Práctica 4

Ejercicio 1: En el caso n = 3, m = 2, halle la distribución exacta del estadístico $T = \sum_{j=0}^{n} R(X_j)$ bajo H_0 y compare los valores obtenidos con los de la Tabla 7 de Conover.

Ejercicio 2: Sean X_1, \ldots, X_n e Y_1, \ldots, Y_m m.a. independientes con distribución F(x) y $F(x-\Delta)$ respectivamente, $F \in \Omega_0$. Demuestre que, bajo H_0 : $\Delta = 0$,

a)
$$P(R(Y_j) = k) = \frac{1}{N}$$
 $1 \le k \le N = n + m$
$$P(R(Y_i) = k, R(Y_j) = l) = \begin{cases} \frac{1}{N(N-1)} & \text{si } k \ne l, i \ne j \\ 0 & \text{en otro caso} \end{cases}$$

b)
$$E(R(Y_i))=rac{N+1}{2}$$

$$Vig(R(Y_i)ig)=rac{N^2-1}{12}$$
 $covig(R(Y_i),R(Y_j)ig)=-rac{N+1}{12}$ si $i\neq j$

Ejercicio 3:Testee usando el conjunto de datos presentado en la Tabla, si la temperatura media máxima (en grados Farenheit) de la ciudad de Des Moines es mayor que la temperatura media máxima de Spokane.

Des Moines	Spokane
88	78
93	82
94	81
89	77
90	79
94	81
91	80
92	81
93	

Ejercicio 4: En un experimento controlado de laboratorio, 10 hombres y 10 mujeres son puestos a prueba para determinar cuál es la temperatura (en grados Farenheit) que consideran más confortable. Los resultados se presentan a continuación:

Mujeres		
74		
76		
78		
79		
78		
73		
78		
79		
78		
80		

Suponiendo que los datos constituyen muestras aleatorias de las respectivas poblaciones, testee si la temperatura más confortable es la misma para hombres y mujeres.

Ejercicio 5: Un grupo de siete alumnos recibieron clases de álgebra con un método de enseñanza tradicional y otro grupo de seis alumnos con un nuevo método. Al finalizar el curso, ambos grupos fueron sometidos al mismo examen y los puntajes obtenidos fueron los siguientes:

Método tradicional	Método nuevo
68	64
72	60
79	71
70	73
84	72
80	70
78	

Encuentre un intervalo de confianza del 90% para la diferencia de los puntajes medianos.

Ejercicio 6: En un estudio sobre la influencia de los ruidos ambientales en la concentración, 14 alumnos de un curso en cierta Universidad fueron divididos al azar en 2 grupos de tamaño 7, uno sirvió como control y el otro se utilizó como grupo experimental. A todos los alumnos se les dio un tiempo determinado para estudiar un mismo tema a partir de la misma bibliografía, pero mientras los estudiantes del grupo control disponían de un ambiente silencioso para estudiar, los del grupo experimental lo hicieron en un ambiente perturbado por ruidos de diferente naturaleza. Posteriormente, se tomó un examen a todos los alumnos sobre el tema estudiado. Las notas (de 0 a 50) obtenidas por los estudiantes de ambos grupos se presentan en la siguiente tabla:

Grupo Control	Grupo experimental
29	20
31	26
32	29
34	30
35	31
38	33
50	35

- a) Testee la hipótesis de que las notas obtenidas por ambos grupos son diferentes.
- b) Testee la hipótesis de que los ruidos ambientales producen una disminución en las notas obtenidas en el examen.
- c) Repita a) aplicando el estadístico de scores normales de Van der Waerden.