ELEC70066 Advanced Applied Optimisation

Manab Shrestha

Contents

Chapter 1	Convex Sets	Page 1
Chapter 2	Convex Functions	Page 2
Chapter 3	Convex Optimisation Problems	Page 3
Chapter 4	Duality	Page 4
Chapter 5	Approximation and Fitting	Page 5
Chapter 6	Statistical Estimation	Page 6
Chapter 7	Geometric Problems	Page 7
Chapter 8	Interior Point Methods	Page 8
Chapter 9	Integer Programming	Page 9
Chapter 10	Multi Objective Programming	_ Page 10
Chapter 11	Pareto Optimality	_ Page 11
Chapter 12	Complexity Analysis	_ Page 12

Convex Sets

Convex Functions

Convex Optimisation Problems

Duality

Approximation and Fitting

Statistical Estimation

Geometric Problems

Interior Point Methods

Integer Programming

Multi Objective Programming

Pareto Optimality

Complexity Analysis

Random Examples

Definition 12.0.1: Limit of Sequence in $\mathbb R$

Let $\{s_n\}$ be a sequence in \mathbb{R} . We say

$$\lim_{n\to\infty} s_n = s$$

where $s \in \mathbb{R}$ if \forall real numbers $\varepsilon > 0$ \exists natural number N such that for n > N

$$s - \epsilon < s_n < s + \epsilon$$
 i.e. $|s - s_n| < \epsilon$

Question 1

Is the set x-axis \Origin a closed set

Solution: We have to take its complement and check whether that set is a open set i.e. if it is a union of open balls

Note:-

We will do topology in Normed Linear Space (Mainly \mathbb{R}^n and occasionally \mathbb{C}^n)using the language of Metric Space

Claim 12.0.1 Topology

Topology is cool

Example 12.0.1 (Open Set and Close Set)

Open Set: • ¢

• $_{x \in X} B_r(x)$ (Any r > 0 will do)

• $B_r(x)$ is open

Closed Set: • X, φ

 $\bullet \frac{X, \varphi}{B_r(x)}$

x-axis $\cup y$ -axis

Theorem 12.0.1

If $x \in \text{open set } V \text{ then } \exists \ \delta > 0 \text{ such that } B_{\delta}(x) \subset V$

Proof: By openness of $V, x \in B_r(u) \subset V$

Given $x \in B_r(u) \subset V$, we want $\delta > 0$ such that $x \in B_\delta(x) \subset B_r(u) \subset V$. Let d = d(u,x). Choose δ such that $d + \delta < r$ (e.g. $\delta < \frac{r-d}{2}$)

If $y \in B_{\delta}(x)$ we will be done by showing that d(u, y) < r but

$$d(u, y) \le d(u, x) + d(x, y) < d + \delta < r$$

⊜

Corollary 12.0.1

By the result of the proof, we can then show...

Lenma 12.0.1

Suppose $v_1, ..., v_n \in \mathbb{R}^n$ is subspace of \mathbb{R}^n .

Proposition 12.0.1

1 + 1 = 2.

Random

Definition 12.0.2: Normed Linear Space and Norm || • ||

Let V be a vector space over \mathbb{R} (or \mathbb{C}). A norm on V is function $\|\cdot\| V \to \mathbb{R}_{\geq 0}$ satisfying

- ② $\|\lambda x\| = |\lambda| \|x\| \ \forall \ \lambda \in \mathbb{R} (\text{or } \mathbb{C}), \ x \in V$
- (3) $||x + y|| \le ||x|| + ||y|| \ \forall \ x, y \in V$ (Triangle Inequality/Subadditivity)

And V is called a normed linear space.

• Same definition works with V a vector space over C (again $\|\cdot\| \to \mathbb{R}_{\geqslant 0}$) where ② becomes $\|\lambda x\| = |\lambda| \|x\|$ $\forall \lambda \in \mathbb{C}, x \in V$, where for $\lambda = a + ib$, $|\lambda| = \sqrt{a^2 + b^2}$

Example 12.0.2 (p—Norm)

 $V = \mathbb{R}^m$, $p \in \mathbb{R}_{\geq 0}$. Define for $x = (x_1, x_2, \dots, x_m) \in \mathbb{R}^m$

$$\|\mathbf{x}\|_{p} = (|\mathbf{x}_{1}|^{p} + |\mathbf{x}_{2}|^{p} + \dots + |\mathbf{x}_{m}|^{p})^{\frac{1}{p}}$$

(In school p = 2)

Special Case p = 1: $||x||_1 = |x_1| + |x_2| + \cdots + |x_m|$ is clearly a norm by usual triangle inequality.

Special Case p $\to \infty$ (\mathbb{R}^m with $\|\cdot\|_{\infty}$): $\|x\|_{\infty} = \max\{|x_1|, |x_2|, \cdots, |x_m|\}$ For m = 1 these p—norms are nothing but |x|. Now exercise

Ouestion 2

Prove that triangle inequality is true if $p \ge 1$ for p—norms. (What goes wrong for p < 1?)

Solution: For Property (3) for norm-2

When field is \mathbb{R} :

We have to show

$$|(x_i + y_i)|^2 \le \left(\sqrt{|x_i|^2} + \sqrt{|y_i|^2}\right)^2$$

$$\implies |(x_i^2 + 2x_iy_i + y_i^2)| \le |x_i^2 + 2\sqrt{|x_i^2|^2} + |y_i^2|^2$$

$$\implies |(x_i^2 + 2x_iy_i + y_i^2)| \le |x_i^2|^2 = |x_i^2|^2$$

$$\implies |(x_i^2 + 2x_iy_i + y_i^2)|^2 \le |(x_i^2)|^2 = |(x_i^2)|^2$$

So in other words prove $\langle x, y \rangle^2 \le \langle x, x \rangle \langle y, y \rangle$ where

$$\langle x, y \rangle = x_i y_i$$

Note:-

- $||x||^2 = \langle x, x \rangle$
- $\langle x, y \rangle = \langle y, x \rangle$
- $\langle \cdot, \cdot \rangle$ is \mathbb{R} —linear in each slot i.e.

 $\langle rx + x', y \rangle = r \langle x, y \rangle + \langle x', y \rangle$ and similarly for second slot

Here in $\langle x, y \rangle$ x is in first slot and y is in second slot.

Now the statement is just the Cauchy-Schwartz Inequality. For proof

$$\langle x,y\rangle^2\leqslant \langle x,x\rangle\langle y,y\rangle$$

expand everything of $\langle x - \lambda y, x - \lambda y \rangle$ which is going to give a quadratic equation in variable λ

$$\begin{split} \langle x - \lambda y, x - \lambda y \rangle &= \langle x, x - \lambda y \rangle - \lambda \langle y, x - \lambda y \rangle \\ &= \langle x, x \rangle - \lambda \langle x, y \rangle - \lambda \langle y, x \rangle + \lambda^2 \langle y, y \rangle \\ &= \langle x, x \rangle - 2\lambda \langle x, y \rangle + \lambda^2 \langle y, y \rangle \end{split}$$

Now unless $x = \lambda y$ we have $\langle x - \lambda y, x - \lambda y \rangle > 0$ Hence the quadratic equation has no root therefore the discriminant is greater than zero.

When field is \mathbb{C} :

Modify the definition by

$$\langle x, y \rangle = \overline{x_i} \overline{x_i} y_i$$

Then we still have $\langle x, x \rangle \ge 0$

Algorithms

```
Algorithm 1: what
   Input: This is some input
   Output: This is some output
   /* This is a comment */
 1 some code here;
_{2} \chi\leftarrow0;
 y \leftarrow 0;
 4 if x > 5 then
 5 | x is greater than 5;
                                                                                         // This is also a comment
 _7 x is less than or equal to 5;
8 end
9 foreach y in 0..5 do
10 y \leftarrow y + 1;
11 end
12 for y in 0..5 do
13 y \leftarrow y - 1;
14 end
15 while x > 5 do
16 x \leftarrow x - 1;
17 end
18 return Return something here;
```