QIIME2 Microbiome Analysis

Bioinformatic Pipeline

Kayla Royce and Julia Murray

Background Information

- Data Sampling:
 - 20 samples
 - 2 pond locations
 - 2 treatments (duckweed vs pond water)
 - 5 replicates of each treatment
 - manifest.tsv: file containing locations of fastQ files
 - metadata.tsv: file containing information regarding identification of samples
- Microbiome Data Format:
 - Illumina HiSeq 2500
 - 250 base-pair, paired-end reads
 - Bacterial 16s rRNA
 - amplified 16S V4 region
 - 515f-806r barcodes
- Goal: Determine taxonomic differences between the two treatments and two locations

Raw Demultiplexed Demultiplex Denoise Sequences Sequences Representative Feature Table Sequences Filter Filtered Rep. Filtered Table Sequences Alpha-rarefaction k-mer diversity analysis Phylogenetic Taxonomic Graphs/Figures Classification Construction Differential Abundance Phylogenetic Taxonomic Barplot Tree Taxonomy

Methods

Methods

source activate qiime-2-amplicon-2024.5

Importing Data

- cp manifest.tsv and metadata.tsv from /tmp
 - Already demultiplexed

Denoising Prep

- demux summarize converts demux.qza into qzv file
 - Used to determine where to denoise data

Denoising Data

- dada2 denoise-paired used to denoise data
 - forward reads trimmed at 220 bases
 - reverse reads trimmed at 200 bases
- metadata tabulate generates QIIME2 visualization of denoised data including feature IDs, sequence, and their counts
 - used to determine where to filter samples
- tools export used to export ASV representative sequences in BLAST-able file

Filtering

- feature-table filter-samples
 - removes samples with less than 1000 reads
 - Sample ODR-3-3 removed due to having 0 reads
- feature-table summarize-plus
 - summarizes the filtered ASV feature table with metadata information
- feature-table tabulate-seqs
 - creates compiled table of all ASV sequences and their frequency data
- feature-table filter-features
 - filters the feature table so all features must be present in a minimum of 25% of the samples
- feature-table filter-seqs
 - filters the ASV representative sequences to match those in the feature table
- feature-table summarize-plus
 - creates visualization of the filtered feature table

Training Classifier

- Classifier used: wget -0 silva-138-99-seqs.qza and wget -0 silva-138-99-tax.qza
- feature-classifier extract reads filters the classifier for specific primer sequences
 - Forward primer: GTGCCAGCMGCCGCGTAA
 - Reverse primer: GGACTACHVGGGTWTCTAAT
- feature-classifier fit-classifier-naive-bayes trains custom classifier using the previously filtered reference sequences and the taxonomic classifier

Taxonomic Classification

- feature-classifier classify-sklearn assigns taxonomy to samples using the custom trained classifier
- feature-table tabulate-seqs visualizes ASV sequences into feature table with taxonomic information

Feature Table in QIIME2 View:

	Frequency	# of Samples Observed In
c721b4c609340cf459a6af3e02e5b7e5	5,690	14
6b3fd25486c30de6f3c9624143517c86	4,239	11
3bf5c259415e62364aea22cdf05c4933	3,713	11
67e3716aa0b883dd4e929e7a315ca0e1	3,622	12
fc011ad9c9a7e56a70e2e0a7418a33c5	2,488	12
3af48669bd795a4f010caf3d114f59ac	2,137	11
5287059f9ecee411ef4a8714c69cd60f	1,863	10

Taxonomic Classification in QIIME2 View:

Feature ID ▼	Sequence Length	Taxon: 0	Frequency	Samples Observed In
fc2307d3001a3b10f17ce7	407	dBacteria; pProteobacteria; cAlphaproteobacteria; oRickettsiales; fMitochondria; gMitochondria	1,049.0	10

Phylogenetic Tree Construction

- phylogeny align-to-tree-mafft-fasttree aligns the features in feature table and creates a rooted tree for phylogenetic tree construction
- while loop to create "itol.txt": file with node IDs and assigned genus and species
- Upload "rooted_tree.qza" and "itol.txt" (node labels) to iTOL for phylogenetic tree

```
LABELS
SEPARATOR COMMA
```

DATA

6ea7f755987885961e603405bf352d6b,Phacus paraorbicularis a66c20f220d4270e4c7e540cd6f5e71d,Emticicia sediminis 8f493c1143a685f13d2315be3a19507a,Monodopsis sp. 5287059f9ecee411ef4a8714c69cd60f,Flavobacterium cheonhonense 3d7825c893a6aa3d7eb33ce6fa97905f,Raphidocelis subcapitata

Methods (Downstream Analysis)

K-mer based diversity analysis

- conda activate q2-boots-amplicon-2025.4 activates QIIME2 environment boots kmer-diversity commands
- boots kmer-diversity computes k-mer based diversity metrics to avoid bias from taxonomic assignment

Alpha-rarefaction plot

• diversity alpha-rarefaction shows if selected sequencing depth contains majority of the species present

Taxonomic Bar-plot

• taxa barplot shows taxonomic composition and relative abundance for each sample type

Methods (Downstream Analysis)

Differential Abundance

- feature-table filter-samples filters features to compare duckweed and water samples
- taxa collapse collapses ASVs into species-level taxonomy (level 7)
- composition ancombe performs ANCOM-BC testing to identify significantly different species-level taxa across sample types
- composition da-barplot visualizes results of ANCOM-BC analysis with significance threshold of 0.001

Results: Pond Microbiome Metadata (Downstream Analysis)

- A QIIME 2 metadata file that describes our microbiome sequencing samples
- **sampleid**: Unique identifier for each sample (required by QIIME 2).
- **sample_type**: Either "water" or "duckweed", indicating what was sampled.
- **sub_location**: Either "pond_2" or "pond_3" different locations sites.
- replicate: Numbers 1 through 5 indicating replicates.
- 20 total samples:
 - 10 water samples (5 each from pond_2 and pond_3)
 - 10 duckweed samples (also 5 each from pond_2 and pond_3).

sampleid	sample_type	sub_location	replicate
#q2:types	categorical	categorical	numeric
ODR-2-1	water	pond_2	1
ODR-2-2	water	pond_2	2
ODR-2-3	water	pond_2	3
ODR-2-4	water	pond_2	4
ODR-2-5	water	pond_2	5
ODR-3-1	water	pond_3	1
ODR-3-2	water	pond_3	2
ODR-3-3	water	pond_3	3
ODR-3-4	water	pond_3	4
ODR-3-5	water	pond_3	5
ODR-2-1-DW	duckweed	pond_2	1
ODR-2-2-DW	duckweed	pond_2	2
ODR-2-3-DW	duckweed	pond_2	3
ODR-2-4-DW	duckweed	pond_2	4
ODR-2-5-DW	duckweed	pond_2	5
ODR-3-1-DW	duckweed	pond_3	1
ODR-3-2-DW	duckweed	pond_3	2
ODR-3-3-DW	duckweed	pond_3	3
ODR-3-4-DW	duckweed	pond_3	4
ODR-3-5-DW	duckweed	pond_3	5

Results:

Alpha-Rarefaction Plot

- Top Graph: Duckweed samples have higher Shannon index (Y-axis) = greater microbial diversity
 - Plateau = most diversity and captured
 - Bottom Graph:

Duckweed samples maintain higher retention across depths

> As depth increases, fewer samples meet depth threshold

Results:

Shannon Entropy (alpha) v. Braycurtis (beta) Graph

- Most informative
- Water: less diverse per sample but compositionally distinct
- Duckweed: more diverse within each sample and form distinct group
 - Rich and consistent microbial community

Results:

Observed Features (alpha) v. Jaccard (beta)

- Observed Features: richness
- Jaccard: presence/absence
- Water: Richer in taxa count = more observed features
 - Two groups: intra-group variation (ex. location of sample)
- **Duckweed:** more variable in richness (some samples have fewer taxa)

Results: Taxonomic Bar Plot

Results: phylogenetic tree

Results: Differential Abundance

Genus Ancombo

Thanks!

