Question Number	Answer		Mark
19(a)(i)	Use of $\lambda = \frac{\ln 2}{t_{1/2}}$	(1)	
	$\lambda = 7.31 \times 10^{-10} \text{ (s}^{-1}) \text{ [Minimum 3 sig fig]}$	(1)	2
	$\lambda = \frac{\text{Example of calculation}}{30.1 \times 3.15 \times 10^7 \text{s}} = 7.31 \times 10^{-10} \text{s}^{-1}$		
19(a)(ii)	Use of $\frac{dN}{dt} = -\lambda N$	(1)	
	Use of $u = 1.66 \times 10^{-27}$ kg with 137 [Allow use of 1.67×10^{-27} kg with 137]	(1)	
	$m = 5.9 \times 10^{-6}$ (kg) (Allow ecf from (a)(i))	(1)	3
	Example of calculation $N = \frac{19 \times 10^9 \text{ s}^{-1}}{7.31 \times 10^{-1} \text{ s}^{-1}} = 2.60 \times 10^{19}$		
	$m = 2.60 \times 10^{19} \times 137 \times 1.66 \times 10^{-27} \text{kg} = 5.91 \times 10^{-6} \text{kg}$		
19(a)(iii)	Use of $A = A_0 e^{-\lambda t}$	(1)	
	A = 18.1 GBq (Allow ecf from (a)(i))	(1)	2
	Example of calculation		
	$A = 19 \times 10^{9} \text{Bq} \times \text{e}^{-7.31 \times 10^{-10} \text{s}^{-1} \times 2 \times 3.15 \times 10^{7} \text{s}}$		
	$A = 1.81 \times 10^{10} \text{ Bq}$		
	[2 years = 6.3×10^7 s]		
19(b)	Use of total energy released = $\left(\frac{\Delta N}{\Delta t}\right) \times \Delta t \times E$ Or Use of total energy released = $\Delta N \times E$	(1)	
	Use of 1 eV = 1.6×10^{-19} J	(1)	
	Total energy released = 4.3×10^3 (J)	(1)	3
	[If $\left(\frac{\Delta N}{\Delta t}\right) \times \Delta t$ determined by using exponential decay equation to calculate number of undecayed nuclei after 14 days; final answer should round to 4300 (J)]		
	Example of calculation $E = 19 \times 10^{9} \text{ s}^{-1} \times 14 \times 86400 \text{ s} \times 1.17 \text{ MeV} = 2.69 \times 10^{16} \text{ MeV}$ $E = 2.69 \times 10^{16} \text{ MeV} \times 10^{6} \times 1.6 \times 10^{-19} \text{ J eV}^{-1} = 4.30 \times 10^{3} \text{ J}$		
	Total for question 19		10