Лабораторная работа №5.

Для заданного вещественного x и малой величины eps вычислить сумму бесконечного ряда:

$$s = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{i}}{(2i+1)!} = 1 - \frac{x}{3!} + \frac{x^{2}}{5!} - \dots + (-1)^{i} \frac{x^{i}}{(2i+1)!} + \dots$$

Написание алгоритма решения задачи будет состоять из двух шагов.

Рекуррентная формула выводится из предположения, что слагаемые ряда являются членами *бесконечно убывающей* геометрической прогрессии. Пусть $s = a_0 + a_1 + a_2 + a_3 + ... + a_i + ...$ Таким образом, рекуррентная формула выглядит следующим образом:

$$a_i = \begin{cases} 1, & i = 0 \\ q \cdot a_{i-1}, & i \ge 1 \end{cases}$$

где $q = \frac{a_i}{a_{i-1}}$. Значение a_0 либо вычисляется по формуле ряда (записывается после знака суммы) — вместо параметра подставить его начальное значение, либо из записи самого ряда — первое слагаемое ряда. Формула для a_i берется либо из формулы ряда $a_i = (-1)^i \frac{x^i}{(2i+1)!}$, либо ее необходимо определить по изменению слагаемых ряда. Для нахождения формулы a_{i-1} подставим (i-1) в формулу $a_i = (-1)^i \frac{x^i}{(2i+1)!}$ вместо i: $a_{i-1} = (-1)^{i-1} \frac{x^{i-1}}{(2i-1)!}$.

Для вычисления q необходимо знать, что есть факториал числа.

Определение. Факториалом числа i называют произведение последовательных натуральных чисел от 1 до i включительно, т.е. $i! = 1 \cdot 2 \cdot 3 \cdot ... \cdot (i-1) \cdot i$.

Таким образом,
$$(2i-1)! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (2i-1)$$
, а $(2i+1)! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (2i-1) \cdot 2i \cdot (2i+1) = (2i-1)! \cdot 2i \cdot (2i+1)$. Вычислим
$$q = \frac{(-1)^i \cdot x^i \cdot (2i-1)!}{(2i+1)!(-1)^{i-1} \cdot x^{i-1}} = \frac{-x \cdot (2i-1)!}{(2i-1)!2i \cdot (2i+1)} = \frac{-x}{2i \cdot (2i+1)}.$$

Получим рекуррентную формулу

$$a_i = \begin{cases} 1, & i = 0 \\ \frac{-x}{2i \cdot (2i+1)} \cdot a_{i-1}, & i \ge 1. \end{cases}$$

При записи этой формулы наиболее частой ошибкой является следующая запись этой формулы:

$$a_{i} = \begin{cases} 1, & i = 0 \\ \frac{-x}{2i \cdot (2i+1)} \cdot \left((-1)^{i-1} \frac{x^{i-1}}{(2i-1)!} \right), & i \ge 1 \end{cases}$$

Эта формула не будет являться рекуррентной, так как в ней нет зависимости последующего элемента последовательности от предыдущего, следовательно, нет возможности применить стандартный алгоритм вычисления элементов и суммы этих элементов (описание см. ниже).

Глубина рекурсии равна 1, т.е. для вычисления элементов последовательности требуются две переменные. Как и в примере 1, обойдемся одной переменной.

Примечание. При вычислении суммы ряда решающую роль играет величина *eps*. Она задаётся для того, чтобы ограничивать количество вычисляемых элементов последовательности, добавляемых в сумму. При вычислении каждого элемента последовательности его модуль сравнивается с *eps*. Если он больше *eps*, то вычисления продолжаются, в противном случае вычисление элементов последовательности и добавление их в искомую сумму прекращается. Такой процесс называется вычислением суммы ряда с точностью *eps*. В качестве значения переменной *eps* можно взять 0,001 или 0,00001 и т.п.

Алгоритм

```
Объявление вещ: x, eps ,S, a, цел: i
ввод х, ерѕ
'начальное значение номера элемента последовательности
'начальное значение элемента последовательности
'начальное значение суммы элементов последовательности
'цикл для вычисления элементов и суммы последовательности
пока |a| \ge eps
'увеличиваем номер элемента
   i=i+1
'вычисляем новый элемент
   a=a*(-x)/(2*i*(2*i+1))
'добавляем его в сумму
   s=s+a
все цикл
печать ѕ
     Написать программу, соответствующую алгоритму
Dim x, eps, s, a As Single, i As Integer
x = Range("a2"). Value
eps = Range("b2"). Value
i = 0
a = 1
s = a
While Abs(a) \ge eps
    i = i + 1
     'вычисляется элемент последовательности
    a = a * (-x) / (2 * i * (2 * i + 1))
     элемент последовательности добавлется в сумму
```

```
s = s + a
Wend
MsgBox "S=" & CStr(s)
```

Пример 5. Найти наименьший номер члена последовательности, для которого выполняется условие $|a_n - a_{n-1}| < \varepsilon$. Вывести на экран этот номер и все элементы a_n , где n = 1,2,3.... Последовательность задается формулой $a_n = \ln^2(a_{n-1}) + 1$, $a_1 = 0.01$.

Написание алгоритма решения задачи будет состоять из двух шагов.

Формула для вычисления элементов последовательности:

$$a_{i} = \begin{cases} 0.01, & i = 1 \\ \ln^{2}(a_{i-1}) + 1, & i \ge 2 \end{cases}$$

где i — номер текущего элемента последовательности.

Глубина рекурсии в данном случае равна 1, т.е. для вычисления элементов последовательности нужны две переменные.

Алгоритм

```
Объявление цел: i; вещ: at, ap, eps
ввод ерѕ
'номер элемента равен 1
' текущий элемент
at = 0.01
печать at
'номер элемента увеличивается на 1
i=i+1
' новый элемент
ap=ln^2(at)+1
печать ар
' цикл для вычисления элементов последовательности
пока |at-ap|>=eps
'номер элемента увеличивается на 1
'последующий элемент становится текущим
'вычисляется последующий элемент
  ap=ln^2(at)+1
  печать ар
всё цикл
печать і
     Написать программу, соответствующую алгоритму
Dim i As Integer, at, ap, eps As Single
Dim s As String
eps = Cells(2, 1).Value
i = 1
at = 0.01
s = CStr(at) & Chr(10)
```

```
i = i + 1

ap = Log(at) ^ 2 + 1

s = s + CStr(ap) & Chr(10)

While Abs(at - ap) >= eps

i = i + 1

at = ap

ap = Log(at) ^ 2 + 1

s = s + CStr(ap) & Chr(10)

Wend

MsgBox "i=" & CStr(i) & Chr(10) & s
```

Структура алгоритмов вычисления рекуррентных последовательностей

Как видно из решения задач, приведенные алгоритмы имеют общую структуру. Алгоритмы решения задач на нахождение элементов и/или суммы элементов последовательности можно записать в следующем виде:

```
задать начальное значение номера элемента i=i_0 задать начальное значение элемента a=a_0 задать начальное значение суммы элементов s=a_0 цикл <условие_продолжения_вычислений> i=i+1 a=f(a,a_0) печать a (если нужно) s=s+a (если нужно) все_цикл печать s (если нужно) печать s (если нужно)
```

Здесь $f(a,a_0)$ — это функция, описывающая зависимость последующего элемента последовательности от предыдущего.

Задание. Из условий задачи найти рекуррентную формулу. Используя найденную формулу решить поставленную задачу.

Даны числовой ряд $\sum_{n=1}^{\infty} a_n$ и некоторое число ε . Найти сумму тех членов ряда, модуль которых больше или равен заданному ε .

Вариант	Формула общего члена	Вариант	Формула общего члена
	ряда		ряда
1	$a_n = \frac{n!}{3n^n}, n = 1, 2, 3$	7	$a_n = \frac{n!}{(2n^n)}, n = 1, 2, 3$
2	$a_n = \frac{1}{2^n} + \frac{1}{3^n}, n = 1, 2, 3$	8	$a_n = \frac{1}{(3n-2)(3n+1)}, n = 1,2,3$
3	$a_n = \frac{10^n}{n!}, n = 1, 2, 3$	9	$a_n = \frac{n!}{n^n}, n = 1, 2, 3$
4	$a_n = \frac{3^n \cdot n!}{(2n)!}, n = 1, 2, 3$	10	$a_n = \frac{2^n \cdot n!}{n^n}, n = 1, 2, 3$
5	$a_n = \frac{n!}{(2n)!}, n = 1, 2, 3$	11	$a_n = \frac{2^n}{(n-1)!}, n = 1,2,3$
6	$a_n = \frac{(-1)^{n-1}}{n^n}, n = 1, 2, 3$	12	$a_n = \frac{2n-1}{2^n}, n = 1,2,3$

Найти наименьший номер члена последовательности, для которого выполняется условие: $|a_n - a_{n-1}| < \varepsilon$. Вывести на экран номер и все элементы a_n , где n = 1,2,3...

Вариант	Формула общего члена	Вариант	Формула общего члена
	ряда		ряда
13	$a_n = \frac{x}{2a_{n-1}^2}, a_1 = x$	19	$a_n = e^{-a_n - 1}, a_1 = 0$
14	$a_n = arctg(a_{n-1}) + 1, a_1 = 0$	20	$a_n = \frac{n^{\ln n}}{(\ln n)^n}, n = 2,3,$
15	$a_n = 2 + \frac{1}{a_{n-1}}, a_1 = 2$	21	$a_n = \frac{a_{n-1} + a_{n-2}}{2}, a_1 = 1, a_2 = 2$
16	$a_n = \frac{1}{2}tg(a_{n-1}), a_1 = 0.5$	22	$a_n = \frac{2 + a_{n-1}^2}{2a_{n-1}}, a_1 = 2$
17	$a_n = \frac{1}{(2n)^2}, a_1 = 0.5$	23	$a_n = \frac{2^{n+1}}{(3n)^n}, a_1 = \frac{4}{3}$
18	$a_n = \frac{1}{2}\cos(a_{n-1}), a_1 = 0.5$	24	$a_n = \frac{2^n n!}{n^n}, a_1 = 2$