

周期为
$$T$$
的函数 $f(t)$

$$f(t) = f(t + kT) \quad k = 0, 1, 2 \cdots$$

$$f(t) = A_0 + \sum_{k=1}^{\infty} A_{mk} \cos(k\omega t + \psi_k)$$

$$A_0$$
 —恒定分量(直流分量) $\omega = \frac{2\pi}{T} = 2\pi f$ 为角频率

$$k=1$$
 $A_{m1}\cos(\omega t + \psi_1)$ —基波分量(1次谐波)

$$A_{m1}$$
 —基波振幅 ψ_1 —基波初相

$$k=2$$
 $A_{m2}\cos(2\omega t + \psi_2)$ —2次谐波

$$A_{\text{mk}}\cos(k\omega t + \psi_k)$$
 — k次谐波

f(t)的波形图	f(t)的傅里叶级数
A O π 0 0 π 0 0	$f(t) = \frac{4A}{\pi} \left[\sin(\omega_1 t) + \frac{1}{3} \sin(3\omega_1 t) + \frac{1}{5} \sin(5\omega_1 t) + \dots + \frac{1}{k} \sin(k\omega_1 t) + \dots \right] (k \text{为奇数})$
O 2π 4π O	$f(t) = \frac{A}{2} - \frac{A}{\pi} \left[\sin(\omega_1 t) + \frac{1}{2} \sin(2\omega_1 t) + \frac{1}{3} \sin(3\omega_1 t) + \dots + \frac{1}{k} \sin(k\omega_1 t) + \dots \right]$
A $O \mid \alpha \pi$ 2π	$f(t) = \alpha A + \frac{2A}{\pi} \left[\sin(\alpha \pi) \cos(\omega_1 t) + \frac{1}{2} \sin(2\alpha \pi) \cos(2\omega_1 t) + \frac{1}{3} \sin(3\alpha \pi) \cos(3\omega_1 t) + \cdots \right]$

f(t)的波形图

$$f(t) = \frac{4A}{\alpha \pi} \left[\sin \alpha \sin(\omega_1 t) + \frac{1}{9} \sin(3\alpha) \sin(3\omega_1 t) + \dots + \frac{1}{k^2} \sin(k\alpha) \sin(k\omega_1 t) + \dots \right] (k 奇数)$$

$$f(t) = \frac{8A}{\pi^2} \left[\sin(\omega_1 t) - \frac{1}{9} \sin(3\omega_1 t) + \frac{1}{25} \sin(5\omega_1 t) - \dots + \frac{(-1)^{\frac{k-1}{2}}}{k^2} \sin(k\omega_1 t) + \dots \right] (k 为奇数)$$

f(t)的波形图

f(t)的傅里叶级数

$$f(t) = \frac{2A}{\pi} \left[\frac{1}{2} + \frac{\pi}{4} \cos(\omega_1 t) + \frac{1}{1 \times 3} \cos(2\omega_1 t) - \frac{1}{3 \times 5} \cos(4\omega_1 t) + \cdots \right]$$

$$-\frac{(-1)^{\frac{k-2}{2}}}{k^2 - 1} \cos(k\omega_1 t) + \cdots \right] \qquad (除基波外k为偶数)$$

$$f(t) = \frac{4A}{\pi} \left[\frac{1}{2} + \frac{1}{1 \times 3} \cos(2\omega_1 t) - \frac{1}{3 \times 5} \cos(4\omega_1 t) + \cdots - \frac{(-1)^{\frac{k-2}{2}}}{k^2 - 1} \cos(k\omega_1 t) + \cdots \right] (k 为偶数)$$

非正弦周期信号-频谱

谐波振幅 A_{mk} 随角频率 $k\omega$ 变动的情形称为非正弦波的振幅频谱。

- 1) 竖线称为谱线,长度表示 A_{mk} 的量值;
- 2) 相邻两谱线间隔等于基波角频率 ω ;
- 3) 谱线间具有一定间隔的频谱称为离散频谱,也称线频谱。

振幅频谱直观、形象地表示一个周期函数分解为傅里叶级数后所含有的频率分量以及各分量所占"比重"。

谐波初相 ψ_k 随角频率 $k\omega$ 变动的情形称为相位频谱。