

Treinamento SQL

Aproximando o Negócio da Computação

Prof. Dr. Francisco Isidro Massetto isidro@professorisidro.com.br

Agenda

- Modelo Entidade Relacionamento
- Técnicas de Modelagem
 - Identificação de entidades, atributos
 - Tipos de atributos
 - Relacionamentos (formalmente e intuitivamente)
- Generalização, especialização
- Papéis (roles) em um relacionamento
- Entidades associativas
- Notações gráficas

Aproximando o Negócio da Computação

- Técnicas para modelar regras de negócio em elementos a serem armazenados
- Definição dos participantes de um domínio de aplicação e suas características, restrições e relações
- Necessidade de poder de abstração de quem interpreta o problema para criar um modelo correto e coerente

Modelo Entidade-Relacionamento

- Modelo bastante intuitivo, que descreve elementos que participam do domínio da aplicação e como estes elementos se relacionam
- Descreve objetos (entidades) do domínio da aplicação e suas características (atributos)
- Descreve a interação entre esses elementos (relações)
 - Uso facilitado se o conceito de relação matemática for aplicado

Entidades e atributos

- Representa objetos do domínio da aplicação sobre os quais deseja-se manter informações armazenadas
 - "coisas" com características
- Como identificar as entidades?
 - A partir de uma descrição, identificar os "participantes", os elementos descritíveis
- E os atributos?
 - Características que descrevem esses objetos
 - Itens que podem ser atômicos ou compostos

Tipos de atributos

- Simples (atômico)
 Única informação para descrever o atributo
 - Ex: número do RG, número do CPF, código de cadastro, preço
- Composto
 - O atributo é caracterizado pela composição de vários outros atributos
 - Exemplo: Endereço é caracterizado por: Rua, Número, Complemento, CEP, Cidade e Estado
- Derivado
 - Atributo é obtido através de um atributo já existente

 Exemplo: idade obtido através da data de nascimento

 - Exemplo: valor liquido obtido através do valor bruto e desconto

Tipos de Atributos

- Univalorado
 - Único valor para o atributo
 - Exemplo: número de registro em um cadastro de funcionários
- Multivalorado
 - O atributo pode conter uma lista de valores (vazia ou não)
 - Exemplo: telefones de contato em um cadastro de pessoas

Representação Gráfica

Relacionamentos

- Associações / relações entre as entidades envolvidas
- Matematicamente é um relação R sobre 2 conjuntos A e B

Exemplos de Relacionamentos

Notação Gráfica

Papéis (Roles) em um relacionamento

- Para melhorar a legibilidade de um modelo, pode-se utilizar a notação de definir os papéis que cada entidade assume no relacionamento
- Em geral, isso é utilizado quando usa-se o autorelacionamento
 - A entidade relaciona-se com ela mesma

Auto-Relacionamento com papéis

Cardinalidade dos Relacionamentos

- Cardinalidade indica a quantidade de ocorrências de uma entidade associada a outra
- Muda totalmente a interpretação do problema
 Agora temos restrições de quantidades e isso impacta no projeto de todo o sistema
- Algumas regras devem ser obedecidas
 A cardinalidade deve refletir todo o ciclo de vida do sistema

 - O sistema deve sempre ser modelado levando-se em consideração a execução permanente do sistema
 - Caso isso seja necessário, o relacionamento entre as duas entidades deve conter um atributo indicando o tempo

Cardinalidades (1:1)

- 1 marido casa-se com 1 esposa
- 1 esposa casa-se com 1 marido

Cardinalidades (1:N)

1 funcionário trabalha em 1 departamento

Em 1 departamento trabalham N funcionários

Cardinalidades (M:N)

- 1 médico consulta N pacientes
- 1 paciente é consultado por M médicos

Entidades Fracas

- Entidades que não fazem sentido existir se não houver outra entidade para as representar
 - Existe uma dependência entre as entidades envolvidas
 - Entidade fraca n\u00e3o existe sem a entidade principal
- Alguns autores não fazem menção a este tipo de entidade por considerarem restritos ao modelo

Representação Gráfica

Especializações e Generalizações

- Muito usado para descrever entidades que tenham características comuns de forma genérica
 - Preserva a identidade individual de cada entidade
 - Oferece mecanismos de maior abstração para o projeto do banco de Dados

Especializações e Generalizações

Relacionamentos Ternários

- Quando existe a necessidade de representar a relação entre mais de duas entidades para que haja
 - O produto cartesiano agora, é composto de uma trinca composta pelos elementos dos três conjuntos
- Situação
 - Como modelar uma situação onde um Distribuidor de produtos é exclusivo para uma cidade?

Relacionamentos Ternários

Entidades Associativas

- Possibilidade de representar um relacionamento na forma de uma entidade.
- Em quais situações?
 - Na verdade o fato de existir um relacionamento entre duas entidades pode fazer com que a interpretação do problema crie uma entidade própria, fruto deste relacionamento

Entidades Associativas

Considerações sobre o Modelo ER

- O modelo ER é um modelo Formal
 - Mesmo conceitual e em alto nível, ele é um modelo que segue regras bem definidas de construção
 - Ausência de ambiguidades
 - Diversos leitores sempre terão o mesmo entendimento do modelo
 - Para se poder extrair corretamente dados de uma base é imprescindível a compreensão do modelo de dados
 - Para manipular um modelo ER, deve-se antes compreender as notações, regras e leitura dos diagramas ER

Considerações sobre o Modelo ER

- Abordagem ER tem poder de expressão limitado
 - Nem sempre é possível restringir todas as situações do domínio da aplicação
 - Exemplo do relacionamento "Casa-se com"
 - Quem garante que n\u00e3o estamos representando um marido casado com mais de uma esposa?
 - Ou ainda, uma pessoa casada com ela mesma?

Considerações sobre o Modelo ER

- Diferentes modelos podem ser equivalentes
 - Dois modelos são ditos equivalentes quando ambos geram o mesmo esquema de Banco de Dados
 - Em termos lógicos, modelos conceituais são convertidos para o mesmo conjunto de tabelas
 - Podem ser usadas diferentes formas de representar a mesma coisa
 - Quando um atributo pode ser multivalorado ou tornar-se uma entidade com relacionamento?
 - O relacionamento "Consulta" entre as entidades "Paciente" e "Médico" foi modelado como uma entidade associativa no M-ER.
 - Em ambos os casos, "Consulta" será mapeada para uma tabela no modelo Relacional
- Respostas para estas perguntas são difíceis de se formalizar e dependem muito da "expertise" do desenvolvedor

Alguns Critérios a Discutir

- Atributo x Entidade
 - Se o atributo em questão estiver vinculado a outras entidades, ideal é que seja modelado como entidade
 - Para evitar erros ou variações de digitação na inclusão de registros
- Atributo x Generalização/Especialização
 - Pergunta básica: a entidade especializada possui atributos específicos?
 - Se a resposta for afirmativa, o ideal é criar uma entidade para representar
 - Senão provavelmente a alternativa é criar um novo atributo
- Atributos Opcionais e Atributos Multivalorados
 - Em geral essa situação ocorre com situações de generalização/especialização
 - Deve-se verificar a integridade das combinações dos atributos
 - Exemplo: Empregado, Engenheiro, Motorista, Médico

Verificação do Modelo

- Erros Sintáticos x Erros Semânticos
- Completude do modelo
- Modelo deve ser livre de redundâncias
 - Atributos redundantes
 - Relacionamentos Redundantes
- Modelo deve refletir aspectos temporais
 - Atributos que são alterados com o tempo
 - Salário-base do funcionário (armazena-se somente o atual ou cria-se um histórico de aumentos?)
 - Definição das grades de disciplinas em um curso (quando o curso muda de grade, uma mesma disciplina pode ter seu conteúdo alterado?)
 - Ideal criar um relacionamento para manter o histórico

Verificação do Modelo

- Entidades isoladas
 - Não possuem relacionamento com nenhuma outra entidade do modelo
 - Alguns casos
 - Entidade EMPRESA em um sistema de folha de pagamentos de 1 única empresa
 - Entidades que representam parâmetros para o sistema
 - De qualquer forma, qualquer entidade isolada deve ser analisada com cuidado para não gerar erros semânticos

Estratégias para modelagem

- Construir um sistema é uma atividade incremental
 - Não se obtém em um único passo
- Refinamentos e revisões constantes fazem-se necessárias
 - Novas restrições, itens não observados e diferenças de interpretação podem forçar alterações no modelo
- Idéia básica: conhecer ao máximo sobre o sistema a partir da fonte de informação disponível

Estratégia 1: Descrições de Dados

- Coletar documentos que possam descrever as informações que se deseja armazenar no Banco de Dados
 - Nota fiscal, exemplo de pedido, fichas de cadastro
- Dificuldade em extrair informações deste documentos por também não conhecer a fundo o processo onde se encaixa o domínio da aplicação
- Necessidade de mais ferramentas e maior interação entre desenvolvedor e demandante (cliente ou usuário)

Estratégia 2: Conhecimento dos Envolvidos

- Idéia básica é começar a visualizar o sistema como uma caixa preta e, gradativamente, detalhar
- Abstração
 - Visão menos detalhada do problema, em um nível mais alto
- Refinamentos
 - A partir de um modelo prévio, começa-se a inserir mais detalhes e identificar mais elementos (outros relacionamentos, atributos, identificadores, cardinalidades)
- Estratégia TOP-DOWN
- Estratégia INSIDE-OUT

Top-Down

- Modelagem Superficial
 - Identificação das entidades
 - Identificação dos relacionamentos/hierarquias
 - Identificação das cardinalidade máximas
 - Determinação dos atributos e dos identificadores
 - Verificação temporal do Banco de Dados
- Modelagem detalhadaDomínio dos atributos

 - Cardinalidades mínimas e máximas, opcionais
 - Definem-se mais restrições e integridades que não são representadas pelo Diagrama ER
- Validação do Modelo
 - Procura por construções redundantes
 - Validação com o usuário (necessita conhecimento e leitura do diagrama)

Inside-Out

- Foco nos conceitos centrais do problema
 - Aqueles considerados "principais"
 - Relacionamentos imprescindíveis
- A partir daí começam a ser detalhados os conceitos periféricos
 - Especializações, relacionamentos de entidades especializadas
- Muito próximo ao TopDown
 - Maior interação e repetições dos 3 primeiros passos da modelagem superficial são necessários

Enfim

- Ideal é fazer uso das diversas técnicas e do máximo de interação possível com os interessados (usuários, clientes) do sistema
- Boa capacidade de comunicação e absorção de informações
- Clareza nas definições, para evitar ambiguidades

Prática

Exercícios para fixação do conhecimento

