1 Na nulový polynom

Jako první se podíváme na polynom prvního stupně, a to na -x-1. Můžeme si všimnout toho, že tento polynom má kořen -1 a všechny jeho koeficienty jsou -1, tedy se zobrazí na nulový polynom.

Teď ukážu, že abychom dostali takový polynom, ale vyššího stupně, stačí nám vynásobit tento polynom nějakou mocninou x^n . Protože kořeny polynomu $x^n(-x-1) = -x^{n+1} - x^n$ jsou vždy čísla 0 a -1 a taky tento polynom nemá jiné koeficienty kromě těchto dvou, ukázali jsme, že polynom, který se zobrazí na nulový polynom, existuje pro všechny stupně.

2 Sám na sebe

Víme, že pro všechna $n \in \mathbb{N}$ platí, že $1^n = 1$ a $0^n = 0$. A protože polynom x^n má jen koeficienty 0 a 1, musí se nutně zobrazit sám na sebe.

3 k-násobek

Ukáži, že všechny polynomy ve tvaru $\sqrt[n]{k}x^n$ se převedou na k-násobek původního polynomu:

$$F(\sqrt[n]{k}x^n) = \left(\sqrt[n]{k}\left(\sqrt[n]{k}\right)^n\right)x^n = k\cdot\sqrt[n]{k}x^n$$

Tento polynom existuje pro každý stupeň, proto tedy pro každý stupeň existuje polynom, které se zobrazí na jakýkoli přirozený násobek.