TRANSISTOR LƯỚNG CỰC

(Bipolar Junction Transistor - BJT)

Từ vựng (1)

- Bipolar transistor = transistor luông cực/tiếp xúc
- Emitter (E) = (miền/cực) phát
- Base (B) = (miền/cực) nền/gốc
- Collector (C) = (miền/cực) thu/góp
- Emitter/Collector diode = diode tạo bởi J_E/J_C
- Common base (CB) = nen/base chung
- Common collector (CC) = thu/collector chung
- Common emitter (CE) = phát/emitter chung

Từ vựng (2)

- Current gain = độ lợi dòng
- Cutoff/active region = miền tắt/tích cực
- Breakdown/saturation region = miền đánh thủng/bão hòa
- •H/h parameter = tham (thông) số hỗn hợp H/h (Hybrid)
- •Integrated circuit = vi mach = mach tích hợp = IC
- Junction = chuyển tiếp/tiếp xúc/tiếp giáp.

Từ vựng (3)

- Heat sink = tản nhiệt, giải nhiệt
- Power transistor = trasistor công suất
- Small-signal trasistor = trasistor tín hiệu nhỏ
- Switching circuit = mạch chuyển mạch, mạch xung
- Thermal resistance = nhiệt trở/điện trở nhiệt
- Forward/reverse = thuận/ngược
- Bias/biasing = phân cực

Nội dung

- Cấu tạo và phân loại.
- ❖Các chế độ hoạt động.
- *Các cách mắc và họ đặc tuyến tĩnh tương ứng.

Giới thiệu về BJT

Từ trái sang: John Bardeen, William Shockley, Walter Brattain.

Dec 23, 1947 John Bardeen, Walter Brattain and William Shockley demonstrate the transistor at Bell Labs in NJ It's been called the most important invention of the 20th century.

Giới thiệu về BJT

Different types of Transistor nowadays

Giới thiệu về BJT

- ❖ John Bardeen và Walter Brattain tại Bell Laboratories Mỹ đã phát minh ra transistor tiếp điểm vào năm 1947, và William Shockley đã phát minh ra transistor lớp chuyển tiếp vào năm 1948.
- * Transitor là linh kiện bán dẫn tích cực có 3 cực, thường được sử dụng như 1 phần tử khuếch đại hay 1 khóa điện tử trong mạch điện.

* Cấu tạo:

Cấu tạo:

- Gồm 3 lớp bán dẫn p và n xếp xen kẽ tạo thành hai lớp tiếp giáp/chuyển tiếp p-n.
- ➤ 3 cực là Emitter (E), Base (B), Collector (C) tương ứng với 3 miền bán dẫn cùng tên.
- Tiếp giáp p-n giữa miền B và miền E là tiếp giáp Emitter EBJ/J_E, giữa miền B và miền C là tiếp giáp Collector CBJ/J_C.

* Chức năng của 3 miền bán dẫn:

- ➤ Miền Emitter (miền phát): Phát xạ hạt tải điện cơ bản cho miền Base → pha tạp mạnh nhất.
- Miền Base (miền nền): Điều khiển số lượng hạt tải điện đi đến miền Collector $\rightarrow r\hat{a}t$ mỏng? và pha tạp yếu nhất.
- ➤ Miền Collector (miền thu): Thu thập hạt tải điện từ miền Base → pha tạp trung bình.

❖ Về mặt cấu trúc, có thể coi BJT như 2 diode mắc đối nhau.

Q: Có thể đổi Emitter và Collector cho nhau được không?

Phân loại và ký hiệu:

Symbol of npn transistor

Figure 2.3. Most of the common packages are shown here, for which we give the traditional designations. Top row (power), left to right: TO-220 (with and without heatsink), TO-39, TO-5, TO-3. Middle row (surface mount): SM-8 (dual), SO-8 (dual), SOT-23, ceramic SOE, SOT-223. Bottom row: DIP-16 (quad), DIP-4, TO-92, TO-18, TO-18 (dual).

Các chế độ hoạt động

❖ Để BJT hoạt động, cần cung cấp điện áp 1 chiều cho BJT (phân cực cho BJT) → phân cực cho J_E và J_C .

pnp Transistor-Connection Diagram

Các chế độ hoạt động

❖ 4 chế độ hoạt động của BJT:

Modes	EBJ	CBJ	Application
Cut-off	Reverse	Reverse	Switching application in digital circuits
Saturation	Forward	Forward	
Active	Forward	Reverse	Amplifier
Reverse active	Reverse	Forward	Performance degradation

Sơ đồ phân cực BJT trong chế độ khuếch đại

pnp:
$$V_C < V_B < V_E$$

Sơ đồ phân cực BJT trong chế độ khuếch đại

$$npn: V_C > V_B > V_E$$

Nguyên lý hoạt động (Transistor npn):

- J_E phân cực thuận nên có dòng electron từ miền E chuyển động sang miền $B \to \text{dòng } I_E$
- Tại miền B, 1 số electron ít bị tái hợp với lỗ trống ở miền B \rightarrow dòng I_B
- Các electron từ miền E khuếch tán qua miền B, đến được J_C sẽ được điện trường phân cực ngược của J_C cuốn sang miền $C \rightarrow$ dòng I_C

Các thành phần dòng điện:

- Dòng Emitter I_E
- Dòng Base I_B
- Dòng Collector I_C

Các thành phần dòng điện khác:

- Dòng hạt đa số từ miền B chuyển động sang miền E do $J_{\rm E}$ phân cực thuận.
- I_{CB0} : Dòng hạt thiểu số của miền C bị cuốn sang miền B do J_{C} phân cực ngược (Dòng rò leakage current).

* Các công thức cơ bản:

$$I_E = I_B + I_C$$
 $lpha = rac{I_C}{I_E}$
 $eta = rac{I_C}{I_R} = h_{FE}$

$$\alpha = \frac{\beta}{\beta + 1}$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

- · α là số truyền đạt dòng điện
- β là hệ số khuếch đại dòng điện

BJT trong chế độ khóa và bão hòa

- ❖ BJT hoạt động như 1 khóa điện tử:
 - Chế độ khóa (Cut-off mode) → khóa mở
 - Chế độ bão hòa (Saturation mode) → khóa đóng

BJT trong chế độ khóa và bão hòa

- ❖ BJT hoạt động như 1 khóa điện tử:
 - Chế độ khóa (Cut-off mode) → khóa mở
 - Chế độ bão hòa (Saturation mode) → khóa đóng

Các cách mắc BJT

❖ Mạng 2 cửa/mạng 4 cực (Two-port network):

- Cửa (Port)=1 cặp cực trong đó dòng điện đi vào 1 cực và đi ra ở cực kia.
- 1 cửa dùng để đưa tín hiệu vào mạch (lối vào), 1 cửa dùng để lấy tín hiệu ra khỏi mạch (lối ra).

- I₁: Dòng điện vào
- V₁: Điện áp vào
- I₂: Dòng điện ra
- V₂: Điện áp ra

Các cách mắc BJT

Các cách mắc BJT

- ❖ Khi sử dụng trong mạch điện, BJT tương đương với 1 mạng 4 cực → một cực chung cho cả lối vào và lối ra.
- Tên cách mắc là tên của cực được dùng cho cả lối vào và lối ra.
- ❖ 3 cách mắc BJT:
 - B chung (Common Base Configuration CB)
 - E chung (Common Emitter Configuration CE)
 - C chung (Common Collector Configuration CC)

3 cách mắc BJT

Common Emitter Configuration

Common Collector Configuration

Common Base Configuration

Các họ đặc tuyến tĩnh

Current Transfer Characteristics for CB Configuration

Output Characteristic Curve

Các họ đặc tuyến tĩnh

- ❖ Đặc tuyến tĩnh: Đồ thị biểu diễn sự phụ thuộc của dòng điện và điện áp trong mạch lối vào/ra của BJT ứng với từng cách mắc của BJT trong *chế độ tĩnh* (chưa có tín hiệu xoay chiều).
 - Đặc tuyến vào: $I_{vào} = f(U_{vào})$ khi $U_{ra} = h ang số$
 - Đặc tuyến ra: $I_{ra} = f(U_{ra})$ khi $I_{vao} = hang số$
 - Đặc tuyến truyền đạt: $I_{ra} = f(I_{vào})$ khi $U_{ra} = hằng số$

BJT MÅC E CHUNG (CE)

I_R: dòng điện vào

V_{BE}: Điện áp vào

 I_C : dòng điện ra

V_{CE}: Điện áp ra

- Tín hiệu xoay chiều đưa vào mạch qua cực B và E
- Tín hiệu xoay chiều lấy ra mạch qua cực C và cực E.

BJT MÅC E CHUNG (CE)

* Mạch đo đặc tuyến:

BJT MẮC E CHUNG (CE) – ĐẶC TUYẾN VÀO

$$I_B = f(V_{BE})|_{V_{CE} = h ang \ so}$$

- Dạng đồ thị giống đặc tuyến V-A của tiếp xúc p-n khi được phân cực thuận.
- V_{CE} tăng \to dòng I_{B} giảm (Tuy nhiên, thay đổi rất ít \to bỏ qua ảnh hưởng của V_{CE})

BJT MÁC E CHUNG (CE) – ĐẶC TUYẾN RA

$$I_C = f(V_{CE})|_{I_B = h \nmid ng \ s \circ}$$

• I_B tăng thì I_C tăng

• Vùng tích cực (active region): I_C tăng nhẹ khi V_{CE} tăng.

- V_{CE} giảm về $0 \rightarrow I_{C}$ giảm nhanh $\rightarrow J_{C}$ chuyển sang phân cực thuận \rightarrow BJT chuyển sang chế độ bão hòa $\rightarrow I_{C}$ không phụ thuộc I_{B}
- Vùng khóa: khi $I_B = 0$ thì $I_C \neq 0$ $(I_C \sim I_{CB0})$?

BJT MẮC E CHUNG (CE) – ĐẶC ĐIỂM CƠ BẢN

- * Tín hiệu vào và ra ngược pha nhau.
- * Trở kháng vào nhỏ nhưng lớn hơn so với cách mắc B chung.
- Trở kháng ra trung bình nhưng nhỏ hơn so với cách mắc B chung.
- ❖ Hệ số khuếch đại dòng điện từ vài chục đến vài trăm lần.
- ♣ Hệ số khuếch đại điện áp lớn (hàng ngàn đến chục ngàn lần).
- → ứng dụng khuếch đại điện áp, khuếch đại công suất.

BJT MÅC B CHUNG (CB)

- Tín hiệu xoay chiều đưa vào mạch qua cực E và B
- Tín hiệu xoay chiều lấy ra mạch qua cực C và B

 I_E : dòng điện vào

V_{EB}: Điện áp vào

 I_C : dòng điện ra

 V_{CB} : Điện áp ra

Common Base Conection of NPN Transistor

Circuit Globe

Tín hiệu vào và ra đồng pha nhau.

CB – ĐẶC TUYỂN VÀO

$$I_E = f(V_{BE})|_{V_{CB} = h \text{ ång s } \tilde{o}}$$

- For a specific value of V_{CB}, the curve is similar to the V-I characteristic of a forward biased p-n junction.
- The emitter current I_E increases rapidly with the small increase in emitter-base voltage. It shows that **input resistance is small.**
- As V_{CB} is increased, I_E increases slightly.

Input or driving point characteristics for a common-base silicon transistor amplifier.

CB – ĐẶC TUYỂN RA

$$I_C = f(V_{CB})|_{I_E = \text{hằng số}}$$

- ➤ In active region:
- I_C varies with V_{CB} only at very low voltages.
- I_C is approximately equal to I_E.
- The curve is almost flat. The large charges in V_{CB} produce only a tiny change in I_{C} \rightarrow The circuit has very high output resistance

• I_C is constant above certain values of $V_{CB} \rightarrow I_C$ is independent of V_{CB} and depends upon I_E only.

CB – ĐẶC TUYỂN RA

$$I_C = f(V_{CB})|_{I_E = \text{hằng số}}$$

- \triangleright When $I_E = 0$, the collector current is not zero.?
- When V_{CB} is positive, J_{C} is forward bias \rightarrow saturation state in which the collector current does not depend on the I_{E} .

BJT MẮC B CHUNG (CB) – ĐẶC ĐIỂM CƠ BẢN

- *Tín hiệu vào và ra đồng pha nhau.
- * Trở kháng vào rất nhỏ (vài chục đến vài trăm ôm).
- Trở kháng ra rất lớn.
- * Khuếch đại điện áp, không khuếch đại dòng điện.

BJT MÅC C CHUNG (CC)

Q: Xác định mạch lối vào/ra và các đại lượng điện tương ứng trong cách mắc CC?

NPN Transistor

BJT MÅC C CHUNG (CC)

Q: Xác định độ dịch pha của tín hiệu ra so với tín hiệu vào?

BJT MẮC C CHUNG (CC) – ĐẶC ĐIỂM CƠ BẢN

- *Tín hiệu vào và ra đồng pha nhau.
- Trở kháng vào lớn.
- Trở kháng ra nhỏ.
- *Khuếch đại dòng điện, không khuếch đại điện áp.

CC – ĐẶC TUYẾN VÀO

$$I_B = f(V_{CB})|_{V_{EC} = h ang \ so}$$

CC – ĐẶC TUYỂN RA

Bảng so sánh

S. No.	Characteristics	CB Configuration	CE Configuration	CC Configuration
1	Input resistance	Very low (40Ω)	Low (50Ω)	Very high (750kΩ)
2	Output resistance	Very high (1MΩ)	High (10kΩ)	Low (50Ω)
3	Current gain	Less than unity	High (100)	High (100)
4	Voltage gain	Small (150)	High (500)	Less than unity
5	Leakage current	Very small	Very large	Very large
6	Applications	For high frequency application	For audio frequency application	For impedance matching
7	Phase shift between input and output	0°	180°	0°