automotive Quality System Requirements) and ISO 14001:2015 environmental standards. Defined series of conductive polymer, tantalum and NbO OxiCap® capacitors meet the requirements of AEC-Q200.

Plant Certif	fications	Į:	SO SO	IATF	ESA	IECQ	OH SAS
Site	Location	9001	14001	16949	ESCC	CECC	18001
Adogawa	Japan	✓	✓	✓			
Lanskroun	Czech	✓	✓	✓	✓	✓	
San Salvador	El Salvador	✓	✓	✓			✓

Please see AVX web site www.avx.com for the latest certification status.

AVX Corporation (NYSE: AVX) with headquarters in Fountain Inn, South Carolina, USA, is a leading global supplier of passive electronic components.

AVX solid electrolytic capacitors are produced in major world regions: Lanskroun, Czech Republic (Europe), San Salvador, El Salvador (Americas) and Adogawa in Japan (Asia), giving full access to our global customers and enabling optimum service for our regional customer base. High reliability specilised tantalums are produced in AVX Biddeford, Maine,US.

Introduction

AVX Tantalum

The Tantalum division of AVX produces a wide range of solid electrolytic capacitors. Typically, the construction consists of a 1st electrode (anode), an insulating layer (dielectric) and a 2nd electrode (cathode) system.

The anode is manufactured either from pure tantalum or niobium oxide powder. **Tantalum** is an element extracted from ores found alongside tin and niobium deposits; the major sources of supply are located in Brazil, Africa and Australia.

Since December 1st, 2011, AVX has exclusively sourced the tantalum powder and wire used to manufacture its tantalum capacitors from smelters whose compliance with the Electronic Industry Code of Conduct (EICC) and the Global e-Sustainability Initiative (GeSI)

Conflict-Free Smelter program has been verified. **Niobium oxide** is a ceramic material that can be refined to the same capacitor grade powder morphology as high purity tantalum powder, enabling capacitor anode manufacture by identical processes.

The **dielectric** layer is an oxide of the anodic material – tantalum or niobium pentoxide. These oxides can be formed in very thin layers, which, combined with their unique insulating properties, enables very high and stable capacitance values to be achieved.

The **cathode** is made from manganese dioxide, a semiconducting material (for standard tantalum and niobium oxide solid electrolytic capacitors) or conductive polymer (for polymer solid electrolytic capacitors).

AVX is world wide leading Tantalum capacitor manufacturer with widest range of capacitors from smallest to large case sizes, from consumer to automotive, medical and aerospace level applications. AVX has a leading market position in all world regions. Call us first - **AVX your global partner.**

TECHNOLOGY TRENDS

Miniaturization (downsizing in both real estate and height profile) while retaining high capacitance has been the most significant driver of capacitor requirements for the latest electronic hardware designs. Solid electrolytic capacitors are one of the best technologies to offer very high capacitance value in small dimensions.

The amount of capacitance achievable in solid electrolytic capacitors is directly related to the characteristics of the powder used to manufacture the anode. Capacitance x voltage per gram (CV/g) is the measure used to define the volumetric efficiency of a powder. The following graph shows how the capability in CV/g has steadily increased over time, allowing the production of greater capacitance values within the same physical outline. These powder improvements have been achieved through close development with material suppliers. AVX are committed to driving the available technology forward, demonstrated by extended ratings continually being introduced in all technologies, including conductive polymer tantalum, TACmicrochip®, and NbO OxiCap®.

Tantalum Powder CV/g

The next significant driver is equivalent series resistance (ESR) reduction. As DC-DC converter and power supply designs increase in power density, they require lower ESR output capacitors to control ripple. AVX maintains a continuous ESR improvement program to ensure low ESR capacitor capability is maintained across the widest operating voltage range to keep pace with emerging industry requirements.

*Niobium Oxide Capacitors are manufactured and sold under patent license from Cabot Corporation, Boyertown, Pennsylvania U.S.A.

Solid Electrolytic Capacitors Road Map

		Commercial	Professional & Automotive	High-Temp	CECC	COTS+*	DLA*	MIL-PRF*	Space Level*	Medical*
		SMD Conv	entional (Mn	O ₂ Cathode)	Tantalum S	Solid Electrol	ytic Chip C	apacitors		
	J-lead	TAJ Low Profile	TAJ Automotive TRJ (auto) Professional	F97-HT3 135°C (auto)	TAJ CECC 30801-011 30801-005		DLA 95158		TAJ ESCC	T4J
Standard	termination	F93 F92 Low Profile	F93-AJ6 (auto) F97 (auto)	THJ 175°C (auto) THJ 200°C		TBJ	DLA 07016	- CWR11	3012-001	HRC4000
	Conformal	F95								
	J-lead	TPS Low ESR	TPS Automotive	THJ 175°C		ТВЈ	DLA 95158		TBJ SRC9000	
Low ESR	termination	F91	F91-AJ6 (auto) TRJ (auto) Low ESR	(auto)		Low ESR	DLA 07016		TES ESCC 3012-004	
Ultra Low ESR Multianode	J-lead termination	TPM Ultra Low ESR	TRM (auto)			TBM Ultra Low ESR			TBM SRC9000 TES ESCC 3012-004	
Low DCL	J-lead termination	TMJ Low DCL	TMJ S1gma™							
	J-lead termination	TLJ F98								
High CV	Undertab termination	TLN Undertab TLN PulseCap™								
	Confomal	F72/75								
	Standard					TAZ		CWR09	TAZ SRC9000 CWR	TAZ HRC5000 T4Z
CWR 09, 19, 29*	Low ESR					TAZ		High CV CWR29	"T" Level TAZ SRC9000 CWR	HRC4000 TAZ HRC5000 T4Z
Fus	l sed	F98-AS1							"T" Level	HRC4000
Mod		Fused				TCP Ultra Low ESR	DLA 09009		TCP SRC9000	TCP HRC5000
Hermetic	Package*		THH	THH 230°C		THH				
		SMD Con	ductive Po		alum Solid	l Electrolyti	c Chip Ca	pacitors		
Standard	J-lead termination	TCJ	TCQ Automotive	TCO 150°C (auto)		ТСВ			TCS ESCC 3012-006	
Ultra low ESR Multianode	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TCM Multianode		(2310)		TCS				
High Energy	Undertab	J-CAP™ TCN TCN								
Low Profile Miniature	termination	Undertab F38								
Hermetic	Package*		тсн			тсн			тсн	

^{*} see High Reliability Tantalum Catalog

Note: For specific requirements and questions please contact AVX

under development

Solid Electrolytic Capacitors Road Map

		Commercial	Professional & Automotive	High-Temp	CECC	COTS+*	DLA*	MIL-PRF*	Space Level*	Medical*
		TAC	microchip®	SMD Tantal	um Solid El	ectrolytic Ch	nip Capacito	ors		
Standard	microchip leadless	TAC				TBC		CWR15	TBC SRC9000	TBC HRC5000 TBC HRC6000 T4C HRC4000
High CV	design	TLC								
Low ESR		TPC								
		OxiCap®	SMD Nio	bium Oxid	le Solid El	lectrolytic	Chip Cap	acitors		
Standard		NOJ	NO.							
Low ESR	J-lead termination	NLJ	NOJ							
Low ESR Multianode		NOM	NOM							
		Radia	Leaded Tai	ntalum Solid	Electrolytic	Capacitors	(Resin Dip	oed)		
Resin Dipped	Radial leads	TAP/TEP Radial			TAP CECC 30201-032					

Wet Electrolytic Tantalum Capacitors

	Tantalum Wet Electrolytic Capacitors												
Wet*	Axial leads		TWD	TWA-Y 200°C TWC-Y 200°C	TWA	TWA	DLA 93026	M39006	TWC SRW9000				
				TWA-X 230°C		TWS	DLA 13017		TWS SRW9000				
Wet* M	lodules				TWM								

^{*}see High Reliability Tantalum Catalog

Note: For specific requirements and questions please contact AVX

AVX SMD SOLID ELECTROLYTIC CAPACITORS SERIES AND CONSTRUCTIONS

AVX SMD solid electrolytic capacitors family consists of two types of anode materials (standard Tantalum and unique Niobium Oxide) and two types of cathode materials (conventional MnO2 and Conductive polymer) in several styles of capacitor constructions.

AVX also offers wide range of tradicional leaded solid electrolytic tantalum capacitors and leaded Wet Electrolytic tantalums.

Case sizes of AVX Capacitors are denoted by single letter or symbol in the part number. Please note that the case size letter is always related to the specific product series. For more details please loog at the specific series information, or general guides related or contact AVX.

Standard and Low Profile Tantalum Capacitors

APPLICATIONS

- · General Low Power DC/DC and LDO
- Entertainment / Infotainment Systems

· General Purpose SMT Chip Tantalum Series

17 Case Sizes Available, Standard and Low Profile

100% Surge Current Tested

Down to 1mm Maximum Height CV Range: 0.10 - 2200µF / 2.5 - 50V

Height Restricted Design

J-Lead Construction

LEAD-FREE COMPONENT

MARKING

A, B, C, D, E, F, H, K, S, T, U, V, W, X, Y CASE

STANDARD CASE DIMENSIONS:

FEATURES

millimeters (inches)

Code	Code	Metric	(0.008)	-0.10 (0.004)	-0.10 (0.004)	W ₁ ±0.20 (0.008)	-0.20 (0.012)	S Min.
Α	1206	3216-18	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
С	2312	6032-28	6.00 (0.236)	3.20 (0.126)	2.60 (0.102)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
U	2924	7361-43	7.30 (0.287)	6.10 (0.240)	4.10 (0.162)	3.10 (0.122)	1.30 (0.051)	4.40 (0.173)
V	2924	7361-38	7.30 (0.287)	6.10 (0.240)	3.55 (0.140)	3.10 (0.122)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only

LOW PROFILE CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H Max.	W1±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
F	2312	6032-20	6.00 (0.236)	3.20 (0.126)	2.00 (0.079)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
Н	1210	3528-15	3.50 (0.138)	2.80 (0.110)	1.50 (0.059)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
К	1206	3216-10	3.20 (0.126)	1.60 (0.063)	1.00 (0.039)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
Р	0805	2012-15	2.05 (0.081)	1.35 (0.053)	1.50 (0.059)	1.00 ±0.10 (0.039±0.004)	0.50 (0.020)	0.85 (0.033)
R	0805	2012-12	2.05 (0.081)	1.30 (0.051)	1.20 (0.047)	1.00 ±0.10 (0.039±0.004)	0.50 (0.020)	0.85 (0.033)
S	1206	3216-12	3.20 (0.126)	1.60 (0.063)	1.20 (0.047)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
Т	1210	3528-12	3.50 (0.138)	2.80 (0.110)	1.20 (0.047)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
W	2312	6032-15	6.00 (0.236)	3.20 (0.126)	1.50 (0.059)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
Х	2917	7343-15	7.30 (0.287)	4.30 (0.169)	1.50 (0.059)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
Υ	2917	7343-20	7.30 (0.287)	4.30 (0.169)	2.00 (0.079)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
W₁ dime	ension applie	s to the terr	nination width fo	r A dimensional are	a only.			

HOW TO ORDER C

Case Size Type See table above

TAJ

figures 3rd digit (number of zeros

106

Capacitance Code pF code: 1st two digits represent significant represents multiplier to follow)

М

Tolerance $K = \pm 10\%$ $M = \pm 20\%$

Rated DC Voltage

035

002 = 2.5 Vdc004 = 4Vdc006 = 6.3Vdc 010 = 10Vdc 016 = 16 Vdc020 = 20Vdc 025 = 25Vdc 035 = 35Vdc 050 = 50Vdc

Packaging R = Pure Tin 7" Reel S = Pure Tin 13" Reel A = Gold Plating 7" Reel B = Gold Plating 13" Reel H = Tin Lead 7" Reel K = Tin Lead 13" Reel H, K = Non RoHS A, B, H, K = please contact . manufacturer

R

NJ

Specification Suffix NJ = Standard Suffix

Additional characters may be added for special requirements

V = Dry pack Option (selected ratings only)

TECHNICAL SPECIFICATIONS

Technical Data:		All technic	cal data rela	ate to an ar	nbient tem	perature of	+25°C				
Capacitance Range:		0.10 μF to	2200 µF								
Capacitance Tolerance:		±10%; ±20	1%								
Rated Voltage (V _R)	≤ +85°C:	2.5	4	6.3	10	16	20	25	35	50	
Category Voltage (V _c)	≤ +125°C:	1.7	2.7	4	7	10	13	17	23	33	
Surge Voltage (V _s)	≤ +85°C:	3.3	5.2	8	13	20	26	32	46	65	
Surge Voltage (V _s)	≤ +125°C:	2.2	3.4	5	8	13	16	20	28	40	
Temperature Range:		-55°C to +	125°C				•				
Reliability:		1% per 10	00 hours at	85°C, V _R w	ith 0.1Ω/V	series imp	edance, 60	% confiden	ce level		
Qualification:		CECC 308	01 - 005 is:	sue 2 EIA 5	35BAAC fo	r standard	case sizes				
Termination Finished:		Sn Plating	(standard)	, Gold and	SnPb Platir	ng upon re	quest				
		For AEC-Q	200 availa	oility, pleas	e contact A	AVX					

STANDARD TANTALUMS CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance				Rated vo	oltage DC (V _R)	to 85°C			
μF	Code	2.5V (e)	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)
0.10	104								Α	Α
0.15	154								Α	A/B
0.22	224								Α	A/B
0.33	334								Α	A/B
0.47	474							Α	A/B	A/B/C
0.68	684							Α	A/B	A/B/C
1.0	105					Α	Α	Α	A/B	A/B/C
1.5	155				Α	Α	Α	A/B	A/B/C	B/C/D
2.2	225			Α	Α	A/B	A/B	A/B	A/B/C	B/C/D
3.3	335			Α	Α	A/B	A/B	A/B/C	B/C	C/D
4.7	475			Α	A/B	A/B	A/B/C	A/B/C	B/C/D	C/D
6.8	685			A/B	A/B	A/B/C	A/B/C	B/C	C/D	C/D
10	106		Α	A/B	A/B/C	A/B/C	B/C	B/C/D	C/D/E	D/E/V
15	156		A	A/B	A/B/C	A/B/C	B/C/D	C/D	C/D	D/E/V
22	226		Α	A/B/C	A/B/C	A ^(M) /B/C/D	B/C/D	C/D	D/E	V
33	336	Α	A/B	A/B/C	A/B/C/D	B/C/D	C/D	C/D/E	D/E/V	
47	476	Α	A/B	A/B/C/D	B/C/D	C/D	C/D/E	D/E	D/E/V	
68	686	Α	A/B	B/C/D	B/C/D	C/D	C(M)/D/E	D/E/V	V	
100	107	A/B	A/B/C	B/C/D	B/C/D/E	C/D/E	D/E/V	E/V		
150	157	В	B/C	B(M)/C/D	C/D/E	D/E/V	E/V	V ^(M)		
220	227	B/D	B/C/D	C/D/E	C/D/E	D ^(M) /E/V				
330	337	D	C/D	C/D/E	D/E/V	E ^(M)				
470	477	C/D	C/D/E	D/E/V	E/U/V					
680	687	C/D/E	D/E	D/E/V	E ^(M) /V ^(M)					
1000	108	DM/E	D/E/V	E ^(M) /V ^(M)						
1500	158	D/E/V ^(M)	E/V ^(M)							
2200	228	V ^(M)								

LOW PROFILE TANTALUMS CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capa	citance				Rated vo	oltage DC (V _R)) to 85°C			
μF	Code	2.5V (e)	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)
0.10	104						R/S		R/S	S
0.15	154						R/S	R	R/S	S
0.22	224						R/S	R	R/S	P/R/S
0.33	334						R/S	R	R/S	P/R ^(M) /S/T
0.47	474						R/S	R/S	R/S/T	S/T
0.68	684					R/S	R/S/T	R/S	P/S/T	
1.0	105				R/S	R/S/T	R/S/T	P/R/S	P/S/T	W
1.5	155			R/S	R/S	R/S	P/R/S/T	P/S/T	T	W
2.2	225		R/S	R/S	R/S	R/S/T	P/R/S/T	T	T	W
3.3	335		R/S	R/S	K/R/S/T	R/S/T	T	T/W	W	Υ
4.7	475	R	R/S	R/S/T	R/S/T	K/P/S/T	T	T/W	W	X/Y
6.8	685	R	R/S/T	R/S/T	P/R/S/T	S/T	T	W	Υ	Υ
10	106	R/S	R/S/T	P/R/S/T	K/P/RM/S/T	T/W	W	W	X/Y	
15	156	R	R/S/T	K/P/R/S/T	S/T/W	T ^(M) /W	W	Υ	Υ	
22	226	P/R	K/P/R/S/T	K/PM/S/T/W	T/W	W	W/Y	F/Y	Υ	
33	336	K/P/S	K/P ^(M) /S/T/W	T/W	W	W/Y	X/Y	F/Y		
47	476	P ^(M) /S	T/W	T/W	H/W/Y	W/X/Y	X/Y	Υ		
68	686	T	T/W	W	W/Y	F/X/Y	Υ			
100	107	T/W	T ^(M) /W	W/Y	W/X/Y	F(M)/Y				
150	157	TM/W	W/Y	W/X/Y	F/XM/Y	Y ^(M)				
220	227	W/Y	W/X/Y	F/X/Y	Υ					
330	337	W ^(M) /Y	F/X/Y	Υ						
470	477	F/Y	Υ	Υ						
680	687	Υ	Y ^(M)							
1000	108	Y ^(M)								

Released ratings (M tolerance only)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

Standard and Low Profile Tantalum Capacitors

AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF	ESR Max.	100kHz	z RMS Curr	ent (mA)	MOL
Part No.	Size	. (μF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (Ω)	25°C	85°C	125°C	MSL
TA 10475+000 #N11		4.7	0.5	0.5		lt @ 85°C	0.5				47		
TAJR475*002#NJ TAJR685*002#NJ	R R	4.7 6.8	2.5	85 85	1.7 1.7	125 125	0.5	6	20	52 52	47 47	21 21	1
TAJR885*002#NJ	R	10	2.5	85	1.7	125	0.5	8	4.5	111	99	44	1
TAJS106*002#NJ	S	10	2.5	85	1.7	125	0.5	6	8	90	81	36	1
TAJR156*002#NJ	R	15	2.5	85	1.7	125	0.5	8	4.1	116	104	46	1
TAJP226*002#NJ	Р	22	2.5	85	1.7	125	0.5	8	3.5	131	118	52	1
TAJR226*002#NJ	R	22	2.5	85	1.7	125	0.5	8	3.8	120	108	48	1
TAJA336*002#NJ	Α	33	2.5	85	1.7	125	0.8	8	1.7	210	189	84	1
TAJK336*002#NJ	K	33	2.5	85	1.7	125	0.8	8	1.7	196	176	78	1
TAJP336*002#NJ	Р	33	2.5	85	1.7	125	0.7	8	3.5	131	118	52	1
TAJS336*002#NJ	S	33	2.5	85	1.7	125	0.7	8	1.5	208	187	83	1
TAJA476*002#NJ	A P	47 47	2.5	85 85	1.7 1.7	125 125	0.9 1.2	6 12	3.2	158 137	142 123	63 55	1
TAJP476M002#NJ TAJS476*002#NJ	S	47	2.5	85	1.7	125	1.2	8	1.6	202	181	81	1
TAJA686*002#NJ	A	68	2.5	85	1.7	125	1.4	8	1.5	202	201	89	1
TAJT686*002#NJ	T	68	2.5	85	1.7	125	1.4	8	1.5	231	208	92	1
TAJA107*002#NJ	A	100	2.5	85	1.7	125	2.5	30	1.4	231	208	93	1
TAJB107*002#NJ	В	100	2.5	85	1.7	125	2.5	8	1.4	246	222	99	1
TAJT107*002#NJ	Т	100	2.5	85	1.7	125	2.5	15	1.3	248	223	99	1
TAJW107*002#NJ	W	100	2.5	85	1.7	125	2.5	8	0.4	474	427	190	1
TAJB157*002#NJ	В	150	2.5	85	1.7	125	3	10	1.6	230	207	92	1
TAJT157M002#NJ	Т	150	2.5	85	1.7	125	3.8	18	1.2	258	232	103	1
TAJW157*002#NJ	W	150	2.5	85	1.7	125	3.8	8	0.3	548	493	219	1
TAJB227*002#NJ	В	220	2.5	85	1.7	125	4.4	16	1.6	230	207	92	1
TAJD227*002#NJ TAJW227*002#NJ	D W	220 220	2.5	85 85	1.7 1.7	125 125	5.5 5.5	8	0.3	707 548	636 493	283 219	1
TAJY227*002#NJ	Y	220	2.5	85	1.7	125	5.5	8	0.3	645	581	258	1 ¹⁾
TAJD337*002#NJ	D	330	2.5	85	1.7	125	8.2	8	0.3	707	636	283	1
TAJW337M002#NJ	W	330	2.5	85	1.7	125	8.2	12	0.3	548	493	219	1
TAJY337*002#NJ	Y	330	2.5	85	1.7	125	8.2	8	0.3	645	581	258	1 ¹⁾
TAJC477*002#NJ	С	470	2.5	85	1.7	125	9.4	12	0.2	742	667	297	1
TAJD477*002#NJ	D	470	2.5	85	1.7	125	11.6	8	0.2	866	779	346	1
TAJF477*002#NJ	F	470	2.5	85	1.7	125	11.8	12	0.3	577	520	231	1
TAJY477*002#NJ	Y	470	2.5	85	1.7	125	11	12	0.2	791	712	316	1 ¹⁾
TAJC687*002#NJ	С	680	2.5	85	1.7	125	17	18	0.2	742	667	297	1
TAJD687*002#NJ	D	680	2.5	85	1.7	125	17	16	0.2	866	779	346	1
TAJE687*002#NJ TAJY687*002#NJ	E Y	680 680	2.5 2.5	85 85	1.7 1.7	125 125	17 17	10 12	0.2	908 791	817 712	363 316	1 ¹⁾
TAJD108M002#NJ	D	1000	2.5	85	1.7	125	25	20	0.2	866	779	346	1
TAJE108*002#NJ	E	1000	2.5	85	1.7	125	25	14	0.4	642	578	257	1 ¹⁾
TAJY108M002#NJ	Y	1000	2.5	85	1.7	125	25	30	0.2	791	712	316	11)
TAJD158*002#NJ	D	1500	2.5	85	1.7	125	37.5	60	0.2	866	779	346	1
TAJE158*002#NJ	Е	1500	2.5	85	1.7	125	37	20	0.2	908	817	363	1 ¹⁾
TAJV158M002#NJ	V	1500	2.5	85	1.7	125	30	20	0.2	1118	1006	447	1 ¹⁾
TAJV228M002#NJ	V	2200	2.5	85	1.7	125	55	50	0.2	1118	1006	447	1 ¹⁾
						@ 85°C							
TAJR225*004#NJ	R	2.2	4	85	2.7	125	0.5	6	25	47	42	19	1
TAJS225*004#NJ TAJR335*004#NJ	S R	2.2 3.3	4	85 85	2.7	125 125	0.5	6	25 20	51 52	46 47	20	1
TAJR335*004#NJ	S	3.3	4	85	2.7	125	0.5	6	18	60	54	24	1
TAJR475*004#NJ	R	4.7	4	85	2.7	125	0.5	6	12	68	61	27	1
TAJS475*004#NJ	S	4.7	4	85	2.7	125	0.5	6	10	81	73	32	1
TAJR685*004#NJ	R	6.8	4	85	2.7	125	0.5	6	5.2	103	93	41	1
TAJS685*004#NJ	S	6.8	4	85	2.7	125	0.5	6	8	90	81	36	1
TAJT685*004#NJ	Т	6.8	4	85	2.7	125	0.5	6	6	115	104	46	1
TAJA106*004#NJ	Α	10	4	85	2.7	125	0.5	6	6	112	101	45	1
TAJR106*004#NJ	R	10	4	85	2.7	125	0.5	6	7	89	80	35	1
TAJS106*004#NJ	S	10	4	85	2.7	125	0.5	6	6	104	94	42	1
TAJT106*004#NJ TAJA156*004#NJ	T A	10 15	4	85 85	2.7	125 125	0.5	6	5 4	126 137	114 123	51 55	1
TAJR156*004#NJ	R	15	4	85	2.7	125	0.6	8	4	117	106	47	1
TAJS156*004#NJ	S	15	4	85	2.7	125	0.6	8	4	127	115	51	1
TAJT156*004#NJ	T	15	4	85	2.7	125	0.6	6	2	200	180	80	1
TAJA226*004#NJ	A	22	4	85	2.7	125	0.9	6	3.5	146	132	59	1
TAJK226*004#NJ	К	22	4	85	2.7	125	0.9	8	1.8	190	171	76	1
TAJP226*004#NJ	Р	22	4	85	2.7	125	0.9	8	4	122	110	49	1
TAJR226*004#NJ	R	22	4	85	2.7	125	0.9	8	3.8	120	108	48	1
TAJS226*004#NJ	S	22	4	85	2.7	125	0.9	8	3.5	136	123	55	1
TAJT226*004#NJ	T	22	4	85	2.7	125	0.9	6	1.9	205	185	82	1
TAJA336*004#NJ	A	33	4	85	2.7	125	1.3	6	3	158	142	63	1

Standard and Low Profile Tantalum Capacitors

AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF	ESR Max.	100kHz	RMS Curr	ent (mA)	
Part No.	Size	(μF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μΑ)	Max. (%)	@ 100kHz (Ω)	25°C	85°C	125°C	MSL
TAJB336*004#NJ	В	33	4	85	2.7	125	1.3	6	2.8	174	157	70	1
TAJK336*004#NJ	K	33	4	85	2.7	125	1.3	10	1.7	196	176	78	1
TAJP336M004#NJ	Р	33	4	85	2.7	125	1.3	8	2.8	146	132	59	1
TAJS336*004#NJ	S	33	4	85	2.7	125	1.3	8	1.7	196	176	78	1
TAJT336*004#NJ	T	33	4	85	2.7	125	1.3	6	1.7	217	195	87	1
TAJW336*004#NJ TAJA476*004#NJ	W A	33 47	4	85 85	2.7	125 125	1.3 1.9	6 8	0.6 2.6	387 170	349 153	155 68	1
TAJB476*004#NJ	В	47	4	85	2.7	125	1.9	6	2.4	188	169	75	1
TAJT476*004#NJ	T	47	4	85	2.7	125	1.9	10	1.6	224	201	89	1
TAJW476*004#NJ	W	47	4	85	2.7	125	1.9	6	0.5	424	382	170	1
TAJA686*004#NJ	Α	68	4	85	2.7	125	2.7	10	1.5	224	201	89	1
TAJB686*004#NJ	В	68	4	85	2.7	125	2.7	6	1.8	217	196	87	1
TAJT686*004#NJ	T	68	4	85	2.7	125	2.7	15	1.5	231	208	92	1
TAJW686*004#NJ TAJA107*004#NJ	W A	68 100	4	85 85	2.7 2.7	125 125	2.7 4	6 30	0.4 1.4	474 231	427 208	190 93	1
TAJB107*004#NJ	В	100	4	85	2.7	125	4	8	0.9	307	277	123	1
TAJC107*004#NJ	C	100	4	85	2.7	125	4	6	1.3	291	262	116	1
TAJT107M004#NJ	T	100	4	85	2.7	125	4	14	1.4	239	215	96	1
TAJW107*004#NJ	W	100	4	85	2.7	125	4	6	0.4	474	427	190	1
TAJB157*004#NJ	В	150	4	85	2.7	125	6	10	1.5	238	214	95	1
TAJC157*004#NJ	С	150	4	85	2.7	125	6	6	0.3	606	545	242	1
TAJW157*004#NJ	W	150	4	85	2.7	125	6	6	0.5	424	382	170	1 11)
TAJY157*004#NJ	B	150 220	4	85 85	2.7	125 125	6	6 12	0.4	559 278	503 250	224	1 ¹⁾
TAJB227*004#NJ TAJC227*004#NJ	С	220	4	85	2.7	125	8.8	8	1.1 1.2	303	272	111 121	1
TAJD227*004#NJ	D	220	4	85	2.7	125	8.8	8	0.9	408	367	163	1
TAJW227*004#NJ	W	220	4	85	2.7	125	8.8	8	0.3	548	493	219	1
TAJX227*004#NJ	Χ	220	4	85	2.7	125	8.8	8	0.3	577	520	231	1 ¹⁾
TAJY227*004#NJ	Υ	220	4	85	2.7	125	8.8	8	0.3	645	581	258	1 ¹⁾
TAJC337*004#NJ	С	330	4	85	2.7	125	13.2	8	0.3	606	545	242	1
TAJD337*004#NJ	D	330	4	85	2.7	125	13.2	8	0.9	408	367	163	1
TAJF337*004#NJ	F	330	4	85	2.7	125	13.2	10	0.3	577	520	231	1 1 ¹⁾
TAJX337*004#NJ TAJY337*004#NJ	X	330 330	4	85 85	2.7	125 125	13.2 13.2	8 12	0.3	577 559	520 503	231 224	1 ¹⁷
TAJC477*004#NJ	C	470	4	85	2.7	125	18.8	14	0.4	606	545	242	1
TAJD477*004#NJ	D	470	4	85	2.7	125	18.8	12	0.9	408	367	163	1
TAJE477*004#NJ	E	470	4	85	2.7	125	18.8	10	0.5	574	517	230	1 ¹⁾
TAJY477*004#NJ	Υ	470	4	85	2.7	125	18.8	14	0.4	559	503	224	1 ¹⁾
TAJD687*004#NJ	D	680	4	85	2.7	125	27.2	14	0.5	548	493	219	1
TAJE687*004#NJ	E	680	4	85	2.7	125	27.2	10	0.9	428	385	171	11)
TAJY687M004#NJ	Υ	680	4	85	2.7	125	27.2	25	0.2	791	712	316	11)
TAJD108*004#NJ TAJE108*004#NJ	D E	1000 1000	4	85 85	2.7	125 125	40 40	60 14	0.2	866 642	779 578	346 257	1 1 ¹⁾
TAJV108*004#NJ	V	1000	4	85	2.7	125	40	16	0.4	1118	1006	447	11)
TAJE158*004#NJ	E	1500	4	85	2.7	125	60	30	0.2	908	817	363	11)
TAJV158M004#NJ	V	1500	4	85	2.7	125	60	30	0.2	1118	1006	447	1 ¹⁾
					6.3 Vo	lt @ 85°C							
TAJR155*006#NJ	R	1.5	6.3	85	4	125	0.5	6	25	47	42	19	1
TAJS155*006#NJ	S	1.5	6.3	85	4	125	0.5	6	25	51	46	20	1
TAJA225*006#NJ	A	2.2	6.3	85	4	125	0.5	6	9	91	82	37	1
TAJR225*006#NJ TAJS225*006#NJ	R	2.2	6.3	85 85	4	125 125	0.5	6	20 18	52 60	47 54	21	1
TAJA335*006#NJ	A	3.3	6.3	85 85	4	125	0.5	6	7	104	93	41	1
TAJR335*006#NJ	R	3.3	6.3	85	4	125	0.5	6	12	68	61	27	1
TAJS335*006#NJ	S	3.3	6.3	85	4	125	0.5	6	9	85	76	34	1
TAJA475*006#NJ	Α	4.7	6.3	85	4	125	0.5	6	6	112	101	45	1
TAJR475*006#NJ	R	4.7	6.3	85	4	125	0.5	6	7	89	80	35	1
TAJS475*006#NJ	S	4.7	6.3	85	4	125	0.5	6	7.5	93	84	37	1
TAJT475*006#NJ	T	4.7	6.3	85	4	125	0.5	6	6	115	104	46	1
TAJA685*006#NJ TAJB685*006#NJ	A B	6.8 6.8	6.3	85 85	4	125 125	0.5	6	5	122 130	110 117	49 52	1
TAJR685*006#NJ	R	6.8	6.3	85 85	4	125	0.6	8	7	89	80	35	1
	S	6.8	6.3	85	4	125	0.5	6	2.6	158	142	63	1
TAJS685*006#N.1	T	6.8	6.3	85	4	125	0.5	6	5	126	114	51	1
TAJS685*006#NJ TAJT685*006#NJ		10	6.3	85	4	125	0.6	6	4	137	123	55	1
TAJS685*006#NJ TAJT685*006#NJ TAJA106*006#NJ	Α	10	0.5	, 00									-
TAJT685*006#NJ TAJA106*006#NJ TAJB106*006#NJ	В	10	6.3	85	4	125	0.6	6	3	168	151	67	1
TAJT685*006#NJ TAJA106*006#NJ TAJB106*006#NJ TAJP106*006#NJ	B P	10 10	6.3 6.3	85 85	4	125	0.6	8	6	100	90	40	1
TAJT685*006#NJ TAJA106*006#NJ TAJB106*006#NJ TAJP106*006#NJ TAJR106*006#NJ	B P R	10 10 10	6.3 6.3 6.3	85 85 85	4	125 125	0.6 0.6	8	6	100 96	90 86	40 38	1 1
TAJT685*006#NJ TAJA106*006#NJ TAJB106*006#NJ TAJP106*006#NJ	B P	10 10	6.3 6.3	85 85	4	125	0.6	8	6	100	90	40	1

AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF	ESR Max.	100kHz	z RMS Curr	ent (mA)	MOL
Part No.	Size	(µF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (Ω)	25°C	85°C	125°C	MSL
TAJB156*006#NJ	В	15	6.3	85	4	125	0.9	6	2	206	186	82	1
TAJK156*006#NJ	K	15	6.3	85	4	125	0.9	6	2	180	162	72	1
TAJP156*006#NJ TAJR156*006#NJ	P R	15 15	6.3	85 85	4	125 125	0.9	8	3.5 4.1	131 116	118 104	52 46	1
TAJS156*006#NJ	S	15	6.3	85	4	125	0.9	8	3.5	136	123	55	1
TAJT156*006#NJ	Т	15	6.3	85	4	125	0.9	6	3.5	151	136	60	1
TAJA226*006#NJ	Α	22	6.3	85	4	125	1.4	6	3	158	142	63	1
TAJB226*006#NJ TAJC226*006#NJ	B	22	6.3	85 85	4	125 125	1.4 1.4	6	2.5	184 235	166 211	74 94	1
TAJK226*006#NJ	K	22	6.3	85	4	125	1.4	10	1.8	190	171	76	1
TAJP226M006#NJ	P	22	6.3	85	4	125	1.3	8	3.3	135	121	54	1
TAJS226*006#NJ	S	22	6.3	85	4	125	1.3	10	1.8	190	171	76	1
TAJT226*006#NJ	T	22	6.3	85	4	125	1.4	8	2.5	179	161	72	1
TAJW226*006#NJ TAJA336*006#NJ	W A	33	6.3	85 85	4	125 125	1.3 2.1	6 8	0.6 2.2	387 185	349 166	155 74	1
TAJB336*006#NJ	B	33	6.3	85	4	125	2.1	6	2.2	197	177	79	1
TAJC336*006#NJ	C	33	6.3	85	4	125	2.1	6	1.8	247	222	99	1
TAJT336*006#NJ	Т	33	6.3	85	4	125	2.1	10	2.5	179	161	72	1
TAJW336*006#NJ	W	33	6.3	85	4	125	2	6	0.5	424	382	170	1
TAJA476*006#NJ	A	47	6.3	85	4	125	2.8	10	1.6	217	195	87	1
TAJB476*006#NJ TAJC476*006#NJ	B	47 47	6.3	85 85	4	125 125	3	6	1.6	206 262	186 236	82 105	1
TAJD476*006#NJ	D	47	6.3	85	4	125	3	6	1.0	369	332	148	1
TAJT476*006#NJ	T	47	6.3	85	4	125	2.8	10	1.6	224	201	89	1
TAJW476*006#NJ	W	47	6.3	85	4	125	2.8	6	0.5	424	382	170	1
TAJB686*006#NJ	В	68	6.3	85	4	125	4	8	0.9	307	277	123	1
TAJC686*006#NJ	C	68 68	6.3	85 85	4	125	4.3	6	1.5	271	244	108	1
TAJD686*006#NJ TAJW686*006#NJ	D W	68	6.3	85	4	125 125	4.3	6	0.9 1.5	408 245	367 220	163 98	1
TAJB107*006#NJ	B	100	6.3	85	4	125	6.3	10	1.7	224	201	89	1
TAJC107*006#NJ	С	100	6.3	85	4	125	6.3	6	0.9	350	315	140	1
TAJD107*006#NJ	D	100	6.3	85	4	125	6.3	6	0.9	408	367	163	1
TAJW107*006#NJ	W	100	6.3	85	4	125	6.3	6	0.9	316	285	126	1
TAJY107*006#NJ TAJB157M006#NJ	Y B	100 150	6.3	85 85	4	125 125	6.3 9.5	10	0.7 1.2	423 266	380 240	169 106	1 ¹⁾
TAJC157*006#NJ	C	150	6.3	85	4	125	9.5	6	1.2	291	262	116	1
TAJD157*006#NJ	D	150	6.3	85	4	125	9.5	6	0.9	408	367	163	1
TAJW157*006#NJ	W	150	6.3	85	4	125	9	8	0.3	548	493	219	1
TAJX157*006#NJ	Х	150	6.3	85	4	125	9	6	0.4	500	450	200	11)
TAJY157*006#NJ	Y	150	6.3	85	4	125	9.5	6	0.4	559	503	224	11)
TAJC227*006#NJ TAJD227*006#NJ	C	220 220	6.3	85 85	4	125 125	13.9 13.9	8	1.2 0.4	303 612	272 551	121 245	1
TAJE227*006#NJ	E	220	6.3	85	4	125	13.9	8	0.4	642	578	257	1 ¹⁾
TAJF227*006#NJ	F	220	6.3	85	4	125	13.2	10	0.3	577	520	231	1
TAJX227*006#NJ	Х	220	6.3	85	4	125	13.2	8	0.3	577	520	231	1 ¹⁾
TAJY227*006#NJ	Y	220	6.3	85	4	125	13.9	8	0.7	423	380	169	11)
TAJC337*006#NJ TAJD337*006#NJ	C	330 330	6.3	85 85	4	125 125	19.8 20.8	12 8	0.5	469 612	422 551	188 245	1
TAJE337*006#NJ	E	330	6.3	85	4	125	20.8	8	0.4	642	578	257	1 ¹⁾
TAJY337*006#NJ	Y	330	6.3	85	4	125	20.8	12	0.4	559	503	224	1 ¹⁾
TAJD477*006#NJ	D	470	6.3	85	4	125	28	12	0.4	612	551	245	1
TAJE477*006#NJ	E	470	6.3	85	4	125	28	10	0.4	642	578	257	11)
TAJV477*006#NJ TAJY477*006#NJ	V	470 470	6.3	85 85	4	125 125	28.2	10	0.4	791 791	712 712	316 316	1 ¹⁾
TAJV477*006#NJV	D	680	6.3	85	4	125	40.8	20	0.2	548	493	219	3
TAJE687*006#NJ	E	680	6.3	85	4	125	42.8	10	0.5	574	517	230	1 ¹⁾
TAJV687*006#NJ	V	680	6.3	85	4	125	42.8	10	0.5	707	636	283	1 ¹⁾
TAJE108M006#NJ	Е	1000	6.3	85	4	125	60	20	0.2	908	817	363	1 ¹⁾
TAJV108M006#NJ	l V	1000	6.3	85	4 10 Vol	125 t @ 85°C	60	16	0.2	1118	1006	447	1 ¹⁾
TAJR105*010#NJ	R	1	10	85	7	125	0.5	4	25	47	42	19	1
TAJS105*010#NJ	S	1	10	85	7	125	0.5	4	25	51	46	20	1
TAJA155*010#NJ TAJR155*010#NJ	A R	1.5 1.5	10 10	85 85	7	125 125	0.5	6	10 20	87 52	78 47	35 21	1
TAJR155*010#NJ	S	1.5	10	85	7	125	0.5	6	20	52 57	51	23	1
TAJA225*010#NJ	A	2.2	10	85	7	125	0.5	6	7	104	93	41	1
TAJR225*010#NJ	R	2.2	10	85	7	125	0.5	6	15	61	54	24	1
TAJS225*010#NJ	S	2.2	10	85	7	125	0.5	6	12	74	66	29	1
TAJA335*010#NJ	Α	3.3	10	85	7	125	0.5	6	5.5	117	105	47	1
TAJK335*010#NJ	K	3.3	10	85	7	125	0.5	6	5.5	109	98	43	1
TAJR335*010#NJ	R	3.3	10	85	7	125	0.5	6	8	83	75	33	1
TAJS335*010#NJ	S	3.3	10	85	7	125	0.5	6	8	90	81	36	1

Standard and Low Profile Tantalum Capacitors

AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF	ESR Max.	100kHz	RMS Curr	ent (mA)	MOI
Part No.	Size	(μF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μΑ)	Max. (%)	@ 100kHz (Ω)	25°C	85°C	125°C	MSL
TAJT335*010#NJ	Т	3.3	10	85	7	125	0.5	6	6	115	104	46	1
TAJA475*010#NJ	A	4.7	10	85	7	125	0.5	6	5	122	110	49	1
TAJB475*010#NJ	В	4.7 4.7	10 10	85 85	7	125 125	0.5	6	9	146 78	131 70	58 31	1
TAJR475*010#NJ TAJS475*010#NJ	R	4.7	10	85	7	125	0.5	6	5	114	103	46	1
TAJT475*010#NJ	T	4.7	10	85	7	125	0.5	6	5	126	114	51	1
TAJA685*010#NJ	A	6.8	10	85	7	125	0.7	6	4	137	123	55	1
TAJB685*010#NJ	В	6.8	10	85	7	125	0.7	6	3	168	151	67	1
TAJP685*010#NJ	Р	6.8	10	85	7	125	0.6	6	5	110	99	44	1
TAJR685*010#NJ	R	6.8	10	85	7	125	0.7	6	5.2	103	93	41	1
TAJS685*010#NJ	S	6.8	10	85	7	125	0.7	6	4	127	115	51	1
TAJT685*010#NJ TAJA106*010#NJ	A	6.8	10 10	85 85	7	125 125	0.7 1	6	3	141 158	127 142	57 63	1
TAJB106*010#NJ	В	10	10	85	7	125	1	6	2.1	201	181	80	1
TAJC106*010#NJ	C	10	10	85	7	125	1	6	2.5	210	189	84	1
TAJK106*010#NJ	K	10	10	85	7	125	1	6	2.2	172	155	69	1
TAJP106*010#NJ	Р	10	10	85	7	125	1	8	6	100	90	40	1
TAJR106M010#NJ	R	10	10	85	7	125	1	20	6	96	86	38	1
TAJS106*010#NJ	S	10	10	85	7	125	1	8	3	147	132	59	1
TAJT106*010#NJ	T	10	10	85	7	125	11	6	3	163	147	65	1
TAJA156*010#NJ TAJB156*010#NJ	A B	15 15	10 10	85 85	7	125 125	1.5 1.5	6	3.2 2.8	153 174	138 157	61 70	1
TAJB156*010#NJ TAJC156*010#NJ	C	15	10	85	7	125	1.5	6	2.8	235	211	94	1
TAJS156*010#NJ	S	15	10	85	7	125	1.5	6	2	180	162	72	1
TAJT156*010#NJ	T	15	10	85	7	125	1.5	8	2.8	169	152	68	1
TAJW156*010#NJ	W	15	10	85	7	125	1.5	6	0.7	359	323	143	1
TAJA226*010#NJ	Α	22	10	85	7	125	2.2	8	3	158	142	63	1
TAJB226*010#NJ	В	22	10	85	7	125	2.2	6	2.4	188	169	75	1
TAJC226*010#NJ	С	22	10	85	7	125	2.2	6	1.8	247	222	99	1
TAJT226*010#NJ	T	22	10	85	7	125	2.2	8	2.2	191	172	76	1
TAJW226*010#NJ	W	22	10	85	7	125	2.2	6	0.6	387	349	155	1
TAJA336*010#NJ TAJB336*010#NJ	A B	33 33	10 10	85 85	7	125 125	3.3	8 6	1.7 1.8	210 217	189 196	84 87	1
TAJC336*010#NJ	С	33	10	85	7	125	3.3	6	1.6	262	236	105	1
TAJD336*010#NJ	D	33	10	85	7	125	3.3	6	1.1	369	332	148	1
TAJW336*010#NJ	W	33	10	85	7	125	3.3	6	1.6	237	213	95	1
TAJB476*010#NJ	В	47	10	85	7	125	4.7	8	1	292	262	117	1
TAJC476*010#NJ	С	47	10	85	7	125	4.7	6	1.2	303	272	121	1
TAJD476*010#NJ	D	47	10	85	7	125	4.7	6	0.4	612	551	245	1
TAJH476*006#NJ	Н	47	10	85	7	125	4.7	8	1.0	283	255	113	1
TAJW476*010#NJ	W	47	10	85	7	125	4.7	6	1.4	254	228	101	1
TAJY476*010#NJ	Y	47	10	85	7	125	4.7	6	0.5	500	450	200	1 ¹⁾
TAJB686*010#NJ TAJC686*010#NJ	B	68 68	10 10	85 85	7	125 125	6.8	8	1.4	246 291	222	99 116	1
TAJD686*010#NJ	D	68	10	85	7	125	6.8	6	0.9	408	367	163	1
TAJW686*010#NJ	W	68	10	85	7	125	6.8	6	1.2	274	246	110	1
TAJY686*010#NJ	Y	68	10	85	7	125	6.8	6	0.9	373	335	149	1 ¹⁾
TAJB107*010#NJ	В	100	10	85	7	125	10	8	1.4	246	222	99	1
TAJC107*010#NJ	С	100	10	85	7	125	10	8	1.2	303	272	121	1
TAJD107*010#NJ	D	100	10	85	7	125	10	6	0.9	408	367	163	1
TAJE107*010#NJ	Е	100	10	85	7	125	10	6	0.9	428	385	171	1 ¹⁾
TAJW107*010#NJ	W	100	10	85	7	125	10	6	0.4	474	427	190	1
TAJX107*010#NJ TAJY107*010#NJ	X	100 100	10 10	85 85	7	125 125	10 10	8	0.9	333 373	300 335	133 149	1 ¹⁾
TAJC157*010#NJ	C	150	10	85	7	125	15	8	0.9	350	335	149	1 1
TAJD157*010#NJ	D	150	10	85	7	125	15	8	0.9	408	367	163	1
TAJE157*010#NJ	E	150	10	85	7	125	15	8	0.9	428	385	171	1 ¹⁾
TAJF157*010#NJ	F	150	10	85	7	125	15	10	0.3	577	520	231	1
ΓΑJX157 <mark>M</mark> 010#NJ	Х	150	10	85	7	125	15	6	0.3	577	520	231	1 ¹⁾
TAJY157*010#NJ	Υ	150	10	85	7	125	15	6	1.2	323	290	129	1 ¹⁾
TAJC227*010#NJ	С	220	10	85	7	125	22	16	0.5	469	422	188	1
TAJD227*010#NJ	D	220	10	85	7	125	22	8	0.5	548	493	219	1
TAJE227*010#NJ	E	220	10	85	7	125	22	8	0.5	574	517	230	11)
TAJY227*010#NJ	Y	220	10	85	7	125	22	10	0.5	500	450	200	1 ¹⁾
TAJD337*010#NJ	D	330	10 10	85	7	125	33	8	0.9	408	367	163	1 1 ¹⁾
TAJE337*010#NJ TAJV337*010#NJ	E V	330 330	10	85 85	7	125 125	33	8 10	0.9	428 527	385 474	171 211	1 ¹⁾
IMUVUU/ UU#INU	E	470	10	85	7	125	47	10	0.9	574	517	230	1 ^{-/}
TΔ IF477*010#N I		4/0	10	05									
TAJE477*010#NJ TAJU477*010RNJ		470	10	85	7	125	47	12	0.5	574	517	230	1 17
TAJU477*010RNJ	U	470 470	10 10	85 85	7	125 125	47 47	12 10	0.5	574 707	517 636	230	1 ¹⁾
		470 470 680	10 10 10	85 85 85	7 7 7	125 125 125	47 47 68	12 10 18	0.5 0.5 0.4	574 707 642	517 636 578	230 283 257	

Standard and Low Profile Tantalum Capacitors

AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF	ESR Max.	100kHz	z RMS Curr	ent (mA)	1401
Part No.	Size	(μ F)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (Ω)	25°C	85°C	125°C	MSL
						t @ 85°C			```				
TAJR684*016#NJ TAJS684*016#NJ	R	0.68 0.68	16 16	85 85	10 10	125 125	0.5	4	25 25	47 51	42 46	19 20	1
TAJA105*016#NJ	A	1	16	85	10	125	0.5	4	11	83	74	33	1
TAJR105*016#NJ	R	1	16	85	10	125	0.5	4	20	52	47	21	1
TAJS105*016#NJ	S	1	16	85	10	125	0.5	4	15	66	59	26	1
TAJT105*016#NJ	T	1	16	85	10	125	0.5	4	5	126	114	51	1
TAJA155*016#NJ TAJR155*016#NJ	A R	1.5 1.5	16 16	85 85	10 10	125 125	0.5	6	8	97 74	87 67	39 30	1
TAJS155*016#NJ	S	1.5	16	85	10	125	0.5	6	12	74	66	29	1
TAJA225*016#NJ	A	2.2	16	85	10	125	0.5	6	6.5	107	97	43	1
TAJB225*016#NJ	В	2.2	16	85	10	125	0.5	6	2.3	192	173	77	1
TAJR225*016#NJ TAJS225*016#NJ	R	2.2	16 16	85 85	10 10	125 125	0.5	6	6.5	92 104	83 94	37 42	1
TAJT225*016#NJ	T	2.2	16	85	10	125	0.5	6	6.5	111	100	44	1
TAJA335*016#NJ	A	3.3	16	85	10	125	0.5	6	5	122	110	49	1
TAJB335*016#NJ	В	3.3	16	85	10	125	0.5	6	4.5	137	124	55	1
TAJR335*016#NJ	R	3.3	16	85	10	125	0.5	8	5	105	94	42	1
TAJS335*016#NJ TAJT335*016#NJ	S	3.3	16 16	85 85	10 10	125 125	0.5	6	5	114 126	103 114	46 51	1
TAJA475*016#NJ	A	4.7	16	85	10	125	0.8	6	4	137	123	55	1
TAJB475*016#NJ	В	4.7	16	85	10	125	0.8	6	3.5	156	140	62	1
TAJK475*016#NJ	K	4.7	16	85	10	125	0.8	6	3.1	145	130	58	1
TAJP475*016#NJ TAJS475*016#NJ	P S	4.7 4.7	16 16	85 85	10 10	125 125	0.8	8	5 4	110 127	99 115	44 51	1 1
TAJT475*016#NJ	T	4.7	16	85	10	125	0.8	6	3.1	161	145	64	1
TAJA685*016#NJ	A	6.8	16	85	10	125	1.1	6	3.5	146	132	59	1
TAJB685*016#NJ	В	6.8	16	85	10	125	1.1	6	2.5	184	166	74	1
TAJC685*016#NJ	С	6.8	16	85	10	125	1.1	6	2.5	210	189	84	1
TAJS685*016#NJ TAJT685*016#NJ	S	6.8 6.8	16 16	85 85	10 10	125 125	1.1 1.1	8 6	2.4 3.5	165 151	148 136	66	1
TAJA106*016#NJ	A	10	16	85	10	125	1.6	6	3	158	142	63	1
TAJB106*016#NJ	В	10	16	85	10	125	1.6	6	2.8	174	157	70	1
TAJC106*016#NJ	С	10	16	85	10	125	1.6	6	2	235	211	94	1
TAJT106*016#NJ TAJW106*016#NJ	T W	10 10	16 16	85 85	10 10	125 125	1.6 1.6	8	2.2	191 212	172 191	76 85	1
TAJA156*016#NJ	A	15	16	85	10	125	2.4	6	2	194	174	77	1
TAJB156*016#NJ	В	15	16	85	10	125	2.4	6	2.5	184	166	74	1
TAJC156*016#NJ	С	15	16	85	10	125	2.4	6	1.8	247	222	99	1
TAJT156M016#NJ TAJW156*016#NJ	T W	15 15	16 16	85 85	10 10	125 125	2.4	6	0.7	200 359	180 323	80 143	1
TAJA226M016#NJ	A	22	16	85	10	125	3.5	6 10	2.3	181	163	72	1
TAJB226*016#NJ	В	22	16	85	10	125	3.5	6	2.3	192	173	77	1
TAJC226*016#NJ	С	22	16	85	10	125	3.5	6	1	332	298	133	1
TAJD226*016#NJ	D	22	16	85	10	125	3.5	6	1.1	369	332	148	1
TAJW226*016#NJ TAJB336*016#NJ	W B	22 33	16 16	85 85	10 10	125 125	3.5 5.3	6 8	1.6 2.1	237 201	213 181	95 80	1
TAJC336*016#NJ	С	33	16	85	10	125	5.3	6	1.5	271	244	108	1
TAJD336*016#NJ	D	33	16	85	10	125	5.3	6	0.9	408	367	163	1
TAJW336*016#NJ	W	33	16	85	10	125	5.3	6	1.5	245	220	98	1
TAJY336*016#NJ TAJC476*016#NJ	C	33 47	16 16	85 85	10 10	125 125	5.3 7.5	6	0.9	373 469	335 422	149 188	1 ¹⁾
TAJD476*016#NJ	D	47	16	85	10	125	7.5	6	0.9	408	367	163	1
TAJW476*016#NJ	W	47	16	85	10	125	7.5	6	0.4	474	427	190	1
TAJX476*016#NJ	X	47	16	85	10	125	7.5	6	0.75	365	329	146	11)
TAJY476*016#NJ TAJC686*016#NJ	C	47 68	16 16	85 85	10 10	125 125	7.5 10.9	6	0.7 1.3	423 291	380 262	169 116	1 ¹⁾
TAJD686*016#NJ	D	68	16	85	10	125	10.9	6	0.9	408	367	163	1
TAJF686*016#NJ	F	68	16	85	10	125	10.9	10	0.4	500	450	200	1
TAJX686*016#NJ	X	68	16	85	10	125	10.9	8	0.6	408	367	163	11)
TAJY686*016#NJ TAJC107*016#NJ	C	68 100	16 16	85 85	10 10	125 125	10.9 16	6 8	0.9	373 332	335 298	149 133	1 ¹⁾
TAJD107*016#NJ	D	100	16	85	10	125	16	6	0.6	500	450	200	1
TAJE107*016#NJ	E	100	16	85	10	125	16	6	0.9	428	385	171	1 ¹⁾
TAJF107M016#NJ	F	100	16	85	10	125	16	10	0.4	500	450	200	1
TAJY107*016#NJ	Y	100	16	85	10	125	16	8	0.9	373	335	149	1 ¹⁾
TAJD157*016#NJ TAJE157*016#NJ	D E	150 150	16 16	85 85	10 10	125 125	24 24	6 8	0.9	408 742	367 667	163 297	1 11)
TAJV157*016#NJ	V	150	16	85	10	125	24	8	0.5	707	636	283	1 ¹⁾
TAJY157M016#NJ	Υ	150	16	85	10	125	24	15	0.3	645	581	258	1 ¹⁾
TAJD227M016#NJV	D	220	16	85	10	125	35.2	10	0.5	548	493	219	3
	E	220	16	85	10	125	35.2	10	0.5	574	517	230	1 ¹⁾
TAJE227*016#NJ TAJV227*016#NJ	V	220	16	85	10	125	35.2	8	0.9	527	474	211	11)

Standard and Low Profile Tantalum Capacitors

AVX	Case	Capacitance	Rated	Rated	Category	_ Category	DCL	DF	ESR Max.	100kHz	z RMS Curr	ent (mA)	
Part No.	Size	(μF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μΑ)	Max. (%)	@ 100kHz (Ω)	25°C	85°C	125°C	MSL
					20 Vol	t @ 85°C			(/				
TAJR104*020#NJ	R	0.1	20	85	13	125	0.5	4	25	47	42	19	1
TAJS104*020#NJ	S	0.1	20	85	13	125	0.5	4	25	51	46	20	1
TAJR154*020#NJ	R	0.15	20	85	13	125	0.5	4	25	47	42	19	1
TAJS154*020#NJ TAJR224*020#NJ	S	0.15	20	85 85	13 13	125 125	0.5	4	25 25	51 47	46 42	20 19	1
TAJS224*020#NJ	S	0.22 0.22	20	85	13	125	0.5	4	25	51	42	20	1
TAJR334*020#NJ	R	0.22	20	85	13	125	0.5	4	25	47	42	19	1
TAJS334*020#NJ	S	0.33	20	85	13	125	0.5	4	25	51	46	20	1
TAJR474*020#NJ	R	0.47	20	85	13	125	0.5	4	25	47	42	19	1
TAJS474*020#NJ	S	0.47	20	85	13	125	0.5	4	25	51	46	20	1
TAJR684*020#NJ	R	0.68	20	85	13	125	0.5	4	20	52	47	21	1
TAJS684*020#NJ	S	0.68	20	85	13	125	0.5	4	25	51	46	20	1
TAJT684*020#NJ	T	0.68	20	85	13	125	0.5	4	15	73	66	29	1
TAJA105*020#NJ	A	1	20	85	13	125	0.5	4	9	91	82	37	1
TAJR105*020#NJ TAJS105*020#NJ	R	1	20	85 85	13 13	125 125	0.5	4	20 12	52 74	47 66	21 29	1
TAJT105*020#NJ	S	1	20	85	13	125	0.5	4	9	94	85	38	1
TAJA155*020#NJ	A	1.5	20	85	13	125	0.5	6	6.5	107	97	43	1
TAJP155*020#NJ	P	1.5	20	85	13	125	0.5	6	9.6	79	71	32	1
TAJR155*020#NJ	R	1.5	20	85	13	125	0.5	6	9.6	76	68	30	1
TAJS155*020#NJ	S	1.5	20	85	13	125	0.5	6	5.4	110	99	44	1
TAJT155*020#NJ	T	1.5	20	85	13	125	0.5	6	6.5	111	100	44	1
TAJA225*020#NJ	Α	2.2	20	85	13	125	0.5	6	5.3	119	107	48	1
TAJB225*020#NJ	В	2.2	20	85	13	125	0.5	6	3.5	156	140	62	1
TAJP225*020#NJ	P	2.2	20	85	13	125	0.5	6	8.3	85	77	34	1
TAJR225*020#NJ	R	2.2	20	85	13	125	0.5	6	6	96	86	38 48	1
TAJS225*020#NJ TAJT225*020#NJ	S	2.2	20	85 85	13 13	125 125	0.5	6	4.5 6	120 115	108 104	48	1
TAJ1225^020#NJ TAJA335*020#NJ	A	3.3	20	85	13	125	0.5	6	4.5	129	116	52	1
TAJB335*020#NJ	B	3.3	20	85	13	125	0.7	6	3	168	151	67	1
TAJT335*020#NJ	T	3.3	20	85	13	125	0.7	6	3	163	147	65	1
TAJA475*020#NJ	A	4.7	20	85	13	125	0.9	6	4	137	123	55	1
TAJB475*020#NJ	В	4.7	20	85	13	125	0.9	6	3	168	151	67	1
TAJC475*020#NJ	С	4.7	20	85	13	125	0.9	6	2.8	198	178	79	1
TAJT475*020#NJ	T	4.7	20	85	13	125	0.9	6	3.1	161	145	64	1
TAJA685*020#NJ	Α	6.8	20	85	13	125	1.4	6	2.4	177	159	71	1
TAJB685*020#NJ	В	6.8	20	85	13	125	1.4	6	2.5	184	166	74	1
TAJC685*020#NJ	С	6.8	20	85	13	125	1.4	6	2	235	211	94	1
TAJT685*020#NJ	T	6.8	20	85	13	125	1.4	6	2.6	175	158	70	1
TAJB106*020#NJ	B	10 10	20	85 85	13 13	125 125	2	6	2.1 1.2	201 303	181 272	80 121	1
TAJC106*020#NJ FAJW106*020#NJ	W	10	20	85	13	125	2	6	1.2	218	196	87	1
TAJB156*020#NJ	B	15	20	85	13	125	3	6	2	206	186	82	1
TAJC156*020#NJ	C	15	20	85	13	125	3	6	1.7	254	229	102	1
TAJD156*020#NJ	D	15	20	85	13	125	3	6	1.1	369	332	148	1
ΓAJW156*020#NJ	W	15	20	85	13	125	3	6	1.7	230	207	92	1
TAJB226*020#NJ	В	22	20	85	13	125	4.4	6	1.8	217	196	87	1
TAJC226*020#NJ	С	22	20	85	13	125	4.4	6	1.6	262	236	105	1
TAJD226*020#NJ	D	22	20	85	13	125	4.4	6	0.9	408	367	163	1
TAJW226*020#NJ	W	22	20	85	13	125	4.4	6	1.6	237	213	95	1
TAJY226*020#NJ	Y	22	20	85	13	125	4.4	6	0.9	373	335	149	11)
TAJC336*020#NJ	С	33	20	85	13	125	6.6	6	1.5	271	244	108	1
TAJD336*020#NJ	D	33	20	85	13	125	6.6	6	0.9	408	367 402	163	1 1 ¹⁾
TAJX336*020#NJ TAJY336*020#NJ	X	33 33	20	85 85	13 13	125 125	6.6	6	0.5	447 456	411	179 183	1 ⁻⁷
TAJC476*020#NJ	C	47	20	85	13	125	9.4	6	0.6	469	422	188	1
TAJD476*020#NJ	D	47	20	85	13	125	9.4	6	0.9	408	367	163	1
TAJE476*020#NJ	E	47	20	85	13	125	9.4	6	0.9	428	385	171	11)
TAJX476*020#NJ	X	47	20	85	13	125	9.4	6	0.4	500	450	200	11)
TAJY476*020#NJ	Y	47	20	85	13	125	9.4	6	0.9	373	335	149	11)
TAJC686M020#NJ	С	68	20	85	13	125	13.6	8	0.5	469	422	188	1
TAJD686*020#NJ	D	68	20	85	13	125	13.6	6	0.4	612	551	245	1
TAJE686*020#NJ	E	68	20	85	13	125	13.6	6	0.9	428	385	171	1 ¹⁾
TAJY686*020#NJ	Υ	68	20	85	13	125	13.6	6	0.9	373	335	149	1 ¹⁾
TAJD107*020#NJ	D	100	20	85	13	125	20	6	0.5	548	493	219	1
TAJE107*020#NJ	E	100	20	85	13	125	20	6	0.4	642	578	257	11)
TAJV107*020#NJ	V	100	20	85	13	125	20	8	0.9	527	474	211	11)
TAJE157*020#NJ	E	150	20	85	13	125	30	8	0.3	742	667	297	11)
TAJV157*020#NJ	l v	150	20	85	13	125	30	8	0.3	913	822	365	11)

Standard and Low Profile Tantalum Capacitors

AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF	ESR Max.	100kHz	RMS Curr	ent (mA)	Moi
Part No.	Size	(μF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μΑ)	Max. (%)	@ 100kHz (Ω)	25°C	85°C	125°C	MSL
						t @ 85°C							
TAJR154*025#NJ	R	0.15	25	85	17	125	0.5	4	24	48	43	19	1
TAJR224*025#NJ	R	0.22	25	85	17	125	0.5	4	21	51	46	20	1
TAJR334*025#NJ TAJA474*025#NJ	R	0.33 0.47	25 25	85 85	17 17	125 125	0.5	4	17 14	57 73	51 66	23 29	1
TAJR474*025#NJ	R	0.47	25	85	17	125	0.5	4	15	61	54	24	1
TAJS474*025#NJ	S	0.47	25	85	17	125	0.5	4	9	85	76	34	1
TAJA684*025#NJ	Α	0.68	25	85	17	125	0.5	4	10	87	78	35	1
TAJR684*025#NJ	R	0.68	25	85	17	125	0.5	4	13	65	59	26	1
TAJS684*025#NJ	S	0.68	25	85	17	125	0.5	4	8	90	81	36	1
TAJA105*025#NJ	Α	1	25	85	17	125	0.5	4	8	97	87	39	1
TAJP105*025#NJ	P	1	25	85	17	125	0.5	4	11	74	66	30	1
TAJR105*025#NJ TAJS105*025#NJ	R	1	25 25	85 85	17 17	125 125	0.5	4	8	90	75 81	33 36	1
TAJA155*025#NJ	A	1.5	25	85	17	125	0.5	6	7.5	100	90	40	1
TAJB155*025#NJ	В	1.5	25	85	17	125	0.5	6	5	130	117	52	1
TAJP155*025#NJ	Р	1.5	25	85	17	125	0.5	6	9.6	79	71	32	1
TAJS155*025#NJ	S	1.5	25	85	17	125	0.5	6	5.4	110	99	44	1
TAJT155*025#NJ	T	1.5	25	85	17	125	0.5	6	5	126	114	51	1
TAJA225*025#NJ	A	2.2	25	85	17	125	0.6	6	7	104	93	41	1
TAJB225*025#NJ TAJT225*025#NJ	B	2.2	25 25	85 85	17 17	125 125	0.6	6	4.5 4.5	137 133	124 120	55 53	1
TAJA335*025#NJ	A	3.3	25	85	17	125	0.8	6	3.7	142	128	57	1
TAJB335*025#NJ	В	3.3	25	85	17	125	0.8	6	3.5	156	140	62	1
TAJC335*025#NJ	С	3.3	25	85	17	125	0.8	6	2.8	198	178	79	1
TAJT335*025#NJ	Т	3.3	25	85	17	125	0.8	6	3.5	151	136	60	1
TAJW335*025#NJ	W	3.3	25	85	17	125	8.0	6	1.6	237	213	95	1
TAJA475*025#NJ	Α	4.7	25	85	17	125	1.2	6	3.1	156	140	62	1
TAJB475*025#NJ	В	4.7	25	85	17	125	1.2	6	1.5	238	214	95	1
TAJC475*025#NJ TAJT475*025#NJ	C	4.7 4.7	25 25	85 85	17 17	125 125	1.2	6	2.4 3.1	214 161	193 145	86 64	1
TAJW475*025#NJ	W	4.7	25	85	17	125	1.2	6	1.2	274	246	110	1
TAJB685*025#NJ	В	6.8	25	85	17	125	1.7	6	2.8	174	157	70	1
TAJC685*025#NJ	С	6.8	25	85	17	125	1.7	6	2	235	211	94	1
TAJW685*025#NJ	W	6.8	25	85	17	125	1.7	6	2	212	191	85	1
TAJB106*025#NJ	В	10	25	85	17	125	2.5	6	2.5	184	166	74	1
TAJC106*025#NJ	С	10	25	85	17	125	2.5	6	1.8	247	222	99	1
TAJD106*025#NJ TAJW106*025#NJ	D W	10 10	25 25	85 85	17 17	125 125	2.5	6	1.2 1.8	354 224	318 201	141 89	1
TAJC156*025#NJ	C	15	25	85	17	125	3.8	6	1.6	262	236	105	1
TAJD156*025#NJ	D	15	25	85	17	125	3.8	6	1.0	387	349	155	1
TAJY156*025#NJ	Y	15	25	85	17	125	3.8	6	1	354	318	141	1 ¹⁾
TAJC226*025#NJ	С	22	25	85	17	125	5.5	6	1.4	280	252	112	1
TAJD226*025#NJ	D	22	25	85	17	125	5.5	6	0.9	408	367	163	1
TAJF226*025#NJ	F	22	25	85	17	125	5.5	6	1	316	285	126	1
TAJY226*025#NJ	C	22	25	85	17	125	5.5	6	0.8	395	356 315	158 140	1 ¹⁾
TAJC336*025#NJ TAJD336*025#NJ	D	33 33	25 25	85 85	17 17	125 125	8.3	6	0.9	350 408	367	163	1
TAJE336*025#NJ	E	33	25	85	17	125	8.3	6	0.9	428	385	171	1 ¹⁾
TAJF336*025#NJ	F	33	25	85	17	125	8.3	6	0.9	333	300	133	1
TAJY336*025#NJ	Y	33	25	85	17	125	8.3	6	0.5	500	450	200	1 ¹⁾
TAJD476*025#NJ	D	47	25	85	17	125	11.8	6	0.9	408	367	163	1
TAJE476*025#NJ	E	47	25	85	17	125	11.8	6	0.9	428	385	171	1 ¹⁾
TAJY476*025#NJ	Y	47	25	85	17	125	11.8	6	0.9	373	335	149	1 ¹⁾
TAJD686*025#NJ TAJE686*025#NJ	D E	68 68	25 25	85 85	17 17	125 125	17 17	6	0.9	408 428	367 385	163 171	1 1 ¹⁾
TAJV686*025#NJ	V	68	25	85	17	125	17 17	6	0.9	527	474	211	1 ¹)
TAJE107*025#NJ	E	100	25	85	17	125	25	10	0.9	742	667	297	1 ¹⁾
TAJV107*025#NJ	V	100	25	85	17	125	25	8	0.4	791	712	316	1 ¹⁾
TAJV157M025#NJ	V	150	25	85	17	125	37.5	10	0.4	791	712	316	1 ¹⁾
						t @ 85°C							
TAJA104*035#NJ	A	0.1	35	85	23	125	0.5	4	24	56	50	22	1
TAJR104*035#NJ	R	0.1	35	85	23	125	0.5	4	29	44	39	17	1
TAJS104*035#NJ	S	0.1	35	85	23	125	0.5	4	24	52	47	21	1
TAJA154*035#NJ TAJR154*035#NJ	A R	0.15 0.15	35 35	85 85	23	125 125	0.5	4	21	60 48	54 43	24 19	1
TAJS154*035#NJ	S	0.15	35	85	23	125	0.5	4	21	48 56	50	22	1
TAJA224*035#NJ	A	0.13	35	85	23	125	0.5	4	18	65	58	26	1
TAJR224*035#NJ	R	0.22	35	85	23	125	0.5	4	21	51	46	20	1
TAJS224*035#NJ	S	0.22	35	85	23	125	0.5	4	18	60	54	24	1
		0.33	2.5	85	23	125	0.5	4	15	71	64	28	1
TAJA334*035#NJ	Α	0.33	35	00	23	125	0.0		10		04		

Standard and Low Profile Tantalum Capacitors

AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF	ESR Max.	100kHz	RMS Curre	ent (mA)	Moi
Part No.	Size	(μF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (Ω)	25°C	85°C	125°C	MSL
TAJS334*035#NJ	S	0.33	35	85	23	125	0.5	4	15	66	59	26	1
TAJA474*035#NJ	A	0.47	35	85	23	125	0.5	4	12	79	71	32	1
TAJB474*035#NJ TAJR474*035#NJ	B R	0.47 0.47	35 35	85 85	23	125 125	0.5	4	10 15	92 61	83 54	37 24	1
TAJS474*035#NJ	S	0.47	35	85	23	125	0.5	4	12	74	66	29	1
TAJT474*035#NJ	T	0.47	35	85	23	125	0.5	4	10	89	80	36	1
TAJA684*035#NJ	Α	0.68	35	85	23	125	0.5	4	8	97	87	39	1
TAJB684*035#NJ	В	0.68	35	85	23	125	0.5	4	8	103	93	41	1
TAJP684*035#NJ	Р	0.68	35	85	23	125	0.5	4	13	68	61	27	1
TAJS684*035#NJ	S	0.68	35	85	23	125	0.5	4	8	90	81	36	1
TAJT684*035#NJ TAJA105*035#NJ	T	0.68 1	35 35	85 85	23	125 125	0.5	4	7.5	100 100	90	40 40	1
TAJB105*035#NJ	A B	1	35	85	23	125	0.5	4	6.5	114	103	46	1
TAJP105*035#NJ	Р	1	35	85	23	125	0.5	4	11	74	66	30	1
TAJS105*035#NJ	S	1	35	85	23	125	0.5	4	7.5	93	84	37	1
TAJT105*035#NJ	Т	1	35	85	23	125	0.5	4	6.5	111	100	44	1
TAJA155*035#NJ	Α	1.5	35	85	23	125	0.5	6	7.5	100	90	40	1
ΓAJB155*035#NJ	В	1.5	35	85	23	125	0.5	6	5.2	128	115	51	1
FAJC155*035#NJ	С	1.5	35	85	23	125	0.5	6	4.5	156	141	63	1
AJT155*035#NJ	T	1.5	35	85	23	125	0.5	6	5.2	124	112	50	1
TAJA225*035#NJ TAJB225*035#NJ	A B	2.2	35 35	85 85	23	125 125	0.8	6	4.5 4.2	129 142	116 128	52 57	1
AJC225*035#NJ	С	2.2	35	85	23	125	0.8	6	3.5	177	160	71	1
TAJT225*035#NJ	T	2.2	35	85	23	125	0.8	6	4.2	138	124	55	1
TAJB335*035#NJ	В	3.3	35	85	23	125	1.2	6	3.5	156	140	62	1
TAJC335*035#NJ	С	3.3	35	85	23	125	1.2	6	2.5	210	189	84	1
FAJW335*035#NJ	W	3.3	35	85	23	125	1.2	6	1.6	237	213	95	1
TAJB475*035#NJ	В	4.7	35	85	23	125	1.6	6	3.1	166	149	66	1
FAJC475*035#NJ	С	4.7	35	85	23	125	1.6	6	2.2	224	201	89	1
TAJD475*035#NJ TAJW475*035#NJ	D W	4.7 4.7	35 35	85 85	23 23	125 125	1.6 1.6	6	1.5 2.2	316 202	285 182	126 81	1
TAJC685*035#NJ	C	6.8	35	85	23	125	2.4	6	1.8	247	222	99	1
TAJD685*035#NJ	D	6.8	35	85	23	125	2.4	6	1.3	340	306	136	1
TAJY685*035#NJ	Y	6.8	35	85	23	125	2.3	6	0.9	373	335	149	1 ¹⁾
AJC106*035#NJ	С	10	35	85	23	125	3.5	6	1.6	262	236	105	1
AJD106*035#NJ	D	10	35	85	23	125	3.5	6	1	387	349	155	1
AJE106*035#NJ	Е	10	35	85	23	125	3.5	6	0.9	428	385	171	1 ¹⁾
AJX106*035#NJ	X	10	35	85	23	125	3.5	6	0.7	378	340	151	1 ¹⁾
FAJY106*035#NJ	C	10 15	35 35	85 85	23	125 125	3.5 5.3	6	1.4	354 280	318 252	141 112	1 ¹⁾
ΓΑJC156*035#NJ ΓΑJD156*035#NJ	D	15	35	85	23	125	5.3	6	0.9	408	367	163	1
TAJY156*035#NJ	Y	15	35	85	23	125	5.3	6	0.6	456	411	183	1 ¹⁾
ΓAJD226*035#NJ	D	22	35	85	23	125	7.7	6	0.9	408	367	163	1
TAJE226*035#NJ	Е	22	35	85	23	125	7.7	6	0.5	574	517	230	1 ¹⁾
TAJY226*035#NJ	Υ	22	35	85	23	125	7.7	6	0.5	500	450	200	1 ¹⁾
TAJD336*035#NJ	D	33	35	85	23	125	11.6	6	0.9	408	367	163	1
TAJE336*035#NJ	E	33	35	85	23	125	11.6	6	0.9	428	385	171	11)
TAJV336*035#NJ AJD476*035#NJV	V	33	35	85	23	125	11.6	6	0.5	707	636	283	11)
TAJE476*035#NJ	D E	47 47	35 35	85 85	23	125 125	16.5 16.5	6	0.9	408 428	367 385	163 171	3 1 ¹⁾
ΓΑJV476*035#NJ	V	47	35	85	23	125	16.5	6	0.4	791	712	316	1 ¹⁾
TAJV686*035#NJ	V	68	35	85	23	125	23.8	6	0.5	707	636	283	1 ¹⁾
					50 Vol	t @ 85°C							
TAJA104*050#NJ	Α	0.1	50	85	33	125	0.5	4	22	58	53	23	1
TAJS104*050#NJ	S	0.1	50	85	33	125	0.5	4	19	58	53	23	1
TAJA154*050#NJ	A	0.15	50	85	33	125	0.5	4	15	71	64	28	1
						125	0.5	4	17	71	64	28	1
	В	0.15	50	85	33			4	16	6.1			
TAJS154*050#NJ	B	0.15 0.15	50	85	33	125	0.5	4	16	64	57 58	25	1
TAJS154*050#NJ TAJA224*050#NJ	B S A	0.15 0.15 0.22	50 50	85 85	33 33	125 125	0.5 0.5	4	18	65	58	26	1
TAJS154*050#NJ TAJA224*050#NJ TAJB224*050#NJ	B	0.15 0.15	50	85	33	125	0.5						
TAJB154*050#NJ TAJS154*050#NJ TAJA224*050#NJ TAJB224*050#NJ TAJP224*050#NJ TAJR224*050#NJ	B S A B	0.15 0.15 0.22 0.22	50 50 50	85 85 85	33 33 33	125 125 125	0.5 0.5 0.5	4	18 14	65 78	58 70	26 31	1
TAJS154*050#NJ TAJA224*050#NJ TAJB224*050#NJ TAJP224*050#NJ	B S A B	0.15 0.15 0.22 0.22 0.22	50 50 50 50	85 85 85 85 85 85	33 33 33 33 33 33	125 125 125 125 125 125 125	0.5 0.5 0.5 0.5	4 4 4 4 4	18 14 17 17 13	65 78 59	58 70 53	26 31 24 23 28	1 1 1
TAJS154*050#NJ TAJA224*050#NJ TAJB224*050#NJ TAJP224*050#NJ TAJP224*050#NJ TAJR224*050#NJ TAJA324*050#NJ TAJA334*050#NJ	B S A B P R S	0.15 0.15 0.22 0.22 0.22 0.22 0.22 0.22 0.33	50 50 50 50 50 50 50	85 85 85 85 85 85 85	33 33 33 33 33 33 33	125 125 125 125 125 125 125 125	0.5 0.5 0.5 0.5 0.5 0.5 0.5	4 4 4 4 4 4	18 14 17 17 13 13	65 78 59 57 71 66	58 70 53 51 64 60	26 31 24 23 28 27	1 1 1 1 1 1
TAJS154*050#NJ TAJA224*050#NJ TAJB224*050#NJ TAJP224*050#NJ TAJP224*050#NJ TAJR224*050#NJ TAJS224*050#NJ TAJS234*050#NJ TAJB334*050#NJ	B S A B P R S A B	0.15 0.15 0.22 0.22 0.22 0.22 0.22 0.22 0.33 0.33	50 50 50 50 50 50 50 50 50	85 85 85 85 85 85 85 85	33 33 33 33 33 33 33 33	125 125 125 125 125 125 125 125 125 125	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	4 4 4 4 4 4	18 14 17 17 13 17 12	65 78 59 57 71 66 84	58 70 53 51 64 60 76	26 31 24 23 28 27 34	1 1 1 1 1 1 1
TAJS154*050#NJ TAJA224*050#NJ TAJB224*050#NJ TAJB224*050#NJ TAJP224*050#NJ TAJS224*050#NJ TAJS224*050#NJ TAJS34*050#NJ TAJB334*050#NJ TAJB334*050#NJ	B S A B P R S A B	0.15 0.15 0.22 0.22 0.22 0.22 0.22 0.22 0.33 0.33 0.33	50 50 50 50 50 50 50 50 50 50	85 85 85 85 85 85 85 85 85	33 33 33 33 33 33 33 33 33	125 125 125 125 125 125 125 125 125 125	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	4 4 4 4 4 4 4	18 14 17 17 13 17 12 17	65 78 59 57 71 66 84 59	58 70 53 51 64 60 76 53	26 31 24 23 28 27 34 24	1 1 1 1 1 1 1
TAJS154*050#NJ TAJA224*050#NJ TAJB224*050#NJ TAJP224*050#NJ TAJP224*050#NJ TAJS224*050#NJ TAJS224*050#NJ TAJA334*050#NJ TAJB334*050#NJ TAJP334*050#NJ	B S A B P R S A B P R S A	0.15 0.15 0.22 0.22 0.22 0.22 0.22 0.33 0.33 0.33 0.33	50 50 50 50 50 50 50 50 50 50	85 85 85 85 85 85 85 85 85 85	33 33 33 33 33 33 33 33 33 33	125 125 125 125 125 125 125 125 125 125	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	4 4 4 4 4 4 4 4	18 14 17 17 13 17 12 17	65 78 59 57 71 66 84 59	58 70 53 51 64 60 76 53 51	26 31 24 23 28 27 34 24 23	1 1 1 1 1 1 1 1
TAJS154*050#NJ TAJA224*050#NJ TAJB224*050#NJ TAJP224*050#NJ TAJR224*050#NJ TAJS224*050#NJ TAJA334*050#NJ TAJB334*050#NJ TAJB334*050#NJ TAJP334*050#NJ TAJR334*050#NJ TAJR334*050#NJ	B S A B P R S A B P R S S	0.15 0.15 0.22 0.22 0.22 0.22 0.22 0.33 0.33 0.33 0.33 0.33	50 50 50 50 50 50 50 50 50 50 50 50	85 85 85 85 85 85 85 85 85 85 85 85	33 33 33 33 33 33 33 33 33 33 33	125 125 125 125 125 125 125 125 125 125	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	4 4 4 4 4 4 4 4 4	18 14 17 17 13 17 12 17 17	65 78 59 57 71 66 84 59 57	58 70 53 51 64 60 76 53 51 69	26 31 24 23 28 27 34 24 23 31	1 1 1 1 1 1 1 1 1
TAJS154*050#NJ TAJA224*050#NJ TAJB224*050#NJ TAJB224*050#NJ TAJB224*050#NJ TAJS224*050#NJ TAJS224*050#NJ TAJB334*050#NJ TAJB334*050#NJ TAJR334*050#NJ TAJR334*050#NJ TAJR334*050#NJ TAJR334*050#NJ TAJS334*050#NJ TAJS334*050#NJ	B S A B P R S T	0.15 0.15 0.22 0.22 0.22 0.22 0.22 0.33 0.33 0.33 0.33 0.33 0.33	50 50 50 50 50 50 50 50 50 50 50 50	85 85 85 85 85 85 85 85 85 85 85 85	33 33 33 33 33 33 33 33 33 33 33 33 33	125 125 125 125 125 125 125 125 125 125	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	4 4 4 4 4 4 4 4 4 4	18 14 17 17 13 17 12 17 17 11	65 78 59 57 71 66 84 59 57 77 85	58 70 53 51 64 60 76 53 51 69 77	26 31 24 23 28 27 34 24 23 31 34	1 1 1 1 1 1 1 1 1 1
TAJS154*050#NJ TAJA224*050#NJ TAJB224*050#NJ TAJP224*050#NJ TAJR224*050#NJ TAJS224*050#NJ TAJA334*050#NJ TAJB334*050#NJ TAJB334*050#NJ TAJP334*050#NJ TAJR334*050#NJ TAJR334*050#NJ	B S A B P R S A B P R S S	0.15 0.15 0.22 0.22 0.22 0.22 0.22 0.33 0.33 0.33 0.33 0.33	50 50 50 50 50 50 50 50 50 50 50 50	85 85 85 85 85 85 85 85 85 85 85 85	33 33 33 33 33 33 33 33 33 33 33	125 125 125 125 125 125 125 125 125 125	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	4 4 4 4 4 4 4 4 4	18 14 17 17 13 17 12 17 17	65 78 59 57 71 66 84 59 57	58 70 53 51 64 60 76 53 51 69	26 31 24 23 28 27 34 24 23 31	1 1 1 1 1 1 1 1 1

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated	_ Rated	Category	_ Category	DCL	DF	ESR Max.	100kHz	RMS Curre	ent (mA)	
Part No.	Size	(μF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (Ω)	25°C	85°C	125°C	MSL
TAJS474*050#NJ	S	0.47	50	85	33	125	0.5	4	9.5	83	74	33	1
TAJT474*050#NJ	Т	0.47	50	85	33	125	0.5	4	9.5	92	83	37	1
TAJA684*050#NJ	Α	0.68	50	85	33	125	0.5	4	7.9	97	88	39	1
TAJB684*050#NJ	В	0.68	50	85	33	125	0.5	4	8	103	93	41	1
TAJC684*050#NJ	С	0.68	50	85	33	125	0.5	4	7	125	113	50	1
TAJA105*050#NJ	Α	1	50	85	33	125	0.5	4	6.6	107	96	43	1
TAJB105*050#NJ	В	1	50	85	33	125	0.5	6	7	110	99	44	1
TAJC105*050#NJ	С	1	50	85	33	125	0.5	4	5.5	141	127	57	1
TAJW105*050#NJ	W	1	50	85	33	125	0.5	6	4.4	143	129	57	1
TAJB155*050#NJ	В	1.5	50	85	33	125	0.8	8	5.4	125	113	50	1
TAJC155*050#NJ	С	1.5	50	85	33	125	0.8	6	4.5	156	141	63	1
TAJD155*050#NJ	D	1.5	50	85	33	125	0.8	6	4	194	174	77	1
TAJW155*050#NJ	W	1.5	50	85	33	125	0.8	6	3.1	170	153	68	1
TAJB225*050#NJ	В	2.2	50	85	33	125	1.1	8	4.5	137	124	55	1
TAJC225*050#NJ	С	2.2	50	85	33	125	1.1	8	2.5	210	189	84	1
TAJD225*050#NJ	D	2.2	50	85	33	125	1.1	6	2.5	245	220	98	1
TAJW225*050#NJ	W	2.2	50	85	33	125	1.1	8	2.5	190	171	76	1
TAJC335*050#NJ	С	3.3	50	85	33	125	1.6	6	2.5	210	189	84	1
TAJD335*050#NJ	D	3.3	50	85	33	125	1.7	6	2	274	246	110	1
TAJY335*050#NJ	Υ	3.3	50	85	33	125	1.7	4	1.5	289	260	115	1 ¹⁾
TAJC475*050#NJ	С	4.7	50	85	33	125	2.4	6	1.4	280	252	112	1
TAJD475*050#NJ	D	4.7	50	85	33	125	2.4	6	1.4	327	295	131	1
TAJX475*050#NJV	Х	4.7	50	85	33	125	2.4	6	1.0	316	285	126	3
TAJY475*050#NJ	Υ	4.7	50	85	33	125	2.4	6	1.2	323	290	129	1 ¹⁾
TAJC685*050#NJ	С	6.8	50	85	33	125	3.4	6	1	332	298	133	1
TAJD685*050#NJ	D	6.8	50	85	33	125	3.4	6	1	387	349	155	1
TAJY685*050#NJ	Υ	6.8	50	85	33	125	3.4	6	0.9	373	335	149	1 ¹⁾
TAJD106*050#NJ	D	10	50	85	33	125	5	6	0.8	433	390	173	1
TAJE106*050#NJ	Е	10	50	85	33	125	5	6	0.8	454	409	182	1 ¹⁾
TAJV106*050#NJ	V	10	50	85	33	125	5	6	0.65	620	558	248	1 ¹⁾
TAJD156*050#NJ	D	15	50	85	33	125	7.5	6	0.6	500	450	200	1
TAJE156*050#NJ	Е	15	50	85	33	125	7.5	6	0.6	524	472	210	1 ¹⁾
TAJV156*050#NJ	V	15	50	85	33	125	7.5	6	0.6	645	581	258	1 ¹⁾
TAJV226*050#NJ	V	22	50	85	33	125	11	8	0.6	645	581	258	1 ¹⁾

^{1&}lt;sup>1)</sup> – Dry pack option (see How to order) is recommended for reduction of stress during soldering. Dry pack parts should be treated as MSL 3. Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

*Initial Limit

QUALIFICATION TABLE

TEOT			TAJ serie	s (Temperature rang	ge -55°C to	+125°C	()			
TEST		Condition			Cha	aracteris	stics			
	Apply rate	ed voltage (Ur) at 85°C	and / or eategory	Visual examination	no visib	le damage	!			
		Jc) at 125°C for 2000 h		DCL	1.25 x ii	nitial limit				
Endurance	circuit im	pedance of ≤0.1Ω/V. St	tabilize at room	ΔC/C	within ±	10% of init	ial value			
	temperati	ure for 1-2 hours before	e measuring.	DF	initial lir	nit				
	Store et 6	5°C and 95% relative h	umidity for E00	Visual examination	no visib	le damage	!			
		th no applied voltage. S		DCL	1.5 x ini	tial limit				
Humidity		ure and humidity for 1-		ΔC/C	within ±	10% of init	ial value			
	measurin	g.		DF	1.2 x ini	tial limit				
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20
_	2	+20 -55	15 15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	
Temperature	3 +20 15			IL.						
Stability	Stability 4 +85	+85 +125	15 15	ΔC/C	n/a	+0/-10%	±5%	+10/-0%	+12/-0%	±5'
	6	+125	15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL ³
				Visual examination	no visib	le damage	!			
Surge		x category voltage (Uc les of duration 6 min (3		DCL	initial lir	nit -				
Voltage	,	sec discharge) through	5 ,	ΔC/C	within ±	5% of initia	al value			
	discharge	e resistance of 1000Ω		DF	initial lir	nit				
				Visual examination	no visib	le damage	!			
				DCL	initial lir	nit -				
Mechanical	MIL-STD-	202, Method 213, Cond	dition C	ΔC/C	within ±	5% of initia	al value			
Shock		,,		DF	initial lin	nit				
				ESR	initial lir	nit				
				Visual examination	no visib	le damage	!			
				DCL	initial lir					
Vibration	MIL-STD-:	202, Method 204, Cond	dition D	ΔC/C	within ±	5% of initia	al value			
				DF	initial lir	nit				
				ESR	initial lir	nit				

Standard and Low Profile Tantalum Capacitors

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO₂

Standard Tantalum - Automotive Product Range

FEATURES

- · General Purpose SMT Chip Tantalum Series
- · 100% Surge Current Tested
- 7 Case Sizes Available
- CV Range: 0.22-680µF / 6.3-50V

APPLICATIONS

- Audio Systems
- **GPS**

CASE DIMENSIONS:

- Seat Controls
- Dashboard

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
Α	1206	3216-18	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
С	2312	6032-28	6.00 (0.236)	3.20 (0.126)	2.60 (0.102)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
Р	0805	2012-15	2.05 (0.081)	1.35 (0.053)	1.50 (0.059) max.	1.00±0.10 (0.039±0.004)	0.50 (0.020)	0.85 (0.033)
Y	2917	7343-20	7.30 (0.287)	4.30 (0.169)	2.00 (0.079)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only

MARKING

HOW TO ORDER

Capacitance Code pF code: 1st two digits represent significant figures,

Rated Voltage Code A = 10V

106

3rd digit represents

multiplier (number of zeros to follow)

M $K = \pm 10\%$ $M = \pm 20\%$

035 Tolerance

Rated DC Voltage 025 = 25Vdc T = Automotive Lead 035 = 35Vdc Free 7" Reel 006 = 6.3 Vdc010 = 10 Vdc016 = 16Vdc 050 = 50Vdc U = Automotive Lead 020 = 20Vdc

Т

Free 13" Reel

Packaging

NJ **Specification** Suffix

Dry Pack Option NJ = Std Suffix (D,E,Y case sizes mandatory)

TECHNICAL SPECIFICATIONS

Technical Data:		All techi	nical data	relate to	an ambie	ent tempe	erature of	+25°C				
Capacitance Range:		0.22 µF	to 680 μF									
Capacitance Tolerance:		±10%; ±:	20%									
Rated Voltage (V _R)	≤ +85°C:	6.3	10	16	20	25	35	50				
Category Voltage (V _c)	≤ +125°C:	4	7	10	13	17	23	33				
Surge Voltage (V _s)	≤ +85°C:	8	13	20	26	32	46	65				
Surge Voltage (V _s)	≤ +125°C:	5	8	13	16	20	28	40				
Temperature Range:		-55°C to	+125°C									
Environmental Classification:		55/125/	56 (IEC 6	8-2)								
Reliability:	1% per 1000 hours at 85°C, V_R with 0.1Ω/V series impedance, 60% confidence level											
Termination Finished:	Sn Plating (standard), Gold and SnPb Plating upon request											
	Meets requirements of AEC-Q200											

TAJ AUTOMOTIVE RANGE CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance			Rated	l voltage DC (V _R t	o 85°C		
μF	Code	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)
0.10	104							
0.15	154							
0.22	224							Α
0.33	334						Α	Α
0.47	474					Α	Α	A/B
0.68	684					Α	Α	В
1.0	105			Α	Α	Α	A/B	B/C
1.5	155				A	A/B	A/B	С
2.2	225		Α	Α	A/B	A/B	B/C	C/D
3.3	335	Α		A/B	A/B	A/B	B/C	C/D
4.7	475		A/B	A/B	A/B	B/C	B/C/D	C/D
6.8	685		A/B	A/B	A/B/C	B/C	C/D	D
10	106	A/B	A/B/P	A/B/C	B/C	B/C/D	C/D/Y	D/E
15	156	A/P	A/B/C	B/C	B/C	C/D/Y	D/Y	E
22	226	A/B/C	A/B/C	B/C/D	B/C/D/Y	C/D/Y	D/E	
33	336	A/B	B/C	B/C/D/Y	C/D/Y	D	D/E	
47	476	A/B/C	B/C/D	C/D/Y	D/Y	D/E	E	
68	686	B/C	B/C/D/Y	C/D/Y	D/E	Е		
100	107	B/C/D/Y	C/D/Y	D/E	Е	Е		
150	157	C/D/Y	D/E/Y	D/E				
220	227	C/D/Y	D/E	E				
330	337	D/E	D/E					
470	477	D/E						
680	687	D/E						

Note for designers - for the highlighted ratings, higher voltage options are now available in the same case size and are recommended for new designs.

Released ratings

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

Standard Tantalum - Automotive Product Range

AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF	ESR Max.	100kHz	RMS Curr	ent (mA)	MOL
Part No.	Size	(µF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (Ω)	25°C	85°C	125°C	MSL
						lt @ 85°C							
TAJA335*006TNJ	Α	3.3	6.3	85	4	125	0.5	6	7	104	93	41	1
TAJA106*006TNJ	A	10	6.3	85	4	125	0.6	6	4	137	123	55	1
TAJB106*006TNJ TAJA156*006TNJ	B	10 15	6.3	85 85	4	125 125	0.5	6	3	168 146	151 132	67 59	1
TAJP156*006TNJ	P	15	6.3	85	4	125	0.9	8	3.5	131	118	52	1
TAJA226*006TNJ	A	22	6.3	85	4	125	1.4	6	3.5	158	142	63	1
TAJB226*006TNJ	B	22	6.3	85	4	125	1.4	6	2.5	184	166	74	1
TAJC226*006TNJ	C	22	6.3	85	4	125	1.4	6	2.3	235	211	94	1
TAJA336*006TNJ	A	33	6.3	85	4	125	2.1	8	2.2	185	166	74	1
TAJB336*006TNJ	В	33	6.3	85	4	125	2.1	6	2.2	197	177	79	1
TAJA476*006TNJ	A	47	6.3	85	4	125	2.8	10	1.6	217	195	87	1
TAJB476*006TNJ	В	47	6.3	85	4	125	3	6	2	206	186	82	1
TAJC476*006TNJ	С	47	6.3	85	4	125	3	6	1.6	262	236	105	1
TAJB686*006TNJ	В	68	6.3	85	4	125	4	8	0.9	307	277	123	1
TAJC686*006TNJ	С	68	6.3	85	4	125	4.3	6	1.5	271	244	108	1
TAJB107*006TNJ	В	100	6.3	85	4	125	6.3	10	1.4	246	222	99	1
TAJC107*006TNJ	С	100	6.3	85	4	125	6.3	6	0.9	350	315	140	1
TAJD107*006TNJV	D	100	6.3	85	4	125	6.3	6	0.9	408	367	163	3
TAJY107*006TNJV	Y	100	6.3	85	4	125	6.3	6	0.7	423	380	169	3
TAJC157*006TNJ	С	150	6.3	85	4	125	9.5	6	1.3	291	262	116	1
TAJD157*006TNJV	D Y	150	6.3	85	4	125	9.5	6	0.9	408	367	163	3
TAJY157*006TNJV TAJC227*006TNJ	C	150 220	6.3	85 85	4	125 125	9.5 8.8	6 8	0.4 1.2	559 303	503 272	224 121	3
TAJD227*006TNJV	D	220	6.3	85	4	125	13.9	8	0.4	612	551	245	3
TAJY227*006TNJV	Y	220	6.3	85	4	125	13.9	8	0.4	423	380	169	3
TAJD337*006TNJV	D	330	6.3	85	4	125	20.8	8	0.7	612	551	245	3
TAJE337*006TNJV	E	330	6.3	85	4	125	20.8	8	0.4	642	578	257	3
TAJD477*006TNJV	D	470	6.3	85	4	125	28	12	0.4	612	551	245	3
TAJE477*006TNJV	E	470	6.3	85	4	125	28	10	0.4	642	578	257	3
TAJD687*006TNJV	D	680	6.3	85	4	125	40.8	20	0.5	548	493	219	3
TAJE687*006TNJV	Е	680	6.3	85	4	125	42.8	10	0.5	574	517	230	3
					10 Vol	t @ 85°C							
TAJA225*010TNJ	Α	2.2	10	85	7	125	0.5	6	7	104	93	41	1
TAJA475*010TNJ	Α	4.7	10	85	7	125	0.5	6	5	122	110	49	1
TAJB475*010TNJ	В	4.7	10	85	7	125	0.5	6	4	146	131	58	1
TAJA685*010TNJ	Α	6.8	10	85	7	125	0.7	6	4	137	123	55	1
TAJB685*010TNJ	В	6.8	10	85	7	125	0.7	6	3	168	151	67	1
TAJA106*010TNJ	A	10	10	85	7	125	11	6	3	158	142	63	1
TAJB106*010TNJ	B	10 10	10	85	7	125	1	6	2.1	201	181 90	80 40	1
TAJP106*010TNJ TAJA156*010TNJ	A	15	10	85 85	7	125 125	1.5	8	3.2	100 153	138	61	1
TAJB156*010TNJ	B	15	10	85	7	125	1.5	6	2.8	174	157	70	1
TAJC156*010TNJ	C	15	10	85	7	125	1.5	6	2.0	235	211	94	1
TAJA226*010TNJ	A	22	10	85	7	125	2.2	8	3	158	142	63	1
TAJB226*010TNJ	В	22	10	85	7	125	2.2	6	2.4	188	169	75	1
TAJC226*010TNJ	C	22	10	85	7	125	2.2	6	1.8	247	222	99	1
TAJB336*010TNJ	В	33	10	85	7	125	3.3	6	1.8	217	196	87	1
TAJC336*010TNJ	С	33	10	85	7	125	3.3	6	1.6	262	236	105	1
TAJB476*010TNJ	В	47	10	85	7	125	4.7	8	1	292	262	117	1
TAJC476*010TNJ	С	47	10	85	7	125	4.7	6	1.2	303	272	121	1
TAJD476*010TNJV	D	47	10	85	7	125	4.7	6	0.4	612	551	245	3
TAJB686*010TNJ	В	68	10	85	7	125	6.8	8	1.4	246	222	99	1
TAJC686*010TNJ	С	68	10	85	7	125	6.8	6	1.3	291	262	116	1
TAJD686*010TNJV	D	68	10	85	7	125	6.8	6	0.9	408	367	163	3
TAJY686*010TNJV	Y	68	10	85	7	125	6.8	6	0.9	373	335	149	3
TAJC107*010TNJ	С	100	10	85	7	125	10	8	1.2	303	272	121	1
TAJD107*010TNJV	D	100	10	85	7	125	10	6	0.9	408	367	163	3
TAJY107*010TNJV	Y	100	10	85	7	125	10	6	0.9	373	335	149	3
TAJD157*010TNJV TAJE157*010TNJV	D	150	10	85	7	125	15	8	0.9	408	367	163 171	3
	E Y	150 150	10 10	85 85	7	125 125	15 15	8	0.9	428 323	385 290	1/1	3
TAJY157*010TNJV TAJD227*010TNJV	D	220	10	85	7	125	22	8	0.5	548	493	219	3
TAJE227*010TNJV	E	220	10	85	7	125	22	8	0.5	548	517	230	3
TAJD337*010TNJV	D	330	10	85	7	125	33	8	0.5	408	367	163	3
TAJE337*010TNJV	E	330	10	85	7	125	33	8	0.9	428	385	171	3
TAGEOUT OTOTINOV		330	10	0.5		125 t @ 85°C	33		0.9	+20	303	171	
TAJA105*016TNJ	ΙΑ	1	16	85	10 00	125	0.5	4	11	83	74	33	1
TAJA225*016TNJ	A	2.2	16	85	10	125	0.5	6	6.5	107	97	43	1
TAJA335*016TNJ	A	3.3	16	85	10	125	0.5	6	5	122	110	49	1
TAJB335*016TNJ	В	3.3	16	85	10	125	0.5	6	4.5	137	124	55	1
TAJA475*016TNJ	A	4.7	16	85	10	125	0.8	6	4	137	123	55	1

Standard Tantalum - Automotive Product Range

AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF	ESR Max.	100kHz	RMS Curr	ent (mA)	MSL
Part No.	Size	(μF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (Ω)	25°C	85°C	125°C	MSL
TAJB475*016TNJ	В	4.7	16	85	10	125	0.8	6	3.5	156	140	62	1
TAJA685*016TNJ	A	6.8	16	85	10	125	1.1	6	3.5	146	132	59	1
TAJB685*016TNJ	В	6.8	16	85	10	125	1.1	6	2.5	184	166	74	1
TAJA106*016TNJ TAJB106*016TNJ	A B	10 10	16 16	85 85	10 10	125 125	1.6 1.6	6	2.5	158 184	142 166	63 74	1
TAJC106*016TNJ	C	10	16	85	10	125	1.6	6	2.5	235	211	94	1
TAJB156*016TNJ	В	15	16	85	10	125	2.4	6	2.5	184	166	74	1
TAJC156*016TNJ	C	15	16	85	10	125	2.4	6	1.8	247	222	99	1
TAJB226*016TNJ	В	22	16	85	10	125	3.5	6	2.3	192	173	77	1
TAJC226*016TNJ	С	22	16	85	10	125	3.5	6	1	332	298	133	1
TAJD226*016TNJV	D	22	16	85	10	125	3.5	6	1.1	369	332	148	3
TAJB336*016TNJ	В	33	16	85	10	125	5.3	8	2.1	201	181	80	1
TAJC336*016TNJ	С	33	16	85	10	125	5.3	6	1.5	271	244	108	1
TAJD336*016TNJV	D	33	16	85	10	125	5.3	6	0.9	408	367	163	3
TAJY336*016TNJV	Y	33	16	85	10	125	5.3	6	0.9	373	335	149	3
TAJC476*016TNJ	С	47	16	85	10	125	7.5	6	0.5	469	422	188	1
TAJD476*016TNJV TAJY476*016TNJV	D Y	47 47	16 16	85 85	10 10	125 125	7.5 7.5	6	0.9 0.7	408 423	367 380	163 169	3
TAJC686*016TNJ	C	68	16	85	10	125	10.9	6	1.3	291	262	116	1
TAJD686*016TNJV	D	68	16	85	10	125	10.9	6	0.9	408	367	163	3
TAJY686*016TNJV	Y	68	16	85	10	125	10.9	6	0.9	373	335	149	3
TAJD107*016TNJV	D	100	16	85	10	125	16	6	0.6	500	450	200	3
TAJE107*016TNJV	E	100	16	85	10	125	16	6	0.9	428	385	171	3
TAJD157*016TNJV	D	150	16	85	10	125	24	6	0.9	408	367	163	3
TAJE157*016TNJV	E	150	16	85	10	125	24	8	0.3	742	667	297	3
TAJE227*016TNJV	E	220	16	85	10	125	35.2	10	0.5	574	517	230	3
						t @ 85°C							
TAJA105*020TNJ	A	1	20	85	13	125	0.5	4	9	91	82	37	1
TAJA155*020TNJ	A	1.5	20	85	13	125	0.5	6	6.5	107	97	43	1
TAJA225*020TNJ	A B	2.2	20	85	13	125	0.5	6	5.3	119	107 140	48	1
TAJB225*020TNJ TAJA335*020TNJ	A	3.3	20	85 85	13 13	125 125	0.5	6	3.5 4.5	156 129	116	62 52	1
TAJB335*020TNJ	B	3.3	20	85	13	125	0.7	6	3	168	151	67	1
TAJA475*020TNJ	A	4.7	20	85	13	125	0.7	6	4	137	123	55	1
TAJB475*020TNJ	В	4.7	20	85	13	125	0.9	6	3	168	151	67	1
TAJA685*020TNJ	Α	6.8	20	85	13	125	1.4	6	2.4	177	159	71	1
TAJB685*020TNJ	В	6.8	20	85	13	125	1.4	6	2.5	184	166	74	1
TAJC685*020TNJ	С	6.8	20	85	13	125	1.4	6	2	235	211	94	1
TAJB106*020TNJ	В	10	20	85	13	125	2	6	2.1	201	181	80	1
TAJC106*020TNJ	С	10	20	85	13	125	2	6	1.2	303	272	121	1
TAJB156*020TNJ	В	15	20	85	13	125	3	6	2	206	186	82	1
TAJC156*020TNJ	B	15 22	20 20	85 85	13 13	125 125	<u>3</u> 4.4	6	1.7 1.8	254 217	229 196	102 87	1
TAJB226*020TNJ TAJC226*020TNJ	С	22	20	85	13	125	4.4	6	1.6	262	236	105	1
TAJD226*020TNJV	D	22	20	85	13	125	4.4	6	0.9	408	367	163	3
TAJY226*020TNJV	Y	22	20	85	13	125	4.4	6	0.9	373	335	149	3
TAJC336*020TNJ	C	33	20	85	13	125	6.6	6	1.5	271	244	108	1
TAJD336*020TNJV	D	33	20	85	13	125	6.6	6	0.9	408	367	163	3
TAJY336*020TNJV	Υ	33	20	85	13	125	6.6	6	0.6	456	411	183	3
TAJD476*020TNJV	D	47	20	85	13	125	9.4	6	0.9	408	367	163	3
TAJY476*020TNJV	Υ	47	20	85	13	125	9.4	6	0.9	373	335	149	3
TAJD686*020TNJV	D	68	20	85	13	125	13.6	6	0.4	612	551	245	3
TAJE686*020TNJV	E	68	20	85	13	125	13.6	6	0.9	428	385	171	3
TAJE107*020TNJV	E	100	20	85	13	125	20	6	0.4	642	578	257	3
TAJA474*025TNJ	A	0.47	25	85	25 Vo	lt @ 85°C 125	0.5	4	14	73	66	29	1
TAJA474^025TNJ TAJA684*025TNJ	A	0.47	25	85	17	125	0.5	4	10	87	78	35	1
TAJA064*025TNJ	A	1	25	85	17	125	0.5	4	8	97	87	39	1
TAJA155*025TNJ	A	1.5	25	85	17	125	0.5	6	7.5	100	90	40	1
TAJB155*025TNJ	В	1.5	25	85	17	125	0.5	6	5	130	117	52	1
TAJA225*025TNJ	A	2.2	25	85	17	125	0.6	6	7	104	93	41	1
TAJB225*025TNJ	В	2.2	25	85	17	125	0.6	6	4.5	137	124	55	1
TAJA335*025TNJ	Α	3.3	25	85	17	125	0.8	6	3.7	142	128	57	1
TAJB335*025TNJ	В	3.3	25	85	17	125	0.8	6	3.5	156	140	62	1
TAJB475*025TNJ	В	4.7	25	85	17	125	1.2	6	1.5	238	214	95	1
TAJC475*025TNJ	C	4.7	25	85	17	125	1.2	6	2.4	214	193	86	1
TAJB685*025TNJ	В	6.8	25	85	17	125	1.7	6	2.8	174	157	70	1
TAJC685*025TNJ	C	6.8	25	85	17	125	1.7	6	2	235	211	94	1
TAJB106*025TNJ TAJC106*025TNJ	В	10 10	25 25	85 85	17 17	125 125	2.5	6	2.5 1.8	184 247	166 222	74 99	1
TAJD106*025TNJV	D	10	25	85	17	125	2.5	6	1.8	354	318	141	3
TAJC156*025TNJV	C	15	25	85	17	125	3.8	6	1.6	262	236	105	1
TAGGIOU UZUTNU	1 0	10	20	00	17	120	5.0	U	1.0	202	200	100	

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF	ESR Max.	100kHz	RMS Curre	ent (mA)	MOI
Part No.	Size	(μF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (Ω)	25°C	85°C	125°C	MSL
TAJD156*025TNJV	D	15	25	85	17	125	3.8	6	1	387	349	155	3
TAJY156*025TNJV	Υ	15	25	85	17	125	3.8	6	1	354	318	141	3
TAJC226*025TNJ	С	22	25	85	17	125	5.5	6	1.4	280	252	112	1
TAJD226*025TNJV	D	22	25	85	17	125	5.5	6	0.9	408	367	163	3
TAJY226*025TNJV	Y	22	25	85	17	125	5.5	6	0.8	395	356	158	3
TAJD336*025TNJV	D	33	25	85	17	125	8.3	6	0.9	408	367	163	3
TAJD476*025TNJV	D	47	25	85	17	125	11.8	6	0.9	408	367	163	3
TAJE476*025TNJV	E	47	25	85	17	125	11.8	6	0.9	428	385	171	3
TAJE686*025TNJV	E	68	25	85	17	125	17	6	0.9	428	385	171	3
TAJE107*025TNJV	E	100	25	85	17	125	25	10	0.3	742	667	297	3
						t @ 85°C							
TAJA334*035TNJ	Α	0.33	35	85	23	125	0.5	4	15	71	64	28	1
TAJA474*035TNJ	Α	0.47	35	85	23	125	0.5	4	12	79	71	32	1
TAJA684*035TNJ	Α	0.68	35	85	23	125	0.5	4	8	97	87	39	1
TAJA105*035TNJ	Α	1	35	85	23	125	0.5	4	7.5	100	90	40	1
TAJB105*035TNJ	В	1	35	85	23	125	0.5	4	6.5	114	103	46	1
TAJA155*035TNJ	Α	1.5	35	85	23	125	0.5	6	7.5	100	90	40	1
TAJB155*035TNJ	В	1.5	35	85	23	125	0.5	6	5.2	128	115	51	1
TAJB225*035TNJ	В	2.2	35	85	23	125	0.8	6	4.2	142	128	57	1
TAJC225*035TNJ	С	2.2	35	85	23	125	0.8	6	3.5	177	160	71	1
TAJB335*035TNJ	В	3.3	35	85	23	125	1.2	6	3.5	156	140	62	1
TAJC335*035TNJ	С	3.3	35	85	23	125	1.2	6	2.5	210	189	84	1
TAJB475*035TNJ	В	4.7	35	85	23	125	1.6	6	3.1	166	149	66	1
TAJC475*035TNJ	С	4.7	35	85	23	125	1.6	6	2.2	224	201	89	1
TAJD475*035TNJV	D	4.7	35	85	23	125	1.6	6	1.5	316	285	126	3
TAJC685*035TNJ	С	6.8	35	85	23	125	2.4	6	1.8	247	222	99	1
TAJD685*035TNJV	D	6.8	35	85	23	125	2.4	6	1.3	340	306	136	3
TAJC106*035TNJ	С	10	35	85	23	125	3.5	6	1.6	262	236	105	1
TAJD106*035TNJV	D	10	35	85	23	125	3.5	6	1	387	349	155	3
TAJY106*035TNJV	Y	10	35	85	23	125	3.5	6	1	354	318	141	3
TAJD156*035TNJV	D	15	35	85	23	125	5.3	6	0.9	408	367	163	3
TAJY156*035TNJV	Y	15	35	85	23	125	5.3	6	0.6	456	411	183	3
TAJD226*035TNJV	D	22	35	85	23	125	7.7 7.7	6	0.9	408	367	163	3
TAJE226*035TNJV	E	22	35	85	23	125		6	0.5	574	517	230	3
TAJD336*035TNJV	D	33	35	85	23	125 125	11.6	6	0.9	408 428	367 385	163 171	3
TAJE336*035TNJV	E	33 47	35	85 85	23	125	11.6	6	0.9	428	385	171	3
TAJE476*035TNJV	[47	35	85		t @ 85°C	16.5	0	0.9	428	383	171	3
TAJA224*050TNJ	Α	0.22	50	85	33	125	0.5	4	18	65	58	26	1
TAJA334*050TNJ	A	0.22	50	85	33	125	0.5	4	17	66	60	27	1
TAJA334*050TNJ	A	0.33	50	85	33	125	0.5	4	9.5	89	80	36	1
TAJB474*050TNJ	В	0.47	50	85	33	125	0.5	4	9.5	95	85	38	1
TAJB684*050TNJ	В	0.47	50	85	33	125	0.5	4	8	103	93	41	1
TAJB105*050TNJ	В	1	50	85	33	125	0.5	6	7	110	99	44	1
TAJC105*050TNJ	C	1	50	85	33	125	0.5	4	5.5	141	127	57	1
TAJC105 050TNJ	C	1.5	50	85	33	125	0.8	6	4.5	156	141	63	1
TAJC225*050TNJ	C	2.2	50	85	33	125	1.1	8	2.5	210	189	84	1
TAJD225*050TNJV	D	2.2	50	85	33	125	1.1	6	2.5	245	220	98	3
TAJC335*050TNJ	C	3.3	50	85	33	125	1.6	6	2.5	210	189	84	1
TAJD335*050TNJV	D	3.3	50	85	33	125	1.7	6	2.0	274	246	110	3
TAJC475*050TNJ	C	4.7	50	85	33	125	2.4	6	1.4	280	252	112	1
TAJD475*050TNJV	D	4.7	50	85	33	125	2.4	6	1.4	327	295	131	3
TAJD685*050TNJV	D	6.8	50	85	33	125	3.4	6	1.4	387	349	155	3
TAJD106*050TNJV	D	10	50	85	33	125	5	6	0.8	433	390	173	3
TAJE106*050TNJV	E	10	50	85	33	125	5	6	1	406	366	162	3
TAJE156*050TNJV	E	15	50	85	33	125	7.5	6	0.6	524	472	210	3
TAGE 100 00011NOV		10	30	00	- 55	120	7.5	U	0.0	J2 4	4/2	210	J

Moisture Sensitivity Level (MSL) is defined according to J-STD-020

Please use specific PN for automotive version – see "HOW TO ORDER".

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts.

DCL is measured at rated voltage after 5 minutes.

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

^{*}Please use "U" instead of "T" in the suffix letter for 13" reel packaging

QUALIFICATION TABLE

TEST		TAJ automotive series (Temperature range -55°C to +125°C) Condition Characteristics										
		Condition		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								
	Apply rate	ed voltage (Ur) at 85°C	and / or category	Visual examination		ble dama						
		lc) at 125°C for 2000 h		DCL		initial lim						
Endurance	, ,	pedance of ≤0.1Ω/V. S		ΔC/C			nitial valu	ie				
	temperati	ure for 1-2 hours befor	e measuring.	DF	initial l							
				ESR		initial limit						
				Visual examination	no visible damage							
	Store at 1	25°C, no voltage appli	ed, for 2000 hours.	DCL	1.25 x	1.25 x initial limit						
Storage Life		at room temperature fo	or 1-2 hours before	ΔC/C	within	within ±10% of initial value						
	measuring	g.		DF	initial I	imit						
				ESR	initial I	imit						
				Visual examination	no visil	no visible damage						
	1	5°C and 95% relative h	,	DCL	1.5 x ir	nitial limit						
Humidity		h no applied voltage. S ure and humidity for 1-		ΔC/C	within	±10% of i	nitial valu	ie				
•	measuring	•	2 nours before	DF	1.2 x ir	nitial limit						
	Incasann	g.		ESR	initial l	imit						
				Visual examination	no visil	no visible damage						
		ed voltage (Ur) at 85°C		DCL		2 x initial limit						
Biased	humidity for 1000 hours. Stabilize at room temperature and humidity for 1-2 hours before			ΔC/C			nitial valu	ie				
Humidity	measuring	•	2 hours before	DF		nitial limit						
	measuring	y.		ESR	initial							
	Step	Temperature°C	Duration(min)	Lon	+20°C	-55°C	+20°C	+85°C	+125°C	+20		
	1	+20	15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL		
Temperature	2	-55	15			1,7 =						
Stability	3	+20	15	ΔC/C	n/a	+0/-10%	±5%	+10/-0%	+12/-0%	±5		
,,	4	+85	15 15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL		
	5	+125 +20	15	ESR	IL*	2 x IL*	IL*	IL*	IL*	IL		
		120	13	Visual examination	no visi	ble dama	ide .					
	Apply 1.3	x category voltage (Uc) at 125°C for	DCL	initial		.90					
Surge	1000 cycl	es of duration 6 min (3	30 sec charge,	ΔC/C			itial value	<u> </u>				
Voltage	1	sec discharge) through	n a charge /	DF	initial		itiai vaiac					
	discharge	resistance of 1000Ω		ESR	initial							
				Visual examination		ble dama						
				DCL	initial		ige					
Mechanical	MIL OTD	200 Markard 210 Oarra	J::: F	ΔC/C			itial value					
Shock	MIL-STD-2	202, Method 213, Cond	aition F	-, -			itiai vaiue	}				
				DF	initial l							
				ESR	initial l							
				Visual examination	_	ble dama	ge					
				DCL	initial l							
Vibration	MIL-STD-2	202, Method 204, Cond	dition D	ΔC/C			itial value)				
				DF	initial l	imit						
				ESR	initial l	imit						

^{*}Initial Limit

Standard Tantalum - Automotive Product Range

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

Resin-Molded Chip, Low Profile J-Lead

FEATURES

- · Compliant to the RoHS3 directive 2015/863/EU
- SMD J-Lead
- · Low Profile Case Sizes
- · 100% Surge Current Tested

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

APPLICATIONS

- · Handheld Electronics
- · USB Accessories

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L	W ₁	W ₂	Н	s
Α	1206	3216-12	3.20 ± 0.20 (0.126 ± 0.008)	1.60 ± 0.20 (0.063 ± 0.008)	1.20 ± 0.10 (0.047 ± 0.004)	1.10 ± 0.10 (0.043 ± 0.004)	0.80 ± 0.20 (0.031 ± 0.008)
В	1311	3428-12	3.40 ± 0.20 (0.134 ± 0.008)	2.80 ± 0.20 (0.110 ± 0.008)	2.30 ± 0.10 (0.091 ± 0.004)	1.10 ± 0.10 (0.043 ± 0.004)	0.80 ± 0.20 (0.031 ± 0.008)
Р	0805	2012-12	2.00 ± 0.20 (0.079 ± 0.008)	1.25 ± 0.10 (0.049 ± 0.004)	0.90 ± 0.10 (0.035 ± 0.004)	1.10 ± 0.10 (0.043 ± 0.004)	0.50 ± 0.20 (0.020 ± 0.008)

^{*}Capacitance code of "P" case products are as shown below.

HOW TO ORDER

TECHNICAL SPECIFICATIONS

Category Temperature Range	-55 to +125°C					
Rated Temperature	+85°C					
Capacitance Tolerance	±20%, ±10% at 120Hz					
Dissipation Factor	Refer to next page					
ESR 100kHz	Refer to next page					
Leakage Current	After 1 minute's applicati	on of rated voltage, leakage current at 20°C is not				
	more than 0.01CV or 0.5	JA, whichever is greater.				
	After 1 minute's applicat	ion of rated voltage, leakage current at 85°C is not				
	more than 0.1CV or 5μA,	whichever is greater.				
	After 1 minute's application	on of derated voltage, leakage current at 125°C is not				
	more than 0.125CV or 6.3	BµA, whichever is greater.				
Capacitance Change By Temperature	P Case A, B Case					
	+20% Max. at +125°C					
	+15% Max. at +85°C	+10% Max. at +85°C				
	-15% Max. at -55°C	-10% Max. at -55°C				

Resin-Molded Chip, Low Profile J-Lead

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance				Rated Voltage				*Cap
μF	Code	4V (0G)	6.3V (0J)	10V (1A)	16V (1C)	20V (1D)	25V (1E)	35V (1V)	Code
0.22	224							Α	J
0.33	334							Α	N
0.47	474				Р	A/P		Α	S
0.68	684				Р	Α			W
1.0	105			Р	Р	A/P	Р	Α	Α
1.5	155			Р		Α			Е
2.2	225		Р	Р	A/P		A/B	В	J
3.3	335	Р	Р	A/P	Α				N
4.7	475	Р	Р	A/P	A/B		В		S
6.8	685	Р	Р	Р	В				W
10	106	Р	A/P	A/P ^(M)	В				а
15	156	Р	P ^(M)	Α					е
22	226	Α	A/P ^(M)	В					J
33	336		В						n
47	476	В	В						S
68	686								W
100	107	A ^(M) /B							Α

Released ratings (M tolerance only)

Please contact to your local AVX sales office when these series are being designed in your application.

AVX Part No.	Case Size	Capacitance	Rated	DCL (µA)	DF @ 120Hz	ESR @		100kHz RMS	Current (mA)		*1 ΔC/C (%)	MSL
AVA Part No.	Case Size	(μF)	Voltage (V)	DCL (µA)	(%)	100kHz (Ω)	25°C	60°C	85°C	125°C	_ ^1 ΔC/C (%)	IVISL
					4 V	/olt						
F920G335#PA	P	3.3	4	0.5	8	12.0	50	_	45	20	*	1
F920G475#PA	Р	4.7	4	0.5	8	6.0	71	_	64	28	*	1
F920G685#PA	P	6.8	4	0.5	10	6.0	71	_	64	28	*	1
F920G106#PA	Р	10	4	0.5	10	6.0	71	_	64	28	*	1
F920G156#PA	Р	15	4	0.6	10	5.0	77	_	70	31	*	1
F920G226#AA	Α	22	4	0.9	12	2.8	146	_	132	59	*	1
F920G476#BA	В	47	4	1.9	12	1.7	210	_	189	84	*	1
F920G107MAA	Α	100	4	4.0	30	2.8	146	_	132	59	±15	1
F920G107#BA	В	100	4	4.0	18	1.3	240	_	216	96	*	1
					6.3	Volt						
F920J225#PA	Р	2.2	6.3	0.5	8	12.0	50	_	45	20	*	1
F920J335#PA	Р	3.3	6.3	0.5	8	12.0	50	_	45	20	*	1
F920J475#PA	Р	4.7	6.3	0.5	8	6.0	71	-	64	28	*	1
F920J685#PA	Р	6.8	6.3	0.5	10	6.0	71	-	64	28	*	1
F920J106#AA	Α	10	6.3	0.6	8	4.0	122	_	110	49	*	1
F920J106#PA	Р	10	6.3	0.6	10	6.0	71	-	64	28	*	1
F920J156MPA	Р	15	6.3	0.9	10	6.0	71	_	64	28	*	1
F920J226#AA	Α	22	6.3	1.4	12	2.8	146	-	132	59	*	1
F920J226MPA	P	22	6.3	1.4	20	5.0	77	-	70	31	*	1
F920J336#BA	В	33	6.3	2.1	12	1.7	210	_	189	84	*	1
F920J476#BA	В	47	6.3	3.0	12	1.7	210	_	189	84	*	3
						Volt						
F921A105#PA	Р	1	10	0.5	8	12.0	50	_	45	20	*	1
F921A155#PA	Р	1.5	10	0.5	8	12.0	50	_	45	20	*	1
F921A225#PA	Р	2.2	10	0.5	8	12.0	50	_	45	20	*	1
F921A335#AA	Α	3.3	10	0.5	6	7.0	93	_	83	37	*	1
F921A335#PA	Р	3.3	10	0.5	8	12.0	50	-	45	20	*	1
F921A475#AA	Α	4.7	10	0.5	6	4.0	122	-	110	49	*	1
F921A475#PA	Р	4.7	10	0.5	8	6.0	71	-	64	28	*	1
F921A685#PA	Р	6.8	10	0.7	8	6.0	71	-	64	28	*	1
F921A106#AA	Α	10	10	1.0	8	4.0	122	-	110	49	*	1
F921A106MPA	Р	10	10	1.0	14	6.0	71	-	64	28	*	1
F921A156#AA	Α	15	10	1.5	8	4.0	122	-	110	49	*	1
F921A226#BA	В	22	10	2.2	8	1.9	199	-	179	79	*	3

^{**}Rated temperature 60°C only. Please contact AVX when you need detail spec.

Resin-Molded Chip, Low Profile J-Lead

RATINGS & PART NUMBER REFERENCE

AND/ Door No	00'	Capacitance	Rated	DOL (mA)	DF @ 120Hz	ESR @		100kHz RMS	Current (mA)		## # O (O (0)	MSL
AVX Part No.	Case Size	(μF)	Voltage (V)	DCL (µA)	(%)	100kHz (Ω)	25°C	60°C	85°C	125°C	*1 ΔC/C (%)	IVISL
					16 \	/olt						
F921C474#PA	Р	0.47	16	0.5	8	20.0	39	_	35	15	*	1
F921C684#PA	Р	0.68	16	0.5	8	12.0	50	-	45	20	*	1
F921C105#PA	Р	1	16	0.5	8	12.0	50	_	45	20	*	1
F921C225#AA	Α	2.2	16	0.5	6	7.0	93	-	83	37	*	1
F921C225#PA	Р	2.2	16	0.5	8	12.0	50	_	45	20	*	1
F921C335#AA	Α	3.3	16	0.5	6	7.0	93	_	83	37	*	1
F921C475#AA	Α	4.7	16	0.8	6	7.0	93	_	83	37	*	1
F921C475#BA	В	4.7	16	0.8	6	3.0	158	_	142	63	*	1
F921C685#BA	В	6.8	16	1.1	6	3.0	158	_	142	63	*	1
F921C106#BA	В	10	16	1.6	6	2.0	194	_	174	77	*	1
					20 \	/olt						
F921D474#AA	Α	0.47	20	0.5	4	10.0	77	_	70	31	*	1
F921D474#PA	Р	0.47	20	0.5	8	20.0	39	_	35	15	*	1
F921D684#AA	Α	0.68	20	0.5	4	10.0	77	_	70	31	*	1
F921D105#AA	Α	1	20	0.5	4	10.0	77	_	70	31	*	1
F921D105#PA	Р	1	20	0.5	8	20.0	39	-	35	15	*	1
F921D155#AA	Α	1.5	20	0.5	6	7.4	90	-	81	36	*	1
					25 \	/olt						
F921E105#PA	Р	1	25	0.5	8	20.0	39	_	35	15	*	1
F921E225#AA	Α	2.2	25	0.6	8	10.0	77	-	70	31	±15	1
F921E225#BA	В	2.2	25	0.6	6	4.0	137	_	123	55	*	1
F921E475#BA	В	4.7	25	1.2	6	3.0	158	_	142	63	*	1
					35 \	/olt						
F921V224#AA	Α	0.22	35	0.5	4	10.0	77	-	70	31	*	1
F921V334#AA	Α	0.33	35	0.5	4	10.0	77	-	70	31	*	1
F921V474#AA	Α	0.47	35	0.5	4	10.0	77	-	70	31	*	1
F921V105#AA	Α	1	35	0.5	6	10.0	77	-	70	31	*	1
F921V225#BA	В	2.2	35	0.8	6	4.0	137	-	123	55	±10	1

1: ΔC/C Marked ""

Item	P Case (%)	A, B Case (%)
Damp Heat	±20	±10
Temperature cycles	±10	±5
Resistance soldering heat	±10	±5
Surge	±10	±5
Endurance	±10	±10

[#]: "M" for $\pm 20\%$ tolerance, "K" for $\pm 10\%$ tolerance. When you need K tolerance for the part numbers which have M tolerance only, please contact to your local AVX sales office.

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

Resin-Molded Chip, Low Profile J-Lead

QUALIFICATION TABLE

	F92 series (Temperature range -55°C	to +125°C)					
TEST	Condition						
	P Case	A, B Case					
Damp Heat	At 40°C, 90 to 95% R.H., 500 hours (No voltage applied)						
	Capacitance ChangeRefer to page 28 (*1)	Refer to page 28 (*1)					
(Steady State)	Dissipation Factor150% or less than the initial specified value	Initial specified value or less					
	Leakage Current Initial specified value or less	Initial specified value or less					
	-55°C / +125°C, 30 minutes each, 5 cycles						
Temperature Cycles	Capacitance ChangeRefer to page 28 (*1)	Refer to page 28 (*1)					
Temperature Cycles	Dissipation Factor150% or less than the initial specified value	Initial specified value or less					
	Leakage CurrentInitial specified value or less	Initial specified value or less					
	10 seconds reflow at 260°C, 5 seconds immersion at 260°C.						
Resistance to	Capacitance ChangeRefer to page 28 (*1)	Refer to page 28 (*1)					
Soldering Heat	Dissipation Factor150% or less than the initial specified value	Initial specified value or less					
	Leakage CurrentInitial specified value or less	Initial specified value or less					
	After application of surge voltage in series with a 33 Ω (For "P" case: 1k Ω) resiste						
	OFF, for 1000 successive test cycles at 85°C, capacitors shall meet the characteristic requirements in the table above.						
Surge		Refer to page 28 (*1)					
	Dissipation Factor150% or less than the initial specified value						
		Initial specified value or less					
	After 2000 hours' application of rated voltage in series with a 3Ω resistor at 8						
	resistor at 125°C, capacitors shall meet the characteristic requirements in the						
Endurance	Capacitance Change Refer to page 28 (*1)	Refer to page 28 (*1)					
	Dissipation Factor	Initial specified value or less					
		Initial specified value or less					
	After applying the pressure load of 5N for 10±1 seconds horizontally to the						
Shear Test	side body which has no electrode and has been soldered beforehand on a	a substrate, there shall 5N (0.51kg·f) For 10±1 seconds					
	be found neither exfoliation nor its sign at the terminal electrode.						
	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at						
Terminal Strength	both of the opposite bottom points 45mm apart from the center of capacito	or, the pressure strength					
	is applied with a specified jig at the center of substrate so that the substrate						
	illustrated. Then, there shall be found no remarkable abnormality on the cap	acitor terminais.					

Resin-Molded Chip, Low Profile J-Lead

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO₂

Resin-Molded Chip, Standard Tantalum J-Lead

FEATURES

- · Compliant to the RoHS3 directive 2015/863/EU
- SMD J-Lead
- · 100% Surge Current Tested

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

APPLICATIONS

Low Power DC/DC

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L	W ₁	W ₂	Н	S
A	1206	3216-18	3.20 ± 0.20 (0.126 ± 0.008)	1.60 ± 0.20 (0.063 ± 0.008)	1.20 ± 0.10 (0.047 ± 0.004)	1.60 ± 0.20 (0.063 ± 0.008)	0.80 ± 0.20 (0.031 ± 0.008)
В	1210	3528-21	3.50 ± 0.20 (0.138 ± 0.008)	2.80 ± 0.20 (0.110 ± 0.008)	2.20 ± 0.10 (0.087 ± 0.004)	1.90 ± 0.20 (0.075 ± 0.008)	0.80 ± 0.20 (0.031 ± 0.008)
С	2312	6032-27	6.00 ± 0.20 (0.236 ± 0.008)	3.20 ± 0.20 (0.126 ± 0.008)	2.20 ± 0.10 (0.087 ± 0.004)	2.50 ± 0.20 (0.098 ± 0.008)	1.30 ± 0.20 (0.051 ± 0.008)
N	2917	7343-30	7.30 ± 0.20 (0.287 ± 0.008)	4.30 ± 0.20 (0.169 ± 0.008)	2.40 ± 0.10 (0.094 ± 0.004)	2.80 ± 0.20 (0.110 ±0.008)	1.30 ± 0.20 (0.051 ± 0.008)

HOW TO ORDER

TECHNICAL SPECIFICATIONS

Category Temperature Range	-55 to +125°C
Rated Temperature	+85°C
Capacitance Tolerance	±20%, ±10% at 120Hz
Dissipation Factor	Refer to next page
ESR 100kHz	Refer to next page
Leakage Current	After 1 minute's application of rated voltage, leakage current at 20°C is not more
	than 0.01CV or 0.5µA, whichever is greater.
	After 1 minute's application of rated voltage, leakage current at 85°C is not more
	than 0.1CV or 5µA, whichever is greater.
	After 1 minute's application of derated voltage, leakage current at 125°C is not more
	than 0.125CV or 6.3µA, whichever is greater.
Capacitance Change By Temperature	+15% Max. at +125°C
	+10% Max. at +85°C
	-10% Max. at -55°C

F93 Series

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capacitance		Rated Voltage										
μF	Code	4V (0G)	6.3V (0J)	10V (1A)	16V (1C)	20V (1D)	25V (1E)	35V (1V)				
0.33	334							Α				
0.47	474							Α				
0.68	684							Α				
1.0	105				A		Α	Α				
1.5	155						Α	Α				
2.2	225				A	Α	Α	A/B				
3.3	335				Α	Α	Α	В				
4.7	475			Α	A	A/B	A/B	B/C				
6.8	685			Α	A	A/B		С				
10	106		Α	Α	A/B	В	B/C	С				
15	156		Α	Α	A/B	С	С	N				
22	226	A	A	A/B	A/B/C	B/C	C/N	N				
33	336	A	A	A/B	B/C	C/N	N	N				
47	476	A	A/B	A/B/C	C/N	C/N	N					
68	686	A	В	B/C	C/N							
100	107	A/B	A/B/C	B/C/N	C/N	N						
150	157	В	B/C	C/N	N							
220	227	B/C	B/C/N	C/N	N							
330	337	С	N	N								
470	477	N	N									
680	687	N	N									

Released ratings

Please contact to your local AVX sales office when these series are being designed in your application.

	Case Size	Capacitance (μF)	Rated Voltage (V)	DCL (µA)	DF @ 120Hz (%)	ESR @ 100kHz (Ω)	100kHz RMS Current (mA)			*1	
AVX Part No.							25°C	85°C	125°C	ΔC/C (%)	MSL
4 Volt											
F930G226#AA	Α	22	4	0.9	6	2.5	173	156	69	*	1
F930G336#AA	Α	33	4	1.3	8	2.5	173	156	69	*	1
F930G476#AA	Α	47	4	1.9	18	2.5	173	156	69	*	1
F930G686#AA	Α	68	4	2.7	24	2.5	173	156	69	*	1
F930G107#AA	Α	100	4	4.0	30	2.0	194	174	77	*	1
F930G107#BA	В	100	4	4.0	14	0.9	307	277	123	*	1
F930G157#BA	В	150	4	6.0	16	0.7	348	314	139	*	1
F930G227#BA	В	220	4	8.8	18	0.7	348	314	139	*	1
F930G227#CC	С	220	4	8.8	12	0.7	396	357	159	*	1
F930G337#CC	С	330	4	13.2	14	0.7	396	357	159	*	1
F930G477#NC	N	470	4	18.8	16	0.3	707	636	283	*	1
F930G687#NC	N	680	4	27.2	18	0.3	707	636	283	*	1
6.3 Volt											
F930J106#AA	Α	10	6.3	0.6	6	3.0	158	142	63	*	1
F930J156#AA	Α	15	6.3	0.9	6	2.9	161	145	64	*	1
F930J226#AA	Α	22	6.3	1.4	8	2.5	173	156	69	*	1
F930J336#AA	Α	33	6.3	2.1	8	2.5	173	156	69	*	1
F930J476#AA	Α	47	6.3	3.0	18	2.5	173	156	69	*	1
F930J476#BA	В	47	6.3	3.0	6	1.0	292	262	117	*	1
F930J686#BA	В	68	6.3	4.3	8	1.0	292	262	117	*	1
F930J107#AA	Α	100	6.3	6.3	35	2.0	194	174	77	±15	1
F930J107#BA	В	100	6.3	6.3	14	0.9	307	277	123	*	1
F930J107#CC	С	100	6.3	6.3	8	0.7	396	357	159	*	1
F930J157#BA	В	150	6.3	9.5	18	0.9	307	277	123	*	1
F930J157#CC	С	150	6.3	9.5	12	0.7	396	357	159	*	1
F930J227#BA	В	220	6.3	13.9	30	1.2	266	240	106	±15	3
F930J227#CC	С	220	6.3	13.9	14	0.7	396	357	159	*	1
F930J227#NC	N	220	6.3	13.9	10	0.5	548	493	219	*	1
F930J337#NC	N	330	6.3	20.8	14	0.5	548	493	219	*	1
F930J477#NC	N	470	6.3	29.6	16	0.3	707	636	283	*	1
F930J687#NC	N	680	6.3	42.8	40	0.3	707	636	283	±15	3
	10 Volt										
F931A475#AA	Α	4.7	10	0.5	6	4.0	137	123	55	*	1
F931A685#AA	Α	6.8	10	0.7	6	3.5	146	132	59	*	1
F931A106#AA	Α	10	10	1.0	6	3.0	158	142	63	*	1
F931A156#AA	Α	15	10	1.5	8	2.9	161	145	64	*	1
F931A226#AA	Α	22	10	2.2	12	2.5	173	156	69	*	1

F93 Series

Resin-Molded Chip, Standard Tantalum J-Lead

AVX Part No. Case Size Capacitance Voltage (μF) Capacitance Voltage (ν) DCL μΑ) 120Hz (%) 100kH (Ω)		100kHz RMS Current (mA)		
	25°C 8	35°C 125°C	ΔC/C (%)	MSL
F931A226#BA B 22 10 2.2 6 1.9	212	190 85	*	1
F931A336#AA A 33 10 3.3 18 2.5	173	156 69	*	1
F931A336#BA B 33 10 3.3 8 1.4		222 99	*	1
F931A476#AA A 47 10 4.7 40 2.0 F931A476#BA B 47 10 4.7 8 1.0		174 77	±15	1
F931A476#BA B 47 10 4.7 8 1.0 F931A476#CC C 47 10 4.7 6 0.9		262 117 315 140	*	1
F931A686#BA B 68 10 6.8 12 0.9		277 123	±15	1
F931A686#CC C 68 10 6.8 8 0.8		334 148	*	1
F931A107#BA B 100 10 10.0 18 1.2		240 106	±15	1
F931A107#CC C 100 10 10.0 10 0.7		357 159	*	1
F931A107#NC N 100 10 10.0 8 0.6 F931A157#CC C 150 10 15.0 14 0.7		450 200 357 159	*	<u>3</u> 1
F931A157#NC N 150 10 15.0 10 0.6		450 200	*	1
F931A227#CC C 220 10 22.0 40 0.9		315 140	±15	1
F931A227#NC N 220 10 22.0 12 0.5		493 219	*	3
F931A337#NC N 330 10 33.0 18 0.5	548	493 219	*	1
16 Volt F931C105#AA A 1 16 0.5 4 7.5	100	90 40	*	1
F931C105#AA A 1 1 16 0.5 4 7.5 F931C225#AA A 2.2 16 0.5 4 5.0		110 49	*	1
F931C335#AA A 3.3 16 0.5 4 4.5		116 52	*	1
F931C475#AA A 4.7 16 0.8 6 4.0	137	123 55	*	1
F931C685#AA A 6.8 16 1.1 6 3.5		132 59	*	1
F931C106#AA A 10 16 1.6 6 3.0		142 63	*	1 1
F931C106#BA B 10 16 1.6 6 2.0 F931C156#AA A 15 16 2.4 10 3.0		186 82 142 63	*	1 1
F931C156#BA B 15 16 2.4 6 2.0		186 82	*	1
F931C226#AA A 22 16 3.5 15 3.0		142 63	±15	1
F931C226#BA B 22 16 3.5 8 1.9		190 85	*	1
F931C226#CC C 22 16 3.5 6 1.1		285 126	*	1
F931C336#BA B 33 16 5.3 8 1.9 F931C336#CC C 33 16 5.3 6 1.1		190 85 285 126	*	<u>1</u> 1
F931C336#CC C 33 16 5.3 6 1.1 F931C476#CC C 47 16 7.5 8 0.9		285 126 315 140	*	1
F931C476#NC N 47 16 7.5 6 0.7		417 185	*	1
F931C686#CC C 68 16 10.9 10 0.8		334 148	±10	1
F931C686#NC N 68 16 10.9 6 0.6		450 200	*	1
F931C107#CC C 100 16 16.0 15 0.7		357 159	±10	1
F931C107#NC N 100 16 16.0 10 0.6 F931C157#NC N 150 16 24.0 15 0.6		450 200 450 200	*	<u>3</u> 1
F931C227#NC N 220 16 35.2 25 0.7		417 185	±10	3
20 Volt	.00	117 100		- J
F931D225#AA A 2.2 20 0.5 4 5.0		110 49	*	1
F931D335#AA A 3.3 20 0.7 4 4.5		116 52	*	1
F931D475#AA A 4.7 20 0.9 6 3.0		142 63	*	1
F931D475#BA B 4.7 20 0.9 6 2.8 F931D685#AA A 6.8 20 1.4 6 3.5		157 70 132 59	*	<u> </u> 1
F931D685#BA B 6.8 20 1.4 6 2.5		166 74	*	1
F931D106#BA B 10 20 2.0 6 2.1	201	181 80	*	1
F931D156#CC C 15 20 3.0 6 1.2		272 121	*	1
F931D226#BA B 22 20 4.4 8 1.9		190 85	*	11
F931D226#CC C 22 20 4.4 8 1.1 F931D336#CC C 33 20 6.6 8 1.1		285 126 285 126	*	<u>1</u> 1
F931D336#NC N 33 20 6.6 6 0.7		417 185	*	1
F931D476#CC C 47 20 9.4 10 1.1		285 126	*	1
F931D476#NC N 47 20 9.4 8 0.7	463	417 185	*	1
F931D107#NC N 100 20 20.0 12 0.5	548	493 219	±10	3
25 Volt F931E105#AA A 1 25 0.5 4 7.5	100	90 40	*	1
F931E105#AA A 1.5 25 0.5 4 6.7		95 42	*	1
F931E225#AA A 2.2 25 0.6 6 6.3		98 44	*	1
F931E335#AA A 3.3 25 0.8 6 6.0	112	101 45	*	1
F931E475#AA A 4.7 25 1.2 8 4.0		123 55	*	1
F931E475#BA B 4.7 25 1.2 6 2.8		157 70	*	1
F931E106#BA B 10 25 2.5 12 1.9 F931E106#CC C 10 25 2.5 6 1.5		190 85 244 108	*	<u>1</u> 1
F931E106#CC C 10 23 2.3 0 1.3 F931E156#CC C 15 25 3.8 8 1.2		272 121	*	1
F931E226#CC C 22 25 5.5 8 1.1		285 126	*	1
F931E226#NC N 22 25 5.5 6 0.7		417 185	*	1
F931E336#NC N 33 25 8.3 8 0.7		417 185	*	1 1
F931E476#NC N 47 25 11.8 8 0.7 F931E226#NC N 22 25 5.5 6 0.7		417 185	*	<u>1</u> 1
F931E226#NC N 22 25 5.5 6 0.7 F931E336#NC N 33 25 8.3 8 0.7		417 185 417 185	*	<u> </u>
F931E336#NC N 47 25 11.8 8 0.7		417 185	*	1

F93 Series

RATINGS & PART NUMBER REFERENCE

	Case	Capacitance	Rated	DCL	DF@	ESR @	100kHz RMS Current (mA)			*1	
AVX Part No.	Size	(μF)	Voltage (V)	(μ A)	120Hz (%)	100kHz (Ω)	25°C	85°C	125°C	ΔC/C (%)	MSL
	35 Volt										
F931V334#AA	Α	0.33	35	0.5	4	12.0	79	71	32	*	1
F931V474#AA	Α	0.47	35	0.5	4	10.0	87	78	35	*	1
F931V684#AA	Α	0.68	35	0.5	4	7.6	99	89	40	*	1
F931V105#AA	Α	1	35	0.5	4	7.5	100	90	40	*	1
F931V155#AA	Α	1.5	35	0.5	6	7.5	100	90	40	*	1
F931V225#AA	Α	2.2	35	0.8	6	7.0	104	93	41	*	1
F931V225#BA	В	2.2	35	0.8	4	3.8	150	135	60	*	1
F931V335#BA	В	3.3	35	1.2	4	3.5	156	140	62	*	1
F931V475#BA	В	4.7	35	1.6	8	3.1	166	149	66	*	1
F931V475#CC	С	4.7	35	1.6	6	1.8	247	222	99	*	1
F931V685#CC	С	6.8	35	2.4	6	1.8	247	222	99	*	1
F931V106#CC	С	10	35	3.5	6	1.6	262	236	105	*	1
F931V156#NC	N	15	35	5.3	6	0.7	463	417	185	*	1
F931V226#NC	N	22	35	7.7	8	0.7	463	417	185	*	1
F931V336#NC	N	33	35	11.6	8	0.7	463	417	185	*	1

^{*1: \(\}Delta C/C \) Marked "*"

Item	All Case (%)			
Damp Heat	±10			
Temperature cycles	±5			
Resistance soldering heat	±5			
Surge	±5			
Endurance	±10			

QUALIFICATION TABLE

TEOT	F93 series (Temperature range -55°C to +125°C)							
TEST	Condition							
Damp Heat (Steady State)	At 40°C, 90 to 95% R.H., 500 hours (No voltage applied) Capacitance Change							
Temperature Cycles	-55°C / +125°C, 30 minutes each, 5 cycles Capacitance Change							
Resistance to Soldering Heat	10 seconds reflow at 260°C, 5 seconds immersion at 260°C. Capacitance Change							
Surge	After application of surge voltage in series with a 33 Ω resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change Refer to page 33 (*1) Dissipation Factor							
Endurance	After 2000 hours' application of rated voltage in series with a 3Ω resistor at 85°C, or derated voltage in series with a 3Ω resistor at 125°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change							
Shear Test	After applying the pressure load of 5N for 10±1 seconds horizontally to the center of capacitor side body which has no electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the terminal electrode.							
Terminal Strength	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is applied with a specified jig at the center of substrate so that the substrate may bend by 1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.							
Failure Rate	1% per 1000 hours at 85°C, V_R with 0.1 Ω /V series impedance, 60% confidence level.							

We can supply the type of compliance to AEC-Q200. Please contact to your local AVX sales office when these series are being designed in your application.

^{#: &}quot;M" for $\pm 20\%$ tolerance, "K" for $\pm 10\%$ tolerance. Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO₂

Resin-Molded Chip - Automotive Product Range

FEATURES

- · Compliant to the RoHS3 directive 2015/863/EU
- · Compliant to AEC-Q200
- 100% Surge Current Tested

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

APPLICATIONS

- · Cabin Electronics
- Infotainment

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L	W ₁	W_2	Н	s
A	1206	3216 -18	3.20 ± 0.20 (0.126 ± 0.008)	1.60 ± 0.20 (0.063 ± 0.008)	1.20 ± 0.10 (0.047 ± 0.004)	1.60 ± 0.20 (0.063 ± 0.008)	0.80 ± 0.20 (0.031 ± 0.008)
В	1210	3528-21	3.50 ± 0.20 (0.138 ± 0.008)	2.80 ± 0.20 (0.110 ± 0.008)	2.20 ± 0.10 (0.087 ± 0.004)	1.90 ± 0.20 (0.075 ± 0.008)	0.80 ± 0.20 (0.031 ± 0.008)
С	2312	6032-27	6.00 ± 0.20 (0.236 ± 0.008)	3.20 ± 0.20 (0.126 ± 0.008)	2.20 ± 0.10 (0.087 ± 0.004)	2.50 ± 0.20 (0.098 ± 0.008)	1.30 ± 0.20 (0.051 ± 0.008)
N	2917	7343-30	7.30 ± 0.20 (0.287 ± 0.008)	4.30 ± 0.20 (0.169 ± 0.008)	2.40 ± 0.10 (0.094 ± 0.004)	2.80 ± 0.20 (0.110 ±0.008)	1.30 ± 0.20 (0.051 ± 0.008)

4V	G	20V	D
6.3V	J	25V	Е
10V	Α	35V	٧
16V	С		

HOW TO ORDER

106

Category Temperature Range	-55 to +125°C
Rated Temperature	+85°C
Capacitance Tolerance	±20%, ±10% at 120Hz
Dissipation Factor	Refer to next page
ESR 100kHz	Refer to next page
Leakage Current	After 1 minute's application of rated voltage, leakage current at 20°C is not more than 0.01CV or 0µA, whichever is greater.
	After 1 minute's application of rated voltage, leakage current at 85°C is not more than 0.1CV or 5µA, whichever is greater.
	After 1 minute's application of derated voltage, leakage current at 125°C is not more than 0.125CV or 6µA, whichever is greater.
Capacitance Change By Temperature	+15% Max. at +125°C
	+10% Max. at +85°C
	-10% Max. at -55°C

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capa	citance				Rated Voltage			
μF	Code	4V (0G)	6.3V (0J)	10V (1A)	16V (1C)	20V (1D)	25V (1E)	35 V (1V)
1.0	105				Α		Α	Α
1.5	155						Α	Α
2.2	225				Α	Α	Α	В
3.3	335				Α	Α		В
4.7	475			Α	Α	A/B	A/B	B/C
6.8	685			Α	Α	A/B		С
10	106		Α	Α	A/B	A/B	С	С
15	156		Α	Α	A/B	С	С	N
22	226	Α	Α	A/B	B/C	B/C	C/N	N
33	336	Α	Α	В	B/C	C/N	N	N
47	476	Α	A/B	B/C	C/N	C/N	N	
68	686	Α	В	B/C	C/N			
100	107	A/B	B/C	C/N	C/N			
150	157	В	С	N				
220	227	B/C	C/N	N				
330	337	С	N					
470	477	N	N					
680	687	N	N					

Released ratings (M tolerance only)

AVX Part No.	Case Size	Capacitance	Rated	DCL (μA)	DF @ 120Hz	ESR@	10	OkHz RMS Current (mA)	*1 ∆C/C	MSL
AVA Partino.	Case Size	(μF)	Voltage (V)		(%)	100kHz (Ω)	25°C	85°C	125°C	(%)	IVIOL
					4 V	olt o					
F930G226#AAAJ6	Α	22	4	0.9	6	2.5	173	156	69	*	3
F930G336#AAAJ6	Α	33	4	1.3	8	2.5	173	156	69	*	3
F930G476#AAAJ6	Α	47	4	1.9	18	2.5	173	156	69	*	3
F930G686#AAAJ6	Α	68	4	2.7	24	2.5	173	156	69	*	3
F930G107#AAAJ6	Α	100	4	4	30	2.0	194	174	77	*	3
F930G107#BAAJ6	В	100	4	4	14	0.9	307	277	123	*	3
F930G157#BAAJ6	В	150	4	6	16	0.7	348	314	139	*	3
F930G227#BAAJ6	В	220	4	8.8	18	0.7	348	314	139	*	3
F930G227#CCAJ6	С	220	4	8.8	12	0.7	396	357	159	*	3
F930G337#CCAJ6	С	330	4	13.2	14	0.7	396	357	159	*	3
F930G477#NCAJ6	N	470	4	18.8	16	0.3	707	636	283	*	3
F930G687#NCAJ6	N	680	4	27.2	18	0.3	707	636	283	*	3
					6.3	Volt					
F930J106#AAAJ6	Α	10	6.3	0.6	6	3.0	158	142	63	*	3
F930J156#AAAJ6	Α	15	6.3	0.9	6	2.9	161	145	64	*	3
F930J226#AAAJ6	Α	22	6.3	1.4	8	2.5	173	156	69	*	3
F930J336#AAAJ6	Α	33	6.3	2.1	8	2.5	173	156	69	*	3
F930J476#AAAJ6	Α	47	6.3	3	18	2.5	173	156	69	*	3
F930J476#BAAJ6	В	47	6.3	3	6	1.0	292	262	117	*	3
F930J686#BAAJ6	В	68	6.3	4.3	8	1.0	292	262	117	*	3
F930J107#BAAJ6	В	100	6.3	6.3	14	0.9	307	277	123	*	3
F930J107#CCAJ6	С	100	6.3	6.3	8	0.7	396	357	159	*	3
F930J157#CCAJ6	С	150	6.3	9.5	12	0.7	396	357	159	*	3
F930J227#CCAJ6	С	220	6.3	13.9	14	0.7	396	357	159	*	3
F930J227#NCAJ6	N	220	6.3	13.9	10	0.5	548	493	219	*	3
F930J337#NCAJ6	N	330	6.3	20.8	14	0.5	548	493	219	*	3
F930J477#NCAJ6	N	470	6.3	29.6	16	0.3	707	636	283	*	3
F930J687#NCAJ6	N	680	6.3	42.8	40	0.3	707	636	283	±15	3
					10 \	/olt					
F931A475#AAAJ6	I A	4.7	10	0.5	6	4.0	137	123	55	*	3
F931A685#AAAJ6	A	6.8	10	0.7	6	3.5	146	132	59	*	3
F931A106#AAAJ6	A	10	10	1	6	3.0	158	142	63	*	3
F931A156#AAAJ6	A	15	10	1.5	8	2.9	161	145	64	*	3
F931A226#AAAJ6	A	22	10	2.2	12	2.5	173	156	69	*	3
F931A226#BAAJ6	В	22	10	2.2	6	1.9	212	190	85	*	3
F931A336#BAAJ6	В	33	10	3.3	8	1.4	246	222	99	*	3
F931A476#BAAJ6	В	47	10	4.7	8	1.0	292	262	117	*	3
F931A476#CCAJ6	C	47	10	4.7	6	0.9	350	315	140	*	3
F931A686#BAAJ6	В	68	10	6.8	12	0.9	307	277	123	±15	3
F931A686#CCAJ6	C	68	10	6.8	8	0.8	371	334	148	*	3
F931A107#CCAJ6	C	100	10	10	10	0.7	396	357	159	*	3
F931A107#0CAJ6	N	100	10	10	8	0.6	500	450	200	*	3
F931A157#NCAJ6	N	150	10	15	10	0.6	500	450	200	*	3
F931A227#NCAJ6	N	220	10	22	12	0.5	548	493	219	*	3
1 70 1/42/ #140/400	1 14	220	10		14	0.0	J-10	775	217		

^{*1:} Δ C/C Marked "*"

*#: "M" for \pm 20% tolerance, "K" for \pm 10% tolerance. When you need K tolerance for the part numbers which have M tolerance only, please contact to your local AVX sales office. Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

Resin-Molded Chip - Automotive Product Range

AVX Part No.	Case Size	Capacitance	Rated	DCL	DF @ 120Hz	ESR @	10	00kHz RMS Current (mA)	*1 ∆C/C	MSL
AVA Fait No.	Case Size	(μ F)	Voltage (V)	(μΑ)	(%)	100kHz (Ω)	25°C	85°C	125°C	(%)	IVIOL
					16 \	Volt					
F931C105#AAAJ6	Α	1	16	0.5	4	7.5	100	90	40	*	3
F931C225#AAAJ6	Α	2.2	16	0.5	4	5.0	122	110	49	*	3
F931C335#AAAJ6	Α	3.3	16	0.5	4	4.5	129	116	52	*	3
F931C475#AAAJ6	Α	4.7	16	0.8	6	4.0	137	123	55	*	3
F931C685#AAAJ6	Α	6.8	16	1.1	6	3.5	146	132	59	*	3
F931C106#AAAJ6	Α	10	16	1.6	6	3.0	158	142	63	*	3
F931C106#BAAJ6	В	10	16	1.6	6	2.0	206	186	82	*	3
F931C156#AAAJ6	A	15	16	2.4	10	3.0	158	142	63	*	3
F931C156#BAAJ6	В	15	16	2.4	6	2.0	206	186	82	*	3
F931C226#BAAJ6	В	22 22	16	3.5	8	1.9	212	190	85	*	3
F931C226#CCAJ6	С	33	16 16	3.5	6	1.1 1.9	316 212	285	126	*	3
F931C336#BAAJ6	B C	33	16	5.3	8	1.9	316	190	85	*	3
F931C336#CCAJ6 F931C476#CCAJ6	C	47	16	5.3 7.5	8	0.9	350	285 315	126 140	*	3
F931C476#CCAJ6	N	47	16	7.5	6	0.9	463	417	185	*	3
F931C686#CCAJ6	C	68	16	10.9	10	0.7	371	334	148	*	3
F931C686#NCAJ6	N	68	16	10.9	6	0.6	500	450	200	*	3
F931C107#CCAJ6	C	100	16	16	15	0.0	396	357	159	*	3
F931C107#CCA30	N	100	16	16	10	0.7	500	450	200	*	3
1 3310107#NOA30		100	10	10		Volt	300	1 430	200		3
F931D225#AAAJ6	A	2.2	20	0.5	4	5.0	122	110	49	*	3
F931D335#AAAJ6	A	3.3	20	0.7	4	4.5	129	116	52	*	3
F931D475#AAAJ6	A	4.7	20	0.7	6	3.0	158	142	63	*	3
F931D475#AAAJ6	В	4.7	20	0.9	6	2.8	174	157	70	*	3
F931D685#AAAJ6	A	6.8	20	1.4	6	3.5	146	132	59	*	3
F931D685#BAAJ6	В	6.8	20	1.4	6	2.5	184	166	74	*	3
F931D106#AAAJ6	A	10	20	2	8	3.5	146	132	59	*	3
F931D106#BAAJ6	В	10	20	2	6	2.1	201	181	80	*	3
F931D156#CCAJ6	С	15	20	3	6	1.2	303	272	121	*	3
F931D226#BAAJ6	В	22	20	4.4	8	1.9	212	190	85	*	3
F931D226#CCAJ6	С	22	20	4.4	8	1.1	316	285	126	*	3
F931D336#CCAJ6	С	33	20	6.6	8	1.1	316	285	126	*	3
F931D336#NCAJ6	N	33	20	6.6	6	0.7	463	417	185	*	3
F931D476#CCAJ6	С	47	20	9.4	10	1.1	316	285	126	*	3
F931D476#NCAJ6	N	47	20	9.4	8	0.7	463	417	185	*	3
					25	Volt					
F931E105#AAAJ6	Α	1	25	0.5	4	7.5	100	90	40	*	3
F931E155#AAAJ6	Α	1.5	25	0.5	4	6.7	106	95	42	*	3
F931E225#AAAJ6	Α	2.2	25	0.6	6	6.3	109	98	44	*	3
F931E475#AAAJ6	Α	4.7	25	1.2	8	4.0	137	123	55	*	3
F931E475#BAAJ6	В	4.7	25	1.2	6	2.8	174	157	70	*	3
F931E106#CCAJ6	С	10	25	2.5	6	1.5	271	244	108	*	3
F931E156#CCAJ6	С	15	25	3.8	8	1.2	303	272	121	*	3
F931E226#CCAJ6	С	22	25	5.5	8	1.1	316	285	126	*	3
F931E226#NCAJ6	N	22	25	5.5	6	0.7	463	417	185	*	3
F931E336#NCAJ6	N	33	25	8.3	8	0.7	463	417	185	*	3
F931E476#NCAJ6	N	47	25	11.8	8	0.7	463	417	185		3
F001V10F#4 4 4 16	1 4	4	25	0.5	,	Volt	100	1 00	40	*	_
F931V105#AAAJ6	A	1	35	0.5	4	7.5	100	90	40	*	3
F931V155#AAAJ6	A	1.5	35	0.5	6 4	7.5	100	90	40	*	3
F931V225#BAAJ6	B	2.2	35	0.8 1.2	4	3.8	150	135 140	60	*	3
F931V335#BAAJ6 F931V475#BAAJ6	B	3.3 4.7	35 35	1.6	8	3.5 3.1	156 166	140	62	*	3
	C	4.7	35	1.6	6	1.8	247	222	66 99	*	3
E021\//75#CCA 16	C	6.8	35	2.4	6	1.8	247	222	99	*	3
F931V475#CCAJ6		0.6	, ან I	4.4	0						
F931V685#CCAJ6			25	2 5	6	16	262	226	105	*	
F931V685#CCAJ6 F931V106#CCAJ6	С	10	35 35	3.5 5.3	6	1.6	262	236	105	*	3
F931V685#CCAJ6			35 35 35	3.5 5.3 7.7	6 6 8	1.6 0.7 0.7	262 463 463	236 417 417	105 185 185	* *	3 3 3

^{*1: \(\}Delta C/C\) Marked "*"

*#: "M" for \(\pm \) 40% tolerance, "K" for \(\pm \) 10% tolerance. When you need K tolerance for the part numbers which have M tolerance only, please contact to your local AVX sales office. Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

Item	All Case (%)
Damp Heat	±10
Temperature cycles	±10
Resistance soldering heat	±10
Surge	±10
Endurance	±10
Load Humidity	±10

QUALIFICATION TABLE

TEST	F92 series (Temperature range -55°C to +125°C)
1521	Condition
Damp Heat (Steady State)	At 40°C, 90 to 95% R.H., 500 hours (No voltage applied) Capacitance Change
Load Humidity	After 1000 hour's application of rated voltage in series with a 33Ω resistor at 85°C, 85% R.H., capacitors meet the characteristics requirements table below. Capacitance Change
Temperature Cycles	At -55°C / +125°C, 30 minutes each, 1000 cycles Capacitance Change
Resistance to Soldering Heat	10 seconds reflow at 260°C, 10 seconds immersion at 260°C. Capacitance Change
Surge	After application of surge voltage in series with a 33Ω resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change Refer to page 42 (*1) Dissipation Factor
Endurance	After 2000 hours' application of rated voltage in series with a 3Ω resistor at 85°C, or derated voltage in series with a 3Ω resistor at 125°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change Refer to page 42 (*1) Dissipation Factor
Shear Test	After applying the pressure load of 17.7N for 60 seconds horizontally to the center of capacitor side body which has no electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the terminal electrode.
Terminal Strength	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is applied with a specified jig at the center of the substrate so that substrate may bend by1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.
Failure Rate	1% per 1000 hours at 85°C, V_R with 0.1Ω/V series impedance, 60% confidence level.

Resin-Molded Chip - Automotive Product Range

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO2

Tantalum Solid Electrolytic Chip Capacitors - High CV Consumer Series

MARKING

A, B, F, G, H, K, S, T, V, W, Y CASE

N, P, R CASE

FEATURES

- · High Volumetric Efficiency
- 3x Reflow 260°C Compatible
- 100% Surge Current Tested
- · 14 Case Sizes Available Including Low Profile Codes
- · Environmentally Friendly
- · Consumer Applications (e.g. Mobiles Phones, PDA etc.)
- CV Range: 10-1500µF / 2.5-20V

RoHS

APPLICATIONS

- · Mobile Phones
- MP3/4 Players

STANDARD CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
Α	1206	3216-18	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
F	2312	6032-20	6.00 (0.236)	3.20 (0.126)	2.00 (0.079) max.	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
G	1206	3216-15	3.20 (0.126)	1.60 (0.063)	1.50 (0.059) max	1.20 0.047)	0.80 (0.031)	1.10 (0.043)
н	1210	3528-15	3.50 (0.138)	2.80 (0.110)	1.50 (0.059) max	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
К	1206	3216-10	3.20 (0.126)	1.60 (0.063)	1.00 (0.039) max	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
N	0805	2012-10	2.05 (0.081)	1.30 (0.051)	1.00 (0.039) max	1.00 (0.039)	0.50 (0.020)	0.85 (0.033)
Р	0805	2012-15	2.05 (0.081)	1.35 (0.053)	1.50 (0.059) max	1.00±0.10 (0.039±0.004)	0.50 (0.020)	0.85 (0.033)
R	0805	2012-12	2.05 (0.081)	1.30 (0.051)	1.20 (0.047) max	1.00±0.10 (0.039±0.004)	0.50 (0.020)	0.85 (0.033)
S	1206	3216-12	3.20 (0.126)	1.60 (0.063)	1.20 (0.047) max	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
Т	1210	3528-12	3.50 (0.138)	2.80 (0.110)	1.20 (0.047) max	2.20 (0.087)	0.80 (0.031)	1.40 (0.033)
V	2924	7361-38	7.30 (0.287)	6.10 (0.240)	3.55 (0.140)	3.10 (0.122)	1.30(0.051)	4.40 (0.173)
w	2312	6032-15	6.00 (0.236)	3.20 (0.126)	1.50 (0.059) max	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
Υ	2917	7343-20	7.30 (0.287)	4.30 (0.169)	2.00 (0.079) max	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)

 W_1 dimension applies to the termination width for A dimensional area only.

HOW TO ORDER

Capacitance Code
pF code: 1st two
digits represent
significant figures,
3rd digit represents
multiplier (number of
zeros to follow)

157

M Tolerance M = ±20%

7 010 Pance Rated DC Volta 20% 0002 = 2.5Vdo

Rated DC Voltage 002 = 2.5Vdc 004 = 4Vdc 006 = 6.3Vdc 010 = 10Vdc

016 = 16Vdc

020 = 20Vdc

R
Packaging
R = Pure Tin 7" Reel
S = Pure Tin 13" Reel

0200

ESR in mΩ

Technical Data:		All techi	nical data	relate to	an ambie	nt tempe	erature of	+25°C
Capacitance Range:		10 μF to	1500 μF					
Capacitance Tolerance:		±20%						
Rated Voltage (V _R)	-55°C ≤ +40°C:	2.5	4	6.3	10	16	20	
Category Voltage (V _c)	at 85°C:	1.3	2	3.2	5	8	10	
Category Voltage (V _c)	at 125°C:	0.5	0.8	1.3	2	3.2	4	
Temperature Range:		-55°C to	+125°C \	with cate	jory volta	ge		
Reliability:		0.2% pe	r 1000 hc	urs at 85	°C, 0.5xV _F	with 0.1	Ω/V serie	es impedance with
		60% cor	nfidence I	evel				

Tantalum Solid Electrolytic Chip Capacitors -High CV Consumer Series

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance		Rated Vo	oltage DC to 40°C / 0.5D	OC to 85°C / 0.2DC to	o 125°C	
μF	Code	2.5V (e)	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)
6.8	685						
10	106				N(2500) R(2000,3000)	S(2200)	T(1000)
15	156				R(2000)		
22	226			N(5400)/R(3500)	K(1800)/N(3800) R(3800)	T(1000)	
33	336		N(8000) R(3000)	K(1700)/N(8000) P(3000)/R(3000)	K(1500)/N(9600) P(3500)/R(3500) S(1500)	T(1000)	
47	476		K(1500)/N(4000) P(3000)/R(3000)	K(1500)/N(8300) P(700,900,1800,2500) R(3200)/S(1500)	A(600)/G(1500) P(3200)/R(3200) S(1500)/T(600)		
68	686		K(1200)/N(8000) P(3000)/R(2900) S(1500)	A(500)/G(800) K(2000)/S(1500) T(600)	A(1500)		
100	107		A(500)/G(800) K(2000)/P(2700) S(1400)	A(500,800)/G(800) K(2000)/(5400)/T(800)	A(1400)/ H(900) T(900)		
150	157		A(800)/T(800)	A(900)/H(900) T(1200)	B(500)/W(150,200)		
220	227	T(1100)	A(1100)/G(3000) H(900)/T(1100)	B(500)/T(2000) W(200)	F(300)		
330	337		T(2700)/W(200)	F(300)			
470	477						
680	687			Y(100,150)			
1000	108						
1500	158			V(100)			

Released ratings, (ESR ratings in mOhms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

Tantalum Solid Electrolytic Chip Capacitors - High CV Consumer Series

AVX	Case	Capacitance	Rated	Rated Temperature	Category	Category Temperature	Maximum Surge	DCL Max.	ESR Max. @	100kHz RMS Current (mA)			☐ Product	MSL
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(A)	(µA)	100kHz (mΩ)	25°C	85°C	125°C	Category	WISE
TL 1700714000#1000	_	000	0.5	40		5 Volt @ 40°C			1100	070	0.40	100		
TLJT227M002#1200	Т	220	2.5	40	0.5	125 Volt @ 40°C	0.8	5.5	1100	270	243	108	2	3
TLJN336M004#8000	N	33	4	40	0.8	125	0.2	1.3	8000	79	71	32	1	3
TLJR336M004#8000	R	33	4	40	0.8	125	0.2	1.3	3000	135	122	54	2	3
TLJK476M004#3000	K	47	4	40	0.8	125	1.0	1.9	1500	208	187	83	2	3
TLJN476M004#4000	N	47	4	40	0.8	125	0.6	1.9	4000	112	101	45	1	3
TLJP476M004#3000	P	47	4	40	0.8	125	0.6	1.9	3000	141	127	57	2	3
TLJR476M004#3000	R	47	4	40	0.8	125	0.6	1.9	3000	135	122	54	2	3
TLJK686M004#1200	K	68	4	40	0.8	125	1.2	2.7	1200	233	209	93	2	3
TLJN686M004#8000	N	68	4	40	0.8	125	0.2	5.4	8000	79	71	32	1	3
TLJP686M004#3000	Р	68	4	40	0.8	125	1.2	2.7	3000	141	127	57	2	3
TLJR686M004#2900	R	68	4	40	0.8	125	0.6	2.7	2900	138	124	55	2	3
TLJS686M004#1500	S	68	4	40	0.8	125	1.0	2.7	1500	208	187	83	2	3
TLJA107M004#0500	Α	100	4	40	0.8	125	2.1	4.0	500	387	349	155	1	3
TLJG107M004#0800	G	100	4	40	0.8	125	1.6	4.0	800	296	266	118	2	3
TLJK107M004#2000	K	100	4	40	0.8	125	0.8	8.0	2000	180	162	72	2	3
TLJP107M004#2700 TLJS107M004#1400	P S	100 100	4	40 40	0.8	125 125	0.6 1.1	8.0 4.0	2700 1400	149 215	134 194	60 86	2	3
TLJA157M004#1400	A	150	4	40	0.8	125	1.1	6.0	800	306	276	122	2	3
TLJT157M004#0800	T	150	4	40	0.8	125	1.6	6.0	800	316	285	126	2	3
TLJA227M004#1100	A	220	4	40	0.8	125	1.3	17.6	1100	261	235	104	2	3
TLJG227M004#3000	G	220	4	40	0.8	125	0.6	17.6	3000	153	137	61	2	3
TLJH227M004#0900	Н	220	4	40	0.8	125	1.5	8.8	900	298	268	119	2	3
TLJT227M004#1100	Т	220	4	40	0.8	125	1.3	17.6	1100	270	243	108	2	3
TLJT337M004#2700	T	330	4	40	0.8	125	0.6	26.4	2700	172	155	69	2	3
TLJW337M004#0200	W	330	4	40	0.8	125	3.1	13.2	200	671	604	268	1	3
						3 Volt @ 40°C								
TLJN226M006#5400	N	22	6.3	40	1.3	125	0.5	1.3	5400	96	87	38	1	3
TLJR226M006#3500	R	22	6.3	40	1.3	125	0.8	1.3	3500	125	113	50	2	3
TLJK336M006#1700	K	33	6.3	40	1.3	125	1.5	2.0	1700	196	176	78	2	3
TLJN336M006#8000	N P	33	6.3	40	1.3	125	0.4	2.0	8000	79 141	71 127	32 57	1	3
TLJP336M006#3000 TLJR336M006#3000	R	33 33	6.3	40 40	1.3 1.3	125 125	0.9	2.0	3000	135	127	57	2	3
TLJK476M006#3000	K	47	6.3	40	1.3	125	1.6	2.8	1500	208	187	83	2	3
TLJN476M006#8300	N	47	6.3	40	1.3	125	0.4	5.6	8300	78	70	31	1	3
TLJP476M006#0700	P	47	6.3	40	1.3	125	2.7	2.8	700	293	263	117	2	3
TLJP476M006#0900	P	47	6.3	40	1.3	125	2.3	2.8	900	258	232	103	2	3
TLJP476M006#1800	Р	47	6.3	40	1.3	125	1.4	2.8	1800	183	164	73	2	3
TLJP476M006#2500	Р	47	6.3	40	1.3	125	1.1	2.8	2500	155	139	62	2	3
TLJR476M006#3200	R	47	6.3	40	1.3	125	0.9	2.8	3200	131	118	52	2	3
TLJS476M006#1500	S	47	6.3	40	1.3	125	1.6	2.8	1500	208	187	83	2	3
TLJA686M006#0500	Α	68	6.3	40	1.3	125	3.3	4.1	500	387	349	155	1	3
TLJG686M006#0800	G	68	6.3	40	1.3	125	1.9	4.1	800	296	266	118	2	3
TLJK686M006#2000	K	68	6.3	40	1.3	125	1.3	8.16	2000	180	162	72	2	3
TLJS686M006#1500 TLJT686M006#0600	S	68 68	6.3	40 40	1.3	125 125	1.6 3.0	4.1 4.1	1500 600	208 365	187 329	83 146	2	3
TLJA107M006#0500	A	100	6.3	40	1.3	125	3.0	6.0	500	387	349	155	2	3
TLJA107M006#0800	A	100	6.3	40	1.3	125	2.5	6.0	800	306	276	122	2	3
TLJG107M006#0800	G	100	6.3	40	1.3	125	2.5	6.0	800	296	266	118	2	3
TLJK107M006#2000	K	100	6.3	40	1.3	125	1.3	12.0	2000	180	162	72	2	3
TLJP107M006#5400	P	100	6.3	40	1.3	125	0.5	12.0	5400	105	95	42	2	3
TLJT107M006#0800	Т	100	6.3	40	1.3	125	2.5	6.0	800	316	285	126	2	3
TLJA157M006#0900	Α	150	6.3	40	1.3	125	2.3	9.0	900	289	260	115	2	3
TLJH157M006#0900	Н	150	6.3	40	1.3	125	2.3	9.0	900	298	268	119	2	3
	T	150	6.3	40	1.3	125	1.9	9.0	1200	258	232	103	2	3
	В	220	6.3	40	1.3	125	3.3	13.2	500	412	371	165	1	3
TLJB227M006#0500						105	1.3	26.4	2000	200	180	80	2	3
TLJB227M006#0500 TLJT227M006#2000	T	220	6.3	40	1.3	125								
TLJT157M006#1200 TLJB227M006#0500 TLJT227M006#2000 TLJW227M006#0200	T W	220	6.3	40	1.3	125	4.8	13.2	200	671	604	268	1	3
TLJB227M006#0500 TLJT227M006#2000 TLJW227M006#0200 TLJF337M006#0300	T W F	220 330	6.3 6.3	40 40	1.3 1.3	125 125	4.8 4.2	13.2 19.8	200 300	671 577	604 520	268 231	1	3
TLJB227M006#0500 TLJT227M006#2000	T W	220	6.3	40	1.3	125	4.8	13.2	200	671	604	268	1	3

Tantalum Solid Electrolytic Chip Capacitors - High CV Consumer Series

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated	Rated	Category	Category	Maximum Surge	DCL	ESR Max.	100kl	Iz RMS C	urrent	Product	
Part No.	Size	(µF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Current (A)	Max. (μA)	@ 100kHz (mΩ)	25°C	85°C	125°C	Category	MSL
					10	Volt @ 40°C								
TLJN106M010#2500	N	10	10	40	2	125	1.7	1.0	2500	141	127	57	1	3
TLJR106M010#2000	R	10	10	40	2	125	2.0	1.0	2000	166	149	66	1	3
TLJR106M010#3000	R	10	10	40	2	125	1.4	1.0	3000	135	122	54	1	3
TLJR156M010#2000	R	15	10	40	2	125	2.0	1.5	2000	166	149	66	1	3
TLJK226M010#1800	K	22	10	40	2	125	2.2	2.2	1800	167	150	67	2	3
TLJN226M010#3800	N	22	10	40	2	125	1.2	2.2	3800	115	103	46	1	3
TLJR226M010#3800	R	22	10	40	2	125	1.2	2.2	3800	120	108	48	2	3
TLJK336M010#1500	K	33	10	40	2	125	2.6	3.3	1500	208	187	83	2	3
TLJN336M010#9600	N	33	10	40	2	125	0.5	6.6	9600	72	65	29	1	3
TLJP336M010#3500	Р	33	10	40	2	125	1.3	3.3	3500	131	118	52	2	3
TLJR336M010#3500	R	33	10	40	2	125	1.3	3.3	3500	125	113	50	2	3
TLJS336M010#1500	S	33	10	40	2	125	2.6	3.3	1500	208	187	83	2	3
TLJA476M010#0600	Α	47	10	40	2	125	4.8	4.7	600	354	318	141	1	3
TLJG476M010#1500	G	47	10	40	2	125	2.6	4.7	1500	216	194	86	2	3
TLJP476M010#3200	Р	47	10	40	2	125	1.4	4.7	3200	137	123	55	2	3
TLJR476M010#3200	R	47	10	40	2	125	1.4	9.4	3200	131	118	52	2	3
TLJS476M010#1500	S	47	10	40	2	125	2.6	4.7	1500	208	187	83	2	3
TLJT476M010#0600	T	47	10	40	2	125	4.8	4.7	600	365	329	146	1	3
TLJA686M010#1500	Α	68	10	40	2	125	2.6	6.8	1500	224	201	89	2	3
TLJA107M010#1400	Α	100	10	40	2	125	2.7	10.0	1400	231	208	93	2	3
TLJH107M010#0900	Н	100	10	40	2	125	3.7	10.0	900	298	268	119	2	3
TLJT107M010#0900	T	100	10	40	2	125	3.7	10.0	900	298	268	119	2	3
TLJB157M010#0500	В	150	10	40	2	125	5.3	15.0	500	412	371	165	1	3
TLJW157M010#0150	W	150	10	40	2	125	8.3	15.0	150	775	697	310	1	3
TLJW157M010#0200	W	150	10	40	2	125	7.7	15.0	200	671	604	268	1	3
TLJF227M010#0300	F	220	10	40	2	125	6.7	22.0	300	577	520	231	1	3
					16	Volt @ 40°C								
TLJS106M016#2200	S	10	16	40	3.2	125	3.0	1.6	2200	172	155	69	1	3
TLJT226M016#1000	Т	22	16	40	3.2	125	5.5	3.5	1000	283	255	113	1	3
TLJT336M016#1000	Т	33	16	40	3.2	125	5.5	5.3	1000	283	255	113	1	3
					20	Volt @ 40°C								
TLJT106M020#1000	Т	10	20	40	4	125	6.9	2.0	1000	283	255	113	1	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance is measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

ESR allowed to move up to 1.25 times catalogue limit post mounting

DCL allowed to move up to 2.00 times catalogue limit post mounting

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

Tantalum Solid Electrolytic Chip Capacitors - High CV Consumer Series

QUALIFICATION TABLE - CATEGORY 1

TEST			TLJ series	(Temperature range	-55°C to +	125°C)			-				
1591		Condition			Chara	acteristic	s						
	Apply rated voltage	ge (Ur) at 40°C and	/ or category	Visual examination	no visib	le damage	;						
Endurance		5°C for 2000 hours		DCL	2 x initia	2 x initial limit							
Endurance	impedance of ≤0.	1Ω/V. Stabilize at ro	oom temperature	ΔC/C	within ±	10% of ini	tial value						
	for 1-2 hours befo	ore measuring.		ESR	1.25 x ir	nitial limit							
	Store at 65°C and	l 90-95% relative hu	midity for 500	Visual examination	no visib	no visible damage							
Harris dia.	hours, with no app	plied voltage. Stabi	lize at room	DCL	2 x initia	2 x initial limit							
Humidity	temperature and I	humidity for 1-2 ho	urs before	ΔC/C	within ±	within ±10% of initial value							
	measuring.			ESR	1.25 x ir	nitial limit							
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C			
Tamanavatuva	2	+20 -55	15 15	DCL	2 x IL*	n/a	2 x IL*	20 x IL*	25 x IL*	II *			
Temperature Stability	3	+20	15										
Stability	5	+85 +125	15 15	ΔC/C	n/a	+0/-20%	±5%	+20/-0%	+25/-0%	±5%			
	6	+20	15	ESR	1.25 xIL*	2.5 x IL*	1.25 x IL*	1.25 x IL*	1.25 x IL*	1.25x IL*			
	Apply 1.3x rated v	oltage (Ur) at 40°C	for 1000 cycles	Visual examination	no visib	no visible damage							
Surge	of duration 6 min	(30 sec charge, 5 n	nin 30 sec	DCL	2 x initia	2 x initial limit							
Voltage	, , ,	jh a charge / discha	arge resistance	ΔC/C	within ±	5% of initi	al value						
	of 1000Ω			ESR	1.25 x ir	nitial limit							
				Visual examination	no visib	le damage)						
Mechanical	MIL CTD 202 Mos	thod 213, Condition		DCL	initial lir	nit							
Shock	WIIL-STD-202, IVIE	tilou 213, Collultioi	10	ΔC/C	within ±	5% of initi	al value						
				ESR	initial lir	nit		,					
				Visual examination	no visib	le damage							
Vibration	MIL OTD 200 Ma-	th a d 201 Canditi	. D	DCL	initial lir	nit							
vibration	IVIIL-S I D-202, Me	thod 204, Conditior	טו	ΔC/C	within ±	within ±5% of initial value							
				ESR	initial lir	initial limit							

^{*}Initial Limit

QUALIFICATION TABLE - CATEGORY 2

TEST			TLJ series	(Temperature range	-55°C to +	125°C)						
IESI		Condition			Chara	acteristic	s	-				
	Apply rated voltage	ge (Ur) at 40°C and	/ or category	Visual examination	no visib	le damage	9	-				
Endurance		°C for 2000 hours		DCL	2 x initia	al limit						
Endurance	impedance of ≤0.	1Ω/V. Stabilize at ro	oom temperature	ΔC/C	within +	5/-30% of	initial value	e				
	for 1-2 hours befo	ore measuring.		ESR	1.25 x ir	nitial limit						
	Store at 65°C and	90-95% relative hu	umidity for 500	Visual examination	no visib	le damage	,					
l lumai ditu	hours, with no app	olied voltage. Stabi	lize at room	DCL	2 x initia	2 x initial limit						
Humidity	temperature and I	humidity for 1-2 ho	urs before	ΔC/C	within ±10% of initial value							
	measuring.			ESR	1.25 x ir	nitial limit						
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C		
Tamananatura	2	+20 -55	15 15	DCL	2 x IL*	n/a	2 x IL*	20 x IL*	25 x IL*	2 x IL*		
Temperature Stability	3	+20	15	T								
Stability	5	+85 +125	15 15	ΔC/C	n/a	+5/-20%	±10%	+20/-0%	+25/-0%	±10%		
	6	+20	15	ESR	1.25 x L* 2.5 x L* 1.25 x L* 1.25 x L* 1.25 x L* 1.25 x L*							
	Apply 1.3x rated v	oltage (Ur) at 40°C	for 1000 cycles	Visual examination	no visib	no visible damage						
Surge	of duration 6 min	(30 sec charge, 5 n	nin 30 sec	DCL	2 x initia	al limit						
Voltage	discharge) throug	h a charge / discha	arge resistance	ΔC/C	within ±	5% of initi	al value					
	of 1000Ω			ESR	1.25 x ir	nitial limit						
				Visual examination	no visib	le damage	,					
Mechanical	MIL OTD 202 Med	thad 010 Candition	. 0	DCL	initial lir	nit						
Shock	MIL-STD-202, Mei	thod 213, Conditior	10	ΔC/C	within ±	5% of initi	al value					
				ESR	initial lir	nit		-				
				Visual examination	no visib	le damage						
Vibration	MIL OTD 202 Med	thad 201 Candition	- D	DCL	initial lir	nit						
vibration	I MII -STD-202 Method 204 Condition D ⊢			ΔC/C	within ±5% of initial value							
ı				ESR	initial lir	nit						

^{*}Initial Limit

Tantalum Solid Electrolytic Chip Capacitors - High CV Consumer Series

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

Tantalum Solid Electrolytic Chip Capacitors - Undertab Series

FEATURES

- · Undertab Terminations Layout:
 - High Volumetric Efficiency
 - High PCB Assembly Density
 - High Capacitance in Smaller Dimensions
- 3x Reflow 260°C Compatible
- 100% Surge Current Tested
- Consumer Applications (e.g. PCMCIA/USB Wireless Express Cards, Mobiles, MP3 etc.)
- 6 Case Sizes Available
- CV Range: 47-220µF / 4-10V

APPLICATIONS

- · Mobile Phones
- **Tablets**
- MP3/4 Players

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H max.	W _P ±0.10 (0.004)	W _N ±0.10 (0.004)	A _P ±0.10 (0.004)	A _N ±0.10 (0.004)	S Min.
М	0805	2012-09	2.05 (0.081)	1.30 (0.051)	0.90 (0.035)	1.00 (0.039)	1.00 (0.039)	0.85 (0.033)	0.85 (0.033)	0.40 (0.016)
N	0805	2012-10	2.05 (0.081)	1.30 (0.051)	1.00 (0.039)	1.00 (0.039)	1.00 (0.039)	0.85 (0.033)	0.85 (0.033)	0.40 (0.016)
K	1206	3216-10	3.20 (0.126)	1.60 (0.063)	1.00 (0.039)	1.30 (0.051)	1.30 (0.051)	1.15 (0.045)	1.15 (0.045)	0.90 (0.035)
s	1206	3216-12	3.20 (0.126)	1.60 (0.063)	1.20 (0.047)	1.30 (0.051)	1.30 (0.051)	1.15 (0.045)	1.15 (0.045)	0.90 (0.035)
L	1210	3528-10	3.50 (0.138)	2.80 (0.110)	1.00 (0.039)	2.50 (0.098)	2.10 (0.083)	1.15 (0.045)	1.35 (0.053)	1.00 (0.039)
Т	1210	3528-12	3.50 (0.138)	2.80 (0.110)	1.20 (0.047)	2.50 (0.098)	2.10 (0.083)	1.15 (0.045)	1.35 (0.053)	1.00 (0.039)

MARKING

K, L, S, T, CASE

M, N CASE

S = Pure Tin 13" Reel

HOW TO ORDER

to follow)

227

Μ **Tolerance**

004 = 4Vdc $M = \pm 20\%$ 006 = 6.3 Vdc010 = 10Vdc

004 R **Rated DC Voltage Packaging** R = Pure Tin 7" Reel

Technical Data:		All tech	nical data	relate to	an ambient temperature of +25°C
Capacitance Range:		47 μF to	220 µF		
Capacitance Tolerance:		±20%			
Rated Voltage (V _R)	-55°C ≤ +40°C:	4	6.3	10	
Category Voltage (V _c)	at 85°C:	2	3.2	5	
Category Voltage (V _C)	at 125°C:	0.8	1.3	2	
Temperature Range:		-55°C to	+125°C v	vith cate	gory voltage
Reliability:		0.2% pe	r 1000 ho	urs at 85	5° C, $0.5xV_R$ with $0.1\Omega/V$ series impedance with
		60% cor	nfidence le	evel	

Tantalum Solid Electrolytic Chip Capacitors - Undertab Series

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance	Rated Voltag	e DC to 40°C / 0.5DC to 85°C/ 0.2	DC to 125°C		
μF	Code	4V (G)	6.3V (J)	10V (A)		
33	336					
47	476			K(1500)/M(6000)/N(6000)		
68	686		K(5400)	K(5400)/S(6000)		
100	107	N(5200)	K(2000,5400)/S(5400)	K(2500)/S(2500)		
150	157	K(2500)/S(2500)	K(2500)/S(2500)	H(6000)/L(1300)/T(1500)		
220	227 K(2500)/L(1300) S(3000)/T(150		L(1000)/T(1500)	T(1300)		

Released ratings, (ESR ratings in m0hms in parentheses)

Engineering samples - please contact AVX

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

RATINGS & PART NUMBER REFERENCE

4107			Rated	Rated	Category	Category	Maximum	DCL	ESR	100kHz	RMS Curr	ent (mA)	
AVX Part No.	Case Size	Capacitance (µF)	Voltage (V)	Temperature (°C)		Temperature (°C)	Surge Current (A)	Max. (μA)	Max. @ 100kHz (mΩ)	25°C	85°C	125°C	MSL
					4 \	/olt @ 40°C							
TLNN107M004#5200	N	100	4	40	0.8	125	0.4	20	5200	88	79	35	3
TLNK157M004#2500	К	150	4	40	0.8	125	0.7	12	2500	148	133	59	3
TLNS157M004#2500	S	150	4	40	0.8	125	0.7	12	2500	148	133	59	3
TLNK227M004#2500	К	220	4	40	0.8	125	0.7	44	2500	148	133	59	3
TLNL227M004#1300	L	220	4	40	0.8	125	1.1	17.6	1300	215	193	86	3
TLNS227M004#3000	S	220	4	40	0.8	125	0.6	17.6	3000	135	122	54	3
TLNT227M004#1500	Т	220	4	40	0.8	125	1.0	17.6	1500	216	194	86	3
					6.3	Volt @ 40°C							
TLNK686M006#5400	К	68	6.3	40	1.3	125	0.5	4.1	5400	101	91	40	3
TLNK107M006#2000	К	100	6.3	40	1.3	125	1.3	12	2000	166	149	66	3
TLNK107M006#5400	К	100	6.3	40	1.3	125	0.5	6	5400	101	91	40	3
TLNS107M006#5400	S	100	6.3	40	1.3	125	0.5	6	5400	101	91	40	3
TLNK157M006#2500	К	150	6.3	40	1.3	125	1.1	18	2500	148	133	59	3
TLNS157M006#2500	S	150	6.3	40	1.3	125	1.1	18	2500	148	133	59	3
TLNL227M006#1000	L	220	6.3	40	1.3	125	2.2	26.4	1000	245	220	98	3
TLNT227M006#1500	Т	220	6.3	40	1.3	125	1.6	26.4	1500	216	194	86	3
					10	Volt @ 40°C							
TLNK476M010#1500	K	47	10	40	2	125	2.6	4.7	1500	191	172	77	3
TLNM476M010#6000	М	47	10	40	2	125	0.8	9.4	6000	82	73	33	3
TLNN476M010#6000	N	47	10	40	2	125	0.8	9.4	6000	82	73	33	3
TLNK686M010#5400	К	68	10	40	2	125	0.9	6.8	5400	101	91	40	3
TLNS686M010#6000	S	68	10	40	2	125	0.8	6.8	6000	96	86	38	3
TLNK107M010#2500	К	100	10	40	2	125	1.7	20	2500	148	133	59	3
TLNS107M010#2500	S	100	10	40	2	125	1.7	10	2500	148	133	59	3
TLNH157M010#6000	Н	150	10	40	2	125	0.8	30	6000	108	97	43	3
TLNL157M010#1300	L	150	10	40	2	125	2.9	30	1300	215	193	86	3
TLNT157M010#1500	Т	150	10	40	2	125	2.6	30	1500	216	194	86	3
TLNT227M010#1300	Т	220	10	40	2	125	2.9	44	1300	232	209	93	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance is measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts.

DCL is measured at rated voltage after 5 minutes.

ESR allowed to move up to 1.25 times catalogue limit post mounting

DCL allowed to move up to 2.00 times catalogue limit post mounting

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

Tantalum Solid Electrolytic Chip Capacitors - Undertab Series

QUALIFICATION TABLE

TEST			TLN series	s (Temperature range	-55°C to +	·125°C)						
1521		Condition		Characteristics								
	Apply rated volta	ige (Ur) at 40°C and	d / or category	Visual examination	no visib	le damage	9					
Endurance	voltage (Uc) at 8	5°C for 2000 hours	s through a	DCL	2 x initia	al limit	-	-				
Endurance		e of ≤0.1Ω/V. Stabi		ΔC/C	within +	within +5/-30% of initial value						
	temperature for 1	1-2 hours before m	easuring.	ESR	1.25 x initial limit							
	Store at 65°C and	d 90-95% relative h	numidity for 500	Visual examination	no visib	le damage	9					
Humidity	hours, with no ap	oplied voltage. Stab	oilize at room	DCL	2 x initia	2 x initial limit						
numuity		humidity for 1-2 ho	ours before	ΔC/C	within ±	10% of ini	tial value					
	measuring.			ESR	1.25 x ir	nitial limit						
	Step	Temperature°C +20	Duration(min) 15	1	+20°C	-55°C	+20°C	+85°C	+125°C	+20°		
Temperature	2 3	-55 +20	15 15 15	DCL	2 x IL*	n/a	2 x IL*	20 x IL*	25 x IL*	2 x I		
Stability	4	+85	15	ΔC/C	n/a	+5/-20%	±10%	+20/-0%	+25/-0%	±10		
	5 +125 15 6 +20 15		ESR	1.25 x IL*	2.5 x IL*	1.25 x IL*	1.25 x IL*	1.25 x IL*	125x			
	Apply 1.3x rated	voltage (Ur) at 40°	C for 1000 cycles	Visual examination	no visible damage							
Surge	of duration 6 min	n (30 sec charge, 5	min 30 sec	DCL	2 x initial limit							
Voltage	, , ,	gh a charge / disch	narge resistance	ΔC/C	within ±	5% of initi	al value					
	of 1000Ω			ESR	1.25 x ir	nitial limit						
				Visual examination	no visib	le damage	9					
Mechanical				DCL	initial lir	nit						
Shock	MIL-STD-202, Me	ethod 213, Condition	on C	ΔC/C	within ±	5% of initi	al value					
SHOCK				DF	initial lir	nit						
				ESR	initial lir	nit						
				Visual examination	no visib	le damage	2					
				DCL	initial lir							
Vibration	MIL-STD-202, Me	ethod 204, Conditio	on D	ΔC/C	within ±	5% of initi	al value					
				DF	initial lir	nit						
				ESR	initial lin	nit						

^{*}Initial Limit

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

High Capacitance Tantalum Solid Electrolytic Chip Capacitors Undertab Series

FEATURES

- · Large Case Size for Maximum Capacitance
- · 3x Reflow 260°C Compatible
- 100% Surge Current Tested
- · Low Profile Solution
- Consumer Applications (e.g. PCMCIA/USB Wireless Express Cards etc.)
- CV Range: 1000-3300µF / 4-10V
- · 2 Case Sizes Available

APPLICATIONS

- Data Transfer Modems
- · SSD Backup Circuits

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H max.	W _P ±0.10 (0.004)	W _N ±0.10 (0.004)	A _P ±0.10 (0.004)	A _N ±0.10 (0.004)	S Min.
4	2924	7361-20	7.30 (0.287)	6.10 (0.240)	2.00 (0.079)	4.75 (0.187)	4.75 (0.187)	2.00 (0.079)	3.20 (0.126)	2.10 (0.083)
6	5831	14878-20	14.80 (0.583)	7.80 (0.307)	2.00 (0.079)	5.50 (0.217)	5.50 (0.217)	2.45 (0.096)	2.45 (0.096)	9.90 (0.390)

MARKING

4,6 CASE

HOW TO ORDER

228

010 = 10 Vdc

 $\frac{0055}{|}$ ESR in m Ω

Technical Data:		All tech	nical data	relate to	an ambient temperature of +25°C
Capacitance Range:		1000 μF	to 3300 _l	μF	
Capacitance Tolerance:		±20%			
Leakage Current DCL:		0.01CV			
Rated Voltage (V _R)	-55°C ≤ +40°C:	4	6.3	10	
Category Voltage (V _c)	at 85°C:	2	3.2	5	
Category Voltage (V _c)	at 125°C:	0.8	1.3	2	
Temperature Range:		-55°C to	+125°C v	vith cate	gory voltage
Reliability:			r 1000 ho nce level	urs at 85	$^{\circ}$ C, 0.5 xV _R with $0.1\Omega/V$ series impedance with 60%

High Capacitance Tantalum Solid Electrolytic Chip Capacitors Undertab Series

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance	Volta	ge Rating DC (VR) to	85°C
μF	Code	4V (G)	6.3V (J)	10V (A)
680	687			
1000	108			4(100)/6(55)
1500	158		4(100)	6(55)
2200	228		6(55)	
3300	338	6(55)		

Released ratings (ESR ratings in mOhms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply

higher voltage ratings in the same case size, to the same reliability standards.

RATINGS & PART NUMBER REFERENCE

AVX	0	Capacitance		outegory outegory	DCL	ESR Max.	100kHz	ent (mA)				
Part No.	Case Size	Capacitance (μF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. @ 100kHz (mΩ)	25°C	85°C	125°C	MSL
					4 Volt @ 4	0°C						
TLN6338M004#0055	6	3300	4	40	0.8	125	132	55	2045	1840	818	3
					6.3 Volt @	40°C						
TLN4158M006#0100	4	1500	6.3	40	1.3	125	90	100	1285	1156	514	3
TLN6228M006#0055	6	2200	6.3	40	1.3	125	132	55	2045	1840	818	3
					10 Volt @ 4	10°C						
TLN4108M010#0100	4	1000	10	40	2	125	100	100	1285	1156	514	3
TLN6108M010#0055	6	1000	10	40	2	125	100	55	2045	1840	818	3
TLN6158M010#0055	6	1500	10	40	2	125	150	55	2045	1840	818	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts.

DCL is measured at rated voltage after 5 minutes.

ESR allowed to move up to 1.25 times catalogue limit post mounting

DCL allowed to move up to 2.00 times catalogue limit post mounting

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

High Capacitance Tantalum Solid Electrolytic Chip Capacitors Undertab Series

QUALIFICATION TABLE

TEST		TLN	PulseCap™ se	eries (Temperature	range -55	5°C to +	125°C)				
IESI		Condition			C	haracte	ristics				
	Apply rated voltage	ge (Ur) at 40°C and	/ or category	Visual examination	no visible damage						
Endurance		5°C for 2000 hours		DCL	2 x initia	2 x initial limit					
Endurance		.1Ω/V. Stabilize at re	oom temperature	ΔC/C	within +	within +5/-30% of initial value					
	for 1-2 hours befo	ore measuring.		ESR	1.25 x ir	itial limit					
	Store at 65°C and	d 90-95% relative hu	ımidity for 500	Visual examination	no visib	e damage	9				
11		plied voltage. Stabi	,	DCL	2 x initia	ıl limit					
Humidity	temperature and	humidity for 1-2 ho	urs before	ΔC/C	within ±	10% of ini	tial value				
	measuring.			ESR	1.25 x ir	itial limit					
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C	
T	1 2	+20 -55	15 15	DCL	2 x IL*	n/a	2 x IL*	20 x IL*	25 x IL*	2 x IL*	
Temperature Stability	3	+20	15	ΔC/C			±10%	+20/-0%		-	
Stability	<u>4</u> 5	+85 +125	15 15		n/a	+5/-20%		-,	+25/-0%		
	6	+20	15	ESR	1.25 x IL*	2.5 x IL*	1.25 x IL*	1.25 x IL*	1.25 x IL*	1.25xIL*	
	Apply 1.3x rated	voltage (Ur) at 40°C	for 1000 cycles	Visual examination	no visib	no visible damage					
Surge	of duration 6 min	(30 sec charge, 5 r	nin 30 sec	DCL	2 x initia	2 x initial limit					
Voltage		gh a charge / discha	arge resistance	ΔC/C	within ±	within ±5% of initial value					
	of 1000Ω			ESR	1.25 x ir	1.25 x initial limit					
				Visual examination	no visib	e damage	9				
				DCL	initial lir	nit					
Mechanical Shock	MIL-STD-202, Me	thod 213, Condition	n C	ΔC/C	within ±	5% of initi	al value				
SHOCK				DF	initial lir	nit					
				ESR	initial lir	nit					
				Visual examination	no visib	e damage	•				
				DCL	initial lin	nit					
Vibration	MIL-STD-202, Me	thod 204, Condition	n D	ΔC/C	within ±	5% of initi	al value				
				DF	initial lir	nit					
				ESR	initial lin	nit					

^{*}Initial Limit

High Capacitance Tantalum Solid Electrolytic Chip Capacitors Undertab Series

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

Resin-Molded Chip, High CV Undertab

FEATURES

- · Compliant to the RoHS3 directive 2015/863/EU
- SMD Face Down Design
- · Small and Low Profile
- · 100% Surge Current Tested

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

APPLICATIONS

- Smartphone
- Mobile Phone
- · Wireless Module
- · Hearing Aid

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L	W ₁	W ₂	н	S ₁	S ₂
М	0603	1608-09	1.60 ^{+0.20} _{-0.10} (0.063 ^{+0.008} _{-0.004})	0.85 ^{+0.20} _{-0.10} (0.033 ^{+0.008} _{-0.004})	0.65±0.10 (0.026±0.004)	0.80±0.10*3 (0.031±0.004)	0.50±0.10 (0.020±0.004)	0.60±0.10 (0.024±0.004)
s	0805	2012-09	2.00 ^{+0.20} _{-0.10} (0.079 ^{+0.008} _{-0.004})	1.25 ^{+0.20} _{-0.10} (0.049 ^{+0.008} _{-0.004})	0.90±0.10 (0.035±0.004)	0.80±0.10 (0.031±0.004)	0.50±0.10 (0.020±0.004)	1.00±0.10 (0.039±0.004)
U	0402	1106-06	1.10±0.05 (0.043±0.002)	0.60±0.05 (0.024±0.002)	0.35±0.05 (0.014±0.002)	0.55±0.05 (0.022±0.002)	0.30±0.05 (0.012±0.002)	0.50±0.05 (0.020±0.002)

^{*3} F980J107MMAAXE: 1.0mm Max.

HOW TO ORDER

Category Temperature Range:	-55 to +125°C
Rated Temperature:	+85°C or +60°C
Capacitance Tolerance:	±20% at 120Hz
Dissipation Factor:	Refer to next page
ESR 100kHz:	Refer to next page
	Refer to next page
	Provided that:
Leakage Current:	After 5 minute's application of rated voltage, leakage current at 85°C or +60°C
Leakage Current.	10 times or less than 20°C specified value.
	After 5 minute's application of rated voltage, leakage current at 125°C
	12.5 times or less than 20°C specified value.
Termination Finish:	M, S case: Gold Plating (standard), U case: Sn-3.5Ag Plating (standard)

F98 Series

Resin-Molded Chip, High CV Undertab

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance				Rated '	Voltage				*Cap Code
μF	Code	2.5 (0e)	4V (0G)	6.3V (0J)	10V (1A)	16V (1C)	20V (1D)	25V (1E)	35V (1V)	"Cap Code
0.47	474			1		U				N
1.0	105					М	М	М	S	Α
2.2	225				M/U	M				J
4.7	475		U	M/U	M/U**	M				S
10	106		U	M/U**	М	S				а
15	156		U							е
22	226		M/U**	M	M**/S					J
33	336		M	M	M**/S					n
47	476	М	M	M/S	S					S
68	686		M/S							W
100	107		M/S	M*4/S						Α
220	227		S							J

Released ratings

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated	DCL	DF	ESR		100kHz RMS	Current (mA)	*1	MCI
Part No.	Size	(μ F)	Voltage (V)	(μΑ)	@ 120Hz (%)	@ 100kHz (Ω)	25°C	60°C	85°C	125°C	ΔC/C (%)	MSL
					2.5							
F980E476MMA	M	47	2.5	1.2	30	4	79		71	32	±30	3
						/olt						
F980G475MUA	U	4.7	4	0.5	20	20	27	-	25	11	±30	3
F980G106MUA	U	10	4	0.8	25	20	27	-	25	11	±30	3
F980G156MUA	U	15	4	9.0	40	25	24	-	22	10	±30	3
F980G226MMA	М	22	4	0.9	15	7.5	58	-	52	23	±30	3
F980G226MUALZT	U	22	4	25.0	40	20	27	25	-	11	±30	3
F980G336MMA	М	33	4	1.3	30	4	79	-	71	32	±30	3
F980G476MMA	М	47	4	1.9	40	8	56	-	50	22	±30	3
F980G686MMA	М	68	4	27.2	50	10	50	-	45	20	±30	3
F980G686MSA	S	68	4	2.7	30	4	106	-	95	42	±30	3
F980G107MMA	М	100	4	80.0	60	10	50	-	45	20	±30	3
F980G107MSA	S	100	4	4.0	35	4	106	-	95	42	±30	3
F980G227MSA	S	220	4	132	80	5	95	-	85	38	±30	3
		•			6.3	Volt			•	<u>'</u>		
F980J475MMA	М	4.7	6.3	0.5	20	7.5	58	-	52	23	±30	3
F980J475MUA	U	4.7	6.3	0.6	20	20	27	-	25	11	±30	3
F980J106MMA	M	10	6.3	0.6	8	6	65	_	58	26	±30	3
F980J106MUALZT	U	10	6.3	6.3	30	30	22	20	_	9	±30	3
F980J226MMA	M	22	6.3	1.4	20	6	65	_	58	26	±30	3
F980J336MMA	M	33	6.3	4.2	35	8	56	_	50	22	±30	3
F980J476MMA	M	47	6.3	29.6	45	10	50	_	45	20	±30	3
								_				
F980J476MSA	S	47 100	6.3	3.0	25 80	6	87		78	35	±30	3
F980J107MMAAXE	М		6.3	126		10	50	45		20	±30	3
F980J107MSA	S	100	6.3	63.0	50	8	75		68	30	±30	3
						Volt						
F981A225MMA	М	2.2	10	0.5	6	7.5	58	-	52	23	±30	3
F981A225MUA	U	2.2	10	0.5	15	15	32	-	28	13	±30	3
F981A475MMA	М	4.7	10	0.5	6	6	65	-	58	26	±30	3
F981A475MUALZT	U	4.7	10	4.7	25	25	24	22	_	10	±30	3
F981A106MMA	М	10	10	1.0	20	7.5	58	-	52	23	±30	3
F981A226MMALZT	М	22	10	11.0	30	8	56	50	-	22	±30	3
F981A226MSA	S	22	10	2.2	20	4	106	-	95	42	±30	3
F981A336MMALZT	М	33	10	33.0	45	8	56	50	_	22	±30	3
F981A336MSA	S	33	10	3.3	30	6	87	-	78	35	±30	3
F981A476MSA	S	47	10	9.4	35	5	95	-	85	38	±30	3
		<u> </u>				Volt						
F981C474MUA	U	0.47	16	0.5	6	25	24	_	22	10	±20	3
F981C105MMA	M	1	16	0.5	6	10	50	-	45	20	±30	3
F981C225MMA	M	2.2	16	0.5	6	10	50	-	45	20	±30	3
F981C475MMA	M	4.7	16	0.8	12	12	46	_	41	18	±30	3
F981C106MSA	S	10	16	1.6	18	4	106	_	95	42	±30	3
1 JOTO TOUNIOA		10	10	1.0	20		100		, ,,	74	100	
F981D105MMA	М	1 1	20	0.5	6	10	50	_	45	20	±30	3
AIVIIVICUTUTET	iVi			0.5	25		50		45		1 ±30	
	М	1	25	0.5	8	1 0	50	_	45	20	±30	3
FOOTF1OFNANAA												
F981E105MMA	IVI		25	0.5	35		30		1 40		130	

^{*2:} Leakage Current

After 5 minute's application of rated voltage, leakage current at 20°C.

 $\label{eq:model} \mbox{Moisture Sensitivity Level (MSL) is defined according to J-STD-020.}$

^{*4 (}AXE) Rated temperature 60°C and H dimension 1.0mm Max. Please contact AVX when you need detail spec.

 $[\]star\star$ (LZT) Rated temperature 60°C. Please contact AVX when you need detail spec.

Please contact to your local AVX sales office when these series are being designed in your application.

F98 Series

Resin-Molded Chip, High CV Undertab

QUALIFICATION TABLE

TEOT	F98 series (Temperature range -55°C to +125°C)
TEST	Condition
Damp Heat (Steady State)	At 40°C, 90 to 95% R.H., 500 hours (No voltage applied) Capacitance Change
Temperature Cycles	-55°C / +125°C, 30 minutes each, 5 cycles Capacitance Change
Resistance to Soldering Heat	10 seconds reflow at 260°C, 5 seconds immersion at 260°C. Capacitance Change
Surge	After application of surge in series with a $1k\Omega$ resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C, capacitors shall meet the characteristic requirements in the table above. (Not applied to LZT and AXE.) Capacitance Change
Endurance	After 1000 hours' application of rated voltage in series with a 3Ω resistor at 85° C or $+60^{\circ}$ C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change
Shear Test	After applying the pressure load of 5N for 10±1 seconds horizontally to the center of capacitor side body which has no electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the terminal electrode.
Terminal Strength	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is applied with a specified jig at the center of substrate so that the substrate may bend by 1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.

F98 Series

Resin-Molded Chip, High CV Undertab

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

F98-AS1 Series

Fused Face-Down, High CV

FEATURES

- · Compliant to the RoHS3 directive 2015/863/EU
- SMD Face Down Design
- · Small and Low Profile
- 100% Surge Current Tested

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

APPLICATIONS

- Smartphone
- Mobile Phone
- · Wireless Module
- Hearing Aid

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L	W ₁	W ₂	Н	S ₁	S ₂
s	0805	2012-09	2.00 ^{+0.20} _{-0.10} (0.079 ^{+0.008} _{-0.004})	0.85 ^{+0.20} _{-0.10} (0.033 ^{+0.008} _{-0.004})	1.25±0.10 (0.049±0.004)	0.80±0.10 (0.031±0.004)	0.50±0.10 (0.020±0.004)	1.00±0.10 (0.039±0.004)

HOW TO ORDER

Category Temperature Range:	-55 to +125°C
Rated Temperature:	+85°C
Capacitance Tolerance:	±20% at 120Hz
Dissipation Factor:	Refer to next page
ESR 100kHz:	Refer to next page
Leakage Current:	Refer to next page Provided that: After 5 minute's application of rated voltage, leakage current at 85°C 10 times or less than 20°C specified value.
	After 5 minute's application of rated voltage, leakage current at 125°C 12.5 times or less than 20°C specified value.
Termination Finish:	Gold Plating (standard)

F98-AS1 Series

Fused Face-Down, High CV

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance			Rated Voltage			*0an 0ada
μF	Code	10V (1A)	16V (1C)	20V (1D)	25V (1E)	35 (1V)	*Cap Code
1.0	105					S	Α
2.2	225						J
4.7	475						S
10	106		S				а
22	226	S					J
33	336	S					n
47	476	S					S

Released ratings

Please contact to your local AVX sales office when these series are being designed in your application.

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated	DCL	DF	ESR	100	OkHz RMS Current (mA)	*1		
Part No.	Size	(μF)	Voltage (V)	(μΑ)	@ 120Hz (%)	@ 100kHz (Ω)	25°C	85°C	125°C	ΔC/C (%)	MSL	
10 Volt												
F981A226MSAAS1	S	22	10	2.2	20	4.5	100	90	40	±20	3	
F981A336MSAAS1	S	33	10	3.3	30	6.5	83	75	33	±30	3	
F981A476MSAAS1	S	47	10	9.4	35	5.5	90	81	36	±30	3	
					16 \	∕olt						
F981C106MSAAS1	S	10	16	1.6	18	4.5	100	90	40	±20	3	
	35 Volt											
F981V105MSAAS1	S	1	35	0.7	20	8.5	73	65	29	±30	3	

^{*2:} Leakage Current

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

QUALIFICATION TABLE

TEST	F98-AS1 series (Temperature range -55°C to +125°C)
IEST	Condition
Damp Heat (Steady State)	At 40°C, 90 to 95% R.H., 500 hours (No voltage applied) Capacitance Change
Temperature Cycles	-55°C / +125°C, 30 minutes each, 5 cycles Capacitance Change
Resistance to Soldering Heat	10 seconds reflow at 260°C, 5 seconds immersion at 260°C. Capacitance Change
Surge	After application of surge in series with a 1kΩ resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change
Endurance	After 1000 hours' application of rated voltage in series with a 3Ω resistor at 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change
Shear Test	After applying the pressure load of 5N for 10±1 seconds horizontally to the center of capacitor side bodywhich has no electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the terminal electrode.
Terminal Strength	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is applied with a specified jig at the center of substrate so that the substrate may bend by 1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.
Fuse Activation	5 seconds max. with 2A min. applied current

NOTICE: DESIGN, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

After 5 minute's application of rated voltage, leakage current at 20°C.

Fused Face-Down, High CV

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

Resin-Molded Chip, High CV Facedown - Automotive Range

FEATURES

- · Compliant to the RoHS3 directive 2015/863/EU
- SMD Face Down Design
- Small and Low Profile
- · Compliant to AEC-Q200
- · 100% Surge Current Tested

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

APPLICATIONS

- Infotainment
- · Cabin Electronics
- Cameras
- · Digital Millers

CASE DIMENSIONS:

millimeters (inches)

С	ode	EIA Code	EIA Metric	L	W ₁	W ₂	Н	S ₁	S ₂
	М	0603	1608-09	$1.60^{+0.20}_{-0.10}$ $(0.063^{+0.008}_{-0.004})$	$0.85^{+0.20}_{-0.10} \ (0.033^{+0.008}_{-0.004})$	0.65±0.10 (0.026±0.004)	1.0 Max (0.039 Max)	0.50±0.10 (0.020±0.004)	0.60±0.10 (0.024±0.004)
	s	0805	2012-09	2.00 ^{+0.20} _{-0.10} (0.079 ^{+0.008} _{-0.004})	1.25 ^{+0.20} _{-0.10} (0.049 ^{+0.008} _{-0.004})	0.90±0.10 (0.035±0.004)	0.80±0.10 (0.031±0.004)	0.50±0.10 (0.020±0.004)	1.00±0.10 (0.039±0.004)

HOW TO ORDER

Category Temperature Range:	-55 to +125°C
Rated Temperature:	+85°C
Capacitance Tolerance:	±20% at 120Hz
Dissipation Factor:	Refer to Ratings & Part Number Reference
ESR 100kHz:	Refer to Ratings & Part Number Reference
Leakage Current:	Refer to Ratings & Part Number Reference at 20°C after application of rated voltage for 5 minutes Provided that: After 5 minute's application of rated voltage, leakage current at 85°C 10 times or less than 20°C specified value.
	After 5 minute's application of rated voltage, leakage current at 125°C 12.5 times or less than 20°C specified value.
Termination Finish:	Gold Plating (standard)

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capa	citance			Сар	
μF	Code	6.3 (0J)	10V (1A)	16V (1C)	Code
4.7	475		М	М	S
10	106		М	S	а
22	226	M*	S*		J
33	336	M*			n
47	476	S*			s

Released Ratings

RATINGS & PART NUMBER REFERENCE

AVX Part Number	Case	Cap	Rated Voltage	DCL Max	DF Max	ESR Max	100kH	z RMS ((mA)	urrent	⊿c/c	MSL
	Size	(µF)	(V)	(µA)	(%@120Hz)	(Ω@100kHz)	25°C	85°C	125°C		
10 Volt											
F981A475MMAAJ6	М	4.7	10	0.5	12	6	65	58	26	±30	3
F981A106MMAAJ6	М	10	10	1.0	20	7.5	58	52	23	±30	3
16 Volt											
F981C475MMAAJ6	М	4.7	16	0.8	12	12	46	41	18	±30	3
F981C106MSAAJ6	S	10	16	1.6	18	4	106	95	42	±30	3

QUALIFICATION TABLE

Test	F98-AJ6 series (Temperature range -55°C to +125°C)
rest	Condition
Damp Heat (Steady State)	At 40°C, 90% R.H., 500 hours (No voltage applied) Capacitance ChangeRefer to Ratings & Part Number Reference Dissipation Factor150% or less of initial specified value Leakage Current200% or less of initial specified value
Load Humidity	After 1000 hour's application of rated voltage in series with a 33Ω resistor at 85°C, 85% R.H., capacitors meet the characteristics requirements table below. Capacitance Change
Temperature Cycles	At -55°C / +125°C, 30 minutes each, 1000 cycles Capacitance ChangeRefer to Ratings & Part Number Reference Dissipation Factor150% or less initial specified value Leakage Current5 times or less of initial specified value
Resistance to Soldering Heat	10 seconds reflow at 260°C, 5 seconds immersion at 260°C Capacitance ChangeRefer to Ratings & Part Number Reference Dissipation FactorInitial specified value or less Leakage CurrentInitial specified value or less
Surge	After application of surge voltage in series with a 1kΩ resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change
Endurance	After 1000 hours' application of rated voltage in series with a 3Ω resistor at 85° C, or derated voltage in series with a 3Ω resistor at 125° C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change
Shear Test	After applying the pressure load of 5N for 60+1/-0 seconds horizontally to the center of capacitor side body which has no electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the terminal electrode. After applying the pressure load of 5N for 60+1/-0 seconds horizontally to the center of capacitor side body which has no electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the terminal electrode.
Terminal Strength	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is applied with a specified jig at the center of substrate so that he substrate so that the substrate may bend by 1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals

NOTICE: DESIGN, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

^{*} Codes under development - subject to change

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

Low ESR

MARKING

A, B, C, D, E, F, S, T, V, W, X, Y CASE

P, R CASE

FEATURES

- Low ESR Series of Robust Mn0₂ Solid Electrolyte Capacitors
- 100% Surge Current Tested
- CV Range: 0.15-1500µF / 2.5-50V
- 14 Case Sizes Available
- Power Supply Applications

LEAD-FREE

SnPb termination option is not RoHS compliant.

APPLICATIONS

· General Medium Power DC/DC Convertors

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W₁±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
Α	1206	3216-18	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
С	2312	6032-28	6.00 (0.236)	3.20 (0.126)	2.60 (0.102)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
F	2312	6032-20	6.00 (0.236)	3.20 (0.126)	2.00 (0.079) max.	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
Р	0805	2012-15	2.05 (0.081)	1.35 (0.053)	1.50 (0.059) max.	1.00 ±0.10 (0.039 ±0.004)	0.50 (0.020)	0.85 (0.033)
R	0805	2012-12	2.05 (0.081)	1.30 (0.051)	1.20 (0.047) max.	1.00 ±0.10 (0.039 ±0.004)	0.50 (0.020)	0.85 (0.033)
s	1206	3216-12	3.20 (0.126)	1.60 (0.063)	1.20 (0.047) max.	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
Т	1210	3528-12	3.50 (0.138)	2.80 (0.110)	1.20 (0.047) max.	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
٧	2924	7361-38	7.30 (0.287)	6.10 (0.240)	3.55 (0.140)	3.10 (0.122)	1.30 (0.051)	4.40 (0.173)
W	2312	6032-15	6.00 (0.236)	3.20 (0.126)	1.50 (0.059) max.	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
Х	2917	7343-15	7.30 (0.287)	4.30 (0.169)	1.50 (0.059) max.	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
Υ	2917	7343-20	7.30 (0.287)	4.30 (0.169)	2.00 (0.079) max.	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only.

HOW TO ORDER

Capacitance Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow)

M

Tolerance $K = \pm 10\%$ $M = \pm 20\%$

010

Rated DC Voltage 002 = 2.5Vdc 004 = 4Vdc 006 = 6.3 Vdc010 = 10 Vdc

016 = 16Vdc 020 = 20 Vdc025 = 25Vdc 035 = 35Vdc 050 = 50Vdc R

Packaging R = Pure Tin 7" Reel S = Pure Tin 13" Reel A = Gold Plating 7" Reel B = Gold Plating 13" Reel H = Tin Lead 7" Reel

(Contact Manufacturer) K = Tin Lead 13" Reel (Contact Manufacturer) H, K = Non RoHS

0100

ESR in mΩ Additional characters may be

added for special requirements V = Dry pack Option (selected ratings only)

Technical Data:		All techn	ical data	relate to	an ambie	nt tempe	rature of	+25°C		
Capacitance Range:		0.15 μF t	ο 1500 μ	F						
Capacitance Tolerance:		±10%; ±2	.0%							
Rated Voltage (V _R)	≤ +85°C:	2.5	4	6.3	10	16	20	25	35	50
Category Voltage (V _c)	≤ +125°C:	1.7	2.7	4	7	10	13	17	23	33
Surge Voltage (V _S)	≤ +85°C:	3.3	5.2	8	13	20	26	32	46	65
Surge Voltage (V _S)	≤ +125°C:	2.2	3.4	5	8	13	16	20	28	40
Temperature Range:		-55°C to	+125°C							
Environmental Classification:		55/125/5	56 (IEC 6	8-2)						
Reliability:		1% per 1	000 hour	s at 85°C	, V _R with (0.1Ω/V se	ries impe	edance,		
Reliability.		60% conf	fidence le	evel						
Termination Finished:		Sn Platin	g (standa	ard), Gold	l and SnP	b Plating	upon req	uest		
		For AEC-	Q200 ava	ailability,	olease co	ntact AV	X			

Low ESR

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capa	citance				F	Rated Voltage DC (V	a) to 85°C			
μF	Code	2.5V (e)	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)
0.15	154								4(6000)	A(9000)
0.22	224 334								A(6000) A(6000)	A(7000) A(7000)
0.47	474							A(7000)	A(6000)	A(6500), B(6000)
0.68	684							A(6000)	B(4000) A(6000)	C(2300) B(4000)
1.0	105				R(9000)	A(6200)	A(3000), R(6000) S(6000), T(2000)	A(4000) R(2500,4000)	A(3000) B(2000)	B(3000) C(2500)
1.5	155						A(3000)	A(3000) B(1800)	A(3000) B(2500)	C(1500,2000)
2.2	225			R(7000)	A(1800)	A(1800,3500) T(2000)	A(3000) B(1700)	A(2500) B(900,1200,2500)	A(1500) B(750,1500, 2000) C(1000)	C(1500) D(1200)
3.3	335			A(2100)	T(1500)	A(3500) B(2500)	A(2500) B(1300)	A(1000,1500) B(750,1500,2000)	B(1000) C(700)	C(1000) D(800)
4.7	475			S(4000)	A(1400), B(1400) R(3000,5000)	A(2000) B(800,1500)	A(1800) B(750,1000)	B(700,900,1500) C(700)	B(700,1500) C(600), D(700)	C(800) D(250,300,500,700) X(500)
6.8	685			A(1800)	A(1800), B(1300) T(1800)	A(1500) B(600,1200)	A(1000) B(600,1000 C(700)	B(700) C(500,600,700)	C(350) D(150,400,500)	D(200,300, 500,600)
10	106		R(3000)	A(1500), B(1500) R(1000,1500,3000) T(1000)	A(900,1800), B(1000) P(2000) ^(M) , S(900) T(1000,2000)	A(1000), B(500,800) C(500), T(800,1000) W(500,600)	B(500,1000) C(500,700) W(250, 500)	B(1800) C(300,500) D(500)	C(600) D(125,300) E(100,150,200)Y(250)	D(500) E(250,300, 400,500)
15	156			A(700,1500)	A(1000) B(450,600), C(700) T(1200)	B(500,800) C(300,700)	B(500) C(400,450)	C(220,300) D(100,300)	C(350,450) D(100,300) Y(250)	E(250) V(250)
22	226			A(300,500,900) B(375,600) C(500), S(900)	A(900) B(400,500,700) C(300), T(800)	B(400,600) C(150,250,300,375) D(700), W(500)	B(400,600) C(100,150,400) D(200,300)	C(275,400) D(100,200,300) F(300)	D(125,200,300,400) E(125,200,300) Y(200)	
33	336			A(600) B(250,350,450,600) T(800)	A(700) B(250,425,500,650) C(150,375,500) W(350)	B(350,500) C(100,150,225,300) D(200), W(140,175, 250,400,500) Y(300,400)	C(300) D(100,200)	C(400) D(100,200,300) E(100,175,200,300) F(150,200,400) Y(200)	D(200,300) E(100,250,300) V(200)	
47	476		A(500)	A(800) B(250,350,500) C(300), T(1200)	B(250,350,500,650) C(200,350) D(100,300) W(125,150,250)	C(110,350) D(80,100,150,200) W(200) X(180), Y(250)	D(75,100,200) E(70,125,150, 200,250), X(200)	D(125,150,250 E(80,100,125) (Y250)	D(300), E(200,250) V(150,200)	
68	686			B(250,350,500) C(150,200) W(110,125,250)	B(600) C(80,100,200,300) D(100,150), W(100,150) Y(100,200)	C(125,200) D(70,100,150) F(200), X(150) Y(150,200,250)	D(70,150, 200,300) E(125,150,200) Y(200)	D(150,200,300) E(125,200) V(80,95,150,200)	V(150,200)	
100	107	B(200)	B(200,250, 350,500) T(500) ^(M) W(100)	B(250,400) C(75,150), D(300) W(100,150), Y(100)	B(400) C(75,100,150,200) D(50,65,80,100,125, 150), E(125), W(150) X(85,150,200) Y(100,150,200)	C(200) D(60,100,125,150) E(55,100,125,150) F(150,200)(M) Y(100,150,200)	D(85,100,150) E(100,150,200) V(60,85,100,200)	E(150), V(100)		
150	157	B(150)	B(250) C(70,80)	C(50,90,150,200,250) D(50,125) Y(40,50)	C(150), D(50,85,100) E(100), F(200) X(100)(M) Y(100,150,200)	D(60,85,100,125,150) E(50,100), V(45,75) Y(200) ^(M)	V(80)	V(150) ^(M)		
220	227	B(150, 200,600) D(45)	D(40,50,100) Y(40,50,75)	C(70,100,125,250) D(50,100,125) E(100), F(200) Y(100,150)	D(40,50,100,150) E(50,60,70,100, 125,150) Y(100,150,200)	D(200) ^(M) E(50,100,150) V(50,75,100,150)				
330	337	Y(40)	C(100) D(35,45,100) F(200) X(100)	C(80,100) D(45,50,70,100) E(50,100,125,150) V(100), Y(75,100,150)	D(50,65,100,150) E(40,50,60,100) V(40,60,100)	E(200) ^(M)				
470	477	D(35) F(200) Y(100)	D(45,100) E(35,45,100)	D(45,60,100,200) E(45,50,60,100,200) V(40,55,100), Y(150)	E(45,50,60,100,200) V(40,60,100)					
680	687	D(35,50) E(35,50) Y(100)	D(45,60,100) E(40,60,100)	E(45,60,100) V(35,40,50)	E(150) ^(M) V(100) ^(M)					
1000	108	E(30,40) Y(100) ^(M)	E(40,60) V(25,35,40,50)	E(100)(M), V(40,50)(M)						
1500	158	D(100) E(50) V(30,40) ^M	E(50,75) V(50,75) ^(M)							

Note for designers - for the highlighted ratings, higher voltage options are now available in the same case size and are recommended for new designs.

Released ratings (M tolerance only) (ESR ratings in mOhms in parentheses)

NOTE: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

Low ESR

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kH	z RMS Cur	rent (A)	MS
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(μA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	
					2.5 Volt	@ 85°C							
TPSB107*002#0200	В	100	2.5	85	1.7	125	2.5	8	200	0.652	0.587	0.261	1
TPSB157*002#0150	В	150	2.5	85	1.7	125	3	10	150	0.753	0.677	0.301	1
TPSB227*002#0150	В	220	2.5	85	1.7	125	4.4	16	150	0.753	0.677	0.301	1
TPSB227*002#0200	В	220	2.5	85	1.7	125	4.4	16	200	0.652	0.587	0.261	1
TPSB227*002#0600	В	220	2.5	85	1.7	125	4.4	16	600	0.376	0.339	0.151	1
TPSD227*002#0045	D	220	2.5	85	1.7	125	5.5	8	45	1.826	1.643	0.730	1
TPSY337*002#0040	Y	330	2.5	85	1.7	125	8.2	8	40	1.768	1.591	0.707	1 ¹⁾
TPSD477*002#0035	D	470	2.5	85	1.7	125	11.6	8	35	2.070	1.863	0.828	1
TPSF477*002#0200	F	470	2.5	85	1.7	125	11.8	12	200	0.707	0.636	0.283	1
TPSY477*002#0100	Y	470	2.5	85	1.7	125	11	12	100	1.118	1.006	0.447	11
TPSD687*002#0035	D	680	2.5	85	1.7	125	17	16	35	2.070	1.863	0.828	1
TPSD687*002#0050	D	680	2.5	85	1.7	125	17	16	50	1.732	1.559	0.693	1
TPSE687*002#0035	E	680	2.5	85	1.7	125	17	10	35	2.171	1.954	0.868	11
TPSE687*002#0050	E	680	2.5	85	1.7	125	17	10	50	1.817	1.635	0.727	11
TPSY687*002#0100	Y	680	2.5	85	1.7	125	17	12	100	1.118	1.006	0.447	11
TPSE108*002#0030	E	1000	2.5	85	1.7	125	25	14	30	2.345	2.111	0.938	11
TPSE108*002#0040	E	1000	2.5	85	1.7	125	25	14	40	2.031	1.828	0.812	11
ΓPSY108M002#0100	Υ	1000	2.5	85	1.7	125	25	30	100	1.118	1.006	0.447	1 ¹
TPSD158*002#0100	D	1500	2.5	85	1.7	125	37.5	60	100	1.125	1.102	0.490	1
TPSE158*002#0050	E	1500	2.5	85	1.7	125	37.5	20	50	1.817	1.635	0.727	1 ¹
TPSV158M002#0030	V	1500	2.5	85	1.7	125	30	20	30	2.887	2.598	1.155	1
TPSV158M002#0040	V	1500	2.5	85	1.7	125	30	20	40	2.500	2.250	1.000	1 ¹
					4 Volt (@ 85°C							
TPSR106*004#3000	R	10	4	85	2.7	125	0.5	6	3000	0.135	0.122	0.054	1
TPSA476*004#0500	Α	47	4	85	2.7	125	1.9	8	500	0.387	0.349	0.155	1
TPSB107*004#0200	В	100	4	85	2.7	125	4	8	200	0.652	0.587	0.261	1
TPSB107*004#0250	В	100	4	85	2.7	125	4	8	250	0.583	0.525	0.233	1
TPSB107*004#0350	В	100	4	85	2.7	125	4	8	350	0.493	0.444	0.197	1
TPSB107*004#0500	В	100	4	85	2.7	125	4	8	500	0.412	0.371	0.165	1
TPST107M004#0500	Т	100	4	85	2.7	125	4	14	500	0.400	0.360	0.160	1
TPSW107*004#0100	W	100	4	85	2.7	125	4	6	100	0.949	0.854	0.379	1
TPSB157*004#0250	В	150	4	85	2.7	125	6	10	250	0.583	0.525	0.233	1
TPSC157*004#0070	С	150	4	85	2.7	125	6	6	70	1.254	1.128	0.501	1
TPSC157*004#0080	С	150	4	85	2.7	125	6	6	80	1.173	1.055	0.469	1
TPSD227*004#0040	D	220	4	85	2.7	125	8.8	8	40	1.936	1.743	0.775	1
TPSD227*004#0050	D	220	4	85	2.7	125	8.8	8	50	1.732	1.559	0.693	1
TPSD227*004#0100	D	220	4	85	2.7	125	8.8	8	100	1.225	1.102	0.490	1
TPSY227*004#0040	Y	220	4	85	2.7	125	8.8	8	40	1.768	1.591	0.707	1
TPSY227*004#0050	Y	220	4	85	2.7	125	8.8	8	50	1.581	1.423	0.632	1
TPSY227*004#0075	Y	220	4	85	2.7	125	8.8	8	75	1.291	1.162	0.516	1
TPSC337*004#0100	С	330	4	85	2.7	125	13.2	8	100	1.049	0.944	0.420	1
TPSD337*004#0035	D	330	4	85	2.7	125	13.2	8	35	2.070	1.863	0.828	1
TPSD337*004#0045	D	330	4	85	2.7	125	13.2	8	45	1.826	1.643	0.730	1
TPSD337*004#0100	D	330	4	85	2.7	125	13.2	8	100	1.225	1.102	0.490	1
TPSF337*004#0200	F	330	4	85	2.7	125	13.2	10	200	0.707	0.636	0.283	1
TPSX337*004#0100	X	330	4	85	2.7	125	13.2	8	100	1.000	0.900	0.400	1
TPSD477*004#0100	D	470	4	85	2.7	125	18.8	12	45	1.826	1.643	0.730	1
TPSD477*004#0100	D	470	4	85	2.7	125	18.8	12	100	1.225	1.102	0.490	1
TPSE477*004#0035	E	470	4	85	2.7	125	18.8	10	35	2.171	1.954	0.868	1
TPSE477*004#0045	E	470	4	85	2.7	125	18.8	10	45	1.915	1.723	0.766	1
TPSE477*004#0100	E	470	4	85	2.7	125	18.8	10	100	1.285	1.156	0.514	1
TPSD687*004#0100	D	680	4	85	2.7	125	27.2	14	45	1.826	1.643	0.730	1
TPSD687*004#0045	D	680	4	85	2.7	125	27.2	14	60	1.581	1.423	0.730	-
TPSD687*004#0100	D	680	4	85	2.7	125	27.2	14	100	1.225	1.102	0.490	-
TPSE687*004#0040	E	680	4	85	2.7	125	27.2	10	40	2.031	1.828	0.490	1
TPSE687*004#0040	E	680	4	85	2.7	125	27.2	10	60	1.658	1.492	0.663	1
TPSE687*004#0100	E	680	4	85	2.7	125	27.2	10	100	1.285	1.156	0.514	1
TPSE108*004#0100	E	1000	4	85	2.7	125	40	14	40	2.031	1.828	0.812	1
TPSE108*004#0040	E	1000	4	85	2.7	125	40	14	60	1.658	1.492	0.663	1
TPSV108*004#0060	V	1000	4	85	2.7	125	40	16	25	3.162	2.846	1.265	1
TPSV108*004#0025	V	1000	4	85	2.7	125	40	16	35	2.673	2.405	1.265	1
TPSV108*004#0035 TPSV108*004#0040	V												1
	V	1000	4	85	2.7	125	40	16	40	2.500	2.250	1.000	_
TPSV108*004#0050		1000	4	85	2.7	125	40	16	50	2.236	2.012	0.894	1
TPSE158*004#0050	E	1500	4	85	2.7	125	60	30	50	1.817	1.635	0.727	1
TPSE158*004#0075	E	1500	4	85	2.7	125	60	30	75	1.483	1.335	0.593	1
FPSV158M004#0050	V	1500	4	85	2.7	125	60	30	50	2.236	2.012	0.894	1
TPSV158M004#0075	V	1500	4	85	2.7	125	60	30	75	1.826	1.643	0.730	11
					6.3 Volt	@ 85°C							
TPSR225*006#7000	R	2.2	6.3	85	4	125	0.5	6	7000	0.089	0.080	0.035	1
TPSA335*006#2100	Α	3.3	6.3	85	4	125	0.5	6	2100	0.189	0.170	0.076	1
		4.7	6.3	85	4	125	0.5	6	4000	0.127			_

Low ESR

AVX Part No.	Case Size	Capacitance (µF)	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max. @ 100kHz		z RMS Cui	` ` `	MSL
	Size	,	(V)	(°C)	(V)	(°C)	(µA)	(%)	_ (mΩ)	25°C	85°C	125°C	
TPSA685*006#1800	A	6.8	6.3	85	4	125	0.5	6	1800	0.204	0.184	0.082	1
TPSA106*006#1500	A	10	6.3	85	4	125	0.6	6	1500	0.224	0.201	0.089	1
TPSB106*006#1500	В	10 10	6.3	85 85	4	125 125	0.6	6 8	1500 1000	0.238	0.214	0.095	1
TPSR106*006#1000 TPSR106*006#1500	R	10	6.3	85	4	125	0.6	8	1500	0.235	0.211 0.172	0.094	1
FPSR106*006#3000	R	10	6.3	85	4	125	0.6	8	3000	0.135	0.172	0.077	1
TPST106*006#1000	T	10	6.3	85	4	125	0.6	6	1000	0.133	0.122	0.034	1
PSA156*006#0700	A	15	6.3	85	4	125	0.0	6	700	0.203	0.295	0.113	1
TPSA156*006#1500	A	15	6.3	85	4	125	0.9	6	1500	0.224	0.201	0.089	1
TPSA226*006#0300	A	22	6.3	85	4	125	1.4	6	300	0.500	0.450	0.200	1
TPSA226*006#0500	A	22	6.3	85	4	125	1.4	6	500	0.387	0.349	0.155	1
ΓPSA226*006#0900	Α	22	6.3	85	4	125	1.4	6	900	0.289	0.260	0.115	1
PSB226*006#0375	В	22	6.3	85	4	125	1.4	6	375	0.476	0.428	0.190	1
ΓPSB226*006#0600	В	22	6.3	85	4	125	1.4	6	600	0.376	0.339	0.151	1
PSC226*006#0500	С	22	6.3	85	4	125	1.4	6	500	0.469	0.422	0.188	1
PSS226*006#0900	S	22	6.3	85	4	125	1.3	10	900	0.269	0.242	0.107	1
PSA336*006#0600	Α	33	6.3	85	4	125	2.1	8	600	0.354	0.318	0.141	1
PSB336*006#0250	В	33	6.3	85	4	125	2.1	6	250	0.583	0.525	0.233	1
PSB336*006#0350	В	33	6.3	85	4	125	2.1	6	350	0.493	0.444	0.197	1
PSB336*006#0450	В	33	6.3	85	4	125	2.1	6	450	0.435	0.391	0.174	1
PSB336*006#0600	В	33	6.3	85	4	125	2.1	6	600	0.376	0.339	0.151	1
PST336*006#0800	Т	33	6.3	85	4	125	2.1	10	800	0.316	0.285	0.126	1
PSA476*006#0800	Α	47	6.3	85	4	125	2.8	10	800	0.306	0.276	0.122	1
PSB476*006#0250	В	47	6.3	85	4	125	3	6	250	0.583	0.525	0.233	1
PSB476*006#0350	В	47	6.3	85	4	125	3	6	350	0.493	0.444	0.197	1
PSB476*006#0500	В	47	6.3	85	4	125	3	6	500	0.412	0.371	0.165	1
PSC476*006#0300	С	47	6.3	85	4	125	3	6	300	0.606	0.545	0.242	1
PST476*006#1200	T	47	6.3	85	4	125	2.8	10	1200	0.258	0.232	0.103	1
PSB686*006#0250	В	68	6.3	85	4	125	4	8	250	0.583	0.525	0.233	1
PSB686*006#0350	В	68	6.3	85	4	125	4	8	350	0.493	0.444	0.197	1
PSB686*006#0500	В	68	6.3	85 85	4	125 125	4.3	8	500	0.412	0.371	0.165	1
PSC686*006#0150 PSC686*006#0200	C	68 68	6.3	85 85	4	125	4.3	6	150 200	0.856 0.742	0.771 0.667	0.343	1
PSW686*006#0200	W	68	6.3	85	4	125	4.3	6	110	0.742	0.814	0.297	1
2SW686*006#0110	W	68	6.3	85 85	4	125	4.3	6	125	0.905	0.814	0.362	1
SW686*006#0125	W	68	6.3	85	4	125	4.3	6	250	0.600	0.764	0.339	1
PSB107*006#0250	В	100	6.3	85	4	125	6.3	10	250	0.583	0.525	0.233	1
SB107*006#0230	В	100	6.3	85	4	125	6.3	10	400	0.461	0.415	0.233	1
SC107*006#0075	С	100	6.3	85	4	125	6.3	6	75	1.211	1.090	0.484	1
PSC107*006#0150	C	100	6.3	85	4	125	6.3	6	150	0.856	0.771	0.343	1
PSD107*006#0300	D	100	6.3	85	4	125	6.3	6	300	0.707	0.636	0.283	1
PSW107*006#0100	W	100	6.3	85	4	125	6.3	6	100	0.949	0.854	0.379	1
PSW107*006#0150	w	100	6.3	85	4	125	6.3	6	150	0.775	0.697	0.310	1
PSY107*006#0100	Υ	100	6.3	85	4	125	6.3	6	100	1.118	1.006	0.447	1 ¹⁾
PSC157*006#0050	С	150	6.3	85	4	125	9.5	6	50	1.483	1.335	0.593	1
PSC157*006#0090	С	150	6.3	85	4	125	9.5	6	90	1.106	0.995	0.442	1
PSC157*006#0150	С	150	6.3	85	4	125	9.5	6	150	0.856	0.771	0.343	1
PSC157*006#0200	С	150	6.3	85	4	125	9.5	6	200	0.742	0.667	0.297	1
PSC157*006#0250	С	150	6.3	85	4	125	9.5	6	250	0.663	0.597	0.265	1
PSD157*006#0050	D	150	6.3	85	4	125	9.5	6	50	1.732	1.559	0.693	1
PSD157*006#0125	D	150	6.3	85	4	125	9.5	6	125	1.095	0.986	0.438	1
PSY157*006#0040	Υ	150	6.3	85	4	125	9.5	6	40	1.768	1.591	0.707	1 ¹⁾
PSY157*006#0050	Υ	150	6.3	85	4	125	9.5	6	50	1.581	1.423	0.632	1 ¹⁾
PSC227*006#0070	С	220	6.3	85	4	125	13.9	8	70	1.254	1.128	0.501	1
PSC227*006#0100	С	220	6.3	85	4	125	13.9	8	100	1.049	0.944	0.420	1
PSC227*006#0125	С	220	6.3	85	4	125	13.9	8	125	0.938	0.844	0.375	1
PSC227*006#0250	С	220	6.3	85	4	125	13.9	8	250	0.663	0.597	0.265	1
PSD227*006#0050	D	220	6.3	85	4	125	13.9	8	50	1.732	1.559	0.693	1
PSD227*006#0100	D	220	6.3	85	4	125	13.9	8	100	1.225	1.102	0.490	1
PSD227*006#0125	D	220	6.3	85	4	125	13.9	8	125	1.095	0.986	0.438	1
PSE227*006#0100	E	220	6.3	85	4	125	13.9	8	100	1.285	1.156	0.514	11)
PSF227*006#0200	F	220	6.3	85	4	125	13.2	10	200	0.707	0.636	0.283	1
PSY227*006#0100	Y	220	6.3	85	4	125	13.9	8	100	1.118	1.006	0.447	11)
PSY227*006#0150	Y	220	6.3	85	4	125	13.9	8	150	0.913	0.822	0.365	11)
PSC337*006#0080	С	330	6.3	85	4	125	19.8	12	80	1.173	1.055	0.469	1
PSC337*006#0100	С	330	6.3	85	4	125	19.8	12	100	1.049	0.944	0.420	1
PSD337*006#0045	D	330	6.3	85	4	125	20.8	8	45	1.826	1.643	0.730	1
PSD337*006#0050	D	330	6.3	85	4	125	20.8	8	50	1.732	1.559	0.693	1
PSD337*006#0070	D	330	6.3	85	4	125	20.8	8	70	1.464	1.317	0.586	1
PSD337*006#0100	D	330	6.3	85	4	125 125	20.8	8	100	1.225	1.102	0.490	1

Low ESR

AVX	Case	Capacitance	Rated	Rated	Category Voltage	Category	DCL	DF	ESR Max.	100kH	z RMS Cur	rent (A)	
Part No.	Size	(μF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (µA)	Max. (%)	@ 100kHz (mΩ)	25°C	85°C	125°C	MSL
TPSE337*006#0100	Е	330	6.3	85	4	125	20.8	8	100	1.285	1.156	0.514	1 ¹⁾
TPSE337*006#0125	Е	330	6.3	85	4	125	20.8	8	125	1.149	1.034	0.460	1 ¹⁾
TPSE337*006#0150	E	330	6.3	85	4	125	20.8	8	150	1.049	0.944	0.420	1 ¹⁾
TPSV337*006#0100	V	330	6.3	85	4	125	20.8	8	100	1.581	1.423	0.632	1 ¹⁾
TPSY337*006#0075	Y	330	6.3	85	4	125	20.8	12	75	1.291	1.162	0.516	1 ¹⁾
TPSY337*006#0100	Υ	330	6.3	85	4	125	20.8	12	100	1.118	1.006	0.447	1 ¹⁾
TPSY337*006#0150	Y	330	6.3	85	4	125	20.8	12	150	0.913	0.822	0.365	1 ¹⁾
TPSD477*006#0045	D	470	6.3	85	4	125	28	12	45	1.826	1.643	0.730	1
TPSD477*006#0060	D	470	6.3	85	4	125	28	12	60	1.581	1.423	0.632	1
TPSD477*006#0100	D	470	6.3	85	4	125	28	12	100	1.225	1.102	0.490	1
TPSD477*006#0200	D	470	6.3	85	4	125	28	12	200	0.866	0.779	0.346	1
TPSE477*006#0045	E	470	6.3	85	4	125	28	10	45	1.915	1.723	0.766	1 ¹⁾
TPSE477*006#0050	E	470	6.3	85	4	125	28	10	50	1.817	1.635	0.727	1 ¹⁾
TPSE477*006#0060	E	470	6.3	85	4	125	28	10	60	1.658	1.492	0.663	1 ¹⁾
TPSE477*006#0100	E	470	6.3	85	4	125	28	10	100	1.285	1.156	0.514	1 ¹⁾
TPSE477*006#0200	E	470	6.3	85	4	125	28	10	200	0.908	0.817	0.363	1 ¹⁾
TPSV477*006#0040	V	470	6.3	85	4	125	28	10	40	2.500	2.250	1.000	1 ¹⁾
TPSV477*006#0055	V	470	6.3	85	4	125	28	10	55	2.132	1.919	0.853	1 ¹⁾
TPSV477*006#0100	V	470	6.3	85	4	125	28	10	100	1.581	1.423	0.632	1 ¹⁾
TPSY477*006#0150	Υ	470	6,3	85	4	125	28.2	20	150	0.913	0.822	0.365	1 ¹⁾
TPSE687*006#0045	E	680	6.3	85	4	125	42.8	10	45	1.915	1.723	0.766	1 ¹⁾
TPSE687*006#0060	E	680	6.3	85	4	125	42.8	10	60	1.658	1.492	0.663	11)
TPSE687*006#0100	Е	680	6.3	85	4	125	42.8	10	100	1.285	1.156	0.514	1 ¹⁾
TPSV687*006#0035	V	680	6.3	85	4	125	42.8	10	35	2.673	2.405	1.069	11)
TPSV687*006#0040	V	680	6.3	85	4	125	42.8	10	40	2.500	2.250	1.000	11)
TPSV687*006#0050	V	680	6.3	85	4	125	42.8	10	50	2.236	2.012	0.894	1 ¹⁾
TPSE108M006#0100	E	1000	6.3	85	4	125	60	20	100	1.285	1.156	0.514	1 ¹⁾
TPSV108M006#0040	V	1000	6.3	85	4	125	60	16	40	2.500	2.250	1.000	11)
TPSV108M006#0050	V	1000	6.3	85	4	125	60	16	50	2.236	2.012	0.894	11)
					10 Volt	@ 85°C							
TPSR105*010#9000	R	1	10	85	7	125	0.5	4	9000	0.078	0.070	0.031	1
TPSA225*010#1800	Α	2.2	10	85	7	125	0.5	6	1800	0.204	0.184	0.082	1
TPST335*010#1500	Т	3.3	10	85	7	125	0.5	6	1500	0.231	0.208	0.092	1
TPSA475*010#1400	Α	4.7	10	85	7	125	0.5	6	1400	0.231	0.208	0.093	1
TPSB475*010#1400	В	4.7	10	85	7	125	0.5	6	1400	0.246	0.222	0.099	1
TPSR475*010#3000	R	4.7	10	85	7	125	0.5	6	3000	0.135	0.122	0.054	1
TPSR475*010#5000	R	4.7	10	85	7	125	0.5	6	5000	0.105	0.094	0.042	1
TPSA685*010#1800	Α	6.8	10	85	7	125	0.7	6	1800	0.204	0.184	0.082	1
TPSB685*010#1300	В	6.8	10	85	7	125	0.7	6	1300	0.256	0.230	0.102	1
TPST685*010#1800	Т	6.8	10	85	7	125	0.7	6	1800	0.211	0.190	0.084	1
TPSA106*010#0900	Α	10	10	85	7	125	1	6	900	0.289	0.260	0.115	1
TPSA106*010#1800	Α	10	10	85	7	125	1	6	1800	0.204	0.184	0.082	1
TPSB106*010#1000	В	10	10	85	7	125	1	6	1000	0.292	0.262	0.117	1
TPSP106M010#2000	Р	10	10	85	7	125	1	8	2000	0.173	0.156	0.069	1
TPSS106*010#0900	S	10	10	85	7	125	1	8	900	0.269	0.242	0.107	1
TPST106*010#1000	Т	10	10	85	7	125	1	6	1000	0.283	0.255	0.113	1
TPST106*010#2000	Т	10	10	85	7	125	1	6	2000	0.200	0.180	0.080	1
TPSA156*010#1000	Α	15	10	85	7	125	1.5	6	1000	0.274	0.246	0.110	1
TPSB156*010#0450	В	15	10	85	7	125	1.5	6	450	0.435	0.391	0.174	1
TPSB156*010#0600	В	15	10	85	7	125	1.5	6	600	0.376	0.339	0.151	1
TPSC156*010#0700	С	15	10	85	7	125	1.5	6	700	0.396	0.357	0.159	1
TPST156*010#1200	Т	15	10	85	7	125	1.5	8	1200	0.258	0.232	0.103	1
TPSA226*010#0900	Α	22	10	85	7	125	2.2	8	900	0.289	0.260	0.115	1
TPSB226*010#0400	В	22	10	85	7	125	2.2	6	400	0.461	0.415	0.184	1
TPSB226*010#0500	В	22	10	85	7	125	2.2	6	500	0.412	0.371	0.165	1
TPSB226*010#0700	В	22	10	85	7	125	2.2	6	700	0.348	0.314	0.139	1
TPSC226*010#0300	С	22	10	85	7	125	2.2	6	300	0.606	0.545	0.242	1
TPST226*010#0800	Т	22	10	85	7	125	2.2	8	800	0.316	0.285	0.126	1
TPSA336*010#0700	Α	33	10	85	7	125	3.3	8	700	0.327	0.295	0.131	1
TPSB336*010#0250	В	33	10	85	7	125	3.3	6	250	0.583	0.525	0.233	1
TPSB336*010#0425	В	33	10	85	7	125	3.3	6	425	0.447	0.402	0.179	1
TPSB336*010#0500	В	33	10	85	7	125	3.3	6	500	0.412	0.371	0.165	1
TPSB336*010#0650	В	33	10	85	7	125	3.3	6	650	0.362	0.325	0.145	1
TPSC336*010#0150	C	33	10	85	7	125	3.3	6	150	0.856	0.771	0.343	1
TPSC336*010#0375	C	33	10	85	7	125	3.3	6	375	0.542	0.487	0.217	1
TPSC336*010#0500	C	33	10	85	7	125	3.3	6	500	0.469	0.422	0.188	1
TPSW336*010#0350	W	33	10	85	7	125	3.3	6	350	0.507	0.456	0.203	1
TPSB476*010#0250	В	47	10	85	7	125	4.7	8	250	0.583	0.525	0.233	1
TPSB476*010#0350	В	47	10	85	7	125	4.7	8	350	0.493	0.323	0.233	1
	1 0				,	120	4.7	9	550	0.490	UTTT	0.197	
TPSB476*010#0500	В	47	10	85	7	125	4.7	8	500	0.412	0.371	0.165	1

Low ESR

AVX	C	ase	Capacitance	Rated	_ Rated	Category	_ Category	DCL	DF	ESR Max.	100kH	z RMS Cur	rent (A)	
Part No.		ize	(μF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (µA)	Max. (%)	@ 100kHz (mΩ)	25°C	85°C	125°C	MSL
TPSC476*010#02	.00	С	47	10	85	7	125	4.7	6	200	0.742	0.667	0.297	1
TPSC476*010#03	50	С	47	10	85	7	125	4.7	6	350	0.561	0.505	0.224	1
TPSD476*010#01	00	D	47	10	85	7	125	4.7	6	100	1.225	1.102	0.490	1
TPSD476*010#030		D	47	10	85	7	125	4.7	6	300	0.707	0.636	0.283	1
TPSW476*010#01		W	47	10	85	7	125	4.7	6	125	0.849	0.764	0.339	1
TPSW476*010#01		W	47	10	85	7	125	4.7	6	150	0.775	0.697	0.310	1
TPSW476*010#02		W	47	10	85	7	125	4.7	6	250	0.600	0.540	0.240	1
TPSB686*010#060		В	68	10	85	7	125	6.8	8	600	0.376	0.339	0.151	1
TPSC686*010#00		С	68	10 10	85	7	125	6.8	6	80	1.173	1.055	0.469	1
TPSC686*010#010 TPSC686*010#020		C C	68 68	10	85 85	7	125 125	6.8	6	100 200	1.049 0.742	0.944 0.667	0.420 0.297	1
TPSC686*010#02		C	68	10	85	7	125	6.8	6	300	0.606	0.545	0.297	1
TPSD686*010#03		D	68	10	85	7	125	6.8	6	100	1.225	1.102	0.490	1
TPSD686*010#01		D	68	10	85	7	125	6.8	6	150	1.000	0.900	0.400	1
TPSY686*010#010		Y	68	10	85	7	125	6.8	6	100	1.118	1.006	0.447	1 ¹⁾
TPSY686*010#020		Υ	68	10	85	7	125	6.8	6	200	0.791	0.712	0.316	1 ¹⁾
TPSW686*010#01		W	68	10	85	7	125	6.8	6	100	0.949	0.854	0.379	1
TPSW686*010#01		W	68	10	85	7	125	6.8	6	150	0.775	0.697	0.310	1
TPSB107*010#04	.00	В	100	10	85	7	125	10	8	400	0.461	0.415	0.184	1
TPSC107*010#00	75	С	100	10	85	7	125	10	8	75	1.211	1.090	0.484	1
TPSC107*010#01		С	100	10	85	7	125	10	8	100	1.049	0.944	0.420	1
TPSC107*010#01		С	100	10	85	7	125	10	8	150	0.856	0.771	0.343	1
TPSC107*010#020		С	100	10	85	7	125	10	8	200	0.742	0.667	0.297	1
TPSD107*010#00		D	100	10	85	7	125	10	6	50	1.732	1.559	0.693	1
TPSD107*010#00		D	100	10	85	7	125	10	6	65	1.519	1.367	0.608	1
TPSD107*010#008		D	100	10	85	7	125	10	6	80	1.369	1.232	0.548	1
TPSD107*010#010		D	100 100	10	85	7	125	10	6	100	1.225	1.102	0.490	1
TPSD107*010#01: TPSD107*010#01		D D	100	10	85 85	7	125 125	10 10	6	125 150	1.095	0.986	0.438	1
TPSE107*010#013		E	100	10	85	7	125	10	6	125	1.149	1.034	0.460	1 ¹⁾
TPSW107*010#01		W	100	10	85	7	125	10	6	150	0.775	0.697	0.310	1
TPSX107*010#00		X	100	10	85	7	125	10	8	85	1.085	0.097	0.434	1 ¹⁾
TPSX107*010#01		X	100	10	85	7	125	10	8	150	0.816	0.735	0.327	1 ¹⁾
TPSX107*010#020		Х	100	10	85	7	125	10	8	200	0.707	0.636	0.283	11)
TPSY107*010#010	00	Υ	100	10	85	7	125	10	6	100	1.118	1.006	0.447	1 ¹⁾
TPSY107*010#01	50	Υ	100	10	85	7	125	10	6	150	0.913	0.822	0.365	1 ¹⁾
TPSY107*010#020	.00	Υ	100	10	85	7	125	10	6	200	0.791	0.712	0.316	1 ¹⁾
TPSC157*010#01	50	С	150	10	85	7	125	15	8	150	0.856	0.771	0.343	1
TPSD157*010#00		D	150	10	85	7	125	15	8	50	1.732	1.559	0.693	1
TPSD157*010#008		D	150	10	85	7	125	15	8	85	1.328	1.196	0.531	1
TPSD157*010#01		D	150	10	85	7	125	15	8	100	1.225	1.102	0.490	1
TPSE157*010#010		E	150	10	85	7	125	15	8	100	1.285	1.156	0.514	1 ¹⁾
TPSF157*010#020		F	150	10	85	7	125	15	10	200	0.707	0.636	0.283	1
TPSX157M010#01 TPSY157*010#01		X Y	150 150	10	85 85	7	125 125	15 15	6	100 100	1.000	0.900 1.006	0.400	1 ¹⁾
TPSY157*010#01		Y	150	10	85	7	125	15	6	150	0.913	0.822	0.365	1 ¹⁾
TPSY157*010#01		Y	150	10	85	7	125	15	6	200	0.791	0.822	0.303	11)
TPSD227*010#004		D	220	10	85	7	125	22	8	40	1.936	1.743	0.775	1
TPSD227*010#00		D	220	10	85	7	125	22	8	50	1.732	1.559	0.693	1
TPSD227*010#010		D	220	10	85	7	125	22	8	100	1.225	1.102	0.490	1
TPSD227*010#01		D	220	10	85	7	125	22	8	150	1.000	0.900	0.400	1
TPSE227*010#00		E	220	10	85	7	125	22	8	50	1.817	1.635	0.727	1 ¹⁾
TPSE227*010#000	60	E	220	10	85	7	125	22	8	60	1.658	1.492	0.663	1 ¹⁾
TPSE227*010#007	70	Е	220	10	85	7	125	22	8	70	1.535	1.382	0.614	1 ¹⁾
TPSE227*010#010		E	220	10	85	7	125	22	8	100	1.285	1.156	0.514	1 ¹⁾
TPSE227*010#012		Е	220	10	85	7	125	22	8	125	1.149	1.034	0.460	11)
TPSE227*010#01		E	220	10	85	7	125	22	8	150	1.049	0.944	0.420	1 ¹⁾
TPSY227*010#010		Υ	220	10	85	7	125	22	10	100	1.118	1.006	0.447	1 ¹⁾
TPSY227*010#01		Υ	220	10	85	7	125	22	10	150	0.913	0.822	0.365	1 ¹⁾
TPSY227*010#020		Υ	220	10	85	7	125	22	10	200	0.791	0.712	0.316	1 ¹⁾
TPSD337*010#00		D	330	10	85	7	125	33	8	50	1.732	1.559	0.693	1
TPSD337*010#000		D	330	10	85	7	125	33	8	65	1.519	1.367	0.608	1
		D	330	10	85 85	7	125	33	8	100	1.225	1.102	0.490	1
TPSD337*010#010		D	330	10 10	85 85	7	125	33	8	150 40	1.000 2.031	0.900	0.400 0.812	1 1 ¹⁾
TPSD337*010#01		E			. 00	/	125	33				1.828		11)
TPSD337*010#01: TPSE337*010#004	40	E	330			7	125	22					1 0 727	
TPSD337*010#01 TPSE337*010#004 TPSE337*010#009	40 50	Е	330	10	85	7	125 125	33	8	50 60	1.817	1.635	0.727	
TPSD337*010#01: TPSE337*010#004 TPSE337*010#000 TPSE337*010#000	40 50 60	E E	330 330	10 10	85 85	7	125	33	8	60	1.658	1.492	0.663	1 ¹⁾
TPSD337*010#01: TPSE337*010#000 TPSE337*010#000 TPSE337*010#000 TPSE337*010#010	40 50 60 00	E E E	330 330 330	10 10 10	85 85 85	7	125 125	33 33	8	60 100	1.658 1.285	1.492 1.156	0.663 0.514	1 ¹⁾
TPSD337*010#01: TPSE337*010#004 TPSE337*010#004 TPSE337*010#004 TPSE337*010#010 TPSE337*010#004	40 50 60 00 40	E E V	330 330 330 330	10 10 10 10	85 85 85 85	7 7 7	125 125 125	33 33 33	8 8 10	60 100 40	1.658 1.285 2.500	1.492 1.156 2.250	0.663 0.514 1.000	1 ¹⁾ 1 ¹⁾ 1 ¹⁾
TPSD337*010#01: TPSE337*010#000 TPSE337*010#000 TPSE337*010#000 TPSE337*010#010	40 50 60 00 40	E E E	330 330 330	10 10 10	85 85 85	7	125 125	33 33	8	60 100	1.658 1.285	1.492 1.156	0.663 0.514	1 ¹⁾

Low ESR

AVX Part No. TPSE477*010#0050	Case Size	Capacitance			Category	Category	DCL	DF	Max.		z RMS Cur		4
TPSE477*010#0050	Oize	(µF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (mΩ)	25°C	85°C	125°C	MSL
	Е	470	10	85	7	125	47	10	50	1.817	1.635	0.727	1 ¹⁾
TPSE477*010#0060	Е	470	10	85	7	125	47	10	60	1.658	1.492	0.663	1 ¹⁾
TPSE477*010#0100	Е	470	10	85	7	125	47	10	100	1.285	1.156	0.514	1 ¹⁾
TPSE477*010#0200	Е	470	10	85	7	125	47	10	200	0.908	0.817	0.363	1 ¹⁾
TPSV477*010#0040	V	470	10	85	7	125	47	10	40	2.500	2.250	1.000	1 ¹⁾
TPSV477*010#0060	V	470	10	85	7	125	47	10	60	2.041	1.837	0.816	1 ¹⁾
TPSV477*010#0100	V	470	10	85	7	125	47	10	100	1.581	1.423	0.632	11)
TPSE687M010#0150V	E	680	10	85	7	125	68	18	150	1.049	0.944	0.420	3
TPSV687M010#0100V	V	680	10	85	7	125	68	18	100	1.581	1.423	0.632	3
TPSA105*016#6200	A	1	16	85	16 Volt	@ 85°C	0.5	4	6200	0.110	0.099	0.044	1
TPSA225*016#1800	A	2.2	16	85	10	125	0.5	6	1800	0.204	0.184	0.082	1
TPSA225*016#3500	A	2.2	16	85	10	125	0.5	6	3500	0.146	0.132	0.059	1
TPST225*016#2000	T	2.2	16	85	10	125	0.5	6	2000	0.200	0.180	0.080	1
TPSA335*016#3500	Α	3.3	16	85	10	125	0.5	6	3500	0.146	0.132	0.059	1
TPSB335*016#2500	В	3.3	16	85	10	125	0.5	6	2500	0.184	0.166	0.074	1
TPSA475*016#2000	Α	4.7	16	85	10	125	0.8	6	2000	0.194	0.174	0.077	1
TPSB475*016#0800	В	4.7	16	85	10	125	0.8	6	800	0.326	0.293	0.130	1
TPSB475*016#1500	В	4.7	16	85	10	125	0.8	6	1500	0.238	0.214	0.095	1
TPSA685*016#1500	Α	6.8	16	85	10	125	1.1	6	1500	0.224	0.201	0.089	1
TPSB685*016#0600	В	6.8	16	85	10	125	1.1	6	600	0.376	0.339	0.151	1
TPSB685*016#1200	В	6.8	16	85	10	125	1.1	6	1200	0.266	0.240	0.106	1
TPSA106*016#1000	Α	10	16	85	10	125	1.6	6	1000	0.274	0.246	0.110	1
TPSB106*016#0500	В	10	16	85	10	125	1.6	6	500	0.412	0.371	0.165	1
TPSB106*016#0800	В	10	16	85	10	125	1.6	6	800	0.326	0.293	0.130	1
TPSC106*016#0500	С	10	16	85	10	125	1.6	6	500	0.469	0.422	0.188	1
TPST106*016#0800	Т	10	16	85	10	125	1.6	8	800	0.316	0.285	0.126	1
TPST106*016#1000	Т	10	16	85	10	125	1.6	8	1000	0.283	0.255	0.113	1
TPSW106*016#0500	W	10	16	85	10	125	1.6	6	500	0.424	0.382	0.170	1
TPSW106*016#0600	W	10	16	85	10	125	1.6	6	600	0.387	0.349	0.155	1
TPSB156*016#0500	В	15	16	85	10	125	2.4	6	500	0.412	0.371	0.165	1
TPSB156*016#0800	В	15	16	85	10	125	2.4	6	800	0.326	0.293	0.130	1
TPSC156*016#0300	С	15	16	85	10	125	2.4	6	300	0.606	0.545	0.242	1
TPSC156*016#0700	С	15	16	85	10	125	2.4	6	700	0.396	0.357	0.159	1
TPSB226*016#0400	B	22	16 16	85 85	10 10	125 125	3.5	6	400	0.461	0.415	0.184	1
TPSB226*016#0600					10		3.5	_	600				
TPSC226*016#0150 TPSC226*016#0250	C	22	16 16	85 85	10	125 125	3.5 3.5	6	150 250	0.856	0.771 0.597	0.343	1
TPSC226*016#0300	C	22	16	85	10	125	3.5	6	300	0.606	0.545	0.242	1
TPSC226*016#0375	C	22	16	85	10	125	3.5	6	375	0.542	0.487	0.242	1
TPSD226*016#0700	D	22	16	85	10	125	3.5	6	700	0.463	0.417	0.217	1
TPSW226*016#0500	W	22	16	85	10	125	3.5	6	500	0.424	0.382	0.170	1
TPSB336*016#0350	В	33	16	85	10	125	5.3	8	350	0.424	0.444	0.170	1
TPSB336*016#0500	В	33	16	85	10	125	5.3	8	500	0.412	0.371	0.165	1
TPSC336*016#0100	С	33	16	85	10	125	5.3	6	100	1.049	0.944	0.420	1
TPSC336*016#0150	C	33	16	85	10	125	5.3	6	150	0.856	0.771	0.343	1
TPSC336*016#0225	C	33	16	85	10	125	5.3	6	225	0.699	0.629	0.280	1
TPSC336*016#0300	C	33	16	85	10	125	5.3	6	300	0.606	0.545	0.242	1
TPSD336*016#0200	D	33	16	85	10	125	5.3	6	200	0.866	0.779	0.346	1
TPSW336*016#0140	w	33	16	85	10	125	5.3	6	140	0.802	0.722	0.321	1
TPSW336*016#0175	W	33	16	85	10	125	5.3	6	175	0.717	0.645	0.287	1
TPSW336*016#0250	W	33	16	85	10	125	5.3	6	250	0.600	0.540	0.240	1
TPSW336*016#0400	W	33	16	85	10	125	5.3	6	400	0.474	0.427	0.190	1
TPSW336*016#0500	W	33	16	85	10	125	5.3	6	500	0.424	0.382	0.170	1
TPSY336*016#0300	Υ	33	16	85	10	125	5.3	6	300	0.645	0.581	0.258	1 ¹⁾
TPSY336*016#0400	Υ	33	16	85	10	125	5.3	6	400	0.559	0.503	0.224	1 ¹⁾
TPSC476*016#0110	С	47	16	85	10	125	7.5	6	110	1.000	0.900	0.400	1
TPSC476*016#0350	С	47	16	85	10	125	7.5	6	350	0.561	0.505	0.224	1
TPSD476*016#0080	D	47	16	85	10	125	7.5	6	80	1.369	1.232	0.548	1
TPSD476*016#0100	D	47	16	85	10	125	7.5	6	100	1.225	1.102	0.490	1
TPSD476*016#0150	D	47	16	85	10	125	7.5	6	150	1.000	0.900	0.400	1
TPSD476*016#0200	D	47	16	85	10	125	7.5	6	200	0.866	0.779	0.346	1
TPSW476*016#0200	W	47	16	85	10	125	7.5	6	200	0.671	0.604	0.268	1
TPSX476*016#0180	X	47	16	85	10	125	7.5	6	180	0.745	0.671	0.298	11)
TPSY476*016#0250	Y	47	16	85	10	125	7.5	6	250	0.707	0.636	0.283	1 ¹⁾
TPSC686*016#0125	С	68	16	85	10	125	10.9	6	125	0.938	0.844	0.375	1
TPSC686*016#0200	С	68	16	85	10	125	10.9	6	200	0.742	0.667	0.297	1
TPSD686*016#0070	D	68	16	85	10	125	10.9	6	70	1.464	1.317	0.586	1
TPSD686*016#0100	D	68	16	85	10	125	10.9	6	100	1.225	1.102	0.490	1
TPSD686*016#0150	D	68	16	85	10	125	10.9	6	150	1.000	0.900	0.400	1
TPSF686*016#0200	F	68	16	85	10	125	10.9	10	200	0.707	0.636	0.283	1
TPSX686*016#0150	X	68	16	85	10	125	10.9	8	150	0.816	0.735	0.327	1 ¹⁾

Low ESR

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kH	z RMS Cur	rent (A)	MSL
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(μA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVIOL
TPSY686*016#0150	Y	68	16	85	10	125	10.9	6	150	0.913	0.822	0.365	1 ¹⁾
TPSY686*016#0200	Y	68	16	85	10	125	10.9	6	200	0.791	0.712	0.316	1 ¹⁾
TPSY686*016#0250	Y	68	16	85	10	125	10.9	6	250	0.707	0.636	0.283	1 ¹⁾
TPSC107*016#0200 TPSD107*016#0060	C	100	16 16	85 85	10 10	125 125	16 16	8	200 60	0.742 1.581	0.667 1.423	0.297 0.632	1
TPSD107*016#0100	D	100	16	85	10	125	16	6	100	1.225	1.102	0.032	1
TPSD107*016#0125	D	100	16	85	10	125	16	6	125	1.095	0.986	0.438	1
TPSD107*016#0150	D	100	16	85	10	125	16	6	150	1.000	0.900	0.400	1
TPSE107*016#0055	E	100	16	85	10	125	16	6	55	1.732	1.559	0.693	1 ¹⁾
TPSE107*016#0100	E	100	16	85	10	125	16	6	100	1.285	1.156	0.514	1 ¹⁾
TPSE107*016#0125	E	100	16 16	85 85	10 10	125 125	16 16	6	125 150	1.149 1.049	1.034 0.944	0.460 0.420	1 ¹⁾
TPSE107*016#0150 TPSF107M016#0150	F	100	16	85	10	125	16	10	150	0.816	0.735	0.420	1
TPSF107M016#0200	F	100	16	85	10	125	16	10	200	0.707	0.636	0.283	1
TPSY107*016#0100	Υ	100	16	85	10	125	16	8	100	1.118	1.006	0.447	1 ¹⁾
TPSY107*016#0150	Υ	100	16	85	10	125	16	8	150	0.913	0.822	0.365	1 ¹⁾
TPSY107*016#0200	Υ	100	16	85	10	125	16	8	200	0.791	0.712	0.316	1 ¹⁾
TPSD157*016#0060	D	150	16	85	10	125	24	6	60	1.581	1.423	0.632	1
TPSD157*016#0085	D	150	16	85	10	125	24	6	85	1.328	1.196	0.531	1
TPSD157*016#0100 TPSD157*016#0125	D D	150 150	16 16	85 85	10 10	125 125	24	6	100 125	1.225 1.095	1.102 0.986	0.490 0.438	1
TPSD157*016#0125	D	150	16	85	10	125	24	6	150	1.095	0.986	0.438	1
TPSE157*016#0050V	E	150	16	85	10	125	24	8	50	1.817	1.635	0.727	3
TPSE157*016#0100	E	150	16	85	10	125	24	8	100	1.285	1.156	0.514	1 ¹⁾
TPSV157*016#0045	V	150	16	85	10	125	24	8	45	2.357	2.121	0.943	1 ¹⁾
TPSV157*016#0075	V	150	16	85	10	125	24	8	75	1.826	1.643	0.730	1 ¹⁾
TPSY157M016#0200	Y	150	16	85	10	125	24	15	200	0.791	0.712	0.316	11)
TPSD227M016#0200V TPSE227*016#0050V	D E	220 220	16 16	85 85	10 10	125 125	35.2 35.2	10 10	200 50	0.866 1.817	0.779 1.635	0.346 0.727	3
TPSE227*016#0100	E	220	16	85	10	125	35.2	10	100	1.285	1.055	0.727	1 ¹⁾
TPSE227*016#0150	E	220	16	85	10	125	35.2	10	150	1.049	0.944	0.420	11)
TPSV227*016#0050	V	220	16	85	10	125	35.2	8	50	2.236	2.012	0.894	1 ¹⁾
TPSV227*016#0075	V	220	16	85	10	125	35.2	8	75	1.826	1.643	0.730	1 ¹⁾
TPSV227*016#0100	V	220	16	85	10	125	35.2	8	100	1.581	1.423	0.632	1 ¹⁾
TPSV227*016#0150	V	220	16	85	10	125	35.2	8	150	1.291	1.162	0.516	1 ¹⁾
TPSE337M016#0200	E	330	16	85	10	125	52.8	30	200	0.908	0.817	0.363	11)
TPSA105*020#3000	A	1	20	85	13	@ 85°C 125	0.5	4	3000	0.158	0.142	0.063	1
TPSR105*020#3000	R	1	20	85	13	125	0.5	4	6000	0.138	0.142	0.003	1
TPSS105*020#6000	S	1	20	85	13	125	0.5	4	6000	0.104	0.094	0.042	1
TPST105*020#2000	T	1	20	85	13	125	0.5	4	2000	0.200	0.180	0.080	1
TPSA155*020#3000	Α	1.5	20	85	13	125	0.5	6	3000	0.158	0.142	0.063	1
TPSA225*020#3000	Α	2.2	20	85	13	125	0.5	6	3000	0.158	0.142	0.063	1
TPSB225*020#1700	В	2.2	20	85	13	125	0.5	6	1700	0.224	0.201	0.089	1
TPSA335*020#2500	A B	3.3	20	85 85	13 13	125 125	0.7	6	2500	0.173	0.156	0.069	1
TPSB335*020#1300 TPSA475*020#1800	A	3.3 4.7	20	85 85	13	125 125	0.7	6	1300 1800	0.256 0.204	0.230 0.184	0.102	1
TPSB475*020#1800	B	4.7	20	85	13	125	0.9	6	750	0.204	0.184	0.082	1
TPSB475*020#1000	В	4.7	20	85	13	125	0.9	6	1000	0.292	0.262	0.133	1
TPSA685*020#1000	A	6.8	20	85	13	125	1.4	6	1000	0.274	0.246	0.110	1
TPSB685*020#0600	В	6.8	20	85	13	125	1.4	6	600	0.376	0.339	0.151	1
TPSB685*020#1000	В	6.8	20	85	13	125	1.4	6	1000	0.292	0.262	0.117	1
TPSC685*020#0700	С	6.8	20	85	13	125	1.4	6	700	0.396	0.357	0.159	1
TPSB106*020#0500 TPSB106*020#1000	B B	10 10	20	85 85	13 13	125 125	2	6	500 1000	0.412 0.292	0.371 0.262	0.165 0.117	1
TPSC106*020#1000	С	10	20	85	13	125	2	6	500	0.292	0.262	0.117	1
TPSC106*020#0700	C	10	20	85	13	125	2	6	700	0.396	0.422	0.159	1
TPSW106*020#0250	W	10	20	85	13	125	2	6	250	0.600	0.540	0.240	1
TPSW106*020#0500	W	10	20	85	13	125	2	6	500	0.424	0.382	0.170	1
TPSB156*020#0500	В	15	20	85	13	125	3	6	500	0.412	0.371	0.165	1
TPSC156*020#0400	С	15	20	85	13	125	3	6	400	0.524	0.472	0.210	1
TPSC156*020#0450	C	15	20	85	13	125	3	6	450	0.494	0.445	0.198	1
TPSB226*020#0400 TPSB226*020#0600	B	22	20	85 85	13 13	125 125	4.4	6	400 600	0.461 0.376	0.415	0.184 0.151	1
	С	22	20	85	13	125	4.4	6	100	1.049	0.339	0.131	1
TPSC226*020#0100	C	22	20	85	13	125	4.4	6	150	0.856	0.771	0.343	1
TPSC226*020#0100 TPSC226*020#0150	_				13	125	4.4	6	400	0.524	0.472	0.210	1
	С	22	20	85	13	123	7.7				4		
TPSC226*020#0150 TPSC226*020#0400 TPSD226*020#0200	D	22	20	85	13	125	4.4	6	200	0.866	0.779	0.346	1
TPSC226*020#0150 TPSC226*020#0400 TPSD226*020#0200 TPSD226*020#0300	D D	22 22	20 20	85 85	13 13	125 125	4.4 4.4	6 6	200 300	0.866 0.707	0.779 0.636	0.346 0.283	1
TPSC226*020#0150 TPSC226*020#0400 TPSD226*020#0200	D	22	20	85	13	125	4.4	6	200	0.866	0.779	0.346	

Low ESR

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kH	z RMS Cur	rent (A)	MSL
Part No.	Size	(μ F)	(V)	(°C)	(V)	(°C)	(μΑ)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IIIOL
TPSD476*020#0075	D	47	20	85	13	125	9.4	6	75	1.414	1.273	0.566	1
TPSD476*020#0100	D	47	20	85	13	125	9.4	6	100	1.225	1.102	0.490	1
TPSD476*020#0200	D	47	20	85	13	125	9.4	6	200	0.866	0.779	0.346	1
TPSE476*020#0070	E	47	20	85	13	125	9.4	6	70	1.535	1.382	0.614	1 ¹⁾
TPSE476*020#0125	E	47	20	85	13	125	9.4	6	125	1.149	1.034	0.460	1 ¹⁾
TPSE476*020#0150	E	47	20	85	13	125	9.4	6	150	1.049	0.944	0.420	1 ¹⁾
TPSE476*020#0200	E	47	20	85	13	125	9.4	6	200	0.908	0.817	0.363	1 ¹⁾
TPSE476*020#0250	E	47	20	85	13	125	9.4	6	250	0.812	0.731	0.325	1 ¹⁾
TPSX476*020#0200	X	47	20	85	13	125	9.4	6	200	0.707	0.636	0.283	1 ¹⁾
TPSD686*020#0070	D	68	20	85	13	125	13.6	6	70	1.464	1.317	0.586	1
TPSD686*020#0150	D	68	20	85	13	125	13.6	6	150	1.000	0.900	0.400	1
TPSD686*020#0200	D	68	20	85	13	125	13.6	6	200	0.866	0.779	0.346	1
TPSD686*020#0300	D	68	20	85	13	125	13.6	6	300	0.707	0.636	0.283	1
TPSE686*020#0125	E	68	20	85	13	125	13.6	6	125	1.149	1.034	0.460	1 ¹⁾
TPSE686*020#0150	E	68	20	85	13	125	13.6	6	150	1.049	0.944	0.420	11)
TPSE686*020#0200	Е	68	20	85	13	125	13.6	6	200	0.908	0.817	0.363	1 ¹⁾
TPSY686*020#0200	Y	68	20	85	13	125	13.6	6	200	0.791	0.712	0.316	1 ¹⁾
TPSD107*020#0085	D	100	20	85	13	125	20	6	85	1.328	1.196	0.531	1
TPSD107*020#0100	D	100	20	85	13	125	20	6	100	1.225	1.102	0.490	1
TPSD107*020#0150	D	100	20	85	13	125	20	6	150	1.000	0.900	0.400	1
TPSE107*020#0100	E	100	20	85	13	125	20	6	100	1.285	1.156	0.514	1 ¹⁾
TPSE107*020#0150	E	100	20	85	13	125	20	6	150	1.049	0.944	0.420	1 ¹⁾
TPSE107*020#0130	E	100	20	85	13	125	20	6	200	0.908	0.817	0.363	11)
TPSV107*020#0060	V	100	20	85	13	125	20	8	60	2.041	1.837	0.816	1 ¹⁾
TPSV107*020#0000	V	100	20	85	13	125	20	8	85	1.715	1.543	0.686	11)
TPSV107 020#0003	V	100	20	85	13	125	20	8	100	1.581	1.423	0.632	11)
TPSV107 020#0100	V	100	20	85	13	125	20	8	200	1.118	1.006	0.032	11)
TPSV157*020#0200	V	150	20	85	13	125	30	8	80	1.768	1.591	0.707	11)
1PSV15/^U2U#UU8U	V	150	20	85			30	8	80	1.768	1.591	0.707	10
					25 Volt								
TPSA474*025#7000	Α	0.47	25	85	17	125	0.5	4	7000	0.104	0.093	0.041	1
TPSA684*025#6000	Α	0.68	25	85	17	125	0.5	4	6000	0.112	0.101	0.045	1
TPSA105*025#4000	Α	1	25	85	17	125	0.5	4	4000	0.137	0.123	0.055	1
TPSR105*025#2500	R	1	25	85	17	125	0.5	4	2500	0.148	0.133	0.059	1
TPSR105*025#4000	R	1	25	85	17	125	0.5	4	4000	0.117	0.106	0.047	1
TPSA155*025#3000	Α	1.5	25	85	17	125	0.5	6	3000	0.158	0.142	0.063	1
TPSB155*025#1800	В	1.5	25	85	17	125	0.5	6	1800	0.217	0.196	0.087	1
TPSA225*025#2500	Α	2.2	25	85	17	125	0.6	6	2500	0.173	0.156	0.069	1
TPSB225*025#0900	В	2.2	25	85	17	125	0.6	6	900	0.307	0.277	0.123	1
TPSB225*025#1200	В	2.2	25	85	17	125	0.6	6	1200	0.266	0.240	0.106	1
TPSB225*025#2500	В	2.2	25	85	17	125	0.6	6	2500	0.184	0.166	0.074	1
TPSA335*025#1000	A	3.3	25	85	17	125	0.8	6	1000	0.104	0.246	0.110	1
TPSA335*025#1500	A	3.3	25	85	17	125	0.8	6	1500	0.274	0.240	0.110	1
TPSB335*025#0750	В		25		17	<u> </u>						+	1
		3.3		85		125	0.8	6	750	0.337	0.303	0.135	
TPSB335*025#1500	В	3.3	25	85	17	125	0.8	6	1500	0.238	0.214	0.095	1
TPSB335*025#2000	В	3.3	25	85	17	125	0.8	6	2000	0.206	0.186	0.082	1
TPSB475*025#0700	В	4.7	25	85	17	125	1.2	6	700	0.348	0.314	0.139	1
TPSB475*025#0900	В	4.7	25	85	17	125	1.2	6	900	0.307	0.277	0.123	1
TPSB475*025#1500	В	4.7	25	85	17	125	1.2	6	1500	0.238	0.214	0.095	1
TPSC475*025#0700	С	4.7	25	85	17	125	1.2	6	700	0.396	0.357	0.159	1
TPSB685*025#0700	В	6.8	25	85	17	125	1.7	6	700	0.348	0.314	0.139	1
TPSC685*025#0500	С	6.8	25	85	17	125	1.7	6	500	0.469	0.422	0.188	1
TPSC685*025#0600	С	6.8	25	85	17	125	1.7	6	600	0.428	0.385	0.171	1
TPSC685*025#0700	С	6.8	25	85	17	125	1.7	6	700	0.396	0.357	0.159	1
TPSB106*025#1800	В	10	25	85	17	125	2.5	6	1800	0.217	0.196	0.087	1
TPSC106*025#0300	С	10	25	85	17	125	2.5	6	300	0.606	0.545	0.242	1
TPSC106*025#0500	С	10	25	85	17	125	2.5	6	500	0.469	0.422	0.188	1
TPSD106*025#0500	D	10	25	85	17	125	2.5	6	500	0.548	0.493	0.219	1
TPSC156*025#0220	С	15	25	85	17	125	3.8	6	220	0.707	0.636	0.283	1
TPSC156*025#0300	С	15	25	85	17	125	3.8	6	300	0.606	0.545	0.242	1
TPSD156*025#0100	D	15	25	85	17	125	3.8	6	100	1.225	1.102	0.490	1
TPSD156*025#0300	D	15	25	85	17	125	3.8	6	300	0.707	0.636	0.283	1
TPSC226*025#0275	C	22	25	85	17	125	5.5	6	275	0.632	0.569	0.253	1
TPSC226*025#0400	C	22	25	85	17	125	5.5	6	400	0.524	0.472	0.210	1
TPSD226*025#0400	D	22	25	85	17	125	5.5	6	100	1.225	1.102	0.490	1
TPSD226*025#0100	D	22	25	85	17	125	5.5	6	200	0.866	0.779	0.490	1
													_
TPSD226*025#0300	D	22	25	85	17	125	5.5	6	300	0.707	0.636	0.283	1
TPSF226*025#0300	F	22	25	85	17	125	5.5	6	300	0.577	0.520	0.231	1
TPSC336*025#0400	С	33	25	85	17	125	8.3	6	400	0.524	0.472	0.210	1
TPSD336*025#0100	D	33	25	85	17	125	8.3	6	100	1.225	1.102	0.490	1
TPSD336*025#0200	D	33	25	85	17	125	8.3	6	200	0.866	0.779	0.346	1
TPSD336*025#0300	D	33	25	85	17	125	8.3	6	300	0.707	0.636	0.283	1
	Е	33	25	85	17	125	8.3	6	100	1.285	1.156	0.514	1 ¹⁾

Low ESR

Personal Content	AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF	ESR Max.	100kH	z RMS Cur	rent (A)	
TRESSED_195_195_195_195_195_195_195_195_195_195										@ 100kHz	25°C	85°C	125°C	MSL
PRESENDENT NOT NOT NOT NOT NOT NOT NOT NOT NOT N	TPSE336*025#0175	Е	33	25	85	17	125	8.3	6		0.971	0.874	0.388	1 ¹⁾
PRISTANCESSON F 33		Е											0.363	1 ¹⁾
PRISS-SENSENDED F 33 25 85 17 125 8.3 6 200 0.707 0.856 0.25 PRISS-SENSENDED F 33 25 85 17 125 8.3 6 200 0.791 0.707 0.850 0.25 PRISS-SENSENDED F 33 25 85 17 125 8.3 6 200 0.791 0.712 0.35 PRISS-SENSENDED F 33 25 85 17 125 8.3 6 200 0.791 0.712 0.35 PRISS-SENSENDED F 33 25 85 17 125 11.3 6 125 1.095 0.065 0.4 PRISS-SENSENDED F 25 85 17 125 11.3 6 150 1.000 0.000 0.000 0.000 PRISS-SENSENDED F 47 25 85 17 125 11.3 6 150 1.000 0.000 0.000 0.000 PRISS-SENSENDED F 47 25 85 17 125 11.3 6 150 1.000 0.000 0.000 0.000 PRISS-SENSENDED F 47 25 85 17 125 11.3 6 150 1.265 1.160 0.000 0.000 0.000 0.000 PRISS-SENSENDED F 47 25 85 17 125 11.3 6 150 1.265 1.160 0.000 0.0	PSE336*025#0300	Е	33	25	85	17	125	8.3	6	300	0.742	0.667	0.297	1 ¹⁾
PRISSENSAMON F 33 25 85 17 125 8.3 6 400 0.500 0.450 0.772 0.036 PRISSENSAMON F 33 25 85 17 125 8.3 6 0.000 0.791 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00	PSF336*025#0150	F	33	25	85	17	125	8.3	6	150	0.816	0.735	0.327	1 ¹⁾
\$\$\$339.00.549200 Y \$33	PSF336*025#0200	F	33	25	85	17	125	8.3	6	200	0.707	0.636	0.283	1
PRINTFOUND PRI	PSF336*025#0400	F	33	25	85	17	125	8.3	6	400	0.500	0.450	0.200	1
\$88AFY602580196 D	PSY336*025#0200	Υ	33	25	85	17	125	8.3	6	200	0.791	0.712	0.316	1 ¹⁾
PRINAFFORM PRI	PSD476*025#0125	D	47	25	85	17	125	11.8	6	125	1.095	0.986	0.438	1
## SERFFYQESF008D	PSD476*025#0150	D	47	25	85	17	125	11.8	6	150	1.000	0.900	0.400	1
PREMINITED PRE	PSD476*025#0250	D	47	25	85	17	125	11.8	6	250	0.775	0.697	0.310	1
PRISEATORIZSHOUTS E	PSE476*025#0080	Е	47	25	85	17	125	11.8	6	80	1.436	1.293	0.574	1 ¹⁾
PRIVATE OF CASE PRIVATE OF	PSE476*025#0100	E	47	25	85	17	125	11.8	6	100	1.285	1.156	0.514	1 ¹⁾
PRINCES PRIN	PSE476*025#0125	Е	47	25	85	17	125	11.8	6	125	1.149	1.034	0.460	1 ¹⁾
RSB686902580000	PSY476*025#0250	Υ	47	25	85	17	125	11.8	6	250	0.707	0.636	0.283	1 ¹⁾
PRINCES PRIN	PSD686*025#0150	D	68	25	85	17	125	17	6	150	1.000	0.900	0.400	1
PRINCES PRIN	PSD686*025#0200	D	68	25	85	17	125	17	6	200	0.866	0.779	0.346	1
***SEGSFORZÉGROUDO E É 68 25 85 17 125 17 6 200 0.998 0.817 0.32** **SEGSFORZÉGROUPO E É 68 25 85 17 125 17 6 80 1.758 1.1591 0.77** **SEGSFORZÉGROUPO E V 68 25 85 17 125 17 6 80 1.758 1.152 1.15 1.15 1.15 1.15 1.15 1.15 1.1	PSD686*025#0300	D	68		85	17	125	17	6	300	0.707	0.636	0.283	1
SYMERS (17.5 FEMBRA)	PSE686*025#0125	E	68	25	85	17	125	17	6	125	1.149	1.034	0.460	1 ¹⁾
SEXIS REFORM SEXIS FOR SEXIS SEXIS T7 125 T7 6 95 1.622 1.460 1.65	PSE686*025#0200	Е	68	25	85	17	125	17	6	200	0.908	0.817	0.363	1 ¹⁾
SPANSERGE/QS-RIDIOS V 68													0.707	1 ¹⁾
PSYSERPER PSYSSERPER PSYSSER													0.649	1 ¹⁾
SYMSBE OF STATE 177 125 17 6 200 1.118 1.000 0.4													0.516	1 ¹⁾
SEIDTYOZSENISO E 100													0.447	1 ¹⁾
PSYSTOTAVQ25@0100 V 100 25 85 17 125 25 8 100 1.581 1.423 0.5							<u> </u>						0.420	1 ¹⁾
PSA1247035#000													0.632	11)
\$\begin{array}{c c c c c c c c c c c c c c c c c c c													0.516	1 ¹⁾
PSA224F035F6000 A 0.22 35 85 23 125 0.5 4 6000 0.112 0.101 0.0 PSA34F035F6000 A 0.33 35 85 23 125 0.5 4 6000 0.112 0.101 0.0 PSA34F035F6000 A 0.47 35 85 23 125 0.5 4 4000 0.112 0.101 0.0 PSA34F035F6000 A 0.68 35 85 23 125 0.5 4 4000 0.112 0.101 0.0 PSA47AF035F6000 A 0.68 35 85 23 125 0.5 4 4000 0.112 0.101 0.0 PSA415F035F6000 A 0.68 35 85 23 125 0.5 4 4000 0.114 0.101 0.0 PSA415F035F6000 A 1 35 85 23 125 0.5 4 4000 0.116 0.111 0.0 PSA15F035F6000 A 1 35 85 23 125 0.5 4 4000 0.116 0.111 0.0 PSA15F035F6000 A 1 35 85 23 125 0.5 4 4000 0.116 0.101 0.0 PSA15F035F6000 A 1 35 85 23 125 0.5 4 8000 0.158 0.142 0.0 PSA15F035F6000 B 1 35 85 23 125 0.5 4 8000 0.158 0.142 0.0 PSA15F035F6000 A 1.5 35 85 23 125 0.5 6 8000 0.158 0.142 0.0 PSA15F035F6000 A 1.5 35 85 23 125 0.5 6 8000 0.158 0.142 0.0 PSA15F035F6000 B 1.5 35 85 23 125 0.5 6 8000 0.158 0.142 0.0 PSA15F035F6000 A 1.5 35 85 23 125 0.5 6 8000 0.158 0.142 0.0 PSA25F035F1500 B 2.2 35 85 23 125 0.5 6 8000 0.158 0.142 0.0 PSA225F035F1500 B 2.2 35 85 23 125 0.8 6 1500 0.224 0.201 0.0 PSR225F035F1500 B 2.2 35 85 23 125 0.8 6 1500 0.224 0.201 0.0 PSR225F035F1500 B 2.2 35 85 23 125 0.8 6 1500 0.224 0.201 0.0 PSR225F035F1500 B 2.2 35 85 23 125 0.8 6 1500 0.224 0.201 0.0 PSR225F035F1500 B 3.3 35 85 23 125 0.8 6 1000 0.332 0.298 0.1 PSR225F035F1500 B 3.3 35 85 23 125 0.8 6 1000 0.332 0.208 0.186 0.0 PSR225F035F1500 B 3.3 35 85 23 125 0.8 6 1000 0.332 0.298 0.1 PSR23F376935F1000 C 2.2 35 85 23 125 0.8 6 1000 0.209 0.206 0.186 0.0 PSR23F376935F1500 B 3.3 35 85 23 125 0.8 6 1000 0.292 0.262 0.18 0.0 PSR23F376935F1500 B 3.3 35 85 23 125 0.8 6 1000 0.209 0.206 0.186 0.0 PSR23F376935F1500 B 4.7 35 85 23 125 0.8 6 1000 0.209 0.206 0.186 0.0 PSR23F376935F1500 B 4.7 35 85 23 125 1.6 6 6 000 0.209 0.206 0.186 0.0 PSR23F376935F1500 B 4.7 35 85 23 125 1.6 6 6 000 0.209 0.206 0.0	01107111020110100							07.0		.00	11271		0.0.0	<u> </u>
PRACES**0056000 A 0.33 35 85 23 125 0.5 4 6000 0.112 0.101 0.00 PRACE**0056000 A 0.47 35 85 23 125 0.5 4 6000 0.112 0.101 0.00 PRACE**0056000 A 0.68 35 85 23 125 0.5 4 6000 0.112 0.101 0.00 PRACE**0056000 A 0.68 35 85 23 125 0.5 4 6000 0.112 0.101 0.00 PRACE**0056000 A 0.68 35 85 23 125 0.5 4 6000 0.112 0.101 0.00 PRACE**0056000 A 1 35 85 23 125 0.5 4 6000 0.112 0.101 0.00 PRACE**0056000 A 1 35 85 23 125 0.5 4 6000 0.112 0.101 0.00 PRACE**0056000 A 1 35 85 23 125 0.5 4 6000 0.112 0.101 0.00 PRACE**0056000 A 1 35 85 23 125 0.5 4 6000 0.112 0.101 0.00 PRACE**0056000 A 1 1 35 85 23 125 0.5 4 2000 0.266 0.186 0.00 PRACE**0056000 B 1 35 85 23 125 0.5 4 2000 0.266 0.186 0.00 PRACE**0056000 B 1 5 35 85 23 125 0.5 6 2500 0.184 0.102 0.00 PRACE**0056000 B 1 5 35 85 23 125 0.5 6 2500 0.184 0.102 0.00 PRACE**0056000 B 1 5 35 85 23 125 0.5 6 2500 0.184 0.106 0.00 PRACE**0056000 B 2 2 35 85 23 125 0.8 6 1500 0.224 0.201 0.00 PRACE**0056000 B 2 2 35 85 23 125 0.8 6 1500 0.224 0.201 0.00 PRACE**0056000 B 2 2 35 85 23 125 0.8 6 1500 0.224 0.201 0.00 PRACE**0056000 B 2 2 35 85 23 125 0.8 6 1500 0.224 0.201 0.00 PRACE**0056000 B 2 2 35 85 23 125 0.8 6 1000 0.206 0.186 0.00 PRACE**0056000 C 2 2 35 85 23 125 0.8 6 1000 0.206 0.186 0.00 PRACE**0056000 C 2 2 35 85 23 125 0.8 6 1000 0.206 0.186 0.00 PRACE**0056000 C 2 2 35 85 23 125 0.8 6 1000 0.206 0.186 0.00 PRACE**0056000 C 3 3 3 35 85 23 125 0.8 6 1000 0.206 0.186 0.00 PRACE**0056000 C 3 3 3 35 85 23 125 0.8 6 1000 0.206 0.186 0.00 PRACE**0056000 C 3 3 3 35 85 23 125 1.2 6 700 0.306 0.337 0.11 PRACE**0056000 C 3 3 3 35 85 23 125 1.2 6 700 0.306 0.337 0.11 PRACE**0056000 C 3 3 3 35 85 23 125 1.2 6 700 0.306 0.337 0.11 PRACE**0056000 C 0 3 3 3 35 85 23 125 1.6 6 700 0.306 0.337 0.11 PRACE**0056000 C 0 3 3 3 35 85 23 125 1.6 6 700 0.306 0.338 0.11 PRACE**0056000 D 0 4.7 35 85 23 125 1.6 6 700 0.306 0.338 0.11 PRACE**0056000 D 0 4.7 35 85 23 125 1.6 6 700 0.306 0.308 0.11 PRACE**00560000 D 0 1.0 35 85 23 125 1.5 6 6 0.00 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.0	DC 4 22 4+02 E#6 000	Ι Δ	0.00	25	0.5			0.5	1 4	6000	0.110	0.101	0.045	1
PRAMATY-025#6000														1
SSB474*055#4000 B														
PSAS6647935#000														1
SA105*035#2000 A 11 35 85 23 125 0.5 4 3000 0.158 0.142 0.0 SA105*035#2000 B 1 35 85 23 125 0.5 4 2000 0.206 0.186 0.0 SA155*035#2000 A 1.5 35 85 23 125 0.5 6 3000 0.158 0.142 0.0 SA155*035#2000 B 1.5 35 85 23 125 0.5 6 3000 0.158 0.142 0.0 SB155*035#2000 B 1.5 35 85 23 125 0.5 6 2500 0.184 0.166 0.0 SB155*035#2500 B 1.5 35 85 23 125 0.5 6 2500 0.184 0.166 0.0 SB155*035#1500 A 2.2 35 85 23 125 0.5 6 2500 0.184 0.166 0.0 SB225*035#1500 B 2.2 35 85 23 125 0.8 6 1500 0.224 0.201 0.0 SB225*035#1500 B 2.2 35 85 23 125 0.8 6 1500 0.238 0.214 0.0 SB225*035#1000 B 2.2 35 85 23 125 0.8 6 1500 0.206 0.186 0.0 SB225*035#000 B 2.2 35 85 23 125 0.8 6 1000 0.206 0.186 0.0 SB225*035#000 B 3.3 35 85 23 125 0.8 6 1000 0.332 0.298 0.1 SS235*035#000 B 3.3 35 85 23 125 0.8 6 1000 0.332 0.298 0.1 SC335*035#000 B 3.3 35 85 23 125 0.8 6 1000 0.332 0.298 0.1 SC335*035#000 B 3.3 35 85 23 125 1.2 6 1000 0.332 0.298 0.1 SC335*035#000 B 3.3 35 85 23 125 1.2 6 1000 0.220 0.262 0.1 SC335*035#0700 B 3.3 35 85 23 125 1.2 6 700 0.396 0.357 0.1 SB475*035#0700 B 4.7 35 85 23 125 1.2 6 700 0.396 0.357 0.1 SB475*035#0700 B 4.7 35 85 23 125 1.6 6 700 0.348 0.314 0.1 SB475*035#0700 D 4.7 35 85 23 125 1.6 6 700 0.428 0.385 0.1 SB475*035#0700 D 4.7 35 85 23 125 1.6 6 700 0.428 0.385 0.1 SC685*035#035#000 D 6.8 35 85 23 125 1.6 6 700 0.463 0.417 0.1 SC685*035#035#000 D 6.8 35 85 23 125 1.6 6 700 0.463 0.417 0.1 SC685*035#036#000 D 6.8 35 85 23 125 1.6 6 700 0.463 0.417 0.1 SC685*035#03600 C 0.7 35 85 23 125 1.6 6 700 0.463 0.417 0.1 SC685*035#03600 D 6.8 35 85 23 125 1.6 6 700 0.463 0.417 0.1 SC685*035#0300 D 0.6 8 35 85 23 125 1.6 6 700 0.463 0.417 0.1 SC685*035#03600 C 0.7 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4													0.058	1
SBB155*035#2000 B													0.045	1
SA155*035#2000													0.063	1
PSB155005842500 B		_											0.082	1
SRAZ25*035#1500													0.063	1
\$B8225*035#1500 B 2.2 35 85 23 125 0.8 6 750 0.337 0.303 0.1 \$B8225*035#1500 B 2.2 35 85 23 125 0.8 6 1500 0.238 0.214 0.0 \$B8225*035#1000 C 2.2 35 85 23 125 0.8 6 1500 0.238 0.214 0.0 \$B8225*035#1000 C 2.2 35 85 23 125 0.8 6 1500 0.238 0.214 0.0 \$B8235*035#1000 C 2.2 35 85 23 125 0.8 6 1500 0.238 0.228 0.1 \$C\$225*035#1000 C 2.2 35 85 23 125 0.8 6 1500 0.238 0.228 0.1 \$C\$235*035#1000 C 3.3 35 85 23 125 1.2 6 1500 0.238 0.252 0.262 0.1 \$C\$335*035#0700 C 3.3 35 85 23 125 1.2 6 700 0.396 0.357 0.1 \$C\$335*035#0700 D 3.4 7 35 85 23 125 1.2 6 700 0.348 0.314 0.1 \$B8475*035#1500 B 4.7 35 85 23 125 1.6 6 1500 0.238 0.214 0.0 \$C\$475*035#0700 D 4.7 35 85 23 125 1.6 6 1500 0.238 0.214 0.0 \$C\$475*035#0500 C 4.7 35 85 23 125 1.6 6 1500 0.238 0.214 0.0 \$C\$475*035#0500 D 4.7 35 85 23 125 1.6 6 700 0.463 0.417 0.1 \$C\$665*035#03500 C 6.8 35 85 23 125 1.6 6 700 0.463 0.417 0.1 \$C\$665*035#03500 D 6.8 35 85 23 125 1.6 6 700 0.463 0.417 0.1 \$C\$665*035#03500 D 6.8 35 85 23 125 1.6 6 700 0.463 0.417 0.1 \$C\$665*035#03500 D 6.8 35 85 23 125 1.6 6 700 0.463 0.417 0.1 \$C\$665*035#03500 D 6.8 35 85 23 125 1.6 6 700 0.463 0.417 0.1 \$C\$665*035#03500 D 6.8 35 85 23 125 1.6 6 700 0.463 0.417 0.1 \$C\$665*035#03500 D 6.8 35 85 23 125 1.6 6 700 0.463 0.417 0.1 \$C\$665*035#03500 D 6.8 35 85 23 125 1.6 6 700 0.463 0.417 0.1 \$C\$665*035#03500 D 6.8 35 85 23 125 2.4 6 150 0.00 0.501 0.505 0.2 \$C\$106*035#04000 D 6.8 35 85 23 125 2.4 6 150 0.00 0.501 0.505 0.2 \$C\$106*035#04000 D 6.8 35 85 23 125 3.5 6 6 0.00 0.428 0.385 0.1 \$C\$106*035#04000 D 10 35 85 23 125 3.5 6 0.00 0.707 0.636 0.2 \$C\$106*035#04000 D 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 \$C\$106*035#01000 E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 \$C\$106*035#01000 E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 \$C\$106*035#01000 E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 \$C\$106*035#01000 E 10 35 85 23 125 3.5 6 100 0.707 0.636 0.2 \$C\$156*035#01000 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 \$C\$156*035#01000 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 \$C\$156*035#01000 D 15 35 85 23 125 5.3 6 300 0.707 0													0.074	1
SB2125035#1500 B 2.2 35 85 23 125 0.8 6 1500 0.238 0.214 0.0													0.089	1
\$\text{SB225*035#2000} \text{B} & 2.2 & 35 & 85 & 23 & 125 & 0.8 & 6 & 2000 & 0.206 & 0.186 & 0.0 \text{SC225*035#1000} \text{C} & 2.2 & 35 & 85 & 23 & 125 & 0.8 & 6 & 1000 & 0.322 & 0.298 & 0.1 \text{SC25*035#1000} \text{B} & 3.3 & 35 & 85 & 23 & 125 & 0.8 & 6 & 1000 & 0.292 & 0.262 & 0.1 \text{SC35*035#0700} \text{C} & 3.3 & 35 & 85 & 23 & 125 & 1.2 & 6 & 700 & 0.396 & 0.357 & 0.1 \text{SC35*035#0700} \text{B} & 4.7 & 35 & 85 & 23 & 125 & 1.2 & 6 & 700 & 0.396 & 0.357 & 0.1 \text{SE475*035#0700} \text{B} & 4.7 & 35 & 85 & 23 & 125 & 1.6 & 6 & 700 & 0.348 & 0.314 & 0.1 \text{SE475*035#0500} \text{B} & 4.7 & 35 & 85 & 23 & 125 & 1.6 & 6 & 1500 & 0.238 & 0.214 & 0.0 \text{SC35*035#0600} \text{C} & 4.7 & 35 & 85 & 23 & 125 & 1.6 & 6 & 1500 & 0.348 & 0.314 & 0.1 \text{SC475*035#0600} \text{C} & 4.7 & 35 & 85 & 23 & 125 & 1.6 & 6 & 600 & 0.428 & 0.385 & 0.1 \text{SC475*035#0500} \text{D} & 4.7 & 35 & 85 & 23 & 125 & 1.6 & 6 & 600 & 0.428 & 0.385 & 0.1 \text{SC475*035#0700} \text{D} & 4.7 & 35 & 85 & 23 & 125 & 1.6 & 6 & 600 & 0.428 & 0.385 & 0.1 \text{SC475*035#0700} \text{D} & 4.7 & 35 & 85 & 23 & 125 & 1.6 & 6 & 700 & 0.463 & 0.417 & 0.1 \text{SC685*035#03500} \text{C} & 6.8 & 35 & 85 & 23 & 125 & 1.6 & 6 & 500 & 0.463 & 0.417 & 0.1 \text{SC685*035#03500} \text{D} & 6.8 & 35 & 85 & 23 & 125 & 2.4 & 6 & 150 & 1.000 & 0.900 & 0.4 \text{SC685*035#0400} \text{D} & 6.8 & 35 & 85 & 23 & 125 & 2.4 & 6 & 150 & 1.000 & 0.900 & 0.4 \text{SC685*035#0400} \text{D} & 6.8 & 35 & 85 & 23 & 125 & 2.4 & 6 & 500 & 0.548 & 0.493 & 0.2 \text{SC106*035#0600} \text{D} & 6.8 & 35 & 85 & 23 & 125 & 3.5 & 6 & 600 & 0.428 & 0.493 & 0.2 \text{SC106*035#0600} \text{D} & 6.8 & 35 & 85 & 23 & 125 & 3.5 & 6 & 100 & 1.285 & 1.156 & 0.5 \text{SC106*035#0000} \text{D} & 0 & 0.5 & 85 & 23 & 125 & 3.5 & 6 & 100 & 1.285 & 1.156 & 0.5 \text{SC106*035#0000} \text{D} & 0 & 0.5 & 85 & 23 & 125 & 3.5 & 6 & 100 & 1.285 & 1.156 & 0.5 \text{SC106*035#0000} \text{D} & 0 & 0.5 & 85 & 23 & 125 & 3.5 & 6 & 100 & 1.285 & 1.156 & 0.5 \text{SC106*035#0000} D		_											0.135	1
PSC225*035#1000													0.095	1
Security													0.082	1
Sec													0.133	1
\$\text{SB475*035\text{#0700}\$ B 4.7 35 85 23 125 1.6 6 700 0.348 0.314 0.1\$\$ \$\text{SB475*035\text{#1500}\$ B 4.7 35 85 23 125 1.6 6 6 6 1500 0.238 0.214 0.0\$\$ \$\text{SC475*035\text{#0700}\$ D 4.7 35 85 23 125 1.6 6 6 6 60 0.428 0.385 0.214 0.0\$\$ \$\text{SC475*035\text{#0700}\$ D 4.7 35 85 85 23 125 1.6 6 6 60 0.428 0.345 0.15\$\$ \$\text{SC685*035\text{#035\text{#035\text{#0400}}\$ D 6.8 35 85 85 23 125 2.4 6 450 0.0612 0.551 0.25\$\$ \$\text{SC685*035\text{#035\text{#0400}}\$ D 6.8 35 85 85 23 125 2.4 6 400 0.612 0.551 0.25\$\$ \$\text{SC6106*035\text{#0400}\$ D 6.8 35 85 85 23 125 2.4 6 400 0.612 0.551 0.25\$\$\$ \$\text{SC106*035\text{#0400}\$ D 6.8 35 85 85 23 125 2.4 6 500 0.548 0.493 0.2\$\$\$\$ \$\text{SC106*035\text{#01000}\$ D 6.8 35 85 23 125 3.5 6 500 0.548 0.493 0.2\$\$\$\$\$ \$\text{SC106*035\text{#01000}\$ D 0.35 85 23 125 3.5 6 6 500 0.428 0.385 0.15\$\$\$\$\$ \$\text{SC106*035\text{#01000}\$ D 10 35 85 23 125 3.5 6 125 1.5 6 0.0 0.428 0.435													0.117	1
PSB475*035#1500 B 4.7 35 85 23 125 1.6 6 1500 0.238 0.214 0.0 PSC475*035#0600 C 4.7 35 85 23 125 1.6 6 600 0.428 0.385 0.1 PSC475*035#0700 D 4.7 35 85 23 125 1.6 6 600 0.428 0.385 0.1 PSC685*035#0300 C 6.8 35 85 23 125 1.6 6 350 0.561 0.505 0.2 PSC685*035#0350 C 6.8 35 85 23 125 2.4 6 350 0.561 0.505 0.2 PSC685*035#0400 D 6.8 35 85 23 125 2.4 6 400 0.612 0.551 0.2 PSC685*035#0400 D 6.8 35 85 23 125 2.4 6 400 0.612 0.551 0.2 PSC605*035#0600 C 10 35 85 23 125 2.4 6 500 0.548 0.493 0.2 PSC106*035#0600 C 10 35 85 23 125 2.4 6 500 0.548 0.493 0.2 PSC106*035#0000 D 6.8 35 85 23 125 2.4 6 500 0.548 0.493 0.2 PSC106*035#0000 D 10 35 85 23 125 2.4 6 500 0.548 0.493 0.2 PSC106*035#0000 D 10 35 85 23 125 3.5 6 600 0.428 0.385 0.1 PSC106*035#0100V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSC106*035#0100V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSC106*035#0100V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSC106*035#0100V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSC106*035#0100V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSC106*035#0100V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSC106*035#0100V E 10 35 85 23 125 3.5 6 20 0.707 0.636 0.2 PSC106*035#0000 D 15 35 85 23 125 3.5 6 20 0.707 0.636 0.2 PSC106*035#0000 D 15 35 85 23 125 3.5 6 20 0.707 0.636 0.2 PSC106*035#0000 D 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 350 0.707 0.636 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSC156*035#0300 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0300 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSC226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSC226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSC226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSC226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.5													0.159	1
PSC475*035#0600													0.139	1
PSD475*035#0700 D 4.7 35 85 23 125 1.6 6 700 0.463 0.417 0.1 PSC685*035#0350 C 6.8 35 85 23 125 2.4 6 350 0.561 0.505 0.2 PSD685*035#0350 D 6.8 35 85 23 125 2.4 6 400 0.612 0.551 0.2 PSD685*035#0400 D 6.8 35 85 23 125 2.4 6 400 0.612 0.551 0.2 PSD685*035#0500 D 6.8 35 85 23 125 2.4 6 500 0.548 0.493 0.2 PSD685*035#0600 C 10 35 85 23 125 2.4 6 500 0.548 0.493 0.2 PSD685*035#0600 D 10 35 85 23 125 3.5 6 600 0.428 0.385 0.1 PSD106*035#0300 D 10 35 85 23 125 3.5 6 125 1.095 0.986 0.4 PSD106*035#0300 D 10 35 85 23 125 3.5 6 125 1.095 0.986 0.4 PSD106*035#010V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSE106*035#0150V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSE106*035#0250 Y 10 35 85 23 125 3.5 6 20 0.908 0.817 0.3 PSY106*035#0250 Y 10 35 85 23 125 3.5 6 20 0.908 0.817 0.3 PSY106*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.0 0.707 0.636 0.2 PSC156*035#0350 D D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.366 0.2 PSC156*035#0350 D D 22 35 85 23 125 7.7 6 200 0.90									-				0.095	1
PSC685*035#0350 C 6.8 35 85 23 125 2.4 6 350 0.561 0.505 0.2 PSD685*035#0150 D 6.8 35 85 23 125 2.4 6 150 1.000 0.900 0.4 PSD685*035#0500 D 6.8 35 85 23 125 2.4 6 400 0.612 0.551 0.2 PSD685*035#0500 D 6.8 35 85 23 125 2.4 6 500 0.548 0.493 0.2 PSD685*035#0600 C 10 35 85 23 125 3.5 6 600 0.428 0.385 0.1 PSD106*035#0125 D 10 35 85 23 125 3.5 6 125 1.095 0.986 0.4 PSD106*035#0100V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSE106*035#0100V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSE106*035#0150V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSE106*035#0150V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSE106*035#0200 E 10 35 85 23 125 3.5 6 20 0.908 0.817 0.3 PSPY106*035#0250 Y 10 35 85 23 125 3.5 6 250 0.707 0.636 0.2 PSC156*035#0350 C 15 35 85 23 125 3.5 6 250 0.707 0.636 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 D 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 350 0.707 0.636 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 350 0.707 0.636 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 350 0.707 0.636 0.2 PSC156*035#0250 Y 15 35 85 23 125 5.3 6 350 0.707 0.636 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0300 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0040 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0040 D 22 35 85 23 125 7.7 6 400 0.6612 0.551 0.2 PSD226*035#0040 D 22 35 85 23 125 7.7 6 400 0.6012 0.551 0.2 PSD226*035#0040 D 22 35 85 23 125 7.7 6 400 0.602 0.5051 0.2 PSD226*035#0040 D 22 35 85 23 125 7.7 6 400 0.606 0.707 0.636 0.2 PSD226*035#0040 D 22 35 85 23 125 7.7 6 400 0.608 0.817 0.3													0.171	1
PSD685*035#0150 D 6.8 35 85 23 125 2.4 6 150 1.000 0.900 0.4 PSD685*035#0400 D 6.8 35 85 23 125 2.4 6 400 0.612 0.551 0.2 PSD685*035#0500 D 6.8 35 85 23 125 2.4 6 500 0.548 0.493 0.2 PSD685*035#0500 D 6.8 35 85 23 125 3.5 6 600 0.428 0.385 0.1 PSD106*035#0150 D 10 35 85 23 125 3.5 6 600 0.428 0.385 0.1 PSD106*035#035#0150 D 10 35 85 23 125 3.5 6 125 1.095 0.986 0.4 PSD106*035#0100 D 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSD106*035#0100 E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSD106*035#0100 E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSD106*035#0100 E 10 35 85 23 125 3.5 6 100 1.285 1.166 0.5 PSD106*035#0100 E 10 35 85 23 125 3.5 6 100 1.285 1.166 0.5 PSD106*035#0100 E 10 35 85 23 125 3.5 6 100 1.285 1.166 0.5 PSD106*035#0200 E 10 35 85 23 125 3.5 6 200 0.908 0.817 0.3 PSP106*035#0250 Y 10 35 85 23 125 3.5 6 250 0.707 0.636 0.2 PSC106*035#0250 Y 10 35 85 23 125 3.5 6 250 0.707 0.636 0.2 PSC156*035#0350 C 15 35 85 23 125 3.5 6 250 0.707 0.636 0.2 PSC156*035#0450 C 15 35 85 23 125 3.5 6 250 0.707 0.636 0.2 PSC156*035#0450 C 15 35 85 23 125 5.3 6 450 0.494 0.445 0.1 PSD156*035#0100 D 15 35 85 23 125 5.3 6 450 0.494 0.445 0.1 PSD156*035#0100 D 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSD156*035#0100 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSD156*035#0300 D 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSD156*035#0200 Y 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSD156*035#0200 D 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSD156*035#0200 D 22 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSD156*035#0200 D 22 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSD156*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0200 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSD226*035#0200 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSD226*035#0200 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSD226*035#0200 E 22 35 85 23 125 7.7 6 120 0.908 0.817 0.3							<u> </u>						0.185	1
PSD685*035#0400 D 6.8 35 85 23 125 2.4 6 400 0.612 0.551 0.2 PSD685*035#0500 D 6.8 35 85 23 125 2.4 6 500 0.548 0.493 0.2 PSD106*035#0600 C 10 35 85 23 125 3.5 6 600 0.428 0.385 0.1 PSD106*035#035#0500 D 10 35 85 23 125 3.5 6 125 1.095 0.986 0.4 PSD106*035#0300 D 10 35 85 23 125 3.5 6 300 0.707 0.636 0.2 PSD106*035#010V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSD106*035#010V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSD106*035#010V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSD106*035#010V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSD106*035#010V E 10 35 85 23 125 3.5 6 100 1.049 0.944 0.4 PSE106*035#0200 E 10 35 85 23 125 3.5 6 20 0.707 0.636 0.2 PSC106*035#0200 E 10 35 85 23 125 3.5 6 250 0.707 0.636 0.2 PSC106*035#0350 C 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSC106*035#0450 C 15 35 85 23 125 5.3 6 450 0.494 0.445 0.1 PSC106*035#0350 C 15 35 85 23 125 5.3 6 450 0.494 0.445 0.1 PSC106*035#0300 D 15 35 85 23 125 5.3 6 100 1.225 1.102 0.4 PSC106*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0100 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0100 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0100 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0200 D 12 2 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSC156*035#0200 D 22 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSC156*035#0200 D 22 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSC126*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSC126*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSC126*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSC126*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSC126*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSC126*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSC126*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSC126*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSC126*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3		_											0.224	1
PSD685*035#0500 D 6.8 35 85 23 125 2.4 6 500 0.548 0.493 0.2 PSC106*035#0600 C 10 35 85 23 125 3.5 6 600 0.428 0.385 0.1 PSD106*035#0100 D 10 35 85 23 125 3.5 6 125 1.095 0.986 0.4 PSD106*035#0100 E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 0.5 0.2 PSC106*035#0250 Y 10 35 85 23 125 3.5 6 250 0.707 0.636 0.2 PSC156*035#0350 D 15 35 85 23 125 3.5 6 250 0.707 0.636 0.2 PSC156*035#0300 D 15 35 85 23 125 3.5 6 200 0.908 0.817 0.3 0.2 PSC156*035#0100 D 15 35 85 23 125 3.5 6 250 0.707 0.636 0.2 PSC156*035#050 C 15 35 85 23 125 3.5 6 250 0.707 0.636 0.2 PSC156*035#050 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 100 1.225 1.102 0.4 PSC156*035#0250 Y 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0250 Y 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0350 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0350 D 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSC156*035#0250 Y 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSC156*035#0250 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSC126*035#0300 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSC126*035#0300 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSC126*035#0300 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSC1226*035#0125 E 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSC1226*035#0120 E 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSC1226*035#0120 E 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSC1226*035#0120 E 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSC1226*035#0120 E 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSC1226*035#0120 E 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSC1226*035#0120 E 22 35 85 23 125 7.7 6 400 0.908 0.817 0.3													0.400	1
PSC106*035#0600 C 10 35 85 23 125 3.5 6 600 0.428 0.385 0.1 PSD106*035#0125 D 10 35 85 23 125 3.5 6 125 1.095 0.986 0.4 PSD106*035#0100V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.2 PSE106*035#0150V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSE106*035#0150V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSE106*035#0200 E 10 35 85 23 125 3.5 6 100 1.285 1.049 0.944 0.4 PSE106*035#0250 Y 10 35 85 23 125 3.5 6 200 0.908 0.817 0.3 PSC156*035#0450 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0450 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0450 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 100 1.225 1.102 0.4 PSD156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSD156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSD156*035#0350 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSD156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSD156*035#0350 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSD156*035#0350 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSD156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSD26*035#0250 Y 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSD26*035#0250 Y 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSD26*035#0250 D 22 35 85 23 125 7.7 6 125 1.095 0.986 0.4 PSD226*035#0300 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSD226*035#0200 E 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSD226*035#0200 E 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSD226*035#0200 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE2626*035#0200 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE2626*035#0200 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE2626*035#0200 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE2626*035#0200 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4		_											0.245	1
SED106*035#0125 D 10 35 85 23 125 3.5 6 125 1.095 0.986 0.4													0.219	1
PSD106*035#0300 D 10 35 85 23 125 3.5 6 300 0.707 0.636 0.2 PSE106*035#0100V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSE106*035#0150V E 10 35 85 23 125 3.5 6 150 1.049 0.944 0.4 PSE106*035#0200 E 10 35 85 23 125 3.5 6 200 0.908 0.817 0.3 PSY106*035#0250 Y 10 35 85 23 125 3.5 6 250 0.707 0.636 0.2 PSC156*035#0450 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0450 C 15 35 85 23 125 5.3 6 450 0.494 0.445 0.1 PSD156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#035#0250 Y 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#035#0200 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#035#0250 Y 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#035#0250 Y 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSC156*035#035#0250 Y 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSC156*035#0125 D 22 35 85 23 125 7.7 6 125 1.095 0.986 0.4 PSD226*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0200 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0200 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.709 0.551 0.2 PSD226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3 PSE226*035#0200 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.2 PSD226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3 PSE226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3		_											0.171	1
PSE106*035#0100V E 10 35 85 23 125 3.5 6 100 1.285 1.156 0.5 PSE106*035#0150V E 10 35 85 23 125 3.5 6 150 1.049 0.944 0.4 PSE106*035#0200 E 10 35 85 23 125 3.5 6 200 0.908 0.817 0.3 PSY106*035#0250 Y 10 35 85 23 125 3.5 6 250 0.707 0.636 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0450 C 15 35 85 23 125 5.3 6 450 0.494 0.445 0.1* PSD156*035#0100 D 15 35 85 23 125 5.3 6 100 1.225 1.102 0.4* PSD156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSY156*035#0250 Y 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSY156*035#0250 Y 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSY156*035#0250 D 22 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSD226*035#0250 D 22 35 85 23 125 7.7 6 125 1.095 0.986 0.4* PSD226*035#0300 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSPS226*035#0125 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE226*035#0200 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE226*035#0200 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE226*035#0200 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4													0.438	1
PSE106*035#0150V E 10 35 85 23 125 3.5 6 150 1.049 0.944 0.4 PSE106*035#0200 E 10 35 85 23 125 3.5 6 200 0.908 0.817 0.3 PSY106*035#0250 Y 10 35 85 23 125 3.5 6 250 0.707 0.636 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0450 C 15 35 85 23 125 5.3 6 450 0.494 0.445 0.1 PSD156*035#0300 D 15 35 85 23 125 5.3 6 100 1.225 1.102 0.4 PSD156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSY156*035#0250 Y 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSY156*035#0250 D 22 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSD226*035#0105 D 22 35 85 23 125 7.7 6 125 1.095 0.986 0.4 PSD226*035#000 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0400 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 200 0.866 0.799 0.3 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSD226*035#0125 E 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSPS226*035#0125 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE226*035#0125 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3													0.283	1
PSE106*035#0200 E 10 35 85 23 125 3.5 6 200 0.908 0.817 0.3 PSY106*035#0250 Y 10 35 85 23 125 3.5 6 250 0.707 0.636 0.2 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0450 C 15 35 85 23 125 5.3 6 450 0.494 0.445 0.1 PSD156*035#036#0300 D 15 35 85 23 125 5.3 6 100 1.225 1.102 0.4 PSD156*035#0250 Y 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSY156*035#0250 Y 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSY156*035#0250 Y 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSD26*035#0250 D 22 35 85 23 125 7.7 6 125 1.095 0.986 0.4 PSD226*035#0300 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0400 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSD226*035#0105 E 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSD226*035#0200 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3													0.514	3
PSY106*035#0250 Y 10 35 85 23 125 3.5 6 250 0.707 0.636 0.20 PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.20 PSC156*035#0350 D 15 35 85 23 125 5.3 6 350 0.561 0.505 0.20 PSC156*035#0100 D 15 35 85 23 125 5.3 6 100 1.225 1.102 0.40 PSD156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.20 PSY156*035#0250 Y 15 35 85 23 125 5.3 6 300 0.707 0.636 0.20 PSY156*035#0125 D 22 35 85 23 125 5.3 6 250 0.707 0.636 0.20 PSD226*035#0125 D 22 35 85 23 125 7.7 6 125 1.095 0.986 0.40 PSD226*035#0300 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.30 PSD226*035#0300 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.20 PSD226*035#0300 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.20 PSD226*035#0300 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.20 PSD226*035#0300 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.20 PSD226*035#0400 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.20 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.20 PSD226*035#0125 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.40 PSD226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.30 PSD226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.30 PSD226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.30 PSD226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.30 PSD226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.30 PSD226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.30 PSD226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.30													0.420	3
PSC156*035#0350 C 15 35 85 23 125 5.3 6 350 0.561 0.505 0.2 PSC156*035#0450 C 15 35 85 23 125 5.3 6 450 0.494 0.495 0.1 PSC156*035#0450 D 15 35 85 23 125 5.3 6 100 1.225 1.102 0.4 PSC156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSY156*035#0250 Y 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSY156*035#0125 D 22 35 85 23 125 7.7 6 125 1.095 0.986 0.4 PSD226*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0300 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSE226*035#0125 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.2 PSE226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3													0.363	1 ¹⁾
PSC156*035#0450 C 15 35 85 23 125 5.3 6 450 0.494 0.445 0.11 PSD156*035#0100 D 15 35 85 23 125 5.3 6 100 1.225 1.102 0.4 PSD156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSY156*035#0250 Y 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSD226*035#0125 D 22 35 85 23 125 7.7 6 125 1.095 0.986 0.4 PSD226*035#0300 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0300 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSD226*035#0125 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3													0.283	1 ¹⁾
PSD156*035#0100 D 15 35 85 23 125 5.3 6 100 1.225 1.102 0.4 PSD156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSY156*035#0250 Y 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSPSD226*035#0125 D 22 35 85 23 125 7.7 6 125 1.095 0.986 0.4 PSD226*035#0300 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0300 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSE226*035#0125 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3													0.224	1
PSD156*035#0300 D 15 35 85 23 125 5.3 6 300 0.707 0.636 0.2 PSY156*035#0250 Y 15 35 85 23 125 5.3 6 250 0.707 0.636 0.2 PSD226*035#0125 D 22 35 85 23 125 7.7 6 125 1.095 0.986 0.4 PSD226*035#0300 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0400 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSE226*035#0125 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3													0.198	1
PSY156*035#0250 Y 15 35 85 23 125 5.3 6 250 0.707 0.636 0.20 PSD226*035#0125 D 22 35 85 23 125 7.7 6 125 1.095 0.986 0.44 PSD226*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.34 PSD226*035#0300 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.20 PSD226*035#0400 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.20 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.20 PSD226*035#035 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.25 PSE226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.33 PSE226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.33													0.490	1
PSD226*035#0125 D 22 35 85 23 125 7.7 6 125 1.095 0.986 0.4 PSD226*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0300 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSD226*035#0125 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3	PSD156*035#0300		15						6		0.707	0.636	0.283	1
PSD226*035#0200 D 22 35 85 23 125 7.7 6 200 0.866 0.779 0.3 PSD226*035#0300 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.2 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSD226*035#0125 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3	PSY156*035#0250	Υ	15	35	85	23	125	5.3	6	250	0.707	0.636	0.283	1 ¹⁾
PSD226*035#0300 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.22 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.22 PSD226*035#0125 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3	PSD226*035#0125	D	22	35	85	23	125	7.7	6	125	1.095	0.986	0.438	1
PSD226*035#0300 D 22 35 85 23 125 7.7 6 300 0.707 0.636 0.20 PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.20 PSD226*035#0125 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.40 PSE226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.30	PSD226*035#0200	D	22	35	85	23	125	7.7	6	200	0.866	0.779	0.346	1
PSD226*035#0400 D 22 35 85 23 125 7.7 6 400 0.612 0.551 0.2 PSE226*035#0125 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3													0.283	1
PSE226*035#0125 E 22 35 85 23 125 7.7 6 125 1.149 1.034 0.4 PSE226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3													0.245	1
PSE226*035#0200 E 22 35 85 23 125 7.7 6 200 0.908 0.817 0.3													0.460	1 ¹⁾
													0.363	1 ¹⁾
		E	22	35	85	23	125	7.7	6	300	0.742	0.667	0.297	11)
													0.297	1 ¹⁾
													0.346	1
													0.346	1

Low ESR

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kH	z RMS Cur	rent (A)	MS
Part No.	Size	(μ F)	(V)	(°C)	(V)	(°C)	(μA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVIC
TPSE336*035#0100	Е	33	35	85	23	125	11.6	6	100	1.285	1.156	0.514	1 ¹
TPSE336*035#0250	Е	33	35	85	23	125	11.6	6	250	0.812	0.731	0.325	11
TPSE336*035#0300	Е	33	35	85	23	125	11.6	6	300	0.742	0.667	0.297	11
TPSV336*035#0200	V	33	35	85	23	125	11.6	6	200	1.118	1.006	0.447	1
TPSD476*035#0300V	D	47	35	85	23	125	16.5	6	300	0.707	0.636	0.283	3
TPSE476*035#0200	Е	47	35	85	23	125	16.5	6	200	0.908	0.817	0.363	1
TPSE476*035#0250	Е	47	35	85	23	125	16.5	6	250	0.812	0.731	0.325	1
TPSV476*035#0150	V	47	35	85	23	125	16.5	6	150	1.291	1.162	0.516	1
TPSV476*035#0200	V	47	35	85	23	125	16.5	6	200	1.118	1.006	0.447	1
TPSV686*035#0150	V	68	35	85	23	125	23.8	6	150	1.291	1.162	0.516	1
TPSV686*035#0200	V	68	35	85	23	125	23.8	6	200	1.118	1.006	0.447	1
					50 Volt	@ 85°C							
TPSA154*050#9000	Α	0.15	50	85	33	125	0.5	4	9000	0.091	0.082	0.037	1
TPSA224*050#7000	Α	0.22	50	85	33	125	0.5	4	7000	0.104	0.093	0.041	1
TPSA334*050#7000	Α	0.33	50	85	33	125	0.5	4	7000	0.104	0.093	0.041	
TPSA474*050#6500	Α	0.47	50	85	33	125	0.5	4	6500	0.107	0.097	0.043	
TPSB474*050#6000	В	0.47	50	85	33	125	0.5	4	6000	0.119	0.107	0.048	
TPSC474*050#2300	С	0.47	50	85	33	125	0.5	4	2300	0.219	0.197	0.087	
TPSB684*050#4000	В	0.68	50	85	33	125	0.5	4	4000	0.146	0.131	0.058	
TPSB105*050#3000	В	1	50	85	33	125	0.5	6	3000	0.168	0.151	0.067	
TPSC105*050#2500	С	1	50	85	33	125	0.5	4	2500	0.210	0.189	0.084	
TPSC155*050#1500	С	1.5	50	85	33	125	0.8	6	1500	0.271	0.244	0.108	1
TPSC155*050#2000	С	1.5	50	85	33	125	0.8	6	2000	0.235	0.211	0.094	
TPSC225*050#1500	C	2.2	50	85	33	125	1.1	8	1500	0.271	0.244	0.108	1
TPSD225*050#1200	D	2.2	50	85	33	125	1.1	6	1200	0.354	0.318	0.141	1
TPSC335*050#1000	С	3.3	50	85	33	125	1.6	6	1000	0.332	0.298	0.133	
TPSD335*050#0800	D	3.3	50	85	33	125	1.7	6	800	0.433	0.390	0.173	
TPSC475*050#0800	С	4.7	50	85	33	125	2.4	6	800	0.371	0.334	0.148	
TPSD475*050#0250	D	4.7	50	85	33	125	2.4	6	250	0.775	0.697	0.310	
TPSD475*050#0300	D	4.7	50	85	33	125	2.4	6	300	0.707	0.636	0.283	
TPSD475*050#0500	D	4.7	50	85	33	125	2.4	6	500	0.548	0.493	0.219	
TPSD475*050#0700	D	4.7	50	85	33	125	2.4	6	700	0.463	0.417	0.185	
TPSX475*050#0500V	X	4.7	50	85	33	125	2.4	6	500	0.447	0.402	0.179	
TPSD685*050#0200	D	6.8	50	85	33	125	3.4	6	200	0.866	0.779	0.346	
TPSD685*050#0300	D	6.8	50	85	33	125	3.4	6	300	0.707	0.636	0.283	
TPSD685*050#0500	D	6.8	50	85	33	125	3.4	6	500	0.548	0.493	0.219	
TPSD685*050#0600	D	6.8	50	85	33	125	3.4	6	600	0.500	0.450	0.200	
TPSD106*050#0500	D	10	50	85	33	125	5	6	500	0.548	0.493	0.219	
TPSE106*050#0250	E	10	50	85	33	125	5	6	250	0.812	0.731	0.325	1
TPSE106*050#0230	E	10	50	85	33	125	5	6	300	0.742	0.667	0.323	1
TPSE106*050#0400	E	10	50	85	33	125	5	6	400	0.742	0.578	0.257	1
TPSE106*050#0500	E	10	50	85	33	125	5	6	500	0.574	0.517	0.230	1
TPSE106*050#0500	E	15	50	85	33	125	7.5	6	250	0.812	0.517	0.230	1
TPSV156*050#0250	V	15	50	85	33	125	7.5	6	250	1.000	0.731	0.325	1

^{1&}lt;sup>1)</sup> –Dry pack option (see How to order) is recommended for reduction of stress during soldering. Dry pack parts should be treated as MSL 3. **For AEC-Q200 availability, please contact AVX.**Moisture Sensitivity Level (MSL) is defined according to J-STD-020

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts.

DCL ismeasured at rated voltage after 5 minutes.

The EIA & CECC standards for low ESR Solid Tantalum Capacitors allow an ESR movement to 1.25 times catalogue limit post mounting.

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

Low ESR

QUALIFICATION TABLE

TEST			TPS series (T	emperature range -	55°C to +	125°C)				
TEST		Condition				Characte	eristics			
				Visual examination	no visible	e damage				
	'''	e (Ur) at 85°C and /	3 , 3	DCL	1.5 x initi					
Endurance	` '	000 hours through a	•	ΔC/C	within ±1	0% of initi	al value			
	of ≤0.1Ω/V. Stabilize before measuring.	e at room temperat	ure for 1-2 nours	DF	initial lim	it				
	before measuring.			ESR	1.25 x ini	tial limit				
				Visual examination	no visible	e damage				
	Store at 65°C and 9	95% relative humidit	v for 500 hours.	DCL	1.5 x initi	al limit		-		
Humidity	l .	tage. Stabilize at ro	•	ΔC/C	within ±1	0% of initi	al value			
	and humidity for 1-	2 hours before mea	suring.	DF	1.2 x initi	ial limit				
				ESR	1.25 x ini	tial limit				
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C
	1	+20	15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*
Temperature	2	-55	15		+					
Stability	3	+20	15	ΔC/C	n/a	+0/-10%	±5%	+10/-0%	+12/-0%	±5%
•	5	+85 +125	15 15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL*
	6	+20	15	ESR	1.25 x IL*	2.5 x IL*	1.25 x IL*	1.25 x IL*	1.25 x IL*	1.25 x IL*
		· · ·	-	Visual examination	no visible	damage	ļ	1		
	1117	y voltage (Uc) at 12		DCL	initial lim					
Surge	1 *	6 min (30 sec charg		ΔC/C	within ±5	% of initia	value			
Voltage	3 / 3	a charge / discharg	ge resistance of	DF	initial lim					
	1000Ω			ESR	1.25 x ini	tial limit		-	-	
				Visual examination		e damage		-		
				DCL	initial lim					
Mechanical	MIL-STD-202. Meth	nod 213, Condition C	,	ΔC/C	within ±5	% of initia	value			
Shock				DF	initial lim			-		
				ESR	initial lim	-				
	1			Visual examination		e damage				
				DCL	initial lim					
Vibration	MII -STD-202 Meth	nod 204, Condition D)	ΔC/C	+	% of initia	value			
Tiblation	015 202, Wicti	.55 25 1, 55114111011 2		DF DF	initial lim					
				ESR	initial lim					
				LOIN	i i i i i i i i i i i i i i i i i i i					

^{*}Initial Limit

Low ESR

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

Low ESR - Automotive Product Range

FEATURES

- Low ESR Series of Robust Mn0₂ Solid Electrolyte Capacitors
- · 100% Surge Current Tested
- CV Range: 0.22-680µF / 6.3-50V
- 5 Case Sizes Available
- · Power Supply Applications

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

APPLICATIONS

- · Power Supply
- · Electric Window Control
- · Battery Management Systems
- DC / DC Converter

MARKING

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
Α	1206	3216-18	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
С	2312	6032-28	6.00 (0.236)	3.20 (0.126)	2.60 (0.102)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only.

HOW TO ORDER

107

Tolerance K = ±10% M = ±20%

006 = 6.3Vdc 025 = 25Vdc 010 = 10Vdc 035 = 35Vdc 016 = 16Vdc 050 = 50Vdc 020 = 20Vdc

T T

Packaging
T = Automotive Lead
Free 7" Reel
U = Automotive Lead
Free 13" Reel

0150

ESR in mΩ

Dry Pack Option (D,E case sizes mandatory)

TECHNICAL SPECIFICATIONS

Technical Data:		All techn	ical data	relate to	an ambie	nt tempe	rature of	+25°C	
Capacitance Range:		0.22 μF t	o 680 µF						
Capacitance Tolerance:		±10%; ±2	0%						
Rated Voltage (V _R)	≤ +85°C:	6.3	10	16	20	25	35	50	
Category Voltage (V _c)	≤ +125°C:	4	7	10	13	17	23	33	
Surge Voltage (V _s)	≤ +85°C:	8	13	20	26	32	46	65	
Surge Voltage (V _s)	≤ +125°C:	5	8	13	16	20	28	40	
Temperature Range:		-55°C to	+125°C	,				•	
Environmental Classification:		55/125/5	6 (IEC 6	8-2)					
Reliability:		1% per 1	000 hour	s at 85°C	, V _R with ().1Ω/V se	eries impe	edance, 6	0% confidence level
Termination Finished:		Sn Platin	g (stand	ard), Gold	and SnP	b Plating	upon rec	quest	
		Meets re	quireme	nts of AE	C-Q200				

TPS AUTOMOTIVE RANGE CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance			Rated	Voltage DC (V _R) to	85°C		
μF	Code	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)
0.15	154							
0.22	224							A(7000)
0.33	334						A(6000)	A(7000)
0.47	474					A(7000)	A(6000)	A(6500), B(6000)
0.68	684					A(6000)	A(6000)	B(4000)
1.0	105			A(6200)	A(3000)	A(4000)	A(3000), B(2000)	B(3000), C(2500)
1.5	155				A(3000)	A(3000)	A(3000), B(2500)	C(1500,2000)
2.2	225		A(1800)	A(1800,3500)	A(3000) B(1700)	A(2500) B(900,1200,2500)	B(750,1500,2000) C(1000)	C(1500) D(1200)
3.3	335	A(2100)		A(3500), B(2500)	A(2500), B(1300)	B(750,1500,2000)	B(1000), C(700)	C(1000), D(800)
4.7	475		A(1400) B(1400)	A(2000) B(800,1500)	A(1800) B(750,1000)	B(700,900) C(700)	B(700,1500), C(600) D(700)	C(800) D(250,500,700)
6.8	685		A(1800), B(1300)	A(1500), B(600,1200)	B(600,1000), C(700)	B(700), C(500,600,700)	C(350), D(400,500)	D(500,600)
10	106	A(1500), B(1500)	A(900,1800), B(1000)	A(1000), B(500,800) C(500)	B(500,1000) C(500,700)	B(1800), C(300,500) D(500)	C(600) D(300)	D(500) E(250,300,400,500)
15	156	A(700,1500)	A(1000), B(450,600) C(700)	B(500,800) C(300,700)	B(500) C(400,450)	C(220,300) D(300)	D(300)	E(250)
22	226	A(300,500,900) B(375,600), C(500)	A(900), B(400,500,700) C(180,300)	B(400,600), C(300,375) D(500), D(700)	B(400,600), C(400) D(200,300)	C(275,400) D(200,300)	D(200,300,400) E(200,300)	
33	336	A(600) B(250,350,450,600)	B(250,425,500,650) C(375,500)	B(500), C(150, 225,300) D(200)	C(300) D(160,200)	D(200,300)	D(200,300) E(250,300)	
47	476	B(250,350,500) C(300)	B(250,350,500,650) C(200,350), D(100,300)	C(350) D(100,200)	D(200)	D(125,150,250) E(125)	E(200,250)	
68	686	B(250,350,500) C(150,200)	C(200,300) D(150)	C(200) D(150)	D(150,200,300) E(125,150,200)	E(200)		
100	107	B(250,400) C(150), D(300)	C(100,150,200) D(100,125,150)	D(80,100,125,150) E(100,125,150)	E(100,150,200)	E(150)		
150	157	C(100,150,200,250) D(125)	D(85,100) E(100)	E(100)				
220	227	D(100,125)	D(100,150) E(70,100,125,150)	E(100,150)				
330	337	D(45,50,70,100) E(100,125,150)	E(50,60,100)					
470	477	D(45,60,100,200) E(45,50,60,100,200)						
680	687	E(45,60,100)						

Note for designers - for the highlighted ratings, higher voltage options are now available in the same case size and are recommended for new designs.

Released ratings, (ESR ratings in mOhms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

Low ESR - Automotive Product Range

AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF Max.	ESR Max.	100kH	Iz RMS Cur	rent (A)	
Part No.	Size	(μF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	MSL
			(•)	(0)		lt @ 85°C	(P/-)		(11122)				
TPSA335*006T2100	Α	3.3	6.3	85	4	125	0.5	6	2100	0.189	0.170	0.076	1
TPSA106*006T1500	Α	10	6.3	85	4	125	0.6	6	1500	0.224	0.201	0.089	1
TPSB106*006T1500	В	10	6.3	85	4	125	0.6	6	1500	0.238	0.214	0.095	1
TPSA156*006T0700	Α	15	6.3	85	4	125	0.9	6	700	0.327	0.295	0.131	1
TPSA156*006T1500	Α	15	6.3	85	4	125	0.9	6	1500	0.224	0.201	0.089	1
TPSA226*006T0300	A	22	6.3	85	4	125	1.4	6	300	0.500	0.450	0.200	1
TPSA226*006T0500 TPSA226*006T0900	A	22	6.3	85 85	4	125 125	1.4	6	500 900	0.387	0.349 0.260	0.155 0.115	1
TPSB226*006T0375	В	22	6.3	85	4	125	1.4	6	375	0.476	0.428	0.113	1
TPSB226*006T0600	В	22	6.3	85	4	125	1.4	6	600	0.376	0.339	0.151	1
TPSC226*006T0500	С	22	6.3	85	4	125	1.4	6	500	0.469	0.422	0.188	1
TPSA336*006T0600	Α	33	6.3	85	4	125	2.1	8	600	0.354	0.318	0.141	1
TPSB336*006T0250	В	33	6.3	85	4	125	2.1	6	250	0.583	0.525	0.233	1
TPSB336*006T0350	В	33	6.3	85	4	125	2.1	6	350	0.493	0.444	0.197	1
TPSB336*006T0450	В	33	6.3	85	4	125	2.1	6	450	0.435	0.391	0.174	1
TPSB336*006T0600	B	33 47	6.3	85	4	125	2.1	6	600	0.376	0.339	0.151	1
TPSB476*006T0250 TPSB476*006T0350	В	47	6.3	85 85	4	125 125	3	6	250 350	0.583 0.493	0.525 0.444	0.233 0.197	1
TPSB476*006T0500	В	47	6.3	85	4	125	3	6	500	0.493	0.371	0.197	1
TPSC476*006T0300	C	47	6.3	85	4	125	3	6	300	0.606	0.545	0.103	1
TPSB686*006T0250	В	68	6.3	85	4	125	4	8	250	0.583	0.525	0.233	1
TPSB686*006T0350	В	68	6.3	85	4	125	4	8	350	0.493	0.444	0.197	1
TPSB686*006T0500	В	68	6.3	85	4	125	4	8	500	0.412	0.371	0.165	1
TPSC686*006T0150	С	68	6.3	85	4	125	4.3	6	150	0.856	0.771	0.343	1
TPSC686*006T0200	С	68	6.3	85	4	125	4.3	6	200	0.742	0.667	0.297	1
TPSB107*006T0250	В	100	6.3	85	4	125	6.3	10	250	0.583	0.525	0.233	1
TPSB107*006T0400	В	100	6.3	85 85	4	125 125	6.3	10	400 150	0.461 0.856	0.415	0.184 0.343	1
TPSC107*006T0150 TPSD107*006T0300V	C D	100	6.3	85	4	125	6.3	6	300	0.836	0.771 0.636	0.343	3
TPSC157*006T0100	C	150	6.3	85	4	125	9.5	6	100	1.049	0.030	0.420	1
TPSC157*006T0150	C	150	6.3	85	4	125	9.5	6	150	0.856	0.771	0.343	1
TPSC157*006T0200	С	150	6.3	85	4	125	9.5	6	200	0.742	0.667	0.297	1
TPSC157*006T0250	С	150	6.3	85	4	125	9.5	6	250	0.663	0.597	0.265	1
TPSD157*006T0125V	D	150	6.3	85	4	125	9.5	6	125	1.095	0.986	0.438	3
TPSD227*006T0100V	D	220	6.3	85	4	125	13.9	8	100	1.225	1.102	0.490	3
TPSD227*006T0125V	D	220	6.3	85	4	125	13.9	8	125	1.095	0.986	0.438	3
TPSD337*006T0045V	D D	330	6.3	85	4	125	20.8	8	45	1.826	1.643	0.730	3
TPSD337*006T0050V TPSD337*006T0070V	D	330 330	6.3	85 85	4	125 125	20.8	8	50 70	1.732 1.464	1.559 1.317	0.693	3
TPSD337*006T0070V	D	330	6.3	85	4	125	20.8	8	100	1.225	1.102	0.586 0.490	3
TPSE337*006T0100V	E	330	6.3	85	4	125	20.8	8	100	1.285	1.156	0.490	3
TPSE337*006T0125V	E	330	6.3	85	4	125	20.8	8	125	1.149	1.034	0.460	3
TPSE337*006T0150V	Е	330	6.3	85	4	125	20.8	8	150	1.049	0.944	0.420	3
TPSD477*006T0045V	D	470	6.3	85	4	125	28	12	45	1.826	1.643	0.730	3
TPSD477*006T0060V	D	470	6.3	85	4	125	28	12	60	1.581	1.423	0.632	3
TPSD477*006T0100V	D	470	6.3	85	4	125	28	12	100	1.225	1.102	0.490	3
TPSD477*006T0200V	D	470	6.3	85	4	125	28	12	200	0.866	0.779	0.346	3
TPSE477*006T0045V	E	470	6.3	85	4	125	28	10	45	1.915	1.723	0.766	3
TPSE477*006T0050V TPSE477*006T0060V	E	470 470	6.3	85 85	4	125 125	28	10	50 60	1.817 1.658	1.635 1.492	0.727 0.663	3
TPSE477*006T01000V	E	470	6.3	85	4	125	28	10	100	1.285	1.492	0.514	3
TPSE477*006T0200V	E	470	6.3	85	4	125	28	10	200	0.908	0.817	0.363	3
TPSE687*006T0045V	E	680	6.3	85	4	125	42.8	10	45	1.915	1.723	0.766	3
TPSE687*006T0060V	Е	680	6.3	85	4	125	42.8	10	60	1.658	1.492	0.663	3
TPSE687*006T0100V	E	680	6.3	85	4	125	42.8	10	100	1.285	1.156	0.514	3
					10 Vol	t @ 85°C							
TPSA225*010T1800	Α	2.2	10	85	7	125	0.5	6	1800	0.204	0.184	0.082	1
TPSA475*010T1400	Α	4.7	10	85	7	125	0.5	6	1400	0.231	0.208	0.093	1
TPSB475*010T1400	В	4.7	10	85	7	125	0.5	6	1400	0.246	0.222	0.099	1
TPSA685*010T1800	Α	6.8	10	85	7	125	0.7	6	1800	0.204	0.184	0.082	1
TPSB685*010T1300	В	6.8	10	85	7	125	0.7	6	1300	0.256	0.230	0.102	1
TPSA106*010T0900 TPSA106*010T1800	A	10 10	10 10	85 85	7	125 125	1	6	900 1800	0.289	0.260 0.184	0.115 0.082	1
TPSB106*010T1800	A B	10	10	85	7	125	1	6	1000	0.204	0.184	0.082	1
TPSA156*010T1000	A	15	10	85	7	125	1.5	6	1000	0.292	0.202	0.117	1
TPSB156*010T0450	В	15	10	85	7	125	1.5	6	450	0.435	0.391	0.174	1
TPSB156*010T0600	В	15	10	85	7	125	1.5	6	600	0.376	0.339	0.151	1
TPSC156*010T0700	С	15	10	85	7	125	1.5	6	700	0.396	0.357	0.159	1
TPSA226*010T0900	Α	22	10	85	7	125	2.2	8	900	0.289	0.260	0.115	1
TPSB226*010T0400	В	22	10	85	7	125	2.2	6	400	0.461	0.415	0.184	1
TPSB226*010T0500	В	22	10	85	7	125	2.2	6	500	0.412	0.371	0.165	1
TPSB226*010T0700	В	22	10	85	7	125	2.2	6	700	0.348	0.314	0.139	1
TPSC226*010T0180	С	22	10	85	7	125	2.2	6	180	0.782	0.704	0.313	1
TPSC226*010T0300	С	22	10	85	7	125	2.2	6	300	0.606	0.545	0.242	1

Low ESR - Automotive Product Range

AVX Part No.	Case Size	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max. @ 100kHz	100kH	z RMS Curi	rent (A)	MSL
AVAT GITTO.	Ousc Oizc	(μF)	(V)	(°C)	(V)	(°C)	(µA)	(%)	(mΩ)	25°C	85°C	125°C	1 14102
TPSB336*010T0250	В	33	10	85	7	125	3.3	6	250	0.583	0.525	0.233	1
ΓPSB336*010T0425	В	33	10	85	7	125	3.3	6	425	0.447	0.402	0.179	1
TPSB336*010T0500	В	33	10	85	7	125	3.3	6	500	0.412	0.371	0.165	1
PSB336*010T0650	В	33	10	85	7	125	3.3	6	650	0.362	0.325	0.145	1
FPSC336*010T0375	С	33	10	85	7	125	3.3	6	375	0.542	0.487	0.217	1
TPSC336*010T0500 TPSB476*010T0250	C B	33 47	10 10	85 85	7	125 125	3.3 4.7	6 8	500 250	0.469 0.583	0.422 0.525	0.188 0.233	1
TPSB476*010T0250	В	47	10	85	7	125	4.7	8	350	0.363	0.323	0.233	1
TPSB476*010T0500	В	47	10	85	7	125	4.7	8	500	0.412	0.371	0.165	1
TPSB476*010T0650	В	47	10	85	7	125	4.7	8	650	0.362	0.325	0.145	1
TPSC476*010T0200	С	47	10	85	7	125	4.7	6	200	0.742	0.667	0.297	1
TPSC476*010T0350	С	47	10	85	7	125	4.7	6	350	0.561	0.505	0.224	1
PSD476*010T0100V	D	47	10	85	7	125	4.7	6	100	1.225	1.102	0.490	3
PSD476*010T0300V	D	47	10	85	7	125	4.7	6	300	0.707	0.636	0.283	3
FPSC686*010T0200 FPSC686*010T0300	C	68 68	10 10	85 85	7	125 125	6.8	6	200 300	0.742 0.606	0.667 0.545	0.297	1
PSD686*010T0150V	D	68	10	85	7	125	6.8	6	150	1.000	0.900	0.400	3
TPSC107*010T0100	C	100	10	85	7	125	10	8	100	1.049	0.944	0.420	1
TPSC107*010T0150	C	100	10	85	7	125	10	8	150	0.856	0.771	0.343	1
TPSC107*010T0200	С	100	10	85	7	125	10	8	200	0.742	0.667	0.297	1
PSD107*010T0100V	D	100	10	85	7	125	10	6	100	1.225	1.102	0.490	3
PSD107*010T0125V	D	100	10	85	7	125	10	6	125	1.095	0.986	0.438	3
PSD107*010T0150V	D	100	10	85	7	125	10	6	150	1.000	0.900	0.400	3
PSD157*010T0085V	D	150	10	85	7	125	15	8	85	1.328	1.196	0.531	3
PSD157*010T0100V PSE157*010T0100V	D E	150 150	10 10	85 85	7	125 125	15 15	8	100 100	1.225 1.285	1.102 1.156	0.490 0.514	3
PSD227*010T0100V	D	220	10	85	7	125	22	8	100	1.225	1.102	0.490	3
PSD227*010T0150V	D	220	10	85	7	125	22	8	150	1.000	0.900	0.400	3
PSE227*010T0070V	E	220	10	85	7	125	22	8	70	1.535	1.382	0.614	3
PSE227*010T0100V	E	220	10	85	7	125	22	8	100	1.285	1.156	0.514	3
PSE227*010T0125V	E	220	10	85	7	125	22	8	125	1.149	1.034	0.460	3
PSE227*010T0150V	E	220	10	85	7	125	22	8	150	1.049	0.944	0.420	3
PSE337*010T0050V	E	330	10	85	7	125	33	8	50	1.817	1.635	0.727	3
PSE337*010T0060V PSE337*010T0100V	E E	330 330	10 10	85 85	7	125 125	33 33	8	60 100	1.658 1.285	1.492 1.156	0.663 0.514	3
F3E337**01010100V		330	10	65		lt @ 85°C	33	0	100	1.200	1.130	0.314] 3
TPSA105*016T6200	A	1.0	16	85	10	125	0.5	4	6200	0.110	0.099	0.044	1
TPSA225*016T1800	A	2.2	16	85	10	125	0.5	6	1800	0.204	0.184	0.044	1
TPSA225*016T3500	Α	2.2	16	85	10	125	0.5	6	3500	0.146	0.132	0.059	1
TPSA335*016T3500	Α	3.3	16	85	10	125	0.5	6	3500	0.146	0.132	0.059	1
TPSB335*016T2500	В	3.3	16	85	10	125	0.5	6	2500	0.184	0.166	0.074	1
FPSA475*016T2000	Α	4.7	16	85	10	125	0.8	6	2000	0.194	0.174	0.077	1
TPSB475*016T0800 TPSB475*016T1500	В	4.7	16	85	10 10	125 125	0.8	6	800	0.326 0.238	0.293	0.130	1
TPSB475*01611500 TPSA685*016T1500	B A	4.7 6.8	16 16	85 85	10	125	0.8 1.1	6	1500 1500	0.238	0.214	0.095	1
TPSB685*016T0600	В	6.8	16	85	10	125	1.1	6	600	0.224	0.201	0.009	1
TPSB685*016T1200	В	6.8	16	85	10	125	1.1	6	1200	0.266	0.240	0.106	1
PSA106*016T1000	A	10	16	85	10	125	1.6	6	1000	0.274	0.246	0.110	1
TPSB106*016T0500	В	10	16	85	10	125	1.6	6	500	0.412	0.371	0.165	1
TPSB106*016T0800	В	10	16	85	10	125	1.6	6	800	0.326	0.293	0.130	1
TPSC106*016T0500	С	10	16	85	10	125	1.6	6	500	0.469	0.422	0.188	1
FPSB156*016T0500	В	15	16	85	10	125	2.4	6	500	0.412	0.371	0.165	1
PSB156*016T0800 PSC156*016T0300	B C	15 15	16 16	85	10 10	125 125	2.4	6	800 300	0.326	0.293	0.130	1
PSC156*01610300 PSC156*016T0700	C	15	16	85 85	10	125	2.4	6	700	0.606 0.396	0.545 0.357	0.242 0.159	1
PSB226*016T0400	В	22	16	85	10	125	3.5	6	400	0.461	0.415	0.184	1
PSB226*016T0600	В	22	16	85	10	125	3.5	6	600	0.376	0.339	0.151	1
PSC226*016T0300	С	22	16	85	10	125	3.5	6	300	0.606	0.545	0.242	1
PSC226*016T0375	С	22	16	85	10	125	3.5	6	375	0.542	0.487	0.217	1
PSD226*016T0500V	D	22	16	85	10	125	3.5	6	500	0.548	0.493	0.219	3
PSD226*016T0700V	D	22	16	85	10	125	3.5	6	700	0.463	0.417	0.185	3
PSB336*016T0500	В	33	16	85	10	125	5.3	8	500	0.412	0.371	0.165	1
PSC336*016T0150	С	33	16	85	10	125	5.3	6	150	0.856	0.771	0.343	1
TPSC336*016T0225 TPSC336*016T0300	C	33 33	16 16	85 85	10 10	125 125	5.3 5.3	6	225 300	0.699 0.606	0.629 0.545	0.280	1
PSD336*016T0200V	D	33	16	85	10	125	5.3	6	200	0.866	0.545	0.242	3
PSC476*016T0350	C	47	16	85	10	125	7.5	6	350	0.561	0.779	0.340	1
PSD476*016T0100V	D	47	16	85	10	125	7.5	6	100	1.225	1.102	0.490	3
PSD476*016T0200V	D	47	16	85	10	125	7.5	6	200	0.866	0.779	0.346	3
PSC686*016T0200	С	68	16	85	10	125	10.9	6	200	0.742	0.667	0.297	1
PSD686*016T0150V	D	68	16	85	10	125	10.9	6	150	1.000	0.900	0.400	3
PSD107*016T0080V	D	100	16	85	10	125	16	6	80	1.369	1.232	0.548	3
PSD107*016T0100V	D	100	16	85	10	125	16	6	100	1.225	1.102	0.490	3
PSD107*016T0125V	D	100	16	85	10	125	16	6	125	1.095	0.986	0.438	3
PSD107*016T0150V	D	100	16	85	10	125	16	6	150	1.000	0.900	0.400	3
PSE107*016T0100V	E	100	16	85	10	125	16	6	100	1.285	1.156	0.514	3

Low ESR - Automotive Product Range

AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF	ESR Max.	100kH	z RMS Curi	rent (A)	Mei
Part No.	Size	(µF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μΑ)	Max. (%)	@ 100kHz (mΩ)	25°C	85°C	125°C	MSL
TPSE107*016T0125V	E	100	16	85	10	125	16	6	125	1.149	1.034	0.460	3
TPSE107*016T0150V	E	100	16	85	10	125	16	6	150	1.049	0.944	0.420	3
PSE157*016T0100V	E	150	16	85	10	125	24	8	100	1.285	1.156	0.514	3
TPSE227*016T0100V	E	220	16	85	10	125	35.2	10	100	1.285	1.156	0.514	3
TPSE227*016T0150V	E	220	16	85	10	125 It @ 85°C	35.2	10	150	1.049	0.944	0.420	3
TPSA105*020T3000	A	1	20	85	13	125	0.5	4	3000	0.158	0.142	0.063	1
TPSA155*020T3000	A	1.5	20	85	13	125	0.5	6	3000	0.158	0.142	0.063	1
TPSA225*020T3000	A	2.2	20	85	13	125	0.5	6	3000	0.158	0.142	0.063	1
TPSB225*020T1700	В	2.2	20	85	13	125	0.5	6	1700	0.224	0.201	0.089	1
TPSA335*020T2500	A	3.3	20	85	13	125	0.7	6	2500	0.173	0.156	0.069	1
TPSB335*020T1300	В	3.3	20	85	13	125	0.7	6	1300	0.256	0.230	0.102	1
TPSA475*020T1800	Α	4.7	20	85	13	125	0.9	6	1800	0.204	0.184	0.082	1
TPSB475*020T0750	В	4.7	20	85	13	125	0.9	6	750	0.337	0.303	0.135	1
TPSB475*020T1000	В	4.7	20	85	13	125	0.9	6	1000	0.292	0.262	0.117	1
TPSB685*020T0600	В	6.8	20	85	13	125	1.4	6	600	0.376	0.339	0.151	1
TPSB685*020T1000	В	6.8	20	85	13	125	1.4	6	1000	0.292	0.262	0.117	1
TPSC685*020T0700	С	6.8	20	85	13	125	1.4	6	700	0.396	0.357	0.159	1
TPSB106*020T0500	В	10	20	85	13	125	2	6	500	0.412	0.371	0.165	1
TPSB106*020T1000	В	10	20	85	13	125	2	6	1000	0.292	0.262	0.117	1
TPSC106*020T0500	С	10	20	85	13	125	2	6	500	0.469	0.422	0.188	1
TPSC106*020T0700	С	10	20	85	13	125	2	6	700	0.396	0.357	0.159	1
TPSB156*020T0500	В	15	20	85	13	125	3	6	500	0.412	0.371	0.165	1
TPSC156*020T0400	С	15	20	85	13	125	3	6	400	0.524	0.472	0.210	1
TPSC156*020T0450	C B	15 22	20	85 85	13 13	125 125	3 4.4	6	450 400	0.494	0.445 0.415	0.198	1
TPSB226*020T0400		22	20	85	13	125	4.4		600	0.461	0.415	0.184 0.151	
TPSB226*020T0600 TPSC226*020T0400	B C	22	20	85	13	125	4.4	6	400	0.524	0.339	0.131	1
PSD226*020T0200V	D	22	20	85	13	125	4.4	6	200	0.866	0.472	0.210	3
PSD226*020T0200V	D	22	20	85	13	125	4.4	6	300	0.707	0.636	0.283	3
TPSC336*020T0300	C	33	20	85	13	125	6.6	6	300	0.606	0.545	0.242	1
PSD336*020T0160V	D	33	20	85	13	125	6.6	6	160	0.968	0.871	0.387	3
PSD336*020T0200V	D	33	20	85	13	125	6.6	6	200	0.866	0.779	0.346	3
PSD476*020T0200V	D	47	20	85	13	125	9.4	6	200	0.866	0.779	0.346	3
PSD686*020T0150V	D	68	20	85	13	125	13.6	6	150	1.000	0.900	0.400	3
PSD686*020T0200V	D	68	20	85	13	125	13.6	6	200	0.866	0.779	0.346	3
PSD686*020T0300V	D	68	20	85	13	125	13.6	6	300	0.707	0.636	0.283	3
PSE686*020T0125V	Е	68	20	85	13	125	13.6	6	125	1.149	1.034	0.460	3
TPSE686*020T0150V	Е	68	20	85	13	125	13.6	6	150	1.049	0.944	0.420	3
TPSE686*020T0200V	Е	68	20	85	13	125	13.6	6	200	0.908	0.817	0.363	3
PSE107*020T0100V	E	100	20	85	13	125	20	6	100	1.285	1.156	0.514	3
PSE107*020T0150V	E	100	20	85	13	125	20	6	150	1.049	0.944	0.420	3
PSE107*020T0200V	E	100	20	85	13	125	20	6	200	0.908	0.817	0.363	3
						lt @ 85°C							T -
TPSA474*025T7000	A	0.47	25	85	17	125	0.5	4	7000	0.104	0.093	0.041	1
TPSA684*025T6000	A	0.68	25	85	17	125	0.5	4	6000	0.112	0.101	0.045	1
TPSA105*025T4000	A	1.0	25	85	17	125	0.5	4	4000	0.137	0.123	0.055	1
TPSA155*025T3000 TPSA225*025T2500	A	1.5 2.2	25 25	85 85	17 17	125 125	0.5	6	3000 2500	0.158	0.142 0.156	0.063	1
TPSB225*025T2500 TPSB225*025T0900	В	2.2	25	85	17	125	0.6	6	900	0.173	0.156	0.069	1
TPSB225*025T0900 TPSB225*025T1200	В	2.2	25	85	17	125	0.6	6	1200	0.307	0.277	0.123	1
TPSB225*025T2500	В	2.2	25	85	17	125	0.6	6	2500	0.200	0.240	0.100	1
TPSB335*025T0750	В	3.3	25	85	17	125	0.8	6	750	0.337	0.303	0.135	1
TPSB335*025T1500	В	3.3	25	85	17	125	0.8	6	1500	0.238	0.214	0.095	1
TPSB335*025T2000	В	3.3	25	85	17	125	0.8	6	2000	0.206	0.186	0.082	1
TPSB475*025T0700	В	4.7	25	85	17	125	1.2	6	700	0.348	0.314	0.139	1
TPSB475*025T0900	В	4.7	25	85	17	125	1.2	6	900	0.307	0.277	0.123	1
TPSC475*025T0700	С	4.7	25	85	17	125	1.2	6	700	0.396	0.357	0.159	1
TPSB685*025T0700	В	6.8	25	85	17	125	1.7	6	700	0.348	0.314	0.139	1
TPSC685*025T0500	С	6.8	25	85	17	125	1.7	6	500	0.469	0.422	0.188	1
TPSC685*025T0600	С	6.8	25	85	17	125	1.7	6	600	0.428	0.385	0.171	1
TPSC685*025T0700	С	6.8	25	85	17	125	1.7	6	700	0.396	0.357	0.159	1
TPSB106*025T1800	В	10	25	85	17	125	2.5	6	1800	0.217	0.196	0.087	1
TPSC106*025T0300	С	10	25	85	17	125	2.5	6	300	0.606	0.545	0.242	1
TPSC106*025T0500	С	10	25	85	17	125	2.5	6	500	0.469	0.422	0.188	1
PSD106*025T0500V	D	10	25	85	17	125	2.5	6	500	0.548	0.493	0.219	3
TPSC156*025T0220	С	15	25	85	17	125	3.8	6	220	0.707	0.636	0.283	1
TPSC156*025T0300	С	15	25	85	17	125	3.8	6	300	0.606	0.545	0.242	1
PSD156*025T0300V	D	15	25	85	17	125	3.8	6	300	0.707	0.636	0.283	3
TPSC226*025T0275	С	22	25	85	17	125	5.5	6	275	0.632	0.569	0.253	1
TPSC226*025T0400	С	22	25	85	17	125	5.5	6	400	0.524	0.472	0.210	1
PSD226*025T0200V	D D	22	25 25	85	17	125	5.5	6	200	0.866	0.779	0.346	3
		. //	25	85	17	125	5.5	6	300	0.707	0.636	0.283	3
PSD226*025T0300V					17	105	0.0		200	0.066	0.770	0.246	^
	D D	33 33	25 25	85 85	17 17	125 125	8.3 8.3	6	200 300	0.866 0.707	0.779 0.636	0.346 0.283	3

Low ESR - Automotive Product Range

RATINGS & PART NUMBER REFERENCE

	Case	Capacitance	Rated	Rated	Category	Category	DCL Max.	DF Max.	ESR Max.	100kH	z RMS Cur	rent (A)	
AVX Part No.	Size	(μF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	(µA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	MSL
TPSD476*025T0150V	D	47	25	85	17	125	11.8	6	150	1.000	0.900	0.400	3
TPSD476*025T0250V	D	47	25	85	17	125	11.8	6	250	0.775	0.697	0.310	3
TPSE476*025T0125V	E	47	25	85	17	125	11.8	6	125	1.149	1.034	0.460	3
TPSE686*025T0200V	E	68	25	85	17	125	17	6	200	0.908	0.817	0.363	3
TPSE107*025T0150V	E	100	25	85	17	125	25	10	150	1.049	0.944	0.420	3
						lt @ 85°C							
TPSA334*035T6000	Α	0.33	35	85	23	125	0.5	4	6000	0.112	0.101	0.045	1
TPSA474*035T6000	A	0.47	35	85	23	125	0.5	4	6000	0.112	0.101	0.045	1
TPSA684*035T6000	A	0.68	35	85	23	125	0.5	4	6000	0.112	0.101	0.045	1
TPSA105*035T3000	A	1	35	85	23	125	0.5	4	3000	0.158	0.142	0.063	1
TPSB105*035T2000	В	1.5	35 35	85 85	23 23	125	0.5	6	2000 3000	0.206 0.158	0.186 0.142	0.082	1 1
TPSA155*035T3000 TPSB155*035T2500	A B	1.5	35	85	23	125 125	0.5	6	2500	0.138	0.142	0.003	1
TPSB225*035T0750	В	2.2	35	85	23	125	0.8	6	750	0.184	0.100	0.074	1
TPSB225*035T1500	В	2.2	35	85	23	125	0.8	6	1500	0.238	0.303	0.133	1
TPSB225*035T2000	В	2.2	35	85	23	125	0.8	6	2000	0.206	0.186	0.093	1
TPSC225*035T1000	C	2.2	35	85	23	125	0.8	6	1000	0.332	0.298	0.133	1
TPSB335*035T1000	В	3.3	35	85	23	125	1.2	6	1000	0.292	0.262	0.117	1
TPSC335*035T0700	С	3.3	35	85	23	125	1.2	6	700	0.396	0.357	0.159	1
TPSB475*035T0700	В	4.7	35	85	23	125	1.6	6	700	0.348	0.314	0.139	1
TPSB475*035T1500	В	4.7	35	85	23	125	1.6	6	1500	0.238	0.214	0.095	1
TPSC475*035T0600	С	4.7	35	85	23	125	1.6	6	600	0.428	0.385	0.171	1
TPSD475*035T0700V	D	4.7	35	85	23	125	1.6	6	700	0.463	0.417	0.185	3
TPSC685*035T0350	С	6.8	35	85	23	125	2.4	6	350	0.561	0.505	0.224	1
TPSD685*035T0400V	D	6.8	35	85	23	125	2.4	6	400	0.612	0.551	0.245	3
TPSD685*035T0500V	D	6.8	35	85	23	125	2.4	6	500	0.548	0.493	0.219	3
TPSC106*035T0600	С	10	35	85	23	125	3.5	6	600	0.428	0.385	0.171	1
TPSD106*035T0300V	D	10	35	85	23	125	3.5	6	300	0.707	0.636	0.283	3
TPSD156*035T0300V	D	15	35	85	23	125	5.3	6	300	0.707	0.636	0.283	3
TPSD226*035T0200V	D	22	35	85	23	125	7.7	6	200	0.866	0.779	0.346	3
TPSD226*035T0300V	D	22	35	85	23	125	7.7	6	300	0.707	0.636	0.283	3
TPSD226*035T0400V	D	22	35	85	23	125	7.7	6	400	0.612	0.551	0.245	3
TPSE226*035T0200V TPSE226*035T0300V	E	22	35 35	85 85	23 23	125 125	7.7 7.7	6	200 300	0.908 0.742	0.817 0.667	0.363	3
TPSD336*035T0200V	D	33	35	85	23	125	11.6	6	200	0.742	0.007	0.297	3
TPSD336*035T0200V	D	33	35	85	23	125	11.6	6	300	0.866	0.779	0.346	3
TPSE336*035T0250V	E	33	35	85	23	125	11.6	6	250	0.707	0.030	0.203	3
TPSE336*035T0300V	E	33	35	85	23	125	11.6	6	300	0.742	0.667	0.323	3
TPSE476*035T0200V	E	47	35	85	23	125	16.5	6	200	0.908	0.817	0.363	3
TPSE476*035T0250V	E	47	35	85	23	125	16.5	6	250	0.812	0.731	0.325	3
						lt @ 85°C					4		
TPSA224*050T7000	A	0.22	50	85	33	125	0.5	4	7000	0.104	0.093	0.041	1
TPSA334*050T7000	A	0.33	50	85	33	125	0.5	4	7000	0.104	0.093	0.041	1
TPSA474*050T6500	A	0.47	50	85	33	125	0.5	4	6500	0.107	0.097	0.041	1
TPSB474*050T6000	В	0.47	50	85	33	125	0.5	4	6000	0.119	0.107	0.048	1
TPSB684*050T4000	В	0.68	50	85	33	125	0.5	4	4000	0.146	0.131	0.058	1
TPSB105*050T3000	В	1	50	85	33	125	0.5	6	3000	0.168	0.151	0.067	1
TPSC105*050T2500	С	1	50	85	33	125	0.5	4	2500	0.210	0.189	0.084	1
TPSC155*050T1500	С	1.5	50	85	33	125	0.8	6	1500	0.271	0.244	0.108	1
TPSC155*050T2000	С	1.5	50	85	33	125	0.8	6	2000	0.235	0.211	0.094	1
TPSC225*050T1500	С	2.2	50	85	33	125	1.1	8	1500	0.271	0.244	0.108	1
TPSD225*050T1200V	D	2.2	50	85	33	125	1.1	6	1200	0.354	0.318	0.141	3
TPSC335*050T1000	С	3.3	50	85	33	125	1.6	6	1000	0.332	0.298	0.133	1
TPSD335*050T0800V	D	3.3	50	85	33	125	1.7	6	800	0.433	0.390	0.173	3
TPSC475*050T0800	С	4.7	50	85	33	125	2.4	6	800	0.371	0.334	0.148	1
TPSD475*050T0250V	D	4.7	50	85	33	125	2.4	6	250	0.775	0.697	0.310	1
TPSD475*050T0500V	D	4.7	50	85	33	125	2.4	6	500	0.548	0.493	0.219	3
TPSD475*050T0700V	D	4.7	50	85	33	125	2.4	6	700	0.463	0.417	0.185	3
TPSD685*050T0500V	D	6.8	50	85	33	125	3.4	6	500	0.548	0.493	0.219	3
TPSD685*050T0600V	D	6.8	50	85	33	125	3.4	6	600	0.500	0.450	0.200	3
TPSD106*050T0500V	D	10	50	85	33	125	5	6	500	0.548	0.493	0.219	3
TPSE106*050T0250V TPSE106*050T0300V	E	10	50	85	33	125	5	6	250	0.812	0.731	0.325	3
TPSE106*050T0300V	E	10 10	50 50	85 85	33 33	125 125	5 5	6	300 400	0.742 0.642	0.667 0.578	0.297 0.257	3
TPSE106*050T0400V	E	10	50	85	33	125	5	6	500	0.642	0.578	0.230	3
TPSE156*050T0250V	E	15	50	85	33	125	7.5	6	250	0.812	0.517	0.230	3
11 3L 130 03010230V		13]]0	00	- 55	123	7.5		230	0.012	0.731	0.323	

Moisture Sensitivity Level (MSL) is defined according to J-STD-020

DCL is measured at rated voltage after 5 minutes.

The EIA & CECC standards for low ESR Solid Tantalum Capacitors allow an ESR movement to 1.25 times catalogue limit post mounting.

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

^{*}Please use "U" instead of "T" in the suffix letter for 13" reel packaging Please use specific PN for automotive version – see "HOW TO ORDER".

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts.

Low ESR - Automotive Product Range

QUALIFICATION TABLE

TECT		Т	PS automotive s	series (Temperature r	ange -55°	C to +12	5°C)					
TEST		Condition			(Characte	ristics					
				Visual examination	no visib	le damage	9					
		ge (Ur) at 85°C and		DCL	1.25 x ir	nitial limit						
Endurance	3 (/	5°C for 2000 hours	•	ΔC/C	within ±	10% of ini	tial value					
	for 1-2 hours befor	1Ω/V. Stabilize at ro	om temperature	DF	initial lir	nit						
	101 1-2 Hours beid	ne measuring.		ESR	1.25 x ir	nitial limit						
				Visual examination	no visib	no visible damage						
	Store at 125°C, no	o voltage applied, fo	or 2000 hours.	DCL	1.25 x ir	nitial limit						
Storage Life	1	temperature for 1-2		ΔC/C	within ±	within ±10% of initial value						
•	measuring.			DF	initial lir	initial limit						
				ESR	1.25 x ir	nitial limit						
				Visual examination	no visib	le damage						
	Store at 65°C and	95% relative humic	dity for 500 hours.	DCL	1.5 x ini	tial limit						
Humidity	1	oltage. Stabilize at r	,	ΔC/C	within ±	within ±10% of initial value						
•	and humidity for 1	1-2 hours before me	easuring.	DF	1.2 x ini	1.2 x initial limit						
				ESR	1.25 x ir	1.25 x initial limit						
				Visual examination	no visib	le damage						
	Apply rated voltage	ge (Ur) at 85°C, 85%	relative humidity	DCL	2 x initia	2 x initial limit						
Biased Humidity	1	tabilize at room ten	•	ΔC/C	within ±	10% of ini	tial value					
•	humidity for 1-2 h	ours before measu	ring.	DF	1.2 x ini	tial limit						
				ESR	1.25 x ir	nitial limit						
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C		
	1	+20	15	- DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*		
Temperature	2	-55	15	ΔC/C		-	±5%		+12/-0%	±5%		
Stability	4	+20 +85	15 15		n/a	+0/-10%		+10/-0%				
•	5	+125	15	_ DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL*		
	6	+20	15	ESR	1.25xIL*	2.5xIL*	1.25xIL*	1.25xIL*	1.25xIL*	1.25xIL*		
				Visual examination	no visib	no visible damage						
		ory voltage (Uc) at 1		DCL	initial lir	nit		-				
Surge Voltage		i 6 min (30 sec chai ih a charge / discha		ΔC/C	within ±	5% of initi	al value					
	1000Ω	iii a ciiaiye / uisciia	irge resistance of	DF	initial lir	nit						
	100012			ESR	1.25 x ir	nitial limit		-				
				Visual examination	no visib	le damage	9					
Maahaniaal				DCL	initial lir	nit						
Mechanical Shock	MIL-STD-202, Met	thod 213, Condition	ıF	ΔC/C	within ±	5% of initi	al value					
SHOCK				DF	initial lir	nit						
				ESR	1.25 x ir	nitial limit						
				Visual examination	no visib	le damage	9					
				DCL	initial lir	nit						
Vibration	MIL-STD-202, Met	thod 204, Condition	ı D	ΔC/C	within ±	5% of initi	al value					
				DF	initial lir	nit						
				ESR	1.25 x ir	nitial limit						

^{*}Initial Limit

Low ESR - Automotive Product Range

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

F91 Series

Low ESR, Resin-Molded Chip J-Lead

FEATURES

- · Compliant to the RoHS3 directive 2015/863/EU
- SMD J-Lead
- Low ESR
- 100% Surge Current Tested

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

APPLICATIONS

· General Medium Power DC/DC Convertors

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L	W ₁	W ₂	Н	S
В	1210	3528-21	3.50 ± 0.20 (0.138 ± 0.008)	2.80 ± 0.20 (0.110 ± 0.008)	2.20 ± 0.10 (0.087 ± 0.004)	1.90 ± 0.20 (0.075 ± 0.008)	0.80 ± 0.20 (0.031 ± 0.008)
С	2312	6032-27	6.00 ± 0.20 (0.236 ± 0.008)	3.20 ± 0.20 (0.126 ± 0.008)	2.20 ± 0.10 (0.087 ± 0.004)	2.50 ± 0.20 (0.098 ± 0.008)	1.30 ± 0.20 (0.051 ± 0.008)
N	2917	7343-30	7.30 ± 0.20 (0.287 ± 0.008)	4.30 ± 0.20 (0.169 ± 0.008)	2.40 ± 0.10 (0.094 ± 0.004)	2.80 ± 0.20 (0.110 ±0.008)	1.30 ± 0.20 (0.051 ± 0.008)

HOW TO ORDER

zeros to follow)

TECHNICAL SPECIFICATIONS

Category Temperature Range	-55 to +125°C				
Rated Temperature	+85°C				
Capacitance Tolerance	±20%, ±10% at 120Hz				
Dissipation Factor	Refer to next page				
ESR 100kHz	Refer to next page				
Leakage Current	ofter 1 minute's application of rated voltage, leakage current at 20°C				
	is not more than 0.01CV or 0.5µA, whichever is greater.				
	After 1 minute's application of rated voltage, leakage current at 85°C				
	is not more than 0.1CV or 5µA, whichever is greater.				
	After 1 minute's application of derated voltage, leakage current at				
	125°C is not more than 0.125CV or 6.3µA, whichever is greater.				
Capacitance Change By Temperature	+15% Max. at +125°C				
	+10% Max. at +85°C				
	-10% Max. at -55°C				

F91 Series

Low ESR, Resin-Molded Chip J-Lead

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	citance				Rated Voltage			
μF	Code	4V (0G)	6.3V (0J)	10V (1A)	16V (1C)	20V (1D)	25V (1E)	35V (1V)
6.8	685							С
10	106						С	N
15	156					С		N
22	226				В		N	N
33	336				B/C		N	
47	476			В	N	N	N	
68	686			С				
100	107		С	С	N			
150	157	С	С	N				
220	227	С	C/N	N				
330	337	N	N	N				
470	477	N	N					
680	687	N						

Released ratings

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated	DCL	DF © 120U-	ESR	100kl	dz RMS Current	t (mA)	MSL
Part No.	Size	· (μF)	Voltage (V)	(μΑ)	@ 120Hz (%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVISL
				4 \	/olt					
F910G157#CC	С	150	4	6.0	12	250	663	597	265	1
F910G227#CC	С	220	4	8.8	12	250	663	597	265	1
F910G337#NC	N	330	4	13.2	10	100	1225	1102	490	1
F910G477#NC	N	470	4	18.8	16	100	1225	1102	490	1
F910G687#NC	N	680	4	27.2	18	100	1225	1102	490	1
				6.3	Volt					
F910J107#CC	С	100	6.3	6.3	8	250	663	597	265	1
F910J157#CC	С	150	6.3	9.5	12	250	663	597	265	1
F910J227#CC	С	220	6.3	13.9	14	250	663	597	265	1
F910J227#NC	N	220	6.3	13.9	10	100	1225	1102	490	1
F910J337#NC	N	330	6.3	20.8	14	100	1225	1102	490	1
F910J477#NC	N	470	6.3	29.6	16	100	1225	1102	490	1
10 Volt										
F911A476#BA	В	47	10	4.7	8	500	412	371	165	1
F911A686#CC	С	68	10	6.8	8	300	606	545	242	1
F911A107#CC	С	100	10	10.0	10	250	663	597	265	1
F911A157#NC	N	150	10	15.0	10	100	1225	1102	490	1
F911A227#NC	N	220	10	22.0	12	100	1225	1102	490	3
F911A337#NC	N	330	10	33.0	18	100	1225	1102	490	3
				16	Volt					
F911C226#BA	В	22	16	3.5	8	950	299	269	120	1
F911C336#BA	В	33	16	5.3	8	950	299	269	120	1
F911C336#CC	С	33	16	5.3	6	400	524	472	210	1
F911C476#NC	N	47	16	7.6	6	150	1000	900	400	1
F911C107#NC	N	100	16	16	10	100	1225	1102	490	3
				20	Volt					
F911D156#CC	С	15	20	3	6	450	494	445	198	1
F911D476#NC	N	47	20	9.4	8	200	866	779	346	1
				25	Volt					
F911E106#CC	С	10	25	2.5	6	450	494	445	198	1
F911E226#NC	N	22	25	5.5	6	200	866	779	346	1
F911E336#NC	N	33	25	8.3	8	200	866	779	346	1
F911E476#NC	N	47	25	11.8	8	250	775	697	310	1
				35	Volt					
F911V685#CC	С	6.8	35	2.4	6	600	428	385	171	1
F911V106#NC	N	10	35	3.5	6	300	707	636	283	1
F911V156#NC	N	15	35	5.3	6	300	707	636	283	1
F911V226#NC	N	22	35	7.7	8	300	707	636	283	1

#: "M" for $\pm 20\%$ tolerance, "K" for $\pm 10\%$ tolerance.

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

F91 Series

Low ESR, Resin-Molded Chip J-Lead

QUALIFICATION TABLE

TFOT	F91 series (Temperature range -55°C to +125°C)
TEST	Condition
Damp Heat (Steady State)	At 40°C, 90 to 95% R.H., 500 hours (No voltage applied) Capacitance Change
Temperature Cycles	-55°C / +125°C, 30 minutes each, 5 cycles Capacitance Change
Resistance to Soldering Heat	10 seconds reflow at 260°C, 5 seconds immersion at 260°C. Capacitance Change
Surge	After application of surge voltage in series with a 33Ω resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change
Endurance	After 2000 hours' application of rated voltage in series with a 3Ω resistor at 85° C, or derated voltage in series with a 3Ω resistor at 125° C, capacitors shall meet the characteristic requirements in the table above. Capacitance ChangeWithin $\pm 10\%$ of the initial value Dissipation Factor
Shear Test	After applying the pressure load of 5N for 10 ± 1 seconds horizontally to the center of capacitor side body which has no electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the terminal electrode.
Terminal Strength	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is applied with a specified jig at the center of substrate so that the substrate may bend by 1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.

Low ESR, Resin-Molded Chip J-Lead

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

F91-AJ6 Series

Low ESR, Resin-Molded Chip - Automotive Product Range

FEATURES

- · Compliant to the RoHS3 directive 2015/863/EU
- · Compliant to AEC-Q200
- · 100% Surge Current Tested

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

APPLICATIONS

- · Cabin Electronics
- Infotainment

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L	W ₁	W ₂	Н	S
A	1206	3216-18	3.20 ± 0.20 (0.126 ± 0.008)	1.60 ± 0.20 (0.063 ± 0.008)	1.20 ± 0.10 (0.047 ± 0.004)	1.60 ± 0.20 (0.063 ± 0.008)	0.80 ± 0.20 (0.031 ± 0.008)
В	1210	3528-21	3.50 ± 0.20 (0.138 ± 0.008)	2.80 ± 0.20 (0.110 ± 0.008)	2.20 ± 0.10 (0.087 ± 0.004)	1.90 ± 0.20 (0.075 ± 0.008)	0.80 ± 0.20 (0.031 ± 0.008)
N	2917	7343-30	7.30 ± 0.20 (0.287 ± 0.008)	4.30 ± 0.20 (0.169 ± 0.008)	2.40 ± 0.10 (0.094 ± 0.004)	2.80 ± 0.20 (0.110 ±0.008)	1.30 ± 0.20 (0.051 ± 0.008)

HOW TO ORDER

TECHNICAL SPECIFICATIONS

Category Temperature Range	-55 to +125°C
Rated Temperature	+85°C
Capacitance Tolerance	±20%, ±10% at 120Hz
Dissipation Factor	Refer to next page
ESR 100kHz	Refer to next page
	After 1 minute's application of rated voltage, leakage current at 20°C is not more than 0.01CV or 0.5µA, whichever is greater.
Leakage Current	After 1 minute's application of rated voltage, leakage current at 85°C is not more than 0.1CV or 5µA, whichever is greater.
	After 1 minute's application of derated voltage, leakage current at 125°C is not more than 0.125CV or 6.3μA, whichever is greater.
	+15% Max. at +125°C
Capacitance Change By Temperature	+10% Max. at +85°C
	-10% Max. at -55°C

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance	Rated Voltage					
μF	Code	6.3V (0J)	10V (1A)	16V (1C)			
10	106		Α	Α			
22	226	Α	Α	В			
33	336		В	В			
47	476	A,B	В				
100	107	В		N			
220	227		N				

Released ratings

1: ∆C/C Marked ""

Item	All Case (%)
Damp Heat	±10
Temperature cycles	±10
Resistance soldering heat	±10
Surge	±10
Endurance	±10

RATINGS & PART NUMBER REFERENCE

AVX	Case Size Capacita	Capacitance	Rated	DCL (µA) @	DF 0 1201 In	ESR @ 100kHz	100k	(mA)	*1 ΔC/C	MSL	
Part No.	Case Size	· (μF)	Voltage (V)	DCL (µA)	@ 120Hz (%)	(mΩ)	25°C	85°C	125°C	(%)	WISL
					6.3	Volt					
F910J226#AAAJ6	Α	22	6.3	1.4	8	1250	245	220	98	*	3
F910J476#AAAJ6	Α	47	6.3	3.0	18	1250	245	220	98	*	3
F910J476#BAAJ6	В	47	6.3	3.0	6	500	412	371	165	*	3
F910J107#BAAJ6	В	100	6.3	6.3	14	450	435	391	174	*	3
	10 Volt										
F911A106#AAAJ6	Α	10	10	1.0	6	1500	224	201	89	*	3
F911A226#AAAJ6	Α	22	10	2.2	12	1250	245	220	98	*	3
F911A336#BAAJ6	В	33	10	3.3	8	700	348	314	139	*	3
F911A476#BAAJ6	В	47	10	4.7	8	500	412	371	165	*	3
F911A227#NCAJ6	N	220	10	22.0	12	100	1225	1102	490	*	3
					16	Volt					
F911C106#AAAJ6	Α	10	16	1.6	6	1500	224	201	89	*	3
F911C226#BAAJ6	В	22	16	3.5	8	950	299	269	120	*	3
F911C336#BAAJ6	В	33	16	5.3	8	950	299	269	120	*	3
F911C107#NCAJ6	N	100	16	16.0	10	100	1225	1102	490	*	3

^{#: &}quot;M" for ±20% tolerance, "K" for ± 10% tolerance. Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

QUALIFICATION TABLE

TEST	F91-AJ6 series (Temperature range -55°C to +125°C)
TEST	Condition
Damp Heat (Steady State)	At 40°C, 90 to 95% R.H., 500 hours (No voltage applied) Capacitance Change
Load Humidity	After 1000 hour's application of rated voltage in series with a 33Ω resistor at 85°C, 85% R.H., capacitors meet the characteristics requirements table below. Capacitance Change
Temperature Cycles	At -55°C / +125°C, 30 minutes each, 1000 cycles Capacitance Change
Resistance to Soldering Heat	10 seconds reflow at 260°C, 10 seconds immersion at 260°C. Capacitance Change
Surge	After application of surge voltage in series with a 33Ω resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change
Endurance	After 2000 hours' application of rated voltage in series with a 3Ω resistor at 85°C, or derated voltage in series with a 3Ω resistor at 125°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change
Shear Test	After applying the pressure load of 17.7N for 60 seconds horizontally to the center of capacitor side body which has no electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the terminal electrode.
Terminal Strength	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is applied with a specified jig at the center of the substrate so that substrate may bend by1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.
Failure Rate	1% per 1000 hours at $85^{\circ}C$, V_{R} with $0.1\Omega/V$ series impedance, 60% confidence level.

F91-AJ6 Series

Low ESR, Resin-Molded Chip - Automotive Product Range

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

Tantalum Ultra Low ESR Capacitor

FEATURES

- · Multi-anode Construction
- Super Low ESR
- 100% Surge Current Tested
- CV Range: 10-2200µF / 2.5-50V
- 5 Case Sizes Available
- "Mirror" Multi-anode Construction Used with D, Y Case Capacitors Reduces ESL to Half

SnPb termination option is not RoHS compliant.

APPLICATIONS

· High Power DC/DC General Applications

MULTIANODE CONSTRUCTION

MULTIANODE TPM D, Y LOW SELF INDUCTANCE CONSTRUCTION "MIRROR" DESIGN

MARKING

D, E, U, V, Y CASE

CASE DIMENSIONS:

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W₁±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
U	2924	7361-43	7.30 (0.287)	6.10 (0.240)	4.10 (0.162)	3.10 (0.122)	1.30 (0.051)	4.40 (0.173)
٧	2924	7361-38	7.30 (0.287)	6.10 (0.240)	3.55 (0.140)	3.10 (0.122)	1.30 (0.051)	4.40 (0.173)
Υ	2917	7343-20	7.30 (0.287)	4.30 (0.169)	2.00 (0.079) max	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)

W1 dimension applies to the termination width for A dimensional area only.

HOW TO ORDER

108

Capacitance Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow)

M

Tolerance $K = \pm 10\%$ $M = \pm 20\%$

004

Rated DC Voltage 002=2.5Vdc 004=4Vdc 006=6.3Vdc

010=10Vdc 016=16Vdc 020=20Vdc 025=25Vdc 035=35Vdc 050=50Vdc

Packaging

R

R = Pure Tin 7" Reel S = Pure Tin 13" Reel H = Tin Lead 7" Reel (Contact Manufacturer)

Tin Lead 13" Reel (Contact Manufacturer) H, K = Non RoHS

0018

millimeters (inches)

ESR in $m\Omega$

TECHNICAL SPECIFICATIONS

Technical Data:		All technical data relate to an ambient temperature of +25°C											
Capacitance Range:		10 μF to	2200 μF										
Capacitance Tolerance:		±10%, ±2	:0%										
Rated Voltage (V _R)	≤ +85°C:	2.5	4	6.3	10	16	20	25	35	50			
Category Voltage (V _C)	≤ +125°C:	1.7	2.7	4	7	10	13	17	23	33			
Surge Voltage (V _s)	≤ +85°C:	3.3	5.2	8	13	20	26	32	46	65			
Surge Voltage (V _s)	≤ +125°C:	2.2	3.4	5	8	13	16	20	28	40			
Temperature Range:	-55°C to +125°C												
Reliability:	1% per 1000 hours at 85°C. V. with 0.10/V series impedance, 60% confidence level												

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance				Rated V	oltage DC (V _R)	to 85°C			
μF	Code	2.5V (e)	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)
6.8	685									
10	106									D(140)/E(120)
15	156									E(75,100)
22	226								D(70) E(60,100)	E(75,100)
33	336							D(65)	E(50,65)	
47	476					D(100)	D(45,55)	D(55)/E(65)	E(55,65)	
68	686					D(40,50)		E(45,55)		
100	107				Y(45) ^(M)	D(40,50)	E(35,45)	E(45,60)		
150	157				Y(45)(M)	E(30,40)	E(35)			
220	227			Y(30) ^(M)	D(35)	E(25,40) U(30,40)				
330	337		D(25,35)	D(25,35)	D(35)/E(23,35)	E(50)				
470	477		D(25,35)	D(30) E(18,23,30)	E(23,30) U(23,30)					
680	687		D(25)/E(18,23)	E(18,23) U(18,23)/V(23)						
1000	108	D(25)	D(25,45) E(18,23) U(18,23)/V(18)	E(25) ^(M) /V(20) ^(M)						
1500	158	E(12,15,18) U(18,23)	E(15,18)							
2200	228	E(18) ^(M)								

Released ratings $^{(M \text{ tolerance only})}$, (ESR ratings in m0hms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

Tantalum Ultra Low ESR Capacitor

AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF	ESR Max.	100kl	lz RMS Cur	rent (A)	MSI
Part No.	Size	(μ F)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C) /olt @ 85°C	Max. (μA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVISI
TDMD100+000#000F		1000	2.5	0.5			25		1 25	3.194	2.874	1 077	1 2
TPMD108*002#0025 TPME158*002#0012	D E	1000 1500	2.5	85 85	1.7 1.7	125 125	25 38	8	25 12	4.743	4.269	1.277 1.897	3
TPME158*002#0015	E	1500	2.5	85	1.7	125	38	6	15	4.743	3.818	1.697	3
TPME158*002#0018	E	1500	2.5	85	1.7	125	38	6	18	3.873	3.486	1.549	3
TPMU158*002R0018	U	1500	2.5	85	1.7	125	30	6	18	4.048	3.643	1.619	3
TPMU158*002R0023	U	1500	2.5	85	1.7	125	30	6	23	3.581	3.223	1.433	3
TPME228M002#0018	E	2200	2.5	85	1.7	125	44	10	18	3.873	3.486	1.549	3
TPIVIEZZOWIUUZ#UU10	1 -	2200	2.3	00		olt @ 85°C	44	10	10	3.073	3.400	1.349	
TPMD337*004#0025	l D	330	4	85	2.7	125	13.2	8	25	3.194	2.874	1.277	3
TPMD337*004#0025	D	330	4	85	2.7	125	13.2	8	35	2.699	2.429	1.080	3
TPMD337*004#0035	D	470	4	85	2.7	125	18.8	8	25	3.194	2.429	1.080	3
TPMD477*004#0025	D	470	4	85	2.7	125	18.8	8	35	2.699		1.080	3
	D	680	4	85	2.7	125	27.2	8			2.429	1.080	3
TPMD687*004#0025	+								25	3.194	2.874		+
TPME687*004#0018	E	680	4	85	2.7	125	27	6	18	3.873	3.486	1.549	3
TPME687*004#0023	E	680	4	85	2.7	125	27	6	23	3.426	3.084	1.370	3
TPMD108*004#0025	D	1000	4	85	2.7	125	40	8	25	3.194	2.874	1.277	3
TPMD108*004#0045	D	1000	4	85	2.7	125	40	8	45	2.380	2.142	0.952	3
TPME108*004#0018	E	1000	4	85	2.7	125	40	6	18	3.873	3.486	1.549	3
TPME108*004#0023	E	1000	4	85	2.7	125	40	6	23	3.426	3.084	1.370	3
TPMU108*004R0018	U	1000	4	85	2.7	125	40	6	18	4.048	3.643	1.619	3
TPMU108*004R0023	U	1000	4	85	2.7	125	40	6	23	3.581	3.223	1.433	3
TPMV108*004#0018	V	1000	4	85	2.7	125	40	6	18	3.979	3.581	1.592	3
TPME158*004#0015	E	1500	4	85	2.7	125	60	6	15	4.243	3.818	1.697	3
TPME158*004#0018	E	1500	4	85	2.7	125	60	6	18	3.873	3.486	1.549	3
						/olt @ 85°C							
TPMY227M006#0030	Υ	220	6.3	85	4	125	13.2	6	30	2.646	2.381	1.058	3
TPMD337*006#0025	D	330	6.3	85	4	125	19.8	8	25	3.194	2.874	1.277	3
TPMD337*006#0035	D	330	6.3	85	4	125	19.8	8	35	2.699	2.429	1.080	3
TPMD477*006#0030	D	470	6.3	85	4	125	28.2	8	30	2.915	2.624	1.166	3
TPME477*006#0018	E	470	6.3	85	4	125	28	6	18	3.873	3.486	1.549	3
TPME477*006#0023	E	470	6.3	85	4	125	28	6	23	3.426	3.084	1.370	3
TPME477*006#0030	E	470	6.3	85	4	125	28	6	30	3.000	2.700	1.200	3
TPME687*006#0018	E	680	6.3	85	4	125	41	6	18	3.873	3.486	1.549	3
TPME687*006#0023	E	680	6.3	85	4	125	41	6	23	3.426	3.084	1.370	3
TPMU687*006R0018	U	680	6.3	85	4	125	41	6	18	4.048	3.643	1.619	3
TPMU687*006R0023	U	680	6.3	85	4	125	41	6	23	3.581	3.223	1.433	3
TPMV687*006#0023	V	680	6.3	85	4	125	41	6	23	3.520	3.168	1.408	3
TPME108M006#0025	Е	1000	6.3	85	4	125	63	8	25	3.286	2.958	1.315	3
TPMV108M006#0020	V	1000	6.3	85	4	125	63	8	20	3.775	3.397	1.510	3
					10 V	olt @ 85°C							
TPMY107M010#0045	Υ	100	10	85	7	125	10	8	45	2.160	1.944	0.864	3
TPMY157M010#0045	Y	150	10	85	7	125	15	8	45	2.160	1.944	0.864	3
TPMD227*010#0035	D	220	10	85	7	125	22	8	35	2.699	2.429	1.080	3
TPMD337*010#0035	D	330	10	85	7	125	33	8	35	2.699	2.429	1.080	3
TPME337*010#0023	E	330	10	85	7	125	33	6	23	3.426	3.084	1.370	3
TPME337*010#0025	E	330	10	85	7	125	33	6	35	2.777	2.500	1.111	3
TPME477*010#0023	E	470	10	85	7	125	47	6	23	3.426	3.084	1.370	3
TPME477*010#0020	E	470	10	85	7	125	47	6	30	3.000	2.700	1.200	3
TPMU477*010R0023	U	470	10	85	7	125	47	8	23	3.581	3.223	1.433	3
TPMU477*010R0030	U	470	10	85	7	125	47	8	30	3.136	2.822	1.254	3
		.,,,,		, 55		olt @ 85°C	.,		, 50	500	522		
TPMD476*016#0100	l D	47	16	85	10	125	7.5	8	100	1.597	1.437	0.639	3
	+	68											
TPMD686*016#0040	D		16	85	10 10	125 125	10.9 10.9	8	40	2.525	2.272	1.010	3
TPMD686*016#0050	D	68	16	85				8	50	2.258	2.032	0.903	3
TPMD107*016#0040	D	100	16	85	10	125	16	8	40	2.525	2.272	1.010	
TPMD107*016#0050	D	100	16	85	10	125	16	8	50	2.258	2.032	0.903	3
TPME157*016#0030	E	150	16	85	10	125	24	6	30	3.000	2.700	1.200	3
TPME157*016#0040	E	150	16	85	10	125	24	6	40	2.598	2.338	1.039	3
TPME227*016#0025	E	220	16	85	10	125	35	6	25	3.286	2.958	1.315	3
TPME227*016#0040	E	220	16	85	10	125	35	6	40	2.598	2.338	1.039	3
TPMU227*016R0030	U	220	16	85	10	125	35	8	30	3.136	2.822	1.254	3
TPMU227*016R0040	U	220	16	85	10	125	35	8	40	2.716	2.444	1.086	3
TPME337*016#0050	Е	330	16	85	10	125	52.8	10	50	2.324	2.091	0.930	3
						olt @ 85°C		,					
TPMD476*020#0045	D	47	20	85	13	125	9.4	8	45	2.380	2.142	0.952	3
TPMD476*020#0055	D	47	20	85	13	125	9.4	8	55	2.153	1.938	0.861	3
	- F	100	20	85	13	125	20	6	35	2.777	2.500	1.111	3
TPME107*020#0035	E	100	20	0.0	13	123	20	0	00		2.000		
	E	100	20	85	13	125	20	6	45	2.449	2.205	0.980	3

Tantalum Ultra Low ESR Capacitor

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kHz RMS Current (A)			MSL
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(μA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVIOL
					25 V	olt @ 85°C							
TPMD336*025#0065	D	33	25	85	17	125	8.3	8	65	1.981	1.783	0.792	3
TPMD476*025#0055	D	47	25	85	17	125	11.8	8	55	2.153	1.938	0.861	3
TPME476*025#0065	Е	47	25	85	17	125	11.8	6	65	2.038	1.834	0.815	3
TPME686*025#0045	E	68	25	85	17	125	17	6	45	2.449	2.205	0.980	3
TPME686*025#0055	E	68	25	85	17	125	17	6	55	2.216	1.994	0.886	3
TPME107*025#0045	Е	100	25	85	17	125	25	14	45	2.449	2.205	0.980	3
TPME107*025#0060	E	100	25	85	17	125	25	14	60	2.121	1.909	0.849	3
					35 V	olt @ 85°C							
TPMD226*035#0070	D	22	35	85	23	125	7.7	8	70	1.909	1.718	0.763	3
TPME226*035#0060	Е	22	35	85	23	125	8	6	60	2.121	1.909	0.849	3
TPME226*035#0100	E	22	35	85	23	125	8	6	100	1.643	1.479	0.657	3
TPME336*035#0050	E	33	35	85	23	125	12	6	50	2.324	2.091	0.930	3
TPME336*035#0065	Е	33	35	85	23	125	12	6	65	2.038	1.834	0.815	3
TPME476*035#0055	E	47	35	85	23	125	16	6	55	2.216	1.994	0.886	3
TPME476*035#0065	E	47	35	85	23	125	16	6	65	2.038	1.834	0.815	3
					50 V	olt @ 85°C							
TPMD106*050#0140	D	10	50	85	33	125	5	8	140	1.350	1.215	0.540	3
TPME106*050#0120	E	10	50	85	33	125	5	6	120	1.500	1.350	0.600	3
TPME156*050#0075	E	15	50	85	33	125	7.5	6	75	1.897	1.708	0.759	3
TPME156*050#0100	Е	15	50	85	33	125	7.5	6	100	1.643	1.479	0.657	3
TPME226*050#0075	E	22	50	85	33	125	11	8	75	1.897	1.708	0.759	3
TPME226*050#0100	E	22	50	85	33	125	11	8	100	1.643	1.479	0.657	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts.

DCL is measured at rated voltage after 5 minutes.

The EIA & CECC standards for low ESR Solid Tantalum Capacitors allow an ESR movement to 1.25 times catalogue limit post mounting.

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

QUALIFICATION TABLE

TEST			TPM series (Temperature range -	55°C to +1	25°C)						
IESI		Condition				Characte	ristics					
	A l d l l l	- (11-) -+ 0500 (/		Visual examination	no visible	damage						
		e (Ur) at 85°C and / o		DCL	initial lim	it						
Endurance	\ <i>'</i>	2000 hours through a	•	ΔC/C	within ±1	0% of initia	l value					
		ze at room temperati	ure for 1-2 flours	DF	initial lim	it						
	before measuring.			ESR	1.25 x ini	tial limit						
				Visual examination	no visible	damage						
	Store at 65°C and	95% relative humidit	y for 500 hours,	DCL	1.5 x initi	al limit						
Humidity	with no applied vol	ltage. Stabilize at roo	om temperature	ΔC/C	within ±1	0% of initia	l value					
•	and humidity for 1-	-2 hours before mea	suring.	DF	1.2 x initi	al limit						
				ESR	1.25 x ini	tial limit						
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C		
	1	+20	15	DCL								
Temperature	2	-55	15									
Stability				ΔC/C	n/a	+0/-10%	±5%	+10/-0%	+12/-0%	±5%		
,	·	3 +20 15 4 +85 15 5 +125 15		- DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL*		
	6	+20	15	ESR	1.25x L* 2.5x L* 1.25x L* 1.25x L* 1.25x L* 1.25x L*							
				Visual examination	no visible	damage		l.				
_	Apply 1.3x categor	v voltage (Uc) at 125	5°C for 1000 cycles	DCL	initial lim							
Surge	1 1 1 2	30 sec charge, 5 mir	,	ΔC/C	within ±5	% of initial	value					
Voltage		discharge resistance		DF	initial lim	it						
	33 3 3 3 3 3 7	.		ESR	1.25 x ini	tial limit						
				Visual examination	no visible	damage						
Marchantard				DCL	initial lim	it						
Mechanical	MIL-STD-202, Meth	nod 213, Condition C	;	ΔC/C	within ±5	% of initial	value					
Shock				DF	initial lim	it						
					initial lim	it						
				Visual examination	no visible	damage						
				DCL	initial lim	it						
Vibration	MIL-STD-202, Meth	nod 204, Condition D)	ΔC/C	within ±5	% of initial	value					
				DF	initial lim	it						
				ESR	initial lim	it						

*Initial Limit

Tantalum Ultra Low ESR Capacitor

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

Professional Tantalum Chip Capacitor

FEATURES

- Improved Reliability 2x Standard
- DCL Reduced by 25% to 0.0075 CV
- Robust Against Higher Thermo-mechanical Stresses During Assembly Process
- 100% Surge Current Tested
- CV Range: 0.10-680µF / 4-50V
- 6 Case Sizes Available
- 130 Low ESR Parts Released
- Automotive, Industrial and Other Higher End Applications

LEAD-FREE COMPATIBLE COMPONENT

SnPb termination option is not RoHS compliant.

APPLICATIONS

- Automotive ECU
- ABS
- Airbag Systems
- Avionics
- Industrial Control Units

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
Α	1206	3216-18	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
O	2312	6032-28	6.00 (0.236)	3.20 (0.126)	2.60 (0.102)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
C	2924	7361-43	7.30 (0.287)	6.10 (0.240)	4.10 (0.162)	3.10 (0.122)	1.30 (0.051)	4.40 (0.173)
	B C D	Code Code A 1206 B 1210 C 2312 D 2917 E 2917	Code Metric A 1206 3216-18 B 1210 3528-21 C 2312 6032-28 D 2917 7343-31 E 2917 7343-43	Code Metric (0.008) A 1206 3216-18 3.20 (0.126) B 1210 3528-21 3.50 (0.138) C 2312 6032-28 6.00 (0.236) D 2917 7343-31 7.30 (0.287) E 2917 7343-43 7.30 (0.287)	Code Metric (0.008) -0.10 (0.004) A 1206 3216-18 3.20 (0.126) 1.60 (0.063) B 1210 3528-21 3.50 (0.138) 2.80 (0.110) C 2312 6032-28 6.00 (0.236) 3.20 (0.126) D 2917 7343-31 7.30 (0.287) 4.30 (0.169) E 2917 7343-43 7.30 (0.287) 4.30 (0.169)	Code Metric (0.008) -0.10 (0.004) -0.10 (0.004) A 1206 3216-18 3.20 (0.126) 1.60 (0.063) 1.60 (0.063) B 1210 3528-21 3.50 (0.138) 2.80 (0.110) 1.90 (0.075) C 2312 6032-28 6.00 (0.236) 3.20 (0.126) 2.60 (0.102) D 2917 7343-31 7.30 (0.287) 4.30 (0.169) 2.90 (0.114) E 2917 7343-43 7.30 (0.287) 4.30 (0.169) 4.10 (0.162)	Code Metric (0.008) -0.10 (0.004) -0.10 (0.004) (0.008) A 1206 3216-18 3.20 (0.126) 1.60 (0.063) 1.60 (0.063) 1.20 (0.047) B 1210 3528-21 3.50 (0.138) 2.80 (0.110) 1.90 (0.075) 2.20 (0.087) C 2312 6032-28 6.00 (0.236) 3.20 (0.126) 2.60 (0.102) 2.20 (0.087) D 2917 7343-31 7.30 (0.287) 4.30 (0.169) 2.90 (0.114) 2.40 (0.094) E 2917 7343-43 7.30 (0.287) 4.30 (0.169) 4.10 (0.162) 2.40 (0.094)	Code Metric (0.008) -0.10 (0.004) -0.10 (0.004) (0.008) -0.20 (0.008) A 1206 3216-18 3.20 (0.126) 1.60 (0.063) 1.60 (0.063) 1.20 (0.047) 0.80 (0.031) B 1210 3528-21 3.50 (0.138) 2.80 (0.110) 1.90 (0.075) 2.20 (0.087) 0.80 (0.031) C 2312 6032-28 6.00 (0.236) 3.20 (0.126) 2.60 (0.102) 2.20 (0.087) 1.30 (0.051) D 2917 7343-31 7.30 (0.287) 4.30 (0.169) 2.90 (0.114) 2.40 (0.094) 1.30 (0.051) E 2917 7343-43 7.30 (0.287) 4.30 (0.169) 4.10 (0.162) 2.40 (0.094) 1.30 (0.051)

W₁ dimension applies to the termination width for A dimensional area only.

MARKING

A, B, C, D, E, U CASE

HOW TO ORDER

Case Size See table above

105

Capacitance Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow)

Tolerance

 $K = \pm 10\%$ $M = \pm 20\%$ 035

Rated DC Voltage 004 = 4V006 = 6.3V

010 = 10V016 = 16V 020 = 20V

025 = 25V035 = 35V

050 = 50V

Packaging

R = Pure Tin 7" Reel S = Pure Tin 13" Reel

R

A = Gold Plating 7" Reel (Contact Manufacturer) B = Gold Plating 13" Reel

(Contact Manufacturer) H = Tin Lead 7" Reel (Contact Manufacturer)

K = Tin Lead 13" Reel (Contact Manufacturer) H, K = Non RoHS

RJ

Standard Suffix OR

0100

Low ESR in mΩ

Additional characters may be added for special requirements
V = Dry pack Option
(selected codes only)

TECHNICAL SPECIFICATIONS

Technical Data:		All technic	al data rela	te to an am	bient tem	perature of	+25°C						
Capacitance Range:		0.10 μF to	680 µF										
Capacitance Tolerance:		±10%; ±20°	%										
Leakage Current DCL:		0.0075CV	or 0.3µA wł	nichever is	the greate	r							
Rated Voltage (V _R)	≤+ 85°C:												
Category Voltage (V _C)	≤ + 125°C: 2.7 4 7 10 13 17 23 33												
Surge Voltage (V _s)	≤+ 85°C:	5.2	8	13	20	26	32	46	65				
Surge Voltage (V _s)	≤ + 125°C:	3.4	5	8	13	16	20	28	40				
Temperature Range:		-55°C to +1	125°C										
Reliability:		0.5% per 1	000 hours a	at 85°C, V _R	with 0.1Ω/	V series im	pedance, 6	0% confide	ence level				
Termination Plating:	Sn Plating (standard), Gold and SnPb Plating upon request												
		Meets requ	uirements o	f AEC-Q20	0								

Professional Tantalum Chip Capacitor

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	citance				Rated Voltage	DC (V _R) to 85°C			
μF	Code	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)
0.10	104							А	
0.15	154							A, A(6000)	
0.22	224							A, A(6000)	A, A(7000)
0.33	334							A, A(6000)	А
0.47	474						A, A(7000)	A, A(4000)	В
0.68	684						A, A(6000)	A, A(6000)	B, B(2000)
1.0	105				А	A, A(3000)	A, A(3000)	A, B A(3000), B(2000)	C, B B(2000)
1.5	155			А		A, A(3000)	A, B, A(3000)	A, B A(2000), B(2500)	C, C(1500)
2.2	225			А	A, A(3500)	A, A(3000)	A, B A(1600), B(1200)	B, B(2000)	C, D C(1000), D(1200)
3.3	335				A, B A(3500)	A, B A(2500), B(1300)	B, B(2000)	B, C, D B(1000), C(800)	C, D C(1000), D(800)
4.7	475			A, A(2000)	A, B A(2000), B(1500)	A, B, A(1800), B(1000)	B, B(1000)	B, C, D B(1500), C(600)	D, D(600)
6.8	685			A, B, A(1800)	A, B, C A(1500), B(1200)	B, C B(1000)	B, C B(1000), C(600)	C, D C(600)	D
10	106		A, B A(1500)	A, B A(1800), B(800)	B, C B(800)	B, C B(1000), C(500)	C, D C(600)	C, D C(600), (250,400)	E, E(300,400)
15	156	В	A, B A(1500), B(700)	A, B, C A(1000), B(600)	B, B(800)	B, C, D B(500), C(400)	C, D C(500), D(300)	D, D(225)	U
22	226		A, B, C A(900), B(600)	B, B(700)	B, C, D B(600), C(350)	C, D, C(400), D(150,300)	D, D(300)	D, D(200.400)	U
33	336	С	B, C B(600)	B, C, D B(650), C(300)	C, C(300)	C, D C(300), D(250)	D, D(400)	E, E(150,250)	
47	476		B, C B(500), C(250)	C, D C(300)	C, D C(350), D(200)	D, D(200)	D, E D(250), E(150)	U, U(200)	
68	686		C, C(200)	C, C(300)	C, D C(200), D(150)	D, E D(200), E(120,200)	U		
100	107		C, C(300)	C, D, E C(200), D(100,150), E(100)	D, E D(150), E(150)	E, E(150)	U		
150	157		C, D C(300), D(150)	D, E D(150), E(150)	E, E(150)	U, U(250)			
220	227		D, D(150)	D, E, E(150)	U, U(200)				
330	337		D, E, E(150)	E, E(100)	U, U(200)				
470	477		E, E(200)	U, U(200)					
680	687		U, U(250)						

Note for designers – for the highlighted ratings, higher voltage options are now available in the same case size and are recommended for new designs.

Released ratings, (ESR ratings in mOhms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply

higher voltage ratings in the same case size, to the same reliability standards.

Professional Tantalum Chip Capacitor

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kHz	z RMS Curre	ent (mA)	MSL
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(μA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVIOL
						It @ 85°C					<u> </u>		
TRJB156*004#RJ	В	15	4	85	2.7	125	0.45	6	3000	168	151	67	1
TRJC336*004#RJ	С	33	4	85	2.7	125 olt @ 85°C	1	6	2000	235	211	94	1
TRJA106*006#RJ	l A	10	6.3	85	4	125	0.45	6	2200	185	166	74	1
TRJA106*006#1500	A	10	6.3	85	4	125	0.45	6	1500	224	201	89	1
TRJB106*006#RJ	В	10	6.3	85	4	125	0.45	6	3000	168	151	67	1
TRJA156*006#RJ	Α	15	6.3	85	4	125	0.68	6	2030	192	173	77	1
TRJA156*006#1500	Α	15	6.3	85	4	125	0.68	6	1500	224	201	89	1
TRJB156*006#RJ	B B	15 15	6.3	85	4	125	0.68	6	2030	205	184 314	82	1
TRJB156*006#0700 TRJA226*006#RJ	A	22	6.3	85 85	4	125 125	0.68	6	700 1700	348 210	189	139 84	1
TRJA226*006#0900	A	22	6.3	85	4	125	0.99	6	900	289	260	115	1
TRJB226*006#RJ	В	22	6.3	85	4	125	0.99	6	1880	213	191	85	1
TRJB226*006#0600	В	22	6.3	85	4	125	0.99	6	600	376	339	151	1
TRJC226*006#RJ	С	22	6.3	85	4	125	0.99	6	2000	235	211	94	1
TRJB336*006#RJ	В	33	6.3	85	4	125	1.5	6	1740	221	199	88	1
TRJB336*006#0600 TRJC336*006#RJ	B C	33	6.3	85 85	4	125 125	1.5	6	600 1800	376 247	339 222	151 99	1
TRJC336*006#RJ	В	47	6.3	85	4	125	2.1	6	1620	247	206	99	1
TRJB476*006#0500	В	47	6.3	85	4	125	2.1	6	500	412	371	165	1
TRJC476*006#RJ	С	47	6.3	85	4	125	2.1	6	540	451	406	181	1
TRJC476*006#0250	С	47	6.3	85	4	125	2.1	6	250	663	597	265	1
TRJC686*006#RJ	С	68	6.3	85	4	125	3.1	6	490	474	426	190	1
TRJC686*006#0200	С	68	6.3	85	4	125	3.1	6	200	742	667	297	1
TRJC107*006#RJ TRJC107*006#0300	C	100 100	6.3	85 85	4	125 125	4.5 4.5	6	300	500 606	450 545	200	1
TRJC157*006#RJ	C	150	6.3	85	4	125	6.8	8	500	469	422	188	1
TRJC157*006#0300	C	150	6.3	85	4	125	6.8	8	300	606	545	242	1
TRJD157*006#RJ	D	150	6.3	85	4	125	6.8	6	400	612	551	245	1
TRJD157*006#0150	D	150	6.3	85	4	125	6.8	6	150	1000	900	400	1
TRJD227*006#RJ	D	220	6.3	85	4	125	9.9	8	360	645	581	258	1
TRJD227*006#0150	D	220	6.3	85	4	125	9.9	8	150	1000	900	400	1
TRJD337*006#RJ TRJE337*006#RJ	D E	330 330	6.3	85 85	4	125 125	14 14	8	400 330	612 707	551 636	245 283	1 1 ¹⁾
TRJE337*006#R5	E	330	6.3	85	4	125	14	8	150	1049	944	420	11)
TRJE477*006#RJ	E	470	6.3	85	4	125	21	8	250	812	731	325	1 ¹⁾
TRJE477*006#0200	Е	470	6.3	85	4	125	21	8	200	908	817	363	1 ¹⁾
TRJU687*006RRJV	U	680	6.3	85	4	125	30	30	500	574	517	230	3
TRJU687*006R0250V	U	680	6.3	85	4	125	30	30	250	812	731	325	3
	· ·			1		olt @ 85°C			T ==== T		T	1	
TRJA155*010#RJ TRJA225*010#RJ	A	1.5	10	85	7	125	0.3	6	7000	104	93	41	1
TRJA225*010#RJ TRJA475*010#RJ	A	2.2 4.7	10 10	85 85	7	125 125	0.3	6	7000 2900	104 161	93 145	41 64	1
TRJA475*010#RJ	A	4.7	10	85	7	125	0.35	6	2000	194	174	77	1
TRJA685*010#RJ	A	6.8	10	85	7	125	0.51	6	2650	168	151	67	1
TRJA685*010#1800	Α	6.8	10	85	7	125	0.51	6	1800	204	184	82	1
TRJB685*010#RJ	В	6.8	10	85	7	125	0.51	6	3000	168	151	67	1
TRJA106*010#RJ	A	10	10	85	7	125	0.75	6	2200	185	166	74	1
TRJA106*010#1800 TRJB106*010#RJ	A B	10	10 10	85 85	7	125 125	0.75 0.75	6	1800 2200	204 197	184 177	82 79	1
TRJB106*010#RJ	В	10	10	85	7	125	0.75	6	800	326	293	130	1
TRJA156*010#RJ	A	15	10	85	7	125	1.1	6	1800	204	184	82	1
TRJA156*010#1000	A	15	10	85	7	125	1.1	6	1000	274	246	110	1
TRJB156*010#RJ	В	15	10	85	7	125	1.1	6	2030	205	184	82	1
TRJB156*010#0600	В	15	10	85	7	125	1.1	6	600	376	339	151	1
TRJC156*010#RJ	С	15	10	85	7	125	1.1	6	2000	235	211	94	1
TRJB226*010#RJ TRJB226*010#0700	B B	22	10 10	85 85	7	125 125	1.7	6	1880 700	213 348	191 314	85 139	1
TRJB336*010#RJ	В	33	10	85	7	125	2.5	6	1000	292	262	117	1
TRJB336*010#0650	В	33	10	85	7	125	2.5	6	650	362	325	145	1
TRJC336*010#RJ	С	33	10	85	7	125	2.5	6	590	432	389	173	1
TRJC336*010#0300	С	33	10	85	7	125	2.5	6	300	606	545	242	1
TRJD336*010#RJ	D	33	10	85	7	125	2.5	6	1100	369	332	148	1
TRJC476*010#RJ	С	47	10	85	7	125	3.5	6	540	451	406	181	1
TRJC476*010#0300 TRJD476*010#RJ	C D	47 47	10 10	85 85	7	125 125	3.5	6	300 400	606	545 551	242 245	1
TRJC686*010#RJ	C	68	10	85	7	125	5.1	6	400	474	426	190	1
TRJC686*010#0300	C	68	10	85	7	125	5.1	6	300	606	545	242	1
TRJC107*010#RJ	С	100	10	85	7	125	7.5	8	500	469	422	188	1
TRJC107*010#0200	С	100	10	85	7	125	7.5	8	200	742	667	297	1

Professional Tantalum Chip Capacitor

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kHz	RMS Curre	ent (mA)	MSL
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(μ A)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVIOL
TRJD107*010#RJ	D	100	10	85	7	125	7.5	6	440	584	525	234	1
TRJD107*010#0100	D	100	10	85	7	125	7.5	6	100	1225	1102	490	1
TRJD107*010#0150	D	100	10	85	7	125	7.5	6	150	1000	900	400	1
TRJE107*010#RJ	E	100	10	85	7	125	7.5	6	440	612	551	245	11)
TRJE107*010#0100	E D	100	10 10	85	7	125 125	7.5	6 8	100	1285	1156	514	11)
TRJD157*010#RJ TRJD157*010#0150	D	150 150	10	85 85	7	125	11 11	8	400 150	612 1000	551 900	245 400	1
TRJE157*010#0130	E	150	10	85	7	125	11	8	400	642	578	257	1 ¹⁾
TRJE157*010#0150	E	150	10	85	7	125	11	8	150	1049	944	420	11)
TRJD227*010#RJ	D	220	10	85	7	125	17	8	500	548	493	219	1
TRJE227*010#RJ	E	220	10	85	7	125	17	8	360	677	609	271	11)
TRJE227*010#0150	Е	220	10	85	7	125	17	8	150	1049	944	420	1 ¹⁾
TRJE337*010#RJ	Е	330	10	85	7	125	25	8	300	742	667	297	1 ¹⁾
TRJE337*010#0100	E	330	10	85	7	125	25	8	100	1285	1156	514	1 ¹⁾
TRJU477*010RRJV	U	470	10	85	7	125	35	30	400	642	578	257	3
TRJU477*010R0200V	U	470	10	85	7	125	35	30	200	908	817	363	3
					16 V	olt @ 85°C							
TRJA105*016#RJ	Α	1.0	16	85	10	125	0.3	6	10000	87	78	35	1
TRJA225*016#RJ	Α	2.2	16	85	10	125	0.3	6	4550	128	116	51	1
TRJA225*016#3500	Α	2.2	16	85	10	125	0.3	6	3500	146	132	59	1
TRJA335*016#RJ	A	3.3	16	85	10	125	0.4	6	3740	142	127	57	1
TRJA335*016#3500	A	3.3	16	85	10	125	0.4	6	3500	146	132	59	1
TRJB335*016#RJ	В	3.3	16	85	10 10	125 125	0.4	6	4500	137 154	124 139	55	1
TRJA475*016#RJ TRJA475*016#2000	A	4.7 4.7	16 16	85 85	10	125	0.56 0.56	6	3160 2000	194	174	62 77	1
TRJB475*016#RJ	В	4.7	16	85	10	125	0.56	6	3160	164	148	66	1
TRJB475*016#1500	В	4.7	16	85	10	125	0.56	6	1500	238	214	95	1
TRJA685*016#RJ	A	6.8	16	85	10	125	0.82	4	2000	194	174	77	1
TRJA685*016#1500	A	6.8	16	85	10	125	0.82	4	1500	224	201	89	1
TRJB685*016#RJ	В	6.8	16	85	10	125	0.82	6	2650	179	161	72	1
TRJB685*016#1200	В	6.8	16	85	10	125	0.82	6	1200	266	240	106	1
TRJC685*016#RJ	С	6.8	16	85	10	125	0.82	6	2500	210	189	84	1
TRJB106*016#RJ	В	10	16	85	10	125	1.2	6	2200	197	177	79	1
TRJB106*016#0800	В	10	16	85	10	125	1.2	6	800	326	293	130	1
TRJC106*016#RJ	С	10	16	85	10	125	1.2	6	2000	235	211	94	1
TRJB156*016#RJ	В	15	16	85	10	125	1.8	6	2030	205	184	82	1
TRJB156*016#0800	В	15	16	85	10	125	1.8	6	800	326	293	130	1
TRJB226*016#RJ	В	22	16	85	10	125	2.6	6	1100	278	250	111	1
TRJB226*016#0600	В	22	16	85	10	125	2.6	6	600	376	339	151	1
TRJC226*016#RJ	C	22 22	16 16	85 85	10 10	125	2.6	6	700 350	396 561	357 505	159 224	1
TRJC226*016#0350 TRJD226*016#RJ	D	22	16	85	10	125 125	2.6	6	1100	369	332	148	1
TRJC336*016#RJ	C	33	16	85	10	125	4	6	590	432	389	173	1
TRJC336*016#0300	C	33	16	85	10	125	4	6	300	606	545	242	1
TRJC476*016#RJ	C	47	16	85	10	125	5.6	6	540	451	406	181	1
TRJC476*016#0350	C	47	16	85	10	125	5.6	6	350	561	505	224	1
TRJD476*016#RJ	D	47	16	85	10	125	5.6	6	540	527	474	211	1
TRJD476*016#0200	D	47	16	85	10	125	5.6	6	200	866	779	346	1
TRJC686*016#RJ	С	68	16	85	10	125	8.2	6	490	474	426	190	1
TRJC686*016#0200	С	68	16	85	10	125	8.2	6	200	742	667	297	1
TRJD686*016#RJ	D	68	16	85	10	125	8.2	6	490	553	498	221	1
TRJD686*016#0150	D	68	16	85	10	125	8.2	6	150	1000	900	400	1
TRJD107*016#RJ	D	100	16	85	10	125	12	6	440	584	525	234	1
TRJD107*016#0150	D	100	16	85	10	125	12	6	150	1000	900	400	1
TRJE107*016#RJ	E	100	16	85	10	125	12	6	440	612	551	245	11)
TRJE107*016#0150	E	100	16	85	10	125	12	6	150	1049	944	420	11)
TRJE157*016#RJ	E	150	16	85	10	125	16	6	300	742	667	297	11)
TRJE157*016#0150 TRJU227*016RRJV	E U	150	16	85	10	125	16	6	150	1049	944	420	11)
TRJU227*016RRJV TRJU227*016R0200V	U	220 220	16 16	85 85	10 10	125 125	26.4 26.4	12 12	500 200	574 908	517 817	230 363	3
TRJU337*016RU2UUV	U	330	16	85	10	125	39	30	400	642	578	257	3
TRJU337*016R0200V	U	330	16	85	10	125	39	30	200	908	817	363	3
11.00007 01010200V		330	10			olt @ 85°C	33	30	200	200	017		
TRJA105*020#RJ	A	1	20	85	13	125	0.3	4	6630	106	96	43	1
TRJA105*020#3000	A	1	20	85	13	125	0.3	4	3000	158	142	63	1
TRJA155*020#RJ	A	1.5	20	85	13	125	0.3	6	5460	117	105	47	1
TRJA155*020#3000	A	1.5	20	85	13	125	0.3	6	3000	158	142	63	1
TRJA225*020#RJ	A	2.2	20	85	13	125	0.33	6	4550	128	116	51	1
TRJA225*020#3000	A	2.2	20	85	13	125	0.33	6	3000	158	142	63	1
TRJA335*020#RJ	A	3.3	20	85	13	125	0.5	6	3740	142	127	57	1
						-							

Professional Tantalum Chip Capacitor

AVX	Case	Capacitance (µF)	Rated Voltage		Category Voltage	Category Temperature	DCL Max.	DF Max. (%)	ESR Max.	100kHz	RMS Curre	ent (mA)	MSL
Part No.	Size		(V)		(V)	(°C)	(μA)		@ 100kHz (mΩ)	25°C	85°C	125°C	IVIOL
TRJB335*020#RJ	В	3.3	20	85	13	125	0.5	6	3740	151	136	60	1
TRJB335*020#1300	В	3.3	20	85	13	125	0.5	6	1300	256	230	102	1
TRJA475*020#RJ	Α	4.7	20	85	13	125	0.71	5	2500	184	166	74	1
TRJA475*020#1800	A	4.7	20	85	13	125	0.71	5	1800	217	196	87	1
TRJB475*020#RJ	В	4.7	20	85	13	125	0.71	6	3160	164	148	66	1
TRJB475*020#1000	В	4.7	20	85	13	125	0.71	6	1000	292	262	117	1
TRJB685*020#RJ TRJB685*020#1000	B B	6.8	20	85 85	13 13	125 125	1	6	2650 1000	179 292	161 262	72 117	1
TRJC685*020#RJ	C	6.8	20	85	13	125	1	6	2000	235	211	94	1
TRJB106*020#RJ	В	10	20	85	13	125	1.5	6	2200	197	177	79	1
TRJB106*020#1000	В	10	20	85	13	125	1.5	6	1000	292	262	117	1
TRJC106*020#RJ	C	10	20	85	13	125	1.5	6	800	371	334	148	1
TRJC106*020#0500	С	10	20	85	13	125	1.5	6	500	469	422	188	1
TRJB156*020#RJ	В	15	20	85	13	125	2.3	6	1400	280	252	112	1
TRJB156*020#0500	В	15	20	85	13	125	2.3	6	500	469	422	188	1
TRJC156*020#RJ	С	15	20	85	13	125	2.3	6	720	391	352	156	1
TRJC156*020#0400	С	15	20	85	13	125	2.3	6	400	524	472	210	1
TRJD156*020#RJ	D	15	20	85	13	125	2.3	6	1100	369	332	148	1
TRJC226*020#RJ	С	22	20	85	13	125	3.3	6	650	411	370	165	1
TRJC226*020#0400	С	22	20	85	13	125	3.3	6	400	524	472	210	1
TRJD226*020#RJ	D	22	20	85	13	125	3.3	6	650	480	432	192	1
TRJD226*020#0150	D	22	20	85	13	125	3.3	6	150	1000	900	400	1
TRJD226*020#0300 TRJC336*020#RJ	D C	22 33	20	85 85	13 13	125 125	3.3 5	6	300 590	707 432	636 389	283 173	1
TRJC336*020#RJ	C	33	20	85	13	125	5	6	300	606	545	242	1
TRJD336*020#RJ	D	33	20	85	13	125	5	6	590	504	454	202	1
TRJD336*020#0250	D	33	20	85	13	125	5	6	250	775	697	310	1
TRJD476*020#RJ	D	47	20	85	13	125	7.1	6	540	527	474	211	1
TRJD476*020#0200	D	47	20	85	13	125	7.1	6	200	866	779	346	1
TRJD686*020#RJ	D	68	20	85	13	125	10	6	490	553	498	221	1
TRJD686*020#0200	D	68	20	85	13	125	10	6	200	866	779	346	1
TRJE686*020#RJ	E	68	20	85	13	125	10	6	490	580	522	232	1 ¹⁾
TRJE686*020#0120	E	68	20	85	13	125	10	6	120	1173	1055	469	11)
TRJE686*020#0200	E	68	20	85	13	125	10	6	200	908	817	363	1 ¹⁾
TRJE107*020#RJ	E	100	20	85	13	125	15	6	300	742	667	297	1 ¹⁾
TRJE107*020#0150	E	100	20	85	13	125	15	6	150	1049	944	420	1 ¹⁾
TRJU157*020RRJV	U	150	20	85	13	125	22	30	500	574	517	230	3
TRJU157*020R0250V	U	150	20	85	13	125 olt @ 85°C	22	30	250	812	731	325	3
TRJA474*025#RJ	Ι Δ	0.47	25	85			0.0	4	9530	89	80	35	1
TRJA474*025#RJ	A	0.47	25	85	17 17	125 125	0.3	4	7000	104	93	41	1
TRJA684*025#RJ	A	0.68	25	85	17	125	0.3	4	7980	97	87	39	1
TRJA684*025#6000	A	0.68	25	85	17	125	0.3	4	6000	112	101	45	1
TRJA105*025#RJ	A	1	25	85	17	125	0.3	4	6630	106	96	43	1
TRJA105*025#3000	A	1	25	85	17	125	0.3	4	3000	158	142	63	1
TRJA155*025#RJ	A	1.5	25	85	17	125	0.3	6	5460	117	105	47	1
TRJA155*025#3000	Α	1.5	25	85	17	125	0.3	6	3000	158	142	63	1
TRJB155*025#RJ	В	1.5	25	85	17	125	0.3	6	5000	130	117	52	1
TRJA225*025#RJ	Α	2.2	25	85	17	125	0.41	6	2900	161	145	64	1
TRJA225*025#1600	Α	2.2	25	85	17	125	0.41	6	1600	217	195	87	1
TRJB225*025#RJ	В	2.2	25	85	17	125	0.41	6	4550	137	123	55	1
TRJB225*025#1200	В	2.2	25	85	17	125	0.41	6	1200	266	240	106	1
TRJB335*025#RJ	В	3.3	25	85	17	125	0.62	6	3740	151	136	60	1
TRJB335*025#2000	В	3.3	25	85	17	125	0.62	6	2000	206	186	82	1
TRJB475*025#RJ	В	4.7	25	85	17	125	0.88	6	3160	164	148	66	1
TRJB475*025#1000	В	4.7	25	85	17	125	0.88	6	1000	292	262	117	1
TRJB685*025#RJ TRJB685*025#1000	B B	6.8	25 25	85 85	17 17	125 125	1.3	6	1500 1000	238 292	214 262	95 117	1
TRJC685*025#RJ	C	6.8	25	85	17	125	1.3	6	1000	321	289	128	1
TRJC685*025#RJ	C	6.8	25	85	17	125	1.3	6	600	428	385	171	1
TRJC106*025#RJ	C	10	25	85	17	125	1.9	6	800	371	334	148	1
TRJC106*025#0600	C	10	25	85	17	125	1.9	6	600	428	385	171	1
TRJD106*025#RJ	D	10	25	85	17	125	1.9	6	1200	354	318	141	1
TRJC156*025#RJ	C	15	25	85	17	125	2.8	6	720	391	352	156	1
TRJC156*025#0500	С	15	25	85	17	125	2.8	6	500	469	422	188	1
TRJD156*025#RJ	D	15	25	85	17	125	2.8	6	720	456	411	183	1
TRJD156*025#0300	D	15	25	85	17	125	2.8	6	300	707	636	283	1
TRJD226*025#RJ	D	22	25	85	17	125	4.1	6	650	480	432	192	1
TRJD226*025#0300	D	22	25	85	17	125	4.1	6	300	707	636	283	1
TRJD336*025#RJ	D	33	25	85	17	125	6.2	6	590	504	454	202	1
TRJD336*025#0400	D	33	25	85	17	125	6.2	6	400	612	551	245	1

Professional Tantalum Chip Capacitor

AVX	Case	Capacitance (µF)	Rated Voltage		Category Voltage	Category Temperature (°C)	DCL Max. (μA)	DF Max. (%)	ESR Max.	100kHz RMS Current (mA)			MSL
Part No.	Size		(V)		(V)				@ 100kHz (mΩ)	25°C	85°C	125°C	
TRJD476*025#RJ	D	47	25	85	17	125	8.8	6	540	527	474	211	1
TRJD476*025#0250	D	47	25	85	17	125	8.8	6	250	775	697	310	1
TRJE476*025#RJ	E	47	25	85	17	125	8.8	6	540	553	497	221	1 ¹⁾
TRJE476*025#0150	E	47	25	85	17	125	8.8	6	150	1049	944	420	1 ¹⁾
TRJU686*025RRJV	U	68	25	85	17	125	12	30	500	574	517	230	3
TRJU107*025RRJV	U	100	25	85	17	125	18	30	500	574	517	230	3
						olt @ 85°C			<u> </u>				
TRJA104*035#RJ	Α	0.1	35	85	23	125	0.3	4	20000	61	55	24	1
TRJA154*035#RJ	Α	0.15	35	85	23	125	0.3	4	16470	67	61	27	1
TRJA154*035#6000	A	0.15	35	85	23	125	0.3	4	6000	112	101	45	1
TRJA224*035#RJ	Α	0.22	35	85	23	125	0.3	4	13710	74	67	30	1
TRJA224*035#6000	Α	0.22	35	85	23	125	0.3	4	6000	112	101	45	1
TRJA334*035#RJ	Α	0.33	35	85	23	125	0.3	4	11280	82	73	33	1
TRJA334*035#6000	A	0.33	35	85	23	125	0.3	4	6000	112	101	45	1
TRJA474*035#RJ	Α	0.47	35	85	23	125	0.3	4	9530	89	80	35	1
TRJA474*035#4000	Α	0.47	35	85	23	125	0.3	4	4000	137	123	55	1
TRJA684*035#RJ	Α	0.68	35	85	23	125	0.3	4	7980	97	87	39	1
TRJA684*035#6000	Α	0.68	35	85	23	125	0.3	4	6000	112	101	45	1
TRJA105*035#RJ	Α	1	35	85	23	125	0.3	4	6630	106	96	43	1
TRJA105*035#3000	A	1	35	85	23	125	0.3	4	3000	158	142	63	1
TRJB105*035#RJ	В	1	35	85	23	125	0.3	4	3400	158	142	63	1
TRJB105*035#2000	В	1	35	85	23	125	0.3	4	2000	206	186	82	1
TRJA155*035#RJ	Α	1.5	35	85	23	125	0.39	6	3100	166	149	66	1
TRJA155*035#2000	Α	1.5	35	85	23	125	0.39	6	2000	206	186	82	1
TRJB155*035#RJ	В	1.5	35	85	23	125	0.39	6	5460	125	112	50	1
TRJB155*035#2500	В	1.5	35	85	23	125	0.39	6	2500	184	166	74	1
TRJB225*035#RJ	В	2.2	35	85	23	125	0.58	6	4550	137	123	55	1
TRJB225*035#2000	В	2.2	35	85	23	125	0.58	6	2000	206	186	82	1
TRJB335*035#RJ	В	3.3	35	85	23	125	0.87	6	3740	151	136	60	1
TRJB335*035#1000	В	3.3	35	85	23	125	0.87	6	1000	292	262	117	1
TRJC335*035#RJ	С	3.3	35	85	23	125	0.87	6	1840	245	220	98	1
TRJC335*035#0800	С	3.3	35	85	23	125	0.87	6	800	371	334	148	1
TRJD335*035#RJ	D	3.3	35	85	23	125	0.87	6	2000	274	246	110	1
TRJB475*035#RJ	В	4.7	35	85	23	125	1.2	6	2200	224	201	89	1
TRJB475*035#1500	В	4.7	35	85	23	125	1.2	6	1500	271	244	108	1
TRJC475*035#RJ	С	4.7	35	85	23	125	1.2	6	1410	279	251	112	1
TRJC475*035#0600	С	4.7	35	85	23	125	1.2	6	600	428	385	171	1
TRJD475*035#RJ	D	4.7	35	85	23	125	1.2	6	1500	316	285	126	1
TRJC685*035#RJ	С	6.8	35	85	23	125	1.8	6	1070	321	289	128	1
TRJC685*035#0600	С	6.8	35	85	23	125	1.8	6	600	428	385	171	1
TRJD685*035#RJ	D	6.8	35	85	23	125	1.8	6	1300	340	306	136	1
TRJC106*035#RJ	С	10	35	85	23	125	2.6	6	800	371	334	148	1
TRJC106*035#0600	С	10	35	85	23	125	2.6	6	600	428	385	171	1
TRJD106*035#RJ	D	10	35	85	23	125	2.6	6	800	433	390	173	1
TRJD106*035#0250	D	10	35	85	23	125	2.6	6	250	775	697	310	1
TRJD106*035#0400	D	10	35	85	23	125	2.6	6	400	612	551	245	1
TRJD156*035#RJ	D	15	35	85	23	125	3.9	6	720	456	411	183	1
TRJD156*035#0225	D	15	35	85	23	125	3.9	6	225	816	735	327	1
TRJD226*035#RJ	D	22	35	85	23	125	5.8	6	650	480	432	192	1
TRJD226*035#0200	D	22	35	85	23	125	5.8	6	200	866	779	346	1
TRJD226*035#0400	D	22	35	85	23	125	5.8	6	400	612	551	245	1
TRJE336*035#RJ	Е	33	35	85	23	125	8.7	6	590	529	476	212	1 ¹⁾
TRJE336*035#0150	Е	33	35	85	23	125	8.7	6	150	1049	944	420	1 ¹⁾
TRJE336*035#0250	E	33	35	85	23	125	8.7	6	250	812	731	325	1 ¹⁾
TRJU476*035RRJV	U	47	35	85	23	125	12.3	10	400	642	578	257	3
TRJU476*035R0200V	U	47	35	85	23	125	12.3	10	200	908	8.17	363	3
						olt @ 85°C							
TRJA224*050#RJ	A	0.22	50	85	33	125	0.3	4	7500	100	90	40	1
TRJA224*050#7000	A	0.22	50	85	33	125	0.3	4	7000	104	93	41	1
TRJA334*050#RJ	A	0.33	50	85	33	125	0.3	4	7000	104	93	41	1
TRJB474*050#RJ	В	0.47	50	85	33	125	0.3	4	5000	130	117	52	1
TRJB684*050#RJ	В	0.68	50	85	33	125	0.3	4	4000	146	131	58	1
TRJB684*050#2000	В	0.68	50	85	33	125	0.3	4	2000	206	186	82	1
TRJB105*050#RJ	В	1	50	85	33	125	0.4	4	3400	158	142	63	1
TRJB105*050#2000	В	1	50	85	33	125	0.4	4	2000	206	186	82	1
TRJC105*050#RJ	C	1	50	85	33	125	0.4	4	3000	191	172	77	1
TRJC105*050#RJ	C	1.5	50	85	33	125	0.4	6	2500	210	189	84	1
TRJC155*050#RJ	С	1.5	50	85	33	125	0.6	6	1500	271	244	108	1
11130133 030#1300						125	0.8	6	1700	254	229	108	1
	1 ^												
TRJC225*050#RJ TRJC225*050#1000	C	2.2	50 50	85 85	33 33	125	0.8	6	1000	332	298	133	1

Professional Tantalum Chip Capacitor

RATINGS & PART NUMBER REFERENCE

AVX Part No.	Case Size	Capacitance (μF)	Rated Voltage (V)	Rated Temperature (°C)	Category Voltage (V)	Category Temperature (°C)	DCL Max. (μA)	DF Max. (%)	ESR Max.	100kHz	MOI		
									@ 100kHz (mΩ)	25°C	85°C	125°C	MSL
TRJD225*050#1200	D	2.2	50	85	33	125	0.8	4.5	1200	354	318	141	1
TRJC335*050#RJ	С	3.3	50	85	33	125	1.2	6	1400	280	252	112	1
TRJC335*050#1000	С	3.3	50	85	33	125	1.2	6	1000	332	298	133	1
TRJD335*050#RJ	D	3.3	50	85	33	125	1.2	4.5	1100	369	332	148	1
TRJD335*050#0800	D	3.3	50	85	33	125	1.2	4.5	800	433	390	173	1
TRJD475*050#RJ	D	4.7	50	85	33	125	1.8	4.5	900	408	367	163	1
TRJD475*050#0600	D	4.7	50	85	33	125	1.8	4.5	600	500	450	200	1
TRJD685*050#RJ	D	6.8	50	85	33	125	2.6	4.5	700	463	417	185	1
TRJE106*050#RJ	Е	10	50	85	33	125	3.8	4.5	700	486	437	194	1 ¹⁾
TRJE106*050#0300	E	10	50	85	33	125	3.8	4.5	300	742	667	297	1 ¹⁾
TRJE106*050#0400	Е	10	50	85	33	125	3.8	4.5	400	642	578	257	1 ¹⁾
TRJU156*050RRJV	U	15	50	85	33	125	5.6	30	500	574	517	230	3
TRJU226*050RRJV	U	22	50	85	33	125	8.2	30	500	574	517	230	3

^{1&}lt;sup>1)</sup> Dry pack option (see How to order) is recommended for reduction of stress during soldering. Dry pack parts should be treated as MSL 3. Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

The EIA & CECC standards for low ESR Solid Tantalum Capacitors allow an ESR movement to 1.25 times catalogue limit post mounting. For typical weight and composition see page 274.

Professional Tantalum Chip Capacitor

QUALIFICATION TABLE

TECT	TRJ professional series (Temperature range -55°C to +125°C)											
TEST		Condition		Characteristics								
				Visual examination	no visibl	e damage						
Endurance		e (Ur) at 85°C and /		DCL	1.25 x initial limit							
		5°C for 2000 hours t		ΔC/C	within ±10% of initial value							
	impedance of ≤0.1 1-2 hours before m	Ω/V. Stabilize at roo	m temperature for	DF	initial limit							
	1 2 flours before fi	leasuring.		ESR	1.25 x initial limit							
				Visual examination	no visible damage							
	Store at 125°C. no	voltage applied, for	DCL	1.25 x initial limit								
Storage Life		emperature for 1-2 h	ΔC/C	within ±10% of initial value								
-	measuring.		DF	initial limit								
				ESR	1.25 x initial limit							
				Visual examination	no visibl	e damage						
	Store at 65°C and	95% relative humidit	ty for 500 hours	DCL	1.5 x init	1.5 x initial limit						
Humidity		Itage. Stabilize at ro		ΔC/C	within ±10% of initial value							
		-2 hours before mea		DF	1.2 x initial limit							
				ESR	1.25 x initial limit							
				Visual examination	no visible damage							
	A b d b	- (11-) -+ 0500 050;		DCL	2 x initial limit							
Biased Humidity		e (Ur) at 85°C, 85% r abilize at room temp		ΔC/C	within ±10% of initial value							
biaseu numuny		ours before measurii		DF DF	1.2 x initial limit							
				ESR	1.25 x initial limit							
	Step	Temperature°C	Duration(min)	LOIX	+20°C	-55°C	+20°C	+85°C	+125°C	+20°C		
	1	+20	15				-					
Townseture	2	-55	15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*		
Temperature Stability	3	+20	15	ΔC/C	n/a	+0/-10%	±5%	+10/-0%	+12/-0%	±5%		
Gtability	4	+85	15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL*		
	5	+125 +20	15 15	ESR	1.25xIL*	2.5xIL*	1.25xIL*	1.25xIL*	1.25xIL*	1.25xIL*		
	0	+20	15	Visual examination			1.20 AIL	1.ZJXIL	1.ZJXIL	1.25XIL		
	Apply 1 3y categor	ry voltage (Uc) at 12	5°C for 1000	DCL Visual examination	no visible damage							
0 1/ 1:		6 min (30 sec charg										
Surge Voltage		n a charge / discharg	ge resistance of	ΔC/C	within ±5% of initial value							
	1000Ω			DF	initial limit							
				ESR	1.25 x initial limit							
				Visual examination	no visible damage							
Mechanical				DCL		initial limit						
Shock	MIL-STD-202, Meth	hod 213, Condition F	=	ΔC/C	within ±	5% of initia	l value					
00				DF	initial lim	nit						
				ESR	1.25 x in	itial limit						
				Visual examination	no visible damage							
				DCL	initial limit							
Vibration	MIL-STD-202, Meth	hod 204, Condition [)	ΔC/C	within ±5% of initial value							
				DF	initial lim	nit						
				ESR	1.25 x in	itial limit						

*Initial Limit

Professional Tantalum Chip Capacitor

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO.

Resin-Molded Chip, Improved Reliability J-Lead

FEATURES

- Compliant to the RoHS3 directive 2015/863/EU
- · Compliant to AEC-Q200
- Improved Reliability FR=0.5%/1000hrs
- · 100% Surge Current Tested
- · SMD J-lead

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

APPLICATIONS

- · Automotive Electronics(Engine ECU)
- · Industrial Equipment

CASE DIMENSIONS:

millimeters (inches)

MARKING

Code	EIA Code	EIA Metric	L	W ₁	W ₂	Н	S
Α	1206	3216-18	3.20 ± 0.20 (0.126 ± 0.008)	1.60 ± 0.20 (0.063 ± 0.008)	1.20 ± 0.10 (0.047 ± 0.004)	1.60 ± 0.20 (0.063 ± 0.008)	0.80 ± 0.20 (0.031 ± 0.008)
В	1210	3528-21	3.50 ± 0.20 (0.138 ± 0.008)	2.80 ± 0.20 (0.110 ± 0.008)	2.20 ± 0.10 (0.087 ± 0.004)	1.90 ± 0.20 (0.075 ± 0.008)	0.80 ± 0.20 (0.031 ± 0.008)
С	2312	6032-27	6.00 ± 0.20 (0.236 ± 0.008)	3.20 ± 0.20 (0.126 ± 0.008)	2.20 ± 0.10 (0.087 ± 0.004)	2.50 ± 0.20 (0.098 ± 0.008)	1.30 ± 0.20 (0.051 ± 0.008)
N	2917	7343-30	7.30 ± 0.20 (0.287 ± 0.008)	4.30 ± 0.20 (0.169 ± 0.008)	2.40 ± 0.10 (0.094 ± 0.004)	2.80 ± 0.20 (0.110 ±0.008)	1.30 ± 0.20 (0.051 ± 0.008)

Rated Voltage

(V)

HOW TO ORDER

Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow)

Rated Voltage

Code

TECHNICAL SPECIFICATIONS

Category Temperature Range:	-55 to +125°C
Rated Temperature:	+85°C
Capacitance Tolerance:	±20%, ±10% at 120Hz
Dissipation Factor:	Refer to next page
ESR 100kHz:	Refer to next page
Leakage Current:	After 1 minute's application of rated voltage, leakage current at 20°C is not more than 0.01CV or 0.5μA, whichever is greater.
	After 1 minute's application of rated voltage, leakage current at 85°C is not more than 0.1CV or 5μA, whichever is greater.
	After 1 minute's application of derated voltage, leakage current at 125°C is not more than 0.125CV or 6.3µA, whichever is greater.
Capacitance Change By	+15% Max. at +125°C
Temperature	+10% Max. at +85°C
	-10% Max. at -55°C

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance	Rated Voltage									
μF	Code	6.3V (0J)	10V (1A)	16V (1C)	20V (1D)	25V (1E)	35V (1V)				
0.33	334						Α				
0.47	474						Α				
0.68	684					Α	Α				
1.0	105			Α	Α	Α	В				
1.5	155				Α		В				
2.2	225		А	Α	Α	В	В				
3.3	335	Α	Α	Α	В	В	С				
4.7	475		A/B	A/B	A/B		С				
6.8	685		В	В	С	С	N				
10	106		A/B	A/B/C	С	C/N	N				
15	156	В	В		N	N					
22	226	A/B	A/B	B/C/N	C/N	N					
33	336	A/C	B/C/N	B/C/N							
47	476	B/C	B/C/N	C/N							
68	686		N								
100	107		С								
150	157	С									

Released ratings

Please contact to your local AVX sales office when these series are being designed in your application.

Voltage vs Temperature Rating

Resin-Molded Chip, Improved Reliability J-Lead

RATINGS & PART NUMBER REFERENCE

AVV Dest No	Coo. C:-	Capacitance	Rated	DCL	DF@	ESR @	100k	Hz RMS Current	(mA)	*1 ∆C/C	N 401
AVX Part No.	Case Size	(µF)	Voltage (V)	(μ A)	120Hz (%)		25°C	85°C	125°C	(%)	MSL
6.3 Volt											
F970J335#AA	A	3.3	6.3	0.5	4	4.5	129	116	52	*	3
F970J156#BA	В	15	6.3	0.9	6	2.0	206	186	82	*	3
F970J226#AA	A	22	6.3	1.4	12	2.5	173	156	69	*	3
F970J226#BA	В	22	6.3	1.4	8	1.9	212	190	85	*	3
F970J336#AA	A	33	6.3	2.1	12	2.5	173	156	69	*	3
F970J336#CC	С	33	6.3	2.1	6	1.1	316	285	126	*	3
F970J476#BA	B	47 47	6.3 6.3	3.0	8	1.0 0.9	292 350	262	117 140	*	3
F970J476#CC F970J157#CC	C	150	6.3	9.5	12	0.9	396	315 357	159	*	3
19703137#66	1 0	130	0.3	9.0		Volt	390	337	139		3
F971A225#AA	A	2.2	10	0.5	4	5.0	122	110	49	*	3
F971A335#AA	A	3.3	10	0.5	4	4.5	129	116	52	*	3
F971A475#AA	A	4.7	10	0.5	6	4.0	137	123	55	*	3
F971A475#BA	В	4.7	10	0.5	6	2.8	174	157	70	*	3
F971A685#BA	В	6.8	10	0.7	6	2.5	184	166	74	*	3
F971A106#AA	Α	10	10	1.0	6	3.0	158	142	63	*	3
F971A106#BA	В	10	10	1.0	6	2.0	206	186	82	*	3
F971A156#BA	В	15	10	1.5	6	2.0	206	186	82	*	3
F971A226#AA	A	22	10	2.2	15	3.0	158	142	63	*	3
F971A226#BA	В	22	10	2.2	8	1.9	212	190	85	*	3
F971A336#BA	В	33	10	3.3	8	1.9	212	190	85	*	3
F971A336#CC	C	33	10	3.3	6	1.1	316	285	126	*	3
F971A336#NC	N	33	10	3.3	6	0.7	463	417	185		3
F971A476#BA	B	47 47	10 10	4.7 4.7	10	1.0 0.9	292 350	262 315	117 140	*	3
F971A476#CC F971A476#NC	N	47	10	4.7	6	0.9	463	417	185	*	3
F971A686#NC	N	68	10	6.8	6	0.7	500	450	200	*	3
F971A107#CC	C	100	10	10.0	10	0.7	396	357	159	*	3
13714107#00		100	10	10.0		Volt	370	337	100		
F971C105#AA	A	1	16	0.5	4	7.5	100	90	40	*	3
F971C225#AA	A	2.2	16	0.5	4	5.0	122	110	49	*	3
F971C335#AA	A	3.3	16	0.5	4	4.5	129	116	52	*	3
F971C475#AA	A	4.7	16	0.8	8	4.0	137	123	55	*	3
F971C475#BA	В	4.7	16	0.8	6	2.8	174	157	70	*	3
F971C685#BA	В	6.8	16	1.1	6	2.5	184	166	74	*	3
F971C106#AA	Α	10	16	1.6	8	3.5	146	132	59	*	3
F971C106#BA	В	10	16	1.6	6	2.1	201	181	80	*	3
F971C106#CC	С	10	16	1.6	6	1.5	271	244	108	*	3
F971C226#BA	В	22	16	3.5	8	1.9	212	190	85	*	3
F971C226#CC	С	22	16	3.5	8	1.1	316	285	126	*	3
F971C226#NC	N	22	16	3.5	6	0.7	463	417	185	*	3
F971C336#BA	В	33	16	5.3	10	2.1	201	181	80	*	3
F971C336#CC	С	33	16	5.3	8	1.1	316	285	126	*	3
F971C336#NC F971C476#CC	N C	33 47	16 16	5.3 7.5	6 10	0.7 1.1	463 316	417 285	185 126	*	3
F971C476#NC	N	47	16	7.5	8	0.7	463	417	185	*	3
1 3/ 104/ U#INU	I IN	+/	10	7.0		Volt	403	41/	100		3
F971D105#AA	A	1	20	0.5	4	7.5	100	90	40	*	3
F971D105#AA	A	1.5	20	0.5	4	6.7	106	95	42	*	3
F971D155#AA F971D225#AA	A	2.2	20	0.5	6	6.3	109	98	44	*	3
F971D335#BA	В	3.3	20	0.7	4	3.1	166	146	66	*	3
F971D475#AA	A	4.7	20	0.9	8	4.0	137	123	55	*	3
F971D475#BA	В	4.7	20	0.9	6	2.8	174	157	70	*	3
F971D685#CC	С	6.8	20	1.4	6	1.8	247	222	99	*	3
F971D106#CC	С	10	20	2.0	6	1.5	271	244	108	*	3
F971D156#NC	N	15	20	3.0	6	0.7	463	417	185	*	3
F971D226#CC	С	22	20	4.4	8	1.1	316	285	126	*	3
F971D226#NC	N	22	20	4.4	6	0.7	463	417	185	*	3
					25	Volt					
F971E684#AA	Α	0.68	25	0.5	4	7.6	99	89	40	*	3
F971E105#AA	А	1	25	0.5	4	7.5	100	90	40	*	3
F971E225#BA	В	2.2	25	0.6	4	3.8	150	135	60	*	3
F971E335#BA	В	3.3	25	0.8	4	3.5	156	140	62	*	3
F971E685#CC	С	6.8	25	1.7	6	1.8	247	222	99	*	3
F971E106#NC	N	10	25	2.5	6	1.0	387	349	155	*	3
F971E156#NC	N	15	25	3.8	6	0.7	463	417	185	*	3
F971E226#NC	N	22	25	5.5	6	0.7	463	417	185	*	3

Resin-Molded Chip, Improved Reliability J-Lead

RATINGS & PART NUMBER REFERENCE

AVX Part No.	Case Size	Capacitance	Rated	DCL	DF@	ESR @	100k	Hz RMS Current	(mA)	*1 ∆C/C	MSL
AVA Falt NO.	Case Size	(μF)	Voltage (V)	(μΑ)	120Hz (%)	100kHz (Ω)	25°C	85°C	125°C	(%)	IVIOL
	35 Volt										
F971V334#AA	Α	0.33	35	0.5	4	12.0	79	71	32	*	3
F971V474#AA	Α	0.47	35	0.5	4	10.0	87	78	35	*	3
F971V684#AA	Α	0.68	35	0.5	4	7.6	99	89	40	*	3
F971V105#BA	В	1	35	0.5	4	4.0	146	131	58	*	3
F971V155#BA	В	1.5	35	0.5	4	4.0	146	131	58	*	3
F971V225#BA	В	2.2	35	0.8	4	3.8	150	135	60	*	3
F971V335#CC	С	3.3	35	1.2	4	2.0	235	211	94	*	3
F971V475#CC	С	4.7	35	1.6	6	1.8	247	222	99	*	3
F971V685#NC	N	6.8	35	2.4	6	1.0	387	349	155	*	3
F971V106#NC	N	10	35	3.5	6	1.0	387	349	155	*	3

^{*1: \(\}Delta C/C \) Marked "*"

#: "M" for ±20% tolerance, "K" for ± 10% tolerance.

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

Item	All Case (%)
Damp Heat	±10
Temperature cycles	±5
Resistance soldering heat	±5
Surge	±5
Endurance	±10
Load Humidity	±10

QUALIFICATION TABLE

TEST	F97 series (Temperature range -55°C to +125°C)	
ILUI	Condition	
Damp Heat (Steady State)	At 85°C, 85% R.H., 1000 hours (No voltage applied) Capacitance ChangeRefer to page 110 (*1) Dissipation FactorInitial specified value or less Leakage Current125% or less than the initial specified value	
Load Humidity	After 1000 hour's application of rated voltage in series with a 33 Ω resistor at 85°C, 85% R.H., capacitors meet the characteristics requirements table below. Capacitance Change	
Temperature Cycles	At -55°C / +125°C, 30 minutes each, 1000 cycles Capacitance ChangeRefer to page 109 (*1) Dissipation FactorInitial specified value or less Leakage CurrentInitial specified value or less	
Resistance to Soldering Heat	10 seconds reflow at 260°C, 5 seconds immersion at 260°C. Capacitance ChangeRefer to page 110 (*1) Dissipation FactorInitial specified value or less Leakage CurrentInitial specified value or less	
Solderability	After immersing capacitors completely into a solder pot at 245°C for 2 to 3 seconds, more than 3/4 of their electrode area shall remain covered with new solder.	
Surge	After application of surge voltage in series with a 33Ω resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change	
Endurance	After 2000 hours' application of rated voltage in series with a 30 resistor at 85°C, or derated voltage in series with a 30 resistor at 125°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change	
Shear Test	After applying the pressure load of 17.7N for 60 seconds horizontally to the center of capacitor side body which has no electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the terminal electrode	17.7N (1.8kg · f) For 60 seconds
Terminal Strength	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is applied with a specified jig at the center of the substrate so that substrate may bend by1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.	H230 - 20
Failure Rate	0.5% per 1000 hours at 85°C, V_R with $0.1\Omega/V$ series impedance, 60% confidence level.	

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

High Temperature 135°C, Resin-molded Chip, High Reliability

FEATURES

- · Compliant to the RoHS3 directive 2015/863/EU
- · High Temperature 135°C
- · AEC-Q200 Qualified
- · Failure Rate Level 0.5%/ 1000 hrs
- · 100% Surge Current Tested

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

Range 135°C MAX

APPLICATIONS

- Automotive Electronics (Engine ECU, Transmission, Oil Pump)
- · Industrial Equipment

CASE DIMENSIONS:

millimeters (inches)

See Tape & Reel

Packaging Section

Code	EIA Code	EIA Metric	L	W ₁	W ₂	Н	S
A	1206	3216-18	3.20 ± 0.20 (0.126 ± 0.008)	1.60 ± 0.20 (0.063 ± 0.008)	1.20 ± 0.10 (0.047 ± 0.004)	1.60 ± 0.20 (0.063 ± 0.008)	0.80 ± 0.20 (0.031 ± 0.008)
В	1210	3528-21	3.50 ± 0.20 (0.138 ± 0.008)	2.80 ± 0.20 (0.110 ± 0.008)	2.20 ± 0.10 (0.087 ± 0.004)	1.90 ± 0.20 (0.075 ± 0.008)	0.80 ± 0.20 (0.031 ± 0.008)
С	2312	6032-27	6.00 ± 0.20 (0.236 ± 0.008)	3.20 ± 0.20 (0.126 ± 0.008)	2.20 ± 0.10 (0.087 ± 0.004)	2.50 ± 0.20 (0.098 ± 0.008)	1.30 ± 0.20 (0.051 ± 0.008)
N	2917	7343-30	7.30 ± 0.20 (0.287 ± 0.008)	4.30 ± 0.20 (0.169 ± 0.008)	2.40 ± 0.10 (0.094 ± 0.004)	2.80 ± 0.20 (0.110 ±0.008)	1.30 ± 0.20 (0.051 ± 0.008)

Size

See

table above

TECHNICAL SPECIFICATIONS

Voltage

Category Temperature Range	-55 to +135°C
Rated Temperature	+95°C
Capacitance Tolerance	±20%, ±10% at 120Hz
Dissipation Factor	Refer to next page
ESR 100kHz	Refer to next page
Leakage Current*	After 1 minute's application of rated voltage, leakage current at 20°C is not more than 0.01CV or 0.5µA, whichever is greater. After 1 minute's application of rated voltage, leakage current at 95°C is not more
	than 0.1CV or 5µA, whichever is greater.
	After 1 minute's application of derated voltage, leakage current at 135°C is not more than 0.125CV or 6.3µA, whichever is greater.
Capacitance Change By Temperature	+15% Max. at +125°C
	+10% Max. at +85°C
	-10% Max. at -55°C

 $M = \pm 20\%$

Code

pF code: 1st two digits

represent significant figures, 3rd digit represents multiplier (number of zeros to follow)

^{*}As for the surge voltage and derated voltage at 135°C, refer to page precautions for details.

High Temperature 135°C, Resin-molded Chip, High Reliability

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	citance	Rated Voltage									
μF	Code	6.3V (0J)	10V (1A)	16V (1C)	20V (1D)	25V (1E)	35V (1V)				
0.33	334						A				
0.47	474						A				
0.68	684					Α	А				
1	105			А	А	А	В				
1.5	155				Α		В				
2.2	225			А		В	В				
3.3	335	Α	Α	А	В	В	С				
4.7	475		A/B	A/B	Α		С				
6.8	685					С	N				
10	106		A/B	A/B/C		C/N	N				
15	156	В	В			N					
22	226		A/B	B/C	C/N						
33	336	A/C	B/C	B/C/N							
47	476	В	B/C/N	C/N							
68	686		N								
100	107		С								

Released ratings

Please contact to your local AVX sales office when these series are being designed in your application.

Voltage vs Temperature Rating

RATINGS & PART NUMBER REFERENCE

AVX Part No.	Case Size	Capacitance	Rated	Leakage	DF@	ESR @	100k	Hz RMS Current	(mA)	*1 ∆C/C	MSL
AVA Part No.	Case Size	(μ F)	Voltage (V)	Current (µA)	120Hz (%)	100kHz (Ω)	25°C	95°C	135°C	(%)	IVISL
					6.3 V						
F970J335#AAHT3	A	3.3	6.3	0.5	4	4.5	129	116	52	*	3
F970J156#BAHT3	В	15	6.3	0.9	6	2.0	206	186	82	*	3
F970J336#AAHT3 F970J336#CCHT3	A C	33 33	6.3	2.1	12 6	2.5 1.1	173 316	156 285	69 126	*	3
F970J330#CCHT3	В	47	6.3	3.0	8	1.0	292	262	117	*	3
19703470#BAITIS	_ в	47	0.5	3.0	10 V		272	202	117		<u> </u>
F971A335#AAHT3	A	3.3	10	0.5	4	4.5	129	116	52	*	3
F971A475#AAHT3	A	4.7	10	0.5	6	4.0	137	123	55	*	3
F971A475#BAHT3	В	4.7	10	0.5	6	2.8	174	157	70	*	3
F971A106#AAHT3	A	10	10	1.0	6	3.0	158	142	63	*	3
F971A106#BAHT3	В	10	10	1.0	6	2.0	206	186	82	*	3
F971A156#BAHT3	В	15	10	1.5	6	2.0	206	186	82	*	3
F971A226#AAHT3	Α	22	10	2.2	15	3.0	158	142	63	*	3
F971A226#BAHT3	В	22	10	2.2	8	1.9	212	190	85	*	3
F971A336#BAHT3	В	33	10	3.3	8	1.9	212	190	85	*	3
F971A336#CCHT3	С	33	10	3.3	6	1.1	316	285	126	*	3
F971A476#BAHT3	В	47	10	4.7	10	1.0	292	262	117	*	3
F971A476#CCHT3	С	47	10	4.7	8	0.9	350	315	140	*	3
F971A476#NCHT3	N	47	10	4.7	6	0.7	463	417	185	*	3
F971A686#NCHT3	N	68	10	6.8	6	0.6	500	450	200	*	3
F971A107#CCHT3	С	100	10	10.0	10	0.7	396	357	159	*	3
F0740405#AAUT0		1 4	4.0	0.5	16 V	,	400	20	1 40		
F971C105#AAHT3	A	1	16	0.5	4	7.5	100	90	40	*	3
F971C225#AAHT3 F971C335#AAHT3	A	2.2 3.3	16 16	0.5 0.5	4	5.0 4.5	122 129	110 116	49 52	*	3
F971C335#AAHT3	A	4.7	16	0.8	8	4.0	137	123	55	*	3
F971C475#AAHT3	В	4.7	16	0.8	6	2.8	174	157	70	*	3
F971C106#AAHT3	A	10	16	1.6	8	3.5	146	132	59	*	3
F971C106#BAHT3	В	10	16	1.6	6	2.1	201	181	80	*	3
F971C106#CCHT3	C	10	16	1.6	6	1.5	271	244	108	*	3
F971C226#BAHT3	В	22	16	3.5	8	1.9	212	190	85	*	3
F971C226#CCHT3	С	22	16	3.5	8	1.1	316	285	126	*	3
F971C336#BAHT3	В	33	16	5.3	10	2.1	201	181	80	*	3
F971C336#CCHT3	С	33	16	5.3	8	1.1	316	285	126	*	3
F971C336#NCHT3	N	33	16	5.3	6	0.7	463	417	185	*	3
F971C476#CCHT3	С	47	16	7.5	10	1.1	316	285	126	*	3
F971C476#NCHT3	N	47	16	7.5	8	0.7	463	417	185	*	3
					20 V	,					
F971D105#AAHT3	Α	1	20	0.5	4	7.5	100	90	40	*	3
F971D155#AAHT3	A	1.5	20	0.5	4	6.7	106	95	42	*	3
F971D335#BAHT3	В	3.3	20	0.7	4	3.1	166	149	66	*	3
F971D475#AAHT3	A	4.7	20	0.9	8	4.0	137	123	55	*	3
F971D226#CCHT3 F971D226#NCHT3	C N	22	20 20	4.4	8	1.1 0.7	316 463	285 417	126 185	*	3
19/10/20#190013] (1)			+.4	25 V		403	41/	100		<u> </u>
F971E684#AAHT3	A	0.68	25	0.5	4 4	7.6	99	89	40	*	3
F971E105#AAHT3	A	0.68	25	0.5	4	7.6	100	90	40	*	3
F971E225#BAHT3	В	2.2	25	0.6	4	3.8	150	135	60	*	3
F971E335#BAHT3	В	3.3	25	0.8	4	3.5	156	140	62	*	3
F971E685#CCHT3	C	6.8	25	1.7	6	1.8	247	222	99	*	3
F971E106#CCHT3	C	10	25	2.5	6	1.6	262	236	105	*	3
F971E106#NCHT3	N	10	25	2.5	6	1.0	387	349	155	*	3
F971E156#NCHT3	N	15	25	3.8	6	0.7	463	417	185	*	3
					35 V	olt					
F971V334#AAHT3	Α	0.33	35	0.5	4	12.0	79	71	32	*	3
F971V474#AAHT3	Α	0.47	35	0.5	4	10.0	87	78	35	*	3
F971V684#AAHT3	Α	0.68	35	0.5	4	7.6	99	89	40	*	3
F971V105#BAHT3	В	11	35	0.5	4	4.0	146	131	58	*	3
F971V155#BAHT3	В	1.5	35	0.5	4	4.0	146	131	58	*	3
F971V225#BAHT3	В	2.2	35	0.8	4	3.8	150	135	60	*	3
F971V335#CCHT3	С	3.3	35	1.2	4	2.0	235	211	94	*	3
F971V475#CCHT3	C	4.7	35	1.6	6	1.8	247	222	99	*	3
F971V685#NCHT3	N	6.8	35	2.4	6	1.0	387	349	155	*	3
F971V106#NCHT3	N	10	35	3.5	6	1.0	387	349	155	*	3

Item	All Case (%)
Damp Heat	±10
Temperature cycles	±5
Resistance soldering heat	±5
Surge	±5
Endurance	±10
Load Humidity	±10

^{*1: \(\}Delta C/C \) Marked "*"

^{#:&}quot;N" for ±20% tolerance, "K" for ± 10% tolerance.

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

High Temperature 135°C, Resin-molded Chip, High Reliability

QUALIFICATION TABLE

TEST	F97-HT3 series (Temperature range -55°C to +135°C)
1531	Condition
Damp Heat (Steady State)	At 85°C, 85% RH For 1000 hours (No voltage applied) Capacitance Change
Load Humidity	After 1000 hours application of rated voltage in series with a 33Ω resistor at 85°C, 85% RH capacitors meet the characteristics requirements table below. Capacitance Change Refer to page 115 (*1) Dissipation Factor
Temperature Cycles	At -55°C / +135°C,For 30 minutes each,1000 cycles Capacitance Change
Resistance to Soldering Heat	10 seconds reow at 260°C, 5 seconds immersion at 260°C. Capacitance Change
Solderability	After immersing capacitors completely into a solder pot at 245°C for 2 to 3 seconds, more than 3/4 of their electrode area shall remain covered with new solder.
Surge*	After application of surge in series with a 33Ω resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 95°C, capacitors shall meet the characteristic requirements table below. Capacitance Change
Endurance*	After 2000 hours application of rated voltage in series with a 3Ω resistor at 95°C,or derated voltage in series with a 3Ω resistor at 135°C,capacitors shall meet the characteristic requirements table below. Capacitance Change
Shear Test	After applying the pressure load of 17.7N for 60 seconds horizontally to the center of capacitor side body which has no electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the terminal electrode.
Terminal Strength	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is applied with a specified jig at the center of the substrate so that substrate may bend by 1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.

 $^{{\}rm \star}$ As for the surge voltage and derated voltage at 135°C, refer to page precautions for details.

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO.

Tantalum Ultra Low ESR Capacitor

FEATURES

- Improved Reliability 0.5%/1khrs (Twice Better than Standard)
- DCL Reduced by 25% to 0.0075 CV
- Robust Against Higher Thermo-mechanical Stresses During Assembly Process
- · Multi-anode Construction
- · Super Low ESR
- · 100% Surge Current Tested
- CV Range 4.7-1500μF / 2.5-50V
- · "Mirror" Construction Used With D case Capacitors Reduces ESL to Half
- Automotive, Medical, Aerospace, Military and Other Hi-End Applications

APPLICATIONS

· Automotive, Avionics and Industrial High Power DC/DC Convertors

MULTIANODE

CONSTRUCTION

MULTIANODE TRM D LOW SELF INDUCTANCE CONSTRUCTION "MIRROR" DESIGN

MARKING

D. E. U CASE

CASE DIMENSIONS:

A+0.30 (0.012) -0.20 (0.008) FΙΔ W+0.20 (0.008) H+0.20 (0.008) EIA L±0.20 W₁±0.20 S Min. (0.008)-0.10 (0.004) -0.10 (0.004) Code Metric (0.008)D 2917 7343-31 7.30 (0.287) 4.30 (0.169) 2.90 (0.114) 2.40 (0.094) 1.30 (0.051) 4.40 (0.173) 2.40 (0.094) 1.30 (0.051) 4.40 (0.173) Ε 2917 7343-43 7.30 (0.287) 4.30 (0.169) 4.10 (0.162) 7.30 (0.287) 1.30 (0.051) 7361-43 6.10 (0.240) 4.10 (0.162) 3.10 (0.122) 4.40 (0.173) U 2924

 W_1 dimension applies to the termination width for A dimensional area only.

HOW TO ORDER

108

Capacitance Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow) *

Tolerance K = ±10% M = ±20%

T

004

Rated DC Voltage 002 = 2.5Vdc 004 = 4Vdc

004 = 4Vdc 006 = 6.3Vdc 010 = 10Vdc 012 = 12Vdc

016 = 16Vdc 020 = 20Vdc 025 = 25Vdc 035 = 35Vdc 050 = 50Vdc

Packaging
R = Pure Tin 7" Reel
S = Pure Tin 13" Reel
H = Tin Lead 7" Reel

R

(Contact Manufacturer)
K = Tin Lead 13" Reel
(Contact Manufacturer)
H, K = Non RoHS

ESR in $m\boldsymbol{\Omega}$

0023

TECHNICAL SPECIFICATIONS

Technical Data:		All techni	cal data	a relate t	o an amb	ient tem	perature	of +25°C			
Capacitance Range:		4.7 μF to	1500 μ	F							
Capacitance Tolerance:		±10%; ±2	0%								
Rated Voltage (V _R)	≤ +85°C:	2.5	4	6.3	10	12	16	20	25	35	50
Category Voltage (V _c)	≤ +125°C:	1.7	2.7	4	7	8	10	13	17	23	33
Surge Voltage (V _s)	≤ +85°C:	3.3	5.2	8	13	16	20	26	32	46	65
Surge Voltage (V _s)	≤ +125°C:	2.2	3.4	5	8	10	13	16	20	28	40
Temperature Range:		-55°C to -	+125°C								
Reliability:		0.5% per	1000 h	ours at 8	5°C, V _R w	ith 0.1Ω/	V series	impedan	ce,		
		60% conf	idence	level							

102220

Meets requirements of AEC-Q200

LEAD-FREE
LEAD-FREE COMPATIBLE
COMPONENT

SnPb termination option is not

millimeters (inches)

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance				Rated Vo	oltage DC (V _R) to 85°C				
μF	Code	2.5V (e)	4V (G)	6.3V (J)	10V (A)	12V (B)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)
4.7	475										D(200)
6.8	685										
10	106									D(120)	
15	156										
22	226									D(70) E(60,100)	
33	336								D(65)	E(50,65)	
47	476						D(100)	D(55)	E(65)		
68	686										
100	107							E(35,45)			
150	157				D(45)		E(30,40)				
220	227				D(35)	E(35)	U(30,40)				
330	337		D(35)	D(35)	E(35)						
470	477		D(35)	E(30)	U(23,30)						
680	687		E(23)	U(18,23)							
1000	108	D(25)	E(23) U(18,23)								
1500	158	E(18) U(18,23)									

Released ratings, (ESR ratings in mOhms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

Tantalum Ultra Low ESR Capacitor

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kH	z RMS Cur	rent (A)	MSL
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(μ A)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVISL
					2.5	Volt @ 85°C							
TRMD108*002#0025	D	1000	2.5	85	1.7	125	18.8	8	25	3.194	2.874	1.277	3
TRME158*002#0018	Е	1500	2.5	85	1.7	125	28.1	6	18	3.873	3.486	1.549	3
TRMU158*002R0018	U	1500	2.5	85	1.7	125	22.5	6	18	4.048	3.643	1.619	3
TRMU158*002R0023	U	1500	2.5	85	1.7	125	22.5	6	23	3.581	3.223	1.433	3
					4 V	olt @ 85°C							
TRMD337*004#0035	D	330	4	85	2.7	125	9.9	8	35	2.699	2.429	1.080	3
TRMD477*004#0035	D	470	4	85	2.7	125	14.1	8	35	2.699	2.429	1.080	3
TRME687*004#0023	Е	680	4	85	2.7	125	20.4	6	23	3.426	3.084	1.370	3
TRME108*004#0023	Е	1000	4	85	2.7	125	30	6	23	3.426	3.084	1.370	3
TRMU108*004R0018	U	1000	4	85	2.7	125	30	6	18	4.048	3.643	1.619	3
TRMU108*004R0023	U	1000	4	85	2.7	125	30	6	23	3.581	3.223	1.433	3
					6.3	Volt @ 85°C							
TRMD337*006#0035	D	330	6.3	85	4	125	14.9	8	35	2.699	2.429	1.080	3
TRME477*006#0030	Е	470	6.3	85	4	125	21.2	6	30	3.000	2.700	1.200	3
TRMU687*006R0018	U	680	6.3	85	4	125	30.6	6	18	4.048	3.643	1.619	3
TRMU687*006R0023	U	680	6.3	85	4	125	30.6	6	23	3.581	3.223	1.433	3
					10 \	/olt @ 85°C							
TRMD157*010#0045	D	150	10	85	7	125	11.3	8	45	2.380	2.142	0.952	3
TRMD227*010#0035	D	220	10	85	7	125	16.5	8	35	2.699	2,429	1.080	3
TRME337*010#0035	E	330	10	85	7	125	24.8	6	35	2.777	2.500	1.111	3
TRMU477*010R0023	U	470	10	85	7	125	35.3	8	23	3.581	3.223	1.433	3
TRMU477*010R0030	U	470	10	85	7	125	35.3	8	30	3.136	2.822	1.254	3
					12 \	/olt @ 85°C							
TRME227*012#0035	Е	220	12	85	8.4	125	19.8	6	35	2.777	2.500	1.111	3
						/olt @ 85°C							
TRMD476*016#0100	D	47	16	85	10	125	5.6	8	100	1.597	1.437	0.639	3
TRME157*016#0030	E	150	16	85	10	125	18	6	30	3.000	2.700	1.200	3
TRME157*016#0040	E	150	16	85	10	125	18	6	40	2.598	2.338	1.039	3
TRMU227*016R0030	Ū	220	16	85	10	125	26.4	8	30	3.136	2.822	1.254	3
TRMU227*016R0040	U	220	16	85	10	125	26.4	8	40	2.716	2.444	1.086	3
						/olt @ 85°C							
TRMD476*020#0055	D	47	20	85	13	125	7.1	8	55	2.153	1.938	0.861	3
TRME107*020#0035	E	100	20	85	13	125	15	6	35	2.777	2.500	1.111	3
TRME107*020#0045	E	100	20	85	13	125	15	6	45	2.449	2.205	0.980	3
11(WE107 020//0040		100		00	-	/olt @ 85°C	10		40	2.447	2.200	0.300	
TRMD336*025#0065	D	33	25	85	17	125	6.2	8	65	1.981	1.783	0.792	3
TRME476*025#0065	E	47	25	85	17	125	8.8	6	65	2.038	1.834	0.792	3
TRIVIL470 020#0005		4/	20	00		/olt @ 85°C	0.0	0	00	2.030	1.034	0.010	<u> </u>
TRMD106*035#0120	D	10	35	85	23	125	2.6	8	120	1.458	1.312	0.583	3
TRMD106^035#0120	D	22	35	85 85	23	125	5.8	8	70	1.458	1.312	0.583	3
TRMD226*035#0070 TRME226*035#0060	E	22	35	85 85	23	125	5.8	6	60	2.121	1.718	0.763	3
TRME226*035#0100	E	22	35	85 85	23	125	5.8	6	100	1.643	1.479	0.849	3
	E	33	35		23	125	8.7	_	50	2.324	2.091	0.657	3
TRME336*035#0050		33	35	85 85	23	125	8.7	6	65	2.324	1.834		
TRME336*035#0065	E	33	35	85		-	8.7	6	05	2.038	1.834	0.815	3
TRMD475*050#0200	l D	4.7	50	85	33	/olt @ 85°C	1.8	8	200	1.129	1.016	0.452	3
1 KIVID47 5*U5U#U2UU	טן	4./	J 20	85	33	125	1.8	l g	∠00	1.129	1.016	0.452	ა

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts.

DCL is measured at rated voltage after 5 minutes.

The EIA & CECC standards for low ESR Solid Tantalum Capacitors allow an ESR movement to 1.25 times catalogue limit post mounting.

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

Tantalum Ultra Low ESR Capacitor

QUALIFICATION TABLE

TEST		TRM pro	ofessional multia	node series (Temper	ature ranç	ge -55°C	to +125°	C)				
1531		Condition		essional multianode series (Temperature range -55°C to +125°C) Characteristics								
		413		Visual examination	no visib	le damage	9					
	1,	e (Ur) at 85°C and	• .	DCL	initial lir	nit				-		
Endurance		5°C for 2000 hours 1Ω/V. Stabilize at ro	•	ΔC/C	within ±	10% of ini	tial value					
	for 1-2 hours befo		oom temperature	DF	initial lir	nit						
	101 1-2 Hours belo	re measuring.		ESR	1.25 x initial limit							
				Visual examination	no visib	le damage	9					
	Store at 125°C, no	voltage applied, for	or 2000 hours.	DCL	1.25 x ir	nitial limit						
Storage Life		temperature for 1-2		ΔC/C	within ±	within ±10% of initial value						
•	measuring.			DF	initial limit							
				ESR	1.25 x initial limit							
				Visual examination	no visible damage							
	Store at 65°C and	95% relative humid	dity for 500 hours.	DCL	1.5 x initial limit							
Humidity		ltage. Stabilize at r		ΔC/C	within ±10% of initial value							
•	and humidity for 1	-2 hours before me	easuring.	DF	1.2 x ini	tial limit						
				ESR	1.25 x ir	nitial limit						
				Visual examination	no visib	le damage						
	Apply rated voltage	e (Ur) at 85°C, 85%	relative humidity	DCL	2 x initia	al limit						
Biased Humidity	,	abilize at room ten	•	ΔC/C	within ±	10% of ini	tial value					
,	1	ours before measu	•	DF	1.2 x ini	tial limit						
			· ·	ESR	1.25 x ir	nitial limit						
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C		
	1	+20	15	- DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*		
Temperature	2	-55	15		-							
Stability	3	+20 +85	15 15	ΔC/C	n/a	+0/-10%	±5%	+10/-0%	+12/-0%	±5%		
	5	+125	15	_ DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL*		
	6	+20	15	ESR	1.25xIL*	2.5xIL*	1.25xIL*	1.25xIL*	1.25xIL*	1.25 x IL*		
				Visual examination	no visib	le damage		•	•			
_	1	ry voltage (Uc) at 1		DCL	initial lir	nit						
Surge	*	6 min (30 sec cha	•	ΔC/C	within ±	5% of initi	al value					
Voltage	1000Ω	h a charge / discha	arge resistance of	DF	initial lir	nit						
	1000Ω			ESR	1.25 x ir	nitial limit						
				Visual examination	no visib	le damage	9					
				DCL	initial lir	nit						
Mechanical	MIL-STD-202, Met	hod 213, Condition	ı F	ΔC/C	within ±	5% of initi	al value			-		
Shock				DF	initial lir	nit						
				ESR	1.25 x ir	nitial limit						
				Visual examination		le damage			,			
	Vibration MIL-STD-202, Method 204, Condition D			DCL	initial lir							
Vibration				ΔC/C			al value					
		,		DF	within ±5% of initial value initial limit					-		
				ESR	1.25 x initial limit							

^{*}Initial Limit

Tantalum Ultra Low ESR Capacitor

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

SMD S1gma™ Series Capacitors

The AVX S1gma[™] series is offering a next generation of statistical screening and process control enhancement of tantalum capacitors for professional applications with improved reliability and extremely low DCL needs.

SnPb termination option is not RoHS compliant.

FEATURES

- -55 to +125°C Operation Temperature
- Basic Reliability Better than 0.5%/1000 hours
- 100% Surge Current Tested

- · (2x Improvement Over Commercial Series)
- Improved DCL Limits 0.001CV* and 0.005CV

S1gma™ Prime - Utilizes 3 S1gma™ electrical screening to remove possible maverick parts from the distribution.

S1gma™ Premium - S1gma™ Prime, with addition of capability statistical screening utilizing the AVX patented Q-Process to effectively remove components that may experience excessive parametric shifts or instability in operational life.

S1gma™ Pro Custom - A custom option where specific parameter limits and screening methods can be agreed based on 3 S1gma™ and Q-Process statistical screening based on capability techniques.

*selected codes, 0.001CV limit is available with S1gma™ Premium and Pro Custom options only

TMJ CONSTRUCTION

APPLICATIONS

- · Wireless Battery Operated Sensors
- **TPM**
- Automotive

- · Avionics
- · Safety Systems
- · Energy Harvesting

For additional information on Q-process please consult the AVX technical publication "Reaching the Highest Reliability for Tantalum Capacitors"

(see the link: http://www.avx.com/docs/techinfo/Qprocess.pdf)

MARKING

CASE DIMENSIONS:

millimeters (inches)

	Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
	Α	1206	3216-18	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
	В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
	С	2312	6032-28	6.00 (0.236)	3.20 (0.126)	2.60 (0.102)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
	D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
[Ε	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
	U	2924	7361-43	7.30 (0.287)	6.10 (0.240)	4.10 (0.162)	3.10 (0.122)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only.

006

HOW TO ORDER

Capacitance Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow)

227

Tolerance

Rated DC **Voltage** 006 = 6.3Vdc 010 = 10Vdc 016 = 16Vdc

050 = 50 Vdc

020 = 20Vdc 025 = 25Vdc 035 = 35Vdc

H = Tin Lead 7" Reel (Contact Manufacturer) Non RoHS

C Packaging = Pure Tin 7" Reel

ESR Range

C = Standard QX = S1gma™ Prime

Suffix

DCL A = 0.001CVC = 0.005CV

L = Low ESR QY = S1gma[™] Premium xx = S1gma™ Pro Custom

TECHNICAL SPECIFICATIONS

Technical Data:		All techi	nical data	relate to	an ambie	ent tempe	erature of	+25°C	
Capacitance Range:		0.22 µF	to 680 μF						
Capacitance Tolerance:		±10%							
Leakage Current DCL:		(A) 0.00	1CV, (C) 0	.005CV					
Rated Voltage (V _R)	≤ +85°C:	6.3	10	16	20	25	35	50	
Category Voltage (V _c)	≤ +125°C:	4	7	10	13	17	23	33	
Surge Voltage (V _s)	≤ +85°C:	8	13	20	26	32	46	65	
Surge Voltage (V _S)	≤ +125°C:	5	8	13	16	20	28	40	
Temperature Range:		-55°C to	+125°C			,	,		
Reliability:		0.5% per	1000 hou	rs at 85°C	V_R with C	.1Ω/V ser	ies imped	ance, 60%	confidence level
	·	AEC-Q2	00 per rec	uest		•	•		

SMD S1gma™ Series Capacitors

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Сара	citance			Rated volta	ge (V _R) to 85°C (\	/oltage Code)		
μF	Code	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)
0.22	224							Α
0.33	334						Α	A
0.47	474						Α	В
0.68	684						Α	В
1.0	105					Α	В	С
1.5	155				A	Α	В	С
2.2	225			Α	Α	В	В	С
3.3	335			Α	A	В	В	С
4.7	475		A	Α	В	В	С	D
6.8	685		Α	В	В	С	С	D
10	106	Α	A	В	С	С	С	E
15	156	Α	В	В	С	С	D	U
22	226	В	В	С	С	D	D	U
33	336	В	С	С	D	D	E	
47	476	С	С	D	D	D	U	
68	686	С	С	D	E	U		
100	107	С	D	E	E	U		
150	157	D	D	E	U			
220	227	D	E	U				
330	337	E	E					
470	477	E	U					
680	687	U						

Released ratings

Note: Voltage ratings are minimum values. AVX reserves the right to supply

higher voltage ratings in the same case size, to the same reliability standards.

LEAKAGE CURRENT vs. RATED VOLTAGE

SMD S1gma™ Series Capacitors

RATINGS & PART NUMBER REFERENCE

AVX Part No.	Case Size	Capacitance (µF)	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max. @ 100kHz	100kHz	: RMS Curre	ent (mA)	MSL
Partino.	Size	(με)	(V)	(°C)	(V)	(°C)	(μΑ)	(%)	(mΩ)	25°C	85°C	125°C	
						Volt @ 85°C		_					
TMJA106K006#CQYA	Α	10	6.3	85	4	125	0.1	6	1500	224	201	89	3
TMJA106K006#C^C	Α	10	6.3	85	4	125	0.3	6	1500	224	201	89	3
TMJA156K006#CQYA	Α	15	6.3	85	4	125	0.1	6	1500	224	201	89	3
TMJA156K006#C^C	Α	15	6.3	85	4	125	0.45	6	1500	224	201	89	3
TMJB226K006#C^C	В	22	6.3	85	4	125	0.66	6	600	376	339	151	3
TMJB336K006#C^C	В	33	6.3	85	4	125	0.99	6	600	376	339	151	3
TMJC476K006#CQYA	С	47	6.3	85	4	125	0.28	6	300	606	545	242	3
TMJC476K006#C^C	С	47	6.3	85	4	125	1.41	6	300	606	545	242	3
TMJC686K006#CQYA	С	68	6.3	85	4	125	0.41	6	300	606	545	242	3
TMJC686K006#C^C	С	68	6.3	85	4	125	2.04	6	300	606	545	242	3
TMJC107K006#CQYA	С	100	6.3	85	4	125	0.60	6	300	606	545	242	3
TMJC107K006#C^C	С	100	6.3	85	4	125	3	6	300	606	545	242	3
TMJD157K006#CQYA	D	150	6.3	85	4	125	0.90	6	200	866	779	346	3
TMJD157K006#C^C	D	150	6.3	85	4	125	4.5	6	200	866	779	346	3
TMJD227K006#CQYA	D	220	6.3	85	4	125	1.32	8	200	866	779	346	3
TMJD227K006#C^C	D	220	6.3	85	4	125	6.6	8	200	866	779	346	3
TMJE337K006#C^C	E	330	6.3	85	4	125	9.9	8	200	908	817	363	3
TMJE477K006#CQYA	Е	470	6.3	85	4	125	2.82	8	200	908	817	363	3
TMJE477K006#C^C	Е	470	6.3	85	4	125	14.1	8	200	908	817	363	3
TMJU687K006#C^C	U	680	6.3	85	4	125	20.4	12	250	812	731	325	3
					10 \	/olt @ 85°C							
TMJA475K010#CQXC	Α	4.7	10	85	7	125	0.24	6	2000	194	174	77	3
TMJA685K010#CQYA	Α	6.8	10	85	7	125	0.1	6	2000	194	174	77	3
TMJA685K010#C^C	Α	6.8	10	85	7	125	0.34	6	2000	194	174	77	3
TMJA106K010#CQYA	Α	10	10	85	7	125	0.10	6	2000	194	174	77	3
TMJA106K010#C^C	Α	10	10	85	7	125	0.5	6	2000	194	174	77	3
TMJB156K010#C^C	В	15	10	85	7	125	0.75	6	700	348	314	139	3
TMJB226K010#C^C	В	22	10	85	7	125	1.1	6	700	348	314	139	3
TMJC336K010#C^C	С	33	10	85	7	125	1.65	6	300	606	545	242	3
TMJC476K010#C^C	С	47	10	85	7	125	2.35	6	300	606	545	242	3
TMJC686K010#C^C	С	68	10	85	7	125	3.4	6	300	606	545	242	3
TMJD107K010#C^C	D	100	10	85	7	125	5.00	6	150	1000	900	400	3
TMJD157K010#C^C	D	150	10	85	7	125	7.50	8	150	1000	900	400	3
TMJE227K010#C^C	Е	220	10	85	7	125	11	8	150	1049	944	420	3
TMJE337K010#CQYA	E	330	10	85	7	125	3.3	8	150	1049	944	420	3
TMJE337K010#C^C	E	330	10	85	7	125	16.5	8	150	1049	944	420	3
TMJU477K010#C^C	U	470	10	85	7	125	23.5	12	200	908	817	363	3
					16 \	Volt @ 85°C					<u> </u>		
TMJA225K016#CQXC	Α	2.2	16	85	10	125	0.18	6	3500	146	132	59	3
TMJA335K016#CQXC	A	3.3	16	85	10	125	0.16	6	3500	146	132	59	3
TMJA475K016#C^C	A	4.7	16	85	10	125	0.20	6	3500	146	132	59	3
TMJB685K016#C^C	В	6.8	16	85	10	125	0.54	6	1200	266	240	106	3
	В	10	16	85	10		0.80	6	1200	266	240	106	3
TMJB106K016#C^C TMJB156K016#C^C	В	15	16	85	10	125 125	1.20	6	1200	266	240	106	3
TMJC226K016#C^C	С	22	16	85	10	125	1.76	6	350	561	505	224	3
TMJC336K016#C^C	C	33	16	85 85	10	125	2.64	6	350	561	505	224	3
TMJD476K016#C^C	D	47	16	85 85	10	125	3.76	6	200	866	779	346	3
TMJD476K016#C^C	D	68	16	85 85	10	125	5.44	6	200	866	779	346	3
	E	100	16	85 85	10			-		1049	944	420	3
TMJE107K016#C^C	-					125	8.00	6	150			100	
TMJE157K016#C^C	E	150	16	85	10	125	17.6	6	150	1049	944	420	3
TMJU227K016#C^C	U	220	16	85	10	125	17.6	1	200	908	817	363	3
				,		/olt @ 85°C		1	,				
TMJA155K020#CQXC	Α	1.5	20	85	13	125	0.15	6	3000	158	142	63	3
TMJA225K020#CQXC	Α	2.2	20	85	13	125	0.22	6	3000	158	142	63	3
TMJA335K020#C^C	Α	3.3	20	85	13	125	0.33	6	3000	158	142	63	3
TMJB475K020#C^C	В	4.7	20	85	13	125	0.47	6	1000	292	262	117	3
TMJB685K020#C^C	В	6.8	20	85	13	125	0.68	6	1000	292	262	117	3
TMJC106K020#C^C	С	10	20	85	13	125	1	6	500	469	422	188	3
TMJC156K020#C^C	С	15	20	85	13	125	1.5	6	500	469	422	188	3
TMJC226K020#C^C	С	22	20	85	13	125	2.2	6	500	469	422	188	3
TMJD336K020#C^C	D	33	20	85	13	125	3.3	6	250	775	697	310	3
TMJD476K020#C^C	D	47	20	85	13	125	4.70	6	250	775	697	310	3
TMJE686K020#C^C	Е	68	20	85	13	125	6.8	6	200	908	817	363	3
TMJE107K020#C^C	Е	100	20	85	13	125	10	6	200	908	817	363	3
TMJU157K020#CQXC	U	150	20	85	13	125	15	12	250	812	731	325	3
					25 \	Volt @ 85°C							
TMJA105K025#CQXC	Α	1	25	85	17	125	0.13	4	3000	158	142	63	3
TMJA155K025#CQXC	A	1.5	25	85	17	125	0.19	6	3000	158	142	63	3
TMJB225K025#C^C	В	2.2	25	85	17	125	0.13	6	2000	206	186	82	3
TMJB335K025#C^C	В	3.3	25	85	17	125	0.41	6	2000	206	186	82	3
TIVIJUJJJJKUZJ#U*U	0	ა.ა	20	00	17	120	0.41	U	2000	200	100	02	

SMD S1gma™ Series Capacitors

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kHz	RMS Curre	ent (mA)	MSL
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(μ A)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVIOL
TMJB475K025#C^C	В	4.7	25	85	17	125	0.59	6	2000	206	186	82	3
TMJC685K025#C^C	С	6.8	25	85	17	125	0.85	6	600	428	385	171	3
TMJC106K025#C^C	С	10	25	85	17	125	1.25	6	600	428	385	171	3
TMJC156K025#C^C	С	15	25	85	17	125	1.88	6	600	428	385	171	3
TMJD226K025#CQYA	D	22	25	85	17	125	0.55	6	400	612	551	245	3
TMJD226K025#C^C	D	22	25	85	17	125	2.75	6	400	612	551	245	3
TMJD336K025#CQYA	D	33	25	85	17	125	0.82	6	400	612	551	245	3
TMJD336K025#C^C	D	33	25	85	17	125	4.13	6	400	612	551	245	3
TMJD476K025#C^C	D	47	25	85	17	125	5.88	6	400	612	551	245	3
TMJU686K025#CQXC	U	68	25	85	17	125	8.5	12	450	606	545	242	3
TMJU107K025#CQXC	U	100	25	85	17	125	12.5	12	450	606	545	242	3
					35	Volt @ 85°C							
TMJA334K035#COXC	Α	0.33	35	85	23	125	0.1	4	6000	112	101	45	3
TMJA474K035#CQXC	A	0.47	35	85	23	125	0.1	4	6000	112	101	45	3
TMJA684K035#CQXC	A	0.68	35	85	23	125	0.12	4	6000	112	101	45	3
TMJB105K035#COXC	В	1	35	85	23	125	0.12	4	2500	184	166	74	3
TMJB155K035#C^C	В	1.5	35	85	23	125	0.26	6	2500	184	166	74	3
TMJB225K035#C^C	В	2.2	35	85	23	125	0.39	6	2500	184	166	74	3
TMJB335K035#C^C	В	3.3	35	85	23	125	0.58	6	2500	184	166	74	3
TMJC475K035#COYA	C	4.7	35	85	23	125	0.36	6	600	428	385	171	3
TMJC475K035#CQTA	C	4.7	35	85	23	125	0.10	6	600	428	385	171	3
TMJC685K035#C^C	C	6.8	35	85	23	125	1.19	6	600	428	385	171	3
TMJC106K035#C^C	C	10	35	85	23	125	1.75	6	600	428	385	171	3
TMJD156K035#COYA	D	15	35	85	23	125	0.52	6	400	612	551	245	3
TMJD156K035#C^C	D	15	35	85	23	125	2.63	6	400	612	551	245	3
TMJD226K035#CQYA	D	22	35	85	23	125	0.77	6	400	612	551	245	3
TMJD226K035#C^C	D	22	35	85	23	125	3.85	6	400	612	551	245	3
TMJE336K035#C°C	E	33	35	85	23	125	1.15	6	250	812	731	325	3
TMJE336K035#C^C	E	33	35	85	23	125	5.78	6	250	812	731	325	3
	U	47		85	23	125	8.23	12		742	667	297	3
TMJU476K035#CQXC	U	47	35 35		23	125	1.64		300	742	667	297	3
TMJU476K035#CQYA	U	47	35	85			1.04	12	300	742	667	297	3
						Volt @ 85°C						1	
TMJA224K050#CQXC	Α	0.22	50	85	33	125	0.1	4	7000	104	93	41	3
TMJA334K050#CQXC	Α	0.33	50	85	33	125	0.1	4	7000	104	93	41	3
TMJB474K050#CQXC	В	0.47	50	85	33	125	0.12	4	2000	206	186	82	3
TMJB684K050#CQXC	В	0.68	50	85	33	125	0.17	4	2000	206	186	82	3
TMJC105K050#C^C	С	1	50	85	33	125	0.25	4	1500	271	244	108	3
TMJC155K050#C^C	С	1.5	50	85	33	125	0.38	6	1500	271	244	108	3
TMJC225K050#CQYA	С	2.2	50	85	33	125	0.11	6	1500	271	244	108	3
TMJC225K050#C^C	С	2.2	50	85	33	125	0.55	6	1500	271	244	108	3
TMJC335K050#CQYA	С	3.3	50	85	33	125	0.17	6	1500	271	244	108	3
TMJC335K050#C^C	С	3.3	50	85	33	125	0.83	6	1500	271	244	108	3
TMJD475K050#C^C	D	4.7	50	85	33	125	1.18	4.5	600	500	450	200	3
TMJD685K050#C^C	D	6.8	50	85	33	125	1.7	4.5	600	500	450	200	3
TMJE106K050#CQYA	E	10	50	85	33	125	0.5	4.5	400	642	578	257	3
TMJE106K050#C^C	Е	10	50	85	33	125	2.5	4.5	400	642	578	257	3
TMJU156K050#CQXC	U	15	50	85	33	125	3.75	12	450	606	545	242	3
TMJU226K050#CQXC	U	22	50	85	33	125	5.5	12	450	606	545	242	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

The EIA & CECC standards for low ESR Solid Tantalum Capacitors allow an ESR movement to 1.25 times catalogue limit post mounting.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

SMD S1gma™ Series Capacitors

QUALIFICATION TABLE

TEST		T	MJ S1gma [™] se	eries (Temperature ra	nge -55°C	to +125	°C)					
TEST		Condition				Characte	ristics					
				Visual examination	no visib	le damage	<u> </u>					
		e (Ur) at 85°C and /	• .	DCL	2 x initia							
Endurance	J , ,	ltage (Uc) at 125°C for 2000 hours through a circ pedance of ≤0.1Ω/V. Stabilize at room temperatu r 1-2 hours before measuring.		ΔC/C	within ±	10% of ini	tial value					
	1 '		om temperature	DF	initial lir	nit						
	101 1-2 110015 De10	re measuring.		ESR	1.25 x ir	nitial limit						
				Visual examination	no visib	le damage)					
	Store at 125°C, no	voltage applied, for	r 2000 hours.	DCL	2 x initia	al limit						
Storage Life	1	temperature for 1-2		ΔC/C	within ±	within ±10% of initial value						
	measuring.			DF	initial lir	nit						
				ESR	1.25 x ir	1.25 x initial limit						
				Visual examination	no visib	le damage	;					
		90 - 95% relative hu	•	DCL	3 x initia	al limit						
Humidity		olied voltage. Stabili		ΔC/C	within ±10% of initial value							
	measuring.	numidity for 1-2 hou	rs before	DF	1.2 x ini	tial limit						
	measuring.			ESR	1.25 x ir	nitial limit						
				Visual examination	no visib	le damage	;					
	Apply rated voltag	e (Ur) at 85°C, 85%	relative humidity	DCL	3 x initial limit							
Biased Humidity	for 1000 hours. St	abilize at room tem	perature and	ΔC/C	within ±	10% of ini	tial value					
	humidity for 1-2 ho	ours before measur	ing.	DF	1.2 x ini	tial limit						
				ESR	1.25 x ir	nitial limit						
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C		
	1	+20	15	DCL	IL* n/a IL* 10 x IL* 15				15 x IL*	1.5 x IL*		
Temperature	2 3	-55 +20	15 15	ΔC/C					+15/-0%	±5%		
Stability	4	+85	15	DF	IL*	-	1L*		 	1L*		
	5	+125	15			1.5 x IL*		1.5 x IL*	2 x IL*			
	6	+20	15	ESR	1.25xIL*	2.5xIL*	1.25xIL*	1.25xIL*	1.25xIL*	1.25xIL*		
	Apply 1 2v catogo	ry voltage (Uc) at 12	250C for 1000	Visual examination	no visib	le damage						
Surge	1	6 min (30 sec char		DCL	2 x initia							
Voltage	1 '	h a charge / discha	•	ΔC/C		5% of initi	al value					
	1000Ω		9	DF	initial lir	nit						
				ESR		nitial limit						
				Visual examination		le damage)					
Mechanical				DCL	initial lir							
Shock	MIL-STD-202, Met	hod 213, Condition	С	ΔC/C	within ±	5% of initi	al value					
				DF	initial lir							
				ESR	initial lir	nit						
				Visual examination		le damage	<u> </u>					
				DCL	initial lir	nit						
Vibration	MIL-STD-202, Met	hod 204, Condition	D	ΔC/C DF	within ±	5% of initi	al value					
	WILE-STD-202, Method 204, Condition D				initial lir	nit						
				ESR	initial lir	nit						

*Initial Limit

SMD S1gma™ Series Capacitors

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

High Temperature Tantalum Chip Capacitor

FEATURES

- Improved Reliability 2x Standard
- 175°C @ 0.5VR Continuous Operation
- 100% Surge Current Tested
- CV Range: 0.10-220µF / 6.3-50V
- 5 Case Sizes Available
- Low ESR options on approval
- · High Temperature Automotive and Industry Applications

APPLICATIONS

- · Automotive ECU and ABS Control Electronics
- · Geothermal Instrumentation

SnPb termination option is not RoHS compliant.

millimeters (inches)

CASE DIMENSIONS:

A+0.30 (0.012) -0.20 (0.008) W+0.20 (0.008) -0.10 (0.004) H+0.20 (0.008) -0.10 (0.004) W₁±0.20 (0.008) EIA EIA L±0.20 S Min. Code Metric (0.008)Α 1206 3216-18 3.20 (0.126) 1.60 (0.063) 1.60 (0.063) 1.20 (0.047) 0.80 (0.031) 1.10 (0.043) 1210 3528-21 3.50 (0.138) 2.80 (0.110) 1.90 (0.075) 2.20 (0.087) 0.80 (0.031) 1.40 (0.055) В 2312 6032-28 6.00 (0.236) 3.20 (0.126) 2.60 (0.102) 2.20 (0.087) 1.30 (0.051) 2.90 (0.114) С 2917 7343-31 7.30 (0.287) 4.30 (0.169) 2.90 (0.114) 2.40 (0.094) 1.30 (0.051) 4.40 (0.173) 2917 7343-43 7.30 (0.287) 4.30 (0.169) 4.10 (0.162) 2.40 (0.094) 1.30 (0.051) 4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only

A S A W

MARKING A, B, C, D, E CASE

HOW TO ORDER

В

THJ

105

Rated DC Voltage 006=6.3Vdc 010=10Vdc 016=16Vdc 020=20Vdc 025=25Vdc 035=35Vdc 050=50Vdc

Packaging
R = Pure Tin 7" Reel
S = Pure Tin 13" Reel
A = Gold Plating 7" Reel

(Contact Manufacturer)
B = Gold Plating 13" Reel
(Contact Manufacturer)
H = Tin Lead 7" Reel

(Contact Manufacturer) K = Tin Lead 13" Reel (Contact Manufacturer) H, K = Non RoHS

Standard Suffix OR 0100

| Low ESR in mΩ

characters may be added for special requirements V = Dry pack Option

V - Diy

TECHNICAL SPECIFICATIONS

Technical Data:		All techn	ical data	relate to	an ambi	ent tempe	erature of	+25°C	
Capacitance Range:		0.10 µF t	to 220 μF						
Capacitance Tolerance:		±10%; ±2	20%						
Rated Voltage (V _R)	≤ +85°C:	6.3	10	16	20	25	35	50	
Category Voltage (V _c)	≤ +125°C:	4	7	10	13	17	23	33	
Category Voltage (V _c)	≤ +175°C:	3	5	8	10	12	17	25	_
Surge Voltage (V _s)	≤ +85°C:	8	13	20	26	32	46	65	
Surge Voltage (V _s)	≤ +125°C:	5	8	13	16	20	28	40	
Surge Voltage (V _s)	≤ +175°C:	4	6	10	12	15	21	30	
Temperature Range:		-55°C to	175°C vc	ltage der	ating.				
Reliability:		0.5% per	1000 ho	urs at 85	°C, V _R wit	h 0.1Ω/V	series im	pedance,	_
		60% con	fidence le	evel, 3.5 F	its at 40	°C, 0.5V _R			
Termination Finish:		Sn Platir	ng (standa	ard), Gold	and SnF	b Plating	upon rec	quest	
		Meets re	quiremer	nts of AE	C-Q200	_			

High Temperature Tantalum Chip Capacitor

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Сара	citance			Rated volta	ge (V _R) to 85°C (Voltage Code)		
μF	Code	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)
0.10	104						A	
0.15	154						Α	
0.22	224						Α	
0.33	334						A	
0.47	474					Α	В	
0.68	684					Α	В	
1.0	105					Α	A/B	
1.5	155				A		С	
2.2	225			A/A(1500)		B/B(1500)	С	
3.3	335		Α	Α	В		С	D
4.7	475	Α	Α	A/B			С	D
6.8	685	Α	Α	A/B		С	D	D
10	106	Α	A/B	В		С	D	D/E
15	156	В	В	В	С		D	
22	226	В	В	C/C(500)		D	D/D(300)	
33	336	В	С	С	D	D	E/E(150)	
47	476	С	С	C/D				
68	686	С	D	D				
100	107	D	D	Е				
150	157	D						
220	227		Е					

Released ratings, (ESR ratings in mOhms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

High Temperature Tantalum Chip Capacitor

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100	kHz RMS	Current (r	nA)	MSL
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(μA)	(%)	@ 100kHz (Ω)	25°C	85°C	125°C	175°C	IVISL
						olt @ 85°C								
THJA475*006#JN	Α	4.7	6.3	85	3	175	0.5	6	6	112	101	45	22	1
THJA685*006#JN	A	6.8	6.3	85	3	175	0.5	4.5	2.6	170	153	68	34	1
THJA106*006#JN	A	10	6.3	85	3	175	0.6	4.5	2.2	185	166	74	37	1
THJB156*006#JN THJB226*006#JN	B	15 22	6.3	85 85	3	175 175	0.9 1.4	6	2.5	184 184	166 166	74 74	37 37	1
THJB226*006#JN	В	33	6.3	85	3	175	2.1	6	2.5	197	177	79	39	1
THJC476*006#JN	C	47	6.3	85	3	175	3.0	6	1.6	262	236	105	52	1
THJC686*006#JN	C	68	6.3	85	3	175	4.3	6	1.5	271	244	108	54	1
THJD107*006#JN	D	100	6.3	85	3	175	6	4.5	0.4	612	551	245	122	1 ¹⁾
THJD157*006#JN	D	150	6.3	85	3	175	9.5	6	0.9	408	367	163	82	1 ¹⁾
					10 Vo	lt @ 85°C								
THJA335*010#JN	A	3.3	10	85	5	175	0.5	6	5.5	117	105	47	23	1
THJA475*010#JN	Α	4.7	10	85	5	175	0.5	4.5	2.9	161	145	64	32	1
THJA685*010#JN	Α	6.8	10	85	5	175	0.7	4.5	2.6	170	153	68	34	1
THJA106*010#JN	Α	10	10	85	5	175	1	6	2.7	167	150	67	33	1
THJB106*010#JN	В	10	10	85	5	175	1	4.5	1.8	217	196	87	43	1
THJB156*010#JN	В	15	10	85	5	175	1.5	4.5	1.5	238	214	95	48	1
THJB226*010#JN	В	22	10	85	5	175	2.2	6	2.4	188	169	75	38	1
THJC336*010#JN	С	33	10	85	5	175	3.3	6	1.6	262	236	105	52	1
THJC476*010#JN	С	47	10	85	5	175	4.7	4.5	0.5	469	422	188	94	1
THJD686*010#JN	D	68	10	85	5	175	6.8	4.5	0.4	612	551	245	122	11)
THJD107*010#JN	D	100	10	85	5	175	10	6	0.9	408	367	163	82	1 ¹⁾
THJE227*010#JN	E	220	10	85	5	175	22	10	0.5	574	517	230	115	1 ¹⁾
TILLIA 005+016# IN	T .	0.0	16	0.5		lt @ 85°C	0.5	4.5		150	140		00	1
THJA225*016#JN THJA225*016#1500	A	2.2	16 16	85 85	8	175 175	0.5	4.5 4.5	1.5	158 224	142 201	63 89	32 45	1
THJA335*016#JN	A	3.3	16	85	8	175	0.5	6	5	122	110	49	24	1
THJA335*016#JN	A	4.7	16	85	8	175	0.8	4.5	2.9	161	145	64	32	1
THJB475*016#JN	В	4.7	16	85	8	175	0.8	6	3.5	156	140	62	31	1
THJA685*016#JN	A	6.8	16	85	8	175	1.1	6	3.5	146	132	59	29	1
THJB685*016#JN	В	6.8	16	85	8	175	1.1	6	2.5	184	166	74	37	1
THJB106*016#JN	В	10	16	85	8	175	1.6	4.5	2.8	174	157	70	35	1
THJB156*016#JN	В	15	16	85	8	175	2.4	6	2	206	186	82	41	1
THJC226*016#JN	С	22	16	85	8	175	3.5	6	1.6	262	236	105	52	1
THJC226*016#0500	С	22	16	85	8	175	3.5	4.5	0.5	469	422	188	94	1
THJC336*016#JN	С	33	16	85	8	175	5.3	6	1.5	271	244	108	54	1
THJC476*016#JN	С	47	16	85	8	175	7.5	6	0.8	371	334	148	74	1
THJD476*016#JN	D	47	16	85	8	175	7.5	6	0.9	408	367	163	82	1 ¹⁾
THJD686*016#JN	D	68	16	85	8	175	10.9	4.5	0.9	408	367	163	82	1 ¹⁾
THJE107*016#JN	E	100	16	85	8	175	16	8	0.4	642	578	257	128	1 ¹⁾
						lt @ 85°C								
THJA155*020#JN	Α	1.5	20	85	10	175	0.5	6	6.5	107	97	43	21	1
THJB335*020#JN	В	3.3	20	85	10	175	0.7	6	3	168	151	67	34	1
THJC156*020#JN	С	15	20	85	10	175	3.0	6	1.7	254	229	102	51	1
THJD336*020#JN	D	33	20	85	10	175	6.6	6	0.9	408	367	163	82	1 ¹⁾
	1 .					lt @ 85°C			1					
THJA474*025#JN	A	0.47	25	85	12	175	0.5	4	14	73	66	29	15	1
THJA684*025#JN	A	0.68	25	85	12	175	0.5	4	10	87	78	35	17	1
THJA105*025#JN	A	1.0	25	85	12	175	0.5	3	5.2	120	108	48	24	1
THJB225*025#JN THJB225*025#1500	B	2.2	25 25	85 85	12 12	175 175	0.6	6	4.5 1.5	137 238	124 214	55 95	27 48	1
THJC685*025#JN	C	6.8	25	85	12	175	1.7	6	2	235	214	95	48	1
THJC085*025#JN	C	10	25	85	12	175	2.5	6	1.8	247	222	99	49	1
THJD226*025#JN	D	22	25	85	12	175	5.5	6	0.9	408	367	163	82	11)
THJD336*025#JN	D	33	25	85	12	175	8.3	6	0.9	408	367	163	82	1 ¹⁾
11100000 02011014		- 00	20			It @ 85°C	0.0		0.5	400	1 007	100	UZ.	
THJA104*035#JN	l A	0.1	35	85	17	175	0.5	4	24	56	50	22	11	1
THJA154*035#JN	A	0.15	35	85	17	175	0.5	4	21	60	54	24	12	1
THJA224*035#JN	A	0.13	35	85	17	175	0.5	4	18	65	58	26	13	1
THJA334*035#JN	A	0.33	35	85	17	175	0.5	4	15	71	64	28	14	1
THJB474*035#JN	В	0.47	35	85	17	175	0.5	4	10	92	83	37	18	1
THJB684*035#JN	В	0.68	35	85	17	175	0.5	4	8	103	93	41	21	1
THJA105*035#JN	A	1.0	35	85	17	175	0.5	4	7.5	100	90	40	20	1
THJB105*035#JN	В	1.0	35	85	17	175	0.5	4	6.5	114	103	46	23	1
THJC155*035#JN	C	1.5	35	85	17	175	0.5	6	4.5	156	141	63	31	1
THJC225*035#JN	C	2.2	35	85	17	175	0.8	6	3.5	177	160	71	35	1
THJC335*035#JN	С	3.3	35	85	17	175	1.2	6	2.5	210	189	84	42	1
THJC475*035#JN	С	4.7	35	85	17	175	1.6	6	2.2	224	201	89	45	1
1 HJC4/5~035#JN														

High Temperature Tantalum Chip Capacitor

RATINGS & PART NUMBER REFERENCE

AVX	Case Capacitance	Rated Voltage	Rated Temperature	Category	Category Temperature	DCL Max.	DF	ESR Max.	100	kHz RMS	Current (r	nA)	MSL	
Part No.	Size	(μF)	(V)	(°C)	Voltage (V)	(°C)	(µA)	Max. (%)	@ 100kHz (Ω)	25°C	85°C	125°C	175°C	IVISL
THJD106*035#JN	D	10	35	85	17	175	3.5	6	1	387	349	155	77	1 ¹⁾
THJD156*035#JN	D	15	35	85	17	175	5.3	6	0.9	408	367	163	82	1 ¹⁾
THJD226*035#JN	D	22	35	85	17	175	7.7	6	0.6	500	450	200	100	1 ¹⁾
THJD226*035#0300	D	22	35	85	17	175	7.7	6	0.3	707	636	283	141	1 ¹⁾
THJE336*035#JN	E	33	35	85	17	175	11.6	6	0.5	574	517	230	115	1 ¹⁾
THJE336*035#0150	E	33	35	85	17	175	11.6	6	0.15	1049	944	420	210	1 ¹⁾
					50 Vo	lt @ 85°C								
THJD335*050#JN	D	3.3	50	85	25	175	1.7	6	1.1	369	332	148	74	1 ¹⁾
THJD475*050#JN	D	4.7	50	85	25	175	2.4	6	0.9	463	417	185	93	1 ¹)
THJD685*050#JN	D	6.8	50	85	25	175	3.4	6	0.7	408	367	163	82	1 ¹⁾
THJD106*050#JN	D	10	50	85	25	175	5	6	0.7	463	417	185	93	1 ¹)
THJE106*050#JN	E	10	50	85	25	175	5	6	0.7	486	437	194	97	1 ¹⁾

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All PNs also available with Dry pack option - MSL 3 (see How to order).

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

The EIA & CECC standards for low ESR Solid Tantalum Capacitors allow an ESR movement to 1.25 times catalogue limit post mounting.

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

^{1) -}Dry pack option (see How to order) is recommended for reduction of stress during soldering.

High Temperature Tantalum Chip Capacitor

QUALIFICATION TABLE

TECT			THJ series	(Temperature range	-55°C to +	175°C)						
1591		Condition			C	haracter	istics					
				Visual examination	no visib	le damage)					
				DCL	1.25 x ir	nitial limit						
Endurance				ΔC/C	within ±	10% of init	tial value	ue "C +125°C +175° * 10 x L* 12.5 x % +10/-0% +18/-0 * 1.5 x L* 2 x L (IL* 125 x L* 125 x				
			bom temperature	DF	initial lin	initial limit						
		ore modeling.		ESR	1.25 x ir	1.25 x initial limit						
				Visual examination	no visib	le damage	;					
	Apply rated voltage (Ur) at 85°C and / or category voltage (Uc) at 175°C for 2000 hours through a circuit impedance of ≤0.1Ω/V. Stabilize at room temperature for 1-2 hours before measuring. Storage Life Stor	1.25 x initial limit										
Storage Life	1			ΔC/C	Characteristics tion no visible damage 1.25 x initial limit within ±10% of initial value initial limit 1.25 x initial limit tion no visible damage 1.25 x initial limit within ±10% of initial value initial limit 1.25 x initial limit 1.25 x initial limit within ±10% of initial value initial limit within ±10% of initial value 1.2 x initial limit 1.25 x initial limit 1.5 x IL* 1.5 x IL* 1.5 x IL* 2 x 1.5 x IL* 1.							
	measuring.			DF	initial lin	nit						
				ESR	1.25 x ir	nitial limit						
				Visual examination	no visib	le damage	<u> </u>					
	Apply rated voltage	ne (Ur) at 85°C 85%	6 relative humidity	DCL	2 x initia	al limit		lue lue				
Biased Humidity	1 '''	• ` '	•	ΔC/C	within ±	10% of init	tial value					
•	humidity for 1-2 h	nours before measu	iring.	DF	1.2 x ini	tial limit		10 x IL* 12.5 x I +10/-0% +18/-0 1.5 x IL* 2 x IL				
				ESR	1.25 x ir							
	Step	Temperature°C	Duration(min)	+20°C -55°C +20°C +125°		+125°C	10 x IL* 12.5 x IL* +10/-0% +18/-0% 1.5 x IL* 2 x IL*	+20°C				
				DCI	*	n/a	II *	10 x IL* 12.5 x IL* +10/-0% +18/-0% 1.5 x IL* 2 x IL*	IL*			
Temperature						,,,		<u> </u>	x IL* 12.5 x IL* 0/-0% +18/-0% x IL* 2 x IL*	±5%		
Stability												
					IL*	1.5 x IL*	IL*	1.5 x IL*	12.5 x IL* +18/-0% 2 x IL*	IL*		
	6	+20	15	ESR	1.25xIL*	2.5xIL*	1.25xIL*	1.25xIL*	x IL* 12.5 x IL* 1/-0% +18/-0% x IL* 2 x IL*	1.25 x IL		
				Visual examination	no visib	le damage		10 x IL* 12.5 x IL* +10/-0% +18/-0% 1.5 x IL* 2 x IL*				
C				DCL	initial lir	nit						
				-, -	within ±	5% of initia	al value					
voltage	3,	gira charge / disch	arge resistance	DF	initial lin	nit						
				ESR	1.25 x ir	nitial limit						
				Visual examination	no visib	le damage)					
Maahaniaal				DCL	initial lin	nit						
	MIL-STD-202, Me	thod 213, Condition	n F	ΔC/C	within ±	5% of initi	al value					
SHOCK				DF	initial lin	nit						
				ESR	1.25 x ir	nitial limit						
				Visual examination	no visib	le damage)					
				DCL	initial lin	nit						
Vibration	MIL-STD-202, Me	thod 204, Condition	n D	ΔC/C	within ±	5% of initia	al value					
				DF	initial lir	nit						
				ESR	1.25 x ir	nitial limit						

^{*}Initial Limit

High Temperature Tantalum Chip Capacitor

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

THJ Extended Series

High Temperature (200°C max.) - J-Lead

FEATURES

- SMD 200°C Tantalum Capacitor
- 200°C @ 0.33VR 1000hrs Continuous Operation
- Leakage Current After 200°C 1000hrs Less than 1mA
- 3x Reflow 260°C
- 100% Surge Current Tested
- Gold Plated Termination for Hybrid Assembly
- Oil Drilling, Aerospace, Automotive Applications
- CV Range: 10-220µF / 10-16V
- · 2 Case Sizes Available

APPLICATIONS

· Downhole Drilling

MARKING B, E CASE

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only.

HOW TO ORDER

TECHNICAL SPECIFICATIONS

Technical Data:		All technica	al data relat	e to an ambient temperature of +25°C
Capacitance Range:		10 μF to 22	.0 μF	·
Capacitance Tolerance:		±10%; ±20%	6	
Leakage Current DCL @ V _R 25°C		0.01CV		
Leakage Current DCL @ V _c 200°C,	1000 hrs	1mA		
Rated Voltage (V _R)	≤ +85°C:	10	16	
Category Voltage (V _C)	≤ +200°C:	3.3	5.3	
Surge Voltage (V _S)	≤ +85°C:	13	20	
Surge Voltage (V _s)	≤ +200°C:	4.3	6.5	
Temperature Range:		-55°C up 20	00°C with v	oltage derating
Reliability:		0.5% per 10	000 hours a	t 85°C, V _R with 0.1Ω/V series impedance,
		1000 hrs at	200°C, 0.3	$3V_R$
Termination Finished:		g		

THJ Extended Series

High Temperature (200°C max.) - J-Lead

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Сара	citance	Rated voltage (V _R) to 85°C (Voltage Code						
μF	Code	10V (A)	16V (C)					
10	106		В					
15	156							
100	107		E					
150	157							
220	227	E						

Released ratings

Note: Voltage ratings are minimum values. AVX reserves the right to supply

higher voltage ratings in the same case size, to the same reliability standards.

RATINGS & PART NUMBER REFERENCE

AVX	Case (Case Capacitance \		Rated	Rated Temperature	Category Voltage	Category Temperature	DCL Max. @ V _R 25°C	DCL Max. @ VC 200°C	DF Max.	ESR Max.	100k	Hz RM	S Curren	t (mA)	MSL
Part No.			Voltage (V)	(°C)	(V)	(°C)	(μA)	1000 hrs (mA)	(%)	@ 100kHz (Ω)	25°C	85°C	175°C	200°C	_	
						10 Volt @ 85	5°C									
THJE227*010#JH	E	220	10	85	3.3	200	22	1.0	10	0.25	812	731	162	81	1 ¹⁾	
						16 Volt @ 85	5°C									
THJB106*016#JH	В	10	16	85	5.3	200	1.6	1.0	6	2.8	174	157	35	17	1	
THJE107*016#JH	E	100	16	85	5.3	200	16	1.0	8	0.25	812	731	162	81	1 ¹⁾	

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All PNs also available with Dry pack option - MSL 3 (see How to order).

Base terminations material is copper for E case size and Nilo42 for B case size.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts.

DCL is measured at rated voltage after 5 minutes.

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

^{1) -}Dry pack option (see How to order) recommended for reduction of stress during soldering.

THJ Extended Series

High Temperature (200°C max.) - J-Lead

QUALIFICATION TABLE

TEST			THJ 200°C serie	s (Temperature rang	1.25 x initial limit							
IESI		Condition				Characte	eristics					
				Visual examination	no visib	le damage)	+125°C +200°C 10 x IL* 12.5 x IL* +10/-0% +18/-0% 1.5 x IL* 2 x IL*				
		e (Ur) at 85°C and /		DCL	1.25 x ir	nitial limit			x IL* 12.5 x IL* 0/-0% +18/-0% x IL* 2 x IL*			
Endurance		0°C for 2000 hours t Ω/V. Stabilize at roo		ΔC/C	within ±	10% of ini	tial value					
	1-2 hours before n		om temperature for	DF	initial lir	nit						
				ESR	1.25 x ir	nitial limit						
				Visual examination	no visib	le damage	;					
	Store at 200°C, no	voltage applied, for	2000 hours.	DCL	1.25 x ir	nitial limit			12.5 x IL* 1-0% +18/-0% x IL* 2 x IL*			
Storage Life		emperature for 1-2		ΔC/C	within ±	10% of init	tial value					
	measuring.			DF	initial lir	nit		,				
				ESR	1.25 x ir	nitial limit						
				Visual examination	no visib	le damage	;		L* 12.5 x IL* 0% +18/-0% L* 2 x IL*			
	Apply rated voltage	e (Ur) at 85°C, 85%	relative humidity	DCL	2 x initia	al limit		+125°C +200°C 10 x IL* 12.5 x IL* +10/-0% +18/-0% 1.5 x IL* 2 x IL*				
Biased Humidity		abilize at room temp		ΔC/C	within ±	10% of init	tial value		0 x IL* 12.5 x IL* 0/-0% +18/-0% 5 x IL* 2 x IL*			
-	humidity for 1-2 ho	ours before measuri	ing.	DF	1.2 x initial limit							
				ESR	1.25 x initial limit							
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+125°C	12.5 x IL* +18/-0% 2 x IL*	+20°C		
	1	+20	15	DCL	II *	n/a	II *	10 x II *	12.5 x IL* +18/-0% 2 x IL*	IL*		
Temperature	2 3	-55 +20	15 15	ΔC/C	+			-		±5%		
Stability	4	+20	15		+					-		
	5	+125	15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL*		
	6	+20	15	ESR	1.25x IL*	2.5xIL*	1.25xIL*	1.25xIL*	1.25xIL*	1.25x IL*		
				Visual examination	no visib	le damage	<u> </u>					
Surge		ry voltage (Uc) at 20 6 min (30 sec chard		DCL	initial lir	nit						
Voltage	'	n a charge / dischar	, ,	ΔC/C	within ±	5% of initi	al value					
ronage	1000Ω	. a charge, alconar	go rooiotanoo or	DF	initial lir	nit						
				ESR	1.25 x ir	nitial limit			12.5 x IL* +18/-0% 2 x IL*			
				Visual examination	no visib	le damage	:					
Mechanical				DCL	initial lir	nit						
Shock	MIL-STD-202, Metl	hod 213, Condition	С	ΔC/C	within ±	5% of initi	al value		12.5 x IL* +18/-0% 2 x IL*			
GHOOK				DF	initial lir	nit						
			ESR	initial lir	nit							
				Visual examination	no visib	le damage						
				DCL	initial lir	nit						
Vibration	MIL-STD-202, Metl	hod 204, Condition I	D	ΔC/C	within ±5% of initial value							
				DF	initial lir	nit						
				ESR	initial lir	nit						

^{*}Initial Limit

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

Standard and Low Profile Tantalum Microchip Capacitors

-| Lt |-

MARKING

A, B, H, I, J, K, L, R, T, U, V CASE

HOW TO ORDER

Capacitance Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow)

226

Tolerance $K = \pm 10\%$ $M = \pm 20\%$

004

Rated DC Voltage 002=2Vdc 003=3Vdc 004=4Vdc 006=6.3Vdc 010=10Vdc 016=16Vdc 020=20Vdc

025=25Vdc

Packaging R, P = 7" Standard Tin Termination Plastic Tape
X, Q = 41/4" Standard Tin Termination Plastic Tape A, M = 7" Gold Termination

Plastic Tape 4¼" Gold Termination Plastic Tape

LEAD-FREE COMPATIBLE

STANDARD CASE DIMENSIONS:

FEATURES

100% Surge Current Tested CV Range: 0.10-150µF / 2-25V

APPLICATIONS

millimeters (inches)

Code	EIA Code	EIA Metric	L+0.20 (0.008) -0.00 (0.000)	W+0.15 (0.006) -0.00 (0.000)	H+0.15 (0.006) -0.00 (0.000)	Termination Spacing(S)	Minimum Termination Length (Lt)
Α	1206	3216-18	3.20 ± 0.20 (0.126 ± 0.008)	1.60 ± 0.20 (0.063 ± 0.008)	1.60 ± 0.20 (0.063 ± 0.008)	1.80 (0.071) min	0.15 (0.006)
В	1210	3528-15	3.50 ± 0.20 (0.138 ± 0.008)	2.80 ^{+0.20} _{-0.10} (0.110 ^{+0.008} _{-0.004})	1.50 (0.059) max	2.00 (0.079) min	0.15 (0.006)
К	0402	1005-07	1.00 (0.039)	0.50 ^{+0.20} _{-0.10} (0.020 ^{+0.008} _{-0.004})	0.50 ^{+0.20} _{-0.10} (0.020 ^{+0.008} _{-0.004})	0.40 (0.016) min	0.10 (0.004)
L	0603	1608-10	1.60 (0.063)	0.85 (0.033)	0.85 (0.033)	0.55 (0.022) min	0.15 (0.006)
R	0805	2012-15 2.00 (0.079)		1.35 (0.053)	1.35 (0.053)	0.70 (0.028) min	0.15 (0.006)

The World's Smallest Surface Mount Tantalum Capacitor

11 Case Sizes Available, Standard and Low Profile

Industrial and Hand-held and Wearable Applications

· Hearing Aids, Non-Life Support Medical, Long Life Miniature Designs

LOW PROFILE CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L+0.20 (0.008) -0.00 (0.000)	W+0.15 (0.006) -0.00 (0.000)	H max	Termination Spacing(S)	Minimum Termination Length (Lt)
н	0805	2012-10	2.00 (0.079)	1.35 (0.053)	1.00 (0.039)	0.70 (0.028) min	0.15 (0.006)
- 1	1206	3216-05	3.20±0.20 (0.126±0.008)	1.60±0.20 (0.063±0.008)	0.50 (0.020)	1.80 (0.071) min.	0.15 (0.006)
J	0603	1608-08	1.60 (0.063)	0.85 (0.033)	0.75 (0.030)	0.55 (0.022) min	0.15 (0.006)
т	1210	3528-12	3.50 ± 0.20 (0.138 ± 0.008)	2.80 ^{+0.20} _{-0.10} (0.110 ^{+0.008} _{-0.004})	1.20 (0.047)	2.00 (0.079) min	0.15 (0.006)
U	0805	2012-06	2.00 (0.079)	1.35 (0.053)	0.60 (0.024)	0.70 (0.028) min	0.15 (0.006)
V	1206	3216-08	3.20 ± 0.20 (0.126 ±0.008)	1.60 ± 0.20 (0.063 ± 0.008)	0.75 (0.030)	1.80 (0.071) min	0.15 (0.006)

Alternative characters may be used for special requirements

TA

TECHNICAL SPECIFICATIONS

Technical Data:	All technical data relate to an ambient temperature of +25°C										
Capacitance Range:		0.10 µF	to 150 μF								
Capacitance Tolerance:		±10%; ±2	20%								
Leakage Current DCL:		0.01CV	or 0.5μΑ \	whicheve	r is the gr	eater					
Rated Voltage (V _R)	≤ +85°C:	2	3	4	6.3	10	16	20	25		
Category Voltage (V _c)	≤ +125°C:	1.3	2	2.7	4	7	10	13	17		
Surge Voltage (V _s)	≤ +85°C:	2.7	3.9	5.2	8	13	20	26	32		
Surge Voltage (V _s)	≤ +125°C:	1.7	2.6	3.2	5	8	12	16	20		
Temperature Range:		-55°C to	+125°C				`				
Reliability:		1% per 1	000 hour	s at 85°C	C, V _R with ().1Ω/V s	eries imp	edance, 6	0% confide	nce level	
Termination Finish:	Tin Plating over Nickel (standard), Gold Plating over Nickel option available upon request										

Standard and Low Profile Tantalum Microchip Capacitors

STANDARD MICROCHIP CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance								
μF	Code	2.0V	3.0V	4.0V	6.3V	10V	16V	20V	25V
0.10	104						К		
0.15	154					К	К		
0.22	224					К	К	К	
0.33	334					K	К		
0.47	474					K/L	L		
0.68	684					K/L	L		
1.0	105				K/L	K/L/R	L		R
1.5	155			L	L	L			
2.2	225		K/L	L	K/L	L	L		
3.3	335	K/L	K/L	L	L	L/R		R	
4.7	475	K/L	K/L	L	L	L/R		R	
6.8	685	K/L	L	L	L/R	L/R			
10	106	K/L	L	L/R	L/R	L/R	R		
15	156		R	L/R	L/R	R			
22	226	R	L/R	L/R	R	R			
33	336	R	R	R	R	A/R			
47	476	R	R	R	A/R	В			
68	686	R	A/R	Α					
100	107		A/R	A/R	Α				
150	157	A							
220	227								

LOW PROFILE MICROCHIP CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capacitance		Voltage Rating DC (V _R) at 85°C									
μF	Code	2.0V	3.0V	4.0V	6.3V	10V	16V				
1.0	105						U				
1.5	155										
2.2	225					U					
3.3	335				U						
4.7	475			U							
6.8	685										
10	106	U		J	(M)	H/V					
15	156				Н	V					
22	226				Н						
33	336			Н							
47	476		Н			T					
68	686				T						
100	107				T						

Released ratings (M tolerance only)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance (µF)	Rated Voltage (V)	Rated Temperature (°C)	Category Voltage (V)	_ Category	DCL Max. (µA)	. Max.	ESR Max. @ 100kHz (Ω)	100kHz RMS Current (mA)			_ Product	MOL
Part No.	Size					Temperature (°C)				25°C	85°C	125°C	Category	MSL
			,		·	2 Volt @ 85°C		,	<u>, </u>			,		
TACK335*002#TA	K	3.3	2	85	1.3	125	0.5	8	15	32	28	13	3	11
TACL335*002#TA	L	3.3	2	85	1.3	125	0.5	6	7.5	58	52	23	2	1
TACK475*002#TA TACL475*002#TA	K L	4.7 4.7	2	85 85	1.3	125 125	0.5	12 6	7.5	32 58	28 52	13 23	3	1 1
TACK685*002#TA	K	6.8	2	85	1.3	125	0.5	20	15	32	28	13	3	1
TACL685*002#TA	L	6.8	2	85	1.3	125	0.5	6	7.5	58	52	23	2	1
TACK106*002#TA	K	10	2	85	1.3	125	0.5	15	15	32	28	13	3	1
TACL106*002#TA	L	10	2	85	1.3	125	0.5	10	7.5	58	52	23	3	1
TACU106*002#TA	U	10	2	85	1.3	125	0.5	8	5	84	75	33	1	1
TACR226*002#TA	R	22	2	85	1.3	125	0.5	8	5	95	85	38	1	1
TACR336*002#TA	R	33	2	85	1.3	125	0.7	10	5	95	85	38	2	1
TACR476*002#TA	R	47	2	85	1.3	125	0.9	10	5	95	85	38	2	1
TACR686*002#TA	R	68	2	85	1.3	125	1.4	14	5	95	85	38	2	1
TACA157*002#TA	Α	150	2	85	1.3	125	3	20	1	200	180	80	2	1
						3 Volt @ 85°C								
TACK225*003#TA	K	2.2	3	85	2	125	0.5	6	15	32	28	13	2	1
TACL225*003#TA	L	2.2	3	85	2	125	0.5	6	7.5	58	52	23	1	1
TACK335*003#TA	K	3.3	3	85	2	125	0.5	8	15	32	28	13	3	11
TACL335*003#TA	L	3.3	3	85	2	125	0.5	6	7.5	58	52	23	2	1
TACK475*003#TA TACL475*003#TA	K L	4.7 4.7	3	85 85	2	125 125	0.5	12 6	7.5	32 58	28 52	13 23	3	1
TACL475*003#TA	L	6.8	3	85	2	125	0.5	6	7.5	58	52	23	2	1
TACL106*003#TA	L	10	3	85	2	125	0.5	10	7.5	58	52	23	3	1
TACR156*003#TA	R	15	3	85	2	125	0.5	8	5	95	85	38	1	1
TACL226*003#TA	L	22	3	85	2	125	0.7	20	7.5	58	52	23	3	1
TACR226*003#TA	R	22	3	85	2	125	0.7	8	5	95	85	38	1	1
TACR336*003#TA	R	33	3	85	2	125	1	10	5	95	85	38	2	1
TACH476*003#TA	Н	47	3	85	2	125	1.4	20	5	89	80	36	3	1
TACR476*003#TA	R	47	3	85	2	125	1.5	10	5	95	85	38	2	1
TACA686*003#TA	Α	68	3	85	2	125	2	15	2	141	127	57	1	1
TACR686*003#TA	R	68	3	85	2	125	2	14	5	95	85	38	3	1
TACA107*003#TA	Α	100	3	85	2	125	3	15	1	200	180	80	2	1
TACR107*003#TA	R	100	3	85	2	125	3	30	5	95	85	38	3	1
			,		,	4 Volt @ 85°C					,			
TACL155*004#TA	L	1.5	4	85	2.7	125	0.5	6	7.5	58	52	23	1	1
TACL225*004#TA	L	2.2	4	85	2.7	125	0.5	6	7.5	58	52	23	1	1
TACL335*004#TA	L	3.3	4	85	2.7	125	0.5	6	7.5	58	52	23	2	1
TACL475*004#TA TACU475*004#TA	U	4.7 4.7	4	85	2.7	125 125	0.5	6 8	7.5 5	58 84	52 75	23	1	<u>1</u> 1
TACL685*004#TA	L	6.8	4	85 85	2.7	125	0.5	8	7.5	58	52	33 23	2	1
TACJ106*004#TA	J	10	4	85	2.7	125	0.5	20	7.5	52	46	21	3	1
TACL106*004#TA	L	10	4	85	2.7	125	0.5	10	7.5	58	52	23	2	1
TACR106*004#TA	R	10	4	85	2.7	125	0.5	8	5	95	85	38	1	1
TACL156*004#TA	L	15	4	85	2.7	125	0.6	20	7.5	58	52	23	3	1
TACR156*004#TA	R	15	4	85	2.7	125	0.6	8	5	95	85	38	1	1
TACL226*004#TA	L	22	4	85	2.7	125	0.9	20	7.5	58	52	23	3	1
TACR226*004#TA	R	22	4	85	2.7	125	0.9	8	5	95	85	38	1	1
TACH336*004#TA	Н	33	4	85	2.7	125	1.3	14	5	89	80	36	2	1
TACR336*004#TA	R	33	4	85	2.7	125	1.3	10	5	95	85	38	2	1
TACR476*004#TA	R	47	4	85	2.7	125	1.9	14	5	95	85	38	3	1
TACA686*004#TA	Α	68	4	85	2.7	125	2.7	15	1	200	180	80	1	1
TACA107*004#TA	A	100	4	85	2.7	125	4	20	1	200	180	80	2	1
TACR107*004#TA	R	100	4	85	2.7	125	4	30	5	95	85	38	3	1
		1 -				6.3 Volt @ 85°C								
	K	1	6.3	85	4	125	0.5	6	15	32	28	13	2	1
		1	6.3	85	4	125 125	0.5	6	7.5	58	52	23	1	1
TACL105*006#TA	L	4.5			. /	1.75	0.5	6	7.5	58 32	52 28	23 13	1	1
TACL105*006#TA TACL155*006#TA	L	1.5	6.3	85		 	0 -			. 37	ı /K		3	1
TACL105*006#TA TACL155*006#TA TACK225*006#TA	L K	2.2	6.3	85	4	125	0.5	8	15 7.5				1	
TACL105*006#TA TACL155*006#TA TACK225*006#TA TACL225*006#TA	K L	2.2 2.2	6.3 6.3	85 85	4	125 125	0.5	6	7.5	58	52	23	1	
TACL105*006#TA TACL155*006#TA TACK225*006#TA TACL225*006#TA TACL335*006#TA	L K L	2.2 2.2 3.3	6.3 6.3 6.3	85 85 85	4 4 4	125 125 125	0.5 0.5	6 6	7.5 7.5	58 58	52 52	23 23	2	1
TACL105*006#TA TACL155*006#TA TACK225*006#TA TACL225*006#TA TACL235*006#TA TACL335*006#TA TACU335*006#TA	L K L U	2.2 2.2 3.3 3.3	6.3 6.3 6.3 6.3	85 85 85 85	4 4 4 4	125 125 125 125	0.5 0.5 0.5	6 6 8	7.5 7.5 5	58 58 84	52 52 75	23 23 33	2	1 1
TACL105*006#TA TACL155*006#TA TACK225*006#TA TACK225*006#TA TACL225*006#TA TACL335*006#TA TACU335*006#TA TACU375*006#TA	L K L U	2.2 2.2 3.3 3.3 4.7	6.3 6.3 6.3 6.3 6.3	85 85 85 85 85	4 4 4 4 4	125 125 125 125 125 125	0.5 0.5 0.5 0.5	6 6 8 8	7.5 7.5 5 7.5	58 58 84 58	52 52 75 52	23 23 33 23	2 1 2	1 1 1
TACL105*006#TA TACL155*006#TA TACK225*006#TA TACK225*006#TA TACL225*006#TA TACL335*006#TA TACL335*006#TA TACL475*006#TA TACL475*006#TA	L K L U L	2.2 2.2 3.3 3.3 4.7 6.8	6.3 6.3 6.3 6.3 6.3 6.3	85 85 85 85 85 85	4 4 4 4 4 4	125 125 125 125 125 125 125	0.5 0.5 0.5 0.5 0.5	6 6 8 8 10	7.5 7.5 5 7.5 7.5	58 58 84 58 58	52 52 75 52 52 52	23 23 33 23 23	2 1 2 2	1 1 1
TACL105*006#TA TACL155*006#TA TACK225*006#TA TACL225*006#TA TACL235*006#TA TACL335*006#TA TACU335*006#TA TACL475*006#TA TACL655*006#TA	L K L U	2.2 2.2 3.3 3.3 4.7 6.8 6.8	6.3 6.3 6.3 6.3 6.3 6.3 6.3	85 85 85 85 85 85 85	4 4 4 4 4 4	125 125 125 125 125 125 125 125	0.5 0.5 0.5 0.5 0.5 0.5	6 6 8 8 10 8	7.5 7.5 5 7.5 7.5 7.5	58 58 84 58 58 58	52 52 75 52 52 52 85	23 23 33 23 23 23 38	2 1 2 2 1	1 1 1 1
TACL105*006#TA TACL155*006#TA TACL125*006#TA TACL225*006#TA TACL225*006#TA TACL335*006#TA TACU335*006#TA TACU475*006#TA TACL685*006#TA TACL685*006#TA TACL685*006#TA	L K L U L L	2.2 2.2 3.3 3.3 4.7 6.8 6.8	6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	85 85 85 85 85 85 85 85	4 4 4 4 4 4 4 4	125 125 125 125 125 125 125 125 125 125	0.5 0.5 0.5 0.5 0.5 0.5 0.5	6 8 8 10 8 20	7.5 7.5 5 7.5 7.5 5 5 5	58 58 84 58 58 95 84	52 52 75 52 52 52	23 23 33 23 23 23 38 33	2 1 2 2 1 2	1 1 1
TACL105*006#TA TACL155*006#TA TACK225*006#TA TACK225*006#TA TACL225*006#TA TACL335*006#TA TACU335*006#TA TACL475*006#TA TACL475*006#TA TACL685*006#TA TACR685*006#TA TACR605*006#TA TACI106*006#TA TACL106*006#TA	L K L U L L R	2.2 2.2 3.3 3.3 4.7 6.8 6.8	6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	85 85 85 85 85 85 85	4 4 4 4 4 4	125 125 125 125 125 125 125 125	0.5 0.5 0.5 0.5 0.5 0.5	6 6 8 8 10 8	7.5 7.5 5 7.5 7.5 7.5	58 58 84 58 58 58	52 52 75 52 52 52 85 75	23 23 33 23 23 23 38	2 1 2 2 1	1 1 1 1 1
TACL105*006#TA TACL155*006#TA TACK225*006#TA TACK225*006#TA TACL225*006#TA TACL335*006#TA TACU335*006#TA TACL475*006#TA TACL685*006#TA TACL665*006#TA TACI06M006#TA TACL106*006#TA TACL106*006#TA	L K L U L L L L L L L L L L L L L L L L	2.2 2.2 3.3 3.3 4.7 6.8 6.8 10	6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	85 85 85 85 85 85 85 85 85	4 4 4 4 4 4 4 4	125 125 125 125 125 125 125 125 125 125	0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6	6 8 8 10 8 20	7.5 7.5 5 7.5 7.5 5 5 5 6	58 58 84 58 58 58 95 84 65	52 52 75 52 52 52 85 75 58	23 23 33 23 23 23 38 33 26	2 1 2 2 1 2 2	1 1 1 1 1 1
TACL155*006#TA TACK225*006#TA TACL225*006#TA	L K L U L L R I L R	2.2 2.2 3.3 3.3 4.7 6.8 6.8 10	6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	85 85 85 85 85 85 85 85 85 85	4 4 4 4 4 4 4 4 4 4	125 125 125 125 125 125 125 125 125 125	0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6	6 8 8 10 8 20 10 8	7.5 7.5 5 7.5 7.5 5 5 6 5	58 58 84 58 58 95 84 65 95	52 52 75 52 52 52 85 75 58 85	23 23 33 23 23 23 38 33 26 38	2 1 2 2 1 2 2 2 1	1 1 1 1 1 1 1

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF	ESR Max.	100kHz	RMS Curr	ent (mA)	Product	MSL
Part No.	Size	(μF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (Ω)	25°C	85°C	125°C	Category	MSL
TACH226*006#TA	Н	22	6.3	85	4	125	1.4	10	5	89	80	36	2	1
TACR226*006#TA	R	22	6.3	85	4	125	1.4	10	5	95	85	38	1	1
TACR336*006#TA	R	33	6.3	85	4	125	2.1	12	5	95	85	38	2	1
TACA476*006#TA	Α	47	6.3	85	4	125	3	15	1	200	180	80	1	1
TACR476*006#TA	R	47	6.3	85	4	125	3	20	5	95	85	38	3	1
TACT686*006#TA	T	68	6.3	85	4	125	4.3	15	1	200	180	80	2	1
TACA107*006#TA	Α	100	6.3	85	4	125	6.3	20	1	200	180	80	2	1
TACT107*006#TA	T	100	6.3	85	4	125	6.3	12	1	200	180	80	2	1
						10 Volt @ 85°C								
TACK154*010#TA	K	0.15	10	85	7	125	0.5	6	40	19	17	8	1	1
TACK224*010#TA	K	0.22	10	85	7	125	0.5	6	30	22	20	9	1	1
TACK334*010#TA	K	0.33	10	85	7	125	0.5	6	20	27	25	11	1	1
TACK474*010#TA	K	0.47	10	85	7	125	0.5	6	15	32	28	13	1	1
TACL474*010#TA TACK684*010#TA	L	0.47	10	85	7	125	0.5	6	7.5	58	52	23	1	1
TACK684*010#1A	K L	0.68	10 10	85 85	7	125 125	0.5	8	7.5	32 58	28 52	13	2	1
TACK105*010#TA	K	1	10	85	7	125	0.5	6	15	32	28	13	2	1
TACK105*010#TA	L	1	10	85	7	125	0.5	6	7.5	58	52	23	1	1
TACR105*010#TA	R	1	10	85	7	125	0.5	6	7.5	80	72	32	1	1
TACL155*010#TA	L	1.5	10	85	7	125	0.5	6	7.5	58	52	23	1	1
TACL225*010#TA	L	2.2	10	85	7	125	0.5	6	7.5	58	52	23	1	1
TACU225*010#TA	U	2.2	10	85	7	125	0.5	8	5	84	75	33	1	1
TACL335*010#TA	L	3.3	10	85	7	125	0.5	8	7.5	58	52	23	2	1
TACR335*010#TA	R	3.3	10	85	7	125	0.5	8	5	95	85	38	1	1
TACL475*010#TA	L	4.7	10	85	7	125	0.5	10	6	65	58	26	2	1
TACR475*010#TA	R	4.7	10	85	7	125	0.5	8	6	87	78	35	1	1
TACL685*010#TA	L	6.8	10	85	7	125	0.7	20	7,5	58	52	23	3	1
TACR685*010#TA	R	6.8	10	85	7	125	0.7	8	5	95	85	38	1	1
TACH106*010#TA	Н	10	10	85	7	125	1.0	8	5	89	80	36	2	1
TACL106*010#TA	L	10	10	85	7	125	1	20	7.5	58	52	23	3	1
TACR106*010#TA	R	10	10	85	7	125	1	8	5	95	85	38	1	1
TACV106*010#TA	V	10	10	85	7	125	1.0	10	2	132	119	53	2	1
TACR156*010#TA	R	15	10	85	7	125	1.5	10	5	95	85	38	1	1
TACV156*010#TA	V	15	10	85	7	125	1.5	10	2	132	119	53	2	1
TACR226*010#TA	R	22	10	85	7	125	2.2	14	5	95	85	38	2	1
TACA336*010#TA	A	33	10	85	7	125	3.3	12	1	200	180	80	1	1
TACR336*010#TA	R	33	10	85		125	3.3	20	5	95	85	38	3	1
TACB476*010#TA TACT476*010#TA	B T	47 47	10 10	85 85	7	125 125	4.7	15 12	1	200	180 180	80	1	1
TAC1470"010#TA	' '	47	10	65		16 Volt @ 85°C	4.7	12		200	100	60	ı	'
TACK104*016#TA	К	0.1	16	85	10	125	0.5	6	40	19	17	8	1	1
TACK104*016#TA	K	0.15	16	85	10	125	0.5	6	30	22	20	9	1	1
TACK154*016#TA	K	0.15	16	85	10	125	0.5	6	20	27	25	11	1	1
TACK224 010#TA	K	0.22	16	85	10	125	0.5	6	20	27	25	11	1	1
TACL474*016#TA	L	0.47	16	85	10	125	0.5	6	7.5	58	52	23	1	1
TACL684*016#TA	L	0.68	16	85	10	125	0.5	6	7.5	58	52	23	1	1
TACL105*016#TA	L	1	16	85	10	125	0.5	6	7.5	58	52	23	1	1
TACU105*016#TA	U	1	16	85	10	125	0.5	8	5	84	75	33	1	1
TACL225*016#TA	L	2.2	16	85	10	125	0.5	10	7.5	58	52	23	1	1
TACR106*016#TA	R	10	16	85	10	125	1.6	10	5	95	85	38	2	1
						20 Volt @ 85°C								
TACK224*020#TA	K	0.22	20	85	13	125	0.5	6	20	27	25	11	1	1
TACR335*020#TA	R	3.3	20	85	13	125	0.7	8	5	95	85	38	1	1
TACR475*020#TA	R	4.7	20	85	13	125	0.9	8	5	95	85	38	1	1
						25 Volt @ 85°C								
TACR105*025#TA	R	1	25	85	17	125	0.5	8	5	95	85	38	1	1

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts.

DCL is measured at rated voltage after 5 minutes.

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

QUALIFICATION TABLE - CATEGORY 1

TECT		TAC series (Temperature range -55°C to +125°C)												
TEST		Condition			Characteristics									
				Visual examination	no visible damage									
Endurance		e (Ur) at 85°C and /	DCL	1.25 x in	itial limit									
		5°C for 2000 hours 1Ω/V. Stabilize at ro	ΔC/C	within ±1	10% of initia	l value								
	for 1-2 hours befo		DF	1.5 x init	ial limit									
	Tot 1 2 Hours bero	re meddanig.		ESR	1.5 x init	1.5 x initial limit								
				Visual examination	no visibl	e damage								
		90-95% relative hur	DCL	initial limit										
Humidity		olied voltage. Stabili	ΔC/C	within ±5% of initial value										
•	measuring.	numidity for 1-2 hou	DF	1.2 x initial limit										
	medodring.		ESR	1.2 x initial limit										
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°0				
	1	+20	15	- 001			IL*			IL*				
Tamananatuna	2	-55	15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*				
Temperature Stability	3	+20	15	ΔC/C	n/a	+0/-10%	±5%	+10/-0%	+15/-0%	±5%				
Stability	4	+85	15	DF	IL*	1.5xIL*	IL*	1.5xIL*	2xIL*	IL*				
	5	+125	15	ESR	IL*	1.25 x IL*	IL*	1.25 x IL*	2 x IL*	IL*				
	6	+20	15	ESR	IL"	1.23 X IL.	IL."	1.23 X IL.	Z X IL"	IL.				
				Visual examination	no visible damage									
_	Apply 1.3x rated v	oltage (Ur) at 85°C f	for 1000 cycles of	DCL	initial lim	nit								
Surge		sec charge, 5 min 3		ΔC/C	within ±1	10% of initial	value							
Voltage	through a charge	/ discharge resistan	ce of 1000Ω	DF	initial lim	nit								
				ESR	initial lim	nit								

^{*}Initial Limit

QUALIFICATION TABLE - CATEGORY 2

TEST	TAC series (Temperature range -55°C to +125°C)											
1591		Condition			Characteristics							
				Visual examination	no visible damage							
	Apply rated voltag	e (Ur) at 85°C and /	or category	DCL	1.25 x in	itial limit						
Endurance	3 (/	5°C for 2000 hours t 1Ω/V. Stabilize at roo	ΔC/C	within ±	15% of initia	l value						
	1-2 hours before r		om temperature for	DF	1.5 x init	ial limit						
				ESR	1.5 x init	ial limit						
				Visual examination	no visibl	e damage						
	Store at 40°C and	90-95% relative hun	DCL	initial limit								
Humidity		olied voltage. Stabiliz numidity for 1-2 hour		ΔC/C	within ±10% of initial value							
-	measuring.	iumunty for 1-2 flour	s before	DF	1.2 x initial limit							
				ESR	1.2 x initial limit							
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C		
	1	+20	15	-								
T	2	-55	15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*		
Temperature	3	+20	15	ΔC/C	n/a	+0/-15%	±5%	+15/-0%	+20/-0%	±5%		
Stability	4	+85	15	DF	IL*	1.5xIL*	IL*	1.5xIL*	2xIL*	L*		
	5	+125	15	1								
	6	+20	15	ESR	IL*	1.25 x IL*	IL*	1.25 x IL*	2 x IL*	IL*		
				Visual examination	no visible damage							
	Apply 1.3x rated v	oltage (Ur) at 85°C f	or 1000 cycles of	DCL	1.5 x initial limit							
Surge Voltage	duration 6 min (30	sec charge, 5 min 3	30 sec discharge)	ΔC/C	within ±1	15% of initial	value					
Voltage	through a charge	/ discharge resistan	ce of 1000Ω	DF	1.5 x init	ial limit						
				ESR	1.5 x init	ial limit						

^{*}Initial Limit

TAC Series

QUALIFICATION TABLE - CATEGORY 3

TEST			TAC series (T	emperature range -	55°C to +1	125°C)				
1551		Condition			Chara	acteristic	S			
				Visual examination	no visibl	e damage				
		e (Ur) at 85°C and /		DCL	1.25 x in	itial limit				
Endurance		5°C for 2000 hours t IΩ/V. Stabilize at roo		ΔC/C	within ±3	30% of initia	l value			
	1-2 hours before n		in temperature for	DF	1.5 x init	ial limit				
				ESR	1.5 x init	ial limit				
				Visual examination	no visibl	e damage				
		90-95% relative hum	,	DCL	2 x initial limit					
Humidity		olied voltage. Stabiliz numidity for 1-2 hour		ΔC/C	within ±30% of initial value					
	measuring.	idifficity for 1-2 flour	s before	DF	1.5 x init	ial limit				
				ESR	1.25 x in	itial limit				
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C
	1	+20	15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*
Temperature	3	-55 +20	15 15	ΔC/C	n/a	+0/-25%	±5%	+20/-0%	+25/-0%	
Stability	4	+20	15	-				<u> </u>		1
	5	+125	15	. DF	IL*	1.5xIL*	IL*	1.5xIL*	2xIL*	1.5xIL*
	6	+20	15	ESR	IL*	1.25 x IL*	IL*	1.25 x IL*	2 x IL*	1.5 x IL ³
		'		Visual examination	no visibl	e damage				
	Apply 1.3x rated v	oltage (Ur) at 85°C fo	DCL	2 x initial limit						
Surge Voltage	1 '''	sec charge, 5 min 3	ΔC/C	within ±30% of initial value						
	through a charge /	discharge resistant	ce of 1000Ω	DF	2 x initial limit					
				ESR	2 x initia	l limit				

^{*}Initial Limit

TAC Series

Standard and Low Profile Tantalum Microchip Capacitors

SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: Conventional SMD MnO₃

Tantalum Solid Electrolytic Chip Capacitors Consumer Series

FEATURES

- · High Capacitance vs. Voltage Ratio
- Super High Volumetric Efficiency
- 100% Surge Current Tested
- CV Range: 0.47-220µF / 2-35V
- 12 Case Sizes Available
- Consumer Applications (Portable Hand-held Electronics, Cellular Phones, Digital Equipment etc.)

COMPONENT

APPLICATIONS

· Consumer Portable Applications with Space Limitations

CASE DIMENSIONS:

millimeters (inches)

(Code	EIA Code	EIA Metric	L+0.20 (0.008) -0.00 (0.000)	W+0.15 (0.006) -0.00 (0.000)	H+0.15 (0.006) -0.00 (0.000)	Termination Spacing (S)	Minimum Termination Length (Lt)
	D	1206	3216-06	3.20 ± 0.20 (0.126 ± 0.008)	1.60 ± 0.20 (0.063 ± 0.008)	0.60 (0.024) max	1.80 (0.071) min	0.15 (0.006)
	E*	0201	0603-03	0.60 ± 0.12 (0.024 ± 0.005)	0.33 ± 0.02 (0.013 ± 0.001)	0.33 ± 0.02 (0.013 ± 0.001)	0.20 (0.008) min	0.10 (0.004)
	Н	0805	2012-10	2.00 (0.079)	1.35 (0.053)	1.00 (0.039) max	0.70 (0.028) min	0.15 (0.006)
	J	0603	1608-08	1.60 (0.063)	0.85 (0.033)	0.75 (0.030) max	0.55 (0.022) min	0.15 (0.006)
	к	0402	1005-07	1.00 (0.039)	0.50 ^{+0.20} _{-0.10} (0.020 ^{+0.008} _{-0.004})	0.50 ^{+0.20} _{-0.10} (0.020 ^{+0.008} _{-0.004})	0.40 (0.016) min	0.10 (0.004)
	L	0603	1608-10	1.60 (0.063)	0.85 (0.033)	0.85 (0.033)	0.55 (0.022) min	0.15 (0.006)
	М	0803	2008-10	2.00 (0.079)	0.85 (0.033)	0.85 (0.033)	0.70 (0.028) min	0.15 (0.006)
	R	0805	2012-15	2.00 (0.079)	1.35 (0.053)	1.35 (0.053)	0.70 (0.028) min	0.15 (0.006)
	т	1210	3528-12	3.50 ± 0.20 (0.138 ± 0.008)	2.80 ^{+0.20} _{-0.10} (0.110 ^{+0.008} _{-0.004})	1.20 (0.047) max	2.00 (0.079) min	0.15 (0.006)
	U	0805	2012-06	2.00 (0.079)	1.35 (0.053)	0.60 (0.024) max	0.70 (0.028) min	0.15 (0.006)
	v	1206	3216-08	3.20 ± 0.20 (0.126 ± 0.008)	1.60 ± 0.20 (0.063 ± 0.008)	0.75 (0.030) max	1.80 (0.071) min	0.15 (0.006)
	z	0602	1605-07	1.60 (0.063)	0.50 ^{+0.20} _{-0.10} (0.020 ^{+0.008} _{-0.004})	0.50 ^{+0.20} _{-0.10} (0.020 ^{+0.008} _{-0.004})	0.55 (0.022) min	0.15 (0.006)

^{*}Please contact AVX, availability upon request

MARKING

D, H, J, K, L, M, R, T, U, V, Z CASE

HOW TO ORDER

Type **Case Size** See table above

226

Capacitance Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow) М

Tolerance $M = \pm 20\%$

006

Rated DC Voltage 002=2Vdc 003=3Vdc 004=4Vdc 006=6.3Vdc 008=8Vdc 010=10Vdc 016=16Vdc 020=20Vdc 025=25Vdc

035=35Vdc

R **Packaging**

R, P = 7" Standard Tin **Termination Plastic Tape** X, Q = 41/4" Standard Tin Termination Plastic Tape
A, M = 7" Gold Termination

Plastic Tape $F, N = 4\frac{1}{4}$ Gold Termination Plastic Tape
H = Chip Tray (waffle)

Only case E

TA Standard

Suffix

OR

4000

ESR in $m\Omega$

Tantalum Solid Electrolytic Chip Capacitors Consumer Series

TECHNICAL SPECIFICATIONS

Technical Data:		All tech	nical da	ta relate	to an a	mbient t	empera	ture of +	25°C			
Capacitance Range:		0.47 μF	to 220 _l	μF								
Capacitance Tolerance	:	±20%										
Rated Voltage (V_R) -55°C \leq +40°C: 2 3 4 6.3 8 10 16 20 25 35												
Category Voltage (V _c) at 85°C: 1 1.5 2 3.2 4 5 8 10 12.5 17.5												
Category Voltage (V _C)	at 125°C:	0.4	0.6	0.8	1.3	1.6	2	3.2	4	5	7	
Temperature Range:		-55°C to	+125°C	with ca	tegory	voltage						
Reliability: 0.2% per 1000 hours at 85° C, $0.5xV_{R}$ with $0.1\Omega/V$ series impedance with												
	60% confidence level											

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capa	citance				Voltage	Voltage Rating DC (V _R) to 40°C						
μF	Code	2.0V	3.0V	4.0V	6.3V	8V	10V	16V	20V	25V	35V	
0.47	474				E*			K				
1.0	105				E*			K		L	R	
2.2	225						K		Н			
3.3	335							L				
4.7	475			K	K/U		J					
6.8	685		K	K			U					
10	106		K	J/K/Z	J/K/Z		U	V	R			
15	156	K		K			H/L					
22	226	J	J	U	L/U		L/M					
33	336			L/U	H/L L(4000)/U/V	L	Н					
47	476	L	L/R	H/L	H/L/R/V	D	H/R					
68	686			R	R							
100	107			R	R/T		Т					
150	157											
220	227			T								

Released ratings, (ESR ratings in m0hms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

^{*}Please contact AVX, availability upon request

A KYOCEPA GPOLID COMPANIY

Tantalum Solid Electrolytic Chip Capacitors Consumer Series

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated	Rated	Category	Category	DCL	ESR Max.	100kHz	R MS Curr	ent (mA)	
Part No.	Size	(µF)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μA)	@100kHz (Ω)	25°C	85°C	125°C	MSL
	<u> </u>				2 Volt	@ 40°C				,		
TLCK156M002#TA	K	15	2	40	0.4	125	0.5	15	32	28	13	3
TLCJ226M002#TA	J	22	2	40	0.4	125	0.5	7.5	52	46	21	3
TLCL476M002#TA	L	47	2	40	0.4	125	0.9	7.5	58	52	23	3
						@ 40°C						
TLCK685M003#TA	K	6.8	3	40	0.6	125	0.5	15	32	28	13	3
TLCK106M003#TA	K	10	3	40	0.6	125	0.5	15	32	28	13	3
TLCJ226M003#TA	J	22 47	3	40 40	0.6	125 125	0.7	7.5	52	46 52	21 23	3
TLCL476M003#TA TLCR476M003#TA	L R	47	3	40	0.6	125	1.4 3.0	7.5 7.5	58 77	70	31	3
TLOR470M003#TA		47] 3	40		@ 40°C	3.0	7.5	//	70	J 31] 3
TLCK475M004#TA	К	4.7	4	40	0.8	125	0.5	15	32	28	13	3
TLCK685M004#TA	K	6.8	4	40	0.8	125	0.5	15	32	28	13	3
TLCJ106M004#TA	J	10	4	40	0.8	125	0.5	7.5	52	46	21	3
TLCK106M004#TA	К	10	4	40	0.8	125	0.5	15	32	28	13	3
TLCZ106M004#TA	Z	10	4	40	0.8	125	0.5	15	37	33	15	3
TLCK156M004#TA	K	15	4	40	0.8	125	3.0	15	32	28	13	3
TLCU226M004#TA	U	22	4	40	0.8	125	0.9	12	54	49	22	3
TLCL336M004#TA	L	33	4	40	0.8	125	1.3	7.5	58	52	23	3
TLCU336M004#TA	U	33	4	40	0.8	125	2.6	9	62	56	25	3
TLCH476M004#TA	Н	47	4	40	0.8	125	1.9	5	89	80	36	3
TLCL476M004#TA	L	47	4	40	0.8	125	1.9	7.5	58	52	23	3
TLCR686M004#TA	R	68	4	40	0.8	125	2.7	5	95	85	38	3
TLCR107M004#TA TLCT227M004#TA	R	100 220	4	40 40	0.8	125 125	4.0 8.8	5	95 200	85 180	38 80	3
1LG122710004#1A		220		40		t @ 40°C	0.0	<u>'</u>	200	100	80	
TLCE474M006HTA*	E	0.47	6.3	40	1.3	125	1.0	60	13	12	5	3
TLCE105M006HTA*	E	1	6.3	40	1.3	125	1.0	60	13	12	5	3
TLCK475M006#TA	K	4.7	6.3	40	1.3	125	0.5	15	32	28	13	3
TLCU475M006#TA	U	4.7	6.3	40	1.3	125	0.5	5	84	75	33	3
TLCJ106M006#TA	J	10	6.3	40	1.3	125	0.6	7.5	52	46	21	3
TLCK106M006#TA	К	10	6.3	40	1.3	125	3.1	15	32	28	13	3
TLCZ106M006#TA	Z	10	6.3	40	1.3	125	0.6	15	37	33	15	3
TLCL226M006#TA	L	22	6.3	40	1.3	125	1.4	7.5	58	52	23	3
TLCU226M006#TA	U	22	6.3	40	1.3	125	2.8	12	54	49	22	3
TLCH336M006#TA	Н	33	6.3	40	1.3	125	2.0	5	89	80	36	3
TLCL336M006#TA	L	33	6.3	40	1.3	125	2.1	7.5	58	52	23	3
TLCL336M006#4000	L	33	6.3	40	1.3	125	2.1	4	79	71	32	3
TLCU336M006#TA	V	33	6.3	40	1.3	125	10.4	7.5	68	61	27	3
TLCV336M006#TA TLCH476M006#TA	H	33 47	6.3	40	1.3 1.3	125 125	4.2 3.0	5	84 89	75 80	33 36	3
TLCL476M006#TA	L	47	6.3	40	1.3	125	29.6	10	50	45	20	3
TLCR476M006#TA	R	47	6.3	40	1.3	125	6.0	5	95	85	38	3
TLCV476M006#TA	V	47	6.3	40	1.3	125	6.0	15	48	43	19	3
TLCR686M006#TA	R	68	6.3	40	1.3	125	4.3	5	95	85	38	3
TLCR107M006#TA	R	100	6.3	40	1.3	125	6.0	5	95	85	38	3
TLCT107M006#TA	Т	100	6.3	40	1.3	125	31.5	15	52	46	21	3
					8 Volt	@ 40°C						
TLCL336M008#TA	L	33	8	40	1.6	125	26.4	10	50	45	20	3
TLCD476M008#TA	D	47	8	40	1.6	125	18.8	7	71	64	28	3
						@ 40°C						
TLCK225M010#TA	K	2.2	10	40	2	125	0.5	15	32	28	13	3
TLCJ475M010#TA	J	4.7	10	40	2	125	0.5	10	45	40	18	3
TLCU685M010#TA	U	6.8	10	40	2	125	0.7	5	84	75	33	3
TLCU106M010#TA	U	10	10	40	2	125	1.0	5	84	75	33	3
TLCH156M010#TA	H	15	10	40	2	125	1.5	5	58	52	23	3
TLCL156M010#TA TLCL226M010#TA	L	15 22	10	40 40	2	125 125	1.5 11	7.5	89	80	36 20	3
TLCL226M010#TA TLCM226M010#TA	M	22	10	40	2	125	2.2	7.5	50 63	45 57	25	3
TLCH336M010#TA	H	33	10	40	2	125	3.3	5	89	80	36	3
		47	10	40	2	125	23.5	7.5	73	66	29	3
	1 H					125	4.7					
TLCH476M010#TA	H R	47	10	40	2	125	4./	1 3	95	85	38	3
	R		10 10	40 40	2	125	10	5 1	200	85 180	38 80	3
TLCH476M010#TA TLCR476M010#TA	R	47			2							
TLCH476M010#TA TLCR476M010#TA	R	47			2	125						
TLCH476M010#TA TLCR476M010#TA TLCT107M010#TA	R	47 100	10	40	2 16 Volt	125 @ 40°C	10	1	200	180	80	3
TLCH476M010#TA TLCR476M010#TA TLCT107M010#TA TLCK474M016#TA	R T	47 100 0.47	10	40	2 16 Volt 3.2	125 :@ 40°C 125	0.5	1 15	200	180	80	3

Tantalum Solid Electrolytic Chip Capacitors Consumer Series

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Rated	Category Voltage	Category	DCL Max.	ESR Max.	100kHz	R MS Curre	ent (mA)	MSL
Part No.	Size	(μ F)	(V)	Temperature (°C)	(V)	Temperature (°C)	iviax. (μA)	@100kHz (Ω)	25°C	85°C	125°C	IVIOL
					20 Volt	@ 40°C						
TLCH225M020#TA	Н	2.2	20	40	4	125	0.5	7.5	89	80	36	3
TLCR106M020#TA	R	10	20	40	4	125	0.6	5	95	85	38	3
					25 Volt	@ 40°C						
TLCL105M025#TA	L	1.0	25	40	5	125	0.5	7.5	58	85	23	3
					35 Volt	@ 40°C						
TLCR105M035#TA	R	1.0	35	40	7	125	0.5	5	95	85	38	3

^{*}Please contact AVX, availability upon request

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts.

DCL is measured at rated voltage after 5 minutes.

DCL allowed to move up to 2.00 times the limit post mounting.

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

QUALIFICATION TABLE

TEST				TLC series	(Temperature rang	je -55°C	to +12	25°C)					
1531		Co	ondition				Cha	aracteri	stics				
	Apply r	ated voltage (Ur	at 40°C and /	or category	Visual examination	no visib	ole dama	ge					
Endurance		(Uc) at 85°C fo			DCL	1.25 x i	nitial limi	t					
Endurance	1	mpedance of ≤0			ΔC/C	within ±	±30% of i	nitial valu	е				
	temper	ature for 1-2 hou	ırs before meas	suring.	ESR	1.5 x in	itial limit						
	Store a	t 40°C and 90-9	5% relative hum	idity for 56	Visual examination	no visib	ole dama	ge					
Humidity	days, w	rith no applied vo	oltage. Stabilize	at room	DCL	2 x initial limit							
Humaity		ature and humic	lity for 1-2 hours	s before	ΔC/C	±30% of initial value							
	measu	ring.			ESR	1.25 x i	nitial limi	t					
	Step	Temperature°C +20	Duration (min) 15	Voltage Applied N/A		+20°C	-55°C	+20°C	+40°C	+60°C	+85°C	+125°C	+20°C
	2	-55	15	N/A	DCL	IL*	2/2	IL*	105.411+	1.25 x IL*	105.411+	105,411+	IL*
Temperature	3	+20 +40	15 15	N/A V _P	DCL	IL"	n/a	IL^	1.25 X IL^	1.25 X IL^	1.25 X IL^	1.25 X IL^	IL"
Stability	5	+60	15	0.66 x V _R	ΔC/C	n/a	+0/-25%	±5%	+10/-0%	+10/-0%	+20/-0%	+25/-0%	+20/-10%
	6 7	+85 +125	15 15	0.50 x V _R 0.20 x V _P	FOD.		,	4.05 11.1	405 114	405 114	4.05 11.4	4.05 11.4	4.05 11.4
	8	+20	15	N/A	ESR	IL*	n/a	1.25 x IL*	1.25 X IL^	1.25 X IL^	1.25 X IL^	1.25 X IL^	1.25 x IL*
	Apply 1	.3x rated voltag	e (Ur) at 40°C fo	or 1000 cycles	Visual examination	no visib	le dama	ge					
Surge		tion 6 min (30 s		DCL	2 x initial limit								
Voltage	1	ge) through a cl	narge / discharg	ge resistance	ΔC/C	within ±	:30% of i	nitial valu	е				
	of 1000	Ω	ESR	1.25 x i	nitial limi	t							

^{*}Initial Limit

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

Low ESR TACmicrochip®

POLARITY BAND NOT TO EXCEED CENTER LINE

FEATURES

- · Low ESR TACmicrochip® Capacitor
- Smallest and Low Profile Tantalum
- 100% Surge Current Tested
- CV Range: 1.0-100µF / 3-25V
- 4 Case Sizes Available
- **Power Supply Applications**

APPLICATIONS

· Portable Controller with Elevated Power Requirements

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L+0.20 (0.008) -0.00 (0.000)	W+0.15 (0.006) -0.00 (0.000)	H+0.15 (0.006) -0.00 (0.000)	Termination Spacing (S)	Minimum Termination Length (Lt)
Н	0805	2012-10			1.00 (0.039) max	0.70 (0.028) min	0.15 (0.006)
К	0402	1005-07	1.00 (0.039)	0.50 ^{+0.20} _{-0.10} (0.020 ^{+0.008} _{-0.004})	0.50 ^{+0.20} _{-0.10} (0.020 ^{+0.008} _{-0.004})	0.40 (0.016) min	0.10 (0.004)
L	0603	1608-10	1.60 (0.063)	0.85 (0.033)	0.85 (0.033)	0.55 (0.022) min	0.15 (0.006)
R	0805	2012-15	2.00 (0.079)	1.35 (0.053)	1.35 (0.053)	0.70 (0.028) min	0.15 (0.006)

MARKING

H, K, L, R CASE

→ Lt

HOW TO ORDER

Capacitance Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow)

106

Tolerance

K=±10% M=±20% 003=3Vdc 004=4Vdc

010

Rated DC Voltage 006=6.3Vdc 010=10Vdc 016=16Vdc 020=20Vdc 025=25Vdc

R

1800

ESR in $m\Omega$

Packaging
R, P = 7" Standard Tin
Termination Plastic Tape

X, Q = 41/4" Standard Tin Termination Plastic Tape A, M = 7" Gold Termination Plastic Tape

F, N = 41/4" Gold Termination Plastic Tape

TECHNICAL SPECIFICATIONS

Technical Data:		All technica	al data relate	to an ambie	nt temperati	ure of +25°C			
Capacitance Range:		1.0 µF to 10	00 μF						
Capacitance Tolerance:		±10%; ±20%	, 6						
Leakage Current DCL:		0.01CV or 0).5µA whiche	ver is the gr	eater				
Rated Voltage (V _R)	≤ +85°C:	3	4	6.3	10	16	20	25	
Category Voltage (V _c)	≤ +125°C:	2	2.7	4	7	10	13	17	
Surge Voltage (V _s)	≤ +85°C:	3.9	5.2	8	13	20	26	32	
Surge Voltage (V _s)	≤ +125°C:	2.6	3.2	5	8	12	16	20	
Temperature Range:		-55°C to +1	25°C				•		
Reliability:		1% per 100	0 hours at 85	S°C, V _R with (0.1Ω/V series	s impedance	, 60% confid	ence level	
Termination Finish:	tion Finish: Tin Plating over Nickel (standard), Gold Plating over Nickel option available upon request								

Low ESR TACmicrochip®

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capaci	itance			Voltage I	Rating DC (V _R) at 8!	5°C		
μF	Code	3.0V	4.0V	6.3V	10V	16V	20V	25V
1.0	105				L(5000)			R(3000)
1.5	155							
2.2	225			K(8000)/L(5000)	L(5000)	L(5000)		
3.3	335				L(5000)			
4.7	475	K(8000)			L(5000)		R(2000)	
6.8	685							
10	106			L(4000)	H(2500) L(4000),R(1800)	R(1800)		
15	156			R(1800)	R(1500)			
22	226		L(5000)/R(1800)	R(1500)	R(1500)			
33	336	R(1800)	H(1500)/R(1500)		R(1500)			
47	476	R(1500)		R(1800)				
68	686							
100	107		R(1000)					

Codes shown are examples of ESR values offered on certain CV and case size. Other codes and ESR values available upon request.

Released ratings, (ESR ratings in mOhms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kHz	: RMS Cu	rrent (A)	Product	MSL
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(μA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	Category	IVISL
						3 Volt @ 85°C								
TPCK475*003#8000	K	4.7	3	85	2	125	0.5	12	8000	0.043	0.039	0.017	3	1
TPCR336*003#1800	R	33	3	85	2	125	1.0	10	1800	0.158	0.142	0.063	2	1
TPCR476*003#1500	R	47	3	85	2	125	1.5	10	1500	0.173	0.156	0.069	3	1
						4 Volt @ 85°C								
TPCL226*004#5000	L	22	4	85	2.7	125	0.9	6	5000	0.071	0.064	0.028	3	1
TPCR226*004#1800	R	22	4	85	2.7	125	0.9	8	1800	0.158	0.142	0.063	1	1
TPCH336*004#1500	Н	33	4	85	2.7	125	1.3	14	1500	0.163	0.147	0.065	3	1
TPCR336*004#1500	R	33	4	85	2.7	125	1.3	10	1500	0.173	0.156	0.069	2	1
TPCR107*004#1000	R	100	4	85	2.7	125	4.0	30	1000	0.212	0.191	0.085	3	1
						6.3 Volt @ 85°C								
TPCK225*006#8000	K	2.2	6.3	85	4	125	0.5	8	8000	0.043	0.039	0.017	3	1
TPCL225*006#5000	L	2.2	6.3	85	4	125	0.5	6	5000	0.071	0.064	0.028	1	1
TPCL106*006#4000	L	10	6.3	85	4	125	0.6	10	4000	0.079	0.071	0.032	3	1
TPCR156*006#1800	R	15	6.3	85	4	125	0.9	8	1800	0.158	0.142	0.063	1	1
TPCR226*006#1500	R	22	6.3	85	4	125	1.4	10	1500	0.173	0.156	0.069	1	1
TPCR476*006#1800	R	47	6.3	85	4	125	3.0	20	1800	0.158	0.142	0.063	3	1
						10 Volt @ 85°C								
TPCL105*010#5000	L	1.0	10	85	7	125	0.5	6	5000	0.071	0.064	0.028	1	1
TPCL225*010#5000	L	2.2	10	85	7	125	0.5	6	5000	0.071	0.064	0.028	1	1
TPCL335*010#5000	L	3.3	10	85	7	125	0.5	8	5000	0.071	0.064	0.028	2	1
TPCL475*010#5000	L	4.7	10	85	7	125	0.5	10	5000	0.071	0.064	0.028	2	1
TPCH106*010#2500	Н	10	10	85	7	125	1.0	8	2500	0.126	0.113	0.050	2	1
TPCL106*010#4000	L	10	10	85	7	125	1.0	20	4000	0.079	0.071	0.032	3	1
TPCR106*010#1800	R	10	10	85	7	125	1.0	8	1800	0.158	0.142	0.063	1	1
TPCR156*010#1500	R	15	10	85	7	125	1.5	10	1500	0.173	0.156	0.069	1	1
TPCR226*010#1500	R	22	10	85	7	125	2.2	14	1500	0.173	0.156	0.069	2	1
TPCR336*010#1500	R	33	10	85	7	125	3.3	20	1500	0.173	0.156	0.069	3	1
						16 Volt @ 85°C								
TPCL225*016#5000	L	2.2	16	85	10	125	0.5	10	5000	0.071	0.064	0.028	1	1
TPCR106*016#1800	R	10	16	85	10	125	1.6	10	1800	0.158	0.142	0.063	2	1
						20 Volt @ 85°C								
TPCR475*020#2000	R	4.7	20	85	13	125	0.9	8	2000	0.150	0.135	0.060	1	1
						25 Volt @ 85°C								
TPCR105*025#3000	R	1.0	25	85	17	125	0.5	8	3000	0.122	0.110	0.049	1	1

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts.

DCL is measured at rated voltage after 5 minutes.

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

Low ESR TACmicrochip®

QUALIFICATION TABLE - CATEGORY 1

TEST			TPC series	(Temperature range	-55°C to +1	125°C)					
1531		Condition			Chara	acteristic	s				
				Visual examination	no visibl	e damage					
	1	ge (Ur) at 85°C and		DCL	1.25 x in	itial limit					
Endurance		.5°C for 2000 hours 1Ω/V. Stabilize at ro		ΔC/C	within ±	10% of initia	l value				
	for 1-2 hours befo		om temperature	DF	1.5 x init	ial limit					
				ESR	1.5 x init	ial limit					
				Visual examination	no visibl	e damage					
		90-95% relative hu	,	DCL	initial lim	initial limit					
Humidity		olied voltage. Stabil numidity for 1-2 hou		ΔC/C	within ±	within ±5% of initial value					
	measuring.	idifficity for 1-2 floc	iis belole	DF	1.2 x init	ial limit					
	ououg.			ESR	1.2 x init	ial limit					
	Step	Step Temperature°C Duration(min)			+20°C	-55°C	+20°C	+85°C	+125°C	+20°C	
	1	+20	15	DCL	IL*		IL*	10 x IL*	12.5 x IL*	IL*	
Temperature	2	-55	15		IL^	n/a	IL^			IL^	
Stability	3	+20	15	ΔC/C	n/a	+0/-10%	±5%	+10/-0%	+15/-0%	±5%	
Stability	4	+85	15	DF	IL*	1.5xIL*	IL*	1.5xIL*	2xIL*	IL*	
	5	+125	15		- I						
	6	+20	15	ESR	IL*	1.25 x IL*	IL*	1.25 x IL*	2 x IL*	IL*	
			Visual examination	no visibl	e damage						
_		oltage (Ur) at 85°C	DCL	initial lim	initial limit						
Surge Voltage		(30 sec charge, 5 m h a charge / discha	ΔC/C	within ±10% of initial value							
voitage	1000Ω	ii a ciiaiye / uisciid	ige resistance of	DF	initial lim	nit					
				ESR	initial lim	nit					

^{*}Initial Limit

QUALIFICATION TABLE - CATEGORY 2

TEST			TPC series (Temperature range	-55°C to +1	125°C)					
1531		Condition			Chara	Characteristics					
				Visual examination	no visible damage						
		je (Ur) at 85°C and ,		DCL	1.25 x in	itial limit					
Endurance		5°C for 2000 hours		ΔC/C	within ±1	15% of initia	l value				
	for 1-2 hours befo	1Ω/V. Stabilize at ro re measuring.	om temperature	DF	1.5 x init	ial limit					
				ESR	1.5 x init	ial limit					
				Visual examination	no visibl	e damage					
		90-95% relative hu		DCL	initial lim	nit					
Humidity		olied voltage. Stabili numidity for 1-2 hou		ΔC/C	within ±1	within ±10% of initial value					
-	measuring.	idifficity for 1-2 floor	iis belole	DF	1.2 x init	1.2 x initial limit					
				ESR	1.2 x init	ial limit					
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C	
	1	+20	15	DCL	IL*	2/2	IL*	10 x IL*	12.5 x IL*	IL*	
Temperature	2	-55	15	DCL	IL^	n/a	IL^	IUXIL^	12.5 X IL^	IL^	
•	3	+20	15	ΔC/C	n/a	+0/-15%	±5%	+15/-0%	+20/-0%	±5%	
Stability	4	+85	15	DF	IL*	1.5xIL*	IL*	1.5xIL*	2xIL*	IL*	
	5	+125	15	FOR	11.4	1 05 11 *	IL*	1 05 !! *	0	11.4	
	6	+20	15	ESR	IL*	1.25 x IL*	IL^	1.25 x IL*	2 x IL*	IL*	
				Visual examination	no visible	e damage					
0	Apply 1.3x rated v	oltage (Ur) at 85°C	for 1000 cycles of	DCL	1.5 x init	ial limit					
Surge	duration 6 min (30	sec charge, 5 min	30 sec discharge)	ΔC/C	within ±1	15% of initial	value				
Voltage	through a charge	/ discharge resistar	nce of 1000Ω	DF	1.5 x init	ial limit					
				ESR	1.5 x init	ial limit					

^{*}Initial Limit

Low ESR TACmicrochip®

QUALIFICATION TABLE - CATEGORY 1

TEST			TPC series (Temperature range	-55°C to +	125°C)				
TEST		Condition			Characteristics					
				Visual examination	no visible damage					
		e (Ur) at 85°C and /	DCL	1.25 x ir	nitial limit					
Endurance		5°C for 2000 hours in 1Ω/V. Stabilize at roo		ΔC/C	within ±	30% of initia	l value			
	for 1-2 hours befo		DF	1.5 x ini	tial limit					
	Tor 1 2 modro bero	re medoding.		ESR	1.5 x init	tial limit				
				Visual examination	no visib	le damage				
		90-95% relative hun	DCL	2 x initia	2 x initial limit					
Humidity		olied voltage. Stabiliz	ΔC/C	within ±30% of initial value						
·	measuring.	numidity for 1-2 hou	гѕ ретоге	DF	1.5 x initial limit					
	incusumg.		ESR	1.25 x ir	nitial limit					
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C
	1	+20	15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*
Temperature	2	-55	15	DCL	IL.	II/a	IL"	IUXIL"	12.3XIL"	IL.
Stability	3	+20	15	ΔC/C	n/a	+0/-25%	±5%	+20/-0%	+25/-0%	±20%
Stability	4	+85	15	DF	IL*	1.5xIL*	IL*	1.5xIL*	2xIL*	1.5xIL*
	5	+125	15	FOR		4.05 11.4				
	6	+20	15	ESR	IL*	1.25 x IL*	IL*	1.25 x IL*	2 x IL*	1.5 x IL ³
				Visual examination	no visib	le damage				
	Apply 1.3x rated v	oltage (Ur) at 85°C f	DCL	2 x initia	l limit					
Surge Voltage	duration 6 min (30	sec charge, 5 min 3	ΔC/C	within ±	30% of initia	l value				
	through a charge	/ discharge resistan	ce of 1000Ω	DF	2 x initia	ıl limit				
				ESR	2 x initia	l limit				

^{*}Initial Limit

Low ESR TACmicrochip®

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO₂

Standard Conformal Coated Chip

FEATURES

- Compliant to the RoHS3 directive 2015/863/EU
- For High Frequency
- SMD Conformal
- · Small and High CV
- 100% Surge Current Tested

APPLICATIONS

- Smartphone
- Tablet PC
- Wireless Module
- E-book

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L	w	Н	A	В	С	D*
Α	1207	32 17-16	3.20±0.30 (0.126±0.012)	1.70±0.30 (0.067±0.012)	1.40±0.20 (0.055±0.008)	0.80±0.30 (0.031±0.012)	1.20±0.30 (0.047±0.012)	0.80±0.30 (0.031±0.012)	0.20 (0.008)
В	1411	3528-20	3.50±0.20 (0.138±0.008)	2.80±0.20 (0.110±0.008)	1.80±0.20 (0.071±0.008)	0.80±0.30 (0.031±0.012)	1.20±0.30 (0.047±0.012)	1.10±0.30 (0.043±0.012)	0.20 (0.008)
Р	0905	2212-12	2.20±0.30 (0.087±0.012)	1.25±0.30 (0.049±0.012)	1.00±0.20 (0.039±0.008)	0.60±0.30 (0.024±0.012)	0.80±0.30 (0.031±0.012)	0.80±0.30 (0.031±0.012)	0.20 (0.008)
Q	1306	3216-10	3.20±0.20 (0.126±0.008)	1.60±0.20 (0.063±0.008)	0.80±0.20 (0.031±0.008)	0.80±0.20 (0.031±0.008)	1.20±0.20 (0.047±0.008)	0.80±0.20 (0.031±0.008)	0.20 (0.008)
R	0905	2212-065	2.20±0.30 (0.087±0.012)	1.25±0.30 (0.049±0.012)	0.65 max. (0.026 max.)	0.60±0.30 (0.024±0.012)	0.80±0.30 (0.031±0.012)	0.50 min. (0.020 min.)	0.20 (0.008)
s	1306	3216-12	3.20±0.30 (0.126±0.012)	1.60±0.30 (0.063±0.012)	1.00±0.20 (0.039±0.008)	0.80±0.30 (0.031±0.012)	1.20±0.30 (0.047±0.012)	0.80±0.30 (0.031±0.012)	0.20 (0.008)
Т	1411	3527-12	3.50±0.20 (0.138±0.008)	2.70±0.20 (0.106±0.008)	1.00±0.20 (0.039±0.008)	0.80±0.20 (0.031±0.008)	1.20±0.20 (0.047±0.008)	1.10±0.20 (0.043±0.012)	0.20 (0.008)

Single-side electrodes (Both electrodes at bottom side only)

HOW TO ORDER

pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow)

337

М Tolerance K=±10% M=±20%

Case Size See table

above

Packaging See Tape & Reel Packaging Section **Specification Suffix** Rated temperature 60°C only

Single Face Electrode

AQ2 or Q2

TECHNICAL SPECIFICATIONS

Category Temperature Range:	-55 to +125°C
Rated Temperature:	+85°C
Capacitance Tolerance:	±20%, ±10% at 120Hz
Dissipation Factor:	Refer to next page
ESR 100kHz:	Refer to next page
Leakage Current:	Refer to next page Provided that: After 1 minute's application of rated voltage, leakage current at 85°C 10 times or less than 20°C specified value. After 1 minute's application of rated voltage, leakage current at 125°C 12.5 times or less than 20°C specified value.
Capacitance Change By Temperature	+15% Max. at +125°C +10% Max. at +85°C -10% Max. at -55°C

^{*}D dimension only for reference

Standard Conformal Coated Chip

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance				Rated \	/oltage			
μF	Code	4V (0G)	6.3V (0J)	10V (1A)	16V (1C)	20V (1D)	25V (1E)	35V (1V)	50V (1H)
1.0	105						R	P/S	P ^(M) *
1.5	155								
2.2	225					Р	P/R	Α	
3.3	335								
4.7	475				P/R	A/S	A/P/Q/S	В	
6.8	685								
10	106			P/R ^(M)	A/P/Q/S	A/B/S	A/B		
15	156			Р	A/S				
22	226		R ^(M)	A/P ^(M) /Q/S	A/B/Q/S/T	В			
33	336		P ^(M)	A/P ^(M) /Q/S	B/T	В			
47	476		P ^(M)	A/B/P(M)/S/T	В				
68	686		P ^(M)	В					
100	107	A/P/S	A/B/P(M)/Q/S/T	A/B/T					
150	157	B/P ^(M)	В						
220	227	A/B/Q/S/T	В						
330	337	A/B/T	В						
470	477	В	В						
680	687						acles office when th		

Released ratings (M tolerance only)
*Rated temperature 60°C only. Please contact AVX when you need detail spec.

Please contact to your local AVX sales office when these series are being designed in your application.

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated	DCL	DF @	ESR @	10	00kHz RMS	Current (m	A)	*1	
Part No.	Size	(μF)	Voltage (V)	(μ A)	120Hz (%)	100kHz (Ω)	25°C	60°C	85°C	125°C	ΔC/C (%)	MSL
4 Volt												
F950G107#AAAQ2	Α	100	4	4.0	12	0.5	387	_	349	155	*	3
F950G107#PAAQ2	Р	100	4	4.0	30	1.2	158	-	142	63	±15	3
F950G107#SAAQ2	S	100	4	4.0	14	0.8	274	_	246	110	*	3
F950G157#BAAQ2	В	150	4	6.0	14	0.4	461	-	415	184	*	3
F950G157MPAAQ2	P	150	4	12.0	31	1.1	165	-	149	66	±20	3
F950G227#AAAQ2	A	220	4	8.8	25	0.8	306	-	276	122	±15	3
F950G227#BAAQ2	В	220	4	8.8	16	0.4	461	-	415	184	*	3
F950G227#QAAQ2	Q	220	4	8.8	30	1.5	173		156	69 110	±20	3
F950G227#SAAQ2 F950G227#TAAQ2	S	220 220	4	8.8	30 25	0.8	274 365	-	246 329	146	±15	3
F950G227#TAAQ2 F950G337#AAAQ2	A	330	4	13.2	40	0.8	305	_	276	122	±20	3
F950G337#BAAQ2	В	330	4	13.2	30	0.6	376	_	339	151	±15	3
F950G337#TAAQ2	T	330	4	13.2	40	0.8	316	_	285	126	±20	3
F950G477#BAA02	B	470	4	18.8	40	0.4	461	-	415	184	+20	3
					6.3 Vol	t						
F950J336MPAAQ2	Р	33	6.3	2.1	14	1.1	165	_	149	66	*	3
F950J226MRAA02	R	22	6.3	1.4	20	2.0	112	-	101	45	±20	3
F950J476MPAAQ2	Р	47	6.3	3.0	20	1.1	165	-	149	66	±15	3
F950J686MPAAQ2	Р	68	6.3	4.3	25	1.2	158	-	142	63	±15	3
F950J107#AAAQ2	Α	100	6.3	6.3	14	0.5	387	-	349	155	*	3
F950J107#BAAQ2	В	100	6.3	6.3	14	0.4	461	-	415	184	*	3
F950J107MPAAQ2	P	100	6.3	12.6	35	1.2	158	-	142	63	±20	3
F950J107#QAAQ2	Q	100	6.3	6.3	30	1.1	202	-	182	81	±20	3
F950J107#SAAQ2	S	100	6.3	6.3	20	0.9	258	_	232	103	±15	3
F950J107#TAAQ2	T	100	6.3	6.3	14	0.6	365	-	329	146	*	3
F950J157#BAAQ2	B B	150 220	6.3	9.5 13.9	18 30	0.4	461 461	-	415 415	184 184	*	3
F950J227#BAAQ2 F950J337#BAAQ2	В	330	6.3	20.8	35	0.4	376	_	339	151	±20	3
F950J337#BAAQ2	В	470	6.3	59.2	40	0.6	412	_	371	165	±20	3
19303477#DAAQ2	<u> </u>	470	0.3	39.2	10 Vol		412		3/1	103	120	
F951A106#PAA02	P	10	10	1.0	8	3.0	100	_	90	40	*	3
F951A106MRAA02	R	10	10	1.0	18	3.0	91	_	82	37	±20	3
F951A156#PAAQ2	P	15	10	1.5	10	3.0	100	-	90	40	*	3
F951A226#AAAQ2	A	22	10	2.2	6	0.9	289	-	260	115	*	3
F951A226MPAAQ2	P	22	10	2.2	14	3.0	100	-	90	40	*	3
F951A226#QAAQ2	Q	22	10	2.2	10	2.0	150	-	135	60	*	3
F951A226#SAAQ2	S	22	10	2.2	10	1.1	234	-	210	93	*	3
F951A336#AAAQ2	Α	33	10	3.3	10	0.8	306	-	276	122	*	3
F951A336MPAAQ2	P	33	10	3.3	20	3.0	100	-	90	40	±15	3
F951A336#QAAQ2	Q	33	10	3.3	18	3.0	122	-	110	49	±15	3
F951A336#SAAQ2	S	33	10	3.3	10	1.1	234	-	210	93	*	3
F951A476#AAAQ2	A	47	10	4.7	10	0.8	306	-	276	122	*	3

Standard Conformal Coated Chip

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated	DCL	DF @	ESR @	10	00kHz RMS	Current (m	A)	*1	
Part No.	Size	(μF)	Voltage (V)	(μΑ)	120Hz (%)	100kHz (Ω)	25°C	60°C	85°C	125°C	ΔC/C (%)	MSL
F951A476#BAAQ2	В	47	10	4.7	8	0.4	461	-	415	184	*	3
F951A476MPAAQ2	Р	47	10	4.7	30	3.0	100	-	90	40	±20	3
F951A476#SAAQ2	S	47	10	4.7	14	1.1	234	-	210	93	±15	3
F951A476#TAAQ2	T	47	10	4.7	12	0.8	316	-	285	126	*	3
F951A686#BAAQ2	В	68	10	6.8	12	0.4	461	-	415	184	*	3
F951A107#AAAQ2	Α	100	10	10.0	35	1.0	274	-	246	110	±15	3
F951A107#BAAQ2	В	100	10	10.0	14	0.4	461	-	415	184	*	3
F951A107#TAAQ2	T	100	10	10.0	20	0.6	365	-	329	146	±15	3
					16 Vol							
F951C475#PAAQ2	Р	4.7	16	0.8	10	4.0	87	-	78	35	*	3
F951C475#RAAQ2	R	4.7	16	0.8	12	6.0	65	-	58	26	±20	3
F951C106#AAAQ2	Α	10	16	1.6	6	1.4	231	-	208	93	*	3
F951C106#PAAQ2	Р	10	16	1.6	10	4.0	87	-	78	35	*	3
F951C106#QAAQ2	Q	10	16	1.6	8	3.0	122	_	110	49	*	3
F951C106#SAAQ2	S	10	16	1.6	8	2.0	173	-	156	69	*	3
F951C156#AAAQ2	Α	15	16	2.4	8	1.4	231	-	208	93	*	3
F951C156#SAAQ2	S	15	16	2.4	8	2.0	173	-	156	69	*	3
F951C226#AAAQ2	Α	22	16	3.5	8	1.4	231	-	208	93	*	3
F951C226#BAAQ2	В	22	16	3.5	6	0.5	412	-	371	165	*	3
F951C226#QAAQ2	Q	22	16	3.5	12	3.0	122	-	110	49	*	3
F951C226#SAAQ2	S	22	16	3.5	10	2.0	173	-	156	69	±15	3
F951C226#TAAQ2	T	22	16	3.5	8	1.4	239	-	215	96	*	3
F951C336#BAAQ2	В	33	16	5.3	8	0.5	412	-	371	165	*	3
F951C336#TAAQ2	T	33	16	5.3	11	1.5	231	-	208	92	±10	3
F951C476#BAAQ2	В	47	16	7.5	10	0.6	376	-	339	151	*	3
					20 Vol							
F951D225#PAAQ2	Р	2.2	20	0.5	6	6.0	71	_	64	28	*	3
F951D475#AAAO2	Α	4.7	20	0.9	6	1.5	224	_	201	89	*	3
F951D475#SAAQ2	S	4.7	20	0.9	8	4.0	122	-	110	49	*	3
F951D106#AAAQ2	Α	10	20	2.0	8	1.5	224	-	201	89	*	3
F951D106#BAAQ2	В	10	20	2.0	6	0.8	326	-	293	130	*	3
F951D106#SAAQ2	S	10	20	2.0	10	4.0	122	-	110	49	±10	3
F951D226#BAAQ2	В	22	20	4.4	8	0.8	326	-	293	130	*	3
F951D336#BAAQ2	В	33	20	6.6	15	1.0	292	-	262	117	*	3
					25 Vol							
F951E105#RAAQ2	R	1	25	0.5	10	10.0	50	_	45	20	±10	3
F951E225#PAA02	Р	2.2	25	0.6	8	6.0	71	_	64	28	±15	3
F951E225#RAAQ2	R	2.2	25	0.6	15	15.0	41	-	37	16	±20	3
F951E475#AAAQ2	A	4.7	25	1.2	8	2.0	194	-	174	77	*	3
F951E475#PAAQ2	P	4.7	25	1.2	10	8.0	61	_	55	24	±15	3
F951E475#QAAQ2	0	4.7	25	1.2	10	4.0	106	_	95	42	±15	3
F951E475#SAAQ2	S	4.7	25	1.2	8	4.0	122	_	110	49	*	3
F951E106#AAAQ2	Ā	10	25	2.5	12	2.0	194	_	174	77	±15	3
F951E106#BAAQ2	В	10	25	2.5	6	0.9	307	-	227	123	*	3
					35 Vol							
F951V105#PAAQ2	Р	1	35	0.5	8	10.0	55	-	49	22	±10	3
F951V105#SAAQ2	S	1	35	0.5	6	8.0	87	-	78	35	*	3
F951V225#AAAQ2	A	2.2	35	0.8	6	4.4	131	-	118	52	*	3
F951V475#BAAQ2	В	4.7	35	1.7	6	1.6	230	-	207	92	*	3
				.,,	50 Vol			•				
F951H105MPALZTQ2	P	1	50	1.0	8	7.0	65	59	I -	26	±20	3
. JOHN TOOMI ALZI QZ		'	- 50	1.0		7.0	- 55	J 9	l			

^{*1:} $\Delta C/C$ Marked "*" #: "M" for $\pm 20\%$ tolerance, "K" for $\pm 10\%$ tolerance. When you need K tolerance for the part numbers which have M tolerance only, please contact to your local AVX sales office. Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

Item	All Case (%)
Damp Heat	±10
Temperature cycles	±5
Resistance soldering heat	±5
Surge	±5
Endurance	±10

Standard Conformal Coated Chip

QUALIFICATION TABLE

TEST	F95 series (Temperature range -55°C to +125°C)
1631	Condition
Damp Heat (Steady State)	At 40°C, 90 to 95% R.H., 500 hours (No voltage applied) Capacitance Change
Temperature Cycles	At -55°C / +125°C, 30 minutes each, 5 cycles Capacitance Change
Resistance to Soldering Heat	10 seconds reflow at 260°C, 10 seconds immersion at 260°C. Capacitance Change
Surge	After application of surge voltage in series with a 33Ω resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change
Endurance	After 2000 hours' application of rated voltage at 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change
Shear Test	After applying the pressure load of 5N for 10±1 seconds horizontally to the center of capacitor side body which has no electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the terminal electrode.
Terminal Strength	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is applied with a specified jig at the center of substrate so that the substrate may bend by 1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

CONDUCTIVE CONVENTIONAL NIOBIUM POLYMER **TANTALUM** OXIDE TC Series N Series T Series T Cx T xx N xx F Series F Series F_{xx} MnO₂ MnO₂ Conductive CATHODE Polymer DIELECTRIC Ta,0, Ta,0, Nb₂O_c ANODE Niobium Tantalum Tantalum Oxide

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP:

CONVENTIONAL SMD MnO₂

F95 Audio Series

Conformal Coated Chip Optimized for Audio Applications

Single-side electrodes (Both electrodes at bottom side only)

FEATURES

- · Compliant to the RoHS3 directive 2015/863/EU
- Rich Sound in the Bass Register and Clear Sound
- Materials are Strictly Selected to Achieve High Level Sound
- F95 Series has No Lead-Frame and No Vibration Factor
- Low ESR, Low ESL
- 100% Surge Current Tested
- Line Up Miniature Size and High Capacitance, Necessary to Mobile Design
- SMD Conformal
- Small and High CV

APPLICATIONS

- Mobile Audio Player
- Smartphone
- Mobile Phone
- Wireless Microphone System

LEAD-FREE COMPATIBLE COMPONENT

CASE DIMENSIONS:

millimeters (inches)

•	Code	EIA Code	EIA Metric	L	w	н	Α	В	С	D*
	В	1411	3528-20	3.50±0.20 (0.138±0.008)	2.80±0.20 (0.110±0.008)	1.80±0.20 (0.071±0.008)	0.80±0.30 (0.031±0.012)	1.20±0.30 (0.047±0.012)	1.10±0.30 (0.043±0.012)	0.20 (0.008)
	S	1306	3216-12	3.20±0.30 (0.126±0.012)	1.60±0.30 (0.063±0.012)	1.00±0.20 (0.039±0.008)	0.80±0.30 (0.031±0.012)	1.20±0.30 (0.047±0.012)	0.80±0.30 (0.031±0.012)	0.20 (0.008)
	T 1411 3527-12 3.50±0.20 (0.138±0.008) (2.70±0.20 (0.106±0.008)	1.00±0.20 (0.039±0.008)	0.80±0.20 (0.031±0.008)	1.20±0.20 (0.047±0.008)	1.10±0.20 (0.043±0.012)	0.20 (0.008)		

^{*}D dimension only for reference

MARKING

S CASE B, T CASE

μF	68	100	150	220	330	470	680
code	W7	A8	E8	J8	N8	S8	W8

HOW TO ORDER

Capacitance Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow)

M

Tolerance K=±10% M=±20%

S Case Size

See

table

above

Packaging

See Tape & Reel Packaging Section

AM₁ **AUDIO**

Series

Code

02 Single

Face

Electrode

TECHNICAL SPECIFICATIONS

Category Temperature Range:	-55 to +125°C
Rated Temperature:	+85°C
Capacitance Tolerance:	±20%, ±10% at 120Hz
Dissipation Factor:	Refer to next page
ESR 100kHz:	Refer to next page
Leakage Current:	Refer to next page
	Provided that:
	After 1 minute's application of rated voltage, leakage current at 85°C
	10 times or less than 20°C specified value.
	After 1 minute's application of rated voltage, leakage current at 125°C
	12.5 times or less than 20°C specified value.
Capacitance Change By Temperature	+15% Max. at +125°C
	+10% Max. at +85°C
	-10% Max. at -55°C

F95 Audio Series

Conformal Coated Chip Optimized for Audio Applications

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance	Rated Voltage							
μF	Code	4V (0G)	6.3V (0J)	10V (1A)					
68	686	S	S	В					
100	107	S	S/T	В					
150	157	S							
220	227	S/T	В						
330	337	Т	В						
470	477	В							
680	687								

Released ratings

Please contact to your local AVX sales office when these series are being designed in your application.

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated	DCL DF @ 120Hz @		ESR				*1	MSL
Part No.	Size	. (μF)	Voltage (V)	(μΑ)	(μA) @ 120HZ @ (%)	@ 100kHz (Ω)	25°C	85°C	125°C	ΔC/C (%)	IVIOL
	4 Voit										
F950G686#SAAM1Q2	S	68	4	2.7	10	0.8	274	246	110	*	3
F950G107#SAAM1Q2	S	100	4	4.0	14	0.8	274	246	110	*	3
F950G157#SAAM1Q2	S	150	4	6.0	22	0.8	274	246	110	±15	3
F950G227#SAAM1Q2	S	220	4	8.8	30	0.8	274	246	110	±15	3
F950G227#TAAM1Q2	Т	220	4	8.8	25	0.6	365	329	146	*	3
F950G337#TAAM1Q2	T	330	4	13.2	40	0.8	316	285	126	±20	3
F950G477#BAAM1Q2	В	470	4	18.8	40	0.4	461	415	184	±20	3
					6.3 V	olt					
F950J686#SAAM1Q2	S	68	6.3	4.3	14	0.9	258	232	103	*	3
F950J107#SAAM1Q2	S	100	6.3	6.3	20	0.9	258	232	103	±15	3
F950J107#TAAM1Q2	Т	100	6.3	6.3	14	0.6	365	329	146	*	3
F950J227#BAAM1Q2	В	220	6.3	13.9	30	0.4	461	415	184	*	3
F950J337#BAAM1Q2	В	330	6.3	20.8	35	0.6	376	339	151	±20	3
	10 Volt										
F951A686#BAAM1Q2	В	68	10	6.8	12	0.4	461	415	184	*	3
F951A107#BAAM1Q2	В	100	10	10.0	14	0.4	461	415	184	*	3

^{*1: \(\}Delta C/C \) Marked "*"

Item	All Case (%)
Damp Heat	±10
Temperature cycles	±5
Resistance soldering heat	±5
Surge	±5
Endurance	±10

#: "M" for ±20% tolerance, "K" for ± 10% tolerance.

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

F95 Audio Series

QUALIFICATION TABLE

TEGT	Audio F95 series (Temperature range -55°C to +125°C) Condition								
TEST									
Damp Heat (Steady State)	At 40°C, 90 to 95% R.H., 500 hours (No voltage applied) Capacitance Change								
Temperature Cycles	At -55°C / +125°C, 30 minutes each, 5 cycles Capacitance Change								
Resistance to Soldering Heat	10 seconds reflow at 260°C, 5 seconds immersion at 260°C. Capacitance Change								
Surge	After application of surge voltage in series with a 33 Ω resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change								
Endurance	After 2000 hours' application of rated voltage 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change								
Shear Test	After applying the pressure load of 5N for 10±1 seconds horizontally to the center of capacitor side body which has no electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the terminal electrode.								
Terminal Strength	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is applied with a specified jig at the center of substrate so that the substrate may bend by 1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.								

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

CONDUCTIVE CONVENTIONAL **NIOBIUM POLYMER TANTALUM** OXIDE **TC Series** T Series **N Series** T Cx F Series F Series F38 F_{xx} MnO₂ MnO_2 Conductive CATHODE Polymer DIELECTRIC Ta₂O₅ Ta,0, Nb,0, ANODE Niobium Tantalum Tantalum Oxide **FIVE CAPACITOR CONSTRUCTION STYLES** J-lead Undertab TAC microchip® Hermetic Conforma

SERIES LINE UP:

CONVENTIONAL SMD MnO₂

Low Profile and High CV Conformal Coated Chip

Single Face Electrode

FEATURES

- · Compliant to the RoHS3 directive 2015/863/EU
- SMD Conformal
- Small and Low Profile
- 100% Surge Current Tested

COMPONENT

APPLICATIONS

- Smartphone
- Mobile Phone
- Wireless Module
- Hearing Aid

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L	w	н	Α	В	D*			
	F72 Case Dimensions										
D	2914	7343-20	7.30±0.30 (0.287±0.012)	4.30±0.30 (0.169±0.012)	2.00 Max. (0.079 Max)	1.30±0.40 (0.051±0.016)	3.90±0.60 (0.153±0.024)	6.40 (0.252)			
М	2824	7260-20	7.20±0.30 (0.283±0.012)	6.00±0.30 (0.236±0.012)	2.00 Max. (0.079 Max)	1.30±0.40 (0.051±0.016)	3.80±0.60 (0.150±0.024)	6.20 (0.244)			
R	2824	7260-15	7.20±0.30 (0.283±0.012)	6.00±0.30 (0.236±0.012)	1.20±0.30 (0.047±0.012)	1.30±0.40 (0.051±0.016)	3.80±0.60 (0.150±0.024)	6.20 (0.244)			
				F75 Case Dim	ensions						
С	2813	7132-28	7.10±0.30 (0.280±0.012)	3.20±0.30 (0.126±0.012)	2.50±0.30 (0.098±0.012)	1.30±0.30 (0.051±0.012)	3.60±0.60 (0.142±0.024)	6.00 (0.236)			
D	2914	7343-31	7.30±0.30 (0.287±0.012)	4.30±0.30 (0.169±0.012)	2.80±0.30 (0.110±0.012)	1.30±0.40 (0.051±0.016)	3.90±0.60 (0.153±0.024)	6.40 (0.252)			
М	2824	7260-28	7.20±0.30 (0.283±0.012)	6.00±0.30 (0.236±0.012)	2.80 Max. (0.110 Max)	1.30±0.40 (0.051±0.016)	3.80±0.60 (0.150±0.024)	6.20 (0.244)			
R	2824	7260-38	7.20±0.30 (0.283±0.012)	6.00±0.30 (0.236±0.012)	3.50±0.30 (0.138±0.012)	1.30±0.40 (0.051±0.016)	3.80±0.60 (0.150±0.024)	6.20 (0.244)			
U	2813	7132-20	7.10±0.30 (0.280±0.012)	3.20±0.30 (0.126±0.012)	2.00 Max. (0.079 Max)	1.30±0.30 (0.051±0.012)	3.60±0.60 (0.142±0.024)	6.00 (0.236)			

Under development

F72/F75

Double Face Electrode

HOW TO ORDER

Rated Voltage

Capacitance Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier

(number of zeros to follow)

157

107

Solder Electrode

Tolerance K=±10% M=±20%

M

Case Size See table

Packaging See Tape & Reel **Packaging Section**

Specification Suffix AH1 = Low ESR

AQ2 or Q2 Single Face Electrode

Capacitance Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow)

М Tolerance K=±10% M=±20%

D Case Size See table

Packaging See Tape & Reel **Packaging Section**

AQ2 Single Face Electrode

TECHNICAL SPECIFICATIONS

Category Temperature Range:	-55 to +125°C
Rated Temperature:	+85°C
Capacitance Tolerance:	±20%, ±10% at 120Hz
Dissipation Factor:	Refer to next page
ESR 100kHz:	Refer to next page
Leakage Current:	After 1 minute's application of rated voltage, leakage current at 20°C
	is not more than 0.01CV or 0.5µA, whichever is greater.
	After 1 minute's application of rated voltage, leakage current at 85°C
	is not more than 0.1CV or 5µA, whichever is greater.
	After 1 minute's application of derated voltage, leakage current at
	125°C is not more than 0.125CV or 6.3μA, whichever is greater.
Capacitance Change By Temperature	+15% Max. at +125°C
	+10% Max. at +85°C
	-10% Max. at -55°C

^{*}D dimension only for reference

Low Profile and High CV Conformal Coated Chip

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

F72

Capac	itance		Rated \	d Voltage				
μF	Code	4V (0G)	6.3V (0J)	10V (1A)	16V (1C)			
33	336				R			
47	476			R	R			
68	686		R	R	R			
100	107	R	R	R	D*			
150	157	R	R	R				
220	227	R	R	R	М			
330	337	R	R		М			
470	477			М				
680	687			М				
1000	108		M/M(AH1)	М				
1500	158		M					

F75

Capac	itance	Rated Voltage								
μF	Code	4V (0G)	6.3V (0J)	10V (1A)	16V (1C)					
68	686				С					
100	107				С					
150	157			С	D					
220	227		С	C/D	R					
330	337	С	C/D	D						
470	477	C/D	D/U	R/U						
680	687	D	D/R							
1000	108	D/R	R/U							
1500	158	R								
2200	228	R	М							

Released ratings

*Codes under development - subject to change.

Please contact to your local AVX sales office when these series are being designed in your application.

RATINGS & PART NUMBER REFERENCE F72

AVX	Case	Capacitance	Rated	DCL	DF ESR		100k	Hz RMS Current	(mA)	*1	
Part No.	Size	(μF)	Voltage (V)	(μ A)	@ 120Hz (%)	@ 100kHz (Ω)	25°C	85°C	125°C	ΔC/C (%)	MSL
4 Volt											
F720G107#RC	R	100	4	4.0	8	0.70	463	417	185	*	3
F720G157#RC	R	150	4	6.0	10	0.70	463	417	185	*	3
F720G227#RC	R	220	4	8.8	12	0.70	463	417	185	*	3
F720G337#RC	R	330	4	13.2	12	0.70	463	417	185	*	3
6.3 Volt											
F720J686#RC	R	68	6.3	4.3	6	0.75	447	402	179	*	3
F720J107#RC	R	100	6.3	6.3	8	0.70	463	417	185	*	3
F720J157#RC	R	150	6.3	9.5	10	0.70	463	417	185	*	3
F720J227#RC	R	220	6.3	13.9	12	0.70	463	417	185	*	3
F720J337#RC	R	330	6.3	20.8	12	0.70	463	417	185	*	3
F720J108#MCAQ2	М	1000	6.3	63.0	30	0.14	1118	1006	447	±15	3
F720J108#MCAH1Q2	М	1000	6.3	63.0	30	0.075	1528	1375	611	±15	3
F720J158#MCAQ2	М	1500	6.3	95.0	45	0.14	1118	1006	447	±20	3
					10	Volt					
F721A476#RC	R	47	10	4.7	6	0.80	433	390	173	*	3
F721A686#RC	R	68	10	6.8	6	0.75	447	402	179	*	3
F721A107#RC	R	100	10	10.0	8	0.70	463	417	185	*	3
F721A157#RC	R	150	10	15.0	10	0.70	463	417	185	*	3
F721A227#RC	R	220	10	22.0	12	0.70	463	417	185	*	3
F721A477#MCAQ2	М	470	10	47.0	30	0.14	1118	1006	447	±15	3
F721A687#MCAQ2	М	680	10	68.0	35	0.14	1118	1006	447	±20	3
F721A108#MCAQ2	М	1000	10	200	45	0.14	1118	1006	447	±20	3
					16	Volt					
F721C336#RC	R	33	16	5.3	6	0.90	408	367	163	*	3
F721C476#RC	R	47	16	7.5	6	0.80	433	390	173	*	3
F721C686#RC	R	68	16	10.9	6	0.75	447	402	179	*	3
F721C107#DCAQ2	D	100	16	16.0	10	0.20	866	779	346	*	3
F721C227#MCAQ2	М	220	16	35.2	12	0.20	935	842	374	±20	3
F721C337#MCAQ2	М	330	16	52.8	45	0.20	935	842	374	±20	3

F75

AVX	Case	Capacitance	Rated	DCL	DF © 1201 I=	ESR @ 100kHz	100k	Hz RMS Current	(mA)	*1	MSL
Part No.	Size	΄ (μ F)	Voltage (V)	(µA)	(%)		25°C	85°C	125°C	ΔC/C (%)	IVISL
					4 V	olt					
F750G337#CC	С	330	4	13.2	10	0.15	856	771	343	*	3
F750G477#CC	С	470	4	18.8	14	0.12	957	862	383	*	3
F750G477#DC	D	470	4	18.8	14	0.12	1118	1006	447	*	3
F750G687#DC	D	680	4	27.2	18	0.12	1118	1006	447	*	3
F750G108#DC	D	1000	4	40.0	24	0.12	1118	1006	447	*	3
F750G108#RC	R	1000	4	40.0	24	0.12	1443	1299	577	*	3
F750G158#RC	R	1500	4	60.0	30	0.12	1443	1299	577	*	3
F750G228#RC	R	2200	4	88.0	45	0.07	1890	1701	756	*	3
					6.3	Volt					
F750J227#CC	С	220	6.3	13.9	10	0.20	742	667	297	*	3
F750J337#CC	С	330	6.3	20.8	10	0.15	856	771	343	*	3
F750J337#DC	D	330	6.3	20.8	10	0.15	1000	900	400	*	3
F750J477#DC	D	470	6.3	29.6	14	0.12	1118	1006	447	*	3

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated	DCL	DF	ESR	100	KHz RMS Current	(mA)	*1	
Part No.	Size	(μF)	Voltage (V)	μA)	@ 120Hz (%)	@ 100kHz (Ω)	25°C	85°C	125°C	ΔC/C (%)	MSL
F750J477#UC	U	470	6.3	29.6	15	0.10	1049	944	420	*	3
F750J687#DC	D	680	6.3	42.8	18	0.12	1118	1006	447	*	3
F750J687#RC	R	680	6.3	42.8	18	0.12	1443	1299	577	*	3
F750J108#RC	R	1000	6.3	63.0	24	0.12	1443	1299	577	*	3
F750J108#UCAQ2	U	1000	6.3	126	40	0.15	856	771	343	±20	3
F750J228#MCAQ2	М	2200	6.3	139	60	0.08	1581	1423	632	±20	3
					10	Volt					
F751A157#CC	С	150	10	15.0	10	0.22	707	636	283	*	3
F751A227#CC	С	220	10	22.0	10	0.20	742	667	297	*	3
F751A227#DC	D	220	10	22.0	10	0.20	866	779	346	*	3
F751A337#DC	D	330	10	33.0	10	0.15	1000	900	400	*	3
F751A477#RC	R	470	10	47.0	14	0.12	1443	1299	577	*	3
F751A477#UCAQ2	U	470	10	94.0	30	0.15	856	771	343	±20	3
					16	Volt					
F751C686#CC	С	68	16	10.9	10	0.22	707	636	283	*	3
F751C107#CC	С	100	16	16.0	10	0.22	707	636	283	*	3
F751C157#DC	D	150	16	24.0	10	0.22	826	743	330	*	3
F751C227#RC	R	220	16	35.2	10	0.20	1118	1006	447	*	3

^{*1:} Δ C/C Marked "*"

#: "M" for ±20% tolerance, "K" for ± 10% tolerance.

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

Item	F72/F75 All Case (%)
Damp Heat	±10
Temperature cycles	±5
Resistance soldering heat	±5
Surge	±5
Endurance	±10

QUALIFICATION TABLE

TEST	F72/75 series (Temperature range -55°C to +125°C)
1591	Condition
Damp Heat (Steady State)	At 40°C, 90 to 95% R.H., 500 hours (No voltage applied) Capacitance Change
Temperature Cycles	At -55°C / +125°C, 30 minutes each, 5 cycles Capacitance Change
Resistance to Soldering Heat	10 seconds reflow at 260°C, 10 seconds immersion at 260°C. Capacitance Change
Surge	After application of surge voltage in series with a 330 resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change
Endurance	After 2000 hours' application of rated voltage at 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change
Shear Test	After applying the pressure load of 5N for 10±1 seconds horizontally to the center of capacitor side body which has no electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the terminal electrode.
Terminal Strength	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is applied with a specified jig at the center of substrate so that the substrate may bend by 1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.

Low Profile and High CV Conformal Coated Chip

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

SERIES LINE UP:

CONFORMAL Ta MnO₂

Standard and Low Profile Niobium Oxide Capacitors

MARKING

A, B, C, D, E, F, S, T, V, W, X, Y CASE

PCASE

FEATURES

- · Non-Burn Safe Technology
- Reliability Level: 0.5%/1000 Hours at 85°C
- 100% Surge Current Tested
- · 13 Case Sizes Available, Standard and Low Profile
- · Environmentally Friendly, RoHS Compliant
- CV Range: 2.2-1000µF / 1.8-10V
- · Elektra Component of the Year Award, 2005

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

Elektra Award 2005

APPLICATIONS

- Automotive, Avionics, Digital, FPGA, Industrial Low Voltage Control Circuits
- · Downsized Industrial and Automotive DC/DC Converters

STANDARD CASE DIMENSIONS:

millimeters (inches)

	Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
	Α	1206	3216-18	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
	В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
ſ	С	2312	6032-28	6.00 (0.236)	3.20 (0.126)	2.60 (0.102)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
	D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
ſ	Е	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
	٧	2924	7361-38	7.30 (0.287)	6.10 (0.240)	3.55 (0.140)	3.10 (0.122)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only.

LOW PROFILE CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H Max	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
F	2312	6032-20	6.00 (0.236)	3.20 (0.126)	.20 (0.126) 2.00 (0.079)		1.30 (0.051)	2.90 (0.114)
Р	0805	2012-15	2.05 (0.081)	1.35 (0.053)	1.50 (0.059)	1.00±0.10 (0.039±0.004)	0.80 (0.031)	1.40 (0.055)
S	1206	3216-12	3.20 (0.126)	1.60 (0.063)	1.20 (0.047)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
Т	1210	3528-12	3.50 (0.138)	2.80 (0.110)	1.20 (0.047)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
W	2312	6032-15	6.00 (0.236)	3.20 (0.126)	1.50 (0.059)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
Х	2917	7343-15	7.30 (0.287)	4.30 (0.169)	1.50 (0.059)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
Υ	2917	7343-20	7.30 (0.287)	4.30 (0.169)	2.00 (0.079)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only. Pad Stand-off is 0.1±0.1.

HOW TO ORDER

107

Capacitance Code
1st two digits represent
significant figures,
3rd digit represents
multiplier in pF

M

Tolerance Rated

Rated DC Voltage 001 = 1.8Vdc

006

002 = 2.5Vdc 004 = 4Vdc 006 = 6.3Vdc 010 = 10Vdc R T

Packaging R = Pure Tin 7" Reel S = Pure Tin 13" Reel WJ

Specification Suffix

WJ = Standard WB = Low ESR Additional characters may be added for

V = dry pack option (selected ratings onlydry pack is standard for all D, E, V, X, Y case size ratings)

special requirements

TECHNICAL SPECIFICATIONS

Technical Data:		All techr	nical data	relate to	an ambie	ent tempe	erature of +25°C is not stated		
Capacitance Range:		2.2 µF to	1000 μF						
Capacitance Tolerance: ±20%									
Leakage Current DCL: 0.02CV or 1.0µA whichever is the greater									
Rated Voltage (V _R)	≤ +85°C:	1.8	2.5	4	6.3	10			
Category Voltage (V _c)	≤ +105°C:	1.2	1.7	2.7	4	7			
Surge Voltage (V _s)	≤ +85°C:	2.3	3.3	5.2	8	13			
Surge Voltage (V _s)	≤ +105°C:	1.6	2.2	3.4	5	8			
Temperature Range: -55°C to +105°C									
Reliability:		0.5% pe	r 1000 ho	urs at 85	°C, V _R , 0.1	Ω/V seri	es impedance, 60% confidence level		
		Meets re	equireme	nts of AE	C-Q200				

STANDARD NIOBIUM OXIDE CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance		Rated V	oltage DC (V _R)	to 85°C	
μF	Code	1.8V (x)	2.5V (e)	4V (G)	6.3V (J)	10V (A)
4.7	475				Α	Α
6.8	685				Α	Α
10	106				Α	A/B
15	156			Α	A/B	A/B
22	226		Α	A/B	A/B	B/C/B(700)
33	336		A/B	A/B	B/C/B(700)	С
47	476	Α	A/B	A/B/C	B/C	С
68	686	В	B/C	B/C	B/C	С
100	107	B/C	B/C	B/C/B(250)	B/C/D/B(400)	D/D(150)
150	157	С	С	C/D	C/D	
220	227	С	С	C/D	C/D/E	
330	337	С	C/D	D	D/E	
470	477		D/E	D/E	E/V/E(75)	
680	687		E	E/V		
1000	108		V	V		

LOW PROFILE NIOBIUM OXIDE CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance		Rated V	oltage DC (V _R)	to 85°C	
μF	Code	1.8V (x)	2.5V (e)	4V (G)	6.3V (J)	10V (A)
1.0	105					
1.5	155					
2.2	225					Р
3.3	335					Р
4.7	475				P/S	Т
6.8	685			P/S	P/S/T	Т
10	106		P/S	P/S/T	P/T	Т
15	156	P/S	P/S/T	P/T		
22	226	P/S/T	P/T	Т	Т	
33	336	Т	Т	Т	W	
47	476	Т	Т	W	W	
68	686		W	W	X/Y	
100	107	W	W	W/X	F/Y	
150	157		X	Υ	F/Y	
220	227	Х	Υ	F/Y	Υ	
330	337	Y	Υ	Υ		
470	477	Υ				

Released ratings (ESR ratings in mOhms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kH	z RMS Cur	rent (A)	MSL
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(μA)	(%)	@ 100kHz (Ω)	25°C	85°C	105°C	IVISL
NOJP156M001#WJ	P	15	1.8	85	1.8 Volt	. @ 85°C 105	1.0	10	4.1	0.133	0.119	0.053	1
NOJS156M001#WJ	S	15	1.8	85	1.2	105	1.0	6	2	0.197	0.178	0.079	1
NOJP226M001#WJ	P	22	1.8	85	1.2	105	1.0	10	3.8	0.138	0.124	0.055	1
NOJS226M001#WJ	S	22	1.8	85	1.2	105	1.0	8	1.9	0.203	0.182	0.081	1
NOJT226M001#WJ	T	22	1.8	85	1.2	105	1.0	6	1.8	0.231	0.208	0.092	1
NOJT336M001#WJ	T	33	1.8	85	1.2	105	1.2	6	1.7	0.238	0.214	0.095	1
NOJA476M001#WJ	A	47	1.8	85	1.2	105	1.7	8	1.6	0.237	0.214	0.095	1
NOJB476M001#WJ	В	47	1.8	85	1.2	105	1.7	6	1.6	0.252	0.213	0.093	1
NOJT476M001#WJ	T	47	1.8	85	1.2	105	1.7	10	1.6	0.245	0.220	0.098	1
NOJB686M001#WJ	В	68	1.8	85	1.2	105	2.5	6	1.5	0.243	0.235	0.104	1
NOJB107M001#WJ	В	100	1.8	85	1.2	105	3.6	6	1.4	0.270	0.243	0.104	1
NOJC107M001#WJ	C	100	1.8	85	1.2	105	3.6	6	0.4	0.574	0.517	0.230	1
NOJW107M001#WJ	W	100	1.8	85	1.2	105	3.6	6	0.4	0.520	0.468	0.208	1
NOJC157M001#WJ	C	150	1.8	85	1.2	105	5.4	8	0.4	0.574	0.400	0.230	1
NOJC227M001#WJ	C	220	1.8	85	1.2	105	8.0	8	0.4	0.574	0.517	0.230	1
NOJX227M001#WJ	X	220	1.8	85	1.2	105	8.0	8	0.4	0.548	0.493	0.230	3
NOJC337M001#WJ	Ĉ	330	1.8	85	1.2	105	11.9	8			0.493		1
NOJY337M001#WJ	Y	330	1.8	85	1.2	105	11.9	8	0.3	0.663	0.597	0.265	3
	Y				1.2	105							3
NOJY477M001#WJ	T T	470	1.8	85		@ 85°C	17.0	8	0.3	0.707	0.636	0.283	3
NO ID10Ch1000 IIII	1 5	10	0.5				1.0		1 45	0.100	0.554	0.054	1 4
NOJP106M002#WJ	P	10	2.5	85	1.7	105	1.0	6	4.5	0.126	0.114	0.051	1
NOJS106M002#WJ	S	10	2.5	85	1.7	105	1.0	6	2.2	0.188	0.169	0.075	1
NOJP156M002#WJ	Р	15	2.5	85	1.7	105	1.0	6	4	0.134	0.121	0.054	1
NOJS156M002#WJ	S	15	2.5	85	1.7	105	1.0	8	2	0.197	0.178	0.079	1
NOJT156M002#WJ	T	15	2.5	85	1.7	105	1.0	6	2	0.219	0.197	0.088	1
NOJA226M002#WJ	Α	22	2.5	85	1.7	105	1.1	6	1.9	0.218	0.196	0.087	1
NOJP226M002#WJ	P	22	2.5	85	1.7	105	1.1	10	3.8	0.138	0.124	0.055	1
NOJT226M002#WJ	Т	22	2.5	85	1.7	105	1.1	6	1.9	0.225	0.202	0.090	1
NOJA336M002#WJ	Α	33	2.5	85	1.7	105	1.7	6	1.7	0.230	0.207	0.092	1
NOJB336M002#WJ	В	33	2.5	85	1.7	105	1.7	6	1.7	0.245	0.220	0.098	1
NOJT336M002#WJ	T	33	2.5	85	1.7	105	1.7	6	1.7	0.238	0.214	0.095	1
NOJA476M002#WJ	A	47	2.5	85	1.7	105	2.4	8	1.6	0.237	0.213	0.095	1
NOJB476M002#WJ	В	47	2.5	85	1.7	105	2.4	6	1.6	0.252	0.227	0.101	1
NOJT476M002#WJ	T	47	2.5	85	1.7	105	2.4	10	1.6	0.245	0.220	0.098	1
NOJB686M002#WJ	В	68	2.5	85	1.7	105	3.4	6	1.5	0.261	0.235	0.104	1
NOJC686M002#WJ	С	68	2.5	85	1.7	105	3.4	6	0.5	0.514	0.462	0.206	1
NOJW686M002#WJ	W	68	2.5	85	1.7	105	3.4	6	0.4	0.520	0.468	0.208	1
NOJB107M002#WJ	В	100	2.5	85	1.7	105	5.0	6	1.4	0.270	0.243	0.108	1
NOJC107M002#WJ	С	100	2.5	85	1.7	105	5.0	6	0.4	0.574	0.517	0.230	1
NOJW107M002#WJ	W	100	2.5	85	1.7	105	5.0	6	0.4	0.520	0.468	0.208	1
NOJC157M002#WJ	С	150	2.5	85	1.7	105	7.5	6	0.4	0.574	0.517	0.230	1
NOJX157M002#WJ	Х	150	2.5	85	1.7	105	7.5	6	0.4	0.548	0.493	0.219	3
NOJC227M002#WJ	С	220	2.5	85	1.7	105	11.0	8	0.4	0.574	0.517	0.230	1
NOJY227M002#WJ	Υ	220	2.5	85	1.7	105	11.0	8	0.4	0.612	0.551	0.245	3
NOJC337M002#WJ	С	330	2.5	85	1.7	105	16.5	10	0.3	0.663	0.597	0.265	1
NOJD337M002#WJ	D	330	2.5	85	1.7	105	16.5	10	0.3	0.775	0.697	0.310	3
NOJY337M002#WJ	Υ	330	2.5	85	1.7	105	16.5	10	0.3	0.707	0.636	0.283	3
NOJD477M002#WJ	D	470	2.5	85	1.7	105	23.5	12	0.3	0.775	0.697	0.310	3
NOJE477M002#WJ	Е	470	2.5	85	1.7	105	23.5	10	0.3	0.812	0.731	0.325	3
NOJE687M002#WJ	Е	680	2.5	85	1.7	105	34.0	14	0.3	0.812	0.731	0.325	3
NOJV108M002#WJ	V	1000	2.5	85	1.7	105	50.0	16	0.3	1.000	0.900	0.400	3
					4 Volt	@ 85°C							
NOJP685M004#WJ	Р	6.8	4	85	2.7	105	1.0	6	5.3	0.117	0.105	0.047	1
NOJS685M004#WJ	S	6.8	4	85	2.7	105	1.0	6	2.6	0.173	0.156	0.069	1
NOJP106M004#WJ	P	10	4	85	2.7	105	1.0	20	4.5	0.126	0.114	0.051	1
NOJS106M004#WJ	S	10	4	85	2.7	105	1.0	8	2.2	0.188	0.169	0.075	1
NOJT106M004#WJ	T	10	4	85	2.7	105	1.0	6	2.2	0.209	0.188	0.084	1
NOJA156M004#WJ	A	15	4	85	2.7	105	1.2	6	2	0.212	0.191	0.085	1
NOJP156M004#WJ	P	15	4	85	2.7	105	1.2	10	4.1	0.133	0.119	0.053	1
NOJT156M004#WJ	T	15	4	85	2.7	105	1.2	6	2	0.133	0.119	0.033	1
NOJA226M004#WJ	A	22	4	85	2.7	105	1.8	6	1.9	0.219	0.197	0.087	1
NOJB226M004#WJ	В	22	4	85	2.7	105	1.8	6	1.9	0.218	0.196	0.087	1
	T		4				1.8						1
NOJT226M004#WJ		22		85	2.7	105		6	1.8	0.231	0.208	0.092	
NOJA336M004#WJ	A	33	4	85	2.7	105	2.6	10	1.7	0.230	0.207	0.092	1
NOJB336M004#WJ	В	33	4	85	2.7	105	2.6	6	1.7	0.245	0.220	0.098	1
NOJT336M004#WJ	T	33	4	85	2.7	105	2.6	14	2	0.219	0.197	0.088	1
NOJA476M004#WJ	Α	47	4	85	2.7	105	3.8	18	2.2	0.202	0.182	0.081	1
NOJB476M004#WJ	В	47	4	85	2.7	105	3.8	6	1.6	0.252	0.227	0.101	1
NOJC476M004#WJ	С	47	4	85	2.7	105	3.8	6	0.5	0.514	0.462	0.206	1
NOJW476M004#WJ	W	47	4	85	2.7	105	3.8	6	0.5	0.465	0.418	0.186	1

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kH	z RMS Cur	rent (A)	MS
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(µA)	(%)	@ 100kHz (Ω)	25°C	85°C	105°C	IVIS
NOJB686M004#WJ	В	68	4	85	2.7	105	5.4	6	1.5	0.261	0.235	0.104	1
NOJC686M004#WJ	С	68	4	85	2.7	105	5.4	6	0.5	0.514	0.462	0.206	1
NOJW686M004#WJ	W	68	4	85	2.7	105	5.4	6	0.4	0.520	0.468	0.208	
NOJB107M004#WJ NOJB107M004#WB	B	100 100	4	85 85	2.7	105 105	8.0	16 16	1.4 0.25	0.270	0.243 0.575	0.108 0.255	
NOJC107M004#WJ	C	100	4	85	2.7	105	8.0	6	0.23	0.639	0.573	0.230	
NOJW107M004#WJ	W	100	4	85	2.7	105	8.0	8	0.4	0.520	0.468	0.208	
NOJX107M004#WJ	X	100	4	85	2.7	105	8.0	6	0.4	0.548	0.493	0.219	
NOJC157M004#WJ	С	150	4	85	2.7	105	12.0	6	0.4	0.574	0.517	0.230	
NOJD157M004#WJ	D	150	4	85	2.7	105	12.0	6	0.3	0.775	0.697	0.310	
NOJY157M004#WJ	Y	150	4	85	2.7	105	12.0	6	0.4	0.612	0.551	0.245	
NOJC227M004#WJ	С	220	4	85	2.7	105	17.6	8	0.4	0.574	0.517	0.230	
NOJD227M004#WJ	D	220	4	85	2.7	105	17.6	8	0.4	0.671	0.604	0.268	
NOJF227M004#WJ	F	220	4	85	2.7	105	17.6	10	0.4	0.548	0.493	0.219	
NOJY227M004#WJ	Y	220	4	85	2.7	105	17.6	10	0.4	0.612	0.551	0.245	
NOJD337M004#WJ	D Y	330 330	4	85 85	2.7	105 105	26.4 26.4	8 12	0.3	0.775 0.707	0.697	0.310	
NOJY337M004#WJ NOJD477M004#WJ	D	470	4	85	2.7	105	37.6	12	0.3	0.707	0.636 0.697	0.283 0.310	
NOJE477M004#WJ	E	470	4	85	2.7	105	37.6	12	0.3	0.773	0.731	0.325	
NOJE687M004#WJ	E	680	4	85	2.7	105	54.4	14	0.3	0.812	0.731	0.325	
NOJV687M004#WJ	V	680	4	85	2.7	105	54.4	14	0.3	1.000	0.900	0.400	
NOJV108M004#WJ	V	1000	4	85	2.7	105	80.0	18	0.3	1.000	0.900	0.400	
					6.3 Volt	@ 85°C							
NOJA475M006#WJ	A P	4.7	6.3	85	4	105	1.1	6	3.2	0168	0.151	0.067	
NOJP475M006#WJ NOJS475M006#WJ	S	4.7 4.7	6.3	85 85	4	105 105	1.0	6	6.1 3.2	0.109 0.156	0.098	0.043	
NOJS475MUU6#WJ NOJA685M006#WJ	A	6.8	6.3	85	4	105	1.0	6	2.6	0.186	0.141 0.167	0.062	
NOJP685M006#WJ	P	6.8	6.3	85	4	105	1.0	10	5.2	0.118	0.106	0.047	
NOJS685M006#WJ	S	6.8	6.3	85	4	105	1.0	8	2.7	0.170	0.153	0.068	
NOJT685M006#WJ	T	6.8	6.3	85	4	105	1.0	6	2.6	0.192	0.173	0.077	
NOJA106M006#WJ	Α	10	6.3	85	4	105	1.2	6	2.2	0.202	0.182	0.081	
NOJP106M006#WJ	Р	10	6.3	85	4	105	1.2	10	4.5	0.126	0.114	0.051	
NOJT106M006#WJ	Т	10	6.3	85	4	105	1.2	6	2.2	0.209	0.188	0.084	
NOJA156M006#WJ	Α	15	6.3	85	4	105	1.8	8	2	0.212	0.191	0.085	
NOJB156M006#WJ	В	15	6.3	85	4	105	1.8	6	2	0.226	0.203	0.090	
NOJA226M006#WJ	Α	22	6.3	85	4	105	2.6	8	1.8	0.224	0.201	0.089	
NOJB226M006#WJ	В	22	6.3	85	4	105	2.6	6	1.9	0.232	0.209	0.093	
NOJT226M006#WJ NOJB336M006#WJ	T B	22 33	6.3	85 85	4	105 105	2.6 4.0	8	1.8 1.7	0.231	0.208	0.092	
NOJB336M006#WJ	В	33	6.3	85	4	105	4.0	6	0.7	0.245	0.220	0.098	
VOJC336M006#WJ	С	33	6.3	85	4	105	4.0	6	0.7	0.514	0.462	0.133	
NOJW336M006#WJ	W	33	6.3	85	4	105	4.0	6	0.5	0.465	0.418	0.186	
NOJB476M006#WJ	В	47	6.3	85	4	105	5.6	6	0.8	0.357	0.321	0.143	
NOJC476M006#WJ	С	47	6.3	85	4	105	5.7	6	0.5	0.514	0.462	0.206	
NOJW476M006#WJ	W	47	6.3	85	4	105	5.7	6	0.5	0.465	0.418	0.186	
NOJB686M006#WJ	В	68	6.3	85	4	105	8.2	20	1.5	0.261	0.235	0.104	
NOJC686M006#WJ	С	68	6.3	85	4	105	8.2	6	0.5	0.514	0.462	0.206	
NOJX686M006#WJ	Х	68	6.3	85	4	105	8.2	6	0.5	0.490	0.441	0.196	
NOJY686M006#WJ	Y	68	6.3	85	4	105	8.2	6	0.5	0.548	0.493	0.219	
NOJB107M006#WJ	В	100	6.3	85	4	105	60.0	20	1.7	0.245	0.220	0.098	
NOJB107M006#WB	В	100	6.3	85	4	105	60.0	20	0.4	0.505	0.454	0.202	
NOJC107M006#WJ NOJD107M006#WJ	C D	100 100	6.3	85 85	4	105 105	12.0 12.0	8	0.4	0.574	0.517 0.604	0.230	
NOJF107M006#WJ	F	100	6.3	85	4	105	12.0	8	0.4	0.548	0.604	0.208	
NOJY107M006#WJ	Y	100	6.3	85	4	105	12.0	6	0.4	0.612	0.493	0.219	
NOJC157M006#WJ	C	150	6.3	85	4	105	18.0	6	0.4	0.574	0.517	0.230	
NOJD157M006#WJ	D	150	6.3	85	4	105	18.0	6	0.4	0.671	0.604	0.268	
NOJF157M006#WJ	F	150	6.3	85	4	105	18.0	8	0.4	0.548	0.493	0.219	
NOJY157M006#WJ	Υ	150	6.3	85	4	105	18.0	6	0.4	0.612	0.551	0.245	
NOJC227M006#WJ	С	220	6.3	85	4	105	26.4	14	0.4	0.574	0.517	0.230	
NOJD227M006#WJ	D	220	6.3	85	4	105	26.4	8	0.4	0.671	0.604	0.268	
NOJE227M006#WJ	Е	220	6.3	85	4	105	26.4	12	0.4	0.704	0.633	0.281	
NOJY227M006#WJ	Υ	220	6.3	85	4	105	26.4	10	0.4	0.612	0.551	0.245	
NOJD337M006#WJ	D	330	6.3	85	4	105	39.6	10	0.3	0.775	0.697	0.310	
NOJE337M006#WJ	E	330	6.3	85	4	105	39.6	12	0.3	0.812	0.731	0.325	
NOJE477M006#WJ NOJE477M006#WB	E	470	6.3	85	4	105	56.4	16	0.3	0.812	0.731	0.325	
	E	470	6.3	85	4	105	56.4	16	0.075	1.625	1.462	0.650	1

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kHz RMS Current (A)			MSL
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(μA)	(%)	@ 100kHz (Ω)	25°C	85°C	105°C	IVIOL
					10 Volt	@ 85°C							
NOJP225M010#WJ	Р	2.2	10	85	7	105	1.0	8	8.3	0.093	0.084	0.037	1
NOJP335M010#WJ	Р	3.3	10	85	7	105	1.0	8	7	0.101	0.091	0.041	1
NOJA475M010#WJ	Α	4.7	10	85	7	105	1.0	6	3.1	0.170	0.153	0.068	1
NOJT475M010#WJ	T	4.7	10	85	7	105	1.0	6	3.1	0.176	0.158	0.070	1
NOJA685M010#WJ	Α	6.8	10	85	7	105	1.4	6	2.6	0.186	0.167	0.074	1
NOJT685M010#WJ	Т	6.8	10	85	7	105	1.4	6	2.6	0.192	0.173	0.077	1
NOJA106M010#WJ	Α	10	10	85	7	105	2.0	6	2.2	0.202	0.182	0.081	1
NOJB106M010#WJ	В	10	10	85	7	105	2.0	6	1	0.319	0.287	0.128	1
NOJT106M010#WJ	T	10	10	85	7	105	2.0	6	2.2	0.209	0.188	0.084	1
NOJA156M010#WJ	Α	15	10	85	7	105	3.0	6	2	0.212	0.191	0.085	1
NOJB156M010#WJ	В	15	10	85	7	105	3.0	6	2	0.226	0.203	0.090	1
NOJB226M010#WJ	В	22	10	85	7	105	4.4	6	1.8	0.238	0.214	0.095	1
NOJB226M010#WB	В	22	10	85	7	105	4.4	6	0.7	0.382	0.344	0.153	3
NOJC226M010#WJ	С	22	10	85	7	105	4.4	6	0.5	0.514	0.462	0.206	1
NOJC336M010#WJ	С	33	10	85	7	105	6.6	6	0.5	0.514	0.462	0.206	1
NOJC476M010#WJ	С	47	10	85	7	105	9.4	6	0.4	0.574	0.517	0.230	1
NOJC686M010#WJ	С	68	10	85	7	105	13.6	12	0.5	0.514	0.462	0.206	1
NOJD107M010#WJ	D	100	10	85	7	105	20.0	12	0.4	0.671	0.604	0.268	3
NOJD107M010#WB	D	100	10	85	7	105	20.0	12	0.15	1.095	0.986	0.438	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

The EIA & CECC standards for capacitors allow an ESR movement to 1.25 times catalog limit post mounting.

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

QUALIFICATION TABLE

TEST			NOJ series (Temperature range -	55°C to +1	05°C)						
1531		Condition			С	haracter	istics					
				Visual examination	no visible	damage						
		e (Ur) at 85°C and /		DCL	initial limi	it						
Endurance		5°C for 2000 hours IΩ/V. Stabilize at ro		ΔC/C	within ±1	0% of initia	ıl value					
	for 1-2 hours befo		om temperature	DF	initial limi	initial limit						
				ESR	1.25 x init	tial limit						
				Visual examination	no visible	no visible damage						
	Store at 105°C. no	voltage applied, for	r 2000 hours.	DCL	initial limi	initial limit						
Storage Life		emperature for 1-2		ΔC/C	within ±1	0% of initia	ıl value					
	measuring.			DF	initial limi	initial limit						
				ESR	1.25 x init	tial limit						
				Visual examination	no visible	no visible damage						
	Store at 65°C and	95% relative humid	ity for 500 hours,	DCL	1.5 x init	ial limit						
Humidity	with no applied vo	ltage. Stabilize at ro	oom temperature	ΔC/C	within ±1	0% of init	ial value					
	and humidity for 1	-2 hours before me	asuring.	DF	1.2 x init	1.2 x initial limit						
				ESR	1.25 x in	1.25 x initial limit						
				Visual examination	no visible	no visible damage						
	Apply rated voltag	e (Ur) at 85°C, 85°C	relative humidity	DCL	2 x initia	llimit						
Biased Humidity	for 1000 hours. St	abilize at room tem	perature and	ΔC/C	within ±1	0% of init	ial value					
	humidity for 1-2 ho	ours before measur	ing.	DF	1.2 x init	ial limit						
				ESR	1.25 x in	itial limit						
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+105°C	+20°C		
	1 2	+20 -55	15 15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*		
Temperature	3	-55 +20	15	ΔC/C	n/a	+0/-10%	±5%	+10/-0%	+12/-0%	±5%		
Stability	4	+85	15		IL*	1.5 x IL*	IL*	1.5 x IL*	2xIL*	IL*		
	5	+105	15	ESR	1.25 x IL*	2.5 x IL*	1.25 x IL*	1.25 x IL*	1.25 x IL*	1.25 x IL*		
	6	+20	15				1.25 X IL^	1.25 X IL^	1.25 X IL^	1.25 X IL^		
	Apply 1 3v catego	ry voltage (Uc) at 10	05°C for 1000	Visual examination	no visible							
		6 min (30 sec char		DCL	initial limi							
Surge Voltage	· •	h a charge / dischar	.	ΔC/C		% of initial	value					
	1000Ω			DF	initial limi							
				ESR	1.25 x init							
				Visual examination		e damage						
Mechanical				DCL	initial lim							
Shock	MIL-STD-202, Met	hod 213, Condition	F	ΔC/C		% of initia	al value					
				DF	initial lim							
				ESR	1.25 x in							
				Visual examination		e damage						
				DCL	initial lim	-						
Vibration	MIL-STD-202, Met	hod 204, Condition	D	ΔC/C		% of initia	ıl value					
				DF	initial limit							
				ESR	1.25 x in	1.25 x initial limit						

^{*}Initial Limit

Standard and Low Profile Niobium Oxide Capacitors

SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: NIOBIUM OXIDE OxiCap® CAPACITORS

Niobium Oxide Capacitors High CV Consumer Series

FEATURES

- · High Volumetric Efficiency
- **Environmentally Friendly**
- 3x Reflow 260°C Compatible
- 100% Surge Current Tested
- **Consumer Applications**
- OxiCap® Non-Burn Technology
- **RoHS** Compliance
- Lead-Free Solution
- 6 Case Sizes Available
- CV Range: 22-150µF / 4-10V

LEAD-FREE COMPATIBLE

Elektra Award 2005

APPLICATIONS

· Consumer Handhelds and Entertainment

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
Α	1206	3216-18	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
G	1206	3216-15	3.20 (0.126)	1.60 (0.063)	1.50 (0.059) max	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
Р	0805	2012-15	2.05 (0.081)	1.35 (0.053)	1.50 (0.059) max	1.00±0.10 (0.039±0.004)	0.50 (0.020)	0.85 (0.033)
s	1206	3216-12	3.20 (0.126)	1.60 (0.063)	1.20 (0.047) max	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
Т	1210	3528-12	3.50 (0.138)	2.80 (0.110)	1.20 (0.047) max	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)

 $\mathbf{W}_{\!\scriptscriptstyle 1}$ dimension applies to the termination width for A dimensional area only.

MARKING

A, B, G, S, T CASE

PCASE

HOW TO ORDER

010 = 10 Vdc

TECHNICAL SPECIFICATIONS

Technical Data:		All techr	nical data	relate to	an ambient temperature of +25°C		
Capacitance Range:		22 μF to	150 μF				
Capacitance Tolerance:		±20%					
Leakage Current DCL:		0.1CV					
Rated Voltage (V _R)	-55°C ≤ +40°C:	4	6.3	10			
Category Voltage (V _c)	at 85°C:	2	3.2	5			
Category Voltage (V _c)	at 105°C:	1.3	2	3.3			
Temperature Range: -55°C to +105°C with category voltage							
Reliability: 0.2% per 1000 hours at 85° C, $0.5xV_{R}$, $0.1\Omega/V$ series impedance with 60% confidence level							

Niobium Oxide Capacitors High CV Consumer Series

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capaci	tance	Rated Voltage DC to 40°C							
μF	Code	4V (G)	6.3V (J)	10V (A)					
22	226	P(4000)	S(1800)	A(4000)/G(3000)					
33	336		G(2200)	A(1700)					
47	476		A(1600)/T(1600)	B(1000)					
68	686								
100	107		B(1700)						
150	157	B(1500)							

Released ratings, (ESR ratings in mOhms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

RATINGS & PART NUMBER REFERENCE

AVX	Case Capacital	Capacitance	Rated	Rated	rature Voltage	Category Temperature (°C)	Maximum	DCL	ESR Max.	100kHz RMS Current (mA)			
Part No.			Voltage (V)	Temperature (°C)			Surge Current (A)	Max. (μA)	@100kHz (mΩ)	25°C	85°C	105°C	MSL
4 Volt @ 85°C													
NLJP226M004#4000	Р	22	4	85	1.3	105	0.4	8.8	4000	134	121	54	3
NLJB157M004#1500	В	150	4	85	1.3	105	1.0	60.0	1500	261	235	104	3
					6.3 V	olt @ 85°C							
NLJS226M006#1800	S	22	6.3	85	2	105	1.4	13.2	1800	208	187	83	3
NLJG336M006#2200	G	33	6.3	85	2	105	1.2	19.8	2200	195	176	78	3
NLJA476M006#1600	Α	47	6.3	85	2	105	1.5	28.2	1600	237	213	98	3
NLJT476M006#1600	Т	47	6.3	85	2	105	1.5	28.2	1600	245	220	98	3
NLJB107M006#1700	В	100	6.3	85	2	105	1.5	60.0	1700	245	220	98	3
10 Volt @ 85°C													
NLJA226M010#4000	Α	22	10	85	3.3	105	1.1	22.0	4000	150	135	60	3
NLJG226M010#3000	G	22	10	85	3.3	105	1.4	22.0	3000	167	151	67	3
NLJA336M010#1700	Α	33	10	85	3.3	105	2.3	33.0	1700	230	207	92	3
NLJB476M010#1000	В	47	10	85	3.3	105	3.4	47.0	1000	319	287	128	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V

RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

ESR allowed to move up to 1.25 times catalogue limit post mounting

DCL allowed to move up to 2.00 times catalogue limit post mounting

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

Niobium Oxide Capacitors High CV Consumer Series

QUALIFICATION TABLE

TEST	NLJ series (Temperature range -55°C to +105°C)											
IESI		Condition		Characteristics								
	Apply rated voltage	e (Ur) at 40°C and /	or category	Visual examination	tion no visible damage							
Endurance	1 11 7	C for 2000 hours th	5 ,	DCL	2 x initial limit							
		Ω/V. Stabilize at roo		ΔC/C	within ±1	within ±10% of initial value						
	for 1-2 hours befor	re measuring.	ESR	1.25 x ini	1.25 x initial limit							
	Store at 65°C and	90-95% relative hun	nidity for 500	Visual examination	no visible	damage						
l luma i ditu	hours, with no app	lied voltage. Stabiliz	ze at room	DCL	2 x initial	limit						
Humidity	temperature and h	umidity for 1-2 hour	ΔC/C	within ±1	within ±10% of initial value							
	measuring.		ESR	1.25 x ini	tial limit							
	Step	Temperature°C	Duration(min)	_	+20°C	-55°C	+20°C	+85°C	+105°C	+20°0		
T	1 2	+20 -55	15 15	DCL	2 x IL*	n/a	2 x IL**	10 x IL*	12.5 x IL*	2 x IL ³		
Temperature	3	+20	15	1	27.12	.,,	ZXIL					
Stability	4	+85	15	ΔC/C	n/a	+0/-20%	±5%	+20/-0%	+25/-0%	±5%		
	5 6	+105 +20	15 15	ESR	1.25 x IL*	2.5 x IL*	1.25 x IL*	1.25 x IL*	1.25 x IL*	1.25 x l		
		-	Visual examination	no visible	no visible damage							
Surge		oltage (Ur) at 40°C f	DCL	2 x initial	2 x initial limit							
Voltage	,	sec charge, 5 min 3 discharge resistan	ΔC/C	within ±5	within ±5% of initial value							
	linough a charge /	discharge resistant	CC 01 100012	ESR	1.25 x initial limit							
				Visual examination	no visible damage							
Mechanical				DCL	initial limit							
Shock	MIL-STD-202, Meth	hod 213, Condition (ΔC/C	within ±5% of initial value								
SHOCK				DF	initial lim	initial limit						
				ESR	initial lim	initial limit						
				Visual examination	no visible damage							
				DCL	initial limit							
Vibration	MIL-STD-202, Meth	hod 204, Condition I)	ΔC/C	within ±5% of initial value							
				DF	initial limit							
				ESR	initial limit							

^{*}Initial Limit

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: NIOBIUM OXIDE OxiCap® CAPACITORS

OxiCap® NOS Low ESR Series

Niobium Oxide Capacitor

FEATURES

- · Low ESR Nb0 Capacitors
- Non-Burn Safe Technology
- Reliability Level: 0.2%/1000 hrs.
- 100% Surge Current Tested
- CV Range: 10-1000µF / 1.8-8V
- 9 Case Sizes Available
- IBM Global Approval Received in 2004
- Elektra Award Received in 2005
- Meets Requirements of AEC-Q200
- -55 to +125°C Operation Temperature

LEAD-FREE COMPATIBLE

Elektra Award 2005

APPLICATIONS

· Medium Power DC/DC for Transportation and Automotive Industry

CASE DIMENSIONS:

millimeters (inches)

MARKING A, B, C, D, E, V, W, X, Y **CASE**

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
Α	1206	3216-18	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
С	2312	6032-28	6.00 (0.236)	3.20 (0.126)	2.60 (0.102) 2.20 (0.083		1.30 (0.051)	2.90 (0.114)
D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
V	2924	7361-38	7.30 (0.287)	6.10 (0.240)	3.55 (0.140)	3.10 (0.122)	1.30 (0.051)	4.40 (0.173)
W	2312	6032-15	6.00 (0.236)	3.20 (0.126)	1.50 (0.059) max.	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
Х	2917	7343-15	7.30 (0.287)	4.30 (0.169)	1.50 (0.059) max.	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
Υ	2917	7343-20	7.30 (0.287)	4.30 (0.169)	2.00 (0.079) max	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only.

S = Pure Tin 13" Reel

HOW TO ORDER

006

Rated

R Packaging R = Pure Tin 7" Reel

ESR in mΩ

Additional characters may be added for special requirements V = Dry pack Option (selected codes only) with exception of

D, E, X, Y, V cases

1st two digits represent significant figures, 3rd digit represents multiplier in pF

DC Voltage 001 = 1.8 Vdc002 = 2.5 Vdc004 = 4Vdc 006 = 6.3Vdc 008 = 8Vdc

TECHNICAL SPECIFICATIONS

Technical Data:	All technical data relate to an ambient temperature of +25°C is not stated								
Capacitance Range:	10 μF to 1000 μF								
Capacitance Tolerance:		±20%							
Leakage Current DCL:		0.02CV							
Rated Voltage DC (V _R)	≤ +85°C:	1.8	2.5	4	6.3	8			
Category Voltage (V _c)	≤ +105°C:	1.2	1.7	2.7	4	7			
Category Voltage (V _c)	≤ +125°C:	0.9	1.3	2	3	4			
Surge Voltage (V _S)	≤ +85°C:	2.3	3.3	5.2	8	10			
Surge Voltage (V _S)	≤ +105°C:	1.6	2.2	3.4	5	8			
Surge Voltage (V _S)	≤ +125°C:	1.2	1.7	2.6	4	5.3			
Temperature Range:		-55°C to	+125°C						
Reliability:		0.2% per 1000 hours at 85°C, V_R , 0.1 Ω/V series impedance, 60% confidence level							
Meets requirements of AEC-Q200									

OxiCap® NOS Low ESR Series

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance		Rat	ted Voltage DC (V _R) to 8	5°C	
μF	Code	1.8V (x)	2.5V (e)	4.0V (G)	6.3V (J)	8V (P)
10	106				A(800,1000,2000,2200)	A(2200) B(1000)
15	156			A(1500,2000)	B(600,2000)	B(1000)
22	226		A(900,1900)	B(600,1900)	B(600,1900)	B(700,1800) C(500)
33	336		B(1700)	B(600,1700)	B(600,1700) C(500) W(250,500)	C(500)
47	476		B(500,1600)	B(500,1600) C(300,500) W(150,500)	B(500,800) C(300,500)	C(400)
68	686		C(200,500) W(150,400)	C(200,500)	C(75,200,500) X(100,500) Y(100,500)	C(500)
100	107	B(350,1400) W(150,400)	C(150,400)	C(70,150,400) X(100,400)	C(150,400) D(80,100,400 Y(100,400)	D(400)
150	157	C(400)	C(65,150,400) X(100,400)	C(90,150,400) Y(100,400)	D(50,70,100,400) Y(100,400)	
220	227	C(125,400) X(100,400)	C(80,125,400) Y(100,400)	D(40,60,100,400) Y(100,400)	D(45,60,100,400) E(80,100,400)	
330	337	Y(100,300)	D(35,50,100,300) Y(100,300)	D(35,55,100,300) E(100) Y(150,300)	E(80,100,300)	
470	477	Y(100,300)	D(35,55,100,300) E(100,300)	D(100,300) E(75,100,300)	V(75,300)	
680	687		E(60,300)	V(75,300)		
1000	108		V(50,300)			

Released ratings (ESR ratings in mOhms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

Niobium Oxide Capacitor

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kH	Iz RMS Cur	rent (A)	М
Part No.	Size	(μ F)	(V)	(°C)	(V)	(°C)	(μA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVI
NOOD107N001#0050		100	1.0	0.5		olt @ 85°C	0.6		050	0.540	0.406	0.016	
NOSB107M001#0350 NOSB107M001#1400	B	100 100	1.8	85 85	0.9	125 125	3.6	6	350 1400	0.540 0.270	0.486	0.216	
NOSW107M001#1400	W	100	1.8	85	0.9	125	3.6	6	150	0.270	0.764	0.108	
NOSW107M001#0400	W	100	1.8	85	0.9	125	3.6	6	400	0.520	0.764	0.339	
NOSC157M001#0400	C	150	1.8	85	0.9	125	5.4	8	400	0.574	0.400	0.230	
NOSC227M001#0125	C	220	1.8	85	0.9	125	8.0	8	125	1.028	0.925	0.411	
NOSC227M001#0400	C	220	1.8	85	0.9	125	8.0	8	400	0.574	0.517	0.230	
NOSX227M001#0100	X	220	1.8	85	0.9	125	8.0	8	100	1.095	0.986	0.438	
NOSX227M001#0400	X	220	1.8	85	0.9	125	8.0	8	400	0.548	0.493	0.219	
NOSY337M001#0100	Y	330	1.8	85	0.9	125	11.9	8	100	1.225	1.102	0.490	
NOSY337M001#0300	Y	330	1.8	85	0.9	125	11.9	8	300	0.707	0.636	0.283	
NOSY477M001#0100	Υ	470	1.8	85	0.9	125	17.0	8	100	1.225	1.102	0.490	
NOSY477M001#0300	Y	470	1.8	85	0.9	125	17.0	8	300	0.707	0.636	0.283	
		•			2.5 Vo	olt @ 85°C			•			<u> </u>	
NOSA226M002#0900	Α	22	2.5	85	1.3	125	1.1	6	900	0.316	0.285	0.126	П
NOSA226M002#1900	A	22	2.5	85	1.3	125	1.1	6	1900	0.218	0.196	0.087	
NOSB336M002#1700	В	33	2.5	85	1.3	125	1.7	6	1700	0.245	0.220	0.098	
NOSB476M002#0500	В	47	2.5	85	1.3	125	2.4	6	500	0.452	0.406	0.181	
NOSB476M002#1600	В	47	2.5	85	1.3	125	2.4	6	1600	0.252	0.227	0.101	
NOSC686M002#0200	С	68	2.5	85	1.3	125	3.4	6	200	0.812	0.731	0.325	
NOSC686M002#0500	С	68	2.5	85	1.3	125	3.4	6	500	0.514	0.462	0.206	
NOSW686M002#0150	W	68	2.5	85	1.3	125	3.4	6	150	0.849	0.764	0.339	
NOSW686M002#0400	W	68	2.5	85	1.3	125	3.4	6	400	0.520	0.468	0.208	
NOSC107M002#0150	С	100	2.5	85	1.3	125	5.0	6	150	0.938	0.844	0.375	
NOSC107M002#0400	С	100	2.5	85	1.3	125	5.0	6	400	0.574	0.517	0.230	
NOSC157M002#0065	С	150	2.5	85	1.3	125	7.5	6	65	1.425	1.283	0.570	
NOSC157M002#0150	С	150	2.5	85	1.3	125	7.5	6	150	0.938	0.844	0.375	
NOSC157M002#0400	С	150	2.5	85	1.3	125	7.5	6	400	0.574	0.517	0.230	
NOSX157M002#0100	X	150	2.5	85	1.3	125	7.5	6	100	1.095	0.986	0.438	
NOSX157M002#0400	Х	150	2.5	85	1.3	125	7.5	6	400	0.548	0.493	0.219	
NOSC227M002#0080	С	220	2.5	85	1.3	125	11.0	8	80	1.285	1.156	0.514	
NOSC227M002#0125	С	220	2.5	85	1.3	125	11.0	8	125	1.028	0.925	0.411	
NOSC227M002#0400	С	220	2.5	85	1.3	125	11.0	8	400	0.574	0.517	0.230	
NOSY227M002#0100	Y	220	2.5	85	1.3	125	11.0	8	100	1.225	1.102	0.490	
NOSY227M002#0400	Y	220	2.5	85	1.3	125	11.0	8	400	0.612	0.551	0.245	
NOSD337M002#0035	D	330	2.5	85	1.3	125	16.5	10	35	2.268	2.041	0.907	
NOSD337M002#0050	D	330	2.5	85	1.3	125	16.5	10	50	1.897	1.708	0.759	
NOSD337M002#0100	D	330	2.5	85	1.3	125	16.5	10	100	1.342	1.207	0.537	
NOSD337M002#0300	D	330	2.5	85	1.3	125	16.5	10	300	0.775	0.697	0.310	
NOSY337M002#0100	Y	330	2.5	85	1.3	125	16.5	10	100	1.225	1.102	0.490	
NOSY337M002#0300	Y	330	2.5	85	1.3	125	16.5	10	300	0.707	0.636	0.283	
NOSD477M002#0035	D	470	2.5	85	1.3	125	23.5	12	35	2.268	2.041	0.907	
NOSD477M002#0055	D	470	2.5	85	1.3	125	23.5	12	55	1.809	1.628	0.724	
NOSD477M002#0100	D	470	2.5	85	1.3	125	23.5	12	100	1.342	1.207	0.537	
NOSD477M002#0300	D	470	2.5	85	1.3	125	23.5	12	300	0.775	0.697	0.310	
NOSE477M002#0100	E	470	2.5	85	1.3	125	23.5	10	100	1.407	1.266	0.563	
NOSE477M002#0300	E	470	2.5	85	1.3	125	23.5	10	300	0.812	0.731	0.325	
NOSE687M002#0060	E	680	2.5	85	1.3	125	34.0	14	60	1.817	1.635	0.727	
NOSE687M002#0300	E	680	2.5	85	1.3	125	34.0	14	300	0.812	0.731	0.325	
NOSV108M002#0050	V	1000	2.5	85	1.3	125	50.0	16	50	2.449	2.205	0.980	
NOSV108M002#0300	V	1000	2.5	85	1.3	125	50.0	16	300	1.000	0.900	0.400	
1001450:::::::::::::::::::::::::::::::::	1 .	1				lt @ 85°C			1	0.00			
NOSA156M004#1500	A	15	4	85	2	125	1.2	6	1500	0.245	0.220	0.098	
NOSA156M004#2000	A	15	4	85	2	125	1.2	6	2000	0.212	0.191	0.085	
NOSB226M004#0600	В	22	4	85	2	125	1.8	6	600	0.412	0.371	0.165	
NOSB226M004#1900	В	22	4	85	2	125	1.8	6	1900	0.232	0.209	0.093	-
NOSB336M004#0600	В	33	4	85	2	125	2.6	6	600	0.412	0.371	0.165	
NOSB336M004#1700	В	33	4	85	2	125	2.6	6	1700	0.245	0.220	0.098	
NOSB476M004#0500	В	47	4	85	2	125	3.8	6	500	0.452	0.406	0.181	
NOSB476M004#1600	В	47	4	85	2	125	3.8	6	1600	0.252	0.227	0.101	
NOSC476M004#0300	С	47	4	85	2	125	3.8	6	300	0.663	0.597	0.265	
NOSC476M004#0500	C	47	4	85	2	125	3.8	6	500	0.514	0.462	0.206	
NOSW476M004#0150	W	47	4	85	2	125	3.8	6	150	0.849	0.764	0.339	
NOSW476M004#0500	W	47	4	85	2	125	3.8	6	500	0.465	0.418	0.186	
NOSC686M004#0200	С	68	4	85	2	125	5.4	6	200	0.812	0.731	0.325	
NOSC686M004#0500	С	68	4	85	2	125	5.4	6	500	0.514	0.462	0.206	
NOSC107M004#0070	С	100	4	85	2	125	8.0	6	70	1.373	1.236	0.549	
NOSC107M004#0150	С	100	4	85	2	125	8.0	6	150	0.938	0.844	0.375	-
NOSC107M004#0400	C X	100 100	4	85 85	2	125 125	8.0	6	100	0.574 1.095	0.517 0.986	0.230 0.438	

Niobium Oxide Capacitor

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category	Category	DCL Max.	DF Max.	ESR Max.	100kH	z RMS Cur	rent (A)	MSL
Part No.	Size	(μ F)	(V)	(°C)	Voltage (V)	Temperature (°C)	(μA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVISL
NOSX107M004#0400	Х	100	4	85	2	125	8.0	6	400	0.548	0.493	0.219	3
NOSC157M004#0090	С	150	4	85	2	125	12.0	6	90	1.211	1.090	0.484	1
NOSC157M004#0150	C	150 150	4	85	2	125 125	12.0 12.0	6	150 400	0.938 0.574	0.844	0.375 0.230	1
NOSC157M004#0400 NOSY157M004#0100	Y	150	4	85 85	2	125	12.0	6	100	1.225	0.517 1.102	0.230	3
NOSY157M004#0400	Y	150	4	85	2	125	12.0	6	400	0.612	0.551	0.490	3
NOSD227M004#0040	D	220	4	85	2	125	17.6	8	40	2.121	1.909	0.849	3
NOSD227M004#0060	D	220	4	85	2	125	17.6	8	60	1.732	1.559	0.693	3
NOSD227M004#0100	D	220	4	85	2	125	17.6	8	100	1.342	1.207	0.537	3
NOSD227M004#0400	D	220	4	85	2	125	17.6	8	400	0.671	0.604	0.268	3
NOSY227M004#0100 NOSY227M004#0400	Y	220 220	4	85	2	125	17.6 17.6	10	100 400	1.225	1.102 0.551	0.490 0.245	3
NOSD337M004#0400	D	330	4	85 85	2	125 125	26.4	8	35	0.612 2.268	2.041	0.245	3
NOSD337M004#0055	D	330	4	85	2	125	26.4	8	55	1.809	1.628	0.724	3
NOSD337M004#0100	D	330	4	85	2	125	26.4	8	100	1.342	1.207	0.537	3
NOSD337M004#0300	D	330	4	85	2	125	26.4	8	300	0.775	0.697	0.310	3
NOSE337M004#0100	E	330	4	85	2	125	26.4	8	100	1.407	1.266	0.563	3
NOSY337M004#0150	Y	330	4	85	2	125	26.4	12	150	1.000	0.900	0.400	3
NOSY337M004#0300	Y	330	4	85	2	125	26.4	12	300	0.707	0.636	0.283	3
NOSD477M004#0100 NOSD477M004#0300	D D	470 470	4	85 85	2	125 125	37.6 37.6	12 12	100 300	1.342 0.775	1.207 0.697	0.537 0.310	3
NOSE477M004#0300	E	470	4	85	2	125	37.6	12	75	1.625	1.462	0.650	3
NOSE477M004#0100	E	470	4	85	2	125	37.6	12	100	1.407	1.266	0.563	3
NOSE477M004#0300	Е	470	4	85	2	125	37.6	12	300	0.812	0.731	0.325	3
NOSV687M004#0075	V	680	4	85	2	125	54.4	14	75	2.000	1.800	0.800	3
NOSV687M004#0300	V	680	4	85	2 6.3 V d	125 olt @ 85°C	54.4	14	300	1.000	0.900	0.400	3
NOSA106M006#0800	A	10	6.3	85	3	125	1.2	6	800	0.335	0.302	0.134	1
NOSA106M006#1000	Α	10	6.3	85	3	125	1.2	6	1000	0.300	0.270	0.120	1
NOSA106M006#2000	Α	10	6.3	85	3	125	1.2	6	2000	0.212	0.191	0.085	1
NOSA106M006#2200	A	10	6.3	85	3	125	1.2	6	2200	0.202	0.182	0.081	1
NOSB156M006#0600 NOSB156M006#2000	B	15 15	6.3	85 85	3	125 125	1.8	6	2000	0.412 0.226	0.371	0.165 0.090	1
NOSB226M006#0600	В	22	6.3	85	3	125	2.6	6	600	0.220	0.203	0.090	1
NOSB226M006#1900	В	22	6.3	85	3	125	2.6	6	1900	0.232	0.209	0.093	1
NOSB336M006#0600	В	33	6.3	85	3	125	4.0	6	600	0.412	0.371	0.165	1
NOSB336M006#1700	В	33	6.3	85	3	125	4.0	6	1700	0.245	0.220	0.098	1
NOSC336M006#0500	С	33	6.3	85	3	125	4.0	6	500	0.514	0.462	0.206	1
NOSW336M006#0250	W	33	6.3	85	3	125	4.0	6	250	0.657	0.592	0.263	1
NOSW336M006#0500 NOSB476M006#0500	W B	33 47	6.3	85 85	3	125 125	4.0 5.6	6	500 500	0.465 0.452	0.418 0.406	0.186 0.181	1
NOSB476M006#0800	В	47	6.3	85	3	125	5.6	6	800	0.357	0.321	0.143	1
NOSC476M006#0300	С	47	6.3	85	3	125	5.7	6	300	0.663	0.597	0.265	1
NOSC476M006#0500	С	47	6.3	85	3	125	5.7	6	500	0.514	0.462	0.206	1
NOSC686M006#0075	С	68	6.3	85	3	125	8.2	6	75	1.327	1.194	0.531	1
NOSC686M006#0200	С	68	6.3	85	3	125	8.2	6	200	0.812	0.731	0.325	1
NOSC686M006#0500	C	68	6.3	85	3	125	8.2	6	500	0.514	0.462	0.206	1
NOSX686M006#0100 NOSX686M006#0500	X	68 68	6.3	85 85	3	125 125	8.2 8.2	6	100 500	1.095 0.490	0.986 0.441	0.438 0.196	3
NOSY686M006#0100	Y	68	6.3	85	3	125	8.2	6	100	1.225	1.102	0.190	3
NOSY686M006#0500	Y	68	6.3	85	3	125	8.2	6	500	0.548	0.493	0.219	3
NOSC107M006#0150	С	100	6.3	85	3	125	12.0	8	150	0.938	0.844	0.375	1
NOSC107M006#0400	С	100	6.3	85	3	125	12.0	8	400	0.574	0.517	0.230	1
NOSD107M006#0080	D	100	6.3	85	3	125	12.0	6	80	1.500	1.350	0.600	3
NOSD107M006#0100	D	100	6.3	85	3	125	12.0	6	100	1.342	1.207	0.537	3
NOSD107M006#0400 NOSY107M006#0100	D Y	100 100	6.3	85 85	3	125 125	12.0 12.0	6	100	0.671 1.225	0.604 1.102	0.268 0.490	3
NOSY107M006#0100 NOSY107M006#0400	Y	100	6.3	85	3	125	12.0	6	400	0.612	0.551	0.490	3
NOSD157M006#0050	D	150	6.3	85	3	125	18.0	6	50	1.897	1.708	0.759	3
NOSD157M006#0070	D	150	6.3	85	3	125	18.0	6	70	1.604	1.443	0.641	3
NOSD157M006#0100	D	150	6.3	85	3	125	18.0	6	100	1.342	1.207	0.537	3
NOSD157M006#0400	D	150	6.3	85	3	125	18.0	6	400	0.671	0.604	0.268	3
NOSY157M006#0100	Y	150	6.3	85	3	125	18.0	6	100	1.225	1.102	0.490	3
NOSY157M006#0400	Y	150	6.3	85	3	125	18.0	6	400	0.612	0.551	0.245	3
NOSD227M006#0045	D D	220 220	6.3	85 85	3	125 125	26.4	8	45 60	2.000 1.732	1.800	0.800	3
NOSD227M006#0060 NOSD227M006#0100	D	220	6.3 6.3	85 85	3	125	26.4 26.4	8	100	1.732	1.559 1.207	0.693 0.537	3
NOSD227M006#0100	D	220	6.3	85	3	125	26.4	8	400	0.671	0.604	0.337	3
NOSE227M006#0400	E	220	6.3	85	3	125	26.4	12	80	1.573	1.416	0.629	3
NOSE227M006#0100	E	220	6.3	85	3	125	26.4	12	100	1.407	1.266	0.563	3
				85	3	125	26.4	12	400	0.704		0.281	

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kH	z RMS Cui	rent (A)	MSL
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(μA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVISE
NOSE337M006#0080	E	330	6.3	85	3	125	39.6	12	80	1.573	1.416	0.629	3
NOSE337M006#0100	E	330	6.3	85	3	125	39.6	12	100	1.407	1.266	0.563	3
NOSE337M006#0300	E	330	6.3	85	3	125	39.6	12	300	0.812	0.731	0.325	3
NOSV477M006#0075	V	470	6.3	85	3	125	56.4	14	75	2.000	1.800	0.800	3
NOSV477M006#0300	V	470	6.3	85	3	125	56.4	14	300	1.000	0.900	0.400	3
					8 Vol	t @ 85°C							
NOSA106M008#2200	Α	10	8	85	4	125	1.6	10	2200	0.202	0.182	0.081	1
NOSB106M008#1000	В	10	8	85	4	125	1.6	10	1000	0.319	0.287	0.128	1
NOSB156M008#1000	В	15	8	85	4	125	2.4	10	1000	0.319	0.287	0.128	1
NOSB226M008#0700	В	22	8	85	4	125	3.5	10	700	0.382	0.344	0.153	1
NOSB226M008#1800	В	22	8	85	4	125	3.5	10	1800	0.238	0.214	0.095	1
NOSC226M008#0500	С	22	8	85	4	125	3.5	10	500	0.514	0.462	0.206	1
NOSC336M008#0500	С	33	8	85	4	125	5.3	10	500	0.514	0.462	0.206	1
NOSC476M008#0400	С	47	8	85	4	125	7.5	10	400	0.574	0.517	0.230	1
NOSC686M008#0500	С	68	8	85	4	125	11.0	16	500	0.514	0.462	0.206	1
NOSD107M008#0400	D	100	8	85	4	125	16.0	16	400	0.671	0.604	0.268	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

The EIA & CECC standards for capacitors allow an ESR movement to 1.25 times catalog limit post mounting.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

Niobium Oxide Capacitor

QUALIFICATION TABLE

TEST			NOS series	Temperature range -	55°C to +1	25°C)				
1591		Condition Apply rated voltage (Ur) at 85°C and / or category roltage (Uc) at 125°C for 2000 hours through a compedance of ≤0.1Ω/V. Stabilize at room temperator 1-2 hours before measuring. Store at 125°C, no voltage applied, for 2000 hours stabilize at room temperature for 1-2 hours before measuring. Apply rated voltage (Ur) at 85°C, 85% relative hunder 1000 hours. Stabilize at room temperature an animidity for 1-2 hours before measuring. Step Temperature C Durations 1 +20 15 2 -55 15 3 +20 15 4 +85 15 5 +125 15 6 +125 15 6 +20 15 15 15 15 15 15 15 15 15 15 15 15 15			С	haracter	istics			
				Visual examination	no visible	damage				
				DCL	initial lim	it				
Endurance	voltage (Uc) at 125°C for 2000 hours through a circui impedance of ≤0.1Ω/V. Stabilize at room temperature for 1-2 hours before measuring. Store at 125°C, no voltage applied, for 2000 hours. Stabilize at room temperature for 1-2 hours before measuring. Apply rated voltage (Ur) at 85°C, 85% relative humidit		ΔC/C	within ±1	0% of initia	l value				
	T Condition Apply rated voltage (Ur) at 85°C and / or category voltage (Uc) at 125°C for 2000 hours through a circuit impedance of ≤0.1Ω/V. Stabilize at room temperature for 1-2 hours before measuring. Store at 125°C, no voltage applied, for 2000 hours. Stabilize at room temperature for 1-2 hours before measuring. Apply rated voltage (Ur) at 85°C, 85% relative humidity for 1000 hours. Stabilize at room temperature and humidity for 1-2 hours before measuring. Step Temperature C Duration(min) 1 +20 15 2 -55 15 3 +20 15 4 +85 15 5 +125 15 6 +20 15 Apply 1.3x category voltage (Uc) at 125°C for 1000 cycles of duration 6 min (30 sec charge, 5 min 30 sec discharge) through a charge / discharge resistance of 1000Ω MIL-STD-202 Method 213 Condition F	DF	initial lim	it						
	101 1 2 Hodro Bero	1-2 hours before measuring. The at 125°C, no voltage applied, for 2000 hours. bilize at room temperature for 1-2 hours before assuring. The property of the		ESR	1.25 x ini	tial limit				
				Visual examination	no visible	damage				
	Store at 125°C, no	voltage applied, fo	r 2000 hours.	DCL	initial lim	it				
Storage Life				ΔC/C	within ±1	0% of initia	l value			
	measuring.			DF	initial lim	it				
				ESR	1.25 x ini	tial limit				
				Visual examination	no visibl	e damage				
	Apply rated voltage	ie (Ur) at 85°C, 85%	relative humidity	DCL	2 x initia	l limit				
Biased Humidity	Step		ΔC/C	within ±1	10% of init	ial value				
		ring.	DF	1.2 x init	ial limit					
			ESR	1.25 x in	itial limit					
		·	` '		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C
				DCL	IL*	n/a	IL*	12 x IL*	15 x IL*	IL*
Temperature		1 +20 15 2 -55 15 3 +20 15 4 +85 15 5 +125 15		ΔC/C	n/a	+0/-10%	±5%	+10/-0%	+12/-0%	±5%
Stability	4	+85	15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2xIL*	IL*
				ESR	1.25xIL*	25xIL*	1.25xIL*	1.25xIL*	1.25xIL*	1.25xIL*
	В	+20	15	Visual examination	no visible		1.23XIL	1.23XIL	1.23XIL	1.ZJXIL
	Apply 1 3x catego	ory voltage (Uc) at 1	25°C for 1000	DCL Visual examination	initial lim					
Surge Voltage				ΔC/C		% of initial	rali ia			
Surge voltage		h a charge / discha	rge resistance of	DF	initial lim		value			
	1000Ω			ESR	1.25 x ini					
				Visual examination		e damage				
				DCL	initial lim					
Mechanical	MIL-STD-202 Mot	thad 212 Candition	С	ΔC/C	_	ιιι 5% of initia	d value			
Shock	WILESTD-202, Met	inou 213, Condition		DF	initial lim		ii vaiue			
				ESR		itial limit				
			Visual examination		e damage					
				DCL	initial lim					
Vibration	MIL-STD-202 Mot	thod 204, Condition	n	ΔC/C	within ±5% of initial value					
VIDIALIOII	IVIIL-31D-202, Met	mod 204, Condition	D	DF	initial limit					
				ESR	1.25 x initial limit					
	L			LOR	1.23 % [[]	ıudı IIIIIII				

^{*}Initial Limit

Niobium Oxide Capacitor

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: NIOBIUM OXIDE OxiCap® CAPACITORS

Niobium Oxide Capacitor

Н

← w **→**

FEATURES

- Multi-anode Construction
- Super Low ESR
- 100% Surge Current Tested
- Non-Burn Safe Technology
- CV Range: 220-680µF / 1.8-6.3V
- IBM Global Approval Received in 2004
- Elektra Award Received in 2005

APPLICATIONS

· High Power Low Voltage Industrial **Power Supplies**

LEAD-FREE COMPATIBLE

millimeters (inches)

NOM MULTIANODE CONSTRUCTION

MARKING

E CASE

CASE DIMENSIONS:

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
Е	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only.

HOW TO ORDER

Tolerance $M = \pm 20\%$

006 = 6.3Vdc

Packaging R = Pure Tin 7" Reel S = Pure Tin 13" Reel

ESR in $m\Omega$

TECHNICAL SPECIFICATIONS

Technical Data:		All techr	nical data	relate to	an ambie	ent temperature of +25°C is not stated
Capacitance Range:		220 µF t	o 680 µF			
Capacitance Tolerance:		±20%				
Leakage Current DCL:		0.02CV				
Rated Voltage DC (V _R)	≤ +85°C:	1.8	2.5	4	6.3	
Category Voltage (V _C)	≤ +125°C:	0.9	1.3	2	3	
Surge Voltage (V _s)	≤ +85°C:	2.3	3.3	5.2	8	
Surge Voltage (V _s)	≤ +125°C:	1.2	1.7	2.6	4	
Temperature Range:		-55°C to	+125°C			
Reliability:		0.2% per	1000 ho	urs at 85°	C, V _R , 0.1	Ω/V series impedance, 60% confidence level
		Meets re	equiremen	nts of AF	2-0200	

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance		Rated Voltage I	DC (V _R) to 85°C	
μF	Code	1.8V (x)	2.5V (e)	4.0V (G)	6.3V (J)
220	227				E(40)
330	337			E(35)	E(23,35)
470	477		E(30)	E(23,30)	
680	687	E(23)	E(23)		

Released ratings, (ESR ratings in m0hms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply

higher voltage ratings in the same case size, to the same reliability standards.

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kH:	z RMS Cur	rent (A)	MSL
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(μA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVIOL
					1.8 Volt	@ 85°C							
NOME687M001#0023	E	680	1.8	85	0.9	125	24.5	6	23	3.753	3.378	1.501	3
					2.5 Volt	@ 85°C							
NOME477M002#0030	E	470	2.5	85	1.3	125	23.5	10	30	3.286	2.958	1.315	3
NOME687M002#0023	E	680	2.5	85	1.3	125	34	6	23	3.753	3.378	1.501	3
					4 Volt @	9 85°C							
NOME337M004#0035	E	330	4	85	2	125	26.4	8	35	3.043	2.738	1.217	3
NOME477M004#0023	E	470	4	85	2	125	37.6	6	23	3.753	3.378	1.501	3
NOME477M004#0030	E	470	4	85	2	125	37.6	6	30	3.286	2.958	1.315	3
					6.3 Volt	@ 85°C							
NOME227M006#0040	E	220	6.3	85	3	125	26.4	12	40	2.846	2.561	1.138	3
NOME337M006#0023	E	330	6.3	85	3	125	39.6	6	23	3.753	3.378	1.501	3
NOME337M006#0035	E	330	6.3	85	3	125	39.6	6	35	3.043	2.738	1.217	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts.

DCL is measured at rated voltage after 5 minutes.

ESR allowed to move up to 125 times catalog limit post mounting.

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

QUALIFICATION TABLE

TECT			NOS series	(Temperature range -	55°C to +	125°C)						
1531	Apply rated voltage (Ur) at 85°C and / or category voltage (Uc) at 125°C for 2000 hours through a circimpedance of ≤0.1Ω/V. Stabilize at room temperature for 1-2 hours before measuring. Store at 125°C, no voltage applied, for 2000 hours. Stabilize at room temperature for 1-2 hours before measuring. Store at 65°C and 95% relative humidity for 500 hours. Stabilize at room temperature and humidity for 1-2 hours before measuring. Apply rated voltage. Stabilize at room temperature and humidity for 1-2 hours before measuring. Apply rated voltage (Ur) at 85°C, 85% relative humidity for 1000 hours. Stabilize at room temperature and humidity for 1-2 hours before measuring. Step Temperature C Duration(min) 1 +20 15 2 -55 15 3 +20 15 4 +85 15 5 +125 15 6 +20 15	n			Character	istics						
	Apply rated voltage (Ur) at 85°C and / or category voltage (Uc) at 125°C for 2000 hours through a circu impedance of ≤0.10/V. Stabilize at room temperature for 1-2 hours before measuring. Store at 125°C, no voltage applied, for 2000 hours. Stabilize at room temperature for 1-2 hours before measuring. Store at 65°C and 95% relative humidity for 500 hour with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before measuring. Apply rated voltage (Ur) at 85°C, 85% relative humidit for 1000 hours. Stabilize at room temperature and humidity for 1-2 hours before measuring. Step Temperature°C Duration(min) 1 +20 15 2 -55 15 3 +20 15 4 +85 15 5 +1125 15 6 +20 15 Apply 1.3x category voltage (Uc) at 125°C for 1000 cycles of duration 6 min (30 sec charge, 5 min 30 sec		Visual examination	no visibl	e damage							
	voltage (Uc) at 125°C for 2000 hours through a circ impedance of ≤0.1Ω/V. Stabilize at room temperatu for 1-2 hours before measuring. Store at 125°C, no voltage applied, for 2000 hours. Stabilize at room temperature for 1-2 hours before measuring. Store at 65°C and 95% relative humidity for 500 hours.		DCL	initial lim	nit							
Endurance				ΔC/C	within ±	10% of initia	al value					
	Apply rated voltage (Ur) at 85°C and / or category voltage (Uc) at 125°C for 2000 hours through a circuit impedance of ≤0.1Ω/V. Stabilize at room temperature for 1-2 hours before measuring. Store at 125°C, no voltage applied, for 2000 hours. Stabilize at room temperature for 1-2 hours before measuring. Store at 65°C and 95% relative humidity for 500 hours with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before measuring. Apply rated voltage (Ur) at 85°C, 85% relative humidity for 1000 hours. Stabilize at room temperature and humidity for 1-2 hours before measuring. Step Temperature on Duration(min) 1	DF	initial lim	nit								
		Store at 125°C, no voltage applied, for 2000 hours. Stabilize at room temperature for 1-2 hours before neasuring. Store at 65°C and 95% relative humidity for 500 hours with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before measuring. Apply rated voltage (Ur) at 85°C, 85% relative humidit or 1000 hours. Stabilize at room temperature and lumidity for 1-2 hours before measuring.	ESR	1.25 x in	itial limit							
				Visual examination	no visibl	e damage						
	Store at 1	25°C no voltage appli	ed for 2000 hours	DCL	initial lim	nit						
Storage Life				ΔC/C	within ±	10% of initia	al value					
•	measuring	g.		DF	initial lim	nit						
				ESR	1.25 x in	itial limit						
				Visual examination	no visib	le damage	<u> </u>					
	Store et 6	EOC and OEV relative h	numidity for EOO hours	DCL	1.5 x ini	tial limit						
Humidity				ΔC/C	within ±	10% of init	ial value					
,			•	DF		tial limit						
				ESR	1.25 x ir	nitial limit						
				Visual examination		no visible damage						
			0.50/	DCL	2 x initia		•					
Riased Humidity	iased Humidity for 1000 hours. Stabilize at room temperature and	ΔC/C		10% of init	ial value							
Diasca Haimarty				DF		tial limit	ilai vaiae					
Biased Humidity fo				ESR		nitial limit						
	Step Temperature°C Duration(min) 1 +20 15 2 -55 15	Duration(min)	Lon	+20°C	-55°C	+20°C	+85°C	+125°C	+20°C			
		15	DCL	120 C		IL*		15xIL*	120 C			
Temperature					n/a		12 x IL*	1 -				
Stability				ΔC/C	n/a	+0/-10%	±5%	+10/-0%	+12/-0%			
•				DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2xIL*	IL*		
	6	+20	15	ESR	1.25 x IL*	2.5 x IL*	1.25 x IL*	1.25 x IL*	1.25 x IL*	1.25 x IL ²		
				Visual examination	no visibl	e damage						
_				DCL	initial lim	nit						
Surge				ΔC/C	within ±	5% of initial	value					
Voltage		e) through a charge / di	ischarge resistance of	DF	initial lim	nit						
				ESR	1.25 x in	itial limit						
				Visual examination	no visib	le damage	<u> </u>					
				DCL	initial lir	nit						
	Mechanical Shock MIL-STD-202, Method 213, Condition F Vibration MIL-STD-202, Method 204, Condition D	ΔC/C	within ±	5% of initia	al value							
Shock		DF	initial limit									
			ESR	1.25 x initial limit								
			Visual examination									
		DCL	initial limit									
Vibration		ΔC/C	within ±5% of initial value									
		,	-	DF.	initial lir							
				ESR	1.25 x initial limit							

^{*}Initial Limit

Niobium Oxide Capacitor

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: NIOBIUM OXIDE OxiCap® CAPACITORS

Conductive Polymer Solid Electrolytic Chip Capacitors

MARKING

A, B, C, D, E, G, H, K, S, T, **U, W, X, Y, 5 CASE**

∧ 476 E **XXXXX**

FEATURES

- Conductive Polymer Electrode
- Benign Failure Mode Under Recommended Use Conditions
- Lower ESR
- 3x Reflow 260°C Compatible
- 100% Surge Current Tested
- CV Range: 0.47-470µF / 2.5-125V
- 18 Case Sizes Available

APPLICATIONS

Smart Phone, Tablets, Notebook, LCD TV, Power Supplies

Elektra Award 2010

CASE DIMENSIONS:

millimeters (inches)

Co	de EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
-	1206	3216-18	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
E	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
	2312	6032-28	6.00 (0.236)	3.20 (0.126)	2.60 (0.102)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
0	1206	3216-15	3.20 (0.126)	1.60 (0.063)	1.50 (0.059) max	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
F	1210	3528-15	3.50 (0.138)	2.80 (0.110)	1.50 (0.059) max	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
ŀ	1206	3216-10	3.20 (0.126)	1.60 (0.063)	1.00 (0.039) max	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
1	0805	2012-10	2.05 (0.081)	1.30 (0.051)	1.00 (0.039) max	1.00 (0.039)	0.50 (0.020)	0.85 (0.033)
F	0805	2012-15	2.05 (0.081)	1.35 (0.053)	1.50 (0.059) max	1.00±0.10 (0.039±0.004)	0.50 (0.020)	0.85 (0.033)
F	0805	2012-12	2.05 (0.081)	1.30 (0.051)	1.20 (0.047) max	1.00±0.10 (0.039±0.004)	0.50 (0.020)	0.85 (0.033)
5	1206	3216-12	3.20 (0.126)	1.60 (0.063)	1.20 (0.047) max	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
1	1210	3528-12	3.50 (0.138)	2.80 (0.110)	1.20 (0.047) max	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
ι	2924	7361-43	7.30 (0.287)	6.10 (0.240)	4.10 (0.162)	3.10 (0.122)	1.30 (0.051)	4.40 (0.173)
٧	2312	6032-15	6.00 (0.236)	3.20 (0.126)	1.50 (0.059) max	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
>	2917	7343-15	7.30 (0.287)	4.30 (0.169)	1.50 (0.059) max	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
1	2917	7343-20	7.30 (0.287)	4.30 (0.169)	2.00 (0.079) max	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
Ę	2917	7343-40	7.30 (0.287)	4.30 (0.169)	3.80 (0.150)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only.

004

HOW TO ORDER

М **Tolerance**

Rated DC Voltage 002 = 2.5 Vdc0.04 = 4 Vdc006 = 6.3 Vdc010 = 10Vdc 016 = 16Vdc

035 = 35Vdc 050 = 50 Vdc063 = 63 Vdc075 = 75Vdc 100 = 100Vdc 020 = 20Vdc 125 = 125Vdc 025 = 25 Vdc

R 0300 **Packaging** ESR in mΩ R = Pure Tin 7" Reel

S = Pure Tin 13" Reel

Ε Additional Character

E = Black resin

Part Numbers already changed to an "E" suffix will continue to be supplied with only black resin. Those Part Numbers currently produced with gold resin will eventually change to black before July, 2020.

TECHNICAL SPECIFICATIONS (COMMON FOR ALL TCJ SERIES)

Technical Data: All technical data relate to an ambient temperature of +25°C

Capacitance Tolerance: ±20% Leakage Current DCL: 0.1CV

Resistance to soldering heat: 3x260°C peak for max. 10s reflow

NOTE: Conductive Polymer Capacitors are designed to operate within the limits of the environmental conditions specified for each series. If operated continuously at their maximum temperature and / or humidity limit, or beyond these limits, capacitors may exhibit a parametric shift in capacitance and increases in ESR. These changes may occur earlier if the specified environmental conditions are exceeded. Similarly, their normal operational time period will be significantly extended if their general duty cycle includes operation below maximum temperature within humidity controlled environments. Careful attention should be paid to maximum temperature with associated high humidity environments as well as voltage derating, ripple current and current surges. Please reference the AVX Conductive Polymer Capacitor Guidelines for more information or contact factory for application assistance.

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Ca	ap			·	R	ated Voltage DC	(V _R) to 85°	С						
μF	Code	2.5V (e)	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)	63V (<u>J</u>)	75V (<u>P</u>)	100V (<u>A</u>)	125V (<u>B</u>)
0.47	474										B(400)			
0.68	684									B(400)	B(300)			
1.0	105							P(500)		B(300)	B(300) C(300)			
1.5	155								B(200)	B(300) C(300)	C(300)			
2.2	225								B(200)	C(300)	C(200)			
3.3	335								B(200)	C(200)	C(200)			D(250)
4.7	475				K(300,500)			B(100,150)	B(200) C(200)	C(200) X(250) Y(250)	C(200) D(120)	D(150)	D(250)	
6.8	685					A(200)		A(150) B(90,150) T(100,150)	C(200)	C(200) D(120)	D(120) E(100,150)	D(120)		
10	106			A(300) N(200,250,500) R(500)	A(200,300)	A(200) B(100,200) T(100,150,200)	A(150) B(150)	A(150) B(90,100,150)	B(200) C(200) Y(70)	D(90,120) E(70,100)	E(100,150)			
15	156		A(300)	A(300)	A(200)	B(90,150)	B(150)	B(100,150) Y(90)	B(200) C(200) D(70,100) Y(70,100)	D(150) E(70,100)	E(150)			
22	226		A(300)	A(300), B(70), K(400) N(500),R(500) S(400),T(150)	B(70,300) T(70,150)	A(300) B(70,150)	B(90,150) X(100) Y(70)	B(100,150) C(100) D(60,100) X(100), Y(70)	D(70,100) Y(150)	D(90), E(75), E(150)				
33	336		A(300)	A(200) B(70,200) T(150)	B(70,200) C(100) T(70,150)	A(200) H(150) Y(45,60,70)	X(100) Y(70)	D(60,100) X(70,100) Y(60,70,100)	D(70,100) E(55,70) U(70) Y(100)					
47	476		A(200) T(80)	A(70,100,200) B(55,70) K(150,200,400), R(500) T(55,70,80,120)	B(70) C(100) H(100)	D(45,70), H(150) X(45,70) Y(45,70)	D(55), X(55,70) Y(70)	D(60,100) E(50) Y(100)	E(55) U(70) Y(100)					
68	686	A(250)	A(250) B(70) T(80)	B(55,70) C(55,100), H(100) T(200), W(70)	D(45,55) Y(45,55)	D(50) Y(50)	D(55) E(45) Y(50)	D(70) E(50) Y(100)						
100	107	A(200) B(70)	A(200) B(40,70) G(300) T(70,150)	A(100,150) B(40,45,55,70) C(70,100) T(70,200), W(70)	D(18,25,45,55,80) Y(18,25,45,55)	D(50) E(40) Y(50)	C(70) D(55) E(45) Y(55)	D(55,70) E(80) U(70)						
150	157	B(70)	B(70) D(15) Y(15,25,45)	B(25,35,45,55,70) D(12,15,25,40) H(200),W(40,70) Y(15,25,40)	D(25,40,45,55) Y(25,40,45,55)	C(70) D(40,50,70) E(40) Y(40,50,70)		U(70)						
220	227	B(35,45,70)	B(35,45,60,70) D(12,15,25,40) Y(15,25,40)	B(70,200) D(12,15,25,35,40,50) H(170) Y(15,18,25,35,40,50)	D(12,15,25,40,50) Y(15,25,40,50)	D(35,50) E(50)	U(70)							
330	337	B(35,45,70,Y) (25,40)	D(15,25,40,50) Y(15,25,40,50)	D(12,15,18,25,40,50) Y(15,25,40,50)	D(25) 5(35,100)	E(35, 50,70) 5(100)								
470	477	D(12,15,25,40,50) Y(15,25,40,50)	D(12,15,25,40,50) Y(15,25,40,50)	D(25) X(35,50,100)		5(100)								

Released ratings, (ESR ratings in m0hms in parentheses)

Engineering samples - please contact AVX

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

Conductive Polymer Solid Electrolytic Chip Capacitors

			Rated	Maximum	DCL	DF	ESR	10	0kHz RMS	Current (n	nA)		
AVX Part No.	Case Size	Capacitance (μF)	Voltage (V)	Operating Temperature (°C)	Max. (μA)	Max. (%)	Max. @ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Product Category	M
CJA686M002#0250E	Α	68	2.5	105	2.5 Vol	t @ 85°C	250	600	400	300	_	3	3
CJA107M002#0200E	A	100	2.5	105	25	6	200	700	500	300	_	3	3
CJB107M002#0200E	В	100	2.5	125	25	6	70	1300	900	600	300	1	3
CJB157M002#0070E	В	150	2.5	105	37.5		70	1300	900	600	-	3	3
						6							
CJB227M002#0035E	В	220	2.5	105	55	8	35	1900	1300	900	-	3	3
CJB227M002#0045E	В	220	2.5	105	55	8	45	1700	1200	800	-	3	3
CJB227M002#0070E	В	220	2.5	105	55	8	70	1300	900	600	_	3	3
CJB337M002#0035E	В	330	2.5	105	82.5	8	35	1900	1300	900	_	3	3
CJB337M002#0045E	В	330	2.5	105	82.5	8	45	1700	1200	800	-	3	3
CJB337M002#0070E	В	330	2.5	105	82.5	8	70	1300	900	600	_	3	3
CJY337M002#0025E	Υ	330	2.5	105	82.5	6	25	2700	1900	1200	-	2	(
CJY337M002#0040E	Υ	330	2.5	105	82.5	6	40	2200	1500	1000	-	3	;
CJD477M002#0012E	D	470	2.5	105	117.5	6	12	4300	3000	1900	_	2	;
CJD477M002#0015E	D	470	2.5	105	117.5	6	15	3900	2700	1800	_	2	
CJD477M002#0015E	D	470	2.5	105	117.5	6	25	3000	2100	1400	_	2	
	D	470					40			1100	_	3	
CJD477M002#0040E			2.5	105	117.5	6		2400	1700				
CJD477M002#0050E	D	470	2.5	105	117.5	6	50	2100	1500	900	-	3	
CJY477M002#0015E	Y	470	2.5	85	117.5	6	15	3500	2500	-	-	5	
CJY477M002#0025E	Υ	470	2.5	105	117.5	6	25	2700	1900	1200	-	3	
CJY477M002#0040E	Υ	470	2.5	105	117.5	6	40	2200	1500	1000	-	3	
CJY477M002#0050E	Υ	470	2.5	105	117.5	6	50	1900	1300	900		3	
						@ 85°C							
CJA156M004#0300E	Α	15	4	125	6	6	300	600	400	300	200	1	
CJA226M004#0300E	Α	22	4	125	8.8	6	300	600	400	300	200	1	
CJA336M004#0300E	Α	33	4	125	13.2	6	300	600	400	300	200	1	
CJA476M004#0200E	Α	47	4	105	18.8	6	200	700	500	300	_	3	
CJT476M004#0080E	Т	47	4	105	18.8	8	80	1100	800	500	_	3	
CJA686M004#0250E	A	68	4	105	27.2	6	250	600	400	300	_	3	
CJB686M004#0070E	В	68	4	125	27.2	6	70	1300	900	600	300	1	
CJT686M004#0080E	T	68	4	105	27.2	8	80	1100	800	500	-	3	
CJA107M004#0000E		100	4	105	40	6	200	700	500	300	_	3	
	A										_		
CJB107M004#0040E	В	100	4	105	40	8	40	1800	1300	800		3	
CJB107M004#0070E	В	100	4	125	40	8	70	1300	900	600	300	0	
CJG107M004#0300E	G	100	4	105	40	10	300	600	400	300	-	3	
CJT107M004#0070E	T	100	4	105	40	8	70	1200	800	500	-	3	
CJT107M004#0150E	Т	100	4	105	40	8	150	800	600	400	_	3	
CJB157M004#0070E	В	150	4	105	60	6	70	1300	900	600	_	3	
CJD157M004#0015E	D	150	4	105	60	6	15	3900	2700	1800	_	2	
CJY157M004#0015E	Υ	150	4	105	60	6	15	3500	2500	1600	-	2	
CJY157M004#0025E	Υ	150	4	105	60	6	25	2700	1900	1200	-	2	
CJY157M004#0045E	Υ	150	4	105	60	6	45	2000	1400	900	_	3	
CJB227M004#0035E	В	220	4	105	88	10	35	1900	1300	900	_	3	
CJB227M004#0035E	В	220	4	105	88	10	45	1700	1200	800	_	3	
	В	220	4		88	10	60	1400	1000	600	_	3	
CJB227M004#0060E				105									
CJB227M004#0070E	В	220	4	105	88	10	70	1300	900	600	-	3	
CJD227M004#0012E	D	220	4	105	88	6	12	4300	3000	1900	_	2	-
CJD227M004#0015E	D	220	4	105	88	6	15	3900	2700	1800	-	2	
CJD227M004#0025E	D	220	4	105	88	6	25	3000	2100	1400	-	2	
CJD227M004#0040E	D	220	4	105	88	6	40	2400	1700	1100	-	2	
CJY227M004#0015E	Υ	220	4	105	88	6	15	3500	2500	1600	-	2	
CJY227M004#0025E	Υ	220	4	105	88	6	25	2700	1900	1200	_	2	
CJY227M004#0040E	Υ	220	4	105	88	6	40	2200	1500	1000	-	3	
CJD337M004#0015E	D	330	4	105	132	6	15	3900	2700	1800	-	2	
CJD337M004#0025E	D	330	4	105	132	6	25	3000	2100	1400	-	2	
CJD337M004#0040E	D	330	4	105	132	6	40	2400	1700	1100	_	3	
CJD337M004#0050E	D	330	4	105	132	6	50	2100	1500	900	_	3	
CJY337M004#0015E	Y	330	4	85	132	6	15	3500	2500	-	_	5	
CJY337M004#0015E	Y	330	4	105	132	6	25	2700	1900	1200	_	3	
CJY337M004#0040E	Y	330	4	105	132	6	40	2200	1500	1000	-	3	
CJY337M004#0050E	Υ	330	4	105	132	6	50	1900	1300	900	-	3	
CJD477M004#0012E	D	470	4	105	188	6	12	4300	3000	1900	-	2	
CJD477M004#0015E	D	470	4	105	188	6	15	3900	2700	1800	-	2	
CJD477M004#0025E	D	470	4	105	188	6	25	3000	2100	1400	-	2	
CJD477M004#0040E	D	470	4	105	188	6	40	2400	1700	1100	-	2	
CJD477M004#0050E	D	470	4	105	188	6	50	2100	1500	900	-	2	
CJY477M004#0036E	Y	470	4	85	188	6	15	3500	2500	-	_	5	
CJY477M004#0015E	Y	470	4	105	188	6	25	2700	1900	1200	_	3	
	Y	470	4	105	188	6	40	2200	1500	1000	_	3	
CJY477M004#0040E							. 40		LOUU		. –	. < 1	

Conductive Polymer Solid Electrolytic Chip Capacitors

			Rated	Maximum	DCL	DF	ESR	10	0kHz RMS	Current (n	nA)		
AVX Part No.	Case Size	Capacitance (µF)	Voltage (V)	Operating Temperature (°C)	Max. (μA)	Max. (%)	Max. @ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Product Category	MSL
TCJA106M006#0300E	A	10	6.3	125	6.3 VOI	t @ 85°C	300	600	400	300	200	1	3
TCJN106M006#0200E	N	10	6.3	105	6	6	200	600	400	300	_	3	3
TCJN106M006#0250E	N	10	6.3	105	6	6	250	600	400	300	-	3	3
TCJN106M006#0500E	N	10	6.3	105	6	6	500	400	300	200	-	3	3
TCJR106M006#0500E	R	10	6.3	105	6	6	500	400	300	200	-	3	3
TCJA156M006#0300E	Α	15	6.3	125	9	6	300	600	400	300	200	1	3
TCJA226M006#0300E	Α	22	6.3	125	13.2	6	300	600	400	300	200	1	3
TCJB226M006#0070E	В	22	6.3	125	13.2	6	70	1300	900	600	300	0	3
TCJK226M006#0400E	K	22	6.3	105	13.2	8	400	500	400	200	-	3	3
TCJN226M006#0500E	N	22	6.3	105	13.2	10	500	400	300	200	-	3	3
TCJR226M006#0500E TCJS226M006#0400E	R	22 22	6.3 6.3	105 105	13.2 13.2	10 8	500 400	400 500	300 400	200	-	3	3
TCJT226M006#0150E	T	22	6.3	105	13.2	6	150	800	600	400	_	3	3
TCJA336M006#0200E	A	33	6.3	105	19.8	6	200	700	500	300	_	3	3
TCJB336M006#0070E	В	33	6.3	125	19.8	6	70	1300	900	600	300	0	3
TCJB336M006#0200E	В	33	6.3	125	19.8	6	200	800	600	400	200	0	3
TCJT336M006#0150E	T	33	6.3	105	19.8	8	150	800	600	400	-	3	3
TCJA476M006#0070E	Α	47	6.3	105	28.2	6	70	1200	800	500	-	3	3
TCJA476M006#0100E	Α	47	6.3	105	28.2	6	100	1000	700	500	-	3	3
TCJA476M006#0200E	Α	47	6.3	105	28.2	6	200	700	500	300	-	3	3
TCJB476M006#0055E	В	47	6.3	105	28.2	6	55	1500	1100	700	-	2	3
TCJB476M006#0070E	В	47	6.3	125	28.2	6	70	1300	900	600	300	1	3
TCJK476M006#0150E	K	47 47	6.3	105	28.2	6	150 200	800 700	600 500	400 300	-	3	3
TCJK476M006#0200E TCJK476M006#0400E	K	47	6.3	105 105	28.2	6	400	500	400	200	_	3	3
TCJR476M006#0400E	R	47	6.3	105	28.2	10	500	400	300	200	_	3	3
TCJT476M006#0055E	T	47	6.3	105	28.2	8	55	1300	900	600	_	3	3
TCJT476M006#0070E	Ť	47	6.3	105	28.2	8	70	1200	800	500	-	3	3
TCJT476M006#0080E	T	47	6.3	105	28.2	8	80	1100	800	500	-	3	3
TCJT476M006#0120E	Т	47	6.3	105	28.2	8	120	900	600	400	-	3	3
TCJB686M006#0055E	В	68	6.3	125	40.8	8	55	1500	1100	700	400	1	3
TCJB686M006#0070E	В	68	6.3	125	40.8	8	70	1300	900	600	300	1	3
TCJC686M006#0055E	С	68	6.3	125	40.8	6	55	1800	1300	800	500	1	3
TCJC686M006#0100E	С	68	6.3	125	40.8	6	100	1300	900	600	300	1	3
TCJH686M006#0100E TCJT686M006#0200E	H	68 68	6.3 6.3	105 105	40.8 40.8	6 8	100 200	1000 700	700 500	500 300	-	3	3
TCJW686M006#0070E	W	68	6.3	125	40.8	8	70	1400	1000	600	400	1	3
TCJA107M006#0100E	A	100	6.3	105	60	10	100	1000	700	500	-	3	3
TCJA107M006#0150E	A	100	6.3	105	60	10	150	800	600	400	-	3	3
TCJB107M006#0040E	В	100	6.3	105	60	10	40	1800	1300	800	-	3	3
TCJB107M006#0045E	В	100	6.3	105	60	10	45	1700	1200	800	-	3	3
TCJB107M006#0055E	В	100	6.3	105	60	10	55	1500	1100	700	-	3	3
TCJB107M006#0070E	В	100	6.3	105	60	10	70	1300	900	600	-	3	3
TCJC107M006#0070E	С	100	6.3	105	60	6	70	1600	1100	700	-	3	3
TCJC107M006#0100E	C	100	6.3	105	60	6	100	1300	900	600	-	3	3
TCJT107M006#0070E TCJT107M006#0200E	T	100 100	6.3	105 105	60 60	10 10	70 200	1200 700	800 500	500 300	_	3	3
TCJW107M006#0200E	W	100	6.3 6.3	105	60	6	70	1400	1000	600	_	3	3
TCJB157M006#0025E	B	150	6.3	105	90	10	25	2200	1500	1000	_	3	3
TCJB157M006#0025E	В	150	6.3	105	90	10	35	1900	1300	900	_	3	3
TCJB157M006#0045E	В	150	6.3	105	90	10	45	1700	1200	800	-	3	3
TCJB157M006#0055E	В	150	6.3	105	90	10	55	1500	1100	700	-	3	3
TCJB157M006#0070E	В	150	6.3	105	90	10	70	1300	900	600	-	3	3
TCJD157M006#0012E	D	150	6.3	105	90	6	12	4300	3000	1900	-	2	3
TCJD157M006#0015E	D	150	6.3	105	90	6	15	3900	2700	1800	-	2	3
TCJD157M006#0025E	D	150	6.3	105	90	6	25	3000	2100	1400	-	2	3
TCJD157M006#0040E	D	150	6.3	105	90	6	40	2400	1700	1100	-	2	3
TCJH157M006#0200E TCJW157M006#0040E	H	150 150	6.3 6.3	105 105	90 90	6	200 40	700 1800	500 1300	300 800	_	3	3
TCJW157M006#0040E	W	150	6.3	105	90	6	70	1400	1000	600	_	3	3
TCJW157M006#0070E	Y	150	6.3	105	90	6	15	3500	2500	1600	_	2	3
TCJY157M006#0015E	Y	150	6.3	105	90	6	25	2700	1900	1200	_	2	3
TCJY157M006#0025E	Y	150	6.3	105	90	6	40	2200	1500	1000	-	3	3
	В	220	6.3	105	132	10	70	1300	900	600	-	3	3
TCJB227M006#0070E													
TCJB227M006#0070E TCJB227M006#0200E	В	220	6.3	105	132	10	200	800	600	400	_	3	3
	B D	220	6.3 6.3	105 105	132	10 6	12	800 4300	600 3000	400 1900	-	3 2	3
TCJB227M006#0200E													

Conductive Polymer Solid Electrolytic Chip Capacitors

			Rated	Maximum	DCL	DF	ESR	10	0kHz RMS	Current (n	nA)		
AVX Part No.	Case Size	Capacitance (µF)	Voltage (V)	Operating Temperature (°C)	Max. (μA)	Max. (%)	Max. @ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Product Category	MSL
TCJD227M006#0035E	D	220	6.3	105	132	6	35	2500	1800	1100	-	3	3
TCJD227M006#0040E	D	220	6.3	105	132	6	40	2400	1700	1100	_	3	3
TCJD227M006#0050E	D	220	6.3	105	132	6	50	2100	1500	900	-	3	3
ГСJH227M006#0170E	Н	220	6.3	105	132	10	170	800	600	400	-	3	3
TCJY227M006#0015E	Y	220	6.3	85	132	6	15	3500	2500	-	-	5	3
TCJY227M006#0018E	Y	220	6.3	105	132	6	18	3200	2200	1400	-	3	3
TCJY227M006#0025E	Y	220	6.3	105	132	6	25	2700	1900	1200	-	2	3
TCJY227M006#0035E	Y	220	6.3	105	132	6	35 40	2300	1600	1000	_	2	3
TCJY227M006#0040E TCJY227M006#0050E	Y	220 220	6.3	105 105	132 132	6	50	2200 1900	1500 1300	900	_	2	3
TCJD337M006#0030E	D	330	6.3	105	198	6	12	4300	3000	1900	_	3	3
CJD337M006#0015E	D	330	6.3	105	198	6	15	3900	2700	1800	_	3	3
CJD337M006#0018E	D	330	6.3	105	198	6	18	3500	2500	1600	_	3	3
CJD337M006#0025E	D	330	6.3	105	198	6	25	3000	2100	1400	_	3	3
TCJD337M006#0040E	D	330	6.3	105	198	6	40	2400	1700	1100	_	2	3
ГСJD337M006#0050E	D	330	6.3	105	198	6	50	2100	1500	900	_	2	3
ГСЈY337M006#0015E	Υ	330	6.3	85	198	12	15	3500	2500	-	-	5	3
CJY337M006#0025E	Υ	330	6.3	105	198	10	25	2700	1900	1200	-	3	3
CJY337M006#0040E	Υ	330	6.3	105	198	12	40	2200	1500	1000	-	3	3
CJY337M006#0050E	Υ	330	6.3	105	198	12	50	1900	1300	900	-	3	3
CJD477M006#0025E	D	470	6.3	105	282	6	25	3000	2100	1400	-	2	3
TCJX477M006#0035E	X	470	6.3	105	282	6	35	2200	1500	1000	_	3	3
TCJX477M006#0050E	X	470	6.3	105	282	6	50	1900	1300	900	-	3	3
TCJX477M006#0100E	X	470	6.3	105	282	6	100	1300	900	600	_	3	3
TCJK475M010#0300E	l v	47	10	105	4.7	@ 85°C	200	F00	400	200	_	2	2
CJK475M010#0300E	K	4.7	10	105		6	300	500	400	200	_	3	3
CJA106M010#0200E	K	4.7 10	10 10	105 125	4.7 10	6	500 200	400 700	300 500	200 300	200	3	3
CJA106M010#0200E	A	10	10	125	10	6	300	600	400	300	200	1	3
CJA156M010#0300E	A	15	10	125	15	6	200	700	500	300	200	1	3
CJB226M010#0070E	B	22	10	125	22	6	70	1300	900	600	300	0	3
CJB226M010#0300E	В	22	10	125	22	6	300	600	400	300	200	0	3
CJT226M010#0070E	T	22	10	105	22	6	70	1200	800	500	-	3	3
CJT226M010#0150E	T	22	10	105	22	6	150	800	600	400	-	3	3
CJB336M010#0070E	В	33	10	125	33	6	70	1300	900	600	300	0	3
CJB336M010#0200E	В	33	10	125	33	6	200	800	600	400	200	0	3
ГСJC336M010#0100E	С	33	10	125	33	6	100	1300	900	600	300	1	3
TCJT336M010#0070E	T	33	10	105	33	6	70	1200	800	500	-	3	3
TCJT336M010#0150E	T	33	10	105	33	6	150	800	600	400	-	3	3
TCJB476M010#0070E	В	47	10	105	47	6	70	1300	900	600	-	3	3
CJC476M010#0100E	С	47	10	125	47	6	100	1300	900	600	300	1	3
ГСЈН476M010#0100E	Н	47	10	105	47	6	100	1000	700	500	-	3	3
CJD686M010#0045E	D	68	10	125	68	6	45	2200	1500	1000	600	0	3
CJD686M010#0055E	D	68	10	125	68	6	55	2000	1400	900	500	0	3
CJY686M010#0045E	Y	68	10	105	68	6	45	2000	1400	900	_	3	3
CJY686M010#0055E	Y	68	10	105	68	6	55	1800	1300	800	-	3	3
CJD107M010#0018E	D D	100 100	10	105	100	6	18	3500	2500	1600 1400	_	2	3
CJD107M010#0025E CJD107M010#0045E	D	100	10 10	105 105	100 100	6	25 45	3000 2200	2100 1500	1000	_	3	3
CJD107M010#0045E	D	100	10	105	100	6	55	2000	1400	900	_	3	3
CJD107M010#0035E	D	100	10	105	100	6	80	1700	1200	800	_	3	3
CJY107M010#0080E	Y	100	10	105	100	6	18	3200	2200	1400	_	2	3
CJY107M010#0016E	Y	100	10	105	100	6	25	2700	1900	1200	_	2	3
CJY107M010#0025E	Y	100	10	105	100	6	45	2000	1400	900	_	3	3
CJY107M010#0055E	Ý	100	10	105	100	6	55	1800	1300	800	-	3	3
CJD157M010#0025E	D	150	10	105	150	6	25	3000	2100	1400	-	3	3
CJD157M010#0040E	D	150	10	105	150	6	40	2400	1700	1100	-	3	3
CJD157M010#0045E	D	150	10	105	150	6	45	2200	1500	1000	-	3	3
CJD157M010#0055E	D	150	10	105	150	6	55	2000	1400	900	-	3	3
CJY157M010#0025E	Υ	150	10	105	150	6	25	2700	1900	1200	-	3	3
CJY157M010#0040E	Υ	150	10	105	150	6	40	2200	1500	1000	-	3	3
CJY157M010#0045E	Υ	150	10	105	150	6	45	2000	1400	900	-	3	3
CJY157M010#0055E	Υ	150	10	105	150	6	55	1800	1300	800	-	3	3
CJD227M010#0012E	D	220	10	105	220	6	12	4300	3000	1900	-	3	3
CJD227M010#0015E	D	220	10	105	220	6	15	3900	2700	1800	-	3	3
CJD227M010#0025E	D	220	10	105	220	6	25	3000	2100	1400	-	3	3
ГСJD227M010#0040E	D	220	10	105	220	6	40	2400	1700	1100	-	3	3
TCJD227M010#0050E	D	220	10	105	220	6	50	2100	1500	900	-	3	3
TCJY227M010#0015E	Y	220	10	85	220	6	15	3500	2500	-	-	5	3
TCJY227M010#0025E	ΙY	220	10	105	220	6	25	2700	1900	1200	_	3	3

Conductive Polymer Solid Electrolytic Chip Capacitors

AVD/		0	Rated	Maximum	DCL	DF	ESR	10	00kHz RMS	Current (n	nA)	D	
AVX Part No.	Case Size	Capacitance (µF)	Voltage (V)	Operating Temperature (°C)	Max. (μA)	Max. (%)	Max. @ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Product Category	MS
TCJY227M010#0040E	Υ	220	10	105	220	6	40	2200	1500	1000	-	3	3
TCJY227M010#0050E	Υ	220	10	105	220	6	50	1900	1300	900	-	3	3
TCJD337M010#0025E	D	330	10	105	330	6	25	3000	2100	1400	-	2	3
TCJ5337M010#0035E	5	330	10	105	330	10	35	2600	1800	1200	-	2	3
TCJ5337M010#0100E	5	330	10	105	330	10 t @ 85°C	100	1500	1100	700	_	2	3
TCJA685M016#0200E	Α	6.8	16	125	10.9	6	200	700	500	300	200	1	3
TCJA083M010#0200E	A	10	16	125	16	6	200	700	500	300	200	1	3
TCJB106M016#0100E	В	10	16	125	16	6	100	1100	800	500	300	1	3
CJB106M016#0200E	В	10	16	125	16	6	200	800	600	400	200	1	3
TCJT106M016#0100E	Т	10	16	125	16	6	100	1000	700	500	300	1	3
CJT106M016#0150E	T	10	16	125	16	6	150	800	600	400	200	1	3
TCJT106M016#0200E	T	10	16	125	16	6	200	700	500	300	200	1	3
FCJB156M016#0090E	В	15	16	125	24	6	90	1200	800	500	300	0	3
CJB156M016#0150E	В	15	16	125	24	6	150	900	600	400	200	0	3
FC JP326M016#0300E	A B	22 22	16 16	105 125	35.2 35.2	10	300 70	600 1300	400 900	300 600	300	3	3
FCJB226M016#0070E FCJB226M016#0150E	В	22	16	125	35.2	8	150	900	600	400	200	0	3
CJA336M016#0200E	A	33	16	105	52.8	10	200	700	500	300	-	3	3
CJH336M016#0150E	Н	33	16	105	52.8	6	150	800	600	400	-	3	3
CJY336M016#0045E	Y	33	16	105	52.8	6	45	2000	1400	900	-	2	3
CJY336M016#0060E	Y	33	16	105	52.8	6	60	1800	1300	800	-	2	3
CJY336M016#0070E	Υ	33	16	105	52.8	6	70	1600	1100	700	-	2	3
CJD476M016#0045E	D	47	16	125	75.2	6	45	2200	1500	1000	600	0	3
CJD476M016#0070E	D	47	16	125	75.2	6	70	1800	1300	800	500	0	3
CJH476M016#0150E	Н	47	16	105	75.2	6	150	800	600	400	-	3	4
CJX476M016#0045E	X	47	16	105	75.2	6	45	2000	1400	900	-	2	3
CJX476M016#0070E	X	47	16	105	75.2	6	70	1600	1100	700	-	2	3
CJY476M016#0045E	Y	47	16	105	75.2	6	45	2000	1400	900	-	2	3
CJY476M016#0070E CJD686M016#0050E	Y D	47 68	16 16	105 105	75.2 108.8	6	70 50	1600 2100	1100 1500	700 900	_	2	3
CJY686M016#0050E	Y	68	16	105	108.8	6	50	1900	1300	900	_	2	3
CJD107M016#0050E	D	100	16	105	160	6	50	2100	1500	900	_	2	3
CJE107M016#0040E	E	100	16	105	160	6	40	2500	1800	1100	_	2	3
CJY107M016#0050E	Y	100	16	105	160	6	50	1900	1300	900	-	2	3
CJC157M016#0070E	С	150	16	125	240	10	70	1600	1100	700	400	0	3
CJD157M016#0040E	D	150	16	85	240	6	40	2400	1700	-	-	5	3
CJD157M016#0050E	D	150	16	85	240	6	50	2100	1500	-	-	5	3
CJD157M016#0070E	D	150	16	105	240	6	70	1800	1300	800	-	3	3
CJE157M016#0040E	E	150	16	125	240	10	40	2500	1800	1100	600	0	3
CJY157M016#0040E	Y	150	16	105	240	6	40	2200	1500	1000	-	3	3
CJY157M016#0050E	Y	150	16	105	240	6	50	1900	1300	900	-	3	3
CJY157M016#0070E CJD227M016#0035E	Y D	150 220	16 16	105 105	240 352	10	70 35	1600 2500	1100 1800	700	_	3 2	3
CJD227M016#0035E	D	220	16	105	352	10	50	2100	1500	900	_	2	3
CJE227M016#0050E	E	220	16	125	352	10	50	2200	1500	1000	600	0	3
CJE337M016#0035E	E	330	16	105	528	10	35	2700	1900	1200	-	2	3
CJE337M016#0050E	E	330	16	105	528	10	50	2200	1500	1000	_	2	3
CJE337M016#0070E	E	330	16	105	528	10	70	1900	1300	900	-	2	3
CJ5337M016#0100E	5	330	16	105	528	10	100	1500	1100	700	-	2	3
CJ5477M016R0100E	5	470	16	105	752	10	100	1500	1100	700	-	3	3
						t @ 85°C				_			
CJA106M020#0150E	Α	10	20	105	20	6	150	800	600	400	-	3	
CJB106M020#0150E	В	10	20	125	20	8	150	900	600	400	200	0	3
CJB156M020#0150E	В	15	20	125	30	8	150	900	600	400	200	0	:
CJB226M020#0090E	В	22	20	105	44	6	90	1200	800	500	-	3	;
CJB226M020#0150E	В	22	20	105 105	44	6	150	900	900	400 600	_	3	3
CJX226M020#0100E CJY226M020#0070E	X	22	20	105	44	6	100 70	1300 1600	1100	700	_	2	3
CJX336M020#0070E	X	33	20	105	66	6	100	1300	900	600	_	2	3
CJY336M020#0100E	Y	33	20	105	66	6	70	1600	1100	700	_	2	3
CJD476M020#0075E	D	47	20	105	94	6	55	2000	1400	900	_	2	3
CJX476M020#0055E	X	47	20	105	94	6	55	1800	1300	800	_	3	3
CJX476M020#0039E	X	47	20	105	94	6	70	1600	1100	700	-	3	3
CJY476M020#0070E	Y	47	20	125	94	6	70	1600	1100	700	400	0	3
CJD686M020#0055E	D	68	20	105	136	6	55	2000	1400	900	-	3	3
CJE686M020#0045E	Е	68	20	105	136	6	45	2400	1700	1100	-	2	3
CJY686M020#0050E	Υ	68	20	105	136	6	50	1900	1300	900	-	2	3
CJC107M020#0070E	С	100	20	125	200	10	70	1600	1100	700	400	0	3

Conductive Polymer Solid Electrolytic Chip Capacitors

A) D/		0	Rated	Maximum	DCL	DF	ESR	10	00kHz RMS	Current (n	nA)	D	
AVX Part No.	Case Size	Capacitance (µF)	Voltage (V)	Operating Temperature (°C)	Max. (μA)	Max. (%)	Max. @ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Product Category	MS
CJD107M020#0055E	D	100	20	105	200	6	55	2000	1400	900	-	2	3
CJE107M020#0045E	Е	100	20	125	200	10	45	2400	1700	1100	600	0	3
CJY107M020#0055E	Y	100	20	105	200	6	55	1800	1300	800	_	2	3
CJU227M020R0070E	U	220	20	105	440	12 @ 85°C	70	2300	1600	1000	_	2	3
CJP105M025#0500E	Р	1.0	25	105	2.5	6	500	400	300	200	_	2	3
CJB475M025#0100E	В	4.7	25	105	11.8	6	100	1100	800	500	_	3	3
CJB475M025#0150E	В	4.7	25	105	11.8	6	150	900	600	400	-	3	3
CJA685M025#0150E	Α	6.8	25	105	17	6	150	800	600	400	-	3	9
CJB685M025#0090E	В	6.8	25	105	17	6	90	1200	800	500	-	2	3
CJB685M025#0150E	B	6.8	25 25	105 105	17 17	6	150 100	900 1000	600 700	400 500	_	3	3
CJT685M025#0100E CJT685M025#0150E	T	6.8 6.8	25	105	17 17	6	150	800	600	400	_	3	
CJA106M025#0150E	A	10	25	105	25	6	150	800	600	400	_	3	
CJB106M025#0090E	В	10	25	105	25	6	90	1200	800	500	-	2	- ;
CJB106M025#0100E	В	10	25	105	25	6	100	1100	800	500	-	2	;
CJB106M025#0150E	В	10	25	105	25	6	150	900	600	400	-	2	**
CJB156M025#0100E	В	15	25	105	37.5	6	100	1400	1400	900	-	2	;
CJB156M025#0150E	В	15	25	105	37.5	6	150	900	600	400	_	2	
CJY156M025#0090E CJB226M025#0100E	Y B	15 22	25 25	105 105	37.5 55	6	90	1400 1100	1000 800	600 500	_	2	
CJB226M025#0100E	В	22	25	105	55	6	150	900	600	400	_	2	
CJC226M025#0100E	C	22	25	105	55	6	100	1300	900	600	_	3	
CJD226M025#0060E	D	22	25	105	55	6	60	1900	1300	900	-	2	
CJD226M025#0100E	D	22	25	105	55	6	100	1500	1100	700	-	2	
CJX226M025#0100E	Х	22	25	105	55	8	100	1300	900	600	-	2	
CJY226M025#0070E	Υ	22	25	105	55	6	70	1600	1100	700	-	3	
CJD336M025#0060E	D	33	25	105	82.5	6	60	1900	1300	900	-	2	
CJD336M025#0100E CJX336M025#0070E	D X	33 33	25 25	105 105	82.5 82.5	6	100 70	1500 1600	1100 1100	700 700	_	2	
CJX336M025#0070E	X	33	25	105	82.5	6	100	1300	900	600	_	2	
CJY336M025#0060E	Y	33	25	105	82.5	6	60	1800	1300	800	-	2	
CJY336M025#0070E	Υ	33	25	105	82.5	6	70	1600	1100	700	-	2	
CJY336M025#0100E	Υ	33	25	105	82.5	6	100	1400	1000	600	-	2	
CJD476M025#0060E	D	47	25	105	117.5	6	60	1900	1300	900	-	3	
CJD476M025#0100E CJE476M025#0050E	D	47 47	25 25	105 105	117.5 117.5	6	100 50	1500 2200	1100	700	_	3	;
CJY476M025#0050E	E Y	47	25	105	117.5	6	100	1400	1500 1000	1000	_	3	
CJD686M025#0070E	D	68	25	105	170	6	70	1800	1300	800	_	2	
CJE686M025#0050E	E	68	25	105	170	6	50	2200	1500	1000	-	3	
CJY686M025#0100E	Υ	68	25	105	170	6	100	1400	1000	600	-	3	
CJD107M025#0055E	D	100	25	105	250	6	55	2000	1400	900	-	2	
CJD107M025#0070E	D	100	25	105	250	6	70	1800	1300	800	-	2	
CJE107M025#0080E CJU107M025R0070E	E U	100 100	25 25	105 125	250 250	6 12	80 70	1800 2300	1300 1600	800 1000	600	2	
CJU157M025R0070E	U	150	25	105	375	12	70	2300	1600	1000	-	2	
0001071410201(0070E		130	23	103		@ 85°C	7.0	2000	1000	1000			
CJB155M035#0200E	В	1.5	35	105	5.3	6	200	800	600	400	T -	2	
CJB225M035#0200E	В	2.2	35	105	7.7	6	200	800	600	400	-	3	
CJB335M035#0200E	В	3.3	35	105	11.6	6	200	800	600	400	-	3	
CJB475M035#0200E	В	4.7	35	105	16.5	6	200	800	600	400	-	3	
CJC475M035#0200E CJC685M035#0200E	С	4.7	35 35	105 105	16.5	6	200	900	600	400	_	3	
CJB106M035#0200E	C B	6.8 10	35	105	23.8 35	6	200	900 800	600	400	_	2	
CJC106M035#0200E	C	10	35	105	35	6	200	900	600	400	_	3	
CJY106M035#0070E	Y	10	35	105	35	6	70	1600	1100	700	-	2	
CJB156M035#0200E	В	15	35	105	52.5	6	200	800	600	400	-	2	
CJC156M035#0200E	С	15	35	105	52.5	6	200	900	600	400	-	3	
CJD156M035#0070E	D	15	35	105	52.5	6	70	1800	1300	800	-	3	
CJD156M035#0100E	D	15	35	105	52.5	6	100	1500	1100	700	-	3	
CJY156M035#0070E	Y	15 15	35 35	105 105	52.5	6	70 100	1600 1400	1100 1000	700 600	_	3	
CJY156M035#0100E CJD226M035#0070E	D	22	35	105	52.5 77	6	70	1800	1300	800	_	2	
CJD226M035#0070E	D	22	35	105	77	6	100	1500	1100	700	_	2	
CJY226M035#0150E	Y	22	35	105	77	6	150	1100	800	500	-	3	
CJD336M035#0070E	D	33	35	105	115.5	6	70	1800	1300	800	-	2	
CJD336M035#0100E	D	33	35	105	115.5	6	100	1500	1100	700	-	2	;
CJE336M035#0055E	ΙE	33	35	105	115.5	6	55	2100	1500	900	_	3	,

Conductive Polymer Solid Electrolytic Chip Capacitors

RATINGS & PART NUMBER REFERENCE

			Rated	Maximum	DCL	DF	ESR	10	0kHz RMS	Current (n	nA)		
AVX Part No.	Case Size	Capacitance (µF)	Voltage (V)	Operating Temperature (°C)	Max. (μA)	Max. (%)	Max. @ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Product Category	MSL
TCJU336M035R0070E	U	33	35	125	115.5	12	70	2300	1600	1000	600	1	3
TCJY336M035#0100E	Υ	33	35	105	115.5	6	100	1400	1000	600	_	3	3
TCJE476M035#0055E	E	47	35	105	164.5	6	55	2100	1500	900	-	2	3
TCJU476M035R0070E	U	47	35	125	164.5	12	70	2300	1600	1000	600	1	3
TCJY476M035#0100E	Υ	47	35	105	164.5	6	100	1400	1000	600	_	3	3
						@ 85°C							
TCJB684M050#0400E	В	0.68	50	105	3.4	6	400	600	400	300	-	3	3
TCJB105M050#0300E	В	1.0	50	105	5	6	300	600	400	300	_	3	3
TCJB155M050#0300E	В	1.5	50	105	7.5	6	300	600	400	300	-	3	3
TCJC155M050#0300E	С	1.5	50	105	7.5	6	300	800	600	400	-	3	3
TCJC225M050#0300E	С	2.2	50	105	11	6	300	800	600	400	-	3	3
TCJC335M050#0200E	С	3.3	50	105	16.5	8	200	900	600	400	-	3	3
TCJC475M050#0200E	С	4.7	50	105	23.5	8	200	900	600	400	-	3	3
TCJX475M050#0250E	X	4.7	50	105	23.5	6	250	800	600	400	-	2	5
TCJY475M050#0250E	Υ	4.7	50	105	23.5	6	250	900	600	400	-	2	5
TCJC685M050#0200E	С	6.8	50	105	34	8	200	900	600	400	-	3	3
TCJD685M050#0120E	D	6.8	50	105	34	10	120	1400	1000	600	-	3	3
TCJD106M050#0090E	D	10	50	105	50	10	90	1600	1100	700	-	3	3
TCJD106M050#0120E	D	10	50	105	50	10	120	1400	1000	600	-	3	3
TCJE106M050#0070E	E	10	50	105	50	6	70	1900	1300	900	-	3	3
TCJE106M050#0100E	E	10	50	105	50	6	100	1600	1100	700	-	3	3
TCJD156M050#0150E	D	15	50	125	75	8	150	1200	800	500	300	1	3
TCJE156M050#0070E	E	15	50	105	75	6	70	1900	1300	900	_	3	3
TCJE156M050#0100E	E D	15	50 50	105	75	6	100	1600	1100	700		3	3
TCJD226M050#0090E		22		125 125	110 110	8	90 75	1600	1100	800	400	1	3
TCJE226M050#0075E TCJE226M050#0150E	E	22	50 50	105	110	8	150	1800 1300	1300 900	600	500	2	3
1CJE220WI030#0130E			30	105		@ 85°C	1 1 30	1300	900	000	_		3
TCJB474M063#0400E	В	0.47	63	105	3	8	400	600	400	300	_	3	3
TCJB684M063#0300E	В	0.68	63	105	4.3	8	300	600	400	300	_	3	3
TCJB105M063#0300E	В	1.0	63	105	6.3	8	300	600	400	300	_	3	3
TCJC105M063#0300E	C	1.0	63	105	6.3	6	300	800	600	400	_	3	3
TCJC155M063#0300E	C	1.5	63	105	9.5	6	300	800	600	400	_	3	3
TCJC225M063#0200E	C	2.2	63	105	13.9	6	200	900	600	400	_	3	3
TCJC335M063#0200E	C	3.3	63	105	20.8	6	200	900	600	400	-	3	3
TCJC475M063#0200E	C	4.7	63	105	29.6	6	200	900	600	400	_	3	3
TCJD475M063#0120E	D	4.7	63	105	29.6	6	120	1400	1000	600	-	3	3
TCJD685M063#0120E	D	6.8	63	105	42.8	6	120	1400	1000	600	-	3	3
TCJE685M063#0100E	E	6.8	63	105	42.8	6	100	1600	1100	700	-	3	3
TCJE685M063#0150E	E	6.8	63	105	42.8	6	150	1300	900	600	-	3	3
TCJE106M063#0100E	E	10	63	105	63	6	100	1600	1100	700	-	3	3
TCJE106M063#0150E	Ē	10	63	105	63	6	150	1300	900	600	-	3	3
TCJE156M063#0150E	E	15	63	105	94.5	8	150	1300	900	600	-	2	3
					75 Volt	@ 85°C							
TCJD475M075#0150E	D	4.7	75	105	35.3	6	150	1200	800	500	-	3	3
TCJD685M075#0120E	D	6.8	75	105	51	6	120	1400	1000	600	-	3	3
					100 Vol	t @ 85°C							
TCJD475M100#0250E	D	4.7	100	105	47	8	250	900	600	400	_	4	3
						t @ 85°C							
TCJD335M125#0250E	D	3.3	125	105	41.2	8	250	900	600	400	-	4	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020. All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5RMS with DC bias of 2.2 volts. DCL is measured at rated voltage after $\dot{\text{5}}$ minutes. ESR allowed to move up to 1.25 times catalog limit post mounting. For typical weight and composition see page 276.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

Conductive Polymer Solid Electrolytic Chip Capacitors

RECOMMENDED DERATING FACTOR

Voltage and temperature derating as percentage of Vr

Product Category 0 100% Rated Voltage 95% 90% **Recommended Application Voltage** 85% for Vr ≤ 10 V 80% **Recommended Application Voltage** 75% for Vr ≥ 16 V 70% 65% 60% 60% 55% 54% 50% -55°C 85°C 105°C 125°C

Product Category 1 100%

Product Category 2

Product Category 3, 4

Product Category 5

PRODUCT CATEGORY 0, 1 (TEMPERATURE RANGE -55°C TO +125°C)

TEST		Condition				Charact	eristics				
	Apply rated	voltage (Ur) at 85°	C (CATEGORY 1)	Visual examination	no visible	e damage					
				DCL	1.25 x in	itial limit					
Endurance	or 105°C (CATEGORY 0) or 2/3 rated voltage at 125°C (all CATEGORIES) for 2000 hours through a circuit impedance of ≤0.1Ω/V. Stabilize at room temperature for 1-2 hours before measuring. Store at 125°C, no voltage applied, for 2000 hours. Stabilize at room temperature for 1-2 hours before measuring. Store at 65°C and 95% relative humidity fo 50 hours, with no applied voltage. Stabilize at ro temperature and humidity for 1-2 hours before measuring. Step Temperature °C Duration (measuring) 1 +20 15 15 15			ΔC/C	within +1	0/-20% of	nitial valu	e			
				DF	1.5 x init	ial limit					
				ESR	2 x initial	limit					
				Visual examination	no visible	e damage					
	Store at 125	5°C. no voltage apr	olied. for 2000	DCL	2 x initial	limit					
Storage Life				ΔC/C	within +1	0/-20% of	nitial valu	e			
	hours before	e measuring.		DF	1.5 x init	ial limit					
				ESR	2 x initial	limit					
				Visual examination	no visib	le damage					
				DCL	3 x initia	ıl limit					
Humidity				ΔC/C	within +35/-5% of initial value						
		and namidity for	1 2 Hours before	DF	1.5 x ini	1.5 x initial limit					
				ESR	2 x initia						
	1 +20 15				+20°C	-55°C	+20°C	+85°C	+125°C	+20°C	
				DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*	
Temperature				100	"-	11, 4		TOXIL	12.0 % 12		
Stability	3	+20	15	ΔC/C	n/a	+0/-20%	±5%	+20/-0%	+30/-0%	±5%	
	4	+85 +125	15								
	5 6	+125	15 15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL*	
	-			Visual examination	no visible	l e damage					
Surge		2/3x rated voltage of duration 6 min		DCL	initial lim						
Voltage		c discharge) throu		ΔC/C		0/-20% of i	nitial value	<u> </u>			
		esistance of 10000		DF	1.25 x ini		Tillai Vala				
				Visual examination		le damage					
				DCL	initial lin						
Mechanical Shock	MIL-STD-20	2, Method 213, Co	ndition C	ΔC/C	within ±	5% of initia	l value				
		_,		DF	initial lin						
				ESR	initial lin	nit					
				Visual examination	no visib	le damage					
				DCL	initial lin						
Vibration	MIL-STD-20	2, Method 204, Co	ndition D	ΔC/C	within ±	5% of initia	ıl value				
		,		DF	initial lin	nit					
				ESR	initial lin	nit					

lnitial Limit

Conductive Polymer Solid Electrolytic Chip Capacitors

PRODUCT CATEGORY 2, 3, 4 (TEMPERATURE RANGE -55°C TO +105°C)

TEST		Condition				Characte	ristics			
	Apply rated voltage (Ur) at 85°C for 2000 hours through a circuit impedance of ≤0.1Ω/V (all CATEGORIES). And/or apply rated voltage (Ur) (CATEGORY 2) or 0.8x rated voltage (CATEGORY at 105°C for 2000 hours through a circuit impeda of ≤0.1Ω/V Always stabilize at room temperature 1-2 hours before measuring. Store at 105°C, no voltage applied, for 2000 hour Stabilize at room temperature for 1-2 hours before measuring. Store at 65°C and 95% relative humidity for 500 hours, with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before measuring. Step Temperature °C Duration (1 +20 15 2 -55 15 3 +20 15 4 +85 15 5 +105 15 6 +20 15 15 4 105°C for CATEGORY 2, or apply 1.3x rated voltage (Ur) at 105°C for CATEGORY 2, or apply 1.3x 0.8x rated voltage (Ur) at 105°C for CATEGORY 3, 4 for 1000 cycles of duration 6 min (30 15 15 15 15 15 15 10 1000 cycles of duration 6 min (30 15 15 15 15 15 15 15 10 1000 cycles of duration 6 min (30 15 15 15 15 15 15 15 10 1000 cycles of duration 6 min (30 15 15 15 15 15 15 10 1000 cycles of duration 6 min (30 15 15 15 15 15 15 15 15 15 15 15 15 15			Visual examination	no visible	damage				
	Apply rated voltage (Ur) at 85°C for 2000 hours through a circuit impedance of ≤0.1Ω/V (all CATEGORIES). And/or apply rated voltage (Ur) (CATEGORY 2) or 0.8x rated voltage (CATEGORY at 105°C for 2000 hours through a circuit impeda of ≤0.1Ω/V Always stabilize at room temperature 1-2 hours before measuring. Store at 105°C, no voltage applied, for 2000 hours stabilize at room temperature for 1-2 hours before measuring. Store at 65°C and 95% relative humidity for 500 hours, with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before measuring. Step Temperature °C Duration (reference in the stability of the stabilit	Ω/V (all	DCL	1.25 x ini	tial limit					
Endurance	(CATEGORY 2) or	Apply rated voltage (Ur) at 85°C for 2000 hours hrough a circuit impedance of ≤0.1Ω/V (all CATEGORIES). And/or apply rated voltage (Ur) CATEGORY 2) or 0.8x rated voltage (CATEGORY at 105°C for 2000 hours through a circuit imped of ≤0.1Ω/V Always stabilize at room temperature 1-2 hours before measuring. Store at 105°C, no voltage applied, for 2000 hous stabilize at room temperature for 1-2 hours before measuring. Store at 65°C and 95% relative humidity for 500 hours, with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before measuring. Step Temperature °C Duration 1 +20 15 2 -55 15 3 +20 15 4 +85 15 5 +105 15 6 +20 15 15 6 +20 15 15 6 +20 15 15 6 +20 15 15 6 +20 15 15 6 15 15 6 150 150 150 150 150 150 150 150 150 150		ΔC/C	within +1	0/-20% of i	nitial value	!		
		Apply rated voltage (Ur) at 85°C for 2000 hours hrough a circuit impedance of ≤0.1Ω/V (all CATEGORIES). And/or apply rated voltage (Ur) CATEGORY 2) or 0.8x rated voltage (CATEGORY to 105°C for 2000 hours through a circuit impedance of ≤0.1Ω/V Always stabilize at room temperature -2 hours before measuring. Store at 105°C, no voltage applied, for 2000 hous tabilize at room temperature for 1-2 hours before measuring. Store at 65°C and 95% relative humidity for 500 hours, with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before measuring. Step Temperature °C Duration (1 +20 15 2 -55 15 3 +20 15 4 +85 15 5 +105 15 6 +20 15 15 6 +20 15 15 6 +20 15 15 6 +20 15 15 15 6 150 100 cycles of duration 6 min (3 fee charge, 5 min 30 sec discharge) through a charge charge, 5 min 30 sec discharge) through a charge contact of the c		DF	1.5 x initia	al limit				
			toporataro ro	ESR	2 x initial	limit			-	
				Visual examination	no visible	damage			-	
				DCL (V _R ≤ 75V)	1.25 x ini	tial limit				
0				DCL (V _R > 75V)	2 x initial	limit				
Storage Life		temperature for 1-2	z nours before	ΔC/C	within +1	0/-20% of i	nitial value	!		
	ineasuring.			DF	1.5 x init	ial limit				
				ESR	2 x initial	limit				
				Visual examination	no visible	e damage				
				DCL	3 x initia	limit				
Humidity				ΔC/C	within +3	35/-5% of i	nitial valu	е		
		mumulty for 1-2 flo	uis belole	DF	1.5 x init	ial limit				
	Step Temperature °C Duration (m			ESR	2 x initia	limit				
	Step	Temperature °C	Duration (min)		+20°C	-55°C	+20°C	+85°C	+105°C	+20°C
	1	+20	15	DCL	IL*	n/a	IL*	10 v II *	12.5 x IL*	IL*
Temperature	1 +20 15 2 -55 15 3 +20 15		DOL	"-	11/ 0	- '-	10 X IL	12.5 X IL		
Stability			ΔC/C	n/a	+0/-20%	±5%	+20/-0%	+30/-0%	±5%	
					.,.	0, =0 0				
				DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL*
			-	Visual examination	no visible	damage				
				DCL	initial limi					
Surge	CATEGORY 3, 4 for	r 1000 cycles of dura	tion 6 min (30	_						
Voltage			rough a charge /	ΔC/C	within +1	0/-20% of ir	nitial value		-	
	uischarge resistan	ice 01 100002		DF	1.25 x init	tial limit				
				Visual examination	no visible	e damage				
				DCL	initial lim	nit				
Mechanical Shock	MIL-STD-202, Me	thod 213, Condition	n C	ΔC/C	within ±5	% of initia	l value			
SHOCK				DF	initial limit					
				ESR	initial lim	nit				
				Visual examination	no visible	e damage				
				DCL	initial lim	nit				
Vibration	MIL-STD-202, Me	thod 204, Condition	n D	ΔC/C	within ±5	5% of initia	l value			
				DF	initial lim	nit				
				ESR	initial lim	nit				

^{*}Initial Limi

PRODUCT CATEGORY 5 (TEMPERATURE RANGE -55°C TO +85°C)

TEST		Condition			C	haracteri	stics				
				Visual examination	no visibl	e damage					
	Apply rated voltac	ge (Ur) at 85°C for 20	000 hours through	DCL	1.25 x in	itial limit					
Endurance	a circuit impedan	ce of ≤0.1Ω/V. Stabil	ize at room	ΔC/C	within +	10/-20% o	f initial va	lue			
	temperature for 1	-2 hours before mea	suring.	DF	1.5 x init	tial limit					
				ESR	2 x initia	l limit					
				Visual examination	no visibl	e damage					
	Store at 85°C, no	voltage applied, for 2	2000 hours.	DCL	1.25 x in	itial limit					
Storage Life		temperature for 1-2	hours before	ΔC/C	within +	10/-20% o	f initial va	lue			
	measuring.			DF	1.5 x init	ial limit					
				ESR	2 x initia	l limit					
				Visual examination	no visib	le damag	е				
	Store at 65°C and	l 95% relative humidi	ity for 500 hours,	DCL	5 x initia	al limit					
Humidity		oltage. Stabilize at ro		ΔC/C	within +	·35/-5% o	f initial va	alue			
	and humidity for 1	1-2 hours before mea	asuring.	DF	1.5 x ini	tial limit					
				ESR	2 x initia	al limit					
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+20°C		
		'	` ′	DCL	IL*	n/a	IL*	10 x IL*	IL*		
Temperature	1	+20 15 -55 15 +20 15				-		-			
Stability	3			ΔC/C	n/a	a +0/-20% ±5% +20/-0% ±5%					
	4	+85	5 15 0 15 5 15								
	5	+125	15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	IL*		
		-		Visual examination	no visibl	e damage	l				
Surge		oltage (Ur) at 85°C f		DCL	initial lin						
Voltage		0 sec charge, 5 min 3 / discharge resistan		ΔC/C	within +	10/-20% of	f initial val	ue			
	tillough a charge	/ discharge resistan	ce or 1000Ω	DF	1.25 x in	itial limit					
				Visual examination	no visib	le damag	e				
				DCL	initial lii	nit					
Mechanical Shock	MIL-STD-202, Met	thod 213, Condition	С	ΔC/C	within ±	5% of init	ial value				
				DF	initial lii	nit					
				ESR	initial lii	nit					
				Visual examination	no visib	le damag	e				
				DCL	initial lii	nit					
Vibration	MIL-STD-202, Met	thod 204, Condition	D	ΔC/C	within ±	5% of init	ial value				
				DF	initial lii	nit					
				ESR	initial lii	nit					

^{*}Initial Limit

Conductive Polymer Solid Electrolytic Chip Capacitors

SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

High Energy

low profile undertab

Conductive Polymer Solid Electrolytic Chip Multianode Capacitors

FEATURES

- Conductive Polymer Electrode, Multianode Design
- Benign Failure Mode Under Recommended Use Conditions
- · Extremely Low ESR
- 3x Reflow 260°C Compatible
- 100% Surge Current Tested
- Volumetric Efficiency
- · High Frequency Capacitance Retention

Hadro 2010

SnPb termination option is not RoHS compliant.

APPLICATIONS

- · Telecommunication Routers
- · Base Stations with High Power DC/DCs

MARKING

E, V CASE

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
V	2924	7361-38	7.30 (0.287)	6.10 (0.240)	3.55 (0.140)	3.10 (0.122)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only.

HOW TO ORDER

Capacitance Code
pF code: 1st two digits
represent significant
figures, 3rd digit represents
multiplier (number of zeros
to follow)

108

M T Toleranc

Tolerance M = ±20% Rated DC Voltage 002 = 2.5Vdc 004 = 4Vdc

004

004 = 4Vdc 006 = 6.3Vdc 010 = 10Vdc 016 = 16Vdc 020 = 20Vdc 025 = 25Vdc

025 = 25Vdc 035 = 35Vdc 050 = 50Vdc 100 = 100Vdc R T

Packaging R = Pure Tin 7" Reel S = Pure Tin 13" Reel H = Tin Lead 7" Reel K = Tin Lead 13" Reel 0010

ESR in mΩ

Additional Character

Ε

Character E = Black resin

TECHNICAL SPECIFICATIONS

Technical Data:	All technical data relate to an ambient temperature of +25°C	
Capacitance Range:	10μF to1000μF	
Capacitance Tolerance:	±20%	
Leakage Current DCL:	0.1CV	
Temperature Range:	-55°C to +125°C	
Termination Finish:	Sn Plating (standard) and SnPb Plating	

NOTE: Conductive Polymer Capacitors are designed to operate within the limits of the environmental conditions specified for each series. If operated continuously at their maximum temperature and / or humidity limit, or beyond these limits, capacitors may exhibit a parametric shift in capacitance and increases in ESR. These changes may occur earlier if the specified environmental conditions are exceeded. Similarly, their normal operational time period will be significantly extended if their general duty cycle includes operation below maximum temperature within humidity controlled environments. Careful attention should be paid to maximum temperature with associated high humidity environments as well as voltage derating, ripple current and current surges. Please reference the AVX Conductive Polymer Capacitor Guidelines for more information or contact factory for application assistance.

Conductive Polymer Solid Electrolytic Chip Multianode Capacitors

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance				R	ated Voltage D	C (V _R) to 105°	C			
μF	Code	2.5V (e)	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)	100V (A)
10	106										V(50)
15	156									E(100)	
22	226								E(25)	E(75)	
33	336							E(60)	E(60)		
47	476							E(60)	E(45,60)		
68	686						E(25)	E(50)			
100	107					E(25)	E(25)				
150	157					E(25,40)					
220	227				E(25)	E(25,40)					
330	337			E(10,15)	E(10,15)	E(15, 25)					
470	477	E(10,12)	E(10,12)	E(7,10,12)	E(15, 25)						
680	687	E(10,12)	E(10,12)	E(12)							
1000	108	E(6,10,12)	E(6,8,10,12)								

Released ratings, (ESR ratings in mOhms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

			Rated	Maximum			ESR Max.	100kH	z RMS Curre	ent (mA)	
AVX Part No.	Case Size	Capacitance (µF)	Voltage (V)	Operating Temperature (°C)	DCL Max. (μA)	DF Max. (%)	@ 100kHz (mΩ)	45°C	85°C	125°C	MSL
				2.5 Volt	@ 105°C						
TCME477M002#0010E	E	470	2.5	125	117.5	10	10	6400	4500	1600	3
TCME477M002#0012E	E	470	2.5	125	117.5	10	12	5800	4100	1500	3
TCME687M002#0010E	E	680	2.5	125	170	10	10	6400	4500	1600	3
TCME687M002#0012E	Е	680	2.5	125	170	10	12	5800	4100	1500	3
TCME108M002#0006E	Е	1000	2.5	125	250	10	6	8300	5800	2100	3
TCME108M002#0010E	Е	1000	2.5	125	250	10	10	6400	4500	1600	3
TCME108M002#0012E	Е	1000	2.5	125	250	10	12	5800	4100	1500	3
				4 Volt	@ 105°C						
TCME477M004#0010E	Е	470	4	125	188	8	10	6400	4500	1600	3
TCME477M004#0012E	E	470	4	125	188	8	12	5800	4100	1500	3
TCME687M004#0010E	Е	680	4	125	272	8	10	6400	4500	1600	3
TCME687M004#0012E	E	680	4	125	272	8	12	5800	4100	1500	3
TCME108M004#0006E	Е	1000	4	125	400	8	6	8300	5800	2100	3
TCME108M004#0008E	Е	1000	4	125	400	8	8	7200	5000	1800	3
TCME108M004#0010E	Е	1000	4	125	400	8	10	6400	4500	1600	3
TCME108M004#0012E	Е	1000	4	125	400	8	12	5800	4100	1500	3
				6.3 Volt	@ 105°C						
TCME337M006#0010E	E	330	6.3	125	198	8	10	6400	4500	1600	3
TCME337M006#0015E	Е	330	6.3	125	198	8	15	5200	3600	1300	3
TCME477M006#0007E	Е	470	6.3	125	282	10	7	7700	5400	1900	3
TCME477M006#0010E	Е	470	6.3	125	282	10	10	6400	4500	1600	3
TCME477M006#0012E	Е	470	6.3	125	282	10	12	5800	4100	1500	3
TCME687M006#0012E	Е	680	6.3	125	408	8	12	5800	4100	1500	3
				10 Volt	@ 105°C						
TCME227M010#0025E	Е	220	10	125	220	8	25	4000	2800	1000	3
TCME337M010#0010E	Е	330	10	125	330	8	10	6400	4500	1600	3
TCME337M010#0015E	Е	330	10	125	330	8	15	5200	3600	1300	3
TCME477M010#0015E	Е	470	10	125	470	10	15	5200	3600	1300	3
TCME477M010#0025E	Е	470	10	125	470	10	25	4000	2800	1000	3
				16 Volt	@ 105°C						
TCME107M016#0025E	Е	100	16	125	160	8	25	4000	2800	1000	3
TCME157M016#0025E	Е	150	16	125	240	8	25	4000	2800	1000	3
TCME157M016#0040E	Е	150	16	125	240	8	40	3200	2200	800	3
TCME227M016#0025E	Е	220	16	125	352	8	25	4000	2800	1000	3
TCME227M016#0040E	Е	220	16	125	352	8	40	3200	2200	800	3
TCME337M016#0015E	Е	330	16	125	528	8	15	5200	3600	1300	3
TCME337M016#0025E	E	330	16	125	528	8	25	4000	2800	1000	3
					@ 105°C						<u> </u>
TCME686M020#0025E	Е	68	20	125	136	8	25	4000	2800	1000	3
TCME107M020#0025E	Е	100	20	125	200	8	25	4000	2800	1000	3

Conductive Polymer Solid Electrolytic Chip Multianode Capacitors

			Rated	Maximum			ESR Max.	100kH	z RMS Curre	ent (mA)	
AVX Part No.	Case Size	Capacitance (µF)	Voltage (V)	Operating Temperature (°C)	DCL Max. (μA)	DF Max. (%)	@ 100kHz (mΩ)	45°C	85°C	125°C	MSL
25 Volt @ 105°C											
TCME336M025#0060E	E	33	25	125	82.5	8	60	2600	1800	700	3
TCME476M025#0060E	E	47	25	125	117.5	8	60	2600	1800	700	3
TCME686M025#0050E	E	68	25	125	170	8	50	2900	2000	700	3
35 Volt @ 105°C											
TCME226M035#0025E	E	22	35	125	77	8	25	4000	2800	1000	3
TCME336M035#0060E	Е	33	35	125	115.5	8	60	2600	1800	700	3
TCME476M035#0045E	E	47	35	125	164.5	8	45	3000	2100	800	3
TCME476M035#0060E	Е	47	35	125	164.5	8	60	2600	1800	700	3
	50 Volt @ 105°C										
TCME156M050#0100E	E	15	50	125	75	10	100	2000	1400	500	3
TCME226M050#0075E	Е	22	50	125	110	10	75	2300	1600	600	3
	100 Volt @ 105°C										
TCMV106M100R/S0050E	V	10	100	125	100	8	50	2900	2000	700	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020. All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5RMS with DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes. ESR allowed to move up to 1.25 times catalog limit post mounting. For typical weight and composition see page 276. **NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.**

RECOMMENDED DERATING FACTOR

Voltage and temperature derating as percentage of Vr.

Rated	Operating Temperature							
voltage	≤85°C	105°C	125°C					
≤10V	90%	90%	60%					
≥16V	80%	80%	54%					

QUALIFICATION TABLE

			TCM serie	es (Temperature rang	ge -55°C to	+125°C)					
TEST		Condition		Characteristics								
				Visual examination	no visible	no visible damage						
		Itage (Ur) at 105°C		DCL	1.25 x in	1.25 x initial limit						
Endurance		t 125°C for 2000 ho nce of ≤0.1Ω/V. Sta		ΔC/C	within ±2	within ±20% of initial value						
		or 1-2 hours before		DF	1.5 x init	ial limit						
	terriperature ic	or 1 2 flours before	measuring.	ESR	2 x initia	llimit						
				Visual examination	no visible	e damage						
	Store at 125°C	c, no voltage applied	d, for 2000	DCL	2 x initia	l limit						
Storage Life	hours. Stabiliz	e at room temperat	ure for 1-2 hours	ΔC/C	within ±2	within ±20% of initial value						
•	before measur	ring.		DF	1.5 x init	1.5 x initial limit						
				ESR	2 x initia	2 x initial limit						
				Visual examination	no visib	no visible damage						
		and 95% relative hu	•	DCL	3 x initia	al limit						
Humidity		applied voltage. Standard nd humidity for 1-2		ΔC/C	within +	within +30/-20% of initial value						
•	measuring.	ilu ilulillulty loi 1-2	DF	1.5 x ini	1.5 x initial limit							
	measuring.			ESR	2 x initia	2 x initial limit						
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°0		
	2	+20	15 15			,	11.1	40 114	40.5 11.4	H		
Temperature	3	+20	15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*		
Stability	4	+85	15	ΔC/C	n/a	+0/-20%	±10%	+20/-0%	+30/-0%	±10%		
	5	+125	15	DE		45 114	11.4	45 114	0 114	*		
	6	+20	15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2xIL*	IL*		
	Apply 1.3x cat	egory voltage (Uc)	at 125°C for	Visual examination	no visible	e damage						
Curas Valtara	1000 cycles of	f duration 6 min (30	sec charge,	DCL	initial lim	nit						
Surge Voltage	5 min 30 sec d	lischarge) through a	a charge/	ΔC/C	within +20/-30% of initial value							
	discharge resi	stance of 1000Ω		DF	1.25 x in	1.25 x initial limit						

*Initial Limit

Conductive Polymer Solid Electrolytic Chip Multianode Capacitors

SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: Conductive Polymer

Highest CV/CC Conductive Polymer Chip Capacitors Undertab

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

FEATURES

- Highest CV/cc in Broad Range of Low Profiles
- Conductive Polymer Electrode
- Benign Failure Mode Under Recommended Use Conditions
- Lower ESR
- Undertab Terminations Layout:
 - High Volumetric Efficiency
 - High PCB Assembly Density
 - High Capacitance in Smaller Dimensions
- 3x Reflow 260°C Compatible
- 100% Surge Current Tested
- 8 Case Sizes Available

APPLICATIONS

- Consumer Applications (e.g. Mobiles, MP3 etc.)
- Bulk Decoupling of SoC (System on Chip)

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H max.	W _P ±0.10 (0.004)	W _N ±0.10 (0.004)	A _P ±0.10 (0.004)	A _N ±0.10 (0.004)	S Min.
s	1206	3216-12	3.20 (0.126)	1.60 (0.063)	1.20 (0.047)	1.30 (0.051)	1.30 (0.051)	1.15 (0.045)	1.15 (0.045)	0.90 (0.035)
L	1210	3528-10	3.50 (0.138)	2.80 (0.110)	1.00 (0.039)	2.50 (0.098)	2.10 (0.083)	1.15 (0.045)	1.35 (0.053)	1.00 (0.039)
Т	1210	3528-12	3.50 (0.138)	2.80 (0.110)	1.20 (0.047)	2.50 (0.098)	2.10 (0.083)	1.15 (0.045)	1.35 (0.053)	1.00 (0.039)
Н	1210	3528-15	3.50 (0.138)	2.80 (0.110)	1.50 (0.059)	2.50 (0.098)	2.10 (0.083)	1.15 (0.045)	1.35 (0.053)	1.00 (0.039)
Х	2917	7343-15	7.30 (0.287)	4.30 (0.169)	1.50 (0.059)	3.25 (0.128)	3.25 (0.128)	2.00 (0.079)	3.20 (0.126)	2.10 (0.083)
Z	2917	7343-15	7.30 ±0.30 (0.287 ±0.012)	4.30 ±0.30 (0.169 ±0.012)	1.50 (0.059)	2.40 (0.094)	2.40 (0.094)	1.30 ±0.30 (0.051 ±0.012)	1.30 ±0.30 (0.051 ±0.012)	4.40 (0.173)
4	2924	7361-20	7.30 (0.287)	6.10 (0.240)	2.00 (0.079)	4.75 (0.187)	4.75 (0.187)	2.00 (0.079)	3.20 (0.126)	2.10 (0.083)
8	2924	7361-20	7.30 ±0.30 (0.287 ±0.012)	6.10 (0.240)	2.00 (0.079)	4.45 (0.175)	4.45 (0.175)	1.60 ±0.30 (0.063 ±0.012)	1.60 ±0.30 (0.063 ±0.012)	3.80 (0.150)

MARKING

H, L, S, T, X, Z CASE

HOW TO ORDER

Capacitance Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier

(number of zeros to follow)

157

006 M Tolerance $M = \pm 20\%$

Rated DC Voltage 006 = 6.3Vdc 010 = 10Vdc 016 = 16Vdc

020 = 20 Vdc025 = 25Vdc 035 = 35Vdc 050 = 50Vdc

0200 Packaging

R

R = Pure Tin 7" Reel

S = Pure Tin 13" Reel

ESR in mΩ

Ε Additional

Character E = Black resin

Part Numbers already changed to an "E" suffix will continue to be supplied with only black resin. Those Part Numbers currently produced with gold resin will eventually change to black before July, 2020.

Highest CV/CC Conductive Polymer Chip Capacitors Undertab

TECHNICAL SPECIFICATIONS

Technical Data:	All technical data relate to an ambient temperature of +25°C									
Capacitance Range:		4.7 μF to 1500 μF								
Capacitance Tolerance:		±20%								
Leakage Current DCL:		0.1CV								
Rated Voltage DC (V _R)	≤ +85°C:	6.3	10	16	20	25	35	50		
Category Voltage (V _c)	≤ +105°C:	5	8	13	16	20	28	40		
Surge Voltage (V _s)	≤ +85°C:	8	13	21	26	33	46	65		
Surge Voltage (V _s)	≤ +105°C:	6	10	16	20	25	35	50		
Temperature Range:		-55°C to	+105°C			,				

NOTE: Conductive Polymer Capacitors are designed to operate within the limits of the environmental conditions specified for each series. If operated continuously at their maximum temperature and / or humidity limit, or beyond these limits, capacitors may exhibit a parametric shift in capacitance and increases in ESR. These changes may occur earlier if the specified environmental conditions are exceeded. Similarly, their normal operational time period will be significantly extended if their general duty cycle includes operation below maximum temperature within humidity controlled environments. Careful attention should be paid to maximum temperature with associated high humidity environments as well as voltage derating, ripple current and current surges. Please reference the AVX Conductive Polymer Capacitor Guidelines for more information or contact factory for application assistance.

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance			Rated Voltage	DC to 85°C / 0.0	66DC to 105°C		
μF	Code	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)
4.7	475						L(300)/T(200)	
10	106						T(150, 200)	
22	226					T(200)		
33	336			L(200)/T(200)				4(200)
47	476			L(250)/T(150)		X(100)	X(150)/Z(150)	
100	107	L(200)/S(250)				4(100)	4(100)/8(100)	
150	157	L(200)/T(200)		X(100)		4(70)/8(70)		
220	227	H(170)		4(70)	4(100)	4(100)		
330	337			4(70)	4(100)			
470	477	X(50)		4(<mark>70</mark> ,100)				
680	687		4(70)					
1000	108	4(55)						
1500	158	4(55)						

Released ratings, (ESR ratings in mOhms in parentheses)

Engineering Samples - Please Contact AVX

Note: Voltage ratings are minimum values. AVX reserves the right to supply

higher voltage ratings in the same case size, to the same reliability standards.

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Maximum Operating	DCL Max.	DF Max.	ESR Max. @ 100kHz	100kH	Iz RMS Currer	nt (mA)	Product	MSL
Part No.	Size	(μF)	(V)	Temperature (°C)	(μ A)	(%)	(mΩ)	45°C	85°C	105°C	Category	
				` ` `	6.3 Volt @	85°C						
TCNL107M006#0200E	L	100	6.3	105	60	10	200	700	500	300	3	5
TCNS107M006#0250E	S	100	6.3	105	60	10	250	600	400	300	3	3
TCNL157M006#0200E	L	150	6.3	105	90	10	200	700	500	300	3	5
TCNT157M006#0200E	Т	150	6.3	105	90	10	200	700	500	300	3	4
TCNH227M006#0170E	Н	220	6.3	105	132	10	170	800	600	400	3	4
TCNX477M006#0050E	Х	470	6.3	85	282	10	50	1900	1300	-	5	5
TCN4108M006#0055E	4	1000	6.3	85	600	20	55	1860	1302	-	5	4
TCN4158M006#0055E	4	1500	6.3	85	900	20	55	1860	1302	-	5	4
					10 Volt @	85°C						
TCN4687M010#0070E	4	680	10	105	680	20	70	1650	1155	660	3	4
					16 Volt @	85°C						
TCNL336M016#0200E	L	33	16	85	52.8	6	200	700	500	-	5	5
TCNT336M016#0200E	Т	33	16	105	52.8	6	200	700	500	300	3	4
TCNL476M016#0250E	L	47	16	85	75.2	6	250	600	400	-	5	5
TCNT476M016#0150E	Т	47	16	105	75.2	6	150	800	600	400	3	4
TCNX157M016#0100E	Х	150	16	105	240	6	100	1300	900	600	3	4
TCN4227M016#0070E	4	220	16	105	352	20	70	1650	1155	660	2	4
TCN4337M016#0070E	4	330	16	105	528	20	70	1650	1155	660	3	4
TCN4477M016#0070E	4	470	16	105	752	20	70	1650	1155	660	3	4
TCN4477M016#0100E	4	470	16	85	752	20	100	1380	966	-	5	4
					20 Volt @	85°C						
TCN4227M020#0100E	4	220	20	85	440	10	100	1380	966	-	5	4
TCN4337M020#0100E	4	330	20	105	660	20	100	1380	966	552	3	4
					25 Volt @	85°C						
TCNT226M025#0200E	Т	22	25	105	55	6	200	700	500	300	3	4
TCNX476M025#0100E	Х	47	25	105	117.5	6	100	1300	900	600	2	5
TCN4107M025#0100E	4	100	25	105	250	6	100	1380	966	552	2	4
TCN4157M025#0070E	4	150	25	105	375	6	70	1650	1155	660	2	4
TCN8157M025#0070E	8	150	25	105	375	8	70	1650	1155	660	2	3
TCN4227M025#0100E	4	220	25	105	550	10	100	1380	966	552	3	4
					35 Volt @	85°C						
TCNL475M035#0300E	L	4.7	35	105	16.5	6	300	600	400	300	2	5
TCNT475M035#0200E	Т	4.7	35	105	16.5	10	200	700	500	300	3	4
TCNT106M035#0150E	Т	10	35	105	35	10	150	800	600	400	3	4
TCNT106M035#0200E	Т	10	35	105	35	10	200	700	500	300	3	4
TCNX476M035#0150E	Х	47	35	105	165	10	150	1100	800	500	3	4
TCNZ476M035#0150E	Z	47	35	105	165	10	150	1100	800	500	3	4
TCN4107M035#0100E	4	100	35	105	350	10	100	1380	966	552	2	3
TCN8107M035#0100E	8	100	35	105	350	10	100	1380	966	552	2	3
					50 Volt @	85°C						
TCN4336M050#0200E	4	33	50	85	165	12	200	970	679	-	5	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5RMS with DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

ESR allowed to move up to 1.25 times catalog limit post mounting.

For typical weight and composition see page 276.

NOTE: AVX reserves the right to supply higher voltage ratings in the same case size to the same reliability standards.

RECOMMENDED DERATING FACTOR

Voltage and temperature derating as percentage of Vr

PRODUCT CATEGORY 2, 3 (TEMPERATURE RANGE -55°C TO +105°C)

TEST		Condition				Characte	ristics				
	Apply rated volta	age (Ur) at 85°C fo	or 2000 hours	Visual examination	no visib	le damage					
	through a circuit	age (Ur) at 85°C for t impedance of ≤0 And / or apply rate or 0.8x rated voltage 2000 hours throug 0.10/V. Always sta	.1Ω/V (all	DCL	1.25 x ir	nitial limit					
Endurance	(CATEGORY 2) o	or 0.8x rated volta	ge (CATEGORY	ΔC/C	within ±	within ±20% of initial value					
	3) at 105°C for 2	2000 hours throug 0 10/V Always sta	h a circuit abilize at room	DF	1.5 x ini	1.5 x initial limit					
	temperature for	1-2 hours before	measuring.	ESR	2 x initia	2 x initial limit					
				Visual examination	no visib	no visible damage					
				DCL (V _R ≤ 75V)	1.25 x ir	1.25 x initial limit					
Ctorono I ifo		no voltage applied at room temperat		DCL (V _R > 75V)	2 x initia	al limit					
Storage Life	before measurin		ure for 1-2 flours	ΔC/C	within ±	20% of initi	al value				
	before meadam	·9·		DF	1.5 x in	itial limit					
				ESR	2 x initia	al limit					
				Visual examination	no visib	ole damage	е				
		nd 95% relative hu	,	DCL	3 x initi	al limit					
Humidity		hours, with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before			within -	+30/-20% c	of initial va	lue			
	measuring.		DF	1.5 x in	1.5 x initial limit						
				ESR	2 x initi	al limit					
	Step 1	Temperature°C +20	Duration(min) 15		+20°C	-55°C	+20°C	+85°C	+105°C	+20°	
Temperature	2	-55	15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*	
Stability	3 4	+20 +85	15 15	ΔC/C	n/a	+0/-20%	±5%	+20/-0%	+30/-0%	±5%	
_	5	+105 +20	15 15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL*	
	ь	+20	15	Visual examination		no visible damage					
		voltage (Ur) at 105°		DCL	initial lin						
Surge		8x rated voltage (U		DOL			initial value	for Vr ≤ 10\	1		
Voltage		30 sec discharge)		ΔC/C				for Vr ≥ 16\			
	/ discharge resist	tance of 1000Ω		DF		nitial limit	iiiidai valae	7101 11 = 10	-		
				Visual examination		ole damage	<u> </u>				
				DCL	initial li						
Mechanical	MII-STD-202 M	ethod 213, Condit	ion C	ΔC/C		±5% of initi	al value				
Shock	11112 013 202, 111	ctilod 210, condi		DF	initial li		ui vaiac				
				ESR	initial li						
				Visual examination		ole damage	<u> </u>				
				DCL	initial li		-				
Vibration	MIL-STD-202 M	ethod 204. Condit	ion D	ΔC/C		±5% of initi	al value				
. 101411011	2 3.2 232, 111	_				initial limit					
				DF ESR		initial limit					

*Initial Limit

Highest CV/CC Conductive Polymer Chip Capacitors Undertab

PRODUCT CATEGORY 5 (TEMPERATURE RANGE -55°C TO +85°C)

TEST		Condition			Cł	naracteristi	ics				
				Visual examination	no visible o	lamage					
	Apply rated voltage	o (Ur) at 95°C for 20	IOO houre through	DCL	1.25 x initia	al limit					
Endurance	a circuit impedanc	e (Ur) at 85°C for 20 e of ≤0.1Ω/V. Stabili	ze at room	ΔC/C	within ±209	% of initial val	ue				
	temperature for 1-	2 hours before meas	suring.	DF	1.5 x initial limit						
				ESR	2 x initial lir	2 x initial limit					
				Visual examination	no visible damage						
	Store at 85°C, no v	oltage applied, for 2	2000 hours.	DCL	1.25 x initia	al limit					
Storage Life	1	emperature for 1-2 h		ΔC/C	within ±209	% of initial val	ue				
	measuring.			DF	1.5 x initia	l limit					
				ESR	2 x initial lir	mit					
				Visual examination	no visible	damage					
	Store at 65°C and	95% relative humidit	tv for 500 hours.	DCL	5 x initial l	imit					
Humidity		ltage. Stabilize at ro		ΔC/C	within +40)/-20% of init	ial value				
	and humidity for 1-2 hours before measuring.				1.5 x initial limit						
				ESR	2 x initial l	imit					
	Step	Temperature°C +20	Duration(min)		+20°C	-55°C	+20°C	+85°C	+20°C		
Temperature	1 2	-55	15 15	DCL	IL*	n/a	IL*	10 x IL*	IL*		
Stability	3	+20	15	ΔC/C	n/a	+0/-20%	±5%	+20/-0%	±5%		
	5	+85 +20	15 15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	IL*		
		•		Visual examination	no visible d	no visible damage					
_	Apply 1.3x rated vol	tage (Ur) at 85°C for	1000 cycles of	DCL	initial limit						
Surge Voltage	duration 6 min (30 s	sec charge, 5 min 30 s discharge resistance	sec discharge)	ΔC/C		/-20% of initia /-30% of initia					
				DF	1.25 x initia	al limit					
				Visual examination	no visible	damage					
Maahaniaal				DCL	initial limit	İ					
Mechanical	MIL-STD-202, Metl	hod 213, Condition (ΔC/C	within ±5%	6 of initial va	lue				
Shock				DF	initial limit	t					
				ESR	initial limit	į					
				Visual examination	no visible	damage					
				DCL	initial limit	t					
Vibration	MIL-STD-202, Metl	hod 204, Condition [ΔC/C	within ±5%	6 of initial va	lue				
			DF	initial limit							
			ESR	initial limit							

^{*}Initial Limit

Highest CV/CC Conductive Polymer Chip Capacitors Undertab

SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: Conductive Polymer

Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors

FEATURES

- Highest Energy per Volume
- Fast DCL Drop With Voltage Applied After Reflow
- Benign Failure Mode Under Recommended Use Conditions
- Low ESR
- Undertab Terminations Layout:
 - High Volumetric Efficiency
 - Low Profile Case Sizes
 - High Capacitance in Smaller Dimensions
 - Close Positioning of Several Parts for Efficient High Density PCB Layout
- 3x Reflow 260°C Compatible
- · 100% Surge Current Tested

APPLICATIONS

Power Backup for SSDs (MLC, SLC, EFD, PCIe), Battery-Powered Portable Equipment, Industrial Alarms, Smart Power Meters, and Mobile Devices

UNDERTAB

CASE DIMENSIONS UNDERTAB:

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H max.	W _P ±0.10 (0.004)	W _N ±0.10 (0.004)	A _P ±0.10 (0.004)	A _N ±0.10 (0.004)	S Min.
L	1210	3528-10	3.50 (0.138)	2.80 (0.110)	1.00 (0.039)	2.50 (0.098)	2.10 (0.083)	1.15 (0.045)	1.35 (0.053)	1.00 (0.039)
Т	1210	3528-12	3.50 (0.138)	2.80 (0.110)	1.20 (0.047)	2.50 (0.098)	2.10 (0.083)	1.15 (0.045)	1.35 (0.053)	1.00 (0.039)
Х	2917	7343-15	7.30 (0.287)	4.30 (0.169)	1.50 (0.059)	3.25 (0.128)	3.25 (0.128)	2.00 (0.079)	3.20 (0.126)	2.10 (0.083)
Z	2917	7343-15	7.30±0.30 (0.287±0.012)	4.30±0.30 (0.169±0.012)	1.50 (0.059)	2.40 (0.094)	2.40 (0.094)	1.30±0.30 (0.051±0.012)	1.30±0.30 (0.051±0.012)	4.40 (0.173)
4	2924	7361-20	7.30 (0.287)	6.10 (0.240)	2.00 (0.079)	4.75 (0.187)	4.75 (0.187)	2.00 (0.079)	3.20 (0.126)	2.10 (0.083)
8	2924	7361-20	7.30±0.30 (0.287±0.012)	6.10 (0.240)	2.00 (0.079)	4.45 (0.175)	4.45 (0.175)	1.60±0.30 (0.063±0.012)	1.60±0.30 (0.063±0.012)	3.80 (0.150)

CASE DIMENSIONS J-LEAD:

millimeters (inches)

C	ode	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W₁±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
	С	2312	6032-28	6.00 (0.236)	3.20 (0.126)	2.60 (0.102)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
	D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
	E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
	Н	1210	3528-15	3.50 (0.138)	2.80 (0.110)	1.50 (0.059) max.	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
	5	2917	7343-40	7.30 (0.287)	4.30 (0.169)	3.80 (0.150)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only.

MAXIMUM ENERGY PER CASE SIZE

Case Size	H Max (mm)	Max Energy (mJ)					
С	2.8	5.8					
D	3.1	21.8					
E	4.3	11.9					
Н	1.5	3.3					
L	1.0	1.8					
Т	1.2	4.7					
X	1.5	18.2					
Z	1.5	18.2					
4	2.0	43.0					
5	4.0	46.6					
8	2.0	38.8					

MARKING C, D, E, H, L, T, X, Z, 5 CASE

HOW TO ORDER

Part Numbers already changed to an "E" suffix will continue to be supplied with only black resin. Those Part Numbers currently produced with gold resin will eventually change to black before July, 2020.

Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors

TECHNICAL SPECIFICATIONS

Technical Data:	All technical data relate to an ambient temperature of +25°C										
Capacitance Range:	4.7 μF to 1500 μF										
Capacitance Tolerance:	±20%										
Leakage Current DCL:	0.1CV										
Rated Voltage DC (V _R)	≤ +85°C:	6.3	10	16	20	25	35	50			
Surge Voltage (V _s)	oltage (V_s) $\leq +85^{\circ}C$:				26	33	46	65			
Γemperature Range: -55°C up to +125°C											

NOTE: Conductive Polymer Capacitors are designed to operate within the limits of the environmental conditions specified for each series. If operated continuously at their maximum temperature and / or humidity limit, or beyond these limits, capacitors may exhibit a parametric shift in capacitance and increases in ESR. These changes may occur earlier if the specified environmental conditions are exceeded. Similarly, their normal operational time period will be significantly extended if their general duty cycle includes operation below maximum temperature within humidity controlled environments. Careful attention should be paid to maximum temperature with associated high humidity environments as well as voltage derating, ripple current and current surges. Please reference the AVX Conductive Polymer Capacitor Guidelines for more information or contact factory for application assistance.

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance	Rated Voltage DC to 85°C, [mJ]													
μF	Code	6.3\	/ (J)	10V	(A)	16V (C)		20V (D)		25V (E)		35V (V)		50V (T)	
4.7	475											L(300) T(200)	[1.8]		
6.8	685													C(200)	[5.4]
10	106											T(150,20	0) [3.9]	D(120)	[8.0]
15	156											C(200)	[5.8]	E(70)	[11.9]
22	226									T(200)	[4.3]	D(100)	[8.5]		
33	336					H(150) T(200)	[3.3]					D(70)	[12.8]		
47	476			C(100) H(100)	[1.7]	T(150)	[4.7]			X(100)	[9.2]	X(150)/ Z(150)	[18.2]		
68	686	H(100)	[8.0]	D(45)	[2.5]	D(50)	[6.7]	D(55)	[8.4]	D(70)	[13.3]				
100	107			D(45)	[3.6]	D(50)	[9.9]	D(55)	[12.4]	D(70) 4(100)	[19.6]	4(100)/ 8(100)	[38.8]		
150	157	T(200)	[1.7]	D(45)	[5.4]	X(100)	[14.9]			4(70)/ 8(70)	[29.3]				
220	227	H(170)	[2.6]	D(40)	[7.9]	D(50) 4(70)	[21.8]	4(100)	[27.2]	4(100)	[43.0]				
330	337	D(40)	[3.8]	5(100)	[11.9]	4(70) 5(100)	[32.7]								
470	477	X(50)	[5.4]			4(70,100) 5(100)	⁾ [46.6]								
680	687			4(70)	[24.5]										
1000	108	4(55)	[11.6]												
1500	158	4(55)	[17.4]												

Released ratings, (ESR ratings in mOhms in parentheses) [Energy in mJ]

Engineering Samples - Please Contact AVX

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors

RATINGS & PART NUMBER REFERENCE

	Case Size		Rated Voltage (V)	Maximum Operating Temperature (°C)	DCL Max. (μA)	DF Max. (%)	ESR Max. @ 100kHz (mΩ)	1000kHz RMS Current (mA) 45°C	Product Category	MSL	ENERGY			
AVX Part No.											Energy (mJ)	Energy/volume (mJ/cm³)	Energy/area (mJ/cm²)	
	6.3 Volt @ 85°C										6.3 Volt @ 85°C			
TCJH686M006#0100E	Н	68	6.3	105	40.8	6	100	1000	3	3	0.8	54	8.0	
TCNT157M006#0200E	T	150	6.3	105	90	10	200	700	3	4	1.7	147	17.7	
TCJH227M006#0170E	Н	220	6.3	105	132	10	170	800	3	3	2.6	173	26	
TCJD337M006#0040E	D	330 470	6.3	105	198 282	6 10	40 50	2400 1900	5	3 5	3.8 5.4	42 115	12.2 17.3	
TCNX477M006#0050E TCN4108M006#0055E	X 4	1000	6.3	85 85	600	20	55	1860	5	4	11.6	130	26	
TCN4158M006#0055E	4	1500	6.3	85	900	20	55	1860	5	4	17.4	195	39	
				10 Volt @ 85										
TCJH476M010#0100E	Н	47	10	105	47	6	100	1000	3	3	1.7	115	17.3	
TCJC476M010#0100E	С	47	10	125	47	6	100	1300	1	3	1.7	34	8.8	
TCJD686M010#0045E	D	68	10	105	68	6	45	2200	3	3	2.5	27	7.8	
TCJD107M010#0045E	D	100	10	105	100	6	45	2200	3	3	3.6	40	11.5	
TCJD157M010#0045E	D	150	10	105	150	6	45	2200	3	3	5.4	59	17.2	
TCJD227M010#0040E	D	220	10	105 105	220	6	40	2400	3 2	3	7.9	87	25.2	
TCN4697M010#0100E	5 4	330 680	10	105	330	10 20	100 70	1300 1650	2	4	11.9 24.5	100	37.8 55.0	
10144007WI010#0070L		000	10	16 Volt @ 85	°C	20	70	1030	<u> </u>	_	24.0	16 Volt @ 85°C		
TCJH336M016#0150E	Н	33	16	105	52.8	6	150	800	3	3	3.3	223	33.4	
TCNT336M016#0200E	T	33	16	105	52.8	6	200	700	3	4	3.3	277	33.4	
TCNT476M016#0150E	T	47	16	105	75.2	6	150	800	3	4	4.7	395	47.6	
TCJD686M016#0050E	D	68	16	105	108.8	6	50	2100	2	3	6.7	74	21.5	
TCJD107M016#0050E	D	100	16	105	160	6	50	2100	2	3	9.9	109	31.6	
TCNX157M016#0100E	X	150	16	105	240	6	100	1300	3	4	14.9	316	47.4	
TCJD227M016#0050E	D	220	16	105	352	10	50	2100	2	3	21.8	240	69.5	
TCN4227M016#0070E	4	220	16	105	352	20	70	1650	2	4	21.8	245	49	
TCN4337M016#0070E TCJ5337M016#0100E	<u>4</u> 5	330 330	16 16	105 105	528 528	20 10	70 100	1650 1300	3 2	3	32.7 32.7	367 274	73.5 104.2	
TCN4477M016#0070E	4	470	16	105	752	20	70	1650	2	3	46.6	523	104.2	
TCN4477M016#0100E	4	470	16	105	752	20	100	1380	3	4	46.6	523	104.8	
TCJ5477M016#0100E	5	470	16	105	752	10	100	1300	3	3	46.6	391	148.5	
				20 Volt @ 85	°C							20 Volt @ 85°C		
TCJD686M020#0055E	D	68	20	105	136	6	55	2000	3	3	8.4	92	26.7	
TCJD107M020#0055E	D	100	20	105	200	6	55	2000	3	3	12.4	136	39.3	
TCN4227M020#0100E	4	220	20	85	440	10	100	1380	5	4	27.2	305	61.1	
				25 Volt @ 85								25 Volt @ 85°C		
TCNT226M025#0200E	T	22	25	105	55	6	200	700	3	4	4.3	364	43.9	
TCNX476M025#0100E TCJD686M025#0070E	X D	47 68	25 25	105 105	117.5 170	6	100 70	1300 1800	2	5	9.2	195 146	29.3 42.3	
TCJD080M025#0070E	D	100	25	105	250	6	70	1800	2	3	19.6	215	62.3	
TCN4107M025#0100E	4	100	25	105	250	6	100	1380	2	4	19.6	219	43.9	
TCN4157M025#0070E	4	150	25	105	375	6	70	1650	2	4	29.3	329	65.9	
TCN8157M025#0070E	8	150	25	105	375	8	70	1650	2	3	29.3	329	65.9	
TCN4227M025#0100E	4	220	25	105	550	10	100	1380	3	4	43.0	483	96.7	
	35 Volt @ 85°C								35 Volt @ 85°C					
TCNL475M035#0300E	L	4.7	35	105	16.5	6	300	600	2	5	1.8	186	18.6	
TCNT475M035#0200E	T	4.7	35	105	16.5	10	200	700	3	4	1.8	154	18.6	
TONT106M035#0150E		10	35	105	35	10	150	800	3	4	3.9	328	39.5	
TCNT106M035#0200E	T C	10 15	35 35	105	35 52.5	10 6	200 200	700 900	3	3	3.9 5.8	328 116	39.5 30.3	
TCJC156M035#0200E TCJD226M035#0100E	D	22	35	105 105	77	6	100	1500	2	3	8.5	94	27.1	
TCJD336M035#0070E	D	33	35	105	115.5	6	70	1800	2	3	12.8	141	40.7	
TCNX476M035#0150E	X	47	35	105	165	10	150	1100	3	4	18.2	387	58.0	
TCNZ476M035#0150E	Z	47	35	105	165	10	150	1100	3	4	18.2	387	58.0	
TCN4107M035#0100E	4	100	35	105	350	10	100	1380	2	3	38.8	435	87.1	
TCN8107M035#0100E	8	100	35	105	350	10	100	1380	2	3	38.8	435	87.1	
				50 Volt @ 85								50 Volt @ 85°C		
TCJC685M050#0200E	С	6.8	50	105	34	8	200	900	3	3	5.4	108	28.2	
TCJD106M050#0120E	D	10	50	105	50	10	120	1400	3	3	8.0	87	25.3	
TCJE156M050#0070E	E	15	50	105	75	6	70	1900	3	3	11.9	93	38	

Energy is calculated by this formula (consider derating factor):

Energy = $\frac{1}{2}$ C x ((Vr x X)² – Vx²)

where C = Capacitance

Vr = Rated Voltage

X = Recommended derating factor

Vx= 3V (invariable)

Moisture Sensitivity Level (MSL) is defined according to J-STD-020. All technical data relates to an ambient temperature of +25°C. Capacitance is measured at 120Hz, 0.5RMS with DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

ESR allowed to move up to 1.25 times catalog limit post mounting.

For typical weight and composition see page 276.

NOTE: AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors

RECOMMENDED DERATING FACTOR

Voltage and temperature derating as percentage of Vr

Product Category 3

Product Category 5

Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors

PRODUCT CATEGORY 1 (TEMPERATURE RANGE -55°C TO +125°C)

TEST		Condition	1		C	haracteris	stics				
				Visual examination	no visibl	e damage					
	Apply rate	ed voltage (Ur) at 85°C Jr) at 125°C for 2000 h	and /or 2/3 rated	DCL	1.25 x in	itial limit					
Endurance	voltage (l	Jr) at 125°C for 2000 h ce of ≤0.1Ω/V. Stabilize	ours through a circuit	ΔC/C	within ±2	20% of initia	l value				
	for 1-2 ho	ours before measuring.	at room temperature	DF	1.5 x init	1.5 x initial limit					
				ESR	2 x initia	2 x initial limit					
				Visual examination	no visibl	e damage					
	Store at 1	25°C, no voltage appli	ed. for 2000 hours.	DCL	2 x initia	l limit					
Storage Life		at room temperature fo		ΔC/C	within ±2	20% of initia	l value				
	measurin	g.		DF	1.5 x init	ial limit					
				ESR	2 x initia	l limit					
				Visual examination	no visib	no visible damage					
		5°C and 95% relative h	,	DCL	3 x initia	al limit					
Humidity		th no applied voltage. S		ΔC/C	within +	30/-20% of	initial va	lue			
•	measurin	ure and humidity for 1-	2 nours before	DF	1.5 x ini	1.5 x initial limit					
	g.		ESR	2 x initia	2 x initial limit						
	Step 1	Temperature°C +20	Duration(min) 15		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C	
Temperature	2	-55	15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*	
Stability	3	+20 +85	15 15	ΔC/C	n/a	+0/-20%	±5%	+20/-0%	+30/-0%	±5%	
	5 6	+125 +20	15 15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL*	
	<u> </u>	1 .20	10	Visual examination	no visible	e damage	ı				
_		0.67x rated voltage (Ur)		DCL	initial lim	nit -					
Surge Voltage		duration 6 min (30 sec cl) through a charge / disc		40/0	within +1	10/-20% of i	nitial value	e for Vr ≤ 10	V		
voitage	1000Ω) tillough a charge / tilst	marge resistance of	ΔC/C	within +2	20/-30% of i	nitial value	e for Vr≥16	V		
				DF	1.25 x in	itial limit					
				Visual examination	no visib	le damage					
Maahaniaal				DCL	initial lir	nit					
Mechanical	MIL-STD-	202, Method 213, Cond	dition C	ΔC/C	within ±	5% of initia	l value				
Shock				DF	initial lir	nit					
				ESR	initial lir	initial limit					
				Visual examination	no visib	le damage					
				DCL	initial lir	nit					
Vibration	MIL-STD-	202, Method 204, Cond	dition D	ΔC/C	within ±	5% of initia	l value				
				DF	initial lin	nit					
				ESR	initial lir	nit					

^{*}Initial Limit

Initial measurement max. 1hr after the removal from dry pack or after pretreatment at 85°C for 24 hours.

Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors

PRODUCT CATEGORY 2, 3 (TEMPERATURE RANGE -55°C TO +105°C)

TEST		Condition			Cha	aracterist	ics				
			(00001	Visual examination	no visibl	e damage					
	through a	ed voltage (Ur) at 85°C circuit impedance of s	<0.1Ω/V (all	DCL	1.25 x in	itial limit					
Endurance	(CATEGOR (CATEGO) 3) at 105°	RIES). And / or apply ra RY 2) or 0.8x rated volt °C for 2000 hours throu	ted voltage (Ur) age (CATEGORY ugh a circuit	ΔC/C		within +10/-20% of initial value for Vr ≤ 16V within ±20% of initial value for Vr ≥ 20V					
	impedano	ce of ≤0.1Ω/V. Always s ure for 1-2 hours before	stabilize at room	DF	1.5 x init	1.5 x initial limit					
	temperati	ure for 1-2 flours before	e measuring.	ESR	2 x initia	l limit					
				Visual examination	no visibl	e damage					
				DCL	1.25 x in	itial limit					
Storage Life	Store at 105°C, no voltage applied, for 2000 hours. Stabilize at room temperature for 1-2 hours before measuring.			ΔC/C		10/-20% of i 20% of initia		e for Vr ≤ 16 r Vr ≥ 20V	5V		
	Deloie ille	easuring.		DF	1.5 x init	ial limit					
				ESR	2 x initia	l limit					
				Visual examination	no visib	le damage					
		5°C and 95% relative h	,	DCL	3 x initia	al limit					
Humidity		th no applied voltage. S	ΔC/C	within +	within +30/-20% of initial value						
	temperature and humidity for 1-2 hours before measuring.			DF	1.5 x ini	1.5 x initial limit					
	measuring.		ESR	2 x initia	2 x initial limit						
	Step 1	Temperature°C +20	Duration(min) 15		+20°C	-55°C	+20°C	+85°C	+105°C	+20°C	
Temperature	2	-55	15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*	
Stability	3 4	+20 +85	15 15	ΔC/C	n/a	+0/-20%	±5%	+20/-0%	+30/-0%	±5%	
	5 6	+105 +20	15 15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL*	
				Visual examination	no visible	e damage					
		rated voltage (Ur) at 10 1.3x 0.8x rated voltage		DCL	initial lim						
Surge Voltage		Y 3 for 1000 cycles of di			within +1	10/-20% of i	nitial valu	e for Vr ≤ 16	V		
		e, 5 min 30 sec discharg	e) through a charge	ΔC/C	within +2	20/-30% of i	nitial valu	e for Vr≥20	V		
	/ discharg	e resistance of 1000Ω		DF	1.25 x in	itial limit					
				Visual examination	no visib	le damage					
Mechanical				DCL	initial lir	nit					
	MIL-STD-202, Method 213, Condition C			ΔC/C	within ±	5% of initia	l value				
Shock	SHOCK	DF	initial lir	nit							
			ESR	initial lir	initial limit						
				Visual examination	no visib	le damage					
				DCL	initial lir	nit					
Vibration	MIL-STD-2	202, Method 204, Cond	dition D	ΔC/C	within ±	5% of initia	l value				
				DF	initial lir	nit					
				ESR	initial lir	nit					

^{*}Initial Limit

Initial measurement max. 1hr after the removal from dry pack or after pretreatment at 85°C for 24 hours.

Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors

PRODUCT CATEGORY 5 (TEMPERATURE RANGE -55°C TO +85°C)

TEST		Condition			Chara	acteristics					
				Visual examination	no visible d	amage					
	Apply rated valt	ogo (Ur) at 9E9C f	or 2000 hours	DCL	1.25 x initia	ıl limit					
Endurance	at room temper	age (Ur) at 85°C f t impedance of ≤0 ature for 1-2 hours	or 2000 flours 1.1Ω/V. Stabilize s before	ΔC/C		within +10/-20% of initial value for $Vr \le 16V$ within ±20% of initial value for $Vr \ge 20V$					
	measuring.			DF	1.5 x initial	1.5 x initial limit					
				ESR	2 x initial lir	2 x initial limit					
				Visual examination	no visible d	no visible damage					
				DCL	1.25 x initia	ıl limit					
Storage Life	Store at 85°C, no voltage applied, for 2000 hours. Stabilize at room temperature for 1-2 hours before measuring.			ΔC/C		/-20% of initia % of initial val					
	before measuring.		DF	1.5 x initial	limit						
			ESR	2 x initial lir	nit						
				Visual examination	no visible	damage					
		nd 95% relative hu		DCL	5 x initial l	imit					
Humidity	hours, with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before			ΔC/C	within +40	within +40/-20% of initial value					
	measuring.		DF	1.5 x initia	1.5 x initial limit						
			ESR	2 x initial l	2 x initial limit						
	Step 1	Temperature°C +20	Duration(min) 15		+20°C	-55°C	+20°C	+85°C	+20°C		
Temperature	2	-55	15	DCL	IL*	n/a	IL*	10 x IL*	IL*		
Stability	3 4	+20 +85	15 15	ΔC/C	n/a	+0/-20%	±5%	+20/-0%	±5%		
	5	+20	15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	IL*		
				Visual examination	no visible d	amage					
Surge		voltage (Ur) at 85°(ı (30 sec charge, 5 ı		DCL	initial limit						
Voltage		gh a charge / disch		ΔC/C	within +10/	within +10/-20% of initial value for Vr ≤ 16V					
	of 1000Ω	3	3			-30% of initial	value for Vr	≥ 20V			
				DF	1.25 x initia	l limit					
				Visual examination	no visible						
Mechanical				DCL	initial limit						
Shock	MIL-STD-202, Method 213, Condition C			ΔC/C		of initial val	ue				
S.I.SSIK	Under the second		DF	initial limit							
			ESR	initial limit							
				Visual examination	no visible						
				DCL		initial limit					
Vibration	MIL-STD-202, M	lethod 204, Condi	tion D	ΔC/C		of initial val	ue				
				DF	initial limit						
				ESR	initial limit						

*Initial Limit

Initial measurement max. 1hr after the removal from dry pack or after pretreatment at 85°C for 24 hours.

A KYOCERA GROUP COMPANY

Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors

SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: Conductive Polymer

Conductive Polymer, Miniature, Undertab Solid Electrolytic Chip Capacitors

FEATURES

- · Conductive Polymer Electrode
- Benign Failure Mode Under Recommended Use Conditions
- Compliant to the RoHS3 directive 2015/863/EU
- SMD Facedown
- · Small and Low Profile
- · High Volumetric Efficiency
- 100% Surge Current Tested

LEAD-FREE LEAD-FREE COMPONENT

APPLICATIONS

- Smartphone
- Tablet PC
- Wireless Module
- · Portable Game
- Bulk Decoupling of SoC (System on Chip)

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L	W ₁	W ₂	Н	S ₁	S ₂
М	0603	1608-09	1.60 ^{+0.20} _{-0.10} (0.063 ^{+0.008} _{-0.004})	0.85 +0.20 (0.033 +0.008 (0.034)	0.65±0.10 (0.026±0.004)	0.80±0.10*1 (0.031±0.004)	0.50±0.10 (0.020±0.004)	0.60±0.10 (0.024±0.004)
S	0805	2012-09	2.00 ^{+0.20} _{-0.10} (0.079 ^{+0.008} _{-0.004})	1.25 +0.20 (0.049 +0.008)	0.90±0.10 (0.035±0.004)	0.80±0.10 (0.031±0.004)	0.50±0.10 (0.020±0.004)	1.00±0.10 (0.039±0.004)
U	0402	1106-06	1.10±0.05 (0.043±0.002)	0.60±0.05 (0.024±0.002)	0.35±0.05 (0.014±0.002)	0.55±0.05 (0.022±0.002)	0.30±0.05 (0.012±0.002)	0.50±0.05 (0.020±0.002)

*1 F380J476MMAAXE: 1.0mm Max.

HOW TO ORDER

AXE = Rated temperature 60°C and H dimension 1.0mm Max. AXEH3 = Rated temperature 60°C and H dimension 1.0mm Max., Low ESR LZT = Rated temperature 60°C

LZTH1 = Rated temperature 60°C, Low ESR

AH1, AH2, AH3 = Low ESR

TECHNICAL SPECIFICATIONS

Category Temperature Range:	-55 to +105°C
Rated Range:	+85°C or +60°C (*2)
Capacitance Tolerance:	±20% at 120Hz
Dissipation Factor:	Refer to next page (120Hz)
ESR 100kHz:	Refer to next page (120Hz)
Leaking Current:	Refer to next page
	At 20°C after application of rated voltage for 5 minutes
	Provided that:
	After 5 minute's application of rated voltage, leakage current at 105°C
	10 times or less than 20°C specified value.
Termination Finish:	M, S case: Gold Plating (standard), U case: Sn-3.5Ag Plating (standard)

^{*2} LZT and AXE: Rated temperature +60°C, Surge and Endurance test temperature +60°C

(number of zeros to follow)

Conductive Polymer, Miniature, Undertab Solid Electrolytic Chip Capacitors

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	citance		Rated	Voltage			*Cap
μF	Code	4V (0G)	6.3V (0J)	8V (0K)	10V (1A)	25V (1E)	Code
1.0	105		U				Α
2.2	225				М	М	J
4.7	475		U		M/S	S	S
10	106		M/M(AH1,AH2)/S/U		M/M(AH1)/S		а
22	226		M/M(AH3,AH1)/S/S(AH1)		M*4/S		j
33	336		M**/S		S**		n
47	476		M*4/M*4(H3)/S/S(AH1)	S	S**		s
68	686		S**				w
100	107	S**	S**/S**(H1)				Α

THE CORRELATIONS AMONG RATED VOLTAGE, SURGE VOLTAGE AND DERATED VOLTAGE

	F38 (Standard)				
Rated Voltage (V) ≤85°C	6.3	8	10	25	
85°C Surge Voltage (V)	8	10	13	32	
105°C Derated Voltage (V)	5	6.3	8	20	

	F38-LZT, F38-AXE				
Rated Voltage (V) ≤60°C	4	6.3	10		
60°C Surge Voltage (V)	5.2	8	13		
85°C Derated Voltage (V)	2.8	4.5	7.2		
105°C Derated Voltage (V)	2	3.3	5		

RATINGS & PART NUMBER REFERENCE

	Case	Capacitance	Rated Voltage	DCL	DF	ESR	100	kHz RMS	Current	(mA)	*3	
AVX Part No.	Size	(μF)	(V)	(μ A)	@ 120Hz (%)	@ 100kHz (mΩ)	45°C	60°C	85°C	105°C	ΔC/C (%)	MSL
					4 Volt							
F380G107MSALZT	S	100	4	80.0	10	200	474	332	-	237	*	3
					6.3 Volt							
F380J105MUA	U	1	6.3	0.6	6	1500	100	-	70	50	*	3
F380J475MUA	U	4.7	6.3	20.0	10	1500	100	-	70	50	*	3
F380J106MMA	М	10	6.3	10.0	8	500	224	-	157	112	*	3
F380J106MMAAH1	М	10	6.3	10.0	8	300	289	-	202	144	*	3
F380J106MMAAH2	М	10	6.3	10.0	8	200	354	-	247	177	*	3
F380J106MSA	S	10	6.3	6.3	10	250	424	-	297	212	*	3
F380J106MUA	U	10	6.3	20.0	10	1500	100	-	70	50	*	3
F380J226MMA	М	22	6.3	13.9	10	500	224	-	157	112	*	3
F380J226MMAAH3	М	22	6.3	13.9	10	300	289	-	202	144	*	3
F380J226MMAAH1	М	22	6.3	13.9	10	200	354	-	247	177	*	3
F380J226MSA	S	22	6.3	13.9	10	200	474	-	332	237	*	3
F380J226MSAAH1	S	22	6.3	13.9	10	150	548	-	383	274	*	3
F380J336MMALZT	М	33	6.3	41.6	10	500	224	157	-	112	*	3
F380J336MSA	S	33	6.3	20.8	10	200	474	-	332	237	*	3
F380J476MMAAXE	М	47	6.3	59.2	10	500	224	157	-	112	*	3
F380J476MMAAXEH3	М	47	6.3	59.2	10	300	289	202	-	144	*	3
F380J476MSA	S	47	6.3	29.6	10	200	474	-	332	237	*	3
F380J476MSAAH1	S	47	6.3	29.6	10	150	548	-	383	274	*	3
F380J686MSALZT	S	68	6.3	86.0	10	200	474	332	-	237	*	3
F380J107MSALZT	S	100	6.3	126.0	10	200	474	332	-	237	*	3
F380J107MSALZTH1	S	100	6.3	126.0	10	150	548	383	-	274	*	3
					8 Volt							
F380K476MSA	S	47	8	37.6	10	200	474	-	332	237	*	3
					10 Volt							
F381A225MMA	M	2.2	10	10.0	6	500	224	-	157	112	*	3
F381A475MMA	М	4.7	10	10.0	6	500	224	-	157	112	*	3
F381A475MSA	S	4.7	10	4.7	10	300	387	-	271	194	*	3
F381A106MMA	М	10	10	10.0	15	500	224	-	157	112	*	3
F381A106MMAAH1	М	10	10	10.0	15	300	289	-	202	144	*	3
F381A106MSA	S	10	10	10.0	6	200	474	-	332	237	*	3
F381A226MMAAXE	М	22	10	44.0	10	500	224	157	-	112	*	3
F381A226MSA	S	22	10	22.0	10	200	474	-	332	237	*	3
F381A336MSALZT	S	33	10	99.0	10	200	474	332	-	237	*	3
F381A476MSALZT	S	47	10	94.0	10	200	474	332	-	237	*	3
					25 Volt							
F381E225MMA	М	2.2	25	10.0	10	500	224	_	157	112	*	3
F381E475MSA	S	4.7	25	11.8	10	500	300	-	210	150	*	3

^{*3:} AC/C Marked "*"

Moisture Sensitivity Level (MSL) is defined according to J-STD-020

Item	All Case (%)
Damp Heat, steady state	-20 to +30
Rapid change of temperature	±20
Resistance soldering heat	±20
Surge	±20
Endurance	±20

Released ratings, (Low ESR)

*4 (AXE) Rated temperature 60°C and H dimension 1.0mm Max. Please contact AVX when you need detail spec.

** (LZT) Rated temperature 60°C. Please contact AVX when you need detail spec.

Please contact to your local AVX sales office when these series are being designed in your application.

Conductive Polymer, Miniature, Undertab Solid Electrolytic Chip Capacitors

RECOMMENDED DEREATING FACTOR

Voltage and temperature derating as percentge of Vr

QUALIFICATION TABLE

TEST	F38 series (Temperature Range -55°C to +105°C)	
1591	Condition	
Damp Heat (Steady State)	At 40°C, 90 to 95% R.H., 500 hours (No voltage applied) Capacitance Change	
Temperature Cycles	At -55°C / +105°C, 30 minutes each, 5 cycles Capacitance Change	
Resistance to Soldering Heat	5 seconds reflow at 260°C Capacitance Change	
Surge	After application of surge voltage in series with a 1kΩ resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C or 60°C (*2), capacitors shall meet the characteristic requirements in the table above. Capacitance Change	
Endurance	After 1000 hours' application of rated voltage in series with a 3Ω resistor at 85° C or 60° C (*2), capacitors shall meet the characteristic requirements in the table above. Capacitance Change	
Shear Test	electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the	\(\square\) (0.51kg · f) 10±1 seconds
Terminal Strength	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is applied with a specified jig at the center of substrate so that the substrate may bend by 1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.	20mm

^{*2} LZT and AXE: Rated temperature 60°C, Surge and Endurance test temperature 60°C

NOTICE: DESIGN, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: Conductive Polymer

TCO Series

High Temperature Automotive Polymer Chip Capacitors

MARKING

FEATURES

- · Conductive Polymer Electrode
- · Benign Failure Mode Under Recommended Use Conditions
- Robust Design for Automotive Applications
- Meets Requirements of AEC-Q200
- · -55 to +150°C Operation Temperature
- Humidity 85°C/85%RH, Vr, 1000 Hours
- Basic Reliability 1%/1000hrs@85°C Vr with 60% Confidence Level
- DCI 0.1 CV
- 3x reflow 260°C Compatible
- · 100% Surge Current Tested

APPLICATIONS

DC/DC converters, Telecommunication (coupling/decoupling), Industrial & special, Automotive (body electronics, cabin controls, infotainment, comfort, after market etc)

Not recommended for use of conductive polymer parts in high power applications. For more information please see AVX automotive application quide at avx.com (see the link: http://www.avx.com/docs/techinfo/ApplicationGuides/Automotive-Application-Guide.pdf), or contact manufacturer.

AVX's qualification of TCO capacitors meets requirements of AEC-Q200. TCO series is manufactured in an IATF 16949 certified facility.

CASE DIMENSIONS:

**** .	/• · ·
millimatore	(Inchac)
millimeters	unches

Code	EIA Code			W+0.20 (0.008) H+0.20 (0.008) -0.10 (0.004) -0.10 (0.004)		W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only

HOW TO ORDER

106

TECHNICAL SPECIFICATIONS

Technical Data:	All technical data relate to an ambient temperature of +25°C
Capacitance Range:	10 μF
Capacitance Tolerance:	±20%
Leakage Current DCL:	0.1CV
Temperature Range:	-55°C to +150°C
	Meets requirements of AEC-Q200

NOTE: Conductive Polymer Capacitors are designed to operate within the limits of the environmental conditions specified for each series. If operated continuously at their maximum temperature and / or humidity limit, or beyond these limits, capacitors may exhibit a parametric shift in capacitance and increases in ESR. These changes may occur earlier if the specified environmental conditions are exceeded. Similarly, their normal operational time period will be significantly extended if their general duty cycle includes operation below maximum temperature within humidity controlled environments. Careful attention should be paid to maximum temperature with associated high humidity environments as well as voltage derating, ripple current and current surges. Please reference the AVX Conductive Polymer Capacitor Guidelines for more information or contact factory for application assistance

TCO Series

High Temperature Automotive Polymer Chip Capacitors

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance	Rated Voltage DC (V _R) @ 105°C								
μF	Code	25V (E)	35V (V)	50V (T)						
10	106			D(150)						
15	156									
22	226									
33	336									

Released ratings, (ESR ratings in mOhms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher volage ratings in the same case size, to the same reliability standards.

RATINGS & PART NUMBER REFERENCE

	AVX Part No.	Case Size		Rated	Maximum Operating Temp.	DCL Max	DF Max	ESR Max @ 100kHz		100kHz RMS Current (mA)				Humidity 85°C/85% RH.	MSL
	AVA Part No.			Voltage (V)	(°C)	(µA)	(%)	(mΩ)	45°C	85°C	105°C	125°C	150°C	Vr (hrs)	IVIOL
						50	Volt								
ſ	TCOD106M050#0150E	D	10	50	150	50	10	150	1225	857	551	306	184	1000	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020. All technical data relates to an ambient temperature of +25C.

Capacitance and DF are measured at 120Hz, 0.5RMS with DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes. ESR allowed to move up to 1.25 times catalog limit post mounting. For typical weight and composition see page 276.

RECOMMENDED DERATING FACTOR

Voltage and temperature derating as percentage of Vr

	Rated	Operat	Operating Temperature								
	voltage	≤85°C	105°C	150°C							
	≤10V	90%	90%	60%							
Γ	≥16V	80%	80%	54%							

TCO Series

QUALIFICATION TABLE

TECT			TCO serie	es (Temperature rang	e -55°C to 1	50°C)						
TEST		Condition			Cł	naracteri	stics					
				Visual examination	no visible	e damage						
		age (Ur) at 105°C fo		DCL	2 x initial	limit						
Endurance		e (Ur) at 150°C for 1 impedance of ≤0.1		ΔC/C	within +1	0/-20% of	initial value	:				
		re for 1-2 hours bef		DF	2 x initial	limit						
	l com temperata		oro modedamig.	ESR	2 x initial	limit						
				Visual examination	no visible	no visible damage						
	Store at 150°C. r	no voltage applied, f	or 1000 hours.	DCL	2x initial	2x initial limit						
Storage Life		n temperature for 1-		ΔC/C	within +1	within +10/-20% of initial value						
	measuring.			DF	2 x initial	limit						
				ESR	2 x initial	limit						
				Visual examination	no visibl	no visible damage						
		age (Ur) at 85°C, 85°		DCL	2 x initia	2 x initial limit						
Biased Humidity		0 hours. Stabilize a I humidity for 1-2 ho		ΔC/C	within +3	within +35/-5% of initial value						
•	measuring.	i numicity for 1-2 nd	ours before	DF	1.5 x init	1.5 x initial limit						
	medouring.			ESR	2 x initia	l limit						
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+105°C	+150°C	+20°C		
	1	+20	15									
Temperature	3	-55 +20	15 15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*		
Stability	4	+105	15	ΔC/C	n/a	±20%	±5%	±20%	±30%	±5%		
	5	+150	15	DE	"+	"		45 114	45 114	11 4		
	6	+20	15	DF	IL*	IL*	IL*	1.5 x IL*	1.5 x IL*	IL*		
				Visual examination	no visible	no visible damage						
				DCL	initial lim	initial limit						
Surge Voltage		rated voltage (Ur) a arge / discharge res		ΔC/C		within +10/-20% of initial value for Vr ≤ 10V within +20/-30% of initial value for Vr ≥ 16V						
	1000 cycles, che	inge / discharge res	istance oom.	DF		it for Vr≤1 ial limit for						
				ESR	1.25 x ini	tial limit						
				Visual examination	no visibl	e damage						
Maabaniaal				DCL	initial lim	nit						
Mechanical	MIL-STD-202, M	ethod 213, Conditio	n F	ΔC/C	within ±1	10% of init	ial value					
Shock				DF	initial lim	nit						
				ESR	1.25 x in	itial limit						
				Visual examination	no visibl	e damage						
				DCL	initial lim	nit						
Vibration	MIL-STD-202, M	ethod 204, Conditio	n D	ΔC/C	within ±1	10% of init	ial value					
				DF	initial lim	initial limit						
				ESR	1.25 x in	itial limit						

^{*}Initial Limit

For use outside of recommended conditions and special request, please contact AVX. Initial measurement max. 1hr after the removal from dry pack or after pretreatment at 85°C for 24 hours.

High Temperature Automotive Polymer Chip Capacitors

SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: Conductive Polymer

Automotive Conductive Polymer Chip Capacitors

MARKING

FEATURES

- Conductive Polymer Electrode
- Benign Failure Mode Under Recommended Use Conditions
- Robust Design for Automotive Applications
- Meets Requirements of AEC-Q200
- Humidity 85°C/85%RH, Vr, 1000 hours
- Basic Reliability 1%/1000hrs@85°C Vr with 60% Confidence Level
- -55 to +125°C Operation Temperature
- Full Voltage Range: 2.5-50V
- DCL 0.1 CV
- 3x Reflow 260°C Compatible
- 100% Surge Current Tested

APPLICATIONS

DC/DC converters, Telecommunication (coupling/decoupling), Industrial & special, Automotive (body electronics, cabin controls, infotainment, comfort, after market etc)

Not recommended for use of conductive polymer parts in high power applications. For more information please see AVX automotive application guide at avx.com (see the link: http://www.avx.com/docs/techinfo/ApplicationGuides/Automotive-Application-Guide.pdf), or

AVX's qualification of TCQ capacitors meets requirements of AEC-Q200. TCQ series is manufactured in an IATF 16949 certified facility.

CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W₁±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
Е	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
U	2924	7361-43	7.30 (0.287)	6.10 (0.240)	4.10 (0.162)	3.10 (0.122)	1.30 (0.051)	4.40 (0.173)
Υ	2917	7343-20	7.30 (0.287)	4.30 (0.169)	2.00 (0.079) max	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only.

HOW TO ORDER

Rated DC Voltage 002 = 2.5Vdc 004 = 4Vdc

> 016 = 16 Vdc020 = 20Vdc 025 = 25Vdc 035 = 35Vdc 050 = 50 Vdc

Packaging R = Pure Tin 7" Reel S = Pure Tin 13" Reel 006 = 6.3 Vdc010 = 10 Vdc

0070

ESR in $m\Omega$

Ε Additional Character E = Black resin

TECHNICAL SPECIFICATIONS

Technical Data:	All technical data relate to an ambient temperature of +25°C	
Capacitance Range:	10 μF to 470 μF	
Capacitance Tolerance:	±20%	
Leakage Current DCL:	0.1CV	
Temperature Range:	-55°C to +125°C	
	Meets requirements of AEC-Q200	

NOTE: Conductive Polymer Capacitors are designed to operate within the limits of the environmental conditions specified for each series. If operated continuously at their maximum temperature and / or humidity limit, or beyond these limits, capacitors may exhibit a parametric shift in capacitance and increases in ESR. These changes may occur earlier if the specified environmental conditions are exceeded. Similarly, their normal operational time period will be significantly extended if their general duty cycle includes operation below maximum temperature within humidity controlled environments. Careful attention should be paid to maximum temperature with associated high humidity environments as well as voltage derating, ripple current and current surges. Please reference the AVX Conductive Polymer Capacitor Guidelines for more information or contact factory for application assistance.

Automotive Conductive Polymer Chip Capacitors

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance				Rated Vo	oltage DC (V _R)	@ 105°C			
μF	Code	2.5 (e)	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)
10	106						B(150)		D(70)	D(90)
15	156					B(90)	B(150)	D(70)	D(125)	
22	226			B(70)	B(70)	B(70)	D(70)	D(100)	D(100)	
33	336			B(70)	B(70)	D(70),Y(70)	D(70)	D(100)	E(65), U(70)	
47	476			B(70)	B(70)	D(70),Y(70)	D(70),Y(70)	E(50)	E(75), U(70)	
68	686			B(70)	D(25,40)	D(70)		E(60)		
100	107	B(70)	B(70)		D(25,40)		E(40)	U(70)		
150	157			D(25,40)	D(25)	E(40)				
220	227		D(25),Y(25)	D(25)	D(25)					
330	337		D(25)	D(25)						
470	477		D(25)							

Released ratings, (ESR ratings in mOhms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

RATINGS & PART NUMBER REFERENCE

AVX Part No.	Case	Capacitance	Rated Voltage	Maximum Operating Temp.	DCL Max	DF Max	ESR Max @ 100kHz	100	kHz RMS	Current	(mA)	Humidity 85°C/85% RH. Vr	MSL
AVAT dittio.	Size	(μF)	(V)	(°C)	(µA)	(%)	(mΩ)	45°C	85°C	105°C	125°C	(hrs)	I
					2.5 Volt								
TCQB107M002#0070E	В	100	2.5	125	25	6	70	1336	935	601	334	1000	3
					4 Volt								
TCQB107M004#0070E	В	100	4	125	40	8	70	1336	935	601	334	1000	3
TCQD227M004#0025E	D	220	4	125	88	6	25	3000	2100	1350	750	1000	3
TCQY227M004#0025E	Y	220	4	125	88	6	25	2720	1904	1224	680	1000	3
TCQD337M004#0025E	D	330	4	125	132	6	25	3000	2100	1350	750	1000	3
TCQD477M004#0025E	D	470	4	125	188	6	25	3000	2100	1350	750	1000	3
					6.3 Volt								
TCQB226M006#0070E	В	22	6.3	125	13.2	6	70	1336	935	601	334	1000	3
TCQB336M006#0070E	В	33	6.3	125	19.8	6	70	1336	935	601	334	1000	3
TCQB476M006#0070E	В	47	6.3	125	28.2	6	70	1336	935	601	334	1000	3
TCQB686M006#0070E	В	68	6.3	125	40.8	8	70	1336	935	601	334	1000	3
TCQD157M006#0025E	D	150	6.3	125	90	6	25	3000	2100	1350	750	1000	3
TCQD157M006#0040E	D	150	6.3	125	90	6	40	2372	1660	1067	593	1000	3
TCQD227M006#0025E	D	220	6.3	125	132	6	25	3000	2100	1350	750	1000	3
TCQD337M006#0025E	D	330	6.3	125	198	6	25	3000	2100	1350	750	1000	3
					10 Volt								
TCQB226M010#0070E	В	22	10	125	22	6	70	1336	935	601	334	1000	3
TCQB336M010#0070E	В	33	10	125	33	6	70	1336	935	601	334	1000	3
TCQB476M010#0070E	В	47	10	125	47	6	70	1336	935	601	334	1000	3
TCQD686M010#0025E	D	68	10	125	68	6	25	3000	2100	1350	750	1000	3
TCQD686M010#0040E	D	68	10	125	68	6	40	2372	1660	1067	593	1000	3
TCQD107M010#0025E	D	100	10	125	100	6	25	3000	2100	1350	750	1000	3
TCQD107M010#0040E	D	100	10	125	100	6	40	2372	1660	1067	593	1000	3
TCQD157M010#0025E	D	150	10	125	150	6	25	3000	2100	1350	750	1000	3
TCQD227M010#0025E	D	220	10	125	220	6	25	3000	2100	1350	750	1000	3
					16 Volt								
TCQB156M016#0090E	В	15	16	125	24	8	90	1179	825	530	295	1000	3
TCQB226M016#0070E	В	22	16	125	35.2	8	70	1336	935	601	334	1000	3
TCQD336M016#0070E	D	33	16	125	52.8	6	70	1793	1255	807	448	1000	3
TCQY336M016#0070E	Υ	33	16	125	52.8	6	70	1626	1138	732	406	1000	3
TCQD476M016#0070E	D	47	16	125	75.2	6	70	1793	1255	807	448	1000	3
TCQY476M016#0070E	Y	47	16	125	75.2	6	70	1626	1138	732	406	1000	3
TCQD686M016#0070E	D	68	16	125	109	8	70	1793	1255	807	448	1000	3
TCQE157M016#0040E	E	150	16	125	240	10	40	2500	1750	1125	625	1000	3
					20 Volt								
TCQB106M020#0150E	В	10	20	125	20	8	150	913	639	411	228	1000	3
TCQB156M020#0150E	В	15	20	125	30	8	150	913	639	411	228	1000	3
TCQD226M020#0070E	D	22	20	125	44	6	70	1793	1255	807	448	1000	3
TCQD336M020#0070E	D	33	20	125	66	8	70	1793	1255	807	448	1000	3
TCQD476M020#0070E	D	47	20	125	94	6	70	1793	1255	807	448	1000	3
TCQY476M020#0070E	Υ	47	20	125	94	6	70	1626	1138	732	406	1000	3
TCQE107M020#0040E	E	100	20	125	200	10	40	2500	1750	1125	625	1000	3

Automotive Conductive Polymer Chip Capacitors

RATINGS & PART NUMBER REFERENCE

AVV Dovi No	Case	Capacitance	Rated	Maximum	DCL	DF	ESR Max	100	kHz RMS	Current (mA)	Humidity	MCI
AVX Part No.	Size	(μ F)	Voltage (V)	Operating Temp. (°C)	Max (µA)	Max (%)	@ 100kHz (mΩ)	45°C	85°C	105°C	125°C	85°C/85% RH, Vr (hrs)	MSL
					25 Volt								
TCQD156M025#0070E	D	15	25	125	37.5	6	70	1793	1255	807	448	1000	3
TCQD226M025#0100E	D	22	25	125	55	8	100	1500	1050	675	375	1000	3
TCQD336M025#0100E	D	33	25	125	82.5	8	100	1500	1050	675	375	1000	3
TCQE476M025R0050E	E	47	25	125	117.5	10	50	2236	1565	1006	559	1000	3
TCQE686M025R0060E	E	68	25	125	170	10	60	2041	1429	919	510	1000	3
TCQU107M025R0070E	U	100	25	125	250	12	70	2330	1631	1048	582	1000	3
					35 Volt								
TCQD106M035#0070E	D	10	35	125	35	6	70	1793	1255	807	448	1000	3
TCQD156M035#0125E	D	15	35	125	52.5	8	125	1342	939	604	335	1000	3
TCQD226M035#0100E	D	22	35	125	77	8	100	1500	1050	675	375	1000	3
TCQU336M035R0070E	U	33	35	125	115.5	12	70	2330	1631	1048	582	1000	3
TCQE336M035R0065E	E	33	35	125	115.5	10	65	1961	1373	883	490	1000	3
TCQE476M035R0075E	E	47	35	125	164.5	10	75	1826	1278	822	456	1000	3
TCQU476M035R0070E	U	47	35	125	164.5	12	70	2330	1631	1048	582	1000	3
	50 Volt												
TCQD106M050#0090E	D	10	50	125	50	10	90	1581	1107	712	395	1000	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020. All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5RMS with DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

ESR allowed to move up to 1.25 times catalog limit post mounting.

For typical weight and composition see page 276.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

RECOMMENDED DERATING FACTOR

Voltage and temperature derating as percentage of Vr

Rated	Operat	ing Tempe	erature
voltage	≤85°C	105°C	125°C
≤10V	90%	90%	60%
≥16V	80%	80%	54%

Automotive Conductive Polymer Chip Capacitors

QUALIFICATION TABLE

TECT	TCQ series (Temperature range -55°C to 125°C)										
TEST		Condition			Cł	aracteri	of initial value of initial value ge of initial value cc +20°C +85°C +125°C IL* 10 x IL* 12.5 x IL* 6 ±5% ±20% ±30% IL* 1.2 x IL* 1.5 x IL* ge of initial value for Vr ≤ 10V of initial value for Vr ≥ 16V ≤ 10V for Vr ≥ 16V ge initial value it				
				Visual examination	no visible	no visible damage					
	Apply 2/3 rated v	oltage (Ur) at 125°	C for 2000 hours	DCL	2 x initial	2 x initial limit					
Endurance		impedance of ≤0.1		ΔC/C	within +1	within +10/-20% of initial value					
	room temperatur	e for 1-2 hours bef	ore measuring.	DF	2 x initial	2 x initial limit					
				ESR	2 x initial	2 x initial limit					
				Visual examination	no visible	damage					
	Store at 125°C r	o voltage applied, f	or 2000 hours	DCL	2x initial	limit					
Storage Life		temperature for 1-		ΔC/C	within +1	0/-20% of i	initial value)			
	measuring.	·		DF	2 x initial	limit					
				ESR	2 x initial	2 x initial limit					
				Visual examination	no visibl	e damage					
		ge (Ur) at 85°C, 85°		DCL	2 x initia						
Biased Humidity		0 hours. Stabilize a		ΔC/C	within +:	within +35/-5% of initial value					
	temperature and measuring.	humidity for 1-2 ho	ours before	DF	1.5 x init	1.5 x initial limit					
	measuring.			ESR	2 x initia	l limit					
	Step Temperature°C		Duration(min)			1		.0500	.10500	. 0000	
	1	+20	15		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C	
Temperature Stability	2	-55	15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*	
	3	+20	15	ΔC/C	n/a	±20%	+5%	+20%	+20%	±5%	
	5	+85 +125	15 15	<u> </u>	11/ a	120%	13%	120%	130%	13%	
	6	+20	15	DF	IL*	IL*	IL*	1.2 x IL*	1.5 x IL*	IL*	
		1		Visual examination	no visible	no visible damage					
				DCL	initial lim	initial limit					
Surge Voltage	1000 cycles of d	rated voltage (Ur) a uration 6 min (30 so	ec charge, 5 min	ΔC/C		within +10/-20% of initial value for Vr ≤ 10V within +20/-30% of initial value for Vr ≥ 16V					
	resistance of 100	e) through a charge ΣΟΩ	/ discharge	DF		initial limit for Vr ≤ 10V 1.25x initial limit for Vr ≥ 16V					
				ESR	1.25 x ini	isible damage il limit in +10/-20% of initial value for Vr ≤ 10V in +20/-30% of initial value for Vr ≥ 16V il limit for Vr ≤ 10V					
				Visual examination	no visibl	e damage					
				DCL	initial lin	nit					
Mechanical	MIL-STD-202, Me	ethod 213, Conditio	n F	ΔC/C	within ±	10% of init	ial value				
Shock				DF	initial lin	nit					
				ESR	1.25 x in	itial limit					
				Visual examination	no visibl	e damage					
				DCL	initial lin						
Vibration	MIL-STD-202. Me	ethod 204, Conditio	n D	ΔC/C			ial value				
		, , , , , , , , , , , , , , , , , , , ,		DF							
				ESR		initial limit 1.25 x initial limit					

^{*}Initial Limi

For use outside of recommended conditions and special request, please contact AVX.

Initial measurement max. 1hr after the removal from dry pack or after pretreatment at 85° C for 24 hours.

Automotive Conductive Polymer Chip Capacitors

SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: Conductive Polymer

Introduction

Foreword

AVX offers a broad line of solid Tantalum capacitors in a wide range of sizes, styles, and ratings to meet any design needs. This catalog combines into one source AVX's leaded tantalum capacitor information from its worldwide tantalum operations.

The TAP/TEP is rated for use from -55°C to +85°C at rated voltage and up to +125°C with voltage derating. There are three preferred wire forms to choose from which are available on tape and reel, and in bulk for hand insertion.

AVX has a complete tantalum applications service available for use by all our customers. With the capability to prototype and mass produce solid tantalum capacitors in special configurations, almost any design need can be fulfilled. And if the customer requirements are outside our standard testing, AVX will work with you to define and implement a test or screening plan.

AVX is determined to become the world leader in tantalum capacitor technology and has made, and is continuing to make, significant investments in equipment and research to reach that end. We believe that the investment has paid off with the devices shown on the following pages.

Dipped Radial Capacitors

SOLID TANTALUM RESIN DIPPED SERIES TAP/TEP

The TAP/TEP resin dipped series of miniature tantalum capacitors is available for individual needs in both commercial and professional applications. From computers to automotive to industrial, AVX has a dipped radial for almost any application.

SOLID TANTALUM RESIN DIPPED TAP/TEP

Preferred Wire Forms

Non-Preferred Wire Forms (Not recommended for new designs)

DIMENSIONS millimeters (inches)

Timilinetero (mones										
Wire Form	Figure	Case Size	L (see note 1)	S	d	Packaging Suffixes Available*				
Preferred W	/ire Forms									
С	Figure 1	A - R*	16.0±4.00 (0.630±0.160)	5.00±1.00 (0.200±0.040)	0.50±0.05 (0.020±0.002)	CCS Bulk CRW Tape/Reel CRS Tape/Ammo				
В	Figure 2	A - J*	16.0±4.00 (0.630±0.160)	5.00±1.00 (0.200±0.040)	0.50±0.05 (0.020±0.002)	BRW Tape/Reel BRS Tape/Ammo				
S	Figure 3	A - J*	16.0±4.00 (0.630±0.160)	2.50±0.50 (0.100±0.020)	0.50±0.05 (0.020±0.002)	SCS Bulk SRW Tape/Reel SRS Tape/Ammo				
Non-Preferi	red Wire Forms	(Not recomme	ended for new desig	ns)						
F	Figure 4	A - R	3.90±0.75 (0.155±0.030)	5.00±0.50 (0.200±0.020)	0.50±0.05 (0.020±0.002)	FCS Bulk				
D	Figure 5	A - H*	16.0±4.00 (0.630±0.160)	2.50±0.75 (0.100±0.020)	0.50±0.05 (0.020±0.002)	DCS Bulk DTW Tape/Reel DTS Tape/Ammo				
G	Figure 6	A - J	16.0±4.00 (0.630±0.160)	3.18±0.50 (0.125±0.020)	0.50±0.05 (0.020±0.002)	GSB Bulk				
Н	Similar to Figure 1	A - R	16.0±4.00 (0.630±0.160)	6.35±1.00 (0.250±0.040)	0.50±0.05 (0.020±0.002)	HSB Bulk				

: (1) Lead lengths can be supplied to tolerances other than those above and should be specified in the ordering information.

^{*} For case size availability in tape and reel, please refer to pages 253-254.

⁽²⁾ For D, H, and H1 dimensions, refer to individual product on following pages.

SOLID TANTALUM RESIN DIPPED CAPACITORS

TAP is a professional grade device manufactured with a flame retardant coating and featuring low leakage current and impedance, very small physical sizes and exceptional temperature stability. It is designed and conditioned to operate to +125°C (see page 282 for voltage derating above 85°C) and is available loose or taped and reeled for auto insertion. The 15 case sizes with wide capacitance and working voltage ranges means the TAP can accommodate almost any application.

MAXIMUM CASE DIMENSIONS:

millimeter

			(inahaa)
Wire	C, F, G, H	B, S, D	
Case	Н	*H₁	D
Α	8.50 (0.330)	7.00 (0.280)	4.50 (0.180)
В	9.00 (0.350)	7.50 (0.300)	4.50 (0.180)
С	10.0 (0.390)	8.50 (0.330)	5.00 (0.200)
D	10.5 (0.410)	9.00 (0.350)	5.00 (0.200)
E	10.5 (0.410)	9.00 (0.350)	5.50 (0.220)
F	11.5 (0.450)	10.0 (0.390)	6.00 (0.240)
G	11.5 (0.450)	10.0 (0.390)	6.50 (0.260)
Н	12.0 (0.470)	10.5 (0.410)	7.00 (0.280)
J	13.0 (0.510)	11.5 (0.450)	8.00 (0.310)
K	14.0 (0.550)	12.5 (0.490)	8.50 (0.330)
L	14.0 (0.550)	12.5 (0.490)	9.00 (0.350)
M	14.5 (0.570)	13.0 (0.510)	9.00 (0.350)
N	16.0 (0.630)		9.00 (0.350)
Р	17.0 (0.670)		10.0 (0.390)
R	18.5 (0.730)		10.0 (0.390)

HOW TO ORDER

TAP

Type

Capacitance Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow)

 $K = \pm 10\%$ $M = \pm 20\%$ (For $J = \pm 5\%$ tolerance, please consult factory)

Rated DC Voltage

TAP Series

TECHNICAL SPECIFICATIONS

Technical Data:	All technical data relate to an ambient temperature of +25°C								
Capacitance Range:	0.10 μF to 330 μF								
Capacitance Tolerance:	±20%; ±10% (±5% consult your AVX representative for details)								
Rated Voltage DC (V _R)	≤ +85°C:	6.3	10	16	20	25	35	50	
Category Voltage (V _C)	≤ +125°C:	4	6.3	10	13	16	23	33	
Surge Voltage (V _s)	≤ +85°C:	8	13	20	26	33	46	65	
Surge Voltage (V _s)	≤ +125°C: 5 9 12 16 21 28 40								
Temperature Range:		-55°C	to +	125°C	;				
Environmental Classification:		55/12	25/56	(IEC 6	58-2)				
Dissipation Factor:		≤0.04	for C	0.1-1.	.5µF				
		≤0.06	for C	C _R 2.2-	6.8µF	:			
		≤0.08	for C	C _R 10-6	58µF				
		≤0.10	for C	$C_{R} 100$	-330 _k	ıF			
Reliability:		1% pe	er 100	00 hrs.	at 85	°C w	ith 0.1	Ω/V	series impedance, 60% confidence level.
Qualification:		CECC	302	01 - 0	32				

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance			Ra	ated Voltage DC (\	/ _R)		
μF	Code	6.3V	10V	16V	20V	25V	35V	50V
0.10	104						Α	Α
0.15	154						А	Α
0.22	224						Α	Α
0.33	334						Α	Α
0.47	474						Α	Α
0.68	684						Α	В
1.0	105				А	Α	Α	С
1.5	155			Α	А	Α	А	D
2.2	225		Α	Α	Α	Α	В	E
3.3	335	Α	Α	Α	В	В	С	F
4.7	475	Α	Α	В	С	С	E	G
6.8	685	Α	В	С	D	D	F	Н
10	106	В	С	D	E	E	F	J
15	156	С	D	Е	F	F	Н	K
22	226	D	E	F	Н	Н	K	L
33	336	Е	F	F	J	J	М	
47	476	F	G	J	K	М	N	
68	686	G	Н	L	N	N		
100	107	Н	K	N	N			
150	157	K	N	N				
220	227	М	Р	R				
330	337	Р	R					

Values outside this standard range may be available on request.

AVX reserves the right to supply capacitors to a higher voltage rating, in the same case size, than that ordered.

MARKING

Polarity, capacitance, rated DC voltage, and an "A" (AVX logo) are laser marked on the capacitor body which is made of flame retardant gold epoxy resin with a limiting oxygen index in excess of 30 (ASTM-D-2863).

Polarity ±20% = Standard (no marking)
 Capacitance ±10% = "K" on reverse side of unit
 ±5% = "J" on reverse side of unit

AVX logo

Tolerance code:

RATINGS AND PART NUMBER REFERENCE

	1				
AVX	Case	Capacitance	DCL (µA)	DF %	ESR Max. (Ω)
Part No.	Size	(μF)	Max.	Max.	@ 100 kHz
	6.3 v	olt @ 85°C (4 v	volt @ 125°C		
TAP 335(*)006	Α	3.3	0.5	6	13.0
TAP 475(*)006	Α	4.7	0.5	6	10.0
TAP 685(*)006	Α	6.8	0.5	6	8.0
TAP 106(*)006	В	10	0.5	8	6.0
TAP 156(*)006	С	15	0.8	8	5.0
TAP 226(*)006	D	22	1.1	8	3.7
TAP 336(*)006	E	33	1.7	8	3.0
TAP 476(*)006	F	47	2.4	8	2.0
TAP 686(*)006	G	68	3.4	8	1.8
TAP 107(*)006	Н	100	5.0	10	1.6
TAP 157(*)006	K	150	7.6	10	0.9
TAP 227(*)006	M	220	11.0	10	0.9
TAP 337(*)006	P 10 110	330	16.6	10	0.7
TAD 225(+)010		lt @ 85°C (6.3			12.0
TAP 225(*)010 TAP 335(*)010	A	3.3	0.5 0.5	6	13.0 10.0
TAP 475(*)010	A	4.7	0.5	6	8.0
TAP 685(*)010	В	6.8	0.5	6	6.0
TAP 106(*)010	С	10	0.8	8	5.0
TAP 156(*)010	D	15	1.2	8	3.7
TAP 226(*)010	E	22	1.7	8	2.7
TAP 336(*)010	F	33	2.6	8	2.1
TAP 476(*)010	G	47	3.7	8	1.7
TAP 686(*)010	Н	68	5.4	8	1.3
TAP 107(*)010	К	100	8.0	10	1.0
TAP 157(*)010	N	150	12.0	10	0.8
TAP 227(*)010	Р	220	17.6	10	0.6
TAP 337(*)010	R	330	20.0	10	0.5
	16 vc	olt @ 85°C (10	volt @ 125°C)	
TAP 155(*)016	Α	1.5	0.5	4	10.0
TAP 225(*)016	Α	2.2	0.5	6	8.0
TAP 335(*)016	Α	3.3	0.5	6	6.0
TAP 475(*)016	В	4.7	0.6	6	5.0
TAP 685(*)016	С	6.8	0.8	6	4.0
TAP 106(*)016	D	10	1.2	8	3.2
TAP 156(*)016	Е	15	1.9	8	2.5
TAP 226(*)016	F	22	2.8	8	2.0
TAP 336(*)016	F	33	4.2	8	1.6
TAP 476(*)016	J	47	6.0	8	1.3
TAP 686(*)016	L	68	8.7	8	1.0
TAP 107(*)016	N	100	12.8	10	0.8
TAP 157(*)016	N	150	19.2	10	0.6
TAP 227(*)016	R	220	20.0	10	0.5
TAD 105(±)000		olt @ 85°C (13			10.0
TAP 105(*)020	Α	1.0	0.5	4	10.0
TAP 155(*)020	A	1.5	0.5	4	9.0
TAP 225(*)020	A	2.2	0.5	6	7.0
TAP 475(*)020	В	3.3	0.5	6	5.5
TAP 475(*)020	С	4.7 6.8	0.7	6	4.5
TAP 685(*)020	D E		1.0	6 8	3.6
TAP 106(*)020 TAP 156(*)020	F	10	1.6 2.4		2.9
TAP 156(*)020	Н	15 22	3.5	8	2.3 1.8
TAP 336(*)020	J	33	5.2	8	1.6
TAP 476(*)020	K	47	7.5	8	1.4
TAP 686(*)020	N	68	10.8	8	0.9
TAP 107(*)020	N	100	16.0	10	0.9
TAI 107 ()020		100	10.0	10	0.0

AVX	Case	Capacitance	DCL (uA)	DF %	ESR Max. (Ω)
Part No.	Size	(μ F)	Max.	Max.	@ 100 kHz
	25 vo	olt @ 85°C (16	volt @ 125°C)	
TAP 105(*)025	Α	1.0	0.5	4	10.0
TAP 155(*)025	Α	1.5	0.5	4	8.0
TAP 225(*)025	Α	2.2	0.5	6	6.0
TAP 335(*)025	В	3.3	0.6	6	5.0
TAP 475(*)025	С	4.7	0.9	6	4.0
TAP 685(*)025	D	6.8	1.3	6	3.1
TAP 106(*)025	E	10	2.0	8	2.5
TAP 156(*)025	F	15	3.0	8	2.0
TAP 226(*)025	Н	22	4.4	8	1.5
TAP 336(*)025	J	33	6.6	8	1.2
TAP 476(*)025	М	47	9.4	8	1.0
TAP 686(*)025	N	68	13.6	8	0.8
	35 vo	olt @ 85°C (23	volt @ 125°C)	
TAP 104(*)035	Α	0.1	0.5	4	26.0
TAP 154(*)035	Α	0.15	0.5	4	21.0
TAP 224(*)035	Α	0.22	0.5	4	17.0
TAP 334(*)035	Α	0.33	0.5	4	15.0
TAP 474(*)035	Α	0.47	0.5	4	13.0
TAP 684(*)035	Α	0.68	0.5	4	10.0
TAP 105(*)035	Α	1.0	0.5	4	8.0
TAP 155(*)035	Α	1.5	0.5	4	6.0
TAP 225(*)035	В	2.2	0.6	6	5.0
TAP 335(*)035	С	3.3	0.9	6	4.0
TAP 475(*)035	E	4.7	1.3	6	3.0
TAP 685(*)035	F	6.8	1.9	6	2.5
TAP 106(*)035	F	10	2.8	8	2.0
TAP 156(*)035	Н	15	4.2	8	1.6
TAP 226(*)035	K	22	6.1	8	1.3
TAP 336(*)035	М	33	9.2	8	1.0
TAP 476(*)035	N	47	10.0	8	0.8
		olt @ 85°C (33			
TAP 104(*)050	Α	0.1	0.5	4	26.0
TAP 154(*)050	Α	0.15	0.5	4	21.0
TAP 224(*)050	Α	0.22	0.5	4	17.0
TAP 334(*)050	Α	0.33	0.5	4	15.0
TAP 474(*)050	Α	0.47	0.5	4	13.0
TAP 684(*)050	В	0.68	0.5	4	10.0
TAP 105(*)050	С	1.0	0.5	4	8.0
TAP 155(*)050	D	1.5	0.6	4	6.0
TAP 225(*)050	E	2.2	0.8	6	3.5
TAP 335(*)050	F	3.3	1.3	6	3.0
TAP 475(*)050	G	4.7	1.8	6	2.5
TAP 685(*)050	Н	6.8	2.7	6	2.0
TAP 106(*)050	J	10	4.0	8	1.6
TAP 156(*)050	K	15	6.0	8	1.2
TAP 226(*)050	L	22	8.8	8	1.0

(*) Insert capacitance tolerance code; M for $\pm 20\%$, K for $\pm 10\%$ and J for $\pm 5\%$ NOTE: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size.

TEP Series Tin-Lead (Sn/Pb) Finish Product

TEP is a Tin-Lead finish version of the conformally coated tantalum radial leaded capacitor (TAP), It is a professional grade device manufactured with a flame retardant coating and featuring low leakage current and impedance, very small physical sizes and exceptional temperature stability, available in bulk and T&R packaging for auto insertion. The wide range of Capacitance, working voltages and case sizes enables TEP to accommodate to almost any application.

Not RoHS Compliant

CASE DIMENSIONS:

millimeters (inches)

Wire	C, F, G, H	B, S, D	
Case	Н	*H₁	D
Α	8.50 (0.335)	7.00 (0.276)	4.50 (0.177)
В	9.00 (0.354)	7.50 (0.295)	4.50 (0.177)
С	10.0 (0.394)	8.50 (0.335)	5.00 (0.197)
D	10.5 (0.413)	9.00 (0.354)	5.00 (0.197)
E	10.5 (0.413)	9.00 (0.354)	5.50 (0.217)
F	11.5 (0.453)	10.0 (0.394)	6.00 (0.236)
G	11.5 (0.453)	10.0 (0.394)	6.50 (0.256)
Н	12.0 (0.472)	10.5 (0.413)	7.00 (0.276)
J	13.0 (0.512)	11.5 (0.453)	8.00 (0.315)
K	14.0 (0.551)		8.50 (0.335)
L	14.0 (0.551)		9.00 (0.354)
M	14.5 (0.571)		9.00 (0.354)
N	16.0 (0.630)		9.00 (0.354)
Р	17.0 (0.669)		10.0 (0.394)
R	18.5 (0.728)		10.0 (0.394)

HOW TO ORDER

TEP

106

Capacitance Code
pF code: 1st two digits
represent significant
figures, 3rd digit represents
multiplier (number of zeros
to follow)

 $\begin{tabular}{ll} \hline M \\ \hline \hline \\ \hline Capacitance Tolerance \\ K = \pm 10\% \\ M = \pm 20\% \\ \hline \end{tabular}$

(For $J = \pm 5\%$ tolerance,

please consult factory)

016

Rated DC Voltage

Suffix indicating wire form and packaging (see page 246)

TEP Series

TECHNICAL SPECIFICATIONS

Technical Data:	All technical data relate to an ambient temperature of +25°C									
Capacitance Range:		0.10 μF to 330 μF								
Capacitance Tolerance:	±10%; ±20% (±5% consult your AVX representative for details)									
Rated Voltage DC (V _R)	≤ +85°C:	≤ +85°C: 6.3 10 16 20 25 35 50								
Category Voltage (V _c)	≤ +125°C:	4	6.3	10	13	16	23	33		
Surge Voltage (V _s)	≤ +85°C:	8	13	20	26	33	46	65		
Surge Voltage (V _s)	≤+125°C: 5 9 12 16 21 28 40									
Temperature Range:		-55°C	to +	125°C	;			•		
Dissipation Factor:		≤0.04	for C	_R 0.1-1	Ι.5μF					
		≤0.06	for C	C _R 2.2-	∙6.8µF	•				
	≤0.08 for C _R 10-68µF									
		≤0.10	for C	$C_{R} 100$	-330 _k	ıF				
Reliability:		1% pe	er 100	0 hrs.	at 85°	$^{\circ}$ C, V_{R}	with ().1Ω/\	V series impedance, 60% confidence level.	

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance			Ra	ated Voltage DC (\	/ _P)		
μF	Code	6.3V	10V	16V	20V	25V	35V	50V
0.10	104						А	Α
0.15	154						А	Α
0.22	224						Α	Α
0.33	334						Α	Α
0.47	474						Α	Α
0.68	684						А	В
1.0	105				Α	Α	Α	С
1.5	155			Α	Α	Α	Α	D
2.2	225		Α	Α	Α	Α	В	E
3.3	335	Α	Α	Α	В	В	С	F
4.7	475	Α	Α	В	С	С	Е	G
6.8	685	Α	В	С	D	D	F	Н
10	106	В	С	D	E	E	F	J
15	156	С	D	Е	F	F	Н	K
22	226	D	E	F	Н	Н	K	L
33	336	Е	F	F	J	J	М	
47	476	F	G	J	K	M	N	
68	686	G	Н	L	N	N		
100	107	Н	K	N	N			
150	157	K	N	N				
220	227	M	Р	R				
330	337	Р	R					

Values outside this standard range may be available on request.

AVX reserves the right to supply capacitors to a higher voltage rating, in the same case size, than that ordered.

MARKING

Polarity, capacitance, rated DC voltage, and an "A" (AVX logo) are laser marked on the capacitor body which is made of flame retardant gold epoxy resin with a limiting oxygen index in excess of 30 (ASTM-D-2863).

Polarity ±20% = Standard (no marking)
 Capacitance ±10% = "K" on reverse side of unit
 Voltage ±5% = "J" on reverse side of unit

Tolerance code:

RATINGS AND PART NUMBER REFERENCE

AVX Part No.	Case Size	Cap (µF)	DCL (µA) Max.	DF % Max.	ESR Max. (Ω) @100kHz
TEP335(*)006	Α	3.3	0.5	6	13
TEP475(*)006	Α	4.7	0.5	6	10
TEP685(*)006	Α	6.8	0.5	6	8
TEP106(*)006	В	10	0.5	8	6
TEP156(*)006	С	15	0.8	8	5
TEP226(*)006	D	22	1.1	8	3.7
TEP336(*)006	Е	33	1.7	8	3
TEP476(*)006	F	47	2.4	8	2
TEP686(*)006	G	68	3.4	8	1.8
TEP107(*)006	Н	100	5	10	1.6
TEP157(*)006	K	150	7.6	10	0.9
TEP227(*)006	М	220	11	10	0.9
TEP337(*)006	Р	330	16.6	10	0.7
TEP335(*)006	Α	3.3	0.5	6	13
TEP225(*)010	Α	2.2	0.5	6	13
TEP335(*)010	Α	3.3	0.5	6	10
TEP475(*)010	Α	4.7	0.5	6	8
TEP685(*)010	В	6.8	0.5	6	6
TEP106(*)010	С	10	0.8	8	5
TEP156(*)010	D	15	1.2	8	3.7
TEP226(*)010	Е	22	1.7	8	2.7
TEP336(*)010	F	33	2.6	8	2.1
TEP476(*)010	G	47	3.7	8	1.7
TEP686(*)010	Н	68	5.4	8	1.3
TEP107(*)010	K	100	8	10	1
TEP157(*)010	N	150	12	10	0.8
TEP227(*)010	Р	220	17.6	10	0.6
TEP337(*)010	R	330	20	10	0.5
TEP155(*)016	Α	1.5	0.5	4	10
TEP225(*)016	Α	2.2	0.5	6	8
TEP335(*)016	Α	3.3	0.5	6	6
TEP475(*)016	В	4.7	0.6	6	5
TEP685(*)016	С	6.8	0.8	6	4
TEP106(*)016	D	10	1.2	8	3.2
TEP156(*)016	Е	15	1.9	8	2.5
TEP226(*)016	F	22	2.8	8	2
TEP336(*)016	F	33	4.2	8	1.6
TEP476(*)016	J	47	6	8	1.3
TEP686(*)016	L	68	8.7	8	1
TEP107(*)016	N	100	12.8	10	0.8
TEP157(*)016	N	150	19.2	10	0.6
TEP227(*)016	R	220	20	10	0.5
TEP105(*)020	A	1	0.5	4	10
TEP155(*)020	A	1.5	0.5	4	9
TEP225(*)020	A	2.2	0.5	6	7
TEP335(*)020	В	3.3	0.5	6	5.5
TEP475(*)020	C	4.7	0.7	6	4.5
TEP685(*)020	D	6.8	1	6	3.6
TEP106(*)020	E	10	1.6	8	2.9
TEP156(*)020	F	15	2.4	8	2.3

AVX Part No.	Case Size	Cap (µF)	DCL (μA) Max.	DF % Max.	ESR Max. (Ω) @100kHz
TEP226(*)020	Н	22	3.5	8	1.8
TEP336(*)020	J	33	5.2	8	1.4
TEP476(*)020	K	47	7.5	8	1.2
TEP686(*)020	N	68	10.8	8	0.9
TEP107(*)020	N	100	16	10	0.6
TEP105(*)025	Α	1	0.5	4	10
TEP155(*)025	Α	1.5	0.5	4	8
TEP225(*)025	Α	2.2	0.5	6	6
TEP335(*)025	В	3.3	0.6	6	5
TEP475(*)025	С	4.7	0.9	6	4
TEP685(*)025	D	6.8	1.3	6	3.1
TEP106(*)025	Е	10	2	8	2.5
TEP156(*)025	F	15	3	8	2
TEP226(*)025	Н	22	4.4	8	1.5
TEP336(*)025	J	33	6.6	8	1.2
TEP476(*)025	М	47	9.4	8	1
TEP686(*)025	N	68	13.6	8	0.8
TEP104(*)035	Α	0.1	0.5	4	26
TEP154(*)035	Α	0.15	0.5	4	21
TEP224(*)035	Α	0.22	0.5	4	17
TEP334(*)035	Α	0.33	0.5	4	15
TEP474(*)035	Α	0.47	0.5	4	13
TEP684(*)035	Α	0.68	0.5	4	10
TEP105(*)035	Α	1	0.5	4	8
TEP155(*)035	Α	1.5	0.5	4	6
TEP225(*)035	В	2.2	0.6	6	5
TEP335(*)035	С	3.3	0.9	6	4
TEP475(*)035	E	4.7	1.3	6	3
TEP685(*)035	F	6.8	1.9	6	2.5
TEP106(*)035	F	10	2.8	8	2
TEP156(*)035	Н	15	4.2	8	1.6
TEP226(*)035	K	22	6.1	8	1.3
TEP336(*)035	М	33	9.2	8	1
TEP476(*)035	N	47	10	8	0.8
TEP104(*)050	Α	0.1	0.5	4	26
TEP154(*)050	Α	0.15	0.5	4	21
TEP224(*)050	Α	0.22	0.5	4	17
TEP334(*)050	Α	0.33	0.5	4	15
TEP474(*)050	Α	0.47	0.5	4	13
TEP684(*)050	В	0.68	0.5	4	10
TEP105(*)050	С	1	0.5	4	8
TEP155(*)050	D	1.5	0.6	4	6
TEP225(*)050	E	2.2	0.8	6	3.5
TEP335(*)050	F	3.3	1.3	6	3
TEP475(*)050	G	4.7	1.8	6	2.5
TEP685(*)050	Н	6.8	2.7	6	2
TEP106(*)050	J	10	4	8	1.6
TEP156(*)050	K	15	6	8	1.2
TEP226(*)050	L	22	8.8	8	1

SOLID TANTALUM RESIN DIPPED TAP/TEP TAPE AND REEL PACKAGING FOR AUTOMATIC COMPONENT INSERTION

TAP/TEP types are all offered on radial tape, in reel or 'ammo' pack format for use on high speed radial automatic insertion equipment, or preforming machines.

The tape format is compatible with EIA 468A standard for component taping set out by major manufacturers of radial automatic insertion equipment.

TAP/TEP – available in three formats. See page 254 for dimensions.

'B' wires for normal automatic insertion on 5mm pitch.

BRW suffix for reel
BRS suffix for 'ammo' pack
Available in case sizes A - J

'C' wires for preforming.

CRW suffix for reel CRS suffix for 'ammo' pack

Available in case sizes A - R

'S' and 'D' wire for special applications, automatic insertion on 2.5mm pitch.

SRW, DTW suffix for reel SRS, DTS suffix for 'ammo' pack Available in case sizes A - J

Tape and Reel Packaging

SOLID TANTALUM RESIN DIPPED TAP/TEP

CASE DIMENSIONS:

millimeters (inches)

Description	Code	Dimension
Feed hole pitch	Р	12.7 ± 0.30 (0.500 ± 0.010)
Hole center to lead	P ₁	$3.85 \pm 0.70 (0.150 \pm 0.030)$ to be measured at bottom of clench
		5.05 ± 1.00 (0.200 ± 0.040) for S wire
Hole center to component center	P ₂	6.35 ± 0.40 (0.250 ± 0.020)
Change in pitch	Δр	± 1.00 (± 0.040)
Lead diameter	d	0.50 ± 0.05 (0.020 ± 0.003)
Lead spacing	S	See wire form table
Component alignment	Δh	0 ± 2.00 (0 ± 0.080)
Feed hole diameter	D	4.00 ± 0.20 (0.150 ± 0.008)
Tape width	W	18.0 + 1.00 (0.700 + 0.040) - 0.50 - 0.020)
Hold down tape width	W ₁	6.00 (0.240) min.
Hold down tape position	W_2	1.00 (0.040) max.
Lead wire clench height	Н	16.0 ± 0.50 (0.630 ± 0.020) 19.0 ± 1.00 (0.750 ± 0.040) on request
Hole position	H ₁	9.00 ± 0.50 (0.350 ± 0.020)
Base of component height	H ₂	18.0 (0.700) min. (S wire only)
Component height	H ₃	32.25 (1.300) max.
Length of snipped lead	L	11.0 (0.430) max.
Total tape thickness	Т	0.70 ± 0.20 (0.030 ± 0.001)
		Carrying card 0.50 ± 0.10 (0.020 ± 0.005)

REEL CONFIGURATION AND DIMENSIONS: millimeters (inches)

Manufactured from cardboard with plastic hub.

Holding tape outside. Positive terminal leading.

PACKAGING QUANTITIES

For Reels

Style	Case size	No. of pieces
	Α	1500
	B, C, D	1250
TAP TEP	E, F	1000
IEP	G, H, J	750
	K, L, M, N, P, R	500

For 'Ammo' pack

Style	Case size	No. of pieces
TAP	A, B, C, D	3000
	E, F, G	2500
TEP	H, J	2000
	K, L, M, N, P, R	1000

For bulk products

Style	Case size	No. of pieces
T40	A to H	1000
TAP TEP	J to L	500
IEP	M to R	100

AMMO PACK DIMENSIONS

millimeters (inches) max.

Height 360 (14.17), width 360 (14.17), thickness 60 (2.36)

GENERAL NOTES

Resin dipped tantalum capacitors are only available taped in the range of case sizes and in the modular quantities by case size as indicated.

Packaging quantities on tape may vary by ±1%.

Section 4: Technical Summary and Application Guidelines

INTRODUCTION

Tantalum capacitors are manufactured from a powder of pure tantalum metal. OxiCap® - niobium oxide capacitor is made from niobium oxide NbO powder. The typical particle size is between 2 and 10 um.

Figure below shows typical powders. Note the very great difference in particle size between the powder CVs/g.

4000µFV

20000µFV

50000µFV Figure 1a. Tantalum powder

Figure 1b. Niobium Oxide powder

The powder is compressed under high pressure around a Tantalum or Niobium wire (known as the Riser Wire) to form a "pellet". The riser wire is the anode connection to the capacitor

This is subsequently vacuum sintered at high temperature (typically 1200 - 1800°C) which produces a mechanically strong pellet and drives off any impurities within the powder

During sintering the powder becomes a sponge like structure with all the particles interconnected in a huge lattice

This structure is of high mechanical strength and density, but is also highly porous giving a large internal surface area (see Figure 2)

The larger the surface area the larger the capacitance. Thus high CV/g (capacitance voltage product per gram) powders, which have a low average particle size, are used for low voltage, high capacitance parts

By choosing which powder and sinter temperature is used to produce each capacitance/voltage rating the surface area can be controlled.

The following example uses a 220µF 6V capacitor to illustrate the point.

$$C = \frac{\mathcal{E}_o \mathcal{E}_r}{d}^A$$

where

 ε_0 is the dielectric constant of free space

(8.855 x 10-12 Farads/m)

ε, is the relative dielectric constant

= 27 for Tantalum Pentoxide

= 41 for Niobium Pentoxide

d is the dielectric thickness in meters

C is the capacitance in Farads

and

A is the surface area in meters

Rearranging this equation gives:

$$A = \frac{Cd}{\varepsilon_0 \varepsilon_r}$$

thus for a 220µF/6V capacitor the surface area is 346 square centimeters, or nearly a half times the size of this page.

The dielectric is then formed over all the Tantalum or niobium oxide surfaces by the electrochemical process of anodization. To activate this, the "pellet" is dipped into a very weak solution of phosphoric acid.

The dielectric thickness is controlled by the voltage applied during the forming process. Initially the power supply is kept in a constant current mode until the correct thickness of dielectric has been reached (that is the voltage reaches the 'forming voltage'), it then switches to constant voltage mode and the current decays to close

Figure 2. Sintered Anode

The chemical equations describing the process are as follows:

Tantalum Anode: 2 Ta \rightarrow 2 Ta⁵⁺ + 10 e^-

2 Ta⁵⁺ + 10 OH⁻→ Ta₂O₅ + 5 H₂O

Niobium Oxide Anode:

2 NbO \rightarrow 2 NbO³⁺ + 6 e^-

 $2 \text{ NbO}^{3+} + 6 \text{ OH}^{-} \rightarrow \text{Nb}_{2}\text{O}_{5} + 3 \text{ H}_{2}\text{O}$

Cathode:

Tantalum: $10 \text{ H}_2\text{O} - 10 \text{ e} \rightarrow 5\text{H}_2 + 10 \text{ OH}^-$ **Niobium Oxide:** $6 \text{ H}_2\text{O} - 6 \text{ e}^- \rightarrow 3\text{H}_2 + 6 \text{ OH}^-$

The oxide forms on the surface of the Tantalum or Niobium Oxide but it also grows into the material. For each unit of oxide two thirds grows out and one third grows in. It is for this reason that there is a limit on the maximum voltage rating of Tantalum & Niobium Oxide capacitors with present technology powders (see Figure 3).

The dielectric operates under high electrical stress. Consider a 220µF 6V part:

Formation voltage

= Formation Ratio x Working

Voltage

= 3.5 x 6 = 21 Volts

Tantalum:

The pentoxide (Ta_2O_5) dielectric grows at a rate of 1.7 x 10^{-9} m/V

Dielectric thickness (d) = $21 \times 1.7 \times 10^{-9}$

= 0.036 pm

Electric Field strength = Working Voltage / d

= 167 KV/mm

Niobium Oxide:

The niobium oxide (Nb $_2$ O $_5$) dielectric grows at a rate of 2.4 x 10 $^9\,\text{m/V}$

Dielectric thickness (d) = $21 \times 2.4 \times 10-9$

= 0.050 pm

Electric Field strength = Working Voltage / d

= 120 KV/mm

Figure 3. Dielectric layer

The next stage is the production of the cathode plate. This is achieved by pyrolysis of Manganese Nitrate into Manganese Dioxide.

The "pellet" is dipped into an aqueous solution of nitrate and then baked in an oven at approximately 250°C to produce the dioxide coat. The chemical equation is:

$$Mn (NO_3)_2 \rightarrow MnO_2 + 2NO_{2-}$$

This process is repeated several times through varying specific densities of nitrate to build up a thick coat over all internal and external surfaces of the "pellet", as shown in Figure 4.

Figure 4. Manganese Dioxide Layer

The "pellet" is then dipped into graphite and silver to provide a good connection to the Manganese Dioxide cathode plate. Electrical contact is established by deposition of carbon onto the surface of the cathode. The carbon is then coated with a conductive material to facilitate connection to the cathode termination (see Figure 5). Packaging is carried out to meet individual specifications and customer requirements. This manufacturing technique is adhered to for the whole range of AVX Tantalum capacitors, which can be subdivided into four basic groups: Chip / Resin dipped / Rectangular boxed / Axial.

Further information on production of Tantalum Capacitors can be obtained from the technical paper "Basic Tantalum Technology", by John Gill, available from your local AVX representative.

Figure 5. Cathode Termination

SECTION 1: ELECTRICAL CHARACTERISTICS AND EXPLANATION OF TERMS

1.1 CAPACITANCE

1.1.1 Rated capacitance (C_R).

This is the nominal rated capacitance. For tantalum and OxiCap® capacitors it is measured as the capacitance of the equivalent series circuit at 25°C using a measuring bridge supplied by a 0.5V rms 120Hz sinusoidal signal, free of harmonics with a bias of 2.2Vd.c.

1.1.2 Capacitance tolerance.

This is the permissible variation of the actual value of the capacitance from the rated value. For additional reading, please consult the AVX technical publication "Capacitance Tolerances for Solid Tantalum Capacitors".

1.1.3 Temperature dependence of capacitance.

The capacitance of a tantalum capacitor varies with temperature. This variation itself is dependent to a small extent on the rated voltage and capacitor size.

1.1.4 Frequency dependence of the capacitance.

The effective capacitance decreases as frequency increases. Beyond 100kHz the capacitance continues to drop until resonance is reached (typically between 0.5 - 5MHz depending on the rating). Beyond the resonant frequency the device becomes inductive.

For individual part number please refer to SpiTan Software for frequency and temperature behavior found on AVX Corporation website.

1.2 VOLTAGE

1.2.1 Rated d.c. voltage (V_R).

This is the rated d.c. voltage for continuous operation up to 85°C (up to 40°C for TLJ. TLN. NLJ series).

Operating voltage consists of the sum of DC bias voltage and ripple peak voltage. The peak voltage should not exceed the category voltage. For recommended voltage (application) derating refer to figure 2c of the SECTION 3.

1.2.2 Category voltage (V_c).

This is the maximum voltage that may be applied continuously to a capacitor. It is equal to the rated voltage up to +85°C (up to 40°C for TLJ, TLN, NLJ series), beyond which it is subject to a linear derating, to 2/3 $V_{\rm R}$ at 125°C for tantalum and 2/3 $V_{\rm R}$ at 105°C for $0 \times 10^{\circ}$ C fo

1.2.3 Surge voltage (V_s).

This is the highest voltage that may be applied to a capacitor for short periods of time in circuits with minimum series resistance of 330hms (CECC states $1k\Omega$). The surge voltage may be applied up to 10 times in an hour for periods of up to 30 seconds at a time. The surge voltage must not be used as a parameter in the design of circuits in which, in the normal course of operation, the capacitor is periodically charged and discharged.

85°C Tantalum		125°C Tantalum*		
Rated Voltage V _R	Surge Voltage V _s	Category Voltage V _c	Surge Voltage V _s	
2	2.7	1.3	1.7	
2.5	3.3	1.7	2.2	
3	3.9	2	2.6	
4	5.2	2.7	3.4	
5	6.5	3.3	4	
6.3	8	4	5	
10	13	7	8	
16	20	10	13	
20	26	13	16	
25	32	17	20	
35	46	23	28	
50	65	33	40	

85°C OxiCap®		105°C OxiCap®		
Rated Voltage V _R	Surge Voltage V _s	Category Voltage V _c	Surge Voltage V _s	
1.8	2.3	1.2	1.6	
2.5	3.3	1.7	2.2	
4	5.2	2.7	3.4	
6.3	8	4	5	
10	13	7	8	

*For THJ 175°C Category & Surge voltage see THJ section on pages 135-140.

1.2.4 Effect of surges

The solid Tantalum and OxiCap® capacitors have a limited ability to withstand voltage and current surges. This is in common with all other electrolytic capacitors and is due to the fact that they operate under very high electrical stress across the dielectric. For example a 6 volt tantalum capacitor has an Electrical Field of 167 kV/mm when operated at rated voltage. OxiCap® capacitors operate at electrical field significantly less than 167 kV/mm.

It is important to ensure that the voltage across the terminals of the capacitor never exceeds the specified surge voltage rating.

Solid tantalum capacitors and OxiCap® have a self healing ability provided by the Manganese Dioxide semiconducting layer used as the negative plate. However, this is limited in low impedance applications. In the case of low impedance circuits, the capacitor is likely to be stressed by current surges.

Derating the capacitor increases the reliability of the component. (See Figure 2b page 265). The "AVX Recommended Derating Table" (page 268) summarizes voltage rating for use on common voltage rails, in low impedance applications for both Tantalum and OxiCap® capacitors.

In circuits which undergo rapid charge or discharge a protective resistor of $1\Omega/V$ is recommended. If this is impossible, a derating factor of up to 70% should be used on tantalum capacitors. OxiCap® capacitors can be used with derating of 20% minimum.

In such situations a higher voltage may be needed than is available as a single capacitor. A series combination should be used to increase the working voltage of the equivalent capacitor: For example, two $22\mu F$ 25V parts in series is equivalent to one 11pF 50V part. For further details refer to J.A. Gill's paper "Investigation into the Effects of Connecting Tantalum Capacitors in Series", available from AVX offices worldwide.

NOTE:

While testing a circuit (e.g. at ICT or functional) it is likely that the capacitors will be subjected to large voltage and current transients, which will not be seen in normal use. These conditions should be borne in mind when considering the capacitor's rated voltage for use. These can be controlled by ensuring a correct test resistance is used.

1.2.5 Reverse voltage and Non-Polar operation.

The values quoted are the maximum levels of reverse voltage which should appear on the capacitors at any time. These limits are based on the assumption that the capacitors are polarized in the correct direction for the majority of their working life. They are intended to cover short term reversals of polarity such as those occurring during switching transients of during a minor portion of an impressed waveform. Continuous application of reverse voltage without normal polarization will result in a degradation of leakage current. In conditions under which continuous application of a reverse voltage could occur two similar capacitors should be used in a back-to-back configuration with the negative terminations connected together. Under most conditions this combination will have a capacitance

one half of the nominal capacitance of either capacitor. Under conditions of isolated pulses or during the first few cycles, the capacitance may approach the full nominal value. The reverse voltage ratings are designed to cover exceptional conditions of small level excursions into incorrect polarity. The values quoted are not intended to cover continuous reverse operation.

The peak reverse voltage applied to the capacitor must not exceed:

10% of the rated d.c. working voltage to a maximum of 1.0v at 25° C

3% of the rated d.c. working voltage to a maximum of 0.5v at 85°C

1% of the rated d.c. working voltage to a maximum of 0.1v at 125° C (0.1v at 150° C THJ Series)

Note: Capacitance and DF values of OxiCap® may exceed specification limits under these conditions.

LEAKAGE CURRENT vs. BIAS VOLTAGE

1.2.6 Superimposed A.C. Voltage (Vr.m.s.) - Ripple Voltage.

This is the maximum r.m.s. alternating voltage; superimposed on a d.c. voltage, that may be applied to a capacitor. The sum of the d.c. voltage and peak value of the superimposed a.c. voltage must not exceed the category voltage, v.c.

Full details are given in Section 2.

1.2.7 Forming voltage.

This is the voltage at which the anode oxide is formed. The thickness of this oxide layer is proportional to the formation voltage for a capacitor and is a factor in setting the rated voltage.

1.3 DISSIPATION FACTOR AND TANGENT OF LOSS ANGLE (TAN D)

1.3.1 Dissipation factor (D.F.).

Dissipation factor is the measurement of the tangent of the loss angle (tan) expressed as a percentage. The measurement of DF is carried out using a measuring bridge that supplies a 0.5V rms 120Hz sinusoidal signal, free of harmonics with a bias of 2.2Vdc. The value of DF is temperature and frequency dependent.

Note: For surface mounted products the maximum allowed DF values are indicated in the ratings table and it is important to note that these are the limits met by the component AFTER soldering onto the substrate.

1.3.2 Tangent of Loss Angle (tan δ).

This is a measurement of the energy loss in the capacitor. It is expressed, as tan and is the power loss of the capacitor divided by its reactive power at a sinusoidal voltage of specified frequency. Terms also used are power factor, loss factor and dielectric loss. Cos $(90 - \delta)$ is the true power factor. The measurement of tan δ is carried out using a measuring bridge that supplies a 0.5V rms 120Hz sinusoidal signal, free of harmonics with a bias of 2.2Vdc.

1.3.3 Frequency dependence of Dissipation Factor.

Dissipation Factor increases with frequency as shown in the typical curves that are for tantalum and OxiCap® capacitors identical:

1.3.4 Temperature dependence of Dissipation Factor.

Dissipation factor varies with temperature as the typical curves show. These plots are identical for both Tantalum and OxiCap® capacitors. For maximum limits please refer to ratings tables.

1.4 IMPEDANCE, (Z) AND EQUIVALENT SERIES RESISTANCE (ESR)

This is the ratio of voltage to current at a specified frequency. Three factors contribute to the impedance of a Tantalum capacitor; the resistance of the semiconductor layer; the capacitance value and the inductance of the electrodes and leads.

At high frequencies the inductance of the leads becomes a limiting factor. The temperature and frequency behavior of these three factors of impedance determine the behavior of the impedance Z. The impedance is measured at 25°C and 100kHz

1.4.2 Equivalent Series Resistance, ESR.

Resistance losses occur in all practical forms of capacitors. These are made up from several different mechanisms, including resistance in components and contacts, viscous forces within the dielectric and defects producing bypass current paths. To express the effect of these losses they are considered as the ESR of the capacitor. The ESR is frequency dependent and can be found by using the relationship;

$$ESR = \frac{\tan \delta}{2\pi fC}$$

Where f is the frequency in Hz, and C is the capacitance in farads.

The ESR is measured at 25°C and 100kHz.

ESR is one of the contributing factors to impedance, and at high frequencies (100kHz and above) it becomes the dominant factor. Thus ESR and impedance become almost identical, impedance being only marginally higher.

1.4.3 Frequency dependence of Impedance and ESR.

ESR and Impedance both increase with decreasing frequency. At lower frequencies the values diverge as the extra contributions to impedance (due to the reactance of the capacitor) become more significant. Beyond 1MHz (and beyond the resonant point of the capacitor) impedance again increases due to the inductance of the capacitor. Typical ESR and Impedance values are similar for both tantalum and niobium oxide materials and thus the same charts are valid for both for Tantalum and OxiCap® capacitors.

1.4.4 Temperature dependence of the Impedance and ESR.

At 100kHz, impedance and ESR behave identically and decrease with increasing temperature as the typical curves show.

Typical 100kHz ESR vs Temperature

1.5 D.C. LEAKAGE CURRENT

1.5.1 Leakage current.

The leakage current is dependent on the voltage applied, the elapsed time since the voltage was applied and the component temperature. It is measured at $+20\,^{\circ}\text{C}$ with the rated voltage applied. A protective resistance of 1000Ω is connected in series with the capacitor in the measuring circuit. Three to five minutes after application of the rated voltage the leakage current must not exceed the maximum values indicated in the ratings table. Leakage current is referenced as DCL (for Direct Current Leakage). The default maximum limit for DCL Current is given by DCL = 0.01CV, where DCL is in microamperes, and C is the capacitance rating in microfarads, and V is the voltage rating in volts. DCL of tantalum capacitors vary within arrange of 0.01 - 0.1CV or 0.5µA (whichever is the greater). And 0.02 - 0.1CV or 1.0µA (whichever is the greater) for OxiCap® capacitors.

Reforming of Tantalum or OxiCap® capacitors is unnecessary even after prolonged storage periods without the application of voltage.

1.5.2 Temperature dependence of the leakage current.

The leakage current increases with higher temperatures; typical values are shown in the graph. For operation between 85°C and 125°C, the maximum working voltage must be derated and can be found from the following formula.

$$Vmax = \left(1 - \frac{(T - 85)}{125}\right) \times V_R$$

where T is the required operating temperature.

LEAKAGE CURRENT vs. TEMPERATURE

1.5.3 Voltage dependence of the leakage current.

The leakage current drops rapidly below the value corresponding to the rated voltage V_{R} when reduced voltages are applied.

The effect of voltage derating on the leakage current is shown in the graph. This will also give a significant increase in the reliability for any application. See Section 3.1 (page 265) for details.

LEAKAGE CURRENT vs. RATED VOLTAGE

For input condition of fixed application voltage and including median curve of the Leakage current vs. Rated voltage graph displayed above we can evaluate following curve.

LEAKAGE CURRENT MULTIPLIER vs. VOLTAGE DERATING for FIXED APPLICATION VOLTAGE $V_{\scriptscriptstyle A}$

We can identify the range of $V_{\rm A}/V_{\rm R}$ (derating) values with minimum actual DCL as the "optimal" range. Therefore the minimum DCL is obtained when capacitor is used at 25 to 40 % of rated voltage - when the rated voltage of the capacitor is 2.5 to 4 times higher than actual application voltage.

For additional information on Leakage Current, please consult the AVX technical publication "Analysis of Solid Tantalum Capacitor Leakage Current" by R. W. Franklin.

1.5.4 Ripple current.

The maximum ripple current allowed is derived from the power dissipation limits for a given temperature rise above ambient temperature (please refer to Section 2, pages 262-263).

1.6 SELF INDUCTANCE (ESL)

The self-inductance value (ESL) can be important for resonance frequency evaluation. See figure below typical ESL values per case size.

TAJ/TMJ/TPS/TRJ/THJ/TLJ/TCJ/TCO/TCQ/NLJ/NOJ/NOS

Case Size	Typical Self Inductance value (nH)	Case Size	Typical Self Inductance value (nH)	Case Size	Typical Self Inductance value (nH)
Α	1.8	Н	1.8	U	2.4
В	1.8	K	1.8	V	2.4
С	2.2	N	1.4	W	2.2
D	2.4	Р	1.4	Х	2.4
Е	2.5	R	1.4	Υ	2.4
F	2.2	S	1.8	5	2.4
G	1.8	Т	1.8		

TAC/TLC/TPC

Case Size	Typical Self Inductance value (nH)	Case
Α	1.5	
В	1.6	D
D	1.4	E
Е	1.0	U
Н	1.4	V
ı	1.3	Υ
J	1.2	
K	1.1	
L	1.2	
М	1.3	
R	1.4	
Т	1.6	
U	1.3	
	4.5	ĺ

TCM/TPM TRM/NOM

VI/ IN O IVI	_	Typical Self		
Typical Self Inductance	Case Size	Inductance value (nH)		
value (nH)	K	1.0		
1.0	L	1.0		
2.5	М	1.3		
2.4	N	1.3		
2.4	0	1.0		
1.0	S	1.0		
	T	1.0		
	Х	1.8		
	Z	1.8		
	3	2.0		
	4	2.2		
	6	2.5		

8

2.2

TLN/TCN/J-CAP™

SECTION 2: A.C. OPERATION, RIPPLE VOLTAGE AND RIPPLE CURRENT

2.1 RIPPLE RATINGS (A.C.)

In an a.c. application heat is generated within the capacitor by both the a.c. component of the signal (which will depend upon the signal form, amplitude and frequency), and by the d.c. leakage. For practical purposes the second factor is insignificant. The actual power dissipated in the capacitor is calculated using the formula:

$$P = I^2 R$$

and rearranged to I = SQRT ($^{P}/_{P}$)(Eq. 1)

where I = rms ripple current, amperes

R = equivalent series resistance, ohms

U = rms ripple voltage, volts P = power dissipated, watts

Z = impedance, ohms, at frequency under

consideration

Maximum a.c. ripple voltage (U_{max}) .

From the Ohms' law equation:

 $U_{max} = IR(Eq. 2)$

Where P is the maximum permissible power dissipated as listed for the product under consideration (see tables).

However care must be taken to ensure that:

- **1.** The d.c. working voltage of the capacitor must not be exceeded by the sum of the positive peak of the applied a.c. voltage and the d.c. bias voltage.
- 2. The sum of the applied d.c. bias voltage and the negative peak of the a.c. voltage must not allow a voltage reversal in excess of the "Reverse Voltage".

Historical ripple calculations.

Previous ripple current and voltage values were calculated using an empirically derived power dissipation required to give a 10°C (30°C for polymer) rise of the capacitors body temperature from room temperature, usually in free air. These values are shown in Table I. Equation 1 then allows the maximum ripple current to be established, and Equation 2, the maximum ripple voltage. But as has been shown in the AVX article on thermal management by I. Salisbury, the thermal conductivity of a Tantalum chip capacitor varies considerably depending upon how it is mounted.

Table I: Power Dissipation Ratings (In Free Air)

TAJ/TMJ/TPS/TPM/TRJ/TRM/THJ/TLJ/TLN/TCJ/TCM/TCN/J-CAP™/TCO/TCQ/NLJ/NOJ/NOS/NOM Series Molded Chip

	Max. power dissipation (W)						
	Tanta	lum		Poly	mer	OxiO	Cap®
Case Size	TAJ/TMJ/TPS TRJ/THJ TLJ	TLN	TPM TRM	TCJ TCN J-CAP™ TCO TCQ	тсм	NLJ NOJ NOS	NOM
Α	0.075	-	-	0.100	-	0.090	-
В	0.085	_	-	0.125	_	0.102	_
С	0.110	_	-	0.175	_	0.132	_
D	0.150	_	0.255	0.225	-	0.180	_
E	0.165	_	0.270	0.250	0.410	0.198	0.324
F	0.100	_	-	0.150	_	0.120	_
G	0.070	0.060	-	0.100	-	0.084	-
Н	0.080	0.070	-	0.100	-	0.096	_
K	0.065	0.055	_	0.090	_	0.078	_
L	0.070	0.060	-	0.095	_	0.084	_
М	-	0.040	_	0.080	-	-	_
N	0.050	0.040	-	0.080	_	-	_
0	-	-	-	0.065	-	-	-
Р	0.060	_	-	0.090	_	0.072	_
R	0.055	_	_	0.085	_	0.066	_
S	0.065	0.055	-	0.095	_	0.078	_
Т	0.080	0.070	_	0.100	-	0.096	_
U	0.165	-	0.295	0.380	I	-	_
V	0.250	_	0.285	0.360	0.420	0.300	_
W	0.090	_	-	0.130	_	0.108	_
Х	0.100	_	-	0.175	-	0.120	_
Υ	0.125	0.115	0.210	0.185	-	0.150	_
Z	-	_	_	0.175	ı	_	_
3	_	_	-	0.145	_	_	_
4	_	0.165	_	0.190	_	_	_
5	-	_		0.240	_	_	_
6	_	0.230	_		_	_	
8	_	_	_	0.190	_	_	_

TACmicrochip® Series

Case Size	Max. power dissipation (W)
Α	0.040
В	0.040
D	0.035
E	0.010
Н	0.040
1	0.035
J	0.020
K	0.015
L	0.025
M	0.030
Q	0.040
R	0.045
T	0.040
U	0.035
V	0.035
X	0.040
Z	0.020

NLJ/NOJ/NOS/NOM

Temperature correction factor for ripple current		
Temp. °C	Factor	
+25	1.00	
+55	0.95	
+85	0.90	
+105	0.40	
+125 (NOS,NOM)	0.40	

TAJ/TPS/TPM/TRJ/TRM/THJ/TLJ/TLN

Temp °C	Correction Factor for ripple current	Correction Factor for Power Dissipation	Max. Temperature rise °C
up to 25°C	1.00	1.00	10
+55	0.95	0.90	9
+85	0.90	0.81	8.1
+105	0.65	0.42	4.2
+115	0.49	0.24	2.4
+125	0.40	0.16	1.6
+175 (THJ)	0.20	0.04	0.4
+200 (THJ)	0.10	0.01	0.1

TCJ/TCM/TCN/J-CAP™/TCO/TCQ

Temp °C	Correction Factor for ripple current	Correction Factor for Power Dissipation	Max. Temperature rise °C
up to 45°C	1.00	1.00	30
+85	0.70	0.49	15
+105	0.45	0.20	6
+125	0.25	0.06	1.8

A piece of equipment was designed which would pass sine and square wave currents of varying amplitudes through a biased capacitor. The temperature rise seen on the body for the capacitor was then measured using an infra-red probe. This ensured that there was no heat loss through any thermocouple attached to the capacitor's surface.

Results for the C, D and E case sizes

Several capacitors were tested and the combined results are shown above. All these capacitors were measured on FR4 board, with no other heat sinking. The ripple was supplied at various frequencies from 1kHz to 1MHz.

As can be seen in the figure above, the average P_{max} value for the C case capacitors was 0.11 Watts. This is the same as that quoted in Table I.

The D case capacitors gave an average P_{max} value 0.125 Watts. This is lower than the value quoted in the Table I by 0.025 Watts. The E case capacitors gave an average P_{max} of 0.200 Watts that was much higher than the 0.165 Watts from Table I.

If a typical capacitor's ESR with frequency is considered, e.g. figure below, it can be seen that there is variation. Thus for a set ripple current, the amount of power to be dissipated by the capacitor will vary with frequency. This is clearly shown in figure in top of next column, which shows that the surface temperature of the unit raises less for a given value of ripple current at 1MHz than at 100kHz.

The graph below shows a typical ESR variation with frequency. Typical ripple current versus temperature rise for 100kHz and 1MHz sine wave inputs.

If I²R is then plotted it can be seen that the two lines are in fact coincident, as shown in figure below.

Example

A Tantalum capacitor is being used in a filtering application, where it will be required to handle a 2 Amp peak-to-peak, 200kHz square wave current.

A square wave is the sum of an infinite series of sine waves at all the odd harmonics of the square waves fundamental frequency. The equation which relates is:

$$I_{\text{Square}} = I_{\text{pk}} sin \ (2\pi f) + I_{\text{pk}} sin \ (6\pi f) + I_{\text{pk}} sin \ (10\pi f) + I_{\text{pk}} sin \ (14\pi f) + ...$$
 Thus the special components are:

Frequency	Peak-to-peak current (Amps)	RMS current (Amps)
200 KHz	2.000	0.707
600 KHz	0.667	0.236
1 MHz	0.400	0.141
1.4 MHz	0.286	0.101

Let us assume the capacitor is a TAJD686M006

Typical ESR measurements would yield.

Frequency	Typical ESR (Ohms)	Power (Watts) Irms ² x ESR
200 KHz	0.120	0.060
600 KHz	0.115	0.006
1 MHz	0.090	0.002
1.4 MHz	0.100	0.001

Thus the total power dissipation would be 0.069 Watts.

From the D case results shown in figure top of previous column, it can be seen that this power would cause the capacitors surface temperature to rise by about 5°C. For additional information, please refer to the AVX technical publication "Ripple Rating of Tantalum Chip Capacitors" by R.W. Franklin.

2.2 OXICAP® RIPPLE RATING

OxiCap® capacitors showing 20% higher power dissipation allowed compared to tantalum capacitors as a result of twice higher specific heat of niobium oxide compared to Tantalum powders. (Specific heat is related to energy necessary to heat a defined volume of material to a specified temperature.)

2.3 THERMAL MANAGEMENT

The heat generated inside a tantalum capacitor in a.c. operation comes from the power dissipation due to ripple current. It is equal to I2R, where I is the rms value of the current at a given frequency, and R is the ESR at the same frequency with an additional contribution due to the leakage current. The heat will be transferred from the outer surface by conduction. How efficiently it is transferred from this point is dependent on the thermal management of the board.

The power dissipation ratings given in Section 2.1 (page 236) are based on free-air calculations. These ratings can be approached if efficient heat sinking and/or forced cooling is used.

In practice, in a high density assembly with no specific thermal

management, the power dissipation required to give a 10°C (30°C for polymer) rise above ambient may be up to a factor of 10 less. In these cases, the actual capacitor temperature should be established (either by thermocouple probe or infra-red scanner) and if it is seen to be above this limit it may be necessary to specify a lower ESR part or a higher voltage rating.

Please contact application engineering for details or contact the AVX technical publication entitled "Thermal Management of Surface Mounted Tantalum Capacitors" by Ian Salisbury.

Thermal Dissipation from the Mounted Chip

Thermal Impedance Graph with Ripple Current

THERMAL IMPEDANCE GRAPH C CASE SIZE CAPACITOR BODY

 \triangle = PCB MAX Cu THERMAL \Box = PCB MIN Cu AIR GAP \bigcirc = CAP IN FREE AIR

SECTION 3: RELIABILITY AND CALCULATION OF FAILURE RATE

3.1 STEADY-STATE

Both Tantalum and Niobium Oxide dielectric have essentially no wear out mechanism and in certain circumstances is capable of limited self healing. However, random failures can occur in operation. The failure rate of Tantalum capacitors will decrease with time and not increase as with other electrolytic capacitors and other electronic components.

Figure 1. Tantalum and OxiCap® Reliability Curve

The useful life reliability of the Tantalum and OxiCap® capacitors in steady-state is affected by three factors. The equation from which the failure rate can be calculated is:

$$F = F_V \times F_T \times F_R \times F_B$$

where

 F_{ν} is a correction factor due to operating voltage/voltage derating

 $F_{\scriptscriptstyle T}$ is a correction factor due to operating temperature

 $\boldsymbol{F}_{\scriptscriptstyle R}$ is a correction factor due to circuit series resistance

F_B is the basic failure rate level

Base failure rate.

Standard Tantalum conforms to Level M reliability (i.e. 1%/1000 hrs) or better at rated voltage, 85° C and $0.1\Omega/volt$ circuit impedance.

 F_B = 1.0% / 1000 hours for TAJ, TPS, TPM, TCJ, TCO, TCQ, TCM, TCN, J-CAP $^{\text{TM}}$, TAC

0.5% / 1000 hours for TMJ, TRJ, TRM, THJ & NOJ

0.2% / 1000 hours for NOS and NOM

TLJ, TLN, TLC and NLJ series of tantalum capacitors are defined at 0.5 x rated voltage at 85° C due to the temperature derating.

 F_{B} = 0.2%/1000 hours at 85°C and 0.5xV $_{\text{R}}$ with 0.1 Ω /V series impedance with 60% confidence level.

Operating voltage/voltage derating.

If a capacitor with a higher voltage rating than the maximum line voltage is used, then the operating reliability will be improved. This is known as voltage derating.

The graph, Figure 2a, shows the relationship between voltage derating (the ratio between applied and rated voltage) and the failure rate. The graph gives the correction factor FU for any operating voltage.

Figure 2a. Correction factor to failure rate FV for voltage derating of a typical component (60% con. level).

Figure 2b. Gives our recommendation for voltage derating for tantalum capacitors to be used in typical applications.

Figure 2c. Gives voltage derating recommendations for tantalum capacitors as a function of circuit impedance.

Operating Temperature.

If the operating temperature is below the rated temperature for the capacitor then the operating reliability will be improved as shown in Figure 3. This graph gives a correction factor $F_{\scriptscriptstyle T}$ for any temperature of operation.

Figure 3: Correction factor to failure rate F_R for ambient temperature T for typical component (60% con. level).

Circuit Impedance.

All solid Tantalum and/or niobium oxide capacitors require current limiting resistance to protect the dielectric from surges. A series resistor is recommended for this purpose. A lower circuit impedance may cause an increase in failure rate, especially at temperatures higher than 20°C. An inductive low impedance circuit may apply voltage surges to the capacitor and similarly a non-inductive circuit may apply current surges to the capacitor, causing localized over-heating and failure. The recommended impedance is 1 Ω per volt. Where this is not feasible, equivalent voltage derating should be used (See MIL HANDBOOK 217). The graph, Figure 4, shows the correction factor, FR, for increasing series resistance.

Figure 4. Correction factor to failure rate F_R for series resistance R on basic failure rate F_B for a typical component (60% con. level).

Circuit resistance ohms/volt	F _R
3.0	0.07
2.0	0.1
1.0	0.2
0.8	0.3
0.6	0.4
0.4	0.6
0.2	0.8
0.1	1.0

For circuit impedances below 0.1 ohms per volt, or for any mission critical application, circuit protection should be considered. An ideal solution would be to employ an AVX SMT thin-film fuse in series.

Example calculation.

Consider a 12 volt power line. The designer needs about $10\mu F$ of capacitance to act as a decoupling capacitor near a video bandwidth amplifier. Thus the circuit impedance will be limited only by the output impedance of the board's power unit and the track resistance. Let us assume it to be about 2 Ohms minimum, i.e. 0.167 Ohms/Volt. The operating temperature range is $-25^{\circ}C$ to $+85^{\circ}C$.

If a $10\mu F$ 16 Volt capacitor was designed in the operating failure rate would be as follows.

- a) $F_T = 1.0 @ 85^{\circ}C$
- b) $F_R = 0.85 @ 0.167 Ohms/Volt$
- c) $F_v = 0.08$ @ applied voltage/rated voltage = 75%
- d) $F_B = 1\%/1000$ hours, basic failure rate level

Thus $F = 1.0 \times 0.85 \times 0.08 \times 1 = 0.068\%/1000$ Hours If the capacitor was changed for a 20 volt capacitor, the operating failure rate will change as shown.

 $F_V = 0.018$ @ applied voltage/rated voltage = 60% $F = 1.0 \times 0.85 \times 0.018 \times 1 = 0.0153\%/1000$ Hours

3.2 Dynamic.

As stated in Section 1.2.4 (page 258), the solid capacitor has a limited ability to withstand voltage and current surges. Such current surges can cause a capacitor to fail. The expected failure rate cannot be calculated by a simple formula as in the case of steady-state reliability. The two parameters under the control of the circuit design engineer known to reduce the incidence of failures are derating and series resistance.

The table below summarizes the results of trials carried out at AVX with a piece of equipment, which has very low series resistance with no voltage derating applied. That is if the capacitor was tested at its rated voltage. It has been tested on tantalum capacitors, however the conclusions are valid for both tantalum and OxiCap® capacitors.

Results of production scale derating experiment

Capacitance and Voltage	Number of units tested	50% derating applied	No derating applied
47μF 16V	1,547,587	0.03%	1.1%
100μF 10V	632,876	0.01%	0.5%
22μF 25V	2,256,258	0.05%	0.3%

As can clearly be seen from the results of this experiment, the more derating applied by the user, the less likely the probability of a surge failure occurring.

It must be remembered that these results were derived from a highly accelerated surge test machine, and failure rates in the low ppm are more likely with the end customer.

A commonly held misconception is that the leakage current of a Tantalum capacitor can predict the number of failures which will be seen on a surge screen. This can be disproved by the results of an experiment carried out at AVX on $47\mu F$

10V surface mount capacitors with different leakage currents. The results are summarized in the table below.

Leakage current vs number of surge failures.

Again, it must be remembered that these results were derived from a highly accelerated surge test machine, and failure rates in the low ppm are more likely with the end customer.

	Number tested	Number failed surge
Standard leakage range 0.1µA to 1µA	10,000	25
Over Catalog limit 5μA to 50μA	10,000	26
Classified Short Circuit 50µA to 500µA	10,000	25

OxiCap® capacitor is less sensitive to an overloading stress compared to Tantalum and so a 20% minimum derating is recommended. It may be necessary in extreme low impedance circuits of high transient or 'switch-on' currents to derate the voltage further. Hence in general a lower voltage OxiCap® part number can be placed on a higher rail voltage compared to the tantalum capacitor - see table below.

AVX recommended derating table.

Voltage Rail	Rated Voltag	je of Cap (V)
(V)	Tantalum	OxiCap [®]
3.3	6.3	4
5	10	6.3
8	16	10
10	20	-
12	25	-
15	35	-
>24	Series Combination	-

For further details on surge in Tantalum capacitors refer to J.A. Gill's paper "Surge in Solid Tantalum Capacitors", available from AVX offices worldwide.

An added bonus of increasing the derating applied in a circuit, to improve the ability of the capacitor to withstand surge conditions, is that the steady-state reliability is improved by up to an order. Consider the example of a 6.3 volt capacitor being used on a 5 volt rail.

The steady-state reliability of a Tantalum capacitor is affected by three parameters; temperature, series resistance and voltage derating. Assume 40°C operation and 0.1 Ohms/Volt series resistance.

The capacitors reliability will therefore be:

Failure rate = $F_U x F_T x F_R x 1\%/1000$ hours

= 0.15 x 0.1 x 1 x 1%/1000 hours

= 0.015%/1000 hours

If a 10 volt capacitor was used instead, the new scaling factor would be 0.006, thus the steady-state reliability would be:

Failure rate = $F_U \times F_T \times F_R \times 1\%/1000$ hours

 $= 0.006 \times 0.1 \times 1 \times 1\%/1000 \text{ hours}$

 $= 6 \times 10^{-4} \% / 1000 \text{ hours}$

So there is an order improvement in the capacitors steadystate reliability.

SECTION 4: APPLICATION GUIDELINES FOR TANTALUM AND OXICAP® CAPACITORS

Both Tantalum and OxiCap® are lead-free system compatible components, meeting requirements of J-STD-020 standard. The maximum conditions with care: Max. Peak Temperature: 260°C for maximum 10s, 3 reflow cycles. 2 cycles are allowed for F-series capacitors.

Small parametric shifts may be noted immediately after reflow, components should be allowed to stabilize at room temperature prior to electrical testing.

RECOMMENDED REFLOW PROFILE

Lead-free soldering:

Pre-heating: 150±15°C/60-120sec. Max. Peak Temperature: 245±5°C

Max. Peak Temperature Gradient: 2.5 $^{\rm o}$ C/sec.

Max. Time above 230°C: 40sec. max.

Time to Peak: 195sec.

SnPb soldering:

Pre-heating: 150±15°C/60-90sec. Max. Peak Temperature: 220±5°C

Max. Peak Temperature Gradient: 2°C/sec. Max. Time above solder melting point: 60sec.

RECOMMENDED WAVE SOLDERING

Lead-free soldering:

Pre-heating: 50-165°C/90-120sec. Max. Peak Temperature: 250-260°C Time of wave: 3-5sec.(max. 10sec.)

SnPb soldering:

Pre-heating: 50-165°C/90-120sec. Max. Peak Temperature: 240-250°C Time of wave: 3-5sec.(max.10sec.)

The upper side temperature of the board should not exceed +150°C.

GENERAL LEAD-FREE NOTES

The following should be noted by customers changing from lead based systems to the new lead free pastes.

- a) The visual standards used for evaluation of solder joints will need to be modified as lead-free joints are not as bright as with tin-lead pastes and the fillet may not be as large.
- b) Resin color may darken slightly due to the increase in temperature required for the new pastes.
- c) Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified.

Note: TCJ, TCM, TCN, J-CAP™, TCO, TCQ, F38, TLN and F98 series are not dedicated to wave soldering.

RECOMMENDED HAND SOLDERING

Recommended hand soldering condition:

Tip Diameter	Selected to fit Application
Max. Tip Temperature	+370°C
Max. Exposure Time	3s
Anti-static Protection	Non required

Note: TCJ, TCM, TCN, J-CAP™, TCO, TCQ, F38, TLN and F98 series are not dedicated to hand soldering.

SECTION 5: TERMINATIONS

5.1 Basic Materials

Two basic materials are used for termination leads: Nilo 42 (Fe58Ni42) and copper. Copper lead frame is mainly used for products requiring low ESR performance, while Nilo 42 is used for other products. The actual status of basic material per individual part type can be checked with AVX.

5.2 Termination Finishes - Coatings

Three terminations plating are available. Standard plating material is pure matte tin (Sn). Gold or tin-lead (SnPb) are available upon request with different part number suffix designations.*

- 5.2.1. Puremattetinisusedasthestandardcoatingmaterial meeting lead-free and RoHS requirements. AVX carefully monitors the latest findings on prevention of whisker formation. Currently used techniques include use of matte tin electrodeposition, nickel barrier underplating and recrystallization of surface by reflow. Terminations are tested for whiskers according to NEMI recommendations and JEDEC standard requirements. Data is available upon request.
- **5.2.2.** Gold Plating is available as a special option* mainly for hybrid assembly using conductive glue.
- **5.2.3.** Tin-lead (90%Sn 10%Pb) electroplated termination finish is available as a special option* upon request.

^{*} Some plating options can be limited to specific part types. Please check availability of special options with AVX.

SECTION 6: MECHANICAL AND THERMAL PROPERTIES OF CAPACITORS

6.1 Acceleration

98.1m/s2 (10g)

6.2 Vibration Severity

10 to 2000Hz, 0.75mm of 98.1m/s² (10g)

6.3 Shock

Trapezoidal Pulse, 98.1m/s2 for 6ms.

6.4 Adhesion to Substrate

IFC 384-3, minimum of 5N

6.5 Resistance to Substrate Bending

The component has compliant leads which reduces the risk of stress on the capacitor due to substrate bending.

6.6 Soldering Conditions

Dip soldering is permissible provided the solder bath temperature is 270° C, the solder time < 3 seconds and the circuit board thickness ≥ 1.0 mm.

6.7 Installation Instructions

The upper temperature limit (maximum capacitor surface temperature) must not be exceeded even under the most unfavorable conditions when the capacitor is installed. This must be considered particularly when it is positioned near components which radiate heat strongly (e.g. valves and power transistors). Furthermore, care must be taken, when bending the wires, that the bending forces do not strain the capacitor housing.

6.8 Installation Position

No restriction.

6.9 Soldering Instructions

Fluxes containing acids must not be used.

6.9.1 Guidelines for Surface Mount Footprints

Component footprint and reflow pad design for AVX capacitors.

The component footprint is defined as the maximum board area taken up by the terminators. The footprint dimensions are given by A, B, C and D in the diagram, which corresponds to W_1 max., A max., S min. and L max. for the component. The footprint is symmetric about the center lines.

The dimensions x, y and z should be kept to a minimum to reduce rotational tendencies while allowing for visual inspection of the component and its solder fillet

Dimensions PS (c for F-series) (Pad Separation) and PW (a for F-series) (Pad Width) are calculated using dimensions x and z. Dimension y may vary, depending on whether reflow or wave soldering is to be performed.

For reflow soldering, dimensions PL (b for positive terminal of F-series; b' for negative terminal of F-series) (Pad Length), PW (a) (Pad Width), and PSL (Pad Set Length) have been calculated. For wave soldering the pad width (PWw) is reduced to less than the termination width to minimize the amount of solder pick up while ensuring that a good joint can be produced. In the case of mounting conformal coated capacitors, excentering (Δ c) is needed to except anode tab [Δ].

NOTE:

These recommendations (also in compliance with EIA) are guidelines only. With care and control, smaller footprints may be considered for reflow soldering.

Nominal footprint and pad dimensions for each case size are given in the following tables:

PAD DIMENSIONS:

millimeters (inches)

Case Si	ze	PSL	PL	PS	PW	PWw
Series	Α	4.00 (0.157)	1.40 (0.055)	1.20 (0.047)	1.80 (0.071)	0.90 (0.035)
	В	4.00 (0.157)	1.40 (0.055)	1.20 (0.047)	2.80 (0.110)	1.60 (0.063)
	С	6.50 (0.256)	2.00 (0.079)	2.50 (0.098)	2.80 (0.110)	1.60 (0.063)
	D	8.00 (0.315)	2.00 (0.079)	4.00 (0.157)	3.00 (0.118)	1.70 (0.067)
	Е	8.00 (0.315)	2.00 (0.079)	4.00 (0.157)	3.00 (0.118)	1.70 (0.067)
	F	6.50 (0.256)	2.00 (0.079)	2.50 (0.098)	2.80 (0.110)	1.60 (0.063)
	G	4.00 (0.157)	1.40 (0.055)	1.20 (0.047)	1.80 (0.071)	0.90 (0.035)
	Н	4.00 (0.157)	1.40 (0.055)	1.20 (0.047)	2.80 (0.110)	1.60 (0.063)
SMD 'J'	K	4.00 (0.157)	1.40 (0.055)	1.20 (0.047)	1.80 (0.071)	0.90 (0.035
Lead &	L	4.00 (0.157)	1.40 (0.055)	1.20 (0.047)	2.80 (0.110)	1.60 (0.063
OxiCap®	N	2.70 (0.106)	0.95 (0.037)	0.80 (0.031)	1.60 (0.063)	0.80 (0.031)
(excluding	Р	2.70 (0.106)	0.95 (0.037)	0.80 (0.031)	1.60 (0.063)	0.80 (0.031)
F-series)	R	2.70 (0.106)	0.95 (0.037)	0.80 (0.031)	1.60 (0.063)	0.80 (0.031
r-series)	S	4.00 (0.157)	1.40 (0.055)	1.20 (0.047)	1.80 (0.071)	0.90 (0.035
	Т	4.00 (0.157)	1.40 (0.055)	1.20 (0.047)	2.80 (0.110)	1.60 (0.063
	U	8.00 (0.315)	2.00 (0.079)	4.00 (0.157)	3.70 (0.145)	1.80 (0.071
	٧	8.00 (0.315)	2.00 (0.079)	4.00 (0.157)	3.70 (0.145)	1.80 (0.071
	W	6.50 (0.256)	2.00 (0.079)	2.50 (0.098)	2.80 (0.110)	1.60 (0.063
	Χ	8.00 (0.315)	2.00 (0.079)	4.00 (0.157)	3.00 (0.118)	1.70 (0.067
	Υ	8.00 (0.315)	2.00 (0.079)	4.00 (0.157)	3.00 (0.118)	1.70 (0.067
	5	8.00 (0.315)	2.00 (0.079)	4.00 (0.157)	3.00 (0.118)	1.70 (0.067
	Α	4.40 (0.173)	1.60 (0.063)	1.20 (0.047)	1.80 (0.071)	0.90 (0.035
	В	4.70 (0.185)	1.70 (0.067)	1.30 (0.051)	3.00 (0.118)	1.50 (0.059
	С	4.40 (0.173)	1.60 (0.063)	1.20 (0.047)	1.80 (0.071)	0.90 (0.035
	D	4.40 (0.173)	1.60 (0.063)	1.20 (0.047)	1.80 (0.071)	0.90 (0.035
	Е	0.90 (0.035)	0.30 (0.012)	0.30 (0.012)	0.30 (0.012)	N/A
	Н	3.20 (0.126)	1.30 (0.051)	0.60 (0.024)	1.50 (0.059)	0.075 (0.003
		4.40 (0.173)	1.60 (0.063)	1.20 (0.047)	1.80 (0.071)	0.90 (0.035
	J	2.80 (0.110)	1.10 (0.043)	0.60 (0.024)	1.00 (0.039)	0.50 (0.019
ACmicrochip®	K	2.20 (0.087)	0.90 (0.035)	0.40 (0.016)	0.70 (0.028)	0.35 (0.014
Series	L	2.80 (0.110)	1.10 (0.043)	0.60 (0.024)	1.00 (0.039)	0.50 (0.019
	М	3.20 (0.126)	1.30 (0.051)	0.60 (0.024)	1.00 (0.039)	0.50 (0.019
	Q	3.20 (0.126)	1.30 (0.051)	0.60 (0.024)	1.50 (0.059)	0.075 (0.003
	R	3.20 (0.126)	1.30 (0.051)	0.60 (0.024)	1.50 (0.059)	0.075 (0.003
	S	4.40 (0.173)	1.60 (0.063)	1.20 (0.047)	1.80 (0.071)	0.90 (0.035
	Т	4.70 (0.185)	1.70 (0.067)	1.30 (0.051)	3.00 (0.118)	1.50 (0.059
	U	3.20 (0.126)	1.30 (0.051)	0.60 (0.024)	1.50 (0.059)	0.075 (0.003
	٧	4.40 (0.173)	1.60 (0.063)	1.20 (0.047)	1.80 (0.071)	0.90 (0.035
	Z	2.80 (0.110)	1.10 (0.043)	0.60 (0.024)	0.70 (0.028)	0.35 (0.014)

Note: SMD 'J' Lead = TAJ, TMJ, TPS, TPM, TRJ, TRM, THJ, TLJ, TCJ, TCM, TCO, TCQ

PAD DIMENSIONS: millimeters (inches)

Case Si	ze	PSL	PL _P	PS	PL _N	PW+	PW-
Series	М	2.50 (0.098)	1.05 (0.041)	0.40 (0.016)	1.05 (0.041)	1.00 (0.039)	1.00 (0.039)
	N	2.50 (0.098)	1.05 (0.041)	0.40 (0.016)	1.05 (0.041)	1.00 (0.039)	1.00 (0.039)
	0	3.60 (0.142)	1.35 (0.053)	0.90 (0.035)	1.35 (0.053)	1.30 (0.051)	1.30 (0.051)
	K	3.60 (0.142)	1.35 (0.053)	0.90 (0.035)	1.35 (0.053)	1.30 (0.051)	1.30 (0.051)
	S	3.60 (0.142)	1.35 (0.053)		1.35 (0.053)	1.30 (0.051)	1.30 (0.051)
	L	3.90 (0.154)	1.35 (0.053)	1.00 (0.039)	1.55 (0.061)	2.50 (0.098)	2.10 (0.083)
TLN, TCN	Т	3.90 (0.154)	1.35 (0.053)	1.00 (0.039)	1.55 (0.061)	2.50 (0.098)	2.10 (0.083)
& J-CAP™	Н	3.90 (0.154)	1.35 (0.053)	1.00 (0.039)	1.55 (0.061)	2.50 (0.098)	2.10 (0.083)
Undertab	Х	7.70 (0.303)	2.20 (0.087)	2.10 (0.083)	3.40 (0.134)		3.25 (0.128)
	Z	8.00 (0.315)	2.00 (0.079)	4.00 (0.157)	2.00 (0.079)	2.50 (0.098)	2.50 (0.098)
	3	7.70 (0.303)	2.20 (0.087)	2.10 (0.083)	3.40 (0.134)	4.75 (0.187)	4.75 (0.187)
	4	7.70 (0.303)	2.20 (0.087)	2.10 (0.083)	3.40 (0.134)	4.75 (0.187)	4.75 (0.187)
	6	15.20 (0.598)	2.65 (0.104)	9.90 (0.390)	2.65 (0.104)	5.50 (0.217)	5.50 (0.217)
	8	8.00 (0.315)	2.30(0.096)	3.40 (0.134)	2.30 (0.096)	4.40 (0.173)	4.40 (0.173)

PAD DIMENSIONS F-SERIES: millimeters (inches)

Case Si	ze	а	b	b'	С	Δc*
Series	U	0.35 (0.014)	0.40 (0.016)	0.40 (0.016)	0.40 (0.016)	0.00
	M	0.65 (0.026)	0.70 (0.028)	0.70 (0.028)	0.60 (0.024)	0.00
	S	0.90 (0.035)	0.70 (0.028)	0.70 (0.028)	0.80 (0.032)	0.00
F38,	Р	1.00 (0.039)	1.10 (0.043)	1.10 (0.043)	0.40 (0.016)	0.00
F91, F92, F93, F97,	Α	1.30 (0.051)	1.40 (0.055)	1.40 (0.055)	1.00 (0.039)	0.00
F98	В	2.30 (0.091)	1.40 (0.055)	1.40 (0.055)	1.30 (0.051)	0.00
	С	2.30 (0.091)	2.00 (0.079)	2.00 (0.079)	2.70 (0.106)	0.00
	N	2.50 (0.098)	2.00 (0.079)	2.00 (0.079)	4.00 (0.157)	0.00
	R∙P	1.40 (0.055)	0.60 (0.024)	0.50 (0.020)	0.70 (0.028)	0.20 (0.008)
F95.	Q·S	1.70 (0.067)	0.70 (0.028)	0.60 (0.024)	1.10 (0.043)	0.20 (0.008)
AUDIO F95	Α	1.80 (0.071)	0.70 (0.028)	0.60 (0.024)	1.10 (0.043)	0.20 (0.008)
Conformal	T	2.60 (0.102)	0.70 (0.028)	0.60 (0.024)	1.20 (0.047)	0.20 (0.008)
	В	2.60 (0.102)	0.80 (0.032)	0.70 (0.028)	1.10 (0.043)	0.20 (0.008)
F72 Conformal	R·M	5.80 (0.228)	1.20 (0.047)	1.20 (0.047)	3.90 (0.154)	0.50 (0.020)
F75	U-C	3.00 (0.118)	1.20 (0.047)	1.20 (0.047)	3.30 (0.130)	0.50 (0.020)
Conformal	D	4.10 (0.161)	1.20 (0.047)	1.20 (0.047)	3.90 (0.154)	0.50 (0.020)
Comonia	R∙M	5.80 (0.228)	1.20 (0.047)	1.20 (0.047)	3.90 (0.154)	0.50 (0.020)
						4

*In the case of mounting conformal coated capacitors, excentering (Δc) is needed to except anode tab [\triangle].

PAD DIMENSIONS:

millimeters (inches)

Case Size		PSL	PL	PS	PW	PWw
Series						
TCH & THH J-lead only	9	13.20 (0.520)	2.40 (0.094)	8.40 (0.331)	11.80 (0.465)	N/A
THH J-lead only	1	13.00 (0.512)	3.80 (0.150)	5.40 (0.213)	5.30 (0.210)	N/A
THH Undertab only	ı	10.60 (0.417)	3.00 (0.118)	4.60 (0.181)	4.00 (0.157)	N/A

Case Siz	e	PSL	PL	PS	PKW	PW	PK
Series							
TCH & THH		11.00(0.433)	1.70(0.067)	7.60(0.300)	10.60(0.417)	3.00(0.118)	4.60(0.181)

6.10 PCB Cleaning

Ta chip capacitors are compatible with most PCB board cleaning systems. If aqueous cleaning is performed, parts must be allowed to dry prior to test. In the event ultrasonics are used power levels should be less than 10 watts per/litre, and care must be taken to avoid vibrational nodes in the cleaning bath.

SECTION 7: EPOXY FLAMMABILITY

EPOXY	UL RATING	OXYGEN INDEX
TAJ/TMJ/TPS/TPM/TRJ/TRM/THJ TLJ/ TLN/TCJ/TCM/TCN/J-CAP™/TCO/TCQ/ NLJ/NOJ/NOS/NOM	UL94 V-0	35%

SECTION 8: QUALIFICATION APPROVAL STATUS

DESCRIPTION	STYLE	SPECIFICATION
Surface mount capacitors	TAJ	CECC 30801 - 005 Issue 2 CECC 30801 - 011 Issue 1

Material Data and Handling

This should be read in conjunction with the Product Datasheet. Failure to observe the ratings and the information on this sheet may result in a safety hazard.

1. Material Content

Solid Tantalum and OxiCap® capacitors do not contain liquid hazardous materials.

The operating section contains:

Tantalum/Niobium Graphite/carbon
Tantalum/Niobium oxide
Manganese dioxide Conducting paint/resins
Fluoropolymers (not TAC)

The encapsulation contains:

TAC - epoxy molding compound, solder/tin coated terminal pads
TAJ, TMJ, TPS, TPM, TRJ, TRM, TLJ, TLN, TCJ, TCM, TCN,
J-CAP™, TCO, TCQ, NLJ, NOJ, NOS and NOM - epoxy molding
compound, tin/solder coated terminal pads

TAP - solder, solder coated terminal wires, epoxy dipped resin The capacitors do not contain PBB or PBBO/PBBE. The solder alloys may contain lead.

2. Physical Form

These capacitors are physically small and are either rectangular with solderable terminal pads, or cylindrical or bead shaped with solderable terminal wires.

3. Intrinsic Properties

Operating

Both Tantalum and OxiCap® capacitors are polarized devices and operate satisfactorily in the correct d.c. mode. They will withstand a limited application of reverse voltage as stated in the datasheets. However, a reverse application of the rated voltage will result in early short circuit failure and may result in fire or explosion. Consequential failure of other associated components in the circuit e.g. diodes, transformers, etc. may also occur. When operated in the correct polarity,a long period of satisfactory operation will be obtained but failure may occur for any of the following reasons:

- · normal failure rate
- temperature too high
- surge voltage exceeded
- ripple rating exceeded
- · reverse voltage exceeded

If this failure mode is a short circuit, the previous conditions apply. If the adjacent circuit impedance is low, voltage or current surges may exceed the power handling capability of the capacitor. For this reason capacitors in circuits of below $1\Omega/V$ should be derated by minimum 50% for tantalum and 20% for OxiCap®. Precautions should be taken to prevent reverse voltage spikes. Where capacitors may be subjected to fast switched, low impedance source voltages, the manufacturers advice should be sought to determine the most suitable capacitors for such applications.

Non-operating

Both Tantalum and OxiCap® capacitors contain no liquids or noxious gases to leak out. However, cracking or damage to the encapsulation may lead to premature failure due to ingress of material such as cleaning fluids or to stresses transmitted to the tantalum anode.

4. Fire Characteristics

Primary

Any component subject to abnormal power dissipation may

- · self ignite
- · become red hot
- break open or explode emitting flaming or red hot material, solid, molten or gaseous.

Fumes from burning components will vary in composition depending on the temperature, and should be considered to be hazardous, although fumes from a single component in a well ventilated area are unlikely to cause problems.

Secondary

Induced ignition may occur from an adjacent burning or red hot component. Epoxy resins used in the manufacture of capacitors give off noxious fumes when burning as stated above. Wherever possible, capacitors comply with the following:

BS EN 60065 UL 492.60A/280

LOI (ASTM D2863-70) as stated in the datasheets.

5. Storage

AVX Tantalum dielectric chip capacitors are unaffected by the following storage condition for 2 years:

Temperature: -10°C - +50°C Humidity: 75% RH maximum

Atmospheric pressure: 860 mbar ~ 1060mbar

Tantalum and OxiCap® capacitors exhibit a very low random failure rate after long periods of storage and apart from this there are no known modes of failure under normal storage conditions. All capacitors will withstand any environmental conditions within their ratings for the periods given in the detail specifications. Storage for longer periods under high humidity conditions may affect the leakage current of resin protected capacitors. Solderability of solder coated surfaces may be affected by storage of excess of 2 years. If F-series capacitors should be stored more than 1 year please contact AVX for advice.

6. Moisture Sensitivity Level

MSL is defined in J-STD-020. It is applicable to non-hermetic surface mount devices, and is focussed on parts in plastic packages.

The basic concept is that a plastic package may contain moisture, which can become a high pressure vapour during solder reflow. If this occurs, the vapor pressure may cause internal cracking or damage to the device. It can also result in external steam jets from the package, and these may displace other nearby components on the circuit board during the solder process. A common industry reference for this is "popcorning".

AVX solid electrolyte chips (standard tantalum, conductive polymer, OxiCap®), which are considered MSL 3, MSL 4 or MSL 5 (ref. product datasheet) are molded in plastic packages, and are distributed in packaging including a moisture barrier.

AVX solid tantalum TACmicrochip® (TAC, TPC) are considered MSL 1 and supplied in packaging with a moisture barrier. TLC series is considered MSL 3 and is distributed in packaging including a moisture barrier.

The series, which are considered MSL 3, MSL 4 or MSL 5 are delivered in vacuum sealed bag with calculated shelf life:

- a) 12 months at < 40°C and < 90% relative humidity (RH)
- b) 24 months at < 30°C and < 70% relative humidity (RH)

7. Disposal

Incineration of epoxy coated capacitors will cause emission of noxious fumes and metal cased capacitors may explode due to build up of internal gas pressure. Disposal by any other means normally involves no special hazards. Large quantities may have salvage value.

8. Unsafe Use

Most failures are of a passive nature and do not represent a safety hazard. A hazard may, however, arise if this failure causes a dangerous malfunction of the equipment in which the capacitor is employed. Circuits should be designed to fail safe under the normal modes of failure. The usual failure mode is an increase in leakage current or short circuit. Other possible modes are decrease of capacitance, increase in dissipation factor (and impedance) or an open-circuit. Operations outside the ratings quoted in the datasheets represents unsafe use.

9. Handling

Careless handling of the cut terminal leads could result in scratches and/or skin punctures. Hands should be washed after handling solder coated terminals before eating or smoking, to avoid ingestion of lead. Capacitors must be kept out of the reach of small children.

Care must be taken to discharge capacitors before handling as capacitors may retain a residual charge even after equipment in which they are being used has been switched off. Sparks from the discharge could ignite a flammable vapor.

Environmental Information

AVX has always sought to minimize the environmental impact of its manufacturing operations and of its capacitors supplied to customers throughout the world. We have a policy of preventing and minimizing waste streams during manufacture, and recycling materials wherever possible. We actively avoid or minimize environmentally hazardous materials in our production processes.

1. Material Content

For customers wishing to assess the environmental impact of AVX's capacitors contained in waste electrical and electronic equipment, the following information is provided: Surface mount tantalum capacitors contain:

- · Tantalum/Niobium and Tantalum/Niobium oxide
- · Manganese dioxide
- · Carbon/graphite
- Silver
- Tin/Tin-lead alloy plating
- Nickel-iron alloy or Copper alloy depending on design (consult factory for details)
- Polymers including fluorinated polymers
- · Epoxide resin encapsulant

The encapsulant is made fire retardant to UL 94 V-0 by the inclusion of inert mineral filler and fire retardants.

2. Packaging Material

The component packing tape is recyclable Polycarbonate and the sealing tape is a laminate of halogen-free polymers. The reels are recyclable polystyrene, and marked with the recycling symbol. The reels are overpacked in recyclable fiber board boxes. None of the packing contains heavy metals.

3. Lead (Pb)

Parts supplied today are electroplated over the terminal contact area with 100% fused matte Tin (Sn). Parts with SnPb termination finish are available upon request only. Contact AVX for availability of parts with SnPb termination finish.

4. Fire Retardants

A combustible encapsulant free of antimony trioxide and organic bromide compound are supplied today. AVX believes that the health and safety

benefits of using these materials to provide fire retardancy during the life of the product, far outweigh the possible risks to the environment and human health

5. Nickel Alloy

It is intended that all case sizes will be made with a high copper alloy termination. Some case sizes are supplied now with this termination, and other sizes may be available. Please contact AVX if you prefer this.

6. Recycling

Surface mount Tantalum and OxiCap® capacitors have a very long service life with no known wear-out mechanism, and a low failure rate. However, parts contained in equipment which is of no further use will have some residual value mainly because of the Tantalum metal or niobium oxide contained. This can be recovered and recycled by specialist companies. The silver and nickel or copper alloy will also have some value. Please contact AVX if you require assistance with the disposal of parts. Packaging can by recycled as described above.

7. Disposal

Surface mount Tantalum and OxiCap® capacitors do not contain any liquids and no part of the devices is normally soluble in water at neutral pH values. Incineration will cause the emission of noxious fumes and is not recommended except by specialists. Landfill may be considered for disposal, bearing in mind the small lead content.

Under certain extreme physical conditions it is possible to generate ignition of Tantalum, Niobium and Niobium oxide capacitors. These physical conditions relate to high-speed impact and although not considered to be a normal operating occurrence may occur as a method of material(s) recovery. Therefore appropriate safeguards procedures and methodologies need to be adopted to eliminate any risks of material ignition.

For further information, please contact your local AVX sales office or representative.

8. Typical Component Weight by Case Sizes

The approximate weight of capacitor by case size is in the table below. If the weight of specific part number is required, please contact manufacturer.

				TO 1	1		110.1		T40										
	TAJ TMJ TPS	TPM		TCJ		TCN	NOJ		TAC				F91, F93						
Case Size	TAJ, TMJ TPS, TRJ TLJ, THJ	TRM	TLN	TCO	ТСМ	J-CAP™	NOS	NOM	TLC	F38	F72	F75	F97	F92	F95	F98	F98-AJ6	тсн	THH
Size				TCQ			NLJ		TPC	L									
						, ,				al Weigh	t (mg)	1							
A	29			28			25		57.3				28	19	37				
B C	68 166			72 137			57 154		83.6			240	65 160	36	68				
		000							1.4										
D E	290 512	298 527		278 472	474		265 392	402	14 0.5			400	300						
F	148	527		4/2	4/4		109	402	0.5										
	28			25			23												
G H	52			51		51	23		15.2										
	52			31		31			12										543
J									5.9										343
K	17		22	15		20			2.8										
	17		41	13		38			9										
M			10			10			11.3	5.7	330					6	8		
N	9		10	9		10			11.3	3.7	330		350				,		
0	,		10			11							330						
P	15			15		- ''	12							9	18				
Q	10			10			12								20				
R	10			10					23.4		180	670			7				
S	19		27	18		25	17		20.4	12.4	100	070			25	13	14		
T	35		47	39		43	32		65.8						41				
Ü	738	673		642					8.5	1.2		160				1.6			
V	641	649		655	625		510		16.4										
W	99			100			82												
Х	152			151		190	126												
Υ	223	237		215			178												
Z						190			3.9										
3						251													
4			426			355													
5				429															
6			1056																
8						355													
9																		2185	2210

Environmental Information

9. RoHS Compliance

9.1 Tantalum & Niobium Oxide Capacitors (excluding F-series)

AVX can declare that we do not add any materials from the list below to series TAJ, TMJ, TPS, TPM, TRJ, TRM, THJ, TLJ, TLN, TCJ, TCM, TCN, J-CAP™, TCO, TCQ, TAC, TLC, TPC, NLJ, NOJ, NOS and NOM during production, so they are not contained in any significant level.

9.2 F-Series Eco-Products "GeoCap"

AVX promotes environmentally conscious practices.

AVX offers "GeoCap", witch has completely lead free terminals and contains no polyvinyl chloride in the sleeve.

	Substances	Taping Code	RoHS Compliance
	Cadmium and cadmium compounds	All	YES
		A,B,Y,P	YES
Heavy Metals	Lead and lead compounds	R,S,T,U	YES, since production date 1/1/04
ivietais		K,H	NO
	Mercury and mercury compounds	All	YES
	Hexavalent chromium compounds	All	YES
	Polychlorinated biphenyls (PCB)	All	YES
Chlorinated	Polychlorinated naphthalenes (PCN)	All	YES
organic compounds	Chlorinated paraffins (CP)	All	YES
·	Mirex (Perchlordecone)	All	YES
Brominated	Polybrominated biphenyls (PBB)	All	YES
organic compounds	Polybrominated diphenylethers (PBDE)	All	YES

F-SERIES TANTALUM CAPACITORS

Тур	e • Classification	Series	Lead-Free Compliance	Anti Polyvinyl Chloride Compliance	
Surface	Reisin-Molded type	F38, F91, F92, F93, F97, F98	Complied	Complied	
Mount type	Conformal Coated type	AUDIO F95, F95, F72, F75	Complied	Complied	

F-SERIES TANTALUM CAPACITORS CORRESPONDING TO ROHS DIRECTIVE

	Resin-Molded Chip F91/F92/F93/F97 Series	Conformal Coated Chip Audio F95/F95/F72/F75 Series	Facedown Terminal Resin- Molded Chip F98 Series	Conductive Polymer Facedown Terminal Resin-Molded Chip F38 Series
Compliance with RoHS Directive	Compliant	Compliant	Compliant	Compliant
Construction	42 Alloy/ Ni/ Sn plating	Ni/ Sn-Cu solder	U Case Cu/ Ni/ Au/ Sn-3.5Ag plating M, S Case Cu/ Ni/ Au plating	Cu/ Ni/ Au plating
of Electrode Terminal	Sn thickness 5µm Plating type matte No heat treatment after plating	Sn-Cu thickness 30µm (Solder dipping) No heat treatment after Solder dipping	U Case Sn-Ag thickness 5µm M, S Case Au thickness 0.05µm Plating type matte No heat treatment after plating	Au thickness 0.05µm Plating type matte No heat treatment after plating
Lead (Pb) Chromium (VI) Mercury Cadmium PBB PBDE	Does not contain	Does not contain	Does not contain	Does not contain
MSL (IPC/ JEDEC J-STD-020)	* LEVEL 1 to LEVEL 3 If you need detailed information about MSL LEVEL, please contact us.	LEVEL 3	LEVEL 3	LEVEL 3

Tape & Reel Packaging

Tape and reel packaging for automatic component placement. Please enter required Suffix on order. Bulk packaging is not available.

TAPE SPECIFICATION

Tape dimensions comply to EIA 481-1 Dimensions A0 and B0 of the pocket and the tape thickness, K, are dependent on the component size. Tape materials do not affect component solderability during storage. Carrier Tape Thickness < 0.4mm.

TAPING SUFFIX TABLE TAJ, TMJ, TPS, TPM, TRJ, TRM, THJ, TLJ, TLN TCJ, TCM, TCN, J-CAP™, TCO, TCQ, NLJ, NOJ, NOS, NOM

Case Size	Tape width	Р		180mm (7") reel Tin Termination			330mm (13") ree Tin Termination		180mm (7") reel Gold Termination		
Case Size	mm	mm	Suffix	Automotive Suffix	Qty.	Suffix	Automotive Suffix	Qty.	Suffix	Qty.	
Α	8	4	R	T	2,000	S	U	8,000	Α	2,000	
В	8	4	R	Т	2,000	S	U	8,000	Α	2,000	
С	12	8	R	T	500	S	U	3,000	Α	500	
D	12	8	R	Т	500	S	U	2,500	Α	500	
E	12	8	R	Т	400	S	U	1,500	Α	400	
F	12	8	R	-	1,000	S	-	4,000	Α	1,000	
G	8	4	R	_	2,500	S	-	10,000	Α	2,500	
Н	8	4	R	-	2,500	S	-	10,000	Α	2,500	
K	8	4	R	_	3,000	S	-	13,000	Α	3,000	
L	8	4	R	-	2,500	S	-	10,000	Α	2,500	
М	8	4	R	_	4,000	S	-	13,000	Α	4,000	
N	8	4	R	-	3,000	S	-	13,000	Α	3,000	
0	8	4	R	_	3,000	S	-	13,000	-	-	
Р	8	4	R	-	2,500	S	-	10,000	Α	2,500	
R	8	4	R	_	2,500	S	-	10,000	Α	2,500	
S	8	4	R	-	2,500	S	-	10,000	Α	2,500	
Т	8	4	R	_	2,500	S	-	10,000	Α	2,500	
U	16	8	R	-	400	-	-	-	-	-	
V	12	8	R	_	400	S	-	1,500	Α	400	
W	12	8	R	-	1,000	S	-	5,000	Α	1,000	
Х	12	8	R	_	1,000	S	-	5,000	Α	1,000	
Υ	12	8	R	_	1,000	S	-	4,000	Α	1,000	
Z	12	8	R	_	1,000	S	_	5,000	_	-	
3	16	8	R	_	800	S	-	TBD	-	-	
4	16	8	R	_	800	S	_	TBD	_	_	
5	12	8	R	-	400	S	-	1,500	-	-	
6	24	12	R	-	500	S	-	TBD	_	-	
8	16	8	R	_	800	S	-	TBD	-	-	

TAPING SUFFIX TABLE TAC AND TLC

Case Size	Tape width	P	108mm (4 Tin Tern		180mm Tin Tern		108mm (4.: Gold Terr		180mm (7") Gold Terr	
	mm	mm	Suffix	Qty.	Suffix	Qty.	Suffix	Qty.	Suffix	Qty.
Α	8	4	XTA	500	RTA	2,000	FTA	500	ATA	2,000
В	8	4	XTA	500	RTA	2,500	FTA	500	ATA	2,500
С	8	4	XTA	500	RTA	3,500	-	-	-	-
D	8	4	XTA	500	RTA	2,500	-	-	-	-
Н	8	4	XTA	500	RTA	3,500	FTA	500	ATA	3,500
I	8	4	XTA	500	RTA	2,500	FTA	500	ATA	2,500
J	8	4	XTA	500	RTA	3,500	FTA	500	ATA	3,500
K	8	2	QTA	1,000	PTA	10,000	NTA	1,000	MTA	10,000
L	8	4	XTA	500	RTA	3,500	FTA	500	ATA	3,500
М	8	4	XTA	500	RTA	2,500	FTA	500	ATA	2,500
Ν	8	2	QTA	1,000	PTA	10,000	-	-	-	-
Q	8	4	XTA	500	RTA	2,500	-	-	-	-
R	8	4	XTA	500	RTA	2,500	FTA	500	ATA	2,500
S	8	4	XTA	500	RTA	2,500	-	-	-	-
Т	8	4	XTA	500	RTA	2,500	FTA	500	ATA	2,500
U	8	4	XTA	500	RTA	3,500	FTA	500	ATA	3,500
V	8	4	XTA	500	RTA	2,500	FTA	500	ATA	2,500
Z	8	2	QTA	1,000	PTA	10,000	-	-	-	-

Under Development

CHIP TRAY (WAFFLE) TABLE TLC

Case Size	Chip Tray Qty.	Tin Termination Suffix	Gold Termination Suffix
E	Each	HTA	ı

Tape & Reel Packaging

TAPING SUFFIX TABLE TPC

Case Size	Tape width mm	P mm	108mm (4.25") reel Tin Termination		180mm Tin Tern		108mm (4.2 Gold Tern		180mm (7") reel & 100% Gold Termination		
			Suffix	Qty.	Suffix	Qty.	Suffix	Qty.	Suffix	Qty.	
Н	8	4	Xxxxx	500	Rxxxx	3,500	Fxxxx	500	Axxxx	3,500	
K	8	2	Qxxxx	1,000	Pxxxx	10,000	Nxxxx	1,000	Mxxxx	10,000	
L	8	4	Xxxxx	500	Rxxxx	3,500	Fxxxx	500	Axxxx	3,500	
R	8	4	Xxxxx	500	Rxxxx	2,500	Fxxxx	500	Axxxx	2,500	

Note: xxxx = ESR value in Milliohms

TAPING SUFFIX TABLE TLC

Case Size	Tape width		108mm (4.25") reel Tin Termination		180mm Tin Tern		108mm (4.2 Gold Tern	nination Gold Ter		reel & 100% mination
			Suffix	Qty.	Suffix	Qty.	Suffix	Qty.	Suffix	Qty.
L	8	4	Xxxxx	500	Rxxxx	3,500	Fxxxx	500	Axxxx	3,500

Note: xxxx = ESR value in Milliohms

PLASTIC TAPE DIMENSIONS TAJ, TMJ, TPS, TPM, TRJ, TRM, THJ, TLJ, TLN, TCJ, TCM, TCN, J-CAP™, TCO, TCQ, NLJ, NOJ, NOS AND NOM

Case	A0±0.10	B0±0.10	K±0.10	W±0.30	E±0.10	F±0.05	G min.	P±0.10	P2±0.05	P0±0.10	D +0.20 -0.00	D1 +0.25 -0.00
Α	1.83	3.57	1.87	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
В	3.15	3.77	2.22	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
С	3.45	6.40	2.92	12.00	1.75	5.50	0.75	8.00	2.00	4.00	1.50	1.50
D	4.48	7.62	3.22	12.00	1.75	5.50	0.75	8.00	2.00	4.00	1.50	1.50
E	4.50	7.50	4.50	12.00	1.75	5.50	0.75	8.00	2.00	4.00	1.50	1.50
F	3.35	6.40	2.20	12.00	1.75	5.50	0.75	8.00	2.00	4.00	1.50	1.50
G	1.83	3.57	1.65	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
Н	3.15	3.77	1.66	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
K	1.95	3.55	1.15	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
L	3.10	3.80	1.30	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
M	1.60	2.35	1.10	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
N	1.60	2.30	1.10	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
0	1.95	3.55	0.80	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
Р	1.65	2.45	1.60	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
R	1.65	2.45	1.30	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
S	1.95	3.55	1.30	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
T	3.20	3.80	1.30	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
U	6.19	7.66	4.72	16.00	1.75	7.50	0.75	8.00	2.00	4.00	1.50	1.50
V	6.43	7.44	3.84	12.00	1.75	5.50	0.75	8.00	2.00	4.00	1.50	1.50
W	3.57	6.40	1.65	12.00	1.75	5.50	0.75	8.00	2.00	4.00	1.50	1.50
X	4.67	7.62	1.65	12.00	1.75	5.50	0.75	8.00	2.00	4.00	1.50	1.50
Υ	4.67	7.62	2.15	12.00	1.75	5.50	0.75	8.00	2.00	4.00	1.50	1.50
Z	4.67	7.62	1.65	12.00	1.75	5.50	0.75	8.00	2.00	4.00	1.50	1.50
3	6.25	7.88	2.25	16.00	1.75	7.50±0.1	0.75	8.00	2.00±0.1	4.00	1.50	1.50
4	6.25	7.88	2.25	16.00	1.75	7.50±0.1	0.75	8.00	2.00±0.1	4.00	1.50	1.50
5	4.50	7.50	4.50	12.00	1.75	5.50	0.75	8.00	2.00	4.00	1.50	1.50
6	8.55	15.60	2.25	24.00	1.75	11.50	0.75	12.00	2.00	4.00	1.50	1.50
8	6.25	7.88	2.25	16.00	1.75	7.50±0.1	0.75	8.00	2.00±0.1	4.00	1.50	1.50

PLASTIC TAPE DIMENSIONS TAC, TLC AND TPC

Case	A0±0.10	B0±0.10	K±0.10	W±0.30	E±0.10	F±0.05	G min.	P±0.10	P2±0.05	P0±0.10	D +0.20 -0.00	D1 +0.20 -0.00
Α	1.83±0.10	3.57±0.10	1.87±0.10	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
В	3.15±0.10	3.77±0.10	1.66±0.10	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
С	1.95±0.10	3.55±0.10	1.15±0.10	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
D	1.95±0.10	3.60±0.10	0.90±0.10	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
Н	1.65±0.10	2.45±0.10	1.10±0.05	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
I	1.95±0.10	3.60±0.10	0.90±0.10	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
J	1.05 ^{+0.10} _{-0.00}	1.90 ^{+0.10} -0.00	0.80 +0.10	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	0.80
K	0.75 +0.15	1.26 ^{+0.10} _{-0.00}	0.67 +0.10	8.00	1.75	3.50	0.75	2.00	2.00	2.00	1.50	0.50
L	1.05 ^{+0.10} _{-0.00}	1.90 ^{+0.10} -0.00	1.05 ^{+0.10} _{-0.00}	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	0.80
М	1.05 ^{+0.10} _{-0.00}	2.45±0.10	1.05 ^{+0.10} _{-0.00}	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	0.80
Q	1.65±0.10	2.45±0.10	1.30±0.10	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
R	1.65±0.10	2.45±0.10	1.60±0.10	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
S	1.95±0.10	3.55±0.10	1.30±0.10	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
Т	3.20±0.10	3.80±0.10	1.30±0.10	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
U	1.65±0.10	2.45±0.10	0.80±0.05	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
V	1.95±0.10	3.60±0.10	0.90±0.10	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
Х	1.83±0.10	3.57±0.10	1.87±0.10	8.00	1.75	3.50	0.75	4.00	2.00	4.00	1.50	1.00
Z	1.75 ^{+0.05} _{-0.00}	1.90 ^{+0.10} _{-0.00}	0.67 +0.10	8.00	1.75	3.50	0.75	2.00	2.00	2.00	1.50	0.50

Under development

CHIP TRAY (WAFFLE) TABLE TLC

Case	X Pocket Size	Y Pocket Size	Z Pocket Depth	A Pocket Draft Angle	Array
Е	0.76mm ±0.05mm	0.43mm ±0.05mm	0.41mm ±0.05mm	5° ±1/2°	20 x 20 (400)

Tape & Reel Packaging

REEL DIMENSIONS

Reel Size	Tape	Α	В	С	W	t
180mm (7")	16mm	180±2.00	50 min	13.0±0.50	16.4+2.0/-0	2.00±0.50
180mm (7")	12mm	180±2.00	50 min	13.0±0.50	12.4+1.5/-0	2.00±0.50
180mm (7")	8mm	180±2.00	50 min	13.0±0.50	8.4+1.5/-0	2.00±0.50
330mm (13")	12mm	330±2.00	50 min	13.0±0.50	12.4+1.5/-0	2.00±0.50
330mm (13")	8mm	330±2.00	50 min	13.0±0.50	8.4+1.5/-0	2.00±0.50
TACmicrochip®	TACmicrochip®					
108mm (4.25")	8mm	108±2.00	50 min	13.0±0.50	8.4+1.5/-0	1.50±0.50
180mm (7")	8mm	180±2.00	50 min	13.0±0.50	8.4+1.5/-0	1.50±0.50

COVER TAPE NOMINAL DIMENSIONS

Thickness: 75µm

Width of tape: 5.5mm (8mm tape)

9.5mm (12mm tape) 13.5mm (16mm tape)

TCH AND THH PACKAGING SPECIFICATION

The dimensions of the tray see in the figure below. Tolerance of dimensions are ±0.1 mm. Both case size "9" and "I" have 40 pcs per tray.

OVERALL CHIP TRAY SIZE

Size	Height	Flatness
50.80mm±0.10mm	3.96mm +0.05mm -0.08mm	0.10mm

PLASTIC CHIP TRAY

F-Series Tantalum Capacitors

Tape & Reel Packaging

TAPING QUANTITY TABLE – F-SERIES CAPACITORS

Series	s Case Size 180mm (7") Reel Tin Termination		330mm (13") Reel Tin Termination
		Qty.	Qty.
F38, F98	U	10,000	_
F30, F90	M, S	4,000	_
F92	Р	3,000	8,000
F92	A, B	2,500	8,000
	Α	2,000	8,000
F91, F93, F97	В	2,000	6,000
	C, N	500	2,500
F95	R, P	3,000	10,000
AUDIO F95	Q, S, A, T	2,500	10,000
AUDIO 193	В	2,000	8,500
F72	R	1,000	_
F/Z	М	500	_
F75	C, D, M, R, U	500	_

^{()*:} Export packaging. There are some differences between actual minimum quantity and above list. Please confirm before you order.

TYPE NUMBERING SYSTEM

		7				
Tape		Tape		Applicable Case Size		
Width (mm)	Polarity	Reel Dia	Reel Dia \$\phi 330 \\ mm	F91,F92, F93,F97, F38,F98	F95 AUDIO F95	F72 F75
8	R (Anode is at opposite side of feeding holes)	А	Е	U, M, S P, A, B	R, P, Q S, A, T B	-
12	R (Anode is at opposite side of feeding holes)	С	G	C, N	_	U, C D, R M

REEL DIMENSIONS (mm)

Item	Reel Diameter		
пеш	180φ	330φ	
Α	φ180 ⁺⁰ ₊₃	φ330±2	
		A # 1-1	

Item	Таре	Width
item	8	12
W_1	9.0±0.3	13±0.3
W ₂	11.4±1.0	15.4±1.0

50MIN

Note: The above shows the dimensions of 180 reel. In case of 330 reel, the appearance shape is slightly different.

CARRIER TAPE DIMENSIONS (mm)

F91, F92, F93, F97, F98 M, F38 M

Case Code	W	Α	В	F	P ₁	t ₂	t ₃
U	8.0±0.3	0.73±0.08	1.20±0.05	3.5±0.05	2.0±0.1	0.7 Max.	-
М	8.0±0.3	0.97±0.05	1.85±0.05	3.5±0.05	4.0±0.1	1.3 Max.	0.20±0.05
S	8.0±0.3	1.35±0.1	2.15±0.1	3.5±0.1	4.0±0.1	1.4 Max.	0.2 to 0.3
P	8.0±0.3	1.55±0.1	2.3±0.1	3.5±0.05	4.0±0.1	(1.7 Max.)	0.2 to 0.3
Α	8.0±0.3	1.9±0.1	3.5±0.1	3.5±0.05	4.0±0.1	2.1 Max. (1.7)	0.2 to 0.3
В	8.0±0.3	3.3±0.1	3.8±0.1	3.5±0.05	4.0±0.1	2.4 Max. (1.7)	0.2 to 0.3
С	12.0±0.3	3.6±0.1	6.3±0.1	5.5±0.05	8.0±0.1	2.9 Max.	0.2 to 0.3
N	12.0±0.3	4.8±0.1	7.7±0.1	-	-	3.5 Max.	0.2 to 0.3

F95, AUDIO F95, F72, F75

Туре	Case Code	W	Α	В	F	P ₁	t ₂
	R		1.5±0.2	2.6±0.2			1.05 Max.
	Р		1.510.2	2.010.2			1.5 Max.
F95	Q, S		2.0±0.2	3.6±0.2	3.5±0.05		1.5 Max.
AUDIO F95	Α	8.0±0.3	2.1±0.2	3.7±0.2		4.0±0.1	2.0 Max.
	Т		3.0±0.2	3.75±0.2			1.5 Max.
	В		3.25±0.2	3.7±0.2			2.4 Max.
F72	R	12.0±0.3	6.5±0.2	7.6±0.2	5.5±0.1	8.0±0.1	2.2 Max.
F/Z	М	12.010.3	6.6±0.2	7.8±0.2	5.5±0.1	0.UIU.1	2.5 Max.
	U		3.7±0.2	7.6±0.2			2.7 Max.
	С		3./±0.2	7.0±0.2			3.6 Max.
F75	D	12.0±0.3	4.8±0.2	7.9±0.2	5.5±0.1	8.0±0.1	3.9 Max.
	М		6.6±0.2	7.6±0.2			3.3 Max.
	R		6.7±0.2	7.6±0.2			4.6 Max.

SECTION 1: ELECTRICAL CHARACTERISTICS AND EXPLANATION OF TERMS

1.1 CAPACITANCE

1.1.1 Rated capacitance (CR)

This is the nominal rated capacitance. For tantalum capacitors it is measured as the capacitance of the equivalent series circuit at 20°C in a measuring bridge supplied by a 120 Hz source free of harmonics with 2.2V DC bias max.

1.1.2 Temperature dependence on the capacitance

The capacitance of a tantalum capacitor varies with temperature. This variation itself is dependent to a small extent on the rated voltage and capacitor size. See graph below for typical capacitance changes with temperature.

Typical Capacitance vs. Temperature

1.1.3 Capacitance tolerance

This is the permissible variation of the actual value of the capacitance from the rated value.

1.1.4 Frequency dependence of the capacitance

The effective capacitance decreases as frequency increases. Beyond 100 kHz the capacitance continues to drop until resonance is reached (typically between 0.5-5 MHz depending on the rating). Beyond this the device becomes inductive.

Typical Curve Capacitance vs. Frequency

1.2 VOLTAGE

1.2.1 Rated DC voltage (V_R)

This is the rated DC voltage for continuous operation up to +85°C.

1.2.2 Category voltage (V_c)

This is the maximum voltage that may be applied continuously to a capacitor. It is equal to the rated voltage up to $+85^{\circ}$ C, beyond which it is subject to a linear derating, to $2/3 \text{ V}_{\tiny p}$ at 125° C.

1.2.3 Surge voltage (V_s)

This is the highest voltage that may be applied to a capacitor for short periods of time. The surge voltage may be applied up to 10 times in an hour for periods of up to 30 seconds at a time. The surge voltage must not be used as a parameter in the design of circuits in which, in the normal course of operation, the capacitor is periodically charged and discharged.

Category Voltage vs. Temperature

85	°C	12	5°C
Rated Voltage (V DC)	Surge Voltage (V DC)	Category Voltage (V DC)	Surge Voltage (V DC)
2	2.6	1.3	1.7
3	4	2	2.6
4	5.2	2.6	3.4
6.3	8	4	5
10	13	6.3	9
16	20	10	12
20	26	13	16
25	33	16	21
35	46	23	28
50	65	33	40

1.2.4 Effect of surges

The solid Tantalum capacitor has a limited ability to withstand surges (15% to 30% of rated voltage). This is in common with all other electrolytic capacitors and is due to the fact that they operate under very high electrical stress within the oxide layer. In the case of 'solid' electrolytic capacitors this is further complicated by the limited self healing ability of the manganese dioxide semiconductor.

It is important to ensure that the voltage across the terminals of the capacitor does not exceed the surge voltage rating at any time. This is particularly so in low impedance circuits where the capacitor is likely to be subjected to the full impact of surges, especially in low inductance applications. Even an extremely short duration spike is likely to cause damage. In such situations it will be necessary to use a higher voltage rating.

1.2.5 Reverse voltage and non-polar operation

The reverse voltage ratings are designed to cover exceptional conditions of small level excursions into incorrect polarity. The values quoted are not intended to cover continuous reverse operation.

The peak reverse voltage applied to the capacitor must not exceed:

10% of rated DC working voltage to a maximum of 1V at 25°C

3% of rated DC working voltage to a maximum of 0.5V at 85° C

1% of category DC working voltage to a maximum of 0.1V at 125°C

1.2.6 Non-polar operation

If the higher reverse voltages are essential, then two capacitors, each of twice the required capacitance and of equal tolerance and rated voltage, should be connected in a back-to-back configuration, i.e., both anodes or both cathodes joined together. This is necessary in order to avoid a reduction in life expectancy.

1.2.7 Superimposed AC voltage (V_{rms}) - Ripple Voltage

This is the maximum RMS alternating voltage, superimposed on a DC voltage, that may be applied to a capacitor. The sum of the DC voltage and the surge value of the superimposed AC voltage must not exceed the category voltage, V_c. Full details are given in Section 2.

1.2.8 Voltage derating

Refer to section 3.2 (pages 281-284) for the effect of voltage derating on reliability.

1.3 DISSIPATION FACTOR AND TANGENT OF LOSS ANGLE (TAN D)

1.3.1 Dissipation factor (DF)

Dissipation factor is the measurement of the tangent of the loss angle (Tan δ) expressed as a percentage.

The measurement of DF is carried out at +25°C and 120 Hz with 2.2V DC bias max. with an AC voltage free of harmonics. The value of DF is temperature and frequency dependent.

1.3.2 Tangent of loss angle (Tan δ)

This is a measure of the energy loss in the capacitor. It is expressed as Tan δ and is the power loss of the capacitor divided by its reactive power at a sinusoidal voltage of specified frequency. (Terms also used are power factor, loss factor and dielectric loss, Cos $(90 - \delta)$ is the true power factor.) The measurement of Tan is carried out at +20°C and 120 Hz with 2.2V DC bias max. with an AC voltage free of harmonics.

1.3.3 Frequency dependence of dissipation factor

Dissipation Factor increases with frequency as shown in the typical curves below.

Typical Curve-Dissipation Factor vs. Frequency

1.3.4 Temperature dependence of dissipation factor

Dissipation factor varies with temperature as the typical curves show to the right. For maximum limits please refer to ratings tables.

Typical Curves-Dissipation Factor vs. Temperature

1.4 IMPEDANCE, (Z) AND EQUIVALENT SERIES RESISTANCE (ESR)

1.4.1 Impedance, Z

This is the ratio of voltage to current at a specified frequency. Three factors contribute to the impedance of a tantalum capacitor; the resistance of the semiconducting layer, the capacitance, and the inductance of the electrodes and leads.

At high frequencies the inductance of the leads becomes a limiting factor. The temperature and frequency behavior of these three factors of impedance determine the behavior of the impedance Z. The impedance is measured at 25°C and 100 kHz.

1.4.2 Equivalent series resistance, ESR

Resistance losses occur in all practical forms of capacitors. These are made up from several different mechanisms, including resistance in components and contacts, viscous forces within the dielectric, and defects producing bypass current paths. To express the effect of these losses they are considered as the ESR of the capacitor. The ESR is frequency dependent. The ESR can be found by using the relationship:

$$ESR = \frac{Tan \, \delta}{2\pi fC}$$

where f is the frequency in Hz, and C is the capacitance in farads. The ESR is measured at 25° C and 100 kHz.

ESR is one of the contributing factors to impedance, and at high frequencies (100 kHz and above) is the dominant factor, so that ESR and impedance become almost identical, impedance being marginally higher.

1.4.3 Frequency dependence of impedance and ESR

ESR and impedance both increase with decreasing frequency. At lower frequencies the values diverge as the extra contributions to impedance (resistance of the semiconducting layer, etc.) become more significant. Beyond 1 MHz (and beyond the resonant point of the capacitor) impedance again increases due to induction.

Frequency Dependence of Impedance and ESR

1.4.4 Temperature dependence of the impedance and

At 100 kHz, impedance and ESR behave identically and decrease with increasing temperature as the typical curves show. For maximum limits at high and low temperatures, please refer to graph opposite.

1.5 DC LEAKAGE CURRENT (DCL)

1.5.1 Leakage current (DCL)

The leakage current is dependent on the voltage applied, the time, and the capacitor temperature. It is measured at +25°C with the rated voltage applied. A protective resistance of 1000 is connected in series with the capacitor in the measuring circuit.

Three minutes after application of the rated voltage the leakage current must not exceed the maximum values indicated in the ratings table. Reforming is unnecessary even after prolonged periods without the application of voltage.

1.5.2 Temperature dependence of the leakage current

The leakage current increases with higher temperatures, typical values are shown in the graph.

For operation between 85°C and 125°C, the maximum working voltage must be derated and can be found from the following formula.

$$V \text{ max} = \left(1 - \frac{(T - 85)}{120}\right) \times V_R \text{ volts}$$

where T is the required operating temperature. Maximum limits are given in rating tables.

1.5.3 Voltage dependence of the leakage current

The leakage current drops rapidly below the value corresponding to the rated voltage V_R when reduced voltages are applied. The effect of voltage derating on the leakage current is shown in

This will also give a significant increase in reliability for any application. See Section 3 (pages 278-283) for details.

1.5.4 Ripple current

The maximum ripple current allowance can be calculated from the power dissipation limits for a given temperature rise above ambient. Please refer to Section 2 (page 284) for details.

Temperature Dependence of the Impedance and ESR

Temperature Dependence of the Leakage Current for a Typical Component

Effect of Voltage Derating on Leakage Current

SECTION 2: A.C. OPERATION — RIPPLE VOLTAGE AND RIPPLE CURRENT 2.1 RIPPLE RATINGS (AC)

In an AC application heat is generated within the capacitor by both the AC component of the signal (which will depend upon signal form, amplitude and frequency), and by the DC leakage. For practical purposes the second factor is insignificant. The actual power dissipated in the capacitor is calculated using the formula:

$$P = I^2 R = \frac{E^2 R}{Z^2}$$

I = rms ripple current, amperes

R = equivalent series resistance, ohms

E = rms ripple voltage, volts

P = power dissipated, watts

Z = impedance, ohms, at frequency under consideration

Using this formula it is possible to calculate the maximum AC ripple current and voltage permissible for a particular application.

2.2 MAXIMUM AC RIPPLE VOLTAGE (EMAX)

From the previous equation:

$$E_{\text{(max)}} = Z \sqrt{\frac{P \text{ max}}{R}}$$

where P_{max} is the maximum permissible ripple voltage as listed for the product under consideration (see table).

However, care must be taken to ensure that:

- The DC working voltage of the capacitor must not be exceeded by the sum of the positive peak of the applied AC voltage and the DC bias voltage.
- 2. The sum of the applied DC bias voltage and the negative peak of the AC voltage must not allow a voltage reversal in excess of that defined in the sector, 'Reverse Voltage'.

2.3 MAXIMUM PERMISSIBLE POWER DISSIPATION (WATTS) @ 25°C

The maximum power dissipation at 25°C has been calculated for the various series and are shown in Section 2.4, together with temperature derating factors up to 125°C.

For leaded components the values are calculated for parts supported in air by their leads (free space dissipation).

The ripple ratings are set by defining the maximum temperature rise to be allowed under worst case conditions, i.e., with resistive losses at their maximum limit. This differential is normally 10°C at room temperature dropping to 2°C at 125°C. In application circuit layout, thermal management, available ventilation, and signal waveform may significantly affect the values quoted below. It is recommended that temperature measurements are made on devices during operating conditions to ensure that the temperature

differ ential between the device and the ambient temperature is less than 10°C up to 85°C and less than 2°C between 85°C and 125°C. Derating factors for temperatures above 25°C are also shown below. The maximum permissible proven dissipation should be multiplied by the appropriate derating factor.

For certain applications, e.g., power supply filtering, it may be desirable to obtain a screened level of ESR to enable higher ripple currents to be handled. Please contact our applications desk for information.

2.4 POWER DISSIPATION RATINGS (IN FREE AIR)

TAP/TEP - Resin Dipped Radial

Case size	Max. power dissipation (W)
Α	0.045
В	0.05
С	0.055
D	0.06
Е	0.065
F	0.075
G	0.08
Н	0.085
J	0.09
K	0.1
L	0.11
M/N	0.12
Р	0.13
R	0.14
Р	0.13

Temperature derating factors				
Temp. °C	Factor			
+25 1.0				
+85	0.4			
+125 0.09				
· · · · · · · · · · · · · · · · · · ·				

SECTION 3: RELIABILITY AND CALCULATION OF FAILURE RATE

3.1 STEADY-STATE

Tantalum Dielectric has essentially no wear out mechanism and in certain circumstances is capable of limited self healing, random failures can occur in operation. The failure rate of Tantalum capacitors will decrease with time and not increase as with other electrolytic capacitors and other electronic components.

Figure 1. Tantalum reliability curve.

The useful life reliability of the Tantalum capacitor is affected by three factors. The equation from which the failure rate can be calculated is:

$$F = F_{II} \times F_{T} \times F_{R} \times F_{R}$$

- $F_{\scriptscriptstyle U}$ is a correction factor due to operating voltage/ voltage derating
- F_{τ} is a correction factor due to operating temperature
- F_R is a correction factor due to circuit series resistance
- F_B is the basic failure rate level. For standard leaded Tantalum product this is 1%/1000hours

Operating voltage/voltage derating

If a capacitor with a higher voltage rating than the maximum line voltage is used, then the operating reliability will be improved. This is known as voltage derating. The graph, Figure 2, shows the relationship between voltage derating (the ratio between applied and rated voltage) and the failure rate. The graph gives the correction factor F_{μ} for any operating voltage.

Voltage Correction Factor

Figure 2. Correction factor to failure rate F for voltage derating of a typical component (60% con. level).

Operating temperature

1.0000

If the operating temperature is below the rated temperature for the capacitor then the operating reliability will be improved as shown in Figure 3. This graph gives a correction factor F_T for any temperature of operation.

Temperature Correction Factor

Figure 3. Correction factor to failure rate F for ambient temperature T for typical component (60% con. level).

Circuit Impedance

All solid tantalum capacitors require current limiting resistance to protect the dielectric from surges. A series resistor is recommended for this purpose. A lower circuit impedance may cause an increase in failure rate, especially at temperatures higher than 20°C. An inductive low impedance circuit may apply voltage surges to the capacitor and similarly a non-inductive circuit may apply current surges to the capacitor, causing localized over-heating and failure.

The recommended impedance is 1Ω per volt. Where this is not feasible, equivalent voltage derating should be used (See MIL HANDBOOK 217). Table I shows the correction factor, $F_{\mbox{\tiny R}^{\mbox{}}}$ for increasing series resistance.

Table I: Circuit Impedance

Correction factor to failure rate F for series resistance R on basic failure rate F_B for a typical component (60% con. level).

Circuit Resistance ohms/volt	FR
3.0	0.07
2.0	0.1
1.0	0.2
0.8	0.3
0.6	0.4
0.4	0.6
0.2	0.8
0.1	1.0

Example calculation

Consider a 12 volt power line. The designer needs about $10\mu\text{F}$ of capacitance to act as a decoupling capacitor near a video bandwidth amplifier. Thus the circuit impedance will be limited only by the output impedance of the boards power unit and the track resistance. Let us assume it to be about 2 Ohms minimum, i.e., 0.167 Ohms/Volt. The operating temperature range is -25°C to +85°C. If a $10\mu\text{F}$ 16 Volt capacitor was designed-in, the operating failure rate would be as follows:

a) $F_{T} = 0.8 @ 85^{\circ}C$

b) $F_R = 0.7 @ 0.167 Ohms/Volt$

c) F_U = 0.17 @ applied voltage/rated voltage = 75%

Thus $F_B = 0.8 \times 0.7 \times 0.17 \times 1 = 0.0952\%/1000 \text{ Hours}$

If the capacitor was changed for a 20 volt capacitor, the operating failure rate will change as shown.

 F_{ij} = 0.05 @ applied voltage/rated voltage = 60%

 $F_B = 0.8 \times 0.7 \times 0.05 \times 1 = 0.028\%/1000 \text{ Hours}$

3.2 DYNAMIC

As stated in Section 1.2.4 (page 282), the solid Tantalum capacitor has a limited ability to withstand voltage and current surges. Such current surges can cause a capacitor to fail. The expected failure rate cannot be calculated by a simple formula as in the case of steady-state reliability. The two parameters under the control of the circuit design engineer known to reduce the incidence of failures are derating and series resistance. The table below summarizes the results of trials carried out at AVX with a piece of equipment which has very low series resistance and applied no derating. So that the capacitor was tested at its rated voltage.

Results of production scale derating experiment

Capacitance and Voltage	Number of units tested	50% derating applied	No derating applied
47µF 16V	1,547,587	0.03%	1.1%
100μF 10V	632,876	0.01%	0.5%
22µF 25V	2,256,258	0.05%	0.3%

As can clearly be seen from the results of this experiment, the more derating applied by the user, the less likely the probability of a surge failure occurring.

It must be remembered that these results were derived from a highly accelerated surge test machine, and failure rates in the low ppm are more likely with the end customer.

A commonly held misconception is that the leakage current of a Tantalum capacitor can predict the number of failures which will be seen on a surge screen. This can be disproved by the results of an experiment carried out at AVX on $47\mu F$ 10V surface mount capacitors with different leakage currents. The results are summarized in the table below.

Leakage Current vs Number of Surge Failures

	Number tested	Number failed surge
Standard leakage range 0.1 µA to 1µA	10,000	25
Over Catalog limit 5µA to 50µA	10,000	26
Classified Short Circuit 50µA to 500µA	10,000	25

Again, it must be remembered that these results were derived from a highly accelerated surge test machine, and failure rates in the low ppm are more likely with the end customer.

AVX recommended derating table

Voltage Rail	Working Cap Voltage
3.3	6.3
5	10
10	20
12	25
15	35
≥24	Series Combinations (11)

For further details on surge in Tantalum capacitors refer to J.A. Gill's paper "Surge in Solid Tantalum Capacitors", available from AVX offices worldwide.

An added bonus of increasing the derating applied in a circuit, to improve the ability of the capacitor to withstand surge conditions, is that the steady-state reliability is improved by up to an order. Consider the example of a 6.3 volt capacitor being used on a 5 volt rail. The steadystate reliability of a Tantalum capacitor is affected by three parameters; temperature, series resistance and voltage derating. Assuming 40°C operation and 0.1 Ω /volt of series resistance, the scaling factors for temperature and series resistance will both be 0.05 [see Section 3.1 (page 286)]. The derating factor will be 0.15. The capacitors reliability will therefore be

Failure rate =
$$F_U \times F_T \times F_R \times 1\%/1000$$
 hours
= 0.15 x 0.05 x 1 x 1%/1000 hours
= 7.5% x 10⁻³/hours

If a 10 volt capacitor was used instead, the new scaling factor would be 0.017, thus the steady-state reliability would be

Failure rate =
$$F_U \times F_T \times F_R \times 1\%/1000$$
 hours
= 0.017 x 0.05 x 1 x 1%/1000 hours
= 8.5% x 10-4/1000 hours

So there is an order improvement in the capacitors steadystate reliability.

3.3 RELIABILITY TESTING

AVX performs extensive life testing on tantalum capacitors.

■ 2,000 hour tests as part of our regular Quality Assurance Program.

Test conditions:

- 85°C/rated voltage/circuit impedance of 3Ω max.
- 125° C/0.67 x rated voltage/circuit impedance of 3Ω max.

3.4 Mode of Failure

This is normally an increase in leakage current which ultimately becomes a short circuit.

SECTION 4: APPLICATION GUIDELINES FOR TANTALUM CAPACITORS

4.1 SOLDERING CONDITIONS AND BOARD ATTACHMENT

The soldering temperature and time should be the minimum for a good connection.

A suitable combination for wave soldering is 230°C - 250°C for 3 - 5 seconds.

Small parametric shifts may be noted immediately after wave solder, components should be allowed to stabilize at room temperature prior to electrical testing.

AVX leaded tantalum capacitors are designed for wave soldering operations.

4.2 RECOMMENDED SOLDERING PROFILES

Recommended wave soldering profile for mounting of tantalum capacitors is shown below.

After soldering the assembly should preferably be allowed to cool naturally. In the event that assisted cooling is used, the rate of change in temperature should not exceed that used in reflow.

^{*}See appropriate product specification

SECTION 5: MECHANICAL AND THERMAL PROPERTIES, LEADED CAPACITORS

5.1 ACCELERATION

10 g (981 m/s)

5.2 VIBRATION SEVERITY

10 to 2000 Hz, 0.75 mm or 98 m/s²

5.3 SHOCK

Trapezoidal Pulse 10 g (981 m/s) for 6 ms

5.4 TENSILE STRENGTH OF CONNECTION

10 N for type TAR, 5 N for type TAP/TEP.

5.5 BENDING STRENGTH OF CONNECTIONS

2 bends at 90°C with 50% of the tensile strength test loading.

5.6 SOLDERING CONDITIONS

Dip soldering permissible provided solder bath temperature ≦270°C; solder time <3 sec.; circuit board thickness ≧1.0 mm.

5.7 INSTALLATION INSTRUCTIONS

The upper temperature limit (maximum capacitor surface temperature) must not be exceeded even under the most unfavorable conditions when the capacitor is installed. This must be considered particularly when it is positioned near components which radiate heat strongly (e.g., valves and power transistors). Furthermore, care must be taken, when bending the wires, that the bending forces do not strain the capacitor housing.

5.8 INSTALLATION POSITION

No restriction.

5.9 SOLDERING INSTRUCTIONS

Fluxes containing acids must not be used.

QUESTIONS AND ANSWERS

Some commonly asked questions regarding Tantalum Capacitors:

Question: If I use several tantalum capacitors in serial/ parallel combinations, how can I ensure equal current and voltage sharing?

Answer: Connecting two or more capacitors in series and parallel combinations allows almost any value and rating to be constructed for use in an application.

For example, a capacitance of more than $60\mu F$ is required in a circuit for stable operation. The working voltage rail is 24 Volts dc with a superimposed ripple of 1.5 Volts at 120 Hz.

The maximum voltage seen by the capacitor is $V_{\rm dc}$ + $V_{\rm ac}$ =25.5V Applying the 50% derate rule tells us that a 50V capacitor is required.

Connecting two 25V rated capacitors in series will give the required capacitance voltage rating, but the effective capacitance will be halved, so for greater than

60μF, four such series combinations are required, as shown.

In order to ensure reliable operation, the capacitors should be connected as shown below to allow current sharing of the ac noise and ripple signals. This prevents any one capacitor heating more than its neighbors and thus being the weak link in the chain.

The two resistors are used to ensure that the leakage currents of the capacitors does not affect the circuit reliability, by ensuring that all the capacitors have half the working voltage across them.

Question: What are the advantages of tantalum over other capacitor technologies?

Answer:

- 1. Tantalums have high volumetric efficiency.
- 2. Electrical performance over temperature is very stable.
- 3. They have a wide operating temperature range -55 degrees C to +125 degrees C.
- 4. They have better frequency characteristics than aluminum electrolytics.
- No wear out mechanism. Because of their construction, solid tantalum capacitors do not degrade in performance or reliability over time.

Question: If the part is rated as a 25 volt part and you have current surged it, why can't I use it at 25 volts in a low impedance circuit?

Answer: The high volumetric efficiency obtained using tantalum technology is accomplished by using an extremely thin film of tantalum pentoxide as the dielectric. Even an application of the relatively low voltage of 25 volts will produce a large field strength as seen by the dielectric. As a result of this, derating has a significant impact on reliability as described under the reliability section. The following example uses a 22 microfarad capacitor rated at 25 volts to illustrate the point. The equation for determining the amount of surface area for a capacitor is as follows:

$$C = ((E)(E^{\circ})(A)) / d$$

$$A = ((C)(d))/((E^{\circ})(E))$$

$$A = ((22 \times 10^{-6}) (170 \times 10^{-9})) / ((8.85 \times 10^{-12}) (27))$$

A = 0.015 square meters (150 square centimeters)

Where C = Capacitance in farads

A = Dielectric (Electrode) Surface Area (m²)

d = Dielectric thickness (Space between dielectric) (m)

E = Dielectric constant (27 for tantalum)

E°= Dielectric Constant relative to a vacuum (8.855 x 10⁻¹² Farads x m⁻¹)

To compute the field voltage potential felt by the dielectric we use the following logic.

Dielectric formation potential = Formation Ratio x

Working Voltage

 $= 4 \times 25$

Formation Potential = 100 volts

Dielectric (Ta₂O₅) Thickness (d) is 1.7 x 10⁻⁹ Meters Per Volt

 $d = 0.17 \mu \text{ meters}$

Electric Field Strength = Working Voltage / d

 $= (25 / 0.17 \mu \text{ meters})$

= 147 Kilovolts per millimeter

= 147 Megavolts per meter

OUESTIONS AND ANSWERS

No matter how pure the raw tantalum powder or the precision of processing, there will always be impurity sites in the dielectric. We attempt to stress these sites in the factory with overvoltage surges, and elevated temperature burn in so that components will fail in the factory and not in your product.

Unfortunately, within this large area of tantalum pentoxide, impurity sites will exist in all capacitors. To minimize the possibility of providing enough activation energy for these impurity sites to turn from an amorphous state to a crystalline state that will conduct energy, series resistance and derating is recommended. By reducing the electric field within the anode at these sites, the tantalum capacitor has increased reliability. Tantalums differ from other electrolytics in that charge transients are carried by electronic conduction rather than absorption of ions.

Question: What negative transients can Solid Tantalum Capacitors operate under?

Answer: The reverse voltage ratings are designed to cover exceptional conditions of small level excursions into incorrect polarity. The values quoted are not intended to cover continuous reverse operation. The peak reverse voltage applied to the capacitor must not exceed:

10% of rated DC working voltage to a maximum of 1 volt at 25° C.

3% of rated DC working voltage to a maximum of 0.5 volt at $85^{\circ}\text{C}.$

1% of category DC working voltage to a maximum of 0.1 volt at $125^{\circ}\text{C}.$

Question: I have read that manufacturers recommend a series resistance of 0.1 ohm per working volt. You suggest we use 1 ohm per volt in a low impedance circuit. Why?

Answer: We are talking about two very different sets of circuit conditions for those recommendations. The 0.1 ohm per volt recommendation is for steady-state conditions. This level of resistance is used as a basis for the series resistance variable in a 1% / 1000 hours 60% confidence level reference. This is what steady-state life tests are based on. The 1 ohm per volt is recommended for dynamic conditions which include current in-rush applications such as inputs to power supply circuits. In many power supply topologies where the di / dt through the capacitor(s) is limited, (such as most implementations of buck (current mode), forward converter, and flyback), the requirement for series resistance is decreased.

Question: How long is the shelf life for a tantalum capacitor?

Answer: Solid tantalum capacitors have no limitation on shelf life. The dielectric is stable and no reformation is required. The only factors that affect future performance of the capacitors would be high humidity conditions and extreme storage temperatures. Solderability of solder coated surfaces may be affected by storage in excess of 2 years. Recommended storage conditions are: Temperature between -10°C - +50°C with humidity 75% RH maximum and atmospheric pressure 860 mbar-1060 mbar. Terminations should be checked for solderability in the event an oxidation develops on the solder plating.

Question: Are any recommendations/limitation for capacitor selection in parallel combination of capacitors?

Answer: Higher performance series TPS, TPM, NOS, NOM, TCJ, TCN are designed to provide lower ESR values and make the product more robust against current surges. The design differences make the better performance distribution of parameters, namely ESR is lower and tighter compared to the general purpose TAJ series. The surge current load in a parallel combination of capacitors is therefore shared more evenly amongst the capacitors and thus it is better suited for this application.

In a parallel combination is is strongly recommended to use the low ESR series of Tantalum Capacitors such as TPS, TPM, NOS, NOM, TCJ and TCN. Do not combine different series of manufacturers within one parallel combination.

Question: What level of voltage derating is needed for Tantalum Capacitors?

Answer: For many years whenever people have asked a tantalum capacitor manufacturer about what were the safe guidelines for using their product, they spoke with one voice "a minimum of 50% voltage derating should be applied". This message has since become ingrained and automatic. This article challenges this statement and explains why it is not necessarily the case.

The 50% rule came about when tantalum capacitors started to be used on low impedance sources. In such applications, the available current is high and therefore a risk of failure is inherent. Well established by empirical methods and covered in MIL-STD 317, was the fact that the amount of voltage derating has a major influence on the failure rate of a tantalum capacitor (Figure 1). Indeed, from rated voltage to 50% of rated voltage is an improvement in failure rate of more than 100.

Figure 1

It was also proved that the same was true of dynamic, high current pulse conditions1, hence the recommendation.

Now let us look more closely at the type of circuits in use. Below is a simple circuit which will be discussed further in this text.

Let us assume this is a 2 cell battery system, therefore

$$V_{hat} = 3.2 \text{ Volts}$$

Also, let us assume

$$Z_{bat}$$
 = 60 m Ω , Z_{diode} = 70 m Ω , Z_{cap} = 120 m Ω , ZL = 70 m Ω

If the "50% rule" was followed, the designer should chose a 6.3V rated capacitor.

The total circuit impedance of the system is 320 m Ω . So by Ohm's law the peak current would be 10 Amps.

This exceeds the test conditions used by AVX to screen its product for high current pulses¹, so a risk of failure exists. Clearly a minimum of a 10 volt rate capacitor is required in this application.

As a general rule of thumb, the maximum current a tantalum capacitor can withstand (provided it has not been damaged by thermomechanical damage2 3 or some other external influence) is given by the equation:

$$Imax = V_{rated} / (1 + Catalog ESR)$$

So for example for a $100\mu F$ 10V D case capacitor (Catalog ESR = 0.9 Ohms), this would be:

$$Imax = 10 / (1 + 0.9) = 5.2 Amps$$

In some circuits, because of size restrictions, a tantalum capacitor may be the only option available. If this is the case, AVX recommends a PFET integrator be used to slow the voltage ramp at turn on, which in effect reduces the peak current, and therefore reduces the risk of failure4.

Now, let's consider a continuation of the circuit with the addition of an LDO or DC/DC convertor.

The risk of a high surge current being seen by the capacitor in location C_2 is very small. Therefore if we assume the voltage rail is 2.8 volts and the maximum current seen by C_2 is <1.5 Amps, a 4 volt capacitor could be able to be used in this application.

This all seems like good news, but as always, there are some downsides to using a part nearer to its rated voltage. The first is the steady-state life, or MTBF. The MTBF of a tantalum capacitor is easily calculated from MIL-STD 317 or the supplier's catalog data. An example is given below:

Assume operating temperature is 85°C and circuit impedance 0.1 Ohms/volt (F_{τ} = 1).

For a 10 volt rated capacitor on a 5 volt rated line, the failure rate is:

$$\begin{aligned} F_{R} &= 1\%/1000 \text{ hours x } F_{T} \text{ x } F_{U} \text{ x } F_{R} \\ &= 1\%/1000 \text{ hours x 1 x 0.007 (from Figure 1) x 1} \\ &= 0.007\%/1000 \text{ hours} \end{aligned}$$

$$MTBF = 10^{5} / F_{R}$$

- = 14,285,238 hours
- = 1,631 years

For a 6.3 volt rated capacitor on a 5 volt rated line, the failure rate is:

$$FR = 1\%/1000 \text{ hours } x F_T X F_H X F_R$$

- = 1%/1000 hours x 1 x 0.12 (from Figure 1) x 1
- = 0.12 %/1000 hours

MTBF =
$$10^5 / F_R$$

- = 833,333 hours
- = 95 years

The second factor to be considered is that the more derating applied to a tantalum capacitor, the lower the leakage current level (Figure 2). Therefore a part used at 50% of its rated voltage will have more than 3 times better leakage levels than one used at 80%.

Leakage Current vs. Rated Voltage

Figure 2

One final point worthy of mention with the introduction of higher reflow temperatures with the introduction of lead-free solders is that voltage derating can help to reduce the risk of failures due to thermomechanical damage during reflow.

To summarize, a tantalum capacitor is capable of being used at its rated voltage or close to it, provided that the user obeys the rules outlined in this document and is prepared for the reduced steady-state life performance and higher leakage current levels this would produce.

- ¹ Surge in Solid Tantalum Capacitors, John Gill, AVX Tantalum
- ² IR Reflow Guidelines for Tantalum Capacitors, Steve Warden & John Gill, AVX Tantalum
- ³ Mounting Guidelines in AVX Tantalum Catalog
- Improving Reliability of Tantalum Capacitors in Low Impedance Circuits, Dave Mattingly, AVX

Question: What does failure rate mean?

Answer: Failure rate is expressed as the number of parts (as a percentage) that can be expected to fail in a given time period under specific conditions of temperature, applied voltage (ratio to rated voltage - usually 1.0) and circuit impedance.

Question: What does ppm mean?

Answer: PPM is defined as 'PARTS PER MILLION' and can be used to express how many parts within a million pieces may fail to the specification.

Question: What is the difference between %/1000hrs and FITs?

Answer: The failure rate as the mathematic quantity can be expressed in several units of measurement - mostly in %/1000hrs or in FITs. FITs are usually used for the high-reliability components where expression in %/1000hrs would be more difficult to read. The conversion is as follows: e.g. 0.01%/1000hrs = 100 FIT for specified conditions ([%/1000hrs] = x 10000 [FIT]).

Question: What are the standards for reliability calculations?

Answer: The standards used in the AVX specification are based on the European norm EN 61709 with the added feature of series resistance in order to better reflect real application conditions. The basic failure rate in the AVX test is given for conditions - 85°C, Vrated, 0.1 Ohm/V. To calculate the actual failure rate for specific conditions you have to consider the influence of different factors which have an impact on reliability - correction factors for temperature (FT), voltage derating (FV),(circuit) impedance (FR) and the base failure rate (Fbase) for the series being used.

Question: Are tantalum capacitors ESD (i.e. Electrostatic Discharge) sensitive devices?

Answer: All tantalum and niobium Oxide capacitors are not ESD sensitive devices.

Software Tools

SPICAT - SPITAN

Contains typical measured data for the majority of AVX solid electrolytic capacitors and gives an overview of typical performance characteristic for polymer, tantalum and niobium oxide capacitors at different frequencies and temperatures. SpiCAT - SpiTAN does not contain the data from specification.

3D MODELS

3D Models support the design process and allow imagination of the PCB board component layout in 3D environment. The majority of AVX solid electrolytics case sizes are available in STEP format (Standard for the Exchange of Product Model Data).

Products Listing

PASSIVES

Capacitors

Multilayer Ceramic

Film Glass

Niobium Oxide* - OxiCap®

Pulse Supercapacitors

Tantalum

Circuit Protection

Thermistors Fuses - Thin Film

Transient Voltage Suppressors

Varistors - Zinc Oxide

Directional Couplers

Thin-Film

Filters

Ceramic EMI

Noise

SAW

Low Pass - Thin Film

Inductors

Thin-Film

Integrated Passive Components

PMC - Thin-Film Networks

Capacitor Arrays Feedthru Arrays

Low Inductance Decoupling Arrays

Piezo Acoustic Generators

Ceramic

Resistors

Arrays

Miniature Axials

Timing Devices

Clock Oscillators MHz Quartz Crystal

Resonators

VCO TCXO

CONNECTORS

Automotive

Standard, Custom

Board to Board

SMD (0.4, 0.5, 1.0mm), BGA, Thru-Hole

Card Edge

DIN41612

Standard, Inverse, High Temperature

FFC/FPC

0.3, 0.5, 1.0mm

Hand Held, Cellular

Battery, I/O, SIMcard, RF shield clips

2mm Hard Metric

Standard, Reduced Cross-Talk

IDC Wire to Board

Headers, Plugs, Assemblies

Memory

PCMCIA, Compact Flash, Secure Digital, MMC,

Smartcard, SODIMM

Military

H Government, DIN41612

Polytect™

Soft Molding

Rack and Panel

Varicon™

For more information please visit our website at http://www.avx.com

NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements, information and data given herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are typical and may not apply to all applications.

© AVX Corporation

"Niobium Oxide Capacitors are manufactured and sold under patent license from Cabot Corporation, Boyertown, Pennsylvania U.S.A."

Available Range of Sample Kits

SAMPLE WALLETS:

Number of PN's: 30

Number of pieces per PN: 5

ORANGE

OxiCap® **NOJ** (Sample Kit: NOJ) **NOS, NOM** (Sample Kit: NOS, NOM)

GREEN

Military and HI-REL
Capacitors CWR19, CWR29,
CWR15 and various COTS+
products available only
through the Sales or Marketing
channels

CATALOG

Polymer, Tantalum and Niobium Oxide Capacitors (TANT-NBO-CATALOG)

BLUE

TAJ Auto, TPS Auto, THJ, TRJ (Sample Kit: Automotive)

TAJ (Sample Kit: TAJ)

TPS (Sample Kit: TPS)

THJ (Sample Kit: Hi Temp THJ)

TRJ, TRM (Sample Kit: Industrial TRJ, TRM)

TPS, TPM (Sample Kit: Low ESR)

NOS, TPM, TPS, NOM (Sample Kit: Power Supply)

TPM (Sample Kit: TPM)

TAC (Sample Kit: TAC)

BLACK

Overview of our product series and matrixes (Kit - Series)

SILVER

TCJ, TAJ low, TLC, NOJ, TLJ, TLN, F38, F98 (Sample Kit: Mobile)

PALE GREY

TLJ (Sample Kit: TLJ Low Profile)

YELLOW

TCJ Voltage 2V-20V (Sample Kit: TCJ) TCJ HiV Voltage 25V-125V (Sample Kit: TCJHIV) J-CAP™ (Sample Kit: J-CAP) TCQ (Sample Kit: TCQ)

FOLLOW US: © F D in VISIT US AT WWW.AVX.COM

North America Tel: +1 864-967-2150

Europe Tel: +44 1276-697000 **Asia** Tel: +65 6286-7555

Central America Tel: +55 11-46881960

Japan Tel: +81 740-321250