Youdome 3D avatar reconstruction and measurement software For pro sport and health care diagnosis

Nicolas Douillet, R&D engineer in body scanning 2018 - 2019

Outline

Overall goal: automate, improve and accelerate tape measure

body limb girths. Compute athlete's biometric profile

- (1): Point set processing
- (2): Mesh processing
- (3): Body measurements on mesh and results
- (4): Video demos
- (5): Data management and computation optimization
- (6): Customers, collaborations and partnerships

The dome

- Geodesic dome (truncated v-2-0 geoid)
- Acquisition system and computer inside.
- 20 IR sensors.

Point set processing steps

- (1): Realignement + bounding box thresholding
- (2): Outlier removal
- (3): Smoothing
- (4): Grid simplification / random decimation
- (5): Vertex normals computation

-

Point set processing

Raw noisy point set With artefacts

Processed point set

Reconstructed surface (triangular mesh)

Mesh processing steps

- (1): Holes and boundary detection, simplification, smoothing, hole filling
- (2): Mesh subselection and substripe selection
- (3): Isotropic **mesh slicing** algorithm
- (4) : Avatar slicing video
- (5): Avatar stick skeleton
- (6): Avatar advanced segmentation and labelling
- (7): Vectorized / oriented slicing

Hole and boundary detection, hole filling

→ Need to cut the mesh above the ground (~zero level altitude thresholding) to correct Poisson mesh bulky reconstructed feet.

Boundary detection

Feet cut hole filling I Contour isobarycentre

Feet cut hole filling II
Ensure curvature continuity

Mesh subselections

- Vectorized bounding boxes basic principle (point set then mesh)
- Usefull for segmentation and for CPU performances improvement
- → Avoid to process all the mesh and allows instead to select only the area of interest.

Bust

Mesh slicing beginings 1: simulation data

Muscle modelization (point set + mesh) and measure its transversal slice perimeter

Theoritical exact perimeter, pi/2 = 1.5708; measured perimeter, 1.5948; Relative error Δ ϵ / ϵ = 1.53%

Mesh slicing beginings 2: real data

Given mesh

Mesh slicing

- Exact and robust slices
- Compute new points (intersections)

Triangles belt selection

Avatar slices

Sliced rebuilt avatar

Stick skeleton computational steps

Sliced skeleton

+ extremities & junctions

+ landmarks

→ Avatar advanced segmentation

Segmentations steps

Avatar 1st rough segmentation

- 4 limbs + trunk + bust
- based on evolution of contours number
- Robust, but lacks of accuracy for further measurements

Avatar 2nd full segmentation

- 8 half limbs
 - + 4 extremities
 - + head
 - + 3 parts trunk
- Uses landmarks Information in addition and relative position location a priori.
- Best accuracy

Body measurements on mesh and results

- (1): Landmarks level / altitude detection
- (2): Limb girths and body perimeter curves
- (3): Lumbar profile extraction and bending values estimation
- (4): 2D Convex hull in 3D option for slices girth

-

Landmarks detection: examples

Required precision on landmarks location: ~5 cents coin diameter

Results: limb girths

Advanced segmentation

Vectorized slicing

Lumbar profile

Results: athlete's body shape profile

Results: athlete's body balance estimation

Convex hull of the slice

Vectorized / oriented slicing

Advanced segmentation allows to perform a second slicing, which axis is oriented following the limb longitudinal direction, and provides the best measurement accuracy for avatar upper limb girths especially.

-

Video demo I : slicing + athlete's biometric profile

Data management and computation optimization

- Body scan (x3) + avatar point set generation : < 5s (Christian Barat)
- Point set processing + mesh generation + mesh processing + measurements : ~45s highly depending on avatar resolution (number of triangles).
- Code vectorization
- Parallel processing : for and while loops for the slicing algorithm
- Anonymous (RGPD) athlete scan automatic folder and files creation and biometric data analysis update.

-

Functions graph

Platform interface

Point set

Main challenges to rise and solutions found

Challenges	Solutions
Wide range of body shapes and morphologies (men / women, body mass index, young, old, body shape adaptation / specialization to sport).	→ Integration of lots of test avatars with various morphologies (boxers, dancers, tennismen, climbers, swimmers, football players, bodybuilders, etc.).
Body imperfections and asymetries.	→ Global approach but no projection on an average morphology avatar.
Human morphological positioning and ratio a priori.	→ Local and relative landmarks positioning, human ratio tables.
Body positioning, hands, long « wild » hairs.	→ Body positioning protocole + beany.
Landmarks location algorithm and location precision.	→ Advanced segmentation and relative landmarks positioning
Computational ressources minimization (time, memory).	→ Vectorization, // processing, submesh selection, code optimization, point set and mesh simplifications.

-

Main partnerships and customers

Monaco football club

Les ballets de Monte Carlo (Monaco princess Grace dance academy)

 Reknown sportsmen in tennis, boxing, bodybuilding swimming, etc... (confidential)

Main collaborations

- Christian Barat, I3S / INRIA
 Acquisition, point set generation,
 3D reconstruction
- Maks Ovsjanikov, LIX Polytechnique Landmarks detection

- Clément Lavallard, Iccus / Diocles CEO

Thank you!