Repetition

Learning objectives

Understand important effects of finite k-space velocity on Cartesian MRI

Chemical shift, field inhomogeneities, T₂ relaxation

We can sample arbitrary trajectories

$$\mathbf{k}(t) = \frac{\gamma}{2\pi} \int_{t_0}^{t} \mathbf{G}(t') dt'$$

inikum gen

$$\mathbf{k}(t) = \frac{\gamma}{2\pi} \int_0^t \mathbf{G}(t') dt'$$

$$k_{\rm read}(t) = \frac{\gamma}{2\pi} G_{\rm read} t - k_{\rm max}$$

k-space velocity
$$v_{\rm k,read} = \dot{k}_{\rm read}(t) = \frac{\gamma}{2\pi} G_{\rm read}$$

Alternatively:
$$v_{k,read} = \frac{k_{read}(T_{read}) - k_{read}(0)}{T_{read}}$$

Three measures of speed in k-space

$$=\frac{2k_{\max}}{T_{\text{read}}} = \frac{\gamma}{2\pi}G_{\text{read}}$$
indirect

Bandwidth

Fourth measure of speed in k-space

Acquisition bandwidth $BW = \nu_{\rm right} - \nu_{\rm left} = \frac{1}{T_{\rm read}}$ indirect

Bandwidth 2nd definition, not used in this course

Fourth measure of speed in k-space

Acquisition bandwidth $BW = \nu_{\rm right} - \nu_{\rm left} = \frac{N_{\rm voxel}}{T_{\rm read}}$ indirect

Chemical shift

$$v_{0,\text{of a certain chemical group}} = \frac{\gamma}{2\pi} B_0 \cdot (1 + \delta)$$

 δ is the chemical shift

Field inhomogenity

In the image: point x_1 is shifted to x_2

Physical Effect

Chemical shift:

$$\omega \to \gamma B_0 \cdot (1 + \delta)$$

Field inhomogenity:

$$\boldsymbol{B}_0 \to \boldsymbol{B}_0 + \Delta \boldsymbol{B}(\boldsymbol{r})$$

Physical Effect	Effect on Cartesian MRI	$\propto B_0$	$\propto BW^{-1}$	$\propto G_{\rm read}^{-1}$	$\propto v_{ m k}^{-1}$
Chemical shift: $\omega \to \gamma B_0 \cdot (1 + \delta)$	Shift of fat signal by $\Delta x_{\rm fat}$	✓	✓	✓	✓
Field inhomogenity: $B_0 \rightarrow B_0 + \Delta B(r)$	Shift of signal by $\Delta x_{\Delta B}(\boldsymbol{r})$	\checkmark	√	\checkmark	\checkmark

SNR
$$\propto T_{\rm read}^{1/2} \propto BW^{-1/2}$$

ightharpoonup Reduction of these artifacts by a factor of 2 is paid with a factor $\sqrt{2}$ of SNR

1.5. Transversal relaxation

Reminder: k-Space & image space

Reminder:

k-Space: resolution and contrast

Transversal relaxation and relation to k-space position

- Due to T₂ relaxation, the transversal magnetization decays as $M_{\perp}(t) = M_{\perp}(0)e^{-t/T_2} = M_{\perp}(0)R_{\rm relax}(t)$
- If $\Delta B(r) \neq 0 \rightarrow R_{\text{relax}}(t)$ might take a different functional form

Say that k-space is sampled with k(t).

How much time has evolved until a certain k-space position is reached? \rightarrow find t(k)

The one can define $\tilde{R}_{\text{relax,k}}(\mathbf{k}) \coloneqq R_{\text{relax}}(t(\mathbf{k}))$

T2 blurring

depends on k-space path k(t)

- In general: $\tilde{S}_{MRI, with T2}(\mathbf{k}) = \tilde{S}_{MRI, without T2}(\mathbf{k}) \tilde{R}_{relax,k}(\mathbf{k})$
- Associated signal $S_{\text{MRI, with T2}}(\mathbf{r}) = \mathcal{F}^{-1}\{\tilde{S}_{\text{MRI, without T2}}(\mathbf{k})\tilde{R}_{\text{relax,k}}(\mathbf{k})\}$
- Convolution theorem: $\mathcal{F}^{-1}\{\tilde{f}(\mathbf{k}) \cdot \tilde{g}(\mathbf{k})\} = f(\mathbf{r}) * g(\mathbf{r})$
- $S_{MRI, with T2}(\mathbf{r}) = S_{MRI, without T2}(\mathbf{k}) * \mathcal{F}^{-1} \{ \tilde{R}_{relax,k}(\mathbf{k}) \}$
- I.e. a "T₂ blurring" results
- \blacksquare T₂ blurring depends on position r if T₂ depends r
- The larger $v_k \propto G_{read} \propto BW$ and the larger T_2 , the smaller is the blurring

Example: Radial sampling, exponential signal decay, 1D case

1st excitation:

From ① to ②:
$$k(t) = \frac{1}{2\pi} \gamma G_{\text{read}} t$$

2nd excitation:

From ① to ③ :
$$k(t) = \frac{1}{2\pi} \gamma \cdot (-G_{\text{read}})t$$

$$\Rightarrow t(k) = \frac{2\pi |k|}{\gamma G_{\text{read}}}$$

$$R_{\text{relax}}(t) = \exp(-t(k)/T_2)$$

 $\tilde{R}_{\text{relax,k}}(k) \coloneqq \exp\left(-\frac{2\pi|k|}{\gamma G_{\text{read}}T_2}\right)$

$$\mathcal{F}^{-1}\left\{\tilde{R}_{\mathrm{relax,k}}(k)\right\} = \frac{1}{\pi} \frac{\gamma G_{\mathrm{read}} T_2}{1 + \gamma^2 G_{\mathrm{read}}^2 T_2^2 x^2}$$

Example: Radial sampling, exponential signal decay, 1D case, 201 voxels

 $G_{\rm read}$ =5 mT/m, $T_{\rm read} \approx 2.3$ ms

 $G_{\rm read} = 10$ mT/m, $T_{\rm read} \approx 1.2$ ms

Example: Radial sampling, exponential signal decay, 1D case, 201 voxels

 $G_{\rm read}$ =5 mT/m, $T_{\rm read} \approx 2.3$ ms

 $G_{\rm read}$ =10 mT/m, $T_{\rm read} \approx 1.2$ ms

We discussed three effects of finite k-space velocity

Physical Effect

Chemical shift:

$$\omega \to \gamma B_0 \cdot (1 + \delta)$$

Field inhomogenity:

$$\boldsymbol{B}_0 \to \boldsymbol{B}_0 + \Delta \boldsymbol{B}(\boldsymbol{r})$$

T₂ relaxation

Physical Effect	Effect on Cartesian MRI	$\propto B_0$	$\propto BW^{-1}$	$\propto G_{\rm read}^{-1}$	$\propto v_{ m k}^{-1}$
Chemical shift: $\omega \to \gamma B_0 \cdot (1 + \delta)$	Shift of fat signal by $\Delta x_{\rm fat}$	✓	√	√	✓
Field inhomogenity: $B_0 \rightarrow B_0 + \Delta B(r)$	Shift of signal by $\Delta x_{\Delta B}(\boldsymbol{r})$	\checkmark	✓	\checkmark	\checkmark
T ₂ relaxation	T ₂ blurring		\checkmark	\checkmark	\checkmark

SNR
$$\propto T_{\rm read}^{1/2} \propto BW^{-1/2}$$

ightharpoonup Reduction of these artifacts by a factor of 2 is paid with a factor $\sqrt{2}$ of SNR

Echo planar imaging (EPI): The principle

Which vehicle would like to drive?

Porsche Diesel $v_{max} = 27.9 \text{ km/h}$

Porsche 911 $v_{max} > 300 \text{ km/h}$

Images: de.wikipedia.org

Best vehicle depends on the intended purpose

https://de.wiktionary.org/wiki/Acker

https://de.wikipedia.org/wiki/Nordschleife

Definition EPI

EPI: A snail through k-space

EPI trajectory

EPI timing table

$$\boldsymbol{k}(t) = \frac{\gamma}{2\pi} \int_0^t \boldsymbol{G}(t') dt' \cdot \boldsymbol{r}$$

Bandwidth in EPI

Bandwidth is defined as for a single line sequence

$$BW = \frac{1}{T_{\text{read}}}$$

Properties of EPI

- Echo time TE is defined as the time when the k-space center is reached
- Excitation angle <90° possible
- Typical acquisition time for one image: 0.1 s → fast technique
- It is a "single-shot technique"
- Can be run as spin echo or gradient echo sequence gradient echo: spin echo:

Advantages and Disadvantages of EPI

- Advantages:
 - Very fast
 - SNR-efficient
 - Very good for some special applications (diffusion imaging, fMRI, ...)
- Disadvantages:
 - Long echo train makes EPI prone to artifacts
 - not well-suited for high-resolution imaging

EPI and chemical shift

Fat - water shift in EPI

$$\Delta x_{\text{fat}} = \frac{\gamma B_0 \cdot (\sigma_{\text{fat}} - \sigma_{\text{water}})}{2\pi v_{\text{k,read}}} e_{\text{read}}$$

$$\Delta x_{\text{fat}} = ?$$

Fat - water shift in EPI

read direction:

- time needed for one line is T_{read}
- travelled distance is $2k_{\text{max,read}}$
- the k-space velocity is $v_{\rm k,read} = \frac{2k_{\rm max,read}}{T_{\rm read}}$
- phase direction:
 - N lines must be acquired
 - needed time is $N \cdot T_{\text{read}}$
 - travelled distance is $2k_{\text{max,phase}}$
 - the k-space velocity is $v_{\rm k,phase} = \frac{2k_{\rm max,phase}}{N \cdot T_{\rm read}}$
- $v_{\rm k,phase} = v_{\rm k,read}/N$

→ The chemical shift artifact is *N* times larger for EPI

$$\Delta x_{\text{fat}} = ?$$

$$\Delta x_{\rm fat} \propto v_{\rm k}^{-1}$$

Fat - water shift in EPI

$$\frac{\Delta x_{\text{fat}}}{\Delta x} = \frac{\Delta v_{\text{fat}}}{BW}$$

Single line encoding:

$$\Delta x_{\text{fat,1line}} = \frac{\Delta x \cdot \Delta v_{\text{fat}}}{BW} e_{\text{read}}$$

EPI: just adapt this formula

$$\Delta x_{\text{fat,EPI}} = \frac{N \cdot \Delta x \cdot \Delta v_{\text{fat}}}{BW} e_{\text{phase}}$$
$$= \frac{FOV_{\text{phase}} \cdot \Delta v_{\text{fat}}}{BW} e_{\text{phase}}$$

■ The shift in read direction is much smaller and somewhat more involved because of travelling back and forth. We neglect it.

Options to minimize $\Delta x_{\rm fat}$ in EPI

$$\Delta x_{\text{fat,EPI}} = \frac{FOV_{\text{phase}} \cdot \Delta v_{\text{fat}}}{BW} e_{\text{phase}}$$

increase the BW

Typical BW \approx 2000 Hz/Px

use parallel imaging

(discussed later in the course)

reduce the field of view along phase direction

No free lunch

$$\Delta x_{\text{fat,EPI}} = \frac{FOV_{\text{phase}} \cdot \Delta v_{\text{fat}}}{BW} e_{\text{phase}}$$

- $\Delta x_{\rm fat} \propto BW^{-1} \qquad \propto T_{\rm data\ acquisition}$
- $\Delta x_{\rm fat} \propto FoV_{\rm phase}$ $\propto T_{\rm data\ acquisition}$
- $\Delta x_{\rm fat} \propto ({\rm parallel\ imaging\ acceleration\ factor})^{-1} \propto T_{\rm data\ acquisition}$
- All these factors have in common: they reduce the time spend on acquiring data, i.e. $T_{\text{data acquisition}}$
- The price one has to pay: signal-to-noise ratio SNR $\propto \sqrt{T_{\text{data acquisition}}}$

Fat-water shift in the brain

BW = 1000 Hz/Px

Dank an A. Riexinger

BW = 2000 Hz/Px (only half the shift)

Uniklinikum Erlangen

EPI and magnetic field inhomogeneities

$\Delta x_{\Delta B}$ formulas for EPI (just replace $B_0 \cdot (\sigma_{\rm fat} - \sigma_{\rm water})$ with $\Delta B_{\rm z}(\boldsymbol{r})$)

$$\Delta x_{\text{fat,EPI}} = \frac{\gamma B_0 \cdot (\sigma_{\text{fat}} - \sigma_{\text{water}}) \cdot FoV_{\text{phase}}}{2\pi BW} \boldsymbol{e}_{\text{phase}}$$

$$\Delta x_{\Delta B, \text{EPI}} = \frac{\gamma \Delta B_{\text{z}}(\boldsymbol{r}) \cdot FoV_{\text{phase}}}{2\pi BW} \boldsymbol{e}_{\text{phase}}$$

Effect 1: image shift

squeezed eye balls

Effect 2: Intensity variation

Effect 2: Intensity variation

Transversal relaxation

T2 blurring

- $S_{\text{MRI, with T2}}(\mathbf{r}) = S_{\text{MRI, without T2}}(\mathbf{r}) * \mathcal{F}^{-1} \{ \tilde{R}_{\text{relax,k}}(\mathbf{k}) \}$
- Again a "T₂ blurring" occurs
- Unlike for single-line encoding: along phase encoding direction for EPI
- For EPI, the T₂ blurring is $N \cdot \frac{k_{\text{max,read}}}{k_{\text{max,phase}}}$ times worse
- In EPI, actually T_2^* blurring

Echo spacing

Echo spacing

$$\Delta x_{\text{fat,EPI}} = \frac{FOV_{\text{phase}} \cdot \Delta v_{\text{fat}}}{BW} e_{\text{phase}}$$

$$BW = T_{\text{read}}^{-1}$$

A bit more correct: use echo spacing

$$\Delta x_{\text{fat,EPI}}$$

$$= FOV_{\text{phase}} \Delta v_{\text{fat}} T_{\text{echo spacing}} e_{\text{phase}}$$

Variations of EPI

Interleaved EPI

Interleaved EPI

- Advantage:
 - The discussed artifacts go down by a factor N_{shot}
- Disadvantage:
 - More prone to patient motion
 - Acquisition time goes up

Readout-segmented EPI

Readout-segmented EPI

- Advantage:
 - The discussed artifacts go down by a factor $N_{\rm shot}$
- Disadvantage:
 - More prone to patient motion
 - Acquisition time goes up

3D EPI

3D EPI

Summary

Summary

- EPI is fast (acquisition time)
- EPI is slow (long readout train)
 - Δx_{fat} , $\Delta x_{\Delta B}$, T₂ blurring worse by factor *N*
 - These artifacts: along phase direction
- N/2 ghost may arise

