Question Paper

Exam Date & Time: 04-Jul-2023 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

FOURTH SEMESTER B.TECH. DEGREE EXAMINATIONS - JUNE/JULY 2023
SUBJECT: CSE 2254/CSE-2254 - FORMAL LANGUAGES AND AUTOMATA THEORY
(COMPUTER SCIENCE AND ENGINEERING - ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING / COMPUTER
SCIENCE / COMPUTER SCIENCE AND ENGINEERING - CYBER SECURITY)
(MAKEUP)

Marks: 50 Duration: 180 mins.

Answer all the questions.

	4	
1A)	Design a deterministic and non-deterministic finite automaton (dfa and nfa) which accept a string containing "ion" at the end of a string in a string of {a-z}, e.g., "imagination" but not "image". Mention the quintuple representation of both dfa and nfa you designed.	(4)
1B)	Consider the language $L=\{(10)^n: n\geq 0\}$. Prove that Deterministic Finite Automata (DFA) is equivalent to non-Deterministic Finite Automata (NFA) on the language L.	(4)
1C)	The language, $L=\{a^nb^nc^n:n\geq 1\}$ is a context sensitive language. Design context sensitive grammar for the language.	(2)
2A)	The Grammar G, with productions. $S \to S_1 B,$ $S_1 \to aS_1 b,$ $bB \to bbbB,$ $aS_1 b \to aa,$ $B \to \lambda$ Identify whether this is unrestricted grammar or not. Supplement your answer with proper technical justifications.	(2)
2B)	Generate the regular expressions for the sets given below. i) $\{a^n: n \text{ is divisible by 2 or 3 or n=5}\}$ ii) $\{a^2. a^5, a^8, \ldots\}$ iii) The set of all strings on $\{a,b\}$ terminated by either 'a' or 'abb'	(3)
2C)	Identify the languages given below is regular or not and support your answer with proper justifications. i) $L = \{a^nb^mc^k : n, m, k \ge 0\}$ ii) $L = \{a^ib^2j : i, j \ge 0\}$ iii) $L = \{a^n : n \text{ is prime}\}$ iv) $L = \{ww^R : w \in \{a,b\}^*\}$ v) $L = \{a^n : n \ge 100\}$	(5)
3A)	Check whether the grammar S $_{\rightarrow}aSbS$ bSaS λ is ambiguous or not for the sentence "abab" , by deriving two distinct parse trees.	(3)
3B)	Simplify the Grammar given below and convert to Chomsky Normal Form $S \to aBBa \; aB \; aD CC$ $B \to aBD D \lambda$	(3)

	$C \rightarrow aCC bCC$ $D \rightarrow ab cd B$.	
3C)	Show that language $L=\{a^nb^nc^n\mid n>=1\}$ is not CFG using pumping lemma.	(4)
4A)	Construct a PDA for the CFG G= ({S, A, B}, {0,1}, S, {S \rightarrow 0A, A \rightarrow 0AB 1, B \rightarrow 1}) and show the sequence of moves for the string "000111".	(3)
4B)	Construct NPDA for the language L={w \in {a,b}* :n _a (w) =n _b (w)}.	(3)
4C)	Construct DPDA for the language L= $\{a^nb^{2n} c^nd^{2n} \mid n>=1\}$.	(4)
5A)	Design a Turing Machine using the state transition diagram to reverse a given sring w $\{0,1\}$ + such that the input tape will contains final state followed by reversed string.	(4)
5B)	Design a Transducer using state transition diagram to compute the sum or differenc of two positive integers, X and Y. The integers are represented in the Turing machine with equal number of 1's separated by 0.	(4)
5C)	Construct a Grammar to generate a language L= {a ⁿ b ⁿ c ^m n,m≥1}.	(2)

----End-----