p_regression_QNJL

```
In [132]:
# imports
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import Ridge
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_absolute_error
from sklearn.model_selection import cross_val_score
In [133]:
# dataset phat
DATA PHAT = '../dataset/'
DATA_PATH_TRUE = 'DS-5-1-GAP-0-1-N-0_v2.csv'
DATA_PATH_NOISE1 = 'DS-5-1-GAP-1-1-N-1_v2.csv'
DATA_PATH_NOISE2 = 'DS-5-1-GAP-5-1-N-3_v2.csv'
In [134]:
df_true = pd.read_csv(DATA_PHAT + DATA_PATH_TRUE, header=None)
df_noise1 = pd.read_csv(DATA_PHAT + DATA_PATH_NOISE1,header=None)
df_noise2 = pd.read_csv(DATA_PHAT + DATA_PATH_NOISE2,header=None)
In [135]:
df_true.head(5)
Out[135]:
                           0
                                1
                                       2
                                17.49
                                       17.04
                          0.00
                       1
                          2.12
                                17.65
                                       17.17
                          3.06
                                17.70
                                      17.24
```

	0	1	2
3 4		17.73 17.75	_,,,,,

In [136]:

df_noise1.head(5)

Out[136]:

	0	1	2	3	4	5	6	7	8	9	 191	192	193
0	0.00	17.49	17.50	17.49	17.49	17.50	17.49	17.50	17.49	17.49	 17.04	17.04	17.05
1	2.12	17.65	17.65	17.64	17.64	17.65	17.65	17.65	17.64	17.65	 17.16	17.17	17.18
2	3.06	17.69	17.70	17.70	17.69	17.69	17.70	17.69	17.69	17.70	 17.25	17.24	17.24
3	4.16	17.74	17.73	17.74	17.73	17.74	17.74	17.74	17.74	17.73	 17.33	17.32	17.33
4	4.93	17.75	17.74	17.73	17.74	17.74	17.75	17.75	17.75	17.74	 17.38	17.39	17.39

 $5 \text{ rows} \times 201 \text{ columns}$

In [137]:

df_noise2.head(5)

Out[137]:

	0	1	2	3	4	5	6	7	8	9	 191	192	193
0	0.00	17.61	17.55	17.48	17.46	17.43	17.53	17.35	17.66	17.60	 17.16	17.03	17.12
1	2.12	17.71	17.55	17.70	17.52	17.67	17.62	17.76	17.73	17.63	 17.24	17.17	17.24
2	3.06	17.68	17.77	17.61	17.72	17.73	17.78	17.80	17.81	17.68	 17.42	17.27	17.22
3	4.16	17.62	17.72	17.66	17.69	17.75	17.65	17.82	17.78	17.86	 17.32	17.28	17.25
4	4.93	17.80	17.54	17.66	17.71	17.82	17.69	17.70	17.81	17.82	 17.33	17.46	17.39

5 rows \times 201 columns

In [138]:

#true

plt.plot(df_true[0], df_true[1], label="True function")

plt.xlabel("time")

plt.ylabel("mag")

plt.legend(loc="best")

plt.title("dataset: "+ DATA_PATH_TRUE)

Out[138]:

Text(0.5, 1.0, 'dataset: DS-5-1-GAP-0-1-N-0_v2.csv')

Polynomial regression on nonlinear data¶

```
In [139]:
def get_best_degree_to_polynomial_model(x, y, degrees):
    best_model = None
    best_degree = None
    best_y_pred_test = None
    best_MSE_test = float('inf')
    best_MSE_train = float('inf')
    MSE_list = []
    #true is test
    X_test = df_true[0]
    Y_test = df_true[1]
    x_test = X_test.to_numpy()[:, np.newaxis]
    y_test = Y_test.to_numpy()[:, np.newaxis]
    for degree in degrees:
        # create model
        model = make_pipeline(PolynomialFeatures(degree), LinearRegression())
```

```
#Training
        model.fit(x, y) #get polynomial model for training data
        #Testing
        y_pred_train = model.predict(x)
        y_pred_test = model.predict(x_test)
        MSE_train = mean_squared_error(y,y_pred_train)
        MSE_test = mean_squared_error(y_test,y_pred_test)
        MSE_list.append(MSE_test)
        # Update the best model if a lower MSE is found.
        if MSE_test < best_MSE_test:</pre>
                best_y_pred_test = y_pred_test
                best MSE train = MSE train
                best_MSE_test = MSE_test
                best_degree = degree
                best_model = model
    return best_model, best_degree, best_MSE_test, best_MSE_train, best_y_pred_test, x_test
In [144]:
#DATA_PATH_NOISE1 = 'DS-5-1-GAP-1-1-N-1_v2.csv'
X = df_noise1[0] #time
x = X.to_numpy()[:, np.newaxis]
Y = df_noise1[1] #mag_A
y = Y.to_numpy()[:, np.newaxis]
degrees = list(range(1, 16))
best_model, best_degree, best_MSE_test, best_MSE_train, best_y_pred_test, x_test, y_test, MSI
print(best_y_pred_test.shape)
plt.plot(x_test,y_test, color='k', label="True")
plt.scatter(X, y, edgecolor='b', s=20, label="Training samples")
plt.plot(x_test, best_y_pred_test, color='g', label="Polynomial model")
plt.xlabel("time")
plt.ylabel("mag")
plt.legend(loc="best")
plt.title("Degree {}\nMSE_train = {:.8} \nMSE_test = {:.8}".format(
        best_degree, best_MSE_train, best_MSE_test))
plt.show()
(50, 1)
```

Degree 9 MSE_train = 6.1353853e-05 MSE_test = 6.5026784e-05


```
In [141]:
```

```
#plot all MSE
plt.plot(degrees, MSE_list, marker = 'o', linestyle= '-')
plt.xlabel('degrees')
plt.ylabel('MSE')
plt.title('MSE')
plt.show
Out[141]:
```

<function matplotlib.pyplot.show(close=None, block=None)>

```
In [142]:
# DATA_PATH_NOISE2 = 'DS-5-1-GAP-5-1-N-3_v2.csv'
X = df_noise2[0]  #time
x = X.to_numpy()[:, np.newaxis]
Y = df_noise2[1]  #mag_A
y = Y.to_numpy()[:, np.newaxis]

degrees = list(range(1, 16))

best_model, best_degree, best_MSE_test, best_MSE_train, best_y_pred_test, x_test, y_test, MS
plt.plot(x_test,y_test, color='k', label="True")
plt.scatter(X, y, edgecolor='b', s=20, label="Training samples")
plt.plot(x_test, best_y_pred_test, color='g', label="Polynomial model")
plt.xlabel("time")
plt.ylabel("mag")
plt.legend(loc="best")
```

plt.title("Degree {}\nMSE_train = {:.8} \nMSE_test = {:.8}".format(

best_degree, best_MSE_train, best_MSE_test))

plt.show()

Degree 6 MSE_train = 0.0026098847 MSE_test = 0.0012955026


```
In [143]:
```

```
#plot all MSE
plt.plot(degrees, MSE_list, marker = 'o', linestyle= '-')
plt.xlabel('degrees')
plt.ylabel('MSE')
plt.title('MSE')
plt.show
Out[143]:
```

<function matplotlib.pyplot.show(close=None, block=None)>

