TRƯỜNG ĐẠI HỌC SỬ PHẠM KỸ THUẬT TPHCM KHOA XÂY DỰNG -- 000 --

MÔN HỌC: ĐỒ ÁN THIẾT KẾ ĐƯỜNG ĐƯỜNG NÚI LAI CHÂU

GVGD: TS. TRẦN VŨ TỰ SV THỰC HIỆN: PHẠM NGUYỄN QUỐC THẮNG MSSV: 21127036

TP HÒ CHÍ MINH - THÁNG 12 NĂM 2023

MỤC LỤC

CHƯƠNG 1: GIỚI THIỆU CHUNG VỀ TÌNH HÌNH KHU VỰC TUYẾN ĐƯỜNG	3
1.1. Những vấn đề chung	3
1.2. Tình hình chung của tuyến đường	3
1.2.1. Tình hình văn hóa,chính trị :	3
1.2.2. Tình hình kinh tế dấn sinh :	3
1.2.3. Đặc điểm về địa hình , địa mạo :	3
1.2.4. Đặc điểm về địa chất thủy văn :	3
1.2.5. Vật liệu xây dựng :	3
1.2.6. Đặc điểm địa chất :	4
CHƯƠNG 2: XÁC ĐỊNH CẤP HẠNG KỸ THUẬT CỦA TUYẾN ĐƯỜNG	5
2.1. Xác định cấp hạng kỹ thuật của tuyến đường	5
2.2. Tính toán các chỉ tiêu kỹ thuật của tuyến đường:	
CHƯƠNG 3: THIẾT KẾ SƠ BỘ 2 PHƯƠNG ÁN TUYẾN TRÊN ĐƯỜNG BÌNH Đ	
3.1. Vạch các phương án tuyến trên bình đồ, xác định bước compa	12
3.2. Xác định chiều dài đoạn thẳng đoạn cong, vị trí các cọc, cự ly của các cọ	c12
3.3. Dựa vào bảng lý trình ở trên và vị trí của các TĐ,TC theo tỉ lệ bản đồ ta định	
được vị trí của các cọc km trên bình đồ tuyến	13
CHƯƠNG 4 : TÍNH TOÁN THỦY VĂN CÔNG TRÌNH	
4.1. Tổng quan	14
4.2. Thiết kế thoát nước	
4.2.1. Số liệu thiết kế	
4.2.2. Xác định lưu vực	
4.2.3. Tính toán thủy văn	
4.3 Xác định công trình vượt dòng nước	
4.3.1. Xác định	
CHƯƠNG 5: THIẾT KẾ MẶT CẮT DỌC ĐƯỜNG Ô TÔ	
5.1. Khái niệm và các nguyên tắc cơ bản thiết kế trắc dọc	
5.2. Phương pháp thiết kế trắc dọc đường ô tô:	
5.3. Kết quả thiết kế trắc dọc đường ô tô trong đồ án	
CHƯƠNG 6. TÍNH TOÁN KẾT CẦU ÁO ĐƯỜNG	
CHUUNU V. TIMI TUAN ALT CAU AU DUUNU	JU

6.1. Xác định các số liệu phục vụ tính toán	30
6.1.1.2. Tính toán lưu lượng xe	31
6.1.1.3. Tính số trục xe quy đổi về trục tiêu chuẩn 100KN	31
6.1.1.4. Số trục xe tính toán trên một làn xe	32
6.1.1.5. Tính số trục xe tiêu chuẩn tích lũy trong thời hạn tính toán 15 năm	32
6.1.1.6. Bề dày tối thiểu của tầng mặt cấp cao A1	33
6.1.2. Đất nền	33
6.2. Thiết kế áo đường	34
6.2.1. Đề xuất phương án kết cấu tầng mặt áo đường	34
6.2.2. Chọn loại tầng móng	34
6.2.3. Tính toán kiểm tra kết cấu áo đường	39
6.3. Xác định kết cấu lề gia cố	44
6.3.1. Chọn kết cấu lề gia cố	44
6.3.2. Tính toán kiểm tra kết cấu lề gia cố	44
CHƯƠNG 7 : THIẾT KẾ MẶT CẮT NGANG	48
7.1 Khái niệm về thiết kế trắc ngang	48
7.2 Kết quả thiết kế trắc ngang đường ô tô trong đồ án (theo TCVN 4054-05)48
CHƯƠNG 8: LUẬN CHỨNG KINH TẾ KỸ THUẬT	49
8.1. Cơ sở lập dự toán	49
8.2. Tổng mức đầu tư	49
8.3. Chi phí xây dựng	49

ĐỔ ÁN THIẾT KẾ ĐƯỜNG GVHD: TRẦN VỮ TỰ

CHƯƠNG 1: GIỚI THIỆU CHUNG VỀ TÌNH HÌNH KHU VỰC TUYẾN ĐƯỜNG

1.1. Những vấn đề chung.

Cơ sở hạ tầng giao thông của nước ta chưa đủ để đáp ứng nhu cầu ngày càng cao của xã hội,chưa có sự phân bố đồng đều giữa các vùng kinh tế.Do vậy,ngay từ bây giờ,việc phát triển mạng lưới giao thông đều đặn và đáp ứng được nhu cầu vận tải của quốc gia là nhiệm vụ vô cùng quan trọng và cấp bách.

1.2. Tình hình chung của tuyến đường.

1.2.1. Tình hình văn hóa, chính trị:

Lai Châu là tỉnh miền núi có 20 dân tộc anh em cùng sinh sống với hơn 86% là người dân tộc thiểu số đã tạo nên một kho tàng đồ sộ về văn hóa vật thể và phi vật thể.Vì vậy, một khi tuyến đường được xây dựng sẽ tạo điều kiện phát triển hơn nữa mạng lưới điện đường, trường, trạm, trung tâm văn hóa giải trí ... để nâng cao trình độ dân trí, nâng cao mức sống người dân.

1.2.2. Tình hình kinh tế dấn sinh :

Khu vực mà tuyến đường này đi qua tăng dân số,nhưng địa hình ở đây tương đối đồi núi,với nhiều đồi cao và sườn dốc.Nghề nghiệp chính của dân cư ở đây là trồng trọt và chăn nuôi trong hộ gia đình.Việc hoàn thành tuyến đường này sẽ góp phần cải thiện đáng kế tình hình kinh tế của khu vực này.

1.2.3. Đặc điểm về địa hình, địa mạo:

Tuyến đường A-B nằm trong một địa hình tương đối dốc, với điểm đầu tuyến có độ cao 30m và điểm cuối tuyến có độ cao 50m. Trên tuyến đường này, có nhiều vị trí xuất hiện suối nhỏ và sông cắt ngang tuyến. Do vậy khả năng tập trung nước trong lưu vực lớn, trong khu vực lại ít ao hồ nên việc thiết kế công trình thoát nước sẽ tính lưu lượng vào mùa mưa là chủ yếu.

Với địa hình như vậy, tuyến được bố trí đi men theo sườn dốc và ven sông, những vị trí tuyến cắt qua các đường tụ thủy cần phải làm cống hoặc cầu vượt qua. Trên tuyến cần đặt nhiều đường cong chuyển hướng.

Địa mạo chủ yếu là cỏ và các bụi cây bao bọc, có những chỗ tuyến đi qua vườn cây, suối, ao hồ.

NHIỆT ĐÔ VÀ LƯƠNG MƯA TRUNG BÌNH CÁC THÁNG CỦA LAI CHÂU

1.2.4. Đặc điểm về địa chất thủy văn :

Dọc theo khu vực tuyến đi qua có sông, suối tương đối có nhiều nhánh suối nhỏ thuận tiện cho việc cung cấp nước cho thi công công trình và sinh hoạt.

Tại các khu vực suối nhỏ ta có thể đặt cống hoặc làm cầu nhỏ.

Địa chất ở 2 bên bờ suối ổn định, ít bị xói lở nên tương đối thuận lợi cho việc làm công trình thoát nước. Ở khu vực này không có khe xói.

1.2.5. Vât liêu xây dựng:

Trong công tác xây dựng, các vật liệu xây dựng đường như cát, đá, đất,... chiếm khối lượng tương đối lớn. Để làm giảm giá thành trong khai thác và vận chuyển vật liệu cần phải cố gắng tận dụng vật liệu sẵn có tại địa phương nhiều nhất có thể.

ĐỒ ÁN THIẾT KẾ ĐƯỜNG GVHD : TRẦN VỮ TỰ

Khi xây dựng nền đường có thể lấy đá tại các mỏ đá đã thăm dò có mặt tại địa phương (với điều kiện đã được kiểm nghiệm để xác định mức độ phù hợp với khả năng xây dựng công trình). Ngoài ra còn có những vật liệu sẵn có như tre, nứa, gỗ,... dùng làm láng trại, nhà ở cho công nhân hết sức thuận lợi.

Đất để xây dựng nền đường có thể lấy ở nền đường đào hoặc khu vực lân cận tuyến (khi đã kiểm tra mức độ phù hợp với công trình), còn cát có thể khai thác dọc theo suối, sông.

1.2.6. Đặc điểm địa chất:

Địa chất vùng tuyến đi qua khu vực núi cao và sông suối: Đất đồi núi, có cấu tạo phức tạp. Nên tuyến thiết kế cần xử lí đất nền. Nói chung địa chất vùng này rất khó khăn cho thi công đường. Ở trên đoạn tuyến có một vài mỏ sỏi đỏ và mỏ đá có thể khai thác tại chỗ làm kết cấu áo đường và các công trình trên đường nhằm giảm giá thành xây dựng.

Vì vùng này núi cao nhiều thung lũng nên có có thể xẩy ra hiện tượng đá lăn, hiện tượng sụt lở, xói mòn...

ĐỔ ÁN THIẾT KẾ ĐƯỜNG GVHD: TRẦN VŨ TỰ

CHƯƠNG 2: XÁC ĐỊNH CẤP HẠNG KỸ THUẬT CỦA TUYẾN ĐƯỜNG

2.1. Xác định cấp hạng kỹ thuật của tuyến đường.

Xác định cấp hạng kỹ thuật của tuyến đường dựa theo độ dốc ngang phổ biến của địa hình về lưu lượng xe con quy đổi ở năm cuối thời kỳ tính toán.

Thời gian khai thác sử dụng đường: t=15 năm

P: Lượng tăng xe hằng năm : 6 %

Lưu lượng xe tính toán : $N_0 = 889(xe/ngd)$

Hệ số quy đổi ra xe con bảng 2 (TCVN 4054-05)

Bảng 2.1: Thành phần xe.

				Thành	phần xe (%)		
Mức tăng xe hằng năm (%)	Lưu lượng xe năm đầu xe/ng.đ	xe con	Xe tải loại 2 trục: Loại nhẹ	Xe tải loại 2 trục Loại vừa	Xe tải loại 2 trục Loại nặng	Xe tải 3 trục	Xe buýt lớn	Xe buýt nhỏ
6	889	30	25	17	10	10	8	0

Bảng 2.2: Qui đổi ra xe con.

Loại xe	Thành phần	Số xe (xe/nđ)	Hệ số quy đổi	Số xe con quy
	(%)		ra xe con	đổi
Xe con	30	266.7	1	266.7
Xe tải loại 2 trục	25	222.3	2.5	555.6
Loại nhẹ				
Xe tải loại 2 trục	17	151.1	2.5	377.8
Loại vừa				
Xe tải loại 2 trục	10	88.9	2.5	222.25
Loại nặng				
Xe tải 3 trục	10	88.9	3	266.7
Xe buýt lớn	8	71.12	3	213.36
Xe buýt nhỏ	0	0	0.3	0
	1902.41			

Trong đó:

Tổng số xe con quy đổi: $\Sigma N_{xcqd}/ngd = 1902.41 \ (xcqd/ngd)$

Lưu lượng xe con quy đổi ở năm cuối thời kỳ tính toán : Năm thứ 15

$$N_{tbqd} = N_{xcqd/ng} \; x \; (1+p)^{t\text{--}1} = 1902.41 \; x \; (1+0.06)^{15\text{--}1} = 4301.16 \; (\; xcqd/ngd)$$

p: lượng xe tăng hằng năm = 6%

t: thời gian khai thác sử dụng đường t = 15 năm

Căn cứ vào bảng 3-bảng phân cấp kỹ thuật đường ô tô theo chức năng của đường về lưu lượng thiết kế TCVN 4054-05 ta thấy cấp đường phù hợp là cấp III vì $N_{tbnd} > 3000$. Vậy ta chọn tuyến đường cấp III vùng núi ứng với vận tốc thiết kế là 60 (km/h)

(theo bảng 4 TCVN 4054-05)

2.2. Tính toán các chỉ tiêu kỹ thuật của tuyến đường:

2.2.1. Xác định độ dốc dọc tối đa imax của tuyến đường.

Chọn mặt đường bê tông nhựa có $f_0 = 0.02$

Vận tốc thiết kế V = 60 (km/h)

$$F_v = f_0 x (1 + 4.5 x 10^{-5} x V_{tt}^2) = 0.02 x (1 + 4.5 x 10^{-5} x 60^2) = 0.023$$

Theo điều kiện sức kéo.

$$I_{max}{}^{k\acute{e}o}=\ D_{max}-F_v$$

Tra bảng nhân tố động lực học có bảng sau:

Bảng 2.3. Độ dốc dọc của tuyến đường.

Loại xe	V _{tt} (km/h)	D _{max}	F_{v}	I _{max} ^{kéo} (%)
Xe con	60	0.13	0.023	11
Xe tải loại 2 trục	60	0.03	0.023	0.7
Loại nhẹ				
Xe tải loại 2 trục	60	0.05	0.023	2.7
Loại vừa				
Xe tải loại 2 trục	60	0.029	0.023	0.6
Loại nặng				
Xe tải 3 trục	60	0.025	0.023	0.2
Xe buýt lớn	60	0.036	0.023	1.3
Xe buýt nhỏ	60	0.039	0.023	1.6

Bảng 2.4 Bảng tra nhân tố động lực học

- Theo điều kiện sức bám : $I_{max}{}^{k\acute{e}o} = D_{max} f_v$
- Giá trị $I_{max}^{k\acute{e}o}$ được chọn theo loại xe có lưu lượng xe lưu thông nhiều nhất (xe tải loại 2 trục Loại vừa). Vậy $I_{max}^{k\acute{e}o}=2.7$ %
- $Db\acute{a}m^{max} = m*\phi d Pw/G$
- Trong đó:
- +) ϕd : hệ số bám dọc (chọn trong điều kiện không thuận lợi: ẩm và bẩn); $\phi d = 0.3$
- +) m = Gk /G : hệ số phân phối tải trọng trên trục xe chủ động khi xe chở đầy hàng
- +) Gk tải trọng trục chủ động của xe
- +) G: tải trọng xe (Tra bảng các thông số xe)
- +) PW =K*F*V2 /13: hệ số cản không khí
- +) K : hệ số sức cản không khí phụ thuộc vào loại xe (Bảng 2.2 trang 22)
- +) V = 60km/h: vận tốc thiết kế

- +) F = 0.8*B*H: đối với xe con
- +) F = 0.9*B*H: đối với xe buýt và xe tải
- Từ những số liệu trên ta có bảng sau:

Loại	m	K	F	Pw	Gtrucsau	Gxe	Dmaxbám	i _{max} bám	В	Н
xe		(daN.s ²	(m2)	(daN)	(daN)	(daN)				
		/m ⁴)								
Xe	0.522	0.02	2.17	110.8	950	1820	0.0957	7.6	1.82	1.49
con										
Xe	0.676	0.025	6.47	34.62	5287	7825	0.1586	13.9	2.44	2.95
buýt										
nhỏ										
Xe	0.591	0.03	6.72	45.69	8310	14050	0.1447	12.5	2.5	2.99
buýt										
lớn										
Xe tải	0.755	0.054	4.75	44.86	5590	7400	0.1659	14.6	2.38	2.22
nhẹ										
Xe tải	0.73	0.06	5.4	58.15	6950	9525	0.158	13.8	2.5	2.4
vừa										
Xe tải	0.675	0.07	5.94	116.31	10000	14825	0.1242	10.4	2.5	2.64
nặng										
(2										
trục)										
Xe tải	0.764	0.07	6.07	116.31	14450	18920	0.1678	14.78	2.5	2.7
nặng										
(3										
trục)										

Bảng 2.5 Bảng thông số các loại xe

- Vậy $i_{max}^{b\acute{a}m}=13.8\%$
- $i_{max} = Min \; (i_{max}{}^{k\acute{e}o}; \; i_{max}{}^{b\acute{a}m}) = 2.7 \; \%$.
- => Chọn i = 7% theo tiêu chuẩn để thiết kế

ĐỔ ÁN THIẾT KẾ ĐƯỜNG GVHD : TRẦN VỮ TỰ

2.2.2. Xác định tầm nhìn xe chạy

- Tầm nhìn được tính toán với điều kiện bình thường:
- Độ đốc dọc $i_d = 0\%$
- Hệ số bám $\varphi d = 0.5$ (điều kiện bình thường)
- Hệ số phanh K= 1.3
- $L_{at} = 5m$ (Khoảng cách dừng xe cách vật cản an toàn)
- + Tầm nhìn trước chướng ngoại vật cố định:

$$S_{t} = \frac{V}{3.6} + \frac{KV^{2}}{254(\varphi_{d} + f \pm i_{d})} + l_{at} = \frac{60}{3.6} + \frac{1.6*60^{2}}{254*0.5} + 5 = 58.52(m)$$

+ Tầm nhìn thấy xe ngược chiều:

$$S_d = \frac{V}{1.8} + \frac{KV^2(\varphi_d + f)}{127[(\varphi_d + f^2) - i_d^2]} + l_{at} = \frac{60}{1.8} + \frac{1.3*60^2*0.5}{127*0.5^2} + 5 = 112(m)$$

- $+)\mu = 0.15$
- + Tầm nhìn vượt xe

$$S_{vx} = \frac{V_3 + V_1}{V_1 - V_2} * \left(\frac{V_1}{3.6} + \frac{K_1 V_1^2}{254 * \varphi_d} + l_{at} + 2l_4 \right)$$

Trong đó: +) V1: 80 km/h: vận tốc xe vượt

+) V2: 60 km/h : vận tốc xe bị vượt

- +) V3: 60 km/h : vận tốc xe đi ngược chiều
- +) L4: chiều dài xe vươt (chon chiều dài L4= 3m)

$$S_{vx} = \frac{60 + 80_{1}}{60 - 80} * \left(\frac{80}{3.6} + \frac{1.3 * 80^{2}}{254 * 0.5} + 5 + 2 * 3 \right) = 6929(m)$$

- Vậy ta được:
- +) Tầm nhìn trước chướng ngai vật cố định $S_t = 60 \text{ (m)}$
- +) Tầm nhìn thấy xe ngược chiều $S_d = 120 \text{ (m)}$
- +) Tầm nhìn vượt xe $S_{vx} = 700$ (m)
- 2.2.3. Xác định bán kính đường cong nằm nhỏ nhất R_{sc}^{min} và bán kính đường cong nằm nhỏ nhất không siêu cao R_{ksc}^{min}
- Khi có độ dốc siêu cao:

$$R_{sc}^{\min} = \frac{V^2}{127(\mu + i_{sc}^{\max})}$$

- $+)\mu = 0.15$
- +) Với V= 60 (km/h), tra bảng 13 [TCVN 4054-05], chọn $\Rightarrow R_{min} = \frac{90*60}{\pi*2} = 860(m)$

$$\Rightarrow R_{\min} = \frac{60^2}{127 * (0.15 + 0.07)} = 128.85(m)$$

- Khi không có siêu cao :
- +) Chọn u = 0.08

$$\Rightarrow R_{ksc}^{\min} = \frac{V^2}{127(0.08 - i_n)}$$

- Theo bảng 9 [TCVN 4054-2005], đối với đường bê tông xi măng và bê tông nhựa. Chọn i_n= 2%.

$$\Rightarrow R_{ksc}^{min} = \frac{V^2}{127(0.08 - 0.02)} = 472(m)$$

- Tra bảng 13 [TCVN 4054-2005] thì giá trị bán kính cong được quy định theo Vtt= 60 (km/h) là 1500 (m).

2.2.4. Xác định bán kính đường cong nằm nhỏ nhất đảm bảo tầm nhìn ban đêm

- Về ban đêm tầm nhìn S của người lái xe phụ thuộc vào góc phát sang theo phương ngang của đèn oto, thường góc phát sang theo phương ngang là nhỏ khoảng 2%, nên bán kính đường cong được xác định theo công thức:

$$R_{\min} = \frac{90S}{\pi * \alpha}$$

- +) $\alpha = 2^{\circ}$: góc mở của chùm tia sáng xe.
- +) $S = S_t$: tầm nhìn trước chướng ngoại vật cố định.

$$\Rightarrow R_{\min} = \frac{90*60}{\pi*2} = 860(m)$$

2.2.5. Xác định đường cong đứng lồi tối thiểu R_{min} lồi

- Cong đứng tối thiểu:
- Đối với đường không có dải phân cách :

$$R_{min}{}^{l\grave{o}i} = S_d{}^2/8h_1.$$

- +) $S_d = 112$ (m): tầm nhìn xe chạy ngược chiều.
- +) $h_1 = 1$ (m) : độ cao của mắt người lái xe so với mặt đường.

Vậy
$$R_{min}^{l\grave{o}i} = 112^2/8 = 1568$$
 (m).

- Đối với đường có dải phân cách:

$$R_{min}^{l\grave{o}i} = S_d^2 / 2h_1$$

- +) $S_d = 112$ (m): tầm nhìn thấy xe ngược chiều.
- +) $h_1 = 1$ (m): độ cao của mắt người lái xe so với mặt đường.

Vậy
$$R_{min}^{\hat{l}\hat{o}i} = 112^2 / 8 = 1568$$
 (m).

2.2.6. Xác định đường cong lõm tối thiểu R_{min}lõm

- Cong đứng lõm tối thiểu :
- +) Theo điều kiện 1 : đảm bảo không gãy nhíp xe do lực ly tâm :

$$R_{min}^{l\tilde{o}m} = V^2/13[a]$$

$$[a] = 0.5 \text{ m/s}^{\text{s}} \text{ theo } [\text{TCVN } 4054-05]$$

Vậy
$$R_{min}^{10m} = 60^2 / (13*0.5) = 554 \text{ (m)}.$$

+) Theo điều kiện 2 : đảm bảo tầm nhìn về đêm :

$$R_{\min}^{l\tilde{o}m} = \frac{S_t^2}{h_d + S_t * tga}$$

+) $h_d = 0.61$ (m): độ cao đèn xe ô tô so với mặt đường.

$$\Rightarrow R_{\min}^{15m} = \frac{60^2}{2*(0.61+75*tg2^0)} = 558(m)$$

2.2.7. Xác định số làn xe

Mặt cắt ngang của tuyến có dạng như sau:

Trong đó:

- B_n : chiều rộng nền đường ; B_m : chiều rộng mặt đường
- B_1 : chiều rộng lề đường ; i_m : độ dốc mặt đường
- i_{lgc} : độ dốc lề đường gia cố ; i_{lkgc} : độ dốc lề đường không gia cố

ĐỔ ÁN THIẾT KẾ ĐƯỜNG GVHD : TRẦN VŨ TỰ

$$n_{lx} = \frac{N_{cdgio}}{Z * N_{tth}}$$

 $+N_{cdgio}=0.1*N_{xeqd/ngd}=0.1*4301.16=430.1$: lưu lượng xe thiết kế giờ cao điểm.

+ N_{th}: năng lực thông hành tối đa, theo TCVN 4054-2005, chọn Nlth = 1000 (khi không có phân cách xe chạy trái chiều và phân cấp xe ô tô, ô tô chạy chung với xe thô sơ).

+ Z: hệ số năng lực thông hành, chọn Z = 0.85 (V=60km/h).

$$\rightarrow n_{lx} = \frac{430.1}{0.85*1000} = 0.51$$

Theo TCVN 4054-2005: Chọn $n_{lx}=2$.

2.2.8. Xác định bề rộng phần xe chạy, lề đường

+) Xác định bề rộng phần xe chạy

- Ta có đường cấp III, tốc độ thiết kế 60 km/h, tra theo bảng 7 [TCVN 4054-05] số làn xe dành cho xe cơ giới tối thiểu là 2 làn.
- Bề rộng mỗi làn xe được tính theo công thức :

$$B_i = \frac{a+c}{2} + x + y$$

Trong đó: +) a,c: bề rộng của thùng xe và khoảng cách giữa tim 2 dãy bánh xe

+)
$$x+y = 0.5 + 0.005V$$

+) x : khoảng cách giữa 2 thùng xe ngược chiều

+) y : khoảng cách từ giữa vệt bánh xe đến mép phần xe chạy x = y

Loại xe	c (cm)	a (m)	x=y	B _i (m)
Xe con	1.4	1.8		3.21
Xe tải nhẹ	1.7	2.4		3.53
Xe tải vừa	1.8	2.5		3.75
Xe tải nặng	1.9	2.5		3.89
(2 trục)			0.8	
Xe tải nặng	1.9	2.5		3.77
(3 trục)				
Xe buýt nhỏ	1.7	2.4		3.66
Xe buýt lớn	1.9	2.5		3.79

Bảng 2.6 Bề rộng phần xe chạy

Chọn $B_{1\,làn}=3.75\,$ (m) (theo xe tải vừa : xe có lưu lượng lưu thông nhiều nhất).

- Theo TCVN 4054:2005: Đối với đường loại này chiều rộng tối thiểu một làn xe: $B_{1 \, làn} = 3.75 m$.
- Tuyến đường thiết kế là đường vùng núi do đó cần khắc phục những đoạn dốc nhất định, khi đó tốc độ của xe theo chiều lên dốc sẽ giảm đi đáng kể so với việc chạy trên đường bằng, ngược lại xe xuống dốc thường có xu hướng hãm phanh để đảm bảo an toàn. Khi 2 xe gặp nhau người lái thường có xu hướng giảm tốc độ, ngoài ra người lái có thể lựa chọn giải pháp đi vào dải an toàn được bố trí trên lề gia cố để tránh nhau.

- Hơn nữa việc tính toán như trên là đúng nhưng chưa đủ vì còn nhiều yếu tố quan trọng chưa được xét tới, đầu tiên như là mặt an toàn giao thông, sau đó là về giá đầu tư xây dựng (rõ ràng bề rộng càng nhỏ giá đầu tư xây dựng càng nhỏ). Muốn chọn được bề rộng một cách chính xác nhất phải có luận chứng kỹ lưỡng về mặt an toàn giao thông và giá đầu tư xây dựng. Do vậy sơ bộ có thể chọn bề rộng làn xe theo TCVN 4054:2005. Kiến nghị chọn $B_{làn} = 3.75$ (m). Trong thi công, để dễ thực hiện ta chọn $B_{làn} = 3.8$ (m).

2.2.9. Xác định bề rộng lề đường

- Lấy theo bảng 7 [TCVN 4054:2005], đối với cấp hạng đường này thì chiều rộng lề là 1.5 (m) trong đó lề gia cố là 1 (m). Đốc ngang phần xe chạy, độ dốc ngang của phần xe chạy của các bộ phận trên mặt ngang ở các đoạn đường thẳng được lấy như bảng 9 [TCVN 4054:2005] phụ thuộc vào vật liệu làm lớp mặt và vùng mưa (giả thiết trước mặt đường sẽ sử dụng là mặt đường bê tông nhựa).
- Vậy với đường cấp III, $V_{tk} = 60 \text{ (km/h)}$ ta xác định được quy mô mặt cắt ngang như sau :

Cấp thiết	V _{tk} (km/h)	n(làn)	B _{1làn} (m)	B _{psc} (m)	B _{1lè} (m)	B _{nền} (m)
kế						
III	60	2	3.8		1.5	10.6

Bảng 2.7. Các yếu tố trên mặt cắt ngang

2.2.10. Độ mở rộng đường cong có bán kính nhỏ

- Độ mở rộng đường cong được xác định theo công thức:

$$e_{w} = \frac{l^2}{2R} + \frac{0.05V}{\sqrt{R}}$$

- Trong đó:
- +) l : khoảng cách từ đầu xe đến trục sau của xe (chọn xe có chiều dài lớn nhất), l = 7,4 (m) : đối với xe buýt.
- +) R: bán kính đường cong tròn.

$$\Rightarrow e_w = \frac{7.4^2}{2*130} + \frac{0.05*60}{\sqrt{130}} = 0.47(m)$$

2.2.11. Chiều dài đường cong chuyển tiếp nhỏ nhất

- Theo 3 điều kiện sau:
- +) Điều kiện 1 : Độ tăng gia tốc ly tâm cho phép :

Công thức:

Trong đó: +) R: bán kính đường cong tròn (m). $R=R_{min}=130$ (m)

- +) L_{ct}: chiều dài đường cong chuyển tiếp (m).
- +) $[I_0]$: độ tăng gia tốc ly tâm cho phép (m/s^3) . Lấy $[I_0] = 0.6 \text{ m/s}^3$ (lấy theo tiêu chuẩn Australia).

$$\Rightarrow L_{CT} \ge \frac{60^3}{47*0.6*130} = 58.92(m)$$

+) Điều kiện 2 : Đủ bố trí đoạn nối siêu cao :

Công thức : $L_{NSCmin} = \Delta h/[ip]$

- +) $\Delta h = 1/2*Bm^{4}(in + isc) = 1/2*6*(0.07+0.02) = 0.27 (m).$
- +) ip = 0.5% (theo tiêu chuẩn thiết kế đường ô tô 22TCN-273-01).

Vây: $L_{NSCmin} = 0.27/0.005 = 54$ (m).

+) Điều kiện 3: Khắc phục ảo giác về sự chuyển hướng đột ngột của tuyến:

Công thức: LCTmin =R/9 = 130/9 = 14.44 (m)

STT	Chỉ tiêu kỹ thuật	Đơn	Theo tính	Theo	Chọn để thiết
		vị	toán	TCTK	kế
1	Vận tốc xe chạy thiết kế	km/h	60	60	60
2	Độ dốc dọc lớn nhất	%	2.7	7	7

cố định. + Thấy xe ngược chiều 112 150 150 + Vượt xe. 692 350 700 5 - Bán kính tối thiểu của đường cong đứng lồi. m 1568 4000 4000 6 - Bán kính tối thiểu của đường cong đứng lõm: m 554 1500 1500 híp xe do lực li tâm. 558 1500 1500 đêm. 1500 1500 1500 8 - Bề rộng của 1 làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75	3	Bán kính đường cong				
+ Cổ siêu cao		nằm tối thiểu:				
+ Đâm báo tầm nhìn về dềm 860		+ Không có siêu cao	m	472	1500	1500
đềm 4 Tầm nhìn: m 58.5 75 75 cố định. 112 150 150 + Vượt xe. 692 350 700 5 - Bán kính tối thiểu của đường cong đứng lồi. m 1568 4000 4000 6 - Bán kính tối thiểu của đường cong đứng lồm: m 554 1500 1500 + Đảm bảo không gãy nhíp xe do lực li tâm. m 558 1500 1500 7 - Số làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75		+ Có siêu cao		128.85	250	130
4 Tầm nhìn: + Thấy chướng ngại vật m 58.5 75 75 cổ định. + Thấy xe ngược chiều 112 150 150 + Vượt xe. 692 350 700 5 - Bấn kính tối thiểu của dường cong đứng lồi. m 1568 4000 4000 6 - Bấn kính tối thiểu của đường cong đứng lồm: m 554 1500 1500 + Đẩm bảo không gây nhíp xe do lực li tâm. m 558 1500 1500 7 - Số lần xe Lần 0.51 2 2 8 - Bề rộng của 1 lần xe m 3.75 3.5 3.75		+ Đảm bảo tầm nhìn về		860		860
+ Thấy chướng ngại vật m 58.5 75 75 cố định. 112 150 150 + Thấy xe ngược chiều 112 150 150 + Vượt xe. 692 350 700 5 - Bán kính tối thiểu của m 1568 4000 4000 6 - Bán kính tối thiểu của m 1568 4000 4000 6 - Bán kính tối thiểu của m 554 1500 1500 nhíp xe do lực li tâm. 558 1500 1500 4 Đảm bảo tầm nhìn về 558 1500 1500 7 - Số lần xe Làn 0.51 2 2 8 - Bề rộng của 1 lần xe m 3.75 3.5 3.75		đêm				
+ Thấy chướng ngại vật m 58.5 75 75 cố định. 112 150 150 + Thấy xe ngược chiều 112 150 150 + Vượt xe. 692 350 700 5 - Bán kính tối thiểu của m 1568 4000 4000 6 - Bán kính tối thiểu của m 1568 4000 4000 6 - Bán kính tối thiểu của m 554 1500 1500 nhíp xe do lực li tâm. 558 1500 1500 4 Đảm bảo tầm nhìn về 558 1500 1500 7 - Số lần xe Làn 0.51 2 2 8 - Bề rộng của 1 lần xe m 3.75 3.5 3.75						
cố định. + Thấy xe ngược chiều 112 150 150 + Vượt xe. 692 350 700 5 - Bán kính tối thiểu của đường cong đứng lồi. m 1568 4000 4000 6 - Bán kính tối thiểu của đường cong đứng lồm: m 554 1500 1500 + Đâm bảo không gãy nhíp xe do lực li tâm. 558 1500 1500 + Đâm báo tầm nhìn về đêm. 558 1500 1500 7 - Số làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75	4	Tầm nhìn:				
+ Thấy xe ngược chiều		+ Thấy chướng ngại vật	m	58.5	75	75
+ Vượt xe. 692 350 700 5 - Bấn kính tối thiểu của đường cong đứng lồi. m 1568 4000 4000 6 - Bấn kính tối thiểu của đường cong đứng lõm: m 554 1500 1500 + Đảm bảo không gãy nhíp xe do lực li tâm. m 558 1500 1500 + Đảm bảo tầm nhìn về đêm. 558 1500 1500 7 - Số làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75		cố định.				
5 - Bán kính tối thiểu của đường cong đứng lồi. m 1568 4000 4000 6 - Bán kính tối thiểu của đường cong đứng lõm: m 554 1500 1500 + Đảm bảo không gãy nhíp xe do lực li tâm. m 558 1500 1500 + Đảm bảo tầm nhìn về đêm. 558 1500 1500 7 - Số làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75		+ Thấy xe ngược chiều		112	150	150
đường cong đứng lồi. m 1568 4000 4000 6 - Bán kính tối thiểu của đường cong đứng lõm: m 554 1500 1500 + Đảm bảo không gãy nhíp xe do lực li tâm. m 558 1500 1500 + Đảm bảo tầm nhìn về đêm. 558 1500 1500 7 - Số làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75		+ Vượt xe.		692	350	700
6 - Bán kính tối thiểu của đường cong đứng lõm: + Đảm bảo không gãy m 554 1500 1500 nhíp xe do lực li tâm. + Đảm bảo tầm nhìn về 558 1500 1500 đêm. 7 - Số làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75	5	- Bán kính tối thiểu của				
đường cong đứng lõm: m 554 1500 1500 + Đảm bảo không gãy nhíp xe do lực li tâm. m 558 1500 1500 + Đảm bảo tầm nhìn về đêm. 558 1500 1500 7 - Số làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75		đường cong đứng lồi.	m	1568	4000	4000
đường cong đứng lõm: m 554 1500 1500 h Đảm bảo không gãy nhíp xe do lực li tâm. m 558 1500 1500 4 Đảm bảo tầm nhìn về đêm. 558 1500 1500 7 - Số làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75						
+ Đảm bảo không gãy m 554 1500 1500 nhíp xe do lực li tâm. 558 1500 1500 + Đảm bảo tầm nhìn về đêm. 558 1500 1500 7 - Số làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75	6	- Bán kính tối thiểu của				
nhíp xe do lực li tâm. + Đảm bảo tầm nhìn về 558 1500 1500 đêm. 7 - Số làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75		đường cong đứng lõm:				
nhíp xe do lực li tâm. + Đảm bảo tầm nhìn về 558 1500 1500 đêm. 7 - Số làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75						
+ Đảm bảo tầm nhìn về 558 1500 1500 đêm. 7 - Số làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75		+ Đảm bảo không gãy	m	554	1500	1500
đêm. 7 - Số làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75		nhíp xe do lực li tâm.				
đêm. 7 - Số làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75						
7 - Số làn xe Làn 0.51 2 2 8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75		+ Đảm bảo tầm nhìn về		558	1500	1500
8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75		đêm.				
8 - Bề rộng của 1 làn xe m 3.75 3.5 3.75						
	7	- Số làn xe	Làn	0.51	2	2
9 -Bề rộng mặt đường m 7.5 7 7.5	8	- Bề rộng của 1 làn xe	m	3.75	3.5	3.75
9 -Bề rộng mặt đường m 7.5 7 7.5						
	9	-Bề rộng mặt đường	m	7.5	7	7.5
10 - Bề rộng lề gia cố m 1.5 1.5	10	- Bề rộng lề gia cố	m	1.5	1.5	1.5
11 - Bề rộng nền đường m 10.5 9 10.5	11	- Bề rộng nền đường	m	10.5	9	10.5

12	- Độ mở rộng bán kính	m	0.5	0.5	0.5
	cong nằm.				
13	-Chiều dài đường cong				
	chuyển tiếp nhỏ nhất:				
	+ Độ tăng gia tốc ly tâm				
	cho phép.		58.9	60	60
	+ Đủ để bố trí đoạn nối	m	54	60	60
	siêu cao.				
	+ Khắc phục ảo giác về		14.4	60	60
	sự chuyển hướng đột				
	ngột.				

ĐỔ ÁN THIẾT KẾ ĐƯỜNG GVHD : TRẦN VŨ TỰ

CHƯƠNG 3: THIẾT KẾ SƠ BỘ 2 PHƯƠNG ÁN TUYẾN TRÊN ĐƯỜNG BÌNH ĐỒ

- 3.1. Vạch các phương án tuyến trên bình đồ, xác định bước compa
- Dựa vào các chỉ tiêu kỹ thuật của tuyến đường được thiết kế (đường cấp 3 miền núi) và các điểm khống chế phải đi qua hoặc phải tránh. Để vạch tất cả các phương án tuyến đường có thể thiết kế qua hai điểm AB.
- Để nâng cao chất lượng khai thác của tuyến đường, khi thiết kế cố gắng sử dụng các tiêu chuẩn kỹ thuật thông thường và chỉ trong trường hợp đặc biệt khi địa hình phức tạp mới nên dùng các tiêu chuẩn kỹ thuật giới hạn.
- Khi vạch tuyến để đảm bảo độ dốc dọc cho phép và tránh các trường hợp đào hoặc đắp với khối lượng quá lớn thì ta phải tính bước compa:

$$i_{cp} = \left(\frac{\Delta h}{k * i_m} * \frac{1}{M}\right)$$

Với:

+) Δh : là độ chênh cao giữa hai đường đồng mức

+) 1/M: tỷ lệ bản đồ

+) k: hệ số chiết giảm (k=0.8)

+) Imax : đô dốc dọc lớn nhất

$$\Rightarrow i_{cp} = \frac{50}{0.8*0.07} * \frac{1}{10000} = 0.89(cm)$$

- Đường dẫn hướng tuyến xác định bằng bước compa là một đường gãy khúc cắt các đường đồng mức, đường này có độ dốc không đổi id .Để vạch các đường dẫn hướng tuyến một cách dễ Adàng, mà phù hợp với thực tế cần phải xem xét kỹ các yếu tố của địa hình.Dựa vào đường dẫn hướng tuyến này ta vạch một tuyến đường chạy trong phạm vi những đường gãy khúc gồm các đoạn thẳng và đoạn cong. Trong đó các đoạn cong được xác định với bán kính thoả yêu cầu về điều kiện tối thiểu, đồng thời phù hợp với các yếu tố đường cong bênh cạnh, thoả mãn với độ dốc dọc cho phép của cấp đường, đảm bảo chiều dài tối thiểu của đoạn chêm giữa hai đường cong ngược chiều có bố trí siêu cao, bán kính đường cong nằm ưu tiên lấy càng cao càng tốt.

- 3.2. Xác định chiều dài đoạn thẳng đoạn cong, vị trí các cọc, cự ly của các cọc.
- Xác định các lý trình của các cọc tiếp đầu, cọc tiếp cuối.
- Sau khi xác định góc ngoặt α của các tuyến đường trên bình đồ và quyết định các bán kính đường cong R_i chúng ta xác định được chiều dài:
- Tiếp tuyến : $T_i = R_i * tg(\alpha_i/2)$
- Phân cực : $P_i = R_i(1/Cos\frac{\alpha i}{2})$ -1)
- Đoạn cong : $K_i = \frac{\pi}{180} * \alpha_i * R_i$
- +) Trong đó: R là bán kính đường cong nằm
- +) α_i góc ngoặt trên bình đồ
- Bảng lý trình các điểm TĐ, P, T, C của các đường cong

Bảng 3.1 Bảng các thông số đặc trưng của phương án tuyến 1

PHƯƠNG ÁN 1

STT	A	R(m)	T(m)	P(m)	K(m)	I _{sc} (%)	L(m)
1	38.9	250	113.4	15.6	219.7	3	50
2	41.6	250	120	17.9	231.3	3	50
3	62.2	250	176.1	42.5	321.4	3	50
4	61.8	250	175	41.9	319.8	3	50

PHƯƠNG ÁN 2

STT	A	R(m)	T(m)	P(m)	K(m)	I _{sc} (%)	L(m)
1	63.1	250	178.9	43.9	325.6	2	50
2	53.4	250	151.5	30.5	283.8	2	50
3	47.6	250	134.2	23.2	255.6	2	50
4	56.3	250	159.7	34.4	296.8	2	50
5	42.2	250	121.2	18.5	234.5	2	50

Bảng 3.2 Bảng các thông số đặc trưng của phương án tuyến 2

ĐỔ ÁN THIẾT KẾ ĐƯỜNG

- Kết Luận: Phương án 1 có lợi các mặt về tuyến như êm thuật, liền mạch cho lái xe; số lần vượt sông thấp, giảm chi phí để xây dựng hệ thống cầu cống bắc qua sông suối nên chọn phương án 1.

3.3. Dựa vào bảng lý trình ở trên và vị trí của các TĐ,TC theo tỉ lệ bản đồ ta xác định được vị trí của các cọc km trên bình đồ tuyến

3.3.1. Xác định cọc Hn cọc thay đổi địa hình Cn

- Dựa vào vị trí của các tuyến đường đồng mức xác định được vị trí của các cọc $C_{\rm n}$
- Dựa vào tỷ lệ bản đồ, bán kính đường cong xác định được cọc trăm mét (H_n)

3.3.2. Xác định cự ly giữa các cọc

- Sau khi có các vị trí các cọc Km, TĐ,TC,G và các cọc Cn. Chúng ta dùng thước để đo cự ly giữa các cọc có trên bản đồ và nhân với M (hệ số tỉ lệ bản đồ) để có được cự ly thực tế tính bằng m.

$$L_i = l_i^{bd} * \frac{M}{1000}(m)$$

- Trong đó :
- +) l_i^{bd} : cự ly cọc trên bản đồ (mm)
- +) 1000 : hệ số quy đổi đơn vị từ mm sang m.

GVHD: TRẦN VŨ TỰ

ĐỔ ÁN THIẾT KẾ ĐƯỜNG GVHD : TRẦN VỮ TỰ

CHƯƠNG 4 : TÍNH TOÁN THỦY VĂN CÔNG TRÌNH

4.1. Tổng quan

Tuyến được thiết kế mới, chạy qua vùng miền núi có điều kiện địa chất thủy văn tương đối ổn định. Mực nước ngầm nằm khá sâu nên không phải thiết kế hệ thống thoát nước ngầm cũng như ngăn chặn sự phá hoại của nó. Dọc theo tuyến có cắt qua một số khe tụ thủy và một vài con suối. Tại những vị trí này thiết kế bố trí các cống nhằm đảm bảo thoát nước từ lưu vực đổ về. Để thoát nước mặt đường và lưu vực lân cận (từ hai taluy đổ xuống) thiết kế làm các rãnh dọc và cống cấu tạo (tối đa 500m phải có một cống). Trong trường hợp dốc dọc lớn thì rãnh biên có thể thoát nước lưu lượng lớn nên có thể bố trí cống xa hơn 500m. Trường hợp lưu lượng từ lưu vực đổ về rãnh biên lớn có thể chọn giải pháp tăng kích thước rãnh biên hoặc giải pháp làm rãnh đỉnh thu nước.

Hệ thống thoát nước đường ô tô bao gồm hệ thống thoát nước mặt và hệ thống thoát nước ngầm. Đó là các công trình và các biện pháp kĩ thuật được xây dựng để đảm bảo nền đường đường không bị ẩm ướt. Các công trình này có tác dụng tập trung và thoát nước nền đường hoặc ngăn chặn không cho nước thấm vào phần trên của nền đất. Mục đích quan trọng nhất của việt xậy dựng hệ thống thoát nước trên đường là đảm bảo chế độ ẩm của nền đất luôn luôn ổn định không gây nguy hiểm cho mặt đường.

4.2. Thiết kế thoát nước

4.2.1. Số liệu thiết kế

- Khu vực tuyến đi qua địa phận Tỉnh Lai Châu nằm trong vùng mưa II
- Tần suất thiết kế p% = 4% (lấy theo bảng 31 điều 10 TCVN 4054:2005 và điều 9.3.8 TCVN 5729:2012), lượng mưa ngày ứng với tần suất này là H4 % = 191 mm.
- Đất feralit là nhóm đất điển hình của Hoà Bình, chiếm phần lớn diện tích của tỉnh và gấp khoảng 18 lần đất phù sa.

4.2.2. Xác định lưu vực

- Xác định vị trí và lý trình của công trình thoát nước trên bình đồ và trắc dọc
- Xác định đường tụ thủy, phân thủy để phân chia lưu vực
- Nối các đường phân thủy, tụ thủy để xác định lưu vực của từng công trình
- Xác đinh diên tích lưu vực

Bình đồ khoanh vùng lưu vực được cho trong bình đồ

4.2.3. Tính toán thủy văn

Tuyến đường theo cấp đường thiết kế đường cấp III có Vtk = 60 Km/h

Theo tiêu chuẩn TCVN 4054-2005 thì tần suất lũ tính toán thiết kế cho cống p=4%

Đối với lưu vực nhỏ có diện tích F < 100 km2 lưu lượng đỉnh lũ ứng với tần suất p% được tính theo công thức:

$$Q_{n} = A_{n} \times \varphi \times H_{n\%} \times F \times \delta_{1}(m^{3}/s)$$

Trong đó:

P%- tần suất thiết kế, lấy theo điều 10 TCVN 4054:2005 và điều 9 TCVN 5729:2012

Qp% - lưu lượng đỉnh lũ ứng với tần suất thiết kế, m3/s

 A_p % - Mô đun tương đối đỉnh lũ tương ứng với tần suất thiết kế; A_p % lấy trong Bảng A.3 phụlục A trong TCVN 9845:2013 tùy thuộc vào vùng mưa, đặc trưng địa mạo thủy văn của lòng sông ϕ_{ls} , thời gian tập trung đòng chảy trên sườn đốc τ_s

- δ Hệ số xét tới mức độ làm giảm nhỏ lưu lượng đỉnh lũ do ao, hồ, đầm lầy lưu vực, xác định theo bảng 6 trong TCVN 9845:2013.
- φ Hệ số dòng chảy lũ lấy trong bảng A.1 phụ lục A trong TCVN 9845:2013 tùy thuộc vào loại đất cấu tạo lưu vực, lượng mưa ngày thiết kế (Hp%) và diện tích lưu vực (F)

F - diện tích lưu vực, km2

Hp % - lượng mưa ngày lớn nhất tương ứng với tần suất thiết kế P% của trạm đại diện cho lưu vực tính toán, mm. Trong tính toán cần cập nhật chuỗi số liệu mưa của trạm đại diện đến thời điểm tính.

4.2.3.1. Phương án tuyến 1

a. Diện tích khu vực F: (km)

Được xác định bởi giới hạn các đường phân thủy và tuyến đường, dùng chương trình phần mềm để thiết kế đường ta tính ra được diện tích khu vực.

b.Chiều dài lòng chính L: (km)

Dựa vào bình đồ xác định được dòng sông chính trong lưu vực, trong lưu vực chọn dòng sông lớn nhất để tính, nếu lưu vực không có sông rõ rệt để tính dòng sông chính ta vẽ đường tụ thủy và coi đó là một dòng sông chính. Cách xác định là dùng thước để đo và nhân với tỉ lệ bản đồ hoặc dùng chương trình thiết kế đường để đỏ.

c. Chiều dài bình quân của sườn đốc lưu vực bs: (m)

ĐỔ ÁN THIẾT KẾ ĐƯỜNG GVHD : TRẦN VỮ TỰ

$$L_{sd} = \frac{1000F}{1.8(L + \sum l)}$$

Trong đó:

+ F: diện tích lưu vực (km2)

+ L: chiều dài lòng chính (km)

 $+\sum L$: tổng chiều dài lòng nhánh (km); chỉ tính cho nhữn lòng nhánh có chiều dài lớn hơn 0.75 chiều rông bình quân B của lưu vực

Đối với lưu vực có hai sườn: $B = \frac{F}{2L}(km)$

Đối với lưu vực có 1 sườn: $B = \frac{F}{L}(km)$

Đối với lưu vực 1 sườn ở công thức tính bs ta thay thế số 1.8 bằng 0.9

d. Độ đốc trung bình của lòng sông chính $J_{ls}(\%)$

$$j_{ls} = \frac{h_1 l_1 + (h_1 + h_2) l_2 + \dots + (h_{n-1} + h_n) l_n}{L^2}$$

 $h_1, h_2 ... h_n$: cao độ những điểm gãy khúc trên trắc dọc so với giao điểm của 2 đường.

 $l_1,\,l_2,...,ln$: cự ly giữa các điểm gãy khúc

e. Độ đốc trung bình của sườn đốc J_{sd} : (%)

Jsd (%): độ dốc trung bình của sườn dốc, tính theo trị số trung bình của 4-6 điểm xác định độ dốc theo hướng dốc lớn nhất.

$$j_{sd} = \frac{h_1 l_1 + (h_1 + h_2) l_2 + \dots + (h_{n-1} + h_n) l_n}{I^2}$$

f. Xác định δL

 δL là hệ số xét tới làm giảm nhỏ lưu lượng đỉnh lũ do ao hồ, rừng cây trong lưu vực (hệ số triết giảm dòng chảy). Với địa hình đồi núi ta chấp nhận lấy $\delta L=1$

g. Xác định Hp

 H_p là lượng mưa ngày ứng với tần suất thiết kế. Tuyến đường thiết kế thuộc tỉnh Hoa Bình từ mục lục 1 22TCN 220-95 ta có được Hp=191 mm/ngày ứng với tần suất thiết kế P=4%

h. Xác định φ :

 φ là hệ số dòng chảy tùy thuộc vào loại đất cấu tạo khu vực, lượng mưa ngày thiết kế và diện tích lưu vực (bảng A.1 trong TCVN 9845:2013)

j. Xác định modun đính lũ Ap

Ap: được lấy theo bảng A.3 phụ lục A trong TCVN 9845: 2013 tùy thuộc vào ϕ_{ls} , τ_{sd} và vùng mưa

k. Vùng mưa

Tỉnh Lai Châu thuộc vùng mưa II.

l. Xác định au_{sd}

Thời gian tập trung nước trên sườn dốc τ_{sd} (phút) phụ thuộc vào hệ số địa mạo thủy văn của sườn dốc ϕ_{sd} và vùng mưa, xác định theo bảng A.2 trong TCVN 9845:2013 và vùng mưa (Bảng 3).

Tính ϕ_{sd} :

$$\phi_{sd} = \frac{L_{sd}^{0.6}}{m_{sd} \times j_{sd}^{0.3} \times \left(\varphi \times H_p\right)^{0.4}}$$

 L_{sd} : chiều dài bình quân của sườn đốc lưu vực

 m_{sd} : thông số tập trung dòng chảy trên sườn dốc phụ thuộc vào bề mặt của sườn lưu vực.

 J_{sd} (%) : độ dốc trung bình của sườn dốc, tính theo trị số trung bình của $4\div 6$ điểm xác định độ dốc theo hướng dốc lớn nhất

m. Xác định ϕ_{ls}

Hệ số địa mạo thủy văn của dòng sông ϕ_{ls} được xác định như sau:

$$\phi_{ls} = \frac{1000L}{m_{ls} \times j_{ls}^{1/3} \times F^{1/4} \times (\varphi \times H_p)^{1/4}}$$

 m_{ls} : thông số tập trung dòng sông phụ thuộc vào tình hình sông suối của lưu vực. Với sông vùng núi, lòng sông nhiều đá, mặt nước không phẳng, suối chảy không thường xuyên, quanh co dòng suối tắc nghẽn thì $m_l = 7$ (tra bảng 5 trong TCVN 9845:2013)

 j_{ls} (%) : độ dốc trung bình của dòng chính, tính theo đường thẳng kẻ dọc sông sao cho các phần diện tích thừa thiếu khống chế bởi đường thẳng và đường đấy sông bằng nhau thể hiện qua công thức :

$$j_{ls} = \frac{h_1 l_1 + (h_1 + h_2) l_2 + \dots + (h_{n-1} + h_n) l_n}{L^2}$$

 $h_1, h_2 ... h_n$: cao độ những điểm gãy khúc trên trắc dọc so với giao điểm của 2 đường.

 $l_1, l_2,...,ln$: cự ly giữa các điểm gãy khúc

4.2.3.2. Tính toán thủy văn chi tiết cho tuyến 1

a. Tính toán tại cọc X1

Diện tích lưu vực $F = 10.56 \text{ km}^2$

Đường thiết kế cấp III vùng núi

Do Vtk =60 km/h với tần suất thiết kế P=4%

Đường thiết kế qua tỉnh Lai Châu (trạm Lai Châu) nên ứng với P= 4%, tra bảng phụ lục 1 trong 22TCN 220-9505 ta được $H_{_{p\%}}=H_{_{4\%}}=191mm$

- Hệ số chiết giảm dòng chảy:

Cùng đặt tuyến ở có ao hồ đầm lầy (chiếm 40% thượng lưu) ta có $\delta=0.9$ (Bảng 6 9845-2013)

Chiều dài lòng chính: L=3.8 km

Tổng chiều dài các lòng nhánh: $\Sigma l = 3.824~km$

Chiều rộng bình quân B của lưu vực 2 sườn dốc:

$$B = \frac{F}{2L} = \frac{10.56}{2*3.8} = 1.389 \text{ km}$$

- Hệ số dòng chảy lũ φ :

Giả sử hệ số dòng chảy ứng với cấp III

Diện tích lưu vực đo trên bình đồ F= $10.56 \text{ km}^2\text{ Cấp}$ đất III; Hp=191mm

Tra bảng A.1 trong TCVN 9845:2013 ta được hệ số dòng chảy lũ $\varphi = 0.63$

- Modul đỉnh lũ tương đối $A_{p\%}$

 $A_{_{p\%}}$ lấy trong Bảng A.3 trong TCVN 9845:2013 tùy thuộc vào vùng mưa, đặc trưng địa mạo thủy văn của lòng sông ϕ_{ls} , thời gian tập trung dòng chảy trên sườn dốc τ_{sd}

Đặc trưng địa mạo thủy văn của lòng sông:

$$\phi_{ls} = \frac{1000L}{m_{ls} \times j_{ls}^{1/3} \times F^{1/4} \times (\varphi \times H_p)^{1/4}}$$

 m_{ls} : thông số tập trung nước, tra bảng 5 trong 9845:2013 ,ta được $m_{ls} = 7$ ứng với sông vùng núi.

- Độ đốc trung bình lòng chính:

$$J_{ls} = \frac{22.7 - 13}{3.8 \times 1000} \times 1000 = 2.55\%$$

- Hệ số địa mạo thủy văn lòng sông:

$$\phi_{ls} = \frac{1000L}{m_{ls} \times j_{ls}^{1/3} \times F^{1/4} \times (\varphi \times H_p)^{1/4}} = \frac{1000 \times 3.8}{7 \times 2.55^{1/3} \times 10.59^{1/4} \times (0.63 \times 191)^{1/4}} = 66.5$$

- Chiều dài bình quân của sườn đốc lưu vực $L_{\rm sf}$ (m)

$$L_{sd} = \frac{1000F}{1,8(L+\sum l)} = \frac{1000\times10.59}{1.8\times(3.8+3.824)} = 771.68(m)$$

Thông số tập trung dòng chảy trên sườn dốc: Giả sử mặt đất thu dọn sạch, không có gốc cây, không bị cày xới, vùng dân cư nhà cửa không quá 20%, mặt đá xếp, cỏ trung bình. (Bảng 4 trong TCVN 9845:2013): msd = 0.25

Độ dốc bình quân sườn dốc Jsd để an toàn ta xét sườn dốc bình quân

Đô dốc sườn dốc Jsd:

$$J_{sd1} = \frac{52*1000}{842} = 61.75\%$$

$$J_{sd2} = \frac{57*1000}{1874} = 30.42\%$$

$$J_{sd3} = \frac{62*1000}{3069} = 20.20\%$$

$$J_{sd4} = \frac{82*1000}{3074} = 26.68\%$$

$$J_{sd5} = \frac{72*1000}{1458} = 49.38\%$$

Đô dốc bình quân sườn dốc:

$$J_{sd} = \frac{61.75 \times 842 + 30.42 \times 1874 + 20.20 \times 3069 + 26.68 \times 3074 + 49.38 \times 1458}{842 + 1874 + 3069 + 3074 + 1458} = 31.5 \%$$

ightarrow Hệ số địa mạo thủy văn của sườn dốc ϕ_{sd} :

$$\phi_{sd} = \frac{L_{sd}^{0.6}}{m_{sd} \times j_{sd}^{0.3} \times (\varphi \times H_p)^{0.4}} = \frac{771.68^{0.6}}{0.25 \times 31.5^{0.3} \times (0.63 \times 191)^{0.4}} = 11.29$$

Từ bảng A.2 trong TCVN 9845:2013 (bảng thời gian nước chảy trên sườn đốc τ_{sd} tra theo hệ số địa mạo thủy văn của sườn đốc và vùng mưa II)

$$\rightarrow \tau_{sd} = 107.5 \text{ (phút)}$$

Tra bảng A.3 trong TCVN 9845:2013 ứng với ϕ_{ls} = 66.5 và τ_{sd} = 107.5

 \rightarrow ta được Ap = 0.02736

Lưu lương đỉnh lũ thiết kế:

$$Q_p = A_p \times \varphi \times H_{p\%} \times F \times \delta = 0.02736 \times 0.63 \times 191 \times 10.59 \times 0.9 = 31.39 m^3 / s$$

Đối với những nơi có lưu lượng $Q>25~\text{m}^3\,/\,\text{s}$ thì phải bố trí cầu nhỏ

Ta thấy lưu lượng $Q_p = 31.39m^3 / s$ nên ta bố trí cầu nhỏ

Xác định khẩu độ cầu nhỏ

Các chế độ dòng chảy dưới cầu

Nếu hδ≤1.3h k thì nước chảy theo chế độ tự do

Nếu hδ>1.3h k thì nước chảy theo chế độ chảy ngập

Trong đó:

h_δ: chiều sâu nước chảy lúc tự nhiên

h_k: chiều sâu nước chảy dưới cầu

Tính toán khẩu độ cầu nhỏ

Xác định hδ

Ta giả thiết các chiều sâu nước chảy trong suối 1,2,3,4...m; ứng với mỗi chiều sâu đó tính lưu lượng theo công thức Sêdi- Maning.

$$Q = \omega V = \omega \times \frac{1}{n} \times R^{y} \times \sqrt{R \times i}$$

Ta giả thuyết mặt cắt ngang lòng sông lúc tự nhiên là mặt cắt hình thang

Ta chọn sơ bộ tiết diện mặt cắt ngang lòng sông lúc tự nhiên:

- Chọn bề rộng mặt cắt ngang sông là 3.5 m
- Ta giả thuyết ta luy mặt cắt ngang sông là nền đường đắp \rightarrow chọn mái ta luy = 1:1.5 \rightarrow m₁ = m₂ =1.5
- **Diện tích ướt là**: $\omega = (b + m \times h_{\delta}) \times h_{\delta}$ Với $m = \frac{m_1 + m_2}{2} = \frac{1.5 + 1.5}{2} = 1.5$ (hệ số mái đốc của bờ 1 và 2) và ta thử cho $h_{\delta} = 1;2;3;4...$

Suy ra:
$$\omega = (b + m \times h_{\delta}) \times h_{\delta} = (3.5 + 1.5 \times 2) \times 2 = 13 \text{ m}^2$$

- **Chu vi ướt**: $\chi = b + m' h_{\delta}$

Với
$$m' = \sqrt{1 + m_1^2} + \sqrt{1 + m_2^2} = \sqrt{1 + 1.5^2} + \sqrt{1 + 1.5^2} = 3.605551$$

- Suy ra: $\chi = b + m'h_{\delta} = 3.5 + 3.605551 \times 2 = 10.7111 m$
- **Bán kính thủy lực**: $R = \frac{\omega}{\chi} = \frac{13}{10.71111} = 1.213694$
- Vận tốc nước chảy trong rãnh: $V = \frac{1}{n} \times R^{0.5+y} \sqrt{i_t}$
- Ta giả thuyết đáy của mặt cắt bằng bê tông mác thấp nên hệ số nhám dòng sông n = 0.014 (tra bảng 13-3/ TKĐ ô tô tập 2)

Ta có $R = 1.213694 m \in (1 \div 3)m \text{ và n} = 0.014$

Suy ra: tra bảng 13-3/ TKĐ ô tô $2 \rightarrow \text{hệ số lũy thừa của công thức Sedi:}$

$$Y = \frac{1}{6}$$

GVHD : TRẦN VŨ TỰ

 i_t : độ dốc dọc của tuyến. Dốc dọc tuyến = dốc dọc của đường (theo kinh nghiệm), giả sử dốc dọc của đường là $2\% \rightarrow i_t = 2\%$

Suy ra:
$$V = \frac{1}{n} \times R^{0.5+y} \sqrt{i_t} = \frac{1}{0.014} \times 1.213^{0.5+\frac{1}{6}} \times \sqrt{0.02} = 11.49444 \, m/s$$

Khả năng thoát nước của mặt cắt ngang: $Q=\omega V=11.49444\times 13=149.4277~(m^3/s)$

Sai số:
$$\Delta = \frac{Q_{p\%} - Q_{\delta}}{Q_{p\%}} = \frac{|31.39 - 149.4277|}{31.39} = 3.79\% \le 5\%$$
 (thõa)

Vậy ta chọn $h_{\delta} = 2 m$

- Xác định chiều sâu nước chảy dưới cầu h_k

Dòng chảy dưới cầu là hình thang, ta xác định h_k bằng công thức

$$h_k = \frac{B_k - \sqrt{B_k^2 - 4 \times m \times \omega_k}}{2m}$$

Trong đó:

• B_k : chiều rộng lòng suối có tiết diện chảy với chiều sâu phân giới

$$B_k = \frac{g \times Q_{p\%}}{\alpha \times \varepsilon \times V_k^3} = \frac{9.81 \times 31.39}{1 \times 0.9 \times 3.5^3} = 7.9 m$$

- $\varepsilon = 0.9$ Hệ số thu hẹp dòng chảy, khi có tứ nón ở mố cầu
- $\alpha = 1$ hệ số điều chỉnh động năng
- $V_k = V_{cp} = 3.5 \, m^2/s$ với V_{cp} là vận tốc cho phép không gây xói lỡ lòng sông có gia cố (phụ luc 6, trong sách thiết kế đường ô tô tâp 3)
- m = 1.5 hê mái đốc trước mố cầu
- $\omega_k = \frac{Q_{p\%}}{\epsilon_{XV}} = \frac{31.39}{0.9335} = 9.9 \, m^2$

Suy ra:

$$h_k = \frac{B_k - \sqrt{B_k^2 - 4 \times m \times \omega_k}}{2m} = \frac{7.9 - \sqrt{7.9^2 - 4 \times 1.5 \times 9.9}}{2 \times 1.5} = 2.055m$$

- Xác định khẩu độ cầu và mực nước trước cầu:

Ta có $h_{\delta}=2\leq 1.3h_k=1.3\times 2.055=2.672m\to \mathrm{chế}$ độ chảy nước chảy theo chế độ tự do Khẩu độ cầu:

$$L_c = \frac{B_k}{\varepsilon} = \frac{g \times Q_c}{\varepsilon \times \alpha \times V^3} + Nd = \frac{9.81 \times 31.39}{0.9 \times 1 \times 3.5^3} = 7.9 m$$

Chọn $L_c = 20 m$ để thiết kế

Trong đó:

- M: hệ số mái ta luy
- N: số trụ cầu giữa sông (nếu có), n = 0 mình đang làm cầu nhỏ thì sẽ không trụ

- D: đường kính trụ cầu
- Chiều sâu mực nước dâng trước cầu:

$$H = h_k + \frac{\alpha \times V_k^3}{2g\psi^2} - \frac{\alpha \times V_0^2}{2g\psi^2}$$

Trong đó:

- $\psi = 0.9 \text{ hê số vân tốc (mố có } \frac{1}{4} \text{ nón)}$
- V_0 : tốc độ nước chảy ở thượng lưu

 Ta giả định $H_0 = 4.8$ m, suy ra $V_0 = \frac{Q_{p\%}}{\omega_0} = \frac{31.39}{(3.5 + 1.5 \times 4.8) \times 4.8} = 0.611$ m/s

Suy ra

$$H = h_k + \frac{\alpha \times V_k^2}{2a\psi^2} - \frac{\alpha \times V_0^2}{2a\psi^2} = 3.97 + \frac{1 \times 3.5^2}{2 \times 9.81 \times 0.9^2} - \frac{1 \times 0.611}{2 \times 9.81 \times 0.9^2} = 4.70 \text{ m}$$

Ta thấy giả định $H_0 = 4.8 \text{ m} > H = 4.7 \text{ m}$ nên ta chọn **chiều cao dâng** trước cầu là $H = H_0 = 4.8 \text{ m}$

- Xác đinh chiều cao tối thiểu nền đường đầu cầu so với đáy sông:

$$H_{min}^{n \tilde{e}n} = max \left(H + 0.5; H + \sum k \tilde{e}t \ c \tilde{a}u \ m \tilde{a}t \ d u \hat{o}ng \right) = (4.8 + 0.5; 4.8 + 0.78) = (5.3; 5.58)$$

= 5.58 m

- Xác đinh chiều cao mặt cầu tối thiểu so với đáy sông

$$H_{can}^{min} = \sigma \times H + \Delta + K$$

Trong đó:

- σ: hệ số thay đổi nước chảy khi vào cầu, lấy bằng 0.88
- Δ : tĩnh không dưới cầu, giả sử sông không có thông thuyền thì Δ = 0.5 m
- K = 1 m chiều cao kết cấu nhịp (khoảng cách từ đáy dầm đến mặt đường)

Suy ra:

$$H_{cau}^{min} = \sigma \times H + \Delta + K = 0.88 \times 4.8 + 0.5 + 1 = 5.724 m$$

Vậy chọn **cao độ khống chế**: H=5.724 m

Ta có $L_c = 20m$, thì ta chọn dầm chữ I thiết kế định hình có sẵn là dầm I12.5

Xác đinh chiều dài thi công:

$$L \ge L_c + 2 \times m \times H_{c\hat{a}u}^{min} = 20 + 2 \times 1.5 \times 4.8 = 34.4 \text{ m}$$

Chon chiều dài Thi công là L=35m.

Gia cố thương và ha lưu cầu

Gia cố ở thượng lưu cầu, thông thường chiều dài đoạn gia cố ở thượng lưu lấy bằng 0.4lgc, với lgc là chiều dài đoạn gia cố ở hạ lưu cầu. Theo kinh nghiệm thực tế, chỉ nên dùng biện pháp gia cố lòng sông ở duới cầu khi khẩu độ cầu không lớn hơn 10m. Với chiều dài cầu và khẩu độ tính toán như trên, ta sử dụng giải

pháp chấp nhận lòng sông bị xói lở đi một chiều sâu nhất định và thay vào đó là tăng chiều cao của mố cầu.

b. tính toán tại cọc X2

Diện tích lưu vực $F = 0.367 km^2$

Đường thiết kế cấp III vùng núi

Do Vtk= 60km/h với tần suất thiết kế P= 4%

Đường thiết kế qua tỉnh Lai Châu (trạm Lai Châu) nên ứng với P= 4%, tra bảng phụ lục 1 trong 22TCN 220-9505 ta được $H_{n\%}=H_{4\%}=191mm$

- Hệ số chiết giảm dòng chảy:

Cùng đặt tuyến ở có ao hồ đầm lầy (chiếm 40% thượng lưu) ta có $\delta=0.35$

Chiều dài lòng chính: L=0.273 km

Tổng chiều dài các lòng nhánh: $\sum l = 0$

Chiều rộng bình quân B của lưu vực 2 sườn đốc:

$$B = \frac{F}{2L} = \frac{0.367}{2 \times 0.273} = 0.672km$$

- Hệ số dòng chảy lũ φ :

Giả sử hê số dòng chảy ứng với cấp III

Diện tích lưu vực đo trên bình đồ $F=0.367 \, km^2$; Cấp đất III; Hp=191

Tra bảng A.1 trong TCVN 9845:2013 ta được hệ số dòng chảy lũ ϕ = 0.8111

- Modul đỉnh lũ tương đối $A_{p\%}$:

 $A_{p\%}$ lấy trong Bảng A.3 trong TCVN 9845:2013 tùy thuộc vào vùng mưa, đặc trưng địa mạo thủy văn của lòng sông ϕ_{ls} , thời gian tập trung dòng chảy trên sườn dốc τ_{sd}

Đặc trưng địa mạo thủy văn của lòng sông:

$$\phi_{ls} = \frac{1000L}{m_{ls} \times j_{ls}^{1/3} \times F^{1/4} \times (\varphi \times H_p)^{1/4}}$$

 m_{ls} : thông số tập trung nước, tra bảng 5 trong 9845:2013 ,ta được $m_{ls} = 7$ ứng với sông vùng núi.

- Độ đốc trung bình lòng chính:

$$J_{ls} = \frac{34.1 - 23.3}{0.273 \times 1000} \times 1000 = 39.6\%$$

- Hê số địa mao thủy văn lòng sông:

$$\phi_{ls} = \frac{1000L}{m_{ls} \times j_{ls}^{1/3} \times F^{1/4} \times (\varphi \times H_p)^{1/4}} = \frac{1000 \times 0.273}{7 \times 39.6^{1/3} \times 0.367^{1/4} \times (0.8111 \times 191)^{1/4}} = 4.2$$

- Chiều dài bình quân của sườn đốc lưu vực L_{sd} (m)

$$L_{sd} = \frac{1000F}{1,8(L+\sum l)} = \frac{1000 \times 0.367}{1.8 \times (0.273+0)} = 746.845 \ (m)$$

Thông số tập trung dòng chảy trên sườn dốc: Giả sử mặt đất thu dọn sạch, không có gốc cây, không bị cày xới, vùng dân cư nhà cửa không quá 20%, mặt đá xếp, cỏ trung bình. (Bảng 4 trong TCVN 9845:2013): msd = 0.25

Đô dốc sườn dốc Jsd:

$$J_{sd1} = \frac{38.7 * 1000}{671} = 57.68\%$$

$$J_{sd2} = \frac{38.7 * 1000}{460} = 84.13\%$$

Độ đốc bình quân sườn đốc:

$$J_{sd} = \frac{57.68*671+84.13*460}{671+460} = 68.44 \%$$

ightarrow Hệ số địa mạo thủy văn của sườn dốc ϕ_{sd} :

$$\phi_{sd} = \frac{L_{sd}^{0.6}}{m_{sd} \times j_{sd}^{0.3} \times (\varphi \times H_p)^{0.4}} = \frac{746.845^{0.6}}{0.25 \times 68.44^{0.3} \times (0.8111 \times 191)^{0.4}} = 7.93$$

Từ bảng A.2 trong TCVN 9845:2013 (bảng thời gian nước chảy trên sườn đốc τ_{sd} tra theo hệ số địa mạo thủy văn của sườn đốc và vùng mưa II)

 $\rightarrow \tau_{sd} = 77.44 \text{ (phút)}$

Tra bảng A.3 trong TCVN 9845:2013 ứng với $\phi_{ls} = 4.2$ và $\tau_{sd} = 77.44$

 \rightarrow ta được Ap = 0.06921

Lưu lượng đỉnh lũ thiết kế:

$$Q_n = A_n \times \varphi \times H_{n\%} \times F \times \delta = 0.06921 \times 0.8111 \times 191 \times 0.367 \times 0.35 = 1.377 m^3 / s$$

Ta thấy lưu lượng $Q_p = 1.377m^3 / s$ nên ta bố trí cống.

c.Tính toán tại cọc X3

Diện tích lưu vực $F = 1.384km^2$

Đường thiết kế cấp III vùng núi

Do Vtk= 60km/h với tần suất thiết kế P= 4%

Đường thiết kế qua tỉnh Lai Châu (trạm Lai Châu) nên ứng với P= 4%, tra bảng phụ lục 1 trong 22TCN 220-9505 ta được $H_{_{P\%}}=H_{_{4\%}}=191mm$

- Hệ số chiết giảm dòng chảy:

Cùng đặt tuyến ở có ao hồ đầm lầy (chiếm 40% thượng lưu) ta có $\delta=0.35$

Chiều dài lòng chính: L=0.487 km

Tổng chiều dài các lòng nhánh: $\sum l = 0$

Chiều rộng bình quân B của lưu vực 2 sườn đốc:

$$B = \frac{F}{2L} = \frac{1.384}{2 \times 0.487} = 1.421km$$

- Hệ số dòng chảy lũ φ :

Giả sử hệ số dòng chảy ứng với cấp III

Diện tích lưu vực đo trên bình đồ $F=1.384 \ km^2$; Cấp đất III; Hp=191

Tra bảng A.1 trong TCVN 9845:2013 ta được hệ số dòng chảy lũ ϕ = 0.718

- Modul đỉnh lũ tương đối $A_{p\%}$:

 $A_{p\%}$ lấy trong Bảng A.3 trong TCVN 9845:2013 tùy thuộc vào vùng mưa, đặc trưng địa mạo thủy văn của lòng sông ϕ_{ls} , thời gian tập trung dòng chảy trên sườn dốc τ_{sd}

Đặc trưng địa mạo thủy văn của lòng sông:

$$\phi_{ls} = \frac{1000L}{m_{ls} \times j_{ls}^{1/3} \times F^{1/4} \times (\varphi \times H_p)^{1/4}}$$

 m_{ls} : thông số tập trung nước, tra bảng 5 trong 9845:2013 ,ta được $m_{ls} = 7$ ứng với sông vùng núi.

- Độ đốc trung bình lòng chính:

$$J_{ls} = \frac{44.4 - 19}{0.487 \times 1000} \times 1000 = 52.2\%$$

- Hệ số địa mạo thủy văn lòng sông:

$$\phi_{ls} = \frac{1000L}{m_{ls} \times j_{ls}^{1/3} \times F^{1/4} \times (\varphi \times H_p)^{1/4}} = \frac{1000 \times 0.487}{7 \times 52.2^{1/3} \times 1.384^{1/4} \times (0.718 \times 191)^{1/4}} = 5.02$$

- Chiều dài bình quân của sườn đốc lưu vực L_{sd} (m)

$$L_{sd} = \frac{1000F}{1,8(L+\sum l)} = \frac{1000\times1.384}{1.8\times(0.487+0)} = 1578.827 \ (m)$$

Thông số tập trung dòng chảy trên sườn dốc: Giả sử mặt đất thu dọn sạch, không có gốc cây, không bị cày xới, vùng dân cư nhà cửa không quá 20%, mặt đá xếp, cỏ trung bình. (Bảng 4 trong TCVN 9845:2013): msd = 0.25

Đô dốc sườn dốc Jsd:

$$J_{sd1} = \frac{51*1000}{1054} = 48.39\%$$

$$J_{sd2} = \frac{81*1000}{1293} = 62.65\%$$

Độ dốc bình quân sườn dốc:

$$J_{sd} = \frac{48.39*1054 + 62.65*1293}{1054 + 1293} = 56.25 \%$$

 \rightarrow Hệ số địa mạo thủy văn của sườn đốc ϕ_{sd} :

$$\phi_{sd} = \frac{L_{sd}^{0.6}}{m_{sd} \times j_{sd}^{0.3} \times (\varphi \times H_p)^{0.4}} = \frac{1578.827^{0.6}}{0.25 \times 56.25^{0.3} \times (0.718 \times 191)^{0.4}} = 13.84$$

Từ bảng A.2 trong TCVN 9845:2013 (bảng thời gian nước chảy trên sườn đốc τ_{sd} tra theo hệ số địa mạo thủy văn của sườn đốc và vùng mưa II)

$$\rightarrow \tau_{sd} = 136.47 \text{ (phút)}$$

Tra bảng A.3 trong TCVN 9845:2013 ứng với $\phi_{ls} = 5.02$ và $\tau_{sd} = 136.47$

 \rightarrow ta được Ap = 0.05524

Lưu lượng đỉnh lũ thiết kế:

$$Q_p = A_p \times \varphi \times H_{p\%} \times F \times \delta = 0.05524 \times 0.718 \times 191 \times 1.384 \times 0.35 = 3.67 m^3 / s$$

Ta thấy lưu lượng $Q_p = 3.67m^3 / s$ nên ta bố trí cống.

d.Tính toán tại cọc X4

Diên tích lưu vực $F = 1.13km^2$

Đường thiết kế cấp III vùng núi

Do Vtk= 60km/h với tần suất thiết kế P= 4%

Đường thiết kế qua tỉnh Lai Châu (trạm Lai Châu) nên ứng với P= 4%, tra bảng phụ lục 1 trong 22TCN 220-9505 ta được $H_{_{p\%}}=H_{_{4\%}}=191mm$

- Hệ số chiết giảm dòng chảy:

Cùng đặt tuyến ở có ao hồ đầm lầy (chiếm 40% thượng lưu) ta có $\delta=0.35$

Chiều dài lòng chính: L=0.492 km

Tổng chiều dài các lòng nhánh: $\sum l=0$

Chiều rộng bình quân B của lưu vực 2 sườn dốc:

$$B = \frac{F}{2L} = \frac{1.13}{2 \times 0.492} = 2.297 km$$

- Hệ số dòng chảy lũ φ :

Giả sử hệ số dòng chảy ứng với cấp III

Diện tích lưu vực đo trên bình đồ F= $1.13~km^2$; Cấp đất III; Hp= 191

Tra bảng A.1 trong TCVN 9845:2013 ta được hệ số dòng chảy lũ $\varphi = 0.719$

- Modul đỉnh lũ tương đối $A_{n\%}$:

 $A_{_{p\%}}$ lấy trong Bảng A.3 trong TCVN 9845:2013 tùy thuộc vào vùng mưa, đặc trưng địa mạo thủy văn của lòng sông ϕ_{ls} , thời gian tập trung dòng chảy trên sườn dốc τ_{sd}

Đặc trưng địa mạo thủy văn của lòng sông:

$$\phi_{ls} = \frac{1000L}{m_{ls} \times j_{ls}^{1/3} \times F^{1/4} \times (\varphi \times H_p)^{1/4}}$$

 m_{ls} : thông số tập trung nước, tra bảng 5 trong 9845:2013 ,ta được $m_{ls} = 7$ ứng với sông vùng núi.

- Đô dốc trung bình lòng chính:

$$J_{ls} = \frac{54.6 - 29.5}{0.492 \times 1000} \times 1000 = 51.02\%$$

- Hệ số địa mạo thủy văn lòng sông:

$$\phi_{ls} = \frac{1000L}{m_{ls} \times j_{ls}^{1/3} \times F^{1/4} \times (\varphi \times H_p)^{1/4}} = \frac{1000 \times 0.492}{7 \times 51.02^{1/3} \times 1.13^{1/4} \times (0.719 \times 191)^{1/4}} = 5.37$$

- Chiều dài bình quân của sườn đốc lưu vực $L_{_{\mathrm{sd}}}$ (m)

$$L_{sd} = \frac{1000F}{1,8(L+\sum l)} = \frac{1000\times1.13}{1.8\times(0.492+0)} = 1275.971 (m)$$

Thông số tập trung dòng chảy trên sườn dốc: Giả sử mặt đất thu dọn sạch, không có gốc cây, không bị cày xới, vùng dân cư nhà cửa không quá 20%, mặt đá xếp, cỏ trung bình. (Bảng 4 trong TCVN 9845:2013): msd = 0.25

Đô dốc sườn dốc Jsd:

$$J_{sd1} = \frac{30.5*1000}{725} = 42.1\%$$

$$J_{sd2} = \frac{40.2 * 1000}{492} = 81.71\%$$

$$J_{sd3} = \frac{70.5*1000}{954} = 73.9\%$$

$$J_{sd4} = \frac{45.5 * 1000}{493} = 92.3\%$$

Độ đốc bình quân sườn đốc:

$$J_{sd} = \frac{42.1*725 + 81.71*492 + 73.9*954 + 92.3*493}{725 + 492 + 954 + 493} = 70.1\%$$

 \rightarrow Hệ số địa mạo thủy văn của sườn dốc ϕ_{sd} :

$$\phi_{sd} = \frac{L_{sd}^{0.6}}{m_{sd} \times j_{sd}^{0.3} \times (\varphi \times H_p)^{0.4}} = \frac{1275.971^{0.6}}{0.25 \times 70.1^{0.3} \times (0.719 \times 191)^{0.4}} = 11.4$$

Từ bảng A.2 trong TCVN 9845:2013 (bảng thời gian nước chảy trên sườn đốc τ_{sd} tra theo hệ số địa mạo thủy văn của sườn đốc và vùng mưa II)

$$\rightarrow \tau_{sd} = 139.5 \text{ (phút)}$$

Tra bảng A.3 trong TCVN 9845:2013 ứng với $\phi_{ls} = 5.37$ và $\tau_{sd} = 139.5$

 \rightarrow ta được Ap = 0.05454

Lưu lượng đỉnh lũ thiết kế:

$$Q_p = A_p \times \varphi \times H_{p\%} \times F \times \delta = 0.05454 \times 0.719 \times 191 \times 1.13 \times 0.35 = 2.96 m^3 / s$$

Ta thấy lưu lượng $Q_p = 2.96m^3 / s$ nên ta bố trí cống.

e. Tính toán tại cọc X5

Diện tích lưu vực $F = 3.9km^2$

Đường thiết kế cấp III vùng núi

Do Vtk= 60km/h với tần suất thiết kế P= 4%

Đường thiết kế qua tỉnh Lai Châu (trạm Lai Châu) nên ứng với P= 4%, tra bảng phụ lục 1 trong 22TCN 220-9505 ta được $H_{p\%}=H_{4\%}=291mm$

- Hệ số chiết giảm dòng chảy:

Cùng đặt tuyến ở có ao hồ đầm lầy (chiếm 40% thượng lưu) ta có $\delta=0.35$

Chiều dài lòng chính: L=1.585 km

Tổng chiều dài các lòng nhánh: $\sum l = 0$

Chiều rộng bình quân B của lưu vực 2 sườn đốc:

$$B = \frac{F}{2L} = \frac{3.9}{2 \times 1.585} = 2.46km$$

- Hệ số dòng chảy lũ φ :

Giả sử hệ số dòng chảy ứng với cấp III

Diện tích lưu vực đo trên bình đồ $F=3.9 \text{ km}^2$; Cấp đất III; Hp= 191

Tra bảng A.1 trong TCVN 9845:2013 ta được hệ số dòng chảy lũ $\varphi = 0.71$

- Modul đỉnh lũ tương đối $A_{p\%}$:

 $A_{p\%}$ lấy trong Bảng A.3 trong TCVN 9845:2013 tùy thuộc vào vùng mưa, đặc trưng địa mạo thủy văn của

lòng sông ϕ_{ls} , thời gian tập trung dòng chảy trên sườn đốc au_{sd}

Đặc trưng địa mạo thủy văn của lòng sông:

$$\phi_{ls} = \frac{1000L}{m_{ls} \times j_{ls}^{1/3} \times F^{1/4} \times (\varphi \times H_p)^{1/4}}$$

 m_{ls} : thông số tập trung nước, tra bảng 5 trong 9845:2013 ,ta được $m_{ls} = 7$ ứng với sông vùng núi.

- Độ dốc trung bình lòng chính:

$$J_{ls} = \frac{29.37 - 19.5}{1.585 \times 1000} \times 1000 = 6.23\%$$

- Hệ số địa mạo thủy văn lòng sông:

$$\phi_{ls} = \frac{1000L}{m_{ls} \times j_{ls}^{1/3} \times F^{1/4} \times (\varphi \times H_p)^{1/4}} = \frac{1000 \times 1.585}{7 \times 6.23^{1/3} \times 3.9^{1/4} \times (0.71 \times 191)^{1/4}} = 25.66$$

GVHD : TRẦN VŨ TỰ

- Chiều dài bình quân của sườn đốc lưu vực $L_{\rm cl}$ (m)

$$L_{sd} = \frac{1000F}{1,8(L+\sum l)} = \frac{1000\times3.9}{1.8\times(1.585+0)} = 1366.98 \ (m)$$

Thông số tập trung dòng chảy trên sườn dốc: Giả sử mặt đất thu dọn sạch, không có gốc cây, không bị cày xới, vùng dân cư nhà cửa không quá 20%, mặt đá xếp, cỏ trung bình. (Bảng 4 trong TCVN 9845:2013): msd = 0.25

Độ dốc sườn dốc Jsd:

$$J_{sd1} = \frac{65.5 * 1000}{2223} = 29.5\%$$

$$J_{sd2} = \frac{40.5*1000}{760} = 53.29\%$$

Đô đốc bình quân sườn đốc:

$$J_{sd} = \frac{29.5 * 2223 + 53.29 * 760}{2223 + 760} = 35.56\%$$

ightarrow Hệ số địa mạo thủy văn của sườn dốc ϕ_{sd} :

$$\phi_{sd} = \frac{L_{sd}^{0.6}}{m_{sd} \times j_{sd}^{0.3} \times (\varphi \times H_p)^{0.4}} = \frac{1358.41^{0.6}}{0.25 \times 96^{0.3} \times (0.932 \times 191)^{0.4}} = 14.63$$

Từ bảng A.2 trong TCVN 9845:2013 (bảng thời gian nước chảy trên sườn đốc τ_{sd} tra theo hệ số địa mạo thủy văn của sườn đốc và vùng mưa II)

$$\rightarrow \tau_{sd}$$
= 145.68 (phút)

Tra bảng A.3 trong TCVN 9845:2013 ứng với $\phi_{ls} = 25.66$ và $\tau_{sd} = 145.68$

 \rightarrow ta được Ap = 0.04215

Lưu lượng đỉnh lũ thiết kế:

$$Q_p = A_p \times \varphi \times H_{p\%} \times F \times \delta = 0.04215 \times 0.71 \times 191 \times 3.9 \times 0.35 = 7.8 m^3 / s$$

Ta thấy lưu lượng $Q_p = 7.8m^3 / s$ nên ta bố trí cống.

f. Tính toán tại cọc X6

Diên tích lưu vực $F = 0.08km^2$

Đường thiết kế cấp III vùng núi

Do Vtk= 60km/h với tần suất thiết kế P= 4%

Đường thiết kế qua tỉnh Lai Châu (trạm Lai Châu) nên ứng với P= 4%, tra bảng phụ lục 1 trong 22TCN 220-9505 ta được $H_{n\%} = H_{4\%} = 191mm$

- Hệ số chiết giảm dòng chảy:

Cùng đặt tuyến ở có ao hồ đầm lầy (chiếm 40% thượng lưu) ta có $\delta=0.35$

Chiều dài lòng chính: L=0.18 km

Tổng chiều dài các lòng nhánh: $\sum l = 0$

Chiều rộng bình quân B của lưu vực 2 sườn đốc:

$$B = \frac{F}{2L} = \frac{0.08}{2 \times 0.18} = 0.222km$$

- Hệ số dòng chảy lũ φ :

Giả sử hệ số dòng chảy ứng với cấp III

Diện tích lưu vực đo trên bình đồ $F=0.08 \text{ km}^2$; Cấp đất III; Hp= 191

Tra bảng A.1 trong TCVN 9845:2013 ta được hệ số dòng chảy lũ $\phi=0.95$

- Modul đỉnh lũ tương đối $A_{n\%}$:

 $A_{p\%}$ lấy trong Bảng A.3 trong TCVN 9845:2013 tùy thuộc vào vùng mưa, đặc trưng địa mạo thủy văn của

lòng sông ϕ_{ls} , thời gian tập trung dòng chảy trên sườn đốc au_{sd}

Đặc trưng địa mạo thủy văn của lòng sông:

$$\phi_{ls} = \frac{1000L}{m_{ls} \times j_{ls}^{1/3} \times F^{1/4} \times (\varphi \times H_p)^{1/4}}$$

 m_{ls} : thông số tập trung nước, tra bảng 5 trong 9845:2013 ,ta được $m_{ls} = 7$ ứng với sông vùng núi.

- Độ đốc trung bình lòng chính:

$$J_{ls} = \frac{49.8 - 35.5}{0.18 \times 1000} \times 1000 = 79.44\%$$

- Hệ số địa mạo thủy văn lòng sông:

$$\phi_{ls} = \frac{1000L}{m_{ls} \times j_{ls}^{1/3} \times F^{1/4} \times (\varphi \times H_p)^{1/4}} = \frac{1000 \times 0.18}{7 \times 79.44^{1/3} \times 0.08^{1/4} \times (0.95 \times 191)^{1/4}} = 3.06$$

- Chiều dài bình quân của sườn đốc lưu vực L_{sd} (m)

$$L_{sd} = \frac{1000F}{1,8(L+\sum l)} = \frac{1000\times0.08}{1.8\times(0.18+0)} = 246.9 \ (m)$$

Thông số tập trung dòng chảy trên sườn dốc: Giả sử mặt đất thu dọn sạch, không có gốc cây, không bị cày xới, vùng dân cư nhà cửa không quá 20%, mặt đá xếp, cỏ trung bình. (Bảng 4 trong TCVN 9845:2013): msd = 0.25

Độ đốc bình quân sườn đốc:

$$J_{sd} = \frac{117.55 - 35.5}{336} = 24.42\%$$

 \rightarrow Hệ số địa mạo thủy văn của sườn dốc ϕ_{sd} :

$$\phi_{sd} = \frac{L_{sd}^{0.6}}{m_{sd} \times j_{sd}^{0.3} \times (\varphi \times H_p)^{0.4}} = \frac{246.9^{0.6}}{0.25 \times 24.42^{0.3} \times (0.95 \times 191)^{0.4}} = 5.22$$

Từ bảng A.2 trong TCVN 9845:2013 (bảng thời gian nước chảy trên sườn đốc τ_{sd} tra theo hệ số địa mạo thủy văn của sườn đốc và vùng mưa II)

$$\rightarrow \tau_{sd} = 48.3 \text{ (phút)}$$

Tra bảng A.3 trong TCVN 9845:2013 ứng với $\phi_{ls} = 5.37$ và $\tau_{sd} = 139.5$

 \rightarrow ta được Ap = 0.08465

Lưu lương đỉnh lũ thiết kế:

$$Q_p = A_p \times \varphi \times H_{p\%} \times F \times \delta = 0.08465 \times 0.95 \times 191 \times 0.08 \times 0.35 = 0.43 m^3 / s$$

Ta thấy lưu lượng $Q_p = 0.43m^3 / s$ nên ta bố trí cống.

Bảng tổng hợp kết quả tính toán thủy văn phương án tuyến 1.

Cọc	Lý trình	A_P	φ	$H_p(mm)$	F(km2)	δ	$Q_p(m^3/s)$
X1	Km	0.02736	0.63	191	10.56	0.9	31.39
	0+860.42						
X2	Km	0.06921	0.81	191	0.367	0.35	1.377
	1+500						
X3	Km	0.05524	0.72	191	1.384	0.35	3.67
	2+700						
X4	Km	0.05454	0.719	191	1.13	0.35	2.96
	4+500						
X5	Km 5+200	0.04215	0.71	191	3.9	0.35	7.8
X6	Km	0.08465	0.95	191	0.08	0.35	0.43
	3+700						

4.3 Xác định công trình vượt dòng nước

4.3.1. Xác định

Sau khi chọn cấu tạo cống, căn cứ vào lưu lượng tính toán chọn một số phương án khẩu độ (dựa theo công thức hoặc tra bảng) và xác định chiều sâu nước dâng H và vận tốc nước chảy V. Trong phần thiết kế cơ sở, khẩu độ cống, H và V được xác định theo bảng cống.

Chọn chế độ làm việc của cống là không áp, sử dụng cống loại I đối với cống tròn, sử dụng cống loại II đối với cống vuông.

Dựa theo quy phạm:

- Nếu $Q \le 15m^3/_{S}$: Dùng cống tròn bê tông cốt thép
- Nếu $15 < Q \le 25 \text{ m}^3/_{S}$: Dùng cống hộp
- Nếu $Q > 25 \text{ m}^3/_{S}$: Dùng cầu, không nên có khẩu độ nhỏ hơn 3m

Dựa vào kết quả tính được, ta xác định các công trình vượt dòng nước của tuyến 2 như trong bảng sau:

Tại lí trình Km 0+860.42: Lưu lượng $Q_p = 31.39 (m^3/s)$

Chon

ĐỔ ÁN THIẾT KẾ ĐƯỜNG GVHD : TRẦN VŨ TỰ

Công trình	Số lượng cầu	Lưu	Khẩu độ cầu	$H_{d\hat{a}ng}$	Vận tốc
		lượng(m3)	(m)		
Cầu nhỏ	1	10.87	7.9	4.8	3.5

Tại lí trình Km 1+500: lưu lượng $Q_p = 1.377 (m^3/s)$

Chọn

Công trình	Số lượng	Lưu	Khẩu độ	$H_{d\hat{a}ng}$	Vận tốc
	cống	lượng(m3)	cống(m)		
Cống tròn	1	1.377	1.25	0.98	2.19
Loại I					

Tại lí trình Km 2+700: lưu lượng $Q_p = 3.67 (m^3/s)$

Chọn

Công trình	Số lượng	Lưu	Khẩu độ	$H_{d\hat{a}ng}$	Vận tốc
	cống	lượng(m3)	cống(m)		
Cống tròn	1	3.67	1.75	1.487	2.722
Loại I					

Tại lí trình Km 3+700: lưu lượng $Q_p = 0.43 (m^3/s)$

Chọn

Công trình	Số lượng	Lưu	Khẩu độ	$H_{d\hat{a}ng}$	Vận tốc	
	cống	lượng(m3)	cống(m)			
Cống tròn	1	0.43	0.75	0.7122	1.9806	

Tại lí trình Km 4+500: lưu lượng $Q_p = 2.96 (m^3/s)$

Chọn

Công trình	Số lượng	Lưu	Khẩu độ	$H_{d\hat{a}ng}$	Vận tốc	
	cống	lượng(m3)	cống(m)			
Cống tròn	1	2.96	1.5	1.41	2.713	

Tại lí trình Km 5+200: lưu lượng Q

$$Q_p = 7.8 (m^3/s)$$

Chon

Công trình	Số lượng	Lưu	Khẩu độ	$H_{d\hat{a}ng}$	Vận tốc
	cống	lượng(m3)	cống(m)		
Cống tròn	1	3.9	1.75	1.545	2.785
Cống tròn	1	3.9	1.75	1.545	2.785

→ Nếu cùng một số lượng cống với các kích thước đường kính khác nhau thì ta chọn cống có đường kính nhỏ giá thành sẽ nhỏ hơn so với đường kính lớn.

b. Xác định chiều cao đất đắp trên cống.

Đối với cống, cao độ thiết kế nhỏ nhất là giá trị lớn hơn trong 2 giá trị sau:

- Điều kiện 1: mép nền đường cao hơn mực nước ngập 0.5m.

Đối với 2 làn xe:

$$H_{tk1}^{\min} = H_{dang} + 0.5 + B_{md} \times i_n + B_{lgc} \times i_{lgc} + B_{lkgc} \times i_{lkgc}$$

Trong đó:

- + H_{dang} : Chiều sâu mực nước ngập (m) trước công trình ứng với con lũ có tần suất thiết kế p=4%.
- $+i_n,i_{lkgc}$: độ dốc ngang của mặt đường và lề đất. Trong thiết kế sơ bộ không xét đến siêu cao:
- $i_n = i_{lgc} = 2\%$, $i_{lkgc} = 6\%$
- + $b_{md} = 7.5(m)$: bề rộng mặt đường 2 làn xe.
- + $B_{lgc} = 1.5(m)$: bề rộng lề gia cố
- + $B_{lkgc} = 0.5(m)$: bề rộng lề không gia cố
- Điều kiện 2: cao độ đường đỏ tại vị trí công trình phải đảm bảo điều kiện xe vận chuyển vật liệu và thiết bị thi công đi trên cống không làm vỡ cống, muốn vậy thì phải đảm bảo 0.5m đất đắp trên đỉnh cống.

$$H_{tk2}^{\min} = \phi + \delta + 0.78$$

Trong đó:

 $+\phi$: Đường kính cống (m)

 $+\delta \approx \frac{\emptyset}{10}$: chiều dày thành cống

Bảng tổng hợp kết quả xác định chiều cao đất đắp trên cống

Cọc	Lý trình	Thành	H_{dang} (m)	B_{md} (m)	$B_{\lg c}$ (m)	H_{tk1} (m)	H_{tk2} (m)	H_{tk} (m)
		phần						
		cống						
X1	Km	1 cầu	5.72	7.5	1.5	1	-	6
	0+860.42	nhỏ						
X2	Km	1 cống	0.98	7.5	1.5	1.69	2.155	2.155
	1+500	tròn						
X3	Km	1 cống	1.487	7.5	1.5	2.197	2.705	2.705
	2+700	tròn						
X4	Km	1 cống	0.7122	7.5	1.5	1.422	1.605	1.605
	3+700	tròn						
X5	Km	1 cống	1.41	7.5	1.5	2.12	2.455	2.455
	4+500	tròn						
X6	Km	2 cống	1.545	7.5	1.5	2.255	2.705	2.705
	5+200	tròn						

c. Xác định chiều dài cống và cầu:

Sau khi xác định được chiều cao đắp đất trên cống, ta tiến hành xác định chiều dài cống theo công thức:

$$L_c = B + 2m \times (H_{tk} - \phi - \delta)$$

Trong đó:

- L_c (m): chiều dài cống

- B (m): bề rộng nền đường

- H_{tk} (m): chiều cao đắp đất thiết kế

- ϕ (m): đường kính cống

- $\delta \approx \frac{\emptyset}{10}$: chiều dày thành cống.
- Xác định chiều cao đất đắp trên đỉnh cống:
- $Hdap = Htk D \delta = 2.98 2 0.2 = 0.78 \text{ m}$
- Xác định chiều dài cống:
- Lco = Bm + 2(Blkgc + Blg c + Hdap) = 7.8 + 2(0.5 + 1.5 + 0.78) = 13.36 m

Bảng tổng hợp kết quả xác định chiều dài cống

Cọc	Lý trình	B(m)	H_{tk} (m)	φ (m)	m	L_c (m)
X1	Km	7.8	6	-	-	35
	0+860.42					
X2	Km 1+500	7.8	2.155	1.25	1.5	13.36
X3	Km	7.8	2.705	1.75	1.5	13.36
	2+700					
X4	Km	7.8	1.605	0.75	1.5	13.36
	3+700					
X5	Km	7.8	2.455	1.5	1.5	13.41
	4+500					
X6	Km 5+200	7.8	2.705	1.75	1.5	13.36

Bảng tổng họp kết quả thiết kế thủy văn

Cọc	F (km2)	Q	Cầu/cống	D (m)	$H_{\scriptscriptstyle dang}$	V (m/s)	H_{tk} (m)	L_c (m)
		(m3/s)	(m)		(m)			
X1	10.56	31.39	Cầu BTCT	2	4.8	3.5	6	35
			L=35 m					
X2	0.367	1.377	Cống tròn	1	0.98	2.19	2.155	13.36
			loại I					
X3	1.384	3.67	Cống tròn	1.75	1.487	2.722	2.705	13.36
			loại I					
X4	0.08	0.43	Cống tròn	0.75	0.712	1.98	1.605	13.36
			loại I					
X5	1.13	2.96	Cống tròn	1.5	1.41	2.713	2.455	13.41
			loại I					

ĐỔ ÁN THIẾT KẾ ĐƯỜNG
GVHD: TRẦN VŨ TỰ

X6	3.9	7.8	Cống tròn	1.75	1.545	2.785	2.705	13.36
			loại I					

ĐỔ ÁN THIẾT KẾ ĐƯỜNG GVHD : TRẦN VŨ TỰ

CHƯƠNG 5: THIẾT KẾ MẶT CẮT DOC ĐƯỜNG Ô TÔ

5.1. Khái niệm và các nguyên tắc cơ bản thiết kế trắc dọc.

Mặt cắt dọc đường là mặt cắt đứng của nền đất chạy dọc theo trục của đường . Trên mặt cắt dọc của đường thể hiện mặt cắt dọc thiên nhiên (đường đen) và mặt cắt dọc thiết kế (đường đỏ). Khi thiết kế đường đỏ cần phối hợp chặt chẽ với thiết kế bình đồ, thiết kế mặt cắt ngang để đảm bảo khối lượng đào đắp nhỏ nhất, đường không bị gãy khúc,rõ ràng và hài hòa về mặt thị giác, chất lượng khai thác nhiên liệu giảm, thoát nước tốt. Khi điều kiện địa hình cho phép,dùng các chỉ tiêu kỹ thuật cao 9 bán kính đường cong đứng, độ dốc dọc đường ...). Chọn vị trí đường đỏ tối ưu là bài toán kinh tế tổng hợp xây dựng-khai thác vân doanh.

- Trong trường hợp độ dốc của đường, bán kính đường cong lồi, đường cong lõm không được vi
 phạm tiêu chuẩn giới hạn quy đổi với cấp đường thiết kế (i<imax , Rlồi> Rlồi> Rlồimin ,Rlõm
 >Rlõmmin...)
- Để nâng cao chất lượng vận doanh cảu tuyến đường ,nên sử dụng độ dốc của đường không quá 3% đến 4%, đặc biệt khi trên đường có mật độ xe tải đáng kể. đối với dường một chiều mà dốc xuống thì không áp dụng nguyên tắc trên nhưng cần chú ý điều kiện địa hình đảm bảo an toàn xe chạy.
- Độ dốc cho phép lớn nhất ở những đoạn dốc có bán kính nhỏ phải triết giảm so với độ dọc lớn nhất quy định đối với cấp đường. Đối với đoạn đường nút rất khó khăn, cho phép tăng độ dốc lớn thêm 1% đến 2%.
- Bố trí đường cong đứng tại những chỗ đường đỏ đổi dốc mà hiệu đại số giữa hai dốc bằng 0.5% đối với đường có Vtk >100 (km/h); lớn hơn hoặc bằng 1% đối với đường có V= 60 (km/h) đến V= 80 (km/h) và lớn hơn hoặc bằng 2% đối với cấp đường còn lại.
- Để cải thiện điều kiện xe chạy theo TCVN4054-05 quy định chiều dà đổi dốc lớn nhất, nhỏ nhất và chiều dài tối thiểu đường cong đứng.
- Đảm bảo thoát nước rãnh dọc: đáy của rãnh dọc : đáy của rãnh dọc thường thiết kế song song với mép nền đường, độ dốc của rãnh do đó bằng độ dốc của đường. Vì vậy, để đảm bảo nước chảy trong rãnh dễ dàng , lòng rãnh không bồi lắng, không bị cỏ mọc cản chở dòng chảy thì ở những đoạn đường đào, nửa đường đào, đắp thấp độ dốc đường đỏ tối thiểu phải là 0.5%, chỉ trong trường hợp đặc biệt cho phép giảm tới 0.3%. Nếu trong điều kiện địa hình bằng phẳng hoặc trên đoạn đường phân thủy thì cho phép rãnh dọc có chiều sâu thay đổi, nhưng chiều sâu rãnh không quá sâu, (khoảng 0.6m). nếu trong điều kiện địa hình không thể thoát nước rãnh dọc thì mặt cắt dọc đường nên thiết kế theo dạng đường đắp có chiều cao lớn hơn chiều cao nền đường không yêu cầu làm rãnh dọc.(khoảng 0.6m).

- Để thoát nước từ rãnh dọc, nền đường đào , nữa đào nữa đắp dài 500m, thì cách ít nhất 500m phải bố trí cống cấu tạo thoát nước ngang qua nền đường.
- Nền đường đắp có chế độ thủy nhiệt thuận lợi hơn so với nền đường đào , nữa đoạn nữa đắp ở những nơi vuốt dốc dọc để giảm khối lượng công tác và ở những nơi độ dốc sườn núi lơn, mà nếu sử dụng nền đắp dễ bị trượt hoặc phải sử dụng các biện pháp gia cố như sử dụng công trình kè tường chắn.

Trong trường hợp sử dụng đường đào, nên dùng dạng mặt cắt ngang đào chữ L.

- Đảm bảo cao độ tại vị trí đã được khống chế tại điểm đầu và cuối nối liền với đường hiện có, điểm giao nhau với đường sắt và các đường ô tô khác, cao độ mặt cầu, cao độ nền đường tối thiểu trên cống, cao độ tối thiểu tại ác đoạn đường dẫn vào cầu. Ngoài ra cao độ thiết kế đường đỏ tại cầu phải đảm bảo tĩnh không thuyền và vật trôi, cao độ nền đắp tại vị trí cống tối thiểu là 0.5m đảm bảo không bị vỡ khi xe chạy qua. Trường hợp không đảm bảo được bề dày tối thiểu lớp đất đắp trên cống thì có thể đặt đáy cống dưới cao độ mặt đất tự nhiên nếu địa hình cho phép để tăng chiều dày lớp đất đắp trên cống. Trường hợp ngược lại thì hoặc phải thay cống tròn bằng cống bản hay cống hộp có tính toán chịu lực khi xe chạy trực tiếp trên cống.
- Tần suất lũ thiết kế cao độ nền đường ở các đoạn ven sông, đầu cầu, cống nhỏ, đoạn qua cánh đồng ngập nước quy định như sau : khi tốc độ thiết kế Vtk > 100(km/h), tần suất lũ tính toán là 1%,

V=80(km/h): 2%, V=60(km/h): 4%, V=40 và 20 km/h xét từng trường hợp cụ thể.

Cao độ thiết kế nền đường tại các đoạn bố trí cầu cống nhỏ, đoạn đường hai bên bị ngập
 về

mùa lũ phải cao hơn mực nước lũ tính toán theo tần suất tính toán, có xét ảnh hưởng của nước dâng sau khi làm công trình, chiều cao sóng vỗ vào mái đường ít nhất là 0.5m.

- Phối hợp với các yếu tố đường cong đứng và đường cong nằm : vị trí đứng nên trùng với đường cong nằm. Hai đinh đường cong không nên lệch nhau quá chiều dài đường cong ngắn hơn. Chiều dài đường cong nằm nên lớn hơn chiều dài đường cong đứng từ 50-100m. không đường cong bán kình nhỏ sau đường đường cong đứng lồi, bán kính đường cong đứng lõm không nhỏ hơn 1/6 bán kính đường cong nằm.
- Ảnh hưởng của địa hình đến nguyên tắc thiết kế đường đỏ; có 2 phương pháp thiết kế (thiết kế theo đường bao và thiết kế theo phương pháp đường cắt, tức là đường đỏ cắt đi đường mặt đất tự nhiên và tạo thành những đoạn đào đắp xen kẽ. Trong trường hợp này cần cân bằng giữa khối lượng đào đắp để tận dụng vận chuyển dọc, lấy đất từ nền đường đào chuyển sang nề đường đắp.

- Địa hình tương đối thoải của vùng đồi và vùng núi . đường đỏ được thiết kế theo phương pháp hình bao

5.2. Phương pháp thiết kế trắc dọc đường ô tô:

Thiết kế trắc dọc đường ô tô có nghĩa là vạch đường đỏ (đường nối các cao độ thi công) trên mặt cắt dọc địa hình tự nhiên vẽ theo trục đường. Đường đỏ thiết kế vạch khác nhâu thì cao độ thi công ở các cọc cũng khác nhau, dẫn đến khối lượng đào đắp khác nhau và giải pháp kỹ thuật thiết kế các công trình chống đỡ và các công trình cầu cống cũng có thể khác nhau. Vì thế khi thiết kế đường đỏ, ngoài việc đảm bảo các yêu cầu kỹ thuật đối với các yếu tố trắc dọc quy định trong quy phạm thiết kế còn chú ý cải thiện diều kiện xe chạy và chất lượng vận doanh, cũng như phải đạt tới phương án rẻ nhất về tổng chi phí xây dựng và vận doanh, khai thác .Để đạt được tối ưu về kinh tế kỹ thuật như vậy trong quá trình thiết kế chú ý cần cân nhắc kỹ khi bố trí từng đoạn dốc, mỗi đường cong đứng ở chỗ đổi dốc. chú ý phối hợp các yếu tố bình đồ, trắc ngang và môi trường xung quanh... Tương tự như với bình đồ tuyến, việc thiết kế trắc dọc liên quan và có ảnh hưởng đến hầu hết các yếu tố và công trình khác trên tuyến đường.

Một phương pháp thiết kế có thể tiến hành theo trình tự như sau:

Trước hết cần nghiên cứu cao độ khống chế và độ cao mong muốn ở mỗi điểm trên mặt cắt dọc tự nhiên

- Độ cao khống chế hay điểm khống chế là những điểm đường đỏ thiết kế bắt buộc phải đi qua theo yêu cầu và nhiệm vụ thiết kế (điểm đầu , điểm cuối, cao độ đắp trên cống, trên mực nước ngầm, cao độ vào cầu, khống chế do mực nước dâng...) để xác định các cao độ khống chế nói trên cần điều tra thu thập số liệu ngoài thực địa và ở các cơ quan quản lí các công trình lân cận có liên quan. Đồng thời phải nghiên cứu quy trình quy phạm.
- Xuất phát từ quan điểm tạo thuận lợi cho việc xây dựng đường hoặc thõa mãn các yêu cầu hạn chế về mặt thi công.
- Ngoài ra để thuận lợi cho việc lấy đất đi thi công có thể vạch đường đỏ theo quan điểm cân bằng khối lượng đào đắp. Vận dụng quan điểm này phù hợp hơn cả là tuyến đường qua đồi núi
- Sau khi xác định được điểm mong muốn và điểm khống chế ở các trắc ngang khác nhau, thiết kế ghi các điểm đó lên trắc dọc. Việc vạch đường đỏ thiết kế cần cố gắng đạt được hai yêu cầu sau:
 - Bám sát tập hợp các điểm mong muốn và đi qua các điểm khống chế.
- Thỏa mãn các tiêu chuẩn kỹ thuật về bố trí các đoạn dốc(chiều dài lớn nhất và nhỏ nhất), độ dốc dọc lớn nhất, các đường cong đứng và đường cong nằm trên bình đồ theo quan điểm đảm bảo độ đều đặn không gian của tuyến cũng như đảm bảo điều kiện chạy xe an toàn.

- Việc thiết kế đường đỏ theo tập hợp các điểm mong muốn như trên có thể giúp thiết kế vạch đường đỏ thõa mãn một mục tiêu hạn chế nhất định về mặt giá thành và điều kiện xây dựng đường trong điều kiện đảm bảo các chỉ tiêu kỹ thuật thông thường theo quy phạm thiết kế. Về mặt vận doanh, khi vạch đường đỏ nên tránh các đoạn đường lên xuống dốc thay đổi thường xuyên, tránh vạch trắc dọc răng

cưa mà nên dùng các đoạn dốc dài hoặc dùng các đường cong bán kính lớn . Đặc biệt trong địa hình vượt đèo nên tránh thiết kế các đoạn dốc gây tổn thất cao độ, khi vạch đường đỏ thiết kế phải tính toán được cao độ ở tất cả các cọc chi tiết.

5.3. Kết quả thiết kế trắc dọc đường ô tô trong đồ án

Các yếu tố kỹ thuật	Số liệu thiết kế trong	Phạm vi giới hạn	Ghi chú
khi thiết kế trắc dọc	đồ án	trong tiêu chuẩn	
		quy định	
Độ đốc đọc tối đa	2.7%	7%	Đối với V= 60 Km/h
Độ dốc dọc nhỏ nhất	0.5%	0.5%	Đối với nền đường đào
Độ dốc cho phép lớn	-	1%	
nhất ở những đoạn có			
bán kính nhỏ cần			
chiết giảm			
Bán kính đường cong	1568	4000m	Tối thiểu với V=60km
lồi nhỏ nhất			
Bán kính đường cong	558	1500m	Tối thiểu với V=60km
lõm nhỏ nhất			
Chiều dài đổ dốc nhỏ	200m	150m	
nhất			
Chiều dài đổ dốc lớn	400m	1000m	
nhất			

ĐÒ ÁN THIẾT KẾ ĐƯỜNG GVHD: TRẦN VŨ TỰ

CHƯƠNG 6. TÍNH TOÁN KẾT CẦU ÁO ĐƯỜNG.

Mặt đường là bộ phận trực tiếp chịu sự phá hoại thường xuyên của các phương tiện giao thông và các yếu tố của môi trường tự nhiê, nó ảnh hưởng trực tiếp đến chất lượng vận hành và khai thác của đường cũng như giá thành xây dựng công trình.

Yêu cầu đối với áo đường

Đối với đường cấp III miền núi, tốc độ thiết kế V=60Km/h:

- Độ nhám: Lớp trên cùng phải có một lớp tạo nhám để đảm bảo chiều sâu rắc cát trung bình Htb (mm) đạt tiêu chuẩn quy định theo bảng 28 TCVN 4054-2005.

Bảng 6.1. Yêu cầu về độ nhám của mặt đường

Tốc độ tính toán thiết kế	Chiều sâu rắc cát trung	Đặc trưng độ nhám
(km/h) hoặc	bình	bề mặt
mức độ nguy hiểm	Htb(mm)	
60 ≤ V< 80	$0.35 \le \text{Htb} < 0.45$	Nhẵi

Độ bằng phẳng: phải bảo đảm đủ thông qua chỉ số độ gồ ghề quốc tế ÎRI(m/Km) được qui định theo bảng 29 TCVN 4054-2005.

Bảng 6.2. Yêu cầu về độ bằng phẳng của mặt đường theo chỉ số IRI

Tốc độ tính toán thiết kế (Km/h)	Chỉ số IRI yêu cầu (m/Km) (đường xây dựng mới)		
	<u>ug</u>		
60	≤ 2.5		

Độ bằng phẳng cũng được đánh giá bằng thước dài 3m theo tiêu chuẩn 22TCN16-79. Đối với mặt đường cấp cao A1:70% số khe hở phải dưới 5mm và 30% số khe hở còn lại dưới 7mm. Tính toán kết cấu áo đường mềm theo TCVN 4054-2005 và TCCS 38:2022. Sử dụng đơn giá xây dựng cơ bản tỉnh Lai Châu năm 2010.

Sơ đồ các tầng, lớp của KCAĐ mềm và kết cấu nền - áo đường

6.1. Xác định các số liệu phục vụ tính toán

6.1.1. Tải trọng

6.1.1.1. Tải trọng tính toán

- Tải trọng tác dụng:Cụm bánh đôi (tải trọng trục tiêu chuẩn)
- Tải trong truc tính toán tiêu chuẩn P (kN):100
- Áp lực tính toán lên mặt đường p (MPa):0.6
- Đường kính vệt bánh xe D (cm) = 33

Loại xe	Lưu lượng tính toán năm thứ 15 là 1925
	xe/ng.đ
Xe con	30
Xe tải 2 trục loại nhẹ	25
(Trục trước: 18 kN; Trục sau: 56 kN; Cụm	
bánh đôi)	
Xe tải 2 trục loại vừa	17
(Trục trước : 25.8 kN ; Trục sau : 69.6 kN ;	
Cụm bánh đôi)	
Xe tải 2 trục loại nặng	10
(Trục trước: 48.2 kN; Trục sau: 100 kN;	
Cụm bánh đôi)	
Xe tải 3 trục	10
(Trục trước: 45.2 kN; Trục sau: 94.2 kN;	
Cụm bánh đôi)	
Xe buýt lớn	8

;	(Trục trước : 56 kN ; Trục sau : 95.8 kN ;
	Cụm bánh đôi)
0	Xe buýt nhỏ
;	(Trục trước : 26.4 kN ; Trục sau : 45.2 kN ;
	Cụm bánh đôi)

6.1.1.2. Tính toán lưu lượng xe

Công thức tính toán lưu lượng theo thời gian: Ntbnd = N0.(1+q)t-1(xe/ng.d)

Trong đó:

- + p: lượng xe tăng hằng năm = 6%.
- + t: thời gian khai thác sử dụng đường t = 15 năm.
- Tổng số xe con qui đổi: Nxeqđ/ngđ = 1902 (xe).
- Ta chọn tuyến đường cấp III vùng núi ứng với vận tốc thiết kế là 60 km/h.(Theo bảng 3 và 4 của TCVN 4054 -05)
- Đổi số trục khai thác về trục xe tính toán tiêu chuẩn loại 100 (kN).
- Ta có bảng thành phần giao thông ở năm cuối sau khi đưa đường vào khai thác sử dụng:

Bảng 6.3. Bảng thành phần giao thông ở năm cuối sau khi đưa đường vào khai thác sử dụng

STT	Loại xe	Trọng lượng trục trước Pi(kN)	Trọng lượng trục trước Pi(kN)	Số trục sau(sau)	Số bánh của 1 cụm bánh ở trục sau n _b	Khoảng cách giữa các trục sau L _{tr} (m)	Luru luợng xe Ni xe/ngđ
1	Xe con	-	-	-	-	-	266.7
2	Xe tải 2	18	56	1	Cụm	-	222.3
	trục loại				bánh đôi		
	nhẹ						
3	Xe tải 2	25.8	69.6	1	Cụm	-	151.1
	trục loại				bánh đôi		
	vừa						

4	Xe tải 2	48.2	100	1	Cụm	-	88.9
	trục loại				bánh đôi		
	nặng						
5	Xe tải 3	45.2	94.2	2	Cụm	-	88.9
	trục				bánh đôi		
6	Xe buýt	26.4	45.2	1	Cụm	-	71.12
	lớn				bánh đôi		
7	Xe buýt	56	95.8	1	Cụm	1.4	0
	nhỏ				bánh đôi		

Bảng quy đổi số xe về năm tương lai

STT	Loại xe	Lưu lượng xe Ni	Lưu lượng xe Ni
		(xe/ngđ)	năm tương lai
1	Xe con các loại	266.7	603
2	Xe tải 2 trục loại nhẹ	222.3	503
3	Xe tải 2 trục loại vừa	151.1	342
4	Xe tải 2 trục loại	88.9	201
	nặng		
5	Xe tải 3 trục	88.9	201
6	Xe buýt loại lớn	71.12	161
7	Xe buýt loại nhỏ	0	0

6.1.1.3. Tính số trục xe quy đổi về trục tiêu chuẩn 100KN

Việc tính toán quy đổi được thực hiện theo biểu thức

 $N = \Sigma k \ i=1 \ C_1.C_2.n_i. \ (Pi/100)^{4.4} \ ($ trục tiêu chuẩn / ngày đêm)

Trong đó:

 N_{i} Lưu lượng loại xe thứ I thông qua mặt cắt ngang điển hình của đoạn đường thiết kế trong một ngày đêm cho cả 2 xe chạy.

ĐỔ ÁN THIẾT KẾ ĐƯỜNG GVHD : TRẦN VỮ TỰ

C1 _ Hệ số trục được xác định theo biểu thức sau:

$$C_1 = 1 + 1.2(m - 1)$$

Với m – số truc của cum truc i (cum truc có thể gồm m truc có trong lương mối truc như nhau

Với các cụm bánh đơn hoặc cụm bánh đôi (m = 1, 2, 3)

Bất kể xe gì khi khoảng cách giữa các trục ≥ 3,0m thì việc quy đổi thực hiện riêng rẽ đối với từng trục; Khi khoảng cách giữa các trục < 3,0m (giữa các trục của cụm trục) thì quy đổi gộp m trục có trọng lượng bằng nhau như một trục với việc xét đến hệ số trục C1 như công thức trên.

C2 – Hệ số xét đến tác dụng của số bánh xe trong cụm bánh, bởi cụm bánh chỉ có 1 bánh lấy

 $C_2 = 6.4$; với các cụm bánh đôi (1 cụm bánh gồm 2 bánh) thì lấy $C_2 = 1,0$. Các xe tính toán có trực trước có 1 bánh, trực sau có cụm bánh đôi.

STT	Loại xe		P _i (kN)	Ptt (kN)	C1	C2	Ni	Ni(xe/ngđ)
							(xe/ngđ)	
1	Xe con	Trục	-	100	1	6.4	603	-
	các loại	trước						
		Trục	-	100	1	0	603	-
		sau						
2	Xe tải 2	Trục	18	100	1	6.4	503	-
	trục	trước						
	loại nhẹ	Trục	56	100	1	1	503	39
		sau						
3	Xe tải 2	Trục	25.8	100	1	6.4	342	6
	trục	trước						
	loại			100			2.12	
	vừa	Trục	69.6	100	1	1	342	69
		sau						
4	Xe tải 2	Trục	48.2	100	1	6.4	201	52
	trục	trước						
	loại	Trục	100	100	1	1	201	201
	nặng	sau						

5	Xe tải 3	Trục	45.2	100	1	6.4	201	39	
	trục	trước							
		Trục	94.2	100	1	1	201	340	
		sau							
6	Xe buýt	Trục	56	100	1	6.4	161	80	
	lớn	trước							
		Trục	95.8	100	1	1	161	133	
		sau							
7	Xe buýt	Trục	26.4	100	2.2	6.4	0	-	
	nhỏ	trước							
		Trục	45.2	100	1	1	0	-	
		sau							
Tổng số trục xe sau khi quy đổi Ntk (trục/ngđ)									

Kết quả tính được N = 959 (trục xe tiêu chuẩn/ ngày đêm)

6.1.1.4. Số trục xe tính toán trên một làn xe

Xác định theo biểu thức $Ntt = Ntk \times fL$ (trục /làn.ngày đêm)

Trong đó: fL Hệ số phân phối số trục xe tính toán trên mỗi làn xe. Với đường cấp III trên phần xe chạy có 2 làn xe, không có dải phân cách thì lấy fL = 0.55.

 Ntk_{-} tổng số trục xe quy đổi từ k loại trục xe khác nhau về trục xe tính toán trong một ngày đêm trên cả 2 chiều xe chạy ở cuối năm của thời hạn thiết kế $\Rightarrow Ntk = N15 = 959$ (trục xe tiêu chuẩn/ ngày đêm)

Vậy $Ntt = 959 \times 0.55 = 528$ (trục/ làn.ngđ)

6.1.1.5. Tính số trục xe tiêu chuẩn tích lũy trong thời hạn tính toán 15 năm

Tỷ lệ tăng xe tải hàng năm là p = 0.06 ta tính Ne theo biểu thức

$$Ne = \left[\frac{(1+p)^{15} - 1}{p(1+p)^{t-1}} \right] *365 * Ntk$$

$$\Rightarrow Ne = \left[\frac{\left(1 + 0.06\right)^{15} - 1}{0.06 * (1 + 0.06)^{15 - 1}} * 365 * 528 \right] = 954721 = 1.98 * 10^6 \text{ (trục tiêu chuẩn / làn)}$$

+ Cấp thiết kế của đường là cấp III miền núi, Vtk = 60Km/h

ĐỔ ÁN THIẾT KẾ ĐƯỜNG GVHD : TRẦN VỮ TỰ

- + Thời hạn thiết kế là 15 năm
- + Số trục xe tiêu chuẩn tích lũy trên một làn xe trong thời hạn thiết kế là 0.95×10^6 (trục xe tiêu chuẩn /làn)
- Dựa vào bảng 2 theo TCCS 38 2022 ta kiến nghị chọn loại tầng mặt đường cấp cao A1
- + Bê tông nhựa chặt hạt nhỏ làm lớp mặt trên
- + Bê tông nhựa chặt hạt trung làm lớp mặt dưới

6.1.1.6. Bề dày tối thiểu của tầng mặt cấp cao A1

Dự kiến tầng mặt cấp cao A1 đặt trên lớp móng là cấp phối đá dăm loại I thì tổng bề dày tầng mặt lấy theo bảng 3 TCCS 38 - 2022

Do tổng số trục xe tiêu chuẩn tích lũy trong 15 năm trên 1 làn xe $Ne = 1.98 \times 10^6 > 0.5 \times 10^6$ nên bề dày tối thiểu của 2 lớp bê trông nhựa là 9 cm.

6.1.2. Đất nền

Theo kết quả khảo sát, đất nền là loại đất Bazan Tây Nguyên, có điều kiện gây ẩm Loại II. Các tính chất cơ lý và chế đọ thủy nhiệt của loại đất này sau khi được đầm lèn với độ ẩm tốt nhất và đạt được độ chặt yêu cầu đối với nền đường được trình bày trong phụ lục bảng B.4.[TCCS38:2022].

Loại đất	Độ chặt	Độ ẩm tương đối a	E(Mpa)	Lực dính (Mpa)	Góc ma sát
Đất bazan	0.95	0.60	44	0.031	12
Tây Nguyên					

Loại đất	Các chỉ tiêu	Độ ẩm tương đối $a = \frac{W}{W_{nh}}$							
		0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90
Sét và á sét	E (Mpa)	46 (60)	42 (57)	40 (53)	34 (50)	29 (46)	25 (42)	21 (40)	20 (38)
Set va a set	φ (độ)	27	24	21	18	15	13	12	11,5
	c (Mpa)	0,038	0,032	0,028	0,023	0,019	0,015	0,013	0,012
Á sét nhẹ	E (Mpa)	48	45	42	37	32	27	23	22
và Á cát	φ (độ)	28	26	26	25	25	24	24	23
bụi nặng	c (Mpa)	0,024	0,022	0,018	0,014	0,012	0,011	0,010	0,009
f (1)	E (Mpa)	49	45	42	38	34	32	30	28
Á cát nhẹ	φ (độ)	30	28	28	27	27	26	26	25
và Á cát	c (Mpa)	0,020	0,018	0,014	0,012	0,011	0,010	0,009	0,008
	E (Mpa)				4	0			
Cát mịn	φ (độ)					5			
	c (Mpa)		Ι		· ·	005	Ι	I	
Đất bazan	E (Mpa)	51	44	40	25	23	21	16	
Tây Nguyên	φ (độ)	17	12	14	8	11	9	7	
	c (Mpa)	0,036	0,031	0,028	0,024	0,019	0,015	0,011	

6.1.3. Vật liệu

Để phù hợp với cấp đường đã chọn và nguồn nguyên liệu của địa phương cũng như trình độ thi công của các nhà thầu ta có thể dùng một số vật liệu làm áo đường có các đặt trung trong phụ lục C [TCCS38:2022].

Tính toán sử dụng đơn giá xây dựng Tỉnh Lai Châu, được cho trong bảng C.1 và C.2 phần phụ lục C [TCCS38:2022]

STT	Tên vật	E			C(Mpa)	$arphi(delta\^{ ext{o}})$
	liệu	Tính về	Tính về	Tính		
		độ võng	độ trượt	kéo		
				uốn		
1	BTNC	420	300	1800	2.8	0
	12.5					

BTN C19	350	250	1600	2	0
Cấp phối	300	-	-	0	0
đá dăm					
loại I					
Cấp phối	250	-	-	0	0
đá dăm					
loại II					
_ / `			_		
Đât nên	44	0	0	0.031	12
	loại I Cấp phối đá dăm	Cấp phối 300 đá dăm loại I Cấp phối 250 đá dăm loại II	Cấp phối 300 - đá dăm loại I Cấp phối 250 - đá dăm loại II	Cấp phối 300 dá dăm loại I	Cấp phối 300 - - 0 đá dăm loại I - - 0 Cấp phối 250 - - 0 đá dăm loại II - - 0

6.2. Thiết kế áo đường

Nhận thấy ngay trong những năm đầu khi đưa đường vào khai thác, lưu lượng xe chạy đã tăng lên đáng kể. Mặt khác, tuyến thiết kế ở vùng đồi núi có độ dốc dọc lớn, khi xe giảm tốc, hãm phanh lực ma sát giữa bánh xe với mặt đường rất lớn. Vì thế mặt đường cấp A2 trở xuống khó đáp ứng. Ngoài ra, chủ đầu tư có đủ năng lực về tài chính để đầu tư tập trung nên ta sẽ thiết kế kết cấu áo đường với mặt đường cấp cao A1.

6.2.1. Đề xuất phương án kết cấu tầng mặt áo đường

Kết cấu tầng mặt áo đường thường được làm bằng vật liệu đắ tiền nên chọn giá trị nhỏ để đảmbảo kinh tế, trên cơ sở bê tông dày 2 lớp không được nhỏ hơn 9cm. Để thuận tiện cho thi công lớp mặt,kiến nghị chọn:

Lớp 1: BTN C12.5 E1 = 420 Mpa; hl = 4 cm

Lớp 2: BTN C19 E2 = 350 Mpa; h2 = 6 cm

6.2.2. Chọn loại tầng móng

Trị số mô đun đàn hồi yêu cầu được xác định theo bảng 9 và bảng 10 (TCCS38-2022) tùy thuộc vào Ntt và tùy thuộc vào tầng mặt của kết cấu áo đường thiết kế.

 $N_{tt} = 528$ (truc/ làn.ngđ), Tra bảng 9 [TCCS38:2022]=> Eyc = 178.75 Mpa

Trị số mô dun đàn hồi xác định theo bảng 9 [TCCS38:2022] không được nhỏ hơn trị số tối thiểu quy định ở bảng 10 [TCCS38:2022] với đường cấp III và loại tầng mặt của kết cấu áo đường thiết kế là cấp cao A1 ta có trị số Eycmin = 140(120) (Mpa). Vậy Eyc = 179 Mpa.

6.2.2.1. Mô đun chung của kết cấu áo đường

Điều kiên tính toán

Theo tiêu chuẩn [TCCS38:2022] kết cấu áo đường được xem là đủ cường độ khi trị số mô đun đàn hồi chung của cả kết cấu nền áo đường Ech lớn hơn hoặc bằng trị số mô đun đàn hồi yêu cầu Eyc nhân thêm với một hệ số dự trữ cường độ về độ võng được xác định tùy theo độ tin cậy mong muốn.

 $E_{ch} \geq K_{cd}{}^{dv}.E_{yc}$

Xác định hệ cường độ và chọn độ tin cậy mông muốn:

Dựa theo Bảng 7 (TCCS38-2022) với đường cấp III, Vtk = 60Km/h ta lựa chọn độ tin cậy thiết kế là 0.85

Tra bảng 8 [TCCS38:2022] ta có thể: $K_{cd dv} = 1.06$

 $E_{ch} \ge K_{cd \ dv} \cdot E_{yc} = 1.06 \times 179 = 189.74 \ (Mpa)$

Chọn $E_{ch} = 189.74$ (Mpa) và tính theo bài toán truyền tải trọng để tính ra chiều dày các lớp móng.

6.2.2.2. Cấu tạo tầng móng và chọn phương án móng

Móng đường phải đảm bảo các yêu cầu về cường độ, công nghệ thi công đơn giản, tận dụng được vật liệu tại chỗ, hạ giá thành, phù hợp với cấp áo đường và tầng mặt.

Móng đường phải đảm bảo các yêu cầu về cường độ, công nghệ thi công đơn giản, tận dụng được vật liệu tại chỗ, hạ giá thành, phù hợp với cấp áo đường và tầng mặt.

Tính toán kết cấu áo đường phương án 1:

-Dự kiến kết cấu áo đường:

Lớp	Loại kết cấu	Bề dày(cm)	Module đàn hồi				
			(Mpa)				
1	Bê tông nhựa chặt C12.5	h1=4	E1=420				
2	Bê tông nhựa chặt C19	h2=6	E2=350				
3	Cấp phối đá dăm loại I	h3	E3=300				
4	Cấp phối đá dăm loại II	h4	E4=250				
Nền đất BAZAN có E0 = 44 Mpa							

Tra bảng 3.1 TCVN 4054-05 ta được: Dmax = 33 (cm) (Đường kính vệt bánh xe ứng với tải trọng 100KN)

Thay đổi chiều dày lớp 3, tính toán chiều dày lớp 4 để đáp ứng được Ech. Các bước tính toán và lựa chọn chiều dày lớp 4 ta làm tương tự như trên và tra toán đồ Kogan (toán đồ hình 2 [TCCS38:2022].

Việc tính giá thành cho các phương án móng có kể đến số lượng các lớp thi công (phụ thược vào loại vật liệu và các thiết bị lu lèn). Thường thì đối với các lớp có chiều dày h = $20 \div 40$ (cm) ta chia làm 2 lớp: Lớp trên dày 0.4h; lớp dưới dày 0.6h với chiều dày lớp dưới không quá 20 (cm).

Đối với các vật liệu hạt không gia cố chất liên kết thì chiều dày đầm nén có hiệu quả là không quá 8cm đối với bê tông nhựa chặt, 16cm với hỗn hợp nhựa bán rỗng hoặc đá dăm trộn nhựa chặt nóng, 18cm đối với đá dăm gia cố chất kết dính liên kết vô cơ và vật liệu hạt không gia cố.

Xác định chiều dày tầng móng cho phương án trên bằng cách: chọn trước trị số h1,h2, chọn các phương án khác nhau cho h3, h4 sau đó quy tất cả các lớp áo đường (từng cặp 1), từ dưới lên trên rồi hiệu chỉnh thành 1 lớp tương đương, thử dần giá trị h3, h4 để đảm bảo .

Ta tìm h3, h4 bằng cách lập bài toán kinh tế để tìm ra chi

$$\frac{\frac{h_1}{D} = \frac{4}{33} = 0.1212}{\frac{E_{ch}}{E_1} = \frac{189.74}{420} = 0.4518} \} = > \frac{\frac{E_{ch1}}{E_1} = 0.431 \text{ (Tra theo toán đồ Kogan)} => E_{ch1} = 0.431*420 = 181.02 \text{ (Mpa)}$$

$$\frac{\frac{h_2}{D} = \frac{6}{33} = 0.1818}{\frac{E_{ch}}{E_1} = \frac{181.02}{350} = 0.5172} \right\} = \frac{E_{ch2}}{E_2} = 0.4824 \text{ (Tra theo toán đồ Kogan)} = E_{ch2} = 0.4824*350 = 168.84 \text{ (Mpa)}$$

Kết luận: tầng móng có Ech2= 168.84 (Mpa)

$$V\acute{o}i \frac{\frac{E_{0}}{E_{mong}^{tb}} = \frac{44}{270} = 0.163}{\frac{E_{ch2}}{E_{mong}^{tb}} = \frac{168.84}{270} = 0.625} \right\} => \frac{Hmong}{D} > 2$$

Gọi H là tổng bề dày lớp móng với lớp móng trên h3=0.4h, móng dưới bằng h4=0.6h có:

$$E_{mong}^{tb} = \frac{E_3 h_3 + E_4 h_4}{h_2 + h_4} = \frac{300.0.4h + 250.0.6h}{0.4h + 0.6h} = 270 \text{ (Mpa)}$$

$$\frac{E_0}{E_{mong}^{tb}} = \frac{44}{270} = 0.163$$

$$\frac{E_{ch2}}{E_{mong}^{tb}} = \frac{168.84}{270} = 0.625$$

$$= > \frac{Hmong}{D} = 1.552$$
, ta tính theo phụ lục E, [TCCS38:2022].

$$\frac{\text{Hmong}}{\text{D}} > 2 \Rightarrow E_{\text{tb}}^{\text{dc}} = 270\text{x}1.114. \left(\frac{\text{H}}{\text{D}}\right)^{0.12}$$

Ech=
$$\frac{1.05x44}{1 + \frac{44}{270x1.114.\left(\frac{H}{D}\right)^{0.12}}} = 168.84$$

$$\sqrt{1 + 4x\left(\frac{H}{D}\right)^{2}x\left(\frac{44}{270x1.114.\left(\frac{H}{D}\right)^{0.12}}\right)^{-0.67}} + \frac{44}{270x1.114.\left(\frac{H}{D}\right)^{0.12}}$$

$$\Rightarrow \frac{H}{D} = 2.058 \Rightarrow H = 2.058x33 = 67.914$$
 (cm), chọn Hmong=68 (cm)

- Thử dần các cặp giá trị h3,h4 của kết cấu(bắt đầu với h3=0.4h= 27 cm, h4=0.6h= 41 cm)

h3	h4	Etb	$E_{ m tbdc}$	Ech	$K_{cd}{}^{dv}.E_{yc}$	Tình trạng
27	41	281.60	347.77	188	189.74	Không đáp ứng
28	40	282.26	348.59	189.09	189.74	Không đáp ứng
29	39	282.91	349.39	189.09	189.74	Không đáp ứng
30	38	283.55	350.19	189.09	189.74	Không đáp ứng
31	37	284.23	351.02	190.20	189.74	Đáp ứng
32	36	284.88	351.82	190.20	189.74	Đáp ứng
33	35	285.54	352.64	190.20	189.74	Đáp ứng
34	34	286.18	353.44	191.31	189.74	Đáp ứng

Ví dụ tính Etb với trường hợp đầu tiên (h3=31, h4=37), xét từ dưới lên

Lớp 4-3:
$$t1 = \frac{E_3}{E_4} = \frac{300}{250} = 1.2 \text{ và } k1 = \frac{h_3}{h_4} = \frac{31}{37} = 0.838$$

=>Etb1=
$$E_4 \left[\frac{1 + k_1 \cdot k_1^{\frac{1}{3}}}{1 + k_1} \right]^3 = 250x \left[\frac{1 + 0.838 * 1.2^{\frac{1}{3}}}{1 + 0.838} \right]^3 = 272.04 \text{ (MPa)}$$

Lớp 3-2:
$$t2 = \frac{E_2}{E_{th_1}} = \frac{350}{272.04} = 1.287 \text{ và } k2 = \frac{h_2}{h_3 + h_4} = \frac{6}{31 + 37} = 0.088$$

=>Etb2=
$$E_{tb1}$$
 $\left[\frac{1+k_2t_2^{\frac{1}{3}}}{1+k_2}\right]^3 = 272.04x \left[\frac{1+0.088x1.287^{\frac{1}{3}}}{1+0.088}\right]^3 = 277.873 \text{ (MPa)}$

Lớp 2-1: t3=
$$\frac{E_1}{E_{th^2}} = \frac{420}{277.873} = 1.511$$
 và k3= $\frac{h_1}{h_2 + h_3 + h_4} = \frac{4}{6 + 31 + 37} = 0.054$

=>Etb3=
$$E_{tb2}$$
 $\left[\frac{1+k_3.t_3^{\frac{1}{3}}}{1+k_3}\right]^3 = 277.873x \left[\frac{1+0.054x1.511^{\frac{1}{3}}}{1+0.054}\right]^3 = 284.23 \text{ (Mpa)}$

Với H/D=78/33=2.364 >2, xét đến hệ số điều chỉnh

$$\beta = 1.114. \left(\frac{H}{D}\right)^{0.12} = 1.114x \left(\frac{78}{33}\right)^{0.12} = 1.235$$

Vậy Etb $dc = \beta * Etb = 1.291 * 284.23 = 351.02$ (Mpa)

Với H/D=3.424>2, Theo phụ lục E có:

Ech=
$$\frac{1.05xE_0}{1 + \frac{E_0}{E_1}} = \frac{1.05x44}{1 + \frac{44}{351.02}} = 190.20 \text{ (Mpa)}$$

$$\frac{1}{\sqrt{1 + 4x \left(\frac{H}{D}\right)^2 x \left(\frac{E_0}{E_1}\right)^{-0.67}} + \frac{E_0}{E_1}} = \frac{1.05x44}{\sqrt{1 + 4x \left(\frac{78}{33}\right)^2 x \left(\frac{44}{351.02}\right)^{-0.67}} + \frac{44}{351.02}}$$

Các trường hợp khác tính tương tự.

Để chọn được lớp móng phù hợp cho cả lớp kết cấu áo đường không chỉ thỏa các điều kiện về cường độ mà phải so sánh về mặt kinh tế để chọn được lớp móng tối ưu nhất.

Dựa vào đơn giá xây dựng cơ bản của tỉnh Lai Châu ta tính được giá thành xây dựng của lớp móng ta có bảng tính toán giá thành cho lớp móng như sau:

Bảng tính toán giá thành cho hai phân lớp cấp phối

Phân lớp CPDD loại II (chiều dày lu lèn tối thiểu và tối đa là 12; 18cm

Theo đơn giá cơ bản vật liệu làm móng cấp dưới CPDD (đường làm mới) mã hiệu AD.11212 tính cho 100 m3 vật liệu 16.221.512, nhân công: 215.931,, máy thi công: 1.568.335 (tính theo đơn giá tỉnh Lai Châu).

Chiều	Phân	Mã	Khối	Thành tiền			Tổng
dày	Lớp (cm)	hiệu đơn giá	lượng (m³)	Vật liệu	Nhân công	Máy thi công	cộng G1 (đồng)
41	13	AD.11 212	108.75	1.76 4.08	23.482.496,	170.55 6.431,3	8.039. 845.9

				9.43			37
				0			
	14	AD.11	117.117	1.89	25.289.190,	183.67	
		212		9.81	9	8.690,2	
				4.82			
				0,9			
	14	AD.11	117.117	1.89	25.289.190,	183.67	
		212		9.81	9	8.690,2	
				4.82			
				0,9			
40	13	AD.11	108.75	1.76	23.482.820,	170.55	
		212		4.11	1	8.783,8	
				3.76			7.843.
				2,3			786.4
	13	AD.11	108.75	1.76	23.482.820,	170.55	39
		212		4.11	1	8.783,8	
				3.76			
				2,3			
	14	AD.11	117.117	1.89	25.289.190,	183.67	
		212		9.81	9	8.690,2	
				4.82			
				0,9			
39	13	AD.11	108.75	1.76	23.482.820,	170.55	
		212		4.11	1	8.783,8	
				3.76			7.647.
				2,3			691.7
	13	AD.11	108.75	1.76	23.482.820,	170.55	74
		212		4.11	1	8.783,8	
				3.76			
				2,3			
	13	AD.11	108.75	1.76	23.482.820,	170.55	
		212		4.11	1	8.783,8	
				3.76			

			2,3			
10	AD 11	100.206	1.62	21 676 440	157.40	
12		100.386				5 454
	212			4	8.877,3	7.451.
						597.1
						16
13	AD.11	108.75	1.76	23.482.820,	170.55	
	212		4.11	1	8.783,8	
			3.76			
			2,3			
13	AD.11	108.75	1.76	23.482.820,	170.55	
	212		4.11	1	8.783,8	
			3.76			
			2,3			
12	AD.11	100.386	1.62	21.676.449,	157.43	
	212		8.41	4	8.877,3	
			2.70			7.255.
			3,6			502.4
12	AD.11	100.386	1.62	21.676.449,	157.43	54
	212		8.41	4	8.877,3	
			2.70			
			3,6			
13	AD.11	108.75	1.76	23.482.820,	170.55	
	212		4.11	1	8.783,8	
			3.76			
			2,3			
18	AD.11	150.579	2.44	32.514.674	236.15	
	212		2.61		8.316	7.059.
			9.05			407.7
			5,4			94
18	AD.11	150.579	236.	236.158.31	236.15	_
	212		158.	6	8.316	
			316			
	12 12 13	13 AD.11 212 12 AD.11 212 12 AD.11 212 13 AD.11 212 14 AD.11 212 18 AD.11 212	13 AD.11 108.75 212 13 AD.11 108.75 212 12 AD.11 100.386 212 13 AD.11 100.386 212 14 AD.11 100.386 212 15 AD.11 150.579 212	12 AD.11 100.386 1.62 8.41 2.70 3.6 13 AD.11 108.75 1.76 2.3 13 AD.11 108.75 1.76 2.3 12 AD.11 100.386 1.62 2.3 12 AD.11 100.386 1.62 2.70 3.6 12 AD.11 100.386 1.62 2.70 3.6 13 AD.11 100.386 1.62 2.12 8.41 2.70 3.6 13 AD.11 108.75 1.76 2.12 4.11 3.76 2.3 18 AD.11 150.579 2.44 2.61 9.05 5.4 18 AD.11 150.579 2.36 1.58	12 AD.11 100.386 1.62 21.676.449, 212 8.41 4 2.70 3.6 13 AD.11 108.75 1.76 23.482.820, 4.11 1 3.76 2.3 13 AD.11 108.75 1.76 23.482.820, 4.11 1 3.76 2.3 12 AD.11 100.386 1.62 21.676.449, 212 8.41 4 2.70 3.6 12 AD.11 100.386 1.62 21.676.449, 212 8.41 4 2.70 3.6 13 AD.11 100.386 1.62 21.676.449, 14 2.70 3.6 15 AD.11 108.75 1.76 23.482.820, 16 2.70 3.6 17 AD.11 108.75 1.76 23.482.820, 18 AD.11 150.579 2.44 32.514.674 212 2.61 9.05 5.4 18 AD.11 150.579 2.36 236.158.31 212 150.579 236 236.158.31	12 AD.11 100.386 1.62 21.676.449, 157.43 8.877,3 2.70 3.6 13 AD.11 108.75 1.76 23.482.820, 170.55 4.11 1 8.783,8 3.76 2.3 12 AD.11 100.386 1.62 21.676.449, 157.43 8.877,3 2.70 3.6 12 AD.11 100.386 1.62 21.676.449, 157.43 8.877,3 2.70 3.6 12 AD.11 100.386 1.62 21.676.449, 157.43 8.877,3 2.70 3.6 13 AD.11 100.386 1.62 21.676.449, 157.43 8.877,3 2.70 3.6 13 AD.11 108.75 1.76 23.482.820, 170.55 2.12 4.11 1 8.877,3 2.70 3.6 13 AD.11 108.75 1.76 23.482.820, 170.55 2.12 4.11 1 8.877,3 2.70 3.6 13 AD.11 108.75 1.76 23.482.820, 170.55 2.12 4.11 1 8.76 2.3 8.783,8 3.76 2.3 18 AD.11 150.579 2.44 32.514.674 236.15 8.783,8 3.16 18 AD.11 150.579 2.44 32.514.674 236.15 8.316 212 158. 6 8.316

35	17	AD.11	142.214	2.30	30.708.303,	223.03	
		212		6.91	3	8.409,5	6.863.
				7.99			313.1
				6,8			33
	18	AD.11	150.579	236.	236.158.31	236.15	
		212		158.	6	8.316	
				316			
34	17	AD.11	142.214	2.30	30.708.303,	223.03	
		212		6.91	3	8.409,5	6.667.
				7.99			218.4
				6,8			73
	17	AD.11	142.214	2.30	30.708.303,	223.03	-
		212		6.91	3	8.409,5	
				7.99			
				6,8			

Phân lớp CPDD loại I Theo đơn giá xây dựng cơ bản vật liệu làm móng lớp trên CPDD (đường làm mới) mã hiệu AD.11222 tính cho 100m3 vật liệu: 16.221.512, nhân công: 243.615, máy thi công: 1.384.422 (tính theo đơn giá tỉnh Lai Châu).

Chiều dày	Phân	Mã hiệu	Khối lượng	Thành tiế	èn		Tổng
	Lớp	đơn giá	(m^3)		T	T =	cộng
	(cm)			Vật	Nhân	Máy	G2
	()			liệu	công	thi	(đồng
						côn	(doing
						g)
27	13	AD.112	108.752	1.76	26.49	150.	5.245.
		22		4.11	3.496,	557.	485.0
				3.76	7	969,	89
				2,3		1	
	14	AD.112	117.117	1.89	28.53	162.	
		22		9.81	1.458	139.	
				4.82		351,	
				0,9		4	

28	14	AD.112	117.117	1.89	28.53	162.	5.439.
		22		9.81	1.458	139.	762.3
				4.82		351,	14
				0,9		4	
	14	AD.112	117.117	1.89	28.53	162.	
		22		9.81	1.458	139.	
				4.82		351,	
				0,9		4	
29	14	AD.112	117.117	1.89	28.53	162.	5.634.
		22		9.81	1.458	139.	039.5
				4.82		351,	39
				0,9		4	
	15	AD.112	125.483	2.03	30.56	173.	
		22		5.51	9.419,	720.	
				5.87	2	733,	
				9,5		6	
30	15	AD.112	125.483	2.03	30.56	173.	5.828.
		22		5.51	9.419,	720.	316.7
				5.87	2	733,	63
				9,5		6	
	15	AD.112	125.483	2.03	30.56	173.	
		22		5.51	9.419,	720.	
				5.87	2	733,	
				9,5		6	
31	15	AD.112	125.483	2.03	30.56	173.	6.022.
		22		5.51	9.419,	720.	593.9
				5.87	2	733,	92
				9,5		6	
	16	AD.112	133.848	2.17	32.60	185.	
		22		1.21	7.380,	302.	
				6.93	5	115,	
				8,2		9	
32	16	AD.112	133.848	2.17	32.60	185.	

		22		1.21	7.380,	302.	6.216.
				6.93	5	115,	871.2
				8,2		9	16
33	16	AD.112	133.848	2.17	32.60	185.	6.411.
		22		1.21	7.380,	302.	148.4
				6.93	5	115,	41
				8,2		9	
	17	AD.112	142.2135	2.30	34.64	196.	
		22		6.91	5.341,	883.	
				7.99	8	498,	
				6,8		1	
34	17	AD.112	142.2135	2.30	34.64	196.	6.605.
		22		6.91	5.341,	883.	425.6
				7.99	8	498,	67
				6,8		1	
	17	AD.112	142.2135	2.30	34.64	196.	
		22		6.91	5.341,	883.	
				7.99	8	498,	
				6,8		1	

Bảng 6.9. Bảng giá thành các giải pháp của phương án I

h3	Mã hiệu	G2	h4	Mã hiệu đơn	G1	Tổng cộng
	đơn giá			giá		G= G1+G2
						(đồng)
27	AD.11222	5.245.485.	41	AD.11212	8.039.8	13.285.331.
		089			45.937	036
28	AD.11222	5.439.762	40	AD.11212	7.843.7	13.283.548.
		.314			86.439	753
29	AD.11222	5.634.039	39	AD.11212	7.647.6	13.281.731.
		.539			91.774	313
30	AD.11222	5.828.316	38	AD.11212	7.451.5	13.279.913.
		.763			97.116	879

31	AD.11222	6.022.593	37	AD.11212	7.255.5	13.278.096.
		.992			02.454	446
32	AD.11222	6.216.871	36	AD.11212	7.059.4	13.276.279.
		.216			07.794	010
33	AD.11222	6.411.148	35	AD.11212	6.863.3	13.274.461.
		.441			13.133	574
34	AD.11222	6.605.425	34	AD.11212	6.667.2	13.272.644.
		.667			18.473	140

Dựa vào kết quả tính toán, kiến nghị chọn giải pháp : giải pháp có h3= 31 cm; h4 = 37 cm; có giá thành là 13.278.096.446 đ/100m³. Phương án này cũng là phương án thuận lợi cho thi công , bởi lớp trên có thể phân thành 2 lớp có chiều dày 15cm và 16 cm, đồng thời lớp dưới có thể phân thành 3 lớp mỗi lớp có chiều dày 12 cm, 12 cm, 13 cm, với chiều dày này máy thi công hoàn toàn có thể đầm nén đạt hiệu quả tốt.

 \rightarrow Chọn giải pháp móng là h3 =31 cm, h4 = 37 cm.

Bảng dự kiến kết cấu áo đường thiết kế và đặc trưng

STT	Tên Vật liệu	Bề dày lớp	E(Mpa)	E(Mpa)			$arphi(d\hat{ ext{o}})$
			Tính độ	Tính về	Tính kéo		
			võng	trượt	uốn		
1	BTN C12.5	4	420	300	1800	2.8	
2	BTN C19	6	350	250	1600	2	
3	Cấp phối đá	31	300	300	300		
	dăm loại I						
4	Cấp phối đá	37	250	250	250		
	dăm loại II						
5	Nền đất bazan		44	-	-	0.031	12
	Tây Nguyên						

6.2.3. Tính toán kiểm tra kết cấu áo đường

6.2.3.1. Kiểm tra tiêu chuẩn độ võng đàn hồi giới hạn

-Đổi nhiều lớp về hệ 2 lớp được thực hiện theo công thức sau:

Etb=
$$E\left[\frac{1+k.t^{\frac{1}{3}}}{1+k}\right]$$

Với $k = \frac{h_1}{h_2}$ và $t = \frac{E_1}{E_2}$ theo [TCCS38:2022] và tính toán tương tự như trên

Lóp	Loại kết cấu	Bề dày (cm)	Module đàn hồi
			(Mpa)
1	Bê tông nhựa chặt	h1=4	E1=420
	C12.5		

ĐỔ ÁN THIẾT KẾ ĐƯỜNG GVHD: TRẦN VỮ TỰ

2	Bê tông nhựa chặt	h2=6	E2=350
	C19		
3	Cấp phối đá dăm	h3=31	E3=300
	loại I		
4	Cấp phối đá dăm	h4=37	E4=250
	loại II		
	Nền đất BAZAN c	có E0 = 44 Mpa	

- Kết quả được tính như bảng sau:

STT	Lớp vật liệu	Ev (MPa)	t = E2/E1	hi (cm)	k = h2/h1	Htb (cm)	E'tb (MPa)
	(từ trên xuống)						
1	BTN C12.5	420	1.511	4	0.054	78	284.23
2	BTN C19	350	1.287	6	0.088	74	277.873
3	Cấp phối đá dăm loại I	300	1.2	31	0.838	68	272.04
4	Cấp phối đá dăm loại II	250	0	37	0	37	250

Với H/D=78/33=2.364 >2, xét đến hệ số điều chỉnh

$$\beta = 1.114. \left(\frac{H}{D}\right)^{0.12} = 1.114x \left(\frac{78}{33}\right)^{0.12} = 1.235$$

Vậy Etbắc = β * Etb = 1.235 * 284.23 = 351.06 (Mpa)

Với H/D=2.364>2, Theo phụ lục E có:

Ech=
$$\frac{1.05xE_0}{1 + \frac{E_0}{E_1}} = \frac{1.05x44}{1 + \frac{44}{351.06}} = 189.811 \text{ (Mpa)}$$

$$\frac{1}{\sqrt{1 + 4x \left(\frac{H}{D}\right)^2 x \left(\frac{E_0}{E_1}\right)^{-0.67}}} + \frac{E_0}{E_1} = \frac{1.05x44}{\sqrt{1 + 4x \left(\frac{78}{33}\right)^2 x \left(\frac{44}{351.06}\right)^{-0.67}}} + \frac{44}{351.06}$$

Vậy
$$Ech = 189.811 \ge K_{cd}^{dv}.Eyc = 1.06 \times 179 = 189.74$$
 (Mpa)

=> Vậy kết cấu áo đường thỏa tiêu chuẩn độ võng đàn hồi

6.2.3.2. Kiểm tra theo tiêu chuẩn chịu cắt trượt trong nền đất và lớp vật liệu kém dính

Để đảm bảo không phát sinh biến dạng dẻo cục bộ trong nền đất và các lớp vật liệu dính, cấu tạo kết cấu áo đường phải thỏa điều kiện sau:

$$T_{ax} + T_{av} \le \frac{C_{tt}}{K_{cd}^{tr}}$$

Trong đó:

 T_{ax} (Mpa): ứng suất cắt hoạt động lớn nhất do tải trọng tính toán bánh xe tính toán gây ra trong nền đất hoặc lớp vật liệu kém dính.

 T_{av} (Mpa): ứng suất cắt hoạt động do trọng lượng bản thân các lớp vật liệu nằm trên nó gây ra cũng tại điểm đang xét.

 C_n : lực dính tính toán của đất nền hoặc vật liệu kém dính ở trạng thái độ ẩm, độ chặt tính toán.

 K_{cd}^{tr} : hệ số cường độ chịu cắt trượt tùy thuộc vào độ tin cậy thiết kế. Theo bảng 8.[TCCS38:2022], với độ tin cậy 0.85 thì $K_{cd}^{tr} = 0.9$

Đáy lớp CPĐD loại I (Giữa lớp CPĐD loại I và CPĐD loại II)

Lớp	Loại kết cấu	Bề dày(cm)	Modul trượt (Mpa)
1	Bê tông nhựa chặt C12.5	h1=4	E1=300
2	Bê tông nhựa chặt C19	h2=6	E2=250
3	Cấp phối đá dăm loại I	h3=31	E3=300

Ta thực hiện xét từ dưới lên, qui đổi hệ nhiều lớp về hệ 2 lớp:

Lớp 2-3:
$$t1 = \frac{E_2}{E_3} = \frac{250}{300} = 0.833 \text{ và } k1 = \frac{h_2}{h_3} = \frac{6}{31} = 0.194$$

=>Etb1=
$$E_1 \left[\frac{1+k_1 t_1^{\frac{1}{3}}}{1+k_1} \right]^3 = 300x \left[\frac{1+0.194x0.833^{\frac{1}{3}}}{1+0.194} \right]^3 = 291.442 \text{ (MPa)}$$

Lớp 1-2:
$$t2 = \frac{E_1}{E_{th1}} = \frac{300}{291.442} = 1.029 \text{ và } \text{k2} = \frac{h_1}{h_2 + h_3} = \frac{4}{6+31} = 0.108$$

=>Etb2=
$$E_{tb1} \left[\frac{1 + k_2 t_2^{\frac{1}{3}}}{1 + k_2} \right]^3 = 291.442 x \left[\frac{1 + 0.108 x 1.029^{\frac{1}{3}}}{1 + 0.108} \right]^3 = 292.258 \text{ (MPa)}$$

Ta có bảng tính toán tổng hợp như sau:

	STT	Lớp vật liệu	Ev	t = E2/E1	hi (cm)	k = h2/h1	Htb (cm)	E'tb (MPa)
		(từ trên xuống)	(MPa)					
	1	Bê tông nhựa chặt C12.5	300	1.029	4	0.108	41	292.258
Ī	2	Bê tông nhựa chặt C19	250	0.833	6	0.194	37	291.442
	3	Cấp phối đá dăm loại I	300	0	31	0	31	300

ĐỔ ÁN THIẾT KẾ ĐƯỜNG GVHD : TRẦN VỮ TỰ

Tính toán Etb của các phân lớp trên CPDD loại II

Với
$$\frac{H}{D} = \frac{41}{33} = 1.242$$
 xét đến hệ số điều chỉnh: $\beta = 1.135$

Vậy Etb
$$dc = \beta * Etb = 1.135* 292.258 = 331.74 (Mpa)$$

Tính toán Ech của các phân lớp trên CPDD loại II

Với
$$\frac{H}{D} = \frac{41}{33} = 1.242$$
 và $\frac{E_0}{E_1} = \frac{E_0}{E^{dc}_{tb}} = \frac{44}{331.74} = 0.1326$
=> $\frac{E_{ch}}{E^{dc}} = \frac{Ech}{331.74} = 0.446 => Ech = 0.446 \times 331.74 = 147.95$ (Mpa)

Với
$$\frac{H}{D} = \frac{41}{33} = 1.242$$
 và $\frac{E_1}{E_2} = \frac{E^{dc}_{tb}}{E_{cb}} = \frac{331.74}{147.95} = 2.242$

Góc ma sát φ =12 độ, áp lực tính toán lên mặt đường p=0.6 (Mpa)

Tra toán đồ hình 5 theo [TCCS38:2022] có:

$$\frac{T_{ax}}{p} = 0.092 \Rightarrow T_{ax} = 0.6x0.092 = 0.0552 \text{ (Mpa)}$$

Với H=41 cm và φ =12 độ, tra toán đồ hình 6 theo [TCCS38:2022] có:

$$T_{av} = 0.0006 \text{ (Mpa)}$$

Tính lực dính tính toán của đất nền C_{ff}:

Ctt = C.K1.K2.K3

C = 0.031: lực dính của đất nền.

K1: hệ số xét đến sự suy giảm sức chống cắt trượt khi đất hay vật liệu kém dính chịu tải trọng động và gây dao động. Với kết cấu áo đường phần xe chạy lấy K1 = 0.6.

K2: hệ số xét đến các yếu tố tạo ra sự làm việc không đồng nhất của kết cấu. Hệ số này phụ thuộc số trục xe qui đổi mà kết cấu chịu đựng trong 1 ngày đêm. Ntt = 528 (trục xe tiêu chuẩn /ngđ/làn) dưới $1000 \rightarrow K2 = 0.8$.

K3: hệ số xét đến sự gia tăng sức chống cắt của đất hay vật liệu kém dính trong điều kiện chúng làm việc trong kết cấu khác với trong mẫu thử. Hệ số này phụ thuộc loại đất trong khu vực tác dụng của nền đường. Đất nền là đất cát thô nên K3 = 7.

$$\rightarrow$$
 Ctt = 0.031 x 0.6 x 0.8 x 7 = 0.104 (Mpa)

Kiểm tra điều kiện cắt trượt:

$$T_{ax} + T_{av} = 0.0552 + 0.0006 = 0.0558 \text{ (Mpa)} < \frac{C_{tt}}{K_{cd}^{tr}} = \frac{0.104}{0.9} = 0.1156 \text{ (Mpa)}$$

Như vậy giữa lớp phối đá dăm loại I và lớp cấp phối đá dăm loại II có đủ khả năng chống cắt trượt

Đáy lớp CPĐD loại II (Giữa nền đất và CPĐD loại II)

Lớp	Loại kết cấu	Bề dày(cm)	Modul trượt (Mpa)						
1	Bê tông nhựa chặt C12.5	h1=4	E1=300						
2	Bê tông nhựa chặt C19	h2=6	E2=250						
3	Cấp phối đá dăm loại I	h3=31	E3=300						
4	Cấp phối đá dăm loại II	h4=37	E4=250						
Nền đất BAZAN có E0 = 44 Mpa, φ=12 độ, C=0.031									

Ta thực hiện xét từ dưới lên, qui đổi hệ nhiều lớp về hệ 2 lớp:

Lớp 4-3:
$$t1 = \frac{E_3}{E_4} = \frac{300}{250} = 1.2 \text{ và } k1 = \frac{h_3}{h_4} = \frac{31}{37} = 0.838$$

=>Etb1=
$$E_4 \left[\frac{1 + k_1 \cdot t_1^{\frac{1}{3}}}{1 + k_1} \right]^3 = 250x \left[\frac{1 + 0.838x1.2^{\frac{1}{3}}}{1 + 0.838} \right]^3 = 272.044 \text{ (MPa)}$$

Lớp 3-2:
$$t2 = \frac{E_2}{E_{th1}} = \frac{250}{272.044} = 0.919 \text{ và } \text{ k2} = \frac{h_2}{h_3 + h_4} = \frac{6}{31 + 37} = 0.088$$

=>Etb2=
$$E_{tb1}$$
 $\left[\frac{1+k_2t_2^{\frac{1}{3}}}{1+k_2}\right]^3$ =272.044 x $\left[\frac{1+0.088x0.919^{\frac{1}{3}}}{1+0.088}\right]^3$ =270.215 (MPa)

Lớp 3: t3=
$$\frac{E_1}{E_{tb2}}$$
= $\frac{300}{270.215}$ =1.11và k3= $\frac{h_1}{h_2 + h_3 + h_4}$ = $\frac{4}{31 + 39 + 6}$ =0.054

=>Etb3=
$$E_{tb2}$$
 $\left[\frac{1+k_3.t_3^{\frac{1}{3}}}{1+k_3}\right]^3$ =270.215 x $\left[\frac{1+0.054x1.11^{\frac{1}{3}}}{1+0.054}\right]^3$ =271.688 (Mpa)

Ta có bảng tính toán tổng hợp như sau:

STT	Lớp vật liệu	Ev	t = E2/E1	hi (cm)	k = h2/h1	Htb (cm)	E'tb (MPa)
	(từ trên xuống)	(MPa)					
	BTN C12.5	300	1.11	4	0.054	78	271.688
	BTN C19	250	0.919	6	0.088	74	270.215
	Cấp phối đá dăm loại I	300	1.2	31	0.838	68	272.044
	Cấp phối đá dăm loại II	250	0	37	0	37	250

Với
$$\frac{H}{D} = \frac{78}{33} = 2.364$$
 xét đến hệ số điều chỉnh

$$\beta = 1.114. \left(\frac{H}{D}\right)^{0.12} = 1.114x \left(\frac{78}{33}\right)^{0.12} = 1.235$$

Vậy Etbđc = β * Etb = 1.235 * 271.688 = 335.55 (Mpa)

Với
$$\frac{H}{D} = \frac{78}{33} = 2.364$$
 và $\frac{E_1}{E_2} = \frac{E^{dc}_{tb}}{E_0} = \frac{335.55}{44} = 7.626$

Góc ma sát φ =12 độ, áp lực tính toán lên mặt đường p=0.6 (Mpa)

Tra toán đồ hình 5 theo [TCCS38:2022] có:

$$\frac{T_{ax}}{p} = 0.0129 \Rightarrow T_{ax} = 0.6x0.0129 = 0.0077 \text{ (Mpa)}$$

Với H=78 cm và φ =12 độ, tra toán đồ hình 6 theo [TCCS38:2022] có:

$$T_{av} = 0.0011 \text{ (Mpa)}$$

Tính lực dính tính toán của đất nền Ctt:

$$Ctt = C.K1.K2.K3$$

C = 0.031: lực dính của đất nền.

K1: hệ số xét đến sự suy giảm sức chống cắt trượt khi đất hay vật liệu kém dính chịu tải trọng động và gây dao động. Với kết cấu áo đường phần xe chạy lấy K1 = 0.6.

K2: hệ số xét đến các yếu tố tạo ra sự làm việc không đồng nhất của kết cấu. Hệ số này phụ thuộc số trục xe qui đổi mà kết cấu chịu đựng trong 1 ngày đêm. Ntt = 528 (trục xe tiêu chuẩn /ngđ/làn) dưới $1000 \rightarrow K2 = 0.8$.

K3: hệ số xét đến sự gia tăng sức chống cắt của đất hay vật liệu kém dính trong điều kiện chúng làm việc trong kết cấu khác với trong mẫu thử. Hệ số này phụ thuộc loại đất trong khu vực tác dụng của nền đường. Đất nền là đất cát thô nên K3 = 7.

$$\rightarrow$$
 Ctt = 0.031 x 0.6 x 0.8 x 7 = 0.104 (Mpa)

Kiểm tra điều kiện cắt trượt:

$$T_{ax} + T_{av} = 0.0077 + 0.0011 = 0.0088 \text{ (Mpa)} < \frac{C_{tt}}{K_{cd}^{tr}} = \frac{0.104}{0.9} = 0.1156 \text{ (Mpa)}$$

Như vậy giữa nền đất và lớp cấp phối đá dăm loại II có đủ khả năng chống cắt trượt

6.2.3.2. Kiểm tra cường độ theo tiêu chuẩn chịu kéo uốn các lớp bê tông nhựa

Theo [TCCS38:2022], kết cấu được xem là đủ cường độ chịu kéo uốn khi thỏa mãn điều kiện sau:

$$\sigma_{ku} \leq \frac{R_{tt}^{ku}}{K_{cd}^{ku}}$$

Trong đó:

 σ_{ku} : ứng suất chịu kéo uốn lớn nhất phát sinh ở đáy lớp vật liệu liền khối dưới tác dụng của tải trọng bánh xe.

 R_{tt}^{ku} : cường độ chịu kéo uốn tính toán của vật liệu liền khối

 K_{cd}^{ku} : hệ số cường độ chịu kéo uốn được chọn tùy thuộc độ tin cậy thiết kế

Với độ tin cậy 0.85 theo bảng 8 [TCCS38:2022], $K_{cd}^{ku} = 0.9$

- Tính ứng suất chịu kéo uốn lớn nhất ở đáy các lớp bê tông nhựa : $\sigma_{lu} = \overline{\sigma_{lu}} \cdot p k_h$

p = 0.6: áp lực của tải trọng trục tính toán.

 k_b : hệ số xét đến đặc điểm phân bố ứng suất trong kết cấu áo đường dưới tác dụng của tải trọng tính toán là bánh đôi hoặc bánh đơn. Khi kiểm tra với cụm bánh đôi (trường hợp tính với tải trọng trục tiêu chuẩn) thì lấy $k_b = 0.85$.

 $\overline{\sigma_{ku}}$: ứng suất kéo uốn đơn vị, được tính như sau:

Kiểm tra kéo uốn ở đáy lớp mặt trên BTN chặt C12.5

Đối với bê tông nhựa lớp dưới:

Lớp	Loại kết cấu	Bề dày(cm)	Modul trượt (Mpa)						
1	Bê tông nhựa chặt C12.5	h1=4	E1=1800						
2	Bê tông nhựa chặt C19	h2=6	E2=1600						
3	Cấp phối đá dăm loại I	h3=31	E3=300						
4	Cấp phối đá dăm loại II	h4=37	E4=250						
Nền đất BAZAN có $E_0 = 44$ Mpa, $\varphi = 12$ độ, $C = 0.031$									

Qui đổi các lớp dưới đáy về một lớp, tính toán tương tự

STT	Lớp vật liệu	E _{ku}	T=	hi	K=	Htb	E'tb
	(từ	(MPa)	E2/E1	(cm)	h2/h1	(cm)	(MPa)
	trên						
	xuống)						
1	BTN	2000	7.352	6	0.088	74	339.446
	C19						
2	Cấp	300	1.2	31	0.838	68	272.041
	phối						
	đá dăm						
	loại I						
3	Cấp	250	0	37	0	37	250

phối			
đá dăm			
loại II			

Với
$$\frac{H}{D} = \frac{74}{33} = 2.242 > 2 = \beta = 1.114. \left(\frac{H}{D}\right)^{0.12} = 1.114x \left(\frac{74}{33}\right)^{0.12} = 1.227$$

Vậy Etb $dc = \beta * Etb = 1.227 * 339.446 = 416.50 (Mpa)$

Với $\frac{H}{D} = \frac{74}{33} = 2.242 > 2$, Theo phụ lục E có:

Ech=
$$\frac{1.05xE_0}{1+\frac{E_0}{E_1}} = \frac{1.05x44}{1+\frac{44}{416.50}} = 209.08 \text{ (Mpa)}$$

$$\frac{1}{\sqrt{1+4x\left(\frac{H}{D}\right)^2 x\left(\frac{E_0}{E_1}\right)^{-0.67}}} + \frac{E_0}{E_1} = \frac{1.05x44}{\sqrt{1+4x\left(\frac{74}{33}\right)^2 x\left(\frac{44}{416.50}\right)^{-0.67}}} + \frac{44}{416.50}$$

$$\frac{H_1}{D} = \frac{4}{33} = 0.121 \text{ và } \frac{E_{tb}}{E_{ch.m}} = \frac{2200}{209.08} = 10.522, \text{ theo toán đồ hình 7, [TCCS38:2022] có:}$$

$$\overline{\sigma_{ku}} = 2.455$$

Vậy:
$$\sigma_{k_0} = \overline{\sigma_{k_0}} \cdot p.k_b = 2.455 \times 0.6 \times 0.85 = 1.25 (MPa)$$

Tính cường độ chịu kéo uốn tính toán:

$$R_{tt}^{ku} = \text{k1. k2. } R_{ku} = 0.458 \times 1.0 \times 2.8 = 1.28 \text{ (Mpa)}$$

k1: hệ số xét đến sự suy giảm cường độ do vật liệu bị mỏi dưới tác dụng của tải trọng trùng phục Đối với bê tông nhựa:

$$K_1 = \frac{11.11}{N_e^{0.22}} = \frac{11.11}{(1.98x10^6)^{0.22}} = 0.458$$

 K_2 : hệ số xét đến sự suy giảm cường độ theo thời gian so với các tác nhân về khí hậu, thời tiết Vật liệu gia cố chất liên kết vô cơ: K_2 =1.0

 R_{ku} : Cường độ chịu kéo uốn giới hạn ở nhiệt độ tính toán, R_{ku} =2.8 (Mpa) (C.1-phụ lục C) Kiểm tra khả năng chịu kéo uốn của BTN C12.5 với K_{cd}^{ku} = 0.9:

$$\sigma_{ku} = 1.11 \text{ (Mpa)} \le \frac{R_{tt}^{ku}}{K_{tt}^{ku}} = \frac{1.28}{0.9} = 1.42 \text{ (Mpa)}$$

Vậy kết cấu áo đường đảm bảo tiêu chuẩn chịu kéo uốn ở đáy lớp BTN C12.5

Kiểm tra kéo uốn ở đáy lớp mặt dưới BTN chặt C19

Đối với bê tông nhựa lớp dưới:

Lớp	Loại kết cấu	Bề dày(cm)	Modul trượt (Mpa)				
1	Bê tông nhựa chặt C12.5	h1=4	E1=1800				
2	Bê tông nhựa chặt C19	h2=6	E2=1600				
3	Cấp phối đá dăm loại I	h3=31	E3=300				
4	Cấp phối đá dăm loại II	h4=37	E4=250				
Nền đất BAZAN có E0 = 44 Mpa, φ =12 độ, C=0.031							

$$E_{tb} = \frac{1800x4 + 1600x6}{4 + 6} = 1680 \text{ (Mpa)}$$

Qui đổi các lớp dưới đáy về một lớp, tính toán tương tự

STT	Lớp vật liệu	E _{ku}	T=	hi	K=	Htb	E'tb
	(từ	(MPa)	E2/E1	(cm)	h2/h1	(cm)	(MPa)
	trên						
	xuống)						
1	Cấp phối đá	300	1.2	31	0.838	68	272.041
	dăm loại I						
2	Cấp phối đá	250	0	37	0	37	250
	dăm loại II						

Với
$$\frac{H}{D} = \frac{68}{33} = 2.061 \implies \beta = 1.114. \left(\frac{H}{D}\right)^{0.12} = 1.114x \left(\frac{68}{33}\right)^{0.12} = 1.215$$

Vậy Etbđc = β * Etb = 1.215 * 272.041= 330.53 (Mpa)

Với $\frac{H}{D} = \frac{68}{33} = 2.061 > 2$, Theo phụ lục E có:

Ech=
$$\frac{1.05xE_0}{1 + \frac{E_0}{E_1}} = \frac{1.05x44}{1 + \frac{44}{330.53}} = 169.89 \text{ (Mpa)}$$

$$\sqrt{1 + 4x\left(\frac{H}{D}\right)^2 x\left(\frac{E_0}{E_1}\right)^{-0.67}} + \frac{E_0}{E_1} = \frac{1.05x44}{1 + \frac{44}{330.53}} = 169.89 \text{ (Mpa)}$$

$$\frac{H_1}{D} = \frac{4+6}{33} = 0.303 \text{ và } \frac{E_1}{E_{ch,m}} = \frac{1680}{169.89} = 9.89$$

Theo toán đồ hình 7, [TCCS38:2022] có: $\overline{\sigma_{ku}} = 2$

Vậy:
$$\sigma_{ku} = \overline{\sigma_{ku}} \cdot p \cdot k_b = 2 \times 0.6 \times 0.85 = 1.02 (MPa)$$

Tính cường độ chịu kéo uốn tính toán:

$$R_{tt}^{ku} = \text{k1. k2. } R_{ku} = 0.46 \times 1.0 \times 2.0 = 0.92 \text{ (Mpa)}$$

k1: hệ số xét đến sự suy giảm cường độ do vật liệu bị mỏi dưới tác dụng của tải trọng trùng phục Đối với bê tông nhựa:

$$K_1 = \frac{11.11}{N_e^{0.22}} = \frac{11.11}{(1.98x10^6)^{0.22}} = 0.46$$

 K_2 : hệ số xét đến sự suy giảm cường độ theo thời gian so với các tác nhân về khí hậu, thời tiết Vật liệu gia cố chất liên kết vô cơ: K_2 =1.0

 R_{ku} : Cường độ chịu kéo uốn giới hạn ở nhiệt độ tính toán, R_{ku} =2.0 (Mpa) (C.1-phụ lục C)

Kiểm tra khả năng chịu kéo uốn của BTN C12.5 với $K_{cd}^{ku}=0.9$:

$$\sigma_{ku} = 1.02 \text{ (Mpa)} \le \frac{R_{tt}^{ku}}{K_{tt}^{ku}} = \frac{0.92}{0.9} = 1.03 \text{ (Mpa)}$$

Vậy kết cấu áo đường đảm bảo tiêu chuẩn chịu kéo uốn ở đáy lớp BTN C19

Kết luận chung

Kết cấu lớp mặt đường đã chọn thỏa mãn các điều kiện tiêu chuẩn độ võng đàn hồi giới hạn, điều kiện cân bằng về trượt trong nền đất và điều kiện chịu kéo khi uốn.

6.3. Xác định kết cấu lề gia cố

Kết cấu lề gia cố phải được tính toán thiết kế theo tiêu chuẩn mặt đường hiện hành với yêu cầu chịu được lưu lượng xe tính toán (xe tiêu chuẩn /làn/ngày đêm) từ 35% đến 50% lưu lượng xe chạy tính toán của làn xe cơ giới kề liền.

Tương tự như tính mặt đường, tính cho 50% lưu lượng xe chạy trên đường.

Ta có: Ntk = $959 \times 0.5 = 479.5$ (trục xe tiêu chuẩn/ngày)

Số truc xe tiêu chuẩn tính toán: Ntt = Ntk.fl

Đường cấp III có 2 làn xe không có dải phân cách nên f
1 = 0.55

Vậy ta có: Ntt = $479.5 \times 0.55 = 263.725$ (trục/làn.ngđ)

*Số trục xe tiêu chuẩn tích lũy trên 1 làn xe trong thời hạn thiết kế

Tỷ lệ tăng xe hàng năm là q=6% ta tính Ne theo biểu thức:

$$Ne = \frac{[(1+q)^t - 1]}{a(1+q)^{t-1}} x365xN_{tt} = \frac{[(1+0.06)^{15} - 1]}{0.06(1+0.06)^{15-1}} x365x263.725 = 0.94x10^6 \text{ (trục tiêu chuẩn/ làn)}$$

 $Ne>0.5x10^6$ nên bề dày tối thiểu của lớp bê tông nhựa là 8(5) cm.

Ntt=263.725 (trục/ làn.ngđ), tra bảng 9 [TCCS38:2022] có Eyc = 164 (Mpa)

Trị số mô dun đàn hồi xác định theo bảng 9 [TCCS38:2022] không được nhỏ hơn trị số tối thiểu quy định ở bảng 10 [TCCS38:2022] với đường cấp III và loại tầng mặt của kết cấu áo đường thiết kế là cấp cao A1 ta có trị số Eycmin = 140(120) (Mpa).

Vậy Chọn Eyc =164 (Mpa).

6.3.1. Chọn kết cấu lề gia cố

Kêt cấu lề gia cố bố trí tầng mặt có cùng loại vật liệu và bề dày với kết cấu áo đường để dễ dàng thi công, đồng thơi phải thỏa mãn các điều kiện tiêu chuẩn độ võng đàn hồi giới hạn, điều kiện cân bằng về trượt trong nền đất và điều kiện chịu kéo khi uốn.

Theo tiêu chuẩn [TCCS38:2022] kết cấu lề gia cố được là đủ cường độ khi trị số mô đun đàn hồi chung của cả kết cấu nền áo đường Ech lớn hơn hoặc bằng trị số mô đun đàn hồi yêu cầu Eyc nhân thêm với một hệ số dự trữ cường độ về độ võng được xác định tùy theo độ tin cậy mong muốn.

$$Ech \ge K_{cd}^{dv}.Eyc$$

Xác định hệ cường độ và chọn độ tin cậy mông muốn:

Dựa theo Bảng 7 [TCCS38:2022] với đường cấp III, Vtk = 60Km/h ta lựa chọn độ tin cậy thiết kế là 0.85

Tra bảng 8 [TCCS38:2022] ta có thể: $K_{cd}^{\ \ \ \ \ \ \ \ \ \ \ \ } = 1.06$

$$Ech \ge K_{cd}^{dv}.Eyc = 1.06 \times 164 = 173.84 \text{ (Mpa)}$$

Sơ bộ chọn kết cấu lề gia cố:

Lớp	Loại kết cấu	Bề dày(cm)	Modul trượt (Mpa)						
1	Bê tông nhựa chặt C19	h1=6	E2=1600						
2	Cấp phối đá dăm loại I	h2=24	E3=300						
3	Cấp phối đá dăm loại II	h3=25	E4=250						
Nền đất BAZAN có E0 = 44 Mpa, φ =12 độ, C=0.031									

6.3.2. Tính toán kiểm tra kết cấu lề gia cố

6.3.2.1. Kiểm tra tiêu chuẩn độ võng đàn hồi giới hạn

-Đổi nhiều lớp về hệ 2 lớp được thực hiện theo công thức sau:

$$Etb = E\left[\frac{1 + k \cdot t^{\frac{1}{3}}}{1 + k}\right]$$

Với
$$k = \frac{h_1}{h_2}$$
 và $t = \frac{E_1}{E_2}$ theo [TCCS38:2022]

ĐỔ ÁN THIẾT KẾ ĐƯỜNG GVHD : TRẦN VŨ TỰ

Tính toán độ võng đàn hồi giới hạn tương tự như kết cấu áo đường

-Kết quả được tính như bảng sau:

STT	Lớp vật liệu	Ev	t = E2/E1	hi (cm)	k = h2/h1	Htb (cm)	E'tb (MPa)
	(từ trên xuống)	(MPa)					
2	BTN C19	350	1.279	6	0.122	55	281.435
3	Cấp phối đá dăm loại I	300	1.200	24	0.960	49	273.731
4	Cấp phối đá dăm loại II	250	0.000	25	0.000	25	250.000

Với
$$\frac{H}{D} = \frac{55}{33} = 1.667$$
, xét đến hệ số điều chỉnh: $\beta = 1.191$

Vậy Etbđc =
$$\beta$$
 * Etb = 1.191 * 281.435 = 335.19 (Mpa)

Với
$$\frac{H}{D} = \frac{55}{33} = 1.667$$
, $\frac{E_0}{E_1} = \frac{44}{335.19} = 0.131$, tra toán đồ hình 2 có:

$$\frac{E_{ch}}{E_1} = 0.525$$
, Vậy $Ech = 0.525x335.19 = 175.97 (Mpa) \ge K_{cd}^{dv}$. Eyc = 1.06×164=173.84 (Mpa)

=> Vậy kết cấu lề gia cố thỏa tiêu chuẩn độ võng đàn hồi

6.3.2.2. Kiểm tra theo tiêu chuẩn chịu cắt trượt trong nền đất và lớp vật liệu kém dính (lề gia cố) Để đảm bảo không phát sinh biến dạng dẻo cục bộ trong nền đất và các lớp vật liệu dính, cấu tạo kết cấu áo đường phải thỏa điều kiện sau:

$$T_{ax} + T_{av} \le \frac{C_{tt}}{K_{cd}^{tr}}$$

Trong đó:

 T_{ax} (Mpa): ứng suất cắt hoạt động lớn nhất do tải trọng tính toán bánh xe tính toán gây ra trong nền đất hoặc lớp vật liệu kém dính.

 T_{av} (Mpa): ứng suất cắt hoạt động do trọng lượng bản thân các lớp vật liệu nằm trên nó gây ra cũng tại điểm đang xét.

 C_{tt} : lực dính tính toán của đất nền hoặc vật liệu kém dính ở trạng thái độ ẩm, độ chặt tính toán.

 K_{cd}^{tr} : hệ số cường độ chịu cắt trượt tùy thuộc vào độ tin cậy thiết kế. Theo bảng 8.[TCCS38:2022], với độ tin cậy 0.85 thì $K_{cd}^{tr} = 0.9$

Lớp	Loại kết cấu	Bề dày(cm)	Modul trượt (Mpa)
1	Bê tông nhựa chặt C19	h1=6	E2=250
2	Cấp phối đá dăm loại I	h2=24	E3=300

3	Cấp phối đá dăm loại II	h3=25	E4=250
	Nền đất BAZAN có E0 =	= 44 Mpa, <i>φ</i> =12	độ, C=0.031

Đáy lớp CPĐD loại I (Giữa lớp CPĐD loại I và CPĐD loại II)

Lớp	Loại kết cấu	Bề dày(cm)	Modul trượt (Mpa)				
1	Bê tông nhựa chặt C19	h1=6	E1=250				
2	Cấp phối đá dăm loại I	h2=24	E2=300				

Ta thực hiện xét từ dưới lên tương tự như khi tính với kết cấu áo đường

Ta có bảng tính toán tổng hợp như sau:

STT	Lớp vật liệu	Ev	t = E2/E1	hi (cm)	k = h2/h1	Htb (cm)	E'tb (MPa)
	(từ trên xuống)	(MPa)					
1	BTN C19	250	0.833	6	0.2500	30	289.489
2	Cấp phối đá dăm loại I	300	0.000	24	0.000	24	300.000

Tính toán Etb của các phân lớp trên CPDD loại II

Với
$$\frac{H}{D} = \frac{30}{33} = 0.909$$
, xét đến hệ số điều chỉnh: $\beta = 1.093$

Vậy Etb
$$dc = \beta * Etb = 1.093* 289.489 = 316.46 (Mpa)$$

Tính toán Ech của các phân lớp trên CPDD loại II

Với
$$\frac{H}{D} = \frac{30}{33} = 0.909 \text{ và } \frac{E_0}{E_1} = \frac{E_0}{E_{th}^{dc}} = \frac{44}{316.46} = 0.139$$

$$=> \frac{E_{ch}}{E_{th}^{dc}} = \frac{Ech}{316.46} = 0.376 \Rightarrow Ech = 0.376 \times 316.46 = 118.99 \text{ (Mpa)}$$

Với
$$\frac{H}{D} = \frac{30}{33} = 0.909 \text{ và } \frac{E_1}{E_2} = \frac{E_{tb}^{dc}}{E_{ch}} = \frac{316.46}{118.99} = 2.659$$

Góc ma sát φ =12 độ, áp lực tính toán lên mặt đường p=0.6 (Mpa)

Tra toán đồ hình 5 theo [TCCS38:2022] có:

$$\frac{T_{ax}}{n} = 0.121 \Rightarrow T_{ax} = 0.6x0.121 = 0.0726$$
 (Mpa)

Với H=30 cm và φ =12 độ, tra toán đồ hình 6 theo [TCCS38:2022] có:

 $T_{av} = 0.0004 \text{ (Mpa)}$

Tính lực dính tính toán của đất nền Ctt:

$$Ctt = C.K1.K2.K3$$

C = 0.031: lực dính của đất nền.

K1: hệ số xét đến sự suy giảm sức chống cắt trượt khi đất hay vật liệu kém dính chịu tải trọng động và gây dao động. Với kết cấu áo đường phần xe chạy lấy K1 = 0.6.

K2: hệ số xét đến các yếu tố tạo ra sự làm việc không đồng nhất của kết cấu. Hệ số này phụ thuộc số trục xe qui đổi mà kết cấu chịu đựng trong 1 ngày đêm. Ntt = 528 (trục xe tiêu chuẩn /ngđ/làn) dưới $1000 \rightarrow K2 = 0.8$.

K3: hệ số xét đến sự gia tăng sức chống cắt của đất hay vật liệu kém dính trong điều kiện chúng làm việc trong kết cấu khác với trong mẫu thử. Hệ số này phụ thuộc loại đất trong khu vực tác dụng của nền đường. Đất nền là đất cát thô nên K3 = 7.

$$\rightarrow$$
 Ctt = 0.031 x 0.6 x 0.8 x 7 = 0.104 (Mpa)

Kiểm tra điều kiện cắt trượt:

$$T_{ax} + T_{av} = 0.0726 + 0.0004 = 0.073 \text{ (Mpa)} < \frac{C_{tt}}{K_{cd}^{tr}} = \frac{0.104}{0.9} = 0.1156 \text{ (Mpa)}$$

Như vậy giữa lớp phối đá dăm loại I và lớp cấp phối đá dăm loại II có đủ khả năng chống cắt trượt

Đáy lớp CPDD loại II (Giữa đất nền và CPDD loại II)

STT	Lớp vật liệu	Ev	t = E2/E1	hi (cm)	k = h2/h1	Htb (cm)	E'tb (MPa)
	(từ trên xuống)	(MPa)					
	BTN C19	250	0.913	6	0.122	55	271.071
	Cấp phối đá dăm loại I	300	1.200	24	0.960	49	273.731
	Cấp phối đá dăm loại II	250	0.000	25	0.000	25	250.000

Với
$$\frac{H}{D} = \frac{55}{33} = 1.667$$
, xét đến hệ số điều chỉnh: $\beta = 1.191$

Vậy Etbắc =
$$\beta$$
 * Etb = 1.191 * 271.071 = 332.94 (Mpa)

Với
$$\frac{H}{D} = \frac{55}{33} = 1.667, \ \frac{E_1}{E_0} = \frac{335.19}{44} = 7.337$$

Góc ma sát φ =12 độ, áp lực tính toán lên mặt đường p=0.6 (Mpa) có:

Tra toán đồ hình 4 theo [TCCS38:2022] có:

$$\frac{T_{ax}}{p} = 0.0219 \Rightarrow T_{ax} = 0.6x0.0219 = 0.0131 \text{ (Mpa)}$$

Với H=55 cm và φ =12 độ, tra toán đồ hình 6 theo [TCCS38:2022] có: T_{ev} =0.0008 (Mpa)

Tính lực dính tính toán của đất nền Ctt:

$$Ctt = C.K1.K2.K3$$

C = 0.031: lực dính của đất nền.

K1: hệ số xét đến sự suy giảm sức chống cắt trượt khi đất hay vật liệu kém dính chịu tải trọng động và gây dao động. Với kết cấu áo đường phần xe chay lấy K1 = 0.6.

K2: hệ số xét đến các yếu tố tạo ra sự làm việc không đồng nhất của kết cấu. Hệ số này phụ thuộc số trục xe qui đổi mà kết cấu chịu đựng trong 1 ngày đêm. Ntt = 528 (trục xe tiêu chuẩn /ngđ/làn) dưới $1000 \rightarrow K2 = 0.8$.

K3: hệ số xét đến sự gia tăng sức chống cắt của đất hay vật liệu kém dính trong điều kiện chúng làm việc trong kết cấu khác với trong mẫu thử. Hệ số này phụ thuộc loại đất trong khu vực tác dụng của nền đường. Đất nền là đất cát thô nên K3 = 7.

$$\rightarrow$$
 Ctt = 0.031 x 0.6 x 0.8 x 7 = 0.104 (Mpa)

Kiểm tra điều kiện cắt trượt:

$$T_{ax} + T_{av} = 0.0131 + 0.0008 = 0.0139 \text{ (Mpa)} < \frac{C_{tt}}{K_{cd}^{tr}} = \frac{0.104}{0.9} = 0.1156 \text{ (Mpa)}$$

Như vậy giữa nền đất lề gia cố và lớp cấp phối đá dăm loại II có đủ khả năng chống cắt trượt

6.3.2.3. Kiểm tra cường độ theo tiêu chuẩn chịu kéo uốn các lớp bê tông nhựa

Theo [TCCS38:2022], kết cấu được xem là đủ cường độ chịu kéo uốn khi thỏa mãn điều kiện sau:

$$\sigma_{ku} \leq \frac{R_{tt}^{ku}}{K_{cd}^{ku}}$$

Trong đó:

 σ_{ku} : ứng suất chịu kéo uốn lớn nhất phát sinh ở đáy lớp vật liệu liền khối dưới tác dụng của tải trọng bánh xe.

 $R_{"}^{ku}$: cường độ chịu kéo uốn tính toán của vật liệu liền khối

 K_{cd}^{ku} : hệ số cường độ chịu kéo uốn được chọn tùy thuộc độ tin cậy thiết kế

Với độ tin cậy 0.85 theo bảng 8 [TCCS38:2022], $K_{cd}^{ku} = 0.9$

- Tính ứng suất chịu kéo uốn lớn nhất ở đáy các lớp bê tông nhựa : $\sigma_{lu} = \overline{\sigma_{lu}} \cdot p \cdot k_h$

 $p=0.6\mbox{:}$ áp lực của tải trọng trục tính toán.

 k_b : hệ số xét đến đặc điểm phân bố ứng suất trong kết cấu áo đường dưới tác dụng của tải trọng tính toán là bánh đôi hoặc bánh đơn. Khi kiểm tra với cụm bánh đôi (trường hợp tính với tải trọng trục tiêu chuẩn) thì lấy $k_b=0.85$.

 $\overline{\sigma_{ku}}$: ứng suất kéo uốn đơn vị, được tính như sau:

Kiểm tra kéo uốn ở đáy lớp mặt dưới BTN chặt C19

Đối với bê tông nhựa lớp dưới:

Lớp	Loại kết cấu	Bề dày(cm)	Modul trượt (Mpa)							
1	Bê tông nhựa chặt C19	h1=6	E2=1600							
2	Cấp phối đá dăm loại I	h2=24	E3=300							
3	Cấp phối đá dăm loại II	h3=25	E4=250							
	Nền đất BAZAN có E0 = 44 Mpa, φ =12 độ, C=0.031									

Qui đổi các lớp dưới đáy về một lớp, tính toán tương tự

STT	Lớp vật liệu	Ev	t = E2/E1	hi (cm)	k = h2/h1	Htb (cm)	E'tb (MPa)
	(từ trên xuống)	(MPa)					
1	Cấp phối đá dăm loại I	300	1,200	25	0.960	49	273.731
2	Cấp phối đá dăm loại II	250	0,000	24	0	24	250.000

Với
$$\frac{H}{D} = \frac{49}{33} = 1.485 =$$
Theo bằng 11 [TCCS 38:2022]: β=1.175

Vậy Etb
$$dc = \beta * Etb = 1.175 * 273.731 = 321.63 (Mpa)$$

Với
$$\frac{H}{D} = \frac{49}{33} = 1.485 < 2$$
, $\frac{E_0}{E_{tb}^{dc}} = \frac{44}{321.63} = 0.137$, Theo Theo hình 2, [TCCS 38:2022]:

$$\frac{E_{ch}}{E_{tb}^{dc}} = 0.500 \Rightarrow E_{ch} = 0.500x321.63 = 160.82 \text{ (Mpa)}$$

$$\frac{H_1}{D} = \frac{6}{33} = 0.182 \text{ và } \frac{E_1}{E_{ch,w}} = \frac{1600}{160.82} = 9.949$$

Theo toán đồ hình 7, [TCCS38:2022] có: $\overline{\sigma_{ku}}$ =2.291

Vậy:
$$\sigma_{ku} = \overline{\sigma_{ku}} \cdot p.k_b = 2.291 \times 0.6 \times 0.85 = 1.17 (MPa)$$

Tính cường độ chịu kéo uốn tính toán:

$$R_{tt}^{ku} = \text{k1. k2. } R_{ku} = 0.54 \times 1.0 \times 2.0 = 1.08 \text{ (Mpa)}$$

k1: hệ số xét đến sự suy giảm cường độ do vật liệu bị mỏi dưới tác dụng của tải trọng trùng phục Đối với bê tông nhựa:

$$K_1 = \frac{11.11}{N_e^{0.22}} = \frac{11.11}{(0.94x10^6)^{0.22}} = 0.54$$

 K_2 : hệ số xét đến sự suy giảm cường độ theo thời gian so với các tác nhân về khí hậu, thời tiết Vật liệu gia cố chất liên kết vô cơ: K_2 =1.0

 R_{ku} : Cường độ chịu kéo uốn giới hạn ở nhiệt độ tính toán, R_{ku} =2.0 (Mpa) (C.1-phụ lục C)

Kiểm tra khả năng chịu kéo uốn của BTN C12.5 với $K_{cd}^{ku} = 0.9$:

$$\sigma_{ku} = 1.17 \text{ (Mpa)} \le \frac{R_{tt}^{ku}}{K_{cd}^{ku}} = \frac{1.08}{0.9} = 1.19 \text{ (Mpa)}$$

Vậy kết cấu lề gia cố đảm bảo tiêu chuẩn chịu kéo uốn ở đáy lớp BTN C19

Kết luận chung

Kết cấu lề gia cố đã chọn thỏa mãn các điều kiện tiêu chuẩn độ võng đàn hồi giới hạn, điều kiện cân bằng về trượt trong nền đất và điều kiện chịu kéo khi uốn.

Bảng tổng hợp Cấu tạo và bề dày kết cấu áo đường và áo lề gia cố

Vật liệu	Chiều dày kết cấu	Chiều dầy kêt cấu áo
	áo đường (cm)	lề gia cố (cm)
Bê tông nhựa chặt C12.5	4	0
Bê tông nhựa chặt C19	6	6
Cấp phối đá dăm loại I	31	24
Cấp phối đá dăm loại II	37	25
Tổng	78	55

ĐỔ ÁN THIẾT KẾ ĐƯỜNG GVHD: TRẦN VỮ TỰ

CHƯƠNG 7: THIẾT KẾ MẶT CẮT NGANG

7.1 Khái niệm về thiết kế trắc ngang

- Mặt cắt ngang đường là mặt cắt đứng của nền đất vuông góc với trục đường. Mặt cắt ngang đường có các yếu tố sau này:

- Phần xe chạy: là phần của mặt cắt ngang đường trên đó xe chạy phần xe chạy có một hay nhiều xe. Chiều rộng của mỗi làn xe được xác định dựa vào bề rộng của xe và cấp đọ thiết kế thường là 3m; 3.5m; 3.75m.
- Chiều rộng phần xe chạy bằng tổng chiều rộng các làn xe. Trong pham vi phần xe chạy nền dường phải được tăng cường chịu lực bằng kết cấu mặt đường có khả năng chịu được lực tác dụng của xe chạy, của thời tiết. Đảm bảo mặt đương bằng phằng, đọ ma sắt không bị hư hỏng trong thời han phục vụ của công trình.
- Lè đường chức năng của nó là:
 - Giao thông bộ hành
 - Nơi để vật liệu khi duy tu, sửa cữa đường.
 - Noi đỗ xe tạm thời, dừng xe khẩn cấp, giải an toàn
 - Trồng cây xanh, cọc tiêu, biển báo, cột cây số.
 - Giới hạn ranh giới mặt đường, giữ cho mép mặt đường không bị biến dạng
 - Để mở rộng phần mặt đường trong những đường cong có bán kính nhỏ.
- Chiều rộng lề tối thiểu là 0.5m (theo AASHTO là 0.6m) dùng ở đường địa phương
 Lưu lượng xe ít hoặc khi cần mở rộng phần xe chạy ở các đường cong. Độ dốc của lề đường
 thường làn dốc hơn đọ dốc đọ dốc ngang của phần xe chạy khoảng 2 □ 3%. Độ dốc ngang của
 mặt đường: bao gồm chiều rộng phần xe chạy, lề đường và dải phân cách.

7.2 Kết quả thiết kế trắc ngang đường ô tô trong đồ án (theo TCVN 4054-05)

- Cấp thiết kế của đường : Cấp III miền núi.

- Tốc độ thiết kế : $V_{tk} = 60 \text{ km/h}$

- Số làn xe cơ giới : 2 làn xe

- Bề rộng 1 làn xe : 3.75 m.

- Chiều rộng tối thiểu của lề đường : 1.5m

• Chiều rộng lề gia cố : 1.0m

Chiều rộng lề không gia cố : 0.5m

- Độ đốc ngang mặt đường làn xe chạy : 2%

- Độ đốc ngang mặt lề gia cố : 4%

- Độ đốc ngang mặt lề không gia cố

: 6%

CHƯƠNG 8: LUẬN CHỨNG KINH TẾ KỸ THUẬT

8.1. Cơ sở lập dự toán

- Căn cứ Định mức dự toán xây dựng công trình theo Thông tư số 10/2019 /TT-BXD, ngày
 26/12/1029 của Bộ Xây dựng.
- Căn cứ Định mức Lắp đặt máy và thiết bị công nghệ công trình theo Thông tư số 10/2019
 /TT- BXD, ngày 26/12/1029 của Bộ Xây dựng.
- Căn cứ Định mức Khảo sát xây dựng công trình theo Thông tư số 10/2019 /TT-BXD,
 ngày 26/12/1029 của Bộ Xây dựng.
- Thông tư 10/2019/TT-BXD ngày 26 tháng 12 năm 2019 Định mức xây dựng.
- Căn cứ đơn giá xây dựng khu vực Playku do Ủy ban nhân dân tỉnh Gia Lai ban hành.

8.2. Tổng mức đầu tư.

- Tổng mức đầu tư xây dựng là toàn bộ chi phí đầu tư xây dựng của dự án được xác định phù hợp với thiết kế cơ sở và các nội dung khác của Báo cáo nghiên cứu khả thi đầu tư xây dựng.
- Nội dung tổng mức đầu tư xây dựng, gồm: chi phí bồi thường, hỗ trợ và tái định cư (nếu có); chi phí xây dựng; chi phí thiết bị; chi phí quản lý dự án; chi phí tư vấn đầu tư xây dựng; Chi phí bồi thường, hỗ trợ và tái định cư gồm: chi phí bồi thường về đất, nhà, công trình trên đất, các tài sản gắn liền với đất, trên mặt nước và chi phí bồi thường khác theo quy định; các khoản hỗ trợ khi nhà nước thu hồi đất; chi phí tái định cư; chi phí tổ chức bồi thường, hỗ trợ và tái định cư; chi phí sử dụng đất, thuê đất tính trong thời gian xây dựng (nếu có); chi phí di dời, hoàn trả cho phần hạ tầng kỹ thuật đã được đầu tư xây dựng phục vụ giải phóng mặt bằng (nếu có) và các chi phí có liên quan khác;

Chi phí xây dựng gồm: chi phí xây dựng các công trình, hạng mục công trình của dự án; công trình, hạng mục công trình xây dựng tạm, phụ trợ phục vụ thi công; chi phí phá dỡ các công trình xây dựng không thuộc phạm vi của công tác phá dỡ giải phóng mặt bằng đã được xác định trong chi phí bồi thường, hỗ trợ và tái định cư;

Chi phí thiết bị gồm: chi phí mua sắm thiết bị công trình và thiết bị công nghệ; chi phí quản lý mua sắm thiết bị (nếu có); chi phí mua bản quyền phần mềm sử dụng cho thiết bị công trình, thiết bị công nghệ (nếu có); chi phí đào tạo và chuyển giao công nghệ (nếu có); chi phí gia công, chế tạo thiết bị cần gia công, chế tạo (nếu có); chi phí lắp đặt, thí nghiệm, hiệu chỉnh; chi phí chạy thử thiết bị theo yêu cầu kỹ thuật (nếu có); chi phí vận chuyển; bảo hiểm; thuế và các loại phí; chi phí liên quan khác

8.3. Chi phí xây dựng.

MHÐM	HẠNG MỤC	ĐƠN VỊ	KHỐI LƯỢNG	ĐƠN GIÁ	
				(đ)	TIÈN(đ)
I/ PHẦN NỀN					289.623.559
AB.25113	Đất đào nền đường	$100m^{3}$	133.481	1.072.940	143.217.104
Ð.giá TT	Cung cấp đất chọn lọc đắp nền đường	$100m^{3}$	52.441	2.000.000	104.882.000
AB.64123	T/ công đất đắp nền đường k >0.95	$100m^{3}$	14.3	592.509	8.472.878
AB.64134	T/ công đất đắp nền đường k >0.98	$100m^{3}$	42.980	768.999	33.051.577
II/ PHẦN MẶT	,				911.658.915
AD.21223	T/c lớp móng CPDD lớp dưới dày 35 cm	$100m^{3}$	54.21	1.055.91 6	57.241.206
AD.11222	T/c lớp móng CPDD lớp dưới dày 17cm	$100m^{3}$	26.83	15.819.03 4	424.424.682
AD.24214	Tưới nhựa thấm tiêu chuẩn 1.5 kg/m2	$100m^2$	108.87	1.511.18 2	164.522.384
AD.24223	Tưới nhựa lót tiêu chuẩn 1.0 kg/m2	$00m^{2}$	10.25	13.982	8.716.515
AD.23224	Thảm BTNC 19.5 dày 8cm	$00m^{2}$	10.25	-78.803	2.788.030

AD.24211	Tưới nhựa lót tiêu chuẩn 0.5 kg/m2		$100m^2$	110.25	784.612	86.503.473
AD.23233	Thảm BTNC 12.5 dày 5cm		$100m^2$	110.25	430.500	47.462.625
III/PHẦN LỀ G	JIA CÓ	•			,	578.443.933
AD.21223	T/c lớp móng CPDD lớp dưới dày 30 cm	100m	3	46.38	1.055.916	48.973.384
AD.11222	T/c lớp móng CPDD lớp dưới dày 18cm	1001	n^3	27.2	15.819.034	430.277.724
AD.24223	Tưới nhựa lót tiêu chuẩn 1.0 kg/m2	1001	n^2	52.06	713.982	37.169.902
AD.24211	Tưới nhựa lót tiêu chuẩn 0.5 kg/m2	1001	n^2	51.5	784.612	40.407.518
AD.23233	Thảm BTNC 12.5 dày 5cm	1001	n^2	50.21	430.500	21.615.405
	TÔNG GIÁ THÀN	IH XÂ	Y DŲNG ((đồng)	-	1.779.726.407
МНЭМ	HẠNG MỤC	ĐƠN	I VĮ	KHỐI LƯỢNG	ĐƠN GIÁ (đ)	THÀNH TIỀN(đ)
TỎNG GIÁ TI	HÀNH XÂY DỰNG C	ĊÀU		-1	- I	
Đơn giá TT	Cầu BTCT loại nhỏ 35 m	.m2		262.5	25.000.000	6.562.500.000
	•	0''	1 \ 1 \ \ \ 1	rng cống thoát nướ		

⁺ Giá thành xấy dựng cống thoát nước.

Số lượng cống tròn $\Phi = 1.75 m$	Số lượng cống tròn $\Phi = 2 m$
1	4
Thành tiền	Thành tiền
41.250.000	180.000.000

DEPARTMENT OF TRANSPORTATION ENGINEERING BỘ MÔN CÔNG TRÌNH GIAO THÔNG

21127036 STUDENT-ID

HƯỚNG DẪN

ADVISOR

PSG.TS Trần Vũ Tự

PSG.TS Trần Vũ Tự

Đồ Án Thiết Kế Đường

Bản vẽ số: TỞ SỐ: DRAWING No. SHEET No.

TÎ LỆ: X:5000 SCALE Y:500

NỀN ĐƯỜNG TRONG SIÊU CAO

NỀN ĐƯỜNG NỬA ĐÀO NỬA ĐẮP

	TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT TP. HCM HCMC UNIVERSITY OF TECHNOLOGY AND EDUCATION	ĐÒ ÁN MÔN HỌC CAPSTONE PROJECT		TÊN ĐÔ ÁN - PROJECT NAME						
	FALCULTY OF CIVIL ENGINEERING - KHOA XÂY DỰNG DEPARTMENT OF TRANSPORTATION ENGINEERING		Phạm Nguyễn Quốc Thắng 21127036	Đồ Án Thiết Kế Đường		TRÁC NGANG				
	BỘ MÔN CÔNG TRÌNH GIAO THÔNG	HƯỚNG DẪN ADVISOR	PSG.TS Trần Vũ Tự PSG.TS Trần Vũ Tự	Do All Tillet he Duolig	BÅN VË SÓ: DRAWING No.	2	TỞ SỐ : SHEET No.	1	TÎLỆ : SCALE	x:200 Y:200

NỀN ĐƯỜNG ĐẮP HOÀN TOÀN

NỀN ĐƯỜNG QUA SỐNG

TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT TP. HCM HCMC UNIVERSITY OF TECHNOLOGY AND EDUCATION	ĐÔ ÁN MÔN HỌC CAPSTONE PROJECT		TÊN ĐÔ ÁN - PROJECT NAME					
FALCULTY OF CIVIL ENGINEERING - KHOA XÂY DỰNG	SINH VIÊN-MSSV STUDENT-ID	Phạm Nguyễn Quốc Thắng 21127036	Đồ Án Thiết Kế Đường	TRÁC NGANG				
	HƯỚNG DẪN ADVISOR	PSG.TS Trần Vũ Tự PSG.TS Trần Vũ Tự	Do All Tillet Ne Dublig	BÅN VË SÓ: DRAWING No.	2 TỞ SỐ SHEET		TÎLỆ: X:200 SCALE Y:200	

NỀN ĐƯỜNG ĐÀO HOÀN TOÀN

NỀN ĐƯỜNG QUA CỌC CHUYỂN TIẾP

	TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT TP. HCM HCMC UNIVERSITY OF TECHNOLOGY AND EDUCATION		MÔN HỌC IE PROJECT	TÊN ĐÔ ÁN - PROJECT NAME				
A ONE	FALCULTY OF CIVIL ENGINEERING - KHOA XÂY DỰNG DEPARTMENT OF TRANSPORTATION ENGINEERING	SINH VIÊN-MSSV STUDENT-ID	Phạm Nguyễn Quốc Thắng 21127036	Đồ Án Thiết Kế Đường			TRẮC NGANG	
	BỘ MÔN CÔNG TRÌNH GIAO THÔNG	HƯỚNG DẪN ADVISOR	PSG.TS Trần Vũ Tự PSG.TS Trần Vũ Tự	Do All Illiet he Duolig	BÀN VỀ SỐ: DRAWING No.	2	TỞ SỐ: SHEET No. 3	TÎLỆ: X:200 SCALE Y:200

BỘ MÔN CÔNG TRÌNH GIAO THÔNG DRAWING No. SHEET No. SCALE ADVISOR PSG.TS Trần Vũ Tự

	TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT TP. HCM HCMC UNIVERSITY OF TECHNOLOGY AND EDUCATION	ĐÔ ÁN MÔN HỌC CAPSTONE PROJECT		TÊN ĐÒ ÁN - PROJECT NAME				
	FALCULTY OF CIVIL ENGINEERING - KHOA XÂY DỰNG DEPARTMENT OF TRANSPORTATION ENGINEERING BỘ MÔN CÔNG TRÌNH GIAO THÔNG	+	Phạm Nguyễn Quốc Thắng 21127036	Đồ Án Thiết Kế Đường	CẤU TẠO CÓNG			
		HƯỚNG DẪN ADVISOR	PSG.TS Trần Vũ Tự PSG.TS Trần Vũ Tự		BÅN VË SÓ: DRAWING No.	3	TỞ SỐ : SHEET No. 2	TÎLỆ : SCALE 1/200