

9.4三极管 Transistors

- 01 基本结构
- 02 电流分配和放大原理
- 03 特性曲线
- 04 主要参数

类型

结构

符号

PNP型三极管

内部结构特点

02 电流分配和放大原理

1. 三极管放大的外部条件

从电位的角度看:

NPN:

 $V_{\rm C} > V_{\rm B} > V_{\rm E}$

发射结.

从电压的角度看:

$$U_{\rm CE} > U_{\rm RE} > 0$$

$$U_{\mathrm{CE}} < U_{\mathrm{BE}} < 0$$

实验数据如下

$I_{\rm B}({\rm mA})$	0	0.02	0.04	0.06	0.08	0.10
$I_{\rm C}({ m mA})$	<0.001	0.70	1.50	2.30	3.10	3.95
$\overline{I_{\rm E}({ m mA})}$	<0.001	0.72	1.54	2.36	3.18	4.05

(1)
$$I_{\rm E} = I_{\rm B} + I_{\rm C}$$

(2)
$$I_{\rm C} >> I_{\rm B}$$
 , $I_{\rm C} \approx I_{\rm E}$

(3)
$$\Delta I_{\rm C} >> \Delta I_{\rm B}$$

先做一个实验

2. 三极管电流分 配和放大

$I_{\rm B}({\rm mA})$	0	0.02	0.04	0.06	0.08	0.10
$I_{\rm C}({\rm mA})$	<0.001	0.70	1.50	2.30	3.10	3.95
$I_{\rm E}({\rm mA})$	<0.001	0.72	1.54	2.36	3.18	4.05

结论:

(1)
$$I_{\rm E} = I_{\rm B} + I_{\rm C}$$

符合基尔霍夫定律

(2)
$$I_{\rm C} >> I_{\rm B}$$
, $I_{\rm C} \approx I_{\rm E}$

$$\overline{\beta} = \frac{I_{\rm C}}{I_{\rm B}} = \frac{1.50}{0.04} = 37.5, \qquad \overline{\beta} = \frac{I_{\rm C}}{I_{\rm B}} = \frac{2.30}{0.06} = 38.3 \qquad \overline{\beta}$$
 ——静态电流(直流)放大系数。

$$\overline{\beta} = \frac{I_{\rm C}}{I_{\rm R}} = \frac{2.30}{0.06} = 38.3$$

$$\overline{\beta}$$
——静态电流(直流)放大系数。

$$\beta = \frac{\Delta I_{\rm C}}{\Delta I_{\rm B}} = \frac{2.30 - 1.50}{0.06 - 0.04} = \frac{0.80}{0.02} = 40$$

$$\beta$$
——动态电流(交流)放大系数

2. 三极管电流分配和放大

(3) 当 $I_B = 0$ (将基极开路) 时, $I_C = I_{CEO}$,表中 $I_{CEO} < 0.001 \text{ mA} = 1 \mu A$ 。

(4)要使晶体管起放大作用,发射结必须正向偏置,发射区才可向基区发射电子;而集电结必须反向偏置,集电区才可收集从发射区发射过来的电子。

对于 NPN 型应满足:

$$U_{
m BE} > 0$$

$$U_{
m BC} < 0$$
 即 $V_{
m C} > V_{
m B} > V_{
m E}$

对于 PNP 型应满足:

$$U_{EB} > 0$$

$$U_{CB} < 0$$
 即 $V_{C} < V_{B} < V_{E}$

①小的基极电 流能够引起大 的集电极和发 射极的电流

②基极电流的微 小变化能够引起 集电极电流的较 大的变化

实质: 用一个微小 电流的变化去控制 一个较大电流的变 化, 是CCCS(电流 控制电流源) 器件

$$(1) I_{\rm E} = I_{\rm B} + I_{\rm C}$$

(2)
$$I_{\rm C} >> I_{\rm B}$$
 , $I_{\rm C} \approx I_{\rm E}$

(3)
$$\Delta I_{\rm C} >> \Delta I_{\rm B}$$

共发射极电路:

发射极E是

输入回路

的公共站

输出回路

——管子各电极电压与 电流的关系曲线

输入曲线:

$$I_B = f(U_{BE})|_{U_{CE}}$$
常数

输出曲线:

$$I_{C} = f(U_{CE})|_{I_{B}}$$
常数

开启电压

 U_{CE} =0.5V

$$I_B = f(U_{BE}) \Big|_{U_{CE}}$$
 常数

0.8 U_{BE}(V) 正常工作时发射结电压:

NPN型硅管:U_{BE}≈ 0.6~0.7V

PNP型锗管:*U*_{BE}≈ -0.2 ~ - 0.3V

3. 三级管工作区

输出特性曲线通常分三个工作区:

(1) 放大区

在放大区有 $I_C = \overline{\beta} I_B$,也称为<mark>线</mark>性区,具有恒流特性。

发射结正偏、集电结反偏

3. 三级管工作区

(2) 截止区

 $I_{\rm B} = 0$ 以下区域为截止区,有 $I_{\rm C} \approx 0$ 。

3. 三级管工作区

(3) 饱和区

深度饱和时, 硅管 $U_{\mathrm{CES}} pprox 0.3 \mathrm{V}$, 锗管 $U_{\mathrm{CES}} pprox 0.1 \mathrm{V}$ 。

晶体管的三种工作状态如下图所示

晶体管结电压的典型值

	工作状态					
管 型	饱和		放大	截止		
	$U_{ m BE}/{ m V}$	$U_{ m CE}/{ m V}$		$U_{ m BE}/{ m V}$		
			$U_{ m BE}/{ m V}$	开始截止	可靠截止	
硅管(NPN)	0.7	0.3	$0.6 \sim 0.7$	0.5	≤0	
锗管(PNP)	-0.3	-0.1	$-0.2 \sim -0.3$	-0.1	0.1	

4. 如何设置三极管工作状态?

调节 $U_{\rm BE}$ 和 $I_{\rm B}$

$$I_{Cmax} = rac{U_{CC}}{R_C}$$
 I_{C}
刚达到最大值时, $I'_{B} = rac{I_{Cmax}}{\overline{oldsymbol{eta}}}$

放大状态:

$$I_{\rm C} = \beta I_{\rm B}$$

 $U_{\rm BE} \approx 0.7 {
m V}$

 $U_{\mathrm{BE}} < U_{\mathrm{CE}} < U_{\mathrm{CC}}$

$$I_{\rm C} < \beta I_{\rm B}$$
,

深度饱和时, $I_{\rm C}$ 基本不再随 $I_{\rm B}$ 增大。

$$U_{\rm BE} \approx 0.7 {
m V}$$

$$U_{\rm CE} \approx 0$$

 I_{C} 会一直 增大吗?

不会!

因为 I_{C} 有最大值。

5. 三极管开关作用

截止状态:

$$I_{\rm B}\!=\!0$$
 , $I_{\rm C}\!pprox\!0$

$$U_{\rm CE} \approx U_{\rm CC}$$

饱和状态:

$$I_{\rm C} \approx U_{\rm CC}/R_{\rm C}$$

$$U_{\rm CE} \approx 0$$

04 主要参数

04 主要参数

- 1. 电流放大系数 $\overline{\beta}$, β
- 2. 集—基极反向截止电流 I_{CBO}
- 3. 集—射极反向截止电流 I_{CEO}
- 4. 集电极最大允许电流 I_{CM}
- 5. 集—射反向击穿电压 $U_{(BR)CEO}$
- 6. 集电极最大允许耗散功率 P_{CM}

由 $I_{\rm CM}$ 、 $U_{\rm (BR)CEO}$ 、 $P_{\rm CM}$ 三 者共同确定晶体管的安全工作区。

三级管参数与温度的关系

- 1、温度每增加 10° C, I_{CBO} 增大一倍。硅管优于锗管。 I_{CEO} \uparrow = $(1+\beta)$ I_{CBO}
- 2、温度每升高 1° C, U_{BE} 将减小 $-(2_2.5)$ mV,即晶体管具有负温度系数。
- 3、温度每升高 1°C, β增加 0.5%~1.0%。

这些参数的变化,最后都集中反映到 I_{C} \uparrow 。

三极管

总结: 要使三级管起放大作用,发射结必须<mark>正向偏置</mark>,发射区才可向基区发射电

子; 而集电结必须反向偏置, 集电区才可收集从发射区发射过来的电子。

下图给出了起放大作用时 NPN 型和 PNP 型三极管中电流实际方向和发射结与集电结的实际极性。

NPN 型三极管

即
$$V_{\rm C} > V_{\rm B} > V_{\rm E}$$

PNP 型三极管

即
$$V_{\rm C} < V_{\rm B} < V_{\rm E}$$

三极管

- 例: 放大电路中三极管3个电极的电位为下列各组数据, 试确定各点为 对应的电极和三极管的类型。(是PNP管还是NPN管,是硅管还是 锗管?)
 - (1) 5V, 1.2V, 0.5V (2) 6V, 5.8V, 1V

解:

(1)
$$V_{\rm C}$$
=5V, $V_{\rm B}$ =1.2V, $V_{\rm E}$ =0.5V $U_{\rm BE}$ =0.7V 硅管, NPN型

(2)
$$V_{\rm C} = 1 \, \text{V}$$
, $V_{\rm B} = 5.8 \, \text{V}$, $V_{\rm E} = 6 \, \text{V}$

- * 一般先设法确定B、E极,再确定C极;根据 $|U_{RE}|$ 大小确定硅管或锗管;
- * 再根据三极电位高低可确定是NPN管还是PNP管