Corporate Finance Problem Set 1

Zachary Orlando

March 19, 2025

Question 1

Variable	Value
z	1
q	1
K	77.24
I	11.58
M	0.96
C	9.38

Table 1: Steady state values

Question 2

Using parameters from Table 1:

	k	q	i	z	sdf	c
Constant	77.24	1.00	11.59	1.00	0.96	9.38
k(-1)	0.96	-0.00	0.11	0.00	-0.02	0.08
c(-1)	0.00	0.00	0.00	0.00	0.21	0.00
z(-1)	12.57	0.00	12.57	0.70	-0.43	2.10
ϵ_z	17.96	0.00	17.96	1.00	-0.62	3.00

Table 2: Coefficients of the decision rules for the linearized system.

One note on the impulse responses(below): the agent increases their investment for a considerable number of periods owing to two factors: (1) the persistence of productivity and (2) the desire to smooth utility across periods. as the agent is risk-averse, higher levels of consumption today make consumption tomorrow more attractive.

Impulse Responses to a one S.D. Productivity Shock

Setting $\gamma = 0$:

Clearly when $\gamma = 0$ the agent is risk-neutral and the SDF will not vary over time. We can see that consumption yesterday has no influence on the state of consumption today.

	k	q	i	\mathbf{z}	sdf	С
Constant	77.24	1.00	11.59	1.00	0.96	9.38
k(-1)	0.14	-0.00	-0.71	0.00	0.00	0.90
c(-1)	0.00	0.00	0.00	0.00	0.00	0.00
z(-1)	104.96	0.01	104.96	0.70	0.00	-90.28
ϵ_z	149.94	0.02	149.94	1.00	0.00	-128.98

Table 3: Decision Rules when $\gamma = 0$

We see below that the IRF for capital is no longer hump-shaped. The agent no longer has a consumption smoothing motive so they invest more (10x the risk-averse agent) at time 0 when capital adjustment costs are 0, and then smoothly eat down their capital to the steady state level.

Question 3

The estimated coefficients of the linear model are: $\alpha = -22.47$, $\beta_1 = 22.52$ & $\beta_2 = 0.36$. Notably the constant term and marginal q are both not very predictive and usually very close to each other. Dropping one greatly attenuates the other(to ~ 0.008). The sign of β_2 is positive, which is somewhat perplexing as q is known to be a sufficient statistic in Hayashi's original model.

I think this is likely because the SDF is endogenous, and strongly negatively correlated with shocks to the productive capacity of the economy, while q hardly moves. Why does this matter? q captures the value of cash flows over long periods. But due to the risk aversion of the owners of firms, they may prefer a stronger response in the short run of investment to consumption smooth.

Question 4

Updating the new model's priors on the unknown parameters, we see considerable learning (at T = 2000) about the underlying model. All posteriors are centered on the true values of the underlying data ($\sigma_z = 0.1, sigma_q = 0.01, \theta = 0.7, \psi_0 = 0.01$, even given the priors which weren't close for some parameters (e.g. σ_z).

Priors (grey) and Posteriors (black)

Question 5

Priors (grey) and Posteriors (black)

The posterior for the standard deviation of the shocks to productivity is practically diffuse. Measurement error in q is also estimated to be considerably higher then from a data generated by a process with low measurement error.

 θ , which governs the returns to scale of capital, is also considerably higher.

Finally, adjustment costs are estimated to be larger than in our model. Perhaps this is because q is considerably more volatile in the model than in our simulated data (where it is practically flat). It is also persistently away from 1 for long periods of time, implying rather substantial adjustment costs.