

MCBG2039A - CELLS AND ORGANISMS

INTRODUCTORY MICROBIOLOGY

THE MICROBIAL WORLD

CHAPTER I

MOLECULAR BIOLOGY AND THE UNITY AND DIVERSITY OF LIFE

1.14 - Molecular Basis of Life

1.15 - Woese and the Tree of Life

MOLECULAR BASIS OF LIFE

- Ability to grow bacteria rapidly under controlled conditions makes them excellent models for fundamental nature of life
- Led to foundations of molecular biology, genetics, and biochemistry
- Metabolic model chemistry: Certain macromolecules and reactions are universal

MOLECULAR BASIS OF LIFE

- Cracking the Code of Life
 - Bacteria can transfer DNA amongst each other horizontal gene transfer
 - Frederick Griffith, Streptococcus pneumoniae and transformation
 - Avery-MacLeod-McCarty experiment (1944)
 - James Watson, Francis Crick, Rosalind Franklin: structure of DNA
 - Emile Zuckerkandl and Linus Pauling: molecular sequences and evolutionary relationships

Early Evidence That DNA Is the Molecular Basis of Heredity

THE MICROBIAL WORLD

CHAPTER I

MOLECULAR BIOLOGY AND THE UNITY AND DIVERSITY OF LIFE

1.14 - Molecular Basis of Life

1.15 - Woese and the Tree of Life

- Ribosomal RNA (rNA) present in all cells made it possible to build the first tree of life
- First attempt by Ernst Haeckel (1866)
- Robert Whitaker (1969) Five kingdom classification scheme

- Carl Woese (1928–2012) realized rRNA sequences could be used to infer evolutionary relationships
 - discovered rRNA from methanogens distinct from Bacteria and Eukarya
 - named new group Archaea
 - found evolutionary relationships between all cells could be revealed by rRNA analysis

Evolutionary Relationships and the Phylogenetic Tree of Life

- Phylogenetic tree: depicts phylogeny (evolutionary history) of all cells
 - clearly shows three domains
 - Root is LUCA (last universal common ancestor)
 - evolution along two paths to form Bacteria and Archaea
 - Archaea later diverged to distinguish Eukarya from Archaea
- Cultivation-independent methods show most microbes have not been cultured yet

Analysis of Environmental rRNA Genes Leads to Discovery of New Microbial Species

(a) Cultivation-independent analysis of rRNA genes

(b) Revealing the extent of microbial diversity

- DNA sequencing technology improvements have improved ability to study Bacteria and Archaea
 - Can sequence entire genomes
 - Metagenomics: microbial genomes/fragments can be recovered from environmental DNA samples

