Abstract Algebra

- A Journey from Concretization to Abstraction -

Ji, Yong-Hyeon

A document presented for the Abstract Algebra

Department of Information Security, Cryptology, and Mathematics College of Science and Technology Kookmin University

July 13, 2024

Contents

1	Visual Group Theory																																	3
---	----------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Chapter 1

Visual Group Theory

Mathematical Definitions and Examples

1. Normal Subgroup

Definition:

A subgroup N of a group G is called a *normal subgroup* if it is invariant under conjugation, that is, for every element $g \in G$ and $n \in N$, the element $g n g^{-1} \in N$.

Symbolically:

$$N \triangleleft G \iff \forall g \in G, \forall n \in N, \ gng^{-1} \in N.$$

Examples:

1. In the group of integers $(\mathbb{Z}, +)$, the subgroup $2\mathbb{Z} = \{2k \mid k \in \mathbb{Z}\}$ is a normal subgroup since \mathbb{Z} is abelian.

$$2\mathbb{Z} = \{2k \mid k \in \mathbb{Z}\} \triangleleft \mathbb{Z}$$

2. In the symmetric group S_3 , the subgroup $A_3 = \{(1), (123), (132)\}$ (the alternating group) is a normal subgroup.

$$A_3 = \{(1), (123), (132)\} \triangleleft S_3$$

2. Quotient Group (Factor Group)

Definition:

Given a group G and a normal subgroup N of G, the quotient group (or factor group) G/N is the set of left cosets of N in G with the group operation defined by:

$$(gN) \cdot (hN) = (gh)N$$

Examples:

1. For $(\mathbb{Z}, +)$ and $N = 2\mathbb{Z}$, the quotient group $\mathbb{Z}/2\mathbb{Z}$ consists of two cosets: $0 + 2\mathbb{Z}$ and $1 + 2\mathbb{Z}$.

$$\mathbb{Z}/2\mathbb{Z} = \{0 + 2\mathbb{Z}, 1 + 2\mathbb{Z}\}$$

2. In S_3 , the quotient group S_3/A_3 is isomorphic to \mathbb{Z}_2 .

$$S_3/A_3\cong \mathbb{Z}_2$$

3. Ring

Definition:

A *ring* is a set R equipped with two binary operations + and \cdot (addition and multiplication) such that:

- 1. (R, +) is an abelian group.
- 2. (R, \cdot) is a monoid.
- 3. Multiplication is distributive over addition: for all a, b, $c \in R$, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$.

Examples:

1. The set of integers \mathbb{Z} with usual addition and multiplication.

 \mathbb{Z} is a ring

2. The set of 2×2 matrices over \mathbb{R} , $M_2(\mathbb{R})$, with matrix addition and multiplication.

 $M_2(\mathbb{R})$ is a ring

$$\left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right) + \left(\begin{array}{cc} 5 & 6 \\ 7 & 8 \end{array}\right) = \left(\begin{array}{cc} 6 & 8 \\ 10 & 12 \end{array}\right)$$

$$\left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right) \qquad \cdot \qquad \left(\begin{array}{cc} 5 & 6 \\ 7 & 8 \end{array}\right) \qquad = \qquad \left(\begin{array}{cc} 19 & 22 \\ 43 & 50 \end{array}\right)$$

4. Ideal

Definition:

An *ideal I* of a ring *R* is a subset of *R* such that:

- 1. *I* is an additive subgroup of *R*.
- 2. For every $r \in R$ and $i \in I$, both ri and ir are in I.

Examples:

1. In \mathbb{Z} , the set $2\mathbb{Z}$ (all even integers) is an ideal.

$$2\mathbb{Z} = \{2k \mid k \in \mathbb{Z}\}$$
 is an ideal of \mathbb{Z}

of polynomials divisible by x, denoted by (x), is an ideal.

$$(x) = \{x \cdot f(x) \mid f(x) \in \mathbb{R}[x]\}$$
 is an ideal of $\mathbb{R}[x]$

5. Prime Ideal

Definition:

An ideal *P* in a ring *R* is a *prime ideal* if $P \neq R$ and whenever $a \cdot b \in P$ for $a, b \in R$, then $a \in P$ or $b \in P$.

Examples:

1. In \mathbb{Z} , the ideal (p) where p is a prime number (e.g., (5)) is a prime ideal.

$$(5) = \{5k \mid k \in \mathbb{Z}\} \text{ is a prime ideal of } \mathbb{Z}$$

<u>_5</u>

2. In $\mathbb{Z}[x]$, the ideal (x) is a prime ideal.

$$(x) = \{x \cdot f(x) \mid f(x) \in \mathbb{Z}[x]\}$$
 is a prime ideal of $\mathbb{Z}[x]$

6. Maximal Ideal

Definition:

An ideal M in a ring R is a maximal ideal if $M \neq R$ and there are no other ideals I such that $M \subset I \subset R$.

Examples:

1. In \mathbb{Z} , the ideal (p) where p is a prime number (e.g., (3)) is a maximal ideal.

 $(3) = \{3k \mid k \in \mathbb{Z}\}$ is a maximal ideal of \mathbb{Z}

No larger ideal between (3) and \mathbb{Z}

2. In $\mathbb{R}[x]$, the ideal (x - a) where $a \in \mathbb{R}$ is a maximal ideal.

 $(x - a) = \{(x - a) \cdot f(x) \mid f(x) \in \mathbb{R}[x]\}$ is a maximal ideal of $\mathbb{R}[x]$

$\mathbb{R}[x]$

No larger ideal between
$$(x-a)$$
 and $\mathbb{R}[x]$

Maximal Ideal $(x-a)$

$$x^2 - ax + ax^{\frac{1}{2}3} - a^2x + a$$

$$x - a(x-a)$$

$$(x-a)(x^23(x1) + a)$$

$$(x-a) \cdot (x+1)$$

$M_2(F)$

