

NODYCON

Abstract review is back!

bristol.ac.uk

Last week's work

- Implemented Fourier discretisation
- Compared it against splines
- Some ideas about surrogates and CBC
- Manuscript editing [c. 5400 words]

From last time...

Fitting periodic splines:

1. Find the period

From last time...

- 1. Find the period
 - ightharpoonup Autocorrelation or nonlinear least squares F_0 estimation

From last time...

- 1. Find the period
 - ightharpoonup Autocorrelation or nonlinear least squares F_0 estimation
 - ► Fourier?

From last time...

- 1. Find the period
 - \blacktriangleright Autocorrelation or nonlinear least squares F_0 estimation
 - ► Fourier?
- 2. 'Stack' periods

From last time...

- 1. Find the period
 - \blacktriangleright Autocorrelation or nonlinear least squares F_0 estimation
 - ► Fourier?
- 2. 'Stack' periods
 - $lackbox{ Re-label data } t_i$ s to phase $\phi_i = rac{t_i}{T} \mod 1$ or $\phi_i = t_i \mod T$

From last time...

- 1. Find the period
 - \blacktriangleright Autocorrelation or nonlinear least squares F_0 estimation
 - ► Fourier?
- 2. 'Stack' periods
 - ▶ Re-label data t_i s to phase $\phi_i = \frac{t_i}{T} \mod 1$ or $\phi_i = t_i \mod T$
- 3. Build splines model

From last time...

- 1. Find the period
 - ightharpoonup Autocorrelation or nonlinear least squares F_0 estimation
 - ► Fourier?
- 2. 'Stack' periods
 - ▶ Re-label data t_i s to phase $\phi_i = \frac{t_i}{T} \mod 1$ or $\phi_i = t_i \mod T$
- 3. Build splines model
 - Discretisation = BSpline coefficients

From last time...

Choosing knots is hard; since we're wanting a minimal knot set...

1. Choose the desired number of knots

From last time...

- 1. Choose the desired number of knots
- 2. Choose knots at random

From last time...

- 1. Choose the desired number of knots
- 2. Choose knots at random
- 3. Numerically optimize the knot vector

From last time...

- 1. Choose the desired number of knots
- 2. Choose knots at random
- Numerically optimize the knot vector
 - Minimise training error of a splines model fitted with these knots

From last time...

- 1. Choose the desired number of knots
- 2. Choose knots at random
- 3. Numerically optimize the knot vector
 - Minimise training error of a splines model fitted with these knots
- 4. Repeat steps 2,3 lots, and choose the best result

From last time...

- 1. Choose the desired number of knots
- 2. Choose knots at random
- Numerically optimize the knot vector
 - Minimise training error of a splines model fitted with these knots
- 4. Repeat steps 2,3 lots, and choose the best result
 - Helps overcome the local minima issue

From last time...

From last time...

We can quantify goodness-of-fit:

 \normalfont{k} Let $\operatorname{reconstruction}(t)$ be the fitted splines model

- \blacktriangleright Let $\operatorname{reconstruction}(t)$ be the fitted splines model
- \bigvee Let $\operatorname{signal}(t)$ be the signal we wish to discretise

- \bigvee Let reconstruction(t) be the fitted splines model
- lacktriangle Let $\operatorname{signal}(t)$ be the signal we wish to discretise
- \bigvee Let error(t) = signal(t) reconstruction(t)

- $\normalfont{\mbox{$\not$ \ensuremath{\&}$}}$ Let ${
 m reconstruction}(t)$ be the fitted splines model
- lacktriangle Let $\mathrm{signal}(t)$ be the signal we wish to discretise
- \bigvee Let error(t) = signal(t) reconstruction(t)
- K Goodness-of-fit = $\int_0^T \left[\operatorname{error}(t)\right]^2 dt$

- \bigvee Let reconstruction(t) be the fitted splines model
- $m{\&}$ Let $\mathrm{signal}(t)$ be the signal we wish to discretise
- k Let $\operatorname{error}(t) = \operatorname{signal}(t) \operatorname{reconstruction}(t)$
- K Goodness-of-fit = $\int_0^T [\operatorname{error}(t)]^2 dt$
- ★ This gives a metric for comparing splines, Fourier, etc.

Splines vs Fourier

Hodgkin-Huxley neuron; error decays significantly faster with splines

Splines vs Fourier

Hodgkin-Huxley neuron; error decays significantly faster with splines

Open problems

Robustness

- Does it break down on stochastic systems? Eg. if data aren't fully periodic
- Do we need a human in the loop, to manually adjust anything?

Locality

- ▶ Knots are fitted / work well for λ_0 ; can the same knots model $\lambda_1, \lambda_2, \ldots, \lambda_i$?
- (They need to for predicting the next PO in an iteration)

CBC approach

Question: there's several ways of performing CBC; which is best for this?

bristol.ac.uk

Method 1. 'Easy' approach for harmonically forced systems

Set the response amplitude

- Set the response amplitude
- Find the input forcing amplitude that gives that response

- Set the response amplitude
- Find the input forcing amplitude that gives that response
- Lumps the bifurcation parameter together with the control action

- Set the response amplitude
- Find the input forcing amplitude that gives that response
- Lumps the bifurcation parameter together with the control action
 - Fast and efficient iteration scheme

- Set the response amplitude
- Find the input forcing amplitude that gives that response
- Lumps the bifurcation parameter together with the control action
 - Fast and efficient iteration scheme
 - Similar approach exists for continuing equilibria

Method 1 issues

We don't have a harmonically forced system

Method 2. Harder, fully general approach [Sieber Krauskopf]

Lefine the 'IO map' from control-target to system output

Method 2. Harder, fully general approach [Sieber Krauskopf]

- Define the 'IO map' from control-target to system output
 - Says what the system output is, for any given control target

Method 2. Harder, fully general approach [Sieber Krauskopf]

- Define the 'IO map' from control-target to system output
 - Says what the system output is, for any given control target
- Map fixed point means control-target = system output

Method 2. Harder, fully general approach [Sieber Krauskopf]

- Define the 'IO map' from control-target to system output
 - Says what the system output is, for any given control target
- Map fixed point means control-target = system output
- [Claim:] map fixed point occurs only when there's non-invasive control

Methods for PO CBC

Method 2. Harder, fully general approach [Sieber Krauskopf]

- Define the 'IO map' from control-target to system output
 - Says what the system output is, for any given control target
- Map fixed point means control-target = system output
- [Claim:] map fixed point occurs only when there's non-invasive control
- Use Newton iterations to solve for fixed point of discretised map

Methods for PO CBC

Method 2. Harder, fully general approach [Sieber Krauskopf]

- Define the 'IO map' from control-target to system output
 - Says what the system output is, for any given control target
- Map fixed point means control-target = system output
- [Claim:] map fixed point occurs only when there's non-invasive control
- Use Newton iterations to solve for fixed point of discretised map
- Solution is the noninvasive control target

I think this is wrong...

bristol.ac.uk

I think this is wrong...

№ No proportional error ⇒ system output == control target

I think this is wrong...

- № No proportional error
 ⇒ system output == control target
 - System output exactly tracks control target

I think this is wrong...

- № No proportional error
 ⇒ system output == control target
 - System output exactly tracks control target

bristol.ac.uk

I think this is wrong...

- № No proportional error
 ⇒ system output == control target
 - System output exactly tracks control target
- System output == control target ⇒ every control target is a fixed point of the IO map
 - Control target and system output are identical for all targets

I think this is wrong...

- № No proportional error ⇒ system output == control target
 - System output exactly tracks control target
- System output == control target ⇒ every control target is a fixed point of the IO map
 - Control target and system output are identical for all targets
- Every point is a fixed point ⇒ can't find noninvasive control by solving the map

bristol.ac.uk

I think this is wrong...

- № No proportional error
 ⇒ system output == control target
 - System output exactly tracks control target
- System output == control target => every control target is a fixed point of the IO map
 - Control target and system output are identical for all targets
- Every point is a fixed point ⇒ can't find noninvasive control by solving the map
- My claim: IO-map fixed point is a necessary but not sufficient condition for noninvasiveness

bristol.ac.uk

I think this is wrong...

- № No proportional error
 ⇒ system output == control target
 - System output exactly tracks control target
- System output == control target => every control target is a fixed point of the IO map
 - Control target and system output are identical for all targets
- Every point is a fixed point ⇒ can't find noninvasive control by solving the map
- My claim: IO-map fixed point is a necessary but not sufficient condition for noninvasiveness
- Feels like a big claim to say the paper's wrong, but I haven't found any way to resolve this...

Approach 1. Only use P, PD control

No integral controller ⇒ ∃ proportional error

bristol.ac.uk

Approach 1. Only use P, PD control

- No integral controller ⇒ ∃ proportional error

bristol.ac.uk

- No integral controller ⇒ ∃ proportional error
- - ► System output = control target ←⇒ control is noninvasive

- No integral controller ⇒ ∃ proportional error
- - ► System output = control target ←⇒ control is noninvasive

- No integral controller ⇒ ∃ proportional error
- - ► System output = control target ←⇒ control is noninvasive
- Can then use Newton iterations to solve for noninvasiveness

- No integral controller ⇒ ∃ proportional error
- - ► System output = control target ← control is noninvasive
 - ▶ IO map fixed point ⇔ control is noninvasive
- Can then use Newton iterations to solve for noninvasiveness
 - Let $\mathbf{u}^* = \text{control target discretisation}$

- No integral controller ⇒ ∃ proportional error
- - ► System output = control target ←⇒ control is noninvasive
 - ▶ IO map fixed point ⇔ control is noninvasive
- Can then use Newton iterations to solve for noninvasiveness
 - Let u* = control target discretisation
 - Let x = system output discretisation

- No integral controller ⇒ ∃ proportional error
- - ► System output = control target ← control is noninvasive
 - ► IO map fixed point ← control is noninvasive
- Can then use Newton iterations to solve for noninvasiveness
 - ightharpoonup Let $\mathbf{u}^* = \text{control target discretisation}$
 - Let x = system output discretisation
 - ► Equality ⇒ no proportional error ⇒ zero control action, noninvasiveness, etc.

- No integral controller ⇒ ∃ proportional error
- - ► System output = control target ← control is noninvasive
 - ▶ IO map fixed point ⇔ control is noninvasive
- Can then use Newton iterations to solve for noninvasiveness
 - Let $\mathbf{u}^* = \text{control target discretisation}$
 - ightharpoonup Let $\mathbf{x} = \mathsf{system}$ output discretisation
 - ► Equality ⇒ no proportional error ⇒ zero control action, noninvasiveness, etc.
 - $\mathbf{u}^* = \mathbf{x}$ can therefore be solved for noninvasive \mathbf{u}^*

- No integral controller ⇒ ∃ proportional error
- - ► System output = control target ←⇒ control is noninvasive
 - ► IO map fixed point ← control is noninvasive
- Can then use Newton iterations to solve for noninvasiveness
 - Let $\mathbf{u}^* = \text{control target discretisation}$
 - ightharpoonup Let $\mathbf{x} = \mathsf{system}$ output discretisation
 - ► Equality ⇒ no proportional error ⇒ zero control action, noninvasiveness, etc.
 - $\mathbf{u}^* = \mathbf{x}$ can therefore be solved for noninvasive \mathbf{u}^*
- This is exactly the method proposed in Sieber Krauskopf

- No integral controller ⇒ ∃ proportional error
- - ► System output = control target ← control is noninvasive
 - ▶ IO map fixed point ⇔ control is noninvasive
- Can then use Newton iterations to solve for noninvasiveness
 - Let $\mathbf{u}^* = \text{control target discretisation}$
 - Let x = system output discretisation
 - ► Equality ⇒ no proportional error ⇒ zero control action, noninvasiveness, etc.
 - $\mathbf{u}^* = \mathbf{x}$ can therefore be solved for noninvasive \mathbf{u}^*
- This is exactly the method proposed in Sieber Krauskopf
- Downside: locked into a single control method

Approach 2. Reformulate the zero problem

Explicitly solve for noninvasive control

- Explicitly solve for noninvasive control
- Ke Total control action = $\int u(\mathbf{u}^*, t)^2 dt$

- Explicitly solve for noninvasive control
- \checkmark Total control action = $\int u(\mathbf{u}^*, t)^2 dt$
- \swarrow Solve for \mathbf{u}^* that sets total control action to zero

- Explicitly solve for noninvasive control
- \checkmark Total control action = $\int u(\mathbf{u}^*, t)^2 dt$
- \swarrow Solve for \mathbf{u}^* that sets total control action to zero
 - lacktriangle Underdetermined n inputs, one output; minimisation problem

- Explicitly solve for noninvasive control
- \checkmark Total control action = $\int u(\mathbf{u}^*, t)^2 dt$
- \swarrow Solve for \mathbf{u}^* that sets total control action to zero
 - lacktriangle Underdetermined n inputs, one output; minimisation problem
 - $\blacktriangleright\,$ Eg. gradient descent on u^* with Broyden Jacobian update

- Explicitly solve for noninvasive control
- \checkmark Total control action = $\int u(\mathbf{u}^*, t)^2 dt$
- \swarrow Solve for \mathbf{u}^* that sets total control action to zero
 - ightharpoonup Underdetermined n inputs, one output; minimisation problem
 - ightharpoonup Eg. gradient descent on \mathbf{u}^* with Broyden Jacobian update
 - This is similar to standard Newton iterations

- Explicitly solve for noninvasive control
- \checkmark Total control action = $\int u(\mathbf{u}^*, t)^2 dt$
- & Solve for \mathbf{u}^* that sets total control action to zero
 - ightharpoonup Underdetermined n inputs, one output; minimisation problem
 - ightharpoonup Eg. gradient descent on \mathbf{u}^* with Broyden Jacobian update
 - This is similar to standard Newton iterations

Maybe we don't need to find \mathbf{u}^* that sets control action to zero. . .

Much like tracking bifurcations optimally – don't need to see the actual bifurcation point, as long as we're confident it's there

bristol.ac.uk

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- \checkmark Find a local surrogate model of total invasiveness $I(\mathbf{u}^*) = \int u(\mathbf{u}^*, t)^2 dt$

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- ${\it K}$ Find a local surrogate model of total invasiveness $I({\bf u}^*)=\int u({\bf u}^*,t)^2{
 m d}t$
 - lacktriangle Maps a discretisation ${f u}^*$ to total control action required to stabilise it

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- $m{k}$ Find a local surrogate model of total invasiveness $I(\mathbf{u}^*) = \int u(\mathbf{u}^*,t)^2 \mathrm{d}t$
 - lacktriangle Maps a discretisation \mathbf{u}^* to total control action required to stabilise it
 - Quantifies invasiveness of target u*

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- - \blacktriangleright Maps a discretisation \mathbf{u}^* to total control action required to stabilise it
 - Quantifies invasiveness of target u*
 - $lackbox{I}(\mathbf{u}^*) = 0 \implies u^*$ is noninvasive, so natural system behaviour

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- - lacktriangle Maps a discretisation \mathbf{u}^* to total control action required to stabilise it
 - Quantifies invasiveness of target u*
 - $lackbox{I}(\mathbf{u}^*) = 0 \implies u^*$ is noninvasive, so natural system behaviour
- & Solve for $I(\mathbf{u}^*) = 0$ on the local surrogate model

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- - lacktriangle Maps a discretisation \mathbf{u}^* to total control action required to stabilise it
 - Quantifies invasiveness of target u*
 - $lackbox{I}(\mathbf{u}^*) = 0 \implies u^*$ is noninvasive, so natural system behaviour
- & Solve for $I(u^*) = 0$ on the local surrogate model
 - Moves calculations out of experiment and onto computer, where they can be performed much faster

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- \mathbf{k} Find a local surrogate model of total invasiveness $I(\mathbf{u}^*) = \int u(\mathbf{u}^*,t)^2 \mathrm{d}t$
 - lacktriangle Maps a discretisation \mathbf{u}^* to total control action required to stabilise it
 - Quantifies invasiveness of target u*
 - $lackbox{I}(\mathbf{u}^*) = 0 \implies u^*$ is noninvasive, so natural system behaviour
- & Solve for $I(u^*) = 0$ on the local surrogate model
 - Moves calculations out of experiment and onto computer, where they can be performed much faster
 - No need for experimental Newton iterations, gradient descent, Jacobians, finite differences

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- - lacktriangle Maps a discretisation \mathbf{u}^* to total control action required to stabilise it
 - Quantifies invasiveness of target u*
 - $lackbox{I}(\mathbf{u}^*) = 0 \implies u^*$ is noninvasive, so natural system behaviour
- & Solve for $I(u^*) = 0$ on the local surrogate model
 - Moves calculations out of experiment and onto computer, where they can be performed much faster
 - No need for experimental Newton iterations, gradient descent, Jacobians, finite differences
- Fit local model on 'maximally informative' datapoints

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- ${\it K}$ Find a local surrogate model of total invasiveness $I({\bf u}^*)=\int u({\bf u}^*,t)^2{
 m d}t$
 - lacktriangle Maps a discretisation \mathbf{u}^* to total control action required to stabilise it
 - Quantifies invasiveness of target u*
 - $lackbox{I}(\mathbf{u}^*) = 0 \implies u^*$ is noninvasive, so natural system behaviour
- & Solve for $I(u^*) = 0$ on the local surrogate model
 - Moves calculations out of experiment and onto computer, where they can be performed much faster
 - No need for experimental Newton iterations, gradient descent, Jacobians, finite differences
- Fit local model on 'maximally informative' datapoints
 - Choose datapoints that maximise our certainty of the minima location

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- \mathbf{k} Find a local surrogate model of total invasiveness $I(\mathbf{u}^*) = \int u(\mathbf{u}^*,t)^2 \mathrm{d}t$
 - lacktriangle Maps a discretisation \mathbf{u}^* to total control action required to stabilise it
 - Quantifies invasiveness of target u*
 - $lackbox{I}(\mathbf{u}^*) = 0 \implies u^*$ is noninvasive, so natural system behaviour
- & Solve for $I(u^*) = 0$ on the local surrogate model
 - Moves calculations out of experiment and onto computer, where they can be performed much faster
 - No need for experimental Newton iterations, gradient descent, Jacobians, finite differences
- Fit local model on 'maximally informative' datapoints
 - Choose datapoints that maximise our certainty of the minima location

Proposed route

Initially, use PD control, IO map with Newton iterations

- Standard method, so don't have to develop anything new
- Need to use PD control, but that also means no need to develop any fancy controller
- Gets results quickly!

If PD doesn't work well, develop the surrogate gradient descent method

- Makes it truly control-strategy independent
- Extends fully-general CBC to systems that are harder to control with PD

An aside

Interesting aside: control-free continuation

- Some systems are hard to control
- Kee Can we run CBC without needing a controller?

We can deduce the existence of an unstable equilibrium

✓ Stable features are easy to spot – the system converges to them

bristol.ac.uk

- Stable features are easy to spot the system converges to them
- We can often deduce the existence of unstable features

- Stable features are easy to spot the system converges to them
- We can often deduce the existence of unstable features
- Easy method: fit a local surrogate, find unstable features from that

- Stable features are easy to spot the system converges to them
- We can often deduce the existence of unstable features
- Easy method: fit a local surrogate, find unstable features from that
 - Eg. fit a neural ODE / neural GP to the previous bistable system

- Stable features are easy to spot the system converges to them
- We can often deduce the existence of unstable features
- Easy method: fit a local surrogate, find unstable features from that
 - Eg. fit a neural ODE / neural GP to the previous bistable system
 - Simple root-finding for locating equilibria

- Stable features are easy to spot the system converges to them
- We can often deduce the existence of unstable features
- Easy method: fit a local surrogate, find unstable features from that
 - Eg. fit a neural ODE / neural GP to the previous bistable system
 - Simple root-finding for locating equilibria
 - More optimal-experimental-design opportunities, for increasing confidence at equilibrium locations

General method:

1. Collect some data

- 1. Collect some data
 - Set the system running

- 1. Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it

- Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series

- Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series
- 3. Fit a neural / GP ODE model to reconstructed state space

- Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series
- 3. Fit a neural / GP ODE model to reconstructed state space
- 4. Run standard analyses on the models

- Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series
- 3. Fit a neural / GP ODE model to reconstructed state space
- 4. Run standard analyses on the models
 - If we keep the system near some feature of interest, the models will be locally accurate there

- Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series
- 3. Fit a neural / GP ODE model to reconstructed state space
- 4. Run standard analyses on the models
 - If we keep the system near some feature of interest, the models will be locally accurate there
 - Can use standard methods to locate unstable POs from the models

- Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series
- 3. Fit a neural / GP ODE model to reconstructed state space
- 4. Run standard analyses on the models
 - If we keep the system near some feature of interest, the models will be locally accurate there
 - Can use standard methods to locate unstable POs from the models
 - Could use standard continuation on the models, or...

- Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series
- 3. Fit a neural / GP ODE model to reconstructed state space
- 4. Run standard analyses on the models
 - If we keep the system near some feature of interest, the models will be locally accurate there
 - Can use standard methods to locate unstable POs from the models
 - Could use standard continuation on the models, or...
 - ... Could find POs, UPOs at lots of parameter values, to track them without control or continuation

- Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series
- 3. Fit a neural / GP ODE model to reconstructed state space
- 4. Run standard analyses on the models
 - If we keep the system near some feature of interest, the models will be locally accurate there
 - Can use standard methods to locate unstable POs from the models
 - Could use standard continuation on the models, or...
 - ... Could find POs, UPOs at lots of parameter values, to track them without control or continuation

Back on topic...

bristol.ac.uk

- Conference abstract discusses surrogates
- Paper needs to make their usage cases clear

Slow signals:

- № No high harmonics ⇒ Fourier discretisation works fine ⇒ no need for a novel discretisation
- № No high harmonics ⇒ low-pass filtering works fine ⇒ no need for a surrogate

No need for surrogates

Fast signals:

- Lots of high harmonics ⇒ Fourier discretisation doesn't work ⇒ need a novel discretisation

No need for surrogates

Medium-speed signals:

- Can be more efficiently discretised with splines than Fourier
- ₭ Harmonically forced systems: faster to use Fourier iterations than Newton
 - Splines discretise more efficiently, but we still use Fourier
- Enough HF harmonics that we wouldn't want to use LP filtering
 ⇒ we need a surrogate

This is surrogates usage case

- Better to use Fourier iterations than Newton iterations on harmonically forced systems
- Surrogates are useful for Fourier iteration on faster signals
- Example usage: cleaning noise from a highly nonlinear forced Duffing

Туре	Harmonically forced	Unforced
Slow signal	Fourier iter's, LP filters	Newton iter's, LP filters
Fast signal	Fourier iter's, surrogates	Newton iter's, novel discretisation

The two new methods complement each other; one for Newton iter's, one for Fourier iter's; paper should make this clear

CBC implementation should use Newton iterations, spline discretisation, PD control

bristol.ac.uk

- CBC implementation should use Newton iterations, spline discretisation, PD control
- Conference paper needs to be clear / explicit about when surrogates, new discretisations are useful

- CBC implementation should use Newton iterations, spline discretisation, PD control
- Conference paper needs to be clear / explicit about when surrogates, new discretisations are useful
- Interesting aside 1: we need a different approach to use non-PD control with the most general CBC method

- CBC implementation should use Newton iterations, spline discretisation, PD control
- Conference paper needs to be clear / explicit about when surrogates, new discretisations are useful
- Interesting aside 1: we need a different approach to use non-PD control with the most general CBC method
 - Less general methods (where parameter and control action can be lumped together) don't require this

- CBC implementation should use Newton iterations, spline discretisation, PD control
- Conference paper needs to be clear / explicit about when surrogates, new discretisations are useful
- Interesting aside 1: we need a different approach to use non-PD control with the most general CBC method
 - Less general methods (where parameter and control action can be lumped together) don't require this
 - Lots of room for interesting optimal experimental design

- CBC implementation should use Newton iterations, spline discretisation, PD control
- Conference paper needs to be clear / explicit about when surrogates, new discretisations are useful
- Interesting aside 1: we need a different approach to use non-PD control with the most general CBC method
 - Less general methods (where parameter and control action can be lumped together) don't require this
 - Lots of room for interesting optimal experimental design
- Interesting aside 2: might be possible to run CBC without a controller?

Next steps

- 1. Test splines generalisation, robustness
- 2. Write up results so far into a paper
- 3. Demonstrate splines with CBC

Alternative: skip step 1 altogether and jump in with CBC simulation

bristol.ac.uk

Generalisation and robustness [again]

Generalisation

- ▶ Knots are fitted / work well for λ_0 ; can the same knots model $\lambda_1, \lambda_2, \ldots, \lambda_i$?
- (They need to for predicting the next PO in an iteration)

Robustness

- Does it break down on stochastic systems? Eg. if data aren't fully periodic
- Do we need a human in the loop, to manually adjust anything?

Key dates

- Bath maths ML conference, week of Aug.3rd 7th
- Goal: start conference paper writing mid-August