

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 25 Aug 2021 1 of 31

Sample Information

Patient Name: 謝敬森 Gender: Male ID No.: P120047977 History No.: 44595199

Age: 65

Ordering Doctor: DOC3053B 林采榆

Ordering REQ.: 0BKARZT Signing in Date: 2021/08/20

Path No.: S110-99318 **MP No.:** F21067

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: S110-04849C Percentage of tumor cells: 40%

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Page
2
3
4
6
24
25

Report Highlights 2 Relevant Biomarkers 17 Therapies Available 19 Clinical Trials

Relevant Non-Small Cell Lung Cancer Variants

Gene	Finding	Gene	Finding	
ALK	None detected	NTRK1	None detected	
BRAF	None detected	NTRK2	None detected	
EGFR	EGFR p.(L858R) c.2573T>G	NTRK3	None detected	
ERBB2	None detected	RET	None detected	
KRAS	None detected	ROS1	None detected	
MET	MET amplification			

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	EGFR p.(L858R) c.2573T>G epidermal growth factor receptor Allele Frequency: 47.64%	afatinib 1,2 bevacizumab* + erlotinib 2 dacomitinib 1,2 erlotinib + ramucirumab 1,2 gefitinib 1,2 osimertinib 1,2 afatinib + cetuximab atezolizumab + bevacizumab + chemotherapy bevacizumab + gefitinib gefitinib + chemotherapy osimertinib + chemotherapy	None	18
IA	MET amplification MET proto-oncogene, receptor tyrosine kinase	capmatinib crizotinib	None	5

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

* Includes biosimilars

Prevalent cancer biomarkers without relevant evidence based on included data sources

CDK6 amplification

Variant Details

DNA	Sequence varia	ants						
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
EGFR	p.(L858R)	c.2573T>G	COSM6224	chr7:55259515	47.64%	NM_005228.5	missense	1992
JAK1	p.(P733=)	c.2199A>G		chr1:65310489	49.07%	NM_002227.4	synonymous	1997
NRAS	p.(L53=)	c.159G>A		chr1:115256552	60.05%	NM_002524.5	synonymous	2000
ALK	p.(D1529E)	c.4587C>G		chr2:29416366	66.63%	NM_004304.5	missense	1999
ALK	p.(G1125=)	c.3375C>A		chr2:29445458	64.45%	NM_004304.5	synonymous	1997
FGFR4	p.(P136L)	c.407C>T		chr5:176517797	99.00%	NM_213647.3	missense	2000

Copy Number Variations		
Gene	Locus	Copy Number
CDK6	chr7:92245595	7.85
MET	chr7:116313480	12.95

Biomarker Descriptions

CDK6 (cyclin dependent kinase 6)

Background: The CDK6 gene encodes the cyclin dependent kinase 6 protein, a homologue of CDK4. Both proteins are serine/threonine protein kinases and involved in the regulation of the G1/S phase transition of the mitotic cell cycle^{1,2}. Following complex formation of CDK6 with D-type cyclins (e.g., CCND1, CCND2 or CCND3), CDK6 kinase activation leads to the phosphorylation of retinoblastoma protein (RB) followed by E2F activation, DNA replication, and cell cycle progression³.

Alterations and prevalence: Recurrent somatic mutations of CDK6 have not been characterized. CDK6 is recurrently amplified in esophageal carcinoma (10-15%), stomach adenocarcinoma (5-10%), lung squamous cell carcinoma (5%), and head and neck squamous cell carcinoma (4%)^{4,5,6,7}.

Potential relevance: Currently, no therapies are approved for CDK6 aberrations. Small molecule inhibitors targeting CDK4/6 including palbociclib (2015), abemaciclib (2017), and ribociclib (2017) are FDA approved in combination with an aromatase inhibitor or fulvestrant for the treatment of hormone receptor positive, HER2-negative advanced or metastatic breast cancer.

EGFR (epidermal growth factor receptor)

<u>Background:</u> The EGFR gene encodes the epidermal growth factor receptor (EGFR) tyrosine kinase, a member of the ERBB/human epidermal growth factor receptor (HER) family. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER48. EGFR ligand induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways. Activation of these pathways promote cell proliferation, differentiation, and survival^{9,10}.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations^{4,7,11,12}. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 21¹³. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer. A second group of less prevalent activating mutations include E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 20^{14,15,16,17}. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations¹⁸. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain include R108K, A289V and G598V and are primarily observed in glioblastoma^{13,19}. Amplification of EGFR is observed in several cancer types including 30% of glioblastoma, 12% of esophageal cancer, 10% of head and neck cancer, 5% of bladder cancer, and 5% of lung squamous cell carcinoma^{4,6,7,12,19}. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRVIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma^{20,21,22}.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib²³ (2004) and gefitinib²⁴ (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations. Second-generation TKIs afatinib²⁵ (2013) and dacomitinib²⁶ (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas most EGFR exon 20 insertions, except p.A763_Y764insFQEA, confer resistance to the same therapies^{27,28,29,30}. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance³¹. The primary resistance mutation that emerges following treatment with first-generation TKI is T790M, accounting for 50-60% of resistant cases 13. Third generation TKIs were developed to maintain sensitivity in the presence of T790M. Osimertinib32 (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like first-generation TKIs, treatment with osimertinib is associated with acquired resistance. In this case, resistance is associated with the C797S mutation, and occurs in 22-44% of cases31. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa³³. T790M and C797S can occur in either cis or trans allelic orientation³³. If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation TKIs33. If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone^{33,34}. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs33. Fourth-generation TKIs are in development to overcome acquired C797S and T790M resistance mutations after osimertinib treatment. EGFR targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations. The bispecific antibody, JNJ-6118637235, targeting EGFR and MET, and the TKI mobocertinib36, each received a breakthrough designation from the FDA (2020) for NSCLC tumors harboring EGFR exon 20 insertion mutations. The Oncoprex immunogene therapy CNVN-20237 in combination with osimertinib received a fast track designation

Biomarker Descriptions (continued)

from the FDA (2020) for NSCLC tumors harboring EGFR mutations that progressed on osimertinib alone. BDTX-189³⁸ was granted a fast track designation (2020) for the treatment of solid tumors harboring an EGFR exon 20 insertion mutation.

MET (MET proto-oncogene, receptor tyrosine kinase)

<u>Background:</u> The MET proto-oncogene encodes a receptor tyrosine kinase for the hepatocyte growth factor (HGF) protein, which is expressed by mesenchymal cells. Ubiquitin-dependent proteolysis regulates the steady state level of the MET protein via recognition of the tyrosine phosphorylation site Y1003 in the MET Cbl-binding domain within the juxtamembrane region^{39,40,41}. Growth factor signaling leads to MET dimerization and subsequent initiation of downstream effectors including those involved in the RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways, which regulate cell migration, proliferation, and survival^{42,43}.

Alterations and prevalence: Recurrent somatic MET alterations include activating mutations, gene amplification, and translocations generating MET gene fusions. Recurrent somatic mutations fall into two classes, mutations in the MET kinase domain, which are uncommon, and splice-site mutations affecting exon 14. Recurrent kinase domain mutations are observed in papillary renal cell carcinoma (PRCC) (1-2%) and include M1250T, H1094Y, and V1070E. Mutation of the Y1003 phosphorylation site is reported in lung cancer but is uncommon (<1%)^{7,19}. In contrast, splice-site mutations flanking exon 14 are observed in 4% of non-small cell lung cancer (NSCLC). These mutations include canonical splice site mutations affecting exon 14 and deletions that extend into the splicing motifs within intron 13^{44,45}. Such mutations disrupt splicing leading to the formation of an alternative transcript that joins exon 13 directly to exon 15 and skips exon 14 entirely. The MET exon 14 skipping transcript lacks the juxtamembrane domain that contains the recognition motif for ubiquitin-dependent proteolysis and thus leads to a marked increase in steady-state level of the MET protein⁴⁶. MET exon 14 skipping mutations act as oncogenic drivers in lung cancer mutually exclusive to activating mutations in EGFR and KRAS and other oncogenic fusions such as ALK and ROS1^{44,47,48}. MET is amplified in 2-5% of ovarian cancer, esophageal adenocarcinoma, stomach adenocarcinoma, glioblastoma, and lung adenocarcinoma^{5,7,19}. Recurrent MET fusions, although infrequent, are observed in adult and pediatric glioblastoma, papillary renal cell carcinoma, lung cancer, liver cancer, thyroid cancer, and melanoma^{49,50,51}. MET alterations are believed to be enriched in late-stage cancers where they drive tumor progression and metastasis^{52,53,54}.

Potential relevance: In 2020, the FDA granted accelerated approval to capmatinib⁵⁵ for NSCLC harboring MET exon 14 skipping positive as detected by an FDA-approved test²⁷. The kinase inhibitor, tepotinib⁵⁶, is also approved (2021) for MET exon 14 skipping mutations in NSCLC⁵⁶. MET exon 14 skipping mutations confer sensitivity to approved kinase inhibitors including crizotinib (2011), which is recommended for MET amplifications and exon 14 skipping mutations^{27,44,47,48}. Conversely, amplification of MET has been observed to mediate resistance to EGFR tyrosine kinase inhibitors (TKIs)^{57,58,59,60,61}. In a phase II trial testing the MET inhibitor savolitinib, patients with advanced PRCC exhibited median progression free survival (PFS) of 6.2 and 1.4 months for MET-driven and MET-independent PRCC, respectively⁶².

Relevant Therapy Summary

In this cancer type	O In other cancer type	In this cancer type and other cancer types	X No evidence
III this cancer type	In other cancer type	in this cancer type and other cancer types	No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials
osimertinib	•	•	•	•	(III)
afatinib	•	•	•	•	×
dacomitinib	•	•	•	•	×
erlotinib	•		•	•	×
erlotinib + ramucirumab	•	•	•	•	×
gefitinib	•	•	•	•	×
bevacizumab + erlotinib	×	•	•	•	×
afatinib + cetuximab	×	•	×	×	×

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

In this cancer type

O In other cancer type

• In this cancer type and other cancer types

× No evidence

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
osimertinib + chemotherapy	×		×	×	×
osimertinib + chemotherapy + surgical intervention	×	•	×	×	×
bevacizumab (Allergan) + erlotinib	×	×	•	×	×
bevacizumab (Fujifilm Kyowa Kirin Biologics) + erlotinib	×	×	•	×	×
bevacizumab (Mabxience) + erlotinib	×	×	•	×	×
bevacizumab (Pfizer) + erlotinib	×	×	•	×	×
bevacizumab (Samsung Bioepis) + erlotinib	×	×	•	×	×
atezolizumab + bevacizumab + carboplatin + paclitaxel	×	×	×	•	×
bevacizumab + gefitinib	×	×	×	•	×
gefitinib + carboplatin + pemetrexed	×	×	×		×
amivantamab, lazertinib, osimertinib	×	×	×	×	(III)
osimertinib, chemotherapy	×	×	×	×	(III)
atezolizumab, bevacizumab, chemotherapy	×	×	×	×	(II)
bevacizumab, erlotinib	×	×	×	×	(II)
bintrafusp alfa, chemoradiation therapy, durvalumab	×	×	×	×	(II)
datopotamab deruxtecan	×	×	×	×	(II)
durvalumab, tremelimumab, chemotherapy	×	×	×	×	(II)
osimertinib, savolitinib	×	×	×	×	(II)
patritumab deruxtecan	×	×	×	×	(II)
savolitinib, osimertinib	×	×	×	×	(II)
tepotinib, osimertinib	×	×	×	×	(II)
DZD-9008	×	×	×	×	(1/11)
amivantamab	×	×	×	×	(I)
lazertinib, amivantamab	×	×	×	×	(I)
telisotuzumab vedotin, osimertinib	×	×	×	×	(I)
TNO-155, nazartinib	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Summary (continued)

■ In this cancer type
O In other cancer type
O In this cancer type and other cancer types
X No evidence

MET amplification					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
capmatinib	×	•	×	×	×
crizotinib	×		×	×	×
osimertinib, savolitinib	×	×	×	×	(II)
savolitinib, osimertinib	×	×	×	×	(II)
tepotinib, osimertinib	×	×	×	×	(II)
amivantamab	×	×	×	×	(I)
HLX55	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Details

Current FDA Information

FDA information is current as of 2021-07-14. For the most up-to-date information, search www.fda.gov.

EGFR p.(L858R) c.2573T>G

afatinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2019-10-11 Variant class: EGFR L858R mutation

Indications and usage:

GILOTRIF® is a kinase inhibitor indicated for:

■ First-line treatment of patients with metastatic non-small cell lung cancer (NSCLC) whose tumors have non-resistant epidermal growth factor receptor (EGFR) mutations as detected by an FDA-approved test.

Limitation of Use: Safety and efficacy of GILOTRIF® were not established in patients whose tumors have resistant EGFR mutations

Treatment of patients with metastatic, squamous NSCLC progressing after platinum-based chemotherapy

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/201292s015lbl.pdf

Date: 25 Aug 2021 7 of 31

EGFR p.(L858R) c.2573T>G (continued)

dacomitinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2020-12-18 Variant class: EGFR L858R mutation

Indications and usage:

VIZIMPRO® is a kinase inhibitor indicated for the first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) exon 19 deletion or exon 21 L858R substitution mutations as detected by an FDA-approved test.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211288s003lbl.pdf

erlotinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2016-10-18 Variant class: EGFR L858R mutation

Indications and usage:

TARCEVA® is a kinase inhibitor indicated for:

- The treatment of patients with metastatic non-small cell lung cancer (NSCLC) whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 (L858R) substitution mutations as detected by an FDA-approved test receiving first-line, maintenance, or second or greater line treatment after progression following at least one prior chemotherapy regimen.
- First-line treatment of patients with locally advanced, unresectable or metastatic pancreatic cancer, in combination with gemcitabine.

Limitations of Use:

- Safety and efficacy of TARCEVA® have not been established in patients with NSCLC whose tumors have other EGFR
 mutations.
- TARCEVA® is not recommended for use in combination with platinum-based chemotherapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-06-15 Variant class: EGFR L858R mutation

Indications and usage:

CYRAMZA® is a human vascular endothelial growth factor receptor 2 (VEGFR2) antagonist indicated:

- as a single agent or in combination with paclitaxel, for treatment of advanced or metastatic gastric or gastro-esophageal
 junction adenocarcinoma with disease progression on or after prior fluoropyrimidine- or platinum-containing chemotherapy.
- in combination with erlotinib, for first-line treatment of metastatic non-small cell lung cancer with epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 (L858R) mutations.
- in combination with docetaxel, for treatment of metastatic non-small cell lung cancer with disease progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving CYRAMZA®.
- in combination with FOLFIRI, for the treatment of metastatic colorectal cancer with disease progression on or after prior therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine.
- as a single agent, for the treatment of hepatocellular carcinoma in patients who have an alpha fetoprotein of ≥400 ng/mL and have been treated with sorafenib.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125477s039lbl.pdf

Date: 25 Aug 2021 8 of 31

EGFR p.(L858R) c.2573T>G (continued)

gefitinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-05-05 Variant class: EGFR L858R mutation

Indications and usage:

IRESSA® is a tyrosine kinase inhibitor indicated for the first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC) whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 (L858R) substitution mutations as detected by an FDA-approved test.

Limitation of Use: Safety and efficacy of IRESSA® have not been established in patients whose tumors have EGFR mutations other than exon 19 deletions or exon 21 (L858R) substitution mutations.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/206995s004lbl.pdf

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2020-12-18 Variant class: EGFR L858R mutation

Indications and usage:

TAGRISSO® is a kinase inhibitor indicated for:

- as adjuvant therapy after tumor resection in adult patients with non-small cell lung cancer (NSCLC) whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test.
- the first-line treatment of adult patients with metastatic NSCLC whose tumors have EGFR exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test.
- the treatment of adult patients with metastatic EGFR T790M mutation positive NSCLC, as detected by an FDA-approved test, whose disease has progressed on or after EGFR TKI therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208065s021lbl.pdf

Date: 25 Aug 2021 9 of 31

Current NCCN Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

NCCN information is current as of 2021-07-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

EGFR p.(L858R) c.2573T>G

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

 Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy); Other recommended intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

dacomitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

 Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy); Other recommended intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

 Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy); Other recommended intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

 Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy); Other recommended intervention

Date: 25 Aug 2021 10 of 31

EGFR p.(L858R) c.2573T>G (continued)

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy);
 Preferred intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

afatinib + cetuximab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Progression (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy); Other recommended intervention
- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (Subsequent therapy)

Date: 25 Aug 2021 11 of 31

EGFR p.(L858R) c.2573T>G (continued)

dacomitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (First-line therapy); Other recommended intervention
- Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (Subsequent therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (Subsequent therapy)

Date: 25 Aug 2021 12 of 31

EGFR p.(L858R) c.2573T>G (continued)

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Adenocarcinoma, Large Cell, Squamous Cell, Not otherwise specified (NOS); Advanced, Metastatic (Subsequent therapy);

Preferred intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

osimertinib + chemotherapy

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ Stage IIB, Stage IIIA, Stage IIIB (Adjuvant therapy)

■ Stage IIIA; Resectable (Adjuvant therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

osimertinib + chemotherapy + surgical intervention

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Stage IIB (Adjuvant therapy)

■ Stage IIIA; Resectable (Adjuvant therapy)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

NCCN Recommendation category: 2B

Population segment (Line of therapy):

Leptomeningeal Metastases, Spine Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 1.2021]

Date: 25 Aug 2021 13 of 31

EGFR p.(L858R) c.2573T>G (continued)

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Brain Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 1.2021]

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

NCCN Recommendation category: 2B

Population segment (Line of therapy):

Brain Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 1.2021]

gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

NCCN Recommendation category: 2B

Population segment (Line of therapy):

■ Brain Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 1.2021]

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ Leptomeningeal Metastases, Spine Metastases (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Central Nervous System Cancers [Version 1.2021]

Date: 25 Aug 2021 14 of 31

MET amplification

capmatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: MET amplification

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Metastatic (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

crizotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: MET amplification

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Metastatic (Line of therapy not specified)

Date: 25 Aug 2021 15 of 31

Current EMA Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

EMA information is current as of 2021-07-14. For the most up-to-date information, search www.ema.europa.eu/ema.

EGFR p.(L858R) c.2573T>G

afatinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-04-21

Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/giotrif-epar-product-information_en.pdf

bevacizumab (Allergan) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-05-21

Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/mvasi-epar-product-information_en.pdf

bevacizumab (Fujifilm Kyowa Kirin Biologics) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-06-23

Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/equidacent-epar-product-information_en.pdf

bevacizumab (Mabxience) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-04-26

Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/alymsys-epar-product-information_en.pdf

bevacizumab (Pfizer) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-07-07

Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/zirabev-epar-product-information_en.pdf

bevacizumab (Samsung Bioepis) + erlotinib

Cancer type: Non-Small Cell Lung Cancer

Label as of: 2021-05-18

Variant class: EGFR L858R mutation

Reference:

 $https://www.ema.europa.eu/en/documents/product-information/onbevzi-epar-product-information_en.pdf$

Date: 25 Aug 2021 16 of 31

EGFR p.(L858R) c.2573T>G (continued)

bevacizumab (Samsung Bioepis) + erlotinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-06-21 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/aybintio-epar-product-information_en.pdf

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-01-28 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/avastin-epar-product-information_en.pdf

dacomitinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-02-22 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vizimpro-epar-product-information_en.pdf

erlotinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2019-04-24 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/documents/product-information/tarceva-epar-product-information_en.pdf

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Label as of: 2020-07-02 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/cyramza-epar-product-information_en.pdf

gefitinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-03-05 Variant class: EGFR L858R mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/iressa-epar-product-information_en.pdf

osimertinib

Cancer type: Non-Small Cell Lung Cancer Label as of: 2021-07-01 Variant class: EGFR L858R mutation

Reference:

 $https://www.ema.europa.eu/en/documents/product-information/tagrisso-epar-product-information_en.pdf$

Date: 25 Aug 2021 17 of 31

Current ESMO Information

In this cancer type
In other cancer type
In this cancer type and other cancer types

ESMO information is current as of 2021-07-01. For the most up-to-date information, search www.esmo.org.

EGFR p.(L858R) c.2573T>G

atezolizumab + bevacizumab + carboplatin + paclitaxel

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR L858R mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

- Non-squamous Cell; Metastatic (First-line therapy); ESMO-MCBS v1.1 score: 3
- Metastatic (Second-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Advanced (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Advanced (First-line therapy)

EGFR p.(L858R) c.2573T>G (continued)

gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Advanced (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

osimertinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Advanced (First-line therapy); ESMO-MCBS v1.1 score: 4

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

dacomitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Advanced (First-line therapy); ESMO-MCBS v1.1 score: 3

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

ESMO Level of Evidence/Grade of Recommendation: III / B

Population segment (Line of therapy):

■ Non-squamous Cell (Maintenance therapy)

Date: 25 Aug 2021 19 of 31

EGFR p.(L858R) c.2573T>G (continued)

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

bevacizumab + gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

dacomitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Date: 25 Aug 2021 20 of 31

EGFR p.(L858R) c.2573T>G (continued)

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

gefitinib + carboplatin + pemetrexed

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Date: 25 Aug 2021 21 of 31

EGFR p.(L858R) c.2573T>G (continued)

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Stage IV (First-line therapy); ESMO-MCBS v1.1 score: 3

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

bevacizumab + gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Stage IV (First-line therapy); ESMO-MCBS v1.1 score: 3

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Stage IV (First-line therapy); ESMO-MCBS v1.1 score: 3

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

gefitinib + carboplatin + pemetrexed

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: I / B

Population segment (Line of therapy):

Advanced (First-line therapy)

Date: 25 Aug 2021 22 of 31

EGFR p.(L858R) c.2573T>G (continued)

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

bevacizumab + erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

bevacizumab + gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

dacomitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Date: 25 Aug 2021 23 of 31

EGFR p.(L858R) c.2573T>G (continued)

erlotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

erlotinib + ramucirumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

gefitinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

Stage IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Non-Small-Cell Lung Cancer [Online Guideline (15SEP2020 - https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer); Ann Oncol (2018) 29 (suppl 4): iv192-iv237.]

gefitinib + carboplatin + pemetrexed

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR activating mutation

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

■ Stage IV (First-line therapy)

Date: 25 Aug 2021 24 of 31

Clinical Trials in Taiwan region:

Clinical Trials Summary

EGFR p.(L858R) c.2573T>G + MET amplification

NCT ID	Title	Phase
NCT03778229	A Phase II, Single Arm Study Assessing Efficacy of Osimertinib With Savolitinib in Patients With EGFRm + MET+, Locally Advanced or Metastatic Non Small Cell Lung Cancer Who Have Progressed Following Osimertinib Treatment (SAVANNAH Study)	II
NCT04606771	A Multi-centre Phase II, Double-Blind, Randomised Study of Savolitinib in Combination With Osimertinib vs Savolitinib in Combination With Placebo in Patients With EGFRm+ and MET Amplified Locally Advanced or Metastatic Non-Small Cell Lung Cancer Who Have Progressed Following Treatment With Osimertinib	II
NCT02609776	A Phase I, First-in-Human, Open-Label, Dose Escalation Study of JNJ-61186372, a Human Bispecific EGFR and cMet Antibody, in Subjects With Advanced Non-Small Cell Lung Cancer.	I
NCT03940703	A Phase II, Two-arm Study to Investigate Tepotinib Combined With Osimertinib in MET Amplified, Advanced or Metastatic NSCLC Harboring Activating EGFR Mutations and Having Acquired Resistance to Prior Osimertinib Therapy (INSIGHT 2)	II

EGFR p.(L858R) c.2573T>G

NCT ID	Title	Phase
NCT04487080	A Phase III, Randomized Study of Amivantamab and Lazertinib Combination Therapy Versus Osimertinib Versus Lazertinib as First-Line Treatment in Patients With EGFR-Mutated Locally Advanced or Metastatic Non-Small Cell Lung Cancer.	III
NCT03521154	A Phase III, Randomized, Double-blind, Placebo-controlled, Multicenter, International Study of Osimertinib as Maintenance Therapy in Patients With Locally Advanced, Unresectable EGFR Mutation-positive Non-Small Cell Lung Cancer (Stage III) Whose Disease Has Not Progressed Following Definitive Platinum-based Chemoradiation Therapy (LAURA)	III
NCT04035486	A Phase III, Open-label, Randomized Study of Osimertinib With or Without Platinum Plus Pemetrexed Chemo, as First-line Treatment in Patients With Epidermal Growth Factor Receptor (EGFR) Mutation Positive, Locally Advanced or Metastatic Non-small Cell Lung Cancer (FLAURA2)	III
NCT04351555	A Phase III, Randomised, Controlled, Multi-center, 3-Arm Study of Neoadjuvant Osimertinib as Monotherapy or in Combination With Chemotherapy Versus Standard of Care Chemotherapy Alone for the Treatment of Patients With Epidermal Growth Factor Receptor Mutation Positive, Resectable Nonsmall Cell Lung Cancer	III
NCT04147351	A Phase II Study of Atezolizumab in Combination With Bevacizumab, Carboplatin or Cisplatin, and Pemetrexed for EGFR-mutant Metastatic Non-small Cell Lung Cancer Patients After Failure of EGFR Tyrosine Kinase Inhibitors.	II
NCT02655536	A Phase II, Open Label, Multicenter Study of Bevacizumab in Combination With Erlotinib Versus Erlotinib Alone in Patients With EGFR Mutant Non-small Cell Lung Cancer Who Have Brain Metastases	II
NCT03994393	A Phase II Trial of Durvalumab (MEDI4736) and Tremelimumab With Chemotherapy in Metastatic EGFR Mutant Non-squamous Non-small Cell Lung Cancer (NSCLC) Following Progression on EGFR Tyrosine Kinase Inhibitors (TKIs)	II
NCT04619004	HERTHENA-Lung01: A Phase II Randomized Open-Label Study of Patritumab Deruxtecan (U3-1402) in Subjects With Previously Treated Metastatic or Locally Advanced EGFR-mutated Non-Small Cell Lung Cancer (NSCLC)	II

25 of 31

Date: 25 Aug 2021

Clinical Trials Summary (continued)

EGFR p.(L858R) c.2573T>G (continued)

NCT ID	Title	Phase
NCT04077463	An Open-label Phase I/Ib Study to Evaluate the Safety and Pharmacokinetics of JNJ-73841937 (Lazertinib), a Third Generation EGFR-TKI, as Monotherapy or in Combinations With JNJ-61186372, a Human Bispecific EGFR and cMet Antibody in Participants With Advanced Non-Small Cell Lung Cancer	I
NCT02099058	A Multicenter, Phase I/Ib, Open-Label, Dose-Escalation Study of ABBV-399, an Antibody Drug Conjugate, in Subjects With Advanced Solid Tumors	I
NCT03840902	A Multicenter, Double Blind, Randomized, Controlled Study of M7824 With Concurrent Chemoradiation Followed by M7824 Versus Concurrent Chemoradiation Plus Placebo Followed by Durvalumab in Participants With Unresectable Stage III Non-small Cell Lung Cancer	II
NCT04484142	Phase II, Single-arm, Open-label Study of DS-1062a in Advanced or Metastatic Non-small Cell Lung Cancer With Actionable Genomic Alterations and Progressed on or After Kinase Inhibitor Therapy and Platinum Based Chemotherapy (TROPION-Lung05)	II
NCT03114319	An Open-label, Multi-center, Phase I, Dose Finding Study of Oral TNO155 in Adult Patients With Advanced Solid Tumors.	I
NCT03974022	A Phase I/II, Open-Label, Multicenter Study to Assess the Safety, Tolerability, Pharmacokinetics and Anti-tumor Efficacy of DZD9008 in Patients With Advanced Non-Small Cell Lung Cancer (NSCLC) With EGFR or HER2 Mutation	1/11

MET amplification

NCT ID	Title	Phase
NCT04169178	A Phase I Dose Finding/Expansion Study of HLX55, A Monoclonal Antibody Targeting Tyrosine-Protein Kinase MET (C-MET) in Patients With Advanced Solide Tumors Refactory to Standard Therapy	I

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

A Fast Track

FDA information is current as of 2021-07-14. For the most up-to-date information, search www.fda.gov.

EGFR p.(L858R) c.2573T>G

osimertinib + quaratusugene ozeplasmid

Cancer type: Non-Small Cell Lung Cancer

Variant class: EGFR mutation

Supporting Statement:

The FDA has granted Fast Track Designation to the immunogene therapy, quaratusugene ozeplasmid, in combination with EGFR inhibitor osimertinib for the treatment of non-small cell lung cancer (NSCLC) with EFGR mutations that progressed after treatment with osimertinib alone.

Reference:

https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/

Date: 25 Aug 2021 26 of 31

Current NCCN Information

Contraindicated

Not recommended

Resistance

Breakthrough

Fast Track

NCCN information is current as of 2021-07-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

EGFR p.(L858R) c.2573T>G

alectinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

brigatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

ceritinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

crizotinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Date: 25 Aug 2021 27 of 31

EGFR p.(L858R) c.2573T>G (continued)

lorlatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFRi sensitizing mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Crizotinib, ceritinib, alectinib, brigatinib, or lorlatinib are not recommended as subsequent therapy for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

atezolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

nivolumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 5.2021]

pembrolizumab

Cancer type: Non-Small Cell Lung Cancer Variant class: EGFR mutation

Summary

NCCN Guidelines® include the following supporting statement(s):

"subsequent therapy with pembrolizumab, nivolumab, or atezolizumab is not recommended in patients with EGFR mutations or ALK fusions."

Date: 25 Aug 2021 28 of 31

Signatures

Testing Personnel:

Laboratory Supervisor:

Pathologist:

References

- 1. Malumbres et al. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer. 2009 Mar;9(3):153-66. PMID: 19238148
- Sherr et al. Targeting CDK4 and CDK6: From Discovery to Therapy, Cancer Discov, 2016 Apr;6(4):353-67. PMID: 26658964
- 3. Weinberg. The retinoblastoma protein and cell cycle control. Cell. 1995 May 5;81(3):323-30. PMID: 7736585
- 4. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 5. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014 Sep 11;513(7517):202-9. doi: 10.1038/nature13480. Epub 2014 Jul 23. PMID: 25079317
- Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 8. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089
- 9. Zhixiang, ErbB Receptors and Cancer, Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- 10. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 11. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- 12. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 13. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
- 14. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856
- Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 16. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 17. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 18. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493
- 19. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 20. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan;277(2):301-8. PMID: 19922469
- 21. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 22. Gan et al. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009 Jun;16(6):748-54. PMID: 19324552
- 23. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
- 24. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/206995s004lbl.pdf
- 25. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/201292s015lbl.pdf
- 26. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211288s003lbl.pdf
- 27. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 5.2021]
- 28. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer. 2015 Sep 15;121(18):3212-3220. PMID: 26096453
- 29. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther. 2019;4:5. PMID: 30854234
- 30. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. Int J Mol Med. 2014 Aug;34(2):464-74. PMID: 24891042

References (continued)

- 31. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. Oncotarget. 2018 Dec 21;9(100):37393-37406. PMID: 30647840
- 32. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208065s021lbl.pdf
- 33. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015 Sep 1;21(17):3924-33. PMID: 25964297
- 34. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol. 2017 Nov;12(11):1723-1727. PMID: 28662863
- 35. https://www.jnj.com/janssen-announces-u-s-fda-breakthrough-therapy-designation-granted-for-jnj-6372-for-the-treatment-of-non-small-cell-lung-cancer
- 36. https://www.takeda.com/newsroom/newsreleases/2020/takeda-announces-u.s.-fda-breakthrough-therapy-designation-for-mobocertinib-tak-788-for-the-treatment-of-nsclc-patients-with-egfr-exon-20-insertion-mutations/
- 37. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/
- 38. https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fast-track-designation-fda
- 39. Peschard et al. A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. J. Biol. Chem. 2004 Jul 9;279(28):29565-71. PMID: 15123609
- 40. Peschard et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol. Cell. 2001 Nov;8(5):995-1004. PMID: 11741535
- 41. Abella et al. Met/Hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. Mol. Cell. Biol. 2005 Nov;25(21):9632-45. PMID: 16227611
- 42. Sierra et al. c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol. 2011 Nov;3(1 Suppl):S21-35. PMID: 22128285
- 43. Mo et al. Targeting MET in cancer therapy. Chronic Dis Transl Med. 2017 Sep;3(3):148-153. PMID: 29063069
- 44. Frampton et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015 Aug;5(8):850-9. PMID: 25971938
- 45. Schrock et al. Characterization of 298 Patients with Lung Cancer Harboring MET Exon 14 Skipping Alterations. J Thorac Oncol. 2016 Sep;11(9):1493-502. PMID: 27343443
- 46. Pilotto et al. MET exon 14 juxtamembrane splicing mutations: clinical and therapeutical perspectives for cancer therapy. Ann Transl Med. 2017 Jan;5(1):2. doi: 10.21037/atm.2016.12.33. PMID: 28164087
- 47. Reungwetwattana et al. The race to target MET exon 14 skipping alterations in non-small cell lung cancer: The Why, the How, the Who, the Unknown, and the Inevitable. Lung Cancer. 2017 Jan;103:27-37. PMID: 28024693
- 48. Saffroy et al. MET exon 14 mutations as targets in routine molecular analysis of primary sarcomatoid carcinoma of the lung. Oncotarget. 2017 Jun 27;8(26):42428-42437. PMID: 28418914
- 49. Yeh et al. Activating MET kinase rearrangements in melanoma and Spitz tumours. Nat Commun. 2015 May 27;6:7174. doi: 10.1038/ncomms8174. PMID: 26013381
- 50. Bao et al. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Genome Res. 2014 Nov;24(11):1765-73. PMID: 25135958
- 51. Sebastian et al. Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat. Med. 2016 Nov;22(11):1314-1320. PMID: 27748748
- 52. Zeng et al. c-Met gene amplification is associated with advanced stage colorectal cancer and liver metastases. Cancer Lett. 2008 Jul 8;265(2):258-69. PMID: 18395971
- 53. Tsugawa et al. Amplification of the c-met, c-erbB-2 and epidermal growth factor receptor gene in human gastric cancers: correlation to clinical features. Oncology. 1998 Sep-Oct;55(5):475-81. PMID: 9732228
- 54. Di et al. Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin. Cancer Res. 1995 Feb;1(2):147-54. PMID: 9815967
- 55. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213591s000lbl.pdf
- 56. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214096s000lbl.pdf
- 57. Bean et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci. U.S.A. 2007 Dec 26;104(52):20932-7. PMID: 18093943

References (continued)

- 58. Chen et al. Clinicopathologic and molecular features of epidermal growth factor receptor T790M mutation and c-MET amplification in tyrosine kinase inhibitor-resistant Chinese non-small cell lung cancer. Pathol Oncol Res. 2009 Dec;15(4):651-8. doi: 10.1007/s12253-009-9167-8. Epub 2009 Apr 21. PMID: 19381876
- 59. Suda et al. Reciprocal and complementary role of MET amplification and EGFR T790M mutation in acquired resistance to kinase inhibitors in lung cancer. Clin. Cancer Res. 2010 Nov 15;16(22):5489-98. PMID: 21062933
- 60. Zhang et al. Current mechanism of acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors and updated therapy strategies in human nonsmall cell lung cancer. J Cancer Res Ther. 2016 Dec;12(Supplement):C131-C137. PMID: 28230005
- 61. Nguyen et al. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancers dependent on the epidermal growth factor receptor pathway. Clin Lung Cancer. 2009 Jul;10(4):281-9. PMID: 19632948
- 62. Choueiri et al. Biomarker-Based Phase II Trial of Savolitinib in Patients With Advanced Papillary Renal Cell Cancer. J. Clin. Oncol. 2017 Sep 10;35(26):2993-3001. PMID: 28644771