Standard Code Library

Shanghai Jiao Tong University

July 3, 2017

Contents

1	图论	
	1.1	Hint
	1.2	强连通分量 4
	1.3	双连通分量
	1.4	Dinic 网络流
	1.5	费用流
	1.6	kth 短路
	1.7	Hungary
	1.8	Two-SAT
	1.9	KM 最大权匹配
2	数论	
3	组合	•
4	字符	事
5	计算	几何
6	数据	
Ū	22.1/11	44173
7	其他	1:
	7.1	Java Hints
	7.2	vimrc
	7.3	常用结论
		7.3.1 上下界网络流
		7.3.2 弦图相关
	7.4	#2.55 Dernoum 数
	$7.4 \\ 7.5$	¹ 测试列表
	7.6	博弈游戏
	1.0	7.6.1 巴什博奕
		7.6.2 威佐夫博弈
		7.6.3 阶梯博奕
		7.6.4 图上删边游戏
	7.7	常用数学公式
		7.7.1 求和公式
		7.7.2 斐波那契数列
		7.7.3 错排公式
		7.7.4 莫比乌斯函数
		7.7.5 Burnside 引理
		7.7.6 五边形数定理
		7.7.7 树的计数
		7.7.8 欧拉公式
		7.7.9 皮克定理
		7.7.10 牛顿恒等式
	7.8	平面几何公式

CONTENTS 3

	7.8.1	三角形	17
	7.8.2	四边形	18
	7.8.3	正 n 边形	18
	7.8.4	圆	18
	7.8.5	棱柱	19
	7.8.6	棱锥	19
	7.8.7	· 棱台	19
	7.8.8	圆柱	19
	7.8.9	圆锥	19
	7.8.10	圆台	20
	7.8.11		20
		· 球台	20
	7.8.13	球扇形	20
7.9	立体几	阿公式	20
	7.9.1	球面三角公式	20
	7.9.2	四面体体积公式	20
7.10	附录 .		21
	7.10.1	NTT 素数及原根列表	21

图论

1.1 Hint

```
1 // 二分图性质:
2 // 最小点覆盖集 (a) 最大点独立集 (b)
3 // 最小边覆盖集 (c) 最大边独立集 (d)
4 // a + b = n
5 // c + d = n
6 // a + c = n
7 // b + d = n
8 // a = d
9 // b = c
```

- 1.2 强连通分量
- 1.3 双连通分量
- 1.4 Dinic 网络流
- 1.5 费用流
- 1.6 kth 短路
- 1.7 Hungary

```
const int N = 1010;
2
3
    int n, m;
    int lno[N], rno[N];
    vector<int> g[N];
    int vis[N], vclock;
    bool dfs( int u ) {
8
      for( int t = 0; t < (int)g[u].size(); t++ ) {</pre>
9
        int v = g[u][t];
10
        if( vis[v] == vclock ) continue;
11
        vis[v] = vclock;
12
        if( rno[v] == 0 || dfs(rno[v]) ) {
13
14
          lno[u] = v;
          rno[v] = u;
15
16
          return true;
        }
17
      }
18
      return false;
19
20
   int hungary() {
21
     int match = 0;
      vclock = 0;
23
^{24}
      for( int u = 1; u <= n; u++ ) {
```

1.8. TWO-SAT 5

```
25 vclock++;
26 match += dfs(u);
27 }
28 return match;
29 }
```

1.8 Two-SAT

1.9 KM 最大权匹配

数论

组合

字符串

计算几何

数据结构

其他

7.1 Java Hints

```
import java.util.*;
1
    import java.math.*;
2
    import java.io.*;
4
5
    public class Main{
      static class Task{
6
7
        void solve(int testId, InputReader cin, PrintWriter cout) {
8
          // Write down the code you want
9
      };
10
11
      public static void main(String args[]) {
        InputStream inputStream = System.in;
13
        OutputStream outputStream = System.out;
14
        InputReader in = new InputReader(inputStream);
15
16
        PrintWriter out = new PrintWriter(outputStream);
        TaskA solver = new TaskA();
17
18
        solver.solve(1, in, out);
        out.close();
19
20
21
22
      static class InputReader {
        public BufferedReader reader;
23
        public StringTokenizer tokenizer;
^{24}
25
26
        public InputReader(InputStream stream) {
27
          reader = new BufferedReader(new InputStreamReader(stream), 32768);
          tokenizer = null;
28
29
30
        public String next() {
31
          while (tokenizer == null || !tokenizer.hasMoreTokens()) {
32
33
34
              tokenizer = new StringTokenizer(reader.readLine());
            } catch (IOException e) {
35
              throw new RuntimeException(e);
36
            }
37
38
39
          return tokenizer.nextToken();
40
41
        public int nextInt() {
42
43
          return Integer.parseInt(next());
44
45
      }
46
47
   // Arrays
48
49
    int a[];
    .fill(a[, int fromIndex, int toIndex],val); | .sort(a[, int fromIndex, int toIndex])
50
```

12 CHAPTER 7. 其他

```
52
    String s;
    .charAt(int i); | compareTo(String) | compareToIgnoreCase () | contains(String) |
53
    length () | substring(int 1, int len)
   // BigInteger
55
    .abs() | .add() | bitLength () | subtract () | divide () | remainder () | divideAndRemainder () |
    \rightarrow modPow(b, c) |
   pow(int) | multiply () | compareTo () |
    \tt gcd() \ | \ intValue \ () \ | \ longValue \ () \ | \ isProbablePrime(int \ c) \ (1 \ - \ 1/2^c) \ |
58
59
    nextProbablePrime () | shiftLeft(int) | valueOf ()
60
   // BigDecimal
   .ROUND_CEILING | ROUND_DOWN_FLOOR | ROUND_HALF_DOWN | ROUND_HALF_EVEN | ROUND_HALF_UP | ROUND_UP
61
   .divide(BigDecimal b, int scale , int round_mode) | doubleValue () | movePointLeft(int) |
    → pow(int) |
    setScale(int scale , int round_mode) | stripTrailingZeros ()
63
64
   // StringBuilder
65 StringBuilder sb = new StringBuilder ();
   sb.append(elem) | out.println(sb)
66
   // TODO Java STL 的使用方法以及上面这些方法的检验
67
```

7.2 vimrc

```
set ruler
1
    set number
    set smartindent
3
    set autoindent
    set tabstop=4
    set softtabstop=4
    set shiftwidth=4
7
    set hlsearch
8
   set incsearch
9
10 set autoread
   set backspace=2
11
12
    set mouse=a
13
    syntax on
15
    nmap <C-A> ggVG
16
    vmap < C-C > "+y
17
18
19
   filetype plugin indent on
20
21
    autocmd FileType cpp set cindent
    autocmd FileType cpp map <F9> :w <CR> :!g++ % -o %< -g -std=c++11 -Wall -Wextra -Wconversion &&
22
    \rightarrow size %< <CR>
    autocmd FileType cpp map <C-F9>: !g++ % -o %< -std=c++11 -02 && size %< <CR>
23
    autocmd FileType cpp map <F8> :!time ./%< < %<.in <CR>
24
    autocmd FileType cpp map <F5> :!time ./%< <CR>
26
27
    map <F3> :vnew %<.in <CR>
    map <F4> :!gedit % <CR>
28
```

7.3 常用结论

7.3.1 上下界网络流

B(u,v) 表示边 (u,v) 流量的下界,C(u,v) 表示边 (u,v) 流量的上界,F(u,v) 表示边 (u,v) 的流量。设 G(u,v)=F(u,v)-B(u,v),显然有

$$0 \le G(u, v) \le C(u, v) - B(u, v)$$

无源汇的上下界可行流

建立超级源点 S^* 和超级汇点 T^* ,对于原图每条边 (u,v) 在新网络中连如下三条边: $S^*\to v$,容量为 B(u,v); $u\to T^*$,容量为 B(u,v); $u\to v$,容量为 C(u,v)-B(u,v)。最后求新网络的最大流,判断从超级源点 S^* 出发的边是否都满流即可,边 (u,v) 的最终解中的实际流量为 G(u,v)+B(u,v)。

7.3. 常用结论 13

有源汇的上下界可行流

从汇点 T 到源点 S 连一条上界为 ∞ ,下界为 0 的边。按照**无源汇的上下界可行流**一样做即可,流量即为 $T \to S$ 边上的流量。

有源汇的上下界最大流

- 1. 在**有源汇的上下界可行流**中,从汇点 T 到源点 S 的边改为连一条上界为 ∞,下届为 x 的边。x 满足二分性质,找到最大的 x 使得新网络存在**无源汇的上下界可行流**即为原图的最大流。
- 2. 从汇点 T 到源点 S 连一条上界为 ∞ ,下界为 0 的边,变成无源汇的网络。按照**无源汇的上下界可行流**的方法,建立超级源点 S^* 和超级汇点 T^* ,求一遍 $S^* \to T^*$ 的最大流,再将从汇点 T 到源点 S 的这条边拆掉,求一次 $S \to T$ 的最大流即可。

有源汇的上下界最小流

- 1. 在**有源汇的上下界可行流**中,从汇点 T 到源点 S 的边改为连一条上界为 x,下界为 0 的边。x 满足二分性质,找到最小的 x 使得新网络存在**无源汇的上下界可行流**即为原图的最小流。
- 2. 按照**无源汇的上下界可行流**的方法,建立超级源点 S^* 与超级汇点 T^* ,求一遍 $S^* \to T^*$ 的最大流,但是注意这一次不加上汇点 T 到源点 S 的这条边,即不使之改为无源汇的网络去求解。求完后,再加上那条汇点 T 到源点 S 上界 ∞ 的边。因为这条边下界为 0,所以 S^* , T^* 无影响,再直接求一次 $S^* \to T^*$ 的最大流。若超级源点 S^* 出发的边全部满流,则 $T \to S$ 边上的流量即为原图的最小流,否则无解。

上下界费用流

来源: BZOJ 3876 设汇 t, 源 s, 超级源 S, 超级汇 T, 本质是每条边的下界为 1, 上界为 MAX, 跑一遍有源汇的上下界最小费用最小流。(因为上界无穷大,所以只要满足所有下界的最小费用最小流)

- 1. 对每个点 x: 从 x 到 t 连一条费用为 0, 流量为 MAX 的边,表示可以任意停止当前的剧情(接下来的剧情从更优的路径去走,画个样例就知道了)
- 2. 对于每一条边权为 z 的边 x->y:
 - 从 S 到 y 连一条流量为 1,费用为 z 的边,代表这条边至少要被走一次。
 - 从 x 到 y 连一条流量为 MAX,费用为 z 的边,代表这条边除了至少走的一次之外还可以随便走。
 - 从 x 到 T 连一条流量为 1 ,费用为 0 的边。(注意是每一条 x->y 的边都连,或者你可以记下 x 的出边数 Kx ,连一次流量为 Kx ,费用为 0 的边)。

建完图后从 S 到 T 跑一遍费用流,即可。(当前跑出来的就是满足上下界的最小费用最小流了)

7.3.2 弦图相关

- 1. 团数 \leq 色数, 弦图团数 = 色数
- 2. 设 next(v) 表示 N(v) 中最前的点. 令 w* 表示所有满足 $A \in B$ 的 w 中最后的一个点, 判断 $v \cup N(v)$ 是否为极大团, 只需判断是否存在一个 w, 满足 Next(w) = v 且 $|N(v)| + 1 \le |N(w)|$ 即可.
- 3. 最小染色: 完美消除序列从后往前依次给每个点染色, 给每个点染上可以染的最小的颜色
- 4. 最大独立集: 完美消除序列从前往后能选就选
- 5. 弦图最大独立集数 = 最小团覆盖数,最小团覆盖: 设最大独立集为 $\{p_1, p_2, \dots, p_t\}$,则 $\{p_1 \cup N(p_1), \dots, p_t \cup N(p_t)\}$ 为最小团覆盖

7.3.3 Bernoulli 数

- 1. 初始化: $B_0(n) = 1$
- 2. 递推公式:

$$B_m(n) = n^m - \sum_{k=0}^{m-1} {m \choose k} \frac{B_k(n)}{m-k+1}$$

3. 应用:

$$\sum_{k=1}^{n} k^{m} = \frac{1}{m+1} \sum_{k=0}^{m} \binom{m+1}{k} n^{m+1-k}$$

14 CHAPTER 7. 其他

7.4 常见错误

- 1. 数组或者变量类型开错,例如将 double 开成 int;
- 2. 函数忘记返回返回值;
- 3. 初始化数组没有初始化完全;
- 4. 对空间限制判断不足导致 MLE;

7.5 测试列表

- 1. 检测评测机是否开 O2;
- 2. 检测 int128 以及 float128 是否能够使用;
- 3. 检测是否能够使用 C++11;
- 4. 检测是否能够使用 Ext Lib;
- 5. 检测程序运行所能使用的内存大小;
- 6. 检测程序运行所能使用的栈大小;
- 7. 检测是否有代码长度限制;
- 8. 检测是否能够正常返 Runtime Error (assertion、return 1、空指针);
- 9. 查清楚厕所方位和打印机方位;

7.6 博弈游戏

7.6.1 巴什博奕

- 1. 只有一堆 n 个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取 m 个。最后取 光者得胜。
- 2. 显然,如果 n=m+1,那么由于一次最多只能取 m 个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则: 如果 n=m+1 r+s,(r为任意自然数, $s \le m$),那么先取者要拿走 s 个物品,如果后取者拿走 $k(k \le m)$ 个,那么先取者再拿走 m+1-k 个,结果剩下 (m+1)(r-1) 个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下 (m+1) 的倍数,就能最后获胜。

7.6.2 威佐夫博弈

- 1. 有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个, 多者不限,最后取光者得胜。
- 2. 判断一个局势 (a,b) 为奇异局势(必败态)的方法:

$$a_k = [k(1+\sqrt{5})/2] b_k = a_k + k$$

7.6.3 阶梯博奕

- 1. 博弈在一列阶梯上进行,每个阶梯上放着自然数个点,两个人进行阶梯博弈,每一步则是将一个阶梯上的若干个点(至少一个)移到前面去,最后没有点可以移动的人输。
- 2. 解决方法: 把所有奇数阶梯看成 N 堆石子, 做 NIM。(把石子从奇数堆移动到偶数堆可以理解为拿走石子, 就相当于几个奇数堆的石子在做 Nim)

7.7. 常用数学公式 15

7.6.4 图上删边游戏

链的删边游戏

1. 游戏规则:对于一条链,其中一个端点是根,两人轮流删边,脱离根的部分也算被删去,最后没边可删的人输。

2. 做法: sg[i] = n - dist(i) - 1 (其中 n 表示总点数, dist(i) 表示离根的距离)

树的删边游戏

- 1. 游戏规则:对于一棵有根树,两人轮流删边,脱离根的部分也算被删去,没边可删的人输。
- 2. 做法: 叶子结点的 sg = 0, 其他节点的 sg 等于儿子结点的 sg + 1 的异或和。

局部连通图的删边游戏

- 1. 游戏规则:在一个局部连通图上,两人轮流删边,脱离根的部分也算被删去,没边可删的人输。局部连通图的构图规则是,在一棵基础树上加边得到,所有形成的环保证不共用边,且只与基础树有一个公共点。
- 2. 做法:去掉所有的偶环,将所有的奇环变为长度为1的链,然后做树的删边游戏。

7.7 常用数学公式

7.7.1 求和公式

1.
$$\sum_{k=1}^{n} (2k-1)^2 = \frac{n(4n^2-1)}{3}$$

2.
$$\sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2$$

3.
$$\sum_{k=1}^{n} (2k-1)^3 = n^2(2n^2-1)$$

4.
$$\sum_{k=1}^{n} k^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

5.
$$\sum_{k=1}^{n} k^5 = \frac{n^2(n+1)^2(2n^2+2n-1)}{12}$$

6.
$$\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}$$

7.
$$\sum_{k=1}^{n} k(k+1)(k+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

8.
$$\sum_{k=1}^{n} k(k+1)(k+2)(k+3) = \frac{n(n+1)(n+2)(n+3)(n+4)}{5}$$

7.7.2 斐波那契数列

1.
$$fib_0 = 0, fib_1 = 1, fib_n = fib_{n-1} + fib_{n-2}$$

2.
$$fib_{n+2} \cdot fib_n - fib_{n+1}^2 = (-1)^{n+1}$$

3.
$$fib_{-n} = (-1)^{n-1} fib_n$$

4.
$$fib_{n+k} = fib_k \cdot fib_{n+1} + fib_{k-1} \cdot fib_n$$

5.
$$gcd(fib_m, fib_n) = fib_{gcd(m,n)}$$

6.
$$fib_m|fib_n^2 \Leftrightarrow nfib_n|m$$

7.7.3 错排公式

1.
$$D_n = (n-1)(D_{n-2} - D_{n-1})$$

2.
$$D_n = n! \cdot \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}\right)$$

16 CHAPTER 7. 其他

7.7.4 莫比乌斯函数

$$\mu(n) = \begin{cases} 1 & \text{若}n = 1 \\ (-1)^k & \text{若}n \in \mathbb{R} \text{ 无平方数因子}, \ \exists n = p_1 p_2 \dots p_k \\ 0 & \text{若}n \text{ 有大于1的平方数因数} \end{cases}$$

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{若}n = 1 \\ 0 & \text{其他情况} \end{cases}$$

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d) g(\frac{n}{d})$$

$$g(x) = \sum_{n=1}^{[x]} f(\frac{x}{n}) \Leftrightarrow f(x) = \sum_{n=1}^{[x]} \mu(n) g(\frac{x}{n})$$

7.7.5 Burnside 引理

设 G 是一个有限群,作用在集合 X 上。对每个 g 属于 G ,令 X^g 表示 X 中在 g 作用下的不动元素,轨道数(记作 |X/G|)由如下公式给出:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

7.7.6 五边形数定理

设 p(n) 是 n 的拆分数,有

$$p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k-1} p\left(n - \frac{k(3k-1)}{2}\right)$$

7.7.7 树的计数

1. 有根树计数: n+1 个结点的有根树的个数为

$$a_{n+1} = \frac{\sum_{j=1}^{n} j \cdot a_j \cdot S_{n,j}}{n}$$

其中,

$$S_{n,j} = \sum_{i=1}^{n/j} a_{n+1-ij} = S_{n-j,j} + a_{n+1-j}$$

2. 无根树计数: 当n为奇数时,n个结点的无根树的个数为

$$a_n - \sum_{i=1}^{n/2} a_i a_{n-i}$$

当 n 为偶数时, n 个结点的无根树的个数为

$$a_n - \sum_{i=1}^{n/2} a_i a_{n-i} + \frac{1}{2} a_{\frac{n}{2}} (a_{\frac{n}{2}} + 1)$$

3. n 个结点的完全图的生成树个数为

$$_{\infty}n-1$$

4. 矩阵 - 树定理:图 G 由 n 个结点构成,设 A[G] 为图 G 的邻接矩阵、D[G] 为图 G 的度数矩阵,则图 G 的不同生成树的个数为 C[G]=D[G]-A[G] 的任意一个 n-1 阶主子式的行列式值。

7.8. 平面几何公式

7.7.8 欧拉公式

平面图的顶点个数、边数和面的个数有如下关系:

$$V - E + F = C + 1$$

17

其中,V 是顶点的数目,E 是边的数目,F 是面的数目,C 是组成图形的连通部分的数目。当图是单连通图的时候,公式简化为:

$$V - E + F = 2$$

7.7.9 皮克定理

给定顶点坐标均是整点(或正方形格点)的简单多边形,其面积 A 和内部格点数目 i、边上格点数目 b 的关系:

$$A = i + \frac{b}{2} - 1$$

7.7.10 牛顿恒等式

设

$$\prod_{i=1}^{n} (x - x_i) = a_n + a_{n-1}x + \dots + a_1x^{n-1} + a_0x^n$$

$$p_k = \sum_{i=1}^{n} x_i^k$$

则

$$a_0p_k + a_1p_{k-1} + \dots + a_{k-1}p_1 + ka_k = 0$$

特别地,对于

$$|\mathbf{A} - \lambda \mathbf{E}| = (-1)^n (a_n + a_{n-1}\lambda + \dots + a_1\lambda^{n-1} + a_0\lambda^n)$$

有

$$p_k = \operatorname{Tr}(\boldsymbol{A}^k)$$

7.8 平面几何公式

7.8.1 三角形

1. 半周长

$$p = \frac{a+b+c}{2}$$

2. 面积

$$S = \frac{a \cdot H_a}{2} = \frac{ab \cdot sinC}{2} = \sqrt{p(p-a)(p-b)(p-c)}$$

3. 中线

$$M_a = \frac{\sqrt{2(b^2 + c^2) - a^2}}{2} = \frac{\sqrt{b^2 + c^2 + 2bc \cdot cosA}}{2}$$

4. 角平分线

$$T_a = \frac{\sqrt{bc \cdot [(b+c)^2 - a^2]}}{b+c} = \frac{2bc}{b+c} cos \frac{A}{2}$$

5. 高线

$$H_a = bsinC = csinB = \sqrt{b^2 - (\frac{a^2 + b^2 - c^2}{2a})^2}$$

6. 内切圆半径

$$r = \frac{S}{p} = \frac{\arcsin\frac{B}{2} \cdot \sin\frac{C}{2}}{\sin\frac{B+C}{2}} = 4R \cdot \sin\frac{A}{2} \sin\frac{B}{2} \sin\frac{C}{2}$$

$$=\sqrt{\frac{(p-a)(p-b)(p-c)}{p}}=p\cdot tan\frac{A}{2}tan\frac{B}{2}tan\frac{C}{2}$$

7. 外接圆半径

$$R = \frac{abc}{4S} = \frac{a}{2sinA} = \frac{b}{2sinB} = \frac{c}{2sinC}$$

7.8.2 四边形

 D_1, D_2 为对角线, M 对角线中点连线, A 为对角线夹角, p 为半周长

1.
$$a^2 + b^2 + c^2 + d^2 = D_1^2 + D_2^2 + 4M^2$$

- 2. $S = \frac{1}{2}D_1D_2sinA$
- 3. 对于圆内接四边形

$$ac + bd = D_1D_2$$

4. 对于圆内接四边形

$$S = \sqrt{(p-a)(p-b)(p-c)(p-d)}$$

7.8.3 正 n 边形

R 为外接圆半径, r 为内切圆半径

1. 中心角

$$A = \frac{2\pi}{n}$$

2. 内角

$$C = \frac{n-2}{n}\pi$$

3. 边长

$$a = 2\sqrt{R^2 - r^2} = 2R \cdot \sin\frac{A}{2} = 2r \cdot \tan\frac{A}{2}$$

4. 面积

$$S = \frac{nar}{2} = nr^2 \cdot tan\frac{A}{2} = \frac{nR^2}{2} \cdot sinA = \frac{na^2}{4 \cdot tan\frac{A}{2}}$$

7.8.4 圆

1. 弧长

$$l = rA$$

2. 弦长

$$a = 2\sqrt{2hr - h^2} = 2r \cdot \sin\frac{A}{2}$$

3. 弓形高

$$h = r - \sqrt{r^2 - \frac{a^2}{4}} = r(1 - \cos\frac{A}{2}) = \frac{1}{2} \cdot arctan\frac{A}{4}$$

4. 扇形面积

$$S_1 = \frac{rl}{2} = \frac{r^2 A}{2}$$

5. 弓形面积

$$S_2 = \frac{rl - a(r - h)}{2} = \frac{r^2}{2}(A - sinA)$$

7.8.5 棱柱

1. 体积

$$V = Ah$$

A 为底面积,h 为高

2. 侧面积

$$S = lp$$

l 为棱长, p 为直截面周长

3. 全面积

$$T = S + 2A$$

7.8.6 棱锥

1. 体积

$$V = Ah$$

A 为底面积,h 为高

2. 正棱锥侧面积

$$S = lp$$

l 为棱长, p 为直截面周长

3. 正棱锥全面积

$$T = S + 2A$$

7.8.7 棱台

1. 体积

$$V = (A_1 + A_2 + \sqrt{A_1 A_2}) \cdot \frac{h}{3}$$

 A_1, A_2 为上下底面积,h 为高

2. 正棱台侧面积

$$S = \frac{p_1 + p_2}{2}l$$

 p_1, p_2 为上下底面周长, l 为斜高

3. 正棱台全面积

$$T = S + A_1 + A_2$$

7.8.8 圆柱

1. 侧面积

$$S = 2\pi r h$$

2. 全面积

$$T = 2\pi r(h+r)$$

3. 体积

$$V = \pi r^2 h$$

7.8.9 圆锥

1. 母线

$$l=\sqrt{h^2+r^2}$$

2. 侧面积

$$S=\pi rl$$

3. 全面积

$$T = \pi r(l+r)$$

4. 体积

$$V = \frac{\pi}{3}r^2h$$

7.8.10 圆台

1. 母线

$$l = \sqrt{h^2 + (r_1 - r_2)^2}$$

2. 侧面积

$$S = \pi(r_1 + r_2)l$$

3. 全面积

$$T = \pi r_1(l + r_1) + \pi r_2(l + r_2)$$

4. 体积

$$V = \frac{\pi}{3}(r_1^2 + r_2^2 + r_1 r_2)h$$

7.8.11 球

1. 全面积

$$T = 4\pi r^2$$

2. 体积

$$V = \frac{4}{3}\pi r^3$$

7.8.12 球台

1. 侧面积

$$S = 2\pi rh$$

2. 全面积

$$T = \pi(2rh + r_1^2 + r_2^2)$$

3. 体积

$$V = \frac{\pi h[3(r_1^2 + r_2^2) + h^2]}{6}$$

7.8.13 球扇形

1. 全面积

$$T = \pi r (2h + r_0)$$

h 为球冠高, r_0 为球冠底面半径

2. 体积

$$V = \frac{2}{3}\pi r^2 h$$

7.9 立体几何公式

7.9.1 球面三角公式

设 a,b,c 是边长,A,B,C 是所对的二面角,有余弦定理

 $cosa = cosb \cdot cosc + sinb \cdot sinc \cdot cosA$

正弦定理

$$\frac{sinA}{sina} = \frac{sinB}{sinb} = \frac{sinC}{sinc}$$

三角形面积是 $A + B + C - \pi$

7.9.2 四面体体积公式

U, V, W, u, v, w 是四面体的 6 条棱, U, V, W 构成三角形, (U, u), (V, v), (W, w) 互为对棱, 则

$$V = \frac{\sqrt{(s-2a)(s-2b)(s-2c)(s-2d)}}{192uvw}$$

7.10. 附录 21

其中

$$\begin{cases}
a &= \sqrt{xYZ}, \\
b &= \sqrt{yZX}, \\
c &= \sqrt{zXY}, \\
d &= \sqrt{xyz}, \\
s &= a+b+c+d, \\
X &= (w-U+v)(U+v+w), \\
x &= (U-v+w)(v-w+U), \\
Y &= (u-V+w)(V+w+u), \\
y &= (V-w+u)(w-u+V), \\
Z &= (v-W+u)(W+u+v), \\
z &= (W-u+v)(u-v+W)
\end{cases}$$

7.10 附录

7.10.1 NTT 素数及原根列表

Id	Primes	Primitive Root	Id	Primes	Primitive Root		Primes	Primitive Root
1	7340033	3	38	311427073	7	 75	786432001	7
2	13631489	15	39	330301441	22	76	799014913	13
3	23068673	3	40	347078657	3	77	800063489	3
4	26214401	3	41	359661569	3	78	802160641	11
5	28311553	5	42	361758721	29	79	818937857	5
6	69206017	5	43	377487361	7	80	824180737	5
7	70254593	3	44	383778817		81	833617921	13
8	81788929	7	45	387973121	6	82	850395137	3
9	101711873	3	46	399507457	5	83	862978049	3
10	104857601	3	47	409993217	3	84	880803841	26
11	111149057	3	48	415236097	5	85	883949569	7
12	113246209	7	49	447741953	3	86	897581057	3
13	120586241	6	50	459276289	11	87	899678209	7
14	132120577	5	51	463470593	3	88	907018241	3
15	136314881	3	52	468713473	5	89	913309697	3
16	138412033	5	53	469762049	3	90	918552577	5
17	141557761	26	54	493879297	10	91	919601153	3
18	147849217	5	55	531628033	5	92	924844033	5
19	155189249	6	56	576716801	6	93	925892609	3
20	158334977	3	57	581959681	11	94	935329793	3
21	163577857	23	58	595591169	3	95	938475521	3
22	167772161	3	59	597688321	11	96	940572673	7
23	169869313	5	60	605028353	3	97	943718401	7
24	185597953	5	61	635437057	11	98	950009857	7
25	186646529	3	62	639631361	6	99	957349889	6
26	199229441	3	63	645922817	3	100	962592769	7
27	204472321	19	64	648019969	17	101	972029953	10
28	211812353	3	65	655360001	3	102	975175681	17
29	221249537	3	66	666894337	5	103	976224257	3
30	230686721	6	67	683671553	3	104	985661441	3
31	246415361	3	68	710934529	17	105	998244353	3
32	249561089	3	69	715128833	3	106	1004535809	3
33	257949697	5	70	718274561	3	107	1007681537	3
34	270532609	22	71	740294657	3	108	1012924417	5
35	274726913	3	72	745537537	5	109	1045430273	3
36	290455553	3	73	754974721	11	110	1051721729	6
37	305135617	5	74	770703361	11	111	1053818881	7

	Theoretical	Computer Science Cheat Sheet					
	Definitions	Series					
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$					
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	$ \begin{array}{ccc} $					
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$					
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{k=1}^{n} i^{m} = \frac{1}{m+1} \sum_{k=1}^{m} {m+1 \choose k} B_{k} n^{m+1-k}.$					
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	i=1 $k=0$ Geometric series:					
$\sup S$	least $b \in \mathbb{R}$ such that $b \geq s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$					
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$					
$ \liminf_{n \to \infty} a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	Harmonic series: $H_n = \sum_{i=1}^{n} \frac{1}{i}, \qquad \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$					
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	i=1 $i=1$					
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$					
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$, 3. $\binom{n}{k} = \binom{n}{n-k}$,					
$\left\{ egin{array}{c} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}, $					
$\langle {n \atop k} \rangle$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1, 2,, n\}$ with k ascents.	$8. \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad 9. \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$					
$\left\langle\!\left\langle {n\atop k}\right\rangle\!\right\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$, 11. $\binom{n}{1} = \binom{n}{n} = 1$,					
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,					
14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)$	15. $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n - 1)^n$	$16. \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$					
		${n \choose n-1} = {n \choose n-1} = {n \choose 2}, 20. \sum_{k=0}^n {n \brack k} = n!, 21. \ C_n = \frac{1}{n+1} {2n \choose n},$					
$22. \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle$	$\begin{pmatrix} n \\ -1 \end{pmatrix} = 1,$ 23. $\begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ -1 \end{pmatrix}$	$\binom{n}{n-1-k}$, $24. \ \binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,					
$25. \ \left\langle \begin{matrix} 0 \\ k \end{matrix} \right\rangle = \left\{ \begin{matrix} 1 \\ 0 \end{matrix} \right\}$	25. $\begin{pmatrix} 0 \\ k \end{pmatrix} = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{cases}$ 26. $\begin{pmatrix} n \\ 1 \end{pmatrix} = 2^n - n - 1,$ 27. $\begin{pmatrix} n \\ 2 \end{pmatrix} = 3^n - (n+1)2^n + \binom{n+1}{2},$						
28. $x^n = \sum_{k=0}^n \binom{n}{k} \binom{x+k}{n}$, 29. $\binom{n}{m} = \sum_{k=0}^m \binom{n+1}{k} (m+1-k)^n (-1)^k$, 30. $m! \binom{n}{m} = \sum_{k=0}^n \binom{n}{k} \binom{k}{n-m}$,							
$31. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^{n} \left\langle {n \atop m} \right\rangle = \sum_{k=0}^$	$ \binom{n}{k} \binom{n-k}{m} (-1)^{n-k-m} k!, $	32. $\left\langle \left\langle {n\atop 0}\right\rangle \right\rangle = 1,$ 33. $\left\langle \left\langle {n\atop n}\right\rangle \right\rangle = 0$ for $n \neq 0,$					
34. $\left\langle \!\! \left\langle \!\! \right\rangle \!\! \right\rangle = (k + 1)^n$	-1) $\left\langle \left\langle {n-1\atop k}\right\rangle \right\rangle + (2n-1-k)\left\langle \left\langle {n-1\atop k}\right\rangle \right\rangle$	$ \begin{array}{c c} -1 \\ -1 \\ \end{array} $ 35. $ \sum_{k=0}^{n} \left\langle \!\! \begin{pmatrix} n \\ k \end{pmatrix} \!\! \right\rangle = \frac{(2n)^n}{2^n}, $					
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \sum_{k}^{\infty}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left(x + n - 1 - k \right), $	37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k},$					

$$\mathbf{38.} \begin{bmatrix} n+1\\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n\\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k\\ m \end{bmatrix} n^{\underline{n-k}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k\\ m \end{bmatrix}, \qquad \mathbf{39.} \begin{bmatrix} x\\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \!\!\! \begin{pmatrix} n\\ k \end{pmatrix} \!\!\! \right\rangle \binom{x+k}{2n},$$

40.
$$\binom{n}{m} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k},$$

42.
$${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$$

44.
$$\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k},$$

$$\mathbf{46.} \ \left\{ \begin{array}{l} n \\ n-m \end{array} \right\} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, \qquad \mathbf{47.} \ \left[\begin{array}{l} n \\ n-m \end{array} \right] = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k},$$

48.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k},$$
 49.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k}.$$

41.
$$\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k=0}^{\infty} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} {k \choose m} (-1)^{m-k},$$

43.
$$\begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix},$$

44.
$$\binom{n}{m} = \sum_{k} {n+1 \brace k+1} {k \brack m} (-1)^{m-k}, \quad \textbf{45.} \quad (n-m)! \binom{n}{m} = \sum_{k} {n+1 \brack k+1} {k \brack m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

Trees

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are

$$d_1, \dots, d_n$$
:

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$

$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c = \frac{3}{2}$. Then we have

$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$
$$= 2n(c^{\log_2 n} - 1)$$
$$= 2n(c^{(k-1)\log_c n} - 1)$$
$$= 2n^k - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

Multiply and sum:
$$\sum_{i\geq 0} g_{i+1} x^i = \sum_{i\geq 0} 2g_i x^i + \sum_{i\geq 0} x^i.$$

We choose $G(x) = \sum_{i>0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for
$$G(x)$$
:
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:
$$G(x) = x \left(\frac{2}{1-2x} - \frac{1}{1-x}\right)$$

$$= x \left(2\sum_{i \geq 0} 2^i x^i - \sum_{i \geq 0} x^i\right)$$

$$= \sum_{i \geq 0} (2^{i+1} - 1)x^{i+1}.$$

So
$$q_i = 2^i - 1$$
.

			Theoretical Computer Science Cheat Sheet				
	$\pi \approx 3.14159,$	$e \approx 2.7$	$\gamma 1828, \qquad \gamma \approx 0.57721,$	$\phi = \frac{1+\sqrt{5}}{2} \approx 1.61803,$	$\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx61803$		
i	2^i	p_i	General		Probability		
1	2	2	Bernoulli Numbers ($B_i =$	$= 0, \text{ odd } i \neq 1)$: Continu	ious distributions: If		
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 =$	$=\frac{1}{6}, B_4=-\frac{1}{30},$	$\Pr[a < X < b] = \int_{a}^{b} p(x) dx,$		
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}$	$B_{10} = \frac{1}{66}$.	Ja		
4	16	7	Change of base, quadrati	c formula: then p is X . If	s the probability density fund		
5	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b}{a}$	$b \pm \sqrt{b^2 - 4ac}$	$\Pr[X < a] = P(a),$		
6	64	13	108a 0	$\frac{}{2a}$. then P	is the distribution function of		
7	128	17	Euler's number e:	P and p	both exist then		
8	256	19	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24}$	120	$P(a) = \int_{-\infty}^{a} p(x) dx.$		
9	512	23	$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n$	$=e^x$.	$J = \infty$		
10	1,024	29	$(1+\frac{1}{n})^n < e < (1)$	Expects	ation: If X is discrete		
11	2,048	31	(167	" / F	$\mathbb{E}[g(X)] = \sum g(x) \Pr[X = x]$		
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{1}{24}$	$\frac{1e}{\ln^2} - O\left(\frac{1}{n^3}\right)$. If $X \in \mathbb{R}$	ntinuous then		
13	8,192	41	Harmonic numbers:	11 11 001			
14	16,384	43	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{36}{14}$	$\frac{3}{9}, \frac{761}{999}, \frac{7129}{9799}, \dots$ $E[g(X)]$	$ =\int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x)$		
15	32,768	47	-7 27 67 127 60 7 207 14	Varianc	e, standard deviation:		
16	65,536	53	$\ln n < H_n < \ln$	n+1,	$VAR[X] = E[X^2] - E[X]^2,$		
17	131,072	59	$H_n = \ln n + \gamma +$	$O(\frac{1}{2})$	$\sigma = \sqrt{\text{VAR}[X]}.$		
18	262,144	61		For ever	A and B :		
19	524,288	67	Factorial, Stirling's appro	eximation: $\Pr[A \setminus A]$	$\forall B] = \Pr[A] + \Pr[B] - \Pr[A]$		
20	1,048,576	71	1, 2, 6, 24, 120, 720, 5040, 4	$\Pr[A]$	$\wedge B] = \Pr[A] \cdot \Pr[B],$		
21	2,097,152	73	$ (n)^n$	(1))	iff A and B are independent		
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1\right)^n$	$+\Theta\left(\frac{1}{n}\right)$.	$A B] = \frac{\Pr[A \land B]}{\Pr[B]}$		
23	8,388,608	83	Ackermann's function an	d inverse:	11[2]		
24	16,777,216	89	$\int 2^j$	i=1 For range $i=1$	dom variables X and Y :		
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j \\ a(i-1,2) \\ a(i-1,a(i,j)) \end{cases}$	j=1	$[Y \cdot Y] = E[X] \cdot E[Y],$ if X and Y are independent		
26	67,108,864	101		[77	[X] and $[Y]$ are independently $[X] + [Y] = E[X] + E[Y],$		
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j)\}$	— ·)	[cX] = E[X] + E[Y], [cX] = cE[X].		
28	268,435,456	107	Binomial distribution:	Darrag', 4	$c[cA] = c_{E[A]}.$ theorem:		
29	536,870,912	109	$\Pr[X = k] = \binom{n}{k} p^k q^{n-k}$:			
30	1,073,741,824	113		11[$A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\sum_{i=1}^n \Pr[A_i]\Pr[B A_i]}$		
31	2,147,483,648	127	$E[X] = \sum_{i=1}^{n} k \binom{n}{k} p^{k}$	$k^k q^{n-k} = np.$ Inclusio	on-exclusion:		
32	4,294,967,296	131	k=1		n.		
	Pascal's Triangl	e	Poisson distribution: $e^{-\lambda \lambda k}$	$ \Pr \bigcup_{i=1}^{r} V_i $	$\left[X_i \right] = \sum_{i=1}^{\infty} \Pr[X_i] +$		
	1		$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!},$	$E[X] = \lambda.$			
	1 1		Normal (Gaussian) distri		$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{k} \right]$		
	1 2 1		$p(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/2}$				
	1 2 2 1		$P(x) = \frac{1}{\sqrt{2}} \epsilon$	$, \mathbf{E}[\mathbf{x}] - \mu. \text{Momen}$	t inequalities:		

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, \quad E[X] = \mu.$$

The "coupon collector": We are given a random coupon each day, and there are ndifferent types of coupons. The distribution of coupons is uniform. The expected number of days to pass before we to collect all n types is

 nH_n .

$$\Pr[a < X < b] = \int_a^b p(x) \, dx,$$

ility density function of

$$\Pr[X < a] = P(a),$$

ution function of X. If hen

$$P(a) = \int_{-\infty}^{a} p(x) \, dx.$$

$$\mathbb{E}[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

$$\mathrm{E}[g(X)] = \int_{-\infty}^{\infty} g(x)p(x)\,dx = \int_{-\infty}^{\infty} g(x)\,dP(x).$$

$$VAR[X] = E[X^{2}] - E[X]^{2},$$

$$\sigma = \sqrt{VAR[X]}.$$

$$\begin{split} \Pr[A \vee B] &= \Pr[A] + \Pr[B] - \Pr[A \wedge B] \\ \Pr[A \wedge B] &= \Pr[A] \cdot \Pr[B], \end{split}$$

 ${\cal B}$ are independent.

$$\Pr[A|B] = \frac{\Pr[A \land B]}{\Pr[B]}$$

$$E[X \cdot Y] = E[X] \cdot E[Y],$$

Y are independent.

$$E[X+Y] = E[X] + E[Y],$$

$$E[cX] = c E[X].$$

$$\Pr[A_i|B] = \frac{\Pr[B|A_i]\Pr[A_i]}{\sum_{i=1}^{n} \Pr[A_i]\Pr[B|A_i]}.$$

$$\Pr\left[\bigvee_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \Pr[X_i] +$$

$$\sum_{k=2}^n (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr \Big[\bigwedge_{j=1}^k X_{i_j} \Big].$$

$$\Pr[|X| \ge \lambda \operatorname{E}[X]] \le \frac{1}{\lambda},$$

$$\Pr\left[\left|X - \mathrm{E}[X]\right| \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$$

Geometric distribution:
$$\Pr[X=k] = pq^{k-1}, \qquad q=1-p,$$

$$E[X] = \sum_{k=1}^{\infty} kpq^{k-1} = \frac{1}{p}.$$

Trigonometry

Pythagorean theorem:

$$C^2 = A^2 + B^2$$

Definitions:

$$\sin a = A/C, \quad \cos a = B/C,$$

$$\csc a = C/A, \quad \sec a = C/B,$$

$$\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
, $\frac{AB}{A+B+C}$.

Identities:

$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$

$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$

$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$

$$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$$

$$\cot x = -\cot(\pi - x), \qquad \csc x = \cot\frac{\pi}{2} - \cot x,$$

 $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y.$

 $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$$

$$\sin 2x = 2\sin x \cos x, \qquad \qquad \sin 2x = \frac{2\tan x}{1 + \tan^2 x}$$

$$\cos 2x = \cos^2 x - \sin^2 x,$$
 $\cos 2x = 2\cos^2 x - 1,$
 $\cos 2x = 1 - 2\sin^2 x,$ $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}.$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}, \qquad \cot 2x = \frac{\cot^2 x - 1}{2\cot x},$$

$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$$

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{ix} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$$

v2.02 © 1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden

Matrices

Multiplication:

$$C = A \cdot B$$
, $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$.

Determinants: $\det A \neq 0$ iff A is non-singular.

$$\det A \cdot B = \det A \cdot \det B,$$

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 2×2 and 3×3 determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$
$$= \frac{aei + bfg + cdh}{-ceq - fha - ibd}.$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

Hyperbolic Functions

Definitions:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2},$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x},$$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \qquad \operatorname{coth} x = \frac{1}{\tanh x}.$$

Identities:

$$\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \mathrm{sech}^2 x = 1,$$

$$\coth^2 x - \mathrm{csch}^2 x = 1, \qquad \sinh(-x) = -\sinh x,$$

$$\cosh(-x) = \cosh x, \qquad \tanh(-x) = -\tanh x,$$

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$

$$\sinh 2x = 2\sinh x \cosh x,$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$$

$$(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$$

$$2\sinh^2 \frac{x}{2} = \cosh x - 1, \qquad 2\cosh^2 \frac{x}{2} = \cosh x + 1.$$

$\sin \theta$	$\cos \theta$	$\tan \theta$
0	1	0
$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
		$\sqrt{3}$
1	0	∞
	0	$ \begin{array}{ccc} 0 & 1 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{array} $

... in mathematics you don't understand things, you just get used to them.

– J. von Neumann

More Trig.

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Area:

$$A = \frac{1}{2}hc,$$

$$= \frac{1}{2}ab\sin C,$$

$$= \frac{c^2\sin A\sin B}{2\sin C}.$$

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

more identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}}$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 + \cos x}}$$

$$= \frac{1 - \cos x}{1 + \cos x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{\sin x}{1 - \cos x},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2},$$

 $\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$

 $\sin x = \frac{\sinh ix}{i}$

 $\cos x = \cosh ix,$

 $\tan x = \frac{\tanh ix}{i}.$

Theoretical Computer Science Cheat Sheet Number Theory Graph Theory The Chinese remainder theorem: There ex-Definitions: ists a number C such that: Loop An edge connecting a vertex to itself. $C \equiv r_1 \mod m_1$ DirectedEach edge has a direction. SimpleGraph with no loops or : : : multi-edges. $C \equiv r_n \bmod m_n$ WalkA sequence $v_0e_1v_1\dots e_\ell v_\ell$. if m_i and m_j are relatively prime for $i \neq j$. TrailA walk with distinct edges. Path trail with distinct Euler's function: $\phi(x)$ is the number of vertices. positive integers less than x relatively ConnectedA graph where there exists prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime faca path between any two torization of x then vertices. $\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$ ComponentΑ $_{ m maximal}$ connected subgraph. Euler's theorem: If a and b are relatively TreeA connected acyclic graph. prime then Free tree A tree with no root. $1 \equiv a^{\phi(b)} \bmod b$. DAGDirected acyclic graph. Eulerian Graph with a trail visiting Fermat's theorem: each edge exactly once. $1 \equiv a^{p-1} \bmod p$. Hamiltonian Graph with a cycle visiting The Euclidean algorithm: if a > b are ineach vertex exactly once. tegers then CutA set of edges whose re $gcd(a, b) = gcd(a \mod b, b).$ moval increases the number of components. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x Cut-setA minimal cut. $Cut\ edge$ A size 1 cut. $S(x) = \sum_{d|n} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$ k-Connected A graph connected with the removal of any k-1Perfect Numbers: x is an even perfect numk-Tough $\forall S \subseteq V, S \neq \emptyset$ we have ber iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. $k \cdot c(G - S) \le |S|.$ Wilson's theorem: n is a prime iff k-Regular A graph where all vertices $(n-1)! \equiv -1 \mod n$. have degree k. Möbius inversion: $\mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$ Möbius inversion: k-regular k-Factor Α spanning subgraph. Matching A set of edges, no two of which are adjacent. CliqueA set of vertices, all of If which are adjacent. $G(a) = \sum_{d|a} F(d),$ A set of vertices, none of Ind. set which are adjacent. then Vertex cover A set of vertices which $F(a) = \sum_{u} \mu(d) G\left(\frac{a}{d}\right).$ cover all edges. Planar graph A graph which can be embeded in the plane. Prime numbers: $p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$ Plane graph An embedding of a planar $+O\left(\frac{n}{\ln n}\right),$ $\sum_{v \in V} \deg(v) = 2m.$ $\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$ If G is planar then n-m+f=2, so $f \le 2n - 4, \quad m \le 3n - 6.$

 $+O\left(\frac{n}{(\ln n)^4}\right).$

Notation:					
E(G)	Edge set				
V(G)	Vertex set				
c(G)	Number of components				
G[S]	Induced subgraph				
deg(v)	Degree of v				
$\Delta(G)$	Maximum degree				
$\delta(G)$	Minimum degree				
$\chi(G)$	Chromatic number				
$\chi_E(G)$	Edge chromatic number				
G^c	Complement graph				
K_n	Complete graph				
K_{n_1, n_2}	Complete bipartite graph				
$\mathrm{r}(k,\ell)$	Ramsey number				
	Geometry				

Geometry

Projective coordinates: (x, y, z), not all x, y and z zero. $(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$ Cartesian Projective

Cartesian	1 To jective
(x,y)	(x, y, 1)
y = mx + b	(m, -1, b)
x = c	(1, 0, -c)
D	

Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$\left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p},$$

$$\lim_{p \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

$$(x_2, y_2)$$

$$(0, 0) \qquad \ell_1 \qquad (x_1, y_1)$$

$$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\ell_1 \ell_2}.$$

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

Any planar graph has a vertex with de-

gree ≤ 5 .

Wallis' identity:
$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregory's series:
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

Newton's series:

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

Sharp's series:

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \cdots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)}$$

where

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

For a repeated factor:

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

Derivatives:

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2. $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$, 3. $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

3.
$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$4. \frac{d(u^n)}{dx} = nu^{n-1} \frac{du}{dx},$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}, \quad \mathbf{5.} \quad \frac{d(u/v)}{dx} = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}, \quad \mathbf{6.} \quad \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

Calculus

$$6. \ \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

7.
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$$

$$8. \ \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx},$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx}$$

$$10. \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx}$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx}$$

12.
$$\frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx}$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

$$\mathbf{14.} \ \frac{d(\csc u)}{dx} = -\cot u \ \csc u \frac{du}{dx}$$

15.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$

16.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx}$$

18.
$$\frac{d(\operatorname{arccot} u)}{dr} = \frac{-1}{1+u^2} \frac{du}{dr}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx},$$

20.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

21.
$$\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$$

22.
$$\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23.
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$$

24.
$$\frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$$

25.
$$\frac{dx}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27.
$$\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

29.
$$\frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx}$$

$$30. \ \frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

Integrals:

1.
$$\int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

3.
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1$$

3.
$$\int x^n dx = \frac{1}{n+1}x^{n+1}$$
, $n \neq -1$, **4.** $\int \frac{1}{x} dx = \ln x$, **5.** $\int e^x dx = e^x$,

6.
$$\int \frac{dx}{1+x^2} = \arctan x,$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

8.
$$\int \sin x \, dx = -\cos x,$$

9.
$$\int \cos x \, dx = \sin x,$$

$$\mathbf{10.} \int \tan x \, dx = -\ln|\cos x|,$$

$$\mathbf{11.} \int \cot x \, dx = \ln|\cos x|,$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
, **13.** $\int \csc x \, dx = \ln|\csc x + \cot x|$,

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17.
$$\int \sin^2(ax)dx = \frac{1}{2a}(ax - \sin(ax)\cos(ax)),$$

18.
$$\int \cos^2(ax)dx = \frac{1}{2a}(ax + \sin(ax)\cos(ax)),$$

$$19. \int \sec^2 x \, dx = \tan x,$$

$$20. \int \csc^2 x \, dx = -\cot x,$$

21.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

22.
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

24.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

26.
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1, \quad$$
27. $\int \sinh x \, dx = \cosh x, \quad$ **28.** $\int \cosh x \, dx = \sinh x,$

29.
$$\int \tanh x \, dx = \ln|\cosh x|, \ \mathbf{30.} \ \int \coth x \, dx = \ln|\sinh x|, \ \mathbf{31.} \ \int \operatorname{sech} x \, dx = \arctan \sinh x, \ \mathbf{32.} \ \int \operatorname{csch} x \, dx = \ln|\tanh \frac{x}{2}|,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$
 34. $\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$ **35.** $\int \operatorname{sech}^2 x \, dx = \tanh x,$

$$\mathbf{35.} \int \operatorname{sech}^2 x \, dx = \tanh x$$

36.
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

38.
$$\int \operatorname{arccosh} \frac{x}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{cases}$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

41.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

43.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 44. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$ **45.** $\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$

44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$$

45.
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$$

46.
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

47.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right|, \quad a > 0,$$

48.
$$\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

49.
$$\int x\sqrt{a+bx}\,dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

50.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

51.
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

52.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

53.
$$\int x\sqrt{a^2 - x^2} \, dx = -\frac{1}{3}(a^2 - x^2)^{3/2},$$

54.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

56.
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

59.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

60.
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calculus Cont.

62.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0, \qquad 63. \int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$$

63.
$$\int \frac{dx}{x^2 \sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$$

64.
$$\int \frac{x \, dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2},$$

65.
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

66.
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

67.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

68.
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

70.
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71.
$$\int x^3 \sqrt{x^2 + a^2} \, dx = \left(\frac{1}{3}x^2 - \frac{2}{15}a^2\right)(x^2 + a^2)^{3/2}$$

72.
$$\int x^n \sin(ax) dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) dx$$

73.
$$\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$$

74.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

75.
$$\int x^n \ln(ax) \, dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

76.
$$\int x^n (\ln ax)^m \, dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} \, dx.$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$

$$\mathbf{E} f(x) = f(x+1).$$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum f(x)\delta x = F(x) + C.$$

$$\sum_{a}^{b} f(x)\delta x = \sum_{i=a}^{b-1} f(i).$$

Differences

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + \mathbf{E}\,v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$$

$$\Delta(H_x) = x^{-1}, \qquad \qquad \Delta(2^x) = 2^x,$$

$$\Delta(c^x) = (c-1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

$$\sum cu\,\delta x = c\sum u\,\delta x,$$

$$\sum (u+v)\,\delta x = \sum u\,\delta x + \sum v\,\delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum E \, v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n+1}}}{\underline{n+1}}, \qquad \qquad \sum x^{\underline{-1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$

$$x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}.$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^0 = 1,$$

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}} (x+m)^{\overline{n}}.$$

Conversion:

$$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$$

$$=1/(x+1)^{\overline{-n}},$$

$$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x+n-1)^{\underline{n}}$$

$$=1/(x-1)^{-n},$$

$$x^{n} = \sum_{k=1}^{n} {n \choose k} x^{\underline{k}} = \sum_{k=1}^{n} {n \choose k} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k,$$

$$x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Series

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + cx + c^2x^2 + c^3x^3 + \cdots = \sum_{i=0}^{\infty} c^ix^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} x^{ni},$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} i^nx^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} i^nx^i,$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1}\frac{x^i}{i},$$

$$\ln \frac{1}{1-x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1}\frac{x^i}{i},$$

$$\sin x = x - \frac{1}{3}x^3 + \frac{1}{9}x^5 - \frac{1}{17}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!},$$

$$\tan^{-1}x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + \binom{n+2}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{x}{e^x - 1} = 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{720}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 6x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 6x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{10}x^3 + \frac{25}{22}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{2}\left(\ln\frac{1}{1-x}\right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{H_{i-1}x^i}{i},$$

$$\frac{x}{1-x-x^2} = x + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{ii}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power serie

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} i a_{i-1} x^i,$$

$$\frac{A(x) + A(-x)}{a_{i+1}} = \sum_{i=1}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=1}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{j=0}^i a_i$ then

$$B(x) = \frac{1}{1 - x} A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) x^i.$$

God made the natural numbers; all the rest is the work of man. Leopold Kronecker

Escher's Knot

Expansions:
$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{-n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} x^i,$$

$$x^{\overline{n}} = \sum_{i=0}^{\infty} \begin{bmatrix} n \\ i \end{bmatrix} x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n!x^i}{i!},$$

$$x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{(2i)!}$$

$$\tan x = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i} - 1) B_{2i} x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x},$$

$$\frac{1}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\mu(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{\phi(i)}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac$$

$$(e^{x} + i)x^{i}, \qquad \left(\frac{1}{x}\right)^{-n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} x^{i},$$

$$(e^{x} - 1)^{n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n!x^{i}}{i!},$$

$$x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^{i}B_{2i}x^{2i}}{(2i)!},$$

$$-\frac{1}{2}B_{2i}x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^{x}},$$

$$\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^{x}},$$

Stieltjes Integration

If G is continuous in the interval [a, b] and F is nondecreasing then

$$\int_{a}^{b} G(x) \, dF(x)$$

exists. If a < b < c then

$$\int_{a}^{c} G(x) \, dF(x) = \int_{a}^{b} G(x) \, dF(x) + \int_{b}^{c} G(x) \, dF(x).$$

$$\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d(F(x) + H(x)) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d(c \cdot F(x)) = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x)F'(x) dx.$$

 $\left(\frac{\arcsin x}{x}\right)^2 = \sum_{i=0}^{\infty} \frac{4^i i!^2}{(i+1)(2i+1)!} x^{2i}.$

 $= \sum_{i=0}^{\infty} \frac{(4i)!}{16^i \sqrt{2}(2i)!(2i+1)!} x^i,$

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be A with column i replaced by B. Then

$$x_i = \frac{\det A_i}{\det A}.$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

William Blake (The Marriage of Heaven and Hell)

00 47 18 76 29 93 85 34 61 52 86 11 57 28 70 39 94 45 02 63 95 80 22 67 38 71 49 56 13 04 37 08 75 19 92 84 66 23 50 41 14 25 36 40 51 62 03 77 88 99 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

$$n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$$

where $k_i \ge k_{i+1} + 2$ for all i , $1 \le i < m$ and $k_m \ge 2$.

Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$F_{i} = F_{i-1} + F_{i-2}, \quad F_{0} = F_{1} = 1,$$

$$F_{-i} = (-1)^{i-1} F_{i},$$

$$F_{i} = \frac{1}{\sqrt{5}} \left(\phi^{i} - \hat{\phi}^{i} \right),$$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i$$
.

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$
 Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$