

Lecture 26

Yao Li

Department of Statistics and Operations Research
UNC Chapel Hill

Tutorial 12

- Instructions
 - Download Tutorial Zip
 - Unzip Folder
 - Required Packages
 - library(tidyverse)
 - library(modelr)
 - Open .Rmd File and Knit
- Daily Spanish River Data
 - W = Max Water Temperature
 - A = Max Air Temperature
 - L = River Identifier (31 Rivers)

- Polynomial Model
 - "Feature Engineering"
 - Generalized Additive Model
 - Geom_smooth() Fits a GAM when Fitting a Curve
 - Useful for Approximating Nonlinear Relationships
 - Dependent on Degree "k"
 - Goal: Choose Best "k"

- Formula Object in R
 - Special Notation
 - Helpful Table:

Symbol	Example	Meaning
+	+X	include this variable
_	-X	delete this variable
:	X:Z	include the interaction between these variables
*	X*Y	include these variables and the interactions between them
1	X Z	conditioning: include x given z
^	$(X + Z + W)^3$	include these variables and all interactions up to three way
I	I(X*Z)	as is: include a new variable consisting of these variables multiplied
1	X - 1	intercept: delete the intercept (regress through the origin)

 We will Use the I() Function to Create New Variables Based Off Variables We Have

- Run Chunk 1
 - Fits 2nd Degree Polynomial
 - Fits 3rd Degree Polynomial
 - Fits 4th Degree Polynomial
- Run Chunk 2
 - Obtains Predictions Under the Different Polynomial Models

- Chunk 3
 - Code Needs Modification
 - Highlight Code

```
TRAIN4 =TRAIN3 %>%
  add_predictions(poly2mod,var="poly2pred") %>%
  add_predictions(poly3mod,var="poly3pred") %>%
  add_predictions(poly4mod,var="poly4pred")

TEST4 =TEST3 %>%
  add_predictions(poly2mod,var="poly2pred") %>%
  add_predictions(poly3mod,var="poly3pred") %>%
  add_predictions(poly4mod,var="poly4pred")
```

- TRAIN3 -> TRAIN4 and etc.
- Use Ctrl+F (Find and Replace)
 - 'predictions' -> 'residuals'
 - 'pred' -> 'res'

Run Chunk 3 After Modifying

Intermission

- Run Code Chunk
 - save.image() = Used to Save Workspace into .Rdata File
 - load() = Used to Load Workspace from .Rdata File
 - .Rdata = File Extension of R Workspace File (All Objects in Global Environment)

- Logistic Model
 - "Smart" Model Based On Physical Relationship Between A and W
 - Four Parameters
 - Controls the Shape of the Relationship
 - *a* and *b*
 - c and d
 - What Shape Do You Think This Function Makes?
 - Idea: Precalculus

- Run Chunk 1
 - Plant that Seed
 - Example Model

- Parameter Investigation
 - What Does 7 Represent?
 - What Does 12 Represent?
 - What Does 4 Represent?
 - What Does 1 Represent?

- Run Chunk 2
 - Creation of Modeling Function
 - Creation of MSE Function Specific to this Model
- Run Chunk 3
 - Use optim() Function With Smart Starting Values
 Based on Understanding of The Model
 - Finds Estimates Based on Minimization of MSE

- Run Chunk 4
 - Use Logistic Model Function and Estimated Parameters from optim() to Obtain
 - Predictions
 - Residuals

- Run Chunk 1
 - Plots of Different Models
 - What Can We Say About the Different Models?

Which Model Would You Use?

- Run Chunk 2
 - Comparing Predictions vs Actual Maximum Water Temperatures
 - Models Give Similar Predictions

- Run Chunk 3
 - Shows Residuals Under the 4 Models Plotted Over Time
 - What is the Problem?

- Run Chunk 4
 - Evaluate Models For the Three Locations Separately

- Run Chunk 5
 - Evaluate Error For the Three Locations Separately (by A)

- Run Chunk 6
 - Evaluate Error For the Three Locations Separately (by Time)

- Run Chunk 1
 - Mean Bias

$$MB = \frac{1}{N} \sum \hat{\epsilon}_k$$

Mean Absolute Error

$$MAE = \frac{1}{N} \sum |\hat{\varepsilon}_k|$$

Root Mean Squared Error

$$RMSE = \sqrt{\frac{1}{N}} \sum \hat{\varepsilon}_k^2$$

MB, MAE, and RMSE are in Degrees Celsius

- Summarizing Table
 - Evaluate MB, MAE, and RMSE on Test Data to Choose Best Model Going Forward
 - Sketch of Table We Want

Model	MB	MAE	RMSE
Linear			
Poly(2)			
Poly(3)			
Poly(4)			
Logistic			

Before Writing Code, Have a Plan for the Output

- Chunk 2
 - Run Line-By-Line
 - Think About Ways to Quickly Apply All 3 Functions to All Residuals
- Run Chunk 3
 - Combine rename(), gather(), group_by(), and summarize()
- Chunk 4
 - Change eval=F to eval=T and Knit the File (What is Seen?)

My Results Based on My Seed

Model <fctr></fctr>	MB <dbl></dbl>	MAE <dbl></dbl>	RMSE <dbl></dbl>
Linear	0.9534126	2.750323	3.351594
Poly(2)	0.9742415	2.732399	3.344867
Poly(3)	0.9903951	2.706833	3.328889
Poly(4)	0.9920042	2.715366	3.338710
Logistic	0.2613184	3.135313	3.711664

 When Results Are This Close, Always Consider the Most Simple Model