HW_5

Austin Pesina

06/29/2021

9-2

Show that

(a) if $\phi(0,0,...,0) = 0$ and $\phi(1,1,...,1) = 1$ then min $x_i \le \phi(\vec{x}) \le \max x_i$

```
\begin{split} \phi(\vec{x}) &\leq \max \vec{x}_i \text{ with state vector } \vec{x} = (x_1,...,x_n) \\ x_i &= 0 \text{ for some i }, i = 1,...,n, \text{ or } x_i = 1 \text{ for all i.} \\ \text{If } x_i &= 0 \text{ for some i, } \min x_i = 0 \therefore \min x_i \leq \phi(\vec{x}) \\ \text{If } x_i &= 1 \text{ for all i, } i = 1,...,n, \text{ that is } \vec{x} = (1,...,1) \text{ then } \min x_i = 1 \text{ and } \phi(\vec{x} = 1) \therefore \min x_i \leq \phi(\vec{x}) \end{split}
```

$$\phi \vec{x} \leq \max x_i$$
 with state vector $\vec{x} = (x_1, ..., x_n)$
 $x_i = 1$ for some i $, i = 1, ..., n,$ or $x_i = 0$ for all i, $i = 1, ..., n.$
If $x_i = 1$ for some i, $\max x_i = 0$ and $\phi(\vec{x}) = 0 : \phi(\vec{x}) \leq \max x_i$

Thus, min $x_i \leq \phi \vec{x} \leq \max x_i$

(b) $\phi(\max(\vec{x}, \vec{y})) \ge \max(\phi(\vec{x}), \phi(\vec{y}))$

$$\begin{aligned} & \max \ (\vec{x}, \vec{y}) \geq \vec{x} \text{ and } \max \ (\vec{x}, \vec{y}) \geq \vec{y} \\ & \text{Because } \phi(\vec{x}) \text{ is an increasing function,} \\ & \phi(\max \ (\vec{x}, \vec{y})) \geq \phi(\vec{x}) \text{ and } \phi(\max \ (\vec{x}, \vec{y})) \geq \phi(\vec{y}) \\ & \therefore \phi(\max(\vec{x}, \vec{y})) \geq \max(\phi(\vec{x}), \phi(\vec{y})) \end{aligned}$$

(c) $\phi(\min(\vec{x}, \vec{y})) \leq \min(\phi(\vec{x}), \phi(\vec{y}))$

$$\begin{aligned} & \min \ (\vec{x}, \vec{y}) \leq \vec{x} \text{ and } \min \ (\vec{x}, \vec{y}) \leq \vec{y} \\ & \text{Because } \phi(\vec{x}) \text{ is an increasing function,} \\ & \phi(\min \ (\vec{x}, \vec{y})) \leq \phi(\vec{x}) \text{ and } \phi(\min \ (\vec{x}, \vec{y})) \leq \phi(\vec{y}) \\ & \therefore \phi(\min(\vec{x}, \vec{y}) \leq \min(\phi(\vec{x}), \phi(\vec{y})) \end{aligned}$$

9-13

Let $r(\vec{p})$ be the reliability function.

Show that

$$r(\vec{p}) = p_i r(1_i, \vec{p}) + (1 - p_i) r(0_i, \vec{p})$$

$$r(p) = E[\phi(X)]$$

$$= p_i \{ E\phi(X) | X_i = 1 \} + (1 - p_i) E(\phi(X) | X_i = 0)$$

$$= p_i E[\phi(1_i, X)] + (1 - p_i) E[\phi(o_i, X)]$$

$$r(p) = p_i [r(1_i, p) + (1 - p_i) \{(o_i, p)\})]$$

$$\therefore r(p) = p_i [r(1_i, p)] + (1 - p_i) \{(o_i, p)\}$$

9-23

Show that if each (independent) component of a series system has an IFR distribution, then the system lifetime is itself IFR by

(a) showing that

$$\lambda_F(t) = \sum_i \lambda_i(t)$$

where $\lambda_F(t)$ is the failure rate function of the system; and $\lambda_i(t)$ the failure rate function fo the lifetime of component i.

$$\begin{split} \bar{F}(t) &= \Pi_i \bar{F}_i(t) \\ F(t) &= 1 - \Pi_i (1 - F_i(t)) \\ &= 1 - (1 - F_1(t))(1 - F_2(t))...(1 - F_n(t)) \end{split}$$

where F_i is the lifetime distribution of the *i*th component

Taking the derivatives of boths sides, we get

$$F'(t) = F'_1(t)(1 - F_2(t))...(1 - F_n(t)) + F'_2(t)(1 - F_1(t))...(1 - F_n(t)) + ... + F'_n(t)(1 - F_1(t))(1 - F_2(t))...(1 - F_{n-1}(t)) = \sum_i F'_i(t)\Pi_{j\neq i}(1 - F_j(t))$$

The system failure rate function is given by:

$$\begin{split} \lambda_F(t) &= \frac{F'(t)}{1 - F(t)} \\ &= \frac{\sum_i F_i'(t) \Pi_{j \neq 1} (1 - F_j(t))}{\Pi_i (1 - F_i(t))} \\ &= \frac{F_1'(t)}{1 - F_1(t)} + \frac{F_2'(t)}{1 - F_2(t)} + \frac{F_3'(t)}{1 - F_3(t)} + \dots + \frac{F_n'(t)}{1 - F_n(t)} \\ &= \sum_i \frac{F_i'(t)}{1 - F_i(t)} \\ &= \sum_i \lambda_i(t) \end{split}$$

(b) Using the definition of IFR given in Exercise 22.

If each F_i is an IFR, then $\bar{F}_{it}(a)$ is a decreasing function in t. $\bar{F}_t(a)$ is the probability that a t-year old system survives additional time t.

$$\bar{F}_t(a) = \frac{\bar{F}(t+a)}{\bar{F}(t)}$$

$$= \frac{\Pi_i \bar{F}_i(t+a)}{\Pi_i \bar{F}_i(t)}$$

$$= \Pi_i \frac{\bar{F}_i(t+a)}{\bar{F}_i(t)}$$

$$= \Pi_i \bar{F}_{it}(a)$$