Memoria TFG

Mario Díaz

October 2025

1 Polaritón plasmónico de grafeno (PPG)

Figure 1: Stack: monocapa de grafeno separando dos medios semiinfinitos no dispersivos. Supondremos $\varepsilon_1=1$ (aire) y ε_2 constante.

Descripción. Monocapa de grafeno confinada entre dos medios semiinfinitos con permitividades ε_1 y ε_2 (no dispersivas). En adelante tomamos $\varepsilon_1 = 1$ (aire).

Ecuación característica Ecuación dada:

$$(\varepsilon_1 + \varepsilon_2) \omega^2 - 2 c k_x \omega_D = 0. \tag{1}$$

Solución analítica (relación de dispersión). De (1) resulta inmediatamente:

$$\omega^{2}(k_{x})_{PPG} = \frac{2 c k_{x} \omega_{D}}{\varepsilon_{1} + \varepsilon_{2}} \equiv \omega_{p}^{2}$$
(2)

Figure 2: Relación de dispersión $\omega(k_x)$ del PPG dada por (2).

Agrupaciones y frecuencias de interfase. En este sistema puramente plasmonico no hay frecuencias de interfase (ω_T, ω_L) que delimiten bandas. Hay una única rama $\omega(k_x)$ monótona y sin gaps.

Asíntotas. Límite
$$k_x \to 0$$
. De $\omega(k_x)_{PPG} \propto \sqrt{k_x}$:
$$\omega(k_x)_{PPG} \xrightarrow[k_x \to 0]{} 0 \quad \text{(no hay frecuencia de corte)}.$$

Límite $k_x \to \infty$.

$$\omega(k_x)_{PPG} = \sqrt{\frac{2 c \omega_D}{\varepsilon_1 + \varepsilon_2}} \sqrt{k_x} \sim \sqrt{k_x} \qquad (k_x \to \infty),$$

sin saturar en una constante (al no existir ω_T, ω_L del medio).