Deformation theory, Fukaya's conjecture and the Gross-Siebert Program

Ziming Nikolas Ma, SUSTech

@ Mirror Symmetry and Differential Equations,

Bogazici University, Feza Gursey Institute, Istanbul

Mirror Symmetry

Calabi-Yau: $(\check{X}, \check{\omega}, \check{\Omega})$

locally
$$\check{X} \cong T^*\mathbb{R}^n$$
, $\check{\omega} = \sum_i d\check{x}_i \wedge d\check{y}_i$

locally $X \cong \mathbb{C}^n$, $\Omega = e^f dz_1 \wedge \cdots \wedge dz_n$

Calabi-Yau: (X, Ω, ω)

locally $X \cong \mathbb{C}^n$, $\Omega = e^f dz_1 \wedge \cdots \wedge dz_n$

locally
$$X \cong T^*\mathbb{R}^n$$
, $\omega = \sum_i dx_i \wedge dy_i$

Symplectic geometry

weighted count by $e^{-\int_{S} u^{*}(\check{o})} = \check{q}$

Complex geometry

Period integral :
$$\int_{C_i} \Omega_q = p_i(q)$$

Mirror map

Mirror Symmetry

 $(\check{X}, \check{\boldsymbol{\omega}}, \check{\Omega})$

 (X, Ω, ω)

Big Question:

- 1. Why!?
- 2. Given \check{X} , how to find X?

Idea:

Strominger-Yau-Zaslow coniecture

SYZ conjecture

Dual 1. Special $\operatorname{Im}(\Omega)|_{T^n} = 0$

2. Lagrangian torus fibration $\omega|_{T^n} = 0$

• $B_0=B \setminus \Delta: \mathbb{Z}$ -affine manifold using Arnold-Liouville thm i.e. translation in $\mathrm{SL}(n,\mathbb{Z}) \ltimes \mathbb{R}^n$

Fukaya's conjecture

- holomorphic disk $u, \partial u \subset \check{T}_b$
- ullet codimension-1 walls on B with disk on \check{T}_b

3.

- scattered walls obtain by gluing with pair of pants
 - gradient trees Γ from ${\color{red} \Delta} \leftrightarrow$ holomorphic disks

e.g.

 X^{sf}

•
$$\Gamma \leadsto \varphi_{\Gamma} \in \Omega^{0,1}(X^{sf}, T^{1,0})$$

- supported on outgoing ray of Γ
- $\varphi = \sum \varphi_{\Gamma}$ satisfying Maurer-Cartan eqt.

$$\bar{\partial}\varphi + \frac{1}{2}[\varphi, \varphi] = 0$$

•
$$X^{sf} \rightsquigarrow X_{\omega}^{sf} \subset X$$

Scattering diagram

Kontsevich-Soibelman's combinatorial approach:

Fukaya's conjecture revisited

We consider the Maurer-Cartan eqt:

$$\left| \bar{\partial} \varphi + \frac{1}{2} [\varphi, \varphi] = 0 \right| \qquad \text{in } \Omega^{0,*}(X^{sf}, T^{1,0})$$

in
$$\Omega^{0,*}(X^{sf}, T^{1,0})$$

Two questions:

- Q1. How is the solution φ relate to scattering diagram?
- Q2. What is a suitable "compactification" of $\Omega^{0,*}(X^{sf}, T^{1,0})$ as a dgLa? $(\bar{\partial}, [\cdot, \cdot])$

Benefits:

Unified approach such that techniques of smooth manifolds can be applied!

Maurer-Cartan <-> Scattering

Partial Answer to Q1:

• we work locally on $U \subset B \setminus \Delta$

As $\lambda \to \infty$, we have

$$\varphi \sim \varphi_{in} + \sum_{(\mathbf{w}_a, \Theta_a)} \delta_{\mathbf{w}_a, \lambda} \otimes \log(\Theta_a)$$

 $(\mathbf{w}_a, \Theta_a)'s$ are scattered walls in the K.-S. diagram .

Q2: What is the corrected dgLa?

Large complex structure limit (LCSL):

- degenerating $X_q^{sf} \rightsquigarrow X_0^{sf}$, X_0^{sf} can be compactified as X_0
- $X_0 \rightsquigarrow X$ as smoothing/log deformation

G.-S.: Use scattering diagram

e.g.
$$X_q = \overline{\mathbf{Zero}(qf(x_0, x_1, x_2, x_3) + x_0x_1x_2x_3)} \subset \mathbb{P}^3$$

$$X_0 = \bigcup_{i=0}^3 \mathbb{P}_i^2$$

 $X_0 = \bigcup_{i=1}^{3} \mathbb{P}_i^2$ • singularity of family = $\{f(x) = 0\} \cap \bigcup_{i=1}^{3} \{x_i = x_j = 0\}$

• locally: $\{xyz = q^l\} \subset \mathbb{C}^4$

• G.-S.: construction of X from X_0

Consistent gluing of local models

Using scattering diagram

dgBV approach to smoothing

- analogue of " $\Omega^{0,*}(\wedge^*T^{1,0})$ " for X_0 which is singular, we use algebraic construction
- idea of construction:

$$V_{\alpha} \text{ -local models, e.g.: } \bullet \{xyz = q^l\} \subset \mathbb{C}^4$$

$$\bullet \{uv = q^l(1+w)\} \subset \mathbb{C}^3 \times \mathbb{C}^*_w$$

$$\bullet \text{ scattering approach : solve for gluing } g_{\alpha\beta} : \mathbb{V}_{\alpha} \to \mathbb{V}_{\beta}$$

$$\bullet \text{ our approach : first dg resolve } \mathbb{V}_{\alpha} \text{ by } PV^*(\mathbb{V}_{\alpha}) \sim \text{``}\Omega^*(\mathbb{V}_{\alpha}, \wedge^*T^{1,0})\text{''}$$

$$\bullet \text{ solve for gluing } g_{\alpha\beta} : PV(\mathbb{V}_{\alpha}) \to PV(\mathbb{V}_{\beta}) \longleftarrow \text{Non-holo.! Easier}$$

$$\bullet \text{ get pre-dgBV } PV(X_0), \text{ remains to solve MC eqt.}$$

Thm: (Chan-Leung- -) A pre-dgBV $PV(X_0)$ over $\mathbb{C}[[q]]$ can be constructed, and

- The MC eqt. can be solved with Hodge-de Rham degeneracy
- solution φ gives a (universal) smoothing X_q of X_0 over $\mathbb{C}[[q]]$

Construction of pre-dgLa / C[[q]]

Step 1:

Take $\mathscr{G}^* = \wedge^* T_{\mathbb{V}_{\alpha}/\hat{\mathbb{C}}_q}(\log)$ be the sheaf of BV algebra and resolve it as local sheaf of dgBV algebra $(PV_{\alpha}^*, d_{\alpha}, \Delta_{\alpha}, \wedge)$

Local Uniqueness of local model:

Step, 2: $\mathbb{V}_{\alpha}|_{U} \to \mathbb{V}_{\beta}|_{U}$, for Stein $U \subset V_{\alpha} \cap V_{\beta}$

Look for gluing as Genstenhaber algebra

$$g_{\alpha\beta}: PV_{\alpha}^* \to PV_{\beta}^*, \quad g_{\gamma\alpha}g_{\beta\gamma}g_{\alpha\beta} = id$$

Step 3:

Glue the operators

$$\begin{cases} d_{\alpha} + [\sigma_{\alpha}, \cdot] = g_{\beta\alpha} \circ (d_{\beta} + [\sigma_{\beta}, \cdot]) \circ g_{\alpha\beta} \\ \Delta_{\alpha} + [f_{\alpha}, \cdot] = g_{\beta\alpha} \circ (\Delta_{\beta} + [f_{\beta}, \cdot]) \circ g_{\alpha\beta} \end{cases}$$

We only require the identity $d^2 = \Delta^2 = d\Delta + \Delta d = 0 \pmod{q}$

Perturbative approach towards semi-infinite VHS

From LCSL X_0

Ingredients:

 $1.(\mathscr{E}_+, \nabla)$ over the moduli $\hat{\mathbb{C}}_q \times \hat{\mathbb{C}}_t$.

$$\mathcal{E}_+ = H^*(PV^*, d + t\Delta + [\varphi(q, t), \cdot]), \varphi(q, t)$$
 is a MC solution

∇: Gauss-Manin Connection with pole along q=0

2.An opposite subspace \mathscr{E}_{-} to \mathscr{E}_{+}

Notice that
$$\mathscr{C}_{0,1} = H^*(PV_0^*, d + \Delta)$$

 \mathscr{E}_{-} defines by the weighted filtration defines by $res(\nabla)$

3.A pairing $p:\mathscr{E}_{q,t}\times\mathscr{E}_{q,-t}\to\mathbb{C}$

choose a trace map $tr: \mathscr{E}_{0,1} \to \mathbb{C}$

Thm: (Chan-Leung- -)

A miniversal sections ξ of \mathscr{E}_+ can be solved perturbatively such that $\xi e^{\varphi/t}-1\in\mathscr{E}_-$

Relation with Fukaya's conjecture

 $\pi_0 = \bigcup_{\sigma} \mu_{\sigma} \text{ generalized moment map} \quad \text{Take } \mathcal{G}_{\alpha}^* = \pi_{0,*}(\wedge^* T_{\mathbb{V}_{\alpha}/\hat{\mathbb{C}}_a}(log))$

Step 1:

$$\pi_0^{-1}(W_{\alpha}) = V_{\alpha}$$
 is a Stein cover

Take
$$\mathscr{G}_{\alpha}^* = \pi_{0,*}(\wedge^*T_{\mathbb{V}_{\alpha}/\hat{\mathbb{C}}_q}(log))$$

resolve it by $PV_{\alpha}^* = \Omega_{W_{\alpha}} \otimes \mathcal{G}_{\alpha}^*$

Step 2:

relate X_a^{sf} with X_q , or their PV^*

$$\Psi: (PV^*|_{W_0}, d) \cong (PV^*_{sf}, d + [\varphi_{in}, \cdot])$$

Step 3:

A scattering diagram $D(\varphi)$ is extracted $D(\varphi)$ is consistent

 (\mathcal{S}) monodromy $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Integral affine with sing

SI

Thank you!