Organizacija datoteka

Fizičke strukture podataka i eksterni memorijski uređaji

Fizičke strukture datoteke i razmena podataka

Sadržaj

- Datoteka
- Jedinice magnetnih diskova
- Sprežni podsistem
- Efikasnost razmene podataka
- Performanse obrade podataka
- Organizacija datoteke i OS

- Kao logička struktura podataka (LSP)
 - struktura nad skupom pojava jednog tipa entiteta
 - struktura slogova, nad datim tipom sloga
 - često se posmatra kao linearna struktura slogova
- Kao fizička struktura podataka (FSP)
 - predstavlja jednu LSP
 - koja može biti viđena kao
 - linearna struktura (niz) slogova ili
 - niz znakova ili bajtova
 - smeštenu na eksterni memorijski uređaj
 - zajedno sa informacijama o samom načinu smeštanja
 LSP na uređaj

- Motivacija za upotrebu eksternih memorijskih uređaja
 - potreba trajnog memorisanja podataka
 - potreba memorisanja velikih količina podataka
 - potreba tolerantno brzog pristupa i operativnog korišćenja velike količine trajno memorisanih podataka
 - potreba postizanja niske cene memorisanja po jedinici kapaciteta

Izbor memorijskog uređaja

- OM nepogodan izbor
 - prednosti
 - kada bi cela datoteka mogla stati odjednom u OM, svi postupci vezani za obradu i organizovanje podataka sveli bi se na teoriju algoritama i struktura podataka u OM
 - kratko vreme pristupa (reda x10 ns) svakoj ćeliji, kao najmanjoj adresibilnoj jedinici
 - RAM pristup
 - » vreme pristupa ne zavisi od položaja lokacije na memorijskom medijumu
 - » opredeljeno je radom elektroničkih komponenti
 - nedostaci
 - nedovoljan kapacitet
 - nemogućnost trajnog memorisanja podataka
 - i dalje značajno skuplje memorisanje po jedinici kapaciteta

Izbor memorijskog uređaja

- magnetni disk
 - praktično, i dalje realan izbor već više decenija
 - prednosti
 - veliki kapacitet
 - mogućnost trajnog memorisanja podataka
 - značajno jevtinije memorisanje po jedinici kapaciteta
 - direktan pristup
 - » pristupa se grupi ćelija (bitova) direktno, a zatim svakoj ćeliji u grupi sekvencijalno
 - » mogućnost operativne upotrebe podataka
 - nedostaci
 - vreme pristupa zavisi položaja lokacije na memorijskom medijumu i bitno je duže nego u slučaju OM
 - sekundarni tip uređaja nemogućnost direktnog prihvatanja podataka od strane centralnog procesora (CPU)

Sadržaj

- Datoteka
- Jedinice magnetnih diskova
- Sprežni podsistem
- Efikasnost razmene podataka
- Performanse obrade podataka
- Organizacija datoteke i OS

- Opšta struktura memorijskog uređaja
 - upravljačka jedinica uređaja
 - upravljačka logika
 - adresni registar uređaja
 - registar podataka (prihvatna memorija) uređaja
 - registar statusa uređaja
 - sklop za vremensko vođenje uređaja
 - jedinica za memorisanje podataka
 - adresni mehanizam
 - memorijski medijum
 - pobudna kola
 - izlazni pojačavači

Jedinice magnetnih diskova

Magnetni disk

- karakteristični predstavnik eksternih memorijskih uređaja s rotacionim kretanjem medijuma
 - ostali predstavnici: DVD/CD jedinice
 - isti princip organizacije
 - adresnog prostora na memorijskom medijumu i
 - adresnog mehanizma
 - različita tehnologija memorisanja podataka
- memorijski medijum
 - jedna ili više kružnih ploča na rotirajućoj osovini
 - sa slojem feromagnetskog materijala sa obe strane
- adresni mehanizam
 - komplet upisno-čitajućih glava na nosaču

- Magnetni disk
 - organizacija adresnog prostora i adresni mehanizam

- Magnetni disk
 - organizacija adresnog prostora i adresni mehanizam

ugaona brzina rotacije (ob/min) (tipične vrednosti: 7200, 10800)

Rotaciono mehaničko kretanje

- Organizacija adresnog prostora
 - zasnovana na cilindričnom koordinatnom sistemu
 - koordinate vektora: (ρ, φ, z) poluprečnik, ugao i visina
 - staza (track)
 - kružnica koju opisuje upisno-čitajuća (R/W) glava na zadatom poluprečniku
 - podaci se upisuju na stazu "podužno", u obliku niza bitova
 - ćelija diska = 1 bit
 - najmanja jedinica upisa/čitanja podataka

- Organizacija adresnog prostora
 - vrste diskova s obzirom na kapacitet staze
 - diskovi sa stazama konstantnog kapaciteta
 - promenljiva podužna gustina zapisa
 - » najveća na stazi najmanjeg poluprečnika i obratno
 - » gubici u postizanju makimalnog mogućeg kapaciteta
 - diskovi sa stazama promenljivog kapaciteta
 - konstantna podužna gustina zapisa
 - » najveća moguća na stazi, ili grupi susednih staza
 - » komplikovanija organizacija adresnog prostora
 - » približavanje maksimalnom mogućem kapacitetu

Jedinice magnetnih diskova

- Organizacija adresnog prostora
 - cilindar (cylinder)
 - matematički, skup svih staza istog poluprečnika
 - praktično, disk sadrži 1-2 ploče, tj. 2 ili 4 R/W glave
 - veći broj staza po jednom cilindru, tj. veći broj glava, postiže se softverskim putem

sektor (sector)

- luk na stazi, konstantnog ugla
- staza se deli na konstantan broj sektora
- ne retko, broj sektora na stazi: $S = 2^n$
- između svaka dva sektora postoji međusektorski razmak
- najmanja adresibilna jedinica diska = sektor
 - svakom sektoru pristupa se direktno
 - svakom bitu unutar sektora pristupa se sekvencijalno

Jedinice magnetnih diskova

Sektorska organizacija adresnog prostora

- kod diskova sa stazama konstantnog kapaciteta
 - definisana podelom staze na konstantan broj sektora, konstantnog kapaciteta
- Uspostava adresnog prostora diska
 - fabrička priprema + formatiranje diska od strane OS
 - fabričke karakteristike
 - C ukupan broj cilindara diska
 - diktira maksimalni kapacitet diska
 - T ukupan broj staza po cilindru (broj glava)
 - tipično, *T* ≥ 16
 - S ukupan broj sektora na stazi
 - tipično, S ≥ 64

- Uspostava adresnog prostora diska
 - adresni prostor je diskretizovan, numeracijom cilindara, staza i sektora
 - numeracija cilindara: {0,..., C 1}
 - nulti cilindar cilindar najvećeg poluprečnika
 - numeracija staza na jednom cilindru: {0,..., T 1}
 - određena redosledom glava na nosaču
 - numeracija sektora na jednoj stazi: {0,..., S 1}
 - svaki sektor, u zaglavlju, ima upisan svoj redni broj
 - jedan od sektora odabran je da bude početni
 - » on značava i početak staze

- Uspostava adresnog prostora diska
 - adresa sektora na disku

•
$$c \in \{0,..., C-1\}$$

•
$$t \in \{0,..., T-1\}$$

•
$$s \in \{0,..., S-1\}$$

- adresa uređaja (jedinice diska)
- redni broj cilindra (poluprečnik)
- redni broj staze na cilindru (visina)
- redni broj sektora na stazi (ugao)

- Kapacitet diska
 - kapacitet sektora konstanta
 - K_s efektivni kapacitet sektora
 - obuhvata prostor za korisne podatke
 - veličina, tipično: $K_s = 512 \text{ B}$
 - K_s^h kapacitet zaglavlja sektora
 - obuhvata prostor za upisivanje identifikacionog broja sektora i identifikacionog broja zamenskog sektora
 - » ukoliko je dati sektor van upotrebe
 - K_s^e kapacitet pratećeg dela sektora
 - obuhvata prostor za kontrolni (ECC, CRC) kod
 - » za detekciju i korekciju grešaka
 - » garantuje, verovatnoću nastanka do, na primer, 1 / 10¹⁵ neoporavljivih grešaka
 - K_s^u ukupni kapacitet sektora $K_s^u = K_s + K_s^h + K_s^e$

- Kapacitet diska
 - efektivni kapacitet staze
 - $K_t = SK_s$
 - efektivni kapacitet cilindra
 - $K_c = TK_t$
 - efektivni kapacitet diska
 - $K_d = CK_c$

Kapacitet diska

- primer
 - $K_s = 512 \, \text{B}$ (korisnih podataka)
 - S = 180 (sektora na stazi)
 - T = 80 (staza po cilindru)
 - C = 50972 (cilindara na disku)
- efektivni kapacitet staze
 - $K_t = SK_s = 180 * 512 B = 92160 B = 90 KB$
- efektivni kapacitet cilindra
 - $K_c = TK_t = 80 * 90 \text{ KB} = 7200 \text{ KB} = 7,03125 \text{ MB}$
- efektivni kapacitet diska
 - $K_d = CK_c = 50972 * 7,03125 \text{ MB} = 358396,875 \text{ MB} \approx 350 \text{ GB}$

- Vreme pristupa sektoru (access time, latency)
 - vreme pristupa podacima na disku
 - komponente, za zadatu adresu (u, c, t, s)
 - vreme pozicioniranja kompleta glava na zadati cilindar c
 - opredeljeno brzinom kretanja kompleta glava po poluprečniku
 - mehaničko (translatorno) kretanje
 - reda veličine ms
 - vreme aktiviranja R/W glave za zadatu stazu t
 - opredeljeno radom elektroničkih komponenata
 - bar za par redova veličina kraće zanemaruje se
 - vreme pozicioniranja R/W glave na početak zadatog sektora
 - s rotaciono kašnjenje
 - opredeljeno brzinom rotacije paketa diskova
 - mehaničko (rotaciono) kretanje
 - reda veličine ms

Vreme pristupa sektoru (access time, latency)

$$- t_p = t_c + t_h + t_r$$

$$\bullet 0 \le t_c \le t_c^{max}$$

- za pređeni put kompleta glava $i \in \{0,..., C 1\}$
 - » iskazuje se brojem pređenih cilindara od cilindra na kojem su glave prethodno bile pozicionirane do traženog cilindra
 - » t_c se može posmatrati kao linearna funkcija od i

» za
$$i = 0 \Rightarrow t_c = 0 \text{ ms}$$

» za
$$i = 1 \Rightarrow t_c = 0.8 - 2 \text{ ms (tipično)}$$

» za
$$i = C - 1 \Rightarrow t_c = 14 - 24 \text{ ms (tipično)}$$

- » zaključak: najbolje je da sukcesivno traženi podaci budu smešteni na istom, ili bar susednom cilindru
- $t_h \approx 0$
- $0 < t_r \le 1 / \omega$
 - zavisi obrnuto proporcionalno od ugaone brzine rotacije
 - slučajna veličina sa uniformnom raspodelom na (0, 1 / ω)

- Srednje vreme pristupa sektoru
 - $\overline{t}_p = \overline{t}_c + \overline{t}_r$
 - srednje vreme pristupa cilindru
 - tipično oko 8 ms
 - srednje rotaciono kašnjenje

•
$$\overline{t_r} = 1/2\omega$$

- za 7200 ob/min \Rightarrow $\overline{t_r} \approx 4,17 \, \text{ms}$
- za 10800 ob/min \Rightarrow $\overline{t_r} \approx 2,78 \, \text{ms}$

- srednje vreme pristupa sektoru
 - tipično oko 9 12 ms

Jedinice magnetnih diskova

Zonsko-sektorska organizacija adresnog prostora

- kod diskova sa stazama promenljivog kapaciteta
 - definisana podelom staza na sektore
 - svaki sektor je konstantnog kapaciteta
 - broj sektora na stazi promenljiv
 - zavisi od poluprečnika staze
 - staze većeg poluprečnika sadrže više sektora
 - grupisanje staza po broju sadržanih sektora
 - zona
 - grupa susednih staza, sa istim brojem sektora
- tehnika organizacije adresnog prostora
 - zoned bit recording (ZBR) / multiple zoned recording

- Zonsko-sektorska organizacija adresnog prostora
 - ilustracija sa 5 zona (označene različitim bojama)

Jedinice magnetnih diskova

Zaključne napomene

- za više od pet redova veličine duže vreme pristupa nego kod OM
 - disk, srednje vreme pristupa: $\sim 9 12$ ms
 - već duži niz godina
 - OM, ciklus (uključuje i srednje vreme pristupa): ~ 60 ns

Potrebne mere

- poboljšati efikasnost prenosa podataka kroz U/I podsistem
 - efikasno korišćenje propusnog opsega sprežnog podsistema
- smanjiti potreban broj pristupa
 - unapređivanjem sistema diskova
 - izborom pogodne fizičke organizacije

Sadržaj

- Datoteka
- Jedinice magnetnih diskova
- Sprežni podsistem
- Efikasnost razmene podataka
- Performanse obrade podataka
- Organizacija datoteke i OS

Sprežni podsistem

Sprežni (U/I) podsistem

- sistem veza i algoritama za fizički prenos podataka između kontrolera periferijskog uređaja i OM
 - linije podataka
 - adresne linije
 - upravljačke i informacione linije

Sprežni (U/I) podsistem

- osnovna karakteristika
 - propusni opseg (bandwidth)
 - mogući broj prenetih bajtova u jedinici vremena (Bps)
 - dominantno zavisi od
 - broja linija podataka ("širine") i ciklusa sprežnog podsistema
 - ali i, efektivno, od propusnog opsega i ciklusa jedinice diska
 - » bitno sporiji uređaj od sprežnog podsistema i OM
- zahteva definisanje fiksne jedinice prenosa podataka
 - na nivou operativnog sistema

Osnovni koncepti

Fizički blok (blok)

- organizaciona jedinica memorisanja podataka
 - nedeljiva jedinica smeštanja podataka (lokacija) na jedinici eksternog memorijskog uređaja
 - osnovna (nedeljiva) jedinica alokacije prostora na eksternom memorijskom uređaju, fiksnog kapaciteta
 - u slučaju jedinice diska, niz sukcesivnih sektora na istoj stazi diska

Blok podataka (blok)

- organizaciona jedinica prenosa podataka
 - osnovna (nedeljiva) jedinica prenosa podataka, fiksnog kapaciteta

Osnovni koncepti

Kapacitet bloka / fizičkog bloka

- fiksna veličina
- definisana unapred, na nivou operativnog sistema
- kreće se u rasponu [512 B, 8 KB]
- tipične veličine: 2 KB, 4 KB, 8 KB

motivacija

- postizanje što boljeg iskorišćenja propusnog opsega
- olakšano upravljanje prenosom podataka

pravila

- U/I podsistem vrši prenos samo celih blokova podataka
- jedinica diska obezbeđuje smeštanje i preuzimanje samo celih fizičkih blokova podataka

Osnovni koncepti

- Fizički blok na disku zauzima
 - uvek ceo broj sektora
 - fizički susednih sektora
 - na istoj stazi diska

prednost

- garantuje se pristup celokupnom sadržaju bloka uz potrošnju najviše jednog vremena pristupa
 - srednjeg, ili u najgorem slučaju

nedostaci

- spoljnja fragmentacija prostora
 - neiskorišćeni sektori na kraju staze mogu služiti kao rezervni
- unutrašnja fragmentacija prostora
 - ne mora ceo blok biti zauzet isključivo korisnim podacima

Osnovni koncepti

- Sistemski bafer (sistemski prihvatnik)
 - prostor u OM koji se alocira za potrebe smeštanja sadržaja jednog bloka podataka
 - pripada sistemskom (zaštićenom) delu OM
 - podaci razmenjeni sa eksternim memorijskim uređajem smeštaju se u bafere OM, samo u jedinicama blokova

posledica

- zahteva se veći kapacitet OM
 - jer se u OM, putem blokova, prenose i podaci koji korisniku nisu neophodni u obradi i
 - neće biti preneti u memoriju korisničkog programa

Kontroler jedinice diska

- Zadaci
 - dekodiranje i izvršavanje R/W komande, dobijene od CPU
 - prijem adrese fizičkog bloka na disku
 - upravljanje adresnim mehanizmom u cilju pozicioniranja na traženu adresu
 - izdavanje naloga (signala) upravljačkoj logici uređaja
 - konverzija sadržaja bloka
 - iz bajt-serijskog oblika u niz memorijskih reči, pri čitanju i
 - iz niza memorijskih reči u bajt-serijski oblik, pri upisu podataka
 - ispitivanje statusa spremnosti jedinice diska za predaju ili preuzimanje podataka
 - privremeno memorisanje sadržaja bloka
 - "cache" memorija na jedinici diska
 - tipičnog kapaciteta 16 MB

- U/I podsistem za fizički prenos podataka
- Zadaci
 - inicijalizacija prenosa podataka
 - zadavanje
 - vrste R/W operacije
 - adrese bloka podataka na disku
 - adrese bafera u OM
 - kapaciteta bloka podataka za prenos
 - uvek je realizuje CPU
 - fizička razmena podataka na relaciji kontroler OM
 - iterativni postupak, razmena memorijska reč po reč
 - ispitivanje statusa spremnosti uređaja

- U/I podsistem za fizički prenos podataka
- Vrste
 - klasični "programirani" prenos
 - uslovni sa ispitivanjem statusa spremnosti uređaja
 - uposleno čekanje procesora
 - bezuslovni bez ispitivanja statusa spremnosti uređaja
 - prenos iniciran prekidima
 - Direct Memory Access (DMA) prenos
 - angažovanje DMA kontrolera za
 - fizičku razmenu podataka i
 - ispitivanje statusa spremnosti uređaja
 - prenos putem specijalizovanih (kanalskih) procesora

- Datoteka
- Jedinice magnetnih diskova
- Sprežni podsistem
- Efikasnost razmene podataka
- Performanse obrade podataka
- Organizacija datoteke i OS

- Parametri koji imaju dominantan uticaj
 - srednje vreme pristupa bloku (sektoru) na disku
 - $t_p^{sr} = 9 12 \text{ ms}$
 - vreme učitavanja / pisanja sadržaja bloka na disk
 - K_b kapacitet bloka
 - $K_t = SK_s$ efektivni kapacitet staze
 - $T_b = K_b / (\omega K_t)$ vreme učitavanja / pisanja sadržaja bloka
 - propusni opseg diska (brzina razmene podataka)
 - $V_d = \omega K_t \text{ [MB/s]}$

Efikasnost razmene podataka

Primer

$$-K_{s} = 512 \text{ B},$$

$$-S = 170, K_t = 87040 B = 85 KB,$$

$$-\omega = 10800$$
 ob/min

K _b	<i>512</i> B	1 KB	2 KB	<i>4</i> KB	8 KB
T_b (ms)	0,033	0,065	0,131	0,261	0,523

- zaključak: $T_b << t_p^{sr}$, čak i za veće vrednosti K_b
- propusni opseg diska $v_d = \omega K_t \approx 14,941 \text{ MB/s}$

Efikasnost razmene podataka

Primer

- $-K_{t} = 85 \text{ KB}, T = 80,$
- $K_b = 4 \text{ KB}, T_b = 0.261 \text{ ms},$
- $-t_p^{sr} = 10 \text{ ms}$
- ukupan broj blokova na stazi: $b_t = \lfloor K_t / K_b \rfloor = 21$
- ukupan broj blokova na cilindru: $b_c = Tb_t = 1680$

Efikasnost razmene podataka

Primer

- (A) pretpostavka
 - sukcesivno se učitava $b_c = 1680$ blokova jednog cilindra FSP datoteke to omogućava
 - potrebno vreme razmene podataka
 - $t_u^A = t_p^{sr} + b_c T_b = 10 \text{ ms} + 1680 * 0,261 \text{ ms} \approx 0,45 \text{ s}$
- (B) pretpostavka
 - učitava se $b_c = 1680$ blokova, slučajno raspoređenih po različitim cilindrima diska
 - potrebno vreme razmene podataka
 - $t_u^B = b_c(t_p^{sr} + T_b) = 1680 * (10 \text{ ms} + 0.261 \text{ ms}) \approx 17.24 \text{ s}$
- zaključak
 - $t_u^B >> t_u^A$, odnos $t_u^B / t_u^A \approx 38$ puta
 - potrebna je pogodna fizička organizacija datoteke

Efikasnost razmene podataka

Primer

- (C) pretpostavka
 - prenosi se sadržaj jednog bloka datoteke, $K_b = 4$ KB
 - sa diska
 - potrebno vreme razmene podataka

$$-t_u^{CD} = t_p^{Sr} + T_b = 10 \text{ ms} + 0.261 \text{ ms} \approx 10.261 \text{ ms}$$

• iz memorije, kapaciteta reči $K_w = 4$ B i ciklusa $t_c = 60$ ns

$$-t_u^{CM} = (K_b / K_w)t_c = 0.06144 \text{ ms}$$

zaključak

- $t_u^{CD} >> t_u^{CM}$, odnos $t_u^{CD} / t_u^{CM} = 167$ puta
- OM je brži uređaj
- pokazuje daleko bolju efikasnost razmene podataka u slučaju male količine podataka

Efikasnost razmene podataka

Primer

- (D) pretpostavka
 - prenosi se sadržaj sukcesivnih $b_c = 1680$ blokova jednog cilindra, $K_b = 4$ KB
 - sa diska
 - potrebno vreme razmene podataka

$$-t_u^{DD} = t_p^{sr} + b_c T_b = 10 \text{ ms} + 1680 * 0,261 \text{ ms} \approx 0,45 \text{ s}$$

• iz memorije, kapaciteta reči $K_w = 4$ B i ciklusa $t_c = 60$ ns

$$-t_u^{DM} = b_c(K_b / K_w)t_c = 1680 * 0.06144 \text{ ms} \approx 0.10 \text{ s}$$

zaključak

- $t_u^{DD} \sim t_u^{DM}$, odnos $t_u^{DD} / t_u^{DM} = 4.5$ puta
- bitno poboljšana efikasnost razmene podataka sa diska
- favorizacija upotrebe blokova većeg kapaciteta

Efikasnost razmene podataka

- Sistemi disk jedinica
 - klasterske arhitekture sistema disk jedinica
 - više nezavisnih jedinica diskova, povezanih jednim sprežnim sistemom
 - jedinstveni adresni sistem i načini pristupa
 - od strane različitih procesorskih jedinica u arhitekturi
 - nizovi disk jedinica
 - Redundant Array of Independent Disks (RAID) sistemi
 - više jedinica diskova koje se ponašaju kao jedna
 - redundantno memorisanje podataka
 - diskovi su po potrebi izmenljivi
 - obezbeđuju razmeštanje istih,ili sukcesivno traženih blokova na više nezavisnih disk jedinica
 - statistički, nije potrebno uvek čekati ukupno vreme pristupa

- Datoteka
- Jedinice magnetnih diskova
- Sprežni podsistem
- Efikasnost razmene podataka
- Performanse obrade podataka
- Organizacija datoteke i OS

Performanse obrade podataka

- Tehnike obezbeđenja dobrih performansi
 - operativne obrade perzistentnih podataka
 - vrste tehnika
 - (T) korišćenje uticaja tehnologije i tehnoloških parametara
 - (A) projektovanje odgovarajuće arhitekture sistema diskova
 - (O) izbor odgovarajućeg OS i podešavanje parametara OS
 - (P) projektovanje odgovarajuće FSP datoteka

Performanse obrade podataka

- Tehnike obezbeđenja dobrih performansi
 - operativne obrade perzistentnih podataka

skraćenje srednjeg vremena pristupa

- izbor disk jedinica boljih proizvođačkih karakteristika, npr. veće brzine rotacije, kraćeg vremena pristupa, itd. (T)
- upotreba sistema diskova (RAID, klasteri) sa simultanim pristupom blokovima (A)
- raspoređivanje slučajno, a sukcesivno traženih blokova na različite disk jedinice (A+P)

- efikasno korišćenje propusnog opsega diska

- izbor većeg kapaciteta bloka (O)
- izbor odgovarajuće FSP datoteke, saglasno potrebama programa (P)
- efikasnija upotreba raspoloživog kapaciteta bloka (P)

Performanse obrade podataka

- Tehnike obezbeđenja dobrih performansi
 - operativne obrade perzistentnih podataka

minimizacija potrebnog broja pristupa

- "keširanje" dela sadržaja diska u memoriji kontrolera (T)
- povećanje kapaciteta OM (T)
- "keširanje" dela sadržaja diska u OM (O)
- rezervacija većeg broja bafera za datoteku u OM (O)
- izbor odgovarajuće FSP datoteke, saglasno potrebama programa (P)

– skraćenje vremena prenosa i obrade podataka

- izbor sprežnog podsistema boljih karakteristika, npr. većeg propusnog opsega (T)
- izbor OM boljih karakteristika, npr. kraćeg ciklusa (T)
- izbor CPU boljih karakteristika, npr. više frekvencije, sa više keš memorije ili više procesorskih jezgara (T)

- Datoteka
- Jedinice magnetnih diskova
- Sprežni podsistem
- Efikasnost razmene podataka
- Performanse obrade podataka
- Organizacija datoteke i OS

Organizacija datoteke i OS

- Operativni sistem (OS)
 - omogućava organizovanje različitih FSP datoteka
 - na jedinicama diskova
 - vodi računa o organizaciji podataka i upotrebi svih datoteka na jedinicama diskova
 - može da pruža različite poglede na FSP datoteke
 - kao linearne strukture (niza) slogova
 - najčešće za potrebe korisničkih programa
 - kao niza znakova ili bajtova
 - za potrebe sistemskih programa, a
 - može i za potrebe korisničkih programa
 - kao (linearne ili neke drugačije) strukture blokova
 - za potrebe memorisanja i razmene podataka kroz U/I podsistem

Organizacija datoteke i OS

- Organizacija podataka na jedinici diska
 - OS održava na jedinici diska strukture podataka o
 - proizvođačkim karakteristikama same disk jedinice
 - ispravnim i neispravnim sektorima, kao i o zamenskim sektorima za neispravne sektore
 - slobodnom i zauzetom prostoru (fizičkim blokovima) na disku
 - katalogu (hijerarhijskoj strukturi foldera) sa pokazivačima na opise datoteka
 - sistemskoj i alokacionoj tabeli svake datoteke
 - sistemska tabela sadrži osnovne podatke o datoteci
 - alokaciona tabela sadrži pokazivače na područja diska koja su alocirana za potrebe datoteke

- Datoteka
- Jedinice magnetnih diskova
- Sprežni podsistem
- Efikasnost razmene podataka
- Performanse obrade podataka
- Organizacija datoteke i OS

Pitanja i komentari

Fizičke strukture podataka i eksterni memorijski uređaji

Fizičke strukture datoteke i razmena podataka