| Question 1: (1 point)                                                                      |                                         |  |  |  |
|--------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| Pour toutes les questions de ce questionnaire                                              |                                         |  |  |  |
| Il vous faut saisir un intervalle ou une union d'intervalles. La syntaxe est la suivante : |                                         |  |  |  |
| - l'intervalle [a,b] se note RealRange(a,b),                                               |                                         |  |  |  |
| - on indique qu'un intervalle est ouvert à l'une des bornes                                | s (ou les deux) par le mot "Open" (voir |  |  |  |
| exemple),                                                                                  |                                         |  |  |  |
| - l'union se notera ici par un point virgule,                                              |                                         |  |  |  |
| $_{-}\infty$ se note Infinity.                                                             |                                         |  |  |  |
| $\_$ Exemple $:$ $]2,3[\cup[4,+\infty[$ se notera RealRange(Open(- $i$ _Open(+Infinity))   | 2),Open(3)) ; RealRange(4,              |  |  |  |
| Les solutions de $-2x+1\geqslant x-2$ sont les $x$ dans                                    |                                         |  |  |  |
| Question 3: (1 point)                                                                      |                                         |  |  |  |
| Les solutions de $\dfrac{2x}{3-x}\geqslant 4$ sont les $x$ dans                            |                                         |  |  |  |
| Question 8: (1 point)                                                                      |                                         |  |  |  |
| Les solutions de $\dfrac{2x+1}{x+2} < x$ sont les $x$ dans                                 |                                         |  |  |  |
| Intégration - Synthèse                                                                     |                                         |  |  |  |
| Question 2: (1 point)                                                                      |                                         |  |  |  |
| Calculer la valeur de l'intégrale suivante :                                               |                                         |  |  |  |
| Calcalor la valour de l'integrale curvante :                                               |                                         |  |  |  |
|                                                                                            |                                         |  |  |  |
| $\int_0^{\frac{\pi}{4}} \frac{\sin^3(x)}{\cos^2(x)}  \mathrm{d}x.$                         |                                         |  |  |  |
| Question 5: (1 point)                                                                      |                                         |  |  |  |
| Calculer la valeur de l'intégrale suivante :                                               |                                         |  |  |  |
| $\int_{1}^{2} t e^{t^2} dt.$                                                               |                                         |  |  |  |
| V 1                                                                                        |                                         |  |  |  |

Travail: Inéquation

# Inversion de système

# Question 1: (1 point)

On se place dans  $\mathbb{R}^3$  qu'on munit d'une base  $\mathcal{B}_c=(e_1,e_2,e_3)$ . Soit  $\mathcal{V}=(v_1,v_2,v_3)$  une autre base de  $\mathbb{R}^3$  .

Exprimer les  $e_i$  en fonction des  $v_i$  lorsque

$$egin{array}{lll} v_1 &=& e_1 + e_3 \\ v_2 &=& -e_2 - 2e_3 \\ v_3 &=& 2e_1 + e_2 \end{array}$$

On a

# Inversion système 4x4

Résoudre l'équation 
$$AX=B$$
 où  $X=egin{pmatrix}x\\y\\z\\t\end{pmatrix}$  est le vecteur inconnu à déterminer,  $B=egin{pmatrix}a\\b\\c\\d\end{pmatrix}$ 

est un vecteur connu et où

$$A = egin{pmatrix} -1 & 1 & 1 & 1 \ 1 & -1 & 1 & 1 \ 1 & 1 & -1 & 1 \ 1 & 1 & 1 & -1 \end{pmatrix}.$$

On a

$$x = \underline{\hspace{1cm}} a + \underline{\hspace{1cm}} b + \underline{\hspace{1cm}} c + \underline{\hspace{1cm}} a$$

$$y = \underline{\hspace{1cm}} a + \underline{\hspace{1cm}} b + \underline{\hspace{1cm}} c + \underline{\hspace{1cm}} d$$

$$z = \underline{\hspace{1cm}} a + \underline{\hspace{1cm}} b + \underline{\hspace{1cm}} c + \underline{\hspace{1cm}} d$$

$$t = \underline{\hspace{1cm}} a + \underline{\hspace{1cm}} b + \underline{\hspace{1cm}} c + \underline{\hspace{1cm}} c$$

#### Système nxm

Le système

$$\begin{cases} x+y+2z+t &= -1\\ x-y+z+t &= -1\\ 3x+y+z-t &= 1 \end{cases}$$
 (a) n'admet pas de solution. (b) admet une solution. (c) admet une infinité de solutions.

#### (choisir puis cliquer sur "vérifier")

L'ensemble solution est :

(séparer les expressions des coordonnées par des virgules)

$$\left\{ \left( \begin{array}{cc} & & & & & \\ & & & & \end{array} 
ight); & t \in \mathbb{R} 
ight\}$$

# Valeur absolue

### Question 1: (1 point)

$$|x-5| = 8.$$

Les solutions sont

#### Question 3: (1 point)

$$|4x-4| = 3x-2$$

### Complexe niveau 2

#### Question 2: (1 point)

Résoudre dans  $\mathbb C$  les  $\$ trois systèmes suivants  $\$ : (on donnera les solutions sous forme algébrique)

1. (S) 
$$\begin{cases} 3z + z' & = 2 - 5i \\ z - z' & = -2 + i. \end{cases}$$

a pour solution

$$z=$$
 \_\_\_\_\_+i \_\_\_\_\_

et 
$$z'=$$
 \_\_\_\_\_+i \_\_\_\_\_\_

# Question 3: (1 point)

Il faut avoir fait la série de question sur le calcul de puissance pour cette question :

A. Calculer et mettre sous forme algébrique :

B. On considère le polynôle  $P(z)=z^3+(-4+i)z^2+(13-4i)z+13i$ .

Calculer et mettre sous forme algébrique :

### Déterminant 2

Soit

$$A = \begin{pmatrix} 1 & 1 & -3 \\ \alpha & \beta & \gamma \\ 7 & 8 & -1 \end{pmatrix} \quad \text{ et } \quad B = \begin{pmatrix} 7 & 8 & -1 \\ 1 & 1 & -3 \\ \alpha & \beta & \gamma \end{pmatrix}.$$

Déterminer  $\det(B)$  sachant que  $\det(A) = -53$ . On ferra le moins de calcul possible.

| Question | 2: | (1 | point) |
|----------|----|----|--------|

Soit A et B deux matrices inversibles.

Sachant que

$$A = \left(egin{array}{ccc} 1 & 1 & 0 \ 0 & 2 & 1 \ -2 & 4 & -1 \end{array}
ight) \quad ext{ et } \quad \det(A^2\,B^{-1}) = 12 \; ,$$

Déterminer det(B).

On a det(B)=\_\_\_\_\_

#### Question 5: (1 point)

Soit A une matrice de  $M_4(\mathbb{R})$ .

On désigne par  $C_i$  la ième colonne de A,  $\,L_j\,$  la jème ligne de A.

On suppose que det(A)=4.

Si l'on fait comme opérations :

- étape 1 :

$$L_1 \leftarrow L_1 + 10L_4$$

$$\mathit{L}_{3} \leftarrow \mathit{L}_{3} - \mathit{L}_{4}$$

- étape 2 :

$$C_2 \leftarrow -2C_2 - C_1$$

$$C_3 \leftarrow C_3 + 10C_1$$

quelle est la valeur du déterminant  $\,\Delta\,$  obtenu ?

On a  $\Delta$  = \_\_\_\_\_

#### Question 1: (1 point)

Soit un réel x fixé. On considère

$$A = \left( egin{array}{ccc} x & 1 & 0 \ 0 & 2 & 1 \ -2 & 4 & -1 \end{array} 
ight).$$

On a det(A)=\_\_\_\_.

Déterminer x pour que A soit non inversible. On a x=\_\_\_\_\_

Dans quel cas, la zone grise correspond-elle à l'ensemble des complexes tels que Im(iz) < 3



#### Question 3: (1 point)

Dans quel cas, la zone grise correspond-elle à l'ensemble des complexes tels que  $0< arg(z)< rac{\pi}{4}~$  et Re(z)>2 ?

Dans cette question on entend par argument de z celui des arguments compris dans l'intervalle  $]-\pi;\pi].$ 

