MODELOS DISPERSIVOS

Métodos Computacionales en Física no Lineal 2022/2023

Pelegrina Gutiérrez, Luis Vázquez García, Cristóbal Vazquez Ramos, Alicia

Introducción

Model Dispersive Media in Finite-Difference Time-Domain Method With Complex-Conjugate Pole-Residue Pairs

Minghui Han, Robert W. Dutton, Fellow, IEEE, and Shanhui Fan, Member, IEEE

Permitividad en medio dispersivo

$$\varepsilon(\omega) = \varepsilon_0 \varepsilon_\infty + \varepsilon_0 \sum_{p=1}^P c_p / (j\omega - a_p) + c_p^* / (j\omega - a_p^*)$$

Ecuación de onda dispersiva

$$E(r) = E_0 e^{-\gamma r} = E_0 e^{-\alpha r} e^{-j\beta r}$$

$$\gamma = j\omega\sqrt{\mu\epsilon_c}$$

FDTD

$$\overrightarrow{E}^{(n+1)\Delta t} = \left(\frac{2\varepsilon_0\varepsilon_\infty + \sum_{p=1}^P 2\operatorname{Re}(\beta_p) - \sigma\Delta t}{2\varepsilon_0\varepsilon_\infty + \sum_{p=1}^P 2\operatorname{Re}(\beta_p) + \sigma\Delta t}\right) \overrightarrow{E}^{n\Delta t}$$

$$= \left(\frac{2\varepsilon_0\varepsilon_\infty + \sum_{p=1}^P 2\operatorname{Re}(\beta_p) + \sigma\Delta t}{2\varepsilon_0\varepsilon_\infty + \sum_{p=1}^P 2\operatorname{Re}(\beta_p) + \sigma\Delta t}\right) \overrightarrow{E}^{n\Delta t}$$

$$+ \frac{2\Delta t \cdot \left[\nabla \times \overrightarrow{H}^{(n+1/2)\Delta t} - \operatorname{Re}\sum_{p=1}^P (1 + k_p) \overrightarrow{J}_p^{n\Delta t}\right]}{2\varepsilon_0\varepsilon_\infty + \sum_{p=1}^P 2\operatorname{Re}(\beta_p) + \sigma\Delta t}$$

$$\overrightarrow{J_p}^{(n+1)\Delta t} = k_p \overrightarrow{J_p}^{n\Delta t} + \beta_p \left(\frac{\overrightarrow{E}^{(n+1)\Delta t} - \overrightarrow{E}^{n\Delta t}}{\Delta t} \right)$$

Modelo teórico

Matriz de transmisión

$$[\Phi] = \begin{bmatrix} \cosh(\gamma d) & \eta \sinh(\gamma d) \\ \eta^{-1} \sinh(\gamma d) & \cosh(\gamma d) \end{bmatrix} \qquad \begin{array}{c} \gamma = j\omega\sqrt{\mu\varepsilon_c} \\ \eta = \sqrt{\mu/\varepsilon_c} \end{array}$$

Transmitancia y reflectividad

$$T = \frac{2\eta_0}{\Phi_{11}\eta_0 + \Phi_{12} + \Phi_{21}\eta_0^2 + \Phi_{22}\eta_0}$$

$$R = \frac{\Phi_{11}\eta_0 + \Phi_{12} - \Phi_{21}\eta_0^2 - \Phi_{22}\eta_0}{\Phi_{11}\eta_0 + \Phi_{12} + \Phi_{21}\eta_0^2 + \Phi_{22}\eta_0}$$

Simulación

Condiciones de simulación

- Condiciones de la onda incidente:
 - Pulso Gaussiano (μ, σ)
- Condiciones del medio dispersivo:
 - o ap, cp
 - \circ ε_{∞} , σ , d
- Condiciones Iniciales de campos:
 - J=0, H=0

$$a_p = -1 -1j$$
, $c_p = 1$
 $\epsilon_{\infty} = 1.0$, $\sigma = 0.0$

Evolución del método

Actualización del campo Electrico según un medio dispersivo

Actualización de las corrientes dentro del medio dispersivo

Aplicación de condiciones Mur en los extremos

Repetir desde el inicio el tiempo necesario

Comparación

$$T = \frac{TF(E_T(t))}{TF(E_i(t))}$$

$$R = \frac{TF(E_R(t)) - E_i(t))}{TF(E_i(t))}$$

Problemas del método

GRACIAS