

Animas River Stakeholders Group Mine Drainage Treatability Study

October 1, 2009 (Updated 11/6/09)

www.watertectonics.com

Introduction

Water Tectonics conducted an acid mine drainage treatability study for the Animas River Stakeholders Group in Colorado. This treatability study tested the efficacy of Wave Ionics Electrocoagulation (EC) to remove metals from two mine locations; CC06 – Gold King Mine, and CC19 – American Tunnel Mine. Samples were collected 8/20/09 and received by Water Tectonics 8/28/09. The goals of this treatability study were to remove metals to meet Colorado Department of Public Health and Environment Water Quality Standards.

Methods

Two containers were received for each sample (CC06 and CC19). Each container was thoroughly mixed and 2.5 gallons was poured from each container to make a 5 gallon composite for each of the two samples. Influent samples were collected from the composite samples. The samples were then treated. After settling, the supernate was decanted into a clean beaker and filtered using filter paper simulating granular media filtration.

Table 1 Water Tectonics analytical parameter test methods and detection limits.

Parameter	Unit	Test method	Detection Limit
Conductivity	mS/cm	Hach HQ40d meter	NA
рН	Standard units	Hach HQ40d meter	NA
Dissolved Oxygen	mg/L	Hach HQ40d meter	0.1
Turbidity	NTU	Hach 2100P meter	0.01

NA = Not Applicable

Table 2 Third party analytical laboratory parameter test methods and detection limits (mg/L) .

Parameter	Unit	Test method	Detection Limit (PQL)	
Aluminum	μg/L	EPA 6010B	110	
Cadmium	μg/L	EPA 6010B	11	
Cadmium	μg/L	EPA 200.8	0.20	
Copper	μg/L	EPA 6010B	11	
Copper	μg/L	EPA 200.8	1.0	
Iron	μg/L	EPA 6010B	56	
Lead	μg/L	EPA 6010B	110	
Lead	μg/L	EPA 200.8	2.9	
Manganese	μg/L	EPA 6010B	110	
Zinc	μg/L	EPA 6010B	56	

Results

CC06 - Gold King Mine

The influent had a slightly rusty color with iron colored solids that quickly settled. Following treatment, a large floc formed that quickly separated and sank to the bottom of the container. Turbidity was highly reduced in the EC treated samples. ARSG provided influent samples for total and filtered samples for dissolved metals analysis (Table 4). Fresh influent samples were collected at the time of treatment. Metals concentrations were greatly reduced in the EC treated effluent compared to the raw influent (Table 5, Table 6).

Table 3 Gold King Mine influent and effluent (parameters analyzed by Water Tectonics).

Parameter	Unit	Influent	Treated Effluent
Conductivity	mS/cm	2.74	2.51
рН	Standard units	2.77	7.37
Dissolved Oxygen	mg/L	7.87	10.57
Turbidity	NTU	57.1	0.19

NA = Not Applicable

Table 4 Gold King Mine, influent total and dissolved metal samples provided by ARSG (analyzed by Onsite Environmental).

Parameter	Unit	Total metals	Dissolved metals
Aluminum	μg/L	28000	27000
Cadmium	μg/L	75	77
Copper	μg/L	6400	6500
Iron	μg/L	88000	83000
Lead	μg/L	ND (<110)	ND (<110)
Manganese	μg/L	34000	35000
Zinc	μg/L	24000	25000

Table 5 Gold King Mine, influent and effluent total metals collected by Water Tectonics (analyzed by Onsite Environmental).

Parameter	Unit	Influent	Treated Effluent
Aluminum	μg/L	27000	210
Cadmium	μg/L	73	15
Copper	μg/L	6200	6.9
Iron	μg/L	58000	78
Lead	μg/L	25	ND (<2.9)
Manganese	μg/L	34000	24000
Zinc	μg/L	24000	420

Table 6 Gold King Mine, influent and effluent dissolved metals collected by Water Tectonics (analyzed by Onsite Environmental).

Parameter	Unit	Influent	Treated Effluent
Aluminum	μg/L	27000	170
Cadmium	μg/L	73	14
Copper	μg/L	6200	ND (<11)
Iron	μg/L	22000	ND (<56)
Lead	μg/L	ND (<110)	ND (<110)
Manganese	μg/L	35000	25000
Zinc	μg/L	25000	390

Figure 1 Gold King Mine; Influent (left), Effluent (right).

Page 4 of 7

CC19 - American Tunnel Mine

The influent had a slightly rusty color with iron colored solids that quickly settled. Following treatment, a large floc formed that quickly separated and sank to the bottom of the container. Turbidity was highly reduced in the EC treated samples. ARSG provided influent samples for total and filtered samples for dissolved metals analysis (Table 8). Fresh influent samples were collected at the time of treatment. Metals concentrations were greatly reduced in the EC treated effluent compared to the raw influent (Table 9, Table 10).

Table 7 American Tunnel Mine influent and effluent (parameters analyzed by Water Tectonics).

Parameter	Unit	Influent	Treated Effluent
Conductivity	mS/cm	2.96	3.64
рН	Standard units	2.75	7.64
Dissolved Oxygen	mg/L	7.27	10.85
Turbidity	NTU	142	0.85

Table 8 American Tunnel Mine, influent total and dissolved metal samples provided by ARSG (analyzed by Onsite Environmental).

Parameter	Unit	Total metals	Dissolved metals
Aluminum	μg/L	5400	5100
Cadmium	μg/L	ND	ND (<11)
Copper	μg/L	12	ND (<11)
Iron	μg/L	140000	150000
Lead	μg/L	ND (<110)	ND (<110)
Manganese	μg/L	48000	50000
Zinc	μg/L	18000	18000

Table 9 American Tunnel Mine, influent and effluent total metals collected by Water Tectonics (analyzed by Onsite Environmental).

Parameter	Unit	Influent	Treated Effluent
Aluminum	μg/L	5200	ND (<110)
Cadmium	μg/L	2.3	ND (<0.20)
Copper	μg/L	9.6	5.2
Iron	μg/L	64000	87
Lead	μg/L	3.1	ND (<2.9)
Manganese	μg/L	49000	18000
Zinc	μg/L	18000	ND (<56)

Table 10 American Tunnel Mine, influent and effluent dissolved metals collected by Water Tectonics (analyzed by Onsite Environmental).

Parameter	Unit	Influent	Treated Effluent
Aluminum	μg/L	5000	ND (<110)
Cadmium	μg/L	ND (<11)	ND (<11)
Copper	μg/L	ND (<11)	ND (<11)
Iron	μg/L	35000	ND (<56)
Lead	μg/L	ND (<110)	ND (<110)
Manganese	μg/L	47000	14000
Zinc	μg/L	19000	ND (<56)

Figure 2 American Tunnel Mine; Influent (left), Effluent (right).

Page 6 of 7

Electrocoagulation was very effective in treating the acid mine runoff. It reduced turbidity and most heavy metal concentrations. Manganese was high in the effluent and will require additional testing and treatment optimization.

Page 7 of 7