

### **General Description**

The MAX3690 serializer is ideal for converting 8-bitwide, 77Mbps parallel data to 622Mbps serial data in ATM and SDH/SONET applications. Operating from a single +3.3V supply, this device accepts TTL clock and data inputs, and delivers a 3.3V differential PECL serialdata output. A fully integrated PLL synthesizes an internal 622MHz serial clock from a low-speed crystal reference clock (77.76MHz, 51.84MHz, or 38.88MHz).

The MAX3690 is available in the extended-industrial temperature range (-40°C to +85°C) in a 32-pin TQFP package.

### **Applications**

622Mbps SDH/SONET Transmission Systems 622Mbps ATM/SONET Access Nodes Add/Drop Multiplexers Digital Cross Connects

### **Features**

- **♦** Selectable Reference Clock Frequency: 77.76MHz, 51.84MHz, or 38.88MHz
- ♦ Single +3.3V Supply
- ♦ 77Mbps (8-bit) Parallel to 622Mbps Serial Conversion
- Clock Synthesis for 622Mbps Serial Data
- ♦ 200mW Power
- **♦ TTL Parallel Clock and Data Inputs**
- ◆ Differential 3.3V PECL Serial-Data Output

### **Ordering Information**

| PART        | TEMP RANGE     | PIN-PACKAGE |
|-------------|----------------|-------------|
| MAX3690ECJ  | -40°C to +85°C | 32 TQFP     |
| MAX3690ECJ+ | -40°C to +85°C | 32 TQFP     |

<sup>+</sup>Denotes lead-free package.

Pin Configuration appears at end of data sheet.

### **Typical Operating Circuit**



Maxim Integrated Products 1

#### ABSOLUTE MAXIMUM RATINGS

| Terminal Voltage (with respect to GND)                        | Continuous Power Dissipation (T <sub>A</sub> = +85°C) |
|---------------------------------------------------------------|-------------------------------------------------------|
| Vcc0.5V to +5V                                                | TQFP (derate 10.2mW/°C above +85°C)663mW              |
| All Inputs, FIL-, FIL+, PCLKO0.5V to (V <sub>CC</sub> + 0.5V) | Operating Temperature Range40°C to +85°C              |
| Output Current                                                | Storage Temperature Range60°C to +160°C               |
| PECL Outputs (SD±)50mA                                        | Lead Temperature (soldering, 10sec)+300°C             |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, \text{PECL loads} = 50\Omega \pm 1\% \text{ to } (V_{CC} - 2 \text{V}), T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted.}$  Typical values are at  $V_{CC} = +3.3 \text{V}, T_A = +25 ^{\circ}\text{C}.)$ 

| PARAMETER              | SYMBOL          | CONDITIONS                        | MIN T                   | YP MAX                  | UNITS |  |
|------------------------|-----------------|-----------------------------------|-------------------------|-------------------------|-------|--|
| Supply Current         | Icc             | PECL outputs unterminated         |                         | 60 100                  | mA    |  |
| CKSET Input Current    | ICKSET          | CKSET = 0 or V <sub>CC</sub>      |                         | 500                     | μΑ    |  |
| PECL OUTPUTS (SD±)     | <u> </u>        |                                   | <u>'</u>                |                         |       |  |
| Output High Voltage    | Vari            | $T_A = 0$ °C to +85°C             | Vcc - 1.025             | Vcc - 0.88              | V     |  |
|                        | VoH             | T <sub>A</sub> = -40°C            | V <sub>CC</sub> - 1.085 | V <sub>C</sub> C - 0.88 |       |  |
| Output Low Voltage     | \/              | $T_A = 0$ °C to +85°C             | V <sub>CC</sub> - 1.81  | V <sub>CC</sub> - 1.62  | V     |  |
|                        | VoL             | TA = -40°C                        | Vcc - 1.83              | Vcc - 1.555             |       |  |
| TTL INPUTS AND OUTPUTS | S (PCLKI, RCLK  | K, PCLKO, PD_)                    |                         |                         |       |  |
| Input High Voltage     | VIH             |                                   | 2.0                     |                         | V     |  |
| Input Low Voltage      | VIL             |                                   |                         | 0.8                     | V     |  |
| Input High Current     | Iн              | V <sub>IN</sub> = V <sub>CC</sub> | -10                     | 10                      | μΑ    |  |
| Input Low Current      | I <sub>IL</sub> | $V_{IN} = 0$                      | -10                     | 10                      | μΑ    |  |
| Output High Voltage    | Voн             | IOH = 400µA                       | 2.4                     |                         | V     |  |
| Output Low Voltage     | VoL             | I <sub>OL</sub> = -400μA          |                         | 0.44                    | V     |  |
|                        |                 | I .                               |                         |                         |       |  |

### **AC ELECTRICAL CHARACTERISTICS**

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, \text{PECL loads} = 50\Omega \pm 1\% \text{ to } (V_{CC} - 2 \text{V}), \text{ all TTL thresholds set to } V_{CC}/2, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted.}$  Typical values are at  $V_{CC} = +3.3 \text{V}, T_A = +25 ^{\circ}\text{C}.)$  (Note 1)

| PARAMETER                                                     | SYMBOL                          | CONDITIONS                                                | MIN  | TYP    | MAX | UNITS             |
|---------------------------------------------------------------|---------------------------------|-----------------------------------------------------------|------|--------|-----|-------------------|
| Serial Clock Rate                                             | fsclk                           |                                                           |      | 622.08 |     | MHz               |
| Parallel Data Setup Time                                      | tsu                             |                                                           | 1200 |        |     | ps                |
| Parallel Data Hold Time                                       | tH                              |                                                           | 1000 |        |     | ps                |
| Allowable Parallel Clock Output to Parallel Clock Input Delay | tskew                           |                                                           | 0    |        | 5.0 | ns                |
| Output Random Jitter                                          | Φ0                              |                                                           |      |        | 11  | ps <sub>RMS</sub> |
| PECL Differential Output<br>Rise/Fall Time                    | t <sub>R</sub> , t <sub>F</sub> | 20% to 80%                                                |      | 200    |     | ps                |
| TTL Output Rise Time                                          | t <sub>R</sub>                  | C <sub>LOAD</sub> = 15pF, V <sub>OUT</sub> = 0.8V to 2.0V |      | 650    |     | ns                |
| TTL Output Fall Time                                          | tF                              | CLOAD = 15pF, V <sub>OUT</sub> = 0.8V to 2.0V             |      | 550    |     | ns                |

**Note 1:** AC characteristics guaranteed by design and characterization.

Note 2: All TTL thresholds set to V<sub>CC</sub> / 2.

**Typical Operating Characteristics** 

( $V_{CC} = +3.3V$ ,  $T_A = +25$ °C, unless otherwise noted.)







#### **SERIAL DATA RANDOM JITTER** $(R_{CLKI} = 77.76MHz)$







#### **SERIAL-DATA OUTPUT EYE DIAGRAM** (622Mbps, PRBS)



**Pin Description** 

| PIN                                            | NAME    | FUNCTION                                                                                                                                                                              |  |
|------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1–8                                            | PD0-PD7 | TTL Parallel-Data Inputs. Data is clocked in on the PCLKI signal's positive transition.                                                                                               |  |
| 9, 10, 17,<br>18, 19, 24,<br>25, 26,<br>31, 32 | GND     | Ground                                                                                                                                                                                |  |
| 11                                             | PCLKO   | TTL Parallel-Clock Output. Use positive transition of PCLKO to clock the overhead management circuit.                                                                                 |  |
| 12, 13, 16,<br>21, 28, 29                      | Vcc     | +3.3V Supply Voltage                                                                                                                                                                  |  |
| 14                                             | SD-     | Inverting PECL Serial-Data Output                                                                                                                                                     |  |
| 15                                             | SD+     | Noninverting PECL Serial-Data Output                                                                                                                                                  |  |
| 20                                             | CKSET   | Reference Clock Rate Programming Pin. CKSET = open: Reference clock rate = 77.76MHz CKSET = 20kΩ to GND: Reference clock rate = 51.84MHz CKSET = GND: Reference clock rate = 38.88MHz |  |
| 22                                             | FIL-    | Filter Capacitor Input. Connect a 1µF capacitor between FIL- and VCC.                                                                                                                 |  |
| 23                                             | FIL+    | Filter Capacitor Input. Connect a 1µF capacitor between FIL- and VCC.                                                                                                                 |  |
| 27                                             | RCLK    | TTL Reference-Clock Input. Connect a crystal reference clock (77.76MHz, 51.84MHz or 38.88MHz the RCLK input. The active edge is the positive transitioning edge.                      |  |
| 30                                             | PCLKI   | TTL Parallel-Clock Input. Connect the incoming parallel-data-clock signal to the PCLKI input. The active edge is the positive transitioning edge.                                     |  |

### **Detailed Description**

The MAX3690 serializer comprises an 8-bit parallel input register, an 8-bit shift register, control and timing logic, a PECL output buffer, TTL input/output buffers, and a frequency-synthesizing PLL (consisting of a phase/frequency detector, loop filter/amplifier, voltage-controlled oscillator, and programmable prescaler). This device converts 8-bit-wide, 77Mbps parallel data to 622Mbps serial data (Figure 1).

The PLL synthesizes an internal 622MHz reference used to clock the output shift register. This clock is generated by locking onto the external crystal reference clock signal (RCLK) operating at either 77.76MHz, 51.84MHz, or 38.88MHz. The incoming par-

allel data is clocked into the MAX3690 on the rising transition of the parallel-clock-input signal (PCLKI). The control and timing logic ensure proper operation if the parallel-input register is latched within a window of time that is defined with respect to the parallel-clock-output signal (PCLKO). PCLKO is the synthesized 622MHz internal serial-clock signal divided by eight. Parallel-clock output to parallel-clock-input delay (skew) must be observed. Figure 2 shows the timing diagram.

### **PECL Outputs**

The serial-data PECL outputs (SD+, SD-) require  $50\Omega$  DC termination to (V<sub>CC</sub> - 2V). See the *Alternative PECL-Output Termination* section.



Figure 1. Functional Diagram



Figure 2. Timing Diagram

### Applications Information

### **Alternative PECL-Output Termination**

Figure 3 shows alternative PECL-output-termination methods. Use Thevenin-equivalent termination when a (V<sub>CC</sub> - 2V) termination voltage is not available. If AC coupling is necessary, be sure that the coupling capacitor is placed following the  $50\Omega$  or Thevenin-equivalent DC termination.

### **Layout Techniques**

For best performance, use good high-frequency layout techniques. Filter voltage supplies and keep ground connections short. Use multiple vias where possible. Also, use controlled-impedance transmission lines to interface with the MAX3690 data outputs.



Figure 3. Alternative PECL-Output Termination

### Pin Configuration



### Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <a href="https://www.maxim-ic.com/packages">www.maxim-ic.com/packages</a>.)



Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.