## **Heart Disease Prediction**

### Goal:

Aim of the project is to determine if the patient has the heart disease or not based on the culture blood test report .

### **Data**

This database contains 14 physical attributes based on physical testing of a patient. Blood samples are taken and the patient also conducts a brief exercise test. The "goal" field refers to the presence of heart disease in the patient. It is integer (0 for no presence, 1 for presence). In general, to confirm 100% if a patient has heart disease can be quite an invasive process, so if we can create a model that accurately predicts the likelihood of heart disease, we can help avoid expensive and invasive procedures.

#### Content

### Attribute Information:

- age
- sex
- chest pain type (4 values)
- resting blood pressure
- serum cholestoral in mg/dl
- fasting blood sugar > 120 mg/dl
- resting electrocardiographic results (values 0,1,2)
- maximum heart rate achieved
- exercise induced angina
- oldpeak = ST depression induced by exercise relative to rest
- the slope of the peak exercise ST segment
- number of major vessels (0-3) colored by flourosopy
- thal: 3 = normal; 6 = fixed defect; 7 = reversable defect
- target:0 for no presence of heart disease, 1 for presence of heart disease

Original Source: https://archive.ics.uci.edu/ml/datasets/Heart+Disease

### Creators:

Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D. University Hospital, Zurich, Switzerland: William Steinbrunn, M.D. University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D. V.A. Medical Center, Long Beach and Cleveland Clinic Foundation: Robert Detrano, M.D., Ph.D.

# #1 Perfor Exploratory analysis

# #2 Check Missing data ,Duplicates

# #3 Data Visualizations







#4 Train | Test Split and Scaling

# #5 Perform a train test split on the data, with the test size of 10% and a random\_state of 101

#6 Create a StandardScaler object and normalize the X train and test set feature data. Make sure you only fit to the training data to avoid data leakage (data knowledge leaking from the test set).

#7 Create a Logistic Regression model and use Cross-Validation to find a well-performing C value for the hyper-parameter search. You have two options here, use LogisticRegressionCV OR use a combination of LogisticRegression and GridSearchCV. The choice is up to you.

#8 Report back your search's optimal parameters, specifically the C value.

#9 Report back the model's coefficients

#10 Create a visualization of the coefficients by using a barplot of their values



### **#11 Model Performance Evaluation**

### **Create the following evaluations**

- \* Confusion Matrix Array
- \* Confusion Matrix Plot
- \* Classification Report

## \* Confusion Matrix Array

# \* Confusion Matrix Plot



## \* Classification Report

| precision    | recal | f1-so | core | sup | port |    |    |
|--------------|-------|-------|------|-----|------|----|----|
| 0            | 0.86  | 0.8   | 30   | 0.8 | 3    | 15 |    |
| 1            | 0.82  | 0.8   | 0.88 |     | 0.85 |    |    |
| accuracy     | /     |       |      | 0.8 | 4    | 31 |    |
| macro av     |       | 0.84  | 8.0  | 84  | 0.84 |    | 31 |
| weighted avg |       | 0.84  |      | 84  | 0.84 |    | 31 |

### Performance Curves





# Finally do the Prediction for the following patient

## A patient with the following features has come into the medical office:

age 48.0 sex 0.0 cp 2.0 trestbps 130.0

275.0 chol fbs 0.0 1.0 restecg thalach 139.0 exang 0.0 oldpeak 0.2 slope 2.0 0.0 ca thal 2.0