# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

#### (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-191200 (P2003-191200A)

(43)公開日 平成15年7月8日(2003.7.8)

| (51) Int.Cl. <sup>7</sup> | 識別記号                         | FΙ               | テーマヨード( <del>参考</del> ) |
|---------------------------|------------------------------|------------------|-------------------------|
| B 8 2 B 1/00              |                              | B 8 2 B 1/00     | 4G077                   |
| C 0 1 B 21/06             |                              | C 0 1 B 21/06    | Α                       |
| C 3 0 B 29/38             |                              | C 3 0 B 29/38    | Z                       |
| 29/66                     |                              | 29/66            |                         |
| H01L 29/06                | 6 0 1                        | H 0 1 L 29/06    | 601N                    |
|                           | 審查請                          | 請求 有 請求項の数8      | 書面 外国語出願 (全 25 頁)       |
| (21)出願番号                  | 特願2001-402986( P2001-402986) | (71)出顧人 30102323 | <b>18</b>               |
|                           |                              | 独立行政             | 法人物質・材料研究機構             |
| (22)出願日                   | 平成13年12月21日(2001.12.21)      | 茨城県つ             | くば市千現一丁目2番1号            |
|                           |                              | (72)発明者 坂東 義     | 雄                       |
|                           |                              | 茨城県つ             | くば市千現一丁目2番1号 独立         |
|                           | N.                           | 行政法人             | 物質・材料研究機構内              |
|                           |                              | (72)発明者 ガオ イ     | オハ                      |
|                           |                              | 茨城県つ             | くば市千現一丁目2番1号 独立         |
|                           |                              | 行政法人             | 物質・材料研究機構内              |
|                           |                              | (72)発明者 佐藤 忠     | 失                       |
|                           |                              | 茨城県つ             | くば市千現一丁目2番1号 独立         |
|                           | •                            | 行政法人             | 物質•材料研究機構内              |

# (54) 【発明の名称】 Ge 3 N 4 ナノベルトとその製造方法

# (57)【要約】 (修正有)

【課題】半導体ナノ技術の将来において極めて有用となる新規な $Ge_3N_4$ ナノベルトおよびこの $Ge_3N_4$ ナノベルトの製造方法を提供する。

【解決手段】断面が円形ではなく四角形であり、長さが長い、ベルト形状を有する $Ge_3N_4$ を含む $Ge_3N_4$ ナノベルトであり、Geおよび $SiO_2$ 粉末を混合する工程、この混合粉末を活性炭粒子で覆う工程、活性炭粒子で覆われた混合粉末を $NH_3$ 雰囲気で加熱して、 $Ge_3N_4$ ベルト形状に成長させる工程、並びにベルト形状を有する $Ge_3N_4$ を冷却する工程を含む方法である。



最終頁に続く



# BEST AVAILABLE COPY

#### 【特許請求の範囲】

【請求項1】 断面が円形ではなく四角形であり、長さが長い、ベルト形状を有する $Ge_3N_4$ を含むことを特徴とする $Ge_3N_4$  ナノベルト。

【請求項2】 幅が $30\sim300$ nmの範囲内であり、厚さが150nm以下であり、長さが $1\mu$ m以上である請求項1記載の $Ge_3N_4$ ナノベルト。

【請求項3】  $\alpha-Ge_3N_4$ を含み、(0001)面と

# (1010)面

との間の角度が9.2°である請求項1または2の $Ge_3$  $N_4$  ナノベルト。

【請求項4】  $\beta - Ge_3 N_4$ を含み、ベルト軸方向と [0001] 方向との間の角度が7° であることを特徴とする請求項1または2の $Ge_3 N_4$  ナノベルト。

【請求項5】 GeとSiO<sub>2</sub> 粉末を混合する工程、この混合粉末を活性炭粒子で覆う工程、活性炭粒子で覆われた混合粉末を加熱して、Ge<sub>3</sub>N<sub>4</sub>をベルト形状に成長させる工程、およびベルト形状を有するGe<sub>3</sub>N<sub>4</sub>を冷却する工程を含むGe<sub>3</sub>N<sub>4</sub>ナノベルトの製造方法。 【請求項6】 GeとSiO<sub>2</sub>との混合比が、重量で1

 $\sim 1$ . 2:1であることを特徴とする請求項5の $Ge_3$   $N_4$  ナノベルトの製造方法。

【請求項7】 加熱を800~860℃で1時間以上実施する請求項5または6記載の $Ge_3N_4$ ナノベルトの製造方法。

【請求項8】 該 $NH_3$ 雰囲気が、 $100\sim400$  cm  $^3$  /分の $NH_3$  流であることを特徴とする請求項5ないし7いずれかに記載の $Ge_3N_4$  ナノベルトの製造方法。

#### 【発明の詳細な説明】

(技術分野)本発明は、 $Ge_3N_4$ ナノベルトとその製造方法に関する。さらに詳しくは、本発明は、将来の半導体ナノ技術における応用として有用な新規な $Ge_3N_4$ ナノベルトとその製造方法に関する。

【0001】(従来の技術)窒化ゲルマニウム( $Ge_3$   $N_4$ )は、半導体技術において重要な誘電体材料である。これは、水に可溶であるという致命的な弱点を有する $GeO_2$  材料にとって代わり、高性能相補形金属酸化物半導体(CMOS)ゲルマニウムデバイスにおいて今後発展するであろうと期待されている有望な材料である。そしてこの $Ge_3$   $N_4$  は、現在までにMOS電界効果トランジスタ(MOSFET)を含む金属酸化物半導体(MOS)デバイス内に集積されており、急速熱アニール(RTA)温度に耐えられること、生成熱が低いこと、ヒステリシスが無視できること、そして電流ドリフトが低いことの利点から、 $Ge_3$   $N_4$  - InP、 $Ge_3$   $N_4$  - GaAs金属-絶縁体-半導体電界効果トランジスタ(<math>MISFET)として製造されている。

【0002】このような材料において、 $Ge_3N_4$ は、二次元薄膜として製造されている。しかし、 $Ge_3N_4$ の一次元(ID)ナノスケール材料の製造については、誰も未だ報告していない。おそらく、一般的にIDナノスケールの誘電材料に対する関心が低く、 $Ge_3N_4$ の IDナノスケール材料に関する研究が無視されてきたためである。

【0003】よく知られているように、IDナノスケール材料に関する数多くの研究は、1991年のカーボンナノチューブ(CNT)のパイオニア研究により刺激された。そして、それ以来、BN、 $WS_2$ 、 $B_*$   $C_y$   $N_z$  および $MoS_2$  からなるナノチューブ以外にも、他のなっの固体の IDナノスケール材料が合成され、研究された。これらは、高温超伝導(HTSC)材料、たとえば、HTSC材料であるイットリウムーバリウムー鎖ー酸化物やそれに関するMgOのナノロッド、磁性材料であるFeOナノワイヤ、伝導体材料であるPtOナールネットワーク、硬質材料であるSiC、 $Si_3N$ 4のナノロッド、である。さらに、半導体材料であるSiC0。およびCdO0のナノワイヤおよびナノベルトも研究されている。

【0004】これらの1Dナノスケール材料は、科学的 関心に加え、これらが将来のナノ技術における様々な応 用に有用となると考えられて製造された。そして同様 に、将来のナノ技術によって様々に応用できるGe<sub>3</sub>N<sub>4</sub>の1Dナノスケール材料の実現が期待されている。

【0005】そこで、本発明は、以上の問題点を解消し、将来の半導体ナノ技術において極めて有用な、新規な1Dナノスケール材料としての $Ge_3N_4$ ナノベルトと、この $Ge_3N_4$ ナノベルトの製造方法を提供することを目的としている。

【0006】(発明の概要)本発明は、上記の課題を解決するものとして、第1に、断面が円形ではなく四角形であり、長さが長い、ベルト形状を有する $Ge_3N_4$ を含むことを特徴とする $Ge_3N_4$ ナノベルトを提供する。

# (1010)面

【0008】との間の角度が92°である、第1または第2の本発明に関する $Ge_3N_4$ ナノベルトを提供する。本発明は、第4には、該 $Ge_3N_4$ が $\beta-Ge_3N_4$ を含み、ベルト軸方向と[0001]方向との間の角度が7°である、第1または第2の本発明に関する $Ge_3N_4$ ナノベルトを提供する。

【0009】また、本発明は、第5には、 $Ge_3N_4$ ナノベルトの製造方法であって、 $Ge \& SiO_2$ 粉末を混合する工程、この混合粉末を活性炭粒子で覆う工程、活性炭粒子で覆われた混合粉末を加熱して、 $Ge_3N_4$ をベルト形状に成長させる工程、およびベルト形状を有する $Ge_3N_4$ を冷却する工程を含む方法を提供する。

【0010】さらに本発明は、第6には、GeとSiO2との混合比が、重量で $1\sim1$ . 2:1である、第5の発明に関する $Ge_3N_4$ ナノベルトの製造方法を提供する。本発明は、第7には、加熱を、 $800\sim860$ で1時間以上実施する、第5または第6の本発明に関する $Ge_3N_4$ ナノベルトの製造方法を提供する。本発明は、第8には、該 $NH_3$ 雰囲気が、 $100\sim400$ cm $^3$ /分の $NH_3$ 流である、第5~第7の本発明のいずれかに関する $Ge_3N_4$ ナノベルトの製造方法を提供する。

【0011】(発明の詳細な説明)本発明が提供する $Ge_3N_4$ ナノベルトは、断面が円形ではなく四角形であり、そして長さが長いベルト形状を有する $Ge_3N_4$  が含まれる。より詳細に述べると、この $Ge_3N_4$  ナノベルトはベルト形状を有する $Ge_3N_4$  であって、その幅が30~300 n mの範囲内であり、厚さが150 n m以下であり、そして長さが $1\mu$  m以上のものを含んでいる。そして、この $Ge_3N_4$  ナノベルトは、 $Ge+SiO_2$  の混合粉末を $NH_3$  雰囲気中で熱還元することにより製造することができる。本発明の $Ge_3N_4$  ナノベルトの特徴について、本発明の $Ge_3N_4$  ナノベルトの特徴について、本発明の $Ge_3N_4$  ナノベルトの特徴について、以下に説明する。

【0012】本発明の $Ge_3N_4$ ナノベルトの製造方法は、 $Ge \& SiO_2$ 粉末を混合する工程、この混合粉末を活性炭粒子で覆う工程、これらを $NH_3$ 雰囲気で加熱する工程、および冷却する工程を含んでいる。

【0013】 $Ge_3N_4$ 材料の合成には、各種の装置、例えば、図5に例示したような水平炉を使用することができる。この図5の装置では、直径 $\sim 2cm$ 、長さ $\sim 2cm$ の窒化ホウ素 (BN) 製るつぼ (4) が炉 (1) の中心に設置されている。また、この装置には、低周波または高周波コイルのような加熱コイル (4) が設けられ、一方の端には入口パイプ (2) が、そして他方の端には出口パイプ (3) が設けられている。

【0014】本発明の方法の第1の工程では、出発物質としてのGeおよびSiO<sub>2</sub>粉末が、 $\sim$ 1.2:1、より好ましくは、 $1\sim$ 1.2:1の重量比で、均一に混合される。このGe+SiO<sub>2</sub>混合粉末(5)を、図5の下部に示すように、BNるつぼ(4)の中に入れる。そして、第2工程において、このGe+SiO<sub>2</sub>混合粉末(5)を、活性炭粉末の薄い層(6)、好ましくは、高純度の活性炭粉末であって、さらに好ましくはCナノ粒子を含有するもの、で覆うようにする。

【0015】第3工程では、薄い炭素層(6)を有する

Ge+SiO<sub>2</sub>混合粉末(5)を、NH<sub>3</sub>雰囲気で加熱して、Ge<sub>3</sub>N<sub>4</sub>をベルト形状に成長させ、第4工程でこのベルト形状を有するGe<sub>3</sub>N<sub>4</sub>を冷却する。より詳細には、加熱に先立ってNH<sub>3</sub>流を入口パイプ(2)を通じて炉(1)内に十分な時間導入して、炉(1)からO<sub>2</sub>を追い出す。次いで、薄い炭素層(6)を有するGe+SiO<sub>2</sub>混合粉末(5)を、NH<sub>3</sub>雰囲気内で加熱する。本発明において、800~860℃で1時間以上の加熱が目安となる。更には、特に好ましい加熱として、300cm<sup>3</sup>/分のNH<sub>3</sub>気流下で、850℃で2時間の加熱が例示される。冷却工程においては、ベルト形状を有するGe<sub>3</sub>N<sub>4</sub>が、例えば、室温にまで完全に冷却するまで、NH<sub>3</sub>を流し続ける。

【0016】その結果、薄い炭素層の表面上に、ベルト形状を有する $Ge_3N_4$ を、白色の堅い外皮のようなものとして見ることができる。次いで、この薄い炭素層をアルコール等の溶媒中に分散させることによって、本発明の $Ge_3N_4$ ナノベルトを堆積物として得ることができる。

【0017】本発明において、 $Ge_3N_4$ ナノベルトは、下記の反応に基づく熱的還元により得られると考えられる。

【0018】本発明の方法においては、揮発性物質であるGeOが次の反応により発生し、 $Ge(固体)+SiO_2(固体) \rightarrow GeO(蒸気)+SiO(固体)、次いで、この<math>GeO$ がCナノ粒子サイト上で $NH_3$  ガスと反応して、 $Ge_3N_4$  ナノベルトが成長する。この方法は、CNTのテンプレートを必要としないが、Cナノ粒子によって提供される $Ge_3N_4$  析出サイトが必要となる。

【0019】得られた $Ge_3N_4$ ナノベルトにおいては、 $Ge_3N_4$ の理想的な $\alpha$ 相(P31c、a=0.8202nm、c=0.5941nm)および $\beta$ 相(P63/m、a=0.8038nm、c=0.3074nm)から僅かに異なる相の存在が同定された。

【0020】この $Ge_3N_4$  ナノベルトをCuメッシュ上に堆積させ、透過型電子顕微鏡(TEM)の試料を作成した。このTEM試料を、X線エネルギー分散分光計(EDS)を備えた300k V電界放射分析電子顕微鏡(JEM-3000f)により観察した。

【0021】この試料中に、1Dナノスケール材料として多数のGe3N4ナノベルトが存在していた。これらは、前記のように幅が30~300nmの範囲内であり、長さが数μm以上であることが確認された。図1(a)は、異なる3つの長さの1Dナノスケール材料を示しており、それぞれをA、B、Cと表される。これらをその軸の周りに回転させると、その投影幅が変化することがわかった。このことから、これらの1Dナノスケール材料は、その軸に対して垂直な断面が円形ではなく、四角形の断面を有していると結論付けられる。この

1Dナノスケール材料について観察されたコントラスト および形状は、SnO2ナノベルトのもの(Hsu, W. K. et al. Electrochemica l formation of novel nano wires and their dynamic e ffects. Chem. Phys. Lett. 28 4,177-183(1998))と極めて似ているこ とから、この1 Dナノスケール材料はナノベルトとして 認めることができる。更に、この1Dナノスケール材料 の幅に対する厚さの比は、~1:2であると推定するこ とができ、殆ど全てのナノベルトの厚さが150nm以 下である。さらに、この3つのナノベルトのEDS分析 からは、図1(b)のEDSスペクトルに示したよう に、3つのナノベルトがGeおよびNのみを含有してい ることが分かった。ここで、Cuピークは担体としての Cu格子から発生している。他の分析結果とも併せる と、この1Dナノスケール材料は、GeaN4単結晶か らなるGe<sub>3</sub> N<sub>4</sub> ナノベルトであると確認された。10 個以上のGeaN4ナノベルトをランダムに選んでED S分析により調査したところ、全てのEDSスペクトル は、図1(b)とほぼ同じものである。

【0022】図2(a)は、図1(a)における $Ge_3$   $N_4$  ナノベルトAの暗視野像を示しており、これは、図2(b)に示した電子回折(ED)パターンにおける

# 1101反射

【0023】を利用している。これは、 $\alpha-{\rm Ge}_3~{
m N}_4$ の

# [1213] パターン

【0024】に同定される。そして、

# (1010) 面および(1101) 面

【0025】の間隔dの測定値は0.702nmおよび0.453nmであり、これらは $\alpha$ -Ge $_3$ N $_4$ についての理想的な値0.710nmおよび0.456nmと一致する。ベルト軸は、

# (3121)面

【0026】に対して垂直である。また、明領域が小さいという事実は、 $Ge_3N_4$ ナノベルトの他の領域において

# (1101)面

【0027】が歪んでいることによるものと考えられ、 他の領域の

# 1 1 0 1 反射

【0028】がブラッグの法則に一致しないという影響に結びつくと考えられる。コントラストの変化は、電子

ビームの照射下で $Ge_3N_4$ ナノベルトが湾曲していることによるものである。

【0029】図3は、 $\alpha$ 相を有する $Ge_3N_4$ ナノベルトBの高分解能透過型電子顕微鏡(HRTEM)像を示している。挿入図は、

# 入射方向[1210]

【0030】のEDパターンである。このEDパターンにおいて、それぞれのスポットには、矢印の方向に沿って縞が有ることが観察された。この現象は、ナノベルトの形状効果(P. Hirsh, A. Howie, R. B. Nicholson, D. W. Pashley & M. J. Whelan, Electron Microscopy of Thin Crystals(London, Butterworths, 1967)p. 98.)に起因しており、この縞の延びの方向は、

# (1011)面

【0031】に垂直なナノベルト軸に対して垂直となっている。Y. L. Liらは、

# (1011)面

【0032】に垂直なベルト軸方向は、同様の構造を有する $\alpha$  –  $Si_3N_4$ のウィスカーに見出すことができ、これは最密充填

# (1011)面

【0033】に対して垂直に成長する結果であると説明 している(Jour. Mater. Sci. 31, 26 77(1996))。この

# (1010)面

【0034】と(0001)面との間隔dは、0.710 nmおよび0.595nmであり、これらは、それぞれ $\alpha$ -Ge $_3$ N $_4$ の理想値0.710nmおよび0.594 nmと一致する。しかしながら、(0001)面と

# (1010)面

【0035】の間の角度は92°であり、 $\alpha-Ge_3$  N  $_4$  の理想値90°からの差は2°となっている。 $\alpha-Ge_3$  N  $_4$  材料のこのような現象は未だかつて報告されていない。ただし、 $\alpha'-SiAION$ においてのみ同様の現象が観察されていおり、この場合の(0001)面と

# (1010)面

【0036】とのなす角度は91°である。この現象の原因も明らかにされていない。Dongらは、ある種の $\beta$ -Ge $_3$  N $_4$  材料においては、N-Ge-N結合角が104°~111°であるものの、Ge-N $^6$ h-Ge

結合角については $114^{\circ}$  または $123^{\circ}$  であることを報告している。このような値は、それぞれ、理想的なN-Ge-N結合角の $109.5^{\circ}$  および理想的な $Ge-N^{6h-Ge}$  結合角の $120^{\circ}$  から僅かに異なるものである。本発明の $\alpha-Ge_3N_4$  ナノベルトにおける、 $92^{\circ}$  という角度は、N-Ge-N 結合角およびGe-N-Ge 結合角が、それぞれ、理想値の $109.5^{\circ}$  および $120^{\circ}$  からの僅かにずれていることに関係していると考えられる。

【0037】図4(a)および(b)は、それぞれ $\beta$  –  $Ge_3N_4$ の形状およびHRTEM像を示すものである。(b)の挿入図は、

# 入射方向 [1210]

【0038】でのEDパターンである。

# 1010

【0039】および0001反射に対応する間隔dは、それぞれ0.700nmおよび0.309nmである。これらは、それぞれ、 $\beta$ - $Ge_3$ N<sub>4</sub>の理想的な間隔dである0.696nmおよび0.307nmと一致する。また、ベルト軸方向は、[0001]方向とわずか7°だけ相違している。そして、 $Ge_3$ N<sub>4</sub>ナノベルトの表面には、記号Sとして示したように幾つかの階段状のステップが存在している。これらのHRTEM観察に基づくと、 $Ge_3$ N<sub>4</sub>ナノベルトは、図4(c)に示したような成長機構を有することが示唆される。すなわち、 $Ge_3$ N<sub>4</sub>ナノベルトの成長は[0001]方向に沿っているものの、 $Ge_3$ N<sub>4</sub>の析出段階において、 $Ge_3$ N<sub>4</sub>の析出面は

# [1010] 方向

【0040】に沿ってわずかだけれども連続的に移動するのである。

【0041】合成した材料については、 $Ge_3N_4$ ナノベルトの先端に金属ナノ粒子は見られなかったし、 $Si_3N_4$ 材料も見出されなかった。上記の観察結果に基づくと、本発明の $Ge_3N_4$ ナノベルトは、2段階プロセスの結果得られるものと仮定される。すなわち、まず最初の段階で、下記の反応によりGeO蒸気が生成される。

【0042】Ge (固体) + SiO<sub>2</sub> (固体) → GeO (蒸気) + SiO (固体)

次いで、生成されたGeO蒸気はCナノ粒子の表面に近づき、下記の蒸気-蒸気-固体 (VVS) 反応により $Ge_3N_4$  の結晶核が生成する。

【0043】3GeO(蒸気)+4NH<sub>3</sub>(蒸気)+3 C(固体)→Ge<sub>3</sub>N<sub>4</sub>(固体)+3CO(蒸気)+6 H<sub>2</sub>(蒸気)

これに引き続く蒸気-蒸気(VV)反応により、Gea

N<sub>4</sub> 核上で軸に沿っての成長が起こる。

【0044】3GeO(蒸気)+4NH<sub>3</sub>(蒸気)→G e<sub>3</sub> N<sub>4</sub> (固体) + 3 H<sub>2</sub> O (蒸気) + 3 H<sub>2</sub> (蒸気) このVV反応は、VVS反応と比較すると、850℃で 1モルのGeaN4 生成のための体積ギブスエネルギー の変化が差-201KJだけ大きい。従って、体積ギブ スエネルギーのみを考慮する場合には、VV反応が優勢 となり、VV反応がGe3N4ナノベルトの成長に支配 的な役割を果たすようになるのだろう。他方で、VVS 反応のみがCナノ粒子上でその場(in-situ)で 起こる場合には、Cナノ粒子とほぼ同じ大きさの微細な GeaNaナノ粒子のみが得られることになる。しかし ながら、表面ギブスエネルギーを考慮する場合には、C ナノ粒子は表面積が広く、表面ギブスエネルギーが高い ことから、VVS反応が優勢となって、微細なGegN 4 核が生成されやすくなる。一般的に、ナノベルトの成 長はベルト軸に沿って妨げられることはなく、ナノベル トの側面において過飽和度が十分に低いことから、ナノ ベルトの成長はベルト軸に対して垂直の方向に妨害され るとされている。この説では、図2(a)および図3の GeaN4ナノベルトが異なる軸方向を有するという事 実は、それらの異なる側面上での十分に低い過飽和に起 因されていると考えられる。

【0045】本発明の $Ge_3N_4$ ナノベルトは、1Dナノスケール構造および前記の特性を有する新規な誘電材料 $Ge_3N_4$ であり、将来に於ける半導体ナノ技術のための重要な応用のために極めて有用となるであろう。

#### 【図面の簡単な説明】

【図1】図1(a)は、ナノベルトA、B、およびCの 形態を示し、(b)は、ナノベルトAのEDSスペクト ルを示しており、ここで、 $N-K\alpha$ (0.39ke V)、 $Ge-L\alpha$ (1.19keV)、 $Ge-K\alpha$ (9.88keV)および $Ge-K\beta$ (10.98ke V)のピークに標識が付けられている。Cuピークは、 担体のCu格子から発生したものである。

【図2】図2(a)は、(b)に示されたEDパターンにおける

### 1101反射

を使用したナノベルトAの暗視野像を例示し、(b) は、左側部分に(a)内の明領域からのEDパターンを示す。右側部分はシミュレートした $\alpha$ -Ge $_3$  N $_4$  の

# [1213] パターン

である。

【図3】図3は、ベルトBのHRTEM像を示している。0.710nmおよび0.595nmのd空間を有する2つの面の間の角度は92°である。挿入図は

# 入射方向 [1210]

【図2】

でのEDパターンである。矢印は、反射スポットでの縞の方向を示している。

【図4】図4 (a) は、 $\beta$  – Ge  $_3$  N $_4$  ナノベルトの形態を例示し、(b) は、ナノベルトのHRTEM像を示

している。ベルト軸と [0001] 方向との間に7° という小さい角度相違が存在し、記号Sで示した段がいくつか存在する。(c) はナノベルトの成長線図とベルト軸方向と [0001] 方向との間の差異を示している。

【図1】

10 (KeV)



【図3】



【図4】



【図5】



#### 【手続補正書】

【提出日】平成14年5月22日(2002.5.2 2)

#### 【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】図面の簡単な説明

【補正方法】変更

【補正内容】

#### 【図面の簡単な説明】

【図1】図1 (a) は、ナノベルトA、B、およびCの 形態を示し、(b) は、ナノベルトAのEDSスペクトル を示しており、ここで、N-K $\alpha$ (0.39keV)、G e-L $\alpha$ (1.19keV)、Ge-K $\alpha$ (9.88k eV) およびGe-K $\beta$ (10.98keV)のピーク に標識が付けられている。Cuピークは、担体のCu格 子から発生したものである。

【図2】図2(a)は、(b)に示されたEDパターンにおける

#### 1 1 0 1 反射

を使用したナノベルトAの暗視野像を例示し、(b)は、左側部分に(a)内の明領域からのEDパターンを示す。右側部分はシミュレートした $\alpha-Ge_3N_4$ の

[1213] パターン

である。

【図3】図3は、ベルトBのHRTEM像を示している。0.710nmおよび0.595nmのd空間を有する2つの面の間の角度は92°である。挿入図は

#### 入射方向[1210]

でのEDパターンである。矢印は、反射スポットでの縞の方向を示している。

【図4】図4(a)は、 $\beta$ -Ge $_3$ N $_4$ ナノベルトの形態を例示し、(b)は、ナノベルトのHRTEM像を示している。ベルト軸と[0001]方向との間に $7^\circ$ という小さい角度相違が存在し、記号Sで示した段がいくつか存在する。(c)はナノベルトの成長線図とベルト軸方向と[0001]方向との間の差異を示している。

【図5】この出願の発明のGe<sub>3</sub>N<sub>4</sub>ナノベルトの製造に 用いることができる装置の一つとしての水平炉を例示し た断面模式図である。

### 【符号の説明】

- 1 炉
- 2 入口パイプ
- 3 出口パイプ
- 4 窒化ホウ素製るつぼ
- 5 Ge+SiO<sub>2</sub>混合粉末
- 6 炭素層
  - 7 加熱コイル

フロントページの続き

Fターム(参考) 4G077 AA01 AA10 BE11 DB28 DB30 HA20 TA02

#### 【外国語明細書】

#### 1 Title of Invention

### Ge3N4 NANOBELT AND METHOD FOR PRODUCING THE SAME

#### 2 Claims .

- Claim 1. A  $Ge_3N_4$  nanobelt comprises  $Ge_3N_4$  of belt shape, of which cross section is not circular but square and length is long.
- Claim 2. A Ge<sub>3</sub>N<sub>4</sub> nanobelt according to claim 1, of which width is in the range of 30 to 300 nm, thickness is 150nm or less, and length is 1 micrometers or more.
- Claim 3. A Ge<sub>3</sub>N<sub>4</sub> nanobelt according to claims 1 or 2, wherein said Ge<sub>3</sub>N<sub>4</sub> comprises  $\alpha$ -Ge<sub>3</sub>N<sub>4</sub>, and the angle between (0001) and (1010) planes is 92°.
- Claim 4. A Ge<sub>3</sub>N<sub>4</sub> nanobelt according to claims 1 or 2, wherein said Ge<sub>3</sub>N<sub>4</sub> comprises  $\beta$ -Ge<sub>3</sub>N<sub>4</sub>, and the angle between a belt axis direction and [0001] direction is 7°.
- Claim 5. A method for producing a  $Ge_3N_4$  nanobelt, said method comprising the steps of:

mixing Ge and SiO<sub>2</sub> powder;

covering this mixed powder with active carbon particles; heating the mixed powder covered with active carbon particles to grow Ge<sub>3</sub>N<sub>4</sub> into belt shape; and

cooling Ge3N4 having belt shape.

Claim 6. A method for producing a  $Ge_3N_4$  nanobelt according to claim 5, wherein a mixture ratio of Ge and  $SiO_2$  is 1-1.2:1 by weight.

Claim 7. A method for producing a  $Ge_3N_4$  nanobelt according to claims 5 or 6, wherein heating is performed for 1 hours or more at 800 to 860 °C.

Claim 8. A method for producing a  $Ge_3N_4$  nanobelt according to any one of claims 5-7, wherein said  $NH_3$  atmosphere is at a  $NH_3$  flow of 100 to 400 cm<sup>3</sup>/min.

#### 3 Detailed Description of Invention

#### FIRLD OF THE INVENTION

The present invention relates a Ge<sub>3</sub>N<sub>4</sub> nanobelt and a method for producing the same. More particularly, the present invention relates to novel Ge<sub>3</sub>N<sub>4</sub> nanobelt, which may be have important application in the future of semiconductor nanotechnology, and a method for producing the Ge<sub>3</sub>N<sub>4</sub> nanobelt.

#### BACKGROUND OF THE INVENTION

Germanium nitride (Ge<sub>3</sub>N<sub>4</sub>) is an important dielectric material in semiconductor technology. It is a promising material to be grown in high performance Complementary Metal-Oxide Semiconductor (CMOS) germanium devices as a replacement for GeO<sub>2</sub> material, which has a fatal weakness of being soluble in water. And Ge<sub>3</sub>N<sub>4</sub>, by this time, has been integrated in Metal-Oxide-Semiconductor (MOS) devices, including MOS Field Effect Transistors (MOSFETs), and fabricated as Ge<sub>3</sub>N<sub>4</sub>-InP and Ge<sub>3</sub>N<sub>4</sub>-GaAs Metal-Insulator-Semiconductor Field Effect Transistor (MISFET) due to the advantages of withstanding

rapid thermal annealing (RTA) temperature, lowheat of formation, negligible hysteresis, and zero-current drift.

In the above mentioned materials,  $Ge_3N_4$  was fabricated as a 2-dimensional film. However, the synthesis of 1-dimensional (1D) nanoscale materials of  $Ge_3N_4$  has not yet been reported by others. Perhaps research on 1D nanoscale materials of  $Ge_3N_4$  has been neglected due to the lack of interest in 1D nanoscale dielectric materials in general.

As is well known, much investigation interest in 1D nanoscale materials was stimulated by the pioneer work of carbon nanotubes (CNTs) in 1991. Since then, apart from the nanotubes of BN, WS<sub>2</sub>,  $B_zC_yN_z$  and  $MoS_2$  materials, other various 1D solid nanoscale materials have also been synthesized and studied. They are the nanorods related to high temperature super-conductor (HTSC) materials, Yttrium-barium-copper-oxygen and MgO into HTSC materials, nanowires of magnetic material Fe, nanoscale networks of conductor material Pt, nanorods of hard materials SiC and Si<sub>3</sub>N<sub>4</sub>. In addition, nanowires and nanobelts of semiconductor materials, Si, Ge, GaN, GaAs, ZnO, SnO<sub>2</sub>, In<sub>2</sub>O<sub>3</sub> and CdO have also been studied.

These 1D nanoscale materials were fabricated for the scientific interest and in the belief that they will have various applications in the future nanotechnology. Similarly, realization of 1D nanoscale materials of  $Ge_3N_4$  variously applicable by future nanotechnology is expected.

Therefore, in the present invention, the object is to provide a solution to the above-mentioned problems, and to provide a Ge<sub>3</sub>N<sub>4</sub> nanobelt as a novel 1D nanoscale material which may be have important application in the future of semiconductor nanotechnology, and a method for producing the Ge<sub>3</sub>N<sub>4</sub> nanobelt.

SUMMARY OF THE INVENTION

The present invention firstly provides, as a means to solve the above-mentioned problems, a  $Ge_3N_4$  nanobelt comprises  $Ge_3N_4$  of belt shape, of which cross section is not circular but square and length is long.

Also, the present invention secondly provides a  $Ge_3N_4$  nanobelt according to the first invention, of which width is in the range of 30 to 300 nm, thickness is 150nm or less, and length is 1 micrometers or more. The present invention therdly provides a  $Ge_3N_4$  nanobelt according to the first or second inventions, wherein said  $Ge_3N_4$  comprises  $\alpha$ - $Ge_3N_4$ , and the angle between (0001) and (1010) planes is 92°. The invention fourthly provides a  $Ge_3N_4$  nanobelt according to the first or second inventions, wherein said  $Ge_3N_4$  comprises  $\beta$ - $Ge_3N_4$ , and the angle between a belt axis direction and [0001] direction is 7°.

Further, the present invention fifthly provide a method for producing a Ge<sub>3</sub>N<sub>4</sub> nanobelt, said method comprising the steps of mixing Ge and SiO<sub>2</sub> powder, covering this mixed powder with active carbon particles, heating the mixed powder covered with active carbon particles to grow Ge<sub>3</sub>N<sub>4</sub> into belt shape, and cooling Ge<sub>3</sub>N<sub>4</sub> having belt shape.

Further, the present invention sixthly provide a method for producing a  $Ge_3N_4$  nanobelt according to the fifth invention, wherein a mixture ratio of Ge and  $SiO_2$  is 1-1.2:1 by weight. The present invention seventhly provide a method for producing a  $Ge_3N_4$  nanobelt according to the fifth or sixth inventions, wherein heating is performed for 1 hours or more at 800 to 860 °C. The present invention eighthly provide a method for producing a  $Ge_3N_4$  nanobelt according to any one of the fifth to seventh inventions, wherein said  $NH_3$  atmosphere is at a  $NH_3$  flow of 100 to 400 cm<sup>3</sup>/min.

#### DETAILED DESCRIPTION OF THE INVENTION

The Ge<sub>3</sub>N<sub>4</sub> nanobelt of the present invention comprises Ge<sub>3</sub>N<sub>4</sub> of belt shape, of which cross section is not circular but square and length is long. Furthermore, when it says in detail, the Ge<sub>3</sub>N<sub>4</sub> nanobelt comprises Ge<sub>3</sub>N<sub>4</sub> of belt shape, of which width is in the range of 30 to 300 nm, thickness is 150nm or less, and length is 1 micrometers or more. And the Ge<sub>3</sub>N<sub>4</sub> nanobelts can be synthesized by thermal reduction of a mixed Ge+SiO<sub>2</sub> powder in NH<sub>3</sub> atmosphere. In conjunction with explaining the method for producing of the Ge<sub>3</sub>N<sub>4</sub> nanobelt of the present invention, the characteristic of the present Ge<sub>3</sub>N<sub>4</sub> nanobelt explained below.

The method for producing the  $Ge_3N_4$  nanobelts, said method comprising the steps of:

mixing Ge and SiO<sub>2</sub> powder; covering this mixed powder with active carbon particles; heating these at NH<sub>3</sub> atmosphere; and cooling.

For the synthesis of the Ge<sub>3</sub>N<sub>4</sub> material, various kinds of apparatuses can be used, for example, a horizontal furnace similar to the apparatus described in Figure 5. With the apparatus of Fig. 5, a boron nitride (BN) crucible 4 ~2 cm in diameter and ~2 cm in length is put in the center of the furnace 1. The apparatus is equipped with heating coil 4, such as a low or high frequency coil, is equipped one side inlet pipe 2 and another side outlet pipe 3.

In the first step on the present method, Ge and SiO, powder as starting materials is mixed homogeneously in a weight ratio ~1.2:1, preferably 1~1.2:1. This mixed Ge+SiO<sub>2</sub> powder 5 is put into the BN crucible 4, as shown in the lower part of Fig. 5. Then in the second step, this mixed Ge+SiO<sub>2</sub> powder 5 is covered with a thin layer of active carbon powder, preferably pure active carbon powder 6, preferability which contained C nanoparticles.

In the third step, the mixed Ge+SiO<sub>2</sub> powder 5 with thin carbon layer 6 is heated at NH<sub>3</sub> atmosphere to grow Ge<sub>3</sub>N<sub>4</sub> into belt shape, and the Ge<sub>3</sub>N<sub>4</sub> having belt shape is cooled in the fourth step. To be more precise, NH<sub>3</sub> flow is introduced into the furnace 1 through the inlet pipe 2 to drive the O<sub>2</sub> out of the furnace 1 for a sufficient time before heating. Then the mixed Ge+SiO<sub>2</sub> powder 5 with thin carbon layer 6 is heated in NH<sub>3</sub> atmosphere. In the present invention, heating of 1 hours or more at 800 to 860 °C can be a general standard. As a desirable heating, more specifically, heating at 850 °C for 2 hours in NH<sub>3</sub> flow of 300 cm<sup>3</sup>/min is illustrated. At the cooling step, NH<sub>3</sub> flow lasted until the Ge<sub>3</sub>N<sub>4</sub> having belt shape is fully cooled down, for example, to room temperature.

Whereat, the  $Ge_3N_4$  having belt shape is found on the surface of the thin carbon layer as something like a white crust. Then, the  $Ge_3N_4$  nanobelts of the present invention are obtained as deposits by dispersing the thin carbon layer into solvents, such as alcohol.

In the present invention, it is thought that the  $Ge_3N_4$  nanobelts are obtained by thermal reduction based on the following reactions.

In the present method, GeO volatile was generated via a reaction

Ge(solid)+SiO<sub>2</sub>(solid)  $\rightarrow$  GeO(vapor)+SiO(solid), and then reacted with NH<sub>3</sub> gas on C nanoparticles sites, thus leading to the growth of Ge<sub>3</sub>N<sub>4</sub> nanobelts. This method did not require a template of CNTs but the Ge<sub>3</sub>N<sub>4</sub> deposition sites supplied by C nanoparticles.

In the resulted Ge<sub>3</sub>N<sub>4</sub> nanobelts, the existence of a phase with slight difference from the ideal  $\alpha$  phase (P31c, a=0.8202 nm and c=0.5941 nm) and  $\beta$  phase (P6<sub>3</sub>/m, a=0.8038 nm, c=0.3074 nm) 25 of Ge<sub>3</sub>N<sub>4</sub> was identified.

The Ge<sub>3</sub>N<sub>4</sub> nanobelts were made to deposit onto a Cu mesh, a transmission electron microscopy (TEM) specimen was prepared. The TEM specimen was studied by a 300 kV field emission analytical electron microscope (JEM-3000F) equipped with an x-ray energy dispersive spectrometer (EDS).

In the specimen, there were many Ge3N4 nanobelts as 1D nanoscale materials. It was confirmed as above-mentioned that their widths are in the range 30~300 nm and lengths are several micrometers or more. Fig.1 (a) shows three lengths of such 1D nanoscale materials, represented by "A", "B" respectively. By rotating them around their axes, it was found that their projection widths changed. Thereby, it can be concluded that these 1D nanoscale materials did not have a circular cross section normal to their axes but sruare cross section. Because the observed contrast and shape of the 1D nanoscale materils are quite similar to those of SnO2 nanobelts (Hsu, W. K. et al. Electrochemical formation of novel nanowires and their dynamic effects. Chem. Phys. Lett. 284, 177-183 (1998)), the 1D nanoscale materials may be recognized as nanobelts. Moreover, the ratio of thickness to width of the materials can be estimated to be ~1:2, thickness of almost all nanobelts is 150nm or less. The EDS analysis of the three nanobelts shows that they only contain Ge and N, as illustrated in EDS spectrum Fig. 1(b), where Cu peaks were generated from the supporting Cu grids. It was confirmed that the 1D nanoscale materials are the Ge, N4 nanobelts comprises Ge3N4 single crystal, combined with other analysis results. More than 10 nanobelts have been picked randomly and checked by EDS analysis, and every EDS spectrum is much the same as Fig.1(b).

Fig.2 (a) shows a dark-field image of Ge<sub>3</sub>N<sub>4</sub> nanobelt "A" in Fig.1(a) by using the 1101 reflection in its electron diffraction (ED) pattern Fig.2(b), which can be indexed as

[1213] pattern of  $\alpha$ -Ge<sub>3</sub>N<sub>4</sub>. The measuring d spacings of (1010) and (1101) are 0.702 nm and 0.453 nm, which are consistent with the corresponding ideal values 0.710 nm and 0.456 nm of  $\alpha$ -Ge<sub>3</sub>N<sub>4</sub>. The belt axis is normal to (3121) plane. The fact that the bright region is small is believed to be due to the distortion of (1101) plane in other regions of the Ge<sub>3</sub>N<sub>4</sub> nanobelt, resulting in the effect that the 1101 reflection of other regions is not in agreement with Bragg's law. The contrast change is due to the bending of the Ge<sub>3</sub>N<sub>4</sub> nanobelt under electron beam illuminating.

Fig.3 shows an HRTEM image of  $Ge_3N_4$  nanobelt "B" with  $\alpha$ phase. The inset is its ED pattern with [1210] incidence. In this ED pattern, it can be found that every spot has a striation along the marked arrow direction. This phenomenon is due to a shape effect of the nanobelt (P. Hirsh, A. Howie, R.B. Nicholson, D.W. Pashley & M. J. Whelan, Electron Microscopy of Thin Crystals (London, Butterworths, 1967) p.98.), and the elongated direction of the striations is normal to the nanobelt axis, which is normal to (1011) plane. Y.L. Li et al. explained that the belt axis direction normal to (1011) plane can also been found in the whiskers of isostructural  $\alpha$ -Si<sub>3</sub>N<sub>4</sub>, it is the result of the growth normal to close packing (1011) plane (Jour. Mater. Sci. 31, 2677 (1996). The d spacings of (1010) and (0001) planes are 0.710 nm and 0.595 nm, which are in agreement with the corresponding ideal values 0.710 nm and 0.594 nm of  $\alpha$ -Ge3N4, respectively. However, the angle between (0001) and (1010) planes is 92°, with a difference 2° from the ideal value 90°. This phenomenon of  $\alpha$ -Ge<sub>3</sub>N<sub>4</sub> material has not yet been reported. Only in a  $\alpha$ '-SiAlON, a similar phenomenon has been observed, where the angle is 91° between (0001) and (1010) planes. The origin of this phenomenon is unknown. Dong et al. have reported that the N-Ge-N bond angles are 104° 111°, while the Ge-N6h-Ge angles are 114° or 123° in

a kind of  $\beta$ -Ge<sub>3</sub>N<sub>4</sub> material. These values are slightly different from the ideal N-Ge-N bond angle 109.5° and Ge-N6h-Ge bond angle 120°, respectively. In the present  $\alpha$ -Ge<sub>3</sub>N<sub>4</sub> nanobelt, it is believed that the 92° angle may be related to slight differences of N-Ge-N and Ge-N-Ge bond angles from the ideal values 109.5° and 120°, respectively.

Fig. 4 (a) and (b) show the morphology and HRTEM image of a β-Ge<sub>3</sub>N<sub>4</sub> nanobelt, respectively. The inset in (b) is its ED pattern with [1210] incidence. The d spacings corresponding to 1010 and 0001 reflections are 0.700 nm and 0.309 nm, respectively. They are consistent with the corresponding ideal d spacings of 0.696 nm and 0.307 nm of β-Ge<sub>3</sub>N<sub>4</sub>, respectively. The belt axis direction have a small angle discrepancy 7°with the [0001] direction. On the Ge<sub>3</sub>N<sub>4</sub> nanobelt surface, there are some steps marked by "S". Based on the HRTEM observation, it can be suggested that the Ge<sub>3</sub>N<sub>4</sub> nanobelt may have a growth schematic diagram Fig. 4(c). The growth of the Ge<sub>3</sub>N<sub>4</sub> nanobelt was along [0001] direction, while the deposition plane of Ge<sub>3</sub>N<sub>4</sub> movedslightly and continuously along the [1010] direction during the Ge<sub>3</sub>N<sub>4</sub> deposition stage.

In the synthesized materials, neither metallic nanoparticles on the tips of the Ge<sub>3</sub>N<sub>4</sub> nanobelts nor Si<sub>3</sub>N<sub>4</sub> material were found. Based on the above observation results, it may be hypothesized that the formation of Ge<sub>3</sub>N<sub>4</sub> nanobelts may result from a 2-stage process. At the initial stage, GeO vapor is generated from a following reaction;

Ge(solid)+SiO2(solid)  $\rightarrow$  GeO(vapor)+SiO(solid), and then approaches the surface of C nanoparticles leading to the Ge<sub>3</sub>N<sub>4</sub> nucleation via a vapor-vapor-solid (VVS) reaction; 3GeO(vapor)+4NH<sub>3</sub>(vapor)+3C(solid)

 $\label{eq:Ge3N4} \to \text{Ge}_3\text{N}_4\,(\text{solid}) + 3\text{CO}\,(\text{vapor}) + 6\text{H}_2\,(\text{vapor}) \;.$  The subsequent growth occurs on the Ge3N4 nuclei along their

axes via a vapor-vapor (VV) reaction;

3GeO (vapor) +4NH<sub>3</sub> (vapor)

 $\rightarrow$  Ge<sub>3</sub>N<sub>4</sub> (solid) +3H<sub>2</sub>O (vapor) +3H<sub>2</sub> (vapor).

As compared with the VVS reaction, the VV reaction has a bigger change of volume Gibbs energy by a difference -201 KJ for the formation of 1 mol Ge<sub>3</sub>N<sub>4</sub> at 850°C. Hence, if only volume Gibbs energy is considered, the VV reaction is more preferable and may play a dominant role for the growth of Ge3N4 nanobelts. Otherwise, only Ge3N4 nanoparticles with sizes similar to that of C nanoparticles can be obtained if only the VVS reaction occurs on C nanoparticles in-situ. However, if surface Gibbs energy is considered, the VVS reaction may be more preferable and favorable to the formation of small Ge3N4 nuclei because the C nanoparticles have larger surface-area and high surface Gibbs energy. Generally, the growth of a nanobelt is unimpeded along its belt axis, while the growth is impeded normal to its belt axis because of a sufficiently low supersaturation on its side faces. In this proposition, the fact that the Ge<sub>3</sub>N<sub>4</sub> nanobelts in Fig. 2(a) and Fig. 3 have different axis direction may be caused by a sufficiently low supersaturation on their different side faces.

The Ge<sub>3</sub>N<sub>4</sub> nanobelt of the present invention is novel dielectric material Ge<sub>3</sub>N<sub>4</sub>, having 1D nanoscale structure and the above characteristics, will be extremely useful to important application for semiconductor nanotechnology in the future.

#### 4 Brief Description of Drawings

Fig.1 (a) shows the morphology of nanobelts "A", "B" and "C", (b) shows the EDS spectrum of nanobelt "A", where the peaks of N-K $\alpha$  (0.39 keV), Ge-L $\alpha$  (1.19 keV), Ge-K $\alpha$ (9.88 keV) and Ge-K $\beta$  (10.98 keV) are labeled. The Cu peaks were generated from the

supporting Cu grids.

Fig.2 (a) shows a dark field mage of nanobelt "A" by using the 1101 reflection in ED pattern showed in (b), (b) shows the ED pattern in the left part is from the bright region in (a). The right part is the simulated [1213] pattern of  $\alpha$ -Ge<sub>3</sub>N<sub>4</sub>.

Fig. 3 shows an HRTEM image of belt "B". Between the two planes with d spacings of 0.710 nm and 0.595 nm, the angle is 92°. The inset is its ED pattern with [1210] incidence. The arrow indicates the direction of the striation on the reflection spot.

Fig.4 (a) shows the morphology of a  $\beta$ -Ge<sub>3</sub>N<sub>4</sub> nanobelt, (b) shows an HRTEM image of the nanobelt. Between the belt axis and [0001] direction, there is a low angle discrepancy of 7°. On the belt surface, there are some steps marked by "S". (c) shows the growth diagram of the nanobelt and the difference between the belt axis direction and [0001] direction.

【図1】





[図2]



[図3]



【図4】



•

[図5]



#### 1 Abstract

The present invention relates to novel Ge<sub>3</sub>N<sub>4</sub> nanobelt, which may be have important application in the future of semiconductor nanotechnology, and a method for producing the Ge<sub>3</sub>N<sub>4</sub> nanobelt. A method for producing a Ge<sub>3</sub>N<sub>4</sub> nanobelt, said method comprising the steps of mixing Ge and SiO<sub>2</sub> powder, covering this mixed powder with active carbon particles, heating the mixed powder covered with active carbon particles to grow Ge<sub>3</sub>N<sub>4</sub> into belt shape, and cooling Ge<sub>3</sub>N<sub>4</sub> having belt shape.

【選択図】 図1