Math 110 Homework 8 Tarang Srivastava March 20, 2020

1 Exercises 5.B

Problem 1: We wish to show that

$$(I-T)^{-1} = I + T + \dots + T^{n-1}$$

So, we can multiply I - T to both sides to get

$$I = (I - T)(I + T + \dots + T^{n-1})$$

Then, we can distribute and see we get

$$I = I - T + T - T^2 + T^2 + \ldots - T^{n-1} + T^{n-1} + T^n$$

After cancelling out all the similar terms we are left with

$$I = I + T^n = I$$

Since, $T^n = 0$. So, to prove the statement we do the following operations

$$I = I + T^n = I$$

$$I = I - T + T - T^2 + T^2 + \dots - T^{n-1} + T^{n-1} + T^n$$

$$I=(I-T)(I+T+\ldots+T^{n-1})$$

Then, we multiply both sides by $(I-T)^{-1}$ to get

$$(I-T)^{-1} = I + T + \dots + T^{n-1}$$

as desired.

Problem 2: Assume for contradiction that $\lambda \neq 2$ and $\lambda \neq 3$ and $\lambda \neq 4$. Then, T-2I and T-3I and T-4I must all be invertible. Given,

$$(T-2I)(T-3I)(T-4I) = 0$$

for all $v \in V$ such that $v \neq 0$ we have that

$$(T-2I)(T-3I)(T-4I)v = 0v = 0$$

Then, for one of the values T-2I or T-3I or T-4I one of them maps v to 0. Since, they are all invertible their null spaces is just $\{0\}$, but then we have a contradiction since we had that $v \neq 0$. Therefore, it must be the case that λ is equal to 2, 3 or 4.

Problem 3: We proceed directly. Given

$$T^2 = I$$

We get that $T^2 - I = 0$ so,

$$(T-I)(T+I) = 0$$

Since, $\lambda \neq -1$ it must be that T+I is invertible. Thus, for all non zero v in V we have that (T+I)v is non zero. So it must be that for all $w \in V$, we have (T-I)v = 0. By definition T-I is equal to the 0 linear map, so from T-I=0 it follows that T=I

Problem 4: From $P^2 = P$ we have that $P^2 - P = 0$ so it must be that

$$P(P-I) = 0$$

So for all $v \in V$ we have that

$$P(P-I)v = 0v = 0$$

Thus

$$Pv = 0$$
 or $Pv = v$

To show that $V = \text{null } P \oplus \text{range } P$ we first will show that null $P \cap \text{range } P = \{0\}$. Suppose $v \in \text{null } P \cap \text{range } P$. Then, Pv = 0 and Pv = v it follows directly then that v = 0, so

null
$$P \cap \text{range } P = \{0\}$$

Since, $P \in \mathcal{L}(V)$ we already have that range $P \subset V$ and null $P \subset V$. Then for $v \in \text{range } P$ and $w \in \text{null } P$ clearly $v + w \in V$ so we have that

$$V \supset \operatorname{range} P \oplus \operatorname{null} P$$

For the other side, let $v \in V$ we have that Pv = 0 or Pv = v. So, $v \in \text{range } P$ or $v \in \text{null } P$ then it follows that clearly for all $v \in V$ we have that v = v + 0 or v = 0 + v. So,

$$V \subset \text{range } P \oplus \text{null } P$$

Therfore,

$$V = \text{range } P \oplus \text{null } P$$

Problem 8: I'm just going to express T as a matrix in terms of the standard basis of \mathbb{R}^2 , I hope that's okay. So, the goal is that $T^4 = -1$ well if we find T such that it represent an eighth clockwise turn, we are done. Since 4 turns of T would be equivalent to -1. We can construct T by simply seeing where the basis vectors would be mapped if they were turned by an eighth. So, (1,0) would map to $(\sqrt{2}/2, \sqrt{2}/2)$ and then (0,1) would map to $(\sqrt{2}/2, -\sqrt{2}/2)$. That is basically the definition of T, but in matrix form it is

$$T = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}$$

Problem 9: If p(T)v = 0 by properties of polynomials we can then express p(T) as a polynomial where we factor out the zero. That is for some $q \in \mathcal{P}(\mathbb{F})$ and some constant $\lambda \in \mathbb{F}$,

$$p(T) = q(T) \cdot (T - \lambda)$$

Then we have that, $(T - \lambda)v = 0$, so then by rearranging we get that in fact $Tv = \lambda v$. So, λ must be an eigenvector of T.

Problem 10: Given λ is an eigenvalue of T we have that $Tv = \lambda v$ for some eigenvector v. Thus, we know that $T(Tv) = T\lambda v = \lambda Tv = \lambda^2 v$. We then use this inductive argument to get that $T^n v = \lambda^n v$. Since, p(T) is of some form as $p(T)v = a_m T^m v + ...$ we can simply replace each term of $T^m v$ with $\lambda^m v$, then we get it is equivalent that $p(T)v = a_m \lambda^m v + ...$ which is equivalent to expressing the polynomial for λ That is, $p(\lambda)v = a_m \lambda v + ...$ so we get

$$p(T)v = p(\lambda)v$$

Problem 11: \Longrightarrow direction. Sice we are working with \mathbb{C} we have the nice property that

$$p(T) = c(T - \lambda_1 I)...(T - \lambda_m I)$$

 \iff direction. We know that if $\alpha = p(\lambda)$ for some eigenvalue λ of T then from Problem 10 we know that

$$p(T)v = p(\lambda)v$$

where v is the corresponding eigenvector. Then, we directly have that

$$p(T)v = \alpha v$$

Thus, by definition α is an eigenvalue of p(T).

2 Exercises 5.C

Problem 1: We use the fact that since T is diagonalizable then

$$V = E(\lambda_1, T) \oplus ... \oplus E(\lambda_m, T)$$

So, now we just wish to show that null T and range T are some combination of these eigenspaces. Observe that null T is equivalent to when Tv=0=0v that is $\lambda=0$. So, if there is an eigenvalue equal to zero then null T=E(0,T). Then, observe that V has a basis consiting of eigenvectors of T, so it suffices to show that if there is a basis of eigenvectors for all $v\in V$ we have that $v=a_1u_1+\ldots+a_mu_m$ where u_i is an eigenvector. Well since $E(\lambda,T)$ is a subspace of V it holds that any scalar multiple of u_i is also in its corresponding eigenspace. Therefore, for all $v\in V$ since we can express it as a sum of $v=a_1u_1+\ldots+a_mu_m$ and each term is in a corresponding eigenspace then all the $Tv\neq 0$ are expressed as that sum which is equivalent to the range of T. Thus, $V=\mathrm{null}\ T\oplus\mathrm{range}\ T$.

Problem 3: Well (b) and (c) are literally the definition of (a) so showing (b) and (c) are equivalent suffices to show (a) is equivalent. For (b) \implies (c). We have by nullity-rank that

$$\dim V = nullity + rank$$

We also have that since the null space and range are subspaces of ${\cal V}$

$$\dim(\text{null } T + \text{range } T) = nullity + rank - (\text{null } T \cap \text{range } T)$$

But since we have that V = null T + range T We get that

$$nullity + rank = nullity + rank - \dim(\text{null } T \cap \text{range } T)$$

So that implies that $\dim(\text{null } T \cap \text{range } T) = 0$ thus it must be that $(\text{null } T \cap \text{range } T) = \{0\}.$

For (b) \iff (c). We have that

$$\dim(\text{null } T + \text{range } T) = nullity + rank - (\text{null } T \cap \text{range } T)$$

Since, (null $T \cap \text{range } T$) = $\{0\}$ by combining nullity-rank theorem we have

$$\dim(\text{null } T + \text{range } T) = nullity + rank = \dim V$$

Thus it must be in a finite dimensional space that

null
$$T + \text{range } T = V$$

Problem 5: Given that T is diagonal we know that by subtracting λI we still have a matrix that has elements only in the diagonal and zeros everywhere else. So it follows from definition that $T - \lambda I$ is diagonal as well. After that we can directly apply Problem 1 to show \Longrightarrow direction. For the \Leftarrow direction. Observe that in the null space $Tv = \lambda v$ so basically T just scales the vectors by λ , so clearly it is that T is diagonalizable for those vectors. For the vectors in the range

Problem 16: (a) We proceed by induction on n. For the base case n = 1 we have that

$$T(0,1) = (1,1) = (F_1, F_2)$$

Then assume the claim holds for some n = k. That is,

$$T^k(0,1) = (F_k, F_{k+1})$$

Then we can just compose T again to get

$$T^{k+1}(0,1) = T(F_k, F_{k+1}) = (F_{k+1}, F_k + F_{k+1}) = (F_{k+1}, F_{k+2})$$

So we showed the inductive step holds and thus the claim holds for all n.

(b) this homework is so fucking long and so fucking boring fuck this shit . I miss discrete math with its fun hw problems

3 Exercises 6.A

Problem 11: This is a direct application of Cauchy-Schwarz inequality. The statement holds for all positive a, b, c, d because we set it up with the terms $\frac{1}{\sqrt{a}}$ and \sqrt{a} and $\frac{1}{\sqrt{b}}$ and \sqrt{b} and $\frac{1}{\sqrt{c}}$ and \sqrt{c} and $\frac{1}{\sqrt{c}}$ and \sqrt{c} . Then we have something of the form

$$|1+1+1+1|^2 = 16 \le (a+b+c+d)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)$$

which we get from just squaring all the terms before to fit the Cauchy-Schwarz inequality form.