CR1 – Crittografia 1

Alfonso Pesiri - Fabrizio Zaccari

Tutorato 3 – 19 Marzo 2008

Esercizio 1. Calcolare i seguenti inversi moltiplicativi:

 $7^* \mod 120$, $3^* \mod 331$, $7^* \mod 352$.

Esercizio 2. Si consideri il sistema RSA con chiave pubblica (n, e) = (143, 37).

- 1. Cifrare il messaggio M=56. Ovvero, calcolare il resto, che si denoterà con \bar{M} , della divisione per 143 del numero 56^{37} .
- 2. Decifrare il messaggio \bar{M} . Ovvero, calcolare l'esponente segreto d tale che $\bar{M}^d \equiv M \mod 143$.

Esercizio 3. Consideriamo un alfabeto binario $\{0, 1\}$ e un sistema che invia pacchetti fissi di 6 bit. Dopo aver fissato i parametri RSA coerentemente con i dati iniziali, ed aver indicato la chiave pubblica e quella privata, spedire il seguente messaggio:

10111010101

Una volta fattorizzato il modulo RSA, indicare un possibile attaco al crittosistema.

Esercizio 4. In un sistema RSA la chiave pubblica è (n, e) = (6089561, 125). Sapendo che la differenza tra i due primi che costituiscono il modulo RSA è 160, calcolare l'esponente di cifratura d.

Esercizio 5. Un utente deve scegliere la propria chiave RSA secondo i seguenti principi:

- 1. l'alfabeto utilizzato ha 7 caratteri: $\{a, e, i, o, u, x, y\}$;
- 2. il sistema permette di inviare pacchetti con al più 3 caratteri;
- 3. la chiave pubblica può essere scelta liberamente.

Dopo aver generato una chiave pubblica RSA e la corrispondente chiave privata, inviare il messaggio

xaeayo