CSCI 460— Operating Systems

Lecture 7

Process Management—Deadlock and Starvation

Textbook: Operating Systems by William Stallings

1. Deadlock Concepts

• Deadlock — a simple staircase example.

• Deadlock — a classical case of deadlock.

2. Seven Examples of Deadlock in CS

\bullet Deadlocks on file requests

• Deadlocks in databases

• Deadlocks in device allocation

• Deadlocks in multiple device allocation

ignored

• Deadlocks in spooling

ignored

• Deadlocks in disk sharing

ignored

• Deadlocks in a network

see the scanned handout

3. Conditions for Deadlock

• Mutual exclusion

if it is much witer, there won't be a deadlock

• Resource holding

4. Modeling Deadlocks

• Directed Graph method (Holt,1972)

• A system is deadlocked iff there is a directed cycle.

5. Handling Deadlocks

- Prevention (prevent 1 of the 4 conditions from happening)
 Mutual exclusion. Ex. a unit of CPU time can't be shared.
 Resource holding. Ex. Try to satisfy a job's request completely.
 No preemption. Ex. Allow 05 to deallocate resources from jobs.
 Circular waiting. Ex. Try to force the graph to be
 - Avoidance (Banker's Algorithm)
 - -1. No customer will be granted a loan exceeding the bank's total capital.

without cycles, e.g., numbering the

Same resources as #1, #2, #3 ---

- -2. A customer will be given a maximum credit limit.
- -3. No customer will be allowed to borrow over the limit.
- -4. Sum of all loans \leq bank's total capital.