

C6D10065A

Silicon Carbide Schottky Diode

Z-Rec® Rectifier

 \mathbf{V}_{RRM} = 650 V $\mathbf{I}_{F}(\mathbf{T}_{c}=155^{\circ}\mathbf{C})$ = 10 A \mathbf{Q}_{c} = 34 nC

Features

- New 6th Generation Technology
- Low Forward Voltage Drop (V_E)
- Zero Reverse Recovery Current
- Zero Forward Recovery Voltage
- Low Leakage Current (I,)
- Temperature-Independent Switching Behavior
- Positive Temperature Coefficient on V_E

Package

TO-220-2

Benefits

- Higher System Level Efficiency
- Increase System Power Density
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

PIN 1 O CASE

Applications

- Switch Mode Power Supplies (SMPS)
- Server/Telecom Power Supplies
- Industrial Power Supplies
- Solar
- UPS

Part Number	Package	Marking	
C6D10065A	T0-220-2	C6D10065	

Maximum Ratings (T_c = 25 °C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
$V_{_{\mathrm{RRM}}}$	Repetitive Peak Reverse Voltage	650	٧		
V _{DC}	DC Blocking Voltage	650	٧		
I _F	Continuous Forward Current	37 19 10	А	T _c =25°C T _c =125°C T _c =155°C	Fig. 3
I _{FRM}	Repetitive Peak Forward Surge Current	45 27	Α	T_c =25°C, t_p = 10 ms, Half Sine Wave T_c =110°C, t_p =10 ms, Half Sine Wave	
I _{FSM}	Non-Repetitive Peak Forward Surge Current	86 75	А	T_c =25°C, t_p = 10 ms, Half Sine Wave T_c =110°C, t_p = 10 ms, Half Sine Wave	Fig. 8
I _{F,Max}	Non-Repetitive Peak Forward Surge Current	1250 1100	Α	T_c =25°C, t_p = 10 μ s, Pulse T_c =110°C, t_p = 10 μ s, Pulse	Fig. 8
P _{tot}	Power Dissipation	109 47	W	T _c =25°C T _c =110°C	Fig. 4
T_{J} , T_{stg}	Operating Junction and Storage Temperature	-55 to +175	°C		
	TO-220 Mounting Torque	1 8.8	Nm lbf-in	M3 Screw 6-32 Screw	

Electrical Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V _F	Forward Voltage	1.27 1.37	1.50 1.60	V	$I_F = 10 \text{ A } T_J = 25^{\circ}\text{C}$ $I_F = 10 \text{ A } T_J = 175^{\circ}\text{C}$	Fig. 1
I_R	Reverse Current	2 15	50 200	μΑ	V _R = 650 V T _J =25°C V _R = 650 V T _J =175°C	Fig. 2
Q_{c}	Total Capacitive Charge	34		nC	$V_R = 400 \text{ V, I}_F = 10A$ $T_J = 25^{\circ}\text{C}$	Fig. 5
С	Total Capacitance	611 67 53		pF	$V_R = 0 \text{ V, } T_J = 25^{\circ}\text{C, } f = 1 \text{ MHz}$ $V_R = 200 \text{ V, } T_J = 25^{\circ}\text{C, } f = 1 \text{ MHz}$ $V_R = 400 \text{ V, } T_J = 25^{\circ}\text{C, } f = 1 \text{ MHz}$	Fig. 6
E _c	Capacitance Stored Energy	5.2		μJ	V _R = 400 V	Fig. 7

Note: This is a majority carrier diode, so there is no reverse recovery charge.

Thermal Characteristics

Symbol	Parameter	Тур.	Unit	Note
$R_{_{\theta JC}}$	Thermal Resistance from Junction to Case	1.38	°C/W	Fig. 9

Typical Performance

Figure 1. Forward Characteristics

Figure 2. Reverse Characteristics

Typical Performance

120 100 80 40 20 25 50 75 100 125 150 175 T_c ° C

Figure 3. Current Derating

Figure 5. Total Capacitance Charge vs. Reverse Voltage $\,$

Figure 4. Power Derating

Figure 6. Capacitance vs. Reverse Voltage

Typical Performance

Figure 7. Capacitance Stored Energy

Figure 8. Non-repetitive peak forward surge current versus pulse duration (sinusoidal waveform)

Figure 9. Transient Thermal Impedance

Package Dimensions

Package TO-220-2

	Inc	hes	Millimeters		
POS	Min	Max	Min	Max	
А	.381	.410	9.677	10.414	
В	.235	.255	5.969	6.477	
С	.100	.120	2.540	3.048	
D	.223	.337	5.664	8.560	
D1	.457-	490	11.60-12.45 typ		
D2	.2773	303 typ	7.04-7	.70 typ	
D3	.2442	252 typ	6.22-6	5.4 typ	
Е	.590	.615	14.986	15.621	
E1	.302	.326	7.68	8.28	
E2	.227	251	5.77	6.37	
F	.143	.153	3.632	3.886	
G	1.105	1.147	28.067	29.134	
Н	.500	.550	12.700	13.970	
L	.025	.036	.635	.914	
М	.045	.055	1.143	1.550	
N	.195	.205	4.953	5.207	
Р	.165	.185	4.191	4.699	
Q	.048	.054	1.219	1.372	
S	3°	6°	3°	6°	
Т	3°	6°	3°	6°	
U	3°	6°	3°	6°	
V	.094	.110	2.388	2.794	
W	.014	.025	.356	.635	
Х	3°	5.5°	3°	5.5°	
Y	.385	.410	9.779	10.414	
z	.130	.150	3.302	3.810	

NOTE:

1. Dimension L, M, W apply for Solder Dip Finish

Recommended Solder Pad Layout

View A-A

TO-220-2

Part Number	Package	Marking
C6D10065A	TO-220-2	C6D10065

Note: Recommended soldering profiles can be found in the applications note here: http://www.wolfspeed.com/power_app_notes/soldering

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfpseed representative or from the Product Ecology section of our website at http://www.wolfspeed.com/Power/Tools-and-Support/Product-Ecology.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, or air traffic control systems.

Related Links

- Cree SiC Schottky diode portfolio: http://www.wolfspeed.com/Power/Products#SiCSchottkyDiodes
- Schottky diode Spice models: http://www.wolfspeed.com/power/tools-and-support/DIODE-model-request2
- SiC MOSFET and diode reference designs: http://go.pardot.com/l/101562/2015-07-31/349i