UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea_____

30 Aprilie 2022

CHESTIONAR DE CONCURS

Numărul legitimației de bancă	
Numele	
Prenumele tatălui	
Prenumele	

DISCIPLINA: Algebră și Elemente de Analiză Matematică Ma

VARIANTA A

- 1. Să se determine numărul funcțiilor $f:\{0,1,2,...,9,10\} \to \{0,1,2\}$, care au proprietatea f(0)+f(1)+...+f(10)=3. (9 pct.)
 - a) 275; b) 313; c) 255; d) 317; e) 257; f) 444.
- 2. Multimea soluțiilor ecuației $9^x 8 \cdot 3^{x+1} 81 = 0$ este: (9 pct.)
 - a) \emptyset ; b) $\{2\}$; c) $\{-1\}$; d) $\{-2\}$; e) $\{3\}$; f) $\{-3\}$.
- 3. Se consideră sistemul

$$\begin{cases} 2x + ay + az = 1\\ 3x + (2a - 1)y + az = a\\ (a + 3)x + ay + az = 3a - 2. \end{cases}$$

Să se afle $a \in \mathbb{R}$ astfel încât sistemul să fie compatibil nedeterminat. (9 pct.)

a)
$$a = 1$$
; b) $a = 2$; c) $a = 0$; d) $a = -2$; e) $a = -1$; f) $a = 4$.

- 4. Suma pătratelor soluțiilor reale ale ecuației $x^2 5x + 6 = 0$ este: (9 pct.)
 - a) 13; b) 10; c) 8; d) 14; e) 4; f) 16.
- 5. Dacă $\alpha = \log_{15} 5$, să se calculeze $\log_{15}(1,8)$ în funcție de α . (9 pct.)
 - a) $2+5\alpha$; b) $3+4\alpha$; c) $1+2\alpha$; d) $3+2\alpha$; e) $3-4\alpha$; f) $2-3\alpha$.
- 6. Fie $f: \mathbb{R} \to \mathbb{R}$, funcția continuă care verifică relația 3f(x) + 5f(-x) = 4x + 3, pentru orice $x \in \mathbb{R}$. Să se determine numărul real a astfel încât $\int_{-a}^{a} \frac{f(x)}{x^2 + 4} dx = \frac{3\pi}{32}$. (9 pct.)
 - a) a = 4; b) a = 7; c) a = -2; d) a = 2; e) a = 3; f) a = 1.
- 7. Să se afle $x \in \mathbb{R}$ astfel încât numerele x+1, x+7, x+25 (în această ordine) să fie în progresie geometrică. (9 pct.)
 - a) x = 4; b) x = 0; c) x = -4; d) x = 6; e) x = 11; f) x = 2.
- 8. Se dă funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 2x 1$. Să se calculeze f'(1). (9 pct.)
 - a) 2; b) 11; c) 14; d) 4; e) 5; f) 3.

9. Mulțimea soluțiilor ecuației $\sqrt{2x-4} + x = 2$ este: (9 pct.)

$$a) \,\, \big\{ 0 \,\, , \,\, 1 \big\} \, ; \, b) \,\, \big\{ 3 \big\} \, ; \, c) \,\, \big\{ 2 \,\, , \,\, 4 \big\} \, ; \, d) \,\, \big\{ 0 \,\, , \,\, 4 \big\} \, ; \, e) \,\, \big\{ 1 \,\, , \,\, 4 \big\} \, ; \, f) \,\, \big\{ 2 \big\} \, .$$

- 10. Fie funcția $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$, $f(x) = \frac{|x|e^x}{e^x e}$. Care dintre următoarele afirmații este adevărată? (9 pct.)
 - a) f are trei puncte de extrem local; b) graficul funcției f are două asimptote oblice;
 - c) f are un punct de extrem local; d) imaginea funcției f este \mathbb{R} ;
 - e) f are două puncte de extrem local; f) f este derivabilă în 0.