Please check the examination details belo	ow before ente	ering your candidate information
Candidate surname		Other names
Centre Number Candidate Nu	ımber	
Pearson Edexcel Interi	nation	al Advanced Level
Tuesday 14 May 202	24	
Morning (Time: 1 hour 30 minutes)	Paper reference	WMA12/01R
Morning (Time: 1 hour 30 minutes) Mathematics		WMA12/01R
Mathematics International Advanced Su	reference	100
Mathematics	reference	100
Mathematics International Advanced Su	reference	100
Mathematics International Advanced Su	reference	100
Mathematics International Advanced Su	reference	y/Advanced Level Total Marks

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

1. The sequence u_1, u_2, u_3, \dots satisfies

$$u_{n+2} = 3u_{n+1} - 2u_n$$

Given that

- $u_1 = 7$
- $u_3 = 4$
- (a) find the value of u_2

(2)

(b) find $\sum_{r=1}^{4} (u_r + 2r)$

(3)

Question 1 continued	
	Total for Question 1 is 5 marks)

2. The table shows corresponding values of x and y for a continuous curve with equation y = f(x) between x = -4 and x = 5, where a is a constant.

x	_4	-2.5	-1	0.5	2	3.5	5
у	4.16	2.91	а	1.73	1.37	1.43	2.28

The trapezium rule is used with all the y values in the table to find an approximation for

$$\int_{-4}^{5} f(x) \, \mathrm{d}x$$

Given that the value of this approximation is 19.3

(a) find the value of the constant a to 3 significant figures.

(3)

(b) Use the given answer of 19.3 to find an approximate value for

$$\int_{-4}^{5} \left(2f(x) - 3\right) dx$$

(2)

Question 2 continued	
(Total for Question 2 is 5 mark	ks)
	,

3. A circle has equation

$$x^2 + y^2 + 8x - 14y - 79 = 0$$

- (a) Find
 - (i) the coordinates of the centre of the circle,
 - (ii) the radius of the circle.

(3)

Given that P is the point on the circle that is nearest the origin O,

(b) find the exact length of OP

(2)

Question 3 continued	
(Total for Question 3 is 5 marks)	

4.	(a)	Find th	ne first	4 terms,	in	ascending	powers	of x ,	of the	binomial	expansion	of

$$(3+2x)^6$$

giving each coefficient in simplest form.

(4)

(b) Hence find the coefficient of x^2 in the expansion of

$$\left(2x^2-\frac{1}{6x}\right)\left(3+2x\right)^6$$

(3)

Question 4 continued
(Total for Question 4 is 7 marks)

5. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

The depth of water, D metres, in a harbour on a particular day is given by the equation

$$D = 8 + 5\sin\left(\frac{\pi t}{6} + 3\right) \qquad 0 \leqslant t < 24$$

where t is the number of hours after **midnight**.

(a) Show that the depth of water in the harbour at 2 am is just over 4 metres.

(1)

(b) Find, to the nearest minute, the first time after **midday** when the depth of water in the harbour is exactly 6 metres.

(5)

Question 5 continued	
	Total for Question 5 is 6 marks)

6. $f(x) = 4x^3 + px^2 + 8x + q$

where p and q are constants.

Given that

- (2x + 3) is a factor of f(x)
- f(x) has a remainder of -5 when divided by (x + 2)
- (a) (i) show that p = 10
 - (ii) find the value of q.

(5)

(b) Hence find the range of values of x for which f(x) is decreasing.

(Solutions based entirely on calculator technology are not acceptable.)

(4)

Question 6 continued

Question 6 continued	
(Tr	etal fau Orostian (is 0 marks)
(10	otal for Question 6 is 9 marks)

7. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

(i) Solve, for $0 \le x < 2\pi$, the equation

$$3\sin x \tan x = 11 + \cos x$$

giving the answers in radians to 3 decimal places.

(5)

- (ii) Given that
 - 0 < θ < 90°
 - $\cos \theta = \frac{1}{3}$

find, in simplest form, the exact value of $\tan \theta$

(2)

Question 7 continued	
(Total for Question 7 is 7 marks)	

8. (i) (a) In an **arithmetic** series the first term is a and the common difference is d.

Show that

$$S_n = \frac{n}{2} \left\{ 2a + (n-1)d \right\}$$

(3)

(b) Hence find

$$900 + 892 + 884 + ... + 500$$

(3)

(ii) Given that the first three terms of a geometric series are

$$k + 4$$

$$k-2$$

$$11 - k$$

where k is a constant,

(a) show that

$$2k^2 - 11k - 40 = 0$$

(3)

Given also that this series is convergent,

(b) find the value of S_{∞}

(4)

Question 8 continued

Question 8 continued

Question 8 continued	
	(Total for Quarties 9 is 12
	(Total for Question 8 is 13 marks)

9. Given that

$$3\log_2(t+4) - 2\log_2(t-2) = 7$$

(a) verify that t = 4 is a solution of the above equation,

(2)

(b) show that

$$t^3 - 116t^2 + 560t - 448 = 0 (3)$$

(c) Hence, using algebra and showing your working, solve

$$3\log_2(t+4) - 2\log_2(t-2) = 7$$

giving each answer in simplest form.

(Solutions based entirely on calculator technology are not acceptable.)

(4)

Question 9 continued

Question 9 continued

Question 9 continued
(Total for Question 9 is 9 marks)

Figure 1

In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

Figure 1 shows a sketch of part of the curve C with equation

$$y = \frac{9x - x^2}{2\sqrt{x}} \qquad x > 0$$

The point P is the stationary point on C.

(a) Find, using calculus, the x coordinate of P.

(4)

DO NOT WRITE IN THIS AREA

The finite region R, shown shaded in Figure 1, is bounded by the curve C, the x-axis and the line with equation x = 1

(b) Using calculus, calculate the exact area of R.

(5)

Question 10 continued	

Question 10 continued	
	(Total for Question 10 is 9 marks)
	TOTAL FOR PAPER IS 75 MARKS

