ภาคผนวก A

การทดลองที่ 1 ข้อมูลและคณิตศาสตร์ใน คอมพิวเตอร์

การทดลองนี้เป็นการทบทวนความเข้าใจและแบบฝึกหัดเสริมของเนื้อหาในบทที่ 2 เนื่องจากจำนวนบิตข้อมูล ที่ยาวขึ้นจำเป็นต้องใช้โปรแกรมคอมพิวเตอร์ช่วยคำนวณแทน โดยมีวัตถุประสงค์ ดังต่อไปนี้

- เพื่อ ให้ เข้าใจ การ แปลง และ คณิตศาสตร์ สำหรับ เลขจำนวน เต็ม ฐาน สอง ชนิด ไม่มี เครื่องหมาย และ มี เครื่องหมายแบบ 2's Complement
- เพื่อให้เข้าใจการแปลงและคณิตศาสตร์สำหรับเลขทศนิยมฐานสองมาตรฐาน IEEE754 ชนิด Single Precision
- เพื่อให้เข้าใจรหัส ASCII และ Unicode สำหรับข้อมูลตัวอักษร นอกจากเนื้อหาในบทที่ 2 แล้ว ผู้อ่านสามารถศึกษาเว็บเพจเพิ่มเติม เพื่อทำความเข้าใจอย่างลึกซึ้ง ได้แก่
- https://www.tutorialspoint.com/cprogramming/c_data_types.htm
- https://www3.ntu.edu.sg/home/ehchua/programming/java/ datarepresentation.html

ผู้อ่านจะพบว่าเนื้อหาในเว็บของมหาวิทยาลัยนั้นยาง ประเทศสิงคโปร์ เป็นการสอนพื้นภาษา Java ใช้งาน ข้อมูลเป็นเลขฐานสองเหมือนกับภาษา C/C++ ในเว็บที่สอง การทดลองจะครอบคลุมเนื้อหาตามทฤษฎี โดยจะ เริ่มจากเลขจำนวนเต็ม เลขทศนิยม และตัวอักษรตามลำดับ

A.1 การแปลงและคณิตศาสตร์สำหรับเลขจำนวนเต็มฐานสอง

A.1.1 การทดลองแปลงเลขฐาน

เนื่องจากการแปลงเลขฐานสิบเป็นฐานสองชนิดไม่มีเครื่องหมาย (unsigned) ผู้อ่านสามารถใช้เครื่องคิดเลข ทางวิทยาศาสตร์ทั่วไป ดังนั้น การทดลองนี้จะเน้นที่การแปลงเป็นเลขจำนวนเต็มฐานสองชนิดมีเครื่องหมายแบบ 2's Complement สอดคล้องกับเนื้อหาในหัวข้อที่ 2.2 โดยผ่านเว็บเบราส์เซอร์ที่ผู้อ่านถนัด คลิกที่ชื่อลิงก์ต่อไป นี้ https://www.binaryconvert.com/ ขอให้ผู้อ่านปฏิบัติตามการทดลอง ดังนี้

ร**ูปที่** A.1: หน้าเว็บสำหรับแปลงเลขจำนวนเต็มฐานสองเป็นฐานสิบหรือฐานสิบเป็นฐานสองหลายชนิด

- 1. คลิกที่หัวข้อ Signed Char เพื่อทดลองการแปลงเลขจำนวนเต็มมีเครื่องหมายชนิด 2's Complement ขนาด 8 บิต
- 2. กรอกเลข -123 ลงในกล่องข้อความ Decimal เพื่อให้โปรแกรมแปลงเลขจำนวนเต็ม -123 เป็นเลขฐาน สองมีเครื่องหมายชนิด 2's Complement ดังรูปที่ A.2

Sign	ned char (8-bit) Two's complement	
Decimal -123	Convert to binary	
Binary	Hexadecimal Binary Ox =	

ร**ูปที่** A.2: กรอกเลข -123 ลงในกล่องข้อความ Decimal เพื่อให้โปรแกรมแปลงเลขจำนวนเต็ม -123 เป็น เลขจำนวนเต็มฐานสองมีเครื่องหมายชนิด 2's Complement

กดปุ่ม Convert to binary เพื่อดำเนินการ บันทึกผลลัพธ์ที่ได้จากการแปลงดังต่อไปนี้

ร**ูปที่** A.3: ผลลัพธ์การแปลงเลข -123 เป็นเลขจำนวนเต็มฐานสองมีเครื่องหมายชนิด 2's Complement

- Binary (2's Complement) 1 0 0 0 0 1 0 1
- Hexadecimal (0x) **§ 5**
- แสดงวิธีทำตามสมการที่ (2.16) ที่ n=8 บิตเพื่อแปลงเลขให้ตรงตามรูป

$$x_{2,s} = 1000 \quad 0101_{2} = 85_{16}$$

$$x_{10,s} = -1 \times 2^{3} + 0 \times 2^{6} + 0 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{9} + 0 \times 2^{1} + 1 \times 2^{9}$$

$$= -128 + 4 + 1$$

$$= -123_{10}$$

3. กรอกเลขฐานสองมีเครื่องหมายชนิด 2's Complement 11111111 ขนาด 8 บิตลงในกล่องข้อความ Binary เพื่อให้โปรแกรมแปลงเลขจำนวนเต็มฐานสิบ ดังรูปที่

รูปที่ A.4: การแปลงเลขฐานสองมีเครื่องหมายชนิด 2's Complement 11111111 หรือเท่ากับฐานสิบหก 0xFF

กดปุ่ม Convert to decimal ทางด้านขวาเพื่อดำเนินการ อ่านค่าผลลัพธ์ที่ได้จากการแปลงดังต่อไปนี้

รูปที่ A.5: ผลลัพธ์การแปลงเลขฐานสองมีเครื่องหมายชนิด 2's Complement 11111111 หรือเท่ากับฐานสิบ หก 0xFF

- 4. กดปุ่ม Signed short บนเมนูด้านบนสุด เพื่อเปลี่ยนความยาวเป็น 16 บิต กรอกเลข -123 ลงในกล่อง ข้อความ Decimal กดปุ่ม Convert to binary เพื่อดำเนินการ บันทึกผลลัพธ์ที่ได้จากการแปลงดังต่อไปนี้
 - Binary (2's Complement) 1111111000010101
 - Hexadecimal (0x) F F § 5
 - แสดงวิธีทำตามสมการที่ (2.16) ที่ n=16 บิตเพื่อแปลงเลขให้ตรงตามรูป

$$x_{10,8} = -1 \times 2^{15} \times 1 \times 2^{14} + \dots + 1 \times 2^{\frac{3}{4}} + 0 \times 2^{\frac{3}{4}} + 1 \times 2^{\frac{3}{4}} + 0 \times 2^{\frac{4}{4}} + 1 \times 2^{\frac{9}{4}}$$

$$= -32,468 + \dots + 128 + 4 + 1$$

$$= -123$$

- 5. กดปุ่ม Signed int บนเมนูด้านบนสุด เพื่อเปลี่ยนความยาวเป็น 32 บิต กรอกเลข -123 ลงในกล่อง ข้อความ Decimal กดปุ่ม Convert to binary เพื่อดำเนินการ บันทึกผลลัพธ์ที่ได้จากการแปลงดังต่อไปนี้

 - Hexadecimal (0x) FFFFFF85
 - แสดงวิธีทำตามสมการที่ (2.16) ที่ n=32 บิตเพื่อแปลงเลขให้ตรงตามรูป

$$\chi_{10,5} = -1 \times 2^{31} + 1 \times 2^{30} + ... + 1 \times 2^{\frac{3}{4}} + 0 \times 2^{\frac{5}{4}} + ... + 0 \times 2^{\frac{3}{4}} + 1 \times 2^{\frac{3}{4}} + 0 \times 2^{\frac{1}{4}} + 1 \times 2^{\frac{5}{4}}$$

$$= -2,144,483,648 + ... + 128 + 4 + 1$$

$$= -123_{10}$$

A.1.2 คณิตศาสตร์เลขจำนวนเต็มฐานสอง

1. กรอกเลขที่ได้จากการแปลงลงในช่องว่างที่จัดไว้ แสดงวิธีทำการบวกเลขจำนวนเต็มฐานสองมีเครื่องหมาย ชนิด 2's Complement ขนาด 8 บิตและคำนวณค่าโอเวอร์โฟลว์ V

		c_8	c_7	c_6	c_5	c_4	c_3	c_2	c_1	c_0	$V=c_8\oplus c_7$
		1	1	1	1	1	1	1	1		$V = \underline{1} \oplus \underline{1}$
\overline{X} -2	123		1	0	0	0	0	1	0	1	
$\pm V$ \pm	1		1	A	Α	1	1	Λ	^	٨	
+1 7	1	+	1	<u>T</u>	1	<u>1</u>				<u>^</u>	

ซอฟต์แวร์สามารถนำผลลัพธ์ Z ไปใช้งานต่อได้หรือไม่ เพราะเหตุใด พระน่าแว่ง จึงนำปรุงได้

2. กรอกเลขที่ได้จากการแปลงลงในช่องว่างที่จัดไว้ แสดงวิธีทำการบวกเลขจำนวนเต็มฐานสองมีเครื่องหมาย ชนิด 2's Complement ขนาด 8 บิตและคำนวณค่าโอเวอร์โฟลว์ V

		c_8	c_7	c_6	c_5	c_4	c_3	c_2	c_1	c_0	$V=c_8\oplus c_7$
		1	9	<u>0</u>		<u>o</u>			1	0	$V=\underline{1}\oplus\underline{0}$
\overline{X}	-123		1	0	0	0	0	1	0	1	
+Y	+ -123	+	1	0	Q	9	Q	1	0	1	
\overline{Z}	-246		0	0	0	0	1	9	1	0	

ซอฟต์แวร์สามารถนำผลลัพธ์ Z ไปใช้งานต่อได้หรือไม่ เพราะเหตุใด ซองห์แวร์สามารถนำผลลัพธ์ Z ไปใช้งานต่อได้หรือไม่ เพราะเหตุใด ซองห์แวร์จึงฯม่งเหล่าไว้งี่ได้

3. กรอกเลขที่ได้จากการแปลงลงในช่องว่างที่จัดไว้ แสดงวิธีทำการบวกเลขจำนวนเต็มฐานสองมีเครื่องหมาย ชนิด 2's Complement ขนาด 8 บิตและคำนวณค่าโอเวอร์โฟลว์ V

		c_8	c_7	c_6	c_5	c_4	c_3	c_2	c_1	c_0	$V=c_8\oplus c_7$
		9	<u>o</u>	<u>o</u>	0	0	0	<u>o</u>	1	0	$V = \underline{\bullet} \oplus \underline{\bullet}$
\overline{X}	-123		1	0	Q	Q	Ω	1	Q	1	
+Y	+ 1	+	0	0	0	0	0	0	Q	_1	
Z	-122		1	٥	0	0	0	1	1	0	

ซอฟต์แวร์สามารถนำผลลัพธ์ Z ไปใช้งานต่อได้หรือไม่ เพราะเหตุใด พรานห์แว่จึงนำปริชาลั

4. กรอกเลขที่ได้จากการแปลงลงในช่องว่างที่จัดไว้ แสดงวิธีทำการบวกเลขจำนวนเต็มฐานสองมีเครื่องหมาย ชนิด 2's Complement ขนาด 8 บิตและคำนวณค่าโอเวอร์โฟลว์ V

		c_8	c_7	c_6	c_5	c_4	c_3	c_2	c_1	c_0	$V=c_8\oplus c_7$
		1	1	1	1	1	1	1	1	0	$V = \underline{1} \oplus \underline{1}$
\overline{X}	-123		1	0	0	0	0	1	0	1	
+Y	+ 123		0	1	1	1	1	0	4	1	
7	_			٥	O	0	0	0	٥	0	

ซอฟต์แวร์สามารถนำผลลัพธ์ Z ไปใช้งานต่อได้หรือไม่ เพราะเหตุใด ใช้ได้ เพาะไม่เกิด θ verflow ชน่ดงเว่าคำนอณ θ

A.1.3 กิจกรรมท้ายการทดลอง

จงทำการทดลองและตอบคำถามต่อไปนี้ โดยแสดงวิธีทำตามเนื้อหาในหัวข้อที่ 2.2.2 และตรวจคำตอบตาม วิธีทำการทดลองที่ได้ทำไป

1. จงแปลงเลขจำนวนเต็มฐานสิบชนิดไม่มีเครื่องหมายต่อไปนี้ให้เป็นเลขจำนวนเต็มฐานสอง 16 บิตและฐาน สิบหกจำนวน 4 หลัก และบันทึกผลลัพธ์ที่ได้ลงในตาราง

ฐานสิบ	ฐานสอง	ฐานสิบหก
7	00000000000001112	
8	000000000000000000000000000000000000000	<u>0 00 </u>
15	000000000001112	o o o F 16
16	0 0000000000100002	0 <u>1</u> 0 ₁₆
255	0000000011111112	00FF ₁₆
256	0000000000000000000	0100 16
65535	1111111111111111111	FFFF 16
65536	111111111111	<u>FF </u>

-> 61200 AD BESSSS

2. จงแปลงเลขจำนวนเต็มฐานสิบต่อไปนี้ให้เป็นเลขจำนวนเต็มฐานสองและฐานสิบหกชนิดมีเครื่องหมาย แบบ 2's Complement ความยาว 16 บิตแล้วบันทึกผลลัพธ์ที่ได้ลงในตาราง

ฐานสิบ	ฐานสอง	ฐานสิบหก	-
+1	<u> </u>		-
-1	<u> </u>	FFFF 16	_
+15	0000000000011112		_
-16	1111111111100002	FFF0 16	_
+255	000000011111111		-
-256	<u>111111110000000</u> 2	FFO0 16	-
+65535	01111111111111	3 <u>F</u> FF 16	→ ฝากบล์ของ 35 161
-65536	100000000000000000000000000000000000000	800016	→ กำนังจะกุด คือ -32768
			- 211404401010 25468

- 3. จงบวกเลข 2's Complement ต่อไปนี้ แล้วบันทึกผลลัพธ์เป็นฐานสองความยาว 16 บิต ฐานสิบหก ฐานสิบ โอเวอร์โฟลว์หรือไม่ และอธิบายเหตุผลว่าทำไมจึงไม่ตรงกัน
 - 1000000000000000 + 0000000000000001
 - ผลลัพธิ์ = <u>1 0 o 0 0 0 0 0 0 0 0 0 0 1</u>2
 - ผลลัพธ์ = **§ o o 1** ₁₆
 - ผลลัพธ์ =-3 <u>27 6</u> 7 ₁₀
 - โอเวอร์โฟลว์หรือไม่. 1่ม่.
 - 1000000000000000 + 1000000000000000
 - ผลลัพธ์ = <u>๑๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐</u>
 - ผลลัพธ์์ = <u>oooo</u> <u>ooo</u> 16

```
- ผลลัพธ์ = 00000 <sub>10</sub>

    โอเวอร์โฟลว์หรือไม่ เ๋๋ด Overflow
    เหตุผล と⊕と 100 = 1 ของที่แจร์จังไม่ผนงถนำไงใช้ได้

• 100000000000000 - 0000000000000001
    - ผลลัพธ์ = <u>0111111111111</u>2
```

• 100000000000000 - 1000000000000000

A.2 การแปลงและคณิตศาสตร์เลขทศนิยมฐานสองมาตรฐาน IEEE754

การทดลองเพื่อให้เข้าใจการแปลงเลขทศนิยมฐานสิบให้เป็นเลขฐานสองตามรูปแบบและฝึกการคำนวณโดย ใช้คณิตศาสตร์มาตรฐาน IEEE754 Single Precision มีความสอดคล้องกับเนื้อหาในหัวข้อที่ 2.6

A.2.1 เลขทศนิยมชนิดจุดลอยตัวมาตรฐาน IEEE754 Single-Precision

การทดลองนี้จะเน้นที่การแปลงเลขทศนิยมฐานสิบให้เป็นเลขทศนิยมฐานสองชนิดจุดลอยตัว สอดคล้องกับ เนื้อหาในหัวข้อที่ 2.6 ในรูปแบบ Single Precision โดยผ่านเว็บเบราส์เซอร์ที่ผู้อ่านถนัด คลิกที่ชื่อลิงก์ต่อไปนี้

http://www.binaryconvert.com/convert_float.html เมื่อเว็บเพจปรากฏขึ้น ขอให้ผู้อ่านปฏิบัติตามการทดลอง ดังนี้

1. กรอกเลข 123 ลงในกล่องข้อความ แล้วกดปุ่ม Convert to binary ได้รูปที่ A.6

ร**ูปที่** A.6: ผลลัพธ์จากการแปลงเลข 123.0 ให้เป็นเลขทศนิยมฐานสองชนิด Single Precision

การเรียงตัวของผลลัพธ์เลขฐานสิบหกทางซ้ายมือมาจากเลขฐานสองทางขวามือ ซึ่งเกิดจากบิตข้อมูลทั้งหมด 32 บิตตามรูปแบบของมาตรฐาน IEEE754 ชนิด Single Precision โปรดสังเกต กล่องสี่เหลี่ยมสีเขียวตรงกับบิต ที่เป็น '1' กล่องสีเทาตรงกับบิตที่เป็น '0' 0x หมายถึง เลขฐานสิบหก

แสดงวิธีทำตามสมการที่ (2.67) เพื่อแปลงเลขให้ตรงตามรูป

```
4\ 2\ F\ 6\ 0\ 0\ 0\ 0_{16}\ = [0100\ 0010\ 1][Y_2=111\ 0110\ 0000\ 0000\ 0000\ 0000\ 0000]_2

E_{1112}=1000\ 0101_2-E_{biols}=133-127=6

Y_2=111\ 0110\ 0000\ 0000\ 0000_2

F_{10,2}=E_{E}=(-1)^{\circ}\times(1+.111011_2)\times2^{6}

=1111011_2=14+32+16+9+2+1=123.0_{10}
```

2. กรอกเลข -123.0 ลงในกล่องข้อความ แล้วกดปุ่ม Convert to binary ได้รูปที่ A.7

ร**ูปที่** A.7: ผลลัพธ์จากการแปลงเลข -123.0 ให้เป็นเลขทศนิยมฐานสองตามมาตรฐาน IEEE754 ชนิด Single Precision

โปรดสังเกตตำแหน่งของกล่องสี่เหลี่ยมหรือสีเทาที่ตรงกับบิต Sign Exponent และ Mantissa ดังนั้น เราจะ เห็นได้ว่าเฉพาะ Sign ที่มีการเปลี่ยนแปลง

แสดงวิธีทำตามสมการที่ (2.67) เพื่อแปลงเลขให้ตรงตามรูป

3. คลิกบนลิงก์นี้ เพื่อทดลองบวกและคูณเลขในรูปแบบ Single Precision ด้วยลิงก์ต่อไปนี้ http://weitz.de/ieee/ เลื่อนหน้าเว็บลงไปด้านล่างสุด เพื่อค้นหาแถบเมนูตามรูปที่ A.8 แล้วกดเลือกปุ่ม binary32 เพื่อทดลองการบวกและคูณเลข IEEE754 Single Precision

binary16	binary32	binary64	binary128

ร**ูปที่** A.8: เมนูด้านล่างสุดของหน้าเว็บ เพื่อเลือกเลขทศนิยมฐานสองชนิด IEEE754 Single Precision (Binary32) และ Double Precision (Binary64)

4. เลื่อนหน้าเว็บกลับไปด้านบนสุดเพื่อกรอกเลข -123.0 ลงในกล่องข้อความซ้ายบน และ กรอกเลข 123.0 ลงในกล่องข้อความถัดลงมา แล้วกดปุ่ม + แล้วจะได้ผลลัพธ์ดังรูปต่อไปนี้

IEEE 754 Calculator
(See info at bottom of page.)

	Sign	Significand	Exponent
-123.0	1	1 . 11101100000000000000000	10000101
	_	1.921875	+6
		0xC2F60000 0b110000101111011000000000000	00000
123.0	0	1 .111011000000000000000000000000000000	10000101
	+	1.921875	+6
		0x42F60000 0b010000101111011000000000000	00000
+	-	× /	
0.0	0	0 .000000000000000000000000000000000000	0000000
	+	0.0	+0
		00000000000000000000000000000000000000	00000

รูปที่ A.9: ผลลัพธ์จากการบวกเลข -123.0+123.0 ให้เป็นเลขทศนิยมฐานสองชนิด IEEE754 Single Precision

จะสังเกตเห็นว่า ผลลัพธ์ที่ได้เรียกว่า True Zero ตามตารางที่ 2.12 5. กดปุ่ม x (คูณ) แล้วจะได้ผลลัพธ์ของ -123×123 ดังรูปต่อไปนี้

IEEE 754 Calculator

(See info at bottom of page.)

	Sign	Significand	Exponent
-123.0	1	1 . 111011000000000000000000	10000101
	_	1.921875 0xC2F60000 0b1100001011110110000000000000	+6
123.0	0	1 . 11101100000000000000000000000000000	10000101
	+	1.921875 0x42F60000 0b010000101111011000000000000	+6
+	-	× /	
-15129.0	1	1 .11011000110010000000000	10001100
	-	1.8468018 0xC66C6400 0b110001100110110001100100000	+13

รูปที่ A.10: ผลลัพธ์จากการคูณเลข -123.0 x 123.0 ให้เป็นเลขทศนิยมฐานสองชนิด IEEE754 Single Precision

แสดงวิธีทำตามสมการที่ (2.67) เพื่อแปลงเลขให้ตรงตามผลคูณในรูปที่ A.10

$$S=1$$
 $E_{true} = 1000 \cdot 1100 - E_{bias} = 140 - 127 = 13$
 $Y_2 = 110110001001$
 $F_{10,1EEE} = (-1)^1 \times (1+.1101100011001_2) \times 2^{13}$
 $= (-1) \times (11101100011001_2)$
 $= -15129.0$

A.2.2 กิจกรรมท้ายการทดลอง

จงใช้ลิงก์ของเว็บเพจต่อไปนี้ในการตอบคำถาม

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Tools & Th	oughts			
IEEE-754		g Point C	Converter	r
Translations: de				
This page allow used by all mod				nal representation of numbers (like "1.02") and the binary format .
		IEEE	E 754 Con	verter (JavaScript), V0.22
	Sign	Expo	nent	Mantissa
Value:	+1	2 ⁻¹ (denorm		0.0 (denormalized)
Encoded as:	0	0		0
Binary:				
You en	tered		0	
Value a	actually sto	ored in float:	0	+1
Error d	ue to conv	version:	0	-1
Binary	Represen	tation	00000000000	000000000000000000000000000000000000000
Hexade	ecimal Re	presentation	0x00000000	

ร**ูปที่** A.11: เว็บสำหรับการตอบคำถามเพื่อสร้างเลขหรือแปลงเลขฐานสิบด้วยมาตรฐาน IEEE754 Single Precision การกดเลือกคือทำให้บิตนั้นเท่ากับ '1'

โดยแสดงวิธีทำตามเนื้อหาในหัวข้อที่ 2.6 และตรวจคำตอบตามวิธีทำการทดลองที่ได้ทำไป และบันทึก ผลลัพธ์ลงบนเส้นประที่จัดไว้ให้เท่านั้น ผู้อ่านสามารถกดเปลี่ยนเครื่องหมายถูก ซึ่งแทนลอจิก 1 หากไม่มี เครื่องหมายถูกแทนลอจิก 0 ยกตัวอย่างเช่น

1. จงสร้างเลขทศนิยมฐานสอง IEEE754 ที่มีค่าเท่ากับ -0.0 $_{10}$ โดยการกดเลือกปุ่มสี่เหลี่ยมในส่วน Sign เท่านั้น

เลขฐานสอง = 1 0 0 0|0 0 0|0 0|0

2. จงสร้างเลขทศนิยมฐานสอง IEEE754 ที่มีค่าเท่ากับ -1.0 $_{10}$ โดยการกดเลือกปุ่มสี่เหลี่ยมในส่วน Exponent เท่านั้น ต่อจากข้อที่แล้ว

3. จงสร้างเลขทศนิยมฐานสอง IEEE754 ที่มีค่าเท่ากับ -1.55₁₀ หรือ 1.55e0 โดยการกดเลือกปุ่มสี่เหลี่ยม ในส่วน Mantissa เท่านั้น ต่อจากข้อที่แล้ว

	V
	เลขฐานสอง = 1 <u>o 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1</u> ฐานสิบหก = <u>b <u>F</u> <u>c</u> <u>b</u> <u>b</u> <u>b</u> <u>6</u> <u>6</u> <u>6</u> <u>16</u> ค่าฐานสิบที่จัดเก็บ (Value actually stored in float)</u>
4.	จงสร้างเลขทศนิยมฐานสอง IEEE754 ที่มีค่าเท่ากับ 1.17549435082×10 ⁻³⁸ หรือ 1.17549435082e-38 ซึ่งเป็นค่านอร์มัลไลซ์ที่น้อยที่สุด (Normalize) เลขฐานสอง = <u>Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q </u>
5.	จงสร้างเลขทศนิยมฐานสอง IEEE754 ที่มีค่าเท่ากับ 1.17549421069× 10^{-38} หรือ 1.17549421069e-38 ซึ่งอยู่ในรูป ดีนอร์มัลไลซ์ (Denormalize) เพราะมีค่าน้อยกว่าค่านอร์มัลไลซ์ที่ต่ำที่สุด เลขฐานสอง = $000000000000111111111111111111111111$
6.	จงสร้างเลขทศนิยมฐานสอง IEEE754 ที่มีค่าเท่ากับ 1.40129846432×10 ⁻⁴⁵ หรือ 1.40129846432e-45 ซึ่งอยู่ในรูป ดีนอร์มัลไลซ์ (Denormalize) และต่ำที่สุด เลขฐานสอง = <u>Q o o o o o o o o o o o o o o o o o o </u>
7.	จงสร้างเลขทศนิยมฐานสอง IEEE754 ที่มีค่าเท่ากับ 1.0×10^{-46} หรือ $1e$ -46 ซึ่งอยู่ในรูป ดีนอร์มัลไลซ์ (Denormalize) และจัดเก็บด้วยค่า 0.0 แทน เลขฐานสอง = $0 \circ 0 $
8.	จงสร้างเลขทศนิยมฐานสอง IEEE754 ที่มีค่าเท่ากับ 3.40282346640 \times 10 ³⁸ หรือ 3.40282346640e38 ซึ่งเป็นค่านอร์มัลไลซ์ที่มากที่สุด เลขฐานสอง = $\underline{\textbf{01}}\underline{\textbf{11}}$

ความผิดพลาด (Error due to conversion). - 14711401852 95816515 4 \$ 30 น 4 5 6 o

	จงสร้างเลขทศนิยมฐานสอง IEEE754 ที่มีค่าเท่ากับ 3.5×10^{38} หรือ $3.5 \mathrm{e} + 38$ ซึ่งมากกว่าค่านอร์มัลไลซ์ ที่มากที่สุด ซึ่งหมายถึงค่าอนันต์ (∞ : Infinity) ตามตารางที่ 2.12 เลขฐานสอง = $2 111111000000000000000000000000000000$			
	ฐานสิบหก = <u>1 F § Q o o O O o o o o o o o o o o o o o o o</u>			
١٥.	จงสร้างเลขทศนิยมฐานสอง IEEE754 ที่มีค่าเท่ากับ NaN (Not a Number) ตามตารางที่ 2.12			

A.3 รหัสของข้อมูลตัวอักษร

A.3.1 การทดลอง

การทดลองในหัวข้อนี้จะเป็นการแปลงรหัสตัวอักษรภาษาอังกฤษและไทย เป็นรหัส ASCII และ Unicode ชนิด UCS-2 ตามเนื้อหาในหัวข้อ 2.7 ผ่านทางเว็บไซต์ https://www.branah.com/ascii-converter ที่มีนักพัฒนาเพื่อเผยแพร่ความรู้เป็นวิทยาทานเช่นเดียวกับเว็บที่ได้ทดลองมา

- 1. เปิดเว็บตามลิงก์ต่อไปนี้ หรือ กดปุ่มซ้ายบนชื่อลิงก์ https://www.branah.com/ascii-converter
- กรอกข้อความต่อไปนี้ ลงไปในกล่องข้อความ ASCII
 ไ ท ย ก ข ค a b c
 โปรดสังเกต ระหว่างตัวอักษรมี ช่องว่าง 1 ตัวอักษรเสมอ
- 3. กดปุ่ม Convert ซ้ายบนสุด จะได้ผลลัพธ์ดังรูปต่อไปนี้

ASCII Converter - Hex, decimal, binary, base64, and ASCII converter

Convert	ASCII (Example: a b c)
ไทยกขคลbo	
Add spaces	Remove spaces Convert white space characters
Convert	Hex (Example: 0x61 0x62 0x63)
e44 e17 e22 e0	1 e02 e04 61 62 63
Convert	Decimal (Example: 97 98 99)
3652 3607 3618	3585 3586 3588 097 098 099
Convert	Binary (Example: 01100001 01100010 01100011)
111001000100 01100011	111000010111 111000100010 111000000001 111000000
Convert	Base64 (Example: YSBiIGM=)
RCAXICIgASAC	IAQgYSBiIGM=

ร**ูปที่** A.12: ผลลัพธ์จากการกรอกและแปลงตัวอักษร ไ ท ย ก ข ค a b c เป็นรหัสต่างๆ

4. กล่องข้อความ Hex จะแสดงค่า Unicode สำหรับภาษาไทย และ ASCII สำหรับภาษาอังกฤษ ในรูปผู้ เขียนได้กดเลือก Remove 0x เพื่อความสะดวกในการอ่านค่า

A.3.2 กิจกรรมท้ายการทดลอง

- 1. จงอธิบายวิธีการหาค่าฐานสิบ 0 9 จากรหัส ASCII ของตัวอักษร 0 9
- 2. จงอธิบายวิธีการหาค่าฐานสิบ 0 9 จากรหัส Unicode ของตัวอักษร o ๙
- 3. จงเปิดเว็บที่มีข้อความภาษาไทย เช่น เว็บข่าว แล้วทดลองเปลี่ยนการนำเสนอบนจอเพื่อ View source เช่น Google Chrome ใช้เมนู Tool-> View Source แล้ว Find หรือกดปุ่ม CTRL-F คำว่า charset ว่า มีค่าเท่ากับ utf-8 หรือไม่ เพราะเหตุใด

ASCII Converter - Hex, decimal, binary, base64, and ASCII converter

Convert	ASCII (Example: a b c)
ไทยกขคลbo	
Add spaces	Remove spaces Convert white space characters
Convert	Hex (Example: 0x61 0x62 0x63)
e44 e17 e22 e0	1 e02 e04 61 62 63
Convert	Decimal (Example: 97 98 99)
3652 3607 3618	3585 3586 3588 097 098 099
Convert	Binary (Example: 01100001 01100010 01100011)
111001000100 01100011	111000010111 111000100010 111000000001 111000000
Convert	Base64 (Example: YSBiIGM=)
RCAXICIgASAC	IAQgYSBiIGM=

ร**ูปที่** A.12: ผลลัพธ์จากการกรอกและแปลงตัวอักษร ไ ท ย ก ข ค a b c เป็นรหัสต่างๆ

4. กล่องข้อความ Hex จะแสดงค่า Unicode สำหรับภาษาไทย และ ASCII สำหรับภาษาอังกฤษ ในรูปผู้ เขียนได้กดเลือก Remove 0x เพื่อความสะดวกในการอ่านค่า

A.3.2 กิจกรรมท้ายการทดลอง

- 1. จงอธิบายวิธีการหาค่าฐานสิบ 0 9 จากรหัส ASCII ของตัวอักษร 0 9
- 2. จงอธิบายวิธีการหาค่าฐานสิบ 0 9 จากรหัส Unicode ของตัวอักษร o ๙
- 3. จงเปิดเว็บที่มีข้อความภาษาไทย เช่น เว็บข่าว แล้วทดลองเปลี่ยนการนำเสนอบนจอเพื่อ View source เช่น Google Chrome ใช้เมนู Tool-> View Source แล้ว Find หรือกดปุ่ม CTRL-F คำว่า charset ว่า มีค่าเท่ากับ utf-8 หรือไม่ เพราะเหตุใด

(1) จาก เพราง ASCII จะได้ว่า ตัวอักษร เลบ "0" = 48 ตัวอักษร เลบ "1" = 49 ตัวอักษร เลบ "1" = 50 ตัวอักษร เลบ "2" = 57

เทตางานลับจากงนัส AS CII คือ งเนราง 48 - 57 ลบด้วย 48

(2) Unicode 924831 Mainus lau 60 = 3664 Mainus lau 60 = 3665 Mainus lau 60 = 3666 Mainus lau 60 = 3666 Mainus lau 60 = 3673

498 VERUA 8698 - 1498 Erénse et IISA zirone u Eurorialu

3 charset อยู่ใน View Source เท่ากับ UTF-8 เพราะ ต้ออักษรไทยมีแสกนสบ โดย การเก็บค่ำต้ออักษาด้อย UTF-8 อักษาอากับถ้อยคภามขาง 1-4 Byte โดยต้ออักษาใน จากาบ ASCII จะเก็บที่จากนาง 1 Byte ส่วนตัวอักษาพบาฮในๆ จะเก็บพี่ความขางมากกล่า