CS 4248 Natural Language Processing

Professor NG Hwee Tou

Department of Computer Science
School of Computing
National University of Singapore
nght@comp.nus.edu.sg

Chapter 17: The Representation of Meaning

- Meaning Representation (Semantic Representation)
 - Formal structures composed from symbols to represent the meaning of sentences
- This chapter focuses on representation of literal meaning of individual sentences

Literal vs. Non-literal Meaning

- John went to the supermarket. He picked up a milk carton on the shelf. He paid at the check-out counter and left.
- What did John buy at the supermarket?

Literal vs. Non-literal Meaning

- John went to the supermarket. He picked up a milk carton on the shelf. He paid at the check-out counter and left.
- What did John buy at the supermarket?
- Inferences needed:
 - Milk was the item paid for
 - Paid for x implies bought x
 - Milk was on the shelf which was in the supermarket
 - He refers to John

Meaning Representation Languages

- Frameworks/languages used to specify the syntax and semantics of meaning representations
- Frequently used meaning representation languages:
 - First-Order Logic (FOL)
 - Semantic Network
 - Conceptual Dependency
 - Frame Representation

Meaning Representation

Sentence: I have a car.

- Verifiability
- Unambiguous Representations
- Canonical Form
- Inference and Variables
- Expressiveness

Verifiability

- Able to determine the truth of the meaning representation of a sentence against the world modeled
- That is, match the meaning representation of a sentence against representations of facts about the world modeled in the system's knowledge base

– Example:

- Does Maharani serve vegetarian food?
- Serves(Maharani, VegetarianFood)

- Unambiguous Representations
 - Semantic ambiguity of input sentences
 - I wanna eat someplace that's close to NUS.
 - » Interpretation #1: eat at some location near NUS
 - » Interpretation #2: eat some location near NUS
 - Goal of semantic analysis is to resolve semantic ambiguity
 - Meaning representation should be free from ambiguity

Canonical Form

- Different sentences with the same meaning should be assigned the same meaning representation
- Examples:
 - Does Maharani have vegetarian dishes?
 - Do they have vegetarian food at Maharani?
 - Are vegetarian dishes served at Maharani?
 - Does Maharani serve vegetarian fare?
- Different words (dishes, food, fare; have, serve)
- Different sentence structures (Maharani has vegetarian food, They have vegetarian food at Maharani)
- Having the same representation for these questions facilitates matching to facts in the knowledge base

- Canonical Form
 - Assign the same meaning to different words
 - Examples: dishes, food, fare
 - Assign the same meaning to different syntactic structures
 - Examples: Active and passive sentences
 - » Maharani serves vegetarian dishes.
 - » Vegetarian dishes are served by Maharani.

- Inference and Variables
 - Inference:
 - Maharani serves vegetarian food.
 - Can vegetarians eat at Maharani?
 - Need the inference rule that vegetarians eat vegetarian food
 - NLP program must be able to draw valid inferences not explicitly stated in the meaning representation of the input sentence or program's knowledge base

- Inference and Variables
 - Variables
 - I'd like to find a restaurant where I can get vegetarian food
 - Serves(x, VegetarianFood)

- Expressiveness
 - Meaning representation language must be able to adequately express and represent the meaning of any natural language sentence

First-Order Logic (FOL)

- A flexible, expressive meaning representation language
- Objects and relations among objects

```
Formula \rightarrow AtomicFormula
                           Formula Connective Formula
                           Quantifier Variable,... Formula
                           \neg Formula
                           (Formula)
AtomicFormula \rightarrow Predicate(Term,...)
             Term \rightarrow Function(Term,...)
                           Constant
                           Variable
     Connective \rightarrow \land |\lor| \Rightarrow
       Quantifier \rightarrow \forall \mid \exists
        Constant \rightarrow A \mid VegetarianFood \mid Maharani \cdots
         Variable \rightarrow x \mid y \mid \cdots
       Predicate \rightarrow Serves \mid Near \mid \cdots
        Function \rightarrow LocationOf \mid CuisineOf \mid \cdots
```

- Terms: represent objects
 - Constants:
 - A, B, Maharani, Harry
 - Convention: begin with an uppercase letter
 - Functions:
 - LocationOf(Maharani)
 - The location of Maharani or Maharani's location
 - Convention: begin with an uppercase letter
 - Variables:
 - x, y
 - Used with quantifiers ∀ and ∃
 - Convention: lowercase letters

- Predicates: represent relations
 - A relation that holds among some fixed number of objects
 - Example:
 - Maharani serves vegetarian food.
 - » Serves(Maharani, VegetarianFood)
 - Assert a property of a single object
 - Example:
 - Maharani is a restaurant.
 - » Restaurant(Maharani)
 - Convention: begin with an uppercase letter

- Logical connectives: ¬ ∧ ∨ ⇒
 - Example:
 - I only have five dollars and I don't have a lot of time.
 - Have(Speaker, FiveDollars) ∧ ¬Have(Speaker, LotOfTime)
- P ⇒ Q is equivalent to ¬P ∨ Q

- Terms and predicates in a FOL formula acquire their meanings by their correspondence to the objects, relations, and properties in the external world being modeled
- A FOL formula can be assigned True or False
- Example:
 - Maharani is near NUS.
 - Near(LocationOf(Maharani), LocationOf(NUS))

- Model-theoretic semantics
 - A FOL formula is true wrt a model and an interpretation
- Model contains a domain of objects and relations among objects
- Interpretation is a mapping:
 - constant symbol → object
 - predicate symbol → relation (of objects)
 - function symbol → functional relation (of objects)

Model

Domain D = { *a*, *b*, *f*, *g* }

Relations:

$$n = \{ f \}$$

 $I = \{ \langle a, g \rangle, \langle b, g \rangle \}$

Interpretation

constant symbols:

Matthew → a

Franco $\rightarrow b$

 $\mathsf{Med} \to \mathsf{f}$

 $Rio \rightarrow g$

predicate symbols:

Noisy $\rightarrow n$

Likes → /

"Franco likes Rio."

FOL formula Likes(Franco, Rio) is true.

"Rio is noisy."

FOL formula Noisy(Rio) is false.

Truth table:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$
False	False	True	False	False	True
False	True	True	False	True	True
True	False	False	False	True	False
True	True	False	True	True	True

- Variables and quantifiers
- Example 1:
 - Existentially quantified variables
 - Indefinite noun phrases
 - a restaurant that serves vegetarian food near NUS
 - ∃x (Restaurant(x) ∧ Serves(x, VegetarianFood) ∧ Near(LocationOf(x), LocationOf(NUS)))
- Example 2:
 - Universally quantified variables
 - All vegetarian restaurants serve vegetarian food
 - \forall x (VegetarianRestaurant(x) \Rightarrow Serves(x, VegetarianFood))

- Lambda expression: λx P(x)
 - P(x): FOL formula
- λ-reduction: apply a lambda expression to a term
 - Replace the λ variable by the term, then remove λx
- Examples:
 - $-\lambda x P(x)(A)$ gives P(A)
 - λxλy Near(x,y)(USA) gives λy Near(USA,y)
 - λy Near(USA,y)(Canada) gives Near(USA, Canada)

- Inference
 - Modus ponens (if-then reasoning)

$$\begin{array}{c} \alpha \\ \alpha \Rightarrow \beta \\ \hline \beta \end{array}$$

- α : antecedent of $\alpha \Rightarrow \beta$
- β : consequent of $\alpha \Rightarrow \beta$

Categories

- Method 1:
 - Create a unary predicate for each category
 - VegetarianRestaurant(Maharani)
 - Problem: Unable to talk about VegetarianRestaurant
 - Not a valid FOL formula:

MostPopular(Maharani, VegetarianRestaurant)

Categories

Method 2:

- Reification: Represent all concepts that we want to make statements about as full-fledged objects
- ISA(Maharani, VegetarianRestaurant)
- AKO(VegetarianRestaurant, Restaurant)

- I ate.
- I ate a turkey sandwich.
- I ate a turkey sandwich at my desk.
- I ate at my desk.
- I ate lunch.
- I ate a turkey sandwich for lunch.
- I ate a turkey sandwich for lunch at my desk.

Method 1:

- Create as many different eating predicates as are needed to handle all of the ways that eat behaves
- A predicate in FOL has a fixed arity (i.e., a fixed number of arguments)

- I ate.
- I ate a turkey sandwich.
- I ate a turkey sandwich at my desk.
- I ate at my desk.
- I ate lunch.
- I ate a turkey sandwich for lunch.
- I ate a turkey sandwich for lunch at my desk.
- Eating1(Speaker)
- Eating2(Speaker, TurkeySandwich)
- Eating3(Speaker, TurkeySandwich, Desk)
- Eating4(Speaker, Desk)
- Eating5(Speaker, Lunch)
- Eating6(Speaker, TurkeySandwich, Lunch)
- Eating7(Speaker, TurkeySandwich, Lunch, Desk)
- Relate them using meaning postulates:
 ∀w, x, y, z Eating7(w, x, y, z) ⇒ Eating6(w, x, y)

- Problems:
 - Cumbersome: need too many meaning postulates
 - Difficult to scale up

Method 2:

 Use a single predicate where as many arguments are included in the definition of the predicate as ever appear with it in an input

```
∃w, x, y Eating(Speaker, w, x, y)
∃w, x Eating(Speaker, TurkeySandwich, w, x)
∃w Eating(Speaker, TurkeySandwich, w, Desk)
∃w, x Eating(Speaker, w, x, Desk)
∃w, x Eating(Speaker, w, Lunch, x)
∃w Eating(Speaker, TurkeySandwich, Lunch, w)
Eating(Speaker, TurkeySandwich, Lunch, Desk)
```

- Problems:
 - Make too many commitments
 - Need to commit to all arguments (e.g., every eating event must be associated with a meal, which is not true)
 - Unable to refer to individual events
 - Event is a predicate, not a term

Method 3:

- Use reification to elevate events to objects
- Arguments of an event appear as predicates
- Do not need to commit to arguments (roles) not mentioned in the input
- Meaning postulates not needed

- I ate.
 ∃e Eating(e) ∧ Eater(e, Speaker)
- I ate a turkey sandwich.
 ∃e Eating(e) ∧ Eater(e, Speaker) ∧
 Eaten(e, TurkeySandwich)
- I ate a turkey sandwich for lunch.
 ∃e Eating(e) ∧ Eater(e, Speaker) ∧
 Eaten(e, TurkeySandwich) ∧
 Meal(e, Lunch)