MAT257 PSET 15—Question 5

Jonah Chen

a) The definition of the exterior derivative is that $d\omega=:\sum_{i=1}^n dx_i\wedge \frac{\partial\omega}{\partial x_i}$.

For the given ω ,

$$d\omega = \sum_{j=1}^{n} \sum_{i=1}^{n} (-1)^{i-1} \partial_j \left(\frac{x_i}{|x|^p} \right) dx_j \wedge dx_1 \wedge \dots dx_i \wedge \dots dx_n$$

We notice that unless i = j, the term is zero as there would be two copies of $\mathrm{d}x_i$ in the alternating wedge product. So we have

$$d\omega = \sum_{i=1}^{n} (-1)^{i-1} \partial_i \left(\frac{x_i}{|x|^p} \right) dx_i \wedge dx_1 \wedge \dots dx_i \wedge \dots dx_n$$

It would take i-1 swaps to move the first term to the correct place for the sequence to be ascending, which introduces a factor of $(-1)^{i-1}$.

$$d\omega = dx_1 \wedge \cdots \wedge dx_n \sum_{i=1}^n \partial_i \left(\frac{x_i}{|x|^p} \right)$$

The partial derivative can be computed with quotient rule to be $\frac{1-px_i^2/|x|^2}{|x|^p}$, thus,

$$d\omega = \frac{1}{|x|^p} dx_1 \wedge \dots \wedge dx_n \sum_{i=1}^n \left(1 - \frac{px_i^2}{|x|^2} \right)$$
$$= \frac{1}{|x|^p} dx_1 \wedge \dots \wedge dx_n \left(n - \frac{p(x_1^2 + \dots + x_n^2)}{|x|^2} \right)$$
$$= \frac{n-p}{|x|^p} dx_1 \wedge \dots \wedge dx_n$$

b) For $p = n, d\omega = 0$.