

三菱电机通用变频器 PR-A8ND 使用手册

DeviceNet。通讯功能

1	使用之前
2	安装
3	接线
4	变频器的设定
5	功能的概要
6	对象图的概要
7	对象图

非常感谢您选择三菱电机通用变频器内置选件。

本使用手册记述有使用时的操作、留意点。由于对变频器的错误使用可能会引发意想不到的故障,所以使用之前请务必通读本使用手册,以便正确安全地使 用变频器。

此外,本使用手册请交付至使用客户手中。

安全注意事项

在全部熟读本使用手册及附属资料并能正确使用前,请勿安装、运行、维护或检查变频器。在熟悉机器的知识、安全信息以及全部有关注意事项以后再使用。在本使用手册中,将安全注意事项等级分为 "警告"和 "注意"。

▲警告

表示错误操作可能造成危险后果,导致死亡或重伤事故。

⚠注意

表示错误操作可能造成危险后果,导致中度伤害、轻伤及仅发生设备损失。

此外.

⚠注意

中记载的事项,根据情况的不同,注意等级的事项也可能造成严重后果。两者所记均为重要内容,请务必遵守。

◆ 防止触电

▲ 警告

- 变频器通电时,不可打开其前盖板和接线盖板。此外,不可在卸下前盖板和接线盖板的状态下运行变频器。否则可能会接触到高电压的端子和充电部分而造成触电事故。
- 即使电源断开,除接线、定期检查外,请勿拆下变频器的前盖板。否则,可能会由于接触变频器的充电回路而造成触电事故。
- 接线或检查,应在确认了变频器本体操作面板的指示灯已熄灭,并断开电源经过 10 分钟以上后,用万用表等检测电压以后再进行。切断电源后的一段时间内电容器仍为高压充电状态,非常危险。
- 接线和检查工作都应由专业技术人员进行。
- 应在安装内置选件后进行接线。否则会导致触电、受伤。
- 请勿用湿手碰触内置选件或插拔电缆。否则会导致触电。
- 请勿损伤电缆、勿对其施加过重的应力、勿使其承载重物或对其钳压。否则会导致触电。

◆ 防止损伤

注意

- 各个端子上施加的电压只能是使用手册上所规定的电压。否则会造成故障、损坏。
- 请勿错误地连接端子。否则会造成故障、损坏。
- 请勿弄错极性 (+、一)。否则会造成破裂、损坏。
- 通电时或电源切断后的一段时间内,变频器温度仍较高,因此请勿触摸。否则会导致烫伤。

◆ 其它注意事项

请充分注意以下注意事项。误操作会导致意外事故、受伤、触电等。

注意

搬运 · 安装

- 请勿安装和运行有损伤、缺少部件的内置选件。
- ●请勿攀爬变频器、或在其上放置重物。
- 必须遵守安装方向。
- 请勿让变频器中混入螺丝、金属片等导电性异物以及油等可燃异物。
- 进行木质包装材料的消毒、防虫措施时所使用的薰蒸剂中含有的卤素(氟、氯、溴、碘等)侵入本公司产品内部后,可能会造成故障。包装时,请注意勿使残留的薰蒸成分侵入本公司产品内部,或使用薰蒸以外的方法(热处理等)进行消毒及防虫措施。此外,请在包装前实施木质包装材料的消毒及防虫措施。

试运行调整

● 请在运行前进行各参数的确认、调整。有可能会因机械设备的原因而引起变频器意外动作。

▲ 警告

使用方法

- 请勿对设备进行改造。
- 请勿拆卸使用手册中没有记载的部件。否则会导致故障或损坏。

注意

使用方法

- 讲行了参数清除或全部清除后,运行前应再次设定必要的参数。各参数将恢复至初始值。
- 为了防止静电引起的损坏,在接触本产品前,应去除身体上的静电。

维护、检查和部件更换

- 请勿进行绝缘测试 (绝缘电阻测定)。
- 报废后的处理
- 应作为工业废弃物处理。

一般注意事项

◆本使用手册中的图片和图表,有些为了说明细节部位,所表示的是变频器已拆下了盖板或已取下了安全用断路器的状态,在运行变频器时务必按规定将盖板、断路器恢复原状,并按变频器使用手册的规定运行。

一目录一

1	使用之前	6
1. 1 1. 2 1. 3 1. 4	各部分名称 关于 MNS LED (显示运行状态)	. 7
2	安装 2	11
2. 1 2. 2 2. 3	安装前	12
3	接线 2	18
3. 1 3. 2	接线	
4	变频器的设定 2	22
	参数一览	23 24
4. 3	4. 3. 1 运行模式的切换与通讯启动模式 (Pr. 79、Pr. 340)	27
	- 发生通讯异常时的动作	30
4. 5 4. 6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

5	功能的概要	38
5. 1 5. 2		
6	对象图的概要	40
	关于 DeviceNet 通讯的对象模型. 数据通讯的种类. 3.2.1 I/0 通讯 (轮询)的概要. 5.2.2 信息通讯 (Explicit 信息连接)的概要.	41 42
6. 4	5.3.1 I/O 通讯 (轮询)的响应性能	43 44 44
7	对象图	45
	I/0 通讯 (轮询)的格式 7. 1. 1 输出实例 20/ 输入实例 70 (1. 2 输出实例 21/ 输入实例 71 7. 1. 3 输出实例 126/ 输入实例 176 (1. 4 输出实例 127/ 输入实例 177	45 47 49 53
	信息通讯 (Explicit信息连接) 7.2.1 等级 0x01 (标识对象) 7.2.2 等级 0x03 (DeviceNet 对象) 7.2.3 等级 0x04 (汇编程序对象) 7.2.4 等级 0x05 (DeviceNet 连接对象) 7.2.5 等级 0x28 (电机数据对象) 7.2.6 等级 0x29 (控制管理对象) 7.2.7 等级 0x24 (AC 驱动对象) 7.2.8 等级 0x66 (扩展对象 I) 7.2.9 等级 0x67 (扩展对象 II) 7.2.10 等级 0x70 ~ 0x79 (扩展对象 III) 7.2.11 等级 0x80 (扩展对象IV)	59 61 63 64 71 72 74 80 87 89

		12	
附	习	₹	98
		EDS 文件	

1.1 开封与产品的确认

从包装箱取出内置选件,确认表面的名称,并确认是否是您订单的产品或有无损伤。本产品是 FR-A800/F800 系列用内置选件。

◆ 确认包装

确认随附的内容。

NOTE

• DeviceNet 为 ODVA (Open DeviceNet Vender Association, INC) 的商标。

记号	名 称	说明	参照页
a	安装孔	用螺丝固定在变频器上,或安装间隔件。	13
b	通讯用接口	安装附带的端子排并连接至网络。	21
С	MNS LED (运行状态显示)	通过亮灯/闪烁/熄灯显示变频器的动作状态。	8
d	节点地址开关	设定节点地址。(初始状态下 X10、X1 均为 "0")	16
е	兼容模式用开关	可切换至 FR-A5ND 兼容模式。 (初始状态下,开关 1、开关 2 均为 0FF。)	95
f	接口	与变频器的选件接口连接。	13
g	厂家设定用开关	厂家设定用开关。请勿变更初始状态(OFF 🔳)。	_

• NOTE

- 兼容模式用开关的设定在接通变频器电源前进行,通电中请勿变更设定。否则会导致触电。
- 兼容模式用开关的开关 2 请勿设为 0N。

1.3 关于 MNS LED (显示运行状态)

MNS LED 通过亮灯情况显示选件单元的运行状态。

在第7页中确认 LED 的位置。

LED 显示	通知内容	处理方法	
	变频器电源 OFF	对变频器供给电源。	
	网络电源 OFF	供给网络电源。	
熄灯	电缆断线	确认 DeviceNet 电缆或连接器的接触不良、终端电阻的设置位置是否无问题。	
	网络上只存在自节点	对主站供给电源。	
	主站与变频器的波特率不同。	统一变频器侧的波特率(Pr. 346)的设定与主站侧的波特率的设定。	
		确认变频器侧的节点地址设定 (节点地址开关、Pr. 345)。	
绿色(闪烁)	通讯未建立 (电缆的连接及网络电源正常)	主站设为 RUN 模式。	
		确认主站发送的 $I/0$ 通讯大小(字节数)与变频器侧的 $Pr.346$ 中设定的 $I/0$ 通讯大小(字节数)是否一致。(关于主站的 $I/0$ 通讯大小的确认方法请参照主站设备的使用手册。)	

LED 显示	通知内容	处理方法
绿色 (亮灯)	通讯建立 (变频器电源 ON, 网络上的主站识 别本选件单元。 通讯中, LED 保持绿色(亮灯)。)	LED 亮绿色灯而变频器不动作时>针对通过 Pr. 346 指定的变频器的 I/O 通讯格式,确认想要的数据是否是由主站发送的。(关于主站侧的发送数据的确认方法请参照主站设备的使用手册。)确认变频器的运行模式已变为网络运行模式,或变频器的通讯运行指令权及操作权已变为通讯状态。
	Ⅰ/0 通讯的连接超时 *1	重新设定主站侧的 I/O 通讯的 EPR (Expected Packet Rate) 的设定值 *2。 (EPR 的设定方法请参照主站设备的使用手册。)
红色(闪烁)		确认 DeviceNet 电缆或连接器有无接触不良、终端电阻的设置位置是否无问题。
	网络电源 OFF	为确保网络电源不为 OFF,重新设定网络电源的供应方法。
	节点地址的重复	确认节点地址与其他设备不重复。
红色(亮灯)	波特率设定错误	统一变频器侧的波特率(Pr. 346)的设定与主站侧的波特率的设定。
3.5 ODA /	间歇发生电缆断线或网络电源 0FF,发生通讯异常*1	将主站与变频器(FR-ASND)进行1对1连接,连接终端电阻之后,查明电缆、连接器的接触不良位置及网络电源有无掉线。

- *1 变频器的运行指令权及速度指令权为通讯状态时,发生通讯异常。发送通讯异常时的变频器动作请参照第 31 页。
- *2 限制时间表示为 4×EPR。

(EPR = Expected Pack Rate 等级 0x05 实例 2 属性 9 (参照第65页))

1.4 规格

项 目		规 格			
控制电源		从变频器供给			
电源	网络电源	输入电压: 11 ~ 28V 消耗电流: 最大 90mA			
连接器类型		开路型连接器			
DeviceNet 通	 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	依照 ODVA DeviceNet 规格。Group2 服务器。支持 UCMM			
通讯电缆		应使用 DeviceNet 标准的粗电缆或细电缆。			
最大电缆长度		500m(125kbps) 250m(250kbps) 100m(500kbps)			
通讯速度		125kbps、250kbps、500kbps			
连接台数		64 台 (包括主站) 主站为 1 台时,最大连接台数为 64-1=63 台。			
应答时间		第 43 页参照			

2.1 安装前

确认变频器的输入电源与控制回路电源已关闭。

- 输入电源为 ON 的状态下请勿进行内置选件的安装、拆卸。否则可能会导致变频器或内置选件损坏。
 - 为了防止静电引起的损坏,在接触本产品前,应去除身体上的静电。

安装方法 2. 2

◆ 通讯选件 LED 显示盖板的安装

- (1) 拆下变频器的前盖板。(关于前盖板的拆卸方法,请参照变频器本体的使用手册(详细篇)的第2章。) 在变频器的前盖板上,安装用于显示通讯选件运行状态的 LED 的盖板。
- (2) 用剪钳等剪去位于变频器前盖板背面的卡爪,打开用于安装通讯选件 LED 显示盖板的开口。

(3) 为了使通讯选件 LED 显示盖板与选件基板的 LED 的位置一致,要从前盖板 的正面将通讯选件 LED 显示盖板嵌入,压入至以卡爪固定住为止。

请小心前盖板背面的卡爪被剪去后形成的切口,避免因其导致手部受伤等。

◆ 选件的安装

- (1) 通过安装螺丝将间隔件嵌入 2 处不固定的安装孔 (参照下页)。
- (2) 将内置选件的接口对准变频器本体侧接口的导轨切实插入至 深处。(安装在变频器的选件接口1上。)
- (3) 用附带的安装螺丝将接地板的左侧 1 处 (参照下页) 牢固地 固定在变频器本体上。(拧紧转矩 0.33N•m~0.40N•m)
- (4) 用附带的安装螺丝将内置选件的左侧 1 处与变频器本体牢固地固定,将右侧 1 处与接地板一起牢固地固定在变频器本体上。(拧紧转矩 0.33N·m ~ 0.40 N·m) 螺丝孔不符时,可能是连接器没有切实地插入,因此应加以确认。

螺丝与间隔件的安装位置

• NOTE

- 内置选件的安装、拆卸应手持选件的两端进行,注意请勿按压到选件基板面的部件。若按压部件等对其直接施加应力,会导致发生故障。
- 内置选件的安装、拆卸时,注意安装螺丝的掉落。
- 使用本内置选件时,安装在变频器的选件接口 1 上。如安装在选件接口 2、3 上,则保护功能(E. 2、E. 3)将会动作,无法运行。

此外,即使安装在选件接口1上,因安装不良等导致变频器无法识别实际安装的选件时,保护功能(E.1)将执行动作。

安装位置	报警显示	
选件接口1	E. 1	
选件接口 2	E. 2	
选件接口3	E. 3	

- 拆卸内置选件时,应将左右 2 处的螺丝拆下后垂直拔出。如果对接口施加压力有可能会导致损坏。
- 噪声有可能导致误动作, 因此务必安装接地板。

2.3 节点地址的设定

◆ 通过节点地址开关进行的设定

使用 FR-A8ND 基板上的节点地址开关(参照**第7页**),在 "0~63"间设定节点地址。设定在下次接通电源时或变频器复位时得以反映。

将对应的开关的箭头 (分) 对准数字, 以变成要设定的节点地址。

• 设定示例

X10的 "仓"对准 "0", X1的 "仓"对准 "1"。

节点地址 26 时:

X10的 "仓"对准 "2", X1的 "仓"对准 "6"。

- 变频器的节点地址设定在接通变频器电源前进行,通电中请勿变更设定。否则会导致触电。
- 节点地址开关应切实设定在开关数字的位置。如设定在中间位置则无法正常进行数据通讯。

正确示例 错误示例

- 将节点地址开关设定为 "64"以上的值时, Pr. 345 或等级 0x03、实例 1、属性 1 中设定的节点地址为有效。
- 不能设定与网络上其他机器重复的节点地址。(如重复设定则无法正常通讯。)

◆ 通过参数 (Pr. 345) 进行的设定

将节点地址开关设定为 "64"以上,设定变频器的参数 (Pr. 345 DeviceNet 地址)。将节点地址开关设定为 "0~63"时,节点地址开关的设定为节点地址。设定在下次接通电源时或变频器复位时得以反映。(参照**第 24** 页)

◆ 通过主站进行的设定

将节点地址开关设定为 "64"以上,从主站使用等级 0x03、实例 1、属性 1 进行设定。设定值将被反映至 Pr.345。将节点地址 开关设定为 " $0\sim63$ "时,节点地址开关的设定为节点地址。(参照**第** 61 页)解除全部连接,并立即反映。

3.1 与网络的连接

- (1) 将变频器连接至网络之前,应进行以下确认。
 - FR-A8ND 是否正确安装至变频器。(参照第 11 页)
 - 节点地址设定是否适当。(参照第16页)
 - 分支电缆是否正确连接至 FR-A8ND。(参照第 19 页)
- (2) 请确认终端电阻已安装至干线电缆的各终端 (C+与 C-之间)。应使用满足以下必要条件的终端电阻。

	终端电阻的必要条件	
R (电阻值) = 121Ω	1% 金属涂层	0.25W

- (3) 将分支电缆连接至干线电缆。
 - 如干线连接器为符合DeviceNet 规格的插 头或屏蔽连接器,则无论变频器电源是 0N 还是 OFF,均可与网络连接。此外,若 正确连接即可自动识别选件单元。
 - 通过无连接器的电线与干线电缆连接 时,有可能会发生2个以上的信号线短路 的情况,因此请务必关闭网络与变频器 的电源。

3.2 接线

(1) 从分支电缆的末端剥去约 40mm 的外皮,露出 4 种颜色的信号线与屏蔽线。

(2) 应剥去各信号线的外皮后再使用。如果剥开外皮过长,可能会有与邻线发生短路的危险。如果剥开外皮过短,可能会脱线。为避免散乱,应将电线捻好后再进行接线。此外,请勿采用焊接处理。

根据需要使用插针型冷压端子。

• NOTE

• 市售的插针型冷压端子产品示例: (截至 2012 年 2 月。)

端子螺丝	电线尺寸	2线尺寸 插针型冷压端子型号		4. 立厂字	厅拉工目到口
尺寸	(mm ²)	带绝缘套管	不带绝缘套管	生产厂家	压接工具型号
wo	$0.3 \sim 0.5$	AI 0,5-6WH	A 0, 5-6	菲尼克斯电气	CRIMPFOX 6
M3	$0.5 \sim 0.75$	AI 0,75-6GY	A 0, 75-6	中国公司	CRIMPFUX 6

插入至电线的芯线部分从套管露出 0 \sim 0.5mm 左右。 压接后,请确认插针型冷压端子的外观。请勿使用未正确压接或侧面有损伤的插针型冷压端子。

(3) 拧松端子螺丝,按照端子排列将电线插入端子。 用固定用螺丝以推荐拧紧转矩紧固各电线。

螺丝尺寸	拧紧转矩	电线尺寸	螺丝刀
М3	0.5N • m ~ 0.6N • m	$0.3\mathrm{mm}^2\!\sim\!0.75\mathrm{mm}^2$	小型⊖螺丝刀 (刀尖厚度: 0.4mm/刀尖宽度: 2.5mm)

NOTE :

- 如果没拧紧会导致脱线、误动作。拧得过紧会损坏螺丝或单元从而导致短路、误动作。
- (4) 将端子排安装至变频器上安装的通讯选件的通讯用接口上。

• NOTE

安装了内置选件的状态下,对变频器本体的 RS-485 端子接线时,为防止因噪声导致发生误动作,应避免接线与选件基板或变频器本体的基板发生接触。

● 接线时请勿在变频器内留下电线切屑。否则会导致异常、故障、误动作。

4 变频器的设定

4.1 参数一览

以下为使用内置选件(FR-A8ND)时相关的参数。 请根据需要进行设定。

Pr.	Pr. 组	名 称	设定范围	最小设定单位	初始值	参照页
79	D000	运行模式选择	$0 \sim 4$, 6, 7	1	0	27
338	D010	通讯运行指令权	0, 1	1	0	*3
339	D011	通讯速度指令权	0, 1, 2	1	0	*3
340*2	D001*2	通讯启动模式选择	0、1、2、10、12	1	0	27
342	N001	通讯 EEPROM 写入选择	0、1	1	0	*3
345*1、*2	N200*1、 *2	DeviceNet 地址	$0 \sim 4095$	1	63	24
346*1、*2	N201*1、 *2	DeviceNet 波特率	$0 \sim 4095$	1	132	25
349*1	N010*1	通讯复位选择	0、1	1	0	30
500*1	N011*1	通讯异常执行等待时间	$0 \sim 999.8s$	0.1s	0s	30
501*1	N012*1	通讯异常发生次数显示	0	1	0	31
502	N013	通讯异常时停止模式选择	0, 1, 2, 3	1	0	31
550*2	D012*2	网络模式操作权选择	0、1、9999	1	9999	*3
779	N014	通讯异常时运行频率	$0 \sim 590 \text{Hz}$, 9999	0.01Hz	9999	31

- *1 安装内置选件 (FR-A8ND) 时可显示的参数。
- *2 变频器复位后或下次电源 ON 时将反映设定值。
- *3 关于各参数的详细内容,请参照变频器本体的使用手册(详细篇)。

4.2 DeviceNet 数据

不使用 DeviceNet 配置工具,通过变频器的参数可进行 DeviceNet 通讯启动数据的设定。通过 EDS 文件 (参照**第 98 页**) DeviceNet 配置工具的设定方法请参照配置工具的使用手册。

4.2.1 DeviceNet 地址 (Pr. 345)

Pr.	名 称	设定范围	最小设定单位	初始值
345	DeviceNet 地址	$0 \sim 4095$	1	63

对 Pr. 345 定义如下。

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保	留		ResCom			保留				软		方点地:	址	

── 复位时选择持续通讯 (ResCom)

Bit	项目	初始值	设定范围	内容				
$0\sim 5$	软元件节点地址	63	0 ~ 63	将软元件的节点地址 (MAC ID) 设置 在 $0\sim63$ 的范围内。 *1	节点地址在DeviceNet对象等级0x03、 实例 1、属性 1 中也可设定。(参照第 61页)			
11	复位时选择持续通讯	0	0	与变频器同步后选件单元也复位。 连接超时时根据主站的动作可能不重启通讯,应释放连接,重新建立使其可通讯。*2				
	(ResCom)		1	即使变频器复位,选件单元也不复位,将持续通讯。 变频器复位后,若要通过网络运行模式启动,应事先设定 Pr. 340 ≠ 0。				
$12 \sim 15$	保留	0	0	应使用固定为 "0"。设定 "0"以外则按 Pr. 345 = "63"(初始值)动作				

- *1 为了将 Bit0~5的软元件节点地址变为有效,应将节点地址开关设为"64"以上。(参照第16页)
- *2 通过 DeviceNet 通讯的错误复位时将持续通讯。

DeviceNet 通讯下运行时,变频器复位后,若要通过网络运行模式启动,应事先设定 $Pr.340 \neq 0$ 。

4.2.2 DeviceNet 波特率 (Pr. 346)

Pr.	名 称	设定范围	最小设定单位	初始值
346	DeviceNet 波特率	$0 \sim 4095$	1	132

设定用于开始 DeviceNet 通讯的波特率等。

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保留输入汇编程序					输出	コリ 3届カ	程序		波朱	寺率					

Bit	项目	初始值	设定范围	内容	
			0, 3	125kbps	DeviceNet 对象等级 0x03、实例 1、
0、1 波特率	波特率	0	1	250kbps	属性2中也可设定。
			2	500kbps	(参照第 61 页)
			0	输出实例 20 (0x14)	• 输入汇编程序与输出汇编程序应设
			1	输出实例 21 (0x15)	定相同值。 •控制管理等级 0x29、实例 1、属性
$2\sim 6$	输出汇编程序	1	6	输出实例 126 (0x7E)	140、141 中也可设定。(参照 第 72
2 / 0	制 出 犯 狮 住 户		7	输出实例 127 (0x7F)	页)
			8、14	厂家设定用。请勿进行设定。	
			上述以外	输出实例 21 (0x15)	
			0	输入实例 70 (0x46)	
			1	输入实例 71 (0x47)	
$7 \sim 11$	输入汇编程序	1	6	输入实例 176 (0xB0)	
7 - 11	1削ノバル 9両 / 主/丁	1	7	输入实例 177 (0xB1)	
			8、14	厂家设定用。请勿进行设定。	
			上述以外	输入实例 71 (0x47)	

Bit	项目	初始值	设定范围	内容
12 ~ 15	保留	0	0	应使用固定为 "0"。

Pr. 346 应根据波特率与 I/0 通讯的输出 / 输入实例 (发送接收字节数)的组合进行如下表所示的设定。

波特率	I/0 通讯的输出实例 / 输入实例 (发送接收字节数)							
双付竿	20/70 (4)	21/71 (4)	126/176 (6)	127/177 (8)				
125kbps	0、3	132 (初始值)、135	792、795	924、927				
250kbps	1	133	793	925				
500kbps	2	134	794	926				

4.3 运行模式的设定

4.3.1 运行模式的切换与通讯启动模式 (Pr. 79、Pr. 340)

◆ 运行模式切换条件

在切换运行模式前应确认以下事项。

- 变频器是否已停止。
- STF 信号或 STR 信号是否为 ON。
- Pr. 79 运行模式选择的设定是否正确。 (在变频器操作面板中进行设定。)

◆ 接通电源时及瞬时停电电源恢复时的运行模式选择

可以选择接通电源时及瞬时停电电源恢复时的运行模式。 选择网络运行模式时,设定 Pr. 340 通讯启动模式选择 ≠ "0"。 在网络运行模式下启动后,可以通过网络进行参数的写入。

• NOTE

- Pr. 340 的设定值变更在接通电源时或变频器复位时有效。
- 在任何运行模式下都可以在操作面板中变更 Pr. 340。
- 设定为 Pr. 340 ≠ "0"时,务必切实进行变频器的各项初始设定。
- 变频器的运行模式为外部运行模式或切换模式,且从主站接收到通讯确立请求时,变频器的运行模式变为网络运行模式。

但是,错误复位后有可能变频器的运行模式会返回外部运行模式,且从主站不发送通讯确立请求,因此建议在预先设定为 $Pr.340 \neq "0"$ 之后再使用。

• Pr. 79、Pr. 340 的详细内容,请参照变频器本体的使用手册 (详细篇)。

Pr. 340 设定值	Pr. 79 设定值	接通电源时、电源恢复时、复位时的 运行模式	关于运行模式的切换			
	0 (初始值)	外部运行模式	可以切换至外部、PU、NET 运行模式 *1、*4			
	1	PU 运行模式	PU 运行模式固定			
0	2	外部运行模式	可以切换至外部、NET 运行模式 *4 不可切换至 PU 运行模式			
(初始值)	3、4	外部 /PU 组合模式	不允许切换运行模式			
	6	外部运行模式	持续运行的同时,可以切换至外部、PU、NET 运行模式 *4			
	7	X12 (MRS) 信号 ON: 外部运行模式	可以切换至外部、PU、NET 运行模式 *1、*4			
	1	X12 (MRS) 信号 OFF: 外部运行模式	外部运行模式固定 (强制切换到外部运行模式)			
	0	NET 运行模式				
	1	PU 运行模式				
	2	NET 运行模式				
1, 2 *2	3、4	外部 /PU 组合模式	与 Pr. 340 = "0"相同			
	6	NET 运行模式				
	7	X12 (MRS) 信号 ON: NET 运行模式				
	1	X12 (MRS) 信号 OFF: 外部运行模式				
	0	NET 运行模式	可以切换至 PU、NET 运行模式 *3、*4			
	1	PU 运行模式	与 Pr. 340 = "0"相同			
10, 12 *2	2	NET 运行模式	NET 运行模式固定			
10、12 *2	3、4	外部 /PU 组合模式	与 Pr. 340 = "0"相同			
	6	NET 运行模式	持续运行的同时,可以切换至 PU、NET 运行模式 *3、*4			
	7	外部运行模式	与 Pr. 340 = "0"相同			

- *1 无法直接切换 PU 运行模式与网络运行模式。
- *2 Pr. 340 的设定值 "2、12"主要在使用变频器本体的 RS-485 端子进行通讯运行时使用。 Pr. 57 再启动自由运行时间 ≠ "9999"(选择瞬时停电再启动)时,如果发生瞬时停电,变频器将以瞬时停电前的状态持续运行。 Pr. 340 = "1、10"时,从通讯开始在输入启动指令的状态下一旦发生停电,恢复通电时启动指令将变为 0FF。
- *3 可以通过操作面板的按键操作及 X65 信号切换 PU 运行模式和网络运行模式。
- *4 通过网络进行的切换请参照第76页。

4.4 发生通讯异常时的动作

4.4.1 发生通讯异常时的动作选择 (Pr. 500 ~ Pr. 502、Pr. 779)

网络运行时通过 Pr. 500 ~ Pr. 502、Pr. 779 的设定,可以选择发生通讯异常时的动作。

◆ 从通讯线路发生异常至通讯错误输出为止的设定时间

可以设定从通讯线路发生异常至通讯错误输出为止的等待时间。

Pr.	名 称	设定范围	最小设定单位	初始值
500	通讯异常执行等待时间	$0\sim999.8s$	0.1s	0s

如果通讯异常的时间超过 Pr500 的设定时间时,将识别为通讯错误。 在设定时间内恢复正常通讯时,不会出现通讯错误而持续运行。

◆ 通讯异常发生次数的显示和清除

可以了解发生通讯异常的累计次数。写入"0"时,将清除累计次数。

Pr.	名 称	设定范围	最小设定单位	初始值
501	通讯异常发生次数显示	0	1	0

在通讯线路发生异常时, Pr. 501 通讯异常发生次数显示会 +1。

• NOTE

• 通讯异常发生次数暂时保存在RAM中。由于在EEPROM中仅为每1小时存储1次,如果进行电源复位及变频器复位,根据复位时机的不同,Pr. 501 的内容可能为上一次 EEPROM 中存储的值。

◆ 发生通讯异常时的变频器动作选择

通讯线路异常或选件单元本身发生异常时,可以选择变频器的动作。

Pr.	名 称	设定范围	内容	
502	通讯异常时停止模式选择	0 (初始值)、1、2、3	参照第 32 页	
779*1	通讯异常时运行频率	$0\sim 590 \text{Hz}$	发生通讯异常时,以所设定的频率运行	
		9999 (初始值)	以发生通讯异常前的频率运行	

*1 设定 Pr. 502 = "3"时有效。

◆ 关于设定内容

• 发生异常时的动作

异常内容	Pr. 502 设定值	动作状态	显示	异常输出	
	0				
运过处的	1	持续*1	正常显示 *1	不输出 *1	
通讯线路	2	付供*1			
	3				
通河	0, 3	自由运行停止	E. 1 亮灯	输出	
通讯选件本身	1, 2	减速停止	停止后 E. 1 亮灯	停止后输出	

^{*1} 在 Pr. 500 的设定时间内恢复到正常通讯状态时,保护功能(E. 0P1)不动作。

• 发生异常后经过 Pr. 500 时的动作

异常内容	Pr. 502 设定值	动作状态	显示	异常输出	
	0	自由运行停止	E. OP1 亮灯	输出	
·중 ·피 샤· 마	1	建 体点。	はJ C p opt 支付	停止后输出	
通讯线路	2	减速停止	停止后 E. OP1 亮灯	子 松山	
	3	Pr. 779 的设定下持续运行	正常显示	不输出	
通河北 <i>州</i> 士 白	0, 3	停止状态持续*2	E. 1 持续 *2	输出持续 *2	
通讯选件本身	1, 2		C. 1 対		

^{*2} 无论 Pr. 500 如何,发生异常时会减速停止或自动运行停止,并异常输出。

• 异常解除时的动作

异常内容	Pr. 502 设定值	动作状态	显示	异常输出	
	0	凉	E. OP1 持续	输出持续	
선 선 토 (조)	1	停止状态持续	E. UPI 付头		
通讯线路	2	再启动	工器日 □	元 ₩ 山	
	3	正常运行	正常显示	不输出	
通讯选件本身	0, 3	停止状态持续	E. 1 持续	输出持续	
旭 爪匹什平另	1, 2	行	E. 1 付供		

• NOTE

- 保护功能 [E. 0P1 (异常数据: HA1)] 在发生通讯线路上的异常时动作,保护功能 [E. 1 (异常数据: HF1)] 在发生通讯 选件内部的通讯线路异常时动作。
- 异常输出表示输出异常 (ALM) 信号或报警位。
- 设定为实施异常输出时,异常内容将被存储在报警历史中。(在进行异常输出时,写入至报警历史。)
 不实施异常输出时,异常内容将暂时写入至报警历史的报警显示中,但不被保存。解除异常后,报警显示将复位恢复至正常的监视状态、报警历史恢复为先前的报警显示。
- Pr. 502 为 "1、2" 时,减速时间为正常的减速时间设定 (Pr. 8、Pr. 44、Pr. 45 等)。
- 再启动时的加速时间为正常的加速时间设定 (Pr. 7、Pr. 44 等)。
- Pr. 502 为 "2" 时, 再启动时的运行指令 速度指令依从异常发生前的指令。
- 通讯线路异常, Pr. 502 为 "2"的情况下,在减速中解除了异常时,从此时开始再次加速。(发生通讯选件本身异常的情况下,不会再次加速。)
- 设定 Pr. 502 = "3"时,即使发生通讯线路异常,也将持续运行,因此应准备向端子 RES 输入信号等通讯以外的方法来进行安全停止的手段。

4.4.2 异常与对策

◆ 发生异常时的各运行模式下的变频器动作

异常发生部位	状 态		运行模式			
开吊友生部位			网络运行	外部运行	PU 运行	
变频器	变频器运行		变频器跳闸	变频器跳闸	变频器跳闸	
文则品	数据通讯		持续	持续	持续	
(名) 可从(b)	变频器运行		变频器跳闸 *1	持续	持续	
通讯线路	数据通讯		停止	停止	停止	
	接触不良	变频器运行	变频器跳闸 *1	变频器跳闸 *1	变频器跳闸 *1	
)		数据通讯	持续	持续	持续	
通讯选件	通讯选件 本身的异常	变频器运行	变频器跳闸 *1	持续	持续	
		数据通讯	停止	停止	停止	

^{*1} 由 Pr. 502 的设定决定。

◆ 关于发生异常时的对策

报警显示	异常内容	对策
E. 0P1	通讯线路异常	• 确认选件单元的 LED 状态并排除原因。(关于 LED 的显示状态,请参照 第8页 。) • 对主站实施检查。
E. 1 、E. 2 、E. 3	选件异常	•通讯选件应安装在变频器本体的选件接口1上。 •确认变频器本体与通讯选件间的选件接口接触等情况并排除原因。

^{*1} 为上述以外的报警显示时,请在参照变频器本体的使用手册(详细篇)的基础上排除异常原因。

4.5 变频器复位

◆ 变频器复位的动作条件

各运行模式下可否使用变频器复位如下所示。

	运行模式				
复位方法			网络运行	外部运行	PU 运行
	变频器复位(等级0x2A、实例1、属性101)(参照 第76页)*1		可	不可	不可
通过网络进行的复位	变频器异常时的错误复位(参照第 45、47、	Pr.349 = 0	可	可	可
	49、53、73 页)*2	Pr. 349 = 1		不可	不可
将变频器的端子 RES (RES 信号)置为 ON	可	可	可	
将变频器的电源置为 OFF			可	可	可
通过PU/DU进行的复位	变频器复位		可	可	可
	变频器异常时的复位		可	可	可

- *1 始终可以进行变频器复位。
- *2 仅变频器的保护功能动作时可复位。

• NOTE

- 通讯线路异常时,无法通过网络进行复位。
- 初始状态下,网络运行时若复位变频器,将变为外部运行模式。因此,为了重新开始网络运行,需要将运行模式再次切换到网络运行。为了通过网络运行模式启动,应设定 Pr. 340 ≠ "0"。(参照**第** 27 页)
- 解除复位指令后,变频器约 1s 左右无法控制。

◆ 变频器异常时的错误复位动作选择

外部运行模式或 PU 运行模式时,可使通讯选件的错误复位指令无效。

网络的错误复位指令通过输出实例20、21、126、127 Byte0 Bit2与等级0x29实例1 属性12进行。(参照**第45、47、49、53、73页**)

Pr.	名称	初始值	设定范围	功能
240	泽河 <i>有</i> 12	0	0	与运行模式无关,可进行错误复位
349	通讯复位选择		1	仅在网络运行模式时可进行错误复位

4.6 关于频率、速度转换规格

• 通过FR-A8ND进行的输出/设定频率监视、频率设定、参数设定与Pr. 37 转速显示的设定无关,始终为以0.01Hz为单位的设定、监视。此外,运行速度(实际速度)监视的设定单位,如下表所示取决于 Pr. 37 和 Pr. 144 转速设定切换的组合。(粗框内为初始值。)

Pr. 37 设定值	Pr. 144 设定值	输出频率监视	设定频率监视	运行速度 (实际速度) 监视	频率设定 参数设定
	0	0.01Hz	0.01Hz	1r/min *1、*2	0.01Hz
0 (初始值)	$2\sim12$	0.01Hz	0. 01Hz	1r/min *1、*2	0.01Hz
	102 ~ 112	0.01Hz	0.01Hz	1r/min *1、*2	0.01Hz
	0	0.01Hz	0.01Hz	1 (机械速度 *1)	0.01Hz
$1\sim 9998$	$2\sim12$	0. 01Hz	0.01Hz	1 (机械速度 *1)	0.01Hz
	$102 \sim 112$	0. 01Hz	0. 01Hz	1r/min *1、*2	0.01Hz

- *1 运行速度 r/min 换算式... 频率 ×120/ 电机极数 (Pr. 144) 机械速度换算式... Pr. 37 × 频率 /Pr. 505 **速度设定基准** 上述算式的 Pr. 144 在 Pr. 144 = 102 ~ 112 时,为 "Pr. 144 - 100", Pr. 37 = 0 且 Pr. 144 = 0 时,为 "4"。 Pr. 505 始终为频率 (Hz)设定。
- *2 通过 Pr. 811 设定分辨率切换 , 可将单位从 lr/min 变更为 0. lr/min。(Pr. 811 仅 FR-A800 系列可设定。)
- 通过 FR-A8ND 的速度设定的换算式如下所示, 依照 Pr. 144 的设定。

速度设定 (1r/min 单位*4) = 频率 ×120 / 电机极数 (Pr. 144 *3)

- *3 Pr. 144 = "102~112" 时,为 (Pr. 144 100), Pr. 144 = "0" 时按4极计算。
- *4 Pr. 811 的设定无效。始终为 1r/min 单位。(Pr. 811 仅 FR-A800 系列可设定。)

• NOTE

- 运行速度 (实际速度) 监视中以 lr/min 为单位进行监视时, Pr. 37、Pr. 811 的设定值为初始值不变。
- Pr. 37、Pr. 144、Pr. 505、Pr. 811 的详细内容,请参照变频器本体的使用手册(详细篇)。

5 功能的概要

5.1 从变频器输出至网络

可从变频器 (FR-A8ND) 输出至网络的主要项目与概要。

项 目	项 目 概 要		
变频器监视	监视变频器的输出频率及输出电流等各种项目。	77、90	
运行模式的读取	读取变频器的运行模式。	76	
参数读取	读取变频器的参数设定值。	80、87、89	
变频器状态	监视变频器的输出信号。	76	
异常内容	监视变频器中发生的异常记录。	77	

• NOTE

• 关于各运行模式中可通过网络操作的功能,请参照变频器本体的使用手册 (详细篇)。

5.2 从网络输入至变频器

可从网络向变频器发出指令的主要项目与概要。

项 目	概要	参照页
频率设定	设定变频器的运行频率。	45
运行模式的写入	设定变频器的运行模式。	76
运行指令	设定正转信号 (STF) 及反转信号 (STR) 等控制输入指令。	45、76
变频器复位	复位变频器。	60、76
参数写入	设定变频器的参数。	80、87、89
参数清除	将参数恢复至初始值。	60、76

• NOTE

• 关于各运行模式中可通过网络操作的功能,请参照变频器本体的使用手册 (详细篇)。

6.1 关于 DeviceNet 通讯的对象模型

DeviceNet通讯中,将各节点作为对象(将产品的特定功能抽象化的内容)的集合体进行模型化。表现对象时,使用以下4个项目。

项 目	内 容					
等级 具有相同种类功能的全部对象的集合体。将对象一般化的内容。						
实例	对象的具体表现					
属性	对象的特性的表现					
服务 对象或等级支持的功能						

此定义是为了在 DeviceNet 通讯中使用 FR-A8ND 所需的对象定义。 定义的详细内容请参照 ODVA 的 DeviceNet 资料。

6.2 数据通讯的种类

FR-A8ND中,支持"I/O通讯(轮询)"与"信息通讯(Explicit 信息连接)"。

6.2.1 I/0 通讯 (轮询)的概要

输入输出实例的设定按照以下任一方法进行。

- 通过 Pr. 346 进行的设定 (参照第 25 页)
- 通过等级 0x29、实例 1、属性 140、141 进行的设定 (参照**第 73 页**)

实例 ID (输出/输入)*1	发送接收 字节数	功能	参照页
20/70	4	可进行变频器的正转运行、错误复位等。	45
21/71	4	可进行变频器的正转 / 反转运行、错误复位等。	47
126/176	6	可进行变频器的正转 / 反转运行、错误复位、16Bit 的参数访问等。	49
127/177	8	可进行变频器的正转 / 反转运行、错误复位、16Bit/32Bit 的参数访问、以 Hz 为单位的速度指令、变频器输入输出端子访问等。	53

^{*1} 输出指发送至变频器的指令,输入指来自变频器的响应。

6.2.2 信息通讯 (Explicit 信息连接) 的概要

- 经由 Explicit 信息的参数读写 (等级 0x66、0x67、0x70 ~ 0x79、0x90 ~ 0x93) 的数据单位全部为 2Byte。
- 经由 Explicit 信息读取了 32bit 大小的参数设定值的情况下, 当读取值超过了 0xFFFF 时, 返回数据为 0xFFFF。
- 对 32bit 大小的参数进行读写时,应经由 I/O 通讯的实例 127/177 进行访问。
- 要读取 32bit 大小的监视 (等级 0x80) 时,应通过 I/0 通讯的实例 127/177 或 Explicit 通讯进行访问。

等级	对象名	页
0x01	标识对象	59
0x03	DeviceNet 对象	61
0x04	汇编程序对象	63
0x05	DeviceNet 连接对象	64
0x28	电机数据对象	71
0x29	控制管理对象	72

等级	对象名	页
0x2A	AC 驱动对象	74
0x66	扩展对象I	80
0x67	扩展对象Ⅱ	87
$0x70\sim0x79$	扩展对象Ⅲ	89
0x80	扩展对象IV	90
$0x90\sim0x93$	扩展对象V	94

• NOTE

· 之后的表中的 Get、Set 是指 Get: 从变频器读取、Set: 写入至变频器。

6.3 关于响应性能

6.3.1 I/O 通讯 (轮询)的响应性能

◆ DeviceNet 总线上的响应性能

◆ 速度设定后,反映至实际速度或速度监视的时机

43

6.3.2 信息通讯 (Explicit 信息连接)的响应性能

◆ 读取时

◆ 写入时

◆ 参数清除时

参数清除、参数全部清除命令发送后,直到参数清除处理完成(约5s)为止变频器不响应。

6.4 关于软件设计

设计软件时,应注意以下事项。

- 将请求发送给 FR-A8ND 后,应在接收到 FR-A8ND 的应答后再发送下一个请求。
- 设定下一个请求发送之前的等待时间时应考虑的第 43 页的 FR-A8ND 响应时间。 例如,以 Explicit 信息发送写入请求后,应待机 50ms 以上后再发送下一个请求。

7.1 1/0 通讯 (轮询)的格式

7.1.1 输出实例 20/输入实例 70

◆ 输出实例 20 (主站→变频器)

使用输出实例 20 时,将输入实例设定为 70。

字节	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	保留 (0)	保留 (0)	保留 (0)	保留 (0)	保留 (0)	Fault Reset	保留 (0)	Run Fwd
1	保留 (0x00)							
2	速度设定值	速度设定值 (低位字节)						
3	速度设定值	速度设定值 (高位字节)						

• 输出实例 20 详细内容

	Bit0	Run Fwd	正转信号 (0: 正转 OFF 1: 正转 ON)		
Byte0	Bit2	Fault Reset	错误时的复位要求 *1 仅变频器跳闸时有效。 (0: 无动作 1: 错误复位要求)		
		速度设定值	速度设定值 (1r/min 单位) 速度与频率的转换根据 Pr. 144 的设定值决定。(参照 第 37 页)		

*1 变频器的错误复位过程中也将持续通讯。

◆ 输出实例 70 (变频器→主站)

使用输入实例 70 时,将输出实例设定为 20。

字节	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	保留 (0)	保留 (0)	保留 (0)	保留 (0)	保留 (0)	Running Fwd	保留 (0)	Faulted	
1	保留 (0x00)	保留 (0x00)							
2	实际速度(低	实际速度 (低位字节)							
3	实际速度(高	实际速度 (高位字节)							

• 输入实例 70 详细内容

D. + - 0	Bit0	Faulted	变频器错误信号 (0: 变频器正常运行中 1: 变频器错误中)
Бусео	Bit2 Running Fwd		正转状态 (0: 正转中以外 1: 正转中)
	Byte2 Byte3 实际速度		变频器的运行速度 (1r/min 单位) 显示范围: 0 ~ 32767 根据 Pr. 37、Pr. 144、Pr. 811 的设定值决定。(参照第 37 页)

7.1.2 输出实例 21/输入实例 71

◆ 输出实例 21 (初始值) (主站→变频器)

使用输出实例 21 时,将输入实例设定为 71。

字节	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	保留 (0)	Net Ref	Net Ctrl	保留 (0)	保留 (0)	Fault Reset	Run Rev	Run Fwd	
1	保留 (0x00)	保留 (0x00)							
2	速度设定值	速度设定值 (低位字节)							
3	速度设定值 (高位字节)								

• 输出实例 21 详细内容

	Bit0	Run Fwd	正转信号 (0: 正转 OFF 1: 正转 ON) *1		
	Bit1 Run Rev 反转信号 (0: 反转 OFF 1: 反转 ON) ∗I			仅 NetCtrl (Bit5) = 1 有	
Bit2 Fault Reset 错误时的复位要求 *2 仅变频器跳闸时有效。 (0: 无动作 1: 错误复位要求				效。	
	Bit5	NetCtrl	0: Byte0 的 Bit0 \sim 2 的值不写入变频器 1: 将 Byte0 的 Bit0 \sim 2 的值写入变频器		
	Bit6	NetRef	0: 速度设定值不写入变频器 1: 将速度设定值写入变频器		
Byte2 Byte3 速度设定值		速度设定值	速度设定值(1r/min 单位) 速度与频率的转换根据 Pr. 144 的设定值决定。(参照 第 37 页) 为了将速度设定值写入变频器,应设定 NetRef (Byte0、Bit6)	= 1.	

- *1 Run Fwd、Run Rev 两者均设为 ON 时,启动信号不变化。(持续当前的状态。)
- *2 变频器的错误复位过程中也将持续通讯。

◆ 输入实例 71 (初始值) (变频器→主站)

使用输入实例 71 时,将输出实例设定为 21。

字节	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	AtReference	Ref From Net	Ctrl From Net	Ready	Running Rev	Running Fwd	保留 (0)	Faulted	
1	保留 (0x00)								
2	实际速度 (低位字节)								
3	实际速度(高值	实际速度 (高位字节)							

• 输入实例 71 详细内容

	Bit0	Faulted	变频器错误信号 (0: 变频器正常运行中 1: 变频器错误中)			
	Bit2	Running Fwd	正转状态 (0: 正转中以外 1: 正转中)			
	Bit3	Running Rev	反转状态 (0: 反转中以外 1: 反转中)			
Byte0	Bit4	Ready	Ready 信号 (0: 运行准备中 1: 运行准备完成) 电源 0N 后固定为 "1"。			
2,000	Bit5	CtrlFromNet	0: 变频器不接收 Byte0 的 Bit0、Bit1 指令 1: 变频器接收 Byte0 的 Bit0、Bit1 指令			
	Bit6	RefFromNet	0: 变频器不接收速度指令 1: 变频器接收速度指令			
	Bit7	AtReference	频率到达信号 (SU 信号) (与等级 0x2A、实例 1、属性 3 内容相同。参照 第 74 页)			
Byte2 Byte3 实际速度		实际速度	变频器的运行速度 (1r/min 单位) 显示范围: 0 ~ 32767 根据 Pr. 37、Pr. 144、Pr. 811 的设定值决定。(参照第 37 页)			

7.1.3 输出实例 126/输入实例 176

◆ 输出实例 126 (主站→变频器)

使用输出实例 126 时,将输入实例设定为 176。

字节	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	Write Attr	Net Ref	Net Ctrl	保留 (0)	保留 (0)	Fault Reset	Run Rev	Run Fwd	
1	参数实例 ID	参数实例 ID							
2	速度设定值或参数写入数据 (低位字节)								
3	速度设定值或参数写入数据 (高位字节)								
4	参数的等级 ID								
5	参数的属性 II	D							

• 输出实例 126 详细内容

	Bit0	Run Fwd	正转信号 (0: 正转 OFF 1: 正转 ON) *1				
	Bit1	Run Rev	反转信号 (0: 反转 OFF 1: 反转 ON) *1				
	Bit2 Fault Reset 错误时的复位要求 *2 仅变频器跳闸时有效。 (0: 无动作 1: 错误复位要求) 仅 NetCtrl (I)						
Byte0	Bit5	NetCtrl	0: Byte0 的 Bit0 ~ 2 的值不写入变频器 1: 将 Byte0 的 Bit0 ~ 2 的值写入变频器				
	Bit6	NetRef*3	0: 速度设定值不写入变频器 1: 将速度设定值写入变频器				
	Bit7	Write Attr*3	0: Byte2、Byte3 为速度设定值 1: Byte2、Byte3 为属性的写入值	_			

Byte1	参数实例 ID	可以指定实例 ID。 指定 00 时识别为实例 ID = 1。
Byte2 Byte3	速度设定值 或参数写入数据	速度设定值(1r/min 单位)或参数写入数据 选择条件由 "NetRef (Byte0、Bit6)"、"Write Attr (Byte0、Bit7)"的组合决定。 [选择了速度设定值时] 速度与频率的转换根据 Pr. 144 的设定值决定。(参照第 37 页)
Byte4	参数等级 ID	用于访问变频器的参数的等级 ID (等级 0x2A、0x66、0x67 等)
Byte5	参数属性 ID	用于访问变频器的参数的属性 ID

- *1 Run Fwd、Run Rev 两者均设为 ON 时,启动信号不变化。(持续当前的状态。)
- *2 变频器的错误复位过程中也将持续通讯。
- *3 Write Attr (Byte0、Bit7)、NetRef (Byte0、Bit6)与Byte1~Byte5的关系如下所示。

Write Attr (ByteO、Bit7)	NetRef (ByteO、Bit6)	Byte2、Byte3	Byte4(等级 ID) Byte1(实例 ID) Byte5(属性 ID)	
0	0	速度设定无效	法而良处的化合	
0	1	速度设定有效	读取属性的指定	
1	0	조문쓰십도) t		
1	1	至属性的写入值	读写属性的指定	

◆ 输入实例 176 (变频器→主站)

输入实例 176 提供 16 位的参数数据。

使用输入实例 176 时,将输出实例设定为 126。

字节	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	AtReference	Ref From Net	Ctrl From Net	Ready	Running Rev	Running Fwd	运行指令 模式	Faulted
1	PrEnd	保留 (0)						
2	实际速度 (低位字节)							
3	实际速度 (高位字节)							
4	参数读取数据 (低位字节)							
5	参数读取数据((高位字节)				•		

• 输入实例 176 详细内容

	Bit0	Faulted	变频器错误信号 (0: 变频器正常运行中 1: 变频器错误中)
	Bit1	运行指令模式 *1	0: 网络运行过程中指令不可用 1: 网络运行过程中指令可用
	Bit2	Running Fwd	正转状态 (0: 正转中以外 1: 正转中)
	Bit3	Running Rev	反转状态 (0: 反转中以外 1: 反转中)
Byte0	Bit4	Ready	Ready 信号 (0: 运行准备中 1: 运行准备完成) 电源 0N 后固定为 "1"。
	Bit5 CtrlFromNet		0: 变频器不接收 Byte0 的 Bit0、Bit1 指令 1: 变频器接收 Byte0 的 Bit0、Bit1 指令
	Bit6	RefFromNet	0: 变频器不接收速度指令 1: 变频器接收速度指令
	Bit7	AtReference	频率到达信号 (SU 信号) (与等级 0x2A、实例 1、属性 3 内容相同。参照 第 74 页)

Byte1 Bit7 PrEnd		PrEnd	参数写入完成 0: 参数未写入 1: 参数写入处理中 (变频器处理中)		
-	Byte2 Byte3 实际速度		変頻器的运行速度 (1r/min 单位) 显示范围: 0 ~ 65535 根据 Pr. 37、Pr. 144、Pr. 811 的设定值决定。(参照 第 37 页)		
	Byte4 Byte5 参数读取数据		实例 126 的参数等级 ID、参数属性 ID 中指定的参数读取数据(参照 第 49 页)		

*1 运行指令模式的位状态如下所示。

(关于运行/速度指令权请参照变频器本体的使用手册(详细篇)。)

	运行指令模式			
运行模式	Pr. 338	运门拍 文 侯 氏		
	0: NET	0: NET	1	
NET	0: NET	1: 外部		
NET	1: 外部	0: NET	0	
	1: 外部	1: 外部	0	
NET 以外		_		

7.1.4 输出实例 127/输入实例 177

◆ 输出实例 127 (主站→变频器)

使用输出实例 127 时,将输入实例设定为 177。

字节	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	AU	RT	RH	RM	RL	Fault Reset	Run Rev	Run Fwd	
1	32Bit Format	Hz	Write Attr	RES	ST0P	MRS	CS	JOG	
2	速度 / 频率	设定值或写入							
3	速度 / 频率	设定值或写入	数据 (16 位:	H)					
4	属性2等级	ID (仅可指定	三读取)						16 位数据用格式 (32Bit Format (Bytel、 Bit7) = 0)
5	属性2属性	ID (仅可指定	三读取)						
6	属性1等级	ID (可指定该	连写)						
7	属性1属性	ID (可指定该	集写)						
2	速度/频率	设定值或写入	数据 (32 位:	LL)					
3	速度 / 频率	设定值或写入	数据 (32 位:	LH)					
4	写入数据 (32位: 出)								32 位数据用格式
5	写入数据 (32 位: 田)							•	(32Bit Format (Bytel, Bit7) = 1)
6	属性 1 等级 ID							•	
7	属性1属性	ID			•			•	

• 输出实例 127 详细内容

	Bit0	Run Fwd*2	正转信号 (0: 正转 OFF 1: 正转 ON)
	Bit1	Run Rev*2	反转信号 (0: 反转 OFF 1: 反转 ON)
	Bit2	Fault Reset	错误时的复位要求 *1 仅变频器跳闸时有效。 (0: 无动作 1: 错误复位要求)
Byte0	Bit3	端子 RL*3	端子 RL (0: OFF 1: ON)
	Bit4	端子 RM*3	端子 RM (0: OFF 1: ON)
	Bit5	端子 RH*3	端子 RH (0: OFF 1: ON)
	Bit6	端子 RT*3	端子 RT (0: OFF 1: ON)
	Bit7	端子 AU*3	端子 AU (0: OFF 1: ON)
	Bit0	端子 J0G*3	端子 JOG (0: OFF 1: ON)
	Bit1	端子 CS∗3	端子 CS (0: OFF 1: ON)
	Bit2	端子 MRS*3	端子 MRS (0: OFF 1: ON)
	Bit3	端子 STOP*3	端子 STOP (0: OFF 1: ON)
Byte1	Bit4	端子 RES*3	端子 RES (0: OFF 1: 0N)
	Bit5	Write Attr	0: Byte2、Byte3 为速度 / 频率设定值 1: Byte2、Byte3 (32 位数据用格式时为 Byte2 ~ Byte5)为属性的写入数据
	Bit6	Hz	0: Byte2、Byte3 为速度 / 频率设定值时,单位为 1r/min 1: Byte2、Byte3 为速度 / 频率设定值时,单位为 0.01Hz
	Bit7	32Bit Format	0: 选择 16 位数据用格式 1: 选择 32 位数据用格式

	16 位数据用格式 (32Bit Format (Byte1、Bit7)= 0)	32 位数据用格式 (32Bit Format (Byte1、Bit7)= 1)
Byte2 Byte3	 WriteAttr (Bytel、Bit5) = 0、Hz (Bytel、Bit6) = 0 速度设定值 (1r/min 单位) (参照第 37页) WriteAttr (Bytel、Bit5) = 0、Hz (Bytel、Bit6) = 1 频率设定值 (0.01Hz 单位) WriteAttr(Bytel、Bit 5) = 1 Byte6、7 中指定的属性的写入值*4 	WriteAttr (Bytel、Bit5) = 0、Hz (Bytel、Bit6) = 0 速度设定值 (1r/min 单位) •5 (参照第 37 页) WriteAttr (Bytel、Bit5) = 0、Hz (Bytel、Bit6) = 1 频率设定值 (0.01Hz 单位) •5 WriteAttr(Bytel、Bit 5) = 1 Byte6、7 中指定的属性的写入值 •6 WiteAttr(Bytel、Bit 5) = 1
Byte4	读取属性 2 的等级 ID (仅可读取)	
Byte5	读取属性 2 的属性 ID (仅可读取)	
Byte6	属性1读取/写入时的等级ID Write Attr(Byte1、Bit5) = 0:属性读取 Write Attr(Byte1、Bit5) = 1:属性写入	
Byte7	属性1读取/写入时的属性ID Write Attr(Byte1、Bit5) = 0:属性读取 Write Attr(Byte1、Bit5) = 1:属性写入	

- *1 变频器的错误复位过程中也将持续通讯。
- *2 Run Fwd、Run Rev 两者均设为 ON 时,启动信号不变化。(持续当前的状态。)
- *3 通过 Pr. 180 ~ Pr. 189 可以变更输入信号的功能。但是,根据 Pr. 338、Pr. 339 设定,可能会有无法接收网络指令的信号。例如,Byte1、Bit4(端子 RES 功能)在 Pr. 189 为初始值(RES 信号)的情况下无法在网络上进行控制。 Pr. 180 ~ Pr. 189、Pr. 338、Pr. 339 的详细内容请参照变频器本体的使用手册(详细篇)。
- *4 超过写入目标属性的数据尺寸的设定值为无效。数据尺寸为1字节时,设定在Byte3的值无效。
- *5 速度/频率设定值仅 Byte2、Byte3 设定值有效。Byte4、Byte5 的设定值无效。
- *6 超过写入目标属性的数据尺寸的设定值无效。数据尺寸为1字节时,设定在 Byte3、4、5 的值无效。

◆ 输入实例 177 (变频器→主站)

使用输入实例 177 时,将输出实例设定为 127。

字节	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	端子 OL	端子 IPF	端子 SU	端子 RUN	运行指令 模式	Faulted	Running Rev	Running Fwd	
1	32Bit Format	Hz	保留 (0)	保留 (0)	保留 (0)	端子 ABC2	端子 ABC1	端子 FU	
2	实际速度 / 结	实际速度 / 输出频率 (16 位: L)							
3	实际速度 / 结	输出频率 (16	6位: H)						
4	属性 1 读取数据 (16 位: L)								16 位数据用格式 (32Bit Format (Bytel、 Bit7) = 0)
5	属性 1 读取数据 (16 位: H)								
6	属性 2 读取数据 (16 位: L)								
7	属性2读取	数据 (16 位:	H)						
2	实际速度 / 结	输出频率 (32	2位: L)						
3	实际速度 / 输出频率 (32 位: H)								
4	属性1读取数据1 (32位: LL)								32 位数据用格式
5	属性 1 读取数据 1 (32 位: LH)							(32Bit Format (Bytel, Bit7) = 1)	
6	属性1读取数据1 (32位: 出)								
7	属性1读取	数据 1 (32 位	(: HH)						

• 输入实例 177 详细内容

	Bit0	Running Fwd	正转状态 (0: 正转中以外 1: 正转中)			
	Bit1	Running Rev	反转状态 (0: 反转中以外 1: 反转中)			
	Bit2	Faulted	变频器错误信号 (0: 变频器正常运行中 1: 变频器错误中)			
Byte0	Bit3	运行指令模式	0: 网络运行过程中指令不可用 1: 网络运行过程中指令可用			
-,	Bit4	端子 RUN*1	端子 RUN (0: OFF 1: ON)			
	Bit5	端子 SU*1	端子 SU (0: OFF 1: ON)			
	Bit6	端子 IPF*1	端子 IPF (0: 0FF 1: 0N)			
	Bit7	端子 0L*1	端子 OL (0: OFF 1: ON)			
	Bit0	端子 FU*!	端子 FU (0: OFF 1: ON)			
	Bit1	端子 ABC1*1	端子 ABC1 (0: OFF 1: ON)			
Doub. 1	Bit2	端子 ABC2*1	端子 ABC2 (0: OFF 1: ON)			
Byte1	Bit6	Hz	0: Byte2、Byte3 为 1r/min 单位 1: Byte2、Byte3 为 0.01Hz 单位			
	Bit7	32Bit Format	0: 正在选择 16 位数据用格式 1: 正在选择 32 位数据用格式			

	16 位数据用格式 (32Bit Format(Byte1、Bit7)= 0)	32 位数据用格式 (32Bit Format (Byte1、Bit7)= 1)
Byte2 Byte3	 ・实例 127 的 Hz 位 (Bytel、Bit6) = 0 变频器的运行速度 (1r/min 单位) 根据 Pr. 37、Pr. 144、Pr. 811 的设定值决定。(参照第 37 页) 实例 127 的 Hz 位 (Bytel、Bit6) = 1 输出频率 (0.01Hz 单位) 	
Byte4 Byte5	读取数据 1-2 实例 127 的 Byte6、7 中指定的属性的读取值 指定了不支持的属性时返回 0。	读取数据 1 实例 127 的 Byte6、7 中指定的属性的读取值
Byte6 Byte7	读取数据 2·2 实例 127 的 Byte4、5 中指定的属性的读取值 指定了不支持的属性时返回 0。	发列 121 的 byte6、7 甲指定的属性的以收值 指定了不支持的属性时返回 0。

- *l 通过 Pr. 190 ~ Pr. 196 可以变更输出信号的功能。 Pr. 190 ~ Pr. 196 的详细内容,请参照变频器本体的使用手册(详细篇)。
- *2 读取值超出2字节时,将向主站返回0xFFFF。

7.2 信息通讯 (Explicit 信息连接)

7.2.1 等级 0x01 (标识对象)

◆ 等级 0x01 实例 0

[属性]

等级 0x01 实例 0

属性 ID	存取	内 容	数据类型	数据的 字节数	属性值
1	Get	对象的版本	UINT	2	1
2	Get	最大实例数	UINT	2	1
6	Get	最大属性数	UINT	2	7
7	Get	最大实例属性数	UINT	2	7

[服务]

服务代码	内 容
0x0E	读取属性值

◆ 等级 0x01 实例 1

[属性]

等级 0x01 实例 1

属性 ID	存取 内容		数据类型	数据的字节数	属性值
1	Get	Vendor ID (三菱电机)	UINT	2	161
2	Get	Device Type (AC 驱动)	UINT	2	02
3	Get	Product Code	UINT	2	71*1、73*2
4	Get	Revision	STRUCT	2	1. YYY*3
5	Get	Status	WORD	2	*4
6	Get	Serial Number	UDINT	4	xxxxxxx
7	Get	Product Name (FR-A800/F800)	SHORT_STRING	5	A800/F800*5

- *1 表示安装了 FR-A800 系列时。
- *2 表示安装了 FR-F800 系列时。
- *3 表示 16 进制数据的高位字节为整数部位、低位字节为小数点以下。 例如被读取的数据为 0x010A 时, 意味着版本是 1.010。
- *4 位内容
 Bit0: 0 = 已分配、1 = 未分配、Bit2: 固定为 0、Bit8: 1 = 发生轻微故障、Bit9: 固定为 0、Bit10: 1 = LED 红灯闪烁、Bit11: 1 = LED 红灯亭灯
- *5 FR-A800 系列安装时的实际数据已存储了 0x04、0x41、0x38、0x30、0x30。 FR-F800 系列安装时的实际数据已存储了 0x04、0x46、0x38、0x30、0x30。 开头的 0x04 表示 4 位的数据,剩下的表示 ASCII 代码中的机型名称。

「服务]

服务代码	符号	名称	设定范围	内容
005	Reset	D	0	变频器复位 *7
0x05		Reset*6	1	参数全部清除后变频器复位 *7
0x0E	Get	Get_Attribute_Single	_	读取属性值

- *6 依照 Pr. 75 的设定。Pr. 75 的详细内容,请参照变频器本体的使用手册 (详细篇)。
- *7 变频器为不接收相同命令的状态时,不实施变频器复位、参数全部清除。

7.2.2 等级 0x03 (DeviceNet 对象)

◆ 等级 0x03 实例 1

[属性]

等级 0x03 实例 1

属性 ID	存取	名 称	数据类型	数据的 字节数	初始值	内容	
1	Get/Set	MAC ID*1	USINT	1	_	$00\sim63$: 节点地址设定值 *2 节点地址开关为 " $0\sim63$ " 时返回该值。此时无法写入(Set)。	
2	Get/Set	Baud Rate*1	USINT	1	00	00: 125kbps、01: 250kbps、02: 500kbps	
5	Get	Allocation Information	STRUCT	2	0	Allocation Choice Byte	Bit0 = 1 有 Explicit 分配要求 Bit1 = 1 Poll 有分配要求 其他 固定为 0
						Master's MAC ID	要求分配的主站的 MAC ID
6	Get	MAC ID Switch Changed	BOOL	1	0	0: 节点地址开关的设定值与电源 0N 或变频器复位后的设定值相同 1: 节点地址开关的设定值与电源 0N 或变频器复位后的设定值不同	
8	Get	MAC ID Switch Value	USINT	1	00	00 ~ 99: 节点地址开关的设定值	

^{*1} 等级 0x67、实例 1、属性 45 与 46 也可读取。(参照第 87 页)

^{*2} 为使 MAC ID 有效, 节点地址开关设定为 "64"以上。(参照**第 16 页**) 本设定反映至 Pr. 345 的 Bit0 ~ 5。

[服务]

服务代码	服务
0x0E	读取属性值
0x10	写入属性值

7.2.3 等级 0x04 (汇编程序对象)

[属性]

实例 ID	属性 ID	存取	名称	数据类型	数据的 字节数	内容
20	3	Get	Data	BYTE 的排列	4	返回 I/0 通讯 输入实例 70 的数据
21	3	Get	Data	BYTE 的排列	4	返回 I/0 通讯 输入实例 71 的数据
126	3	Get	Data	BYTE 的排列	6	返回 I/0 通讯 输入实例 176 的数据
127	3	Get	Data	BYTE 的排列	6	返回 I/0 通讯 输入实例 177 的数据
70	3	Get	Data	BYTE 的排列	4	返回 I/0 通讯 输入实例 70 的数据
71	3	Get	Data	BYTE 的排列	4	返回 I/0 通讯 输入实例 71 的数据
176	3	Get	Data	BYTE 的排列	6	返回 I/0 通讯 输入实例 176 的数据
177	3	Get	Data	BYTE 的排列	6	返回 I/0 通讯 输入实例 177 的数据

[服务]

服务代码	服务
0x0E	读取属性值

7.2.4 等级 0x05 (DeviceNet 连接对象)

FR-A8ND仅支持Polled I/0与Explicit messaging。不支持Bit-Strobed I/0。此外,实例4~6为Explicit messaging的实例。

◆ 等级 0x05 实例 1 属性 (Explicit messaging 连接)

等级 0x05 实例 1

属性 ID	存取	名 称	数据 类型	数据的 字节数	范围	内 容
					00	Non-existent
1	Get	连接的状态	USINT	1	01	Configuring
1	Get	迁按的状态	USINI	1	03	Established
					04	Timed out
2	Get	实例的类型	USINT	1	00	Explicit 信息连接
3	Get	Transport Trigger class	ВУТЕ	1	$00\sim 0 ext{xFF}$	0x83: Server Transport Class 3
4	Get	Produced Connection ID	UINT	2	$0\sim 0$ xFFFF	变频器发送的 CAN ID
5	Get	Consumed Connection ID	UINT	2	$0\sim 0$ xFFFF	变频器接收的 CAN ID
6	Get	Initial Command Characteristics	ВУТЕ	1	$00\sim 0 { m xFF}$	定义发送与接收的信息组 0x21: 发送、接收均为 Group2 信息
7	Get	Produced Connection Size	UINT	2	$0\sim 0$ xFFFF	可发送的信息体的最大字节数 7:7字节
8	Get	Consumed Connection Size	UINT	2	$0\sim 0$ xFFFF	可接收的信息体的最大字节数 7: 7字节

等级 0x05 实例1

属性 ID	存取	名 称	数据 类型	数据的 字节数	范围	内 容
9	Get/Set	Expected Pack Rate (EPR)	UINT	2	$0\sim 0$ xFFFF	(例) 2500: 2500ms
					00	无效
12	Get/Set	看门狗动作	USINT	1	01 (初始值)	Auto Delete
12	Get/Set	有11/9/4/11F	0211/1	1	02	无效
					03	Deferred Delete
13	Get	Produced Connection Path Length	UINT	2	0	Produced Connection Path 属性内的信息的字节数 (固定为 0)
14	Get	Produced Connection Path	EPATH	3	Variable	指定发送数据的应用程序对象
15	Get	Consumed Connection Path Length	UINT	2	0	Consumed Connection Path 属性内的信息的字节数 (固定为 0)
16	Get	Consumed Connection Path	ЕРАТН	3	Variable	指定接收数据的应用程序对象

◆ 等级 0x05 实例 2 属性 (Polled 1/0 连接)

等级 0x05 实例 2

属性 ID	存取	名 称	数据 类型	数据的 字节数	范围	内 容
					00	Non-existent
1	Get	连接的状态	USINT	1	01	Configuring
	Get	迁按的状态	USINI	1	03	Established
					04	Timed out
2	Get	实例的类型	USINT	1	01	Polled I/O 连接
3	Get	Transport Trigger class	BYTE	1	$00\sim 0 x FF$	0x82: Server Transport Class 2
4	Get	Produced Connection ID	UINT	2	$0\sim 0$ xFFFF	变频器发送的 CAN ID
5	Get	Consumed Connection ID	UINT	2	$0\sim 0$ xFFFF	变频器接收的 CAN ID
6	Get	Initial Command Characteristics	BYTE	1	$00\sim 0 ext{xFF}$	发送: Group1 信息 接收: Group2 信息
7	Get	Produced Connection Size	UINT	2	$0 \sim 0$ xFFFF	可发送的 I/0 数据的字节数 4: 汇编程序实例 70、71 6: 汇编程序实例 176 8: 汇编程序实例 177
8	Get	Consumed Connection Size	UINT	2	$0 \sim 0$ xFFFF	可接收的 I/0 数据的字节数 4: 汇编程序实例 20、21 6: 汇编程序实例 126 8: 汇编程序实例 127
9	Get/Set	Expected Packet Rate (EPR)	UINT	2	$0\sim 0$ xFFFF	(例) 2500: 2500ms

等级 0x05 实例 2

属性 ID	存取	名 称	数据 类型	数据的 字节数	范围	内 容
					0 (初始值)	Transition to time out
12	C-+/C-+	看门狗动作	LICINIT	1	1	Auto Delete
12	Get/Set	111997年	USINT	1	2	Auto reset
					3	无效
13	Get	Produced Connection Path Length	UINT	2	$0\sim 0$ xFFFF	Produced Connection Path 属性内的信息的字节数
14	Get	Produced Connection Path	ЕРАТН	3	$00\sim 0 x FF$	指定发送数据的应用程序对象。*1 0x62、0x34、0x36: 汇编程序实例 70 0x62、0x34、0x37: 汇编程序实例 71 0x62、0x42、0x30: 汇编程序实例 176 0x62、0x42、0x31: 汇编程序实例 177
15	Get	Consumed Connection Path Length	UINT	2	$0\sim 0$ xFFFF	Consumed Connection Path 属性内的信息的字节数3:3字节
16	Get	Consumed Connection Path	ЕРАТН	3	$00\sim 0$ xFF	指定接收数据的应用程序对象。•1 0x62、0x31、0x34: 汇编程序实例 20 0x62、0x31、0x35: 汇编程序实例 21 0x62、0x37、0x45: 汇编程序实例 126 0x62、0x37、0x46: 汇编程序实例 127

*1 由于轮询 I/O 信息通讯为 2byte 数据的发送接收,因此最低位 byte 变为 0x00。 Produced Connection Path 与 Consumed Connection Path 指定发送接收数据的应用程序对象。构成如下所示。

0x62	0xMM	0xNN		
逻辑地址	应用和	呈序对象数据。	以 ASCII 代码表示输入输出实例编号	(16 进制)。

(例)使用输出实例21、输入实例71作为发送接收数据时。

Produced Connection Path (发送数据)	Consumed Connection Path (接收数据)
输入实例 71 = 0x47	输出实例 21 = 0x15
ASCII 代码: 4 = 0x34、7 = 0x37	ASCII 代码: 1 = 0x31、5 = 0x35
因此, Produced Connection Path = 0x62 0x34 0x37	因此, Consumed Connection Path = 0x62 0x31 0x35

关于输入输出汇编程序的变更,请参照第72页。

◆ 等级 0x05 实例 4、5、6 属性 (Explicit messaging 连接)

等级 0x05 实例 4、5、6

属性 ID	存取	名 称	数据 类型	数据的 字节数	范围	内 容
					00	Non-existent
1	Get	连接的状态	USINT	1	01	Configuring
1	Get	迁按的状态	USINI	1	03	Established
					04	Timed out
2	Get	实例的类型	USINT	1	00	Explicit 信息连接
3	Get	Transport Trigger class	ВҮТЕ	1	$00\sim 0 x FF$	0x83: Server Transport Class 3
4	Get	Produced Connection ID	UINT	2	$0\sim 0$ xFFFF	变频器发送的 CAN ID
5	Get	Consumed Connection ID	UINT	2	$0\sim 0$ xFFFF	变频器接收的 CAN ID
6	Get	Initial Command Characteristics	BYTE	1	$00 \sim 0 x FF$	定义发送与接收的信息组 0x33: 发送、接收均为 Group2 信息
7	Get	Produced Connection Size	UINT	2	$0\sim 0$ xFFFF	可发送的信息体的最大字节数 7:7字节
8	Get	Consumed Connection Size	UINT	2	$0\sim 0$ xFFFF	可接收的信息体的最大字节数 7:7字节
9	Get/Set	Expected Pack Rate (EPR)	UINT	2	$0\sim 0$ xFFFF	(例) 2500: 2500ms

等级 0x05 实例 4、5、6

属性 ID	存取	名 称	数据 类型	数据的 字节数	范围	内 容
					00、02	无效
12	Get/Set	看门狗动作	USINT	1	01 (初始值)	Auto Delete
					03	Deferred Delete
13	Get	Produced Connection Path Length	UINT	2	0	Produced Connection Path 属性内的信息的字节数(固定为0)
14	Get	Produced Connection Path	EPATH	3	Variable	指定发送数据的应用程序对象
15	Get	Consumed Connection Path Length	UINT	2	0	Consumed Connection Path 属性内的信息的字节数(固定为0)
16	Get	Consumed Connection Path	ЕРАТН	3	Variable	指定接收数据的应用程序对象

◆ 等级 0x05 实例 1、2、4、5、6 服务

服务代码	内 容
0x0E	读取属性值
0x10	写入属性值

7.2.5 等级 0x28 (电机数据对象)

◆ 等级 0x28 实例 1

[属性]

等级 0x28 实例 1

属性 ID	存取	名 称	数据 类型	数据的 字节数	范围	内 容
3	Get	电机 类型	USINT	1	3、7	3: PM 电机 7: 笼型感应电机。
6	Get/Set	电机额定电流 (Pr. 9)	UINT	2	$0\sim 0$ xFFFF	[GET] Pr. 9 的设定值以 0. 1A 为单位返回。(FR-A820-03160 (55K) 以 下、FR-A840-01800 (55K) 以 下、FR-F820-02330 (55K) 以下、FR-F840-01160 (55K) 以下则小数点以后第 2 位四舍五入)[SET] 将设定值以 0. 1A 为单位写入 Pr. 9。
7	Get/Set	额定电压(Pr. 19)	UINT	2	$0\sim 0$ xFFFF	[GET] • 设定 Pr. 19 = "9999"或 "8888"时 200V 等级返回 "200", 400V 等级返回 "400"。 • 设定 Pr. 19 = "0~1000"时 返回 Pr. 19 的设定值。(小数点以后四舍五入。) [SET] 设定值("0~1000、65535(9999)、65520(8888)") 写入 Pr. 19。

[服务]

服务代码	内 容
0x0E	读取属性值
0x10	写入属性值

7.2.6 等级 0x29 (控制管理对象)

◆ 等级 0x29 实例 1

[属性]

等级 0x29 实例 1

属性 ID	存取	名 称	数据 类型	数据的 字节数	初始值	范围	内 容			
0	0 . (0		DOOL	1	00	0	停止			
3	Get/Set	RUN1	BOOL	1	00	1	正转 *1			
	0 . /0 .	DUNG	DOOL		0.0	0	停止			
4	Get/Set	RUN2	BOOL	1	00	1	反转 *1			
5	0 1/0 1	NetCtrl	DOOL	1	1	0	DeviceNet 通讯运行以外 (Pr. 338 = 1)	实际的运行指令权的		
5	Get/Set	(运行指令权) (Pr. 338)	BOOL	1	1	1	DeviceNet 通讯运行 (Pr. 338 = 0) *2	状态可通过属性 15 进行监视。		
		State (状态)	USINT		3	1	Startup			
				1		2	Not_Ready (复位中)			
						3	Ready (停止中)			
6	Get					4	Enabled (加速中、恒速中、反转减速中)			
						5	Stopping (减速中)			
						6	Fault_Stop (通过 Pr. 502 减速中)			
						7	Faulted (发生异常中)			
7	Get	Running1	BOOL	1	0	0	停止中			
'	det	(正转指令)	DOOL	1	1 正转中					
8	Get	Running2	B00L 1		0	0	停止中			
U	uet	(反转指令)	DUOL	1	V	1	反转中			
9	Get	Ready	BOOL	1	1	0	复位中或发生异常			
3	uet	reauy	DUUL	1	1	1	停止中或旋转中			

等级 0x29 实例 1

属性 ID	存取	名 称	数据 类型	数据的 字节数	初始值	范围	内 容
10	Get	Faulted	BOOL	1	0	0	无异常
10	Get	rauited		1	U	1	异常发生 (锁存)
12	Get/Set	FaultRst	DOOL	1	0	0	异常时解除复位
12	Get/Set	(异常复位) *3、*4	BOOL	1	U	1	异常时执行复位
1.5	CtrlFromNet		BOOL	1	1	0	DeviceNet 通讯运行以外
15 Get	(运行指令权监视) *5	DUUL	1	1	1	DeviceNet 通讯运行	
		输入汇编程序的 实例 ID*6	HOLINE	1	0x47	0x46	输入实例 70
140	Get/Set					0x47	输入实例 71
140	Get/Set		USINT		(71)	0xB0	输入实例 176
						0xB1	输入实例 177
						0x14	输出实例 20
1.41	C-+/C-+	输出汇编程序的	USINT	1	0x15	0x15	输出实例 21
141	Get/Set	实例 ID*7			(21)	0x7E	输出实例 126
						0x7F	输出实例 127

- *1 Run1、Run2两者均设为 ON 时, 启动信号不变化。(持续当前的状态。)
- *2 变频器运行中无法写入。
- *3 将数据设为01执行复位,只要数据设为00后不解除,就无法再次执行复位。
- *4 变频器的错误复位过程中也将持续通讯。
- *5 仅在变频器复位或电源复位后更新数据。
- *6 Set 时反映到 Pr. 346 的 bit7~11 与等级 0x05 实例 2 属性 7、13、14 中。
- *7 Set 时反映到 Pr. 346 的 bit2 \sim 6 与等级 0x05 实例 2 属性 8、15、16 中。

[服务]

服务代码	内 容
0x0E	读取属性值
0x10	写入属性值

7.2.7 等级 0x2A (AC 驱动对象)

◆ 等级 0x2A 实例 1

[属性]

等级 0x2A 实例 1

属性 ID	存取	名 称	数据 类型	数据的 字节数	范围	内 容		
3	Get	AtReference	BOOL	1	0	输出频率未到达设定频率		
3	Get	(频率到达)	BUUL	1	1	输出频率到达设定频率		
		NetRef	DOOL	,	0	DeviceNet 通讯运行以外 (Pr. 339 = 1)	可通过属性29监视	
4	Get/Set	(速度指令权) (Pr. 339)	BOOL	1	1	DeviceNet 通讯运行 (Pr. 339 = 0 或 2) *1	实际的运行指令权 的状态。	
					1	无 PLG 的速度控制		
6	0.4	DriveMode	LICINE	1	2	带 PLG 的速度控制		
б	Get	(控制方式)	USINT		3	转矩控制		
					5	位置控制		
7	Get	SpeedActual (实际速度)	INT	2	$0 \sim 32767 \mathrm{r/min}$	变频器的运行速度 (1r/min 单位) 根据 Pr. 37、Pr. 144、Pr. 811 的设定。(参照会 37 页)		
8	Get/Set	SpeedRef (速度设定值)	INT	2	$0\sim 32767 \mathrm{r/min}$	设定速度(1r/min 单位) 频率与速度的转换依照 Pr. 144 的设定。(参照 37 页)		
9	Get	CurrentActual (输出电流)	INT	2	$0\sim3276.7$ A	6.7A 以 0.1A 为单位监视输出电流。		
15	Get	PowerActual (输出功率)	INT	2	$0\sim65535$ W	以 1W 为单位监视输出功率。		

等级 0x2A 实例 1

属性 ID	存取	名 称	数据 类型	数据的 字节数	范围	内 容
17	Get	OutputVoltage (输出电压)	INT	2	$0\sim3276.7$ V	以 1V 为单位监视输出电压。
18	Get/Set	AccelTime (加速时间)	UINT	2	$0\sim65535\mathrm{ms}$	加速时间= Pr. 7× (Pr. 18/Pr. 20) 单位与 Pr. 21 的设定无关,以 ms 为单位进行设 定。
19	Get/Set	DecelTime (减速时间)	UINT	2	$0\sim65535\mathrm{ms}$	滅速时间= Pr. 8× (Pr. 18/Pr. 20) 单位与 Pr. 21 的设定无关,以 ms 为单位进行设 定。
20	Get/Set	LowSpdLimit (下限频率) (Pr.2)	UINT	2	$0\sim65535\mathrm{r/min}$	下限速度(1r/min 单位) 频率与速度的转换依照 Pr. 144 的设定。(参照第 37 页)
21	Get/Set	HighSpdLimit (上限频率) (Pr.18)	UINT	2	$0\sim65535\mathrm{r/min}$	上限速度(1r/min 单位) 频率与速度的转换依照 Pr. 144 的设定。(参照第 37 页)
29	Get	RefFromNet	BOOL	1	0	DeviceNet 通讯运行以外
49	det	(速度指令权监视)	DOOL	1	1	DeviceNet 通讯运行

等级 0x2A 实例 1

属性 ID	存取	数据 类型	数据的 字节数	范围	内 容					
101	Set	UINT	2	任意	变频器复位 复位后,为了通过网络运行模式启动,应设定Pr.340≠0。(参照 第27页					
102	Set	UINT	2	0x965A	参数清除 *2					
103	Set	UINT	2	0x99AA	全部清除参数 *2					
105	Set	UINT	2	0x5A96	参数清除 *2	工學達取深可用分組				
106	Set	UINT	2	0xAA99	参数全部清除 *2	无法清除通讯用参数。				
112	Get/Set	UINT	2	$0\sim0$ xE678	设定频率 (RAM)*3	将设定频率写入RAM或从RAM读取。(0.01Hz 单位)				
113	Set	UINT	2	$0\sim0$ xE678	设定频率(EEPROM)*3	将设定频率写入 EEPROM。(0.01Hz 单位)				
114	Get/Set	UINT	2	_	变频器状态监视 / 运行指令 (参照第79页)					
				0	外部运行					
				1	PU 运行					
				2	外部 JOG 运行	运气槽 子涛取 (0-4)				
				3	PU JOG 运行	运行模式读取 (Get)				
120	Get/Set	UINT	2	4	网络运行					
				5	外部 /PU 组合运行					
				0x0010	外部运行					
				0x0011	PU 运行(设定 Pr. 79 = 6 时) 运行模式写入(Set) 输入 2 字节数据。					
	0x0014 F		网络运行	2 17.2858H -						

等级 0x2A 实例 1

属性 ID	存取	数据类型	数据的字节数	内 容
141	Get/Set	UINT	2	报警历史1 (最新)/报警历史批量清除*4
142	Get	UINT	2	报警历史2 (2次前)
143	Get	UINT	2	报警历史3 (3次前)
144	Get	UINT	2	报警历史4 (4次前)
145	Get	UINT	2	报警历史5 (5次前)
146	Get	UINT	2	报警历史6 (6次前)
147	Get	UINT	2	报警历史7 (7次前)
148	Get	UINT	2	报警历史8 (8次前)
170	Get	UINT	2	输出频率 (0.01Hz) *9
171	Get	UINT	2	输出电流 (0.01A/0.1A) *5、*9
172	Get	UINT	2	输出电压 (0.1V) *9
174	Get	UINT	2	频率设定值 (0.01Hz)
175	Get	UINT	2	运行速度 (1r/min) 根据 Pr. 37、Pr. 144、Pr. 811 的设定值决定。(参照 第 37 页)
176	Get	UINT	2	电机转矩 (0.1%)
177	Get	UINT	2	逆变器输出电压 (0.1V)
178	Get	UINT	2	再生制动器使用率 (0.1%)
179	Get	UINT	2	电子过热保护负载率 (0.1%)
180	Get	UINT	2	输出电流峰值 (0.01A/0.1A) *5
181	Get	UINT	2	逆变器输出电压峰值 (0.1V)
182	Get	UINT	2	输入功率 (0.01kW/0.1kW) *5
183	Get	UINT	2	输出功率 (0.01kW/0.1kW) *5
184	Get	UINT	2	输入端子状态 *6
185	Get	UINT	2	输出端子状态 *7
186	Get	UINT	2	负载表
187	Get	UINT	2	电机励磁电流 (0.01A/0.1A) *5

等级 0x2A 实例 1

属性 ID	存取	数据类型	数据的字节数	内 容
188	Get	UINT	2	位置脉冲 *8
189	Get	UINT	2	累计通电时间 (1h)
191	Get	UINT	2	定向状态 *8
192	Get	UINT	2	实际运行时间 (1h)
193	Get	UINT	2	电机负载率 (0.1%)
194	Get	UINT	2	累计功率 (1kWh)
195	Get	UINT	2	位置指令 (低位) *8
196	Get	UINT	2	位置指令 (高位) *8
197	Get	UINT	2	当前位置 (低位) *8
198	Get	UINT	2	当前位置 (高位) *8
199	Get	UINT	2	累积脉冲 (低位) *8

- *1 变频器运行中无法写入。
- *2 变频器为不接收相同命令的状态时,返回错误响应。
- *3 写入属性 112、113 中的内容可从属性 112 读取。
- *4 写入任意值,异常内容即被清除。
- *5 根据变频器容量有所不同。
- *6 输入端子状态详细 (端子 ON: 1、端子 OFF: 0、-: 不定值)

b15													b0
_	-	CS	RES	ST0P	MRS	J0G	RH	RM	RL	RT	AU	STR	STF

*7 输出端子状态详细 (端子 ON: 1、端子 OFF: 0、-: 不定值)

b15														b0	
_	_	_	_	_	_	_	So	ABC2	ABC1	FU	OL	IPF	SU	RUN	l

- *8 「仅 FR-A800 系列可以监视。」
 - 一并查找其他手册确认。
- *9 发生变频器报警时,监视值保持发生时的值不变。通过复位解除保护。

• 变频器状态监视 / 运行指令的位图

73	变频器状态 (Get)
bit	内容
0	RUN (变频器运行中)
1	FWD (正转中)
2	REV (反转中)
3	SU (频率到达)
4	OL (过载)
5	IPF (瞬时停电)
6	FU (频率检测)
7	ALM (异常)
$8\sim14$	(空)
15	运行准备完成 (READY)
	10 C T V 20 C T T T T T T T T T T T T T T T T T T

	运行指令(Set)								
bit	内容	J容 bit 内							
0	(空)	7	RT (第2功能选择) *10						
1	STF (正转指令)	8	AU (电流输入选择) *10						
2	STR (反转指令)	9	CS (瞬时停电再启动选择)*10、*11						
3	RH (高速指令) *10	10	MRS (输出切断) *10						
4	RM (中速指令) *10	11	STOP (启动自动保持) *10						
5	RL (低速指令) *10	12	RES (复位) *10						
6	JOG (JOG 运行) *10	$13 \sim 15$	(空)						

[服务]

服务代码	内 容
0x0E	读取属性值
0x10	写入属性值

^{*10} 信号为初始值时的信号。根据 Pr. 180 ~ Pr. 189 (输入端子功能选择)的设定,内容发生变化。

^{*11} FR-F800 系列在初始值时无功能。

7.2.8 等级 0x66 (扩展对象 I)

◆ 等级 0x66 实例 11

设定变频器的参数。各属性的数据类型为 UINT,数据的字节数为 2 字节。

可设定的参数根据变频器不同会有所不同。关于各参数的详细内容,请参照变频器本体的使用手册 (详细篇)。

• NOTE

• 进行参数的读写时, 建议使用等级 0x70 ~ 0x79 (扩展对象Ⅲ)。(参照**第89页**)

[属性]

等级 0x66 实例 1

寺级 0x66 头	י נילו		
属性 ID	Pr.	存取	名 称
10	Pr. 0	Get/Set	转矩提升
11	Pr. 1	Get/Set	上限频率
12	Pr. 2	Get/Set	下限频率
13	Pr. 3	Get/Set	基底频率
14	Pr. 4	Get/Set	3 速设定(高速)
15	Pr. 5	Get/Set	3速设定(中速)
16	Pr. 6	Get/Set	3速设定(低速)
17	Pr. 7	Get/Set	加速时间
18	Pr. 8	Get/Set	减速时间
19	Pr. 9	Get/Set	电子过热保护
20	Pr. 10	Get/Set	直流制动动作频率
21	Pr. 11	Get/Set	直流制动动作时间

守纵 0x00 头例 1				
属性 ID	Pr.	存取	名 称	
22	Pr. 12	Get/Set	直流制动动作电压	
23	Pr. 13	Get/Set	启动频率	
24	Pr. 14	Get/Set	适用负载选择	
25	Pr. 15	Get/Set	JOG 频率	
26	Pr. 16	Get/Set	JOG 加减速时间	
27	Pr. 17	Get/Set	MRS 输入选择	
28	Pr. 18	Get/Set	高速上限频率	
29	Pr. 19	Get/Set	基底频率电压	
30	Pr. 20	Get/Set	加减速基准频率	
31	Pr. 21	Get/Set	加减速时间单位	
32	Pr. 22	Get/Set	失速防止动作水平 (转矩限制水平)	

属性 ID	Pr.	存取	名 称
33	Pr. 23	Get/Set	倍速时失速防止动作水平补偿 系数
34	Pr. 24	Get/Set	多段速设定(4速)
35	Pr. 25	Get/Set	多段速设定(5速)
36	Pr. 26	Get/Set	多段速设定(6速)
37	Pr. 27	Get/Set	多段速设定(7速)
38	Pr. 28	Get/Set	多段速输入补偿选择
39	Pr. 29	Get/Set	加减速曲线选择
40	Pr. 30	Get/Set	再生功能选择
41	Pr. 31	Get/Set	频率跳变 1A
42	Pr. 32	Get/Set	频率跳变 1B
43	Pr. 33	Get/Set	频率跳变 2A
44	Pr. 34	Get/Set	频率跳变 2B
45	Pr. 35	Get/Set	频率跳变 3A
46	Pr. 36	Get/Set	频率跳变 3B
47	Pr. 37	Get/Set	转速显示
51	Pr. 41	Get/Set	频率到达动作范围
52	Pr. 42	Get/Set	输出频率检测
53	Pr. 43	Get/Set	反转时输出频率检测
54	Pr. 44	Get/Set	第2加减速时间

属性 ID	Pr.	存取	名 称
55	Pr. 45	Get/Set	第2减速时间
56	Pr. 46	Get/Set	第2转矩提升
57	Pr. 47	Get/Set	第 2V/F(基底频率)
58	Pr. 48	Get/Set	第2失速防止动作水平
59	Pr. 49	Get/Set	第2失速防止动作频率
60	Pr. 50	Get/Set	第2输出频率检测
61	Pr. 51	Get/Set	第2电子过热保护
62	Pr. 52	Get/Set	操作面板主显示器选择
64	Pr. 54	Get/Set	FM/CA 端子功能选择
65	Pr. 55	Get/Set	频率监视基准
66	Pr. 56	Get/Set	电流监视基准
67	Pr. 57	Get/Set	再启动自由运行时间
68	Pr. 58	Get/Set	再启动上升时间
69	Pr. 59	Get/Set	远程功能选择
70	Pr. 60	Get/Set	节能控制选择
71	Pr. 61	Get/Set	基准电流
72	Pr. 62	Get/Set	加速时基准值
73	Pr. 63	Get/Set	减速时基准值
74	Pr. 64	Get/Set	升降机模式启动频率
75	Pr. 65	Get/Set	再试选择

属性 ID	Pr.	存取	名 称
76	Pr. 66	Get/Set	失速防止动作降低开始频率
77	Pr. 67	Get/Set	报警发生时再试次数
78	Pr. 68	Get/Set	再试等待时间
79	Pr. 69	Get/Set	再试次数显示消除
80	Pr. 70	Get/Set	特殊再生制动使用率
81	Pr. 71	Get/Set	适用电机
82	Pr. 72	Get/Set	PWM 频率选择
83	Pr. 73	Get/Set	模拟量输入选择
84	Pr. 74	Get/Set	输入滤波时间常数
85	Pr. 75	Get/Set	复位选择/PU脱离检测/PU停止 选择
86	Pr. 76	Get/Set	报警代码输出选择
87	Pr. 77	Get	参数写入选择
88	Pr. 78	Get/Set	反转防止选择
89	Pr. 79	Get	运行模式选择
90	Pr. 80	Get/Set	电机容量
91	Pr. 81	Get/Set	电机极数
92	Pr. 82	Get/Set	电机励磁电流
93	Pr. 83	Get/Set	电机额定电压

属性 ID	Pr.	存取	名 称
94	Pr. 84	Get/Set	电机额定频率
99	Pr. 89	Get/Set	速度控制增益 (先进磁通矢量)
100	Pr. 90	Get/Set	电机常数 (R1)
101	Pr. 91	Get/Set	电机常数 (R2)
102	Pr. 92	Get/Set	电机常数 (L1)/d 軸电感 (Ld)
103	Pr. 93	Get/Set	电机常数 (L2)/q 軸电感 (Lq)
104	Pr. 94	Get/Set	电机常数 (X)
105	Pr. 95	Get/Set	在线自动调谐选择
106	Pr. 96	Get/Set	自动调谐设定 / 状态
110	Pr. 100	Get/Set	V/F1 (第1频率)
111	Pr. 101	Get/Set	V/F1 (第1频率电压)
112	Pr. 102	Get/Set	V/F2 (第2频率)
113	Pr. 103	Get/Set	V/F2 (第2频率电压)
114	Pr. 104	Get/Set	V/F3 (第3频率)
115	Pr. 105	Get/Set	V/F3 (第3频率电压)
116	Pr. 106	Get/Set	V/F4 (第4频率)
117	Pr. 107	Get/Set	V/F4 (第 4 频率电压)

属性 ID	Pr.	存取	名 称
118	Pr. 108	Get/Set	V/F5 (第5频率)
119	Pr. 109	Get/Set	V/F5 (第5频率电压)
120	Pr. 110	Get/Set	第3加减速时间
121	Pr. 111	Get/Set	第3减速时间
122	Pr. 112	Get/Set	第3转矩提升
123	Pr. 113	Get/Set	第 3V/F(基底频率)
124	Pr. 114	Get/Set	第3失速防止动作水平
125	Pr. 115	Get/Set	第3失速防止动作频率
126	Pr. 116	Get/Set	第3输出频率检测
127	Pr. 117	Get/Set	PU 通讯站号
128	Pr. 118	Get/Set	PU 通讯速度
129	Pr. 119	Get/Set	PU 通讯停止位长 / 数据长
130	Pr. 120	Get/Set	PU 通讯奇偶校验
131	Pr. 121	Get/Set	PU 通讯再试次数
132	Pr. 122	Get/Set	PU 通讯校检时间间隔
133	Pr. 123	Get/Set	PU 通讯等待时间设定
134	Pr. 124	Get/Set	PU 通讯 CR/LF 选择
135	Pr. 125	Get/Set	端子2频率设定增益频率

属性 ID	Pr.	存取	名 称
136	Pr. 126	Get/Set	端子 4 频率设定增益频率
137	Pr. 127	Get/Set	PID 控制自动切换频率
138	Pr. 128	Get/Set	PID动作选择
139	Pr. 129	Get/Set	PID 比例范围
140	Pr. 130	Get/Set	PID 积分时间
141	Pr. 131	Get/Set	PID上限
142	Pr. 132	Get/Set	PID下限
143	Pr. 133	Get/Set	PID 动作目标值
144	Pr. 134	Get/Set	PID 微分时间
145	Pr. 135	Get/Set	工频电源切换顺序输出端子选择
146	Pr. 136	Get/Set	MC 切换互锁时间
147	Pr. 137	Get/Set	启动等待时间
148	Pr. 138	Get/Set	异常时的工频电源-变频器切换 选择
149	Pr. 139	Get/Set	变频器-工频电源自动切换频率
150	Pr. 140	Get/Set	齿隙加速时停止频率
151	Pr. 141	Get/Set	齿隙加速时停止时间

属性 ID	Pr.	存取	名 称
152	Pr. 142	Get/Set	齿隙减速时停止频率
153	Pr. 143	Get/Set	齿隙减速时停止时间
154	Pr. 144	Get/Set	转速设定切换
155	Pr. 145	Get/Set	PU 显示语言切换
157	Pr. 147	Get/Set	加减速时间切换频率
158	Pr. 148	Get/Set	0V 输入时的失速防止水平
159	Pr. 149	Get/Set	10V 输入时的失速防止水平
160	Pr. 150	Get/Set	输出电流检测水平
161	Pr. 151	Get/Set	输出电流检测信号延迟时间
162	Pr. 152	Get/Set	零电流检测水平
163	Pr. 153	Get/Set	零电流检测时间
164	Pr. 154	Get/Set	失速防止动作中的电压降低选 择
165	Pr. 155	Get/Set	RT 信号执行条件选择
166	Pr. 156	Get/Set	失速防止动作选择
167	Pr. 157	Get/Set	OL 信号输出延时
168	Pr. 158	Get/Set	AM 端子功能选择

属性 ID	Pr.	存取	名 称
169	Pr. 159	Get/Set	商用变频器自动切换动作范围
170	Pr. 160	Get/Set	用户参数组读出选择
171	Pr. 161	Get/Set	频率设定/键盘锁定操作选择
172	Pr. 162	Get/Set	瞬时停电再启动动作选择
173	Pr. 163	Get/Set	再启动第1缓冲时间
174	Pr. 164	Get/Set	再启动第1缓冲电压
175	Pr. 165	Get/Set	再启动失速防止动作水平
176	Pr. 166	Get/Set	输出电流检测信号保持时间
177	Pr. 167	Get/Set	输出电流检测动作选择
178	Pr. 168		厂家设定用参数(请勿使用。)
179	Pr. 169] _	/ 多反定用参数(请勿使用。/
180	Pr. 170	Get/Set	电度表清零
181	Pr. 171	Get/Set	实际运行时间清零
182	Pr. 172	Get/Set	用户参数组注册数显示/一次性 删除
183	Pr. 173	Get	用户参数组注册
184	Pr. 174	Get	用户参数组删除
188	Pr. 178	Get/Set	STF 端子功能选择

属性 ID	Pr.	存取	名 称
189	Pr. 179	Get/Set	STR 端子功能选择
190	Pr. 180	Get/Set	RL 端子功能选择
191	Pr. 181	Get/Set	RM 端子功能选择
192	Pr. 182	Get/Set	RH 端子功能选择
193	Pr. 183	Get/Set	RT 端子功能选择
194	Pr. 184	Get/Set	AU 端子功能选择
195	Pr. 185	Get/Set	JOG 端子功能选择
196	Pr. 186	Get/Set	CS 端子功能选择
197	Pr. 187	Get/Set	MRS 端子功能选择
198	Pr. 188	Get/Set	STOP 端子功能选择
199	Pr. 189	Get/Set	RES 端子功能选择
200	Pr. 190	Get/Set	RUN 端子功能选择
201	Pr. 191	Get/Set	SU 端子功能选择
202	Pr. 192	Get/Set	IPF 端子功能选择
203	Pr. 193	Get/Set	OL 端子功能选择
204	Pr. 194	Get/Set	FU 端子功能选择
205	Pr. 195	Get/Set	ABC1 端子功能选择
206	Pr. 196	Get/Set	ABC2 端子功能选择
212	Pr. 232	Get/Set	多段速设定 (8速)
213	Pr. 233	Get/Set	多段速设定 (9速)

等级 0x66 实例 1

属性 ID	Pr.	存取	名 称
214	Pr. 234	Get/Set	多段速设定 (10速)
215	Pr. 235	Get/Set	多段速设定 (11速)
216	Pr. 236	Get/Set	多段速设定 (12速)
217	Pr. 237	Get/Set	多段速设定 (13速)
218	Pr. 238	Get/Set	多段速设定 (14速)
219	Pr. 239	Get/Set	多段速设定 (15速)
220	Pr. 240	Get/Set	Soft-PWM 动作选择
221	Pr. 241	Get/Set	模拟输入显示单位切换
222	Pr. 242	Get/Set	端子1加算补偿量(端子2)
223	Pr. 243	Get/Set	端子1加算补偿量(端子4)
224	Pr. 244	Get/Set	冷却风扇动作选择
225	Pr. 245	Get/Set	额定转差
226	Pr. 246	Get/Set	转差补偿常数
227	Pr. 247	Get/Set	额定输出范围转差补偿选择
229	Pr. 249	Get/Set	启动时接地检测有无
230	Pr. 250	Get/Set	停止选择
231	Pr. 251	Get/Set	输出欠相保护选择
232	Pr. 252	Get/Set	比例补偿偏置
233	Pr. 253	Get/Set	比例补偿增益
235	Pr. 255	Get	寿命报警状态显示

85

属性 ID	Pr.	存取 名 称	
236	Pr. 256	Get	浪涌电流抑制回路寿命显示
237	Pr. 257	Get	控制回路电容器寿命显示
238	Pr. 258	Get	主回路电容器寿命显示
239	Pr. 259	Get	主回路电容器寿命检测
240	Pr. 260	Get/Set	PWM 频率自动切换
241	Pr. 261	Get/Set	停电停止方式选择
242	Pr. 262	Get/Set	开始减速时减算频率
243	Pr. 263	Get/Set	减速处理开始频率

等级 0x66 实例 1

(14% exec 2(p))						
属性 ID	Pr.	存取	名 称			
244	Pr. 264	Get/Set	停电时减速时间1			
245	Pr. 265	Get/Set	停电时减速时间 2			
246	Pr. 266	Get/Set	停电时减速时间切换频率			
247	Pr. 267	Get/Set	端子4输入选择			
248	Pr. 268	Get/Set	监视器小数位数选择			
249	Pr. 269	_	厂家设定用参数(请勿使用。)			
			· · · · · · · · · · · · · · · · · · ·			

NOTE

• 参数模块中显示的 "8888" 是指 65520 (0xFFF0), "9999" 是指 65535 (0xFFFF)。

[服务]

服务代码	内 容
0x0E	读取属性值
0x10	写入属性值

7.2.9 等级 0x67 (扩展对象 II)

◆ 等级 0x67 实例 1

设定变频器的参数。各属性的数据类型为 UINT, 数据的字节数为 2 字节。

可设定的参数根据变频器不同会有所不同。关于各参数的详细内容,请参照变频器本体的使用手册 (详细篇)。

NOTE:

• 进行参数的读写时, 建议使用等级 0x70 ~ 0x79 (扩展对象Ⅲ)。(参照**第 89 页**)

[属性]

等级 0x67 实例 1

寺级 UXO7 头例 Ⅰ						
属性 ID	Pr.	存取	名 称			
10	Pr. 270	Get/Set	挡块定位、负载转矩高速频率 控制选择			
11	Pr. 271	Get/Set	高速设定上限电流值			
12	Pr. 272	Get/Set	中速设定上限电流值			
13	Pr. 273	Get/Set	电流平均化范围			
14	Pr. 274	Get/Set	电流平均滤波时间常数			
15	Pr. 275	Get/Set	挡块定位时励磁电流低速倍率			
16	Pr. 276	Get/Set	挡块定位时 PWM 载波频率			
18	Pr. 278	Get/Set	制动开启频率			
19	Pr. 279	Get/Set	制动开启电流			
20	Pr. 280	Get/Set	制动开启电流检测时间			
21	Pr. 281	Get/Set	启动时制动动作时间			

等级 0x67 实例 1

寺级 UXO/ 头例 I						
属性 ID	Pr.	存取	名 称			
22	Pr. 282	Get/Set	制动动作频率			
23	Pr. 283	Get/Set	停止时制动动作时间			
24	Pr. 284	Get/Set	减速检测功能选择			
25	Pr. 285	Get/Set	超速检测频率 (速度偏差过大检测频率)			
26	Pr. 286	Get/Set	固定偏差增益			
27	Pr. 287	Get/Set	固定偏差滤波器时间常数			
38	Pr. 338	Get/Set	通讯运行指令权			
39	Pr. 339	Get/Set	通讯速度指令权			
40	Pr. 340	Get/Set	通讯启动模式选择			
41	Pr. 341	Get/Set	RS-485 通讯 CR/LF 选择			
42	Pr. 342	Get/Set	通讯 EEPROM 写入选择			
45	Pr. 345	Get	DeviceNet 地址			

等级 0x67 实例 1

属性 ID	Pr.	存取	名 称
46	Pr. 346	Get	DeviceNet 波特率
67	Pr. 367	Get/Set	速度反馈范围
68	Pr. 368	Get/Set	反馈增益
192	Pr. 500	Get/Set	通讯异常执行等待时间
193	Pr. 501	Get/Set	通讯异常发生次数显示
194	Pr. 502	Get/Set	通讯异常时停止模式选择
202	C2 (Pr. 902)	Get/Set	端子2频率设定偏置频率
203	C3 (Pr. 902)	Get/Set	端子2频率设定偏置

等级 0x67 实例 1

 						
属性 ID	Pr.	存取	名 称			
204	Pr. 125 (Pr. 903)	Get/Set	端子2频率设定增益频率			
205	C4 (Pr. 903)	Get/Set	端子2频率设定增益			
206	C5 (Pr. 904)	Get/Set	端子 4 频率设定偏置频率			
207	C6 (Pr. 904)	Get/Set	端子4频率设定偏置			
208	Pr. 126 (Pr. 905)	Get/Set	端子 4 频率设定增益频率			
209	C7 (Pr. 905)	Get/Set	端子4频率设定增益			

NOTE

• 参数模块中显示的 "8888" 是指 65520 (0xFFF0), "9999" 是指 65535 (0xFFFF)。

[服务]

服务代码	内 容
0x0E	读取属性值
0x10	写入属性值

7. 2. 10 等级 0x70 ~ 0x79 (扩展对象 III)

◆ 等级 0x70 ~ 0x79 实例 1、2

设定变频器的参数。关于各参数的详细内容,请参照变频器本体的使用手册 (详细篇)。

[属性]

等级 0x70 ~ 0x79 实例 1、2

等级	实例	属性	Pr.	存取	数据 类型	字节数	内容
0x70	1	$10 \sim 109$	Pr. 0 \sim Pr. 99	Get/Set	UINT	2	
0x71	1	$10\sim109$	Pr. $100 \sim$ Pr. 199	Get/Set	UINT	2	
0x72	1	$10\sim109$	Pr. 200 \sim Pr. 299	Get/Set	UINT	2	
0x73	1	$10\sim109$	Pr. $300 \sim$ Pr. 399	Get/Set	UINT	2	
0x74	1	$10\sim109$	Pr. $400 \sim$ Pr. 499	Get/Set	UINT	2	
0x75	1	$10\sim109$	Pr. $500 \sim$ Pr. 599	Get/Set	UINT	2	
0x76	1	$10\sim109$	Pr. $600 \sim$ Pr. 699	Get/Set	UINT	2	
0x77	1	$10\sim109$	$\mathrm{Pr.700} \sim \mathrm{Pr.799}$	Get/Set	UINT	2	
0x78	1	$10\sim109$	Pr. $800 \sim Pr. 899$	Get/Set	UINT	2	
070	1	$10\sim109$	Pr. 900 \sim Pr. 999	Get/Set	UINT	2	校正用参数偏置、增益等
0x79	2	$10 \sim 49$	$\mathrm{Pr.900} \sim \mathrm{Pr.939}$	Get/Set	UINT	2	校正用参数模拟值

[服务]

服务代码	内 容
0x0E	读取属性值
0x10	写入属性值

7. 2. 11 等级 0x80 (扩展对象Ⅳ)

◆ 等级 0x80 实例 1

可读取变频器监视值。各属性的数据类型为 UINT,数据的字节数为 2 字节。

可读取的监视根据变频器不同会有所不同。关于各监视的详细内容,请参照变频器本体的使用手册 (详细篇)。

[属性]

等级 0x80 实例 1

寺级 0x80 头例 1							
属性 ID	存取	内容	单位				
11	Get	输出频率 *7、*9	0.01Hz*8				
12	Get	输出电流*9	0. 01A/ 0. 1A*1				
13	Get	输出电压*9	0.1V				
15	Get	频率设定值	0.01Hz*8				
16	Get	运行速度	1r/min*11				
17	Get	电机转矩	0.1%				
18	Get	逆变器输出电压	0.1V				
19	Get	再生制动器使用率	0.1%				
20	Get	电子过热保护负载率	0.1%				
21	Get	输出电流峰值	0. 01A/ 0. 1A*1				
22	Get	逆变器输出电压峰值	0.1V				
23	Get	输入功率	0.01kW/ 0.1kW*1				
24	Get	输出功率	0.01kW/ 0.1kW*1				

等级 0x80 实例 1

寺级 0x80 头	ו ניפן	•	
属性 ID	存取	内容	单位
25	Get	输入端子状态 *2	_
26	Get	输出端子状态 *3	_
27	Get	负载表	0.1%
28	Get	电机励磁电流	0. 01A/ 0. 1A*1
29	Get	位置脉冲	_
30	Get	累计通电时间	1h
32	Get	定向状态	1
33	Get	实际运行时间	1h
34	Get	电机负载率	0.1%
35	Get	累计功率	1kWh
36	Get	位置指令 (低位)	1
37	Get	位置指令 (高位)	1
38	Get	当前位置 (低位)	1
39	Get	当前位置 (高位)	1
40	Get	累积脉冲 (低位)	1
41	Get	累积脉冲 (高位)	1

等级 0x80 实例 1

属性 ID	存取	内容	单位
42	Get	转矩指令	0.1%
43	Get	转矩电流指令	0.1%
44	Get	电机输出	0.01kW/ 0.1kW*1
45	Get	反馈脉冲数	_
48	Get	追踪状态	1
50	Get	顺控功能用户监视 1	通过
51	Get	顺控功能用户监视 2	SD1215 设 定的单位
52	Get	顺控功能用户监视 3	*10
53	Get	通讯站号 (RS-485 端子)	1
54	Get	通讯站号 (PU 端口)	1
60	Get	省电效果	能够根据参 数变更
61	Get	省电累计	能够根据参 数变更
62	Get	PID 目标值	0.1%
63	Get	PID 测量值	0.1%
64	Get	PID 偏差	0.1%
68	Get	选件输入端子状态 1*4	_
69	Get	选件输入端子状态 2*5	_
70	Get	选件输出端子状态 *6	_
71	Get	电机过热保护负载率	0.1%

等级 0x80 实例 1

13 30 000 00			
属性 ID	存取	内容	单位
72	Get	变频器过热保护负载率	0.1%
74	Get	PTC 热敏电阻值	0. 01k Ω
77	Get	PID 测定值 2	0.1%
78	Get	紧急驱动状态	1
87	Get	32bit累计电量(低位16bit)	1kWh
88	Get	32bit累计电量(高位16bit)	1kWh
89	Get	32bit累计电量(低位16bit)	0.01kWh/ 0.1kWh*1
90	Get	32bit累计电量(高位16bit)	0.01kWh/ 0.1kWh*1
91	Get	BACnet 接收状态	1
92	Get	BACnet 令牌传递计数器	1
93	Get	BACnet 有效 APDU 计数器	1
94	Get	BACnet 通讯错误计数器	1
95	Get	BACnet 端子 FM/CA 输出等级	0.1%
96	Get	BACnet 端子 AM 输出等级	0.1%
97	Get	远程输出值1	0.1%
98	Get	远程输出值 2	0.1%
99	Get	远程输出值3	0.1%

等级 0x80 实例 1

13 4% 01100 3	173 .		
属性 ID	存取	内容	单位
100	Get	远程输出值 4	0.1%
101	Get	PID 操作量	0.1%
102	Get	第 2PID 目标值	0.1%
103	Get	第 2PID 测定值	0.1%
104	Get	第 2PID 偏差	0.1%

等级 0x80 实例 1

属性 ID	存取	内容	单位
105	Get	第 2PID 测量值 2	0.1%
106	Get	第 2PID 操作量	0.1%
107	Get	浮动辊主速设定值	0.01Hz
108	Get	控制回路温度	1 ℃

- *1 根据容量不同而不同。
- *2 输入端子监视详细 (端子 ON: 1、端子 OFF: 0、-: 不定值)

b15															b0
_	_	1	_	CS	RES	ST0P	MRS	JOG	RH	RM	RL	RT	AU	STR	STF

*3 输出端子监视详细 (端子 ON: 1、端子 OFF: 0、-: 不定值)

*4 选件输入端子监视 1 详细(FR-A8AX 的输入端子状态(端子 0N: 1、端子 0FF: 0、一: 不定值)) 未安装选件时,全部为 0FF。

*5 选件输入端子监视 2 详细 (FR-A8AX 的输入端子状态 (端子 0N: 1、端子 0FF: 0、一: 不定值)) 未安装选件时,全部为 0FF。

b15												b0
_	_		1	I	1	1	I	I	I	1		DY

*6 选件输出端子监视详细(FR-A8AY/A8AR 的输出端子状态(端子 ON: 1、端子 OFF: 0、一: 不定值)) 未安装选件时,全部为 OFF。

b15															b0	
_	_	_	_	_	_	RA3	RA2	RA1	Y6	Y5	Y4	Υ3	Y2	Y1	Y0	l

- *7 FR-A800 系列中位置控制选择时,通过设定 Pr. 430 ≠ "9999",成为脉冲监视。
- *8 无论 Pr. 37 的设定如何,始终都显示为频率(Hz)。详细内容请参照变频器本体的使用手册(详细篇)。
- *9 发生变频器报警时,监视值保持发生时的值不变。通过复位对保持进行解除。
- *10 详细内容请参照顺控功能编程手册。
- *11 根据 Pr. 37、Pr. 144、Pr. 811 的设定值决定。(参照**第** 37 页)

「服务]

服务代码	内 容
0x0E	读取属性值

7. 2. 12 等级 0x90 ~ 0x94 (扩展对象 V)

◆ 等级 0x90 ~ 0x94 实例 1

设定变频器的参数。可设定的参数根据变频器不同会有所不同。关于各参数的详细内容,请参照变频器本体的使用手册 (详细篇)。

[属性]

等级 0x90 ~ 0x94 实例 1

等级	实例	属性	Pr.	存取	数据 类型	字节数	内容
0x90	1	$10 \sim 109$	Pr. $1000 \sim Pr. 1099$	Get/Set	UINT	2	
0x91	1	$10 \sim 109$	$Pr. 1100 \sim Pr. 1199$	Get/Set	UINT	2	
0x92	1	$10 \sim 109$	Pr. 1200 \sim Pr. 1299	Get/Set	UINT	2	
0x93	1	$10 \sim 109$	$\mathrm{Pr.1300} \sim \mathrm{Pr.1399}$	Get/Set	UINT	2	
0x94	1	$10\sim109$	Pr. 1400 \sim Pr. 1499	Get/Set	UINT	2	

7.3 FR-A5ND 兼容模式

切换至 FR-A5ND 兼容模式,即可以 FR-A5ND 的规格进行 DeviceNet 通讯。

◆ 至 FR-A5ND 兼容模式的切换方法

• NOTE

- 兼容模式用开关的设定在接通变频器电源前进行,通电中请勿变更设定。否则会导致触电。
- 兼容模式用开关的开关 2 请勿设为 0N。

◆ FR-A5ND 兼容模式的规格

FR-A5ND 兼容模式与标准模式的差异如下表所示。 兼容模式各功能的详细内容请参照 FR-A5ND 的使用手册。

等级 ID	实例 ID	属性 ID	名称	FR-A5ND 兼容模式	标准模式 (FR-A8ND)	参照页	
0x03	1	1	节点地址设定(MAC ID)	无论节点地址开关的设定值如何,均可写入至 Pr. 345	节点地址开关的设定值为 " $0\sim63$ "时,不可写入至 $Pr.345$	61	
0x03	1	3	Bus-off 中断	0	×		
0x03	1	4	Bus-off 计数器	0	×	ı	
0x28	1	6	额定电流 (Pr.9)	0.01A/0.1A 单位 *1	0.1A 单位		
0.00	1	7	然 ウカエ	读写至 Pr. 83	读写至 Pr. 19	71	
0x28	1	7	额定电压	0.1V 单位	1V 单位		
0x28	1	8	电机容量 (Pr. 80)	0	×		
0x28	1	9	额定频率 (Pr. 84)	0	×		
0x28	1	12	电机极数 (Pr. 144)	0	×	_	
0x28	1	15	基底速度 (Pr. 3)	0	×		
0x29	1	5	NetCtrl (运行指令权)	变频器运行中可写入	运行指令权为通讯,变频 器运行中不可写入	72	
0x29	1	16	DeviceNet 错误模式	0	×		
0x29	1	40	输入汇编程序	0	×	_	

(○:支持, X:不支持)

等级 ID	实例 ID	属性 ID	名称	FR-A5ND 兼容模式	标准模式 (FR-A8ND)	参照页
0x29	1	41	输出汇编程序	0	×	_
0x2A	1	4	NetRef (速度指令权)	变频器运行中可写入	速度指令权为通讯,变频 器运行中不可写入	
0x2A	1	9	实际电流	0.01A/0.1A 单位 *1	0. 1A 单位	
0x2A	1	17	输出电压	0.1V 单位	1V 单位	
0x2A	1	18	加速时间	0~Pr. 20 加减速基准频 率为止的时间(Pr. 7、	0 ~ Pr. 18 高速上限频率	74
0x2A	1	19	减速时间	Pr. 8) 0. 1s 单位	为止的时间 1ms 单位	
0x2A	1	114	运行指令 (Set)	无 STOP、RES	有 STOP、RES	
	eNet 通讯的 Fault 请误复位时有无通讯		29、实例 1、属性 12 设定	不持续通讯	持续通讯	45、47、 49、53、 73
变频器运行	厅中写入至等级 0x2	29、实例 1、属性 5	(NetCtrl)	可写入	不可写入	72
	通讯中 STF、STR 的正转指令与反转	司时 ON 时的动作 指令或等级 0x29 的	Run1与Run2)	正转指令、反转指令同时 0N 时变频器停止	即使正转指令、反转指令 同时设为 0N,启动信号也 会保持上次的状态不变	47、49、 53、72

(○:支持, X:不支持)

*1 根据变频器容量有所不同。

附录 1 EDS 文件

关于 EDS 文件的详细内容,请与经销商或本公司联系。

请下载与使用模式 (标准模式 /FR-A5ND 兼容模式) 对应的 EDS 文件。(关于模式切换请参照第 95 页)

• NOTE

• EDS 文件作为 ODVA 标准用,以使用配置软件为前提。关于 EDS 文件的适当的安装方法,请参照 DeviceNet 配置软件的使用手册。

附录 2 错误代码列表

Explicit 信息通讯的错误响应格式如下表所示。

字节	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0	0	XID*1	接收侧 (主站)的 MAC ID							
1	0x94									
2	一般错误代码									
3	追加错误代码									

*1 回送主站侧设定的 Bit。

一般 错误 代码	追加 错误 代码	名 称	内 容					
0x08	0xFF	Service not supported	要求的服务未支持。或要求的服务在指定对象等级 / 实例中未定义。					
0x09	0xFF	Invalid attribute value	属性数据的范围外。					
0x0C	0xFF	Object state conflict	指定对象未变为可执行要求服务的状态。					
0x0E	0xFF	Attribute not settable	所要求的设定服务已指定不可变更的属性。					
0x13	0xFF	Not enough data	主站发出的发送数据未达到规定字节数。					
0x14	0xFF	Attribute not supported	不支持属性。					
0x15	0xFF	Too much data	主站发出的发送数据超过规定字节数。					
0x16	0xFF	Object does not exist	对象 (实例) 不存在。					
0x1F	0xFF	Vender specific error	发生了 FR-A8ND 固有的错误。					
0x1F	0x11	Vender specific error	在参数中写入了范围外的值。					

一般 错误 代码	追加 错误 代码	名 称	内 容
0x1F	0x12	Vender specific error	非网络运行模式时及无操作指令权时、变频器运行时等想要进行参数的写入。
0x1F	0x13	Vender specific error	指定了不存在的命令代码。
0x1F	0x14	Vender specific error	通过写入参数、运行频率等,指定了可设定范围以外的数据。

关于电器电子产品有害物质限制使用

根据中华人民共和国的《电器电子产品有害物质限制使用管理办法》,对适用于产品的"电器电子产品有害物质限制使用标识"的内容记载如下。

电器电子产品有害物质限制使用标识要求

本产品中所含有的有害物质的名称、含量、含有部件如下表所示。

• 产品中所含有害物质的名称及含量

部件名称*2	有害物质*1							
印什有你*2	铅(Pb)	汞(Hg)	镉(Cd)	六价铬(Cr(VI))	多溴联苯(PBB)	多溴二苯醚 (PBDE)		
电路板组件 (包括印刷电路板及其构成的零部件,如电阻、电容、集成电路、连接器等)、电子部件	×	0	×	0	0	0		
金属壳体、金属部件	×	0	0	0	0	0		
树脂壳体、树脂部件	0	0	0	0	0	0		
螺丝、电线	0	0	0	0	0	0		

- 上表依据SJ/T11364的规定编制。
- 〇:表示该有害物质在该部件所有均质材料中的含量均在GB/T26572规定的限量要求以下。
- ×:表示该有害物质在该部件的至少一种均质材料中的含量超出GB/T26572规定的限量要求。
 - *1 即使表中记载为×,根据产品型号,也可能会有有害物质的含量为限制值以下的情况。
 - *2 根据产品型号,一部分部件可能不包含在产品中。

修 订 记 录 *本使用手册编号在封底的左下角。

印刷日期	* 使用手册编号		修	订	内	容	
2017年9月	IB (NA) -0600739CHN-A	第一版					

IB(NA) - 0600739CHN - A(1709)

MODEL:FR-A8ND使用手册

▲ 三菱电机自动化(中国)有限公司

地址:上海市虹桥路1386号三菱电机自动化中心

邮编: 200336

电话: 021-23223030 传真: 021-23223000 网址: http://cn.MitsubishiElectric.com/fa/zh/

技术支持热线 400-821-3030

内容如有更改 恕不另行通知