COMPARISON FUNCTIONS

 $\mathsf{Class}\text{-}\mathcal{K}$

 $\mathsf{Class}\text{-}\mathcal{K}_{\infty}$

 $\mathsf{Class}\text{-}\mathcal{L}$

Class- \mathcal{KL}

Class-K Function

Definition

A continuous function $\alpha:[0,a)\to[0,\infty)$, where a>0 (possibly $a=\infty$), is said to be of class- $\mathcal K$ if:

- $ightharpoonup \alpha(0) = 0,$
- $ightharpoonup \alpha(r) > 0$ for all $r \in (0, a)$,
- $ightharpoonup \alpha$ is strictly increasing.

Class-K Function

Definition

A continuous function $\alpha:[0,a)\to[0,\infty)$, where a>0 (possibly $a=\infty$), is said to be of class- $\mathcal K$ if:

- $\qquad \qquad \alpha(0)=0,$
- $\qquad \qquad \alpha(r) > 0 \text{ for all } r \in (0, a),$
- $ightharpoonup \alpha$ is strictly increasing.

- $ightharpoonup \alpha(r) = r$
- $ightharpoonup \alpha(r) = r^p$, for any p > 0
- $\qquad \qquad \alpha(r) = \tan^{-1}(r)$

Class- \mathcal{K}_{∞} Function

Definition

A function $\alpha:[0,\infty)\to[0,\infty)$ is of class- \mathcal{K}_{∞} if:

- $ightharpoonup \alpha \in \mathcal{K}$,
- $\blacktriangleright \lim_{r\to\infty}\alpha(r)=\infty.$

Class- \mathcal{K}_{∞} Function

Definition

A function $\alpha:[0,\infty)\to[0,\infty)$ is of class- \mathcal{K}_{∞} if:

- $\qquad \qquad \alpha \in \mathcal{K},$
- $\blacktriangleright \lim_{r\to\infty}\alpha(r)=\infty.$

- $ightharpoonup \alpha(r) = r$
- $\qquad \qquad \alpha(r) = \ln(1+r^2)$

Class- \mathcal{L} Function

Definition

A function $\beta:[0,\infty)\to[0,\infty)$ is of class- $\mathcal L$ if:

- $\triangleright \beta$ is continuous,
- $ightharpoonup \beta$ is strictly decreasing,

Class- \mathcal{L} Function

Definition

A function $\beta:[0,\infty)\to[0,\infty)$ is of class- $\mathcal L$ if:

- $\triangleright \beta$ is continuous,
- $ightharpoonup \beta$ is strictly decreasing,
- $\blacktriangleright \lim_{t\to\infty}\beta(t)=0.$

- $\beta(t) = e^{-\lambda t} \text{ for } \lambda > 0$
- $ightharpoonup \beta(t) = \frac{1}{1+t}$
- $\beta(t) = \frac{1}{\sqrt{1+t}}$

Class- \mathcal{KL} Function

Definition

A function $\beta:[0,a)\times[0,\infty)\to[0,\infty)$ is of class- \mathcal{KL} if:

- ▶ For each fixed $t \ge 0$, $\beta(\cdot, t) \in \mathcal{K}$,
- ▶ For each fixed $r \in [0, a)$, $\beta(r, \cdot) \in \mathcal{L}$.

Class- \mathcal{KL} Function

Definition

A function $\beta:[0,a)\times[0,\infty)\to[0,\infty)$ is of class- \mathcal{KL} if:

- ▶ For each fixed $t \ge 0$, $\beta(\cdot, t) \in \mathcal{K}$,
- ▶ For each fixed $r \in [0, a)$, $\beta(r, \cdot) \in \mathcal{L}$.

Definition

A function $\beta:[0,a)\times[0,\infty)\to[0,\infty)$ is of class- \mathcal{KL} if:

- \triangleright $\beta(0,t)=0, \forall t,$
- For each fixed t, strictly increasing w.r.t. r,
- For each fixed r, strictly decreasing w.r.t. t,
- For each fixed r, $\lim_{t\to\infty} \beta(r,t) = 0$.

Class- \mathcal{KL} Function

Definition

- A function $\beta:[0,a)\times[0,\infty)\to[0,\infty)$ is of class- \mathcal{KL} if:
 - ▶ For each fixed t > 0, $\beta(\cdot, t) \in \mathcal{K}$,
 - For each fixed $r \in [0, a)$, $\beta(r, \cdot) \in \mathcal{L}$.

Definition

- A function $\beta:[0,a)\times[0,\infty)\to[0,\infty)$ is of class- \mathcal{KL} if:
 - $\beta(0,t)=0, \forall t,$
 - For each fixed t, strictly increasing w.r.t. r,
 - For each fixed r, strictly decreasing w.r.t. t,
 - For each fixed r, $\lim_{t\to\infty} \beta(r,t) = 0$.

- $\beta(r,t) = re^{-\lambda t}$ for $\lambda > 0$
- $\beta(r,t) = \frac{r}{1+t}$
- $\beta(r,t) = \frac{r}{\sqrt{1+t}}$

Lyapunov Fcn

Consider a system of the form $\dot{x}(t) = f_{i(\cdot)}(x(t))$ for which x = 0 is an equilibrium point.

A continuous function $\Psi:\mathbb{R}^n \to \mathbb{R}$ is said to be a Lyapunov function if

- $\blacktriangleright \ \kappa_1(\|x\|) \leq \Psi(x) \leq \kappa_2(\|x\|)$, where $\kappa_1, \kappa_2 \in \mathcal{K}$,
- $\Psi(x(t)) \leq \alpha(\Psi(x(0)), t), \forall t \geq 0,$
- $ightharpoonup \alpha(\psi,t)$ is a continuous function defined for $\psi,t\geq 0$
- for fixed t, strictly increasing w.r.t. ψ
- \blacktriangleright for fixed ψ , strictly decreasing w.r.t. t

Source: F. Blanchini and C. Savorgnan, "Stabilizability of switched linear systems does not imply the existence of convex Lyapunov functions," Automatica, vol. 44, no. 4, pp. 1166–1170, Apr. 2008

GAS

The origin is globally asymptotically stable for $\dot{x} = f(x)$ if there exists a function $\beta \in \mathcal{KL}$ such that, for all $x_0 \in \mathbb{R}^n$,

$$||x(t)|| \leq \beta(||x_0||, t), \forall t \in \mathbb{R}_{\geq 0}$$

Source: Kellett, C.M. A compendium of comparison function results. Math. Control Signals Syst. 26. 339–374 (2014)

Lyapunov Fcn-1

A Lyapunov function $V:\mathbb{R}^n \to \mathbb{R}_{\geq 0}$ for $\dot{x}=f(x)$ is a continuously differentiable function such that there exists $\alpha_1,\alpha_2\in\mathcal{K}_\infty$, a continuous positive definite function $\rho:\mathbb{R}^n\to\mathbb{R}_{\geq 0}$ and

$$\alpha_1(||x||) \le V(x) \le \alpha_2(||x||), \forall x \in \mathbb{R}^n$$

$$\dot{V}(x) \leq -\rho(x), \forall x \in \mathbb{R}^n$$

Lyapunov Fcn-1

A Lyapunov function $V:\mathbb{R}^n\to\mathbb{R}_{\geq 0}$ for $\dot{x}=f(x)$ is a continuously differentiable function such that there exists $\alpha_1,\alpha_2\in\mathcal{K}_\infty$, a continuous positive definite function $\rho:\mathbb{R}^n\to\mathbb{R}_{>0}$ and

$$\alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||), \forall x \in \mathbb{R}^n$$

$$\dot{V}(x) \leq -\rho(x), \forall x \in \mathbb{R}^n$$

Lyapunov Fcn-2

A Lyapunov function $V: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ for $\dot{x} = f(x)$ is a continuously differentiable function such that there exists $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$, $\beta \in \mathcal{KL}$ and

$$\alpha_1(||x||) < V(x) < \alpha_2(||x||), \forall x \in \mathbb{R}^n$$

$$V(x(t)) \leq \beta(V(x_0), t), \forall t \in \mathbb{R}_{>0}$$

Source: Kellett, C.M. A compendium of comparison function results. Math. Control Signals Syst. 26, 339–374 (2014)

ISS

Consider a time-invariant system of ordinary differential equations of the form

$$\dot{x} = f(x, u), x(t) \in \mathbb{R}^n$$

where $u: \mathbb{R}_+ \to \mathbb{R}^m$ is a Lebesgue measurable essentially bounded external input and f is a Lipschitz continuous function w.r.t. the first argument uniformly w.r.t. the second one. This ensures that there exists a unique absolutely continuous solution of the system.

System is called input-to-state stable (ISS) if $\exists \gamma \in \mathcal{K}, \exists \beta \in \mathcal{KL} \ni \forall x_0, \forall u \in \mathcal{U}_{adm}, \forall t \geq 0$:

$$\|x(t)\| \leq \beta(\|x_0\|,t) + \gamma(\|u\|_{\infty})$$

The function γ in the above inequality is called the gain.

Source: wikipedia.org/wiki/Input-to-state_stability