Optique – chapitre 2

## TD application : base de l'optique géométrique



### I | Fréquence, longueur d'onde et indice

La lumière visible possède des longueurs d'onde dans le vide comprises entre [400; 800] nm.

- 1) À quel intervalle de fréquences cela correspond-il?
- 2) Que deviennent ces longueurs d'ondes
- a dans l'eau d'indice  $n_1 = 1,33$ ?
- b dans un verre d'indice  $n_2 = 1.5$ ?
- 3) Calculer la valeur de la vitesse de la lumière dans un verre d'indice n = 1,5.

#### \*\*\*

## Détermination directe de l'indice d'un liquide

1)

Un rayon lumineux dans l'air  $(n_{\rm air})$  tombe sur la surface horizontale d'un liquide d'indice n. Il fait un angle  $\alpha=56^{\circ}$  avec le plan horizontal. La déviation entre le rayon incident et le rayon réfracté est  $D=13,5^{\circ}$ . Quel est l'indice n du liquide?





### III Incidence de Brewster

1) Un dioptre plan sépare l'air d'un milieu d'indice n. Pour quelle valeur de l'angle d'incidence le rayon réfléchi est-il perpendiculaire au rayon réfracté?



### Rayon lumineux à travers une vitre

Un rayon lumineux traverse une vitre d'épaisseur  $a=5.0\,\mathrm{mm}$  et d'indice  $n=1.5\,\mathrm{sous}$  une incidence  $i_1=45^\circ$ . Le milieu extérieur est l'air.

- 1) Faire un schéma et calculer l'angle de réfraction  $i_2$  lors du passage à travers la première face (air $\rightarrow$ verre). Calculer alors l'angle de réfraction  $i_3$  lors du passage à travers la deuxième face (verre $\rightarrow$ air).
- 2) Justifier que le rayon entrant et le rayon sortant sont parallèles.
- 3) Calculer la déviation latérale d (la distance entre le point où sort le rayon émergeant et celui où sortirait le rayon incident s'il n'était pas dévié) entre ces deux rayons.





# Détecteur de pluie sur un pare-brise

On modélise un pare-brise par une lame de verre à faces parallèles, d'épaisseur  $e=5,00\,\mathrm{mm}$ , d'indice  $n_v=1,5$ . Un fin pinceau lumineux issu d'un émetteur situé en E arrive de l'intérieur du verre sur le dioptre verre  $\rightarrow$  air en I avec un angle d'incidence  $i=60^\circ$ .



- 1) Montrer que le flux lumineux revient intégralement sur le détecteur situé en D et déterminer la distance ED.
- 2) Lorsqu'il pleut, une lame d'eau d'indice  $n_e = 1{,}33$  et d'épaisseur  $e' = 1{,}00$  mm se dépose sur un pare-brise. Représenter le rayon lumineux dans ce cas. À quelle distance du détecteur arrive-t-il?