Wersja: $oldsymbol{A}$

Maksymilian Debeściak

Grupa ¹ :			
	8–10		
wt	10–12	103	139
cz	10-12	105	141

12 - 14

Logika dla informatyków

Sprawdzian nr 2, 13 grudnia 2013

Zadanie 1 (2 punkty). Rozważmy zbiór czteroelementowy $A = \{a, b, c, d\}$. W prostokąt poniżej wpisz liczbę takich relacji równoważności na zbiorze A, w których klasa abstrakcji [a] ma dokładnie dwa elementy.

6

Zadanie 2 (2 punkty). Niech $R = \{\langle m, m+2 \rangle \mid m \in \mathbb{N} \}$. W prostokąt poniżej wpisz taką formulę φ , że $\{\langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid \varphi \}$ jest przechodnim domknięciem relacji R.

 $\exists k \in \mathbb{N} \ k \geq 1 \land m + 2k = n$

Zadanie 3 (2 punkty). Jeśli równość $f^{-1}(f(X) \setminus Y) = X \setminus f^{-1}(Y)$ zachodzi dla wszystkich funkcji $f: A \to B$ i wszystkich zbiorów $X \subseteq A$ i $Y \subseteq B$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$f:\mathbb{R}\to\mathbb{R},\,f(x)=x^2,\,X=[0,1],\,Y=\emptyset$$

Zadanie 4 (2 punkty). Niech funkcja $f: \mathbb{N} \times \{0,1\} \to \mathbb{N}$ będzie zadana wzorem f(x,y) = 2x + y. Jeśli istnieje funkcja odwrotna do f to w prostokąt poniżej wpisz tę funkcję. W przeciwnym przypadku wpisz "NIE ISTNIEJE".

$$g: \mathbb{N} \to \mathbb{N} \times \{0, 1\},$$

$$g(n) = \begin{cases} \langle \frac{n}{2}, 0 \rangle, & \text{dla } n \text{ parzystych}, \\ \langle \frac{n-1}{2}, 1 \rangle, & \text{dla } n \text{ nieparzystych}. \end{cases}$$

Zadanie 5 (2 punkty). Rozważmy zbiory osób O, barów B i soków S oraz relacje $Bywa \subseteq O \times B$, $Lubi \subseteq O \times S$ i $Podają \subseteq B \times S$ informujące odpowiednio o tym jakie osoby bywają w jakich barach, jakie osoby lubią jakie soki oraz jakie bary podają jakie soki. W prostokąt poniżej wpisz taką formulę φ , że $\{x \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz barów, w których bywają wszystkie osoby lubiące sok Malinowy.

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

Imię i Nazwisko:

Maksymilian Debeściak

Grupa ⁻ :		
wt 8-10 cz 10-12 12-14	103 105	139 141

Zadanie 6 (5 punktów). Rozważmy funkcję $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ zadaną wzorem $f(X) = \{2x \mid x \in X\}$. Udowodnij, że f jest różnowartościowa. Czy f jest bijekcją? Uzasadnij odpowiedź.

Zadanie 7 (5 punktów). Niech R i S będą relacjami równoważności na zbiorze A. Udowodnij, że jeśli relacja SR jest symetryczna to SR = RS.

Zadanie 8 (5 punktów). Dla relacji binarnej $S \subseteq A \times A$ definiujemy $S^1 = S$ oraz $S^{n+1} = SS^n$ dla wszystkich $n \ge 1$. W następującym zadaniu możesz skorzystać z własności, że dla wszystkich takich relacji S zachodzi równość $SS^n = S^nS$.

Rozważmy relację binarną $R \subseteq A \times A$. Udowodnij, że dla każdej liczby naturalnej $n \ge 1$ relacja $(R \cup R^{-1})^n$ jest symetryczna.

Rozwiązanie.

Wersja:

Podstawa indukcji: Dla n=1 chcemy pokazać, że relacja $(R \cup R^{-1})$ jest symetryczna. Weźmy więc dowolną parę $\langle x,y \rangle \in R \cup R^{-1}$. Wtedy $\langle x,y \rangle \in R$ lub $\langle x,y \rangle \in R^{-1}$ i mamy do rozpatrzenia dwa przypadki. Jeśli $\langle x,y \rangle \in R$ to $\langle y,x \rangle \in R^{-1}$, więc $\langle y,x \rangle \in R \cup R^{-1}$. Jeśli natomiast $\langle x,y \rangle \in R^{-1}$, to $\langle y,x \rangle \in R$, więc $\langle y,x \rangle \in R \cup R^{-1}$. Zatem w obu przypadkach $\langle y,x \rangle \in R \cup R^{-1}$, czyli $R \cup R^{-1}$ jest symetryczna.

Krok indukcyjny: Weźmy dowolne $n \geq 1$ i załóżmy, że relacja $(R \cup R^{-1})^n$ jest symetryczna. Pokażemy, że $(R \cup R^{-1})^{n+1}$ jest symetryczna. Weźmy więc dowolną parę $\langle x,y \rangle \in (R \cup R^{-1})^{n+1}$. Wtedy istnieje takie z, że $\langle x,z \rangle \in (R \cup R^{-1})$ oraz $\langle z,y \rangle \in (R \cup R^{-1})^n$. Weźmy takie z. Z założenia indukcyjnego oraz z podstawy indukcji wiemy, że obie relacje $R \cup R^{-1}$ oraz $(R \cup R^{-1})^n$ są symetryczne, więc $\langle z,x \rangle \in (R \cup R^{-1})$ oraz $\langle y,z \rangle \in (R \cup R^{-1})^n$, a to z definicji złożenia relacji oznacza, że $\langle y,x \rangle \in R^n R$. Z łączności składania relacji otrzymujemy, że $\langle y,x \rangle \in R^{n+1}$. Zatem relacja $(R \cup R^{-1})^{n+1}$ jest symetryczna.

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

	Imię i Nazwisko:	Grupa ¹ :
Wersja: B	Maksymilian Debeściak	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Logika dla informaty	rków
	Sprawdzian nr 2, 13 grud	nia 2013
, ,). Rozważmy zbiór trzyelementowy noważności na zbiorze A , które maj	$A = \{a, b, c\}$. W prostokąt poniżej wpisz ą dokładnie dwie klasy abstrakcji.
	3	
	. Niech $R=\{\langle m,n\rangle\in\mathbb{N}\times\mathbb{N}\mid m-\mathbb{N}\times\mathbb{N}\mid\varphi\}$ jest przechodnim domkr	-n =2. W prostokąt poniżej wpisz taką nięciem relacji R .
	$\exists k {\in} \mathbb{Z} \ m{-}n = 2k$	
$f:A\to B$ i wszystkie). Jeśli równość $f(f^{-1}(Y) \setminus X) = X$ ch zbiorów $X \subseteq A$ i $Y \subseteq B$, to wku wpisz odpowiedni kontrprzykład	$Y\setminus f(X)$ zachodzi dla wszystkich funkcji w prostokąt poniżej wpisz słowo "TAK".
	$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2, X = \emptyset,$	Y = [-1, 1]
	na do f to w prostokąt poniżej wpi	ędzie zadana wzorem $f(x,y)=x+y$. Jeśli isz tę funkcję. W przeciwnym przypadku
istnieje funkcja odwrotn	na do f to w prostokąt poniżej wpi	isz tę funkcję. W przeciwnym przypadku

 $^{^{1}\}mathrm{Proszę}$ zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

Wersja: **B**

Imię i Nazwisko:

Maksymilian Debeściak

Zadanie 6 (5 punktów). Rozważmy funkcję $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ zadaną wzorem $f(X) = \{x \in \mathbb{N} \mid 2x \in X\}$. Udowodnij, że f jest "na". Czy f jest bijekcją? Uzasadnij odpowiedź.

Zadanie 7 (5 punktów). Niech R i S będą relacjami równoważności na zbiorze A. Udowodnij, że jeśli relacja SR jest przechodnia to jest też symetryczna.

Zadanie 8 (5 punktów). Rozważmy relację binarną $R \subseteq A \times A$. Definiujemy $R^1 = R$ oraz $R^{n+1} = RR^n$ dla wszystkich $n \ge 1$.

Udowodnij, że dla każdej relacji równoważności S zawierającej R oraz dla każdej liczby naturalnej $n \geq 1$ relacja $(R \cup R^{-1})^n$ jest zawarta w S.

Rozwiązanie. Weźmy dowolną relację S zawierającą R. Pokażemy indukcyjnie, że $(R \cup R^{-1})^n$ jest zawarta w S. Podstawa indukcji: Dla n=1 chcemy pokazać, że relacja $R \cup R^{-1}$ jest zawarta w S. Weźmy więc dowolną parę $\langle x,y \rangle \in R \cup R^{-1}$. Jeśli $\langle x,y \rangle \in R$ to z założenia, że S zawiera R dostajemy $\langle x,y \rangle \in S$. Jeśli natomiast $\langle x,y \rangle \in R^{-1}$, to $\langle y,x \rangle \in R$ i wtedy $\langle y,x \rangle \in S$, a z symetryczności S dostajemy $\langle x,y \rangle \in S$.

Krok indukcyjny: Weźmy dowolne $n \geq 1$ i załóżmy, że relacja $(R \cup R^{-1})^n$ jest zawarta w S. Pokażemy, że $(R \cup R^{-1})^{n+1}$ jest zawarta w S. Weźmy więc dowolną parę $\langle x,y \rangle \in (R \cup R^{-1})^{n+1}$. Wtedy istnieje takie z, że $\langle x,z \rangle \in R \cup R^{-1}$ oraz $\langle z,y \rangle \in (R \cup R^{-1})^n$. Weźmy takie z. Z podstawy indukcji wiemy, że $\langle x,z \rangle \in S$ a z założenia indukcyjnego, że $\langle z,y \rangle \in S$. Z przechodniości S wynika, że $\langle x,y \rangle \in S$. Zatem relacja $(R \cup R^{-1})^{n+1}$ jest zawarta w S.

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.