

Cadence Virtuoso LAB (6) Report

By: Magdy Ahmed Abbas Abdelhamid

Analog Electronics Workshop

DIFFERENTIAL AMPLIFIER

Part 1

SIZING CHART

Specs (Specifications

For Each Transistor (I _D)	20 μΑ.	
Supply (V _{DD})	1.8 V.	
Bias Current (I _{SS})	40 μΑ.	
Length (L)	1 μm.	
CM Output Level	0.7	
Differential Gain	8	
Width (W)	22. 5 μm.	
$\mathbf{g}_{\mathbf{m}}$	229. 5 μS.	
$\mathbf{g}_{\mathbf{ds}}$	1. 644 μS.	

Circuit

DIFF AMPLIFIER

P2, P3: Symbol

P4, P5: Schematic

P6, P7, P8: Specs

♣ Analytically calculate the valid range for Vicm: the common mode input range (CMIR). Set Vicm at the center of this range.

 \rightarrow To Make M₁ & M₂ In Saturation

$$V_{g} = VICM > V_{D} - |V_{th}|, R_{D} = \frac{V_{out}CM}{I_{D}} = \frac{0.7 \text{ V}}{20 \mu A} = 35 \text{ k}\Omega$$

Since, $V_D = 0.7 \ V$, $V_{th} = 0.41 \ V$.

$$VICM \ge -|V_{th}| + \frac{1}{2}I_{SS}R_D$$

P9

 $VICM_{Min} = V_D - \bar{V}_{th} = 0.29 \text{ V}.$

→ To Make M₃ In Saturation

$$V_{DD} = V_{ov_3} + V_{sg_1} + VICM_{Max}$$

$$VICM_{Max} = V_{DD} - V_{ov_3} - \left(V_{ov_1} + |V_{th}|\right)$$

Since, $V_{ov_3} = V_{ov_1} = 170.5 \text{ mV}.$, $V_{th} = 0.41 \text{ V}.$

$$VICM_{Max} = V_{DD} - 2V_{ov} - |V_{th}| = 1.049 \text{ V}.$$

Report The Following: -

(1) **OP Simulation**

Report the schematic of the diff pair with DC OP point clearly annotated: i_d , v_{gs} , v_{ds} , v_{th} , v_{dsat} , g_m , g_{ds} , g_{mb} , region.

- Check that all transistors operate in saturation.
- From Above All Transistors have Region = 2 (In Saturation Region).

73.68 μS

Q1

 $\mathbf{Q2}$

 g_{mb}

region

 g_{mb}

region

147. 5 μS

 $73.78 \mu S$

(2) Diff. Small Signal CCS.

Q1, Q2, Q3

Report the Bode plot of small signal diff gain.

Compare the DC diff gain and BW with hand analysis in a table.

	P.O.C	Simulation	Hand Analysis
Q5	Diff Gain (A _{Diff})	7.53	$A_{V} = g_{m} * (R_{D}//r_{o})$
	BW	4. 678 MHZ	$BW = \frac{1}{2\pi R_D C_L} = 4.54 \text{ MHZ}$

(3) CM Small Signal CCS.

 $\mathbf{Q1}$ Report the Bode plot of small signal CM gain.

Compare the DC CM gain with hand analysis in a table. Is it smaller than "1"? Why?

	POC	Simulation	Hand Analysis
Q4	CM Gain (A _{CM})	61 mV/V	$A_{CM} = \frac{g_m R_D}{1 + 2g_m r_{o3}} = 63 \text{ mV/V}$

Yes, it is Smaller than 1 Because R_{SS} is R_{LFD} Which Has too large Value to make the Current Source Ideal.

- \blacksquare Justify the variation of A_{vcm} vs frequency.
- $\begin{array}{c|c} Q5 & \circ & A_{vCM} \text{ is Decreasing with Frequency as the Capacitor act as} \\ & \text{Open Circuit at low Frequencies, and Short Circuit at High} \\ & \text{Frequencies (Shunt) to ground.} \end{array}$

Plot A_{vd}/A_{vcm} in dB. Compare A_{vd}/A_{vcm} @ DC with Hand Analysis in A Table.

P.O.C	Simulation	Hand Analysis
CMRR	41.92 dB	CMRR = $\left(\frac{A_{vd}}{A_{CM}}\right) = 1 + 2g_mR_{ss} = 42.38 \text{ dB}$

- ightharpoonup Justify the variation of A_{vd}/A_{vcm} with frequency.
- OIt is Nearly Constant at Low Frequencies while when Frequency Increases it will Decrease then the Pole make it decrease by a Slope = -20 dB/Decade. Parasitic capacitors which are in parallel with R_{ss} begins to contribute with lower impedance, so R_{ss} is getting lower at high frequencies.

(4) Diff. Large Signal CCS.

☐ **Q** Analyses

☐ ac 1 10G 10 Logarithmic Points Per Decade Start-Stop

☐ dc t -1.8 1.8 10m Linear Step Size Start-Stop

Q1

🗹 🦀 Global Variables - 🔰 🗐 CL 1р ✓ 相 IB 20u 1u ✓ 園 RD 35k ✓ III VDD 1.8 ✓ In VDIFF ✓ III VICM 0.7 ✓ 自 W 22.5u Click to add variable

Report diff large signal ccs (VODIFF vs VIDIFF).

Q2

- **4** Compare the extreme values with hand analysis in a table.
 - \circ Full Switching Occur (All Current Flows in M_1): $I_d=I_{SS}=40~\mu\text{A}~,~V_{out}=I_dR_d=40\mu*35k=1.4~V.$

P.O.C	Simulation	Hand Analysis
V _{out} Diff.	1.3792 V	1.4 V

(5) CM Large Signal CCS. (Region vs VICM)

Plot "region" OP parameter vs VICM for the input pair and the tail current source.

Region	Meaning	
0	Cut – off	
1	Triode	
2	Saturation	
3	Sub – Threshold	
4	Breakdown	

4 Find the CM input range (CMIR).

Compare with hand analysis.

→ To Make M₁ & M₂ In Saturation

$$V_{g} = VICM > V_{D} - |V_{th}|, R_{D} = \frac{V_{out}CM}{I_{D}} = \frac{0.7 \text{ V}}{20 \mu A} = 35 \text{ k}\Omega$$

Since, $V_D = 0.7 \text{ V}$, $V_{th} = 0.41 \text{ V}$.

$$VICM \ge -|V_{th}| + \frac{1}{2}I_{SS}R_{D}$$

$$VICM_{Min} = V_D - V_{th} = 0.29 V$$
 (1).

→ To Make M₃ In Saturation

$$V_{DD} = V_{ov_3} + V_{sg_1} + VICM_{Max}$$

$$VICM_{Max} = V_{DD} - V_{ov_3} - (V_{ov_1} + |V_{th}|)$$

Since,
$$V_{ov_3} = V_{ov_1} = 170.5 \text{ mV.}$$
, $V_{th} = 0.41 \text{ V}$ (2).

 $VICM_{Max} = V_{DD} - 2V_{ov} - |V_{th}| = 1.049 \text{ V}.$

o As Shown in Figure above in the CMIR all Transistors is in Sat.

(6) CM Large Signal CCS. (GBW vs VICM)

IEEE_Workshop:lab_06_diff_amp_tb:1	Diff Gain Large	<u>L</u>	
IEEE_Workshop:lab_06_diff_amp_tb:1	max gain	7.532	

Max. Gain = 7.53290% Max. Gain = 6.7788

Plot the results overlaid on the results of the previous method (region parameter).

4 Find the CM input range. Compare with the previous method in a table.

From the Graphs Above.

VICM	Regions	90% A _{vd}
Minimum	0.29 V.	0.365 V.
Maximum	1. 049 V.	1. 14 V.