Uniserial

O FUTURO COMEÇA
POR VOCÊ!

Pós-graduação em Ciência de Dados e Inteligência Artificial

UniSENAI

Business Intelligence e Data Visualization

Tópico 05 - Business Intelligence

UniSENAI

Tópico 05 - Business Intelligence

OLTP x OLAP e Data Warehouse

OLAP X OLTP

- OLTP (Online Transaction Processing): processamento transações em tempo real e operações diárias de uma organização.
- OLAP (Online Analytical Processing): processamento de dados orientado para análise para guiar decisões.

Exemplos de OLTP

Exemplos de OLAP

Business Intelligence

Explorar dados para obter insights estratégicos e tomar decisões informadas.

1 Análise de Vendas

Analisar dados de vendas para identificar padrões e tendências de mercado.

Planejamento de Recursos

Analisar a capacidade e a demanda para fazer planejamentos estratégicos.

OLAP X OLTP

	OLTP	OLAP
Função	Processamento de transações	Processamento de consultas
Operações	Atualizações, inserções e remoções	Leitura
Transações	Curtas e simples	Complexas
Volume de transações	Alto	Baixo
Usuários	T.I. e usuário de entrada de dados	Gerencial
Nº de usuários	Milhares	Dezenas
Atualização	Tempo-real	Ad-hoc
Volume de dados	Megabytes-Gigabytes	Gigabytes-Terabytes
Granularidade	Detalhado	Detalhado e agregado
Tempo de resposta	Segundos	Minutos a horas

DATA WAREHOUSE

- Data Warehouse é um repositório centralizado de dados de várias fontes diferentes, onde os dados são armazenados, organizados e otimizados para suportar a análise de negócios e tomada de decisões.
- Os dados são históricos e podem abranger longos períodos de tempo, permitindo análises temporais e tendências ao longo do tempo.

DATA WAREHOUSE

DATA WAREHOUSE

- Data Marts: subconjuntos de dados, projetados para dar suporte a um grupo específico dentro de uma organização.
- Cubo multidimensional: representação de dados que organiza informações de maneira multidimensional.

Fonte: RIZZI, Stefano. Conceptual modeling solutions for the data warehouse. In: Data warehouses and OLAP: Concepts, architectures and solutions. IGI Global, 2007. p. 1-26.

Modelo multidimensional

- Dimensão: características pelas quais os dados podem ser analisados ou segmentados.
- Exemplo: Um cubo de vendas, as dimensões podem incluir produtos, regiões, datas e clientes.
- Células do Cubo: representa uma combinação de valores de dimensão e contém uma medida associada.

Disponível em:

https://www.holistics.io/blog/the-rise-and-fall-of-the-olap-cube/. Acesso em: 09 set. 2023.C

Modelo multidimensional

- Medidas: valores numéricos para análise.
- Exemplos: Em um cubo de vendas, as medidas podem incluir vendas totais, lucros ou quantidade de produtos vendidos.

Disponível em:

https://www.hypertextbookshop.com/dataminingbook/public_version/contents/chapters/chapter003/section004/blue/page002.html. Acesso em: 09 set. 2023.C

Modelo multidimensional

- Hierarquias: estrutura organizada de níveis em uma dimensão que permite a análise e a navegação de dados de maneira hierárquica.
- Exemplo: a dimensão "Tempo" pode ser hierarquizada em ano, trimestre, mês e dia.

Fonte: TRUJILLO, Juan; LUJÁN-MORA, Sergio; SONG, Il-Yeol. Applying UML for designing multidimensional databases and OLAP applications. In: Advanced Topics in Database Research, Volume 2. IGI Global, 2003. p. 13-36.

Tabela fato

- Tabela central com grande volume de dados.
- Armazena dados numéricos ou medidas, como vendas, receitas ou quantidades.
- Contém chaves estrangeiras que se relacionam com tabelas de dimensão.

Tabela dimensão

- Tabelas que fornecem contextos descritivos para os dados nas tabelas fato.
- Armazenam informações sobre as dimensões de análise, como tempo, produtos ou clientes.
- Contêm chaves primárias e atributos que ajudam a classificar e filtrar os dados na tabela fato.

DATA MODELS

SNOWFLAKE

- Dimensões são normalizadas em tabelas de dimensões menores.
- Ganho de espaço de armazenamento é pouco relevante.

Disponível em: https://www.geeksforgeeks.org/difference-between-snowflake-schema-and-fact-constellation-schema/. Acesso em: 09 set. 2023.

DATA MODELS

ESTRELA

- Composto por uma tabela fato relacionada por diferentes tabelas dimensão.
- Redundância dos dados melhora a performance das consultas.
- Modelagem recomendada para uso no Power BI.

Disponível em:

https://learn.microsoft.com/pt-br/power-bi/guidance/star-schema. Acesso em: 09 set. 2023.

DATA MODELS

ESTRELA

Disponível em: https://www.engdeanalytics.com.br/chapters/08/03/esquema_estrela.html. Acesso em: 09 set. 2023.

OPERAÇÕES OLAP

- 1. Roll-Up
- 2. Drill-Down
- 3. Slice / Dice
- 4. Pivot

Roll-Up

Agregação de dados de níveis inferiores em direção a níveis mais altos de uma hierarquia.

Exemplo: consolidar vendas diárias em vendas mensais e, em seguida, em vendas anuais.

Disponível em: https://www.javatpoint.com/olap-operations>. Acesso em: 09 set. 2023.

Drill-Down

Navegar para níveis inferiores da hierarquia.

Por exemplo, você pode detalhar as vendas anuais para vendas mensais.

Disponível em: https://www.javatpoint.com/olap-operations>. Acesso em: 09 set. 2023.

Slice/Dice

Selecionar um subconjunto de dados do cubo multidimensional ao longo de uma ou mais dimensões.

Exemplo: fatiar os dados para exibir apenas as vendas de um determinado mês ou região.

Disponível em: https://www.javatpoint.com/olap-operations>. Acesso em: 09 set. 2023.

Pivot

Também chama de rotação.

Reorganizar as dimensões em um cubo para analisar os dados de uma perspectiva diferente.

Resumo operações

Disponível em: Wikimedia Commons

UniSENAI

Rodovia SC-401, 3730, Bairro Saco Grande, Florianópolis/SC

© 3239 5745

unisenaisc.com.br

