Álgebra Linear e Geometria Analítica

Exame Final - 17/01/2011

Duração: 2h30

--- N. $^{
m o}$ mecanográfico: -Nome: _

 $_{\rm }$ N.° de folhas suplementares: $_{\rm }$ Declaro que desisto _____

Questão	1	2	3	4	5	6	Total
Cotação	25	35	35	35	25	45	200
Classificação							

Classificação final
valores

Justifique convenientemente todas as suas respostas e indique os cálculos que efectuar.

1. Utilize a regra de Cramer para resolver o sistema representado matricialmente por AX = B, sendo

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix} \qquad e \qquad B = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

$$\mathbf{e} \qquad B = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

2. Considere a matriz

$$A = \left[\begin{array}{rrrr} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 2 & a & 0 & 0 \\ 1 & 2 & 1 & b \end{array} \right]$$

com a,b parâmetros reais. Indique, justificando, os valores de a e b para os quais:

- (a) car A = 2;
- (b) A é invertível;
- (c) dim $\mathcal{N}(A) = 1$;
- (d) 0 é um valor próprio de A.

Nome:	N.º mecanográfico:

- 3. Considere os vectores X = (1, 0, -3) e Y = (3, 2, 1) de \mathbb{R}^3 .
 - (a) Mostre que X e Y são ortogonais.
 - (b) Averigue se o vector (1,1,2) pertence ao espaço gerado por X e Y.
 - (c) Encontre $Z \in \mathbb{R}^3$ tal que (X,Y,Z) é uma base ortogonal de $\mathbb{R}^3.$

- 4. Considere o conjunto $S = \{(x, y, z) \in \mathbb{R}^3 : x + y z = 0\}.$
 - (a) Indique um conjunto gerador de S.
 - (b) Indique uma base de \mathbb{R}^3 contendo uma base de S.
 - (c) Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ uma transformação linear de núcleo S. Estude T quanto à injectividade e sobrejectividade.

5. Seja $L:\mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear representada pela matriz

$$A = \left[\begin{array}{rrr} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array} \right]$$

em relação à base canónica B_c de \mathbb{R}^3 .

- (a) Determine L(x, y, z) para $(x, y, z) \in \mathbb{R}^3$.
- (b) Seja M a matriz de L em relação à base canónica B_c e à base B = ((1,0,-1),(0,1,0),(1,0,0)) de \mathbb{R}^3 . Apresente uma relação entre A e M, utilizando matrizes de mudança de base e indique-as.

6. Considere a matriz

$$A = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

- (a) Determine os valores próprios de A.
- (b) Determine uma base ortonormada de \mathbb{R}^3 formada por vectores próprios de A.
- (c) Apresente uma equação reduzida e classifique a quádrica definida por $2x^2 + y^2 + z^2 + 2yz = 2$.