AD-E300 442

DNA 4531F-2

AERODYNAMIC ACCOUNTING TECHNIQUE OF FOR DETERMINING EFFECTS OF NUCLEAR

DAMAGE TO AIRCRAFT

♥ Volume II – Program User Guide

General Dynamics Corporation

Fort Worth Division
P.O. Box 748, Grants Lane

Fort Worth, Texas 76101

28 February 1978

THIS DOCUMENT IS BEST QUALITY PRACTICABLE
THE COPY FIRMISHED TO DDC CONTAINED A
SIGNIFICANT NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

Final Report for Period 15 March 1977—30 January 1978

CONTRACT No. DNA 001-77-C-0075

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE 8342077464 N99QAXAE50602 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305

79 07

Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: TISI, WASHINGTON, D.C. 20305, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH TO BE DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE			READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GC	VT ACCESSION NO.	FRECIPIENT'S CATALOG NUMBER
DNA 4531F-2		(9)
4. TITLE (and Subtitle)			TYPE OF REPORT & PERIOD COVERED
AERODYNAMIC ACCOUNTIN	G TECHNIQUE FOR	DETERMINING /	Final Keport, for Period
EFFECTS OF NUCLEAR DA	MAGE TO AIRCRAFT	'	15 Mar 77—30 Jan 78
Volume II. Program Us	ser Guide.		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)			8. CONTRACT OR GRANT NUMBER(s)
Roy/Schemensky		(15)	DNA ØØ1-77-C-ØØ75
George Howell		·L	3,7
9. PERFORMING ORGANIZATION I	NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK ARE A ORK UNIT NUMBERS
General Dynamics Corp	oration		ARE TO NORK UNIT NUMBERS
Fort Worth Division,	P.O. Box 748, Gr	ants Lane	Subtask N99QAXA 506-02
Fort Worth, Texas 761			(12)E50
11. CONTROLLING OFFICE NAME	AND ADDRESS	1	12. REPORT DATE
Director		(11)	28 February 1978/
Defense Nuclear Agenc	-		252
Washington, D.C. 2030	ADDRESS(ILdifferent from	Controlling Office)	15. SECURITY CLASS (of this report)
•	(12) 253	ρ./	UNCLASSIFIED
			15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (33.12022
			E300 442
17. DISTRIBUTION STATEMENT (d	of the abstract entered in Blo	ck 20, if different fro	m Report)
17. DISTRIBUTION STATEMENT (c	of the abstract entered in Blo	ck 20, il dillerent fro	m Report)
17. DISTRIBUTION STATEMENT (c	of the abstract entered in Blo	ck 20, il dillerent tra	m Report)
	of the abstract entered in Blo	ck 20, il dillerent fra	m Report)
18. SUPPLEMENTARY NOTES	y the Defense Nu		under RDT&E RMSS Code
This work sponsored b B342077464 N99QAXAE50	by the Defense Nu 1602 H2590D. Se side if necessary and iden	clear Agency	under RDT&E RMSS Code
18. SUPPLEMENTARY NOTES This work sponsored b B342077464 N99QAXAE50 19. KEY WORDS (Continue on reverse) Drag Prediction	by the Defense Nu 1602 H2590D. The side if necessary and iden Roughness	clear Agency	under RDT&E RMSS Code
This work sponsored by B342077464 N99QAXAE50 Solve the Key words (Continue on reverse Drag Prediction Lift Prediction	by the Defense Num 1602 H2590D. The side II necessary and Iden Roughness Blast	clear Agency tify by block number, Comp	under RDT&E RMSS Code Duter Program Lear Damage
This work sponsored by B342077464 N99QAXAE50 19. KEY WORDS (Continue on reverse Drag Prediction Lift Prediction Aircraft	by the Defense Number of State of the Control of th	clear Agency tify by block number, Comp	under RDT&E RMSS Code Duter Program Lear Damage
This work sponsored by B342077464 N99QAXAE50 19. KEY WORDS (Continue on reverse Drag Prediction Lift Prediction	by the Defense Num 1602 H2590D. The side II necessary and Iden Roughness Blast	clear Agency	under RDT&E RMSS Code Duter Program Lear Damage
This work sponsored by B342077464 N99QAXAE50 19. KEY WORDS (Continue on reversed prag Prediction Lift Prediction Aircraft Damage	by the Defense Nucleon 19602 H2590D. So side if necessary and identification in the Roughness Blast Overpressure Thermal Effects of side if necessary and identification in the Roughness in the	clear Agency tify by block number, Comp Nucl This V	under RDT&E RMSS Code Outer Program Lear Damage
This work sponsored be B342077464 N99QAXAE50 19. KEY WORDS (Continue on reversed Drag Prediction Lift Prediction Aircraft Damage 20. ABSTRACT (Continue on reversed This report (Volume I	by the Defense Num 1602 H2590D. The se side if necessary and idea Roughness Blast Overpressure Thermal Effects The side if necessary and ideas I, Program User (clear Agency tify by block number, Comp Nucl This V ity by block number, Guide) 4descri	under RDT&E RMSS Code Outer Program Lear Damage olumb Lbes the computer program
B342077464 N99QAXAE50 19. KEY WORDS (Continue on reverse Drag Prediction Lift Prediction Aircraft Damage 20. ABSTRACT (Continue on reverse This report (Volume I developed for the aer	by the Defense Number of the Defense Number	clear Agency tify by block number; Comp Nucl This V tify by block number; Guide) Adescrition of aircra	under RDT&E RMSS Code Duter Program Lear Damage olumb Libes the computer program aft, including the effects o
This work sponsored b B342077464 N99QAXAE50 19. KEY WORDS (Continue on reverse Drag Prediction Lift Prediction Aircraft Damage 20. ABSTRACT (Continue on reverse This report (Volume I developed for the aer roughness and damage.	oy the Defense Number of the Market Number of State II necessary and Idea Roughness Blast Overpressure Thermal Effects of side II necessary and Idea II. The computer computer computer computer computer computer composition of the computer compute	clear Agency Comp Nucl This V (ity by block number) Guide) 4descri ion of aircra ode has the co	under RDT&E RMSS Code Duter Program Lear Damage
This work sponsored by B342077464 N99QAXAE50 19. KEY WORDS (Continue on reverse Drag Prediction Lift Prediction Aircraft Damage 20. ABSTRACT (Continue on reverse This report (Volume I developed for the aer roughness and damage. aerodynamic effects	oy the Defense Number of damage, such as	Clear Agency Comp Nucl This V (Ify by block number) Guide) (descrition of aircra ode has the composition, bent	under RDT&E RMSS Code Outer Program Lear Damage Locumb Libes the computer program aft, including the effects of capability of assessing the computer, and burnt skins, boundary
This work sponsored by B342077464 N99QAXAE50 19. KEY WORDS (Continue on reverse Drag Prediction Lift Prediction Aircraft Damage 20. ABSTRACT (Continue on reverse This report (Volume I developed for the aer roughness and damage. aerodynamic effects of layer thickness effects	oy the Defense Number of damage, such as sets, and loss of	clear Agency Comp Nucl This V This V Guide) Adescri tion of aircra ode has the of a rough, bent cadomes, pane	under RDT&E RMSS Code Duter Program Lear Damage Lear Damage

DD | FORM | 1473 | EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20: ABSTRACT (Continued)

The computer program is coded in the FORTRAN Extended Version IV language to operate on a CDC 6600 or CYBER 172 computer. The computer code structure is explained and a computer code input utilization is presented along with sample input and output with a FORTRAN source deck listing. Details of the methods, equations, and substantiating data for this computer code are contained in Volume I, Empirical Methods.

UNCLASSIFIED

TABLE OF CONTENTS Volume II

		Page
Section 1.	GENERAL DESCRIPTION	Page 3
Section 2.	AAT COMPUTER CODE UTILIZATION	5
Section 3.	SAMPLE PROBLEMS	39
Section 4.	PROGRAM DESCRIPTION	91
	4.1 Program Structure4.2 Subroutine Descriptions4.3 Common Block Descriptions4.4 Program Listing	91 91 111 126

ACCESSION	for
NTIS	Vicie Section
DDC	🖰 🥬 Section 🔲
UNIAMOUN	ro o
JUSH RET	124
gy BISTS(B)D Oist A	CANADA AN CODES
A	23

1. GENERAL DESCRIPTION

The Aerodynamic Accounting Technique Computer Code was developed to provide a computerized, systematic method to evaluate the aerodynamic effects of nuclear damage to an aircraft. In addition, it can be used to evaluate the aerodynamic characteristics of an undamaged configuration or any type damage that can be modeled into one of the fourteen damage modes provided by the program.

The computer program is coded in the Fortran Extended Version IV language to operate on the CDC 6600 computer at Wright-Patterson Air Force Base. It is also operational on General Dynamics' CDC CYBER 172 computer as procedure R7F. Four primary overlays are used by the program to keep the central memory core requirements below 54,000 bytes. The main program controls the calling of the four overlay programs: XINFT, GEOM, SURVEY, and NUCDAM. Figure 1.1 shows the program overlay structure and the arrangement of the 57 subprograms and subroutines that comprise the AAT computer Program XINPT controls the reading of input data and the printout of data that will be used in the problem. Program GEOM computes the geometric parameters that are required in the calcula-Program SURVEY controls the calculation of aerodynamic characteristics of the undamaged aircraft, and program NUCDAM determines the aerodynamic effects that result from the damage. The third primary overlay, SURVEY, calls four secondary overlay programs VGEOM, MCRIT, AEROA, and AEROB. These programs and subprograms call the appropriate subroutines necessary to make the computations.

The program utilization describes the inputs that are required. Aerodynamic characteristics of an undamaged configuration can be estimated by entering only the basic geometric parameters and the survey conditions. Aircraft damage evaluation is optional. The damage input data are contained in a separate data block and the effects of damage are determined on an incremental basis and integrated into the aerodynamics of the undamaged configuration.

FIGURE 1-1 PROGRAM OVERLAY STRUCTURE

2. AAT COMPUTER CODE UTILIZATION

The first step in preparing program input is to determine how to best represent the configuration with circular bodies and surfaces. Components such as the fuselage, canopy, stores, external fairings, and nacelles are represented as bodies, while the wing, horizontal tail, vertical tail, pylons, and ventral fins are represented as surfaces. A straight-wing planform is represented by one panel, and a cranked- or complex-wing planform is approximated with two panels. Up to seven bodies and seven surfaces may be used to represent a configuration. Figures 1 and 2 define some of the geometric parameters required to define the individual bodies and surfaces.

Input requirements for the Aerodynamic Accounting Technique computer code are partially determined by the options selected by the user. The input format is divided into 12 blocks to assist the user in determining his input requirements. The user may decide which blocks are necessary to complete his problem while not concerning himself with the remaining blocks. The user determines which data blocks are required from the following descriptions:

- 1. General Information. This block contains information that the AAT program needs to read the remainder of the input data. Indicators, such as the number of bodies and surfaces, are included, which tell the program which blocks of data will follow. Certain reference data and geometric dimensions are also included. This block is always required.
- 2. <u>Body Geometry.</u> The geometric parameters of each component which is represented as a body is contained in this block. A maximum of seven bodies may be used.
- 3. <u>Surface Geometry</u>. The geometry of each surface is represented in this block. A maximum of seven panels may be used, with either one or two panels for the main wing.
- 4. Arbitrary Airfoil. This block is used to describe the camber and thickness distribution of an arbitrary airfoil section if one of the standard sections contained internally is not sufficient.
- 5. <u>Variable Sweep</u>. Aircraft with movable wing panels such as the F-111 and B-1, may be evaluated at any selected sweep angle. This block of data is required to describe the wing movement.
- 6. <u>Survey Conditions</u>. This block of data contains the Mach number and Reynolds number conditions at which the analysis will be conducted.

Figure 2-1 Geometry for Closed Bodies and Nacelles

(a) Single-Panel Wing or Other Surface (Exposed Area)

Figure 2-2 Surface Geometry

- 7. Adjustment Factors. A table of adders and multipliers can be specified in this block to correlate the AAT predictions with known test levels. At least one card is always required.
- 8. Expansion Provisions. This data block is provided for future expansion.
- 9. <u>Damage Mode Indicators</u>. Provisions are included for fourteen modes of nuclear damage in the AAT program. Seven modes are for body damage and seven for surface damage. This block, which requires three cards, allows the user to select only those modes that are desired.
- 10. Body Damage Parameters. This block of data contains parameters that define nuclear damage to the bodies. It is required only if a body damage mode is indicated in Block number 9.
- 11. Surface Damage Parameters. This block describes nuclear damage to the surfaces and is similar in format to Block 10. It is required only if a surface damage mode is indicated in Block 9.
- 12. End of Problem. Describes how one may end the problem or change the input and run new problems.

These twelve blocks of data represent a wide range of options for defining the geometry and the manner in which the data are handled. Most aircraft analyses will not require all blocks.

It should be noted that there is an option that allows the program to compute the values of certain parameters that are shown as input. These items are indicated with an asterisk (*). If a zero or blank is input, the program will use other geometric parameters to compute these values. All dimensions are input in either inches, feet or meters, except for the roughness factor, which is always in inches. All angles are in degrees. The utilization specifies one of the following formats for each item of input:

"I" Format Input must be in integer form and right adjusted in the specified field.

"F" Format Input must include a decimal and may be anywhere within the specified field.

"A" Format Input may include any alphanumeric characters.

Data Block No. 1, General Information

Data Block No. 1 requires from 5 to 7 cards, depending on the options selected.

<u>CARD 1.1 - Title</u>. Enter any alphanumeric characters in columns 1 through 60 to identify each problem. These characters will be printed out at the top of each page of output for the undamaged configuration.

CARD 1.2 - Print-out options. This card should normally be left blank; however, certain seldom-used data and subroutine dumps will be printed if KPRINT(I)=1. The subroutine dumps are normally for diagnostic purposes and can be used only in conjunction with the programming statements. If KPRINT(31)=1, the aerodynamic data for both the damaged and undamaged configurations will be printed at constant values of angle of attack.

COLUMN	SYMBOL	PRINT-OUT
1	KPRINT(1)	Airfoil ordinates and pressure distribution
11	(11)	Dump Subroutine AER2
12	(12)	GEOM
13	(13)	AALO
14	(14)	CDL2
15	(15)	BDRG
16	(16)	CLBRK
17	(17)	AERA
18	(18)	WBAC
19	(19)	CFEQ
20	(20)	CDWW
21	(21)	TAIL
22	(22)	CDL1
23	(23)	CDDR
24	(24)	ADJUST
25	(25)	CMOW
26	(26)	CPZT
27	(27)	SSET
28	(28)	NUCDAM
29	(29)	NUCDAM2
30	(30)	NTRIM
31	Y (31)	WRITE2

CARD 1.3 - Configuration Definition (I5 Format).

Column	Symbo1	Definition
5	NPODS	Number of different <u>types</u> of bodies. NPODS ≤ 7.
10	NPNLS	Number of surfaces used to represent the main wing. Must be 1 or 2.
15	NHT	Number of lifting surfaces other than main wing, i.e., horizontal tail or canard. Program assumes that these surfaces are symmetric with respect to configuration centerline.
20	NVT	Number of non-lifting surface types, i.e., vertical tail, ventral fin, or pylon. For example, a twin vertical tail should be entered as 1 surface type; symmetry will be indicated in Data Block No. 3. NPNLS+NHT+NVT≤7.
25	ISWP	Variable-sweep indicator. 0 for fixed wing 1 for variable-sweep wing
30	IREF	Reference angle-of-attack indicator. O reference to wing root-chord plane 1 reference to fuselage centerline
35	IWNG	WING-definition indicator. 0 omit card 1.6 1 enter reference planform area, taper ratio, and leading-edge sweep on Card 1.6 See note number 1 at end of input instructions for Data Block No. 1.
39-40	NAFO	Number of stations at which thickness and camber are to be defined for an arbitrary airfoil, \leq 30. If NAFO $>$ 0, Data Block No. 4 must be input.
45	METER	Unit-system indicator O use units of feet 1 use units of meters 2 use units of inches, except for reference area, planform area, wetted areas, Reynolds number, and altitude which are in feet.
50	ITRIM	Trim indicator. 0 trim configuration 1 do not trim

CARD 1.4 - "F" Format.

Column	Symbol	Definition	
1-10	SREF	Reference area.	
11-20	CMAC*	Reference aerodynamic chord.	
21-30	XMAC*	Location for leading-edge of CMAC. Does not change with sweep.	
31-40	ZCG	Height of moment reference point relative to wing root-chord plane.	
41-50	UPFUS	Upsweep angle of the aft fuselage (deg). For use with transport-type aircraft.	
51-60	AOB	Ratio of width to height of the aft fuse- lage in the upswept region.	

CARD 1.5 - (F10 Format).

Column 1-10	Symbol ROUGHK	Definition Average surface roughness height for friction drag, (inches).
11-20	FMISC	Miscellaneous drag factor as a percentage of total friction and form drag.
21-30	TWIST	Wing twist between exposed root chord and tip chord. Negative for washout (wing-tip leading edge down).
31-40	CONCL	Wing conical camber design lift coefficient.

CARD 1.6 (F10 format). This card is required only if IWNG=1 on Card 1.3.

Column 1-10	Symbol SPLAN	Definition Wing theoretical planform area.
11-20	TAPR	Reference wing theoretical taper ratio.
21-30	SWP	Reference wing leading-edge sweep.

^{*}An asterisk beside a symbol indicates that the value of that item will be computed internally if a blank or zero is input.

CARD 1.7 (F10 Format) Elevon Definition. Required if NHT=0 and ITRIM=0. This card defines the elevon, which will be used to trim the configuration if there is no horizontal tail or canard.

Column 1-10	Symbol	Definition
1-10	CFOC	Elevon chord length, △c/c
11-20	EI	Elevon inboard edge, expressed as a fraction of semi-span.
21-30	EO	Elevon outboard edge, expressed as a fraction of semi-span.

Notes pertaining to the input for Data Block No. 1 are as follows:

- 1. Card 1.6 is used to input the wing planform area, taper ratio, and leading-edge sweep when the user desires to override the internal calculations that normally compute these values based on other wing parameters. Equations used to make these calculations are presented in Section 2.1.3 of Volume I. Card 1.6 should not be required for a single-panel wing or for a two-panel wing with a moderate amount of crank. It is recommended, however, when two panels are used to represent a wing with an extreme amount of crank or a strake/wing planform where the strake is highly swept.
- 2. The input reference area is arbitrary and does not have to be related to the theoretical wing planform area.

Data Block No. 2, Body Geometry

Thirteen cards are used to input the name and 12 parameters for each of the bodies. The name that is input on Card 2.1 will be used in the printout to identify the various components. Data for each body are listed vertically in the input. The main body (fuselage) should be listed to the extreme left, (Column 1-10), followed next by other bodies with zero inlet area. Nacelle data should be listed last. Up to seven columns for seven different body types can be input.

<u>Card</u> 2.1	Format	Symbol Symbol	Definition
2.1	7A10	BNAME (I)	Body I name, I=1, NPODS
2.2	7F10	BOD(I,1)	Length
2.3		(1,2)	Width
2.4		(I,3)	Height
2.5		(I,4)*	Wetted area (total for all
			bodies of type I).
2.6		(I,5)	Interference factor
2.7		(I,6)	Number of bodies of type I
2.8		(I,7)*	Maximum cross-sectional area
2.9		(I,8)	Base streamtube area
2.10		(I,9)	Nose Length
2.11		(I,10)	Boattail length
2.12		(I,11)	Base area for bluntness drag
2.13	Ψ	¥ (I,12)	Inlet area.

There are several points that should be mentioned pertaining to Data Block No. 2.

- 1. The name assigned to each body will be used in the printout of results.
- 2. The following is presented as a guide for determining the interference factor (BOD(I,5)):
 - =1.0 for nacelles and external stores mounted out of the local velocity field of the wing and fuselage.
 - =1.25 for external stores mounted symmetrically on the wing tip.
 - =1.3 for nacelles and external stores if mounted in moderate proximity of the wing.
 - =1.5 for nacelles and external stores mounted flush to the wing.

(2., continued)

The same variation of the interference factor applies in the case of a nacelle or external store strut-mounted to or flush-mounted on the fuselage.

- 3. The length, width, height, cross-sectional area, etc. listed for each body type describes a single body. The total number of bodies of each type must also be specified even though they may be paired symmetrically with respect to the centerline. One exception is that the wetted area represents the total for all bodies of a particular type.
- 4. Bodies must be defined for I=1 to NPODS. The main body must be first, closed bodies second, and bodies with inlet area last.
- 5. When fewer than seven bodies are defined, columns to the right of the last field may be conveniently used to identify the parameter listed on that card.
- 6. The interference factor for the fuselage that is entered on Card 2.6 is overridden by internal calculations for wing/body interference.

Data Block No. 3, Surface Geometry

Thirteen cards are used to input the name and 12 parameters for each of the surfaces. The format for the surface data is similar to that for the bodies.

<u>Card</u> 3. 1	Format	Symbol	Definition
3.1	7A10	SNAME (L)	Surface name I, I=1, NPNLS+NHT+NVT
3.2	7 (A3,7X)	SUR(I,1)	Airfoil section
3.3	7F10	(I,2)	2-D design lift coefficient
3.4	}	(I,3)	Thickness ratio, (t/c) _{RMS}
3.5		(I,4)	Leading-edge sweep
3.6		(I,7)*	Total surface(s) wetted area
3.7	1	(I,8)	Exposed root chord
3.8		(I,9)	Tip chord
3.9		(I,10)	Exposed semi-span
3.10	[(I,11)	X-station at LE of exposed root chord
3.11		(I,12)	Y-station at LE of exposed root chord
3.12		(I,13)	Z-station at LE of exposed root chord
3.13	¥		Incidence with respect to main body

Several points that should be noted regarding Data Block No. 3 are:

- 1. The name assigned to each surface will be used in the printout of results.
- 2. Surfaces must be input from left to right in the following order: NPNLS main wing panels, NHT lifting surfaces, and finally, NVT non-lifting surfaces.
- 3. Twenty options are available for defining the airfoil section type:

INPUT	AIRFOIL TYPE*	INPUT	AIRFOIL TYPE*
63-	63-YXX(6 Series)	-62	00XX-62(4 Digit)
64 -	64 - YXX "	- 63	00XX-63
65-	65-YXX ''	-64	00XX-64 ''
66-	66-YXX ''	-65	00XX-65 ''
63A	63AYXX(6A Series)	- 33	00XX-33 ''
64A	64AYXX "	-34	00XX-34 ''
65A	65AYXX ''	-35	00XX-35
BIC	Biconvex	-93	00XX-93 ''
INPUT	Arbitrary Airfoil	- 94	00XX-94 ''
1	ř	- 95	00XX-95 ''

*Y= Section Camber in Tenths
XX* Section t/c in % Z/C

(3.,continued)

Any of these sections may be input to the program with the identification shown above. The characters must, however, be left-adjusted in the data field.

An arbitrary section may be input for any surface by entering "INPUT". This will be used for both wing panels if NPNLS=2. Use of "INPUT" requires that Data Block No. 4 be included and that NAFO > 0 on Card 1.4. Only one arbitrary section can be defined, but this section can be used for any of the surfaces by showing "INPUT" on Card 3.2.

4. Symmetry is controlled in the following manner: NPNLS and NHT surfaces are automatically assumed to have counterparts on the opposite side of the fuselage. The NVT non-lifting surfaces are assumed to be single surfaces if y=0 (SUR(I,12)). If y>0, an identical surface is assumed to be on the opposite side. Irregardless of symmetry, note that the wetted area must be the total value, not a single, one-sided value.

Data Block No. 4, Arbitrary Airfoil

Data Block No. 4 must follow immediately after Data Block No. 3 if NAFO > 0 on Card 1.4,

CARD 4.1 - (F10 format)

Column	Symbol	Definition
1-10	RLE	Leading-edge radius divided by chord (RLE/CHORD), at reference t/c (TOCR).
11-20	TOCR	Reference t/c of AFT (see Card 4.4).
21-30	CLDR	Reference design lift coefficient of AFC (see Card 4.3).
31-40	TECH	Technology Factor (See Sections 5.1 and 6.2 of Volume I)
		<pre>= 0.0 Conventional airfoil = 1.0 Advanced supercritical wing section</pre>

CARD 4.2

Format	Symbol Symbol	Definition
7F10	AFX(I)	Chordwise stations at which the camber and thickness data are to be entered. Enter as x/c . (I=1,NAFO)

Card 4.2 should be repeated until NAFO (Card 1.4) ordinates have been entered.

CARD 4.3

<u>Format</u>	Symbol	Definition
7F10	AFC(I)	Camber of the arbitrary airfoil section. Defined by Z/C where Z is the distance from the chord line to the camber line. (I =1, NAFO)

Card 4.3 should be repeated in the same format as Card 4.2 until NAFO values of AFC(I) have been input. The camber ordinates must correspond with the chordwise stations on Card 4.2.

CARD 4.4

Format	Symbo1
7F10	AFT(1)

Definition
Thickness of the arbitrary airfoil section.
Defined by Z/C, where Z is the distance from

the chord line to the upper or lower surface on an uncambered airfoil. (I=1,NAFO)

Card 4.4 should be repeated in the same format as Card 4.2 until NAFO values of AFT(I) have been input. The thickness ordinates must correspond with the chordwise stations on Card 4.2.

Data Block No. 5., Variable Sweep

Data Block No. 5 is required only if the variable-sweep option is indicated by ISWP=1 on Card 1.4. This Block contains only one card. Use of the variable-sweep option does not change the reference area or the reference moment center, which are defined in Data Block No. 1.

<u>CARD 5.1 - (F10 format)</u>

<u>Column</u> 1-10	Symbol NP. IVOT	Definition
1-10	XPIVOT	X-location of wing pivot
11-20	YPIVOT	Y-location of wing pivot
21-30	AFTSW	Maximum aft sweep
31-40	AFTCB*	Mean aerodynamic chord of movable panel in aft-sweep position.
41-50	AFTOC*	Thickness ratio (t/c) of movable panel in aft-sweep position.
51-60	AFTAW*	Wetted area of movable panel in aft- sweep position.

Data Block No. 6, Survey Conditions

This data block is always required, and will consist of from 2 to 22 cards, dependent upon the number of survey conditions specified.

CARD 6.1 - (15 format)

<u>Column</u>	Symbol Symbol	Definition
4-5	NSURV	Number of surveys (sets of conditions) at which the problem is to be run (NSURV \leq 20).
9-10	NCLAS	Number of evenly spaced C_L values for which data will be computed (NCLAS \leq 21).

CARD 6.2 - (F10 format)

<u>Column</u>	Symbol	Definition
1-10	FMSURV(I)	Mach number
11-20	ALT(I)	Altitude
21-30	CG(I)	Position for trim or moment reference. Measured as a fraction of the mean aerodynamic chord (CMAC) relative to leading-edge of MAC.
31-40	SWPV(I)	Leading-edge sweep.
41-50	CLLO(I)	Low C _L
51-60	CLHI(I)	High C _L

Card 6.2 is repeated until NSURV conditions have been specified. Several items that may prove useful to the user are:

- 1. The Reynolds number may be specified instead of altitude by entering the negative value of RN/ft divided by 10^6 . For example, if RN/ft=3.0 x 16^6 , enter -3.0 in Column 11-20.
- 2. Model-scale predictions can be obtained even though full-scale geometric data are loaded in the program. Enter the negative of the RN/ft multiplied by model scale divided by 10^6 . For example, if RN/ft=3.0 x 10^6 and model scale desired is 1/15, enter -0.2 in Columns 11-20 of Card 6.2.

3. The low C_L and high C_L should be defined in conjunction with NCLAS so that the calculated values of C_L will be rounded off to convenient numbers. For example,

INPUT	Data Calculated at
NCLAS=21 CLLO=0.0 CLHI=1.0	C _L =0.00 C _L =0.05 C _L =0.10 C _L =0.15
	•
	C _L =1.00

4. If low $C_{\rm L}$ and high $\,C_{\rm L}$ are left blank, the program will automatically set CLLO=0.0 and CLHI=1.0.

Data Block No. 7, Adjustment Factors

Data Block No. 7 must always be entered in the input; it may, however, contain only one card which indicates that no adjustments will be made.

CARD 7.1

Write "ADJUST" beginning in Column 1 to indicate if adjustment factors are to be applied to some of the aerodynamic parameters predicted by the program. If no adjustment factors are to be read in, write "NO ADJUSTMENTS" beginning in Column 1 and continue with the next data block.

The adjustment options allow certain predicted items in the computer procedure to be adjusted to match a desired value. Thus, the predictions can be adjusted to match wind tunnel data, for instance, so that perturbations in geometry for trade studies can be predicted from a firm baseline. An aerodynamic parameter of interest (APRED) can be adjusted to match an experimental value ($A_{\rm EXP}$) by the equation

 $A_{EXP} = (A_{PRED})$. YM + YA

where YM is an input correlation multiplier and YA is an adder. Each is a function of Mach number or lift coefficient.

CARD 7.2 - (I format)

Set a given IVAL indicator equal to 1 to identify it as being an aerodynamic parameter to be adjusted.

Column 1	Symbol IVAL(1)	Definition Adjust $C_{M_{\mathcal{O}}}$ as a function of Mach number.
2	IVAL(2)	Adjust CDMISC as a function of Mach number.
3	IVAL(3)	Adjust $^{lpha}{ m LO}$ as a function of Mach number.
4	IVAL(4)	Adjust MCR as a function of lift coefficient.
5	IVAL(5)	Adjust C_{DL} as a function of lift coefficient.
24-25	NXVAR	Number of Mach values in the table of Mach function adjust factors (≤ 15).

(CARD 7.2 - (I format), continued)

Column	Symbol	Definition
29-30	NADJ	Number of parameters to be adjusted as a function of Mach number (\leq 3).
34-35	NXCL	Number of CL values in the table of lift function adjust factors (\leq 15).
39-40	NADJ2	Number of parameters to be adjusted as a function of lift coefficient (≤ 2).

CARD 7.3 - (7F10.0 format) Required if NADJ > 0.

<u>Column</u>	Symbol	Definition
1-10	X(1)	Mach numbers for the table of Mach func-
11-20	X(2)	tion adjust factors.
21-30	X(3)	
31-40	X(4)	
41-50	X(5)	
51-60	X(6)	
61-70	X(7)	
		T and the state of

Repeat Card 7.3 until NXVAR values of X are read in.

CARD 7.4 (6F10.0 format) (NADJ > 0)

<u>Column</u>	Symbol Symbol	Definition
1-10	YM(J=1, I=1)	Multiplier factor.
11-20	YA(J=1, I=1)	Adder factor.
21-30	YM(J=2, I=1)	Multiplier factor.
31-40	YA(J=2, I=1)	Adder factor.
41-50	YM(J=3, I=1)	Multiplier factor.
51-60	YA(J=3, I=1)	Adder factor.

Repeat Card 7.4 until NXVAR values are read in (J=NXVAR) for each aerodynamic parameter to be adjusted (I=1 to NADJ).

CARD 7.5 - (7F10 format) Required if NADJ2>0.

Column	Symbol	Definition
1-10	XCL(1)	CL values for the table of lift function adjust factors.
11-20	XCL(2)	
21-30	XCL(3)	
31-40	XCL(4)	
41-50	XCL(5)	
51-60	XCL(6)	
61-70	XCL(7)	∀

Repeat Card 7.5 until NXCL values of XCL are read in.

CARD 7.6 - (6F10.0 format) NADJ2 0.

<u>Column</u>	Symbol	Definition
1-10	YM(J=1, I=NXVAR+1)	Multiplier factor.
11-20	YA(J=1, I=NXVAR+1)	Adder factor.
21-30	YM(J=2, I=NXVAR+1)	Multiplier factor.
31-40	YA(J=2, I=NXVAR+1)	Adder factor.
41-50	YM(J=3, I=NXVAR+1)	Multiplier factor.
51-60	YA(J=3, I=NXVAR+1)	Adder factor.

Repeat Card 7.6 until NXCL values are read in (J=NXCL).

Data Block No. 8, Reserved for Expansion

Data Block No. 8 represents a section of the input common block that has been reserved for future expansion. The user should ignore this block.

Data Block No. 9, Damage Mode Indicators

If no damage parameters are to be loaded, skip the remaining input and go to "End of Problem" instructions in Data Block No. 12. If damage parameters are to be loaded for either a body or a surface, complete the following three cards.

CARD 9.1

Enter "DAMAGE CASES FOLLOW" beginning in Column 1.

CARD 9.2

Enter any alphanumeric title in Columns 1 through 60. This title will be printed at the top of each page of output related to damage calculations.

CARD 9.3 - (I format)

This card allows the user to select the modes of damage that will be used. Set IDAM(I)=1 if mode I input are to be entered in Blocks 10 and 11.

Column	Symbol	Definition
1.	IDAM(1)	Mode 1, Roughness on bodies
2	(2)	2, Fwd-facing steps on bodies
3	(3)	3, Aft-facing steps on bodies
4	(4)	4, Holes in bodies
5	(5)	5, Surface waviness on bodies
6	(6)	6, Protuberances on bodies
7	(7)	7, Nose bluntness on bodies
11	IDAM(11)	Mode 11, Roughness on surfaces
12	(12)	12, Fwd-facing steps on surfaces
13	(13)	13, Aft-facing steps on surfaces
14	(14)	14, Holes in surfaces

(CARD 9.3 - I format), continued

Column	Symbol	Definition
15	IDAM(15)	Mode 15, Surface waviness on surfaces
16	(16)	16, Frotuberances on surfaces
17	(17)	17, Missing parts of surfaces

Data Block No. 10, Body Damage

This block is required if one or more of the indicators IDAM(1) through IDAM(7) equals 1, otherwise, it can be omitted. Several cards are required to define the body damage for each mode selected. The input format is similar to that in Block No. 2. If only part of the bodies are damaged, the columns for the undamaged bodies are to be left blank. The space to the right of the last field of data may be used to identify the damage parameter on that card.

CARD 10.1

Enter the body names in 10-column fields and in the same order as on Card 2.1

Body roughness, required if IDAM(1)=1.

Card	Format	Symbol _	Definition
10.2	7F10	DBOD(I,1)	Roughness factor on body I <u>before</u> damage is incurred.
10.3		(1,2)	Roughness factor on body I <u>after</u> damage is incurred.
10.4		(1,3)	x/1 where damage roughness starts
10.5		(1,4)	x/1 where damage roughness ends
10.6	¥	(1,5)	Fraction of area affected by increased roughness (includes area forward and aft of damaged region).

Table 1 is presented as an aid in selecting the roughness factors after damage has been incurred.

Fwd-facing steps, required if IDAM(2)=1

	1 2	opo, roquered	
Card	Format	Symbol	Definition
10.7	7F10	DBOD(I,11)	Number of fwd-facing steps on body I.
10.8		(1,12)	Width of each step.
10.9		(1,13)	Height of each step.
10.10		(I,14)	x/1 at first step.
10.11	Y	¥ (I,15)	x/1 at last step.

Aft-facing steps, required if IDAM(3)=1.

<u>Card</u>	Format	Symbol	<u>Definition</u>
10.12	7F10	DBOD(I,21)	Number of aft-facing steps on body I.
10.13		(1,22)	Width of each step.
10.14		(1,23)	Height of each step.
10.15		(1,24)	x/l at first step.
10.16	Ý	(I,25)	x/l at last step.

Holes, required if IDAM(4)=1.

Card	Format	Symbol	Definition
10.17	7F10	DBOD(I,31)	Total no. of holes in body I.
10.18		(1,32)	Number of these holes over wing.
10.19		(1,33)	Length of each hole.
10.20		(1,34)	Width of each hole.
10.21		(1,35)	Depth of each hole.
10.22		(1,36)	x/l where first hole starts.
10.23		(I,37)	x/1 where last hole starts.
10.24	¥	(1,38)	Type hole 1.0 Missing Panel 2.0 Caved-in Panel

Waviness, required if IDAM(5)=1.

Card	Format	Symbol	Definition
10.25	7F10	DBOD(1,41)	Total no. of waves in body I.
10.26		(1,42)	No. of these waves over wing.
10.27		(1,43)	Length of each wave.
10.28		(1,44)	Width of each wave.
10.29		(1,45)	Amplitude of each wave.
10.30		(1,46)	x/1 where first wave starts.
10.31	Ý	¥ (1,47)	x/1 where last wave starts.

Protuberances, required if IDAM(6)=1.

Card	Format	Symbol	Definition
10.32	7F10	DBOD(1,51)	No. of protuberances on body I.
10.33		(1,52)	Height of each protuberance.
10.34		(1,53)	Parasite area of each protuberance, Δf .
10.35		(I,54)	x/1 of first protuberance.
10.34	*	(I,55)	x/1 of last protuberance.

Bluntness, required if IDAM(7)=1.

Card	Format	Symbol	Definition
10.37	7F10	D30D(I,61)	Frontal area of blunted body at point of damage. For example, a fuselage with the radome missing might have a cross-section area of 10 sq ft at the point where the radome is detached.
10.38	V	∜ (I,62)	I/d at point of damage. d is the body diameter at most forward body section that is not damaged by the bluntness. l is the remaining nose length forward of the point where d is measured. For example, 1/d=0.0 for a nose section that is flat and 1/d=0.5 for a hemi-spherical section.

All input parameters describe damage to only one body of type I. If all bodies of type I have sustained the damage described, a negative sign on the first parameter in each mode of damage will indicate this. For example, if there is increased roughness on only one of four wing-mounted pods, DBOD(I,1) through DBOD(I,5) are all positive values. If all four pods are damaged, this is indicated by entering DBOD(I,1) as a negative number.

The parasite area for a protuberance is the drag divided by the dynamic pressure (D/q) in freestream air flow. Effects of local boundary layer are computed. Units for Δf must be consistent with those selected on Card 1.3.

TABLE 1 TYPICAL ROUGHNESS VALUES

Surface or Condition of Surface	Roughness k ~ Inch
Average aircraft wing or tail surface	.0006
Average fuselage, nacelle surface	.0012
Alunimum skin with blistered paint	.0012
Fiberglass/Enamel with blistered paint	.0025
Fiberglass/Thick Coatings and Graphite with blistered paint	.0030
Broken Skin	.01
Exposed Honeycomb	.1

Data Block No. 11, Surface Damage

This block is required if one or more of the indicators IDAM(11) through IDAM(17) equals 1, otherwise, it can be omitted. The format is identical to that in Data Block No. 10.

CARD 11.1

Enter the surface names in 10-column fields and in the same order as on Card 3.1

Surface Roughness, required if IDAM(11)=1

Card	Symbol Symbol	Definition
11.2	DSUR(I,1)	Roughness factor on surface I <u>before</u> damage is incurred.
11.3	(1,2)	Roughness factor on surface I <u>after</u> damage is incurred.
11.4	(1,3)	x/c where damage roughness starts.
11.5	(1,4)	x/c where damage roughness ends.
11.6	(1,5)	Fraction of area affected by increased roughness (includes area forward and aft of damaged region).
11.7	∀ (1,6)	0.0 for Lower Surface. 1.0 for Upper Surface.

Table 1 is presented as an aid in selecting the roughness factors after damage has been incurred.

Fwd-facing steps, required if IDAM(12)=1.

Card	Symbol		Definition		
11.8	DS	UR(I,11)	Number of fwd-facing steps on lower surface.		
11.9		(1,12)	Number of fwd-facing steps on upper surface.		
11.10	i	(1,13)	Width of each step.		
11.11		(1,14)	Height of each step.		
11.12		(1,15)	x/c at first step.		
11.13	١	(1,16)	x/c at last step.		

Aft-facing steps, required if IDAM(13)=1.

Card	Symbol Symbol	Definition	
11.14	DSUR(I,21)	Number of aft-facing steps on lower surface.	
11.15	(1,22)	Number of aft-facing steps on upper surface.	
11.16	(1,23)	Width of each step.	
11.17	(1,24)	Height of each step.	
11.18	(1,25)	x/c at first step.	
11.19	(I,26)	x/c at last step.	

Holes, required if IDAM(14)=1.

Card	Symbol Symbol	Definition
11.20	DSUR(1,31)	Number of holes in lower surface.
11.21	(1,32)	Number of holes in upper surface.
11.22	(1,33)	Length of each hole.
11.23	(1,34)	Width of each hole.
11.24	(1,35)	Depth of each hole.
11.25	(1,36)	x/c where first hole starts.
11.26	(1,37)	x/c where last hole starts.
11.27	(1,38)	Type Hole 1.0 Missing Pane1 2.0 Caved-in Panel
11.28	V (1,39)	Porosity Factor (must have holes on both upper & lower surface)

Waviness, required if IDAM(15)=1.

<u>Card</u> 11.29	Symbol DSUR(I,41)	Definition		
11.29	DSUR(1,41)	Number of waves in lower surface.		
11.30	(1,42)	Number of waves in upper surface.		
11.31	(1,43)	Length of each wave.		
11.32	(I,44)	Width of mach wave.		

Card	Symbol	Denifition
11.33	DSUR(1,45)	Amplitude of each wave.
11.34	DSUR(I,45) (I,46) (I,47)	x/c where first wave starts.
11.35	¥ (1,47)	x/c where last wave starts.

Protuberances, required if IDAM(16)=1

Card	Symbol	Definition
11.36	DSUR(1,51)	Number of protuberances on Surface I.
11.37	(I,52) (I,53) (I,54) (I,55)	Height of each protuberance.
11.38	(1,53)	Parasite area of each protuberance, Δf .
11.39	(1,54)	x/c of first protuberance.
11.40	∀ (1,55)	x/c of last protuberance.

Missing Wing Parts, required if IDAM(17)=1

CARD 11.41

Column Column	Symbol	Definition
1-10	DWING(1)	$\Delta c/c$ fraction of wing chord that is missing from leading edge.
11-20	(2)	$\eta_{ ext{i}}$, inboard edge of missing leading edge, expressed as a fraction of semispan.
21-30	(3)	$\Delta\eta$, span of missing leading edge, expressed as a fraction of semispan.
31-40	∜ (4)	z/t ratio of leading edge to maximum thick- ness. z represents the wing thickness at the point where the missing leading-edge section is detached. t is the wing maximum thickness.

Column	Symbo1	Definition
41-50	DWING(5)	Corner sharpness factor for leading edge. Enter 1.0 if corners on leading edge are rounded. Enter 2.0 if corners on leading edge are sharp.
51-60	V (6)	Indicates that leading edge is missing on: 1.0, left side only 2.0, right side only 3.0, both sides
CARD 11.	.42	
Column	Symbol	Definition
1-10	DWING(7)	\Deltac/c , fraction of wing chord that is missing from trailing edge.
11-20	(8)	$\eta_{ extsf{i}}, ext{inboard edge of missing trailing edge}$ expressed as a fraction of semispan.
21-30	(9)	$\Delta\eta$, span of missing trailing edge, expressed as a fraction of semispan.
31-40	∜ (1.0)	Indicates that trailing edge is missing on: 1.0, left side only 2.0, right side only 3.0, both sides
CARD 11.	.43	•
<u>Column</u>	Symbo1	Definition
1-10	DWING(11)	$\Delta\eta_{ m s}$ fraction of semispan that is missing from the left wing tip.
11-20	(12)	$\Delta\eta$, right wing tip.
21-30	(13)	Moment arm of device that trims rolling moment. Entered as a fraction of wing semispan.

CARD 11.44

Column	Symbol	Definition
1-10	DWING(14)	The first NHT surface requires input for the left side (Column 1-10) and
11-20	(15)	the right side (Column 11-20). Remaining surfaces must be in the same order
21-30	(16)	as those on Card 3.1. If NHT=0, list NVT surfaces in order beginning with
31-40	(17)	Columns 1-10.
41-50	(18)	
51-60	(19)	
61-70	(20)	

There are several points that should be noted regarding the surface damage parameters:

- 1. All input parameters describe damage to only one surface (such as the right wing). If the damage is symmetric (left wing also damaged), then a negative sign should be used on the first parameter in each mode of damage. The first parameter will be zero in some cases. When this happens, a negative sign on the second parameter will indicate symmetric damage.
- 2. Porosity factor specifies the fraction of hole area that allows air to flow from the lower to the upper surface. The hole area is the smaller of the area of upper surface.holes and lower surface holes.
- 3. If IDAM(17)=1, Cards 11.42 through 11.45 must all be entered. A zero or blank should be entered for the parameters that are not applicable to the damage case being described.
- 4. The parasite area for a protuberance is the drag divided by the dynamic pressure (D/q) in freestream air flow. Effects of local boundary layer are computed. Units for Δ f must be consistent with those selected on Card 1.3.

Data Block No. 12, End of Problem

Several options are available when the end of the initial problem is attained. The user may either end the problem, add more damage cases, or change the basic input for an additional run.

CARD 12.1

- Option 1. Input "END" in columns 1 through 3 and the problem will be terminated.
- Option 2. Input "DAMAGE CASES FOLLOW" beginning in Column 1 and continue input with Card 9.2 to run additional damage cases.
- Option 3. "CHANGE INPUT" beginning in Column 1 allows the user to change any variable in the basic input (Data Block No. 1 through 7). The variable-location is its position in the input common block. This location is given in Volume II, Section 4 of the AAT Computer Code Final Report. The remaining cards in this block must be input.

CARD 12.2

Enter any alphanumeric characters in Columns 1 through 60 to identify the new problem. This title will replace the one originally entered on Card 1.1 when the new problem is run.

CARD 12.3

<u>Column</u>	Format	Symbol	Definition
4-5	12	М	Number of integer variables to be changed.
9-10	12	N	Number of floating point variables to be changed.
CARD 12.	.4 (Req'd Format	if M > 0) Symbol	Definition
1-5	15	MO(1)	Location of 1st integer variable.
6-10	15	IA(1)	New value of 1st integer variable.

<u>Column</u>	Format	Symbol	Definition
11-15	15	MO(2)	Location of 2nd integer variable.
16-20	15	IA(2)	New value of 2nd integer variable.
21-25	15	MO(3)	Location of 3rd integer variable.
26-30	15	IA(3)	New value of 3rd integer variable.

This pattern is repeated for 6 variables per card, until M pairs of variables have been loaded.

CARD 12.5 - (Req'd if N > 0)

Column	Format	Symbol	Definition
1-5	15	NO(1)	Location of 1st floating point variable.
11-20	F10	AA(1)	New value of 1st floating point variable.
21-25	15	NO(2)	Location of 2nd floating point variable.
31-40	F10	A A(2)	New value of 2nd floating point variable.
41-45	15	NO(3)	Location of 3rd floating point variable.
51-60	F10	AA(3)	New value of 3rd floating point variable.

Card 12.5 is repeated until N pairs of variables have been loaded.

CARD 12.6

Input "END" in columns 1 through 3 to terminate problem or omit this card and go to Card 12.1 to run additional problems.

3. SAMPLE PROBLEMS

This section contains the computer printout for the following sample problems:

- 1. F-16A
- 2. FB-111
- 3. C-141 with damage

The output is self-explanatory, except that in the C-141 problem it should be noted that the damage imposed is strictly hypothetical and is not an attempt to simulate an actual damage case. Damage inputs are entered for each of the fourteen AAT damage modes to demonstrate the flexibility of the program.

The F-16A and FB-111 problems presented in this section provided the estimates that are compared with data in Section 9, Volume I of this report.

F-16 MINC	F-16 MING TUNNEL PCOFL BITH TIF	CEL PITH T	PISSILES	ANC LALNCHERS	FENCEED	CARE	1.1
						CAFE	1.2
۳,	1	2				CAP.C	1.3
78C.	11.31667	22.7E				CARE	1.4
5.5	.,	-4.5				CARC	1.5
FUSELAGE	CANCPY	NACELLE				CARC	2.1
42.07	11.675	33.557	LENGT	· (FT.)		3470	2.5
4.632	\$15°	6.4	*ICTH			CARC	5
2.233	1.975	2-167	FEIGHT			CAFE	2.4
£32.66	35.12	537.42	1346			CARE	2.5
2.4	10.3	1.0	INTF.			CARE	5.6
:	;	:	٧٠,			CARC	2.7
15.972	2.517	6.75	PEX.BEEA	:EA (F1*FT)		CAGE	2.8
£. (5£	D.3	1.917	EASE(E)IL	(11)		CARC	5.9
16.75	3.5	5.55	L.ACSE			CARC	2.11
7.517	5.233	50-417				CARC	2.1
5	;	ះ	3243	CRAG BFEB		CARE	2.15
:	វ	5.741	INLET	AREA (FT*FT)		CARE	6.1
21.4	PCFIZ.	1EC	VENTFAL			CART	3.1
£4.1	EICCNVEX	PICCANER	EICCNVEX	SECTION		CARC	2.5
ڌ	ن	J	٥	CIFEEF		CARC	۳. در
2:5	£. 653	C.C45	(.119	1+1CFAESS		CARC	4°E
٠٥٠	•0•	47.5	£5.	L . E . S » EE.F		CARE	5.5
344.89	. K.	117.02	32.2			CARE	3.6
14.5445	6.683	5:0:3	1.758	CF (FT.)		CARC	7.5
3.705	5. (04	3,05	3.519	5		7447	3.8
12.517	5.642	8.417	1.618	F/2		CARE	3.9
19.534	36.326	34.683	35.275	71.E		CAGE	3.1
2.683	3.458	0. 0	1.417	11 6		1847	14
<u>.</u>		2.125	-2.133	ü	61)	CAKE	65
٤				INC ICENCE		CFFE	7
*	+1					CARE	6.1
6. 25	-3.16667	2.35	•	1.0 1.0		CARC	6.2
25.7	-6.16667	13	_	9.1		CARC	6.2
1.2	-0.16667	52.3		C.0 1.0		CAAC	6.2
1.f	2222100-	0.35	_	0.1		CAPE	5.3
PO ACJUSTMENTS	HEA TS					CARC	7.1
						CARC	16.

EPPIFICALLY BASED GCPFLIEF FFGGRPP TO PREDICT THE PERCTYNAPIC (PARACTERISTICS

CF FIRCREFT

INCLUCING

RCLGHNESS, FRCTUBEFFNCES, AND

CAPAGE CALTULATIONS

F-16 WINE JUNNEL WOEEL WITH TIF MISSILES AND LAUNCHERS REPOW

	*	Ħ	H	H	Ħ	#
	SFEF	CFFC	X P AC	1:CE	CPFUS	₽ CE
FAFLFETERS						
FFCELET INPUT	ю	**	+1	~	6	0
<u>.</u>	בנצ ≈	v,		= =		₹£ *

CIMENSIONS ARE IN FEET

23.853	135.4	2.167	237.426	1.666	1.16	8.756	1.917	5.252	26.417	0.66	5.741
11.675	1.575	1.575	25,120	1.300	1.550	2.517	1.666	2.500	6.133	נינפנ	(. (60
42.070	6.833	3.333	532.060	1.000	1.008	15.672	350.5	16.758	7.917	נינט	0.200
H	H	H	H	1CF ==	S TYPE =	* 43	*	4	ENCTF =	ARE & =	
LENGTH	W 101H	нететн	WETTEC SREA	INTER.FACTOR	MC.CF THIS TYPE	PEXIFUP AFEA	BASE AREA	MCSE LEAGTH	BCATTAIL LENGTH	BESE DARG AREA	INLET AREA

NECELLE

FUSELACE CANCEY

	HING		FCF 12.	¥EFT.3	VEN	VENTFAL
SECTION	66	E 4.B	eic		212	\$IC
CFREEF (2-0)	н	.260	1111		ם•נננ	3.686
THICKNESS RATIC	16	340.	. (63		£43.	.615
L.E. SHEEF	н	033-34	46.660	113.566	ננ	103.64
WETTED AREA	#1	344.850	333.33	117.626	97	32.23
PCCT CHCRE	11	14.545	6.683		230.6	4.702
TIP CHCRE	н	3.702	433.5		3.556	3.515
SFAN CF PINEL	Ħ	12.917	5.642	2 8.417	11	1.618
X- LE FCOT CHCFC=	**	15.534	36.326	£ 34.(63	Ç	32.375
Y- LE RCOT CHCGC=	ħ	2-062	3.458		933-0	1.417
Z- LE RCOT CHORD=	11	C.E.C	ניננפ		2.125	-2.133
INCIDENCE	н	ניננ	ניננ		נינננ	0.466

, C	9		ب د
0.7	0·J	D .	D. 7
	u) P)	U1 P)	•
167	187	167	113
• 85	3°°•	1.26	1.63

NO ADJUSTPENTS

* CRAG FOLARS TO RE CENESATED AT THE FOLICHING CONLITIONS PACH NG. ALITTUDE G.C. SPEEP FRCP TO TO CL

44

CALCULATEC FCCY FARAKETERS FISELATE GANCFY NACSULE

16.258	231.420	1.150
5.511	25.120	5.517
16.482	333.55	15.972
#	H	H
FINENESS RATIC	WETTEC AREA	PEXIPUP AFER

23.44.85 316.32	
2 : 5 : 5 : 5 : 5 : 5 : 5 : 5 : 5 : 5 :	r)
2 5 5 5 6 6 7 5 6 7 6 7 6 7 6 7 6 7 6 7 6	н
2 · 5 · 5 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6	н
4.764 4.764 4.765 5.55 5.55 5.55 5.55 5.55 5.55	11
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	н
55 55 50 85 55 80 10 80 80 80 80 80 80 80 80 80 80 80 80 80	
.561	
25.55	**
	н

62 SEFIES AIRFCIL SECTION

F-16 WINC TURNEL PACH NC. = .850	PCGEL HITP TIF RN/FI =	IF PISSILES AND 1.EEE7E+C5	LALICHERS FENCE L.E. SHEEF ANGLE		= 46.6C EEG.	TRINHED	TRIMMED CCNEITICA	
ช	TOTAL CE	ដ	NLFFA	•	CC LIFT	CO ROAFT	CL AT CP=C	43 LF 3)
019	.02168	-1.75130	1	28	. (,,73	C.2413C	0,011.1	.62126
300	22320	-1.47213	•	11	50713*	0.000.0	2,253.	.(2661
130.	. 120.53	-1.19215	**	9,₹€	• (((1)	03373.3	00031	* 6 2 6 7 4
641.	.32180	24 56	**	4.	. (6113	2920203	.15000	. 6 5 17 6
F0-14	.02352	- 63533	.;	17	36233	1,6664	66.035.	24233
246	11925	52352-	2.	fe	54510.	39369-3	00000	, (ie (§
200	9520.	67651	-;	75	. [6.101.3	.36,30	3 75 2 3*
232	0 4 7 7 7 7	29202	÷	53	.[1318	3:337.3	• 252 ú B	
504	63.845	73.63.67	,	25	. [1816	0.503.3	3003.	. (3572
i di Post	71 T T T	.76417	ui	£2	. 12402	20000	6.024.	.0 % 46 t
5 t U	09436	1,5647.0		. u'	. C2(7 L	.(.(. 2	.56348	.i5166
1 4 4	35766	1.3266	7.	24	.02896	. [C 12 2	• 555.0	. (6675
77.4	2144	77263.4		7	15253	9.64.64	. 6.000	.6755
		~ L (& L . *	;	20	1111	2000	07759	. 3953.
4.6	60.50	10042		. 0	3000	M 4401	2000	.12.254
***		40000			1 C C C C C C C C C C C C C C C C C C C	61467	25040	15.62
900	50000)			0 7 7 7 7) () () () () () () () () () () () () ()	1006
138.	9.1	******		2.	\$ F & C & C & C & C & C & C & C & C & C &	2727		
C70.	335,20	23322-		χ.	777	n 10 10 10 10 10 10 10 10 10 10 10 10 10	- 1	
ທສາ ວ•	. 50774	-1.27187	H	21	.23833	• 04 55 5	10000	**/ 37
.923	.37269	-2.43516		17	12)}2	2477	-	
-972	• 44150	-2.51654		25	.34007	67743.		20044
-	0 0 0	•	7					
	2	1	;			# XVAIJ	4440	
1001			- 1				,	
(251	•	11	•	TAID TERES				
1000			, 00 40	AACELLE				
100000000000000000000000000000000000000				110				
••		1111111	*****	2 0				
•		27313.	. ((() ;					
" "	[[021	#2000°-	. (((17	33300				
AVE		C.t.t.t.	0.1010	3335.	-			
		0.200	0.1010	3336.	_			
ľ		,G	H	VERI.	ven			
2		62733				51003.		
"	1000		5,7,7,7,3			1001		
ATERE	1000 E	20103	. (((4	• 60.05	60.	915		
,		27395-2	0.5666			000		
00000	9 10							
PAC BICE	5							
" JSI	.0.000:							
CEMIN II	15055							

F-16 WINC TUNNEL F PACH NC. = .CCC	rcoel bilp ti Rn/Fl =	1.66676+09	LFCHCPERS FEMS# L.E. Sheef Abgle	·991)9 ** 31	TRINEC	TRIPPEC CCACITICA	
ช	107 FL CE	÷	ALFFE	CO LIFT	CE FARFT	CL AT CF=0)=4) LF 3)
022	·	-1.926 64	85°-	4 5 5 6 6 7	6.66600	C- 063 69	.62152
269*	4	-1.6(979	.	20000	10303.	.0530	.(2,51
.0es	17	-1.25514	7.	92711.		. 160 63	, (4 1 8
.139	. v	33335-	다 (* 10 m)	.6(317	. 60(41	. 15360	* 772] •
•152	7	67867	₩	56233	54300	. 2030	33453.
•246	27.5	26744	5.12	. 66.553	. (6 3 4 8	. 25003	.6 4 7 8 7
*256	325	156 61	80° 00'	• ((891	.60224	3000e	73221.
P30.	212	15752	\$J. \$	• 64369	. ((338	. 25000	.62727
.466	434	• 5 E E C 4	7.10	.61607	045E	22234.	572730
• 4€€	175	12313.	12.2		. [1.622	. 45003	. 1512 4
• 514	5.2	11 CO 14 CO 17 CO	6.16	54727	. 65.837	. 500 a.C	33550
. 568	707	10 m 3 10 m	7.08	-02765	.01125	- 550.0	55593
623	9	1.64462	6.13	10357	•€145€	• € € 3 v a	. (6 5 9 3
• E73	12	2.03152	25.05	. 5676 0	. (2(16	. 650.0	.16.86.
42 L*	Q.	2-67421	u	. (5671	. 62693	0.607.	.13610
2772	7 6 4	1.54676	**	-11512	.03€+€	. 750 00	.17644
8018	772	1.55561	~1	יים יים יים יים יים יים יים יים יים יים	2 4 5 4 F	. 66339	70,000
*862	2723	1.01238	••	. 1950	19553.	0.050.0	.62553
-962	102	.14261	\sim	55)22*	. 67577	.5136.	22556
\$25°	356	-1,[5536	15.21	25335.	.02664	55	335EC
165*	1137	3	w	.34177	.10452	0	** 6715
¥1621° =	PER DEG.	2523 5** =	cec.		= 8373	.55211	
K = .16054	J	ELCL = .				5.50	
11	O	אנו "	(47)1	CFF)			
BREAKECHN	Füs	CAPO	Y	371			
FPICTICN = .CC				9770			
73. " " " "				נינו			
43	_		_	נננס			
ï				נננ			
EASE = 0.000		0 (1)11		0010			
! !	KIX	1904	1934	VENT			
TICH =	788	~	0. 5.43	60	• 0 0 0 4 E		
11	.04E	((57	6. 23333	٠. د د د	£6.1		
#		\$2112*	0. 35000	C 6.2	910		
H) 328:	ינוננפ	0.0	נפנ	נננ		
H	136						
FAG RISE=	3.0000						
ï	נננ						
Ch. H AIMIN	2086						
	,						

F-16 NINC TUNNEL PO PACH NC. = 1.25C	PCCEL KITH TII RN/FT =	1.66676+05	Lølncfer fepcy i.e. sheep fagle	.GLE = 4(.46 CEG.	TFIMPEG CCNCIIICN	CNC 11I CN	
บ	10 A CC	ដ	ALFPE	CC LIFT	CT RIAFT	CL AT CHE C)=43 17 3)
000-0	0	2 4 7 2 4 4	נינ	. 6.6.0.2	0.10.	00000	45557
270	, ,	**************************************) (1) (1	111111111111111111111111111111111111111		0::000	13061
700	, ,	9 4 6 U 7 1 4		, , ,			400
73.5	, ,		10°F	7777	000000	159.0	6.4.2.2.7
1000	, L.	**************************************	7	1361	0 1 1 1 1 1	100000	1044)
646	, w.	57624-14	70.00	011111	00000	93336	(315)
	, ,	01537-1-	10.	11701	863,000	70000	26.27
(A) (A)		-1.646.7	4	2777	ם • נינה כ		107930
	727	11.8847	17.0	111111111111111111111111111111111111111	נינניוים	00004	25123
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-5-1227	9		נינניני	13	. (+ 16.1
25.2	. (1	-2-35-247		1111	0.707.0	מאר מינייני	21123
25.5	((C.)	-2.60336	7.17		0 7 0 7 7	550.34	.16334
• 569	164	-2-644	7.45	45570	0,000,0	• 60000	.11465
.617	(C)	2700) *M+	4.47	35333	0.0000	. 654.00	.12 . 63
• 664	2 6 2	-2.234 E.	5.12	-16582	0.305.0	0.7.0	•1451€
.711	5.57	-3-581 EA	6.17	1010	09000	. 753 30	.1 6253
652	5	128 DE 18 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	·	.14662	0.191.1	65038.	.1819
408	9	10000	112.67	16285	07000	0.255	M 7/10/14
) fr) fr) fr		777277	1.1.2.2	15.44.2	ייננויינ	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26.23
250		2000	A	1 7 7 7 7 7	917077	77000	2.466.3
2 4 4 C	, ,	7 3 7 3 6 3 F	, .	00150			9 4 5 7 1 7
076.	Ĭ		,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•	
. 17676	PER CEG.	101111 =	CEG.		CLE = .	6345	
21564		= .61442			1.	2225	
ב נינננ		CP/CL = C5207*	(41414)	. CFF)			
443	FLS	CANO	Y NACELL E	1.5			
FRICTICN = . (CZ	£ 7	51	273	300536			
II		•	u	07739			
"				20100			
Ħ			350	.56:12			
ű	Ų		J				
	¥1.4	1 204	1551	VENT			
ž					2400		
,,		9	ינכנמנ ני	3.5	1.66669		
 H		•		•	0000		
"	550				9005		
œ.	400						
TFFG RISE=C.CC	נננ						
••	ລວລ						

SSILES AND LFLNCPERS FEPCV .2222E4C5	CW ALPHA CC LIFT CC RAFT CL AT GH=G CC FT CH=G	7523* ***********************************		1.52717 1.67 .0G2@B G.CC(JO .1G2EO .62.2	51,53. 0,081. 0,031.] 24,17. 24,57.	3000000 000000 000000 000000 000000	7543° 20052° 000000 25150° 4.15	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	51620 E.E.E. 61232 C.C.C.O.O.O. 62530 6.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E	•13452 E•EB •04614 0•CCC40 •40300	37536 13.51 3.513.00 13.516.00 13.516.00	68771 £.25 .122C9 C.CuCù .5C000	37710 00250 00000 000000 000000 000000	-55411 1(-C2 -1C261 C-CUCUC -6CC30 -1255	573E	3.83683 113.89 .14785 C.CCG0 .70000	1.624£1 12.52 .1644 C.60(uC .750uG .5018	2.42816 12.26 .15226 [.EG[4] .86644 .86644	3.25470E 14.19 .2521 C.CC(3C .25303	\$152°C 150°C3 555C6 C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C	20 C C C C C C C C C C C C C C C C C C C	5-71111 16-16 -25107 C.CCC40 1.CC003 .26			TOTAL STATE OF THE	12794	CANDET	F. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		י בייניים	0.1.0.1 0.1.0.1	2730.	0.6111	TOUR CLICK CALLE CALLED	*000° 25131° 32131°	•	90000 000000 000000	1000. 35130. 55133.				
AND LELNCHERS FEMOV E4C5 L.E. SWEEF FAGLE	ALP	ינפננ נינם יינ	.76343 .63	.52717 1.67	2,5156 2.50	.05E52 3.34	4.17	3163	.162C4 5.84	.13452 E.EB	.56564 7.51	.68771	•4 €9 € 8 5 • 18	.25411 16.62	.64217 16.65	13.66	1.63481 12.52	2.4.2816 22.26	3.24706 14.19	4. [61.5 C	1,682.11	5-71111 16-16	3000000	ניט	*****	12 /94 -	OFY NACELL	F. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			0.1.0.1 0.1.0.1	2730.	0.6111		37300	מינונונ	9,10,0	2513)*				
WING TUNNEL MCCEL WITH TIF HIS NC. = 1.ECC RN/FT = 1.	C. TOTAL CC	5,250. 035.3	.33618	1 64820	- 14811 -	- 34731 -	•3536•	. CE235	.57180	43 2 B C +	7.00°	63537.	12552	37251.	.16167	.18244	.26652	.23451 -1	.26523 -1	10 -1		1- 45542.				ב ויונוני	97413214 FUSE1405	. ((7 6 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1000		שנינונו מני	DECK CAPE	9. 54201. E KUIL	בר•ניסנפ -	2	0	בא =נינננ	CPAG QISE=0.(C00C	נינננ	

EPFIFICLLY BESED GOPFUTER FROGFIF TO FFECICI THE PERCOYNAPIC CHARGTERISTICS

CF PIRCRAFT

INCLUCING

RCLGFAESS, FFCTLBEFFACES, AND

CANACE CALCULATIONS

FE-111

v
Ľ
W
-
L
-
~
AF
•
٠.
-
5
~
2
∺
_
_
•
w
_
w
CELE
se.
-

20, 72, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73	2000	10: •) *	50.5	•	0.50				
SFEF #	C PC	# 22.4X			" "				
~ 0	~	٠ ٨	•	6	•	¢	· c:		
# # # # # # # # # # # # # # # # # # #		* TV4	ISko =		IANG =	PAFC =	PETEG =	17f1* =	

IMENSIONS ARE IN FEET

	16.000
	St.P. 1
CASE	1052* =
O FINEL	TAFR
PEFERENCE WING FOR THO FINEL (ASE	SPLAN = 55C.660

SELACE NICELLE

- 70.8't0 32.55	11.376 2.550	District District	AREA = 132C.CCC 443.CCC	CTCF = 1.2C9 1.5CC	31)*2 033*F = 34K SIHL	AREA # 37.455 5.552	A = 15.570 7.47C	57H # 26.420 3.59C	LENGTH = 22.750 28.180	133+2 313*1 E #34# (
Length	WICTH	нејсти	* ETTEC #	JPTER.FACTCE	AC.CF TH	PEXIFUR AREA	PASE AREA	MCSE LENGTH	BCATTAIL LENGTH	ETSE CFAG

2 IC	091.0	•626	333.01	369.95	14.620	13.250	1.440	50.630	121.4	-4.170	0.00
PIC	0.636	.638	101-55	199*822	17.79	7.218	395.8	53.836	193.3	1.250	523*0
E 1C	ם•ננכ	• (36	373.73	334.666	15.616	2.47	335.8	£6.11C	5.676	ם•נננ	1.000
644	332.	.166	16.000	353-338	10.580	3.120	26.513	36.420	6.567	ניננפ	1.660
643	6.00	5. 5. 5.	76.000	313.669	2000	16.580	5.567	022.53	2.503	J24°	1.000
11	"	#11C =	H	*	Ħ	н	€L =	CHCRC=	CHCF C=	CECEE×	Ħ
SECTION	CAPEEF (2-D)	THICKNESS RATIC	L.E. SHEEP	WETTEC AREA	RCCT CHCRE	TIF CHCFE	SFAP CF FANEL	X- LE RCOT CHCRC=	T- LE RCOT CHEFE=	2- LE FC01	INCIDENCE

4444444

E CEAG FOLFES TO BE GENERATED AT THE FOLLOFING CONCITIONS MACH NO. ALTITUDE C.G. SNEEP FROM TO 10 LL

PC BEJLGTPENTS STABBE

CALCULATED ECON PASANETEES

FUSELACE NACELLE

9.437	53)*247	50.00
E. 644	1521.160	37,150
н	H	11
FINENESS FATIC	WETTEC EREA	PEXIFUP AREL

		CALCLLITEC SLRFACE FARAMETESS	SURFACE FA	FARETEFS		
		GLOVE	VER. PING P.T.		s.T.	STRAKE
WETTED AREA	11	313.020	911.338	334.56	223.500	53.060
TIFER RATIC	ĸ	.616	352.	.165	.411	€05.
PLANFCAN AREA	11	261.292	3€9,25€	156.970	111.695	40.205
ASPECT FATIC	Ħ	•€1E	7.858	2.055	1.418	.206
CFFFACT. LENGTH	и	15.118	7.520	10.246	13.280	13.571
770 d45	Ħ	£4.257	12.216	£0.673	48.587	31,235
S1P C/2	μ	54.466	27773	41.671	46.616	154.33
S1F 75	*	3.627	.581	523 6	14.076	-5.226
SEP PEX T/C	Ħ	737.55	11.141	41.071	46.616	154.03
X/C AT PAX T/C		365.	3524	335.	803.	.510

20	
2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	w
TIC	
######################################	
12.	
### ##################################	
TIC	
TIC	w
2012 14.5 13	ш
TIC (SET III) (SET II	w
7170 H 71	w
######################################	
7	
TIC	
746 746 747 747 747 747 747 747	
200 20	Ξ
7.77 × 3.13 2.77 × 4.6.6. 2.77 × 4.6.6. 3.71 × 1.2.6.6. 3.71 × 1.2.6.6. 3.72 × 1.2.6.6	
4 X X X X X X X X X X X X X X X X X X X	
46.16 47.7 = 25.50 47.8 = 25.50 47.8 = 25.50 47.8 = 14.40 17.8 = 25.50 17.8 = 25	
101-101 ECH 101-101 ON 101-	
10000 = 00000 0000 0000 0000 0000 0000	
11	
14.00 = 14.00 1	
TAIL+CRECA = 6.00	
NE TAIL, CIECA = C.C.	
	7

GA SERIES AIRFCIL SECTION

	J	
3 2 2 2	CPITICAL	
בייוורגר	PACH	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TACH C	ಕ	

F6-111	AL T I TUCE	= 3(cec. FT.	L.E. SPEEF DA	ANCLE = 16.60 DEG.	TRIPHEE CONCITIO	NCITION	
ي	TOTAL CE	ដ	ALFHE	CC LIFT	CE RAAFT	CL AT CP #C	15 AT EP=E
}			ă	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	200000	665363	.62241
.016	7) 77 9	39773	; .	10000		2,153,	• C 2 2 2 4
• • • • • • • • • • • • • • • • • • • •	23222	11555				10001	15257
.116	22222.	. 175.14	* · ·	2277	, ,	10.11	4 5 5 5 9
.167	13230	55.25°	7.1	7077	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2 1 1 2 1
777	. 12513		2.5	17110)		1731)
262	12667	1.66864	2.32	• 61213	16201	5 · 0.22 ·	717
		1462763	2.71	• [[352	.0162	. 363. 3	1010
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2000	7 7 7 7 7 7	2.10	45433.	54203.	323200	1 252 1.
3.45°	***	1/1//		50305	74557.	. 46363	.63189
•419	, i	10 + C C C C C C C C C C C C C C C C C C		4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 27 5 3 7	10000	25454.
644.	2532	1000	F	307.10	4 + 4 + 4	36775	355570
546	. 64863	1.10027	27.	*****	100.1		11110
095	0.440.	1,12456	4.67	. [] 2 3 8	*****	2000	
620	1306	1.14671	6.67	.01453	. (1111	30.00	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
•	~ + 3 3 .	1.16637	3. £	. (1726		.653.00	11 17 17 17 17 17 17 17 17 17 17 17 17 1
- 40		00000	. H.	. 62619	• 01555	. 76000	• (5 c C 1
.763	5 T T T T T T T T T T T T T T T T T T T		40.4	# (N P. N C.)	.21521	. 750.33	.6 5.46 6
•771	• 36925	3.254.00		,,,,,,,	1100		11,7521
.851	23560	1.53931	4.14	• 64.50	7777		76740
25.8	55.50	1.26476	23.6	2,1,1,	5 2 2 3 4	; ;	0 70 00
) e	00400	1.533.08	7.€€	.02613	.03430	66.35	: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
) (. 1 U	*****	A 5 5 5 5 4 6	u:	. (5113	3	ココロハア・	•31261
3 C C C C C C C C C C C C C C C C C C C	0.7	400000000000000000000000000000000000000	10.55	3777.	.f. f.e.2	1. (6366	.14162
235.	71271						
4275	. DEG.	35535 =	£ (•		נרנש ש	328836	
	;	22.96			H		
71.5.7			A T O Y	STATE CEEL			
L		**************************************	-				
	1	•	,				
CRAG SFEAKECKS	Į.	ELDRE NACE	· ·				
FFICTION = .COS			(17.				
FCGP = .CC							
TATER = CLOSE			1511				
"			26111				
•			(6114				
ı	15	CVE WAR.Y	FING F.		STR	PKE	
	i •		55133			, (6055	
1	, ,	, , , , , , , , , , , , , , , , , , ,	76111	*30,00	40090*	• • • • • • • • • • • • • • • • • • • •	
	3.		, , ,				
u.	252	16141	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•		1000	
	659			,	•		
œ.							
F 15	נננ						
180	722						
CCHIN = .(S)	2. E						

62 SERIES AIRFOIL SECTION

```
CL PACH GFITICAL TAPLE

CL C. CCCC . 815C
. 1000 . 7276
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
. 1000 . 7776
.
```

PACH PC. = .BCC	ALTITUCE	E = ECCOC. F	T. L.E.	SPEEP ANCLE =	26.1C 0EC.	TRIPHEC (CCNE IT 16M	
ช	107 AL CC	:		ALFHE	CC LIFT	CC RIAFT	CL AT CH =C	7 93
-012	\$5333.	. 689	252	E) ***	30777	C - C G C 3 2	C. 8Cu3u	(55)
• 6550	32225	67	200	5	. (:: 6	999999		170
531.	62223.		7.	1.61	. (((2)	ן • נינייני ניינייני	97194	
251.	.02226	.115		1.62	593)3*	20003.	#705T*	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
***	.35361	515	32	2.3	• ((135	,1,12	6.075	77.7
-245	.52472	173	5	2.45	.00.33	90000	255040	777
252*	. 52615	462	43.	2.67	• ([352	. 10106	C C 12 .	SC SEC
0,7,7	3275C.	E54	22	1.55	35739*	.66172	60000	177
E	.63616	243**	35	3.30	• • • • • • • • • • • • • • • • • • • •		46001	
257.	13581.	-1.53	11	4.12	- 10 CES	.60368	TCUMP *	
547.	.03576	-1.527	13	4.52	• (1(7)	35700	20.726	£ 2.5
•556	13520	-1.41726	35	4.55	. 61213		(1) (1) (1) (1)	. 41
.572	03540.	-1.507	15	5.37	•0157 €	.03665	. E3333	777
.519	.64627	-1.756	62	5.76	.01867	. (1111	(3) (4) (4)	1 5 9 9
.666	. 35366	-1.585	£.	£ . 2 . 3	. 12.18.3	.61247		753
.710	6 6 2 5	-2,319	23	6.77	\$ 0250 ¢	. 5.1744	. 7530.	54.5
.742	.27377	435.65	23	£.12	.02.60	.02241	00000	
.774	275000	414.4-	72	C.4.1	E 2553	. () ()	6 6 1 6 1 6 1 6 1 7 1 8 1	7 1 5
V. 6.	12466	961.30			. 0 5 7 2 7	9 10 27		
0, 41	1.6746	124-3-		1100	12301	63463	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 5
. 822	25.5.6				1 6 6 4 6			
2/6.		255.6	,	•	• 1111	00773	3-116	
= .12023 PE	F CEG.	11	~			CL (8 =		
1870 =			3117				1.53166	
= .(41		C+/CL = .1	£215*	TOTALL CFF	•			
CFFG BFEJKECHN	7.	351135	NACELLE					
FRICTICA = . (C52	•	5733	.((173					
4033° =	7	.00041						
351) = 35	Ψ	•	35333.					
PAVE = C.CCC	0	0.0000	0.0000					
= .0011	4	0))));•3	. ((114					
	פרכ	,	VAG IAC		.1.	518A	STRAKE	
. ((7	Ų	.66133	, CC2P4	.001	5e • 0(101	.0002	
= . [20	2		. (: 664	.6566	•	720	• 66663	
= .652	¥	.6661	. ((1127	7330*	•	550		
=6.00	υ	6.6660	0000300	1,00.1	j	036		
223. = 833.	•							
TFAG RISE=C.CCOG	6							
2)) =);	f							
•	,							
CCF1N * • 6220	w							

SA SERIES AIRFCIL SECTION

FP-111								
PACH NC. = . CCC	ALTITUCE	E = 2((CC. FT	T. 1.E.	SPEEP PAGLE =	35.te eec.	TRIPMEE CONCISSON	NC1110N	
บ	10TAL CE	t		ALFHE	CO LIFT	CC R4AFT	C1 AT CF =C	3=H3 [J 3)
953.	.02124	.32122	22	24.5	• 6 C C 8 5	9,000	(, (i.n	34.57
530.	.35171	(51	٠.	33.	, ((()	נינניינ		2 7 7 7 7
50.0°		727*-	رم ن	1.33	. (((2)	ניננינ	0.00	10107
921.	13256	197	C.	1.79	02111.	2.000	. 15606	
5 F	13220	-1.169	71	40.0	. ((160	5 (C (v 2	.24350	, C 2.33
	13020	-1.542	13	č. (G	.06268	• C C C •	30 ns2 .	35973
• 257		-1.514	۳. در	3.15	53733	. CuC46	.36306	.6.5.62.0
1170	.C2618	-2.287	٠.٥	3.60		263339	E CHI	16367
75.0		553*2-	£3	4.15	5 5 2 3 3 •	. (6153	00707	9 9 7 6 6
80.00 ·	43382.	12:52	£.	4.51	\$ 2539	. (20.00	70763
. 44.	U 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-3.464	61	33.4	.61524	95.00	C. 104	0 17 1 1
585.	.03678	-3.176	36	14.3	-014c8	, (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1
• 55€	.34063	341.4-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	73.5	201860	1,69.7		7 47 7 2
•572	27675.	125.4-	01	6.37	67130		9 6 6 9 9	
*623	5519	-5.638	25	7.64	62173	. ú117 f	00000	21751
• €3¢	.07189	532.9-	J.	57.3	4 4 4 4 4	7157	3000)
.667	10 to 0	-7.726		-	10101		33.00.	
•766	0 0 0 0 0	1010	, ,	•	947.4		3000	.1146
.733	116377		, .	• •	2017-1-	227290	3 (1)	14756
.767	2000	919.01	, .	17.50		26.73.4	2000	.1 8 53 1
	256.27	763 (, ,	•	11010	20000		. 2 . 2 . 2 . 3
•	132654	175511-	·,.	₹.	£ 65.50 £	•0467E	1.5.6.0	15752*
CLA = . 31021	PEF DEC.	3	2447 TEG.			,	,	
. 6553		11	,			יייייייייייייייייייייייייייייייייייייי	10760	
CHO = .02825	•		1675*	(+7.671 0.55)		• 7	,	
		•	f	:				
4	FLS	SE1 4 GE	NACELLE					
11 4.		55735	. ([173					
ţı	2+93		. ((()					
11	5096	•2000e	35333					
*1	9123	000000	0.0000					
FASE = .C	. ((114	0,000	. ((114					
	ن	LCVE	MAR. FIAC	1.1	٠.١.	CIRAKE		
1100	5823	.00133	. 69367		00.	,		
١.	0350	5	. (((57	77 76.	79	74		
ı.	5223	. (((4 1	. 65126	7735				
	วรอว	111	0.0000	C+38643	60.3	, ,	200	
8							•	
7	יניני							
.,	526 E							
٠.	2476							
	, , ,							

6A SERIES AIRFCIL SECTION

CCNDITICN	CL AT 0P = 6 CL AT LP=C		ופנננ				23727. 32552.																46566	32436										2203		9000	ננונ				
TRIPAEC CCND	CO RAAFI	6.1000	37735	6.00.00	0,000	000000	20000	0.333.3	52777.	. 10126	.teret	. ((141	. 66539	.00.372	14500.	.5303.	.61167	.01566	-6323.	.02686	.03370	46343.	•	11	i									ינקונו	710	•	0,0				
CLE = 51.10 DEG.	CE LIFT	30735	7:000	11000	. [[117	2577	3000000	. 6.5.5.7	• ((6 (6	-0.07 E	. 61286	.61569	12527 •	.64175	50140	. C7600	0.450.	4 7 2 5 4 4	, 15024	. 1.916.8	62453	-25152			11 5553	;								.00158		• 6 6 6 4 4	j				
L.E. SNEEF AN	ALFFE		9 4	4 4		7 17 17		3.67	2.4.5	80.4	ינו	£. £2	73.7	51.5	_			4.4	-	45.59	•	17.16	בבנ.		(4T 2 1 1		ACELLE	. [[173	• • • • • • • • • • • • • • • • • • • •	35333•	• לכנננ		I	. ((231	24333.		• [[[[]				
* 30000 FT.	t	41066	04004		77000	F. F	# F / C F F F F F F F F F	-3.77363	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-E-C3628	46.66.24	-6.75684	-7-86254		-11.422285	-11.6446	43550-35-	-12,59161	-13.52218	-14-22663	-15,70611	-16.56055		3 H 13 13	•	**	FUSELACE PACE				5		KAN	.00133	.66632	.06641	0 00000				
DC ALTITUCE	TOT AL CE	•	, ,			1;	, ,	3			ů		~	ř	ì	ÿ	~	3		, m	0	.26823	CONC. CARG. CARG.	•					_			= .(6114		34233.	. 66065	22231.		. cc323	ניננננ	35233 = 3	
PACH NC. = .80	ช	5	•)	0.3.	U P U	1574	5.60	727	r M.	200) 3 () ()	, 2 , 4 , 4	4.77	2477	518	- M	.576		777	. 6.29	-715	100 1 4 1	. ,			CR &G BPE AKECAN	FRICTICE =		7. F.		EASE =		FRICTICN =	FCAPE II	12.TEEF =	II DAMA	CAPEER	CFAC RISE=	FISC =	

ANTICETOR ANDERTY CENTICAL

FB-111 PACH NO. = .SEC	ALTITUCE	E = 3(C00. FI		L.E. SEEP ANGLE	≖ 72.50 DEG.	TRITHEC	CCNC 11 10 N	
t _o	TOTAL CE	ដ		LFHL	CC LIFT	C.C. RIAFT	CL AT CF = [CC 41 CF=
010	.01924	56710	710	.12	•0223•	0000000	700000	•£1552
.031	**	-1.10	u.	1.63	• [[[] [1.000	20.52	555 72
€00.	52323.	-1.68	116	5.5	• ((120	0 330 3 - 3	67091	. (2.16.2
.114	N	-2.13	. 71	3.45	25533.	3~339.5	. 15006	. 6263
• 155	"	-2.64	1.4.1	4.15	• ((633	0.0000	26035	•62£1€
151.	w	13.13	213	5.83	.01265	82773.3	20.000	• [3 c4 E
.233	6	-3,61	24:	£.11	. [5113	0.000.0	.35000	35343.
.241	ü	-4.CE	: 61	£ . C4	. 6217€	0.306.0	(1) (1) (1)	5 5 7 5 9 0
47000	9	34.4-	53	3.78	*04454	C.003.5	64634	
.3ē7	0	25**-	41	£.62	1 45 5 9 4	0.101.0	0.5.0.4.0	15541
013.	č	-5.25(17	25.0	35)!]*	, Cu [4 2	70006	15151
254	-	22.5	200	16.42	5 7 3 5 D •	£ 4.57.2	12 CO	11634
50.75		-F.22	0	111.28	. 11117	A. 0. 1 P. 2	06639	F. 6. 5. 1.
7:53	1 01	-6.674	: 2	12.30	.14671	20733*	. 657.03	11645E
525		15:-/-	17	12.47	16646	1,736	32072	10.22
600			4.	17.60	10427	70:20	#1000 K	1946
1 1 1 1	, ,	, E			• • •		0000	100
777	, ,	343			,	4.7.7.		, :
	; ;	7	1 4		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3	:
2 ;	7 .		יים	v	30757	+1351.	30.00	
25.7	,,,	707		27.47.1	436116	2000	3770	2622
٠,	٠.	121.5-	23.	**	.36:72	10573	1.50.0	2
11	EP DEG.	11	- 41			C112 =	*	
4 1010P		p	2832				10111	
		C+/CL = .C	# 0° #5° 11	(*TZIL CFF)	£		?	
CCFN	FUS	SELFCE	PACELLE					
J. = 40I	22	55():	.11.17.2					
"	. •	.00041	• • • • • • • • • • • • • • • • • • • •					
)• H		•: (((65222					
2:1	ָרָ נ ַ	99333*#	3.1010					
	-4	6,6663	. ((114					
		GLCVE	VAK . 1 31 C	7.1	v.7.	STRAKE	BKE	
TICh ×	•	.00133	• [[273	.00158	•	101	.00022	
u . دی	3	.66612	. [[[]]		•	13.	.06661	
JATEPF = 1 (52	c	.00041	. (((63		•	028	,0000	
PAVE =0.0CC	u	03399.3	0.1000	_	Ġ	00000	3130311	
J. = 53	w							
FAG RISE=1.0	נפ							
ະ	J							
·	683							

C C C C C C C C C C	10 11 12 13 14 15 15 15 15 15 15 15	FB-111 FACH NC. = 1.2CC	ALTITUCE	= 3CCOC. FT		.E. ShEEP ANCLE	ACLE = 72.50 0EG.	TRIPHEL C	CCNCITICA	
Control Cont	1,000 1,00			ដ		AL FHE	LIF	K.	AT CH	
125 125	100		č	1200	4	Š	בנים	0.000.0	£. 6633	2629.
100 100	10000	7 P P P P P P P P P P P P P P P P P P P	2 10 00 00		r u			73797	00:147	2625
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	7 6	1 4 4 6 4 C				76233	0.700.0	0.4634	25773
		υ () •	4 × × × × × × × × × × × × × × × × × × ×	PDT 0 T 1	• •	, ,	7 4 4 5 5 5 7		21051	27997
19 19 19 19 19 19 19 19		9119	7 7 .	1122	v (0000			3 4 7 7 7
1972 1972		•150	D1 - 4 - 1	7.501.07	•		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
	### FUSEL FOR	•250	• 5 2 5 2 5	-2.556	₽	4.52	71210	200000	00024	
		•241	53555.	-2.147	14	2.17	. 52.56	0-107-1		.[5 4 3 5
	13165 -4.2547 7.56 0.0452	-245	.56767	-2.636	u •	6.24	6 4223	2:201:2	35052.	22113.
1475	Compared by Comp	.323	.07653	. 521.4-		3.16	52273.	0,000.0	• + :030	.00156
1316	1972 -5:017	3,964	2765	7523.4-		7.56	******	251272	00054.	15535
	12472	101	12005	-5.111	•	1.62	, CE 255	0.101.2	.54340	.11 . 1 .
### ### ##############################	1116 116 111	1 4 4	1.4.72	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, <u>r</u>	0,63		3,33,3	000000	.15316
### ##################################	### ##################################	7 4	11	46.400.		73 7 3 1	10:01	29363.3	966.66	.14176
1700 1700	1224) to the contract of the contr		7 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		11041	416334	9700.0	. 650 43	.16205
1922 - 19	### 1922	200	40000	727.0			11.63.1	נינטניט	76326	.16426
### ##################################	### 1952 12.55 12.	25.5	4 F C C F	7 67 67	- 4	, T , T	F 0 8 4 4 4	367738	75600	• £ £.76 5
-24527 -8:5542 14:65 -52434 1:000 -5200 -52452 1:000 -5200 -52452 1:0000 -52452 1:000 -52452 1:000 -52452 1:0000 -52452 1:0000 -52452 1:0000 -52452	### ##################################	יי (פי סי סי				, , ,				13206
### ##################################	### PER DEG. ####################################	640.	12070		, L		447111			3 W 3 3 C
### ##################################	### ##################################	7.00	177.70	20000			7474	9 :		3 77 5 2
### ### ### ##########################	### ##################################	.731	• 2 t c t 5	7.7.2.0.1	= :	12.51	71:47		3 C	, , ,
### ##################################	.32379 -16.0364e 17.44 .3118t G.C.LG = .5C44C 244	.772	94452	275.5-	.	16.50	200120	10000	3000	7,77,0
CLES PER DEG.	CLEAR CECCL CLEAR CTAIL CFF CLFF	.612	.32379	-16.036	e.	17.44	.2118 €	0.027.0	7. 56000	• 55 • 61
CLFEX = 1	CLFEX = 1	F 163873 P	9 5 6	11	LEG			Ħ		
CONTENT CONTENT CFF CF	FUSELD(F	23080	,	1				Ħ	13540	
### FUSELATE NACELLE #################################	### FUSELACE NACELLE #################################			,	4073	1111	111 7551			
COURT COUR	FUSELACE hACELLE			1	,					
10000			i		t					
TICh = .CG467	TICh = .CG465			מטרטונ	מארבוני					
## ## ## ## ## ## ## ## ## ## ## ### #	= 0.0000	11Ch = . C345	_	*01.14	2017					
*F = 0.(CGGC	*F = 0.(CGGC	10)1•0=	U	07701.3	0.0000					
= .01725 .CC75 .CC1019 = .CC21	= .01725 .CC775 .CC1519 = .CC21	FF =0.000	w	03333.3	00333.0	_				
	TICh = .(GEIC C.GCCCO .(GEIG H.T. V.T. C.DGGC	= .0172	U	• 6 6 7 6 5	. 61519					
TICh = . ([61]	TICN = .CE613			0,000	. ((216	•				
TICh = .(2611 .00119 .(C243 .00140 .C0090 .C00900 .	TICN = .CE611 .00119 .CC243 .DC140 .CD090 FF = .CCCGG G.CCCG G.CCCGG C.GCCGG G.DGCGG F = .CCCGG G.CCCG G.CCCGG G.DGCGGG G.DGCGGGGGGGGGG				VARABINE		7.7	SIRA	X III	
FF = CCCCC G-CCCC G-CCCC G-60866 FF = CCCCC G-CCCC G-CCCC G-60866 ER = CCCCC G-CCCC G-CCCC G-CCCC G-CCCC G-CCCC G-CCCC G-CCCCC G-CCCCC G-CCCCC G-CCCCC G-CCCCC G-CCCCC G-CCCCC G-CCCCC G-CCCCCC G-CCCCC G-CCCCC G-CCCCCC G-CCCCCCC G-CCCCCC G-CCCCCCC G-CCCCCC G-CCCCCCCC	FF = C(CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC			0 + + 0 0	17633		100 140		-00 525	
FF = 0.0000 0.00	FF = CCCCCC	TOTAL TOTAL	- 0	11100			יניבוני	7		
F = 0.000 0.000 0.0000 0.0000 0.000000	F = 0.(100 G.542 0.6500	227.2	•							
= .005.57 .00542 0.55160 .01195 .00552 R. = .1004 RISE=0.5500 1016?	= .00657 .00542 0.6560 .01695 .00654 RISE=0.65000 = .0165	INTERF ×C. CCOC	U	3,110,0	11110		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	•		
CAMBER, = .tCOU4 CRAG RISE=0.ccoGO PISC = .tCle?	CAMBER. = .CCOU4 CRAG RISE=0.02000 PISC = .CC1E? CDMIN = .02075	\$409. = \$VA4	7	27339	000000	-				
CRAG RISE=0.05000 ▶ISC = .4(16?	ERAC RISE=0.05000 PISC = .6(16? CDMIN = .03075	CAMBER, = . CCOR	J							
FISC # . ([162	PISC = .((162 COMIN = .02675	CRAG RISE-0.CCOG	0							
	7950· =	MISC = . [[16								
	E .0367									

AUTE. DAVE DRAG FOR WAR-DING IS INGUICEL IN KAVE DRAG OF CLOVE

	Colored Colo	F8-111 PACH NO. = 1.6CC	ALTITUCE	E = 36006. FT.	L.E. ShEEP	שא נרב =	72.50 DEG.	TRIPMED CONC	CONDITION	
		ថ			LEFE		*	œ	AT CF	
1013	101	9	۳,	15776			9	00000	7073	M
119	119	K 20 *	~	76340				0,000	5053	1256
- 2.19	1119444	870*	~,	3153201			_	. (C (a C	211636	.12721
- 2-4 C - 2-4 C - 1 - 2-4 C - 2-4	150 1514 1	.119		-1.695 05				03770	.15000	2534).
-2.20	- 200 - 2011	0.1.0		-2-46111			•	20123.	. 21000	. [4614
-241 -05618 -675818 -675818 -65618 -6		.200		-3.52741			_	3 53 03 •	. 250 33	1 37530
-222 -32614 -4.18629 6.28 .0275 6.0640 -344 -12649 -5.2916 6.18 .02647 -444 -12649 -5.2916 6.18 .02647 -444 -12649 -5.2916 6.18 .02647 -444 -12649 -5.2916 6.18 .02647 -444 -12649 -5.2916 6.18 .02647 -444 -12649 -5.2916 6.18 .02647 -444 -12649 -5.2916 6.18 .02647 -444 -12649 -5.2916 6.18 .02647 -444 -12649 -5.2916 6.18 .02647 -444 -12649 -5.2916 6.18 .02647 -444 -12649 -5.2916 6.18 .02647 -444 -12649 -5.2916 6.18 .02647 -444 -12649 -5.2916 6.18 .02647 -64334 -5.2916 16.48 .02647 -64334 -5.2916 16.48 .02647 -64349 -12649 6.18 .02647 -64349 -12649 6.18 .02649 6.18 .02647 -444 -12649 -12649 6.18 .02649 6.18 .02649 -64434 -5.2916 6.18 .02649 6.18 .02649 -64444 -64449 6.18 .02649 6.18 .02649 6.18 .02649 -64444 -64449 6.18 .02649 6.18 .02649 6.18 .02649 6.18 .02649 -64444 -64449 6.18 .02649 6.18 .02649 6.18 .02649 6.18 .02649 6.18 .02649 6.18 .02649 6.18 .02649 6.18 .02649 6.18 .02649 6.18 .02649 6.18 .02649		.241		-3.594(~	29323	.33.63	•16119
1,22 1,22 1,224 1,223 1,25 1,25 1,254	13.2	-222		-4.18[55			•	10101	30000	13.612
196474 19640	- 445 - 1000	2250		-4.72832			•	00000	45362	of 647 6
### 10049	-444 -1046 -64323	.363		-5.29616				2733	100 mm	3 25 5 3 0
1,444		404		-5.86453			9	0.202.	55340	11511
### 1246	15	333		-6.43351			_	361010	5503	13465
- 556 - 16220 - 7.57351 11.68 - 1250 - 7.6700 - 7.570 - 567 - 226149.1467 15.56 - 11041	11:00	4.65		-7.66214	•			0,750.	660	.15223
	- 566 - 12249 - 6.14467 12.56	\$555		-7,57351	•			37353	653	16234
	-647 -2564 -9.2966 13.44 -1620 14000 -6500 -6600	• 566		-8-14467	•			00000	. 76333	1256
### ##################################		.667		-8.71EE			_	100	20.257	0 6 7 LT 4
	### ##################################	749		290826					5 7 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2545.04
	### 1972 ####################################	. #0 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		C U MU U U U U	•			00000	4560	1,727
LA = .05662 FER CEG	STATE STAT	E3.2.		20000	•			07000	4.00	76776
	LA = .05662 FER CEG	2769		-11.51486	•			00000	C 6 0 3	3355
		65.6		-11.5023	•			100000	0 7 3 3	76.57
		630.	,	1772711	•					
K = .30261	REAKCCAN	= .05662	R CEG		CEC			= .2		
### ##################################	### ##################################	= . 16261		, n				1.4	•	
### ##################################	### ##################################	- C. (((((-	•				,	
### ##################################	### ##################################									
		BFEBKCC+N	FC	SELAGE A	וכברוז					
= 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	=0.CCCC	II Ch	416	.25.4	• ((135					
= 0.0000	=		נננ	0.0000	3:1))					
= .C1351	= .C1351	11	000	6.46469	0.55.50					
= .(C21C	= . (C21C	н	251	.46667	• ((744					
CLCVE VAF. LIN		ŧ1	210	נינננ	• (2 2 10					
CO CO CO CO CO CO CO CO			5	CVE	F. b I b (-	٧٠٢.	STRAKE		
= 0.0000 0.0000 0.0000 0.0000 0.000000	= 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	TICA	530	.00103	. [[21]	122	-		0017	
	= *c.fccc		נפנ	2235.	5	33:	130000		0.00	
* . (tores	x = .Cores .acte a.ctad .acted .cores x = .core x1SE=c.core = .tc142	'n.	300	2220.	2	500	0.00000		0,00	
t ≈ .¢¢oc¢ tise=c.¢coo¢ ≈ .¢¢it²			285	.0CE1	:	31:	. 0006		100	
213	ZIS ZIN	~	0:0							
PISC = .t(1142	FISC = . C3424	2151	300							
		113C = . C.	142							
	1421. =									
		ıŧ								

NOTE. MAYE DRAG FCH VFR. WING IS INCLUTED IN MAYE DEAG OF GLOSE

PACH PC. = 2.050	AL TITUEE	* 3((((. FT.	L.E. SPEEP AN	PACLE = 72.50 GEG.	TRIPRET CC	CCNEILION	
ដ	TOTAL CE	t	ATEN	ככ וופז	CE RAFT	CL AT Ch *C	0 = 43 EF = 0
£00°-	.93878	237 & ¢	32.	פינננפם	3.533.3	0.0000	57333
-037	.63145	-,92633	1.15	-06632	6.6060	. 553.0	.63161
.077	.03361	-1.(1486	5)•?	• [[258	37137-3	35031 -	15407
-118	• 63756	-2.10356	₹.º	3 EC 2 3 .	0.000.0	. 15000	.(:617
.158	• 64239	-2.55250	00.00	• C 121 3	1:30:3	. 250.0	15273*
•159	.64561	-3.68178	45.4	. (2151	6.6663	65300	.65120
522*	• 05711	-4.27147	7 . R.O.	* 5520 *	£.60€3€	.36038	• (6 (2 3
.279	.06775	-5.C6166	£• { 4	+0412€	303 ~ 0 • 3	.35338	. 02'50
0000	.28169	-9.15243	7.79	24351.	00333.3	• 45300	. 16721
•3€€	* 0585#	-6.44386	6.74	20277	333353	00354*	-16584
1040	.11949	-7.136 64	69.5	51253*	0.00.0	.55300	-12794
.441	52257*	-7.825.7	3.0.62	. 16271	2,320.3	23055*	15.50
. 461	.17052	-3.523.62	11.58	.15172	00370*0	•65340	35210
*555	•251CD	-5.51283	12.53	+16421	3,33,3	. 650 40	700
235*	.23479	-5.51411	35.48	.25516	3.5963.5	.74900	36757
-612	.27186	-10.61144	14.43	-25557	32353.0	. 750 30	360000
549.	.31229	-11.21668	40.00	440024	0.0000	. 8600	27.22.3
. 663	.35600	-12.61015	16.33	-34677	027.0-3	. 650.00	11200
10 h	57 E 3 4 •	-12.71175	17.26	91100	0,00,0	10000	2007
. 763	U1004.	-13,61455	18.22	17.00	נינניום	, to the total of	.4 £ £ £ 1
508.	.5069	-14.12666	15.17	+5C£54	6.101.3	1. 654.60	.63533
		•	,				
CLA = • 552/13 PE		ALL = 035/11/	נגני			3-16016	
21822		5			H	-	
CHO = 6. CGCC64		11	(*TAIL	L CFF)			
			!				
ź	_	NACE.	יוני				
FFICTICN = .(C37			. ((12 c				
		_	1.0000				
'n.		_	00000				
			. ((632				
FASE = . [[188							
	•	*AF	F186 241	*	218	w	
YOI.	.,			.06168		00015	
11	CO	223330	, 20000	00000		37333	
INTERF =0.CEOC	U	0 23333	• כננננ	03300		01000	
	3.7	6568	• 60 660		. 50052	72030	
CAMBER = C.CCGC	u						
CRAG RISE=0.CCD	00						
PISC = - CCT	Ň						
TOLD - WINGS	20						
•	·-						

OTE. MANE CRAG FOR WAR. WINC IS INCLUCED IN MANE BRAD OF CLOVE

```
COPRC
COPPC
COPRC
COPRC
COPRC
COPRC
COPRC
COPPC
COPPC
COPPC
COPPC
COPPC
COPPC
                                                                                                                                                                                                                                                                                                                                                                                                                                                   SECTION
CLI
IHICK
SWFLE
AHET/TCT
(RCT
CT IF
SPANSEXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FHE STEFS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  STEPS
                                                                                                                                                                                                                                                                                                                                                                                                                         INED PYL
                                                                                                                                                   LENGTH
FIGH
FIGH
FELCHT
AFECTICIAL
INT. FACTOR
PLASE (STREAMTUKE)
LICSE
LITAL
EASE CFAG APEA
INLET AFEA
CUTBC FYL INED FYL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0000 (11.2)
0000 (11.4)
0000 (11.4)
0000 (11.1)
0000 (11.1)
0000 (11.1)
0000 (11.2)
0000 (11.2)
0000 (11.2)
0000 (11.2)
0000 (11.2)
0000 (11.2)
0000 (11.2)
  NESA CR
                                                                                                                                                                                                                                                                                                                                            12.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 (1.00 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    20444
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                23

1.5

1.6

1.7

2000. 0.2

1.7

2000. 0.2

2000. 0.2

2000. 0.2

311111 111111

111111 111111

6.00.6

6.00.6

6.00.6

6.00.6

6.00.6

6.00.6

6.00.6
                                         2 1 3 6 1

22.2 61.07

5.0 5.38

0.373 24.38

E. HFEL NELL BILLET

23.67 24.95

5.85 13.65

8.25 13.65

8.25 13.69

6.6 13.00

6.6 83 10.47

16.83 12.08

16.83 12.08
                                                                                                                                                                                                                                                                                                                                                                                                                           C-141A FLIGHT TEST ANALYSIS
                                                                                                                                                                                                                                                                                                                                                                                                                                 HING P2
                                                                 WING P1
```

		10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44444
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		C B B C C B B C C C B B C C C B B C C C B B C C C B B C
VES CTUPE RANCE LNT NCSE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•
4			n G • • • • • • • • • • • • • • • • • • •
	CUED		2 4
5044500000 V m a o o o o o o o o o o o o o o o o o o	. 1231		ຍບ ກ ວິກ ວິ
# C C C C C C C C C C C C C C C C C C C	, <i>,</i>	.	0.00 0.00 0.00 0.00 0.00 0.00
	P 1 P 0 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1		0 • 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6044709040909000000000000000000000000000	11.00.00.00.00.00.00.00.00.00.00.00.00.0	**************************************	10 10 10 10 10 10 10 10 10 10 10 10 10 1

EMPIFICALLY BASED CCPFUTER FACGRAP

TC FREDICT THE JERCEYNJPIC CHARICTERISTICS

CF PIRCREFT

INCLUCING

RCLGPNESS, FRCTUREFANCES, AND

CAPAGE CALCULATIONS

C-141A FLICHT TEST ANALYSIS NASA CR - 1558

FFFINT(28) = 1

74

v
14,
₩
=
w
ž
=
_
•
-
>
٠.
Z
H
٠.
w
-
10
ũ
ű.
Œ
-

SREF = 3	# 2742	H OF AX	# :::	CFFUS =	FCE =				
3	~	+1	m	0	41	#1	0	ø	+1
NFCES #			* LA	ISHP =	IREF =	THY H	PAFC =	PETER =	ITRIK =

ROUGHX# FMISC # TMIST # CONCC #

DIMENSIONS ARE IN FEET

REFERENCE WING FCR TWO FINEL CASE

SPLAN = 3226.000 TAFR = .3730 SWP = 24.300

LENGTH	132-290	33.670	055.42	16.630	
# HICTH	 14.170	9.00	3.650	395.8	
HEIGTH =	14-170	5.850	3.650	5.500	
METTEC AREA *	 4347.526	822.660	136.866	1645.560	
INTER. FACTOR =	 1.680	1.266	1.266	1.200	
NC.CF THIS TYPE #	1.000	2.600	1-666	003*5	
MAXINUM AREA	157.630	26.838	10.410	23.760	
BASE AREA =	 ניננו	1.010	9.666	9.000	
NCSE LENGTH *	 17.660	16.830	12.510	8.250	
BCATTAIL LENGTH =	50.820	16.820	12.666	8.236	
PASE CRAG AREA =	 ניננ	0))))	8.558	000.0	
INLET AREA ==	 0.9.1	ניננו	111.0	12.560	

		7. 0074	3 L	774.	111	The state of the s	11. 10. 1
SECTION	#	-63	+63	64.0	E + A	£4.£	64.
C4HEEF (2-D)	ĸ	83 7*	.400	003.0	101-1	000.0	6.039
THICKNESS RATIC	#	•150	.110	•1(F	.136	.100	.100
L.E. SHEEF	н	23.730	25.620	29.66	40.00	33.500	73.030
WETTED AREA	M	3134.260	2932.260	893.740	815.406	252.240	214.880
RCCT CHCRG	и	032*22	33.32	14.266	23.53	14.600	14.600
TIP CHCRD	н	25.15	16.550	5.111	12.686	14.EGC	14.650
SFAN CF PANEL	11	27.103	46.460	25.17[22.725	3.286	3.1.70
X- LE RCOT CHCFC=	н	37.750	51.168	123.766	116.200	45.066	37.100
T- LE RCOT CHCRE=	д	6.50	22.660	ם. נכנ	0.00	36,330	23.750
Z- LE RCOT CHCRE=	.*.	033.3	ניננם	23.500	342-2	194.4-	-4.480
INCIDENCE	11	4.890	095.3	0.500	003.3	333.9	0000

CONCITICNS TO CL	1.60
THE FOLICHING FROM CL	0 U
EE GENERATEC AT THE FCLICHING CONCITIONS G.G. SPEEP FRCM LL 10 CL	4°72 32°
2 CFAG FOLARS TO I	30000-000
2 EF PACH NG.	1.24

NO ADJUSTHENTS

CALCULATED ECCY PARAKETERS

FUSELAGE WEEL WELL FULLET NACELLE

3.018	1645.360	23.760
6.847	136.866	16.470
5.756	822.CCC	26.830
5.336	4347.526	157.630
FINENESS BATIO	WETTEC AREA	PAXIPUR AREA

CALCULATED SLRFACE FARAMETERS

		KING F1	PING P2	P.TEIL	W.T FIL	CUTED PYL INBC FYL	INEC FYL
WETTED AREA	٠	3134.200	2932-203	893.740	8 19.46[\$55.246	214.860
TAPER RATIC		.664	845.	355.	.591	1.400	1.6.0
PLEAFORM AREA	Ħ	1442.546	1416.720	485.781	415.776	\$5.776	495.25
ASPECT RATIC	H	2.035	2.577	5.217	2.483	5440	424
CHAFACT. LENGTH	H	27.172	15.967	10.257	18.702	14.601	14.601
S1P C/4	H	17.668	22.689	54.154	36.341	13.000	73.000
S19 C/2	H	11.153	21.265	20.263	32-302	23.000	73.000
SPP TE	H	-2.592	15.188	10.471	53.043	73.606	73.000
SEP HAY TIC	¥	16.350	22.210	52,364	34.127	13.66	33.600
X/C AT PAX T/C	H	302.	398*	952.	052.	052.	•390

TOTAL AIRPLANE PAKAMETERS

80 .C CB	•	6.25	3228.860	2 3 5 5	٠; د	~	4.2E	:25	E . 2 3	44.	·	4 .C E	1.57	77	u	*	32.	56.0	5 4.5	2.76	36	3.5	1.87	.91	4.8	6.29
,€C2 ×	 	بر 11	-	CATE		RFR	u	234	111	*SKFTE =		E T	F F F	10CK	ני	4	â	×	×	~ -	 K	" XTY,	a	= 8¥€		IL,C
NG SEMI-SFA	CEY CIA/ NING S	ING REOT CHEFT AT CENT	HED. KING PLENFORM ARE?	-STE OF RCCT CHORG 1CR	W. WING ASPECT	QUIV. HING TAPER RATI	CLIV. WING LEACING ECGE SWE	CLIV. MINE GUARTER-CHCFD SHEE	CLIVA MING MICHCHCAG	OLIV. WING TFAILING-ECC	CLIV. HING REX.THICKNESS SWEE	CLTV. WING EXPOSED ARE	GLIV. HING EXPOSED HA	CUIV. WING THICKNESS R	DLIV. HING 2-C DESIGN CL	GUIV. WING EXPOSED ASPE	PCAC LEAGTH AT MING FC	HCRD LENGTH AT MING TI	-STA. AT L.E. OF MING NO	-STA. AT L.E. OF WING TI	-STA. AT L.E. CF HING FC	-STA. AT L.E. CF MING	-STA. AT L.E. OF MING PA	-STA. AT L.E. OF NING PA	FITS-X CAL NING TO	ATION LINE BET. WING

4-CIGIA AISFOIL SECTION

ш	
TABL	
(D)	
•	
_	
~	
TICAL	
III	
-	
14.	
Ç	
I	
U	
FACE	
ı.	

ICAL	* * * * * * * * * * * * * * * * * * *
PACH CRITICAL	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ಕ	

FUSLAGE AFT-ENC LPSNEEP CRAG

בברכב	0.18	0.15	912	210	830	3 CE	500	530	0 02	001	601	נננ	000	OL C	223	020	2	930	233	(0017	23
ING ANGLE	200	233	55	303	500	000	330	נננ	000	233	023	CCG	900	1300	ניני	350	900	223	נננ	0000	333
X	•			•		•	٠		•	٠	Ġ	÷	2	* ;	ţ	3	ů		:	19.6	;

Color	נר							
Colored Colo	5		÷	ALFFE	ננר	CCR	CO AFT	(C (L+F+1FT)
100	222	1829	.(8621	-	2000	36363.0	. 00171	57707
110	020	1762	407454	~,	5000	0.0000	87.700	. C C 2.7 3
1150		1718	*16884	w	. (((0 1	0,000	• 66128	.(6125
1.50		17C8	• 66253	"	30000	1.101.0	. 06113	.66116
- 250		1789	• 256 [2	4	3 73 3 3 *	0.000.0	507	. ((14 6
15.00		1785	22640*	33	. 00115	3690).	~	• (615 F
**550		1858	44240	63	. [[[]4	. C. C. E	. 0:06	30557.
## 100		2015	34383.	.63	.66243	38333.	. 60055	327330
10 10 10 10 10 10 10 10		2217	. 62820	1.35	20500	.03180	540.3.	€ 6 7 2 8
- 550		2613	. 626 8 6	2.67	• 66693	.0315	. 0J33E	• (1644
Color		3018	• 61246	2.19	• L C 9 1 4	13700.	. [0328	52713*
1900 1900		3455	. (0:62	3.51	.01166	. 6 6 71 9	. (6321	. 61565
1,000 1,00		10 4	69167	4.62	. 51448	36507	. 60315	55771
## 100		23	COS E4	75.7	. 117EC	.01347	. 66,11	. 53338
1,000 1,00		٠.0	61749	5. 66	.02167	.01751	. 03008	,C3 &c 7
## 100			62541	6.38	55520	.02256	. 60037	. [451 E
## 1646	3.	2\$6	63371	7.10	* 63562	.02125	_	6.39
## 13753		# C	64232	7.62	2 6530	56123.	_	647
CLA * .66962 PER DEG		7.53	(5285	6.63	*6523*	£4240.		255
1.000 .2281107941		139	06602	52.5	.11301	. 15122	-	€ 22
CLA = .66962 PER DEG. ALC =-4.39401 CEG. K = .61022 CMO = -05879* CMO = -05871 CMO = -06871 C	• 000	111	(7541	25*5	-15415	.056.0	C	120
## # # ## ## ## ### ### ### ### #######	# . 66962 PER	6. ALC	-4.35481 CEG			r (a =	e.	
## BREAKCCWA	= 165162	בנוכו	11292			H	707	
## BFEAKECWh FUSELAGE	= 05879		.4 6019	(*TAIL CFF	•	i	•	
## PFCTICN = .00371								
N = .00371	AG BREAKECWN	FUSELAGE	₽HE	ī	_	ELLE		
= .CCG51	ICP =	.305.			•••	00075		
=	11	2339*				51001		
=0.05000	H	2330*				0,025		
=0.CCCCC	Ĩ	22000		_		50000		
N = .0057	**	3333*3		_				
ICN = .00579		~	HIV	¥.	×	5	a NT	FYL
= .00128 .CCC51 .CCC47 .0CC12 .CJ012 .CGGC3 .LL.0 :F = .CC197 .GCG73 .OCC21 .CG019 .LGGC9 .LCC3 :R = 0.0CC00 C.GCCG0 C.GCCG0 C.CCCGC C.CCCGCG RISE=0.CGGG = .CG059	IICK #	0203*	•	00.	o			91070
FF = .CC197 .GCC74 .CCG73 .OCU21 .COJ19 .LGGC! .LCG = 0.CCG0	"	5)))*		20.	23			20-77
=0.CCC00 0.0GC0 0.CCC00 C.OCCC0 i.GGiCO C.CCCC i.GGiCO C.CCCCC i.GGiCO C.CCCCC RISE=0.CCCGCO C.CCCCCC E.CCCCCCCCCCCCCCCCCCCCCCCCCC	11	1338	_	30.	#			£ (C3) }
RISE	11	3300	-	30.3	9	_	~	ָרֵנְזְיֵם
RISE	۳. ۳							
m	RISE=							
	m							

C-141A FLIGHT TEST / PACH NG. = 1.200	ANALYSIS ALTITUDE	* 36600. FT.	SHEEP ANGLE =	24.38 DEG.	TAIL OEFL. (CH)	± (H2)	4.40 CEC.	
ឋ	TOTAL CC	ບໍ່	ALFY	כנו	a 3)		CCAFT	CO (1+6+2FT)
0.00	•	. [68 6	-4.61	פירנננ		6	. 66139	\$ 51030
050*	•15861	• C 6 7 1 C	-3.56	. (((3		~	. 60145	\$\$103°
• 100	.15961	•2654€	- 3.11	.60150		0	. 001.32	5.666
• 150	.16127	•66275	-2.67	. 66238			.06120	354010
•200	•163EG	.16158	- 2.22	• (((()	•	Ų	. ((1139	11773
.250	.16717	• C 6 G 1 S	-1.78	62539*	-3-	5	66000.	.[1426
•369	.17151	.05827	-1.33	.61252	J	U	75,73.	277830
9350	.17600	.05623	28	•01640		0	. 66981	.11521
087.	.16155	45.400 •	43.1	43420°	•	0	. Jug 7 2	.32476
054*	.18786	. 15231	9.	5 t 2 0 4 5	9	0	• 000 65	.62107
035.	25451*	55353*	54.	. 6275	•	ı	. 60352	. (2 2 1 2
5550	.20274	. [48 1	•	57573°	•	0	. [[.51	55547
039	.21132	10000	1.34	0753*	•	0	. 263 45	.65453
089	.22665	+(4272	1.75	+06247		·	. 51039	,6266
• 760	.23678	. 64147	£ 5.53	+6736		£I	. 0.334	26273
.750	.24231	0 T U U U	2,68	. 64524	. •		. 64029	50 mm
000	15552	- C3688	3.12	77253		•	.000	• 6 5 c F E
(C) (V) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	423624	75.77.0	7000	-1132		. •	92777	.11345
036.	.2 8663	C3217	4.00	12567	,		27002	412564
046	.33463	+ G25.7 E	97.5	.1477		u	4 6 6 3 4	.14785
٠	•3242E	o (27 26	25.4	+1€73€	6.136.0	0	. 55511	16747
CLA = .11226 P	ER DEG.	Z-4.6 [517	rec.		£170		9	
= .1502	u	Ħ			77.70	**	7.2	
*01531 * 1 AND	S	. 1211ۥ	(*TAIL CFF)	. CFF3				
XX.		FUSELAGE NHEEL	e e	EULLET	NACELLE			
LICA	ri			90393	• 6.067			
	5		_	00000	9) JCJ • D			
"	o			.08560	0.000.0		•	
PAVE = . C411(•			,6CC5€	23718.			
×			•	00000	2200.2			
		¥	H. H.	AIL	V.TAIL	CUIBO FYL	=	FYL
IICR			. [[189	•0000	.00052	200.		*1010*
		-	~	30300	0,000.00			1115
u.		0		03330*:	6.006.0	030.3		Cour
		•0 23353•		33536	*********	,110		1.02
EER								
CRAG RISE=C. CC000	90							
PISC = . CCC	41							
	;							
COMIN = .1567	62							

NOTE. WAVE CRAG FCR MING PZ IS INCLUCED IN WAVE DRAG OF MING F1

DEFAGE	
NUCLEAR	
KITH	
C-141A	

		4					
		H					
		•					
		J ru					
		: "					
		₽ ∺					
		90		00000			
			85856		82822	85865858	20052855
		vi 4	25525		5555		
×	न न न न न न न	E H	20000		0000	200000000	0407444
3		**		W = 0 0 0 0			1 1 1 1 1 1 1
ũ		1 H	00000	-	00000	45404, 0	4000
4	2003000	LE.	99999	"	" 555555	94999949	000000
F.	2555555	f A	8800000	200000	20000	2222222	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	44444	w m	200000	555555	100000	80000000	W 6 3 3 3 6 3 6
<u> </u>	HHHHHHH	Ü #	# 4000	200750	400000		28000000
4	***************************************	2. H	200000	1 4 1/1	10000	100000000	50000000
•		ವಿ	S.	봊	1	Ţ	4
_		> -	90000	*00000	40000	400000000	.0000000
		2,	700000	200000	900000		
		.			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
					999999	80,40,00000	m 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		H	91995	00000	N ®	00000000	9690000
			00000	00000	00000	90000000	0000000
	000000		88888	20008	88883	98888888	5555555
	MUN FRUK	-	9000		20000		9909000
		н	400469	65555	P	420000000000000000000000000000000000000	2000 C C C C C C C C C C C C C C C C C C
	E 7 E 7 F F F F	H	m		mrssas	mwdan 4	m * v o
			8 %	8	8	8	8
			E	x	Ē	Ē	Ē
				40m3m	-4.84 m . 8.115		
			et (1) to 45 ft/		2222	4224	4664444
			нинии	4 11 11 11	# # # H #		
			מררר ה	77777	רררר	7777777	777777

SAPAGE
EAF !
TH MUCL
ISTA MITH
7

		H						
		н						
				22222				
		40	555555	20000	555555	900000000	2832233	38383
		*	8989999 8999999	0000000	0.11.11 1.11.11		0000000	2 4 5 6 6
		-						
	3		89998	22222	300000	000000000	0000000	22000
	ij	V 1	333533				000000	
	υ <u>ν</u>	Ħ	446640	416161	000000	00000	100000	5,555
	OS	н	800000			4034 0	004m	00000
	53		200000	508835	000000	900000000	0000000	89181
	7	4			322228			35555
	Ē	Ħ	99999	700000		00000000	000000	00000
	ARAKE TER	H	999999	## 00000000000000000000000000000000000	200000	600000000	0000000	พื้ออออเ
	7 0			์ พื้นเดียนการ	ហ៊ុ ១៤១៤១១		9494949	200000
	GE		8533355	200000	2000000	5000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	400000
	PAG	n	£565555	700000000000000000000000000000000000000	5855553	288438383	W G G G G G G G G G G G G G G G G G G G	A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<u> </u>	CAR	,, H	300000	# 3 # 7	4000000		70000000	
Ž.			.	Ļ	Ė	ĭ	q ★	R.
 	LRFACE		-000000	• 4 4 4 4 4 4	4000000	.000000000	• 60 60 60 60	.00000
2	ä	2	*555555	800000000000000000000000000000000000000	F 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	#9000000000000000000000000000000000000		F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<u>ئے</u>	Ŭ,	11	7,000,000	W C C C C C C	2000000	N 2 8 3 3 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	700000000	Nagaga
Ş		H	999966	စစ်ခဲ့ဖစ္ရ	000000	000000000	ပ်ပင်္ကာရပ်ပ	0700
I			900000	000000	000000	000000000	595555	00000
¥ II		494	202233		882888			85558
≪		s t	4004500	4000000	# 0 0 0 0 0 0 # 0 0 0 0 0 0	40000000000	4000000000	400000
다 주		H	m	m % ; ; ; ; ; ; ;		พงหงณ	M W IA W W	m v. t
<u>.</u>			12	00 1	33 %	x 00	D F	Ž
			สถุดสุด ช	สพทรเก ต	สผพงพ พ	4004mmre0	4044666	WE 40 PM
				24444	222222	กตุลตุลตุลตุล	3433333	มีนั้นนั้น
						* * * * * * * * * * * * * * * * * * * *	H H II II H II H	
			77777	77777	, , , , , , , ,	,,,,,,,,, ,	222222	22702

ENTER NICCAP

C-141F WITH NICLEAR CANGE

SUPHAFY OF DAPAGE EFFECTS ON PINIFUP DEAG

RACK # .0

בחרו השואפני ניחב	ורייראני	FLESLAGE NPEEU NELL	EULLET	NATELLE		
V)	(((((C.060 CC	0.00000	ני פנספה		
FAC-FACING STEPS	1.0000	230353	53033.	30370-3		
ING STEPS	3633333	-00025	02030.0	00000		
	. 66033	1.026.1	23023.3	. [[015		
PAVINESS		1111001	23337.3	,,,,,,,		
FACTURERANCES	. 66639	C.0000G	44939	ניננננ		
ELUNTHESS	.01218	30030*3	12000	כ• כ כבכם		
TCT.CRAG.EA.EGDY =	.66204	\$2030*	. 6 60 80	. 8 5015		
SURFACE DANAGE MODE	FING P1	NING P2	H.T AIL	3.T # IL	CUTES PYL INED PWL	INEC PWL
FOUGHNESS	56636	2,000,3	0.01010	0.0000	00370.3	3:101.3
ING STEPS	1.0000	33336.3	.CC036	39933.3	0.376.0	20373.
AFT-FACING STEPS	00000	23000.3	.0015	20222	0.00,00	20008.
	• 00:52	0.000.0	0.0000	C. C.C.000	.05501	36,000.0
HAVINESS	. (((51	23030.3	233373	000000	06333.	0.1066
FROTUEERANCES	95000	33030*3	000000	1001)	000000	76111.
PISSING PARTS	52733.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.61010	0 (018	66607	••••••
TOT.ORAG, EA. SURFACE =	.06638	00017	.00051	00014	00006	64303.

•••	#CD1ES + SURFICES	-• () ()	3 4202.	2 5 3 0 3 *	.00106	. 66672	• 60 19 3	52201.	32407.	•C1124
112 CT LAFF	ECCIES SURFACES &	03033 *-	. ((028	. ((0))	. 10052	. ((052	. 56110	Ν	\$ 2433.	₹6933•
TACE FORT	ECCIES	00000-	.11115	\$2001.	75011.	. (0022	• 66683	52233.	114	. ((427
2471 134 2471 1348		FOUGHNESS	FHC-FACING STEPS	AFT-FACING STEPS	⊁0 L€5	MAVINESS	FROTLBERANCES	FLUNTNESS	PISSING PARTS	TOTAL CAMAGE ERAG

C-1418 FITH NICLEAR CAPPE

				4 - 4 -	-	u	0 4 4			-					
	××	à	UNCAPACED		· × /		DAKAGED		4 : : : : : : : : : : : : : : : : : : :	INCHERE	PENTS CUE	TC NUCLEAR	E CAPAGE		_
	×				, ×				K CELTA	DELTA	CELTA	DELTA	CELTA	CELIE	
ರ	×	ALPHA	ç	C.	ж.	ALFFA	r F	CB	K FLFHE	ò	FOLL	CO MIN	733	CLICIAL	_
	×				~			. •	×						
0.00	×	-4.39	• 5808	.01839	×	-6.25	7665	. 02820.	x -1.50	7873	•£164	.01124	((127	15631	_
. 650	×	-3.68	· C74c	. 61762	*	-5.30	6361	. 52881	x -1.62	7110	.6143	.01124	((,)6	-61119	^
. 100	×	-2.9E	. (688	. 51718	~	32.4-	5656	. 62953	x -1.34	E344	.6116	. 61124	. ((6 8 1	2007	_
.150	×	-2.24	• 6625	.C17CE	^	-3.35	255 4	. 52523	x -1.06	1255	250 7 °	. 01124	. (1151	.61275	
.200	×	-1.52	. C5 et	•C1725	^	-2.36	35250-	. (3166	37 X	4610	.666	.01124	567730	.61277	_
• 250	×	38	. [452	•C1705	×	-1.31	3556	• C3256	¥50	5404.	5434.	. 61124	.66386	. 6 15 11	
.300	×	50	• [424	. 01698	×	1.21	2582.	. 63573	×23	3276	.0619	.01124	.6(551	.61676	
.350	×	.e3	, C354	3605).	×	÷ 6.	2155	. 63547	40. ×	2539	0105	. 61124	2 ~ 2 3 9 .	. 11.72	^
.400	×	1.35	. 1282	.02317	^	1.66	14et	. 54417	25. ×	1742	0025	. 61124	.00976	. 6 2 1 . 6	^
.450	×	2.07	• 6509	.02633	×	2.68	0766	255599	× .61	(975	4653	.01124	.0 1234	22550	_
•500	×	2.79	. [134	.63616	~	3.68	6674	. 55669	58.	62.8	6177	. 01124	.6 1527	753270	^
• 556	×	7.51	. [C58	463495	^	4.67	.0 618	. 664 66	X 1.17	6553.	0101	.01124	.0 18 -7	. 6 5 5 7 2	^
• 60 û	×	4.22	(918	340434	~	5.67	.1206	. 67334	24.1 ×	.1327	0125	.01124	• C 52 3 &	32253.	^
• 650	×	75.7	95 0 J • -	*54767	~	6.67	1551	. (3415	x 1.72	*502•	0146	.61124	.6.544	.C 2 7 G E	^
.700	×	5.€€	(1175	•C5456	~	7.67	•2€8€	62563	X 2.0C	.2861	(172	.61124	55523.		_
• 750	×	6.38	[254	25733	^	8.EE	.3274	. 10 5 8 6	x 2.28	.3628	6197	.01124	3372).	5 2 5 5 9 0	^
)) }	×	7.10	(327	3352J°	^	9∙€	•4 €5 €	. 13045	35.5 x	3024.	(551	.0112+	52523	. 5562	^
.850	×	7.82	-• (431	•1C468	~	10.EE	.4737	. 15571	X 2.84	.5166	5520	.01124	•62979	.05133	^
• 500	×	8.53	(538	.13793	×	11.65	.5416	. 18634	X 3.18	. 5.5.55	0.669	. 01124	.62117	. 4241	^
.950	×	9.25	reen	.17919	~	12.65	€0.0€	25402	37. M X	.6756	0.93	.01124	.C3+54	523300	^
1.000	×	26.9	[758	. 22811	×	13.65	.6776	. 22 9 6 0	3.68	*151*	- u 217	. 1111.24	3797.0	L 0 1 4 0	

C-141f bith auclear cambge

SUPPAFY OF CAPAGE EFFECTS ON PINIAUP DFAE

7 A C H H 3.26

		OLTED PYL INEO FAL	ပိုင်ပါဗီ (•63613 •6364
NACELLE	61000000000000000000000000000000000000	V. 7.11L 0LT		((149
EULLE	34733 0373 037	H.TAIL	010111 010111 010111 0101111 01011111111	.6 6061
FUSELAGE PPEEU PEIL	\$10000 \$1000	MING F2	300000 300000 300000 300000 300000 300000 300000	50000
FUSELAGE	12933* 150003* 160003* 1000	PING P1	12000 10000 1000 10000 10000 10000 10000 10000 10000 10000 10000 10000 1	. 61613
EDDY DANAGE PCDE	FOUSHNESS FWC-FACING STEPS #FT-FACING STEPS FOULES FAUTHESS FLUBERANCES ELUTINESS TOT.ORAG,EA.BCOY =	SUPFACE DANAGE MCDE	FOUGHNESS FNC-FACING STEPS FFT-FACING STEPS FOLES FACTUBERANCES FISSING PARTS	101.DRAG,EA.SURFACE =

BCDIES + SURFICES	10 00 00 00 00 00 00 00 00 00 00 00 00 0	U 10 0 7 •	00000	30131		.00196	* 5 C 2 E 4	£ 27 0 J •	.01879
G FRCP EACH PCCE CF CAPAGE BCC BOCKEDES BCC	((020	. 0037	62033.	. 00003	8243).	. ((1.11	37	. (6323	. ((982
FRCP EACH P	(::::	50100.	4400)	55000	. 60443	48003.	.16264	N.F	. [[858
NET DRAG	FCUGHNESS	SETEPS				PACT LIBER ANCES		ARTS	TOTAL CAPAGE CRAG

C-141A FITH NICLEAR CARFGE

PACH = 1.200

				K ト 4 コ	-		A # R	200	AFIC	4 9	_			
	× ×	25	JNCAPAGED	•	K ×		O AR JGED		× ×	INCRE	INCREMENTS ILE	TC ACCLEAR	EL PAGE	,
	×						ı	1	X CELTA	DELTA	CELTA	CELTA	CF 17.A	72.737
ರ	×	ALPHA	5	ű	^	RLFHA	ů	ÿ	X PLFHE	ď	9016	# L W U U		1717
	×				×					•			,	
0.00.0	×	-4.01	. (687	.15837	×	-4.86	3 577	. 17 6 57	X - 85	46603	.0136	. 01679		31760
.056	×	-3.5E	. 1671	.15861	×	14.33	3 691	.17764	x 77	4362	.4124	. 1879	77 77	61663
. 102	×	-3.11	• Cess	.15561	^	-3.81	3405	. 17914	D2 X	4660	4112	01876	*2070*	E 40 : C
.150	×	-2.67	• (637	.16137	×	-3.59	3 12C	. 18111	x 62	3758	6500.	61679	\$6,03	61074
.200	×	-2.22	• 6620	.16385	×	-2.11	2635	. 18357	74 X	いいまか。ー	. 1027	. 31879	* C 1.2.e	6.119
• 256	×	-1.78	• tet 1	.16717	×	12.5-	2551	.18771	94.1 X	3153	4270.	. 41879	. ((175	7 = 3 > 4 •
.300	×	-1.33	. 6583	.17121	*	-1.72	2566	+19234	5£ - ×	2850	. 0052	.01879	• £ { 5 3 4	.62113
• 350	×) B	• (563	•176CE	*	-1.2[1 585	. 197 65	×33	1452.	6433.	.01879	€ (3.0€	.62165
005.	×	1 2 4 4	. (543	. 18155	×	67	1702	. <0425	x23	245	.0037	• 01379	16117	1,557.
. 450	×		• 6553	.18786	~	15	1428	• 2115 •	X15	1943	. 6025	.01879		.02368
305.	×	¥5.	£15)•	.15452	~	**	1136	. 21971	× C.	1641	. 6618	• 01979	355))•	317750
. 550	×	υ •	. [4 41	*1202*	×	36.	0 657	. 2287£	30. ×	1338	0000-	.01879	.41723	A (2 6 L 2
. 600	×	1.34	537).	. 6 1 1 3 2	^	1.42	77300-	. 23870	39° ×	1026	[013	.01679	26.000	£ 272 £
• 650	×	1.79	• [434	. 22065	~	1.54	3623•-	64642.	× .16	6733	6625	. 61479		.6 2824
. 700	×	2.23	• (415	.23378	~	2.43	0 C1E	. 26128	.23	[431	6636	. 91879	.6 11/1	05050
352	×	2.66	* (355	.2423	_	2.55	.0263	*3 522 •	× • 31	6129	6.50	.01879	.51744	6.2523
000	×	3.12	• (369	.25547	×	3.51	6430.	• 28 9 € €	•36•	.0174	0062	.01879	.C 15 Tu	20.45.00
.850	×	3.57	• (345	42063.	×	4.64	.6 822	. 26 E 23	24. X	. 5476	6175	. 01879	.C173C	260.0
.900	×	4.01	• 6352	.28663	×	4.56	.1166	. 32485	* . 54	6273	5087	.01879	6 1063	13.6.2
366.	×	4.46	• €25€	.36463	*	5.68	.1379	34476	¥9.	.1061	130	01879		7 1 2 2
1.000	×	06.4	• [274	.32426	_	2.€€	.1 657	. 36456	22. ×	.1384	6112	.01879	.62151	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
													1	

4. PROGRAM DESCRIPTION

The AAT computer code is a long and complex program that uses many variables and subroutines. For this reason, a programmer who is not familiar with the details of the program operation may have difficulty in making modifications and additions. This program description is presented to aid the programmer in any future development work.

4.1 PROGRAM STRUCTURE

Figure 1-1 shows the program overlay structure and the positions of the 59 subprograms and subroutines that comprise the AAT computer code. The deck must be arranged as indicated by this figure; Overlay (0,0) with its program and subroutine are first, followed by Overlay (1,0), Overlay (2,0), Overlay (3,0), Overlay (3.1), Overlay (3,2), Overlay (3,3), and finally, Overlay (4,0).

The overlay structure was devised to allow a logical path through the program while keeping the required computer central memory core to a reasonable amount. Approximate 54,000 bites are required by the program.

4.2 SUBROUTINE DESCRIPTIONS

This section contains a description of each subprogram and subroutine listed in alphabetical order. The purpose of each is briefly discussed, followed by the statement required to call the subroutine and definitions for the variables used in the CALL statement.

SUBROUTINE DESCRIPTIONS (listed in alphabetical order)

1. <u>Subroutine AALO</u> computes the zero-lift angle of attack, which is dependent upon camber, twist, and incidence. This subroutine is called with the statement

CALL AALO (SPEED)

where speed is the Mach number. The computed value of zerolift angle is entered into COMMON OUTPUT.

2. <u>Subroutine ACCR</u> computes the aerodynamic center at low lift and at stall for single panel wings. The subroutine also obtains the lift curve slope of the wing. The low lift aerodynamic center is obtained through use of triple-interpolation of the data presented in Figures 4.1.4.2-22 and -27 in the DATCOM. Other subroutines called are: TLNT, AERA, and LNTP. This subroutine is called with the statement

CALL ACCR (SPEED, AR, SWPLE, SWPMC, TR, SPLAN, TOC, TW, FMCRO, XACR, CLAX, XACS)

Where the input is

SPEED = Mach number

AR = Aspect ratio of exposed wing

SWPLE = Leading-edge sweep

SWPMC = Mid-chord sweep

TR = Taper ratio

SPAN == Exposed planform area

TOC = Thickness ratio

TW = Type airfoil section indicator

and the output is

XACR = Low lift aerodynamic center referenced to leadingedge of exposed root chord

CLAX = Lift-curve slope of exposed planform

XACS = Aerodynamic center at stall

3. Subroutine ADCL computes the effect of camber on the displacement of the drag polar. For Mach numbers less than 1.0 the lift coefficient for minimum profile drag is computed; for Mach numbers greater than or equal to 1.0, the lift coefficient for minimum drag is computed. This subroutine is called with the statement

CALL ADCL(SPEED, CLOPT)

where SPEED is the Mach number. At subsonic speeds, CLOPT is the C_L for minimum profile drag at supersonic speeds CLOPT is the polar displacement C_L for $C_{D_{\mbox{min}}}$.

4. Subroutine AT62 uses the altitude and equations representing the 1962 U.S. Standard Atmosphere to calculate the unit Reynolds number over Mach number, $\frac{R_N}{\text{Length-Mach}}$. This subroutine is

called with the statement

CALL AT 62 (ALT, RNOMFT, IFT)

where ALT = altitude

RNOMFT = Reynolds number divided by Mach x Length

IFT = Indicator to specify English or metric units.

If IFT = 0 units are in feet
If IFT = 1 units are in meters

5. Subroutine ADJUST adjusts an aerodynamic parameter, y_1 , to a new value, y_2 , by the equation

 $y_2 = y_1 \cdot v_M + v_A$

where V_{M} and V_{A} are correlation multiplier and adder factors determined from input. These factors are functions of either Mach number or C_{L} . Subroutine LNTP is also called. This subroutine is called with the statement

CALL ADJUST (ID, ID2, XVAR, YVAR)

where ID = Parameter identification number for Mach number cases ID2 = Parameter identification number for C_L cases XVAR = Value of Mach number if ID greater than 0, or value of C_L if ID = 0 and ID2 greater than 0 YVAR = Input value y_1 is changed to output value y_2

6. Subroutine AERA calculates the angle of attack for a given untrimmed $C_{\rm L}$ condition. For supersonic Mach numbers

$$\alpha = c_{\rm L}/c_{\rm L_{\alpha}} + \alpha_{\rm LO}$$

For subsonic conditions the angle of attack is calculated by one of the three different methods depending on whether the wing is a high aspect ratio, low aspect ratio or a cranked planform. For low-aspect-ratio and cranked planform the effect of vortex lift is accounted for in the angle of attack calculations. Other subroutines called are: DLNT and LNTP. This subroutine is called with the statement

CALL AERA (SPEED, CL, ALPHA)

where SPEED = Mach number (I)

CL = Lift coefficient (I)

ALPHA = Angle of attack (0)

7. Program AEROA controls the sequence of calculations required to compute minimum drag for a given Mach-altitude or Mach-Reynolds number condition which are contained in COMMON OUTPUT.

The sequence of the calling of subroutines for aerodynamic calculations is controlled by the parameter JPASS which is defined by program SURVEY. The parameter JPASS is used to prevent calling certain subroutines on repeat passes through AEROA if the values they calculate remains fixed. AEROA calls subroutines AT62, DMIN, FDRG, LNTP and WDRG, and AEROA is called from program SURVEY with the statement

CALL OVERLAY(4 HOVLY, 3,3)

8. Program AEROB controls the sequence of calculations required to compute the trimmed lift, drag, moment, and angle of attack for a given set of conditions. The results of the aerodynamic calculations are contained in COMMON OUTPUT.

The subroutines directly called from program AEROB are ADJUST, AERA, AFTCD, CDDR, CDL1, CDL2, CDRG, CLBRK, CLWBT, CMOW, TDRG, and WBAC. The parameter JPASS is used to prevent calling certain subroutines on repeat passes through AEROB if the value they calculate remains fixed. Program AEROB is called from program SURVEY with the statement

CALL OVERLAY (4 HOVLY, 3,4)

9. Subroutine AER2 computes the lift-curve slope for a wing surface defined by the data in COMMON CALC. The lift-curve slope is computed using a modified Polhamus expression in the subsonic range which is extended to match the two-dimensional linear-theory value at high supersonic Mach numbers. This subroutine is called with the statement

CALL AER2 (SPEED, CLA)

where SPEED = Mach number CLA = Computed lift-curve slope (ΔC_{T_i} per degree).

10. Subroutine AFTCD computes the drag increment due to the fuselage aft-end upsweep as a function of angle of attack. Subroutine DLNT is also called. This subroutine is called with the statement

CALL AFTCD (ALPHA, CDAFT)

where ALPHA = Angle of attack of the wing CDAFT = Drag increment due to aft-end upsweep 11. Subroutine BDRG computes the base drag of an arbitrary body. An empirical equation is used to determine base drag. This subroutine is called with the statement

CALL BDRG (SPEED, AB, SREF, CBD)

where SPEED = Mach number (1)

AB = Base area (I)

SREF = Reference area (I)

CDB = Base drag coefficient (0)

- 12. <u>BLOCK DATA</u> is used to enter in tabular form the data from various tables and charts that are needed by other subroutines in the program.
- 13. Subroutine CDDR calculates the drag rise, the two limit Mach numbers, and the lift-curve slope at those Mach numbers. The limit Mach numbers and associated lift-curves are used later in subroutine CDL1 to define the polar shape in the transonic region. CDDR has two entry points, on the first pass, the constants in the drag rise equation, the two limit Mach numbers, and their associated lift-curves are computed. Only the drag rise is computed in subsequent passes. Other subroutines called are: CLWBT, FDRG, LNTP, and WDRG. This subroutine is called with the statement

CALL CDDR (CL, XMACH, RNOFT, CDR) CALL CDDR1

where CL = Lift coefficient

XMACH = Mach number

RNOFT = Reynolds number per unit length

CDR = Drag rise

14. Subroutine CDL1 calculates the constants which are used by subroutine CDL2 to determine the drag polar. Other subroutines called are: ADCL, DLNT, KGIN, and LNTP. This subroutine is called with the statement

CALL CDL1 (SPEED, RNOFT, FK, DELCL, PRIMEK, AKD, AKB)

where SPEED = Mach number (I)

RNOFT = Reynolds No. per unit length (I)

FK = Polar shape factor below polar break (0)

DELCL = Polar lift displacement (0)

PRIMEK = Additional drag factor for drag polar above polar break (0)

AKD = Theoretical drag-due-to-lift factor (0)

AKB = Separation drag factor used to calculate drag polar above separation lift coefficient (0)

Subroutine CDL2 uses the polar shape factors determined by subroutine CDL1 and the polar break and separation lift coefficients determined by subroutine CLBRK to compute the drag due to lift. This subroutine is called with the statement

CALL CDL2 (SPEED, CL, AEROK, DELCL, PRIMEK, AKD, AKB, CDL)

where SPEED = Mach number (I)

CL = Lift coefficient (I)

AEROK = Polar shape factor below polar break (I)

DELCL = Polar lift displacement (I)

PRIMEK = Additional drag factor for drag polar above polar break (I)

AKD = Theoretical drag-due-to-lift factor (I)

AKB = Separation drag factor (I)

CDL = Drag due to lift (0)

Subroutine CDRG calculates the drag increment due to wing camber. Wing camber causes a lift displacement in the drag polar; this displacement lift increment is related to the difference between the minimum profile drag and the minimum drag of the polar. Subroutine CDRG is called with the statement

CALL CDRG (SPEED, AEROK, DELCL, CDC)

where SPEED = Mach number (I)

AEROK = Polar shape factor (I)

DELCL = Polar lift displacement (I)

CDC = Camber drag (0)

17. Subroutine CDWN calculates the nose wave drag of body and nacelle components. Subroutine DLNT is also called. This subroutine is called with the statement

CALL CDWN (AMAX, XLNOS, RIN, BETA, CDW)

where AMAX = Maximum cross-sectional area (1)

XLNOS = Length of nose (I)

RIN = Radius of inlet area (I)

BETA = $\sqrt{M^2 - 1}$

CDW = Wave drag of component based on maximum crosssectional area (0) 18. Subroutine CDWT calculates the boattail wave drag of body and nacelle components. Subroutine LNTP is also used. Subroutine CDWT is called with the statement

CALL CDWT (AMAX, XLAFT, REX, BETA, CDW)

where AMAX = Maximum cross-sectional area (I)

XLAFT = Length of boattail (I)
REX = Exit or base area (I)

BETA = $\sqrt{M^2 - 1}$

CDW = Wave drag of component based on maximum cross-sectional area (0)

19. Subroutine CDWW calculates the wave drag for component represented as surfaces. It is called with the statement

CALL CDWW (CDOSR)

where CDOSR = wing wave drag based on the configuration reference area

20. Subroutine CFEQ calculates the flat-plate skin friction coefficient using the White-Christoph technique for turbulent flow, the Blasius relation for laminar flow, and a momentum thickness matching technique for partial laminar-turbulent flow. This subroutine is called with the statement

CALL CFEQ (RNOFT, ZMACH, CBAR, XTR, CF)

where RNOFT = Reynolds number per unit length

ZMACH = Mach number

CBAR = Length

XTR = Distance along CBAR where transition occurs

CF = Skin friction coefficient

21. Subroutine CFK3 calculates the equivalent, flat-plate friction drag coefficient for a component with nuclear damage. The surface condition can be described by defining the area and the corresponding roughness height for as many as three different regions on each component. It is called with the statement

CALL CFK3 (LENGTH, RNOFT, XOL1, XOL2, K1, K2, K3, XMACH, CF)

where LENGTH = Component length

RNOFT = Reynolds number per unit length

XOL1 = Fraction of length where regions 1 and 2 merge XOL2 = Fraction of length where regions 2 and 3 merge

K1 = Roughness height of region 1
K2 = Roughness height of region 2
K3 = Roughness height of region 3

XMACH = Mach number

CF = Equivalent friction coefficient

22. Subroutine CLBRK calculates the lift coefficients for polar break, separation drag onset, and maximum lift. This subroutine also calculates other aerodynamic parameters used in subroutine AERA to compute the angle of attack as a funtion of C_I. This subroutine is called with the statement

CALL CLBRK (SPEED, RE, RNOFT)

where SPEED = Mach number (I)

RE = Reynolds number parameter (I)

RNOFT = Reynolds number/foot (I)

The output, which is entered in COMMON CALC, is defined by

CLPB = Polar break lift coefficient

CLDB = Separation lift coefficient

CLMAX = Maximum lift coefficient

ABRK = Angle of attack for polar break

AMAX = Angle of attack at CLMAX

DAMAX = Increment in angle of attack between AMAX and a linear value of alpha at CLMAX

DEL = Tail lift increment to CLMAX

CLS = Lift coefficient where CL versus alpha becomes nonlinear

ARLO = Aspect ratio limit between low AR and high

23. Subroutine CLWBT controls the sequence of calculations that compute the total wing-body-tail lift curve slope, zero lift angle of attack, and the factors used to compute drag and lift increments due to a horizontal tail deflection. Other subroutines that are called are AALO, ADJUST, AER2, and TAIL. Output is entered into COMMON CALC. This subroutine is called with the statement

CALL CLWBT (SPEED)

where SPEED = Mach number

24. Subroutine CMOW computes the moment at zero-lift for the wing-body configuration. Subroutine TLNT is also used. CMOW is called with the statement

CALL CMOW (SPEED, CMO)

where SPEED = Mach number (I) CMO = Wing-body C_{m_0}

25. Subroutine CPUOV calculates the pressure coefficient, Cp at x/c for an infinite sheared wing. The Cp is obtained by solving Equations (93) and (90) in the Royal Aero. Soc. TDM-6312. The arrays corresponding to S(1)(x), S(2)(x), S(3)(X), S(4)(x), and S(5)(x) in Equation (93) are obtained from COMMON CALC, and were defined in subroutine CPZT. This subroutine is called by the statement

CALL CPUOV (S, A, SWP, IV, CPI, CP, XM)

where S = Sign indicator (+1 for upper surface Cp, and -1 for lower surface Cp) (I)

A = Angle of attack (I)

SWP = Sweep angle (I)

IV = Control point, $x/c = \frac{1}{2}(1 - \cos(\frac{IV}{32}))$ (I)

CPI = Incompressible Cp (0)

CP = Compressible value of Cp (0)

XM = Mach number (I)

26. Subroutine CPZT computes the critical Mach number using the local Mach number normal to the isobar in the mid-span region of the wing. The mid-chord sweep and the aspect ratio of the wing are used to define an effective isobar sweep. The subroutine obtains the airfoil geometry from subroutine SECT and the pressure distribution around the airfoil from subroutine The subroutine then uses the incompressible pressure at the crest of the airfoil and isentropic flow relationships to calculate the critical Mach number on the wing. The predicted wing critical Mach number is prevented from exceeding the critical Mach number of the fuselage, which is calculated as a function of fuselage fineness ratio. The output, which consists of a series of critical Mach number and lift combinations, are entered into COMMON CALC. Subroutines CPUOV, LNTP, and SECT are also used. CPZT is called with the statement

CALL CPZT (ID, XMACH, TOC, CLD, SWEEP)

where ID = Type identification of the airfoil (I)

TOC = Airfoil section thickness ratio (I)

CLD = Airfoil section camber (I)

SWEEP = Mid-chord sweep at mid-semi-span of the wing (I)

27. Subroutine DINPT is called only if damage calculations are to be made. DINPT reads the damage input and prints out the values as a check that the data are correctly entered in the problem input. This subroutine is called with the statement

CALL OVERLAY (4HOVLY, 1, 2)

28. Function DLNT is a two-dimensional, nth-order Lagrangian interpolation procedure. Function DLNT also uses Subroutine LNTP. It is called with the statement

CALL DLNT (XBAR, YBAR, X, Y, F, NX, NY, NXMAX, LOX, LOY)

where XBAR = The X value at which a value of the function is to be interpolated (I)

YBAR = The Y value at which a value of the function is to be interpolated (I)

X = The array of X values (I)

Y = The array of Y va ues (I)

F = The values of the function f(x,y) (I)

NX = The size of the X array and the F array in the X direction (I)

NY = The size of the Y array and the F array in the Y direction (I)

NXMAX = The dimension of the F array in the X direction in the calling routine (I)

LOX, LOY = Number of points to be used in the X and Y directions, respectively, in the interpolations: 1 for step, 2 for linear, 3 for parabolic, 4 for cubic, etc. (I)

29. Subroutine DMIN controls the sequence of calculations necessary to compute minimum drag. It uses subroutines ADJUST, BDRG, FDRG, and WDRG. It is called with the statement

CALL DMIN (SPEED, RNOFT, CDMIN)

where SPEED = Mach number (I)

RNOFT = Reynolds number per unit length (I)

CDMIN = Minimum drag (0)

30. Subroutine ELEVON computes the lift, moment, and drag effectiveness of a wing trailing-edge flap control surface (elevon). The elevon is used as a trim surface if no horizontal tail or canard is specified in the input geometry. The computed parameters for the elevon are stored in COMMON OUTPUT and latter used in subroutine TDRG for trim calculations. Subroutine ELEVON uses subroutine DLNT and is called with the statement

CALL ELEVON(SPEED), where SPEED is the Mach number

31. Subroutine FDRG calculates friction, form and interference drag for all the components on the airplane. All output is entered into COMMON OUTPUT. Other subroutines called are CFEQ, FFACT, and IFACT. It is called with the statement

CALL FDRG (SPEED, RNOFT)

where SPEED = Mach number

RNOFT = Reynolds number per unit length

32. Subroutine FFACT computes the form factors for each component. It is called with the statement

CALL FFACT (ID, GEOM, TYP, CLD, SPEED, CRITM, FF)

where ID = Identification for bodies, nacelles, or surface components

GEOM = Fineness ratio for bodies and nacelle components; or thickness ratio for surface components

TYP = Airfoil type identification number

CLD = Airfoil camber

SPEED = Mach number

CRITM = Critical Mach number of configuration

FF = Form factor

33. Subroutine EFFQ calculates the ratio of local dynamic pressure to freestream dynamic pressure. It is called with the statement

CALL EFFQ (RNOFT, XI, XMACH, HEIGHT, QEFF)

XMACH = Mach number

HEIGHT = Distance above surface at which local dynamic pressure is to be calculated

QEFF = Local to freestream dynamic pressure, q/q

Program GEOM uses input to compute additional geometric parameters that are required by other subroutines. The values computed for individual bodies and surfaces are entered into COMMON INPUT. Computed parameters which apply to the total airplane are inserted into COMMON CALC. This program is called with the statement

CALL OVERLAY (4HOVLY, 2, 0)

35. Subroutine IFACT computes the interference factors for each component. It also uses subroutine DLNT and is called with the statement

CALL IFACT (ID, PARM, CRITM, SPEED, FI)

where ID = Identification or bodies or surface components (I)

PARM = Fuselage Reynolds number for bodies, or maximum thickness sweep for surface components (I)

CRITM = Critical Mach number of configuration (I)

SPEED = Mach number (I)

FI = Interference factor (0)

36. Program INPT reads the geometry of the undamaged configuration and the aerodynamic conditions at which the problem is to be run. It is called with the statement

CALL OVERLAY (4HOVLY, 1, 1)

37. Subroutine KGIN computes the polar shape factor and polar displacement for a drag polar with drag rise. A least-squares, second-degree curve is fitted to the drag polar with drag rise. This is needed by subroutine CDL1 in order to interpolate the polar shape in the transonic region between M_{L1} and M_{L2} . It uses subroutines CDDR and LSPCF. It is called with the statement

CALL KGIN (CLDB, AKIN, DECLIN, SPEED, AKOUT, DCLOUT)

where CLDB Upper C_L limit for polar calculation (I)

AKIN Polar shape factor without drag rise (I)

DECLIN Polar displacement C_L without drag rise (I)

SPEED Mach number (I)

AKOUT Equivalent polar shape factor with drag rise (0)

DCLOUT Equivalent polar displacement with drag rise (0)

38. <u>Subroutine LNTP</u> is a one-dimensional, nth-order Lagrangian interpolation procedure. It uses no other subroutines and is called with the statement

CALL LNTP (XBAR, YBAR, X, Y, M, NO)

where XBAR The abscissa value at which an ordinate is to be interpolated (I)

YBAR The interpolated ordinate (O)

X The array of abscissas (I)

Y The array of ordinates (I)

M The size of the arrays (I)

NO The number of points to be used in the interpolation: NO=1 for step, NO=2 for linear, NO=3 for parabolic, NO=4 for cubic, etc. (I)

39. Subroutine LSPCF is a least squares, polynominal curve fit subroutine. It is called by the statement

CALL LSPCF (X, Y, N, MP, SA, RE, SIGMA, IT)

where X The independent variable array
Y The dependent variable array
N The number of points
MP The degree of polynomial fit
SA The array containing the coefficients

An error indicator
=0 if the coefficients were found correctly
#0 if the coefficients were not found correctly

SIGMA An unbiased estimate of the standard deviation RE The array containing the residuals

40. Program MCRIT constructs a table of critical Mach number versus C_L from either an input table or by using an empirical method. It uses subroutines ADJUST, CPZT, and LNTP. MCRIT is called with the statement

CALL OVERLAY (4HOVLY, 3, 2)

41. Program MRIT (MAIN PROGRAM controls the logic of the calling of the four primary overlays. The lengths of the principal COMMON blocks used in all four overlays are also specified in this program. The primary overlays are called with the following statements.

OVERLAY(4HOVLY, 1, 0) (INPT)
OVERLAY(4HOVLY, 2, 0) (GEOM)
OVERLAY(4HOVLY, 3, 0) (SURVEY)
OVERLAY(4HOVLY, 4, 0)

42. Subroutine NTRIM computes the lift and drag increments required to trim the damaged aircraft pitching moments. It also computes the rolling moments that result from wing or tail damage and makes a rough estimate of the drag that results from trimming these moments. NTRIM is called from subroutine NUCDAM by the statement

CALL NTRIM(J)

- where J = Number of the survey condition at which data are being evaluated
- Program NUCDAM computes the effects of damage on minimum drag, and equations are included to account for any of the fourteen different modes. Data describing the damage are stored under the variable names DBOD(I,J), DSUR(I,J), and DWING(I). These variables are included in COMMON INPUT. Minimum drag increments

computed by this subroutine are stored in the variable DAMCD (I,J), which is included in COMMON NUCOUT. It calls subroutines WRITE, NUCDAM 2, NTRIM, and WRITE 2. It is called with the statement

CALL OVERLAY (4HOVLY, 4, 0)

Subroutine NUCDAM2 computes the effects of damage on the lift-curve slope, polar shape factor, and pitching moment curve.

It then computes, for the untrimmed configuration, the lift, drag, and pitching moment. It is called by the statement

CALL NUCDAM2(J)

where J = Number of the survey condition at which data are being evaluated.

45. Subroutine RINPT is used to make minor changes to the basic problem input after the initial problem has been run. This provision allows additional problems to be run with ease if changes are minor. It is called with the statement

CALL OVERLAY (4HOVLY, 1, 3)

46. Subroutine SECT calculates the thickness and camber airfoil ordinates which are used in subroutine CPZT to calculate pressure distributions. SECT can calculate the section data for the standard NACA 6-series and 4-digit airfoils and the boconvex airfoil. The subroutine can also obtain the airfoil ordinates at the control points, x/c, needed for pressure solutions by interpolation on a table of input ordinates. It uses subroutine LNTP and is called by the statement

CALL SECT (ID, TOC, CLD)

where ID = Airfoil section identification number (I)

TOC = Airfoil thickness ratio (I)

CLD = Airfoil camber (I)

47. Subroutine SETUP places initial values of 0.0 in the input and geometry common blocks. This is done to prevent random data from being used in program calculations if input data does not specify each value. It is called with the statement

CALL SETUP

48. Program SURVEY controls the sequence of calculations to produce a lift, moment and drag variation for each high-speed survey condition specified by the input.

For variable sweep configurations the program will first call program VGEOM with the wing leading-edge sweep set at the forward position and then recall program VGEOM with the sweep set at the aft position. This is done in order to setup program VGEOM for geometry calculations at any arbitrary sweep position. SURVEY then enters a DO LOOP where the high sweep survey conditions are set up. SURVEY calls VGEOM and MCRIT to recalculate the geometry and the configuration critical Mach number each time the leading-edge sweep is changed in a survey. SURVEY then enters an inner DO LOOP where a sequence of untrimmed C_L are generated and programs AEROA and AEROB are called to obtain the trimmed lift, moment and drag, SURVEY then prints out the aerodynamic results. It is called with the statement

CALL OVERLAY (4HOVLY, 3, 0)

The following secondary overlays are called from SURVEY:

```
OVERLAY(4HOVLY, 3, 1) (VGEOM)
OVERLAY(4HOVLY, 3, 2) (MCRIT)
OVERLAY(4HOVLY, 3, 3) (AEROA)
OVERLAY(4HOVLY, 3, 4) (AEROB)
```

49. Subroutine TAIL computes the lift curve slope contribution of the tail along with factors used to compute lift and drag increments due to a horizontal tail deflection. These factors are computed by first solving for the downwash, dynamic-pressure, exposed area lift-curve slope, carry-over lift factors and induced drag for the tail. Subroutines AER2 and LNTP are also used. The output is entered in COMMON CALC. TAIL is called with the statement

CALL TAIL (SPEED)

```
where SPEED = Mach number (I)
CLAT = Lift-curve slope contribution of the tail (0)
A = Trim drag factor (0)
B = Trim drag factor (0)
AOH = Angle of zero lift of the tail (0)
CLDH = Change in lift due to tail deflection factor (0)
DEDA = Change in downwash per change in angle of
attack (0)
```

Subroutine TDRG calculates moment using the wing-body C_m and aerodynamic center and the tail lift and moment arm. The moment is calculated at zero horizontal tail setting. The tail deflection required to trim and the resulting lift and drag increments are also computed. TDRG is called with the statement

CALL TDRG (DCLT, DCDT)

Where DCLT = Increment in lift due to trim
DCDT Increment in drag due to trim

51. Subroutine TLNT is a triple-linear interpolation procedure. It uses subroutines DLNT and LNTP. It is called with the statement

CALL TLNT (XBAR, YBAR, ZBAR, FBAR, X, Y, Z, F, NX, NY, NZ, NXMAX, NYMAX)

where XBAR = The X value at which a value of the function is to be interpolated (I)

YBAR = The Y value at which a value of the function is to be interpolated (I)

ZBAR = The Z value at which a value of the function is to be interpolated (I)

FBAR = The interpolated value of the function F(X,Y,X)(I)

X = The array of X values (I)

Y = The array of Y values (I)

Z = The array of Z values (I)

F = The three-dimension array F values (I)

NX = The size of the X array and the F array in the X direction (I)

NY = The size of the Y array and the F array in the Y direction (I)

NZ = The size of the Z array and the F array in the Z direction (I)

NXMAX = The dimension of the F array in the X direction in the calling routine (I)

NYMAX = The dimension of the F array in the Y direction in the calling routine (I)

Program VGEOM computes the geometry parameters that vary with wing sweep for variable-sweep configurations. The program is first called by program SURVEY at the forward and most aft sweep positions in order to set up VGEOM for any arbitrary sweep calculation. It is called with the statement

CALL OVERLAY (4HOVLY, 3, 1)

Subroutine WBAC computes the wing-body aerodynamic center location. It first calculates the aerodynamic center of the wing carry-over lift on the body and the aerodynamic center of the forebody. A composite aerodynamic center is then computed. Subroutines ACCR, DLNT and LNTP are used. It is called with the statement

CALL WBAC (SPEED, XACR)

where SPEED = Mach number (I)

XACR = Aerodynamic center of the wing-body configuration reference to the leading edge of the exposed root chord

54. Subroutine WDRG calculates the wave drag for all the components on the airplane and enters the results into COMMON OUTPUT. The following subroutines are used: CDWH, CDWT, and CDWW. It is called with the statement

CALL WDRG (FMACH)

where FMACH = Mach number

55. Subroutine WRITE prints the minimum drag increments calculated by subroutine NUCDAM. The total drag increment on each component is shown and the total increment due to each mode of damage is also shown. It is called from subroutine NUCDAM with the statement

CALL WRITE (J)

Where J = Number of the survey condition at which data are being evaluated.

Subroutine WRITE2 prints a summary of the aerodynamic data that are calculated by the AAT computer code. Lift and drag data are shown for both the undamaged and damaged configurations. It is called from subroutine NUCDAM by the statement

CALL WRITE2 (J)

- where J = Number of the survey condition at which data are being evaluated.
- 57. Subroutine XINPT reads the card in the input deck that directs the program to evaluate a damaged configuration, change parameters in the basic input, or end the problem. XINPT interprets the message on the card and calls the appropriate subroutines required to comply with the directive. It is called with the statement

CALL OVERLAY (4HOVLY, 1, 0)

4.3 COMMON BLOCK DESCRIPTIONS

Common blocks in the AAT procedure have been utilized in a manner that helps the programmer keep track of variables that are used. Most of the data used internally are contained in one of the following common blocks:

- 1. Common block INPUT contains all input data.
- 2. Common block CALC contains geometric parameters that are computed by the program.
- 3. Common block OUTPUT contains the aerodynamic parameters that are computed by the program.
- 4. Common block NUCOUT contains the aerodynamic data that are computed for the damaged configuration.

Table 4-1 lists the name of each variable in the common block INPUT as it is used in the programming statements. The position of each variable within the common block is indicated, and a brief description of each variable is given. Similar information for the OUTPUT, CALC, and NUCOUT common blocks is given in Tables 4-2 through 4-4.

TABLE 1
Variables in Common Block Input

<u>A()</u>	VARIABLE NAME	DESCRIPTION
1	nput Data Block #1 (General	Information)
(1)	NBODYS	Number of Bodies
(2)	NNAC	Number of Nacelles
(3)	NPNLS	Number of Panels on Main Wing
(4)	NHT	Number of other lifting surfaces
(5)	NVT	Number of Non-Lifting Surfaces
(6)	ISWP	Indicator for Sweep
(7)	IREF	Indicator for Reference Alpha
(8)	IWNG	Indicator for Wing Planform Definition
(9)	NAFO	Number of airfoil ordinates
(10)	METER	Indicator for metric units
(11)	SREF	Reference Area
(12)	CMAC**	Reference Aerodynamic chord
(13)	XMAC**	:-Station of leading edge of CMAC
(14)	ZCG	Z-Station of CG
(15)	TWIST	Wing twist
(16)	ROUGHK	Surface Roughness Height (inches)
(17)	FMISC	Percent friction drag for misc. items
(18)	NPODS	NBODYS + NNAC
(19)	SPLAN	Planform Area
(20)	TAPR	Tip chord/root chord
(21)	SWP	Wing leading-edge sweep
(22)	ĮTRIMĮ	Trim Indicator
(23)	RLE	Leading-Edge radius
(24)	TOCR	Reference t/c for input airfoil (NAFO > 0)
(25)	CLDR	Reference CLD for input airfoil (NAFO > 0)
(26)	TECH	Technology Factor
(27)	CONCL	Conical Camber
(28)	UPFUS	Aft Fuselage Upsweep Angle
(29)	AOB	Aft Fuselage width-to-height ratio

(Table 1 Continued)

A()	VARIABLE NAME	DESCRIPTION
	Input Data Block #2	(Body Geometry)
(29+1)	BNAME (I)	Name of Body I, I=1, 7
(36+1)	BOD (1,1)	Length
(43+1)	(1,2)	Widch
(50+1)	(1,3)	Height
(57+1)	(I,4)**	Wetted area, Total for Type I Bodies
(64+1)	(1,5)	Interference Factor
(71+1)	(I,6)	Number of bodies of Type I
(78+1)	(I,7)**	Maximum cross-sectional area
(85+1)	(I,8)	Base Streamtube area
(92+1)	(1,9)	Nose length
(99+I)	(1,10)	Boattail length
(106+1)	(1,11)	Base drag ares
(113+1)	I,12)	Inlet area
(120+1)	(1,13)	Vacant
(127+1)	(I,14)*	Fineness ratio
(134+1)	(1,15)	Vacant (Reserved for future expansion)
(169+1)	Y (1,20)	V
427.12	(Input Data Block #3	
(176+1)	SNAME(I)	Name of surface I, I=1,7
(183+1)	SUR (I,1)	Airfoil section type Airfoil 2-D camber
(190+I)	(1,2)	Thickness ratio, t/c
(197+1)	(1,3)	Leading-edge sweep
(204+1)	(1,4)	x/c for maximum t/c
(211+1)	(1,5)*	Vacant
(218+1)	(1,6)	Wetted Area (Total)
(225+1)	(1,8)	Exposed root chord
(232+1)	(1,9)	Tip chord
(239+1)	(1,10)	Exposed Semi-span
(246+I) (253+I)	(1,11)	X-station at leading edge of root chord
	}	Y-station at leading edge of root chord
(260+1)	(1,12)	Z-station at leading edge of root chord
(267+1)	(1,13)	
(274+1)	(1,14)	Incidence
(281+1)	(I,15)	Vacant
(288+I)	V (1,16)	Vacant

(Table 1 Continued)

	,		
<u>A()</u>	VARIABLE NAME	DESCRIPTION	
	(Input Data Block #3	(Surface Geometry), Continued)	
(295+1)	SUR (I,17)*	Exposed taper ratio	
(302+1)	(I,18)*	Exposed planform area (Total)	
(309+1)	(1,19)*	Aspect ratio	
(316+1)	(1,20)*	Characteristic length	
(323+1)	(1,21)*	Sweep of quarter-chord	
(330+1)	(1,22)*	Sweep of mid-chord	
(337+1)	(1,23)*	Sweep of trailing edge	
(344+I)	(1,24)*	Sweep of maximum thickness	
(351+1)	(1,25)	Vacant, Reserved for future expansion	
(386+1)	(1,30)	V	
	Input Data Bloo	ck #4 (Arbitrary Airfoil)	
<u>A()</u>	VARIABLE NAME	DESCRIPTION	
(394-423)	AFX(I)	x/c for airfoil input, I = 1, 30	
(424-453)	AFC(I)	Camber distribution	
(455-483)	AFT(I)	Thickness distribution	
	. ,		
		ck #5 (Variable Sweep)	
<u>A()</u>	VARIABLE NAME	DESCRIPTION	
(484)	XPIVOT	X-station of wing pivot	
(485)	YPIVOT	Y-station of wing pivot	
(486)		Vacant	
(487)	AFTSW	Maximum aft sweep of leading edge	
(488)	AFTCB	MAC of movable panel in aft position	
(489)	AFTOC	t/c of movable panel in aft position	
(490)	AFTAW	A_{wet} of movable panel in aft position	
Input Data Block #6 (Survey Conditions)			
<u> </u>	VARIABLE NAME	DESCRIPTION	
(491)	NSURV	Number of surveys	
(492)	NCLAS	Number of evenly spaced C _L 's	
(492+1)	FMSURV(I)	Mach numbers for surveys I = 1, 20	
(512+1)	ALT(I)	Altitude for surveys	
(532+1)	CG(I)	X-station of cg for surveys, fraction of MAC	
(552+I)	SWPV(I)	Leading-edge sweep for surveys	
(572+1)	CLLO(I)	Low C _L for surveys	
(592+1)	CLHI(I)	High C _L for surveys	
(612+I)		Vacant	

(Table 1 Continued)

<u>A()</u>	VARIABLE NAME	DESCRIPTION	
	Input Data Block #7 (A	Adjustment Factors)	
(632+1)	IVAL(I)	Indicator for parameters to be adjusted, I=1,20	
(653)	NXVAR	Number of Mach numbers in table of Mach function adjustment factors	
(654)	NADJ	Number of parameters to be adjusted as a function of Mach number	
(655)	NXCL	Number of C_L values in the table of lift function adjustment factors	
(656)	NADJ2	Indicator for M _{CR}	
(656+1)	X(I)	Mach numbers for the table of Mach adjust- ment factors I=1,15	
(672-806)	YM(I,J)	Multiplier factors, I=15, J=9	
(807-941)	YA(I,J)	Adder factors, I=15,J=9	
(941+1)	XCL(I)	$C_{\rm L}$ values for the table of lift function adjustment factors, I=1,15	
	Input Data	Block #8	
<u> </u>	VARIABLE NAME	DESCRIPTION	
(957)			
! ! !	Reserved for future expan	nsion	
; (1641)			
	Input Data Block #9 (D	manage Mode Indicators)	
<u>A()</u>	VARIABLE NAME	DESCRIPTION	
(1641+I)	IDAM(I)	Indicator to select damage modes, I≃1,17	
Input Data Block #10 (Body Damage Parameters)			
<u> </u>	VARIABLE NAME	DESCRIPTION	
(1661+1)	DBOD(I,1)	Roughness factor before damage on Body I, I=1,17	
(1668+1)	(1,2)	Roughness factor of d sed area on Body I, I=1,17	
(1675+1)	(1,3)	x/1 where damage starts	
(1682+1)	(1,4)	x/1 where damage ends	
(1689+1)	(1,5)	Fraction of area affect by damage	
(1697-1731)	(1,6)-(1,10)	Vacant	
(1731+1)	(1,11)	Number of forward-facing steps on Body I, I=1,7	
(1738+1)	(1,12)	Width of each step	
(1745+1)	(1,13)	Height of each step	
(1752+1)	(1,14)	x/1 at first step	
(1759+1)	(1,15)	x/1 at last step	
(1767-1801)	V (1,16)-(1,20)	Vacant	

(Table 1 Continued)

<u>A()</u>	VARIABLE NAME DESCRIPTION		
	(Input Date Block #10 (Body Damage Parameters), Continued)	
(1801+1)	DBOD(1,21)	Number of aft-facing steps on Body I, I=1,7	
(1808+1)	(1,22)	Width of each step	
(1815+1)	(1,23)	Height of each step	
(1822+1)	(1,24)	x/1 at first step	
(1829+I)	(1,25)	x/l at last step	
(1837~1871)	(1,26)-(1,30)	Vacant	
(1871+I)	(1,31)	Total number of holes in Body I, I=1,7	
(1878+I)	(1,32)	Number of these holes over wing	
(1885+1)	(1,33)	Length of each hole	
(1892+I)	(1,34)	Width of each hole	
(1899+1)	(1,35)	Depth of each hole	
(1906+1)	(1,36)	x/1 where first hole starts	
(1913+1)	(1,37)	<pre>x/1 where last hole starts</pre>	
(1921 + I)	(1,38)	Type hole	
(1928-1941) (1941+I)	(I,39)-(I,40) (I,41)	Vacant Total number of waves in Body 1,1≈1,7	
(1948+1)	(1,42)	Number of these waves over wing	
(1955+1)	(1,43)	Length of each wave	
(1962+1)	(1,44)	Width of each wave	
(1969+I)	(1,45)	Amplitude of each wave	
(1976+1)	(1,46)	x/1 where first wave starts	
(1983+1)	(1,47)	x/1 where last wave starts	
(1990 -2001)	(1,48)-(1,50)	Vacant	
(0001 17)	(7.51)	Works of anythings on the day 7-1.7	
(2001+1)	(1,51)	Number of protuberances on BodyI,I=1,7	
(2018+1)	(1,52)	Height of each protuberance	
(2025+1)	(1,53)	Parasite area of each protuberance, $\triangle f$	
(2032+1)	(1,54)	x/1 of first protuberance	
(2039+1)	(1,55)	x/1 of last protuberance,	
(2047-2081)	¥ (1,56) - (1,60)	Vacant	

(Table 1 Continued)

	(18520 1 00.		
<u> </u>	VARIABLE NAME	DESCRIPTION	
	(Input Data Block #10 (Body Damage Parameters), Continued)		
(2081+I)	DBOD(1,61)	Frontal area of blunted body at point of damage	
(2088+I)	(1,62)	1/d at point of damage	
(2096-2151)	(1,63)-(1,70)	Vacant	
(2152-2361)	V (1,71)-(1,100)	Reserved for additional modes of body damage	
	Input Data Block #11 (Sur	rface Damage Parameters)	
<u> </u>	VARIABLE NAME	DESCRIPTION	
(2361+1)	DSUR(I,1)	Roughness factor before damage on surface I, I=1,7	
(2368+I)	(1,2)	Roughness factor after damage on surface I, I=1,7	
(2375+1)	(1,3)	x/c where damage starts	
(2382+1)	(1,4)	x/c where damage ends	
(2389+1)	(1,5)	Fraction of area affected by damage	
(2396+1)	(1,6)	Lower surface (0) or upper surface (1)	
(2404-2431)	(1,7)-(1,10)	Vacant	
(2431+1)	(1,11)	Number of forward-facing steps on surface I, lower surface	
(2438+1)	(1,12)	Number of forward facing steps on surface I, upper surface	
(2445+1)	(I,13)	Width of each step	
(2452+1)	(1,14)	Height of each step	
(2459+1)	(1,15)	x/c at first step	
(2466+1)	(1,16)	x/c at last step	
(2474-2571)	(1,17)-(1,20)	Vacant	
(2501+1)	(1,21)	No. of aft-facing steps on surface I,	
(2508+1)	(1,22)	No. of aft facing steps on surface I, upper surface	
(2515+1)	(1,23)	Width of steps	
(2522+1)	(1,24)	Height of steps	
(2529+1)	(1,25)	x/c at first step	
(2536+1)	(1,26)	x/c at last step	
(2544-2571)	V (I,27)-(I,30)	Vacant	

(Table 1 Continued)

<u>A()</u>	VARIABLE NAME	DESCRIPTION
	(Input Data Block #11 (Surfac	e Damage Parameters), Continued)
(2571+I)	DSUR(I,31)	No. of holes on surface I.lower surface
(2578+1)	(1,32)	No. of holes on surface I,upper surface
(2585+1)	(1,33)	Length of each hole
(2592+I)	(1,34)	Width of each hole
(2599+I)	(1,35)	Depth of each hole
(2606+1)	(1,36)	x/c where first hole starts
(2613+I)	(1,37)	x/c where last hole starts
(2620+I)	(1,38)	Type hole
(2627 <u>+</u> 1)	(1,39)	Porosity factor
(2634+1)	(1,40)	Vacant
(2641+1)	(1,41)	No. of waves on surface I, lower surface
(2648+1)	(1,42)	No. of waves on surface I, upper surface
(2655+1)	(1,43)	Length of each wave
(2662+I)	(1,44)	Width of each wave
(2669+1)	(1,45)	Amplitude of each wave
(2676+1)	(1,46)	x/c where first wave starts
(2683+1)	(1,47)	x/c where last wave starts
(2691-2711)	(1,48) - (1,50)	Vacant
(2711+1)	(1,51)	No. of protuberances on surface I, I=1,7
(2718+1)	(1,52)	Height of each protuberance
(27,25+1)	(1,53)	Parasite area of each protuberance, Δf
(2732+1)	(1,54)	x/c of first protuberance
(2739+1)	(1,55)	x/c of last protuberance
(2747-2781)	j .	Vacant
(2785-3061)	(1,61) - (1,100)	Reserved for additional modes of surface damage
(3062)	DWING (1)	Δc/c ~ chord of missing leading edge
(3063)	(2)	$\eta_{ m c}$ ~ inboard edge of missing leading edge
(3064)	(3)	Δ 7 ~ span of missing leading edge
(3065)	(4)	$z/t \sim Ratio of leading-edge to maximum thickness$
(3066)	(5)	corner sharpness factor for leading edge
(3067)	(6)	left, right, or both sides, leading edge
(3068)	V (7)	Δc/c ~ chord of missing trailing edge

(Table 1 Continued)

<u> </u>	VARIABLE NAME	DESCRIPTION
	(Input Data Block #11 (Surface	e Damage Parameters), Continued)
(3069)	DWING(I,8)	$\mathcal{N}_{\mathbf{i}}$ - inboard edge of missing trailing edge
(3070)	(9)	$\Delta 7 \sim span$ of missing trailing edge
(3071)	(10)	left, right, or both sides, trailing edge
(3072)	(11)	Δ 7*span of missing wing tip, left
(3073)	(12)	$\Delta \gamma$ -span of missing wing tip, right
(3074)	(13)	moment arm of roll trimming device
(3075)	(14)	Fraction of area lost from left H.T.
(3076)	(15)	Fraction of area lost from right H.T.
(3077)	(16)	Fraction of area lost from other surfaces
(3078)	(17)	
(3079)	(18)	
(3080·)	(19)	₩
(3081)	(20)	

^{*}Items marked with an asterisk are computed internally. But, since they logically group with the input variables, they are stored as shown in Table I.

^{**}Optional Input. If zero is input for these parameters, the value to be used will be computed internally.

TABLE 2
Variables In Common Block OUTPUT

<u>B()</u>	VARIABLE	DEFINITION
(1-21)	CLTAB(21)	Table of $C_{\mathbf{L}}$
(22-42)	TABMCR(21)	Table of Mach Critical
(43)	CL	C _L Value for Survey
(44)	CD	CD at CL
(45)	CM	C _M at C _L
(46)	ALPHA	$lpha$ at ${ t C}_{ t L}$
(47)	CDM	$c_{\mathbf{D_{min}}}$
(48)	CDL	Drag Due to Lift
(49)	CDR	Drag Rise at Lift
(50)	CDRO	Drag Rise at Zero Lift
(51)	CLT	Trimmed $^{\mathrm{C}}_{\mathrm{L}}$ at α Corresponding to $^{\mathrm{C}}_{\mathrm{L}}$
(52)	CDT	Trimmed C_D at α Corresponding to C_L
(53)	DH	Trim Deflection (Horizontal)
(54)	FK	Polar Shape Factor
(55)	DELCL	Polar Displacement
(56)	СМО	Wing-Body Moment at Zero Lift
(57)	DCMCL	$(dC_{ extbf{M}}/dC_{ extbf{L}})$ Wing-Body
(58)	XACWB	A.C. Location-Wing-Body
(59)	CLA	Lift Curve Slope
(60)	ALO	Zero-Lift a
(61)	R	Leading-Edge Suction
(62)	смон	C _M at DH=0
(63)	хн	Moment Arm Length From CG to c/4 Horizontal Tail
(64)	OMEGA	Angle of Line Between CG and HT A.C.
(65)	XCT	Fuselage Station of CG Location
(66)	EO	Span Efficiency of Wing-Body, R=1
(67)	BMCRB	Body Mach Critical
(68)	CLDE	c _L _{8e}
(69)	AKD	Elevon Drag Factor
(70)	XCP	Elevon Center-of-Pressure
(71)	DE	Elevon Deflection
(72-94)		Vacant
(95)	DEDA	dε /dα
(96)	CLAW	Wing CLa
(97)	CLAB	Body C _{La}
(98)	CLAT	Tail C _{La}
(99)	AH	Tail Drag Factor

<u>B()</u>	VARIABLE	DEFINITION
(100)	вн	Tail Drag Factor
(101)	HQA	Tail Incidence for Zero Lift
(102)	СН	Tail Drag Factor
(103)	ABREAK	Tail Drag Factor
(104)	CLDH	c _L 8
(105)	CLPB	Polar Break Lift Coefficient
(106)	CLDB	Drag Break (Polar)
(107)	CLMAX	c _{L_{MAX}}
(108)	ABRK	α at CLPB
(109)	AMAX	α at C _{IMAX}
(110)	DAMAX	Δα max
(111)	DEL	Lift Curve Parameter
(112)	CLS	Lift Curve Parameter
(113)	ARLO	Aspect Ratio Boundary
(114)	FMCRO	Mach Critical at Zero Lift
(115)	FML1	Mach Limit 1
(116)	FML2	Mach Limit 2
(117)	CDC	Camber Drag
(118)	CLAMCR	CL a at MCRO
(119)	CLAML2	$\mathtt{CL}_{oldsymbol{lpha}}$ at $\mathtt{ML2}$
(120)	CDMCR	Wing Drag at M _{CRO}
(121)	CDML2	Wing Drag at M _{L2}
(122)	CDATM	Wing Drag at M
(123-129)		Vacant
(130)	XACS	Aerodynamic Center at Stall
(131)	CDO	C _D at Zero Lift
(132)	A2	Drag Rise Parameter
(133)	A3	Drag Rise Parameter
(134)	PL	Drag Rise Parameter
(135)	CDMISC	Miscellaneous Drag
(136)		Vacant
(137)	CDAFT	Aft End Upsweep Drag
(138-142)		Vacant
(143)	ALT	Survey Condition
(144)	SPEED	Survey Condition
(145)	SWEE!	Survey Condition

(TABLE 2, Continued)

<u>B()</u>	VARIABLE	DEFINITION	
(146)	JPASS	Program Control Parameter	
(147)		Vacant	
(148)	RNOFT	RN/FT	
(149-153)	TOTCD(5)	Drag Table - Total	
(154-188)	CDSUR(I,J)	Drag Table - Surfaces	
(189-223)	CDBOD(I.J)	Drag Table - Bodies	

TABLE 3
Variables in Common Block CALC

<u>c()</u>	VARIABLE NAME	DESCRIPTION
(1)	BO2	Wing Semi-Span (b/2)
(2)	DOB	Body Dia./Wing Span (d/b)
(3)	CR	Wing Root Chord at Centerline
(4)	SPLAN	Theoretical Wing Planform Area
(5)	XCRTE	X-Sta. of Theor. Centerline Root Chord (CR) Tmiling Edge
(6)	SWPQC	Equivalent Wing Quarter-Chord Sweep
(7)	SWPMC	Equivalent Wing Mid-Chord Sweep
(8)	SWPTE	Equivalent Wing Trailing-Edge Sweep
(9)	SWMT	Equivalent Wing Max. Thickness Sweep
(10)	SEXW	Equivalent Wing Exposed Area
(11)	CBAR	Equivalent Wing Exposed MAC
(12)	TOCW	Equivalent Wing Thickness Ratio
(13)	CLD	Equivalent Wing 2-DiDesign $C_{\mathbf{L}}$
(14)	ARXR	Equivalent Wing Exposed Aspect Ratio
(15)	CRX	Chord Length at Wing Root (Exposed)
(16)	CTX	Chord Length at Wing Tip
(17)	XRX	X-Station at LE of Wing Root
(18)	XTX	X-Station at LE of Wing Tip
(19)	YRX	Y-Station at Wing Root
(20)	XTX	Y-Station at Wing Tip
(21)	ХВ	X-Station of LE of Wing MAC
(22)	YB	Y-Station of LE of Wing MAC
(23)	SWET	Outboard Panel A _{wet}
(24)		Vacant
(25)	SWPLE	Equivalent-Wing LE Sweep
(26)	FOC	Max. Camber Ordinate
(27)	SWPR	Variable-Sweep Angle (Outboard Panel)
(28)	KPASS	Program Control Indicators
(29)	AR	b ² /S _{Plan}
(30)	TR	λ (Equivalent Taper Ratio)
(31)	YIX	Span of Inboard Wing
(32)	SIX	Exposed Area of Inboard Wing
(33)	ARI	Aspect Ratio of Inboard Wing
(34)	CBXP	Root Chord of Equivalent Outboard Wing
(35)	SOXP	Exposed Area of Equivalent Outboard Wing
(36)	AROP	Aspect Ratio of Equivalent Outboard Wing
(37)	DXQC	123 Equivalent Wing Parameter

(TABLE 3, Continued)

<u>c()</u>	VARIABLE NAME	DESCRIPTION
(38)	TWIST	Wing Twist
(39)	WINC	Wine Incidence
(40)	XHT	X-Station for HT $\frac{c}{4}$
(41)	TOCS	t/c for Swept Panel
(42)	CBAR2	Exposed CBAR for Swept Panel
(43)	CLDS	CLD for Swept Panel
(44)	YOX	Span of Outboard Swept Panel
(45)	SWPMCS	Mid Chord Sweep of Outboard Swept Panel
(46)	DA1	Correlation Factor for Variable Sweep
(47)	DAC1	Correlation Factor for Variable Sweep
(48)	DA2	Correlation Factor for Variable Sweep
(49)	DAC2	Correlation Factor for Variable Sweep
(50)	DTOC	Correlation Factor for Variable Sweep

TABLE 4
Variables in Common Block NUCOUT

D()	VARIABLE	DESCRIPTION
(1-119)	DAMCD(I,K)	ΔCD _{min} on Each Component Due to Damage I=Body or Surface No. I=1,7 K=Mode No. K=1,17
(120-238) ··	SYM(I,K)	Indicates Symmetrical Damage if SYM (I,J)=1.0 I=Body or Surface No. I=1,7 K=Mode No. K=1,17
(239)	DCDMIN	Total∆C _{Dmin} Due to Damage
(239+1)	ALP(I)	Undamaged Aircraft & I=1,21
(260+1)	CL(I)	Undamaged Aircraft C _L
(281+1)	CD(I)	Undamaged Aircraft C _D
(302+1)	CM(I)	Undamaged Aircraft C _M
(323+1)	CLT(I)	Undamaged Aircraft Trimmed C _L
(344+1)	CDT(I)	Undamaged Aircraft Trimmed CD
(365+1)	CLP(I)	Damaged Aircraft C _L
(386+1)	CDP(I)	Damaged Aircraft C _D
(407+1)	CMP(I)	Damaged Aircraft C _M
(428+1)	CLTP(I)	Damaged Aircraft Trimmed C _L
(449+1)	CDTP(I)	Damaged Aircraft Trimmed $C_{ extsf{D}}$
(470+1)	RCLA(I)	Increment in C _L That Produces Rolling Moment, Caused by: I=1 Missing LE I=2 Missing TE I=3 Missing Left Wing Tip I=4 Missing Right Wing Tip I=5 Missing Left H.T. I=6 Missing Right H.T.
(477)	DXAC	Shift in Wing-Body A.C. (△ X/C)
(477+1)	CROLL(I)	Rolling Moment Coefficient Caused by Asymmetric Wing or Tail Damage. Corresponds to ALP(I), I=1,21.
(498+1)	CDRT(I)	Drag Due to Trimming Out the Rolling Moment, I=1,21.

4.4 PROGRAM LISTING

A complete listing of the program is shown in this section. The subprograms and subroutines appear in the order in which they occur within the program.

```
CVERLAY (CVLY,G,0)
PROGRAM PRIT(IMPUT=514, CUTPUT=514, TAPE5=IMPUT, TAPE+=CUTPUT,
1 TAPE1G=:14, TAPE21)
                                                   EMPIRICAL AIRCRAFT AERCOYNAMIC PRECICTION PRICEDURE
                                                 COMMON / PLYON / 1 (2091)
COMMON / CLYON / P(2091)
COMMON / CLYON / P(2091)
COMMON / PLYON / P(2091)
COMMON / P(2091)
COMMO
         15 IJ = 0
2001 FCFMAT(5x,15H ENTER INPUT
2001 FCFMAT(5x,15H ENTER INPUT
20 CALL GVERLAY(4HCVLY,1,0)
    C
                                                   IF (IJ.EC.2) GO TC 30
          200? FOLYAT(EY,15H FATER GECRETRY)
CALL CVERLAY(4HCVLY,2,0)
   C
           2COS FORMAT(FX,15H ENTER SURVEY )
CALL GVERLAY(4HOVLY,3,0)
   C
                                                   60 TO 80
3.0
C
         2004 FIRE (6,2004)
2004 FIREAT(5X,15H ENTER NUCCAP
CALL OVERLAY(4HOVLY,4,6)
   C
                                                 RFWIND:10
FFAC (10)
PEAD (10) B
GC TC 20
                                                  END
```

```
SLEFCLTINE LATP(XPAP, YEAF, X, Y, M, NC)
             LAGRANGIAN INTERPOLLATION

1) INCREASING OR DECEEASING X ARRAY

2) LINEAR EXTRAPOLATION ONLY

3) NO = NUMBER OF POINTS USED IN INTERPOLATION

4) N = TOTAL NUMBER OF POINTS IN X ARRAY

5) IF (NO.LE.D.PR.P.LE.O) YBAR = C.O

6) IF (NO.LE.D.AND.NO.GT.O) YEAR = Y(1)

7) IF (NO.LO.L.AND.NO.M.GT.O) YEAR = Y(1)

8) IF (NO.CO.L.AND.NO.M.GT.O) YEAR = Y(1)

8) IF (NO.CO.L.AND.NO.M.GT.O) YEAR = Y(1)
             DIMENSION X(M) , Y(M)
C
             YAAF=C.O

N=NC

IF(K.GT.M) N=M

IF(".1E.O.FF.N.1E.O) RFTURN

IF(M.GT.1) GO TO 10

YEAF.Y(1)

GLTLDN
              ŔĿŤIJŖŇ
C
      C
      46 I=(A.6T.2) GC TC 60
45 I=(A.1T.2) GC TC 55
50 Y=AF=Y(J1)+(XBAF-X(I1))*(Y(I2)-Y(I1))/(X(I2)-X(I1))
RETURN
Ç
       SE YEAR=Y(I1)
IF(AFS(XFAR-X(I2)).LT.AFS(XFAF-X(I1))) YEAR=Y(I2)
FETURE
C
      60 J=I-N/2
IF(I.LF.N/2+1) J=1
IF(I.GT.M-N/2) J=M-N+1
NT=M+J-1
C
      PO FO 1=J*NT

ELL=1.0

E7 70 K=J*NT

IF(K*NE.T) ELL=ELL*(XBAR-X(K))/(X(I)-X(K))

70 CPNTINUF

80 YF/E=YPAP+ELL*Y(I)
              RETURN
C
              5 k.C
```

```
SUBPOUTINE LSPOR( X,Y,N,MP,SA,PE,SIGMA,IT)
                                           LEAST SQUAPES POLYNGMINAL CURVE FIT SUFFICUTINE
                                          DIMENSION A( 8,8).ST(R),R(P),T( E),Y(N),RE(N),SA(E),X(N)
EQUIVALENCE (R, ST, B)
                 C
                                            II=MP+1
                                              IF (% .LE. MP) IT = 142

IF (MP .CT. 7) IT = 198

IF (XMAX(1).EC.G.) IT =226
                    POWND
                      24 $\(\frac{1}{1}\) = 16 \(\delta \cdot \cdot \(\delta \cdot \cdot
```

```
28 CONTINUE
                                                               cor
                                                                       K # 11
CUNTINUE
                                                                                                                                        # i
# 0.0
                         SCLUTICN CF MATRIY A*X = 8

N NC. GF RCVS AND COLUMNS IN MATRIX A

M NC. CF RCVS IN AFRAY P

IF AC. CF RCVS IN AFRAY P

OFT SCALED VALUE CF DETERMINANT

IFE =0 FGR NC FREDR, =1 = GP SINGULA* MATRIX

CC 24C I=1,N

AMAY = A(I,1)

OF 21U J=1,N

OF 21U J=1,N

OFT = CFT * AMAY

IF (AYAY = C. G) GO TO 180

CC 22C J=1,N

220 A(I,J) = A(J,J) / AMAX

CC 22C L=1,M

230 P(I,L) = &(I,L) / AMAX

240 CPNTINLE

NT = 1-1

LT /**

NT = 1-1

CC 25C L=1,M

CC 25C L
                                    230 P(I,L) = R(I,L) / AMAX

240 CPNTINE

NT = h-1

IF (NT) 50,50,60

50 IEF = C

60 DO 140 I=1,NT

K6 = I +1

K = I

AMAX = A(J,I)

CC 70 J=K6,N

IF (ABS(A(J,I)) **LT** APS(AMAX)) GC TO 70

AMAX = A(J,I)

TO CPNTINUE

CHT = DET ** AMAX

IF (K **LO** I) GC TO 200

CET = DET **

CET = DET **

NOTE TO J=I,N

SAV = A(I,J)

A(I,J) = A(K,J)

A(K,J) = SAV

80 CGNTINUE

CF 96 L=1,M

SAV = F(K,L)

E(K,L) = SAV

90 CCNTINUE

P(I,L) = SAV

90 CCNTINUE

P(I,L) = SAV

90 CCNTINUE
                                 300 CC 130 K*K6 N
```

```
IF (A(I,I) .EQ. 0.) GO TO 180

IF (A(K,I) .EC. 0.) GO TO 126

ERAS =-A(K,I) / A(I,I)

CC 110 J=K6,N

110 A(K,J) = FRAS + A(I,J) + A(K,J)

CD 12C L=1,M

120 R(K,L) = ERAS + B(I,L) + B(K,L)

13G CCNTINUE

THE (A(N,N) .EC. 0.) GC TO 180

NX = N

150 DC 16C .L=1,M

150 DC 16C .L=1,M

150 DC 16C .L=1,M

150 DC 170 .L=1,M

170 B(Nx,L) = B(Nx,L) / A(Nx,Nx)

IF (Nx .LE. 1) GC TC 5C

NT = Nx-1

CT 170 J=1,NT

DC 170 L=1,M

170 B(J,L) = E(J,L) - R(NY,L) + A(J,Nx)

NX = N

180 IER =1

GG TO 16

ENO
```

```
SUBROUTINE TORG(DCLT, DCDT)
           COMPUTES EFFECT OF TRIM
          CCMMON /INPUT/ A(2081)

COMMON /CALC/ C(50)

COMMON /CALC/ C(50)

CL, CD, CM, ALPHA, CCM, CCL, CDP, CDPC, CLT, CDT,

CH, FH, DELCL, CMC, TCHCL, X4CNP, CLA, ALC.

R, CMCH, XH, CMEGA, XCG, EC, FH (FE, CLCE, 44P), XCF, DE,

B1(24),

CLAW, CLAE, CLAT, 4H, FH, FFSTAP, CH, AFFFFAK, CLCH,

CLPE, CLDP, CLMAY, C2(7), FML1, FML2, CDC,

C3(12), XACS, C4(4), CDAFT, C5(5),

ALT, SPFEC, SKEEP, JFASS, P(77)
C
         EQUIVALENCE (XLF1, A(254)), (CMAC, A(12)), (CFX, C(15)),

(1TPTM, A(22)), (NHT, A(4))
           CCLT = 0.0
DCvi = 0.0
           CGGCR = (XCG -XLE1)/CRX
XAC = XACHE
           A.C. SHIFTS TO POSITION FOR STALLED VING ABOVE CLOB
           IF( CL.GT.CLDP ) XAC = XACWB + (XACS - XACWE) + ((CL-CLDF)/
(CLMAX-CLDP))++2
           IF( CL.GT.CLMAX ) XAC = XACS
IF( SPEED.CE.1.0 ) YAC = YACVP
DCMCL = (CGCCR - XACVB) * CFX/CMAC
DH = 0.0
Ç
           CLTAIL = CLAT * (ALPHA - HSTAP) + CLOB * DH
CLWB = Ct - CLTATL
YLT = XH *COS((MEGA - ALPHA/57.3) /Chac
C
           CM = CMO + (GCCCP - XAC) *CRX/CMAC * CLVE - CLTAIL * XLT CMOH. = CM
           C
     c 70
           CCNTINUE
            IF( DH.EC.O.C ) GG TC 1CC
CCLT = CF*CLDH
            PCDT = AH*DP**7 + BH*DH*(ALPHA -FSTAF)
IF(ALPHA-GI.APREAK) PCPT = DCCT + CH*(H*(ALPHA-APFEAK)
           IF (DE.EC.C.C) OF TO 200
           1330
1330
                      * DCLT + CLPF * DF
* CCCT + AKC * DE**2
           PETURN
```

```
SUPPOUTINE AERZ(SPEED, CLA)
            LIFT CURVE SLOPE
          COPMON /PLKCLA/ SPLAN, TOC, TAPER, ARWS, CMSTR, CLC, CM1, DOE, 1 CGMMON /PLKPRT/ KPRINT(50)
            CGSZ = CUS(SWPMC)
PI = 3.14159
IVCC = 1.0
            TWCD # 1.07
IF( SPEED.LT.1.0 ) TWOD # 1. + EPSL/SCFT(1.-SPEED**2)
            CSLBC = (10.6 + 0.91 * ARKS**3)/(10.0 + ARKS**3)

ZMSTR = (50R0 + (1.0 - CSUPC) * (1.0 - GCSZ)**2

ZMSTR = ZMSTR + DMSTR

ZMSTR = ZMSTR + DMSTR

ZM1 = 1.0 -2.0 * TCC * (ARKS**3/(4.0 +ARWS**3))

* CCSZ**1.5* (1.0 + 1.5*(L**1.5)
            SIG1 = 0.0

SIG2 = 0.0

IF( Zr3.NE.7r1) SIG1 = 0.5*((SPEED - Zr1)/(Zr2 - Zr3))

IF( Zr3.NE.2r2) SIG2 = 0.5*(1.0 + (SPEED - Zr2)/(Zr3 - Zr2))
C
            TOCL = 1.0/(4.4*&PL**COSZ**1.5 )
CTOCL = (TCC - TGCL)/CCSZ
IF( DTCCL.LT.C.C.) DTCCL = G.G
&POT = &FVS * DTCCL
IF( DTCCL.CT.C.C.) PTCCL = G.O7
IF( ARDT.GT.C.C.) ARDT = U.1
GAMMA = 9.0 * (DTCCL/(1.0 + 0.5 * ARCT) )
            GAPAO = GAMMA
IF( ZM3U.NE.ZM10 ) GAMMA = GAMAO *(ZM3-ZM1)/(ZM30-ZM10)
IF (CAMMA.GT.CAMAC ) GAMMA = GAMAO
C
            XF = (16.0 +3.04APWS**2)/(P.O +5.0*APWS**2)

XKP =(1.0 +DCB)*(1.0 -DCB)**XF

XKT = 1.0
            ÎF(SPFED.GE.ZM1.AMD.SPFFF.LE.ZM?) XKT = 1.0 -(4.C*SIG1*(1.C
- SIG1))**2 * GAMPA
IF(SPEED.GT.ZM2.AMD.SPEED.LE.ZM3) XKT = 1.0 -(4.C*SIG2*(1.C
- SIG2))**3 * GAMMA
        5 CONTINUE
C
            CLAC = (TVDS + FI + AFWS)/(TWDS + SCFT(TWES + (1.0 - COS7**1:2326) * (AFWS)/(2.0*CDS7))**2))

JF( SPEED.CT.C.O) FETAP = (SPEED.T - 7MSTF) * (1.0 + COS7**COS7))**2

T1 = PI * APWS / CLAO

T1 = 3.0 * 71 * (71 - 1.0) * COS7**C.6667

Z = ZMSTR * CLAO + ARVS**2/21
             IF(SPEED.CT.ZMSTR) OF TO 10
                            * (.0546311+Thnr+APLS)/(TWCP + SQRT(ThQP + (1.0 - CCSZ+*1.3334 * (SFEED/ZMSTE)+*2.667)*(APhS/(2.*CGSZ))**2
             GC TO 20
```

```
BLOCK DATA
                                                             COMMON /PLKCAT1/XSWFL(11), YPMIN(11),

A&A(22), PFE(22), (CC(22), CDC(22), XTT(22),

PCT(12), &TSW(E), TPET(A), FX&C1(216), FXEC4(5), YEC4(5), YEC4(5), TPOA(2), FEC4(5), FEC4(5), FEC4(5), FEC4(5), FEC4(6), FEC4(6), FEC6(6), FEC6
C
C
                                                               CCMMCN /BLKDAT2/XTP(6), YC1(6), YC2(6), X5%F1(4), YA(4),
YP(4), YCY(8), YM(4), CT/P(6,4), CTAP(8,4),
X5CLM(13), YYCY(6), FCLM(12,6), XYC2(6),
YYMACM(5), FDC(12,6,5), XCY1(6), YAMT(4),
7C1MAY(6,4), XCY2(M), YFCC(6), 7DC1M(6,6),
Z2DC1M(6,6), YCY2(M), YFCC(6), YCC1M(6,6),
X5P(5), YGY4(6), FCA(6,6), YAM(6), YCC1(6),
FNVOFY(6,6), YAMG(12), YFTCC(7), FRA(1C,7),
X(2(6),YAST(9),FCAM(6,6),XCT(6),YM(5),FCAM(2(6,5),
XXX(LM(5), FCLMXY(9,6),
XXX(LM(5), XY(7), XF(12,7)
 C
                                                                                                                                                                                                                                                                                                                                                                           CONTRACTOR OF CO
                                                               COMMON / PLKE (T3/XMACH3(17), XLCH3(6), XCC3(6), YCACH3(12), ZMACH3(12), XLCH4(12), XLCH4(12), RATTG2(6),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CCC2(6, 1)
XY3(6,4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CCC4(12,7),
CFAC3(6,10),
CRAC4(6,6),
CLA1(6,5),
CLA2(6,5),
                                                                                                                                                                                                                                            XLTTG2(6)

XLTG2(6)

OLTA2(6)

DETA13(6)

DETA13(6)

CFT45(6)

CFT45(6)

CEGG(6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (1461416)6)
                                                             COMMON /PLKDAT4/DETA11(6)
DETA113(6)
ETA113(6)
DETA114(6)
DETA116(6)
DETA116(6)
DETA116(6)
FIA116(6)
FIA116(6)
FICOLOGICAL
C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         YACC3(6,5)
YACC3(6,5)
YACC4(6,5)
YACC4(6,5)
YACC4(6,5)
                                                        123456785
                                                                                                                                                                                                                                                                                                                                                                              SWGC15(5);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           XAC7(5)
XAC7(5)
XAC7(5)
CL4+1(6)
FFH2(6)
YCL4(10)
 C
                                                                COMMON /ELKOATS/ SPAN((), YIPP(4), SPAN(1), YIPP(5), SPAN(6), YIPP3(4), SPAN(6), YPF11(5), SPAN(6), YEF17(3),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FKE(6,4),
FKSV(11,5),
FKY(6,4),
FKA(5,5),
FKF(5,2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FKE(6,4),
                                                     CATA XSWPL / 0.0,.17453,.34906,.5236,.69613,.67266,1.04719,

1.13446,1.22173,1.34350,1.57676 /,

2 YFFIN / G.53, 0.53, 0.52, 0.515, 0.565, 0.49, 0.45,

0.39, 0.30, 0.12, 0.16 /
  С
                                                                 TD9 4749
W274
T997
                                                                                                                                                                            / 0.0, .4, .8, 1.2, 1.6, 1.8, 2., 2.4, 2.6, 3.2,3.6,4./,
/ 1., 2., 3., 4., 5., 6. /,
/ 0., 0.2, 0.25, 0.33, 0.5, 1.0 /
                                                               FIG. 4.1.4.2-22 DATCOM *****

PATA FX4C1/.25,.24,.23,.22,.20,.16,.17,.25,.37,.37,.40,.42,

1*0.335,.30,.44,.46,.495,.59
```

```
234567£9ABCD£F
                                                      G
                                                                                                                                XB04 / 0.0, 349(7, .69813, .67267, 1.0472 /,
YPC4 / 0.0, 1.5, 3.5, 6.0, 10.0 /,
YRC4 / 0.0, 6.5, 1.0 /,
FBC4 / 5*C.C, C.0, 0.0, 0.0, -.0C02, -.C05,
C.0, -.C017, -.C02, -.GC27, -.C27,
C.0, -.C019, -.U044, -.C21, -.C26,
0.0, -.O06, -.O16, -.C21, -.C26,
5*G.C, U.C, G.C, -.O005, -.C068, -.O011,
U.O, -.C02, -.OC7, -.CC45, -.C68,
C.O, -.C02, -.OC7, -.UC43, -.O16,
C.O, -.C02, -.OC7, -.UC43, -.O12,
C.O, -.C02, -.OC7, -.UC43, -.O12,
C.O, -.C02, -.OC7, -.UC43, -.C12,
C.O, -.C02, -.OC62, -.UJU6, -.CC1, -.C012,
C.O, -.C021, -.C021, -.C027, -.C26,
U.O, -.U021, -.C027, -.C26,
U.O, -.U021, -.C027, -.C26,
C.O, -.C021, -.C027, -.C26,
C.O, -.OO6, -.U06, -.C27, -.C26
                                                           FIGLRE
CATA
C
                                                                                                                                                                                                             G. P, 1.1, 1.4, 1.6, 2.0, 2.4 /, G. P, G. 
                                                                  CATA
```

```
4 .8,3*.72,.8,.77,.78,.792,.8,.795,.792,.75,.8,3*.76,
5 .98,.84,.83,.82,.98,3*.92,.96,.925,2*.915,.98,3*.685 /,
6 FPF63 / 0.,.15,.18,.2,0.,.135,.23,.22,0.,.2,2*.275,0.,.24,2*.28,
7 .26,.35,.365,.38,.26,.365,.42,.45,.26,.405,2*.45*,.26,3*.475,
8 .5,.135,.55,.55,.56,.58,.61,.63,.59,.605,2*.65,.3*.65,
1 .97,.905,.895,.985,.985,.98,3*.91,.75,3*.65,.75,3*.66,
2 1.17,1.06,1.03,1.,1.17,1.1,1.08,1.06;,1.17,1.09,2*1.065,1.17,
3 3*1.08 /
C
                                                 DATA XIN13/ C. (0,1., 2., 3., 4., 5., 6., 7., 8., 20. /, YIN13/ O.0, 20.0, 35.0, 50.0, 65.0, 72.5, 97.4°C. GCRÉ, 20.113/ .00, 20.0, 35.0, 50.0, 65.0, 72.5, 97.4°C. GCRÉ, .00, 20.0, 35.0, 65.0, 72.5, 97.4°C. GCRÉ, .00, 20.0, 20.0, 37.0, 00.9, .00, 67.4°C. GRF, 4.4°C. GCRÉ, .00, 67.4°C. GRF, .00, 67.4
C
                                                 DATA APAP / 22.G, 21.7, 19.2, 18.35, 22.C, 21.2, 19.2, 27.0, 11.75, 24.,24.,22.,20.,20.,19.,17.,15.,29.,27.,25., 2*0. /, 8MAP / 4 * 1.75, 3 * 2.G, 4 * 0.0 /
                                              DATA NXIN15/ 6 /,

x y n 15/ 0.0, 0.5, 0.6, 0.8, 0.9, 1.0 /,

NYIN15/ 0.0, 5.0, 15.0, 20.0, 23.0 /,

FGUT15/ 0.865, 0.756, 0.71, 0.6, 0.51, 0.45,

0.865, 0.756, 0.71, 0.6, 0.51, 0.45,

0.925, 0.645, 0.956, 905, 845, 0.76,

0.925, 0.645, 0.956, 905, 845, 0.76,

0.978, 1.02, 1.03, 1.02, 1.04, 1.04, 1.04, 1.04, 1.04, 1.04, 1.05, 1.04, 1.05, 1.04, 1.02, 84, 86, 84, 84, 1.05, 1.05, 1.04, 1.02, 0.965, 0.985,

DATA X1 / 0.7243, 0.8727, 1.0472, 1.2217, 1.3963, 1.5708 /,

12 X5 / 0.3665, 0.5236, 0.698, 0.51, 0.472, 1.2217, 1.3963, 1.6/,

20 Y0 / 0.85, 625, 435, 35, 0.375, 0.4472, 1.2217, 1.3963, 1.6/,

XAR / 1.0, 2.3, 3.0, 4.0, 5.0 /,

YUCL / -0.16, 0.0, 0.05, 0.085, 0.0855 /
 C
                                            123456789
                                            2
                                            1234
                                            5
                                                                                                                                             C
                                                  DATA
                                                                                                      888
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         .712684.
                                                                                                     CCC
                                            9123
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0:0'/
                                                                                                     X S W P
                                                  DATA
                                                                                                      FEP35
                                                                                                      FEP7
                                                  DATA
                                                                                                     YCL DB
YAKB
                                                                                        XTP
YC1
                                                                                                                                                        / 0.0, 0.1, 0.2, 0.3, 6.5, 1.0 /, 0.0, 0.225, 0.47, 0.5, 0.32, 0.0 /,
```

```
/ 0.0,0.72,0.5, 0.91, 1.05, C.85 /,
/ 0.0, 3C.G, 5C.O, 60.O
/ 0.9, 1.04, 1.2, 1.3
/ 0.0, 0.24, 0.5, 0.71
/ 0.0, 2.6, 2.25, 2.5, 3.0, 4.0, 4.5, 10.0 /,
/ 0.2, 0.4, C.6, 1.0
/ 0.2, 0.4, C.6, C.2, 0.2
/ 0.2, 0.2, 0.4, C.6, C.2, 0.2
/ 0.3, 0.2, 0.4, C.6, C.2, 0.2
/ 0.0, 0.2, 0.4, C.6, C.2, 0.2
/ 0.1, 0.0, 0.0, 115, 0.2
/ 0.1, 0.0, 0.0, 115, 0.2
/ 0.1, 0.0, 0.0, 115, 0.2
/ 0.1, 0.0, 0.0, 115, 0.2
/ 0.1, 0.0, 0.0, 115, 0.2
/ 0.1, 0.0, 0.0, 115, 0.2
/ 0.1, 0.0, 0.0, 115, 0.2
/ 0.1, 0.0, 0.0, 115, 0.2
/ 0.1, 0.0, 0.0, 0.0
/ 0.1, 0.2, 0.4
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.1, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0, 0.2
/ 0.0
                                                                     DTAB
                                                                                                                                                              XXCLF
                                                                                  DATA FCLMX
                                                                                                                                                              XXC2 /
YYMACH /
FDCLMX /
                                                                             FIGURE 4.1.1.4-5,
                                                                                                                                                                                                                                                                                                                                                                                                    DATCOM
                                                                                 DATA XDY1 / C.C, 1.1, 2.25, 2.5, 3.0, 3.5, 4., 4.5, 6. /, YXMT / O.3, G.35, 6.45, /, 5.5, 1.5, 1.5, 1.5, 1.41, 2.1, 2.25, 2.5, 3.0, 3.5, 4., 4.5, 6. /, YXMT / O.3, G.35, 6.4, G.45, /, 5.5, 1.5, 1.5, 1.5, 1.41, 1.41, C.R, C.R, C.R, 1.315, 1.43, 1.5, 1.5, 1.5, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45,
C
                                                                                                                                                                                                                                                                 0.0, 10.0, 2C.0, 30.0, 4C.0, 5C.C, 60.0, 90.0/, 

L.C, 1.2, 2.0, 3.0, 4.0, 5U.C /, 

1.8, 2.2, 3.4, 5.0, 7.4, 1C.2, 12.4, 13.4, 

0.1, 1.1, 2.3, 3.9, 5.9, 6.7, 5.2, 6.7, 6.7, 

1.3, 1.7, 2.4, 2.2, 2.5, 2.85, 2.25, 3.25, 

2.2, 2.0, 2.1, 2.3, 2.5, 2.85, 2.25, 3.25, 

2.2, 2.0, 2.1, 2.3, 2.5, 2.85, 2.25, 3.25,
                                                                                        CATA XSP /
YCYA /
FDA /
                                                                             67
                                                                                                                                                                                                                                                                 C
                                                                                                                                                 FK A G E L
A C G
X V b
                                                                                          DATA
                                                                             1234567
                                                                                          DATA XANG
```

```
1.0,.925,.695,.635,.76,.665,.565,.46,.25,0.C,
1.0,.925,.695,.635,.76,.665,.565,.46,.35,0.0/
                                                                                                                   0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 7.0, 9.0, 30.0 /, 10.7, 9.4, 1.5, 0.5, 8.6, 6.5, 2.5, 5.5, -3, 5, 7.5, 4.91., -6, -1., 5, 5.5, 1.5, -1.2, -2.5, -1.3, 5, 3.7, -1.5, -5, -3.7, -1.7, 5, -2.3, -6.5, -5.7, -1.7, -5.7, -2.3, -6.5, -5.7, -1.7, -5.7, -4.5, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -1.7, -5.7, -5.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7, -7.7,
C
                                                                                                                        0.0, .2, .4, .6, .8, 1., 1.2, 1.6, 2.0 /, C.7, 1.2, 1.27, 1.43, 1.42, 1.365, 1.25, 1.66, .99, .65, 1.12, 1.29, 1.355, 1.365, 1.365, 1.21, 1.07, .98, .6, 1.09, 1.23, 1.29, 1.29, 1.29, 1.20, 1.17, 1.65, .97, .55, 1.0, 1.15, 1.23, 1.24, 1.26, 1.15, 1.64, .96, .5, .01, 1.69, 1.17, 1.20, 1.175, 1.13, 1.62, .935, .5, .91, 1.09, 1.17, 1.20, 1.165, 1.11, 1.6, .91 /
                                     CATA XXXCLM / FCLMXX /
C
                                                                                                            G.O, .4, .8, 1.0, 1.2, 1.4, 1.6, 2.6, 2.4, 2.6, 2.2, 3.27 /, 0., .1205, .1745, .2618, .2450, .4263, 1.0 /, 8*1.0, .615, .62, .25, 0.0, 8*1.0, .615, .63, .25, 0.0, 7*1.0, .615, .63, .25, 0.0, 1.6, .67, .55, .65, .65, .87, .69, .552, .38, .185, 0.0, .92, .57, .67, .65, .67, .65, .87, .69, .552, .38, .185, 0.0, .92, .60, .64, .61, 1.0, .64, .83, .565, .425, .27, .126, 0.0, .70, .60, .64, .61, 1.0, .645, .63, .565, .425, .27, .126, 0.0, .70, .60, .64, .61, 1.0, .645, .63, .565, .425, .27, .126, 0.0
                                     DATA
                                                                                                                                                                                                                                                                                                                                                                                                             *****
                                                                                                                                                                                                                                                                                                                                                                                                              *****
                                                                                                                                                                                          CAMAGE
                                                                                                                                                                                                                                                                                 ECUATIONS
                                      COMPRESSIBILITY FACTOR, FIG 2-15, F7F-1800
                                     DATA XMACH3/C.O, C.2, C.4, O.6, O.8, O.5, O.58, 1.C, 1.C5, 1.1, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, /, CCMK3 /1.00, 1.00, 1.03, 1.05, 1.20, 1.36, 1.55, 1.90, 1.55, 1.38, 1.22, 1.4, C.90, C.76, O.77, G.60,0.55
                                     CDC FCR HCLES, FIGURE
                                                                                                                                                                         2-16
                                                                                                                                                                                                              FZP-1800
                                                                                                         / 1.0, 2.0, 4.0, 6.0, /0.002, 0.010, 0.020, 0.046, 0.020, 0.046, 0.015, 0.020, 0.046, 0.025, 0.040, 0.025, 0.040, 0.025, 0.040, 0.030, 0.030, 0.030,
                                                                                                                                                                                                                                                 7.0, 10.0 /, 0.060, 0.100, 0.101, 0.110, 0.175, 0.100, 0.300, 0.300, 0.470, 0.505, 0.505, 0.620, 0.620,
                                                                   CDG3
HCX3
Xf Ch3
                                     WING ROUGHNESS MAGNIFICATION FACTOR, FIG 2-14, FZP-1800
                                                                                                                    C.C, 0.2, 0.4, 0.6, 0.8, 1.0 /, C.C, 0.2, 0.4, C.6 /, 1.35, 1.55, 1.50, 1.30, 1.07, (.83, 1.05, 1.75, 2.15, 1.63, 1.30, C.83, 1.05, 1.75, 2.15, 1.63, 1.30, C.83, 1.05, 1.75, 2.15, 1.63, 1.30, C.83
                                                                XCC3
CLC3
XV3
                                     FORWARD-FACING STEP PRESSURE CREFFICIENTS, FIG 2-13, F7P-18CC
                                     CATA YMACH2/ G.O, 0.4, 0.8, 0.9, 0.55, 1.0, 1.05, 1.1, 1.7, 1.6, 2.0, 2.4, 2.8
CPF3 / G.4C, G.44, C.57, 0.56, 0.56, C.61, G.60, 0.57, C.11, 0.78, G.27, C.25, C.75
 C
```

```
AFT-FACING STEP PPESSURF CCEFFICIENTS; FIG 2-13, FZP-180C
     CATA ZMACH3/ C.O, C.4, C.E, C.S, C.SE, 1.C, 1.OE,
1.1, 1.7, 1.6, 2.0, 2.4, 2.6
CPA3 /-C.20, -C.20, -C.21, -C.4C, -C.53, -J.48,
-0.45, -C.24, -C.19, -C.14, -C.11, -G.10
      CAVED-IN FAMELS , FIGURE 2-17,
                                                                                                                                                                                                                                                                       FZP-1600
    CATA XICH4 /10.,13.,15.,20.,25.,30.,4c.,5c.,6n.,60.,120.,120.,1

HCX4 /.C602,0.CCC5,0.061,0.CC2,c.061,0.CC2, C.004C2, C.0028,

CDC4 /C.025C, C.015C, C.011C, C.0CCC, C.004C3, C.0CC2,

C.024C, C.0213, C.0160, C.0C6C, C.004C, O.0C64C,

O.0227, C.0614, C.0516, G.0006, C.0C6C, O.0C64C,

O.0227, C.0614, C.0516, G.0006, C.0C6C, O.0C64C,

O.075C, O.027G, C.02C0, O.0110, C.0C7, G.0063,

C.065C, O.027G, C.02C0, O.0110, C.0C7, G.0063,

O.075C, O.027G, C.025C, C.016C, C.0C7, G.0063,

O.075C, O.027G, C.025C, C.016C, C.0C72,

O.064G, O.027G, C.025C, C.016C, C.016C, C.0C72,

O.077Q, O.044C, C.025C, C.016C, C.016C, C.0C64,

O.077Q, O.044C, C.025C, G.019C, C.012C, C.0C66,

O.077C, C.057G, C.043G, O.024C, C.015O, U.01C6,

O.097C, C.057G, C.043G, O.024C, C.015O, U.01C6,

O.01C7C, G.0045, G.0C3I, C.0017, C.0C1I, C.0006,
       EFFFCT OF SEVEPING NOSE, SPHERICAL SHAPE, NACA RM L53014A
    EFFECT OF FLATTING SPHERICAL MOSE, NACA TN 4201 (PP-3F)
                                                                                                                     C.O, C.1, C.2, C.2, O.4, C.5, /, O.0, O.6, C.6, C.6, I.C, I.2, &.5, /, U.705, U.705, U.275, U
      CATA XLCC
HOAMV
12345
                                               DRAG4
67
       EFFECT OF MISSING L.E. PANELS ON LIFT CURVE
                                                                                                      DATA DETA1
                                              AP1
CLA
1
6
     CATA DETAZ / 0.0, C.2, 0.4, 0.6, C.6, 1.0 /,

SWPOC2 /-9.0, C.0, 20.0, 40.0, 80.0 /,

CL12 / 0.0, -.0002, -.0003, -.0004, -.0004, -.0004,

0.0, -.0002, -.0003, -.0004, -.0004, -.0004,

0.0, 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.
                                                                                                                              0.6, 0.2, 0.4, 0.6, 0.8, 1.0
0.6012, 0.0005, 0.0, 0.6005, 0.0042/
       EFFECT OF MISSING TAE. PANELS ON LIFT CURVE
```

```
DATA DETA4
AR4
CLA4
                     123456
                       / 0.0, 0.7, 0.4, 0.6, 0.8, 1.0
/-0.0017, -.0010, -.0002, 0.000, 0.0021, 0.0036/
                     DATA ETAI6
                        FFFCT OF CUTOUT CHOFC LENGTH CN | IFT CURVE
FFCM BRITISH DATA SHEET, VOL 24, VINGS C1.01.04
                                                                                                 0.00,
                        4949 ATEN
3333
AJ34J3
                         FFFECT OF MISSING L.E. PANELS ON AFROCYNAMIC CENTER
                                                                                   C.C, 0,2, 0.4, 0.6, 0.6, 1.0 /, C.G. 3.6, 5.0, 7.0, 10.0 /, U.3.0, U.3.6, U.74, U.312, U.32, 0.00, U.036, U
                         CATA PETA11 /
AF 11 /
XAC1 /
                        /C.C, 0.2, 0.4, 0.6, 0.8, 1.0 /, /0.055, C.C3G, C.COG, -.C15, -.U34, -.G50 /
                         EFFECT OF MISSING THE PANELS ON AFFORMAMIC CENTER
                        CATA DETA14 /0.0, 0.2, 0.4, 0.6, 0.8, 1.0 /,

AF14 /0.0, 3.0, 5.0, 7.0, 10.0 /,

XAC4 /0.000, -.(11, -.020, -.027, -.033, -.037,

0.000, -.(11, -.020, -.027, -.033, -.037,

0.000, -.(11, -.020, -.021, -.034, -.045,

0.000, -.(14, -.020, -.036, -.045, -.052
                        0.(16, 0.019,
0.616, (.019,
0.616, (.019,
-.(76, -.030,
-.026, -.030
Ç
                         DATA ETAILS / 0.0, 0.2, C.4, C.6, C.P, 1.0
```

```
32XX
                                                                                                                                                                          / 0.008, 0.004, 0.001, 0.002, 0.006, 0.012 /
                                        1
                                       DATA DCCC7
                                                                                                                                                       / 0.0, 0.2, 0.4, 0.6, C.8
/-0.031, 0.0, C.025, 0.647, C.644 /
                                        97027 ATAD
834X 1
                                                                                                                                                   / 0.6, 0.2, 0.4, 0.6, 0.8
/0.017, 0.0, -0.014, -0.024, -0.030/
                                                 EFEECT OF HOLES IN WINC ON LIFT-CUPVE AND POLAR SHAPE
                                                                                                                                                        / 0.0, 0.02, 0.04, 0.06, 0.08, 0.2 /, 1.0, 0.581, 0.552, 0.510, 0.858, 0.858/
                                                                                                                                                          / C.U, C.C2, C.G4, C.O4, C.UF, C.20 /, / 1.C,0.904,C.759,O.584,O.404, 0.404 /
                                                  VORTEX LIFT INCREMENT FOR MISSING WING TIP (NUCCAM2)
                                                                                                                                                  /0.6,0.5,1.0,1.5,7.6,7.5,3.(,2.5,4.0,10.0/,
/0.6285, 0.6253, 0.6175, 0.6164, 0.6646,
-0.6626,-6.665,-6.6160,-6.6110,-6.0110 /
                                                  CATA FOR ELEVON CALCULATIONS COMMON BLKDATS
                                                                                                                                                                  0.0, 0.2, 0.4, 0.6, 0.6, 1.0 /, 0.0, 0.25, 0.5, 1.0 /, 0.0, 0.25, 0.5, 1.0 /, 0.0, 0.3, 0.555, 0.77, 0.625, 1.0, 0.0, 0.28, 0.53, 0.75, 0.615, 1.0, 0.0, 0.265, 0.61, 0.73, 0.6, 1.0, 0.6, 0.25, 0.64, 0.73, 0.65, 1.0, 0.0, 0.265, 0.64, 0.665, 1.0, 0.0, 0.265, 0.54, 0.74, 0.9, 1.0, 0.0, 0.24, 0.475, 0.64, 0.655, 1.0, 0.0, 0.24, 0.475, 0.64, 0.655, 1.0, 0.0, 0.24, 0.475, 0.64, 0.74
                                                                                                      SPAN
                                                   DATA
                                                 CATA SPAN2 / U.C., J.1, C.2.J.3, C.4, O.5, C.6, C.7, O.8, G.9, 1.3 /, YIPR2 / C.C., C.2, C.332, C.5, 1.0 /, C.C., C.2, C.332, C.5, 1.0 /, C.C., C.320, C.C., C.400, O.C.460, C.0417, C.C., C.C.,
C
                                                                                                                                                                                                          0.2, 0.4, 0.6, 0.8, 1.0 /,
0.25, 0.5, 1.0 /,
0.645, 1.045, 1.240, 1.220, 1.330,
0.440, 0.740, 0.955, 1.070, 1.120,
0.310, 0.400, 0.950, 0.800, 1.000,
0.200, 0.400, 0.600, 0.800, 1.000,
0.65, 0.66, 1.00, 1.12,
0.40, 0.74, 1.12, 1.32,
0.40, 0.74, 1.12, 1.32,
0.40, 0.74, 1.12, 1.32,
0.40, 0.74, 1.12, 1.32,
0.40, 0.74, 1.12, 1.32,
0.40, 0.74, 1.12, 1.32,
0.40, 0.74, 1.12, 1.32,
0.40, 0.74, 1.12, 1.32,
0.40, 0.74, 1.12, 1.32,
0.40, 0.70, 1.20,
0.40, 0.60, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.40, 0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0.80,
0
                                                     EKW
Alebs
DYLW SEWNS
                                                                                                                                                                   0.0000
                                                    DATA SPAN4 / YBFI1 / FKA /
                                                                                                                                                                            0.00,
                                                     CATA SPANS /
YEF12 /
FKF /
  C
                                                      FNO
```

```
CVERLAY(1,0)
PREGRAM XINPT
          COMMON/IMPUT/ A(3)P1)
COMMON /CHLC/ C(50)
COMMON /CHLC/ C(50)
COMMON /CHLC/ C(50)
COMMON /PLKGATI/ ((1411)
COMMON /PLKTII/ TITLE(6)
COMMON /FLKPET/ KPRINT(50)
COMMON /FLKPET/ IJ
          DIMENSICH > (4)
Cala > /4HME > 4HDAMA > 4HCHAN + 4HENC /
C
     14 ( IJ.GF.1 ) GO TO 70
20 CONTINUE
          RFAD(5,10(L) (TITLE(I), I = 1,6)

JF (FOF(5).NF.C) FO TC 75

NPITE(6,2000) (TITLE(I), I= 1,6)
          FEAD(5,1001) (FPRINT(I), J=1,50)
     CO 50 1 = 1, 50

IF( KPFINI(I).GT.G ) FRITE(6,2001) I, KPRINI(I)

50 CGNTINUE

CALL SETUP

PPEGRAM INPI CALLED

CALL EVERLAY(4HCVLY,1,1)
C
C
          1J = 1
60 TO 80
     PRITE(6,2002) WORD
     75 IF (IJ.GE.1.ANC.KPRINT(2).EC.1) CALL XCCPY4(2) CALL EXIT
     80 CONTINUE
  1000 FORMAT( 6A10 )
1001 FORMAT( 5011 )
1002 FORMAT( A4 )
2000 FORMAT( 111,////,
END
```

```
C ZERGES GUT INPUT CGMMCN BLOCKS

COMMCN/INPUT/ A(2001)
CCMMCN /CUTPLT/ R(223)
CCMMCN /CALC/ C(50)
CCMMCN /RLKNATI/ C(1411)
COMMCN /BLKNATI/ E(908)

C DO 10 1= 1, 3081
A(1) = 0.C
CONTINUE

PETURN
ENC
```

```
CVERLAY(1,1)
PROGRAM INPT
                                                              PREBLEM DATA INPUT
                                                         CCMMCN /INPUT/ NACCYS, MNAC, NPMLS, NHT, NNT, TSWP, JRFF, JWHG, NAFO,

METER, SGIF, CMAC, YCC, ZCG, TWIST,

PCIGHK, FMISC, NPGCS, SPL*N, TAPF, SWP, ITRIM, RLE,

TOCK, CLCP, TECH, CCNCL, LPFCS, ACP,

FMIME(7), PCC(7, 3C), CFCC, EI; FG, A(4),

SYAME(7), SUR(7; 3C), CFCC, EI; FG, ALTCC, AFTAW,

EXAMELY, NFC(2C), AFTSW, AFTSW, AFTCR, ALTCC, AFTAW,

NSLPW, NCLES, FMSUR(2C), ALT(3C), CG(2C),

SWFV(7C), CLC(2C), CLW1(3C), FMSU(2C),

NSLPW, NCLES, FMSUR(2C), NCLES,

NSLPW, NCLES, NCLES, NCLES,

NSLPW, NCLES, NCLES, NCLES,

NSLPW, NCLES, NCLES,

NSLPW, NCLES, NCLES, NCLES,

NSLPW, NCLES, NCLES, NCLES,

NSLP
                                                              DIMENSION TIT(20), W(1), ASUF(7)
C
                                                           DLTA TIT / 3K62-,3P64-,3P65-,3P66-,3P63A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3P65A,3
                                                              CONFIGURATION DEFINITION
                                                                                                                                                                                                   OFTICNS CARDS
                    100 FEAD(5,1001) NPCDS, NPNLS,NHT, NVT, ISLP,
IPEF, INNG, NAFC, METER, ITRIM
READ(5,1002) SREF, CMAC, XCG,2CG,UPFUS, ACB
READ(5,1002) RCUGHK, FMISC, TWIST, CONCL
                                                           C
Ç
                                                              IF (NHT.EO.J.ANC.ITRIM.ÉC.C) PEAD(5,1002) CFCC, EI, ED FUSELAGE GECMETRY
                                                        # P C C C S }

# P C C C S }

# P C C C S }

# P C C C S }

# P C C C S }

# P C C C S }

# P C C C S }
                                                                                                                                                                                                                                                                                                                                                                                                                      C
                                                              N = C
CO 110 I = 1, MPC 9S
```

```
NPCOYS = NPOOS - NNAC
                               SURFACE GEOMETRY
  NSUP)
          CELLINE

WE ITE (6, 2023) (SWAME(I), 1),

WE ITE (6, 2024) (ASUF(I), 2),

WE ITE (6, 2025) (SUF(I), 3),

WE ITE (6, 2027) (SUF(I), 7),

WE ITE (6, 2027) (SUF(I), 7),

WE ITE (6, 2027) (SUF(I), 7),

WE ITE (6, 2027) (SUF(I), 11),

WE ITE (6, 2027) (SUF(I), 12),

WE ITE (6, 2027) (SUF(I), 12),

WE ITE (6, 2027) (SUF(I), 12),

WE ITE (6, 2027) (SUF(I), 14),

WE ITE (6, 2027)
                                                         = 1, NSUR)
=1, NSUR)
I = 1, NSUR)
I = 1, NSUR)
I = 1, NSUR)
                                                     1
C
           IF (INNG.EC.C) SWP = SUR(NPNLS,4)
                     AIRFOIL AND SWEEP OPTIONS
               10° I = 1, NSUP
(ASUP(1).E°.TIT(8))
TG 112
                                                     GD TD 108.
 109
          TFAD(5,1002) RLE, TOCK, CLOP, TECH

PEAD(5,1002) (AFY(I), I =1,1AFC)

KFAD(5,1002) (AFC(I), I =1,1AFC)

PEAD(5,1002) (AFT(I), I =1,1AFC)
  108
C
           111 CONTINUÉ
CCC
                       VAPIABLE SKEEP DATA
    112 IF (ISVP.NE.1) CO TO 112
REAC(5,1002) XPIVOT, YPIVOT, AFTSW. AFTCB, AFTOC, AFTAW
CCC
                       SURVEY CONTROL
    113
                                  CLHI(I)
    115 CONTINUE
                         AGJUSTMENT FACTORS
    116 READ(5,1006) WORD, WPD
16 (WCRD.EO.W(1)) 60 TC 117
60 TC 122
117 READ(5,1007) (IVAL(1),1=1,20), NXVAR, NACJ, NXCL, NAGJ2
            IJ = 0
IF (NXVAP.FO.C) GC TO 11°
FEAD(5,1002) (X(I), I = 1, NYVAP)
```

```
DEFINE AIRFOIL SECTION
                               J = 1, NSUP
J = 1, 26
 IF (ASUP(I).EC.TIT(J)) GO TO 126

GO TO 124

125 SUP(I,1) = J

CO TO 125

124 CONTINUE

ASITS(6,2045) J. ASUP(J)

125 CONTINUE
125
260 CCMTINUE
           CHANGE DEGREES TO PADIANS
                         * 1. / 57. 2957P
  TO 240 I = 1, NSUP

SUR(I,4) = SUR(I,4)

200 CONTINUE

SWP = SWP + AA

AFTSW = AFTSW
                    CONVERT UNITS TO INCHES . IF METER = 2
  IF (METER NE.2) GD TO 350

CC 350 I = 1,00000

300 RCD(I,4) = 000 (I,4) * 144.

DO 310 I = 1,0000

310 SUR (I,7) = 5(0(I,7) * 144.

AFTAV = AFTAV * 144.

SWEF = SREF * 144.

SWEF = SREF * 144.

CC TC 400

350 CONTINUE

CONVERT ROUGHNESS HEIGHT FFOM INCHES TO FT CR METERS

AA = 1.712.

TE (METER 0.2) AA = 0.0254
  16 (METEP-EQ.1) AA = C.C254
PRICHE = PRICHE 4 AA
400 CONTINUE
                           INPUT FORMAT STATMENT
1001 FORMAT(1415)
1002 FORMAT(7F1C.0)
1003 FORMAT(6F1U.3)
1004 FORMAT(6F1U.3)
1005 FORMAT(A3,7Y, A3,7Y, A2,7Y, A3,7Y, A3,7Y, A3,7Y, A3)
1006 FORMAT(A4,A1C)
1007 FORMAT(C11, A15)
1008 FORMAT(2C11, A15)
                           PRINT FORMAT STATEMENTS
```

```
*:7(7X, A3))
*,7F1C.3)
*,7F1C.3)
*,7F1C.3)
*,7F1C.3)
*,7F1C.3)
*,7F1C.3)
*,7F1C.3)
*,7F1C.3)
*,7F1C.3
END
```

```
CALLUAL UIVAL
                   CAPAGE PARAMETERS ARE READ IN
                  CCMMON /INPUT/ NRTDYS, NNAC, NPNLS, NHT, NVT, ISLP, IREF, ICON, NAFC,
METER, SPEE, CMAC, XCG, 7CG, EJN,
ROLGHX, FMISC, ILDAMG, AR, TAPR, SWP, XCCMT, PLE,
TOCK, CLIR, TECP, FLW(2),
EMAKE(7), AFC(3C), AFT(3C),
AFX(3C), AFC(3C), AFT(3C),
XPIVOT, YPIVOT, XAPTX, AFTSW, AFTCE, AFTOC, AFTAW,
NSUFV, NCLAS, FMSLPV(2C), ALT(2G), CC(2C),
TVAL(2G), CLIC(2G), CLPI(2G), DHSV(2G),
IVAL(2G), NXVIP, NACJ, FXCL, NADJ2, X(15),
YM(15, 3), YA(15, 4), XCL(15),
NFUSPT, IHUSC, NOFCO, NFOTFT, XFUS, YFLS, ZFUS,
FUSY(1CO), FUSC(1GC), FISA(1CC),
POCY(6), POCY(6), PCTZ(6), CTIX(6, 2C), CELA(6, 3C),
IOMMON /INPUT, NACC, NOFCO, NFOTFT, XFUS, YFLS, ZFUS,
FUSY(1CO), FUSC(1GC), FISA(1CC),
POCY(6), POCY(6), PCTZ(6), CTIX(6, 2C), CELA(6, 3C),
IOMMON /INPUT, NACC, NOFCO, NFOTFT, XFUS, YFLS, ZFUS,
FUSY(1CO), FUSC(1GC), FISA(1CC),
POCY(6), POCY(6), PCTZ(6), CTIX(6, 2C), CELA(6, 3C),
IOMMON /INPUT, NACC, NOFCO, NFOTFT, XFUS, YFLS, ZFUS,
FUSY(1CO), FUSC(1GC), FISA(1CC), CELA(6, 3C),
IOMMON /INPUT, NACC, NOFCO, NFOTFT, XFUS, YFLS, ZFUS,
FUSY(1CO), FUSC(1GC), FISA(1CC), CELA(6, 3C),
IOMMON /INPUT, NACC, NOFCO, NACC, FISA(1CC),
POCY(6), POCY(6), PCTZ(6), CLYF(7, 1OG), CWING(2O)
                223456789
C
                    COMMON /BLKTIL/ TITLE(6)
C
                   C
                                            * BEDYS + NASC
* PPNLS + NHT + NVT
                    NPCDS
NSLR
                     ****** PAMEGE PERAMETERS ******
                    READ TITLE FOR DAMAGE CASE READ (5,1004) (TITLE(I) , I = 1,6)
                    WRITE (6,5(10) (TTTLF(1), I = 1
PEAD INDICATORS FOR DAMAGE INPUT
      DR 100 1 = 1, 20

174 M(I) = C

130 CONTINUE

PEAC(5, 104) (IDAM

POTE (6, 3501)

DC 210 I = 1, 7

POTE (6, 2502) I,

210 CONTINUE
                                                                 (IDAM(I) >
                                                                                                             I = 1,17
                                                                          `I,IDAM(I), I+10,IC4M(I+1C)
                     FUSELAGE DAMACE PARAMETERS
```

```
C
           PITF(6,3004)
220 CONTINUE
230 CONTINUE
                                                                                                                                J_{\bullet}(DPCP(I_{\bullet}J)_{\bullet}) = I_{\bullet} \land PCDS)
                                   SURFACE DAMAGE PAFAMETERS
                                C
           ARITE(6,3004)
240 CONTINUE
25C CONTINUE
                                                                                                                                 J \rightarrow (CSUR(I)J) \rightarrow I = I \rightarrow ASUR)
                                    MISSING PAPTS OF SUPFACES
          25* OVING(12) = 0.000099

JF (ICAM(17).NE.1) GC TO 260

2.40(5,1002) (DVING(1) , I = 7,10)

READ(5,1002) (DVING(1) , I = 14,20)

READ(5,1002) (DVING(1) , I = 14,20)

READ(5,1002) (DVING(1) , I = 14,20)

READ(5,1002) (DVING(1) , DVING(0,1,0VING(14)

READ(5,2002) (DVING(1) , DVING(10) , DVING(14)

READ(6,2002) (DVING(1) , DVING(10) , DVING(14)

READ(6,2010) (DVING(1) , DVING(11) , DVING(14)

READ(6,2010) (DVING(1) , DVING(12) , DVING(14)

READ(6,2010) (DVING(12) , DVING(12) , DVING(12)

REA
                          INPUT FORMAT STATMENT
       1001 FORMAT(1415)
1002 FORMAT(7F10.0)
1004 FORMAT(7A1J)
1005 FORMAT(A3,7X,43,7X,A3,7X,A3,7),A3,7Y,A2,7X,A3)
1006 FORMAT(A4,A10)
1007 FORMAT(2011, 415)
1008 FORMAT(2011)
                                FORMAT STATEMENTS FOR CAMAGE PARAMETERS
        3001 FORMAT( //, 20%, *TAMAGE PAFAMETERS *, /)
3002 FORMAT (10%, + JCAM(+, J2, *) **, J2, JC%,
1 * IDAM(*, J2, +) **, J2)
```

```
OVERLAY (1,2)
PREGRAP PINPT
           READ IN INPUT VARIABLES TO CHANGE PPEVIOUS PROBLEM
           COPPON / IP FUT/ A (3GF1)
COPPON / BLKTIL/ TITLE (6)
C
         C
           C
           TF (M.EC.O) CD TD 1C
PEAD(5,1661) ( (MD(1), IA(1)),
IF (N.EC.O) CD TD 20
READ(5,1662) ( (MD(1), AA(1)),
                                                                     I=1,K)
  10
                                                                      I=1,8)
c
20
           IF (N.EC.C) GC TO 110
CC 100 I =1,N
J = NC(I)
A(J) = AA(I)
CCNTINUE
clco
c<sup>115</sup>
           IF (M.EQ.O) GO TO 210
         GO 200 T = 1, M

J = NC(1)

IF (J.LE.10) I1(J) = IA(I)

IF (J.EC.18) I2 = IA(I)

IF (J.EC.22) I6 = IA(I)

IF (J.EC.461) I3 = IA(I)

IF (J.EC.462) I4 = IA(I)

IF (J.EC.4633) I5(J) = IA(I)

CONTINUE
c<sup>21.0</sup>
c<sup>210</sup>
         CONTINUE
C 1000 FORMAT( 6A10 ) 1001 FORMAT(1415) 1002 FORMAT( 3(15,5X,F10.0) ) C
  2000 FORMAT(1H1,///,27X, 6A30)
```

```
DVERLAY (2.0)
                  PROGRAM GECM
                  COMPUTES GEOMETRIC PARAMETERS FOR LERG CALCULATIONS
                 C
                 CCMMCN /INPUT/ A(3061)
CCMMCN /PLKDATI/ C(1411)
CIMENSION BNAME(7), PCC(7,20), SNAME(7), SUR(7,30)
, W(7), X(7), Y(7), Z(7), AFC(3C), YTT(2Z)
    C
                                         (A(1), NEGGYS), (A(2), NAC), (A(3), NPNLS), (A(1G), METER), (A(4), NHT) , (A(5), NAT), (A(17), CMAC), (A(13), XCG), (A(14), ZCG), (A(17), IWNC), (A(13), XCG), (A(14), ZCG), (A(13), XCH), (A(13), FLEGI), (A(13), XTT(1)), (A(13G), FLAME(1)), (A(13G), FLAME(1)), (A(13G), FLAME(1)), (A(13G), FLAME(1)), (A(13G), FLAME(1)), (A(12G), FLAME(1)), (A(13G), SLAME(1)), (A(12G), SLAME(1)))
                  EQUIVALENCE
                 CEFINE SUFSCRIPTS:

CONIFS
ACCELLES
MAIN WING
HORIZ. SURFACES
VERT. SUFFACES
                                                             J1=1
K1=NRODYS+1
t1=1
M1=NPNLS+1
h1=NPNLS+NHT+1
                                                                                                     TO
TO
TO
                                                                                                                 J2 = N60
K2 = N50
M1 = NPN
N1 = NPN
N2 = NPN
KPASS = 0
                              NBODYS
NBCDYS
NPNLS
NPNLS
                                              + NNAC
+ 1
+ NHT
+ NHT
+ NHT
                               NENES
    CCC
                  *********CALCULATIONS FOR BODIES******
                 MAXIMUM CROSS SECTIONAL AREA * ROC(1,7)
IF (800(1,7).EC.0.0) FCC(1,7) = 0.7854 * PDIA2
                 FFTTEC APEX = FCD(1,4)

1F (PCC(1,4).FC.G.O.AND.I.LF.J2) FCD(1,4)= (2.F. *PCC(1,9)

+ 2.5*FCC(1.10)*(1.+5cRT(PCC(1,F))/FCC(1,7)))

+ (RCD(1,1)- FCC(1,9)- BQD(1,1C)) * 4.) *

3. SCRT(0.7F54 * PCD(1,7)) * FCC(1,6)

IF (PCD(1,4).CC.O.C.AND.I.CT.J2) FCC(1,6)

*(1.+5cPT(FCD(1,12)/FCC(1,7))) + 2.5 * FCC(1,10)

*(1.+5cPT(FCD(1,F)/FCC(1,7)))

+ (PCC(1,1)- PCC(1,F)/FCC(1,7)))

*(OFTINUE
C 100
               ž
                 CONTINUE
                  ******CALCLLATE GECMETRY FOR INCIVIDUAL WINE PARELS*******
  c<sup>110</sup>
                 IF (N2.EC.0) GD TD 130
TAPER RATIC = SUP(1,17)
FC 200 I = 1 N2
SUP(1,17) = SUP(1,9) / SUR(1,8)
   c
                 Y/C FOR MAX.T/C = SUP(1,5)
IC = SUP(1,1)
SUP(1,5) = XTT(ID)
                 PLANFORM AREA = SUR (1, 18)
                                                                                              (EXPOSED)
```

```
= ((SUF(I,F)+ SUP(I,F)) / 2.) + SUR(I,10)

!) SUR(I,18) = 2. + SUR(I,16)
                                           SUP (I, 18)
                                           IF (I.LE.MZ)
                                        ASPECT RAILID = SUR([,10])

JF ([.E.M2]) SUR([,10]) = (4.*SUP([,10])**2) / SUR([,16])

JF ([.E.M2]) SUR([,10]) = (4.*SUF([,10])**2) / (2.*SUR([,16]))
                                         SYMMETRY CONDITION IS VERTICAL HAS Y DISPLACEMENT

IF (1.65.hl.AND.SLP(1,12).61.0.0) SUP(1,16) = 2.4SLR(1,16)

FETIED AREA = SUP(1,7)

IF (SUG(1,7).FC.C.O) SUR(1,7) = SUR(1,16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)+ (2.40.16)
 Č
 C
CC
                                       CHARACTERISTIC LENGTH = SUP(1,20)

SUR(1,20) = 0.6667 * SUR(1,8) * (1. + SUP(1,17)*+2

/ (1. + SUR(1,17)))

THICS, CLCS, AND CBAR2 APE VARIABLE SWEEP PARAMETERS ***

THICS = SUR(NPNLS,3)

CLCS = SUR(NPNLS,2)

CRAP2 = SUR(NPNLS,2)

SHET = SUR(NPNLS,7)
C
                                       SHEEP ANGLES SLP(1,21) AT C/4

SLP(1,22) AT C/2

SUS(1,23) AT TE

SUP(1,24) AT MAY THICKNESS

TSWP = TAN(SUR(1,4))

CO = 4. / SLR(1,19) * (1.-SLR(1,17))/ (1.+ SUR(1,17))

SUP(1,21) = ATAN(TSWP - CC * 0.25)

SUP(1,22) = ATAN(TSWP - CC * 0.56)

SUP(1,23) = ATAN(TSWP - CC * 1.66)

SUR(1,24) = ATAN(TSWP - CO * 1.66)

SUR(1,24) = ATAN(TSWP - CO * SUR(1,5))

SWPMCS = SUF(NPNLS,22)
      200
                                       CONTINUE
                                         9001 FORMAT (1H1, 8F10.3)
TWIST = A(15)
WINC = A(275)
                                  C
```

```
MOMENT GEOMETRY,

CF = MAC UFFINED TO CENTERLINE

CR = 0.6667 + CF + (1.+ TAPR++2 / (1. + TAPR))

JF (CMAC.EG.G.C) CMAC = CB

YR = BG2 /3. + (1.+ 2. + TAPR) / (1. + T/PR)

YP = SUP(1,11) + (YP - SUP(1,12)) + TAN(SWP)
Ç
C
            IF (NPNLS.EC.1) GC TC 125
טטריטט
            ****** GEOMFTRY FOR MAIN SING SITH TSC PARELS ********
******** TOTAL AIRPLANE PARAMETERS ********
                       = SUR(2,12) + SUP(2,16)

= SUP(1,12) / PC2

= SUR(1,0) +(SUR(1,8)-SUP(1,0))+(SUP(1,12)+SUP(1,16))/

SUP(1,10)
    120
            ĊÒB
            ČR
          1
           SPLAN = WPLAN
            IF (INNG. 61.0) GO TO 122
C
           122
            SPLAN IS INPUT WHEN IMPG#1
TAPP IS INPUT FOR TWO-PANEL WING
SWP IS INPUT FOR TWO-PANEL WING
                         = SUR(1,1F) + SUR(7,18)

* ATAN ((TAN (SUP(1,4) )*SUR(1,1F)+ TAN (SUR(2,4) )*SUR(2,18))
            ¿ h b l E
¿ E X h
                         * ACCS((CGS(SUR(1,21))+SUR(1,18)+ CGS(SUR(2,21))+SUR(2,18))
          1
            SKPCC
                         * ACCS((COS(SUP(1,22))*SUR(1,16)+ CCS(SUF(2,22))*SUP(2,16))
          1
            SWPMC
                         = ATAN((TAN(SUF(1,23))+SUR(1,18)+ TAN(SUF(2,23))+SUR(2,18))
= ACOS((COS(SUR(1,24))+SUR(1,18)+ COS(SUF(2,24))+SUR(2,18))
/SEXW
          1
            SWPTF
          1
            SWMT
C
           XCPTE IS CEFINED AS THE Y-STA. OF T.F. CF ECUIV. WING ROCT CHORD XCRTE = SUP(2,11) + SUP(2,10)+TAN(SUP(2,4)) - PC2 * TAN(SWPLE) + CR
ç
          CBAR
CBAR
                          # EXPOSED WING AFROCYNAMIC CHCFD, HANDROCK '
# (5UP(1,20)*SUP(1,16) + SUP(2,20)*SUP(2,16))
(SUP(1,18) + SUP(2,16))
                                                                                               FANDEOCK VII.E.O-7
            TOCK AND CLD FOR A WING WITH 2 PANELS ARE AREA WEIGHTED
                       # $CPT(($LR(1,10)*$UP(1,3)**2 + $UF(2,10)*$UF(2,3)**2)
    /($UP(3,10) + $UF(2,10))
# $CPT(($UR(1,10)*$UF(1,7)*47 + $UP(2,10)*$UF(2,2)**2)
    /($UR(1,10) + $UR(2,10))
# 4. *(($UR(1,10)*$UP(2,10))**2) /($UP(1,10)*$UF(2,10))
          1 CLD
          1
            ARXPA
Ç
            PARAMETERS EFILM ARE FOR EXPOSED WING

CRX = SUP(1,8)

CRX = SUR(1,9)

CIX = SUF(2,9)
                      = SUR(2,11) + SUR(2,10) + TAN(SUR(2,4))

= XTX - (802 - SUR(1,12)) + TAN(SWPLE)

= SLR(1,12)

= 802

= SLR(1,1C) + TAN(SUR(1,21)) + SLR(2,10) + TAN(SUR(2,21))
            XTY
            YRX
            DXCC
            MOMENT GEGMETRY
                         = MAC CFFINED TO CENTEPLINE

= 0.6667 * CR *(1.+ T/PR**2 / (1.

= FC2 /3. * (1.+2.*TAFF)/(1.+TAFP)

= XTX - (FC2 - YR) * TAN(SWFLE)
            8
( P
                                                                                           + TAPR))
            ÝΒ
```

```
***** CALCULATIONS FOR MOMENT PARAMETERS ******
                SIX
YIX
ARI
                      = SUF(1,18)
= SUF(1,10)
= SUF(1,10)
(NPNUS.EC.1) GC TO 126
     125
   C
                           = SUR(2,10) + G.F + YIX

= (YOX + SUF(2,8) - O.F + YIX + SUF(2,9))/SUF(2,10)

= (CRXP +SUF(2,C)) + YOX

= 4.4YOX**2/SOXP
               YCX
PXP
SCXP
SPCP
C
C
C
126
                HORIZONTAL TAIL PARAMETERS
               YH = 0.0
CMFGA = 0.0
IF (CMAC.EC.O.G) CMAC = CB
IF (YCG.EQ.G.C) XCG = YP
IF (NHT.EC.U) GC TG 130
               TAIL LENGTH (XH)

XH = $CGT(($UF(P1,13)-7CG)**? +(XHT-XCG)**?)

GMEGA = ATAN2(($UR(P1,13)-7CG) , (XHT-XCG))
             130
   ¢
                [[]]40
%(])
%(])
%(])
7(])
                                  1 * 1, N?
SLR(I,?1)
SUG(I,22)
SUR(I,24)
                                                             57.2958
57.2958
57.2958
                                                        * * * *
                              •
                              .
                WRITE (6,2012)
WP11F(6,2013)
WP11F(6,2014)
WRITE (6,2014)
WRITE (6,2116)
                                               (W(I) , I
(Y(I) , I
(Y(I) , I
(Z(I) , I
(SUR(I,5))
                                                          , I = 1, N2)
, I = 1, N2)
, I = 1, N2)
, J = 1, N2)
I,5), I = 1, N2)
               MAX. CAMMER CRICINATE (FCC)
FCC = 0.06651 * CLC
IF (SUP(1,11.NE.8) GC TO 170
FCCM = AFC(1)
CO )60 I = 1,NAFO
FCCM = ANAY1(FCCM,AFC(1))
CONTINUE
FCC = FCCM + GLC/CLDR
     160
```

```
CONTINUE 
VEITE (6: 2016)
     170
                                                                                                                                     RC2
                                   WFITE(6,2017) HGP
hcTITE(6,2019) DCR
WFITE(6,2019) CF
IF (MFTER.LT.2) WFITE(6,2020) S(
c = SPLAN/144.
f (METER.CC.2) WFITE(6,2020) S(
hPITE(6,2021) XCPTE(6,2020) S(
hFITE(6,2022) ARPLAN
hRITE(6,2023) TR
                                                                                                                                     WFITE(6,2020) SPLAN
C
                                                                                                SHPLE
SHPCC
SHPMC
SHPTE
SHMT
                                                                                                                                                             57.2958
57.2658
57.2658
57.2658
57.2658
                                     555555
                                                                              .
                                                                              .
                                                                               .
                                   % PITF(6,2025)
% PITF(6,2026)
% PITF(6,2027)
% PITF(6,2027)
% PITF(6,2027)
                                                                                                                                     $ 1
$ 2
$ 3
                                                                                                                         $4
$5
                                  IF (METER.LT.2) WRITE(6,2029) SEXW

SEXW/144.

IF (METER.EC.2) VFITE(6,2029) S

VRITE(6,2036) CPAR

VRITE(6,2031) TCCW

VRITE(6,2031) CLD

VRITE(6,2031) CCD

VRITE(6,2031) CCD

VRITE(6,2031) CCW

VRITE(6,2031) VCW

VRITE(6,2031) VCW

VRITE(6,2031) VCW

VRITE(6,2032) VTW

VRITE(6,2040) VPX

VRITE(6,2042) VTX

VRITE(6,2043) VR

VRITE(6,2044) VP

VRITE(6,2045) XH
C
                               17.AATT TEAATT T
                                                                                (1H1,20Y,*TOTAL AIPPLANE PAPAMETERS*,//;
(2X, * FINC SEMI-SPAN

FIG. 3)
(2X, * FCDY DIA/ LING SPAN
        2016 FORMAT (
2017 FORMAT (
2018 FORMAT (
                                                                                                                                                                                                                                                                                                                                                                    , PC2
                                                                                                                                                                                                                                                                                                                                                                    •OCB
                                                                                      2X, * FCDY DIA/ WING SPAN
F10.3)
F10.3)
F10.3)
F10.3)
F10.3)
F10.3)
F10.3)
F10.3)
F10.3)
         2019 FORMAT (
                                                                                                                                                                                                                                                                                                                                                                   , CR
                                                                                                                                  * WING ROOT CHORD AT CENTERLINE
        2020 FORMAT (F10.3)
2021 FORMAT (F10.3)
2022 FORMAT (F10.3)
2023 FORMAT (F10.3)
                                                                                                                                                                                                                                                                                                                                                                    ,SPLAN =+,
                                                                                                                                * Y-STA OF POOT CHORD (CR) T.F.
                                                                                                                                                                                                                                                                                                                                                                    , XCPTE
                                                                                                                               * EQUIV. WING ASPECT RATIC
                                                                                                                                                                                                                                                                                                                                                                    DAP
                                                                                                                                                                                                                                                                                                                                                                    TAPF
                                                                                                                               * EOUIV. WING TAPER
                                                                                                                                                                                                                                                                  RATIC
                                                                                                                                                                                                                                                                                                                                                                                                             =+,
          2025 FORMAT ( 2X, * [OLIV. WING LEACING ECGE SHEEP 1 F10.3)
                                                                                                                                                                                                                                                                                                                                                                    SWPLE #4,
```

```
2X, + FOUIV. WING CHARTER-CHOPG SWEEP F10.3)
SCSE FORMAT (
                                                           , SWPCC #4,
2027 FORMAT
                     * FOUTY. WING MID-CHOFD
                                                 SVEEP
                                                          >SEPPC =+>
4001 FORMAT
                    * EOUIN. WING TRAILING-FOGE SWEEP
                                                           ,SHPTE =+,
2028 FORMAT
                     * FOULV. WING MAX.THICKNESS SWEEP
                                                           SWMT
2029 FORMAT
                     * FOULV. WING EXPOSED AFFA
                                                           SEXV
2030 FORMAT
                     * EGUIV. FING EXPOSED MAC
                                                           CEAF
2031 FORMAT
                     * FOULV. VING THICKNESS RATIC
                                                           TECK
2032 FORMAT
                     * ECUIV. WING 2-D DESIGN CL
                                                           CLD
2033 FORMAT
                     * ECUIV. WING EXPOSED ASPECT PATIC
                                                           ARXR
2034 FORMAT
                     * CHOPD LENGTH AT WING FOOT
                                                           CRX
2035 FOFFAT
                     * CHORD LEVETH AT WING FREAK
                                                           CBX
2036 FORMAT
                     * CHORD LENGTH AT WING TIP
                                                           *CTX
2037 FOFKAT
                     * X-STA. AT L.E. OF WING FECT
                                                           , XRY
2038 FOPMAT
                     * >-STA. AT L.E. OF WING EREAK
                                                           , XBX
2039 FCRMAT (
                     * Y-STA. AT L.E. OF WINC TIP
                                                           XTX.
2040 FORMAT
                     * Y-STA. AT L.E. OF WING REGI
                                                           *YEX
2041 FORMAT
                     * Y-STA. AT L.E. CF WING PRAKE
                                                           ,YPX
2042 FFRMAT
                     * Y-STA. AT L.E. GF WINC TIP
                                                           YTX
2043 FORMAT
                     * X-STA. AT L.F. OF WINC MAC
                                                           ΥÜ
2044 FORMAT
                     * Y-STA. AT L.E. OF WING MAC
                                                           , YP
                     * OFLTA-Y C/4 WING TO C/4 TAIL
                                                           • X i
2046 FOOKAT
                     * INCLINATION LINE BET. WING AND TAIL DATEGA -> >
   END
```

```
CLEOF TALCOV
                                           PROGRAM SURVEY
                                           AERGCYNAPIC SUPVEY
                                        COMMCH / INPUT / A(2081)
COMMON / GUTPUT / R(223)
CCMMCN / CALC/ C(50)
CCMMCN / RLWDATI / C(1411)
COMMCN / RLWDATI / TITLE(6)
   C
                                        DIMENSITA FASURV(20), ALT(20), SURV(20), CLLC(20), CLHI(20), CG(20), RAME(7), SAME(7), SUF(7,20)
CIMENSIDE TCL(21), TCD(51), TCH(21), T(21), TCLT(21), TCT(21)
CIMENSION TCTCD(5), COSUF(7,5), CDEOD(7,5), TCTB(5), TCTS(5)
CIMENSION TERM(5)
  Ç
                                         EQUIVALENCE (A(6), ISWP), (A(7), IFEC), (A(40), NSURV), (A(402), NCLAS), (A(402), FNSURV(1)), (A(512), ALT(1)), (A(523), CWPV(1)), (A(573), CLC(1)), (A(50), BNAME(1)), (A(177), SNAME(1)), (A(177), NFCCYS), (A(177), NAME(1)), (A(177), NAME(1)), (A(177), (A
   Ç
                                         FCUIVALENCE (8(43),CL), (P(44),CC), (R(45),CM), (F(46),ALPHA), (R(142),H), (P(144),FM), (P(145),SWP), (R(142),H), (P(145),SWP), (R(142),CDA), (R(60),ALC), (R(71),DE), (R(137),CDAFT), (R(48),CCL), (F(47),CCM), (F(49),CDA), (R(51),CLL), (F(47),CCM), (R(51),CLT), (P(56),CMC), (R(57),CCMC), (R(51),CLT), (R(52),FM), (R(51),CDT), (F(154),CCCL), (R(52),CMC), (R(52),CMC), (R(117),CCC), (R(117),CCC), (R(131),CDM15C), (R(52),CMC), (R(63),XH), (R(64),CMH6A), (C(44C),XHI), (R(65),XCG)
   Ç
                                          PATA TERM /ICHEFTÖTICN =,10HERRM
10HWAVE =,10HBASE
                                                                                                                                                                                                                                                                                                *,1CHINTERF
   C
                                         C
                                           PEWIND 10
   ¢
                                        JPASS = 0
DD 506 L = 1, NSUFV
F* = FMSLRV(L)
H = ALT(L)
SLEEP = SLPV(L)
CLLOW = CLLO(L)
XH = 0.0
GMEGA = 0.0
XCG = XMAC + CMAC + CG(L)
IF (NHT.EC.C) GD TO 2CC
   C.
                                          IF (FM.GT.1.0) XHTL = XHT + SLF(M1,70)*C.25

XH = SCRT((SUR(M1,12)-ZCG)**2 +(XHTL-YCG)**2)

CMEGA = ATAN2((SLP(M7,13)-ZCG), (XHTL-YCC))
c<sup>200</sup>
                                           CONTINUE
                                          YMCL = MCLAS - 1

GCL = 0.0

IF( XNCL.GT.0.0 ) DCL = (CLHI(L) - CLLE(L))/XNCL
   C
                                            SUP = SWFEP/57.2C577G6
JF( ISWP.GT.U.AND.SWEEP.NF.SWP2 ) JFASS = 0
SWP2 = SWEEP
   C
```

```
IF( ISWP.GT.O.AND.JPASS.FO.C ) CALL CVERLAY(4FQVLY,3,1)
PROGRAM VCFCM CALLED
                           IF( JPASS:FO.O ) CALL CVFPLAY(4HDVLY,3,2)
PFOGRAM MCFIT CALLED
                          CALL OVERLAY (4HCVLY, 3, 3)
PREGRAM AERGA CALLED
                           IF ( JPASS.EC. ? ) JPASS = 1
C
                           C
                           CALL CVFFLAY(4HCVLY,3,4,6HFECALL)
PFGGFAM AFROE CALLED
                           TF (M.GT.1) GG TO 220
                           WRITE (6,1005) (TITLE(K), K=1,6)
RN = -H +1.E6
JE (ITRIM.EC.1) CO TO 210
                                     (ITR) M. EC. 1) GO TO 210

(H. GE. G. J. AND. METER NE. 1) RITE (6, 100 E) FM, H, SWEEP

(H. GE. G. J. AND. METER NE. 1) WPITE (6, 100 E) FM, H, SWEEP

(H. LT. G. G. AND. METER NE. 1) WPITE (6, 100 E) FM, RN, SWEEP

(NT. EC. U) WRITE (6, 1016)

TO 220

(M. GE. G. G. AND. METER NE. 1) WRITE (6, 100 C) FM, H, SWEEP

(H. GE. J. G. AND. METER NE. 1) WRITE (6, 101 C) FM, H, SWEEP

(H. GE. J. G. AND. METER NE. 1) WRITE (6, 101 C) FM, H, SWEEP

(H. LT. G. G. AND. METER NE. 1) WRITE (6, 101 C) FM, RN, SWEEP

(H. LT. G. G. AND. METER NE. 1) WRITE (6, 101 C) FM, RN, SWEEP
          220 ANGLE = ALPHA
IF( IREF. [C.1 ) ANGLE = ALPHA - WINC
                           C
 C
                            TCL(M) = CL
TCC(M) = ChuH
TC(M) = ANGLE
TCLT(M) = CLT
TCGT(M) = CCT
           200 CONTINUE
 C
                             ALOR # ALO
IF( IRCF.FC.1 ) ALOP # ALO - WINC
WPITE(6,16.2) CLA, ALCP, CLOR, FK, CELCL, CLMAX, CMO, FCMCL
 C
                          c<sup>310</sup>
                          PPITE(6,1Clu) (SN/ME(I), I=1,NSLRS)

CC 22J J =1,4
TOTS(J) = CcSUP(1,J)+(CSLR(2,J)+(CSLR(2,J)+(CSLR(4,J)+CDSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(*,J)+CSLR(
c<sup>323</sup>
                             wolff(c, c11) coc, cope, comisc walte(c, 1007) crm
                              IF (NPhls.eq.2.AND.FM.GT.1.0) WFITE(c,1G2G) SNAME(2), SNAME(1)
```

```
WRITE (10) TCL, TCD, TCP, TA, TCLT, TCTT WRITE (10) B
  500 CONTINUE
600 CONTINUE
T113, *CC *AT OP****, / )

1010 FORMAT(*

1011 FORMAT(*)

1011 FORMAT(*)

1012 /5%, 10HCAMPER

2 /5%, 10HMISC *, F7.5

1016 FORMAT(36%, *ELFVON*)

C
                                                 *,5X,7(A10,5X))
  1020 FORMAT ( ///, 5Y, *NOTE. WAVE DRAG FOR 1 TO INCLUDED IN MAVE DRAG CF *, ALO)
                                              VAVE DRAG FOR *, $10,
```

```
SUBROUTINE ADJUST(ID, ID2, XVAR, YVAR)

C ADJUST Y-VARIABLE USING COPRELATION FACTORS

COMMON /INPUT/ A(30f1)
COMO
```

```
CVEPLAY(3,1)
           PECCEAM VGEOM
           COMPUTES GEOMETRY FOR LAFTAPLE-SWEEP CONFIGURATIONS
          CCMMON /BLKFFT/ KFRINT(50)

COMMON /BLKFFT/ KFRINT(50)
C
           CCYMGN /INPLT/ A(3081)
COMMON /OLTPUT/ B(223)
C
           CIMENCION X(6), Y(6), XT(6), YT(6), C(6), P(6)

DIMENCION SUF(7,2C)

ECUIVALENCE (A(184), SUF(1,1)), (NPNLS, A(3)), (AFTAN, A(49C)),

(AFTCA, A(4EP)), (AFTCC, A(4FC)), (AFTSY, A(4F7)),

(XPINOT, A(4E4)), (YPINOT, A(4E5)), (SNPR, A(21))
C
           ECLIVALENCE (SWP, P(145))
Ċ
                      = APS(SWP-SKPV)
C
           IF (KPASS.EO.O.ANC.T.LE.O.OUS) GC TO 100
C
           IF (KPASS.EQ.1) GC TO 25
C
                    # C..C
# C..C
# C..C
# C..C
# S.!P
           CAC1
CAC1
DAC2
DACCX
SWP
          1
           CONTINUE
3 £
           CONTINUE
DSAP = SAP - SAPP.
SAPV = SAP
C
      CD 4C I =1,4

XT(I) = YPIVCT +C(I) * SIK(CSWP + P(I))

YI(I) = YPIVCT +C(I) * COS(CSWP + P(I))

40 CCNTINUE
(
           DYCC = C.75*XT(2) +0.25*X(3) - SLR(1,11) - SUR(1,6)*0.25
SWPT = ATAN((YT(3) - XT(4))/(YT(3) - YT(4)))
SWPLE = SWP
CC = TAN(SWPTF) / TAN(SWPLE)
SWPCC = ATAN((1.0 - (1.0 - CO)/4.6)* TAN(SWPLF))
```

```
CL CS
TCCS
TCCS
TCCS
TCCS
                   # S(rf(k,2) + CPTC/CPTCP
# S(rf(k,3) + CPTC/CPTCP
# YT(2)
# SUP(1,12)/RT2
       45 CONTINUE
TITLE 1.0 + YT(2)* TAN(Shole) * (CG - 1.C)/CRCLP
TVIST = ATAN(DZ/(CRCLP+TTTP)) * 57.256
WINC = A(275) *(1.-TAN(CShP)*TANSR) *(GS(DShP)
   C
           C
          YTE2 = XT(4) +Ykp * TAN(SkPTE)

CPX2 = CP(LF * (1.-Ykp/YT(2) *(1.-TTJP))

STOTAL = SX2

TGCk = TCCS

CLD = CLDS

SkPMCS = SWPMC

IF( NPNLS.EG.1 ) GD TC 46
  C
          = (XT(4)-S(0(1,11)-SUF(1,5) +S1+YT(4) -S2+SUR(1,12))/
          YI
         1
          46 SHET
TP
CEARS
CEARS
                   * SX2 * (2.+.1643*TCCS +1.5266*TDCS**2 -.6365*TCCS**3)

= TR + CPCLP/CRX2

= U.66607 * CFX2 * (1. + (TP**2/(1.+TP)) )

= CRAR2 + CAC1 + (DAC2 - CAC1) * DSWP/(AFTSV-SWPR)
 C
          Stat = SUR(N, 24) + DSUP
TECH = TCCV + DTGC + DSWP/(AFTSW - SWPR)
 (
          IF (NPNLS.EG.1) GC TC 47
 C
                  04200
07206
1441F
1441F
002MT
 C
                   = ACCS(CCS+C/STCTAL)

= ACGS(CCSCC/STCTAL)

= ATAN(TANTE/STCTAL)

= ATAN(TANTE/STCTAL)
         SWOKC
         SWPPTE
SWPTE
c 47
         CENTINE
        SFXL
CPX
CTX
SCX
YOX
                 = $TCTAL

= CPX?

+ CRCLP + TP

= YFID - YWC
         TF (NENLS, EC. 1) CC TC 48
YW2 = (SUF(1), 12)+SUF(2, 12))+G.5
```

```
CRXP = (RCLP +(1.-Yh2 *(1.-TR)/YMIC)

SCXP = (CPXP +(TX) + (YMIC -Yh2)

ARCP = 4.*(YMIC -Yh2)

FCC = 0.36651 * CLC

IF (KPASS.FC.1) GC TO 50

IF (KPASS.FC.1) GC TO 49

CA1 = SUP(N,7) - SHFT

DAC1 = SLF(N,20) - CBAP2

KPASS = 2

CONTINUE

IF (AFICE.GI.0.0) DA2 = AFICE - CHAR2

IF (AFICE.GI.0.0) DAC2 = AFICE - CHAR2

IF (AFICE.GI.0.0) DICC = AFICE - TCCS

KPASS = 1

KPASS = 1

SWPX

50 CONTINUE

IF (KPRINT(12).FO.1) WPITE(6,10CO) KPASS, CLPV, PA1, DAC1,

CPG(C), CA2, DAC2, DICC, CA, SWPY, SWPI, DCC, CPC, TCC, CA, SWPY, SWPI, DCC, SWPY, SWPI, DCC, SWPY, SWPI, DCC, SWPY, SWPI, DCC, SWPY, SWPI, SWPI, DCC, SWPY, SWPI, SW
```

```
CVERLAY(3,2)
PECGRAP PORIT
             COMPUTES CRITICAL MACH NUMBER
            COMMGN/INPUT/ A(30F1)
COMMGN/INPUT/ A(30F1)
COMMGN /CLTPUT/ R(223)
COMMGN /CLTPUT/ R(223)
COMMGN /ELKDATI/ C(1411)
COMMGN /ELKDATI/ C(1411)
COMMGN /ELKDATI/ C(140F)
COMMGN /ELKDATI/ C(MCP(10), XFCR(10), NMCR, SA(32), SP(32),
COMMGN /BLKMCR/ CLMCP(10), XFCR(10), NMCR, SA(32), SP(32),
SC(32), SD(32), SE(32), XL(32), ZT(32), ZS(32)
, ROC
C
             DIMENSION CLTAP(2)), TARMOR(21), PCD(7,20)

ECUTVALENCE (E(1),CLTAP(1)), (P(22),TARMOR(1)),(A(37),BOD(1,1))

, (A(3),MENUS), (B(67),FMCRP)
C
             ID = A(164)
TCC = C(12)
SWEFP = C(7)
16 (NPNLS.FG.1) GC TO 10
C
     ETA = A(262) /C(1)

IF (ETA.Lf.J.5) SWEEP = A(322)

10 CCNTINUE
CLC = C(13)
AM = C(29)
PAYX = BCD(1,7)
BLAS = BCD(1,9)
FMCRB = U.985
FMN = 1U.

IF (PANX.6T.U.0) FPN = PLNS/SCPT(.7854 *PAMY)
IF (FRN.LE.6.2F) FMCRB = .62 * FRN**.1
             IF (ID.LE.23) CALL CPZT(ID, C.6, TCC, CLC, SKEEP, AP, FMCRP)
C
   230 CCKTINUE
C
    300 PRITE(6,1CGÚ) (CLTAB(I), TABPCR(I), I =1,11)
 1000 FORMAT(1H1, 5X, * MACH CRITICAL TARLE * /// 5Y * CL *, 5X * MACH CRITICAL * //(5x,2F15,4) )
r
            END
```

١;

```
SUBROUTINE CPZT(ID. XMACH, TGC, CLD, SNP, AR, FMCRP)
                          CALCULATES AIRFOIL PRESSURES - PRITISH METHOD AND COMPUTES MACH CRITICAL USING CREST CRITERIA
                          COMMON /PLKMCF/ CIMCR(10), XMCP(10), NMCR, (A(32), SR(32), SC(32), SE(32), XU(32), ZT(32), ZS(32)

COMMON /PLKMCF/ CIMCR(10), XMCP(10), NMCR, (A(32), SR(32), SS(32), SS(32), SS(32), ZS(32), 
C
                           PIMENSION COSE(32), SINE(32), YCP1(32), DZPXLT(32)
                          C
C
                           NC P
NMC R
                           CS 100 I= 1.NCP
      C
C
                            CALL SECT(ID, TGC, CLD)
                         C
                                                                      SIGN
                          D55554
```

```
$5
                      = -2.0 + (-1.0)++IPV '/DEP
C 150 CONTINUE
  *ZT(IL)
         CALL CPUGV(1.0, A, SWP, IV, CPIL, CPL, XM)
C
         CALL CPUTV(-1., A, ShP, IV, CPIL, CPL, XF)
C
                  = CPIL - CPIt
C
        CICXU = SP(IV) + SE(IV)
CICXL =-SF(IV) + SE(IV)
C
        YCFI(IV) = CPIU
C7CYUT(IV) = CZCXL
C
       IF( KFRINT(1).EG.1 ) WPITE(6,1000) XL(IV),CPIL,CPIL,DCPI,DZDYU, DZDXL, CPU, CPL, FCF, XU(IV)
C
             DCPIM1 = DCPI
CCPM1 = CCP
C
   500 CONTINUE
        CLI = CLI + XU(NCP) * DCPI* G.5

CL = CL + XU(NCP) * DCP * C.5

CYI = CMI + YU(NCP) * DCPI * 0.5 * (0.5+XU(NCP) -C.75)

CM = CM + YU(NCP) * DCPI * 0.5 * (0.5+XU(NCP) -C.25)

CFCRIT = (1.42857/)*2) * (0.52828 * (1. + C.2 * XM2) * 3.5 -1.)
  IC( KPFINT(1).GT.O) WRITE(6,1002) CLI,CMI,CPCRIT,CL,CM
        IF( A.LT.D?CXUT(NCF) ) GC TC 610
N°CF = N°C9 - 1
ALPHA = ALPHA -1.
GC TO 350
  610 CALL LNTF(A, XCPEST, C7C)UT, XU, NCP, 4)
   620 CALL LATP (XCREST, CFCR, XU, YCPI, NCP, 4)
       ) CFI2 = CPCFST * CPCRST

YEOPN = 1./(1.0323 -.E360*CPCRST -.36]*CFI2 -.133(*CPCRST**3

-.0173*CPCRST**4)

IF( ID.EC.F ) YEODE = 1./(1.612 -.E55]*CPCRST

-.4403*CPI2 -.2219*CPCRST**5 -.0447*CPCFST**4)
C
        CCNTINUE : IF( XMCC.GT.FMCPR ) YMDD = FMCRB
         PMCP2 = 1. - (XMCD + CCS(SkP))**?
TF( BMDD2.GT.U.O ) CLMCD = CLI/SCRT(FMCD2)
```

```
SUBROUTINE SECT(IC, TCC, CLD)
             CALCULATES THICKNESS AND CAMPER
           COMMON /BLKMCR/ CLMCR(10), XMCR(10), NMCR, $1(32), $1(32), $0(32), $E(32), XU(32), $1(32), $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600, $600,
             COPPON JELKDATI/ C(1411)
         PIMENSIEN YSECT(26), Y1644(26), CAMPR(26), OIMENSIEN Y1634(26), Y163(26), Y163(26), Y163(26), Y163(26), Y163(26), Y163(26), Y164(26), Y165(26), Y164(26), Y1
.06471,.05256,.0615,.0486,.04471,.0508,.02565,.02565,.02565,.02565,.02565,.02565,.02565,.02565,.02565,.02565,.02565,.02565,.02565,.02565,.02565,.02565,.027116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.27116,.271
                DATA AD
                                                                                                        12
                                                                                                        43
                                                                                                        C1
                                                                                                        0.2
```

```
$1
AA(10) + BR(10)*TOC +CC(10)*TCC*TOC + DD(10)*TOC**3
                        1 TC 4, 6 SEPIES AIPFOIL
5 TC 7; 64 SEPIES AIPFOIL
6, INPUT AIRFOIL
9, BICONVEX
16 TC 20, 4 DIGIT AIRFOIN
                                                                                                  IJ = 1
IJ = 1
                                                                                                           3
                                                                                                  ]] =
]] =
            IF( IC.LE.7 ) IJ = 1
IF (IC.LC.6) IJ = 5
IF( IC.CC.9 ) IJ = 2
IF( IC.CE.10.ANC.ID.LE.20 ) IJ = 4
IF( IC.CC.21 ) IJ = 5
Ç
            en to (200,300,100,900,700) , IJ
C
    100 WPITE(6,2000)

CT 110 I = 1, NCP

7T(I) = 2.0 * TOC * * (1.- YU(I))

SP(I) = 2.* TOC * (1.- YU(I))

110 CGNTINUE

PCC = 0.0

CT TO 960
   C
                                                                                                  Y164,
Y164,
Y166,
Y166,
Y1644,
Y1654,
                                                                   71(1), $58C1,
21(1), $58C1,
21(1), $58C1,
21(1), $58C1,
71(1), $58C1,
21(1), $58C1,
                                                                                                                2222222
                                                                                                                         4)
    220 7T(I) = ZT(I) * TGC/C.1
005
            CONTINUE
             60 TO 960
Ç
     700 ROC
                            * RLE
    CC 800 I = 1, NCP

= XU(I)

CALL LNTP(Y, 7T], YI, YI, NXSECT, 4)

CALL LNTP(Y, 7S1, XI, YC, NXSECT, 4)

ZI(I) = ZII * ICC/ICCR

ZS(I) = ZS1 * CLD/CLCR

PJO CENTIBUE

GC TC 960
     900 WRITF(6,2GC4)
14C = 10 - 9
FOC = 0.5 + (AC(14D)+TGC/.2)++2
€
             DC 950 I =1, NCP
X = XU(I)
IF( X.GT.XIT(ID) ) 60 TO 910
             7T(I) = &0(14C) + SGRT(X) + &1(14C) + X + &2(14C) + X*X
+ &?(14C) + X**3
SB(I) = 0.5 + &0(14C)/SOPT(X) +&1(14C) +2.*&2(14C)*X
+ 3.* &3(14C) + X**2
             en TO 940
     910 X
Z7(I)
                            * (1. - x)
* 0.002 + r1(140) + x + r2(140) + x*x + r3(140) + x**3
```

```
SURROUTINE CPURV(S, A, SHP, IV, CPI, CP, XY)
        COMPUTES OF FOR AN INFINITELY SHEARED VING
  10 COSA
SILA
COSL
SINL
                    = COS(A)
= SIN(A)
= CLS(SVP)
= SIN(SWP)
  20 F2
F2
F4
                    = $C(1V)

= $C(1V)

= $C(1V)

= $C(1V)

= $CRT((1. - XU(TV))/XU(1V))

= 1.6/(1. +((F2 +$* F5)/COSL)**2)
   30 CUL
                     = DUL * ( CCSA * (1. + F1 * CCSL + S* F4 * CCSL)
+S* SINA * CCSL * (1. + F3/CCSL) * FX )**2
+ CUL * ( CCSA * SINL * (F1 + F* F4)
+S* SINA * SINL * (1. + F2/CCSL) * FX )**2
+ (SINL * COSA)**2 * (1. - CUL)
   40 LICY2
        CPI
                    - 1.0 - UTGV2
        CP
   50 CP10
        CPIG = (1. - SINL * SINL + FI * FI + 2.0 * FI * (CSL)

/(1. + (F2/CQSL)**2) - SINL * SINL

CPIG = 1.0 - CPIG

JF(CPIC.6T.0.0) CPIG = 0.0
        YMN = >M * CCSt
IF( YM.LE.O.O1.FF.YMN.GE.I.O ) RETURN
        XM2 = XM * XM
BETA . = SCRT(1. - XMN * YMN)
  70 B
                     = SCFT(1.0 - TEST)
   80 DUL
                     * 1.0/(1. + ((F2 +S* F*)/(8 * CCSL))**? )
                     = DUL * ( CCSA * (1. + F1 * CCSL +5* F4 * C(5L) +5* 51NA * CCSL * (1. + F3/CCSL) * Fx )**2 + DUL * ( CCSA * 51NL * (F1 +5* F4) +5* 51NL * 51NL * (1. + F2/CCSL) * FX )**2 + (S1NL * CCSA)**2 * (1. + DLL)
   90 UOV2
                     = -1.42857/XM2
 100 CP
        TFST = 1.0 + 0.2 * XM2 * (1. - UCV2)
JF( TEST-LF.0.6 ) GC TC 206
CP = -CF * ( TEST**2.5 - 1.0 )
```

```
CVERLAY(3,3)
PROGRAM AERGA
              CONTROLS CALLS TO AERO ROUTINES FOR MIN CPAC CALCULATIONS
             CGMMON /INPUT/ A(20P1)
COMMON /INPUT/ A(20P1)
COMMON /CUTPUT/ CLTAR(21), TASMCP(21),
COMMON /CUTPUT/ CLTAR(21), TASMCP(21),
CL, CC, CM, ALPHA, CDM, CDL, CDR, CCFG, CLT, CDT,
CM, FK, PELCL, CMG, CCMCL, Y1ChF, CLA, 4LC,
R, CMCH, XH, CMEG1, YCG, FC, FMCFR,
CCMCH, COMP, CLDE, CLMAX, LFRK, YMAX, PLMAY, FELL, CLS,
ARLO, FMCFG, FML1, FML2, CCT, CLAMCP, CLMCP, CCMCP,
CCML2, CGATM, C2(.7), 24 CS, CCC, CLAMCP, CCMISC, C2(.7),
ALT, SPFED, SKEEP, JPASS, TTRIM, FMCFT,
TCG(5), CCSUR(.7, 5), CCRCC(.7, 5)
C
              COMMON /CALC/ C(50)
COMMON /BLKPRT/ KFRINT(50)
            ECUTVALENCE (NPNLS,A(3)), (SWPMC,C(7)), (TGC,C(12)), (FBC,C(26)),
1
C
      RNOFT = APS(ALT) + 1C.C++6
JF (IFT.FC.2) RNOFT = FNOFT / 12.
IF (ALT.LT.O.C) GC TG EC
CALL AT62(ALT,FNOFFT,IFT)
RNOFT = RNOFFT + SPEED
80 CCNTINUE
Ç
              IF (JPASS.GE.1) GC TO 300
CCC
              RNCFT1 = RNCFT/SPFED
CALL LNTP(G.G, FMCFG, CLTAF, TARMCR, 11, 2)
C
              CALL FDRG(1.0, RNCFT1)
CCFF * TCC(2) + TCD(3)
              CALL WORE(1.66001)
COW1 = TCO(4)
C
              CALL WDRC(1.01)
CDW2 * TCD(4)
              PL
                             = 5.4 *(TCC +2.*FCC)**C.3333 *CCS(SVPMC)
C
              XMC = 1.-FMCRO
CC5L1 = PL + XMC++2
IF (XMC-GT-G-12) CDRL1 = 0.C144+PL +C.24+PL+(YMC-.12)
              CCFLP = 2.*PL *XMC
IF (*MC.GT.u.12) CDFLP = 0.24 *PL
                           # (COWS -COW1)*100. -COPLP
# COW1 -COFF -COPL1
              CCMb
               ČČ k1
C
              24
24
XY
                             = 1.-FMCRP
= (yy * colp -2.* ccw1)/ym**3
= (3.* cc+1 - ym * cc+p)/xm**2
              FML1 = 0.95

IF( FMCRC.GT.0.90 ) FML1 = FMCRD + .C5

IF( FML1.GT.1.0 ) FML1 = 1.0

FML2 = FML1 + 0.15
              RMCFT? = RMOFT + TMCFC/SPEFC

C/LL FDPG (FMCFC/RMOFT2)

C/LL WDRG (FMCRO)

CMCR = 0.0

CMCR = 0.0

CMCR = 1, NPMLS

CDMCR = COMCR + (DSUR(I,1)+CCSUR(I,2)+CCSUP(I,3)+CDSUP(I,4)
```

```
CC

RNGFT? = RNGFT *FML2/SPEED

CALL FORC(FML2, RN(FT2)

CALL WDRG(FML2)

CALL WDRG(FML2)

COM12 = C.0

COM10 = C.0

COM10
```

```
SUBPOUTINE AT62(HCT, RNCFT, JFT)
0000000
       COMPUTES RENOLDS NO. AS FUNCTION OF ALTITUME
       RNCFT EQUALS RN/FT OR METER AT Mel
       CONVERTS HOT TO FFET IF IFT = 1
ALT = HOT
IF (IFT.EC.1) ALT = ALT + 3.28084
X = 1.-6.8753F-6 + ALT
C
        RNCFT = (X +0.38312)/1.38312 *7100574. * X**2.2559
C
        IF (ALT.LE.36089.) GO TO 10
C
               - (36089.- ALT) *4.FG6118E-5
C
        RNCFT # 2.302229F6 # EXP(X)
        CONVERT RACET TO EN/METER IF IFT=1
IF (JET.EC.1) FNOFT = PACET + 3.28064
             CONVERT RNOFT TO FN/INCH, IF IFT = 2
        JF (IFT.EC.2) PNOFT = RNOFT/12.
```

```
SUPPOUTINE DMIN(SPEED, RNOFT, COMIN)
                                           MINIPUM DRAG
                                          COMMON/INPUT/ A(3081)
COMMON /CALC/ C(50)
COMMON /CALC/ C(50)
COMMON /CALC/ C(50)
COMMON /CALC/ C(1411)
     C
                                            PIMENSION PGC(7,20),TGTCC(5),COBCD(7,5)
     ¢
                                          EQUIVALENCE (A(11) + SREF) + (A(1) + NPC(YS) + (A(2) + NNAC) + (A(37) + ROD((1+1)) + (B(149) + TOTCC(1)) + (P(189) + CORCO(1+1)) + (A(17) + FMISC) + (P(129) + CCMISC)
     C
                                           NECD = NECDYS + NNAC
CC 10 I =1, NBCD
CDRCD(I,5) = 0.0
ç<sup>10</sup>
                                            CALL FORG(SPEED, FNCFT)
      C
                                            CFMISC * (TETCP(1)+TOTCP(2)+TOTCD(3)) * FMISC * C.G1
CALL ADJUST(2,0, SPEED, COMISC)
                                       CALL FOOL CONTROL CONT
      C
   cle
                         20 CONTINUE
                                            TCTCD(5) # 0.0
DC 25 I =1, NECD
TCTCD(5) # CD80D(I,5) + TCTCC(5)
CONTINUE
    c<sup>25</sup>
                                             CALL WORG (SPEED)
                                            CDMIN = TGTCD(1)+TGTCD(2)+TGTCC(3)+TCTCC(4)+TGTCC(5)
CDMIN = CGMIN + CDMISC
                        30 RETURN
```

```
SUBROUTINE FORG(SPEED, PHOFT)
                                            THIS SUBROUTINE CALCULATES FRICTION, FORM, AND INTERFERENCE
                                           COMMON /INPLI/ A(2001)
COMMON /CLTPUT/ B1(148), TCTCO(5),
CCTSUF(7,5), CCRCO(7,5)
CCMMON /BLKPRI/KPRINT(50)
           C
                                         DIMENSICH PGG(7,2C), SUR(7,3G)

EGUIVALENCE (A(37),RCC(1,1)), (A(124),SUF(1,1)), (A(16),RCUGHK),

(A(1),NGCCYS),(A(2),N1C),(A(2),NPAL(S),(A(4),NHT),

(A(5),NVT),(A(11),SPEF),(R1(114),CF1TM)

(C(43),CUCS), (C(45),SWPMCS), (LISWP,A(6))
          C
                                          On 10 1=1,3

10TCD(I) = 0.0

DC 5 J=1,7

CORSOC(J,I) = 0.0

COSUR(J,I) = 0.0

CONTINCE
      c 50
                                                                    = PECCA2

= PECC
                                           EDDY CONTRIPUTION TO FRICTICA, FORM, AND INTERFERENCE DRAG
                                           CALL 1FACT(4, REFUS, CRITM, SPEED, FI)
IF (K2.EC.O) GO TO 30
FO 20 I =1, K2
         C
                                         YL = PFD([]1)
CALL CFEC(RNOFT, SPEED, YL, O., ROUGHK, COF)
ER = BCD([]14)
                                         TF (1.6T.J2) K = 2
CALL FFA(T(K, FP, O, C, SPEED, 0.0, FF)
AWFT = CCC(1,4)
DRAG = CDF * AWET/SREF
                                       FI = 10.

IF ( ACD(I,5) .NE.C.O ) FI = POD(I,5)

IF ( SPEED. CT.10.O) FI =1.

IF (I.CI.1) GO TO 15

REFUS = RNCFT * XI

CALL IFACT(1, PEFUS, CPITM, SPEED, F1)
     0
                                       CDF(D(I,1) = DFAG
CDPOD(I,2) = DFAG *(FF -I.)
CDROD(I,3) = CRAC *FF *(FI -1.)
CCNTINUE
c
C
C
20
                                         SURFACE CONTRIBUTION
  ć<sup>30</sup>
                                        IF (N2.FC.)) GO TO 50
CALCULATIO DRAG FOR SURFACES
                                      DO 40 I =1, N2
XL = SUR(1,20)
IF (15WP.FO.1.AND.T.FO.L2) XL = CRAP2
CALL CFEC(RNCFT, SPEED, XL, C., PQUGHK, CDF)
       C
                                      ICC = SUR(1,2)
IF (IS\P.+0.1.AND.I.EO.L2) IGC = TGCS
IYP = SUF(1,1)
Com = SUF(1,2)
IF (IS\P.\LC.1.AND.I.\EO.L2) CAY = CLCS
COLL FFACT(3, TGC, TYP, CAY, SPFED, CRITY, FF)
      C
                                      MISUP = SLR(1,24)
IT (ISWF.FC.1.AND.I.FO.L2) MISWP = SUPMCS
ID = 3
IF (I.LE.L2) IO = 2
CALL IFACT(ID, MISWP, CRITM, SPEED, FI)
```

THE PROPERTY OF THE PROPERTY O

```
SUBROUTINE CFEC(FNCFT, ZMACH, CPAR, XTF, RCUCHK, CF)
          THIS SURROUTING CALCULATES THE SKIN FRICTION CORFFICIENT USING THE WHITE-CHRISTOPH TECHNIQUE.
          COMMON /BLKPRT/ KPRINT(5C)
C
          FTURE(X) = T=F++2=0.430/(ALCG]0(RNL+X+T++1.67+F))++2.56
C
          FLAM(Y) = 1.328 + CFCFIL/SQRT(Y+RNCFT)
          FPRIM(X) = 0.42*T*F*F*((ALCGIC(RNL *X*T**1.67*F))**(-2.56)
-1.11178*(ALGGIG(RNL *X*T**1.67*F))**(-2.56))
r
          IF( KFPINT(19).CT.O ) WRITE(6,1CC)) PNCFT, ZMACH, CBAF, XTR, ROUGHK IF( CPAR.LE.C.C.OR.CPAF.GT.100000) GC TC 500
C
          7MACH2 = 7MACH+7MACH
T =1.0/(1.0+ 0.178±7MACH2)
F =1.6 + 0.03916*7MACH2*T
DXNP1 = 6.0
          DXNPI
          ENT.
                      # COC
# ENDET
          RN1 = RNL
7 = RNL +CBAR +T++1.67 +F
JF (Z.LE.1.0) GC TG 500
           IF( POUGHK.LE.G.O ) GO TO 5
C
                    # T/(1.69 + 1.62*ALCGIG(CBAR/RUL(HK))**2.5
# FUNF(CPAR) - CFS
          CFS
CFP
 2
C
         T = CFR - CFS

IF (K.EC.L.ANP.F.IF.D.U) GC TO 5

IF (ABS(D).LE.U.OUO(1) GC TC 5

FNL = RNL *(1.+ D/CFP)

7 = FNL *CPAP *I**1.67 *F

IF (Z.LE.1.0) RNL = FN1 *0.1

RN1 = PNL

K = K + 1

IF (K.GT.10) GC TC 4

RNCC = FNL * CFAF

GO TO 2

*RITE(C,1000) RNOFT, PNL, CFR
       5 CONTINUE
C
          CFCFIL = (1.0: G.1256*7MACH2)**(-.12)
JF (YTK.16.G.0) GC TG 100
CXN = 0.1 * YTP
C
     CXN
CO TO 10
                       = CXNP1 + CBAR - XTR
= (YP/CBAR) #FT(RF(XP)
     20 XP
           ĊF
           008 OT 99
    100 CF = FTUPR(CFAR)
    200 WITE (6,1000) PXN, PNL CF = 0.0
                    * RMOFT
    300 FNL
           CEBAR - FTÜRR(CBAP)
IF ( KFRINT(19).50.0) GO TO 400
WRITE(6,1003) CF, CFBAF, DYNP1, CFCFIL, PNL, RNCC
C
```

400 RETURN

500 CF = C.0

MRITE(6,1CC2) CRAR

RETURN

C

1000 FORMAT (10x*SLBPOUTINE CFFC WILL NOT C(NVFRCE*/ 1x,3F15.7)
1001 FORMAT(10),*CFFO 1NPUT*, 1PF15.4,0P4F15.7)
1002 FORMAT(10x,*CEAF =*,1Pf14.5,2X,*UUT OF RANGE IN CFEG, CF SFT EQUAL
1003 FORMAT(10x,*CFEG CUTPUT*, 4F15.7, 1P2E15.4)
ENC

```
C SUBROUTINE FFACT(JD, GEOM, TYP, CLC, SPEED, CRITM, FF)

THIS SUBROUTINE CALCULATES FORM FACTORS FOR EACH COMPONENT.

JIYP = TYP

FF = 10

IF (SPEED.GT.1.0) GO TO 40

GO TO (10,20,30) ID

FUSELAGE OR BODIES (ID=1)

FR = GEOM

FR =
```

```
SUPPOUTINE WORG(FMACH)
                  COMPUTES TOTAL ATPPLANE HAVE DRAG
                 COMMON/INPUT/ A(30F1)
COMMON/INPUT/ A(30F1)
COMMON /CLIPLT/ R(223)
COMMON /CALC/ C(50)
COMMON /ELKCATZ/ F(50P)
COMMON /ELKCATZ/ F(50P)
  C
                 DIMENSICK CDSUR(7,5), CTCDC(7,5), TCTCD(5), SUR(7,20), POC(7,20);
ECUIVALENCE (8(144), TDTCD(1)), (8(154), CDS(D(1),1)),
(8(184), CDSCC(1,1)), (4(37), FCD(1,1)),
  C
                 ECUIVALENCE (AF,C(29)), (C(F,C(13)), (FCP,C(2)), (SUPLE,C(25)), (SVFTE,C(8)), (IS,A(164)), (APFCYS,A(1)), (AHT, A(4)),(NAAC,A(2)), (APAC,A(3)), (AVT, A(5)), (SF), (C(10)), (SPLI), C(4)), (SPLI), A(11)), (TCCL,C(12)), (TAPF,C(3C))
  ç
                 TGTCD(4) = 0.0
Cf i0 I = 1,7
CDROP(1,4) = 0.0
CDSUR(1,4) = 0.0
c 10
                             * NBCDYS

* NBCDYS + NNAC

* NPNLS

* NPNLS +1

* MPNLS +NHT +N
                                                +1
+»HT +NVT
  Ç
                 IF( FMACH.LE.1.0 ) RETURE

RETA = SCRT( FMACH**2 -1.)
 CCC
                 PCCY CONTRIBUTIONS
                 IF( K2.EC.C ) GO TO 50
 C
               DC 20 I =1, K2
PAMX = PEC(I, 7)
PLNS = PCC(I, 9)
RIN = C.O
PEX = SCST(ECC(I, 8)/3.14159)
FLFT = FCO(I, 10)
PNC = ROO(I, 6)
IF (RNG.FC.G.G; 8NO = 1.C
IF (I.GT.J2) KIN = SORT(BOC/I, 12)/3.14159)
 C
                CALL CORNIGAMY, PLMS, PIN, RETA, COR1)
CALL CORTICAMY, PLFT, FEX, PETA, COR2)
 C
                CONDINUE TETCE(4) + COPOC(1,4)
                                                                                      PAPX/SEEF * PNO
c<sup>20</sup>
        50 CONTINUE
 CCC
                 WING AND SUPFACE CONTRIPUTION
     200 WPG(1) = AR * (1.-nqp)**2 * SPLAN/SFXV
WPD(2) = TAPR/(1.-nqp)**2 * SPLAN/SFXV
WPD(3) = SWPTE
WPD(4) = SWPTE
WPD(5) = FMACH
VPD(6) = SEXW/SPFF
WPD(7) = TC
WPD(9) = TDCW
C
               CALL CCWW(CDW1)
CCSUP(1,4) = CCW1
TCTCD(4) = TCTCC(4) + CCW1
```

```
SUPPOUTINE COUNCAMAX, ALNOS, FIN, PETA, COL)
            NOSE WAVE DRAG (BODY COMPONENT)
            DIMENSION XLD(7), YPETA(4), FCDk(7,4)
                      YETA/ C.O, (.32, 0.456, 6., 6., 12. /,

YPETA/ C.O, (.32, 0.456, 6.653 /,

FCON / .1656, .6617, .0373, .0267, .01cs, .014c, .0663,

.2376, .1256. .061, .061, .0304. .0177, .0082,

.2052, .1667, .1067, .066, .0311, .0175, .0061,

.3816, .2010, .1031, .0624, .0367, .0172, .0075 /
C
            CDW = C.O

IF( AMAX.LE.O.G) CO TO 50

PMAX=SCPT(AMAX/C.785398 )

ELFO=XLNCS/CMAX

IF(RIN.CT.O.C) CO TO 40

IF( ELCO.LE.O.O ) GO TO 50
             JF( PETA.GE.C.6632 ) GC TO 20
C
      10 CDh = GLNT(ELOC, PETA, XLD, YBFTA, FCOb, 7,4,7, 2,2) GC TO 50
C
      20 X = CDW = GO TO 50
                           = FETA/SCOT(1.+ ELOC**2)
= (1.2 + 1.15 * X)/(1. + 1.9 * X) /(1. + ELCC**2)
            FOR A BODY WITH AN OPEN MOSE, SUCH AS A NACELLE, THE CONTRIBUTION OF THE MOSE TO THE TOTAL RIDY WAVE DRAC COFFFICIENT IS COMPUTED AS INDICATED RELEW. (THE EXPRESSIONS USED FOR OPEN AND CLOSED REDY BOATTAIL CONTRIBUTIONS OF NOT REQUIRE THIS CISTINCTION——SEE COWT.)
      C
      50 PETURK
```

```
SUBROUTINE CONTIAMAX, XLAFT, REX, PETA, COW)
0000
            BOATTAIL WAVE CRAG (PODY COMPONENT)
            DIMENSION DECD(5), COWRT(5)
C
            CDh = 0.0

IF( AMAX.LE.G.O) RETURN

IF (XLAFT .LF. 0.CO)1) RFTURN

DMAX=SCRI(AMAX/0.785396 )

ELCC=XLAFT/DMAX

X=0FTA/ELOD

Y=X+X

7-51 RD#51 RD
             Z=ELOD+ELOD
            REGATTATE NAVE DRAG IS A FUNCTION OF BELITTALE FINENCES FATTE, PASE CIAMETER/MAXIMUM CIAMETER, AND MACH NUMBER. COMPUTE THE BEATTALE HAVE DRAG COFFFICIENT AT FOUR DROD(1) VALLES AND INTERPOLATE TO
            CPGD(1)=0.0
CP45T(1) = (1.165 -.5112+x -.5372+Y +.3964+X+Y)/Z
IF( X.GT.1.C ) CD48T(1) = C.513/X/Z
C
            CPDC(2)=0.4
CDVRT(2) = (1.067 -1.70C*X +1.6632*Y -.666*)*Y)/Z
IF( X.GT.1.0 ) CDVRT(2) = C.3352/X/Z
C
            CPCD(3)*C.6
CGW9T(3) = (0.7346 -1.461F*Y +1.5795*Y -.6542*X*Y)/Z
IF( X.GT.1.0 ) CD\BT(3) = C.1580/X/Z
C
            CPGP(4)=0.8
CD+4T(4) = (0.2555 -.5008*X +.5C24*Y -.2C77*X*Y)/Z
IF( X.GT.1.0 ) CD/BT(4) = C.C494/X/Z
            CTVET(5)=0.0

DRCD(5)=1.0

BDCD=2.C*PEX/DMAX :

CALL ENTP(BDCD, CDW, DBOD+ CDWBT, 5, 2)
C
            RETURN
END
```

```
SUBROUTINE CONMICCOSF)
PROCEDURE FOR WING PRESSURE DAIG
Ç
       COMMON /FLKHPD/ &P, 7LAM, ZLE, ZTE, ZM, SCSF, TYPE, CAM, TCC COMMCN /BLKFRT/ KFRINT(50) COMMON /BLKCAT1/ '411)
C
       DIFENSION AAC?
                                    ?), CC(2?), CC(2?), XT(2?)
Ç
      EQUIVALENCE (AA.1,, b. 23), (8F()), D(45)), (CC(1), D(67)), (T(1), D(11))
C
   10 N
                 ■ TYPE
C
                 # CAM # 0.055 /TOC
       CALCULATION OF CUANTITIES THAT ARE FUNCTIONS OF GECKETRY.
       C
        THIS DO LOOP SOLVES FOR *APE* BY NEWTONAS METHOD.
       CC 100 I=1,10

y3 = y++3

x4 = x*x3

F = (2.0*x)/(x4+1.0) + (2.23*x3)/(x2+2.0) - 7K

FP = (2.0-6.0*x4)/((x4+1.0)***2) + (2C.(****2)/((*3*2.0)**2)

FFP = F/FP

IF(KPFINT(20).E0.2 .AND. I.EC.1) WRITE(.,90)
C
        IF(KPRINT(20).EQ.?) WRITE(6,95) I, X, F, FP, FFP
C
  x = X-FFP
IF (APS(FFP).LE.0.0001) G0 TO 110
100 CONTINUE
110 IF(KPRINT(20).EC.2) WPITE(6,36)
       IF (KPRINT(20), FO.2) WRITE((,45) ZLE, ZTE, ICC2, ICC13, ICC53, ARW, ARW3, PEN1, DEN2, ZKT, ZKC, ZLAM1, ZKP
Ç
       PFTA2 = ZM**2-1.0

PETA = SCRT(RETA2)

DJV = RETA/TDC2

RETAW = FETL/TDC12

HETAW2 = PFTLW+*2

CD1 = 0.0

CD2 = C.C

C[A = TCC2*(2.0+3.333/(ZKW**2.6))
```

```
CDGS == CCW+SOSS

T = (ZM.GT.1.0) CDD= CDW+DIV

AREW = APE

ARE = AREW/TOC13
       IF (KPRINT (20) . EC. ?) FITE (6,47)
       IF (KPRINT(2C), EC. 2) PRITE(6, 46) PIV, PETA2, RETAW, PETAW2, CD6, CD1, CC2, TEST, YM, FB, ZML, T1, T2, T3, T4, C1, C2, C04, CCD
C
       VIC # 7LE # 57.2056
VTE # 7TE # 57.2056
IF (KPRINT(2C).6T.G) WE TTE (6,25) AC, ZKF, ZLAN, ZKT, NIE, ZKC, NTE,
ZKLIN, TCC, APV, TYPE, CAM, TCC, TCC12, XTCC, TCC52, FCCT,
FP, HCT, ZML, ZML, ARE, SCSF, AFER
C
  55J IF (KPRINT(20).GT.O) LRITE(6,600)
C
        JF (KPRINT(2G).EO.1) WRITE(6,610) ZM.95TAW,)M,ZFFXP,CDWA,CCW,
CD1,CC2,CCCSP
```

```
CVEPLAY(3,4)
           FRECRAM AERCR
          CONTROLS CALLS TO AFRO ROUTINES FOR VARYING OL CONCITIONS
          C
           COMMON /CALC/ ((50)
COMMON /PLKPET/ KERINT(50)
  C
           ECUTVALENCE (NPNLS, A(3)), (CB, C(11)), (FFLS, A(2E))
 C
          FMACH . SPEED
  C

JF (JPA'S.GT.O) GC TC 20
CDATM = CCMCR
CALL CLWET(FMCPC)
CLAMCR = CLA

  C
           CLAPLS = CLM
CLAPLS = CLA
C SO
           CLAMOR AND CLAMES ARE CLA VALUES AT KEY MACH MOS. USED IN CDI-
          25
  C
           CALL CLERK(FMACH, RE, RMORT)
CALL CLL1(FMACH, FACET, FK, DELCL, PRIMER, AKD, AKM)
CALL CDFG(FMACH, FK, DELCL, CDC)
CALL CMFL(FMACH, CMC)
CALL ADJUST(1,0, FMACH, CMC)
  C
           CALL PRAC(FMACH, XACWR)
  C
      30 CONTINUE (ALL COOP (CL.FM/CF,CORCL) COP = CORCL - CORO
  C
           CALL COLZ(FMACH, CL, FK, DELCL, PRIMEK, AKD, AKB, CDL)
CALL ADJUST(C, E, CL, CDL)
  C
           IF( JFASS.LE.1 ) CALL AERA(FMACH, CL, ALPMA)
CALL AFFA)(FMACH, CL, ALPMA)
IF( JFASS.GT.C ) GC TC 5C
IF( BFUS.EO.C.O ) GC TC 50
  C
      TD 4C J = 1, 21

ANG = I - 1

Cell AFTCC(ANG, DCD)

IF ( I.FC.1 ) VFITE(E, 1000)

40 FPITE(E, 1(C1) ANG, DCD

50 CALL AFTCD(ALPHA, CTAFT)
           CALL TOFC (CCLT, DCCT)
  C
           CDH
                    * CDC + CCC + CDRO
* CDM + CDL + CCR + CDAFT
  C
```

```
CDT = CC + CCT

CLT = CL + DCLT

C

JPASS = 2

C

1CJC FORMAT( /// 10X, *FUSLAGE AFT-END UPSWEEF CFAC + //

1031 FORMAT( 1X, 2F15.5)

END
```

```
SURPOUTINE CLWBT(SPEED)
                                      COMPUTES WING-BODY-TAIL LIFT CONTRIBUTION
                                  CGMMCN /BUKCLA/ CLAI(11)

COMMON /INPUT/ A(30F1)

COMMON /INPUT/ A(30F1)

COMMON /INPUT/ A(30F1)

COMMON /OLIPUT/ ((50), CLA, LLC, PX(35), CLA, CLAR, CLAT, AA, PR, HST&P,

COMMON /CALC/ POZ, CCR, CLP, SPLAN, XCPTE,

SLPC, SLPC, SLPCT, SLWT, SEYN, CBAP,

TCC, CLD, APXF, CFX, CTX, XPX, XTX,

YFX, YTX, XP, YP, XP, CTX, XPX, XTX,

YFX, YTX, XP, YP, XP, CTX, XPX, XTX,

SLPER, KPASS, AF, TR, YIX, SIX, AFT, CPXF,

SCYF, APGP, CXCC, TH, ST, VINC, XHT, TOCS, CEAFZ, CLCS,

C(7)
C
                                     DIPENSION 800(7,20)
EDUIVALENCE (A(37),800(1,1)), (NHT,A(4)), (NFCCYS,A(1)),
(TECH,A(26)), (SREF,A(11)), (1TP1P,A(22))
Ċ
                                    CLAJ(1) = SPLAN

CLAJ(2) = TGC

CLAJ(3) = TR

CLAJ(4) = AR

CLAJ(5) = 0.0

IF (TECH-GT.G.) CLAJ(5) = 0.0234

CLAJ(6) = CLD

CLAJ(6) = CLD

CLAJ(7) = 0.0

IF (TECH-GT.G.) CLAJ(7) = 0.09

CLAJ(8) = 0.0

IF (TECH-GT.O.) CLAJ(9) = 1.173762 + TCC

CLAJ(10) = SWPMC

CLAJ(11) = SREF
C
                                       CALL AEPRISPEED, CLA)
 C
                                      CLAT = 0.0

AA = C.C

PP = C.0

CC = 0.6

AFRFAK = 90.0

HSTAR = 0.0

CLDH = 0.0
 C
                                        IF( NHT.EC.C ) OD TO 30
 C
                     2C CALL TAIL(SPEED)
30 JF (NHT.EC.O.ANG.JTRIM.FC.C) CALL ELEVEN(SFFED)
                                        CLAS. 0.0
IF (NSCDYS.EO.G) OR TO 50
  C
                                                               = FCD(1,2)
= BCD(1,3)
= FCC(1,7)
= MAX.CROSS-SECTIONAL APPA CF FUSELAGE
                                       HH
AP
                                         BÀ
  C
                                      AB = MAX.CKU23-3101.202.

BL = A(254)

PLN = PCD(1,9)

FERIM = 3.14150+SCPT((\next{\text{PPF}} +2)/2.)

RHPF = \next{\text{B}/\next{\text{PPF}} + \text{\text{FPF}} + \text{\text{CCO1}} + \text{\text{FPF}} + \text{\text{\text{B}}}

AK1 = (.005042 + \text{\text{PPF}} + \text{\text{\text{\text{CLAB}}} + \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex
  C
                     50 CLA . CLAR + CLAT + CLAR
                                        CALL AALC(SPEEC)
CALL ACJUST(3,C, SPEEC, ALC)
   C
                                        RETURN
END
```

```
SUBROUTINE TAIL(SPEED)
                 COMPUTES TAIL FLOW FIELD AND LIFT
                COPMON/INPUT/ #(3001)
COMMON /OUTPLT/ #(223)
CCPMON /CALC/ C(5C)
COMMON /CALC/ C(5C)
COMMON /ELMONTI/ ((1411)
CCPMCN /ELMONTI/ E(908)
CCMMCN /ELMONTI/ KERINT(50)
                 OTMENSION SUR(7,3C), COSUP(7,5), XSEPL(11),YPMIN(11)
DIMENSION XZCC(7),YSC(4),ZEL(7,4), XM(11),YFM(11)
                FQUIVALENCE (SLR(1,1),A(184)), (*CPSUP(1,1),P(154)), (*P,C(29)),
(CL**,B(96)), (*PALS,A(5)), (*IAC,C(39)),
(TP,C(30)), (5*PCC,C(1)), (FC2,C(1)),
(YP,C(30)), (*P+,F(09)), (*P+,F(100)),
(ACP+,P(161)), (CB,A(12)), (SPEF,A(11)),
(YPT,C(40)), (YCFTF,C(5)), ()SPEP(11),C(1)),
(YPT,C(40)), (CL**,P(SE)), (CLG+,F(1C4)),
(DECA,B(95)), (CDAT*,P(122)), (SPLAN,C(4))
                                Y7CC/ 0.C, 0.1, C.2, C.3, U.4, C.6, G.E /,
Y5C / C.C, C.2, U.6, 1.0 /,
2EL / 1.2, C.21, .72C, .57C, .465, .314, .2CC,
1.1, F7E, .664, .541, .440, .3C0, .1C5,
.051, .646, .522, .486, .3C0, .167 /,
XM / 0.C, C.5, L.C, 1.1, 1.2, 1.3, 1.4, 1.6, 1.6, 2.0, 2.2 /,
YFF / 1.C, 1.0, 1.0, .55, .64, .77, .66, .63, .46, .415, .4 /
                 CATA
        ** COWNWASH IS CALCULATED ***
                                   = NPNLS + 1
C
                 APHT = SLP(K,19)
SEXET = SUF(K,14)
SEXET = SUF(K,14)
FILAM = SUF(K,17)
CAMHT = SUF(K,2)
FICC = SUF(K,2)
FILE = SUF(K,11)
FIT = SUF(K,12)
        10 7KA = 1./AR -1./(]. + AP**1.7)
IF( AR.LT.2.3 ) ZKA = 0.37 - 0.0567 * AR
ZKTR = (10. - 3.0 * TR)/7.C
C
                 PFPA = 0.0

XPAC = XP + G.25 * CB

XLHT = X+T - XPAC

1F( XLHT.LE.C.C ) CO TO 30
                                    = (1.-G.5*HT7/RO2)/(XLFT/RC2)**6.33332
                  SKH
C
        COSO = SQCT(CCS(SWPOC))
20 CFDAD = 4.44 + (7KA * 7KTR * ZKH + CCSQ )**1.19
                  IF( KPRINT(21).EG.O ) CG TO 21
WRITE(6,1CC) CLAW, DECAC, CDATM, HTZ, XHT, XB,
HTLF,CE,ZMA,2KTF,ZKH,CCSC
        21 CCNTINUE,
CALL AFR'2(0.1: CLAPO)
CEDA * CEDAC +CLAPOCLAPO
         ** DYNAMIC PRESSURE AT THE TAIL ***
                 CDG # 0.C

PCCQ # 0.G

IF (NPNLS.FO.G) GC TD 50
   30
```

```
C
           CDO
                    - CDATH
           JE( XOC.LE.U.U ) (0 TO 50
                     # C. C. + SCPT(CDO + (XCC + 0.15))
# 2.42 + SCRT(CDO)/(XDC + 0.3)
  C
                    = ATAN(HT7/(YPC+CP))
= 7.0
= CLAb+ AW
= C.51566 + CL/AR
= XGC + TAN(GAMMA + FW - AW/57.3)
= ZCC/ZWCC
           GAMMA
           2024
2024
  C
           IF( ZGZh.GE.1.0 ) GO TO 50
  C
           COCO
                     * GCBQ0 * (CDS(1.570796* 2021))**2
      50 000
                    * 1.0 - CCC
      ** CARRY-OVER FACTORS ZKWB AND ZKBW ARE COMPUTED ***
      60 TOBHT . 2.0 + HTY/(2.0 + HTY + SCRT(APHT + SEXPT) )
  C
                    # 1.002P +.7116*DCBFT +.42*DPHT**2 -.1366*CDPHT**3
# .C004 +1.2662*CDCHT +.6G13*DCPHT**2 +.1263*CDPHT**3
          SKER
      ** LIFT-CLRVE-SLOPE OF THE FXPOSED SURFACE IS COMPUTED ***
         CLAI(1)
CLAI(2)
CLAI(3)
CLAI(4)
CLAI(5)
CLAI(6)
                      SEXHT
HTDC
HTLAM
ARHT
                       # CAMHT
 C
         CLAI(7) = 0.0
CLAI(8) = 0.0
CLAI(9) = 0.0
CLAI(10) = SWMCHT
     70 CALL AFRZ(SPEED, CLA)
CLAT = CLA + (7KWP + 7KBW) + (1. - DFDA) + QQQ
CLDH = CLA + ZKWP + CQQ
     ** INDUCED DEAG FACTOR FOR TAIL IS COMPUTED ***
         C.
    SC HTKI
                   = (1.-PTAIL) + 0.01745 /(CLA + 7KkP)
= FTAIL + C.31631/ARHT + SREF/SEYHT
= PIK1 + HTK2
C
        AH = HIK + CLDH + CLTH
PH = 2. + HTK + CLAT + CLDH
AGH = (1.-GEDA) + (WINC - TINC)
C
         IF (XLHT.GF.0.0) ON TO 90
        CANAPO INTERFERENCE FACTOR ON WING (EL) IS COMPUTED
        ZOC = APS(HYZ/CP)
SCOSW = SEXHT/SPLAN
C
        ELS PLNTITOC, CCOSV, XZCC, YSC, ZEL, 7,4,7, 4,2)
C
        EL = ELS + FM
IF (EL.GT.1.C) EL + 1.0
```

```
C CLAW = CLAW - EL + CLAT

C GO CONTINUE

IF( KPRINT(21), FC.1 ) WPITE(6, 1000) CLAT, SFEED, CLA, ZKWE, CORHT,

ZKEW, NECA, COO, CLDH, AM, PM, ACM, CECAD,

RTSUE, RTAIL, HTK1, HTK2, HTK

C RETURN
1000 FGRMAT(10x, *TAIL LIFT DUMP* /(1x, 7F15.5))
END
```

```
SUBROLTINE FLEVON(SPEED)
              COMPUTES AERODYNAMIC EFFECT OF ELEVONS FOR TAILLESS AIRCRAFT
            CGMMGN /INPUT/ A(3081)
COMMGN /CALC/ C(50)
COMMGN /GLTPUT/ P(23)
CGMMGN /GLKPAT/ KPPINT(50)
CGMMCN /FLKDATF/ SPAN(6), YTFP(4), FKR(6,4),
SPAN3(6), YTFP7(4), FKR(6,4),
SPAN3(6), YTFP7(4), FKR(6,4),
SPAN3(6), YBFI2(7), FKR(6,4),
SPAN5(5), YBFI2(7), FKR(6,5),
SPAN5(5), YBFI2(7), FKR(5,5)
C
              DIMENSION XCF(5), YTOC(7), IDCML(5,7)
             EQUIVALENCE (CF, A(17G)), (PFI,A(171)), (PFF,A(172)), (AR,C(2G)), (SWPMC,C(7)), (CLP1E,C(2G)), (TPK,C(2G)), (SWPCC,C(6)), (FMCFC,P(114)), (TPC,C(12)), (AKC,P(69)), (XCP,R(7C))
C
                      XCF / 0.05, 0.15, 0.25, 0.35, 0.4 /,
YICC / 0.02, 0.06, 0.09, 0.12, 0.15, 0.16, 0.21 /,
ZCCML / -.51, -.39, -.266, -.641, -.220, -.470, -.366, -.266,
-.326, -.326, -.271, -.233, -.226, -.353, -.305, -.262,
-.321, -.22, -.32., -.284, -.253, -.229, -.22,
-.301, -.272, -.247, -.227, -.22
C
              xmc2 = SPEFD * CCS(SWPMC)
1F (SPEED.GT.FMCPE) xMc2 = FMCRC * CCS(SWPMC)
BETA = SCRT(1.-x*C2**2)
C
              CF
CID
                         = ACCS(1.-2.*(F)
= 2.*(CF +SIM(OF)) /57.3
              \Gamma LDC = AP/(2.+ SCRT(4.+(1.-)MC2*+2)*(AR/CE^(5*PPC); +2.))
C
              ZKĄI
ZKĄŪ

    DLNT(BFI, TPR, SPAN, YTPR, FKF,
    DLNT(BFO, TPR, SPAN, YTPR, FKF,
    ZKBG - ZKPI

C
                              * SCFT(1. - (1.-CF)**1.61)
* 1. + 1.875 * (1.-ASC)**2 /AR
              CLDE IS THE FLAP LIFT EFFECTIVENESS PEP DEG. ELEVEN
CLDE = 0.77 + CJD + CLDC + 74C + 7KR
SWPHL = ATAN(TAN(SWPLE) - 4./AR + (1.-TPP)/(1.+TPF) + (1.-CF) )
C
              7KDI = DLNT(EFI, TPR, SPAN, YTPR, FKC, ZKCC = PLNT(PFC, TPR, SPAN, YTPR, FKC, 7KD = ZKCC - 7KDI FRCFILE DRAG TERM AKDP
ç
              *KDP
                          * 1./RETA *C.GO168 * CF**2.322 *CDS(S\PHL) *ZKD
C
                              = AP/6.283
C
              ZKA = CLNT(E, PFT, SPAN4, YBF11, FKA, 5, 5, 5, 4, 2 )
ZKF = DLNT(D, PFI, SPAN5, YRF12, FKF, 5, 3, 5, 2, 2 )
              INDUCED DRAG TERM AKDI
AKC1 = ZKA +7KF +0.31831 +CLCE++2/AR
C
                            = AKDP + AKGI
              AKC
C
              CCLP = 0.7208/(CLPC + 7KB)
C
              7KSVI = CLNT(9FI, TPP, SPAN2, YTPP2, FKSW, 11, 5, 11, 2, 2)
7KSWC = CLNT(8FC, TPP, SPAN2, YTPR2, FKSW, 11, 5, 11, 2, 2)
7KSW = 7KSWC - 7KSWI
              7KMC = OLNI (REC, TPP, SPAN3, YTPR3, FKM, 6, 4, 6, 2, 2)
7KMI = OLNI (RFI, TPR, SPAN3, YTPR3, FKM, 6, 4, 6, 2, 2)
2KM = ZKMC - ZKMI
```

```
SUBROUTINE AALD(SPEFD)
                CALCULATES ZEFO LIFT ANGLE OF ATTACK
                COPPLY NETREST KENTINE (208)
COMMON NETROALS (208)
COMMON NETROALS (208)
COMMON NETROALS (208)
COMMON NETROALS (208)
C
                EOUIVALENCE (TWIST, C(29)),
(CC0, C(2)),
(CL0, C(13)),
(AL0, F(60)),
(C3, 3(99)),
                                                                                                                             (PINC, 4(275)),
(C) PCC, C(6)),
(C(4, 9(56)),
(C2, F(97)),
(PHT, A(4))
                                                                                         (\psi NC,C(39)),
(TCC,C(12)),
(TAF,C(30)),
(C1,R(36)),
(NPNLS,A(3)),
                ALCC = C.G
ALCT = C.O
ALCI = C.O
CLAB = C.O
TAU = C.O
ZKPL = C.C
ZKPL = C.C
ZKPL = C.C
                ALDC
ALCT
ALCI
CLAS
                 ZKE
ZKWE
TINC
                                     A(275 +NPMLS )
C
                 XMCR
XMNG
TGCG
                                * C.75
* SPEED * COS(SWPOC)
* TCC/CCS(SVPOC)
 C
                IF( TCCC.LT.G.1 ) XMCF = 0.75 + 1.25 * (C.1 - TCCC)
CALCOC # 5.6
IF( YMNG.GT.XMCR ) PALCCC = 5.6 - 249.6 * (YMNG - YMCF)**2
IF( DALCOC.LT.0.6 ) DALODC = 0.0
C
                                   * - DALDEC + CLP
                 ALCC
     230 IF( Thist.eq.G.O ) GO TO 360

IF( SPEED.ET.1.C ) GO TO 360

TAU = Thist

PFIA = SCRT(1.0 - SPEED**2)

ShPCCB = 90.0

IF (BETA.GT.C.G) ShPCCP = ATAN(TAN(ShPCC)/PFIA) * 57.29576

TAUC = 0.093 - C.G03571*SWPCCB + U.5761*TAP -U.2645*TAP**?

ALOT = GALC * TAU
300
                JF( WJNC.EC.O.O.ANC.TJNC.EC.O.O.) GC TC 4CO
7KPW = .0CO4 +1.2662*CDR +.6016*PCP**2 +.1263*BCR**3
ZKWR = 1.0026 +.7116*CCE +.42 *CCF**2 -.1366*PCB**3
CLAP = C3 + 7KPK/(ZKRW + 2KWR) * C1
ALCI = (CLAB * WINC +C2 *(WINC -TINC))/(LA
+(PINC -WINC)
      400 ALQ

IF( KPRINT(13).GT.) WRITE(6,1000) ALC. ALDO, ALCT,

ALDI, SPEED, TOO, CLD, TAL, SUPGER, CCB,

Z TAP, C1, C2, C3, CLAB, ZKBL, ZKLP, WINC,

TINC, PINC
   RFTLRN
END
```

```
SUBROUTINE CLBPK (SPFED, RE, RNOFT)
                                                       CALCULATES LIFT BREAK CL AND CLMAX
                                                   COMMON /INPUT/ A(2061)
COMMON /CUTPLT/ B(223)
COMMON /CALC/ ((50)
COMMON /FLKPAT/ KPPINT(50)
COMMON /FLKPAT/ KPPINT(50)
COMMON /PLKDATI/YCLPL(11), YFMIN(11), CCC(72), CCC(72), CCC(72), FTY4C2(716), XPC4(5), YFC4(5), TPET(6), FXAC1(716), FY4C2(716), XPC4(5), YFC4(5), TPET(6), FXAC1(716), FY4C2(716), XPC4(5), YFC4(4), TPET(6), FPC4(5,5,2), XCMC4(4), YFC4(4), TPET(6), FPC61(4,4,6), FPC61(4,4,6), FPC61(4), YFC4(4), TPET(6), FPC61(4,4,6), YFC4(4), TPET(6), FPC61(4,4,6), YFC4(4), TPET(6), TPTT(6), TTTT(6), T
                                                        COMMON /BLKDAT2/XTP(6), YC1(6), YC7(6), X5VF1(4), YA(4),
YP(4), XFY(6), YM(4), TAP(6,4), CTAP(6,4),
XYCLM(12), YY(Y(6), FCLMY(12,6), XYC2(G),
YYMACH(6), FCCLMY(9,5), XFY1(G), YXMT(4),
7C1MAX(6,4), XDY2(P), YFCC(6), ZC(1M(8,6),
ZCCC1M(6,6),
XCP(6), YCYA(6), FCA(8,6), YAR(6), YCC(A),
FRVCFM(6,P), XANG(1C), YFTCC(7), FFA(10,7),
XC2(6),YCST(6),FCAM(6,C),YCT(6),YM(5),FDAM2(6,5),
XYYCLM(G), FCLMXX(9,6),
XY(12), XY(7), XF(12,7)
C
  ¢
                                                             CIMENSION XF1(7), YF1(7), YF2(7)
                                                          EQUIVALENCE (ALC,P(60)), (CLA,B(E9)), (TCC,C(1?)), (CLD,C(13)), (CP,C(11)), (CLD,C(11)), (CLC,P,P(112)), (CP,C(11)), (CLP,P(112)), (CLP,P(112)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (CLD,C(13)),
(CP,C(11)),
(CF, C(111)),
(TS,A(184)),
(CCNCL,A(27))
    C
                                                              NJ = TS
CALL LNTP(TR, C1, YTP, YC1, 6,4)
C1COS = ((1+1.) + CCS(SWPLE)
ARUP = 4./C1CCS
ARUC = 3./C1COS
                                                             TF (SPEED.GF.1.0) GD TD 20
CYO = APAP(NT) * TGC
1F( DYO.LT.C.F ) CYC = 0 °
IF( DYC.GT-2)
    C
       C
                                                               AGRKO = DLNT(DYO, XMAG, XCYC, YXMA, ZIPDE, 6,6, 6, 4,2)
AGRK = (APRXC + (12.05-4.1*XMA)*CLIN ) * CCS(SAPCC)
APRKLC = 2./CCS(SAPLE)
IF(AFFK.LT.ABCKLC ) ARPK = AGRKLC
CLPBG = CLA * APRK
       C
        C
                                                                 DCLPB = C.C

FPB = 1.54

IF( XMN.GT.(.5 ) FPB = 1.54 - 2.5 * (XMN - 0.5)

IF( CCNCL.GT.U.O ) CCLPB = FFB * ((CCNCL + .0643)*CCS(SWPCC))**?
         C
                                                                                                                                        # CLF80 + CCLPR
                                                                    CLPB
```

```
DCLDRE = 0.1226 -. CC714+SPEEC -.12P57+SPFFD++2
Ĉ
             IF( NI.LE.9 ) DY = AMAP(NI)*TGC +RMAP(NI)*CLD
IF( NI.GI.9 ) DY = AMAP(NI)*TGC +1.75*CLC
 C
             TFANS = 0.0

IF( CY.GT.1.65 ) TRANS = (CY - 1.65)/.4

IF( DY.GE.Z.C5 ) TRANS = 1.0

IF( SHPLE.GF.0.67 ) TRANS = 0.0

CLOP = CLPB + TPANS *(-.0376 -.24414*
+.4149*SPEED**3 + RE *
          ıċĺòp
                                                                              -.24414+SFEFD -.06P5+SPEEC++2
 C
             GC TO 36
cso
            CLDB = 1.0

RETAC = 10.0

IF (SWPLE.NE.0.0) RETAC = SCRT(SPEED**7 -1.)/ABS(TAN(SWPLE))

IF (SWPLE.GT.1.0) CC TC 25

CLSP1 = 0.65

CLSP9 = 0.95

IF( SWPLE.GT.0.7243 ) CALL LNTP(SWPLE, CLSP), Y1, Y1, 6, 4)

IF( SWPLE.GT.0.3665 ) CALL LNTP(SWPLE, CLSP9, XG, YC, F, 4)

CALL LNTP(AG, CCLSF, XAR, YDCL, 5, 4)

CLSB9 = CLSB9 + CCLAR

CLSB9 = CLSB9 + CCLAR

CLSB = CLSB + G.5 + CCC

CLSB = CLSB + G.5 + CCC
  25
             SUPERSONIC MAXIMUM LIFT COEFFICIENT ****
CNAC4B = CLAW * 14.325 * SCRT(SPEED*SPEED -1.)
 Ċ
 C
             CM = 1./SPEFC
CLMAX = 0.7722 + 0.3384 * DM :1.1646 * CM*CM -0.8215 * GM**3
 C
             CM1 = 1. - CNAC48
IF(CM1.LT.C.J ) CM1 = 0.0
                           * CLMAX - C.048 * CM1
                            - 60.5429 -177.2327 * CM +461.6204 *CM+0M
-629.4522 * CM++3 +321.4001 * CM++4
 C
                            * #MAX +15.8C74 -3.00U1*CNAG48 -12.8C73*CNAC48**Z
             IF( CLMAX.GT.1.25 ) CLMAY = 1.25
IF( AMAX.GT.54.5 ) AMAX = 54.5
       GO TO 300
30 CONTINUE
 C
             CLMAX = C.C

RY = AMAP(NI) + TRC

CALL LNTP(TR, C2, XT9, YC2, 6, 4)
             CIMAXB = DLNT(NY, XMT, XNY1, YXMT, ZCIMAX, 9, 4, 9, 2,2)
 C
             FOC = 1CG.*FOC

CC1MAX = DLAT(DY, FDC, XCY2, YFCC, ZOC1M, 6, 6, 6, 2,2)

IF( XMT.GE.U.25 ) CC1MAX = DLAT(CY,FCC,XCY2,YFCC,Z2OC1M,P,6,F,2,2)
 C
             RNCB = ALOGIC(RMOFT + CB)
CALL LNIP(RNCF, F), XF1, YF1, 7, 2)
CALL LNIP(RNCF, F2, XF1, YF2, 7, 2)
DC1RN = F1 + F2 + DY
 C
              CIMAX = CIMAXB + DCIMAX + DCIRN
 C
              SWEEP = SWPLE * 57.2956
```

```
CALL LNTP(SWEEP, AY, XSNP1, YA, 4,4)
CALL LNTP(SWEEF, FY, XSNP1, YB, 4,4)
 100
C
          DYM14 = DY - 1.4

IF( DYM14.LT.C.G) DYM14 = 0.0

IF( DY.GT.2.5 ) DYM14 = 1.1
C
          CLMGC1 = AY -PY + CYM14
CLMAX = CLMCC1 + C1MAX
C
                       = DLNT(DY, SPEEC, XDY, XM, CTAF, F,4,F,2,2)
= DLNT(CY, SFFED, XDY, XM, CTAF, F, 4, F, 2,2)
C
          DCLMAX = C3 + (D-C3)* SWEEP/60.
CLMAX + FCLMAX
C
          DAMAX = DINT(SWEFP, DY, XSP, YDYA, FDA, E,6,6,2,2)
AMAX = CLMAX/CLAW +6LD +CAMAX
CLS = CLA + (ANAX - Z.*CAMAX - ALC)
 120
          CLS = C
CCC
          LOW ASPECT RATIO METHOD
   200 CONTINUE
C
         ABETA = AR/SCRT(1. - SPEEC * SPEED)

XCLM = AFETA * CICOS

IF ( XMT.LE.G.25.OR.XCLM.GE.2.0 ) CLMXP = FLNT(XCLM, FY, XXCLM,

1

IF ( XMT.GT.U.35.AND.XCLM.LT.2.C ) CLMXR = FLNT(XCLM, FY, XXXCLM,

YYDY, FCLMXX, 9, 6, 0, 2,2)
C
          C2TAN = (C2 + 1.) * AF * TAN(SWPLE)
DCLMX = DLNT(C2TAN, SPEED, XXC2, YYMACH, FPCLMX, 5, 5, 5, 2,2)
C
          C
           XAYA
                       447 + 9X444 =
C
    200 CONTINUE
TAIL CONTRIPUTION TO CLMAX
           IF( KPRINT(16).E0.1 ) PRITE(6, 1000) SLEP, CLCF, APEKC, ASEK,

XMN, CYC, -CCIPS, THANC, RETAC, CY, C1, C2, AMAX, APUP,

2 ARLT, XMT, C1MAYR, CC1MAX, CLMCC1, CCLMAX, DEL,

XCLM, CLMYR, C2TAN, CCLMX, CLMX, CLMAX, RNCB

1000 FORMAT(16X, *CLBRK CUPP* /(1x, 7F15.5))
           RETURN
END
```

```
SUPFRUTINE COLLISPEED, RNOFT, FK, DELCL, PRIMEK, AKD, AKE)
                                    COMPUTES OPAG DUE TO LIFT CONSTANTS
                                   COMMON/INPUT/ A(2081)
COMMON/INPUT/ A(2081)
COMMON /CLIPLT/ B(223)
COMMON /CLIPLT/ B(223)
COMMON /PLKCATI/ C(1411)
COMMON /BLKDATZ/ E(908)
COMMON /BLKPRT/ KPPINT(50)
C
                                    DIMENSION COLLV(13), COUFV(12), XRN(0), YOPT1(C), YOPT2(C)
DIMENSION XSYPL(11), YRM1N(11), AA(22), FF(22), CC(22), CP(22),
XSWE(7), YTP(4), FEP35(7.4), FFF7(7.4), XCLDB(7),YKKP(7)
                               Ş
                                                                        , SUF (7, 20)
C
                                   EQUIVALENCE (\(\gamma(1), \qquad \qquad \qquad \qquad \qqqqq\), \(\gamma(1)), \(\gamma(1)), \qquad \qqqqqq\), \(\gamma(1)), \qquad \qqqqq\), \(\qqqqqqq\), \(\qqqqqqq\), \(\qqqqqqq\), \(\qqqqqq\), \(\qqqqqqq\), \(\qqqqqqq\), \(\qqqqqqq\), \(\qqqqqqq\), \(\qqqqqqq\), \(\qqqqqqq\), \(\qqqqqq\), \(\qqqqqq\), \(\qqqqqq\), \(\qqqqqq\), \(\qqqqqq\), \(\qqqqqq\), \(\qqqqq\), \(\qqqqq\), \(\qqqqq\), \(\qqqqq\), \(\qqqqq\), \(\qqqqq\), \(\qqqqq\), \(\qqqq\), \(\qqq\), \(\qqqq\), \(\qqq\), \(\qqqq\), \(\qqq\), \(\qq\
Ç
                                   SREF = A(11)

SPLAN = C(4)

CB = C(11)

CLM = B(5G) *57.2957P * SFFF/SPLAN

RC2X = C(1) - C(1)*C(2)

FKL1 = 0.0

DCL1 = 0.0

FKL2 = 0.0

DCL2 = 0.0

CLM0 = CLM

CLM0 = CLM

CLM2 = B(119) *57.2957F * SRFF/SPLAN

RRAR = 0.0
C
                                    CLCP = E(106)
CALL LNTP(CLDB, AKB, XCLCB, YAKE, 7, 2)
FAKB = 1.24 -.04 +.RNCFT + (6 + 1.CF-6)
IF( FAKB.LT.1.G ) FAKP = 1.0
AKB = FAKB + AKB + SPEF/SPLAN
C
                                                                             = -].41 +1.442*TP -1.26*TR**2 +.526*TF**3
= 0.7125 -1.497*TR +1.476*TP**2 -.6909*TR**3
= 1.6 + BX* DCB + CX* DCP**2
C
                                  FMACH = SPFED

FMCPT = 8(114)

FML1 = 8(115)

FML2 = P(116)

IF (FMACH.GT.FMCPC) FMACH = FFCRC

IF (SPEED.GE.FMCPD.AMD.SPEED.LT.FML2) CLMC = 8(118) *

1F (SPEED.GT.1.0) CALL AMOL (SPFED, CLCPT)

IF (SPEED.GT.1.0) CALL AMOL (SPFED, CLCPT)

IF (SPEED.LT.FML2) CALL AMOL (SPFED, CLCPT)
C
                                     DO 1CC I = 1, KPNLS
 C
                                    NI = SUP(I,1)
TC = SUP(I,3)
RLECC = #4(NI) +EP(NI) +TC +CC(NI) +TC +TC + DD(NI) +TC 4+3
JF (NI.EQ.#) PLECC = RLER +(TC/TQCR) ++1.5
```

```
RLE = FLEDC + CUF(1,20)

TF( IS+P-FC.C.C?-I.NE.APNLS ) GO TC GO
RLECC = AA(NI) + FP(NI) + TDCS + CC(NI) + TDCS + 2 + CC(NI) + TCCS + 43

TC = TCCS
IF (NI.FC.8) RLFCC = RLFF + (TC/TOCF) + +1.5
RLE = FLECC + CPAR2
C
      90 CONTINUE
C
            RNLER = RLE + PNCFT/10.C++3
COTANS = 5. -6.511 + 5LF(7,4)
IF (SUR(1,4).GT.0.35) CCTANS = 1./T/N(SUF(1,4))
GMEGA = RNLER + CCTANS + 5CFT(1.-(FMACH+ CCS(SUR(1,4)))++2)
C
            C
            CALL LNTP(FRLEP, CFT1, YFR, YCPT1, C, 2)
CALL LNTP(FRLER, CPT2, XFR, YCFT2, S, 2)
IF( TC.GI.C.O3 ) CFT = CFT1 * (TC - C.C3)/C.C3
IF( TC.GT.G.G6 ) CFT = CFT1 + CFT2 * (TC - C.O6)/C.C6
FT = FT + CFT
C
             RI
                          RT +(0.824 -RT) *(CLD + CGNCL)/C.6
C
             IF(RI.GT.0.874) RI = 0.874
            100 CONTINUE
                          = AR * TR/CDS(SWPLF)
= 0.0482*AT -0.01107*AT**2 +C.G01107*AT**3
-0.06004833*AT**4
          ÚĖLR
1
i
                           = PRAR + OFLR
C
                           = ((1.-9)/CLMG +F/(3.14159*AF*EC)) * SREF/SPLAN
             FF = 1./(3.14159 *AR *FK) * SREF/SPLAN

DFLCL = (LGPT *(1.-EF)

PRIMEK = C.518/SCPT(AR)
            SWPC4 = SWPPC * 57.2557P

IF( SWPC4.GT.fG.O) SWFC4 = 60.0

EP35 = DLN1(SWPC4, TP, XSWP, YTP, CEP35, 7, 4, 7, 2,2)

EP7 = DLN1(SWPC4, TP, XSWP, YTR, FFF7, 7, 4, 7, 2,2)

IF( AR.LE.3.5) EP = 1. - (1.-EP35) * AP/3.5

IF( AP.GT.2.5) EP = EP35 + (EP7 - EP35) * (AR-3.5)/2.5
C
                           = FP * (1.-70R**2)
= 1./(3.14159 * AF * EPP) * SFEF/SPLAN
             IF( $PFED.LE.FM12 ) GO TO 2GO

7MCM = 12. * (CC5($PPLF)**1.6) * ($PEED-FFCPO)

FNOW = 1./(1. + ZNDM + 7NOM**2)

R = RO * FNOW

FK = ((1.-R)/CLM + R/(3.14159*/F*FC)) * $RFF/$PLAN

CELCL = CLCPT
             60 TO 500
    200 CALL KGIN(CLDB, FK, DELCL, SPFFD, FKL1, CCL1)
IF( SPFED.LE.FMI1 ) GD TD 500
DRAG PCLAP IS CALCULATED BY LINEAR INTERFOLATION RETWEEN THE
LIMITS FML1 AND FML2.
```

```
C POLAR AXIS DISPLACEMENT

CCMMON/INPUT/ A(30A1)

CCMMON /CLIPLT/ R(273)

CCMMON /CLIPLT/ R(273)

CCMMON /BLKDATI/ C(1411)

CCMMON /BLKDATI/ E(40A)

CCMMON /BLKDATI/ E(40A)

SREF = A(11)

FOC = C(76)

CLC = C(13)

SWPLE = C(13)

TFCH = A(26)

C | CLCPT = C.O | CLCPT = -.GC1 +16.934+FCC --216.2697+FCC++2

1F( CDNCL.6T.0.0 ) CLCPT = CLCPT +17.135/62+FCC++2

1F( CDNCL.6T.0.0) CLCPT = CLCPT -.60.17 +1.1224+CCNCL

1F (TFCH.6T.C.) CLCPT = 0.51951 + CLCP+0.75

C | O RETAT = 10.

IF (SWPLE.GO.0.) FETAT = SCRT(SPEED++2 -1.)/TAN(SWPLE)

IF (BETAT.6E.2.11 ) DELCL = G.O

C | CLCPT = CELCL | CLCPT + SPLAN/SREF

PETURN | ENC.
```

```
SUPPOUTINE REINICIOR, AKIN, DECLIN, SPEEC, AKCUT, OCLCUTI
       COMPUTES POLAR USING LEAST-SQUARES CURVE FIT
       COMMON /PLKPRT/ KPPINT(50)
DIMENSION CL(11), CCL(11), SA(12), RE(11)
C
      DCL = CLDB/16.6
CL(1) = 6.0
C
       DO 20 I = 1, 11
IF( I.NE.1) CL(I) = CL(I-1) + DCL
CLX = CL(I)
C
       CALL CODF(CLX, SPEED, COR)
C
       IF( I.EO.1 ) CDRC = CDR
DCCR = CDR - CORB
C
   40 CDL(I) = AKIN + (CL(I) - DECLIN)**2 + CCTR
20 CONTINUE
       CALL ESPERICE, COL, 11, 2, SA, RE, SIGMA, IT)
C
      AKCUT = $A(1)
DCLGUT = -$A(2)/(2.0 + AKGUT )
EPR = $A(3) - AKGUT + CCLGUT++2
C
       IF( ABS(ERR).LT.O.OO1.CP.KPRINT(14).EC.O ) CC TO 30
30 RETURN
```

```
SURROUTING COLZISPEED, CL, AFROK, DELCL, FRIMEK, AKD, AKP, COL)
CCC
           COMPUTES DRAG DUE TO LIFT
           COMMUNINPUT/ #(30F1)
COMMUNINPUT/ #(30F1)
COMMUNINPUT/ #(30F1)
COMMUNINPUT/ #(30F1)
COMMUNINPUT/ #(30F1)
C
           CLPB = P(105)
CLCR = F(106)
     20 CONTINUE COL = AERCK * (CL - CFLCL)**2*
IF( CL.LE.CLPB ) GO TO 500
Ç
           DRAG DUE TO LIFT APOVE POLAR PREAK
CDL = CDL + PRIFEK + (CL - CLPP)**2
TF( CL.LE.CLOB ) GC TO 50C
            DRAG DUE TO LIFT ABOVE DRAG BREAK (CLDE)
           + PRIMEK + (CLDR - CLPF)*+2

+ PRIMEK + (CLDR - CLPF)*+2
C
                         * AKR * (CL - C'DR)**2
* CCCP + 0.08 * SCPT(CCCB)
C
            CDL
                         * COPDS + LCDS + WKD * CF++5
C
    435 IF( SPEED.LT.1.0 ) GO TO 500
410 CONTINUE (AEROK - PRIMEK) *
1 + PRIMEK * (C! - D)
                         * (AEROK - PRIMEK) * (CLPB - DELCL)**2

+ PRIMEK * (CL - DELCL)**2
 500 CONTINUE

IF( KPRINT(14).LC.O ) CO TO 50

ROTTE(6,1CO) SPEID, CL, CCL, LEPOK, DFLCL, FPIMEK, CLPB,

CLOF, LKD, AKP

KPPINT(14) = KPPINT(14) - 1

50 CONTINUE

RETIRN

1000 FORMAT (1CX, +CCL2 DUMP+/(1X, 7F15.5 ) )

END
```

```
SUPPOUTINE APPAISPEED, (1, ALPHA)
                    CALCULATES ANGLE OF ATTACK
                   COMMON/INFUT/ A (30#1)
CCMMCN /CALC/ C(50)
COMMON /CALC/ C(50)
COMMON /FLKCAT?/ F(90F)
CCMMCN /PLKCAT?/ F(90F)
C
                   DIMENSICA CLTAP(1=), ATAP(13), SLP(7,3L)
DIMENSICA YAB(6), YCT(R), FRVCFP(6,P), AAA(11C), YRTCC(7), FF4(1C,7),
XX(12), YY(7), XF(12,7), XIA13(1C), YIN13(7), 7CUT)=(1C,7),
POLITIA(1G,7)
EQUIVALENCE (CLA,P(=9)), (ALC,P(+0)), (CLAW,P(=6)),
(CLA,P(=9)), (CLAW,F(107)), (AAAA,P(1109)),
(CLAWAX,R(110)), (CFL,F(1111)), (CLS,P(112)),
(ISWP,A(6)),
(ISWP,A(6)),
(ISWP,A(6)),
(SUF(1),1),A(1P4)),(YIX,C(31)), (YCX,C(44)),
(SUF(1),1),A(1P4)),(YIX,C(31)), (YCX,C(44)),
(SUF(1),1),A(1P4)),(YIX,C(31)), (YCX,C(44)),
(SUF(1),C(25)), (SWPR,C(27)), (F(C,P(113))), (SREF,A(11)),
(SEXE,C(1C)), (SWPR,C(27)), (CTI,P(4P))
 C
                     C
                    IF = $\[ \text{(1,1)} \]
$\forall F \text{CLV} = \forall F \text{(1,1)} \]
          10 ALPHA = CL/CLA + /LO

IF( SPEED-GT-1.G ) FFTURN

IF (NPNLS-EC-1) GC TO 15

IF (SUP(1,4)-LE-0.7) GC TO 15

SWC = SUR(2,4) + 0.067

IF (ISAP-FO-1) SWC = SUPE + 0.087

IF (SUP(1,4)-LE-SVO) GC TO 15

GC TO 250

CONTINUE
c<sup>15</sup>
                      CONTINUE
                     IF ( AR.LE.ARLO ) GO TO 100
            20 CONTINUE
  C
                  IF( KPRT.GT.O ) WRITE(6,1000) CL, ALPHA, AP, ARLE, CLMAX, CLS, DAMAX, CLA, ALC
  C
                      IF( CL.LF.CLS ) GC TO 200
                      HIGH ASPECT RATIC LIFT METHOD
           CA = C.C

PCL = C(MAX - C1.5

DA = ((CL - CL5)/DCL)**2 * CAMAX

30 ALPHA = ALPHA + D.

IF ( CL-E-CLMAX ) GF TC 200

ALPHA = ALPHA + 5.0

IF ( ALPHA - GT - 90.0 ) .ALPHA = 90.0
  C
                     CO TO 200
CONTINUE
LOW ASPECT
        100
                                                           RATIO LIFT METHOD
                                                                                                                                 ****
                                            # 0.6

# 2. + CCS(SVPMC) / AF

# (AMAX - AS)/114.6 /AP # 1.5 + (TF +TF##7)/(1.+TR+TP#+7)

# 1.JÚ14 - 1.069*HFR +3.6021*HFF8**2 -2.6072*HCP**3

# (7 + SCPT(1.+ 2**2))/(XEP*7 + SCFT(1. +(YFP*7)**2))

# (DCLEP -1.) * CLAW * 57.3

# CLA * 57.3

# - CLA * ALC
                      XE b
FC b
                      DCLPA
CLPA
CLPA
CLPA
```

```
CLVM1 = CLMAX - CLPA + SIN(AMAY/57.3) + CDS(AMAY/57.3)++2 -DCLO

CLVM2 = CLVM1 - CCLPA + SIN(AMAX/57.3) + CCS(AMAY/57.3)++2

IF( CLVM1.LE.U.O ) DAMAX = AMAX - CLMAY/CLA - ALG

IF( CLVM1.LE.U.O ) CLS = CLA + (AMAX - 2.*DAMAX - ALC)

IF( CLVM1.LE.U.O ) GD TG 20
 C
                             CLVA
TOCR
APETA
IF (SW
                                         VA = 0.0
CR = 0.0
ETA = C.0
(ShPLE.Ec.0.0) GD TD 112
                              CO = TAN(SWFTE)/TAN(SWPLE)

RETA = SCPT(1. - SPEED**2)

IF (CC.NE.1.0) ABETA = 4./TAN(SWPLE) /(1.-CC) *RETA

TOCR = TOC

IF ( ID.EC.9 ) TOCR = G.O
          c<sup>112</sup>
                              CONTINUE
                             ATAP(1)= G.O

DO 12G I = 1, 13

IF( I.CT.1 ) ATAB(I) = ATAP(I-1) + 2.G

ANG = ATAB(I)+ 0.01745

DCLP = G.O

IF( ATAP(I).LE.AS ) GG TO 115
                              TIP VORTEX EFFECT
                              HOB = (ATAR(I) -AS)/114.6 /AR +1.5 *(TR+TF+TP)/(1.+TR+TR+TR)
XFP = 1.0014 -1.969*HOR +3.0021*PGR**2 -2.0072*HOB**3

IF( MCB. | E.O.O.) XFP = 1.0

DCLEP = (Z +SCRT(1.+Z*Z))/(XEP*Z + SCRT(1.+ (XEP*Z)**2))

DCLEP = (CLEP -1.) + CLAW + 57.3

DCLP = CCLEA * SIN(ANG)
          IF( MCB. 12.0.0 ) / (1.+2.+2))/(XEP+7 + SCRT(1.+ (XEP+2)++c.),

DCLEP = (2 + SCRT(1.+2.+2))/(XEP+7 + SCRT(1.+2.+2),

DCLEP = (2 + SCRT(1.+2.+2.+2))/(XEP+7 + SCRT(1.+2.+2),

DCLEP = (2 + SCRT(1.+2.+2))/(XEP+7 + SCRT(1.+2.+2),

DCLEP = (2 +
 C
  ć
                              VOPTEX BREAKDOWN EFFECT (FVL)
                              EV) = 0.0
IF( X.LT.3.37 ) FVL = CLNT(X,ANG, XX, XY, XF, 12, 7, 12, 4,2)
                               EVI
                              CLV = (1.-RA) + FVL + CLVA + SIN(ANG)4+2 + CGS(ANG)

IF( CLV.GT.CLV~?) CLV = CLVM?

CLP = CLPA + SIN(ANG) + CGS(ANG)++2

CLTAB(I) = DCLD + CLV + CLP + DCLP

IF( KPPINT(17).FO.?-AND.ILEC.1) WRITF(*,1GC?)

IF( KPRINT(17).FO.?-) FWITF(6,1001) CLTAF(I), ATAB(I), RA,

CLP. CLV, DCLP
           120 CONTINUE
   C
                              IF( KPRT.GT.OU ) WFITE(6,1CC3) CL, ALPHA, AR, ARLC, 7, HCP, DCLPA, CLVA, CLVA, CLVA, RA, FVL,
   C
            125 IF( CLVM1.LE.O.O ) GO TC 2C
130 C/LL INTP(CL, AIPH4, CLTAB, ATAR, 13, 4)
                               00 TO 200
                              CALCULATES ANGLE OF ATTACK AT HIGH LIFT BY MCDIFIED WINSTAN METHOD.
          290 CONTINUE

300 RFTA = SCRT(1. ~ SPFFC**2)

CETAN = FFTA *TAN(S(R(1,4))

AA = DINT(RFTAN, SNEEP, YIN13, YUN13, ZUUT12. 1(,7,10,2,2)

EN = DINT(BFTAN, SAFEP, YIN13, YIN13, ZUUT14, 1(,7,10,...,2,2)
```

```
C COMPUTE DRAG INCREMENT DUE TO FUSELAGE LPSWEEP

COMPON/INPUT/ A(30F1)
COMPON/INPUT/ A(
```

```
SUBROUTINE CHOW(SPEED, CMO)
            COMPUTES ZERO LIFT PITCHING MOMENT OF WING
           CCMMON/INPUT/ A(3081)
CCMMON /CLTPLT/ B(223)
CCMMON /CLTPLT/ B(223)
CCMMON /CLTPLT/ C(1411)
CCMMON /BLKDATI/ C(1411)
CCMMON /BLKDATI/ E(908)
C
           DIMFNSION CMC4(20), CAM(2), SEX(2), X8C4(5), Y8C4(5), ZRC4(3),

EQUIVALENCE (FMC2, H(114)), (TS, A(114)), (AFYF, C(14)),

(TCC, C(12)), (TWIST, C(3E)), (SEXH, C(1C)),

(CAM(1), A(19)), (SEX(1), A(32)),

(NPM(1), A(3)), (SEX(1), A(32)), (CTX, C(16)),

(NPM(1), A(3)), (SEX(1), A(32)), (CTX, C(16)),

(NPM(1), D(589)), (Y8C4(1), C(594)), (ZRC4(1), D(599)),

(FRC4(1), 1, 1), [(6C2))

DATA CRC4 / 4+-C.25, 3+-C.219, -0.3, 0.0, 11+-C.2C66 /
            IC = TS
CMCS = 0.0
C
    DC 1GC I = 1, NPNLS
CMCS = CFOS + CAM(I)* SEX(I) * CMC4(ID)
100 CENTINGE
            CMC = C.O
IF( SPEED.GE.1. ) PETURN
                         = CMOS/SFXV
            CMOS
C
            CMOB # AFXR * COS(SWPGC)**2/(ARXR +2.*CCS(SWPGC)) * GMOS
C
            TRY = CTX/CRX
FShoc = Swpoc
CALL TLM1(ESVCC,APXP,TFX, CMCCT, XPD4,YR04,7F04,FPC4, 5,5,3, 5,5)
CFCT = CMGCT * TWIST
C
            FMACH = SPEED
IF( FMACH OT FMCR ) FMACH = FMCR
CMACH = (1. + 5.0+TC+FMACH+*5)/SCRT(1.-(FMACH+CC5(ESWCC))+*?)
C
                          = (CMBP + CMBT) + CMACH
            1000 FORMAT(5X, *CMOW CUMP*/(1X,7F15.5) )
            RETURN
END
```

```
SUBROUTINE WBAC(SPEED, XACE)
             COMPUTES FITCHING MOMENT SLOPE OF WING
            CCMMCN /INPLT/ A(2081)
CCMMON /GUTPUT/ R(223)
CCMMON /RLKPPT/ KFFINT(50)
CCMMCN /RLKPPT/ KFFINT(50)

TOC, CLD, ARXF, CFX, CTX, XLF, YLX,
YFX, YTX, XP, YP, XH, GMFGA, SVPLF, FCC,
SLPP, KPASS, AP,
TR, YIX, ARIJONARI, CBXP,
YCX, SWPMCS, DAI, NACI, DAZ, FACZ, FTGC
C
             DIFENSION XDB(R), YDOB(R), XRDGL(5), YAGN(6), FCP(5,6)
PIFENSION SUP(7.30)
EQUIVALENCE (SUP(1,1),4(184)), (NPNLS,4(3)), (XACS,P(130))
,(ISVP,4(6)), (NBRCYS,4(1))
C
           DATA XDR / 0., .05, .1, .15, .2, .3, .4, .5 /, 1 YCCR / G., .1, .154, .19, .219, .266, .3, .33 /
            DATA XRDPL / G.4, .7, 1.C, 1.25, 1.67 /,

YACN / U., .4, .6, 1.2, 1.6, 2.C /,

FCP / .54, .535, .525, .516, .5, .42, .435, .45, .46, .46,

35, .277, .4, .414, .425, .255, .355, .375, .394,

.246, .285, .32, .345, .365, .71, .25, .266, .315, .34 /
           -24

TR1 = CTX/CRY
TW = A(164)
FMCPO = P(114)
ELN = A(93)
CLAB = (114)
             ELN = A(93)

CLAN = B(97)

CLAN = B(97)

CLAN = SUR(1,4)

SWPLED = SUR(2,4)

SWPLED = SUR(2,2)

SWPMCC = SUR(2,22)
             IF(NPNLS.GT.1) /R1 = API
IF (NPNLS.GT.1) TF1 = SUR(1,9)/CRX
IF (ISWF.FQ.0) GO TO 20
SWPLFC = SWPR
SWPMCG = SWPMCS
       20 CALL ACCR(SPFFD, AP1, SWPLEI, SWPMCI, TP1, SIY, TCC, TW, FMCRG, YACR, CLAI, YACSW)
              XACRX = XACP
IF( NPNLS.EG.1 ) CO TO 100
             CRANKED WING PLANFORMS
             TR2
                          = CTX/CEXP
           CALL ACCR(SPEED, AROP, SUPLED, SEPMCG, TP2, SCXP, TCC, TW, FMCPD, XACRF, CLACP, XACSOP)
 C
             YACRO = XACRP + CBYP/CRX - YIX+0.5+T4M(SWPLED)/CRX
+ YIX + TAM(SWPLET)/CRX
YACSO = XACSOP + CBYP/CRX +YACRC - YACRF4CPYP/CFX
 Ç
                             = (CLAI + SIX + XACFX + CLACP + SCXP + XACRC )/
(CLAI + SIX + CLACF + SCXP)
              XACSW = (CLAI * SIX * YACEX + CLAGP * SCXP * XACSC )/
(CLAI * SIX + CLACE * SOXE)
XACWB = XACB
     100 XACWR
              WING-PORY COMPINATION
              XLE IS THE X-STA. OF L.F. OF INPOARD EXPOSED WING FOOT
                             * DOR * 802 * 2.
              DIA
```

```
IF( SPEED.GE.1.2 ) GO TO 200
SUBSONIC CALCULATION OF XACN (NOSE) AND XACPW (WINC CARRY-OVER)
XIEC = PLN + 1.6 *(XIE - PLN)
XACN = -0.54 * YLEG/CRX
C
Ĉ
         RARE = LRXR + SCRT(1.-FMCRC++2)

IF( SPEED.LT.FMCPC ) RAPE = ARXR + SCRT(1.-SPEED++2)

CALL LNTF(TCP, FOCR, XCP, YCDP, P,4)

XACBW = 0.25 + DXOC + FOGB/CPX
          IF( BAPE.GE.4. ) GC TO 190
X4CBWO = C.125 + ARXF + TAN(SWPLET) + (1.+CTX/CRX)
C
   XACPW = (XACBWU - XACBW) * (PARE -4.)**2/16. + XACBW
19C XACBW1 = XACBW
XACN1 = XACN
C
          IF( SPEED.LE.FMCRC ) GO TO 290
          SUPERSONIC CALCULATION OF MACN A MACRW
RFTA = 0.663225
         RFTA = 0.663225

XACN = 0.

XACN = 0.

XACBW = 0.

IF (NBCDYS.EC.0) OD TO 290

IF (SPEED.GT.1.2 ) RETA = SCRT(SPEED**2 -1.)
   200
C
          ACK = (XLE - BLN)/BLN
IF( AGN.LT.G. ) ACK = 0.
BDCL = BETA +DIA /RLN
Ç
          FIGURE 4.2.7.1-234 DATCOM
XCPCL = DLNT(ADOL, AON, XBDGL, YAON, FCF, 5,6,5, 2,7)
XACN = XLF/CRX + (XCPCL -1.)
C
          ć
          FIGURE 4.3.2.1-37A DATCOM *******
XACEW = 0.5 + A1*PCCC -.1057*FCOC**2 +.C172*PDGC**3
IF( SPEED.GE.1.2 ) FC TC 290
C
          XACN = XACR1 + (XACR -XACR1) *(SPEED-FMCRC)/(1.2-FMCRC)
XACBW = XACBW1+ (XACBW-XACEW1)*(SPEED-FMCRC)/(1.2-FMCRC)
c 250
          CONTINUE
FK &W =
FK & F
CLAFW =
                     ČLAVA
                      * (XACh * CLA6 + XACWR * CLAF + XACP * CLARW)/
   300 XACE
C
                      = (YACN + CLAR + Y2734 + TLALR + X1734 + CLARR) / (WACH + CLARR)
C
          IF( KPPINT(1P).EO.G ) OF TO 400 
WPITE(6,1UGO) XACF, XACN,CLAP, XACHE.CLAWR, XACBW,CLABW, XACS, SPEFC, XLEO, FOOP
    400 RETURN
  1000 FORWAT (5x, * WBAC DUMP+ /(5x, 6F15.5) )
```

```
SURROUTINE ACCR( SPEED, AR, SWPLE, SWPMC, TR, SPLAM, TEC, TW, FMCRO, XACR, CLAX, XACS)
                          COMPUTES AEROCYNAMIC CENTER OF SINGLE PANEL WINGS
                          YACR IS THE A.C. PEFERENCED TO L.E. OF EYP. POLANFORM XACS IS THE A.C. AT STALL
                                                                                                                                                                                                                            FOOT CHORD
                          CCMMON/INPUT/ A(20A1)
COMMON /CLIPLT/ B(223)
CCMMON /CLLC/ C(50)
CCMMON /ALKCATI/ ((1411)
COMMON /ALKCATI/ F(508)
COMMON /ALKCLA/ X(11)
COMMON /ALKCLA/ X(11)
COMMON /ALKCLA/ X(11)
C
                          DIMENSION YPY(6), YAC(6), YVAL(3), VAL(3)
DIMENSION POT(12), ATSW(6), TORT(6), FYAC(12,6,6),
$90.(4), YPO.6(4), ZRO.6(6), FRC.61(4,4,6), FRC.63(4,4,6), AMAP(22)
C
                           FQUTVALENCE (RFT(1), \(\text{1:2}\)), \(\text{ATSW(1), \(\text{0:145}\)), \(\text{TPFT(1), \(\text{0:151}\)), \(\text{1:25}\)), \(\text{1:25}\)
C
                           4710
4743
                                                     XVAL / 0.0, 0.2, 0.5 /
YDY / .?, .4, .6, .8, 1.2, 1.6 /,
YAC / .67, .585, .55, .555, .59, .61 /
¢
                           NI
CY
ARLC
                                                          * TW
* AMAP(NI) * TCC
* 8(113)
C
                            $6

If ( $PEED.EC.1.0 ) GD TO 20

IF ( $PEED.GT.1.0 ) GD TO 16
 C
                           TANGE = TAN(SWPLE)/SCRT(1.-SPEED**?)
Ir( TANGE.LE.1.0 ) SP = TANCE
Ir( TANGE.GT.1.0 ) SP = 2. - 1./TANGE
GO TO 20
C
              1G TANGB = TAN(SYPLE)/SCRT(SPEED**2 -1.)
IF( TANGB.LE.1. ) SE = 4.-TANGP
IF( TANGB.GT.1. ) SP = 2.+1./TANGB
              20 AFTSW = AR + TAN(SWPLE)
 C
                            CALL TENT(SE, ARTSW, TR, XAC1, POT, ATSW, TPPT, FYAC, 12,6,6, 12,6)
             C
                             CALL AER7(SPEEC, CLAX)
 C
                                                            = XAC1
= (SPEFC**2 -1.)/TCC*+C.6667
= &R + TCC**0.3333
  C
```

```
CVERLAY (4,0)
PROGRAM NUCTAM
                                                               CALCULATES NUCLEAR DAMAGE AERODYNAMIC EFFECTS
                                                         CALCULATES NUCLEAR DAMAGE AEFGDYNAMIC EFFECTS

COMMON /INPUT/ A(3001)

COMMON /INPUT/ F(223)

COMMON /CALC/ C(50)

COMMON /CALC/ C(50)

COMMON /PLKFFT/ KPRINT(50)

COMMON /ELKDAT3/XFACH3(17), SYM(7,17), DCDr IN,

COMMON /ELKDAT3/XFACH3(17), COMMON /ELKDAT3/XFACH3(17), SYM(7,17), DCDr IN,

COMMON /ELKDAT3/XFACH3(17), COMMON /ELKDAT3/XFAC
C
                                                             NSUR = NPNLS + NHT + NVT
                                                                                                                                                                                                                                                                                                                                                                          CCMK3(17),
HCX3(5),
CLC3(4),
CPF3(13),
CPF3(13),
HCX4(7),
LMACH(10),
VMACH(6),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CCC3(6,5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CCC4(12,7),
DkAG2(8,16),
DP/G4(6,6)
                                          PAMAGE TO ATRCRAFT

STATEMENT OF THE PAMAGE TO ATRCRAFT

PAMAGE TO
                                                                                                                                        DETERMINE OF PAMAGE TO ATROPART IS SYMMETRICAL
 C
                                                                 REWIND 10
 C
                                                      CO 500 J =1, NSURV

XMACH = FASURV(J)

IF (KPRINT(ZE).EC.1)

1NRITE(E,50G0) XMACH
                                                               READ (10) CL, CD, CM, ALP, CLT, CDT READ (10) R
```

```
C
                      FNGFT = 8(148)
                 ********* PCCE 1

************ DRAG DUE TO ROUGNESS ON BCCIES **********************
            10 IF (IDAM(1).NF.1) GO TO 20
                     COF = CF + FOR(1,4) / SPEF

CALCULATE DRAC CF DAMACED BODIES

CALCULAT
           11 00 12
 Ç
                      CALCULATE FORM FACTOR (FF) FROM SURVEY DRAG RESULTS FR = (CC+OD(1,1) +CC+OD(1,2))/CC+OD(1,1)
 C
                      DAMCD(I.1)
                                                                    * (CCF-CDI) *CFOn(I,5) *FF
                      IF (DECC(1,5).GT.1.0) CAMCC(1,1) = (CDF-CGI) +00CC(1,5)
           20 IF (IDAY(2).Nt.1) GO TO 30

CALL LATP (XMACH, CPF, YMACH3, CPF3, 13, 4)

COLUMN = 1, NPCDS

SUMO = 0.0

IF (PRCD(1,11).E0.0.0) GC TO 22

1: (PSC(1,11).E0.1.0) DXCL = 0.0

IF (DGCC(1,11).CT.1.0) DXCL = (PSCC(1,15)-0.1)
                                                                                                       OC TC 22

DXCL = U.O

DXCL = (DECO(I,15)-CECO(I,14))

/(DECC(I,11)- 1.0)

CCCFSTFEAK FOR ALL STEPS
                  C
 C
          XOL = CROD(I,14) + DXCL + (K-1)
XI = XGL * FOF(I,1)
FFIGHT = DBCD(I,13)
CALL EFFC(ENFFT, XI, XMACH, HEIGHT, CEFF)
SUMC + OFFF
IF (KPRINT(28).EC.1)
1%FITt(6,5(21) J,1,K, XI, OEFF, CPF, SUMC
21 CGNTINGE
           30 IF (IDAY(3).NE.1) FO TC 40
C
                     IF (DBDP(Ĭ,Ž1).FO.C.O) (C TO 32
IF (DFC([1,21).FO.1.C) DXCL = 0.0
IF (DFC([1,21).FO.1.C) DXCL = (CRC([1,2*) - DRCC([1,24)))

10 31 SUMS OFFF / OFFREESTREAM FOR ALL STEPS

10 31 K = 1, N
C
```

```
40 IF (IDAY(4).NE.1) GD TC 50
 r
       C
       DO 42 SUMS COO FOR ALL HOLES, BASED ON COPPECT X-STA., FORY(I)

N = OPOC(1,31)

OC 42 K = 1, N
 C
       XOL
             = DRCD(1,36) +(K-1) + DYCL

= XGL + POP(1,1)

= DRCC(1,31) / XF

= DRCD(1,33) / DFOC(1,25)
       HOX
       ХІСН
 C
       IF (0800(1,36).FQ.2) GC TO 41
      CALCULATIONS FOR MISSING PANELS

JF (MCX.GT.0.1) MCX = 0.1

JF (XLCH.GT.10.0) XLCH = 10.0

BCOO = DLNT(XLCH, HCX, XLCH3, HCX3, CPC3, 6, 5, 6, 2, 2)

GC TO 43
Ç
   CALCULATIONS FOR CAVED-IN PARELS

IF ('GCX.GT.C.GIE) HGX = 0.GIE

IF (XLCH.GT.12C.G) XLCH = 12G.G

CCGG = OLNT(XLCH. HGX, YLCH4, HGY4, CCG4, 12, 7, 12, 2, 2)
   C
   56 IF (IDAP(5).NE.1) CG TC 60
C
     CO 58 1: 1, NPOCS

IF (CACD(1,21).EO.C.O) GO TO 58

IF (XMACH.CE.1.O) GO TO 53
                SUESPNIC
     CUMCD = C.0
IF (ORGD(1,41).E0.0.0) CO TO
                                     511
```

```
= 0.0
= (CECP(),47)-DEGD(I,46))
/ (DEGC(I,41)-1.0)
                             IF (CECD(1,41).F0.1.0)
IF (DECD(1,41).GT.1.0)
                                                                   SUPFRSONTC
             53 CONTINUE

DRAG = (9.P7/50FT()**LCP**2 -1.0)) * (DECC(1,45)/CPCD(1,43))

1 * DPCD(1,41) *(DECD(1,45)*DECD(1,44)) / SPEE

AMPLIFY DRAG OF WAVES OVER LING BY 2.31

CRAC = CAAG + DRAG *(DPCD(1,42)/CRCD(1,41)) * 1.31

DAMCD(1,5) = DRAG

IF (VPRINT(2E).EQ.1)

15CITE(6,5053) J, I, DAMCD(1,K)

58 CONTINUE
C
60 IF (IDAM(6).NE.1) GO TO 70
C
                             CO 63 I = 1, NPCOS

SUPCO := 0.0

IF (GFCC(I,51).F0.0.0)

IF (DEGO(I,51).E0.1.0)

IF (DBCD(I,51).GT.1.0)
                                                                                                                                                Gn To 62

DXCL = 0.0

DXCL = (DRCC(I,5f)-CPCD(I,54))

/ (DBCC(I,51) - 1.0)
                             TOC = [RCC(1,53)

HEIGHT = [RCC(1,51)

N = [RCC(1,51)

OD 61 K = 1, N

YCL = [RCC(1,51)

YCL = [RCC(1,51)

YCL = [RCC(1,51)

YCL = [RCC(1,52)

YCL = [RCC(1,
C
              CALL EFFO(RNOFT, XI, XMACH, HEIGHT, CEFF)

DRAG = CEFF * DOO / SPEF

SUMCD = SUMCD + CRAG

IF (KPRINT(2E).EO.1)

1VPITE(6,5061) J, I, K, XI, QEFF, DRAG, SUMCD
61 CONTINUE
62 DAYCD(I,6) = SUMCD
63 CCNTINUE
70 IF (IDAM(7).ME.1) GO TO 110
 C
                             C
 C
```

```
CALCULATE DPAG FOR FLATTING NOSE OF SPHERE DRAG2 = DLNT(DFDC(I,62),XPACH,XL(D,VPACH,DFAG4:6,6,6,2,2) CD2 = DRAG2 + DPDD(I,61) / SPEF
C
C
                     DAMCD(I,7) = CC1 + CD2

IF (KPRINI(20).EO.])

14R1TE(6,5C71) J,I,RMAX, PNGSE, DRAC1, CRAG2,

CD1, CD2, DAMCD(I,7)
                         CONTINUE
C
C.
C
                          GCD # (CDF- CDI) * DSUR(1,5) / SUR(1,7)
IF (DSUR(1,5) * LE-1.) CCC # (CCF-CDI) * CSUR(1,5)
      MAGNIFY DAAG IF DAMAGE IS ON UPPER SURFACE
IF (DSUP(1,6).FC.C.C) GC TO 112
TOC = SUR(1,3)
XM = 1.+3.+TOC
CCD = CCD * XM

112 OAMCD(1,11) = DCD
IF (MPPINT(22).EC.1)
URITF(6,5111) J, I, CF, CD1, CDF, CCD, XM, CAMCD(1,11)
113 CONTINUE
120 IF (IDAM(12).NE.1) GC TO 130

CALL LNTP (XPACH, CPF, YMACH3, CPF3, 12, 4)

DS 125 I = 1, NSUR

SLMCDH = G.0

SLMCDH = G.C

CO = 4.C/ SUP([,19)* (1. -SUR([,17))/ (1. + SUP([,17)))

CALCULATE CRAC FCR STEPS CN LCW-VELCCITY SURFACES

IF (CSUR([,11).FO.0.0) GC TO 122

IF (OSUR([,11).FC.1.0) DXCC = (OSUR([,16)-CSUR([,15))/ (OSUP([,11]-CSUR([,15))/ (OSUP([,11]-CSUR([,15])/ (OSUP([,15])/ (O
 C
     N = CSUR(1,12)

CD 123 K = 1, N

XCC = DSUP(1,15) + DYDC + (K-1)

TF (N.EC.1) XCC = PSUE(1,15) + DXCC

HEIGHT = DSUR(1,14)

CALL EFFO(PNCFT, XI, XMACH, HEIGHT, CEFF)
```

```
TSLP = TAN(SUR(1,4))

SLPXOC = ATAN(TSLP -CC + XOC)

CLO = SUP(1,2)

XM = DLXT(YOC, CLT, XTC3, CLD2, XM3, 6, 4, 6, 2, 2)

CPAG = CPF+(COS(SLPXCC))++3 + QEFF + XM +

DSUR(1,13) + CSUR(1,14) / SPEF

15 (KPRINT(28)-EC-1)

123 CONTINLE

124 DANCO(1,12) = SUMCDL + SUMCOH
 C ********** DRAG DUE TO AFT-FACING STEPS ON SURFACES **********
          130 IF (JCAM(12).NE.1) GG TO 140
CALL LNTP (XMACH), CPA, ZMACH3, CPA3, 12, 4)
CC 135 I = 1, NSUR
SUMCOL = G.0
                             SUPCOF = 0.6
CO = 4.0/SUR(I,19) + (1. -SUP(I,17))/ (1. + SUP(I,17))
                            CALCULATE CFAG DUE TG STEPS ON LCL-VELCCITY SURFACES

IF (DSUF(1,21).F0.0.C) GÜ TO 132

IF (DSUF(1,21).F0.1.U) PXCC = (DSUF(1,26) - PSUF(1,25)) /2.

IF (DSUP(1,21).GT.1.U) DXCC = (DSUF(1,26)-DSUF(1,25))

/ (DSUP(1,21)-1.0)
       | Color | Colo
IF (IDAM(14). NF.1) GO TO 150 CO 149 I = 1, NSUP
                                                          LOW VELCCITY SURFACES
                           CDOL
                           IF (DSUF(1,31).E0.0.0) GD TD 142
```

```
IF (DSUR(1,31).EO.X.O) DXCC * (DRUP(1,27) -DSUR(1,36)) /2.

IF (DSUR(1,31).(T.1.O) DXCC *(CSUR(1,27)-DSUR(1,36))

CO 141 SUMS COD FOR ALL HOLES GN LCW VELCCITY SURFACE

CSUP(1,31)

CC 141 K = 1, N
C
                       = OSUR(1,2f) # (K-1) + DXCC
= >CC + SUR(1,20)
= CSUR(1,3f) / X
= OSUR(!,32) / CSUR(1,35)
           ¥СХ
C
           IF (DSUR(I,38).E0.2.0) GO TO 145
           CALCULATE DCDD FOR MISSING PANELS

IF (HCX.GT.O.1) HCX = 0.1

IF (XLCH.GT.10.0) XLCH = 10.0

DCCD = CLNT(XLOH, HGX, XLCH2, HCX2, CDC3, 6, 5, 6, 2, 2)
           CCCC 10 146
           CALCULATE DCDC FOR CAVED-IN PANELS
IF (HCX.6T.6.615) HCX = C.615
IF (XLCH.6T.126.0) XLCH = 120.0
CGDC = GLNT (XLCH, HCX, XLCH4, HCX4, CCC4, 12,7,12,2,2)
   146 COCL

    COOL + OCDQ

   IF (KFRINT(28).FC.1)
140 ITE(6,5141) J, J, K, X, FOX, XLOH, GCPC, COOL
141 CONTINUE
  HIGH VFLOCITY SURFACE

142 (CCH = 0.0

IF (DSUR(I,32).F0.0.0) GO TO 144

IF (DSUR(I,32).F0.1.0) FXGC = (DSUR(I,37).-DSUR(I,36)) /2.

IF (DSUR(I,32).CT.1.) DYEC=(CSUP(I,37).-DSUR(I,36))

CO 143 SUMS CDC FGP ALL HOLES ON MICH VELCCITY SURFACE

N = CSUR(I,37)

CO 143 K = 1, N

XGC = CSUR(I,36) + (K-1) + CXGC

X = XCC + SUR(I,20)

HCX = (SUR(I,35) / X

XLOH = DSUP(I,33) / PSUR(I,35)
C
           CCCO 10 148
   CALCULATE DRAG FROM COO FOR LCW AND HIGH VELOCITY SUPFACES
           CONTINUE CALL LNTP (YMACH, COMK, YMACH2, COMK3, 17, 4)
C
           Strcdc = cdcl + cdd+

DRAG = Surcco * cd+k * dsur(1,34)*csur(1,25) / sref

APC = Csur(1,31) + Csur(1,32)

IF (ABC.GT.0.1.ANC.KPFINT(26).EC.1) WPJTE(6,5143) CdMK, surcco, drag

CAMCD(1,14) = CRAG
   149 LONTINUE
C******
                                          MODE 15
                                                                                   *********
```

```
******* CPAG DUE TO WAVES ON SURFACES *****
150 IF (IDAM(15).NE.1)
DO 159 I - 1,NSUR
        GO TO 160
C
  IF (XMACH.GE.1.0) GO TO 1551
 151 CONTINUÉ
CCCC
     SUPERSONIC
 1551
Ç
= CSLR(1,41)
K = 1, N
CO 156
C
```

```
157 DAMCD(I,15) = SUMCOL + SUMCOH
159 CONTINUE
16G IF (IDAM(16).NF.1) GO TO 170
                         CC 163 I = 1, NSLR

SLMCG = 0.6

IF (0SUP(1,51).FC.G.O)

IF (0SUP(1,51).EO.1.6)

IF (0SUF(1,51).ET.1.0)
                                                                                                                           CO TO 162

CXCC = G.O

DXCC = (CSUR(1,55)-[SUR(1,54))

/ (DSUR(1,51) - 1.0)
   DOG = DSUP(I.53)

N = DSUP(I.53)

N = DSUR(I.51)

CC 161 K = 1, N

YOC = (SUR(I.54) + DXCC + (K-1) + FIGHT = (SUR(I.52) + DXCC + (K-1) + FIGHT = 3.0 ( 12.0) + FIGHT = 3.0 ( 12.0) CALL EFFC(RNCFT, XI, XHACH, HEIGHT, CEFF) CRAG = CEFF + CCC / SREF SUMCO + DRAG = CEFF + CCC / SREF SUMCO + DRAG = CEFF + CCC / SREF SUMCO + DRAG = CEFF + CCC / SREF SUMCO + DRAG = CEFF + CCC / SREF SUMCO + DRAG = CEFF + CCC / SREF SUMCO + DRAG = CEFF + CCC / SREF SUMCO + DRAG = CEFF + CCC / SREF SUMCO + DRAG = CEFF + CCC / SREF SUMCO = 
C CALCULATE MINIMUM DRAG DUF TO MISSING LEACING EDGE

C CALCULATE MINIMUM DRAG DUF TO MISSING LEACING EDGE

C CALCULATE MINIMUM DRAG DUF TO MISSING LEACING EDGE
        170 IF (IPAM(17).NE.1) GC TC 210 CRAGLE = 0.C CPAGTE = 0.6 DRGTIP = 0.0
 C
                     NG(4) * DELB * CRAP / SREF
CPAGLE = 2. * DRAGLE
 2000
                          CALCULATE MINIMUM DRAG DUE TO MISSING TRAILING EDGE
c 171
                         CONTINUE
                         CHAPL = LENGTH CF CHORD WITH MISSING T.F. PANEL
CHARL = (1.-CWING(7)) * CBAR
IF (IDAM(11).FC.1) PCHK = CSUR(1,2)
IF. (DSUR(1,2).E0.(.0) RCHK = RCUCHK
JF (JCAM(11).NE.1) PCHK = FCUCHK
CALL CFK3 (LH.CTH, PA/FT, XCL)1, XCL)2, K1, K2, K3, MACH, CF)
CALL CFK3 (CHARL,FNCFT,0.,0.,FGHK,0.,0.,XMACH, CF)
CALL CFK3 (CPAR,FNCFT,0.,C.,FGHK,0.,0.,XMACH,CF1)
CELB = DWING(C) * ROZ
  C
  C
                      DRAGTE = BASE DRAG + CHANGE IN FRICTION PRAG
                      IF (KPRINT(2F).EO.1)
1kgJTF(6,5172) FNCFT, CHARL, RCHK, CELE, CF, CF1, DRAGTE
                           CALCULATE MINIPUM DRAG DLE TO MISSING TIP
                           CHAPACTERISTIC LENGTH OF MISSING WING TIP
CORK = AVERAGE CHOPD AT POINT WHERE ERFAK CCCLPS
```

```
CFLETA = 0.5 * (PkING(11)+PkING(12))
CPkk = CTY +(CR-CTX) * DELETA
CHGRD = 0.6667 * (CPRK + CTX -CBRK * CTY /(CPRK+CTX))
AWET = (CBRK + CTX) *(DWINC(11)+DhING(12)) * PC2
C
              CALL CFK3 (CHCRT,FNCFT,U,O,RGHK,C,U,)M/CH,Cf)
CRGT1P = - CF * AkfT / SREF
C
            TF (KPRINT(20).EQ.1)
1881TE(6,5173) CEPK, CHORD, AVET, CF, DPCTIP
            CAMCD(1,17) = DRACLE + DRACTE + DRGTIP
IF (KPPINT(28).FQ.1)
1*PITE(6,5174) CRACLE, DRAGTE, DRGTIP, DAMCD(1,17)
               MINIMUM DRAG DUE TO MISSING SURFACE PAFTS
               SUM COMPONENTS OF MINIMUM CRAC FOR EACH SURFACE DC 175 I= 1, NSUR CROSUR(I) = 0.0 CT 174 N = 1, 4 CDSUP(I,N)
     174 CONTINUÉ
175 CONTINUE
             CALCULATE DRAG CHANGE DUE TO FISSING SUFFACE PARTS
                                                                   1
2
1HT
7)*
     "HT =
      210 CONTINUE
                               INCREASE DRAG IF DAMAGE IS SYMMETPICAL
      CALL WRITE(J)
CALL NUCCAM2(J)
CALL NTRIM(J)
CALL WRITE2(J)
    500 CENTINUE
                FORMAT STATEMENTS FOR CHECKOUT
   5000 FORMAT (1H1, /, 1CY, *CUMP FROM SUPPELTINE NUCDAY, MACH **,
5011 FORMAT(1GX, *MODE 1, J, I. CDI, CDF, CF(DAMAGED), DAMCD(I, J, 1) =*
5021 FORMAT (5X, *MODE 2, J, I, K, XI, CEFF, CPF, SUMG = *,
313, 4F10.3)
5022 FORMAT (2CX, * PAMCD(I, J, 2) = *, F10.5)
5031 FORMAT (1CX, *MODE 3, J, I, K, XI, GEFF, CPA, SUMO = *,
5032 FORMAT(1CX, *MODE 3, J, I, K, XI, GEFF, CPA, SUMO = *,
5032 FORMAT(1CX, *MODE 3, J, I, K, XI, GEFF, CPA, SUMO = *,
5051 FORMAT(1CX, *MODE 5, FRITRUDEF, SUPECTORIC, J, I, K, YI, GEFF, *,
5053 FORMAT(10X, *MODE 5, FRITRUDEF, SUPERSTRING, J, I, K, YI, GEFF, *,
5054 FORMAT(20X, * J, I, DAMCO(I, J, 5) = *, 213, F10.5)
5054 FORMAT(10X, *MODE 5, INDIFICE, J, I, K, Y, CCT, FRAC, *,
5055 FORMAT(20X, * J, I, CAMCO(I, J, 5) = *, 213, F10.5)
5056 FORMAT(20X, * J, I, CAMCO(I, J, 5) = *, 213, F10.5)
```

```
SUBROUTINE WRITE(J)
                                             W R I TE STATEMENTS
             COMMEN /INPUT/ A(3CF1)
COMMEN /FLKTI/ TITLE(6)
COMMEN /FLKTI/ TITLE(6)
COMMEN /NUCCUT/ [AMCD(7,17), SYM(7,17), CCDMIN,
ALP(21), CL(21), CM(21), CM(21), CLTP(21), CDT

RCL(4(1), DXAC,
CFRLL(21), CCKT(21), X2(2), X4(2)

DIMENSIDE COPCC(1C), CCSUP(1U), CDPCGE(2C),
FMSUP(2O), ALT(2U), CLLC(SU), CLHI(2O), IDAM(2U),
RAMF(7), SKAMF(7)
EQUIVALENCE (A(1), KAT), (A(2), KNAC), (A(3), KPRLS),
(A(4), KAT), (A(4), KVT), (A(4G1), KSUFV),
(A(4)2), KCLAS), (A(4G3), FMS(RV(1)),
(A(5)2), CLHI(1)), (A(1642), JCAM(1)),
(A(5)2), CLHI(1)), (A(1642), JCAM(1)),
(A(3U), FKAME(1)), (A(177), SNAMF(1)),
             J=1, NPGDS)
I=1, NPGDS)
I=1, NPGDS)
I=1, NPGDS)
I=1, NPGDS)
              SUM DRAG CN EACH PCDY PC 10 I = 1, 10 CDBCD(I) = 0.0
       10 CONTINUÉ
      30 CGNTINUE

CD 30 I = 1, NPCDS

SUM = 0.0

SUM + DAMCC(I,K)

CO GOTINUE

CD 30 I = 1, NPCDS
             401
                                                                                                                                            WRITE (6, 2001) DAMCD (1, 17),
        50 CONTINUE
C
              DO 70 I = 1, MSUR
SUM = C.G
CC 60 K = 11, 17
SUM = SUM + DAMCD(I,K)
CONTINUE
COSUR(I) = SUM
```

```
70 CONTINUE PITE(6,1619) (CCSUR(1),
                                                                   I = 1, NSLP)
           SUM DRAG ACCORDING TO MODE OF DAMAGE
  RODIES

RODIES

RODIES

RODIES

SUM = G.O

PO 90 I = 1, hPCPS

SUM + DAMCD(I,K)

GONTINE

COMMODE(K) = SUM

100 CONTINUE
  SURFACES

PC 12C K = 11, 17

SUF = 0.0

PC 110 I = 1 , KSUP

SUF = SUF + DAMCD(I,K)

11C CCKT) KLE

CCMODE(K) = SUM

12G CONTINUE
          CCMCDF(11),
CCMMCDE(12),
CCMCDE(13),
CCMCDE(14),
CLMCCF(15),
CCMCDE(16),
                                                                                     COMBRE(17), COF
SUM TOTAL DAMAGE CRAG ON PODIES AND WINGS
1001 FORMAT (//, 32

1002 FORMAT (//, 55

1004 FORMAT (//, 55

1004 FORMAT ( 55

1005 FORMAT ( 55

1006 FORMAT ( 55

1006 FORMAT ( 55

1007 FORMAT ( 77)

1011 FORMAT ( 77)
```

```
SUPROUTINE CFK3(XL,RNOFT,XCL1,XCL2,PK1,RK2,F3K,7MACH, CFF)
          CALCULATES SKIN FRICTION CCEFF. FOR A PLATE WITH LP TO THREE ZCNES OF FOLGHNESS
        * T+F++2+C.430/(ALGC10(PNL+>+T++).67+F))++2.56
C
        SCFP(X) = T*F**2*G.43C/(ALECIG(RNL*X*T**1.67*F))**2.56
1 -1*F*F*C.478C7/(ALECIG(RNL*X*T**1.67*F))**3.56
C
         RCFP(X,Y) = T/(1.PS +1.62*ALCG10(X/Y))**7.5
-1.7585 *T/(1.65 +1.62*ALCG10(X/Y))**3.5
C
                  = 1./(1.+c.176+ZMACH++2)
= 1.+c.c3916+ZMACH++2+T
C.
                  = 83K
= byolt
          FNL
RK3
C
          CFR = $CF(YL)
IF(RK1.GT.C.O) CFF = CF(YL,PK1)
IF (YCL1.EC.O.C.AND.XCL2.EC.C.O) RETURN
C
         C
C,
                 # ?
= C.F.R
= X.1
= FK3
          ČEY1
          CONTINUE
  100
          8 K
8 K V
X J
                  = 8K5
= 8K1
= XL + XUL1
c 5
          CFX1
         CES
         CFS = SCF(DY)

CFX = CFS

IF(kk.GT.(.0) CFX = CF(DY, PK)

CPS = SCFP(DY)

IF (CFY.NE.CFS) CPS = FCFP(DX, RK)

IF (CPS.EC.O.O) CC TO 200
C
             1 = DX -(DX *(FX - Y1 *(FX1)/DPS

(DX1.LF.C.G) DX1 = 0.5 *DX

= AFS(DX1 -CX)

= G.5001 *XI

(F1.LF.F2) GC TD 20

= DX1
          CO TO 10
°20
         IF( J.EC.? ) (C TC 30

X1 = 0 > +(xGt2 - xGt) ) * Xt

IF (XOL2.GE.1.C) GO TO 25

EK = EK3

RK = EK3
          ČO TO 5
          INCREASED ROUGHNESS FNDS AT TRAILING FOGE
          8K3
Xb
```

in in a signature

SUPPOUTINE EFFO(RNOFT, XI, XMACH, HEIGHT, CFFF)

CALCULATE EFFECTIVE DYNAMIC PRESSURE FATIC

CFFF = 1.0
IF (XI.LE.O.O) PETURN
(PNOFT * XI)***0.2

10 IF (HEIGHT.LE.PLT) CECF= .7778 * (HEIGHT / PLT) ***0.266
IF (HEIGHT.GI.BLT) QEFF= 1.0 - 0.227 *(PLT./ PEIGHT)

RETURN
ENC

```
SUFFOUTINE NUCCAM2(J)
C*********
COMMON /INPUT/ A(3081)
COMMON /INPUT/ P(222)
COMMON /CLIPUT/ P(222)
COMMON /CLIPUT/ P(222)
COMMON /BLKFRT/ KPRINT(50)
COMMON /BLKCLA/ SPLANF, TOCH, TRP, ARP, [MSTR, CLP, DM1, CPMON /BLKCLA/ SPLANF, TOCH, TRP, ARP, [MSTR, CLP, DM1, CPMON /BLKCLA/ SPLANF, TOCH, TRP, ARP, [MSTR, CLP, DM1, CPMON /BLKCLA/ SPLANF, TOCH, TRP, ARP, [MSTR, CLP, DM1, CPMON /BLKCLA/ SPLANF, TOCH, SPY(7,17), CCTVIP, LAP(21), CLP(21), CPMON /BLCCOMMON /BL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     _CMSTR, CLP, DM1,
                                                                                                                                         1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CDTP(21),
C
                                                                                                                                                                        12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ( F ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 ) ( 12 
   Ç
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CLY )
CLY )
CLY )
CLY )
CLY )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (A(3(62), DWING(1))
(F(61), F
(C(6), SWPCC)
                                                                                                                                                                            ECUIVALENCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (C(6) , SWPQC ) , (A(4c1) , NSUPV ) , (C(2) , DCP ) , (C(2) , DCP ) , (C(2) , DCP ) , (C(2s) , SWPLF ) , (A(4c2) , FNSUPV(1) ) , (A(4c2) , FNSUPV(1) ) , (A(4c2) , TAY (1) ) , (C(2s) , CLAT ) , (C(2s) , CLAT ) , (F(4c1) , FNSUPV(1) ) , (FNSUPV(1) ) , (FNSU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CMAC ), CREE ), FF |, NPNLS), CSUR(1,1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.
                                                                                                                                                                 COMMEN /FLKDAT3/XMACH2(17), XLCH2(6), XGC2(6), X
   C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CCMK3(17),
HCX3(5),
CL[2(4),
CPF3(12),
CP42(13),
HCY4(7),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CLC3(6,2)
                                                                                                                                                12345678
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CCC4(12,7),
CRA63(1,10),
DFA64(1,6),
CL12(6,5),
CL12(6,5),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        THE TABLE TO THE T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CLA5(6,5)
CLA5(6,5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (1.4(1.4(6,6)
   C
                                                                                                                                                                     XAC1(66)

XAC2(66)

XAC2(66)

XAC2(66)

YAC2(66)

YAC2(6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      S+QC12(5);
                                                                                                                                                   12345678
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      SHOC1=(5) ,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ZFR (10)
          Ç
                                                                                                                                                                        CUNTINUE C.C CONTINUE COLA # G.C CONTINUE COLA # G.C CONTINUE COLA # G.C COLA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              SVPCC * 57.2958
                                                                  101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.0
= 0.0
                                                                                                                                                                                   DXAC
                                                                                                                                                                                CCLAT(1) = 0.0
CCLAT(2) = 0.0
CCCLA2 = 0.0
```

```
. C.O
                                   = 0.0
= 0.0
                x3(2) = 
x4(1) = 
x4(2) = 
DCLA2(1) 
CCLA2(2) 
CXAC2(2)
                                         CK5(1)
CK5(1)
C
             JF (KPFJNT(29).EQ.1)
1%PJTE(6,1690) FMS(RV(J), ( P(J), I*1,223)
  XXY = 0.0
YYY = 0.0
IF (DWING(3).FO.G.C) CC TC 110
CCLAI = OLNT(DWING(3), AF , DETAI, AFI, CLAI, A,5,6,2,2)
CALL LNIP(DVINC(2), CLAZ, CLAZ, SNPCCZ, CLAZ, 6,5,6,2,2)
YXY = DCLAI + CDCLAZ + DCLAZ
IF (DWING(6).LT.3.) XXX = 0.42 + XXX
IF (DWING(6).FC.G.C) CC TD 120
CCLA4 = DLNI(DWING(5), AF , DETA4, AR4, CL44, 6,5,6,2,2)
CCLA4 = DLNI(DWING(5), AF , DETA4, AR4, CL44, 6,5,6,2,2)
CCLA5 = DLNI(DWING(5), AF , DETA4, AR4, CL44, 6,5,6,2,2)
CALL LNIP(DWING(6), DCLA6, ETAI6, CLA6, 6, 4)
YYY = CCLA4 + DCLA5 + CCLA6
YYY = CCLA4 + DCLA5 + CCLA6
IF (DWING(10).LT.3.) YYY = U.5 + YYY
Ç
     TCLA =
                                            TELTA-CLA-TOTAL
Ç
                CLARLE IS CL-ALPHA PATIC TO ACCOUNT FOR CHOPD OF CUTOUT CLARLE = CLNT(ONING(?), CNING(1), CRC2, CCC(, CLACLA,6,5,6,2,2) CLAFT = CLNT(ONING(2), CNING(7), CFC2, CCCC, CLACLA,6,5,6,2,2) IF (ONING(6), LT.2.) CLAFLE = CLAFLE +(.f. * (1.6-CLA*LE) IF (ONING(10).LT.2.) CLAFTE = CLAPTE +(.f. * (1.6-CLA*LE)
              CLAP = CLA-PFIME, PRINE DENDIES DAMAGED CONFIGUATION
CLAP = (CLA + CCLAX) * CLARLE * CLAFTE
IF (KPRINT(29).EC.1)
IMPITE(6,16.10) FASCOV(1), DCLA1, CDCLA2, CCLA2, DCLA4, CCLA5,

CCLA1 = CLAP - CLA
DLFIME LIFT CURVE INCOMMENT PEQUIROD FOR PCLL TRIM
              P((A(1)) = (C(A+X)X) + C(APLE
RC(A(7)) = (C(A+Y)Y) + C(AFTE
IF (KPF)LT(29).[0.1)
1\(\text{PITE}(6,1620)\) CCLA1
```

```
IF (KPP[N](29).FQ.1)
1VPTE(6,1036) DXAC1
C************ DEFINE INCREMENT IN SPAN EFFICIENCY
C************* FÜR DAMAGEO L.E. AND T.E , DEI
C THIS METHOD NOT COMPLETE, MEANWHILE SET
                                                                                       **********
         THIS METHOR NOT COMPLETE, MEANWHILE SET = C.C IF (DWING(1).GT.O.O.OR.DWING(7).GT.C.C) DE1 = -0.05
CO 141 J=1,2

CCLA2(J) = 0.0

CXAC?(I) = 0.0

CX2(I) = 0.0

CX2(I) = 0.0

CCLAT(T) = 0.0

141 CONTINUE

IF (GWING(II).E0.0.0.AND.CNING(I2).E0.(...) FC TO 145
         L=1 I=1 INDICATE LEFT WING
LET I=2 INDICATE RICHT WING
CO 143 I = 1, 2
CP = 802 * 2.0 * DWING(10+1)
č
              DEFINE VARIABLES RECUIRED TO CALL SUPECUTINE ABER2
W = C(12)
TR = 0.0
         TOCW
DYSTR
CLD
CM1
EPSI.
                  = 0.0

= 0.0

= 0.0

= 0.0

= 0.0

= 0.7

= A(11)

= 2.4 PO?

= PW - CR

= CR - (PWP/BW) + (CR-CTX)

= (CR+CTXP) + PW / 2.0

= (CR+CTXP) + FWP / 2.0

= (CR+CTXP) + FWP / 2.0

= SPLAN + (SPLAN2 - SPLAN1)

= BWP++? / SPLANP

= CTXP / CR
         SYPHC
SHEF
         ខ្ពុជ័ត
         CTXP
SPLAN1
SPLAN2
SPLANP
ARP
```

```
# DOB + PW
# C / FWP
        CCPP # C
SREEP # SREE
                  CALC. INCREMENT IN POTENTIAL LIFT-CUFVE SLOPE
        CLAWP = 0.0
IF (DCBP.LT.1.C) CALL AFF2(XMACH, CLAWP)
POTENT = CLAWF - CLAW
                   CALC. INCREMENT IN VORTEX
                                                             LIFT-CURVE SLOPE
        SCNICM = 1.0 / (SIN(9(.0/57.295 - SPPLE))
VPFK = 1.0 - (>MACH-1.0) / (SENICH-1.0)
IF (>MACH.1E.1.0)
IF (>MACH.1E.1.0)
VCPK = 1.0
CALL LNTP(AR , VCR1 , ZAF , XCLA, 10, 4)
VCRTEX = (VCR2 - VPR1) * VOFK
                   CALC. TOTAL CELTA CLA ON ONE WING
      DCLA2(I) = G.5 *(POTENT + VCPTEX)

JE (KPFINT(29).FG.1.AND.I.EC.1)

IF (KPFINT(29).FG.1.AND.I.EG.2)

IF (KPFINT(29).FG.1)

IF (KPFINT(29).FG.1)

IF (KPFINT(29).FG.1)

INTITE(6,1050) FWP,CIXP,SFLANP,ARP,TRP,(LAMP,CLAM,

SCNICP, VCRK, FOTENT, VCRTEX, COLAZ(I)
ç
        PUFINE LIFT CURVE INCREMENT REQUIRED FOR POLL TRIM RCLA(2+1) = DCLA2(1)
IF (KFFINT(29).FO.1)
1WRITE(6,1G61) CRAF1,CBAR2,FT41,ETA2,YLE1,YLE2,DXAC2(T)
*********
         FOR NOW, ASSUME
FFP # FF + DE2

DY2(I) #(1.0/(2.0+3.14)59))*((CR+CTXP)/(PPP*FFP)-(CF+CTX)/(PP*FF))

DX2(I) # CX2(I) * (SFEF/SPLAN)

DX2(I) # U. + DX2(I)

IF (XPKINT(25).E0.1)

1WRITE(6,)(64) FFP, DX2(I)
```

```
143 CONTINUE
                           ******** DETERMINE FFFECTS OF MISSING HOFIT. TAIL *******
        HCLE AREA = NC. OF PCIES * LENGTH * WIGTH

AFFAUP = DSUR(1,3?) * CSUR(1.23) * CSUF(1,24)

AFFAUC = CSUR(1,31) * CSUR(1,32) * CSUR(1,34)

FLOW AREA = HGLE AREA * PCECSITY FACTOR

FLOW1 = AREAUF * CSUR(1,29)

IF (AREALC.LT.APEAUP) FLOW1 = AREALC * CSUP(1,39)
C
                          200 IF ($YM(1,14).FC.1.C) FLOW1 = 2. * FLCW1
IF ($YM(2,14).FC.1.C) FLOW2 = 2. * FLCW2
FLOWR = FLOW1 + FLOW2
FLOWR = FLOW / ($PL/M/2.)
        CALL LNTF(FLCWF, CLAFAC, FLC1, (LAP1, 5, 4)

CALL LNTP(FLCWF, DEFAC, FLC1, EFF2, 5, 4)

CALL LNTP(FLCWF, DEFAC, FLC1, EFF2, 5, 4)

CALL LNTP(FLCWF, DEFAC, FLC1, FLC1, FLC2, EFF2, 5, 4)

CALL LNTP(FLCWF, CLAFAC, FLC1, 5, 4)

CALL LNTP(FLCWF, CLAFAC, FLC2, 4)

THOUGHT = CLA*CLAFAC, CLAFAC, CEFAC, CCLAPC, DKHCL

CALL LNTP(FLCWF, CLAFAC, FLC2, 4)

TWO TO THE CONTINUE

CALL LNTP(FLCWF, CLAFAC, FLC2, 4)

CALL LNTP(FLCWF, DEFAC, A)

CALL LNTP(FLCWF, DEFAC, FLC2, 4)

CALL LNTP(FLCWF, DEFAC, FLC2, 4)

CALL LNTP(FLCWF, DEFAC, FLC2, 4)

CALL LNTP(FLCWF, DEFAC, A)

CALL LNTP(F
C
                                                                                           SUP EFFECTS ON UNTRIPMED OL, CD, AND CM *******
CAUSED BY DAMAGE
                      PCLA = DCLA]+(CLA?(1)+CCLA?(2)+CCLAT(1)+CCLAT(2)+DCLAHC
DXAC = CYAC1 + CXAC2(1) + CXAC2(2)
DK = CXAC1 + CXAC2(1) + CXAC2(2)
TF (KPRINT(25).F?.1)
1kg1TE(6,1u7u) PCLA, DXAC, DK, (RCLA(I), I = 1,6)
                                       CALCULATE UNTRIMMED LIFT, GRAG, AND MOMENT
                      CLAP = CLA + DCLA

IF (KPRINT(20).EC.1)

1%FITE(6,1095;

1 = 1, NCLAS
 C
                                                                    CLA * (ALP(I) - ALC)
CLAP* (ALP(I) - ALC)
CL(I) + (XCLP - YCL)
                                                        •
                          %CLT = CLA *(ALP(I)-2LC) + (GCLAT(1)+GCLAT(2)) + (ALP(I)-HSTAP)
%CD = XK + XCL+*?
XCDT = XK + XCL+*?
CDTA1L = XCD - XCPT
CALL LATP(CLP(I), CCY, CL, CC, ACLAS, 4)
CDP(I) = CDX + CCDMIA + Dk*CLP(I)**? + CCTAJL
                           CLVNGP = (CLAW+CCLA1+(CLA2(1)+DCLA2(2)+CCLA+O) + (ALP(I)-ALC)

CMW ING = -CLVNGP + CAC

CMTAIL = -(DCLAT(1)+DCLAT(2))+(ALP(I)-HSTAF) + YH/CMAC
```

```
CALL LNIP(CLP(I), CMX, CL, CM, NCLAS, 4)

CMP(I) = CMY + CMXING + (MYAIL

IF (KPPINT(2C)) | FPII)

CONTINUE

COPF(I), CM(I), CMX, CMXING, CMYXIL, CMY, CMP(I))

COPF(I), CM(I), CMXING, CMYXIL, CMY, CMP(I))

CONTINUE

CONTINUE
```

```
SUPPOUTINE HTRIK(J)
CCMMON /INPUT/ A(3CE1)
COMMON /BUTPLT/ F(223)
COMMON /BUTPLT/ F(223)
COMMON /BLKPRIT/ FO)
COMMON /BLKPRIT/ FAMINT(50)
COMMON /BLKPRIT/ FAMINT(
                         123
                            CALCULATE TRIMMED LIFT AND DRAGEOR THE CAMAGED AIRCRAFT
                         C
                                                               = (DWING(2) +0.4 * DWING(3)) * PC2
= (DWING(8) + 0.4 * DVING(9)) * PC2
= SUK(NPNLS+1,12)+ 0.333 * SUF(NPNLS+1,10)
= X5
                              X1
X2
X5
X6
C
                        C
                         ALPHA = ALP(I)

If (TREF.EC.1) ALPHA = ALPHA + WINC

CL1 = CLP(I)

CO1 = CCP(I)

CALL TORE(OCLT, DC(T)

IF (KPR)NT(30).E0.1)

1WPITE(6,1036) ALPHA, CL1, CC1
                                                           CALCULATE DEAG THAT RESULTS FECH TRIMPING CUT ROLLING MOMENTS FECH ASYMMETRIC CAMAGE ON WING L.E. , T.E. , OR TIE
                              ROLLING MOMENT DUE TO CAMAGEC L.E.
PCL1 = FCL4(1) * (*LF(1)-*LC)
CROLL1 = PCL1 * (****1 / (*****2))
IF (DVINC(6).FC.2.0) CPFLL1 = -CPCLL1
IF (DWING(6).EC.3.0) CRCLL1 = 0.0
CCC
                              C
```

```
FOLLING MOMENT PUF TO LEFT WING TIP MISSING

= (CLAW/2.) * (ALP(1)-ALC)

= (CLAW/2.) * (ALF(1)-ALC)

= (CLWING * Y3(1) / (2. *PC2)

= (CLWING+RCL3) * X3(2) / (2. *PC2)

= CPD - CRUND
                              RCL3 = CLWING = CPUND = CRC = CRCLL3 =
                              POLLING MOMENTS DUE TO RIGHT THE MISSING PCL4 = MCLA(4) * (ALP(1)-ALC) CLWING = (CLAW/2.)* (ALP(1)-ALC) CPUND = -CLWING * X4(1) / (2. *FCZ) CRC = -(CLWING+PCL4) * X4(2) / (2. *BCZ) CRCL4 = CRC - CPUND
CCC
                                                                  FOLLING MOMENTS DUE TO LEFT HOPIZ.TAIL AREA MISSING # RCLA(5) * (ALP(I)-HSTAP) # RCL5 * (X5 / (2. *PG2))
                                                                   R(LLING MOMENTS DUE TO RIGHT HORIZ-TAIL AFEA MISSING # RCLA(6) 4 (ALP(I)-HSTAP) # -RCL6 + (75 / (2. *FG2))
                              PCL6 # CROLL6 #
                         THE TOTAL POLLING MOMENT IS DEFINED AS:

CPOLL(1) = CROLLI+CROLL2+CROLL3+CROLL4+CROLL5+CROLL6

IF (KPRINT(2C)-F0-1)

WRITE(6,1640) POLI

CROLLI+CROLL2+CROLL3+CROLL4+CROLL5+CROLL6

CROLLI+CROLL2+CROLL3+CROLL4+CROLL5+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROLL6+CROL
                              DELTA-CL PEQUIRED ON TPIMMING DEVICE IS CLRI * ABS((CRCLL(I) * 2.0 * 6C2) / XPAR )
Ċ
                              PESULTING DRAG
CCFT(I) = CLFT * TAN(ALP(I) / 57.2957)
00000
                                                         CALCULATE TOTAL LIFT AND CRAG FOR THE CANAGED AIRCRAFT INCLUDING PITCH AND ROLL TRIM
                              C(TP(T)) = CLP(T) + PC(T)

COTP(T) = COP(T) + PCOT + CPRT(T)
                         IF (KPR1%1(30).FC.1)
1WRITE(C,1C50) CLP(I), DCLT, CLTP(I),
CDP(I),CCDT, CCRT(I), CCTP(I)
C
         100 CONTINUE
  1050 FORMAT (
PETUPN
                               END
```

```
SUBRCUTINE WRITE2(J)
                                                                                                                                                                                     PRINTS
                                                                                                                                                                                                                                                                                                                                 FINAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                           RESULTS
                                                                              COMMON /INPUT/ A(30P1)
COMMON /FLKTIL/ TITLE(6)
COMMON /FLKTIL/ TITLE(6)
COMMON /FLKPRT/ KPPINT(50)
COMMON /NLCOLT/ CAMCT(7,17), SYM(7,17), DCCMIN,
COMMON /NLCOLT/ CAMCT(7,17), COMMON /NLCOLT/ CAMCTON COMMON /NLCOLT/ CAMCTON COMMON /NLCOLT/ CAMCTON COMMON /NLCOLT/ CAMCTON /NLCOLT/ CAMCT
                    C
                                                                                                                                                                                                                    (A(453) , FMSURV(1).) (A(451) , ASURV ), (A(452) , ITPIM)
                                                                                 ECLIVALENCE
                    C
                                                                      IF (KPRINT(31).EQ.1)
1WPITE(6,3GCO) (ALP(1),
2
                                                                                                                                                                                                                                                                                                                   CL(I), CLP(!), CLT(I), CLTP(I),
CM(I), CMP(I),
CD(I), CCP(I), CDT(I), CCTP(I),
I = 1, NCLAS)
                    Ç
                                                                         IF (KPRINT(31).E0.1)
1WRITE(6,3010)
                                                                               XMACH = FMSUPV(1)

\RITE(6,2CCO) (TITLE(I),

\RITE(6,2C1U) XMACH

\PPITF(6,2C2U)

\RITE(6,3C3O)
                                                                                                                                                                                                                                                                                                                                                                  I = 1, 6)
                                                                                     INTERPOLATE ON DATA FOR VALUES OF DATA AT EVEN CL
                                                                                                                                                                              I = 1, NCLAS
                                                                                   DG 100
CALL LNTP( CL(1), E/LPTP(1), CLPTP(1), CLPTP(1), CLL LNTP( CL(1), EALPT(1), CLPTP(1), CLTPP(1), CLPTP(1), CLTPP(1), CLPTP(1), CLTPP(1), 
                                                                                                                                                                                                                                                                                                                                                                                                                                                           ALP,
ALP,
ALP,
COT,
COT,
COTP,
                                                                                                                                   LNIP( CL(I), FALPT(I)
LNIP( CL(I), E/LPP(I)
LNIF( CL(I), EALPIF(I)
LNIP( CL(I), ECDI(I)
LNIP( CL(I), ECDI(I)
LNIP( CL(I), ECDIP(I)
LNIP( CL(I), FCDP(I)
LNIP( CL(I), FCDP(I))
LNIP( CL(I), FCPOLL(I)
                                                                                                                                                                                                                                                                                                                                                                                                      MCLAS,
MCLAS,
MCLAS,
MCLAS,
MCLAS,
MCLAS,
```

DISTRIBUTION LIST

DEPARTMENT_OF DEFENSE

Assistant to the Secretary of Defense Atomic Energy

ATTN: Executive Assistant

Defense Documentation Center 12 cy ATTN: DD

Defense Nuclear Agency

ATTN: DDST ATTN: SPAS ATTN: STSP

4 cy ATTN: TITL

Field Command
Defense Nuclear Agency
ATTN: FCPR

Livermore Division, Field Command, DNA Lawrence Livermore Laboratory ATTN: FCPRL

Commandant

NATO School (SHAPE)

ATTN: U.S. Documents Officer

Under Secretary of Defense for Rsch. & Engrg. ATTN: Strategic & Space Systems (OS)

DEPARTMENT OF THE ARMY

Harry Diamond Laboratories
ATTN: DELHD-N-NP

ATTN: DELHD-N-P, J. Gwaltney

U.S. Army Ballistic Research Labs.
ATTN: DRXBR-BLE, W. Taylor
ATTN: DRDAR-BLV, J. Meszaros

U.S. Army Materiel Dev. & Readiness Cmd. ATTN: DRCDE-D, L. Flynn

U.S. Army Nuclear & Chemical Agency
ATTN: Library

DEPARTMENT OF THE NAVY

Naval Material Command ATTN: MAT 08T-22

Naval Research Laboratory ATTN: Code 2627

Naval Surface Weapons Center ATTN: K. Caudle

Naval Weapons Evaluation Facility 2 cy ATTN: L. Oliver

Office of Naval Research ATTN: Code 464

Strategic Systems Project Office ATTN: NSP-272

DEPARTMENT OF THE AIR FORCE

Aeronautical Systems Division, AFSC

ATTN: ENFT, R. Bachman 4 cy ATTN: ENFTV, D. Ward 10 cy ATTN: ENFTA, R. Sarver

Air Force Materials Laboratory
ATTN: MBE, G. Schmitt

Air Force Weapons Laboratory

ATTN: SUL

ATTN: DYV, G. Campbell

4 cy ATTN: DYV, A. Sharp

Foreign Technology Division, AFSC ATTN: PDBF, Mr. Spring

Strategic Air Command/XPFS
ATTN: XPFS, B. Stephan

DEPARTMENT OF DEFENSE CONTRACTORS

Aerospace Corporation ATTN: W. Barry

Avco Research & Systems Group

ATTN: J. Patrick ATTN: P. Grady

Boeing Company

ATTN: S. Strack
ATTN: R. Dyrdahl
ATTN: E. York

Boeing Wichita Company ATTN: R. Syring

Calspan Corporation
ATTN: M. Dunn

Effects Technology, Inc. ATTN: R. Parisse ATTN: E. Bick

General Dynamics Corporation Pomona Division

ATTN: R. Wengler

ATTN: R. Schemensky

General Dynamics Corporation Forth Worth Division ATTN: G. Howell

General Electric Co.-TEMPO Center for Advanced Studies ATTN: DASIAC

General Research Corp.
Santa Barbara Division
ATTN: T. Stathacopoulos

Kaman AviDyne

Division of Kaman Sciences Corp.

ATTN: E. Criscione ATTN: N. Hobbs ATTN: R. Ruetenik

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Kaman Sciences Corporation ATTN: D. Sachs

Los Alamos Technical Associates ATTN: P. Hughes

McDonnell Douglas Corporation ATTN: J. McGrew

Prototype Development Associates, Inc.

ATTN: C. Thacker
ATTN: J. McDonald

R&D Associates

ATTN: C. MacDonald ATTN: F. Field ATTN: J. Carpenter

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Rockwell International Corp. ATTN: R. Sparling

Sandia Laboratories ATTN: Doc. Con. for A. Lieber

Science Applications, Inc ATTN: D. Hove

SRI International ATTN: G. Abrahamson