This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(54) MANUFACTURE OF SEMICONDUCTOR DEVICE

(11) 62-230027 (A) * \$ \$.10.1987 (19) J}*

(21) Appl. No. 61-73518 (22) 31.3.1986

(71) MATSUSHITA ELECTRIC IND CO LTD (72) HE ASHI NAKAMUKA

(51) Int. Cl. E21L21/56,H01L23/28

PURPOSE: To contrive the improvement in a resistance to humidity and reliability by forming a circuit conductor layer on a surface of a synthetic resin layer after burying a single unit of semiconductor chip or plural semiconductor chips provided with projection electrode in the synthetic resin and polishing a surface of the synthetic resin to expose a part of the projection electrodes.

CONSTITUTION: Projection electrodes 6 are formed in an aluminum electrode terminal part formed on a semiconductor chip 5. Next, the semiconductor chip 5 is buried in a synthetic resin 7 and the surface of this cured synthetic resin substance is polished by use of a sand paper etc. to make the surface of the resin layer smooth and also to expose a part of the projection electrodes 6 formed on the semiconductor chip 5. A conductive metal layer 8 such as of copper or nickel is deposited on a surface of the synthetic resin layer 7 by vacuum evaporation, spattering, or electroless plating. After that, the unnecessary part of the conductive metal layer 8 is removed to form a circuit conductor layer 8. Thus, the connection of a semiconductor chip is effected easily and steadily and also high reliability can be contrived.

[®]公開特許公報(A) 昭62-230027

@Int.Cl.*

識別記号

厅内整理番号

❷公開 昭和62年(1987)10月8日

H 01 L 21/56 23/28

R-6835-5F Z-6835-5F

審査請求 未請求 発明の数 1 (全4頁)

9発明の名称 半導体装置の製造方法

迎特 顧 昭61-73518

❷出 願 昭61(1986)3月31日

母 明 者 中 村

恒 門頂市大字門頂

迎出 頤 人 松下電器產業株式会社

門真市大字門真1006番地 松下電器產業株式会社内 門真市大字門真1006番地

也山 阴 人 似了电容厘条体入会住 门具市力

②代理人 并理士中尾 敏男 外1名

明 細 章

発明の名称
半導体装置の製造方法

2、特許請求の範囲

- in) 突起電便を形成した半導体チップの単体もしくは複数個を合成樹脂中に埋設し、この合成樹脂層の表面を研削して務配突起電極の一部を開出させるとともに前配合成樹脂層の表面に所望とする回路導体層を形成することを特徴とした半導体装置の製造方法。
- (2) 突起電極を形成した半導体チップの単体もしくは複数機を支持基板に固定して合成樹脂中に埋設することを特徴とした特許請求の範囲第1項配数以よる半導体装置の製造方法。
- 3、発明の詳細な説明

産業上の利用分野

本発明は広範な電子機器に用いられる半導体装置、とりわけ I Cカードやメモリーカードなどに用いる薄型の半導体装置の製造方法に関するものである。

従来の技術

近年、半導体技術の進歩はめざましいものがあり、電子機器の軽薄短小化はもとより、高性能化 や高信頼化に大きく寄与している。

このような中化あって昨今半導体チップを違く パッケージし、さら化その複数個を高密度化実装 して電子回路を構成する高密度実装技術の重要性 がますます増大している。

従来、このような半導体チップの高密度実装技術としてはいるいろな方法が実施されているが、その代表的な方法としてフリップチップ方式と呼ばれる実践方法がある。この方法は第1回に形成がようにシリコンから成る半導体チップ1に形成がます。この方法は第一でエーでは、フェトリン技術を利用してでエーでローはんだやでエード1ー A D などから成るパンスチウけんだやでエード1ー A D などから成るパンスチウレんでやでエード1ー A D などからなるパンスチウンしてその実起電便2を設け、これをフェースチウンしてその実起電便2を設け、これをフェースチウンしてその実起電便2を設け、これをフェースチウンしてその実起電便2を設け、これをフェーとのの表面に形成した回路基板3の表面に形成した回路基板3の表面に形成した回路基板3の大法によって温気

的に接続したものである。

発明が解決しようとする問題点

本発明はこのような問題点を解決するもので、 半3体チップの接続を容易にかつ確実に行うとと もに高信頭性をはかることを目的としたものであ

第1図A~D付本発明の一実施例Kがける半導体装置の製造方法を説明する製造工程図であり、 第1図Kがいて、5付半導体チョブ、6付パンプ と呼ばれる実起選種、7付合成樹脂層、8付回路 連体層である。

以上の1分に構成された半導体装置について以 下その製造方法を詳細に述べる。

本発明による半導体装置は先ず第1図』に示す よりに半導体チップを化形成されたアルミ 電極端 子部にバンブと呼ばれる突起電極のを形成する。 この突起電極のの形成法としては、通常のフリッ ブチップのパンプ形成法と同様な方法によって行

即ち、イオン狂入・拡散工程、アルミ配線形成パッシペーション工程などを経て作ったシリコンクェハーを用いて、その表面に真空蒸滞法やスパッタリング法によりクロム・チジン・パラジウムなどのパリナ金属を付着させ、さらにその表面に 用ヤニックルなどの母膜を形成させてから、フェト技術を利用してアルミ軍極部のみを舞出させ、 **3.**

問題点を解決するための手段

この問題点を解決するために本発明は突起電極を形成した半導体ナップの単体もしくは複数個を合成樹脂に理殺し、合成樹脂の製面を研削して突起電極の一部を選出させた後で、合成樹脂層の製面に所望とする回路導体層を形成する方法に関するものである。

作用

このような方法により、半導体チャブが合成樹脂中に埋設され、半導体チャブに形成された突起電便を異出させた状態で外部に引き出されるので、合成樹脂層の表面に形成される回路導体層との接続が確実に行えると同時に半導体チャブの表面が合成樹脂で完全にかかわれるので耐健性が向上がはかられ、馬信頼性を有し、小型でしかも薄型の半導体装置が実現されることになる。

実施例

以下、本発明の実施例を図面にもとづいて詳細 に説明する。

電気めっき注によって罵出した電極端子部に50 ~160 単程度の鋼やニッケルなどから成る導電 金属層を厚く折出させた後に突起電極端子部以外 に付着したレジストを除去し、輩出した金属薄膜 層をクイックエッチング注によって除去する方法 によって形成した。

次いで第1図Bに示すよりに突起電極8を形成 した半導体チップ5を合成樹脂でに埋殺する。

この場合、使用する合成樹脂でとしては電気を 緑性、耐度性、耐熱性、耐薬品性にすぐれている ことはもとよりシリコンとの膨張保証が近似して 研別作業性にすぐれた特性やイオン性不純物を行 有しない樹脂を使用する必要があるが、このよう な諸特性を満足する合成樹脂材料としてはエギキ シ側面・ボリイミド樹脂・シリコン樹脂などがあ り、本実施例ではエボキシ樹脂にシリカやアルミ ナなどの無限質充填材を進合し、硬化剤に酸無水 物系のものを添加した合成樹脂を使用した。

そして、との合成樹脂を贈塑性化すぐれた容器 中に光てんしてから突起電便のを形成した半嶋は ナップ5を埋めてみ、合成労貊でを加熱硬化させ てその硬化物を型から取りはずした。

それから第1図CK示すようK半導体ナップを を理設した合成樹脂硬化物をサンドペーパーなど を用いてその表面を研削し樹脂層の表面を平滑K するとともK半導体ナップ6K形成した突起電極 の一部分を表面K質出させる。

でして第1回Dドボナミクド合成樹脂層のの表面に再空蒸着法やスパックリング法、無電解めっき注などによって網やニッケルなどの導電金属層のを折出させ、しかる後に第1回目に示すよりにフォトエッチング法によって不要部分の導電金属階のを除去して所望とする回路導体層のを形成する。

尚、本実施例にかいては半導体チップをの単体を合成樹脂で中に埋設して半導体装置を構成する方法について述べたが、本発明では複数個の半導体チップを合成樹脂中に壁設して相互接続したいわゆるマルチチップ型の半導体装置についても通用できることはいりまでもない。

クした後で合成樹脂で中に埋設することにより平 坦性と放熱特性にすぐれた半導体装置を構成した。

さらにまた金属基板に視度及く半導体チップを取付ける方法として、金属基板の所定の位置(半導体チップを取付ける位置)に半導体チップを取付ける位置)に半導体チップを同一の大きさを有する凹みをエッチング技術を使って形成してかき、この凹みに半導体チップを据満することにより半導体チップをの相対的位置構度の向上をはかることができた。

発明の効果

以上の設明から明らかなように本発明による半 導体装置は突起電便を形成した半導体チップの単 体もしくは複数個を合成樹脂中に埋設した後で合 成樹脂層を研削することによって突起電便の一部 を露出させ、しかる後に平坦化した合成樹脂層の 表面に所望とする回路導体層を形成する方法によって作られたものである。

従って本発明による半導体装置は、半導体チップの電便端子と回路導体層が確実に接続されると ともに、その接続状態を外観的に検査できる利点 また、本発明の他の実施例として第2図に示す 方法を試みた。

第3図にかいて、6、6、7、8は第1の実施 例と同じものであり、9は支持基板、10は振漕 耐用である。この半導体装置は半導体ナップ5の 放急性の改きやマルナナップ構成にかけるナップ 間の位置物度を良好に保つために行ったものである。

即ち、突起電極 8 を形成した半導体チップ 5 を 予め支持基板 9 の所定の位置に接着剤 1 O を用い て接着したものを合成樹脂 7 に埋設する方法によって半導体装置を構成するものである。

この場合、支持基板のとしては、ガラスエボキシなどの合成関筋基板、アルミナなどのセラミック基板、アルミニクムや網などの金属基板、さらにはガラスなどのいろいろな材質のものが使用できるが、本実施例ではアルミニクムや網などの金属基板を使用して、この基板上にエボキシ関筋から成る接着剤10を用いて半導体チップ5の複数個を所定の位置に接着し、その位置精度をチェック

を有することや半導体チップの表面は合成樹脂層で完全化、被覆されるので半導体チップの耐湿信頼性が向上すること、さらには半導体チップを高告度に接続できるのでより薄形で高密度化した1 Cカードやメモリカードなどが実現できる特徴を有するものである。

4、図面の簡単な説明

第1図 A ~ E 仕本発明の第1の実施例を設明するための半導体装置の製造工程図、第2図 仕本発明の第2の実施例を設明するための半導体装置の要部断面図、第3図 仕様来注を説明するためのフリップチップ方式による半導体装置の要部断面図である。

6 ……半導体チップ、6 ……突起電極、7 …… 合成樹脂層、8 ……消電金属層、9 ……支持基板、 1 O ……接着耐層。

代理人の氏名 并理士 中 尾 敏 男 ほか1名

5 ··· 半導体チップ 6 ··· 突起電径 7 ··· 合成 副扇層 8 ··· 導電金属層(回路導体層) 33 1 **23**

新 2 図

為 3 図

