# Optikai pumpálás

Olar Alex



# Tartalomjegyzék

#### I. Mérés leírás

A mérés során az optikai pumpálás jelenségét vizsgáltuk Rb atomokon, mely során meghatároztuk a folyamatra jellemző időállandókat és a Zeeman-effektus során a giromágneses faktort.

A labor során Rb és Kr gázt tartalmazó kisülési csövet használtunk, az ebből kijövő elektromágneses hullámokat lineárisan polarizáltuk és  $\lambda/4$ -es lemezzel cirkulárisan polarizáltuk.

A fényelnyelést fotodiódával detektáljuk, az adatokat Pythonban értékeltük ki.

### II. Elméleti háttér

Egyensúlyban az egyes energiaszintek betöltöttségét a Boltzmann-eloszlás írja le.

$$\frac{N_B}{N_A} = e^{-\frac{E_B - E_A}{kT}} \tag{1}$$

Három energiaszinttel elérhető populáció inverzió, mely során az A szintről a B szintre pumpáljuk, melyből a C szintre esnek le a gerjesztett elektronok. A szintekre jellemző, hogy  $E_B > E_C > E_A$ . Így közvetve elérhető a pumpálás egy harmadik szint beiktatásával.

A mostani mérés során 4 energiaszintünk van, mágneses térben a Rb atom  $3^2S_{1/2}$  és  $3^2P_{1/2}$  nívója Zeeman-effektus szerint felhasad az elektron spinje szerint. A legalsó A energiaszintről a legfelsőbe (D) kerül a rendszer a gerjesztés hatására, majd alapállapotba, vagy egy felsőbb szintre (B) kerül. Így a betöltöttség A-n csökken és létrejött a pumpálás.

A felírt folyamatok sebességét időállandókkal jellemezhetjük.  $T_1$  jellemzi a pumpálás kikapcsolása esetén a B  $\rightarrow$  A átmenetet,  $T_p$  az A  $\rightarrow$  D átmenetet,  $\tau = (T_1^{-1} + T_p^{-1})^{-1} < T_1, T_p$  pedig a pumpálásra jellemző effektív karakterisztikus idő. Ezen kívül bevezethető még egy időállandó  $(T_2)$  amely a Zeeman-felhasadás megszűnésekor mérhető relaxációs idő.

Először a  $T_2$  és  $\tau$  időállandókat határoztuk meg, amelyekhez figyelembe kell venni a Föld mágneses terét is. Ezután A és B közti energiakülönbségnek megfelelő energiájú (radiofrekvenciás) gerjesztéssel rezonanciát érünk el. Folyamatos

pumpálással populáció-inverziót érünk el A és B közt, és amennyiben a radiofrekvenciás foton energiája pont a Zeeman-felhasadás energiakülönbségének felel meg, indukált emisszió hatására relaxál a rendszer, amely az elnyelt fényintenzitás növekvésében mutatkozik meg. Ezt a fotodióda által észlelt intenzitás csökkenésében jelenik meg. A Zeeman-felhasadás energiaszintjét a ??. egyenlet írja le.

$$\Delta E = \mu_B g_F B \stackrel{!}{=} h\nu \tag{2}$$

A mágneses teret  $B=B_0+b\sin(\omega t)$  alakban változtatjuk, ahol  $b< B_0$ . A szinuszos modulációnak köszönhetően periodusonként 0,1 vagy 2-szer történik rezonancia-átmenet. Leolvasási pontnak azt választjuk, amikor  $\sin(\omega t)$  0 értékénél, azaz periodusonként kétszer jelenik meg rezonancia, azonos időkülönbséggel. A mérést mindkét irányban elvégezzük, ezáltal a kettő átlagával a Föld mágneses terét ki tudjuk kompenzálni. A mérést 4 frekvencián végezzük, azokat egy külön antennával mérjük. A fenti képlet alapján így meghatározható  $g_F$ , külön-külön mindkét Rb izotópra.

### III. $\tau$ időállandó meghatározása

A fotodiódán keletkező feszültséget oszcilloszkóppal mértük, a periodikus jelből kiválasztottam 6 olyan szakaszt, ahol exponenciális görbe figyelhető meg (??. ábra). Ezekre az elmélet szerint számolt  $n = n_0(1 - \exp(-t/\tau))$ -tól eltérően, (a szingularitást elkerülendő)  $f(x) = n_1 + n_2 \exp(-t/\tau)$  görbét illesztettem, amelyből a  $\tau$  összevont időállandó meghatározható.



1. ábra. Helyes feszültség - idő görbe

| $	au_1$ | $	au_2$ | $	au_3$ | $	au_4$ | $	au_5$ | $	au_6$ | $\overline{	au}$ | $\sigma_{	au}$ |
|---------|---------|---------|---------|---------|---------|------------------|----------------|
| 0.00335 | 0.0023  | 0.00259 | 0.00297 | 0.00283 | 0.00266 | 0.00279          | 0.00033        |

1. táblázat.  $\tau$  - átlag és szórás n=6 görbe alapján

## IV. $T_2$ időállandó meghatározása

Ezután megmértük a Zeeman felhasadás megszűnésekor bekövetkező relaxációs folyamat  $T_2$  időállandóját.

Ehhez úgy állítottuk be a Helmholz-tekercsekre kapcsolt periodikus jel amplitúdóját, hogy keletkező mágneses tér egyik félperiódusban pont kioltsa a Föld mágneses terét. Ebben a félperiódusban relaxáció történik, ami a fotodiódán mérhtő intenzitáscsökkenésben mutatkozik meg (??. ábra). Erre exponenciális függvényt illesztve megkaphatjuk a  $T_2$  időállandót.



2. ábra. Feszültség - idő

| $T_{21}$ | $T_{22}$ | $T_{23}$ | $T_{24}$ | $T_{25}$ | $T_{26}$ | $\overline{T_2}$ | $\sigma_{T_2}$ |
|----------|----------|----------|----------|----------|----------|------------------|----------------|
| 0.000708 | 0.000671 | 0.000685 | 0.000535 | 0.000721 | 0.000839 | 0.000693         | 0.000089       |

2. táblázat.  $T_2$  átlaga és szórása n=6 görbe alapján

## V. Rezonancia-átmenet vizsgálata és giromágneses faktor meghatározása

A rendszert négy frekvencián gerjesztettük radiofrekvenciás jellel. A mágneses indukcióvektor nagyságának meghatározásához felhasználtuk a Helmholtztekercsek paramétereit (R=19.3cm, n=80), illetve a ??-as egyenletet.

$$B = \left(\frac{4}{5}\right)^{3/2} \frac{\mu_0 nI}{R} \tag{3}$$

A mért adatokat a ??. és a ??. táblázat tartalmazza. A gerjesztési radiofrekvenciás jel frekvenciáját egy antenna segítségével oszcilloszkópon mértük, leszámolva adott idő alatt megjelenő periódusokat. A giromágneses faktor  $(g_F)$  éppen

az  $E(B\mu_B)$  egyenes meredeksége (??. ábra). A kapott giromágneses faktorok a két izotópra:  $g_{F,1}=0.5154\pm0.0012$  és  $g_{F,2}=0.3414\pm0.0004$ . A mérésből meghatározható a Föld mágneses terének az indukált B irányú vetülete (a két irányban mért B különbségének a fele), amely  $B_F=(14.0\pm0.8)\mu T$ -nak adódott. A kapott giromágneses faktorok jól közelítik az elméleti értéket. A vizsgált rendszerben  $S=1/2, J=1/2, I_1=3/2, I_2=5/2$ . Ekkor  $g_J=2$  adódik, ebből pedig J=1/2 esetén  $g_F=\frac{g_J}{2I+1}$ , behelyettesítve I-t:  $g_{F,1}=0.5, g_{F,2}=0.33$ .

| f (GHz) | $E (10^{-28} J)$ | I (mA) | I (mA) | $B_1 (\mu T)$ | $B_2 (\mu T)$ | $B_{atlag}(\mu T)$ | $B\mu_B(10^{-28}J)$ |
|---------|------------------|--------|--------|---------------|---------------|--------------------|---------------------|
| 0.7957  | 5.272            | 129    | 166    | 96.16         | 123.7         | 109.9              | 10.20               |
| 0.9532  | 6.316            | 161    | 196    | 120.0         | 146.1         | 133.1              | 12.34               |
| 1.049   | 6.953            | 176    | 215    | 131.2         | 160.3         | 145.7              | 13.52               |
| 1.424   | 9.435            | 243    | 285    | 181.1         | 212.4         | 196.9              | 18.25               |

3. táblázat. Az 1. izotópra vonatkozó mért áramerősségek és számolt adatok ( $B_1$  és $B_2$  egymással ellentétes irányú mágneses terek, ezáltal a kettő átlagában már nem jelenik meg a Föld mágneses tere)

| f (GHz) | $E (10^{-28} J)$ | I (mA) | I (mA) | $B_1 (\mu T)$ | $B_2 (\mu T)$ | $B_{atlag}(\mu T)$ | $B\mu_B(10^{-28}J)$ |
|---------|------------------|--------|--------|---------------|---------------|--------------------|---------------------|
| 0.7957  | 5.272            | 205    | 242    | 152.8         | 180.4         | 166.6              | 15.45               |
| 0.9532  | 6.316            | 248    | 286    | 184.9         | 213.2         | 199.0              | 18.46               |
| 1.049   | 6.953            | 276    | 312    | 205.7         | 232.6         | 219.2              | 20.32               |
| 1.424   | 9.435            | 382    | 419    | 284.8         | 312.3         | 298.5              | 27.69               |

4. táblázat. A 2. izotópra vonatkozó mért áramerősségek és számolt adatok



3. ábra. Radiofrekvenciás gerjesztő foton energiája a  $B\mu_B$  függvényében

## VI. Diszkusszió

A mérést másodjára végeztük el többen is, így a jegyzőkönyveink hasonlóak, hasonló forrás alapjn dolgoztunk és az adatokat közösen értékeltük ki.