

UNIVERSITÀ DEGLI STUDI DI PADOVA

Cameras and lenses

Stefano Ghidoni

Agenda

- Thin lens model
 - Effect of adding a lens

- Non-ideal lenses
 - Mathematical formulation

Pinhole limitation

IAS-LAB

What is a major limit of this model?

• Anti spoiler ©

Adding a lens

- Trade-off:
 - Sharp images vs
 - Light intensity
- A more complex system can provide sharp images without needing a pinhole

- Let's introduce the thin lens model
 - A lens is added, centered on the pinhole
- The lens has
 - The main axis lying on the optical axis
 - A center lying in place of the pinhole
- The lens is thin because we can neglect the lens width with respect to the curvature radius
 - The lens is modeled as a 2D plane where every deviation occurs

Effect of lens

Effect of lens

- How to evaluate where the rays are deviated?
 - Some rays are deviated following simple rules

Effect of lens

Focal length

Thin lens equation

- By tracing the two rays, we can determine the location of the image point
- Is there any link connecting
 - The position of the object, and
 - The position of the image?

Thin lens equation

- The thin lens
 equation relates the
 distances
 - Between object and lens, d_0
 - Between lens and image, d_1

depending on the lens focal length, *f*

$$\frac{1}{d_0} + \frac{1}{d_1} = \frac{1}{f}$$

Focal length comparison

- The expression focal length has several meanings now:
 - Thin lens: distance at which parallel rays intersect
 - Pinhole camera model: distance between pinhole and sensor

Non ideal lenses

- The lens used so far is:
 - Thin
 - Ideal
- Real lenses are affected by additional effects
 - Distortion
 - Chromatic aberrations
 - Other minor effects

Non ideal lenses

IAS-LAB

- Lens manufacturer keep under control distortions
- A non-distortion lens is often complex to design and to build

LCM-5MP-08MM-F2.0-1.8-ND1 LENS C-MOUNT 5MP 08MM F2.0 1/1.8" NON DISTORTION

Distortion

- Distortion is a deviation from the ideal behavior described so far
- Such deviation undergoes a pattern that can be:
 - Radial
 - Tangential

IAS-LAB

 Radial distortion: the entity of the distortion depends on the distance of the distorted point from the image center

- The radial distortion can be analyzed by means of distortion patterns
 - Can be experimentally measured
 - Can be analytically described if the lens structure is known in detail
 - Distortion chart the arrows represent the displacements

IAS-LAB

- Camera models commonly consider a polynomial approximation for the radial distortion
 - Just a mathematical model, not a physical one
 - Often modeled* as a *correction*: the corrected point (x_{corr}, y_{corr}) depending on the distorted point (x, y):

$$x_{corr} = x \cdot (1 + k_1 r^2 + k_2 r^4 + k_3 r^6)$$

$$y_{corr} = y \cdot (1 + k_1 r^2 + k_2 r^4 + k_3 r^6)$$

LE EQUAZIONI NON SERVE SAPERLE

Tangential distortion

- Tangential distortion is caused by the nonideal alignment between lens and sensor
- Looks similar to a "perspective" effect on the sensor
 - Usually negligible

Cheap camera

• Tangential distortion is also modeled in terms of (x_{corr}, y_{corr})

$$x_{corr} = x + [2p_1xy + p_2(r^2 + 2x^2)]$$

$$y_{corr} = y + [p_1(r^2 + 2y^2) + 2p_2xy]$$

Chromatic aberration

- Dispersion: refractive index depends on wavelength
- Modifies ray blending and lens focal length: f(λ)
- Color fringes near the image edges

Chromatic aberration

Close to the lens center

Close to the outer edge

Distortion and camera models

IAS-LAB

- A thin lens camera model can be coupled with distortion estimation
 - Projection

Use non-distorting thin lens camera model

Apply distortion

Inverse projection

Compensate distortion

Use non-distorting thin lens camera model

UNIVERSITÀ DEGLI STUDI DI PADOVA

Cameras and lenses

Stefano Ghidoni

