Cooper Johnston

Linear Algebra

Contents

0	Sets	s and Proofs	5	
	0.1	Sets	5	
	0.2	Mappings	6	
	0.3	Propositional logic	6	
	0.4	Proofs	6	
1 Vectors				
	1 1	Vector spaces	7	

Chapter 0

Sets and Proofs

0.1 Sets

We will begin by exploring the concept of a set through what is sometimes called intuitive or naive set theory. This intuitive treatment of sets will suffice for the purposes of this course. A more rigorous approach, axiomatic set theory, is outside the scope of this course.

Definition 0.1.1. A **set** is a well-defined collection of objects. By "well-defined" we mean that for any set *S*, any object is either definitely in *S* or definitely not in *S*.

An object that is in a set is called an element of that set. We write $x \in S$ to denote that x is an element of the set S.

The set that does not contain any elements is called the empty set, denoted \emptyset .

The number of elements in a set is called the cardinality of that set. We write |S| to denote the cardinality of the set S.

One way to describe a set is by listing its elements. For example, we can define *A* to be the set containing the numbers 3, 6, 9, and 12, denoted by

$$A = \{3, 6, 9, 12\}.$$

Another way is to give a defining property of its elements. For example, A is the set of the first four positive multiples of three, or more mathematically, A is the set of all elements 3n such that n = 1, 2, 3, 4, denoted by

$$A = \{3n \mid n = 1, 2, 3, 4\}.$$

The latter notation is often called set-builder notation.

Definition 0.1.2. Let *A* and *B* be two sets. *B* is called a subset of *A*, denoted $B \subseteq A$, if every element in *B* is also an element in *A*, i.e. for every $b \in B$, we have $b \in A$.

B is called a proper subset of *A*, denoted $B \subset A$, if $B \subseteq A$ and $B \neq A$.

Definition 0.1.3. Let A_1, A_2, \ldots, A_n be non-empty sets. The set

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n\}$$

is called the Cartesian product of A_1, A_2, \ldots, A_n .

6 0 Sets and Proofs

The Cartesian product of a set with itself can be denoted by

$$\underbrace{A \times A \times \cdots \times A}_{n \text{ times}} = A^n.$$

For example, $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$, the set of ordered pairs of real numbers.

0.2 Mappings

Definition 0.2.1. Let A and B be two non-empty sets, and let $\mathcal{R} \subseteq A \times B$. Then, \mathcal{R} is called a relation between A and B. For an ordered pair $(a,b) \in \mathcal{R}$, we say that \mathcal{R} relates a to b.

Definition 0.2.2. Let A and B be two non-empty sets. A relation f between A and B is called a mapping or a function if for every $a \in A$, there exists exactly one $b \in B$ such that f relates a to b. The set A is called the domain of f, and B is called the codomain of f.

We write $f: A \to B$ to denote that f is a mapping with domain A and codomain B; that is, f is a mapping from A to B.

We write f(a) = b or $a \mapsto b$ to denote that f relates a to b; that is, f maps a to b.

0.3 Propositional logic

0.4 Proofs

Chapter 1

Vectors

1.1 Vector spaces

Definition 1.1.1. Let F be a set and let + and \cdot be two operations defined for elements of F. F, together with the operations + and \cdot , is called a field if all of the following axioms are satisfied:

1. + and · are associative, i.e. for all $a, b, c \in F$, we have

$$(a+b)+c=a+(b+c)$$
 and $(a\cdot b)\cdot c=a\cdot (b\cdot c)$.

2. + and · are commutative, i.e. for all $a, b \in F$, we have

$$a + b = b + a$$
 and $a \cdot b = b \cdot a$.

3. There exists an element $0_F \in F$, called the additive identity, such that for all $a \in F$, we have

$$a + 0_F = a$$
.

4. There exists an element $1_F \in F$, called the multiplicative identity, such that for all $a \in F$, we have

$$a \cdot 1_F = a$$
.

5. For every $a \in F$, there exists an element $-a \in F$, called the additive inverse of a, such that

$$a + (-a) = 0_F.$$

6. For every $a \in F$ other than 0_F , there exists an element $a^{-1} \in F$, called the multiplicative inverse of a, such that

$$a\cdot a^{-1}=1_F.$$

7. · is distributive over +, i.e. for all $a, b, c \in F$, we have

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c).$$

Example 1.1.2. Show that the set of real numbers \mathbb{R} , together with standard addition and multiplication, is a field.

7

8 1 Vectors

Solution. We will prove this result by examining each of the axioms one-by-one:

- 1. We already know that standard addition and multiplication are associative.
- 2. We also know that standard addition and multiplication are commutative.
- 3. The additive identity is the number 0.
- 4. The multiplicative identity is the number 1.
- 5. For any $x \in \mathbb{R}$, the additive inverse is the number -x.
- 6. For any $x \in \mathbb{R}$ other than 0, the multiplicative inverse is the number 1/x.
- 7. We already know that standard multiplication is distributive over standard addition.

Hence, \mathbb{R} is a field.

Example 1.1.3. Show that the set of integers \mathbb{Z} , together with standard addition and multiplication, is not a field.

Solution. The multiplicative identity is the number 1. Consider the number $2 \in \mathbb{Z}$. There does not exist a number $n \in \mathbb{Z}$ such that 2n = 1; that is, 2 does not have a multiplicative inverse in \mathbb{Z} . Hence, \mathbb{Z} is not a field.