

NLPAssignment5 Report RNN

Prepared by

Name	ID
Ahmed Ali Ali	20200031
Ibrahim Hisham	20200005
Ahmed Ashraf	20200807

Assignment Report

Page titles used in this Assignment

"Machine learning"	"Deep learning"	"Natural Language Processing"	"Recurrent neural network"	"Convolutional neural network"
"Data science"	"Supervised	"Reinforcement	"Support vector	"Neural
	learning"	learning"	machine"	network"
"Gradient	"Cluster	"Random	"Dimensionalit	"Transfer
boosting"	analysis"	forest"	y reduction"	learning"

Each title has **10** pages to fetch, totaling **598254** char and **4860** words

- Sample of Text fetched after preprocessing:

'deep learn subset machin learn method base neural network represent learn the adject deep refer use multipl layer network method use either supervis semi supervis unsupervis deep learn architectur deep neural network deep belief network recurr neural network convolut neural network transform appli field includ comput vision speech recognit natur languag process machin translat bioinformat drug design medic imag analysi climat scienc materi inspect'

1- Model for predicting the next word:

Model inputs:

length of input sequence: 5

Step size for creating input sequences: 3

EX:

X_train[0]: ['deep', 'learn', 'subset', 'machin', 'learn']

Y_train [0]: method

Assignment Report

2- Model for predicting the next char:

Model inputs:

EX:

length of input sequence : 5

X_train[0]: ['d', 'e', 'e', 'p', '']

Step size for creating input sequences: 3

Y_train [0]: l

- Model Architecture

LSTM

Layer (type)	Output Shape	Param #
lstm_4 (LSTM)	(None, 5, 256)	290816
lstm_5 (LSTM)	(None, 5, 256)	525312
lstm_6 (LSTM)	(None, 256)	525312
dense_2 (Dense)	(None, 27)	6939
Total params: 1,348,379 Trainable params: 1,348,379 Non-trainable params: 0		

SimpleRNN

Layer (type)	Output	Shape	Param #			
simple_rnn_5 (SimpleRNN)	(None,	5, 256)	72704			
simple_rnn_6 (SimpleRNN)	(None,	5, 256)	131328			
simple_rnn_7 (SimpleRNN)	(None,	256)	131328			
dropout_5 (Dropout)	(None,	256)	0			
dense_4 (Dense)	(None,	27)	6939			
Total params: 342,299 Trainable params: 342,299 Non-trainable params: 0	=====		=======			

2

Assignment Report

- Evaluation & Results:

1.1- Model LSTM for predicting the next word:

Train Accuracy: 70%

Test Accuracy: 36%

NLPAssignment Report

- Evaluation & Results:

1.2- Model SimpleRNN for predicting the next word:

Assignment Report

- Evaluation & Results:

2.1- Model LSTM for predicting the next char:

Train Accuracy:

71%

Test accuracy:

60%

The next 10 characters after 'machin ' are predicted to be 'machin learn algo'

Assignment Report

- Evaluation & Results:

2.2- Model SimpleRNN for predicting the next char:

Train Accuracy:

57 %

Test:

accuracy: 0.59%

The predicted sequence after 'machin ' is 'machin tere sert

