10장 비전 트랜스포머

⊞ 날짜	@2025년 4월 30일 → 2025년 5월 6일
◈ 선택	DL세션 과제
⊙ 주차	9주차
※ 진행 상태	완료

Vit(Vision Transformer)

ViT

합성곱 모델과 ViT 모델 비교

ViT의 귀납적 편향(Inductive Bias)

ViT 모델

패치 임베딩(Patch Embedding)

인코더(Encoder)

~ 실습 ~

Swin Transformer

ViT와 스윈 트랜스포머 차이

스윈 트랜스포머 모델 구조

패치 파티션 / 패티 병합

스윈 트랜스포머 블록

실습

CvT

합성곱 토큰 임베딩

어텐션에 대한 합성곱 임베딩

Vit(Vision Transformer)

이미지 인식을 위한 딥러닝 모델

이미지를 자연어 처리 방식처럼 분류해 보려는 시도에서 탄생

- CNN 모델의 합성곱 계층 방법 사용X
 - 。 이미지 분류를 위해 지역 특징을 추출
- 트랜스포머 모델에서 사용되는 셀프 어텐션을 적용
 - 。 전체 이미지를 한 번에 처리

- 왼쪽→오른쪽, 위→아래 방향으로 순차적 입력 ⇒ 2차원 구조의 이미지 특성을 완전히 반영x
- ⇒ 해상도를 계층적으로 학습하는 스윈 트랜스포머(Swin Transformer)와 CvT(Convolutional Vision Transformer)모델이 제안됨
- 스윈 트랜스포머는 로컬 윈도(Local Window)를 활용해 각 계층의 어텐션이 되는 패치의 크기와 개수를 다양하게 구성해 이미지 특성을 학습시킴.
 - 기존 셀프 어텐션을 로컬 윈도 안에 대한 어텐션, 로컬 윈도 간의 어텐션으로 수행하여 이미지 특징을 계층적으로 학습
 - 이 어텐션 함수에는 상대적 위치 편향을 반영하여 어텐션값 자체에 위치적 정보를 포함시킴
- CvT는 기존 합성곱 연산 과정을 ViT에 적용한 모델
 - 저수준 특징과 고수준 특징을 계층적으로 반영할 수 있음
 - 저수준 특징: 눈, 코, 입과 같은 작은 단위
 - 고수준 특징: 눈, 코, 입을 포함한 전체 얼굴
 - 어텐션 연산과정에서 쿼리(Query, Q), 키(Key, K), 값(Value, V) 중 키와 값을 기존 특징 벡터보다 축소해 계산 복잡도를 감소시킴

ViT

트랜스포머 구조 자체를 컴퓨터비전 분야에 적용한 첫 번째 연구

- 이미지가 격자로 작은 단위의 이미지 패치로 나뉘어 순차적으로 입력됨
- ViT 모델에 사용되는 입력 이미지 패치는 왼→오, 위→아래의 시퀀셜 배열을 가정함

합성곱 모델과 ViT 모델 비교

이미지 특징을 잘 표현하는 임베딩 만들기

(차이점): 과정

- 합성곱 신경망: 이미지 패치 중 일부만 선택하여 학습 → 이미지 전체의 특징 추출
 - (ex) 왼쪽 눈의 특징 추출 → 이미지에서 해당 부분만 선택학습
- ViT 임베딩은 이미지를 작은 패치들로 나눠 패치 간의 상관관계를 학습
 - 。 이를 위해 셀프 어텐션 방법을 이용: 모든 패치가 서로에게 주는 영향을 고려해 이미지 전체 특징을 추출 ⇒ 모든 이미지 패치가 학습에 관여하며 높은 수준의 이미지 표현을 제공할 수 있음

Ⅲ 따라서 좁은 수용 영역(Receptive Field, RF)을 가진 합성곱 신경망은 전체 이미지 정보 를 표현하는데 수많은 계층이 필요하지만, 트랜스포머 모델은 **어텐션 거리(Attention** Distance)를 계산하여 오직

• 한 개의 ViT 레이어로 전체 이미지 정보를 쉽게 표현

- 패치 단위로 이미지 처리 → 더 작은 모델로도 높은 성능을 얻을 수 O
- 입력 이미지의 크기가 고정 → 이미지 크기를 맞추는 전처리 필요
- 합성곱 신경망: 공간적인 위치 정보 고려 ↔ 패치 간의 상대적인 위치만 고려⇒ 이미지 변환에 취약할 수 O

ViT의 귀납적 편향(Inductive Bias)

: 일반화 성능 향상을 위한 모델의 가정(Assumption)

모델이 가지는 구조와 매개변수들이 데이터에 적합한 가정을 함 → 더 적은 데이터로 높은 일반화 성능을 보일 수 있음 ↔ 강하다면, 다른 유형의 데이터나 관계 표현이 어려움

- 이미지데이터는 공간적 관계를 잘 표현 ⇒ **지역적(Local) 편향**을 가진 합성곱 신경망 모델 사용
- 시계열 데이터: 시간적 관계 표현 ⇒ 시퀀설(Sequential) 편향을 가진 순환 신경망 모델 사용
 - 이전 시간 상태를 기억 → 현재 입력과 결합 → 다음 상태 예측
 - 。 순차적인 특징을 강조하는 특성
- BUT, 이러한 특정 관계 편향이 강할수록, 다른 다양한 관계를 표현하기 어려움
 → 귀납적 편향이 약한 모델을 선호하게됨.

ViT모델은 입력 데이터의 다양한 쿼리, 키, 값의 임베딩 형태로 일반화된 관계를 학습

→ **귀납적 편향이 거의 없음** & 대용량 데이터의 이미지 특징들의 관계를 잘 학습

ViT 모델

⇒ 패치 임베딩과 인코더 계층을 통해 특징을 추출하고, 작업(분류, 회귀 등)에 맞는 출력값 으로 변환해 사용

[패치 임베딩(Patch Embedding)] 계층

: 입력 이미지를 트랜스포머 구조에 맞게 일정한 크기의 패치로 나눈다음, 각 패치를 벡터 형 태로 변환

[인코더(Encoder)] 계층

: 각 패치와의 관계를 학습

패치 임베딩(Patch Embedding)

: 입력 이미지를 작은 패치로 분할하는 과정

→ GPU 메모리 한계를 극복하고, 더 큰 이미지를 처리할 수 있음

- 1. 이미지 전처리: 이미지 크기를 일정한 크기로 변경
- 2. 전체 이미지를 패치 크기로 분할해 시퀀셜 배열을 만듦(합성곱 신경망 사용)
 - Kernel Size와 Stride를 설정해야 함: 하이퍼파라미터로 정의
 - 커널: 패치의 크기, 간격: 패치의 이동 폭
 - Patch size = (image size kernel size) / (stride)
 - 배열은 왼→오, 위→아래 순서로 배열, 배열의 가장 왼쪽에 분류 토큰을
 추가
 - 분류 토큰(Special Classification Token[CLS]): 전체 이미지를 대표 하는 벡터로 특정 문제 예측에 사용
- 3. 위치 임베딩(Position Embedding)을 사용하여 인접한 패치 간의 관계 학습
 - 위치 임베딩: 위치 정보를 임베딩 벡터로 변환하고, 기존 이미지 패치 벡 터들과 더함
- 4. 마지막으로 계층 정규화를 거치면 패치 임베딩이 만들어짐

인코더(Encoder)

이미지를 일정한 크기의 패치로 나눠 각 패치를 벡터로 변환한 후 **인코더 계층에 입력으로 전** 달해 다양한 쿼리, 키, 값 임베딩 관계를 학습함

- N개의 인코더 레이어를 반복적으로 적용
- → 마지막 레이어에서는 분류 토큰이라고 불리는 특별한 패치의 특징 벡터를 추출
- 분류 토큰 벡터: 이미지 데이터를 잘 표현하는 특징 벡터로, 이후 다양한 이미지 분류 및 검색 문제 해결에 사용

(Ex) 고양이인지 아닌지 구분하는 모델 학습 → ViT 모델은 Sequential Output을 모두 사용하는 것이 아니라, 분류 토큰 벡터만 사용해서 분류문제를 풀게 됨

→ 분류 토큰 벡터를 순방향 신경망(또는 완전 연결 계층)에 연결하고 고양이인지 아닌 지를 분류하는 방법으로 학습됨.

~ 실습 ~

Swin Transformer

: 2021년에 발표한 대규모 비전 인식 모델

10장 비전 트랜스포머 연구 10장 비전 트랜스포머

이미지 분류, 객체 감지, 영상 분할과 같은 인식 작업에서 강력한 성능을 내며, 트랜스포머 구 조보다 이미지 특성을 더 잘 표현

🦋 기존 트랜스포머를 기반으로 하는 모델의 공통적인 문제점

- 1. 고정된 패치 크기 ⇒ 세밀한 예측을 필요로 하는 의미론적 분할(Semantic Segmentation)과 같은 작업에 적합X
- 2. 트랜스포머의 셀프 어텐션은 입력 이미지 크기에 대한 2차(Quadratic) 계산 복잡도를 가짐 ⇒ 고해상도 이미지 처리가 어려움
- ⇒ 계층적(hierarchy) 특징 맵을 구성해 1차(Linear) 계산 복잡도를 갖는 스윈 트랜스포머가 등장
- 시프트 윈도(Shifted Window)라는 기술을 이용해 입력 이미지를 일정한 크기의 패치 로 분할하고, 이 패치들을 쌓아 윈도우를 구성함
- 구성된 윈도우 영역만 셀프 어텐션을 계산
 - 기존 트랜스포머 모델과 다르게 패치를 겹쳐 더 큰 효율성을 제공
 - 。 계층마다 어텐션이 수행되는 패치의 크기와 개수를 계층적으로 적용해 처리 → 높 은 해상도와 다양한 크기를 가진 객체를 효율적으로 처리할 수 있음

이러한 특징을 바탕으로 객체 탐지나 객체 분할 등과 같은 작업에서 백 본 모델로 사용

ViT와 스윈 트랜스포머 차이

🚿 ViT 모델의 한계

- 획일적인 패치 크기&위치에 대한 제약 → 다양한 크기의 종횡비를 가진 데이 터 세트에 대해서 적용이 어려움
- 패치 단위로 입력을 받음 → 이미지의 공간 정보가 완전히 보존되지 않을 수 있음.
- 이미지 패치 수 증가 시 학습 데이터의 크기도 커짐 → 모델 학습에 필요한 계 산량이 증가(대규모 세트에서 컴퓨터 자원을 많이 사용)

→ 이러한 한계점을 보완하기 위해 스윈 트랜스포머는 **Local Window**를 활용해 물체의 크기나 해상도를 계층적으로 학습함.

- 로컬 윈도(Local Window): 입력 이미지를 처리하기 위해 사용되는 고정 크기의 작은 윈도
- 윈도 시프트 기술을 도입 → 입력 이미지를 일정한 크기의 패치로 분할 → 특성 맵을 이 동시켜 다음 계층 사용 ⇒ 패치의 위치를 더 유연하게 다룸

⇒ 더 높은 정확도와 더 적은 매개변수 수를 가지면서도 더 넓은 범위의 이미지 크기와 종횡 비를 다룰 수 있음.

입력 패치의 로컬 윈도를 통해 계층적으로 접근하고, 시프트 윈도로 로 컬 윈도를 이동해 가면서 인접 패치 간 정보를 계산

- 회색 격자: 패치
- 발간색 격자: 로컨 윈도

ViT의 네크워크는 계층마다 전체 이미지 안에 어텐션이 수행되는 패치와 개수가 동일 ↔ 스윈 트랜스포머는 로컬 윈도를 통해 계층마다 어텐션이 되는 패치의 크기와 개수를 다 양하게 사용

계층적 접근 방식은 로컬 윈도가 각 패치의 세부 정보에 집중하게 되고, 시프트 윈도를 통해 전역 특징을 확인할 수 있으므로 고해상도 이미지를 효율적으로 처리할 수 있음.

	ViT	스윈 트랜스포머
분류 헤드	[CLS] 토큰 사용	각 토큰의 평균값 사용

로컬 윈도 사용	X	0
상대적 위치 편향 사용	X	0
계층별 패치 크기	동일함	동일함

스윈 트랜스포머 모델 구조

- 1. 입력 이미지를 일정한 크기의 패치로 분할
- 2. 각 패치에 대해 선형 임베딩(Linear Embedding)을 수행 ⇒ 각 패치는 고정된 차원의 벡터로 변환됨
- 3. 분할된 패치들을 기반으로 스윈 트랜스포머 블록을 구성
 - a. 어텐션 계층, 계층 정규화, 다층 퍼셉트론 등을 포함
 - b. 패치 간 상호 작용을 수행
- 4. 패치를 병합해 전체 이미지에 대한 분류 수행: 분할된 패치들을 순차적으로 합치면서 이 미지의 전체적인 정보를 추출하는 방식 사용

패치 파티션 / 패티 병합

패치 파티션(Patch Partition)

입력 이미지를 작은 사각형 패치로 분할해 처리하는 방식. 분할된 이미지는 트랜 스포머 계층의 입력으로 사용되며, 입력 이미지의 공간 정보를 보존하고 트랜스포 머 계츠엥 대한 계산 효율성을 높임

• 일반적 이미지 텐서는 [C, H, W]의 구조를 가짐 → 이 구조에서 패치 파티션을 통해 로 컬 윈도우를 추가함

패치 병합(Patch Merging)

인접한 패치들의 정보를 저차원으로 축소하는 과정

모델 매개변수의 수를 줄이기 위해 이미지 패치 텐서 [C, H, W]를 [2C, H/2, W/2]로 재정렬한 후, 2C의 차원을 저차원으로 임베딩함

(ex) 채널 3개, 이미지 패치 64개로 구성된 텐서 [3,8,8]

: [6, 4, 4]로 재정렬 → 증가된 6차원을 원래 3차원으로 임베딩해 산출물 [3,4,4] 텐서 를 생성함

스윈 트랜스포머 블록

: 패치 파티션 이후 네 개의 스테이지 안에서 반복 적용되며, 선형 임베딩 또는 패치 병합 이 후에 수행된다

- 계층 정규화
- W-MSA(Window Multi-head Self-Attention)
- MLP
- SW-MSA(Shifted Window Multi-head Self attention)

등으로 구성된다.

: 스윈 트랜스포머 블록 안에서는 트랜스포머 모델에서 사용되던 MSA가 아닌 W-MSA와 SW-MSA로 구성되며 순차적으로 수행됨

W-MSA

: 로컬 윈도를 사용하는 멀티 헤드 셀프 어텐션

입력 특징 맵을 중첩되지 않게 나눈 다음 각 윈도에서 독립적으로 셀프 어텐션을 수행

- 이미지에서 일정한 크기의 윈도 영역을 설정,
- 해당 영역 내 픽셀 간 어텐션 계산,
- 이를 통해 이미지 내 전체적 어텐션 수행,
- 특정 위치에 대한 정보를 추출,
- 각 윈도 내 지역적 특징 분석,
- 전체 입력에 대한 셀프 어텐션 비용을 2차 계산 복잡도에서 1차 계산 복잡도 로 줄임

: W-MSA는 연산량을 대폭 감소시켰지만, 윈도 내부의 이미지 패치 영역에만 셀프 어텐션을 수행하는 단점이 있음

- → 이를 보완: SW-MSA는 윈도 사이의 연결성을 구축해 윈도 간의 관계성 정보를 추출
 - 윈도를 가로 또는 세로 방향으로 이동한 후, 인접한 윈도 간의 셀프 어텐션을 계산하 는 방식

W-MSA: 로컬 윈도 안에서 패치 간 셀프 어텐션 수행

- → 로컬윈도우가 이동하면서 각각의 윈도에서 연산을 수행
 - 효율적인 배치 계산을 통해 연산량을 감소시킴

SW-MSA: 로켈 윈도 간의 셀프 어텐션을 수행하기 위해 W-MSA에서 사용된 윈도 개수가 더 많아 셀프 어텐션 연산을 요구

→ 순환 시프트(Cyclic Shift) & 어텐션 마스크(Attetion Mask) 사용 → 역순환 시프트 (Reverse Cyclic Shift)

- 순환 시프트는 로컬 윈도가 이동할 때 이동한 위치의 정보를 이전 위치에서 가져 오는 것
 - 윈도 사이즈 M보다 작은 M/2 만큼 로컬 윈도를 이동시킴
 - 이동된 위치에서 연산을 수행하지 않도록 어텐션 마스크를 사용해 방시함 어텐션 마스크는 로컬 윈도가 이동한 위치에서 연산을 수행하지 않게 하는 역할 → 역순환 시프트를 사용해 원래 로컬 구조로 복원

: SW-MSA 방식에서는 순환 시프트와 함께 어텐션 마스크를 사용하여 로컬 윈도 간의 셀프 어텐션 연산을 효율적으로 수행함

● 이때 어텐션 마스크 사용 → 순환 시프트를 통해 이동된 윈도에 대한 정보 보존 + 불필 요한 연산을 줄임

기존 ViT와 다른 점은 스윈 트랜스포머에서 사용한 셀프 어텐션은 상대 적 위치 편향(Relative Position Bias)을 고려한다는 것이다.

상대적 위치 편향

: 로컬 윈도 안에 있는 패치 간의 상대적 거리를 임베딩

: 이미지 패치들이1~4까지 주어진다면 패치 간의 상대적 거리는 X축과 Y축 두가지 방식으 로 표기 가능

- X축 방식: 두 패치 간의 가로 방향 거리 같은 X축에 있으면 상대적 거리가 0, 오른쪽으 로 떨어져 있으면 -1
- Y축 방식: 세로 방향 거리: 같은 v축에 놓여있으면 0, 오른쪽으로 떨어져 있으면 -1, 왼 쪽 1

상대적 위치 편향 계산 import torch

window_size는 여러 개의 패치를 포함하는 격자의 크기 # 윈도 내외부의 패치를 구분해주는 역할 window_size = 2 coords_h = torch.arange(window_size)

```
coords_w = torch.arange(window_size)
# meshgird함수: coords_h 배열 값(i)과 coords_w배열 값(j)으로 사각형 격자 (ij)를 만
# stack: (X,Y) 쌍 배열을 만듦
# flatten: 각 X,Y추겡 대한 위치 인덱스 생성
coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing="ij))
coords_flatten = torch.flatten(coords,1)
relative_coords = coords_flatten[:,:,None] - coords_flatten[:,None,:]
print(relative_coords)
print(relative_coords.shape)
## X,Y 축에 대한 위치 행렬
x_coords = relative_coords[0,:,:]
y_coords = relative_coords[1,:,:]
x_coords += window_size -1
y_coords += window_size -1
x_coords *= 2*window_size -1
relatvie_position_index = x_coords + y_coords
## X,Y 축에 대한 상대적 위치 좌표 변환
# MSA를 계산할 때 사용된 헤드 수
num_heads = 1
# 헤드별로 0~8번(9개)의 상대적 위치 편향을 가지는 테이블
relative_position_bias_table = torch.Tensor(
  torch.zeros((2*window_size-1)*(2*window_size-1), num_heads)
)
relative_position_bias = relative_position_bias_table[relative_position_index.vie
relative_position_bias = relative_position_bias.view(
  window_size*window_size, window_size*window_size-1
)
```

```
수식 10.2 상대적 위치 편향을 고려한 셀프 어텐션 Attention(Q,K,V) = SoftMax(QK^{ \mathrm{\scriptscriptstyle T} }/\sqrt{d} + B)V
```

• Q 쿼리, K 키, Value 값, d 벡터들의 임베딩 차원

실습

CvT

CvT(Convolutional Vision Transformer)

: 합성곱 신셩망 구조에서 활용하는 계층형 구조(Hierarchical Architecture)를 ViT에 적용한 모델

- ViT의 셀프어텐션
 - 。 이미지 정보를 바탕으로 각 패치간의 관계를 학습
 - 모든 패치에 대해 동일한 크기와 간격을 사용 → 이미지의 물체 크기나 해상도를 계 층적으로 학습하기 어려움
- 스윈 트랜스포머
 - 。 트랜스포머 블록마다 다른 로컬 윈도 크기를 사용해 이미지의 계층적 특징을 학습

CvT

- 。 합성곱 신경망에서 사용하는 계층적 구조를 ViT에 적용해 이미지의 지역 특징 (Local Feature)와 전역 특징(Global Feature)을 모두 활용해 비교적 적은 개수 의 매개변수로 높은 성능을 보임
- 。 합성곱 계층의 지역 특징을 추출
- 。 ViT의 셀프 어텐션 계층으로 전역 특징을 결합
- 스윈트랜스포머보다 더 적은 수의 매개변수로도 비슷한 수준의 성능

: 얼굴 이미지가 입력으로 사용된다면

- 1. 저수준 (Low-level) 계층에서 선 또는 점에 대한 특징을 표현
- 2. 중간 수준(Mid-level)계층에서 눈이나 귀와 같은 특징 표현
- 3. 고수준(High-level) 계층에서는 얼굴 구조에 대한 특징 표현
- → CvT의 계층형 구존는 물체의 크기나 해상도를 더 잘 표현
 - ViT는 이미지를 패치 단위로 분할, 트랜스포머의 입력으로 사용, 패치를 겹치지 않게 처리해 모델이 전체정보 학습
 - 。 패치 임베딩과 겹치지 않는 선형 임베딩 사용

 \leftrightarrow CvT는 이미지 처리 전에 합성곱 연산 \rightarrow 특징맵 추출 \rightarrow 유의미한 패턴 추출 \longrightarrow 일정한 크기의 패치로 나눠 트랜스포머 모델 입력으로 사용, 입력되는 패치들을 겹쳐 학습

• 겹치는 합성곱 임베딩, 계층형 구조

합성곱 토큰 임베딩

Convolutional Token Embedding

: 2D로 재구성된 토큰 맵에서 중첩 합성곱 연산을 수행하는 임베딩 ViT에 계층적인 합성곱 신경망의 성질을 추가하기 위해 사용

• 기존 트랜스포머 모델

- 。 이미지의 특징을 추출하기 위해 9개의 이미지 패치를 사용
- 선형 임베딩 → 쿼리, 키, 앖 임베딩으로 변환
- 。 임베딩을 사용해 셀프 어텐션을 계산하고 출력 생성 ⇒ 이미지의 근본적인 2D 모양 의 구조를 잃게됨

↔ CvT모델

- 이미지의 2D 구조를 보존& 셀프 어텐션 사용
 - 。 이미지 패치를 2D 합성곱 임베딩을 사용해 쿼리, 키, 값 임베딩으로 변환 → 이 임베딩을 사용해 셀프 어텐션을 계산하고 출력을 생성함

: 이미지에 3*3 커널 크기(K), 1 간격(S)의 커널을 적용하면, 패치 크기는 3*3으로 생성됨 → 각각의 패치를 쿼리, 키, 값에 대해 합성곱 연산을 적용 & 1차원 구조로 재배열해 기존 셀 프 어텐션 방법으로 학습

- 지역 특징을 학습 O
- 시퀀스 길이를 줄이는 동시에 토큰 특징의 차원을 증가시킴
- 합성곱 모델에서 수행되는 방식처럼 다운 샘플링과 특징 맵의 수를 늘리게 됨

어텐션에 대한 합성곱 임베딩

Convolutional Projection for Attention

- : 2D로 재구성된 토큰맵에서 분리 가능한 합성곱 연산을 사용해 성능 저하 및 계 산 복잡도를 낮추는 연산
 - 매개 변수를 줄이기 위해 쿼리, 키, 값 임베딩은 차원을 축소시킴

(a)에서는 9개의 쿼리 패치 임베딩과 4개의 키 패치 임베딩에 대한 중요도를 의미하는 어텐 션 맵을 생성

- →(b)와 같이 값 패치 임베딩으로 쿼리 어텐션 맵에 대한 가중치를 반영
- → 입력 벡터와 출력 벡터의 패치 길이가 동일함 (연산량 감소)

CvT 모델은 트랜스포머 계층이 깊어질수록 패치 간의 관계를 학습하는 길이를 축소시키는 대신에, 백터의 차원을 증가시켜 모델의 매개변수수를 대폭 감소시킨다.

(ex) 첫 번째 트랜스포머 블록의 이미지 패치 크기가 64*64, 임베딩 차원이 128이고 마지막 트랜스포머 블록의 이미지 패치 크기를 4배 감소시켜 8*8로 설정했다면, 기존 임베딩 차원도 4배 증가시켜 512 차원으로 증가시킴

→ 이미지 패치 크기가 줄어든 만큼 임베딩 차원을 늘리는 방법을 선택해 네트워크 안정성을 향상시키고 모델 설계를 단순화