Notes on "A Practical Cryptanalysis of the Algebraic Eraser" Elijah Soria

Let KEY denote the paper "Key Agreement, the Algebraic Eraser", and Lightweight Cryptography".

1. Notation

- \mathbb{F} is a finite field of small order. S_n is the symmetric group on n elements. $N = GL_n(\mathbb{F})$ is the general linear group over \mathbb{F} .
- M is a subgroup of $GL_n(\mathbb{F}(t_1,\ldots,t_n))$, where the t_i 's are algebraically independent commuting indeterminates, such that M is contained in the subgroup of $GL_n(\mathbb{F}(t_1,\ldots,t_n))$ of matrices whose determinant can be written as $a\mathbf{t}$ for some non-zero element $a \in \mathbb{F}$ and some, possibly empty, word \mathbf{t} in the elements t_i and their inverses.
- \overline{M} is the subgroup of $GL_n(\mathbb{F}(t_1,\ldots,t_n))$ generated by permuting the indeterminants of M in all possible ways.
 - $-S_n$ acts on \overline{M} by permuting the indeterminants t_i .
- $\varphi : \overline{M} \to \mathrm{GL}_n(\mathbb{F}(t_1, \dots, t_n))$ is the evaluation homomorphism, where the evaluation elements are the non-zero elements $\tau_1, \dots, \tau_n \in \mathbb{F}$.
 - This function is denoted as $\Pi: M \to N$ in KEY.
- The semidirect product $\overline{M} \times S_n$ has the operation defined as

$$(a,q)(b,h) = (a^g b, qh)$$

for all $(a, g), (b, h) \in \overline{M} \times S_n$ where ga is the left action of $g \in S_n$ on $a \in \overline{M}$.

- In the CBKAP, C and D (i.e. C = D) are the subgroups of $GL_n(\mathbb{F})$ consisting of all invertible matrices of the form $l_0 + l_1\kappa + \cdots + l_r\kappa^r$ where κ is a fixed matrix, $l_i \in \mathbb{F}$, and $r \geq 0$.
 - In this paper, C and D are only assumed to be subgroups of $GL_n(\mathbb{F})$ that commute element wise: cd = dc for all $c \in C$ and $d \in D...$ Well actually, in Section 4 they assume that $C = Alg^*(C)$, a more general assumption.
 - -C and D are denoted as N_A and N_B in KEY.
- $\Omega = \mathrm{GL}_n(\mathbb{F}) \times S_n$. This is denoted as $N \times S$ in KEY section 4.
- $\widehat{S_n} = \overline{M} \rtimes S_n$. This is denoted as $M \rtimes S$ in KEY section 4.
- $*: \Omega \times \widehat{S_n} \to \Omega$ is defined as

$$(s,g)*(b,h) = (s\varphi(g^b), gh)$$

for all $(s,g) \in \Omega$ and $(b,h) \in \widehat{S_n}$. This is the Algebraic Eraser function defined in KEY, so *-commuting makes sense.

• • : $\operatorname{GL}_n(\mathbb{F}) \times \Omega \to \Omega$ is defined as

$$x \bullet (s,g) = (xs,g)$$

for all $x \in \mathrm{GL}_n(\mathbb{F})$ and all $(s, g) \in \Omega$.

• Let A and B be subgroups of \widehat{S}_n that *-commute: for all $(a,g) \in A$, $(b,h) \in B$, and $\omega = (x_\omega, s_\omega) \in \Omega$,

$$(\omega*(a,g))*(b,h) = (x_\omega \varphi(^{s_\omega}a), s_\omega g)*(b,h) = (x_\omega \varphi(^{s_\omega}b), s_\omega h)*(a,g) = (\omega*(b,h))*(a,g)$$

2. Proposed Attack

- For an arbitrary group $H \subseteq M_n(\mathbb{F}_q)$, we write Alg(H) for the set of all \mathbb{F}_q -linear combinations of matrices in H. We write $Alg^*(H)$ for the set of all invertible matrices in Alg(H).
- Let $C = Alg^*(C)$. Let $\kappa_1, \kappa_2, \ldots, \kappa_r \in C$ be a basis for Alg(C).
- Let $P \subseteq A$ be defined as (the pure subgroup)

$$P = \{(\alpha, g) \in A : g = e\}.$$

• Let $Q \leq N$ be $Q = Alg^*(\varphi(P))$. This implies that for all $\alpha' \in Q$,

$$\alpha' = \sum_{i=1}^{k} l_i \varphi(\alpha_i)$$

where $k \geq 0$, $l_i \in \mathbb{F}_q$, and $(\alpha_i, e) \in P$.

• Eve finds elements $\tilde{c} \in C$, $\alpha' \in Q$ and $(\tilde{a}, g) \in \hat{G}$ such that

$$(p,g) = \tilde{c} \bullet (\alpha',e) * (\tilde{a},g)$$

and elements $(\alpha_i, e) \in P$ and $l_i \in \mathbb{F}_q$ such that

$$\sum_{i=1}^{k} l_i \varphi(\alpha_i) = \alpha'.$$

If Eve finds this it is GAME OVER FOR ALICE AND BOB.