

VIGILADA MINEDUCACIÓN - SNIES 1732

Método de las dos fases

Este método elimina el uso de la constante M.

La primera fase consiste en encontrar la solución factible básica inicial.

Si se encuentra, entonces se realiza la segunda fase para resolver el problema original.

FASE 1:

- Escriba el problema en forma estándar y agregue las variables artificiales necesarias a las restricciones.
- Determine la solución básica de la ecuación resultante que minimice la suma de las variables artificiales. Si el valor mínimo de la suma es positivo, el problema de PL no tiene solución factible. Si el valor es cero, se continúa a la fase 2.

FASE 1:

- Escriba el problema en forma estándar y agregue las variables artificiales necesarias a las restricciones.
- Determine la solución básica de la ecuación resultante que minimice la suma de las variables artificiales. Si el valor mínimo de la suma es positivo, el problema de PL no tiene solución factible. Si el valor es cero, se continúa a la fase 2.

FASE 2:

Se usa la solución factible de la fase 1 como solución factible básica para dar solución al problema original.

EJEMPLO:

$$Minimizar z = 4x_1 + x_2$$

$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0$$

Signo de restricción	Transformación
<=	+ Variable de holgura
>=	- Variable de holgura + variable artificial
=	+ variable artificial

EJEMPLO:

$$Minimizar z = 4x_1 + x_2$$

$$3x_1 + x_2 = 3$$
$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0$$

Signo de restricción	Transformación
<=	+ Variable de holgura
>=	- Variable de holgura + variable artificial
=	+ variable artificial

Forma estándar

$$M_{1N}$$
 $Z = 4 x_1 + x_2 + 051 + 052 + 191 + 192$

$$3X_1 + X_2 + 91 = 3$$

$$4 \times 1 + 3 \times 2 - 51 + 92 = 6$$

 $\times 1 + 2 \times 2 + 52 = 4$

EJEMPLO:

$$Minimizar z = 4x_1 + x_2$$

$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0$$

Se busca:

(independientemente si es Min o Max)

Forma estándar

$$M_{10}$$
 $7 = 4x_1 + x_2 + 051 + 052 + 191 + 192$

$$3X_1 + X_2 + 91 = 3$$

$$4 \times 1 + 3 \times 2 - 51 + 92 = 6$$

$$x_1 + 2x_2 + 52 = 4$$

EJEMPLO:

Mm
$$a = a_1 + a_2$$

 $a - a_1 - a_2 = 0$

Forma estándar
Min
$$7 = 4x_1 + x_2 + 051 + 052 + 161 + 162$$

 $3x_1 + x_2 + 61 = 3$
 $4x_1 + 3x_2 - 51 + 92 = 6$
 $x_1 + 2x_2 + 52 = 4$
 $x_1 + 2x_2 + 52 = 4$

Básica	x1	x2	s1	s2	a1	a2	Solución
a1	3	1	0	0	1	0	3
a2	4	3	-1	0	0	1	6
s2	1	2	0	1	0	0	4
а	0	0	0	0	-1	-1	0

EJEMPLO:

Básica	x1	x2	s1	s 2	a1	a2	Solución
a1	3	1	0	0	1	0	3
a2	4	3	-1	0	0	1	6
s2	1	2	0	1	0	0	4
а	0	0	0	0	-1	-1	0

F1+F4

Para que esté en la forma del tablero simplex debe cumplirse que el resto de elementos de la columna de la solución básica esté en cero

EJEMPLO:

Básica	x1	x2	s1	s2	a1	a2	Solución
a1	3	1	0	0	1	0	3
a2	4	3	-1	0	0	1	6
s2	1	2	0	1	0	0	4
a	0	0	0	0	-1	-1	0

F1+F4

Para que esté en la forma del tablero simplex debe cumplirse que el resto de elementos de la columna de la solución básica esté en cero

Básica	x1	x2	s1	s 2	a1	a2	Solución
a1	3	1	0	0	1	0	3
a2	4	3	-1	0	0	1	6
s2	1	2	0	1	0	0	4
а	3	1	0	0	0	-1	3

EJEMPLO:

Básica	x1	x2	s1	s 2	a1	a2	Solución
a1	3	1	0	0	1	0	3
a2	4	3	-1	0	0	1	6
s2	1	2	0	1	0	0	4
а	3	1	0	0	0	-1	3

F2+F4

Para que esté en la forma del tablero simplex debe cumplirse que el resto de elementos de la columna de la solución básica esté en cero

EJEMPLO:

Básica	x1	x2	s1	s 2	a1	a2	Solución
a1	3	1	0	0	1	0	3
a2	4	3	-1	0	0	1	6
s2	1	2	0	1	0	0	4
а	7	4	-1	0	0	0	9

Lo que se busca es que el valor solución de a (9) sea cero

EJEMPLO:

 $Mm a = a_1 + a_2$

Básica	x1	x2	s1	s 2	a1	a2	Solución
a1	3	1	0	0	1	0	3
a2	4	3	-1	0	0	1	6
s2	1	2	0	1	0	0	4
а	(7)	4	-1	0	0	0	9

Como en esta fase siempre estaremos minimizando, entonces se escoge la variable que entra como la más positiva de la función objetivo (a)

EJEMPLO:

Mw	a =	91	4	012

Básica	x1	x2	s1	s2	a1	a2	Solución	
a 1	3	1	0	0	1	0	3	3/3 =1
a2	4	3	-1	0	0	1	6	6/4=1.5
s2	1	2	0	1	0	0	4	4/1 =4
а	7	4	-1	0	0	0	9	

Como en esta fase siempre estaremos minimizando, entonces se escoge la variable que entra como la más positiva de la función objetivo (a). La que sale es el mínimo cociente entre la solución y las variables básicas de la columna pivote

EJEMPLO:

 $Mm a = a_1 + a_2$

Básica	x1	x2	s1	s2	a1	a2	Solución
a 1	3	1	0	0	1	0	3
a2	4	3	-1	0	0	1	6
s2	1	2	0	1	0	0	4
а	7	4	-1	0	0	0	9

Básica	x1	x2	s1	s2	a1	a2	Solución
x1	1	1/3	0	0	1/3	0	1
A2	4	3	-1	0	0	1	6
s2	1	2	0	1	0	0	4
a	7/	4	-1	0	0	0	9

EJEMPLO:

 $Mm a = a_1 + a_2$

Básica	x1	x2	s1	s2	a1	a2	Solución
	1	1/3	0	0	1/3	0	1
a2	0	5/3	-1	0	-4/3	1	2
s2	0	5/3	0	1	-1/3	0	3
а	0	5/3	-1	0	-7/3	0	2

EJEMPLO:

Min	a =	91	+ 012
-----	-----	----	-------

Básica	x1	k2	s1	s2	a1	a2	Solución
X1	1	1/3	0	0	1/3	0	1
a 2	0	5/3	-1	0	-4/3	1	2
s2	0	5/3	0	1	-1/3	0	3
a	0	\$/3	-1	0	-7/3	0	2

$$3/(5/3) = 1.8$$

Como en esta fase siempre estaremos minimizando, entonces se escoge la variable que entra como la más positiva de la función objetivo (a) (variables no básicas).

La que sale es el mínimo cociente entre la solución y las variables básicas de la columna pivote

EJEMPLO:

 $Mm a = a_1 + a_2$

Básica	x1	k2	s1	s2	a1	a2	Solución
X1	1	1/3	0	0	1/3	0	1
a 2	0	5/3	-1	0	-4/3	1	2
s2	0	5/3	0	1	-1/3	0	3
а	0	\$/3	-1	0	-7/3	0	2

Básica	x1	x2	s1	s 2	a1	a2	Solución
X1	1	1/3	0	0	1/3	0	1
x2	0	1	-3/5	0	-4/5	3/5	6/5
S2	0	5/3	0	1	-1/3	0	3
а	0	\$/3	-1	0	-7/3	0	2

EJEMPLO:

 $Mm a = a_1 + a_2$

Básica	x1	k2	s1	s2	a1	a2	Solución
X1	1	0	1/5	0	3/5	-1/5	3/5
x 2	0	1	-3/5	0	-4/5	3/5	6/5
S2	0	0	1	1	1	-1	1
а	0	0	0	0	-1	-1	0

Como el mínimo de a = 0, la fase 1 produce la solución básica x1 = 3/5, x2=6/5 y s2=1. Aquí ya las variables artificiales terminan su trabajo y se pueden eliminar sus columnas de la tabla y seguir con la segunda fase.

EJEMPLO: Fase 2

Mm a=	91 + 92
-------	---------

Básica	x1	x2	s1	s2	Solución
X1	1	0	1/5	0	3/5
x2	0	1	-3/5	0	6/5
S2	0	0	1	1	1
а	0	0	0	0	0

$$Minimizar z = 4x_1 + x_2$$

$$3x_1 + x_2 = 3$$

 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

$$\frac{1}{5}$$
 $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}$

EJEMPLO: Fase 2

$$\frac{1}{5}$$
 $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}$

Básica	x1	x2	s1	s2	Solución
X1	1	0	1/5	0	3/5
X2	0	1	-3/5	0	6/5
S2	0	0	1	1	1
Z	-4	-1	0	0	0

EJEMPLO: Fase 2

$$\frac{1}{5}$$
 $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}$

Básica	M	/2	s1	s2	Solución
X1	1	0	1/5	0	3/5
X2	0	1	-3/5	0	6/5
S2	0	0	1	1	1
Z	-4	-1/	0	0	0

Los valores de z en las variables básicas x1 y x2 deben ser cero, por tanto, se deben hacer las transformaciones

EJEMPLO: Fase 2

$$\frac{1}{15}$$
 $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3$

Básica	M	x2	s1	s2	Solución
X1	1	0	1/5	0	3/5
X2	0	1	-3/5	0	6/5
S2	0	0	1	1	1
Z	-4	-1/	0	0	0

Básica	x1	x2	s1	s2	Solución
X1	1	0	1/5	0	3/5
X2	0	1	-3/5	0	6/5
S2	0	0	1	1	1
Z	0	-1	4/5	0	12/5

EJEMPLO: Fase 2

$$\frac{3}{5}$$
 $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}$

Básica	x1	x2	s1	s2	Solución
X1	1	0	1/5	0	3/5
X2	0	1	-3/5	0	6/5
S2	0	0	1	1	1
Z	0	0	1/5	0	18/5

Como es minimización, entonces todos los valores de z deben ser menores o iguales a cero. Por tanto, s1 debe entrar.

EJEMPLO: Fase 2

$$\frac{1}{5}$$
 $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}$

Básica	x1	x2	s1	s2	Solución	
X1	1	0	1/5	0	3/5	(3/5)/(1/5)=3
X2	0	1	-3/5	0	6/5	
S2	0	0	1	1		1/1 =1
Z	0	0	1/5	0	18/5	
			\ /			

EJEMPLO: Fase 2

$$\frac{1}{5}$$
 $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{3}$

			$-\Delta$		
Básica	x1	x2	s1	s2	Solución
X1	1	0	1/5	0	3/5
X2	0	1	-3/5	0	6/5
S2	0	0	1	1	
Z	0	0	1/5	0	18/5

Básica	x1	x2	s1	s2	Solución
X1	1	0	0	-1/5	2/5
X2	0	1	0	3/5	9/5
S1	0	0	1	1	1
Z	0	0	0	-1/5	17/5

Referencias

Taha H. Operations research: an introduction. Seventh edition. Prentice Hall, 2002

UNIVERSIDAD SANTO TOMÁS PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

SECCIONAL TUNJA

VIGILADA MINEDUCACIÓN - SNIES 1732

iSiempre_{Ito!}

USTATUNJA.EDU.CO

@santotomastunja