Answers/Solutions of Exercise 6 (Q1-8) (Version: October 31, 2014)

- 1. (a) The characteristic equation is $(\lambda + 1)(\lambda 3) = 0$; eigenvalues are -1 and 3; $\{(0,1)^{\mathrm{T}}\}$ is a basis for E_{-1} and $\{(1,2)^{\mathrm{T}}\}$ is a basis for E_{3} .
 - (b) The characteristic equation is $(\lambda 2)^2 = 0$; the eigenvalue is 2; $\{(1,1)^T\}$ is a basis for E_2 .
 - (c) The characteristic equation is $\lambda^2 4 = 0$; eigenvalues are -2 and 2; $\{(-2,1)^{\mathrm{T}}\}$ is a basis for E_{-2} and $\{(2,1)^{\mathrm{T}}\}$ is a basis for E_2 .
 - (d) The characteristic equation is $\lambda^2 = 0$; the eigenvalue is 0; $\{(1,0),(0,1)^{\mathrm{T}}\}$ is a basis for E_0 .
 - (e) The characteristic equation is $\lambda(\lambda 2)^2 = 0$; eigenvalues are 0 and 2; $\{(-1,1,0)^{\mathrm{T}}\}$ is a basis for E_0 and $\{(1,1,0)^{\mathrm{T}}\}$ is a basis for E_2 .
 - (f) The characteristic equation is $(\lambda 2)(\lambda^2 9) = 0$; eigenvalues are 2, -3 and 3; $\{(0,0,1)^{\mathrm{T}}\}$ is a basis for E_2 , $\{(-1,3,0)^{\mathrm{T}}\}$ is a basis for E_{-3} and $\{(1,3,0)^{\mathrm{T}}\}$ is a basis for E_3 .
 - (g) The characteristic equation is $(\lambda 1)^3 = 0$; the eigenvalue is 1; $\{(0,0,1)^{\mathrm{T}}\}$ is a basis for E_1 .
 - (h) The characteristic equation is $(\lambda + 1)(\lambda 1)^2 = 0$; eigenvalues are -1 and 1; $\{(-1, -1, 1)^{\mathrm{T}}\}$ is a basis for E_{-1} and $\{(1, 2, 0)^{\mathrm{T}}, (1, 0, 2)^{\mathrm{T}}\}$ is a basis for E_{1} .
 - (i) The characteristic equation is $(\lambda 1)(\lambda 2)(\lambda 3)(\lambda 4) = 0$; eigenvalues are 1,2,3 and 4; $\{(0,0,0,1)^{\text{T}}\}$ is a basis for E_1 , $\{(0,0,1,1)^{\text{T}}\}$ is a basis for E_2 , $\{(0,2,4,3)^{\text{T}}\}$ is a basis for E_3 and $\{(3,9,12,8)^{\text{T}}\}$ is a basis for E_4 .
 - (j) The characteristic equation is $\lambda^4 2\lambda^2 + 1 = 0$; eigenvalues are -1 and 1; $\{(-1,0,1,0)^{\text{T}}, (0,-1,0,1)^{\text{T}}\}$ is a basis for E_{-1} and $\{(1,0,1,0)^{\text{T}}, (0,1,0,1)^{\text{T}}\}$ is a basis for E_{1} .
- 2. (a) $\det(\lambda \mathbf{I} \mathbf{A}) = \begin{vmatrix} \lambda a & -b \\ -c & \lambda d \end{vmatrix} = \lambda^2 + (-a d)\lambda + (ad bc)$ Hence $m = -a - d = -\operatorname{tr}(\mathbf{A})$ and $n = \det(\mathbf{A})$.
 - (b) Direct verification shows that $\mathbf{A}^2 + m\mathbf{A} + n\mathbf{I} = \mathbf{0}$.
- 3. (a) Let \boldsymbol{x} be an eigenvector of \boldsymbol{A} associated with λ , i.e. $\boldsymbol{A}\boldsymbol{x}=\lambda\boldsymbol{x}$. We prove that $\boldsymbol{A}^n\boldsymbol{x}=\lambda^n\boldsymbol{x}$ by induction on n.

It is given that $\mathbf{A}^1 \mathbf{x} = \lambda^1 \mathbf{x}$. Assume that $\mathbf{A}^k \mathbf{x} = \lambda^k \mathbf{x}$. Then

$$\boldsymbol{A}^{k+1}\boldsymbol{x} = \boldsymbol{A}(\boldsymbol{A}^k\boldsymbol{x}) = \boldsymbol{A}(\lambda^k\boldsymbol{x}) = \lambda^k\boldsymbol{A}\boldsymbol{x} = \lambda^k\lambda\boldsymbol{x} = \lambda^{k+1}\boldsymbol{x}.$$

By mathematical induction, $\mathbf{A}^n \mathbf{x} = \lambda^n \mathbf{x}$ and hence λ^n is an eigenvalue of \mathbf{A} for all positive integer n.

(b) Let \boldsymbol{x} be an eigenvector of \boldsymbol{A} associated with λ . Then

$$Ax = \lambda x \Rightarrow x = A^{-1}(\lambda x) = \lambda A^{-1}x \Rightarrow \frac{1}{\lambda}x = A^{-1}x.$$

Thus $\frac{1}{\lambda}$ is an eigenvalue of \mathbf{A}^{-1} .

- (c) λ is an eigenvalue of \boldsymbol{A} \Rightarrow $\det(\lambda \boldsymbol{I} \boldsymbol{A}) = 0$ \Rightarrow $\det((\lambda \boldsymbol{I} - \boldsymbol{A})^{\mathrm{T}}) = 0$ \Rightarrow $\det(\lambda \boldsymbol{I} - \boldsymbol{A}^{\mathrm{T}}) = 0$ \Rightarrow λ is an eigenvalue of $\boldsymbol{A}^{\mathrm{T}}$.
- 4. (a) Let \boldsymbol{x} be an eigenvector of \boldsymbol{A} associated with λ , i.e. $\boldsymbol{A}\boldsymbol{x} = \lambda \boldsymbol{x}$ and \boldsymbol{x} is a nonzero vector. Then

$$A^2 = A \Rightarrow A^2x = Ax \Rightarrow \lambda^2x = \lambda x \Rightarrow \lambda(\lambda - 1)x = 0$$

Since \boldsymbol{x} is nonzero, $\lambda = 0$ or 1.

(b) Since \mathbf{A} has 2 distinct eigenvalues, it is diagonalizable. Let $\mathbf{P} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an invertible matrix such that $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Then

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} ad & -ab \\ cd & -cb \end{pmatrix}$$
 where $ad - bc \neq 0$.

We can simplify the expression to $\mathbf{A} = \begin{pmatrix} r & s \\ t & 1-r \end{pmatrix}$ where st = r(1-r).

5. (a) Let x be a nonzero eigenvector of A associated with λ , i.e. $Ax = \lambda x$.

$$A^2 = 0 \Rightarrow A^2x = 0x \Rightarrow A(\lambda x) = 0 \Rightarrow \lambda^2 x = 0$$

Since \boldsymbol{x} is nonzero, $\lambda = 0$.

- (b) No. Suppose A is diagonalizable. Then there exists invertible P such that $P^{-1}AP = 0$. Then $A = P0P^{-1} = 0$, a contradiction.
- (c) Consider the vector equation

$$a\mathbf{u} + b\mathbf{A}\mathbf{u} = \mathbf{0}.\tag{*}$$

Pre-multiplying \mathbf{A} to both side of (*), we have

$$A(au + Au) = A0 \Rightarrow aAu = 0.$$
 (: $A^2 = 0.$)

As $\mathbf{A}\mathbf{u} \neq \mathbf{0}$, a = 0. Substituting a = 0 into (*), we have $b\mathbf{A}\mathbf{u} = \mathbf{0}$ and hence b = 0. Since (*) has only the trivial solution, \mathbf{u} and $\mathbf{A}\mathbf{u}$ are linearly independent.

(d) Let $P = (u \ Au)$. By (c), P is invertible. Since

$$oldsymbol{AP} = egin{pmatrix} oldsymbol{Au} & oldsymbol{A}^2oldsymbol{u} \end{pmatrix} = egin{pmatrix} oldsymbol{Au} & oldsymbol{0} \end{pmatrix}$$

and

$$P\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0\boldsymbol{u} + \boldsymbol{A}\boldsymbol{u} & 0\boldsymbol{u} + 0\boldsymbol{A}\boldsymbol{u} \end{pmatrix} = \begin{pmatrix} \boldsymbol{A}\boldsymbol{u} & \boldsymbol{0} \end{pmatrix},$$

$$AP = P \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 which implies $P^{-1}AP = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

- 6. (a) Since $\det(-\mathbf{I} \mathbf{A}) = 0$, -1 is an eigenvalue of \mathbf{A} .
 - (b) $\{(1,1,0)^{\mathrm{T}}, (0,0,1)^{\mathrm{T}}\}$ is a basis for E_{-1} and hence $\dim(E_{-1})=2$.
 - (c) For example, $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.
- 7. (a) Since $det(2\mathbf{I} \mathbf{A}) = 0$, 2 is an eigenvalue of \mathbf{A} .
 - (b) $\{(1,2,0)^{\mathrm{T}}, (-3,0,1)^{\mathrm{T}}\}$ is a basis for the eigenspace associated with 2.
 - (c) Let E_2 be the eigenspace of \boldsymbol{A} associated with 2 and let E'_{λ} be the eigenspace of \boldsymbol{B} associated with λ .

Since E_2 and E'_{λ} are subspaces of \mathbb{R}^3 and have dimension 2, they are two planes in \mathbb{R}^3 that contain the origin. So $E_2 \cap E'_{\lambda}$ is either a line through the origin or a plane containing the origin. In both cases, we can find a nonzero vector $\mathbf{u} \in E_2 \cap E'_{\lambda}$, i.e. $\mathbf{A}\mathbf{u} = 2\mathbf{u}$ and $\mathbf{B}\mathbf{u} = \lambda \mathbf{u}$, such that

$$(\mathbf{A} + \mathbf{B})\mathbf{u} = \mathbf{A}\mathbf{u} + \mathbf{B}\mathbf{u} = 2\mathbf{u} + \lambda\mathbf{u} = (2 + \lambda)\mathbf{u}.$$

So $2 + \lambda$ is an eigenvalue of $\mathbf{A} + \mathbf{B}$.

8. Note that for i = 1, 2, ..., n, $\mathbf{A}^n \mathbf{u}_i = \mathbf{A}^{n-1} \mathbf{u}_{i+1} = \cdots = \mathbf{A}^i \mathbf{u}_n = \mathbf{0}$.

Let $v \in \mathbb{R}^n$ be an eigenvector of A associated with eigenvalue λ , i.e. $Av = \lambda v$. Since $\{u_1, u_2, \dots, u_n\}$ is a basis for \mathbb{R}^n ,

$$\boldsymbol{v} = c_1 \boldsymbol{u_1} + c_2 \boldsymbol{u_2} + \dots + c_n \boldsymbol{u_n}$$

for some $c_1, c_2, \ldots, c_n \in \mathbb{R}$. Then

$$A^n v = c_1 A^n u_1 + c_2 A^n u_2 + \cdots + c_n A^n u_n = 0.$$

From the proof of Question 6.3(a), $\mathbf{A}^n \mathbf{v} = \lambda^n \mathbf{v}$. Since $\mathbf{v} \neq \mathbf{0}$, $\lambda = 0$. Hence we have shown that \mathbf{A} has only one eigenvalue 0.

As $\lambda = 0$, we get $\mathbf{A}\mathbf{v} = \mathbf{0}$. Then

$$0 = Av = c_1Au_1 + c_2Au_2 + \cdots + c_nAu_n = c_1u_2 + c_2u_3 + \cdots + c_{n-1}u_n.$$

Since u_2, u_3, \ldots, u_n are linearly independent, $c_1 = 0$, $c_2 = 0$, \ldots , $c_{n-1} = 0$, i.e. $v = c_n u_n$. Hence all eigenvectors of A are scalar multiples of u_n .