

Artificial Intelligence and Expert Systems

Fuzzy - TA Session 1

Dr. Esmaeil Najafi e.najafi@kntu.ac.ir

K.N. Toosi University of Technology

System Modeling

- Weather
 - o If weather is cold and there are clouds in the sky then it will rain
 - If weather is not cold and there are clouds in the sky then it might rain
 - o If weather is not cold and there aren't clouds in the sky then it wont rain

Control

- Room temperature control
 - If room is very cold then heater on max
 - If room is cold then heater on medium
 - If room is warm then heater off

- Electricity consumption
 - o If crowded household and many electric devices then very high consumption
 - If crowded household and few electric devices then medium consumption
 - If medium household population and few electric devices then low consumption
 - o If uncrowded household and few electric devices then very low consumption
 - 0 ...

- Electricity consumption
 - o If crowded household and many electric devices then very high consumption
 - o If crowded household and few electric devices then medium consumption
 - o If medium household population and few electric devices then low consumption
 - If uncrowded household and few electric devices then very low consumption
 - 0 ...

- Electricity consumption
 - o If crowded household; and many electric devices; then very high consumption;
 - If crowded household and few electric devices then medium consumption
 - If medium household population and few electric devices then low consumption
 - If uncrowded household and few electric devices then very low consumption
 - 0 ...

CODE

Fuzzy Mamdani method (Max-Min)

1. Fuzzification on inputs

2. Implication Implication function -> Min

3. Aggregation
Aggregation function -> Max

4. Defuzzification

Example 1: Modeling of Liquid Level

Rule 1 implication

Clip consequent membership function of the first rule.

Rule 2 implication

[Clip consequent membership function of the second rule. rule.

Aggregate outputs

Combine the result of the two rules (union).

Defuzzification

conversion of a fuzzy set to a crisp value

Defuzzification

Compute a crisp (numerical) output of the model (center-of-gravity method).

Example 2: Basic Tipping problem

- 1. If the service is poor or the food is rancid, then tip is cheap.
- 2. If the service is good, then tip is average.
- 3. If the service is excellent and the food is delicious, then tip is generous.

Input membership functions

Input 1: service

3 gaussian membership functions (Standard deviations = 1.5)

Input 2: food

Output membership functions

Rules

- 1. If the service is poor or the food is rancid, then tip is cheap.
- 2. If the service is good, then tip is average.
- 3. If the service is excellent and the food is delicious, then tip is generous.

Aggregate and defuzzification

