Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/001688

International filing date: 18 February 2005 (18.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 013 843.5

Filing date: 20 March 2004 (20.03.2004)

Date of receipt at the International Bureau: 05 August 2005 (05.08.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 013 843.5

Anmeldetag:

20. März 2004

Anmelder/Inhaber:

Degussa AG, 40474 Düsseldorf/DE

Bezeichnung:

Expression von Nitrilhydratasen im Zwei-Vektor-

Expressionssystem -

IPC:

C 12 N 15/70

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 21. Februar 2005

Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

Wehner

Expression von Nitrilhydratasen im Zwei-Vektor-Expressionssystem

Die vorliegende Erfindung bezieht sich auf ein Expressionsystem für die Herstellung von Nitrilhydratasen. Nitrilhydratasen bestehen aus verschiedenen Untereinheiten. Das gegenständliche System erlaubt die Herstellung der Nitrilhydratasen in gegenüber dem Stand der Technik verbesserter Art und Weise durch die getrennte Expression der Nukleinsäuresequenzen kodierend für diese Untereinheiten auf getrennten Plasmiden.

Die Strukturklassen der Amide und Carbonsäuren gewinnen mehr und mehr an Bedeutung als Vorstufen von Feinchemikalien.

Spezielle Aminoamide und (proteinogene und nichtproteinogene) Aminosäuren sind Schlüsselintermediate für die Synthese von pharmazeutischen und agrochemischen Produkten, als auch im Lebensmittelbereich. Insbesondere enantiomerenreine Amide und Aminosäuren spielen eine immer größer werdende Rolle in den oben genannten Anwendungsbereichen.

Aminonitril-Vorstufen, wie sie für die Herstellung der oben angegebenen Verbindungsklassen benötigt werden, sind in racemischer Form leicht über die so genannte Streckersynthese zugänglich. Die so gewonnenen Nitrile können anschließend mittels chemischer oder enzymatischer Verseifung in die entsprechenden Amide und Carbonsäuren überführt werden.

Es sind drei Enzyme bekannt, die an der enzymatischen Hydrolyse von Nitrilen beteiligt sein können. Nitrilasen setzen eine Nitril-Funktion direkt zur Säure um, wohingegen Nitrilhydratasen (E.C. 4.2.1.84) hier das entsprechende Amid bilden. Dieses kann durch eine Amidase (E.C. 3.5.1.4) abschließend in die entsprechende Carbonsäure umgesetzt werden (Schema 1).

Schema 1:

5

10

15

20

25

Die Verseifung von Nitrilen zu den entsprechenden Amiden und Säuren mittels isolierter Enzyme oder Ganz-Zell-Katalysatoren hilft große Mengen Salz zu sparen, welche ansonsten bei dem Neutralisierungsschritt nach der chemischen Verseifung von Nitrilen anfallen würden. Aus diesem Grund stellt die enzymatische Verseifung von Nitrilen zu z.B. Aminoamiden und/oder Aminosäuren ein nachhaltigeres Produktionsverfahren dar.

Nitrilhydratasen bestehen in ihrer aktiven Form aus 2 nicht-

homologen α - und β -Untereinheiten. Diese bilden Heterodimere, Tetramere, und bei *Rhodococcus rhodochrous* J1 wurden sogar Decamere nachgewiesen. Die α - und β - Untereinheiten besitzen ungefähr die gleiche Größe, haben aber sonst keine Ähnlichkeiten untereinander. Nitrilhydratasen sind Metalloproteine die Fe³+ oder Co³+ enthalten (Bunch A. W. (1998), Nitriles, in: Biotechnology, Volume 8a, Biotransformations I, Chapter 6, Eds.: Rehm HJ, Reed G, Wiley-VCH, p. 277-324; Shearer J, Kung IY, Lovell S, Kaminsky W, Kovacs JA (2001) Why is there a "inert" metal center in the active site of nitrile hydratase? Reactivity and ligand dissociation from a five-coordinate Co(III) nitrile hydratase model. J Am Chem Soc 123: 463-468; Kobayashi M, Shimizu S (2000) Nitrile hydrolases. Current Opinion in Chemical Biology 4: 95-102).

25

30

35

Eine der größten Herausforderungen bisher ist die heterologe Darstellung von Nitrilhydratasen in einem geeigneten Wirt, bevorzugt in *E. coli*. Dieses Gram negative Bakterium ist bekannt für seine hohen Expressionsraten heterologer Proteine. Ein weiterer Vorteil ist die Ausbeute an Biomasse in Hoch-Zelldichte-Fermentationen mit *E. coli*. Hierbei können Produktivitäten von über 100 g Biotrockenmasse (BTM) in 24 bis 44 Stunden erreicht werden (Lee SY (1996) High cell-density culture of Escherichia coli. TIBTECH 14:98-105; Riesenberg D, Guthke R (1999) High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol 51:422-430).

Die meisten Nitrilhydratase-Sequenzen der α- und βUntereinheit sind aus der Gattung Rhodococcus bekannt. Aber
gerade die Expression der Nitrilhydratasen aus dieser

15 Gattung in E. coli war bisher nur unter besonderen
Schwierigkeiten möglich (Ikehata O, Nishiyama M, Horinouchi
S, Beppu T (1989) Primary structure of nitrile hydratase
deduced from the nucleotide sequence of a Rhodococcus
species and ist expression in Escherichia coli. Eur J

20 Biochem 181: 563-570).

In der Literatur sind Ein-Vektor-Expressionssysteme für Nitrilhydratasen beschrieben deren spezifische Aktivitäten zwischen 4,2 und 12,2 U/mg Gesamtprotein für Co-abhängige Nitrilhydratasen aus R. rhodochrous J1 (Kobayasjhi M, Nishiyama M, Nagasawa T, Horinouchi S, Beppu T, Yamada H (1991) Cloning, nucleotide sequence and expression in Escherichia coli of two cobalt-containing nitrole hydratase genes from Rhodococcus rhodochrous. Biochim Biophys Acta 1129: 23-33) und 452 U/mg Gesamtprotein für eine eisenabhängige Nitrilhydratase aus Rhodococcus spec. N-771 liegen (Njori M, Yohda M, Odaka M, Matsushita Y, Tsujimura M, Yoshida T, Dohmae N, Takio K Endo I (1999) Functunal expression of Nitrile hydratases in E. coli: Requirement of a nitrile hydratase activator and a post-translational modification of a ligand cysteine. J Biochem 125: 696-704),

15

20

25

35

was ungefähr ca. 248 U/mg BTM (Biotrockenmasse) entspricht (Kalkulation nach Goodsell DS (1991) Inside a cell. TIBS 16: 203-206). Interessanterweise konnte die letztgenannte Aktivität mit Nitrilhydratasen aus R. erythropolis, welche nahe verwandt sind mit Rhodococcus spec. N-711, mit ähnlichen Vektorsystemen und Anordnungen der Strukturgene nicht nachvollzogen werden. Es bestand daher immer noch ein Bedarf an Verfahren und Systemen welche es gestatten, die ins Auge gefassten Enzyme in für technische Maßstäbe ausreichender Art und Weise zur Verfügung zu stellen.

Der Einsatz von Zwei-Vektor-Expressionssystemen für die heterologe Expression rekombinanter Proteine in E. coli ist dem Fachmann bereits bekannt, wie zum Beispiel die Bildung des motorischen Proteins Kinesin (Skowronek K, Kasprzak A (2002) A two-plasmid system for independent genetic manipulation of subunits of homodimeric proteins and selective isolation of chimeric dimers. Analytical Biochemistry 300: 185-191), des Plaminogen-Proaktivator Streptokinase (Yazdani SS, Mukherjee KJ (2002) Continuousculture studies on the stability and expression of recombinant streptokinase in Escherichia coli; stability and expression of streptokinase in continuous culture. Bioprocess and Biosystems Engineering 24(6): 341-346), des Komplexes zweier humaner Proteine (hematopoietic cell tyrosine phosphatase und der mitogen proteine kinase; Kholod N, Mustelin T (2001) Novel vectors for co-expression of two proteins in E. coli. 31: 322-328) oder der humanen Kreatin Kinase CKMB (WO95/12662) zeigen.

Bisher wurden jedoch noch keine heteromeren Enzyme die als 30 Biokatalysatoren in der chemischen Industrie eingesetzt werden, wie z.B. die Nitrilhydratasen, mit einem solchen System exprimiert.

Aufgabe war es daher ein Expressionssystem zu entwickeln, das es erlaubt, effizient sowohl cobalt- als auch eisenabhängige Nitrilhydratasen aktiv in *E. col*i zu

15

20

25

30

35

exprimieren. Insbesondere sollte das erfindungsgemäße System in der Lage sein, die ins Auge gefassten Enzyme in gegenüber dem Stand der Technik erhöhter Expressionsrate und ggf. stabileren Formen zur Verfügung zu stellen, um so deren Einsatz im technischen Maßstab unter ökologischen und ökonomischen Gesichtspunkten vorteilhaft zu gestalten.

Diese und weitere nicht näher spezifizierte sich jedoch aus dem Stand der Technik in naheliegenderweise ergebende Aufgaben werden durch die Angabe eines Expressionssystems mit den Merkmalen des gegenständlichen Anspruchs 1 gelöst. Ansprüche 2 bis 8 beziehen sich auf bevorzugte Ausführungsformen des erfindungsgemäßen Expressionssystems. Ansprüche 9 und 10 sind auf Verfahren zur Herstellung von Nitrilhydratasen bzw. (Amino-)Carbonsäuren oder (Amino-)Carbonsäureamide gerichtet. Anspruch 11 schützt einen mit dem Expressionssystem ausgestatteten Wirtsorganismus.

Dadurch, dass bei einem Expressionssystem für die gleichzeitige Expression der Nukleinsäuresequenzen kodierend für die verschiedenen Untereinheiten einer Nitrilhydratase das Expressionssystem mindestens je ein Plasmid mit mindestens einer Nukleinsäuresequenz kodierend für die jeweilige Untereinheit aufweist, gelangt man äußerst vorteilhaft und nichts desto weniger völlig überraschend zur Lösung der gestellten Aufgabe. Mit dem vorgeschlagenen Expressionssystem ist es möglich, die heterologe Expression der ins Auge gefassten Nukleinsäuresequenzen in für technische Maßstäbe ausreichender Art und Weise zu bewerkstelligen. Es kann dabei besonders überraschen, dass allein die getrennte Expression der eigentlich in einem Operon organisierten Nukleinsäuresequenzen kodierend für die entsprechenden Untereinheiten der Nitrilhydratasen auf verschiedenen Plasmiden dazu beiträgt, die Aktivität der erhaltenen Nitrilhydratasen um den Faktor > 8 gegenüber der "normalen" Expression zu steigern. Dies war so aus dem Stand der Technik in naheliegender Weise nicht herleitbar.

10

15

20

Das erfindungsgemäße Expressionssystem kann in allen dem Fachmann für den vorliegenden Zweck in Frage kommenden Wirtsorganismen eingesetzt werden. Als Mikroorganismen sind diesbezüglich Organismen wie z.B. Hefen wie Hansenula polymorpha, Pichia sp., Saccharomyces cerevisiae, Prokaryonten, wie E. coli, Bacillus subtilis oder Eukaryonten, wie Säugerzellen, Insektenzellen oder Pflanzenzellen zu nennen. Wirtsorganismen, in die die Nukleinsäuresequenzen aufweisende Plasmide kloniert werden können, dienen zur Vermehrung und Gewinnung einer ausreichenden Menge des rekombinanten Enzyms. Die Verfahren hierfür sind dem Fachmann wohlbekannt (Sambrook, J.; Fritsch, E. F. und Maniatis, T. (1989), Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York). Vorzugsweise sind E. coli-Stämme für diesen Zweck zu benutzen. Ganz besonders bevorzugt sind: E. coli XL1 Blue, NM 522, JM101, JM109, JM105, RR1, DH5 α , TOP 10-, HB101, BL21 codon plus, BL21 (DE3) codon plus, BL21, BL21 (DE3), MM294. Plasmide, mit denen das die erfindungsgemäße Nukleinsäure aufweisende Genkonstrukt vorzugsweise in den Wirtsorganismus kloniert wird, sind dem Fachmann ebenfalls bekannt (s.a. PCT/EP03/07148; s.u.). Ganz

Promotoren sind DNA-Sequenzbereiche, von denen aus die Transkription eines Gens oder Operons gesteuert wird. Die für die Ausführung der Erfindung besonders vorteilhaften Promotoren, welche insbesondere in E. coli einzusetzen sind, sind dem Fachmann bekannt (Sambrook, J.; Fritsch, E. F. und Maniatis, T. (1989), Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York). Es hat sich jetzt als vorteilhaft erwiesen, wenn die Expression der Nukleinsäuresequenzen kodierend für die Untereinheiten unter der Kontrolle von jeweils dem gleichen Promotor steht, damit die Nukleinsäuresequenzen kodierend für die Untereinheiten in möglichst gleicher Geschwindigkeit

besonders bevorzugt ist ein Expressionssystem, das in E.

coli BL21 als Wirt vorliegt.

10

15

20

25

30

exprimient werden können. Geeignete Promotoren können solche ausgewählt aus der Gruppe T7, lac, tac, trp, ara oder rhamnose induzierbare sein. Weitere sind in (Cantrell, SA (2003) Vectors fort he expression of recombinant proteins in E. coli. Methods in Molecular biology 235: 257-275; Sawers, G; Jarsch, M (1996) Alternative principles for the production of recombinant proteins in Escherichia coli. Applied Microbiology and Biotechnology 46(1): 1-9) genannt. Ganz besonders bevorzugt ist der Einsatz des so genannten T7-Promotors im erfindungsgemäßen Expressionssystem (Studier, W. F.; Rosenberg A. H.; Dunn J. J.; Dubendroff J. W.; (1990), Use of the T7 RNA polymerase to direct expression of cloned genes, Methods Enzymol. 185, 61-89;

oder Broschüren der Firmen Novagen oder Promega).

Es hat sich als für die Funktionsfähigkeit des erfindungsgemäßen Expressionssystems nützlich erwiesen, dass auf den entsprechenden Plasmiden bestimmte Nukleinsäuresequenzen vorhanden sind, die für als Helferproteine bekannte Peptidsequenzen kodieren und deren Funktionen bisher weitgehend unbekannt sind. Diese sind dem Fachmann im Hinblick auf die Erzeugung aktiver Nitrilhydratasen bekannt (Nojiri M; Yohda M; Odaka M; Matsushita Y; Tsujimura M; Yoshida T; Dohmae N; Takio K; Endo I (1999) Functional expression of nitrile hydratase in Escherichia coli: requirement of a nitrile hydratase activator and post-translational modification of a ligand cysteine. Journal of biochemistry 125(4): 696-704). Ganz besonders bevorzugt ist ein Expressionssystem, bei dem pro eingesetztem Plasmidsatz mindestens eine Nukleinsäuresequenz kodierend für ein solches Helferprotein, insbesondere das p47K- (Seq. ID No. 33) oder p12K-Protein (Seq. ID No. 31), vorhanden ist. Ein Plasmidsatz bezeichnet dabei die Plasmide die erfindungsgemäß notwendig sind, eine aktive Nitrilhydratase aufzubauen.

15

20

25

30

35

Wie Eingangs näher erläutert sind Nitrilhydratasen aus verschiedenen Organismen bekannt (s.a. PCT/EP04/00338; Diss. s.o.). Vorzugsweise werden in dem erfindungsgemäßen Expressionssystem jedoch solche Nukleinsäuresequenzen verwendet, die für Untereinheiten von Nitrilhydratasen kodieren, welche ihren Ursprung in Nitrilhydratasen aus Rhodococcus-Stämmen haben. Die eingesetzten Nukleinsäuresequenzen können dabei gegenüber den Ursprungssequenzen aus Rhodococcus durch Mutagenese auf chemischer oder molekularbiologischer Basis verändert sein. Es kommen dabei insbesondere solche Nukleinsäuresequenzen in Betracht, die für Untereinheiten kodieren, die gegenüber den Wildtypsequenzen im Hinblick auf Aktivität und/oder Selektivität und/oder Stabilität verbessert sind. Die Verbesserung der Aktivität und/oder Selektivität und/oder Stabilität bedeutet erfindungsgemäß, dass die ins Auge gefassten Enzyme aktiver und/oder selektiver bzw. weniger selektiv oder unter den verwendeten Reaktionsbedingungen stabiler sind. Während die Aktivität und die Stabilität der Enzyme für die technische Anwendung naturgemäß möglichst hoch sein sollte, ist in Bezug auf die Selektivität dann von einer Verbesserung die Rede, wenn entweder die Substratselektivität abnimmt, die Enantioselektivität der Enzyme jedoch gesteigert ist. Die Vorgehensweise zur Verbesserung der erfindungsgemäßen Nukleinsäuresequenzen bzw. der durch sie codierten Polypeptide durch Mutagenese-Methoden ist dem Fachmann hinlänglich bekannt. Als Mutagenese-Methoden kommen alle dem Fachmann für diesen Zweck zur Verfügung stehenden Methoden in Frage. Insbesondere sind dies die Sättigungsmutagenese, die Random-Mutagenesis, in vitro-Rekombinations-Methoden sowie Site-Directed-Mutagenesis (Eigen, M. und Gardiner, W. (1984), Evolutionary molecular engineering based on RNA replication, Pure Appl. Chem. 56, 967-978; Chen, K. und

Arnold, F. (1991), Enzyme engineering for nonaqueous

solvents: random mutagenesis to enhance activity of

subtilisin E in polar organic media. Bio/Technology 9, 1073-

15

20

1077; Horwitz, M. und Loeb, L. (1986), Promoters Selected From Random DNA-Sequences, Proc Natl Acad Sci USA 83, 7405-7409; Dube, D. und L. Loeb (1989), Mutants Generated By The Insertion Of Random Oligonucleotides Into The Active-Site Of The Beta-Lactamase Gene, Biochemistry 28, 5703-5707; Stemmer, P.C. (1994), Rapid evolution of a protein in vitro by DNA shuffling, Nature 370, 389-391 und Stemmer, P.C. (1994), DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution.

Proc Natl Acad Sci USA 91, 10747-10751).

Besonders bevorzugt stammen die Nukleinsäuresequenzen kodierend für die Untereinheiten der Nitrilhydratasen aus Rhodococcus-Stämmen, insbesondere R. erythropolis 870-AN019.

In einer weiteren bevorzugten Ausführungsformen werden die eingesetzten Nukleinsäuresequenzen dahingehend verändert, dass sie der "codon usage" von E. coli besonders gut entsprechen. Es hat sich gezeigt, dass je mehr der Codon-Gebrauch des zu exprimierenden Gens dem von E. coli entspricht, die Ausbeuten der gewonnenen Enzyme weiter gesteigert werden können. Besonders bevorzugt ist es deshalb, die Nukleinsäuresequenzen kodierend für die Untereinheiten der Nitrilhydratasen entsprechend der "codon usage" von E. coli zu modifizieren. Unter "codon usage" wird die Tatsache verstanden, dass unterschiedliche Organismen unterschiedliche Basentripletts, welche für die gleichen Aminosäuren kodieren (Degeneration des genetischen Code), in unterschiedlicher Ausprägung gebrauchen.

Als Plasmide bzw. Vektoren kommen im Prinzip alle dem Fachmann für diesen Zweck zur Verfügung stehenden

30 Ausführungsformen in Frage. Derartige Plasmide und Vektoren können z. B. von Studier und Mitarbeiter (Studier, W. F.; Rosenberg A. H.; Dunn J. J.; Dubendroff J. W.; (1990), Use of the T7 RNA polymerase to direct expression of cloned genes, Methods Enzymol. 185, 61-89) oder den Broschüren der Firmen Novagen, Promega, New England Biolabs, Clontech oder Gibco BRL entnommen werden. Weiter bevorzugte Plasmide und

25

30

35

Vektoren können gefunden werden in: Glover, D. M. (1985), DNA cloning: a practical approach, Vol. I-III, IRL Press Ltd., Oxford; Rodriguez, R.L. und Denhardt, D. T (eds) (1988), Vectors: a survey of molecular cloning vectors and their uses, 179-204, Butterworth, Stoneham; Goeddel, D. V. (1990), Systems for heterologous gene expression, Methods Enzymol. 185, 3-7; Sambrook, J.; Fritsch, E. F. und Maniatis, T. (1989), Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York.

Plasmide, mit denen die die Nukleinsäuresequenzen aufweisenden Genkonstrukte kodierend für die Untereinheiten in ganz bevorzugter Weise in den Wirtsorganismus kloniert werden können, sind: pUC18/19 (Roche Biochemicals), pKK-177-3H (Roche Biochemicals), pBTac2 (Roche Biochemicals),

15 pKK223-3 (Amersham Pharmacia Biotech), pKK-233-3 (Stratagene) oder pET (Novagen). Ganz besonders bevorzugt ist ein Expressionssystem auf Basis von Plasmide der pET-Reihe. Äußerst bevorzugt ist der Einsatz von Plasmiden der gleichen Reihe sowohl für die Expression der

20 Nukleinsäuresequenz kodierend für die α - und β -Untereinheit.

In einer weiteren Ausgestaltung bezieht sich die vorliegende Erfindung auf ein Verfahren zur Herstellung von Nitrilhydratasen. Das Verfahren ist dadurch gekennzeichnet, dass es unter Verwendung eines wie oben dargestellten erfindungsgemäßen Expressionssystems durchgeführt wird.

In einer bevorzugten Ausführungsformen wird das erfindungsgemäße Verfahren so durchgeführt, dass die Expression bei Inkubationstemperaturen von kleiner 30 Grad Celsius, bevorzugt kleiner 25 Grad Celsius und ganz besonders bevorzugt ≤ 20 Grad Celsius durchgeführt wird. Weiterhin vorteilhaft ist die Ausgestaltung, bei der während der Expression zum Medium Alkohole, insbesondere Ethanol, in einer Konzentration von kleiner 10% (w/w), bevorzugt kleiner 5% (w/w) und ganz besonders bevorzugt 2-4% (w/w) zugegeben wird. Durch diese Maßnahmen wird erreicht, dass bei dem

erfindungsgemäßen Verfahren zur Herstellung der Nitrilhydratasen unlösliche Proteine (inclusion bodies), welche keine Aktivität entfalten, nicht oder nur in vermindertem Maße gebildet werden.

In einer nächsten Ausgestaltung bezieht sich die vorliegende Erfindung auf einen Wirtsorganismus aufweisend ein erfindungsgemäßes Expressionssystem. Wie weiter oben schon angedeutet können die Nukleinsäuresequenzen kodierend für die Untereinheiten von Nitrilhydratasen in wie oben

geschilderter erfindungsgemäßer Art und Weise in Plasmide integriert und in Wirtsorganismen transformiert werden.

Zusätzlich kann neben dem erfindungsgemäßen

Expressionssystem in dem Wirtsorganismus auch klonierte Gene für eine ggf. stereoselektiv arbeitende Amidase (z.B. die

aus WO2004/005517 oder EP 1318193) vorhanden sein. Ein so hergestellter Ganzzellkatalysator kann vorteilhafterweise beide am Nitril-Abbau beteiligten Enzyme produzieren, womit sichergestellt ist, dass das eingesetzte Nitril sofort zur entsprechenden Carbonsäuren umgewandelt wird.

Ganzzellkatalysatoren, welche mehrere an einer

Reaktionskaskade beteiligte Enzyme enthalten, sind bereits bekannt (EP1216304). Deren Einsatz in der gegenständlichen Erfindung erfolgt in äquivalenter Art und Weise.

Werden Rhamnose indizierbare Promotoren verwendet so sollte ein Organismus wie in der DE10155928 genannt als Wirtsorganismus oder Ganzzellkatalysator eingesetzt werden. Weiterhin vorteilhaft ist der Einsatz eines E. coli BL21 codon plus, der ggf. gemäß dem der DE10155928 in äquivalenter Weise modifiziert ist.

Um die Expression der Enzyme im Hinblick auf ihre
Umsetzungsgeschwindigkeiten abzustimmen, können die jeweils
für die Nitrilhydratase und die Amidase codierenden
Nukleinsäuresequenzen entsprechend ihren Umsetzungsraten in
unterschiedliche Plasmide mit unterschiedlichen Kopienzahlen
kloniert und/oder unterschiedlich starke Promotoren für eine
unterschiedlich starke Expression der Nukleinsäuresequenzen

verwendet werden. Bei derart abgestimmten Enzymsystemen tritt vorteilhafterweise eine Akkumulation einer ggf. inhibierend wirkenden Zwischenverbindung nicht auf und die betrachtete Reaktion kann in einer optimalen

- Gesamtgeschwindigkeit ablaufen. Dies ist dem Fachmann jedoch hinlänglich bekannt (Gellissen, G.; Piontek, M.; Dahlems, U.; Jenzelewski, V.; Gavagan, J. W.; DiCosimo, R.; Anton, D. L.; Janowicz, Z. A. (1996), Recombinant Hansenula polymorpha as a biocatalyst. Coexpression of the spinach glycolate
- oxidase (GO) and the S. cerevisiae catalase T (CTT1) gene,
 Appl. Microbiol. Biotechnol. 46, 46-54; Farwick, M.; London,
 M.; Dohmen, J.; Dahlems, U.; Gellissen, G.; Strasser, A. W.;
 DE19920712).
- Die Herstellung eines derartigen Ganzzellkatalysators ist dem Fachmann ebenfalls bekannt (Sambrook, J.; Fritsch, E. F. und Maniatis, T. (1989), Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York; Balbas, P. und Bolivar, F. (1990), Design and construction of expression plasmid vectors in E.coli,
- Methods Enzymol. 185, 14-37; Rodriguez, R.L. und Denhardt, D. T (eds) (1988), Vectors: a survey of molecular cloning vectors and their uses, 205-225, Butterworth, Stoneham).
 - Eine weitere Ausgestaltung der gegenständlichen Erfindung bezieht sich auf ein Verfahren zur Herstellung von, ggf. enantiomerenangereicherten, (Amino-)Carbonsäuren oder (Amino-)Carbonsäureäureamiden. Auch dieses Verfahren wird unter Verwendung eines wie oben dargestellten Wirtsorganismus durchgeführt. Das bedeutet, dass die an der Herstellung der Carbonsäuren oder Carbonsäureamiden
- 30 beteiligten Nitrilhydratasen durch ein wie eben dargestellten Wirtsorganismus gewonnen werden. Für die Anwendung können die betrachteten Enzyme in freier Form als homogen aufgereinigte Verbindungen oder als rekombinant (rec-) hergestelltes Enzym verwendet werden.
- Weiterhin können die Enzyme auch als Bestandteil eines intakten Gastorganismus eingesetzt werden oder in Verbindung

mit der aufgeschlossenen und beliebig hoch aufgereinigten Zellmasse des Wirtsorganismus.

Möglich ist ebenfalls die Verwendung der Enzyme in immobilisierter Form (Sharma B. P.; Bailey L. F. und Messing R. A. (1982), Immobilisierte Biomaterialiern - Techniken und Anwendungen, Angew. Chem. 94, 836-852). Vorteilhafterweise erfolgt die Immobilisierung durch Lyophilisation (Paradkar, V. M.; Dordick, J. S. (1994), Aqueous-Like Activity of \Box -Chymotrypsin Dissolved in Nearly Anhydrous Organic Solvents,

- J. Am. Chem. Soc. 116, 5009-5010; Mori, T.; Okahata, Y. (1997), A variety of lipi-coated glycoside hydrolases as effective glycosyl transfer catalysts in homogeneous organic solvents, Tetrahedron Lett. 38, 1971-1974; Otamiri, M.; Adlercreutz, P.; Matthiasson, B. (1992), Complex formation
- between chymotrypsin and ethyl cellulose as a means to solbilize the enzyme in active form in toluene, Biocatalysis 6, 291-305). Ganz besonders bevorzugt ist die Lyophilisation in Gegenwart von oberflächenaktiven Substanzen, wie Aerosol OT oder Polyvinylpyrrolidon oder Polyethylenglycol (PEG)
- oder Brij 52 (Diethylenglycol-mono-cetylether) (Kamiya, N.; Okazaki, S.-Y.; Goto, M. (1997), Surfactant-horseradish peroxidase complex catalytically active in anhydrous benzene, Biotechnol. Tech. 11, 375-378).
 - Äußerst bevorzugt ist die Immobilisierung an Eupergit®, insbesondere Eupergit C® und Eupergit 250L® (Röhm) (Eupergit.RTM. C, a carrier for immobilization of enzymes of industrial potential. Katchalski-Katzir, E.; Kraemer, D. M. Journal of Molecular Catalysis B: Enzymatic (2000), 10(1-3), 157-176.).
- Gleichfalls bevorzugt ist die Immobilisierung an Ni-NTA in Kombination mit dem His-Tag (Hexa-Histidin) ergänzten Polypeptid (Purification of proteins using polyhistidine affinity tags. Bornhorst, Joshua A.; Falke, Joseph J. Methods in Enzymology (2000), 326, 245-254). Die Verwendung
- als CLECs ist ebenfalls denkbar (St. Clair, N.; Wang, Y.-F.; Margolin, A. L. (2000), Cofactor-bound cross-linked enzyme crystals (CLEC) of alcohol dehydrogenase, Angew. Chem. Int.

Ed. 39, 380-383).

Durch diese Maßnahmen kann es gelingen aus Polypeptiden (Enzymen), welche durch organische Solventien instabil werden, solche zu generieren, die in Gemischen von wässrigen und organischen Lösungsmitteln bzw. ganz in Organik stabil sind und arbeiten können.

In den nachstehenden Experimenten werden folgende Stämme verwendet:

Liste der Verwendeten Stämme. (Brandão PFB, Clapp JP and Bull AT (2002). Discrimination and taxonomy of geographically diverse strains of nitrile-metabolising actinomycetes using chemometric and molecular sequencing techniques. Environmental Microbiology 4, 262-276; s.a. PCT/EP04/00338).

15 Tabelle 1:

5

10

Isolat	DSM	α-Untereinheit Seq. Nr.	β -Untereinheit Seq. Nr.
R. erythropolis 870-AN019	15258	1	3
R. erythropolis ENG-AN033	15261	5	7
R. erythropolis 871-AN042	15265	9	11
R. rhodochrous M8	Russian National Collection of Micro- organisms VKPM-S-926	13	15

Für die blunt-end Klonierung der Nitrilhydratasen und des p47K Proteins (Seq. ID No. 33) in pUC18/19 (xSmaI) (Abb. 1) aus den oben genannten Stämmen wurden folgende Primer benutzt:

Primer	Primersequenz	Amlifizierte Untereinheiten	Seq. Nr.
NH-Re-N	5'-GCC CGC ATA AGA AAA GGT GAA C	α, β, p47K	17
NH-Re-C-p47K	5'-GCA TGC CTT CAA ATC AGC CTG	α, β, ρ47Κ	18

5

10

15

Die ersten Expressionsexperimente im Ein-VektorExpressionssystem mit Nitrilhydratasen aus den R.
erythropolis-Stämmen 870-AN019, 871-AN042 und ENG-AN033
wurden mit Plasmiden der pUC18/19 Reihe in verschiedenen E.
coli-Stämmen durchgeführt. Um den optimalen Expressionswirt
ermitteln zu können wurden die pUC18/19 Konstrukte mit den
Nitrilhydratasen aus R. erythropolis-Stämmen 870-AN019, 871AN042 und ENG-AN033 in verschiedene E. coli`s transformiert
und unter der Kontrolle des lac-Promotors exprimiert. Es
handelte sich dabei um folgende E. coli-Stämme: JM109,
DH50, BL21 codon plus, BL21, HB101, MM294 und XL1blue.

20

Die Aktivitäten (Units pro g Zelltrockenmasse) der rekombinanten Nitrilhydratasen in den verschiedenen Wirten lassen sich wie folgt zusammenfassen: Es zeigte sich, dass die höchste Aktivität mit E. coli BL21 codon plus RIL (Firma Stratagen) erhalten wurde, in dem die Kopienzahl der für E. coli seltenen t-RNA's für Arginin (AGA/AGG), Isoleucin (AUA) und Leucin (CUA) erhöht vorliegen. Dieser Wirtsorganismus ist konstruiert worden, um speziell Gene mit einer an einen hohen GC-Gehalt angepassten "codon-usage" zu exprimieren, wie z.B. die aus Rhodococcen (72% GC).

25

Die Nitrilhydratase aus *R. erythropolis* 870-AN019 in *E. coli* BL21 codon plus zeigt mit großem Abstand die höchste

15

20

Aktivität von 100 U/g BTM, gefolgt von Nitrilhydratasen 870-AN019 in DH5 α (8 U/g BTM) und Nitrilhydratasen ENG-AN033 in BL21 codon plus (7 U/g BTM).

Die Aktivitäten aller anderen rekombinanten Organismen lagen 5 unter 2 U/g BTM oder waren nicht nachweisbar. Unter optimierten Bedingungen wurde sogar für die Nitrilhydratase 870-AN019 eine Aktivität von 280 U/g BTM erreicht.

Im folgenden wurde die Expression von eisenabhängigen Nitrilhydratasen im Zwei-Vektor-Expressionssystem durchgeführt, wobei α - und β -Untereinheiten getrennt auf je einem Plamid vorlagen. Vorteil dieses Systems ist es, dass die beiden Untereinheiten jeweils direkt unter der Kontrolle des ggf. eingesetzten T7-Promoters liegen und somit die Transkripte für die Gene gleich stark gebildet werden. Das p47K-Helferprotein (Seq. ID No. 33) war von Fall zu Fall einem der beiden Untereinheiten nachgeschaltet. Als Expresssionsvektoren dienten Plasmide der pET-Reihe (pET22b und pET26b) der Firma Stratagene. es wurde die Expression der Nitrilhydratase aus R. erythropolis 870-AN019 (Seq. Nr. 1 und 3) angestrebt.

Für die Klonierung der beiden Untereinheiten und des p47K Proteins (Seq. ID No. 33) wurden folgende Primer benutzt:

Primer	Primersequenz	Amplifi- zierter Orf	Seq. Nr.
NH019-α-for- Nde	5'-AGG GTG AAC CAT ATG TCA GTA ACG	α	19 .·
NH019-α-rev- Bam	5'-TGT CGG ATC CAT CAG ACG GTG G	α	
NH019-β-for- Nde	5'-AGC ACC ATA TGG ATG GAG TAC AC	β	21
NH019-β-rev-	5'-GTT GGG AAT TCA GGC	β	22

15

20

25

Eco	CGC AGG		
NH019-p47K- for-Bam	5'-CGC GGA TCC AAG AAG GAG ATA TAC ATG	p47K	23
NH019-p47K- rev-Hind	5'-CCG CAA CGT TCA AAC GGT CTG G	p47K	24

Für die α - und β -Untereinheit wurden Primer von der Nitrilhydratasesequenz aus R. erythropolis 870-AN019 abgeleitet (Brandao PFB, Clapp JP, Bull AT (2003) Diversity, of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropoli recovered from geographically distinct habitats. Applied and Environmental Microbiology 69(10): 5754-5766; s.a. PCT/EP04/00338), welche mit Schnittstellen für die Restriktionsendonukleasen NdeI (N-Terminal) bzw: BamHI (C-Untereinheit) oder EcoRI (β -Untereinheit) C-Terminal versehen waren. Die Primer für p47K wurden ebenfalls von diesem Organismus abgeleitet und enthielten die Schnittstellen für BamHI (N-terminal) bzw. HinDIII (Cterminal). Die β -Untereinheit wurde in pET26b, die α -Untereinheit und p47K zusammen in pET22b kloniert. Es resultierten folgende Plasmide, welche in E. coli BL21 Codon (+) RIL transformiert wurden (siehe auch Abb. 2/3).

Verglichen wurden die Aktivitäten der Nitrilhydratase aus R. erythropolis 870-AN019 in den E. coli-Stämmen BL21 und BL21 codon plus RIL (siehe oben). Mit dem oben beschriebenen Expressionssystem wurden Aktivitäten von ca. 1750 U/g BTM mit E. coli BL21 erreicht und 2750 U/g BTM mit mit E. coli BL21 codon (+) (bezogen auf Benzonitril als Substrat). Dies bedeutet eine Steigerung gegenüber den Ein-Vektor-Expressionssystemen um den Faktor 5,3 bis 8,3.

50% des rekombinanten Proteins in der Zelle lagen hier allerdings als sogenannte "inclusion bodies" vor. Zur weiteren Verbesserung der Aktivitäten der Nitrilhydratasen

15

20

30

wurden Parameter wie IPTG-Konzentration, Temperatur während der heterologen Expression und Zusatz von Additiven ins Medium untersucht. Die Verminderung der IPTG-Konzentration hatte keinen Einfluss auf die Löslichkeit der rekombinanten Nitrilhydratasen. Daher wurden alle weiteren Experimente mit 1 mM IPTG durchgeführt. Den größten Effekt auf die Verminderung der "inclusion body"-Bildung hatte die Absenkung der Inkubationstemperatur.

Durch die Reduktion der Temperatur bis auf 20°C nach

Induktion der heterologen Expression konnte ein großer Anteil des Enzyms in die lösliche Fraktion überführt werden. Ein zusätzlichen positiven Effekt hatte die Zugabe von 3% Ethanol zum Medium. Unter diesen Bedingungen (1 mM IPTG, 20°C Inkubationstemperatur, 3% Ethanolzusatz) konnte eine Aktivität von 6480 U/g BTM erreicht werden.

Eine weitere Erhöhung der Aktivität wurde durch die Nutzung eines synthetischen Gens der Nitrilhydratase 870-AN019 erreicht. Hergestellt wurden die entsprechenden Nukleinsäuresequenzen kodierend für die α - und β - Untereinheiten unter Berücksichtigung der "codon usage" von

E. coli und unter Beibehaltung der Aminosäureabfolge der beiden Gene. Vorteil dieser synthetischen Gene sollte sein, dass die DNA-Sequenz optimal für eine Expression in E. coli angepasst ist und somit auch die Nutzung des sogenannten "codon plus" Stammes entfallen kann. Die Untereinheiten wurden dann wie schon zuvor beschrieben getrennt in pET-Vektoren kloniert und unter den oben optimierten Bedingungen in E. coli BL21 exprimiert. Mit diesem Stamm wurde eine Aktivität von ca. 10.000 U/g BTM erreicht. Somit ist er mehr als doppelt so aktiv wie der Wildtyp R. erythropolis 870-AN019, der eine Aktivität von ca. 4760 U/g BTM mit Benzonitril als Substrat besitzt. Eine Zusammenfassung über die erreichten Aktivitäten gibt die Tabelle 2.

Die synthetischen Nitrilhydratase macht in dem *E. coli-*Wirt ca. 50% des gesamten gebildeten Zellproteins aus, wobei ca. 20% als gelöstes rekombinantes Protein vorliegen.

Tabelle 2: Übersicht über die gemessenen Nitrilhydratase-Aktivitäten mit den unterschiedlichen Expressionssystemen.

Expressions-	Expressionsbedingungen Nitrilhydratase aus 870-		
system	AN019		
(Wirt & Promotor)	Native	Native	Synthetische
	Untereinheiten,	Untereinheiten,	Untereinheiten
	Standardmedium,	Medium + 3%	Medium + 3%
	26°C	EtOH, 20°C	EtOH, 20°C
E. coli BL21 (DE3) & T7 Promoter	1750 U/g BTM		10080 U/g BTM
E. coli BL21 (DE3) codon usage & T7 Promoter	2750 U/g BTM	6480 U/g BTM	

Abschließend wurde die Expression von cobaltabhängigen Nitrilhydratasen im Zwei-Vektor-Expressionssystem untersucht. Die cobaltabhängige Nitrilhydratase aus Rhodococcus rhodochrous M8 (Pogorelva TE, Ryabchenko LE, Sunzov NI, Yanenko AS (1996) Cobalt-dependent transcription of nitrile hydratase gene in Rhodococcus rhodochrous M8. FEMS Microbiology Letters 144: 191-195) wurde kloniert und mit dem oben beschriebenen erfindungsgemäßen Expressionssystem hergestellt.

Die Sequenz der Nitrilhydratase (Seq. ID No. 13 und 15) ist bei GenBank (DNA Datenbank von DDBJ, EMBL und NCBI) unter der Kennung X86737 hinterlegt und frei zugänglich. Zur Klonierung der einzelnen Untereinheiten und des p12K-Proteins aus R. rhodochrous M8 (Seq. ID No. 31) wurden folgende Primer benutzt:

Primer	Primersequenz	Amlifizierte Untereinheiten	Seq. Nr.
M8-α-for-Nde	5'-AGG AAT ACG CAT ATG AGC GAGC ACG TC	α	25
M8-α-rev-Bam	5'-GTG TGG ATC CAC TCA TAC GAT CAC TTC CTG	α	26
M8-β-for-Nde	5'-AGG AAT GAG CAT ATG GAT GGT ATC CAC GAC A	β	27
M8-β-rev-Bam	5'-ATC GGG ATC CTT TCA CGC AGA GAT CAG GTA CGG	β	28
M8-p12K-for- Bam	5'-CTC AGG ATC CAA GGA GTG ATC GTA TGA GTG AAG AC	p12K	29
M8-p12K-rev- Sac	5'-ACA GGA GCT CTC AGT CGA TGA TGG CC:	p12K	30

Für die α- und β-Untereinheit wurden Primer von der Nitrilhydratasesequenz aus M8 abgeleitet, welche mit
10 Schnittstellen für die Restriktionsendonukleasen NdeI (N-Terminal) bzw: BamHI (C-Terminal) versehen waren. Die Primer für p12K wurden von der Sequenz von R. rhodochrous J1 abgeleitet und enthielten die Schnittstellen für BamHI (N-terminal) bzw. SacI (C-terminal). Die β-Untereinheit (Seq.
15 ID No. 15) wurde in pET26b, die α-Untereinheit (Seq. ID. No. 13) und p12K (Seq. ID No. 31) in pET22b kloniert. Es

resultierten folgende Plasmide, welche in *E. coli* BL21 Codon(+) RIL transformiert wurden (Abb. 4/5).

Im Gegensatz zur Expression von eisenabhängigen Nitrilhydratasen in *E. coli*, musste im Fall der cobaltabhängigen Nitrilhydratase die Zellen über mehrere Generationen vorkultiviert werden, um diese an das toxische Cobalt (0,5 mM eingesetzt) zu gewöhnen.

In Tabelle 3 sind die Aktivitäten der rekombinanten cobaltabhängigen (R. rhodochrous M8) und eisenabhängigen (R. erythropoli 870-AN019) Nitrilhydratasen im Vergleich dargestellt.

Tabelle 3: Gemessene Aktivitäten der cobalt- und eisenabhängigen Nitrilhydratase nach erfindungsgemäßer Expression mit Acrylamid als Substrat.

Rekombinante Nitrilhydratase aus	Aktivität (U/mg); Substrat Acrylamid
R. rhodochrous M8 (Co)	160
R. erythropolis 870-AN019 (Fe) (synthetisch s.o.)	250

15

20

25

5

10

Damit konnte gezeigt werden, dass das erfindungsgemäße Expressionssystem sowohl für cobalt- als auch für eisenabhängige Nitrilhydratasen im vorteilhafter Art und Weise zu gebrauchen ist. Es können insbesondere darmatische Aktivitätssteigerungen erzielt werden, wenn die Expressionssysteme und/oder Sequenzen entsprechend optimiert werden. Durch die erfolgreiche getrennte Expression der Untereinheiten der Nitrilhydratase ist es darüber hinaus möglich neue Kombinationen von Untereinheiten verschiedener Nitrilhydratasen zu untersuchen, was die Diversifikation der

Nitrilhydratasen und damit deren Eigenschaften steigern hilft.Dies war so aus dem Stand der Technik zum Zeitpunkt der Erfindung in naheliegender Weise nicht ableitbar.

Unter optisch angereicherten (enantiomerenangereicherten, enantiomer angereicherten) Verbindungen wird im Rahmen der Erfindung das Vorliegen einer optischen Antipode im Gemisch mit der anderen in >50 mol-% verstanden.

Unter dem Begriff Nukleinsäuresequenzen werden alle Arten von einzelsträngiger oder doppelsträngiger DNA als auch RNA oder Gemische derselben subsumiert.

Die Organismen 870-AN019, ENG-AN033 und 871-AN042 wurden bei der Deutsche Sammlung für Mikroorgansimen und Zellkulturen, Mascheroder Weg 4, 38124 Braunschweig gemäß dem Budapester Vertrag durch die Anmelderin am 22.10.2002 hinterlegt.

Der organismus Rhodococcus rodochrous M8 ist in der All-Russian National Collection of Microorganisms unter der Nummer VKPM-S-926 hinterlegt. Die entsprechenden Sequenzen können der Gendatenbank (s.o.) entnommen werden.

Der terminus Expressionssystem wird erfindungsgemäß so
verstanden, dass es sich dabei um biologisches Material auf
Nukleinsäurebasis handelt, welches im Stande ist, in
Organismen die Expression der ihm innewohnenden
Nukleinsäuresequenzen kodierend für die NitrilhydrataseUnterheiten zu bewerkstelligen. Insbesondere sind dies
Plasmide und Vektoren.

Im Rahmen der Erfindung werden die Ausdrücke Protein und Polypeptid synonym benutzt.

Beschreibung der Abbildungen:

Abbildung 1: Die Vektorkarte zeigt die allgemeine Anordnung der α - und β -Untereinheiten der Nitrilhydratase bzw. des Orf's p47K im Plasmid pUC18 in einem Expressionssystem mit einem Vektor.

Abbildung 2/3: Die Vektorkarten zeigen die Anordnung der α - und β -Untereinheiten der Nitrilhydratase bzw. des Orf's p47K aus R. erythropolis 870-AN019 in Plasmiden der pET-Reihe in einem Expressionssystem mit zwei Vektoren.

Abbildung 4/5: Die Vektorkarten zeigen die Anordnung der α - und β -Untereinheiten bzw. des Orf's p12K aus R. rhodochrous M8 in Plasmiden der pET-Reihe in einem Expressionssystem mit zwei Vektoren.

Experimenteller Teil:

Kultivierung von Mikroorganismen

Die Kultivierung der E. coli Zellen und deren Aufbewahrung erfolgte nach Sambrock et al. (Sambrook, J.; Fritsch, E. F. und Maniatis, T. (1989), Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York).

Zur Kultivierung der Rhodococcen wurde ein

10 Chelatmineralmedium (CMM) nach Heald et al. 2001, (Heald S. C., P. F. B. Brandao, R. Hardicre and A. T. Bull, 2001: Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains. Antonie van Leeuwenhoek 80, 169-183) eingesetzt. Das CM-Medium wird mit 5 g/l

15 Glucose supplementiert. Für Stämme mit cobaltabhängigen Enzymen wird 2,4 mg/l CoCl₂* 6 H₂O, für Stämme mit eisenabhängigen Enzymen 50 mg/l FeSO₄* 7 H₂O eingesetzt.

Die aus der Kultur entnommene Probe wurden mit entsprechend der Kultivierung eingesetztem Kaliumphosphatpuffer (6 ml/l einer 200 g/l K₂HPO₄-Lösung und 4 ml/l einer 157,5 g/l KH₂PO₄-Lösung) so verdünnt, dass der Meßbereich zwischen 0,05 und 0,3 lag. Als Referenz diente der Puffer. Gemessen wurde bei 600 nm.

PCR

20

30

Zur Amplifikation von DNA-Fragmenten aus Rhodococcen wurden pro 50 μl Ansatz folgende Komponenten zusammenpipettiert:

100 ng Chromosomale DNA

1 µl dNTP -Mix (alle 10 mM)

5 µl Puffer

2 µl DMSO

0,5 µl Herculase (2,5 U)

ad 50 µl H₂O

Der Thermocycler wurde folgendermaßen programmiert:

- A. 3 min 98 °C
- B. 40 sec 98°C
- C. 40 sec X°C
- 5 D. Y min 72°C
 - E. 5 min 72°C
 - F. 4°C

Die Schritte B, C, D wurden 30 mal wiederholt. Die Annealingtemperatur X (C)errechnet sich aus der Schmelztemperatur der verwendeten Primer und die Inkubationsdauer Y (D) aus der Länge des zu amplifizierenden Genes (1 kb DNA gleich 1 Minute-Regel).

Verdau mit Restriktionsenzymen

Die zu schneidende DNA wird mit 5 U Restriktionsenzym und den zugehörigen Puffer versehen und wenn nicht anders erforderlich bei 37°C inkubiert. Der Verdau chromosomaler DNA erfolgt mit 10 U Enzym. Die Inkubationsdauer beträgt 1,5°-2,5 Stunden.

20

25

10

Behandlung mit alkalischer Phosphatase

Um zu verhindern, dass Vektoren, welche nur mit einer Restriktionsendonuklease geschnitten wurden, mit sich selbst religieren, wird mit Hilfe der alkalischen Phosphatase der am 5'-Ende überhängende Phosphatrest entfernt. Nur durch Insertion eines DNA-Fragments kann wieder zirkuläre DNA entstehen.

Der mit einer Restriktionsendonuklease geschnittene Vektor wird 15 min bei 65°C inkubiert, um die

Restriktionsendonuklease abzustoppen. Anschließend wird der Dephosphorylierungspuffer zugegeben und mit 1 U alkalischer

Phosphatase aus Schrimps wird 10 min bei 37°C inkubiert. Das Enzym wird durch eine anschließende Gelelektrophorese von der Vektor-DNA abgetrennt.

5 Behandlung mit T4-DNA-Ligase

Für die Ligation werden Vektor und Insert im Verhältnis 1:3 eingesetzt. Das Volumen wird möglichst gering gewählt (7-20 µl) Der Ansatz wird in Ligationspuffer und in Anwesenheit von 1 U Ligase bei 16 °C über Nacht inkubiert.

10 Transformation

15

20

25

30

Zum Ligationsansatz werden 100 µl kompetente Zellen pipettiert und der Ansatz durch wiederholtes Aufziehen der Pipette gemischt. Nach 30 min Inkubation auf Eis wird ein Hitzeschockschritt bei 42 °C für 45 sec durchgeführt und wieder 2 min auf Eis inkubiert. Es werden 120-900 µl SOC-Medium zugegeben und der Ansatz wird 45 min bei 37°C unter Agitation inkubiert. Anschließend wird der Ansatz ausplattiert und bei 37°C über Nacht inkubiert.

Expression der verschiedenen Nitrilhydratasen (Tabelle 1) im Ein-Vektor-Expressionssystem

Folgendes Protokoll wurde zur Expression verwendet: 50 ml LB_{amp100}-Medium mit 2 mM Fe-Citrat wurde 1%ig mit einer Übernachtkultur angeimpft. Nach Erreichen einer OD₆₀₀ von ca. 0,5 wurde mit 1 mM IPTG (Isopropylthiogalactosid) die Expression der Nitrilhydratasen in den verschiedenen E. colis induziert. Die Ernte der Zellen erfolgte ca. 24 Stunden nach Induktion. Die Expression der Nitrilhydratasen in Stamm DH5 α erfolgte konstitutiv, da dieser Stamm den lac-Repressor nicht überexprimiert. Dadurch entfällt hier der Induktionsschritt mit IPTG.

Aktivitätsnachweis mit Benzonitril als Substrat: Die Biotransformation wurde im 10 ml Maßstab durchgeführt mit ca. 100 mg Biofeuchtmasse (OD $_{600}$ = 5) im Kaliumphosphatpuffer (100 mM) pH7,0. Die Inkubation erfolgte bei 30°C und die Substratkonzentration betrug ca. 5 mM Benzonitril. Die Probennahme erfolgte alle 5 – 10 min über einen Zeitraum von maximal 1 Stunde. Das Probenvolumen betrug 100 μ l und die Reaktion wurde durch Zugabe von 10 μ l 50%ige Phosphorsäure gestoppt.

10 Die Konzentrationen von Benzonitril und Benzamid wurden dann mittels HPLC bestimmt:

Säule: RP18-Säule Phenomenex Hypersil ODS 5µ (mit Vorsäule)

Fließmittel: 10 mM K2HPO4, (pH 2.3)

Flußrate: 1 ml / min

15 Wellenlänge: 202 nm

Injektionsvolumen: 20 µl

Dauer HPLC Lauf: 12-15 min

Die Berechnung der Aktivität erfolgte über die Kalkulation von einem µmol Umsatz nach einer Minute, was einem U (Unit entspricht). Spezifische Aktivitäten werden in U pro g BTM oder mg Protein angegeben.

Expression der Nitrilhydratase aus *R. erythropolis* 870-AN019 im Zwei-Vektor-Expressionssystem

Die Expression der Konstrukte mit T7-Promotoren erfolgte nach folgendem Protokoll:

50 ml LB $_{amp100}$ -Medium mit 2 mM Fe-Citrat und jeweils 50 μ g/ml Kanamycin & Ampicillin wurde 1%ig mit einer Übernachtkultur angeimpft. Nach Erreichen einer OD $_{600}$ von ca. 0,5 wurde mit 1 mM IPTG (Isopropylthiogalactosid) die Expression der

Nitrilhydratasen induziert. Die Ernte der Zellen erfolgte ca. 24 Stunden nach Induktion bei 26°C.

Expression der Nitrilhydratase aus *R. rhodochrous* M8 im Zwei-Vektor-Expressionssystem

Die Expression der Konstrukte mit T7-Promotoren erfolgte nach folgendem Protokoll:

50 ml LB_{amp100}-Medium mit 0,5 mM CoCl₂ und jeweils 50 μg/ml Kanamycin & Ampicillin wurde 1%ig mit einer Übernachtkultur angeimpft. Nach Erreichen einer OD₆₀₀ von ca. 0,5 wurde mit 1 mM IPTG (Isopropylthiogalactosid) die Expression der NHasen induziert. Das Medium wurde zusätzlich mit 3% (w/v) Ethanol versetzt. Die Ernte der Zellen erfolgte ca. 24 Stunden nach Induktion bei 26°C.

10 Aktivitätsbestimmung

Die Biotransformation zur Aktivitätsbestimmung mit den rekombinanten Nitrilhydratasen R. rhodochrous M8 und R. erythropolis 870-AN019 in E. coli erfolgte in kleinem Maßstab. Die Biotransformation wird in einem 1,5 ml

Eppendorfcup bei 20°C durchgeführt. Im
Biotransformationsansatz wurde eine OD von 0,4 eingesetzt.
500 μl einer 4 % Acrylnitril-Lösung in 10 mM
Kaliumphosphatpuffer, pH 7,5 sowie der Puffer werden bei 20
°C vorinkubiert. Die Reaktion wird durch Zugabe der Zellen
20 gestartet. Dabei beträgt die Summe des Puffer- und
Zellvolumens 500 μl. Sofort nach Mischung des Ansatzes
werden 100 μl entnommen und zu 1,5 μl vorgelegter
konzentrierter HCl pipettiert. Nach Mischung wird die Probe
2 min bei 13000 rpm in der Eppendorf-Zentrifuge
abzentrifugiert und 70 μl des Überstands zur Analyse mittels

abzentrifugiert und 70 µl des Überstands zur Analyse mittels HPLC aufbewahrt bei – 20°C. Die Probennahme erfolgte alle 5 – 10 min über einen Zeitraum von maximal 2 Stunden.

Analyse von Acrylnitril, Acrylamid und Acrylsäure

Mit der nachfolgend beschriebenen HPLC Methode ist es möglich Acrylnitril, Acrylamid und Acrylsäure in kurzer Zeit zu analysieren und die Konzentartion dieser Substanzen zu bestimmen:

Säule: Synergi 4µ Hydro-RP mit Vorsäule

Fließmittel: 0,1 % H₃PO₄ in 10 % Acetonitril, 90 % H₂O

Flußrate: 0,5 ml / min Wellenlänge: 202 nm

10 Injektionsvolumen: 5 μl

Dauer HPLC Lauf: 10 min, letzter Peak nach 5,5 min

Die Berechnung der Aktivität erfolgte über die Kalkulation von einem μ mol Umsatz nach einer Minute, was einem U (Unit entspricht). Spezifische Aktivitäten werden in U pro g BTM

15 oder mg Protein angegeben.

10

20

25

Patentansprüche:

- 1. Expressionssystem für die gleichzeitige Expression der Nukleinsäuresequenzen kodierend für die verschiedenen Untereinheiten einer Nitrilhydratase, dadurch gekennzeichnet, dass das Expressionssystem mindestens je ein Plasmid mit mindestens einer Nukleinsäuresequenz kodierend für die jeweilige Untereinheit aufweist.
- 2. Expressionssystem nach Anspruch 1, dadurch gekennzeichnet, dass dieses in E. coli als Wirt vorliegt.
- Expressionssystem nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Expression der Nukleinsäuresequenzen kodierend für die Untereinheiten unter der Kontrolle von jeweils dem gleichen Promotor steht.
 - 4. Expressionssystem nach Anspruch 3, dadurch gekennzeichnet, dass der Promotor ein T7-Promotor ist.
 - 5. Expressionssystem nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass pro eingesetztem Plasmidsatz mindestens eine Nukleinsäuresequenz kodierend für das p47K- oder p12K-Protein vorhanden ist.
- 6. Expressionssystem nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Nukleinsäuresequenzen kodierend für die Untereinheiten der Nitrilhydratasen aus Rhodococcus-Stämmen stammen.

10

20

- 7. Expressionssystem nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man die Nukleinsäuresequenzen kodierend für die Untereinheiten der Nitrilhydratasen entsprechend der "codon usage" von E. coli modifiziert einsetzt.
 - 8. Expressionssystem nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man als Plasmide solche der pET-Reihe benutzt.
 - 9. Verfahren zur Herstellung von Nitrilhydratasen unter Verwendung eines Expressionssystems gemäß einem oder mehreren der Ansprüche 1 bis 8.
- 10. Wirtsorganismus aufweisend ein Expressionssystem gemäß einem oder mehreren der Ansprüche 1 bis 8.
 - 11. Verfahren zur Herstellung von, ggf.
 enantiomerenangereicherten, (Amino-)Carbonsäuren oder
 (Amino-)Carbonsäureäureamiden unter Verwendung eines
 Wirtsorganismus gemäß einem oder mehreren der Ansprüche
 1 bis 8.

Zusammenfassung:

Die vorliegende Erfindung bezieht sich auf ein neues Expressionssystem für Nitrilhydratase. Die aus Untereinheiten aufgebauten Nitrilhydratasen werden dabei in der Art und Weise gebildet, dass die jeweilige Untereinheiten auf unterschiedlichen Plasmiden beheimatet sind und gleichzeitig in *E. coli* exprimiert werden.

Abb. 1

Abb. 2

Abb. 3

Abb. 4

Abb. 5

SEQUENCE LISTING

	SEQU	ENCE	E LIS	STING	3												
	<110	> [)egus	ssa A	\G												
5	<120	> E	Expre	essio	n vo	n Ni	tril	.hydr	catas	sen i	.m Zv	/ei-V	ekto	r-Ex	pres	ssion	ssystem
	<130	> 0	4006	55 AM	1												
10	<160	> 3	34														
1 0	<170	> F	Paten	ıtIn	vers	sion	3.1										
15	<210 <211 <212 <213	> 6 > I	524	ococo	cus e	eryth	ıropo	olis									
	<220 <221		CDS														1
20	<222 <223	> ((624	L)							•					
25	<400 atg Met 1	tca	gta														48
30	gcg Ala																96
35	aag Lys																144
33	gag Glu		gac Asp														192
40			gac Asp														240
45	gcg Ala		gcc Ala														288
50	gca Ala															ctg Leu	336
55			tgc Cys 115														384
J J	aag Lys	agt Ser 130	ttc Phe	gaa Glu	tac Tyr	cgt Arg	gcg Ala 135	cga Arg	gtg Val	gtg Val	cgt Arg	gag Glu 140	cca Pro	cgg Arg	aag Lys	gtt Val	432

											gac Asp 155					
5		-									gtt Val					
10											ctt Leu					
15	_		_	_							cag Gln					tga
20	<210 <211 <212 <213	L> 2 2> E	207 PRT	ococo	cus e	eryth	ıropo	olis								
	<400)> 2	2													
25	Met 1	Ser	Val	Thr	Ile 5	Asp	His	Thr	Thr	Glu 10	Asn	Ala	Ala	Pro	Ala 15	Gln
30	Ala	Pro	Val	Ser 20	Asp	Arg	Ala	Trp	Ala 25	Leu	Phe	Arg	Ala	Leu 30	Asp	Gly
35	Lys	Gly	Leu 35	Val	Pro	Asp	Gly	Tyr 40	Val	Glu	Gly	Trp	Lys 45	Lys	Thr	Phe
	Glu	Glu 50	Asp	Phe	Ser	Pro	Arg 55	Arg	Gly	Ala	Glu	Leu 60	Val	Ala	Arg	Ala
40	Trp 65	Thr	Asp	Pro	Asp	Phe 70	Arg	Gln	Leu	Leu	Leu 75	Thr	Asp	Gly	Thr	Ala 80
45	Ala	Val	Ala	Gln	Tyr 85	Gly.	Tyr	Leu	Gly	Pro 90	Gln	Gly	Glu	Tyr	Ile 95	Val
50	Ala	Val	Glu	Asp 100	Thr	Pro	Thr	Leu	Lys 105	Asn	Val	Ile	Val	Cys 110	Ser	Leu
55	Cys	Ser	Cys 115	Thr	Ala	Trp	Pro	Ile 120	Leu	Gly	Leu	Pro	Pro 125	Thr	Trp	Tyr
	Lys	Ser 130	Phe	Glu	Tyr	Arg	Ala 135	Arg	Val	Val	Arg	Glu 140	Pro	Arg	Lys	Val

	Leu 145	Phe	Glu	Met	Gly	Thr 150	Glu	Ile	Ala	Ser	Asp 155	Val	Glu	Ile	Arg	Val 160	
5	Туг	Asp	Thr	Thr	Ala 165	Glu	Thr	Arg	Tyr	Met 170	Val	Leu	Pro	Gln	Arg 175	Pro	
10	Ala	Gly	Thr	Glu 180	Gly	Trp	Ser	Gln	Glu 185	Gln	Leu	Gln	Glu	Ile 190	Val	Thr	
15	Lys	Asp	Cys 195	Leu	Ile	Gly	Val	Ala 200	Val	Pro	Gln	Val	Pro 205	Thr	Val		í
20	<210 <211 <212 <213	2> I	3 539 DNA Rhodo	ococo	cus e	erytl	ıropo	olis									
25	<220 <221 <222 <223	L> (2>	CDS (1)	. (639))												ï
30	atg	-	3 gga Gly														48
35			acc Thr														96
40	_		ctg Leu 35														144
4 0	_		agc Ser	_	_	_	_			_	_	_		_			192
45	_		tac Tyr	-	_		_						-				240
50			ctg Leu											_		_	288
55			gca Ala			_			-					_			336
			ccg Pro 115														384

5	Va	<u></u>	ge gi gg Va 30	el Ar	g As	ic ga	.u 17	ac g yr V 35	tt c al P	cg ro	GJ ^A aaa	cat His	t ati s Ile 14(e Ar	a at g Me	ig (et]	cct Pro	gcg Ala	432
	ta Ty 14	T C7	yc cg ys Ar	g Gl	a cg y Ar	a gt g Va 15	.L G.	ga ao ly Tl	cc a nr I	tc le	tct Ser	cat His	a Arc	g act	t ac r Th	ec g ir (gag Glu	aag Lys 160	480
10	tg Tr	g cc p Pr	g tt o Ph	t cc e Pr	c ga o As 16	δ AT	a at a Il	c gg .e Gl	JC C	ls (ggg Gly 170	cgc Arg	aac Asn	gac As <u>r</u>	c go o Al	a G	ggc Sly .75	gaa Glu	528
15	ga. Gl	a cc u Pr	g ac o Th	g tad r Ty: 180	r HT:	c gto	g aa 1 Ly	g tt s Ph	ie As	ac g sp <i>1</i> 35	gcc Ala	gag Glu	gaa Glu	ttg Leu	y tt Ph 19	e G	gt 1y	agc Ser	576
20	ga Asj	c ac o Th	c ga r Asj 19	c ggd 5	y Gly	c ago / Sei	c gt r Va	c gt 1 Va 20	I Va	cc g al A	gac Asp	ctt Leu	ttc Phe	gag Glu 205	Gl	t t y T	ac yr	ctc Leu	624
25			o Ala	g gcc a Ala		1.													639
30	<21 <21 <21 <21	.1> .2>	4 212 PRT Rhod	lococ	cus	eryt	hrop	polis	7									*	ī
	<40	0>	4																
35	Met 1	Asp	Gly	Val	His 5	Asp	Leu	ı Ala	a Gl	y Va 1		Gln	Gly	Phe	Gly	15		/al	
40	Pro	His	Thr	Val 20	Asn	Ala	Asp) Ile	e Gly 25	y Pi	ro 1	rhr	Phe	His	Ala 30	Gl	.u 1	rp.	ı
	Glu	His	Leu 35	Pro	Tyr	Ser	Leu	Met 40	Ph€	∋ A]	la G	3ly		Ala 45	Glu	Le	u G	Sly	
45	Ala	Phe 50	Ser	Val	Asp	Glu	Val 55	Arg	Туг	: Va	al V		Glu :	Arg	Met	Ģl	u P	ro	
50	Arg 65	His	Tyr	Met	Met	Thr 70	Pro	Tyr	Tyr	Gl		rg 5	Tyr V	Val	Ile	Gl;	y V 8		1
55 · .	Ala	Thr	Leu	Met	Val 85	Glu	Lys	Gly	Ile	Le 90		hr (Gln (Slu (Glu	Let 95	ı G	lu	
·	Ser	Leu	Ala	Gly 100	${ t Gl}_{f Y}$	Pro	Phe	Pro	Leu 105	Se	r A:	rg E	Pro S		Glu L10	Sei	G:	lu	

5	115 120 The Glu Ile Gly Gln Arg	
	Val Arg Val Arg Asp Glu Tyr Val Pro Gly His Ile Arg Met Pro Ala 130 135 140	
10	Tyr Cys Arg Gly Arg Val Gly Thr Ile Ser His Arg Thr Thr Glu Lys 145 150 155 160	
15	Trp Pro Phe Pro Asp Ala Ile Gly His Gly Arg Asn Asp Ala Gly Glu 165 170 175	
20	Glu Pro Thr Tyr His Val Lys Phe Asp Ala Glu Glu Leu Phe Gly Ser 180 185 190	
25	Asp Thr Asp Gly Gly Ser Val Val Val Asp Leu Phe Glu Gly Tyr Leu 195 > 200 205	
	Glu Pro Ala Ala 210	
30	<210> 5 <211> 624 <212> DNA	
35	<213> Rhodococcus erythropolis <220>	
40	<221> CDS <222> (1)(624) <223>	
	<pre><400> 5 atg tca gta acg atc gac cac aca acg gag aac gcc gca ccg gcc cag Met Ser Val Thr Ile Asp His Thr Thr Glu Asn Ala Ala Pro Ala Gln 1</pre>	4
45	gcg ccg gtc tcc gat cgc gcg tgg gcc ctg ttc cgc gca ctc gac ggt Ala Pro Val Ser Asp Arg Ala Trp Ala Leu Phe Arg Ala Leu Asp Gly 20 25 30	9
50	aag gga ttg gta ccc gac ggt tac gtc gaa gga tgg aag aaa acc ttc Lys Gly Leu Val Pro Asp Gly Tyr Val Glu Gly Trp Lys Lys Thr Phe 35 40 45	14
55	gag gag gac ttc agt cca agg cgc gga gcg gaa ttg gtc gcg cgg gcg Glu Glu Asp Phe Ser Pro Arg Arg Gly Ala Glu Leu Val Ala Arg Ala 50	19:

	tgg Trp 65	acc Thr	gac Asp	ccc Pro	gag Glu	ttc Phe 70	cgg Arg	cag Gln	ttg Leu	ctt Leu	ctc Leu 75	acc Thr	gac Asp	ggt Gly	acc Thr	gcc Ala 80	240
5	gcg Ala	gtt Val	gcc Ala	cag Gln	tac Tyr 85	gga Gly	tac Tyr	ctg Leu	Gly	ccc Pro 90	cag Gln	Gly	gag Glu	tac Tyr	atc Ile 95	gtg Val	288
10	gca Ala	gtc Val	gaa Glu	gac Asp 100	acc Thr	ccg Pro	acc Thr	ctc Leu	aag Lys 105	aac Asn	gtg Val	atc Ile	gtg Val	tgc Cys 110	tcg Ser	ctg Leu	336
15	tgt Cys	tca Ser	tgc Cys 115	acc Thr	gcg Ala	tgg Trp	ccc Pro	att Ile 120	ctc Leu	ggc Gly	ctg Leu	ccc Pro	cct Pro 125	acc Thr	tgg Trp	tac Tyr	384
20	aag Lys	agt Ser 130	ttc Phe	gaa Glu	tac Tyr	cgt Arg	gcg Ala 135	cga Arg	gtg Val	gtg Val	cgt Arg	gag Glu 140	cca Pro	cgg Arg	aag Lys	gtt Val	432
20	ctc Leu 145	tcc Ser	gag Glu	atg Met	gga Gly	acc Thr 150	gag Glu	atc Ile	gcg Ala	tcg Ser	gac Asp 155	gtc Val	gag Glu	atc Ile	cgc Arg	gtc Val 160	480
25		gac Asp															528
30		ggc															576
35		gac Asp														tga	624
40	<210 <211 <212 <213	.> 2 !> P	07 RT	cocc	us e	ryth	ıropo	lis									
	<400)> 6															
45	Met 1	Ser	Val	Thr	Ile 5	Asp	His	Thr	Thr	Glu 10	Asn	Ala	Ala	Pro	Ala 15	Gln	1
50	Ala	Pro		Ser 20	Asp	Arg	Ala		Ala 25	Leu	Phe	Arg	Ala	Leu 30	Asp	Gly	
55	Lys		Leu 35	Val	Pro	Asp		Tyr 40	Val	Glu	Gly		Lys 45	Lys	Thr	Phe	
	Glu	Glu 50	Asp	Phe	Ser		Arg 55	Arg	Gly	Ala		Leu 60	Val	Ala	Arg	Ala	

		Trp 65	Thr	Asp	Pro	Glu	Phe 70	Arg	Gln	Leu	Leu	Leu 75	Thr	Asp	Gly	Thr	Ala 80	
	5	Ala	Val	Ala	Gln	Tyr 85	Gly	Tyr	Leu	Gly	Pro 90	Gln	Gly	Glu	Tyr	Ile 95	· Val	
	10	Ala	Val	Glu	Asp 100		Pro	Thr	Leu	Lys 105	Asn	Val	Ile	Val	Cys 110		Leu	
	15	Cys	Ser	Cys 115	Thr	Ala	Trp	Pro	Ile 120		Gly	Leu	Pro	Pro 125	Thr	Trp	Tyr	
)	20	Lys	Ser 130		Glu	Tyr	Arg	Ala 135	Arg	Val	Val	Arg	Glu 140	Pro	Arg	Lys	Val	
		Leu 145	Ser	Glu	Met	Gly	Thr 150	Glu	Ile	Ala	Ser	Asp 155	Val	Glu	Ile	Arg	Val 160	i
	25	Tyr	Asp	Thr	Thr	Ala 165	Glu	Thr	Arg	Тут	Met 170	Val	Leu	Pro	Gln	Arg 175	Pro	
	30	Ala	Gly	Thr	Glu 180	Gly	Trp	Ser	Gln	Glu 185	Gln	Leu	Gln	Glu	Ile 190	Val	Thr	
	35	Lys	Asp	Cys 195	Leu	Ile	Gly	Val	Ala 200	Val	Pro	Gln	Val	Pro 205	Thr	Val		,
	40	<210 <211 <212 <213	L> (2> I	7 539 DNA Rhodo	೦೦೦೦	cus e	eryth	ropo	olis									
	45	<220 <221 <222 <223	> (}>	CDS (1)	(639	ð)												i
	50	atg		gga		cac His 5												48
	55					aac Asn												96
						tac Tyr												144

	5							gtt Val 55										192
	5	_				· · · · · · · · · · · · · · · · · · ·		ccg Pro										240
	10							aag Lys										288
	15	_						ttc Phe										336
	20							gag Glu										384
	0.5	gta Val	cgc Arg 130	gtg Val	cgc Arg	gac Asp	gag Glu	tac Tyr 135	gtt Vål	ccg Pro	GJA aaa	cat His	att Ile 140	cga Arg	atg Met	cct Pro	gcg Ala	432
	25	tac Tyr 145	tgc Cys	cgc Arg	gga Gly	cga Arg	gtg Val 150	gga Gly	acc Thr	atc Ile	tct Ser	cat His 155	cgg Arg	act Thr	acc Thr	gag Glu	aag Lys 160	480
	30							atc Ile										528
	35	gaa Glu	ccg Pro	acg Thr	tac Tyr 180	cac His	gtg Val	aag Lys	ttc Phe	gcc Ala 185	gcc Ala	gag Glu	gaa Glu	ttg Leu	ttc Phe 190	ggt Gly	agc Ser	576
D	40	gac Asp	acc Thr	gac Asp 195	ggc Gly	ggc Gly	agc Ser	gtc Val	gta Val 200	gtc Val	gac Asp	ctt Leu	ttc Phe	gag Glu 205	ggt Gly	tac Tyr	ctc Leu	624
	45			gcg Ala														639
	50		1> : 2> :		0000	cus (eryt]	hropo	olis									
		<40	0>	8														
	55	Met 1	Asp	Gly	Val	His 5	Asp	Leu	Ala	Gly	Val 10	Gln	Gly	Phe	Gly	Lys 15	Val	:
		Pro	His	Thr	Val 20	Asn	Ala	Asp	Ile	Gly 25	Pro	Thr	Phe	His	Ala 30	Glu	Trp	

5	Glu	His	Leu 35	Pro	Tyr	Ser	Leu	Met 40	Phe	Ala	Gly	Val	Ala 45	Glu	Leu	Gly
	Ala	Phe 50	Ser	Va1	Asp	Glu	Val 55	Arg	Tyr	Val	Va1	Glu 60	Arg	Met	Glu	Pro
10	Arg 65	His	Tyr	Met	Met	Thr 70	Pro	Tyr	Tyr	Glu	Arg 75	Tyr	Val	Ile	Gly	Val 80
15	Ala	Thr	Leu	Met	Val 85	Glu	Lys	Gly	Ile	Leu 90	Thr	Gln	Asp	Glu	Leu 95	Glu
20	Ser	Leu	Ala	Gly 100	Gly	Pro	Phe	Pro	Leu 105	Ser	Arg	Pro	Ser	Glu 110	Ser	Glu
25	Gly	Arg	Pro 115	Ala	Pro	Val	Glu	Thr 120	Thr	Thr	Phe	Glu	Ile 125	Gly	Gln	Arg
	Val	Arg 130	Val	Arg	Asp	Glu	Tyr 135	Val	Pro	Gly	His	Ile 140	Arg	Met	Pro	Ala
30	Tyr 145	Cys	Arg	Gly	Arg	Val 150	Gly	Thr	Ile	Ser	His 155	Arg	Thr	Thr	Glu	Ьуs 160
35	Trp	Pro	Phe	Pro	Asp 165	Ala	Ile	Gly	His	Gly 170	Arg	Asn	Asp	Ala	Gly 175	Glu
40	Glu	Pro	Thr	Туг 180	His	Val	Lys	Phe	Ala 185	Ala	Glu	Glu	Leu	Phe 190	Gly	Ser
45	Asp	Thr	Asp 195	Gly	Gly	Ser	Val	Val 200	Val	Asp	Leu	Phe	Glu 205	Gly	Туг	Leu
		Pro 210	Ala	Ala												
50	<21	1> 2> :		odode	cus (ervt	hrone	olis								
55	<22 <22	0> 1> (2>				<u>.</u>		_ ~ ~								

5	atg		gta		atc Ile 5													48
	gcg Ala	ccg Pro	gtc Val	tcc Ser 20	gac Asp	cgg Arg	gcg Ala	tgg Trp	gcc Ala 25	ctg Leu	ttc Phe	cgc Arg	gca Ala	ctc Leu 30	gac Asp	ggt Gly		96
10					ccc Pro												:	144
15	gag Glu	gag Glu 50	gac Asp	ttc Phe	agt Ser	cca Pro	agg Arg 55	cgc Arg	gga Gly	gcg Ala	gaa Glu	ttg Leu 60	gtc Val	gcg Ala	cgg Arg	gcg Ala	•	192
20	tgg Trp 65				gag Glu												:	240
25	gcg Ala	gtt Val	gcc Ala	cag Gln	tac Tyr 85	gga Gly	tat Tyr	ctg Leu	ggc Gly	ccc Pro 90	cag Gln	Gly	gag Glu	tac Tyr	atc Ile 95	gtg Val	:	288
30	gca Ala	gtc Val	gaa Glu	gac Asp 100	acc Thr	ccg Pro	acc Thr	ctc Leu	aag Lys 105	aac Asn	gtg Val	atc Ile	gtg Val	tgc Cys 110	tcg Ser	ttg Leu		336
30	tgt Cys	tca Ser	tgc Cys 115	acc Thr	gcg Ala	tgg Trp	ccc Pro	att Ile 120	ctc Leu	ggc Gly	ctg Leu	ccc Pro	cct Pro 125	acc Thr	tgg Trp	tac Tyr		384
35	aag Lys	agt Ser 130	ttc Phe	gaa Glu	tac Tyr	cgt Arg	gcg Ala 135	cga Arg	gtg Val	gtg Val	cgt Arg	gag Glu 140	cca Pro	cgg Arg	aag Lys	gtt Val		432
40	ctc Leu 145	tcc Ser	gag Glu	atg Met	gga Gly	acc Thr 150	gag Glu	atc Ile	gcg Ala	tcg Ser	gac Asp 155	gtc Val	gag Glu	atc Ile	cgc Arg	gtc Val 160		480
45	tac Tyr	gac Asp	acc Thr	acc Thr	gcc Ala 165	gaa Glu	act Thr	cgc Arg	tac Tyr	atg Met 170	gtt Val	ctc Leu	ccg Pro	caa Gln	cgt Arg 175	ccc Pro		528
ΕO	gca Ala	ggc	acc Thr	gaa Glu 180	ggc Gly	tgg Trp	agc Ser	cag Gln	gaa Glu 185	cag Gln	ctt Leu	caa Gln	gag Glu	atc Ile 190	gtc Val	acc Thr		576
50	aag Lys	gac Asp	tgc Cys 195	ctg Leu	atc Ile	Gly	gtc Val	gca Ala 200	Val	ccg Pro	cag Gln	gtc Val	ccc Pro 205	acc Thr	gtc Val	tga		624
55	<21 <21 <21 <21	1.> 2>	10 207 PRT Rhod	ococ	cus	eryt	hrop	olis										

<400> 10 Met Ser Val Thr Ile Asp His Thr Thr Glu Asn Ala Ala Pro Ala Gln 5 10 15 1 Ala Pro Val Ser Asp Arg Ala Trp Ala Leu Phe Arg Ala Leu Asp Gly 30 20 25 10 Lys Gly Leu Val Pro Asp Gly Tyr Val Glu Gly Trp Lys Lys Thr Phe 40 45 35 15 Glu Glu Asp Phe Ser Pro Arg Arg Gly Ala Glu Leu Val Ala Arg Ala 60 55 50

Trp Thr Asp Pro Glu Phe Arg Gln Leu Leu Leu Thr Asp Gly Thr Ala 65 70 75 80

Ala Val Ala Gln Tyr Gly Tyr Leu Gly Pro Gln Gly Glu Tyr Ile Val 85 90 95

Ala Val Glu Asp Thr Pro Thr Leu Lys Asn Val Ile Val Cys Ser Leu 100 105 110

Cys Ser Cys Thr Ala Trp Pro Ile Leu Gly Leu Pro Pro Thr Trp Tyr 115 120 125

35 Lys Ser Phe Glu Tyr Arg Ala Arg Val Val Arg Glu Pro Arg Lys Val 130 135 140

40 Leu Ser Glu Met Gly Thr Glu Ile Ala Ser Asp Val Glu Ile Arg Val 145 150 155 160

Tyr Asp Thr Thr Ala Glu Thr Arg Tyr Met Val Leu Pro Gln Arg Pro 45 170 175

Ala Gly Thr Glu Gly Trp Ser Gln Glu Gln Leu Gln Glu Ile Val Thr 180 185 190

Lys Asp Cys Leu Ile Gly Val Ala Val Pro Gln Val Pro Thr Val
195 200 205

55
<210> 11
<211> 639
<212> DNA

50

<213> Rhodococcus erythropolis

5	<220 <221 <222 <223	L> (?>	CDS	. (639	Ð)												
10	atg	-	gga									ggc					48
1 E				-								ttc Phe					96
15												gtc Val					144
20												gag Glu 60					192
25	_											tac Tyr					240
30												cag Gln					.288
2 [_		_									cca Pro					336
35	GJA āāā	cgt Arg	ccg Pro 115	gca Ala	ccc Pro	gtc Val	gag Glu	acg Thr 120	acc Thr	acc Thr	ttc Phe	gaa Glu	gtc Val 125	ggt Gly	cag Gln	cga Arg	384
40	gta Val	cgc Arg 130	gtg Val	cgc Arg	gac Asp	gag Glu	tac Tyr 135	gtt Val	ccg Pro	GJA aaa	cat His	att Ile 140	cga Arg	atg Met	cct Pro	gcg Ala	432
45	tac Tyr 145	tgc Cys	cgc Arg	gga Gly	cga Arg	gtg Val 150	gga Gly	acc Thr	atc Ile	tct Ser	cat His 155	cgg Arg	act Thr	acc Thr	gag Glu	aag Lys 160	480
50												aac Asn					528
pan pan					His							gaa Glu					576
55	gac Asp	acc Thr	gac Asp 195	Gly	ggc Gly	agc Ser	gtc Val	gta Val 200	gtc Val	gac Asp	ctt Leu	ttc Phe	gag Glu 205	ggt Gly	tac Tyr	ctc Leu	624

			gcg Ala		tga												639
5	<210 <211		L2 212														
10	<213 <213	3> I	Rhodo	೦೦೦	cus e	eryth	ropo	olis									,
15	Met 1	Asp	Gly	Val	His 5	Asp	Leu	Ala	Gly	Val 10	Gln	Gly	Phe	Gly	Lys 15	Val	1
	Pro	His	Thr	Val 20	Asn	Ala	Asp	Ile	Gly 25	Pro	Thr	Phe	His	Ala 30	Glu	Trp	
20	Glu	His	Leu 35	Pro	Tyr	Ser	Leu	Met 40	Phe	Ala	Gly	Val	Ala 45	Glu	Leu	Gly	
25	Ala	Phe 50	Ser	Val	Asp	Glu	Val 55	Arg	Tyr	Val	Val	Glu 60	Arg	Met	Glu	Pro	i
30	Arg 65	His	Tyr	Met	Met	Thr 70	Pro	Tyr	Tyr	Glu	Arg 75	Tyr	Val	Ile	Gly	Val 80	
35	Ala	Thr	Leu	Met	Val 85	Glu	Lys	Gly	Ile	Leu 90	Thr	Gln	Glu	Glu	Leu 95	Glu	
	Ser	Leu	Ala	Gly 100	Gly	Pro	Phe	Pro	Leu 105	Ser	Arg	Pro	Ser	Glu 110	Ser	Glu	ı
40	Gly	Arg	Pro 115	Ala	Pro	Val	Glu	Thr 120	Thr	Thr	Phe	Glu	Val 125	Gly	Gln	Arg	
45	Val	Arg 130	Val	Arg	Asp	Glu	Tyr 135	Val	Pro	Gly	His	Ile 140	Arg	Met	Pro	Ala	
50	Tyr 145		Arg	Gly	Arg	Val 150	Gly	Thr	Ile	Ser	His 155	Arg	Thr	Thr	Glu	Lys 160	
55	Trp	Pro	Phe	Pro	Asp 165	Ala	Ile	Gly	His	Gly 170	Arg	Asn	Asp	Ala	Gly 175	Glu	
	Glu	Pro	Thr	Tyr 180		Val	Lys	Phe	Asp 185	Ala	Glu	Glu	Leu	Phe 190	Gly	Ser	

	Asp	Thr	Asp 195	Gly	Gly	Ser	Val	Val 200	Val	Asp	Leu	Phe	Glu 205	Gly	Tyr	Leu	1
5	Glu	Pro 210	Ala	Ala													
LO	<210 <211 <212 <213	.> ?> :	13 612 DNA Rhodo	ococo	cus e	eryth	ropc	olis									
L5	<220 <221 <222 <223	2> (2)	CDS (1)	(612	?)												1
2.0		agc	13 gag Glu														48
25			gaa Glu														96
3 0			cga Arg 35														144
35			aag Lys														192
4.0	tgg Trp 65	ctc Leu	gaa Glu	gag Glu	gac Asp	gcg Ala 70	acg Thr	gcc Ala	gcg Ala	atg Met	gcg Ala 75	tca Ser	ttg Leu	ggc Gly	tat Tyr	gcc Ala 80	240,
40	ggt Gly	gag Glu	cag Gln	gca Ala	cac His 85	caa Gln	att Ile	tcg Ser	gcg Ala	gtc Val 90	ttc Phe	aac Asn	gac Asp	tcc Ser	caa Gln 95	acg Thr	288
45			gtg Val														336
50	ctt Leu	ggt Gly	ctc Leu 115	ccg Pro	ccc Pro	gcc Ala	tgg Trp	tac Tyr 120	aag Lys	agc Ser	atg Met	gag Glu	tac Tyr 125	cgg Arg	tcc Ser	cga Arg	384
55			gcg Ala														432
	atc Ile 145	ccc Pro	gat Asp	gag Glu	gtg Val	gag Glu 150	gtc Val	agg Arg	gtt Val	tgg Trp	gac Asp 155	agc Ser	agc Ser	tcc Ser	gaa Glu	atc Ile 160	480

																	•
5	_											_			tgg Trp 175		528
5															ggt Gly		576
10	_			ctc Leu			_	_				tga					612
15	<210 <213 <213 <213	l> 2 2> I	L4 203 PRT Rhodo	ococo	cus e	erytl	ıropo	olis		•							
20	<400)> 3	L 4	•													
	Val 1	Ser	Glu	His	Val 5	Asn	Lys	Tyr	Thr	Glu 10	Tyr	Glu	Ala	Arg	Thr 15	Lys	ì
25	Ala	Ile	Glu	Thr 20	Leu	Leu	Tyr	Glu	Arg 25	Gly	Leu	Ile	Thr	Pro 30	Ala	Ala	
30	Val	Asp	Arg 35	Val	Val	Ser	Tyr	Tyr 40	Glu	Asn	Glu	Ile	Gly 45	Pro	Met	Gly	
35	Gly	Ala 50	Lys	Val	Val	Ala	Lys 55	Ser	Trp	Val	Asp	Pro 60	Glu	Tyr	Arg	Lys	1
40	Trp 65	Leu	Glu	Glu	Asp	Ala 70	Thr	Ala	Ala	Met	Ala 75	Ser	Leu	Gly	Tyr	Ala 80	
	Gly	Glu	Gln	Ala	His 85	Gln	Ile	Ser	Ala	Val 90	Phe	Asn	Asp	Ser	Gln 95	Thr	
45	His	His	Val	Val 100	Val	Cys	Thr	Leu	Cys 105	Ser	Cys	Tyr	Pro	Trp 110	Pro	Val	•
50	Leu	Gly	Leu 115	Pro	Pro	Ala	Trp	Туг 120	Lys	Ser	Met	Glu	Tyr 125	Arg	Ser	Arg	
55	Val	Val 130	Ala	Asp	Pro	Arg	Gly 135	Val	Leu	Lys	Arg	Asp 140	Phe	Gly	Phe	Asp	
	Ile 145	Pro	Asp	Glu	Val	Glu 150	Val	Arg	Val	Trp	Asp 155	Ser	Ser	Ser	Glu	Ile 160	

5	Arg	Tyr	Ile	Val	Ile 165	Pro	Glu	Arg	Pro	Ala 170	Gly	Thr	Asp	Gly	Trp 175	Ser	
	Glu	Asp	Glu	Leu 180	Ala	Lys	Leu	Val	Ser 185	Arg	Asp	Ser	Met	Ile 190	Gly	Val	
10	Ser	Asn	Ala 195	Leu	Thr	Pro	Gln	Glu 200	Val	Ile	Val						1
15		L> 6 2> I		ococo	cus e	erytl	ıropo	olis	٠								
20	<220 <221 <222 <223	L> (CDS (1)	(690))												,
25	atg		ggt							atg Met 10							48
30										cac His							96
35										ctc Leu							144
40										atg Met							192
45										cac His							240
4.J	_			_	_	_	_			acc Thr 90							288
50										tac Tyr							336
55										aag Lys							384

	gag Glu	ccc Pro 130	His	tcc Ser	cta Leu	gca Ala	ctt Leu 135	Pro	gga Gly	gcg Ala	gag Glu	ccg Pro 140	Ser	ttc Phe	tcc Ser	ctc Leu	432
5	ggt Gly 145	Asp	aag Lys	gtc Val	aaa Lys	gtg Val 150	aag Lys	aat Asn	atg Met	aac Asn	ccg Pro 155	Leu	gga Gly	cac His	aca Thr	cgg Arg 160	480
10	tgc Cys	ccg Pro	aaa Lys	tat Tyr	gtg Val 165	cgg Arg	aac Asn	aag Lys	atc Ile	ggg Gly 170	gaa Glu	atc Ile	gtc Val	acc Thr	tcc Ser 175	His	528
15	Gly ggc	tgc Cys	cag Gln	atc Ile 180	tat Tyr	ccc Pro	gag Glu	agc Ser	agc Ser 185	tcc Ser	gcc Ala	ggc	ctc Leu	ggc Gly 190	gac Asp	gat Asp	576
20	ccc Pro	cgc Arg	ccg Pro 195	ctc Leu	tac Tyr	acg Thr	gtc Val	gcg Ala 200	ttt Phe	tcc Ser	gcc Ala	cag Gln	gaa Glu 205	ctg Leu	tgg Trp	ggc	624
										tgc Cys							672
25			atc Ile			tga								·			690
30	<210 <211 <212 <213	L> 2 2> 1	16 229 PRT Rhodo	ococo	cus e	eryth	ropo	olis									
35	<400)> 1	L6														
4.0	Met 1	Asp	Gly	Ile	His 5	Asp	Thr	Gly	Gly	Met 10	Thr	Gly	Tyr	Gly	Pro 15	Val	
40	Pro	Tyr	Gln	Lys 20	Asp	Glu	Pro	Phe	Phe 25	His	Tyr	Glu	Trp	Glu 30	Gly	Arg	
45	Thr	Leu	Ser 35	Ile	Leu	Thr	Trp	Met 40	His	Leu	Lys ·	Gly	Met 45	Ser	Trp	Trp.	,
50	Asp	Lys 50	Ser	Arg	Phe	Phe	Arg 55	Glu	Ser	Met	Gly	Asn 60	Glu	Asn	Tyr	Val	
55	Asn 65	Glu	Ile	Arg	Asn	Ser 70	Tyr	Tyr	Thr	His	Trp 75	Leu	Ser	Ala	Ala	Glu 80	
	Arg	Ile	Leu		Ala 85	Asp	Lys	Ile	Ile	Thr 90	Glu	Glu	Glu	Arg	Lys 95	His	•

	Arg	Val	Gln	Glu 100	Ile	Leu	Glu	Gly	Arg 105	Tyr	Thr	Asp	Arg	Asn 110	Pro	Ser	
5	Arg	Lys	Phe 115	Asp	Pro	Ala	Glu	Ile 120	Glu	Lys	Ala	Ile	Glu 125	Arg	Leu	His	
10	Glu	Pro 130	His	Ser	Leu	Ala	Leu 135	Pro	Gly	Ala	Glu	Pro 140	Ser	Phe	Ser	Leu	
15	Gly 145	Asp	Lys	Val	Lys	Val 150	Lys	Asn	Met	Asn	Pro 155	Leu	Gly	His	Thr	Arg 160	
20	Cys	Pro	Lys	Tyr	Val 165	Arg	Asn	Lys	Ile	Gly 170	Glu	Ile	Val	Thr	Ser 175	His	
	Gly	Cys	Gln	Ile 180	Tyr	Pro	Glu	Ser	Ser 185	Ser	Ala	Gly	Leu	Gly 190	Asp	Asp	
25	Pro	Arg	Pro 195	Leu	Tyr	Thr	Val	Ala 200	Phe	Ser	Ala	Gln	Glu 205	Leu	Trp	Gly	
30		Asp 210	Gly	Asn	Gly	Lys	Asp 215	Val	Val	Суѕ		Asp 220	Leu	Trp	Glu	Pro	
35	Tyr 225	Leu	Ile	Ser	Ala												1
40	<210 <211 <212 <213	> 2 > D	7 2 NA rtif	icia	.1												
45	<220 <223 <400 gccc	> P > 1			ggtg	a ac											22
50	<210: <211: <212: <213:	> 2 > D	1 NA	icia	1												
55	<220: <223:		rime	r													:
	<400: gcat			aatc	agcci	t g											21

5	<210><211><212><213>	19 24 DNA Artificial	
10	<220> <223> <400> agggtg	Primer 19 Jaacc atatgtcagt aacg	24
15	<210><211><212><213>	20 22 DNA Artificial	
20	<220> <223>	Primer	1
25	<400> tgtcgg	20 matcc atcagacggt gg	22
30		23 DNA	-
	<220> <223>	Primer	1
35	<400> agcacca	21 atat ggatggagta cac	23
40	<210><211><212><213>	22 21 DNA Artificial	
45	<220> <223>	Primer	1
	<400> gttggga	22 aatt caggccgcag g	21
50	<210><211><211><212><213>	27	
55	<220> <223>	Primer	1
	<400>	23	

	cgcgga	atcca agaaggagat	atacatg	27
5	<210><211><212><213>	22		1
10	<220> <223>	Primer		
	<400> ccgcaa	24 .cgtt caaacggtct	gg	22
15				
	<210><211><211><212><213>	27		1
20		ALCILICIAL		
	<220> <223>	Primer		
	<400>	25		
25	aggaat	acgc atatgagcga	gcacgtc	27
	<210>			
30	<211><212>			
		Artificial		1
	<220>			
		Primer		
35				
	<400>		tanatta	2.0
	gcgcgg	atcc actcatacga	teaetteetg	30
40	-2105	O 17		
± U	<210><211>			
н	<212>			1
	<213>	Artificial		
45	<220>		•	
		Primer		
	<400>	27		
50		gagc atatggatgg	tatccacgac a	31
	<210>	28		
	<211>			ï
55	<212> <213>	DNA Artificial		•
_			•	
	<220> <223>	Primer		

	<400> atcggga		tttc	acgc	ag a	gato	aggt	a cg	g					33
5	<210><211><212><213>	29 35 DNA Arti	fici	al										i
10	<220> <223>	Prim	er											
15	<400> ctcagga	-	aagg	agtg	at c	gtat	gagt	g aa	gac					35
20	<211>	30 26 DNA Arti	fici	al										1
	<220> <223>	Prim	er											
25	<400> acaggag		tcag	tcga	tg a	tggc	С							26
30	<210><211><212><213>	315 DNA	000C	cus (erytl	hrope	olis							٠
35	<220><221><222><223>		. (31	5)										
40	<400> atg agt Met Ser 1	gaa												48
45	gca ccg Ala Pro								-			 -		96
50	gca acg Ala Thr												:	144
55	gaa tgg Glu Trp 50				_	_	_				_	 _	:	192
<i></i>	aac ggt Asn Gly 65												2	240

				gac Asp		_		_	_		_			_		_	288
5	_		_	atg Met 100		_		_	tga								315
10		L> 1 2> E		ococo	cus e	erytl	ıropo	olis									
15	<400)> 3	32														
	Met 1	Ser	Glu	Asp	Thr 5	Leu	Thr	Asp	Arg	Leu 10	Pro	Ala	Thr	Gly	Thr 15	Ala	1
20	Ala	Pro	Pro	Arg 20	Asp	Asn	Gly	Glu	Leu 25	Val	Phe	Thr	Glu	Pro 30	Trp	Glu	
25	Ala	Thr	Ala 35	Phe	Gly	Val	Ala	Ile 40	Ala	Leu	Ser	Asp	Gln 45	Lys	Ser	Tyr	
3 0	Glu	Trp 50	Glu	Phe	Phe	Arg	Gln 55	Arg	Leu	Ile	His	Ser 60	Ile	Ala	Glu	Ala	1
35	Asn 65	Gly	Cys	Glu	Ala	Tyr 70	Tyr	Glu	Ser	Trp	Thr 75	Lys	Ala	Leu	Glu	Ala 80	
	Ser	Val	Val	Asp	Ser 85	Gly	Leu	Ile	Ser	Glu 90	Asp	Glu	Ile	Arg	Glu 95	Arg	1
40	Met	Glu	Ser	Met 100	Ala	Ile	Ile	Asp									
45 ·	<212	-> 1 ?> I	.200 NA)COC(cus e	erytl	ıropo	olis									
50		.> C ?> ((120	00)									•			,
55	atg		gac	aca Thr													48

		_		_		aca Thr				_	_	_	_	_			96
	5			_		gtg Val				·	•					1	144
	10					gag Glu										3	192
	15	_	_		_	acc Thr		-		•		_				2	240
	20					atc Ile 85	 		_	_	_	•				2	288
	20					tct Ser										3	336
	25	-				atc Ile										3	384 ,
	30					atg Met										4	132
Abrah	35 **					gly ggg											480
	40	. —	-			gat Asp 165									Val	Ţ	528
	± 0					aag Lys										Ç	576
	45	_		_		ctg Leu										6	624
	50	_				cgc Arg										6	672
	55					aag Lys											720
						atc Ile 245											768

	5			cgc Arg					_	_				_	_	_		816		
	J		_	agc Ser 275			_								_			864		
	10			aat Asn	-													912		
	15		_	ctc Leu			_					_			· -	_		960		
	20			gac Asp														.1008		
	25	_		tgg Trp	-	_				_	_	_						1056		
				caa Gln 355	_		_	_		_	_ -							1104		
	30	_		ctc Leu			_											1152		
, 	35			agc Ser													tga -	_ 1200-) and definition	a or deserve
	40	<210 <211 <212 <213	l> 3 2> 1	34 399 PRT Rhodo	ococo	cus e	erytl	ropo	olis											
	45	<400	0> 3	3 4													•			
	±J	Met 1	Val	Asp	Thr	Arg 5	Leu	Pro	Val	Thr	Val 10	Leu	Ser	Gly	Phe	Leu 15	Gly			

	5	Leu 65	Val	Glu	Met	Thr	Asn 70	Gly	Cys	Ile	Cys	Cys 75	Thr	Leu	Arg	Glu	Asp 08
	1.0	Leu	Leu	Ser	Glu	Ile 85	Ser	Ala	Leu	Ala	Ala 90	Asp	Gly	Arg	Phe	Asp 95	Tyr
-	10.	Leu	Leu	Ile	Glu 100	Ser	Ser	Gly	Ile	Ser 105	Glu	Pro	Leu	Pro	Val 110	Ala	Glu
	15	Thr	Phe	Thr 115	Phe	Ile	Asp	Thr	Asp 120	Gly	His	Ala	Leu	Ala 125	Asp	Val	Ala
	20	Arg	Leu 130	Asp	Thr	Met	Val	Thr 135	Val	Val	Asp	Gly	His 140	Ser	Phe	Leu	Arg
	25	Asp 145	Tyr	Thr	Ala	Gly	Gly 150	Arg	Val	Glu	Ala	Asp 155	Ala	Pro	Glu	Asp	Glu 160
		Arg	Asp	Ile	Ala	Asp 165	Leu	Leu	Val	Asp	Gln 170	Ile	Glu	Phe	Ala	Asp 175	Val
	30	Ile	Leu	Val	Ser 180	Lys	Ala	Asp	Leu	Val 185	Ser	His	Gln	His	Leu 190	Val	Glu
	35	- Leu	Thr	Ala 195	Val	Leu	Arg	- Ser	Leu 200	Asn	Ala	Ser	Ala	Ala 205	Ile	Val	Pro
	40	Met	Thr 210	Leu	Gly	Arg	Ile	Pro 215	Leu	Asp	Thr	Ile	Leu 220	Asp	Thr	Gly	Leu
	45	Phe 225	Ser	Leu	Glu	Lys	Ala 230	Ala	Gln	Ala	Pro	Gly 235	Trp	Leu	Gln	Glu	Leu 240
		Gln	Gly	Glu _.	His	Ile 245	Pro	Glu	Thr	Glu	Glu 250	Tyr	Gly	Ile	Ser	Ser 255	Val
	50	Val	Tyr	Arg	Glu 260	Arg	Ala	Pro	Phe	His 265	Pro	Gln	Arg	Leu	His 270	Asp	Phe
	55	Leu	Śer	Ser 275	Glu	Trp	Thr	Asn	Gly 280	Lys	Leu	Leu	Arg	Ala 285		Gly	Tyr

	Tyr	Trp 290	Asn	Ala	Gly	Arg	Phe 295	Thr	Glu	Ile	Gly	Ser 300	Ile	Ser	Gln	Ala
5	Gly 305	His	Leu	Ile	Arg	His 310	Gly	Tyr	Val	Gly	Arg 315	Trp	Trp	Lys	Phe	Leu 320
10	Pro	Arg	Asp	Glu	Trp 325	Pro	Ala	Asp	Asp	Tyr 330	Arg	Arg	Asp	Gly	Ile 335	Leu
15	Asp	Lys	Trp	Glu 340	Glu	Pro	Val	Gly	Asp 345	Cys	Arg	Gln	Glu	Leu 350	Val	Phe
	Ile	Gly	Gln 355	Ala	Ile	Asp	Pro	Ser 360	Arg	Leu	His	Arg	Glu 365	Leu	Asp	Ala
20	Cys	Leu 370	Leu	Thr	Thr ·	Ala	Glu 375	Ile	Glu	Leu	Gly	Pro 380	Asp	Val	Trp	Thr
25	Thr 385	Trp	Ser	Asp	Pro	Leu 390	Gly	Val	Gly	Tyr	Thr 395	Asp	Gln	Thr	Val	