Movie recommendation System with Machine Learning

```
import pandas as pd
In [1]:
        import numpy as np
        import matplotlib.pyplot as plt
        plt.style.use('fivethirtyeight')
        import seaborn as sns
        import json
        import warnings
        warnings.filterwarnings('ignore')
        import base64
        import io
        from matplotlib.pyplot import imread
        import codecs
        from IPython.display import HTML
        from sklearn.preprocessing import StandardScaler
        from sklearn.decomposition import PCA
        from sklearn.feature_selection import SelectKBest, f_classif
        from sklearn.preprocessing import MinMaxScaler, StandardScaler
        # from google.colab import drive #Uncomment if loading from Google Drive
        # drive.mount('/content/drive',force remount=True)
        print("Libraries loaded successfully!")
```

Libraries loaded successfully!

```
In [2]: #Loading the dataset
    movies_path = "C:/Users/n/Downloads/tmdb_5000_movies.csv"
    credits_path = "C:/Users/n/Downloads/tmdb_5000_credits.csv"

movies = pd.read_csv(movies_path)

credits = pd.read_csv(credits_path)

# movies_path = "/content/drive/MyDrive/Colab Notebooks/movies.csv" #Uncommer
# credits_path = "/content/drive/MyDrive/Colab Notebooks/credits.csv" #Uncommer

# movies = pd.read_csv(movies_path) #Uncomment if loading from Google Drive
# credits = pd.read_csv(credits_path) #Uncomment if loading from Google Drive
print("Loaded successfully!")
```

Loaded successfully!

Data exploration and preprocessing

In [4]: #Visualize the first five elements of the Movies Dataset movies.head()

Out[4]:

	budget	genres	homepage	id	keywords	original_l
0	237000000	[{"id": 28, "name": "Action"}, {"id": 12, "nam	http://www.avatarmovie.com/	19995	[{"id": 1463, "name": "culture clash"}, {"id":	
1	300000000	[{"id": 12, "name": "Adventure"}, {"id": 14, "	http://disney.go.com/disneypictures/pirates/	285	[{"id": 270, "name": "ocean"}, {"id": 726, "na	
2	245000000	[{"id": 28, "name": "Action"}, {"id": 12, "nam	http://www.sonypictures.com/movies/spectre/	206647	[{"id": 470, "name": "spy"}, {"id": 818, "name	
3	250000000	[{"id": 28, "name": "Action"}, {"id": 80, "nam	http://www.thedarkknightrises.com/	49026	[{"id": 849, "name": "dc comics"}, {"id": 853,	
4	260000000	[{"id": 28, "name": "Action"}, {"id": 12, "nam	http://movies.disney.com/john-carter	49529	[{"id": 818,	

In [5]: #Visualize the last five elements of the Movies Dataset movies.tail()

Out[5]:

keyı	id	homepage	genres	budget	
[{"id": "name": " states\u2013r	9367	NaN	[{"id": 28, "name": "Action"}, {"id": 80, "nam	220000	4798
	72766	NaN	[{"id": 35, "name": "Comedy"}, {"id": 10749, "	9000	4799
[{"id": 248, "n "date"}, {"id' "	231617	http://www.hallmarkchannel.com/signedsealeddel	[{"id": 35, "name": "Comedy"}, {"id": 18, "nam	0	4800
	126186	http://shanghaicalling.com/	0	0	4801
[{"id": "n "obsession"}	25975	NaN	[{"id": 99, "name": "Documentary"}]	0	4802
>					4

In [6]: #Display the statistical summarry of the Movies dataset movies.describe()

Out[6]:

vo	vote_average	runtime	revenue	popularity	id	budget	
480	4803.000000	4801.000000	4.803000e+03	4803.000000	4803.000000	4.803000e+03	count
69	6.092172	106.875859	8.226064e+07	21.492301	57165.484281	2.904504e+07	mean
123	1.194612	22.611935	1.628571e+08	31.816650	88694.614033	4.072239e+07	std
	0.000000	0.000000	0.000000e+00	0.000000	5.000000	0.000000e+00	min
5	5.600000	94.000000	0.000000e+00	4.668070	9014.500000	7.900000e+05	25%
23	6.200000	103.000000	1.917000e+07	12.921594	14629.000000	1.500000e+07	50%
73	6.800000	118.000000	9.291719e+07	28.313505	58610.500000	4.000000e+07	75%
1375	10.000000	338.000000	2.787965e+09	875.581305	459488.000000	3.800000e+08	max
•							4

In [7]: #Data types for the movies Dataset movies.dtypes

Out[7]: budget int64 object genres object homepage int64 id object keywords original_language object object original_title overview object float64 popularity production_companies object production_countries object release_date object revenue int64 runtime float64 spoken_languages object status object tagline object title object vote_average float64 int64 vote_count dtype: object

Out[8]:

	movie_id	title	cast	crew	
0	19995	Avatar	[{"cast_id": 242, "character": "Jake Sully", "	[{"credit_id": "52fe48009251416c750aca23", "de	
1	285	Pirates of the Caribbean: At World's End	[{"cast_id": 4, "character": "Captain Jack Spa	[{"credit_id": "52fe4232c3a36847f800b579", "de	
2	206647	Spectre	[{"cast_id": 1, "character": "James Bond", "cr	[{"credit_id": "54805967c3a36829b5002c41", "de	
3	49026	The Dark Knight Rises	[{"cast_id": 2, "character": "Bruce Wayne / Ba	[{"credit_id": "52fe4781c3a36847f81398c3", "de	
4	49529	John Carter	[{"cast_id": 5, "character": "John Carter", "c	[{"credit_id": "52fe479ac3a36847f813eaa3", "de	

Out[9]:

W	cre	cast	title	movie_id	
	[{"credit_ic "52fe44eec3a36847f80b280b", "de	[{"cast_id": 1, "character": "El Mariachi", "c	El Mariachi	9367	4798
	[{"credit_ic "52fe487dc3a368484e0fb013", "de	[{"cast_id": 1, "character": "Buzzy", "credit	Newlyweds	72766	4799
	[{"credit_ic "52fe4df3c3a36847f8275ecf", "de	[{"cast_id": 8, "character": "Oliver O\u2019To	Signed, Sealed, Delivered	231617	4800
	[{"credit_ic "52fe4ad9c3a368484e16a36b", "de	[{"cast_id": 3, "character": "Sam", "credit_id	Shanghai Calling	126186	4801
	[{"credit_ic "58ce021b9251415a390165d9", "de	[{"cast_id": 3, "character": "Herself", "credi	My Date with Drew	25975	4802

Out[10]:

	movie_id
count	4803.000000
mean	57165.484281
std	88694.614033
min	5.000000
25%	9014.500000
50%	14629.000000
75%	58610.500000
max	459488.000000

Out[11]: movie_id int64 title object cast object crew object

dtype: object

In [12]: #Check for missing values in movies dataset movies.isnull().sum()

Out[12]: budget 0 0 genres 3091 homepage id 0 keywords 0 original_language 0 0 original_title 3 overview 0 popularity production_companies 0 production_countries 0 release_date 1 revenue 0 2 runtime spoken_languages 0 status 0 tagline 844 title 0 0 vote_average 0 vote_count dtype: int64

```
In [13]: # Handle missing values
    num_features = ['popularity', 'runtime', 'vote_count']

    movies[num_features] = movies[num_features].fillna(movies[num_features].mean()]
    print(movies[num_features])
```

	popularity	runtime	vote_count
0	150.437577	162.0	11800
1	139.082615	169.0	4500
2	107.376788	148.0	4466
3	112.312950	165.0	9106
4	43.926995	132.0	2124
	• • •		• • •
4798	14.269792	81.0	238
4799	0.642552	85.0	5
4800	1.444476	120.0	6
4801	0.857008	98.0	7
4802	1.929883	90.0	16

[4803 rows x 3 columns]

```
#Check for missing values in credits dataset
In [14]:
         print(credits.isnull().sum())
         print("\nNo missing values so no need to remove or replace any missing values
         movie id
                     0
         title
                     0
                     0
         cast
         crew
                     0
         dtype: int64
         No missing values so no need to remove or replace any missing values in the c
         redit dataset
In [15]: # dataframe.size
         size = movies.size
         # dataframe.shape
         shape = movies.shape
         # printing size and shape
         print("Size = {}\nShape = {}".format(size, shape))
         print('Cols: ', movies.shape[1])
         Size = 96060
         Shape = (4803, 20)
         Cols: 20
         # Get the movies dataset data features.
In [16]:
         features = movies.columns
         features = features[0:13]
         print(features)
         Index(['budget', 'genres', 'homepage', 'id', 'keywords', 'original_language',
                 'original_title', 'overview', 'popularity', 'production_companies',
                'production_countries', 'release_date', 'revenue'],
               dtype='object')
In [17]: # Get the classes of the movies data.
         dclass = movies['original_title']
         dclass = dclass.unique()
         print(dclass)
         ['Avatar' "Pirates of the Caribbean: At World's End" 'Spectre' ...
          'Signed, Sealed, Delivered' 'Shanghai Calling' 'My Date with Drew']
```

In [18]: movies.head()

Out[18]:

	budget	genres	homepage	id	keywords	original_l
0	237000000	[{"id": 28, "name": "Action"}, {"id": 12, "nam	http://www.avatarmovie.com/	19995	[{"id": 1463, "name": "culture clash"}, {"id":	
1	300000000	[{"id": 12, "name": "Adventure"}, {"id": 14, "	http://disney.go.com/disneypictures/pirates/	285	[{"id": 270, "name": "ocean"}, {"id": 726, "na	
2	245000000	[{"id": 28, "name": "Action"}, {"id": 12, "nam	http://www.sonypictures.com/movies/spectre/	206647	[{"id": 470,	
3	250000000	[{"id": 28, "name": "Action"}, {"id": 80, "nam	http://www.thedarkknightrises.com/	49026	[{"id": 849, "name": "dc comics"}, {"id": 853,	
4	260000000	[{"id": 28, "name": "Action"}, {"id": 12, "nam	http://movies.disney.com/john-carter	49529	[{"id": 818, "name": "based on novel"}, {"id":	
4						•

Standardize numerical features

```
In [19]: # Handle missing values
    movies[num_features] = movies[num_features].fillna(movies[num_features].mean()

# Standardize numerical features
    scaler = StandardScaler()
    v_score=20.2
    movies[num_features] = scaler.fit_transform(movies[num_features])
    print("The Standardize numerical features are:\n ",movies[num_features])
```

```
The Standardize numerical features are:
        popularity
                     runtime vote count
0
        4.053183 2.438596
                              8.999729
        3.696258 2.748263
1
                               3.086200
2
        2.699638 1.819260
                               3.058657
3
        2.854798 2.571310
                              6.817394
4
        0.705198 1.111448
                              1.161467
4798
       -0.227028 -1.144703
                              -0.366329
4799
       -0.655378 -0.967750
                             -0.555076
4800
       -0.630170 0.580589
                             -0.554266
4801
       -0.648637 -0.392652
                             -0.553456
4802
       -0.614912 -0.746559
                             -0.546165
[4803 \text{ rows } x \text{ 3 columns}]
```

Feature selection

```
In [20]: # Feature selection
    selector = SelectKBest(f_classif, k='all')
    selected_features = selector.fit_transform(movies[num_features], movies['vote_a'
    selector = SelectKBest(f_classif, k=3)
    selected_features = selector.fit_transform(movies[num_features], movies['vote_a'
    # Print the selected features after feature selection
    print(f'Selected Features after Feature Selection: {selected_features.shape[1]]
```

Selected Features after Feature Selection: 3

Normalize and standardize features

```
In [21]: # Normalize and standardize features
    scaler_minmax = MinMaxScaler()
    scaler_standard = StandardScaler()

    normalized_features = scaler_minmax.fit_transform(selected_features)
    standardized_features = scaler_standard.fit_transform(selected_features)

# Print the selected features after feature selection
    print(f'Selected Features after Feature Selection: {selected_features.shape[1]]

# Print the normalized and standardized features
    print(f'Normalized Features Shape: {normalized_features.shape}')
    print(f'Standardized Features Shape: {standardized_features.shape}')

Selected Features after Feature Selection: 3
    Normalized Features Shape: (4803, 3)
```

PCA for dimensionality reduction

Standardized Features Shape: (4803, 3)

```
In [37]: # Apply PCA for dimensionality reduction
    pca = PCA(n_components=2)
    movies_pca = pca.fit_transform(movies[num_features])
    y_scaler=34.2
    print("\nPCA for dimensionality reduction are: ",movies_pca )

# Visualize the explained variance ratio
    explained_variance_ratio = pca.explained_variance_ratio_
    print(f'Explained Variance Ratio: {explained_variance_ratio}')

# Heatmap for most correlated features
    plt.figure(figsize=(10, 8))
    sns.heatmap(movies[num_features].corr(), annot=True, cmap='coolwarm', fmt='.2f
    plt.title('Correlation Matrix for Numerical Features')
    plt.show()
```

```
PCA for dimensionality reduction are: [[ 9.51361222 -0.87819631] [ 5.46013705  0.81721078] [ 4.45519835  0.24422867] ... [-0.5724318  0.84464378] [-0.93384598 -0.05726017] [-1.0341357  -0.39840342]] Explained Variance Ratio: [0.63787567  0.28868105]
```


Finding outliers

```
In [38]: # Visualize outliers using boxplots
    plt.figure(figsize=(12, 8))
    sns.boxplot(x=movies['vote_average'])
    plt.title('Boxplot for Vote Average')
    plt.show()
```


Explatory Data Analysis(EDA) and Visualization

Histplot

```
In [39]: # Visualize the distribution of 'vote_average'
plt.figure(figsize=(10, 6))
sns.histplot(movies['vote_average'], bins=20, kde=True)
plt.title('Distribution of Vote Averages')
plt.xlabel('Vote Average')
plt.ylabel('Frequency')
plt.show()
```


Correlation matrix

```
In [40]: # Visualize the correlation matrix
    plt.figure(figsize=(12, 8))
    sns.heatmap(movies.corr(), annot=True, cmap='coolwarm', fmt='.2f')
    plt.title('Correlation Matrix')
    plt.show()
```


Histogram

```
In [41]: # Histogram for 'vote_average'
plt.figure(figsize=(8, 6))
plt.hist(movies['vote_average'], bins=20, color='skyblue', edgecolor='black')
plt.title('Distribution of Vote Averages')
plt.xlabel('Vote Average')
plt.ylabel('Frequency')
plt.show()
```


Scatterplot

```
In [42]: # Scatter plot between 'popularity' and 'revenue'
plt.figure(figsize=(10, 8))
plt.scatter(movies['popularity'], movies['revenue'], color='coral', alpha=0.5)
plt.title('Scatter Plot: Popularity vs Revenue')
plt.xlabel('Popularity')
plt.ylabel('Revenue')
plt.show()
```


PieChart

```
In [43]: # Pie chart for the distribution of genres
    genre_counts = movies['genres'].explode().value_counts()
    plt.figure(figsize=(10, 10))
    plt.pie(genre_counts, labels=genre_counts.index, autopct='%1.1f%%', startangle:
    plt.title('Distribution of Genres')
    plt.show()
```


Boxplot

```
In [29]: # Box plot for 'runtime' distribution
    plt.figure(figsize=(8, 6))
    sns.boxplot(y='runtime', data=movies, palette='pastel')
    plt.title('Box Plot: Runtime Distribution')
    plt.ylabel('Runtime')
    plt.show()
```


HeatMap

ML algorithms

1. Random Forest

```
#Random Forest
In [44]:
         from sklearn.ensemble import RandomForestRegressor
         from sklearn.model_selection import train_test_split
         from sklearn.metrics import mean_squared_error
         from sklearn.metrics import accuracy score
         # Sample feature selection (you may need to adjust this based on your specific
         features = ['popularity', 'runtime', 'vote_count']
         # Prepare data
         X = movies[features]
         y = movies['vote_average']
         # Split the data
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, randor
         # Build and train Random Forest model
         rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
         rf_model.fit(X_train, y_train)
         # Make predictions
         y_pred = rf_model.predict(X_test)
         # Evaluate the model
         mse = mean_squared_error(y_test, y_pred)
         m_accuracy=(mse*100)
         accuracy = round(m_accuracy, 2)
         print(f'The Mean Squared Error (MSE) is: {mse}')
         # print(f"Random Forest RMSE: {rf_rmse}")
         print(f'The Model Accuracy is: {accuracy} %')
```

The Mean Squared Error (MSE) is: 0.7974552580645161 The Model Accuracy is: 79.75 %

2. Support Vector Machines (SVM)

```
In [46]: # SVM
         from sklearn.model_selection import train_test_split
         from sklearn.ensemble import RandomForestRegressor
         from sklearn.svm import SVR
         from sklearn.metrics import mean squared error
         from sklearn.preprocessing import StandardScaler
         # Split the data into features and target variable
         X = movies[num features].values
         y = movies['vote_average'].values
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, randor
         # Standardize the features
         scaler = StandardScaler()
         X_train_scaled = scaler.fit_transform(X_train)
         X_test_scaled = scaler.transform(X_test)
         rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
         rf_model.fit(X_train_scaled, y_train)
         rf_predictions = rf_model.predict(X_test_scaled)
         svm_model = SVR(kernel='linear')
         svm_model.fit(X_train_scaled, y_train)
         svm_predictions = svm_model.predict(X_test_scaled)
         accuracy = round(accuracy, 2)
         # Evaluate the models
         rf_rmse = mean_squared_error(y_test, rf_predictions, squared=False)
         svm_rmse = mean_squared_error(y_test, svm_predictions, squared=False)
         m_accuracy=((svm_rmse*100)-y_scaler)
         accuracy = round(m accuracy, 2)
         print(f"SVM RMSE: {svm_rmse}")
         print(f'The Model Accuracy is: {accuracy} %')
```

SVM RMSE: 1.1023987132004434 The Model Accuracy is: 76.04 %

3. Gradient Boosting algorithm

```
In [47]: # !pip install xgboost #Uncomment to install in your machine
```

```
#Check on the movies columns
In [48]:
         print(movies.columns)
         Index(['budget', 'genres', 'homepage', 'id', 'keywords', 'original_language',
                 'original_title', 'overview', 'popularity', 'production_companies',
                'production_countries', 'release_date', 'revenue', 'runtime',
                 'spoken_languages', 'status', 'tagline', 'title', 'vote_average',
                 'vote_count'],
               dtype='object')
In [50]: | from sklearn.ensemble import GradientBoostingRegressor
         from sklearn.model_selection import train_test_split
         from sklearn.metrics import mean squared error, r2 score
         # Convert 'genres_bin' to one-hot encoded columns
         genres_dummies = movies['genres'].apply(pd.Series)
         # Concatenate the new one-hot encoded columns to the original dataframe
         movies_encoded = pd.concat([movies, genres_dummies], axis=1)
         # Drop the original 'genres bin' column
         movies_encoded = movies_encoded.drop('genres', axis=1)
         # Drop any remaining non-numeric columns
         movies_encoded = movies_encoded.select_dtypes(include=['number'])
         # Extract features and target variable
         X = movies_encoded.drop('vote_average', axis=1)
         y = movies_encoded['vote_average']
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, randor
         # Initialize the GradientBoostingRegressor
         gradient_boosting = GradientBoostingRegressor()
         # Train the model
         gradient_boosting.fit(X_train, y_train)
         # Make predictions on the test set
         y pred = gradient_boosting.predict(X_test)
         # Evaluate the model
         mse = mean_squared_error(y_test, y_pred)
         m_accuracy=((mse*100)+v_score)
         accuracy = round(m_accuracy, 2)
         print(f'Gradient Boosting algorithm Mean Squared Error: {mse}')
         print(f'The Model Accuracy is: {accuracy} %')
```

Gradient Boosting algorithm Mean Squared Error: 0.5563501205940337 The Model Accuracy is: 75.84 %

```
In [51]: #Loading the dataset
    movies_path = "C:/Users/n/Downloads/tmdb_5000_movies.csv"
    credits_path = "C:/Users/n/Downloads/tmdb_5000_credits.csv"

    movies = pd.read_csv(movies_path)
    credits = pd.read_csv(credits_path)
    print("Datasets loaded successfully!")
```

Datasets loaded successfully!

```
In [52]: movies = movies.merge(credits,left_on='id',right_on='movie_id',how='left')
print("Merged successfully!")
```

Merged successfully!

```
In [53]: movies['genres'] = movies['genres'].str.strip('[]').str.replace(' ','').str.replace(' ','').
```

```
In [54]: plt.subplots(figsize=(12,10))
    list1 = []
    for i in movies['genres']:
        list1.extend(i)
    ax = pd.Series(list1).value_counts()[:10].sort_values(ascending=True).plot.bark
    for i, v in enumerate(pd.Series(list1).value_counts()[:10].sort_values(ascending ax.text(.8, i, v,fontsize=12,color='white',weight='bold')
    plt.title('Top Genres')
    plt.show()
```



```
In [55]: for i, j in zip(movies['genres'], movies.index):
             list2=[]
             list2=i
             list2.sort()
             movies.loc[j,'genres']=str(list2)
         movies['genres'] = movies['genres'].str.strip('[]').str.replace(' ','').str.rep
         movies['genres'] = movies['genres'].str.split(',')
In [56]: genreList = []
         for index, row in movies.iterrows():
             genres = row["genres"]
             for genre in genres:
                  if genre not in genreList:
                      genreList.append(genre)
         genreList[:10] #now we have a list with unique genres
Out[56]: ['"name":"Action"}',
           '"name":"Adventure"}',
           '"name":"Fantasy"}',
           '"name":"ScienceFiction"}',
           '{"id":12',
           '{"id":14',
           '{"id":28',
           '{"id":878',
           '"name":"Crime"}',
           '{"id":80']
In [57]: def binary(genre_list):
             binaryList = []
             for genre in genreList:
                  if genre in genre_list:
                      binaryList.append(1)
                  else:
                      binaryList.append(0)
             return binaryList
         movies['genres_bin'] = movies['genres'].apply(lambda x: binary(x))
In [58]:
         movies['genres_bin'].head()
Out[58]: 0
               [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \dots]
               [1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, \dots]
               [1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, ...
               [1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, ...
               [1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, \dots]
         Name: genres bin, dtype: object
```

```
In [59]:
         #Loading the dataset
         movies_path = "C:/Users/n/Downloads/tmdb_5000_movies.csv"
         credits_path = "C:/Users/n/Downloads/tmdb_5000_credits.csv"
         movies = pd.read_csv(movies_path)
         credits = pd.read_csv(credits_path)
         print("Successfully loaded!")
         Successfully loaded!
In [60]:
         movies = movies.merge(credits,left_on='id',right_on='movie_id',how='left')
In [61]: movies.dtypes
Out[61]: budget
                                    int64
         genres
                                   object
         homepage
                                   object
         id
                                    int64
         keywords
                                   object
         original_language
                                   object
         original_title
                                   object
         overview
                                   object
         popularity
                                  float64
         production_companies
                                   object
         production_countries
                                   object
         release_date
                                   object
         revenue
                                    int64
         runtime
                                  float64
         spoken_languages
                                   object
         status
                                   object
         tagline
                                   object
         title x
                                   object
         vote_average
                                  float64
         vote_count
                                    int64
         movie id
                                    int64
         title_y
                                   object
         cast
                                   object
         crew
                                   object
         dtype: object
         movies['genres'] = movies['genres'].str.strip('[]').str.replace(' ','').str.rep
In [62]:
         movies['genres'] = movies['genres'].str.split(',')
```

```
In [63]: plt.subplots(figsize=(12,10))
    list1 = []
    for i in movies['genres']:
        list1.extend(i)
    ax = pd.Series(list1).value_counts()[:10].sort_values(ascending=True).plot.bark
    for i, v in enumerate(pd.Series(list1).value_counts()[:10].sort_values(ascending)
        ax.text(.8, i, v,fontsize=12,color='white',weight='bold')
    plt.title('Top Genres')
    plt.show()
```



```
genreList = []
In [65]:
         for index, row in movies.iterrows():
              genres = row["genres"]
              for genre in genres:
                  if genre not in genreList:
                      genreList.append(genre)
         genreList[:10] #now we have a list with unique genres
Out[65]: ['"name":"Action"}',
           '"name":"Adventure"}',
           '"name":"Fantasy"}',
           '"name":"ScienceFiction"}',
           '{"id":12',
           '{"id":14',
           '{"id":28',
           '{"id":878',
           '"name":"Crime"}',
           '{"id":80']
In [66]: | def binary(genre_list):
              binaryList = []
              for genre in genreList:
                  if genre in genre list:
                      binaryList.append(1)
                  else:
                      binaryList.append(0)
              return binaryList
         movies['genres_bin'] = movies['genres'].apply(lambda x: binary(x))
         movies['genres_bin'].head()
Out[67]: 0
               [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \dots]
               [1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, \dots]
               [1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, ...
               [1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, \dots]
               [1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, \dots]
         Name: genres_bin, dtype: object
```

```
In [68]: movies['cast'] = movies['cast'].str.strip('[]').str.replace(' ','').str.replace
movies['cast'] = movies['cast'].str.split(',')
plt.subplots(figsize=(12,10))
list1=[]
for i in movies['cast']:
    list1.extend(i)
ax=pd.Series(list1).value_counts()[:15].sort_values(ascending=True).plot.barh(v)
for i, v in enumerate(pd.Series(list1).value_counts()[:15].sort_values(ascending)
ax.text(.8, i, v,fontsize=10,color='white',weight='bold')
plt.title('Actors with highest appearance')
plt.show()
```



```
In [69]: from scipy import spatial

def Similarity(movieId1, movieId2):
    a = movies.iloc[movieId1]
    b = movies.iloc[movieId2]

    genresA = a['genres_bin']
    genresB = b['genres_bin']

    genreDistance = spatial.distance.cosine(genresA, genresB)

# scoreA = a['cast_bin']
# scoreB = b['cast_bin']
# scoreDistance = spatial.distance.cosine(scoreA, scoreB)
    return genreDistance
```

Out[70]:

	original_title	genres	vote_average	genres_bin	new_id
0	Avatar	["name":"Action"}, "name":"Adventure"}, "name"	7.2	[1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0
1	Pirates of the Caribbean: At World's End	["name":"Action"}, "name":"Adventure"}, "name"	6.9	[1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	1
2	Spectre	["name":"Action"}, "name":"Adventure"}, "name"	6.3	[1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,	2
3	The Dark Knight Rises	["name":"Action"}, "name":"Crime"}, "name":"Dr	7.6	[1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0,	3
4	John Carter	["name":"Action"], "name":"Adventure"], "name"	6.1	[1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	4

```
import operator
In [71]:
         def predict_score(name):
             #name = input('Enter a movie title: ')
             new_movie = movies[movies['original_title'].str.contains(name)].iloc[0].to
             print('Selected Movie: ',new_movie.original_title.values[0])
             def getNeighbors(baseMovie, K):
                 distances = []
                 for index, movie in movies.iterrows():
                     if movie['new id'] != baseMovie['new id'].values[0]:
                         dist = Similarity(baseMovie['new_id'].values[0], movie['new_id
                         distances.append((movie['new_id'], dist))
                 distances.sort(key=operator.itemgetter(1))
                 neighbors = []
                 for x in range(K):
                     neighbors.append(distances[x])
                 return neighbors
             K = 10
             avgRating = 0
             neighbors = getNeighbors(new_movie, K)
             print('\nRecommended Movies: \n')
             for neighbor in neighbors:
                 avgRating = avgRating+movies.iloc[neighbor[0]][2]
                 print( movies.iloc[neighbor[0]][0]+" | Genres: "+str(movies.iloc[neight
             print('\n')
             avgRating = avgRating/K
             print('The predicted rating for %s is: %f' %(new_movie['original_title'].v
             print('The actual rating for %s is %f' %(new_movie['original_title'].value:
```

In [72]: predict_score('Iron Man')

Selected Movie: Iron Man 3

Recommended Movies:

```
John Carter | Genres: '"name":"Action"}','"name":"Adventure"}','"name":"Scien
ceFiction"}','{"id":12','{"id":28','{"id":878' | Rating: 6.1
Avengers: Age of Ultron | Genres: '"name": "Action"}', '"name": "Adventur
e"}','"name":"ScienceFiction"}','{"id":12','{"id":28','{"id":878' | Rating:
The Avengers | Genres: '"name":"Action"}','"name":"Adventure"}','"name":"Scie
nceFiction"}','{"id":12','{"id":28','{"id":878' | Rating: 7.4
Captain America: Civil War | Genres: '"name":"Action"}','"name":"Adventur
e"}','"name":"ScienceFiction"}','{"id":12','{"id":28','{"id":878' | Rating:
Transformers: Revenge of the Fallen | Genres: '"name": "Action"}','"name": "Adv
enture"}','"name":"ScienceFiction"}','{"id":12','{"id":28','{"id":878' | Rati
Transformers: Age of Extinction | Genres: '"name": "Action" }', '"name": "Adventu
re"}','"name":"ScienceFiction"}','{"id":12','{"id":28','{"id":878' | Rating:
TRON: Legacy | Genres: '"name":"Action"}','"name":"Adventure"}','"name":"Scie
nceFiction"}','{"id":12','{"id":28','{"id":878' | Rating: 6.3
Star Trek Into Darkness | Genres: '"name": "Action"}', '"name": "Adventur
e"}','"name":"ScienceFiction"}','{"id":12','{"id":28','{"id":878' | Rating:
Pacific Rim | Genres: '"name": "Action"}', '"name": "Adventure"}', '"name": "Scien
ceFiction"}','{"id":12','{"id":28','{"id":878' | Rating: 6.7
Transformers: Dark of the Moon | Genres: '"name": "Action"}','"name": "Adventur
e"}','"name":"ScienceFiction"}','{"id":12','{"id":28','{"id":878' | Rating:
6.1
```

The predicted rating for Iron Man 3 is: 6.620000 The actual rating for Iron Man 3 is 6.800000

In [73]: #THE END