

7-3. 결정계수 그리고 설명된 편차와 설명되지 않은 편차

- ① 결정계수 R^2 은 회귀식이 얼마나 정확한지를 나타내는 숫자이다.
- ② 회귀분석에서 회귀식을 활용하여 무언가를 예측할 때, 정답인 실제값이 아닌 틀릴 확률이 존재하는 예측값이 나오면서 항상 오차가 발생한다.
 - ① 오차가 작다 = 점들이 모여 있는 밀도가 높다 = 회귀식의 정확도가 높다
 - © 오차가 크다 = 점들이 모여 있는 밀도가 낮다 = 회귀식의 정확도가 낮다

③ R^2 값이 1에 가까운 큰 값일수록 완벽한 회귀모형이다.

- - \bigcirc Y의 총제곱합(SST) 중 추정된 회귀식이 설명하는 변동량(SSR)의 비율이다.
 - (L) 적합모형에 의해 설명된 변동의 비율에 대한 측도이다.
 - ⓒ 총변화량 중 추정된 회귀식이 설명하는 변동량(SSR)의 비중이 크면 클수록 회귀식이 원래의 자료를 잘 정리 요약하여 반영한다.
 - ② 상관계수의 제곱 r^2 이다.
 - □ 일반적으로는 100을 곱하여 %단위로 쓴다.
 - \square 사회과학 연구에서는 R^2 값이 70%만 넘어도 상당히 큰 값으로 생각한다.

- [예] 중학교 5명의 영어점수의 총편차제곱합은 10, 설명된 편차제곱합은 9.0 그리고 설명되지 않은 편차제곱합은 1.0이다.
- 국어, 영어점수에서의 결정계수 = 설명된 변화량/총변화량 = 9/10=0.9
- © Y변수의 총변화량의 90%를 X변수가 설명해 줌.
- © X변수의 총변화량의 90%를 Y변수가 설명해 줌. (상관관계는 상호관계로 해석하기 때문)
- ② 전체 변동의 90% 가량이 회귀직선에 의해 설명되므로 회귀직선은 유용하다고 판단된다.
- ⑤ 결정계수 구하기 : '설명된 편차' 와 '설명되지 않은 편차'

설명된 편차	설명되지 않은 편차			
같은 X_i 값을 가진 모든 대상은 각기	X_i 값이 같으므로 그에 대응하여 기대되는			
다른 Y_i 값을 가졌다 하여도 기대되는	\widehat{Y}_i 값은 같으나 각 개인의 Y_i 값이 다르므로			
\widehat{Y}_i 값은 같으므로 X_i 값이 같을 때	$(Y_i - \widehat{Y_i})$ 값은 다르다. 이는 개인차 혹은			
$(\widehat{Y}_{i} - \overline{Y})$ 값은 항상 같다.	측정의 오차 등에 의하여 발생된다.			

① $Y_i = \overline{Y} + (\hat{Y}_i - \overline{Y}) + (Y_i - \hat{Y}_i)$ = 'Y 변수를 대표하는 평균' + '예견되는 기댓값과 평균의 차이'

+ '관찰된 점수와 기댓값의 차이'

- \bigcirc 각 개인의 총편차 $Y_i-\overline{Y}=\underbrace{(\hat{Y}_i-\overline{Y})}$ + $\underbrace{(Y_i-\hat{Y}_i)}$ 설명되지 않은 편차 (explained deviation) (unexplained deviation)
- ⓒ 편차합 = 0, 따라서 편차의 제곱의 합을 이용
- ② 총변화량은 설명된 변화량과 설명되지 않은 변화량으로 구분된다.

7-4. 회귀의 선형성에 관한 검정

- ① X에 관한 Y의 모회귀직선의 방정식 $Y=\beta_0+\beta_1 X$ 에서 $\beta_1=0$ 이면, X의 어떤 값에 대해서도 $Y=\beta_0$ 로 일정하므로 X에 대한 Y의 값을 추정할 수 없으며 이 방정식은 회귀성을 갖지 않는다고 한다. 따라서 회귀성의 유무에 대한 검정, 즉 $\beta_1=0$ 에 대한 검정을 해야 한다.
- ② 표본회귀직선의 방정식 $\hat{Y}=b_0+b_1X$ 와 모회귀직선의 방정식 $Y=\beta_0+\beta_1X$ 에서 $H_0:\beta_1=0,\ H_1:\beta_1\neq 0$ 을 검정하는데 분산분석을 이용한다.
- ③ 회귀직선의 유의성 검정은 다음의 F통계량을 이용한다.

$$F = \frac{S_R^2}{S_R^2} \sim F(1, n-2)$$

- ① 회귀평균제곱(regression mean square) $S_R^2 = \frac{SSR}{1}$
- © 잔차평균제곱(residual mean square) $S_E^2 = \frac{SSE}{n-2}$
- © 유의수준 α 에서 $F > F_{\alpha}(1, n-2)$ 이면 귀무가설 H_0 를 기각한다.
- ④ 회귀직선의 유의성 검정을 위한 분산분석표는 다음과 같다.

요인	제곱합	자유도	평균제곱	F	R^2
설명된 변화량(회귀선)	SSR	1	$S_R^2 = SSR$	$F = \frac{S_R^2}{S_E^2}$	$\frac{SSR}{SST}$
설명되지 않은 변화량(잔여분)	SSE	n-2	$S_E^2 = \frac{SSE}{(n-2)}$		
총변화량	SST	n-1			

[예] 다음 표는 기억력 X와 판단력 Y를 조사하여 얻은 자료이다. X에 관한 Y의 회귀직선의 방정식을 구하고 회귀직선의 유의성을 검정하시오.

X	8	9	9	10	10	10	11	12	12	15
Y	2	3	4	3	5	7	6	7	8	9

[풀이]

- \bigcirc 가설 세우기 $H_0: \beta_1 = 0, H_1: \beta_1 \neq 0$
- € 분산분석표

요인	제곱합	자유도	평균제곱	F	임계값
회귀	38.55	1	38.55	38.55/1.23	$F_{0.01}(1, 8) = 11.26$
잔차	9.85	8	9.85/8=1.23	= 31.34	
총합	48.40	9			

© F = 31.34 > 11.26이므로 $\alpha = 0.01$ 에서 귀무가설을 기각한다.