Rule Ensembles in R: The "RuleFit Batch" Library

Giovanni Seni, Ph.D.

Intuit, Applied Data Sciences Group Senior Scientist

Santa Clara University
Adjunct Faculty, Computer Engineering

Bay Area useR Group – December 12, 2011

Overview

- Ensemble Methods in a Nutshell
- Rule Ensembles
 - Overview
 - Available Libraries
- Demo

Ensemble Methods In a Nutshell

- Model: $F(\mathbf{x}) = a_0 + \sum_{m=1}^{M} a_m f_m(\mathbf{x})$
- $\{f_m(\mathbf{x})\}_1^M$: "basis" functions (or "base learners")
 - Derived predictors capture non-linearities and interactions
- Various fitting procedures:
 - Bagging, Random Forest, Boosting, etc.
- Modern 2-stage process:
 - I. generate basis functions
 - II. Post fit to the data via regularized regression

Overview

• Trees as collection of conjunctive rules: $T_m(\mathbf{x}) = \sum_{j=1}^{J} \hat{c}_{jm} I(\mathbf{x} \in \hat{R}_{jm})$

$$R_1 \implies r_1(\mathbf{x}) = I(x_1 > 22) \cdot I(x_2 > 27)$$

$$R_2 \implies r_2(\mathbf{x}) = I(x_1 > 22) \cdot I(0 \le x_2 \le 27)$$

$$R_3 \implies r_3(\mathbf{x}) = I(15 < x_1 \le 22) \cdot I(0 \le x_2)$$

$$R_4 \implies r_4(\mathbf{x}) = I(0 \le x_1 \le 15) \cdot I(x_2 > 15)$$

$$R_5 \implies r_5(\mathbf{x}) = I(0 \le x_1 \le 15) \cdot I(0 \le x_2 \le 15)$$

- These simple rules, $r_m(\mathbf{x}) \in \{0,1\}$, can be used as base learners
- Main motivation is interpretability

Overview (2)

- Rule-based model: $F(\mathbf{x}) = a_0 + \sum_m a_m r_m(\mathbf{x})$
 - Still a piecewise constant model
 - Linear targets can still be problematic...
 - Complement the non-linear rules with purely linear terms:

$$F(\mathbf{x}) = a_0 + \sum_m a_m r_m(\mathbf{x}) + \sum_j b_j x_j$$

- Rule generation:
 - Take advantage of a decision tree ensemble
 - E.g., one rule for each (terminal) node in each tree $T_m(\mathbf{x})$

Overview (3)

- Rule fitting
 - Linear <u>regularized</u> procedure

$$(\{\hat{a}_{k}\}, \{\hat{b}_{j}\}) = \underset{\{a_{k}\}, \{b_{j}\}}{\operatorname{arg \, min}} \sum_{i=1}^{N} L(y_{i}, a_{0} + \sum_{k=1}^{K} a_{k} r_{k}(\mathbf{x}_{i}) + \sum_{j=1}^{p} b_{j} x_{ij}) + \lambda \left(\sum_{k=1}^{K} |a_{k}| + \sum_{j=1}^{p} |b_{j}|\right)$$

- K: total number of rules
- $p \le n$ total number of linear terms
- Tree size controls rule "complexity"

Available Libraries

- RuleFit
 - www-stat.stanford.edu/~jhf/R-RuleFit.html
 - Fortran engine with R front-end
- TMVA Toolkit for Multivariate Data Analysis
 - root.cern.ch
 - C++ engine
- "RuleFit Batch"
 - Collection of R-based utilities on top of Friedman's engine