# **Image Super Resolution**

Mubashira km

Roll no: 30

**Product Owner: Vasudevan T V** 

## Table of Contents

- 1. Description
- 2. Modules
- 3. Methodology
- 4. Developing Environment
- 5. Future Enhancement
- 6. Product backlog
- 7. User story
- 8. Project plan
- 9. Sprint plan
- 10. Sprint Actual

# Description

- High-resolution (HR) image reconstruction from single low-resolution (LR) image is one of the important vision applications.
- Despite numerous algorithms have been successfully proposed in recent years, efficient and robust single-image super-resolution (SR) reconstruction is still challenging by several factors, such as inherent ambiguous mapping between the HR-LR images, necessary huge exemplar images, and computational load.
- In this paper, we proposed a new learning-based method of single-image SR.
- Inspired by simple mapping functions method, a mapping matrix table of HR-LR feature patches is calculated in the training phase.
- Each atom of dictionary learned from LR feature patches is corresponding to a mapping matrix in the mapping matrix table.
- Combining this mapping table with sparse coding, high quality and HR images are reconstructed in reconstruction phase.
- The effectiveness and efficiency of this method is validated with experiments on the training datasets.
- Compared with state-of-art methods, jagged and blurred artifacts are depressed effectively and high reconstruction quality is acquired with less exemplar images.

## **MODULES**

#### Module 1

**Input Imaging** 

**Preprocessing Image** 

#### Module 2

Data collection and preprocessing

#### Module 3

Comparison and Algorithm implementation

#### **Module 4**

**Detection and Modifications** 

- edge detection
- replacing pixel data
- writing image
- show/save

# Methodology







- Image super resolution refers to enhancing the resolution of an image from low-resolution to highresolution
- There are six algorithms used "sr", "esr", "dsr", "ddsr", "rnsr", "distilled\_rnsr".
- Super resolution(sr) refers to methods aiming at increasing spatial resolution of digital images.

### Detection and modifications

- Tensorflow is a python-friendly open source library for numerical computation that make machine learning faster and easier
- Python is easy to learn and work with and provides convenient ways to express how high-level abstractions can be coupled together
- Edge detection is a technique of image processing used to identify points in a digital image with discontinuities, simply to say, sharp changes in the image brightness. These points where the image brightness varies sharply are called the edges (or boundaries) of the image.
- It used to upscale low-resolution images to a higher resolution to fit the display of high-resolution monitors. The catch was that the upscaled image showed quality similar to that of rendering the image natively in a higher resolution.

- Super Resolution is an umbrella term for a class of techniques in which accurate or close-to-accurate pixel information is added to construct a high-resolution image from its low-resolution form while maintaining its original quality.
- There are two section, main and models
- In main section is a run file
- In models, the algorithms are compared and implemented

Class creation, each class contain various algorithms which have its own method.

Super-resolution refers to the **process of upscaling or improving the details of the image**. ... The image given above illustrates super-resolution. The original high-resolution image shows the best details when zoomed in. The other images are achieved after reconstruction after using various super-resolution methods

- The lower resolution input image to be upscaled
- The input image upscaled by nearest neighbour interpolation
- The input image upscaled by bi-linear interpretation, this is what your Internet browser would typically need
- The input image upscaled and improved by this model's prediction
- The target image or ground truth, which was downscaled to create the lower resolution input.
- Writing image
- We got a high resolution image.show and save the Image.

## DEVELOPING ENVIRONMENT

### Hardware specification:

- i3 Processor Based Computer or higher
- Memory: 1 GB RAM
- Hard Drive: 50 GB
- Monitor
- Internet Connection

## **Software specification:**

- Language :Python
- Front end : Python
- Back end : python
- Operating system : windows 7 or higher
- IDE : PyCharm, Anaconda (spyder)

## Future Enhancement

So what should we do in further studies? More advanced, adaptive, and faster methods with extensive applicability are always desirable. In addition, methods should be closely combined with actual requirements. The rapid development of hardware devices will also bring new challenges to the application of the SR framework. For instance, the Google Skybox project will provide us with an opportunity to obtain real-time HR "earth-observation videos" using remotely-sensed image SR. The concept of SR has also been extended to related fields such as fluorescence microscopy [17,207– 209] and multi-baseline tomographic synthetic aperture radar (SAR) imaging [210,211]. Moreover, researchers have attempted to apply the single-frame SR techniques to the processing of medical and remote sensing imagery. However, the practicability of these methods is still limited by the relatively poor performance and time consumption, and acceleration strategies are essential for largescale applications. In conclusion, the future of SR is still in our hands.

### **PRODUCT BACKLOG**

| User<br>Story<br>ID | Priority<br><high <br="">Medium<br/>/<br/>Low</high> | Size(<br>hours<br>) | Sprint | Status/ Planned/ In progress/co mpleted | Release<br>date | Release goal                            |  |  |
|---------------------|------------------------------------------------------|---------------------|--------|-----------------------------------------|-----------------|-----------------------------------------|--|--|
| 1                   | medium                                               | 5                   | 1      | completed                               | 27/12/202<br>1  | Input imaging                           |  |  |
| 2                   | medium                                               | 5                   |        | completed                               | 28/12/202<br>1  | Preprocessing image                     |  |  |
| 3                   | medium                                               | 5                   | 2      | planned                                 | 15/01/202<br>2  | Data collection and preprocessing       |  |  |
| 4                   | high                                                 | 10                  | 3      | planned                                 | 23/01/202       | Comparison and algorithm Implementation |  |  |
| 5                   | high                                                 | 10                  |        | planned                                 | 26/01/202<br>2  | Edge detection                          |  |  |
| 6                   | high                                                 | 10                  | 4      | planned                                 | 05/02/202       | Replacing pixel datas                   |  |  |

### **USER STORY**

| User story<br>ID | As a <type of="" user=""></type> | I want to <perform some="" task=""></perform> | So that I can<br><achieve some<br="">goal&gt;</achieve>             |
|------------------|----------------------------------|-----------------------------------------------|---------------------------------------------------------------------|
| 1                | User                             | Input imaging                                 | Read image from a system                                            |
| 2                | User                             | Preprocessing image                           | Resize and color<br>scheme changes as<br>per project<br>requirement |
| 3                | User                             | Data collection and preprocessing             | Cleaned final dataset                                               |
| 4                | User                             | Comparison and algorithm implementation       | Compare different<br>type algorithm and<br>implement                |
| 5                | User                             | Edge detection                                | Finding boundaries<br>Of objects within<br>images                   |
| 6                | User                             | Replacing pixel                               | Spreaded pixel data                                                 |

#### **Project Plan**

| User | Task name | Start date | End date   | Days   | Status    |
|------|-----------|------------|------------|--------|-----------|
| 1    | Sprint 1  | 27/12/2021 | 27/12/2021 | 2 days | completed |
| 2    |           | 28/12/2021 | 28/12/2021 |        | completed |
| 3    | Sprint2   | 15/01/2022 | 16/01/2022 | 2 days | planned   |
| 4    | Sprint 3  | 23/01/2022 | 24/01/2022 | 2 days | planned   |
| 5    |           | 26/01/2022 | 27/01/2022 |        | planned   |
| 6    | Sprint4   | 5/02/2022  | 6/02/2022  | 6 days | planned   |
| 7    |           | 12/02/2022 | 13/02/2022 |        | planned   |

### **Sprint plan**

| Backlog<br>items(use<br>r story                       | comp<br>letion | Estimat<br>ed hrs | day<br>1 | day2 | day3 | day4 | day5 | day6 | day7 | day8 | day9 | day10 | day11 | day1<br>2 |
|-------------------------------------------------------|----------------|-------------------|----------|------|------|------|------|------|------|------|------|-------|-------|-----------|
| Input imaging                                         | 27/12<br>/2021 | 5                 | 5        |      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0         |
| Preproces sing image                                  | 28/12<br>/2021 | 5                 | 0        | 5    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0         |
| Data<br>collection<br>and<br>preproces<br>sing        | 15/01<br>/2022 | 5                 | 0        | 0    | 2    | 3    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0         |
| Comparis<br>on and<br>algorithm<br>implemen<br>tation | 23/01<br>/2022 | 10                | 0        | 0    | 0    | 0    | 5    | 5    | 0    | 0    | 0    | 0     | 0     | 0         |
| Edge detection                                        | 26/01<br>/2022 | 10                | 0        | 0    | 0    | 0    | 0    | 0    | 5    | 5    | 0    | 0     | 0     | 0         |
| Replacin<br>g pixel<br>data                           | 05/02<br>/2022 | 10                | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 5    | 5     | 0     | 0         |
| Writing image Show/sav e                              | 12/02<br>/2022 | 5                 | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 3     | 2         |
| total                                                 |                | 50                | 5        | 5    | 2    | 2    | 5    | 5    | 5    | 5    | 5    | 5     | 2     | 2         |

### **Sprint actual**

| Backlog<br>items(us<br>er story                       | comp<br>letion | Estimat<br>ed hrs | day<br>1 | day2 | day3 | day4 | day5 | day6 | day7 | day8 | day9 | day10 | day11 |
|-------------------------------------------------------|----------------|-------------------|----------|------|------|------|------|------|------|------|------|-------|-------|
| Input imaging                                         | 27/12<br>/2021 | 5                 | 5        |      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     |
| Preproces sing image                                  | 28/12<br>/2021 | 5                 | 0        | 5    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     |
| Data<br>collection<br>and<br>preproces<br>sing        | 15/01<br>/2022 | 5                 | 0        | 0    | 2    | 3    | 0    | 0    | 0    | 0    | 0    | 0     | 0     |
| Comparis<br>on and<br>algorithm<br>impleme<br>ntation | 23/01<br>/2022 | 10                | 0        | 0    | 0    | 0    | 5    | 5    | 0    | 0    | 0    | 0     | 0     |
| Edge detection                                        | 26/01<br>/2022 | 0                 | 0        | 0    | 0    | 0    | 0    | 0    | 5    | 5    | 0    | 0     | 0     |
| Replacin<br>g pixel<br>Data                           | 5/02/<br>2022  | 0                 | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 5    | 5     | 0     |
| Writing image Show/sav e                              | 12/02<br>/2022 | 0                 | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 3     | 2     |
| total                                                 |                | 50                | 5        | 5    | 2    | 3    | 5    | 5    | 5    | 5    | 5    | 8     | 2     |