Useful R code

Matthew Malishev^{1*}

¹ Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA, USA, 30322

Contents

Overview
Install dependencies
Classes
Dataframes
ggplot functions
NAs
Plotting
Reading in files/data
Subsetting
R Markdown
Web scraping

Date: 2018-08-04 R version: 3.5.0

This document can be found at https://github.com/darwinanddavis/UsefulCode

 $[\]hbox{*Corresponding author: $matthew.malishev@gmail.com}$

Overview

This document outlines some useful R code for plotting, cool functions, and other random tidbits.

Install dependencies

```
packages <- c("rgdal","dplyr","zoo","RColorBrewer","viridis","plyr","digitize","jpeg","devtools","image.
if (require(packages)) {
    install.packages(packages,dependencies = T)
    require(packages)
}
lapply(packages,library,character.only=T)</pre>
```

Classes

Convert character to factor to numeric without conversion error

```
read.table(f,header=T,sep=",",row.names=NULL,stringsAsFactors=FALSE, strip.white=TRUE)
f$V2<-as.numeric(f$V2)</pre>
```

See call options for class

```
methods(class="estUDm")
```

Set dynamic input for variable / assign variable to char vector

```
shadedens<-function(shadedens){ # set shade density to clumped (to match food) or sparse
  if (shadedens == "Random"){
    NLCommand("set Shade-density \"Random\" ")
    }else{
    NLCommand("set Shade-density \"Clumped\" ")
    }
}
shadedens("Clumped") # set clumped resources</pre>
```

Dataframes

Optimal empty data frame

Add df cols with mutate

```
df <- data.frame("a"=rnorm(10),"b"=(1:20))
df %>%
    mutate(
    "c"=rnorm(20),
    b = b *67
)
```

ggplot functions

}

Remove annoying stock gridlines from plot window

```
plot + theme bw() +
  theme(panel.border = element_blank(), panel.grid.major = element_blank(),
                            panel.grid.minor = element_blank(), axis.line = element_line(colour = "blac")
# alternative (after loading agridges library)
theme_ridges(grid=F,center_axis_labels = T)
Setting global graphics theme for ggplot
plot_it_gg <- function(bg,family){ # bg = colour to plot bg, family = font family
  theme_tufte(base_family = family) +
  theme(panel.border = element_blank(),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        panel.background = element_rect(fill = bg,
                                         colour = bg),
        plot.background = element_rect(fill=bg)
 ) +
   theme(axis.line = element_line(color = "white")) +
   theme(axis.ticks = element_line(color = "white")) +
    theme(plot.title = element text(colour = "white")) +
   theme(axis.title.x = element_text(colour = "white"),
          axis.title.y = element text(colour = "white")) +
```

Put plot in function to take dynamic data inputs

theme(axis.text.x = element_text(color = "white"),

axis.text.y = element_text(color = "white")) +

theme(legend.key = element_rect(fill = bg)) + # fill bg of legend
theme(legend.title = element_text(colour="white")) + # legend title
theme(legend.text = element_text(colour="white")) # legend labels

Ref: http://jcborras.net/carpet/visualizing-political-divergences-2012-local-elections-in-helsinki.html

Using ggplot when looping through for loop and saving to dir

```
pdf("mypdf.pdf",onefile = T)
for(i in 1:3){
par(bty="n", las = 1)
```

```
grid.arrange(
ggplot(data, aes(x = X, y = Y, fill=..x..)) + # geom_density_ridges()
    # scale = overlap
geom_density_ridges_gradient(scale = 5, size=0.2,color="black", rel_min_height = 0.01,panel_scaling
geom_density_ridges(scale = 5, size=0.2,color="black", rel_min_height = 0.01,fill="white",alpha=0.2
    # geom_density_ridges(scale = 5, size=0.2,color="white", rel_min_height = 0.01,fill=col,alpha=0.5)
    scale_fill_viridis(name = "Diameter", alpha=0.1, option = "magma",direction=-1) + # "magma", "infer
    xlim(c(0,25)) +
    labs(title = paste0("Title_",i)) +
    xlab("X") +
    ylab("Y") +
    # plot_it_gg("white")
)
} # end loop
dev.off()
```

NAs

Replace NAs with 0's

```
df[is.na(df)] <- 0
```

Replace X values less than given value (V) with 0

```
df\$X[df\$X<V] <- 0
```

Check for NAs

```
sapply(df, function(x) sum(is.na(x)))
```

Replace NaN and Inf values with NA

```
df$col1[which(!is.finite(df$col1))] <- NA</pre>
```

Fill in missing data values in sequence with NA

```
\# /Users/malishev/Documents/Manuscripts/Chapter4/Sims/Chapter4_figs.R
library(zoo)
data \leftarrow data.frame(index = c(1:4, 6:10),
 data = c(1.5,4.3,5.6,6.7,7.1,12.5,14.5,16.8,3.4))
#you can create a series
z <- zoo(data$data, data$index)</pre>
#end extend it to the grid 1:10
z <- merge(zoo(,1:10), z)
#worked example
# fill in missing Tb values
minTb.d <- zoo(minTb$Tick,minTb$Days)</pre>
minTb.d <- merge(zoo(NULL,1:days), minTb.d) # make the minTb series match the temp series (117 days)
minTb.d <- as.numeric(minTb.d) # = time individuals reached VTMIN in ticks
minTb <- minTb.d - temp$Tick # qet diff between starting time and time to reach VTMIN
minTb <- minTb/2 # convert ticks to minutes
minTb <- minTb/60 #convert to hours
minTb <- data.frame("Days"=1:days,"Time"=minTb)</pre>
# then fill in missing values
```

```
approx(minTb$Time,method = "linear")
```

Plotting

Plot one plot window above and two below

```
layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE))
```

Bookend axis ticks for plot E.g. at 0 and 100 when data is 1:99

```
axis(1,at=c(0,length(loco$X)),labels=c("",""))# bookending axis tick marks
```

Optimal legend formatting for base

```
legend("right",legend=c("Small","Intermediate","Large"),col=c(colfunc[colvec[1:3]]),
    bty="n",pch=20,pt.cex=1.5,cex=0.7,y.intersp = 0.5, xjust = 0.5,
    title="Size class",title.adj = 0.3,text.font=2,
    trace=T,inset=0.1)
```

Plot inset plot in current plot (https://stackoverflow.com/questions/17041246/how-to-add-an-inset-subplot-to-topright-of-an-r-plot)

Interactive plots with rCharts (javascript and d3 viz)

http://ramnathv.github.io/rCharts/

```
require(devtools)
install_github('rCharts', 'ramnathv')
```

Cluster plot

https://rpubs.com/dgrtwo/technology-clusters

```
library(readr)
library(dplyr)
library(igraph)
library(ggraph)
library(ggforce)

# This shared file contains the number of question that have each pair of tags
# This counts only questions that are not deleted and have a positive score
tag_pair_data <- read_csv("http://varianceexplained.org/files/tag_pairs.csv.gz")</pre>
```

```
relationships <- tag_pair_data %>%
  mutate(Fraction = Cooccur / Tag1Total) %>%
  filter(Fraction >= .35) %>%
  distinct(Tag1)
v <- tag_pair_data %>%
  select(Tag1, Tag1Total) %>%
  distinct(Tag1) %>%
  filter(Tag1 %in% relationships$Tag1 |
         Tag1 %in% relationships$Tag2) %>%
  arrange(desc(Tag1Total))
a <- grid::arrow(length = grid::unit(.08, "inches"), ends = "first", type = "closed")
set.seed(2016)
relationships %>%
  graph_from_data_frame(vertices = v) %>%
  ggraph(layout = "fr") +
  geom_edge_link(aes(alpha = Fraction), arrow = a) +
  geom_node_point(aes(size = Tag1Total), color = "lightblue") +
  geom_node_text(aes(size = Tag1Total, label = name), check_overlap = TRUE) +
  scale_size_continuous(range = c(2, 9)) +
  ggforce::theme_no_axes() +
  theme(legend.position = "none")
```

Reading in files/data

Read in file manually

```
get.file.vol <- read.table(file.choose())#read file manually
v.file <- get.file.vol[1:100,1]#get the volume</pre>
```

Loop through files from dir and append to list

```
# reading in spdf (hrpath) files from drive
setwd("/Users/camel/Desktop/Matt2016/Manuscripts/MalishevBullKearney/Resubmission/2016/barcoo sims/barc
file.list<-list.files()
hrs75<-as.list(rep(1,100)) # empty list
for (f in 1:100){
    load(file.list[f])
    hrs75[f]<-hrpath
}

# working version
#converting spdf into mcp(spdf,100,unout="m2)
ghr<-list()
for (i in hrs75[1:10]) {
    m<-mcp(i,100,unout='m2')
    ghr<-c(ghr,m)
};ghr</pre>
```

Subsetting

Select specific rows E.g. select rows of sfeed_move not in foodh

```
library(sqldf)
a1NotIna2_h <- sqldf('SELECT * FROM sfeed_move EXCEPT SELECT * FROM foodh')
a1NotIna2_l <- sqldf('SELECT * FROM sfeed_move EXCEPT SELECT * FROM foodl')
# select rows from sfeed_move that also appear in foodh
a1Ina2_h <- sqldf('SELECT * FROM sfeed_move INTERSECT SELECT * FROM foodh')
a1Ina2_l <- sqldf('SELECT * FROM sfeed_move INTERSECT SELECT * FROM foodl')</pre>
```

R Markdown

Hide unwanted code output, such as inherent examples for functions

```
# ```{r, cache = TRUE, tidy = TRUE, lazy = TRUE, results='markup'}
```

Web scraping

Scraping web tables

 $http://web.mit.edu/\sim r/current/arch/i386_linux26/lib/R/library/XML/html/readHTMLTable.html\% \\ 5Bhttp://web.mit.edu/\sim r/current/arch/i386_linux26/lib/R/library/XML/html/readHTMLTable.html\% \\ 5D$

```
library(XML)
readHTMLTable()
```

Scraping Twitter timelines

See complete example at http://varianceexplained.org/r/trump-tweets/

```
# https://cran.r-project.org/web/packages/twitteR/
library(dplyr)
library(purrr)
library(twitteR)
```