PHYS 615 – Activity 2.5: Gyromotion of a charged particle

Given the Lorentz Force on a particle of charge q and mass m in a uniform magnetic field \vec{B} , $\vec{F} = q\vec{v} \times \vec{B}$, we can use Newton's 2nd Law to get the equation of motion

$$\dot{\vec{mv}} = q\vec{v} \times \vec{B} \tag{1}$$

We can always choose our coordinates such that the z direction is aligned with the magnetic field, so without loss of generality, $\vec{B} = B\hat{z}$.

1. Derive the equations of motion for the components of our velocity vector \vec{v} :

$$\dot{v}_x = \omega_0 v_y \tag{2}$$

$$\dot{v}_y = -\omega_0 v_x \tag{3}$$

$$\dot{v}_z = 0 \tag{4}$$

What is ω_0 ? (The motion we're looking at here is called cyclotron motion or gyro motion. Not too surprisingly, then, $omega_0$ is called the "cyclotron frequency" or "gyro frequency".)

2. The equation of motion for v_z is not coupled to the rest of the motion, and hence can be solved individually. Use your method of choice to find $v_z(t)$. What is the meaning of the constant of integration?

In the following, we'll forget about the fact that v_z even exists and focus entirely on the "transverse" velocity $v_x \hat{x} + v_y \hat{y}$. We can put the v_z part back in the very end.

As stated in class, there are many ways to solve the coupled linear homogeneous system of ODEs for v_x, v_y . We'll use complex numbers, so that we can combine the v_x and v_y into a single complex number $\eta = v_x + iv_y$. This is particularly convenient because first of all, any complex number can be written as A + iB, where the real and imaginary parts A and B are essentially the same as A + iB and A + iB are essentially the same as A + iB and A + iB are essentially the same as A + iB and A + iB are essentially the same as A + iB and A + iB are essentially the same as A + iB and A + iB are essentially the same as A + iB and A + iB are essentially the same as A + iB and A + iB are essentially the same thing as polar coordinates with a radius of A + iB and an angle of A + iB and A + iB are essentially the same thing as polar coordinates with a radius of A + iB and an angle of A + iB are essentially the same thing as polar coordinates with a radius of A + iB and A + iB are essentially the same thing as polar coordinates with a radius of A + iB and A + iB are essentially the same thing as polar coordinates with a radius of A + iB and A + iB are essentially the same thing as polar coordinates with a radius of A + iB and A + iB are essentially the same thing as polar coordinates with a radius of A + iB and A + iB are essentially the same thing as polar coordinates with a radius of A + iB and A + iB are essentially the same thing as polar coordinates with a radius of A + iB and A + iB are essentially the same thing as polar coordinates with a radius of A + iB and A + iB are essentially the same thing as polar coordinates with a radius of A + iB and A + iB are essentially the same thing as A + iB and A + iB are essentially the same thing as A + iB and A + iB are essentially the same thing as A + iB and A + iB are essentially the same thing A + iB and A + iB are essentially the same thing A + iB and A + iB are ess

3. v_x and v_y are functions of time, which means $\eta = v_x + iv_y$ is a function of time as well. Calculate its time derivative $\dot{\eta}$ in terms of \dot{v}_x and \dot{v}_y . Then use Eqns. (2), (3) to replace those time derivatives with their respective r.h.s. After a bit of algebra involving i, you should get

$$\dot{\eta} = -i\omega_0 \eta \tag{5}$$

4. Use separation of variables to solve this ODE (the fact that η is complex-valued really doesn't make a difference for that.) Use the initial condition $\eta(t=0)=\eta_0$.

Without more context, this is still kinda difficult to make intuitive sense of, so let's look at the particle's position. Again, life is easier and more elegant if we use a complex number for the particle's position (x, y), ie., $\xi = x + iy$.

- 5. Show that the equation $\dot{\xi} = \eta$ is equivalent to the system $\dot{x} = v_x$ and $\dot{y} = v_y$.
- 6. Now solve $\dot{\xi} = \eta$ by a method of your choice. Calling the constant of integration ξ_{gc} , you should get something like

$$\xi(t) = i\frac{\eta_0}{\omega_0}e^{-i\omega_0 t} + \xi_{gc} \tag{6}$$

I used the subscript "gc" because its meaning is that is is the center of the gyro motion, which is called "gyro center".

- 7. At this point, let's put in some (made-up) numbers and make a sketch. (You could do this on a computer, too).
 - Let's say $\xi_{gc}=4+3i$, $\omega_0=2\pi$, $\eta_0=4\pi$. Set $t=0,0.1,0.2,0.3,\ldots$ and calculate $\xi(t)$ as well as $\eta(t)$. Mark the points $\xi(t)$ on the complex plane using the real and imaginary parts. For each of those points, indicate the corresponding velocities based on $\eta(t)$ by drawing little arrows. Hopefully things start making sense at that point. [If your calculator doesn't support complex numbers, you may have to use Euler's formula for $e^{i\theta}$ to do the i parts yourself and have the calculator just do the calculations with real numbers, sine, cosine, etc.
- 8. Let's call $v_0 \equiv |\eta_0|$. (Why does that make sense?) Find an expression for the gyro radius, that is, the distance between the particle's position (at any time t) and its gyro center ξ_{gc} . To do so, calculate $|\xi(t) \xi_{gc}|$.
- 9. What happens if you set $\eta_0 = 4\pi i$ in the example above, ie., you shift the phase by $i = e^{i\pi/2}$?
- 10. Let's put the z direction back in. Solve the ODE(s) in the z direction to find z(t) given the initial conditions $v_z(0) = v_{z0}$ and z(0) = 0. Describe the particle's 3-d trajectory.