Homework 10

Theory

- 1. Consider the standard Brownian motion $W = (W(t), t \ge 0)$. Find:
 - A. $\mathbb{P}(1 < W(4) < 3)$
 - B. $\mathbb{P}(W(3) > W(1) + 1)$
 - C. $\mathbb{P}(W(1) < W(2) < W(4))$
 - D. $\mathbb{P}(-5 < W(5) < 0 | W(1.4) = -2)$
 - E. $\mathbb{E}[W^3(t)]$ for t > 0
 - F. $\mathbb{E}[W^4(t)]$ for t > 0
 - G. $\mathbb{E}[W^2(t)|W(s)=x]$ for 0 < s < t and $x \in \mathbb{R}$

Solution

A.
$$\mathbb{P}(1 < W(4) < 3)$$

For standard Brownian motion $W = (W(t), t \ge 0), W(t) - W(s) \sim N(0, t - s).$ W(4) is then $W(4) - W(0) \sim N(0, 4 - 0) \sim N(0, 4)$. We can convert this distribution to standard normal and solve:

$$\mathbb{P}(1 < W(4) < 3) = \mathbb{P}(\frac{1-0}{\sqrt{4}} < \frac{W(4)-0}{\sqrt{4}} < \frac{3-0}{\sqrt{4}})$$

$$= \mathbb{P}(\frac{1}{2} < Z < \frac{3}{2})$$

$$= \mathbb{P}(Z < \frac{3}{2}) - P(Z < \frac{1}{2})$$

$$= \Phi(\frac{3}{2}) - \Phi(\frac{1}{2})$$

$$= 0.9332 - 0.6915$$

$$= 0.2417.$$
(1)

B.
$$\mathbb{P}(W(3) > W(1) + 1)$$

The probability $\mathbb{P}(W(3) > W(1) + 1)$ can be rewritten as $\mathbb{P}(W(3) - W(1) > 1)$. For standard Brownian motion, $W(3) - W(1) \sim N(0, 3 - 1) \sim N(0, 2)$. We can define $\zeta = W(3) - W(1)$, convert to standard normal and then solve:

$$\mathbb{P}(W(3) > W(1) + 1) = \mathbb{P}(W(3) - W(1) > 1)
= \mathbb{P}(\zeta > 1)
= \mathbb{P}(\frac{\zeta - 0}{\sqrt{2}} > \frac{1}{\sqrt{2}})
= 1 - \Phi(\frac{1}{\sqrt{2}})
\approx 1 - 0.7611
= 0.2389.$$
(2)

C. $\mathbb{P}(W(1) < W(2) < W(4))$

We can rewrite $\mathbb{P}(W(1) < W(2) < W(4))$ as $\mathbb{P}(W(1) < W(2) \cap W(2) < W(4))$. Since Brownian motion has independent increments, this becomes $\mathbb{P}(W(1) < W(2)) \cdot \mathbb{P}(W(2) < W(4))$. We can rearrange this expression as $\mathbb{P}(0 < W(2) - W(1)) \cdot \mathbb{P}(0 < W(4) - W(2))$. Then, by defining $\zeta_1 = W(2) - W(1) \sim N(0,1)$ and $\zeta_2 = W(4) - W(2) \sim N(0,2)$, we can solve:

$$\mathbb{P}(0 < W(2) - W(1)) \cdot \mathbb{P}(0 < W(4) - W(2)) = \mathbb{P}(0 < \zeta_1) \cdot \mathbb{P}(0 < \frac{\zeta_2 - 0}{\sqrt{2}})$$

$$= (1 - \Phi(0)) \cdot (1 - \Phi(0))$$

$$= 0.5 \cdot 0.5$$

$$= 0.25.$$
(3)

D.
$$\mathbb{P}(-5 < W(5) < 0 | W(1.4) = -2)$$

The probability $\mathbb{P}(-5 < W(5) < 0 | W(1.4) = -2)$ can be rewritten as $\mathbb{P}(-5 - (-2) < W(5) - W(1.4) < 0 - (-2)) = \mathbb{P}(-3 < W(5) - W(1.4) < 2)$. We can let $\zeta = W(5) - W(1.4) \sim N(0, 3.6)$ and then solve:

$$\mathbb{P}(-3 < W(5) - W(1.4) < 2) = \mathbb{P}(-3 < \zeta < 2)$$

$$= \mathbb{P}(\frac{-3}{\sqrt{3.6}} < \frac{\zeta}{\sqrt{3.6}} < \frac{2}{\sqrt{3.6}})$$

$$= \mathbb{P}(-1.5811 < Z < 1.0541)$$

$$= \Phi(1.0541) - \Phi(-1.5811)$$

$$\approx .8531 - .05705$$

$$= 0.7961.$$
(4)

E. $\mathbb{E}[W^3(t)]$ for t > 0

In Homework 2, $E[X^3]$ for a Gaussian random variable $\sim N(\mu, \sigma^2)$ was derived and found to be $E[X^3] = \mu^3 + 3\sigma^2\mu$. For standard Brownian motion, $W(t) \sim N(0,t)$ for s=0. If we plug in the variance and mean of W(t), we find that $E[W^3(t)] = 0$ and $E[W^4(t)] = t^2$.

F.
$$\mathbb{E}[W^4(t)]$$
 for $t > 0$

In Homework 2, $E[X^4]$ for a Gaussian random variable $\sim N(\mu, \sigma^2)$ was derived and found to be $E[X^4] = \mu^4 + 6\sigma^2\mu^2 + 3\sigma^4$. If we again plug in the variance and mean of W(t), we find that $E[W^4(t)] = t^2$.

G.
$$\mathbb{E}[W^2(t)|W(s)=x]$$
 for $0 < s < t$ and $x \in \mathbb{R}$

To find $\mathbb{E}[W^2(t)|W(s)=x]$, we can first define $\zeta=W(t)-W(s)$, then substitute and solve:

$$\mathbb{E}[W^{2}(t)|W(s) = x] = E[(\zeta + x)^{2}]$$

$$= E[\zeta^{2}] + E[2x\zeta] + E[x^{2}]$$

$$= (Var(\zeta) - E[\zeta]^{2}) + 0 + x^{2}$$

$$= (Var(W(t) - W(s)) - E[W(t) - W(s)]^{2}) + x^{2}$$

$$= t - s + x^{2}.$$
(5)

Alternatively, we could use the results for $\mathbb{E}[W(t)|W(s)=x)]$ and Var[W(t)|W(s)=0] derived in class:

$$\mathbb{E}[W^{2}(t)|W(s) = x] = Var(W(t)|W(s) = 0) + \mathbb{E}[W(t)|W(s) = x]^{2}$$

$$= (t - s) + x^{2}.$$
(6)

2. Take a Brownian motion $X = (X(t), t \ge 0)$ with drift $\mu = 1.5$ and diffusion $\sigma^2 = 0.25$. Assume it starts from X(0) = -2.4. Find:

A.
$$\mathbb{P}(X(3) > 0)$$

B.
$$\mathbb{P}(X(5) > -2|X(3) = -1)$$

C. The density of X(5)

D.
$$\mathbb{E}[X^2(5)]$$

E.
$$\mathbb{E}[X^3(5)]$$

F.
$$\mathbb{P}(1 + X(1) < X(3))$$

G.
$$\mathbb{P}(X(1) < X(2) < X(4))$$

Solution

A.
$$\mathbb{P}(X(3) > 0)$$

To solve $\mathbb{P}(X(3) > 0)$, we should first find the probability distribution for X(5). We can determine this using the independent increments property of general Brownian motion with drift and diffusion, where $X(t) - X(s) \sim N(\mu(t-s), \sigma^2(t-s))$. For this case, $X(3) - X(0) \sim N(1.5(3-0), 0.25(3-0))$. Since we are given that X(0) = -2.4, this becomes $X(3) \sim N(1.5(3-0), 0.25(3-0)) + X(0)$, which can be further simplified as $X(5) \sim N(4.5-2.4, 0.75)$. Thus, $\mathbb{P}(X(3) > 0)$ for $X(5) \sim (2.1, 0.75)$ can be calculated as:

$$\mathbb{P}(X(3) > 0) = \mathbb{P}(\frac{X(3) - 2.1}{\sqrt{0.75}} > \frac{0 - 2.1}{\sqrt{0.75}})$$

$$= \mathbb{P}(Z > -2.4248)$$

$$= 1 - \mathbb{P}(Z < -2.4248)$$

$$= 1 - \Phi(-2.4248)$$

$$\approx 1 - .00776$$

$$= 0.992.$$
(7)

B.
$$\mathbb{P}(X(5) > -2|X(3) = -1)$$

By independence, the probability $\mathbb{P}(X(5) > -2|X(3) = -1)$ can be rewritten as $\mathbb{P}(X(5) - X(3) > -2 - (-1))$. Then, we can see that $X(5) - X(3) \sim N(1.5(5 - 3), .25(5 - 3) \sim N(3, 0.5)$. For simplicity, we can define $X(5) - X(3) = \zeta$ and then solve by converting to standard normal using a z-table:

$$\mathbb{P}(X(5) > -2|X(3) = -1) = \mathbb{P}(X(5) - X(3) > -1)$$

$$= \mathbb{P}(\frac{\zeta - 3}{\sqrt{0.5}} > \frac{-1 - 3}{\sqrt{0.5}})$$

$$= \mathbb{P}(Z > -5.6568)$$

$$= 1 - \Phi(-5.6568)$$

$$\approx 1.$$
(8)

C. The density of X(5)

The parameters μ and σ^2 of X(5) can be found in the same way as above:

$$X(5) - X(0) \sim N(1.5(5-0), 0.25(5-0))$$

$$\sim N(1.5(5-0), 0.25(5-0)) + X(0)$$

$$\sim N(1.5(5-0) + X(0), 0.25(5-0))$$

$$\sim N(5.1, 1.25).$$
(9)

The density of X(5) is then

$$X(5) = \frac{1}{\sqrt{2\pi}\sqrt{1.25}} exp\left(\frac{-(x-5.1)^2}{2.5}\right). \tag{10}$$

D. $\mathbb{E}[X^2(5)]$

We can compute $\mathbb{E}[X^2(5)]$ using the relationship $E[X^2] = Var(X) + E[X]^2$, where $X(5) \sim N(5.1, 1.25)$. We can see that the variance is 1.25 and $\mathbb{E}[X(5)]^2 = 5.1^2 = 26.01$. Thus, $\mathbb{E}[X^2(5)] = 1.25 + 26.01 = 27.26$. **E.** $\mathbb{E}[X^3(5)]$

In homework 2, we derived that $\mathbb{E}[X^3]$ for $X \sim N(\mu, \sigma^2) = \mu^3 + 3\sigma^2\mu$. For $X(5) \sim N(5.1, 1.25)$, $\mathbb{E}[X^3]$ is then $5.1^3 + 3(1.25)^2 \cdot 5.1 = 156.56$. **F.** $\mathbb{P}(1 + X(1) < X(3))$

The probability $\mathbb{P}(1 + X(1) < X(3))$ can be rewritten as $\mathbb{P}(1 < X(3) - X(1))$, where $X(3) - X(1) \sim N(1.5(3-1), .25(3-1)) \sim N(3, 0.5)$. The solution can be found to be

$$\mathbb{P}(1 < X(3) - X(1)) = \mathbb{P}(\frac{1-3}{\sqrt{0.5}} < Z)$$

$$= 1 - \Phi(-2.8284)$$

$$\approx .99767.$$
(11)

G. $\mathbb{P}(X(1) < X(2) < X(4))$

Similar to Theory 1c, We can rewrite $\mathbb{P}(X(1) < X(2) < X(4))$ as $\mathbb{P}(X(1) < X(2) \cap X(2) < X(4))$, which, by independence, becomes $\mathbb{P}(X(1) < X(2)) \cdot \mathbb{P}(X(2) < X(4))$. We can rearrange this expression as $\mathbb{P}(0 < X(2) - X(1)) \cdot \mathbb{P}(0 < X(4) - X(2))$. Then, by defining $\zeta_1 = X(2) - X(1) \sim N(1.5, 0.25)$ and $\zeta_2 = X(4) - X(2) \sim N(3, 0.5)$, we can solve:

$$\mathbb{P}(0 < X(2) - X(1)) \cdot \mathbb{P}(0 < X(4) - X(2)) = \mathbb{P}\left(\frac{0 - 1.5}{\sqrt{0.25}} < \frac{\zeta_1 - 1.5}{\sqrt{0.25}}\right) \cdot \mathbb{P}\left(\frac{0 - 3}{\sqrt{0.5}} < \frac{\zeta_2 - 3}{\sqrt{0.5}}\right)$$

$$= (1 - \Phi(-3)) \cdot (1 - \Phi(-4.2426))$$

$$\approx 0.99865 \cdot 1$$

$$= 0.99865.$$
(12)

3. Take a Levy process $L = (L(t), t \ge 0)$ which is a sum of independent Brownian motion from Theory 2 and a compound Poisson process with intensity $\lambda = 0.4$ and jumps with Laplace distribution with mean 0.3 and standard deviation 1.2. Find the mean, variance, and the MGF of L(t).

Solution

We can write the equation for the Levy process L(t) as L(t) = X(t) + Y(t) where X(t) = -2.4 + 1.5t + 0.5W(t) and $Y(t) = \sum_{k=1}^{N(t)} Y_k$ for Y_k IID Laplace variables with $\mu = 0.3$, $\sigma^2 = 1.44$, and $N(t) \sim Exp(\lambda = 0.4)$. We know for a compound Poisson process with mean μ , variance σ^2 , and intensity λ , $E[Y(t)] = \mu \lambda t$ and $Var(Y(t)) = \lambda t(\mu^2 + \sigma^2)$. The expected value can then be found to be

$$\mathbb{E}[L(t)] = \mathbb{E}[X(t) + Y(t)]$$

$$= \mathbb{E}[-2.4 + 1.5t + 0.5W(t) + \sum_{k=1}^{N(t)} Y_k]$$

$$= \mathbb{E}[-2.4] + \mathbb{E}[1.5t] + \mathbb{E}[0.5W(t)] + \mathbb{E}[\sum_{k=1}^{N(t)} Y_k]$$

$$= -2.4 + 1.5t + 0 + \mu\lambda t$$

$$= -2.4 + 1.5t + (0.3)(0.4)t$$

$$= 1.62t - 2.4.$$
(13)

Similarly, we can compute the variance as

$$Var(L(t)) = Var(X(t) + Y(t))$$

$$= Var(-2.4 + 1.5t + 0.5W(t) + \sum_{k=1}^{N(t)} Y_k)$$

$$= 0 + 0 + 0.25Var(W(t)) + Var(\sum_{k=1}^{N(t)} Y_k))$$

$$= 0.25t + \lambda t(\mu^2 + \sigma^2)$$

$$= 0.25t + 0.4t(0.09 + 1.44)$$

$$= 0.862t.$$
(14)

Thus, the mean for L(t) is 1.62t-2.4 and variance is 0.862t. Lastly, we can compute the MGF of L(t) by first noting that for a compound Poisson process

$$\mathbb{E}[e^{uY(t)}] = e^{(\lambda t(M_z(u)-1))}$$
where $M_z(u) = \mathbb{E}[e^{(uZ_k)}]$ (15)

For a Laplace random variable,

$$M_Z(u) = \mathbb{E}[e^{uZ_k}] = e^{\left(\frac{\mu u}{(1 - 0.5\sigma^2 u^2)}\right)}. \tag{16}$$

We can also observe that since $X(t) \sim N(1.5t - 2.4, 0.25t)$ for t > 0, the MGF for X(t) is the normal distribution MGF

$$\mathbb{E}[e^{uX(t)}] = e^{(u\mu + 0.5\sigma^2 u^2)}.$$
(17)

For this problem, the parameters for $M_z(u)$ are $\mu = 0.3$ and $\sigma^2 = 1.44$, the parameter for $\mathbb{E}[e^{uY(t)}]$ is $\lambda = 0.4$, and the parameters for $\mathbb{E}[e^{uX(t)}]$ are $\mu = 1.5t - 2.4$ and $\sigma^2 = 0.25t$. Now, we can use this information to find the MGF of L(t):

$$M_z(u) = e^{\left(\frac{\mu u}{(1 - 0.5\sigma^2 u^2)}\right)}$$

$$= e^{\left(\frac{0.3u}{(1 - 0.72u^2)}\right)}$$
(18)

$$\mathbb{E}[e^{uY(t)}] = e^{(\lambda t (M_z(u) - 1))}$$

$$= exp\left(0.4t(e^{\left(\frac{0.3u}{(1 - 0.72u^2)}\right)} - 1)\right)$$
(19)

$$\mathbb{E}[e^{uX(t)}] = e^{(u\mu + 0.5\sigma^2 u^2)}$$

$$= e^{(u(1.5t - 2.4) + 0.5(0.25)u^2)}$$
(20)

$$\mathbb{E}[e^{L(t)}] = \mathbb{E}[e^{X(t)}]\mathbb{E}[e^{Y(t)}]$$

$$= e^{(u(1.5t - 2.4) + 0.5(0.25)u^2)} \cdot e^{(0.4t(e^{\left(\frac{0.3u}{(1 - 0.72u^2)}\right)} - 1))}$$

$$= e^{(tf(u) - 2.4u)}$$
where $f(u) = 0.125u^2 + 1.5u + 0.4\left(e^{\left(\frac{0.3u}{(1 - 0.72u^2)}\right)} - 1\right)$.

The MGF for L(t) is then $e^{(tf(u)-2.4u)}$, where $f(u)=0.125u^2+1.5u+0.4e^{\left(\frac{0.3u}{(1-0.72u^2)}\right)}-0.4$.

Code

1. Simulate the standard Brownian motion from Theory 1. Plot 4 simulation graphs for time $t \leq 4$. Using Monte Carlo approach, compute A, B, C, and write functions with input t to compute E, F.

Solution

```
def brownian_motion_sim( dt, T, mu=0, sigma=1, x0=None):
2
       N = int(T/dt)
3
       BM = np.append(np.zeros(1),np.cumsum(np.random.normal(mu*dt,
4

    sigma*np.sqrt(dt), N)))
        if x0 is not None:
            BM= np.cumsum(np.append(x0, np.random.normal(mu*dt,

    sigma*np.sqrt(dt), N)))

        time = np.linspace(0,T, N+1)
       return BM, np.round(time,2)
10
   def find_value_at_T(values, jumptimes, T):
11
        idx = np.where(jumptimes == T)[-1][-1]
12
        return values[idx]
13
14
   dt = 0.01
15
   N = 10000
   T=5
17
   sims=[]
18
   np.random.seed(1234)
19
   for i in range(N):
20
        a,b = brownian_motion_sim(dt, T)
21
        sims.append(a)
22
        time = b
23
24
   np.random.seed(10000)
25
   for i in np.random.choice(N, 4):
26
       plt.plot(time[0:401], sims[i][0:401], lw=1)
28
   plt.xlabel('time')
29
   plt.ylabel('values')
   plt.title('Brownian Motion - Theory 1')
```


Figure 1: Four randomly selected simulations of general Brownian motion from Theory 1.

```
A. \mathbb{P}(1 < W(4) < 3)
```

```
count=0
   for i in range(N):
       w_4 = find_value_at_T(sims[i], time, 4)
        if (w_4 > 1) and (w_4 < 3):
4
            count+=1
5
   print('P(1<W(4)<3)=', count/N)
   >> P(1<W(4)<3)= 0.243
10
   B. \mathbb{P}(W(3) > W(1) + 1)
   count=0
   for i in range(N):
       w_1 = find_value_at_T(sims[i], time, 1)
       w_3 = find_value_at_T(sims[i], time, 3)
        if w_3 > (w_1 + 1):
```

```
count+=1
6
   print('P(W(3) > W(1) + 1)=', count/N)
   >> P(W(3) > W(1) + 1) = 0.2345
11
   C. \mathbb{P}(W(1) < W(2) < W(4))
   count=0
   for i in range(N):
       w_1 = find_value_at_T(sims[i], time, 1)
       w_2 = find_value_at_T(sims[i], time, 2)
       w_4 = find_value_at_T(sims[i], time, 4)
       if (w_1 < w_2) & (w_2 < w_4):
            count+=1
   print('P(W(1) < W(2) < W(4))=', count/N)
10
   >> P(W(1) < W(2) < W(4)) = 0.2518
11
12
   E. \mathbb{E}[W^3(t)] for t > 0
   def get_BM_skew(t):
       return 0
2
3
   F. \mathbb{E}[W^4(t)] for t>0
   def get_BM_kurtosis(t):
       return 3*t**2
```

2. Simulate the Brownian motion from Theory 2. Plot 4 simulation graphs for time $t \leq 5$. Empirically compute A, D, E, F, G.

Solution

```
dt = 0.01
   T = 5
   N = 10000
   sims=[]
   np.random.seed(12345)
   for i in range(N):
       a,b = brownian_motion_sim(dt, T, mu=1.5, sigma=0.5, x0=-2.4)
       sims.append(a)
       time = np.round(b,2)
10
   np.random.seed(10000)
11
   for i in np.random.choice(N,4):
12
       plt.plot(time, sims[i], lw=1)
13
14
   plt.xlabel('time')
15
16
   plt.ylabel('values')
   plt.title('Brownian Motion - Theory 2')
```


Figure 2: Four randomly selected simulations of Brownian motion with drift and diffusion from Theory 2.

A.
$$\mathbb{P}(X(3) > 0)$$

for i in range(N):

```
x_5.append(find_value_at_T(sims[i], time, 5))
4
   print('E[X^2(5)]=', np.mean((np.array(x_5))**2))
   >> E[X^2(5)] = 27.257475061609387
   E. \mathbb{E}[X^3(5)]
   print('E[X^3(5)]=',np.mean((np.array(x_5))**3))
   >> E[X^3(5)]= 151.80741540957388
   F. \mathbb{P}(1 + X(1) < X(3))
  count=0
   for i in range(N):
       x_1= find_value_at_T(sims[i], time, 1)
       x_3 = find_value_at_T(sims[i], time, 3)
        if (x_1+1) < x_3:
            count+=1
   print('P(1+ X(1) < X(3))=', count/N)
   >> P(1+ X(1) < X(3)) = 0.9977
11
   G. \mathbb{P}(X(1) < X(2) < X(4))
  count=0
   for i in range(N):
       x_1= find_value_at_T(sims[i], time, 1)
       x_2 = find_value_at_T(sims[i], time, 2)
4
       x_4 = find_value_at_T(sims[i], time, 4)
        if (x_1< x_2) and (x_2< x_4):
            count+=1
   print('P(X(1) < X(2) < X(4))=', count/N)
  >>
10
_{11} >> P(X(1) < X(2) < X(4)) = 0.9989
```

3. Simulate the Levy process from Theory 3. Plot 4 simulation graphs for time $t \leq 5$

```
def simulate_compound_poisson_process(CPP_mu, CPP_sigma, intensity, N):
        jumpTimes=
        → np.append(np.zeros(1),np.cumsum(np.random.exponential(scale=1/intensity,
            size=N)))
        compound_values= np.append(np.zeros(1), np.random.laplace(loc=CPP_mu,

    scale=CPP_sigma/np.sqrt(2), size=N))
        return compound_values, np.round(jumpTimes,2)
4
   def Levy_sim(dt, T, BM_mu, BM_sigma, CPP_mu, CPP_sigma, intensity, x0):
6
       N = int(T/dt)
       BM_increments = np.append(x0,np.random.normal(BM_mu*dt,
        → BM_sigma*np.sqrt(dt), N))
        CPP_increments, CPP_jumptimes =
9

→ simulate_compound_poisson_process(CPP_mu, CPP_sigma, intensity, N)

10
        time = np.round(np.linspace(0,T, N+1),2)
11
        for i,count in enumerate(CPP_jumptimes):
12
            if count> np.max(time):
13
                break
14
            try:
                idx = np.where(time==count)[-1][-1]
16
                BM_increments[idx] += CPP_increments[i]
17
            except (IndexError):
18
                print('No matching time jump for', count)
19
        L= np.cumsum(BM_increments)
20
        return L, time
21
22
23
   dt = 0.01
24
   N = 10000
25
   T = 5
   sims=[]
   np.random.seed(12345)
28
   for i in range(N):
29
        a,b = Levy_sim(dt, T, BM_mu=1.5, BM_sigma=0.5, CPP_mu=0.3,
30
        \rightarrow CPP_sigma=1.2, intensity=0.4, x0=-2.4)
        sims.append(a)
31
        time = b
32
33
   np.random.seed(10000)
34
   for i in np.random.choice(N, 4):
35
       plt.plot(time, sims[i], lw=1)
36
   plt.xlabel('time')
38
   plt.ylabel('values')
   plt.title('Levy Process - Theory 3')
```


Figure 3: Four randomly selected Levy process simulations from Theory 3.

For completeness, the full pdf of my Jupyter Notebook workspace is included below.

```
In [1]: import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
```

Simulate the standard Brownian motion from Theory 1. Plot 4 simulation graphs for time $t \leq 4$. Using Monte Carlo approach, compute A, B, C, and write functions with input t to compute E, F.

Theory 1: Consider the standard Brownian motion $W=(W(t),t\geq 0)$. Find:

```
In [2]: def brownian_motion_sim( dt, T, mu=0, sigma=1, x0=None):
            N = int(T/dt)
            BM = np.append(np.zeros(1),np.cumsum(np.random.normal(mu*dt, sigma*np.sg
            if x0 is not None:
                BM= np.cumsum(np.append(x0, np.random.normal(mu*dt, sigma*np.sqrt(dt
            time = np.linspace(0,T, N+1)
             return BM, np.round(time,2)
         def find_value_at_T(values, jumptimes, T):
             idx = np.where(jumptimes == T)[-1][-1]
             return values[idx]
In [3]: dt = 0.01
        N = 10000
         T=5
         sims=[]
         np.random.seed(1234)
         for i in range(N):
             a,b = brownian motion sim(dt, T)
             sims.append(a)
            time = b
In [4]: np.random.seed(10000)
         for i in np.random.choice(N, 4):
             plt.plot(time[0:401], sims[i][0:401], lw=1)
         plt.xlabel('time')
         plt.ylabel('values')
         plt.title('Brownian Motion - Theory 1')
```

Text(0.5, 1.0, 'Brownian Motion - Theory 1')

Out[4]:

Brownian Motion - Theory 1


```
In [5]: #verify pdf matches expected pdf
x_2 = []
for i in range(N):
    x_2.append(find_value_at_T(sims[i], time, 2))

x_2_rand = np.random.normal(loc=0, scale=np.sqrt(2), size=N)

sns.histplot(x_2, kde=True)
sns.histplot(x_2_rand, kde=True, color='red')
```

Out[5]: <AxesSubplot:ylabel='Count'>

A. $\mathbb{P}(1 < W(4) < 3)$

```
In [6]: count=0
    for i in range(N):
        w_4 = find_value_at_T(sims[i], time, 4)
        if (w_4 >1) and (w_4<3):
            count+=1</pre>
```

In [7]: print('P(1<W(4)<3)=', count/N)
P(1<W(4)<3)= 0.243</pre>

$\mathsf{B.}\, \mathbb{P}(W(3)>W(1)+1)$

```
In [8]: count=0
    for i in range(N):
        w_1 = find_value_at_T(sims[i], time, 1)
        w_3 = find_value_at_T(sims[i], time, 3)
        if w_3 > (w_1+ 1):
            count+=1
```

```
In [9]: print('P(W(3) > W(1) + 1)=', count/N)

P(W(3) > W(1) + 1)= 0.2345
```

$\mathtt{C}.\,\mathbb{P}(W(1) < W(2) < W(4))$

```
In [10]:
    count=0
    for i in range(N):
        w_1 = find_value_at_T(sims[i], time, 1)
        w_2 = find_value_at_T(sims[i], time, 2)
        w_4 = find_value_at_T(sims[i], time, 4)
        if (w_1 < w_2) & (w_2 < w_4):
            count+=1</pre>
```

```
In [11]: print('P(W(1) < W(2) < W(4))=', count/N)
```

P(W(1) < W(2) < W(4)) = 0.2518

D. $\mathbb{P}(-5 < W(5) < 0 | W(1.4) = -2)$

```
In [12]: count1=0
    count2= 0
    for i in range(N):
        w = find_value_at_T(sims[i], time, 1.4)
        w_5 = find_value_at_T(sims[i], time, 5)
        if np.round(w,2) == -2.0:
            count1+=1
            if w_5 > -5 and w_5 < 0:
                 count2+=1
        print('P(-5 < W(5) < 0 | W(1.4) = -2)=', count2/count1)</pre>
```

$\mathsf{E}.\,\mathbb{E}[W^3(t)] ext{ for } t>0$

```
In [13]: def get_BM_skew(t):
    return 0
```

F. $\mathbb{E}[W^4(t)]$ for t>0

```
In [14]: def get_BM_kurtosis(t):
    return 3*t**2
```

Simulate the Brownian motion from Theory 2. Plot 4 simulation graphs for time $t \leq 5$. Empirically compute A, D, E, F, G.

Theory 2: Take a Brownian motion $X=(X(t),t\geq 0)$ with drift $\mu=1.5$ and diffusion $\sigma^2=0.25$. Assume it starts from X(0)=-2.4. Find:

```
In [15]: dt = 0.01
          T = 5
          N = 10000
          sims=[]
          np.random.seed(12345)
          for i in range(N):
              a,b = brownian_motion_sim(dt, T, mu=1.5, sigma=0.5, x0=-2.4)
             sims.append(a)
             time = np.round(b,2)
In [16]: np.random.seed(10000)
          for i in np.random.choice(N,4):
              plt.plot(time, sims[i], lw=1)
          plt.xlabel('time')
         plt.ylabel('values')
         plt.title('Brownian Motion - Theory 2')
         Text(0.5, 1.0, 'Brownian Motion - Theory 2')
Out[16]:
```

Brownian Motion - Theory 2

$\mathsf{A}.\,\mathbb{P}(X(3)>0)$

```
In [17]: count=0
    for i in range(N):
        x_3 = find_value_at_T(sims[i], time, 3)
        if x_3>0:
            count+=1
In [18]: print('P(X(3)>0) = ', count/N)
P(X(3)>0) = 0.9923
```

B. $\mathbb{P}(X(5)>-2|X(3)=-1)$

```
In [19]: count1=0
    count2= 0
    for i in range(N):
        x_3 = find_value_at_T(sims[i], time, 3)
        x_5 = find_value_at_T(sims[i], time, 5)
        if np.round(x_3,2) == -1:
            count1+=1
            if x_5 > -2:
                  count2+=1
```

```
In [20]: print('X(5)>-2 \mid X(3)=-1)=', count2/count1)

X(5)>-2 \mid X(3)=-1)=1.0
```

C. The density of X(5)

```
In [21]: x_5 = []
for i in range(N):
    x_5.append(find_value_at_T(sims[i], time, 5))

x_5_rand = np.random.normal(loc=7.5, scale=np.sqrt(1.25), size=N) + -2.4

sns.histplot(x_5, kde=True, label='X(5)')
sns.histplot(x_5_rand, kde=True, color='red', label='approx pdf of X(5)')

plt.legend()
```

Out[21]: <matplotlib.legend.Legend at 0x7f8a2f8e9b80>

D. $\mathbb{E}[X^2(5)]$

```
In [22]: print('E[X^2(5)]=', np.mean((np.array(x_5))**2))
E[X^2(5)]= 27.257475061609387
```

$\mathsf{E}.\,\mathbb{E}[X^3(5)]$

```
In [23]: print('E[X^3(5)]=',np.mean((np.array(x_5))**3))
         E[X^3(5)] = 151.80741540957388
         \mathsf{F.}\,\mathbb{P}(1+X(1) < X(3))
In [24]: count=0
          for i in range(N):
              x 1= find_value_at_T(sims[i], time, 1)
              x_3 = find_value_at_T(sims[i], time, 3)
              if (x 1+1) < x 3:
                  count+=1
In [25]: print('P(1+X(1) < X(3))=', count/N)
         P(1+ X(1) < X(3)) = 0.9977
         G. \mathbb{P}(X(1) < X(2) < X(4))
In [26]: count=0
          for i in range(N):
              x 1= find value at T(sims[i], time, 1)
              x_2 = find_value_at_T(sims[i], time, 2)
              x_4 = find_value_at_T(sims[i], time, 4)
              if (x 1 \le x 2) and (x 2 \le x 4):
                  count+=1
In [27]: print('P(X(1) < X(2) < X(4))=', count/N)
         P(X(1) < X(2) < X(4)) = 0.9989
```

Simulate the Levy process from Theory 3. Plot 4 simulation graphs for time $t \leq 5$

Theory 3: Take a Levy process $L=(L(t),t\geq 0)$ which is a sum of independent Brownian motion from Theory 2 and a compound Poisson process with intensity $\lambda=0.4$ and jumps with Laplace distribution with mean 0.3 and standard deviation 1.2. Find the mean, variance, and the MGF of L(t).

```
In [28]: def simulate_compound_poisson_process(CPP_mu, CPP_sigma, intensity, N):
              jumpTimes= np.append(np.zeros(1),np.cumsum(np.random.exponential(scale=1
             compound_values= np.append(np.zeros(1), np.random.laplace(loc=CPP_mu, s
             return compound values, np.round(jumpTimes,2)
         def Levy sim(dt, T, BM mu, BM sigma, CPP mu, CPP sigma, intensity, x0):
             N = int(T/dt)
             BM_increments = np.append(x0,np.random.normal(BM_mu*dt, BM_sigma*np.sqrt
             CPP increments, CPP jumptimes = simulate compound poisson process(CPP mu
             time = np.round(np.linspace(0,T, N+1),2)
             for i,count in enumerate(CPP_jumptimes):
                  if count> np.max(time):
                      break
                 try:
                      idx = np.where(time==count)[-1][-1]
                     BM_increments[idx] += CPP_increments[i]
                  except (IndexError):
                      print('No matching time jump for', count)
             L= np.cumsum(BM_increments)
             return L, time
In [29]: dt = 0.01
         N = 10000
         T=5
         sims=[]
         np.random.seed(12345)
         for i in range(N):
             a,b = Levy_sim(dt, T, BM_mu=1.5, BM_sigma=0.5, CPP_mu=0.3, CPP_sigma=1.2
             sims.append(a)
             time = b
In [30]: np.random.seed(10000)
         for i in np.random.choice(N, 4):
             plt.plot(time, sims[i], lw=1)
         plt.xlabel('time')
         plt.ylabel('values')
         plt.title('Levy Process - Theory 3')
Out[30]: Text(0.5, 1.0, 'Levy Process - Theory 3')
```

Levy Process - Theory 3

