2018年全国统一高考化学试卷(新课标 I)

- 一、选择题(共7小题,每小题6分,满分42分)
- 1. (6分)磷酸亚铁锂(LiFePO₄)电池是新能源汽车的动力电池之一,采用湿法冶金工艺回收废旧磷酸亚铁锂电池正极片中的金属,其流程如下:

下列叙述错误的是()

- A. 合理处理废旧电池有利于保护环境和资源再利用
- B. 从"正极片"中可回收的金属元素有 AI、Fe、Li
- C. "沉淀"反应的金属离子为 Fe3+
- D. 上述流程中可用硫酸钠代替碳酸钠
- 2. (6分)下列说法错误的是()
 - A. 蔗糖、果糖和麦芽糖均为双糖
 - B. 酶是一类具有高选择催化性能的蛋白质
 - C. 植物油含不饱和脂肪酸酯,能使 Br₂/CCl₄ 褪色
 - D. 淀粉和纤维素水解的最终产物均为葡萄糖
- 3. (6分) 在生成和纯化乙酸乙酯的实验过程中,下列操作未涉及的是

- 4. (6分) N_A是阿伏加德罗常数的值,下列说法正确的是()
 - A. 16.25gFeCl₃, 水解形成的 Fe (OH)₃ 为胶体粒子数为 0.1N_A
 - B. 22.4L(标准状况) 氩气含有的质子数为 18N。

- C. 92.0g 甘油 (丙三醇) 中含有羟基数为 1.0N_A
- D. 1.0molCH₄与 Cl₂在光照下生成 CH₃Cl 的分子数为 1.0N₄
- 5. (6分)环之间共用一个碳原子的化合物称为螺环化合物,螺(2,2)戊烷())是最简单的一种,下列关于该化合物的说法错误的是()
 - A. 与环戊烯互为同分异构体B. 二氯化物超过两种
 - C. 所有碳原子均处同一平面 D. 生成 $1 \text{molC}_5 H_{12}$,至少需要 2molH_7
- 6. (6分)主族元素 W、X、Y、Z的原子序数依次增加,且均不大于 20. W、X、Z 最外层电子数之和为 10; W 与 Y 同族; W 与 Z 形成的化合物可与浓硫酸反应,其生成物可腐蚀玻璃。下列说法正确的是()
 - A. 常温常压下 X 的单质为气态
 - B. Z 的氢化物为离子化合物
 - C. Y和 Z 形成的化合物的水溶液呈碱性
 - D. W 与 Y 具有相同的最高化合价
- 7. (6分)最近我国科学家设计了一种 CO₂+H₂S 协同转化装置,实现对天然气中 CO₂和 H₂S 的高效去除。示意图如右所示,其中电极分别为 ZnO@石墨烯(石墨烯包裹的 ZnO)和石墨烯,石墨烯电极区发生反应为:
- 1EDTA?Fe $^{2+}$?e $^{?}$ =EDTA?Fe $^{3+}$
- ② 2EDTA© Fe^{3+} + $H_2S=2H^++S+2EDTA©Fe^{2+}$ ió 装 置 工 作 时 , 下 列 叙 述 错 误 的 是

A. 阴极的电极反应: CO₂+2H++2e[®]—CO+H₂O

- B. 协同转化总反应: CO₂+H₂S—CO+H₂O+S
- C. 石墨烯上的电势比 ZnO@石墨烯上的低
- D. 若采用 Fe³⁺/Fe²⁺取代 EDTA®Fe³⁺/EDTA®Fe²⁺,溶液需为酸性

二、解答题(共3小题,满分43分)

- 8. (14分)醋酸亚铬[(CH₃COO)₂Cr•2H₂O]为砖红色晶体,难溶于冷水,易溶于酸,在气体分析中用作氧气吸收剂。一般制备方法是先在封闭体系中利用金属锌作还原剂,将三价铬还原为二价络;二价铬再与醋酸钠溶液作用即可制得醋酸亚铬。实验装置如图所示。回答下列问题:
 - (1) 实验中所用蒸馏水均需经煮沸后迅速冷却,目的是______仪器 a 的名称 是。
 - (2) 将过量锌粒和氯化铬固体置于 c 中,加入少量蒸馏水,按图连接好装置。 打开 K_1 、 K_2 ,关闭 K_3 。
- ①c 中溶液由绿色逐渐变为亮蓝色,该反应的离子方程式为
- ②同时 c 中有气体产生, 该气体的作用是
 - (3) 打开 K₃, 关闭 K₁和 K₂. c 中亮蓝色溶液流入 d, 其原因是_____; d 中析出砖红色沉淀。为使沉淀充分析出并分离,需采用的操作是____、___、洗涤,干燥。
 - (4) 指出装置 d 可能存在的缺点_____

- 9. (14 分)焦亚硫酸钠($Na_2S_2O_5$)在医药、橡胶、印染、食品等方面应用广泛。回答下列问题:
 - (1) 生产 $Na_2S_2O_5$,通常是由 $NaHSO_3$ 过饱和溶液经结晶脱水制得。写出该过程的化学方程式 _____

(2) 利用烟道气中的 SO_2 生产 $Na_2S_2O_5$,的工艺为:

- ①pH=4.1 时, I 中为_____溶液(写化学式)。
- ②工艺中加入 Na_2CO_3 固体,并再次充入 SO_2 的目的是____。

- **10.** (**15** 分)采用 N_2O_5 为硝化剂是一种新型的绿色硝化技术,在含能材料、医药等工业中得到广泛应用。回答下列问题:
 - (1) 1840 年 Devil 用干燥的氯气通过干燥的硝酸银,得到 N_2O_5 ,该反应氧化产物是一种气体,其分子式为_____
- (2) F. Daniels 等曾利用测压法在刚性反应器中研究了 25℃时 N₂O₅(g)分解 反应:

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$

$$1 \downarrow$$

$$2N_2O_4(g)$$

其中 NO_2 二聚为 N_2O_4 的反应可以迅速达到平衡。体系的总压强 ρ 随时间 t 的变化如下表所示($t=\infty$ 时, N_2O_5 (g)完全分解):

t/min	0	40	80	160	260	1300	1700	∞
ρ/kPa	35.8	40.3	42.5	45.9	49.2	61.2	62.3	63.1

①己知: $2N_2O_5$ (g) $=2N_2O_4$ (g) $+O_2$ (g) $\triangle H_1 = 244kJ \cdot mol^{21}$

 $2NO_{2}$ (g) $=N_{2}O_{4}$ (g) $\triangle H_{2}=255.3kJ \cdot mol^{21}$

则反应 N_2O_5 (g) =2 NO_2 (g) + $\frac{1}{2}O_2$ (g) 的 \triangle H=____kJ• $mol^{\otimes 1}$

- ②研究表明, N_2O_5 (g)分解的反应速率 $v=2\times 10^{\tiny 103}\times P$ N_2O_5 ($kPa\bullet min^{\tiny 101}$), t=62min 时,测得体系中 P O_2 =2.9kPa,则此时的 P N_2O_5 = _____kPa, v=_____kPa v=_____kPa v=_____kPa v=_____kPa v=_____kPa v=_____kPa
- ③若提高反应温度至 35℃,则 N₂O₅(g)完全分解后体系压强 P_∞(35℃)_____ 63.1kPa(填"大于""等于"或"小于"),原因是_____
- ④25℃时 N₂O₄(g) ⇒2NO₂(g) 反应的平衡常数 K_P=_____kPa(K_p为以分压表示的平衡常数, 计算结果保留 1 位小数)。
 - (3) 对于反应 2N₂O₅ (g) →4NO₂ (g) +O₂ (g) , R. A. Ogg 提出如下反应历程:

第一步: N₂O₅⇒NO₂+NO₃ 快速平衡

第二步 NO₂+NO₃→NO+NO₂+O₂ 慢反应

第三步 NO+NO₃→2NO₂

快反应

其中可近似认为第二步反应不影响第一步的平衡。下列表述正确的是_____(填标号)

- A. v (第一步的逆反应) > v (第二步反应)
- B. 反应的中间产物只有 NO₃
- C. 第二步中 NO₂与 NO₃的碰撞仅部分有效
- D. 第三步反应活化能较高

[化学一选修 3: 物质结构与性质]

11. (15 分) Li 是最轻的固体金属, 采用 Li 作为负极材料的电池具有小而轻、

能量密度大等优良性能,得到广泛应用。回答下列问题:

(1) 下列 Li 原子电子排布图表示的状态中,能量最低和最高的分别为 (填标号)

Α.

 $2s 2p_x 2p_y 2p_z$ В.

- (2) Li⁺与 H[®]具有相同的电子构型, r (Li⁺) 小于 r (H[®]), 原因是。
- (3) LiAlH₄ 是有机合成中常用的还原剂,LiAlH₄ 中的阴离子空间构型是 中心原子的杂化形式为____。LiAlH4中,存在____(填标号)。
- A. 离子键 B. σ键 C. π键 D. 氢键
- (4) Li₂O 是离子晶体,其晶格能可通过图 (a) 的 Bormi®Haber 循环计算得 到。

可知,Li 原子的第一电离能为_____kJ•mol^{®1},O=O 键键能为_____ kJ•mol^{®1}, Li₂O 晶格能为____kJ•mol^{®1}。

(5) Li₂O 具有反萤石结构,晶胞如图(b)所示。已知晶胞参数为 0.4665nm, 阿伏加德罗常数的值为 N_A,则 Li₂O 的密度为_____g•cm^{®3} (列出计算 式)。

[化学一选修 5: 有机化学基础] (15 分)

12. 化合物 W 可用作高分子膨胀剂,一种合成路线如下:

回答下列问题

- (1) A 的化学名称为____。
- (2) ②的反应类型是。
- (3) 反应④所需试剂,条件分别为。
- (4) G的分子式为。
- (5) W 中含氧官能团的名称是。
- (6) 写出与 E 互为同分异构体的酯类化合物的结构简式_____(核磁共振氢谱为两组峰,峰面积比为 1: 1)
- (7) 苯乙酸苄酯() 是花香型香料,设计由苯甲醇为 起始原料制备苯乙酸苄酯的合成路线 (无机试剂任选)。