MATH1058: Problem Sheet 0

Problem 1 (Diet problem, reprise). Let us consider an extension of the diet problem seen in the lectures to the case with a limited food availability.

Let I be the set of nutrients, J the set of foods, a_{ij} the amount (in grams) of nutrient i in a unit of food j, for all $(i,j) \in I \times J$, b_i the least amount (in grams) of nutrient $i \in I$ the diet should contain, q_j the availability (in units) of food of type $j \in J$, and c_j its cost (in pounds per unit).

Also assume that:

- the amount (in units) of food 1 should be no more than 50% of the total (amount of units).
- the amount (in units) of food 2 should be at least two times the total amount of all foods except for foods 1, 2, and 3.

Propose a linear programming formulation for this problem (where the total cost should be minimized).

Problem 2 (Shoes). We own a small shoe factory, producing 5 types of shoes. Three people work for us. The time needed by each of them to create a ready-to-sell pair of shoes of each type is reported in the following table (in hours per pair):

Type/employee	1	2	3
1	1.5	3.5	4
2	1.8	2	3
3	2	1	2.5
4	2.5	1.5	3.5
5	3.5	3.5	4.2

Due to production constraints imposed by the unions, each employee must work no less than 8 hours a day, but no more than 10.

The next table indicates, for each type of shoes, the selling price and an estimate of the corresponding demand on the market:

Type	Price	Demand
1	56	4
2	86	3
3	45	3
4	42	5
5	65	8

Propose a mathematical programming formulation for the problem of choosing how many pairs of each shoe to manufacture so as to maximizing the total revenue, subject to production and demand constraints.