

Language is Ambiguous

But we can still get some Data Science done

Classification

This talk

- A quick trip to frequently use data-drive NLP techniques with hands on exercises.
 - Text Munging
 - Bags of Word Naive Bayes
 - TF-IDF
 - Vector Space Model

Text Munging

- Tokenization
- Stemming:
 - Porter Stemmer set of rules for normalizing tokens e.g.
 - SSES —> SS (caresses —> caress)
 - ATIONAL —> ATE (relatiional —> relate)
- Lemmatization:
 - first determining the part of speech of a word, and applying different normalization rules for each part of speech
- Removing Stop Words

NLTK Tokenizer

- Punkt Sentence Tokenizer
 - divides a text into a list of sentences using an unsupervised algorithm for abbreviation words, collocations, and words that start sentences.

Stop Words

- Most common, short function words that do not contain important information, not useful as text features.
- Not a fixed list, can be discovered from corpora.
- Example: http://www.textfixer.com/
 resources/common-english-words.txt
- NLTK: nltk.corpus.stopwords.words('english')

Python Tools

- Regular Expression Module (re)
- Natural Language Toolkit (nltk, nlpnet)
- Vector Space Model (word2vec, glove)
- Deep Neural Nets: (Gensim)

Data Sets

- Data Set 1: TED CLDC Corpus
 - MultiLingual Document Classification
 - Computational Linguistic Group, Oxford UK, http://www.clg.ox.ac.uk/ tedcorpus

- Data set 2: Ted Talks Transcript Corpus
 - TED Lecture Recommendation Project
 - Idiap Research Institute (EPFL) https://www.idiap.ch/dataset/ted

Bag of Words and Naive Bayes

 Term frequency in "bag of words" can be used to compare how similar documents are

	woe	betray	revenge	death	alas
Julius Caesar	.046	.018	.139	0	.159
Hamlet	.142	0	.287	0	.110
Macbeth	.053	.041	.120	0	.082
Alice in Wonderland	0	0	0	0	.054

- Naive Bayes predicts probability that a document is in class C based on its features (individual word).
- assumes that all features are statistically independent

TF-IDF: Term Frequency Inverse Document Frequency

- TF normalizes term (token) counts with frequencies
- IDF is the number of documents in corpus containing that term.
- IDF tells us how much information (bits) we get when that term (token) appear.

Vector space model

Vector space representation

- individual word as vector
- document as collection of these vectors is space
- enables linear algebra on text

e.g. King - Man + Woman = Queen

Important Topics We don't have time to cover

- Topic Modeling (unsupervised document clustering)
- http://radimrehurek.com/gensim/tutorial.html
- Semantic Analysis
- Summarization
- Machine translation
- Knowledge representation and Reasoning

Recommended Books and Tutorials

Natural Language Processing with Python

http://www.nltk.org/book/

Natural Language Annotation for Machine Learning

https://www.safaribooksonline.com/library/view/natural-language-annotation/9781449332693/

Foundations of Statistical Natural Language Processing

http://nlp.stanford.edu/fsnlp/

Recommended Online Courses/Lectures

Natural Language Processing
Michael Collins,
Columbia University

https://www.coursera.org/course/nlangp

Natural Language Processing Christopher Manning Stanford University

https://www.coursera.org/course/nlp

Deep Learning for NLP without magic

Richard Socher, Yoshua Bengio, Christopher Manning

http://techtalks.tv/talks/deep-learning-for-nlp-without-magic-part-1/58414/ http://techtalks.tv/talks/deep-learning-for-nlp-without-magic-part-2/58415/