第 35 届全国信息学奥林匹克竞赛

CCF NOI 2018

模拟训练

时间: 2018 年 6 月 22 日 08:00 ~ 13:00

题目名称	餐馆	随机移动	矩阵
题目类型	传统型	传统型	传统型
目录	restaurants	random	matrix
可执行文件名	restaurants	random	matrix
输入文件名	restaurants.in	random.in	matrix.in
输出文件名	restaurants.out	random.out	matrix.out
每个测试点时限	1 秒	2 秒	1 秒
内存限制	512 MB	512 MB	512 MB
测试点数目	25	20	10
每个测试点分值	4	5	10

提交源程序文件名

对于 C++ 语言	restaurants.cpp	random.cpp	matrix.cpp
对于 C 语言	restaurants.c	random.c	matrix.c
对于 Pascal 语言	restaurants.pas	random.pas	matrix.pas

编译选项

对于 C++ 语言	-02 -lm	-02 -lm	-02 -lm
对于 C 语言	-02 -lm	-02 -lm	-02 -lm
对于 Pascal 语言	-02	-02	-02

餐馆 (restaurants)

【题目描述】

在一条东西向的街道上有 n 个餐馆,从西向东编号为 1 至 n,第 i 个餐馆和第 i+1 个餐馆的距离为 a_i 。

吃货小 W 喜欢到这条街道的餐馆里吃饭。现在,小 W 得到了 m 张餐票,每张餐票可以用于在街道上的任一餐馆里吃一餐。在第 i 个餐馆中,使用第 j 张餐票吃饭,可以获得的美味度为 $b_{i,j}$ 。注意,每张餐票最多用一次,但在同一餐馆内可以使用任意多张餐票。

小 W 打算用完这 m 张餐票。他可以选择任一餐馆作为起点,每次吃饭时,可以选择一个餐馆,然后从当前位置(上次吃饭的地点,如果不存在则为起点)出发前往该餐馆并用任意一张未用过的餐票吃一餐,直到吃完 m 餐为止。小 W 希望最大化每次吃饭的美味度之和减去路上经过的总路程的值。

【输入格式】

从文件 restaurants.in 中读入数据。

输入第一行包含两个正整数 n, m。

第二行包含 n-1 个正整数 $a_1, a_2, \cdots, a_{n-1}$ 。

接下来 n 行,每行包含 m 个正整数,其中第 i 行第 j 个数为 $b_{i,i}$ 。

【输出格式】

输出到文件 restaurants.out 中。

输出一行一个整数,表示所求的最小值。

【样例1输入】

- 3 4
- 1 4
- 2 2 5 1
- 1 3 3 2
- 2 2 5 1

【样例1输出】

11

【样例1解释】

最优方案如下:以餐馆 1 为起点,在餐馆 1 使用第 1 张餐票、第 3 张餐票,然后前往餐馆 2 使用第 2 张餐票、第 4 张餐票。

【样例 2 输入】

5 3

1 2 3 4

10 1 1

1 1 1

1 10 1

1 1 1

1 1 10

【样例 2 输出】

20

【样例 3】

见选手目录下的 restaurants/restaurants3.in 与 restaurants/restaurants3.ans。

【样例 4】

见选手目录下的 restaurants/restaurants4.in 与 restaurants/restaurants4.ans。

【子任务】

对于所有数据, $nm \le 10^6$, $n \ge 2$, $a_i, b_{i,j} \le 10^9$ 。

测试点编号	n	m	$a_i, b_{i,j}$
1	/ E	≤ 5	
2	≤ 5		
3	≤ 10	≤ 10	103
4	. 50		$\leq 10^3$
5	≤ 50	≤ 50	
6	≤ 100	≥ 50	
7			
8	≤ 200	≤ 500	
9		≤ 5000	
10	≤ 500	≤ 50	$\leq 10^6$
11		≤ 500	
12		≤ 2000	
13		<u> </u>	
14	≤ 1000	≤ 1000	
15	≤ 2000	≤ 500	
16	<u> </u>	2 000	
17	≤ 5000	≤ 200	
18		\$ 200	
19	≤ 20000	≤ 50	$\leq 10^9$
20		2 50	≥ 10
21	≤ 50000	≤ 20	
22		<u> </u>	
23	≤ 100000		
24		≤ 10	
25			

随机移动 (random)

【题目描述】

在平面直角坐标系中,有一个圆心为 (0,0),半径为 R 的圆。其中 R 可能等于 0,此时圆退化为一个点。

- 一个动点初始位于 (0,0),每秒分别有 p_1,p_2,p_3,p_4 的概率向左、下、右、上移动 1 个单位长度,即: 如果该点位于 (x,y),那么 1 秒后该点有 p_1 概率位于 (x-1,y), p_2 概率位于 (x,y-1), p_3 概率位于 (x+1,y), p_4 概率位于 (x,y+1)。保证 $p_1+p_2+p_3+p_4=1$ 。每次的移动是相互独立的。
- 一旦该点移动到圆的外部(不包含边界),该点将停止运动。求该点从开始到停止运动的期望时间。

【输入格式】

从文件 random.in 中读入数据。

输入一行五个整数 R, a_1, a_2, a_3, a_4 (0 $\leq R \leq$ 50, 1 $\leq a_1, a_2, a_3, a_4 \leq$ 1000), 其中 $p_i = \frac{a_i}{a_1 + a_2 + a_3 + a_4}$ 。

【输出格式】

输出到文件 random.out 中。

设答案为 $\frac{P}{o}$, 其中 $Q \not\equiv 0 \pmod{10^9+7}$, 输出 $P \cdot Q^{-1}$ 模 10^9+7 的值。

【样例1输入】

0 1 1 1 1

【样例1输出】

1

【样例1解释】

显然第 1 秒结束后该点必然位于圆外,故答案为 1。

【样例 2 输入】

1 1 1 1 1

【样例 2 输出】

666666674

【样例2解释】

答案为 $\frac{8}{3}$ 。

【样例3输入】

1 1 2 1 2

【样例3输出】

538461545

【样例3解释】

答案为 36/13。

【样例4输入】

12 156 272 569 512

【样例4输出】

272406471

【子任务】

测试点编号	R	测试点编号	R
1		11	≤ 20
2	= 1	12	≥ 20
3		13	≤ 25
4	= 2	14	Z 20
5		15	≤ 30
6	_ ≤ 5	16	≤ 40
7		17	≥ 40
8	≤ 10	18	
9		19	≤ 50
10	≤ 15	20	

矩阵 (matrix)

【题目描述】

给定一个n 行n 列的矩阵,我们用(i,j) 表示第i 行第j 列的格子。

初始时,有m个格子为黑色,其余格子为白色。具体地, $(a_1,b_1),(a_2,b_2),\cdots,(a_m,b_m)$ 为黑色。

你可以进行以下操作任意多次:

• 选择三个数 $1 \le x, y, z \le n$, 满足格子 (x, y) 和 (y, z) 均为黑色,然后将格子 (z, x) 染成黑色。

求最终最多能有多少个格子为黑色。

【输入格式】

从文件 matrix.in 中读入数据。

第一行输入两个正整数 n, m。

接下来 m 行,每行两个正整数 a_i, b_i 。保证 $1 \le a_i, b_i \le n$,每对 (a_i, b_i) 互不相同。

【输出格式】

输出到文件 matrix.out 中。

输出一行一个整数,表示黑色格子数量的最大值。

【样例1输入】

- 3 2
- 1 2
- 2 3

【样例1输出】

3

【样例 1 解释】

可以将 (3,1) 染黑。

【样例 2 输入】

- 2 2
- 1 1
- 1 2

【样例 2 输出】

4

【样例2解释】

可以将所有格子染黑。

【样例3输入】

- 4 3
- 1 2
- 1 3
- 4 4

【样例3输出】

3

【样例3解释】

所有白色格子都不能被染黑。

【样例 4】

见选手目录下的 matrix/matrix4.in 与 matrix/matrix4.ans。

【子任务】

测试点编号	n	m	
1	≤ 20	≤ 400	
2	≤ 50	≤ 2500	
3	≤ 200	≤ 40000	
4	≥ 200	<u> </u>	
5	≤ 500		
6	≤ 3000		
7	≥ 3000	$\leq 10^5$	
8		≤ 10°	
9	$\leq 10^5$		
10			