EE2302 Foundations of Information and Data Engineering

Assignment 3 (Solution)

1.

- a) We check the three conditions:
 - i. If m=0, then $m \times m=0$. If $m \neq 0$, then $m \times m > 0$. Therefore, R is **reflexive**.
 - ii. Suppose mRn. We only need to consider the case $m \neq n$. (The case where m = n is the same as reflexivity.) Then, mn > 0, which implies that nm > 0. Therefore, R is **symmetric**.
 - iii. Suppose mRn and nRp. We only need to consider the case where m, n, and p are distinct. (The other cases are the same as reflexivity or symmetry.) Then, mn > 0 and np > 0. Multiplying these two inequalities gives $mn^2p > 0$. Since $n \neq 0$ (for otherwise we cannot have mn > 0), we have mp > 0. Therefore, R is **transitive**.
- b) There are three equivalence classes. They are

i.
$$[1] = \{x \in Z \mid x > 0\},\$$

ii.
$$[-1] = \{x \in Z \mid x < 0\}$$
, and

iii.
$$[0] = \{0\}.$$

2. By the definition of congruences,

$$a = kn + b$$
 for some integer k .
 $c = hn + d$ for some integer h .

Multiplying them together, we obtain

$$ac = (kn + b)(hn + d)$$

$$= hkn^{2} + hbn + kdn + bd$$

$$= (hkn + hb + kd)n + bd$$

Since (hkn + hb + kd) is an integer, we have $ac \equiv bd \pmod{n}$.

3.
$$R_1 = \{(a, a), (b, b)\}, R_2 = \{(a, a), (b, b), (a, b)\}, R_3 = \{(a, a), (b, b), (b, a)\}.$$

- a) S is not an equivalence relation. It is not symmetric, since $x \ge y$ does not imply $y \ge x$.
- b) *T* is an equivalence relation.

(reflexive): x - x = 0 is an integer (symmetric): if x - y is an integer, then y - x = -(x - y) is also an integer.

(transitive): if x - y and y - z are integers, then x - z = (x - y) - (y - z), which is a difference of two integers, is also an integer.

c) There is an equivalence class for each real number x, where $0 \le x < 1$.

(Note: The answer is not unique. For example, $-0.5 \le x < 0.5$ is also correct.)