Exercise 20

陈志杰 524531910034

In this text, MST stands for minimum spanning tree.

Lemma 1. Every rooted tree has a leaf.

Proof. Suppose G = (V, E) is a rooted tree with root r. Let $r = x_0, \ldots, x_n = v$ be a simple path with maximal length. Assume v is not a leaf, i.e. v has a child u. Then $r = x_0, \ldots, v = x_n, u$ is the simple path connecting r and u, contradicting the maximality of $r = x_0, \ldots, x_n = v$. Thus v is a leaf, completing the proof.

Lemma 2. Suppose G = (V, E) and |V| > 1. Then there exists an internal vertex all of whose children are leaves.

Proof. Let r be the root and v_0 be the vertex with maximal level. $v_0 \neq r$ follows from |V| > 1, and thus v_0 has parent u. Suppose v_0, \ldots, v_n are all children of u, which have the same levels. Because v_0 has a maximal level, v_0, \ldots, v_n all have no children, i.e., are leaves. u satisfies the desired property.

Problem 1.

Proof. Let G = (V, E). We use induction on |V|. For the base case |V| = 1, there is 1 leaf and 0 internal vertices, which satisfies the desired property. Suppose n > 1 and the desired property holds for all cases where |V| < n. When |V| = n, let u the internal vertex with the property in Lemma 2. Let v_1, \ldots, v_n be all children of u where $n \ge 2$. Consider the induced subgraph $G' = (V \setminus \{v_1, \ldots, v_n\}, E')$ of G. It has no simple circuits. Because v_1, \ldots, v_n are leaves,

$$|E'| = |E| - n = |V \setminus \{v_1, \dots, v_n\}|.$$

Thus G' is a tree, with every internal vertex having at least 2 children. By induction hypothesis, G' has more leaves than internal vertices. The internal vertices of G are precisely the internal vertices of G' along with u; the leaves of G are precisely the leaves of G' except u, along with v_1, \ldots, v_n . By counting and $n \geq 2$, G has more leaves than internal vertices, closing the induction and completing the proof.

Problem 2.

Solution. The total weight of the MST is 28.

- (1) Add the edge with endpoints a, b.
- (2) Add the edge with endpoints a, e.
- (3) Add the edge with endpoints a, d.
- (4) Add the edge with endpoints d, c.
- (5) Add the edge with endpoints d, h.
- (6) Add the edge with endpoints d, p.
- (7) Add the edge with endpoints e, f.
- (8) Add the edge with endpoints e, i.

- (9) Add the edge with endpoints p, m.
- (10) Add the edge with endpoints p, l.
- (11) Add the edge with endpoints h, g.
- (12) Add the edge with endpoints m, n.
- (13) Add the edge with endpoints n, o.
- (14) Add the edge with endpoints f, j.
- (15) Add the edge with endpoints o, k.

Problem 3.

Solution. The total weight of the MST is 28.

- (1) Add the edge with endpoints a, b.
- (2) Add the edge with endpoints c, d.
- (3) Add the edge with endpoints d, h.
- (4) Add the edge with endpoints a, e.
- (5) Add the edge with endpoints b, c.
- (6) Add the edge with endpoints a, m.
- (7) Add the edge with endpoints m, p.
- (8) Add the edge with endpoints l, p.
- (9) Add the edge with endpoints e, i.
- (10) Add the edge with endpoints n, o.
- (11) Add the edge with endpoints e, f.
- (12) Add the edge with endpoints q, h.
- (13) Add the edge with endpoints m, n.
- (14) Add the edge with endpoints f, j.
- (15) Add the edge with endpoints k, o.

Problem 4.

Proof. Let G be a connected weighted graph. Let $\ell(e)$ denote the weight of an edge e. That G has a spanning tree follows from its connectivity. We use proof by contradiction and assume that T = (V, E) and T' = (V, E') are two distinct MSTs, i.e., $S = (E \setminus E') \cup (E' \setminus E) \neq \emptyset$. Let e be the unique element of S with least weight. Without loss of generality, suppose $e \in E \setminus E'$.

Add e to T' and we have a simple circuit e, e_0, \ldots, e_n , where $e_0, \ldots, e_n \in E'$. Because removing an edge in a simple circuit from a connected graph cannot disconnect it, $T'' = (V, E' \cup \{e\} \setminus \{e_i\})$ is a (spanning) tree for each $0 \le i \le n$. By the minimality of T' (in comparison to T''),

$$\sum_{e' \in E'} \ell(e') \le \sum_{e' \in E'} \ell(e') + \ell(e) - \ell(e_i),$$

which implies that $\ell(e_i) < \ell(e)$ for each $0 \le i \le n$ because weights of edges are pairwise distinct.

Because T contains no simple circuits, e, e_0, \ldots, e_n cannot all belong to E. Suppose $e_k \in E' \backslash E$. Now e is the element of S with least weight, and $e_k \in E' \backslash E \subseteq S$ has strictly less weight than e, a contradiction. The proof is completed.