## **IP Address**

2023.05.28

#### **About IP Address**

- 통신이 가능한 장치들의 유일한 식별 방법
  - 인터넷 주소(Domain Address), IP 주소(IP Address)
- 호스트간 전달을 위한 주소
  - 호스트, 라우터 연결을 유일하고 전체적으로 정의하는 32비트 2진 주소
- IPv4
  - 주소를 읽기 쉽게 옥텟(8비트) 사이에 공간 삽입
  - 32비트 주소, 4옥텟 주소, 4바이트 주소
  - 점 10진 표기법



## 클래스 구분

- 클래스 기반(classful) 주소 지정
  - A, B, C, D, E 5개의 클래스

• 클래스 판별 알고리즘



• 클래스 구분

|         | First byte | Second byte | Third byte | Fourth byte | First byte |
|---------|------------|-------------|------------|-------------|------------|
| Class A | 0          |             |            |             | 0 to 127   |
| Class B | 10         |             |            |             | 128 to 191 |
| Class C | 110        |             |            |             | 192 to 223 |
| Class D | 1110       |             |            |             | 224 to 239 |
| Class E | 1111       |             |            |             | 240 to 255 |

### **NetID & HostID**

• 각 클래스는 고정된 크기의 블록을 가짐



#### Class A

- 128개의 블록 (구성 가능한 네트워크 수)
- 대체적으로 낭비가 심하다



### Class B

- 네트워크에 만여 개 정호의 호스트나 라우터를 사용하는 중형 기관에 설계
- 그래도 주소 낭비가 심하다

#### Class C

- 2,097,152 블록, 256개 사설 블록
- 2,096,896개 블록 할당
- 블록당 256개의 주소로 요구량보다 적을 수 있음



## 네트워크 주소 지정 예



## 마스크 (mask)

- 외부 라우터 기본 마스크 사용
- 내부 라우터 서브넷 마스크 사용

| Class | In Binary |          |          |          | In Dotted-<br>Decimal | Using<br>Slash |
|-------|-----------|----------|----------|----------|-----------------------|----------------|
| Α     | 11111111  | 00000000 | 00000000 | 0000000  | 255.0.0.0             | /8             |
| В     | 11111111  | 11111111 | 00000000 | 00000000 | 255.255.0.0           | /16            |
| С     | 11111111  | 11111111 | 11111111 | 00000000 | 255.255.255.0         | /24            |

#### 동적 주소

- 인터넷 연결 시 정보
  - IP 주소, 서브넷 마스크, 라우터의 주소(게이트웨이), 네임 서버(DNS) 주소
- 동적 호스트 설정 프로토콜 (Dynamic Host Configuration Protocol, DHCP)
  - 요구기반 동적 정보 제공을 위한 프로토콜
  - DHCP 클라이언트가 서버에서 요청 신호를 보냄
  - 요청된 물리주소(MAC) 항목을 정적 데이터베이스에서 검색
  - 사용 가능한 대기장소(pool)의 주소를 할당하고 동적 데이터베이스에 추가

## 사설 주소

- 공인 주소가 아닌 주소로 내부적으로 사용하는 주소
  - 외부에서 접근할 수 없음
- RFC 1918
- 3개의 주소 집합 (사설 주소) 예약

- 루프백 주소 (localhost)
  - 자기 자신의 주소
  - 보통 127.0.0.1로 할당

|             | Total |                 |                        |
|-------------|-------|-----------------|------------------------|
| 10.0.0.0    | to    | 10.255.255.255  | <b>2</b> <sup>24</sup> |
| 172.16.0.0  | to    | 172.31.255.255  | <b>2</b> <sup>20</sup> |
| 192.168.0.0 | to    | 192.168.255.255 | 2 <sup>16</sup>        |

## 주소 변환(NAT)

- Network Address Transfer
- 라우터의 역할
- 변환 테이블
  - IP 주소 한 개 사용
  - IP 주소의 집단(pool) 사용
  - IP 주소와 포트 번호 동시 사용



## 주소 변환(NAT)

- 주소 집단(pool) 사용
  - 포괄적 주소의 집단 사용
  - 사설 네트워크 호스트는 동일한 시간에 2개의 외부 서버 프로그램(HTTP, FTP)에 접속 불가
- IP 주소와 포트 번호 동시 사용
  - 다 대 다 (many-to-many) 연결 허용
  - 발신지와 목적지의 전송층 포트번호를 포함한 5개 컬럼 사용

| Private<br>Address | Private<br>Port | External<br>Address | External<br>Port | Transport<br>Protocol |
|--------------------|-----------------|---------------------|------------------|-----------------------|
| 172.18.3.1         | 1400            | 25.8.3.2            | 80               | TCP                   |
| 172.18.3.2         | 1401            | 25.8.3.2            | 80               | TCP                   |
| •••                | •••             | •••                 |                  | •••                   |

# Thank You