Cute Matrix - Small

Assignment 4

Data Structures and Algorithms

Problem Statement: Cute matrices are such matrices which obey:

- A Cute matrix can only be of dimensions N * M, where N, M > 2.
- The xor of the of 4 corner cell elements equals 0.
- A matrix is Cute only if it's all sub-matrices of dimensions $p*q\ (2 \le p \le N, 2 \le q \le M)$ are all Cute.

Given a matrix of dimensions N * M with only K cells filled. You are required to fill rest of the cells. You know that matrix can take in values only in the range $(0, 2^{30} - 1)$. Figure out how many different ways can you fill in the matrix completely to make the matrix a Cute one.

Input

First line contains three integers N, M and K.

Next K lines contains description of cells.

i-th of the next K lines contains 3 integers i,j,v, which means cell (i,j) contains value v.

Output

Print the number of ways can you fill in the matrix completely to make the matrix a Cute one. Answer modulo 1e9 + 7.

Constraints

 $1 \le N, M \le 10^3$

 $1 \le K < N * M$

 $0 \le v < 2^{30}$

 $1 \leq i \leq N$

 $1 \leq j \leq M$

Time Limit: 2 seconds Memory Limit: 256 MB

Sample Test Case

Input	Output
2 2 3 1 2 4 2 2 7 2 1 3	1
1 2 4	
2 2 7	
2 1 3	

Input	Output
3 3 2	560523804
1 3 4	
2 3 4	

Input	Output
3 3 4	73741817
1 1 5	
1 3 7	
2 2 4	
2 3 6	

Explanation

The 3 cells in the matrix in 1st sample above cause the only remaining cell (1,1) to be filled in one way to have a Cute matrix, i.e., value 3 xor 4 xor 7 = 0.