University of Technology Sydney Department of Mathematical and Physical Sciences

37233 Linear Algebra Problem Set 10

Note: you may use Mathematica to carry out any calculations you feel may be of use.

Question 1.

Compute the quadratic form $\mathbf{x}^T A \mathbf{x}$ for

$$A = \begin{pmatrix} 4 & 3 & 0 \\ 3 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \text{ where } (a) \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \text{ (b) } \mathbf{x} = \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}.$$

Question 2.

Find the matrices of the quadratic forms

(a)
$$Q = 8x_1^2 + 7x_2^2 - 3x_3^2 - 6x_1x_2 + 4x_1x_3 - 2x_2x_3$$

$$(b) Q = 4x_1x_2 + 6x_1x_3 - 8x_2x_3$$

Question 3.

Classify the quadratic form and make a change of variable $\mathbf{x} = P\mathbf{y}$ that transforms the quadratic form into one with no cross-product term.

$$3x_1^2 - 4x_1x_2 + 6x_2^2$$

Question 4.

Let $Q(\mathbf{x}) = 5x_1^2 + 5x_2^2 - 4x_1x_2$. Find

- (a) the maximum value of $Q(\mathbf{x})$ subject to the constraint $\mathbf{x}^T\mathbf{x} = 1$;
- (b) a unit vector ${\bf u}$ where this maximum is attained;
- (c) the maximum of $Q(\mathbf{x})$ subject to the constraints $\mathbf{x}^T\mathbf{x} = 1$, $\mathbf{x}^T\mathbf{u} = 0$

Question 5.

Find the singular values of A and a unit vector \mathbf{x} at which $A\mathbf{x}$ has maximum length, given

$$A = \left(\begin{array}{cc} 1 & 1\\ 0 & 1\\ -1 & 1 \end{array}\right)$$

Question 6.

Find the singular value decomposition of the matrix in the previous question.

Question 7.

Suppose the factorization below is an SVD of a matrix A:

$$A = \left(\begin{array}{ccc} 0.40 & -0.78 & 0.47 \\ 0.37 & -0.33 & -0.87 \\ -0.84 & -0.52 & -0.16 \end{array}\right) \left(\begin{array}{ccc} 7.10 & 0 & 0 \\ 0 & 3.1 & 0 \\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{ccc} 0.30 & -0.51 & -0.81 \\ 0.76 & 0.64 & -0.12 \\ 0.58 & -0.58 & 0.58 \end{array}\right).$$

- (a) What is the rank of A?
- (b) What are bases for Col A and Nul A?