Problem 2 - Zig-Zag Permutation (50 pts)

Problem Description

For an array **a** with N integers $\mathbf{a}[1], \mathbf{a}[2], \dots, \mathbf{a}[N]$, we say this array is **beautiful** if it satisfies the following condition:

$$(\mathbf{a}[n+1] - \mathbf{a}[n])(\mathbf{a}[n+2] - \mathbf{a}[n+1]) < 0$$
, for all $1 \le n \le N-2$.

Consider the permutations of any given integer array **a**, please output all the **beautiful** permutations of **a**.

Input

The first line includes an integer N, representing the length of the array. The second line includes N integers, representing the elements of the array $\mathbf{a}[1], \mathbf{a}[2], \ldots, \mathbf{a}[N]$. All integers are separated by spaces. Note that \mathbf{a} can contain repeated elements and is not guaranteed to be ordered.

Output

In the first line, output a number M that indicates the number of different beautiful permutations of **a**. Note that M=0 if there is no such permutation.

For each of the following M lines, output the different beautiful permutations in lexicographical order, from the smallest to the largest.¹ The lexicographical order defines a length-N array \mathbf{p} to be smaller than another same-length array \mathbf{q} if and only if $\mathbf{p}[n] < \mathbf{q}[n]$ for the first n in $1, 2, \ldots, N$ such that $\mathbf{p}[n] \neq \mathbf{q}[n]$. The beautiful permutation should be outputted with N integers, separated by spaces.

Constraints

- $1 \le N \le 20$
- $-10^9 \le \mathbf{a}[n] \le 10^9$ for every $n \in \{1, 2, ..., N\}$
- The number of **beautiful** permutations (M) is no more than 2×10^5 .

¹https://en.wikipedia.org/wiki/Lexicographic_order

Subtasks

Subtask 1 (10 pts)

• $1 \le N \le 10$

Subtask 2 (20 pts)

• $-10^4 \le \mathbf{a}[n] \le 10^4$ for every $n \in \{1, 2, \dots, N\}$

Subtask 3 (20 pts)

ullet no other constraints

Sample Testcases

Sample Input 1	Sample Output 1
3	4
3 2 1	1 3 2
	2 1 3
	2 3 1
	3 1 2
Sample Input 2	Sample Output 2
7	0
7 7 7 7 7 14 49	
Sample Input 3	Sample Output 3
3	1
7 7 49	7 49 7
Sample Input 4	Sample Output 4
2	2
2 1 2	2 1 2

Hints

- Any array with length $N \leq 2$ satisfies all the beauty constraints and hence should be considered **beautiful**.
- You may get TLE (Time Limit Exceeded) if you only enumerate every permutation in a brute-force manner without considering any cut-off. That is, you should try to stop spending time on permutations that are **not** beautiful.
- While $\mathbf{a}[n]$ does not exceed the range of 4-byte integers, their difference and multiplication may not stay within 4 bytes. So using some longer integer format such as $long\ long\ can$ be helpful.