Работа 4.4.3 Изучение призмы с помощью гониометра

Шарапов Денис, Б05-005

Содержание

1	Аннотация	2
2	Теоретические сведения	2
3	Результаты измерений и обработка данных	2
4	Вывод	4
5	Приложение: графики	4

1 Аннотация

Цель работы: знакомство с работой и настройкой гониометра Г5, определение зависимости показателя преломления стекла призмы от длины волны, определение марки стекла и спектральных характеристик призмы.

В работе используются: гониометр, ртутная лампа, призма.

2 Теоретические сведения

Показатель преломления материала призмы $n(\lambda)$ удобно определять по углу наименьшего отклонения $\delta(\lambda)$ (рис. 1). Минимальное отклонение луча, преломлённого призмой, от направления луча, падающего на призму, получается при симметричном ходе луча (в призме луч идёт параллельно основанию). Угол минимального отклонения δ , преломляющий угол α (угол при вершине призмы) и показатель преломления связаны соотношением

$$n(\lambda) = \frac{\sin\frac{\alpha + \delta(\lambda)}{2}}{\sin\frac{\alpha}{2}}.$$

Рис. 1: Ход лучей в призме для угла наименьшего отклонения

3 Результаты измерений и обработка данных

Измеренные углы наименьшего отклонения 6-ти ярких линий спектра ртути представлены в табл. 1. По этой таблице вычислим значение показателя преломления (табл. 2) и построим график зависимости $n(\lambda)$ (рис. 2).

Таблица 1: Результаты измерения наименьшего отклонения 6-ти ярких диний спектра ртути

K_1	K_2	1	2	3	4	5	6
51°00′49″	51°37′25″	52°01′15″	52°02′14″	52°22′32″	53°09′17″	54°20′46″	55°19′26″

Таблица 2: Результат измерения наименьшего отклонения 6-ти ярких линий спектра ртути

Nº	K_1	K_2	1	2	3	4	5	6
λ , HM	690, 7	623, 4	579, 1	577, 0	546, 1	491, 6	435, 8	404, 7
n	1,6484	1,6544	1,6583	1,6584	1,6617	1,6693	1,6806	1,6898

По графику определим значения n_D (жёлтый дублет натрия), n_F (голубая линия водорода) и n_C (красная линия водорода)

n_D	n_F	n_C	
$1,658 \pm 0,001$	$1,670 \pm 0,001$	$1,652 \pm 0,001$	

Рассчитаем среднюю дисперсию оптического стекла

$$D = n_F - n_C = 0,0018 \pm 0,002$$

Рис. 2: Дисперсионная кривая. Треугольниками обозначены точки F, D, C, соответствующие длинам волн 486, 1, 589, 3, 656, 3 нм соответственно

и коэффициент дисперсии

$$\nu = \frac{n_D - 1}{n_F - n_C} = 36 \pm 4.$$

По наклону прямой

$$\left|\frac{dn}{d\lambda}\right| = (8,9\pm0,5)\cdot10^4~\mathrm{m}^{-1}$$

рассчитаем максимальную разрешающую способность призмы

$$R = b \left| \frac{dn}{d\lambda} \right| \approx (6, 7 \pm 0, 5) \cdot 10^3,$$

где $b=7,4\pm0,1$ см — длина одного из рёбер основания призмы.

Для оценки разрешающей способности призмы воспользуемся табл. 3 и сопроводительным рисунком (рис. 3).

Таблица 3: Измерение угловой ширины жёлтых линий дублета

x_0	x_1	x_2	x_3	
7'14" 6'40"		5′53″	5'23"	

Рис. 3: Измерение угловой ширины жёлтых линий дублета

Рассчитаем экспериментальную величину R по измерениям жёлтого дублета

$$R > \frac{d\lambda}{\lambda} \approx 275.$$

Рассчитаем угловую дисперсию

$$\frac{d\phi}{d\lambda} = 0,0126 \pm 0,0006 \; \mathrm{Hm}^{-1}$$

и сравним её с дисперсией решётки в первом порядке, имеющей 100 штр/мм:

$$D = 5,73 \cdot 10^5 \text{ mm}^{-1}.$$

4 Вывод

В ходе работы исследовали дисперсию света ртутной лампы на стеклянной призме. По измеренным данным определили показатели преломления для длин волн жёлтого дублета натрия, голубой и красной линий водорода. С помощью графика, изображенного на рис. 2, определили сорт стекла призмы — предположительно баритовый флинт (см. приложение). Также сравнили разрешающую способность и угловую дисперсию призмы с соответствующими параметрами дифракционной решётки.

5 Приложение: графики

Рис. 4: Диаграмма Аббе