LABORATRIUM OPTYKA GEOMETRYCZNA I FALOWA

Temat: Wyznaczanie współczynnika załamania cieczy.

Wykonał:

1. Refraktometr Abbego

Refraktometr Abbego – przyrząd optyczny służący do pomiarów współczynnika załamania światła z wykorzystaniem zjawiska całkowitego wewnętrznego odbicia, zaprojektowany przez Ernsta Abbego (1840–1905); umożliwia badania współczynnika załamania cieczy i ciał stałych o gęstości optycznej mniejszej od gęstości optycznej materiału pryzmatów.

Refraktometr laboratoryjny RL3 posiada prosta budowę zapewniającą wygodna i łatwą obsługę. Podstawowym elementem przyrządu jest pryzmat refraktometryczny w obudowie z poziomo ustawioną płaszczyzna pomiarowa. Takie położenie płaszczyzny pomiarowej zabezpiecza przed spływaniem badanej cieczy z pryzmatu. Nad pryzmatem refraktometrycznym znajduje się pryzmat górny umieszczony w zawiasowo zamocowanej obudowie służący do oświetlania substancji mierzonych w świetle przechodzącym.

Przyrządy pomiarowe, opis i schemat aparatury W pomiar ach współczynnika załamania cieczy za pomocą refraktometru Abbego (rys. 1 - 2) wykorzystuje się zjawisko załamania światła na granicy pomiędzy badaną cieczą i szkłem . Główny m elementem przyrządu wykorzystywanego w doświadczeniu jest układ dwóch pryzmatów z ciężkiego szkła (flintu), pomiędzy którymi wytwarzana jest cienka warstwa badanej cieczy .

Jej kroplę umieszcza się na matowej ścianie jednego z pryzmatów, tzw. oświetlającego (P 1). Jest ona następnie przyciskana za pomocą specjalnego zamka do przezroczystej ściany drugiego pryzmatu, tzw. pomiarowego (P 2). Do oświetlenia stosu je się światło białe (np. żarówki lub słoneczne), kierowane do pryzmatu oświetlającego przy pomocy oświetlacza, tj. zwierciadła wklęsłego w obrotowym uchwycie. Promienie światła rozproszonego przez matówkę padają na granicę ciecz - szkło pryzmatu pomiarowego p od kątami z pełnego zakresu (0° – 90°) i przechodzą przez nią , załamując się pod różnymi kąta mi, ograniczonymi jednakże przez kąt graniczny β , który zależy od współczynnika za łamania cieczy względem szkła w sposób określony równaniem:

$$\sin \beta = \frac{n_{cieczy}}{n_{szkła}}$$

Pokrętłem z lewej strony przyrządu przez obrót pryzmatów obszar z granicą pól jasnego i ciemnego można przesunąć na matówce układu wyjściowego w ograniczone pole widzenia okularu obserwacyjnego (okular z prawej strony) , wyposażonego w znacznik w postaci krzyżujących się linii. Pokrętło sprzężone jest z mechanizmem skali obserwowanej przez drugi okular (z lewej strony) , umożliwiającej bezpośredni odczyt bezwzględnego współczynnika załamania cieczy, a także stężenia procentowego roztworu (w sytuacji , gdy badaną cieczą jest wodny rozwór cukru).

W związku z tym zastosowaniem uchwyty pryzmatów oświetlającego i pomiarowego wyposażone są w króćce pozwalające na doprowadzenie wody o kontrolowanej temperaturze, której cyrkulacja stabilizuje temperaturę pryzmatów i badanej cieczy (współczynnik załamania roztworu cukru zależy bowiem nie tylko od jego stężenia, lecz w istotnym stopniu także od temperatury). Pokrętło z prawej strony przyrządu pozwala na regulację układu pryzmatów kompensujących dyspersję : światło przechodzi przez szereg dodatkowych płaskich powierzchni łamiących, dzięki czemu zmniejszane zostają skutki początkowego rozszczepienia.

2. Światło

Światło – to fala elektromagnetyczna, której amplituda natężenia pola elektrycznego opisana jest wzorem:

$$E = A \cos(\omega t - 2\pi z/\lambda)$$

Gdzie:

A – [V/m] – maksymalne natężenie pola elektrycznego,

 λ - [A, nm., μ m, m] – długość fali świetlnej,

ω - [Hz] – częstość drgań fali świetlnej,

t - [s] - czas,

z - [m] – położenie na osi ustawionej w kierunku rozchodzenia się światła.

Światło rozchodzi się w próżni z prędkością c= ok. 300 000 km/s.

Rys. 1. Załamanie światła na granicy ośrodków: powietrze – woda.

Rys. 2. Załamanie światła na granicy ośrodków: szkło – woda.

3. Zjawisko całkowitego wewnętrznego odbicia

Zjawisko całkowitego wewnętrznego odbicia światła ma miejsce wówczas, gdy promień świetlny biegnie ze środowiska optycznie gęstszego do rzadszego, np. z wody do powietrza, przy czym pada na powierzchnie graniczna pod katem większym od tzw. Kata granicznego. Jest to taki kat padania w środowisku optycznie gęstszym, dla którego kat załamania w środowisku rzadszym wynosi 90°. Ze względu na zasadę odwracalności biegu promienia świetlnego mogę napisać:

$$n_{1,2} = \sin 90^{\circ} / \sin \beta_{gr} = 1 / \sin \beta_{gr}$$

 β_{gr} – jest katem granicznym;

Zjawisko to nosi nazwę odbicia całkowitego, ponieważ w promieniu odbitym zawiera się całkowita energia promienia padającego.

4. Przebieg ćwiczenia

- refraktometr umieszczamy na stole oświetlonym białym światłem i przy pomocy zwierciadła kierujemy światło do pryzmatu oświetlającego
- prawy okular ustawiamy n a ostre widzenie znacznika (skrzyżowane linie)
- sprawdzamy , czy powierzchnie pryzmatów są suche i czyste
- z a pomocą pipetki umieszczamy kroplę badanej cieczy na matowej powierzchni pryzmatu oświetlającego i ostrożnie przyciskamy go do pryzmatu pomiarowego, przekręcając śrubę zamka
- pokrętłem z lewej strony przyrządu obracamy pryzmaty i patrząc
 przez prawy okular szukamy obraz u dwóch pól: jasnego i ciemnego

- ciągle patrząc przez prawy okular i obracając drugim pokrętłem (z prawej strony przyrządu) ustawiamy ostry i pozbawiony tęczowego rozmycia obraz granicy jasnego i ciemnego pola (kompensacja dyspersji)
- obracając ponownie pokrętłem z lewej strony przyrządu ustawiamy linię graniczną dwóch pól (jasnego i ciemnego) na skrzyżowaniu linii znacznika
- przez lewy okular odczytujemy ze skali wartość współczynnika załamania i zapisujemy go w tabeli pomiarów
- odczytu dokonujemy pięciokrotnie dla tej samej cieczy , powtarzając kompensację i ustawienie granicy pól na skrzyżowaniu linii znacznika
- powyższe czynności powtarzamy dla wszystkich cieczy dostępnych w zestawie, za każdym razem dokładnie usuwając poprzednią ciecz z obydwu pryzmatów

5. Tabela pomiarów

P [%]	n
0%	1,335
10%	1,348
20%	1,363
30%	1,381
40%	1,400
50%	1,421
60%	1,443
70%	1,465
80%	1,490
90%	1,516
X 1	1,550
X 2	1,612

P [%]	n
20%	1,362
	1,364
	1,363
	1,365
	1,362
	1,364
	1,363
	1,365
	1,363
	1,362

6. Obliczenia

$$n_{\acute{s}r} \ 20\% = \frac{1,362 + 1,364 + 1,363 + 1,365 + 1,362 + 1,364 + 1,363 + 1,365 + 1,363 + 1,362}{10} = 1.363$$

$$\Delta(n) = \sqrt{\frac{(1,362 - 1,363)^2 + (1,364 - 1,363)^2 + \dots + (1,363 - 1,363)^2 + (1,362 - 1,363)^2}{10(10 - 1)}}$$

$$\Delta(n) = \sqrt{\frac{0,000014}{90}} = 1.247$$

7. Wnioski

Wartość błędu zależy od czystości powierzchni pryzmatów (trzeba uważać, aby płyny o różnym stężeniu nie mieszały się ze sobą) oraz od dokładności otrzymania ostrej linii granicznej i nastawienia jej na skrzyżowanie nitek pajęczych (duże znaczenie mają indywidualne właściwości oka obserwatora).