Faculdade de Engenharia Mecânica | UNICAMP

IM420X | Tópicos em Controle de Sistemas Mecânicos - Projeto de Sistemas Embarcados de Tempo Real

Projeto REGGAE

Etapa 1 – Proposta, projeto de hardware e planejamento

Environmental data
Gathering &
Garden
Automation
Experiment

Gabriel Oehlmeyer Brunheira | RA 061012

Objetivos

O projeto REGGAE (*RTOS-based Environmental data Gathering and Garden Automation Experiment*) tem como objetivo desenvolver um sistema automatizado de irrigação e coleta de dados ambientais que facilite os cuidados de vasos, hortas e jardins cultivados em ambientes domésticos e urbanos, utilizando materiais comumente encontrados em lojas de componentes eletrônicos do mercado nacional.

Justificativa

Nos últimos anos, houve um aumento do interesse na jardinagem em ambientes domésticos, impulsionado por diversos fatores, como a conscientização a respeito das mudanças climáticas e alimentação saudável, bem como o isolamento social causado pela pandemia de COVID-19 [1,2].

O cuidado de jardins e hortas requer atenção constante ao desenvolvimento da planta, às condições nas quais elas estão sujeitas, como temperatura do ar e umidade do solo, e, claro, à rega. A compreensão de como estes fatores se relacionam ocorre, no geral, de forma qualitativa, e depende de uma grande dedicação e atenção. Além disso, a interrupção da irrigação por alguns dias (por exemplo, em casos de ausências temporárias, como viagens) pode ser bastante prejudicial à saúde das plantas.

O uso de sistemas automatizados pode não apenas garantir a irrigação de forma programável e ininterrupta, como também registrar as condições do ambiente no qual as plantas estão inseridas. Essas informações podem ser úteis a melhorar o entendimento de como cada fator externo afeta no seu desenvolvimento e, portanto, ajudar na tomada de decisões sobre os cuidados praticados.

Requisitos funcionais

ID	Descrição				
RF1	Acionar de forma automática o fluxo de água em aspersores e gotejadores, através das chamadas "tarefas de irrigação"				
RF2	Permitir a configuração de tarefas de irrigação em dois modos de operação: 1) periódico e 2) controle de umidade do solo				
RF3	Permitir a configuração de até 5 tarefas de irrigação independentes				
RF4	Prover 5 canais de medida de umidade de solo				
RF5	Medir temperatura e umidade ambiente				
RF6	Registrar de forma periódica medidas de solo e do ambiente, com data e hora, em memória acessível pelo usuário				
RF7	Registrar data e hora de início e término das tarefas de irrigação na mesma memória do RF6.				
RF8	Prover interface com usuário através de computador para programar tarefas de irrigação, calibrar e monitorar as medidas, visualizar status das tarefas de irrigação em operação e acessar memória de registros.				
RF9	Prover display que exibe medidas em tempo real e status das tarefas de irrigação				
RF10	Conter botões para acionamento manual das válvulas de irrigação				

Requisitos não-funcionais

ID	Descrição			
RN1	Deve ser alimentado por uma tomada de 110V ou 220V			
RN2	Garantir continuidade da operação do relógio interno que provê data e hora dos registros, mesmo em casos de queda de energia, mantendo execução das tarefas de irrigação conforme programadas			
RN3	Salvar a configuração das tarefas de irrigação e calibração das medidas em memória não-volátil			

- Automatização de tarefas de irrigação com base em regras
 - Periódica
 - Controle da umidade do solo por histerese
- Entradas
 - > 5x ADC: sensor de umidade do solo
 - ► 1x I2C: sensor de temperatura e umidade atmosférica
 - 2x DI: botões para navegação no display e acionamento manual de irrigação
- Saídas
 - > 5x DO: Relés para válvulas de irrigação
 - Display para exibição local de medidas e status das irrigações
- Log de monitoramento e eventos
 - Buffer circular em memória não-volátil (FLASH)
 - Timestamp com RTC (data/hora)
 - Aquisições periódicas (configurável)
 - Início e fim de irrigações
 - Bateria CR2032 para execução initerrupato do RTC (VBAT)

Especificações

Interface externa

- Aplicação desenvolvida em Python com comunicação serial
- Monitoramento online das medidas e status das irrigações
- Gerenciamento de regras de irrigação (criar, editar, excluir)
- Download, exibição da memória de registros do log

Alimentação

- Fonte 5V x 2A (carregador de celular)
- Regulador 3.3 VDC para display (e talvez sensores de solo)

Especificações

Diagrama de blocos

Lista de componentes

Componente	Descrição	Qtdd	Preço unitário [R\$]*	reço total [R\$]
NUCLEO-G474RE	Kit de desenvolvimento para microcontrolador STM32G474	1	87,00	87,00
Sensor de umidade de solo genérico**	Sensor capacitivo de umidade do solo, com saída analógica	5	12,00	60,00
DHT11	Sensor de umidade e temperatura ambiente com saída digital 1-wire	1	15,00	15,00
Módulo relé 8 canais genérico	Módulo com 8 relés independentes com acionamento isolado por opto-acoplador de 5V e saída de 125V, 10A	1	50,00	50,00
Soquete CR2032	Soquete de baterias do tipo CR2032	1	2,00	2,00
Pilha CR2032	Bateria de lítio de 3V formato CR2032	1	5,00	5,00
Fonte 5V	Fonte AC/DC de 5V, 2A	1	15,00	15,00
Display OLED	Display OLED 128 x 64 pixels interface I2C	1	19,80	19,80
Push button	Botão tipo push-button para interface com usuário	2	1,00	2,00
Válvula solenoide**	Válvula solenóide de máquina de lavar, 110VAC	5	27,88	3,50

^{*}Fontes: Mercado Livre e Cinestec (Campinas)

Valor total: ~ R\$ 395

^{**}Quantidade de sensores e válvulas podem variar por aplicação

Kit de desenvolvimento NUCLEO-G474RE

- Fabricante: ST
- Microcontrolador: STM32G474RET6
 - ► ARM Cortex-M4 170 MHz
 - ▶ 512 KB FLASH, 128 KB RAM
- Conectividade:
 - Embedded ST-LINK (debugger) + virtual COM
 - ST morpho
 - Arduino-compatible
- Alimentação: 5V-USB, 5V-EXT, VIN, 3V3-EXT

Sensor capacitivo de umidade de solo

Fabricante: Genérico

Alimentação: 3.3 ~ 5.5 VDC x 5 mA

Saída: analógica (requer calibração do usuário)

Interface: conector header 3P (VCC, GND, AOUT)

11

Sensor de temperatura e umidade ambiente DHT11

- Fabricante: Genérico
- Alimentação: 3 ~ 5.5 VDC x 2.5 mA (max)
- Saída: 1-wire serial protocol
- ► Interface: conector header 3P (VCC, GND, DATA)
- Taxa de amostragem: 1 Hz
- Resolução:
 - Umidade: 1% RH (8/16 bits)
 - ► Temperatura: 1°C (8/16 bits)
- Faixa de operação:
 - Umidade: 20 90% RH (@ 25°C)
 - ► Temperatura: 0 50°C

Módulo com 8 relés de 5V

► Fabricante: Genérico

Entradas: 8 opto-acopladores de 5V

Saídas: 8 relés NO/NC (125 VAC x 10 A / 220 VAC x 7 A)

Alimentação das bobinas: 5V x ? mA

Display OLED 128 x 64 I2C

► Fabricante: Feiyang

Alimentação: 3 - 5 VDC x 20 mA (full contrast)

Display: OLED

Resolução:128 x 64 pixels

Interface: I2C

Driver: SSD1306

Demais componentes

Porta pilha CR2032

Push-button

Válvula solenóide hidráulica 110VAC

Esquemático

Cronograma (modelo V)

- > Semana 1: Finalizar projeto de hardware. Compra e empréstimo de componentes
- Semana 2: Detalhamento do projeto de software: definição do uso de periféricos e componentes do RTOS, especificação da memória de registro de dados e protocolo de comunicação com PC
- **Semana 3:** Programação e teste de periféricos. Especificação da aplicação em Python
- Semana 4: Programação e teste de biblioteca de registro e de comunicação. Configuração dos componentes do RTOS
- Semana 5: Integração das bibliotecas na aplicação RTOS
- Semana 6: Implementação da aplicação em Python
- **Semana 7:** Testes, validações e depuração
- Semana 8: Finalização da escrita de relatório

