ML_LAB_WEEK_10_SVM_LAB

Name: Meghana Saisri Bisa

SRN: PES2UG23CS337

Section: F

PART 1: Moons Dataset Questions

- 1. Inferences about the Linear Kernel's performance
 - The Linear Kernel performs poorly on the Moons dataset.
 - Reason: The data is not linearly separable (two interlocking moons), so a straight line cannot separate the classes properly.
 - Result: Low accuracy and many misclassified points.
- 2. Comparison between RBF and Polynomial kernel decision boundaries
 - RBF Kernel: Creates a smooth, curved boundary that closely follows the shape of the moons. Handles non-linear patterns very well.
 - Polynomial Kernel: Also creates a curved boundary, but sometimes it overfits or underfits depending on the degree.
 - Conclusion: RBF generally captures the moons' shape more naturally and accurately.

PART 2: Banknote Dataset Questions

- 1. Which kernel was most effective for this dataset?
 - RBF Kernel is usually the most effective.
 - Reason: It handles non-linear patterns in the features better than a simple linear or polynomial kernel for this dataset.
- 2. Why might the Polynomial kernel have underperformed here?
 - Polynomial can overfit if the degree is too high or underfit if the degree is too low.
 - The Banknote dataset is mostly linearly separable with some non-linear noise, so RBF works better. Polynomial struggles to generalize.

PART 3: Hard vs Soft Margin Questions

- 1. Which margin (soft or hard) is wider?
 - Soft Margin (C=0.1) produces a wider margin.
 - Reason: It allows some misclassifications to create a bigger separation between classes.
- 2. Why does the soft margin model allow "mistakes"?
 - It tolerates some points inside or across the margin to prevent overfitting.
 - Goal: Balance accuracy on training data and generalization to new data.
- 3. Which model is more likely to be overfitting and why?
 - Hard Margin (C=100) is more likely to overfit.
 - Reason: It tries to classify all training points perfectly, even outliers, which reduces generalization.

- 4. Which model would you trust more for new data and why?
 - Soft Margin (C=0.1) is safer for new, unseen data.
 - Reason: It generalizes better, ignores small noise/outliers, and reduces risk of overfitting.
 - In real-world scenarios, start with a low C value for noisy data.

TRAINING RESULTS

110 (11 11 12 12 12 13								
SVM with LINEAR Kernel PES2UG23CS337								
	р	recision	recall	f1-score	support			
	0	0.85	0.89	0.87	75			
	1	0.89	0.84	0.86	75			
accuracy				0.87	150			
macro	avg	0.87	0.87	0.87	150			
weighted	avg	0.87	0.87	0.87	150			

SVM with RBF Kernel PES2UG23CS337								
	precision	recall	f1-score	support				
0	0.95	1.00	0.97	75				
1	1.00	0.95	0.97	75				
accuracy			0.97	150				
macro avg	0.97	0.97	0.97	150				
weighted avg	0.97	0.97	0.97	150				

SVM with POLY Kernel PES2UG23CS337							
	precision	recall	f1-score	support			
0	0.85	0.95	0.89	75			
1	0.94	0.83	0.88	75			
accuracy			0.89	150			
macro avg	0.89	0.89	0.89	150			
weighted avg	0.89	0.89	0.89	150			

