

Questions

1. Given the Q output waveform shown in the figure below, determine the name of latch.

2. The following figure shows a Gated S-R flip-flop.

a. Find its truth table (Inputs are S, G,R and output is Q)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G	S	R	11	0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	11	O			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				11				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	1	11	0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1			11				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	0		0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0				V			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	1		0			
$egin{array}{c c c c c} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ \end{array}$	v	1			Q			
$egin{array}{c c c c c} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ \end{array}$	1	0	0		0			
1 1 0 1	1	U	U		Q			
1 1 0 1	1	0	1					
	1	U	1		U			
	1	1	0		1			
1 1 0	1	1	U		1			
		4	4		0			
1 1 1 1 0								

b. Feed the G, S, and R inputs in the gated S-R flip-flop, sketch the output wave at Q, and list the flip-flop functions

3. The following figure shows X, Y, Z functions' implementation using a single 16 X 3 ROM. Dot notations are used to indicate the ROM contents.

For example, X is a function which can be represented via following Boolean equation:

$$X = AB + B\bar{C}D + \bar{A}\bar{B}.$$

Determine functions Y and Z accordingly. Provide simplified Boolean equations.

4. The following figure shows a Moore machine which has five flip-flops, three inputs, and nine outputs. Assume a state encoding that makes efficient use of the flip-flops.

Answer the following questions:

The minimum number of states in the diagram is $2^{5-1} + 1 = 17$ and the maximum is $2^5 = 32$.

b. A fully defined machine needs to know what action to take for all possible inputs. What are the minimum and maximum numbers of transition arrows starting at a particular state (originating from each state)?

At a minimum each node will have 2^3 (8) transitions originating from it. Similarly, it is not possible to have more than one transition on a particular input. Thus, the maximum number of outgoing transitions is also 2^3 (8) Min=Max=8

c. What are the minimum and maximum numbers of different binary patterns that can be displayed on the outputs? For the maximum case, a hint is this is a Moore machine. For the minimum case, assume that any output logic that is a function of the 5 state bits is valid.

Because this is a Moore machine, the output is a function of only the 5 state bits. At most, the machine can display as many outputs as there are states, or 2^5 (32). The minimum number of output values depends on certain assumptions about the output logic. However, assuming, logic that assigns a constant value to the output no matter the state would produce the minimal number of output values (1).

Max=32, Min=1

5. Gray codes have a useful property in that consecutive numbers differ in only a single bit position. The following table lists a 3-bit Gray code representing the numbers 0 to 7.

Number	G	ray	code
0	0	0	0
1	0	0	1
2	0	1	1
3	0	1	0
4	1	1	0
5	1	1	1
6	1	0	1
7	1	0	0

Design a 3-bit modulo 8 Gray code UP counter FSM with no inputs and three outputs. The designed counter counts from 0, 1, 2, 3, 4, 5, 6 and 7, then repeats in Gray code pattern. When reset, the output should be 000. On each clock edge, the output should advance to the next Gray code (meaning that T_n is simply S_n). After reaching 100, it should repeat with 000. Draw a schematic for this counter using T flip-flops. A transition diagram with encoding is shown as a

starter of your design.

a. State Transition Table with encoding (T_n are inputs of each T flip-flop, S_n are states, + indicates next state logic)

S ₂	S ₁	S ₀	S ₂ '	S ₁	$S_0^{'}$	T ₂	T ₁	T ₀
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	1	0	1	0	0	0	1
0	1	0	1	1	0	1	0	0
1	1	0	1	1	1	0	0	1
1	1	1	1	0	1	0	1	0
1	0	1	1	0	0	0	0	1
1	0	0	0	0	0	1	0	0

b. Simplify T_n equations using K-map or Boolean simplification.

6. Check the following circuit whether it violates hold time constraint. Also determine the maximum clock frequency. Timing Characteristics of each gate and flip-flop are given as follows:

$$t_{ccq} = 30 \text{ ps}$$

$$t_{pcq} = 80 \text{ ps}$$

$$t_{setup} = 50 \text{ ps}$$

$$t_{hold} = 60 \text{ ps}$$

$$t_{pd} = 40 \text{ ps}$$

$$t_{cd} = 25 \text{ ps}$$

 $t_{ccq} + t_{cd} > t_{hold}$ 30+25=55 > 60 (!) Violates! Tc>=tpcq +3*tpd+tsetup=80+3*40+50=250ps F=1/Tc=4GHz

- 7. Design a 3-bit down counter (synchronous) that counts prime numbers (i.e., 2, 3, 5, 7). An initial 3-bit prime number is 010₂. Use three D-FFs for your answer.
 - a. Write the next state's state transition

Р	revious stat	te		Next state	
P2	P1	PO (LSB)	N2	N1	NO (LSB)
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

b. Draw the transition diagram.

previo	us state		next	state		
P2	P1	P0	N2	N1	N0	CLK 3
0	0	0	X	X	X	
0	0	1	X	X	X	↑
0	1	0	1	1	1	
0	1	1	0	1	0	CLK CLK
1	0	0	X	X	X	<u> </u>
1	0	1	0	1	1	
1	1	0	X	X	X	7 CLK 5
1	1	1	1	0	1	CLK C

c. Boolean equations for the next state using K-maps (all three bits).

N2=P2Pa+P0'			
N1=P2'+P1'			
N0=P2+P0'			

8. Design an asynchronous MOD3 up counter using JK FFs.

- * A symbol of JK FF is given above. Use an additional logic gates when you need.
- * Put a special consideration on CLR (clear). Due to "the bubble" placed on the CLR pin.
- * Clearly label each JK FFs bit position (make LSB inputs as JO, KO and LSB outputs: QO and QO)
- * Clarify wiring connection V_{cc} (or 1), GND (or 0), and an external clock if it needs.
- * To check your counter working, assume that you connect LEDs on Q (not on Q').

9. Design a synchronous MOD3 up counter using JK FFs.

- * A symbol of JK FF is given above. Use an additional logic gates when you need.
- * Put a special consideration on CLR (clear). Due to "the bubble" placed on the CLR pin.
- * Clearly label each JK FFs bit position (make LSB inputs as JO, KO and LSB outputs: QO and QO)
- * Clarify wiring connection V_{cc} (or 1), GND (or 0), and an external clock if it needs.
- * To check your counter working, assume that you connect LEDs on Q (not on Q').

10. Find a state transition table and output table for the FSM bleow. Write Boolean equations for the next state and output.

S_1	S_0	A	В	S_1^+	S_0^+	Q	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	1	0	0	1	0	
0	0	1	1	0	1	0	
0	1	0	0	0	0	0	
0	1	0	1	1	0	0	
0	1	1	0	0	0	0	
0	1	1	1	1	0	0	
1	0	0	0	0	0	0	
1	0	0	1	0	0	0	
1	0	1	0	0	0	0	
1	0	1	1	1	0	1	
1	1	0	0	X	X	X	
1	1	0	1	X	X	X	
1	1	1	0	X	X	X	
1	1	1	1	X	X	X	
$S_1^+ = S_0 \cdot B + S_1 \cdot A \cdot B$ $S_0^+ = \bar{S}_1 \cdot \bar{S}_0 \cdot A$ $Q = S_1 \cdot A \cdot B$							

- 11. A sequence detector has a serial input X and an output Z. Whenever the circuit receives a sequence of 1100 on input X during four consecutive clock cycles, it produces an output Z = 1 at the same time as the fourth input. At all other times, the output Z = 0. To further clarify the problem, an example of input/output sequence is shown below:
 - X: 00110111000011110001100111...
 - Z: 000000001000000100001000...
 - a. Obtain a state transition diagram for this problem. Use Mealy FSM. Label the starting state as A0 and other states as A1, A2, etc.

b. Derive the state transition table.

r	_	-				
	S_1	S_0	X	S_1^+	S_0^{\perp}	Y
	0	0	0	0	0	0
	0	0	1	0	1	0
	0	1	0	0	0	0
	0	1	1	1	0	0
	1	0	0	1	1	0
	1	0	1	1	0	0
	1	1	0	0	0	1

	Next State , Z				
Pres State	X = 0	X = 1			
A_0	$A_0, 0$	$A_1, 0$			
A_1	$A_0, 0$	$A_2, 0$			
A_2	$A_{3}, 0$	$A_2, 0$			
A_3	$A_0, 1$	$A_1, 0$			

12. This circuit uses negative edge-triggered JK flip-flops. Complete Input and output waveforms. Note that the clock input from the second FF comes from Q0.

