Carrera: DNI: Llenar con letra mayuscula de imprenta GRANDE

## Algoritmos y Estructuras de Datos. Examen Final. [13 de Febrero de 2003]

- Ej. 1.- Escribir las funciones primitivas del TAD LISTA con celdas simplemente enlazadas por punteros ó cursores. Es decir, implementar en Pascal los siguientes procedimientos/funciones listadas abajo. Incluir todas las definiciones de tipo necesarias. INSERTA(x,p,L), LOCALIZA(x,L), RECUPERA(p,L), SUPRIME(p,L), SIGUIENTE(p,L), ANULA(L), PRIMERO(L), y FIN(L).
- Ej. 2.- Escribir un función function CUENTA\_PROF(n:nodo; m:integer; A:arbol) : integer; que dado un nodo n en un árbol A cuenta el número de nodos del subárbol de A cuya raíz es n que están a profundidad m o menor (con respecto a n). Por ejemplo, para el árbol de la figura debe retornar

CUENTA\_PROF(G,2,G) -> 8 CUENTA\_PROF(J,1,G) -> 3 CUENTA\_PROF(N,3,G) -> 4



Usar las primitivas de árbol ordenado orientado siguientes: HIJO\_MAS\_IZQ(n,A),HERMANO\_DER(n,A). Sugerencia: Hacer la función recursiva. Notar que, por ejemplo:

CUENTA\_PROF(G,2,G) = 1 + CUENTA\_PROF(J,1,G) + CUENTA\_PROF(C,1,G)

La recursividad de la función debe cortar cuando  $\mathbf{n} = \Lambda$  o m < 0.

## Ej. 3.- Ejercicios básicos sobre TAD's

- (a) Escribir un procedimiento procedure SACAPAR(var L:lista; C:cola); que apendiza a la lista L todos los elementos de C que son pares, los cuales a su vez deben ser removidos de C. Se puede usar una estructura auxiliar (cola o lista). Por ejemplo, si inicialmente L={2,3,4} y C={1,6,3,5,2,8} entonces, después de hacer SACAPAR(L,C) debe quedar L={2,3,4,6,2,8} y C={1,3,5}. Utilizar las siguientes primitivas:
  - TAD LISTA: INSERTA(x,p,L), RECUPERA(p,L), SUPRIME(p,L), SIGUIENTE(p,L), ANULA(L), PRIMERO(L), y FIN(L).
  - TAD COLA: ANULA(C), PONE\_EN\_COLA(x,C), QUITA\_DE\_COLA(C), VACIA(C), y FRENTE\_DE\_COLA(C)

(b) Escribir un procedimiento procedure ELIMINA\_VALOR(var C:cola; n: integer); que elimina todos las ocurrencias del valor n en la cola C. Por ejemplo, si C = {1,3,5,4,2,3,7,3,5}, después de ELIMINA\_VALOR(C,3) debe quedar C = {1,5,4,2,7,5}. Sugerencia: Usar una estructura auxiliar lista o cola. El algoritmo debe tener un tiempo de ejecución O(n), donde n es el número de elementos en la cola original. Utilizar las primitivas del TAD COLA listadas en el ejemplo anterior.

## Ej. 4.- [LIBRES] Ejercicios operativos:

- (a) **Árboles:** Dibujar el árbol ordenado orientado cuyos nodos, listados en orden previo y posterior son
  - ORD\_PRE = $\{A, Z, S, T, U, W, Q, R, B\}$ .
  - ORD\_POST = $\{T, W, U, S, Z, R, B, Q, A\}$ .
- (b) **[LIBRES]** Dados los enteros  $\{9, 8, 11, 5, 13, 10, 6, 4, 12, 18, 1\}$  insertarlos, en ese orden, en un "árbol binario de búsqueda". Mostrar las operaciones necesarias para eliminar los elementos 9, 6 y 10.
- **Ej. 5.-** [LIBRES] Preguntas: [Responder según el sistema "multiple choice", es decir marcar con una cruz el casillero apropiado. Atención: Algunas respuestas son intencionalmente "descabelladas" y tienen puntajes negativos!!]

| (a) | Dadas las funciones $T_1(n) = 5n + \log n$ , $T_2(n) = 4n^2 + \sqrt{n}$ , $T_3(n) = 2^n + n!$ y $T_4(n) = \sqrt{(n)} + \log n$ decir cuál de los siguientes ordenamientos es el correcto   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                            |
|     | $T_2 < T_1 < T_4 < T_3$                                                                                                                                                                    |
| (b) | $T_4 < T_3 < T_2 < T_1$<br>El tiempo de ejecución para el algoritmo de clasificación por montículos ("quicksort") es $O(n \log(n) \ (n \text{ es el número de elementos a ordenar}) \dots$ |
|     | siempre.                                                                                                                                                                                   |
|     | cuando el vector ya está ordenado nunca.                                                                                                                                                   |
|     | en el caso promedio.                                                                                                                                                                       |
| (c) | Una ventaja del método de clasificación por selección, en comparación con otros algoritmo $lentos$ , es que realiza sólo $n$ $intercambios$                                                |
|     | a veces cuando el vector está ordenado.                                                                                                                                                    |
|     | siempre.                                                                                                                                                                                   |
| (1) | cuando el vector está desordenado.                                                                                                                                                         |
| (a) | ¿Cuál es el tiempo de ejecución del procedimiento de clasificación por incrementos decrecientes (shell-sort) en el caso promedio?                                                          |
|     | $ \bigcirc O(n^{1.3}) $                                                                                                                                                                    |
|     | $\bigcap_{n \in \mathcal{D}} O(n^{1.5})$                                                                                                                                                   |
|     | $\bigcap_{n \in \mathbb{N}} O(n!)$                                                                                                                                                         |