CSE 5161 INFORMATION SYSTEMS <u>LAB I</u>

ADVANCED CRYPTOGRAPHY LAB (PAT II OF IS LAB I)

[0031]

LAB MANUAL

I Sem M.Tech (CSIS)

(2022)

DEPT. OF COMPUTER SCIENCE & ENGG.

M. I. T., MANIPAL

INSTRUCTIONS TO STUDENTS

- 1. Students should be regular and come prepared for the lab practice.
- 2. In case a student misses a class, it is his/her responsibility to complete that missed experiment(s).
- 3. Students should bring and maintain an observation book exclusively for the lab.
- 4. Once the experiment(s) get executed, they should show the program and results to the instructors and copy the same in their observation book.
- 5. Prescribed textbook and class notes can be kept ready for reference if required.
- 6. They should implement the given experiment individually.
- 7. Questions for lab tests and exam need not necessarily be limited to the questions in the manual, but could involve some variations and / or combinations of the questions.

Course Objectives

- To implement number theoretic algorithms and classical ciphers
- To implement and analyze public key cryptosystems
- To implement hashing and digital signatures
- To understand and implement a research paper

Course Outcomes

A student who successfully completes this course would be able to

- Implement the number theoretic algorithms and classical ciphers
- Analyse various public key cryptosystems including hashing and digital signatures
- Implement research paper on cryptography

PROCEDURE FOR EVALUATION

This lab would be one part of the Information Systems Lab I and the student will be evaluated for 100 marks based on following criteria and that will be reduced for 50 marks.

There will be 2 phases.

In the first phase, continuous evaluation of the experiments conducted between Week1 and Week 8.

Continuous evaluation → for 60 marks

Four evaluations, each for 10 marks → one evaluation per two weeks In the Second Phase, students will be working on Mini project between Week 9 to Week 12. Any research paper may be referred for this purpose. This will be evaluated for 20 Marks.

Mini Project →20 Marks
Final end semester Examination→ 20 Marks

CONTENTS

SL NO.	TITLE OF EXPERIMENT
1.	Implementation of Basic Number theoretic Algorithms C/C++/Java
2.	Implementation of Advanced Number theoretic Algorithms
	C/C++/Java
3.	Implementation of classical ciphers in C/C++/Java
4.	Implementation of public key cryptosystems in C/C++/Java
5.	Implementation of Galois Field Arithmetic Operations
6.	Implementation of hash algorithms in C/C++/Java
7.	Implementation of digital signature algorithms in C/C++/Java
8.	Implementation of digital signature/key exchange algorithms in
	C/C++/Java

Week 1: Implementation of Basic Number theoretic Algorithms C/C++/Java

- 1. Write a program to find the GCD of two numbers using Euclid algorithm
- 2. Write a program to find the modular multiplicative inverse of a number using extended Euclidian Algorithm

Week 2: Implementation of Advanced Number theoretic Algorithms C/C++/Java

- 1. Write a program to solve a set of congruences using Chinese Remainder Theorem.
- 2. Implement the algorithm for fast exponentiation in congruences

Week 3: Implementation of classical ciphers in C/C++/Java

Implement the following classical ciphers in C/C++/Java

- (i) Caesar Cipher
- (ii) Hill Cipher
- (iii) Playfair Cipher

Week 4: Implementation of public key cryptosystems in C/C++/Java

Implement the following public key cryptosystems

- (i) RSA
- (ii)ECC
- (iii) El Gamal

Week 5: Implementation of Galois Field arithmetic operations in C/C++/Java

- (i) $GF(2^3)$
- $(ii)GF(2^4)$
- (iii) GF(2⁵)

Week 5: Implementation of hash algorithms in C/C++/Java

Implement the following hash algorithms

- (i) MD5
- (ii) SHA 512

Week 6: Implementation of digital signature algorithms in C/C++/Java

Implement the following digital signature algorithms

- (i) RSA
- (ii) El Gamal
- (iii) Schnorr

Week 7: Implementation of digital signature/key exchange algorithms in C/C++/Java

Implement the following digital signature/key exchange algorithms

- (i) DSS
- (ii) Elliptic Curve Digital Signature scheme
- (iii) Diffie Hellman Key exchange algorithm

Week 9 - Week 12: Mini Project

Students have to implement a research paper on Light weight cryptography in groups

Week 13: Test

References:

- 1. Behrouz A. Forouzan and Debdeep Mukhopadhyay "Cryptography and Network Security", McGraw Hill, 2nd Edition, 2008
- 2. William Stallings, "Cryptography And Network Security Principles And Practice", Fifth Edition, Pearson Education, 2013