we also going to invent still more systems so as to obtain $\sqrt[4]{-1}$, $\sqrt[6]{-1}$, and so on? But it turns out this is not necessary. These numbers are already expressible in terms of the complex number system a + ib. In fact, the Fundamental Theorem of Algebra says that with the introduction of the complex numbers we now have enough numbers to factor every polynomial into a product of linear factors and so enough numbers to solve every possible polynomial equation.

The Fundamental Theorem of Algebra

Every polynomial equation of the form

$$a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0 = 0,$$

in which the coefficients a_0, a_1, \ldots, a_n are any complex numbers, whose degree n is greater than or equal to one, and whose leading coefficient a_n is not zero, has exactly n roots in the complex number system, provided each multiple root of multiplicity *m* is counted as *m* roots.

A proof of this theorem can be found in almost any text on the theory of functions of a complex variable.

EXERCISES A.5

Operations with Complex Numbers

- 1. How computers multiply complex numbers Find $(a, b) \cdot (c, d)$ = (ac - bd, ad + bc).
 - **a.** $(2,3) \cdot (4,-2)$
- **b.** $(2,-1)\cdot(-2,3)$
- c. $(-1, -2) \cdot (2, 1)$

(This is how complex numbers are multiplied by computers.)

- 2. Solve the following equations for the real numbers, x and y.
 - **a.** $(3 + 4i)^2 2(x iy) = x + iy$
 - **b.** $\left(\frac{1+i}{1-i}\right)^2 + \frac{1}{x+iy} = 1+i$
 - **c.** (3-2i)(x+iy) = 2(x-2iy) + 2i 1

Graphing and Geometry

- 3. How may the following complex numbers be obtained from z = x + iy geometrically? Sketch.
 - a. \bar{z}

b. (-z)

- **d.** 1/z
- **4.** Show that the distance between the two points z_1 and z_2 in an Argand diagram is $|z_1 - z_2|$.

In Exercises 5–10, graph the points z = x + iy that satisfy the given conditions.

- **5. a.** |z| = 2 **b.** |z| < 2 **c.** |z| > 2

- **6.** |z-1|=2
- 7. |z + 1| = 1
- **10.** $|z + 1| \ge |z|$
- **8.** |z+1| = |z-1| **9.** |z+i| = |z-1|

Express the complex numbers in Exercises 11–14 in the form $re^{i\theta}$, with $r \ge 0$ and $-\pi < \theta \le \pi$. Draw an Argand diagram for each calculation.

- 11. $(1 + \sqrt{-3})^2$
- 12. $\frac{1+i}{1-i}$
- 13. $\frac{1+i\sqrt{3}}{1-i\sqrt{3}}$
- 14. (2 + 3i)(1 2i)

Powers and Roots

Use De Moivre's Theorem to express the trigonometric functions in Exercises 15 and 16 in terms of $\cos \theta$ and $\sin \theta$.

15. $\cos 4\theta$

- 16. $\sin 4\theta$
- 17. Find the three cube roots of 1.

AP-22 Appendices

- **18.** Find the two square roots of i.
- 19. Find the three cube roots of -8i.
- 20. Find the six sixth roots of 64.
- 21. Find the four solutions of the equation $z^4 2z^2 + 4 = 0$.
- 22. Find the six solutions of the equation $z^6 + 2z^3 + 2 = 0$.
- 23. Find all solutions of the equation $x^4 + 4x^2 + 16 = 0$.
- **24.** Solve the equation $x^4 + 1 = 0$.

Theory and Examples

- 25. Complex numbers and vectors in the plane Show with an Argand diagram that the law for adding complex numbers is the same as the parallelogram law for adding vectors.
- **26.** Complex arithmetic with conjugates Show that the conjugate of the sum (product, or quotient) of two complex numbers, z_1 and z_2 , is the same as the sum (product, or quotient) of their conjugates.
- 27. Complex roots of polynomials with real coefficients come in complex-conjugate pairs

a. Extend the results of Exercise 26 to show that $f(\bar{z}) = \overline{f(z)}$ if

$$f(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$$

is a polynomial with real coefficients a_0, \ldots, a_n .

- **b.** If z is a root of the equation f(z) = 0, where f(z) is a polynomial with real coefficients as in part (a), show that the conjugate \bar{z} is also a root of the equation. (*Hint*: Let f(z) = u + iv = 0; then both u and v are zero. Use the fact that $f(\bar{z}) = \overline{f(z)} = u - iv$.)
- **28.** Absolute value of a conjugate Show that $|\bar{z}| = |z|$.
- **29.** When $z = \bar{z}$ If z and \bar{z} are equal, what can you say about the location of the point *z* in the complex plane?
- 30. Real and imaginary parts Let Re(z) denote the real part of z and Im(z) the imaginary part. Show that the following relations hold for any complex numbers z, z_1 , and z_2 .

$$\mathbf{a.} \ z + \overline{z} = 2 \operatorname{Re}(z)$$

a.
$$z + \bar{z} = 2\text{Re}(z)$$
 b. $z - \bar{z} = 2i\text{Im}(z)$

$$\mathbf{c.} |\operatorname{Re}(z)| \leq |z|$$

d.
$$|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\text{Re}(z_1\overline{z}_2)$$

e.
$$|z_1 + z_2| \le |z_1| + |z_2|$$