

목차			
프로젝트 개요	프로젝트 수행 및 절차	프로젝트 수행 결과	프로젝트 마무리
프로젝트 주제 및 선정 배경	팀 구성 및 역할 	전체 Architecture	고도화
유사 서비스 분석	프로젝트 사전 기획	시스템 흐름도	보완 해야 할 점
프로젝트 목적 및 기대효과	프로젝트 수행	시연 영상	마무리하며

프로젝트 개요

교통사고의 원인

- 운전자 안전운전 불이행

운전자 안전운전 불이행: 교통사고 발생 원인 1위

교통사고 발생 원인 1위는 전방 주시 태만과 같은 안전운전 불이행 사고 미국 고속도로교통안전국 실험 결과에 따르면 운전 중 휴대전화와 영상물 시청이 음주운전으로 규정하고 있는 혈중 알코올농도 허용치 0.03%보다 훨씬 높은 0.08% 수준으로 중상 가능성이 4배 이상 높게 나타났다고 한다.

* 윤정원(천안동남경찰서 청수파출소)

[표] 2015~2019년 고속도로 교통사고 원인별 사망자 현황

구분	계	졸음. 주시태만	과속	무단보행	역주행	차량결함	기타
명	1,079	729	128	38	16	28	140
(비율)	(100%)	(67.6%)	(11.9%)	(3.5%)	(1.5%)	(2.6%)	(12.9%)

교통사고의 원인

- 운전자 안전운전 불이행

다른 교통사고보다 2배가 넘는 사망률

경찰청, 도로교통공단(2014~2019) 제공 데이터 분석

특히 장시간 운전하는 운전자들에게 치명적

교통사고 사건 건수 대비 사망자 비율

운전자 보호 시스템

- 유사 서비스 분석

현대모비스, Driver State Warning system (DSW)

15인승 버스 '쏠라티'에 장착된 DSW 모니터링 시스템 모습 실제 차량엔 모니터와 선들은 사라지고 보이지 않는 카메라만 계기반에 장착 눈동자 · 안면인식 300개 점으로 실측 운전 중 부주의 DSW 기술로 단계별 경고 현대 상용차에 2021년부터 탑재 자율주행 선행기술 세계 최초 적용

DSW는 완전 자율주행 시대에 앞서 현대모비스가 전 세계 최초로 적용한 최첨단 기술입니다.

운전석 옆에 설치된 모니터에 운전자의 동공 방향과 코, 입, 귀 주변을 표시하는 직선과 점이 나타나 센서가 인식한 <mark>안면 정보에서 운전자의 표정에 따라 졸음운전과 피로 누적 등을 구분하는 방식</mark>입니다.

계기반에 숨은 카메라는 적외선을 동공에 투영해 운전자의 주의 수준을 실시간으로 모니터링합니다. 이는 차량에 내장된 알림 기능과 연동돼 위험 상황에서 소리와 진동으로 운전자에게 경고음을 내 주의를 주게 됩니다.

운전자 보호 시스템

- 유사 서비스와의 차별점

기존 유사 서비스

적외선 카메라를 이용해 운전자의 안면을 인식하여 졸음 운전을 파악하고, 운전자의 주의를 환기시켜 사고를 예방하는 시스템

- 이산화탄소와 운전자 감정 분석
 - ✓ 더 정확한 운전자 상태 분류를 위한 추가적인 분석

- 2 운전자의 상태에 따른 다양한 알림 서비스 제공
- ✓ 운전자 감정에 따른 문장을 생성하고, 들려주어운전자의 감정을 차분하게 만드는 알림
- ✓ 졸음운전 단계에 따른 다양한 알림

- 3 수집한 데이터 분석, 운전자에게 시각적으로 제공
 - ✓ 운전자 본인의 운전 패턴을 확인하고,안전 운전에 대한 경각심을 키우게 함

5000

운전자 보호 시스템

- 이산화탄소 분석 이유

학습능률지수와 다양한 변수간의 상관관계

이산화탄소와 학습능률지수의 상관관계 분석

운전자 보호 시스템

- 운전자 감정 상태 분석 이유

버지니아공대 산업공학과/컴퓨터과학과 교수

행복한 사람은 더 안전하게 운전할까?

② 2019.08.30 19:55

행복감이 넘칠 경우

흥미로운 것은 행복감을 유도한 참가자 집단의 결과이다. 이전의 문헌에는 실제 경험적인 연구의 뒷받침없이 상식에 근거해서 행복한 운전자가 더 안전하게 운전할 것이라는 가설만이 있었다. 실제 실험 결과, 행복한 운 전자의 운전 수행은 분노 집단과 유사할 만큼 나쁜 결과를 보였다. 물론 모든 행복감의 상태가 항상 더 안 좋은 운전 수행을 낳는 것은 아니겠지만, 과한 행복감은 운전자의 주의를 분산시키고 운전 수행을 방해할 가능성 이 있다는 것은 확실해 보인다.

슬플수록 더 현명할까

그렇다면, 슬픔을 유도한 운전자들의 운전 수행 결과는 어떨까? 심리학에는 "슬플수록 더 현명하다"는 표현 이 있다. 슬픔의 부정적인 감정이 사람으로 하여금 집중력을 높이고 분석적인 사고를 촉진하기 때문이다. 하 지만, 운전이라는 복잡한 과제에서 슬픈 기억을 떠올린 집단은 더 나은 수행을 보이지 않았다_{Jeon 2016} 슬픔 을 유도한 운전자들의 운전 수행은 분노를 유도한 운전자들만큼이나 안 좋았다. 여기서 재미있는 사실은 슬

기대효과

- 운전자 보호 시스템

- ✓ 사고 발생이 감소하여 운전자의 보험금 청구율 감소
- ✓ 고객 분석 고도화 가능

- ✓ 다양한 알림 서비스로 사고 미연에 방지
- ✓ 운전자에게 안전운전에 대한 경각심을 키움

- ✓ 운전하면서 발생하는 다양한 데이터를 수집
- ✓ 해당 데이터를 다양한 연구에 사용하여 분야 확장

2 프로젝트 수행 및 절차

프로젝트 사전기획

시퀀스 다이어그램

시스템 분해도

	LV1	LV2	LV3
	센서	적외선 카메라 (얼굴 인식)	영상 데이터를 송신
		이산화 탄소 측정 센서	PPM 수치를 실시간으로 보냄
			1분 단위로 끊어서 측정/ 실시간 으로 측정
		주제 타당성 분석	전체 교통사고 중 졸음운전 비율 분석
	데이터 분석 로직		감정에 따른 운전 성향 분석 (?)
			이산화탄소 수치에 따른 운전자 상태 분석
운전자 보호 시스템	AI 로직	감성 분류	CNN을 이용한 감정 분류 모델 만들기
군인사 포포 시끄럽			모델을 통한 예측
		쓸금 운신 상태 분뉴	Haar-Like Feature cascade classifier를 통한 눈 깜박임 분류 모델 만들기
			Object Detection을 통한 졸음 운전 상태 분류 모델 만들기
		로직 게이트	단계적인 처리 or 종합적인 처리?
	서비스	알림	스피커 (기상 나팔 소리 or 잠이 깰만한 신박한 멘트)
		앱 서비스 남	운전자가 많이 조는 시간대를 파악해서 알려준다
			알람맨트를 설정 할 수 있다.

프로젝트 수행

Google Drive

Atlassian

일정 관리

Jira 및 Confluence를 이용한 WBS 일정 관리

프로젝트 수행

Mural

Github

형상 관리

Github를 통한 소스코드 형상 관리

팀 구성 및 역할

팀원	역할
이승호	•졸음 판단 로직 구현
(팀 리더/AI)	•눈 깜박임 분류 모델 구축
유창호	•텍스트 마이닝
(팀원/AI)	•문장 생성 모델 구축
김지윤 (팀원/AI)	•이미지 데이터 수집 •감정 분류 모델 구축 •시연영상 책임자
김혜림	•데이터베이스 구축, 수집된 데이터 분석
(팀원/빅데이터)	•안드로이드 앱 제작
박수민	•loT 센서 작업
(팀원/loT)	•MQTT 통신 시스템 설계
김성수	•클라우드에 빌드 (DB, MQTT, Django rest Api)
(팀원/클라우드)	•안드로이드 앱 제작
한로빈	•일정 관리 및 자료 수집
(팀원/클라우드)	•클라우드 빌드(DB, MQTT, Django rest Api)

3 프로젝트 수행 결과

Architecture

- 전체적인 구조

loT 장비 설명

IoT 장비 설명

졸음 판단 로직

- Face Landmark

Co2 감지

라즈베리파이 센서로 수집

고개 숙임 감지

특징점 34번의 y좌표의 평균값

하품 감지

특징점 52, 58번의 y좌표와 49, 55번의 x좌표의 비율

눈 감음 감지

눈 특징점 기반으로 이미지 추출 후 AI 모델로 분류

눈 깜박임 감지 모델

- 모델 구조

눈 깜박임 감지 모델

- 모델 개선 과정

최종 모델

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	32, 32, 32)	896
conv2d_1 (Conv2D)	(None,	32, 32, 32)	9248
conv2d_2 (Conv2D)	(None,	32, 32, 32)	9248
max_pooling2d (MaxPooling2D)	(None,	16, 16, 32)	ø
conv2d_3 (Conv2D)	(None,	16, 16, 64)	18496
conv2d_4 (Conv2D)	(None,	16, 16, 64)	36928
conv2d_5 (Conv2D)	(None,	16, 16, 128)	73856
conv2d_6 (Conv2D)	(None,	16, 16, 128)	147584
max_pooling2d_1 (MaxPooling2	(None,	8, 8, 128)	9
flatten (Flatten)	(None,	8192)	9
dense (Dense)	(None,	4096)	33558528
dense_1 (Dense)	(None,	2048)	8390656
dense_2 (Dense)	(None,	1024)	2098176
dense_3 (Dense)	(None,	2)	2050
Total params: 44,345,666 Trainable params: 44,345,666 Non-trainable params: 0			

Acc: 98.73%

Image Generator

학습 데이터 늘리기

Acc: 99.04%

감정 분류 모델

- 모델 구조 및 개선 과정

48 x 48

Input

모델

Output

0 = 화남

1 = 혐오

2 = 두려움

3 = 행복

4 = 슬픔

5 = 놀람

6 = 중립

7개의 감정 카테고리 중 정확도가 떨어지고 필요없는 2개의 감정 삭제

* Disgust, Surprise

최종 모델

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	46, 46, 32)	320
max_pooling2d (MaxPooling2D)	(None,	23, 23, 32)	0
conv2d_1 (Conv2D)	(None,	21, 21, 64)	18496
max_pooling2d_1 (MaxPooling2	(None,	10, 10, 64)	0
conv2d_2 (Conv2D)	(None,	8, 8, 64)	36928
flatten (Flatten)	(None,	4096)	0
dense (Dense)	(None,	64)	262208
dense_1 (Dense)	(None,	5)	325
Total params: 318,277			
Trainable params: 318,277			
Non-trainable params: 0			

Acc: 56.78%

50장의 감정 빈도수 계산을 하여, 특정 감정이 20% 이상이 될 경우 해당 값을 최종 결과값으로 출력

언어 생성 모델

- 모델 구조

0 = 화남 → 용기 1 = 두려움 → 용기 2 = 행복 → 침착 3 = 슬픔 → 사랑 4 = 중립

언어 생성 모델

- 모델 개선 과정

개선 과정

문제) 문장데이터 10만개로 학습했으나 자연스러운 문장 생성이 어려움

개선1) 데이터 전처리 재작업을 통해 퀄리티 높은 데이터 2만개로 변경

개선2)

Greedy, Top_k, Top_p 조정 Greedy: True \rightarrow Fasle top_k: $0 \rightarrow 0 \sim 3$ (randit) top_p: $0.85 \rightarrow 0.95$

최종 모델

Optimizer : Adam

(Learning_rate : 3e-5, epsilon = 1e-08, clipnorm = 1.0)

KoGPT2: Greedy: True,

Top_k: $0\sim3$ (randint),

Top_p: 0.85

출력값 예시

제가 용서에 대한 문장을 만들어 볼게요. 용서를 할 줄 아는 사람은 행복하지만 미움을 버릴 줄 모르 는 사람은 불행하다.

제가 <mark>침착</mark>에 대한 문장을 만들어 볼게요. 침착하게 듣고 침착하게 말하는 사람은 그 마음의 안정감 과 활력이 넘친다.

DB 설명

- 테이블 엔티티 관계도

Al 로직 결과 pub

유저 app 실행

Django와 Rest 통신

Android MQTT sub

안드로이드 기능 - MQTT

1. 사용자 인증

안드로이드 기능 - MQTT

2. 운전자 졸음운전 시 음성 알림

안드로이드 기능 - MQTT

3. 운전자가 특정 감정 유지 시 음성 알림

제가 용서에 대한 문장을 만들어 볼게요. 용서를 할 줄 아는 사람은 행복하지만 미움을 버릴 줄 모르는 사람은 불행하다.

TTS 음성 알림

- ✓ 운전자의 얼굴을 통해 감정을 분류
- ✓ 운전에 방해되는 감정일 경우, 감정을 차분하게 만들어주는 문장 생성
- ✓ TTS 변환

안드로이드 기능 - 빅데이터

4. 사용자 전날 운전 데이터 분석

전날 운전 상태를 확인하세요!

05시 푸시 알림

✓ 교통량이 급격하게 증가하는 05시 선택

화물차의 시간대별 고속도로 교통량 분석 그래프

감정 상태 분석

- ✓ 전날의 감정 데이터 시간 전처리 및 감정별 그룹 집계
- ✓ 파이 그래프를 통한 시각화

졸음 수치 분석

- ✓ 전날의 감정 데이터 시간 전처리 및 감정별 그룹 집계
- ✓ 파이 그래프를 통한 시각화

안드로이드 기능 - 빅데이터

5. 사용자 시간대별 평균 Co2데이터 분석

이산화탄소 분석

- ✓ 이산화탄소 데이터 시간 전처리 및 시간대별 그룹 집계 (평균)
- ✓ 선 그래프를 통한 시각화
- ✓ 차 안 이산화탄소량 관리에 경각심을 줌

Rest api 문서 및 db에 crud 방식으로 접근

- API 문서

idx	Method	API 명칭	EndPoint	Request	Response	Define
1	POST	Login	https://ec2-13-208-255-135.ap-northeast-3.compute.amazonaws.com/api/login/	{"user_id" : String, "user_pwd" : String}	{'message':String, 'success':boolean}	로그인
2	POST	Create User	https://ec2-13-208-255-135.ap-northeast-3.compute.amazonaws.com/api/createuser/	{ 'user_id' : String, 'user_pwd': String, 'name' : String, 'birth' : String, 'phone_number' : String , 'email' : String , 'gender' : String, 'serial_no1' : String}	{'result':boolean}	회원가입
3	GET	ID Duplicate Check	https://ec2-13-208-255-135.ap-northeast-3.compute.amazonaws.com/api/userIDcheck/	{'user_id' : String}	{'result':boolean}	ld 중복 체크
4	GET	Serial Duplicate Check	https://ec2-13-208-255-135.ap-northeast-3.compute.amazonaws.com/api/userSerialcheck/	{'serial_no':String}	{'result':boolean}	시리얼 번호 중복 체크
5	PUT	Serial Number Change	https://ec2-13-208-255-135.ap-northeast-3.compute.amazonaws.com/api/userSerialChange/	serial_no : String}	{'result':boolean}	시리얼 번호 변경
6	GET	yesterdayData	https://ec2-13-208-255-135.ap-northeast-3.compute.amazonaws.com/api/yesterdaydata/	{'user_id' : String}	{"Sleep":{"is_sleep":array,"count":int}, "Emotion":{"emtion":array,"count":int }	졸음, 감정 데이터 분석
7	GET	co2MeanData	https://ec2-13-208-255-135.ap-northeast-3.compute.amazonaws.com/api/co2MeanData/	{'user_id' : String}	{"Co2Mean":array}	Co2 데이터 분석

시연 영상

4 프로젝트를 마무리 하며

개선활동 적용 사례

이미지 처리속도

ΑI

Cloud

Model.predict → Model.call 적용 Al 모델 예측 속도 개선

MQTT 서버를 클라우드용 EC2 Server → AI 서버용 EC2 Server 변경하여 이미지 송/수신 속도 개선

DB 보안

Cloud Big data DB Port 번호 변경 및 User 계정 생성 후 권한부여 및 비밀번호 생성

Github: DB 접근 정보를 JSON 파일로 관리하도록 변경

개선 과제

다양한 AWS Service 적용

Amazon RDS IoT Cloud AWS IoT Core를 이용하여 데이터 트래픽 자동 분산, 실시간 데이터 처리 등 MQTT 통신을 더 수월하게 처리 할 수 있었던 부분

AWS RDS를 이용하여 DB 보안 이슈 없이 처리 속도 향상 가능 여부

데이터

ΑI

눈 감은 얼굴을 슬픔 감정으로 판단하는 경우가 존재 단순하게 <mark>눈을 감은 경우와</mark> 슬픔 감정에 대한 데이터를 구분하여 학습하면 정확도 개선 가능

> 자연 스러운 문장 생성을 위해 <mark>더 많은 학습 데이터를 확보</mark>해 학습하면 정확도 개선 가능

개선 과제

졸음운전 모델

ΑI

졸음 판단 모델의 얼굴 특장점을 이용해 각도를 계산하여 <mark>전방 주시 태만 기능 추가</mark>가 가능 할 것으로 예상

Custom service

Service

추후 확장 시 고속도로 뿐만 아니라 일반 국도에서도사고가 일어 나기 때문에 다양한 사용자들에게 맞는 서비스로 발전 가능성

경찰청, 도로교통공단 (2014~2019) 제공 데이터 분석

도로별 졸음운전 교통사고 비율

느낀 점

팀원	느낀점
이승호	AI 모델을 ec2에 올리거나 MQTT를 통해 데이터를 송/수신 하는 등 AI 분야에서 각기 다른 분야와 연결하
(팀 리더/AI)	여 사용하는 방법을 배웠습니다.
유창호	이번 프로젝트를 통해서 AI 뿐만 아니라 Cloud, IoT, Big data 도 중요하다라는 것을 느꼈고, 진행 속도가
(팀원/AI)	늦더라도 성장할 때까지 웃는 얼굴로 기다려준 팀원님들께 감사드립니다.
김지윤	이미지 처리에 대한 관심이 많았는데, 이번 프로젝트를 통해 인문 인식 및 감정 분석 모델을 개발할 수 있
(팀원/AI)	어 즐거웠습니다
김혜림 (팀원/빅데이터)	융복합 프로젝트를 통해 실무에서 다양한 분야가 어떻게 협업을 하는지 배울 수 있는 좋은 기회였고, 협업을 위한 다양한 툴을 다룰 수 있어서 좋았습니다.
박수민	loT 한 분야가 아닌 여러 분야와 함께 프로젝트에 참여하면서 모든 프로세스가 연결될 수 있다는 것을 배
(팀원/loT)	웠습니다.
김성수 (팀원/클라우드)	좋은 팀원들과 함께 프로젝트를 진행하며 많은 것을 알 수 있게 된 계기가 되었습니다.
한로빈 (팀원/클라우드)	프로젝트 처음부터 끝까지 진행하는데 필요한 여러 지식들에 대해 익힐 수 있는 기회였습니다.

참고문헌

- 라즈베리파이를 이용한 졸음운전 감지 및 예방, 이상락
- 텐서플로 2와 머신러닝으로 시작하는 자연어 처리, 전창욱
- 운전자의 정서가 운전행동에 미치는 영향에 관한 연구, 권민정
- Jeon, Effects of specific emotions on risk perception, driving performance, and perceived workload.
- 인생을 바꾸는 명언, <u>www.lifequotes.co.kr</u>
- Challenges in Representation Learning: Facial Expression Recognition Challenge, kaggle
- Media Research Lab, MRL
- 한국도로공사 고속도로 공공데이터 포털 차종별 교통량 데이터
- 서울 열린데이터 광장 IoT 도시데이터 마포구 중앙도서관 공기질 데이터
- 공공 데이터 포털 경찰청, 도로교통공단 제공 데이터
- 졸음운전 위험 구간 관리 및 안전대책 수립을 위한 의사결정 지원 시스템 구축, 한국도로공사 도로교통연구원 (2018)

Q&A

감사합니다:)