AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A method for using a computer system to solve a
2	global inequality constrained optimization problem specified by a function f and a
3	set of inequality constraints $p_i(\mathbf{x}) \leq 0$ $(i=1,,m)$, wherein f and p_i are scalar
4	functions of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the method comprising:
5	receiving a representation of the function f and the set of inequality
6	constraints at the computer system;
7	storing the representation in a memory within the computer system;
8	performing an interval inequality constrained global optimization process
9	to compute guaranteed bounds on a globally minimum value of the function $f(\mathbf{x})$
10	subject to the set of inequality constraints;
11	wherein performing the interval global optimization process involves,
12	applying term consistency to the set of inequality
13	constraints over a subboxsub-box X, and
14	excluding any portion of the subbox sub-box X that is
15	proved to be in violation of at least one member of the set of
16	inequality constraints; and
17	recording the guaranteed bounds in the computer system memory.
•	
1	2. (Currently amended) The method of claim 1, further comprising:

2	linearizing the set of inequality constraints to produce a set of linear
3	inequality constraints with interval coefficients that enclose the nonlinear
4	constraints;
5	preconditioning the set of linear inequality constraints through additive
6	linear combinations to produce a preconditioned set of linear inequality
7	constraints;
8	applying term consistency to the set of preconditioned linear inequality
9	constraints over the $\frac{\text{subbox}}{\text{sub-box}} \mathbf{X}$, and
10	excluding any portion of the subboxsub-box X that violates any member
11	of the set of preconditioned linear inequality constraints.
1	3. (Original) The method of claim 2, further comprising:
2	keeping track of a least upper bound f_bar of the function $f(\mathbf{x})$ at a feasible
3	point x wherein $p_i(\mathbf{x}) \leq 0$ $(i=1,,m)$; and
4	including $f(\mathbf{x}) \le f_bar$ in the set of inequality constraints prior to
5	linearizing the set of inequality constraints.
1	4. (Original) The method of claim 2, further comprising removing from
2	consideration any inequality constraints that are not violated by more than a
3	specified amount for purposes of applying term consistency prior to linearizing
4	the set of inequality constraints.
1	5. (Currently amended) The method of claim 1, wherein performing the
2	interval global optimization process involves:
3	keeping track of a least upper bound f_bar of the function $f(\mathbf{x})$ at a feasible
4	point x;
5	removing from consideration any $\frac{\text{subbox}}{\text{sub-box}}$ for which $f(\mathbf{x}) > f_bar$;

6	applying term consistency to the f_bar inequality $f(\mathbf{x}) \leq f_bar$ over the
7	subboxsub-box X; and
8	excluding any portion of the subbox sub-box \mathbf{X} that violates the f_bar
9	inequality.
1	6. (Currently amended) The method of claim 1, wherein if the subboxsub-
2	$\underline{\text{box}} \mathbf{X}$ is strictly feasible $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n)$, performing the interval
3	global optimization process involves:
4	determining a gradient $g(x)$ of the function $f(x)$, wherein $g(x)$ includes
5	components $g_i(\mathbf{x})$ $(i=1,,n)$;
6	removing from consideration any subbox sub-box for which $g(x)$ is
7	bounded away from zero, thereby indicating that the subboxsub-box does not
8	include an extremum of $f(\mathbf{x})$; and
9	applying term consistency to each component $g_i(\mathbf{x})=0$ $(i=1,,n)$ of $\mathbf{g}(\mathbf{x})=0$
10	over the $\frac{\text{subbox}}{\text{sub-box}} \mathbf{X}$; and
11	excluding any portion of the subboxsub-box X that violates any
12	component of $g(x)=0$.
1	7. (Currently amended) The method of claim 1, wherein if the subboxsub-
2	$\underline{\text{box}} \mathbf{X}$ is strictly feasible $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n)$, performing the interval
3	global optimization process involves:
4	determining diagonal elements $H_{ii}(\mathbf{x})$ ($i=1,,n$) of the Hessian of the
5	function $f(\mathbf{x})$;
6	removing from consideration any subbox sub-box for which $H_{ii}(\mathbf{x})$ a
7	diagonal element of the Hessian over the subboxsub-box X is always negative,
8	indicating that the function f is not convex over the subboxsub-box X and
9	consequently does not contain a global minimum within the subboxsub-box X;

10	applying term consistency to each inequality $H_{ii}(\mathbf{x}) \geq 0$ $(i=1,,n)$ over the
11	subboxsub-box X; and
12	excluding any portion of the $\frac{\text{subbox}}{\text{sub-box}}$ X that violates a Hessian
13	inequality.
1	8. (Currently amended) The method of claim 1, wherein if the subboxsub-
2	box X is strictly feasible $(p_i(X) < 0 \text{ for all } i=1,,n)$, performing the interval
3	global optimization process involves:
4	performing the Newton method, wherein performing the Newton method
5	involves,
6	computing the Jacobian $J(x,X)$ of the gradient of the
7	function f evaluated with respect to a point x over the subbox sub-
8	$\underline{\text{box}} \mathbf{X}$,
9	computing an approximate inverse B of the center of
10	J(x,X),
11	using the approximate inverse B to analytically determine
12	the system $Bg(x)$, wherein $g(x)$ is the gradient of the function $f(x)$,
13	and wherein $g(x)$ includes components $g_i(x)$ ($i=1,,n$);
14	applying term consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ for
15	each variable x_i ($i=1,,n$) over the subboxsub-box X; and
16	excluding any portion of the subboxsub-box X that violates a component.
'	
1	9. (Currently amended) The method of claim 1, wherein applying term
2	consistency involves:
3	symbolically manipulating an equation within the computer system to
4	solve for a term, $g(x'_j)$, thereby producing a modified equation $g(x'_j) = h(\mathbf{x})$,
5	wherein the term $g(x'_j)$ can be analytically inverted to produce an inverse function
6	$g^{-l}(\mathbf{y});$

7	substituting the subboxsub-box X into the modified equation to produce
8	the equation $g(X'_j) = h(X)$;
9	solving for $X'_j = g^{-l}(h(X))$; and
10	intersecting X'_j with the j-th element of the subbox sub-box X to produce a
11	new subboxsub-box X ⁺ ;
12	wherein the new $\frac{\text{subbox}}{\text{sub-box}} \mathbf{X}^+$ contains all solutions of the equation
13	within the $\frac{\text{subbox}}{\text{sub-box}} \mathbf{X}$, and wherein the size of the new $\frac{\text{subbox}}{\text{sub-box}} \mathbf{X}^+$
14	is less than or equal to the size of the $\frac{\text{subbox}}{\text{sub-box}} \mathbf{X}$.
1	10. (Original) The method of claim 1, further comprising performing the
2	Newton method on the John conditions.
1	11. (Currently amended) A computer-readable storage medium storing
2	instructions that when executed by a computer cause the computer to perform a
3	method for using a computer system to solve a global inequality constrained
4	optimization problem specified by a function f and a set of inequality constraints
5	$p_i(\mathbf{x}) \le \theta$ (i=1,,m), wherein f is a scalar function of a vector $\mathbf{x} = (x_1, x_2, x_3, x_n)$
6	the method comprising:
7	receiving a representation of the function f and the set of inequality
8	constraints at the computer system;
9	storing the representation in a memory within the computer system;
10	performing an interval inequality constrained global optimization process
11	to compute guaranteed bounds on a globally minimum value of the function $f(\mathbf{x})$
12	subject to the set of inequality constraints;
13	wherein performing the interval global optimization process involves,
14	applying term consistency to the set of inequality
15	constraints over a subboxsub-box X, and

16	excluding any portion of the subboxsub-box X that is
17	proved to be in violation of at least one member of the set of
18	inequality constraints; and
19	recording the guaranteed bounds in the computer system memory.
1	12. (Currently amended) The computer-readable storage medium of claim
2	11, wherein the method further comprises:
3	linearizing the set of inequality constraints to produce a set of linear
4	inequality constraints with interval coefficients that enclose the nonlinear
5	constraints;
6	preconditioning the set of linear inequality constraints through additive
7	linear combinations to produce a preconditioned set of linear inequality
8	constraints;
9	applying term consistency to the set of preconditioned linear inequality
10	constraints over the subbox sub-box X, and
11	excluding any portion of the subboxsub-box X that violates any member
12	of the set of preconditioned linear inequality constraints.
1	12 (Original) The same of the last transfer to the same of the sam
1	13. (Original) The computer-readable storage medium of claim 12,
2	wherein the method further comprises:
3	keeping track of a least upper bound f_bar of the function $f(\mathbf{x})$ at a feasible
4	point x wherein $p_i(\mathbf{x}) \leq 0$ $(i=1,,m)$; and
5	including $f(\mathbf{x}) \leq f_bar$ in the set of inequality constraints prior to
6	linearizing the set of inequality constraints.
1	14. (Original) The computer-readable storage medium of claim 12,
2	wherein the method further comprises removing from consideration any inequality
_	

3	constraints that are not violated by more than a specified amount for purposes of
4	applying term consistency prior to linearizing the set of inequality constraints.
1	15. (Currently amended) The computer-readable storage medium of claim
2	11, wherein performing the interval global optimization process involves:
3	keeping track of a least upper bound f_bar of the function $f(x)$ at a feasible
4	point x;
5	removing from consideration any $\frac{\text{subbox}}{\text{sub-box}}$ for which $f(\mathbf{x}) > f_bar$;
6	applying term consistency to the f_bar inequality $f(\mathbf{x}) \le f_bar$ over the
7	subboxsub-box X; and
8	excluding any portion of the $\frac{\text{subbox}}{\text{sub-box}}$ X that violates the f_bar
9	inequality.
1	16. (Currently amended) The computer-readable storage medium of claim
2	11, wherein if the subboxsub-box X is strictly feasible $(p_i(X) < 0 \text{ for all } i=1,,n)$
3	performing the interval global optimization process involves:
4	determining a gradient $g(x)$ of the function $f(x)$, wherein $g(x)$ includes
5	components $g_i(\mathbf{x})$ $(i=1,,n)$;
6	removing from consideration any subbox sub-box for which $g(x)$ is
7	bounded away from zero, thereby indicating that the subboxsub-box does not
8	include an extremum of $f(\mathbf{x})$; and
9	applying term consistency to each component $g_i(\mathbf{x}) = 0$ $(i=1,,n)$ of $\mathbf{g}(\mathbf{x}) = 0$
10	over the $\frac{\text{subbox}}{\text{sub-box}}$ X; and
11	excluding any portion of the subboxsub-box X that violates any
12	component of $g(x)=0$.

1	17. (Currently amended) The computer-readable storage medium of claim
2	11, wherein if the subbox sub-box X is strictly feasible $(p_i(X) < 0 \text{ for all } i=1,,n)$.
3	performing the interval global optimization process involves:
4	determining diagonal elements $H_{ii}(\mathbf{x})$ ($i=1,,n$) of the Hessian of the
5	function $f(\mathbf{x})$;
6	removing from consideration any subbox sub-box for which $H_{ii}(\mathbf{x})$ a
7	diagonal element of the Hessian over the subboxsub-box X is always negative,
8	indicating that the function f is not convex over the subbox sub-box X and
9	consequently does not contain a global minimum within the $\frac{\text{subbox}}{\text{sub-box}} X$;
10	applying term consistency to each inequality $H_{ii}(\mathbf{x}) \ge 0$ $(i=1,,n)$ over the
11	subboxsub-box X; and
12	excluding any portion of the subboxsub-box X that violates a Hessian
13	inequality.
1	18. (Currently amended) The computer-readable storage medium of claim
2	11, wherein if the subbox sub-box X is strictly feasible $(p_i(X) < 0 \text{ for all } i=1,,n)$,
3	performing the interval global optimization process involves:
4	performing the Newton method, wherein performing the Newton method
5	involves,
6	computing the Jacobian $J(x,X)$ of the gradient of the
7	function f evaluated with respect to a point x over the subbox sub-
8	$\underline{\text{box}} \mathbf{X},$
9	computing an approximate inverse B of the center of
10	J(x,X),
11	using the approximate inverse B to analytically determine
12	the system $\mathbf{Bg}(\mathbf{x})$, wherein $\mathbf{g}(\mathbf{x})$ is the gradient of the function $f(\mathbf{x})$,
	the system $\mathbf{Dg}(\mathbf{x})$, wherein $\mathbf{g}(\mathbf{x})$ is the gradient of the function $f(\mathbf{x})$,

14 applying term consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ (i=1,...,n) for 15 each variable x_i (i=1,...,n) over the subboxsub-box X; and 16 excluding any portion of the subboxsub-box X that violates a component. 1 19. (Currently amended) The computer-readable storage medium of claim 2 11, wherein applying term consistency involves: 3 symbolically manipulating an equation within the computer system to 4 solve for a term, $g(x'_i)$, thereby producing a modified equation $g(x'_i) = h(x)$. 5 wherein the term $g(x'_i)$ can be analytically inverted to produce an inverse function $g^{-l}(\mathbf{y});$ 6 7 substituting the subboxsub-box X into the modified equation to produce 8 the equation $g(X'_i) = h(X)$; solving for $X'_i = g^{-l}(h(X))$; and 9 10 intersecting X'_i with the j-th element of the subbox sub-box X to produce a new subboxsub-box X+; 11 wherein the new subbox sub-box X^+ contains all solutions of the equation 12 13 within the subboxsub-box X, and wherein the size of the new subboxsub-box X^+ 14 is less than or equal to the size of the subboxsub-box X. 1 20. (Original) The computer-readable storage medium of claim 11, 2 wherein the method further comprises performing the Newton method on the John 3 conditions. 1 21. (Currently amended) An apparatus for using a computer system to 2 solve a global inequality constrained optimization problem specified by a function

100

f and a set of inequality constraints $p_i(\mathbf{x}) \leq 0$ (i=1,...,m), wherein f is a scalar

function of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the apparatus comprising:

3

4

5	a receiving mechanism that is configured to receive a representation of the
6	function f and the set of inequality constraints at the computer system;
7	a memory within the computer system for storing the representation;
8	a global optimizer that is configured to perform an interval inequality
9	constrained global optimization process to compute guaranteed bounds on a
10	globally minimum value of the function $f(\mathbf{x})$ subject to the set of inequality
11	constraints;
12	a term consistency mechanism within the global optimizer that is
13	configured to,
14	apply term consistency to the set of inequality constraints
15	over a subbox sub-box X, and to
16	exclude any portion of the subboxsub-box X that is proved
17	to be in violation of at least one member of the set of inequality
18	constraints; and
19	a recording mechanism that is configured record the guaranteed bounds in
20	the computer system memory.
1	22. (Currently amended) The apparatus of claim 21, further comprising:
2	a linearizing mechanism that is configured to linearize the set of inequality
3	constraints to produce a set of linear inequality constraints with interval
4	coefficients that enclose the nonlinear constraints; and
5	a preconditioning mechanism that is configured to precondition the set of
6	linear inequality constraints through additive linear combinations to produce a
7	preconditioned set of linear inequality constraints;
8	wherein the term consistency mechanism is configured to,
9	apply term consistency to the set of preconditioned linear
10	inequality constraints over the subboxsub-box X, and to

11		exclude any portion of the $\frac{\text{subbox}}{\text{sub-box}} \mathbf{X}$ that violates
12	,	any member of the set of preconditioned linear inequality
13		constraints.
1		23. (Original) The apparatus of claim 22, wherein the global optimizer is
2		configured to:
3		keep track of a least upper bound f_bar of the function $f(x)$ at a feasible
4		point x wherein $p_i(\mathbf{x}) \leq 0$ $(i=1,,m)$; and to
5		include $f(\mathbf{x}) \leq f_bar$ in the set of inequality constraints prior to linearizing
6		the set of inequality constraints.
1		24. (Original) The apparatus of claim 22, wherein the term consistency
2		mechanism is configured to remove from consideration any inequality constraints
3		that are not violated by more than a specified amount for purposes of applying
4		term consistency prior to linearizing the set of inequality constraints.
1		25. (Currently amended) The apparatus of claim 21,
2		wherein the global optimizer is configured to,
3		keep track of a least upper bound f_bar of the function $f(\mathbf{x})$
4		at a feasible point x, and to
5		remove from consideration any subboxsub-box for which
6	1	$f(\mathbf{x}) > f_bar;$
7		wherein the term consistency mechanism is configured to,
8		apply term consistency to the f_bar
9		inequality $f(\mathbf{x}) \le f_bar$ over the subbox sub-box \mathbf{X} ,
10	1	and to
11		exclude any portion of the subboxsub-box X
12	1	that violates the f_bar inequality.

1	26. (Currently amended) The apparatus of claim 21, wherein if the
2	subboxsub-box X is strictly feasible $(p_i(X) < 0 \text{ for all } i=1,,n)$:
3	the global optimizer is configured to,
4	determine a gradient $g(x)$ of the function $f(x)$, wherein $g(x)$
5	includes components $g_i(\mathbf{x})$ $(i=1,,n)$, and to
6	remove from consideration any subboxsub-box for which
7	g(x) is bounded away from zero, thereby indicating that the
8	$\frac{\text{subbox}}{\text{sub-box}}$ does not include an extremum of $f(\mathbf{x})$; and
9	the term consistency mechanism is configured to,
10	apply term consistency to each component $g_i(\mathbf{x})=0$
11	$(i=1,,n)$ of $\mathbf{g}(\mathbf{x})=0$ over the subbox sub-box \mathbf{X} , and to
12	exclude any portion of the subboxsub-box X that violates
13	any component of $g(x)=0$.
1	27. (Currently amended) The apparatus of claim 21, wherein if the
2	subboxsub-box X is strictly feasible $(p_i(X) < 0 \text{ for all } i=1,,n)$:
3	the global optimizer is configured to,
4	determine diagonal elements $H_{ii}(\mathbf{x})$ ($i=1,,n$) of the
5	Hessian of the function $f(\mathbf{x})$, and to
6	remove from consideration any subboxsub-box for which
7	H (v) a diagonal alament of the Hessian area the well with
8	$H_{ii}(\mathbf{x})$ a diagonal element of the Hessian over the subbox sub-box \mathbf{X}
	is always negative, indicating that the function f is not convex over
9	I e e e e e e e e e e e e e e e e e e e
9 10	is always negative, indicating that the function f is not convex over
	is always negative, indicating that the function f is not convex over the $\frac{\text{subbox}}{\text{sub-box}} \mathbf{X}$ and consequently does not contain a global
10	is always negative, indicating that the function f is not convex over the subboxsub-box X and consequently does not contain a global minimum within the subboxsub-box X; and

14	exclude any portion of the subboxsub-box X that violates a
15	Hessian inequality.
1	28. (Currently amended) The apparatus of claim 21, wherein if the
2	$\frac{\text{subbox} \underline{\text{sub-box}}}{\text{sub-box}} \mathbf{X} \text{ is strictly feasible } (p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n):$
3	the global optimizer is configured to perform the Newton method, wherein
4	performing the Newton method involves,
5	computing the Jacobian $J(x,X)$ of the gradient of the
6	function f evaluated with respect to a point x over the subboxsub-
7	$\underline{\text{box}} \mathbf{X},$
8	computing an approximate inverse B of the center of
9	J(x,X), and
10	using the approximate inverse B to analytically determine
11	the system $\mathbf{Bg}(\mathbf{x})$, wherein $\mathbf{g}(\mathbf{x})$ is the gradient of the function $f(\mathbf{x})$,
12	and wherein $g(x)$ includes components $g_i(x)$ ($i=1,,n$); and
13	the term consistency mechanism is configured to,
14	apply term consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$
15	$(i=1,,n)$ for each variable x_i $(i=1,,n)$ over the subbox sub-box
16	X, and to
17	exclude any portion of the subboxsub-box X that violates a
18	component.
1	29. (Currently amended) The apparatus of claim 21, wherein the term
2	consistency mechanism is configured to:
3	symbolically manipulate an equation within the computer system to solve
4	for a term, $g(x'_j)$, thereby producing a modified equation $g(x'_j) = h(x)$, wherein
5	the term $g(\mathbf{x}'_j)$ can be analytically inverted to produce an inverse function $g^{-1}(\mathbf{y})$;

substitute the subboxsub-box X into the modified equation to produce the 6 equation $g(X'_i) = h(X)$; 7 solve for $X'_j = g^{-l}(h(X))$; and 8 intersect X_j with the j-th element of the subbox sub-box X to produce a 9 new subboxsub-box X+; 10 wherein the new $\frac{\text{subbox}}{\text{sub-box}} \mathbf{X}^{+}$ contains all solutions of the equation 11 within the subboxsub-box X, and wherein the size of the new subboxsub-box X^+ 12 is less than or equal to the size of the $\frac{\text{subbox} \underline{\text{sub-box}}}{X}$. 13

30. (Original) The apparatus of claim 21, wherein the global optimizer is configured to apply the Newton method to the John conditions.