Сетевой уровень

Основы сетей передачи информации

Кирилл Андреев

Задачи сетевого уровня

- Доставка пакетов от отправителя к получатели с использованием механизмов маршрутизации
- Единая схема адресации пакетов
- Знания топологии сети и нагрузки на пути следования пакета

Коммутация пакетов с ожиданием

Сервисы транспортному уровню

- Должны скрывать топологические особенности сети
- Независимость от технологии маршрутизатора и алгоритмов маршрутизации
- Единая схема адресации, позволяющая в любой точке сети идентифицировать получателя.

Сервисы транспортному уровню

- Виртуальные каналы:
 - Ориентированные на установление соединения (ATM)
 - ∘ требования QoS
- Дейтаграммные:
 - Не ориентированные на установление соединения
 - Стабильность при высокой изменчивости топологий

Процесс пересылки данных

- 1.Формирование блока данных и передача его транспортному уровню
- 2.Формирование пакетов из блока данных (более одного)
- 3.Пересылка каждого пакета через сеть с использованием некоторого алгоритма маршрутизации с проверкой корректности данных на каждом шаге
- 4.Сбор полученных пакетов транспортным уровнем и передача пользователю

Без установления соединения

Таблица маршрутизатора А

С установлением соединения

Коммутация каналов или пакетов?

Каналы:

- Сбой узла критичен
- Накладные расходы при установлении соединения
- Эффективно при длительных передачах
- Нагрузка статична во времени – легко бороться с перегрузками
- Быстрая обработка пакетов при установленном канале

Пакеты:

- Обход умершего узла
- Сложно бороться с «взрывным» трафиком
- Эффективно для коротких транзакций
- Динамическая балансировка нагрузки – распределение нагрузки
- Труднее предоставить гарантированные условия QoS

Маршрутизация и пересылка

- Процедура пересылки состоит в выборе выходной линии маршрутизатора по имеющейся таблице маршрутизации
- Алгоритм маршрутизации выполняет заполнение таблиц маршрутизации
 - Корректность
 - Оптимальность выбора маршрута по метрике
 - о Надежность в изменчивой сети
 - Простота в реализации и валидации
 - Устойчивость в выработке решения или сходимость
 - о Справедливость распределения ресурсов

Протоколы маршрутизации

- Неадаптивные (статическая маршрутизация)
 - Прокладка маршрутов без учета динамических характеристик сети
- Адаптивные адаптация под характеристики сети
 - Учет состояния беспроводных соединений
 - о Мониторинг состояния очередей
 - о Учет нагрузок на линиях

Оптимальность и входное дерево

1. Если В расположен на оптимальном маршруте от А до С, то оптимальный путь от В к С полностью включен в маршрут от А до С 2. Множество оптимальных маршрутов от В — входное дерево

Алгоритм Дейкстры

Заливка – эталонный метод

- Пакет посылается во все линии, кроме исходящей
- Дубликаты не пересылаются
 - Порядковый номер пакета, хранение его некоторое время на маршрутизаторе
- Пакеты отмирают сами собой со временем
 - Счетчик количества ретрансляций, уменьшаемый на единицу при каждой ретрансляции
- Выборочная заливка слать в «нужную сторону»

Классификация алгоритмов маршрутизации

- Маршрутизация по вектору расстояний
 - о Алгоритм Беллмана-Форда
 - Запрос у соседей пути до адресата, суммирование
 - Проблема счета до бесконечности
- Маршрутизация с учетом состояния линий
 - о Обнаружение соседей
 - о Оценка стоимости линий
 - Рассылка состояния линий
 - о Построение топологии сети

Пример построения маршрутов

Проблема счета до бесконечности

Маршрутизация с учетом состояния линий

- 1. Обнаружение соседей
 - о периодическая рассылка Hello
- 2. Оценка стоимости линий
 - 。 Задержка на линии
 - Нагрузка на линии: опасность осцилляций!
 - Состояние очереди на линии
- 3. Создание пакета, содержащего список соединений
 - Порядковый номер и время жизни обязательны!
- 4. Рассылка сетевой информации
- 5. Вычисление кратчайших путей ко всем маршрутизаторам

Пакеты состояний линий

Пакеты состояния линий

A		E
Порядковый номер		Поряд ном
Возраст		Возр
В	4	Α
E `	5	С

		- I la	CID
В			С
Порядковый номер		Поря	ядко оме;
Возрест		-	зрас
Α	4	В	\top
С	2	D	
F	6	Ε	

D		
Порядковый номер		
Возрест		
С	3	
F	7	

Ε		
Порядковый номер		
Возраст		
A	5	
C	1	
F	8	

F		
Порядковый		
номер Возрвст		
B	6	
D	7	
E	6	

Иерархическая маршрутизация

- Разбиение всех маршрутизаторов нарегионы – сокращение объема таблицы маршрутизации
- Маршрутизация между регионами
- Оптимальное число уровней иерархии
 - N маршруьизаторов, In N уровней
 - о e In N записей в таблице маршрутизации

Способы передачи данных

- Unicast: от одного отправителя к одному
 - о Построение кратчайшего маршрута
- Broadcast: от одного отправителя ко всем
 - Заливка расточительный способ
- Multicast: от одного отправителя к группе
 - о Задача построения дерева минимального веса
 - о Топология сети неизвестна в Distance Vector
 - Список адресатов в заголовке, сокращается по мере продвижения пакета
 - Управление группами

Продвижение по встречному пути

построенное методом продвижения по встречному пути (в)

Формирования деревьев рассылки

- Для протоколов состояния линий «Склейка» кратчайших путей до всех членов группы
- Для протоколов векторов расстояний
 - 1. Механизм встречного пути
 - 2. Если хост не имеет за собой членов группы
 - сообщение PRUNE посылается отправителю
- Формирование ядра около «середины» группы и рассылка «от ядра»

Беспроводные и мобильные сети

- Стационарная проводная сеть базовых станций с мигрирующими клиентскими станциями
 - Ассоциация абонента и его регистрация в сети
- Mobile Ad hoc Networks сети без инфраструктуры
 - Ad hoc On-demand Distance Vector Protocol
 - Optimized Link State Protocol

AODV

Рис. 5.18. Зона широковещания A (a); состояние после получения узлами B и D широковещательного паката от A (δ); состояние после получения узлами C, F и G широковащательного пакета от A (a); состояние после получения узлами a0 широковещательного пакета от a1. Затененными кружочками обозначвны новые получатели. Стрелками показаны возможные обратные маршруты

Форматы кадров

- Адрес отправителя
- Адрес получателя
- Порядковый номер отправителя
 - Увеличивается при каждом отпоравленном запросе или полученном ответе
- Порядковый номер получателя
 - Последний запомненный порядковый номер
- Идентификатор запроса
- Счетчик переходов

Правила обработки запроса (обратный маршрут)

- 1. Фильтрация дубликатов по идентификатору запроса
- 2.При наличии свежего маршрута до получателя, ему отправляется ответ. «Свежесть» значит, что в таблице приемника порядковый номер отправителя больше или равен принятому в запросе
- 3.Дальнейшая пересылка пакета

Принципы обработки ответа (прямой маршрут)

- Не известен ни один маршрут до цели
- Последовательный номер в ответе больше, чем в таблице маршрутизации
- Последовательные номера равны, но путь в ответе короче

Выполнение любого из трех условий ведет к обновлению записи в таблице маршрутизации

Принципы работы OLSR

- MPR Multi Point Relay минимальный набор соседей, «покрывающий» всех двухшаговых соседей
- Рассылка топологической информации только через те станции, которые являются MPR
- Рассылка только теми станциями, которые кто-то выбрал в качестве MPR