

Preliminary

Bluetooth ® Low Energy wireless module

■ Overview

MK71050-03 is a Bluetooth® Low Energy (here in after LE) wireless module which is integrating ML7105C-001 Bluetooth LE SoC, E2PROM, 26MHz crystal oscillator, 2.4GHz PCB pattern antenna and passive components. It has Bluetooth® LE compliant 2.4GHz band radio communication capability.

MK71050-03 is suitable for applications such as Healthcare device, Remote Controller or PC peripherals.

■ Features

• Bluetooth® SIG Core Spec v4.0 compliant

• Radio certification

MIC JAPAN(certification no:006-000238)

FCC (FCC ID:2ACIJ71050-3)

CE(R&TTE)

Integrating ML7105C-001 Bluetooth[®] LE single mode LSI

• Integrating 26MHz xtal oscillator

• Integrating 128kbit EEPROM

• Single power supply 1.8V to 3.6V

• Operating Temperature -20 deg.C to 70 deg.C

• Current Consumptions

Deep Sleep Mode 0.8uA(Typ.) (with external Low Power Clock)

Idle Mode3mA (Typ.)TX mode9mA (Typ.)RX mode9mA (Typ.)

• Dimension 10.7mm(W) x 13.6mm (L) x 1.78mm (H)

• Pb Free, RoHS compliant

• Product Name MK71050-03

■Schematics

■Pin assignment

TOP VIEW

■Pin definitions

No	Pin Name	I/O	Ana/Dig	I/O type	Function
1	ANT_GND				Antenna GND(※Refer to PIN descriptions.)
2	NC				No connection (**Refer to PIN descriptions.)
3-4	ANT_GND				Antenna GND(※Refer to PIN descriptions.)
5	NC				No connection (※Refer to PIN descriptions.)
6	OUT_ANT	INOUT	ANA		Output from Antenna
					(to be connected to OUT_MOD by user's PCB)
7	OUT_MOD	INOUT	ANA		Output from Module
					(to be connected to OUT_ANT by user's PCB)
8	GND		GND	GND	GND
9	VDDCORE		PWR	VCC	Internally generated power supply,
10	VDDBAT		PWR	VCC	Power supply 1.8 to 3.6V,
					require 10uF capacitor.
11	LPCLKBUS	INOUT	ANA	DIRIO	Please use this pin open.
12	LPCLKIN	INOUT	ANA	DIRIO	Low Power clock input
13	REGC	OUT	ANA	DIRIO	REGOUT, require 10uF capacitor.
14	EFUSE		DIG	DIRIO	Control signal for EFUSE programming,
45	ODIDIN	15.1	DIO	01400	fix to GND for normal usage
15	SPIDIN	IN	DIG	CMOS,	Data input for SPI slave
16	SPIDOUT	INOUT	DIG	IN CMOS,	Data output for SPI slave
10	SFIDOUT	INOUT	DIG	BiDIR	Data output for SFT slave
17	SPIXCS	IN	DIG	CMOS,	Chip select for SPI slave
''	01 17.00	111	Dio	IN	Only select for or I slave
18	SPICLK	IN	DIG	CMOS,	Clock input for SPI slave
	01.1021		5.0	IN	Stock input for or relate
19	GND		GND	GND	GND
20	UART_TXD	OUT	DIG	CMOS,	Data TX port for UART
	_			OUT	
21	UART_RXD	IN	DIG	CMOS,	Data RX port for UART
				IN	
22	GND		GND	GND	GND
23	SDA	INOUT	DIG	CMOS,	SDA data port for I2C
				BiDIR	
24	SCL	INOUT	DIG	CMOS,	SCL clock port for I2C
	ODIO0/DE 4.0TI)/E	IN IOLIT	DIO.	BiDIR	ODIO: UDE A II
25	GPIO0/RF_ACTIVE	INOUT	DIG	CMOS,	GPIO inout/RF_Active
26	CDIO1ANAKEUD	INOUT	DIC	BiDIR	CDIO inquit/M/AKELID
26	GPIO1/WAKEUP	INOUT	DIG	CMOS, BiDIR	GPIO inout/WAKEUP
27	GPIO2/IRQ	INOUT	DIG	CMOS,	GPIO inout/IRQ
"	Si iOZ/ii\Q		210	BiDIR	
28	GPIO3/PS_CONTR	INOUT	DIG	CMOS,	GPIO inout/external switch control (Q1)
	OL			BiDIR	(To be connected to FETGATE by user's PCB.)
29	FETGATE	IN	DIG		Gate control Pin of internal FET (To be connected
					to PS_CONTROL by user's PCB.)
30	TMODE	IN	DIG	CMOS,	Test mode control, fix to GND for normal usage
				IN	
31	RESETB	IN	DIG	CMOS,	Reset, low active
				IN	
32	A0	IN	ANA	DIRIO	Analog Test Pin0
33	A1	IN	ANA	DIRIO	Analog Test Pin1
34	NC				No connection (※Refer to PIN descriptions.)
35	ANT_GND				Antenna GND(※Refer to PIN descriptions.)

36	NC	 		No connection (※Refer to PIN descriptions.)
37-48	ANT_GND	 		Antenna GND(**Refer to PIN descriptions.)
49-52	GND	 GND	GND	GND

■PIN descriptions

I/O symbol I_{RF} : RF input output pin

I : Digital input pin

 $\begin{array}{lll} I_{pd} & : & Digital input with pull-down resistor \\ I_{AH} & : & Analog High voltage input pin \\ I_{SH} & : & Low power clock input pin \\ X_{SH} & : & Low power clock oscillator pin \end{array}$

O₂ : Digital output pin with 2mA load capability
B₂ : Digital bidirectional pin with 2mA load capability

B2PU : Digital bidirectional pin with 2mA load capability and pull-up resistor

●RF, Analog signals

#	Pin Name	Status/Value at reset	I/O	Active Level	Function
6	OUT_ANT		I_{RF}		Output from Antenna (to be connected to OUT_MOD by user's PCB)
7	OUT_MOD		I _{RF}		Output from Module (to be connected to OUT_ANT by user's PCB)
32	A0	Hi-Z	I _{AH}		Analog test pin0
33	A1	Hi-Z	I _{AH,}		Analog test pin1

●XO、LPXO signals

#	Pin Name	Status/Value at reset	I/O	Active Level	Function
11	LPCLKBUS	0V	X _{SH}		Please use this pin open.
12	LPCLKIN	I _{SH}	$X_{\text{SH}},I_{\text{SH}}$		Low power clock input

SPI signals

#	Pin Name	Status/Value at reset	I/O	Active Level	Function
15	SPIDIN	Input	I		SPI SLAVE Data input
16	SPIDOUT	Input	B2		SPI SLAVE Data output
17	SPIXCS	Input	I	Low	SPI SLAVE Chip Select
18	SPICLK	Input	I		SPI SLAVE Clock

UART signals

#	Pin Name	Status/Value at reset	I/O	Active Level	Function
20	UART_TXD	Output High	O ₂		UART TXD output
21	UART_RXD	Input	lpd		UART RXD input

LAPIS Semiconductor Co., Ltd.

MK71050-03

●I2C signals

#	Pin Name	Status/Value at reset	I/O	Active Level	Function
24	SCL	Input	B ₂ PU		I2C_SCL monitor pin.Please use this pin open.
23	SDA	Input	В2РИ		I2C_SDA monitor pin. Please use this pin open.

GPIO signals

#	Pin Name	Status/Value at reset	I/O	Active Level	Function
25	GPIO0 /RF_ACTIVE	Output Low	B2		GPIO inout/RF_ACTIVE output (default: RF_ACTIVE)
26	GPIO1 /WAKEUP	Input	B2		GPIO inout/WAKEUP input (default: WAKEUP)
27	GPIO2 /IRQ	Output High	B2		GPIO inout/IRQ output (default: IRQ)
28	GPIO3 /PS_CONTROL	Output Low	B2		GPIO inout/Control signal for external Switch (default: PS_CONTROL) (To be connected to FETGATE by user's PCB.)

Miscellaneous signals

#	Pin Name	Status/Value at reset	I/O	Active Level	Function
31	RESETB	Input	I	Low	Reset input (Low = Reset)
14	EFUSE				E-Fuse writing voltage supply(Fixed to Low)
30	TMODE	Input	I		TESTMODE input (Fixed to Low)
29	FETGATE	Input	I		FET gate control input (To be connected to PS_CONTROL by user's PCB.)

Regulator signal

#	Pin Name	Status/Value at reset	I/O	Active Level	Function
9	VDDCORE				Internally generated power supply. (Note)Don't short this pin.
13	REGC	1.2V 出力			Pin for de-coupling capacitor, require 10uF capacitor.

Power supply and Ground

#	Pin Name	Status/Value at reset	I/O	Active Level	Function
10	VDDBAT				Power supply 1.8 to 3.6V,require 10uF capacitor.
8	GND				GND
19	GND				GND
22	GND				GND
49-52	GND				GND

●ANT_GND signals

#	Pin Name	Status/Value at reset	I/O	Active Level	Function
1,3-4 35 37-48	ANT_GND				Antenna GND pins. ANT_GND pins has to be connected to board, but not to be connected any components on board. (Note) The pins are connected to GND in the module, but please use this pins open.

●NC signals

#	Pin Name	Status/Value at reset	I/O	Active Level	Function
2,5 34,36	NC				NC pins has to be connected to board, but not to be connected any components on board. Please use this pins open.

Unused pins

Followings are recommendation for unused pins.

#	Pin Name	Recommendation
2,5,34,36	NC	OPEN(NC pins has to be connected to board, but not to be connected any components on board.)
1,3-4,35 37-48	ANT_GND	Open(ANT_GND pins has to be connected to board, but not to be connected any components on board.)
11	LPCLKBUS	Open
14	EFUSE	Fix to 0V
15	SPIDIN	Fix to High
16	SPIDOUT	Fix to High
17	SPIXCS	Fix to High
18	SPICLK	Fix to High
20	UART_TXD	Open
21	UART_RXD	Fix to Low (See section for operating mode)
23	SDA	Open (Pull-up resistor in the module)
24	SCL	Open (Pull-up resistor in the module)
25	GPIO0/RF_ACTIVE	Open
26	GPIO1/WAKEUP	Fix to High or Low See section for operating mode
27	GPIO2/IRQ	Open
28	GPIO3/PS_CONTROL	To be connected to FETGATE by user's PCB.
29	FETGATE	To be connected to PS_CONTROL by user's PCB.
32	A0	Open
33	A1	Open

Remarks

If input pins are left open with High Impedance status, significant current consumption might be observed. All input pins have to be fixed high or low level to avoid such current consumption.

■ Electrical Characteristics

Absolute Maximum Rating

Item	Symbol	Condition	Rating	Unit
Power supply (*1)	VDDBAT		-0.3 to +4.6	V
Digital input voltage (*2)	VDIN		-0.3 to VDD+0.3	V
Digital output voltage (*3)	VDO	Ta = −20 to +70 deg.C	-0.3 to VDD+0.3	V
Analog HV IO voltage (*4)	Vah	GND=0V	-0.3 to VDD+0.3	V
Digital IO load current (*2)(*3)	IDO		-10 to +10	mA
Analog IO current (*4)	lA		−2 to +2	mA
Power Dissipation	PD		T.B.D.	W
Storage temperature	Tstg	_	-40 to +85	deg.C

^(*1) VDDBATpin

Recommended Operating Conditions

Item	Symbol	Condition	Min	Тур	Max	Unit
Power Supply	VDD	VDDBAT pin	1.8	3.3	3.6	٧
Ambient Temperature	Ta	-	-20	+25	+70	°C
Rising time digital input pins	t _{IR1}	Digital input/inout pins	_	_	20	Ns
Falling time digital input pins	t _{IF1}	Digital input/inout pins	_	_	20	Ns
Load capacitance digital	CDL	Digital output/inout pins	_	_	20	pF
Low Power Clock (32.768 kHz)	FLPCK1	LPCLKIN pin	–250 ppm	32.768	+250 ppm	kHz
Low Power Clock Input Duty Ratio	DLPCK1	External input from LPCLKIN, LPCLKBUS pin left OPEN	30	50	70	%
RF Channel frequency (*1)	FRF	OUT_MOD pin	2402	_	2480	MHz
RF input level	PRFIN	_	-70	_	-10	dBm

^(*1) Frequency range F = 2402 + 2 x k [MHz]here k=0, 1,2,...,39.

^(*2) IO pins with I, IPD, B2 symbol in pin definition (*3) IO pins with O₂,B₂ symbol in pin definition (*4) IO pins with IAH, I_{SH}, X_{SH}, symbol in pin definition

Current consumption

(Ta = 25 deg.C)

Item	Symbol	Condition	Min	Тур	Max	Unit
	IDD1	Deep Sleep state (External Low Power Clock)	-	0.8	1	uA
	IDD2	Idle state	-	3	ı	mA
Current Consumption	IDD3	RF RX state	_	9	ı	mA
Current Consumption	Inn4	RF TX state (-6dBm)	-	9	ı	mA
	IDD4 R	RF TX state (0dBm)	_	10.9	-	mA

(note) Condition:Ta=25dec.C, VDDBAT=3.3V

DC characteristics

(Ta = -20 to +70 deg.C)

						<u> </u>
Item	Symbol	Condition	Min	Тур	Max	Unit
H level Voltage Input	VIH1	(*1) (*2) (*5)	V _{DD} X0.7	_	Vdd	V
L level Voltage input	VIL1	(*1) (*2) (*5)	0	-	VDD X0.3	V
LPCLKIN pin H level Voltage Input	VIH2	(*3)	1	-	VDD	V
LPCLKIN pin L level Voltage input	VIL2	(*3)	0	-	0.3	V
H level Voltage Output	Vон	Iон = -2mA (*4) (*5)	V _{DD} × 0.75	_	VDD	V
L level Voltage Output	Vol	IoL = 2mA (*4) (*5)	0	-	V _{DD} × 0.25	V
Input pin capacitance	CIN	F=1MHz (*1) (*2) (*4) (*5)	_	8	_	pF

^(*1) IO pins with I symbol in pin definition
(*2) IO pins with IPD symbol in pin definition
(*3) IO pins with ISH symbol in pin definition
(*4) IO pins with O2 symbol in pin definition
(*5) IO pins with B2 symbol in pin definition

●RF Characteristics

(Ta = -20 to +70 deg.C)

					(1a 20	to 170 acg.c
Item	Symbol	Condition	Min	Тур	Max	Unit
TX						
Maxium TX power	P _{OUT}	0dBm setting	-	0	_	dBm
Centre Frequency tolerance	F _{CERR}	Master Clock tolerance < 40 ppm	-40	_	40	ppm
Modulation data rate	D _{RATE}	_	-	1	_	Mbps
Modulation index	F _{IDX}	_	0.45	0.50	0.55	_
Bandwidth-bit rate products BT	ВТ	GFSK	_	0.5	_	_
RX						
Receiver Sensitivity	P _{SENS}	PER =30.8% (*1)	_	-85	-70	dBm
Maximum input level(*2)	P _{RXMAX}	PER=30.8% (*1)	-	-	-10	dBm
	P _{RSSIMAX}	Upper	-50	-	-	dBm
RSSI detection range	P _{RSSIMIN}	Lower	_	_	-80	dBm

^(*1) PER=30.8% is corresponding to BER=0.1%

●SPI interface

 $(Ta = -20 \sim +70 ^{\circ}C)$

Item	Symbol	Condition	Min	Тур	Max	Unit
SPICLK Clock Frequency	Fsclk		16.384	32.768	1625	kHz
SPIXCS input setup time	Tcesu		1/Fsclk	-	-	ms
SPIXCS input hold time	Тсен		1/Fsclk	-	-	ms
SPICLK high pluse width	Тwскн		250	_	_	ns
SPICLK low pluse width	Twckl	Landan and the control	250	_	_	ns
SPIDIN input setup time	Toisu	Load capacitance CL=20pF	5	-	-	ns
SPIDIN input hold time	TDIH	OL 2001	250	-	-	ns
SPICLK output delay time	Тскор		-	-	250	ns
SPIDOUT output hold time	Трон		5	-	-	ns
SPIXCS output enable delay time	TCEEN		0	_	300	ns
SPIXCS output disable delay time	TCEDIS		150	_		ns

Remarks: All timing specification is defined at VDDIO x 20% and VDDIO x 80% SPIXCS input setup/hold time have to be at least 1cycle of SPICLK clock frequency

Measurement point

^(*2) Condition: Ta = 25° C \ VDDHV = 3.3V

(*) SPIDOUT becomes Hi-Z input when SPIXCS is High.So please insert the pull-up or pull-down resister .

■UART interface

(Ta = -20 to +70 deg.C)

Item	Symbol	Condition	Min	Тур	Max	Unit
Baud Rate	FBAUD	Load capacitance CL=20pF	-	57600	_	bps(Hz)

Reset operation

(Ta = -20 to +70 deg.C)

Item	Symbol	Condition	Min	Тур	Max	Unit
RESETB propagation delay time (Power on)	TRDL	Start supplying power (VDDBAT)	20	ı	-	ms
Reset pulse width	TRPLS	RESETB pin	1	-	-	us

Power on reset function

Reset function from RESETB pin

It is possible to reset internal circuit by asserting RESETB after power supply is on.

It is possible to reset internal circuit by same way even if it is not power sequence. Internal circuit will move to normal state after oscillation circuit become stable by clock stabilizing circuit after reset function.

Power on

(Ta = -20 to +70 deg.C)

Item	Symbol	Condition	Min	Тур	Max	Unit
VDD pin rising time	Tpwon	While power on VDD pins (VDDBAT)	0.2	1	5	ms
Power off Time	Tpwoff	VDD pins(VDDBAT)	10	-	-	ms
Initial power level	Vвоот	VDD pins(VDDBAT)	-	-	0.3	V

■Operating mode

Following 3 operating modes are available to use

BACI Mode: Application mode using SPI-SLAVE interface

HCI Mode: HCI mode (Bluetooth LE standard compliant) using UART interface.

RAM Mode: Function extention mode downloading user program to internal memory

■Operating mode configuration

Configuration of operating mode will be done by pin status shown in table below. The symbol "X" is don't care, it has to be used as normal function. When configure operating mode, reset has to be issued. RAM mode and Debug mode is distinguished by configuration parameter.

Operating mode	Pin confitions
Operating mode	UART_RXD
BLI Mode	Low
HCI Mode(*1)	High
RAM Mode	Х

^(*1)Please fix wakeup pin to low level when using in HCI mode.

Please refer to ML7105C-001 data sheet and associtated documentation for more detail.

■ Module dimension

Unit:mm

■Application example

- (*1) SPIDOUT becomes Hi-Z input when SPIXCS is High.So please insert the pull-up or pull-down resister .
- (*2) Please be careful to satisfy the RESETB propagation delay time(T_{RDL}).

 And if the state of reset signal is undefined after power on reset of HOST-CPU, please insert the pull-up or pull-down resistor.

■Appendix

●PCB Land Pattern

Metal Keep-Out Area / Reference layout of RF trace line

TOP VIEW

Radio certitication

MIC JAPAN(certification no:006-000238)

MK71050-03 complies with MIC JAPAN radio certification.(certification no:006-000238)

FCC (FCC ID: 2ACIJ71050-3)

This device complies with Part 15 of the FCC Rules.

Operation is subject to the following two conditions:

(1)this device may not cause harmful interference, and (2)this device must accept any interference received, including interference that may cause undesired operation.

The regulatory label on the final system must include the statement: "Contains FCC ID: 2ACIJ71050-3" or using electronic labeling method as documented in KDB 784748.

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.

The antenna used for this transmitter must not be collocated or operating in conjunction with any other antenna or transmitter within a host device, except in accordance with FCC multi-transmitter product procedures.

The final system integrator must ensure there is no instruction provided in the user manual or customer documentation indicating how to install or remove the transmitter module except such device has implemented two-ways authentication between module and the host system.

OEM Responsibilities to comply with FCC Regulations

This module has been certified for integration into products only by OEM integrators under the following condition:

- The transmitter module must not be colocated or operating in conjunction with any other antenna or transmitter.

As long as the conditions above are met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).

IMPORTANT NOTE:

In the event that any of these conditions can not be met (for example the reference trace specified in this manual, or use of a different antenna), then the FCC authorization is no longer considered valid and the FCC ID can not be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

CE(R&TTE)

MK71050-03 complies with the radio test requirements (EN 300 328 V1.8.1) ,which is based on the R&TTE Directive (1999/5/EC).

EMC and Safety test that is required for the CE marking should be done in the final end-product.

■ Caution

When implementing this product to double-sided printed board, please do not implement this product for the first time reflow side. (Opposite side reflow is prohibited due to module weight.)

■ Revision History

Document No.	Date	Page		
		Previous Edition	Current Edition	Description
PEDK71050-03-01	May,01,2014	_	_	Preliminary edition 1
PEDK71050-03-02	May,28,2014	3	3	Deleted 1 Pin Mark.
		8	8	Storage temperature [OLD]-40~+125°C → [New]-40~+85°C
		14	14	Added 1pin direction and direction Mark.
PEDK71050-03-03	Jul,03,2014	8	8	Deleted Power Dissipation.
PEDK71050-03-04	Jul,17,2014	3,5,6,15	3,5,6,15	Name changed. [OLD]G1~G4 [New]49pin~52pin
		14	14	Module dimension is updated.
		15	15	Added the note about reset signal.
PEDK71050-03-05	Nov,14,2014	1	1,18	Added the description of Radio certification.
		-	18	Caution was added.
		14,16	14,16	Unit:mm was added.
		4-5	4-5	Changed the explanation of LPCLKBUS.
		10	10	Changed the condion and specification of Tx Power.
PEDK71050-03-06	Dec,15,2014	17	17	Added the reference layout of RF trace line.
		18	18	Added the note of FCC certification.

NOTES

No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd

The content specified herein is subject to change for improvement without notice.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any

damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Copyright 2014 LAPIS Semiconductor Co., Ltd.