吉林大学

二〇二〇年攻读硕士学位研究生入学考试试卷

原神特供

微信搜杨老师能动考研公众号

已知数据: 空气 $c_v = 0.716 \text{kJ/(kg} \cdot \text{K)}, c_p = 1.004 \text{kJ/(kg} \cdot \text{K)}, R_q = 0.287 \text{kJ/(kg} \cdot \text{K)},$ k = 1.4

1 单项选择题 (每题 1 分, 共 10 分)

- 1. 闭口系统经历一个不可逆过程,系统对外做功 20kJ,放热 20kJ,则系统的熵变 ΔS 为 ()。 A. 大于零 B. 小于零 C. 等于零 D. 无法确定
 - 2. 水蒸汽绝热节流后, ()。
- A. 压力降低,温度不变,熵增加 B. 压力不变,温度降低,熵不变
- C. 压力降低,温度不变,熵增加 D. 压力降低,温度降低,熵增加

 - 3. 下列参数中不是状态参数的是()。
- A. 热力学能 B. 熵 C. 绝对压力 D. 比热容
 - 4. 孤立系统经历不可逆过程后, 其熵值()。
- A. 达最大 B. 为零 C. 达最小 D. 不变

Α.	5. 工质进行了一个吸热、升温、压力下降的多变过程,则多变指数是()。 $-\infty < n < 0 \qquad \text{B. } 0 < n < 1 \qquad \text{C. } 1 < n < k \qquad \text{D. } k < n < +\infty$
Α.	6. 未饱和湿空气中的水蒸气所处的状态是()。 湿蒸气状态 B. 过热蒸汽状态 C. 饱和蒸汽状态 D. 饱和水状态
Α.	7. 物料干燥过程中湿空气经历的过程可看成是 ()。 定温过程 B. 定压过程 C. 定焓过程 D. 定熵过程
Α.	8. 下列过程中有可能是可逆过程的是()。 自由膨胀过程 B. 非自发过程 C. 绝热膨胀过程 D. 绝热节流过程
Α.	9. 有人声称发明了一种循环装置,其循环的全部结果是:从热源吸取热量 150kJ,对外做功 200kJ。则该装置 ()。 只违反了热力学第一定律 B. 只违反了热力学第二定律 违反热力学第一、第二定律 D. 不违反热力学第一、第二定律
Α.	10. 制冷剂在冰箱压缩机中所经历的过程可近似看成 ()。 定温过程 B. 定容过程 C. 定熵过程 D. 定压过程

2 简答题 (每题 5 分, 共 25 分)

1. 缩放喷管工作背压为 0.1MPa, 进口截面压力均为 1MPa, 进口流速忽略不计。假使在扩张段切去一小段, 出口截面上的压力、流速和流量将起什么变化?

2. 水的汽化潜热是否为常数? 有什么变化规律?

3. 如何区别状态参数与过程参数。常用的状态参数有哪些是可以直接测定的,哪些是不可以直接测定的,各举出三个例子。

4. 压气机按定温压缩时气体对外放出热量,而按绝热压缩时不向外放热,为什么定温压缩反较绝热压缩更为经济?

5. 画出压缩蒸气理想制冷循环的温熵图和压焓图。说明每个过程及分别在哪个设备当中进行。并且用焓值写出制冷系数的表达式。

3 论述题 (每题 15 分, 共 45 分)

1. 何为第一类永动机? 何为第二类永动机? 试谈你对永动机的认识。

2. 如图所示 p-v 图上 1-2-3-1 为可逆 A 循环,1-2'-3-1 为可逆 B 循环,A 和 B 循环工质为同种理想气体。试在 T-s 图上画出两循环,并比较两循环热效率的高低。

(注:原题中此处应有 p-v 图,现根据文字描述作答)

3. 证明刚性及绝热容器的放气过程中容器内理想气体的状态参数服从: $Tp^{\frac{1-k}{k}} =$ 常数。

4 计算题 (4 道题, 共 70 分)

1. (15 分) 轴流式压气机每分钟吸入 $p_1 = 0.1 \text{MPa}$, $t_1 = 20 ^{\circ}\text{C}$ 的空气 1200kg, 经绝热压缩到 $p_2 = 0.6 \text{MPa}$, 该压气机的绝热效率为 0.85, 求:

出口处气体的温度及压气机所消耗的功率;

过程的熵产率及作功能力的损失 $T_0 = 293.15$ K。

- 2. (15 分) 定容加热汽油机的循环每千克空气加入热量 1000kJ,压缩比 $\varepsilon = \frac{V_1}{V_2} = 5$,压缩过程的初压 100kPa,初温 15°C。试求:
 - (1) 循环的最高压力和最高温度。
 - (2) 循环热效率。

- 3. (15 分) 1kg 温度 $T_1 = 330.15$ K, 压力 $p_1 = 7.1$ MPa 的空气,经绝热节流压力降至 0.1MPa, 求:
 - (1) 节流引起的熵增量;
- (2) 上述空气不经节流而在气轮机内作可逆绝热膨胀到 0.1 MPa,气轮机能输出多少功? 环境大气温度 $T_0 = 300.15 \text{K}$ 。

4. (25 分) 有两个刚性绝热容器通过阀门可以连通,如图所示。已知 $V_A=3\mathrm{m}^3$, $p_{A1}=0.8\mathrm{MPa}$, $T_{A1}=17^\circ\mathrm{C}$; $V_B=1\mathrm{m}^3$, $P_{B1}=0.1\mathrm{MPa}$ 。现将阀门打开使空气从 A 流向 B,当两容器压力相等时即将阀门关闭,试计算过程中空气熵的变化及熵产。

[图像描述:图中为两个刚性绝热容器 A 和 B,通过一个阀门连接。容器 A 在左,标记为 A;容器 B 在右,标记为 B。两者之间有一个阀门符号,形似一个圆圈内有一个 X_{\circ}]