TODAY'S CLASS

6:00PM - 6:50PM: Data Visualization with ggplot2

7:00PM – 7:50PM: Movie Challenge

8:00PM – 9:50PM: ggplot Extensions

VISUALIZATION

Program

[†]A modified version of Hadley Wickham's analytic process

ggplot2

- R has several systems for making graphs
- ggplot2 is the most elegant and versatile
- Implements the grammar of graphics theory behind data visualization

PREREQUISITES

PACKAGE PREREQUISITE

#> lag(): dplyr, stats

DATA PREREQUISITE

```
mpg
#> # A tibble: 234 × 11
#> manufacturer model displ year cyl trans drv cty hwy fl
       <chr> <chr> <chr> <chr> <chr> <int> <chr> <int> <chr> <int> <int> <int> <chr>
#>
        audi a4 1.8 1999 4 auto(I5) f 18 29 p
#> 1
#> 2
        audi a4 1.8 1999 4 manual(m5) f 21 29 p
        audi a4 2.0 2008 4 manual(m6) f 20 31 p
#>3
#>4
        audi a4 2.0 2008 4 auto(av) f 21 30 p
                           6 auto(I5) f 16 26 p
#> 5
        audi a4 2.8 1999
        audi a4 2.8 1999 6 manual(m5) f 18 26 p
#> 6
#> # ... with 228 more rows, and 1 more variables: class <chr>
```

Type View(mpg) in the console for a spreadsheet view of the data

CANVAS

LET'S CREATE OUR "CANVAS"

```
# left
ggplot(data = mpg)

# right
ggplot(data = mpg, aes(x = displ, y = hwy))
```


GEOMS

geom_abline geom_histogram geom_jitter geom_bar geom_bin2d geom_label geom_blank geom_map geom_boxplot geom_path geom_point geom_contour geom_polygon geom_count geom_quantile geom_hex geom_crossbar geom_raster geom_ribbon geom_density geom_density_2d geom_rug geom_dotplot geom_segment geom_errorharh geom_smooth geom_freqpoly geom_violin

LETS ADD "GEOMS"

- We display data with geometric shapes
- ~ 30 built-in geoms (with many more offered by other pkgs)

Type geom_ + tab in the console

geom_abline	geom_histogram
geom_bar	geom_jitter
geom_bin2d	geom_label
geom_blank	geom_map
geom_boxplot	geom_path
geom_contour	geom_point
geom_count	geom_polygon
geom_hex	geom_quantile
geom_crossbar	geom_raster
geom_density	geom_ribbon
geom_density_2d	geom_rug
geom_dotplot	geom_segment
geom_errorharh	geom_smooth
geom_freqpoly	geom_violin

UNIVARIATE GEOMS

```
ggplot(data = mpg, aes(x = hwy)) +
  geom_histogram()
```

```
ggplot(data = mpg, aes(x = hwy)) +
geom_freqpoly()
```

```
ggplot(data = mpg, aes(x = hwy)) +
  geom_density()
```


geom_histogram geom_abline geom_bar geom_jitter geom_bin2d geom_label geom_blank geom_map geom_boxplot geom_path geom_contour geom_point geom_polygon geom_count geom_quantile geom_hex geom_crossbar geom_raster geom_density geom_ribbon geom_density_2d geom_rug geom_dotplot geom_segment geom_smooth geom_errorharh

geom violin

geom_freqpoly

UNIVARIATE GEOMS

ggplot(data = mpg, aes(x = class)) +
 geom_bar()

geom_abline geom_histogram

geom_bar

geom_bin2d

geom_blank

geom_boxplot

geom_contour

geom_count

geom_hex

geom_crossbar

geom_density

geom_density_2d

geom_dotplot

geom_errorharh

geom_freqpoly

geom_jitter

geom_label

geom_map

geom_path

geom_point

geom_polygon

geom_quantile

geom_raster

geom_ribbon

geom_rug

geom_segment

geom_smooth

geom violin

UNIVARIATE GEOMS

```
ggplot(data = mpg, aes(x = class)) +
geom_bar()
```

- This is called an aesthetic mapping argument
- Every geom requires a mapping argument
 - Some geoms require just one (x variable)
 - While other geoms require two (x & y variable)

geom_abline geom_histogram geom_bar geom_jitter geom_bin2d geom_label geom_blank geom_map geom_boxplot geom_path geom_contour geom_point geom_polygon geom_count geom_hex geom_quantile geom_crossbar geom_raster geom_density geom_ribbon geom_density_2d geom_rug geom_dotplot geom_segment geom_errorharh geom_smooth geom_freqpoly geom_violin

BIVARIATE GEOMS

```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
  geom_point()

ggplot(data = mpg, aes(x = class, y = hwy)) +
  geom_boxplot()

ggplot(data = mpg, aes(x = class, y = hwy)) +
  geom_violin()
```


geom_abline geom_histogram geom_bar geom_jitter geom_bin2d geom_label geom_blank geom_map geom_boxplot geom_path geom_point geom_contour geom_polygon geom_count geom_quantile geom_hex geom_crossbar geom_raster geom_density geom_ribbon geom_density_2d geom_rug geom_dotplot geom_segment

geom_smooth

geom_violin

geom_errorharh

geom_freqpoly

YOUR TURN!

- 1. Create a chart that illustrates the distribution of the cty variable
- 2. Create a chart that shows the number of observations for each manufacturer
- 3. Create a scatter plot of cty vs displ

```
# distribution of cty variable
ggplot(data = mpg, aes(x = cty)) +
    geom_histogram()

# number of observations for each manufacturer
ggplot(data = mpg, aes(x = manufacturer)) +
    geom_bar()

# scatter plot for cty vs displ
ggplot(data = mpg, aes(x = displ, y = cty)) +
    geom_point()
```

NON-MAPPING AESTHETICS

ggplot(data = mpg, aes(x = displ, y = hwy)) +
geom_point(color = "blue", size = 2, shape = 17, alpha = .5)

We can also change other visual aesthetics in our graphics

- color
- Size
- shape (0-25 ?pch)
- opacity

Lots of color and shape options; just google and you'll find plenty of references

NON-MAPPING AESTHETICS

ggplot(data = mpg, aes(x = displ, y = hwy)) +
geom_point(color = "blue", size = 2, shape = 17, alpha = .5)

We can also change other visual aesthetics in our graphics

- color
- SIZE
- sh∆pe
- opacity
- Why are some points darker than others?
- Try geom_jitter in place of geom_point
- What do you think **geom_jitter** does?

ADDING A 3RD DIMENSION

```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
geom_point(color = "blue")
```

By moving the color argument to within aes(), we can map a 3rd variable to our plot

ggplot(data = mpg, aes(x = displ, y = hwy, color = class)) +
 geom_point()

ADDING A 3RD DIMENSION

A common error...what happened???

```
ggplot(data = mpg, aes(x = displ, y = hwy, color = "blue")) +
  geom_point()
```


YOUR TURN!

- 1. Which variables in mpg are categorical? Which variables are continuous? (Hint: type ?mpg to read the documentation for the dataset). How can you see this information when you run mpg?
- 2. Map a continuous variable to **color**, **size**, and **shape**. How do these aesthetics behave differently for categorical vs. continuous variables?
- 3. What happens if you map the same variable to multiple aesthetics?
- 4. What does the stroke aesthetic do? What shapes does it work with? (Hint: use ?geom_point)
- 5. What happens if you map an aesthetic to something other than a variable name, like aes(colour = displ < 5)?

```
# 1. which variables are continuous vs categorical
?mpg
mpg
# A tibble: 234 × 11
             model displ year cyl trans drv cty hwy fl class
 manufacturer
          <chr>
            a4 1.8 1999 4 auto(I5) f 18 29 p compact
     audi
            a4 1.8 1999
                      4 manual(m5) f 21 29 p compact
     audi
            a4 2.0 2008 4 manual(m6) f 20 31
     audi
                                              p compact
            a4 2.0 2008 4 auto(av) f 21 30 p compact
     audi
                        6 auto(I5) f 16 26 p compact
            a4 2.8 1999
     audi
                        6 manual(m5) f 18 26 p compact
            a4 2.8 1999
     audi
     audi a4 3.1 2008 6 auto(av) f 18 27 p compact
     audi a4 quattro 1.8 1999 4 manual(m5) 4 18 26 p compact
     audi a4 quattro 1.8 1999 4 auto(I5) 4 16 25 p compact
9
10
     audi a4 quattro 2.0 2008 4 manual(m6) 4 20 28 p compact
```

```
# 2. Map a continuous variable to color, size, and shape. How do these aesthetics behave.
   differently for categorical vs. continuous variables?
ggplot(mpg, aes(displ, hwy, color = cty, size = cty)) +
 geom_point()
                                                                                      Error: A continuous
                                                                                      variable can not be
                                                                                      mapped to shape
```

3. What happens if you map the same variable to multiple aesthetics? ggplot(mpg, aes(displ, cty, color = drv, shape = drv)) + geom_point()

4. What does the stroke aesthetic do? What shapes does it work with?

ggplot(mpg, aes(displ, cty)) +

geom_point(shape = 21, colour = "black", fill = "white", size = 5, stroke = 2)


```
# 5. What happens if you map an aesthetic to something other than a variable name, like
# aes(colour = displ < 5)
ggplot(mpg, aes(displ, cty, color = displ < 5)) +
geom_point()</pre>
```


					1973
					1983
\CET	5				1993
					2003

FACETS = SMALL MULTIPLES

- The facet functions provide a simple way to create small multiples
 - facet_wrap: primarily used to create small multiples based on a single variable
 - facet_grid: primarily used to create a small multiples grid based on two variables

```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
geom_point() +
facet_wrap(~ class, nrow = 2)
```


FACETS = SMALL MULTIPLES

- The facet functions provide a simple way to create small multiples
 - facet_wrap: primarily used to create small multiples based on a single variable
 - facet_grid: primarily used to create a small multiples grid based on two variables

```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
geom_point() +
facet_wrap(~ class, nrow = 2)
```

- use nrow or ncol to specify dimensions
- ?facet_wrap to see other arguments to control the output

FACETS = SMALL MULTIPLES

- The facet functions provide a simple way to create small multiples
 - facet_wrap: primarily used to create small multiples based on a single variable
 - facet_grid: primarily used to create a small multiples grid based on two variables

```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
geom_point() +
facet_grid(drv ~ cyl)
```


YOUR TURN!

- 1. Create a scatter plot of displ vs cty facetted by year.
- 2. Create a scatter plot of displ vs cty facetted by year and cyl.
- 3. How does placement within facet_grid(cyl ~ year) affect the output?
- 4. How does facet_grid(cyl ~ year) differ from facet_grid(~ year + cyl)?
- 5. What do the scales and space arguments do?

```
# 1. Create a scatter plot of displ vs cty facetted by year.
ggplot(mpg, aes(displ, cty)) +
  geom_point() +
  facet_wrap(~ year)
```



```
# 2. Create a scatter plot of displ vs cty facetted by year and cyl
ggplot(mpg, aes(displ, cty)) +
  geom_point() +
  facet_grid(year ~ cyl)
```


3. How does placement within facet_grid(cyl ~ year) affect the output?


```
# 4. How does facet_grid(cyl ~ year) differ from facet_grid(~ year + cyl)?

ggplot(mpg, aes(displ, cty)) +

geom_point() +

facet_grid(~ year + cyl)
```


5. What do the scales and space arguments do

```
ggplot(mpg, aes(displ, cty)) +
  geom_point() +
  facet_grid(year ~ cyl, scales = "free")
```



```
ggplot(mpg, aes(displ, cty)) +
  geom_point() +
  facet_grid(year ~ cyl, scales = "free", space = "free")
```


OVERPLOTING

LAYERING HELPS DISPLAY PATTERNS

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  geom_smooth()
```

```
mpg %>%
  ggplot(aes(x = displ, y = hwy, color = drv)) +
  geom_point() +
  geom_smooth()
```


LAYERING HELPS DISPLAY PATTERNS

```
mpg %>%
    ggplot(aes(x = displ, y = hwy, color = drv)) +
    geom_point() +
    geom_smooth()
```

```
mpg %>%
    ggplot(aes(x = displ, y = hwy)) +
    geom_point(aes(shape = drv)) +
    geom_smooth(aes(color = drv))
```

aes mapping can be done in ggplot() or geom_xx()

LAYERING HELPS ID ABNORMALITIES

```
mpg %>%
    ggplot(aes(x = displ, y = hwy)) +
    geom_point() +
    geom_smooth()
```


What's driving this upward swing?

LAYERING HELPS ID ABNORMALITIES

```
mpg %>%
    ggplot(aes(x = displ, y = hwy)) +
    geom_point(aes(color = class)) +
    geom_smooth()
```


Looks like it could be the 2 seaters but we need to verify

LAYERING HELPS ID ABNORMALITIES

```
mpg %>%
    ggplot(aes(x = displ, y = hwy)) +
        geom_point(aes(color = class == "2seater")) +
        geom_smooth(data = filter(mpg, class == "2seater"), se = FALSE) +
        geom_smooth(data = filter(mpg, class != "2seater"), se = FALSE)
```


YOUR TURN!

1. Over plot:

```
ggplot(data = mpg, aes(x = class, y = hwy)) +
    geom_boxplot()
```

With geom_jitter(width = .2, alpha = .5)

what does this tell you?

SOLUTION

```
# 1. Overplot boxplot with jitter
ggplot(mpg, aes(class, hwy)) +
  geom_boxplot() +
  geom_jitter(width = .25, alpha = .5)
```


SOLUTION

```
# 2. add geom_rug to smoother
ggplot(mpg, aes(displ, cty)) +
  geom_smooth() +
  geom_rug()
```


POSITIONING

BAR CHARTS

- All geoms have a position argument but rarely will you need to adjust it
- geom_bar and a few others benefit from its use though:
 - position = "stack" (default)
 - position = "fill"
 - position = "dodge"

BAR CHARTS

```
ggplot(data = mpg, aes(class, color = factor(year))) +
  geom_bar()
```

```
ggplot(data = mpg, aes(class, fill = factor(year))) +
  geom_bar()
```

```
ggplot(data = mpg, aes(class, fill = factor(year))) +
  geom_bar(position = "fill")
```

```
ggplot(data = mpg, aes(class, fill = factor(year))) +
  geom_bar(position = "dodge")
```


YOUR TURN!

Use **geom_bar** and the different **position** arguments to assess how the **cyl** variable is distributed within each **class**.

SOLUTION

```
# One potential solution
ggplot(mpg, aes(class, fill = factor(cyl))) +
geom_bar(position = "fill")
```


COORDINATE SYSTEM

• There are *many* options to manipulate and adjust the coordinate system but some basic ones include:

- There are *many* options to manipulate and adjust the coordinate system but some basic ones include:
 - flipping the coordinates

```
# top
ggplot(data = mpg, aes(x = class, y = hwy)) +

geom_boxplot()

# bottom
ggplot(data = mpg, aes(x = class, y = hwy)) +
geom_boxplot() +
coord_flip()
```


- There are many options to manipulate and adjust the coordinate system but some basic ones include:
 - zooming in or out

```
ggplot(data = mpg, aes(x = displ, y = cty)) +
geom_jitter() +
coord_cartesian(xlim = c(4, 7), ylim = c(10, 20))
```


- There are many options to manipulate and adjust the coordinate system but some basic ones include:
 - formatting axes and labels

```
ggplot(data = txhousing, aes(x = volume, y = median)) +
    geom_point(alpha = .25) +
    scale_y_continuous(name = "Median Sales Price", labels = scales::dollar) +
    scale_x_log10(name = "Total Sales Volume", labels = scales::comma) +
    ggtitle("Texas Housing Sales",
        subtitle = "Sales data from 2000-2010 provided by the TAMU real estate center")
```

Texas Housing Sales

- There are many options to manipulate and adjust the coordinate system but some basic ones include:
 - formatting axes and labels

```
ggplot(data = txhousing, aes(x = volume, y = median)) +
    geom_point(alpha = .25) +
    scale_y_continuous(name = "Median Sales Price", labels = scales::dollar) +
    scale_x_log10(name = "Total Sales Volume", labels = scales::comma) +
    ggtitle("Texas Housing Sales",
    subtitle = "Sales data from 2000-2010 provided by the TAMU real estate center")
```

This is what I expect your project visualizations to look like!

Texas Housing Sales

- There are many options to manipulate and adjust the coordinate system but some basic ones include:
 - creating pie charts

```
ggplot(data = mpg, aes(class, fill = factor(year))) +
    geom_bar() +
    coord_polar()
```


YOUR TURN!

How close can you get to re-creating this?

SOLUTION

```
mpg %>%
  ggplot(aes(x = class, fill = factor(cyl))) +
  geom_bar(position = "fill") +
  scale_y_continuous(name = "Percent", labels = scales::percent) +
  coord_flip()
```


SEE LAYERING IN ACTION

https://rpubs.com/bradleyboehmke/weather_graphic

LEARN MORE

Use R! Hadley Wickham Elegant Graphics for Data Analysis Second Edition

LEVERAGE HELP AS YOU'RE LEARNING

Help >> Cheatsheets >> Data Visualization with ggplot2

Data Visualization with ggplot2:: CHEAT SHEET

Each function returns a layer.

Geoms
Use a geom function to represent data points, use the geom's aesthetic properties to represent variables.

GRAPHICAL PRIMITIVES

a <- ggplot(economics, aes(date, unemploy)) b <- ggplot(seals, aes(x = long, y = lat))</p>

a + geom_blank() (Useful for expanding limits)

b + geom_curve(aes(yend = lat + 1, xend=long+1,curvature=z)) - x, xend, y, yend, alpha, angle, color, curvature, linetype, size

a + geom_path(lineend="butt", linejoin="round", linemitre=1) x, y, alpha, color, group, linetype, size

a + geom_polygon(aes(group = group)) x, y, alpha, color, fill, group, linetype, size

b + geom_rect(aes(xmin = long, ymin=lat, xmax= long + 1, ymax = lat + 1)) - xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size

a + geom_ribbon(aes(ymin=unemploy - 900, ymax=unemploy + 900)) - x, ymax, ymin, alpha, color, fill, group, linetype, size

LINE SEGMENTS

common aesthetics: x, y, alpha, color, linetype, size

b + geom_abline(aes(intercept=0, slope=1)) b + geom_hline(aes(yintercept = lat))

b + geom_vline(aes(xintercept = long))

b + geom_segment(aes(yend=lat+1, xend=long+1)) b + geom_spoke(aes(angle = 1:1155, radius = 1))

TWO VARIABLES

continuous x, continuous y e <- ggplot(mpg, aes(cty, hwy))

e + geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE) x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

e + geom_jitter(height = 2, width = 2) x, y, alpha, color, fill, shape, size

e + geom_smooth(method = lm), x, y, alpha,

color, fill, group, linetype, size, weight

e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE), x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

discrete x, continuous y f <- ggplot(mpg, aes(class, hwy))

f + geom_col(), x, y, alpha, color, fill, group, linetype, size

f + goom hovelet() v u lower middle upper

continuous bivariate distribution

h <- ggplot(diamonds, aes(carat, price))

h + geom_bin2d(binwidth = c(0.25, 500)) x, y, alpha, color, fill, linetype, size, weight

h + geom_density2d() x, y, alpha, colour, group, linetype, size

h + geom_hex() x, y, alpha, colour, fill, size

continuous function

i <- ggplot(economics, aes(date, unemploy))

i + geom_area() x, y, alpha, color, fill, linetype, size

x, y, alpha, color, group, linetype, size

i + geom_step(direction = "hv") x, y, alpha, color, group, linetype, size

visualizing error

df < -data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)i <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))</pre>

j + geom_crossbar(fatten = 2) x, y, ymax, ymin, alpha, color, fill, group, linetype,

j + geom_errorbar(), x, ymax, ymin, alpha, color,

WHAT TO REMEMBER

FUNCTIONS TO REMEMBER

Operator/Function	Description
ggplot()	Initializes a ggplot object (creates the blank canvas)
aes()	Creates aesthetic mappings
geom_xx	Geometric shapes to plot the data
color, shape, size, alpha, etc	Aesthetic parameters
facet_wrap, facet_grid	Create small multiples
position	Position argument (primarily used with bar charts)
coord_xx	Functions to adjust the coordinate system
scale_xx	Functions to adjust x and y axis

IMPORTANT

This aligns to standards 4.2, 4.3, 4.5.

10 MINUTE BREAK