Задание:

U_1 , B	U_3 , B	k_1	k_2	k_3	k_4
$1.2\sin(t)$	4 sin(t + 90)	-2	-1.5	1	1

Однополупериодное выпрямление

Определить средневыпрямленное напряжение U_0

Рис. 1 – Функциональная схема

Рис. 2 – Принципиальная электрическая схема

1) Инвертирующий усилитель

Рис. 3 — График напряжения U_1

$$k_1 = -\frac{R_2}{R_1}$$
 $U_2 = U_1 k_1$
 $U_2 = -2 * 1.2 \sin(t) = -2.4 \sin(t)$

Рис. 4 — График напряжения U_2

2) Сумматор

Рис. 5 — График напряжения U_3

$$k_{2} = -\frac{R_{6}}{R_{4}} \quad k_{3} = \frac{R_{6}}{R_{5}}$$

$$U_{4} = U_{2}k_{2} + U_{3}k_{3}$$

$$U_{4} = -2.4\sin(t) * (-1.5) + 4\sin\left(t + \frac{\pi}{2}\right) * 1$$

$$U_{4} = 3.6\sin(t) + 4\sin\left(t + \frac{\pi}{2}\right) = 3.6\sin(t) + 4\cos(t)$$

ИЛИ

$$U_4 = 3.6\cos\left(t - \frac{\pi}{2}\right) + 4\cos(t)$$

Рис. 6 – График напряжения U_4

3) Однополупериодный выпрямитель

$$k_4 = \frac{R_8}{R_7} = \frac{R_9}{R_7}$$

Найдем амплитуду напряжения U_4 :

$$U_{4m} = \sqrt{3.6^2 + 4^2 + 2 * 3.6 * 4 * \cos(-\frac{\pi}{2})} \approx 5.38 \text{ B}$$

Найдем средневыпрямленное напряжение $U_{0(cp)}$:

$$U_{0(\text{cp})} = \frac{U_{4m}}{\pi} = \frac{5.38}{3.14} \approx 1.71 \text{ B}$$

Рис. 7 — График напряжения $U_{0(1)}$

Рис. 8 — График напряжения $U_{0(2)}$