Package 'distWorkshop'

November 4, 2019		
Title Distributional analyses of linguistic data in the GAMM framework		
ersion 1.0		
escription Data sets and code for distributional analyses of linguistic data in the GAMM framework epends R (>= 3.5.0), survival, mgcv, qgam, pammtools, RColorBrewer survival, mgcv, qgam, pammtools, RColorBrewer		
cense GNU General Public License v3.0		
nzyData true nzygenNote 6.1.1.9000		
topics documented:		
ld nam plotPAM plotQGAMs pn removeOutliers		
dex		
ld Lexical decision data		
escription Lexical decision data from the British Lexicon Project (Keuleers et al., 2012)		

Usage

ld

Format

An object of class data.frame with 25401 rows and 6 columns.

2 plotPAM

Source

Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British Lexicon Project: Lexical decision data for 28,730 monosyllabic and disyllabic English words. Behavior Research Methods, 44(1), 287-304.

nam

Word naming data

Description

Word naming data from the English Lexicon Project (Balota et al., 2007)

Usage

nam

Format

An object of class data. frame with 37107 rows and 6 columns.

Source

Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., ... & Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39(3), 445-459.

plotPAM

Plot PAM

Description

Plot the results of a PAM model (Bender & Scheipl, 2018)

Usage

```
plotPAM(model, data, predictor = "logFrequency", response = "RT",
    se = 2, area = FALSE, num_grid = 100,
    pallet = colorRampPalette(rev(brewer.pal(n = 7, name =
    "RdYlBu")))(500), levs = NA, rugx = TRUE, rugy = TRUE, main = NA,
    xlab = NA, ylab = NA, ...)
```

Arguments

model A PAM model.

the task, as well as all predictors in these models. Note: this is the data frame in its raw format, not the data frame converted to the piece-wise exponential data

format.

predictor The predictor to be plotted. This predictor needs to be present in the fitted model,

as well as in data.

plotQGAMs 3

response	The name of the response variable in data.
se	The number of standard errors that is used for the significance test. Default: 2 (i.e., 95% confidence intervals)
area	Should the significance of the effect at different predictor values be plotted. Default: FALSE.
pallet	A vector of color names that will be used for the contour plot.
levs	A vector of values at which the contour lines will be plotted. By default, these values are selected automatically
rugx	Should a rug be plotted for the x-axis? Default: TRUE
rugy	Should a rug be plotted for the y-axis? Default: TRUE

References

Bender, A. and Scheipl, F. (2018). pammtools: Piece-wise exponential additive mixed modeling tools. arXiv:1806.01042

Examples

```
# Remove outliers
predictors = c("logFrequency", "Length", "logOLD20", "SND20")
ld = removeOutliers(ld, predictors)
ld = na.omit(ld)
# Prepare data in exponential data format
ldstatus = 1
cut_points = as.numeric(quantile(ld$RT[which(ld$RT <= 1085 &</pre>
               ldRT \ge 500), seq(0, 1, by = 0.02)))
ped = split_data(Surv(RT, status)~., data = ld, id = "id",
                   cut = cut_points)
# Run PAM (warning: computationally heavy)
pam_ld = gam(ped_status \sim s(tend) +
             s(logFrequency) + ti(tend, logFrequency) +
             s(Length) + ti(tend, Length) +
             s(logOLD20) + ti(tend, logOLD20) +
             s(SND20) + ti(tend, SND20),
             data = ped, offset = offset, family = poisson())
# Plot frequency effect
plotPAM(model = pam_ld, data = ld, predictor = "logFrequency")
```

plotQGAMs

Plot quantiles

Description

Plot the results of a series of QGAM models (Fasiolo et al., 2017)

4 plotQGAMs

Usage

```
plotQGAMs(models, predictor, data, cols = c("#3C7A5B", "#468E6A", "#50A379", "#5AB788", "#65CC98"), se = 2, xlab = NA, ylab = NA, main = NA, ylim = NA, ...)
```

Arguments

models A list of QGAM models as generated by the mqgam() function in the qgam package.

predictor The predictor to be plotted. This predictor needs to be present in the fitted

models, as well as in data.

data The data the QGAM models were fit to. Needs to include the response variable,

as well as all predictors in these models.

cols A vector of colors. The lines corresponding to the quantiles will be plotted in

these colors.

se The number of standard errors for the confidence intervals. Default: 2 (i.e., 95%

confidence intervals)

References

Fasiolo M., Goude Y., Nedellec R. and Wood S. N. (2017). Fast calibrated additive quantile regression. URL: https://arxiv.org/abs/1707.03307.

Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British Lexicon Project: Lexical decision data for 28,730 monosyllabic and disyllabic English words. Behavior Research Methods, 44(1), 287-304.

Examples

```
# Remove outliers from the ld data set, which contains lexical
# decision latencies from the British Lexicon Project (Keuleers
# et al, 2012)
predictors = c("logFrequency", "Length", "logOLD20", "SND20")
ld = removeOutliers(ld, predictors)
ld = na.omit(ld)
# Tune learning rate for median
tune = tuneLearnFast(RT \sim s(logFrequency) + s(Length) +
                          s(logOLD20) + s(SND20),
                     data = 1d, qu = 0.5)
sigpar = tune$lsig
# Define quantiles
quants = c(0.10, 0.25, 0.50, 0.75, 0.90)
# Run qgam models
qgams = mqgam(RT \sim s(logFrequency) + s(Length) + s(logOLD20) +
                   data = ld, qu = quants, lsig = sigpar)
# Plot effect of frequency at quantiles
plotQGAMs(qgams, "logFrequency", ld)
```

pn 5

pn

Picture naming data

Description

Picture naming data (Balota et al., 2007)

Usage

pn

Format

An object of class data. frame with 484 rows and 6 columns.

Source

Székely, A., D'amico, S., Devescovi, A., Federmeier, K., Herron, D., Iyer, G., ... & Bates, E. (2003). Timed picture naming: Extended norms and validation against previous studies. Behavior Research Methods, Instruments, & Computers, 35(4), 621-633.

removeOutliers

Remove outliers

Description

Remove outliers from a data frame

Usage

```
removeOutliers(data, predictors, sd = 3)
```

Arguments

data A data frame.

predictors A vector of the column names in data corresponding to the predictors that out-

liers should be removed for sd The number of standard deviations. Predictor values further than sd standard deviations from the predictor mean are removed.

Default: 3.

model A PAM model.

Examples

```
\# Load data for the lexical decision latencies in the British Lexicon Project (Keuleers et al, 2012) data(ld)
```

```
# Remove outliers
ld = removeOutliers.fnc(ld, c("logFrequency","Length","logOLD20","SND20"))
ld = na.omit(ld)
```

Index

```
*Topic datasets
ld, 1
nam, 2
pn, 5

ld, 1

nam, 2

plotPAM, 2
plotQGAMs, 3
pn, 5

removeOutliers, 5
```