SOC Midterm.md 5/2/2023

2D Discrete Wavelet transform design on ZYNQ

SOC System On Chip Lab

Final Project Proposal

Shun-Liang Yeh, NCHU Lab612

5/2/2023

INDEX

- 1. System Diagram
- 2. System Specifications
- 3. References

I. System Diagram

Main system diagram

• I plan to design a 2D-DWT IP utilizing the Systolic array architecture on to the ZYNQ board. The data flow would be controlled by the PS. Data extracted from DRAM using AXI DMA to On-Chip SRAM, later PS would send the data stream into the main IP block for signal processing. After processing the image, it would be write back to the DRAM.

SOC Midterm.md 5/2/2023

II. System Specifications

Signal Name	Directio	Width(bit)	description
	n		
rst	Input	1	非同步系統重置訊號。當此訊號為1時表示系統重置。
c1k	Input	1	系統時脈訊號。
start	Input	1	資料有效信號。當此訊號為1時表示輸入資料為有效。
stop	Output	1	程式處理完成終止信號
dm_r_dat	Input	16	指令讀取資料
dm_addr	Output	8	指令記憶體位置訊號
dm_w_dat	Output	16	資料寫入訊號
dm_wr	Output	8	資料寫入位置訊號

• The planned IP block before connecting to the AXI stream, I would first develop an 2D DWT IP block and test it using testbenches, later try to connect the I/O port onto the ZYNQ AXI interfaces.

Goal

- Being able to successfuly connect the IP onto the AXI interface and run full system integration.
- Being able to run real-time DWT processing with minimum area, high speed and high hardware ultilization
 efficiency.
- Show the result onto onto VGA through the I/O interface of ZYNQ.

III. References

[1] T. C. Denk and K. K. Parhi, "Systolic VLSI architectures for 1-D discrete wavelet transforms," Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284), Pacific Grove, CA, USA, 1998, pp. 1220-1224 vol.2, doi: 10.1109/ACSSC.1998.751521.

[2] VLSI DIGITAL SIGNAL PROCESSING SYSTEMS DESIGN AND IMPLEMENTATION, CH7 Systolic Architecture design, exercises 14, Prof. Keshab Parhi, p219

- [3] ZYNQ Training Playlist for AXI stream, Mohammad S. Sadri, 2014
- [4] Computer Architecture Lecture 27: Systolic Arrays (ETH Zürich, Fall 2020), Prof. Onur Mutlu