Neural Networks and Backpropagation Lecture

Grégoire Payen de La Garanderie

Durham University

February 17, 2020

Neural Networks and Function Minimisation

Function of one real-valued variable

$$f: \mathbb{R} \to \mathbb{R}$$
 $x \mapsto f(x)$

Activation functions

Function of two real-valued variables

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $x, y \mapsto f(x, y)$

Example: $f(x, y) = 4x + 7y^2$

Function of n real-valued variables

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$x_1, \dots, x_n \mapsto f(x_1, \dots, x_n)$$

Jacobian

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

 $x_1,\ldots,x_n\mapsto (y_1,\ldots,y_m)=f(x_1,\ldots,x_n)$

Jacobian

$$J_{f} = \frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{bmatrix}$$

Given h(x) = f(g(x)) $h'(x) = f'(g(x)) \times g'(x)$

Example: A simple network

Function of multiple vectors

$$f: \mathbb{R}^s \times \mathbb{R}^t \to \mathbb{R}^u$$

 $x, y \mapsto f(x, y)$

Example: Multilinear Map

$$f: \mathbb{R}^n \times \mathbb{R}^{m \times n} \times \mathbb{R}^m \to \mathbb{R}^m$$

 $x, W, b \mapsto Wx + b$

