

Introduction

2017010698 수학과 오서영

목차

- **0**. Prolog
- 1. Example: Polynomial Curve Fitting
 - 2. Probability Theory
 - 3. Model Selection
 - 4. The Curse of Dimensionality
 - **5**. The Decision Theory
 - 6. Information Theory

패턴인식 -> 불확실성(uncertainty) 의 문제

: finite size of data sets, Noise on measurements

- Probability Theory

: consistent framework for the quantification and manipulation of uncertainty

- Decision Theory

: incomplete or ambiguous information -> optimal predictions

Probability Theory – Frequentist

: 실제 데이터가 존재해야 불확실성을 정량화 가능 -> 빈도를 통해 모델링

Probability Theory - Bayesian probabilities

: 사건이 발생하지 않은 경우에도 확률을 부여할 수 있다 -> 좀 더 불확실한 경우에도 모델링이 가능

Curve Fitting 문제에서는 모수 w가 알려지지 않은 고정된 값으로 여겨졌다. (unknown but fixed) 하지만 베이지안 방식은 모든 값이 확률 값이므로 이를 하나의 확률 변수로 고려

Probability Theory - Bayesian probabilities

$$p(\mathbf{w}|D) = \frac{p(D|\mathbf{w})p(\mathbf{w})}{p(D)}$$

- 관찰되는 데이터가 존재하기 이전에 이미 p(w)를 통해 w 의 불확실한 정도를 수식에 반영
 -> prior probability distribution p(w)
 - how probable the observed data set is for different settings of the w
 -> likelihood p(D|w)

$$posterior \propto likelihood \times prior$$

$$\text{normalization} \quad p(D) = \int p(D|\mathbf{w})p(\mathbf{w})d\mathbf{w}$$

가우시안 분포 (Gaussian distribution) = 정규분포

$$N(x \mid \mu, \sigma^2) = rac{1}{(2\pi\sigma^2)^{1/2}} \mathrm{exp}igg\{ -rac{1}{2\sigma^2} (x-\mu)^2 igg\}$$

Parameter:

 μ : mean

σ: standard deviation

정확도(precision) := 1/σ^2

$$N(x \mid \mu, \sigma^{2}) > 0 \qquad (1.47)$$

$$\int_{-\infty}^{\infty} N(x \mid \mu, \sigma^{2}) dx = 1 \qquad (1.48)$$

$$E[x] = \int_{-\infty}^{\infty} N(x \mid \mu, \sigma^{2}) \cdot x dx = \mu \qquad (1.49)$$

$$E[x^{2}] = \int_{-\infty}^{\infty} N(x \mid \mu, \sigma^{2}) \cdot x^{2} dx = \mu^{2} + \sigma^{2} \qquad (1.50)$$

$$var[x] = E[x^{2}] - E[x]^{2} = \sigma^{2} \qquad (1.51)$$

(EX) 관찰 데이터 집합 x=(x1,...,xN).T -> 이 데이터 집합 하나가 관찰될 수 있는 확률?

각각의 데이터가 발현되는 가능성: i.i.d

$$p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^N N(x_n \mid \mu,\sigma^2)$$

(EX) 관찰 데이터가 하나의 가우시안 분포를 따름.

얻는것 : 관찰 데이터 집합

문제: 가우시안 분포를 결정

-> 주어진 샘플이 어떤 가우시안 분포에서 나왔는지 결정 -> p(x | μ, σ^2) 를 이용하여 이러한 관찰 결과를 만들어낼 만하다고 생각할 수 있는 가장 타당한 μ 와 σ 찾기

→ Parameter estimation

$$\ln p(\mathbf{x} \mid \mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

→ maximize

각각 샘플에 대한 평균, 분산

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n \qquad (1.55)$$

$$\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})^2 \qquad (1.56)$$

→ MLE (Maximum likelihood estimation) -> 쉽게 overfit

3. Model Selection

데이터가 충분하다면 다양한 모델을 학습하여 가장 적당한 파라미터 값을 추정할 수 있다

cross validation

: Random 으로 고른 (S-1)/S 를 Training Set 으로, 1/S 를 Test set 으로 학습 진행 -> 학습 데이터에만 종속적이고 Overfitting이 발생하지 않는 측정값을 찾는 것.

3. Model Selection

infomation criteria

: MLE 로 인해 발생되는 overfit을 막기 위해 페널티 조건을 추가

(EX) **AIC**(Akaike information criterion)

$$\ln p(D|\mathbf{w}_{ML}) - M$$

M : 모델에서 사용한 parameter 의 개수 (penalty)

현재 주어진 데이터를 가장 적합하게 만드는 parameter 를 추정하되 모델이 복잡해서는 안된다

즉, 동일한 성능을 내는 모델 두개가 제공된다면 여기서 덜 복잡한 모델을 선택할 수 있어야 한다.