Boolean functions ex 2.2

Author: Cojocaru Catalin-Victor

Teoretical Results

- Monom conjunction of variables
- Minterm monom that contains all n variables, it also takes value 1 for only one argument

<u>Definition 1:</u> Let $f:(B_2)^n \to B_2$ be a Boolean function of *n* variables.

The set $S_f = \{(x_1, x_2, ..., x_n) \mid f(x_1, x_2, ..., x_n) = 1\}$, containing all the groups $(x_1, x_2, ..., x_n) \in B_2^n$ for which f takes the value 1, is called the support of f.

<u>Definition 2</u>: The monom m is <u>smaller or equal</u> than the monom m' if and only if the support of m is included or equal to the support of m': $m \le m' \Leftrightarrow S_m \subseteq S_{m'}$

For a Boolean function of n variables let us consider the monoms:

$$\begin{split} m &= x_{k_1}^{\alpha_{k_1}} \wedge \wedge x_{k_j}^{\alpha_{k_j}} \wedge x_{k_i} \wedge x_{k_l}^{\alpha_{k_l}} \wedge \wedge x_{k_s}^{\alpha_{k_s}} \text{ and} \\ m' &= x_{k_1}^{\alpha_{k_1}} \wedge \wedge x_{k_j}^{\alpha_{k_j}} \wedge \overline{x_{k_i}} \wedge x_{k_l}^{\alpha_{k_l}} \wedge \wedge x_{k_s}^{\alpha_{k_s}}, \text{where:} \\ k_1,...,k_j,k_i,k_l,...,k_s &\in \{1,2,...,n\} \text{ and } k_1 < ... < k_j < k_i < k_l < ... < k_s, \end{split}$$

- 1. m and m' are called <u>adjacent (neighbor) monoms</u> because they differ only by the power of the variable with the index " k_i ".
 - Adjacency (neighborhood) relation is defined by a single variable change.
- 2. the factorization of the monoms m and m' is:

$$m \vee m' = x_{k_1}^{\alpha_{k_1}} \wedge \wedge x_{k_j}^{\alpha_{k_j}} \wedge x_{k_l}^{\alpha_{k_l}} \wedge ... \wedge x_{k_s}^{\alpha_{k_s}}$$
 obtained by eliminating the variable " k_i ".

<u>Definition</u> 5: The set M(f) is called the set of maximal monoms for the function $f:(B_2)^n \to B_2$ if:

- 1. $\forall m \in M(f), m \in FB(n), m \leq f$ and
- 2. $\forall m \in M(f), \exists m' \in FB(n) \text{ such that } m < m' \le f$.

The maximal monoms are minterms or monoms obtained by using factorization.

<u>Definition 6</u>: The set C(f) is called the set of central monoms for the function $f:(B_2)^n \to B_2$ if:

- 1. $\forall m \in C(f), m \in M(f)$ and
- 2. $\forall m \in C(f), m \leq \bigvee_{m' \in M(f) \{m\}} m'$)

Teoretical Results

SIMPLIFICATION ALGORITHM Input data: f - a Boolean function in disjunctive canonical form Output data: f'1, f'2, ..., f'k all simplified forms of f Step 1: Compute M(f) and C(f) √ m , STOP1 // case1--- one solution Step 2: If M(f) = C(f) then f' =If $C(f) \neq \emptyset$ then // there exist central monoms $f_i'=g \vee h_i$, $i=\overline{1,k}$, h_i is a disjunction of a minimum number of maximal monoms such that $S_{h_i} = S_f - S_g$ STOP2 // case2 --- k solutions // there are no central monoms else $f_i'=h_i$, $i=\overline{1,k}$, h_i is a disjunction of a minumum number of maximal monoms such that $S_{h_i} = S_f$ STOP3 // case3 --- k solutions End if End if

End algorithm

The simplification process is formalized by the steps below.

The steps 2, 3, 4 are specific to the applied simplification method.

- 1. The initial function f is transformed into DCF(f).
- 2. Factorization process \Rightarrow the set of maximal monoms M(f).
- 3. From the set of maximal monoms the central monoms are selected $\Rightarrow C(f)$
- The case of the simplification algorithm (presented below) is identified and all simplified forms are obtained.

Teoretical Results

= m15Vm14Vm6Vm8Vm0Vm2VmgVm,Vm3

X1X2 X3 X4	00	01	11	10
00	Em 6	mity	Wm3	ma
01				mo
11			mis	my)
16	1m m	mg		

mo Vm, Vm, Vm, = X, X, = max,

mov mo V mg V mg = x2 x3 = max2

 $m_1 \vee m_6 = \overline{X}_1 \times_8 \overline{X}_4 = mast_3$

m 6 / m 14 = m x 2 X 3 X 4 = max 4

m 15 V m 19 = 1 ×1×2 ×3 = max 5

M(1) = { max, max, max, max, max, max,

(14) = { max, max, mox, g-Central monoms

let g = max, V max, V max, = x,x, V x,x, V x,x,x,s

mo - nat covered minterm, can be covered using max, or max,

So the simplest forms are: $f_1 \in X_1, X_1, X_2, X_4) = g \vee \max_3 = \overline{X_1} \overline{X_2} \vee \overline{X_2} \overline{X_3} \vee \overline{X_4} \overline{X_4} \vee \overline{X_2} \overline{X_3} \vee \overline{X_4} \overline{X_4} \vee \overline{X_2} \overline{X_3} \vee \overline{X_4} \overline{X_4} \vee \overline{X_2} \overline{X_4} \vee \overline{X_4} \overline{X_4} \vee$

= m15 V m14 V m6 V m8 Vmo Vm2 V mg Vm, Vm3

X1X2 X3 X4	00	01	11	10
06	Em o	mit	Wm3 6	me
01				m 6
11			mis	my)
16	I'm and	mg		

mo Vm, Vm, Vm, = X, X, = max,

mov mo V mg V mg = X2 X3 = max2

m 2/m6 = X1 X8 X4 = mast 3

m 6 / m 14 = m x 2 x 5 x 4 = max 4

m 15 V m 19 = 4 × 1 × 2 × 3 = max 5

M(4) = { max, max, max, max, max, max,

(14) = { max, max, max, mox, y-Central monoms

let g = max , V max, V max, = x, x, V x, x, V x, x, x, x, x, x

mo - nat covered minterm, can be covered using max, or max,

So the simplest forms are: $f_1 \in X_1, X_1, X_2, X_4) = g \vee \max_x = \overline{X_1} \overline{X_2} \vee \overline{X_2} \overline{X_3} \vee \overline{X_1} \overline{X_2} \sqrt{X_1} \overline{X_2} \sqrt{X_2} \overline{X_3} \sqrt{X_1} \overline{X_2} \sqrt{X_2} \sqrt{X_2} \overline{X_3} \sqrt{X_2} \sqrt{X_2} \overline{X_3} \sqrt{X_2} \sqrt$