

Chapter 6

Thermochemistry

Chapter 6 *Table of Contents*

- (6.1) The nature of energy
- (6.2) Enthalpy and calorimetry
- (6.3) Hess's law
- (6.4) Standard enthalpies of formation
- (6.5) Present sources of energy
- (6.6) New energy sources

Energy

- Capacity to do work or to produce heat
- Law of conservation of energy: Energy can be converted from one form to another but can be neither created nor destroyed
 - Energy of the universe is constant

Classification of Energy

- Potential energy (PE): Energy due to position or composition
 - Can result from attractive and repulsive forces
- Kinetic energy (KE): Energy due to the motion of an object
 - Depends on the mass of the object (m) and its velocity
 (v)

$$KE = \frac{1}{2}mv^2$$

Conversion of Energy

Consider the following image:

Because of its higher initial position, ball A has more PE than ball B

Conversion of Energy (continued 1)

- PE of A is changed to KE as the ball rolls down the hill
- Part of this KE is then transferred to B, causing it to be raised to a higher final position
 - Thus, PE of B has been increased

Conversion of Energy (continued 2)

- Since the final position of B is lower than the original position of A, some of the energy is still unaccounted for
- Part of the original energy stored as PE in A has been transferred through work to B, thereby increasing B's PE

Methods of Transferring Energy

- Heat: Transfer of energy between two objects due to a temperature difference
 - Temperature is a property that reflects random motion of particles in a substance
- Work: Force acting over a distance

Pathway

- Specific conditions that define the path by which energy is transferred
- Energy change is independent of the pathway
- Work and heat are dependent on the pathway

Energy as a State Function

- State function (state property): Property that does not depend in any way on the system's past or future
 - Value depends on the characteristics of the present state
 - While transitioning from one state to another, the change in state property is independent of the pathway taken between the two states

The Process of Heat

- Energy is always transferred from the hot body to the cold body
 - Temperature is a measure of the average KE of particles in solids, liquids, and gases
 - Energy is transferred as the initially faster particles decrease in motion and the initially slower molecules increase in motion
 - Particles will have the same average KE and thus the same temperature

Figure 6.2 - Particles at Different Temperatures in Adjoining Chambers

Parts of the Universe

- System: Part of the universe on which one wishes to focus his/her attention
 - Example System can be defined as the reactants and products of a reaction
- Surroundings: Include everything else in the universe
 - Example Surroundings consist of anything else other than the reactants and products

Types of Reactions

- Exothermic: Reaction that results in the evolution of heat
 - Energy flows out of the system
 - Example Combustion of methane
- Endothermic: Reaction that results in the absorption of energy from the surroundings
 - Heat flows into a system
 - Example Formation of nitric oxide

Reaction Mechanism

- Energy gained by the surroundings must be equal to the energy lost by the system
- Exothermic reactions
 - PE stored in chemical bonds is converted to thermal energy via heat
 - Bonds in the products are stronger than those of the reactants
 - Net result Quantity of energy Δ(PE) is transferred to the surroundings through heat

Figure 6.3 - Energy Diagram for the Combustion of Methane, an Exothermic Process

Reaction Mechanism (continued)

- Endothermic reactions
 - Energy that flows into the system as heat is used to increase the PE of the system
 - Products have higher PE than reactants

Figure 6.4 - Energy Diagram for the Formation of Nitric Oxide, an Endothermic Process

Thermodynamics

- Study of energy and its interconversions
- First law of thermodynamics: Energy of the universe is constant
 - Known as the law of conservation of energy

Internal Energy (E)

- Sum of kinetic and potential energies of all particles in the system
- E of a system can be changed by flow of work, heat, or both

$$\Delta E = q + w$$

- lacktriangle ΔE Change in the system's internal energy
- *q* Heat
- w Work

Parts of Thermodynamic Quantities

- Number Gives the magnitude of change
- Sign Indicates the direction of flow and reflects the system's point of view
 - In an endothermic system, q = +x
 - Positive sign indicates that the system's energy is increasing
 - In an exothermic system, q = -x
 - Negative sign indicates that the system's energy is decreasing

Parts of Thermodynamic Quantities (continued)

- Conventions that apply to the flow of work
 - When a system does work on the surroundings, w is negative
 - When the surroundings do work on the system, w is

positive

Interactive Example 6.1 - Internal Energy

 Calculate ΔE for a system undergoing an endothermic process in which 15.6 kJ of heat flows and where 1.4 kJ of work is done on the system

Interactive Example 6.1 - Solution

We use the following equation:

$$\Delta E = q + w$$

- q = +15.6 kJ, since the process is endothermic
- w = + 1.4 kJ, since work is done on the system

$$\Delta E = 15.6 \text{ kJ} + 1.4 \text{ kJ} = 17.0 \text{ kJ}$$

Thus, the system has gained 17.0 kJ of energy

Work

- Types of work associated with a chemical process
 - Work done by a gas through expansion
 - Work done to a gas through compression
- Example
 - In an automobile engine, heat from the combustion of gasoline expands the gases in the cylinder to push back the piston
 - This motion is then translated to the motion of the car

Deriving the Equation for Work

- Consider a gas confined to a cylindrical container with a movable piston
 - F is the force acting on the piston of area A
 - Pressure is defined as force per unit area

$$P = \frac{F}{A}$$

Deriving the Equation for Work (continued 1)

- Work is defined as force applied over a distance
 - If the piston moves a distance of Δh , work done is

Work = force
$$\times$$
 distance = $F \times \Delta h$

• Since P = F/A or $F = P \times A$,

Work =
$$F \times \Delta h = P \times A \times \Delta h$$

 Volume of the cylinder equals the area of the piston times the height of the cylinder

Deriving the Equation for Work (continued 2)

• Change in volume ΔV resulting from the piston moving a distance Δh is

$$\Delta V = \text{final volume} - \text{initial volume} = A \times \Delta h$$

• Substituting $\Delta V = A \times \Delta h$ into the expression for work gives the magnitude of the work required to expand a gas ΔV against a pressure P

Work =
$$P \times A \times \Delta h = P \Delta V$$

Deriving the Equation for Work (continued 3)

- Since the system is doing work on the surroundings, the sign of work should be negative
 - For an expanding gas, ΔV is a positive quantity because the V is increasing

$$w = -P\Delta V$$

• When a gas is compressed, ΔV is a negative quantity because V decreases, which makes w a positive quantity

Critical Thinking

- You are calculating ΔE in a chemistry problem
 - What if you confuse the system and the surroundings?
 - How would this affect the magnitude of the answer you calculate? The sign?

Interactive Example 6.2 - PV Work

 Calculate the work associated with the expansion of a gas from 46 L to 64 L at a constant external pressure of 15 atm

Interactive Example 6.2 - Solution

For a gas at constant pressure,

$$w = -P\Delta V$$

■ In this case P = 15 atm and $\Delta V = 64 - 46 = 18$ L

$$w = -15$$
 atm × 18 L = -270 L · atm

- Note that since the gas expands, it does work on its surroundings
- Reality check
 - Energy flows out of the gas, so w is a negative quantity

Interactive Example 6.3 - Internal Energy, Heat, and Work

- A balloon is being inflated to its full extent by heating the air inside it
 - In the final stages of this process, the volume of the balloon changes from 4.00×10^6 L to 4.50×10^6 L by the addition of 1.3×10^8 J of energy as heat
 - Assuming that the balloon expands against a constant pressure of 1.0 atm, calculate ΔE for the process
 - To convert between L · atm and J, use 1 L · atm = 101.3 J

Interactive Example 6.3 - Solution

- Where are we going?
 - To calculate ΔE
 - What do we know?

$$V_1 = 4.00 \times 10^6 \, \text{L}$$

$$q = +1.3 \times 10^8 \, J$$

•
$$P = 1.0$$
 atm

$$V_2 = 4.50 \times 10^6 \, \text{L}$$

Interactive Example 6.3 - Solution (continued 1)

What do we need?

$$\Delta E = q + w$$

- How do we get there?
 - What is the work done on the gas?

$$w = -P\Delta V$$

• What is ΔV ?

$$\Delta V = V_2 - V_1 = 4.50 \times 10^6 \text{ L} - 4.00 \times 10^6 \text{ L} = 5.0 \times 10^5 \text{ L}$$

Interactive Example 6.3 - Solution (continued 2)

What is the work?

$$w = -P\Delta V = -1.0 \text{ atm} \times 5.0 \times 10^5 \text{ L} = -5.0 \times 10^5 \text{ L} \cdot \text{atm}$$

- The negative sign makes sense because the gas is expanding and doing work on the surroundings
- To calculate ΔE , we must sum q and w
 - However, since q is given in units of J and w is given in units of L · atm, we must change the work to units of joules

$$w = -5.0 \times 10^5 \text{ Latm} \times \frac{101.3 \text{ J}}{\text{Latm}} = -5.1 \times 10^7 \text{ J}$$

Section 6.1 The Nature of Energy

Interactive Example 6.3 - Solution (continued 3)

Then,

$$\Delta E = q + w = (+1.3 \times 10^8 \text{ J}) + (-5.1 \times 10^7 \text{ J}) = 8 \times 10^7 \text{ J}$$

- Reality check
 - Since more energy is added through heating than the gas expends doing work, there is a net increase in the internal energy of the gas in the balloon
 - Hence ΔE is positive

Section 6.1 The Nature of Energy

example

- Label the following process as exothermic or endothermic: Ice increases in temperature when you touch it
 - a. Exothermic
 - b. Endothermic

Section 6.1 The Nature of Energy

Join In (6)

- Gas A₂ reacts with gas B₂ to form gas AB
 - The bond energy of AB is much greater than the bond energy of either A₂ or B₂
 - Is the reaction for the formation of AB exothermic or endothermic?
 - a. Exothermic
 - b. Endothermic

Enthalpy (H)

A state function that is defined as:

$$H = E + PV$$

- E Internal energy of the system
- P Pressure of the system
- V Volume of the system

Change in Enthalpy (ΔH)

For a process carried out at constant pressure and where the only work allowed is that from a volume change:

$$\Delta H = q_P$$

- q_p is the heat at constant pressure
- At constant pressure, the change in enthalpy ΔH of the system is equal to the energy flow as heat

Enthalpy and PV Work

For a chemical reaction, the enthalpy change is given by the following equation:

$$\Delta H = H_{\text{products}} - H_{\text{reactants}}$$

- When $H_{\text{products}} > H_{\text{reactants}}$, ΔH is positive
 - Heat is absorbed by the system, and the reaction is endothermic
- When $H_{\text{products}} < H_{\text{reactants}}$, ΔH is negative
 - Overall decrease in enthalpy is achieved by the generation of heat, and the reaction is exothermic

Copyright ©2018 Cengage Learning. All Rights Reserved.

Interactive Example 6.4 - Enthalpy

- When 1 mole of methane (CH₄) is burned at constant pressure, 890 kJ of energy is released as heat
 - Calculate ΔH for a process in which a 5.8-g sample of methane is burned at constant pressure

Interactive Example 6.4 - Solution

- Where are we going?
 - To calculate ΔH
 - What do we know?
 - $q_P = \Delta H = -890 \text{ kJ/mol CH}_4$
 - Mass = 5.8 g CH_{4}
 - Molar mass $CH_4 = 16.04 g$

Interactive Example 6.4 - Solution (continued 1)

- How do we get there?
 - What are the moles of CH₄ burned?

$$5.8 \text{ g CH}_4 \times \frac{1 \text{ mol CH}_4}{16.04 \text{ g CH}_4} = 0.36 \text{ mol CH}_4$$

• What is ΔH ?

$$\Delta H = 0.36 \text{ mol-eH}_4 \times \frac{-890 \text{ kJ}}{\text{mol-eH}_4} = -320 \text{ kJ}$$

Interactive Example 6.4 - Solution (continued 2)

 Thus, when a 5.8-g sample of CH₄ is burned at constant pressure,

$$\Delta H = \text{heat flow} = -320 \text{ kJ}$$

- Reality check
 - In this case, a 5.8-g sample of CH₄ is burned
 - Since this amount is smaller than 1 mole, less than 890 kJ
 will be released as heat

Exercise

 The overall reaction in a commercial heat pack can be represented as

$$4\text{Fe}(s) + 3\text{O}_{2}(g) \rightarrow 2\text{Fe}_{2}\text{O}_{3}(s)$$
 $\Delta H = -1652 \text{ kJ}$

a. How much heat is released when 4.00 moles of iron are reacted with excess O_2 ?

1650 kJ is released

Exercise (continued)

b. How much heat is released when 1.00 mole of Fe₂O₃ is produced?

826 kJ released

b. How much heat is released when 1.00 g iron is reacted with excess O_2 ?

7.39 kJ released

b. How much heat is released when 10.0 g Fe and 2.00 g O_2 are reacted?

34.4 kJ released

Calorimetry

- Science of measuring heat
 - Based on observations of temperature change when a body absorbs or discharges energy as heat
- Calorimeter: Device used experimentally to determine the heat associated with a chemical reaction

Heat Capacity (C)

$$C = \frac{\text{heat absorbed}}{\text{increase in temperature}}$$

- Specific heat capacity: Energy required to raise the temperature of one gram of a substance by one degree Celsius
 - Units $J/^{\circ}$ C · g or $J/K \cdot g$

Table 6.1 - The Specific Heat Capacities of Some Common Substances

Substance	Specific Heat Capacity (J/°C · g)
$H_2O(I)$	4.18
$H_2O(s)$	2.03
Al(s)	0.89
Fe(s)	0.45
Hg(<i>l</i>)	0.14
C(s)	0.71

Heat Capacity (C) (continued)

- Molar heat capacity: Energy required to raise the temperature of one mole of a substance by one degree Celsius
 - Units J/° C · mol or J/K · mol
- Heat capacities of metals are different from that of water
 - It takes less energy to change the temperature of a gram of a metal by 1° C than for a gram of water

Coffee-Cup Calorimeter

- Contains two nested Styrofoam cups with a cover through which a stirrer and thermometer can be inserted
 - Outer cup is used to provide extra insulation
 - Inner cup holds the solution in which the reaction occurs

Constant-Pressure Calorimetry

- Atmospheric pressure remains constant during the process
- Used to determine changes in enthalpy for reactions that occur in solution
 - $\Delta H = q_{\rm P}$

Constant-Pressure Calorimetry (continued 1)

- If two reactants at the same temperature are mixed and the resulting solution gets warmer, this means the reaction taking place is exothermic
 - Endothermic reaction cools the solution

Constant-Pressure Calorimetry: Determining Change in Enthalpy for a Neutralization Reaction

Energy (as heat) released by the reaction

- = energy (as heat) absorbed by the solution
- = specific heat capacity ? mass of solution ? increase in temperature
- $= s \times m \times \Delta T$
- When twice the amount of solution has been mixed, twice as much heat would be produced
 - Heat of a reaction is an extensive property
 - Depends directly on the amount of substance

Interactive Example 6.5 - Constant-Pressure Calorimetry

• When 1.00 L of 1.00 M Ba(NO₃)₂ solution at 25.0° C is mixed with 1.00 L of 1.00 M Na₂SO₄ solution at 25.0° C in a calorimeter, the white solid BaSO₄ forms, and the temperature of the mixture increases to 28.1° C

Interactive Example 6.5 - Constant-Pressure Calorimetry (continued)

- Assume that:
 - The calorimeter absorbs only a negligible quantity of heat
 - The specific heat capacity of the solution is $4.18 \, \text{J/}^{\circ} \, \, \, \text{C} \cdot \text{g}$
 - The density of the final solution is 1.0 g/mL
- Calculate the enthalpy change per mole of BaSO₄
 formed

Interactive Example 6.5 - Solution

- Where are we going?
 - To calculate ΔH per mole of BaSO₄ formed
 - What do we know?
 - 1.00 L of 1.00 M Ba(NO₃)₂
 - 1.00 L of 1.00 M Na₂SO₄
 - $T_{\text{initial}} = 25.0^{\circ}$ C and $T_{\text{final}} = 28.1^{\circ}$ C
 - Heat capacity of solution = $4.18 \text{ J/}^{\circ} \text{ C} \cdot \text{g}$
 - Density of final solution = 1.0 g/mL

Interactive Example 6.5 - Solution (continued 1)

- What do we need?
 - Net ionic equation for the reaction
 - The ions present before any reaction occurs are Ba^{2+} , NO_3^- , Na^+ , and SO_4^{2-}
 - The Na⁺ and NO₃⁻ ions are spectator ions, since NaNO₃ is very soluble in water and will not precipitate under these conditions
 - The net ionic equation for the reaction is:

$$\operatorname{Ba}^{2+}(aq) + \operatorname{SO}_{4}^{2-}(aq) \to \operatorname{BaSO}_{4}(s)$$

Interactive Example 6.5 - Solution (continued 2)

- How do we get there?
 - What is ΔH ?
 - Since the temperature increases, formation of solid BaSO₄ must be exothermic; ΔH is negative

Heat evolved by the reaction

- = heat absorbed by the solution
- = specific heat capacity? mass of solution? increase in temperature

Interactive Example 6.5 - Solution (continued 3)

What is the mass of the final solution?

Mass of solution = 2.00
$$\cancel{L}$$
 × $\frac{1000 \cancel{mL}}{1 \cancel{L}}$ × $\frac{1.0 \cancel{g}}{\cancel{mL}}$ = 2.0 × 10³ g

• What is the temperature increase?

$$\Delta T = T_{\text{final}} - T_{\text{initial}} = 28.1^{\circ}\text{C} - 25.0^{\circ}\text{C} = 3.1^{\circ}\text{C}$$

• How much heat is evolved by the reaction?

Heat evolved =
$$(4.18 \text{ J/°} \cancel{\cancel{C}} \cdot \cancel{\cancel{g}})(2.0 \times 10^3 \cancel{\cancel{g}})(3.1 \circ \cancel{\cancel{C}}) = 2.6 \times 10^4 \text{ J}$$

Interactive Example 6.5 - Solution (continued 4)

Thus,

$$q = q_P = \Delta H = -2.6 \times 10^4 \text{ J}$$

- What is ΔH per mole of BaSO₄ formed?
 - Since 1.0 L of 1.0 M Ba(NO₃)₂ contains 1 mole of Ba²⁺ ions and 1.0 L of 1.0 M Na₂SO₄ contains 1.0 mole of SO₄²⁻ ions, 1.0 mole of solid BaSO₄ is formed in this experiment
 - Thus the enthalpy change per mole of BaSO₄ formed is

$$\Delta H = -2.6 \times 10^4 \text{ J/mol} = -26 \text{ kJ/mol}$$

Constant-Volume Calorimetry

- Used to study the energy changes in reactions under conditions of constant volume
 - No work is done because V must change for pressure– volume work to be performed
- Device used Bomb calorimeter
 - Weighed reactants are placed within a rigid steel container and ignited
 - Energy change is determined by the increase in temperature of the water and other calorimeter parts

Figure 6.7 - A Bomb Calorimeter

Constant-Volume Calorimetry (continued 1)

- For a constant-volume process, $\Delta V = 0$
 - Therefore, $w = -P\Delta V = 0$

$$\Delta E = q + w = q = q_V$$
 (constant volume)

- Energy released by the reaction
 - = temperature increase × energy required to change the temperature by 1° C
 - $= \Delta T \times$ heat capacity of calorimeter

Constant-Volume Calorimetry (continued 2)

• Since no work is done in this case, ΔE is equal to the heat

$$\Delta E = q + w = q$$
 since $w = 0$

Example 6.6 - Constant-Volume Calorimetry

- It has been suggested that hydrogen gas obtained by the decomposition of water might be a substitute for natural gas (principally methane)
 - To compare the energies of combustion of these fuels, the following experiment was carried out using a bomb calorimeter with a heat capacity of 11.3 kJ/° C

Example 6.6 - Constant-Volume Calorimetry (continued)

- When a 1.50-g sample of methane gas was burned with excess oxygen in the calorimeter, the temperature increased by 7.3° C
- When a 1.15-g sample of hydrogen gas was burned with excess oxygen, the temperature increase was 14.3° C
 - Compare the energies of combustion (per gram) for hydrogen and methane

Example 6.6 - Solution

- Where are we going?
 - To calculate ΔH of combustion per gram for H₂ and CH₄
 - What do we know?
 - 1.50 g CH₄ $\Rightarrow \Delta T = 7.3^{\circ}$ C
 - 1.15 g $H_2 \Rightarrow \Delta T = 14.3^{\circ}$ C
 - Heat capacity of calorimeter = 11.3 kJ/° C
 - What do we need?
 - $\Delta E = \Delta T \times$ heat capacity of calorimeter

Example 6.6 - Solution (continued 1)

- How do we get there?
 - What is the energy released for each combustion?
 - For CH_4 , we calculate the energy of combustion for methane using the heat capacity of the calorimeter (11.3 kJ/ $^{\circ}$ C) and the observed temperature increase of 7.3 $^{\circ}$ C

Energy released in the combustion of 1.5 g CH₄ =
$$(11.3 \text{ kJ/°C})(7.3 \text{°C})$$

= 83 kJ

Example 6.6 - Solution (continued 2)

Energy released in the combustion of 1 g CH₄ = $\frac{83 \text{ kJ}}{1.5 \text{ g}}$ = 55 kJ/g

For H₂,

Energy released in the combustion of 1.15 g $H_2 = (11.3 \text{ kJ/°C})(14.3 \text{°C})$ = 162 kJ

Energy released in the combustion of 1 g H₂ = $\frac{162 \text{ kJ}}{1.15 \text{ g}}$ = 141 kJ/g

Section 6.2 Enthalpy and Calorimetry

Example 6.6 - Solution (continued 3)

- How do the energies of combustion compare?
 - The energy released in the combustion of 1 g hydrogen is approximately 2.5 times that for 1 g methane, indicating that hydrogen gas is a potentially useful fuel

Section 6.2 Enthalpy and Calorimetry

Join In (11)

- If 5.0 kJ of energy is added to a 15.5-g sample of water at 10.° C, the water is:
 - a. boiling
 - b. completely vaporized
 - c. frozen solid
 - d. still a liquid

Section 6.2 Enthalpy and Calorimetry

Join In (12)

- A 50.0-g sample of water at 80° C is added to a 50.0-g sample of water at 20° C
 - The final temperature of the water should be:
 - a. between 20° C and 50° C
 - b. 50° C
 - c. between 50° C and 80° C

Hess's Law

• In going from a particular set of reactants to a particular set of products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps

Characteristics of Enthalpy Changes

- If a reaction is reversed, the sign of ΔH is also reversed
- Magnitude of ΔH is directly proportional to the quantities of reactants and products in a reaction
 - If the coefficients in a balanced reaction are multiplied by an integer, the value of ΔH is multiplied by the same integer

Critical Thinking

- What if Hess's law were not true?
 - What are some possible repercussions this would have?

Problem-Solving Strategy - Hess's Law

- Work backward from the required reaction
 - Use the reactants and products to decide how to manipulate the other given reactions at your disposal
- Reverse any reactions as needed to give the required reactants and products
- Multiply reactions to give the correct numbers of reactants and products

Interactive Example 6.8 - Hess's Law II

- Diborane (B₂H₆) is a highly reactive boron hydride that was once considered as a possible rocket fuel for the U.S. space program
 - Calculate ΔH for the synthesis of diborane from its elements, according to the following equation:

$$2B(s) + 3H_2(g) \rightarrow B_2H_6(g)$$

Interactive Example 6.8 - Hess's Law II (continued)

Use the following data:

Reaction

$$\Delta H$$

a.
$$2B(s) + \frac{3}{2}O_2(g) \rightarrow B_2O_3(s)$$

b.
$$B_2H_6(g) + 3O_2(g) \rightarrow B_2O_3(s) + 3H_2O(g)$$

c.
$$H_2(g) + \frac{1}{2}O_2(g) \to H_2O(l)$$

d.
$$H_2O(l) \rightarrow H_2O(g)$$

44 kJ

Interactive Example 6.8 - Solution

- To obtain ΔH for the required reaction, we must somehow combine equations (a), (b), (c), and (d) to produce that reaction and add the corresponding ΔH values
 - This can best be done by focusing on the reactants and products of the required reaction
 - The reactants are B(s) and $H_2(g)$, and the product is $B_2H_6(g)$

Interactive Example 6.8 - Solution (continued 1)

- How can we obtain the correct equation?
 - Reaction (a) has B(s) as a reactant, as needed in the required equation
 - Thus reaction (a) will be used as it is
 - Reaction (b) has B₂H₆(g) as a reactant, but this substance is needed as a product
 - Thus reaction (b) must be reversed, and the sign of ΔH must be changed accordingly

Interactive Example 6.8 - Solution (continued 2)

Up to this point we have:

(a)
$$2B(s) + \frac{3}{2}O_2(g) \rightarrow B_2O_3(s)$$
 $\Delta H = -1273 \text{ kJ}$
-(b) $B_2O_3(s) + 3H_2O(g) \rightarrow B_2H_6(g) + 3O_2(g)$ $\Delta H = -(-2035 \text{ kJ})$

Sum:
$$B_2O_3(s) + 2B(s) + \frac{3}{2}O_2(g) + 3H_2O(g) \rightarrow$$

 $B_2O_3(s) + B_2H_6(g) + 3O_2(g) \qquad \Delta H = 762 \text{ kJ}$

Deleting the species that occur on both sides gives

$$2B(s) + 3H_2O(g) \rightarrow B_2H_6(g) + \frac{3}{2}O_2(g) \quad \Delta H = 762 \text{ kJ}$$

Copyright ©2018 Cengage Learning. All Rights Reserved.

Interactive Example 6.8 - Solution (continued 3)

- We are closer to the required reaction, but we still need to remove $H_2O(g)$ and $O_2(g)$ and introduce $H_2(g)$ as a reactant
 - We can do this using reactions (c) and (d)
 - Multiply reaction (c) and its ΔH value by 3 and add the result to the preceding equation

Interactive Example 6.8 - Solution (continued 4)

$$2B(s) + 3H_2O(g) \to B_2H_6(g) + \frac{3}{2}O_2(g) \qquad \Delta H = 762 \text{ kJ}$$

$$3 \times (c) \quad 3\left[H_2(g) + \frac{1}{2}O_2(g) \to H_2O(l)\right] \qquad \Delta H = 3(-286 \text{ kJ})$$

Sum:
$$2B(s) + 3H_2(g) + \frac{3}{2}O_2(g) + 3H_2O(g) \rightarrow$$

$$B_2H_6(g) + \frac{3}{2}O_2(g) + 3H_2O(l) \quad \Delta H = -96 \text{ kJ}$$

Interactive Example 6.8 - Solution (continued 5)

- We can cancel the 3/2 $O_2(g)$ on both sides, but we cannot cancel the H_2O because it is gaseous on one side and liquid on the other
 - This can be solved by adding reaction (d), multiplied by 3:

$$2B(s) + 3H_{2}(g) + 3H_{2}O(g) \rightarrow B_{2}H_{6}(g) + 3H_{2}O(l) \quad \Delta H = -96 \text{ kJ}$$

$$3 \times (d) \quad 3[H_{2}O(l) \rightarrow H_{2}O(g)] \quad \Delta H = 3(44 \text{ kJ})$$

$$2B(s) + 3H_{2}(g) + 3H_{2}O(g) + 3H_{2}O(l) \rightarrow$$

$$B_{2}H_{6}(g) + 3H_{2}O(l) + 3H_{2}O(g) \qquad \Delta H = +36 \text{ kJ}$$

Interactive Example 6.8 - Solution (continued 6)

This gives the reaction required by the problem

$$2B(s) + 3H_2(g) \rightarrow B_2H_6(g)$$
 $\Delta H = +36 \text{ kJ}$

 Thus ΔH for the synthesis of 1 mole of diborane from the elements is +36 kJ

Join In (15)

• Given the following equation, which of the following statement(s) is (are) true?

$$S(s) + O_2(g) \longrightarrow SO_2(g)$$
 $\Delta H = ? 96 \text{ kJ}$

- I. The reaction is exothermic
- II. When 0.500 mol sulfur is reacted, 148 kJ of energy is released
- III. When 32.0 g of sulfur is burned, 2.96×10^5 J of energy is released

Homework

- 1. Which has the greater kinetic energy, an object with a mass of 2.0 kg and a velocity of 1.0 m/s or an object with a mass of 1.0 kg and a velocity of 2.0 m/s?
- 2. For the process $H_2O(l) \longrightarrow H_2O(g)$ at 298 K and 1.0 atm, ΔH is more positive than ΔE by 2.5 kJ/mol. What does the 2.5 kJ/mol quantity represent?

Thank you