# Fast generation of planar graphs (expanded version)

Gunnar Brinkmann\*

Department of Applied Mathematics and Computer Science Ghent University B-9000 Ghent, Belgium

Gunnar.Brinkmann@UGent.be

Brendan D. McKay<sup>†</sup>

Department of Computer Science Australian National University Canberra ACT 0200, Australia

bdm@cs.anu.edu.au

#### Abstract

The program plantri is the fastest isomorph-free generator of many classes of planar graphs, including triangulations, quadrangulations, and convex polytopes. Many applications in the natural sciences as well as in mathematics have appeared. This paper describes plantri's principles of operation, the basis for its efficiency, and the recursive algorithms behind many of its capabilities. In addition, we give many counts of isomorphism classes of planar graphs compiled using plantri. These include triangulations, quadrangulations, convex polytopes, several classes of cubic and quartic graphs, and triangulations of disks.

This paper is an expanded version of the paper "Fast generation of planar graphs" to appeared in MATCH. The difference is that this version has substantially more tables.

#### 1 Introduction

The program plantri can rapidly generate many classes of graphs embedded in the plane. Since it was first made available, plantri has been used as a tool for research of many types. We give only a partial list, beginning with masters theses [37, 40] and PhD theses [32, 42]. Applications have appeared in chemistry [8, 21, 28, 39, 44], in crystallography [19], in physics [25], and in various areas of mathematics [1, 2, 7, 20, 22, 24, 41].

<sup>\*</sup>Research supported in part by the Australian National University.

<sup>&</sup>lt;sup>†</sup>Research supported by the Australian Research Council.

The purpose of this paper is to describe the facilities of plantri and to explain in general terms the method of operation. The program is written in C and available free [13].

Throughout the paper, we will only consider finite connected graphs.

A planar graph is a graph that can be drawn on the sphere (equivalently, the plane) without edge crossings. Since several distinct drawings (embeddings) may be possible, it is useful to define a plane graph to be a planar graph together with a crossing-free drawing. The combinatorial structure of a plane graph is described by giving the cyclic order of the edges incident with each vertex; for convenience we use clockwise order. The mirror image of a plane graph is obtained by reversing the cyclic order at each vertex; this corresponds to reflecting the plane about a line.



Figure 1: A plane graph with the associated cyclic orders

Two edges of a graph are *parallel* if they have the same endpoints. A *loop* is an edge whose endpoints are the same vertex. If there are neither parallel edges nor loops, a graph is called *simple*. *Triangulations* and *quadrangulations* are plane graphs in which each face is bordered by three edges, or four edges, respectively (see Figure 2).



Figure 2: A non-simple triangulation and a simple quadrangulation

The  $dual\ graph$  of a plane graph G is a plane graph obtained from G by exchanging the functions of vertices and faces. In the left part of Figure 3, the graph with black vertices and solid edges is dual to the graph with white vertices and dashed edges, and



Figure 3: The dual graph, and a separating 4-cycle

vice-versa. In particular, the dual graph of a triangulation is a cubic graph and the dual graph of a quadrangulation is a quartic graph.

A separating cycle in a plane graph is a cycle that contains at least one vertex in its interior and at least one vertex in its exterior. The length of the smallest separating cycle in a triangulation is the same as the (vertex) connectivity, and is known to equal the cyclic connectivity of the cubic dual graph (see Figure 3).

#### 1.1 Notions of isomorphism

Several types of isomorphism are important for plane graphs. Recall that we are assuming connectivity.

Let  $G_1 = (V_1, E_1)$  and  $G_2 = (V_2, E_2)$  be graphs. An abstract isomorphism from  $G_1$  to  $G_2$  is a pair of bijections  $\phi : V_1 \to V_2$  and  $\psi : E_1 \to E_2$  which preserve the vertex-edge incidence relationship. This is the usual notion of graph isomorphism.

If  $G_1 = (V_1, E_1, C_1)$  and  $G_2 = (V_2, E_2, C_2)$  are plane graphs, where  $C_i$  gives the embedding of  $G_i$  (as a specification of the clockwise order of the edges at each vertex), we can ask for isomorphisms that respect the embeddings in some fashion. An orientation-preserving isomorphism (OP-isomorphism) from  $G_1$  to  $G_2$  is an abstract isomorphism  $(\phi, \psi)$  from  $(V_1, E_1)$  to  $(V_2, E_2)$  which preserves the embedding: if  $(e_1, e_2, \ldots, e_k)$  is the cyclic order of the edges of  $G_1$  incident with  $v \in V_1$ , then  $(\psi(e_1), \psi(e_2), \ldots, \psi(e_k))$  is the cyclic order of the edges of  $G_2$  incident with  $\phi(v) \in V_2$ . On the other hand, an orientation-reversing isomorphism (OR-isomorphism) reverses the cyclic order at each vertex: if  $(e_1, e_2, \ldots, e_k)$  is the cyclic order of the edges of  $G_1$  incident with  $v \in V_1$ , then  $(\psi(e_k), \psi(e_{k-1}), \ldots, \psi(e_1))$  is the cyclic order of the edges of  $G_2$  incident with  $v \in V_1$ , then

By an *isomorphism* we will always mean either an OP-isomorphism or an OR-isomorphism. Isomorphisms and OP-isomorphisms (but not OR-isomorphisms) are equivalence relations, so we have *isomorphism classes* and *OP-isomorphism classes*, respectively. Sim-



Figure 4: Generating simple plane triangulations

ilarly, the automorphism group  $\operatorname{Aut}(G)$  of a plane graph is the group of all isomorphisms from G to itself, and the  $\operatorname{OP}$ -automorphism group  $\operatorname{Aut}_{\operatorname{OP}}(G)$  is the group of all  $\operatorname{OP}$ -isomorphisms from G to itself. In some cases,  $\operatorname{Aut}_{\operatorname{OP}}(G) = \operatorname{Aut}(G)$ ; otherwise,  $\operatorname{Aut}_{\operatorname{OP}}(G)$  is a subgroup of index 2 of  $\operatorname{Aut}(G)$  whose other coset consists of the  $\operatorname{OR}$ -automorphisms.

#### 1.2 Recursive generation

Let  $\mathcal{C}$  be a class of plane graphs, closed under isomorphism. Let  $\mathcal{C}_0 \subseteq \mathcal{C}$  be closed under isomorphism, and let  $F_1, \ldots, F_k : \mathcal{C} \to 2^{\mathcal{C}}$  be a list of functions. We say that  $(\mathcal{C}_0; F_1, \ldots, F_k)$  generates  $\mathcal{C}$  if for each  $G \in \mathcal{C}$  there is a sequence  $G_0, G_1, \ldots, G_m = G$  such that  $G_0 \in \mathcal{C}_0$  and for  $1 \leq i \leq m$  we have  $G_i \in F_j(G_{i-1})$  for some j. (This implies that  $G_1, \ldots, G_m \in \mathcal{C}$ .)

In our examples, each  $F_j$  consists of replacing some small subgraph by another, usually larger, subgraph under specified conditions. We will call  $F_1, \ldots, F_k$  expansions, and the inverse operations reductions. If an expansion has a name, say F, we can call it an F-expansion, and its inverse an F-reduction.

For a definite example, we take  $\mathcal{C}$  to be the class of simple plane triangulations of order at least 4. This class  $\mathcal{C}$  is generated by  $(\{K_4\}; E_3, E_4, E_5)$ , where the tetrahedron  $K_4$  and the expansions  $E_3, E_4, E_5$  are shown in Figure 4 [26]. The proof consists of taking any  $G \in \mathcal{C} - \{K_4\}$  and noting that some reduction can be applied. If there is a vertex of degree 3, its neighbours have degree at least 4, so an  $E_3$ -reduction can be applied. If there is no vertex of degree 3, but there is a vertex of degree 4, we can apply an  $E_4$ -reduction by removing that vertex and inserting an edge. One of the two ways to insert the edge might create a parallel edge (which this class of graphs does not allow), but the Jordan Curve Theorem assures that in such a case the other way is valid. In case G has minimum degree 5, which is the remaining possibility by Euler's formula, an  $E_5$ -reduction can be applied, by similar reasoning.

We note here the conventions we use in figures such as Figure 4. Vertices shown as distinct must be distinct. A half-edge attached to a vertex indicates that an edge must appear in that position, while a small open triangle represents zero or more edges in that position. Otherwise, vertices which are displayed cannot have additional incident edges. Also, there is an implicit requirement that expansions and reductions remain within the graph class under consideration; this often implies degree or connectivity constraints.

The method of isomorph rejection used by plantri is the canonical construction path method of McKay [36] (also called the method of canonical augmentation [34]). Another general description with emphasis on chemical applications appears in [9]. This method involves application of two rules. The first rule is that only one expansion of G from each equivalence class of expansions under Aut(G) is performed. The second rule requires the concept of canonical labelling. Select a unique labelled plane graph in each isomorphism class of plane graphs and call it the canonical representative of the isomorphism class. (We discuss below how such a canonical representative can be computed.) Given a canonical representative  $G^*$  of an isomorphism class in  $\mathcal{C}-\mathcal{C}_0$ , choose some reduction that applies to it and call this the best reduction of  $G^*$ . Now, suppose we apply an expansion F to G to obtain G'. Let f be an isomorphism from  $G^*$  to G', where  $G^*$  is the canonical member of the isomorphism class of G'. The second rule is that we must "accept" G' if f maps the best reduction of  $G^*$  to a reduction of G' that is equivalent under Aut(G') to the reduction inverse to F; otherwise we "reject" G'. Only accepted graphs are subject to further expansions. According to the theory of this method [36], application of both rules together means that exactly one member of each isomorphism class in  $\mathcal{C}$  is accepted.

Let us see how this works for our triangulations example, ignoring for the moment expansions  $E_4$  and  $E_5$ . Applying expansion  $E_3$  to a triangulation G requires us to choose a face and insert a new vertex into it. The first rule says that we should do this with only one face in each equivalence class of faces under Aut(G). Next, suppose we perform such an expansion to make a larger triangulation G' by adding the new vertex v. We then compute an isomorphism f to G' from the canonical representative  $G^*$  of the isomorphism class of G'. A fair choice of the "best" reduction of  $G^*$  would be that which removes the least-labelled vertex w of degree 3. If so, the second rule tells us to accept G' if and only if f(w) is equivalent to v in Aut(G').

#### 1.3 Implementation issues

The literature contains a few algorithms [27, 33] that compute automorphisms or isomorphisms of planar graphs in linear time. Their applicability is too limited for our purposes, but the main reason plantri doesn't use them is they are so complicated that they could not possibly be competitive for very small graphs compared to the simple but highly tuned heuristics we use.

Let G be a connected plane graph with n vertices, and let v, e be a vertex of G and an edge incident with it. We will suppose that each vertex w has a  $colour\ c(w) > n$ . We also assign  $labels\ \ell(w) \in \{1, 2, ..., n\}$ , consecutively to vertices as they are discovered during a breadth-first scan starting at v (thus  $\ell(v) = 1$ ). The "first" edge of v is defined to be e, while for other vertices it is the edge along which that vertex is first visited. To make the breadth-first search deterministic, the edges incident with each vertex are examined in clockwise order, starting with the first edge at that vertex.

The results of this scan is encoded in a string

$$\sigma_{v,e} = (c(v), r_1(1), \dots, r_{d_1}(1), 0, r_1(2), \dots, r_{d_2}(2), 0, \dots, r_1(n), \dots, r_{d_n}(n), 0),$$

where  $d_i$  is the degree of the vertex with label i, and  $r_j(i)$  refers to the j-th edge in clockwise order about that vertex. If the other end of this edge is a vertex w, then  $r_j(i) = c(w)$  if this is how w is first discovered, and  $r_j(i) = \ell(w)$  otherwise.

The string  $\sigma_{v,e}$  depends only on v, e and the graph structure. Moreover, the graph structure can be recovered from the string if the graph is simple. This remains true in the presence of parallel edges, since the uncertainty over which edge-ends are views of the same edge can be resolved from the topology. It is also true for triangulations with loops, but for the general case of loops it is not true.

There is a colour-preserving OP-automorphism mapping (v, e) onto (v', e') if and only if  $\sigma_{v,e} = \sigma_{v',e'}$ , so we can find  $\operatorname{Aut}_{\operatorname{OP}}(G)$  by computing  $\sigma_{v,e}$  for every vertex-edge pair. We can also find a canonical labelling by choosing the string  $\sigma_{v,e}$  which is lexicographically least. To find OR-automorphisms, we perform similar scans using anticlockwise ordering instead of clockwise ordering.

This method is evidently of quadratic time, but in practice we can make it much faster on average. Instead of starting at every pair (v, e), we need start only at some combinatorially-defined subset of such pairs. For example, we could choose v to be a vertex of maximum degree, and, subject to that, e to be an edge incident with v that is incident with a face of largest size. Moreover, we can abort a scan as soon as it becomes apparent that it can give neither an automorphism nor a canonical labelling. This speedup is improved by using a nontrivial invariant, such as the degree, for the colour of each vertex. Our precise choices here were tuned experimentally for each of the graph classes that plantri generates. Since the great majority of graphs in all our graph classes have trivial automorphism groups, and in any case  $|\operatorname{Aut}(G)| \leq 4|E(G)|$ , we do not attempt to use a sophisticated data structure to hold the group but simply list the action of every automorphism on each of the edges.

A similar heuristic can speed up the implementation of the second rule for isomorph rejection, defined in the previous subsection. In the terminology used there, the "best reduction" of  $G^*$  can be chosen from amongst those maximizing some combinatorial invariant. For example, a best reduction in our triangulation example might be chosen to be an  $E_3$ -reduction if one is available, and, if so, such that the sum of the degrees of the

three surrounding vertices is as large as possible. For many of our graph classes, we found cheap combinatorial invariants which most of the time identified a unique reduction, in which case there is no need to find the isomorphism from  $G^*$  to the current graph.

The graph itself is stored as a set of directed edges, one for each orientation of each edge. Each directed edge knows its starting and ending vertex, its successor and predecessor in clockwise order about its starting vertex, and the oppositely directed edge. Expansions and reductions are performed by modifying the graph in place, not by copying the whole graph. This is essential for the performance.

The generators produce one graph from each isomorphism class. In case the user has requested representatives of OP-isomorphism classes instead, the output graphs are tested for the presence of an OR-automorphism. If there is none, the mirror image of the graph is output as well. There is also the option of computing the dual graph; this is done by writing the dual without explicitly constructing it.

To enable very large families of graphs to be generated, perhaps using many computers in parallel, plantri has a facility for selecting only a numbered portion of the family. For example, one can ask that the entire graph class be divided into 1000 parts but that only part 376 be generated. This is achieved with almost 100% efficiency. A line is drawn across the generation tree at an experimentally determined level, then all of the tree above that level is generated while assigning consecutive numbers to the subtrees that hang below that level. To obtain portion 376/1000, just those subtrees whose number is congruent to 376 modulo 1000 are developed.

#### 1.4 Testing

A number of different approaches were taken to assure the correctness of the implementation. In some cases, earlier enumerations were available for comparison, such that of Dillencourt [23] and Aldred et al. [2], but they don't extend to very high order. Other tests consisted of checking that the outputs lie in the required graph classes, and that they are not isomorphic (using nauty [35]). We also generated very large collections of graphs by heuristic methods and checked that they were all included in plantri's output. In some cases, we could compare the outputs of two distinct generation algorithms for the same classes.

Perhaps the best check was to compare the output to existing theoretical enumerations. Very few such enumerations exist for isomorphism classes of plane graphs, but there are several that enumerate classes of plane graphs that are rooted at a flag. A flag is a triple (v, e, f) where v is a vertex, e is an edge incident with v, and f is a face incident with e. Relevant examples include [6, 16, 30, 31, 43]. To compare these against plantri, we computed Aut(G) for each output graph G; the number of flag-rooted graphs isomorphic to G equals the number of orbits of flags.

#### 1.5 Efficiency

It is easy to show that the running time per output graph is polynomial in the size of the graphs, but the precise complexity has not been determined as it depends in complex fashion on the average properties of unlabelled plane graphs. In practice, the running time per graph is approximately constant within each of the classes of plane graph generated by plantri. This cannot remain true in the limit of large size (even if the linear time required for outputting the objects is discounted), but we observe it up to the size beyond which exhaustive generation is impractical (say, more than 10<sup>15</sup> objects).

In the following, the efficiency is indicated according to the approximate number of objects generated per second by a Pentium IV processor running at 1GHz.

In all cases the memory requirements are trivial. None of the examples we give in the Appendix require more than a few megabytes.

## 2 Classes of triangulations

Plane triangulations of order at least 4 are simple if and only if they are 3-connected. The generation of this class was described in Section 1.2 (310,000/second). The dual class consists of the 3-connected cubic plane graphs.



Figure 5: Creating double edges and loops in a triangulation

Allowing parallel edges as well, but excluding vertices of degree 2, we obtain the 2-connected triangulations with minimum degree at least 3, whose dual class consists of the 2-connected simple cubic plane graphs. This class can be generated by starting with simple triangulations and then performing the first operation shown in Figure 5. The

operation must increase the number of double edges, so it is not possible to return to a previous configuration (110,000/second).

The next option is to allow loops. Loops in a triangulation of minimum degree at least 3 can have three different types, depending on whether the inside and outside faces are bounded by two additional loops or by a pair of parallel ordinary edges. However, by considering an innermost loop in a plane drawing, we see that a triangulation with loops must have a loop with one of the two types created by the operations shown in the lower half of Figure 5. These suffice to generate all possibilities starting with the 2-connected triangulations of minimum degree at least 3 (140,000/second). As an option, the generation can be limited to exclude triangulations having two faces with two edges (which must be parallel edges) in common. This gives us two useful dual classes: connected cubic plane simple graphs, and connected cubic plane multigraphs without faces of size less than 3.



Figure 6: Generating triangulations with minimum degree at least 4

Define a  $C\kappa$ - $\delta$ -triangulation to be a plane triangulation with minimum degree at least  $\delta$  and connectivity at least  $\kappa$ .

A method for generating C3-4-triangulations was discovered by Batagelj [4]. It starts with the octahedron and applies three expansions  $R_4$ ,  $R_5$  and S that are the same as in Figure 6 except that the central vertex of  $R_5$  is only required to have one left-pointing edge. Our stronger requirement, as shown in the figure, illustrates a technique we used repeatedly to improve efficiency. When we define the "best" reduction of an expanded graph, as in Section 1.2, we chose an  $R_4$ -reduction if there is any. This means that the result of an  $R_5$  or S-expansion will not be accepted if it has an  $R_4$ -reduction. Experimentally, most graphs in this class have  $R_4$ -reductions, so this is a key observation. If graph G has 3 or more  $R_4$ -reductions, which is the most common case, then the result of applying an  $R_5$ -expansion is sure to have an  $R_4$ -reduction, so there is no point in making it. Finally, if the central vertex of an  $R_5$ -expansion has degree 4, then the expanded

graph has an  $R_4$ -reduction; hence our requirement that that vertex have degree at least 6 (250,000/second).

We do not use a separate generation method for C4-4-triangulations, but maintain a list of all the separating 3-cycles which is updated as each expansion is done. At the last step before output, only expansions which eliminate all remaining separating 3-cycles are applied (160,000/second).



Figure 7: Generating triangulations with minimum degree 5

In the case of minimum degree 5, we first apply the method of Barnette [3] and Butler [17] to generate the C5-5-triangulations. This starts with the icosahedron and applies the expansions  $F_1$ ,  $F_2$  and  $F_3$ ; see Figure 7 (50,000/second). Then we repeatedly apply operation  $F_4$  in such a way that one additional separating 4-cycle, but no separating 3-cycle, is created each time. This suffices to generate the remaining C4-5-triangulations (43,000/second). Then  $F_4$  is applied in similar manner to create one separating 3-cycle at a time to generate the remaining C3-5-triangulations (40,000/second). The details and proofs can be found in [14].

The simple eulerian plane triangulations (those with all vertices of even degree) are dual to the 3-connected bipartite cubic plane graphs. A recursive construction was given by Batagelj [4], but plantri uses a variation which is slightly more efficient. The starting triangulations are the *even double wheels* which consist of a cycle of even length and



Figure 8: Generating eulerian triangulations

vertices in the interior and exterior adjacent to all of the cycle. The smallest three even double wheels are shown in Figure 8, as are the two expansions P and Q that complete the generation of this class. The version of Batagelj used only the smallest even double wheel (also known as the octahedron) and allowed the central vertex of a P-expansion to have degree 4. However, if a P-reduction with left vertex of degree 4 can be applied, there will also be a P-reduction with left vertex of degree greater than 4—unless the graph is an even double wheel. Our variation improved the generation efficiency because graphs on average have fewer reductions (110,000/second). Keeping track of separating 3-cycles allows the 4-connected subset to be generated (29,000/second).

## 3 Classes of quadrangulations

Algorithms for generating several classes of plane quadrangulations are given in [12]. The necessary expansions are shown in Figure 9. A pseudo-double wheel consists of a cycle of even length, a vertex in the interior adjacent to the odd-numbered vertices of the cycle, and a vertex in the exterior adjacent to the even-numbered vertices of the cycle. Let  $\mathcal{D}$  be the class of all pseudo-double wheels. Also consider the square  $C_4$ .

The simple quadrangulations are generated by  $(\{C_4\}; P_0, P_1)$  (270,000/second). If the minimum degree must be at least 3, the simple quadrangulations are generated by  $(\mathcal{D}; P_1, P_3)$  (51,000/second). The same generator, restricted to remain within the class of 3-connected quadrangulations, generates that class (49,000/second). If both 3-connectivity and the absence of separating 4-cycles are required, a generator is  $(\mathcal{D}; P_1)$  (46,000/second).



Figure 9: Generating quadrangulations

## 4 General simple plane graphs



Figure 10: Generating plane graphs from triangulations

Let  $F = v_0, v_1, \ldots, v_{m-1}$  be a face of length  $m \geq 4$  in a connected simple plane graph. It is easily seen that for some i, the three vertices  $v_i, v_{i+1}, v_{i+2}$  (subscripts modulo m) are distinct and  $v_i$  is not adjacent to  $v_{i+2}$ . Therefore, an edge can be added from  $v_i$  to  $v_{i+2}$ , dividing f in a face of size 3 and a face of size m-1, with the result being also a simple plane graph. Addition of an edge in this manner cannot decrease the minimum degree or the connectivity, and cannot increase the maximum face size. Repeated edge addition results in a simple triangulation. Also recall that simple triangulations are 3-connected.

Considering this process in reverse, given a lower bound  $\delta$  on the minimum degree, a lower bound  $\kappa$  on the connectivity, a lower bound  $\varepsilon$  on the number of edges, and an upper bound  $\phi$  on the maximum face size, we can generate all the plane graphs satisfying those four bounds by starting with triangulations and removing one edge at a time as

in Figure 10. The starting triangulations must have minimum degree at least  $\max\{\delta,3\}$  and connectivity at least  $\max\{\kappa,3\}$ . This is implemented in plantri except for the cases  $\kappa=4,5$ . Typical efficiencies are 200,000/second for  $\kappa=\delta=3$  and 220,000/second for  $\kappa=\delta=1$ . The 3-connected simple plane graphs are also known as convex polytopal graphs, since they correspond to the skeletons of the convex polytopes in 3 dimensions.

## 5 Triangulations of a disk



Figure 11: Making a disk triangulation from a triangulation

By a *triangulation of a disk* we mean a plane graph with one face distinguished as the "outer face" and all other faces bounded by 3 edges. The outer face may have any length but must be a simple polygon.

Here we only consider simple triangulations of a disk. In this case, it can be seen that vertices have degree at least 2 on the outer face and at least 3 otherwise. Also, the connectivity is at least 2 and the only possible 2-cuts consist of two vertices on the outer face that are connected by a chord.

The generation method used by plantri for generating a triangulation of a disk of length  $\Delta$  with n vertices altogether is shown in Figure 11. We first generate a triangulation with n+1 vertices, then delete a vertex of degree  $\Delta$  to create the outer face. It can be specified whether the minimum degree is at least 2 or at least 3 and whether chords (i.e., 2-cuts) are allowed.

If all outer face sizes are required, this process is very efficient as each triangulation on average produces many outputs. For example, 3-connected disk triangulations are found at 540,000/second and 3-connected disk triangulations at one million per second. In case only a large outer face is required the efficiency is lower, but an improvement is achieved by filtering out many of the simple triangulations that cannot produce a vertex of sufficient degree, using the fact that the expansions in Figure 4 can only increase the maximum degree by 1.

## 6 Variations and applications

The program is usually used from the command line, with switches that specify the type of graph, its parameters, and output options. Several output formats are available, including some suitable for feeding to another program and some that are human-readable. Complete instructions appear in the manual that is packaged with the program [13].

Plantri can also be used in conjunction with the visualisation program CaGe [10]. This allows most of the graph classes generated by plantri to be visually examined in 2D or 3D form. For some of the functionalities of plantri, CaGe offers an interface that makes it unnecessary to type in the options; for others, the command line parameters must be given.

The structure of plantri allows external pieces of code to be attached at various points to generate subclasses more efficiently than filtering the output. Significant examples include code to limit triangulations to a specified set of vertex degrees [15] and similarly for quadrangulations [29].

More substantial variations on plantri include a program to generate plane triangulations with maximum degree 6 [2] (using in addition the efficient fullerene generator of Brinkmann and Dress [11]). Sulanke has made a program based on plantri to generate triangulations of higher-genus manifolds.

At the moment plantri does not provide for random generation. However, we note that a variety of random generation can be obtained with a simple modification of the algorithm [36].

## References

- [1] R. E. L. Aldred, S. Bau, D. A. Holton and B. D. McKay, Cycles through 23 vertices in 3-connected cubic planar graphs, *Graphs and Combinatorics*, **15** (1999) 373–376.
- [2] R. E. L. Aldred, S. Bau, D. A. Holton and B. D. McKay, Nonhamiltonian 3-connected cubic planar graphs, SIAM J. Disc. Math., 13 (2000) 25–32.
- [3] D. Barnette, On generating planar graphs, Discrete Math., 7 (1974) 199–208.
- [4] V. Batagelj, An improved inductive definition of two restricted classes of triangulations of the plane. *Combinatorics and Graph Theory, Banach Center Publications*, **25**, PWN Polish Scientific Publishers, Warsaw 1989, 11–18.
- [5] V. Batagelj, An inductive definition of the class of all triangulations with no vertex of degree smaller than 5, In *Proceedings of the Fourth Yugoslav Seminar on Graph Theory*, Novi Sad, 1983.

- [6] E. A. Bender, Z. Gao and N. C. Wormald, The number of labeled 2-connected planar graphs, *Electron. J. Combin.*, **9** (2002), #R43, 13 pp.
- [7] M. Bodirsky, C. Gröpl and M. Kang, Decomposing, counting, and generating unlabeled cubic planar graphs uniformly at random, *Random Struc. Alg.*, **32** (2008) 157–180.
- [8] G. Brinkmann, Problems and scope of the spiral algorithm and spiral codes for polyhedral cages, *Chem. Phys. Lett.*, **272** (1997) 193–198.
- [9] G. Brinkmann, Isomorphism rejection in structure generation programs, *in* Discrete Mathematical Chemistry Vol. 51 (P. Hansen, P.W. Fowler and M. Zheng, eds.), American Mathematical Society (2000) 25–38.
- [10] G. Brinkmann, O. Delgado Friedrichs, A. Dress and T. Harmuth, CaGe a virtual environment for studying some special classes of large molecules, *MATCH Commun. Math. Comput. Chem.*, **36** (1997) 233–237. Program available at http://www.mathematik.uni-bielefeld.de/~CaGe.
- [11] G. Brinkmann and A. W. M. Dress, A constructive enumeration of fullerenes, *J. Algorithms*, **23** (1997) 345–358. Program at http://cs.anu.edu.au/~bdm/plantri.
- [12] G. Brinkmann, S. Greenberg, C. Greenhill, B. D. McKay and R. Thomas, Generation of simple quadrangulations of the sphere, *Discrete Math.*, **305** (2005) 33–54.
- [13] G. Brinkmann and B. D. McKay, The program plantri. Available at http://cs.anu.edu.au/~bdm/plantri.
- [14] G. Brinkmann and B. D. McKay, Construction of planar triangulations with minimum degree 5, *Discrete Math.*, **301** (2005) 147–163.
- [15] G. Brinkmann, B. D. McKay and U. von Nathusius, Backtrack search and look-ahead for the construction of planar cubic graphs with restricted face sizes, *MATCH Commun. Math. Comput. Chem.*, **48** (2003) 163–177.
- [16] W. G. Brown, Enumeration of quadrangular dissections of the disk, *Canad. J. Math.*, **17** (1965) 302–317.
- [17] J. W. Butler. A generation procedure for the simple 3-polytopes with cyclically 5-connected graphs, Can. J. Math., 26 (1974) 686–708.
- [18] P. J. Cameron, Sequences realized by oligomorphic permutation groups, *J. Integ. Seq.*, **3** (2000) #00.1.5.
- [19] O. Delgado-Friedrichs and M. O'Keeffe, Isohedral simple tilings: binodal and by tiles with ≤16 faces, *Acta Cryst.*, **A61** (2005) 358–362.

- [20] G. Denham and I. Suciu, Moment angle complexes, monomial ideals, and Massey products, submitted.
- [21] M. Deza, M. Dutour and P.W. Fowler, Zigzags, railroads and knots in fullerenes, J. Chem. Inf. Comp. Sci., 44 (2004) 1282–1293.
- [22] M. Deza, M. Dutour and M. Shtogrin, 4-valent plane graphs with 2-, 3- and 4-gonal faces, in Advances in Algebra and Related Topics, World Scientific Publ. Co., 2002, 73–97.
- [23] M. B. Dillencourt, Polyhedra of small order and their hamiltonian properties, *J. Combin. Theory Ser. B*, **66** (1996) 87–122.
- [24] M. Dutour and M. Deza, Goldberg-Coxeter construction for 3- and 4-valent planar graphs, *Electron. J. Combin.*, **11** (2004) #R20.
- [25] D. van Dyck, G. Brinkmann, V. Fack and B. D. McKay, To be or not to be Yutsis: Algorithms for the decision problem, *Comput. Phys. Commun.*, **173** (2005) 61–70.
- [26] V. Eberhard, Zur Morphologie der Polyeder, Teubner (1891).
- [27] M. Fontet, Linear algorithms for testing isomorphism of planar graphs, *Proceedings Third Colloquium on Automata, Languages, and Programming*, 1976, 411–423
- [28] P. W. Fowler, G. Caporossi and P. Hansen, Distance matrices, Wiener indices, and related invariants of fullerenes, *J. Phys. Chem. A*, **105** (2001) 6232–6242.
- [29] S. Funke, Erzeugung dreizusammenhängender Quadrangulierungen mit eingeschränkten Knotengraden, Diplomarbeit, Bielefeld, 2004.
- [30] J. Gao, I. Wanless and N. C. Wormald, Counting 5-connected planar triangulations. J. Graph Theory, 38 (2001) 18–35.
- [31] Z. Gao and N. C. Wormald, Enumeration of rooted cubic planar maps, *Ann. Combin.*, **6** (2002), 313–325.
- [32] D. Heard, Computation of hyperbolic structures on 3-dimensional orbifolds, PhD Thesis, University of Melbourne, 2005.
- [33] J. E. Hopcroft and J. K. Wong, Linear time algorithm for isomorphism of planar graphs, in 6th Annual ACM Symposium on Theory of Computing, Seattle, Washington, 1974, 172–184.
- [34] P. Kaski and P. R. J. Ostergård, Classification Algorithms for Codes and Designs, Springer, 2006.
- [35] B.D. McKay, nauty, graph isomorphism/automorphism software, available at http://cs.anu.edu.au/~bdm/nauty.

- [36] B. D. McKay, Isomorph-free exhaustive generation, J. Algorithms, 26 (1998) 306–324.
- [37] R. Mechtel, Randomized pivot rules for the simplex algorithm on three-dimensional problems, Masters Thesis, Technische Universität Berlin, 2003.
- [38] R. C. Mullin and P. J. Schellenberg, The enumeration of c-nets via quadrangulations, J. Combinatorial Theory, 4 (1968) 259–276.
- [39] A. Rassat, P. W. Fowler and B. de la Vaissiere, Cahn-Ingold-Prelog descriptors of absolute configuration for carbon cages, *Chem.-Europ. J.*, **7** (2001) 3985–3991.
- [40] K.D. Riggins, On characterizing graphs with branchwidth at most four, Masters Thesis, Rice University, Houston, 2001.
- [41] G. Royle, Planar triangulations with chromatic roots arbitrarily close to 4, Ann. Combin., to appear.
- [42] A. Schwartz, Constructions of cubical polytopes, PhD Thesis, Technische Universität Berlin, 2004.
- [43] W. T. Tutte, A census of planar triangulations, Canad. J. Math. 14 (1962) 1–38.
- [44] F.-Q. Zhang, H.-S. Wu, Y.-Y. Xu, Y.-W. Li and H. Jiao, Structure and stability of neutral polyoxometalate cages:  $(Mo_2O_6)_m$  (m = 1-13), J. Molec. Model., to appear.

## Appendix

In the following pages we give some of the counts of plane graphs that have been compiled using plantri.

The variables  $n_v$ ,  $n_e$  and  $n_f$  are the numbers of vertices, edges and faces, respectively. For any symbol  $\mu$  that enumerates isomorphism classes,  $\mu'$  enumerates OP-isomorphism classes. The minimum degree is  $\delta$ , the minimum face size is  $\phi$ , the connectivity is  $\kappa$ , and the cyclic connectivity is  $\lambda$ . As with the whole paper, all graphs are connected.

• Tables 1–2. Plane triangulations with minimum degree at least 3; plane cubic multigraphs with minimum face size at least 3.

```
t_3(n_v): triangulations, \kappa=3 ; simple cubic graphs, \kappa=3 t_2(n_v): triangulations, \kappa\geq 2,\,\delta\geq 3 ; simple cubic graphs, \kappa\geq 2 t_{1+}(n_v): triangulations, \delta\geq 3 ; simple cubic graphs no two faces sharing two edges t_1(n_v): triangulations \delta\geq 3 ; cubic multigraphs, \phi\geq 3
```

• Tables 3–5. Plane triangulations with lower bounds on degree and connectivity; plane simple cubic graphs with lower bounds on face size and cyclic connectivity.

```
t_{k,d}(n_v): triangulations, \kappa \geq k, \delta \geq d; simple cubic graphs, \lambda \geq k, \phi \geq d
```

• Table 6. Simple plane eulerian triangulations with lower bound on connectivity; plane simple cubic bipartite graphs with lower bound on cyclic connectivity.

```
e_k(n_v): simple eulerian triangulations, \kappa \geq k; cubic bipartite graphs, \lambda \geq k
```

• Tables 7–8. Plane quadrangulations with degree and connectivity conditions; simple quartic graphs with degree and connectivity conditions.

```
q_1(n_v): simple quadrangulations ; 4-edge-connected quartic multigraphs q_2(n_v): simple quadrangulations, \delta \geq 3; 4-edge-connected simple quartic graphs q_3(n_v): quadrangulations, \kappa \geq 3 ; simple quartic graphs, \kappa \geq 3 ; cubic graphs, \kappa \geq 3 ; cubic graphs, \kappa \geq 3, no separating 4-cycles ; cyclic edge connectivity at least 6
```

• Tables 9–18. 3-connected plane graphs with lower bound on degree; 3-connected plane graphs with lower bound on face size.

```
p_d(n_v, n_e): simple graph, \delta \geq d
```

Note that for d = 3 this class is self-dual and  $p_3(n_v, n_e) = p_3(n_f, n_e)$ ; these are the skeletons of convex polytopes.

• Tables 19–26. Simple plane graphs with lower bound on connectivity. Simplicity implies that the dual multigraph has at most one edge in common between two faces. Connectivity 2 implies in addition that the dual has only faces which are simple cycles.

```
c_k(n_v, n_e): simple graph, \kappa \geq k
```

• Table 27. Simple triangulations of a disk with lower bounds on degree and connectivity. The dual graphs are plane multigraphs with a distinguished vertex, with all vertices except possibly the distinguished vertex having degree 3.

```
d_1(n_v): disk triangulation, \kappa \geq 3

d_2(n_v): disk triangulation, \delta \geq 3

d_3(n_v): disk triangulation, \delta \geq 2

d_4(n_v): disk triangulation, \Delta = n_v
```

The last class are also known as the 2-connected outerplanar graphs.

| $n_v$ | $n_e$ | $n_f$ | $t_3(n_v)$     | $t_2(n_v)$    | $t_{1+}(n_v)$ | $t_1(n_v)$    |
|-------|-------|-------|----------------|---------------|---------------|---------------|
| 4     | 6     | 4     | 1              | 1             | 1             | 1             |
| 5     | 9     | 6     | 1              | 1             | 1             | 1             |
| 6     | 12    | 8     | 2              | 3             | 3             | 3             |
| 7     | 15    | 10    | 5              | 8             | 9             | 9             |
| 8     | 18    | 12    | 14             | 32            | 37            | 38            |
| 9     | 21    | 14    | 50             | 131           | 172           | 178           |
| 10    | 24    | 16    | 233            | 723           | 993           | 1041          |
| 11    | 27    | 18    | 1249           | 4360          | 6308          | 6652          |
| 12    | 30    | 20    | 7595           | 29632         | 44145         | 46738         |
| 13    | 33    | 22    | 49566          | 213168        | 327051        | 347050        |
| 14    | 36    | 24    | 339722         | 1606633       | 2530761       | 2691419       |
| 15    | 39    | 26    | 2406841        | 12473723      | 20179785      | 21509955      |
| 16    | 42    | 28    | 17490241       | 99141919      | 164672106     | 175969274     |
| 17    | 45    | 30    | 129664753      | 802392930     | 1368137926    | 1465921468    |
| 18    | 48    | 32    | 977526957      | 6593377305    | 11536196188   | 12395111621   |
| 19    | 51    | 34    | 7475907149     | 54883010885   | 98494508358   | 106126249031  |
| 20    | 54    | 36    | 57896349553    | 462038444588  | 850073936750  | 918520748281  |
| 21    | 57    | 38    | 453382272049   | 3928893849911 | 7406965136219 | 8025676381104 |
| 22    | 60    | 40    | 3585853662949  |               |               |               |
| 23    | 63    | 42    | 28615703421545 |               |               |               |

Table 1: Isomorphism classes of plane triangulations

| $n_v$ | $n_e$ | $n_f$ | $t_3'(n_v)$   | $t_2'(n_v)$   | $t_{1+}^{\prime}(n_v)$ | $t_1'(n_v)$    |
|-------|-------|-------|---------------|---------------|------------------------|----------------|
| 4     | 6     | 4     | 1             | 1             | 1                      | 1              |
| 5     | 9     | 6     | 1             | 1             | 1                      | 1              |
| 6     | 12    | 8     | 2             | 3             | 3                      | 3              |
| 7     | 15    | 10    | 6             | 9             | 10                     | 10             |
| 8     | 18    | 12    | 17            | 37            | 42                     | 43             |
| 9     | 21    | 14    | 73            | 183           | 230                    | 236            |
| 10    | 24    | 16    | 389           | 1156          | 1523                   | 1577           |
| 11    | 27    | 18    | 2274          | 7713          | 10737                  | 11188          |
| 12    | 30    | 20    | 14502         | 55436         | 80319                  | 84194          |
| 13    | 33    | 22    | 97033         | 412193        | 620134                 | 653271         |
| 14    | 36    | 24    | 672781        | 3158392       | 4913112                | 5198809        |
| 15    | 39    | 26    | 4792530       | 24736138      | 39705720               | 42184083       |
| 16    | 42    | 28    | 34911786      | 197448348     | 326420796              | 348088277      |
| 17    | 45    | 30    | 259106122     | 1601481238    | 2723097802             | 2913967487     |
| 18    | 48    | 32    | 1954315346    | 13173471151   | 23012381739            | 24706425434    |
| 19    | 51    | 34    | 14949368524   | 109712447949  | 196713776094           | 211856940558   |
| 20    | 54    | 36    | 115784496932  | 923858502128  | 1698875856077          | 1835160731391  |
| 21    | 57    | 38    | 906736988527  | 7856893675780 | 14808015829668         | 16042357404748 |
| 22    | 60    | 40    | 7171613842488 |               |                        |                |

Table 2: OP-Isomorphism classes of plane triangulations

| $n_v$ | $n_e$ | $n_f$ | $t_{3-4}(n_v)$ | $t_{4-4}(n_v)$ | $t_{3-4}'(n_v)$ | $t_{4-4}^{\prime}(n_v)$ |
|-------|-------|-------|----------------|----------------|-----------------|-------------------------|
| 6     | 12    | 8     | 1              | 1              | 1               | 1                       |
| 7     | 15    | 10    | 1              | 1              | 1               | 1                       |
| 8     | 18    | 12    | 2              | 2              | 2               | 2                       |
| 9     | 21    | 14    | 5              | 4              | 5               | 4                       |
| 10    | 24    | 16    | 12             | 10             | 14              | 12                      |
| 11    | 27    | 18    | 34             | 25             | 45              | 32                      |
| 12    | 30    | 20    | 130            | 87             | 194             | 128                     |
| 13    | 33    | 22    | 525            | 313            | 891             | 519                     |
| 14    | 36    | 24    | 2472           | 1357           | 4499            | 2430                    |
| 15    | 39    | 26    | 12400          | 6244           | 23603           | 11765                   |
| 16    | 42    | 28    | 65619          | 30926          | 127887          | 59915                   |
| 17    | 45    | 30    | 357504         | 158428         | 705770          | 311744                  |
| 18    | 48    | 32    | 1992985        | 836749         | 3959653         | 1659633                 |
| 19    | 51    | 34    | 11284042       | 4504607        | 22494163        | 8971845                 |
| 20    | 54    | 36    | 64719885       | 24649284       | 129227103       | 49195863                |
| 21    | 57    | 38    | 375126827      | 136610879      | 749646288       | 272940855               |
| 22    | 60    | 40    | 2194439398     | 765598927      | 4387116659      | 1530417953              |
| 23    | 63    | 42    | 12941995397    | 4332047595     | 25878895923     | 8661936137              |
| 24    | 66    | 44    | 76890024027    | 24724362117    | 153765144588    | 49442678322             |
| 25    | 69    | 46    | 459873914230   | 142205424580   | 919704309272    | 284393946501            |
| 26    | 72    | 48    | 2767364341936  | 823687567019   | 5534600480206   | 1647327455726           |
| 27    | 75    | 50    | 16747182732792 | 4801749063379  |                 |                         |

Table 3: Isomorphism classes of plane triangulations with minimum degree at least 4

| $n_v$ | $n_e$ | $n_f$ | $t_{3-5}(n_v)$ | $t_{4-5}(n_v)$ | $t_{5-5}(n_v)$ |
|-------|-------|-------|----------------|----------------|----------------|
| 12    | 30    | 20    | 1              | 1              | 1              |
| 13    | 33    | 22    | 0              | 0              | 0              |
| 14    | 36    | 24    | 1              | 1              | 1              |
| 15    | 39    | 26    | 1              | 1              | 1              |
| 16    | 42    | 28    | 3              | 3              | 3              |
| 17    | 45    | 30    | 4              | 4              | 4              |
| 18    | 48    | 32    | 12             | 12             | 12             |
| 19    | 51    | 34    | 23             | 23             | 23             |
| 20    | 54    | 36    | 73             | 73             | 71             |
| 21    | 57    | 38    | 192            | 191            | 187            |
| 22    | 60    | 40    | 651            | 649            | 627            |
| 23    | 63    | 42    | 2070           | 2054           | 1970           |
| 24    | 66    | 44    | 7290           | 7209           | 6833           |
| 25    | 69    | 46    | 25381          | 24963          | 23384          |
| 26    | 72    | 48    | 91441          | 89376          | 82625          |
| 27    | 75    | 50    | 329824         | 320133         | 292164         |
| 28    | 78    | 52    | 1204737        | 1160752        | 1045329        |
| 29    | 81    | 54    | 4412031        | 4218225        | 3750277        |
| 30    | 84    | 56    | 16248772       | 15414908       | 13532724       |
| 31    | 87    | 58    | 59995535       | 56474453       | 48977625       |
| 32    | 90    | 60    | 222231424      | 207586410      | 177919099      |
| 33    | 93    | 62    | 825028656      | 764855802      | 648145255      |
| 34    | 96    | 64    | 3069993552     | 2825168619     | 2368046117     |
| 35    | 99    | 66    | 11446245342    | 10458049611    | 8674199554     |
| 36    | 102   | 68    | 42758608761    | 38795658003    | 31854078139    |
| 37    | 105   | 70    | 160012226334   | 144203518881   | 117252592450   |
| 38    | 108   | 72    | 599822851579   | 537031911877   | 432576302286   |
| 39    | 111   | 74    | 2252137171764  | 2003618333624  | 1599320144703  |
| 40    | 114   | 76    | 8469193859271  | 7488436558647  | 5925181102878  |

Table 4: Isomorphism classes of plane triangulations with minimum degree 5

| $n_v$ | $n_e$ | $n_f$ | $t_{3-5}'(n_v)$ | $t_{4-5}'(n_v)$ | $t_{5-5}'(n_v)$ |
|-------|-------|-------|-----------------|-----------------|-----------------|
| 12    | 30    | 20    | 1               | 1               | 1               |
| 13    | 33    | 22    | 0               | 0               | 0               |
| 14    | 36    | 24    | 1               | 1               | 1               |
| 15    | 39    | 26    | 1               | 1               | 1               |
| 16    | 42    | 28    | 4               | 4               | 4               |
| 17    | 45    | 30    | 4               | 4               | 4               |
| 18    | 48    | 32    | 17              | 17              | 17              |
| 19    | 51    | 34    | 33              | 33              | 33              |
| 20    | 54    | 36    | 117             | 117             | 115             |
| 21    | 57    | 38    | 331             | 330             | 325             |
| 22    | 60    | 40    | 1180            | 1177            | 1144            |
| 23    | 63    | 42    | 3899            | 3874            | 3736            |
| 24    | 66    | 44    | 14052           | 13910           | 13225           |
| 25    | 69    | 46    | 49667           | 48878           | 45904           |
| 26    | 72    | 48    | 180502          | 176538          | 163456          |
| 27    | 75    | 50    | 654674          | 635653          | 580704          |
| 28    | 78    | 52    | 2398527         | 2311572         | 2083116         |
| 29    | 81    | 54    | 8800984         | 8415829         | 7485349         |
| 30    | 84    | 56    | 32447008        | 30785420        | 27033550        |
| 31    | 87    | 58    | 119883207       | 112855620       | 97890740        |
| 32    | 90    | 60    | 444226539       | 414972649       | 355702718       |
| 33    | 93    | 62    | 1649550311      | 1529287903      | 1296014495      |
| 34    | 96    | 64    | 6138874486      | 5649427132      | 4735513531      |
| 35    | 99    | 66    | 22890091062     | 20914166059     | 17347212127     |
| 36    | 102   | 68    | 85511947468     | 77587152924     | 63705666521     |
| 37    | 105   | 70    | 320013030067    | 288398164702    | 234500056176    |
| 38    | 108   | 72    | 1199620598580   | 1074044692104   | 865141832437    |
| 39    | 111   | 74    | 4504219709753   | 4007195731866   | 3198618016486   |
| 40    | 114   | 76    | 16938267502048  | 14976784750710  | 11850315368675  |

Table 5: OP-isomorphism classes of plane triangulations with minimum degree 5

| $n_v$ | $n_e$ | $n_f$ | $e_3(n_v)$    | $e_4(n_v)$   | $e_3'(n_v)$   | $e_4'(n_v)$  |
|-------|-------|-------|---------------|--------------|---------------|--------------|
| 6     | 12    | 8     | 1             | 1            | 1             | 1            |
| 7     | 15    | 10    | 0             | 0            | 0             | 0            |
| 8     | 18    | 12    | 1             | 1            | 1             | 1            |
| 9     | 21    | 14    | 1             | 0            | 1             | 0            |
| 10    | 24    | 16    | 2             | 2            | 2             | 2            |
| 11    | 27    | 18    | 2             | 1            | 2             | 1            |
| 12    | 30    | 20    | 8             | 5            | 9             | 6            |
| 13    | 33    | 22    | 8             | 3            | 11            | 3            |
| 14    | 36    | 24    | 32            | 18           | 41            | 22           |
| 15    | 39    | 26    | 57            | 19           | 89            | 25           |
| 16    | 42    | 28    | 185           | 79           | 296           | 112          |
| 17    | 45    | 30    | 466           | 134          | 829           | 214          |
| 18    | 48    | 32    | 1543          | 501          | 2772          | 817          |
| 19    | 51    | 34    | 4583          | 1147         | 8746          | 2058         |
| 20    | 54    | 36    | 15374         | 3976         | 29461         | 7188         |
| 21    | 57    | 38    | 50116         | 11055        | 98342         | 21036        |
| 22    | 60    | 40    | 171168        | 37231        | 336881        | 71185        |
| 23    | 63    | 42    | 582603        | 114560       | 1156559       | 224103       |
| 24    | 66    | 44    | 2024119       | 384053       | 4024297       | 753561       |
| 25    | 69    | 46    | 7057472       | 1244056      | 14075250      | 2464355      |
| 26    | 72    | 48    | 24873248      | 4193857      | 49638364      | 8321649      |
| 27    | 75    | 50    | 88111772      | 13977946     | 176037177     | 27841706     |
| 28    | 78    | 52    | 314301078     | 47522279     | 628107157     | 94737950     |
| 29    | 81    | 54    | 1126716000    | 161222224    | 2252541666    | 321889797    |
| 30    | 84    | 56    | 4060375677    | 553033544    | 8118442511    | 1104620101   |
| 31    | 87    | 58    | 14697571234   | 1899744032   | 29390845869   | 3796766424   |
| 32    | 90    | 60    | 53432834170   | 6571595339   | 106854715443  | 13136256710  |
| 33    | 93    | 62    | 195015189626  | 22793047258  | 390009407529  | 45572625554  |
| 34    | 96    | 64    | 714404259151  | 79449718217  | 1428755867040 | 158865787212 |
| 35    | 99    | 66    | 2626130395699 | 277760027418 | 5252157292165 | 555452882736 |
| 36    | 102   | 68    | 9685071313079 | 974836112457 |               |              |

Table 6: Isomorphism classes of eulerian plane triangulations

| $n_v$ | $n_e$ | $n_f$ | $q_1(n_v)$     | $q_2(n_v)$    | $q_3(n_v)$    | $q_4(n_v)$    |
|-------|-------|-------|----------------|---------------|---------------|---------------|
| 4     | 4     | 2     | 1              |               |               |               |
| 5     | 6     | 3     | 1              |               |               |               |
| 6     | 8     | 4     | 2              |               |               |               |
| 7     | 10    | 5     | 3              |               |               |               |
| 8     | 12    | 6     | 9              | 1             | 1             | 1             |
| 9     | 14    | 7     | 18             | 0             | 0             | 0             |
| 10    | 16    | 8     | 62             | 1             | 1             | 1             |
| 11    | 18    | 9     | 198            | 1             | 1             | 1             |
| 12    | 20    | 10    | 803            | 3             | 3             | 2             |
| 13    | 22    | 11    | 3378           | 3             | 3             | 2             |
| 14    | 23    | 12    | 15882          | 12            | 11            | 9             |
| 15    | 26    | 13    | 77185          | 19            | 18            | 11            |
| 16    | 28    | 14    | 393075         | 64            | 58            | 37            |
| 17    | 30    | 15    | 2049974        | 155           | 139           | 79            |
| 18    | 32    | 16    | 10938182       | 510           | 451           | 249           |
| 19    | 34    | 17    | 59312272       | 1514          | 1326          | 671           |
| 20    | 36    | 18    | 326258544      | 5146          | 4461          | 2182          |
| 21    | 38    | 19    | 1815910231     | 16966         | 14554         | 6692          |
| 22    | 40    | 20    | 10213424233    | 58782         | 49957         | 22131         |
| 23    | 42    | 21    | 57974895671    | 203269        | 171159        | 72405         |
| 24    | 44    | 22    | 331820721234   | 716607        | 598102        | 243806        |
| 25    | 46    | 23    | 1913429250439  | 2536201       | 2098675       | 822788        |
| 26    | 48    | 24    | 11109119321058 | 9062402       | 7437910       | 2815119       |
| 27    | 50    | 25    | 64901418126997 | 32533568      | 26490072      | 9679205       |
| 28    | 52    | 26    |                | 117498072     | 94944685      | 33551192      |
| 29    | 54    | 27    |                | 426212952     | 341867921     | 116900081     |
| 30    | 56    | 28    |                | 1553048548    | 1236864842    | 409675567     |
| 31    | 58    | 29    |                | 5681011890    | 8984888982    | 1442454215    |
| 32    | 60    | 30    |                | 20858998805   | 16387852863   | 5102542680    |
| 33    | 62    | 31    |                | 76850220654   | 59985464681   | 18124571838   |
| 34    | 64    | 32    |                | 284057538480  | 220320405895  | 64634480340   |
| 35    | 66    | 33    |                | 1053134292253 | 811796327750  | 231334873091  |
| 36    | 68    | 34    |                | 3915683667721 | 3000183106119 | 830828150081  |
| 37    | 70    | 35    |                |               |               | 2993489821771 |

Table 7: Isomorphism classes of plane quadrangulations

| 4         4         2         1           5         6         3         1           6         8         4         2           7         10         5         3           8         12         6         10         1         1         1           9         14         7         21         0         0         0           10         16         8         83         1         1         1           11         18         9         298         1         1         1           12         20         10         1339         4         4         3           13         22         11         6049         3         3         2           14         23         12         29765         16         15         12           15         26         13         148842         26         25         16           16         28         14         770267         99         92         59           17         30         15         4054539         256         234         133           18         32         16                                                                                                                                                                                                                                                       | $n_v$ | $n_e$ | $n_f$ | $q_1'(n_v)$     | $q_2'(n_v)$   | $q_3'(n_v)$   | $q_4'(n_v)$   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-----------------|---------------|---------------|---------------|
| 6         8         4         2           7         10         5         3           8         12         6         10         1         1         1           9         14         7         21         0         0         0           10         16         8         83         1         1         1           11         18         9         298         1         1         1           12         20         10         1339         4         4         3           13         32         11         6049         3         3         2           14         23         12         29765         16         15         12           15         26         13         148842         26         25         16           16         28         14         770267         99         92         59           17         30         15         4054539         256         234         133           18         32         16         21743705         895         803         445           19         34         17         118237471                                                                                                                                                                                                                                 | 4     | 4     | 2     | 1               |               |               |               |
| 7         10         5         3           8         12         6         10         1         1         1           9         14         7         21         0         0         0           10         16         8         83         1         1         1         1           11         18         9         298         1         1         1         1           12         20         10         1339         4         4         3         3         2           14         23         12         29765         16         15         12         15         16         18         14         770267         99         92         59         16         16         28         14         770267         99         92         59         16         16         18         133         18         32         16         21743705         895         803         445         19         34         17         118237471         2789         2469         1248         20         36         18         651370528         9740         8512         4162         21         3819         3628421181         <                                                                                                                                                       | 5     | 6     | 3     | 1               |               |               |               |
| 8         12         6         10         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                       | 6     | 8     | 4     | 2               |               |               |               |
| 9         14         7         21         0         0         0           10         16         8         83         1         1         1           11         18         9         298         1         1         1           12         20         10         1339         4         4         3           13         22         11         6049         3         3         2           14         23         12         29765         16         15         12           15         26         13         148842         26         25         16           16         28         14         770267         99         92         59           17         30         15         4054539         256         234         133           18         32         16         21743705         895         803         445           19         34         17         118237471         2789         2469         1248           20         36         18         651370528         9740         8512         4162           21         38         19         3628421181                                                                                                                                                                                                       | 7     | 10    | 5     | 3               |               |               |               |
| 10         16         8         83         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                      | 8     | 12    | 6     | 10              | 1             | 1             | 1             |
| 11         18         9         298         1         1         1           12         20         10         1339         4         4         3           13         22         11         6049         3         3         2           14         23         12         29765         16         15         12           15         26         13         148842         26         25         16           16         28         14         770267         99         92         59           17         30         15         4054539         256         234         133           18         32         16         21743705         895         803         445           19         34         17         118237471         2789         2469         1248           20         36         18         651370528         9740         8512         4162           21         38         19         3628421181         32799         28290         13014           22         40         20         20416662314         115024         98148         43474           23         42                                                                                                                                                                                        | 9     | 14    | 7     | 21              | 0             | 0             | 0             |
| 12         20         10         1339         4         4         3           13         22         11         6049         3         3         2           14         23         12         29765         16         15         12           15         26         13         148842         26         25         16           16         28         14         770267         99         92         59           17         30         15         4054539         256         234         133           18         32         16         21743705         895         803         445           19         34         17         118237471         2789         2469         1248           20         36         18         651370528         9740         8512         4162           21         38         19         3628421181         32799         28290         13014           22         40         20         20416662314         115024         98148         43474           23         42         21         115919209155         401180         338673         143304           24 <td>10</td> <td>16</td> <td>8</td> <td>83</td> <td>1</td> <td>1</td> <td>1</td>                                                                                          | 10    | 16    | 8     | 83              | 1             | 1             | 1             |
| 13         22         11         6049         3         3         2           14         23         12         29765         16         15         12           15         26         13         148842         26         25         16           16         28         14         770267         99         92         59           17         30         15         4054539         256         234         133           18         32         16         21743705         895         803         445           19         34         17         118237471         2789         2469         1248           20         36         18         651370528         9740         8512         4162           21         38         19         3628421181         32799         28290         13014           22         40         20         20416662314         115024         98148         43474           23         42         21         115919209155         401180         338673         143304           24         44         22         663548898942         1421170         1188338         484444                                                                                                                                                              | 11    | 18    | 9     | 298             | 1             | 1             | 1             |
| 14         23         12         29765         16         15         12           15         26         13         148842         26         25         16           16         28         14         770267         99         92         59           17         30         15         4054539         256         234         133           18         32         16         21743705         895         803         445           19         34         17         118237471         2789         2469         1248           20         36         18         651370528         9740         8512         4162           21         38         19         3628421181         32799         28290         13014           22         40         20         20416662314         115024         98148         43474           23         42         21         115919209155         401180         338673         143304           24         44         22         663548898942         1421170         1188338         484444           25         46         23         3826577783917         5046539         4180031         <                                                                                                                                         | 12    | 20    | 10    | 1339            | 4             | 4             | 3             |
| 15         26         13         148842         26         25         16           16         28         14         770267         99         92         59           17         30         15         4054539         256         234         133           18         32         16         21743705         895         803         445           19         34         17         118237471         2789         2469         1248           20         36         18         651370528         9740         8512         4162           21         38         19         3628421181         32799         28290         13014           22         40         20         20416662314         115024         98148         43474           23         42         21         115919209155         401180         338673         143304           24         44         22         663548898942         1421170         1188338         484444           25         46         23         3826577783917         5046539         4180854         1639388           26         48         24         22217382001865         18066772         <                                                                                                                                | 13    | 22    | 11    | 6049            | 3             | 3             | 2             |
| 16         28         14         770267         99         92         59           17         30         15         4054539         256         234         133           18         32         16         21743705         895         803         445           19         34         17         118237471         2789         2469         1248           20         36         18         651370528         9740         8512         4162           21         38         19         3628421181         32799         28290         13014           22         40         20         20416662314         115024         98148         43474           23         42         21         115919209155         401180         338673         143304           24         44         22         663548898942         1421170         1188338         484444           25         46         23         3826577783917         5046539         4180854         1639388           26         48         24         22217382001865         18066772         14840031         5617205           27         50         25         129800215435088         <                                                                                                                       | 14    | 23    | 12    | 29765           | 16            | 15            | 12            |
| 17         30         15         4054539         256         234         133           18         32         16         21743705         895         803         445           19         34         17         118237471         2789         2469         1248           20         36         18         651370528         9740         8512         4162           21         38         19         3628421181         32799         28290         13014           22         40         20         20416662314         115024         98148         43474           23         42         21         115919209155         401180         338673         143304           24         44         22         663548898942         1421170         1188338         484444           25         46         23         382657783917         5046539         4180854         1639388           26         48         24         22217382001865         18066772         14840031         5617205           27         50         25         129800215435088         64940825         52904562         19332596           28         52         26         2347                                                                                                                  | 15    | 26    | 13    | 148842          | 26            | 25            | 16            |
| 18         32         16         21743705         895         803         445           19         34         17         118237471         2789         2469         1248           20         36         18         651370528         9740         8512         4162           21         38         19         3628421181         32799         28290         13014           22         40         20         20416662314         115024         98148         43474           23         42         21         115919209155         401180         338673         143304           24         44         22         663548898942         1421170         1188338         484444           25         46         23         3826577783917         5046539         4180854         1639388           26         48         24         22217382001865         18066772         14840031         5617205           27         50         25         129800215435088         64940825         52904562         19332596           28         52         26         234712099         189724510         67048051           30         56         28         3104690139<                                                                                                         | 16    | 28    | 14    | 770267          | 99            | 92            | 59            |
| 19         34         17         118237471         2789         2469         1248           20         36         18         651370528         9740         8512         4162           21         38         19         3628421181         32799         28290         13014           22         40         20         20416662314         115024         98148         43474           23         42         21         115919209155         401180         338673         143304           24         44         22         663548898942         1421170         1188338         484444           25         46         23         3826577783917         5046539         4180854         1639388           26         48         24         22217382001865         18066772         14840031         5617205           27         50         25         129800215435088         64940825         52904562         19332596           28         52         26         234712099         189724510         67048051           29         54         27         851801048         683384218         233691112           30         56         28         3104690139                                                                                                         | 17    | 30    | 15    | 4054539         | 256           | 234           | 133           |
| 20         36         18         651370528         9740         8512         4162           21         38         19         3628421181         32799         28290         13014           22         40         20         20416662314         115024         98148         43474           23         42         21         115919209155         401180         338673         143304           24         44         22         663548898942         1421170         1188338         484444           25         46         23         3826577783917         5046539         4180854         1639388           26         48         24         22217382001865         18066772         14840031         5617205           27         50         25         129800215435088         64940825         52904562         19332596           28         52         26         234712099         189724510         67048051           29         54         27         851801048         683384218         233691112           30         56         28         11358900851         4493270976         2884443024           32         60         30         41710948878 <t< td=""><td>18</td><td>32</td><td>16</td><td>21743705</td><td>895</td><td>803</td><td>445</td></t<> | 18    | 32    | 16    | 21743705        | 895           | 803           | 445           |
| 21       38       19       3628421181       32799       28290       13014         22       40       20       20416662314       115024       98148       43474         23       42       21       115919209155       401180       338673       143304         24       44       22       663548898942       1421170       1188338       484444         25       46       23       3826577783917       5046539       4180854       1639388         26       48       24       22217382001865       18066772       14840031       5617205         27       50       25       129800215435088       64940825       52904562       19332596         28       52       26       234712099       189724510       67048051         29       54       27       851801048       683384218       233691112         30       56       28       3104690139       2472961423       819121608         31       58       29       11358900851       4493270976       2884443024         32       60       30       41710948878       32772085447       10204104900         33       62       31       153684688127 <td< td=""><td>19</td><td>34</td><td>17</td><td>118237471</td><td>2789</td><td>2469</td><td>1248</td></td<>                                                                | 19    | 34    | 17    | 118237471       | 2789          | 2469          | 1248          |
| 22         40         20         20416662314         115024         98148         43474           23         42         21         115919209155         401180         338673         143304           24         44         22         663548898942         1421170         1188338         484444           25         46         23         3826577783917         5046539         4180854         1639388           26         48         24         22217382001865         18066772         14840031         5617205           27         50         25         129800215435088         64940825         52904562         19332596           28         52         26         234712099         189724510         67048051           29         54         27         851801048         683384218         233691112           30         56         28         3104690139         2472961423         819121608           31         58         29         11358900851         4493270976         2884443024           32         60         30         41710948878         32772085447         10204104900           33         62         31         153684688127         119963084542                                                                                   | 20    | 36    | 18    | 651370528       | 9740          | 8512          | 4162          |
| 23       42       21       115919209155       401180       338673       143304         24       44       22       663548898942       1421170       1188338       484444         25       46       23       3826577783917       5046539       4180854       1639388         26       48       24       22217382001865       18066772       14840031       5617205         27       50       25       129800215435088       64940825       52904562       19332596         28       52       26       234712099       189724510       67048051         29       54       27       851801048       683384218       233691112         30       56       28       3104690139       2472961423       819121608         31       58       29       11358900851       4493270976       2884443024         32       60       30       41710948878       32772085447       10204104900         33       62       31       153684688127       119963084542       36247138920         34       64       32       568079430741       440623586740       129264732757         35       66       33       2106188450292       16235551176                                                                                                                                                    | 21    | 38    | 19    | 3628421181      | 32799         | 28290         | 13014         |
| 24       44       22       663548898942       1421170       1188338       484444         25       46       23       3826577783917       5046539       4180854       1639388         26       48       24       22217382001865       18066772       14840031       5617205         27       50       25       129800215435088       64940825       52904562       19332596         28       52       26       234712099       189724510       67048051         29       54       27       851801048       683384218       233691112         30       56       28       3104690139       2472961423       819121608         31       58       29       11358900851       4493270976       2884443024         32       60       30       41710948878       32772085447       10204104900         33       62       31       153684688127       119963084542       36247138920         34       64       32       568079430741       440623586740       129264732757         35       66       33       2106188450292       1623555117611       462661038926                                                                                                                                                                                                                      | 22    | 40    | 20    | 20416662314     | 115024        | 98148         | 43474         |
| 25       46       23       3826577783917       5046539       4180854       1639388         26       48       24       22217382001865       18066772       14840031       5617205         27       50       25       129800215435088       64940825       52904562       19332596         28       52       26       234712099       189724510       67048051         29       54       27       851801048       683384218       233691112         30       56       28       3104690139       2472961423       819121608         31       58       29       11358900851       4493270976       2884443024         32       60       30       41710948878       32772085447       10204104900         33       62       31       153684688127       119963084542       36247138920         34       64       32       568079430741       440623586740       129264732757         35       66       33       2106188450292       1623555117611       462661038926                                                                                                                                                                                                                                                                                                               | 23    | 42    | 21    | 115919209155    | 401180        | 338673        | 143304        |
| 26       48       24       22217382001865       18066772       14840031       5617205         27       50       25       129800215435088       64940825       52904562       19332596         28       52       26       234712099       189724510       67048051         29       54       27       851801048       683384218       233691112         30       56       28       3104690139       2472961423       819121608         31       58       29       11358900851       4493270976       2884443024         32       60       30       41710948878       32772085447       10204104900         33       62       31       153684688127       119963084542       36247138920         34       64       32       568079430741       440623586740       129264732757         35       66       33       2106188450292       1623555117611       462661038926                                                                                                                                                                                                                                                                                                                                                                                                          | 24    | 44    | 22    | 663548898942    | 1421170       | 1188338       | 484444        |
| 27       50       25       129800215435088       64940825       52904562       19332596         28       52       26       234712099       189724510       67048051         29       54       27       851801048       683384218       233691112         30       56       28       3104690139       2472961423       819121608         31       58       29       11358900851       4493270976       2884443024         32       60       30       41710948878       32772085447       10204104900         33       62       31       153684688127       119963084542       36247138920         34       64       32       568079430741       440623586740       129264732757         35       66       33       2106188450292       1623555117611       462661038926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25    | 46    | 23    | 3826577783917   | 5046539       | 4180854       | 1639388       |
| 28       52       26       234712099       189724510       67048051         29       54       27       851801048       683384218       233691112         30       56       28       3104690139       2472961423       819121608         31       58       29       11358900851       4493270976       2884443024         32       60       30       41710948878       32772085447       10204104900         33       62       31       153684688127       119963084542       36247138920         34       64       32       568079430741       440623586740       129264732757         35       66       33       2106188450292       1623555117611       462661038926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26    | 48    | 24    | 22217382001865  | 18066772      | 14840031      | 5617205       |
| 29       54       27       851801048       683384218       233691112         30       56       28       3104690139       2472961423       819121608         31       58       29       11358900851       4493270976       2884443024         32       60       30       41710948878       32772085447       10204104900         33       62       31       153684688127       119963084542       36247138920         34       64       32       568079430741       440623586740       129264732757         35       66       33       2106188450292       1623555117611       462661038926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27    | 50    | 25    | 129800215435088 | 64940825      | 52904562      | 19332596      |
| 30       56       28       3104690139       2472961423       819121608         31       58       29       11358900851       4493270976       2884443024         32       60       30       41710948878       32772085447       10204104900         33       62       31       153684688127       119963084542       36247138920         34       64       32       568079430741       440623586740       129264732757         35       66       33       2106188450292       1623555117611       462661038926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28    | 52    | 26    |                 | 234712099     | 189724510     | 67048051      |
| 31       58       29       11358900851       4493270976       2884443024         32       60       30       41710948878       32772085447       10204104900         33       62       31       153684688127       119963084542       36247138920         34       64       32       568079430741       440623586740       129264732757         35       66       33       2106188450292       1623555117611       462661038926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29    | 54    | 27    |                 | 851801048     | 683384218     | 233691112     |
| 32       60       30       41710948878       32772085447       10204104900         33       62       31       153684688127       119963084542       36247138920         34       64       32       568079430741       440623586740       129264732757         35       66       33       2106188450292       1623555117611       462661038926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30    | 56    | 28    |                 | 3104690139    | 2472961423    | 819121608     |
| 33       62       31       153684688127       119963084542       36247138920         34       64       32       568079430741       440623586740       129264732757         35       66       33       2106188450292       1623555117611       462661038926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31    | 58    | 29    |                 | 11358900851   | 4493270976    | 2884443024    |
| 34       64       32       568079430741       440623586740       129264732757         35       66       33       2106188450292       1623555117611       462661038926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32    | 60    | 30    |                 | 41710948878   | 32772085447   | 10204104900   |
| 35 66 33 2106188450292 1623555117611 462661038926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33    | 62    | 31    |                 | 153684688127  | 119963084542  | 36247138920   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34    | 64    | 32    |                 | 568079430741  | 440623586740  | 129264732757  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35    | 66    | 33    |                 | 2106188450292 | 1623555117611 | 462661038926  |
| 36 68 34 7831185534651 6000283550482 1661637913984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36    | 68    | 34    |                 | 7831185534651 | 6000283550482 | 1661637913984 |
| 37 70 35 5986941546017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37    | 70    | 35    |                 |               |               | 5986941546017 |

Table 8: OP-isomorphism classes of plane quadrangulations

| $n_v$ | $n_e$ | $n_f$                | $p_3(n_v, n_e)$ | $p_3'(n_v, n_e)$ | $n_v$ | $n_e$ | $n_f$ | $p_3(n_v, n_e)$ | $p_3'(n_v, n_e)$ |
|-------|-------|----------------------|-----------------|------------------|-------|-------|-------|-----------------|------------------|
| 4     | 6     | 4                    | 1               | 1                | 9     | 18    | 11    | 768             | 1441             |
| 4     | to    | $\operatorname{tal}$ | 1               | 1                | 9     | 19    | 12    | 558             | 1032             |
| 5     | 8     | 5                    | 1               | 1                | 9     | 20    | 13    | 219             | 386              |
| 5     | 9     | 6                    | 1               | 1                | 9     | 21    | 14    | 50              | 73               |
| 5     | to    | $\operatorname{tal}$ | 2               | 2                | 9     | to    | tal   | 2606            | 4798             |
| 6     | 9     | 5                    | 1               | 1                | 10    | 15    | 7     | 5               | 6                |
| 6     | 10    | 6                    | 2               | 3                | 10    | 16    | 8     | 76              | 128              |
| 6     | 11    | 7                    | 2               | 2                | 10    | 17    | 9     | 633             | 1188             |
| 6     | 12    | 8                    | 2               | 2                | 10    | 18    | 10    | 2635            | 5096             |
| 6     | to    | tal                  | 7               | 8                | 10    | 19    | 11    | 6134            | 11982            |
| 7     | 11    | 6                    | 2               | 2                | 10    | 20    | 12    | 8822            | 17265            |
| 7     | 12    | 7                    | 8               | 11               | 10    | 21    | 13    | 7916            | 15466            |
| 7     | 13    | 8                    | 11              | 16               | 10    | 22    | 14    | 4442            | 8582             |
| 7     | 14    | 9                    | 8               | 10               | 10    | 23    | 15    | 1404            | 2652             |
| 7     | 15    | 10                   | 5               | 6                | 10    | 24    | 16    | 233             | 389              |
| 7     | to    | tal                  | 34              | 45               | 10    | to    | tal   | 32300           | 62754            |
| 8     | 12    | 6                    | 2               | 2                | 11    | 17    | 8     | 38              | 60               |
| 8     | 13    | 7                    | 11              | 16               | 11    | 18    | 9     | 768             | 1441             |
| 8     | 14    | 8                    | 42              | 69               | 11    | 19    | 10    | 6134            | 11982            |
| 8     | 15    | 9                    | 74              | 127              | 11    | 20    | 11    | 25626           | 50586            |
| 8     | 16    | 10                   | 76              | 128              | 11    | 21    | 12    | 64439           | 127765           |
| 8     | 17    | 11                   | 38              | 60               | 11    | 22    | 13    | 104213          | 206880           |
| 8     | 18    | 12                   | 14              | 17               | 11    | 23    | 14    | 112082          | 222472           |
| 8     | to    | $\operatorname{tal}$ | 257             | 419              | 11    | 24    | 15    | 79773           | 158057           |
| 9     | 14    | 7                    | 8               | 10               | 11    | 25    | 16    | 36528           | 71980            |
| 9     | 15    | 8                    | 74              | 127              | 11    | 26    | 17    | 9714            | 18914            |
| 9     | 16    | 9                    | 296             | 541              | 11    | 27    | 18    | 1249            | 2274             |
| 9     | 17    | 10                   | 633             | 1188             | 11    | to    | tal   | 440564          | 872411           |

Table 9: 3-connected planar graphs

| $n_v$ | $n_e$ | $n_f$ | $p_3(n_v, n_e)$ | $p_3'(n_v, n_e)$ | $n_v$ | $n_e$   | $n_f$                | $p_3(n_v, n_e)$ | $p_3'(n_v, n_e)$ |
|-------|-------|-------|-----------------|------------------|-------|---------|----------------------|-----------------|------------------|
| 12    | 18    | 8     | 14              | 17               | 14    | 21      | 9                    | 50              | 73               |
| 12    | 19    | 9     | 558             | 1032             | 14    | 22      | 10                   | 4442            | 8582             |
| 12    | 20    | 10    | 8822            | 17265            | 14    | 23      | 11                   | 112082          | 222472           |
| 12    | 21    | 11    | 64439           | 127765           | 14    | 24      | 12                   | 1263032         | 2519753          |
| 12    | 22    | 12    | 268394          | 534292           | 14    | 25      | 13                   | 8085725         | 16154030         |
| 12    | 23    | 13    | 709302          | 1414264          | 14    | 26      | 14                   | 33310550        | 66582243         |
| 12    | 24    | 14    | 1263032         | 2519753          | 14    | 27      | 15                   | 94713809        | 189357113        |
| 12    | 25    | 15    | 1556952         | 3106586          | 14    | 28      | 16                   | 193794051       | 387478495        |
| 12    | 26    | 16    | 1338853         | 2670345          | 14    | 29      | 17                   | 292182191       | 584222152        |
| 12    | 27    | 17    | 789749          | 1573849          | 14    | 30      | 18                   | 328192346       | 656222622        |
| 12    | 28    | 18    | 306470          | 609084           | 14    | 31      | 19                   | 274542869       | 548932992        |
| 12    | 29    | 19    | 70454           | 139264           | 14    | 32      | 20                   | 168992630       | 337857349        |
| 12    | 30    | 20    | 7595            | 14502            | 14    | 33      | 21                   | 74424566        | 148765545        |
| 12    | to    | tal   | 6384634         | 12728018         | 14    | 34      | 22                   | 22229616        | 44410011         |
| 13    | 20    | 9     | 219             | 386              | 14    | 35      | 23                   | 4037671         | 8057026          |
| 13    | 21    | 10    | 7916            | 15466            | 14    | 36      | 24                   | 339722          | 672781           |
| 13    | 22    | 11    | 104213          | 206880           | 14    | to      | $\operatorname{tal}$ | 1496225352      | 2991463239       |
| 13    | 23    | 12    | 709302          | 1414264          | 15    | 23      | 10                   | 1404            | 2652             |
| 13    | 24    | 13    | 2937495         | 5865150          | 15    | 24      | 11                   | 79773           | 158057           |
| 13    | 25    | 14    | 8085725         | 16154030         | 15    | 25      | 12                   | 1556952         | 3106586          |
| 13    | 26    | 15    | 15535572        | 31044880         | 15    | 26      | 13                   | 15535572        | 31044880         |
| 13    | 27    | 16    | 21395274        | 42757876         | 15    | 27      | 14                   | 94713809        | 189357113        |
| 13    | 28    | 17    | 21317178        | 42599870         | 15    | 28      | 15                   | 388431688       | 776705379        |
| 13    | 29    | 18    | 15287112        | 30543400         | 15    | 29      | 16                   | 1134914458      | 2269538208       |
| 13    | 30    | 19    | 7706577         | 15391064         | 15    | 30      | 17                   | 2447709924      | 4894956314       |
| 13    | 31    | 20    | 2599554         | 5185408          | 15    | 31      | 18                   | 3981512855      | 7962395520       |
| 13    | 32    | 21    | 527235          | 1048947          | 15    | 32      | 19                   | 4939809506      | 9878872040       |
| 13    | 33    | 22    | 49566           | 97033            | 15    | 33      | 20                   | 4686995652      | 9373223282       |
| 13    | to    | tal   | 96262938        | 192324654        | 15    | 34      | 21                   | 3380569040      | 6760462428       |
|       |       |       | •               |                  | 15    | 35      | 22                   | 1823658612      | 3646797274       |
|       |       |       |                 |                  | 15    | 36      | 23                   | 713331098       | 1426340694       |
|       |       |       |                 |                  | 15    | 37      | 24                   | 191283058       | 382390200        |
|       |       |       |                 |                  | 15    | 38      | 25                   | 31477887        | 62893270         |
|       |       |       | 15              | 39               | 26    | 2406841 | 4792530              |                 |                  |
|       |       |       |                 |                  | 15    | to      | tal                  | 23833988129     | 47663036427      |

Table 10: 3-connected planar graphs (continued)

| $n_v$ | $n_e$ | $n_f$ | $p_3(n_v,n_e)$ | $p_3^\prime(n_v,n_e)$ | $n_v$ | $n_e$ | $n_f$                | $p_3(n_v, n_e)$ |
|-------|-------|-------|----------------|-----------------------|-------|-------|----------------------|-----------------|
| 16    | 24    | 10    | 233            | 389                   | 18    | 27    | 11                   | 1249            |
| 16    | 25    | 11    | 36528          | 71980                 | 18    | 28    | 12                   | 306470          |
| 16    | 26    | 12    | 1338853        | 2670345               | 18    | 29    | 13                   | 15287112        |
| 16    | 27    | 13    | 21395274       | 42757876              | 18    | 30    | 14                   | 328192346       |
| 16    | 28    | 14    | 193794051      | 387478495             | 18    | 31    | 15                   | 3981512855      |
| 16    | 29    | 15    | 1134914458     | 2269538208            | 18    | 32    | 16                   | 31277856206     |
| 16    | 30    | 16    | 4637550072     | 9274453627            | 18    | 33    | 17                   | 172301697581    |
| 16    | 31    | 17    | 13865916560    | 27730625000           | 18    | 34    | 18                   | 700335433295    |
| 16    | 32    | 18    | 31277856206    | 62553740764           | 18    | 35    | 19                   | 2173270387051   |
| 16    | 33    | 19    | 54271705726    | 108540645892          | 18    | 36    | 20                   | 5270785332349   |
| 16    | 34    | 20    | 73247405678    | 146491362077          | 18    | 37    | 21                   | 10150757285258  |
| 16    | 35    | 21    | 77220397213    | 154437090617          | 18    | 38    | 22                   | 15683069986564  |
| 16    | 36    | 22    | 63443012728    | 126882463218          | 18    | 39    | 23                   | 19547663107721  |
| 16    | 37    | 23    | 40232230880    | 80461570728           | 18    | 40    | 24                   | 19682306885581  |
| 16    | 38    | 24    | 19322611431    | 38643116145           | 18    | 41    | 25                   | 15962912975720  |
| 16    | 39    | 25    | 6799902944     | 13598589828           | 18    | 42    | 26                   | 10348108651919  |
| 16    | 40    | 26    | 1654924768     | 3309214738            | 18    | 43    | 27                   | 5288847843415   |
| 16    | 41    | 27    | 249026400      | 497840520             | 18    | 44    | 28                   | 2084335836704   |
| 16    | 42    | 28    | 17490241       | 34911786              | 18    | 45    | 29                   | 611239308239    |
| 16    | to    | tal   | 387591510244   | 775158142233          | 18    | 46    | 30                   | 125619037674    |
| 17    | 26    | 11    | 9714           | 18914                 | 18    | 47    | 31                   | 16147744792     |
| 17    | 27    | 12    | 789749         | 1573849               | 18    | 48    | 32                   | 977526957       |
| 17    | 28    | 13    | 21317178       | 42599870              | 18    | to    | $\operatorname{tal}$ | 107854282197058 |
| 17    | 29    | 14    | 292182191      | 584222152             |       |       |                      | •               |
| 17    | 30    | 15    | 2447709924     | 4894956314            |       |       |                      |                 |
| 17    | 31    | 16    | 13865916560    | 27730625000           |       |       |                      |                 |
| 17    | 32    | 17    | 56493493990    | 112984297173          |       |       |                      |                 |
| 17    | 33    | 18    | 172301697581   | 344598307174          |       |       |                      |                 |
| 17    | 34    | 19    | 404008232288   | 808008004874          |       |       |                      |                 |
| 17    | 35    | 20    | 741171341224   | 1482330409238         |       |       |                      |                 |
| 17    | 36    | 21    | 1075323264149  | 2150630733021         |       |       |                      |                 |
| 17    | 37    | 22    | 1240159791730  | 2480301615624         |       |       |                      |                 |
| 17    | 38    | 23    | 1136847700529  | 2273677366634         |       |       |                      |                 |
| 17    | 39    | 24    | 823788552428   | 1647561027749         |       |       |                      |                 |
| 17    | 40    | 25    | 466224664031   | 932436981890          |       |       |                      |                 |
| 17    | 41    | 26    | 201829738768   | 403651052112          |       |       |                      |                 |
| 17    | 42    | 27    | 64563924319    | 129123206316          |       |       |                      |                 |
| 17    | 43    | 28    | 14386939428    | 28771596080           |       |       |                      |                 |
| 17    | 44    | 29    | 1994599707     | 3988465676            |       |       |                      |                 |
| 17    | 45    | 30    | 129664753      | 259106122             |       |       |                      |                 |
| 17    | to    | tal   | 6415851530241  | 12831576165782        |       |       |                      |                 |

Table 11: 3-connected planar graphs (continued)

| $n_v$ | $n_e$ | $n_f$ | $p_4(n_v, n_e)$ | $p_4'(n_v, n_e)$ | $n_v$ | $n_e$ | $n_f$ | $p_4(n_v, n_e)$ | $p_4'(n_v, n_e)$ |
|-------|-------|-------|-----------------|------------------|-------|-------|-------|-----------------|------------------|
| 6     | 12    | 8     | 1               | 1                | 13    | 26    | 15    | 18              | 25               |
| 6     | to    | tal   | 1               | 1                | 13    | 27    | 16    | 456             | 843              |
| 7     | 15    | 10    | 1               | 1                | 13    | 28    | 17    | 2815            | 5444             |
| 7     | to    | tal   | 1               | 1                | 13    | 29    | 18    | 7562            | 14765            |
| 8     | 16    | 10    | 1               | 1                | 13    | 30    | 19    | 10096           | 19791            |
| 8     | 17    | 11    | 1               | 1                | 13    | 31    | 20    | 7485            | 14520            |
| 8     | 18    | 12    | 2               | 2                | 13    | 32    | 21    | 2806            | 5398             |
| 8     | to    | tal   | 4               | 4                | 13    | 33    | 22    | 525             | 891              |
| 9     | 18    | 11    | 1               | 1                | 13    | to    | tal   | 31763           | 61677            |
| 9     | 19    | 12    | 4               | 5                | 14    | 28    | 16    | 58              | 92               |
| 9     | 20    | 13    | 4               | 5                | 14    | 29    | 17    | 1714            | 3280             |
| 9     | 21    | 14    | 5               | 5                | 14    | 30    | 18    | 14102           | 27691            |
| 9     | to    | tal   | 14              | 16               | 14    | 31    | 19    | 47890           | 94823            |
| 10    | 20    | 12    | 3               | 4                | 14    | 32    | 20    | 85805           | 170029           |
| 10    | 21    | 13    | 10              | 15               | 14    | 33    | 21    | 87124           | 172780           |
| 10    | 22    | 14    | 25              | 39               | 14    | 34    | 22    | 51844           | 102171           |
| 10    | 23    | 15    | 17              | 27               | 14    | 35    | 23    | 16534           | 32422            |
| 10    | 24    | 16    | 12              | 14               | 14    | 36    | 24    | 2472            | 4499             |
| 10    | to    | tal   | 67              | 99               | 14    | to    | tal   | 307543          | 607787           |
| 11    | 22    | 13    | 3               | 3                | 15    | 30    | 17    | 139             | 234              |
| 11    | 23    | 14    | 36              | 58               | 15    | 31    | 18    | 6678            | 13024            |
| 11    | 24    | 15    | 107             | 186              | 15    | 32    | 19    | 67651           | 134140           |
| 11    | 25    | 16    | 159             | 276              | 15    | 33    | 20    | 288534          | 574277           |
| 11    | 26    | 17    | 89              | 152              | 15    | 34    | 21    | 651596          | 1298861          |
| 11    | 27    | 18    | 34              | 45               | 15    | 35    | 22    | 870969          | 1735951          |
| 11    | to    | tal   | 428             | 720              | 15    | 36    | 23    | 712861          | 1420596          |
| 12    | 24    | 14    | 11              | 15               | 15    | 37    | 24    | 355286          | 705869           |
| 12    | 25    | 15    | 119             | 211              | 15    | 38    | 25    | 98587           | 195245           |
| 12    | 26    | 16    | 580             | 1080             | 15    | 39    | 26    | 12400           | 23603            |
| 12    | 27    | 17    | 1095            | 2087             | 15    | to    | tal   | 3064701         | 6101800          |
| 12    | 28    | 18    | 1089            | 2035             |       |       |       |                 |                  |
| 12    | 29    | 19    | 491             | 909              |       |       |       |                 |                  |
| 12    | 30    | 20    | 130             | 194              |       |       |       |                 |                  |
| 12    | to    | tal   | 3515            | 6531             |       |       |       |                 |                  |

Table 12: 3-connected planar graphs with minimum degree at least  $4\,$ 

| $n_v$ | $n_e$ | $n_f$ | $p_4(n_v, n_e)$ | $p_4'(n_v, n_e)$ | $n_v$ | $n_e$ | $n_f$ | $p_4(n_v, n_e)$ | $p_4'(n_v, n_e)$ |
|-------|-------|-------|-----------------|------------------|-------|-------|-------|-----------------|------------------|
| 16    | 32    | 18    | 451             | 803              | 18    | 36    | 20    | 4461            | 8512             |
| 16    | 33    | 19    | 26053           | 51346            | 18    | 37    | 21    | 401839          | 799894           |
| 16    | 34    | 20    | 321633          | 640157           | 18    | 38    | 22    | 6871117         | 13724201         |
| 16    | 35    | 21    | 1655945         | 3304524          | 18    | 39    | 23    | 49151202        | 98250487         |
| 16    | 36    | 22    | 4596362         | 9178285          | 18    | 40    | 24    | 192208694       | 384298704        |
| 16    | 37    | 23    | 7694805         | 15370991         | 18    | 41    | 25    | 465884287       | 931575989        |
| 16    | 38    | 24    | 8201794         | 16380369         | 18    | 42    | 26    | 748153542       | 1496024456       |
| 16    | 39    | 25    | 5623132         | 11228632         | 18    | 43    | 27    | 822759274       | 1645223548       |
| 16    | 40    | 26    | 2419038         | 4822966          | 18    | 44    | 28    | 625673674       | 1251042907       |
| 16    | 41    | 27    | 594236          | 1182790          | 18    | 45    | 29    | 324655428       | 649108896        |
| 16    | 42    | 28    | 65619           | 127887           | 18    | 46    | 30    | 110109217       | 220069087        |
| 16    | to    | tal   | 31199068        | 62288750         | 18    | 47    | 31    | 22046012        | 44040684         |
| 17    | 34    | 19    | 1326            | 2469             | 18    | 48    | 32    | 1992985         | 3959653          |
| 17    | 35    | 20    | 102303          | 202921           | 18    | to    | tal   | 3369911732      | 6738127018       |
| 17    | 36    | 21    | 1495862         | 2984594          | 19    | 38    | 21    | 14554           | 28290            |
| 17    | 37    | 22    | 9162421         | 18304658         | 19    | 39    | 22    | 1580624         | 3152716          |
| 17    | 38    | 23    | 30452356        | 60865282         | 19    | 40    | 23    | 31144629        | 62247109         |
| 17    | 39    | 24    | 62068706        | 124072684        | 19    | 41    | 24    | 257114746       | 514091455        |
| 17    | 40    | 25    | 82398857        | 164721872        | 19    | 42    | 25    | 1165392704      | 2330464143       |
| 17    | 41    | 26    | 73098873        | 146113658        | 19    | 43    | 26    | 3301434495      | 6602256719       |
| 17    | 42    | 27    | 43159731        | 86258968         | 19    | 44    | 27    | 6271404415      | 12541919157      |
| 17    | 43    | 28    | 16358800        | 32670411         | 19    | 45    | 28    | 8303354116      | 16605547117      |
| 17    | 44    | 29    | 3607916         | 7198627          | 19    | 46    | 29    | 7797302305      | 15593472680      |
| 17    | 45    | 30    | 357504          | 705770           | 19    | 47    | 30    | 5192671355      | 10384273735      |
| 17    | to    | tal   | 322264655       | 644101914        | 19    | 48    | 31    | 2404902987      | 4809128447       |
|       |       |       |                 |                  | 19    | 49    | 32    | 738539257       | 1476613802       |
|       |       |       |                 |                  | 19    | 50    | 33    | 135456226       | 270757489        |
|       |       |       |                 |                  | 19    | 51    | 34    | 11284042        | 22494163         |
|       |       |       |                 |                  | 19    | to    | tal   | 35611596455     | 71216447022      |

Table 13: 3-connected planar graphs with minimum degree at least 4 (continued)

| $n_v$ | $n_e$ | $n_f$ | $p_4(n_v, n_e)$ | $p_4'(n_v, n_e)$ | $n_v$ | $n_e$ | $n_f$ | $p_4(n_v,n_e)$ |
|-------|-------|-------|-----------------|------------------|-------|-------|-------|----------------|
| 20    | 40    | 22    | 49957           | 98148            | 21    | 42    | 23    | 171159         |
| 20    | 41    | 23    | 6216228         | 12413412         | 21    | 43    | 24    | 24454736       |
| 20    | 42    | 24    | 139772014       | 279440528        | 21    | 44    | 25    | 621638040      |
| 20    | 43    | 25    | 1316733885      | 2633118911       | 21    | 45    | 26    | 6623527353     |
| 20    | 44    | 26    | 6835771143      | 13670629344      | 21    | 46    | 27    | 38988464261    |
| 20    | 45    | 27    | 22314671743     | 44627575118      | 21    | 47    | 28    | 144986607904   |
| 20    | 46    | 28    | 49293619937     | 98584249961      | 21    | 48    | 29    | 367384415512   |
| 20    | 47    | 29    | 76876264695     | 153748652342     | 21    | 49    | 30    | 663656374611   |
| 20    | 48    | 30    | 86591104361     | 173177527208     | 21    | 50    | 31    | 877516979065   |
| 20    | 49    | 31    | 70984826506     | 141965438774     | 21    | 51    | 32    | 860271765669   |
| 20    | 50    | 32    | 42074212402     | 84144667518      | 21    | 52    | 33    | 626038224719   |
| 20    | 51    | 33    | 17604812790     | 35207381912      | 21    | 53    | 34    | 334467204910   |
| 20    | 52    | 34    | 4942097075      | 9882727713       | 21    | 54    | 35    | 127681045881   |
| 20    | 53    | 35    | 836535543       | 1672603778       | 21    | 55    | 36    | 33020478701    |
| 20    | 54    | 36    | 64719885        | 129227103        | 21    | 56    | 37    | 5190532666     |
| 20    | to    | tal   | 379881408164    | 759735751770     | 21    | 57    | 38    | 375126827      |
|       |       |       |                 |                  | 21    | to    | tal   | 4086847012014  |

Table 14: 3-connected planar graphs with minimum degree at least 4 (continued)

| $n_v$ | $n_e$ | $n_f$                | $p_5(n_v, n_e)$ | $p_5'(n_v, n_e)$ | $n_v$ | $n_e$ | $n_f$ | $p_5(n_v, n_e)$ | $p_5'(n_v, n_e)$ |
|-------|-------|----------------------|-----------------|------------------|-------|-------|-------|-----------------|------------------|
| 12    | 30    | 20                   | 1               | 1                | 21    | 56    | 37    | 540             | 1017             |
| 12    | to    | tal                  | 1               | 1                | 21    | 57    | 38    | 192             | 331              |
| 13    | to    | tal                  | 0               | 0                | 21    | to    | tal   | 1587            | 2961             |
| 14    | 36    | 24                   | 1               | 1                | 22    | 55    | 35    | 14              | 24               |
| 14    | to    | tal                  | 1               | 1                | 22    | 56    | 36    | 325             | 616              |
| 15    | 39    | 26                   | 1               | 1                | 22    | 57    | 37    | 1550            | 3005             |
| 15    | to    | tal                  | 1               | 1                | 22    | 58    | 38    | 2955            | 5734             |
| 16    | 40    | 26                   | 1               | 1                | 22    | 59    | 39    | 2162            | 4185             |
| 16    | 41    | 27                   | 1               | 1                | 22    | 60    | 40    | 651             | 1180             |
| 16    | 42    | 28                   | 3               | 4                | 22    | to    | tal   | 7657            | 14744            |
| 16    | to    | tal                  | 5               | 6                | 23    | 58    | 37    | 196             | 365              |
| 17    | 43    | 28                   | 1               | 1                | 23    | 59    | 38    | 2591            | 5058             |
| 17    | 44    | 29                   | 3               | 3                | 23    | 60    | 39    | 9270            | 18274            |
| 17    | 45    | 30                   | 4               | 4                | 23    | 61    | 40    | 13615           | 26814            |
| 17    | to    | $\operatorname{tal}$ | 8               | 8                | 23    | 62    | 41    | 8549            | 16797            |
| 18    | 45    | 29                   | 1               | 2                | 23    | 63    | 42    | 2070            | 3899             |
| 18    | 46    | 30                   | 7               | 12               | 23    | to    | tal   | 36291           | 71207            |
| 18    | 47    | 31                   | 10              | 15               | 24    | 60    | 38    | 96              | 173              |
| 18    | 48    | 32                   | 12              | 17               | 24    | 61    | 39    | 2810            | 5497             |
| 18    | to    | $\operatorname{tal}$ | 30              | 46               | 24    | 62    | 40    | 20206           | 39974            |
| 19    | 48    | 31                   | 3               | 4                | 24    | 63    | 41    | 52823           | 104898           |
| 19    | 49    | 32                   | 24              | 40               | 24    | 64    | 42    | 63095           | 125146           |
| 19    | 50    | 33                   | 35              | 58               | 24    | 65    | 43    | 34124           | 67568            |
| 19    | 51    | 34                   | 23              | 33               | 24    | 66    | 44    | 7290            | 14052            |
| 19    | to    | tal                  | 85              | 135              | 24    | to    | tal   | 180444          | 357308           |
| 20    | 50    | 32                   | 6               | 9                | 25    | 63    | 40    | 1694            | 3307             |
| 20    | 51    | 33                   | 37              | 63               | 25    | 64    | 41    | 28649           | 56820            |
| 20    | 52    | 34                   | 136             | 244              | 25    | 65    | 42    | 138525          | 275764           |
| 20    | 53    | 35                   | 140             | 253              | 25    | 66    | 43    | 284520          | 567010           |
| 20    | 54    | 36                   | 73              | 117              | 25    | 67    | 44    | 284102          | 565701           |
| 20    | to    | tal                  | 392             | 686              | 25    | 68    | 45    | 135439          | 269342           |
| 21    | 53    | 34                   | 26              | 45               | 25    | 69    | 46    | 25381           | 49667            |
| 21    | 54    | 35                   | 231             | 433              | 25    | to    | tal   | 898310          | 1787611          |
| 21    | 55    | 36                   | 598             | 1135             |       |       |       |                 |                  |

Table 15: 3-connected plane graphs with minimum degree at least  $5\,$ 

| $n_v$ | $n_e$ | $n_f$ | $p_5(n_v, n_e)$ | $p_5'(n_v, n_e)$ | $n_v$ | $n_e$ | $n_f$                | $p_5(n_v,n_e)$ | $p_5'(n_v, n_e)$ |
|-------|-------|-------|-----------------|------------------|-------|-------|----------------------|----------------|------------------|
| 26    | 65    | 41    | 518             | 990              | 29    | 73    | 46                   | 129558         | 258217           |
| 26    | 66    | 42    | 27247           | 54028            | 29    | 74    | 47                   | 3395462        | 6784218          |
| 26    | 67    | 43    | 251687          | 501717           | 29    | 75    | 48                   | 25980495       | 51937427         |
| 26    | 68    | 44    | 884431          | 1764979          | 29    | 76    | 49                   | 89502100       | 178953032        |
| 26    | 69    | 45    | 1474446         | 2943645          | 29    | 77    | 50                   | 164317521      | 328554612        |
| 26    | 70    | 46    | 1265456         | 2524800          | 29    | 78    | 51                   | 172082986      | 344079630        |
| 26    | 71    | 47    | 537493          | 1071577          | 29    | 79    | 52                   | 103295735      | 206511268        |
| 26    | 72    | 48    | 91441           | 180502           | 29    | 80    | 53                   | 33113060       | 66186792         |
| 26    | to    | tal   | 4532719         | 9042238          | 29    | 81    | 54                   | 4412031        | 8800984          |
| 27    | 68    | 43    | 14674           | 29075            | 29    | to    | $\operatorname{tal}$ | 596228948      | 1192066180       |
| 27    | 69    | 44    | 315002          | 628215           | 30    | 75    | 47                   | 29821          | 59206            |
| 27    | 70    | 45    | 1943074         | 3880657          | 30    | 76    | 48                   | 2540458        | 5075116          |
| 27    | 71    | 46    | 5285560         | 10560455         | 30    | 77    | 49                   | 36153637       | 72280336         |
| 27    | 72    | 47    | 7387374         | 14761187         | 30    | 78    | 50                   | 199284603      | 398489524        |
| 27    | 73    | 48    | 5547143         | 11080030         | 30    | 79    | 51                   | 553245996      | 1106343494       |
| 27    | 74    | 49    | 2126514         | 4245308          | 30    | 80    | 52                   | 868499404      | 1736780076       |
| 27    | 75    | 50    | 329824          | 654674           | 30    | 81    | 53                   | 806515573      | 1612816382       |
| 27    | to    | tal   | 22949165        | 45839601         | 30    | 82    | 54                   | 439841613      | 879491006        |
| 28    | 70    | 44    | 3917            | 7689             | 30    | 83    | 55                   | 130336575      | 260584336        |
| 28    | 71    | 45    | 262170          | 522777           | 30    | 84    | 56                   | 16248772       | 32447008         |
| 28    | 72    | 46    | 3064076         | 6121002          | 30    | to    | tal                  | 3052696452     | 6104366484       |
| 28    | 73    | 47    | 13674643        | 27332100         | 31    | 78    | 49                   | 1145111        | 2287156          |
| 28    | 74    | 48    | 30081720        | 60132817         | 31    | 79    | 50                   | 36028132       | 72031083         |
| 28    | 75    | 49    | 36052160        | 72069944         | 31    | 80    | 51                   | 333673154      | 667247944        |
| 28    | 76    | 50    | 24062148        | 48089612         | 31    | 81    | 52                   | 1413054897     | 2825865636       |
| 28    | 77    | 51    | 8400155         | 16782891         | 31    | 82    | 53                   | 3264576190     | 6528731430       |
| 28    | 78    | 52    | 1204737         | 2398527          | 31    | 83    | 54                   | 4465329366     | 8930094363       |
| 28    | to    | tal   | 116805726       | 233457359        | 31    | 84    | 55                   | 3721853265     | 7443174579       |
|       |       |       |                 |                  | 31    | 85    | 56                   | 1859260375     | 3718075225       |
|       |       |       |                 |                  | 31    | 86    | 57                   | 512281901      | 1024362305       |
|       |       |       |                 |                  | 31    | 87    | 58                   | 59995535       | 119883207        |
|       |       |       |                 |                  | 31    | to    | tal                  | 15667197926    | 31331752928      |

Table 16: 3-connected plane graphs with minimum degree at least 5 (continued)

| $n_v$ | $n_e$ | $n_f$ | $p_5(n_v,n_e)$ | $p_5^{\prime}(n_v,n_e)$ |
|-------|-------|-------|----------------|-------------------------|
| 32    | 80    | 50    | 240430         | 479446                  |
| 32    | 81    | 51    | 24468620       | 48918024                |
| 32    | 82    | 52    | 416399311      | 832689068               |
| 32    | 83    | 53    | 2767321897     | 5534305556              |
| 32    | 84    | 54    | 9412162103     | 18823569658             |
| 32    | 85    | 55    | 18541480725    | 37081796296             |
| 32    | 86    | 56    | 22433623830    | 44865765346             |
| 32    | 87    | 57    | 16951098902    | 33900894153             |
| 32    | 88    | 58    | 7811471882     | 15621888283             |
| 32    | 89    | 59    | 2011226628     | 4021998166              |
| 32    | 90    | 60    | 222231424      | 444226539               |
| 32    | to    | tal   | 80591725752    | 161176530535            |
| 33    | 83    | 52    | 10152741       | 20295368                |
| 33    | 84    | 53    | 376951752      | 753810321               |
| 33    | 85    | 54    | 4149278837     | 8298153553              |
| 33    | 86    | 55    | 21111408725    | 42221707361             |
| 33    | 87    | 56    | 59571105445    | 119140021626            |
| 33    | 88    | 57    | 101993247858   | 203983308997            |
| 33    | 89    | 58    | 110506546904   | 221009334051            |
| 33    | 90    | 59    | 76335350545    | 152667508151            |
| 33    | 91    | 60    | 32643939837    | 65285438093             |
| 33    | 92    | 61    | 7888416533     | 15775800762             |
| 33    | 93    | 62    | 825028656      | 1649550311              |
| 33    | to    | tal   | 415411427833   | 830804928594            |

Table 17: 3-connected plane graphs with minimum degree at least 5 (continued)

| $n_v$ | $n_e$ | $n_f$ | $p_5(n_v,n_e)$ | $p_5^{\prime}(n_v,n_e)$ |
|-------|-------|-------|----------------|-------------------------|
| 34    | 85    | 53    | 1957382        | 3910515                 |
| 34    | 86    | 54    | 234846981      | 469623164               |
| 34    | 87    | 55    | 4698066344     | 9395720509              |
| 34    | 88    | 56    | 36973254903    | 73945022947             |
| 34    | 89    | 57    | 150610142121   | 301216777356            |
| 34    | 90    | 58    | 361402022519   | 722797642328            |
| 34    | 91    | 59    | 546056821115   | 1092105078640           |
| 34    | 92    | 60    | 535227995999   | 1070446321676           |
| 34    | 93    | 61    | 340413582639   | 680819405952            |
| 34    | 94    | 62    | 135792191605   | 271578632193            |
| 34    | 95    | 63    | 30915951931    | 61829568488             |
| 34    | 96    | 64    | 3069993552     | 6138874486              |
| 34    | to    | tal   | 2145396827091  | 4290746578254           |
| 35    | 88    | 55    | 90171828       | 180309786               |
| 35    | 89    | 56    | 3899705466     | 7799068373              |
| 35    | 90    | 57    | 50252955201    | 100504272959            |
| 35    | 91    | 58    | 301760294018   | 603515614576            |
| 35    | 92    | 59    | 1016954066033  | 2033897372915           |
| 35    | 93    | 60    | 2115688345019  | 4231358798972           |
| 35    | 94    | 61    | 2856474952904  | 5712927114015           |
| 35    | 95    | 62    | 2554640081343  | 5109255971021           |
| 35    | 96    | 63    | 1505165810142  | 3010312797687           |
| 35    | 97    | 64    | 562599608075   | 1125185937779           |
| 35    | 98    | 65    | 121088625406   | 242171956724            |
| 35    | 99    | 66    | 11446245342    | 22890091062             |
| 35    | to    | tal   | 11100060860777 | 22199999305869          |

Table 18: 3-connected plane graphs with minimum degree at least 5 (continued)

| $n_v$ | $n_e$ | $n_f$ | $s_1(n_v, n_e)$ | $s_1'(n_v, n_e)$ | $n_v$ | $n_e$ | $n_f$ | $s_1(n_v, n_e)$ | $s_1'(n_v, n_e)$ |
|-------|-------|-------|-----------------|------------------|-------|-------|-------|-----------------|------------------|
| 1     | 0     | 1     | 1               | 1                | 7     | 12    | 7     | 218             | 379              |
| 1     | to    | tal   | 1               | 1                | 7     | 13    | 8     | 84              | 136              |
| 2     | 1     | 1     | 1               | 1                | 7     | 14    | 9     | 18              | 26               |
| 2     | to    | tal   | 1               | 1                | 7     | 15    | 10    | 5               | 6                |
| 3     | 2     | 1     | 1               | 1                | 7     | total |       | 2014            | 3461             |
| 3     | 3     | 2     | 1               | 2                | 8     | 7     | 1     | 27              | 34               |
| 3     | to    | tal   | 2               | 2                | 8     | 8     | 2     | 271             | 444              |
| 4     | 3     | 1     | 2               | 2                | 8     | 9     | 3     | 1293            | 2303             |
| 4     | 4     | 2     | 2               | 2                | 8     | 10    | 4     | 3539            | 6584             |
| 4     | 5     | 3     | 1               | 1                | 8     | 11    | 5     | 6205            | 11782            |
| 4     | 6     | 4     | 1               | 1                | 8     | 12    | 6     | 7482            | 14321            |
| 4     | to    | tal   | 6               | 6                | 8     | 13    | 7     | 6318            | 12113            |
| 5     | 4     | 1     | 3               | 3                | 8     | 14    | 8     | 3833            | 7298             |
| 5     | 5     | 2     | 7               | 8                | 8     | 15    | 9     | 1623            | 3048             |
| 5     | 6     | 3     | 7               | 8                | 8     | 16    | 10    | 485             | 872              |
| 5     | 7     | 4     | 5               | 6                | 8     | 17    | 11    | 88              | 147              |
| 5     | 8     | 5     | 2               | 2                | 8     | 18    | 12    | 14              | 17               |
| 5     | 9     | 6     | 1               | 1                | 8     | to    | tal   | 31178           | 58963            |
| 5     | to    | tal   | 25              | 28               | 9     | 8     | 1     | 65              | 95               |
| 6     | 5     | 1     | 6               | 6                | 9     | 9     | 2     | 1001            | 1763             |
| 6     | 6     | 2     | 22              | 29               | 9     | 10    | 3     | 6757            | 12650            |
| 6     | 7     | 3     | 42              | 60               | 9     | 11    | 4     | 25842           | 49806            |
| 6     | 8     | 4     | 49              | 73               | 9     | 12    | 5     | 63254           | 123547           |
| 6     | 9     | 5     | 35              | 52               | 9     | 13    | 6     | 106985          | 210314           |
| 6     | 10    | 6     | 18              | 25               | 9     | 14    | 7     | 129782          | 255884           |
| 6     | 11    | 7     | 5               | 6                | 9     | 15    | 8     | 115988          | 228807           |
| 6     | 12    | 8     | 2               | 2                | 9     | 16    | 9     | 76582           | 150929           |
| 6     | to    | tal   | 179             | 253              | 9     | 17    | 10    | 37421           | 73428            |
| 7     | 6     | 1     | 12              | 14               | 9     | 18    | 11    | 13111           | 25536            |
| 7     | 7     | 2     | 76              | 113              | 9     | 19    | 12    | 3228            | 6142             |
| 7     | 8     | 3     | 237             | 388              | 9     | 20    | 13    | 489             | 892              |
| 7     | 9     | 4     | 442             | 768              | 9     | 21    | 14    | 50              | 73               |
| 7     | 10    | 5     | 510             | 903              | 9     | to    | tal   | 580555          | 1139866          |
| 7     | 11    | 6     | 412             | 728              |       |       |       |                 |                  |

Table 19: Simple plane graphs

| $n_v$ | $n_e$ | $n_f$ | $s_1(n_v, n_e)$ | $s_1'(n_v, n_e)$ | $n_v$ | $n_e$ | $n_f$ | $s_1(n_v, n_e)$ | $s_1'(n_v, n_e)$ |
|-------|-------|-------|-----------------|------------------|-------|-------|-------|-----------------|------------------|
| 10    | 9     | 1     | 175             | 280              | 11    | 22    | 13    | 10404904        | 20770210         |
| 10    | 10    | 2     | 3765            | 6951             | 11    | 23    | 14    | 3680668         | 7340180          |
| 10    | 11    | 3     | 34289           | 66036            | 11    | 24    | 15    | 965204          | 1921576          |
| 10    | 12    | 4     | 173890          | 341048           | 11    | 25    | 16    | 178166          | 352832           |
| 10    | 13    | 5     | 563715          | 1114697          | 11    | 26    | 17    | 20667           | 40490            |
| 10    | 14    | 6     | 1266019         | 2513423          | 11    | 27    | 18    | 1249            | 2274             |
| 10    | 15    | 7     | 2064899         | 4107464          | 11    | to    | tal   | 267836680       | 534729502        |
| 10    | 16    | 8     | 2520682         | 5018648          | 12    | 11    | 1     | 1473            | 2694             |
| 10    | 17    | 9     | 2340428         | 4661292          | 12    | 12    | 2     | 55450           | 107672           |
| 10    | 18    | 10    | 1665254         | 3315602          | 12    | 13    | 3     | 814935          | 1610019          |
| 10    | 19    | 11    | 904432          | 1799396          | 12    | 14    | 4     | 6540667         | 13007783         |
| 10    | 20    | 12    | 370667          | 735850           | 12    | 15    | 5     | 33414914        | 66638772         |
| 10    | 21    | 13    | 111177          | 219906           | 12    | 16    | 6     | 118601261       | 236825891        |
| 10    | 22    | 14    | 23376           | 45710            | 12    | 17    | 7     | 308937020       | 617272349        |
| 10    | 23    | 15    | 3071            | 5876             | 12    | 18    | 8     | 612495575       | 1224182030       |
| 10    | 24    | 16    | 233             | 389              | 12    | 19    | 9     | 947188002       | 1893440560       |
| 10    | to    | tal   | 12046072        | 23952568         | 12    | 20    | 10    | 1161385024      | 2321819219       |
| 11    | 10    | 1     | 490             | 854              | 12    | 21    | 11    | 1140422860      | 2279997573       |
| 11    | 11    | 2     | 14381           | 27395            | 12    | 22    | 12    | 901120070       | 1801560786       |
| 11    | 12    | 3     | 169146          | 331103           | 12    | 23    | 13    | 572806006       | 1145135868       |
| 11    | 13    | 4     | 1095253         | 2167814          | 12    | 24    | 14    | 291326699       | 582350001        |
| 11    | 14    | 5     | 4522819         | 8994907          | 12    | 25    | 15    | 117141432       | 234118427        |
| 11    | 15    | 6     | 12962663        | 25838666         | 12    | 26    | 16    | 36490499        | 72898910         |
| 11    | 16    | 7     | 27156110        | 54191372         | 12    | 27    | 17    | 8509444         | 16986695         |
| 11    | 17    | 8     | 43021440        | 85900472         | 12    | 28    | 18    | 1403778         | 2795556          |
| 11    | 18    | 9     | 52653941        | 105164088        | 12    | 29    | 19    | 146381          | 290020           |
| 11    | 19    | 10    | 50438521        | 100749234        | 12    | 30    | 20    | 7595            | 14502            |
| 11    | 20    | 11    | 38019564        | 75940910         | 12    | to    | tal   | 6258809085      | 12511055327      |
| 11    | 21    | 12    | 22531494        | 44995125         |       |       |       |                 |                  |

Table 20: Simple plane graphs (continued)

| $n_v$ | $n_e$ | $n_f$ | $s_1(n_v, n_e)$ | $s_1'(n_v, n_e)$ |
|-------|-------|-------|-----------------|------------------|
| 13    | 12    | 1     | 4588            | 8714             |
| 13    | 13    | 2     | 214880          | 422330           |
| 13    | 14    | 3     | 3847045         | 7640733          |
| 13    | 15    | 4     | 37396327        | 74563644         |
| 13    | 16    | 5     | 231042429       | 461400518        |
| 13    | 17    | 6     | 992347643       | 1983154498       |
| 13    | 18    | 7     | 3135908805      | 6269025509       |
| 13    | 19    | 8     | 7574882641      | 15145530340      |
| 13    | 20    | 9     | 14361574531     | 28717622644      |
| 13    | 21    | 10    | 21771980560     | 43537636164      |
| 13    | 22    | 11    | 26728140900     | 53449879149      |
| 13    | 23    | 12    | 26786453756     | 53567092452      |
| 13    | 24    | 13    | 22003820967     | 44002935573      |
| 13    | 25    | 14    | 14820237437     | 29637017484      |
| 13    | 26    | 15    | 8154755112      | 16307265965      |
| 13    | 27    | 16    | 3636115210      | 7270899128       |
| 13    | 28    | 17    | 1295548971      | 2590420902       |
| 13    | 29    | 18    | 360765580       | 721213960        |
| 13    | 30    | 19    | 75769154        | 151420444        |
| 13    | 31    | 20    | 11315138        | 22588920         |
| 13    | 32    | 21    | 1072760         | 2136488          |
| 13    | 33    | 22    | 49566           | 97033            |
| 13    | to    | tal   | 151983244000    | 303919972592     |

Table 21: Simple plane graphs (continued)

| $n_v$ | $n_e$ | $n_f$ | $s_1(n_v, n_e)$ | $s_1'(n_v, n_e)$ |
|-------|-------|-------|-----------------|------------------|
| 14    | 13    | 1     | 14782           | 28640            |
| 14    | 14    | 2     | 835663          | 1654180          |
| 14    | 15    | 3     | 17850770        | 35560340         |
| 14    | 16    | 4     | 206278148       | 411862507        |
| 14    | 17    | 5     | 1513397328      | 3024437423       |
| 14    | 18    | 6     | 7721917289      | 15437825408      |
| 14    | 19    | 7     | 29037045381     | 58061851096      |
| 14    | 20    | 8     | 83706257879     | 167391740331     |
| 14    | 21    | 9     | 190208046338    | 380385840201     |
| 14    | 22    | 10    | 347588206583    | 695137815312     |
| 14    | 23    | 11    | 518230987068    | 1036418333036    |
| 14    | 24    | 12    | 636786027736    | 1273527733979    |
| 14    | 25    | 13    | 649139024125    | 1298237616992    |
| 14    | 26    | 14    | 550913928145    | 1101794307544    |
| 14    | 27    | 15    | 389487996579    | 778950963059     |
| 14    | 28    | 16    | 228840399800    | 457663707370     |
| 14    | 29    | 17    | 111096539594    | 222182705492     |
| 14    | 30    | 18    | 44127749090     | 88249715922      |
| 14    | 31    | 19    | 14121413352     | 28240051024      |
| 14    | 32    | 20    | 3556481698      | 7111733177       |
| 14    | 33    | 21    | 679613347       | 1358792263       |
| 14    | 34    | 22    | 92771734        | 185398789        |
| 14    | 35    | 23    | 8071728         | 16113254         |
| 14    | 36    | 24    | 339722          | 672781           |
| 14    | to    | tal   | 3807081193879   | 7613826460120    |

Table 22: Simple plane graphs (continued)

| $n_v$ | $n_e$ | $n_f$                | $s_2(n_v, n_e)$ | $s_2'(n_v, n_e)$ | $n_v$ | $n_e$ | $n_f$ | $s_2(n_v, n_e)$ | $s_2'(n_v, n_e)$ |
|-------|-------|----------------------|-----------------|------------------|-------|-------|-------|-----------------|------------------|
| 3     | 3     | 2                    | 1               | 1                | 8     | 14    | 8     | 2144            | 4055             |
| 3     | to    | $\operatorname{tal}$ | 1               | 1                | 8     | 15    | 9     | 1246            | 2332             |
| 4     | 4     | 2                    | 1               | 1                | 8     | 16    | 10    | 447             | 804              |
| 4     | 5     | 3                    | 1               | 1                | 8     | 17    | 11    | 88              | 147              |
| 4     | 6     | 4                    | 1               | 1                | 8     | 18    | 12    | 14              | 17               |
| 4     | to    | tal                  | 3               | 3                | 8     | to    | tal   | 7593            | 14162            |
| 5     | 5     | 2                    | 1               | 1                | 9     | 9     | 2     | 1               | 1                |
| 5     | 6     | 3                    | 2               | 2                | 9     | 10    | 3     | 7               | 7                |
| 5     | 7     | 4                    | 4               | 5                | 9     | 11    | 4     | 104             | 161              |
| 5     | 8     | 5                    | 2               | 2                | 9     | 12    | 5     | 915             | 1664             |
| 5     | 9     | 6                    | 1               | 1                | 9     | 13    | 6     | 5046            | 9659             |
| _ 5   | to    | tal                  | 10              | 11               | 9     | 14    | 7     | 16009           | 31252            |
| 6     | 6     | 2                    | 1               | 1                | 9     | 15    | 8     | 30183           | 59244            |
| 6     | 7     | 3                    | 3               | 3                | 9     | 16    | 9     | 33719           | 66289            |
| 6     | 8     | 4                    | 13              | 17               | 9     | 17    | 10    | 23749           | 46521            |
| 6     | 9     | 5                    | 21              | 31               | 9     | 18    | 11    | 10585           | 20604            |
| 6     | 10    | 6                    | 16              | 22               | 9     | 19    | 12    | 3017            | 5743             |
| 6     | 11    | 7                    | 5               | 6                | 9     | 20    | 13    | 489             | 892              |
| 6     | 12    | 8                    | 2               | 2                | 9     | 21    | 14    | 50              | 73               |
| 6     | to    | tal                  | 61              | 82               | 9     | to    | tal   | 123874          | 242110           |
| 7     | 7     | 2                    | 1               | 1                | 10    | 10    | 2     | 1               | 1                |
| 7     | 8     | 3                    | 4               | 4                | 10    | 11    | 3     | 9               | 9                |
| 7     | 9     | 4                    | 29              | 42               | 10    | 12    | 4     | 181             | 286              |
| 7     | 10    | 5                    | 94              | 157              | 10    | 13    | 5     | 2239            | 4151             |
| 7     | 11    | 6                    | 183             | 318              | 10    | 14    | 6     | 17876           | 34700            |
| 7     | 12    | 7                    | 154             | 265              | 10    | 15    | 7     | 85550           | 168757           |
| 7     | 13    | 8                    | 76              | 123              | 10    | 16    | 8     | 254831          | 505410           |
| 7     | 14    | 9                    | 18              | 26               | 10    | 17    | 9     | 478913          | 952044           |
| 7     | 15    | 10                   | 5               | 6                | 10    | 18    | 10    | 581324          | 1156127          |
| 7     | to    | tal                  | 564             | 942              | 10    | 19    | 11    | 468388          | 931227           |
| 8     | 8     | 2                    | 1               | 1                | 10    | 20    | 12    | 255156          | 506318           |
| 8     | 9     | 3                    | 6               | 6                | 10    | 21    | 13    | 93028           | 183980           |
| 8     | 10    | 4                    | 59              | 87               | 10    | 22    | 14    | 22077           | 43180            |
| 8     | 11    | 5                    | 328             | 576              | 10    | 23    | 15    | 3071            | 5876             |
| 8     | 12    | 6                    | 1146            | 2128             | 10    | 24    | 16    | 233             | 389              |
| 8     | 13    | 7                    | 2114            | 4009             | 10    | to    | tal   | 2262877         | 4492455          |

Table 23: Simple 2-connected plane graphs

| $n_v$ | $n_e$ | $n_f$ | $s_2(n_v, n_e)$ | $s_2'(n_v, n_e)$ | $n_v$ | $n_e$ | $n_f$ | $s_2(n_v, n_e)$ | $s_2'(n_v, n_e)$ |
|-------|-------|-------|-----------------|------------------|-------|-------|-------|-----------------|------------------|
| 11    | 11    | 2     | 1               | 1                | 12    | 24    | 14    | 138993896       | 277822669        |
| 11    | 12    | 3     | 11              | 11               | 12    | 25    | 15    | 72858380        | 145607615        |
| 11    | 13    | 4     | 283             | 460              | 12    | 26    | 16    | 27705872        | 55347935         |
| 11    | 14    | 5     | 4920            | 9266             | 12    | 27    | 17    | 7444800         | 14861459         |
| 11    | 15    | 6     | 53908           | 105587           | 12    | 28    | 18    | 1344104         | 2676888          |
| 11    | 16    | 7     | 360828          | 715594           | 12    | 29    | 19    | 146381          | 290020           |
| 11    | 17    | 8     | 1545170         | 3077004          | 12    | 30    | 20    | 7595            | 14502            |
| 11    | 18    | 9     | 4342371         | 8662224          | 12    | to    | tal   | 904777809       | 1808322585       |
| 11    | 19    | 10    | 8185754         | 16339528         | 13    | 13    | 2     | 1               | 1                |
| 11    | 20    | 11    | 10537211        | 21038806         | 13    | 14    | 3     | 15              | 15               |
| 11    | 21    | 12    | 9462526         | 18891305         | 13    | 15    | 4     | 645             | 1085             |
| 11    | 22    | 13    | 5996409         | 11967922         | 13    | 16    | 5     | 19120           | 36684            |
| 11    | 23    | 14    | 2680961         | 5345964          | 13    | 17    | 6     | 352415          | 696524           |
| 11    | 24    | 15    | 828434          | 1649252          | 13    | 18    | 7     | 4029097         | 8026593          |
| 11    | 25    | 16    | 169576          | 335867           | 13    | 19    | 8     | 30252253        | 60409193         |
| 11    | 26    | 17    | 20667           | 40490            | 13    | 20    | 9     | 155343066       | 310459801        |
| 11    | 27    | 18    | 1249            | 2274             | 13    | 21    | 10    | 561633452       | 1122815588       |
| 11    | to    | tal   | 44190279        | 88181555         | 13    | 22    | 11    | 1458502789      | 2916267568       |
| 12    | 12    | 2     | 1               | 1                | 13    | 23    | 12    | 2762714021      | 5524390423       |
| 12    | 13    | 3     | 13              | 13               | 13    | 24    | 13    | 3867958565      | 7734703651       |
| 12    | 14    | 4     | 440             | 725              | 13    | 25    | 14    | 4049812367      | 8098392055       |
| 12    | 15    | 5     | 10030           | 19079            | 13    | 26    | 15    | 3196009270      | 6390977323       |
| 12    | 16    | 6     | 144513          | 284523           | 13    | 27    | 16    | 1905204103      | 3809636821       |
| 12    | 17    | 7     | 1286139         | 2557736          | 13    | 28    | 17    | 853252330       | 1706037382       |
| 12    | 18    | 8     | 7445568         | 14853386         | 13    | 29    | 18    | 282757123       | 565262540        |
| 12    | 19    | 9     | 29007422        | 57938504         | 13    | 30    | 19    | 67281212        | 134458388        |
| 12    | 20    | 10    | 78002990        | 155876134        | 13    | 31    | 20    | 10885047        | 21730964         |
| 12    | 21    | 11    | 147357964       | 294537519        | 13    | 32    | 21    | 1072760         | 2136488          |
| 12    | 22    | 12    | 198748443       | 397287301        | 13    | 33    | 22    | 49566           | 97033            |
| 12    | 23    | 13    | 194273258       | 388346576        | 13    | to    | tal   | 19207129217     | 38406536120      |

Table 24: Simple 2-connected plane graphs (continued)

| $n_v$ | $n_e$ | $n_f$ | $s_2(n_v, n_e)$ | $s_2'(n_v, n_e)$ |
|-------|-------|-------|-----------------|------------------|
| 14    | 14    | 2     | 1               | 1                |
| 14    | 15    | 3     | 18              | 18               |
| 14    | 16    | 4     | 933             | 1585             |
| 14    | 17    | 5     | 34651           | 66880            |
| 14    | 18    | 6     | 797273          | 1579648          |
| 14    | 19    | 7     | 11397821        | 22730489         |
| 14    | 20    | 8     | 107688633       | 215151463        |
| 14    | 21    | 9     | 703236220       | 1405855204       |
| 14    | 22    | 10    | 3278258667      | 6555101486       |
| 14    | 23    | 11    | 11157309442     | 22311929605      |
| 14    | 24    | 12    | 28183908019     | 56363414831      |
| 14    | 25    | 13    | 53528076491     | 107050064823     |
| 14    | 26    | 14    | 77287026330     | 154566703701     |
| 14    | 27    | 15    | 85631816052     | 171256090392     |
| 14    | 28    | 16    | 73282811954     | 146558815643     |
| 14    | 29    | 17    | 48559480162     | 97113759448      |
| 14    | 30    | 18    | 24846491977     | 49689459876      |
| 14    | 31    | 19    | 9724984643      | 19447991228      |
| 14    | 32    | 20    | 2858351093      | 5715708409       |
| 14    | 33    | 21    | 610686053       | 1220985282       |
| 14    | 34    | 22    | 89583129        | 179028906        |
| 14    | 35    | 23    | 8071728         | 16113254         |
| 14    | 36    | 24    | 339722          | 672781           |
| 14    | to    | tal   | 419870351012    | 839691224953     |

Table 25: Simple 2-connected plane graphs (continued)

| $n_v$ | $n_e$ | $n_f$ | $s_2(n_v,n_e)$ | $s_2'(n_v, n_e)$ |
|-------|-------|-------|----------------|------------------|
| 15    | 15    | 2     | 1              | 1                |
| 15    | 16    | 3     | 20             | 20               |
| 15    | 17    | 4     | 1296           | 2234             |
| 15    | 18    | 5     | 60022          | 116449           |
| 15    | 19    | 6     | 1692814        | 3360546          |
| 15    | 20    | 7     | 29659179       | 59192537         |
| 15    | 21    | 8     | 344617558      | 688740212        |
| 15    | 22    | 9     | 2787166095     | 5572787546       |
| 15    | 23    | 10    | 16247029396    | 32490034160      |
| 15    | 24    | 11    | 69967888504    | 139927031083     |
| 15    | 25    | 12    | 226648323613   | 453280266975     |
| 15    | 26    | 13    | 559821248634   | 1119616299740    |
| 15    | 27    | 14    | 1065997244505  | 2131957799072    |
| 15    | 28    | 15    | 1579447768761  | 3158851211581    |
| 15    | 29    | 16    | 1835018112997  | 3669988946517    |
| 15    | 30    | 17    | 1680911336451  | 3361779089184    |
| 15    | 31    | 18    | 1217057936678  | 2434080203072    |
| 15    | 32    | 19    | 695669679375   | 1391314290972    |
| 15    | 33    | 20    | 312070865975   | 624126015244     |
| 15    | 34    | 21    | 108552153253   | 217096040999     |
| 15    | 35    | 22    | 28680789703    | 57357685690      |
| 15    | 36    | 23    | 5562076007     | 11122712222      |
| 15    | 37    | 24    | 746644170      | 1492805661       |
| 15    | 38    | 25    | 61990477       | 123878966        |
| 15    | 39    | 26    | 2406841        | 4792530          |
| 15    | total |       | 9405626692325  | 18810933303213   |

Table 26: Simple 2-connected plane graphs (continued)

| $n_v$                                                                                 | $d_1(n_v)$                                                                                                                                                                         | $d_2(n_v)$                                                                                                                                                                           | $d_3(n_v)$                                                                                                                                                                              | $d_4(n_v)$                                                                                                             |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 3                                                                                     | 0                                                                                                                                                                                  | 0                                                                                                                                                                                    | 1                                                                                                                                                                                       | 1                                                                                                                      |
| 4                                                                                     | 1                                                                                                                                                                                  | 1                                                                                                                                                                                    | 2                                                                                                                                                                                       | 1                                                                                                                      |
| 5                                                                                     | 2                                                                                                                                                                                  | 2                                                                                                                                                                                    | 4                                                                                                                                                                                       | 1                                                                                                                      |
| 6                                                                                     | 7                                                                                                                                                                                  | 8                                                                                                                                                                                    | 16                                                                                                                                                                                      | 3                                                                                                                      |
| 7                                                                                     | 27                                                                                                                                                                                 | 31                                                                                                                                                                                   | 63                                                                                                                                                                                      | 4                                                                                                                      |
| 8                                                                                     | 132                                                                                                                                                                                | 159                                                                                                                                                                                  | 328                                                                                                                                                                                     | 12                                                                                                                     |
| 9                                                                                     | 773                                                                                                                                                                                | 936                                                                                                                                                                                  | 1933                                                                                                                                                                                    | 27                                                                                                                     |
| 10                                                                                    | 5017                                                                                                                                                                               | 6148                                                                                                                                                                                 | 12633                                                                                                                                                                                   | 82                                                                                                                     |
| 11                                                                                    | 34861                                                                                                                                                                              | 42891                                                                                                                                                                                | 87466                                                                                                                                                                                   | 228                                                                                                                    |
| 12                                                                                    | 253676                                                                                                                                                                             | 313088                                                                                                                                                                               | 633015                                                                                                                                                                                  | 733                                                                                                                    |
| 13                                                                                    | 1903584                                                                                                                                                                            | 2351945                                                                                                                                                                              | 4717745                                                                                                                                                                                 | 2282                                                                                                                   |
| 14                                                                                    | 14616442                                                                                                                                                                           | 18063992                                                                                                                                                                             | 35980100                                                                                                                                                                                | 7528                                                                                                                   |
| 15                                                                                    | 114254053                                                                                                                                                                          | 141141422                                                                                                                                                                            | 279418926                                                                                                                                                                               | 24834                                                                                                                  |
| 16                                                                                    | 906266345                                                                                                                                                                          | 1118604721                                                                                                                                                                           | 2202903618                                                                                                                                                                              | 83898                                                                                                                  |
| 17                                                                                    | 7277665889                                                                                                                                                                         | 8972884862                                                                                                                                                                           | 17590599410                                                                                                                                                                             | 285357                                                                                                                 |
| 18                                                                                    | 59066524810                                                                                                                                                                        | 72732678436                                                                                                                                                                          | 142025760202                                                                                                                                                                            | 983244                                                                                                                 |
| 19                                                                                    | 483864411124                                                                                                                                                                       | 595001005461                                                                                                                                                                         | 1157868883224                                                                                                                                                                           | 3412420                                                                                                                |
| 20                                                                                    | 3996427278475                                                                                                                                                                      | 4907386823804                                                                                                                                                                        | 9520828261067                                                                                                                                                                           | 11944614                                                                                                               |
| 21                                                                                    | 33250623548406                                                                                                                                                                     | 40771329386840                                                                                                                                                                       | 78888071847324                                                                                                                                                                          | 42080170                                                                                                               |
|                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                                      |                                                                                                                                                                                         |                                                                                                                        |
| $n_v$                                                                                 | $d_1'(n_v)$                                                                                                                                                                        | $d_2'(n_v)$                                                                                                                                                                          | $d_3'(n_v)$                                                                                                                                                                             | $d_4'(n_v)$                                                                                                            |
| $\frac{n_v}{3}$                                                                       | $\frac{d_1'(n_v)}{0}$                                                                                                                                                              | $\frac{d_2'(n_v)}{0}$                                                                                                                                                                | $\frac{d_3'(n_v)}{1}$                                                                                                                                                                   | $\frac{d_4'(n_v)}{1}$                                                                                                  |
| 3 4                                                                                   |                                                                                                                                                                                    | 0<br>1                                                                                                                                                                               |                                                                                                                                                                                         | $ \begin{array}{c} d_4'(n_v) \\ 1 \\ 1 \end{array} $                                                                   |
| 3<br>4<br>5                                                                           | 0<br>1<br>2                                                                                                                                                                        | 0<br>1<br>2                                                                                                                                                                          | 1<br>2<br>4                                                                                                                                                                             | 1                                                                                                                      |
| 3<br>4<br>5<br>6                                                                      | 0<br>1<br>2<br>8                                                                                                                                                                   | 0<br>1<br>2<br>9                                                                                                                                                                     | 1<br>2<br>4<br>20                                                                                                                                                                       | 1<br>1<br>1<br>4                                                                                                       |
| 3<br>4<br>5<br>6<br>7                                                                 | 0<br>1<br>2<br>8<br>37                                                                                                                                                             | 0<br>1<br>2<br>9<br>42                                                                                                                                                               | 1<br>2<br>4<br>20<br>93                                                                                                                                                                 | 1<br>1<br>1<br>4<br>6                                                                                                  |
| 3<br>4<br>5<br>6<br>7<br>8                                                            | 0<br>1<br>2<br>8<br>37<br>213                                                                                                                                                      | 0<br>1<br>2<br>9<br>42<br>255                                                                                                                                                        | 1<br>2<br>4<br>20<br>93<br>554                                                                                                                                                          | 1<br>1<br>1<br>4<br>6<br>19                                                                                            |
| 3<br>4<br>5<br>6<br>7<br>8<br>9                                                       | 0<br>1<br>2<br>8<br>37<br>213<br>1386                                                                                                                                              | 0<br>1<br>2<br>9<br>42<br>255<br>1675                                                                                                                                                | 1<br>2<br>4<br>20<br>93<br>554<br>3554                                                                                                                                                  | 1<br>1<br>1<br>4<br>6<br>19<br>49                                                                                      |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                 | 0<br>1<br>2<br>8<br>37<br>213<br>1386<br>9524                                                                                                                                      | 0<br>1<br>2<br>9<br>42<br>255<br>1675<br>11654                                                                                                                                       | 1<br>2<br>4<br>20<br>93<br>554<br>3554<br>24256                                                                                                                                         | 1<br>1<br>1<br>4<br>6<br>19<br>49                                                                                      |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                           | 0<br>1<br>2<br>8<br>37<br>213<br>1386<br>9524<br>68057                                                                                                                             | 0<br>1<br>2<br>9<br>42<br>255<br>1675<br>11654<br>83688                                                                                                                              | 1<br>2<br>4<br>20<br>93<br>554<br>3554<br>24256<br>171676                                                                                                                               | 1<br>1<br>4<br>6<br>19<br>49<br>150<br>442                                                                             |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                     | 0<br>1<br>2<br>8<br>37<br>213<br>1386<br>9524<br>68057<br>501858                                                                                                                   | 0<br>1<br>2<br>9<br>42<br>255<br>1675<br>11654<br>83688<br>619177                                                                                                                    | $ \begin{array}{c} 1\\ 2\\ 4\\ 20\\ 93\\ 554\\ 3554\\ 24256\\ 171676\\ 1255194 \end{array} $                                                                                            | 1<br>1<br>4<br>6<br>19<br>49<br>150<br>442<br>1424                                                                     |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                               | 0<br>1<br>2<br>8<br>37<br>213<br>1386<br>9524<br>68057<br>501858<br>3788747                                                                                                        | 0<br>1<br>2<br>9<br>42<br>255<br>1675<br>11654<br>83688<br>619177<br>4680413                                                                                                         | 1<br>2<br>4<br>20<br>93<br>554<br>3554<br>24256<br>171676<br>1255194<br>9399396                                                                                                         | 1<br>1<br>1<br>4<br>6<br>19<br>49<br>150<br>442<br>1424<br>4522                                                        |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                         | 0<br>1<br>2<br>8<br>37<br>213<br>1386<br>9524<br>68057<br>501858<br>3788747<br>29170667                                                                                            | 0<br>1<br>2<br>9<br>42<br>255<br>1675<br>11654<br>83688<br>619177<br>4680413<br>36048019                                                                                             | $ \begin{array}{c} 1\\ 2\\ 4\\ 20\\ 93\\ 554\\ 3554\\ 24256\\ 171676\\ 1255194\\ 9399396\\ 71837656 \end{array} $                                                                       | 1<br>1<br>4<br>6<br>19<br>49<br>150<br>442<br>1424<br>4522<br>14924                                                    |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                   | 0<br>1<br>2<br>8<br>37<br>213<br>1386<br>9524<br>68057<br>501858<br>3788747<br>29170667<br>228295618                                                                               | 0<br>1<br>2<br>9<br>42<br>255<br>1675<br>11654<br>83688<br>619177<br>4680413<br>36048019<br>282009376                                                                                | $ \begin{array}{c} 1\\ 2\\ 4\\ 20\\ 93\\ 554\\ 3554\\ 24256\\ 171676\\ 1255194\\ 9399396\\ 71837656\\ 558420702 \end{array} $                                                           | 1<br>1<br>4<br>6<br>19<br>49<br>150<br>442<br>1424<br>4522<br>14924<br>49536                                           |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16             | 0<br>1<br>2<br>8<br>37<br>213<br>1386<br>9524<br>68057<br>501858<br>3788747<br>29170667<br>228295618<br>1811802818                                                                 | $0\\1\\2\\9\\42\\255\\1675\\11654\\83688\\619177\\4680413\\36048019\\282009376\\2236264516$                                                                                          | $\begin{array}{c} 1\\ 2\\ 4\\ 20\\ 93\\ 554\\ 3554\\ 24256\\ 171676\\ 1255194\\ 9399396\\ 71837656\\ 558420702\\ 4404369524\\ \end{array}$                                              | 1<br>1<br>4<br>6<br>19<br>49<br>150<br>442<br>1424<br>4522<br>14924<br>49536<br>167367                                 |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17       | 0<br>1<br>2<br>8<br>37<br>213<br>1386<br>9524<br>68057<br>501858<br>3788747<br>29170667<br>228295618<br>1811802818<br>14552804492                                                  | $\begin{array}{c} 0 \\ 1 \\ 2 \\ 9 \\ 42 \\ 255 \\ 1675 \\ 11654 \\ 83688 \\ 619177 \\ 4680413 \\ 36048019 \\ 282009376 \\ 2236264516 \\ 17942491936 \end{array}$                    | $\begin{array}{c} 1\\ 2\\ 4\\ 20\\ 93\\ 554\\ 3554\\ 24256\\ 171676\\ 1255194\\ 9399396\\ 71837656\\ 558420702\\ 4404369524\\ 35176227916\\ \end{array}$                                | 1<br>1<br>1<br>4<br>6<br>19<br>49<br>150<br>442<br>1424<br>4522<br>14924<br>49536<br>167367<br>570285                  |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | $\begin{array}{c} 0\\ 1\\ 2\\ 8\\ 37\\ 213\\ 1386\\ 9524\\ 68057\\ 501858\\ 3788747\\ 29170667\\ 228295618\\ 1811802818\\ 14552804492\\ 118124257451\\ \end{array}$                | $\begin{array}{c} 0\\ 1\\ 2\\ 9\\ 42\\ 255\\ 1675\\ 11654\\ 83688\\ 619177\\ 4680413\\ 36048019\\ 282009376\\ 2236264516\\ 17942491936\\ 145453903206\\ \end{array}$                 | $\begin{array}{c} 1\\ 2\\ 4\\ 20\\ 93\\ 554\\ 3554\\ 24256\\ 171676\\ 1255194\\ 9399396\\ 71837656\\ 558420702\\ 4404369524\\ 35176227916\\ 284034186632\\ \end{array}$                 | 1<br>1<br>4<br>6<br>19<br>49<br>150<br>442<br>1424<br>4522<br>14924<br>49536<br>167367<br>570285<br>1965058            |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | $\begin{array}{c} 0\\ 1\\ 2\\ 8\\ 37\\ 213\\ 1386\\ 9524\\ 68057\\ 501858\\ 3788747\\ 29170667\\ 228295618\\ 1811802818\\ 14552804492\\ 118124257451\\ 967698049455\\ \end{array}$ | $\begin{array}{c} 0\\ 1\\ 2\\ 9\\ 42\\ 255\\ 1675\\ 11654\\ 83688\\ 619177\\ 4680413\\ 36048019\\ 282009376\\ 2236264516\\ 17942491936\\ 145453903206\\ 1189961845145\\ \end{array}$ | $\begin{array}{c} 1\\ 2\\ 4\\ 20\\ 93\\ 554\\ 3554\\ 24256\\ 171676\\ 1255194\\ 9399396\\ 71837656\\ 558420702\\ 4404369524\\ 35176227916\\ 284034186632\\ 2315677128324\\ \end{array}$ | 1<br>1<br>4<br>6<br>19<br>49<br>150<br>442<br>1424<br>4522<br>14924<br>49536<br>167367<br>570285<br>1965058<br>6823410 |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | $\begin{array}{c} 0\\ 1\\ 2\\ 8\\ 37\\ 213\\ 1386\\ 9524\\ 68057\\ 501858\\ 3788747\\ 29170667\\ 228295618\\ 1811802818\\ 14552804492\\ 118124257451\\ \end{array}$                | $\begin{array}{c} 0\\ 1\\ 2\\ 9\\ 42\\ 255\\ 1675\\ 11654\\ 83688\\ 619177\\ 4680413\\ 36048019\\ 282009376\\ 2236264516\\ 17942491936\\ 145453903206\\ \end{array}$                 | $\begin{array}{c} 1\\ 2\\ 4\\ 20\\ 93\\ 554\\ 3554\\ 24256\\ 171676\\ 1255194\\ 9399396\\ 71837656\\ 558420702\\ 4404369524\\ 35176227916\\ 284034186632\\ \end{array}$                 | 1<br>1<br>4<br>6<br>19<br>49<br>150<br>442<br>1424<br>4522<br>14924<br>49536<br>167367<br>570285<br>1965058            |

Table 27: Triangulations of a disk