CLAIMS

We claim:

- 1. A method of scalable purification of adenoviral preparations comprising the steps of:
 - a) culturing host cells comprising adenovirus;
 - b) obtaining supernatants from the host cells of step a);
 - c) applying said supernatants to a centrifugal apparatus comprising a 50% w/v solution of non-ionic gradient;
 - d) applying centrifugal force to said supernatants such that the flow is continuous and directed from bottom-to-top;
 - e) separating the adenoviral particles according to their density; and
 - f) obtaining high-yield fractions comprising active adenoviral particles.
- 2. The method of claim 1, wherein said adenovirus is a human adenovirus.
- 3. The method of claim 2, wherein said human adenovirus is non-oncogenic.
- 4. The method of claim 2, wherein said human adenovirus is human adenovirus serotype-5.
- 5. The method of claim 1, wherein said adenovirus comprises heterologous DNA sequences.
- 6. The method of claim 5, wherein the heterologous DNA sequence comprises a therapeutic gene.
- 7. The method of claim 1, where in the gradient comprises Nycodenz®.
- 8. The method of claim 7, wherein the fraction is obtained from an isodense point of about 55% to about 35% Nycodenz®.
- 9. The method of claim 7, wherein the fraction is obtained from an isodense point of about 45% Nycodenz®.
- 10. The method of claim 1, wherein the continuously flowing liquid comprises a buffered salt solution.
- 11. The method of claim 1, wherein the continuously flowing liquid comprises an adenovirus-laden cell culture supernatant.
- 12. The method of claim 1, wherein the flow rate of step d) is about 40 ml/min.
- 13. The method of claim 1, wherein the fractions are collected using air pressure.
- 14. The method of claim 1, wherein the fractions are collected using water pressure.

- 15. The method of claim 13, wherein the collection of the fractions is aided by use of a pumping mechanism.
- 16. The method of claim 14, wherein the collection of fractions is aided by use of a pumping mechanism.
- 17. The method of claim 15 or 16, wherein the pumping mechanism used is a peristaltic pump.
- 18. A method of preparing a gradient for continuous flow ultracentrifugation comprising:
 - a) filling a rotor with buffer through lines leading into the top and bottom of the rotor;
 - accelerating the rotor while maintaining a buffer flow rate of about 200 ml/min and increasing the buffer flow to about 300 ml/min at a speed of at least 10,000 rpm;
 - c) shifting the direction of flow between top-to-bottom and bottom-to-top at least once;
 - d) loading a density gradient material into the rotor at rest;
 - e) gradually accelerating the rotor while maintaining a buffer flow rate of about 200 ml/min;
 - f) switching the direction of flow to bottom-to-top at about 3200 rpm and reducing the flow rate to about 80 ml/min;
 - g) reducing the flow rate to about 40 ml/min at about 40,500 rpm; and
 - h) forming a gradient.
- 19. A gradient formed by the method of claim 18.