

## Задача 2. Опыт Физо

Весь XIX век физики были убеждены, что свет есть волна, распространяющаяся в особой среде — эфире. Практически все известные оптические явления нашли свое объяснение в рамках теории светоносного эфира. Одним из самых интересных и сложных вопросов являлся вопрос о взаимодействии материальных тел и светоносного эфира. В частности, как ведет себя эфир в движущемся теле: остается в покое; движется вместе с телом; или как-то по-иному.

Один из решающих экспериментов в исследовании этого явления провел французский физик Арман Ипполит Луи Физо.

Результаты этого опыта были опубликованы в 1859 году в работе «О гипотезах относительно светового эфира и об одном эксперименте, который, по-видимому, показывает, что движение тел меняет скорость, с которой свет распространяется внутри этих тел». Все численные результаты, использованные в этой задаче, взяты из названной статьи И. Физо.

Скорость света в вакууме считать равной  $c = 3{,}00 \cdot 10^8 \frac{M}{c}$ , Значения длин волн приведены для волн в вакууме. Показатель преломления воды  $n = 1{,}33$ 

Прежде чем приступить к анализу эксперимента И. Физо, вспомним основные положения теории интерференции света.

## Часть 1. Воспоминание об интерференции.

Наиболее простой для теоретического описания интерференции света является оптическая схема, предложенная английским физиком Т. Юнгом (рис. 1). Монохроматический свет падает нормально на непрозрачную пластинку, в которой на

небольшом расстоянии проделаны два маленьких отверстия  $S_1$  и  $S_2$ , которые можно рассматривать как когерентных два точечных света. большом источника Ha расстоянии этой пластинки OT расположен экран, на котором наблюдается интерференционная картина виде В системы параллельных равноотстоящих светлых и темных полос.



Рассмотрим описанную установку со следующими параметрами: Расстояние между отверстиями d=1,0мм; расстояние до экрана L=2,0м, длина волны света  $\lambda=0,55\cdot 10^{-6}$  м. (рис. 2)



1.1 Рассчитайте ширину интерференционной полосы  $\Delta x$  (расстояние между соседними максимумами) на экране.

Отверстие  $S_1$  закрывают плоскопараллельной стеклянной пластинкой P (рис.3), толщина которой  $h=5,0\cdot 10^{-6}\, M$ , а показатель преломления n=1,6. При такой малой толщине можно пренебречь смещением лучей в пластинке.



1.2 Рассчитайте на сколько полос (и в какую сторону) сместится интерференционная картина на экране.

## Часть 2. Эксперимент И. Физо – скорость света в движущейся воде.

Чтобы понять идею и цель рассматриваемого опыта И. Физо, процитируем его статью. «Эти гипотезы (относительно эфира) можно свети к трем основным...:

- эфир связан и как бы прикреплен к молекулам тела и, следовательно, участвует в движениях, которые могут сообщаться этим телам $^6$ ;
- эфир свободен и независим и не увлекается телами в их движения $x^7$ ;
- по третьему предположению... свободной остается лишь часть эфира, а другая часть прикрепляется к молекулам тела и только она участвует в его движении $^8$ »

Итак, И. Физо поставил цель экспериментально определить, какая из этих гипотез подтверждается экспериментально. Для этого необходимо измерить, как изменяется скорость света в движущейся среде. Обозначим скорость движения среды V, а скорость света в среде v.

- 2.1 Чему равна скорость света в неподвижной воде?
- 2.2 Запишите формулу для скорости света в движущей среде, в предположении, что справедлива гипотеза неподвижного эфира.
- 2.3 Запишите формулу для скорости света в движущей среде, в предположении, что справедлива гипотеза полного увлечения эфира.

В рамках гипотезы частичного увлечения эфира (предложенной О. Френелем) предполагается, что скорость света в движущейся среде складывается из скорости света в неподвижной среде и скорости среды, умноженной на некоторый коэффициент  $\gamma$ , который называется коэффициентом увлечения эфира.

2.4 Каким значениям  $\gamma$  соответствуют гипотезы неподвижного эфира и полного увлечения эфира?

-

<sup>&</sup>lt;sup>6</sup> Далее будем ее называть «Гипотеза полного увлечения эфира»;

<sup>&</sup>lt;sup>7</sup> Гипотеза неподвижного эфира;

<sup>&</sup>lt;sup>8</sup> Гипотеза частичного увлечения эфира;

На рис. 4 показана схема установки Физо. В этой установке свет проходил через две параллельные трубы  $T_1$  и  $T_2$  по которым равномерно текла вода с некоторой скоростью V. Торцы труб закрыты стеклянными окнами. Оптическая схема установки состояла из источника света  $\mathbf{U}$ , полупрозрачной пластинки  $\mathbf{\Pi}$ , трех зеркал  $\mathbf{3}_1$ ,  $\mathbf{3}_2$ ,  $\mathbf{3}_3$  и экрана  $\mathbf{3}$ , на котором с помощью зрительной



трубы с микрометром наблюдается интерференционная картина. Свет от источника с помощью линзы формируется в параллельный пучок, который падал на полупрозрачную пластинку. Пластинка разделяет пучок на две потока. Один из них отражается от пластинки, и следует по пути  $3_1$ , -  $3_2$ , -  $3_3$  попадает на пластинку и отражается в сторону экрана. Этот пучок распространяется в трубах в направлении течения воды. Второй световой пучок движется в обратном направлении: проходит чрез пластинку и далее следует по пути  $3_3$ , -  $3_2$ , -  $3_1$  и также попадает на экран. В результате интерференции этих пучков на экране и возникает система полос. Каждый из пучков проходит в движущейся воде расстояние L=1,49 в каждой трубе. Можно считать, что скорость движения воды на этом пути постоянна. Для расчета скорости воды И. Физо измерил объем жидкости, протекающий по трубам в единицу времени, и разделил его на площадь поперечного сечения трубы. В своих экспериментах И. Физо использовал свет с длиной волны  $\lambda = 526$  нм .

Еще раз процитируем статью И. Физо:

«Во время протекания воды полосы сохраняли хорошую отчетливость: они сдвигались параллельно самим себе без малейшего сомнения на величину, ощутимо пропорциональную скорости воды. При скорости 2 м/с смещение было уже хорошо заметно, при скорости от 4 до 7 м/с оно было вполне измеримым»

Для повышения точности измерений И. Физо измерял смещение полос при изменении направления течения воды. В результате тщательных измерений И. Физо констатировал: «При ширине одной полосы в пять делений микрометра... было установлено, что при скорости течения воды 7,06 м/с смещение вправо составляло 1,2 деления и смещение влево — 1,2 деления. Сумма двух смещений равна 2,4 деления, т.е. практически составляет половину полосы»

2.5 Рассчитайте теоретическое значение смещения полос, принимая гипотезу полного увлечения эфира. Совпадает ли это значение с экспериментально полученным значением? 2.6 Принимая гипотезу частичного увлечения эфира, определите значение коэффициента увлечения эфира  $\gamma$ , следующего из результатов эксперимента И. Физо.

## Часть 3. Но эфира то нет!

- 3.1 Покажите, что закон сложения скоростей, предложенный О. Френелем, является следствием релятивистского закона сложения скоростей. Интересно, что О.Френель получил правильную формулу, не зная теории относительности.
- 3.2 Используя формулу релятивистского сложения скоростей, получите формулу для коэффициента увлечения эфира  $\gamma$ . Выразите его через показатель преломления движущейся среды. Рассчитайте его значение для воды.
- 3.3 И. Физо сумел найти причину, объясняющую незначительное отклонение измеренного значения коэффициента  $\gamma$  от теоретического значения. Укажите эту причину и Вы.