X-15648.ST25.txt SEQUENCE LISTING

```
<110> Beals, John
       Kuchibhotla, Uma
<120> HETEROLOGOUS G-CSF FUSION PROTEINS
<130> x-15648
<150>
       PCT/US03/03120
<151>
       2003-02-21
<160>
       66
<170>
       PatentIn version 3.2
<210>
<211>
<212>
       174
       PRT
<213>
       Artificial Sequence
<220>
<223> synthetic construct
<220>
<221>
<222>
       MISC_FEATURE
       (17)..(17)
<223>
       Xaa at position 17 is Cys, Ala, Leu, Ser, or Glu;
<220>
<221>
<222>
       MISC_FEATURE
       (37)..(37)
<223>
       Xaa at position 37 is Ala or Asn;
<220>
<221>
<222>
       MISC_FEATURE
       (38)..(38)
<223>
       Xaa at position 38 is Thr, or any other amino acid exept Pro;
<220>
<221>
       MISC_FEATURE
<222>
       (39)..(39)
       Xaa at position 39 is Tyr, Thr, or Ser;
<223>
<220>
<221>
<222>
       MISC_FEATURE
       (57)..(57)
<223>
       xaa at position 57 is Pro or Val;
<220>
<221>
<222>
<223>
       MISC_FEATURE
       (58)..(58)
       Xaa at position 58 is Trp or Asn;
<220>
<221>
       MISC_FEATURE
<222>
       (59)..(59)
<223>
       Xaa at position 59 is Ala or any other amino acid except Pro;
<220>
<221>
<222>
       MISC_FEATURE
       (60)..(60)
<223>
       Xaa at position 60 is Pro, Thr, Asn, or Ser;
<220>
<221>
<222>
       MISC_FEATURE (61)..(61)
                                         Page 1
```

```
x-15648.ST25.txt
<223> Xaa at position 61 is Leu, or any other amino acid except Pro;
<220>
<221>
<222>
       MISC_FEATURE
        (62)..(62)
       xaa at position 62 is Ser or Thr;
<223>
<220>
<221>
<222>
       MISC_FEATURE
        (63)..(63)
       Xaa at position 63 Ser or Asn;
<223>
<220>
<221>
<222>
       MISC_FEATURE
        (64)..(64)
       Xaa at position 64 is Cys or any other amino acid except Pro;
<223>
<220>
<221>
<222>
       MISC_FEATURE
       (65)..(65)
       xaa at position 65 is Pro, Ser, or Thr;
<223>
<220>
<221>
       MISC_FEATURE
<222>
        (66)..(66)
<223> Xaa at position 66 is Ser or Thr;
<220>
<221>
       MISC_FEATURE
<222>
       (67)..(67)
       Xaa at position 67 is Gln or Asn:
<223>
<220>
       MISC_FEATURE
<221>
<222>
        (68)..(68)
       Xaa at position 68 is Ala or any other amino acid except Pro;
<223>
<220>
<221>
       MISC_FEATURE
<222>
        (69)..(69)
<223>
       Xaa at position 69 is Leu, Thr, or Ser;
<220>
<221>
<222>
       MISC_FEATURE
        (93)..(93)
<223>
       Xaa at position 93 is Glu or Asn;
<220>
<221>
<222>
       MISC_FEATURE
        (94)..(94)
       Xaa at position 94 is Gly or any other amino acid except Pro;
<220>
<221>
       MISC_FEATURE
<222>
       Xaa at position 95 is Ile, Asn, Ser, or Thr;
<223>
<220>
<221>
<222>
       MISC_FEATURE
        (97)..(97)
<223>
       Xaa at position 97 is Pro, Ser, Thr, or Asn;
<220>
<221>
       MISC_FEATURE
<222>
        (133)..(133)
<223>
       Xaa at position 133 is Thr or Asn;
<220>
```

Page 2

```
<221>
       MISC_FEATURE
<222>
       (134)..(134)
       xaa at position 134 is Gln or any other amino acid except Pro;
<220>
<221>
       MISC_FEATURE
<222>
        (135)..(135)
       Xaa at position 135 is Gly, Ser, or Thr;
<223>
<220>
<221>
       MISC_FEATURE
<222>
       (141)..(141)
<223>
       Xaa at position 141 is Ala or Asn;
<220>
<221>
<222>
       MISC_FEATURE
       (142)..(142)
       xaa at position 142 is Ser or any other amino acid except Pro;
<223>
<220>
       MISC_FEATURE
<221>
<222>
       (143)..(143)
       Xaa at position 143 is Ala, Ser, or Thr.
<223>
<400>
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
1 10 15
Xaa Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln
20 25 30
Glu Lys Leu Cys Xaa Xaa Xaa Lys Leu Cys His Pro Glu Glu Leu Val
35 40 45
Leu Leu Gly His Ser Leu Gly Ile Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 50 55 60
Xaa Xaa Xaa Xaa Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser
65 70 75 80
Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Xaa Xaa Xaa Ser
85 90 95
Xaa Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp
100 105 110
Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro
115 120 125
Ala Leu Gln Pro Xaa Xaa Xaa Ala Met Pro Ala Phe Xaa Xaa Xaa Phe
Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
145 150 155 160
Leu Glu Val Ser Tyr Arg Val Leu Arg Ḥis Leu Ala Gln Pro
                                        170
                                          Page 3
```

<210> 2 <211> 1044 <212> DNA <213> Artificial Seq	uence				
<220> <223> synthetic cons	truct				
<400> 2 accccctgg gccctgccag	ctccctgccc	cagagcttcc	tgctcaagtg	gggggacccg	60
ggacggtcga gggacggggt	ctcgaaggac	gagttcgcct	tagagcaagt	gaggaagatc	120
cagggcgatg gcgcagcgct	ccagcggaat	ctcgttcact	ccttctaggt	cccgctaccg	180
cgtcgcgagg tcgagaagct	gtgtgccacc	tacaagctgt	gccaccccga	ggagctggtg	240
ctcttcgaca cacggtggat	gttcgacacg	gtggggctcc	tcgaccacct	gctcggacac	300
tctctgggca tcccctgggc	tcccctgagc	agctgcgacg	agcctgtgac	agacccgtag	360
gggacccgag gggactcgtc	gacgcccagc	caggccctgc	agctggcagg	ctgcttgagc	420
caactccata gcgggtcggt	ccgggacgtc	gaccgtccga	cgaactcggt	tgaggtatcg	480
ggccttttcc tctaccaggg	gctcctgcag	gccctggaag	ggatctcccc	ggaaaaggag	540
atggtccccg aggacgtccg	ggaccttccc	tagaggcccg	agttgggtcc	caccttggac	600
acactgcagc tggacgtcgc	cgacgggctc	aacccagggt	ggaacctgtg	tgacgtcgac	660
ctgcagcggc tgtttgccac	caccatctgg	cagcagatgg	aagaactggg	aatggcccct	720
aaacggtggt ggtagaccgt	cgtctacctt	cttgaccctt	accggggagc	cctgcagccc	780
aaccagaccg ccatgccggc	cttcgcctct	gctttccggg	acgtcgggtt	ggtctggcgg	840
tacggccgga agcggagacg	aaagcagcgc	cgggcaggag	gggtcctggt	tgcctcccat	900
ctgcagagct tcgtcgcggc	ccgtcctccc	caggaccaac	ggagggtaga	cgtctcgaag	960
ctggaggtgt cgtaccgcgt	cttaaggcac	cttgcccagc	ccgacctcca	cagcatggcg	1020
cagaattccg tggaacgggt	cggg				1044
<210> 3 <211> 1044 <212> DNA <213> Artificial Seq <220> <223> synthetic cons					
<400> 3 acccccctgg gccctgccag	ctccctaccc	cagagettee	tactcaaata	agagaaccca	60
ggacggtcga gggacggggt					120
cagggcgatg gcgcagcgct					180
cgtcgcgagg tcgagaagct					240
ctcttcgaca cacggtggat					300
tctctgggca tcccctgggc					360
terenggen receingge	. cccccgage	Page 4			200

gggacccgag gggactcgtc gacgcccagc caggccctgc agctggcagg caactccata gcgggtcggt ccgggacgtc gaccgtccga cgaactcggt		
caactccata gcgggtcggt ccgggacgtc gaccgtccga cgaactcggt	ctgcttgagc	420
	tgaggtatcg	480
ggccttttcc tctaccaggg gctcctgcag gccctggaag ggatctcccc	ggaaaaggag	540
atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc	caccttggac	600
acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg	tgacgtcgac	660
ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg	aatggcccct	720
aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc	cctgcagccc	780
acccagggtg ccatgccggc cttcaactct accttccggg acgtcgggtg	ggtcccacgg	840
tacggccgga agttgagatg gaagcagcgc cgggcaggag gggtcctggt	tgcctcccat	900
ctgcagagct tcgtcgcggc ccgtcctccc caggaccaac ggagggtaga	cgtctcgaag	960
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca	cagcatggcg	1020
cagaattccg tggaacgggt cggg	•	1044
<210> 4 <211> 1044 <212> DNA <213> Artificial Sequence <220>	·	
<223> synthetic construct		
<400> 4 accccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtg	gggggacccg	60
ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt	gaggaagatc	120
cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt	cccgctaccg	180
cgtcgcgagg tcgagaagct gtgtaacacc accaagctgt gccaccccga	ggagctggtg	240
ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct	gctcggacac	300
tctctgggca tcccctgggc tcccctgagc agctgcgacg agcctgtgac	agacccgtag	360
gggacccgag gggactcgtc gacgcccagc caggccctgc agctggcagg	ctgcttgagc	420
caactccata gcgggtcggt ccgggacgtc gaccgtccga cgaactcggt	tgaggtatcg	480
ggccttttcc tctaccaggg gctcctgcag gccctggaag ggatctcccc	ggaaaaggag	540
	caccttonac	600
atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc	caccitggac	
		660
atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc	tgacgtcgac	660 720
atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg	tgacgtcgac aatggcccct	
atggtcccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg	tgacgtcgac aatggcccct cctgcagccc	720
atggtcccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc	tgacgtcgac aatggcccct cctgcagccc ggtcccacgg	720 780
atggtcccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc acccagggtg ccatgccggc cttcgcctct gctttccggg acgtcgggtg	tgacgtcgac aatggcccct cctgcagccc ggtcccacgg tgcctcccat	720 780 840

X 13010131231 EXC						
cagaattccg tggaacgggt cggg	1044					
<210> 5 <211> 1044 <212> DNA <213> Artificial Sequence						
<220> <223> synthetic construct						
<400> 5 accccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtg gggggacccg	60					
ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc	120					
cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg	180					
cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccaccccga ggagctggtg	240					
ctcttcgaca cacggtggat gttcgacacg gtggggctcc tcgaccacct gctcggacac	300					
tctctgggca tcccctgggc taacactagc agctgcgacg agcctgtgac agacccgtag	360					
gggacccgat tggactcctc gacgcccagc caggccctgc agctggcagg ctgcttgagc	420					
caactccata gcgggtcggt ccgggacgtc gaccgtccga cgaactcggt tgaggtatcg	480					
ggccttttcc tctaccaggg gctcctgcag gccctggaag ggatctcccc ggaaaaggag	540					
atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc caccttggac	600					
acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg tgacgtcgac	660					
ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aatggcccct	720					
aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc	780					
acccagggtg ccatgccggc cttcgcctct gctttccggg acgtcgggtg ggtcccacgg	840					
tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgcctcccat	900					
ctgcagagct tcgtcgcggc ccgtcctccc caggaccaac ggagggtaga cgtctcgaag	960					
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg	1020					
cagaattccg tggaacgggt cggg	1044					
<210> 6 <211> 1044 <212> DNA <213> Artificial Sequence <220> <223> synthetic construct						
<400> 6 accccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtg gggggacccg	60					
ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc	120					
cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg	180					
cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccaccccga ggagctggtg	240					
ctcttcgaca cacggtggat gttcgacacg gtggggctcc tcgaccacct gctcggacac	300					
Page 6						

		X-13040.312	J. CA C		
tctctgggca tcccctgg	gc tcccctgagc	aattgcgacg	agcctgtgac	agacccgtag	360
gggacccgag gggactcg	tt aacgaccagc	caggccctgc	agctggcagg	ctgcttgagc	420
caactccata gctggtcg	gt ccgggacgtc	gaccgtccga	cgaactcggt	tgaggtatcg	480
ggccttttcc tctaccag	gg gctcctgcag	gccctggaag	ggatctcccc	ggaaaaggag	540
atggtccccg aggacgtc	cg ggaccttccc	tagaggcccg	agttgggtcc	caccttggac	600
acactgcagc tggacgtc	gc cgacgggctc	aacccagggt	ggaacctgtg	tgacgtcgac	660
ctgcagcggc tgtttgcc	ac caccatctgg	cagcagatgg	aagaactggg	aatggcccct	720
aaacggtggt ggtagacc	gt cgtctacctt	cttgaccctt	accggggagc	cctgcagccc	780
acccagggtg ccatgccg	gc cttcgcctct	gctttccggg	acgtcgggtg	ggtcccacgg	840
tacggccgga agcggaga	cg aaagcagcgc	cgggcaggag	gggtcctggt	tgcctcccat	900
ctgcagagct tcgtcgcg	gc ccgtcctccc	caggaccaac	ggagggtaga	cgtctcgaag	960
ctggaggtgt cgtaccgc	gt cttaaggcac	cttgcccagc	ccgacctcca	cagcatggcg	1020
cagaattccg tggaacgg	gt cggg				1044
<210> 7 <211> 1044 <212> DNA <213> Artificial S <220> <223> synthetic co					
<400> 7	20 ctccctoccc	cagagettee	tactcaaata	0000030000	. 60
accccctgg gccctgcc ggacggtcga gggacggg					120
cagggcgatg gcgcagcg					180
cgtcgcgagg tcgagaag					240
ctcttcgaca cacggtgg					300
tctctgggca tcgttaac					360
caattgcgat gggactcg					420
caactccata gcgggtcg					480
ggccttttcc tctaccag					540
atggtccccg aggacgtc					600
acactgcagc tggacgtc					660
ctgcagcggc tgtttgcc		·			720
aaacggtggt ggtagacc					780
acccagggtg ccatgccg				•	840
tacggccgga agcggaga					900
ctgcagagct tcgtcgcg			ggagggtaga		960

X-13046.5123.CXC	
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg	1020
cagaattccg tggaacgggt cggg	1044
<210> 8 <211> 1044 <212> DNA <213> Artificial Sequence	
<220> <223> synthetic construct	
<400> 8 accccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtg gggggacccg	60
ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc	. 120
cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg	180
cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccaccccga ggagctggtg	240
ctcttcgaca cacggtggat gttcgacacg gtggggctcc tcgaccacct gctcggacac	300
tctctgggca tcccctgggc tcccctgagc agctgcgacg agcctgtgac agacccgtag	360
gggacccgag gggactcgtc gacgcccagc aacgccaccc agctggcagg ctgcttgagc	420
caactccata gcgggtcgtt gcggtgggtc gaccgtccga cgaactcggt tgaggtatcg	480
ggccttttcc tctaccaggg gctcctgcag gccctggaag ggatctcccc ggaaaaggag	540
atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc caccttggac	600
acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg tgacgtcgac	660
ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aatggcccct	720
aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc	780
acccagggtg ccatgccggc cttcgcctct gctttccggg acgtcgggtg ggtcccacgg	840
tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgcctcccat	900
ctgcagagct tcgtcgcggc ccgtcctccc caggaccaac ggagggtaga cgtctcgaag	960
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg	1020
cagaattccg tggaacgggt cggg	1044
<210> 9 <211> 1044 <212> DNA <213> Artificial Sequence	
<220> <223> synthetic construct	
<400> 9 accccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtg gggggacccg	60
ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc	120
cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg	180
cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccaccccga ggagctggtg Page 8	240

ctcttcgaca cacggtgga	at gttcgacacg	gtggggctcc	tcgaccacct	gctcggacac	300
tctctgggca tcccctggg	gc tcccctgagc	agctgcgacg	agcctgtgac	agacccgtag	360
gggacccgag gggactcgt	cc gacgcccagc	caggccctgc	agctggcagg	ctgcttgagc	420
caactccata gcgggtcgg	gt ccgggacgtc	gaccgtccga	cgaactcggt	tgaggtatcg	480
ggccttttcc tctaccag	gg gctcctgcag	gccctgaacg	ggacctcccc	ggaaaaggag	540
atggtccccg aggacgtcc	g ggacttgccc	tggaggcccg	agttgggtcc	caccttggac	600
acactgcagc tggacgtcg	gc cgacgggctc	aacccagggt	ggaacctgtg	tgacgtcgac	660
ctgcagcggc tgtttgcca	ac caccatctgg	cagcagatgg	aagaactggg	aatggcccct	720
aaacggtggt ggtagaccg	gt cgtctacctt	cttgaccctt	accggggagc	cctgcagccc	780
acccagggtg ccatgccgg	gc cttcgcctct	gctttccggg	acgtcgggtg	ggtcccacgg	840
tacggccgga agcggagad	cg aaagcagcgc	cgggcaggag	gggtcctggt	tgcctcccat	900
ctgcagagct tcgtcgcgg	gc ccgtcctccc	caggaccaac	ggagggtaga	cgtctcgaag	960
ctggaggtgt cgtaccgcg	gt cttaaggcac	cttgcccagc	ccgacctcca	cagcatggcg	1020
cagaattccg tggaacggg	gt cggg				1044
<210> 10 <211> 1044 <212> DNA <213> Artificial Se <220> <223> synthetic cor	·				
<400> 10 accccctgg gccctgcca	ag ctccctgccc	cagagcttcc	tgctcaagtg	gggggacccg	60
ggacggtcga gggacggg	gt ctcgaaggac	gagttcgcct	tagagcaagt	gaggaagatc	120
cagggcgatg gcgcagcg	t ccagcggaat	ctcgttcact	ccttctaggt	cccgctaccg	180
cgtcgcgagg tcgagaag	ct gtgtaacacc	accaagctgt	gccaccccga	ggagctggtg	240
ctcttcgaca cattgtgg	tg gttcgacacg	gtggggctcc	tcgaccacct	gctcggacac	300
tctctgggca tcccctggg	gc tcccctgagc	agctgcgacg	agcctgtgac	agacccgtag	360
gggacccgag gggactcg	tc gacgcccagc	caggccctgc	agctggcagg	ctgcttgagc	420
caactccata gcgggtcgg	gt ccgggacgtc	gaccgtccga	cgaactcggt	tgaggtatcg	480
ggccttttcc tctaccag	gg gctcctgcag	gccctggaag	ggatctcccc	ggaaaaggag	540
atggtccccg aggacgtc	cg ggaccttccc	tagaggcccg	agttgggtcc	caccttggac	600
acactgcagc tggacgtc	gc cgacgggctc	aacccagggt	ggaacctgtg	tgacgtcgac	660
ctgcagcggc tgtttgcca	ac caccatctgg	cagcagatgg	aagaactggg	aatggcccct	720
aaacggtggt ggtagacc	gt cgtctacctt	cttgaccctt	accggggagc	cctgcagccc	780
aaccagaccg ccatgccg	gc cttcgcctct	gctttccggg	acgtcgggtt	ggtctggcgg	840
tacggccgga agcggaga	cg aaagcagcgc	cgggcaggag	gggtcctggt	tgcctcccat	900

A 15040.5125.CXC	
ctgcagagct tcgtcgcggc ccgtcctccc caggaccaac ggagggtaga cgtctcg	aag 960
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatg	gcg 1020
cagaattccg tggaacgggt cggg	1044
<210> 11 <211> 1044 <212> DNA <213> Artificial Sequence	
<220> <223> synthetic construct	•
<400> 11 accccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtg gggggac	ccg 60
ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaag	
cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgcta	
cgtcgcgagg tcgagaagct gtgtaacacc accaagctgt gccaccccga ggagctg	J
ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct gctcgga	3-3
tctctgggca tcccctgggc tcccctgagc agctgcgacg agcctgtgac agacccg	
gggacccgag gggactcgtc gacgcccagc caggccctgc agctggcagg ctgcttg	
caactccata gcgggtcggt ccgggacgtc gaccgtccga cgaactcggt tgaggta	
ggccttttcc tctaccaggg gctcctgcag gccctggaag ggatctcccc ggaaaag	
atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc caccttg	
acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg tgacgtc	
ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aatggcc	
aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcag	
acccagggtg ccatgccggc cttcaactct accttccggg acgtcgggtg ggtccca	
tacggccgga agttgagatg gaagcagcgc cgggcaggag gggtcctggt tgcctcc	:
ctgcagagct tcgtcgcggc ccgtcctccc caggaccaac ggagggtaga Cgtctcg	•
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatg	
cagaattccg tggaacgggt cggg	1044
<210> 12 <211> 1044 <212> DNA <213> Artificial Sequence	
<220> <223> synthetic construct	
<400> 12 accccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtg gggggac	ccg 60
ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaag	atc 120
cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgcta Page 10	ccg 180

			X 130 10.312	JICKE		
cgtcgcgagg	tcgagaagct	gtgtaacacc	accaagctgt	gccaccccga	ggagctggtg	240
ctcttcgaca	cattgtggtg	gttcgacacg	gtggggctcc	tcgaccacct	gctcggacac	300
tctctgggca	tcgttaacgc	taccctgagc	agctgcgacg	agcctgtgac	agacccgtag	360
caattgcgat	gggactcgtc	gacgcccagc	caggccctgc	agctggcagg	ctgcttgagc	420
caactccata	gcgggtcggt	ccgggacgtc	gaccgtccga	cgaactcggt	tgaggtatcg	480
ggccttttcc	tctaccaggg	gctcctgcag	gccctggaag	ggatctcccc	ggaaaaggag	540
atggtccccg	aggacgtccg	ggaccttccc	tagaggcccg	agttgggtcc	caccttggac	600
acactgcagc	tggacgtcgc	cgacgggctc	aacccagggt	ggaacctgtg	tgacgtcgac	660
ctgcagcggc	tgtttgccac	caccatctgg	cagcagatgg	aagaactggg	aatggcccct	720
aaacggtggt	ggtagaccgt	cgtctacctt	cttgaccctt	accggggagc	cctgcagccc	780
acccagggtg	ccatgccggc	cttcgcctct	gctttccggg	acgtcgggtg	ggtcccacgg	840
tacggccgga	agcggagacg	aaagcagcgc	cgggcaggag	gggtcctggt	tgcctcccat	900
ctgcagagct	tcgtcgcggc	ccgtcctccc	caggaccaac	ggagggtaga	cgtctcgaag	960
ctggaggtgt	cgtaccgcgt	cttaaggcac	cttgcccagc	ccgacctcca	cagcatggcg	1020
cagaattccg	tggaacgggt	cggg				1044
<220>	ificial Sequ					
	thetic const	truct				
<400> 13 acccccctgg	gccctgccag	ctccctgccc	cagagcttcc	tgctcaagtg	gggggacccg	,60
ggacggtcga	gggacggggt	ctcgaaggac	gagttcgcct	tagagcaagt	gaggaagatc	120
cagggcgatg	gcgcagcgct	ccagcggaat	ctcgttcact	ccttctaggt	cccgctaccg	180
cgtcgcgagg	tcgagaagct	gtgtaacacc	accaagctgt	gccaccccga	ggagctggtg	240
ctcttcgaca	cattgtggtg	gttcgacacg	gtggggctcc	tcgaccacct	gctcggacac	300
tctctgggca	tcccctgggc	tcccctgagc	agctgcgacg	agcctgtgac	agacccgtag	360
gggacccgag	gggactcgtc	gacgcccagc	aacgccaccc	agctggċagg	ctgcttgagc	420
caactccata	gcgggtcgtt	gcggtgggtc	gaccgtccga	cgaactcggt	tgaggtatcg	480
ggccttttcc	tctaccaggg	gctcctgcag	gccctggaag	ggatctcccc	ggaaaaggag	540
atggtccccg	aggacgtccg	ggaccttccc	tagaggcccg	agttgggtcc	caccttggac	600
acactgcagc	+	caacaaactc	aacccagggt	ggaacctgtg	tgacgtcgac	660
	tggacgtcgc	cgacgggccc	333			
	tgtttgccac				aatggcccct	720
ctgcagcggc		caccatctgg	cagcagatgg	aagaactggg		720 780

A-13040.3123.CXC	
tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt t	gcctcccat 900
ctgcagagct tcgtcgcggc ccgtcctccc caggaccaac ggagggtaga c	gtctcgaag 960
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca c	agcatggcg 1020
cagaattccg tggaacgggt cggg	1044
210 14	
<210> 14 <211> 1044 <212> DNA <213> Artificial Sequence	
<220> <223> synthetic construct	
<400> 14 accccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtg g	nggggacccg 60
ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt g	.5333
cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt c	, 33 3
cgtcgcgagg tcgagaagct gtgtaacacc accaagctgt gccaccccga g	
ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct g	1.2
tctctgggca tcccctgggc tcccctgagc agctgcgacg agcctgtgac a	3 3
gggacccgag gggactcgtc gacgcccagc caggccctgc agctggcagg c	3 3 3
caactccata gcgggtcggt ccgggacgtc gaccgtccga cgaactcggt t	3 33 3
ggccttttcc tctaccaggg gctcctgcag gccctggaag ggatctcccc g	,,,
atggtcccg aggacgtccg ggaccttccc tagaggaacg gtaccggtcc c	
acactgcagc tggacgtcgc cgacttgcca tggccagggt ggaacctgtg t	
ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg a	
aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc c	3 3
acccagggtg ccatgccggc cttcgcctct gctttccggg acgtcgggtg g	
tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt t	
ctgcagagct tcgtcgcggc ccgtcctccc caggaccaac ggagggtaga c	
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca c	
cagaattccg tggaacgggt cggg	1044
<210> 15 <211> 1044 <212> DNA <213> Artificial Sequence	
<220> <223> synthetic construct	
<400> 15 accccctgg gccctgccag ctccctgccc cagagcttcc tgctcaagtg g	gggggacccg 60
ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt g	
Page 12	

cagggcgatg gcgcagcgct	ccagcggaat	ctcgttcact	ccttctaggt	cccgctaccg	180
cgtcgcgagg tcgagaagct	gtgtaacacc	accaagctgt	gccaccccga	ggagctggtg	240
ctcttcgaca cattgtggtg	gttcgacacg	gtggggctcc	tcgaccacct	gctcggacac	300
tctctgggca tcgttaacgc	taccctgagc	agctgcgacg	agcctgtgac	agacccgtag	360
caattgcgat gggactcgtc	gacgcccagc	aacgccaccc	agctggcagg	ctgcttgagc	420
caactccata gcgggtcgtt	gcggtgggtc	gaccgtccga	cgaactcggt	tgaggtatcg	480
ggccttttcc tctaccaggg	gctcctgcag	gccctggaag	ggatctcccc	ggaaaaggag	540
atggtccccg aggacgtccg	ggaccttccc	tagaggcccg	agttgggtcc	caccttggac	600
acactgcagc tggacgtcgc	cgacgggctc	aacccagggt	ggaacctgtg	tgacgtcgac	660
ctgcagcggc tgtttgccac	caccatctgg	cagcagatgg	aagaactggg	aatggcccct	720
aaacggtggt ggtagaccgt	cgtctacctt	cttgaccctt	accggggagc	cctgcagccc	780
acccagggtg ccatgccggc	cttcgcctct	gctttccggg	acgtcgggtg	ggtcccacgg	840
tacggccgga agcggagacg	aaagcagcgc	cgggcaggag	gggtcctggt	tgcctcccat	900
ctgcagagct tcgtcgcggc	ccgtcctccc	caggaccaac	ggagggtaga	cgtctcgaag	960
ctggaggtgt cgtaccgcgt	cttaaggcac	cttgcccagc	ccgacctcca	cagcatggcg	1020
cagaattccg tggaacgggt	cggg		•		1044
<pre><210> 16 <211> 1044 <212> DNA <213> Artificial Sec <220> <223> synthetic cons</pre>					
<400> 16	crucc				
accccctgg gccctgccag	ctccctgccc	cagagcttcc	tgctcaagtg	gggggacccg	60
ggacggtcga gggacggggt	ctcgaaggac	gagttcgcct	tagagcaagt	gaggaagatc	120
cagggcgatg gcgcagcgct	ccagcggaat	ctcgttcact	ccttctaggt	cccgctaccg	180
cgtcgcgagg tcgagaagct	gtgtaacacc	accaagctgt	gccaccccga	ggagctggtg	240
ctcttcgaca cattgtggtg	gttcgacacg	gtggggctcc	tcgaccacct	gctcggacac	. 300
tctctgggca tcccctgggc	tcccctgagc	aattgcgacg	agcctgtgac	agacccgtag	360
gggacccgag gggactcgtt	aacgaccagc	caggccctgc	agctggcagg	ctgcttgagc	420
caactccata gctggtcggt	ccgggacgtc	gaccgtccga	cgaactcggt	tgaggtatcg	480
ggccttttcc tctaccaggg	gctcctgcag	gccctgaacg	ggacctcccc	ggaaaaggag	540
atggtccccg aggacgtccg		tagaaaccca	agttgggtcc	caccttagac	600
arggreecy aggargrees	ggacttgccc	tggaggcccg	agergggeee	caccitygac	000
acactgcagc tggacgtcgc					660
	cgacgggctc	aacccagggt	ggaacctgtg	tgacgtcgac	

			X-13040.312	J. CAC		•
acccagggtg	ccatgccggc	cttcgcctct	gctttccggg	acgtcgggtg	ggtcccacgg	840
tacggccgga	agcggagacg	aaagcagcgc	cgggcaggag	gggtcctggt	tgcctcccat	900
ctgcagagct ·	tcgtcgcggc	ccgtcctccc	caggaccaac	ggagggtaga	cgtctcgaag	960
ctggaggtgt	cgtaccgcgt	cttaaggcac	cttgcccagc	ccgacctcca	cagcatggcg	1020
cagaattccg	tggaacgggt	cggg				1044
<220>	? ficial Sequ					
<400> 17						
		tgctcatcgg				60
gccttggtgt	tgattgcctt	tgctcagtat	cttcagcagt	gtccatttga	agatcatgta	120
aaattagtga	atgaagtaac	tgaatttgca	aaaacatgtg	ttgctgatga	gtcagctgaa	180
aattgtgaca	aatcacttca	tacccttttt	ggagacaaat	tatgcacagt	tgcaactctt	240
cgtgaaacct	atggtgaaat	ggctgactgc	tgtgcaaaac	aagaacctga	gagaaatgaa	300
tgcttcttgc	aacacaaaga	tgacaāccca	aacctcccc	gattggtgag	accagaggtt	360
gatgtgatgt	gcactgcttt	tcatgacaat	gaagagacat	ttttgaaaaa	atacttatat	420
gaaattgcca	gaagacatcc	ttacttttat	gccccggaac	tccttttctt	tgctaaaagg	480
tataaagctg	cttttacaga	atgttgccaa	gctgctgata	aagctgcctg	cctgttgcca	540
aagctcgatg	aacttcggga	tgaagggaag	gcttcgtctg	ccaaacagag	actcaagtgt	600
gccagtctcc	aaaaatttgg	agaaagagct	ttcaaagcat	gggcagtagc	tcgcctgagc	660
cagagatttc	ccaaagctga	gtttgcagaa	gtttccaagt	tagtgacaga	tcttaccaaa	720
gtccacacgg	aatgctgcca	tggagatctg	cttgaatgtg	ctgatgacag	ggcggacctt	780
gccaagtata	tctgtgaaaa	tcaagattcg	atctccagta	aactgaagga	atgctgtgaa	840
aaacctctgt	tggaaaaatc	ccactgcatt	gccgaagtgg	aaaatgatga	gatgcctgct	900
gacttgcctt	cattagctgc	tgattttgtt	gaaagtaagg	atgtttgcaa	aaactatgct	960
gaggcaaagg	atgtcttcct	gggcatgttt	ttgtatgaat	atgcaagaag	gcatcctgat	1020
tactctgtcg	tgctgctgct	gagacttgcc	aagacatatg	aaaccactct	agagaagtgc	1080
tgtgccgctg	cagatcctca	tgaatgctat	gccaaagtgt	tcgatgaatt	taaacctctt	1140
gtggaagagc	ctcagaattt	aatcaaacaa	aattgtgagc	tttttgagca	gcttggagag	1200
tacaaattcc	agaatgcgct	attagttcgt	tacaccaaga	aagtacccca	agtgtcaact	1260
ccaactcttg	tagaggtctc	aagaaaccta	ggaaaagtgg	gcagcaaatg	ttgtaaacat	1320
cctgaagcaa	aaagaatgcc	ctgtgcagaa	gactatctat	ccgtggtcct	gaaccagtta	1380
		gccagtaagt		ccaaatgctg		1440

ttggtgaaca	ggcgaccatg	cttttcagct	ctggaagtcg	atgaaacata	cgttcccaaa	1500
gagtttaatg	ctgaaacatt	caccttccat	gcagatatat	gcacactttc	tgagaaggag	.1560
agacaaatca	agaaacaaac	tgcacttgtt	gagctcgtga	aacacaagcc	caaggcaaca	1620
aaagagcaac	tgaaagctgt	tatggatgat	ttcgcagctt	ttgtagagaa	gtgctgcaag	1680
gctgacgata	aggagacctg	ctttgccgag	gagggtaaaa	aacttgttgc	tgcaagtcaa	1740
gctgccttag	gcttataatg	ac .				1762

<210> 18

<211> 232

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 18

Ala Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro 10 15

Ala Pro Glu Lys Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 20 25 30

Lys Asp Thr Lys Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 35 40 45

Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val 50 60

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 65 70 75 80

Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 85 90 95

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala 100 105 110

Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 115 120 125

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr 130 135 140

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 145 150 155 160

Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 165 170 175

X-15648.ST25.txt Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 180 185 190 Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 195 200 205 Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 210 220 Ser Leu Ser Leu Ser Pro Gly Lys 225 230 19 229 <210> <211> <212> PRT Artificial Sequence <220> <223> synthetic contruct <400> Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe 1 5 10 15 Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 20 25 30 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 35 40 45 Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val 50 60 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser 65 70 75 80 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 85 90 95 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser 100° 105 110° Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 115 120 125 Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln 130 135 140 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 145 150 155 160 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 165 170 175

Page 16

Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu 180 185 190

Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser 195 200 205

Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 210 215 220

Leu Ser Leu Gly Lys 225

<210> 20

<211> 585 <212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 20

Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu 1 5 10 15

Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln 20 25 30

Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu
35 40 45

Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys 50 55 60

Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu 65 70 75 80

Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro 85 90 95

Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu 100 105 110

Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His 115 120 125

Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg 130 135 140

Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg 145 150 155 160 X-15648.ST25.txt Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala 165 170 175 Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser 180 185 190 Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu 195 200 205 Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro 210 215 Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys 225 230 235 240 val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245 250 255 Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser 260 265 270 Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His 275 280 285 Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser 290 295 300 Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala 305 310 315 320 Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg 325 330 335 Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr 340 345 350 Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu 355 360 365 Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro 370 380 Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Asn Leu Gly Glu 385 390 395 400 Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro 405 410 415 Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys 420 425 430

X-15648.ST25.txt Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys 435 440 445	
Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His 450 455 460	
Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser 465 470 475	· ()
Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr 485 490 495	
Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp 500 505 510	
Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala 515 520 525	
Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu 530 535 540	
Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys 545 550 560	
Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val 565 570 575	
Ala Ala Ser Gln Ala Ala Leu Gly Leu 580 585	
<210> 21 <211> 703 <212> DNA <213> Artificial Sequence	
<220> <223> synthetic construct	
<400> 21	
gagcccaaat cttgtgacaa aactcacaca tgcccaccgt gcccagcacc tgaactcct	
gggggaccgt cagtcttcct cttccccca aaacccaagg acaccctcat gatctcccg	
acccctgagg tcacatgcgt ggtggtggac gtgagccacg aagaccctga ggtcaagtt aactggtacg tggacggcgt ggaggtgcat aatgccaaga caaagccgcg ggaggagca	
tacaacagca cgtaccgtgt ggtcagcgtc ctcaccgtcc tgcaccagga ctggctgaa	
ggcaaggagt acaagtgcaa ggtctccaac aaagccctcc cagcccccat cgagaaaac	
atctccaaag ccaaagggca gccccgagaa ccacaggtgt acaccctgcc cccatcccg	
gaggagatga ccaagaacca ggtcagcctg acctgcctgg tcaaaggctt ctatcccag	
gacatcgccg tggagtggga gagcaatggg cagccggaga acaactacaa gaccacgcc	
cccgtgctgg actccgacgg ctccttcttc ctctatagca agctcaccgt ggacaagag Page 19	

aggtggcagc aggggaacgt cttctcatgc tccgtgatgc atgaggctct gcacaaccac	660			
tacacgcaga agagcctctc cctgtctccg ggtaaatgat agt	703			
<210> 22 <211> 981 <212> DNA <213> Artificial Sequence				
<220> <223> synthetic construct				
<400> 22 tccaccaagg gcccatcggt cttcccgcta gcgccctgct ccaggagcac ctccgagagc	60			
acagccgccc tgggctgcct ggtcaaggac tacttccccg aaccggtgac ggtgtcgtgg	120			
aactcaggcg ccctgaccag cggcgtgcac accttcccgg ctgtcctaca gtcctcagga	180			
ctctactccc tcagcagcgt ggtgaccgtg ccctccagca gcttgggcac gaagacctac	240			
acctgcaacg tagatcacaa gcccagcaac accaaggtgg acaagagagt tgagtccaaa	300			
tatggtcccc catgcccacc ctgcccagca cctgagttcc tggggggacc atcagtcttc	360			
ctgttccccc caaaacccaa ggacactctc atgatctccc ggacccctga ggtcacgtgc	420			
gtggtggtgg acgtgagcca ggaagacccc gaggtccagt tcaactggta cgtggatggc	480			
gtggaggtgc ataatgccaa gacaaagccg cgggaggagc agttcaacag cacgtaccgt	540			
gtggtcagcg tcctcaccgt cctgcaccag gactggctga acggcaagga gtacaagtgc	600			
aaggtctcca acaaaggcct cccgtcctcc atcgagaaaa ccatctccaa agccaaaggg	660			
cagccccgag agccacaggt gtacaccctg cccccatccc aggaggagat gaccaagaac	720			
caggtcagcc tgacctgcct ggtcaaaggc ttctacccca gcgacatcgc cgtggagtgg	780			
gagagcaatg ggcagccgga gaacaactac aagaccacgc ctcccgtgct ggactccgac	840			
ggctccttct tcctctacag caggctaacc gtggacaaga gcaggtggca ggaggggaat	900			
gtcttctcat gctccgtgat gcatgaggct ctgcacaacc actacacaca gaagagcctc	960			
tccctgtctc tgggtaaatg a	981			
<210> 23 <211> 406 <212> PRT <213> Artificial Sequence				
<220> <223> synthetic construct				
<400> 23				
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys 1 5 10 15				

Ala Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln 20 25 30

X-15648.ST25.txt Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val 35 40 45 Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys 50 60 Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser 65 70 75 80 Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser 85 90 95 Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp 100 105 110 Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro 115 120 125 Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe 130 135 . 140 Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe 145 150 155 160 Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Glu Pro 165 170 175 Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu 180 185 190 Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 195 200 205 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Asp 210 215 220 Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 225 230 235 240 Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 245 250 255 Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 260 265 270 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro 275 280 285 Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 290 295 300 X-15648.ST25.txt
Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn
305 310 315 320

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 325 330 335

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 340 345 350

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 355 360 365

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 370 380

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 385 390 395 400

Ser Leu Ser Pro Gly Lys 405

<210> 24

<211> 403 <212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 24

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
5 10 15

Ala Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln
20 25 30

Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val 35 40 45

Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys 50 60

Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser 65 70 75 80

Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser 85 90 95

Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp 100 105 110

Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro 115 120 125 Page 22

Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe 130 135 140 Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe 145 150 155 160 Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Glu Ser 165 170 175 Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro Ala Pro Glu Phe Leu Gly 180 185 190 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 195 200 205 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln 210 220 Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val 225 230 235 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr 245 250 255 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 260 265 270 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile 275 280 285 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 290 295 300 Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser 305 310 315 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 325 330 335 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 340 345 350 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val 355 360 365 Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met 370 380 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 385 390 395 400 Page 23

Leu Gly Lys

<210> 500 <211> Artificial Sequence <220> <223> synthetic construct <400> Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys 5 10 15 Ala Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln 20 25 30 Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys 50 60 Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser 65 70 75 80 Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser 85 90 95 Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp 100 105 110 Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro 115 120 125 Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe 130 135 140 Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe 145 150 155 160

Gly Gly Ser Gly Gly Gly Gly Gly Gly Gly Ser Asp Ala His 180 185 190

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Gly Gly 165 170 175

Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu Glu Asn Phe 195 200 205

X-15648.ST25.txt
Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln Gln Cys Pro
210 215 220 Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu Phe Ala Lys 225 230 235 240 Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys Ser Leu His 245 250 255 Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu Arg Glu Thr 260 265 270 Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro Glu Arg Asn 275 280 285 Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu Pro Arg Leu 290 295 300 Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His Asp Asn Glu 305 310 315 320 Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg Arg His Pro 325 330 335 Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg Tyr Lys Ala 340 345 350 Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala Cys Leu Leu 355 360 365 Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser Ser Ala Lys 370 380 Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu Arg Ala Phe 385 390 395 400 Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro Lys Ala Glu 405 410 415 Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys Val His Thr 420 425 430 Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg Ala Asp 445 440 445 Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser Ser Lys Leu 450 460 Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His Cys Ile Ala 465 470 480

Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser Leu Ala Ala Asp Phe Val Glu 500 <210> 26 <211> 69 <212> DNA <213> Artificial Sequence <220> synthetic construct <223> <400> 26 gtaagcttgc gtcgacgcta gcggcgcgcc gccatggccg gacctgccac ccagagcccc 60 atgaagctg 69 <210> 27 <211> 61 <212> DNA Artificial Sequence <220> synthetic construct <223> <400> 27 ggggcaggga gctggctggg cccagtggag tggcttcctg cactgtccag agtgcactgt 60 61 28 59 <210> <211> <212> DNA <213> Artificial Sequence <220> <223> synthetic construct <400> ggacagtgca ggaagccact ccactgggcc cagccagctc cctgccccag agcttcctg 59 29 72 <210> <211> <212> DNA Artificial Sequence <220> synthetic construct <223> <400> 29 gaacctcgag gatcctcatt agggctgggc aaggtgcctt aagacgcggt acgacacctc 60 72 caggaagctc tg 30 <210> 69 <211> <212> DNA <213> Artificial Sequence <220>

<223>	synthetic construct	
<400> gtaagc1	30 ttgc gtcgacgcta gcggcgcgcc gccatggccg gacctgccac ccagagcccc	60
atgaag	ctg	69
<210> <211> <212> <213>	31 57 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gctctaa	31 aggc cttgagcagg aagctctggg gcagggagct cgctgggccc agtggag	57
<210> <211> <212> <213>	32 53 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gggccca	32 agcg agctccctgc cccagagctt cctgctcaag gccttagagc aag	53
<210> <211> <212> <213>	33 72 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gaacct	33 cgag gatcctcatt agggctgggc aaggtgcctt aagacgcggt acgacacctc	60
caggaa	gctc tg	72
<210> <211> <212> <213>	34 69 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gtaagc	34 ttgc gtcgacgcta gcggcgcgcc gccatggccg gacctgccac ccagagcccc	60
atgaag	ctg	69
<210> <211> <212> <213>	35 61 DNA Artificial Sequence	
<220> <223>	synthetic construct	

gtccga	gcag cactagttcc tcggggtggc	acagcttggt	ggtgttacac	agcttctcct	60
g					61
<210> <211> <212> <213>	36 66 DNA Artificial Sequence				
<220> <223>	synthetic construct				
<400> ggcgca	36 gcgc tccaggagaa gctgtgtaac	accaccaagc	tgtgccaccc	cgaggaacta	60
gtgctg	. :				66
<210> <211> <212> <213>	37 72 DNA Artificial Sequence				
<220> <223>	synthetic construct				
<400> gaacct	37 cgag gatcctcatt agggctgggc	aaggtgcctt	aagacgcggt	acgacacctc	60
caggaa	gctc tg				72
<210> <211> <212> <213>	38 69 DNA Artificial Sequence				
<220> <223>	synthetic construct				
<400> gtaage	38 ttgc gtcgacgcta gcggcgcgcc	gccatggccg	gacctgccac	ccagagcccc	60
atgaag	ctg			·	69
<210> <211> <212> <213>	39 61 DNA Artificial Sequence			_	
<220> <223>	synthetic construct				
<400> gcccgg	39 cgct ggaaagcgct ggcgaaggcc	ggcatggcgg	tctggttggg	ctgcagggca	60
g					61
<210> <211> <212> <213>	40 60 DNA Artificial Sequence				
<220>					

<223>	synthetic construct				
<400> ggcccct	40 . tgcc ctgcagccca accagaccgc o	catgccggcc	ttcgccagcg	ctttccagcg	60
<210> <211> <212> <213>	41 72 DNA Artificial Sequence				
<220> <223>	synthetic construct				
<400> gaacct	41 cgag gatcctcatt agggctgggc a	aaggtgcctt	aagacgcggt	acgacacctc	60
caggaa	gctc tg				72
<210> <211> <212> <213>	42 69 DNA Artificial Sequence				
<220> <223>	synthetic construct				
<400> gtaagc	42 ttgc gtcgacgcta gcggcgcgcc (gccatggccg	gacctgccac	ccagagcccc	60
atgaag	ctg	•			69
<210> <211> <212> <213>	43 68 DNA Artificial Sequence				
<220> <223>	synthetic construct		ų.	•	٠.
<400> gcccgg	43 cgct ggaaggtaga gttgaaggcc (ggcatggcac	cctgggtggg	ctgaagagca	60
ggggcc	at				68
<210> <211> <212> <213>	44 74 DNA Artificial Sequence				
<220> < <223>	synthetic construct				
<400> gggaat	44 ggcc cctgctcttc agcccaccca	gggtgccatg	ccggccttca	actctacctt	60
ccagcg	ccgg gcag				74
<210> <211> <212> <213>	45 72 DNA Artificial Sequence				
<220>					

<223>	synthetic construct	
<400> gaaccte	45 cgag gatcctcatt agggctgggc aaggtgcctt aagacgcggt acgacacctc	60
caggaag	gctc tg	72
<210> <211> <212> <213>	46 20 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gctagc	46 ggcg cgccaccatg	20
<210> <211> <212> <213>	47 33 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gctcag	47 ggta gcgttaacga tgcccagaga gtg	33
<210> <211> <212> <213>	48 30 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gggcate	48 cgtt aacgctaccc tgagcagctg	30
<210> <211> <212> <213>	49 27 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gactcga	49 - agga tcctcattag ggctggg	27
<210> <211> <212> <213>	50 38 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gctagc	50 ggcg cgccaccatg gccggacctg ccacccag	38

x-15648.ST25.txt <210> 51 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> synthetic construct <400> 45 caagcagccg gccagctggg tggcgttgct ggggcagctg ctcag <210> 52 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> synthetic construct <400> 52 37 gccccagcaa cgccacccag ctggccggct gcttgag 53 47 <210> <211> <212> DNA <213> Artificial Sequence <220> <223> synthetic construct <400> 53 47 gactcgagga tcctcattag ggctgggcaa ggtgccttaa gacgcgg <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic construct <400> 54 20 gctagcggcg cgccaccatg <210> 55 27 <211> <212> DNA <213> Artificial Sequence <220> <223> synthetic construct <400> 55 27 ggggcaacta gtcaggttag cccaggg <210> 56 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> synthetic construct

<400> gctaac	56 ctga ctagttgccc cagccag	27
<210> <211> <212> <213>	57 27 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gactcg	57 agga tcctcattag ggctggg	27
<210> <211> <212> <213>	58 20 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gctagc	58 ggcg cgccaccatg	20
<210> <211> <212> <213>	59 25 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> ggtgca	59 attg ctcaggggag cccag	25
<210> <211> <212> <213>	60 23 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gcaatt	60 gcac cagccaggcc ctg	23
<210> <211> <212> <213>	61 27 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gactcg	61 agga tcctcattag ggctggg	27
<210><211><211><212><213>	62 38 DNA Artificial Sequence	

<220> <223>	synthetic construct	
<400> gctagc	62 ggcg cgccaccatg gccggacctg ccacccag	38
<210> <211> <212> <213>	63 37 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> ccggac	63 tggt cccgttcagg gcctgcagga gcccctg	37
<210> <211> <212> <213>	64 35 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gaacgg	64 gacc agtccggagt tgggtcccac cttgg	35
<210> <211> <212> <213>	65 47 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gactcg	65 agga tcctcattag ggctgggcaa ggtgccttaa gacgcgg	47
<210> <211> <212> <213>	66 36 DNA Artificial Sequence	
<220> <223>	synthetic construct	
<400> gtcgac	66 gcta gcggcgcgc accatggccg gacctg	36