INDEX

Access checks, Windows security, 726 Access control, 20, 23, 24, 83, 110–141,	audit trail analysis and ,500–501 host-based, 183, 184, 185–187, 188 network-based, 196–197 Answer to reset (ATR) message, 91–92 Antivirus software, 226–229, 705 Application-level audit trail, 483–484 Application-level gateway, 282 Assets, see System resources Association for Computing Machinery (ACM) Code of Ethics and Professional Conduct, 583–584 Association of Information Technology Professionals (AITP) Standard of Conduct, 583, 584–585 Assurance, 34, 335, 337, 340–343 evaluation levels (EALs), 342–343 IT security evaluation, 340–343 requirements, 335, 337 scope of, 341–342 target audience, 340–341
Access matrix, 116–117, 127–128	Asymmetric encryption algorithms, 60–61,
Account defenses, Windows system, 730–732	641–645. See also Public-key
Active attacks, 14, 19–20	encryption
Active directory (AD), 721, 722	Atomic operation, software security, 417
Add round key transformation, AES, 606–607	Attacks, 13, 14–16, 19–20, 43–44, 99–101, 196, 249–272. <i>See also</i> Malicious
Address space protection and	software
randomization, 377–378	active, 14, 19–20
Advanced Encryption Standard (AES), 42,	brute-force, 43–44
47,600–607	denial-of-service, 19, 101, 196, 249–272
add round key transformation, 606–607	network security, 19–20
algorithm for, 601–607	passive, 14, 19–20
key expansion, 607	types of, 14–16
transformations, 604–607	user authentication and, 99–101
Alert Protocol, 654	Audit and alarms model (X.816), 477–478
Algorithms, correct implementation of,	Audit records, host-based intrusion
403–405, 405–406. <i>See also</i> Public-key	detection and, 184–185, 192
cryptography; Symmetric	Audit trails, 481–486
encryption	Audit trail analysis, 497–501
Amplification attacks, 263–265	anomaly detection and, 500–501
Anomaly detection, 183, 185–187, 188,	audit review, 499
196–197, 500–501	baselining, 500–501
attacks suitable for, 196–197	data analysis, approaches to, 500–501

Audit trail analysis (continued)	enrollment in, 93–94
log entries, 498	iris system, practical application of,
preparation for, 497–498	101–103
timing of, 498–499	operation of, 93–94
Authenticated boot service, TC, 330–331	physical characteristics used in, 92–92
Authentication, 20, 49–63, 111. See also	protocol for, 98–99
Internet authentication; Message	static, 76, 98
authentication; User authentication	verification (identification) of, 94
access control and, 111	BitLocker, Windows security, 738–739
cryptographic tools and, 49-73	Block ciphers, 44, 47
digital signatures, 61–64	Block encryption algorithm, 44–47
hash functions and, 49–56	Bloom filter, 87–88
passwords, 56	Boot sector virus, 224
public-key certificates, 62–63	Bots, 217, 239–242
public-key encryption, 56–61	Browser defenses, Windows security, 737
symmetric encryption, using, 49	Brute-force attack, 43–44
Authentication Header (AH), 658,	Buffer overflow, 350–387, 392–393, 733–737
660–661	attacks, 351
Authentication protocol, 90, 92, 97–99, 644	basics of, 352–356
biometric, 98–99	compile-time defenses, 373–377
challenge-response, 90	function call mechanisms, 356–358
Diffie-Hellman key exchange, 644	head-based detection, 736
dynamic password generator, 90	no-execute (NX), 377, 735
passwords, 97–98	program input and software security
protocol type selection (PTS), 92	from, 392–393
static, 90	run-time defenses, 377–378
tokens, 90, 92, 98	shellcode, 365–372
Authorization, access control and, 111	stack, 356–358, 734–735
	Windows system defenses, 733–737
Backdoor (trapdoor), 216–218	
Backscatter traffic, DoS, 254	Canary value, 376
Banner grabbing attack, 197	Canonicalization, 401
Baseline approach, 500–501 516	Capability tickets, 116–117
Base-rate fallacy, 189–190, 211–214	Cardinality, RBAC roles, 131
Bayes' theorem, 212–213	Cascading authorization, 150–151
conditional probability and, 211–212	CERT, see Computer Emergency Response
demonstration of, 213–214	Team (CERT)
IDS problem of, 189–190	Certificate authority (CA), 62, 678, 681
independence and, 211–212	Certificate revocation list (CRL), 680
Bastion host, 283–284, 291	Change Cipher Spec Protocol, 654
Bayes' theorem, 212–213	Chief Information Officers Council (CIO),
Behavior-blocking software, 229–230	461
Bell-Lapadula model (BLP), 304–314	Chinese wall model, 317–319
Biba integrity model, 314–315	Chroot jail, 413, 709–710
Biometric authentication, 76, 92–97, 101–103	CIA triad, 8–10
accuracy of, 95-97	Cipher block chaining (CBC) mode,
dynamic, 76, 99	612–613

Cipher block feedback (CFB) mode,	scope of, 27–28
614–615	standards for, 37–39
Ciphertext, 42, 57, 594	strategy for, 32–34
Circuit-level gateway, 282–283	system resources (assets), 12–14, 14–16,
Clark-Wolson integrity model, 315–317	17–18
Clear signed data, S/MIME, 664	taxonomy for, 27–28
Client attacks, 99	terminology for, 12–14
Code, writing safe programs using, 403–407	threats to, 13, 14–16, 17–18
Code injection attack, 396–397	trends of, 28–32
Codes of conduct, 582–586	trusted computing (TC), 320–323, 330–334
Collision resistant hash functions, 55	Conditional probability of events, 211–212
Combined approach, security risk	Confidentiality, 7, 8, 10, 42–49, 593–624. See
assessment, 517–518, 530–534	also Data confidentiality; Privacy
Command injection attack, 394, 396	computer security and, 7, 8, 10
Common Criteria Evaluation and	Family Education Rights and Privacy Act
Validation Scheme (CCEVES), 334	(FERPA), 10
Communication lines, computer security	message, 593–564
and, 12, 19–20	symmetric encryption and, 42–49, 593–624
Compile-time defenses, 373–377	Control Objectives for Information and
Compression function, 631	Related Technology (COBIT), 460
Computer crime, see Cybercrime	Copyrights, intellectual property and,
Computer Emergency Response Team	568–569
(CERT), 27–28, 28–31, 179, 460–461,	Corporate policies, 440–441, 457–459,
564, 566	464–465, 465–467
Computer security, 1–5, 6–39, 303–348,	Counter (CTR) mode, 615–62–16
562–591. See also Multilevel security	Cross-site scripting attacks (XXS), 398–400
(MLS); Physical security; Trusted	Cryptanalysis, 43, 595–596
computing (TC)	Cryptographic services, Windows, 737–739
breach of levels, 9–10	Cryptographic tools, 41–73
challenges of, 11–12	confidentiality, 42–49
confidentiality of, 7, 8, 10	digital signatures, 61–64
countermeasures, 13, 14, 20–22	encryption of stored data, 67-68
CSI/FBI Computer Crime and Security	hash functions, 49–56
Survey, 31–32	key management, 61-64
cybercrime and, 563–567	keys, 42, 57–59
documents for, 37–39	message authentication, 49–56
integrity of, 8, 10, 21	Pretty Good Privacy (PGP), 67–68
intellectual property and, 567–574	pseudorandom numbers, 66–67
legal and ethical aspects of, 562–591	public-key encryption, 56–61, 61–64
model of, 12–14	random numbers, 65–67
multilevel (MLS), 303–348	symmetric encryption, 42–49, 63
networks, 12, 19–20, 27–28	Cryptography, see Public-key encryption;
open systems interconnection,	Symmetric encryption
architecture for, 22–27	CSI/FBI Computer Crime and Security
overview of, 6–39	Survey, 31–32
privacy and, 574–580	Cybercrime, 563–567
reader's guide, 1–5	Cyberslam, DoS. 252

DAC, see Discretionary access control	reflection, 261–263
(DAC)	responding to, 269–270
Data definition language (DDL), 143	source address spoofing, 253–254
Data Encryption Algorithm (DEA), 44	SYN spoofing, 254–257
Data Encryption Standard (DES), 42,	Tribe Flood Network (TFN), 259–260
44–45, 598–600	user authentication and, 101
algorithms for, 598–600	Detailed risk analysis, 517, 518–530
symmetric encryption use of, 42, 44–45	Diffie-Hellman key exchange, 61,
triple (3DES), 45–46, 599–600	641–645
Data manipulation language (DML), 143	Digital envelopes, 64
Data perturbation, 164–165	Digital immune system, 228–229
Data Protection API (DPAPI), 738	Digital Millennium Copyright Act
Data surveillance and privacy, 578–580	(DMCA), 570–571
Data swapping, 164–165	Digital Rights Management (DRM),
Data values, writing correct code for,	571–574
406–407	Digital Signature Standard (DSS), 61, 645
Database access control, 148–153	Digital signatures, 61–64
cascading authorization, 150–151	Discretionary access control (DAC), 113,
fixed database roles, 152	116–122, 113, 116–122, 692, 693–699
fixed server roles, 152	group accounts, 693–694
role-based (RBAC), 151–153	Linux file-system security, 693–699
SQL-based, 149–150	model of, 118–121
user-defined roles, 152–153	permissions, 694–699
Database management systems (DBMS),	protection domains, 122
143–144. See also Databases	user accounts, 693–694
Databases, 142–175, 325–330	Distributed adaptive intrusion detection,
access control, 148–153	197–200
encryption, 166–170	Distributed denial of service (DDos),
inference and, 153–156, 158–159	259–260
management systems (DBMS), 143–144	Distributed detection and interference
multilevel security (MLS) of, 325–330	(DDI), 199, 200
queries, 155, 158–159, 159–162	Distributed firewalls, 289–290, 291
query language, 143–144	Distributed host-based intrusion detection,
relational, 144–148	190–192
security of, 142–175	DMZ networks, 286–288
statistical (SDB), 156–166	DNS amplification attacks, 264–265
Deadlock, prevention of, 407	Domain accounts, Windows security, 722
Decryption algorithm, 42, 57, 594	DoS, see Denial-of-service (DoS)
Defensive programming, 389–392	Drones, see Bots
Denial-of-service (DoS), 19, 101, 196,	Dynamic binary rewriting, 496–497
249–272	Dynamic biometric authentication, 76, 99
amplification, 263–265	Dynamic separation of duty (DSD), 134
attacks, 250–257	
classic, 252–253	Eavesdropping, 100–101
defenses against, 265–268	Electronic codebook (ECB), 47, 611–612
distributed (DDos), 259–260	Electronic Frontier Foundation (EFF), 45
flooding, 257–259	Elliptic curve cryptography (ECC), 61, 645

E-mail, 219, 225–226, 464–465, 662–665	Institute of Electrical and Electronic
clear signed data, S/MIME, 664	Engineers (IEEE) Code, 583, 585
enveloped data, S/MIME, 664	IS professions and, 580
Internet security protocols, 662–665	European Union Data Protection Directive
Multipurpose Internet Mail Extension	574–575
(MIME), 662–663	Evaluation assurance levels (EALs), 342–343
public-key certificates, 665	Extensible Markup Language (XML), 685
Secure/Multipurpose Internet Mail	pgg. (); ****
Extension (S/MIME), 662–665	Factoring problem for RSA algorithms,
signed data, S/MIME, 664	638–640
use policies, 464–465	False negatives, 182
viruses, 219, 225–226	False positives, 182
Employment practices and policies,	Family Education Rights and Privacy Act
461–463	(FERPA), 10
Encapsulating Security Payload (ESP), 658,	Family, IT security requirements, 335
661–662	Federal Information Processing Standards
Encrypted virus, 224	(FIPS), 5, 8–10, 20–22, 126, 441–446
Encrypting File System (EFS), 738	Federated identity management, 683–687
Encryption, 42, 57, 166–170, 331–332, 594,	Feistel cipher structure, 596–598
710. See also Symmetric encryption	File access control, 83, 122–125
algorithm, 42, 57, 594	File infector, 224
database, 166–170	Files, computer security and, 83, 416–417,
Linux application security, 710	417–419
service, TC, 331–332	FIPS, see Federal Information Processing
End-to-end domain, example of, 723	Standards (FIPS)
Enveloped data, S/MIME, 664	Firewalls, 273–302, 704–705, 733
Environmental threats, 431–434, 436–437	application-level gateway, 282
chemical, radiological, and biological	basing, 283–286
hazards, 434	bastion host, 283–284, 291
dust, 434	characteristics of, 275–276
fire and smoke, 432, 433, 436–437	circuit-level gateway, 282–283
humidity, 431–432, 436	distributed, 289–290, 291
infestation, 434	DMZ networks, 286–288
prevention of, 436–437	host-based, 284, 291
temperature, 431–432, 436	intrusion prevention systems (IPS), 179,
water damage, 432–433, 437	273–302
Environmental variables, software security,	Linux, use of iptables for 704–705
408–411	location and configurations of, 286–291
Ethics, 580–586	need for, 274
Association for Computing Machinery	packet filtering, 276–280
(ACM) Code, 583–584	personal, 284–286
Association of Information Technology	screening router, 291
Professionals (AITP) Standard, 583,	stateful inspection, 280–281
584–585	unified threat management (UTM),
codes of conduct, 582–586	example of, 294–298
computer and informations systems,	virtual private networks (VPN), 288-289
580–582	Windows network defenses, 733

Flooding attacks, 257–259	Host-based intrusion prevention systems
Function call mechanisms, buffer overflow,	(HIPS), 292–293
356–358	Human factors of computer security,
Functional requirements, IT security, 335–336	449–474
Fuzzing software tests, 355, 402–403	awareness, training and education for, 452–455
Gateways, 282–283	Control Objectives for Information and
Generic description (GD), 227–228	Related Technology (COBIT), 460
Global data area overflow, 383–385	corporate security policy document,
Group accounts, Linux security, 693–694	example of, 465–467
Guard pages, 378	e-mail use policies, 464–465
	employment practices and policies,
Hackers, 178–179	461–463
Handshake Protocol, 654–656	internet use policies, 464
System hardening, 701–709, 729–730	policy writers, resources for, 460–461
Hardware, computer security and, 12, 17	security management, standards for,
Hash functions, 49–56, 626–632	469–473
MD5 message-digest algorithm, 631	security policies, 455–461, 473–474
message authentication and, 49–56	Human-caused threats, 435
message authentication using, 626–632	ICMD CL 1 44 1 257 250
one-way, 52–54	ICMP flood attack, 257–258
requirements for, 54–55	Identification, 20, 75, 89, 94, 188–189
Secure Hash Algorithm (SHA), 56, 627–630	Identity management, 683–684
	IDS, see Intrusion detection systems (IDS)
secure, 54–56, 626–632	Image randomization, Windows system defense, 736
whirlpool, 631–632 Hashed passwords, 78–80	Impersonation, Windows security, 726
Heap overflow, 381–383	Independent events, 211–212
Hierarchies, RBAC, 130, 133–134	Inference, 15, 153–156, 158–159
HMAC, 632–635	channel, 153–154
Honeypots, 202–204	compromise, 158–159
Host attacks, 99	database security and, 153–156
Host audit record (HAR), 192	detection algorithm, 155–156
Host-based firewalls, 284, 291	statistical databases (SDB), from, 158–159
Host-based intrusion detection, 181,	Informal approach, security risk assessment,
183–190, 190–192	516–517
anomaly detection, 183, 185–187	Information system (IS), 476
audit records and, 184–185, 192	Information technology (IT) security
base-rate fallacy, 189–190	evaluation, 334–340, 340–344
distributed, 190–192	assurance and, 340–343
rule-based anomaly detection, 187-188	assurance requirements, 335, 337
rule-based penetration identification,	Common Criteria Evaluation and
188–189	Validation Scheme (CCEVES), 334
signature detection, 184, 187–189	evaluation assurance levels (EALs),
Stanford Research Institute (SRI) IDS	342–343
(IDES), 187–188, 189	functional requirements, 335-336
tests for limits of, 186–188	process of, 343–344

protection profiles (PPs), 336, 338–340	International Organization for
security targets (STs), 337–338	Standardization (ISO), 5, 37–38,
target of evaluation (TOE), 335, 340–341,	334–338, 450, 460, 481, 509–512,
343–344	541–543, 576–578
Information technology (IT) security	International Telecommunication Union
management, 508-537, 538-561. See	(ITU),5
also Security implementation;	Internet Architecture Board (IAB), 5
Security risk assessment	Internet authentication, 671–688
case studies of, 530–534, 556–558	federated identity management, 683-687
controls (safeguards), 538–546, 548–550	Kerberos, 672–678
detailed security risk analysis, 517,	public-key infrastructure (PKI), 680–683
518–530	X.509, 678–680
implementation of, 538–561	Internet Engineering Task Force (ITEF), 5
International Standards Organization	IETF Public Key Infrastructure X.509
(ISO), 509–512, 541–543	(PKIX) model, 681–683
National Institute of Standards and	Internet protocol security (IPSec), 656–662,
Technology (NIST), 541-546	732–733
organizational context of, 512–515	Authentication Header (AH), 658,
overview of, 509–512	660–661
plans, 547–548	benefits of, 657–658
policy development, 513–515	Encapsulating Security Payload (ESP),
security risk assessment, 515–518,	658, 661–662
515–518, 518–530, 530–534	overview of, 656–657
Infrastructure security, see Physical security	routing applications of, 658
Infringement, intellectual property and,	scope of, 658
568	security associations (SA), 659
Injection attacks, 394–398	Windows network defenses, 732–733
Inside attack, 14	Internet security protocols, 651–670
Institute of Electrical and Electronic	e-mail, 662–665
Engineers (IEEE) Code of Ethics,	internet protocol security (IPSec),
583, 585	656–662
Integrity, see Authenticity; Data integrity;	Multipurpose Internet Mail Extension
System integrity	(MIME), 662–663
Intellectual property, 567–574	radix-64 conversion, 668–670
copyrights, 568–569	Secure Sockets Layer (SSL), 652–656
Digital Millennium Copyright Act	Secure/Multipurpose Internet Mail
(DMCA), 570–571	Extension (S/MIME), 662–665
Digital Rights Management (DRM),	Transport Layer Security (TLS), 652
571–574	Internet Society (ISOC), 5
infringement, 568	Internet use policies, 464
patents, 569	Interposable libraries, 493–497
relevance to network and computer	Intruders, 177–180
security, 570	Intrusion detection systems (IDS), 56,
trademarks, 569–570	176–214
types of, 568–570	anomaly, 183, 185-187, 196-197
International Convention on Cybercrime,	base-rate fallacy, 189–190, 211–214
564, 565	distributed adaptive, 197–200

Intrusion detection systems (IDS)	Key management, 61-64, 166
(continued)	Keys, 42, 57–59, 594
distributed host-based, 190-192	Keystream, 48, 607–608
exchange format, 200–202	
hash functions and, 56	Leaky system resources, 12
honeypots, 202–204	Least privileges, 411–413
host-based, 181, 183–190, 190–192	Legal aspects of computer security, 562–591.
network-based (NIDS), 193-197	See also Ethics
sensors, 181, 193	cybercrime and, 563–567
Snort, example system of, 204–208	intellectual property and, 567-574
Stanford Research Institute (SRI)	privacy and, 574–580
(IDES), 187–188	ethical issues, 580–586
Intrusion prevention systems (IPS), 179,	Libraries, 375–376, 413–416, 493–497
273–302	dynamic binary rewriting, 496–497
firewalls and, 273–302	dynamically linked, 493
host-based (HIPS), 292–293	interposable, 493–497
network-based (NIPS), 293	safe, compile-time defenses and, 375–376
Snort Inline, 294	shared, 493
unified threat management (UTM),	standard OS functions, 413–416
example of, 294–298	statically-linked, 493
IP address spoofing, 280	Libwrappers, Linux security, 703–704
IPS, see Intrusion prevention systems	Linux, 690–719
(IPS)	access controls, 692, 693–699, 703–705,
IPSec, see Internet protocol security	711–717
(IPSec)	application security of, 709–710
IT, see Information technology (IT)	Discretionary Access Controls (DAC),
ITU, see International Telecommunication	692, 693–699
Union (ITU)	firewalls, use of iptables for local, 704–405
ITU Telecommunication Standardization	logging, 707–708, 710
Sector (ITU-T), 5, 22–23, 38–39,	Mandatory Access Controls (MAC),
477–478	711–717
	network-level access controls, 703–705
Kerberos, 672–678	Novell AppArmor, 716–717
internet authentication and, 672–678	OS installation, 702–703
performance of, 677–678	root delegation, 706–707
protocol, 672–675	security of, 690–719
realms, 676–677	security-enhancing tools for, 708–709
ticket-granting service (TGT), 674–675	SELinux, 711–716
ticket-granting ticket (TGT), 673	system hardening, 701–709
versions 4 and 5, 677	user management and, 705–706
Kernel mode, DAC, 122	vulnerabilities of, 699–701
Kernel space, Linux DAC file security, 699	Loadable modules, 496
Key distribution, symmetric encryption,	Local accounts, Windows security, 722
618–620	Local security authority (LSA), 721
Key exchange, see Diffie-Hellman key	Lockfile, software security, 416
exchange	Logging function, 486–497, 707–708, 710
Key expansion, AES, 607	application level, at the 491–492, 710

interposable libraries, 493–497	symmetric encryption, using, 49
Linux security, 707–708, 710	Whirlpool, 631–632
security auditing implementation of,	without message encryption, 49–50
486–497	Message confidentiality, symmetric
syslog (UNIX), 489–491, 707–708	encryption and, 593–624
sytem levels of, 486–491	Metamorphic virus, 224
Windows event log, 486–489	Misfeasors, 177
Logic bomb, 217, 218	Mix column transformation, AES, 606
Logical security, 428, 441–446	MLS, see Multilevel security (MLS)
	Mobile code, 217, 219
Macro virus, 224, 225	Mobile phone worms, 235
Maintenance hook, 216	Modes of operation, symmetric encryption,
Malicious software, 215–248	47,610–616
backdoor (trapdoor), 216–218	Modification of messages, 19
bots (zombies), 217, 239–242	Modularity, Linux application security,
logic bomb, 217, 218	710
mobile code, 217, 219	Monitoring, Analysis, and Response System
multiple-threat malware, 219–220	(MARS), 503–504
rootkits, 217, 242–244	Morris worm, 232
Trojan horse, 217, 218–219	Multilevel security (MLS), 303–348. See also
types of, 216–220	Information technology (IT) security
viruses, 217, 220–226, 226–230	evaluation; Trusted computing (TC)
worms, 217, 231–239	application of, 323–330
Malware, 219–220	Bell-Lapadula model (BLP), 304–314
Man-in-the-middle-attack, 644–645	Biba integrity model, 314–315
Mandatory Access Controls (MAC), 113,	Chinese wall model, 317–319
711–717, 726–728	Clark-Wolson integrity model, 315–317
Markov model, 85–87, 187	database security and, 325–330
Masquerade, security threats by, 15, 16, 19,	information technology security
117	evaluation, 334–340, 340–344
MD5 message-digest algorithm, 631	role-based access control (RBAC), for,
Mean and standard deviation, 187, 188	324–325
Memory cards, 89	trusted computing (TC), 320–323,
Memory leak, 407	330–334, 334–340
Memory management unit (MMU), 377	Multipartite virus, 219
Message authentication, 49–56, 625–650	Multiple-threat malware, 219–220
code (MAC), 50–52	Multipurpose Internet Mail Extension
compression function, 631	(MIME), 662–663
Diffie-Hellman exchange, 641–645	Multivariate model, 187
hash functions and, 49–56, 626–627	Mutually exclusive roles, RBAC, 131
HMAC, 632–635	
MD5 message-digest algorithm, 631	National Institute of Standards and
public-key cryptography and, 625-650	Technology (NIST), 5, 7, 34, 38,
public-key encryption and, 635–641,	44–45, 47, 61, 452, 453, 541–546. <i>See</i>
641–645	also Federal Information Processing
RSA algorithm, 635–341	Standards (FIPS)
secure hash algorithm (SHA), 56, 627–631	National Security Agency (NSA), 39

Natural disasters as threats to physical	Output perturbation, 165
security, 430–431, 437–438	Outside attack, 14
Network-based intrusion detection (NIDS),	Overflows, 350–387
193–197	buffer, 350–387
alerts, logging, 197	global data area, 383–385
anomaly detection, 196–197	heap, 381–383
banner grabbing, 197	off-by-one attacks, 379–380
sensor deployment, 193–196	replacement stack frame, 379-380
signature detection, 196	return to system call, 380–381
Network-based intrusion prevention	stack, 352–372
systems (NIPS), 293	Overrun, see Overflows
Network-based worm defense, 238–239	Overvoltage, 434
Network defenses, Windows system,	
732–733	Packet filtering firewalls, 276–280
Network interface card (NIC), 193	Parasitic software, 216
Network-level access controls, 703–705	Partitioning, 162–163
Networks, computer security and, 12, 19–20,	Passive attack, 14, 19–20
27–28	Passwords, 56, 75, 76–88, 97–98, 706
NIST, see National Institute of Standards	aging, Linux, 706
and Technology (NIST)	authentication protocol, 97–98
No-execute bit, 377	Bloom filter, 87–88
Noise as a physical interference, 435	choices of, 81–82
NOP sled, 369	computer-generated, 84
Novell AppArmor, 716–717	cracking approaches, 80, 85
Numeric modes, Linux DAC file security,	dictionary compilation, 85
698–699	file access control, 83
	hash functions as, 56
Objects of access control, 115	hashed, 78–80
Off-by-one attacks, 379–380	Markov model, 85–87
One-way hash functions, 52–54	proactive checker, 84–85
Open Shortest Path First (OSPF), 658	reactive checking strategy, 84
Open systems interconnection (OSI), 22–27	selection strategies, 83–85
Operating systems (OS), 408–419, 702–703	user authentication and, 75, 76–88
environmental variables, 408–411	use of, 78–80
interacting with other programs, 408–419	vulnerability of, 76–78
least privileges, 411–413	Patch management, Linux security and,
Linux security and installation of,	703
702–703	Patents, intellectual property and, 569
privilege escalation, 411	Permission, computer security and, 128, 132
race conditions, prevention of, 416–417	694–699
software security and, 408–419	Personal firewall, 284–286
standard library functions, 413–416	Personal identification number (PIN), 89
systems calls and, 413–416	Personal identity verification (PIV),
temporary files, safe use of, 417–419	441–446
Organizational security policy, 455–461	Perturbation, 164–166
OS, see Operating systems (OS)	data swapping, 164–165
OSI, see Open systems interconnection	limitations of, 165–166

output, 164, 165	Proactive worm containment (PWC),
random-sample queries, 165	237–238
Physical security, 427–448	Profile-based anomaly detection, 183, 186
corporate policy, example of, 440–441	Program input, 392–403
environmental threats to, 431–434,	buffer overflow, 392–393
436–437	cross-site scripting attacks (XXS), 398–400
human-caused threats to, 435	fuzzing, 402–403
logical security and, integration of,	injection attacks, 394–398
441–446	interpretation of, 393–394
natural disasters and, 430–431, 437–438	size of, 392–393
personal identity verification (PIV),	validating syntax, 400–402
441–446	Program output, 419–422
planning and implementation for,	Protected storage, TC, 333–334
439–440	Protection domains, DAC, 122
prevention and mitigation of attacks,	Protection profiles (PPs), 336, 338–340
435–738	Protocol type selection (PTS), 92
security breaches, recovery from, 438	Protocol, see Authentication protocol;
technical threats to, 434–435, 437	Internet security protocols
threat assessment, 439–440	Proxy, see Gateways
threats to, 429–435	Pseudorandom numbers, 66-67
Ping of death, DoS, 252	Public-key certificates, 62–63, 665
Plaintext, 42, 57, 594	Public-key encryption, 56–61, 61–64,
Poison packet, DoS, 251	635–641, 641–645
Policy enforcement points (PEPs), 199, 200	asymmetric encryption algorithms, 60–61, 645
Policy writers, resources for, 460–461	asymmetric process of, 57–59
Polymorphic virus, 224	certificates, 62–63
Preimage resistant hash functions, 54	cryptosystems, applications for, 59
Premises security, 428	Diffie-Hellman exchange, 61, 641–645
Pretty Good Privacy (PGP), 67–68	Digital Signature Standard (DSS), 61, 645
Privacy, 574–580	digital signatures, 61–64
computer usage, 576–578	elliptic curve cryptography (ECC), 61, 645
data surveillance and, 578–580	key management, 61-64
European Union Data Protection	keys for, 57–59
Directive, 574–575	message authentication and, 635–641,
laws and regulations of, 574–576	641–645
organizational response to, 576	requirements for, 60
United States Privacy Act, 575–576	RSA algorithm, 60, 635–341
Private keys, 57–59	structure of, 56–59
Privileges, 411–413, 724, 731–732	symmetric key exchange using, 63
escalation, 411	Public-key infrastructure (PKI), 680–683
least, 411–413	IETF Public Key Infrastructure X.509
low privilege service accounts, 731	(PKIX) model, 681–683
operating systems (OS), 411–413	internet authentication and, 680–683
stripping, 731–732	management functions and protocols,
Trusted Computing Base (TCB), 724	682–683
Windows security and, 724, 731–732	Public keys, 57–59

Queries, 155, 158–159, 159–162	evaluation of, 528
denial and information leakage, 163	existing controls, 524
inference from, 155, 158–159	identification of, 522–524
partitioning, 162–163	likelihood of threat, 524–525, 529
random-sample, 165	register for documentation of, 527–528
restriction, 159–162	system resources and, 13, 21, 521–522
set overlap control, 162	treatment of, 528–529
Query language, 143–144. See also	Role-based access control (RBAC), 113,
Structural Query Language (SQL)	125–137, 151–153, 324–325
- 3 2 2 (-)	access control matrix, 127-128
Race conditions, prevention of, 407, 416–417	base model, RBAC ₀ , 128–130
Radix-64 conversion, 668–670	case study of, 134–137
Rainbow table, 80	constraints, RBAC ₂ , 130–131
Random (selective) drop of an entry, 268	core, 132–133
Random numbers, 65–67	database management systems (DBMS)
independence of, 65	151–153
pseudorandom numbers versus, 66–67	dynamic separation of duty (DSD), 134
true generator (TRNG), 66–67	hierarchical, 133–134
uniform distribution, 65	multilevel security (MLS) for, 324–325
unpredictability of, 66	NIST model, 131–134
Random-sample queries, 165	reference models, 128–131
Raw socket interface, DoS, 253	role hierarchies, RBAC ₁ , 130
RBAC, see Role-based access control	roles of, 126–128
(RBAC)	Roles, 126–128, 130, 133–134, 152–153
RC4 algorithm, 607, 609–610	DBMS access control, 152–153
Realms, Kerberos, 676–677	fixed database, 152
Reference monitors, TC, 320–322	fixed server, 152
Reflection attacks, 261–263	hierarchies, 130, 133–134
Registration authority (RA), 681	RBAC, 126–128, 131
Relational databases, 144–148	user-defined, 152–153
Release of message contents, 19	Rootkit attacks, 217, 242–244, 701
Remote code injection attack, 397–398	countermeasures for, 243–244
Remote user authentication, see	installation of, 243
Authentication protocol	Linux vulnerability to, 701
Replacement stack frame, 379–380	system-level call attacks, 243
Replay attacks, 19, 101	Routing applications of IPSec, 658
Requests for Comments (RFCs), 5, 12–14,	RSA algorithm, 60, 635–641
39, 266, 491–491	description of, 636–638
Return address defender (RAD), 337	factoring problem for, 638–640
Return to system call, 380–381	message authentication and, 635–641
RFCs, see Requests for Comments (RFCs)	timing attacks and, 640–641
Risk, 13, 21, 521–528. See also Security risk	security of, 638–641
assessment	Rule-based anomaly detection,
analyzing, 524–528	187–188
appetite, 521	Rule-based penetration identification,
consequences and impact of threats,	188–189
525–526, 529	Run-time defenses, 377–378

Salt value, 79	follow-up, 550–556
Scanning attacks, 197	handling of incidents, 552–553
Screening router, 291	incident response, 554–555
SDB, see Statistical databases (SDB)	ISO security controls, 541–543
Second preimage resistant hash functions, 54	IT security management, 508–537,
Secret key, 42, 57, 594	538–561
Secure hash algorithm (SHA), 56, 627–631	maintenance, 550
Secure hash functions, see Hash functions	NIST security controls, 541–546
Secure programming, see Defensive	plans, 547–548
programming	Security information and event
Secure Sockets Layer (SSL), 652–656	management system (SIEM),
architecture of, 652	501–502
Record Protocol, 653–654	Security information management system
Change Cipher Spec Protocol, 654	(SIM), 501
Alert Protocol, 654	Security management, standards for,
Handshake Protocol, 654–656	469–473
Secure/Multipurpose Internet Mail	Security Parameters Index (SPI), 659
Extension (S/MIME), 662–665	Security policy, standards for, 473–474
Security account manager (SAM), 721, 722	Security reference monitor (SRM), 721
Security Assertion Markup Language	Security risk assessment, 21, 515–518,
(SAML), 685	518-530, 530-534. See also Risk
Security associations (SA), 659	asset identification, 521–522
Security auditing, 475–507	baseline approach, 516
architecture of, 475–481	case study of, 530–534
audit and alarms model (X.816), 477–478	combined approach, 517–518, 530–534
audit trails, 481–486, 497–501	context establishment, 520–524
functions of, 479–480	detailed risk analysis, 517, 518–530
implementation guidelines for, 481	identification of threats, risks, and
integrated approach, example of, 501–504	vulnerabilities, 522–523
interposable libraries for, 493–497	informal approach, 516–517
logging function, 486–497	risk analysis and evaluation, 524–528
Monitoring, Analysis, and Response	treatment of identified risks, 528–529
System (MARS), 503–504	Security targets (STs), 337–338
requirements for, 480–481	SELinux, 711–716
security information and event	Sensors, 181, 193–196
management system (SIEM),	Service restart policy, Windows system
501–502	defense, 736–737
Security defenses, 729–737	setgid, Linux DAC file security, 697–698
Security ID (SID), Windows, 723	setuid, Linux DAC file security, 697–698
Security implementation, 538–561	Shadow password file, 83
case study of, 556–558	Shared files, locking for software security,
change and configuration management,	416–417
551–552	Shellcode, 365–372
compliance, 551	Shift row transformation, AES, 604, 606
controls (safeguards), 538–546, 548–550	Signature detection, 184, 187–189, 196
detection of incidents, 553–554	Signed data, S/MIME, 664
documentation of incidents, 556	Simple Object Access Protocol (SOAP), 685

Smart cards, 89–92	cipher block feedback (CFB), 614–615
Snort, 204–208, 294	counter (CTR) mode, 615–616
Software, 12, 17–18, 215–248	cryptanalysis and, 595–596
behavior-blocking, 229-230	cryptography and, 594-595
malicious, 215–248	Data Encryption Algorithm (DEA), 44
multiple-threat malware, 219–220	Data Encryption Standard (DES), 42,
threats to, 17–18	44–45, 598–600
Software security, 388–425	devices, location of, 616–618
defensive programming and, 389–392	electronic codebook (ECB), 47,
operating systems, interaction of, 408–419	611–612
program input, 392–403	Electronic Frontier Foundation (EFF), 45
program output, 419–422	Feistel cipher structure, 596–598
writing safe program code, 403–407	key distribution, 618–620
Source routing attacks, 280	key exchange using public-key
Spoofing, 253–354, 254–257, 280	encryption, 63
SQL injection attack, 396, 397	message authentication using, 49
SSL Record Protocol, 653–654	message confidentiality and, 42-49,
Stack buffer overflow, 356–358	593–624
Stack frame, 356–357	modes of operation, 47, 610-616
Stack overflow, 352–372	principles of, 594–598
Stack randomization, Windows system	RC4 algorithm, 607, 609–610
defense, 736	secret key, 42, 594
Stack smashing, 356	stream ciphers, 47–49, 607–610
Standard library functions, 413–416	triple DES (3DES), 45–46, 599–600
Stanford Research Institute (SRI) IDS	Syslog (UNIX), 489–491
(IDES), 187–188, 189	Syslogd (Linux), 707–708
Stateful inspection firewalls, 280–281	Systems calls, software security, 413–416
Static biometric authentication, 76, 98	System-level audit trail, 483
Static separation of duty (SSD), 134	System resources (assets), 12–14, 14–16,
Statistical databases (SDB), 156–166	17–18, 521–522
characteristic formula, 156, 158	attacks on, 14–16, 19–20
inference from, 158–159	categories of, 12–13
partitioning, 162–163	communication line threats, 19–20
perturbation, 164–166	data threats, 18
queries and, 155, 158–159, 159–162	hardware threats, 17
Stealth virus, 224	identification of for security risk
Sticky bit, Linux DAC file security, 696–697	assessment, 521–522
Stream ciphers, 47–49, 607–610	network security attacks, 19–20
Structured Query Language (SQL),	software threats, 17–18
147–148, 149–150	threats to, 14–16, 19–20
Subjects of access control, 115	vulnerabilities of, 12–13
Substitute bytes transformation, AES, 604	
Symmetric encryption, 42–49, 63, 593–624	Target of evaluation (TOE), 335, 343–344
Advanced Encryption Standard (AES),	TC, see Trusted computing (TC)
42, 47, 600–607	TCP SYN flood attack, 258–259
block encryption algorithms, 44–47	TCP wrappers, Linux security, 703–704
cipher block chaining (CBC), 612–613	Teardrop attack, DoS, 252

Technical threats, 434–435, 437	True random number generator (TRNG),
electrical power, 434–435	66–67
electromagnetic interference (EMI), 435	Trusted computing (TC), 320–323, 330–334
prevention of, 437	334–340. See also Information
Temporary files, safe use of, 417–419	technology security evaluation
The Standard of Good Practice for	authenticated boot service, 330-331
Information Security (ISF05), 460,	certification service, 331
469–473, 473–474, 576	concept of, 320–323
Threat source, 522–523	encryption service, 331–332
Threats, 13, 14–16, 17–20, 429–435,	information technology security
522–523	evaluation, 334–340, 340–344
communication lines and, 19-20	platform module (TPM), 330, 332–333
data and, 18	protected storage, 333-334
environmental, 431–434	reference monitors, 320–322
hardware and, 17	Trojan horse defense, 322–323
human-caused, 435	Trusted platform module (TPM), 330,
identification of for security risk	332–333,739
assessment, 522–523	Tuples, relational databases, 146
natural disasters, 430–431	
networks and, 19–20	UDP flood attack, 258
physical security, 429–435	Undervoltage, 434
software and, 17–18	Unified threat management (UTM),
technical, 434–435	example of, 294–298
types of, 14–16	Uninterruptible power supply, 437
Threshold detection, 183, 186, 501	United States Privacy Act, 575–576
Ticket-granting service (TGT), 674–675	UNIX, 79–80, 122–125, 489–491
Ticket-granting ticket (TGT), 673	access control lists in, 125
Time series model, 187	file access control, example of,
Timing attacks and RSA algorithms,	122–125
640–641	hashed passwords, implementations of,
Tiny fragment attacks, 280	79–80
Tokens, 75, 88–92, 100–101	syslog, 489–491
authentication protocol, 90, 98	USB dongle, 92
automatic teller machine (ATM), 89	USENET newsgroups, 4
memory cards, 89	User accounts, Linux security, 693–694
personal identification number (PIN), 89	User authentication, 74–109. See also
smart cards, 89–92	Authentication protocol
theft of, 100–101	authentication protocol, 90, 97–99
USB dongle, 92	biometric, 76, 92–97, 101–103
user authentication and, 75, 88–92	case study of, 103–105
Trademarks, intellectual property and,	means of, 75–76
569–570	passwords, 75, 76–88
Traffic analysis, 19	remote, 97–99
Transport Layer Security (TLS), 652	tokens, 75, 88–92, 100–101
Tribe Flood Network (TFN), 259–260	Trojan horse attacks, 101
Triple DES (3DES), 45–46, 599–600	User Principal Name (UPN), Windows, 723
Troian horse, 101, 217, 218–219, 322–323	USTAT state-transition model 189–190

798 INDEX

active directory (AD), 721, 722

View, relational databases, 146–147 Common Criteria EAL4+Flaw Virtual private networks (VPN), 288–289 Remediation status, 739 Viruses, 219–239 cryptographic services of, 737–739 antivirus approaches, 226–229 discretionary ACL (DACL), 724-726 behavior-blocking software, 229–230 end-to-end domain, example of, 723 classification of, 223-224 event log, 486–489 countermeasures for, 226–230, 235–239, local security authority (LSA), 721 242, 243–244 mandatory access control (MAC), e-mail and, 219, 225–226 726–728 kits for, 224 security account manager (SAM), 721, 722 macro, 225 security architecture, 721-728 nature of, 220-223 security defenses, 729-737 structure of, 221–223 security reference monitor (SRM), 721 Vulnerability, 12–13, 76–78, 523, 699–701, vulnerabilities of, 728-729 728-729 Worms, 197, 217, 231–239 identification of for security risk attacks by, 197, 233-234 assessment, 523 countermeasures for, 235-239 Linux security, 699-701 mobile phones and, 235 loadable kernel modules (LKMs), 701 Morris, 232 passwords, 76–78 network-based defense, 238-239 rootkit attacks, 701 proactive containment (PWC), 237-238 setuid root program, 700 propagation model, 232–233 system resources, 12-13 state-of-the-art technology of, 234 Web application, 700–701 Writing safe program code, 403–407 Windows security, 728–729 WS-Security, 685 Web clients and servers, 220 X.509, 62, 678–680 Web sites, 3–4. XSS reflection vulnerability, 398 Whirlpool, 631-632 Windowing, audit trail analysis, 501 Yahoo newsgroups, 4 Windows, 219, 486-489, 720-741 access control lists (ACL), 724–726 Zero-day vulnerabilities, 703

Zombies, see Bots