CS435 Assignment 4 - Classification

Harry Chong

2 March 2021

1 Theory Questions

1. Given the following image pixel intensity values:

$$I = \begin{bmatrix} 1 & 2 & 5 & 0 \\ 2 & 2 & 4 & 1 \\ 2 & 2 & 5 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

(a) For each iteration, assign each observation pixel in I to the reference vector it is closest to and update the reference vectors to be the means of their members.

Iteration 1: Cluster assignment on I after assigning each value to the initial reference vector a_1 or a_2 :

$$I = \begin{bmatrix} a_1 & a_1 & a_2 & a_1 \\ a_1 & a_1 & a_2 & a_1 \\ a_1 & a_1 & a_2 & a_1 \\ a_1 & a_1 & a_1 & a_1 \end{bmatrix}$$

Sum for all values associated with a_1 : 17 Sum for all values associated with a_2 : 14

Updated reference vectors:

$$a_1 = \frac{17}{13} = \boxed{1.3077}$$

$$a_2 = \frac{14}{3} = \boxed{4.6667}$$

Iteration 2: Cluster assignment on I after assigning each value to the updated reference vector a_1 or a_2 :

$$I = \begin{bmatrix} a_1 & a_1 & a_2 & a_1 \\ a_1 & a_1 & a_2 & a_1 \\ a_1 & a_1 & a_2 & a_1 \\ a_1 & a_1 & a_1 & a_1 \end{bmatrix}$$

Sum for all values associated with a_1 : 17 Sum for all values associated with a_2 : 14

Updated reference vectors:

$$a_1 = \frac{17}{13} = \boxed{1.3077}$$
 $a_2 = \frac{14}{3} = \boxed{4.6667}$

Since the cluster assignments did not change, we are done.

(b) Compute the weight matrix W using the following formula:

$$w(a,b) = e^{-((a_i - b_i)^2 + (a_x - b_x)^2 + (a_y - b_y)^2)}$$

Weight Matrix (W) =

(c) To find the minimum graph cut, first compute the diagonal matrix D using the weighted matrix W. Take the sum of each row and set the diagonal to the sum.

Diagonal Matrix (D) =

0.3299	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0.6691	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.1537	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0.1426	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1.1515	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1.3167	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0.2829	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0.5405	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1.0724	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1.1410	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0.1537	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0.8940	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0.5808	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0.9556	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.9511	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.7752

After using the svd function in MATLAB, we can get the following eigenvalues:

Eigenvalues =

1.8206	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1.4857	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1.4186	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1.3221	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1.2792	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0.9628	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0.7264	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0.5648	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0.4393	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0.4140	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0.2882	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0.1720	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0.1555	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0.0566	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0049	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0000

Chosen Eigenvalue = $\boxed{0.0049}$

 ${\it Chosen \ Eigenvector} =$

-0.1112-0.10820.5263 -0.1372-0.1110-0.10830.5076 -0.1327-0.1132-0.11240.5263-0.1305-0.1197-0.1214-0.1257-0.1288

Cut Graph:

2 Classifying an Image using Grayscale Histograms

Performing the K-NN classification using grayscale histograms on the dataset resulted in 229 correctly labeled images out of 350 images (for a seed of 0).

$$Accuracy = (\frac{229}{350})100\%$$

Accuracy = 65.428571%

Figure 1: Image Correctly Labeled as a car

Figure 2: Image Correctly Labeled as a not a car

Figure 3: Image Incorrectly Labeled as a car

Figure 4: Image Incorrectly Labeled as a not a car

3 Classifying an Image using Gists

Performing the K-NN classification using HOGs on the dataset resulted in **324** correctly labeled images out of **350** images (for a seed of 0).

$$Accuracy = (\frac{324}{350})100\%$$

Accuracy = 92.571429%

Figure 5: Image Correctly Labeled as a car

Figure 6: Image Correctly Labeled as not a car

Figure 7: Image Incorrectly Labeled as a car

Figure 8: Image Incorrectly Labeled as not a car