数学分析讲义 (第一册) 习题解答

目录

第	1章 极限	1
	习题 1.1	1
	习题 1.2	4
	习题 1.3	15
	第 1 章综合习题	26

第1章 极限

习题 1.1

习题 1.1.1 设 a 是有理数, b 是无理数. 求证: a + b 和 a - b 都是无理数; 当 $a \neq 0$ 时, ab 和 $\frac{b}{a}$ 也都是无理数.

解设 a 是有理数,b 是无理数.

- (1) 若a+b是有理数,则b=(a+b)-a是有理数,矛盾.同理可证a-b是无理数.
- (2) 若 ab 是有理数,则 $b = \frac{ab}{a}$ 是有理数,矛盾.同理可证 $\frac{b}{a}$ 是无理数.

习题 1.1.2 求证: 两个不同的有理数之间有无理数.

解设a,b是两个不同的有理数,不妨设a < b.则存在正整数k, N 使得

$$\left(\sqrt{2}\right)^{2k-1} a < N < \left(\sqrt{2}\right)^{2k-1} b.$$

具体而言, 取 $k > \lceil \log_2(b-a) \rceil$, 则 $k > \log_2 \frac{2\sqrt{2}}{b-a} \Rightarrow 2^k(b-a) > 2\sqrt{2} \Rightarrow \left(\sqrt{2}\right)^{2k-1}b - \left(\sqrt{2}\right)^{2k-1}a > 2$. 因此, 存在整数 $N = \left\lfloor \left(\sqrt{2}\right)^{2k-1}b \right\rfloor$, 使得 $\left(\sqrt{2}\right)^{2k-1}a < N < \left(\sqrt{2}\right)^{2k-1}b$. 于

$$a < \frac{N}{\left(\sqrt{2}\right)^{2k-1}} < b.$$

而
$$\frac{N}{\left(\sqrt{2}\right)^{2k-1}} = \frac{N\sqrt{2}}{2^k}$$
 是无理数.

习题 1.1.3 求证: $\sqrt{2}$, $\sqrt{3}$ 以及 $\sqrt{2} + \sqrt{3}$ 都是无理数.

解

- (1) 设 $\sqrt{2}$ 是有理数,则 $\sqrt{2} = \frac{p}{q}$,其中 p,q 互素.因此 $2q^2 = p^2$,由素数分解的唯一性可知 p 是 偶数,设 p = 2k,则 $2q^2 = 4k^2 \Rightarrow q^2 = 2k^2$,同理可知 q 也是偶数,与 p,q 互素矛盾.因此 $\sqrt{2}$ 是无理数.
- (2) 设 $\sqrt{3}$ 是有理数,则 $\sqrt{3} = \frac{p}{q}$,其中 p,q 互素.因此 $3q^2 = p^2$,由素数分解的唯一性可知 p 是 3 的倍数,设 p = 3k,则 $3q^2 = 9k^2 \Rightarrow q^2 = 3k^2$,同理可知 q 也是 3 的倍数,与 p,q 互素矛盾.因此 $\sqrt{3}$ 是无理数.
- (3) 设 $\sqrt{2} + \sqrt{3}$ 是有理数, 则 $\sqrt{2} + \sqrt{3} = \frac{p}{q}$, 其中 p, q 互素. 因此 $2 + 3 + 2\sqrt{6} = \frac{p^2}{q^2} \Rightarrow \sqrt{6} = \frac{p^2 5q^2}{2q^2}$, 与 $\sqrt{6}$ 是无理数矛盾. 因此 $\sqrt{2} + \sqrt{3}$ 是无理数.

习题 1.1.4 把下列循环小数表示为分数:

 $(1) \ 0.24999...$

 $(2) \ 0.\dot{3}7\dot{5}$

(3) 4.518

解

(1) 设 x = 0.24999...,则 10x = 2.4999...,因此 $9x = 2.25 \Rightarrow x = \frac{9}{40}.$

(1) 设 x = 0.24999...,知 10x - 2.4333...,因此 $999x = 375 \Rightarrow x = \frac{40}{999} = \frac{125}{333}.$ (2) 设 x = 0.375,则 1000x = 375.375375...,因此 $999x = 375 \Rightarrow x = \frac{40}{999} = \frac{125}{333}.$ 4514 122

(3) 设 x = 4.518, 则 1000x = 4518.518518...,因此 $999x = 4514 \Rightarrow x = \frac{4514}{999} = \frac{122}{27}$

习题 1.1.5 设 r, s, t 都是有理数. 求证:

1. 若 $r + s\sqrt{2} = 0$. 则 r = s = 0:

2. 若 $r + s\sqrt{2} + t\sqrt{3} = 0$, 则 r = s = t = 0.

解

(1) 假设 $s \neq 0$, 则 $\sqrt{2} = -\frac{r}{s}$ 是有理数,与 $\sqrt{2}$ 是无理数矛盾. 因此 s = 0, 从而 r = 0.

(2) $r + s\sqrt{2} + t\sqrt{3} = 0 \Rightarrow r^2 = 2s^2 + 3t^2 + 2st\sqrt{6} \Rightarrow (r^2 - 2s^2 - 3t^2) + (-2st)\sqrt{6} = 0.$: 与 (1) 类似, 若 $st \neq 0$, 则 $\sqrt{6} = \frac{r^2 - 2s^2 - 3t^2}{2st}$ 是有理数, 与 $\sqrt{6}$ 是无理数矛盾. 故 st = 0,

习题 1.1.6 设 a_1, a_2, \ldots, a_n 有相同的符号, 且都大于 -1. 证明:

$$(1+a_1)(1+a_2)\cdots(1+a_n) \geqslant 1+a_1+a_2+\cdots+a_n.$$

解 利用数学归纳法:

当n=1时, 等式为

$$1 + a_1 \geqslant 1 + a_1$$

显然成立.

假设当n = k时,等式成立,即

$$(1+a_1)(1+a_2)\cdots(1+a_k) \geqslant 1+a_1+a_2+\cdots+a_k$$

以此作为条件, 当 n = k + 1 时, 由 $a_{k+1} > -1$, 可知 $1 + a_{k+1} > 0$, 因此

$$(1+a_1)(1+a_2)\cdots(1+a_k)(1+a_{k+1}) \ge (1+a_1+a_2+\cdots+a_k)(1+a_{k+1})$$

$$= 1+a_1+a_2+\cdots+a_k+a_{k+1}+a_{k+1}(a_1+a_2+\cdots+a_k)$$

$$\ge 1+a_1+a_2+\cdots+a_k+a_{k+1}.$$

其中 $a_{k+1}(a_1 + a_2 + \dots + a_k) = a_1 a_{k+1} + a_2 a_{k+1} + \dots + a_k a_{k+1} \ge 0$, 因为 a_i 与 a_{k+1} 符号相同.

习题 1.1.7 设 a, b 是实数, 且 |a| < 1, |b| < 1. 证明:

$$\left| \frac{a+b}{1+ab} \right| < 1.$$

解由 |a| < 1, |b| < 1, 可知 $ab \neq -1$. 因此

$$\left|\frac{a+b}{1+ab}\right| < 1 \Leftrightarrow |a+b| < |1+ab| \Leftrightarrow (a+b)^2 < (1+ab)^2.$$

即

$$a^{2} + b^{2} + 2ab < 1 + a^{2}b^{2} + 2ab \Leftrightarrow a^{2} + b^{2} < 1 + a^{2}b^{2} \Leftrightarrow (1 - a^{2})(1 - b^{2}) > 0.$$

显然成立.

习题 1.2

习题 1.2.1 用定义证明下面的结论:

(1)
$$\lim_{n \to \infty} \frac{n}{5+3n} = \frac{1}{3};$$

(2)
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0;$$

(3)
$$\lim_{n\to\infty} (-1)^n \frac{1}{\sqrt{n+1}} = 0;$$

$$(4) \lim_{n\to\infty} \frac{n!}{n^n} = 0.$$

解

(1)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{5}{9\varepsilon} \right\rceil$, 则当 $n > N$ 时,有
$$\left| \frac{n}{5+3n} - \frac{1}{3} \right| = \left| \frac{3n - (5+3n)}{3(5+3n)} \right| = \frac{5}{3(5+3n)} < \frac{5}{9n} < \varepsilon.$$

(2)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$, 则当 $n > N$ 时, 有

$$\left| \frac{\sin n}{n} - 0 \right| = \frac{|\sin n|}{n} \leqslant \frac{1}{n} < \varepsilon.$$

(3)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{1}{\varepsilon^2} - 1 \right\rceil$, 则当 $n > N$ 时, 有

$$\left| (-1)^n \frac{1}{\sqrt{n+1}} - 0 \right| = \frac{1}{\sqrt{n+1}} < \varepsilon.$$

(4)
$$\forall \varepsilon > 0$$
, 取 $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$, 则当 $n > N$ 时, 有

$$\left| \frac{n!}{n^n} - 0 \right| = \frac{n!}{n^n} = \frac{1}{n} \cdot \frac{2}{n} \cdot \dots \cdot \frac{n-1}{n} \cdot \frac{n}{n} < \frac{1}{n} < \varepsilon.$$

习题 1.2.2 若数列 $\{a_n\}$ $(n \ge 1)$ 满足条件: 任给正数 ε , 存在正整数 N, 使得当 n > N 时, 有 $|a_n - a| < M\varepsilon$ (其中 M 为常数), 则 $\{a_n\}$ 必以 a 为极限.

M 为常数指的是 M 不依赖于 ε 和 n. 例如 M=2, M=1000 等都是常数. 也就是说, 上述 (2) 其实等价于 $\forall M>0, \forall \varepsilon>0, \exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|< M\varepsilon$ 成立.

习题 1.2.3 证明: 当且仅当 $\lim_{n\to\infty} (a_n - a) = 0$ 时, 有 $\lim_{n\to\infty} a_n = a$. (数列极限的许多证明问题, 都可用同样的方法处理.)

证明 充分性: 由 $\lim_{n\to\infty}(a_n-a)=0$, 则 $\forall \varepsilon>0, \exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|<\varepsilon$ 成立. 因此 $\lim_{n\to\infty}a_n=a$.

必要性:由 $\lim_{n\to\infty}a_n=a$,则 $\forall \varepsilon>0,\exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|<\varepsilon$ 成立.因此 $\lim_{n\to\infty}(a_n-a)=0$.

习题 1.2.4 证明: 若 $\lim_{n\to\infty} a_n = a$, 则 $\lim_{n\to\infty} |a_n| = |a|$; 反之不一定成立 (试举例说明). 但若 $\lim_{n\to\infty} |a_n| = 0$, 则有 $\lim_{n\to\infty} a_n = 0$.

证明 由 $\lim_{n\to\infty} a_n = a \Rightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \text{ in } n > N$ 时,有 $|a_n - a| < \varepsilon$.则

$$||a_n| - |a|| \le |a_n - a| < \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty}|a_n|=|a|.$

反之不一定成立, 如数列 $a_n = (-1)^n$, 则 $\lim_{n \to \infty} |a_n| = 1$, 但 $\{a_n\}$ 发散. 若 $\lim_{n \to \infty} |a_n| = 0$, 则 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 当 n > N 时, 有 $||a_n| - 0| < \varepsilon$. 则

$$|a_n - 0| = |a_n| < \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty}a_n=0.$

习题 1.2.5 证明: 若 $\lim_{n\to\infty} a_n = 0$, 又 $|b_n| \leqslant M$, $(n = 1, 2, \cdots)$, 则 $\lim_{n\to\infty} a_n b_n = 0$.

证明 由 $\lim_{n\to\infty} a_n = 0 \Rightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \text{ if } n > N \text{ by } n \mid a_n - 0 \mid < \frac{\varepsilon}{M}.$ 则

$$|a_n b_n - 0| = |a_n||b_n| < \frac{\varepsilon}{M} \cdot M = \varepsilon.$$

 $\mathbb{P}\lim_{n\to\infty}a_nb_n=0.$

习题 1.2.6 证明: 若数列 $\{a_n\}$ 满足 $\lim_{k\to\infty}a_{2k+1}=a$,及 $\lim_{k\to\infty}a_{2k}=a$,则 $\lim_{n\to\infty}a_n=a$. 解 按已知条件 $\forall \varepsilon>0$, $\exists N_1>0$,当 $n>N_1$ 时 $|x_{2n}-a|<\varepsilon$. 又 $\exists N_2>0$,当 $n>N_2$ 时 $|x_{2n+1}-a|<\varepsilon$. 于是令 $N=\max\{2N_1,2N_2+1\}$,则 n>N 时恒有 $|x_n-a|<\varepsilon$. 故 $\lim_{n\to\infty}x_n=a$. 习题 1.2.7 证明下列数列不收敛:

(1)
$$a_n = (-1)^n \frac{n}{n+1}$$
; (2) $a_n = 5\left(1 - \frac{2}{n}\right) + (-1)^n$.

解

(1) 取 $a_{2n} = \frac{2n}{2n+1}$, $a_{2n+1} = -\frac{2n+1}{2n+2}$, 则 $\lim_{n\to\infty} a_{2n} = 1$, $\lim_{n\to\infty} a_{2n+1} = -1$, 而如果 $\{a_n\}$ 收敛, 则 $\lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} a_{2n+1}$, 矛盾.

(2) 取
$$a_{2n} = 5\left(1 - \frac{1}{n}\right) + 1$$
, $a_{2n+1} = 5\left(1 - \frac{2}{2n+1}\right) - 1$, 则 $\lim_{n \to \infty} a_{2n} = 6$, $\lim_{n \to \infty} a_{2n+1} = 4$, 而 如果 $\{a_n\}$ 收敛,则 $\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n+1}$, 矛盾.

习题 1.2.8 求下列极限:

(1)
$$a_n = \frac{4n^2 + 5n + 2}{3n^2 + 2n + 1};$$

(2)
$$a_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n};$$

(3)
$$a_n = \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{6}\right) \cdots \left(1 - \frac{1}{n(n+1)/2}\right), n = 2, 3, \dots;$$

(4)
$$a_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right);$$

(5)
$$a_n = (1+q)(1+q^2)(1+q^4)\cdots(1+q^{2^m}), (|q|<1).$$

解

(1)
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{4 + \frac{5}{n} + \frac{2}{n^2}}{3 + \frac{2}{n} + \frac{1}{n^2}} = \frac{\lim_{n \to \infty} 4 + \lim_{n \to \infty} \frac{5}{n} + \lim_{n \to \infty} \frac{2}{n^2}}{\lim_{n \to \infty} 3 + \lim_{n \to \infty} \frac{2}{n} + \lim_{n \to \infty} \frac{1}{n^2}} = \frac{4 + 0 + 0}{3 + 0 + 0} = \frac{4}{3}.$$

(2)
$$a_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) = 1 - \frac{1}{n},$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{n} = 1 - 0 = 1.$$

(3)
$$a_{n} = \frac{2}{3} \cdot \frac{5}{6} \cdot \cdot \cdot \frac{(n^{2} + n - 2)/2}{n(n+1)/2} = \frac{2}{3} \cdot \frac{5}{6} \cdot \cdot \cdot \cdot \frac{(n-1)(n+2)}{n(n+1)} = \frac{1 \cdot 4}{2 \cdot 3} \cdot \frac{2 \cdot 5}{3 \cdot 4} \cdot \cdot \cdot \cdot \frac{(n-1)(n+2)}{n(n+1)}$$

$$= \frac{(1 \cdot 2 \cdot \cdot \cdot (n-1)) \cdot (4 \cdot 5 \cdot \cdot \cdot (n+2))}{(2 \cdot 3 \cdot \cdot \cdot (n)) \cdot (3 \cdot 4 \cdot \cdot \cdot (n+1))} = \frac{1 \cdot (n+2)}{n \cdot 3} = \frac{n+2}{3n},$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \frac{n+2}{3n} = \lim_{n \to \infty} \frac{1}{3} + \frac{2}{3} \cdot 0 = \frac{1}{3}.$$

(4)
$$a_n = \frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{2 \cdot 4}{3 \cdot 3} \cdot \dots \cdot \frac{(n-1)(n+1)}{n \cdot n} = \frac{1}{2} \cdot \frac{n+1}{n} = \frac{n+1}{2n},$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n+1}{2n} = \frac{1+\frac{1}{n}}{2} = \frac{1+0}{2} = \frac{1}{2}.$$

(5)
$$a_n = \frac{(1-q)(1+q)(1+q^2)(1+q^4)\cdots(1+q^{2^n})}{1-q} = \frac{1-q^{2^{n+1}}}{1-q},$$

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1-q^{2^{n+1}}}{1-q} = \frac{1-\lim_{m\to\infty} q^{2^{n+1}}}{1-q} = \frac{1-0}{1-q} = \frac{1}{1-q}.$$

习题 1.2.9 若 $a_n \neq 0 (n=1,2,\ldots)$ 且 $\lim_{n\to\infty} a_n = a$, 能否断定 $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = 1$? 解 不能. 例如 $a_n = \frac{1}{2^n}$, 则 $\lim_{n\to\infty} a_n = 0$, 但 $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = \lim_{n\to\infty} \frac{2^{n+1}}{2^n} = 2$.

一个可能的错误做法是

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} a_{n+1}} = \frac{a}{a} = 1,$$

但这是不允许的,因为 $\lim_{n\to\infty} a_n$ 可能为 0.

习题 1.2.10 若数列 $\{a_n\}$, $\{b_n\}$ 满足 $\lim_{n\to\infty}a_n\cdot b_n=0$, 是否必有 $\lim_{n\to\infty}a_n=0$ 或 $\lim_{n\to\infty}b_n=0$? 若还 假设 $\lim_{n\to\infty} a_n = a$, 回答同样的问题.

解 不一定. 例如
$$a_n = \begin{cases} 1, & n \to 3 \\ 0, & n \to 3 \end{cases}$$
 , $b_n = \begin{cases} 0, & n \to 3 \\ 0, & n \to 3 \end{cases}$, 则 $\lim_{n \to \infty} a_n \cdot b_n = \lim_{n \to \infty} 0 = 0$, 但 $1, n \to 3$, 则 $\lim_{n \to \infty} a_n \cdot b_n = \lim_{n \to \infty} 0 = 0$, 但

 $\lim_{n\to\infty} a_n$, $\lim_{n\to\infty} b_n$ 均不存在.

当
$$\lim_{n\to\infty} a_n = a$$
 时成立. 假设 $a \neq 0$ 时, 则 $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{a_n b_n}{a_n} = \frac{0}{a} = 0$.

习题 1.2.11 若数列 $\{a_n\}$ 收敛, 数列 $\{b_n\}$ 发散, 则数列 $\{a_n \pm b_n\}$, $\{a_n \cdot b_n\}$ 的收敛性如何? 举例说明. 若数列 $\{a_n\}$ 与 $\{b_n\}$ 皆发散, 回答同样的问题.

解

- 1. $\{a_n\}$ 收敛,数列 $\{b_n\}$ 发散,则
 - (a). $\{a_n+b_n\}$, $\{a_n-b_n\}$ 都发散可以采用反证法: 若 $\{a_n+b_n\}$ 收敛, 由于 $\{a_n\}$ 收敛, 容易知道 $\{a_n+b_n-a_n\}=\{b_n\}$ 收敛, 这与 $\{b_n\}$ 发散矛盾, 因此 $\{a_n+b_n\}$ 发散, $\{a_n-b_n\}$ 同理可得.
 - (b). $\{a_n \cdot b_n\}$ 的收敛性不确定. I. $a_n = \frac{1}{n}, b_n = n, 则 <math>a_n \cdot b_n = 1$ 收敛; II. $a_n = 1, b_n = n, 则 <math>a_n \cdot b_n = n$ 发散.
- 2. $\{a_n\}$, $\{b_n\}$ 都发散, 则
 - (a). $\{a_n + b_n\}$ 的收敛性不确定

I.
$$a_n = n, b_n = -n$$
, 则 $a_n + b_n = 0$ 收敛.

II.
$$a_n = n, b_n = n, 则 a_n + b_n = 2n 发散.$$

(b). $\{a_n - b_n\}$ 的收敛性不确定

I.
$$a_n = n + \frac{1}{n}, b_n = n$$
, 则 $a_n - b_n = \frac{1}{n}$, 收敛.

II.
$$a_n = (-1)^n, b_n = (-1)^{n-1}, \, \mathbb{M} \, a_n - b_n = 2 \cdot (-1)^n \, \mathbb{Z} \, \mathbb{K}.$$

(c). $\{a_n \cdot b_n\}$ 的收敛性不确定.

I.
$$a_n = \begin{cases} 1, & n$$
为奇数 $b_n = \begin{cases} 0, & n$ 为奇数 $p_n = b_n = 0, \\ 0, & n$ 为偶数 $p_n = b_n = 0, \\ 1, & n$ 为偶数

II.
$$a_n = n, b_n = (-1)^n$$
, 则 $a_n \cdot b_n = (-1)^n n$ 发散;

习题 1.2.12 下面的推理是否正确?

1. 设数列
$$\{a_n\}$$
: $a_1 = 1, a_{n+1} = 2a_n - 1$ $(n = 1, 2, 3, ...)$, 求 $\lim_{n \to \infty} a_n$. 解: 设 $\lim_{n \to \infty} a_n = a$, 在 $a_{n+1} = 2a_n - 1$ 两边取极限, 得 $a = 2a - 1$, 即 $a = 1$.

2.

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right)$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 1}} + \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 2}} + \dots + \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + n}}$$

$$= \underbrace{0 + 0 + \dots + 0}_{n \to \infty} = 0.$$

3.
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \left[\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) \right]^n = 1^n = 1.$$

- 1. 错误. 不能在未知数列是否收敛时, 就假设极限存在并对递推公式两边取极限. 实际上, 该数列的通项公式为 $a_n = 1$, 所以 $\lim_{n \to \infty} a_n = 1$.
- 2. 错误. 不能将一个数列的极限拆成无穷多个数列极限的和. 实际上

$$\frac{n}{\sqrt{n^2 + n}} \leqslant \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \leqslant \frac{n}{\sqrt{n^2 + 1}}.$$

并有

$$\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n}} = 1, \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}} = 1.$$

由夹逼准则

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1.$$

3. 错误. 不能将一个数列的极限拆成无穷多个数列极限的积. 实际上

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

习题 1.2.13 设数列 $\{a_n\}$ 与 $\{b_n\}$ 分别收敛于 a,b. 若 a>b, 则从某一项开始, 有 $a_n>b_n$; 反之, 若从某项开始恒有 $a_n \ge b_n$, 则 $a \ge b$.

解 这是保序性的直接推论.

习题 1.2.14 设数列 $\{a_n\}$, $\{b_n\}$ 分别收敛于 a 及 b. 记 $c_n = \max(a_n, b_n)$, $d_n = \min(a_n, b_n)$ $(n = a_n, b_n)$ 1,2,...). 证明

$$\lim_{n \to \infty} c_n = \max(a, b), \quad \lim_{n \to \infty} d_n = \min(a, b).$$

解由 $\max(x,y) = \frac{x+y+|x-y|}{2}$, $\min(x,y) = \frac{x+y-|x-y|}{2}$, 以及数列极限的四则运算和绝 对值运算可得.

习题 1.2.15 求下列极限:

(1)
$$\lim_{n \to \infty} \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2} \right];$$

(2) $\lim_{n \to \infty} ((n+1)^k - n^k), \sharp \oplus 0 < k < 1;$

(2)
$$\lim_{n \to \infty} ((n+1)^k - n^k)$$
, $\sharp \neq 0 < k < 1$;

(3)
$$\lim_{n \to \infty} (\sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[8]{2} \cdots \sqrt[2^n]{2});$$

(4)
$$\lim_{n \to \infty} \left(\sqrt{n^2 - n + 2} - n \right);$$

(4)
$$\lim_{n \to \infty} \left(\sqrt{n^2 - n + 2} - n \right);$$
(5)
$$\lim_{n \to \infty} \left(\sqrt{\cos^2 1 + \cos^2 2 + \dots + \cos^2 n} \right).$$

(1) 由于

$$0 \leqslant \sum_{k=1}^{n} \frac{1}{(n+k)^2} \leqslant \sum_{k=1}^{n} \frac{1}{n^2} = \frac{n}{n^2} = \frac{1}{n}.$$

并且

$$\lim_{n \to \infty} 0 = 0, \lim_{n \to \infty} \frac{1}{n} = 0.$$

由夹逼准则

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{(n+k)^2} = 0.$$

(2) 由于

$$0 \le ((n+1)^k - n^k) = n^k \left(\left(1 + \frac{1}{n} \right)^k - 1 \right) \le n^k \left(\left(1 + \frac{1}{n} \right)^1 - 1 \right) = n^{k-1}.$$

并且

$$\lim_{n\to\infty} 0 = 0, \lim_{n\to\infty} n^{k-1} = 0.$$

由夹逼准则

$$\lim_{n \to \infty} ((n+1)^k - n^k) = 0.$$

(3)

$$\lim_{n \to \infty} \prod_{k=1}^{n} \sqrt[2^k]{2} = \lim_{n \to \infty} 2^{\sum_{k=1}^{n} \frac{1}{2^k}} = 2^{\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{2^k}} = 2^1 = 2.$$

$$\lim_{n \to \infty} \sqrt[n]{n^2 - n + 2} = \lim_{n \to \infty} e^{\frac{1}{n} \ln(n^2 - n + 2)} = e^{\lim_{n \to \infty} \frac{1}{n} \ln(n^2 - n + 2)} = e^0 = 1.$$

(5) 由于

$$\sqrt[n]{\cos^2 1} \leqslant \sqrt[n]{\cos^2 1 + \cos^2 2 + \dots + \cos^2 n} \leqslant \sqrt[n]{n}.$$

并且

$$\lim_{n \to \infty} \sqrt[n]{\cos^2 1} = 1, \lim_{n \to \infty} \sqrt[n]{n} = 1.$$

由夹逼准则

$$\lim_{n \to \infty} \sqrt[n]{\cos^2 1 + \cos^2 2 + \dots + \cos^2 n} = 1.$$

习题 1.2.16 设 a_1, a_2, \ldots, a_m 为 m 个正数, 证明:

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = \max(a_1, a_2, \dots, a_m).$$

解 设 $a_k = \max\{a_1, a_2, \dots, a_m\}$, 则

$$a_k = \sqrt[n]{a_k^n} \leqslant \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} \leqslant \sqrt[n]{ma_k^n} = m^{\frac{1}{n}}a_k.$$

由夹逼定理可得

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = a_k = \max(a_1, a_2, \dots, a_m).$$

习题 1.2.17 证明下列数列收敛:

(1)
$$a_n = \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{2^2}\right) \cdots \left(1 - \frac{1}{2^n}\right);$$

(2)
$$a_n = \frac{1}{3+1} + \frac{1}{3^2+1} + \dots + \frac{1}{3^n+1};$$

(3)
$$a_n = \alpha_0 + \alpha_1 q + \dots + \alpha_n q^n$$
, $\sharp + |\alpha_k| \leq M, (k = 1, 2, \dots), \; \overline{m} \; |q| < 1;$

(4)
$$a_n = \frac{\cos 1}{1 \cdot 2} + \frac{\cos 2}{2 \cdot 3} + \frac{\cos 3}{3 \cdot 4} + \dots + \frac{\cos n}{n(n+1)}$$
.

证明

(1) 由
$$1 - \frac{1}{2^n} < 1$$
, 可知 $\{a_n\}$ 单调减, 且 $a_n > 0$, 因此 $\{a_n\}$ 收敛.

(2) 由
$$a_n < \sum_{k=1}^n \frac{1}{3^k} < \frac{1}{2}$$
, 可知 $\{a_n\}$ 有上界, 且 a_n 单调递增, 因此 $\{a_n\}$ 收敛.

(3) 利用 Cauchy 收敛准则, 对
$$\forall \varepsilon > 0$$
, 取 $N = \left| \log_{|q|} \frac{\varepsilon(1-|q|)}{2M} \right| + 1$, 则当 $m > n > N$ 时,

$$|a_m - a_n| = |\alpha_{n+1}q^{n+1} + \dots + \alpha_m q^m| \le M(|q|^{n+1} + |q|^{n+2} + \dots) = M \frac{|q|^{n+1}}{1 - |q|} < \varepsilon.$$

(4) 利用 Cauchy 收敛准则, 对
$$\forall \varepsilon > 0$$
, 取 $N = \left| \frac{1}{\varepsilon} \right| + 1$, 则当 $m > n > N$ 时,

$$|a_m - a_n| = \left| \frac{\cos(n+1)}{(n+1)(n+2)} + \dots + \frac{\cos m}{m(m+1)} \right| \le \sum_{k=n+1}^m \frac{1}{k(k+1)} = \frac{1}{n+1} - \frac{1}{m+1} < \frac{1}{n+1} < \varepsilon.$$

习题 1.2.18 证明下列数列收敛,并求出其极限:

(1)
$$a_n = \frac{n}{c^n}$$
, $(c > 1)$;

(2)
$$a_1 = \frac{c}{2}$$
, $a_{n+1} = \frac{c}{2} + \frac{a_n^2}{2} \ (0 \leqslant c \leqslant 1)$;

(3)
$$a > 0, a_0 > 0, a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right)$$
 (提示: 先证明 $a_n^2 \ge a$);

(4)
$$a_0 = 1$$
, $a_n = 1 + \frac{a_{n-1}}{a_{n-1} + 1}$;

(5)
$$a_n = \sin \sin \cdots \sin 1$$
 ($n \uparrow \sin$).

解

(1) 由 Stolz 定理, 有

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{c^n} = \lim_{n \to \infty} \frac{(n+1) - n}{c^{n+1} - c^n} = \lim_{n \to \infty} \frac{1}{c^n(c-1)} = 0.$$

(2)
$$a_{n+1} - a_n = \frac{1}{2}(a_n - a_{n-1})(a_n + a_{n-1})$$

由
$$a_2 - a_1 = \left(\frac{c}{2}\right)^2 > 0$$
, 可递归的得知 $a_{n+1} - a_n > 0$, 因此 $\{a_n\}$ 单调增, 且 $a_1 < c$, 归纳

的可得 $a_{n+1} < \frac{c}{2} + \frac{c^2}{2} < \frac{c}{2} + \frac{c}{2} = c$, 因此 $\{a_n\}$ 有上界, 故 $\{a_n\}$ 收敛. 设 $\lim_{n \to \infty} a_n = a$, 则 $a = \frac{c}{2} + \frac{a^2}{2} \Rightarrow a^2 - 2a + c = 0 \Rightarrow a = 1 \pm \sqrt{1-c}$, 又由 $a_n > 0$, 可知 $a = 1 - \sqrt{1-c}$.

(3) 由均值不等式,

$$a_{n+1} = \left(\frac{1}{2}\left(a_n + \frac{a}{a_n}\right)\right)^2 \geqslant a$$

于是

$$a_{n+1} - a_n = \frac{a - a_n^2}{2a_n} \le 0$$

因此 $\{a_n\}$ 在 $n\geqslant 1$ 时单调减, 且有下界 \sqrt{a} , 因此 $\{a_n\}$ 收敛. 设 $\lim_{n\to\infty}a_n=l$, 则 $l=\frac{1}{2}\left(l+\frac{a}{l}\right)$, 解得 $l=\sqrt{a}$.

(4)

$$a_n - a_{n-1} = \frac{1 + a_{n-1} - a_{n-1}^2}{a_{n-1} + 1}$$

$$1 + a_n - a_n^2 = 1 + 1 + \frac{a_{n-1}}{a_{n-1} + 1} - \left(1 + \frac{a_{n-1}}{a_{n-1} + 1}\right)^2 = \frac{1 + a_{n-1} - a_{n-1}^2}{(a_{n-1} + 1)^2}$$

由 $1+a_0-a_0^2=1>0$ 归纳的可得 $1+a_n-a_n^2>0$,因此 $a_n-a_{n-1}>0$,即 $\{a_n\}$ 单调递增,且 $1+a_n-a_n^2>0$ ⇒ $a_n<\frac{1+\sqrt{5}}{2}$ 有上界,因此 $\{a_n\}$ 收敛,设 $\lim_{n\to\infty}a_n=a$. 递推式两侧取极限,得 $a=1+\frac{a}{a+1}$ ⇒ $a^2-a-1=0$ ⇒ $a=\frac{1\pm\sqrt{5}}{2}$;由于 $a_n>0$ 始终成立,故 $a\geqslant 0$ 而 $\frac{1-\sqrt{5}}{2}<0$,故舍去这一值,进而得到 $a=\frac{1+\sqrt{5}}{2}$.

- (5) $a_n = \sin a_{n-1} < a_{n-1}$, 因此 $\{a_n\}$ 单调减, 且 $a_n > 0$, 因此 $\{a_n\}$ 收敛. 设 $\lim_{n \to \infty} a_n = a$, 则 $a = \sin a \Rightarrow a = 0$.
- 习题 1.2.19 设 $a_n \leqslant a \leqslant b_n \ (n=1,2,\ldots)$, 且 $\lim_{n\to\infty} (a_n-b_n)=0$. 求证: $\lim_{n\to\infty} a_n=a$, $\lim_{n\to\infty} b_n=a$. 解 由 $\lim_{n\to\infty} (a_n-b_n)=0$, 对 $\forall \varepsilon>0$, 存在 $N\in\mathbb{N}^*$, 使得当 n>N 时, $|a_n-b_n|<\varepsilon$. 又由 $a_n\leqslant a\leqslant b_n$, 可知 $|a_n-a|=a-a_n\leqslant b_n-a_n<\varepsilon$, 同理 $|b_n-a|<\varepsilon$. 因此 $\lim_{n\to\infty} a_n=a$, $\lim_{n\to\infty} b_n=a$.

习题 1.2.20 证明: 若 $a_n > 0$, 且 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = l > 1$, 则 $\lim_{n \to \infty} a_n = 0$. 解 先证明一个引理: 设 $a_n > 0$, $n = 1, 2, \ldots$, 且 $\lim_{n \to \infty} a_n = a$, 则 $\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$. 证明如下

 $(1) \ a = 0 \ \text{ft},$

$$0 \leqslant \sqrt[n]{a_1 a_2 \cdots a_n} \leqslant \frac{a_1 + a_2 + \cdots + a_n}{n}$$

同时,由Stolz定理,

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \lim_{n \to \infty} \frac{a_n}{1} = 0$$

由夹逼定理, 得证.

(2) a > 0 时,

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \leqslant \sqrt[n]{a_1 a_2 \dots a_n} \leqslant \frac{a_1 + a_2 + \dots + a_n}{n}.$$

由 Stolz 定理,有

$$\lim_{n \to \infty} \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = \lim_{n \to \infty} \frac{1}{\frac{1}{a_n}} = a,$$

且

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \lim_{n \to \infty} a_n = a.$$

由夹逼定理, 得证.

回到本题,

可知
$$\lim_{n \to \infty} \sqrt[n]{\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \cdot \cdot \frac{a_2}{a_1}} = \lim_{n \to \infty} \frac{a_n}{a_{n-1}} = \frac{1}{l} < 1$$
. 因此 $\exists r = \frac{1+\frac{1}{l}}{2} \in (0,1)$,使得当 n 充分大时, $\sqrt[n]{\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \cdot \cdot \frac{a_2}{a_1}} < r$. 由此可知,

$$\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_2}{a_1} < r^n,$$

即 $a_n < a_1 r^n$. 因此 $\lim_{n \to \infty} a_n = 0$.

习题 1.2.21 设数列 $\{a_n\}$, $\{b_n\}$ 是正数列, 满足 $\frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}$, $n=1,2,\ldots$ 求证: 若 $\{b_n\}$ 收敛,则 $\{a_n\}$ 收敛.

解 若
$$\lim_{n \to \infty} b_n = 0$$
, 则由 $a_n = a_1 \cdot \frac{a_2}{a_1} \cdot \frac{a_3}{a_2} \cdots \frac{a_n}{a_{n-1}} \leqslant a_1 \cdot \frac{b_2}{b_1} \cdot \frac{b_3}{b_2} \cdots \frac{b_n}{b_{n-1}} = a_1 \cdot \frac{b_n}{b_1}$ 可知 $\lim_{n \to \infty} a_n = 0$. 若 $\lim_{n \to \infty} b_n = b > 0$,由原式有 $\frac{a_{n+1}}{b_{n+1}} \leqslant \frac{a_n}{b_n}$,因此 $\left\{\frac{a_n}{b_n}\right\}$ 单调减,且 $\frac{a_n}{b_n} > 0$,因此 $\left\{\frac{a_n}{b_n}\right\}$ 收敛,设 $\lim_{n \to \infty} \frac{a_n}{b_n} = c$,则 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n \cdot \lim_{n \to \infty} \frac{a_n}{b_n} = bc$.

习题 1.2.22 利用极限 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$, 求下列数列的极限:

(1)
$$a_n = \left(1 + \frac{1}{2n+1}\right)^{2n+1};$$
 (2) $a_n = \left(1 - \frac{1}{n-2}\right)^{n+1};$

(3)
$$a_n = \left(\frac{1+n}{2+n}\right)^n$$
; (4) $a_n = \left(1+\frac{1}{n^3}\right)^{2n^3}$.

简要说明: 由 $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=$ e, 故 $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ 的任意子列 $\left\{\left(1+\frac{1}{n_k}\right)^{n_k}\right\}$ 也收敛于 e. 因此, 我们可以通过适当的变形, 将题目中的数列变形为 $\left(1+\frac{1}{n_k}\right)^{n_k}$ 的形式, 从而求出极限.

对于类似于 $\left(1-\frac{1}{n}\right)^{-n}$ 的形式, 可以考虑先通分再变形去掉指数的负号即可处理.

在此过程中下列命题也相同有用:

设数列 $\{a_n\}$ 收敛于 $a, a_n > 0, a > 0.$ $\{b_n\}$ 收敛于 b. 则 $\lim_{n \to \infty} a_n^{b_n} = a^b.$

请注意, 这条结论对于 1^{∞} 型是不能直接使用的, 即若 $a_n \rightarrow 1, b_n \rightarrow \infty$, 则不能直接说 $a_n^{b_n} \to 1^\infty = 1$. 但是对于 $a_n \to a > 1, b_n \to \infty$, 则可以直接说 $a_n^{b_n} \to a^{+\infty} = +\infty$; 对于 $a_n \to a < 1, b_n \to +\infty$, 则可以直接说 $a_n^{b_n} \to a^{+\infty} = 0$.

解

(1)
$$\lim_{n \to \infty} \left(1 + \frac{1}{2n+1} \right)^{2n+1} = \lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^m \Big|_{m=2n+1} = e;$$

$$(2) \lim_{n \to \infty} \left(1 - \frac{1}{n-2} \right)^{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{n-3} \right)^{-n-1} = \lim_{n \to \infty} \left(1 + \frac{1}{n-3} \right)^{(n-3) \cdot \left(-\frac{n+1}{n-3} \right)} = e^{-1};$$

(3)
$$\lim_{n \to \infty} \left(\frac{1+n}{2+n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{-n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{(n+1) \cdot \left(-\frac{n}{n+1} \right)} = e^{-1};$$

(4)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n^3} \right)^{2n^3} = \lim_{n \to \infty} \left(1 + \frac{1}{n^3} \right)^{n^3 \cdot 2} = e^2.$$
习题 1.2.23 设 $\lim_{n \to \infty} a_n = \infty$, 且 $|b_n| \ge b > 0$ $(n = 1, 2, ...)$, 则 $\lim_{n \to \infty} a_n b_n = \infty$.

 \mathbf{m} 对 $\forall M > 0$, 由 $\lim_{n \to \infty} a_n = \infty$, 存在 $N \in \mathbb{N}^*$, 使得当 n > N 时, $|a_n| > \frac{M}{b}$. 又由 $|b_n| \geqslant b > 0$, 可 知 $|a_nb_n| \geqslant |a_n||b| > M$. 因此 $\lim_{n \to \infty} a_nb_n = \infty$.

习题 1.2.24 确定 $n \to \infty$ 时, $\sqrt[n]{n}$ 与 $n \sin \frac{n\pi}{2}$ $(n \ge 1)$ 是否有界, 是否趋于无穷大.

解 $\sqrt[n]{n!}$ 无界,且趋于无穷大.由均值不等式,

$$\sqrt[n]{n!} \geqslant \frac{n}{\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}}$$

已知 $\lim_{n\to\infty} \frac{1}{1} = +\infty$, 由 Stolz 定理,

$$\lim_{n \to \infty} \frac{n}{\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}} = \lim_{n \to \infty} \frac{1}{\frac{1}{n}} = +\infty.$$

因此, $\lim_{n \to \infty} \sqrt[n]{n!} = +\infty$.

注 Stolz 定理规范的思路要先说明 $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}$ 存在, 然后才能说明 $\lim_{n\to\infty} \frac{a_n}{b_n}$ 存在. 为了方便, 我们也会省去前面的部分, 直接写 $\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}$. $n\sin\frac{n\pi}{2}$ 无界, 但是不趋于无穷大. 当 n=4k+1 时, $n\sin\frac{n\pi}{2} = 4k+1$,趋于无穷大; 当 $n\pi$

n = 4k + 3 时, $n \sin \frac{n\pi}{2} = -(4k + 3)$, 趋于负无穷大; 当 n 为偶数时, $n \sin \frac{n\pi}{2} = 0$.

习题 1.2.25 设数列 $\{a_n\}$ 由 $a_1=1, a_{n+1}=a_n+\frac{1}{a_n} \ (n\geqslant 1)$ 定义, 证明: $a_n\to +\infty \ (n\to \infty)$.

解 由 $a_{n+1}^2 - a_n^2 = (a_{n+1} - a_n)(a_{n+1} + a_n) = \frac{1}{a_n}(a_n + a_n + \frac{1}{a_n}) = 2 + \frac{1}{a_n^2} > 2$, 可知 $a_n^2 > 2(n-1)$, 因此 $\lim_{n\to\infty} a_n = \infty$.

习题 1.2.26 给出 $\frac{0}{0}$ 型 Stolz 定理的证明.

命题 $(\frac{0}{0}$ 型的 Stolz 定理) 设 $\{a_n\}$ 和 $\{b_n\}$ 都是无穷小量, 其中 $\{a_n\}$ 还是严格单调减少数列, 又

存在 (其中 l 为有限或 $\pm \infty$)

$$\lim_{n \to \infty} \frac{b_{n+1} - b_n}{a_{n+1} - a_n} = l,$$

则有

$$\lim_{n \to \infty} \frac{b_n}{a_n} = l.$$

证明

(1) 当 l 为有限值时,根据条件对 $\varepsilon > 0$ 存在 N, 使当 n > N 时成立

$$\left| \frac{b_n - b_{n+1}}{a_n - a_{n+1}} - l \right| < \varepsilon.$$

由于对每个 n 都有 $a_n > a_{n+1}$, 这样就有

$$(l-\varepsilon)(a_n - a_{n+1}) < b_n - b_{n+1} < (l+\varepsilon)(a_n - a_{n+1}).$$

任取 m > n, 并且将上述不等式中的 n 换成 $n + 1, \ldots$, 直到 m - 1, 然后将所有这些不等式相加, 就得到

$$(l-\varepsilon)(a_n - a_m) < b_n - b_m < (l+\varepsilon)(a_n - a_m),$$

以及

$$\left| \frac{b_n - b_m}{a_n - a_m} - l \right| < \varepsilon.$$

令 $m \to \infty$, 并利用条件 $\lim_{m \to \infty} a_m = \lim_{m \to \infty} b_m = 0$, 就知道当 n > N 时成立

$$\left| \frac{b_n}{a_n} - l \right| \leqslant \varepsilon.$$

(2) $l = +\infty$ 时. 根据条件对任意 M > 0 存在 N, 使当 n > N 时成立

$$\frac{b_n - b_{n+1}}{a_n - a_{n+1}} > M.$$

由于对每个n都有 $a_n > a_{n+1}$,这样就有

$$b_n - b_{n+1} > M(a_n - a_{n+1}).$$

任取 m > n, 并且将上述不等式中的 n 换成 n + 1, ..., 直到 m - 1, 然后将所有这些不等式相加, 就得到

$$b_n - b_m > M(a_n - a_m),$$

以及

$$\frac{b_n - b_m}{a_n - a_m} > M.$$

令 $m \to \infty$, 并利用条件 $\lim_{m \to \infty} a_m = \lim_{m \to \infty} b_m = 0$, 就知道当 n > N 时成立

$$\frac{b_n}{a_n} > M.$$

习题 1.3

习题 1.3.1 按定义证明:

(1)
$$\lim_{x \to -\infty} a^x = 0, (a > 1);$$

(2)
$$\lim_{x \to \infty} \frac{x-1}{x+1} = 1;$$

(3)
$$\lim_{x \to -1} \frac{x^2 - 1}{x^2 + x} = 2;$$

(4)
$$\lim_{x\to 0^+} x^{1/q} = 0$$
 (q 为正整数).

解

(1) 对
$$\forall \varepsilon > 0$$
, 取 $M = \log_a \varepsilon$, 则当 $x < M$ 时, $|a^x - 0| = a^x < a^M = \varepsilon$.

(2) 对
$$\forall \varepsilon > 0$$
, 取 $M = \frac{2}{\varepsilon} + 1$, 则当 $|x| > \max\{M, 1\}$ 时, $\left| \frac{x-1}{x+1} - 1 \right| = \left| \frac{-2}{x+1} \right| \leqslant \frac{2}{|x|-1} < \varepsilon$.

(3) 对
$$\forall \varepsilon > 0$$
, 取 $\delta = \min\left\{\frac{1}{2}, \frac{\varepsilon}{2}\right\}$, 则 当 $0 < |x+1| < \delta$ 时, $\left|\frac{x^2 - 1}{x^2 + x} - 2\right| = \left|\frac{-x^2 - 2x - 1}{x^2 + x}\right| = \left|\frac{x+1}{x}\right| < \frac{\delta}{1/2} \leqslant \varepsilon$.

(4) 对
$$\forall \varepsilon > 0$$
, 取 $\delta = \varepsilon^q$, 则当 $0 < x < \delta$ 时, $|x^{1/q} - 0| = x^{1/q} < \delta^{1/q} = \varepsilon$.

习题 1.3.2 求下列极限:

(1)
$$\lim_{x \to 1} \left(x^5 - 5x + 2 + \frac{1}{x} \right);$$

(2)
$$\lim_{x\to 1} \frac{x^n-1}{x-1}$$
 (n 为正整数);

(3)
$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1}$$
;

(4)
$$\lim_{x \to -\infty} \frac{(3x+6)^{70}(8x-5)^{20}}{(5x-1)^{90}}.$$

(1) 由四则运算的极限可知,

$$\lim_{x \to 1} \left(x^5 - 5x + 2 + \frac{1}{x} \right) = 1 - 5 + 2 + 1 = -1.$$

(2) $x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$, 因此

$$\lim_{x \to 1} \frac{x^n - 1}{x - 1} = \lim_{x \to 1} (x^{n-1} + x^{n-2} + \dots + x + 1) = \sum_{k=0}^{n-1} 1 = n.$$

请注意, 这里 n 是常数, 因此可以交换这 n 个极限与求和的顺序.

(3)

$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)(2x + 1)} = \lim_{x \to 1} \frac{x + 1}{2x + 1} = \frac{2}{3}.$$

(4)

$$\lim_{x \to -\infty} \frac{\left(3 + \frac{6}{x}\right)^{70} (8 - \frac{5}{x})^{20}}{\left(5 - \frac{1}{x}\right)^{90}} = \frac{\left(3 + \lim_{x \to -\infty} \frac{6}{x}\right)^{70} \left(8 - \lim_{x \to -\infty} \frac{5}{x}\right)^{20}}{\left(5 - \lim_{x \to -\infty} \frac{1}{x}\right)^{90}} = \frac{3^{70} \cdot 8^{20}}{5^{90}}$$

事实上, $\frac{3^{70} \cdot 8^{20}}{5^{90}} = \left(\frac{3^7 \cdot 2^6}{5^9}\right)^{10} = 0.0000000000035726229189858259136514568727612$

习题 1.3.3 证明下列极限不存在:

- (1) 用 Cauchy 收敛原理. 对 $\varepsilon=\frac{1}{2}$, 任取 M>0, 总总存在 $k=\lceil M/\pi \rceil$, 使得 $x_1=\left(k+\frac{1}{2}\right)\pi>$ $M, x_2 = (k+1)\pi > M(k \in \mathbb{N}^*),$ 使得 $|\sin x_1 - \sin x_2| = 1 > \varepsilon$. 因此极限不利
- (2) 考虑两个单边极限,

$$\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} 1 = 1, \quad \lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^-} -1 = -1.$$

而极限存在的充要条件是两个单边极限存在且相等, 因此极限不存在,

习题 1.3.4 设函数 f(x) 在正无穷大处的极限为 l,则对于任意趋于正无穷大的数列 $\{a_n\}$,有 $\lim_{n\to\infty} f(a_n) = l. 特别地 \lim_{n\to\infty} f(n) = l.$

(无穷版本的 Heine 定理) 解 对 $\forall \varepsilon > 0$, 由 $\lim_{x \to \infty} f(x) = l$, 存在 M > 0, 使得当 x > M 时, $|f(x)-l|<\varepsilon$. 又由 $\lim_{n\to\infty}a_n=+\infty$, 存在 $N\in\mathbb{N}^*$, 使得当 n>N 时, $a_n>M$. 因此当 n>N 时, $|f(a_n)-l|<\varepsilon$. 由此可知 $\lim_{n\to\infty}f(a_n)=l$. 特别地, 取 $a_n=n$, 则 $\lim_{n\to\infty}f(n)=l$.

习题 1.3.5 讨论下列函数在 x = 0 处的极限.

(1)
$$f(x) = [x];$$
 (2) $f(x) = \operatorname{sgn} x;$

(3)
$$f(x) = \begin{cases} 2^x, & x > 0; \\ 0, & x = 0; \\ 1 + x^2, & x < 0. \end{cases}$$
 (4) $f(x) = \begin{cases} \cos \frac{1}{x}, & x > 0; \\ x, & x \leqslant 0. \end{cases}$

解注教材中的符号 [x] 表示 x 的整数部分,即不大于 x 的最大整数.本题中,我们沿用此符号. 其他地方, 我们使用 [x] 表示对 x 向下取整, 使用 [x] 表示对 x 向上取整.

- (1) $\lim_{x\to 0^+}[x]=0$, $\lim_{x\to 0^-}[x]=-1$. 因此极限不存在.
 (2) $\lim_{x\to 0^+} \operatorname{sgn} x=1$, $\lim_{x\to 0^-} \operatorname{sgn} x=-1$. 左右极限均存在, 但不相等, 因此极限不存在.
 (3) $\lim_{x\to 0^+} 2^x=1$, $\lim_{x\to 0^-}(1+x^2)=1$. 因此极限存在, 且 $\lim_{x\to 0}f(x)=1$.
- (4) $\lim_{x\to 0^+}\cos\frac{1}{x}$ 不存在,因此右极限不存在.左极限 $\lim_{x\to 0^-}x=0$.函数在 x=0 处的极限不存在. 注 $\lim_{x\to 0^+}\cos\frac{1}{x}$ 的极限过程等同于考虑 $\lim_{x\to +\infty}\cos x$,而该极限不存在 (与习题 1.3.3(1)同理). 习题 1.3.6 求 $\lim_{n\to \infty}\cos\frac{x}{2}\cos\frac{x}{2}\cdots\cos\frac{x}{2^n}$.

解

(1) 当 $\forall m \in \mathbb{N}^*$, $\sin \frac{x}{2m} \neq 0$ 时, 二倍角公式变形可得 $\cos y = \frac{\sin 2y}{2\sin y}$, 当 $\sin y \neq 0$, 反复利用可 知

$$\cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n} = \frac{\sin x}{2 \sin \frac{x}{2}} \cdot \frac{\sin \frac{x}{2}}{2 \sin \frac{x}{2^2}} \cdots \frac{\sin \frac{x}{2^{n-1}}}{2 \sin \frac{x}{2^n}} = \frac{\sin x}{2^n \sin \frac{x}{2^n}}.$$

因此

$$\lim_{n \to \infty} \cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n} = \lim_{n \to \infty} \frac{\sin x}{2^n \sin \frac{x}{2^n}} = \frac{\sin x}{x} \cdot \lim_{n \to \infty} \frac{\frac{x}{2^n}}{\sin \frac{x}{2^n}} = \frac{\sin x}{x}.$$

(2) 若存在 $m_0 \geqslant 1$, $\sin \frac{x}{2^m} = 0$, 有 $\frac{x}{2^{m_0}} = k\pi$, $x = 2^{m_0}k\pi$, $k \in \mathbb{Z}$. 自然的推论是 $\forall m \leqslant m_0$, 有 $\sin \frac{x}{2^m} = \sin(2^{m_0 - m}k\pi) = 0$.

此时根据是否存在最大的 m_0 , 使得 $\sin \frac{x}{2^{m_0}} = 0$ 可以分成两种情况:

(a).
$$x = 0$$
, 则 $\forall m \in \mathbb{N}^*$, 有 $\cos \frac{x}{2^m} = 1$, 因此 $\lim_{n \to \infty} \cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n} = 1$; (b). $x \neq 0 \Leftrightarrow \exists m_0, \text{ s.t. } \sin \frac{x}{2^{m_0}} = 0, \sin \frac{x}{2^{m_0+1}} \neq 0$, 也就是存在最大的 m_0 .

(b).
$$x \neq 0 \Leftrightarrow \exists m_0, \text{ s.t. sin } \frac{1}{2^{m_0}} = 0, \text{ sin } \frac{1}{2^{m_0+1}} \neq 0, \text{ a.s. } \text{ 是得收入的 } m_0.$$
因此可以得到 $x = 2^{m_0} k \pi, k = 2l + 1, l \in \mathbb{Z}$ (如果 k 是偶数, 那么与 $\sin \frac{x}{2^{m_0+1}} = \sin \frac{k\pi}{2} \neq 0$ 矛盾).

此时
$$\cos \frac{x}{2^{m_0+1}} = \cos \frac{k\pi}{2} = \cos \left(l + \frac{1}{2}\right)\pi = 0$$
, 因此 $\lim_{n \to \infty} \cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n} = 0$.

不过又由于 $\sin x = 0$ 同样成立, 并且 $x \neq 0$, 因此可以把结果合并进 $\frac{\sin x}{x}$.

综上所述,

$$\lim_{n \to \infty} \cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n} = \begin{cases} \frac{\sin x}{x}, & x \neq 0; \\ 1, & x = 0. \end{cases}$$

习题 1.3.7 求证: $\lim_{n\to\infty} \left(\sin\frac{\alpha}{n^2} + \sin\frac{2\alpha}{n^2} + \dots + \sin\frac{n\alpha}{n^2}\right) = \frac{\alpha}{2}$. 解我们先证明加下事实:

$$\sum_{k=1}^{n} \sin k\theta = \begin{cases} \frac{\sin \frac{n+1}{2}\theta \sin \frac{n}{2}\theta}{\sin \frac{\theta}{2}}, & \sin \frac{\theta}{2} \neq 0; \\ 0, & \sin \frac{\theta}{2} = 0. \end{cases}$$

我们利用积化和差

$$\sin\frac{\theta}{2}\sin k\theta = \frac{1}{2}\left(\cos\left(k - \frac{1}{2}\right)\theta - \cos\left(k + \frac{1}{2}\right)\theta\right)$$
$$\sin\frac{\theta}{2}\left(\sum_{k=0}^{n}\sin k\theta\right) = \sum_{k=0}^{n}\frac{1}{2}\left(\cos\left(k - \frac{1}{2}\right)\theta - \cos\left(k + \frac{1}{2}\right)\theta\right)$$

$$\sin\frac{\theta}{2}\left(\sum_{k=1}^{n}\sin k\theta\right) = \sum_{k=1}^{n}\frac{1}{2}\left(\cos\left(k - \frac{1}{2}\right)\theta - \cos\left(k + \frac{1}{2}\right)\theta\right)$$

$$= \frac{1}{2}\left(\cos\frac{\theta}{2} - \cos\frac{3\theta}{2} + \cos\frac{3\theta}{2} - \cos\frac{5\theta}{2} + \dots + \cos\left(n - \frac{1}{2}\right)\theta - \cos\left(n + \frac{1}{2}\right)\theta\right)$$

$$= \frac{1}{2}\left(\cos\frac{\theta}{2} - \cos\left(n + \frac{1}{2}\right)\theta\right)$$

$$= \sin\frac{n+1}{2}\theta\sin\frac{n}{2}\theta.$$

因此, 当 $\sin \frac{\theta}{2} \neq 0$ 自然有

$$\sum_{k=1}^{n} \sin k\theta = \frac{\sin \frac{n+1}{2}\theta \sin \frac{n}{2}\theta}{\sin \frac{\theta}{2}}.$$

另一种情况是显然的,每一项都为 0.

回到本题, 首先, 如果 $\alpha \neq 0$, 那么这意味着存在充分大的 N 使得 n > N, $0 < \left| \frac{\alpha}{n^2} \right| < \pi$, 此 时, $\sin \frac{\alpha}{2n^2} \neq 0$. 因此 n > N 时,

$$\sum_{k=1}^{n} \sin k \frac{\alpha}{n^2} = \frac{\sin \frac{(n+1)\alpha}{2n^2} \sin \frac{n\alpha}{2n^2}}{\sin \frac{\alpha}{2n^2}}$$

考虑 $\sin x \sim x, (x \to 0)$, 于是

$$\lim_{n\to\infty} \sum_{k=1}^n \sin k \frac{\alpha}{n^2} = \lim_{n\to\infty} \frac{\sin \frac{(n+1)\alpha}{2n^2} \sin \frac{n\alpha}{2n^2}}{\sin \frac{\alpha}{2n^2}} = \lim_{n\to\infty} \frac{\frac{(n+1)\alpha}{2n^2} \cdot \frac{n\alpha}{2n^2}}{\frac{\alpha}{2n^2}} = \lim_{n\to\infty} \frac{(n+1)\alpha}{2n} = \frac{\alpha}{2}.$$

如果 $\alpha = 0$, 那么每一项都为 0, 极限自然为 $0 = \frac{\alpha}{2}$.

综上所述,

$$\lim_{n \to \infty} \left(\sin \frac{\alpha}{n^2} + \sin \frac{2\alpha}{n^2} + \dots + \sin \frac{n\alpha}{n^2} \right) = \frac{\alpha}{2}.$$

习题 1.3.8 证明: 若 $\lim_{x\to\infty} f(x) = l$, 则 $\lim_{x\to 0} f\left(\frac{1}{x}\right) = l$, 反之亦正确. 叙述并证明, 当 $x\to +\infty$ 及 $x \to -\infty$ 时类似的结论. (应用本题结论, 可将极限过程为 $x \to \infty$ 的问题化为 $x \to 0$ 处理, 或 者反过来. 例如, 我们有 $\lim_{x\to 0} (1+x)^{1/x} = e$.)

解 我们先给出这条命题的完整表述:

(1) 若 $\lim_{x \to \infty} f(x) = l$, 则 $\lim_{x \to 0^+} f\left(\frac{1}{x}\right) = l$, 反之亦正确;

(2) 若
$$\lim_{x \to +\infty} f(x) = l$$
, 则 $\lim_{x \to 0^+} f\left(\frac{1}{x}\right) = l$, 反之亦正确;
(3) 若 $\lim_{x \to -\infty} f(x) = l$, 则 $\lim_{x \to 0^-} f\left(\frac{1}{x}\right) = l$, 反之亦正确;

(3) 若
$$\lim_{x \to -\infty} f(x) = l$$
, 则 $\lim_{x \to 0^-} f\left(\frac{1}{x}\right) = l$, 反之亦正确

证明:

- (1) 由 Heine 定理, $\lim_{x\to\infty} f(x) = l \Rightarrow \forall \{x_n\}$, 若 $\lim_{n\to\infty} x_n = \infty$ 则 $\lim_{n\to\infty} f(x_n) = l$. $\Rightarrow \forall \{y_n\}$, 若 $\lim_{n\to\infty}y_n=0^+,\,\,\text{M}\,\,\lim_{n\to\infty}\frac{1}{y_n}=\infty,\,\,\text{M}\,\,\lim_{n\to\infty}f\left(\frac{1}{y_n}\right)=l.\,\,\text{th Heine}\,\,\text{定理可知}\,\lim_{x\to0^+}f\left(\frac{1}{x}\right)=l.$ 反之, 若 $\lim_{x\to 0^+} f\left(\frac{1}{x}\right) = l$, 由 Heine 定理, $\forall \{y_n\}$, 若 $\lim_{n\to\infty} y_n = 0^+$, 则 $\lim_{n\to\infty} f\left(\frac{1}{y_n}\right) = l$. \Rightarrow $\forall \{x_n\},$ 若 $\lim_{n\to\infty} x_n = \infty$, 则 $\lim_{n\to\infty} \frac{1}{x_n} = 0^+$, 则 $\lim_{n\to\infty} f(x_n) = l$. 由 Heine 定理可知 $\lim_{x\to\infty} f(x) = l$.
- (2) 由 Heine 定理, $\lim_{x \to +\infty} f(x) = l \Rightarrow \forall \{x_n\}$, 若 $\lim_{n \to \infty} x_n = +\infty$ 则 $\lim_{n \to \infty} f(x_n) = l$. $\Rightarrow \forall \{y_n\}$, 若 $\lim_{n\to\infty}y_n=0^+, \, \mathbb{M}\lim_{n\to\infty}\frac{1}{y_n}=+\infty, \, \mathbb{M}\lim_{n\to\infty}f\left(\frac{1}{y_n}\right)=l. \text{ 由 Heine } 定理可知\lim_{x\to 0^+}f\left(\frac{1}{x}\right)=l.$

反之,若 $\lim_{x\to 0^+} f\left(\frac{1}{x}\right) = l$,由 Heine 定理, $\forall \{y_n\}$,若 $\lim_{n\to\infty} y_n = 0^+$,则 $\lim_{n\to\infty} f\left(\frac{1}{y_n}\right) = l$. $\Rightarrow \forall \{x_n\}$,若 $\lim_{n\to\infty} x_n = +\infty$,则 $\lim_{n\to\infty} \frac{1}{x_n} = 0^+$,则 $\lim_{n\to\infty} f(x_n) = l$. 由 Heine 定理可知 $\lim_{n\to\infty} f(x) = l$.

(3) 由 Heine 定理, $\lim_{x \to -\infty} f(x) = l \Rightarrow \forall \{x_n\}$, 若 $\lim_{n \to \infty} x_n = -\infty$ 则 $\lim_{n \to \infty} f(x_n) = l$. $\Rightarrow \forall \{y_n\}$, 若 $\lim_{n \to \infty} y_n = 0^-$,则 $\lim_{n \to \infty} \frac{1}{y_n} = -\infty$,则 $\lim_{n \to \infty} f\left(\frac{1}{y_n}\right) = l$. 由 Heine 定理可知 $\lim_{x \to 0^-} f\left(\frac{1}{x}\right) = l$. 反之,若 $\lim_{x \to 0^-} f\left(\frac{1}{x}\right) = l$,由 Heine 定理, $\forall \{y_n\}$,若 $\lim_{n \to \infty} y_n = 0^-$,则 $\lim_{n \to \infty} f\left(\frac{1}{y_n}\right) = l$. $\Rightarrow \forall \{x_n\}$,若 $\lim_{n \to \infty} x_n = -\infty$,则 $\lim_{n \to \infty} \frac{1}{x_n} = 0^-$,则 $\lim_{n \to \infty} f(x_n) = l$. 由 Heine 定理可知 $\lim_{x \to -\infty} f(x) = l$.

习题 1.3.9 求下列极限:

$$(1) \lim_{x \to 0} \frac{\tan 2x}{\sin 5x};$$

(2)
$$\lim_{x\to 0} \frac{\cos x - \cos 3x}{x^2}$$
;

(3)
$$\lim_{x \to +\infty} \left(\frac{x+1}{2x-1} \right)^x;$$

(4)
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 - 1} \right)^{x^2}$$
.

解

(1)
$$\lim_{x \to 0} \frac{\tan 2x}{\sin 5x} = \lim_{x \to 0} \frac{\tan 2x}{2x} \cdot \frac{5x}{\sin 5x} \cdot \frac{2}{5} = 1 \cdot 1 \cdot \frac{2}{5} = \frac{2}{5}.$$

(2) 由和差化积,

$$\cos x - \cos 3x = 2\sin 2x\sin x$$

因此

$$\lim_{x \to 0} \frac{\cos x - \cos 3x}{x^2} = \lim_{x \to 0} \frac{2 \sin 2x \sin x}{x^2} = \lim_{x \to 0} \frac{\sin 2x}{2x} \cdot \frac{\sin x}{x} \cdot 4 = 1 \cdot 1 \cdot 4 = 4.$$

(3) 当 $x > \frac{7}{2}$ 时,有 $0 < \frac{x+1}{2x-1} < \frac{3}{4}$ 恒成立,因此

$$0 \leqslant \left(\frac{x+1}{2x-1}\right)^x \leqslant \left(\frac{3}{4}\right)^x$$

又由于 $\lim_{x\to +\infty} \left(\frac{3}{4}\right)^x = 0$, 由夹逼定理可知

$$\lim_{x \to +\infty} \left(\frac{x+1}{2x-1} \right)^x = 0.$$

(4)
$$\lim_{x \to \infty} \left(1 + \frac{2}{x^2 - 1} \right)^{\frac{x^2 - 1}{2} \cdot \frac{2}{x^2 - 1} x^2} = e^{\lim_{x \to \infty} \frac{2}{x^2 - 1} x^2} = e^2$$

习题 1.3.10 求下列极限.

(1)
$$\lim_{x \to +\infty} \frac{\arctan x}{x}$$
;

(2)
$$\lim_{x\to 0} x^2 \sin \frac{1}{x}$$
;

(3)
$$\lim_{x \to 2} \frac{x^3 - 2x^2}{x - 2};$$

(4)
$$\lim_{x \to \infty} (2x^2 - x + 1)$$
.

解

(1) $\arctan x$ 在 $x \to +\infty$ 时有界, 而 $x \to +\infty$ 时无界, 因此

$$\lim_{x \to +\infty} \frac{\arctan x}{x} = 0.$$

具体而言,

$$\lim_{x\to +\infty}\arctan x=\frac{\pi}{2},\ \lim_{x\to -\infty}\arctan x=-\frac{\pi}{2}.$$

(2) 由夹逼定理,

$$-x^2 \leqslant x^2 \sin \frac{1}{x} \leqslant x^2,$$

且 $\lim_{x\to 0} -x^2 = \lim_{x\to 0} x^2 = 0$, 因此

$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0.$$

(3)

$$\lim_{x \to 2} \frac{x^3 - 2x^2}{x - 2} = \lim_{x \to 2} \frac{(x - 2)x^2}{x - 2} = \lim_{x \to 2} x^2 = 4.$$

(4) 证明:

$$\lim_{x \to \infty} (2x^2 - x + 1) = +\infty.$$

由 $2x^2 - x + 1 = x^2 + (x - 1/2)^2 + 3/4 > x^2$, 因此对 $\forall M > 0$, 取 $N = \sqrt{M}$, 则当 x > N 时, $2x^2 - x + 1 > x^2 > N^2 = M$. 由此可知

$$\lim_{x \to \infty} (2x^2 - x + 1) = +\infty.$$

习题 1.3.11 按定义证明.

(1) $\lim_{x \to +\infty} \log_a x = +\infty, (a > 1);$

(2)
$$\lim_{x\to 0^+} \log_a x = -\infty, (a > 1);$$

 $(3) \lim_{x \to \frac{\pi}{2}^-} \tan x = +\infty;$

(4)
$$\lim_{x\to 0^+} e^{1/x} = +\infty.$$

解

(1) 对 $\forall M > 0$, 取 $N = a^M$, 则 当 x > N 时, $\log_a x > \log_a N = M$.

(2) 对 $\forall M < 0$, 取 $\delta = a^M$, 则 当 $0 < x < \delta$ 时, $\log_a x < \log_a \delta = M$.

(3) 对 $\forall M > 0$, 取 $\delta = \frac{\pi}{2} - \arctan M$, 则当 $\frac{\pi}{2} - \delta < x < \frac{\pi}{2}$ 时, $\tan x > \tan(\frac{\pi}{2} - \delta) = M$.

(4) 对 $\forall M > 0$, 取 $\delta = \frac{1}{\ln M}$, 则 当 $0 < x < \delta$ 时, $e^{1/x} > e^{1/\delta} = M$.

习题 1.3.12 证明: 函数 $y = x \sin x$ 在 $(0, +\infty)$ 内无界, 但当 $x \to +\infty$ 时, 这个函数并不是无穷大量.

解 $\forall M > 0$, 存在 $x_0 = (2k-1)\pi$, $k \in \mathbb{N}^*$, 2k-1 > M, 因此 $y(x_0) = x_0 \sin x_0 = x_0 > M$. 由此可知 $y = x \sin x$ 在 $(0, +\infty)$ 内无界.

 $\forall X > 0$, 总存在 $x_1 = 2k\pi, k \in \mathbb{N}^*, 2k\pi > X$, 使得 $y(x_1) = x_1 \sin x_1 = 0$. 因此当 $x \to +\infty$ 时, $y = x \sin x$ 并不是无穷大量.

习题 1.3.13 函数 $y = \frac{1}{x} \cos \frac{1}{x}$ 在区间 (0,1) 内是否有界? 又当 $x \to 0^+$ 时, 这个函数是否为无穷大量?

解 考虑 0^+ 处的 $\frac{1}{x}\cos\frac{1}{x}$ 与考虑 $+\infty$ 处的 $x\cos x$ 是等价的. 以与习题 1.3.12类似的方法可知, $y=x\cos x$ 在 $(0,+\infty)$ 内无界,但当 $x\to+\infty$ 时, $y=x\cos x$ 并不是无穷大量. 因此, $y=\frac{1}{x}\cos\frac{1}{x}$ 在 (0,1) 内无界,但当 $x\to0^+$ 时, $y=\frac{1}{x}\cos\frac{1}{x}$ 并不是无穷大量.

习题 1.3.14 本题所涉及的函数极限有着鲜明的几何意义.

记函数 y = f(x) 所表示的曲线为 C. 若动点沿曲线无限远离原点时, 此动点与某一固定直线的距离趋于零, 则称该直线为曲线 C 的一条渐近线.

(i) 垂直渐近线 易知 (垂直于x轴的) 直线 $x = x_0$ 为曲线 C 的渐近线的充分必要条件是

$$\lim_{x \to x_0^-} f(x) = \infty \quad \text{ } \exists \vec{x} \quad \lim_{x \to x_0^+} f(x) = \infty.$$

(ii) 水平渐近线 易知 (平行于x 轴的) 直线 y = b 为曲线 C 的渐近线的充分必要条件是

$$\lim_{x \to +\infty} f(x) = b \quad \vec{\mathbf{g}} \quad \lim_{x \to -\infty} f(x) = b.$$

(iii) 斜渐近线 请读者证明, 方程为 y = ax + b $(a \neq 0)$ 的直线 L 为曲线 C 的渐近线的充分 必要条件是

$$a = \lim_{x \to +\infty} \frac{f(x)}{x}, \quad b = \lim_{x \to +\infty} (f(x) - ax);$$

或者

$$a = \lim_{x \to -\infty} \frac{f(x)}{x}, \quad b = \lim_{x \to -\infty} (f(x) - ax).$$

这里自然要假定所说的极限都存在. (提示: 以 $x \to +\infty$ 为例, 设曲线 C 及直线 L 上的横坐标为 x 的点分别为 M,N. 则 $M \subseteq L$ 的距离, 是 |MN| 的一个常数倍. 因此, 直线 L 为曲线 C 的渐近线, 等价于 $\lim_{x \to +\infty} (f(x) - (ax + b)) = 0$, 由此易得所说结果.)

求下列曲线的渐近方程.

(1)
$$y = x \ln\left(e + \frac{1}{x}\right);$$
 (2) $y = \frac{3x^2 - 2x + 3}{x - 1}.$

解 先证明, 仅证明 $+\infty$, 另一种同理. 正如提示所说, 由于距离 $d=\left|\frac{f(x)-(ax+b)}{\sqrt{a^2+1}}\right|$, 因此 l 是

渐近线, 等价于 $x \to +\infty$ 时 d 趋于 0, 等价于 f(x) - (ax + b) 趋于 0.

然后问题转化为了证明

$$\lim_{x \to +\infty} (f(x) - (ax + b)) = 0 \Leftrightarrow a = \lim_{x \to +\infty} \frac{f(x)}{x}, \quad b = \lim_{x \to +\infty} (f(x) - ax).$$

充分性: 由 $b = \lim_{x \to +\infty} (f(x) - ax)$ 可知,

$$\lim_{x \to +\infty} (f(x) - (ax + b)) = 0.$$

必要性: 由 $\lim_{x\to +\infty} (f(x) - (ax+b)) = 0$ 可知,

$$\lim_{x \to +\infty} \frac{f(x)}{x} - a - \frac{b}{x} = 0, \quad \lim_{x \to +\infty} (f(x) - ax) = b$$

因此

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a, \quad \lim_{x \to +\infty} (f(x) - ax) = b.$$

(1) (a). 垂直渐近线,
$$x = -\frac{1}{e}$$
: $\lim_{x \to (-\frac{1}{e})^-} = -\frac{1}{e} \lim_{y \to 0^+} \ln y = +\infty$;

(b). 斜渐近线,
$$y = x + \frac{1}{e}$$
: $\lim_{x \to \infty} \frac{y(x)}{x} = \lim_{x \to \infty} \ln(e + \frac{1}{x}) = 1$, $\lim_{x \to \infty} (y(x) - x) = \lim_{x \to \infty} x (\ln(e + \frac{1}{x}) - 1) = \lim_{x \to \infty} x \ln(1 + \frac{1}{ex}) = \lim_{x \to \infty} \frac{\ln(1 + \frac{1}{ex})}{\frac{1}{x}} = \lim_{x \to \infty} \frac{1/ex}{1/x} = \frac{1}{e}$ (± ∞ 两侧是同一条 渐近线);

(2) (a). 垂直渐近线,
$$x = 1$$
: $\lim_{x \to 1} y(x) = \lim_{x \to 1} \frac{3x^2 - 2x + 3}{x - 1} = \infty$;

(b). 斜渐近线,
$$y = 3x + 1$$
: $\lim_{x \to \infty} \frac{y(x)}{x} = \lim_{x \to \infty} \frac{3 - \frac{2}{x} + \frac{3}{x^2}}{1 - \frac{1}{x}} = 3$, $\lim_{x \to +\infty} (y(x) - 3x) = \lim_{x \to \infty} \frac{x + 3}{x - 1} = 1$:

习题 1.3.15 证明: 在同一极限过程中等价的无穷小量有下列性质:

- 1. $\alpha(x) \sim \alpha(x)$ (自反性);
- 2. 若 $\alpha(x) \sim \beta(x)$, 则 $\beta(x) \sim \alpha(x)$ (对称性);
- 3. 若 $\alpha(x) \sim \beta(x)$, $\beta(x) \sim \gamma(x)$, 则 $\alpha(x) \sim \gamma(x)$ (传递性).

(注意, (1) 中自然需假定 $\alpha(x)$ 不取零值; 而在 (2)、(3) 中, 条件蕴含着, 所说的无穷小量在极限过程中均不取零值.)

解 解释一下, 这里说的是 (1) 需要没有 $\alpha(x) \equiv 0$ 这种情况.(2)(3) 因为有"若 xxx"的假设自然排除了这种情况.

(1) 显然,
$$\lim \frac{\alpha(x)}{\alpha(x)} = 1$$
, 因此 $\alpha(x) \sim \alpha(x)$.

(2) 由
$$\alpha(x) \sim \beta(x)$$
 可知, $\lim \frac{\alpha(x)}{\beta(x)} = 1$, 因此 $\lim \frac{\beta(x)}{\alpha(x)} = 1$, 即 $\beta(x) \sim \alpha(x)$.

(3) 由
$$\alpha(x) \sim \beta(x)$$
, $\beta(x) \sim \gamma(x)$ 可知, $\lim \frac{\alpha(x)}{\beta(x)} = 1$, $\lim \frac{\beta(x)}{\gamma(x)} = 1$, 因此 $\lim \frac{\alpha(x)}{\gamma(x)} = \lim \frac{\alpha(x)}{\beta(x)}$. $\lim \frac{\beta(x)}{\gamma(x)} = 1$, 即 $\alpha(x) \sim \gamma(x)$.

习题 1.3.16 当 $x \to 0$ 时, 比较下列无穷小的阶:

(1)
$$\tan x - \sin x - \sin x = x^3$$
;

(2)
$$x^3 + x^2 = \sin^2 x$$
;

(3)
$$1 - \cos x = x^2$$
.

解

(1)
$$\tan x - \sin x = \frac{\sin x}{\cos x} - \sin x = \sin x \left(\frac{1}{\cos x} - 1\right) = \sin x \cdot \frac{1 - \cos x}{\cos x}.$$

由 $\sin x \sim x, 1 - \cos x \sim \frac{x^2}{2}, \cos x \sim 1$,可知

$$\tan x - \sin x \sim x \cdot \frac{x^2/2}{1} = \frac{x^3}{2}.$$

因此,

$$\tan x - \sin x \sim \frac{1}{2}x^3.$$

(2)

$$\sin^2 x = (\sin x)^2 \sim x^2(x \to 0).$$

同时,

$$x^3 + x^2 = (x+1)x^2 \sim x^2(x \to 0).$$

可得

$$x^3 + x^2 \sim \sin^2 x$$

(3)

$$1 - \cos x = 2\sin^2 \frac{x}{2} \sim 2 \cdot \left(\frac{x}{2}\right)^2 = \frac{x^2}{2}(x \to 0).$$

习题 1.3.17 当 $x \to +\infty$ 时, 试比较下列无穷大量的阶:

- (1) n 次多项式 $P_n(x)$ 与 m 次多项式 $P_m(x)$ (m, n 均为正整数);
- (2) $x^{\alpha} = x^{\beta} (\alpha, \beta > 0);$
- (3) $a^x = b^x (a, b > 1)$.

解

(1)
$$\lim_{x \to +\infty} \frac{P_n(x)}{P_m(x)} = \lim_{x \to +\infty} \frac{a_n x^n + a_{n-1} x^{n-1} \cdots}{b_m x^m + b_{m-1} x^{m-1} + \cdots} = \lim_{x \to +\infty} \frac{x^n}{x^m} \frac{a_n + a_{n-1} \frac{1}{x} + \cdots}{b_m + b_{m-1} \frac{1}{x} + \cdots}$$

$$=\frac{a_n}{b_m}\lim_{x\to +\infty}x^{n-m}=\begin{cases} \frac{a_n}{b_m}, & n=m;\\ 0, & n< m; \end{cases}$$
 即得到
$$\begin{cases} P_n(x)\sim P_m(x), & n=m;\\ P_m(x)$$
更高阶, $n< m; \end{cases}$ $P_n(x)$ 更高阶, $n>m.$

(3) 利用
$$\lim_{x \to +\infty} \frac{a^x}{b^x} = \lim_{x \to +\infty} \left(\frac{a}{b}\right)^x = \begin{cases} 1, & a = b; \\ 0, & a < b; \end{cases}$$
 可得 $\begin{cases} a^x \sim b^x, & a = b; \\ b^x$ 更高阶, $a < b; \end{cases}$ $a < b;$ $a < b;$ $a > b$.

习题 1.3.18 试用等价无穷小量代换的方法

(1)
$$\lim_{x\to 0} \frac{\sin mx}{\sin nx}$$
 (m, n 均为正整数);

(2)
$$\lim_{x \to 0} \frac{\tan ax}{x};$$

(3)
$$\lim_{x\to 0} \frac{\sqrt[n]{1+\sin x}-1}{\arctan x};$$

(4)
$$\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x};$$
(6)
$$\lim_{x \to 0} \frac{\sqrt{1 + x^2} - 1}{1 - \cos x}.$$

(5)
$$\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{\sin 2x};$$

(6)
$$\lim_{x\to 0} \frac{\sqrt{1+x^2}-1}{1-\cos x}$$

解

(1) 由 $\sin x \sim x$, 可知

$$\lim_{x \to 0} \frac{\sin mx}{\sin nx} = \lim_{x \to 0} \frac{mx}{nx} = \frac{m}{n}.$$

(2) 由 $\tan x \sim x$, 可知 $a \neq 0$ 时,

$$\lim_{x \to 0} \frac{\tan ax}{x} = \lim_{x \to 0} \frac{ax}{x} = a.$$

很显然该结果对a=0也成立。

(3) 由 $(1+x)^{\alpha}-1\sim\alpha x$, $\arctan x\sim x$, 可知

$$\lim_{x \to 0} \frac{\sqrt[n]{1 + \sin x} - 1}{\arctan x} = \lim_{x \to 0} \frac{\frac{1}{n} \sin x}{x} = \frac{1}{n}.$$

(4)
$$\frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x} = \frac{(\sqrt{2} - \sqrt{1 + \cos x})(\sqrt{2} + \sqrt{1 + \cos x})}{\sin^2 x (\sqrt{2} + \sqrt{1 + \cos x})} = \frac{1 - \cos x}{\sin^2 x (\sqrt{2} + \sqrt{1 + \cos x})}.$$

$$\text{If } 1 - \cos x \sim \frac{x^2}{2}, \sin x \sim x, \text{ If } \text{for }$$

$$\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x} = \lim_{x \to 0} \frac{\frac{x^2}{2}}{x^2 (\sqrt{2} + \sqrt{1 + \cos x})} = \frac{1}{4\sqrt{2}}.$$

(5) 由
$$(1+x)^{\alpha}-1\sim \alpha x$$
, $\sin x\sim x$, 可知

$$\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{\sin 2x} = \lim_{x \to 0} \frac{\frac{1}{2}(x + x^2)}{2x} = \frac{1}{4}.$$

(6) 由
$$(1+x)^{\alpha} - 1 \sim \alpha x, 1 - \cos x \sim \frac{x^2}{2}$$
,可知

$$\lim_{x \to 0} \frac{\sqrt{1 + x^2} - 1}{1 - \cos x} = \lim_{x \to 0} \frac{\frac{1}{2}x^2}{\frac{x^2}{2}} = 1.$$

第1章综合习题

习题 1.C.1 求下列数列的极限:

(1)
$$a_n = \frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n}$$
 (提示: $\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n} \leqslant \frac{1}{\sqrt{2n+1}}$);

(2)
$$a_n = \frac{10}{1} \cdot \frac{11}{3} \cdots \frac{n+9}{2n-1};$$

(3)
$$\mbox{ } \mbox{ } \mbox{$$

解

(1) 由

$$(2n)^2 = 4n^2 \geqslant 4n^2 - 1 = (2n - 1)(2n + 1)$$

可得

$$\frac{2n-1}{2n} \leqslant \frac{2n-1}{\sqrt{(2n-1)(2n+1)}} = \sqrt{\frac{2n-1}{2n+1}}.$$

因此

$$a_n = \frac{1}{2} \cdot \frac{3}{4} \cdot \cdot \cdot \frac{2n-1}{2n} \leqslant \sqrt{\frac{1}{3} \cdot \frac{3}{5} \cdot \cdot \cdot \frac{2n-1}{2n+1}} = \sqrt{\frac{1}{2n+1}}.$$

而
$$\lim_{n\to\infty}\sqrt{\frac{1}{2n+1}}=0$$
, 故由夹逼定理可知 $\lim_{n\to\infty}a_n=0$;

(2) $\text{in} \lim_{n \to \infty} \frac{n+9}{2n-1} = \frac{1}{2}, \, \text{for}$

$$\lim_{n \to \infty} \sqrt[n]{\frac{10}{1} \cdot \frac{11}{3} \cdots \frac{n+9}{2n-1}} = \lim_{n \to \infty} \frac{n+9}{2n-1} = \frac{1}{2}.$$

因此 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (\sqrt[n]{a_n})^n = 0;$

(3) 由 $a_1 > 1$, 以及若 $a_n > 1$ 时, $a_{n+1} = 2 - \frac{1}{a_n} > 1$, 归纳的可知 $a_n > 1$, $\forall n \in \mathbb{N}^+$. 所以数列 有下界. 再用归纳法: 当n=1时:

$$a_2 - a_1 = 2 - \left(\frac{1}{a_1} + a_1\right) \leqslant 2 - 2 = 0,$$

推出 $a_2 \leq a_1$. 假设对 n 有 $a_n \leq a_{n-1}$, 那么当 n+1 时

$$a_{n+1} - a_n = \frac{1}{a_{n-1}} - \frac{1}{a_n} = \frac{a_n - a_{n-1}}{a_n a_{n-1}} \le 0.$$

所以 $\{a_n\}$ 是单调减有下界数列, 因此收敛. 设 $\lim_{n\to\infty} a_n = a \ge 1$. 在

$$a_{n+1} = 2 - \frac{1}{a_n}$$

两边取极限得

$$a = 2 - \frac{1}{a} \implies a^2 - 2a + 1 = 0$$

解得 $a = \pm 1$. 但 a = -1 不合题意, 所以 $\lim_{n \to \infty} a_n = 1$.

(4) $a_{n+2} = \frac{1}{1+a_{n+1}} = \frac{1}{1+\frac{1}{1+a_n}} = \frac{1+a_n}{2+a_n}$. 假如对任何 n, 有 $a_{2n} \geqslant a_{2n-2}$; $a_{2n+1} \leqslant a_{2n-1}$, 那 么对 n+1, 有

$$a_{2n+2} - a_{2n} = \frac{1}{1 + a_{2n+1}} - \frac{1}{1 + a_{2n-1}} = \frac{a_{2n-1} - a_{2n+1}}{1 + a_{2n+1}a_{2n-1}} \geqslant 0$$

$$a_{2n+3} - a_{2n+1} = \frac{1}{1 + a_{2n+2}} - \frac{1}{1 + a_{2n}} = \frac{a_{2n} - a_{2n+2}}{1 + a_{2n+2}a_{2n}} \leqslant 0$$

推出数列 $\{a_n\}$ 的子列 $\{a_{2n}\}$ 单调增有上界, $\{a_{2n-1}\}$ 单调减有下界. 因此分别收敛. 对

$$a_{2n+2} = \frac{1 + a_{2n}}{2 + a_{2n}},$$

两边取极限得

$$a = \frac{1+a}{2+a} \implies a^2 + a - 1 = 0$$

解得 $a = \frac{-1 + \sqrt{5}}{2}$. 同理, 对

$$a_{2n+3} = \frac{1 + a_{2n+1}}{2 + a_{2n+1}},$$

两边取极限得

$$b = \frac{1+b}{2+b} \implies b^2 + b - 1 = 0$$

解得 $b = \frac{-1 + \sqrt{5}}{2}$. 因此 $\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n-1}$, 故 $\lim_{n \to \infty} a_n$ 存在, 且 $\lim_{n \to \infty} a_n = \frac{-1 + \sqrt{5}}{2}$. **习题 1.C.2** 设 $\{a_n\}$ 为单调递增的数列, 并且收敛于 a, 证明对一切 n 有 $a_n < a$. (对单调递减且有极限的数列, 类似的结论成立.)

解 反证法. 假设存在某个 n_0 , 使得 $a_{n_0} > a$. 由数列单调递增的性质, 对一切 $n > n_0$ 有 $a_n \ge a_{n_0} > a$, 于是存在 $\varepsilon = \frac{a_{n_0} - a}{2} > 0$, 使得 $\forall N$, 存在 $n = \max\{n_0, N\} + 1 > N$, 使得

$$|a_n - a| = a_n - a \geqslant a_{n_0} - a = 2\varepsilon > \varepsilon,$$

这与数列收敛的定义矛盾.

习题 1.C.3 证明下面的数列收敛:

(1)
$$a_n = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2};$$

(2) $a_n = \left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{2^2}\right) \dots \left(1 + \frac{1}{2^n}\right).$

(1) 由数列定义可知 $\{a_n\}$ 单调递增. 又因为

$$a_n = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \le 1 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n} = 2 - \frac{1}{n} < 2,$$

所以 $\{a_n\}$ 有上界. 因此 $\{a_n\}$ 收敛;

(2) 由数列定义可知 $\{a_n\}$ 单调递增. 又因为

$$a_n = e^{\sum_{k=1} \ln(1 + \frac{1}{2^k})} \le e^{\sum_{k=1} \frac{1}{2^k}} = e^1.$$

所以 $\{a_n\}$ 有上界. 又由数列定义可知 $\{a_n\}$ 单调递增. 因此 $\{a_n\}$ 收敛.

习题 1.C.4 试构造一个发散的数列 $\{a_n\}$,满足条件: 对任意正数 ε , 存在正整数 N, 使当 n > N 时, 有 $|a_{n+1} - a_n| < \varepsilon$.

解 取 $a_n = \sqrt{n}$. 则对任意 $\varepsilon > 0$, 存在正整数 $N > \frac{1}{4\varepsilon^2}$, 当 n > N 时, 有

$$|a_{n+1} - a_n| = \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}} < \varepsilon.$$

但数列 $\{a_n\}$ 显然发散.

习题 1.C.5 若数列 $\{a_n\}$ 满足: 存在常数 M, 使得对一切 n 有

$$A_n = |a_2 - a_1| + |a_3 - a_2| + \dots + |a_{n+1} - a_n| \le M.$$

证明:

- (1) 数列 $\{A_n\}$ 收敛;
- (2) 数列 $\{a_n\}$ 也收敛.

解

- (1) 由数列定义可知 $\{A_n\}$ 单调递增. 又因为对一切 n 有 $A_n \leq M$, 所以 $\{A_n\}$ 有上界. 因此 $\{A_n\}$ 收敛;
- (2) 用 Cauchy 收敛准则证明. 由 (1) 知 $\{A_n\}$ 收敛, 因此对任意 $\varepsilon > 0$, 存在正整数 $N, \forall n > N+1, p>0$, 有

$$|A_{n+p} - A_{n-1}| = |a_{n+1} - a_n| + |a_{n+2} - a_{n+1}| + \dots + |a_{n+p} - a_{n+p-1}| < \varepsilon.$$

由三角不等式可知

$$|a_{n+p} - a_n| \le |a_{n+1} - a_n| + |a_{n+2} - a_{n+1}| + \dots + |a_{n+p} - a_{n+p-1}| < \varepsilon.$$

习题 1.C.6 设 $\{a_n\}$ 是正严格递增数列. 求证: 若 $a_{n+1} - a_n$ 有界, 则对任意 $\alpha \in (0,1)$ 有 $\lim_{n\to\infty} (a_{n+1}^{\alpha} - a_n^{\alpha}) = 0$. 并说明此结论的逆不对, 即, 存在正严格递增数列 $\{a_n\}$ 使得对任意 $\alpha \in (0,1)$ 有 $\lim_{n\to\infty} (a_{n+1}^{\alpha} - a_n^{\alpha}) = 0$, 但是 $a_{n+1} - a_n$ 无界. (提示: 考虑 $a_n = n \ln n$.)

解

- (1) 若 $\{a_n\}$ 有界, 此时由于其严格单调, 故有极限, 记 $\lim_{n\to\infty}a_n=l$, 可知 $\lim_{n\to\infty}(a_{n+1}^\alpha-a_n^\alpha)=l^\alpha-l^\alpha=0$.
- (2) $\exists \{a_n\} \ \mathcal{F}, \ \mathbb{P} \lim_{n \to \infty} a_n = +\infty, \ \mathfrak{F} |a_{n+1} a_n| \leqslant M.$

$$0 \leqslant a_{n+1}^{\alpha} - a_n^{\alpha} = a_n^{\alpha} \left(\left(\frac{a_{n+1}}{a_n} \right)^{\alpha} - 1 \right) < a_n^{\alpha} \left(\frac{a_{n+1}}{a_n} - 1 \right) = \frac{a_{n+1} - a_n}{a_n^{1-\alpha}} \leqslant \frac{M}{a_n^{1-\alpha}}.$$

同时,

$$\lim_{n \to \infty} M a_n^{\alpha - 1} = 0.$$

因此由夹逼定理可知 $\lim_{n\to\infty}(a_{n+1}^{\alpha}-a_n^{\alpha})=0.$

(3) 反之不对, 取 $a_n = n \ln n$, 则

$$a_{n+1}^{\alpha} - a_n^{\alpha} = (n+1)^{\alpha} \ln^{\alpha} (n+1) - n^{\alpha} \ln^{\alpha} n$$

$$< ((n+1)^{\alpha} - n^{\alpha}) \ln^{\alpha} n$$

$$= n^{\alpha} \left(\left(1 + \frac{1}{n} \right)^{\alpha} - 1 \right) \ln^{\alpha} n$$

$$< n^{\alpha} \left(\left(1 + \frac{1}{n} \right) - 1 \right) \ln^{\alpha} n$$

$$= n^{\alpha - 1} \ln^{\alpha} n = \frac{\ln^{\alpha} n}{n^{1 - \alpha}}.$$

由于

$$\lim_{n \to \infty} \frac{\ln^{\alpha} n}{n^{1 - \alpha}} = 0,$$

因此由夹逼定理可知 $\lim_{n\to\infty}(a_{n+1}^{\alpha}-a_{n}^{\alpha})=0$. 但

$$a_{n+1} - a_n = (n+1)\ln(n+1) - n\ln n = \ln(n+1) + n\ln\left(\frac{n+1}{n}\right) > \ln(n+1),$$

显然无界.

习题 1.C.7 设数列 $\{a_n\}$ 满足 $\lim_{n\to\infty}(a_{n+1}-a_n)=a$. 证明: $\lim_{n\to\infty}\frac{a_n}{n}=a$.

解 由 Stolz 定理可知

$$\lim_{n \to \infty} \frac{a_n}{n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{(n+1) - n} = \lim_{n \to \infty} (a_{n+1} - a_n) = a.$$

习题 1.C.8 证明: 若 $\lim_{n\to\infty} a_n = a$, 且 $a_n > 0$, 则 $\lim_{n\to\infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$.

解 由 Stolz 定理可知

$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = \lim_{n \to \infty} e^{\frac{1}{n} (\ln a_1 + \ln a_2 + \dots + \ln a_n)} = e^{\lim_{n \to \infty} \frac{(\ln a_1 + \ln a_2 + \dots + \ln a_n)}{n}} e^{\lim_{n \to \infty} \frac{\ln a_n}{1}} = e^{\ln a} = a.$$

习题 1.C.9 证明: 若 $a_n > 0$, 且 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ 存在, 则 $\lim_{n \to \infty} \sqrt[n]{a_n}$ 也存在, 并且

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

解 设 $b_n = \frac{a_n}{a_{n-1}}, (n>1); b_1 = a_1$, 则 $a_n = b_1b_2\cdots b_n$. 由综合习题 1.C.8可知结果. 直接 Stolz 也

可以得到结果.

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} e^{\frac{\ln a_n}{n}} = e^{\lim_{n \to \infty} \frac{\ln a_n}{n}}$$

$$= e^{\lim_{n \to \infty} \frac{\ln a_{n+1} - \ln a_n}{1}} = e^{\lim_{n \to \infty} \ln \frac{a_{n+1}}{a_n}}$$

$$= e^{\ln \lim_{n \to \infty} \frac{a_{n+1}}{a_n}} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

习题 1.C.10 求下列极限:

(1)
$$\lim_{n \to \infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n};$$
 (2) $\lim_{n \to \infty} \frac{n}{\sqrt[n]{n}!}.$

解

(1) 由 Stolz 定理可知

$$\lim_{n \to \infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n} = \lim_{n \to \infty} \sqrt[n]{n} = 1;$$

(2) 可以用综合习题 1.C.9来做, 记 $a_n = \frac{n^n}{n!}$ 由于

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^{n+1} \cdot n!}{n^n \cdot (n+1)!} = \lim_{n \to \infty} \frac{(n+1)^n}{n^n} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e,$$

因此

$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} = \lim_{n \to \infty} \sqrt[n]{\frac{n^n}{n!}} = \lim_{n \to \infty} \sqrt[n]{a_n} = e.$$

习题 1.C.11 已知 $\lim_{n\to\infty} a_n = a$,求证 $\lim_{n\to\infty} \frac{a_1 + 2a_2 + \dots + na_n}{n^2} = \frac{a}{2}$.

解由Stolz定理,有

$$\lim_{n \to \infty} \frac{a_1 + 2a_2 + \dots + na_n}{n^2} = \lim_{n \to \infty} \frac{na_n}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{na_n}{2n-1} = \lim_{n \to \infty} \frac{n}{2n-1} \lim_{n \to \infty} a_n = \frac{a}{2}.$$

习题 1.C.12 设 $\{a_n\}$ 且 $a_n \to a \in \mathbb{R}$, 又设 $\{b_n\}$ 是正数列, $c_n = \frac{a_1b_1 + a_2b_2 + \cdots + a_nb_n}{b_1 + b_2 + \cdots + b_n}$. 求证:

- (1) $\{c_n\}$ 收敛;
- (2) 若 $(b_1 + b_2 + \cdots + b_n) \rightarrow +\infty$, 则 $\lim_{n \to \infty} c_n = a$.

解

(1) 记 $B_n = b_1 + b_2 + \dots + b_n$, 由 $\lim_{n \to \infty} a_n = a$, 任取 $\varepsilon > 0$, 存在 K, 当 k > K 时, $|a_k - a| < \varepsilon$. 当 n > K, 有

$$c_n - a = \frac{\sum_{k=1}^n (a_k - a)b_k}{B_n} = \frac{\sum_{k=1}^K (a_k - a)b_k}{B_n} + \frac{\sum_{k=K+1}^n (a_k - a)b_k}{B_n}.$$

其中

$$\left|\frac{\sum_{k=K+1}^{n}(a_k-a)b_k}{B_n}\right| \leqslant \frac{\sum_{k=K+1}^{n}|a_k-a|b_k}{B_n} < \varepsilon \frac{\sum_{k=K+1}^{n}b_k}{B_n} < \varepsilon.$$

因此

$$\left| c_n - \left(a + \frac{\sum_{k=1}^K (a_k - a)b_k}{B_n} \right) \right| < \varepsilon.$$

而对于

$$q_n := \frac{\sum_{k=1}^{K} (a_k - a)b_k}{B_n}$$

 $C:=\sum_{k=1}^{K}(a_k-a)b_k$ 是仅与 K 有关,与 n 无关的常数, B_n 单调增,因此 q_n 单调有界 (C>0 时 q_n 单调减且 $q_n>0$, C<0 时 q_n 单调增且 $q_n<0$),故 q_n 收敛,设 $\lim_{n\to\infty}q_n=q$, 再取 N,使得当 n,m>N 时, $|q_m-q_n|<\varepsilon$,则当 $n,m>\max\{N,K\}$ 时,

$$|c_m - c_n| \le |c_n - (a + q_n)| + |c_m - (a + q_m)| + |q_m - q_n| < 3\varepsilon.$$

因此由 Cauchy 收敛准则可知 c_n 收敛.

- (2) 下给出两种方法,
 - (a). 由 (1) 中的过程, $q_n = \frac{C}{B_n}$, 由于 $B_n \to +\infty$, C 为常数, 因此 $q_n \to 0$, 因此存在 N, 使得当 n > N 时, $|q_n| < \varepsilon$, 则当 $n > \max\{N, K\}$ 时,

$$|c_n - a| \le |c_n - (a + q_n)| + |q_n| < \varepsilon + |q_n| < 2\varepsilon.$$

(b). 由 Stolz 定理可知

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \frac{a_1 b_1 + a_2 b_2 + \dots + a_n b_n}{b_1 + b_2 + \dots + b_n} = \lim_{n \to \infty} \frac{a_n b_n}{b_n} = \lim_{n \to \infty} a_n = a.$$

上述解答中给出了符合题目原意的证明, 即先证明 c_n 收敛, 然后在 B_n 无界时, 再证明 $\lim_{n\to\infty}c_n=a$. 但对于这道题而言, 还可以分类 B_n 有界和无界来讨论, 即先做 (2), 然后对 B_n 有界时, 用 Cauchy 收敛准则证明 $\left\{\sum_{k=1}^n a_n b_n\right\}$ 收敛, 即两种分类下以截然不同的方式来证明 c_n 收敛.

注 $a_n := \cdots$ 中 := 表示定义. 如 $a_n := \frac{1}{n}$ 表示我们新定义了一个数列 a_n ,其通项公式为 $a_n = \frac{1}{n}$. 在上文中 " $C := \sum_{k=1}^K (a_k - a)b_k$ 是仅与 K 有关,与 n 无关的常数."表示: "记 $C = \sum_{k=1}^K (a_k - a)b_k$,则 C 是仅与 K 有关,与 n 无关的常数.",有的地方会写为 $a_n \stackrel{\mathrm{def}}{=} \cdots$.

习题 1.C.13 证明:
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x^p} \right)^x = \begin{cases} 1, & p > 1, \\ e, & p = 1, \\ \infty, & p < 1. \end{cases}$$

解 实际上题目中的无穷只能是 $+\infty$.

p>0 时, $x^p\to +\infty$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x^p} \right)^x = \lim_{x \to +\infty} \left(1 + \frac{1}{x^p} \right)^{x^p \cdot \frac{1}{x^{p-1}}} = e^{\lim_{x \to +\infty} \frac{1}{x^{p-1}}} = \begin{cases} 1, & p > 1, \\ e, & p = 1, \\ +\infty, & p < 1. \end{cases}$$

 $p \leq 0$ 时, $x^p \to 0$, 则考虑 x > 1 时,

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x^p} \right)^x \geqslant \lim_{x \to +\infty} 2^x = +\infty.$$

习题 1.C.14 设 f(x) 为周期函数,且 $\lim_{x \to \infty} f(x) = 0$,证明 f(x) 恒为零.

解 设
$$f(x)$$
 的正周期为 $T>0, \forall \varepsilon>0, \exists\, N\in\mathbb{N}^*,\, \exists\,\,|x|\geqslant N$ 时 $|f(x)|<\varepsilon.$ 因此对于 $n=\left\lceil\frac{N}{T}\right\rceil$,有 $nT\geqslant N$,故对于任意 $x\in[nT,(n+1)T)$,有 $f(x)<\varepsilon.$

利用周期性可以得到 $\forall x \in \mathbb{R}, |f(x)| < \varepsilon$. 由于 ε 是任意的正数, 所以 f(x) 恒为零.

习题 1.C.15 证明

- (1) 函数 f(x) 在 $x \to x_0^-$ 时有极限 l 的充分必要条件是: 对于任意一个以 x_0 为极限的单调 递增数列 $\{a_n\}$ $(a_n \neq x_0)$,都有 $\lim_{n\to\infty} f(a_n) = l$;
- (2) 函数 f(x) 在 $x \to x_0^+$ 时有极限 l 的充分必要条件是: 对于任意一个以 x_0 为极限的单调 递减数列 $\{a_n\}$ $(a_n \neq x_0)$, 都有 $\lim_{n \to \infty} f(a_n) = l$.

解

- (1) (a). 必要性: 考虑任意数列 $\{a_n\}$, 使得 $\lim_{n\to\infty} a_n = x_0$ 且 $\{a_n\}$ 单调递增,. 由于 $\lim_{x \to x_0^-} f(x) = l$, 因此, $\forall \varepsilon > 0$, $\exists \delta > 0$, 当 $x_0 - \delta < x < x_0$ 时, 有 $|f(x) - l| < \varepsilon$. 同时对于 δ , $\exists N \in \mathbb{N}^*$, 使得当n > N时, 有 $|a_n - x_0| < \delta$, 即 $x_0 - \delta < a_n < x_0$. 因此我们有 m > N 时 $|f(a_n) - l| < \varepsilon$. 即得到数列 $\{f(a_n)\}$ 收敛到 l.
 - (b). 充分性: 反证, 若 $x \to x_0^-$ 时 f(x) 的极限为 l 不成立, 即 $\exists \varepsilon > 0, \forall \delta > 0, \exists x_0 \delta < 0$ $x < x_0$, 使得 $|f(x) - l| \ge \varepsilon$. 因此我们依次构造 $\delta_1 = 1$, $\delta_n = \min\{\frac{1}{n}, x_0 - a_{n-1}\}, (n > 2)$, 则 $\exists a_n, x_0 - \delta_n < a_n < x_0$,使得 $|f(a_n) - l| \ge \varepsilon$. 即有 $a_n > a_{n-1}$, 且 $|x_0 - a_n| < \frac{1}{n}$. 这意味着 $\{a_n\}$ 单调递增, $\mathbb{1}\lim_{n\to\infty}a_n=x_0.$ 由于 $|f(a_n) - l| \ge \varepsilon$, 所以 $\{f(a_n)\}$ 不收敛到 l, 矛盾, 故充分性成立.
- (2) 证明同理. 具体而言:

设 g(x) = f(-x), 则 f(x) 在 $x \to x_0^-$ 时有极限 $l \Leftrightarrow g(x)$ 在 $x \to -x_0^+$ 时有极限 l. 由 (1) 可知, 这等价于对于任意一个以 $-x_0$ 为极限的单调递增数列 $\{b_n\}(b_n \neq -x_0)$, 都有 $\lim_{n\to\infty}g(b_n)=l$. 设 $a_n=-b_n$, 则 $\{a_n\}$ 是以 x_0 为极限的单调递减数列, 且 $\lim_{n\to\infty}f(a_n)=l$. 因此 (2) 得证.

习题 1.C.16 设 ξ 是一个无理数, a, b 是实数, 且 a < b. 求证: 存在整数 m, n 使得 $m + n\xi \in (a, b)$, 即, 集合

$$S = \{ m + n\xi \mid m, n \in \mathbb{Z} \}$$

在 ℝ 稠密.

解 稠密的定义: 设 $S \subset \mathbb{R}$, 若对任意 $a, b \in \mathbb{R}$, a < b, 都有 $S \cap (a, b) \neq \emptyset$, 则称 S 在 \mathbb{R} 中稠密.

想法是这样的, 我们为了找到某个 $m+n\xi$ 落在 (a,b) 中, 于是用 ξ 构造一个充分小的实数 $\varepsilon=m_0+n_0\xi\in(0,b-a)$, 因为这个 ε 够小, 因此在 \mathbb{R} 的分割 $\mathbb{R}=\bigcup_{l\in\mathbb{Z}}[l\varepsilon,(l+1)\varepsilon]$ 中, 每一段的 长度 ε 严格小于 b-a. 这样就能证明 $\{l\varepsilon\mid l\in\mathbb{Z}\}\cap(a,b)\neq\varnothing$, 也就是存在某个 $l_0\in\mathbb{Z}$, 使得 $l_0\varepsilon\in(a,b)$. 随后我们取 $m=l_0m_0,n=l_0n_0$ 即有 $m+n\xi=l_0\varepsilon\in(a,b)$.

构造 ε 实际上, 对于 b-a>0, 总存在 $k\in\mathbb{N}^*$, 使得 $\frac{1}{k}< b-a$. 因此我们考虑构造一个满足 $\varepsilon<\frac{1}{k}, \varepsilon\in S$ 即可.

对于 $l = 1, 2, \dots, k + 1$, 我们考虑

$$n_l = \lfloor l\xi \rfloor$$
$$x_l = l\xi - n_l \in S.$$

 x_l 是 $l\xi$ 的小数部分, 容易知道 $x_l \in [0,1)$, 并且 x_l 之间总是两两不同的, 否则 $i\xi - n_i = j\xi - n_j$, $i \neq j$, 这意味着 $\xi = \frac{n_i - n_j}{i - j}$, 这与 ξ 为无理数矛盾.

因此对于

$$[0,1) = \bigcup_{j=1}^{k} \left[\frac{j-1}{k}, \frac{j}{k} \right),$$

这k个区间包括了k+1个不同实数 x_l . 因此总有一个区间内部存在同时两个实数, 记为 $x_p, x_q \in S, p \neq q$, 不妨认为 $x_q > x_p$.

由 x_l 的构造 $x_p = p\xi - n_p, x_q = q\xi - n_q,$ 有

$$x_q - x_p = (q - p)\xi - (n_p - x_q) \in S,$$

且由于 x_p, x_q 落在同一个区间内, 而区间长度为 $\frac{1}{k}$, 因此 $0 < x_q - x_p \leqslant \frac{1}{k} < b - a$, 所以 $x_q - x_p$ 满足我们对 ε 的要求. 我们取

$$\varepsilon = x_q - x_p.$$

构造 m, n 我们先证明 $\exists l_0 \in \mathbb{Z}, \text{s. t. } l_0 \varepsilon \in (a, b)$: 我们取 $l_0 = \left\lceil \frac{b}{\varepsilon} \right\rceil - 1$, 则

$$l_0\varepsilon = \left(\left\lceil \frac{b}{\varepsilon} \right\rceil - 1\right)\varepsilon < \left(\frac{b}{\varepsilon} + 1 - 1\right)\varepsilon = b.$$

同时, 由于 $\varepsilon <= b - a$, 因此

$$l_0\varepsilon = \left(\left\lceil \frac{b}{\varepsilon}\right\rceil - 1\right)\varepsilon \geqslant \left(\frac{b}{\varepsilon} - 1\right)\varepsilon = b - \varepsilon > b - (b - a) = a.$$

因此取 $l_0\varepsilon \in (a,b)$, 因此

$$m = l_0(n_q - n_p), n = l_0(q - p)$$

即有
$$m + n\xi = l_0(n_q - n_p) + l_0(q - p)\xi = l_0\left((q - p)\xi - (n_p - n_q)\right) = l_0\varepsilon \in (a, b).$$