

Programming Language Semantics and Compiler Design / Sémantique des Languages de Programmation et Compilation Maths Reminders

Yliès Falcone ylies.falcone@univ-grenoble-alpes.fr www.ylies.fr

Master of Sciences in Informatics at Grenoble (MoSIG)

Master 1 info

Univ. Grenoble Alpes - UFR IM²AG www.univ-grenoble-alpes.fr - im²ag.univ-grenoble-alpes.fr

Academic Year 2017 - 2018

Some proof techniques

Proofs by contradiction, reducto-ad-absurdum, contraposition,...

...they rely on the principles of propositional and predicate logics.

Proof by structural induction

- Proof for the basic elements, atoms, of the set.
- Proof for composite elements (created by applying) rules:
 - assume it holds for the immediate components (induction hypothesis)
 - prove the property holds for the composite element

Induction on the shape of a derivation tree

- ▶ Proof for 'one-rule' derivation trees, i.e., axioms.
- ▶ Proof for composite trees:
 - ► For each rule R, consider a composite tree where R is the last rule applied
 - Proof for the composite tree
 - Assume it holds for subtrees, or premises of the rule (induction hypothesis)
 - ► Proof for the composite tree

Outline - Maths Reminders

Proof by induction

Proof by structural induction

A notation: derivation tree

Outline - Maths Reminders

Proof by induction

Proof by structural induction

A notation: derivation tree

Proof by induction

Proving a predicate P(n) that depends on some parameter $n \in \mathbb{N}$.

Example (Predicate)

- ▶ P(n) =The sum of the n natural numbers is $\frac{n \times (n+1)}{2}$."
- ▶ P(n) ="If $q \ge 2$, we have $n \le q^n$.
- ▶ P(n) = "Every polynomial of degree n has at most n roots."

Proof by induction

Proving a predicate P(n) that depends on some parameter $n \in \mathbb{N}$.

Example (Predicate)

- ▶ P(n) =The sum of the n natural numbers is $\frac{n \times (n+1)}{2}$."
- ▶ P(n) ="If $q \ge 2$, we have $n \le q^n$.
- ▶ P(n) = "Every polynomial of degree n has at most n roots."

We want to prove $\forall n \in \mathbb{N} : P(n)$.

Proving a predicate P(n) that depends on some parameter $n \in \mathbb{N}$.

Example (Predicate)

- ▶ P(n) =The sum of the n natural numbers is $\frac{n \times (n+1)}{2}$."
- ▶ P(n) ="If $q \ge 2$, we have $n \le q^n$.
- ▶ P(n) = "Every polynomial of degree n has at most n roots."

We want to prove $\forall n \in \mathbb{N} : P(n)$.

Principle

- ▶ Prove the **base case**: prove that P(0) holds (or P(k) if the minimal value of the parameter is k).
- ▶ Prove the **induction step**: prove that if for some n, P(n) holds, then P(n+1) holds.

The principle of induction ensures that P(n) holds, for any $n \ge k$.

Example (Proof by induction)

Let's prove that

$$\forall n \in \mathbb{N} : \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

Proof by induction (example)

Example (Proof by induction)

Let's prove that

$$\forall n \in \mathbb{N} : \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

▶ Base case: $\sum_{i=0}^{n} i = 0$.

Yliès Falcone (ylies.falcone@univ-grenoble-alpes.fr)

Proof by induction (example)

Example (Proof by induction)

Let's prove that

$$\forall n \in \mathbb{N} : \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

- ▶ Base case: $\sum_{i=0}^{n} i = 0$.
- Induction step.
 - ▶ Suppose that the property holds for some $n \in \mathbb{N}$.

Proof by induction (example)

Example (Proof by induction)

Let's prove that

$$\forall n \in \mathbb{N} : \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

- ▶ Base case: $\sum_{i=0}^{n} i = 0$.
- Induction step.
 - ▶ Suppose that the property holds for some $n \in \mathbb{N}$.
 - ► We have:

$$\begin{array}{ll} \sum_{i=0}^{n+1} i &= \sum_{i=0}^{n} i + n + 1 \\ &= \frac{n(n+1)}{2} + n + 1 \\ &= \frac{(n+2) \times (n+1)}{2} \end{array} \qquad \text{(induction hypothesis)}$$

Proof by complete induction

Proving a predicate P(n) that depends on some parameter $n \in \mathbb{N}$.

That is, we want to prove $\forall n \in \mathbb{N} : P(n)$.

Proof by complete induction

Proving a predicate P(n) that depends on some parameter $n \in \mathbb{N}$.

That is, we want to prove $\forall n \in \mathbb{N} : P(n)$.

Principle of complete induction

- ▶ Prove the **base case**: prove that P(0) holds (or P(k) if the minimal value of the parameter is k).
- ▶ Prove the **complete induction step**: prove that if for some n, $\forall m \leq n : P(m)$ holds, then P(n+1) holds.

The principle of induction ensures that P(n) holds for any $n \ge k$.

The *n*-th fibonacci number f_n is defined as follows:

- $f_0 = 0$
- $f_1 = 1$
- ▶ $\forall k \geq 2 : f_k = f_{k-1} + f_{k-2}$

Proof by complete induction: example

The *n*-th fibonacci number f_n is defined as follows:

- $f_0 = 0$
- ▶ $f_1 = 1$
- $\forall k > 2 : f_k = f_{k-1} + f_{k-2}$

Let us prove that the n-th Fibonacci number is even iff n is a multiple of 3.

Proof by complete induction: example

The n-th fibonacci number f_n is defined as follows:

- $f_0 = 0$
- ▶ $f_1 = 1$
- ▶ $\forall k \geq 2 : f_k = f_{k-1} + f_{k-2}$

Let us prove that the n-th Fibonacci number is even iff n is a multiple of 3.

Example (The n-th Fibonacci number is even iff n is a multiple of 3.)

▶ Base case. We can see that it holds for n = 0.

Proof by complete induction: example

The *n*-th fibonacci number f_n is defined as follows:

- $f_0 = 0$
- $f_1 = 1$
- $\forall k > 2 : f_k = f_{k-1} + f_{k-2}$

Let us prove that the n-th Fibonacci number is even iff n is a multiple of 3.

Example (The n-th Fibonacci number is even iff n is a multiple of 3.)

- ▶ Base case. We can see that it holds for n = 0.
- ▶ complete induction step.
 - ▶ Let us suppose that the property holds for any integer lesser than or equal to some $n \in \mathbb{N}$.
 - Consider f_{n+1} and distinguish three cases according to the rest of the division of n+1 by 3.
 - Case $n+1 \mod 3 = 0$. $f_{3k} = f_{3k-1} + f_{3k-2} = \text{odd} + \text{odd} = \text{even}$
 - Case $n+1 \mod 3 = 0$. $f_{3k-1} + f_{3k-2} = \operatorname{odd} + \operatorname{odd} = \operatorname{even}$ Case $n+1 \mod 3 = 1$. $f_{3k+1} = f_{3k} + f_{3k-1} = \operatorname{even} + \operatorname{odd} = \operatorname{odd}$
 - Case $n+1 \mod 3 = 2$. $f_{3k+2} = f_{3k+1} + f_{3k} = \text{odd} + \text{even} = \text{odd}$

Outline - Maths Reminders

Proof by structural induction

A notation: derivation tree

Let us consider:

- ▶ E a set ,
- f: E × E × ... × E → E a partial function,
 A ⊆ E a subset of E.

Let us consider:

- ▶ E a set ,
- ▶ $f: E \times E \times ... \times E \rightarrow E$ a partial function,
- ▶ $A \subseteq E$ a subset of E.

Definition (closure)

A is closed by f iff $f(A \times ... \times A) \subseteq A$.

Let us consider:

- ► E a set ,
- ▶ $f: E \times E \times ... \times E \rightarrow E$ a partial function,
- ▶ $A \subseteq E$ a subset of E.

Definition (closure)

A is closed by f iff $f(A \times ... \times A) \subseteq A$.

Definition (Construction rule)

A construction rule for a set states either:

- ▶ that a basis element belongs to the set, or
- ▶ how to produce a new element from existing elements (*production rule* given by a partial function).

Let us consider:

- ► E a set ,
- ▶ $f: E \times E \times ... \times E \rightarrow E$ a partial function,
- ▶ $A \subseteq E$ a subset of E.

Definition (closure)

A is closed by f iff $f(A \times ... \times A) \subseteq A$.

Definition (Construction rule)

A construction rule for a set states either:

- ▶ that a *basis element* belongs to the set, or
- ▶ how to produce a new element from existing elements (*production rule* given by a partial function).

Definition (Inductive definition)

An inductive definition on E is a family of rules defining the smallest subset of E that is *closed* by these rules.

Example (Natural numbers)

How can define them?

- ► basis element 0
- ▶ 1 rule: $x \mapsto succ(x)$
- 2 is the natural number defined as succ(succ(0))

Example (Natural numbers)

How can define them?

- basis element 0
- ▶ 1 rule: $x \mapsto succ(x)$
- 2 is the natural number defined as succ(succ(0))

Example (Even numbers)

- ▶ basis element 0
- ▶ 1 rule $x \mapsto x + 2$

Example (Natural numbers)

How can define them?

- basis element 0
- ▶ 1 rule: $x \mapsto succ(x)$
- 2 is the natural number defined as succ(succ(0))

Example (Even numbers)

- ▶ basis element 0
- ▶ 1 rule $x \mapsto x + 2$

Example (Palindromes on $\{a, b\}$)

- ▶ basis elements ϵ , a, b
- ▶ 2 rules: $w \mapsto a \cdot w \cdot a$, $w \mapsto b \cdot w \cdot b$

Binary trees Definition and examples

Definition (Binary Tree – Informal definition)

A tree is a binary tree if each node has at most two children (possibly empty).

Binary trees

Definition and examples

Definition (Binary Tree – Informal definition)

A tree is a binary tree if each node has at most two children (possibly empty).

Definition (Binary Tree – Mathematical definition)

The smallest set Bt(Elt) s.t.:

$$Bt(Elt) = \{EmptyT\} \cup \{Node(tL, e, tR) \mid e \in Elt \land tL, tR \in Bt(Elt)\}$$

Binary trees

Definition and examples

Definition (Binary Tree – Informal definition)

A tree is a binary tree if each node has at most two children (possibly empty).

Definition (Binary Tree – Mathematical definition)

The smallest set Bt(Elt) s.t.:

$$Bt(Elt) = \{EmptyT\} \cup \{Node(tL, e, tR) \mid e \in Elt \land tL, tR \in Bt(Elt)\}$$

Example (Binary trees of natural numbers)

$$Bt(\mathbb{N}) = \{EmptyT\} \cup \{Node(tL, e, tR) \mid e \in \mathbb{N} \land tL, tR \in Bt(\mathbb{N})\}$$

Example (Binary trees)

Proof by Structural Induction

Proving that the proof holds for any element "however it is built".

Principle

- Proof for the basic elements, atoms, of the set.
- Proof for composite elements (created by applying) rules:
 - assume it holds for the immediate components (induction hypothesis)
 - prove the property holds for the composite element

Proof by Structural Induction: example

Example (Proofs by induction)

All proofs by induction are proofs by structural induction where the inductive set is $\mathbb{N}. \label{eq:local_proofs}$

Proof by Structural Induction: example

Example (Proofs by induction)

All proofs by induction are proofs by structural induction where the inductive set is $\mathbb{N}.$

Example (Properties of size and depth of a binary tree)

Let us consider $t \in Bt(Elt)$, a binary tree:

- ightharpoonup depth(t) be the depth of tree t: length of longest path from root to leaf.
- ightharpoonup size(t) be the size of tree t: number of nodes + leaves.

For any type Elt and any $t \in Bt(Elt)$:

- ▶ depth(t) ≤ size(t),
- ▶ $\operatorname{size}(t) < 2^{\operatorname{depth}(t)-1}$.

Example (Natural numbers)

How can define them?

- basis element 0
 - ▶ 1 rule: $x \mapsto succ(x)$
- 2 is the natural number defined as succ(succ(0))

Example (Even numbers)

- basis element: 0;
- ▶ 1 rule: $x \mapsto x + 2$.

Example (Palindromes on $\{a, b\}$)

- ▶ basis elements: ϵ , a, b;
- ▶ 2 rules: $w \mapsto a \cdot w \cdot a$. $w \mapsto b \cdot w \cdot b$.

Outline - Maths Reminders

i roor by madecion

Proof by structural induction

A notation: derivation tree

A notation: derivation tree

Notation for $t = f(x_1, \ldots, x_n)$

$$\frac{x_1 \quad \dots \quad x_n}{t} f$$

"t is built/obtained from x_1, \ldots, x_n " by applying operator f.

Example (Derivation trees)

▶ 2 = succ(succ(succ(0))) is a natural number

0	
$\frac{1}{2}$	succ

► aba is a palindrome:

$$\frac{\overline{a}}{bab}$$

ababa is a palindrome:

ababa

Abstract syntax trees and derivation trees

Consider an abstract syntax tree, produced by syntactic analysis.

Derivation tree

For each node, computing information from the information of its sons.

Example (Derivation trees in type analysis)

We obtain for each node a type (or error) based on types of its sons.

Definition of derivation trees by a formal system

Generally, we have information, stored in some environment Γ . The formal system states how to *deduce* knowledge from existing knowledge, where knowledge is of the form $\Gamma \vdash \mathcal{P}$, which means \mathcal{P} holds on Γ .

- a set of axiom schemes
- ▶ a set of inference rules : a rule of the form

$$\frac{\Gamma_1 \vdash \mathcal{P}_1 \quad \cdots \quad \Gamma_n \vdash \mathcal{P}_n}{\Gamma \vdash \mathcal{C}}$$

"if the hypothesis (premisses) \mathcal{P}_i hold, then the conclusion \mathcal{C} holds.