Integrais Múltiplas

15.1 Integrais Duplas sobre Retângulos

Revisão da Integral Definida

Revisão da Integral Definida

Antes de tudo, vamos relembrar os fatos básicos relativos à integral definida de funções de uma variável real. Se f(x) é definida em $a \le x \le b$, começamos subdividindo o intervalo [a, b] em n subintervalos $[x_{i-1}, x_i]$ de comprimento igual $\Delta x = (b-a)/n$ e escolhemos pontos de amostragem x_i^* em cada um desses subintervalos. Assim, formamos a soma de Riemann

$$\sum_{i=1}^{n} f(x_i^*) \Delta x$$

e tomamos o limite dessa soma quando $n \to \infty$ para obter a integral definida de a até b da função f:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

Revisão da Integral Definida

No caso especial em que $f(x) \ge 0$, a soma de Riemann pode ser interpretada como a soma das áreas dos retângulos aproximadores da Figura 1 e $\int_a^b f(x) dx$ representa a área sob a curva y = f(x) de a até b.

Figura 1

De modo semelhante, vamos considerar uma função f de duas variáveis definida em um retângulo fechado

$$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, c \le y \le d\}$$

e vamos inicialmente supor que $f(x, y) \ge 0$. O gráfico f é a superfície com equação z = f(x, y).

Seja S o sólido que está acima da região R e abaixo do gráfico de f, isto é,

$$S = \{(x, y, z) \in \mathbb{R}^3 | 0 \le z \le f(x, y), (x, y) \in R\}$$
 (Veja a Figura 2.)

Nosso objetivo é determinar o volume de S.

O primeiro passo consiste em dividir o retângulo R em subretângulos. Faremos isso dividindo o intervalo [a, b] em m subintervalos $[x_{i-1}, x_i]$ de mesmo comprimento $\Delta x = (b-a)/m$ e dividnido o intervalo [c, d] em n subintervalos $[y_{j-1}, y_j]$ de mesmo comprimento $\Delta y = (d-c)/n$.

Traçando retas paralelas aos eixos coordenados, passando pelas extremidades dos subintervalos, como na Figura 3, formamos os sub-retângulos

 $R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] = \{(x, y) \mid x_{i-1} \le x \le x_i, y_{j-1} \le y \le y_j\}$ cada um dos quais com área $\Delta A = \Delta x \, \Delta y$.

Dividindo R em sub-retângulos

Figura 3

Se escolhermos um ponto arbitrário, que chamaremos **ponto de amostragem**, (x_{ij}^*, y_{ij}^*) , em cada R_{ij} , poderemos aproximar a parte de S que está acima de cada R_{ij} por uma caixa retangular fina (ou "coluna") com base R_{ij} e altura $f(x_{ij}^*, y_{ij}^*)$, como mostrado na Figura 4. O volume dessa caixa é dado pela sua altura vezes a área do retângulo da base:

$$f(x_{ij}^*, y_{ij}^*) \Delta A$$

Se seguirmos com esse procedimento para todos os retângulos e somarmos os volumes das caixas correspondentes, obteremos uma aproximação do volume total de S:

3
$$V \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta A$$

(Veja Figura 5). Essa soma dupla significa que, para cada sub-retângulo, calculamos o valor de *f* no ponto escolhido, multiplicamos esse valor pela área do sub-retângulo e então adicionamos os resultados.

Nossa intuição diz que a aproximação dada em 3 melhora quando aumentamos os valores de *m* e *n* e, portanto, devemos esperar que

$$V = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta A$$

Usamos a expressão da Equação 4 para definir o **volume** do sólido *S* que corresponde à região que está abaixo do gráfico de *f* e acima do retângulo *R*. (Pode-se mostrar que essa definição é coerente com nossa fórmula de volume da Seção 6.2, no Volume I.)

Limites do tipo que aparecem na Equação 4 ocorrem muito frequentemente, não somente quando estamos determinando volumes, mas também em diversas outras situações – mesmo f não sendo uma função positiva. Assim, faremos a seguinte definição:

Definição A integral dupla de f sobre o retângulo R é

$$\iint_{R} f(x, y) dA = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

se esse limite existir.

O significado preciso do limite da Definição 5 é que para todo ε > existe um inteiro N tal que

$$\left| \iint\limits_R f(x,y) \ dA - \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*, y_{ij}^*) \ \Delta A \right| < \varepsilon$$

para todos os inteiros m e n maiores que N para qualquer escolha de (x_{ij}^*, y_{ij}^*) R_{jj} .

Uma função f é dita **integrável** se o limite na Definição 5 existir. É mostrado em cursos de cálculo avançado que todas as funções contínuas são integráveis. Na realidade, a integral dupla de f existe contanto que f "não seja descontínua demais".

Em particular, se f é limitada [isto é, existe uma constante M tal que $|f(x, y)| \le M$ para todos (x, y) em R], e se f for contínua ali, exceto em um número finito de curvas suaves, então f é integrável em R.

Dividindo R em sub-retângulos

Figura 3

O ponto de amostragem (x_{ij}^*, y_{ij}^*) pode ser tomado como qualquer ponto no sub-retângulo R_{ij} , porém, se o escolhermos como o) canto superior direito de R_{ij} [ou seja, (x_i, y_j) , veja a Figura 3], a expressão da soma dupla ficará mais simples:

$$\iint\limits_R f(x, y) \ dA = \lim_{m, n \to \infty} \sum_{i=1}^m \sum_{j=1}^n f(x_i, y_j) \ \Delta A$$

Comparando as Definições 4 e 5, vemos que o volume pode ser escrito como uma integral dupla:

Se $f(x, y) \ge 0$, então o volume V do sólido que está acima do retângulo R e abaixo da superfície z = f(x, y) é

$$V = \iint\limits_R f(x, y) \, dA$$

A soma na Definição 5,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta A$$

é chamada **soma dupla de Riemann** e é usada como uma aproximação do valor da integral dupla. [Observe a semelhança dessa soma com a de Riemann em 1 para funções de uma única variável.]

Se f for uma função positiva, então a soma dupla de Riemann representa a soma dos volumes das colunas, como na Figura 5, e é uma aproximação do volume abaixo do gráfico de f.

Figura 5

Exemplo 1

Estime o volume do sólido que está acima do quadrado $R = [0, 2] \times [0, 2]$ e abaixo do paraboloide elíptico $z = 16 - x^2 - 2y^2$. Divida R em quatro quadrados iguais e escolha o ponto de amostragem como o canto superior direito de cada quadrado R_{ij} . Faça um esboço do sólido e das caixas retangulares aproximadoras.

Os quadrados estão ilustrados na Figura 6.

O paraboloide elíptico é o gráfico de $f(x, y) = 16 - x^2 - 2y^2$ e a área de cada quadrado é $\Delta A = 1$.

Aproximando o volume pela soma de Riemann com m = n = 2, temos

$$V \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(x_i, y_j) \Delta A$$

$$= f(1, 1) \Delta A + f(1, 2) \Delta A + f(2, 1) \Delta A + f(2, 2) \Delta A$$

$$= 13(1) + 7(1) + 10(1) + 4(1) = 34$$

Esse é o volume das caixas aproximadoras mostradas na

Figura 7.

Figura 7

A Regra do Ponto Médio

A Regra do Ponto Médio

Os métodos usados para aproximar as integrais de funções de uma variável real (a Regra do Ponto Médio, a Regra dos Trapézios, a Regra de Simpson) têm seus correspondentes para integrais duplas. Consideraremos aqui somente a Regra do Ponto Médio para integrais duplas. Isso significa que usaremos a soma dupla de Riemann para aproximar a integral dupla, na qual o ponto de amostragem (x_{ij}^*, y_{ij}^*) em R_{ii} é tomado como o ponto central (\bar{x}_i, \bar{y}_j) R_{ii} j. Em outras palavras, \bar{x}_i é o ponto médio de $[x_{i-1}, x_i]$ e \overline{y}_j é o ponto médio de $[y_{i-1}, y_i]$.

A Regra do Ponto Médio

Regra do Ponto Médio para Integrais Múltiplas

$$\iint\limits_R f(x,y) dA \approx \sum_{i=1}^m \sum_{j=1}^n f(\overline{x}_i, \overline{y}_j) \Delta A$$

onde $\overline{x_i}$ é o ponto médio de $[x_{i-1}, x_i]$ e $\overline{y_j}$ é o ponto médio de $[y_{j-1}, y_j]$.

Exemplo 3

Use a Regra do Ponto Médio com m = n = 2 para estimar o valor da integral $\iint_{\mathbb{R}} (x - 3y^2) dA$, onde

$$R = \{(x, y) \mid 0 \le x \le 2, 1 \le y \le 2\}.$$

SOLUÇÃO: Usando a Regra do Ponto Médio com m = n = 2, calcularemos $f(x, y) = x - 3y^2$ no centro dos quatro sub-retângulos mostrados na Figura 10.

Figura 10

Logo, $\bar{x}_1 = \frac{1}{2}$, $\bar{x}_2 = \frac{3}{2}$, $\bar{y}_1 = \frac{5}{4}$ e $\bar{y}_2 = \frac{7}{4}$. A área de cada sub-retângulo é $\Delta A = \frac{1}{2}$. Assim,

$$\iint_{R} (x - 3y^{2}) dA \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\overline{x}_{i}, \overline{y}_{j}) \Delta A$$

$$= f(\overline{x}_{1}, \overline{y}_{1}) \Delta A + f(\overline{x}_{1}, \overline{y}_{2}) \Delta A + f(\overline{x}_{2}, \overline{y}_{1}) \Delta A + f(\overline{x}_{2}, \overline{y}_{2}) \Delta A$$

$$= f(\frac{1}{2}, \frac{5}{4}) \Delta A + f(\frac{1}{2}, \frac{7}{4}) \Delta A + f(\frac{3}{2}, \frac{5}{4}) \Delta A + f(\frac{3}{2}, \frac{7}{4}) \Delta A$$

$$= (-\frac{67}{16})\frac{1}{2} + (-\frac{139}{16})\frac{1}{2} + (-\frac{51}{16})\frac{1}{2} + (-\frac{123}{16})\frac{1}{2}$$

$$= -\frac{95}{8} = -11,875$$

Portanto, temos

$$\iint\limits_R (x - 3y^2) \, dA \approx -11,875$$

Valor Médio

Valores Médios

Na Seção 6.5, no Volume I, mostramos que o valor médio de uma função f de uma variável definida em um intervalo [a, b] é

$$f_{\text{med}} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

De modo semelhante, definimos o **valor médio** de uma função *f* de duas variáveis em um retângulo *R* contido em seu domínio como

$$f_{\text{med}} = \frac{1}{A(R)} \iint_{R} f(x, y) dA$$

onde A(R) é a área de R.

Valores Médios

Se $f(x, y) \ge 0$, a equação

$$A(R) \times f_{\text{med}} = \iint\limits_{R} f(x, y) dA$$

diz que a caixa com base R e altura f_{med} tem o mesmo volume que o sólido que está sob o gráfico de f. [Se

z = f(x, y) descreve uma região montanhosa e você corta os topos dos morros na altura f_{med} , então pode usá-los para encher os vales de forma a tornar a região completamente plana. Veja a Figura 11.]

Figura 11 30

Exemplo 4

O mapa de contorno na Figura 2 mostra a precipitação de neve, em polegadas, no estado de Colorado em 20 e 21 de dezembro de 2006. (O Estado tem a forma de um retângulo que mede 388 milhas de Oeste a Leste e 276 milhas do Sul ao Norte). Use o mapa de contorno para estimar a queda de neve em todo o Estado do Colorado naqueles dias.

Figura 12

Vamos colocar a origem no canto sudoeste do estado. Então, $0 \le x \le 388$, $0 \le y \le 276$ e f(x, y) é a queda de neve, em polegadas, no local x milhas para leste e y milhas para norte da origem. Se R é o retângulo que representa o estado do Colorado, então a precipitação média de neve no Colorado em 20 e 21 de dezembro foi

$$f_{\text{med}} = \frac{1}{A(R)} \iint_{R} f(x, y) dA$$

onde $A(R) = 388 \cdot 276$.

Para estimarmos o valor dessa integral dupla, vamos usar a Regra do Ponto Médio com m = n = 4. Em outras palavras, dividimos R em 16 sub-retângulos de tamanhos iguais, como na Figura 13.

Figura 13

A área de cada sub-retângulo é

$$\Delta A = \frac{1}{16}(388)(276) = 6693 \text{ mi}^2$$

Usando o mapa de contorno para estimar o valor de f no ponto central de cada sub-retângulo, obtemos

$$\iint_{R} f(x, y) dA \approx \sum_{i=1}^{4} \sum_{j=1}^{4} f(\overline{x}_{i}, \overline{y}_{j}) \Delta A$$

$$\approx \Delta A[0 + 15 + 8 + 7 + 2 + 25 + 18,5 + 11$$

$$+ 4,5 + 28 + 17 + 13,5 + 12 + 15 + 17,5 + 13]$$

$$= (6.693)(207)$$

Logo,

$$f_{\text{med}} \approx \frac{(6.693)(207)}{(388)(276)} \approx 12.9$$

Em 20 e 21 de dezembro de 2006, o Colorado recebeu uma média de aproximadamente 13 polegadas de neve.

Propriedades das Integrais Duplas

Propriedades das Integrais Duplas

Listaremos aqui as três propriedades das integrais duplas. Admitiremos que todas as integrais existam. As Propriedades 7 e 8 são conhecidas como *linearidade* da integral.

$$\int_{R} [f(x, y) + g(x, y)] dA = \iint_{R} f(x, y) dA + \iint_{R} g(x, y) dA$$

$$\iint\limits_R c f(x, y) dA = c \iint\limits_R f(x, y) dA, \text{ onde } c \text{ \'e uma constante}$$

Se $f(x, y) \ge g(x, y)$ para todo (x, y) em R, então

$$\iint\limits_R f(x, y) \ dA \ge \iint\limits_R g(x, y) \ dA$$