

Deep Learning in R with Keras

Doug Ashton

Twitter: @mangothecat

Email: training@mango-solutions.com

Agenda

- Introduction to Deep Learning
- First neural network with Keras
- Networks for Spatial Data (CNN)

About Us

- Your Trainer:
 - Principal Data Scientist @ Mango
 - @dougashton
- Mango

mangothecat

training@mango-solutions.com

3 Core Teams @ Mango

Data Science

Customer-focused analytic consultants with math/stat backgrounds using technologies such as R, SAS, Python, Spark & Julia

Data Engineering

IT Consultants creating and supporting robust, performant and scalable analytic infrastructure using server, grid or cloud

Data Products

Software Developers building rich analytic web or desktop applications using technologies such as Java, .NET and JavaScript

Introduction to Deep Learning

What is Deep Learning?

What is Deep Learning?

(shallow)

What is Deep Learning?

What Does it Solve?

- Unstructured
 - Features are learned rather than designed
- Big
 - Generally need lots of data
- Familiar
 - Can reuse models on new problems

Spatial

- Computer vision
- Audio
- Time series: pattern recognition

Sequential

- Language
- Time series: Forecasting

Report inappropriate predictions

Reinforcement/Adversarial

- AlphaGo
- Generative Networks

Why Now?

- Breakthrough in underlying algorithm
 - Back Propagation
- Massive increase in computer power
 - GPU / TPU
- Much larger datasets available
- Keras...

Neural Networks

A Neuron

0.2

Neurons

Neural Network

Input layer More abstract Hidden layers Output layer

Iris Neural Network

Iris Neural Network

TensorFlow

- Turns equations into dataflow graphs
 - https://www.tensorflow.org

- Efficient numerical solver
- Built for CPU, GPU, and TPU
- Not only for neural networks

TensorFlow and R

- RStudio built an R interface
 - https://tensorflow.rstudio.com

- Python <-> R handled by reticulate
 - https://rstudio.github.io/reticulate

Keras

- High level interface specifically for neural networks
 - https://keras.io
 - François Chollet
- Works with multiple backends
 - TensorFlow, CNTK, Theano

Keras and R

- Rstudio built an interface to Keras
 - https://keras.rstudio.com

- Works with multiple backends
 - TensorFlow, CNTK, Theano

Keras and R Book

Deep Learning with R

- François Chollet
- J. J. Allaire

Manning

How it fits together

Alternatives for R Users

- MXNet
 - https://mxnet.incubator.apache.org/api/r/

RStudio Cloud

https://rstudio.cloud/project/489173

- Make an account
- Make a copy of the project

github.com/mangothecat/keras-workshop

On your own machine

library(keras) install_keras() # can take a while

First Keras Model

- Prepare Data
- Model
- Evaluate

Prepare Data

- Split train and test
- Numeric Matrices/Arrays
 - Factors
 - Scaling
 - Missing values

Prepare - Split Data

Prepare - Recipes

- Reusable pre-processing recipes
 - Define a "recipe"
 - "prep" on training data
 - "bake" on test data

Prepare - One Hot Encode

```
library (recipes)
dummy recipe <- empty recipe %>%
  step dummy (Species, one hot = TRUE,
             role = "outcome")
dummy recipe %>%
 prep(fullData$train) %>%
 bake(fullData$train, all outcomes()) %>%
 head()
```


Prepare - Centre Scaling

```
scale recipe <- empty recipe %>%
  step center(all predictors()) %>%
  step scale(all predictors())
scale recipe %>%
  prep(fullData$train) %>%
  bake (fullData$train,
       all predictors()) %>%
  head()
```


Prepare - NAs

- Can't have NAs
- Impute 0 (mean)
 - -map(fullData, replace_na, replace
 = 0)
- Or look at recipes step_[*]impute() functions
- No NAs in iris

All together

Prepare - Matrices

Exercise

- Load the Breast Cancer Data
- Create a train/test split (80/20)
- Remove the ID column
- Prepare the data for Keras
 - Create dummy variables
 - Scale the data
 - Replace missing values

Model

- Networks can have complex shapes
- Sequential models are linear stack
 model <- keras_model_sequential()
- Model objects change in place

Model - Layers

- Only need input shape once
- Shape doesn't include observations

Model - Dense Layers

Model - Softmax Layer

- Usually on the output
- Use for categorical output

Model - Softmax Layer

Model - Summary

> model Model

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 10)	50
dense_2 (Dense)	(None, 3)	33

Total params: 83

Trainable params: 83

Non-trainable params: 0

Compile

```
model %>% compile(
  optimizer = 'rmsprop',
  loss = 'categorical_crossentropy',
  metrics = 'accuracy'
)
```

- Optimizer: Mostly rmsprop
- Metrics: Mostly accuracy
- Loss: 3 main choices

Compile - Loss

Output	Loss Function
Binary Classification	binary_crossentropy
Multi-class Classification (single label)	categorical_crossentropy
Multi-class Classification (multiple labels)	binary_crossentropy
Regression	mse

Fit

```
history <-
  model %>%
    fit (xIris$train,
        yIris$train,
        epochs = 100,
        validation data =
              list(xIris$test,
                   yIris$test))
```


Exercise

Using the pre-cleaned Breast Cancer Data:

- Create a model with:
 - A dense layer with 5 hidden units
 - A dense, output layer using the "sigmoid" activation function
- Compile the model using "binary_crossentropy" as the loss function
- Fit the model over 20 epochs

Exercise

- Using the model that you built in the last exercise and the pre-cleaned test breast cancer data evaluate the performance of your model
- Predict the classes for the test data

Improving the Model

- Change number of hidden units
- Add more layers
- Add dropout
 - Helps prevent overfitting
- Mostly trial and error

Dropout

Dropout

Networks for Spatial Data

Convolutional Neural Networks

- Accelerometer data from the UCI
- Filtered to walking activity
- 15 Different people
- Can we recognise someone by their gait?
- Chopped into 5 second chunks

Walking[50,,]

Person 1

Walking[4100,,]

Person 10

Exercise

Load the walking data.

```
walking <- readRDS("/data/walking.rds")</pre>
```

- Create two lists, xWalk and yWalk, each with an 80:20 split of train and test sets for x and y data respectively.
- (hint) nr <- nrow(walking\$y)
- ids <- sample(nr, size = nr*0.8)


```
xWalk <- readRDS("/data/xWalk.rds")
yWalk <- readRDS("/data/yWalk.rds")</pre>
```


Convolution Layer

Convolution Layer - Filters

Max Pooling

Flattening

Exercise

- Reproduce the above model and compile it.
- Train the model with fit and assess performance on the validation set over 15 epochs.
- How does this compare to only using dense layers (you'll still need to flatten)?

CNN Architectures - VGG

Exercise

- How do further epochs affect performance?
- Try changing the kernel size and number of filters. How does this affect your results?
- Try adding more dense layers. How does this affect training time and model performance?
- Try adding a dropout layer.

What Next?

Pre-trained Networks

CloudML

