

Validation and Optimization of Machine Learning Models Regression

2021-06-17

2021-06-17 | Claudia Beleites

ESCAPE Summer School | Chemometrix GmbH, Södeler Weg 19, 61200 Wölfersheim, Germany

Topics

- Introduction
- Figures of Merit
- Verification Schemes
- Resampling Techniques
- Model Stability
- Sample Size Planning
- Validation
- B Data-driven Model Optimization and Hyperparameter Tuning
- Regression

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size Validation

Optimization

. .

Validation and Verification

Verification: Making sure/measuring/showing that the model meets the specifications.

Validation: Making sure that the model meets the application needs.

• Chemometric model validation

wy typically verification rather than validation is done.

• Characterize model by measuring its predictive performance

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

- u...p.o

Validation

Reproducibility!?

A DROP IN THE OCEAN

Few of the numerous biomarkers so far discovered have made it to the clinic.

Nature 469, 156-157

Estimated number of biomarkers routinely used in the clinic

100

Poste: Bring on the biomarkers. Nature, 2011, 469, 156-157.

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size

Validation

otimization

Recipe: Verification/Validation/Testing

Ingredients

- Ready-to-use model treated as black box: case → prediction
- Figures of merit (performance measure)
 Overall Accuracy, Sensitivity, Specificity, Predictive Values, MSE, RMSE, R², ...
- Validation scheme: How to get test cases?
 Autoprediction, Resampling, Test Set, Validation study

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

- u...p.o

Validation

Figures of Merit: Proportions

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

ou...pio oiz

Validation

Optimization Regression

Proportion Questions

Sensitivity = Recall: of all truly class A cases, which fraction is correctly

recognized as class A?

Specificity: of all cases truly not belonging to class A, which fraction is correctly

recognized as not belonging to class A?

Positive Predictive Value = Precision: of all cases predicted to belong to class A,

which fraction does truly belong to class A?

Negative Predictive Value: of all cases predicted not to belong to class A, which fraction does truly not belong to class A?

accuracy: correct proportion among all predicted cases

error rate: misclassified proportion among all predicted cases

K: chance-corrected accuracy, inter-observer agreement

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

Validation

Proportions: Characteristics

- ✓ well-known, widely used
- **X** often misunderstood:
- sensitivity & specificity
 - ✓ easy to measure: test n cases of each class, record results
 - low relevance for application
- predictive values (positive/negative)
 - ✓ high relevance for application
 - difficult to measure: need to know relative class fequencies under application conditions weight rows of confusion matrix accordingly
- figures of merit spanning rows of confusion matrix
 - **x** correct for relative class fequencies under application conditions

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size

Validation

.........

Ptillization

gression

More figures of merit

- chance-corrected: κ
 - ✓ rescaling possible for other figures of merit
 - alternative: report chance agreement (or naive model performance) together with figure of merit
- Information gain
 - **positive likelihood ratio:** $LR_A^+ = \frac{Sens_A}{1-Spez_A}$ How much do the odds to belong to class A increase when a case is predicted to belong to class A?
 - **negative likelihood ratio:** $LR_A^- = \frac{Spez_A}{1-Sens_A}$ How much do the odds to belong to class A decrease when a case is predicted not to belong to class A?
 - ✓ independent of relative class fequencies under application conditions

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size

Validation

opullilzatioi

Confidence Intervals for Sensitivity

- Statistical description: Bernoulli trial
- ✓ w use binomial distribution
- Uncertainty on proportion: $var(\hat{p}) = \frac{p(1-p)}{n_{test}}$
- **x** normal approximation appropriate only with $np \ge 5$ and $n(1-p) \ge 5$

→ Estimate necessary n_{test}

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes
Resampling
Model Stability
Sample Size

Optimization

Sample size from Confidence Interval

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size Validation

alloation

Optimization Regression

Receiver Operating Charcteristic/Specificity-Sensitivity-Diagram

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes Resampling Model Stability Sample Size Validation

Optimization Regression

Proportions: Behaviour in Hyperparameter Optimization

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

Validation

Optimization

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size Validation

Optimization

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

Validation

Optimization Regression

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

Validation

Optimization Regression

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

Validation

Optimization

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

Validation

Optimization Regression

(Strictly) Proper Scoring Rules

Wanted: Figure of merit that ...

- ...continuously penalizes closeness to class boundary
- ... continuously reacts to changes in the model
- ...slight deterioration → slight drop in measured performance
- ...has exactly one optimum
- at the best classifier.

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size

alidation

Regression: (Root) Mean Squared Error

- Loss behind e.g. Gaussian Least Squares
- penalizes large deviations
- $MSE = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i y_i)^2$ $N \dots$ number of cases $i \dots$ case in question
- $MSE = bias^2 + variance$
- RMSE = $\sqrt{\frac{1}{N}\sum_{i=1}^{N}(\hat{y}_i y_i)^2}$ same scale as y

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size

Validation

pumization

Brier's Score: Mean Squared Error for Classification

- Classifier that predicts class membership probability rather than labels
- Idea: of all cases where classifier predicts x % class membership, x % should belong to class in question a.k.a. well calibrated prediction
- Brier's score: $BS = \frac{1}{N} \sum_{i=1}^{N} (\hat{p}_i p_i)^2$ or $BS = \frac{1}{N} \sum_{j=1}^{R} \sum_{i=1}^{N} (\hat{p}_i j p_i j)^2$ (multiclass version) with

N ... number of cases

i ... case in question

R...number of classes

j ... class in question

p ... class membership, usually $\in \{0, 1\}$

 \hat{p} ... predicted class membership $\in [0, 1]$

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size

/aiiuation

punnzatioi

Summary Figures of Merit

- Many exist → choose relevant ones
- Usually, several figures of merit are needed for characterization
- Figures of merit are measured → subject to bias and variance like any other measurement
- Regression: figures of merit "well-behaved", but no back-of-the-envelope variance guesstimates
- Classification: proportions easy to understand & widespread but have bad variance properties & discontinuous behaviour
- → use (strictly) proper scoring rules for optimization

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

ampic on

alluation

Cases and Statistical Independence

- structure in data: clusters, spatial and/or temporal
- e.g. repeated measurements: repetitions are more similar to each other
- special case: time series

✓ Think hard about factors affecting independence

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

. Indialation

vandation

Model Testing: Measure the Model's Performance

Different kinds of test samples → different performance measures

Goodness of fit: training samples

→ residuals

Generalization error: statistically independent samples

resampling,

test set measured at same time as training set

Future performance: samples measured after training samples

dedicated test set for detection of drift

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size

alidation

Resampling for Model Validation

- ✗ We don't have enough samples
- Training:
 - Model quality depends on ratio n_{train} : d.f.
 - Linear model: 5 samples/(variate · class)
 - ✓ We want to use all samples for training

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size

Validation

Optimization Regression

Resampling for Model Validation

- ✗ We don't have enough samples
- Training:
 - Model quality depends on ratio n_{train} : d.f.
 - Linear model: 5 samples/(variate · class)
 - ✓ We want to use all samples for training
- Testing:
 - ✓ We want to know whether the model is stable
 - Quality of the performance measure depends on n_{test}
 - Width of 95 % confidence interval \leq 10 % for p = 90 %: $n_{test} \geq$ 140
 - We want to use all samples for testing

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

ann pro one

Validation

Optimization

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

Validation

Optimization

Regression

R Kohavi: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: Proc. 14th International Joint Conference on Artificial Intelligence, 1995, Morgan Kaufmann, USA, 1995, 1137–1145.

validation study

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

Validation

Optimization

Regression

R Kohavi: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: Proc. 14th International Joint Conference on Artificial Intelligence, 1995, Morgan Kaufmann, USA, 1995, 1137–1145.

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

Validation

Optimization

Regression

R Kohavi: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: Proc. 14th International Joint Conference on Artificial Intelligence, 1995, Morgan Kaufmann, USA, 1995, 1137–1145.

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

Validation

Optimization

Regression

R Kohavi: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: Proc. 14th International Joint Conference on Artificial Intelligence, 1995, Morgan Kaufmann, USA, 1995, 1137–1145.

Validation Schemes: Recommendations

nold-out validation study dependent test set

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

Validation

Optimization

Regression

R Kohavi: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: Proc. 14th International Joint Conference on Artificial Intelligence, 1995, Morgan Kaufmann, USA, 1995, 1137–1145.

Resampling vs. Validation Study

	Resampling	Validation Study
statistical properties		
bias	✓ pessimistic (low)	✓ unbiased
variance	f(n)	$f(n_{test})$
efficient use of cases	V	V
measure model stability	✓ iterated	√ / ×
measure drift	×	✓ DoE
future case performance	×	✓ DoE
out-of-spec cases	×	✓ DoE
practical properties		
independence	A splitting error prone	V
effort	✓ computational	≭ experimental

C. Beleites

Introduction

Figures of Merit

Verification Schemes Resampling

Model Stability

Sample Size

Validation

Optimization

Regression

Esbensen, K. H. & Geladi, P.: Principles of Proper Validation: use and abuse of re-sampling for validation J Chemom, 2010, 24, 168-187

Validation & **Optimization**

Beleites, C. & Salzer, R.: Assessing and improving the stability of chemometric models in small sample size situations Anal Bioanal Chem, 2008, 390, 1261-1271

Resampling vs. Hold Out

	Resampling	Spiit off Hold Out Set
statistical properties		
bias	✓ pessimistic (low)	✓ unbiased
variance	$\checkmark f(n)$ lower	\mathbf{x} $f(n_{test})$ large
efficient use of cases	V	×
measure model stability	✓ iterated	×
measure drift	×	×
future case performance	×	×
out-of-spec cases	×	X (\sigma)
practical properties		
independence	A splitting error prone	\Lambda same as resampling

Decembling

C. Beleites

Introduction

Calit off Hold Out Cat

✓ low

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

Validation

Optimization

Regression

✓ computational

effort

Esbensen, K. H. & Geladi, P.: Principles of Proper Validation: use and abuse of re-sampling for validation J Chemom, 2010, 24, 168-187

Validation & **Optimization**

Beleites, C. & Salzer, R.: Assessing and improving the stability of chemometric models in small sample size situations Anal Bioanal Chem. 2008. 390. 1261-1271

Validation Check List

- Randomize order of measurements
- Split at highest level in sample hierarchy/data structure

- Split before 1st step that involves multiple cases
- Additional independent validation for data-driven optimization/tuning/model selection
- ullet Test cases: reference labels must be independent of cases (measurements, spectra, \ldots)

- Make sure labelling procedure does not distort difficulty for test cases
- Ensure correctness of code

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

dation

timization

Validation Check List

- Randomize order of measurements
- Split at highest level in sample hierarchy/data structure patients, strains, cell lines,
- Split before 1st step that involves multiple cases
- Additional independent validation for data-driven optimization/tuning/model selection
- Test cases: reference labels must be independent of cases (measurements, spectra, ...)

- Make sure labelling procedure does not distort difficulty for test cases
- Ensure correctness of code

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size

luation

ptimization

Validation Check List

- · Randomize order of measurements
- Split at highest level in sample hierarchy/data structure patients, strains, cell lines, day of measurement, before/after new calibration, ...
- Split before 1st step that involves multiple cases
- Additional independent validation for data-driven optimization/tuning/model selection

Test cases: reference labels must be independent of cases (measurements, spectra, ...)

- Make sure labelling procedure does not distort difficulty for test cases
- Ensure correctness of code

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

-11-1-41---

iluation

ptimization

- · Randomize order of measurements
- Split at highest level in sample hierarchy/data structure patients, strains, cell lines, day of measurement, before/after new calibration, ...
- Split before 1st step that involves multiple cases centering, PCA preprocessing, . . .
- Additional independent validation for data-driven optimization/tuning/model selection

Test cases: reference labels must be independent of cases (measurements, spectra, ...)

- Make sure labelling procedure does not distort difficulty for test cases
- Ensure correctness of code

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

alidation

Intimizatio

- · Randomize order of measurements
- Split at highest level in sample hierarchy/data structure patients, strains, cell lines, day of measurement, before/after new calibration, ...
- Split before 1st step that involves multiple cases centering, PCA preprocessing, . . .
- Additional independent validation for data-driven optimization/tuning/model selection nested/double cross validation or train-validate-test --- necessary case numbers HUGE
- Test cases: reference labels must be independent of cases (measurements, spectra, ...)

- Make sure labelling procedure does not distort difficulty for test cases
- · Ensure correctness of code

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size

anuation

pumzation

- Randomize order of measurements
- Split at highest level in sample hierarchy/data structure patients, strains, cell lines, day of measurement, before/after new calibration, ...
- Split before 1st step that involves multiple cases centering, PCA preprocessing, . . .
- Additional independent validation for data-driven optimization/tuning/model selection nested/double cross validation or train-validate-test --- necessary case numbers HUGE
- Test cases: reference labels must be independent of cases (measurements, spectra, ...)
 cluster analysis to assign labels → OK for training cases
- Make sure labelling procedure does not distort difficulty for test cases
- · Ensure correctness of code

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

Validation

andation

- ·

- Randomize order of measurements
- Split at highest level in sample hierarchy/data structure patients, strains, cell lines, day of measurement, before/after new calibration, ...
- Split before 1st step that involves multiple cases centering, PCA preprocessing, . . .
- Additional independent validation for data-driven optimization/tuning/model selection nested/double cross validation or train-validate-test --> necessary case numbers HUGE
- Test cases: reference labels must be independent of cases (measurements, spectra, ...)
 cluster analysis to assign labels → OK for training cases semi-supervised learning → OK
 for training cases
- Make sure labelling procedure does not distort difficulty for test cases
- Ensure correctness of code

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size

Validation

Optimization

The Concept behind Resampling

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

Validation

Optimization

The Concept behind Resampling

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

Validation

Optimization

The Concept behind Resampling

- Subsamples are approximations of (more) real samples
- Subsample is perturbed version of the real sample

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size

Validation

Optimization

Cross Validation: Drawing without Replacement

1	2	3	4	5	6	5	4	2	6	1	3
1	2	3	4	5	6	5	4	2	6	1	3
1	2	3	4	5	6	5	4	2	6	1	3

✓ Each case is left out exactly once

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size Validation

alluation

Optimization Regression

og. coo.c.

Cross Validation: Drawing without Replacement

- Each case is left out exactly once per iteration
- Repetitions aka iterations possible with *k*-fold or leave-*n*-out cross validation
- Leave-one-out cannot be iterated

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size

Validation

..........

Resampling for Model Validation: Assumptions

- Surrogate model equals model of whole sample
- Surrogate models equal to each other
- All cases come from the same distribution

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

Validation

Jptimization

Resampling for Model Validation: Assumptions

- Surrogate model equals model of whole sample
- ✗ Violation → pessimistic bias
- Surrogate models equal to each other
- All cases come from the same distribution

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

Validation

vanuation

ptimization

Resampling for Model Validation: Assumptions

- Surrogate model equals model of whole sample
- ✗ Violation → pessimistic bias
- Surrogate models equal to each other
- ✗ Violation (instability) → higher variance
- All cases come from the same distribution

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

Validation

punnzation .

Model Stability

- Subsamples are perturbed versions of real sample
- Measure stability of model
 - Stability of model parameters
 - Stability of predictions
- Repetitions reduce variance due to instability of surrogate models.

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes
Resampling

Model Stability

Sample Size

Validation

validation

Optimization

Model Stability: 40× 8-fold cross validation

- FTIR images of tumour sections (normal, °II, °III, °IV)
- total: 150 images of 58 patients: 133 000 spectra smallest class: °II, 4800 spectra (3 patients, 5 images)
- LDA after automatic selection of 8 spectral regions
- reject spectra with posterior probability < 0.85

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size

Validation

How many cases do we need?

.. to train a good classifier?

- rules of thumb linear model: $\frac{n}{p} \ge 3 5$ in each class
- ⇒ learning curve

.. to measure the model's performance?

- --- confidence intervals for test results
- Rules of thumb
 100 test cases to estimate a proportion
- Regression → needs preliminary experiment

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

Validation

alluation

optimizatioi

Validation: Questions

- Did you ask the right question?
- Or did you use a surrogate?
 - Is that surrogate appropriate?
 - What are the limits?
- Is your model set up correctly?
 - Is it really a classification problem?
 - one-class vs. discriminative?
 - open-world vs. closed-world?
 - correct scale of y? Other transformation better?
- Do you use the correct controls/base class or correct 0-point (center, origin) of regression?
- What happens with out-of-spec cases (unknown class? bad measurements?)

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

Jumpic Oil

Validation

Optimization

Validation: Questions

- Bias introduced by data acquisition procedure?
 - Labeling procedure with self-fulfilling prophecies (e.g. cluster analysis as basis for labeling, semi-supervised label generation)?
- What about borderline cases?
 - Do your *labeled* cases correctly represent them?
 - No exclusion of "difficult" cases in the reference labeling step?
- What other confounders could exist?
- What are the limits of your method?
- reading suggestions on reproducibility issues in medical research:
 - Buchen, L.: Cancer: Missing the mark. Nature, 2011, 471, 428 432
 - Begley, C. G. & Ellis, L. M.: Drug development: Raise standards for preclinical cancer research. Nature, 2012, 483, 531 – 533
 - Ioannidis, J. P. A.: Why Most Published Research Findings Are False, PLoS Med 2(8): e124
 - ...

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

Validation

pumization

CHEMO

Ruggedness: Perturb Data

- How robust are the predictions?
- Which factors (confounders) have most influence?
- Perturb Data
 - Repeated cross validation:
 How do predictions vary if a few training cases are exchanged?
 stability of predictions
 - Simulate instrument related distortions:
 Measure respective drop in performance

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

Validation

anuation

ptimization

gression

Beleites, C. & Salzer, R.: Assessing and improving the stability of chemometric models in small sample size situations Anal Bioanal Chem, 2008. 390. 1261-1271

Hyperparameters

- available: PCR (Xtrain, no_PCs, center)
- wanted: PCR_tuned (Xtrain)

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability

Sample Size

Validation

Optimization

training data

Idea:

- sensible range of hyperparameters
- build covering this search space
- measure performance
- take the best
- ⇒ Optimize predictive performance
- ✓ Large variety of numerical optimizers available exhaustive grid search, genetic optimizers, simulated annealing, . . .

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

Validation

railuation

Optimization

training data

validation data

Idea:

- sensible range of hyperparameters
- build covering this search space
- measure performance
- take the best
- ⇒ Optimize predictive performance
- ✓ Large variety of numerical optimizers available exhaustive grid search, genetic optimizers, simulated annealing, ...

Validation & **Optimization**

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

Validation

Optimization

training data

validation data

Idea:

- sensible range of hyperparameters
- build covering this search space
- measure performance
- take the best
- ⇒ Optimize predictive performance
- - Careful: valdiation data enters model building process ⇒ need another independent set to validate the *final* model

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

alidation

Optimization

araccion

training data

validation data

test data

Idea:

- sensible range of hyperparameters
- build covering this search space
- measure performance
- take the best

⇒ Optimize predictive performance

- ★ Careful: valdiation data enters model building process ⇒ need another independent set to validate the final model

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

alidakian

Optimization

jression

training data

validation data

test data

- fit normal parameters (coefficients) with training set
- fit hyperparameters with validation set
- validate chosen model with test set

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

Validation

Optimization

training data validation data test data

- fit normal parameters (coefficients) with training set
- fit hyperparameters with validation set
- validate chosen model with test set

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

Validation

andation

Optimization

training data optimization data verification data

- fit normal parameters (coefficients) with training set
- fit hyperparameters with validation set optimization aka development set
- validate chosen model with test set final verification set

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

Validation

alluation

Optimization

training data optimization data verification data

- fit normal parameters (coefficients) with training set
- fit hyperparameters with validation set optimization aka development set
- validate chosen model with test set final verification set
- ✓ resampling version: nested/double cross validation

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

/alidation

Optimization

training data optimization data verification data

- fit normal parameters (coefficients) with training set
- fit hyperparameters with validation set optimization aka development set
- · validate chosen model with test set final verification set
- ✓ resampling version: nested/double cross validation
- ✓ train (X, hyperparameters) vs. tuned_train (X)
 - tuned training function: additional internal split for tuning

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

rational and

Optimization

training data

test data

- fit normal parameters (coefficients) with training set
- fit hyperparameters with validation set optimization aka development set
- · validate chosen model with test set final verification set
- ✓ resampling version: nested/double cross validation
- ✓ train (X, hyperparameters) vs. tuned_train (X)
 - tuned training function: additional internal split for tuning
 - ✓ treat tuned_train (X) like any other training function

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

rational and

Optimization

.

gression

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

Validation

Optimization

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

Validation

Optimization

Regression

Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

Validation

Optimization

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

Validation

andation

Optimization Regression

Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

Validation

valluation

Optimization

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

Validation

Optimization

Summary: Validation

- ✓ Think hard about your data, model, and application!
- Sample size planning: calculate from required precision of validation results possibly from preliminary experiment
- At some point, validation studies are needed.
 Before that, use repeated cross validation or out-of-bootstrap.
- Determine independent splitting
- ✓ Check stability of predictions and if possible model parameters
- Resampling cannot detect drift
- Hold-out is inefficient and prone to the same errors as resampling!

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability
Sample Size

....

ranuation

Optimization

Summary: Data-driven model Optimization

- ✓ Needs internal performance estimate plus outer independent validation
- ✗ → large sample size required
- ✓ wrap optimization in tuned_model function
- ✓ validate output of tuned_model like any other model training function
- Check stability of optimization
- ✓ Use 1-sd-rule to guard against overfitting
- Class membership probability predicted: MSE (Brier's Score) has low variance and is proper scoring rule
 - → suitable for optimization

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

.

Ontimization

Regression

Ordinary Regression $\mathbf{Y}^{(n \times m)} = \mathbf{X}^{(n \times p)} \mathbf{B}^{(p \times m)}$

$$\mathbf{Y}^{(n\times m)} = \mathbf{X}^{(n\times p)}\mathbf{B}^{(p\times m)}$$

- assume error on y (I)
- \checkmark causality: I = f(c)
- efficient estimation of calibration line parameters

Inverse Regression

- assume error on x (c)
- \checkmark prediction: c = f(I)
- ✓ efficient estimation of y

 \times needs $p \leq m$

Validation & **Optimization**

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling Model Stability

Sample Size

Validation

Optimization

Univariate Linear Regression

$$\mathbf{Y}^{(n\times m)} = \mathbf{X}^{(n\times p)}\mathbf{B}^{(p\times m)}$$

У	X
1	2
2	3
3	4
4	5
5	6

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

Validation

Optimization

Multivariate Linear Regression

$$\mathbf{Y}^{(n\times m)} = \mathbf{X}^{(n\times p)}\mathbf{B}^{(p\times m)}$$

У	X 1	\mathbf{x}_2	\mathbf{x}_3
1	2	7	3
2	3	5	5
3	4	3	-2
4	5	1	7
5	6	-1	0

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

Validation

Optimization

Linear Models: Polynomial Features

$$\mathbf{Y}^{(n\times m)} = \mathbf{X}^{(n\times p)}\mathbf{B}^{(p\times m)}$$

у	X
1	2 3
2	3
3	4
2 3 4 5	4 5
5	6

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

Validation

Optimization

Linear Models: Polynomial Features

$$\mathbf{Y}^{(n\times m)} = \mathbf{X}^{(n\times p)}\mathbf{B}^{(p\times m)}$$

У	χ ⁰	Χ¹	χ²
1	1	2	4
2	1	3	9
3	1	4	16
4	1	5	25
5	1	6	36

0

Validation & Optimization

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

Validation

Optimization

Questions?

Please contact me (Claudia.Beleites@chemometrix.gmbh) if you

- have questions, or
- want to reuse these slides.

Validation & **Optimization**

C. Beleites

Introduction

Figures of Merit

Verification Schemes

Resampling

Model Stability Sample Size

Validation

Optimization

