Задание 1. Потери энергии (Решение)

Задача 1.1

1.1 Диск разгоняется под действием силы трения \vec{F} со стороны движущейся ленты транспортера. В соответствии с 3 законом

Ньютона такая же по модулю сила \vec{F}' действует на ленту. Поэтому, чтобы лента продолжала двигаться с прежней скоростью на столько же должна увеличиться сила тяги \vec{F}'' , действующая на ленту. Именно работа этой силы как сообщает кинетическую энергию диску, так и приводит к выделению теплоты. Расчет работы этой силы проведем в системе неподвижной системе отсчета.

Сила трения:

Сила трения:
$$F = \mu mg$$
; (1) ускорение диска: $a = \frac{F}{m} = \mu g$; (2) 0 x_1 x_2 x_3

время, за которое скорость диска возрастет от нуля до скорости ленты:

$$\tau = \frac{v_0}{a} = \frac{v_0}{\mu g}; \tag{3}$$

За это время лента сместится на расстояние

$$x_2 = v_0 \tau = \frac{v_0^2}{\mu g},\tag{4}$$

работа этой силы:

$$A = Fx_2 = \mu mg \frac{v_0^2}{\mu g} = mv_0^2.$$
 (5)

Эта работа равна сумме приобретенной кинетической энергии диска выделившейся теплоты O. Следовательно, количество выделившейся теплоты равно

$$Q = \frac{mv_0^2}{2}. (6)$$

Поясним, что работа силы трения \vec{F} , действующей на диск, равна изменению кинетической энергии диска. А работа внешней равной ей внешней силы \vec{F}'' в 2 раза больше, т.к. лента сместилась за рассматриваемый промежуток времени на в 2 раза большее расстояние.

Способ решения 2.

Рассмотрим движение диска в системе отсчета, связанной с лентой. Важно подчеркнуть, что эта система отсчета является инерциальной. В этой системе отсчета диск имел начальную скорость $v_{\scriptscriptstyle 0}$, а затем в следствие трении остановился. Следовательно, начальная кинетическая энергия диска полностью выделилась в виде теплоты. Откуда следует полученный результат (6).

Задача 1.2

Можно воспользоваться вторым способом решения предыдущей задачи 1.1. Не повторяя проведенных рассуждений, сразу приведем ответ: количество выделившейся теплоты равно

$$Q = \frac{mv_0^2}{2}. (1)$$

Тем не менее, приведем еще один достаточно интересный обобщающий метод решения данной задачи. Обозначим силу, разгоняющую шарик \vec{F} . Такая же сила должна быть приложенная к жидкости, чтобы сохранить скорость ее течения постоянной. Работу силы, приложенной к шарику, можно рассчитать следующим образом. Разобьем перемещение шарика на малые участки Δx_k , силу действующую на этом интервале обозначим F_k (мы не предполагаем постоянство этой силы). Тогда работа равна сумме (точнее интегралу):

$$A_1 = \sum_{k} F_k \Delta x_{1k} \tag{2}$$

Далее воспользуемся вторым законом Ньютона для шарика

$$F_k = m \frac{\Delta v_{1k}}{\Delta t} \,, \tag{3}$$

 Γ де Δv_{1k} - изменение скорости шарика за малый промежуток времени Δt . Подставим это выражение в формулу для работы и преобразуем полученное выражение

$$A_{1} = \sum_{k} F_{k} \Delta x_{1k} = \sum_{k} m \frac{\Delta v_{1k}}{\Delta t} \Delta x_{1k} = \sum_{k} m \frac{\Delta x_{1k}}{\Delta t} \Delta v_{1k} = \sum_{k} m v_{1k} \Delta v_{1k} = \sum_{k} m \Delta \left(\frac{v_{1k}^{2}}{2}\right) = \frac{m v_{0}^{2}}{2}$$
(4)

В итоге получили тривиальный результат – работа силы равна изменению кинетической энергии шарика.

Теперь аналогично подсчитаем работы силы, движущей воду:

$$A_{2} = \sum_{k} F_{k} \Delta x_{0k} = \sum_{k} m \frac{\Delta v_{1k}}{\Delta t} v_{0} \Delta t = \sum_{k} m v_{0} \Delta v_{1k} = m v_{0}^{2}.$$
 (5)

Это и есть основной результат: независимо от характера силы, действующий на шарик, работа внешней силы в два раза превышает изменение кинетической энергии шарика. Следовательно, разность между ними (т.е. выделившаяся теплота) равна полученной кинетической энергии.

Задача 1.3

1.3.1 Так как цепочка поднимается с постоянной скоростью, то в любой момент времени сумма сил, действующих на поднятую часть цепочки равна нулю. При подъеме цепочки на малую высоту Δz нижняя ее часть длины Δz должна быстро увеличить скорость от нуля до скорости цепочки v_0 . Это ускорение возможно только за счет дополнительной силы натяжения цепочки. Эту силы можно рассчитать через скорость изменения импульса

$$F' = \frac{\Delta p}{\Delta t} = \frac{v_0 \Delta m}{\Delta t} = \frac{v_0 \frac{m}{l} \Delta z}{\Delta t} = \frac{m}{l} v_0^2.$$
 (1)

Теоретический тур. Вариант 1.

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2024-2025 учебный год

здесь $\Delta m = \frac{m}{l} \Delta z = \frac{m}{l} v_0 \Delta t$ - масса части цепочки, которая отрывается от стола за малый промежуток времени Δt .

Таким образом, сила, с которой тянут цепочку вверх, при равномерном движении должна быть равна сумме силы тяжести поднятой части $m'g = \frac{m}{l}zg$ и найденной силы F':

$$F = \frac{m}{l}zg + \frac{m}{l}v_0^2. \tag{2}$$

График этой линейной функции показа на рисунке.

1.3.2 Работа найденной силы численно равна площади под графиком нарисованной зависимости:

$$A = \frac{mv_0^2}{l} \cdot l + \frac{1}{2}mgl = mv_0^2 + \frac{1}{2}mgl.$$
 (3)

Энергия, сообщенная цепочке, пошла на увеличение кинетической энергии цепочки $\frac{mv_0^2}{2}$, ее

потенциальной энергии $\frac{1}{2} mgl$ и выделившуюся теплоту Q . Поэтому

$$A = mv_0^2 + \frac{1}{2}mgl = \frac{mv_0^2}{2} + \frac{1}{2}mgl + Q.$$
 (4)

Из этого уравнения следует. что количество выделившейся теплоты равно

$$Q = \frac{mv_0^2}{2}. (5)$$