a) Nach Durchflußbeziehung:

$$\begin{split} \dot{V} &= c_{m} \cdot A_{m} = c_{m} \cdot \left(D_{(a)}^{2} - D_{N}^{2}\right) \cdot \mathcal{H}/4 = c_{m} \cdot \left[1 - \left(D_{N}/D_{(a)}\right)^{2}\right] D_{(a)}^{2} \cdot \mathcal{H}/4 \\ \dot{V} &= c_{m} \cdot \left[1 - \tilde{V}^{2}\right] \cdot D_{(a)}^{2} \cdot \mathcal{H}/4 = c_{m} \cdot k_{N} \cdot D_{(a)}^{2} \cdot \mathcal{H}/4 \\ \dot{M}it \quad c_{m} = \left(0.9 \dots 1.3\right) \cdot \sqrt[3]{\tilde{V} \cdot n^{2}} \quad Gl. \left(3 - 116\right) \\ k_{N} &= \left(0.4 \dots\right) \cdot 0.6 \dots 0.8 \left(\dots 0.9\right) \quad Gl. \left(3 - 113\right) \\ wird bei angenommen \\ c_{m} &= 1.0 \cdot \sqrt[3]{\tilde{V} \cdot n^{2}} \quad sowie \quad k_{N} = 0.6 \end{split}$$

Bild 1. Lösungsskizze zu U 7. Laufrad-Längsschnitt.

wobei It. Aufgabe $v = 15000 \text{ m}^3/h = 4,167 \text{ m}^3/s$ $n = 280 \text{ min}^{-1} = 4,67 \text{ s}^{-1}$ $c_m = 1,0 \cdot \sqrt[3]{4,167 \cdot 4,67^2} \left[\sqrt[3]{m^3/s \cdot 1/s^2} \right] = 4,5 \text{ m/s}$ Aus Gl. (16-8) octer Gl. (3-115) $D_{(a)} = \sqrt{\frac{4 \cdot v}{\pi \cdot c_m \cdot k_N}} = \sqrt{\frac{4 \cdot 4,167}{\pi \cdot 4,5 \cdot 0,6}} \left[\sqrt{\frac{m^3/s}{m/s}} \right]$ $D_{(a)} = 1,4018 \text{ m}$ $D_N = D_{(a)} \cdot \sqrt{1-k_N} = 1,4018 \cdot \sqrt{1-0,6} \left[\text{m} \right] = 0,886 \text{ m}$ Ausgeführt: $D_{(a)} = 1,4m$; $D_N = 0,8 \text{ m}$

Hierfür ist dann tatsächlich: $V_N = D_N/D_{(a)} = 0.8/1.4 = 0.5714$ $k_N = 1 - \tilde{V}_N^2 = 1 - 0.5714^2 = 0.6735$

$$c_{m} = \frac{4 \cdot \mathring{V}}{\mathcal{H} \cdot \mathcal{D}_{(a)}^{2} \cdot k_{N}} = \frac{4 \cdot 4.167}{\widetilde{\mathcal{H}} \cdot 1.4^{2} \cdot 9.6735} \left[\frac{m^{3}/s}{m^{2}} \right] = 4.02 \, m/s$$

b) Zu einfachen Demonstration des Berechnungsablaufes sollen nur die drei Profilschnitte (i), (m) und (a) gelegt werden. Außerden wird der Gleitwinkel (Reibungswinkel), der wie im Buch angegeben, zwischen $\gamma=1...2$ liegt, vorerst zu $\gamma=1,5$ geschätzt.

Die zu Profilfestlegung notwendige Beziehung, Gl. (3-106):

$$5_{A} \cdot \frac{L}{t} = \frac{2 \cdot Y_{sch} \cdot c_{m}}{u \cdot w_{\infty}^{2} \cdot \sin(\beta_{\infty} + y)}$$

wird für die drei Profilschnitte mit Hilfe folgender Zusammenhänge - bei festgelegt \mathbf{d}_0 = 90 $^{\circ}$ - tabellarisch ausgewertet:

$$Y_{sch} = Y/\eta_{sch}$$
 nach G1. (3-48) be; $i=1$

$$Y = q \cdot H_{ges} = 9.81 \cdot 4 \left[\frac{m}{s^2 \cdot m} \right] = 39.24 \frac{m^2}{s^2}$$
 $\eta_{sch} = 0.85 \dots 0.95 \quad lt. G1. (3-110)$
 $\eta_{sch} = 0.9 \quad erwartet$

$$Y_{sch} = 39.24/0.9 \left[\frac{m^2}{s^2} \right] = 43.6 \frac{m^2}{s^2}$$

$$tan\beta_{\infty} = \frac{c_m}{u - c_{3u}/2}$$
 nach Gl. (3-122)

 $tan \beta_0 = c_m/u$ und $tan \beta_3 = c_m/(u-c_{3u})$ GI. (3-123): $c_{3u} = \sqrt[3]{s_{ch}}/u$ aus GI. (3-20) bei $d_0 = 90^\circ$ und $u_2 = u$ $u = D \cdot \pi : n = 2 \cdot r \cdot \pi \cdot n = 2 \cdot \pi \cdot 4.67 [1/s] \cdot r = 29,342 [s^-] \cdot r$ $w_{\infty}^2 = c_m^2 + (u-c_{3u}/2)^2$ nach GI. (3-124) $c_m = 4.02 \text{ m/s} = konst$ (It. Frage a)

$$5_{A} \cdot \frac{L}{t} = \frac{2 \cdot 43,6 \cdot 4,02}{u \cdot w_{\infty}^{2} \cdot \sin(\beta_{\infty} + 1,5^{\circ})} \left[\frac{m^{2}}{s^{2}} \cdot \frac{m}{s} \right]$$

$$5_{A} \cdot \frac{L}{t} = \frac{350,544}{u \cdot w_{\infty}^{2} \cdot \sin(\beta_{\infty} + 1,5^{\circ})} \left[\frac{m^{3}}{s^{3}} \right]$$

L/t = 0.4 ... 1.0 Richtwerte nach Gl. (3-107): Wasser 20°C: $\sqrt{10.004} \cdot 10^{-6} \text{ m}^2/\text{s}$ nach Tafel 15-12.

Tabellarische Auswertung:

Größe	Dim.	Profilschnitte		
		(i)	(m)	(a)
r	m	0,40	0,55	0,70
u = 29,342 [1/s]·r	m/s	11,74	16,14	20,54
c _{3u} = 43,6 [m²/6²]/u	m/s	3,71	2,70	2,12
$\beta_0 = \arctan(4.02 [m/s]/u)$	0	18,9	14,0	11,1
β ₃ = arctan{4,02[m/s]/(u-c _{3u})		26,6	16,7	12,3
β _∞ G(.(82.3)	0	22,1	15,2	11,7
W _∞ G1. (82.5)	m/s	10,67	15,33	19,89
5 _A ·L/t G1. (80.3)	-	0,655	0,322	0,189
Lit (gewählt)	-	0,7	0,6	0,5
$t = 2 \cdot r \cdot \pi/z$	mm	502,7	691,2	879,6
L	mm	352	415	440
\mathcal{F}_{A}	-	0,936	0,537	0,378
Gewähltes Profil	Nr.	624	490	490
5 _W ous Tafel 15-8,e	-	0,017	0,0095	0,0085
S aus Tafel 15-8,c	0	2	0,5	-1
$y = \arctan \varepsilon = \arctan(5_W/5_A)$	0	1,04	1,01	1,29
$Re = w_{\infty} \cdot L/\vartheta$	-	3,8.106	6,4.106	8,8.106

c)
$$P_{th} = \dot{m} \cdot \dot{V} = \dot{V} \cdot g \cdot g \cdot H$$

= $4,167 \cdot 10^3 \cdot 9,81 \cdot 4 \quad [m^3/s \cdot kg/m^3 \cdot m/6^2 \cdot m]$
= $163,51 \cdot 10^3 \, W \approx 164 \, kW$
 $P_0 = P_1 / \gamma_0 = 164 / 0,82 = 200 \, kW$