

Projective Space Codes for the Injection Metric

Azadeh Khaleghi and Frank R. Kschischang Department of Electrical and Computer Engineering Step I: Select a set of cells with minimum inter-cell distance d. University of Toronto

Background and Motivation

Network Coding: Output at intermediate nodes are functions of their input packets.

Random Linear Network Coding: Each intermediate node outputs a random linear combination of its input packets.

Problem: Error Propagation → even a single corrupt packet, when combined with other packets in the network may render the entire transmission useless!

Adversarial Channel Model:

A source transmits source packets: X_1, X_2, \cdots, X_m . There exists a malicious node (an adversary) in the network that may inject (upto t) erroneous packets E_1, E_2, \cdots, E_t at some or all of its outgoing links. A receiver receives

$$Y=AX+BE,$$
 where $X=\begin{bmatrix}X_1\\X_2\\\vdots\\X_m\end{bmatrix}$, $E=\begin{bmatrix}E_1\\E_2\\\vdots\\E_t\end{bmatrix}$ and, A and B are the

transfer matrices corresponding to the source and error packets respectively. Notice that in the absence of errors and if A is full-rank, $\langle Y \rangle = \langle AX \rangle$. Thus network coding is equivalent to transmission of vectorspaces.

Mathematical Preliminaries

Let W be an n-dimensional vector space over \mathbf{F}_q . Projective Space: The set of all subspaces of Wforms a projective space $\mathcal{P}_q(n)$.

Grassmannian: The set of all k-dimensional subspaces of W, $k \leq n$ forms a Grassmannian $\mathcal{G}_q(n,k)$. Injection Distance: The injection distance between U, and $V \in \mathcal{P}_q(n)$ is defined as,

$$d_I(U, V) = \max\{\dim U, \dim V\} - \dim(U \cap V).$$

 $d_I(\cdot,\cdot)$ is shown to be a suitable metric for adversarial error-control in network coding.

Spheres in Projective Space

Let V be a k-dimensional vector space in $\mathcal{P}_q(n)$. We define $B_V(t)$ to be the set of all spaces in $\mathcal{P}_q(n)$ at an injection distance at most $t \text{ from } V \colon B_V(t) = \{W \in \mathcal{P}(n) | d_I(V, W) \le t\}$

 $\mathcal{P}_{a}(n)$ is a highly non-homogeneous space, in particular spheres of the same radius are not necessarily of the same size.

Theorem: The size of $B_V(t)$ depends on $\dim V$ and is given by,

$$|B_V(t)| = \sum_{i=1}^t q^{i^2} \begin{bmatrix} k \\ i \end{bmatrix}_q \begin{bmatrix} n-k \\ i \end{bmatrix}_q + \sum_{j=1}^i q^{i(i-j)} \left(\begin{bmatrix} k \\ i \end{bmatrix}_q \begin{bmatrix} n-k \\ i-j \end{bmatrix}_q + \begin{bmatrix} n-k \\ i \end{bmatrix}_q \begin{bmatrix} k \\ i-j \end{bmatrix}_q \right)$$

Theorem: (Gilbert-Varshamov Bound)

The maximum size $A_q(n,d)$ of a code $C \subseteq \mathcal{P}_q(n)$ with minimum injection distance d is guaranteed to be at least,

$$A_q(n,d) \ge \frac{\left|\mathcal{P}_q(n)\right|^2}{\sum\limits_{X \in \mathcal{P}_q(n)} \left|B_X(d-1)\right|}$$

Code Design

Objective: Construct a set $C \subseteq P_q(n)$ such that,

for all
$$U, V \in \mathcal{C}, d_I(U, V) \geq d$$
.

Every vector space in $\mathcal{P}_q(n)$ arises uniquely as the row-space of a matrix in Reduced Row Echelon Form (RREF).

Let $V = \langle X \rangle \in \mathcal{P}_q(n)$ where X is in RREF. The profile vector of V is a binary vector of length n, whose non-zero elements appear only in positions where X has a leading 1.

For example,
$$U = \left\langle \begin{bmatrix} \mathbf{1} \ u_{12} \ \mathbf{0} \ u_{14} \ \mathbf{0} \ \mathbf{0} \ u_{17} \\ \mathbf{0} \ 0 \ \mathbf{1} \ u_{24} \ \mathbf{0} \ \mathbf{0} \ u_{27} \\ \mathbf{0} \ 0 \ \mathbf{0} \ \mathbf{1} \ \mathbf{0} \ u_{37} \\ \mathbf{0} \ 0 \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ u_{47} \end{bmatrix} \right\rangle \rightarrow p(U) = \mathbf{1}0\mathbf{1}0\mathbf{1}10$$

$$\begin{bmatrix} \mathbf{1} \bullet 0 \bullet 0 \ \mathbf{0} \end{bmatrix}$$

In fact all spaces of the form $| 0 0 0 0 1 0 \bullet |$ 000001

their profile vector.

partibinary $\mathcal{P}_q(n)$, in belong to the two space same profile vector. provided that they have the

Construction Procedure

Theorem: Let U and V be two vector spaces in $\mathcal{P}_q(n)$, with profile vectors u and v, respectively. Then,

$$d_I(U, V) \ge \max\{N(u, v), N(v, u)\} = d_a(u, v)$$

where N(x,y) the number of $1 \to 0$ transitions from x to y.

→ we select the profile vectors according to a binary asymmetric code with minimum distance $d_a \geq d$.

Step II: Select a subset of spaces within each cell with minimum intra-cell distance d.

If $p(\langle X \rangle) = p(\langle Y \rangle)$, then $d_I(\langle X \rangle, \langle Y \rangle) = \operatorname{rank}(X - Y) = d_R(X, Y)$. → we use Rank-Metric Codes to preserve the intra-cell distance. Theorem: Let M be an $m \times n$ matrix in RREF, with a total of $w \bullet$'s. Let C be a subcode of a linear Maximum-Rank-Distance code that fits M with $d_R(C) \geq \delta$. Then,

$$\dim C \ge w - \max\{m, n\}(\delta - 1)$$

Selecting the Profile Vectors

Given a minimum injection distance d we calculate for each vector

$$v \in \{0,1\}^n$$
, $score(v,d) = \sum_{i=1}^n \sum_{j=1}^i \bar{v}_i v_j - \max\{m(v),\eta(v)\}(d-1)$, where, $\eta(v) = n - (wt(v) + \min_{t \in \text{supp}(v)} t) + 1$, and $m(v) = wt(v) - (n - \max_{t \in \text{supp}(\bar{v})} t)$.

We use a standard greedy algorithm to select a set of profile vectors at a minimum asymmetric distance d.

- . R. Kötter and F. R. Kschischang, "Coding for errors and erasures in random network coding," IEEE Trans. Inf. Theory, 2008.
- 2. D. Silva, F. R. Kschischang, and R. Kötter, "A rank-metric approach to error control in random network coding," IEEE Trans. Inf. Theory, 2008.
- 3. D. Silva and F. R. Kschischang, "On metrics for error correction in network coding," submitted for publication,
- 4. T. Etzion and N. Silberstein, "Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams," submitted for publication, 2009.
- 5. T. Etzion and A. Vardy, "Error-correcting codes in projective space," ISIT, 2008.
- 6. A. Khaleghi and F. R. Kschischang, "Projective Space Codes for the Injection Metric," Canadian Workshop on Inf. Theory, 2009.