ÁLLÓHULLÁMOK KÖTÉLEN

Mérést végezte : Brindza Mátyás Mérés időpontja : 2020.10.02.

Jegyzőkönyv leadásának időpontja: 2020.10.31.

A mérés célja:

Először a hullám terjedési sebessége, a sajátfrekvencia és az ez mellett megjelenő hullámhossz közti összefüggést szeretnénk bizonyítani. Az adott hosszúságú kötélen állóhullám alakul ki, ha az egyik végét a sajátfrekvenciával rezgetjük, a másikat rögzítjük. Ekkor a kötél hossza az állóhullám fél hullámhosszának egész számú többszöröse, azaz

$$L = \frac{n \cdot \lambda_n}{2}$$

Itt n a félhullámhosszok száma, ebből könnyen belátható, hogy a csomópontok száma n-1. Csomópont alatt a kötél azon pontjai értjük, melyek nyugalomban maradnak (0 amplitúdóval rezegnek) - a kötél két vége nem számít csomópontnak.

Tudni fogjuk a rezgés frekvenciáját és a hullámhosszát, ebből a $v = \lambda_n \cdot f_n$ képlet segítségével a

$$v = \frac{2 \cdot L}{n} \cdot f_n$$

összefüggés alapján kiszámolható a hullám terjedési sebessége.

A mérés második része a terjedési sebesség anyagi minőségtől való függésének megállapítása céljából történik. Felhasználjuk a transzverzális hullámok rugalmas közegre (most nevezzük húrnak) vonatkozó sebességére a

$$v = \sqrt{\frac{F}{\rho \cdot A}}$$

összefüggést, ahol v a terjedési sebesség, F a húr végét feszítő erő, A a húr keresztmetszete és ρ a húr sűrűsége. Ez behelyettesíthető az előző képletbe:

$$f_n = \frac{v}{\lambda_n} = \frac{n}{2 \cdot L} \cdot \sqrt{\frac{F}{\rho \cdot A}}$$

A továbbiakban hasznosabb és rövidebb lesz a $\rho \cdot A$ mennyiséget μ -nek jelölni, ami a kötél egységnyi hosszúságának tömegét jelenti, másnéven lineáris sűrűségét. A húrt feszítő erőt súlyok szolgáltatják $(F=m\cdot g)$, így frekvencia és a tömeg lesz ismert adott n-re, ezért illesztés szempontjából célszerű lesz

$$f^2 = \frac{n^2 \cdot g}{4 \cdot L^2 \cdot \mu} \cdot m$$

alakban használni az összefüggést. Az illesztés eredménye csak impliciten tartalmazza a lineáris sűrűsűget, mivel lineáris illesztés csak a változó (most m) együtthatóját adja vissza. Észrevehetjük, hogy a fenti képletben csakis a lineráris sűrűség tekinthető anyagi minőségnek, így μ -t is keressük. A következő változócserék könnyítik meg a μ -höz való eljutást:

$$f^2 = a \cdot m$$
$$\mu = \frac{n^2 \cdot g}{4 \cdot L^2 \cdot a}$$

Mérőeszkzök:

- Két különböző vastagságú kötél
- Fém korongok (20g)
- Fém kosár (50g), melyre rácsúsztathatóak a fém korongok
- Vibrátor
- Színusz-hullám generátor állítható a vibrátor frekvenciája

A mérés rövid leírása:

Az első méréshez vegyük elő a vastagabb kötelet, egyik végét rögzítsük a vibrátorhoz, a másik, csigán lelógó végére akasszunk 90g-nyi tömeget. A színusz hullám generátoron található két tekerhető gomb segítségével találjuk meg azt a frekvenciát, ami mellett két félhullámhossz jelenik meg. Az egyik gomb érzékenyebb, így ha nagyon meg szeretnénk változtatni a frekvenciát, ez a gomb használatos. A másik gomb kevésbé érzékeny, így finoman tudunk 0.1Hz lépcsőkkel haladni. Ha megtaláltuk azt a frekvenciát, aminél 1 csomópont van, a finomállító gombbal óvatosan találjuk meg, mikor alakul ki a maximális amplitúdójú rezgésállapot - jegyezzük fel ezt a frekvenciát. A finomállító gombbal óvatosan nézzük meg, mennyit tudunk változtatni a frekvencián, hogy az amplitúdó ne változzon - ez adja meg a mérés bizonytalanságát, jegyezzük fel ezt is.

A második mérés során a vékonyabb kötelet használjuk. A feszítő érőt szolgáltató tömeg először 50g, majd 20g-onként felmegyünk 170g-ra. Most az n=3 módushoz keressük a sajátfrekvenciát. A biztonság kedvéért minden tömegkonfiguráció mellett elvégezzük a mérést háromszor.

A vibrátor amplitúdója is állítható. Célszerű olyan amplitúdót választani, ami mellett jól látszanak a csomópontok, de nem túl nagy a terhelés a kötélen. Nagyobb frekvenciáknál sajnos muszáj lesz nagyobb amplitúdót beállítani.

Mérési adatok

Jelmagyarázat:

- ullet L a használt kötél hossza
- \bullet m a feszítőerőt szolgáltató testek tömege, ill. a kötél tömege
- \bullet f a bizonyos módushoz tartozó sajátfrekvencia
- Δf a mérés bizonytalansága
- n a megjelenő félhullámhosszok száma (azaz a módus)
- g a gravitációs tér erőssége

L [cm]	
150	

n	f [Hz]	∆f[Hz]
2	11,0	0,1
3	16,4	0,1
4	21,9	0,1
5	27,2	0,1
6	33,2	0,1

A módusokhoz tartozó sajátfrekvenciák

Referencia kötél			
L [m]	m [g]		
4	0,8		

Csomópontok száma*:	
2	

g [m/s²]
9,81

m [a]	f [Hz]			
m [g]	1.	2.	3.	
50	49,6	49,5	49,5	
70	58,7	58,6	58,6	
90	66,6	66,6	66,6	
110	73,6	73,7	73,6	
130	80,2	80,1	80,2	
150	86,1	86,2	86,1	
170	91,7	91,8	91,8	

Különböző tömegek esetén megjelenő sajátfrekvencia

Hibaforrások

- 1. Az emberi szem nem képes tökéletesen megállapítani, mikorvan állóhullám, illetve mikor lesz egy pont amplitúdója 0
- 2. Amikor tekergetjük a gombokat, a más-más frekvencián történő rezgetések a kötélben maradnak egy ideig, így ha nem vátunk eleget, nem fog "álló" állóhullám kialakulni
- 3. A színuszhullám-generátor pontossága, a korongok névleges tömegének hibája, illetve a kötél tömegének és hosszának mérési hibája is befolyásolja az eredményt
- 4. A színuszhullám-generátor csak a jelet adja, felmerülhet a kérdés, hogy a vibrátor mennyire hallgat a jelre
- 5. A kötél nem rögzíthető teljesen a vibrátorhoz, ebből kifolyólag a rögzítési pont nem marad egy helyben
- 6. A kötél végén lógó tömegek néha lengeni és forogni kezdenek ez az időben nem állandó nyújtás és csavarás nem tesz jót a mérésnek
- 7. Az első mérésnél érzékelhetően különböznek a bizonytalanságok (bár mindegyikük 0.1Hz körül van), viszont a finomállító gombbal csak 0.1Hz-nyi ugrásokat tudunk tenni, így mindenhol ugyanolyan bizonytalanság lett feljegyezve
- 8. A második mérésnél kötél minden extra terheléssel megnyúlik egy kicsit, így a lineáris sűrűsége lecsökken a harántösszehúzódás miatt
- 9. A második mérésnél néhol előfordul, hogy két rezgető frekvencia hatása szemmel láthatóan nem különbözik

Kiértékelés

Először foglalkozzunk a hullám terjedés sebességével. A terjedési sebesség minden n mellett kiszámolható. Kiszámoljuk még az f_n/f_{n+1} arányt is, mivel erre az értékre elméleti becslést tudunk adni. Az $v=\frac{2\cdot L}{n}\cdot f_n$ összefüggés miatt tudjuk, hogy

$$f_n = \frac{v}{2 \cdot L} \cdot n,$$

így az f_n/f_{n+1} arány egzaktul n/(n+1). Ez azért lesz jó, mert az arány független a sebességtől és a kötél hosszától. Az alábbi táblázat foglalja össze az eredményeket.

n	f [Hz]	v [m/s]	mért f _n /f _{n+1}	várt f _n /f _{n+1}
2	11.0	16.500	0.6707	0.6667
3	16.4	16.400	0.7489	0.7500
4	21.9	16.425	0.8051	0.8000
5	27.2	16.320	0.8193	0.8333
6	33.2	16.600	-	-

A terjedési sebesség és az egymást követő frekvenciák aránya

A második mérésnél kiszámolható minden tömeg mellett a három frekvencia átlaga, illetve ennek a négyzete. Az illesztés majd $y(x) = a \cdot x$ alakú lesz, ahol $f^2(m)$ felel meg y(x)-nek.

m [g]		f [Hz]		f _{áti} [Hz]	f _{átl} ² [Hz]
[8]	1.	2.	3.	'áti [' '2]	
50	49.6	49.5	49.5	49.5333	2453.5511
70	58.7	58.6	58.6	58.6333	3437.8678
90	66.6	66.6	66.6	66.6000	4435.5600
110	73.6	73.7	73.6	73.6333	5421.8678
130	80.2	80.1	80.2	80.1667	6426.6944
150	86.1	86.2	86.1	86.1333	7418.9511
170	91.7	91.8	91.8	91.7667	8421.1211

Az átlag frekvenciák és ezek négyzete

Az illesztés GNUPLOT segítségével törént, eredménye:

$$a = 49.4144$$

A mérési pontok és az illesztett egyens ábrázolása mm-papíron

Ebből kiszámolhatjuk lineáris sűrűséget.

$$\mu = 0.19852 \frac{g}{m}$$

A kötél hossza L=4m és tömege M=0.8g, ebből a névleges lineáris sűrűség:

$$\mu_{nev} = \frac{m}{L} = 0.2 \frac{g}{m}$$

Diszkusszió

Az első mérést illetően elég jól követte a mérés a jósolt értékeket, bár az utolsó arány elcsúszott egy kicsit. A második mérést illetően szépen látszik a lineáris kapcsolat f^2 és m között, illetve a mérések alapján számolt lineáris sűrűség is elég közel áll a névleges lineáris sűrűseghez (csupán 0.74% az eltérés).