Exploratory Data Analysis (EDA)

Panita Thusaranon, Ph.D.

Overview of Data Analytics Process

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 **Business Issue** Data Data Validation Visualization **Exploratory** Understanding Understanding Preparation Analysis and and Presentation Modeling Evaluate results Collect initial data Define business Gather data from Communicate results objectives multiple sources Review process Develop Determine best Identify data methodology Determine next steps Gather required requirements Cleanse method to present information Determine important insights based on Determine data analysis and audience Format variables Determine appropriavailability Results are valid ate analysis method Craft a compelling story Blend Build model proceed to step 6 Explore data and Results are invalid 4-Clarify scope of work characteristics Sample Make recommendations Assess model revisit steps 1-4 Identify deliverables

Business Issue Understanding

Gathering relevant data and information

- Critical step to support analyses (proving or disproving the hypotheses)
- Know where to dig
- Know how to filter through information
- Know how to verify
- Know how to apply

Question 2a-1

Do churn customers complain more often?

- Customer ID
- Number of contacts
- Sentiment of previous contacts
- Customer status
- Services that each customer has used

What is EDA?

กระบวนการตรวจสอบ สำรวจข้อมูลเบื้องต้น เพื่อตั้งสมมติฐานให้ได้ว่า เราสนใจอยากจะเปรียบเทียบตัวเลขอะไร เปรียบเทียบไปทำไม และอะไรบ้าง ที่ควรจะถูกนำมาเปรียบเทียบ ก่อนนำไปทดสอบสมมติฐาน วิเคราะห์ข้อมูล อย่างละเอียด หรือสร้างแบบจำลองทางสถิติต่อไป

ประโยชน์ของการทำ EDA

ช่วยให้เราสร้างความรู้ความเข้าใจพื้นฐานเกี่ยวกับข้อมูลนั้นๆ

ตรวจสอบสมมติฐานเบื้องต้น ตรวจความผิดพลาดของชุดข้อมูล

ทำให้เห็น outlier หรือค่าที่โดดออกมาจากค่าปกติ เพื่อกันกันความผิดเพี้ยนตอนนำข้อมูล ไปคำนวณ

เข้าใจข้อมูล มองเห็น Trends, Patterns หรือ Insights ต่างๆ

Steps of Data Exploration & Preparation

1

Distinguish Attributes

There are three interrelated rules with make a dataset tidy

- Each variable must have its own column
- Each observation must have its own row
- Each value must have its own cell

You can represent the same underlying data in multiple ways. The example below shows the same data organised in two different ways. Each dataset shows the same values of four variables country, year, population, and cases, but each dataset organises the values in a different way.

country	year	type	count
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

	1	1999	2000		
country	cases	population	cases	population	
Afghanistan	745	19987071	2666	20595360	
Brazil	37737	172006362	80488	174504898	
China	212258	1272915272	213766	1280428583	

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

Exploratory data analysis begins with identification of the attributes in a dataset

- Target/Response/Outcome/Dependent variable (output): response
- **Predictor/Independent** (input): age, job, gender, marital, education, housing, loan, income, campaign

id	age	job	gender	marital	education	housing	loan	Annual income (k\$)	Spending score (1-100)	campaign	response
1	56	housemaid	Female	married	basic.4y	no	no	15	39	А	no
2	57	services	Female	married	high.school	no	no	15	81	А	yes
3	37	services	Male	married	high.school	yes	no	16	6	В	no
4	40	admin	Male	single	basic.6y	no	no	16	77	А	no
5	56	services	Female	married	high.school	no	yes	17	40	В	yes

Data Type of variables

• Numerical: age, income, spending score

Categorical: job, gender, marital, education, housing, loan, campaign

id	age	job	gender	marital	education	housing	loan	Annual income (k\$)	Spending score (1-100)	campaign	response
1	56	housemaid	Female	married	basic.4y	no	no	15	39	А	no
2	57	services	Female	married	high.school	no	no	15	81	А	yes
3	37	services	Male	married	high.school	yes	no	16	6	В	no
4	40	admin	Male	single	basic.6y	no	no	16	77	А	no
5	56	services	Female	married	high.school	no	yes	17	40	В	yes

The Four Scales of Measurement

Nominal Scale

Used for naming variables in no particular order

For example, eye colour

Ordinal Scale

Used for variables in ranked order, but the difference between is not determined For example, #1 happy, #2 neutral,

#3 unhappy

Interval Scale

Used for numerical variables with known equal intervals of the same distance

For example, time

Ratio Scale

Used for variables on a scale that have

measurable intervals

For example, weight

2 Univariate Analysis การวิเคราะห์ข้อมูล 1 ตัวแปร

- Explore variable one by one
- Perform analysis depends on whether the variable type is continuous or categorical

Central Tendency

- Mean: the average values
- Median: the middle number in sorted data
- Mode: the most frequent value

Mean
$$\Rightarrow$$
 $(2+3+3+3+5+7+8+8+10)/9 = 5.44$

Median => 2, 3, 3, 3, 5, 7, 8, 8, 10

Mode => 2, 3, 3, 5, 7, 8, 8, 10

Mean vs. Median

ID	รายได้ (บาท)	• ค่ากลางสำหรับข้อมูลที่เป็นตัวเลขมี 2 ค่า คือ
1	15,000	• ค่าเฉลี่ย (Mean) และ ค่ากลาง หรือ มัธยฐาน
8	18,500	(Median)
2	22,000	
4	25,000	• ง้อเสียงอง ค่าเฉลี่ย (Mean) จะอ่อนไหวกับ
9	25,000	ค่าที่เป็น outlier หรือค่าที่สูงหรือน้อยกว่า
3	30,000	ปกติ เช่น ในตารางจะได้ ค่าเฉลี่ย (mean)
7	30,000	ของรายได้เก่ากับ 934,591 บาก
6	35,000	• แต่ค่า มัรยฐาน (Median) จะไม่อ่อนไหวกับ
10	35,000	ค่า Ouliter ดังนั้น ค่ามัธยฐานของรายได้จะ
5	45,000	เท่ากับ 30,000 บาท ซึ่งเป็นตัวแทนของราย
11	10,000,000	- ได้คนส่วนใหญ่มากกว่า

Reference: Cube Analytics Consulting Co., Ltd.

Spread

- Range: max min
- Variance (s²):

$$S^2 = \frac{\sum (X - \overline{X})^2}{N - 1}$$

Standard deviation (SD): square root of the variance

Distribution

o สามารถ plot การกระจายตัวของข้อมูลในรูปแบบของ curve ได้โดยทั่วไปเราอยากให้ข้อมูลอยู่ในรูปแบบของ

Skewness

ค่าวัด ความสมมาตรของข้อมูล (ค่าความเบ้ของข้อมูล)

การแจกแจงข้อมูลแบบเบ้ซ้าย Negative Skewed Distribution

การแจกแจงข้อมูลแบบเบ้ขวา Positive Skewed Distribution

Percentile

 A measure indicating the value below which a given percentage of observations in a group of observations falls

ตัวอย่าง เปอร์เซ็นไทล์ (Percentile)

เปอร์เซ็นไทล์ที่ 75% ของคะแนนสอบ สำหรับการจัดสอบทั่วประเทศ เท่ากับ 1,400 คะแนน

Categorical variables:

Count / Count %

Bivariate Analysis การวิเคราะห์ข้อมูล 2 ตัวแปร

- Find out the relationship between two variables (x and y)
- If highly associated
 - o both two variables are predictors => either variable x or y can be used in further analysis
 - o One predictor and one target variable => the target variable is dominated by this predictor, no need to construct complex models.

- Perform bi-variate analysis for any combination of categorical and continuous variables
 - o Continuous & Continuous
 - o Categorical & Categorical
 - o Categorical & Continuous

credit_limit	total_spending
100000.00	3214.47
1000000.00	120754.11
200000.00	15000.00
200000.00	23149.50
500000.00	31145.03
150000.00	23012.75
50000.00	40012.83

Numerical & Numerical

• Correlation: When two variables move together, we say they are correlated.

credit_limit	total_spending
100000.00	3214.47
1000000.00	120754.11
200000.00	15000.00
200000.00	23149.50
500000.00	31145.03
150000.00	23012.75
50000.00	40012.83

Numerical & Numerical

- Pearson product moment Correlation coefficient (r)
- Measure of the linear correlation between 2 variables (The degree to which 2 variables move in relation to each other)

Covariance (X,Y) =
$$\frac{\sum (X - \overline{X})(Y - \overline{Y})}{n-1}$$

Variance(X) =
$$\frac{\sum (X - \overline{X})^2}{n-1}$$
 Variance(Y) = $\frac{\sum (Y - \overline{Y})^2}{n-1}$

Numerical & Numerical

Correlation values

- o 1 = Positive linear correlation
- o 0 = no linear correlation
- o -1 = Negative linear correlation

Numerical & Numerical

Visualizing Relationship: Scatter Plot

Categorical & Categorical

- Two-way table/contingency table
 - o Values => Count of observations in each combination of row and column categories

merchant_type	card_not_present	
Retail	false	
Transportation	true	
Restaurants	true	
Transportation	false	
Retail	true	
Utility	false	
Retail	false	

merchant_type	card_not_present	card_present
Retail	5102	938
Transportation	632	485
Restaurants	2100	3822
Utility	496	329

Categorical & Categorical

Visualizing Relationship: Heat Map

Categorical & Numerical

Segment	Country	Gı	ross Sales	Di	scounts	S	ales	C	OGS	P	rofit
Government	United States of America	\$	8,001.00	\$	-	\$	8,001.00	\$	5,715.00	\$	2,286.00
Midmarket	United States of America	\$	9,225.00	\$	-	\$	9,225.00	\$	6,150.00	\$	3,075.00
Government	France	\$	27,615.00	\$	276.15	\$	27,338.85	\$	19,725.00	\$	7,613.85
Midmarket	France	\$	34,440.00	\$	344.40	\$	34,095.60	\$	22,960.00	\$	11,135.60
Government	France	\$	7,210.00	\$	72.10	\$	7,137.90	\$	5,150.00	\$	1,987.90
Government	France	\$	4,473.00	\$	44.73	\$	4,428.27	\$	3,195.00	\$	1,233.27
Government	Canada	\$	9,282.00	\$	92.82	\$	9,189.18	\$	6,630.00	\$	2,559.18
Channel Partners	United States of America	\$	22,296.00	\$	222.96	\$	22,073.04	\$	5,574.00	\$	16,499.04
Government	Mexico	\$	423,500.00	\$	4,235.00	\$	419,265.00	\$	314,600.00	\$	104,665.00
Government	United States of America	\$	17,703.00	\$	177.03	\$	17,525.97	\$	12,645.00	\$	4,880.97
Channel Partners	Canada	\$	17,340.00	\$	173.40	\$	17,166.60	\$	4,335.00	\$	12,831.60
Enterprise	United States of America	\$	41,250.00	\$	412.50	\$	40,837.50	\$	39,600.00	\$	1,237.50
Channel Partners	France	\$	32,052.00	\$	320.52	\$	31,731.48	\$	8,013.00	\$	23,718.48
Channel Partners	Germany	\$	9,192.00	\$	91.92	\$	9,100.08	\$	2,298.00	\$	6,802.08
Small Business	Mexico	\$	148,200.00	\$	1,482.00	\$	146,718.00	\$	123,500.00	\$	23,218.00
Government	Mexico	\$	488,950.00	\$	4,889.50	\$	484,060.50	\$	363,220.00	\$	120,840.50
Government	France	\$	754,250.00	\$	7,542.50	\$	746,707.50	\$	560,300.00	\$	186,407.50

Categorical & Numerical

 Split data into smaller groups based on the categorical variable (dimension) and aggregate the numerical variable (values) for each group

Row Labels	Sum of Gross Sales
Canada	26,932,163.50
France	26,081,674.50
Germany	24,921,467.50
Mexico	22,726,935.00
United States of America	27,269,358.00
Grand Total	127,931,598.50

Row Labels	Sum of Gross Sales	Sum of Profit	Max of Discounts
Canada	26,932,163.50	3,529,228.89	119,756.00
France	26,081,674.50	3,781,020.78	111,375.00
Germany	24,921,467.50	3,680,388.82	106,512.00
Mexico	22,726,935.00	2,907,523.11	149,677.50
United States of America	27,269,358.00	2,995,540.67	125,820.00
Grand Total	127,931,598.50	16,893,702.26	149,677.50

Categorical & Numerical

Visualizing Relationship:

1 Categorical Variable 1 Numerical Variable

1 Numerical Variable 1 Categorical Variable

1 Numerical Variable 2 Categorical Variables

1 Numerical Variable 2 Categorical Variables

Correlation VS Causation

- o **Causation**: When changes in one variable (x) affect changes in another variable (y), we say that X causes Y.
 - Examples: Education -> Higher wages
- o Correlation: When two variables move together, we say they are correlated.
- o Correlation does not necessarily imply causality

Step 3: Multivariable Analysis

4

Missing Values Treatment

Name	Weight	Gender	Play Cricket/ Not
Mr. Amit	58	M	Y
Mr. Anil	61	M	Y
Miss Swati	58	F	N
Miss Richa	55		Υ
Mr. Steve	55	M	N
Miss Reena	64	F	Y
Miss Rashmi	57		Υ
Mr. Kunal	57	M	N

Gender	#Students	#Play Cricket	%Play Cricket
F	2	1	50%
M	4	2	50%
Missing	2	2	100%

Name	Weight	Gender	Play Cricket/ Not
Mr. Amit	58	M	Y
Mr. Anil	61	M	Υ
Miss Swati	58	F	N
Miss Richa	55	F	Υ
Mr. Steve	55	M	N
Miss Reena	64	F	Y
Miss Rashmi	57	F	Υ
Mr. Kunal	57	M	N

Gender	#Students	#Play Cricket	%Play Cricket
F	4	3	75%
M	4	2	50%

playing cricket by males is higher than females

playing cricket by females is higher than males

Incomplete (Missing) Data

- Data is not always available
 - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - equipment malfunction
 - o inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data
- Missing data may need to be inferred

Disguised Missing Data?

- Disguised missing data is the missing data entries that are not explicitly represented as such, but instead appear as potentially valid data values
 - Information about "State" is missing >> "Alabama" is used as disguise

Disguised Missing Data?

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (when doing classification) - not effective when the % of missing values per attribute varies considerably
- Fill in missing values
 - Manually
 - Using a global constant
 - Using a measure of central tendency for the attribute, such as mean, median, or mode
 - Using the central tendency of the class
 - Using the most probable value

Which are the methods to treat missing values?

- Mean/Mode/Median Imputation:
 - Generalized Imputation: In this case, we calculate the mean or median for all non missing values of that variable then replace missing value with mean or median. Like in above table, variable "Manpower" is missing so we take average of all non missing values of "Manpower" (28.33) and then replace missing value with it.

Gender	Manpower	Sales
М	25	343
F		280
М	33	332
М		272
F	25	-
М	29	326
	26	259
М	32	297

Which are the methods to treat missing values?

- Mean/Mode/Median Imputation:
 - Similar case Imputation: In this case, we calculate average for gender "Male" (29.75) and "Female" (25) individually of non missing values then replace the missing value based on gender. For "Male", we will replace missing values of manpower with 29.75 and for "Female" with 25.

Gender	Manpower	Sales
M	25	343
F	-	280
М	33	332
М		272
F	25	
М	29	326
	26	259
M	32	297

Which are the methods to treat missing values?

Regression Imputation:

Which are the methods to treat missing values?

• List wise deletion, we delete observations where any of the variable is missing. Simplicity is one of the major advantage of this method, but this method reduces the power of model because it reduces the sample size.

List wise deletion

Gender	Manpower	Sales
M	25	343
F	•	280
M	33	332
M		272
F —	25	•
M	29	326
	26	259
M	32	297

Which are the methods to treat missing values?

Pair wise deletion, we perform analysis with all cases in which the variables of interest are present. Advantage of this method is, it keeps as many cases available for analysis. One of the disadvantage of this method, it uses different sample size for different variables.

Pair wise deletion

Gender	Manpower	Sales
М	25	343
F	-	280
М	33	332
М	-	272
F	25	•
М	29	326
	26	259
М	32	297

5

Outlier Treatment

What is the impact of Outliers on a dataset?

Without Outlier

4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7

Mean = 5.45

Median = 5.00

Mode = 5.00

Standard Deviation = 1.04

With Outlier

4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7,300

Mean = 30.00

Median = 5.50

Mode = 5.00

Standard Deviation = 85.03

What causes Outliers?

How to detect Outliers?

Most commonly used method to detect outliers is visualization, like Box-plot, Histogram, Scatter Plot

o Binning

- o first sort data and partition into (equal-frequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.

Sorted data for price (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

Partition into (equal-frequency) bins:

Bin1: 4, 8, 15 Bin2: 21, 21, 24 Bin3: 25, 28, 34

Smoothing by bin means:

Bin1: 9, 9, 9 Bin2: 22, 22, 22 Bin3: 29, 29, 29

Smoothing by bin Boundaries:

Bin1: 4, 4, 15 Bin2: 21, 21, 24 Bin3: 25, 25, 34

Data Transform and Feature Engineering

 A function that maps the entire set of values of a given attribute to a new set of replacement values

Methods

- Smoothing: Remove noise from data
- o Attribute/feature construction:
 - New attributes constructed from the given ones
- o Aggregation: Summarization, data cube construction
- Normalization: Scaled to fall within a smaller, specified range such as -1.0 to 1.0, or 0.0 to 1.0
 - min-max normalization, z-score normalization, normalization by decimal scaling
- o Discretization:
 - Divide the range of a continuous attribute into intervals
 - Concept hierarchy climbing

Aggregation

o Min-max normalization: performs a linear transformation on the original data

$$v' = \frac{v - min_A}{max_A - min_A} (new _max_A - new _min_A) + new _min_A$$

- Example
 - Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0].
 - Then \$73,000 is mapped to

$$\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$$

■ Creating derived variables: This refers to creating new variables from existing variable(s) using set of functions or different methods.

Emp_Code	Gender	Date	New_Day	New_Month	New_Year
A001	Male	21-Sep-11	21	9	2011
A002	Female	27-Feb-13	27	2	2013
A003	Female	14-Nov-12	14	11	2012
A004	Male	07-Apr-13	7	4	2013
A005	Female	21-Jan-11	21	1	2011
A006	Male	26-Apr-13	26	4	2013
A007	Male	15-Mar-12	15	3	2012

- Creating dummy variables / Categorical encoding : Convert categorical variables into numerical variables.
 - O Dummy variables are also called Indicator Variables. It is useful to take categorical variable as a predictor in statistical models. Categorical variables can take values 0 and 1.
 - O We can also create dummy variables for more than two classes of categorical variables with n or n-1 dummy variables.

	Candy Variety	Day	Type of Day	Weekend	Weekday
0	Chocolate Hearts	Sunday	Weekend	1	0
1	Sour Jelly	Saturday	Weekend	1	0
2	Candy Canes	Friday	Weekday	0	1
3	Sour Jelly	Sunday	Weekend	1	0
4	Fruit Drops	Sunday	Weekend	1	0
5	Sour Jelly	Thursday	Weekday	0	1

Emp_Code	Gender	Var_Male	Var_Female
A001	Male	1	0
A002	Female	0	1
A003	Female	0	1
A004	Male	1	0
A005	Female	0	1
A006	Male	1	0
A007	Male	1	0

■ Discretization: Taking a set of values of data and grouping sets of them together in some logical fashion into bins (or buckets). Binning can apply to numerical values as well as to categorical values..

Name	Birthday		Birthday
John	31/12/1990	>	90's
Mery	15/10/1978	>	70's
Alice	19/04/2000	>	00's
Mark	01/11/1997	>	90's
Alex	15/03/2000	>	00's
Peter	01/12/1983	>	80's
Calvin	05/05/1995	>	90's
Roxane	03/08/1948	>	40's
Anne	05/09/1992	>	90's
Paul	14/11/1992	>	90's

bucket	marks	Employed	Grade	Age	Student_id
Poor	29	yes	1st Class	19	1
Below_average	41	no	2nd Class	20	2
Average	57	no	1st Class	18	3
Poor	29	no	2nd Class	21	4
Average	57	no	1st Class	19	5
Average	53	yes	2nd Class	20	6
Above_Average	78	yes	3rd Class	19	7
Above_Average	70	yes	3rd Class	21	8
Excellent	97	yes	3rd Class	22	9
Average	58	no	1st Class	21	10

Fraud detection Example

Features associated with the transaction:

- O Date and time
- O Transaction amount
- O Merchant
- O Product

Features associated with the credit card holder:

- O Card type
- O Credit card number
- O Expiration date
- O Billing address (street address, state, zip code),
- O Phone number
- O Email address

Fraud detection Example

Possible features generated from transaction history:

- O Number of transactions a credit card holder has made in the last 24 hours (holder features plus device ID and IP address)
- O Same or different credit card numbers?
- O Same or different shipping addresses?
- O The total amount a credit cardholder has spent in the last 24 hours
- O Average amount last 24 hours compared to the historical daily average amount
- O Number of transactions made from the same device or IP address in the last 24 hours
- O Multiple online charges in close temporal proximity?
- O Frequent fraud at a specific merchant?
- O Group of fraud charges in certain areas?
- O Multiple charges from a merchant within a short time span?

