Centre for Energy Studies

Energy Ecology Environment – ESL 710

Major Test

Time: 2 hrs.				nagor rest			MM. 50		
			PART	: A (35	MAKRS)				
l.	a) Derive an expression for adiabatic lapse rate							(5)	
	b) Suppose the following altitude versus temperature data has been collected:								
	Altitude (M)	0	100	200	300	400	500	600	
	Temp. ("C)	20	18	16	15	16	17	18	
	1. What would be the mixing depth? (2)								
	2. How high would be expect a plum to rise if it is emitted at 21 C from a 100 m stack if it rise at dry adiabatic lapse rate. What you expect the shape of the plum to be like? (3)								
2.	A stack emitting 80 g/s of NO has an effective height of 100 m. The wind speed is 4 m/s at 10 m and it is summer day (p=0.15). Estimate the ground level NO ₂ eoncentration directly down wind at a distance of 2 km. Does it exceeds ambient air standards of (0.05 ppm) (σ y = 290 m σ z = 234 m) (5)								
3.	. a) Derive an expression for earth effective black body temperature. Give the explanation for the difference between effective and actual mean earths temperature. (6)								
	b) The solar flux arriving at the out edge of atmosphere varies by ± 3.3 % as the earth moves in its orbit. By how many degrees would the earthe's effective temperature will vary as a result. (4)								
4.	. a) Given an over view of the global warming problem.							(4)	
	b) International agreements on global warming (3)								
	c) Ozonc layer as protective sheet and effects of CFCs.								

PART: B (15 MAKRS)

- a) Differentiate between the key features of 'C-cycle' and 'N-cycle'.
 Discuss the role of microorganisms in the 'N-cycle' with the help of a neat labeled diagram.
 - b) write notes on any two:
 - i) Acid mine drainage waste and control measures
 - ii) Eutrophication problem and control measures
 - iii) Ground water pollution and control measures (4)
 - c) An effluent treatment plant is the source of P for a lake with 150 x 10⁶ m² surface water. The effluent flow rate is 0.8 m³/s and its P conc. is 0.05 g/m³. A stream having 20 m³/s of flow also joins the lake. If p settling rate is estimated to be 30 m/yr, estimate the average P concentration in the lake. What % removal of P at the treatment plant would be required to keep the average lake concentration below 0.01 g/m³. (4)
 - d) Discuss bow 'DO' level in aquatic ecosystem is affected by 'Thermal stratification' in summer and winter. (2)