คำถามข้อที่ 1 [3 คะแนน]: จากวงจรทั้งสามดังรูป กำหนดให้ตัวต้านทานแต่ละตัวมีความต้านทานเท่ากับ 330 โอห์ม หลอดไฟ LED ในวงจรใด จะมีความสว่างของแสงน้อยที่สุด เพราะเหตุใด จงใช้กฎของโอห์มในการอธิบายเหตุผลประกอบ

คำถามข้อที่ 2 [4 คะแนน]: กำหนดให้บอร์ด Arduino UNO ทำการรันโปรแกรมต่อไปนี้ จงตอบคำถามเกี่ยวกับการทำงานของโปรแกรมดังกล่าว

```
void setup() {
  pinMode(LED_BUILTIN, INPUT);
3 }

void loop() {
  digitalWrite(LED_BUILTIN, HIGH);
  delay(1000);
  digitalWrite(LED_BUILTIN, LOW);
  delay(1000);
  // turn the LED off
  delay(1000);
  // wait for a second
  idelay(1000);
  // wait for a second
```

-) Arduino IDE สามารถ verify โปรแกรมนี้ผ่านหรือไม่ เพราะเหตุใด
- โปรแกรมดังกล่าว จะทำงานได้ถูกต้องตามที่ผู้เขียนกล่าวไว้ใน comment
 หรือไม่ เพราะเหตุใด ถ้าต้องการแก้ไขให้โปรแกรมทำงานได้ถูกต้อง ควรทำ
 อย่างไรบ้าง
- iii) delay(1000) หมายถึงอะไร มีหน่วยเป็นอะไร การเพิ่มค่าตัวเลขนี้จะทำให้ เกิดอะไรขึ้น การลดค่าตัวเลขนี้จะทำให้เกิดอะไรขึ้น
- iv) LED_BUILTIN คืออะไร ตรงกับอุปกรณ์ส่วนใดบ้างบนบอร์ด Arduino UNO

คำถามข้อที่ 3 [15 คะแนน]: จงตอบคำถามเกี่ยวกับการทำงานของระบบในแต่ละภาพ

ภาพที่ 2 กำหนดให้บอร์ด Arduino UNO และวงจรทำการันโปรแกรมดังต่อไปนี้


```
1 int ledPin = 3;
2 int potVal = 0;
3 int ledVal = 0;
4

void setup(){
   pinMode(ledPin, OUTPUT);
7   Serial.begin(9600);
8 }

0 void loop(){
11   potVal = analogRead(A0);
12   ledVal = map(potVal, 0, 1023, 0, 255);
13
14   analogWrite(ledPin, ledVal);
15   Serial.print("potVal = ");
16   Serial.print(potVal);
17   Serial.print(", ledVal = ");
18   Serial.print(n, ledVal);
19 }
```

- ก้าการอ่านค่าจากตำแหน่งของ pot ที่ 12f ตาม รูปภาพได้ว่า potVal = 696, ledVal = 173 หาก เลื่อนตำแหน่งของ pot ไปที่ 8d, 8f, 10f, และ 12d จะได้ค่าเป็นเท่าไหร่บ้างโดยประมาณ
- ii) หาก output pin ที่ใช้ในวงจรนี้เกิดขัดข้อง pin ใดบ้างบนบอร์ดนี้ที่สามารถทำงานแทนได้
- iii) ถ้าความต่างศักย์ที่ตกคร่อมหลอดไฟ LED นี้คือ 1.2 V และ LED สามารถต้านทานกระแสไฟฟ้า สูงสุดที่ 20 mA ก่อนที่หลอดจะขาด วงจรนี้ควรใช้ ตัวต้านทานขนาดไม่น้อยกว่าเท่าใดจึงจะทำให้ หลอดไฟ LED นี้ไม่ขาดได้ จงตอบคำถามพร้อม อธิบายวิธีคิด

ภาพที่ 3 กำหนดให้บอร์ด Arduino UNO เชื่อมต่อกับ joystick ตามภาพ โดยมีการรันโปรแกรมที่อ่านค่า VRx, VRy และ SW ของ joystick ได้อย่างถูกต้อง

- i) ถ้าเลื่อน joystick ไปตำแหน่งมุมบนซ้ายแล้วอ่านค่า VRx และ VRy ได้ศูนย์ทั้ง คู่ เมื่อเลื่อน joystick ไปตำแหน่งมุมล่างขวาแล้วอ่านค่า VRx และ VRy ได้ 1023 ทั้งคู่ หากปล่อย joystick ให้อยู่ตำแหน่งปกติตรงกลาง ค่า VRx และ VRy จะเป็นเท่าไหร่
- เi) หากนิสิตต่อสายไฟจาก pin +5V ของ joystick ไปยัง pin 3.3V ของ Arduino
 UNO ค่าที่อ่านได้จากตำแหน่งบนซ้าย กลาง และ ล่างขวา จะเปลี่ยนแปลง
 หรือไม่ อย่างไร

คำถามข้อที่ 4 [3 คะแนน]: จากการเลือก sensor เพื่อใช้ในการสร้าง prototype "แก้วไม่ไปต่อ" นิสิตส่วนใหญ่เลือก MQ-3 Gas Sensor เพื่อ วัดปริมาตรแอลกอฮอลในลมหายใจ ซึ่งมีรายละเอียดในการทำงานตาม datasheet นี้

FEATURES

- * High sensitivity to alcohol and small sensitivity to Benzine .
- * Fast response and High sensitivity
- * Stable and long life
- * Simple drive circuit

APPLICATION

They are suitable for alcohol checker, Breathalyser.

SPECIFICATIONS

A. Standard work condition

11.50011	adi di il cili collatitoli		
Symbol	Parameter name	Technical condition	Remarks
Vc	Circuit voltage	5V±0.1	AC OR DC
$ m V_{H}$	Heating voltage	5V±0.1	ACOR DC
$R_{ m L}$	Load resistance	200K Ω	
R_{H}	Heater resistance	33 Ω ±5%	Room Tem
P_{H}	Heating consumption	less than 750mw	

B. Environment condition

Symbol	Parameter name	Technical condition	Remarks
Tao	Using Tem	-10℃-50℃	
Tas	Storage Tem	-20°C-70°C	
R_{H}	Related humidity	less than 95%Rh	
O_2	Oxygen concentration	21%(standard condition)Oxygen	minimum value is
		concentration can affect sensitivity	over 2%

C. Sensitivity characteristic

Symbol	Parameter name	Technical parameter	Remarks
Rs	Sensing Resistance	1ΜΩ-8ΜΩ	Detecting concentration
		(0.4mg/L alcohol)	scope:
		, , ,	0.05mg/L—10mg/L
α			Alcohol
(0.4/1 mg/L)	Concentration slope rate	≤0.6	
Standard	Temp: 20°C ±2°C	Vc:5V±0.1	
detecting	Humidity: 65%±5%	Vh: 5V±0.1	
condition			
Preheat time	Over 24 hour		

- i) หากกฎหมายกำหนดให้ผู้ขับขี่ยานพาหนะมีปริมาณแอลกอฮอลในลมหายใจไม่เกิน 22 ไมโครกรัมต่อ 100 มิลลิลิตร (22 μg/100 mL) เราจะสามารถใช้ sensor นี้ในการตรวจวัดได้หรือไม่ เพราะเหตุใด
- ii) ควรจ่ายไฟด้วยพิน 3.3V หรือไม่ เพราะเหตุใด

