Transcription

Transcription

Transcription

Simplest model

Transcription rate: P(t) [#mRNA/time]

mRNA pool: m(t) [#mRNA]

Degradation rate: γ [1/time]

$$\dot{m}(t) = P(t) - \gamma m(t) .$$

Case 1: $P(t) = P_0$

$$m(t) = \frac{P_0}{\gamma} (1 - e^{-\gamma t}) + e^{-\gamma t} m(0) \to \frac{P_0}{\gamma}.$$

Case 2: $P(t) = P_0 + \cos(\omega t)$

$$m(t) \rightarrow \frac{P_0}{\gamma} + \frac{1}{\sqrt{\gamma^2 + \omega^2}} \cos(\omega(t - \tau))$$
.

with
$$\sin \omega \tau = \frac{\omega}{\sqrt{\gamma^2 + \omega^2}}$$

Simplest model

---- pre-mRNA post-trans. regulation

Microarrays

Microarrays

Output

Rows: features (genes) Columns: condition (experiments)

Signal is proportional to concentration of probe times concentration of mRNA

Cells: numbers (measured signal)

Normalization

Average variation between any 2 conditions is 0: Systematic variation MUST BE technical artifact

- Normalization consists in removing systematic variations
- Work in log-log coordinates
- Shift in medians
- Curved shaped

Normalization

Quantile normalization

• Substitute ordered values from every sample with ordered values from average (or from specific distribution, e.g. gaussian)

Quantile normalization

MA plot: differential expression

Log2(Sample1/Sample2)

Log10(Sample1*Sample2)/2

absolute expression

Clustering

- Same algorithm as UPGMA
- Distance matrix is 1-cor(row1,row2)
- Update matrix with distance to average of two groups weighted by size
- Do the same for columns (rotate matrix)

distance

	•	2
2	4.3	
3	2.4	4.9

correlation

	1	2
2	0.99	
3	-0.06	-0.03

Clustering

Clustering

- Similar expression patterns across many conditions probably imply a common set of regulators
- Looking for a shared set of functional annotations can help find the regulators

Linear models

	treat+WT	treat+KO	no treat+WT	no treat+KO
g	M11	M12	M13	M14

For each gene, make a linear relation between effect (expression) and factors (conditions)

$$\log(M_{cg}) = \alpha_g + \sum_n I_{cn} \beta_{ng} + \epsilon_g ,$$

$$\langle \log(M_{cg}) \rangle = \alpha_g + (I \cdot \beta)_{cg} ,$$

Design matrix:

	1	2	3	4
treat	1	1	0	0
KO	0	1	0	1