

SDM LAB-2

14.5.2025

Usually, Machine Learning algorithms expect **vectors** as the input of their models:

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
98	0,4	High	1	56,4	1,32
76	0,7	Low	5	43,7	1,11
45	0,8	Low	7	94,2	0,78

Knowledge Graphs are a network of **entities** interconnected by **relations** between them, giving semantics to these links, making it both *machine-readable* and *human-interpretable*.

They can be represented using **triples**:

Knowledge Graphs already allow to apply some **graph-specific** algorithms, but they are limited and usually computationally expensive.

Path-finding

Connectivity

Coloring

...

The data stored in a KG sometimes also needs to be **transformed into vectors** to serve as the input for

The data stored in a KG sometimes also needs to be **transformed into vectors** to serve as the input for additional tasks (e.g., Random Forest).

The resulting vectors (i.e., Knowledge Graph Embeddings) should **retain** as much contextual/structural/semantic information as possible, so different **KGE Models** have been designed for these purposes.

In the KGE Models, the embeddings are treated as **parameters**, which are optimized based on some **transformations**, defining the KGE Model.

Translational models are the most simple ones, and are based on geometric transformations of the embeddings.

(head, relation, tail)

Example of a Loss Function: <u>TransE</u>: Minimize the translational distance from the *head entity* to the *tail entity* by using the *relation embedding*.

Example of a Loss Function: <u>TransE</u>: Minimize the translational distance from the *head entity* to the *tail entity* by using the *relation embedding*.

TransE: Loss= |head + relation - tail|

(head, relation, tail)

Loss =
$$|(1,2)+(1,-1)-(2,1)|=0$$

LIMITATIONS

Example of a Loss Function: <u>TransE</u>: Minimize the translational distance from the *head entity* to the *tail entity* by using the *relation embedding*.

LIMITATIONS

Example of a Loss Function: <u>TransE</u>: Minimize the translational distance from the *head entity* to the *tail entity* by using the *relation embedding*.

KGE Models: Semantic

Semantic models try to capture **latent semantics** of entities and relations, by maximizing the plausibility of a triple.

Rescal: head^T * M_{relation} * tail

DistMult: head^T * relation * tail

HolE: relation^T * (head ^o tail)

KGE Models: Neural Netwok

Maximize the plausibility of a triple, including **Neural Network functions** to learn hidden relationships.

ConvE, ConvKB: 1 or 2D convolutions, ReLU activation functions,...

Loss =
$$|(1,2) + (1,-1) - (2,1)| = 0$$

Optimal Position

Loss =
$$|(0.2, -0.2) + (-0.5, 0.1) - (0.8, 0.4)| = 0.70$$

Loss =
$$|(1,2)+(1,-1)-(2,1)|=0$$

KGE Models: Learning - Margin Loss

To solve this issues, **negative triples** are generated and the loss structure is changed:

KGE Models: Learning - Parameters

- Model
- Margin
- Number of Negatives samples per Positive Sample
- Embedding Dimension
- Learning Rate
- Epochs

KGE Models: Evaluation

The standard way of evaluation Knowledge Graph Embeddings is by solving the Link Prediction task:

From the test dataset, one of the entities of the triple is removed (e.g., [head, relation, ?]), and we try to predict which was the original entity.

KGE Models: Evaluation

<u>Hits@3</u>: Proportion of test triples in which the correct missing entity is the first, second or third "closest" entity.

 $tail \approx head + relation$

KGE Models: Evaluation

TEST SET

$$tail \approx head + relation$$

$$MRR = \frac{1}{|N|} \sum_{i=1}^{N} \frac{1}{rank_i}$$

Generating KGE allows to use well-know **machine learning** models over KG (e.g., classification, clustering,...). However, we can also use them directly:

Generating KGE allows to use well-know **machine learning** models over KG (e.g., classification, clustering,...). However, we can also use them directly:

Generating KGE allows to use well-know **machine learning** models over KG (e.g., classification, clustering,...). However, we can also use them directly:

Generating KGE allows to use well-know **machine learning** models over KG (e.g., classification, clustering,...). However, we can also use them directly:

Generating KGE allows to use well-know **machine learning** models over KG (e.g., classification, clustering,...). However, we can also use them directly:

Generating KGE allows to use well-know **machine learning** models over KG (e.g., classification, clustering,...). However, we can also use them directly:

Recommender Systems

User 1

KGE Models: Problems

- There is no distinction between ABOX and TBOX.
- Literals are usually not considered.
- There is no general **best model**.

Discussion

