第三章 词性标注

王峰 华东师大计算机系

主要内容

• 词性标注概述

- 词性自动标注的方法
 - -基于规则
 - -基于统计
- 小结

1. 词性标注概述

- 分词: 判断词的结构,对自然语言形态分析
- 词类: 一个语言全部词汇的子类划分
 - Part of speech (POS), Word class
- 词性标注 (POS Tagging): 判断词的*类别*,是词汇最重要的特性,是连接词汇到句法的桥梁

现代汉语的词类系统

词性标注概述

- 词性标注的主要任务是消除词性兼类歧义。
- 在任何一种自然语言中,词性兼类问题都普遍存在。

例如: (p:介词; q:量词; m:数词; c:连词; f:方位词; r:代词)

1) Time flies like an arrow.

Time/n-v flies/v-n like/p-v an/det arrow/n.

2)把这篇报道编辑一下.

把/q-p-v-n 这/r 篇/q 报道/v-n 编辑/v-n 一/m-c 下/f-q-v

3) 两 把 <u>锁</u> 两次

一件 制服 制服 不了小偷

两朵花 花时间

汉语中兼类词 的比例

兼类数	兼类词数	百分比	例词及词性标记
5	3	0.01%	和 c-n-p-q-v
4	20	0.04%	光 a-d-n-v
3	126	0.23%	™ n-q-v
2	1475	2.67%	锁 n-v
合计	1624	2.94%	总词数: 55191

数据来源: 北大计算语言所《现代汉语语法信息词典》1997年版

兼类	词数	百分比	例词
n-v	613	42%	爱好,把握,报道
a-n	74	5%	本分,标准,典型
a-v	217	15%	安慰,保守,抽象
b-d	103	7%	长期,成批,初步
n-q	64	4%	笔,刀,口
a-d	30	2%	大, 老, 真
合计	1101	75%	兼两类词数: 1475

兼类词在实际语料中分布示例

词	词性1: 概率	词性2: 概率	词性3: 概率	词性4: 概率
把	p: 0.96	q: 0.03	v: 0.01	m: 0.00
被	p: 1.00	Ng: 0.00		
并	c: 0.86	d: 0.14		
次	q: 1.00	Bg: 0.00		
从	p: 1.00	Vg: 0.00		
大	a: 0.92	d: 0.08		
到	v: 0.80	p: 0.20		
得	u: 0.76	v: 0.24	e: 0.00	
等	u: 0.98	v: 0.02	q: 0.00	
地	u: 0.89	n: 0.11		
对	p: 0.98	v: 0.01	q: 0.01	a: 0.00
就	d: 0.87	p: 0.13	c: 0.00	
以	p: 0.84	c: 0.11	j: 0.05	
由	p: 1.00	v: 0.00		
在	p: 0.95	d: 0.02	v: 0.02	

兼类词在实际语料中分布

SPAN	1	2	3	4	5	6	7	8	9	10	11
#	2043	898	377	202	83	39	21	10	2	1	
%	55.58	24.43	10.26	5.50	2.26	1.06	0.57	0.27	0.05	0.05	0.03
+%	55.58	80.01	90.27	95.77	98.03	99.09	99.66	99.93	99.98	100.0	100.0

刘开瑛, 2000, 《中文文本自动分词和标注》, 商务印书馆, 182页

- 兼类词在汉语词汇中所占比例较小;
- 常用词兼类比例较高;
- 大部分兼类词所兼词类是使用频度较高的主要词性。

英语词的兼类现象

10.4 percent of the lexicon is ambiguous as to part-of-speech (types). 40 percent of the words in the Brown corpus are ambiguous (tokens).

引自 http://www.cs.columbia.edu/~becky/cs4999/04mar.html

Degree of ambiguity	Total frequency (39440)
1 tag	35340
2	3760
3	263
4	61
5	12
6	2
7	1

数据来源: Brown 语料库

兼类词串在语料中的分布统计(英语)

Span	Frequency	Span	Frequency
3	397,111	11	382
4	143,447	12	161
5	60,224	13	58
6	26,515	14	29
7	11,409	15	14
8	5,128	16	6
9	2,161	17	1
10	903	18	0
		19	1

数据来源: Brown 语料库

引自 http://www.cs.columbia.edu/~becky/cs4999/span-lengths.html

词性标记集

- 标注集的确定原则
 - 不同语言中,词性划分基本上已经约定俗成。
 - 自然语言处理中对词性标记要求相对细致。
- 一般原则:
 - 标准性: 普遍使用和认可的分类标准和符号集;
 - 兼容性: 与已有资源标记尽量一致,或可转换;
 - <u>可扩展性</u>:扩充或修改。

汉语词类归属测试(调查)网页 http://ccl.pku.edu.cn:8080/pos/现代汉语语法基础知识网页

http://ccl.pku.edu.cn/course/xdhyjs/question.asp

标记	描述	标记	描述
Ag	形语素	ns	地名
a	形容词	nt	机构团体
ad	副形词	nz	其他专名
an	名形词	0	拟声词
ь	区别词	р	介词
e	连词	q	量词
Dg	副语素	r	代词
d	副词	s	处所词
e	叹词	Tg	时语素
f	方位词	t	时间词
g	语素	ս	助词
h	前接成分	Vg	动语素
i	成语	v	动词
j	简称略语	vd	副动词
k	后接成分	vn	名动词
1	习用语	w	标点符号
m	数词	x	非语素字
Ng	名语素	у	语气词
n	名词	z	状态词
nr	人名		

北大《人民日报》 标注语料库词性标记集

标记集中共有106个代码

- ✓ 26个基本词类代码,
- ✓ 74个扩充代码。

在处理真实语料的时候, 汉语 词类标记集中通常包含一些非 功能分类的标记, 例如: 成语、 习用语、简称略语等比词大的 单位;

也包含一些标记,用于标注语 素、前接成份、后接成份等比 词小的单位。

分级词性标记集

	第一级	第二级	第三级	说明
数量	26	48	106	
标记	a			
	b			
	С			
	•••			
	n	n	n	名词
		m.	nr	人名
			nrf	姓
			nrg	名
		ns		•••
		nt		
		nz		
	•••			
	V	v	v	动词
		vd	vd	副动词
		vn	vn	名动词
			vu	助动词
			VX	形式动词
	•••		•••	
	Z	•••	•••	•••

语法学界对汉语词类的认识还有不够清晰的地方。 汉语词类的划分标准,词 类数量的多寡,词类之间 的关系等等,都还存在争 议。

少 ← 词性标记 → 多 粗 ← 语法特征 → 细 简 ← 语法规则 → 繁

2. 词性自动标注

词性自动标注的方法

序号	作者	标记集	方法	标注效率	处理语料规模	精确率
1	Klein&Simmons (1963)	30	人工规则	1. The second se	百科全书样本	90%
2	TAGGIT (Greene&Rubin, 1971)	86	人工规则	-	Brown语料库	77%
3	CLAWS (Marshall,1983; Booth, 1985)	130	概率法	低	LOB语料库	96%
4	VOLSUNGA (DeRose,1988)	97	概率法	高	Brown语料库	96%
5	Eric Brill's tagger (1992-94)	48	机器规则	高	Upenn WSJ语 料库	97%

词性自动标注的方法

- 基于规则的词性标注方法
 - -人工规则
 - 机器学习规则
- 基于统计模型的词性标注方法
- 规则和统计方法相结合的词性标注方法
- 基于有限状态变换机的词性标注方法
- 基于神经网络的词性标注方法

•

基于规则的词性标注方法

- TAGGIT 词性标注系统 (Brown University)
 - 86 种词性, 3300 规则
 - 手工编写词性歧义消除规则
- 山西大学的词性标注系统 [刘开瑛, 2000]
 - 手工编写消歧规则
 - 建立非兼类词典
 - 建立兼类词典
 - 一词性可能出现的概率高低排列
 - 构造兼类词识别规则

基于规则的词性标注示例

- @@ 信(n-v)
 - CONDITION FIND(L,NEXT,X){%X.yx=的|對|写|看|读}
 SELECT n
 OTHERWISE SELECT v
- @@一边(c-s)
 - CONDITION FIND(LR,FAR,X) {%X. yx=一边} SELECT c OTHERWISE SELECT s

基于规则的词性标注示例

(1)并列鉴别规则

如:体现了人民的要求(n/v?)和愿望(n,非兼类)

(2)同境鉴别规则

如:一个优秀的企业必须具备一流的<u>产品(n,非兼类)</u>、一流的<u>管理(n/v?)</u>和一流的<u>服务(n/v?)</u>。

- (3)区别词鉴别规则(区别词只能直接修饰名词) 如:他们搞的这次大型(区别词,非兼类)调查(v/n?)历时半年。
- (4) 唯名形容词鉴别规则(有些形容词只能直接修饰名词)如: 重大(唯名形容词)损失(n/v?) 巨大(唯名形容词)影响(n/v?)

机器学习规则的词性标注方法

- 基于转换的错误驱动的机器学习方法
- Eric Brill (1992,1995), Transformation-based errordriven part of speech tagging

基本思想:

- 1. 正确结果是通过不断修正错误得到的
- 2. 修正错误的过程是有迹可循的
- 3. 让计算机学习修正错误的过程,这个过程可以用转换规则(transformation)形式记录下来,然后用学习得到的转换规则进行词性标注

下载Brill's tagger: http://en.wikipedia.org/wiki/Brill_tagger

基于转换的错误驱动的词性标注方法

- 错误驱动的机器学习方法
 - 初始词性赋值
 - 对比正确标注的句子,自动学习结构转换规则
 - 利用转换规则调整初始赋值

转换规则的形式

- 转换规则由两部分组成
 - 改写规则(rewriting rule)
 - 激活环境(triggering environment)
- · 一个例子: 转换规则T1
 - 改写规则:将一个词的词性从动词(v)改为名词(n);
 - 激活环境:
 - · 该词左边第一个紧邻词的词性是量词(q),
 - 第二个词的词性是数词(m)

S0: 他/r 做/v 了/u一/m 个/q 报告/v (运用T1)

S1: 他/r做/v 了/u一/m 个/q 报告/n

转换规则的模板

- 改写规则:将词性标记 x 改写为 y
- 激活环境:
 - (1) 当前词的前(后)面一个词的词性标记是z;
 - (2) 当前词的前(后)面第二个词的词性标记是z;
 - (3) 当前词的前(后)面两个词中有一个词的词性标记是z;

•••••

(其中x, y, z是任意的词性标记代码)

```
If t-1==z, then x->y;
If t-1==q, t-2==m, then v->n;
```

根据模板可能学到的转换规则

T1: 当前词的前一个词的词性标记是量词(q)时,将当前词的词性标记由动词(v)改为名词(n);

T2: 当前词的后一个词的词性标记是动词(v)时,将当前词的词性标记由动词(v)改为名词(n);

T3: 当前词的后一个词的词性标记是形容词(a)时,将当前词的词性标记由动词(v)改为名词(n);

T4: 当前词的前面两个词中有一个词的词性标记是名词(n)时,将 当前词的词性标记由形容词(v)改为数词(m);

转换规则的学习流程

转换规则学习器算法描述

- 1) 首先用初始标注器对 $C_{0 \text{ raw}}$ 进行标注,得到带有词性标记的语料 C_{i} (i=1);
- 2) 将C_i跟正确的语料标注结果C₀比较,可以得到C_i中总的词性标注错误数;
- 3) 依次从候选规则中取出一条规则 T_m (m=1,2,...),每用一条规则对 C_i 中的词性标注结果进行一次修改,就会得到一个新版本的语料库,不妨记做 C_i^m (m=1,2,3,...),将每个 C_i^m 跟 C_0 比较,可计算出每个 C_i^m 中的词性标注错误数。假定其中错误数最少的那个是 C_i^l (可预期 C_i^l 中的错误数一定少于 C_i 中的错误数),产生它的规则 T_i 就是这次学习得到的转换规则;此时 C_i^l 成为新的待修改语料库,即 $C_i = C_i^l$ 。
- 4) 重复第3步的操作,得到一系列的标注语料库 C_2^k , C_3^l , C_4^m ,...后一个语料库中的标注错误数都少于前一个中的错误数,每一次都学习到一条令错误数降低最多的转换规则。直至运用所有规则后,都不能降低错误数,学习过程结束。这时得到一个有序的转换规则集合 $\{T_a, T_b, T_c, ...\}$

转换规则学习示例

基于统计模型的词性标注方法

词性标注问题: 寻找最优路径

4×1×1×2×2×2×3=96种可能性,哪种可能性最大?

隐马尔可夫模型 (Hidden Markov Model)

- Andrei Andreyevich Markov (1856-1922)
 http://www-groups.dcs.stand.ac.uk/~history/Mathematicians/Markov.html
- 有关马尔可夫过程(Markov Process)、隐马尔可夫模型(Hidden Markov Model)更详细的介绍,参见:
 - 陈小荷《现代汉语自动分析》,北京语言文化 大学出版社,2000,第10章。

HMM的罐子比喻(L.R.Rabiner,1989)

放有彩色球的罐子,每个罐子都有编号,上帝随机地从罐子中摸出彩球

HMM的罐子比喻

- 把/这/篇/报道/编辑/一/下/ 观察到的序列:

基于HMM进行词性标注

两个随机过程:

- 1. 选择罐子一上帝按照一定的转移概率随机地选择罐子
- 2. 选择彩球 上帝按照一定的概率随机地从一个罐子中选择 一个彩球输出

人只能看到彩球序列(词汇序列,记做 $W = w_1 w_2 \cdots w_n$),需要去猜测罐子序列(隐藏在幕后的词性标记序列,记做 $T = t_1 t_2 \cdots t_n$)

已知词串W(观察序列)情况下,求使得条件概率 P(T|W)值最大的那个T',一般记做:

$$T' = \arg \max_{T} P(T|W)$$

基于HMM进行词性标注

• 根据条件概率公式可得

$$P(T|W) = \frac{P(T,W)}{P(W)} = \frac{P(T)P(W|T)}{P(W)}$$
 (1)

• 可以进一步简化为:

$$P(T|W) \approx P(T)P(W|T) \tag{2}$$

其中

$$P(T) = P(t_1, t_2, \dots, t_n)$$

$$= P(t_1)P(t_2|t_1) \cdots P(t_n|t_{n-1}, t_{n-2}, \dots t_1)$$
 (3)

• 根据一阶HMM的独立性假设,可得

$$P(T) \approx P(t_1)P(t_2|t_1)\cdots P(t_n|t_{n-1})$$
 (4)

• 词性之间的转移概率可以从语料库中估算得到:

$$P(t_i|t_{i-1}) = \frac{\text{insimpt}_i \oplus \text{insimpt}_{t_{i-1}} \oplus \text{insimpt}_{t_{i-1}} \oplus \text{insimpt}_{t_{i-1}}}{\text{insimpt}_{t_{i-1}} \oplus \text{insimpt}_{t_{i-1}}}$$
 (5)

基于HMM进行词性标注

- P(W|T)是已知词性标记串,产生词串的条件概率 $P(W|T) = P(w_1, w_2, \dots, w_n | t_1, t_2, \dots, t_n)$ $= P(w_1|t_1)P(w_2|t_2, t_1, w_1) \dots P(w_n|t_n, \dots, t_1, w_{n-1}, \dots, w_1)$ (6)
- 根据HMM的独立性假设,公式6可简化为: $P(W|T) \approx P(w_1|t_1)P(w_2|t_2)\cdots P(w_n|t_n)$ (7)
- 已知词性标记下输出词语的概率可以从语料库中统计得到:

$$P(w_i|t_i) = \frac{\text{insimple}_i \text{simple}_i \text{otherwise}}{\text{insimple}_i \text{simple}} \text{insimple}_i \text{simple}_i$$
(8)

基于HMM进行词性标注示例

```
\begin{split} & P(T|W) \approx P(T)P(W|T) \\ &= P(t_1)P(w_1|t_1) * P(t_2|t_1)P(w_2|t_2) \cdots P(t_n|t_{n-1}) \ P(w_n|t_n) \end{split}
```

例: 把/?这/?篇/?报道/?编辑/?一/?下/? 把/q-p-v-n这/r篇/q报道/v-n编辑/v-n一/m-c下/f-q-v

 $P(T_1|W) = P(q)P(把|q)*P(r|q)P(这|r)...P(f|m)P(下|f)$

 $P(T_2|W) = P(q)P(把|q)*P(r|q)P(这|r)...P(q|m)P(下|q)$

P(T3|W) = P(q)P(把|q)*P(r|q)P(这|r)...P(v|m)P(下|v)

从中选出一 个最大值

••••

P(T96|W) = P(n)P(把|n)*P(r|q)P(这|r)...P(v|c)P(下|v)

初始状态概率分 词语输出概率 布

词性转移概率

估算HMM的参数

- · 从语料库估算用于词性标注的HMM的参数:
 - (1) 初始状态的概率分布
 - (2) 词性转移概率
 - (3) 已知词性条件下词语的输出概率

词性转移矩阵(用于估算转移概率)

Tag	С	f	m	n	р	q	r	V
С	736	700	3971	43250	9253	53	7776	40148
f	900	475	4569	7697	2968	278	1290	26951
m	547	1470	17505	46001	1722	139653	305	13778
n	55177	50571	27918	277181	43023	404	9769	221776
p	47	2664	14131	78251	3363	142	27249	36807
q	732	7845	4506	52310	2451	176	760	13288
r	2055	1225	12820	43953	11229	7681	3572	53391
V	13715	14843	70914	221796	44651	3226	46697	191967

词性	频次
С	168350
f	110878
m	270381
n	1539367
р	269186
q	155374
r	214942
V	1193317

a(c->f) = P(f|c)=
$$\frac{P(cf)}{P(c)} = \frac{700}{168350}$$

词语|词性频度表(用于估算输出概率)

词语	词性	频次	词语	词性	频次
把	p	9877	编辑	n	243
把	q	290	编辑	V	100
把	n	2	<u> </u>	m	20672
把	V	208	<u> </u>	С	2229
这	r	21990	下	f	6313
篇	q	706	下	q	161
报道	V	4040	下	V	2271
报道	n	420			

词性	频次
С	168350
f	110878
m	270381
n	1539367
р	269186
q	155374
r	214942
V	1193317

$$(把|p) = \frac{9877}{269186}$$

效率问题

- 假定有N个词性标记(罐子),给定词串中有M个词(彩球)考虑最坏的情况:每个词都有N个可能的词性标记,则可能的状态序列有 N^{M} 个
- 随着M(词串长度)的增加,需要计算的可能 路径数目以指数方式增长,即算法复杂性为指 数级
- 需要寻找更有效的算法......

Viterbi算法 — 提高效率

- Viterbi算法是一种动态规划方法(dynamic programming)
- 如果当前节点在最优路径上,那么,不管当前节点的后续路径如何,当前节点的来源路径必定是最优的。
- 最优路径的求解可以迭代进行。
- 12条路径(1×2×3×2×1=12), 哪条路权重最重?

动态规划示例

词性标记局部路径示意

假定一个词串W中每个词都有N个词性标记,那么从词串中第m个词(wm)到第m+1个词(wm+1)的第j个词性标记就有N条可能的路径。这N条路经中存在一条概率最大的路径,假定为titj

W1

W₂

W:

 t_2 t_i t_i t_N Wm+1

定义与记号

- 1. 从第m个词wm的各个词性标记向第m+1个词wm+1的各个词性标记转移的概率,可以记作 $a_{ij} = a(t_i \rightarrow t_j) = P(t_j|t_i)$ 。第1个词w1前面没有词,w1的各个词性标记也满足一定的概率分布,可以记作 π_i 。
- 2. 从起点词到第m个词的第i个词性标记的各种可能路径(即各种可能的词性标记串)中,必有一条路经使得wm概率最大,可以用一个变量来对这一过程加以刻画,这个变量即Viterbi变量,记作

$$\delta_m(i) = \max_{t_1, t_2, \cdots, t_{m-1}} P(t_1, t_2, \cdots, t_m = i, w_1, w_2, \cdots, w_m)$$

定义与记号

3. HMM的状态从第m-1个词转移到第m个词,整个路径的概率可以通过HMM在第m-1个词时的最大概率来求得,即Viterbi变量可以递归求值

$$\delta_m(j) = \max_{1 \le i \le N} \delta_{m-1}(i) a_{ij} P(w_m | t_j) \ 2 \le m \le M, \ 1 \le j \le N$$

4. 当扫描过第m-1个词,状态转移到第m个词时,需要有一个变量记录已经走过的路径中,哪一条是最佳路径,即记住该路径上wm的最佳词性标记,这个变量可以记作 $\Delta_m(i)$

Viterbi算法

1. 初始化:

$$\delta_1(i) = \pi_i P(w_1|t_i)$$
, $1 \le i \le N$

- 2. 迭代计算通向每个词(wm)的每个词性标记的最佳路径 $\delta_m(j) = \max_{1 \le i \le N} \delta_{m-1}(i) a_{ij} P\left(w_m | t_j\right), 2 \le m \le M, 1 \le j \le N$ $\Delta_m(j) = \arg\max_{1 \le i \le N} \delta_{m-1}(i) a_{ij} P\left(w_m | t_j\right)$
- 3. 到达最后一个词(wm)时, 计算这个词的最佳词性标记

$$P = \max_{1 \leq i \leq N} \delta_M(i)$$
, $t_M = \arg \max_{1 \leq i \leq N} \delta_M(i)$

4. 从wm 的最佳词性标记开始,顺次取得每个词的最佳词性标记

$$t_{m}^{*} = \Delta_{m+1}(t_{m+1}^{*})$$
 , $m = M-1, M-2, \cdots, 1$

Viterbi算法词性标注过程示例

把/p-q-n-v 这/r 篇/q 报道/v-n 编辑/v-n 一/m-c 下/v-q-f


```
\delta(把/p)=\pi(p)*p(把|p)=\pi(p)*(9877/269186) \approx 0.0367
```

$$\delta$$
(把/q)= π (q)*p(把|q)= π (q)*(290/155374) \approx 0.00187

$$\delta$$
(把/n)= π (n)*p(把|n)= π (n)*(2/1539367) \approx 1.299e-6

$$\delta$$
(把/v)= π (v)*p(把|v)= π (r)*(208/1193317) \approx 1.743e-4

把->这

$$\sqrt{\delta(\dot{\mathbf{z}}/\mathbf{r})1=\delta(\mathcal{H}/\mathbf{p})*a(\mathbf{p}-\mathbf{r})*p(\dot{\mathbf{z}}|\mathbf{r})}$$
 =0.0367*(27249/269186)*(21990/214942) = 3.8e-4 $\delta(\dot{\mathbf{z}}/\mathbf{r})2=\delta(\dot{\mathbf{H}}/\mathbf{q})*a(\mathbf{q}-\mathbf{r})*p(\dot{\mathbf{z}}|\mathbf{r})$ =0.00187*(760/155374)*(21990/214942) = 9.35e-7 $\delta(\dot{\mathbf{z}}/\mathbf{r})3=\delta(\dot{\mathbf{H}}/\mathbf{n})*a(\mathbf{n}-\mathbf{r})*p(\dot{\mathbf{z}}|\mathbf{r})$ =1.299e-6*(9769/1539367)*(21990/214942) = 8.43e-10 $\delta(\dot{\mathbf{z}}/\mathbf{r})4=\delta(\dot{\mathbf{H}}/\mathbf{r})*a(\mathbf{v}-\mathbf{r})*p(\dot{\mathbf{z}}|\mathbf{r})$ =1.743e-4*(46697/1193317)*(21990/214942) = 6.972e-7

Viterbi算法词性标注过程示例

篇->报道

- √ δ(报道/n)1=δ(篇/q)*a(q->n)*p(报道|n) ≈(52310/155374)*(420/1539367)=9.1857e-5
- √ δ(报道/v)1=δ(篇/q)a(q->v)*p(报道|v) ≈(13288/155374)*(4040/1193317)=2.8954e-4

报道->编辑

```
\delta(編辑/n)1=\delta(报道/n)1*a(n->n)*p(編辑|n) =9.1857e-5*(277181/1539367)*(243/1539367) = 2.6e-9 \sqrt{\delta}(編辑/n)2=\delta(报道/v)1*a(v->n)*p(編辑|n) =2.8954e-4*(221796/1193317)*(243/1539367) = 8.49e-9 \delta(編辑/v)1=\delta(报道/n)1*a(n->v)*p(編辑|v) =9.1857e-5*(221776/1539367)*(100/1193317) = 1.1e-9 \sqrt{\delta}(編辑/v)2=\delta(报道/v)1*a(v->v)*p(編辑|v) =2.8954e-4*(191967/1193317)*(100/1193317) = 3.9e-9
```


编辑->一

```
\delta(-/m)1=\delta(编辑/n)2*a(n->m)*p(-|m) =8.49e-9*(27918/1539367)*(20672/270381) = 1.18e-11 \sqrt{\delta(-/m)2=\delta(编辑/v)2*a(v->m)*p(-|m)} =3.9e-9*(70914/1193317)*(20672/270381) = 1.77e-11 \sqrt{\delta(-/c)1=\delta(编辑/n)2*a(n->c)*p(-|c)} =8.49e-9*(55177/1539367)*(2229/168350) = 4e-12 \delta(-/c)2=\delta(编辑/v)2*a(v->c)*p(-|c) =3.9e-9*(13715/1193317)*(2229/168350) = 5.9e-13
```


Viterbi算法的复杂度

- 假定有N个词性标记,给定词串中有M个词
- 考虑最坏的情况,扫描到每一个词时,从前一个词的各个词性标记(N个)到当前词的各个词性标记(N个),有 $N \times N = N^2$ 条 路经,即 N^2 次运算,扫描完整个词串(长度为M),计算次数为 N^2 个M相加,即 $N^2 \times M$ 。
- 对于确定的词性标注系统而言, N 是确定的,因此,随着M长度的增加,计算时间以线性方式增长。也就是说,Viterbi算法的计算复杂性是线性的。

HMM的形式描述

- 一个HMM可以记做 $\lambda = (S, O, A, B, \pi)$:
- 1. 状态集合 $S = \{s_1, s_2, ..., s_N\}$, 一般以 q_t 表示模型在t时刻的状态;
- 2. 输出符号集合 $O = \{o_1, o_2, \dots, o_M\};$
- 3. 状态转移矩阵 $A = \{a_{ij}\}$ $\{a_{ij}$ 是从i状态转移到j状态的概率),其中 $a_{ij} = P(q_{t+1} = j | q_t = i), 1 \le i, j \le N, a_{ij} \ge 0, \sum_{j=1}^{N} a_{ij} = 1;$
- 4. 可观察符号的概率分布 $B = b_j(k)$,表示在状态j时输出符号 v_k 的概率,其中: $b_j(k) = P(o_t = v_k | q_t = s_j)$, $1 \le j \le N$, $1 \le k \le M$, $b_j(k) \ge 0$, $\sum_{k=1}^M b_j(k) = 1$;
- 5. 初始状态概率分布,一般记做 $\pi = \{\pi_i\}$,其中: $\pi_i = P(q_1 = s_i)$, $1 \le i \le N$, $\pi_i \ge 0$, $\sum_{i=1}^N \pi_i = 1$.

HMM的三个基本问题

- 给定一个观察序列 $O = o_1 o_2 \cdots o_T$ 和模型 λ ,如何计算给定模型 λ 下观察序列O的概率 $P(O|\lambda)$
- 给定一个观察序列 $O = o_1 o_2 \cdots o_T$ 和模型 λ ,如何计算状态序列 $Q = q_1 q_2 \cdots q_T$,使得该状态序列能"最好地解释"观察序列 (对应词性标注问题)
- 给定一个观察序列 $O = o_1 o_2 \cdots o_T$,如何调节模型 λ 的参数值,使得 $P(O|\lambda)$ 最大

序列(sequential data)分类、标注模型

• 基于字标注的分词

В	E	M	S
词首	词尾	词中	独立词

自然句形式	已结婚的和尚未结婚的都应该到计生办登记			
词切分结果	已/ 结婚/ 的/ 和/ 尚未/ 结婚/ 的/ 都/ 应该/ 到/ 计生办/ 登记/			
	已结婚的和尚未结婚的都应该到计生办登记			
	S B E S S B E B E S S B E S B M E B E			

• 条件随机场 (Conditional Random Fields)

• 语音识别

• 手语识别

• 行为分析

• 图像内容标注

• 视频

Sky Animal Grass

Sky Building Bus Ground

Sky Water, Sand People Building

Sky Mountain Snow

- 生物序列分析
- 金融市场预测
- 网络安全、信息抽取

规则和统计相结合的词性标注方法

• 规则消歧,统计概率引导

• 或者统计方法赋初值,规则消歧

例: HMM分词结果 把/p 这/r 篇/q 报道/v 编辑/v 一/m 下/q

规则T1:当前词的前一个词的词性标记是量词(q)时,将当前词的词性标记由动词(v)改为名词(n);

最后结果: 把/p 这/r 篇/q 报道/n 编辑/v 一/m 下/q

分词和词性标注一体化示例

先分词再标注

分词标注一体化

3 小结

- □统计方法、机器学习改错规则等基于语料 库的方法在词性标注中有比较显著的优势。
 - 统计模型的多样性
 - 决策树模型,最大熵模型, SVM,神经网络.....
 - 不同统计方法的融合
 - 词性标注与分词过程的融合