

	$\omega_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1^{-}\alpha}^{\sharp 1}$	$\omega_{1^{-}lpha}^{$ #2}	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{#1} \dagger^{\alpha}$	$\frac{\alpha_0}{4} + \frac{1}{3} (\beta_1 + 8 \beta_3) + (\alpha_2 + \alpha_5) k^2$	$\frac{3 \alpha_0 - 4 \beta_1 + 16 \beta_3}{6 \sqrt{2}}$	$\frac{i(3\alpha_0-4\beta_1+16\beta_3)k}{6\sqrt{2}}$	0	0	0	0
$\omega_{1}^{#2} \dagger^{\alpha}$	$\frac{3 \alpha_0 - 4 \beta_1 + 16 \beta_3}{6 \sqrt{2}}$	$\frac{2}{3}\left(\beta_1+2\beta_3\right)$	$\frac{2}{3}i(\beta_1+2\beta_3)k$	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	$-\frac{i(3\alpha_0-4\beta_1+16\beta_3)k}{6\sqrt{2}}$	$-\frac{2}{3}\bar{i}(\beta_1+2\beta_3)k$	$\frac{2}{3}(\beta_1 + 2\beta_3)k^2$	0	0	0	0
$\omega_1^{\#1}$ †	0	0	0	$\frac{\alpha_0}{4} + \frac{1}{3} (\beta_1 + 2 \beta_2) + (\alpha_4 + \alpha_5) k^2$	$-\frac{3 \alpha_0 - 4 \beta_1 + 4 \beta_2}{6 \sqrt{2}}$	0	$-\frac{1}{6}i(3\alpha_0-4\beta_1+4\beta_2)k$
$\omega_{1}^{\#2}$ †	0	0	0	$-\frac{3 \alpha_0 - 4 \beta_1 + 4 \beta_2}{6 \sqrt{2}}$	$\frac{1}{3}\left(2\beta_1+\beta_2\right)$	0	$\frac{1}{3}\bar{l}\sqrt{2}(2\beta_1+\beta_2)k$
f ₁ ^{#1} †	0	0	0	0	0	0	0
$f_{1}^{#2}$ †	0	0	0	$\frac{1}{6}$ \bar{i} (3 α_0 - 4 β_1 + 4 β_2) k	$-\frac{1}{3}i\sqrt{2}(2\beta_1+\beta_2)k$	0	$\frac{2}{3} (2 \beta_1 + \beta_2) k^2$

	$\sigma_{0^+}^{\sharp 1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_{0}^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{4 \beta_2}{{\alpha_0}^2 + 2 \alpha_0 \beta_2 - 4 (\alpha_4 + \alpha_6) \beta_2 k^2}$	$\frac{i\sqrt{2}(\alpha_0+2\beta_2)}{-\alpha_0(\alpha_0+2\beta_2)k+4(\alpha_4+\alpha_6)\beta_2k^3}$	0	0
$ au_{0}^{\#1}$ †	$\frac{i\sqrt{2}(\alpha_0+2\beta_2)}{\alpha_0(\alpha_0+2\beta_2)k-4(\alpha_4+\alpha_6)\beta_2k^3}$	$\frac{\frac{\alpha_0}{2} + \beta_2 + (\alpha_4 + \alpha_6) k^2}{-\frac{1}{2} \alpha_0 (\alpha_0 + 2 \beta_2) k^2 + 2 (\alpha_4 + \alpha_6) \beta_2 k^4}$	0	0
$ au_{0^{+}}^{\#2} +$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0 + 8\beta_3 + 2(\alpha_2 + \alpha_3)k^2}$

]	Total #:	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\tau_{1}^{\#1\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} = 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
	10	3	3	3	1	#	

Unitarity conditions

(Unitarity is demonstrably impossible)

		$\omega_{0^{-}}^{*1}$ †	$f_{0+}^{#2}$ †	$f_{0+}^{#1}$ †	$\omega_{0^{+}}^{*1}$ †	
	$\sigma_{2}^{\#1}{}_{lphaeta}$	0	0	$\frac{i(\alpha_0+2\beta_2)k}{\sqrt{2}}$	$\omega_{0+}^{\#1} + \left \frac{\alpha_0}{2} + \beta_2 + (\alpha_4 + \alpha_6) k^2 \right - \frac{i(\alpha_0 + 2\beta_2)k}{\sqrt{2}}$	ω_{0^+}
		0	0	$2 \beta_2 k^2$	$-\frac{i(\alpha_0+2\beta_2)k}{\sqrt{2}}$	F ₀ +
		0	0	0	0	J ₀ +
]	$ au_{2}^{\#1}$ $lpha eta$	$\frac{\alpha_0}{2} + 4\beta_3 + 6$	0	0	0	$\omega_0^{"}$