ECE 148 Homework 6

Sanjot Bains

May 21, 2025

I. Interpolation by DFT

Consider a real periodic signal f(t) of period T. The signal has 7 harmonics, for $m = 1, 2, 3, \ldots, 7$:

$$f(t) = \sum_{m=1}^{7} a_m \sin(m\omega_0 t)$$

where $\omega_0 = \frac{2\pi}{T}$ and the 7 coefficients $\{a_m\}$ are formed with the 7-digit perm number: 9587189.

```
T = 1; % Period of the signal

w_0 = 2 * pi / T; % Fundamental frequency
a_m = [9 5 8 7 1 8 9]; % Amplitude of harmonics

f = @(t) a_m(1) * sin(1 * w_0 * t) + a_m(2) * sin(2 * w_0 * t) + ...
a_m(3) * sin(3 * w_0 * t) + a_m(4) * sin(4 * w_0 * t) + ...
a_m(5) * sin(5 * w_0 * t) + a_m(6) * sin(6 * w_0 * t) + ...
a_m(7) * sin(7 * w_0 * t);
```

Listing 1: Signal Definition

We take 16 uniform samples within one period with sample spacing $\Delta t = \frac{T}{16}$ to form a short 16-point sequence $\{f(n)\}$, where $n = 0, 1, 2, \dots, 15$.

```
delta_T = T / 16; % Sampling interval
t_samples = 0:delta_T:(T-delta_T); % Sampled time vector
f_n = f(t_samples); % Sampled function values {f(n = 0, 1, ..., 15)}
```

Listing 2: Sampling

Subsequently, we take a 16-point DFT of the sequence to obtain the 16-point spectral sequence F(k), where k = 0, 1, 2, ..., 15.

$$F(k) = DFT_{N=16}\{f(n)\}\$$

```
1 F_k = fft(f_n); % F(k) = DFT of f(n = 0, 1, ..., 15)
2 F_k_shifted = fftshift(F_k);
```

Listing 3: 16-pt DFT

1. Interpolation of the DFT Spectrum

The sequence f(n) is extended to 64 points by padding 48 zeros. The extended sequence $f_a(n)$ is in the form:

$$f_a(n) = \begin{cases} f(n) & n = 0, 1, 2, \dots, 15 \\ 0 & n = 16, 17, 18, \dots, 63 \end{cases}$$

```
f_a = zeros(1, 64);
f_a(1:16) = f_n;
```

Listing 4: Zero-Padded Time Sequence

We then compute the DFT of the 64-pt sequence:

$$F_a(k) = DFT_{N=64} \{ f_a(n) \}$$

```
F_a_shifted = fftshift(fft(f_a));
```

Listing 5: DFT of 64-pt Sequence

Figure 1: Comparison of 64-point and 16-point DFT

 $F_a(k)$ seems to contain more information than F(k), a more granular view of the component frequencies. I had to rescale the frequency axis to overlap the 64-pt and 16-pt sequences. The two plots are identical at every 4th point, where the 16-pt sequence is defined.

2. Interpolation in Time Domain

The 16-point spectral sequence F(k) is extended to 64 points by inserting 48 zeros in the middle.

```
1 F_b = zeros(1, 64);

2 F_b(1:8) = F_k(1:8);

3 F_b(57:64) = F_k(9:16);

4 F_b = 4 * F_b;
```

Listing 6: Zero-Padded Frequency Sequence

The resulting interpolated time-domain signal $f_b(n)$ is computed using IDFT:

$$f_b(n) = IDFT_{N=64} \{ F_b(k) \}$$

```
1 f_b = ifft(F_b);
```

Listing 7: IFFT

Figure 2: Comparison of Interpolated Signal with Original Samples

Again, I had to do some scaling to preserve the total energy of the plot (See the $\times 4$ in the definition of F_b). Other than that, we can see the "identical-ity" of the two. $f_b(n)$ has more granularity than f(n).

II. Signal Scrambling

The objective of this exercise is to implement a simple digital speech scrambler. We use the microphone of our computer to record a short speech signal g(t), and digitize the speech signal with the A/D tool in Audacity into the discrete form g(n).

```
[g_n, f_s] = audioread('g_n.wav');
```

Listing 8: Reading in Audio File

1. DFT Spectrum

The DFT spectrum G(k) of the digitized speech signal g(n) is shown below:

```
G_k = fft(g_n);
G_k_shifted = fftshift(G_k);
```

Listing 9: FFT of Audio Sequence

Figure 3: Magnitude Spectrum of Original Speech Signal

2. Speech Scrambling

The speech signal is scrambled by multiplying it with an alternating sequence of +1 and -1.

```
scrambling_seq = ones(size(g_n));
scrambling_seq(2:2:end) = -1;

g_hat_n = g_n .* scrambling_seq;
audiowrite('g_hat_n.wav', g_hat_n, f_s);

G_hat_k = fft(g_hat_n);
G_hat_k_shifted = fftshift(G_hat_k);
```

Listing 10: FFT of Hilbert Sequence

Figure 4: Spectrum of Scrambled Speech

The scrambled audio \hat{g}_n is completely unintelligible. It sounds like the high pitched squealing of an adult in a cartoon. Or the feverish screeches of a pulley that needs greasing. The speech is thouroughly "scrambled".

3. Descrambling

The descrambling process uses the same alternating sequence. When there is a synchronization offset, it results in -g(t) instead of g(t).

```
descrambled_g_n = g_hat_n .* scrambling_seq;
audiowrite('descrambled_g_n.wav', descrambled_g_n, f_s);
```

Listing 11: Descrambling

The descrambled audio is completely intelligible. It seems no different at all from the original audio, qualitatively or quantitatively. I pulled up the graphs of each and the descrambled signal is not actually inverted. I did so myself by multiplying the whole thing by -1 and listened to thaat, which again, sounded exactly the same.

III. Hilbert Transform

1. Periodic Signal f(t)

The Hilbert transform of the periodic signal f(t) is computed and compared with the original signal:

Figure 5: Original Signal and its Hilbert Transform

2. Speech Signal g(t)

The Hilbert transform is applied to the speech signal g(t), and the result is saved as an audio file for audible comparison.