Telecom Systems (Week 4)

Dr Yuanwei (Vincent) Liu

PhD, SMIEEE, FHEA, Editor of IEEE Transactions on Communications and IEEE Communications Letters yuanwei.liu@qmul.ac.uk

School of Electronic Engineering & Computer

Overview of Wireless Communication System

Reference books for week 4

Wireless Communications and Networks, Second Edition. by William Stallings

LTE: The UMTS Long Term Evolution: from Theory to Practice by Stefania Sesia, Matthew Baker and Mr Issam Toufik

Modulation Techniques

Reasons for Choosing Encoding Techniques

- Digital data, digital signal
 - Equipment less complex and expensive than digital-to-analog modulation equipment
- Analog data, digital signal
 - Permits use of modern digital transmission and switching equipment
- Digital data, analog signal
 - Some transmission media will only propagate analog signals
 - E.g., optical fiber and unguided media
- Analog data, analog signal
 - Analog data in electrical form can be transmitted easily and cheaply
 - Done with voice transmission over voice-grade lines

Signal Encoding Criteria

- What determines how successful a receiver will be in interpreting an incoming signal?
 - Signal-to-noise ratio
 - Data rate
 - Bandwidth
- An increase in data rate increases bit error rate
- ◆ An increase in SNR decreases bit error rate
- An increase in bandwidth allows an increase in data rate

Basic Encoding Techniques

- Digital data to analog signal
 - Amplitude-shift keying (ASK)
 - Amplitude difference of carrier frequency
 - Frequency-shift keying (FSK)
 - Frequency difference near carrier frequency
 - Phase-shift keying (PSK)
 - Phase of carrier signal shifted

Basic Encoding Techniques

Modulation of Analog Signals for Digital Data

Amplitude-Shift Keying

- One binary digit represented by presence of carrier, at constant amplitude
- Other binary digit represented by absence of carrier

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ 0 & \text{binary 0} \end{cases}$$

• where the carrier signal is $A\cos(2\pi f_c t)$

Binary Frequency-Shift Keying (BFSK)

◆ Two binary digits represented by two different frequencies near the carrier frequency

$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary 1} \\ A\cos(2\pi f_2 t) & \text{binary 0} \end{cases}$$

• where f_1 and f_2 are offset from carrier frequency f_c by equal but opposite amounts

Multiple Frequency-Shift Keying (MFSK)

- More than two frequencies are used
- More bandwidth efficient but more susceptible to error

$$s_i(t) = A \cos 2\pi f_i t$$
 $1 \le i \le M$

- $f_i = f_c + (2i 1 M)f_d$
- f_c = the carrier frequency
- f_d = the difference frequency
- $M = \text{number of different signal elements} = 2^{L}$
- L = number of bits per signal element

Multiple Frequency-Shift Keying (MFSK)

 To match data rate of input bit stream, each output signal element is held for:

$$T_s$$
= LT seconds
where T is the bit period (data rate = $1/T$)

 So, one signal element encodes L bits, total bandwidth required

$$2Mf_d$$

- Minimum frequency separation required $2f_d=1/T_s$
- Therefore, modulator requires a bandwidth of

$$W_d = 2^L/LT = M/T_s$$

Multiple Frequency-Shift Keying (MFSK)

MFSK Frequency Use (M=4)

Phase-Shift Keying (PSK)

- ◆ Two-level PSK (BPSK)
 - Uses two phases to represent binary digits

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ A\cos(2\pi f_c t + \pi) & \text{binary 0} \end{cases}$$
$$= \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ -A\cos(2\pi f_c t) & \text{binary 1} \\ -A\cos(2\pi f_c t) & \text{binary 0} \end{cases}$$

Phase-Shift Keying (PSK)

- Four-level PSK (QPSK)
 - Each element represents more than one bit

$$S(t) = \begin{cases} A\cos\left(2\pi f_c t + \frac{\pi}{4}\right) & 00\\ A\cos\left(2\pi f_c t + \frac{3\pi}{4}\right) & 01\\ A\cos\left(2\pi f_c t - \frac{3\pi}{4}\right) & 11\\ A\cos\left(2\pi f_c t - \frac{\pi}{4}\right) & 10 \end{cases}$$

Symbol Waveform

Multi bit modulation

Mathematical expression of digital modulation

• Transmission signal can be expressed as follows

$$\begin{split} s(t) &= \cos(2\pi \cdot f_c \cdot t + \theta_k) \\ &= \cos\theta_k \cdot \cos(2\pi \cdot f_c \cdot t) - \sin\theta_k \cdot \sin(2\pi \cdot f_c \cdot t) \\ a_k &= \cos\theta_k, \quad b_k = \sin\theta_k \\ s(t) &= \text{Re}[(a_k + jb_k)e^{j2\pi fc \cdot t}] \end{split}$$

• s(t) can be expressed by complex base-band signal $(a_k + jb_k)e^{j2\pi fc \cdot t}$ $e^{j2\pi fc \cdot t} \quad \text{Indicates carrier sinusoidal}$ $(a_k + jb_k) \quad \text{Digital modulation}$

Digital modulation can be expressed by the complex number

Constellation map

• $(a_k + jb_k)$ is plotted on I(real)-Q(imaginary) plane

data	Phase	a _k	b _k
00	п/4	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
01	3п /4	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
11	5п /4	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$
10	7п /4	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$

Quadrature Amplitude Modulation (QAM)

Summary of digital modulation

- ◆ Type of modulation: ASK,PSK,FSK,QAM
- OFDM uses PSK and QAM
- Digital modulation is mathematically characterized by the coefficient of complex base-band signal

$$(a_k + jb_k)$$

 Plot of the coefficients gives the constellation map

Spread Spectrum (Freq. Spread)

Overview of Wireless Communication System

Spread Spectrum

- Input is fed into a channel encoder
 - Produces analog signal with narrow bandwidth
- Signal is further modulated using sequence of digits
 - Spreading code or spreading sequence
 - Generated by pseudonoise, or pseudo-random number generator
- ◆ Effect of modulation is to increase bandwidth of signal to be transmitted

Spread Spectrum

General Model of Spread Spectrum Digital Communication System

- 1. Frequency Hoping Spread Spectrum (FHSS)
- 2. Direct Sequence Spread Spectrum (DSSS)

Frequency Hoping Spread Spectrum (FHSS)

- Signal is broadcast over seemingly random series of radio frequencies
 - A number of channels allocated for the FH signal
 - Width of each channel corresponds to bandwidth of input signal
- Signal hops from frequency to frequency at fixed intervals
 - Transmitter operates in one channel at a time
 - Bits are transmitted using some encoding scheme
 - At each successive interval, a new carrier frequency is selected

Frequency Hoping Spread Spectrum

- Channel sequence dictated by spreading code
- Receiver, hopping between frequencies in synchronization with transmitter, picks up message
- Advantages
 - Eavesdroppers hear only unintelligible blips
 - Attempts to jam signal on one frequency succeed only at knocking out a few bits

Frequency Hoping Spread Spectrum

Frequency Hopping Example

FHSS Using MFSK

- MFSK signal is translated to a new frequency every T_c seconds by modulating the MFSK signal with the FHSS carrier signal
- For data rate of *R*:
 - duration of a bit: T = 1/R seconds
 - duration of signal symbol: $T_s = LT$ seconds
- $T_c \ge T_s$ slow-frequency-hop spread spectrum
- $T_c < T_s$ fast-frequency-hop spread spectrum

Slow FHSS Using MFSK (M = 4, k = 2)

Fast FHSS Using MFSK (M = 4, k = 2)

FHSS Performance Considerations

- Large number of frequencies used
- Results in a system that is quite resistant to jamming
 - Jammer must jam all frequencies
 - With fixed power, this reduces the jamming power in any one frequency band

Direct Sequence Spread Spectrum (DSSS)

- Each bit in original signal is represented by multiple bits in the transmitted signal
- Spreading code spreads signal across a wider frequency band
 - Spread is in direct proportion to number of bits used
- One technique combines digital information stream with the spreading code bit stream using exclusive-OR (Figure in next slide)

Direct Sequence Spread Spectrum (DSSS)

DSSS Using BPSK

Multiply BPSK signal,

$$s_d(t) = A \ d(t) \cos(2\pi f_c t)$$

by c(t) [takes values +1, -1] to get

$$s(t) = A d(t)c(t) \cos(2\pi f_c t)$$

- A =amplitude of signal
- f_c = carrier frequency
- d(t) = discrete function [+1, -1]
- At receiver, incoming signal multiplied by c(t)
 - Since, $c(t) \times c(t) = 1$, incoming signal is recovered

DSSS Using BPSK

(a) Transmitter

Direct Sequence Spread Spectrum

Code-Division Multiple Access (CDMA)

- Basic Principles of CDMA
 - -D = rate of data signal
 - − Break each bit into *k chips*
 - Chips are a user-specific fixed pattern
 - Chip data rate of new channel = kD

CDMA Example

- If k=6 and code is a sequence of 1s and -1s
 - For a '1' bit, A sends code as chip pattern
 - <c1, c2, c3, c4, c5, c6>
 - For a '0' bit, A sends complement of code
 - <-c1, -c2, -c3, -c4, -c5, -c6>
- Receiver knows sender's code and performs electronic decode function

$$S_u(d) = d1 \times c1 + d2 \times c2 + d3 \times c3 + d4 \times c4 + d5 \times c5 + d6 \times c6$$

- $\langle d1, d2, d3, d4, d5, d6 \rangle$ = received chip pattern
- <c1, c2, c3, c4, c5, c6> = sender's code

CDMA Example

- User A code = <1, -1, -1, 1, -1, 1>
 - To send a 1 bit = <1, -1, -1, 1, -1, 1>
 - To send a 0 bit = <-1, 1, 1, -1, 1, -1>
- User B code = <1, 1, -1, -1, 1, 1>
 - To send a 1 bit = <1, 1, -1, -1, 1, 1>
- Receiver receiving with A's code
 - (A's code) x (received chip pattern)
 - User A '1' bit: 6 -> 1
 - User A '0' bit: -6 -> 0
 - User B '1' bit: 0 -> unwanted signal ignored

Categories of Spreading Sequences

- Spreading Sequence Categories
 - PN sequences
 - Orthogonal codes
- For FHSS systems
 - PN sequences most common
- For DSSS systems not employing CDMA
 - PN sequences most common
- For DSSS CDMA systems
 - PN sequences
 - Orthogonal codes

PN Sequences

- ◆ PN (Pseudonoise) generator produces periodic sequence that appears to be random
- PN Sequences
 - Generated by an algorithm using initial seed
 - Sequence isn't statistically random but will pass many test of randomness
 - Sequences referred to as pseudorandom numbers or pseudonoise sequences
 - Unless algorithm and seed are known, the sequence is impractical to predict

Important PN Properties

- Randomness
 - Uniform distribution
 - Balance property
 - Run property
 - Independence
 - Correlation property
- Unpredictability

Linear Feedback Shift Register Implementation

Binary Linear Feedback Shift Register Sequence Generator

Multiple Access Techniques

Overview of Wireless Communication System

Multiple access

• Multiple Access: to enable multiple users to share the same channel simultaneously.

- Possible approaches for multiple access
 - Time.
 - Pitch.
 - Language.

Frequency Division Multiple Access (FDMA) - Pitch

• Key features:

- Assign each user to a particular channel.
- Transmit signals simultaneously and continuously.to enable multiple users to share the same channel simultaneously.

• **Application**: all 1G systems use FDMA.

Frequency Division Multiple Access (FDMA)

Transmitter:

• Receiver:

Frequency Division Multiple Access (FDMA)

Advantages

- Low overhead
- Simple hardware at users and base stations

Disadvantages

- If no talking, a channel sits idle (resource waste)
- Require tight radio frequency filters

Time Division Multiple Access (TDMA) - Time

Key features

- Single carrier frequency with multiple users.
- Non-continuous transmission.
- Each user occupies a **cyclically repeating** time slot.

• **Application**: most 2G systems use TDMA.

Time Division Multiple Access

Advantages

- Interference-free technique.
- Low battery consumption.
- Slots can be assigned on demand.

Disadvantages:

- "CLOCK" is required.
- Large synchronization overheads.

Application: most 2G systems use TDMA.

GSM Multiple access

- ◆ TDMA on each carrier
 - 8 time slots (channels) per carrier
- Multiple carriers (FDMA)
 - 200kHz spacing
 - Number of carriers per cell depends on network and radio planning
- ◆ So GSM uses combined TDMA/FDMA

Code Division Multiple Access (CDMA) - Language

Key features

- All users use same time and frequency.
- Narrowband signals multiplied by wideband spreading codes.

• **Application**: some 2G and most 3G systems.

Code Division Multiple Access (CDMA) -Language

Advantages

- Easy addition of more users.
- No absolute limit on the number of users.

Disadvantages

- QoS decreases as the number of users increases.
- Near-far problem exists (power control is required).

CDMA for 3G multiple access

- ◆ FDMA: different frequency bands are assigned to different users.
- ◆ TDMA: different time slots are assigned to different users.
- ◆ CDMA: different codes are assigned to different users.

OFDMA for 4G (3GPP LTE/LTE-A)

- ◆ OFDM =Orthogonal Frequency Division Multiplexing
- Many orthogonal sub-carriers are multiplexed in one symbol
 - What is the orthogonal?
 - How multiplexed?
 - What is the merit of OFDM?
 - What kinds of application?
 - What is the drawback of OFDM?

OFDMA for 4G (3GPP LTE/LTE-A)

- OFDMA = Orthogonal Frequency Division Multiple Access
- ◆ OFDMA is a multi-user version of the popular OFDM digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users.

Why OFDM is getting popular?

- State-of-the-art high bandwidth digital communication start using OFDM
 - Terrestrial Video Broadcasting in Japan and Europe
 - ADSL High Speed Modem
 - WLAN such as IEEE 802.11a/g/n
 - 3GPP LTE downlink
 - WiMAX as IEEE 802.16d/e
- ◆ Economical OFDM implementation become possible because of advancement in the LSI technology

Frequency Division Multiple Access (FDMA)

- Old conventional method (Analog TV, Radio etc.)
- Use separate carrier frequency for individual transmission

Multi-carrier modulation

 Use multiple channel (carrier frequency) for one data transmission

Spectrum comparison for same data rate transmission

OFDM vs. Multi carrier

- OFDM is a multi-carrier modulation
- OFDM sub-carrier spectrum is overlapping
- In FDMA, band-pass filter separates each transmission
- ◆ In OFDM, each sub-carrier is separated by DFT because carriers are orthogonal
 - Condition of the orthogonality will be explained later
- Each sub-carrier is modulated by PSK, QAM

Thousands of PSK/QAM symbol can be simultaneously transmitted in one OFDM symbol

OFDM carriers

◆ OFDM carrier frequency is n • 1/T

$$f_0 = \frac{1}{T}$$
$$\cos(2\pi \cdot 1 \cdot f_0 \cdot t + \theta_1)$$

$$\cos(2\pi \cdot 2 \cdot f_0 \cdot t + \theta_2)$$

$$\cos(2\pi \cdot 3 \cdot f_0 \cdot t + \theta_3)$$

$$\cos(2\pi\cdot 4\cdot f_0\cdot t + \theta_4)$$

$$\cos(2\pi \cdot 5 \cdot f_0 \cdot t + \theta_5)$$

$$\cos(2\pi \cdot 6 \cdot f_0 \cdot t + \theta_6)$$

Sinusoidal Orthogonality

• m,n: integer, $T=1/f_0$

$$\int_{0}^{T} \cos(2\pi m f_{0}t) \cdot \cos(2\pi n f_{0}t) dt = \begin{cases} \frac{T}{2} & (m=n) \\ 0 & (m \neq n) \implies \text{Orthogonal} \end{cases}$$

$$\int_{0}^{T} \sin(2\pi m f_{0}t) \cdot \sin(2\pi n f_{0}t) dt = \begin{cases} \frac{T}{2} & (m=n) \\ 0 & (m \neq n) \implies \text{Orthogonal} \end{cases}$$

$$\int_{0}^{T} \cos(2\pi m f_{0}t) \cdot \sin(2\pi n f_{0}t) dt = 0$$

A sub-carrier of f=nf₀

$$a_{n} \cdot \cos(2\pi n f_{0}t) - b_{n} \cdot \sin(2\pi n f_{0}t)$$

$$= \sqrt{a_{n}^{2} + b_{n}^{2}} \cos(2\pi n f_{0}t + \phi_{n}), \quad \phi_{n} = \tan^{-1} \frac{b_{n}}{a_{n}}$$

Amplitude and Phase will be digitally modulated

Base-band OFDM signal

$$S_B(t) = \sum_{n=0}^{N-1} \left\{ a_n \cos(2\pi n f_0 t) - b_n \sin(2\pi n f_0 t) \right\}$$

How a_n,b_n are calculated from $s_B(t)$

- Demodulation Procedure -

$$\begin{split} & \int_{0}^{T} s_{B}(t) \cdot \cos(2\pi k f_{0} t) dt \\ & = \sum_{n=0}^{N-1} \left\{ a_{n} \int_{0}^{T} \cos(2\pi n f_{0} t) \cos(2\pi k f_{0} t) dt - b_{n} \int_{0}^{T} \sin(2\pi n f_{0} t) \cos(2\pi k f_{0} t) dt \right\} \\ & = \frac{T}{2} a_{k} \\ & \int_{0}^{T} s_{B}(t) \left\{ -\sin(2\pi k f_{0} t) \right\} dt = \frac{T}{2} b_{k} \end{split}$$

- According to the sinusoidal orthogonality, a_n , b_n can be extracted.
- In actual implementation, DFT(FFT) is used
- N is roughly 64 for WLAN, thousand for Terrestrial Video Broadcasting

Actual OFDM spectrum

OFDM power spectrum

◆ Total Power spectrum is almost square shape

OFDM signal generation

$$s(t) = \sum_{n=0}^{N-1} \left[a_n \cos \left\{ 2\pi (f_c + nf_0)t \right\} - b_n \sin \left\{ 2\pi (f_c + nf_0)t \right\} \right]$$

- Direct method needs
 - N digital modulators
 - N carrier frequency generator
 - → Not practical
- ◆ In 1971, method using DFT is proposed to OFDM signal generation

OFDM signal generation in digital domain

• Define complex base-band signal u(t) as follows

$$s_B(t) = \text{Re}[u(t)]$$

$$u(t) = \sum_{n=0}^{N-1} d_n \cdot e^{j2\pi n f_0 t}, \quad d_n = a_n + jb_n$$

• Perform N times sampling in period T

$$u\left(\frac{k}{Nf_0}\right) = \sum_{n=0}^{N-1} d_n \cdot e^{j2\pi nf_0 \frac{k}{Nf_0}} = \sum_{n=0}^{N-1} d_n \cdot e^{j\frac{2\pi nk}{N}}$$

$$= \sum_{n=0}^{N-1} d_n \cdot \left(e^{j\frac{2\pi}{N}} \right)^{nk} \qquad (k = 0, 1, 2, \dots, N-1)$$

$$u(k) = IFFT(d_n) = IFFT(a_n + jb_n)$$

OFDM modulator

OFDM demodulation

$$s(t) = \sum_{n=0}^{N-1} \left[a_n \cos \left\{ 2\pi (f_c + nf_0)t \right\} - b_n \sin \left\{ 2\pi (f_c + nf_0)t \right\} \right]$$

$$LPF[s(t) \cdot \cos(2\pi f_C t)] = \frac{1}{2} \sum_{n=0}^{N-1} \left\{ a_n \cos(2\pi nf_0 t) - b_n \sin(2\pi nf_0 t) \right\} = \frac{1}{2} s_I(t)$$

$$LPF[s(t) \cdot \{-\sin(2\pi f_C t)\}] = \frac{1}{2} \sum_{n=0}^{N-1} \{a_n \sin(2\pi n f_0 t) + b_n \cos(2\pi n f_0 t)\} = \frac{1}{2} s_Q(t)$$

$$u(t) = s_I(t) + js_Q(t) = \sum_{n=0}^{N-1} d_n \cdot e^{j2\pi n f_0 t}$$

$$d_n = FFT(u(k))$$

OFDM demodulator

Summary of OFDM signal

- Each symbol carries information
- Each symbol wave is sum of many sinusoidal
- Each sinusoidal wave can be PSK, QAM modulated
- Using IDFT and DFT, OFDM implementation became practical

Multi-path

Delayed wave causes interference

Multi-path effect

• Inter symbol interference (ISI) happens in Multi-path condition

Cyclic Prefix (Guard Interval) T_g

• By adding the Gurard Interval Period, ISI can be avoided

Multi-path

- By adding Cyclic Prefix, orthogonality can be maintained
- ♦ However, multi-path causes Amplitude and Phase distortion for each sub-carrier
- The distortion has to be compensated by Equalizer

Summary for OFDM

- Feature of OFDM
 - 1. High Frequency utilization by the square spectrum shape
 - 2. Multi-path problem is solved by Cyclic Prefix
 - 3. Multiple services in one OFDM by sharing sub-carriers
 - 4. Implementation was complicated but NOW possible because of LSI technology progress

Is OFDM robust?

- ◆ The advantage of separating the transmission into multiple narrowband subchannels cannot itself translate into robustness against time variant channels if no channel coding is employed.
- ◆ The LTE downlink combines OFDM with channel coding and Hybrid Automatic Repeat reQuest (HARQ) to overcome the deep fading which may be encountered on the individual subchannels.

OFDMA Time-Frequency Domain

Advantages of OFDM technologies

- Higher spectral efficiency in real-life time dispersive channels
- More robust less multi-path interference
- Easy to integrate MIMO technologies
- Simpler receiver to cope with real-life time dispersive channels → lower cost

OFDM Improves Radio Access Efficiency

Moving from Voice to Broadband with VoIP

OFDM - scalable and most cost effective broadband solution

Radio Propagations & Network Architecture

Overview of Wireless Communication System

Radio transmission impairments

Path loss

received power decreases with distance.

- Shadowing (slow fading)
 - caused by obstruction of buildings, hills, trees and foliage.
- Multipath fading (fast fading)
 - caused by multipath reflection of a transmitted wave by objects

Introduction

- An antenna is an electrical conductor or system of conductors
 - Transmission radiates electromagnetic energy into space
 - Reception collects electromagnetic energy from space
- In two-way communication, the same antenna can be used for transmission and reception
- Radiation pattern
 - Graphical representation of radiation properties of an antenna
 - Depicted as two-dimensional cross section
- Beam width (or half-power beam width)
 - Measure of directivity of antenna
- Reception pattern
 - Receiving antenna's equivalent to radiation pattern

Antenna Gain

- Antenna gain
 - Power output, in a particular direction, compared to that produced in any direction by a perfect omnidirectional antenna (isotropic antenna)
- Effective area
 - Related to physical size and shape of antenna
- Relationship between antenna gain and effective area

$$G = \frac{4\pi A_e}{\lambda^2} = \frac{4\pi f^2 A_e}{c^2}$$

- G = antenna gain
- A_e = effective area
- f = carrier frequency
- $c = \text{speed of light } (\approx 3 \times 10^8 \text{ m/s})$
- $\lambda = \text{carrier wavelength}$

Propagation Modes

LOS Wireless Transmission Impairments

- Attenuation and distortion
- Free space loss
- Noise
- Atmospheric absorption
- Multipath
- Refraction
- Thermal noise

Attenuation

- ◆ Strength of signal falls off with distance over transmission medium
- Attenuation factors for unguided media:
 - Received signal must have sufficient strength so that circuitry in the receiver can interpret the signal
 - Signal must maintain a level sufficiently higher than noise to be received without error
 - Attenuation is greater at higher frequencies, causing distortion

Free Space Loss

• Free space loss, ideal isotropic antenna

$$\frac{P_t}{P_r} = \frac{(4\pi d)^2}{\lambda^2} = \frac{(4\pi f d)^2}{c^2}$$

- P_t = signal power at transmitting antenna
- $P_{\rm r}$ = signal power at receiving antenna
- λ = carrier wavelength
- d =propagation distance between antennas
- $c = \text{speed of light} \ (\approx 3 \times \times 10 \ 8 \ \text{m/s})$

where d and λ are in the same units (e.g., meters)

Categories of Noise

- ◆ Thermal Noise
- ◆ Intermodulation noise
- Crosstalk
- ◆ Impulse Noise

Thermal Noise

 Amount of thermal noise to be found in a bandwidth of 1Hz in any device or conductor is:

$$N_0 = kT (W/Hz)$$

- N_0 = noise power density in watts per 1 Hz of bandwidth
- $k = Boltzmann's constant = 1.3803 \times 10^{-23} J/K$
- T = temperature, in kelvins (absolute temperature)

Thermal Noise

- Noise is assumed to be independent of frequency
- ◆ Thermal noise present in a bandwidth of *B* Hertz (in watts):

$$N = kTB$$

or, in decibel-watts

$$N = 10\log k + 10\log T + 10\log B$$

= -228.6 dBW + 10 log T + 10 log B

Noise Terminology

- ◆ Intermodulation noise occurs if signals with different frequencies share the same medium
 - Interference caused by a signal produced at a frequency that is the sum or difference of original frequencies
- Crosstalk unwanted coupling between signal paths
- ◆ Impulse noise irregular pulses or noise spikes
 - Short duration and of relatively high amplitude
 - Caused by external electromagnetic disturbances, or faults and flaws in the communications system

Expression E_b/N_0

 Ratio of signal energy per bit to noise power density per Hertz

$$\frac{E_b}{N_0} = \frac{S/R}{N_0} = \frac{S}{kTR}$$

- The bit error rate for digital data is a function of E_b/N_0
 - Given a value for E_b/N_0 to achieve a desired error rate, parameters of this formula can be selected
 - As bit rate R increases, transmitted signal power must increase to maintain required E_b/N_0

Other Impairments

- Atmospheric absorption water vapor and oxygen contribute to attenuation
- ◆ Multipath obstacles reflect signals so that multiple copies with varying delays are received
- ◆ Refraction bending of radio waves as they propagate through the atmosphere

Multipath Propagation

As mobile moves the relative phase changes and fading occurs

Types of Fading

- Fast fading, Slow fading, Flat fading, Selective fading
- Rayleigh fading, Nakagami-m and Rician fading

Radio Propagations & Network Architecture

Cellular concept

- Late 40s: AT&T developed cellular concept for frequency reuse
- Break the service area into cells
- Shrink the cell size; adopt intensive frequency re-use

Add more cells to add more capacity
Mobility management is required

Radio access

- This base station has 3
 sectors each equipped with
 independent TRXs
 (transmitter/receivers)
- It has spaced pairs of antennas in each sector to provide diversity reception
- Microwave link antenna to the network
- LNAs on the antennas (LNA=low noise amplifiers)

Diversity

Different phase relations will exist between the multipath rays from each antenna – so the interference will be different.

Diversity: used in 2G, 3G, WLAN and 4G

- Obtain two or more copies of the received signal
- Copies can be separated by:
 - Time: Convolutional coding 'smears' short errors
 - Frequency: Frequency hopping is used for GSM;
 - Distance: Spatial diversity (2G/3G/WLAN)
 - Polarization: Polarization diversity ±45° (2G/3G)

Diversity: Combining the signals

- Combine the signal from each branch and obtain a signal that is more reliable than any single branch
 - Switch diversity when one is too low, try another
 - Selection diversity choose the largest signal
 - Equal gain signals equally weighted and added in phase
 - Maximal ratio weight the power in the branches in proportion to their signal amplitude and add in phase
- ◆ Diversity gain = effective increase in signal power for some stated reliability. Typically 4–6dB depending on the environment.

Frequency reuse

- Adjacent cells use different frequencies to avoid interference
- Cells sufficiently distant from each other can use the same channel (frequency)
- Reuse factor N: number of cells in a repeating pattern
- Control cell size by choosing BS power and antennas
 - Make use of topographical screening

Effect of cluster size

- lower capacity – bandwidth available in cell is F_A/N (F_A is frequency spectrum allocated)

Reminders on Geometry

Surface area of a hexagon

$$c^2 = a^2 + b^2 - 2ab\cos(\theta)$$

30°

Derivation example (N=7 in pictures)

In general

a is distance between i cells

$$a = ir\sqrt{3}$$

b is distance between j cells

$$b = jr\sqrt{3}$$

$$R_u^2 = i^2 r^2 3 + j^2 r^2 3 + 2 \times 0.5 i j r^2 3$$

$$R_u = \left(\sqrt{i^2 + j^2 + ij}\right) \left(r\sqrt{3}\right)$$

Cluster radius

	radius	area
cell	r	s
cluster	r	$\mathcal{S}_{_{\mathcal{C}}}$

$$s_c = Ns$$

$$\frac{r_c^2 3\sqrt{3}}{2} = N \frac{r^2 3\sqrt{3}}{2}$$

$$r_c = r\sqrt{N}$$

$$R_u = r_c \sqrt{3}$$

$$R_u = r\sqrt{3N}$$

Thick lines define a cluster hexagon of same area as *N* cells

Possible values of N

$$R_u = \left(\sqrt{i^2 + j^2 + ij}\right)\left(r\sqrt{3}\right)$$
 and $R_u = r\sqrt{3}N$

$$\left(\sqrt{i^2 + j^2 + ij}\right)\left(r\sqrt{3}\right) = r\sqrt{3N}$$
 or $\sqrt{i^2 + j^2 + ij} = \sqrt{N}$

$i^2 + j^2 + ij = N$

These means that only certain values of N are possible

i	j	N
1	1	3
1	2	7
2	2	12
1	3	13
2	3	19
1	4	21
3	3	27
2	4	28

Different cluster size

6 surrounding cells of same frequency for both cluster size

What is in practice?

Conventional Networks

 3-tier Heterogenous Networks topology for the grid model

What is in practice?

Stochastic Geometry

 3-tier Heterogenous Networks following the random spatial model

Class exercise

In a simple free-space radio propagation model, the received signal power is proportional to $1/d^4$, where d is distance.

Calculate the interfering power from the cochannel cells in a 7-cell cluster (P_{i7}) and compare it with the interfering power in a 3-cell cluster – i.e. evaluate P_{i7}/P_{i3} in dB

Assume the cell radius is the same in each case.