Assignment # 3 Solutions

due Friday, February 12th, 2021

1

The model can be formulated as follows:

Let $x_1 = \text{number of pecan pies sold.}$

 x_2 = number of packages of a dozen cookies sold.

 x_3 = number of 1-pound bags of shelled pecans sold.

 x_4 = number of 5-pound bags of unshelled pecans sold.

Note that 1 pound = 16 o.z..

$$\max z = 5x_1 + 3x_2 + 7x_3 + 16x_4$$

$$s.t. \quad \frac{(2)(4x_1)}{16} + \frac{(2)(6x_2)}{16} + 2x_3 + 5x_4 \le 5000$$

$$\frac{55x_1}{4} + \frac{15x_2}{2} \le 120 \times 60 = 7200$$

$$6x_1 + 4x_2 + 10x_3 + x_4 \le 300 \times 60 = 18000$$

$$x_i \ge 0, \quad \forall i = 1, 2, 3, 4.$$

 $\mathbf{2}$

(a) Solve the model using Excel. From the excel table, we observe that there are no extra resources available.

1	Items:	4 pecan pies	2 dozens of cookies	bags of shelled pecans	bags of unshelled pecans			
2	Profit per un	5	3	7	16			
3	Conditions:					Usage	Constraint	Available
4	unshelled pe	0.50	0.75	2.00	5.00	5000.00	<=	5000.00
	baking time							
5	constrain	13.75	7.50	0.00	0.00	7200.00	<=	7200.00
	members							
6	time	6.00	4.00	10.00	1.00	18000.00	<=	18000.00
7								
8	Production:							
9	pecan pies=	523.64						
10	dozens of co	0.00						
11	bags of shell	1449.02						
12	bags of unsh	368.03						
13	Return =	18649.77						

(b) Below is the Sensitivity Report for this model. Shadow prices may vary depending on the units you chose to use for your constraints.

7			Final	Reduced	Objective	Allowable	Allowable
3	Cell	Name	Value	Cost	Coefficient	Increase	Decrease
	\$B\$9	pecan pies= 4 pecan pies	523.6363636	0	5	1E+30	2.372395833
0	\$B\$10	dozens of cookies= 4 pecan pies	0	-1.294034091	3	1.294034091	1E+30
1	\$B\$11	bags of shelled pecans= 4 pecan pies	1449.015152	0	7	4.93220339	0.6
_			252 22222	0	1.0	4.5	15.2
2	\$B\$12	bags of unshelled pecans= 4 pecan pies	368.030303	0	16	1.5	15.3
2 3	\$B\$12	bags of unshelled pecans= 4 pecan pies	368.030303	0	16	1.5	15.3
3	\$B\$12 Constrain		368.030303	0	16	1.5	15.3
3			368.030303 Final	Shadow	Constraint	Allowable	Allowable
3 4 C							
3 4 5	Constrain	ts	Final	Shadow	Constraint	Allowable	Allowable
3 4 5 6	Constrain	ts Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease

Assume that the unit of increase in unshelled pecans constraint is pounds and the units of increase in baking time and available time for shelling and packaging are hours.

From the report, if they can get 1 pound of unshelled pecans, the sales revenue will increase by \$3.1875. If the baking time is increased by 1 hour, the sales revenue will increase by 0.220454545 * 1*60 = \$13.22723. If the available time for shelling and packaging is increased by 1 hour, the sales revenue will increase by 0.0625 * 1*60 = 3.75. Thus baking time is the most valuable resource, and you'd be willing to pay up to about \$13.22 per additional hour.

- (c) If they get an additional 500 pounds of pecans, revenue will increase by $3.1875 \times 500 = \$1593.75$. By contrast, if they can get an additional 30 hours of oven time, revenue will increase by $30 \times 60 \times 0.22045 = \396.81 . So, they should choose an additional 500 pounds of pecans.
- (d) Let x_1 = number of pecan pies sold.

 x_2 = number of packages of a dozen cookies sold.

 x_3 = number of 1-pound bags of shelled pecans sold.

 x_4 = number of 5-pound bags of unshelled pecans sold.

Note that 1 pound = 160.z.

$$\max z = 5x_1 + 3x_2 + 7x_3 + 16x_4$$

$$s.t. \quad \frac{(2)(4x_1)}{16} + \frac{(2)(6x_2)}{16} + 2x_3 + 5x_4 \le 5000$$

$$\frac{55x_1}{5} + \frac{15x_2}{3} \le 120 \times 60 = 7200$$

$$6x_1 + 4x_2 + 10x_3 + x_4 \le 300 \times 60 = 18000$$

$$x_i \ge 0, \quad \forall i = 1, 2, 3, 4.$$

Solving this model yields an optimal revenue of \$19046.59. The revenue increases by 19046.59 - 18649.77 = 396.82, which is less than the cost \$3000. So, they should not buy the oven.

3

(a) Changing the coefficient of objective function might affect the shadow price. Hence, if the objective function changes, we should not use the same sensitivity analysis from the original model. Since we do not know how profit is formulated, there may be different answers.

(Interpretation 1) The processing time reduces by 10% and cost per item increases by 10%. If the profit is related to cost incurred from processing time and cost of each item, the effect cancel out so that the profit remains the same. Hence, we can use the original model to perform sensitivity analysis.

Va	riable 0	Cells					
			Final	Reduced	Objective	Allowable	Allowable
	Cell	Name	Value	Cost	Coefficient	Increase	Decrease
	\$B\$15	Sweatshirts-F = (dozen)	175.555556	0	90	11.92307692	40
	\$B\$16	Sweatshirts-B/F = (dozen)	57.7777778	0	125	13.21428571	11.92307692
	\$B\$17	T-shirt-F = (dozen)	500	0	45	1E+30	4.111111111
	\$B\$18	T-shirt-B/F = (dozen)	0	-10.33333333	65	10.33333333	1E+30
Co	netraint	te					
Со	onstraint	:s	Final	Shadow	Constraint	Allowable	Allowable
Co	onstraint Cell	S Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
Co						741104444110	
Co	Cell	Name	Value	Price	R.H. Side	Increase	Decrease
Co	Cell \$F\$10	Name Blank sweatshirts Usage	Value 233.3333333	Price 0	R.H. Side 500	Increase 1E+30	Decrease 266.6666667
Co	Cell \$F\$10 \$F\$11	Name Blank sweatshirts Usage Blank T-shirts Usage	Value 233.3333333 500	Price 0 4.111111111	R.H. Side 500 500	1E+30 185.7142857	Decrease 266.6666667 500

The profit will increase by 8 * 233.333 = \$18,666.64. We should take this alternative.

(Interpretation 2) If the profit is affected only by the cost of each item, then the objective function changes. We can not use sensitivity analysis from the original model. Reformulate the problem, we can see that the profit decreases. We should not undertake this alternative.

1 A product mix								
2								
3 Products:	Sweatshirt-F	Sweatshirt-B/F	T-shirt-F	T-shirt-B/F				
4	(dozen)	(dozen)	(dozen)	(dozen)				
5 Profit per dozen:	86.4	120.2	42.5	61.5				
6 Resources:					Usage	Constraint	Available	Left over
7 Processing time	0.09	0.225	0.072	0.189	72	<=	72	0
8 Cost	39.6	52.8	27.5	38.5	24456.6667	<=	25000	543.333333
9 Truck capacity	3	3	1	1	1200	<=	1200	0
10 Blank sweatshirts	1	1	0	0	233.333333	<=	500	266.666667
11 Blank T-shirts	0	0	1	1	500	<=	500	0
12								
13								
14 Production:								
15 Sweatshirts-F =	122.22222							
16 Sweatshirts-B/F =	111.111111							
17 T-shirt-F =	500							
18 T-shirt-B/F =	0							
19 Profit =	45165.5556							

(b) Quick-Screen could acquire 185 (Allowable increase: 185.7142857) extra T-shirts and increase its profit by 185 * 4.11 = \$760.35.

(c) If Quick-Screen produced equal numbers of each of the four shirts, we need to add the constraints in the original model such that $x_1 = x_2 = x_3 = x_4$. The optimal profit is \$36562.5 with $(x_1, x_2, x_3, x_4) = (112.5, 112.5, 112.5, 112.5)$.

1	A product mix								
2									
3	Products:	Sweatshirt-F	Sweatshirt-B/F	T-shirt-F	T-shirt-B/F				
4		(dozen)	(dozen)	(dozen)	(dozen)				
5	Profit per dozen:	90	125	45	65				
6	Resources:					Usage	Constraint	Available	Left over
7	Processing time	0.1	0.25	0.08	0.21	72	<=	72	0
8	Cost	36	48	25	35	16200	<=	25000	8800
9	Truck capacity	3	3	1	1	900	<=	1200	300
10	Blank sweatshirts	1	1	0	0	225	<=	500	275
11	Blank T-shirts	0	0	1	1	225	<=	500	275
12	x1 = x2	1	-1	0	0	0	=	0	0
13	x1 = x3	1	0	-1	0	0	=	0	0
14	x1 = x4	1	0	0	-1	0	=	0	0
15									
16									
17	Production:								
18	Sweatshirts-F =	112.5							
19	Sweatshirts-B/F =	112.5							
20	T-shirt-F =	112.5							
21	T-shirt-B/F =	112.5							
22	Profit =	36562.5							

4

(a) Let $x_1 =$ amount of money invested in Job training program.

 $x_2 =$ amount of money invested in Parks program.

 x_3 = amount of money invested in Sanitation program.

 $x_4 =$ amount of money invested in Mobile library program.

The model is as follows:

$$\begin{aligned} \max z &= 0.02x_1 + 0.09x_2 + 0.06x_3 + 0.04x_4\\ s.t. \quad &x_i \leq 0.4*4,000,000 = 1,600,000, \quad \forall i = 1,2,3,4\\ &x_2 - x_3 - x_4 \leq 0\\ &- x_1 + x_3 \leq 0\\ &x_1 + x_2 + x_3 + x_4 = 4,000,000\\ &x_i \geq 0, \quad \forall i = 1,2,3,4. \end{aligned}$$

(b) The optimal value is 240000 with $(x_1, x_2, x_3, x_4) = (800000, 1600000, 800000, 800000, 800000)$.

3 Projects:	Job Training	Parks	Sanitation	Mobile Library				
4 Voles/Dollars	0.02	0.09	0.06	0.04				
5 Constraints:					Usage	Constraint	R.H.S.	Left over
6 Constraint 1	1	0	0	0	800000	<=	1600000	800000
7 Constraint 2	0	1	0	0	1600000	<=	1600000	0
8 Constraint 3	0	0	1	0	800000	<=	1600000	800000
9 Constraint 4	0	0	0	1	800000	<=	1600000	800000
10 Constraint 5	0	1	-1	-1	0	<=	0	0
11 Constraint 6	-1	0	1	0	0	<=	0	0
12 Constraint 7	1	1	1	1	4000000	=	4000000	0
13								
14								
15 Investments:								
16 Job Training =	800000							
17 Parks =	1600000							
18 Sanitation =	800000							
19 Mobile Library =	800000							
20 Votes =	240000							