Computer Networks

Lecture 9: Network layer - Part I

Bridges vs. Switches

- Bridges make it possible to increase LAN capacity
 - Reduces the amount of broadcast packets
 - No loops
- Switch is a special case of a bridge
 - Each port is connected to a single host
 - Either a client machine
 - Or another switch
 - Links are full duplex
 - Simplified hardware: no need for CSMA/CD!
 - Can have different speeds on each port

Switching the Internet

- Capabilities of switches:
 - Network-wide routing based on MAC addresses
 - Learn routes to new hosts automatically
 - Resolve loops
- Could the whole Internet be one switching domain?

NO

- Inefficient
 - Flooding packets to locate unknown hosts
- Poor Performance
 - Spanning tree does not balance load
 - Hot spots
- Extremely Poor Scalability
 - Every switch needs every MAC address on the Internet in its routing table!
- □ IP addresses these problems (next ...)

Network Layer

Application Presentation Session Transport Network Data Link **Physical**

□ Function:

- Route packets end-to-end on a network, through multiple hops
- Key challenge:
 - How to represent addresses
 - How to route packets
 - Scalability
 - Convergence

- How to connect multiple LANs?
- LANs may be incompatible
 - Ethernet, Wifi, etc...
- Connected networks form an internetwork
 - The Internet is the best known example

Int

Internet Service Model

- 7
- Best-effort (i.e. things may break)
- Store-and-forward datagram network

□ Rd

- Lowest common denominator
- Service Model
 - What gets sent?
 - How fast will it go?
 - What happens if there are failures?
 - Must deal with heterogeneity
 - Remember, every network is different

Outline

- Addressing
 - Class-based
 - CIDR
- IPv4 Protocol Details
 - Packed Header
 - Fragmentation
- □ IPv6

Possible Addressing Schemes

- Flat
 - e.g. each host is identified by a 48-bit MAC address
 - Router needs an entry for every host in the world
 - Too big
 - Too hard to maintain (hosts come and go all the time)
 - Too slow (more later)
- Hierarchy
 - Addresses broken down into segments
 - Each segment has a different level of specificity

10

Northeastern University

West Willage (5)
RBoomi 254

Updates are Local

- □ IPv4: 32-bit addresses
 - Usually written in dotted notation, e.g. 192.168.21.76
 - Each number is a byte

IP Addressing and Forwarding

- Routing Table Requirements
 - For every possible IP, give the next hop
 - But for 32-bit addresses, 2³² possibilities!
- Hierarchical address scheme
 - Separate the address into a network and a host

Classes of IP Addresses

□ IP address ranges controlled by IANA

Internet Assigned Numbers Authority

- Internet Assigned Number Authority
- Roots go back to 1972, ARPANET, UCLA
- Today, part of ICANN
- □ IANA grants IPs to regional authorities
 - ARIN (American Registry of Internet Numbers) may grant you a range of IPs
 - You may then advertise routes to your new IP range
 - □ There are now secondary markets, auctions, ...

Way too big

Class	Prefix Bits	Network Bits	Number of Classes	s per Class
Α	1	7	2 ⁷ – 2 = 126 (0 and 127 are reserved)	2 ²⁴ – 2 = 16,777,214 (All 0 and all 1 are reserved)
В	2	14	2 ¹⁴ = 16,398	2 ¹⁶ – 2 = 65,534 (All 0 and all 1 are reserved)
С	3	21	$2^{21} = 2,097,512$	$2^8 - 2 = 254$ (All 0 and 11 1 are reserved)
			Total: 2,114,036	

Too many network IDs

Too small to be useful

- Problem: need to break up large A and B classes
- Solution: add another layer to the hierarchy
 - From the outside, appears to be a single network
 - Only 1 entry in routing tables
 - Internally, manage multiple subnetworks
 - Split the address range using a subnet mask

Subnet Mask:

Subnet Example

Extract network:

Result: 10110101 11011101 01000000 00000000

■ Extract host:

IP Address: 10110101 11011101 01010100 01110010 Subnet Mask: & ~(11111111 11111111 11000000 00000000)

Result: 00000000 00000000 00010100 01110010

- Tree does not have a fixed depth
- Increasingly specific subnet masks

Subtree size determined by length of subnet mask

Example Routing Table

Address Pattern	Subnet Mask	Destination Router
0.0.0.0	0.0.0.0	Router 4
18.0.0.0	255.0.0.0	Router 2
128.42.0.0	255.255.0.0	Router 3
128.42.128.0	255.255.128.0	Router 5
128.42.222.0	2555.255.255.0	Router 1

- Question: 128.42.222.198 matches four rows
 - Which router do we forward to?
- Longest prefix matching
 - Use the row with the longest number of 1's in the mask
 - This is the most specific match

Subnetting Revisited

Question: does subnetting solve all the problems of classbased routing?

NO

- Classes are still too coarse
 - Class A can be subnetted, but only 126 available
 - Class C is too small
 - Class B is nice, but there are only 16,398 available
- Routing tables are still too big
 - 2.1 million entries per router

Classless Inter Domain Routing

- □ CIDR, pronounced 'cider'
- □ Key ideas:
 - Get rid of IP classes
 - Use bitmasks for all levels of routing
 - Aggregation to minimize FIB (forwarding information base)
- Arbitrary split between network and host
 - Specified as a bitmask or prefix length
 - Example: Stony Brook
 - 130.245.0.0 with netmask 255.255.0.0
 - **1**30.245.0.0 / 16

Aggregation with CIDR

- □ Original use: aggregating class C ranges
- One organization given contiguous class C ranges
 - Example: Microsoft, 207.46.192.* 207.46.255.*
 - Represents 2⁶ = 64 class C ranges
 - Specified as CIDR address 207.46.192.0/18

Size of CIDR Routing Tables

- ☐ From <u>www.cidr-report.org</u>
- CIDR has kept IP routing table sizes in check
 - Arr Currently \sim 500,000 entries for a complete IP routing table
 - Only required by backbone routers

We had a special day in summer 2014!

- □ 512K day August 12, 2014
- □ Default threshold size for IPv4 route data in older Cisco routers → 512K routes
 - Some routers failed over to slower memory
 - RAM vs. CAM (content addressable memory)
 - Some routes dropped
- Cisco issues update in May anticipating this issue
 - Reallocated some IPv6 space for IPv4 routes
- Part of the cause
 - Growth in emerging markets
- http://cacm.acm.org/news/178293-internet-routing-failures-bring-architecturechanges-back-to-the-table/fulltext

Takeaways

- Hierarchical addressing is critical for scalability
 - Not all routers need all information
 - Limited number of routers need to know about changes
- Non-uniform hierarchy useful for heterogeneous networks
 - Class-based addressing is too course
 - CIDR improves scalability and granularity
- Implementation challenges
 - Longest prefix matching is more difficult than schemes with no ambiguity

Outline

- Addressing
 - Class-based
 - CIDR
- IPv4 Protocol Details
 - Packed Header
 - Fragmentation
- □ IPv6

IP Datagrams

- □ IP Datagrams are like a letter
 - Totally self-contained
 - Include all necessary addressing information
 - No advanced setup of connections or circuits

0	4	4	8	12	1	6 1	9	24	31
V	Version HLen DSCP/ECN						Da	tagram Length	
	Identifier					Flags		Offset	
	TTL Protocol					Checksum			
	Source IP Address								
	Destination IP Address								
	Options (if any, usually not)								
	Data								

IP Header Fields: Word 1

```
30
```

- □ Version: 4 for IPv4
- Header Length: Number of 32-bit words (usually 5)
- Type of Service: Priority information (unused)
- Datagram Length: Length of header + data in bytes

IP Header Fields: Word 3

- 31
 - □ Time to Live: decremented by each router
 - Used to kill looping packets
 - Protocol: ID of encapsulated protocol
 - □ 6 = TCP, 17 = UDP
 - Checksum

32

- Source and destination address
 - In theory, must be globally unique
 - In practice, this is often violated

) 4 8	3 12 1	6 1	9 24	31			
Version HLen	DSCP/ECN	DSCP/ECN Datagram Length					
lden	tifier	Flags	Offset				
TTL Protocol			Checksum				
Source IP Address							
Destination IP Address							
Options (if any, usually not)							
Data							

- Problem: each network has its own MTU
 - DARPA principles: networks allowed to be heterogeneous
 - Minimum MTU may not be known for a given path
- □ IP Solution: fragmentation
 - Split datagrams into pieces when MTU is reduced
 - Reassemble original datagram at the receiver

IP Header Fields: Word 2

- 34
- Identifier: a unique number for the original datagram
- Flags: M flag, i.e. this is the last fragment
- Offset: byte position of the first byte in the fragment
 - Divided by 8

0	4 8	3 12 1	6 1	9 24	3		
Version	HLen	TOS					
	Identifier			Offset			
	TTL Protocol			Checksum			
Source IP Address							
Destination IP Address							
Options (if any, usually not)							
Data							

Fragmentation Example

Fragmentation Example

IP Fragment Reassembly

37

Length = 1500, M = 1, Offset = 0

IP Data

20 1480

Length = 520, M = 1, Offset = 1480

- IP Data
- 20 500

Length = 1500, M = 1, Offset = 1980

- IP Data
 - 20 1480

Length = 360, M = 0, Offset = 3460

IP Data

20 340

- Performed at destination
- M = 0 fragment gives us total data size
 - 360 20 + 3460 = 3800
- Challenges:
 - Out-of-order fragments
 - Duplicate fragments
 - Missing fragments
- Basically, memorymanagement nightmare

Fragmentation Concepts

- Highlights many key Internet characteristics
 - Decentralized and heterogeneous
 - Each network may choose its own MTU
 - Connectionless datagram protocol
 - Each fragment contains full routing information
 - Fragments can travel independently, on different paths
 - Best effort network
 - Routers/receiver may silently drop fragments
 - No requirement to alert the sender
 - Most work is done at the endpoints
 - i.e. reassembly

- □ Fragmentation is expensive
 - Memory and CPU overhead for datagram reconstruction
 - Want to avoid fragmentation if possible
- MTU discovery protocol
 - Send a packet with "don't fragment" bit set
 - Keep decreasing message length until one arrives
 - May get "can't fragment" error from a router, which will explicitly state the supported MTU
- Router handling of fragments
 - Fast, specialized hardware handles the common case
 - Dedicated, general purpose CPU just for handling fragments

Outline

- Addressing
 - Class-based
 - CIDR
- IPv4 Protocol Details
 - Packed Header
 - Fragmentation
- □ IPv6

The IPv4 Address Space Crisis

- Problem: the IPv4 address space is too small
 - $2^{32} = 4,294,967,296$ possible addresses
 - Less than one IP per person
- □ Parts of the world have already run out of addresses
 - □ IANA assigned the last /8 block of addresses in 2011

Region	Regional Internet Registry (RIR)	Exhaustion Date
Asia/Pacific	APNIC	April 19, 2011
Europe/Middle East	RIPE	September 14, 2012
North America	ARIN	13 Jan 2015 (Projected)
South America	LACNIC	13 Jan 2015 (Projected)
Africa	AFRINIC	17 Jan 2022(Projected)

- □ IPv6, first introduced in 1998(!)
 - 128-bit addresses
 - 4.8 * 10²⁸ addresses per person
- Address format
 - 8 groups of 16-bit values, separated by ':'
 - Leading zeroes in each group may be omitted
 - Groups of zeroes can be omitted using '::'

2001:0db8:<u>0000:0000:0000:</u>ff00:<u>0042:</u>8329

2001:0db8:0:0:0:ff00:42:8329

2001:0db8::ff00:42:8329

- Who knows the IP for localhost?
 - **127.0.0.1**

- What is localhost in IPv6?
 - **::1**

IPv6 Header

44

□ Double the size of IPv4 (320 bits vs. 160 bits)

Differences from IPv4 Header

- Several header fields are missing in IPv6
 - Header length rolled into Next Header field
 - Checksum was useless, so why keep it
 - Identifier, Flags, Offset
 - IPv6 routers do not support fragmentation
 - Hosts are expected to use path MTU discovery
- Reflects changing Internet priorities
 - Today's networks are more homogeneous
 - Instead, routing cost and complexity dominate

Performance Improvements

- □ No checksums to verify
- No need for routers to handle fragmentation
- Simplified routing table design
 - Address space is huge
 - No need for CIDR (but need for aggregation)
 - Standard subnet size is 2⁶⁴ addresses
- Simplified auto-configuration
 - Neighbor Discovery Protocol
 - Used by hosts to determine network ID
 - Host ID can be random!

- Source Routing
 - Host specifies the route to wants packet to take
- Mobile IP
 - Hosts can take their IP with them to other networks
 - Use source routing to direct packets
- Privacy Extensions
 - Randomly generate host identifiers
 - Make it difficult to associate one IP to a host
- Jumbograms
 - Support for 4Gb datagrams

Deployment Challenges

- Switching to IPv6 is a whole-Internet upgrade
 - All routers, all hosts
 - □ ICMPv6, DHCPv6, DNSv6
- □ 2013: 0.94% of Google traffic was IPv6, 2.5% today

Transitioning to IPv6

- □ How do we ease the transition from IPv4 to IPv6?
 - Today, most network edges are IPv6 ready
 - Windows/OSX/iOS/Android all support IPv6
 - Your wireless access point probably supports IPv6
 - The Internet core is hard to upgrade
 - ... but a IPv4 core cannot route IPv6 traffic

- □ How do you route IPv6 packets over an IPv4 Internet?
- Transition Technologies
 - Use tunnels to encapsulate and route IPv6 packets over the IPv4 Internet
 - Several different implementations
 - 6to4
 - IPv6 Rapid Deployment (6rd)
 - Teredo
 - ... etc.

Network Layer, Control Plane

Data Plane Application Presentation Session **Transport** Network OSPF RIP Data Link **Physical**

Function: Set up routes within a single network Key challenges: Distributing and updating routes Convergence time Avoiding loops **BGP** Control Plane

- Internet organized as a two level hierarchy
- □ First level autonomous systems (AS's)
 - AS region of network under a single administrative domain
 - Examples: Comcast, AT&T, Verizon, Sprint, etc.
- □ AS's use intra-domain routing protocols internally
 - Distance Vector, e.g., Routing Information Protocol (RIP)
 - Link State, e.g., Open Shortest Path First (OSPF)
- Connections between AS's use inter-domain routing protocols
 - Border Gateway Routing (BGP)
 - De facto standard today, BGP-4

 Routing algorithms are not efficient enough to execute on the entire Internet topology

- □ Diff
- □ Allo
 - struc
- □ Allo

- Easier to compute routes
- Greater flexibility
- More autonomy/independence

othe , ,

policies

each

Routing on a Graph

- Goal: determine a "good" path through the network from source to destination
- What is a good path?
 - Usually means the shortest path
 - Load balanced
 - □ Lowest \$\$\$ cost
- Network modeled as a graph
 - \blacksquare Routers \rightarrow nodes
 - \square Link \rightarrow edges
 - Edge cost: delay, congestion level, etc.

