

MODÉLISER LE COMPORTEMENT DES SYSTÈMES MÉCANIQUES DANS LE BUT D'ÉTABLIR UNE LOI DE COMPORTEMENT OU DE DÉTERMINER DES ACTIONS MÉCANIQUES EN UTILISANT LE PFD

PSI

DÉTERMINATION DES CARACTÉRISTIQUES CINÉTIQUES D'UN DRONE

DRONE D2C

1 OBJECTIFS

1.1 Objectif technique

Objectif:

Les systèmes de contrôle d'un drone doivent être réglés et ajustés en tenant compte de ses caractéristiques cinétiques (inertie).

Il s'agit d'obtenir par différentes méthodes, le moment d'inertie du balancier complet du drone didactique par rapport à son axe de rotation.

1.2 Contexte pédagogique

Analyser:

■ A3 – Conduire l'analyse

Modéliser :

- ☐ Mod2 Proposer un modèle
- Mod3 Valider un modèle

Résoudre :

- Rés2 Procéder à la mise en œuvre d'une démarche de résolution analytique
- ☐ Rés3 Procéder à la mise en œuvre d'une démarche de résolution numérique

I.3 Évaluation des écarts

L'objectif de ce TP est de déterminer les caractéristiques inertielles du drone afin de renseigner un modèle.

2 DÉTERMINATION EXPÉRIMENTALE DU MOMENT D'INERTIE DU DRONE

2.1 Assimilation de l'expérimentation

Activité 1. Analyser le déroulement d'une expérience.

L'expérimentation a pour objectif d'utiliser le D2C comme un pendule afin de déterminer son moment d'inertie. Pour cela, on utilise le dispositif à « tige élastique de blocage» du balancier du drone D2C (photo ci-contre).

Ce dispositif, une fois inséré dans le balancier, possède une certaine souplesse qui va permettre de réaliser une mise en oscillation, après qu'on ait manuellement écarté légèrement le balancier de sa position d'équilibre, puis qu'on l'ait relâché.

La mesure de la période des oscillations permettra de déterminer le moment d'inertie cherché.

La vidéo Essai_Spectaculaire.MOV illustre le déroulement de l'essai.

2.2 Exploitation des résultats d'expérimentation par résolution de l'équation différentielle issue du PFD

On désigne par $(0, \vec{z})$ l'axe de rotation du balancier et par $(0, \vec{x})$, la direction allant de 0 vers le moteur droit.

Analyse et Modélisation

Analyse et Expérimentation

- Activité 2. Réaliser un modèle cinématique d'après l'expérimentation.
 - Réaliser un schéma de l'expérimentation en y plaçant le paramétrage angulaire (angle θ) autour de la position d'équilibre, le déplacement e de l'extrémité de la tige-ressort et R le rayon (mesuré par rapport à l'axe de rotation du balancier sur lequel s'exerce l'effort Fr).
 - \square Exprimer une relation géométrique simple liant R, e et θ .

Analyse et Modélisation

Activité 3. Établir l'équation de mouvement.

Soit J le moment d'inertie du balancier complet par rapport à l'axe de rotation. Soit Fr l'effort que développe la tigeressort sur le balancier lorsque celui-ci est écarté de sa position d'équilibre. Soit k la raideur de la tige-ressort, telle que $Fr = k \cdot e$. On suppose que par conception, le centre de gravité du balancier est placé sur l'axe de rotation

- ☐ Justifier cette dernière hypothèse.
- □ **Déterminer** à partir d'une démarche d'isolement du balancier et d'utilisation du principe fondamental de la dynamique, l'équation différentielle du mouvement du balancier lorsque celui-ci est en oscillation dans les conditions d'expérimentation (on pourra prendre en compte le coefficient de frottement visqueux : **f**).
- **En déduire** l'expression de la période des oscillations en fonction du moment d'inertie J, de la raideur k et des caractéristiques dimensionnelles (on pourra considérer θ petit pour linéariser l'équation autour du point de fonctionnement $\theta = 0$ et négliger le coefficient de frottement visqueux : f).

Expérimentation et résolution

Activité 4. Déterminer l'inertie à partir du relevé expérimental.

Le fichier de mesure est disponible dans le répertoire « Essai ». On peut le visualiser avec le fichier Lire_essai.py ou avec un tableur.

Si L est la longueur de la tige élastique, d son diamètre et E son module d'élasticité, les lois de la résistance des matériaux (étude de flexion de la tige) nous donnent le déplacement e à l'extrémité de la tige : $e = \frac{FrL^3}{3EI_{GZ}} = \frac{64FrL^3}{3E\pi d^4}$. On mesure : L = 110 mm, d = 2.1 mm, R = 147 mm. On donne : $E = 2 \cdot 10^5$ N/mm².

- **Déterminer** la raideur en N/m de la tige, puis à partir des résultats obtenus sur la période des oscillations (expérimentaux et analytiques) **déduire** la valeur du moment d'inertie *J* du balancier.
- ☐ En déduire l'expression de la période des oscillations ; effectuer l'application numérique pour en déduire la valeur du moment d'inertie *J*.

3.1

2.3 Exploitation des résultats d'expérimentation par utilisation d'un logiciel de modélisation « acausale »

							•				
ב	Activité	é 5.	Exploiter les ré	sultats d'une	modélisation	Matlab-Sin	nulink.				
<u> </u>	Le fichier de simulation « Modele_Eleve » propose une modélisation de type « acausal ». Dans ce fichier, pour éviter										
résolu	un trav	ail trop	fastidieux, le	paramètre d	le la raideur	angulaire	(KR2) a	été prépa	ré (double-clic	sur le	bloc
	« ressort »).										
ē		Justifier	r le choix du mo	dèle proposé	par rapport à	l'expérime	ntation ré	alisée.			
ation		Par sim	Par simulation successive, rechercher l'inertie permettant d'obtenir la même pseudo-période qu					que pou	ır la		
ᅙ		courbe	expérimentale.								
<u> </u>		Vérifier	que le décrén	nent logarith	mique est co	omparable	sur la mo	odélisation	et l'expérimer	ntation. (Quel

3 EXPLOITATION D'UN MODÈLE CAO

Détermination et justification des composantes des matrices d'inertie

paramètre faut-il modifier pour ajuster le décrément ?

Activité 6. Exploiter les caractéristiques d'inertie données par SolidWorks en Annexe.

En utilisant le contrepoids et en exploitant le théorème de Huygens entre le point O et le centre de masse H, vérifier la bonne correspondance des résultats Lzz et Izz fournis par le logiciel (exploiter les informations entourées).

Activité 7. Exploiter les caractéristiques d'inertie données par SolidWorks en Annexe.

Déterminer le moment d'inertie de l'ensemble balancier équipé (1 balancier seul + 1 contrepoids + 2 motorisations + 4 boulons), par rapport à son axe de rotation Oz.

3.2 Exploitation de l'assemblage complet avec le logiciel SolidWorks

Activité 8. Exploiter les caractéristiques d'inertie données par SolidWorks.

Lancer le logiciel « Solidworks », ouvrir le fichier « balancier-complet.sldasm ».

Vérifier la présence du « système de cordonnées 1 » sur l'axe Oz (tout en bas de l'arbre de construction).

Faire afficher les caractéristiques cinétiques du balancier équipé : onglet « Évaluer – propriétés de masses » ; sélectionner « système de cordonnées 1 » comme système de coordonnées de sortie.

À partir des résultats donnés par le logiciel, fournir la valeur en kg.m², du moment d'inertie par rapport à l'axe Oz, du « balancier équipé ».

4 SYNTHÈSE

Activité 9. Comparaison des écarts

Commenter les écarts pouvant exister entre les résultats de la simulation et de l'expérimentation.

5 Annexe – Caractéristiques cinétiques des composants déterminées par SolidWorks

5.1 Paramétrage

Moteur + hélice

Masse = 65 grammes (supposée ponctuelle)

Position: A et B

	X (mm)	Y (mm)
Α	-140	0
В	+140	0

Boulon + 2 rondelles

Masse = 40 grammes (supposée ponctuelle)

Positions: C, D, E, F

	X (mm)	Y (mm)					
С	-140	-30					
D	+140	-30					
Е	-105	55					
F	+105	55					

5.2 Données cinétiques

On observera que le « système de coordonnées 1 » ou « système de coordonnées de sortie » est choisi au point O, avec l'axe Oz coïncident avec l'axe de rotation du balancier du drone didactique.