

HackOrbit 2025

System 32

THEME & PROBLEM STATEMENT

MediChain – Blockchain-Based Hospital Record System

- Medical data is often stored in silos across hospitals, clinics, and labs making it hard for patients or doctors to get a full view of a patient's health.
- Patients have **little or no ownership** over their own medical data. They can't easily control who accesses their records or when.
- During critical emergencies, **accessing patient history quickly** can be the difference between life and death yet it's often slow or unavailable.
- Verifying health records for insurance claims is manual, time-consuming, and susceptible to fraud.
- Traditional systems store sensitive health records on **centralized servers**, increasing the risk of hacking or data breaches.

PROPOSED SOLUTION

MediChain is a decentralized healthcare record system that puts patients in full control of their medical data usin blockchain and IPFS.

Patient-Owned Data

Patients can upload their encrypted health records

They control who can access them via blockchain smart contracts

Permissioned Access via Smart Contracts

Doctors request access to view records

Patients approve or deny requests through MetaMask wallet transactions

Access logs are transparent and immutable

Decentralized & Secure Storage with IPFS

Medical files are encrypted and stored on IPFS
Only approved users can decrypt and view the data

Tamper-Proof Logs for Insurance Verification

Every action is logged on-chain

Insurance companies can verify claim authenticity with complete transparency

TECH STACK

Frontend: HTML, CSS, JavaScript

HTML5 for semantic, structured content (forms, tables, sections) **CSS** for responsive design (media queries, Bootstrap/Tailwind) **JavaScript** for dynamic UI, form validation, and API calls

Backend: Python (Flask or Django)

Flask (preferred) for lightweight RESTful API creation Handles authentication, data routing, and blockchain integration Connects to a **database** (e.g., SQLite or PostgreSQL)

Blockchain Layer (Python-based)

Custom blockchain built in Python Blocks contain medical record hashes and permissions Implements SHA-256 hashing, Proof-of-Work, and chain validation

Storage & Data Handling

Database (SQLite/PostgreSQL) for users and record metadata **Off-chain record storage** (IPFS or local storage) with hash linking on blockchain Implements basic access control logic (similar to smart contracts)

FLOWCHART / DIAGRAM

FLOWCHART / DIAGRAM

Explainer text

How MediChain Works: A Complete Workflow

- Patient Data Upload (Blue): Patients upload encrypted records to IPFS; only the hash is stored on the blockchain for privacy and security.
- **Doctor Access Request (Purple):** Doctors request access; patients approve via MetaMask. All actions are logged on-chain for transparency.
- Insurance Verification (Orange): Insurers verify claims by checking tamper-proof blockchain logs, reducing fraud and speeding up approvals.
- Emergency Access (Red): Time-limited emergency access allows personnel to view vital data; access expires automatically to maintain security.

6 Key Benefits Demonstrated For Patients:

Complete ownership and control over medical data Transparent access logs - know exactly who access what and when

Secure, encrypted storage with global accessibility For Healthcare Providers:

Instant access to complete patient history (with permission)

Reduced paperwork and administrative overhead Emergency access capabilities for critical care

For Insurance Companies:

Fraud prevention through immutable records
Faster claim verification and processing
Reduced operational costs

FEATURES AND NOVELTY

Core Features:

- Patient-Controlled Access: Patients grant/revoke record access via blockchain.
- Encrypted Storage: Medical files are encrypted and stored on IPFS, not centralized servers.
- **Tamper-Proof Logs:** Every action recorded immutably on-chain; verifiable by all parties.
- **Doctor Workflow:** Doctors request via smart contracts; patients approve with MetaMask.
- **Insurance Support:** Insurers validate claims using transparent on-chain logs.

Novelty & Uniqueness:

- Working Prototype: Built real solution using Ethereum + IPFS + React/Flutter.
- Patient-First Design: Empowers patients with real control over their data.
- Cross-Platform Ready: Works on web (React) and mobile (Flutter).
- Emergency & QR Access: Optional features for critical situations with secure, fast QR-based permissions.
- **Privacy & Auditability:** Data encrypted and off-chain; only logs/hashes on-chain privacy intact.

DRAWBACK AND SHOWSTOPPERS

Drawbacks & Limitations:

- **Scalability:** High costs and slower speeds on public Ethereum networks.
- **User Complexity:** Patients/doctors need MetaMask; may be hard for non-technical users.
- Privacy vs. Transparency: On-chain logs need careful design to protect sensitive info.
- **Key Management:** Losing encryption keys can lead to permanent data loss.
- Regulatory: Meeting HIPAA/GDPR standards in decentralized apps is still evolving.

Showstoppers – What Sets Us Apart:

- Working Prototype: We built a real app with smart contracts, IPFS, and wallet-based approvals.
- True Data Ownership: Patients fully control their records; not just a blockchain label.
- Tamper-Proof Logs: On-chain, transparent logs build trust.
- Secure & Private: Data is encrypted and not stored on-chain.
- **Scalable:** Off-chain IPFS storage keeps the system lightweight and cost-effective.

System 32

Vaibhav Chourey-24am10va71@mitsgwl.ac.in Amrit Tehelani-24ai10am9@mitsgwl.ac.in Harsh Chaudhary-24am10ha29@mitsgwl.ac.in Anshul Mehra-24ad10an15@mitsgwl.ac.in

#