PODSTAWY MODELOWANIA MATEMATYCZNEGO W INŻYNIERII

PRACA LABORATORYJNA NR 1

"Stosowanie układów równań liniowych algebraicznych w modelowaniu matematycznym"

Piotr Krawiec L1 Semestr: 2021/2022 Kierunek: III/FS0-DI Numer indeksu: 164165

Prowadzący: Bohdan Datsko

1 Treść zadania

Wyznaczyć prądy gałęziowe dla obwody elektrycznego zadanego przez prowadzącego zajęcia i ocenić skuteczność obliczeń i użytych metod numerycznych.

- 1. Zapisać układ równań Kirchoffa dla otrzymanego zadania.
- 2. Wyznaczyć prądy gałęziowe dla obwodu elektrycznego w pakiecie oprogramowania Scilab.
- 3. Obliczyć normy dla macierzy współczynników zapisanego układu równań $\|A\|_1$, $\|A\|_2$, $\|A\|_\infty$ i wskaźniki uwarunkowania α_1 , α_2 , α_∞ . Porównać wyniki.
- 4. Zamienić niektóre parametry wejściowe (R_i, E_i) w granicach 10 procentów.
- 5. Wyznaczyć prądy gałęziowe dla obwodu elektrycznego dla zmienionych parametrow.
- 6. Obliczyć wskaźniki uwarunkowania zmienionej macierzy.
- 7. Porównać wyniki i sformułować krótkie podsumowanie o skuteczność obliczeń i użytych metod numerycznych.

1.1 Badany układ

Rysunek 1: Schemat nr 3.

Nr\Parametry	R_{-1}	$R_{-}2$	R_{-3}	R_{-4}	$R_{-}5$	R6	\mathbf{E}_{-1}	$\mathbf{E}_{-}2$
13	5	4	24	40	12	18	140	220

Tabela 1: Parametry modelowanego układu

2 Rozwiązanie

Rozwiązanie zacznę od zapisania układów równań, a następnie dalsza część zostanie wykonana w programie SciLab.

2.1 Zapisanie układu równań

Układ został zbudowany na podstawie Pierwszego oraz Drugiego prawa Kirchhoffa. Na podstawie pierwszego prawa zapisać można w-1 równań, gdzie w to ilość węzłów. Równania te oznaczono w_1, w_2, w_3 i dotyczą prądów wpływających i wypływających do węzłów 1, 2 i 3 (patrz Rys 1), które różnią się od poprzednich o co najmniej jedną gałąź. Z drugiego prawa otrzymujemy g-w+1 równań, gdzie g to ilość oczek w układzie (patrz Rys 1). Równania te oznaczone są i_{11}, i_{22}, i_{33} . Gotowy układ równań znajduje się poniżej.

$$\begin{cases}
I_4 - I_5 - I_6 = 0 & (w_1) \\
I_3 - I_2 + I_5 = 0 & (w_2) \\
I_1 - I_3 - I_4 = 0 & (w_3) \\
E_2 - R_5 I_5 - R_2 I_2 + R_6 I_6 = 0 & (i_{11}) \\
R_4 I_4 - R_3 I_3 + R_5 I_5 = 0 & (i_{22}) \\
R_3 I_3 - E1 + R_1 I_1 + R_2 I_2 - E_2 = 0 & (i_{33})
\end{cases} \tag{1}$$

Podstawiając dane z tabeli 1 i przekształceniu go do postaci macierzowej otrzymujemy:

$$\begin{bmatrix} 0 & 0 & 0 & 1 & -1 & -1 \\ 0 & -1 & 1 & 0 & 1 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & -4 & 0 & 0 & -12 & 18 \\ 0 & 0 & -24 & 40 & 12 & 0 \\ 5 & 4 & 24 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 220 \\ 0 \\ -140 \end{bmatrix} = 0$$
 (2)

2.2 Skrypt w Scilab

```
// Schemat nr 13
// Definicje parametrów początkowych
E_1 = 140
E_2 = 220

R_1 = 5
R_2 = 4
R_3 = 24
R_4 = 40
R_5 = 12
R_6 = 18

// Definicja układu równań
A = [
[0 ,0 ,0 ,1 ,-1 ,-1 ];
[0 ,-1 ,1 ,0 ,1 ,0 ];
[1 ,0 ,-1 ,-1 ,0 ,0 ];
```

```
[0, -R_2, 0, 0, -R_5, R_6];
         ,-R_3 ,R_4
[0 ,0
                          ,R_5 ,0 ];
[R_1, R_2]
           ,R_3 ,0
                          ,0
                                 ,0];
b = [0;0;0;E_2;0;-E_1]
// Rozwiązanie układu w postaci Ax + b = 0
solution = linsolve(A, b)
// Obliczenie norm: 1, 2, inf
norm1 = norm(A,1)
norm2 = norm(A, 2)
norm_inf = norm(A, 'inf')
// Obliczenie wskaźników uwarunkowania
a1 = norm(A, 1) * norm(inv(A), 1)
a2 = norm(A, 2) * norm(inv(A), 2)
a_inf = norm(A, 'inf') * norm(inv(A), 'inf')
// Zmiana parametrów +- 10 %
// Ponowne obliczenie macierzy, prądów i norm
R_1 = 5.4
R_2 = 4.3
R_3 = 24.6
R_4 = 40
R_5 = 13
R_{6} = 17
A = [
[0 ,0
         ,0 ,1 ,-1 ,-1 ];
[0 ,-1
          , 1
                 ,0
                          ,1
                                 ,0];
[1 ,0
                                 ,0];
          ,-1
                  ,-1
                          ,0
[0, -R_2]
           ,0
                  ,0
                          ,-R_5
                                 ,R_6];
[0 ,0
                                 ,0];
          ,-R_3
                  ,R_4
                          ,R_5
[R_1, R_2]
           ,R_3
                  ,0
                          ,0
                                 ,0];
]
solution = linsolve(A, b)
norm1 = norm(A, 1)
norm2 = norm(A,2)
norm_inf = norm(A, 'inf')
a1 = norm(A, 1) * norm(inv(A), 1)
a2 = norm(A, 2) * norm(inv(A), 2)
a_inf = norm(A, 'inf') * norm(inv(A), 'inf')
```

3 Wyniki obliczeń

3.1 Wyniki dla danych z Tabeli 1

```
E_1
    = 140.
E_2 = 220.
R_1 = 5.
R_2 = 4.
R_3 = 24.
R_4 = 40.
R_5 = 12.
R_6 = 18.
   0.
         0.
               0.
                       1.
                            - 1.
       - 1.
                       0.
               1.
                              1.
                                     0.
   1.
         0. - 1.
                    - 1.
                              0.
                                     0.
   0.
      - 4.
               0.
                            - 12.
                       0.
                                     18.
        0. - 24.
                       40.
                              12.
                                     0.
   5.
         4.
               24.
                       0.
                              0.
                                     0.
b
   0.
   0.
   0.
   220.
   0.
 - 140.
solution =
   3.6812038
   9.6405183
   3.4596628
   0.2215410
   6.1808555
 - 5.9593145
norm1 = 50.
norm2 = 50.057196
norm_inf = 76.
a1 = 81.851749
a2 = 54.041233
a_{inf} = 107.99053
```

3.2 Wyniki po zmianach

```
R_1 = 5.4

R_2 = 4.3

R_3 = 24.6

R_4 = 40.

R_5 = 13.

R_6 = 17.

A = 0. 0. 0. 1. -1. -1.
```

```
- 1.
                            0.
                                            0.
   0.
                   1.
                                    1.
   1.
           0.
                 - 1.
                          - 1.
                                    0.
                                            0.
         - 4.3
   0.
                   0.
                            0.
                                  - 13.
                                            17.
                                    13.
   0.
           0.
                 - 24.6
                            40.
                                            0.
   5.4
                   24.6
                            0.
           4.3
                                    0.
                                            0.
solution
   3.388711
   9.3491813
   3.312987
   0.0757239
   6.0361942
 - 5.9604703
norm1
       = 51.2
norm2
       = 50.769532
           = 77.6
norm_inf
a1
    = 82.222127
    = 54.129481
a_inf
      = 107.62668
```

4 Porównanie wyników obliczeń

	Przed zmianą	Po zmianie			
$\overline{I_1}$	3.6812038	3.388711			
I_2	9.6405183	9.3491813	Parametr	Przed zmianą	Po zmianie
I_3	3.4596628	3.312987	R_{-1}		5.4
I_4	0.2215410	0.0757239	$R_{-}2$	4	4.3
I_5	6.1808555	6.0361942	R_{-3}	24	24.6
I_6	-5.9593145	-5.9604703	R_{-4}	40	40.
norm1	50.	51.2	$R_{-}5$	13	13.
norm2	50.057196	50.769532	$R_{-}6$	17	17.
$norm_{\infty}$	76.	77.6	E_1	140	140
a1	81.851749	82.222127	$\mathrm{E}_{-}2$	220	220
a2	54.041233	54.129481			
a_{∞}	107.99053	107.62668			

5 Podsumowanie

Zmiana parametrów w granicach 10 procent nie zmieniła znacząco żadnego z parametrów (żaden nie zmalał do 0 lub nie zwiększył kilkukrotnie). Znacząco nie zmieniło się także uwarunkowanie żadnego z przykładów (± 1), natomiast pierwszy układ jest lepiej uwarunkowany (ponieważ jego wskaźniki uwarunkowania są mniejsze). Największa zmiana parametrów nastąpiła dla prądu I_4 z 0.22 do 0.07. Żadna z norm nie jest mniejsza od 1, co nie znaczy, że użyta metoda iteracyjna się nie zbiegła.

Piotr Krawiec