

计算机组成原理

授课老师: 吴炜滨

大纲

- > 定点运算
 - 除法运算
 - 笔算除法的分析
 - 笔算除法的改进
 - 原码的除法运算

笔算除法的分析

$$\begin{array}{c} 0.1\,1\,0\,1 \\ 0.1\,1\,0\,1 \\ \hline 0.0\,1\,1\,0\,1 \\ \hline 0.0\,1\,1\,0\,1 \\ \hline 0.0\,1\,0\,0\,1\,0 \\ \hline 0.0\,0\,1\,1\,0\,1 \\ \hline 0.0\,0\,0\,1\,0\,1\,0\,1 \\ \hline 0.0\,0\,0\,0\,1\,1\,0\,1 \\ \hline 0.0\,0\,0\,0\,1\,1\,0\,1 \\ \hline \end{array}$$

- 商符单独处理
- ■心算上商
- 余数不动低位补 "0" , 减右移一位的除数
- 上商位置不固定

$$x \div y = -0.1101$$
 商符心算求得
余数 0.0000111

笔算除法的改进

■ 笔算除法

- 商符单独处理
- 心算上商
 - 比较余数和右移一位的除数的大小
 - 余数<除数: 上商0
 - 余数≥除数: 上商1
- 余数 不动 低位补 "0", 减右移一位 的除数
- 2 倍字长加法器
- · 上商位置 不固定

■ 机器除法

- 符号位异或形成
- 根据减法结果上商
 - 左移一位的余数的绝对值减除数的绝对值
 - 差<0,上商0
 - 差≥0, 上商1
- 余数 左移一位 低位补 "0",减 除数
- 1 倍字长加法器
- 在寄存器 最末位上商,每次上商完左移一位

大纲

- > 定点运算
 - 除法运算
 - 原码的除法运算
 - 运算规则
 - 恢复余数法
 - 加减交替法 (不恢复余数法)
 - 硬件配置
 - 控制流程

运算规则

■以小数为例

• 整数除法过程相同, 将小数点改为逗号即可

$$[x]_{\mathbb{R}} = x_0 \cdot x_1 x_2 \cdots x_n \qquad [y]_{\mathbb{R}} = y_0 \cdot y_1 y_2 \cdots y_n$$
$$[\frac{x}{y}]_{\mathbb{R}} = (x_0 \oplus y_0) \cdot \frac{x^*}{y^*}$$

■式中

- $x^* = 0.x_1x_2 \cdots x_n$ 为 x 的绝对值
- $y^* = 0. y_1 y_2 \cdots y_n$ 为 y 的绝对值
- 商的符号位单独处理 $x_0 \oplus y_0$
- 数值部分为绝对值相除 $\frac{x^*}{y^*}$

运算规则

$$\left[\frac{x}{y}\right]_{\mathbb{R}} = (x_0 \oplus y_0) \cdot \frac{x^*}{y^*}$$

■ 约定

- 小数定点除法 *x** < *y**
 - 小数定点机,数据绝对值<1
- 整数定点除法 $x^* \ge y^*$
 - 整数定点机,数据绝对值≥1
- 被除数不等于 0
 - 结果总为0, 无需经过除法运算, 直接利用判零电路即可得结果
- 除数不能为 0
 - 结果为无穷大,不能在机器中表示
- 商的位数与操作数的位数相同

■ 设机器字长为5位(含1位符号位), x = -0.1011, y = -0.1101, 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

解:
$$[x^*]_{\bar{\mathbb{R}}} = 0.1011$$
 $[y^*]_{\bar{\mathbb{R}}} = 0.1101$

$$[y^*]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{$$

■ 设机器字长为5位(含1位符号位), x = -0.1011, y = -0.1101, 求 $\left[\frac{x}{y}\right]_{\bar{p}}$

$$[x^*]_{\bar{\mathbb{R}}} = 0.1011 \quad [y^*]_{\bar{\mathbb{R}}} = 0.1101 \quad [y^*]_{\dot{\mathbb{R}}} = 0.1101 \quad [-y^*]_{\dot{\mathbb{R}}} = 1.0011$$

数值	直	立口	35	5
<i>~</i> /\				

	被除数 (余数)	商	说明
	0.1011	0.0000	
	+ 1.0011		$+[-y^*]_{\dot{\imath} \backprime}$
	1.1110	0.0000	余数为负,上商0
	+ 0.1101		恢复余数 +[y*] _补
——————————————————————————————————————	0.1011	0.0000	恢复后的余数
生	多 1.0110	0.000	← 1
	+ 1.0011		$+[-y^*]_{\lambda \mid k}$
	0.1001	0.0001	余数为正,上商 1
左村	多 1.0010	0.001	← 1
	+ 1.0011		$+[-y^*]_{\lambda h}$

被除数(余数)	商	<u>说 明</u>
0.0101	0.0011	余数为正,上商 1
逻辑左移 0.1010	0.011	← 1
+ 1.0011		$+[-y^*]_{\dot{\uparrow}\dot{\uparrow}}$
1.1101	0.0110	余数为负,上商0
+ 0.1101		<u>恢复余数 +[y*]_补</u>
(m/t= / T/z) 0.1010	0.0110	恢复后的余数
逻辑	0 110	← 1
+ 1.0011		$+[-y^*]_{\dot{\imath} \dot{\backprime}}$
0.0111	0.1101	余数为正,上商 1

$$\frac{x^*}{y^*} = 0.1101$$

真正余数由最终余数乘上 2^{-n} 所得:0.00000111

■ 设机器字长为5位(含1位符号位), x = -0.1011, y = -0.1101, 求 $[\frac{x}{y}]_{\bar{p}}$

$$[x]_{\text{fi}} = 1.1011 \ [y]_{\text{fi}} = 1.1101$$

商符

$$x_0 \oplus y_0 = 1 \oplus 1 = 0$$

• 商值由两数绝对值相除而得

$$\frac{x^*}{y^*} = 0.1101$$

• 真正余数由最终余数乘上2⁻ⁿ所得: 0.00000111

$$\therefore \left[\frac{x}{v}\right]_{\mathbb{R}} = 0.1101$$
 余数: 0.00000111

■ 特点

- 每次上商时,减除数
 - 余数为正: 上商 1
 - 余数为负: 上商 0, 恢复余数
 - 余数逻辑左移1位,与除数进行比较,准备下次上商
- 第一次上商判溢出
 - 小数定点机,第一次上商为1,发生溢出
- 上商n+1次
- 移位n次

加减交替法 (不恢复余数法)

■ 恢复余数法运算规则

- 每次上商时,减除数
 - 余数 $R_i > 0$, 上商 "1"
 - 余数逻辑左移1位,减除数,进行下次上商判断: $2R_i y^*$
 - 余数 $R_i < 0$, 上商 "0"
 - 恢复余数: $R_i + y^*$, 再逻辑左移1位, 减除数, 进行下次上商判断: $2(R_i + y^*) y^* = 2R_i + y^*$

■ 不恢复余数法运算规则

- 第一次上商时,减除数
 - 余数 $R_i > 0$, 上商 "1"
 - 下次判断上商时余数: $2R_i y^*$
 - 余数 $R_i < 0$, 上商 "0"
 - 下次判断上商时余数: 2*R_i* + *y**
- 加减交替

加减交替法 (不恢复余数法)

■ 已知机器字长为5位(含1位符号位), x = -0.1011, y = -0.1101, 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

解:
$$[x^*]_{\bar{\mathbb{R}}} = 0.1011$$
 $[y^*]_{\bar{\mathbb{R}}} = 0.1101$

$$[y^*]_{\dot{k}h} = 0.1101 \qquad [-y^*]_{\dot{k}h} = 1.0011$$

解:

$$[x^*]_{\mathbb{R}} = 0.1011$$

 $[y^*]_{\mathbb{R}} = 0.1101$
 $[y^*]_{\stackrel{}{\uparrow}} = 0.1101$
 $[-y^*]_{\stackrel{}{\uparrow}} = 1.0011$

•	被除数 (余数)	商	说 明
	0.1011	0.0000	
逻辑左移	+1.0011		$+[-y^*]_{\dot{\imath} \dot{\backprime}}$
	1.110	0.0000	余数为负,上商0
	1.1100	0.000	← 1
逻辑左移	+0.1101		$+[y^*]_{ eqh}$
		0.0001	余数为正,上商 1
	1.0010	0.001	← 1
逻辑左移	+1.0011		$+[-y^*]_{\dot{\imath} \dot{\backprime}}$
		0.0011	余数为正,上商 1
	0.1010	0.011	← 1
\m+=	+1.0011		$+[-y^*]_{\dot{\imath} \dot{\backprime}}$
逻辑		0.0110	余数为负,上商0
左移	1.1010	0.110	← 1
	+0.1101		$+[y^*]_{ eq h}$
	0.0111	0.1101	余数为正,上商 1

加减交替法 (不恢复余数法)

■ 设机器字长为5位(含1位符号位), x = -0.1011, y = -0.1101, 求 $\left[\frac{x}{y}\right]_{\bar{p}}$

$$[x]_{\text{fi}} = 1.1011 \ [y]_{\text{fi}} = 1.1101$$

商符

$$x_0 \oplus y_0 = 1 \oplus 1 = 0$$

• 商值由两数绝对值相除而得

$$\frac{x^*}{y^*} = 0.1101$$

• 真正余数由最终余数乘上2⁻ⁿ所得: 0.00000111

$$\therefore \ [\frac{x}{v}]_{\mathbb{R}} = 0.1101 \qquad \qquad 余数: 0.00000111$$

加减交替法 (不恢复余数法)

■ 特点

- 第一次上商时,减除数
 - 余数 $R_i > 0$, 上商 "1"
 - 下次判断上商时余数: $2R_i y^*$
 - 余数 $R_i < 0$, 上商 "0"
 - 下次判断上商时余数: 2*R_i* + *y**
- 第一次上商判溢出
 - 小数定点机,第一次上商为1,发生溢出
- 上商 n+1次
- 移位n次, $\ln n + 1$ 次
- 用移位的次数判断除法是否结束

原码加减交替除法硬件配置

- 寄存器A、X、Q、加法器均n+1位
 - A:被除数的原码、余数
 - X: 除数的原码
 - Q (MQ): 商的原码
- 用 Q_n 控制加减交替
 - 左移一位
 - Q_n=1做减法
 - Q_n=0做加法

原码加减交替除法硬件配置

- 计数器C
 - 计数器值=移位次数=数值部分位数=n
 - 每移位一次, 计数器值减1
- S: 商符
 - 值=被除数和除数的符号位 进行异或
- G_D: 除法标志
- V: 溢出标志

原码加减交替除法控制流程

■准备

- Q清零准备接收商,被除数原码 \rightarrow A,除数原码 \rightarrow X,除数位数 $n \rightarrow$ C
- 求商符
 - $A_0 \oplus X_0 \rightarrow S$
- 变被除数/除数为绝对值
 - $0 \rightarrow A_0, 0 \rightarrow X_0$
- 第一次上商判断溢出
 - $[A] [X] \rightarrow A$
 - A < 0?
 - Y: $0 \rightarrow Q_n$
 - N: 溢出1 → V, 停止运算, 进行中断处理, 重新选择比例因子
 - A、Q 同时左移一位
 - $[C] 1 \rightarrow C$
 - $[A] + [X] \rightarrow A$

原码加减交替除法控制流程

■ 逐位上商

- A < 0?
 - Y:
 - 0 → Q_n, A、Q 左移一位, [A] + [X] → A
 - N:
 - 1 → Q_n, A、Q 左移一位, [A] [X] → A
- $[C] 1 \rightarrow C$
- C = 0?
 - N: 回到判断A < 0?
 - Y: 最后一次上商
 - A < 0?
 - Y: $0 \rightarrow Q_n$
 - N: $1 \rightarrow Q_n$

谢谢!