컴퓨터 베전 및 음성 인식을 통하 아동 유괴 예방

모자에 부착된 카메라로 낯선 사람을 인식하고 이미지를 전송해주는 내 아이 지킴이

A반 4조

김재원 김한결 성수호 이예랑 인지윤 진성희

CONTENTS

1 추진 배경 및 현황

2 서비스 소개 및 프로세스

- 3 기술 소개
 - * 얼굴 인식
 - * 음성 인식
 - * 모션 인식
 - * 앱 구현
- 4 활용 분야 및 시연 영상

1

추진 배경 및 현황

실종 아동 발생 건수가 꾸준히 증가하는 추세

[이브닝 이슈] "제발 돌아와다오"..<mark> 실종아동 한 해 2만 명,</mark> 대책은?

(중략)

미국의 한 연구 보고서에 따르면, 아이가 눈앞에서 사라지는 데는 불과 35초밖에 걸리지 않는다고 합니다.

어린 자녀를 둔 부모의 30%는 잠깐이라도 아이를 잃어버린 경험이 있다는 연구 보고도 있습니다.

- ✓ 아이가 사라지는 시간: 불과 약 35초
- ✓ 부모들은 언제나 아이들을 주시해야 함

실종아동 신고접수 및 처리현황

실종 아동 수를 줄이기 위한 대책 필요

서비스 소개

아이가 신경 쓰지 않고 뛰어놀 수 있는 실시간 내 아이 지킴이

웨어러블 위험 상황 알림이

✓ 모자에 부착된 카메라로 낯선 사람을 인식하고 이미지를 실시간으로 스마트폰에 전송

용의자 추적 시스템

- ✓ 유괴 발생시 저장된 영상을 바탕으로 용의자 특징 추출
- ✓ CCTV, 이동식 카메라를 이용한 용의자 판별

서비스 프로세스

상황별 서비스 프로세스

일반 상황

수 (パン 음성인식

지인 등록

실시간 상황 파악

낯선 사람 사진 업로드

메시지 전송

납치 상황

모션인식

영상 업로드

용의자 신체 특징 추출

실시간 용의자 판별

얼굴 인식

컴퓨터 비전 기술을 이용해 등록된 얼굴이 아닐 경우 낯선 사람으로 판별

음성 인식

자연어 처리 기술을 이용해 유괴 범죄에서 많이 사용되는 문장인지 아닌지를 판별하여 위험 상황 판단

모션 인식

유괴 범죄가 발생할 경우 컴퓨터 비전 기술을 이용해 유괴범의 걸음걸이를 인식하여 범죄자의 특징 파악 Computer Vision

얼굴 인식

Computer Vision — 얼굴 인식

데이터 수집 및 전처리

┃ 1장의 이미지를 전처리 과정을 통해서 수 천장의 이미지로 부풀리기

원본 이미지

1장의 이미지만 입력

얼굴 검출

Haar-cascade 검출기로 얼굴만 검출 후 저장

Image Data Augmentation

- ✓ 좌/우, 위/아래로 이동
- ✓ 확대/축소, 좌우 반전
- ✓ 이미지 밝기 조절
- → 인당 500장 이미지 데이터 생성

측면 얼굴

측면 얼굴 검출 성공

3

Computer Vision — 얼굴 인식

모델 구현

FaceNet framework로 실시간 얼굴 인식

FaceNet: 얼굴 이미지를 128차원으로 임베딩하여 유클리드 공간에서 이미지 간의 거리를 통해 분류하는 모델

Pre-processing

Mtcnn에 의한 얼굴 검출 및 이미지 프리프로세싱

실시간 얼굴 인식

Pre-trained FaceNet models

Inception-Resnet-v1 모델로 훈련된 두 가지 모델 제공

이미지 데이터 분류

학습 분류 모델 : SVC

(서포트 벡터 분류 모델)

Output

Natural Language Processing

음성 인식

NLP - 음성 인식

음성인식을 통한 위험 상황 판단

Speech to Text

구글 Speech API를 이용해 음성을 인식하고 문자로 변환

'이거 정말 재밌는 거 같아'
'재밌는 거 보여줄게 따라 갈래'
'오늘 이모가 집에 오신다고 했어'
'이모가 장난감 사줄게 같이 가자'

Text Prepocessing

<Sent to Morph-Komoran>

보유한 M2V 사전에 등록된 형태소로 가장 잘 분리했기 때문에 Komoran 사용

['재밌', '는', '거', '보여주', 'ㄹ게', '따라가', 'ㄹ래']

[이거, '정말, '재밌, '는, '거, '같, '아]

['이모', '가', '장난감', '사', '아', '주', 'ㄹ게', '같이', '가자']

['이모', '가', '집', '에', '오시', 'ㄴ다고', '하', '었', '어']

<Morph to Vector-박규병 사전>

'재밌'

3.3 -1.1 ... 4.4

오픈 M2V 사전 중 가장 많은 단어 및 형태소 보유

음성인식을 통한 위험 상황 판단

vector to Recognition

<학습 데이터 수집>

관련 논문

- 아동유괴범죄 수사재판 기록조사(강은영) 연구수행기관 : 한국형사정책연구원
- 아동 실종 및 유괴범죄의 실태와 대책(강은영,박지선) 한국형사정책연구원
- 유괴예방을 위한 유아 안전교육 프로그램 연구(최기은) 동국대학교 교육대학원[
- 안전생활 길잡이 지도서<어린이 안전> 경찰청

납치 상황극 영상

논문과 납치 상황극에서 등장하는 유괴 상황 대화 500개 데이터 수집 일상 생활 대화 1000개 데이터 수집

<Many to One RNN을 이용한 위험 상황 판단>

원래 문장 : 이거 정말 재밌는 거 같아 위험판단(0 : 안전, 1 : 위험) : <mark>0</mark> 확률 : 0.997412

원래 문장 : 재밌는 거 보여 줄게 따라 갈래 위험판단(0 : 안전. 1 : 위험) : 1 확률 : 0.977856

원래 문장 : 오늘 이모가 집에 오신다고 했어 위험판단(0 : 안전 . 1 : 위험) : 0 확률 : 0.997295

원래 문장 : 이모가 장난감 사 줄게 같이 가자 위험판단(0 : 안전, 1 : 위험) : <mark>1</mark> 확률 : 0.9778

납치 상황 판단

Multi Processing (얼굴 인식 + 음성 인식)

얼굴 인식

ROI가 일정 크기 이상이 되면 count Count 누적이 150(10초) 이상이 되면 Flag on

음성 인식

인식된 문장이 위험 상황일 경우 Flag on 오류 인식을 방지를 위해 5분 후 Flag off

원래 문장 : 재밌는 거 보여 줄게 따라 갈래 위험판단(0 : 안전, 1 : 위험) : 1 확률 : 0.977856

Computer Vision

모션 인식

3 기술적 배경

걸음걸이 특징을 통한 범죄자 검거 사례

범죄자 추적을 위한 걸음걸이 인식 기술 선정 배경

경찰청은 수사 시 걸음걸이 분석이 필요할 경우 일선 경찰의 의뢰를 받아 의학·공학 전문가들로 구성된 '법보행 분석 전문가 협의체'에 검증을 맡기고 있다. 법보행 분석은 유전자(DNA) 정보나 지문처럼 그 자체로 개인을 식별하는 증거는 아니지만, 400만대에 이르는 촘촘한 CCTV망이 있는 한국에서 다른 증거가 부족할 경우활용 가능성이 크다.

▶ 선명수, 『 걸음걸이 보니…범인은 너야! '법보행 분석' 아시나요』, '경향신문'

- ✓ 2016년 살인사건 재판에서 걸음걸이 분석이 첫 법정 증거로 인정 되면서 경찰에서 정식 수사기술로 활용
- ✓ 범인이 도주과정에서 인상착의가 변경되는 돌발상황에 대비하여, 해당 연구는 사람이 보행 중에 보이는 특징 기반의 걸음걸이 분석 으로 범인을 식별

실제 걸음걸이 특징을 분석하여 용의자 검거에 성공 〈출처: SBS 그것이 알고 싶다〉

3

Computer Vision – 모션 인식

모션 인식 기능에 사용된 라이브러리 소개 및 기존 모델과 성능 비교

Hyperpose Library - 실시간으로 사람의 자세를 추정(pose estimation)할 수 있음

High-performance pose estimation

- ✓ 예측 모델 파이프라인에서 데이터 병렬 처리와 CPU/GPU 혼합 사용으로 속도 가속화
- ✓ TensorRT를 사용하여 모델 추론

Pose estimation 라이브러리간 성능비교				
Back-Bone	TF-Pose	OpenPose		HyperPose
VGG	-	8 FPS		27.3 FPS
MobileNet	8.5 FPS	-		84.3 FPS
TinyVGG	_	-	,	124.9 FPS

- * TensorRT: 고성능 딥러닝을 위한 NVIDIA SDK로 CPU전용 플랫폼보다 최대 40배 가속
- * DNN Inference Module: deep neural network에서 feature를 뽑아내기 위한 CNN Architecture의 종류
- * Parser(파서): feature를 뽑아낸 후 이미지나 영상에서 골격을 표시하는 네트워크

〈데이터를 병렬 처리하여 여러 모듈과 파서를 동시에 처리〉

〈CPU와 GPU를 혼합 사용하여 쓰레드 처리〉

Computer Vision – 모션 인식

신원 정보 추출을 위한 모션 인식 알고리즘 구조도

Hyperpose 라이브러리와 MLP를 사용하여 인체 특징 좌표를 추출하고 학습시킨 후 라벨링하여 실시간으로 데이터 분류

TRAIN

실시간 웹캠 영상

Hyperpose(C++)를 사용하여 실시간 인체 특징 좌표 추출 추출된 좌표를 이용하여 인체 비율 계산 및 신원정보 labeling

쌓은 계산 데이터로 MLP(Python) 기반 모델 학습

TEST

성 수 호 : 95.846 김 재 원 : 3.7086 진 성 희 : 0.4449

실시간 웹캠 영상

Shared memory를 사용하여 실시간으로 test 데이터 전송 학습된 MLP 모델을 이용하여 데이터 분류

실시간 신원 확인

Computer Vision – 모션 인식

신원 정보 추출을 위한 개인별 신체 비율 및 각도 계산식

2차원 공간 기준 **정적 특징** 6가지, **동적 특징** 5가지를 뽑아 비율과 각도를 계산하여 라벨링

	Static Feature	Dynamic Feature	
	feature value의 변화를 신체 비율로 측정	feature의 최대,최소 값을 측정	
1	골반/어깨	다리 사이각	
2	팔/다리	좌측 골반 사이각	
3	상체/전체	우측 골반 사이각	
4	팔꿈치/팔전체	좌측 무릎 사이각	
5	무릎/다리전체	우측 무릎 사이각	
6	보폭	-	

2차원 공간(x, y) 기준

⑤거리 공식 : 유클리드 거리 계산 사용 $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

⑤사잇각 : 벡터의 내적 공식 활용
$$\theta = \cos^{-1} \frac{((x_1 - x_2) * (x_1 - x_3) + (y_1 - y_2) * (y_1 - y_3)}{/(\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} * \sqrt{(x_1 - x_3)^2 + (y_1 - y_3)^2}))} * (\frac{180}{\pi})$$

앱 서비스 구현

이용자가 스스로 주변 인물을 등록하기 위한 애플리케이션

엄.친.아. App

앨범에서 등록

앨범에서 사진을 선택하여 이름과 별명을 함께 등록

카메라로 등록

카메라로 직접 사진을 찍어 이름과 별명을 함께 등록

클라우드 서버에 저장

앨범이나 카메라로 등록한 사진을 클라우드 서버에 저장

등록된 인물 검색

검색 기능을 통해 등록된 인물을 확인한 후 삭제 기능 추가

활용 분야 – 얼굴 인식

구현한 얼굴 인식 기술을 활용할 분야

의료

진료 접수 간편화

얼굴 데이터를 기존 가입 고객 정보와 대조한 후, 응급 상황인 진료 환자를 우선순위화하여 접수 시간을 최소화

범죄

지명 수배자 검거

우리나라는 범죄자의 인권 문제로 안면 인식 기술이 이루어지지 않음 → 범죄자 검거를 위한 얼굴 인식 기술 도입 필요

보안

정확한 신원확인

건물 출입구에 설치해 출입자를 통제하기도 하고, 테러 용의자를 찾아서 체포하는 등 전 분야의 공공 안전 사업에 활용

활용 분야 – 모션 인식

구현한 모션 인식 기술을 활용할 분야

의료

재활치료 시스템의 혁신

모션인식을 활용한 정확한 자세 교정으로 빠른 완치에 도움이 될 뿐만 아니라 추가적인 부상 발생 의 위험을 감소시킴

<u> 스포츠</u>

경기 진행 어시스턴스

운동 경기 진행 중 심판의 시야에 서 벗어난 불필요한 파울이나 폭력 행위를 감지하여 공정하고 원활한 경기 진행에 도움

교통

맞춤형 교통 시스템 구축

횡단보도 신호를 연장한 결과 보행자 교통사고 수가 소폭 감소 연령대에 맞춰 보행신호 시간을 유동적으로 가져가도록 함

시연 영상

실제 이런 실험이 있었습니다.

김재원 김한결 이예랑 진성희 인지윤 성수호

감사합니다.

Q&A