

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Programa de Pós-Graduação em Informática

Bootcamp: Titanic - Machine Learning from Disaster

Escola de férias

André de Sousa Araújo

Quem sou eu?

André de Sousa Araújo

Profissão?

Atualmente

Entusiasta em Aprendizado de Máquina e Inteligência Artificial.

Mestrando em Análise de Dados, Descoberta de Conhecimento e Recuperação de Informação

Contato

github.com/dedeco

linkedin.com/in/dedeco

twitter.com/dedecu

https://stackoverflow.com/users/2452792/andre-araujo

dedeco@gmail.com

Bootcamp?

boot camp

noun [Cusually sing] • US 🚺 /'but kæmp/

a place where new members of the US military receive their first training

"Na área de tecnologia, podemos dizer que é um treinamento prático e imersivo "

Teremos:

- Conceitos rápidos e enxutos;
- Exercícios guiados;
- E ao final um resultado simples projeto de data science executado;
- Ritmo médio (seguindo a média da turma)

NÃO terá:

- Explicações detalhadas e conceituais sobre tudo que for abordado;
- Atenção personalizada para 1 pessoa ou um pequeno grupo;
- Debates

Programação

Aquecimento:

Conceito: Introdução a Redes neurais

• Exercício: Minha primeira rede neural - UCI ML hand-written digits

~ 15 minutos

Intervalo

Imersão:

- Apresentando o Kaggle
- Dataset: Titanic: Machine Learning from Disaster

Prática:

- Etapas:
 - Exploração dos dados
 - Pré-processamento
 - Mineração dos dados

Intervalo

Conclusão:

- Discussão dos resultados
- Submissão
- Perguntas e dúvidas

~ 1 hora

~ 2 horas

- ~ 15 minutos
- ~ 30 minutos

Introdução a redes neurais

• Resumidamente em uma frase:

"São modelos computacionais inspirados no cérebro humano, que a partir dos dados de entrada conseguem **aprender um padrão**; e após o treinamento, são capazes de reconhecer, classificar ou prever um dado, evento ou comportamento"

Redes neurais

Redes neurais

• Após o modelo ser treinado.

Se apresentarmos uma nova imagem, sem rótulo, que nunca foi apresentada antes, o modelo deverá ser capaz de classificar esta nova imagem como um cachorro, por exemplo.

Redes neurais

Passo 2: Classificar utilizando o modelo

Neurônio artificial

NEURÔNIO ARTIFICIAL

Uma rede neural multicamada típica

Playground Tensorflow

 A proposta aqui não é aprofundar matematicamente, e sim apenas dar uma visão geral. Assim, uma boa opção é ver graficamente como funciona, o Google criou uma funcionalidade muito legal, na qual é possível brincar e simular graficamente uma rede neural, veja o vídeo a seguir:

Link: http://playground.tensorflow.org

Exercício - Kernel 01

• Existe um dataset que é chamado do **Hello World** do Machine Learning, é o *Optical Recognition of Handwritten Digits Data Set* (NIST). Vamos usá-lo para mostrar basicamente como é.

Objetivo:

- Classificar cada imagem do dataset como um número 0 até 9.
- São 5620 imagens escritas a mão, o dataset possui 64 atributos para cada imagem. Na verdade, cada atributo é um pixel, assim cada imagem tem 8x8 pixels, e cada pixel valorado de 1 até 16.

Exercício


```
13.
                    11. 16.
                  3.
                       15.
                             16.
                                    6.
                 15.
                       16.
                             16.
                       16.
                             16.
                       16.
                             16.
                                          0.
                       16.
                             16.
                                          0.
      0.
                       11.
                             16.
                                   10.
                                          0.
0.]
```

Vá na pasta Exercicios >> Kernel 01

Kaggle

Kaggle

Titanic

O naufrágio do RMS Titanic é um dos mais infames naufrágios da história. Em 15 de abril de 1912, durante sua viagem inaugural, o Titanic afundou depois de colidir com um iceberg, matando **1502 de 2224 passageiros e tripulantes**.

Uma das razões pelas quais o naufrágio causou tal perda de vida foi que não havia botes salva-vidas suficientes para os passageiros e a tripulação. Embora houvesse algum elemento de sorte envolvido na sobrevivência do naufrágio, <u>alguns grupos de pessoas</u> <u>tinham maior probabilidade de sobreviver do que outros, como mulheres, crianças e a classe alta</u>.

Neste desafio, pedimos que você conclua a análise de quais tipos de pessoas provavelmente sobreviveriam.

Em particular, pedimos que você aplique as ferramentas de aprendizado de máquina para prever quais passageiros sobreviveram à tragédia.

Link: https://www.kaggle.com/c/titanic

Titanic

Titanic Dataset

Problema: Classificação binária

Porque? Porque temos que classificar somente em 2 classes:

- Sobrevivente
- Não sobrevivente

Exercício - Kernel 02

A mais importante etapa:

A etapa de **Pré-processamento** vai variar de acordo com a metodologia. Como nosso foco aqui é mais prático, e estamos atacando um problema mais simples. Basicamente esta etapa consiste em toda <u>preparação antes de aplicar o algoritmo</u>.

Vale lembrar que normalmente esta etapa consome <u>a maior parte do um projeto de data</u> <u>science</u>, e algumas metodologias (e deve ser assim) consideram uma etapa anterior de modelagem dos dados e entendimento do problema (não é caso, pois temos a base já modelada)

Vamos considerar nesta etapa:

- Tratamento de dados ausentes
- Criação de novas variáveis a partir das existentes (Feature Engineering)
- Limpeza dos dados

Vá na pasta Exercicios >> Kernel 02

Exercício - Kernel 03

Finalmente a aplicação do algoritmo:

O algoritmos a ser escolhido poderia ser qualquer algoritmo de classificação: arvores de decisão, florestas randômicas, clusterização pelos vizinhos mais próximos (KNeighborsClassifier), etc.

Geralmente esta <u>escolha é embasada e faz parte da modelagem dos dados e</u> <u>entendimento do problema</u>, mas aqui como foco é prático, vamos aplicar um rede neural multicamada (MLPClassifier).

Matriz de confusão

Se um sistema de classificação foi treinado para distinguir entre gatos, cães e coelhos, uma matriz de confusão resumirá os resultados do teste do algoritmo para uma inspeção adicional.

Assumindo uma amostra de 27 animais - 8 gatos, 6 cães e 13 coelhos, a matriz de confusão resultante pode se parecer com a tabela abaixo:

		Actual class		
		Cat	Dog	Rabbit
Predicted class	Cat	5	2	0
	Dog	3	3	2
Ciass	Rabbit	0	1	11

Tabela de confusão

Assumindo a matriz de confusão acima, sua tabela de confusão correspondente, para a classe cat, seria:

		Actual class		
		Cat Non-cat		
Predicted	Cat	5 True Positives	2 False Positives	
class	Non-cat	3 False Negatives	17 True Negatives	

0000000000000000

Submissão - Kaggle

Submetendo os resultados no Kaggle:

6266	new	m9zjl	0.77511	1	13h
6267	▲ 2323	martin31	0.77511	5	9h
Sun Apr 29 : b∠b8	2018 16:35:04 new	GMT-0300 (-03) Andre Araujo	0.77511	1	now
Your F	Sest Entry				
	Best Entry of ubmission	cored 0.77511, which is not an improvement of yo			
			0.77033	4	2mo

Obrigado

"O sucesso é ir de fracasso em fracasso sem perder entusiasmo."

Winston Churchill