## Recurrent Neural Networks

测验, 10 questions

1 point

1.

Suppose your training examples are sentences (sequences of words). Which of the following refers to the  $j^{th}$  word in the  $i^{th}$  training example?



 $\bigcirc \quad x^{< i > (j)}$ 

 $\bigcirc \quad x^{(j) < i >}$ 

 $\bigcirc \quad x^{< j > (i)}$ 

1 point

2.

Consider this RNN:

This secific type of architecture is appropriate when:



$$T_x = T_y$$



$$\bigcap T_x > T_y$$

$$T_x = 1$$

1 point

3.

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

Speech recognition (input an audio clip and output a transcript)

Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

## Recurrent Neural Networks

测验, 10 questions

Image classification (input an image and output a label)

Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

1 point

4

You are training this RNN language model.

At the  $t^{th}$  time step, what is the RNN doing? Choose the best answer.

- $\bigcirc$  Estimating  $P(y^{< t>})$
- Estimating  $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>})$
- $\bigcirc \quad \text{Estimating } P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t>}) \\$

1 point

5.

You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as  $\hat{y}^{< t>}$ . (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as  $\hat{y}^{< t>}$ . (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as  $\hat{y}^{< t>}$ . (ii) Then pass this selected word to the next time-step.



(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as  $\hat{y}^{< t>}$ . (ii) Then pass this selected word to the next time-step.

## Recurrent Neural Networks

| \I- A |    |           |
|-------|----|-----------|
| 测验.   | 10 | auestions |

point

6.

You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

Vanishing gradient problem.

Exploding gradient problem.

ReLU activation function g(.) used to compute g(z), where z is too large.

Sigmoid activation function g(.) used to compute g(z), where z is too large.

1 point

7.

Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations  $a^{< t>}$ . What is the dimension of  $\Gamma_u$  at each time step?



300

10000

1 point

8.

Here're the update equations for the GRU.

Alice proposes to simplify the GRU by always removing the  $\Gamma_u$ . I.e., setting  $\Gamma_u$  = 1. Betty proposes to simplify the GRU by removing the  $\Gamma_r$ . I. e., setting  $\Gamma_r$  = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

Alice's model (removing  $\Gamma_u$ ), because if  $\Gamma_r \approx 0$  for a timestep, the gradient can propagate back through that timestep without much decay.

Alice's model (removing  $\Gamma_u$ ), because if  $\Gamma_r \approx 1$  for a timestep, the gradient can propagate back through that timestep without much

## Recurrent Neural Networks

测验, 10 questions



Betty's model (removing  $\Gamma_r$ ), because if  $\Gamma_u \approx 0$  for a timestep, the gradient can propagate back through that timestep without much decay.

Betty's model (removing  $\Gamma_r$ ), because if  $\Gamma_u \approx 1$  for a timestep, the gradient can propagate back through that timestep without much decay.

1 point

9.

Here are the equations for the GRU and the LSTM:

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to \_\_\_\_\_ and \_\_\_\_ in the GRU. What should go in the the blanks?



 $\bigcap$   $\Gamma_u$  and  $\Gamma_r$ 

 $\bigcap$   $1-\Gamma_u$  and  $\Gamma_u$ 

 $\bigcap$   $\Gamma_r$  and  $\Gamma_u$ 

1 point

10.

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as  $x^{<1>},\dots,x^{<365>}$ . You've also collected data on your dog's mood, which you represent as  $y^{<1>},\dots,y^{<365>}$ . You'd like to build a model to map from  $x\to y$ . Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

- Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
- Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.

Unidirectional RNN, because the value of  $y^{< t>}$  depends only on  $x^{< 1>}, \dots, x^{< t>}$  , but not on  $x^{< t+1>}, \dots, x^{< 365>}$ 

Unidirectional RNN, because the value of  $y^{< t>}$  depends only on  $x^{< t>}$ , and not other days' weather.

Recurrent Neural Networks

测验, 10 questions

升级后提交

