11	0	0	0	1	1	C	1
0	0	0	0	1	1		1
	0	0	0	1	1	0	1
	0	0	0	1	1	0	1
		-	22.0		1		1
	0 0 0 1 1 C 3:2:1:1						-
	0	0	1	1	0	C	1
1	0	0	1	1	0		1
	0	0	1	1	0	0	1
	0	0	1	1	0	C	1
	0	0	1	1	0	C	1
	2:2:2:1						
	0	0	1	0	0		1
	0	0	1	0	0	Ī	1
•	0	0	1	0	0	Ī	1
2	0	0	1	0	0	Ē	1
	0	0	1	0	0	Ē	1
	2:1:2:2						
3	0	1	1	1	1	C	1
	0	1	1	1	1	C	1
	0	1	1	1	1	C	1
	0	1	1	1	1	0	1
	0	1	1	1	1	C	1
- 12			1:4	4:1	: 1		
4	0	1	0	0	0		1
	0	1	0	0	0		1
	0	1	0	0	0		1
	0	1	0	0	0		1
	0	1	0	0	0		1
- 1	1:1:3:2						
	0	1	1	0	0	0	1
5	0	1	1	0	0	0	1
	0	1	1	0	0	0	1
	0	1	1	0	0	C	1
	0	1	1	0	0	C	1
1:2:3:1							1
	0	1	0	1	1		
6	0	1	0	1	1		1
	0	1	0	1	1		1
	0	1	0	1	1		1
	1:1:1:4						
	0	1	1	1	0		1
7	0	1	1	1	0		1
	0	1	1	1	0	F	1
	0	1	1	1	0	F	1
	0	1	1	1	0		1
	1:3:1:2						
	0	1	1	0	1	1	1
8	0	1	1	0	1	Ī	1
	0	1	1	0	1	1	1
	0	1	1	0	1		1
	0	1	1	0	1	ľ	1
	7.000		1:2		: 3		F
	0	0	0	1	0		1
9	0	_	0	1	0		1
	0	0		1	0		1
0				_			

암호코드를 발견한뒤 해독 — 을바른 암호코드인지 확인한다

- i) 마지막 암호코드를 찾는다
 - 암호코드의 마지막숙자는 무조건 1이기 때문에 배열 뒤에서부터 확인
 - · 좌표저장: 3+r [row][(olumn]

여기서부터 7자리숫자 8개를 찾는다

- ii) 찾은 암호코드를 10진수로 변환

iii) 딕셔너리 생성

Key:코드의배열을 10진수로변환한 값

value:코드번호

 $\{13:0,25:1,\cdots,11:9\}$

- iv) 딕셔너리 활용하여 코드 번호로 변환(반복)
 - ex) 59 ----> 59를 key로 갖는 딕셔너리 값찾기
- V) 올바른 암호인지 확인 후, 출력 (조건문)

[SWEA] 1952 수영장

완전탐색으로 이용권 경우의 수를 모두 탐색한다.

종료조건 : 12보다 크면 종료

& 이용권 금액 합이 이전에 기록된 합보다 크면 종료

[SWEA] 2105 CIME THI

9	8	9	8
4	6	9	4
8	7	7	8
4	5	3	5

종료조건 : 4번반복하면 끝 (변이 4개니까)

정답조건

- i) 직사각형
 - 마지막에 출발한 카페로 돌아온다
 - 대변의 길이가 같다
 - delta 이동 (범위체크)
- ii) 디저트가 중복되면 안된다
- iii) 디저트를 가장 많이 먹을수 있는 경로

를 고려하여 완전탐색