# Projeto Via Lugar Geométrico das Raízes

Fundamentos de Controle

## Melhorando a Resposta Transitória





# Configurações





# Melhorando o Erro em Regime Permanente Via Compensação em Cascata

Fundamentos de Controle

# Compensação Integral Ideal (PI)





### Exemplo 9.1

#### O Efeito de um Compensador Integral Ideal

**PROBLEMA:** Dado o sistema da Figura 9.4(*a*), operando com um fator de amortecimento de 0,174, mostre que a adição do compensador integral ideal mostrado na Figura 9.4(*b*) reduz o erro em regime permanente a zero para uma entrada em degrau sem afetar significativamente a resposta transitória. A estrutura de compensação é escolhida com um polo na origem para aumentar o tipo do sistema e um zero em -0,1 próximo ao polo do compensador, de modo que a contribuição angular do compensador avaliada nos polos de segunda ordem dominantes originais seja aproximadamente zero. Assim, os polos de segunda ordem dominantes em malha fechada originais estão aproximadamente sobre o novo lugar geométrico das raízes.



FIGURA 9.4 Sistema em malha fechada para o Exemplo 9.1: **a.** antes da compensação; **b.** após a compensação integral ideal.







## Controlador PI



## Compensação de Atraso de Fase





$$K_{v_O} = \frac{K z_1 z_2 \cdots}{p_1 p_2 \cdots}$$

$$K_{\nu_N} = \frac{(K z_1 z_2 \cdots)(z_c)}{(p_1 p_2 \cdots)(p_c)}$$

$$K_{\nu_N} = K_{\nu_O} \frac{z_c}{p_c} > K_{\nu_O}$$



FIGURE 9.10 Root locus: a. before lag compensation; b. after lag compensation

## Exemplo 9.2

## Projeto de Compensador de Atraso de Fase

**PROBLEMA:** Compense o sistema da Figura 9.4(*a*), cujo lugar geométrico das raízes é mostrado na Figura 9.5, para melhorar o erro em regime permanente por um fator de 10, caso o sistema esteja operando com um fator de amortecimento de 0,174.





$$e(\infty) = \frac{0.108}{10} = 0.0108$$

$$\frac{z_c}{p_c} = \frac{K_{p_N}}{K_{p_O}} = \frac{91.59}{8.23} = 11.13$$

$$e(\infty) = \frac{1}{1 + K_p} = 0.0108$$

$$p_c = 0.01$$

$$K_p = \frac{1 - e(\infty)}{e(\infty)} = \frac{1 - 0.0108}{0.0108} = 91.59$$

$$z_c = 11.13p_c \approx 0.111$$







| Parameter                   | Uncompensated       | Lag-compensated          |
|-----------------------------|---------------------|--------------------------|
| Plant and compensator       | K                   | K(s + 0.111)             |
|                             | (s+1)(s+2)(s+10)    | (s+1)(s+2)(s+10)(s+0.01) |
| K                           | 164.6               | 158.1                    |
| $K_p$                       | 8.23                | 87.75                    |
| $e(\infty)$                 | 0.108               | 0.011                    |
| Dominant second-order poles | $-0.694 \pm j3.926$ | $-0.678 \pm j3.836$      |
| Third pole                  | -11.61              | -11.55                   |
| Fourth pole                 | None                | -0.101                   |
| Zero                        | None                | -0.111                   |



### Exercício 9.1

PROBLEMA: Um sistema com realimentação unitária com a função de transferência à frente

$$G(s) = \frac{K}{s(s+7)}$$

está operando com uma resposta ao degrau em malha fechada que tem 15 % de ultrapassagem. Faça o seguinte:

- Calcule o erro em regime permanente para uma entrada em rampa unitária.
- b. Projete um compensador de atraso de fase para melhorar o erro em regime permanente por um fator de 20.
- Calcule o erro em regime permanente para uma entrada em rampa unitária para seu sistema compensado.
- Calcule a melhoria obtida no erro em regime permanente.

#### **RESPOSTAS:**

- **a.**  $e_{\text{rampa}}(\infty) = 0.1527$
- **b.**  $G_{\text{atraso}}(s) = \frac{s+0.2}{s+0.01}$
- **c.**  $e_{\text{rampa}}(\infty) = 0.0078$
- d. Melhoria de 19,58 vezes

