

TNE10006/TNE60006: Networks and Switching

IPv6 Address Types

Cisco Networking Academy® Mind Wide Open®

Outline

- IPv6 Address Types
- Unicast Address
 - Global
 - IPv6 Subnets
 - Link Local
 - Loopback/Unspecified
 - Unique local
 - Embedded IPv4
- Multicast Addresses
 - Scope
 - Assigned Multicast
 - Solicited Multicast

IPv6 Address Types IPv6 Address Types

There are three types of IPv6 addresses:

- Unicast
- Multicast
- Anycast.

Note: IPv6 does not have broadcast addresses

Reserved Addresses

 A portion of the IPv6 address space is reserved for various uses, both present and future.

Address Type	High Order Bits (Binary)	High-Order Bits (Hex)
Unspecified	000	::/128
Loopback	001	::1/128
Multicast	11111111	FF00::/8
Link Local Unicast	1111111010	FE80::/10
Global Unicast	001	2xxx::/4 or 3xxx::/4
Reserved (Future Global unicast)	Everything Else	

IPv6 Address Types Unicast Addresses

- Uniquely identifies an interface on an IPv6-enabled device
- A packet sent to a unicast address is received by the interface that is assigned that address

IPv6 Address Types Unicast Addresses

Global Unicast Addresses

- Similar to a public IPv4 address
- Globally unique
- Internet routable addresses
- Can be configured statically or assigned dynamically

Global Unicast Addresses

Currently, only global unicast addresses with the first three bits of 001 or 2000::/3 are being assigned

Global Unicast Hierarchy

- IPv6 has an address format that enables aggregation upward to the ISP
- Global unicast addresses typically consist of a 48-bit global routing prefix and a 16-bit subnet ID
- Organizations use a 16-bit subnet field to create a local addressing hierarchy
- This field allows an organization to use up to 65,535 individual subnets
- IANA internal prefix of /16

IANA - Internet Assigned Numbers Authority

Global Routing Prefix /48

Global Unicast Hierarchy

2001: 0DB8:0001:0001:0290:27FF:FE3A:9E9A

Owner	Address Details	Bits Allocated
IANA Allocated Space	2001::16	16 bits
Registry Space	2001:0C 0D::/23	7 bits
ISP Prefix	2001:0DB8::/32	9 bits
Site Prefix	2001:0DB8:0001::/48	16 bits
Subnet Prefix	2001:0DB8:0001:0001::/64	16 bits
Host Address	2001:0DB8:0001:0001: 0290:27FF:FE3A:9E9A /64	64 bits

Global Unicast Hierarchy

2FFF:B00:C18:2::AAAA/64

1. Fully expand the Address

2. What is the subnet (LAN) Address?

3. What is the Company (Site) Address?

4. What is the Registry Space Address?

IPv6 Subnet Prefix Subnet ID

ARCHITECTURES

An IPv6 Network Space is subnetted to support hierarchical, logical design of the network

IPv6 Subnetting IPv6 Subnet Allocation 2001:0DB8:ACAD:0001::/64 Address Block: 2001:0DB8:ACAD::/48 2001:0DB8:ACAD:0000::/64 2001:0DB8:ACAD:0001::/64 2001:0DB8:ACAD:0002::/64 5 subnets S0/0/0 2001:0DB8:ACAD:0003::/64 allocated from 2001:0DB8:ACAD:0002::/64 2001:0DB8:ACAD:0003::/64 2001:0DB8:ACAD:0004::/64 65,536 available 2001:0DB8:ACAD:0004::/64 2001:0DB8:ACAD:0005::/64 subnets S0/0/0 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0007::/64 2001:0DB8:ACAD:0008::/64 G0/1 2001:0DB8:ACAD:0005::/64 2001:0DB8:ACAD:FFFF::/64

IPv6 Subnetting

Subnetting into the Interface ID

IPv6 bits can be borrowed from the interface ID to create additional IPv6 subnets

Link-Local Unicast Addresses

- Every IPv6-enabled interface is REQUIRED to have a link-local address
- After a global unicast address is assigned to an interface, the host automatically generates its link-local address
- Enables a device to communicate with other IPv6enabled devices on the same link and only on that link
- Link-local address of the router is the default gateway
- Used by routers to identify the next-hop router when forwarding IPv6 packets

Link-Local Unicast Addresses

Packets with a source or destination link-local address cannot be routed beyond the link from where the packet originated

Link-Local Unicast Addresses

- FE80::/10 range, first 10 bits are 1111 1110 10xx xxxx
- Interface ID is taken from Global Unicast address
- Can be automatically generated using EUI-64 or random number

Loopback/Unspecified Addresses

Loopback

::1/128 or ::1

 Used by a host to send a packet to itself and cannot be assigned to a physical interface

Unspecified

::/128 or ::

- Cannot be assigned to an interface only used as a source address
- An unspecified address is used as a source address when the device does not have a permanent IPv6 address or when the source address is irrelevant

IPv6 Unicast Addresses

Unique Local

- Similar to private addresses for IPv4
- Used for local addressing within a site or between a limited number of sites
- In the range of FC00::/7 to FDFF::/7

IPv4 Embedded

- Not covered in CCNA
- Aid for transition
- IPv4 compatible ::a.b.c.d
- IPv4 mapped

::FFFF:a.b.c.d

IPv6 Addressing IPv6 Multicast Address Types

- IPv6 multicast addresses have the prefix FF00::/8
- There are two types of IPv6 multicast addresses:
 - Assigned multicast
 - Solicited node multicast

Bits 9-16

Address	Scope
FF01::/16	Node local – localhost only
FF02::/16	Link local – within Layer 2 network
FF04::/16	Admin local – Layer 3 connectivity within administrative domain
FF05::/16	Site local – Layer 3 connectivity within site domain
FF08::/16	Organisation local – Layer 3 connectivity over the whole organisation
FF0E::/16	Global – Layer 3 connectivity over the Internet

Examples of well-known IPv6 Multicast Addresses

Address	Multicast Group
FF02::1	All Nodes
FF02::2	All Routers
FF02::5	OSPFv3 Routers
FF02::6	OSPFv3 Designated Routers
FF02::9	RIPng Routers
FF02::A	EIGRP Routers
FF02::B	Mobile Agents
FF02::C	DHCP Servers / Relay Agents
FF02::D	All PIM Routers

Parallel with IPv4 Broadcast

IPv6 Multicast Addresses

Solicited Node IPv6 Multicast Addresses

- Similar to the all-nodes multicast address, matches the last 24 bits of the IPv6 global unicast address of a device
- Automatically created when the global or linklocal unicast addresses are assigned
- Created by combining a special FF02:0:0:0:0:0:FF00::/104 prefix with the right-most 24 bits of unicast address

Solicited Node IPv6 Multicast Addresses

- Used as a target multicast address to provide minimal broadcast
- Example IPv6 ARP request, only goes to subset of hosts
- To be effective, switch needs to be able to perform limited broadcasts based on IPv6 destination

IPv6 Address Types Summary

In this lecture, we covered:

- IPv6 Address Types
- Unicast Address
 - Global
 - IPv6 Subnets
 - Link Local
 - Loopback/Unspecified
 - Unique local
 - Embedded IPv4
- Multicast Addresses
 - Scope
 - Assigned Multicast
 - Solicited Multicast

