微信视频号的实时推荐技术架构

林枫 flashlin@tencent.com

腾讯微信 高级工程师

极客时间企业版

企业级一站式数字技术学习平台

原创精品 课程

知识技能 图谱

岗位能力 模型

测学考评 体系

分层分级 培训

数字管理 系统

数字化专业人才培训方案定制

13167596032

https://b.geekbang.org/

扫码免费咨询

大纲

- 实时推荐系统的意义和挑战
- 视频号流批一体的特征服务
- 视频号大模型的毫秒级上线

推荐系统越来越多

算法很重要,但实时性也不能忽视

facebook 论文

让好内容更快被发现

实时性的挑战

大纲

- 实时推荐系统的意义和挑战
- 视频号流批一体的特征服务
- 视频号大模型的毫秒级上线

特征服务的痛点与现状

业务痛点:

- 1. 可以高吞吐导入大批量的数据;
- 2. 流批一体, 既能在线写, 也能高吞吐离线导入;
- 3. 使用 UDF 实现特征计算逻辑;
- 4. 支持大 Batch 扩散读, 且性能好;
- 5. 可以扫描数据;
- 6. 支持 List 、 Hash 、 HyperLogLog 等数据结构;

组件	持久化	读吞吐	扩散读	扫描能力	在线写	离线导入	存储模型	扩展性	运营成本	UDF
Redis	1	1	0	0	2	0	2	1	1	2
HBase	2	0	0	2	1	0	1	2	2	0
PaxosStore	2	2	1	1	2	0	1	2	2	2
HBase +	2	2	1	1	2	0	1	2	1	0
Redis										

高吞吐导入的挑战

高吞吐导入会影响在线服务的可用性

- ▶ 服务的 CPU, 磁盘IO, 网络带宽 资源有限, 突 发流量会影响在线服务;
- Compaction;
- > 需要业务自行控速,不同任务可能同时导入;
- > 数据量大,十亿乃至千亿,导入耗时长;

有状态的存储服务扩展成本高

- ▶ 机型成本高;
- 数据需要腾挪;
- ▶ 横向扩容后读扩散严重;

业务需求:

业务A: 想时在 5 小时内导入 40 亿条数据

业务B: 想在1小时内导入1TB数据

•••

在线存储:

读写分离的数据导入

读写分离的数据导入

- 10TB的数据只要 4 小时, 导入速度是 730MB/s;
- 1000亿 key 只要 8 小时,导入速度是 340 万 key /s;
- 加机器可以近线性提速;
- 读写分离,导入时不会影响在线的特征服务;

流批一体的背景

在线特征:

- 用户行为统计;
- Flink 流式计算;

离线特征:

- 用户画像;
- Embeding;

两套存储 HBase + Redis ?

- 存储成本
- 开发成本
- 运营成本

分布式LSM引擎

单机 LSM - LevelDB

分布式 LSM - Feature KV Online

流批一体的特征服务

灵活扩展

- · RPC 数量越多,越容易出现长尾请求;
- · 而一次特征查询的耗时由长尾 RPC 耗时决定;

原始情况

横向扩容

扩容量和读能力,带来RPC发散问题

纵向扩容

只扩读能力,避免RPC发散问题

多种数据结构支持

• 有序的 KV 存储引擎可以表示高级数据结构

HSET

Hash

HMSET

• 宽表存储, {key}{filed} => value

HGET

• 磁盘中连续存储,一次 IO 可以读出一行

HMGET

List

LPUSH

• 队列存储,{metakey}, {key}{index} => value

RPUSH

• 磁盘中连续存储,一次 IO 可以读出连续一段

LPOP

RPOP

高性能 UDF

- User Define Function;
- 基于 WASM 实现, 支持 C++ / Rust / Javascript 等语言;
- 类似于 Redis 中的 Lua 脚本,但拥有更好的性能(~100x),接近原生 C++;
- 和主进程严格隔离,可控制运行时间;
- 支持链接第三方库, 比如 ProtoBuf, TensorFlow, MKL 等;
- 用途: 高性能计数器、特征选择、特征拼接

C++ ProtoBuffer 多 filed 求和测试:

方法	微秒
原生代码	40. 4
微信ITSBD	36/2
类Pcbgn(js_解释器,性能关键部分使用A库)	55502
类Pcbgn(js_解释器)	145337

视频号特征服务的总结与展望

- 现已解决了的痛点
 - 可以高吞吐导入
 - 流批一体
 - 读性能高
 - 可以使用高层次的存储模型 (Hash/List),可以使用 UDF

- 未来工作
 - 数据湖,实时数仓
 - 特征工程
 - 在线图数据库

组件	持久化	读吞吐	扩散读	扫描能力	在线写	离线导入	存储模型	扩展性	运营成本	UDF
FeatureKV	2	2	2	2	2	2	2	2	2	2
Online										

大纲

- 实时推荐系统的意义和挑战
- 视频号流批一体的特征服务
- 视频号大模型的毫秒级上线

模型上线的现状与问题

推荐系统一般会采用双塔模型,把 User 和 Item 向量化表示。

对于视频号来说,是一个大规模稀疏特征的推荐场景,采用参数服务器架构是比较合适的。

方案	迭代速度		
U VE Dc_rspcI T	小增量 / 3 秒,全量 / E @ 0. k g,		
OO看点 无量	E Ø 0. 分钟*R Ø 纸峰期上线,		
阿里PRN算分服务	分钟级		

在线参数服务器 WePS

- 训练和推理共用同一个参数服务器
- 从根源上解决以下问题:
 - 大模型的毫秒级上线
 - 训练和推理的模型对齐,保证算法效果
- 包含训练和推理组件的参数服务器框架

多副本数据同步

- 在线服务需要高可用,所以需要多副本存储;
- 已有的副本同步方案开销高:

方案	流量开销	存储开销	CPU开销
主从复制/Paxos	5副本下,写入1份流量,扇出4份流量	日志 + 快照	Log维护
NRW+Merkle树	5副本下,写入1份流量,扇出4份流量	Merkle树	更新每个kv时都需要 更新merkle树所有层

多副本数据同步

- 参数服务器场景的业务特点:
 - 接受最终一致
 - 接受低概率的数据丢失
 - 存在热点数据
- 采用同步状态会比同步日志更合适;

同步日志

同步状态

多副本数据同步

- 同步性能优化:
 - 使用多层版本号(key粒度,桶粒度等)来降低比较开销;
 - 使用二级索引来快速定位 最近的新修改;
 - 推拉结合;

• 现网效果:

	直播推荐	短视频推荐
模型总大小	3R@	/ . R@
模型数量	/)	/)
峰值流量	1E@)-k d	2R@) -k d
峰值ONQ	0千万-q	/ 亿-q
同步耗时	低于 4kq	低于/q

Adam 优化器的实现

任务分解 - PS容量包含两部分

- 1. 计算量
- 2. 存储量

1. 计算量

PS作为有状态模块,业务无法自助扩容 为控制RPC发散量,也不宜大量扩容

2. 存储量

TensorFlow

Adam 优化器的实现

- 优化器相关存储下放到无状态的worker,worker上设置冷Embedding相关 优化器参数淘汰策略回收存储,有状态 PS 存储容量是总参数量的1/3;
- 优化器计算过程下放到无状态的worker,在不增加全局总计算量的前提下,便于业务自助扩容;
- 不影响模型收敛;

Item 向量的实时检索

- 推荐系统的召回流程中,需要用推理服务生成的查询向量,召回 topk 条 最相似的向量,进入下一步的排序环节;
- ANN(Approximate Nearest Neighbor) 近邻检索再学术界已被研究多年,有 Faiss、HNSWLib 等成熟的库;
- 但实时的向量检索仍是难点;

Item 向量的实时检索

Item 向量的实时检索

暴力计算

 使用 AVX 指令集, 遍历 20 万条 64 维 向量只需要 6ms;

树状传播

- 树状传播,防止带宽瓶颈
- · Push 满足高实时
- Pull 提供异常兜底

WePS的总结与展望

- 通过训练和推理共用同一个参数服务器,实现了大模型毫秒级上线,解决了训练和推理的模型差异问题;
- 解决了里面的一些技术难点:
 - 高可用
 - 优化器实现
 - 高性能且低成本

- 未来工作:
 - 大模型的分布式异构训练
 - 参数服务器中的异构存储 (RAM+PMEM+DISK)
 - 大召回集的高性能、实时向量检索;

精彩继续! 更多一线大厂前沿技术案例

❷北京站

MiCon

全球人工智能与机器学习技术大会

时间: 2021年11月25-26日 地点: 北京·国际会议中心

扫码查看大会详情>>

❷北京站

全球产品创新大会

时间: 2021年11月26-27日 地点: 北京·国际会议中心

扫码查看大会 详情>>

❷北京站

时间: 2021年12月03-04日 地点: 北京·国际会议中心

扫码查看大会 详情>>

THANKS

_

Global
Architect Summit

