Matma

Rafał Grot

December 8, 2022

Contents

1	liczby zespolone			
	1.1	postać algerbraiczna liczby zespolonej	2	
		1.1.1 sprzężenie liczby zespolonej	2	
	1.2	postać trygonometryczna liczby zespolonej	2	
	1.3	postać wykładnicza liczby zespolonej	2	
	1.4	moduł liczby zespolonej	3	
	1.5	funkcja kwadratowa	3	
	1.6	Potęgowanie liczby zespolonej	4	
2	Sto	Stożkowe		
	2.1	Sprowadzanie do postaci kwadratowej	4	
3	\mathbb{R}^3		5	
	3.1	Równianie ogólne płaszczyzny	5	
_				
1	lic	czby zespolone		
	• Z	$\bullet \ \mathbb{Z}$ – zbiór liczb całkowitych		
	• R	ullet R – zboór liczb rzeczywistych		
	ullet C – zbiór liczb zespolonych			

 $\mathbb{Z}\subset\mathbb{R}\subset\mathbb{C}$

1.1 postać algerbraiczna liczby zespolonej

$$z = a + bi$$

- $\Re(z) = a$ część rzeczywista liczby zespolonej.
- $\Im(z) = b$ częśc urojona liczby zespolonej.
- i jednostka urojona $i^2 = -1$
- 1.1.1 sprzężenie liczby zespolonej

$$z = a + bi$$
 $\overline{z} = a - bi$ $w = f - gi$ $\overline{w} = f + gi$

1.2 postać trygonometryczna liczby zespolonej

$$z = (z)(\cos\varphi \cdot \sin\varphi)$$

1.3 postać wykładnicza liczby zespolonej

$$z = (z) \cdot e^{i\varphi}$$

1.4 moduł liczby zespolonej

$$|z| = \sqrt{a^2 + b^2}$$

 φ – argument

1.5 funkcja kwadratowa

$$z^2 + z + 1 = 0$$

 $\Delta = b^2 - 4ac = -3$ – brak rozwiązań w $\mathbb R$

$$\sqrt{\Delta} = \sqrt{-3} = \sqrt{(-1)3} = \sqrt{-1}\sqrt{3} = \sqrt{i^2}\sqrt{3} = i\sqrt{3}$$
$$-b - \sqrt{\Delta} \qquad -b + \sqrt{\Delta}$$

$$z_1 = \frac{-b - \sqrt{\Delta}}{2a} \lor z_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$z_1 = \frac{-1 - i\sqrt{3}}{2} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \lor z_2 = \frac{-1 + i\sqrt{3}}{2} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

1.6 Potęgowanie liczby zespolonej

$$z = a + bi \rightarrow z = |z|(\cos\varphi + i\sin\varphi)^n \rightarrow |z|^n(\cos n\varphi + i\sin n\varphi)$$

2 Stożkowe

$$Q(\vec{x}) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2 \to M = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

 $\det M$

– wyróżnik formy kwadratowej $Q(\vec{x})$

$\det M > 0$	forma kwadratowa typu eliptycznego
$\det M = 0$	forma kwadratowa typu parabolicznego
$\det M < 0$	forma kwadratowa typu hiperbolicznego

2.1 Sprowadzanie do postaci kwadratowej

$$Q(\vec{x}) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2 \to Q(\vec{x}) = a_1\hat{x}_1^2 + a_2\hat{x}_2^2$$

gdzie a_1, a_2 – wartości własne macierzy M

 \hat{x}_1, \hat{x}_2 – współ
żędne wektora \vec{x} w nowej baze ortonormalnej $\vec{v_1}, \vec{v_2}$ złożonej z wersorów własnych macierzy
 M.

wersor własny – wektor własny o długości 1.

 $\mathbf{3}$ \mathbb{R}^3

3.1 Równianie ogólne płaszczyzny

$$\vec{n} = [A,B,C]$$

$$P = (x_0, y_0, z_0)$$

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$