# Лекция 4

# Методы организации хранения данных

#### Классификация типов хранения

- Разделяется на
  - Энергозависимая память. Данные пропадают при выключении.
  - Энерогонезависимая память. Данные сохраняются даже при выключении.
- Факторы, влияющие на выбора типа хранения:
  - Скорость доступа
  - Стоимость за единицу данных
  - Надежность

#### Иерархия типов хранения



#### Время доступа

- 0.5 нс L1 кеш
- 7 нс L2 кеш
- 100 нс Память
- 100.000 нс SSD + 3-4 порядка
- 10.000.000 нс HDD + 5-6 порядков

По стоимости даже примерно тяжело привести статистику, но зависимость обратная.

#### Задача БД

Необходимо «симулировать», что мы можем хранить всю БД в памяти.

Так как чтение и запись на диск довольно затратные операции, необходимо эффективно управлять этим для избегания больших ожиданий и потерь в производительности.



Память













#### Почему не использовать ОС?

СУБД почти всегда предполагает самостоятельный контроль для работы с памятью и обычно работает лучше чем ОС

- Правильный порядок записи «грязных» страниц на диск
- Специфичный предзабор страниц
- Политика замены буфера
- Управление процессами/потоками

#### Хранилище для СУБД

- Как СУБД хранит базу данных в файле на диске
- Как СУБД управляет памятью и осуществляет перенос данных туда-обратно

#### Хранилище для СУБД

- Как СУБД хранит базу данных в файле на диске
  - Хранение файлов
  - Расположение внутри страницы
  - Расположение внутри кортежа
- Как СУБД управляет памятью и осуществляет перенос данных туда-обратно

#### Хранение файлов

СУБД хранит базу данных как один или несколько файлов на диске.

Операционная система ничего не знает о содержимом в данных файлах.

#### Менеджер хранилища

- Менеджер хранилища (storage manager) отвечает за управление файлами данных.
  - Наиболее продвинутые иногда делают собственное планирование чтения и записи для локализации страниц
- Менеджер хранилища организует файлы как коллекцию страниц
  - Происходит отслеживание чтения/записи для страниц
  - Происходит отслеживание свободного места

#### Страницы (Page)

- Страница блок данных фиксированного размера (обычно 8Кб)
  - Содержит в себе практически всю информации о базе данных (кортежи, метаданные, индексы, записи логов, и т.д.)
  - Большинство СУБД не смешивают типы страниц
  - Часть СУБД требуют от страниц автономности (внутри страницы хранится вся информация, требуемая для обработки страницы)

### Страницы (Page)

• Каждой странице присвоен уникальный идентификатор

• СУБД использует дополнительные структуры для связи идентификаторов и физических адресов.

#### Архитектура хранения страниц

Различные СУБД могут сохранять страницы на диск разными способами:

- Организация файлов в виде «кучи»
- Последовательная/отсортированная организация файлов
- Организация файлов с помощью хешей

#### Организация файла в виде «кучи»

Файл в виде «куча» — неупорядоченная коллекция страниц, в которой кортежи хранятся в случайном порядке

- Необходимо иметь определенный АРІ для управления страницами: Создание / Получение / Запись / Удаление Страниц
- Необходимо поддерживать итерационную обработку по страницам

#### Организация файла в виде «кучи»

Требуются метаданные для отслеживания существующих страниц и какие из них содержат в себе свободное место

Существует 2 способа:

- Связные списки
- Директория страниц

#### Файл в виде «кучи». Связный список

Содержит в себе заголовок указателей в начале файла:

- Первый элемент списка свободных страниц
- Первый элемент списка страниц с данными



#### Файл в виде «кучи». Связный список



#### Файл в виде «кучи». Связный список



# Файл в виде «кучи». Директория страниц

СУБД содержит специальные страницы, которые отслеживают местоположение страниц данных в файлах базы данных.

Также директория фиксирует количество свободных слотов на страницу.

СУБД должна убедиться, что страницы директории синхронизированы со страницам данных.

# Файл в виде «кучи». Директория страниц



#### Заголовок страницы

На каждой странице есть заголовок с метаданными о содержании страницы

- Размер страницы
- Checksum
- Версия СУБД
- Информация о транзакциях и компрессии

Часть СУБД требуют от страниц автономности

# Организация страницы

- Хранение кортежей
- Хранение лога изменений

#### Хранение кортежей

Как хранить кортежи?

Прямолинейный вариант:

Отслеживать количество кортежей на странице и добавлять кортеж в конец.

Число кортежей = 3

Кортеж 1

Кортеж 2

Кортеж 3

#### Хранение кортежей

Как хранить кортежи?

Прямолинейный вариант:

Отслеживать количество кортежей на странице и добавлять кортеж в конец.

Число кортежей = 2

Кортеж 1

Кортеж 3

#### Хранение кортежей

Как хранить кортежи?

Прямолинейный вариант:

Отслеживать количество кортежей на странице и добавлять кортеж в конец.

Число кортежей = 3

Кортеж 1

Кортеж 4

Кортеж 3

#### Комбинированные страницы

Массив слотов

Slotted pages – наиболее частая организация страницы

Массив «слотов» связывает слот и начальное смещение кортежа

Заголовок содержит информацию о:

- Количество используемых слотов
- Смещение начальной локации последнего слота



#### Комбинированные страницы

Массив слотов

Slotted pages – наиболее частая организация страницы

Массив «слотов» связывает слот и начальное смещение кортежа

Заголовок содержит информацию о:

- Количество используемых слотов
- Смещение начальной локации последнего слота



#### Описание кортежа

Физически кортеж – это последовательность байтов.

Задача СУБД – интерпретировать байты в атрибуты и их значения.

#### Заголовок кортежа

Каждый кортеж содержит в себе метаданные

- Зона видимости
- Битовая карта для NULL значений

Обычно метаданные о схеме хранить не требуется



#### Данные кортежа

Обычно атрибуты хранятся в порядке, который установлен для создания таблиц.

Часть СУБД позволяет осуществлять реорганизацию атрибутов.



```
CREATE TABLE test (
a INT PRIMARY KEY,
b INT NOT NULL,
c VARCHAR(10),
d VARCHAR(20),
e FLOAT
);
```

#### Организация файлов в виде логов

Вместо хранения кортежа в странице, СУБД хранит только изменения.

- При вставке описывается весь кортеж
- Удаление маркирует кортеж как удаленный
- Обновление содержит в себе только дельту изменений



# Организация файлов в виде логов

Чтобы считать запись СУБД требуется считать лог в обратном порядке и собрать запись



#### Организация файлов в виде логов

Чтобы считать запись СУБД требуется считать лог в обратном порядке и собрать запись

Для оптимизации можно построить индексы для перехода по локациям лога



#### Представление данных

- INTEGER/BIGINT/SMALLINT/TINYINT
  - С/С++ представление
- FLOAT/REAL и NUMERIC/DECIMAL
  - Стандарт IEEE-754 / Числа с фиксированной длиной
- VARCHAR/VARBINARY/TEXT/BLOB
  - Заголовок с информацией о длине, затем байты данных
- TIME/DATE/TIMESTAMP
  - 32/64 bit целые числа секунд или микросекунд с Unix epoch

#### Большие значения

Большинство СУБД не позволяют кортежу превышать размер страницы.

Для хранения значений больших чем страница, СУБД использует дополнительные страницы переполнения (overflow).

Буферный пул — область памяти, организованная как массив страниц фиксированного размера.

Элемент массива называется фреймом (frame).

Когда СУБД запрашивает страницу, точная копия находится в одном или нескольких фреймах.

#### Буферный пул



фрейм 2

фрейм 3

фрейм 4

Страница 1

Страница 2

Страница 3

Страница 4

Файл на диске

Буферный пул



Буферный пул



Таблица страниц отслеживает страницы, которые сейчас находятся в памяти

В них также содержится информация о странице:

- Грязный флаг (Dirty flag)
  - Бит, указывающий были ли какие-то изменения на данной странице
- Счетчик ссылок/защелка (pin).
  - Если происходит какое-то действие, то данный фрейм нельзя считывать



Страница 1

Страница 2

Страница 3

Страница 4

Файл на диске

Таблица страниц отслеживает страницы, которые сейчас находятся в памяти

В них также содержится информация о странице:

- Грязный флаг (Dirty flag)
  - Бит, указывающий были ли какие-то изменения на данной странице
- Счетчик ссылок/защелка (pin).
  - Если происходит какое-то действие, то данный фрейм нельзя считывать



Страница 1

Страница 2

Страница 3

Страница 4

Файл на диске

При считывании новой страницы на диске изначально осуществляется аллоцирование места в таблице страниц, затем считывание в буферный пул.



Страница 1 Страница 2 Страница 3 Страница 4 Файл на диске



При считывании новой страницы на диске изначально осуществляется аллоцирование места в таблице страниц, затем считывание в буферный пул.



Страница 1 Страница 2 Страница 3 Страница 4 Файл на диске

#### Блокировки и защелки

#### • Блокировка

- Высокоуровневая логическая единица. Осуществляет блокировку логического контента от других транзакций
- Выполняется в процессе работы транзакции
- Должна быть осуществлена возможность отката изменений

#### • Защелки

- Защищает критические секции внутренних структур СУБД от других потоков
- Выполняется в процессе работы операций
- Не требуется возможность отката изменений

#### Таблица страниц и директория страниц

- Директория страниц связь между идентификаторами страницы и расположением страницы в файлах базы данных
  - все изменения должны быть записаны на диск, для восстановления и перегрузки
- Таблица страниц связь между идентификаторами страницы и копией страницы во фреймах буферного пула
  - данные структуры хранятся в памяти и их хранение на диске не требуется

#### Политика выделения памяти

- Глобальная
  - принимаются решения для всех активный транзакций
- Локальная
  - выделение фреймов для конкретной транзакции без учета поведения параллельных транзакций
  - требуется поддержка общих страниц

#### Оптимизация работы буферного пула

- Несколько буферных пулов
- Предзабор (pre-fetching)
- Совместный поиск

#### Несколько буферных пулов

- У СУБД далеко не всегда есть единый буферный пул для всей системы
  - Несколько экземпляров буферного пула
  - Буферный пул на базу данных
  - Буферный пул по типу страниц

Несколько буферных пулов позволяет улучшить локальность и конкуренцию «защелок».

#### Предзабор

СУБД может осуществлять предзабор страниц, основанных на плане запроса

- Последовательный доступ
- Доступ по индексам

#### Предзабор

Страницы на диске

SELECT \* FROM A Страница 0 Буферный пул Страница 0 Страница 1 Страница 1 Страница 2 Страница 3 Страница 4 Страница 5

# Предзабор

Страницы на диске

Буферный пул

Страница 0

Страница 1

Страница 1

Страница 0

Страница 2

Страница 3

Страница 4



#### Предзабор Страницы на диске Страница 0 Буферный пул Страница 2 Страница 1 Страница 4 Страница 2 Страница 3 Страница 3 Страница 4 Страница 5

- Запросы могут переиспользовать данные, полученные с диска, для вычисления операций
  - Данный вариант отличается от кеширования результата, когда мы фактически сохраняем результат выполнения операции, а затем периодически его переиспользуем.
- Несколько запросов могу использовать один и тот же курсор\* в процессе чтения таблицы
  - Запросы не должны быть теми же самыми
  - Существует вариант, когда совместно переиспользуются промежуточные результаты

<sup>\*</sup>Курсор — ссылка на контекстную область памяти.

Q1 SELECT SUM(val) FROM A

Буферный пул

Страница 0

Страницы на диске

Страница 0 Q1 Страница 1 Страница 2 Страница 3 Страница 4 Страница 5

SELECT SUM(val) FROM A Q1 Страница 0 Страница 1 Буферный пул Страница 2 Q1 Страница 0 Страница 3 Страница 1 Страница 4 Страница 2 Страница 5

64

Страницы на диске SELECT SUM(val) FROM A Q1 Q2 SELECT AVG(val) FROM A Страница 0 Страница 1 Буферный пул Страница 2 Q2 Q1 Страница 0 Страница 3 Страница 1 Страница 4 Страница 2 Страница 5

Q1 SELECT SUM(val) FROM A

Q2 | SELECT AVG(val) FROM A

Буферный пул

Страница 3

Страница 4

Страница 5



Страница 0

Страница 1

Страница 2

Страница 3

Страница 4



Q1 SELECT SUM(val) FROM A

Q2 | SELECT AVG(val) FROM A

Буферный пул

Страница 0

Страница 1

Страница 2

Страницы на диске

Q2

Страница 0

Страница 1

Страница 2

Страница 3

Страница 4

Q1 SELECT SUM(val) FROM A

Q2 | SELECT AVG(val) FROM A

Буферный пул

Страница 0

Страница 1

Страница 5



Страница 0

Q2

Страница 1

Страница 2

Страница 3

Страница 4

- Поддерживается IBM DB2 и SQL Server
- Oracle поддерживает только совместные курсоры для одинаковых запросов
- PostgreSQL содержит в себе структуры, позволяющие подобные операции

#### Политика замены буфера

Если СУБД требуется заменить один из фреймов для освобождения место новому фрейму, то необходимо выбрать как страницу требуется выбросить из буферного пула.

#### Основные свойства:

- Корректность
- Точность
- Скорость
- Накладные расходы на метаданных

#### **FIFO**

First in, first out

В FIFO содержится очередь идентификаторов страниц в порядке возрастания, добавляя страницы в конец очереди.

Когда буферный пул заполнен, берется элемент с начала очереди и выбрасывается.

Главный недостаток — отслеживается только первый вход; нет никакой информации о том, что страница забиралась еще раз.

#### **LRU**

Least Recently Used. Аналогично существует очередь из ID, однако при переиспользовании страницы она помещается в конец очереди.

Недостаток – расходы на обновление ссылочности и перелинковку узлов очереди.

#### CLOCK

LRU алгоритмы могут быть довольно точными, но не всегда оптимально быстрыми. Алгоритм CLOCK используется, как альтернатива LRU.

CLOCK структура содержит ссылки на страницы и связанные с этими страницами биты в циклическом буфере.

#### **CLOCK**



Каждый раз, когда требуется страница, ее бит доступа становится 1. Алгоритм работает, обходя циклически следующим образом:

- Если бит доступа 1, и на страницу нет ссылок, то в бит пишется 0 и осуществляется просмотр следующей страницы.
- Если бит доступа 0, то страница становится *кандидатом* и планируется на выброс из буфера.
- Если на страницу есть ссылка, то бит остается неизменным.

#### **LFU**

Least Frequently Used. Вместо отслеживания считывания страницы с диска, отслеживает события ссылки на страницу.

Сортировка происходит по частоте использования страницы.

