Genome-Wide Association in Peru Demonstrates that Progression to Active Tuberculosis is a Polygenic and Highly Heritable Trait

S. Raychaudhuri^{1,2}, R. Calderon³, L. Lecca³, S. Leon³, J. Jimenez³, B.D. Moody⁸, M. Murray^{3,4,5,6,7}, Y. Luo^{1,2}

Study design & main findings

Since only \sim 10% of the 1.5 billion Mycobacterium tuberculosis (Mtb) infected individuals worldwide go on to develop active tuberculosis (TB), host genetic factors that control disease progression have emerged as a central question in TB pathogenesis. To dissect the genetic basis of TB progression we conducted

- > the first and the largest genome-wide association study (GWAS) in Lima, Peru to date
- > a GWAS of **2000** active TB cases and **2000** Mycobacterium tuberculosis (M.tb) infected household contact controls
- > the largest GWAS of TB progression

We show that:

- > Peru has a unique genetic heritage
- TB progression is a highly heritable trait ($h_a^2 = 0.243$)
- > a novel TB progression locus on chromosome 3q23
- > there are multiple allelic-specific binding sites using Electrophoretic Mobility Shift Assay (EMSA)
- > TB progression has different genetic bases to TB infection

- strain type
- treatment outcomes
- relapse

Unique LIMAArray tailored for Peruvian population

Heritablilty analyses demonstrate TB progression is a highly heritable trait

Multiple heritability analyses yield robust estimations. In total, we report 24.3% (s.e. 0.087) variation can be explained for TB progression on observed scale.

Contact information

Yang Luo, PhD yangluo@broadinstitute.org

TB progression has different genetic bases to TB infection

Gene	MAF	Pvalue	
	0.31	2.60e-11	
	0.12	2.60e-01	Russia
ASAP1	0.09	2.30e-01	Ghana
	0.33	3.72e-01	Gambia ———
	0.13	6.80e-04	Peru
	0.3	2.60e-09	
11p13	0.29	4.90e-04	
	0.036	4.61e-01	
18q11.2	0.03	7.10e-01	
	0.47	4.30e-03	
	0.5	2.90e-03	
	0.021	8.24e-01	
	0.03	7.94e-01	
HLA-DQA1	0.31	1.88e-02	
	0.11	2.79e - 04	
	0.41	1.01e - 04	
3q23	0.08	6.51e-02	
	0.009	NA	
	0.011	NA	
	0.019	2.98e-08	
			0 05
			0 0.5 1 Odds ratio

Linear mixed model highlights novel locus associated with TB progression

