GIUSEPPE TURINI

CS-102 COMPUTING AND ALGORITHMS 2 LESSON 04 RECURSION AS A PROBLEM-SOLVING TECHNIQUE

HIGHLIGHTS

Backtracking and the Eight Queens Problem

Languages and Grammars

Definition of Language and Grammar, and Recursive Grammars Java Identifiers, Palindromes, and AⁿBⁿ Strings

Algebraic Expressions

Infix Expressions, Prefix Expressions, and Postfix Expressions Fully Parenthesized Expressions

Recursion and Mathematical Induction

The Relationship Between Recursion and Mathematical Induction The Correctness of the Recursive Factorial Method The Cost of Towers of Hanoi

BACKTRACKING

Backtracking: A strategy to make successive guesses at a solution. If a particular guess leads to a dead end, **you back up to that guess and replace it with a different guess**. Retrace steps in reverse order and then try a new sequence of steps is called backtracking, and can be combined with recursion to solve problems.

THE EIGHT QUEENS PROBLEM: DEFINITION AND BRUTE-FORCE STRATEGY

Place **8** queens on a chessboard (**8x8**) so that no queen can attack another queen. Find a solution between the **4426165368** ways to arrange **8** queens on **64** squares.

See: en.wikipedia.org/wiki/eight_queens_puzzle

Note: 4426165368 is the number of **combinations** (i.e. the order of items does not matter) without repetition of **8** (i.e. **k**) distinct items of a set of **64** (i.e. **n**) items, or:

See: <u>en.wikipedia.org/wiki/binomial_coefficient</u>

$$\frac{64!}{8! (64-8)!} = \frac{64 \times 63 \times 62 \times 61 \times 60 \times 59 \times 58 \times 57}{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} = 4426165368$$

$$\frac{n!}{k! (n-k)!} = \binom{n}{k} = \text{binomial coefficient}$$

THE EIGHT QUEENS PROBLEM: DEFINITION AND BRUTE-FORCE STRATEGY

An observation that eliminates many arrangements from consideration is that: **no queen can reside in a row or a column that contains another queen**. So now only **40320** arrangements of queens need to be checked for attacks along diagonals.

Note: 40320 are the combinations without repetition of **8** distinct items:

$$\frac{(8\times8)\times(7\times7)\times\cdots\times(2\times2)\times(1\times1)}{8\times7\times6\times5\times4\times3\times2\times1} = 40320$$

THE EIGHT QUEENS PROBLEM: BACKTRACKING STRATEGY

Providing organization for the guessing strategy:

- place queens one column at a time;
- if you reach an impasse, backtrack to the previous column.

Example: 5 queens that cannot attack each other, but that can attack all of column 6 **(a)**; backtracking to column 5 to try another square for the queen on column 5 **(b)**; backtracking to column 4 to try another square for the queen on column 4, then considering column 5 again **(c)**.

THE EIGHT QUEENS PROBLEM: A RECURSIVE ALGORITHM

Base Case: If there are no more columns to consider, you are finished.

Recursive Step:

- 1. if you successfully place a queen in current column,
 - a. consider the next column (i.e. **smaller problem**);
- 2. if you cannot place a queen in the current column,
 - a. you need to backtrack.

In figure, a **solution to the Eight Queens** problem:

See: <u>en.wikipedia.org/wiki/eight_queens_puzzle</u>

THE EIGHT QUEENS PROBLEM: ALGORITHMS AND DATA STRUCTURES

QUEENS A

```
// Class Queens implementing the chessboard for the Eight Queens problem.
public class Queens {
   public static final int BOARD_SIZE = 8; // Squares per row or column.
   public static final int EMPTY = 0; // Flag to indicate an empty square.
   public static final int QUEEN = 1; // Flag to indicate a square containing a queen.
   private int board[][]; // Chessboard.
   // Default constructor, creates an empty chessboard.
   public Queens() { board = new int[ BOARD_SIZE ][ BOARD_SIZE ]; }
   // Clears the chessboard setting all squares to EMPTY.
   public void clearBoard() {
      for( int row = 0; row < BOARD_SIZE; row++ ) {</pre>
         for( int col = 0; col < BOARD_SIZE; col++ ) { board[row][col] = EMPTY; } } }</pre>
```

QUEENS B

```
// Displays the chessboard.
public void displayBoard() {
   for( int row = 0; row < BOARD_SIZE; row++ ) {
      for( int col = 0; col < BOARD_SIZE; col++ ) {
        System.out.print( board[row][col] + " " ); }
      System.out.println(); } }</pre>
```


QUEENS C

```
// Places queens in columns of the board beginning at the column specified.
// Precondition: queens are placed correctly in columns 1 through col-1.
// Postcondition: returns true if a solution is found, otherwise returns false.
public boolean placeQueens( int col ) {
   if( col > BOARD_SIZE ) { return true; } // Base case.
   else {
      boolean queenPlaced = false; int row = 1;
      while( !queenPlaced && ( row <= BOARD_SIZE ) ) {</pre>
         // If square can be attacked by a queen, consider next square in column.
         if(isUnderAttack( row, col ) ) { row++; }
         else { // Place queen and consider next column.
            setQueen( row, col );
            queenPlaced = placeQueens( col + 1 );
            // If no queen is placeable in next column, backtrack.
            // Remove queen placed earlier, and try next square in column.
            if( !queenPlaced ) { removeQueen( row, col ); row++; } } }
      return queenPlaced; } } // Return result.
```


QUEENS D

```
// Sets a queen at square indicated by row and column.
private void setQueen( int row, int col ) { board[row-1][col-1] = QUEEN; }
// Remove (set EMPTY) a queen at square indicated by row and column.
private void removeQueen( int row, int col ) { board[row-1][col-1] = EMPTY; }
// Checks if specified square is under attack by queens in columns 1 through col-1.
private boolean isUnderAttack( int row, int col ) {
  // Check if there is a queen in the same row (in previous columns).
   for( int j = 1; j < col; j++ ) { if( board[row-1][j-1] == QUEEN ) { return true; }}
  // Check if there is a queen in the diagonal passing through the specified square.
   for (int i = row - 1, j = col - 1; (i > 0) && (j > 0); i--, j--) {
      if( board[i-1][j-1] == QUEEN ) { return true; } }
  // Check if there is a queen in reverse diagonal passing through specified square.
   for( int i = row + 1, j = col - 1; ( i <= BOARD_SIZE ) && ( j > 0 ); i++, j-- ) {
      if( board[i-1][j-1] == QUEEN ) { return true; } }
  return false; } } // Otherwise the specified square is not under attack.
```


TEST QUEENS

```
// Test for the Queens class in order to solve the Eight Queens problem.
public class TestQueens {
  public static void main( String[] args ) {
     Queens test = new Queens();
     test.placeQueens(1);
     test.displayBoard(); } }
10000000
00000010
00001000
00000001
01000000
00010000
00000100
00100000
```


Language: A set of strings of symbols from a finite alphabet (English, Java, etc.).

If we consider a Java program as one long string of characters, we can define the language of Java programs as:

Java Programs = $\{ w : w \text{ is a syntactically correct Java program } \}$

Note: A language does not have to be a programming/communication language.

Example: The **set of algebraic expressions** can be defined as:

Algebraic Expressions = $\{w : w \text{ is an algebraic expression }\}$

Grammar: A **grammar** states the rules for forming the strings in a language.

GRAMMARS: RECURSIVE GRAMMARS AND RECOGNITION ALGORITHMS Recursive grammars ease the writing of **recognition algorithms** for languages. A recognition algorithm determines whether a given string is in the language.

GRAMMARS: SYMBOLS

```
x \mid y means x or y

xy means x followed by y

x \cdot y means x concatenated to y (or y appended to x)

\langle word \rangle means any instance of word that the definition defines
```

Java Identifier: A Java identifier begins with a letter and is followed by zero or more letters/digits.

JAVA IDENTIFIERS: LANGUAGE

Java Identifiers = $\{ w : w \text{ is a legal Java identifier } \}$

JAVA IDENTIFIERS: GRAMMAR (RECURSIVE)

```
\label{eq:contifier} $$ \langle identifier \rangle \langle identifier \rangle \langle identifier \rangle | $$ \langle identifier \rangle |_{\alpha} \langle identifier \rangle |_
```

JAVA IDENTIFIERS: RECOGNITION ALGORITHM (RECURSIVE)

```
// Java identifiers recognition algorithm (pseudocode).
isJavaIdentifier( w ) {
   if( w is of length 1 ) {
      if( w is a letter ) { return true }
       else { return false } }
   else if( the first character of w is '$' or '_') {
      return isJavaIdentifier( w minus its first character ) }
   else if( the last character of w is a letter or a digit ) {
      return isJavaIdentifier( w minus its last character ) }
   else { return false } }
```


Palindrome: A palindrome is a string that reads the same backward or forward (e.g. "radar", "racecar", etc.).

PALINDROMES: LANGUAGE

Palindromes = $\{ w : w \text{ reads the same backward or forward } \}$

PALINDROMES: GRAMMAR (RECURSIVE)

$$\langle pal \rangle = \text{emptystring} | \langle char \rangle | \text{a} \langle pal \rangle \text{a} | \text{b} \langle pal \rangle \text{b} | \cdots | \text{Z} \langle pal \rangle \text{Z}$$

 $\langle char \rangle = \text{a} | \text{b} | \cdots | \text{z} | \text{A} | \text{B} | \cdots | \text{Z}$

PALINDROMES: RECOGNITION ALGORITHM (RECURSIVE)

```
// Palindromes recognition algorithm (pseudocode).
isPalindrome( w ) {
  if( ( w is the empty string ) or ( w is of length 1 ) ) { return true }
  else if( the first and last characters of w are the same letter ) {
    return isPalindrome( w minus its first and last characters ) }
  else { return false } }
```


AⁿBⁿ String: An AⁿBⁿ string consists of **n** consecutive **A** followed by **n** consecutive **B**.

AⁿBⁿ STRINGS: LANGUAGE

 A^nB^n Strings = { w : w is of the form A^nB^n for some $n \ge 0$ }

AⁿBⁿ STRINGS: GRAMMAR (RECURSIVE)

 $\langle word \rangle = \text{emptystring} \mid A \langle word \rangle B$

AⁿBⁿ STRINGS: RECOGNITION ALGORITHM (RECURSIVE)

```
// A<sup>n</sup>B<sup>n</sup> strings recognition algorithm (pseudocode).
isAnBnString( w ) {
  if( the length of w is zero ) { return true }
  else if( ( w begins with character A ) and ( w ends with character B ) ) {
    return isAnBnString( w minus its first and last characters ) }
  else { return false } }
```


ALGEBRAIC EXPRESSIONS

The followings are 3 languages for algebraic expressions:

Infix Expressions: An operator appears between its operands. ((a + b) * c)

Prefix Expressions: An operator appears before its operands. * + a b c

Postfix Expressions: An operator appears after its operands. a b + c *

Note: The 3 expressions on the right have the same meaning, but a different syntax.

CONVERT A FULLY PARENTHESIZED INFIX EXPRESSION TO A PREFIX FORM

- 1. move each operator to the position of its corresponding open parenthesis;
- 2. remove the parentheses;

CONVERT A FULLY PARENTHESIZED INFIX EXPRESSION TO A POSTFIX FORM

- 1. move each operator to the position of its corresponding closing parenthesis;
- 2. remove the parentheses.

ADVANTAGES OF PREFIX AND POSTFIX EXPRESSIONS

- they never need: precedence rules, association rules, and parentheses;
- they have: simple grammars, easy recognition and evaluation algorithms.

PREFIX EXPRESSIONS: GRAMMAR (RECURSIVE)

```
\langle prefix \rangle = \langle identifier \rangle \mid \langle operator \rangle \langle prefix \rangle \langle operator \rangle = + \mid - \mid * \mid / \langle identifier \rangle = a \mid b \mid \cdots \mid z
```

PREFIX EXPRESSIONS: RECOGNITION ALGORITHM (RECURSIVE)

See: method isPrefixExpression in class PrefixExpression.

PREFIX EXPRESSIONS: EVALUATION ALGORITHM (RECURSIVE)

See: method evalPrefixExpression in class PrefixExpression.

PREFIX EXPRESSION A

```
import java.lang.String; // Note: String represent an immutable sequence of characters!
import java.lang.StringBuilder; // Better than StringBuffer in single-thread situations!
public class PrefixExpression {
   private String exp; // Stores the prefix expression.
   private float[] ids = new float[26]; // Stores identifier values (from 'a' to 'z').
   // Checks if a character is a valid identifier.
   private boolean isIdentifier( char c ) {
      if( (c >= 'a') && (c <= 'z') ) { return true; }
      return false; }
   // Checks if a character is a valid operator.
   private boolean isOperator( char c ) {
      if( ( c == '+' ) || ( c == '-' ) || ( c == '*' ) || ( c == '/' ) ) { return true; }
      return false; }
```

PREFIX EXPRESSION B

```
// Finds the end of a prefix expression, if one exists.
// Precondition: exp substring from index first through last with no blank characters.
// Postcondition: returns index of the last char in exp that begins at index first,
                 if it does not exist returns -1.
private int endPrefixExpression( int first, int last ) {
   if( ( first < 0 ) || ( first > last ) ) { return -1; }
  char ch = exp.charAt( first ); // Get character at first position of exp.
   if( isIdentifier( ch ) ) { return first; } // Last char index in simple prefix exp.
  else if( isOperator( ch ) ) {
      // Find the end of the first prefix expression.
      int firstEnd = endPrefixExpression( first + 1, last ); // Label: X.
      // If the end of 1st prefix exp was found, find the end of 2nd prefix exp.
      if( firstEnd > -1 ) {
         return endPrefixExpression( firstEnd + 1, last ); } // Label: Y.
     else { return -1; } }
  else { return -1; } }
```


PREFIX EXPRESSION C

```
// Default constructor.
public PrefixExpression() { exp = ""; }
// Constructor.
public PrefixExpression( String e ) { exp = e; }
// Determines whether exp is a prefix expression or not.
// Precondition: exp has been initialized with a string containing no blank chars.
// Postcondition: returns true if exp is in the prefix form, otherwise returns false.
public boolean isPrefixExpression() {
  // Get expression string size, and the result of endPrefixExpression.
   int size = exp.length();
   int lastChar = endPrefixExpression( 0, size - 1 );
  // Exploit endPrefixExpression to check if this is a prefix expression.
  if( ( lastChar >= 0 ) && ( lastChar == ( size - 1 ) ) ) { return true; }
  else { return false; } }
```


PREFIX EXPRESSION

```
// Getter method for identifiers.
public float getIdentifier( char id ) {
   if( ( id >= 'a' ) && ( id <= 'z' ) ) {
     int index = id - 'a';
     return ids[index]; }
   return 0.0f; } // Return value in case of an error.

// Setter method for identifiers.
public void setIdentifier( char id, float value ) {
   if( ( id >= 'a' ) && ( id <= 'z' ) ) {
     int index = id - 'a';
     ids[index] = value; }
}</pre>
```


PREFIX EXPRESSION E

```
// Evaluate the prefix expression e.
// Precondition: e is a prefix expression containing no blank characters.
// Postcondition: returns the value of the prefix expression e.
public float evalPrefixExpression( StringBuilder e ) { // StringBuilder is mutable!
  char ch = e.charAt(0); // Get character at first position of e.
   e.deleteCharAt(0); // We StringBuilder to perform this delete!
   if( isIdentifier( ch ) ) { return getIdentifier( ch ); } // Base case: single id.
  else if( isOperator( ch ) ) { // Recursive calls to retrieve the 2 operands.
      float operand1 = evalPrefixExpression( e ); // Label: X.
      float operand2 = evalPrefixExpression( e ); // Label: Y.
      switch( ch ) { // Apply the proper operator to return the result.
         case '+' : { return ( operand1 + operand2 ); }
         case '-' : { return ( operand1 - operand2 ); }
         case '*' : { return ( operand1 * operand2 ); }
         case '/' : { return ( operand1 / operand2 ); }
         default : { break; } } }
  return 0.0f; } } // Return value in case of an error.
```


TEST PREFIX EXPRESSIONS

```
import java.lang.String; // Note: String represent an immutable sequence of characters!
import java.lang.StringBuilder; // Better than StringBuffer in single-thread situations!
public class TestPrefixExpressions {
   public static void main( String[] args ) {
      StringBuilder strExp = new StringBuilder( "+/ab-cd" ); // Set test expression.
      PrefixExpression exp = new PrefixExpression( strExp.toString() ); // Prefix exp.
      boolean res = exp.isPrefixExpression(); // Check if prefix expression is valid.
      exp.setIdentifier( 'a', 1.2f ); // Set the value of identifier a.
      exp.setIdentifier( 'b', 3.4f ); // Set the value of identifier b.
      exp.setIdentifier('c', 5.6f); // Set the value of identifier c.
      exp.setIdentifier( 'd', 7.8f ); // Set the value of identifier d.
      float a = exp.getIdentifier( 'a' ); // Get the value of identifier a.
      float b = exp.getIdentifier( 'b' ); // Get the value of identifier b.
      float c = \exp.getIdentifier('c'); // Get the value of identifier c.
      float d = exp.getIdentifier( 'd' ); // Get the value of identifier d.
      float res1 = (a / b) + (c - d); // Correct result of prefix exp evaluation.
      float res2 = e.evalPrefixExpression( strExp ); } // Custom prefix exp evaluation.
```


POSTFIX EXPRESSIONS: GRAMMAR (RECURSIVE)

```
\langle postfix \rangle = \langle identifier \rangle \mid \langle postfix \rangle \langle postfix \rangle \langle operator \rangle

\langle operator \rangle = + \mid - \mid * \mid /

\langle identifier \rangle = a \mid b \mid \cdots \mid z
```


PREFIX-TO-POSTFIX EXPRESSION CONVERSION ALGORITHM (RECURSIVE)

```
// Converts prefix expression e to postfix form.
// Precondition: expression e is in valid prefix form.
// Postcondition: returns the equivalent postfix expression.
public StringBuilder convertPrefixToPostfix( StringBuilder e ) { // Need mutable string! char ch = e.charAt(0); // Get character at first position of e. e.deleteCharAt(0); // We StringBuilder to perform this delete!
    // Check first character of expression e.
    if( isIdentifier( ch ) ) { // Base case: single identifier.
        return new StringBuilder( Character.toString( ch ) ); }
else { // First character is an operator.
    StringBuilder postfix1 = convertPrefixToPostfix( e ); // Label: X.
    StringBuilder postfix2 = convertPrefixToPostfix( e ); // Label: Y.
    return postfix1.append( postfix2.append( ch ) ); } } // Concatenate operator.
```


To avoid ambiguity, infix notation normally requires:

- precedence rules,
- rules for association, and
- parentheses.

FULLY PARENTHESIZED EXPRESSIONS

Fully parenthesized expressions do not require: precedence and association rules.

FULLY PARENTHESIZED EXPRESSIONS: GRAMMAR (RECURSIVE)

```
\langle infix \rangle = \langle identifier \rangle | (\langle infix \rangle \langle operator \rangle \langle infix \rangle)
\langle operator \rangle = + | - | \times | /
\langle identifier \rangle = a | b | \cdots | z
```

A strong relationship exists between recursion and mathematical induction.

Recursion: Solves a problem by specifying a solution to one or more base cases, and then demonstrating how to derive the solution to a problem of an arbitrary size from the solutions to smaller problems of the same type.

Mathematical Induction: Proves a property about the natural numbers by proving the property about a base case (e.g. **0** or **1**), and then proving that the property must be true for an arbitrary natural number **n** if it is true for the natural numbers <**n**.

Induction can be used to:

- 1. prove that a recursive algorithm performs the task correctly,
- 2. prove that a recursive algorithm performs a certain amount of work.

2

1 - THE CORRECTNESS OF THE RECURSIVE FACTORIAL METHOD A

The recursive method **fact** that computes the factorial of a non-negative integer **n**:

```
// Recursive method to compute the factorial of a non-negative integer. public int fact( int n ) {  if( \ n == 0 \ ) \ \{ \ return \ 1; \ \} \\ else \ \{ \ return \ n \ * \ fact( \ n \ - \ 1 \ ); \ \} \ \}
```

Induction on **n** can prove that the method **fact** returns the values:

$$fact(0) = 0! = 1$$
 if $n = 0$
 $fact(n) = n! = n \times (n-1) \times (n-2) \times \dots \times 1$ if $n > 0$

3

1 - THE CORRECTNESS OF THE RECURSIVE FACTORIAL METHOD

Proof: The proof by induction is the following:

Basis: Show that the property is true for $\mathbf{n} = \mathbf{0}$.

This is simply the base case of the recursive method: fact(0) = 0! = 1

Now prove that: if property is true for an arbitrary \mathbf{k} , then property is true for $\mathbf{k+1}$.

Inductive Hypothesis: Assume that the property is true for **n=k**.

That is, assume: $fact(k) = k * (k - 1) * (k - 2) * \cdots * 2 * 1$

Inductive Conclusion: Show that the property is true for n=k+1.

That is, show that: $fact(k+1) = ? (k+1) * k * (k-1) * (k-2) * \cdots * 2 * 1$

4

1 - THE CORRECTNESS OF THE RECURSIVE FACTORIAL METHOD

Proof (continued):

By the definition of method **fact**: fact(k + 1) = (k + 1) * fact(k)

By the inductive hypothesis: $fact(k) = k * (k-1) * (k-2) * \cdots * 2 * 1$

Thus:
$$fact(k+1) = (k+1) * fact(k) =$$

= $(k+1) * [k*(k-1)*(k-2)* \cdots * 2*1]$

The inductive proof is now complete, since we have proven that:

if property is true for an arbitrary k, then property is true for k+1.

2 - THE COST OF TOWERS OF HANOL

The following is the solution to the Towers of Hanoi problem:

```
// Class implementing the algorithm to solve the Towers of Hanoi problem.
public class TowersOfHanoiExample {
   // Algorithm to solve the Towers of Hanoi problem.
   public static void solveTowersOfHanoi(int count, char source, char dest, char spare) {
      if( count == 1 ) { // Base case.
         System.out.println("Move top disk from pole " + source + " to pole " + dest); }
      else { // Recursive calls.
         solveTowersOfHanoi( count-1, source, spare, dest ); // Label: a.
         solveTowersOfHanoi( 1, source, dest, spare ); // Label: b.
         solveTowersOfHanoi( count-1, spare, dest, source ); } } // Label: c.
   // Main method to test the solution of the Towers of Hanoi problem.
  public static void main( String[] args ) { solveTowersOfHanoi( 2, 'A', 'B', 'C' ); } }
```

6

2 - THE COST OF TOWERS OF HANOI

For **n** disks, how many moves needs **solveTowersOfHanoi** to solve the problem?

Let: **moves(n)** be the number of moves made starting with **n** disks.

$$moves(n) = \begin{cases} 1, & \text{if } n = 1\\ moves(n-1)_a + moves(1)_b + moves(n-1)_c, & \text{if } n > 1 \end{cases}$$

So the **recurrence relation** for the number of moves required for **n** disks is:

$$moves(n) = \begin{cases} 1, & \text{if } n = 1 \\ (2 \times moves(n-1)) + 1, & \text{if } n > 1 \end{cases}$$

2 - THE COST OF TOWERS OF HANOI

A **closed-form formula** is a mathematical expression that can be evaluated in a finite number of operations (instead of a recursive form), allowing for example to substitute values for variables and obtain directly the final result of the formula.

The closed-form formula of the previous recurrence relation is:

$$moves(n) = 2^n - 1$$
, for all $n \ge 1$

Induction on **n** can prove the formula above.

8

2 - THE COST OF TOWERS OF HANOI

Proof: The proof by induction is the following:

Basis: Show that the property is true for n = 1.

So: $moves(1) = 2^1 - 1 = 1$

Now prove that: if property is true for an arbitrary \mathbf{k} , then property is true for $\mathbf{k+1}$.

Inductive Hypothesis: Assume that the property is true for **n=k**.

That is, assume that: $moves(k) = 2^k - 1$

Inductive Conclusion: Show that the property is true for n=k+1.

That is, show that: $moves(k+1) = ? 2^{k+1} - 1$

2 - THE COST OF TOWERS OF HANOI

Proof (continued):

By the recurrence relation: $moves(k + 1) = (2 \times moves(k)) + 1$

By the inductive hypothesis: $moves(k) = 2^k - 1$

Thus: $moves(k+1) = (2 \times moves(k)) + 1 = (2 \times (2^{k}-1)) + 1 = 2^{k+1} - 2 + 1 = 2^{k+1} - 1$

The inductive proof is now complete, since we have proven that:

if property is true for an arbitrary k, then property is true for k+1.