1660

Klausur Grundlagen der Informatik

Semester: AI2,WI2 | SS 08, 7.7.2008 Bearbeitungszeit: 90 | Hilfsmittel: A ohne prog. C

Aufgabe 1 (3 Punkte)

Wieviele binäre Stellen benötigt man, um eine Zahl mit n Dezimalstellen zu speichern? (Herleitung!)

 $2^{x} = 10^{n}$ $x \cdot \log 2 = n \cdot \log 10$ $x = \frac{\log 10}{\log 2} \cdot n = 3,32 \cdot n$

Aufgabe 2 (2 Punkte)

Angenommen, wir hätten auf einem Rechner eine Möglichkeit, gleichverteilte echt zufällige ganze Zahlen aus $\{0, 1, \dots, m-1\}$ zu erzeugen. Wenn wir solche Zahlen als Hashwerte verwenden, werden Kollisionen weitgehend vermieden. Warum macht die Verwendung von Zufallszahlen als Hashwerte aber keinen Sinn?

Weil dann die Hash-Funktion keine Funktion mehr Eespeicherte Werte werden in der Hesh-Fabelle ni mehr gehanden. 14.42

Aufgabe 4 () 7 75

Kreuzen Sie in folgender Tabelle alle zutreffenden Felder an. Es seien $k \geq 1$, $\epsilon > 0$ und c > 1. Es stehen die Abkürzungen O, o, Ω, ω und Θ für f(n) = O(g(n)), etc. Vergleichen Sie hierzu das asymptotische Verhalten der Funktionen f und g.

f(n)	g(n)	0	0	Ω	ω	Θ
1.01^{n}	$n^{1.01}$			X	X	
$\log n^2$	$\log \sqrt{n}$	X		X		X
$(3/2)^n$	1.1^{n}			X	X	
$n \log n$	$n + \log n^4$		_	X	X	
#en	≠n!	X	\otimes	X	8	
$n^{3/2}$	$n + \sin^2 n$	X		X		X

Aufgabe 5 (Punkte)

14.56

Gegeben sei die Rekurrenzgleichung T(n) = T(n/12) + n.

a) Bestimmen Sie mit dem Mastertheorem die Komplexität des zugehörigen Algorithmus. $\alpha = 1$, b = 12, f(n) = n $n \log n = n$ $\log n = 1$

$$a=1, b=12, f(n)=n$$

3. Fell, also
$$T(n) = \Theta(n)$$

b) Skizzieren Sie den zugehörigen Rekursionsbaum.

c) Berechnen Sie an Hand des Rekursionsbaums die Komplexität des zugehörigen Algorithmus.

$$T(n) < \sum_{\lambda=0}^{\infty} \left(\frac{1}{12}\right)^{\lambda} \cdot N$$

$$= \frac{1}{1 - \frac{1}{12}} \cdot n = \frac{12}{11} \cdot n$$

$$\Rightarrow T(n) = \Theta(n)$$

Aufgabe 6 (6 Punkte)

Gegeben ist folgende Entfernungstabelle des ungerichteten Graphen G mit den Knoten 1,2,3,4,5:

	1	2	3 4 5	
1	-		LEUS CONTRACTOR	
2	3	_		
3 4 5	9	5	-	
4	7	6	4 (-)	6
5	8	7	6 A -/	
	-		(/	

a) Lösen Sie das Single-Source-Shortest-Path-Problem mit Knoten 3 als Quelle. Geben Sie als Lösung alle Kanten in der aufspannenden Baum an als Chrapher (G = (UE) and an an and chrapher with the content of the conten

15.12

Aufgabe 7 (6 Punkte ())

Gegeben sei die Grammatik $G = (\{B, B_0, B_1\}, \{0, 1\}, P, B)$ mit

$$P = \{\ B \rightarrow 0 B_0 | 1 B_1, \ B_0 \rightarrow 0 B, \ B_1 \rightarrow 1 B, \ B \rightarrow \varepsilon \ \}.$$

a) Geben Sie alle Worte mit maximal 4 Zeichen an, die sich aus dieser Grammatik ableiten lassen.

€,00,11,0000,0011,1100,1111

7

b) Geben Sie einen zu G äquivalenten regulären Ausdruck an.

((00) (11))*

2

c) Geben Sie das Zustandsübergangsdiagramm eines endlichen Automaten an, der die Sprache L(G) erkennt.

7

15.17