Component response rate variation underlies stability in

large complex systems

- A. Bradley Duthie (alexander.duthie@stir.ac.uk)
- Biological and Environmental Sciences, University of Stirling, Stirling, UK, FK9 4LA
- 5 Key words: Ecological networks, gene-regulatory networks, neural networks, financial networks, system
- 6 stability, random matrix theory

7 Abstract

- 8 The stability of a complex system generally decreases with increasing system size and interconnectivity, a
- 9 counterintuitive result of widespread importance across the physical, life, and social sciences. Despite recent
- 10 interest in the relationship between system properties and stability, the effect of variation in the response
- 11 rate of individual system components remains unconsidered. Here I vary the component response rates (γ)
- of randomly generated complex systems. I show that when component response rates vary, the potential
- $_{13}$ for system stability is markedly increased. Variation in γ becomes increasingly important for stability in
- large but finite systems, where the probability of stability would otherwise be negligible. At such extremes of
- is simulated system size, the largest stable complex systems would be unstable if not for $Var(\gamma)$. My results
- therefore reveal a previously unconsidered aspect of system stability that is likely to be pervasive across all
- 17 realistic complex systems.

18 Author Summary

Any set of discrete components that potentially interact can define a complex system. Typically, properties of individual components will cause them to respond to system perturbation at different rates, but the consequences of such variation for system stability are unexplored. This work makes three novel theoretical contributions: First, I show that large complex systems with varying component response rates are more likely to be stable than when response rates are uniform. Second, I show that a targeted manipulation of component response rates can increase the probability of system stability by several orders of magnitude.

Lastly, I show that varying component response rate does not affect system feasibility. These results are general to any physical, biological, social, or mixed system.

27 Introduction

In 1972, May¹ first demonstrated that randomly assembled systems of sufficient complexity are almost inevitably unstable given infinitesimally small perturbations. Complexity in this case is defined by the size of the system (i.e., the number of potentially interacting components; S), its connectance (i.e., the probability that one component will interact with another; C), and the variance of interaction strengths (σ^2)². May's finding that the probability of local stability falls to near zero given a sufficiently high threshold of $\sigma\sqrt{SC}$ is broadly relevant for understanding the dynamics and persistence of systems such as ecological¹⁻⁵, neurological^{6,7}, biochemical^{8,9}, and socio-economic^{10–13} networks. As such, identifying general principles that affect stability in complex systems is of wide-ranging importance.

Randomly assembled complex systems can be represented as large square matrices (\mathbf{M}) with S components (e.g., networks of species² or banks¹¹). One element of such a matrix, M_{ij} , defines how component j affects component i in the system at a point of equilibrium². Off-diagonal elements ($i \neq j$) therefore define interactions between components, while diagonal elements (i = j) define component self-regulation (e.g., carrying capacity in ecological communities). Traditionally, off-diagonal elements are assigned non-zero values with a probability C, which are sampled from a distribution with variance σ^2 ; diagonal elements are set

to -1^{1,2,4}. Local system stability is assessed using eigenanalysis, with the system being stable if the real parts of all eigenvalues (λ) of **M** are negative (max ($\Re(\lambda)$) < 0)^{1,2}. In a large system (high S), eigenvalues are distributed uniformly¹⁴ within a circle centred at $\Re = -1$ (the mean value of diagonal elements) and $\Im = 0$, with a radius of $\sigma \sqrt{SC^{1,2,4}}$ (Figs 1a and 2a). Local stability of randomly assembled systems therefore becomes increasingly unlikely as S, C, and σ^2 increase.

May's^{1,2} stability criterion $\sigma\sqrt{SC}$ < 1 assumes that the expected response rates $(E[\gamma])$ of individual components to perturbations of the system are identical, but this is highly unlikely in any complex system.

In ecological communities, for example, the rate at which population density changes following perturbation will depend on the generation time of organisms, which might vary by orders of magnitude among species. Species with short generation times will respond quickly (high γ) to perturbations relative to species with long generation times (low γ). Similarly, the speed at which individual banks respond to perturbations in financial networks, or individuals or institutions respond to perturbations in complex social networks, is likely to vary. The effect of such variance on stability has not been investigated in complex systems theory.

Intuitively, variation in γ might be expected to decrease system stability by introducing a new source of variation into the system and thereby increasing σ . Here I show why, despite higher σ , realistic complex systems (such that S is high but finite) in which γ varies are actually more likely to be stable.

58 Results

Component response rates of random complex systems. Rows in \mathbf{M} define how a given component i is affected by other components of the system, meaning that the rate of component response time can be modelled by multiplying all row elements by a real scalar value γ_i^{15} . The distribution of γ over S components thereby models the distribution of component response rates. An instructive example compares one \mathbf{M} where $\gamma_i = 1$ for all i in S to the same \mathbf{M} when half of $\gamma_i = 1.95$ and half of $\gamma_i = 0.05$. This models one system in which γ is invariant and one in which γ varies, but systems are otherwise identical (note that mean $\gamma_i = 1$ in both cases). I assume S = 200, C = 0.05, and $\sigma = 0.4$; diagonal elements are set to -1 and non-zero off-diagonal elements are drawn randomly from $\mathcal{N}(0, \sigma^2)$. Rows are then multiplied by γ_i to generate \mathbf{M} .

When $\gamma_i = 1$, eigenvalues of \mathbf{M} are distributed uniformly within a circle centred at (-1,0) with a radius of 1.265 (Fig. 1a). Hence, the real components of eigenvalues are highly unlikely to all be negative when all $\gamma_i = 1$. But when γ_i values are separated into two groups, eigenvalues are no longer uniformly distributed (Fig. 1b). Instead, two distinct clusters of eigenvalues appear (red circles in Fig. 1b), one centred at (-1.95,0) and the other centred at (-0.05,0). The former has a large radius, but the real components have shifted to the left (in comparison to when $\gamma = 1$), while the latter cluster has a smaller radius, but real components have shifted to the right; all $\Re(\lambda) < 0$. Overall, for 1 million randomly assembled \mathbf{M} , this division between slow and fast component response rates results in more stable systems: 1 stable given $\gamma = 1$ versus 32 stable given $\gamma = \{1.95, 0.5\}$.

Higher stability in systems with variation in γ can be observed by sampling γ_i values from various distributions. I focus on a uniform distribution where $\gamma \sim \mathcal{U}(0,2)$ (see Supplementary Information for other distributions, which give similar results). As with the case of $\gamma = \{1.95, 0.5\}$ (Fig. 1b), mean $\gamma = 1$ when $\gamma \sim \mathcal{U}(0,2)$, allowing comparison of \mathbf{M} before and after the addition of variation in component response rate. Figure 2 shows a comparison of eigenvalue distributions given S = 1000, C = 0.05, and $\sigma = 0.4$. As expected¹⁴, when $\gamma = 1$, eigenvalues are distributed uniformly in a circle centred at (-1,0) with a radius of $\sigma\sqrt{SC} = 2.828$. Uniform variation in γ leads to a non-uniform distribution of eigenvalues $\gamma = 1$, some of which are clustered locally near the centre of the distribution, but others of which are spread outside the former radius of 2.828 (Fig 2b). The clustering and spreading of eigenvalues introduced by $Var(\gamma)$ can destabilise previously stable systems or stabilise systems that are otherwise unstable. But where systems are otherwise too complex to be stable given $\gamma = 1$, the effect of $Var(\gamma)$ can often lead to stability above May's 1.2 threshold $\sigma\sqrt{SC} < 1$.

Simulation of random M across S. To investigate the effect of $Var(\gamma)$ on system stability, I simulated random M matrices at $\sigma = 0.4$ and C = 1 across $S = \{2, 3, ..., 49, 50\}$. One million M were simulated for each S, and the stability of M was assessed given $\gamma = 1$ versus $\gamma \sim \mathcal{U}(0, 2)$. For all S > 10, I found that the number of stable random systems was higher given $Var(\gamma)$ than when $\gamma = 1$ (Fig. 3; see Supplementary Information for full table of results), and that the difference between the probabilities of observing a stable system increased with an increase in S. In other words, the potential for $Var(\gamma)$ to drive stability increased

- with system complexity and was most relevant for systems on the cusp of being too complex to be realistically stable. For the highest values of S, nearly all systems that were stable given $Var(\gamma)$ would not have been stable given $\gamma = 1$.
- Targeted manipulation of γ . To further investigate the potential of $Var(\gamma)$ to be stabilising, I used a genetic algorithm. Genetic algorithms are heuristic tools that mimic evolution by natural selection, and are useful when the space of potential solutions (in this case, possible combinations of γ values leading to stability in a large complex system) is too large to search exhaustively¹⁹. Generations of selection on γ value combinations to minimise max ($\Re(\lambda)$) demonstrated the potential for $Var(\gamma)$ to increase system stability. Across $S = \{2, 3, ..., 39, 40\}$, sets of γ values were found that resulted in stable systems with probabilities that were up to four orders of magnitude higher than when $\gamma = 1$ (Fig. 4), meaning that stability could often be achieved by manipulating S γ values rather than $S \times S$ M elements (i.e., by manipulating component response rates rather than interactions between components).
- System feasibility given $Var(\gamma)$ For complex systems in which individual system components represent 105 the density of some tangible quantity, it is relevant to consider the feasibility of the system. Feasibility 106 assumes that the system is stable and values of all components are positive at equilibrium^{5,20,21}. This is of 107 particular interest for ecological communities because population density (N) cannot take negative values, 108 meaning that ecological systems need to be feasible for stability to be biologically realistic²⁰. While my 109 results are intended to be general to all complex systems, and not restricted to species networks, I have also 110 performed a feasibility analysis on all matrices M tested for stability, and additionally for specific types of 111 ecological communities² (e.g., competitive, mutualist, predator-prey; see Supplementary Information). I want 112 to emphasise that γ is not interpreted as population density in this analysis, but instead as a fundamental 113 property of species life history such as expected generation time. Feasibility was unaffected by $Var(\gamma)$ and 114 instead occurred with a fixed probability of $1/2^S$, consistent with a recent proof by Serván et al.²² (see 115 Supplementary Information). Hence, for pure interacting species networks, variation in component response rate (i.e., species generation time) does not affect stability at biologically realistic species densities.

118 Discussion

Here I have shown that the stability of large systems might often be contigent upon variation in the response 119 rates of their individual components, meaning that factors such as rate of trait evolution (in biological 120 networks), transaction speed (in economic networks), or communication speed (in social networks) need to 121 be considered when investigating the stability of complex systems. Variation in component response rate is 122 more likely to be critical for stability in systems that are especially large (but finite, see Gibbs et al. 17), and 123 it can ultimately increase the probability that system stability is observed above that predicted by May's ¹ 124 classically derived $\sigma\sqrt{SC}$ criterion. The logic outlined here is general, and potentially applies to any complex 125 system in which individual system components can vary in their reaction rates to system perturbation. It is important to emphasise that variation in component response rate is not stabilising per se; that is, adding 127 variation in component response rate to a particular system does not necessarily increase the probability that 128 the system will be stable. Rather, systems that are observed to be stable are more likely to have varying 129 component response rates, and for this variation to be critical to their stability (Fig. 3). This is caused by 130 the shift to a non-uniform distribution of eigenvalues that occurs by introducing $Var(\gamma)$ (Fig. 1b, 2b), which 131 can sometimes cause all of the real components of the eigenvalues of the community matrix M to become 132 negative, but might also increase the real components of eigenvalues. The mathematics underlying this shift 133 in eigenvalue distribution has been investigated ¹⁶ and recently applied to questions concerning species density and feasibility^{17,18}, but has not been interpreted as rates of response of individual system components to perturbation. The potential importance of component response rate variation was most evident from the results of simulations 137 in which the genetic algorithm was used in attempt to maximise the probability of system stability. The probability that some combination of component response rates could be found to stabilise the system was 139 shown to be up to four orders of magnitude higher than the background probabilities of stability in the absence of any component response rate variation. Instead of manipulating the $S \times S$ interactions between system

components, it might therefore be possible to manipulate only the S response rates of individual system

components to achieve stability. Hence, managing the response rates of system components in a targeted way

could potentially facilitate the stabilisation of complex systems through a reduction in dimensionality.

Interestingly, while complex systems were more likely to be stable given variation in component response rate, they were not more likely to be feasible, meaning that stability was not increased when component values 146 were also restricted to being positive at equilibrium. Feasibility is important to consider, particularly for the study of ecological networks of species^{5,18,20,22} because population densities cannot realistically be negative. 148 My results therefore suggest that variation in the rate of population responses to perturbation (e.g., due to 149 differences in generation time among species) is unlikely to be critical to the feasibility of purely multi-species 150 interaction networks (see also Supplementary Information). Nevertheless, ecological interactions do not exist 151 in isolation in empirical systems¹⁵, but instead interact with evolutionary, abiotic, or social-economic systems. 152 The relevance of component response rate for complex system stability should therefore not be ignored in the 153 broader context of ecological communities. 154

My results show that complex systems are more likely to be stable when the response rates of system components vary. These results are broadly applicable to understanding stability of complex networks in the physical, life, and social sciences.

Methods

Component response rate variation (γ). In a synthesis of eco-evolutionary feedbacks on community stability, Patel et al. model a system that includes a vector of potentially changing species densities (\mathbf{N}) and a vector of potentially evolving traits (\mathbf{x})¹⁵. For any species i or trait j, change in species density (N_i) or trait value (x_j) with time (t) is a function of the vectors \mathbf{N} and \mathbf{x} ,

$$\frac{dN_i}{dt} = N_i f_i(\mathbf{N}, \mathbf{x}),$$

$$\frac{dx_j}{dt} = \epsilon g_j(\mathbf{N}, \mathbf{x}).$$

In the above, f_i and g_j are functions that define the effects of all species densities and trait values on the density of a species i and the value of trait j, respectively. Patel et al. were interested in stability when the evolution of traits was relatively slow or fast in comparison with the change in species densities 15, and this is modulated in the above by the scalar ϵ . The value of ϵ thereby determines the timescale separation between ecology and evolution, with high ϵ modelling relatively fast evolution and low ϵ modelling relative slow evolution 15.

I use the same principle that Patel et al. use to modulate the relative rate of evolution to modulate rates of
component responses for S components. Following May^{1,23}, the value of a component i at time t ($v_i(t)$) is
affected by the value of j ($v_j(t)$) and j's marginal effect on i (a_{ij}), and by i's response rate (γ_i),

$$\frac{dv_i(t)}{dt} = \gamma_i \sum_{j=1}^{S} a_{ij} v_j(t).$$

¹⁷² In matrix notation²³,

$$\frac{d\mathbf{v}(t)}{dt} = \gamma \mathbf{A}\mathbf{v}(t).$$

In the above, γ is a diagonal matrix in which elements correspond to individual component response rates.

Therefore, $\mathbf{M} = \gamma \mathbf{A}$ modulates the values of components and can be analysed using the techniques of May^{1,16,23}.

In these analyses, row means of \mathbf{A} are expected to be identical, but variation around this expectation will naturally arise due to random sampling of \mathbf{A} off-diagonal elements and finite S. In simulations, the total variation in $\mathbf{M} = \gamma \mathbf{A}$ row means that is attributable to \mathbf{A} is small relative to that attributable to γ , especially at high S. Variation in γ specifically isolates the effects of differing component response rates, hence causing differences in expected \mathbf{M} row means.

Genetic algorithm. Ideally, to investigate the potential of $Var(\gamma)$ for increasing the proportion of stable 180 complex systems, the search space of all possible γ vectors would be evaluated for each unique $\mathbf{M} = \gamma \mathbf{A}$. 181 This is technically impossible because γ_i can take any real value between 0-2, but even rounding γ_i to 182 reasonable values would result in a search space too large to practically explore. Under these conditions, 183 genetic algorithms are highly useful tools for finding practical solutions by mimicking the process of biological 184 evolution¹⁹. In this case, the practical solution is finding vectors of γ that decrease the most positive real 185 eigenvalue of M. The genetic algorithm used achieves this by initialising a large population of 1000 different 186 potential γ vectors and allowing this population to evolve through a process of mutation, crossover (swaping γ_i values between vectors), selection, and reproduction until either a γ vector is found where all $\Re(\lambda) < 0$ or some "giving up" critiera is met.

For each $S = \{2, 3, ..., 39, 40\}$, the genetic algorithm was run for 100000 random \mathbf{M} ($\sigma = 0.4, C = 1$), where 190 $\mathbf{M} = \gamma \mathbf{A}$. The genetic algorithm was initialised with a population of 1000 different γ vectors with elements 191 sampled i.i.d from $\gamma_i \sim \mathcal{U}(0,2)$. Eigenanalysis was performed on the M resulting from each γ vector, and the 192 20 γ vectors resulting in M with the lowest max $(\Re(\lambda))$ each produced 50 clonal offspring with subsequent 193 random mutation and crossover between the resulting new generation of 1000 γ vectors. Mutation of each γ_i 194 in a γ vector occurred with a probability of 0.2, resulting in a mutation effect of size $\mathcal{N}(0,0.02)$ being added to generate the newly mutated γ_i (any γ_i values that mutated below zero were multiplied by -1, and any values that mutated above 2 were set to 2). Crossover occurred between two sets of 100 γ vectors paired in 197 each generation; vectors were randomly sampled with replacement among but not within sets. Vector pairs selected for crossover swapped all elements between and including two γ_i randomly selected with replacement (this allowed for reversal of vector element positions during crossover; e.g., $\{\gamma_4, \gamma_5, \gamma_6, \gamma_7\} \rightarrow \{\gamma_7, \gamma_6, \gamma_5, \gamma_4\}$). 200 The genetic algorithm terminated if a stable M was found, 20 generations occurred, or if the mean γ fitness 201 increase between generations was less than 0.01 (where fitness was defined as $W_{\gamma} = -\max(\Re(\lambda))$ for **M**). 202

System feasibility. Dougoud et al.²⁰ identify the following feasibility criteria for ecological systems
characterised by S interacting species with varying densities in a classical Lotka-Volterra model,

$$\mathbf{n}^* = -\left(\theta \mathbf{I} + (CS)^{-\delta} \mathbf{J}\right)^{-1} \mathbf{r}.$$

In the above, \mathbf{n}^* is the vector of species densities at equilibrium. Feasibility is satisfied if all elements in \mathbf{n}^* are positive. The matrix \mathbf{I} is the identity matrix, and the value θ is the strength of intraspecific competition (diagonal elements). Diagonal values are set to -1, so $\theta = -1$. The variable δ is a normalisation parameter that modulates the strength of interactions (σ) for \mathbf{J} . Implicitly, here $\delta = 0$ underlying strong interactions. Hence, $(CS)^{-\delta} = 1$, so in the above, a diagonal matrix of -1s ($\theta \mathbf{I}$) is added to \mathbf{J} , which has a diagonal of all zeros and an off-diagonal affecting species interactions (i.e., the expression $(CS)^{-\delta}$ relates to May's¹ stability criterion²⁰ by $\frac{\sigma}{(CS)^{-\delta}}\sqrt{SC} < 1$, and hence for my purposes $(CS)^{-\delta} = 1$). Given $\mathbf{A} = \theta \mathbf{I} + \mathbf{J}$, the above criteria is therefore reduced to the below (see also²²),

$$\mathbf{n}^* = -\mathbf{A}^{-1}\mathbf{r}.$$

To check the feasibility criteria for $\mathbf{M} = \gamma \mathbf{A}$, I therefore evaluated $-\mathbf{M}^{-1}\mathbf{r}$ (\mathbf{r} elements were sampled i.i.d. from $r_i \sim \mathcal{N}(0, 0.4^2)$). Feasibility is satisfied if all of the elements of the resulting vector are positive.

Acknowledgements: I am supported by a Leverhulme Trust Early Career Fellowship (ECF-2016-376).

Conversations with L. Bussière and N. Bunnefeld, and comments from J. J. Cusack and I. L. Jones, improved the quality of this work.

Supplementary Information: Full tables of stability results for simulations across different system size (S) values, ecological community types, connectance (C) values, interaction strengths (σ) , and γ distributions are provided as supplementary material. An additional table also shows results for how feasibility changes across S. All code and simulation outputs are publicly available as part of the RandomMatrixStability package on GitHub (https://github.com/bradduthie/RandomMatrixStability).

References

- 224 1. May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).
- 225 2. Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).
- 3. Mougi, A. & Kondoh, M. Diversity of interaction types and ecological community stability. *Science* **337**, 349–351 (2012).
- 4. Allesina, S. et al. Predicting the stability of large structured food webs. Nature Communications 6, 7842 (2015).
- 5. Grilli, J. et al. Feasibility and coexistence of large ecological communities. Nature Communications 8, (2017).
- 6. Gray, R. T. & Robinson, P. A. Stability and synchronization of random brain networks with a distribution of connection strengths. *Neurocomputing* **71**, 1373–1387 (2008).
- 7. Gray, R. T. & Robinson, P. A. Stability of random brain networks with excitatory and inhibitory connections. *Neurocomputing* **72**, 1849–1858 (2009).
- 8. Rosenfeld, S. Patterns of stochastic behavior in dynamically unstable high-dimensional biochemical networks. *Gene Regulation and Systems Biology* **3**, 1–10 (2009).
- 9. MacArthur, B. D., Sanchez-Garcia, R. J. & Ma'ayan, A. Microdynamics and criticality of adaptive regulatory networks. *Physics Review Letters* **104**, 168701 (2010).
- ²⁴⁰ 10. May, R. M., Levin, S. A. & Sugihara, G. Complex systems: Ecology for bankers. Nature 451, 893–895

- 241 (2008).
- ²⁴² 11. Haldane, A. G. & May, R. M. Systemic risk in banking ecosystems. *Nature* **469**, 351–355 (2011).
- ²⁴³ 12. Suweis, S. & D'Odorico, P. Early warning signs in social-ecological networks. *PLoS ONE* 9, (2014).
- 13. Bardoscia, M., Battiston, S., Caccioli, F. & Caldarelli, G. Pathways towards instability in financial
 networks. Nature Communications 8, 1–7 (2017).
- 14. Tao, T. & Vu, V. Random matrices: Universality of ESDs and the circular law. Annals of Probability 38,
 2023–2065 (2010).
- ²⁴⁸ 15. Patel, S., Cortez, M. H. & Schreiber, S. J. Partitioning the effects of eco-evolutionary feedbacks on community stability. *American Naturalist* **191**, 1–29 (2018).
- ²⁵⁰ 16. Ahmadian, Y., Fumarola, F. & Miller, K. D. Properties of networks with partially structured and partially random connectivity. *Physical Review E Statistical, Nonlinear, and Soft Matter Physics* **91,** 012820 (2015).
- ²⁵² 17. Gibbs, T., Grilli, J., Rogers, T. & Allesina, S. The effect of population abundances on the stability of large random ecosystems. *arXiv* (2017).
- 18. Stone, L. The feasibility and stability of large complex biological networks: a random matrix approach.
 Scientific Reports 8, 8246 (2018).
- 19. Hamblin, S. On the practical usage of genetic algorithms in ecology and evolution. Methods in Ecology
 and Evolution 4, 184–194 (2013).
- 20. Dougoud, M., Vinckenbosch, L., Rohr, R., Bersier, L.-F. & Mazza, C. The feasibility of equilibria in large ecosystems: a primary but neglected concept in the complexity-stability debate. *PLOS Computational Biology* 14, e1005988 (2018).
- 21. Song, C. & Saavedra, S. Will a small randomly assembled community be feasible and stable? Ecology 99,

- ²⁶² 743–751 (2018).
- 22. Serván, C. A., Capitán, J. A., Grilli, J., Morrison, K. E. & Allesina, S. Coexistence of many species in
- random ecosystems. Nature Ecology and Evolution 2, 1237–1242 (2018).
- 23. May, R. M. Qualitative stability in model ecosystems. *Ecology* **54**, 638–641 (1973).

Figure 1: Example distribution of eigenvalues before (a) and after (b) separating a randomly 266 generated complex system into fast ($\gamma = 1.95$) and slow ($\gamma = 0.05$) component response rates. 267 Each panel shows the same system where S = 200, C = 0.05, and $\sigma = 0.4$, and in each case $E[\gamma] = 1$ (i.e., 268 only the distribution of γ differs between panels). a. Eigenvalues plotted when all $\gamma = 1$; distributions of 269 points are uniformly distributed within the blue circle with a radius of $\sigma\sqrt{SC}=1.238$ centred at -1 on 270 the real axis. b. Eigenvalues plotted when half $\gamma = 1.95$ and half $\gamma = 0.05$; distributions of points can be 271 partitioned into one large circle centred at $\gamma = -1.95$ and one small circle centred at $\gamma = -0.05$. In a, the 272 maximum real eigenvalue max $(\Re(\lambda)) = 0.2344871$, while in b max $(\Re(\lambda)) = -0.0002273135$, meaning that the complex system in b but not a is stable because in b max $(\Re(\lambda)) < 0$. In 1 million randomly generated complex systems under the same parameter values, 1 was stable when $\gamma = 1$ while 32 were stable when $\gamma = \{1.95, 0.05\}$. Overall, complex systems that are separated into fast versus slow components tend to be more stable than otherwise identical systems with identical component response rates.

278

Figure 2: Distributions of eigenvalues before (a) and after (b) introducing variation in component response rate (γ) in complex systems. Each panel show the same system where S=1000, C=0.05, and $\sigma=0.4$. a. Eigenvalues plotted in the absence of $Var(\gamma)$ where $E[\gamma]=1$, versus b. eigenvalues
plotted given $\gamma \sim \mathcal{U}(0,2)$, which increases the variance of interaction strengths (σ^2) but also creates a cluster
of eigenvalues toward the distribution's centre (-1, 0). Blue elipses in both panels show the circle centred on
the distribution in panel a. Proportions of $\Re(\lambda) < 0$ are 0.719 and 0.737 for a and b, respectively.

Figure 3: Stability of large complex systems with and without variation in component response rate (γ) . The ln number of systems that are stable across different system sizes $(S, \max S = 50)$ given C = 1, and the proportion of systems in which variation in γ is critical for system stability. For each S, 1 million complex systems are randomly generated. Stability of each complex system is tested given variation in γ by randomly sampling $\gamma \sim \mathcal{U}(0,2)$. Stability given $Var(\gamma)$ is then compared to stability in an otherwise identical system in which $\gamma = E[\mathcal{U}(0,2)]$ for all components. Blue and red bars show the number of stable systems in the absence and presence of $Var(\gamma)$, respectively. The black line shows the proportion of systems that are stable when $Var(\gamma) > 0$, but would be unstable if $Var(\gamma) = 0$.

Figure 4: Stability of large complex systems given $\gamma = 1$ versus targeted $Var(\gamma)$. The ln number of systems that are stable across different system sizes $(S, \max S = 40)$ for C = 1, and the proportion of systems wherein a targeted search of γ values successfully resulted in system stability. For each S, 100000 complex systems are randomly generated. Stability of each complex system is tested given variation in γ using a genetic algorithm to maximise the effect of γ values on increasing stability, as compared to stability in an otherwise identical system in which γ is the same for all components. Blue bars show the number of stable systems in the absence of component response rate variation, while red bars show the number of stable systems that can be generated if component response rate is varied to maximise system stability. The black line shows the proportion of systems that are stable when component response rate is targeted to increase stability, but would not be stable if $Var(\gamma) = 0$.

