

Intel® E8501 Chipset North Bridge (NB)

Datasheet

May 2006

Document Number: 309620-001

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® E8501 Chipset North Bridge (NB) may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I²C is a two-wire communications bus/protocol developed by Phillips. SMBus is a subset of the I²C bus/protocol and was developed by Intel. Implementations of the I²C bus/protocol may require licenses from various entities, including Phillips Electronics N.V. and North American Phillips Corporation.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2006, Intel Corporation.

1	Introduction				
	1.1	Intel® E8501 Chipset North Bridge (NB) Feature List			
		1.1.1 Processor Front Side Bus Support			
		1.1.2 Independent Memory Interface			
		1.1.3 I/O Interfaces			
		1.1.4 Transaction Processing Capabilities	19		
		1.1.5 RASUM			
		1.1.6 Package	19		
	1.2	Intel® E8501 Chipset eXternal Memory Bridge (XMB) Feature List	20		
		1.2.1 DDR Memory Support			
		1.2.2 IMI Support	20		
		1.2.3 RASUM Features	20		
		1.2.4 Intel [®] E8501 Chipset eXternal Memory Bridge (XMB) Package	21		
	1.3	Terminology	21		
	1.4	References	26		
2	Overn	iou	27		
2		iew			
	2.1	Logical Pin Grouping			
	2.2	Quadrant Placement			
	2.3	Register Devices			
		Intel [®] E8501 Chipset North Bridge (NB) Clocking Interrupt Delivery			
	2.5	2.5.1 xAPIC Interrupt Message Delivery			
	2.6	Intel® E8501 Chipset North Bridge (NB) RAS Features			
	2.0	2.6.1 Data Integrity (Error Detection)			
		2.6.2 Error Reporting			
		2.6.3 Memory Mirroring			
		2.6.4 Memory RAID			
		2.6.5 Hot-Plug			
		<u> </u>			
3	Signa	l Description	37		
	3.1	Conventions	37		
	3.2	FSB Signals	38		
	3.3	Independent Memory Interface (IMI) Signals	40		
	3.4	PCI Express Ports Signals			
		3.4.1 Industry Standard Naming Convention	42		
	3.5	Hub Interface 1.5 (HI1.5) Signals			
	3.6	Clocking and Analog Power Signals			
	3.7	Reset Signals	47		
	3.8	Debug Signals			
	3.9	RAS Signal			
	3.10	Miscellaneous Signals	49		
4	Regis	ter Description	51		
•	4.1	Register Terminology			

4.2	Platforn	n Configuration	52
4.3	Conflict	Resolution and Usage Model Limitations	52
4.4	Device	Mapping	53
4.5	Allowab	ole Configuration Access	55
4.6	I/O Map	pped Registers	56
	4.6.1	CFGADR -Configuration Address Register	56
	4.6.2	CFGDAT -Configuration Data Register	57
4.7	Intel [®] E	8501 Chipset North Bridge (NB) Fixed Mapped Registers	57
4.8	PCI Exp	oress Device Configuration Registers	58
4.9		ration Space Map	
4.10	Hub Inte	erface 1.5 (Device 0, Function 0)	72
	4.10.1	VID: Vendor Identification Register (D0, F0)	72
	4.10.2	DID: Device Identification Register (D0, F0)	72
	4.10.3	PCICMD:PCI Command Register (D0, F0)	73
	4.10.4	PCISTS: PCI Status Register (D0, F0)	73
	4.10.5	RID: Revision Identification Register (D0, F0)	74
	4.10.6	CCR: Class Code Register (D0, F0)	75
	4.10.7	HDR: Header Type Register (D0, F0)	76
	4.10.8	SVID: Subsystem Vendor Identification Register (D0, F0)	76
		SID: Subsystem Identity (D0, F0)	
		HIFERR: Hub Interface First Fatal Error Register (D0, F0)	
		HINERR: Hub Interface Next Fatal Error Register (D0, F0)	77
	4.10.12	NRECHI: Non-Recoverable Hub Interface Error Log	
		Register (D0, F0)	
		RECHI: Recoverable Hub Interface Error Log Register (D0, F0)	
		HIEMASK: Hub Interface Error Mask Register (D0, F0)	
		HIERR0: Hub Interface Error 0 Mask Register (D0, F0)	
		HIERR1: Hub Interface Error 1 Mask Register (D0, F0)	
		HIERR2: Hub Interface Error 2 Mask Register (D0, F0)	
		HIMCERR: Hub Interface MCERR Mask Register (D0, F0)	
		HICTL: Hub Interface Command Control Register (D0, F0)	
		HICTL2: Hub Interface Command Control Register (D0, F0)	
4.11		oress Ports (Device 1 - 7, Function 0)	
		VID[7:1]: Vendor Identification Register (D1-7, F0)	
		DID[7:1]: Device Identification Register (D1-7, F0)	
		EXP_CMD[7:1]: Command Register (D1-7, F0)	
		EXP_STS[7:1]: Status Register (D1-7, F0)	
		RID[7:1]: Revision Identification Register (D1-7, F0)	
		CCR[7:1]: Class Code Register (D1-7, F0)	
		CLS[7:1]: Cache Line Size (D1-7, F0)	
		PRI_LT[7:1]: Primary Latency Timer (D1-7, F0)	
		HDR[7:1]: Header Type Register (D1-7, F0)	
		BIST[7:1]: Built-In Self Test (D1-7, F0)	
		PBUSN[7:1]: Primary Bus Number (D1-7, F0)	
		SBUSN[7:1]: Secondary Bus Number (D1-7, F0)	
		SUBUSN[7:1]: Subordinate Bus Number (D1-7, F0)	
		SEC_LT[7:1]: Secondary Latency Timer (D1-7, F0)	
	4.11.15	IOBASE[7:1]: I/O Base Register (D1-7, F0)	94

	4.11.16 IOLIM[7:1]: I/O Limit Register (D1-7, F0)	94
	4.11.17 SECSTS[7:1]: Secondary Status (D1-7, F0)	95
	4.11.18 MBASE[7:1]: Memory Base (D1-7, F0)	96
	4.11.19 MLIMIT[7:1]: Memory Limit (D1-7, F0)	96
	4.11.20 PMBASE[7:1]: Prefetchable Memory Base (D1-7, F0)	97
	4.11.21 PMLIMIT[7:1]: Prefetchable Memory Limit (D1-7, F0)	
	4.11.22 PMBU[7:1]: Prefetchable Memory Base (Upper 32 bits)	
	(D1-7, F0)	98
	4.11.23 PMLU[7:1]: Prefetchable Memory Limit (Upper 32 Limit)	
	(D1-7, F0)	
	4.11.24 CAPPTR[7:1]: Capability Pointer (D1-7, F0)	99
	4.11.25 INTL[7:1]: Interrupt Line Register (D1-7, F0)	99
	4.11.26 INTP[7:1]: Interrupt Pin Register (D1-7, F0)	100
	4.11.27 BCTRL[7:1]: Bridge Control Register (D1-7, F0)	100
	4.11.28 EXP_CTRL[7:1]: PCI Express Control Register (D1-7, F0)	102
	4.11.29 EXP_CTRL2: PCI Express Control Register 2 (D1-7, F0)	
	4.11.30 PMCAP[7:1]: Power Management Capabilities Register	
	(D1-7, F0)	105
	4.11.31 PMSCR[7:1]: Power Management Status and Control	
	Register (D1-7, F0)	106
	4.11.32 MSICAPID[7:1]: MSI Capability ID (D1-7, F0)	107
	4.11.33 MSINXPTR[7:1]: MSI Next Pointer (D1-7, F0)	107
	4.11.34 MSICTRL[7:1]: Message Control Register (D1-7, F0)	107
	4.11.35 MSIAR[7:1]: MSI Address Register (D1-7, F0)	108
	4.11.36 MSIDR[7:1]: MSI Data Register (D1-7, F0)	109
	4.11.37 EXP_CAPL[7:1]: PCI Express Capability List Register (D1-7, F0)	110
	4.11.38 EXP_CAP[7:1]: PCI Express Capabilities Register (D1-7, F0)	
	4.11.39 EXP_DEVCAP[7:1]: PCI Express Device Capabilities	
	Register (D1-7, F0)	111
	4.11.40 EXP_DEVCTRL[7:1]: PCI Express Device Control Register	
	(D1-7, F0)	114
	4.11.41 EXP_DEVSTS[7:1]: PCI Express Device Status Register	
	(D1-7, F0)	117
	4.11.42 EXP_LNKCAP[7:1]: PCI Express Link Capabilities Register	
	(D1-7, F0)	118
	4.11.43 EXP_LNKCTRL[7:1]: PCI Express Link Control Register	
	(D1-7, F0)	
	4.11.44 EXP_LNKLSTS[7:1]: PCI Express Link Status Register (D1-7, F0).	121
	4.11.45 EXP_SLOTCAP[7:1]: PCI Express Slot Capabilities Register	
	(D1-7, F0)	122
	4.11.46 EXP_SLOTCTRL[7:1]: PCI EXPRESS Slot Control Register	
	(D1-7, F0)	124
	4.11.47 EXP_SLOTSTS[7:1]: PCI Express Slot Status Register	
	(D1-7, F0)	126
	4.11.48 EXP_RTCTRL[7:1]: PCI Express Root Control Register	
	(D1-7, F0)	
	4.11.49 EXP_RTSTS[7:1]: PCI Express Root Status Register (D1-7, F0)	
4.12	PCI Express Advanced Function (Device 1 - 7, Function 0)	129

	4.12.1	ENHCAPS IS: Enhanced Advanced Error Reporting	400
		Capability Structure (D1-7, F0)	
		UNCERRSTS: Uncorrectable Error Status (D1-7, F0)	
		UNCERRMSK: Uncorrectable Error Mask (D1-7, F0)	
		UNCERRSEV: Uncorrectable Error Severity (D1-7, F0)	
		CORERRSTS: Correctable Error Status (D1-7, F0)	
		CORERRMSK: Correctable Error Mask (D1-7, F0)	. 133
	4.12.7	AERCACR: Advanced Error Capabilities and Control	40
	4.40.0	Register (D1-7, F0)	
	4.12.8	HDRLOG0: Header Log 0 (D1-7, F0) HDRLOG1: Header Log 1 (D1-7, F0)	
		HDRLOG2: Header Log 2 (D1-7, F0)	
		HDRLOG3: Header Log 3 (D1-7, F0)	
		RPERRMSGSTS: Root Port Error Message Status	. 130
	4.12.13	(D1-7, F0)	136
	4.12.14	ERRSID: Error Source ID (D1-7, F0)	
		NBSPCAPID: NB Specific Capability ID (D1-7, F0)	
		EXP_unitERR: PCI Express Unit Error Register (D1-7, F0)	
		EXP_ERR_DOCMD: PCI Express Error Do Command	
		Register (D1-7, F0)	. 138
	4.12.18	UNCEDMASK: Uncorrectable Error Detect Mask (D1-7, F0)	
		COREDMASK: Correctable Error Detect Mask (D1-7, F0)	
		RPEDMASK: Root Port Error Detect Mask (D1-7, F0)	
		EXP_unitDMASK: PCI Express Unit Detect Mask Register	
		(D1-7, F0)	. 142
	4.12.22	EXP_FERR: PCI Express First Error Register (D1-7, F0)	.142
	4.12.23	EXP_NERR: PCI Express Next Error Register (D1-7, F0)	. 143
	4.12.24	EXP_unitEMASK: PCI Express Unit Error Mask Register (D1-7, F0).	. 143
4.13	IMI Reg	gisters (Device{8,10,12,14}, Function 0)	. 144
	4.13.1	VID: Vendor Identification Register (D{8,10,12,14}, F0)	.144
	4.13.2	DID: Device Identification Register (D{8,10,12,14}, F0)	. 144
	4.13.3	RID: Revision Identification Register (D{8,10,12,14}, F0)	.145
	4.13.4	CCR: Class Code Register (D{8,10,12,14}, F0)	. 145
	4.13.5	HDR: Header Type Register (D{8,10,12,14}, F0)	.146
	4.13.6	SVID: Subsystem Vendor Identification Register	
		(D{8,10,12,14}, F0)	
	4.13.7	SID: Subsystem Identity (D{8,10,12,14}, F0)	
		IMISC: IMI Issue Control (D{8,10,12,14}, F0)	
		IMIST: IMI Status (D{8,10,12,14}, F0)	
		IMIHPC: IMI Hot-Plug Control (D{8,10,12,14}, F0)	
		IMIAPR: IMI Read Return Aperture (D{8,10,12,14}, F0)	
		IMIOFF: IMI Read Return Offset (D{8,10,12,14}, F0)	
		IMILINE: IMI Cache Line Size (D{8,10,12,14}, F0)	
		IMICHNK: IMI Chunk Size (D{8,10,12,14}, F0)	
		IMICODE: IMI ECC Code Size (D{8,10,12,14}, F0)	
	4.13.16	IMI_FERR: IMI First Errors (D{8,10,12,14}, F0)	. 153
	4.13.17	IMI_NERR: IMI Next Errors (D{8,10,12,14}, F0)	.155

	4.13.10	(Rectivit. Non-recoverable livit Error Log Register	
		(D{8,10,12,14}, F0)	156
	4.13.19	RECIMI: Recoverable IMI Error Log Register	4
	4.40.00	(D{8,10,12,14}, F0)	156
	4.13.20	REDIMIL: Recoverable Data IMI Error Log Register	45-
	4.40.04	(D{8,10,12,14}, F0)	
		REDIMIH: Recoverable IMI Error Log Register (D{8,10,12,14}, F0)	
		EMASK_IMI[3:0]: IMI Error Mask Register (D{8,10,12,14}, F0)	
		IMI_ERR0: IMI Error 0 Enable Register (D{8,10,12,14}, F0)	
		IMI_ERR1: IMI Error 1 Enable Register (D{8,10,12,14}, F0)	
		IMI_ERR2: IMI Error 2 Enable Register(D{8,10,12,14}, F0)	
		IMI_MCERR: IMI MCERR Enable Register (D{8,10,12,14}, F0)	162
4.14		ide Bus, Boot and Interrupt Registers	400
	•	16, Function 0)	
		VID: Vendor Identification Register (D16, F0)	
		DID: Device Identification Register (D16, F0)	
		RID: Revision Identification Register (D16, F0)	
		CCR: Class Code Register (D16, F0)	
		HDR: Header Type Register (D16, F0)	
		SVID: Subsystem Vendor Identification Register (D16, F0)	
		SID: Subsystem Identity (D16, F0)	
		SYRE: System Reset (D16, F0)	
		REDIRCTL: Redirection Control Register (D16, F0)	
		REDIRDIS: Redirection Disable Register (D16, F0)	
		REDIRBUCKETS: Redirection Bucket Number Register (D16, F0)	
		POC_FSB{A/B}: Power-on Configuration (D16, F0)	
		POC_AUX{A/B}: CPU Tristate Control (D16, F0)	
		XTPR[15:0]: eXternal Task Priority Registers (D16, F0)	
		BOFL[3:0]: Boot Flag (D16, F0)	
		SPAD[3:0]: Scratch Pad (D16, F0)	
		SPADS[3:0]: Sticky Scratch Pad (D16, F0)	
4.15		s Mapping (Device 16, Function 1)	
		VID: Vendor Identification Register (D16, F1)	
		DID: Device Identification Register (D16, F1)	
		RID: Revision Identification Register (D16, F1)	
		CCR: Class Code Register (D16, F1)	
	4.15.5	HDR: Header Type Register (D16, F1)	
	4.15.6	SVID: Subsystem Vendor Identification Register (D16, F1)	
	4.15.7		
		PAM[6:0]: Programmable Attribute MAP (D16, F1)	
		FDHC: Fixed DRAM Hole Control (D16, F1)	
		SMRAMC: System Management RAM Control (D16, F1)	
		EXSMRC: Extended System Management RAM Control (D16, F1)	185
	4.15.12	EXSMRTOP: Extended System Management RAM Top	40-
	4 4= 4=	(D16, F1)	186
	4.15.13	EXP_ECBASE: PCI Express Enhanced Configuration Base	40-
	1 4 5 4 4	Address (D16, F1)	
	4.15.14	TULIVI: TOD UT LOW IVIEMORY (DT6, F1)	186

	4.15.15	IMIR[5:0]: IMI Interleave Range, (D16, F1)	188
	4.15.16	AIMIR[6:0]: Address of IMI Range(D16, F1)	190
	4.15.17	SB_A_IMIR[5:0]: Independent Memory Interface Interleave	
		Range for Front Side Bus A (D16, F1)	191
	4.15.18	SB_B_IMIR[5:0]: Independent Memory Interface Interleave	
		Range for Front Side Bus B (D16, F1)	192
4.16		evice 16, Function 2)	
	4.16.1	VID: Vendor Identification Register (D16, F2)	193
	4.16.2	DID: Device Identification Register (D16, F2)	193
	4.16.3	RID: Revision Identification Register (D16, F2)	194
	4.16.4	CCR: Class Code Register (D16, F2)	194
	4.16.5	HDR: Header Type Register (D16, F2)	195
	4.16.6	SVID: Subsystem Vendor Identification Register (D16, F2)	. 195
	4.16.7	SID: Subsystem Identity (D16, F2)	
	4.16.8	GLOBAL_FERR: Global First Error Register (D16, F2)	. 196
	4.16.9	GLOBAL_NERR: Global Next Error Register (D16, F2)	. 198
	4.16.10	EXSMRAMC - Expansion System Management RAM Control	
		(D16, F2)	200
	4.16.11	FSB{A/B}_FERR: FSB First Error Register(D16, F2)	200
	4.16.12	FSB{A/B}_NERR: FSB Next Fatal Error Register (D16, F2)	. 201
	4.16.13	RECFSB{A/B}_LOG: Recoverable FSB Error Log Register	
		(D16, F2)	202
	4.16.14	NRECFSB{A/B}_LOG0: Non-recoverable FSB Error Log 0	
		Register (D16, F2)	202
	4.16.15	NRECFSB{A/B}_LOG1: Non-recoverable FSB Error Log 1	
		Register (D16, F2)	203
	4.16.16	NRECFSB{A/B}_LOG2: Non-recoverable FSB Error Log 2	000
	4 40 47	Register (D16, F2)	
		EMASK_FSB{A/B}: FSB Error Mask Register (D16, F2)	
		ERRO_FSB{A/B}: FSB Error 0 Mask Register (D16, F2)	
		ERR1_FSB{A/B}: FSB Error 1 Mask Register (D16, F2)	
		ERR2_FSB{A/B}: FSB Error 2 Mask Register (D16, F2)	
		MCERR_FSB{A/B}: FSB MCERR Mask Register (D16, F2)	
		ICHRST_FSB{A/B}: FSB ICHRST Mask Register (D16, F2)	
		INT_FERR: Internal First Fatal Error Register (D16, F2)	
		INT_NERR: Internal Next Fatal Error Register (D16, F2)	
		NRECNB: Non-recoverable NB Error Log Register (D16, F2)	
		RECNB: Recoverable NB Data Log Register (D16, F2)	
		EMASK_INT: Internal Error Mask Register (D16, F2)	
		ERRO_INT: Internal Error 0 Mask Register (D16, F2)	
		ERR1_INT: Internal Error 1 Mask Register (D16, F2)	
		ERR2_INT: Internal Error 2 Mask Register (D16, F2)	
		MCERR_INT: Internal MCERR Mask Register (D16, F2)	212
	4.16.32	RECINT_LOG0: Recoverable Internal Error Log 0 Register	040
	4 40 00	(D16, F2)	213
	4.16.33	RECINT_LOG1: Recoverable Internal Error Log 1 Register (D16 F2)	213
		ID 10. FZ1	🗸 1.3

		4.16.34 RECINT_LOG2: Recoverable Internal Error Log 2 Register (D16, F2)	214
		4.16.35 RECINT_LOG3: Recoverable Internal Error Log 3 Register (D16, F2)	
		4.16.36 RECINT_LOG4: Recoverable Internal Error Log 4 Register	217
		(D16, F2)	214
		4.16.37 INTLOGC: Internal Error Log Control (D16, F2)	
	4.17	Miscellaneous (Device 17, Function 0)	
		4.17.1 VID: Vendor Identification Register (D17, F0)	216
		4.17.2 DID: Device Identification Register (D17, F0)	
		4.17.3 RID: Revision Identification Register (D17, F0)	216
		4.17.4 CCR: Class Code Register (D17, F0)	217
		4.17.5 HDR: Header Type Register (D17, F0)	217
		4.17.6 SVID: Subsystem Vendor Identification Register (D17, F0)	218
		4.17.7 SID: Subsystem Identity (D17, F0)	218
		4.17.8 FSBDC[A]: Front Side Bus Data Control (D17, F0)	218
		4.17.9 FSB[A]AC2: Front Side Bus Control2 (D17,F0)	219
		4.17.10 FSB[A]AC: Front Side Bus Control (D17, F0)	220
	4.18	Miscellaneous (Device 17, Function 1)	221
		4.18.1 VID: Vendor Identification Register (D17, F1)	221
		4.18.2 DID: Device Identification Register (D17, F1)	221
		4.18.3 RID: Revision Identification Register (D17, F1)	
		4.18.4 CCR: Class Code Register (D17, F1)	
		4.18.5 HDR: Header Type Register (D17, F1)	
		4.18.6 SVID: Subsystem Vendor Identification Register (D17, F1)	
		4.18.7 SID: Subsystem Identity (D17, F1)	
		4.18.8 FSBDC[B]: Front Side Bus Data Control (D17, F1)	
		4.18.9 FSB[B]AC2: Front Side Bus Control2 (D17, F1)	
		4.18.10 FSB[B]AC: Front Side Bus Control (D17, F1)	
		4.18.11 EXP_GCTRL: PCI Express Global Control Register	
	4.19	Miscellaneous (Device 17, Function 2)	
		4.19.1 VID: Vendor Identification Register (D17, F2)	
		4.19.2 DID: Device Identification Register (D17, F2)	
		4.19.3 RID: Revision Identification Register (D17, F2)	
		4.19.4 CCR: Class Code Register (D17, F2)	
		4.19.5 HDR: Header Type Register (D17, F2)	
		4.19.6 SVID: Subsystem Vendor Identification Register (D17, F2)	
		4.19.7 SID: Subsystem Identity (D17, F2)	
		4.19.8 IMI_HPTIM: Independent Memory Interface Hot Plug Timer	220
		(D17, F2)	229
		4.19.9 REDUN: Memory Redundancy Control (D17, F2)	
5	Syster	m Address Map	231
	5.1	Memory Map	
	J	5.1.1 Compatibility Region	
		5.1.2 Low/Medium Memory	
		5.1.3 High Extended Memory	
		5.1.4 Main Memory Region	
		o main monory region	∠⊣0

		5.1.5	Main Memory interieaving	241
		5.1.6	General Interleaving Guidelines	251
	5.2	Memor	y Address Disposition	252
		5.2.1	Registers Used for Address Routing	252
		5.2.2	Address Disposition for Processor	253
		5.2.3	Inbound Transactions	258
	5.3	I/O Add	dress Map	260
		5.3.1	Special I/O Addresses	260
		5.3.2	Outbound I/O Access	
		5.3.3	Inbound I/O Accesses	
6	Funct	tional Des	cription	263
	6.1	Proces	sor Support	263
		6.1.1	Clock Phasing	
		6.1.2	Arbitration Phase	
		6.1.3	Symmetric/Priority Agent Arbitration Policy	
	6.2		st Phase	
	0.2	6.2.1	16-Thread Support	
		6.2.2	Intel® E8501 Chipset North Bridge (NB) Requests	
		6.2.3	Snoop Phase	
		6.2.4	Response Phase	
		6.2.5	Defer Phase	
		6.2.6		
			Data Phase	
		6.2.7	Error Signals	
		6.2.8	Bus Assumptions	
		6.2.9	FSB Coherency Assumptions	
		6.2.10	9	
	6.3	•	Indent Memory Interface (IMI)	
		6.3.1	Topology	
		6.3.2	Physical Layer	
		6.3.3	Memory Space	
		6.3.4	Configuration Space	275
		6.3.6	Initialization	287
		6.3.7	Power Management	287
		6.3.8	IMI Hot-Plug	287
		6.3.9	NB IMI States	289
		6.3.10	Hot Swap	289
		6.3.11	NB RAS Operating Modes	
		6.3.12	Memory Hot Removal	290
		6.3.13	Memory Hot Addition	
	6.4		press Interface	
		6.4.1	Support	303
		6.4.2	Physical Layer	303
		6.4.3	Training State Machine	
		6.4.4	Link Layer	
		6.4.5	Transaction Layer	
		6.4.6	Interrupt Handling	
		647	Ordering Rules	311

intel

	6.4.8	Hot-Plug	314
6.5	Hub Int	terface 1.5 - (Compatibility Interface)	315
	6.5.1	Physical Layer	315
	6.5.2	Transaction Layer	315
	6.5.3	Ordering Rules	317
	6.5.4	Inbound Transactions	317
	6.5.5	Outbound Transactions	318
	6.5.6	Peer-to-Peer Support	319
6.6	RAS		320
	6.6.1	Virtual Pins for Hot-Plug	320
6.7	Error R	Reporting	324
	6.7.1	Error Types	324
	6.7.2	Error Mask and Signaling Mapping Register	324
	6.7.3	Error Status and Log Registers	325
	6.7.4	Error Signaling	326
	6.7.5	Error Integration into Intel® E8501 Chipset	
		North Bridge (NB) Error Model	326
	6.7.6	Error Detection	
	6.8.1	xAPIC Interrupt Message Delivery	
	6.8.2	xAPIC Destination Modes	
	6.8.3	EOI	
	6.8.4	I/O Interrupts	335
	6.8.5	Ordering	336
	6.8.6	Hardware IRQ IOxAPIC Interrupts	
	6.8.7	Message Signalled Interrupts (MSI)	
	6.8.8	Non-MSI Interrupts - "Fake MSI"	
	6.8.9	Inter Processor Interrupts (IPIs)	
	6.8.10	Chipset Generated Interrupts	338
6.9			
	6.9.1	Introduction	
	6.9.2	Types of Reset	
	6.9.3	Triggers of Reset	
	6.9.4	Trigger to Type Association	
	6.9.5	Logic Domain Behavior	
	6.9.6	PWRGOOD De-asserted	
	6.9.7	PWRGOOD Assertion	
	6.9.8	NB ICHRST# Sequence	
	6.9.9	Hard Reset Asserted	
	6.9.10	Hard Reset De-assertion	
	6.9.11	PCI Express Reset Asserted	
	6.9.12	NB PCI Express Reset De-asserted	
	6.9.13	NB IMI Reset Assertion	
	6.9.14	NB IMI Reset De-assertion	
		•	
		JTAG Reset Assertion	
		JTAG Reset De-assertion	
		SMBus Reset Sequence	
6.10	System	n Management	347

		6.10.1 SMBus Access	348
		6.10.2 JTAG Access	353
7	Ballout	t/Pinout and Package Information	355
	7.1	Intel [®] E8501 Chipset North Bridge (NB) Ballout/Pinout	
	7.2	Intel® E8501 Chipset North Bridge (NB) Mechanical Package Information	
Figures			
	1-1	Intel® E8501 Chipset System Block Diagram	17
	2-1	Intel® E8501 Chipset North Bridge (NB) Interface Signals	
	2-2	PCI Device Map	30
	2-3	Intel® E8501 Chipset North Bridge (NB) Reference Clocks	31
	2-4	xAPIC Address Encoding	32
	2-5	Intel® E8501 Chipset North Bridge (NB) Data Integrity Map	34
	4-1	PCI Express Configuration Space	59
	5-1	System Memory Address Space	232
	5-2	Interrupt Region	238
	5-3	Simple Example of Fine Grained Interleave	243
	5-4	Example of Coarse Grained Interleave	245
	5-5	Example of Reclaiming MMIO Memory	247
	5-6	Address Mapping for RAID	
	5-7	System I/O Address Space	261
	6-1	Software Visible IMI States	277
	6-2	Pre-Upgrade Memory Map	285
	6-3	Post-Upgrade Memory Map	286
	6-4	Hot Removal Flow for Capacity Reduction (Graceful Degradation)	
	6-5	Hot Removal for Mirroring Mode	294
	6-6	Hot Remove in RAID Mode	296
	6-7	Hot Addition in Normal Mode	298
	6-8	Hot Addition in Mirroring Mode	300
	6-9	Hot Addition in RAID Mode	
	6-10	PCI Express Packet Visibility by Physical Layer	304
	6-11	PCI Express Interface x8 Partitioning	304
	6-12	PCI Express Packet Visibility by Link Layer	
	6-13	PCI Express Packet Visibility by Transaction Layer	
	6-14	Legacy Interrupt Routing (INTA Example)	
	6-15	Maximum Configuration for Hot-Plug Pin Expanders	320
	6-16	Error Integration Model	
	6-17	SMBus Configuration Read (Block Write / Block Read, PEC Enabled)	
	6-18	SMBus Configuration Read (Word Writes / Word Reads, PEC Enabled)	
	6-19	SMBus Configuration Read (Write Bytes / Read Bytes, PEC Enabled)	
	6-20	SMBus Configuration Write (Block Write, PEC Enabled)	
	6-21	SMBus Configuration Write (Word Writes, PEC Enabled)	
	6-22	SMBus Configuration Write (Write Bytes, PEC Enabled)	352
	7-1	NB Ballout (Top View)	356

Tables

7-2	NB Ballout with Signal Names (Top View - Left Region)	.357
7-3	NB Ballout with Signal Names (Top View - Center Region)	.358
7-4	NB Ballout with Signal Names (Top View - Right Region)	359
7-5	Intel® E8501 Chipset North Bridge (NB) Package Dimensions (Top View)	386
7-6	NB Package Dimensions (Side View)	
7-7	NB Package Dimensions (Bottom View)	
	(=====,	
2-1	XAPIC Data Encoding	32
3-1	Signal Naming Conventions	
3-2	Buffer Signal Directions	
3-3	Intel® E8501 Chipset North Bridge (NB) Signals (FSB)	
3-4	Intel® E8501 Chipset North Bridge (NB) Signals (IMI)	
3-5	Intel® E8501 Chipset North Bridge (NB) Signals (PCI Express)	
	Intel® E8501 Chipset North Bridge (NB) Signals (PCI Express)	41
3-6	Correlated to Industry-Standard Naming Convention	12
3-7		
-	Intel® E8501 Chipset North Bridge (NB) Signals (Hub Interface)	45
3-8	Intel® E8501 Chipset North Bridge (NB) Signals	45
0.0	(Clocking and Analog Power)	
3-9	Intel® E8501 Chipset North Bridge (NB) Signals (Reset)	
3-10	Intel® E8501 Chipset North Bridge (NB) Signals (Test and Debug)	
3-11	Intel® E8501 Chipset North Bridge (NB) Signals (RAS)	
3-12	Miscellaneous Signals	
4-1	Register Attribute Definition	
4-2	Intel® E8501 Chipset Concurrent Configuration Accesses	
4-3	Configuration Address Bit Mapping	
4-4	Configuration Register Accessibility	
4-5	PCI CFGADR Register	
4-6	Mapping of Fixed Memory Mapped Registers	58
4-7	When will a PCI Express Device be Accessible?	58
4-8	PCI Devices and Functions Handled by	
	Intel [®] E8501 Chipset North Bridge (NB)	60
4-9	Access to "Non-Existent" Register Bits	61
4-10	Device 0, Function 0: Hub Interface 1.5 Registers	62
4-11	Device 1 - 7, Function 0: PCI Express Space Registers	63
4-12	Device 1 - 7, Advanced Function 0: PCI Express Extended Registers	64
4-13	Device 8,10,12,14 Function 0: IMI Registers	
4-14	Device 16, Function 0: Front Side Bus, Boot and Interrupt Registers	
4-15	Device 16, Function1: Address Mapping Registers	
4-16	Device 16, Function 2: RAS Registers	
4-17	Device 17, Function 0: Miscellaneous Registers	
4-18	Device 17, Function 1: Miscellaneous Registers	
4-19	Device 17, Function 2: Miscellaneous Registers	
4-19	Intel® E8501 Chipset North Bridge (NB) Compatibility Revision ID Function	
4-20 4-21	Negotiated Link Width For Different PCI Express Ports	
4-21 4-22	Device Numbers of IMIs and XMBs	
4-77	DEVICE MUHDEIS OF HVIIS AND AND AND	. 144

4-23	Governing of Interleaving of an Address by IMIR[i]	. 189
5-1	PAM Settings	. 234
5-2	Low Memory Mapped I/O	. 236
5-3	IOAPIC Address Mapping	. 238
5-4	Interleaving Registers	. 242
5-5	Minimum DIMM Size Restriction	.249
5-6	Intel® E8501 Chipset North Bridge (NB) Memory Mapping Registers	. 252
5-7	XMB Memory Mapping Registers	. 253
5-8	Address Disposition for Processor	. 253
5-9	Decoding Processor Requests to SMM and VGA Spaces	. 257
5-10	Enabled SMM Ranges	. 258
5-11	Address Disposition for Inbound Transactions	. 258
6-1	FSB Feature Summary	. 263
6-2	Arbitration Signals	264
6-3	Processor Initiated Transactions Supported by	
	Intel [®] E8501 Chipset North Bridge (NB)	
6-4	Intel® E8501 Chipset North Bridge (NB) Decoding of 2nd Phase of Address	.266
6-5	Encoding of Transactions Initiated by the Intel® E8501 Chipset	
	North Bridge (NB)	. 267
6-6	Encoding 2nd Phase of Address for Transactions Initiated by	
	Intel [®] E8501 Chipset North Bridge (NB)	
6-7	Snoop Phase Signals	. 268
6-8	Intel [®] E8501 Chipset North Bridge (NB) Responses to	
	Processor Transactions	
6-9	Defer Response Outcomes	. 270
6-10	Intel [®] E8501 Chipset North Bridge (NB) Responses to	
	Intel [®] E8501 Chipset North Bridge (NB) Transactions	
6-11	Defer Phase Signals	. 270
6-12	Processor Transfer Sizes and Alignment limitations of the	
	Intel® E8501 Chipset North Bridge (NB)	
6-13	Data Transfer Signals	
6-14	64-bit Intel® Xeon® Processor MP FSB Coherency Assumptions	
6-15	Software Visible IMI State	
6-16	Memory RAID IMI Port Striping	
6-17	Raid Related Address for the Independent Memory Interface Port	
6-18	Raid Memory Upgrade IMIR Possible Settings	
6-19	Options and Limitations	
6-20	Width Strapping Options for Port 1 (EXP_{ A1/A0/B1/B0})	
6-21	Width Strapping Options for Port 0 (Exp_{ C1/C0/D})	
6-22	Training State Machine Mode	
6-23	Incoming PCI Express Requests	
6-24	Incoming PCI Express Completions	
6-25	Outgoing PCI Express Requests	. 309
6-26	Outgoing PCI Express Completions	
6-27	NB Ordering Implementation	. 313
6-28	Hot-Plug Pins	
6-29	Incoming Hub Interface Request Cycles	. 315
6-30	Incoming Hub Interface Completions	.316

intel

6-31	Outgoing Hub Interface Requests Cycles	316
6-32	Outgoing Hub Interface Completions	317
6-33	I/O Port Registers Supported by Intel® E8501 Chipset North Bridge (NB)	321
6-34	Hot-Plug Signals on a Virtual Pin Port (VPP)	321
6-35	VPP Write Command	322
6-36	VPP Read Command	323
6-37	Unsupported Aspects of SMBus	323
6-38	-FERR/NERR and Log Registers	325
6-39	Errors Detected by the NB	328
6-40	NB xAPIC Interrupt Message Routing and Delivery	335
6-41	Chipset Generated Interrupts	340
6-42	SMBus Addresses for the Intel® E8501 Chipset Platform	348
6-43	SMBus Command Encoding	349
6-44	Status Field Encoding for SMBus Reads	
6-45	JTAG Configuration Register Access	353
7-1	NB Pin List (by Ball Number)	360
7-2	NB Pin List (by Signal Name)	373

Revision History

Revision Number	Description	
-001	Initial public release	April 2006

1 Introduction

The Intel® E8501 chipset is a 4-way server chipset offering world class performance. The chipset is built architecturally around the Intel® E8501 chipset north bridge (NB) and the Intel® E8501 chipset external memory bridge (XMB).

This document, the *Intel*® *E8501 Chipset North Bridge (NB) Datasheet*, describes the features, modes and registers supported by the Intel® E8501 chipset north bridge (NB) component only. Additional details on the Intel® E8501 chipset external memory bridge (XMB) are described in a separate document, the *Intel® E8501 Chipset eXternal Memory Bridge (XMB) Datasheet*. For details on any other platform component, please refer to the component's respective documentation. This chapter is an introduction to the entire platform.

Figure 1-1. Intel® E8501 Chipset System Block Diagram

1.1 Intel® E8501 Chipset North Bridge (NB) Feature List

The NB is the center of the Intel® E8501 Chipset architecture (refer to Figure 1-1). The NB provides the interconnect to:

- 64-bit Intel[®] Xeon[®] processor MP or Dual-Core Intel[®] Xeon[®] processor 7000 sequence via two 667 MHz or 800 MHz front side buses optimized for server applications
- XMBs via four Independent Memory Interfaces (IMI)
- I/O components via one x4 & three x8 PCI Express* links and Intel® 82801EB I/O Controller Hub 5 (ICH5) via the HI 1.5

1.1.1 Processor Front Side Bus Support

- Supports up to 4 64-bit Intel® Xeon® processor MP or Dual-Core Intel® Xeon® processor 7000 sequence
- 667 MHz or 800 MHz operation
- Maintains coherency across both buses
- Double-pumped 40-bit address buses with ADS every other clock which provides a total address bandwidth of 167 million addresses/second
- Quad-pumped, 64-bit data bus providing a bandwidth of 5.3 GB/s per bus at 667 MHz or 6.4 GB/s per bus at 800 MHz
- In-Order-Queue depth of 12
- Maintains coherency across both buses
- Return data by Enhanced Defer to allow out-of-order completion
- ECC protection on data signals and parity protection on address signals

1.1.2 Independent Memory Interface

- 4 Independent Memory Interface (IMI) ports, each with up to 5.33 GB/s inbound (read) bandwidth and 2.67 GB/s outbound (write) bandwidth simultaneously
- 40-bit addressing support provides one terabyte (2⁴⁰ bytes) addressing capability (this is in excess of maximum physical memory supported by the Intel[®] E8501 chipset platform)
- Memory technology independent
- · Hot-plug support on each IMI

1.1.3 I/O Interfaces

The Intel® E8501 chipset relies primarily on PCI Express to provide the interconnect between the NB and the I/O subsystem. The I/O subsystem is based on one x4 PCI Express link, three x8 PCI Express links (each of which can be split into two x4 links), and one HI1.5 link.

PCI Express*

- One x4 and three x8 links. Each x8 link can be configured as two x4 links, making a total of seven x4 links
- 1 GB/s bandwidth in each direction for x4 links and 2 GB/s for x8 links
- All ports support Hot-Plug

HI 1.5

- 8-bit wide, 4x data transfer, 66 MHz base clock
- 266 MB/s bandwidth
- Legacy I/O interconnection to the ICH5

1.1.4 Transaction Processing Capabilities

- 64 transactions processed concurrently
- 128-entry Common Data Cache (CDC) for write combining and write buffering

1.1.5 **RASUM**

- ECC on all internal data paths
- Error Detection and Logging Registers on all interfaces
- CRC32 and CRC16 on PCI Express links
- Packet level CRC on IMI's
- IMI error recovery support via read or write retry
 - Transient DRAM read error recovery
 - Transient single IMI wire failure recovery
- Memory mirroring support
- Parity protection on Hub Interface 1.5 (address, control & data)
- Hot-Plug support on PCI Express and IMI ports
- SMBus and JTAG interfaces for system management
- Support for Mirroring of memory
- Parity protected Hub Interface (Address, Control & Data)

1.1.6 Package

• 1432 pin FC-BGA3 (42.5 x 42.5 mm) with a pin-pitch of 1.09 mm.

1.2 Intel® E8501 Chipset eXternal Memory Bridge (XMB) Feature List

The Intel® E8501 chipset external memory bridge (XMB) is an intelligent memory controller that bridges the IMI and DDR interfaces. Each XMB connects to one of the NB's four IMI interfaces. The Intel® E8501 chipset may operate with 1 to 4 XMBs.

1.2.1 DDR Memory Support

- Dual DDR memory channels operating in lockstep with four DIMM slots per channel
- DIMMS must be populated in pairs, and DIMMS within a pair must be identical
- Supports either DDR at 266 MHz or 333 MHz or DDR2 at 400 MHz
- Supports 256-Mb, 512-Mb, and 1-Gb technologies
- Registered ECC DIMMS required
- Integrated I²C* controller for reading DIMM SPD data

1.2.2 IMI Support

- High speed, point-to-point, differential, recovered clock interconnect
- 2.67 GB/s outbound (to the XMB) and 5.33 GB/s inbound (from the XMB) simultaneous bandwidth
- Hot-Plug support

1.2.3 RASUM Features

- ECC on all internal data paths
- Error detection and logging registers on all interfaces
- Packet level CRC protection on IMI
- IMI error recovery support via read or write retry
 - Transient single IMI wire failure recovery
- Intel® x8 Single Device Data Correction (x8 SDDC) technology
- DIMM demand and patrol scrubbing
- DIMM sparing
- · Hardware memory initialization
- Performance counters
- SMBus and JTAG interfaces for system management
- Hot-plug capable IMI

1.2.4 Intel® E8501 Chipset eXternal Memory Bridge (XMB) Package

• 829-pin FC-BGA3 (37.5 x 37.5 mm) with a pin-pitch of 1.27 mm

1.3 Terminology

Term	Description			
Agent	A logical device connected to a bus or shared interconnect that can either initiate accesses or be the target of accesses.			
Asserted	Signal is set to a level that represents logical true.			
Asynchronous	 An event that causes a change in state with no relationship to a clock signal. When applied to transactions or a stream of transactions, a classification for those that do not require service within a fixed time interval. 			
Atomic operation	A series of two or more transactions to a device by the same initiator which are guaranteed to complete without intervening accesses by a different master. Most commonly required for a read-modify-write (RMW) operation.			
Bit Interleave, Address Bit Permuting	The way the bits in a cache line are mapped to DIMM rows, banks, and columns (DDR SDRAM) of memory.			
Buffer	A random access memory structure. The term I/O buffer is also used to describe a low level input receiver and output driver combination.			
Cache Line	The unit of memory that is copied to and individually tracked in a cache. Specifically, 64 bytes of data or instructions aligned on a 64-byte physical address boundary.			
Cache Line Interleave	The way a series of cache lines are mapped to DRAM devices.			
Cfg	Used as a qualifier for transactions that target PCI configuration address space.			
Character	The raw data Byte in an encoded system (e.g. the 8b value in a 8b/10b encoding scheme). This is the meaningful quantum of information to be transmitted or that is received across an encoded transmission path.			
Coherent	Transactions that ensure that the processor's view of memory through the cache is consistent with that obtained through the I/O subsystem.			
Command	The distinct phases, cycles, or packets that make up a transaction. Requests and Completions are referred to generically as Commands.			
Completion	A packet, phase, or cycle used to terminate a Transaction on a interface, or within a component. A Completion will always refer to a preceding Request and may or may not include data and/or other information.			
Core	The internal base logic in the NB.			
CRC	Cyclic Redundancy Check; A number derived from, and stored or transmitted with, a block of data in order to detect corruption. By recalculating the CRC and comparing it to the value originally transmitted, the receiver can detect some types of transmission errors.			

Term	Description				
Critical Word First	The Independent Memory Interface specification constrains the XMB to deliver the words of a cache line in a particular order such that the word addressed in the request appears in the first data transfer.				
DDR	Double Data-Rate memory.				
DDR Channel	One electrical interface to one or more DIMMs, supporting 8 bytes of data and 1 byte of ECC.				
Deasserted	Signal is set to a level that represents logical false.				
DED	Double-bit Error Detect.				
Deferred Transaction	A front side bus Split Transaction. The requesting agent receives a Deferred Response which allows other transactions to occur on the bus. Later, the response agent completes the original request with a separate Deferred Reply transaction.				
Delayed Transaction	A transaction where the target retries an initial request, but unknown to the initiator, forwards or services the request on behalf of the initiator and stores the completion or the result of the request. The original initiator subsequently re-issues the request and receives the stored completion.				
DFM	Design for Manufacturability.				
DFT	Design for Testability.				
DIMM	Dual-in-Line Memory Module. A packaging arrangement of memory devices on a socketable substrate.				
DIMM Rank	That set of SDRAMs on one DDR branch which provides the data packet.				
DIMM Slot Receptacle (socket) for a DIMM. Also, the relative physical locat specific DIMM on a DDR channel.					
DIMM Stack	A set of DIMMs that share data lines.				
Direct Memory Access	Method of accessing memory on a system without interrupting the processors on that system.				
DMA	See Direct Memory Access.				
Downstream	Describes commands or data flowing away from the processor-memory complex and toward I/O. The terms Upstream and Downstream are never used to describe transactions as a whole. (e.g. Downstream data may be the result of an Outbound Write, or an Inbound Read. The Completion to an Inbound Read travels Downstream).				
DRAM Page (Row)	The DRAM cells selected by the Row Address.				
DW A reference to 32 bits of data on a naturally aligned four-byte bound least significant two bits of the address are 00b).					
ECC	Error Correcting Code.				
Front Side Bus	Processor-to-NB interface. The front side bus in this document refers to operation at 166/333/667 MHz (Bus Clock/Address/Data) or 200/400/800 MHz (Bus Clock/Address/Data) . The front side bus is not compatible with the P6 front side bus.				
Full Duplex	A connection or channel that allows data or messages to be transmitted in opposite directions simultaneously.				

Term	Description				
GB/s	Gigabytes per second (10 ⁹ bytes per second).				
Gb/s	Gigabits per second (109 bits per second).				
Half Duplex	A connection or channel that allows data or messages to be transmitted in either direction, but not simultaneously.				
HI1.5	The Intel proprietary hub interface that connects the NB to the ICH5				
Host	This term is used synonymously with Processor.				
I/O	Input/Output. When used as a qualifier to a transaction type, specifies that transaction targets Intel architecture-specific I/O space. (e.g., I/O read).				
Intel® ICH5	The I/O Controller Hub component that contains the legacy I/O functions. It communicates with the NB over a proprietary interconnect called Hub Interface.				
Implicit Writeback	A snoop initiated data transfer from the bus agent with the modified Cache Line to the memory controller due to an access to that line.				
Inbound	A transaction where the request destination is the processor-memory complex and is sourced from I/O. The terms Inbound and Outbound refer to transactions as a whole and never to Requests or Completions in isolation. (e.g. An Inbound Read generates Downstream data, whereas an Inbound Write has Upstream data. Even more confusing, the Completion to an Inbound Read travels Downstream.)				
Inbound (IB)/Outbound (OB) AKA Upstream/ DownStream, Northbound/Southbound, Upbound/Downbound	Up, North, or Inbound is in the direction of the Independent Memory Interface, Down, South, or Outbound is in the direction of other IO (SDRAM, SMBus). or Inbound is towards the NB, Outbound is away form it.				
Initiator	The source of requests. (IBA) An agent sending a request packet on PCI Express is referred to as the Initiator for that Transaction. The Initiator may receive a completion for the Request. [PCI Express]				
Isochronous	A classification of transactions or a stream of transactions that require service within a fixed time interval.				
Layer	A level of abstraction commonly used in interface specifications as a tool to group elements related to a basic function of the interface within a layer and to identify key interactions between layers.				
Legacy	Functional requirements handed down from previous chipsets or PC compatibility requirements from the past.				
Line	Cache line				
Line-Atomically	Atomic operation on one cache lines. Operations on other lines proceed normally during the line-atomic operation. Other operations to the same cache line are suspended until the line-atomic operation is complete.				
Link	A full duplex transmission path between any two PCI Express devices.				
LSb	Least Significant Bit				
LSB	Least Significant Byte				

Term	Description				
Master	A device or logical entity that is capable of initiating transactions. A Master is any potential Initiator.				
Master Abort	A response to an illegal request. Reads receive all 1s data. Writes have no effect.				
MB/s	Megabytes per second (10 ⁶ bytes per second)				
Mem	Used as a qualifier for transactions that target memory space. (e.g. A Mem read to I/O)				
Memory Issue	Committing a request to DDR or, in the case of a read, returning the read header.				
Mesochronous	Distributed or common referenced clock				
Metastability	A characteristic of flip flops that describes the state where the output becomes non-deterministic. Most commonly caused by a setup or hold time violation.				
MSb	Most Significant Bit				
MSB	Most Significant Byte				
MTBF	Mean Time Between Failure				
NB	Intel® E8501 Chipset North Bridge (NB)				
Non-Coherent	Transactions that may cause the processor's view of memory through the cache to be different with that obtained through the I/O subsystem.				
Outbound	A transaction where the request destination is I/O and is sourced from the processor-memory complex. The terms Inbound and Outbound refer to transactions as a whole and never to Requests or Completions in isolation. (e.g. An Outbound Read generates Upstream data, whereas an Outbound Write has Downstream data. Even more confusing, the Completion to an Outbound Read travels Upstream.)				
PCI-PCI (P-P)	Peer-to-Peer Transactions that occur between two devices independent of memory or the processor.				
Packet	The indivisible unit of data transfer and routing, consisting of a header, data, and CRC.				
Page Hit	An access to an open page, or DRAM row. The data can be supplied from the sense amps at low latency. The two halves of the cache line are always placed on the same page, so that only one row command is used. Outside of a cache line the XMB maps address bits to optimize random accesses, at the expense of page hits. Thus page hits outside a cache line are rare.				
Page Miss (Empty Page)	An access to a page that is not buffered in sense amps and must be fetched from DRAM array. Address Bit Permuting Address bits are distributed among channel selects, DRAM selects, bank selects to so that a linear address stream accesses these resources in a certain sequence.				
Page Replace Aka Page Miss, Row Hit/Page Miss.	An access to a row that has another page open. The page must be transferred back from the sense amps to the array, and the bank must be precharged.				
PCI Bus	Peripheral Component Interconnect Local Bus. A 32-bit or 64-bit bus with multiplexed address and data lines that is primarily intended for use as an interconnect mechanism within a system between processor/memory and peripheral components or add-in cards.				
PCI 2.3 compliant	Refers to compliance to the PCI Local Bus Specification, Revision 2.3				

Term	Description				
Plesiochronous	Each end of a link uses an independent clock reference. Support of this operational mode places restrictions on the absolute frequency difference, as specified by PCI Express, which can be tolerated between the two independent clock references.				
Posted	A Transaction that is considered complete by the initiating agent or source before it actually completes at the Target of the Request or destination. All agents or devices handling the Request on behalf of the original Initiator must then treat the Transaction as being system visible from the initiating interface all the way to the final destination. Commonly refers to memory writes.				
Push Model	Method of messaging or data transfer that predominately uses writes instead of reads.				
Queue	A first-in first-out structure (FIFO).				
RASUM	Reliability, Availability, Serviceability, Usability, and Manageability.				
Receiver	 The Agent that receives a Packet across an interface regardless of whether it is the ultimate destination of the packet. More narrowly, the circuitry required to convert incoming signals from the physical medium to more perceptible forms. 				
Request	A packet, phase, or cycle used to initiate a Transaction on a interface, or within a component.				
Reserved	The contents or undefined states or information are not defined at this time. Using any reserved area is not permitted. Reserved register bits must have their values preserved.				
RMW	Read-Modify-Write operation				
SDRAM	Synchronous Dynamic Random Access Memory				
SEC	Single-bit Error Correct				
Serial Presence Detect (aka I ² C* protocol)	A 2-signal serial bus used to read and write control registers in the SDRAMs.				
Simplex	A connection or channel that allows data or messages to be transmitted in one direction only.				
SMBus	System Management Bus. Mastered by a system management controller to read and write configuration registers. Signaling and protocol are loosely based on I ² C, limited to 100 KHz.				
Snooping	A means of ensuring cache coherency by monitoring all memory accesses on a common multi-drop bus to determine if an access is to information resident within a cache.				
Split Lock Sequence	A sequence of transactions that occurs when the target of a lock operation is split across a front side bus data alignment or Cache Line boundary, resulting in two read transactions and two write transactions to accomplish a read-modify-write operation.				
Split Transaction	A transaction that consists of distinct Request and Completion phases or packets that allow use of bus, or interconnect, by other transactions while the Target is servicing the Request.				
SSTL	Stub-Series Terminated Logic				

Term	Description			
Symbol	An expanded and encoded representation of a data Byte in an encoded system (e.g. the 10-bit value in a 8-bit/10-bit encoding scheme). This is the value that is transmitted over the physical medium.			
Symbol Time	The amount of time required to transmit a symbol.			
Target	A device that responds to bus Transactions. (PCI-X*) The agent receiving a request packet is referred to as the Target for that Transaction. [PCI Express].			
Tenured Transaction	A transaction that holds the bus, or interconnect, until complete, effectively blocking all other transactions while the Target is servicing the Request.			
TID	Transaction Identifier; A multi-bit field used to uniquely identify a transaction. Commonly used to relate a Completion with its originating Request in a Split Transaction system.			
Transaction	An overloaded term that represents an operation between two or more agents that can be comprised of multiple phases, cycles, or packets.			
Transmitter	The Agent that sends a Packet across an interface regardless of whether it was the original generator of the packet. More narrowly, the circuitry required to drive signals onto the physical medium.			
Upstream	Describes commands or data flowing toward the processor-memory complex and away from I/O. The terms Upstream and Downstream are never used to describe transactions as a whole. (e.g. Upstream data may be the result of an Inbound Write, or an Outbound Read. The Completion to an Outbound Read travels Upstream.)			
XMB	Intel® E8501 Chipset eXternal Memory Bridge (XMB)			

1.4 References

This revision of the *Intel*® *E8501 Chipset North Bridge (NB) Datasheet* is consistent with the following documentations:

- Intel® E8501 Chipset eXternal Memory Bridge (XMB) Datasheet
- PCI Express Specification
- PCI Local Bus Specification
- Intel® 6700PXH 64-bit PCI Hub and Intel® 6702PXH 64-bit PCI Datasheet
- Intel® 82801EB I/O Controller Hub5 (ICH5) and Intel® 82801ER I/O Controller Hub5 R (ICH5R) Datasheet
- 64-bit Intel® Xeon® Processor MP with 1MB L2 cache Datasheet
- 64-bit Intel® Xeon® Processor MP with up to 8MB L3 cache Datasheet
- Dual-Core Intel® Xeon® Processor 7000 Sequence Datasheet

2 Overview

This chapter provides a general overview of the Intel® E8501 chipset North Bridge (NB) and its properties. For functionality details on each interface, please refer to Section 6.

2.1 Logical Pin Grouping

Figure 2-1 provides a complete list of the NB signals. The signals are arranged in functional groups according to their associated logical interfaces: FSB{A,B}, IMI{A/B/C/D}, PCI Express{A0/A1/B0/B1/C0/C1/D}, HI1.5, Clock, RAS and Debug. For the complete description of each signal, please refer to Section 3.

NB EXP_RCOMP EXP A0 TXN[3:0] **PCI Express** EXP_A0_TXP[3:0] A0 EXP_A0_RXN[3:0] EXP_A0_RXP[3:0] H_A_ADS# ◀ H A AP[1:0]# H_A_BINIT# EXP_A1_TXN[3:0]EXP_A1_TXP[3:0] H_A_BNR# H_A_BPM[5:4]# H_A_BPRI# H_A_BREQ0# **PCI Express** EXP_A1_RXN[3:0] EXP_A1_RXP[3:0] H_A_BREQ1#— H_A_DBSY# H_A_DEFER# ► EXP B0 TXN[3:0] EXP_B0_TXP[3:0] **PCI Express** H_A_DRDY# EXP_B0_RXN[3:0] H_A_HIT# H_A_HITM# B0 EXP B0 RXP[3:0] H_A_IDS#◀ EXP1 SPEC10A H_A_ID[7:0]# ◀ ► EXP_B1_TXN[3:0] H_A_LOCK#— H_A_MCERR# H_A_RS[2:0]# H_A_RSP# H_A_TRDY# EXP_B1_TXP[3:0]EXP_B1_RXN[3:0] **PCI Express** FSB A **B1** EXP_B1_RXP[3:0] H_A_A[39:3]# H_A_ADSTB[1:0]# ➤ EXP_C0_TXN[3:0] EXP_C0_TXP[3:0] EXP_C0_RXN[3:0] EXP_C0_RXP[3:0] **PCI Express** H_A_REQ[4:0]# H_A_D[63:0]# H_A_DEP[7:0]# C₀ EXP0_WIDTH[1:0] H_A_OOD# H A DP[3:0]# ► EXP_C1_TXN[3:0] EXP_C1_TXP[3:0]
- EXP_C1_RXN[3:0] H_A_DBI[3:0]# **PCI Express** H A DSTBN[3:0]# H_A_DSTBP[3:0]# ◀ EXP_C1_RXP[3:0] H_A_VREF[2:0]# EXP_D_TXN[3:0] **PCI Express** EXP_D_TXP[3:0] EXP_D_RXN[3:0] H CRES EXP_D_RXP[3:0] H_SLEWCRES H_ODTCRES IMI_A_TXP[9:0] IMI_A_TXN[9:0] IMI_A_RXP[17:0] IMI_A_RXN[17:0] H_B_ADS# ◀ H_B_AP[1:0]# ◀ H_B_BINIT# H_B_BPM[5:4]# H_B_BPRI# H_B_BREQ0# IMI_A IMI_A_LINKP[2:0] IMI_A_LINKN[2:0]
IMI_A_ICOMPO
IMI_A_ICOMPI
IMI_A_FRAME H_B_BREQ1#— H_B_DBSY# H_B_DEFER# H_B_DRDY# H_B_HIT# H_B_HITM# IMI_B_TXP[9:0] IMI_B_TXN[9:0] IMI_B_RXP[17:0] IMI_B_RXN[17:0] H_B_IDS# H B ID[7:01# ◀ FSB B IMI_B IMI_B_LINKP[2:0]
IMI_B_LINKN[2:0] H_B_LOCK# H_B_MCERR# ◀ H_B_RS[2:0]# H_B_RSP# H_B_TRDY# IMI_B_ICOMPO IMI_B_FRAME H_B_A[39:3]# < H_B_ADSTB[1:0]# < IMI_C_TXP[9:0]
IMI_C_TXN[9:0]
IMI_C_RXP[17:0]
IMI_C_RXN[17:0]
IMI_C_LINKP[2:0] H_B_REQ[4:0]# H_B_D[63:0]# H_B_DEP[7:0]# H_B_OOD# • H_B_DP[3:0]# • IMI_C IMI_C_LINKN[2:0] IMI_C_ZCOMP#
IMI_C_ICOMPO
IMI_C_ICOMPI H_B_DBI[3:0]# ◀ H_B_DSTBN[3:0]# ◀ IMI_C_FRAME H_B_VREF[2:0]# IMI_D_TXP[9:0] IMI_D_TXN[9:0]
IMI_D_RXP[17:0]
IMI_D_RXN[17:0] HI[11:0] ◀ HI STBS ◀ IMI D IMI_D_LINKP[2:0] HI_STBF€ HI1.5 IMI_D_LINKN[2:0] HIVREF IMI D ICOMPO HIRCOMP IMI_D_ICOMPI HIVSWING IMI_D_FRAME

Figure 2-1. Intel® E8501 Chipset North Bridge (NB) Interface Signals

NOTES:

- 1. EXP_HPINT and EXP1_WIDTH1 are muxed names 2. PME_OUT and EXP1_WIDTH2 are muxed names

2.2 **Quadrant Placement**

For the quadrant and ball placement, refer to Figure 7-1.

Register Devices 2.3

Intel® E8501 chipset configuration registers reside in the NB and the XMB. The registers are grouped into buses, devices, and functions. Figure 2-2 shows the hard-coded bus and function numbers for the NB. All configuration devices in this figure are hard-coded to Bus #0. For detailed information on the register configuration, please refer to Section 4. For hard-coded XMB devices, please refer to the Intel® E8501 Chipset eXternal Memory Bridge (XMB) Datasheet.

Figure 2-2. PCI Device Map

2.4 Intel[®] E8501 Chipset North Bridge (NB) Clocking

The CK409 is the only clock generator required in a Intel[®] E8501 chipset platform. Paired with DB800 and DB400 fan-out buffers, this clock solution supplies the reference clocks to all processor and chipset agents. The NB derives the front side bus request and data strobes, XDP debugger data strobes, General Purpose I/O (GPIO) I²C clock, and the SMBus clock from its reference clock.

The reference clock supplying the processors and NB is called "HCLKIN". The processors and NB populate a low-skew, highly phase-coherent "Common Clock" HCLKIN domain.

Another clock supplied the NB and ICH5 is the Hub Interface Clock, or "CLK66". The NB and ICH5 populate a low-skew, highly phase-coherent "Common Clock" CLK66 domain. CLK66 can be asynchronous to any other clock on the platform. There is no phase coherence required between HCLKIN and CLK66.

The CK409 also supplies the NB with the PCI Express Clock, or "EXP_CLK". The PCI Express connections between the NB and PCI Express may be driven from different DB800/DB400 buffers due to their tight part-per-million (ppm) frequency tolerance. Clock skew control between these agents is not required.

ICH5 CLK66 CLK66 CK409 NB **HCLKINP HCLKINP** EXP_CLKP SRC DB800 DB800 **HCLKINN** EXP_CLKN HCLKINN SRC# W HCLKINN 인 인 단 전 Other System Other System Components Components

Figure 2-3. Intel® E8501 Chipset North Bridge (NB) Reference Clocks

2.5 Interrupt Delivery

The Intel® E8501 chipset supports both the xAPIC and traditional 8259 methods of interrupt delivery. I/O interrupts, and Inter-Processor Interrupts (IPIs) appear as write or interrupt transactions in the system and are delivered to the target processor via the front side bus. This chipset does not support the three-wire sideband bus (the APIC bus). xAPIC interrupts that are generated from I/O devices will need to go through an I/O(x)APIC device unless the device

supports Message Signalled Interrupts (MSI). In this document, I/O(x)APIC is an interrupt controller. This functionality will be embedded into the Intel 6700PXH 64-bit PCI Hub and ICH5 components of the chipset.

The legacy 8259 functionality is embedded in the ICH5 component. The Intel[®] E8501 chipset will support inband 8259 interrupt messages from PCI Express devices for boot. The chipset also supports the processor-generated "interrupt acknowledge" (for legacy 8259 interrupts), and "end-of-interrupt" transactions (xAPIC).

2.5.1 xAPIC Interrupt Message Delivery

The xAPIC interrupt architectures deliver interrupts to the target processor core via interrupt messages presented on the front side bus. Interrupts can originate from I/O(x)APIC devices or processors in the system. Interrupts generated by I/O(x)APIC are in the form of writes with a specific address encoding. Interrupts generated by the processor appear on the front side bus as transactions with a similar address encoding, and a specific encoding on the REQa/REQb signals (REQa=01001, REQb=11100).

The xAPIC architecture provides for lowest priority delivery through interrupt redirection by the chipset. If the redirectable "hint bit" is set in the xAPIC message, the chipset may redirect the interrupt to another processor. Note that redirection of interrupts can be to any processor on either Front Side Bus ID and can be applied to both I/O interrupts and IPIs. The redirection can be performed in logical (flat or clustered) and physical destination modes (these modes are explained in section 6.8.2.2). Figure 2-4 shows the address definition in an IA-32 system (xAPIC). For more information on xAPIC refer to Section 6.8.1, "xAPIC Interrupt Message Delivery" on page 333.

Figure 2-4. xAPIC Address Encoding

The data field of an interrupt transaction is included in Table 2-1 for reference.

Table 2-1. XAPIC Data Encoding

D[63:16]	D[15]	D[14]	D[13:11]	D[10:8]	D[7:0]
Х	Trigger Mode	Delivery Status	X	delivery Mode	Vector

2.6 Intel® E8501 Chipset North Bridge (NB) RAS Features

The NB provides a rich set of RAS (Reliability, Availability and Serviceability) features at all its logical interfaces to assure high data integrity, system availability and manageability of the system.

2.6.1 Data Integrity (Error Detection)

The NB provides data integrity throughout the component by employing ECC (Error Correcting Codes), CRC (Cyclic Redundancy Checks) and parity on its logical interfaces (Front Side Bus, IMI, PCI Express and HI1.5) as well as ECC on its own internal data paths and buffers (Refer to Figure 2-5).

2.6.1.1 Front Side Bus Interface

- Parity protection on the address lines.
- ECC protection on the data bus.

2.6.1.2 Independent Memory Interface (IMI)

- CRC on outbound control packets.
- CRC and x8 SDDC on inbound data packets.
- Re-issue capability on detected packets that contain a packet CRC errors (errors bad packet will be discarded).
- Transaction ID contained in each packet.
- Transaction retry on time-out or uncorrectable errors.
- 3 virtual signals for errors: FATAL, Uncorrectable and Correctable.
- Hot-Pluggable

2.6.1.3 PCI Express Interface

- 8B/10B encoding at the physical layer.
- CRC on all packets for further data protection (The illegal codes can be detected since not all 8B/10B encoding is used).
- Additional link level mechanisms:

PCI Express Training

Synchronizes the two end of the interface without software intervention to ensure a robust connection.

PCI Express Retry

If packets contain errors, the packet will be discarded and the sending end of the interface gets signaled. The sending hardware will re-transmit the particular packet in question and all following packets. Although this will cause a temporary interruption in the delivery of packets, it does so in order to maintain the link integrity.

PCI Express Recovery

When enough errors occur, the PCI Express link may enter into a quick training sequence,

referred to as recovery sequence. At this time, the connections will not be renegotiated, but the adjustment of skew between lanes of the link may occur.

2.6.1.4 Legacy Hub Interface (HI1.5)

• Even parity protection scheme over the data signals.

Figure 2-5 summarizes the error detection method at each logical interface of the NB.

Figure 2-5. Intel® E8501 Chipset North Bridge (NB) Data Integrity Map

2.6.2 Error Reporting

The NB is the collection point for a variety of errors that are either detected internally or signaled from the external interfaces (Front Side Bus, PCI Express and IMI). All detected errors are logged in the two provided registers, FERRST (first error status register), and NERRST (next error status register). First fatal and/or first non-fatal errors are flagged in the FERRST register and subsequent errors are indicated in the NERRST. There are some errors that trigger multiple errors within a component. In that case, these errors will be logged in both FERRST and NERRST. There are control and data logs associated with some of the errors flagged in the FERRST. In some cases, the logs are duplicated for the same error (for example, the four PCI Express interfaces on the NB will have identical error log registers). When error logs are duplicated, a pointer to the interface that reported the first error is provided.

The contents of FERRST and NERRST are "sticky" across a reset (while PWRGOOD remains asserted). This provides the ability for firmware to perform diagnostics across reboots. For more information on the error registers refer to Section 4.

2.6.3 Memory Mirroring

The Memory Mirroring enables redundancy by always keeping an exact duplicate of memory accessible. The Memory Mirroring logic is located in the NB and is a user selectable feature. At configuration time, the user can enable mirroring and select which IMI Ports are mirrored. The IMI port mirroring options are as follows:

- IMI Port A and B are mirrored, IMI Port C and D are mirrored.
- IMI Port A and C are mirrored, IMI Port B and D are mirrored.

Mirroring control registers include REDUN (Section 4.19.9), IMIST (Section 4.13.9) and IMIHPC (Section 4.13.10) registers.

For a detailed description of mirroring, including the Hot-Plug and re-silvering in mirroring mode, refer to Section 6.3.

2.6.4 Memory RAID

The Memory RAID enables the data to be reconstructed upon failure behind the IMI ports. The Memory RAID logic is located in the NB and is a user selectable feature. At configuration time, the user can enable memory RAID.

Note: The NB cannot be configured to be in Memory Mirroring Mode and RAID mode at the same time, as these features are mutually exclusive. Also, in order to enable the Memory RAID, the platform must be configured with four XMBs with matching memory configurations.

Raid control registers include REDUN (Section 4.19.9), IMIST (Section 4.13.9) and IMIHPC registers (Section 4.13.10).

For a detailed description of RAID, including the Hot-Plug and re-silvering in RAID mode, refer to Section 6.3.

2.6.5 Hot-Plug

PCI Express – All the PCI Express ports are Hot-Pluggable. For more information refer to Section 6.4.8, "Hot-Plug" on page 314.

IMI – The NB provides the ability to add or remove each XMB and the memory behind it to or from any IMI port interface from a running OS instance. The details of the support will be provided in the future revision of this document. For more information refer to Section 6.3.8, "IMI Hot-Plug" on page 287.

Note: In addition to the above Hot-Plug support on the NB, the Intel® E8501 chipset offers Hot-Plug support at the Intel® 6700PXH 64-bit PCI Hub (PCI-X*) interface as well. For detail on application and implication of this component, please refer to Intel® 6700PXH 64-bit PCI Hub and Intel® 6702PXH 64-bit PCI Hub Datasheet.

§

3 Signal Description

This section provides a detailed description of the Intel® E8501 chipset north bridge (NB) signals. The signals are arranged in functional groups according to their associated interface. The summary of all signals are also captured on Figure 2-1 "Intel® E8501 Chipset North Bridge (NB) Interface Signals" on page 28.

3.1 Conventions

The terms *assertion* and *de-assertion* are used extensively when describing signals, to avoid confusion when working with a mix of active-high and active-low signals. The term *assert*, or *assertion*, indicates that the signal is active, independent of whether the active level is represented by a high or low voltage. The term *de-assert*, or *de-assertion*, indicates that the signal is inactive.

Signal names may or may not have a "#" appended to them. The "#" symbol at the end of a signal name indicates that the active, or asserted state occurs when the signal is at a low voltage level. When "#" is not present after the signal name the signal is asserted when at the high voltage level.

Differential signal pairs adopt a "{P/N}" suffix to indicate the "positive" (P) or "negative" (N) signal in the pair. If a "#" is appended, it will be appended to both.

When discussing data values used inside the component, the logical value is used (i.e. a data value described as "1101b" would appear as "1101b" on an active-high bus, and as "0010b" on an active-low bus). When discussing the assertion of a value on the actual signal, the physical value is used (i.e. asserting an active-low signal produces a "0" value on the signal).

Some signals or groups of signals have multiple versions. These signal groups may represent distinct but similar ports or interfaces, or may represent identical copies of the signal used to reduce loading effects. Table 3-1 shows the conventions used in this document.

Curly-bracketed, non-trailing numerical indices (e.g. " $\{X/Y\}$ ") represent replications of major buses. Square-bracketed numerical indices (e.g. "[n:m]" represent functionally similar but logically distinct bus signals; each signal provides an independent control, and may or may not be asserted at the same time as the other signals in the grouping). In contrast, trailing curly-bracketed numerical indices, e.g., " $\{x/y\}$ " typically represent identical duplicates of a signal that are provided for electrical reasons.

Table 3-1. Signal Naming Conventions

Convention	Expands to
RR{A/B/C}XX	Expands to: RRAXX, RRBXX, and RRCXX. This denotes similar signals on replicated buses.
RR[2:0]	Expands to: RR[2], RR[1], and RR[0]. This denotes a bus.
RR{A/B/C}	Expands to: RRA, RRB, and RRC. This denotes electrical duplicates.
RR# or RR[2:0]#	Denotes an active low signal or bus.

Table 3-2 lists the reference terminology used for signal types.

Table 3-2. Buffer Signal Directions

Buffer Direction	Description
I	Input Signal
0	Output Signal
А	Analog
I/O	Bidirectional (Input/Output) Signal

3.2 FSB Signals

Table 3-3. Intel® E8501 Chipset North Bridge (NB) Signals (FSB) (Sheet 1 of 3)

Signal	Туре	Description
H_{A/B}_A[39:3]#	I/O	Address Signals: Processor Address Bus. During processor cycles these are inputs. The NB drives A[39:3]# for transactions originating from PCI Express, other FSB, and for deferred reply transactions.
H_{A/B}_ADS#	I/O	Address/Data Strobe: Indicates the first cycle of any request phase. This signal is driven and sampled by the NB.
H_{A/B}_ADSTB[1:0]#	I/O	Address Strobes: Used to transfer requests at the x2 rate. The falling edge of the strobe transfers the 1st subphase. The rising edge of the strobe transfers the 2nd subphase.
H_{A/B}_AP[1:0]#	I/O	Address Parity: Parity protection on the address and request bus. The NB will generate AP[1:0]# for its own transactions. The NB will also monitor AP[1:0]# for all transactions and check parity on the address bus.
H_{A/B}_BINIT#	I/O	Bus Initialization: Processor assertions are logged as "F2" errors. The NB does not assert this signal.
H_{A/B}_BNR#	I/O	Block Next Request: The NB monitors processor assertions of this signal to block any of the NB's transactions from being issued on the bus.
H_{A/B}_BPM[5:4]#	I/O	Breakpoint / Debug Bus: This group of signals is used by the system debug logic and by the NB for communicating debug information. BPM[5:4] are used as breakpoint triggers.
H_{A/B}_BPRI#	0	Priority Agent Bus Request: The NB asserts this signal to drive requests originating from the PCI Express and HI ports, snoops from the other FSB, and to issue a deferred reply transaction in some special cases. The NB will also assert this signal to block the processors from issuing transactions. Symmetric agents do not assert this signal. The NB does not observe this signal.
H_{A/B}_BREQ[0]#	I/O	Physical Bus Request: The NB drives BREQ[0]# during POC and de-asserts it one clock after the NB samples reset de-asserted.
H_{A/B}_BREQ[1]#	I	Physical Bus Request: The NB does not drive BREQ[1]#, but rather observes active BREQ[1:0] from processors to determine de-assertion of BPRI# to transfer bus ownership to the processor.

Table 3-3. Intel® E8501 Chipset North Bridge (NB) Signals (FSB) (Sheet 2 of 3)

Signal	Туре	Description
H_{A/B}_D[63:0]#	I/O	Data Bus: 64 bits of data driven by the agent responsible for driving data during the Data phase.
H_{A/B}_DBI[3:0]#	I/O	Data Bus Inversion: Each bit corresponds to one of the FSB data signal group and 8 bits of ECC.
H_{A/B}_DBSY#	I/O	Data Bus Busy: Indicates that the data bus is owned by the agent responsible for driving the data during the Data phase. DBSY# assertion does not imply that data is being transferred during that cycle.
H_{A/B}_DEFER#	0	Defer: The NB asserts DEFER# for all processor-initiated transactions with DEN# asserted. The NB will also generate deferred responses for these transactions except for the case when an in-order retry is forced.
H_{A/B}_DEP[7:0]#	I/O	Data Bus Extended Parity: ECC coverage for 64 bits of data (D). The NB generates this ECC when it drives data during the Data phase. The NB also checks the ECC accompanying incoming data.
H_{A/B}_DP[3:0]#	I/O	Data Bus Parity
H_{A/B}_DRDY#	I/O	Data Ready: Indicates that data is valid on the data bus during any cycle DRDY# is asserted. The NB asserts DRDY# for each valid data transfer.
H_{A/B}_HIT#	I/O	Snoop Hit: The NB captures the value of HIT# for transactions that are deferred and returns it using DHIT# during the Deferred Phase. The NB asserts HIT# to initiate a snoop stall (HIT# and HITM# asserted together).
H_{A/B}_HITM#	I/O	Snoop Hit with Modified: The NB observes HITM# and when asserted drives TRDY# for implicit writeback. The NB asserts HITM# to initiate a snoop stall (HIT# and HITM# asserted together).
H_{A/B}_ID[7:0]#	0	Transaction Identifier: These are driven during the Deferred Phase and indicate the transaction ID of the deferred transaction. On the second clock of the deferred phase (IDS# +1), IDb[1:0]# carries the parity for the ID signals. IDb[2]# renamed as DHIT# is asserted by NB if the snoop phase of the original transaction resulted in HIT#.
H_{A/B}_IDS#	0	Transaction Identifier Strobe: IDS# is asserted by the NB to indicate the first cycle of the deferred phase.
H_{A/B}_LOCK#	I	Bus Lock: Indicates atomicity of transactions.
H_{A/B}_MCERR#	I/O	Machine Check Error: MCERR# indicates non-recoverable bus protocol violation.
H_{A/B}_REQ[4:0]#	I/O	Request Command: The NB issues requests by driving REQ[4:0]# while asserting ADS#. The NB tracks processor requests on REQ[4:0]# upon observing assertions on ADS#.
H_{A/B}_OOD#	0	Out Of Order Data: OOD# delivers the data for the deferred phase.
H_{A/B}_RS[2:0]#	0	Response Status: Indicates the type of response generated by the NB. Valid responses are Hard Fail, Implicit Writeback, Normal Data, No Data, Deferred, and Retry.
H_{A/B}_RSP#	0	Response Status Parity: Parity protection on RS[2:0]#.

Table 3-3. Intel® E8501 Chipset North Bridge (NB) Signals (FSB) (Sheet 3 of 3)

Signal	Туре	Description
H_{A/B}_DSTBN[3:0]#	I/O	Negative Data Strobes: Used to transfer data at the x4 rate. DSTBN[3:0]# is the negative phase data strobe. Data transfer for subphases 2 and 4 occur on the falling edges of STBN#. The NB drives and samples DSTBN[3:0]#.
H_{A/B}_DSTBP[3:0]#	I/O	Positive Data Strobes: Used to transfer data at the x4 rate. DSTBP[3:0]# is the positive phase data strobe. Data transfer for subphases 1 and 3 occur on the falling edges of STBP#. The NB drives and samples DSTBP[3:0]#.
H_{A/B}_TRDY#	0	Target Ready: The NB asserts TRDY# when it is ready to accept data from the processor.
H_{A/B}_VREF[2:0]	А	FSB AGTL+ Receiver Voltage References (0.733 V)
H_CRES	А	FSB Compensation Resistor Common: Common (ground) pin for connection to the H_ODTCRES and H_SLWCRES compensation resistors.
H_ODTCRES	А	FSB On-Die Termination Compensation Resistors: Compensation resistor that determines the FSB on-die termination.
H_SLWCRES	Α	FSB Slew Rate Compensation Resistor: Compensation resistor that determines the FSB driver slew rate.

3.3 Independent Memory Interface (IMI) Signals

Table 3-4. Intel® E8501 Chipset North Bridge (NB) Signals (IMI)

IMI_{A/B/C/D}_TXP[9:0]	0	Memory Port Outbound: Signals used for command and write operations.
IMI_{A/B/C/D}_TXN[9:0]	0	Memory Port Outbound Complement: The complement of the signals used for command and write operations.
IMI_{A/B/C/D}_RXP[17:0]	I	Memory Port Inbound Data: Signals used for returning data from read operations.
IMI_{A/B/C/D}_RXN[17:0]	I	Memory Port Inbound Data Complement: The complement of the signals used for returning data from read operations.
IMI_{A/B/C/D}_LINKP[2:0]	I	Memory Port Inbound Link: Link signals used for command completions.
IMI_{A/B/C/D}_LINKN[2:0]	I	Memory Port Inbound Link Complement: The complement of the link signals used for command completions.
IMI_{A/B/C/D}_ICOMPI	А	Memory Port Impedance Compensation
IMI_{A/B/C/D}_ICOMPO	А	Memory Port Impedance Compensation
IMI_{A/B/C/D}_FRAME	0	IMI Frame

3.4 PCI Express Ports Signals

Table 3-5. Intel® E8501 Chipset North Bridge (NB) Signals (PCI Express) (Sheet 1 of 2)

Signal Name	Туре	Description	
EXP_{A0/A1/B0/B1/C0/C1/D}_TXP[3:0]	0	PCI Express Transmit Data (Outbound)	
EXP_{A0/A1/B0/B1/C0/C1/D}_TXN[3:0]	0	PCI Express Outbound Complement	
EXP_{A0/A1/B0/B1/C0/C1/D}_RXP[3:0]	I	PCI Express Receive Data (Inbound)	
EXP_{A0/A1/B0/B1/C0/C1/D}_RXN[3:0]	I	PCI Express Inbound Complement	
EXP_ICOMP	Α	PCI Express Impedance Compensation	
EXP_RCOMP	Α	PCI Express Impedance Compensation	
EXP0_SPEC10A	I	PCI Express Training State Machine Mode for EXP_{D/C0/C1}:This signal is sampled at the assertion of PWRGOOD.	
		Value Function	
		0 Use 1.0 Specification	
		1 use 1.0 A Specification	
		PCI Express Training State Machine Mode for EXP_{B0/B1/A0/A1}: This signal is sampled at the assertion of PWRGOOD.	
		Value Function	
		0 Use 1.0 Specification	
		1 use 1.0 A Specification	
EXP0_WIDTH[1:0]	I	PCI Express Link Width Force for EXP_{D/C0/C1}: These signals are sampled at the assertion of PWRGOOD.	
EXP1_WIDTH0	I	PCI Express Link Width Force for EXP_{B0/B1/A0/A1}: This signal is sampled at the assertion of PWRGOOD.	
EXP1_WIDTH1 / EXP_HPINT	I/O	PCI Express Link Width Force for EXP_(B0/B1/A0/A1): This signal is sampled at the assertion of PWRGOOD.	
		PCI Express Hot-Plug Interrupt: The NB asserts this signal to signal a PCI Express hot-plug event.	

Table 3-5. Intel® E8501 Chipset North Bridge (NB) Signals (PCI Express) (Sheet 2 of 2)

Signal Name	Туре	Description
EXP1_WIDTH2 / PME_OUT	1/0	PCI Express Link Width Force for EXP_{B0/B1/A0/A1}: This signal is sampled at the assertion of PWRGOOD.
		Power Management Event Output: Each PCI (and PCI Express) slot supports a signal called Power Management Event (PME). This signal is used by an I/O device (e.g. a LAN adapter) to wake up a system that is in a sleep state. Traditionally, these pins are routed directly to the ICH. However, with PCI Express, these messages will arrive inband through an ON/OFF pair of messages.
		To manage this transition (since ICH5 is not on PCI Express), the NB implements the PME Status bit in Section 4.11.49, "EXP_RTSTS[7:1]: PCI Express Root Status Register (D1-7, F0)" on page 4-129 for each of the PCI Express ports. There is one bit per port. The NB OR's all the bits together and asserts the PME_OUT signal to the ICH5. When all the bits are clear, the signal is de-asserted.

3.4.1 Industry Standard Naming Convention

The PCI Express signal naming convention used by the NB is different from the standard naming convention specified by PCISIG because the NB naming occurred before the PCISIG convention was ratified.

Table 3-6 correlates the NB signal names to the ratified PCISIG naming convention. Consult this table for help in attaching PCI Express devices to the NB using the standard PCISIG naming convention.

Table 3-6. Intel® E8501 Chipset North Bridge (NB) Signals (PCI Express)
Correlated to Industry-Standard Naming Convention (Sheet 1 of 2)

Existing Signal Names	PCISIG Naming Equivalent
EXP_A0_RXN0	PE6Rn0
EXP_A0_RXN1	PE6Rn1
EXP_A0_RXN2	PE6Rn2
EXP_A0_RXN3	PE6Rn3
EXP_A0_RXP0	PE6Rp0
EXP_A0_RXP1	PE6Rp1
EXP_A0_RXP2	PE6Rp2
EXP_A0_RXP3	PE6Rp3
EXP_A0_TXN0	PE6Tn0
EXP_A0_TXN1	PE6Tn1
EXP_A0_TXN2	PE6Tn2
EXP_A0_TXN3	PE6Tn3
EXP_A0_TXP0	PE6Tp0
EXP_A0_TXP1	PE6Tp1
EXP_A0_TXP2	PE6Tp2
EXP_A0_TXP3	PE6Tp3
EXP_A1_RXN0	PE7Rn0
EXP_A1_RXN1	PE7Rn1
EXP_A1_RXN2	PE7Rn2
EXP_A1_RXN3	PE7Rn3
EXP_A1_RXP0	PE7Rp0
EXP_A1_RXP1	PE7Rp1
EXP_A1_RXP2	PE7Rp2
EXP_A1_RXP3	PE7Rp3
EXP_A1_TXN0	PE7Tn0
EXP_A1_TXN1	PE7Tn1
EXP_A1_TXN2	PE7Tn2
EXP_A1_TXN3	PE7Tn3
EXP_A1_TXP0	PE7Tp0
EXP_A1_TXP1	PE7Tp1
EXP_A1_TXP2	PE7Tp2
EXP_A1_TXP3	PE7Tp3
EXP_B0_RXN0	PE4Rn0

Existing Signal Names	PCISIG Naming Equivalent
EXP_B0_RXN3	PE4Rn3
EXP_B0_RXP0	PE4Rp0
EXP_B0_RXP1	PE4Rp1
EXP_B0_RXP2	PE4Rp2
EXP_B0_RXP3	PE4Rp3
EXP_B0_TXN0	PE4Tn0
EXP_B0_TXN1	PE4Tn1
EXP_B0_TXN2	PE4Tn2
EXP_B0_TXN3	PE4Tn3
EXP_B0_TXP0	PE4Tp0
EXP_B0_TXP1	PE4Tp1
EXP_B0_TXP2	PE4Tp2
EXP_B0_TXP3	PE4Tp3
EXP_B1_RXN0	PE5Rn0
EXP_B1_RXN1	PE5Rn1
EXP_B1_RXN2	PE5Rn2
EXP_B1_RXN3	PE5Rn3
EXP_B1_RXP0	PE5Rp0
EXP_B1_RXP1	PE5Rp1
EXP_B1_RXP2	PE5Rp2
EXP_B1_RXP3	PE5Rp3
EXP_B1_TXN0	PE5Tn0
EXP_B1_TXN1	PE5Tn1
EXP_B1_TXN2	PE5Tn2
EXP_B1_TXN3	PE5Tn3
EXP_B1_TXP0	PE5Tp0
EXP_B1_TXP1	PE5Tp1
EXP_B1_TXP2	PE5Tp2
EXP_B1_TXP3	PE5Tp3
EXP_C0_RXN0	PE2Rn0
EXP_C0_RXN1	PE2Rn1
EXP_C0_RXN2	PE2Rn2
EXP_C0_RXN3	PE2Rn3

Table 3-6. Intel® E8501 Chipset North Bridge (NB) Signals (PCI Express)
Correlated to Industry-Standard Naming Convention (Sheet 2 of 2)

Existing Signal Names	PCISIG Naming Equivalent
EXP_B0_RXN1	PE4Rn1
EXP_B0_RXN2	PE4Rn2
EXP_C0_RXP2	PE2Rp2
EXP_C0_RXP3	PE2Rp3
EXP_C0_TXN0	PE2Tn0
EXP_C0_TXN1	PE2Tn1
EXP_C0_TXN2	PE2Tn2
EXP_C0_TXN3	PE2Tn3
EXP_C0_TXP0	PE2Tp0
EXP_C0_TXP1	PE2Tp1
EXP_C0_TXP2	PE2Tp2
EXP_C0_TXP3	PE2Tp3
EXP_C1_RXN0	PE3Rn0
EXP_C1_RXN1	PE3Rn1
EXP_C1_RXN2	PE3Rn2
EXP_C1_RXN3	PE3Rn3
EXP_C1_RXP0	PE3Rp0
EXP_C1_RXP1	PE3Rp1
EXP_C1_RXP2	PE3Rp2
EXP_C1_RXP3	PE3Rp3
EXP_C1_TXN0	PE3Tn0
EXP_C1_TXN1	PE3Tn1
EXP_C1_TXN2	PE3Tn2
EXP_C1_TXN3	PE3Tn3
EXP_C1_TXP0	PE3Tp0
EXP_C1_TXP1	PE3Tp1
EXP_C1_TXP2	PE3Tp2
EXP_C1_TXP3	PE3Tp3
EXP_D_RXN0	PE1Rn0
EXP_D_RXN1	PE1Rn1

Existing Signal Names	PCISIG Naming Equivalent
EXP_C0_RXP0	PE2Rp0
EXP_C0_RXP1	PE2Rp1
EXP_D_RXN2	PE1Rn2
EXP_D_RXN3	PE1Rn3
EXP_D_RXP0	PE1Rp0
EXP_D_RXP1	PE1Rp1
EXP_D_RXP2	PE1Rp2
EXP_D_RXP3	PE1Rp3
EXP_D_TXN0	PE1Tn0
EXP_D_TXN1	PE1Tn1
EXP_D_TXN2	PE1Tn2
EXP_D_TXN3	PE1Tn3
EXP_D_TXP0	PE1Tp0
EXP_D_TXP1	PE1Tp1
EXP_D_TXP2	PE1Tp2
EXP_D_TXP3	PE1Tp3
EXP_CLKN	PECLKN
EXP_CLKP	PECLKP
EXP_HPINT/EXP1_WIDTH1	PE1WIDTH[1]
EXP_ICOMPI	PEICOMPI
EXP_RCOMP	PERCOMP
EXP_VCCA	VCCAPE
EXP_VCCBG	VCCABGPE
EXP_VSSA	VSSAPE
EXP_VSSBG	VSSBGPE
EXP0_Spec10A	PE0Spec10a
EXP0_WIDTH0	PE0WIDTH[0]
EXP0_WIDTH1	PE0WIDTH[1]
EXP1_Spec10A	PE1Spec10a
EXP1_WIDTH0	PE1WIDTH[0]

3.5 Hub Interface 1.5 (HI1.5) Signals

Table 3-7. Intel® E8501 Chipset North Bridge (NB) Signals (Hub Interface)

Signal Name	Туре	Description
HI[11:0]	I/O	Data pins: The data interface.
HI_STBF	I/O	First Packet Data Interface Strobe: (idle & default voltage level = H_VCCA) together provide timing for 4X and 1X data transfer on the data interface. The agent that is providing data drives this signal. HI_STBF and HI_STBS should be sensed pseudo-differentially at the receiver.
HI_STBS	I/O	Second Packet Data Interface Strobe: See HI_STBF description above.
HIRCOMP	Α	HI RCompensation: Connects to the external RCOMP resistor and used for impedance matching.
HIVREF	Α	HI Voltage Reference: Receiver threshold (0.35 V reference voltage).
HIVSWING	A	HI Voltage Swing: A voltage reference (0.8 v to 0.7 v) used by the RCOMP circuits to adjust the I/O drivers' strength and maximum signal voltage to be driven onto the board.

3.6 Clocking and Analog Power Signals

Table 3-8. Intel® E8501 Chipset North Bridge (NB) Signals (Clocking and Analog Power) (Sheet 1 of 2)

Signal Name	Туре	Description	
CLK66	I	Clock 66: 66 MHz clock for HI1.5. Synchronization to EXP_CLK or HCLKIN not required. Bypass clock in bypass mode.	
EXP_CLKN	I	PCI EXPRESS Clock Complement: This is the other differential reference clock input to the PCI Express Phase Locked Loops. Synchronization to H_CLK or CLK66 not require	
EXP_CLKP	I	PCI EXPRESS Clock: This is one of the two differential reference clock inputs to the PCI Express Phase Locked Loops. Synchronization to H_CLK or CLK66 not require	
EXP_VCCA	А	VCC: Analog Voltage for the PCI Express PLL's.	
EXP_VCCBG	А	VCC: Bandgap Voltage for the PCI Express.	
EXP_VSSA	А	VSS: Analog Voltage for the PCI Express PLL's.	
EXP_VSSBG	Α	VSS: Bandgap Voltage for the PCI Express.	
H_VCCA	Α	VCC: Analog Voltage for the FSB PLL.	
H_VSSA	Α	VSS: Analog Voltage for the FSB PLL.	

Table 3-8. Intel® E8501 Chipset North Bridge (NB) Signals (Clocking and Analog Power) (Sheet 2 of 2)

Signal Name	Туре	Description	
HCLKINN	ı	FSB Clock Complement: This is the other differential reference clock input to the Phase Locked Loop in the NB core. Phase Locked Loops in the NB will shift this to all frequencies required by the core, FSB, and SMBus ports.	
HCLKINP	1	FSB Clock: This is one of the two differential reference clock inputs to the Phase Locked Loop in the NB core. Phase Locked Loops in the NB will shift this to all frequencies required by the core, FSB, and SMBus ports.	
HI_VCCA	A	VCC: Analog Voltage for the Hub Interface PLL.	
HI_VSSA	A	VSS: Analog Voltage for the Hub Interface PLL.	
IMI_{A/B/C/D}_CLKN	ı	Independent Memory Interface Clock Complement: This is the other differential reference clock input to the Phase Locked Loop in the NB IMI.	
IMI_{A/B/C/D}_CLKP	I	Independent Memory Interface Clock: This is one of the two differential reference clock inputs to the Phase Locked Loop in the NB IMI.	
IMI_{A/B/C/D}_VCCA	А	VCC: Analog Voltage for the Independent Memory Interface PLL's. One for each IMI.	
IMI_{A/B/C/D}_VCCBG	А	VCC: Bandgap Voltage for the Independent Memory Interfaces. One for each IMI.	
IMI_{A/B/C/D}_VSSA	A	VSS: Analog Voltage for the Independent Memory Interface PLL's. One for each IMI.	
IMI_{A/B/C/D}_VSSBG	А	VSS: Bandgap Voltage for the Independent Memory Interfaces. One for each XMI.	
VCCA	A	VCC: Analog Voltage for the core PLL.	
VSSA	A	VSS: Analog Voltage for the core PLL.	
V3REF[1:0]	А	Voltage Reference: Reference Voltage for 3.3 V signal tolerance.	

3.7 Reset Signals

Table 3-9. Intel® E8501 Chipset North Bridge (NB) Signals (Reset)

Signal Name	Туре	Description	
H_{A/B}_RST#	0	Host Reset: This signal is the FSB reset. Asserted due to RSTIN# or writes to the SYRE register. Reset on an unpopulated FSB will remain asserted.	
ICHRST#	0	ICH5 Reset: 66 MHz synchronized version of the reset input signal to the ICH5.	
IMI_{A/B/C/D}_RST#	0	IMI Port Reset: Assertion resets the XMB.	
PWRGOOD	I	Power Good: Clears the NB. This signal is held low until all power supplies are in specification. This signal may be pulsed after power-up to completely reset the NB.	
RSTIN#	I	Reset Input: This is the hard reset input to the NB.	

3.8 Debug Signals

Table 3-10. Intel® E8501 Chipset North Bridge (NB) Signals (Test and Debug) (Sheet 1 of 2)

Signal Name	Туре	Description
ITP_TCK	I	Test Clock: Clock input used to drive Test Access Port (TAP) state machine during test and debugging. This input may change asynchronous to HCLK.
ITP_TDI	I	Test Data In: Data input for test mode. Used to serially shift data and instructions into TAP.
ITP_TDO	0	Test Data Out: Data output for test mode. Used to serially shift data out of the device.
ITP_TEST	I	Test Mode: An assertion of this signal places the component into test mode. A leading-edge transition on this signal will also sample static test mode functions from the "overloaded" signals.
ITP_TMS	I	Test Mode Select: This signal is used to control the state of the TAP controller.
ITP_TRST#	I	Test Reset: This signal resets the TAP controller logic. It should be pulled down unless ITP_TCK is active. This input may change asynchronous to BUSCLK.
XDP_CRES	I	Debug Bus Compensation Resistor Common: Common (ground) pin for connection to the XDP_ODTCRES and XDP_SLWCRES compensation resistors.
XDP_D[15:0]#	I/O	Debug Bus Data: XDP debug control/data signals and manufacturing test mode. Includes clock/PLL debug signals.

Table 3-10. Intel® E8501 Chipset North Bridge (NB) Signals (Test and Debug) (Sheet 2 of 2)

Signal Name	Туре	Description
XDP_DSTBN#	I/O	Negative Debug Bus Strobe: Used to transfer data at the 4x rate. XDP_DSTBP# is the positive strobe. Transfer occurs on the rising edges of XDP_DSTBN#. The NB drives and samples XDP_DSTBN#.
XDP_DSTBP#	I/O	Positive Debug Bus Strobe: Used to transfer data at the 4x rate. XDP_DSTBN# is the negative strobe. Transfer occurs on the falling edges of XDP_DSTBP#. The NB drives and samples XDP_DSTBP#.
XDP_ODTCRES	I	Debug Bus On-Die Termination Compensation Resistors: Compensation resistor that determines the FSB on-die termination.
XDP_RDY#	I/O	Debug Bus Ready
XDP_SLWCRES	I	Debug Bus Slew Rate Compensation Resistor: Compensation resistor that determines the FSB driver slew rate.

3.9 RAS Signal

Table 3-11. Intel® E8501 Chipset North Bridge (NB) Signals (RAS) (Sheet 1 of 2)

Signal Name	Туре	Description		
PME_OUT / EXP1_WIDTH2	I/O	See Table 3-5.		
EXP_HPINT / EXP1_WIDTH1	I/O	See Table 3-5.		
IMI_HPINT	I/O	IMI Hot-Plug Interrupt: The NB asserts IMI_HPINT to signal an IMI hot-plug event. Also used as Processor Strap.		
		Strap Function		
		0 64-bit Intel® Xeon® processor MP with 1MB L2 cache or Dual-Core Intel® Xeon® processor 7000 sequence 1 64-bit Intel® Xeon® processor MP with up to 8MB L3 cache		
GP_SMBCLK	I/O	General Purpose I/O Clock: SMBus master clock for a bank of general-purpose I/O which can be connected to the hot-plug controller.		
GP_SMBDATA	I/O	General Purpose I/O Data: SMBus data for a bank of general-purpose I/O which can be connected to the hot-plug controller.		

Table 3-11. Intel® E8501 Chipset North Bridge (NB) Signals (RAS) (Sheet 2 of 2)

Signal Name	Туре	Description
SMBCLK	I	System Management Bus Clock: SMBus slave clock for the system management bus. Provides access to configuration registers only. This input may change asynchronously with respect to HCLK.
SMBDATA	I/O	System Management Bus Address/Data: SMBus data for the system management bus. Provides access to configuration registers only. This input may change asynchronously with respect to HCLK.
ERR[2:0]#	0	ERROR:
		Assertion time is 18 cycles. Multiple errors on the same signal occurring during an assertion will not be distinguishable as separate events.

3.10 Miscellaneous Signals

Table 3-12. Miscellaneous Signals

Signal Name	Туре	Description
TESTHI	N/A	High Test Pin: Should be pulled high to P1V5 (VCC) on customer platforms. For the locations of these signals on the NB package, refer to Table 7-2 "NB Pin List (by Signal Name)" on page 7-373.
TESTLO	N/A	Low Test Pin: Should be pulled low to VSS on customer platforms. For the locations of these signals on the NB package, refer to Table 7-2 "NB Pin List (by Signal Name)" on page 7-373.
RESERVED	N/A	Reserved: All reserved pins must be left unconnected. Connection of these pins to VCC, VSS, or to any other signal (including each other) can result in component malfunction. For the location of these signals on the NB package,
		refer to Table 7-2 "NB Pin List (by Signal Name)" on page 7-373.

4 Register Description

The Intel® E8501 chipset North Bridge (NB) configuration registers provide functionality, flexibility and settings that can be used to optimize performance of the chipset.

The NB registers can be accessed by a memory mapped register access mechanism, a PCI configuration access mechanism (only PCI space registers), and register access mechanisms through JTAG and SMBus. The memory mapped access mechanism is further broken down into different ranges. The internal registers of this chipset can be accessed in Byte, Word (16-bit), or Dword (32-bit) quantities, with the exception of CFGADR which can only be accessed as a Dword. All multi-byte numeric fields use "little-endian" ordering (i.e., lower addresses contain the least significant parts of the field). The NB can also forward accesses to all IMI and PCI/PCI Express device configuration registers through the same mechanisms.

This chapter describes how the configuration spaces in the NB are organized and accessed. Registers are described in the order of the layout by device and offset. For configuration spaces on the XMB, please refer to the *Intel*® *E8501 Chipset eXternal Memory Bridge (XMB) Datasheet*.

4.1 Register Terminology

Each of the bits in the configuration registers have specific attributes. The following table defines all the attribute types. With the exception of the Sticky bits, all bits will be set to their default values by a hard reset.

Table 4-1. Register Attribute Definition (Sheet 1 of 2)

Attribute	Definition	Description	
RO	Read Only	The bit is set by the hardware only and software can only read the bit. Writes to the register have no effect.	
WO	Write Only	The bit is not implemented as a bit. The write causes some hardware event to take place.	
RW	Read/Write	The bit can be both read and/or written by software.	
RWC	Read/Write Clear	The bit can be either read or cleared by software. In order to clear this bit, the software must write a "1" to it. Writing a "0" to this bit will have no effect.	
RWS	Read/Write Set	The bit can be either read or set by software. In order to set this bit, the software must write a "1" to it. Writing a "0" to this bit will have no effect. Hardware will clear this bit.	
RWL	Read/Write Lock	The bit can be read and written by software. Hardware or a configuration bit can lock this bit and prevent it from being updated.	
RWO	Read/Write Once	The bit can be read by software. It can also be written by software, but the hardware prevents writing/setting it more than once without a prior hard reset. This protection applies on a bit-by-bit basis. For example, if the RWO field is two bits and only one bit is written, then the written bit cannot be rewritten (unless reset). However, the unwritten byte can still be written once. This is a special form of RWL.	

Table 4-1. Register Attribute Definition (Sheet 2 of 2)

Attribute	Definition	Description
Any of the above with "ST" appended to the end	Sticky	The bit is "sticky" or unchanged by a hard reset. These bits can only be cleared by a PWRGOOD reset.
RV	Reserved	This bit is reserved for future expansion and must not be written. The <i>PCI Local Bus Specification, Revision 2.2</i> requires that reserved bits must be preserved. Any software that modifies a register that contains a reserved bit is responsible for reading the register, modifying the desired bits, and writing back the result. Intel highly recommends not changing the default value of Reserved bits.
RRW	Read Restricted Write	This bit can be read and written by software. However, only supported values will be written. Writes of non-supported values will have no effect.

4.2 Platform Configuration

Intel® E8501 chipset registers are organized to adhere to the PCI / PCI Express configuration organization. PCI/PCI Express configuration space registers reside on the NB, XMB, ICH5, and on components attached to the PCI Express ports. It can accommodate PCI's 256 distinct buses, 32 devices per bus, 8 functions per device and 64 registers per function. In addition, it can also accommodate the PCI Express enhanced configuration space addressing. The PCI Express enhanced configuration space includes an additional 4-bit extended register address which allows for 16 PCI compatible ranges. The extended region provides addressability of up to 4x16 M configuration registers. Different levels of abstraction are provided by Buses, Devices, Functions, and PCI Express extended register address. The extended PCI Express region can only be accessed through the memory mapped register mechanism.

The Intel® E8501 chipset register set conforms to the minimum necessary subset of PCI to PCI bridge standard registers to aid in software enumeration (required for the PCI Express ports/links).

The NB and ICH5 are physically connected by a legacy Hub Interface port. From a configuration standpoint, the Hub Interface port is the logical PCI/PCI Express bus #0. The NB, XMB, and ICH5 are hard coded to bus #0. The NB/XMB functions and the NB/PCI Express ports on the NB will be different devices on bus #0. The PCI Express devices connected to the NB/PCI Express ports will have programmable bus numbers. The PCI bus connected to the ICH5 will also have a programmable bus number. For a list of all device numbers please refer to Table 4-8.

4.3 Conflict Resolution and Usage Model Limitations

The following assumptions are made about the different types of configuration accesses and which ones can be concurrent. These are considered software constraints.

• Only one PCI (legacy PCI Express) configuration access from all processors at a time.

In all cases, the NB can serialize all allowable concurrent configuration accesses.

Table 4-2 summarizes what configuration accesses can be attempted concurrently to the Intel® E8501 chipset registers. This table only applies to the NB and XMB registers. It does not apply to registers that truncates forwards such as a register on a downstream PCI Express device.

Table 4-2. Intel® E8501 Chipset Concurrent Configuration Accesses

	Proc MMCFG ¹	Proc CF8/CFC Config	JTAG	SMBus
Proc MMCFG ¹	Yes	Yes	Yes	Yes
Proc CF8/CFC Config	Yes	No	Yes	Yes
JTAG	Yes	Yes	No ²	Yes
SMBus	Yes	Yes	Yes	No ³

NOTES:

- Includes all types of MMCFG accesses: PCI Express, and fixed boot.
 A JTAG access to the NB can occur concurrently with a JTAG access to XMB if a system has 2 independent JTAG
- controllers, but accesses to the same component will occur one at a time.

 3. An SMBus access to the NB can occur concurrently with an access to XMB if the system has 2 independent SMBus

Device Mapping

Each component in an Intel® E8501 chipset system can be uniquely identified. Based on the PCI configuration convention, each component is assigned a Bus Number and Device Number. All the NB registers will appear on Bus #0.

All the NB configuration resides in the configuration space defined by Bus, Device, Function, and Register. Some registers do not appear in all portions of this space and some mechanisms do not access all portions of this space. The following table defines where the various fields of configuration register addresses appear. Each row defines a different access mechanism, register, interface, or decoder. Each column defines a different field of the configuration address.

Table 4-3. Configuration Address Bit Mapping (Sheet 1 of 2)

	Source/Dest ination	Bus	Device	Function	Dword Offset[11:8]	Dword Offset[5:0]	Byte in Dword	Туре
HI1.5 Config	Both	A[24:16] always 0	A[15:11]	A[10:8]	Cannot Access	A[7:2]	1 st DW BE	ct
PCI Express Config Txns	Both	Bus[7:0]	Device[4: 0]	Function[2:0]	Extended Register Addr[3:0]	Register [5:0]	1 st DW BE [3:0]	Fmt, Type ¹
PCI Express MMCFG on Front Side Bus	Source	A[27:20]	A[19:15]	A[14:12]	A[11:8]	A[7:3] BE[7:4] ²	f(BE[7:0]) ³	N/A
PCI Express MMCFG from HI1.5 or PCI Express	Forw	arded unmo	dified to pe	ers and are	not permitted to	o access the Ni	3 or XMB reg	S

Configuration Address Bit Mapping (Sheet 2 of 2) Table 4-3.

	Source/Dest ination	Bus	Device	Function	Dword Offset[11:8]	Dword Offset[5:0]	Byte in Dword	Туре
CFGADR Register ⁴	Source	Bus Number [7:0]	DeviceID [4:0]	Function Number [2:0]	Not Present	Register Address[5:0]	Not Present	N/A
CFC on PSB	Source		CFGA	OR Register,	see row above		BE[7:4]	N/A
JTAG Config Access	Source	Bus Number [7:0]	DeviceID [4:0]	Function Number [2:0]	Extended Register Addr[3:0]	Register Address[7:2]	Register Address[1: 0]	N/A
SMBus Config Access	Source	Bus Number [7:0]	Dev[4:0]	Func[2:0]	Reg Number [11:8]	Reg[7:2]	f(command Register Number) ⁵	N/A
Fixed NB Memory Mapped on Front Side Bus	Source	N/A	N/A	A[18:16] ⁶	Cannot Access	A[15:8]	All accesses are 4 byte	N/A
NB Register Decoding	Destination	00000000	See Table 4-8	Function [2:0]	Dword Offset[9:6]	Dword Offset[5:0]	Byte[3:0]	N/A
IMI Config Cmds	Destination	A[24:16] always 0	A[15:11]	A[10:8]	Cannot Access	A[7:2]	M[3:0]	00

NOTES:

- 1. Encoded as CfgWr0, CfgWr1, CfgRd0, CfgRd.
 2. If BE[7:4]! = 0, DwordOffset[0] = 1.
 3. If (BE[3:0]! = 0000, BE[3:0], else BE[7:4]).
 4. The fields of this register are where by D[31:0] of a front side bus CF8 access.
- 5. If Dword Access, 1111. If Byte Access, function of RegisterNumber as follows: BE[0]=RegisterNumber=00, BE[1]=RegisterNumber=01, BE[2]=RegisterNumber=10, BE[3]=RegisterNumber=11.
- 6. Hard coded value of 00FE60.

4.5 Allowable Configuration Access

Intel® E8501 chipset registers can be accessed by various access mechanisms via different interfaces (JTAG, SMBus, I/O (inbound), processor). Table 4-4 defines which registers are accessible using the various mechanisms. For example, JTAG and SMBus configuration accesses can access all chipset registers. The legends and register definitions are defined directly below the table.

Table 4-4. Configuration Register Accessibility

	Access	Type Of Register							
Initiator	Mechanism	PCI EXP EXT	BIOS Fixed	SPD & other NB/XMB Cfg	Registers South of NB				
JTAG/	SMBus	Y	Y	Υ	Y				
HI1.5/	Cfg ¹	Y*	Y*	Y*	Y*				
PCI Express	CFC/CF8	N	N/A	N	N				
	PCI Express MMCFG	N ²	N	N	N				
	Special Mem Range	N/A	Y if BIOS Fixed Range ³	N/A	N/A				
Processor	CFG/CF8	N	Y*	Y*	Y*				
	PCI Express MMCFG	Y	N/A	Y	Y				
	Special Mem Range	N/A	Y if BIOS Fixed Range	N/A	N/A				

NOTES:

- 1. Enable bit per PCI Express link can disable this access (DIS_INB_CFG bit of the EXP_CTRL register see Section 4.11.28, "EXP_CTRL[7:1]: PCI Express Control Register (D1-7, F0)" on page 102).
- 2. Internal NB mechanism can be that since the inbound memory write doesn't hit any other valid address region, it is sent to the HI1.5 by default.
- 3. BIOS fixed registers are mapped to special memory ranges.

Legends	Legends for Table 4-2					
Υ	Supported					
Y*	Supported but can be disabled					
N	Not Supported					
N/A	Not Applicable					

Register Definition For Ta	able 4-2
PCI Express Ext	PCI Express extended configuration space registers (offset >0xFF).
BIOS Fixed	Chipset registers fixed in memory space. These are the bOFLA[], SPAD[], and SPADSA[] registers.
Other NB/XMB Cfg	NB/XMB registers other than the ones that have already been mentioned above, Also includes DIMM SPD accesses.
Registers South of NB	Registers residing on ICH5, Intel® 6700PXH 64-bit PCI Hub, and other devices connected to the PCI Express ports, plus all the associated children devices.

4.6 I/O Mapped Registers

The PCI configuration access mechanism enables support of legacy/PCI code that utilizes the PCI mechanism. The mechanism is defined in *PCI Local Bus Specification*, Revision 2.2. Two bus cycles are defined to access PCI configuration space:

- · Configuration Read
- Configuration Write

These configurations access the registers through two I/O-space locations: CFGADR and CFGDAT. The Intel® E8501 chipset has reserved two special I/O locations (0xCF8 / 0xCFC) for direct configuration accesses. Accesses to configuration space through these registers are commonly referred as CF8/CFC configuration accesses. The PCI configuration access sequence is described as follows:

- 1. The processor first performs a Dword I/O write to CONFIG_ADDRESS to select the bus number, device number, function number and the specific configuration address in the device.
- 2. A subsequent read or write of the CONFIG_DATA location causes the data transfer to/from the selected configuration register. Byte enables are valid during accesses to CONFIG_DATA and are used to select the byte(s) within the configuration register.

If the access is targeted to a chipset register that does not reside in the NB, the NB will forward the access to the appropriate interface. Intel[®] E8501 chipset supports both Type 0 and Type 1 configuration access mechanism as described in the PCI Local Bus Specification, Revision 2.2 to enable hierarchical PCI buses. Type 0 accesses are used for registers that reside on the secondary bus. Type 1 accesses are used for registers that reside on subordinates buses. For more details, please refer to the PCI Local Bus Specification Revision 2.2. Accesses to the memory port follows the format of Memory Port Specification. Accesses to devices on the PCI Express link follows the format of PCI Express Specification. Both memory port and PCI Express preserves the address mapping of *PCI Local Bus Specification, Revision 2.2*.

4.6.1 CFGADR –Configuration Address Register

This 32-bit-wide register is written only when a processor I/O transaction to CF8 is referenced as a Dword, a Byte or Word reference will not access this register, but will generate an I/O space access.

The CFGADR register contains the Bus Number, Device Number, Function Number, and Register Offset for which a subsequent CFGDAT access is intended. The mapping between fields in this register and PCI Express or Hub Interface configuration transactions is defined by Table 4-3.

Table 4-5. PCI CFGADR Register

31	30	[:	24	23	16	15		11	10		8	7		2	1	0
En *		Reserved		Bu Numi	_		Device Number			uncti lumb	-		Register Number		0	0

* En = Enable Bit

1 = Enabled

0 = Disabled

I/O Addr	ess:CF	8h	
Bit	Attr	Default	Description
31	RW	0h	CFGE: Configuration Enable Unless this bit is set, accesses to the CFGDAT register will not produce a configuration access, but will be treated as other I/O accesses. This bit is strictly an enable for the CFC/CF8 access mechanism and is not forwarded to HI or PCI Express.
30:24	RV	00h	Reserved
23:16	RW	00h	Bus Number If 0, the NB examines device to determine where to route. If non-zero, route as per PBUSN and SBUSN registers.
15:11	RW	0h	Device Number
10:8	RW	0h	Function Number This field is used to select the function of a locally addressed register.
7:2	RW	00h	Register Offset If this register specifies an access to the NB registers, this field specifies a group of four bytes to be addressed. The bytes accessed are defined by the Byte enables of the CFGDAT register access.
1:0	RW*	0h	Writes to these bits will have no effect, reads return 0.

4.6.2 CFGDAT –Configuration Data Register

CFGDAT provides data for the 4 bytes of configuration space defined by CFGADR. This register is only accessed if there is an access to I/O address CFCh on the front side bus and CFGADR.CFGE is set. The byte enables with the IO access define how many configuration bytes are accessed.

I/O Addre	I/O Address:CFCh								
Bit	Attr	Default	Description						
31:0	RW	0000h	Configuration Data Window The data written or read to the configuration register (if any) specified by CFGADR.						

4.7 Intel® E8501 Chipset North Bridge (NB) Fixed Mapped Registers

These registers are mapped into the fixed chipset-specific range located from FE60_0000-FE6F_FFFF. These appear at fixed addresses to support the boot process. These registers also appear in the regular PCI Express configuration space. Table 4-6 defines the memory address of the registers in this region.

Table 4-6. Mapping of Fixed Memory Mapped Registers

Register	Memory Address
BOFL0	FE60_C000
BOFL1	FE60_C400
BOFL2	FE60_C800
BOFL3	FE60_CC00
SPAD0	FE60_D000
SPAD1	FE60_D400
SPAD2	FE60_D800
SPAD3	FE60_DC00
SPADS0	FE60_E000
SPADS1	FE60_E400
SPADS2	FE60_E800
SPADS3	FE60_EC00

4.8 PCI Express Device Configuration Registers

The PCI Express register structure is exposed to the operating system and requires a separate device per port. Ports A-D will be assigned devices 1 through 7 (refer to Figure 2-2 on page 2-30.) The PCI Express ports determine at reset the width of the devices to which they are connected. If ports are combined to form x8 ports, configuration accesses to the most significant device numbers will still be completed successfully, but only the least significant device number will control and hold status for the wider port.

Table 4-7. When will a PCI Express Device be Accessible?

PCI Express Port	Device	х8	Registers may be accessed if		
A1	7	Possible Combination	Port A1 is connected to a x4 device.		
A0	6		Port A0 is connected to a x4 or x8 device.		
B1	5	Possible Combination	Port B1 is connected to a x4 device.		
В0	4		Port B0 is connected to a x4 or x8.		
C1	3	Possible Combination	Port C1 is connected to a x4 device.		
C0	2		Port C0 is connected to a x4 or x8 device.		
D	1	Cannot be a x8	A 4x device is connected to Port D. This port cannot be combined with any other PORT to form an x8.		

Figure 4-1 illustrates how each PCI Express port's configuration space appears to software. Each PCI Express port's configuration space has 4 regions:

- Standard PCI Header This region closely resembles a standard PCI-to-PCI bridge header.
- **PCI Device Dependent Region** The region is also part of standard PCI configuration space and contains the PCI capability structures. For the NB, the supported capabilities are:
 - Message Signalled Interrupts
 - Hot-Plug
 - PCI Express Capability
- PCI Express Extended Configuration Space This space is an enhancement beyond standard PCI and only accessible with PCI Express aware software. The NB supports the Enhanced Error Signalling capability.
- Capability Working Register Sets These ranges are indirectly accessed through Data and Select registers in the capability structures. For the NB, working register sets exist for the Standard hot-plug Controller and Power Management capabilities.

Figure 4-1. PCI Express Configuration Space

Figure 4-1 shows the configuration register offset addresses. Each port is a separate device. As defined in the *PCI Express Specification*, the PCI 2.3 compatible capability structure is a linked list in which each capability has a pointer to the next capability. For PCI Express capabilities, the first structure is required to start at 0x100 offset.

The PCI Express and Extended PCI Express registers are fully explained in Section 4.11 and Section 4.12.

4.9 Configuration Space Map

All devices on the NB reside on BUS 0. Table 4-8 provides a quick cross-reference for the devices and functions that the NB implements or routes specially, followed by the configuration maps for each device. Please note that this document will only explain the NB devices; hence, for devices not handled by the NB, readers should refer to the corresponding documentations as indicated in the table.

Table 4-8. PCI Devices and Functions Handled by Intel® E8501 Chipset North Bridge (NB) (Sheet 1 of 2)

Component	Register Group	DID Register Value	Device	Function
NB	Hub Interface	2600h	0	0
NB	PCI Express D	2601h	1	0
NB	PCI Express C0	2602h ^a	2	0
NB	PCI Express C1	2603h	3	0
NB	PCI Express B0	2604h ^b	4	0
NB	PCI Express B1	2605h	5	0
NB	PCI Express A0	2606h ^c	6	0
NB	PCI Express A1	2607h	7	0
NB	IMI A	260Ch	8	0
XMB_A	All (Refer to Intel® E8501 Chipset eXternal Memory Bridge (XMB) Datasheet)	2620h - 2627h	9	0 - 7
NB	IMI B	260Ch	10	0
XMB_B	All (Refer to Intel® E8501 Chipset eXternal Memory Bridge (XMB) Datasheet)	2620h - 2627h	11	0 - 7
NB	IMI C	260Ch	12	0
XMB_C	All (Refer to Intel® E8501 Chipset eXternal Memory Bridge (XMB) Datasheet)	2620h - 2627h	13	0 - 7
NB	IMI D	260Ch	14	0
XMB_D	All (Refer to Intel® E8501 Chipset eXternal Memory Bridge (XMB) Datasheet)	2620h - 2627h	15	0 - 7
NB	Front Side Bus, Boot, and Interrupt	2610h	16	0
NB	Address Mapping	2611h	16	1
NB	RAS (FSB and HI Error Registers)	2612h	16	2

Table 4-8. PCI Devices and Functions Handled by Intel® E8501 Chipset North Bridge (NB) (Sheet 2 of 2)

Component	Register Group	DID Register Value	Device	Function
NB	Miscellaneous	2613h - 2615h	17	0-2
NB	Reserved		18	All
NB	Reserved	2617h - 261Eh	19	0-7
NB	Reserved		20	All
ICH5	Compatibility		Other	All

NOTES:

- a. Software should program this to 2608h if this is connected to an x8 link.
- b. Software should program this to 2609h if this is connected to an x8 link.
- c. Software should program this to 260Ah if this is connected to an x8 link.

If a port is disabled or disconnected, then the NB will not forward transactions to the downstream side of the link. These accesses will be Master Aborted by the NB. Configuration registers resident on the NB will still be accessible, however, and it is the responsibility of Software to comprehend the presence of configuration registers even for ports that are disabled even if disabled simply because a wider port (e.g. x8) is using the link wires.

To comply with the PCI specification, accesses to these non-existent functions, registers, and bits will be treated as follows:

Table 4-9. Access to "Non-Existent" Register Bits

Access to	Writes	Reads
Functions not listed in Table 4-8	Have no effect	NB returns all ones
Registers not listed in Table 4-3	Have no effect	NB returns all zeroes
Reserved bits in registers	Software must read modify-write to preserve the value	NB returns all zeroes

Table 4-10. Device 0, Function 0: Hub Interface 1.5 Registers

DID	V	'ID	00h		80h
PCISTS	PCI	CMD	04h		84h
CCR	I	RID	08h		88h
HDR			0Ch		8Ch
			10h		90h
			14h		94h
			18h		98h
			1Ch		9Ch
			20h		A0h
			24h		A4h
			28h		A8h
SID	SI	/ID	2Ch		ACh
	*		30h		B0h
			34h		B4h
			38h		B8h
			3Ch		BCh
			40h		C0h
			44h		C4h
	_		48h		C8h
HINERR		HIFERR	4Ch		CCh
	ECHI		50h	HICTL	D0h
RE	СНІ		54h	HICTL2	D4h
		HIEMASK	58h		D8h
HIMCERR HIERR2	HIERR1	HIERR0	5Ch		DCh
			60h		E0h
			64h		E4h
			68h		E8h
			6Ch		ECh
			70h		F0h
			74h		F4h
			78h		F8h
			7Ch		FCh

 Table 4-11.
 Device 1 - 7, Function 0: PCI Express Space Registers

DII	D	VID		00h	EXP_SLOTCAP		80h
EXP_	STS	EXP_CMD		04h	EXP_SLOTSTS	EXP_SLOTCTRL	84h
	CCR		RID	08h		EXP_RTCTRL	88h
BIST	HDR	PRI_LT	CLS	0Ch	EXP_F	RTSTS	8Ch
•				10h			90h
				14h			94h
SEC_LT	SUBUSN	SBUSN	PBUSN	18h			98h
SECS	STS	IOLIM	IOBASE	1Ch			9Ch
MLIN	VIIT	MB	ASE	20h			A0h
PMLI	IMIT	PMB	BASE	24h			A4h
	PM	BU		28h			A8h
	PM	LU		2Ch			ACh
				30h			B0h
			CAPPTR	34h			B4h
				38h			B8h
ВСТ	RL	INTP	INTL	3Ch			BCh
			-	40h			C0h
				44h			C4h
	EXP_	CTRL		48h			C8h
			EXP_CTRL2	4Ch			CCh
	PMC	CAP		50h			D0h
	PMS	SCR		54h			D4h
MSIC.	TRL	MSINXPTR	MSICAPID	58h			D8h
	MS	IAR		5Ch			DCh
	MSIDR		60h			E0h	
			64h			E4h	
				68h			E8h
EXP_0	EXP_CAP EXP_CAPL		6Ch			ECh	
	EXP_D	EVCAP		70h			F0h
EXP_DE	EVSTS	EXP_DI	EVCTRL	74h			F4h
	EXP_LI	NKCAP		78h			F8h
EXP_LN	NKSTS	EXP_LN	NKCTRL	7Ch			FCh

 Table 4-12.
 Device 1 - 7, Advanced Function 0: PCI Express Extended Registers

ENHCAPSTS	100h	180h
UNCERRSTS	104h	184h
UNCERRMSK	108h	188h
UNCERRSEV	10Ch	18Ch
CORERRSTS	110h	190h
CORERRMSK	114h	194h
AERCACR	118h	198h
HDRLOG0	11Ch	19Ch
HDRLOG1	120h	1A0h
HDRLOG2	124h	1A4h
HDRLOG3	128h	1A8h
RPERRCMD	12Ch	1ACh
RPERRMSGSTS	130h	1B0h
ERRSID	134h	1B4h
	138h	1B8h
	13Ch	1BCh
NBSPCAPID	140h	1C0h
EXP_UNITERR	144h	1C4h
EXP_ERR_DOCMD	148h	1C8h
UNCEDMASK	14Ch	1CCh
COREDMASK	150h	1D0h
RPEDMASK	154h	1D4h
EXP_UNITDMASK	158h	1D8h
	15Ch	1DCh
EXP_FERR	160h	1E0h
EXP_NERR	164h	1E4h
EXP_UNITEMASK	168h	1E8h
	16Ch	1ECh
	170h	1F0h
	174h	1F4h
	178h	1F8h
	17Ch	1FCh

Table 4-13. Device 8,10,12,14 Function 0: IMI Registers

DI	ID	V	ID	00h			80h
				04h			84h
	CCR		RID	08h			88h
	HDR			0Ch			8Ch
l				10h			90h
				14h			94h
				18h			98h
				1Ch			9Ch
				20h			A0h
				24h			A4h
				28h			A8h
SI	D	SV	/ID	2Ch			ACh
				30h			B0h
				34h			B4h
				38h			B8h
				3Ch			BCh
	IMI	sc		40h		FERR	C0h
				44h	IMI_I	NERR	C4h
		IST		48h			C8h
	IMI	HPC		4Ch			CCh
				50h		T	D0h
				54h	RECIMI	NRECIMI	D4h
				58h		DIMIL	D8h
IMICHNK	IMILINE	IMIOFF	IMIAPR	5Ch 60h	EMASK_IMI IMI_ERR1	REDIMIH IMI_ERR0	DCh E0h
IMICHINK	IIVIILINE	IIVIIOFF	IMICODE	64h	IMI_MCERR	IMI_ERRO	E4h
			INICODE	68h	IIVII_IVICERR	IIWII_ERRZ	E8h
				6Ch			ECh
				70h			F0h
				74h			F4h
				78h			F8h
				7Ch			FCh
				1			

Table 4-14. Device 16, Function 0: Front Side Bus, Boot and Interrupt Registers

	1	-		
DID	VID	00h	XTPR0	80h
		04h	XTPR1	84h
CCR	RID	08h	XTPR2	88h
HDR		0Ch	XTPR3	8Ch
	_	10h	XTPR4	90h
		14h	XTPR5	94h
		18h	XTPR6	98h
		1Ch	XTPR7	9Ch
		20h	XTPR8	A0h
		24h	XTPR9	A4h
		28h	XTPR10	A8h
SID	SVID	2Ch	XTPR11	ACh
		30h	XTPR12	B0h
		34h	XTPR13	B4h
		38h	XTPR14	B8h
		3Ch	XTPR15	BCh
	SYRE	40h	BOFL0	C0h
		44h	BOFL1	C4h
		48h	BOFL2	C8h
		4Ch	BOFL3	CCh
	REDIRCTL	50h	SPAD0	D0h
RED	DIRDIS	54h	SPAD1	D4h
REDIRE	BUCKETS	58h	SPAD2	D8h
		5Ch	SPAD3	DCh
POC	_FSBA	60h	SPADS0	E0h
	POC_AUXA	64h	SPADS1	E4h
		68h	SPADS2	E8h
		6Ch	SPADS3	ECh
POC	_FSBB	70h		F0h
	POC_AUXB	74h		F4h
		78h		F8h
		7Ch		FCh

Table 4-15. Device 16, Function1: Address Mapping Registers

DI	ID	VID		00h	IMIR0	80h
			04h	IMIR1	84h	
	CCR		RID	08h	IMIR2	88h
	HDR			0Ch	IMIR3	8Ch
				10h	IMIR4	90h
				14h	IMIR5	94h
				18h		98h
				1Ch		9Ch
				20h	AIMIR0	A0h
				24h	AIMIR1	A4h
				28h	AIMIR2	A8h
SI	ID	SV	/ID	2Ch	AIMIR3	ACh
				30h	AIMIR4	B0h
				34h	AIMIR5	B4h
				38h		B8h
				3Ch		BCh
				40h	SB_A_IMIR0	C0h
				44h	SB_A_IMIR1	C4h
				48h	SB_A_IMIR2	C8h
				4Ch	SB_A_IMIR3	CCh
				50h	SB_A_IMIR4	D0h
				54h	SB_A_IMIR5	D4h
PAM2	PAM1	PAM0		58h		D8h
PAM6	PAM5	PAM4	PAM3	5Ch		DCh
EXSMRTOP	EXSMRC	SMRAMC	FDHC	60h	SB_B_IMIR0	E0h
				64h	SB_B_IMIR1	E4h
	EXP_E	CBASE		68h	SB_B_IMIR2	E8h
		то	LM	6Ch	SB_B_IMIR3	ECh
				70h	SB_B_IMIR4	F0h
				74h	SB_B_IMIR5	F4h
				78h		F8h
				7Ch		FCh

Table 4-16. Device 16, Function 2: RAS Registers

DID	V	'ID	00h	FSBA_	_NERR	FSBA	_FERR	80h
			04h		RECFSI	BA_LOG		84h
CCR		RID	08h		NRECFSI	BA_LOG0		88h
HDR			0Ch		NRECFSI	BA_LOG1		8Ch
			10h		NRECFSI	BA_LOG2		90h
			14h	ERR0_	_FSBA	EMASE	(_FSBA	94h
			18h	ERR2_	_FSBA	ERR1	_FSBA	98h
			1Ch	ICHRST	Γ_FSBA		R_FSBA	9Ch
			20h	FSBB_	_NERR		_FERR	A0h
			24h		RECFSI	BB_LOG		A4h
	T		28h			BB_LOG0		A8h
SID	S\	VID	2Ch			BB_LOG1		ACh
			30h			BB_LOG2		B0h
			34h		_FSBB		(_FSBB	B4h
			38h		_FSBB		_FSBB	B8h
Clabal	FERR		3Ch 40h		Γ_FSBB		R_FSBB	BCh
	_FERR _NERR		40h	INT_NERR	NDE	INT_FERR CNB		C0h C4h
Global	_INERK		48h			CNB		C8h
			4Ch		, , ,	J.11.D	EMASK_INT	CCh
			50h	MCERR_INT	ERR2_INT	INT1_INT	ERR0_INT	D0h
			54h	_				D4h
			58h		RECIN	Γ_LOG0		D8h
			5Ch		RECIN	Γ_LOG1		DCh
		EXSMRAMC	60h		RECIN	Γ_LOG2		E0h
			64h		RECIN	Γ_LOG3		E4h
			68h		RECIN	Γ_LOG4		E8h
			6Ch		INTL	OGC		ECh
			70h					F0h
			74h					F4h
			78h					F8h
			7Ch					FCh

Table 4-17. Device 17, Function 0: Miscellaneous Registers

DID	VID	00h		80h
		04h		84h
CCR	RID	08h		88h
HDR		0Ch		8Ch
	•	10h		90h
		14h		94h
		18h		98h
		1Ch		9Ch
		20h		A0h
		24h	FSBDC[0]	A4h
		28h		A8h
SID	SVID	2Ch		ACh
		30h	FSB[0]AC2	B0h
		34h		B4h
		38h	FSB[0]AC	B8h
		3Ch		BCh
		40h		C0h
		44h		C4h
		48h		C8h
		4Ch		CCh
		50h		D0h
		54h		D4h
		58h		D8h
		5Ch		DCh
		60h		E0h
		64h		E4h
		68h		E8h
		6Ch		ECh
		70h		F0h
		74h		F4h
		78h		F8h
		7Ch		FCh

Table 4-18. Device 17, Function 1: Miscellaneous Registers

 Table 4-19.
 Device 17, Function 2: Miscellaneous Registers

DID	VID	00h		80h
		04h		84h
CCR	RID	08h		88h
HDR		0Ch		8Ch
		10h		90h
		14h		94h
		18h		98h
		1Ch		9Ch
		20h		A0h
		24h		A4h
		28h		A8h
SID	SVID	2Ch		ACh
		30h	IMI_HPTIM	B0h
		34h	REDUN	B4h
		38h		B8h
		3Ch		BCh
		40h		C0h
		44h		C4h
		48h		C8h
		4Ch		CCh
		50h		D0h
		54h		D4h
		58h		D8h
		5Ch		DCh
		60h		E0h
		64h		E4h
		68h		E8h
		6Ch		ECh
		70h		F0h
		74h		F4h
		78h		F8h
		7Ch		FCh

4.10 Hub Interface 1.5 (Device 0, Function 0)

The Hub Interface 1.5 (HI1.5) registers are in device 0 (D0), function 0 (F0). For quick reference on the register address map, please refer to Table 4-10.

Warning:

Address locations that are not listed are considered reserved locations. Writes to "Reserved" registers may cause unpredictable behavior. Reads to "Reserved" registers may return a non-zero value.

4.10.1 VID: Vendor Identification Register (D0, F0)

This register identifies Intel as the manufacturer of the Intel® E8501 chipset North Bridge (NB). Writes to this register have no effect.

Device Function Offset:	0 : 0 00 - 0)1h	
Bit	Attr	Default	Description
15:0	RO	8086h	Vendor Identification Number The value assigned to Intel.

4.10.2 DID: Device Identification Register (D0, F0)

This register, combined with the Vendor Identification register uniquely, identifies the NB Function in the event that a driver is required. Writes to this register have no effect.

Device Function Offset:	0 n: 0 02h -	03h	
Bit	Attr	Default	Description
15:0	RO	2600h	Device Identification Number Identifies each function of the NB.

4.10.3 PCICMD:PCI Command Register (D0, F0)

Device Function Offset:	on: 0		
Bit	Attr	Default	Description
15:9	RV	00h	Reserved
8	RO	0	SIG_SYS_ERR: Signalled System Error.
			The NB never initiates a system error special cycle (DO_SERR), so this bit will always return a 0 when read.
7	RV	0b	Reserved
6	RWST	0	IERRE: Parity Error Response (IERRE).
			Controls the NB response when a parity error (on function 0) or multi-bit ECC error is detected on the Hub Interface. This bit only controls the detection in PCISTS.DetIntErr and PCISTS.MstrDatalE.
			The NB reports all parity errors on the Hub Interface.
5:4	RV	00b	Reserved
3	RO	0b	spec_cyc_en: Special Cycle Enable.
			Controls the ability to forward PCI-type (legacy) special cycles. Devices on the Hub Interface are not capable of accepting legacy special cycles. This bit does not apply to Hub Interface specific special cycles.
2	RO	1b	BM_en: Bus Master Enable.
			Controls the ability for the NB to initiate Hub Interface cycles. The NB can always issue Hub Interface bus cycles.
1	RO	1b	MemAccEn: Memory Access Enable.
			Controls the ability for the NB to respond to memory transactions initiated on the Hub Interface. The NB can always accept memory transactions.
0	RO	0b	IOAccEn: I/O Access Enable.
			Controls the ability for the NB to respond to I/O transactions initiated on the Hub Interface. This chipset does not support inbound I/O cycles.

4.10.4 PCISTS: PCI Status Register (D0, F0)

Device: 0 Function: 0 Offset: 06h - 07h				
Bit	Attr	Default	Description	
15	RWC	0	DetIntErr: Detected Integrity Error This bit indicates that a parity error was observed on the Hub Interface. This bit is not affected by the state of PCICMD.IERR.	
14	RO	0	SSE: Signalled System Error This bit indicates if a system error special cycle (DO_SERR) is initiated by the NB component. This bit should never be asserted since the NB never initiates DO_SERR.	
13	RWC	0	RcvMstrAbSts: Received Master Abort Status This bit indicates if the NB receives a Master Abort completion cycle or an unimplemented Special Cycle command.	

Device: Function Offset:	on: 0	- 07h	
Bit	Attr	Default	Description
12	RWC	0	RcvTgtAbSts: Received Target Abort Status
			This bit indicates if the NB receives a Target Abort completion cycle in response to a NB-initiated Hub Interface cycle.
11	RWC	0	SigTgtAbSts: Signalled Target Abort Status
			The NB sets this bit when it issues a Target Abort completion cycle to the Hub Interface agent.
10:9	RV	00h	Reserved
8	RWC	0	MstrDatalE: Master Data Integrity Error
			This bit indicates that a data parity or multi-bit ECC error was detected on the Hub Interface. This bit is set when all of the following conditions are met:
			The NB detected a data parity for an outbound read completion
			PCICMD.IERR is set to 1
7:0	RV	00h	Reserved

4.10.5 RID: Revision Identification Register (D0, F0)

This register contains the revision number of the Intel® E8501 chipset North Bridge (NB).

Intel® E8501 chipset North Bridge (NB) implements the Revision Identification Registers with a Compatibility Revision Id function in addition to standard revision identification functionality. This Compatibility Revision Id functionality is present in order to allow vendors to replace hardware while maintaining the software visible hardware revision identification registers the same as in previous steppings of the NB.

In order to access the Compatibility Revision Id functionality, the RID registers as a whole can be written to exactly one time with a specific code value (key). This key, when written correctly as the first write to any of the RID registers inside NB will cause NB to return the *compatibility id* value for all future reads of any NB RID register. Table 4-20 describes this compatibility revision identification functionality.

Table 4-20. Intel® E8501 Chipset North Bridge (NB) Compatibility Revision ID Function

Key value written to any RID register	B0 read value	Description	
0x79	0x0	Return compatibility id	
Any other value	0x10	Return stepping id	

Device 0 Function: 0 Offset: 08h				
Bit	Attr	Default	Description	
7:4	RO	0h	Major_rev: Major Revision Steppings which require all masks to be regenerated. 1: B stepping	
3:0	RO	0h	Minor_rev: Minor Revision Incremented for each stepping which does not modify all masks. Reset for each major revision. 0h: x0 stepping 1h: x1 stepping 2h: x2 stepping	

4.10.6 CCR: Class Code Register (D0, F0)

This register contains the Class Code for the device.

Device 0 Function: 0 Offset: 09h - 0Bh					
Bit	Attr	Default	Description		
23:16	RO	06h	BaseClass: Base Class This field indicates the general device category. For the NB, this field is hardwired to		
15:8	RO	00h	06h, indicating it is a "Bridge Device". SubClass: Sub-Class		
			This field qualifies the Base Class, providing a more detailed specification of the device function. For device 0, this field is hardwired to 00h, indicating it is a "Host Bridge".		
7:0	RO	00h	RLPI: Register-Level Programming Interface		
			This field identifies a specific programming interface (if any), that device-independent software can use to interact with the device. There are no such interfaces defined for "Host Bridge" types, and this field is hardwired to 00h.		

4.10.7 HDR: Header Type Register (D0, F0)

This register identifies the header layout of the configuration space.

Device 0 Function: 0 Offset: 0Eh					
Bit	Attr	Default	Description		
7	RO	0h	Mfd: Multi-function Device. Selects whether this is a multi-function device, that may have alternative configuration layouts.		
6:0	RO	00h	CfgLayout: Configuration Layout. This field identifies the format of the configuration header layout for a PCI-to-PCI bridge from bytes 10h through 3Fh. For this device the default is 00h, indicating a conventional type 00h PCI header.		

4.10.8 SVID: Subsystem Vendor Identification Register (D0, F0)

This register identifies the manufacturer of the system. This 16-bit register, combined with the Device Identification Register, uniquely identifies any PCI device.

Device 0 Function: 0 Offset: 2Ch				
Bit	Attr	Default	Description	
15:0	RWO	8086h	Vin: Vendor Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to a byte will have no effect.	

4.10.9 SID: Subsystem Identity (D0, F0)

This register identifies the system.

	Device 0 Function: 0 Offset: 2Eh - 2Fh				
Bit	Attr	Default	Description		
15:0	RWO	8086h	Sid: Subsystem Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to a byte will have no effect.		

4.10.10 HIFERR: Hub Interface First Fatal Error Register (D0, F0)

For a description of the Errors (IOxx) refer to the Table 6-39 "Errors Detected by the NB" on page 328.

Device Function Offset:	Function: 0				
Bit	Attr	Default	Description		
7	RWCST	0	IO6bErr: Received STOP during SRC Fatal Error		
6	RWCST	0	IO6Err: Parity error on Address Fatal Error		
5	RWCST	0	IO5Err: Illegal Access Fatal Error		
4	RWCST	0	IO4Err: Outbound poison Non-fatal Error		
3	RWCST	0	IO3Err: Parity Error on outbound data Non-fatal Error		
2	RWCST	0	IO2Err: Data Phase Parity Error Non-fatal Error		
1	RWCST	0	IO1Err: Cmd Parity Error Non-fatal ^a Error		
0	RWCST	0	IO0Err: Target Abort Non-fatal Error		

NOTES:

4.10.11 HINERR: Hub Interface Next Fatal Error Register (D0, F0)

Device Function Offset:	Function: 0				
Bit	Attr	Default	Description		
7	RWCST	0	IO6bErr: Received STOP during SRC Fatal Error		
6	RWCST	0	IO6Err: Parity error on Address Fatal Error		
5	RWCST	0	IO5Err: Illegal Access Fatal Error		
4	RWCST	0	IO4Err: Outbound poison Non-fatal Error		

a. Transaction is retried.

Device 0 Function: 0 Offset: 4Eh				
Bit	Attr	Default	Description	
3	RWCST	0	IO3Err: Parity Error on outbound data Non-fatal Error	
2	RWCST	0	IO2Err: Data Phase Parity Error Non-fatal Error	
1	RWCST	0	IO1Err: Cmd Parity Error Non-fatal ^a Error	
0	RWCST	0	IO0Err: Target Abort Non-fatal Error	

NOTES:

4.10.12 NRECHI: Non-Recoverable Hub Interface Error Log Register (D0, F0)

The contents of this register depends on whether the error is detected on a request or a response. This is the bit mapping for Hub Interface Requests (IF Bit 31 = 0).

Device Function Offset:	0 : 0 50h - 53h		
Bit	Attr	Default	Description
31	ROST	0h	NRECHI31: Rq/Cp Request/completion field
30	ROST	0h	NRECHI30: R/W Read/Write field
29	ROST	0h	NRECHI29: CR Completion required field
28	ROST	0h	NRECHI28: AF Address format
27	ROST	0h	NRECHI27: LK Lock cycle
26:21	ROST	0h	NRECHI26DT21: TD Routing Transaction Description routing field
20	ROST	0h	NRECHI20 Reserved Field on the packet
19:16	ROST	0h	NRECHI19DT16: TD Attribute Transaction Descriptor Attribute
15:14	ROST	00	NRECHI15DT14: Spac Address space

a. Transaction is retried.

Device Function Offset:	0 : 0 50h - 53h		
Bit	Attr	Default	Description
13:8	ROST	0h	NRECHI13DT8: Data Length Dword data length
7:0	ROST	0h	NRECHI7DT0: Byte Enables 7:4 is the Last DW Byte Enables and 3:0 is the First Byte Enables Special Cycle Encoding: when Space field indicates a Special Cycle

This is the bit mapping for Hub Interface *Completions* (IF Bit 31 = 1).

Device Function Offset:	0 : 0 50h - 53h		
Bit	Attr	Default	Description
31	ROST	0b	NRECHI31: Rq/Cp Request/completion field
30	ROST	0b	NRECHI30: R/W Read/Write field
29	ROST	0b	NRECHI29 Reserved 1b Field of the packet
28	ROST	0b	NRECHIHI28 Reserved 1a field of the packet
27	ROST	0b	NRECHI27: LK Lock cycle
26:21	ROST	00h	NRECHI26DT21: TD Routing Transaction Description routing field
20	ROST	0b	NRECHI20 Reserved field on the packet
19:16	ROST	00h	NRECHI19DT16: N TD Attribute Transaction Descriptor Attribute
15:14	ROST	00h	NRECHI15DT14: Space Address space
13:8	ROST	00h	NRECHI13DT8: Data Length Dword data length
7:0	ROST	00h	NRECHI7DT0: Completion Status Indicates the status of the request.

4.10.13 RECHI: Recoverable Hub Interface Error Log Register (D0, F0)

The contents of this register depends on whether the error is detected on a request or a response. This is the bit mapping for Hub Interface Requests (RECHI[31] = 0):

Device Function Offset:	0 n: 0 54h - 57h		
Bit	Attr	Default	Description
31	ROST	0b	RECHI31: Rq/Cp Request/completion field
30	ROST	0b	RECHI30:R/W Read/Write field
29	ROST	0b	RECHI29:CR Completion required field
28	ROST	0b	RECHI28:AF Address Format
27	ROST	0b	RECHI27:LK Lock Cycle
26:21	ROST	0b	RECHI26DT21:TD Routing Transaction Description routing field
20	ROST	0b	RECHI20 Reserved Field on the packet
19:16	ROST	00h	RECHI19DT16: TD Attribute Transaction Descriptor Attribute
15:14	ROST	00h	RECHI15DT14: Space Address Space
13:8	ROST	00h	RECHI13DT8:Data Length Dword Data Length
7:0	ROST	00h	RECHI7DT0: Byte Enables 7:4 is the Last DW Byte Enables and 3:0 is the First Byte Enables Special Cycle Encoding: when Space field indicates a Special Cycle

This is the bit mapping for Hub Interface *Completions* (RECHI[31] = 1):

Device Function Offset:	0 : 0 54h - 57h		
Bit	Attr	Default	Description
31	ROST	0b	RECHI31: Rq/Cp Request/completion field
30	ROST	0b	RECHI30: R/W Read/Write field
29	ROST	0b	RECHI29 Reserved 1b Field of the packet
28	ROST	0b	RECHI28 Reserved 1a Field of the packet
27	ROST	0b	RECHI27: LK Lock cycle
26:21	ROST	00h	RECHI26DT21: TD Routing Transaction Description routing field
20	ROST	0b	RECHI20 Reserved Field on the packet
19:16	ROST	0h	RECHI19DT16: TD Attribute Transaction Descriptor Attribute
15:14	ROST	00b	RECHI15DT14: Space Address Space
13:8	ROST	00h	RECHI13DT8: Data Length Dword Data Length
7:0	ROST	00h	RECHI7DT0: Completion Status Indicates the status of the request.

4.10.14 HIEMASK: Hub Interface Error Mask Register (D0, F0)

A '0' in any field enables that error.

Device Function Offset:	0 : 0 58h		
Bit	Attr	Default	Description
7	RW	1	IO6bMsk: Received STOP during SRC Suggested value: 0h
6	RW	1	IO6Msk: Parity error on Address Suggested value: 0h
5	RW	1	IO5Msk: Illegal Access Suggested value: 0h

Device Function Offset:	0 n: 0 58h		
Bit	Attr	Default	Description
4	RW	1	IO4Msk: Outbound poison Suggested value: 0h
3	RW	1	IO3Msk: Parity Error on outbound data Suggested value: 0h
2	RW	1	IO2Msk: Data Phase Parity Error Suggested value: 0h
1	RW	1	IO1Msk: Cmd Parity Error Suggested value: 0h
0	RW	1	IO0Msk: Target Abort Suggested value: 0h

4.10.15 HIERR0: Hub Interface Error 0 Mask Register (D0, F0)

This register enables the signaling of Err[0] when an error flag is set. Note that one and only one error signal should be enabled at a time.

Device: Function Offset:	on: 0		
Bit	Attr	Default	Description
7	RWST	0	IO6bErr0: Received STOP during SRC
6	RWST	0	IO6Err0: Parity error on Address
5	RWST	0	IO5Err0: Illegal Access
4	RWST	0	IO4Err0: Outbound poison
3	RWST	0	IO3Err0: Parity Error on outbound data
2	RWST	0	IO2Err0: Data Phase Parity Error
1	RWST	0	IO1Err0: Cmd Parity Error
0	RWST	0	IO0Err0: Target Abort

4.10.16 HIERR1: Hub Interface Error 1 Mask Register (D0, F0)

This register enables the signaling of Err[1] when an error flag is set. Note that one and only one error signal should be enabled at a time.

Device: Function Offset:	on: 0		
Bit	Attr	Default	Description
7	RWST	0	IO6bErr1: Received STOP during SRC
6	RWST	0	IO6Err1: Parity error on Address
5	RWST	0	IO5Err1: Illegal Access
4	RWST	0	IO4Err1: Outbound poison
3	RWST	0	IO3Err1: Parity Error on outbound data
2	RWST	0	IO2Err1: Data Phase Parity Error
1	RWST	0	IO1Err1: Cmd Parity Error
0	RWST	0	IO0Err1: Target Abort

4.10.17 HIERR2: Hub Interface Error 2 Mask Register (D0, F0)

This register enables the signaling of Err[2] when an error flag is set. Note that one and only one error signal should be enabled at a time.

Device: Function Offset:	on: 0		
Bit	Attr	Default	Description
7	RWST	0	IO6bErr2: Received STOP during SRC
6	RWST	0	IO6Err2: Parity error on Address
5	RWST	0	IO5Err2: Illegal Access
4	RWST	0	IO4Err2: Outbound poison
3	RWST	0	IO3Err2: Parity Error on outbound data
2	RWST	0	IO2Err2: Data Phase Parity Error
1	RWST	0	IO1Err2: Cmd Parity Error
0	RWST	0	IO0Err2: Target Abort

4.10.18 HIMCERR: Hub Interface MCERR Mask Register (D0, F0)

This register enables the signaling of MCERR when an error flag is set. Note that one and only one error signal should be enabled at a time.

Device: 0 Function: 0 Offset: 5Fh					
Bit	Attr	Default	Description		
7	RWST	0	IO6bMCErr: Received STOP during SRC		
6	RWST	0	IO6MCErr: Parity error on Address		
5	RWST	0	IO5MCErr: Illegal Access		
4	RWST	0	IO4MCErr: Outbound poison		
3	RWST	0	IO3MCErr: Parity Error on outbound data		
2	RWST	0	IO2MCErr: Data Phase Parity Error		
			Suggested value: 1h		
1	RWST	0	IO1MCErr: Cmd Parity Error		
0	RWST	0	IO0MCErr: Target Abort		

4.10.19 HICTL: Hub Interface Command Control Register (D0, F0)

Functio	Device: 0 Function: 0 Offset: D0h - D3h						
Bit	Attr	Default	Description				
31:29	RO	0h	HUB_SUB_FIRST: This field stores the lowest subordinate Hub Interface hub number. This information is compared with the Hub ID to determine whether a completion packet should be forwarded further down the Hub Interface hierarchy.				
28	RV	0h	Reserved				
27:25	RO	0h	HUB_SUB_LAST: This field stores the highest subordinate Hub Interface hub number. This information is compared with the Hub ID to determine whether a completion packet should be forwarded further down the Hub Interface hierarchy.				
24	RV	0h	Reserved				
23:21	RO	0h	HUB_ID: This field identifies the Hub Interface ID number for the NB. The NB uses this field to determine when to accept a Hub Interface request packet and send any corresponding completion packets.				
20	RV	0	Reserved				
19:16	RW	0h	HI_TIMESLICE: This field sets the Hub Interface arbiter time-slice value with four base-clock granularity. A value of zero means that the timer immediately expires and the NB will allow the agent interfacing Hub Interface access to the bus every other transaction.				
15:14	RO	0h	HI_WIDTH: This field sets the Hub Interface data bus width. A value of 01 indicates a 16-bit data bus and 00 indicates an 8-bit data bus.				

Device: 0 Function: 0 Offset: D0h - D3h

Offset:	Dun	- D3h	
Bit	Attr	Default	Description
13	RO	1h	HI_RATE_VALID: This bit is sampled by software and indicates when the Hub Interface bus rate is valid.
12:10	RO	010b	HI_RATE: This field indicates the Hub Interface data rate. Function 0 only supports a 4x data rate encoded with 010.
9:8	RW	0h	RCOMP_INT: Determines the time interval for impedance compensation. Encodings are: 00: 128 ms 01: 250 µs 10: 16 ms 11: 2 ms
7:5	RV	0h	Reserved
4	RWO	0	DIS_INB_CFG: Disable Inbound Configs This bit is used for controlling configuration accesses to the chipset registers through the Hub Interface. 0: Allows access to the NB or XMB registers. 1: Inbound accesses to the NB or XMB registers will be dropped and logged as an illegal access. This register bit is of type "write once" and is controlled by BIOS/special initialization firmware.
3:1	RO	001	MAX_DATA: This field is programmed with the longest data stream the NB is permitted to send on the Hub Interface. MAX_DATA applies to both write request cycles and read completion cycles. 000: 32 bytes 001: 64 bytes 01X: 128 bytes 1XX: 256 bytes
0	RV	0	EN64: Enable 64 bit Addressing The NB does not support 64-bit addressing on the Hub Interface

4.10.20 HICTL2: Hub Interface Command Control Register (D0, F0)

Device: Function Offset:	0 n: 0 D4h		
Bit	Attr	Default	Description
7:5	RV	0	Reserved
4:0	RW	0	STOPGRANTACKCNT: The NB will forward every (N+1)th StopGrantAck to the Hub Interface. The default provides for every StopGrantAck to be sent to the Hub Interface. Software is expected to set this to a value of THREADs-1 where THREAD is the number of threads that will issue a StopGrantAck in response to a StopClock request.

4.11 PCI Express Ports (Device 1 - 7, Function 0)

The PCI Express registers are in Device 1 - 7 (D1-7), Function 0 (F0). For the register address map, please refer to Table 4-11. The following registers define the standard PCI 2.3 compatible and extended PCI Express configuration space for each of the PCI Express x4 links in the NB. Unless otherwise specified, the registers are enumerated as a vector [7:1] mapping to each of the seven PCI Express ports uniquely.

Warning:

Address locations that are not listed are considered reserved locations. Writes to "Reserved" registers may cause unpredictable behavior. Reads to "Reserved" registers may return a non-zero value.

4.11.1 VID[7:1]: Vendor Identification Register (D1-7, F0)

The VID Register contains Intel as the manufacturer of the NB. Writes to this register have no effect.

Device: 1 - 7 Function: 0 Offset: 00 - 01h						
Bit	Attr	Default	Description			
15:0	RO	8086h	Vendor Identification Number The value is assigned to Intel's standard notation.			

4.11.2 DID[7:1]: Device Identification Register (D1-7, F0)

This register combined with the Vendor Identification register uniquely identifies the NB function in the event that a driver is required. Writes to this register have no effect.

Device: Function Offset:	1 - 7 n: 0 02h - (03h			
Bit	Attr	Default		Descriptio	n
15:0	RWO	See Description	Device Identification Num Identifies each function of the		
			Register Group	Device	DID
			PCI Express D	1	2601h
			PCI Express C0	2	2602h
			PCI Express C1	3	2603h
			PCI Express B0	4	2604h
			PCI Express B1	5	2605h
			PCI Express A0	6	2606h
			PCI Express A1	7	2607h
			1 OI Expicos AT		200711

4.11.3 EXP_CMD[7:1]: Command Register (D1-7, F0)

This register defines the PCI 2.3 compatible command register values applicable to PCI Express space.

Device: Function Offset:	1 - 7 n: 0 04h -	05h	
Bit	Attr	Default	Description
15:11	RV	00h	Reserved (by PCI SIG)
10	RO	0	INTxDisable: Interrupt Disable Controls the ability of the PCI Express port to generate INTx messages. Note that the NB does not have INTx pins and cannot generate interrupts internally. The default value is 0h (interrupt disabled). This bit does not affect the ability of the NB to route interrupt messages received at the PCI Express port for operations such as hot-plug, power management or MSI to either hub interface or the FSB's.
9	RO	0	FB2B: Fast Back-to-Back Enable Not applicable to PCI Express and is hardwired to '0'.
8	RW	0	SERRE: SERR Message Enable This field handles the reporting of fatal and non-fatal errors by enabling the error pins ERR[2:0]. 0: The NB is disabled from generating fatal/non-fatal errors. 1: The NB is enabled to send fatal/non-fatal errors. The errors are also enabled by the EXP_DEVCTRL register (See Section 4.11.40)

Device: 1 - 7 Function: 0 04h - 05h Offset: Bit **Default Description** Attr 7 0 IDSELWCC: IDSEL Stepping/Wait Cycle Control RO Not applicable to PCI Express. Hardwired to 0. 6 RW **PERRE: Parity Error Enable** 0 When set, this field enables parity checking. 5 RO 0 VGAPSE: VGA palette snoop Enable Not applicable to PCI Express. Hardwired to 0. 4 RO 0 **MWIEN: Memory Write and Invalidate Enable** Not applicable to PCI Express. Hardwired to 0. 3 RO 0 SCE: Special Cycle Enable Not applicable to PCI Express. Hardwired to 0. 2 RW **BME: Bus Master Enable** Controls the ability of the PCI Express port to forward memory or I/O transactions: Enables the PCI Express port to successfully complete the memory or I/O read/write requests. The Bus Master is disabled. The NB will treat upstream memory writes/reads, IO writes/reads, and MSIs as illegal cycles and return Unsupported Request Status (equivalent to Master abort) in PCI Express. When the BME is disabled, the NB will treat upstream memory writes/reads, IO writes/reads, and MSIs as illegal cycles and return Unsupported Request Status (equivalent to Master abort) in PCI Express. Requests other than inbound memory or I/O (e.g. configuration, outbound) are not controlled by this bit. The BME is typically used by the system software for operations such as Hotplug device configuration. RW **MSE: Memory Space Enable** Enables the Memory and Pre-fetchable memory address ranges (MMIO) defined in the MBASE/MLIMIT, PMBASE/PMLIMIT registers. Disables the entire memory space seen by the PCI Express port on 0: the primary side (NB). Requests will then be subtractively claimed by ICH5. 0 RW 0 **IOAE: Access Enable** Enables the I/O address range defined in the IOBASE and IOLIMIT registers. 0: Disables the entire I/O space seen by the PCI Express port on the primary. Requests will be then be subtractively claimed by ICH5.

4.11.4 **EXP_STS[7:1]: Status Register (D1-7, F0)**

The EXP_STS is a 16-bit status register that reports the occurrence of error conditions associated with the primary side of the "virtual" PCI-PCI bridge embedded in the selected PCI Express cluster of the NB.

Device: Function Offset:	1 - 7 : 0 06 - 07h		
Bit	Attr	Default	Description
15	RWC	0	DPE: Detected Parity Error This bit is set when the PCI Express port gets an uncorrectable data error or Address/Control parity errors regardless of the Parity Error Enable bit (PERRE). The detected parity error maps to T10 as defined in Table 6-39 "Errors Detected by the NB" on page 328 of this document.
14	RWC	0h	SSE: Signaled System Error
			The PCI Express port enables system errors through ERR[2:0] pins such as ERR_FATAL and ERR_NONFATAL messages provided SERRE is set. Software clears this bit by writing a 1 to it.
			0: No system errors are generated by the PCI Express Port.
13	RWC	0h	RMA: Received Master Abort Master Abort does not exist on the primary side of the PCI Express port. This bit is hardwired to 0.
12	RWC	0h	RTA: Received Target Abort Target Abort does not exist on the primary side of the PCI Express port. This bit is hardwired to 0.
11	RWC	0h	STA: Signaled Target Abort Target Abort does not exist on the primary side of the PCI Express port. This bit is hardwired to 0.
10:9	RO	0h	DEVSELT: DEVSEL# Timing Not applicable to PCI Express. This bit is hardwired to 0.
8	RWC	0h	MDPERR: Master Data Parity Error This bit is set by the PCI Express port if the Parity Error Enable bit (PERRE) is set and it receives error T10 (uncorrectable data error or Address/Control parity errors or an internal failure). If the Parity Error Enable bit is cleared, this bit is never set. See Table 6-39 "Errors Detected by the NB" on page 328 of this document.
7	RO	0	FB2B: Fast Back-to-Back
			Not applicable to PCI Express. This bit is hardwired to 0.
6	RV	0	Reserved (by PCI SIG)

Device: Function Offset:	1 - 7 : 0 06 - 07h		
Bit	Attr	Default	Description
5	RO	0	66MHZCAP: 66 MHz capable Not applicable to PCI Express. This bit is hardwired to 0.
4	RO	1	CAPL: Capabilities List This bit indicates the presence of PCI Express capabilities list structure in the PCI Express port. This bit is hardwired to 1(Mandatory).
3	RO	0	INTxSTAT: INTx Status Indicates that an INTx interrupt message is pending internally in the PCI Express port. This bit does not get set for interrupts forwarded up from downstream devices in the hierarchy or for messages converted to interrupts by the root port.
2:0	RV	00	Reserved (by PCI SIG)

4.11.5 RID[7:1]: Revision Identification Register (D1-7, F0)

This register contains the revision number of the Intel® E8501 chipset North Bridge (NB).

Device: Function Offset:	1 - 7 n: 0 08h		
Bit	Attr	Default	Description
7:4	RO	0h	Major_rev: Major Revision Steppings which require all masks to be regenerated. 1h: B stepping
3:0	RO	0	Minor_rev: Minor Revision Incremented for each stepping which does not modify all masks. Reset for each major revision. Oh: x0 stepping 1h: x1 stepping 2h: x2 stepping

4.11.6 CCR[7:1]: Class Code Register (D1-7, F0)

This register contains the Class Code for the device.

Device: Function Offset:	1 - 7 : 0 09-0E	3h	
Bit	Attr	Default	Description
23:16	RO	06h	BaseClass: Base Class
			This field indicates the general device category. For the NB, this field is hardwired to 06h, indicating it is a "Bridge Device".
15:8	RO	04h	SubClass: Sub-Class
			This field qualifies the Base Class, providing a more detailed specification of the device function.
			For PCI Express Devices 1,2,3,4,5,6,7 default is 040h, indicating "PCI to PCI Bridge".
7:0	RO	00h	RLPI: Register-Level Programming Interface
			This field identifies a specific programming interface (if any), that device independent software can use to interact with the device. There are no such interfaces defined for "Host Bridge" types, and this field is hardwired to 00h.

4.11.7 CLS[7:1]: Cache Line Size (D1-7, F0)

This register contains the Cache Line Size and is set by BIOS/Operating System. It does not affect the PCI Express port functionality in the NB.

Device: Function Offset:			
Bit	Attr	Default	Description
7:0	RW	00h	Cls: Cache Line Size (CLS) This is an 8-bit value that indicates the size of the cache line and is specified in DWORDs. It does not affect the NB.

4.11.8 PRI_LT[7:1]: Primary Latency Timer (D1-7, F0)

This register denotes the maximum timeslice for a burst transaction in legacy PCI 2.3 on the primary interface. It does not affect or influence PCI Express functionality.

Device: Function Offset:			
Bit	Attr	Default	Description
7:0	RO	00h	PLatTim: Primary Latency Timer Not applicable to PCI Express. Hardwired to 00h.

4.11.9 HDR[7:1]: Header Type Register (D1-7, F0)

This register identifies the header layout of the configuration space.

Device: Function Offset:	1 - 7 : 0 0Eh		
Bit	Attr	Default	Description
7	RO	00h	Mfd: Multi-function Device. Selects whether this is a multi-function device, that may have alternative configuration layouts.
6:0	RO	01h	CfgLayout: Configuration Layout. This field identifies the format of the configuration header layout for a PCI-to-PCI bridge from bytes 10h through 3Fh. For PCI Express Devices 1,2,3,4,5,6,7 default is 01h, indicating "PCI to PCI Bridge".

4.11.10 BIST[7:1]: Built-In Self Test (D1-7, F0)

This register is used for reporting control and status information of BIST checks within a PCI Express port. It is not supported in the NB.

Device: 1 - 7 Function: 0 Offset: 0Fh				
Bit	Attr	Default	Description	
7:0	RO	00h	Btest: BIST Tests Not supported. Hardwired to 00h	

4.11.11 PBUSN[7:1]: Primary Bus Number (D1-7, F0)

This register identifies that "virtual" PCI-PCI bridge is connected to bus #0.

	Device: 1 - 7 Function: 0 Offset: 18h					
Bit	Attr	Default	Description			
7:0	RO	00h	PBUSN: Primary Bus Number Configuration software typically programs this field with the number of the bus on the primary side of the bridge. Since the PCI Express virtual PCI-PCI bridge is an internal device and its primary bus is always 0, these bits are read only and are hardwired to 00h.			

4.11.12 SBUSN[7:1]: Secondary Bus Number (D1-7, F0)

This register identifies the bus number assigned to the secondary side of the "virtual" PCI-PCI bridge (the PCI Express connection). This number is programmed by the PCI configuration software to allow mapping of configuration cycles to a second bridge device connected to PCI Express.

Device: 1 - 7 Function: 0 Offset: 19h					
Bit	Attr	Default	Description		
7:0	RW	0h	BUSN: Secondary Bus Number This field is programmed by configuration software with the lowest bus number of the buses connected to PCI Express. Since both bus 0, device (1 - 7) and the PCI-PCI bridge on the other end are considered by configuration software to be PCI-PCI bridges, this bus number will always correspond to the bus number assigned to PCI Express.		

4.11.13 SUBUSN[7:1]: Subordinate Bus Number (D1-7, F0)

This register identifies the subordinate bus (if any) that resides at the level below the secondary PCI Express interface. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to devices subordinate to the secondary PCI Express port.

Device: Function Offset:			
Bit	Attr	Default	Description
7:0	RW	0h	SUBUSN: Subordinate Bus Number This register is programmed by configuration software with the number of the highest subordinate bus that is behind the PCI Express port.

4.11.14 SEC_LT[7:1]: Secondary Latency Timer (D1-7, F0)

This register denotes the maximum time-slice for a burst transaction in legacy PCI 2.3 on the secondary interface. It does not affect or influence PCI Express functionality.

Device: Function Offset:			
Bit	Attr	Default	Description
7:0	RO	00h	SEC_LT: Secondary Latency Timer Not applicable to PCI Express. Hardwired to 00h.

4.11.15 IOBASE[7:1]: I/O Base Register (D1-7, F0)

The I/O Base and I/O Limit (Section 4.11.16) registers define an address range that is used by the PCI Express bridge to determine when to forward I/O transactions from one interface to the other using the following formula:

$$IO_BASE \le A[15:12] \le IO_LIMIT$$

Only the upper 4 bits are programmable. For the purpose of address decode, address bits A[11:0] are treated as 0. The bottom of the defined I/O address range will be aligned to a 4KB boundary while the top of the region specified by IO_LIMIT will be *one less than a 4 KB multiple*.

Note: If IOLIM < IOBASE, then the aperture is closed.

Device: Functior Offset:	1 - 7 n: 0 1Ch		
Bit	Attr	Default	Description
7:4	RW	00h	IOBASE: I/O Base Address Corresponds to A[15:12] of the I/O addresses passed by the PCI Express device.
3:0	RO	00h	IOCAP: I/O Address Capability Oh: 16-bit I/O addressing (supported) Others: Reserved NOTE: The NB only supports 16-bit I/O addressing. These bits are hardwired to 00h.

4.11.16 IOLIM[7:1]: I/O Limit Register (D1-7, F0)

The I/O Base and I/O Limit registers define an address range that is used by the PCI Express bridge to determine when to forward I/O transactions from one interface to the other using the following formula:

Only the upper 4 bits are programmable. For the purpose of address decode, address bits A[11:0] of the I/O limit register is treated as FFFh.

Device: Function Offset:	1 - 7 : 0 1Dh		
Bit	Attr	Default	Description
7:4	RW	00h	I/O Address Limit (IOLIMIT) - Corresponds to A[15:12] of the I/O addresses passed by the PCI Express device.
3:0	RO	00h	I/O Address Limit Capability (IOLCAP)
			0h: 16-bit I/O addressing (supported)
			Others: Reserved
			NOTE: The NB only supports 16-bit I/O addressing. These bits are hardwired to 0oh.

4.11.17 SECSTS[7:1]: Secondary Status (D1-7, F0)

SECSTS is a 16-bit status register that reports the occurrence of error conditions associated with the secondary side (i.e. PCI Express side) of the "virtual" PCI-PCI bridge embedded within the NB.

Device: Function Offset:	1 - 7 n: 0 1Eh -	1Fh	
Bit	Attr	Default	Description
15	RWC	0h	SDPE: Detected Parity Error This bit is set by the NB whenever it receives a poisoned TLP in the PCI Express port regardless of the state of the Parity Error Response bit. This corresponds to IO14 as defined in Table 6-39 "Errors Detected by the NB" on page 328 of this document.
14	RWC	0h	SRSE: Received System Error This bit is set by the NB when it receives a ERR_FATAL or ERR_NONFATAL message, and the BCSERRE bit is set in BCTRL register (Section 4.11.27). This corresponds to IO24, IO25 and IO26 as defined in Table 6-39 "Errors Detected by the NB" on page 328 of this document.
13	RWC	0h	SRMAS: Received Master Abort Status This bit is set when the PCI Express port receives a Completion with "Unsupported Request Completion" Status. This corresponds to IO12 as defined in Table 6-39 "Errors Detected by the NB" on page 328 of this document.
12	RWC	0h	SRTAS: Received Target Abort Status This bit is set when the PCI Express port receives a Completion with "Completer Abort" Status. This corresponds to IO17 as defined in Table 6-39 "Errors Detected by the NB" on page 328 of this document.
11	RWC	0h	SSTAS: Signaled Target Abort This bit is set when the PCI Express port completes a request with "Completer Abort" Status. The NB never generates completer aborts internally, therefore this bit is never set.
10:9	RO	00h	SDEVT: DEVSEL# Timing Not applicable to PCI Express. Hardwired to 00h.
8	RWC	0h	SMDPERR: Master Data Parity Error This bit is set by the PCI Express port on the secondary side (PCI Express link) if the Parity Error Response bit (PERRE) is set and either of the following two conditions occurs: • The PCI Express port receives a completion marked poisoned • The PCI Express port poisons a write request If the Parity Error Response bit is cleared, this bit is never set.
7	RO	0h	SFB2BTC: Fast Back-to-Back Transactions Capable Not applicable to PCI Express. Hardwired to 00h.
6	RV	0h	Reserved (by PCI SIG)
5	RO	0h	S66MHCAP: 66 MHz Capability Not applicable to PCI Express. Hardwired to 00h.
4:0	RV	00h	Reserved (by PCI SIG)

4.11.18 MBASE[7:1]: Memory Base (D1-7, F0)

The Memory Base and Memory Limit registers define a memory mapped I/O non-prefetchable address range (32-bit addresses) and the NB directs accesses in this range to the PCI Express port based on the following formula:

MEMORY_BASE <= A[31:20] <= MEMORY_LIMIT

The upper 12 bits of both the Memory Base and Memory Limit registers are read/write and corresponds to the upper 12 address bits, A[31:20], of 32-bit addresses. For the purpose of address decoding, the bridge assumes that the lower 20 address bits, A[19:0], of the memory base address are 00000h. Similarly, the bridge assumes that the lower 20 address bits, A[19:0], of the memory limit address (not implemented in the Memory Limit register) are FFFFFh. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary and the top of the defined memory address range will be one less than a 1 MB boundary.

Note: If MLIMIT < MBASE, then the aperture is closed.

Device: 1 - 7 Function: 0 Offset: 20h - 21h				
Bit	Attr	Default	Description	
15:4	RW	0h	MBASE: Memory Base Address Corresponds to A[31:20] of the memory address on the PCI Express port.	
3:0	RO	0h	Reserved (by PCI SIG)	

4.11.19 MLIMIT[7:1]: Memory Limit (D1-7, F0)

This register controls the processor to PCI Express non-prefetchable memory access routing based on the following formula as described above:

MEMORY_BASE <= A[31:20]<= MEMORY_LIMIT

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom 4 bits of this register are read-only and return 0h when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh.

Memory range covered by MBASE and MLIMIT registers are used to map non-prefetchable PCI Express address ranges (typically where control/status memory-mapped I/O data structures reside). PMBASE and PMLIMIT are used to map prefetchable address ranges.

Note also that configuration software is responsible for programming all address range registers (prefetchable and non-prefetchable) with the values that provide exclusive address ranges (i.e. prevent overlap with each other and/or with the ranges covered with the main memory). There is no provision in the NB hardware to enforce prevention of overlap. Operations of the system in the case of overlap are not guaranteed.

Device: 1 - 7 Function: 0 Offset: 22h - 23h				
Bit	Attr	Default	Description	
15:4	RW	Oh	MLIMIT: Memory Limit Address Corresponds to A[31:20] of the memory address that corresponds to the upper limit of the range of memory accesses that will be passed by the PCI Express bridge.	
3:0	RO	0h	Reserved (by PCI SIG)	

4.11.20 PMBASE[7:1]: Prefetchable Memory Base (D1-7, F0)

The Prefetchable Memory Base and Memory Limit registers define a memory mapped I/O prefetchable address range (32-bit addresses) which is used by the PCI Express bridge to determine when to forward memory transactions from one interface to the other based on the following formula:

PREFETCH_MEMORY_BASE <= A[31:20] <= PREFETCH_MEMORY_LIMIT

The upper 12 bits of both the Prefetchable Memory Base and Memory Limit registers are read/write and corresponds to the upper 12 address bits, A[31:20], of 32-bit addresses. For the purpose of address decoding, the bridge assumes that the lower 20 address bits, A[19:0], of the memory base address are 00000h. Similarly, the bridge assumes that the lower 20 address bits, A[19:0], of the memory limit address (not implemented in the Memory Limit register) are FFFFFh. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary and the top of the defined memory address range will be one less than a 1 MB boundary.

Note: If PMLIMIT < PMBASE, then the aperture is closed.

Device: Function Offset:	1 - 7 : 0 24h -	25h	
Bit	Attr	Default	Description
15:4	RW	00h	PMBASE: Prefetchable Memory Base Address Corresponds to A[31:20] of the prefetchable memory address on the PCI Express port.
3:0	RO	01h	PMBASE_CAP: Prefetchable Memory Base Address Capability 00h: 32-bit Prefetchable Memory addressing 01h: 64-bit Prefetchable Memory addressing Others: Reserved

The bottom 4 bits of both the Prefetchable Memory Base and Prefetchable Memory Limit registers are read-only, contain the same value, and encode whether or not the bridge supports 64-bit addresses. If these four bits have the value 0h, then the bridge supports only 32 bit addresses. If these four bits have the value 01h, then the bridge supports 64-bit addresses and the Prefetchable Base Upper 32 Bits and Prefetchable Limit Upper 32 Bits registers hold the rest of the 64-bit prefetchable base and limit addresses respectively.

4.11.21 PMLIMIT[7:1]: Prefetchable Memory Limit (D1-7, F0)

This register controls the processor to PCI Express prefetchable memory access routing based on the following formula as described above:

```
extPMBASE[n] = (PMBU[n] \ll 32) \mid PMBASE[n].PMBASE

extPMLIM[n] = (PMLU[n] \ll 32) \mid PMLIMIT[n].PMBASE

extPMBASE[n] \ll 2extPMLIM[n]
```

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32 bit address. This register must be initialized by the configuration software. For the purpose of address decode address bits A[19:0] are assumed to be FFFFFh.

Device: Function Offset:	1 - 7 n: 0 26h -	27h	
Bit	Attr	Default	Description
15:4	RW	0h	PMLIMIT: Prefetchable Memory Limit Address Corresponds to A[31:20] of the memory address that corresponds to the upper limit of the prefetchable range of memory accesses that will be passed by the PCI Express bridge.
3:0	RO	1h	PMLIMIT_CAP: Prefetchable Memory Limit Address Capability
			00h: 32-bit Prefetchable Memory addressing
			01h: 64-bit Prefetchable Memory addressing
			Others: Reserved

4.11.22 PMBU[7:1]: Prefetchable Memory Base (Upper 32 bits) (D1-7, F0)

The Prefetchable Base Upper 32 Bits is the extension to the Prefetchable Memory Base register. It concatenate with the PMLIMIT address fields to build a full address.

Device: Function Offset:	1 - 7 n: 0 28h -	2Bh	
Bit	Attr	Default	Description
31:0	RW	0h	PUMBASE: Prefetchable Upper 32-bit Memory Base Address A[63:32] of the memory address that corresponds to the upper base of the prefetchable range of memory accesses that will be passed by the PCI Express bridge. The operating system (OS) should program these bits based on the available physical limits of the system.

4.11.23 PMLU[7:1]: Prefetchable Memory Limit (Upper 32 Limit) (D1-7, F0)

The Prefetchable Limit Upper 32 Bits registers is the extension to the Prefetchable Memory Limit register. It concatenate with the PMBASE address fields to build a full address.

Device: Function Offset:	1 - 7 : 0 2Ch	· 2Fh	
Bit	Attr	Default	Description
31:0	RW	0h	PUMLIM: Prefetchable Upper 32-bit Memory Limit Address A[63:32] of the memory address that corresponds to the upper limit of the prefetchable range of memory accesses that will be passed by the PCI Express bridge. The operating system (OS) should program these bits based on the available physical limits of the system.

4.11.24 CAPPTR[7:1]: Capability Pointer (D1-7, F0)

The CAPPTR is used to point to a linked list of additional capabilities implemented by this device.

It provides the offset to the first set of capabilities registers located in the PCI-compatible space from 40h. Currently, the first structure is located at 50h to provide room for other registers.

Device: Function Offset:			
Bit	Attr	Default	Description
7:0	RO	50h	CAPPTR: Capability Pointer Points to the first capability structure (PM) in PCI 2.3 compatible space at 50h.

4.11.25 INTL[7:1]: Interrupt Line Register (D1-7, F0)

The Interrupt Line register is used to communicate interrupt line routing information between initialization code and the device driver. The NB does not have a dedicated interrupt line and is not used.

Device: Function Offset:			
Bit	Attr	Default	Description
7:0	RO	00h	INTL: Interrupt Line BIOS writes the interrupt routing information to this register to indicate which input of the interrupt controller this PCI Express Port is connected to. Not used in the NB since the PCI Express port does not have interrupt lines.

4.11.26 INTP[7:1]: Interrupt Pin Register (D1-7, F0)

The INTP register identifies legacy interrupts for INTA, INTB, INTC and INTD. These features are not supported by the NB.

Device: Function Offset:			
Bit	Attr	Default	Description
7:0	RO	00h	Interrupt Pin (INTP) Set to '00h' to indicate no interrupt pins.

4.11.27 BCTRL[7:1]: Bridge Control Register (D1-7, F0)

This register provides extensions to the EXP_CMD register that are specific to PCI-PCI bridges. The BCTRL provides additional control for the secondary interface (i.e. PCI Express) as well as some bits that affect the overall behavior of the "virtual" PCI-PCI bridge embedded within the NB (e.g. VGA compatible address range mapping).

Device: Function Offset:	1 - 7 n: 0 3Eh -	3Fh	
Bit	Attr	Default	Description
15:12	RV	00h	Reserved. (by PCI SIG)
11	RO	0h	DTSS: Discard Timer SERR Status Not applicable to PCI Express. This bit is hardwired to 0h.
10	RO	0h	DTS: Discard Timer Status Not applicable to PCI Express. This bit is hardwired to 0.h
9	RO	0h	SDT: Secondary Discard Timer Not applicable to PCI Express. This bit is hardwired to 0h.
8	RO	0h	PDT: Primary Discard Timer Not applicable to PCI Express. This bit is hardwired to 0h.
7	RO	0h	FB2BEN: Fast Back-to-Back Enable Not applicable to PCI Express. This bit is hardwired to 0h.
6	RW	0h	SRESET: Secondary Bus Reset Setting this bit triggers a warm reset on the corresponding PCI Express port and the PCI Express hierarchy domain subordinate to the port.
5	RO	0h	MAMODE: Master Abort Mode Not applicable to PCI Express. This bit is hardwired to 0h.
4	RV	0h	Reserved (by PCI SIG)

Device: 1 - 7 Function: 0 Offset: 3Eh - 3Fh

Offset:	3Eh -	· 3Fh	
Bit	Attr	Default	Description
3	RW	Oh	VGAEN: VGA Enable Controls the routing of CPU initiated transactions targeting VGA compatible I/O and memory address ranges. This bit may only be set for one PCI Express port.
2	RW	0h	ISAEN: ISA Enable
			Modifies the response by the NB to an I/O access issued by the CPU that target ISA I/O addresses. This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT registers.
			1h: The NB will not forward to PCI Express any I/O transactions addressing the last 768 bytes in each 1 KB block even if the addresses are within the range defined by the IOBASE and IOLIMIT registers. Instead of going to PCI Express these cycles will be forwarded to HI0 where they can be subtractively or positively claimed by the ISA bridge.
			0h: All addresses defined by the IOBASE and IOLIMIT for CPU I/O transactions will be mapped to PCI Express.
1	RW	0h	BCSERRE: SERR Enable
			This bit controls forwarding of ERR_COR, ERR_NONFATAL and ERR_FATAL messages from the PCI Express port to the primary side.
			1h: Enables forwarding of ERR_COR, ERR_NONFATAL and ERR_FATAL messages.
			0h: Disables forwarding of ERR_COR, ERR_NONFATAL and ERR_FATAL messages.
0	RW	0h	PRSPEN: Parity Error Response Enable
			This bit controls the response to poisoned TLPs in the PCI Express port
			1h: Enables reporting of poisoned TLP errors.
			0h: Disables reporting of poisoned TLP errors.

4.11.28 EXP_CTRL[7:1]: PCI Express Control Register (D1-7, F0)

This 32-bit register implements the chipset-specific operations for general control/accessibility such as device hiding, selective configuration cycles, interrupt signaling and MSI generation.

Device: Function Offset:	1 - 7 n: 0 48h -	4Bh				
Bit	Attr	Default	Description			
31:30	RV	0	Reserved			
29	RW	0	DISABLE ABP When set prevents bit 0 ABP: Attention Button Pressed in Section 4.11.47, "EXP_SLOTSTS[7:1]: PCI Express Slot Status Register (D1-7, F0)" from getting set. Suggested value: 1			
28	RV	0	Reserved			
27	RW	0	DIS_TOGGLE_POP_PRI			
26	RW	0	READ_INTERLOCK: Cards that violate PCI ordering rules and have a read-to-read in-out dependency must set this bit to avoid deadlock during locks. The dependency is a card that expects the NB to provide completion for its upstream read before it can process a downstream read from the NB. Such cards must not participate in peer-to-peer transactions. Since the default is 0, it assumes that cards follow PCI ordering rules fully.			
25:24	RW	3h	COALESCE_MODE: Used to increase the amount of combining for completions. X 1: #CPL_ENTRIES_FREE will restrict coalesce_hint 1 X: f set then #PF_PEND will restrict coalesce hint 0 0: Least restrictive Suggested value: 00h			
23	RW	0	TIMEOUT_ENABLE_CFG: 1: Config transactions can time out 0: Config transactions cannot time out Suggested value: 0h			
22	RW RW	1h	TIMEOUT_ENABLE: 1: Non config transactions can time out. 0: Non config transactions cannot time out. Suggested value: 1h MALTLP_EN:			
			Check for certain malformed TLP types Do not check for certain malformed TLP types			
20	RW	0h	DZLCW: Drop zero length config writes Suggested value: 0h			

Device: 1 - 7 Function: 0 Offset: 48h - 4Bh

Offset:	48h -	4Bh						
Bit	Attr	Default	Description					
19	RW	0h	DZLIW: Drop zero length I/O writes Suggested value: 0h					
18	RW	0h	DZLMW: Drop zero length memory writes Suggested value: 0h					
17	RW	0h	DZLCR: Drop zero length config reads Suggested value: 0h					
16	RW	0h	DZLIR: Drop zero length I/O reads Suggested value: 0h					
15	RW	0h	DZLMR: Drop zero length memory reads Suggested value: 0h					
14	RW	1h	STREAM_INTERLEAVE_CHECK_EN: 1: Not supported 0: Do not check for stream interleaving Suggested value: 0h					
13	RW	1h	INTERLEAVE_EN: 1: Interleaved 0: Not interleaved Suggested value: 1h					
12	RW	1h	256B_EN: 1: Increases likelihood of 256B return when COALESCE_EN = 1 0: Decreases likelihood of 256B return when COALESCE_EN = 1 Suggested value: 1h					
11	RW	Oh	CF: Force coalescing of accesses When 1, forces the NB to wait for all coalescable data before sending the transaction as opposed to forwarding as much as possible. Suggested value: 0h					
10	RW	1h	COALESCE_EN: When 1, enables read return of >64B 1: Returns of >64B enabled. See 256B_EN 0: Returns are 64B or less Suggested value: 1h					

Device: 1 - 7 Function: 0 Offset: 48h - 4Bh **Default** Bit Attr **Description** 9 RW 0h **MSIPMEN: MSI PME Enable** Enables MSI messages to be sent to the CPU for PME events. 1: 0: Disables sending of MSI messages to the CPU for PME events Note that for MSI PME messages to be sent, both MSIPMEN and at least one of MSICTRL[7:1].MSIEN bits have to be set. RW 8 0h **MSIHPEN: MSI Hot-Plug Enable** Enables MSI messages to be sent to the CPU for Hot-plug events 1: and enables signaling hot plug events on the EXP_HPINT pin. 0: Disables sending of MSI messages for Hot-plug events to the CPU Note that for MSI Hot-plug messages to be sent, both MSIHPEN and at least one of MSICTRL[7:1].MSIEN bits defined in Section 4.11.34 have to be set. **RWO** 0h DIS_INB_CFG: Disable Inbound Configurations This bit is used for controlling configuration accesses to the chipset registers through the PCI Express device. Inbound accesses to the NB or XMB registers will be master aborted 0: Allows access to the NB or XMB registers. (typically for internal debug, test, etc. This register bit is of type "write once" and is controlled by BIOS/special initialization firmware. 6:3 RW 00h **VPP: Virtual Pin Port** [6:4] = SMBus Address, [3] =IO Port defines the 8-bit IO port that is used for routing power, attention, Hot-Plug, presence, MRL and other events defined in Table 6-34. RW 2 0h EN_VPP: Enable VPP The NB will use this bit to decide whether VPP is enabled or disabled for the given PCI Express port as set by configuration software. For example, to distinguish Hot-Plug events for a legacy card or PCI Express module, this bit can be used. 1: VPP is enabled for this PCI Express port 0: VPP is disabled for this PCI Express port RW 0h 1 DIS_APIC_EOI: Disable APIC EOI The NB will use this bit to decide whether end of interrupts (EOI) need to be sent to an APCI controller/bridge (e.g. PXH) through this PCI Express device. 1: No EOIs are sent (disabled). Should be set by BIOS if link never came up. 0: EOIs are dispatched to the APIC Controller Suggested Value: 1 Unless an Intel device is attached. 0 RV 0h Reserved

4.11.29 EXP_CTRL2: PCI Express Control Register 2 (D1-7, F0)

Device: Function Offset:	1 - 7 n: 0 4Ch		
Bit	Attr	Default	Description
7:1	RV	00h	Reserved
0	RW	0	NO_COMPLIANCE: Set by software to enable link operation in the presence of single wire failures on the link. If clear, then specified link behavior in the presence of a wire failure will be Polling. Suggested value: 1h

4.11.30 PMCAP[7:1]: Power Management Capabilities Register (D1-7, F0)

The PM Capabilities Register defines the capability ID, next pointer and other power management related support. The following PM registers /capabilities are added for software compliance.

Device: Function Offset:	1 - 7 : 0 50h -	53h								
Bit	Attr	Default	Description							
31:27	RO	11001b	set to The de	ies po '1' for efinition	wer s PCI-F on of t	tates CI br hese	idge s bits is	asserts PME_OUT. Bits 31, 30 and 27 must be structures representing ports on root complexes. taken from the PCI Bus Power Management ion 1.1.		
			Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	PME_OUT		
			Х	Х	Х	Х	1	PME_OUT can be asserted from D0		
			Х	Х	Х	1	Х	PME_OUT can be asserted from D1 (Not supported by the NB)		
			Х	Х	1	Х	Х	PME_OUT can be asserted from D2 (Not supported by the NB)		
			Х	1	Х	Х	Х	PME_OUT can be asserted from D3 hot (Not supported by the NB)		
			1	Х	Х	Х	Х	PME_OUT can be asserted from D3 cold (Not supported by the NB)		
26	RO	0h	D2S: I The N		• •		ort po	wer management state D2.		
25	RO	0h	D1S: D1 Support The NB does not support power management state D1.							
24:22	RO	0h	AUXC	UR: A	AUX C	Curre	nt			
21	RO	0h	DSI: Device Specific Initialization							

Device: Function Offset:	1 - 7 : 0 50h -	53h	
Bit	Attr	Default	Description
20	RV	0h	Reserved
19	RO	0h	PMECLK: PME Clock This field is hardwired to 0h as it does not apply to PCI Express.
18:16	RO	010b	VER: Version This field is set to '010b' as version number from the PCI Express 1.0 specification.
15:8	RO	58h	NXTCAPPTR: Next Capability Pointer This field is set to offset 58h for the next capability structure (MSI) in the PCI 2.3 compatible space.
7:0	RO	01h	CAPID: Capability ID Provides the PM capability ID assigned by PCI-SIG.

4.11.31 PMSCR[7:1]: Power Management Status and Control Register (D1-7, F0)

This register provides status and control information for PM events in the PCI Express ports of the NB.

Device: Function Offset:	1 - 7 : 0 54h - 57h		
Bit	Attr	Default	Description
31:24	RO	0h	Data: Data Data read out based on data select (DSEL).
23	RO	0h	BPCCEN: Bus Power/Clock Control Enable This field is hardwired to 0h as it does not apply to PCI Express.
22	RO	0h	B2B3S: B2/B3 Support This field is hardwired to 0h as it does not apply to PCI Express.
21:16	RV	0h	Reserved
15	RWCST	0h	PMESTS: PME Status This PME Status is a sticky bit. When set, the PCI Express port generates a PME internally independent of the PMEEN bit defined below. Software clears this bit by writing a '1'. As a root port, the NB will never set this bit, because it never generates a PME internally independent of the PMEEN bit.
14:13	RO	0h	DSCL: Data Scale
12:9	RW	0h	DSEL: Data Select
8	RWST	0h	PMEEN: PME Enable This field, when set enables forwarding of PME messages received at the PCI Express port to the NB core.
7:2	RV	0h	Reserved
1:0	RW	0h	PS: Power State

4.11.32 MSICAPID[7:1]: MSI Capability ID (D1-7, F0)

Message Signaled Interrupts (MSI) is an optional feature that enables a device to request service by writing a system-specified message to a system-specified address in the form of an interrupt message. The transaction address (e.g. FEEx_xxxxh) specifies the message destination and the transaction data specifies the message. The MSI mechanism is supported by the following registers: MSICAPID, MSINXPTR, MSICTRL, MSIAR and MSIDR described below.

	Device: 1 - 7 Function: 0 Offset: 58h			
Bit	Attr	Default	Description	
7:0	RO	05h	CAPID: Capability ID Assigned by PCI-SIG for message signaling capability.	

4.11.33 MSINXPTR[7:1]: MSI Next Pointer (D1-7, F0)

Device: 1 - 7 Function: 0 Offset: 59h			
Bit	Attr	Default	Description
7:0	RO	6Ch	NXTPTR: Next Ptr This field is set to 6Ch for the next capability list (PCI Express capability structure - EXP_CAP) in the chain.

4.11.34 MSICTRL[7:1]: Message Control Register (D1-7, F0)

	Device: 1 - 7 Function: 0 Offset: 5Ah - 5Bh			
Bit	Attr	Default	Description	
15:8	RV	0h	Reserved	

Device: Function Offset:	1 - 7 : 0 5Ah -	5Bh	
Bit	Attr	Default	Description
7	RO	0h	AD64CAP: 64-bit Address Capable This field is hardwired to 0h since the message writes addresses are only 32-bit addresses (e.g. FEEx_xxxxh).
6:4	RW	0h	MMEN: Multiple Message Enable Software writes to this field to indicate the number of allocated messages which is aligned to a power of two. When MSI is enabled, the software will allocate at least one message to the device. If two MSI messages are enabled, "message 0" is used for normal interrupts and "message 1" is used for abort/error interrupts. If only one MSI message is enabled, "message 0" is used for both normal and error interrupts.
3:1	RO	001	MMCAP: Multiple Message Capable Software reads this field to determine the number of requested messages that are aligned to a power of two. It is set to 2 messages (encoding of 001).
0	RW	0h	MSIEN: MSI Enable The software sets this bit to select legacy interrupts or transmit MSI messages: 0: The NB will not use MSI to communicate an event to the processor. 1: Enables the NB to use MSI messages to request context specific service through register bits defined in the Section 4.11.28, "EXP_CTRL[7:1]: PCI Express Control Register (D1-7, F0)" on page 102.

4.11.35 MSIAR[7:1]: MSI Address Register (D1-7, F0)

The MSI Address Register (MSIAR) contains the system specific address information to route MSI interrupts and is broken into its constituent fields.

Device: 1 - 7 Function: 0 Offset: 5Ch - 5Fh			
Bit	Attr	Default	Description
31:20	RW	FEEh	AMSB: Address MSB This field specifies the 12 most significant bits of the 32-bit MSI address.
19:12	RW	00h	ADSTID: Address Destination ID This field is initialized by software for routing the interrupts to the appropriate destination.

Device: Function Offset:	1 - 7 n: 0 5Ch -	· 5Fh	
Bit	Attr	Default	Description
11:4	RW	00h	AEXDSTID: Address Extended Destination ID This field is not used by IA-32 processor.
3	RW	Oh	ARDHINT: Address Redirection Hint 0: Directed 1: Redirectable
2	RW	Oh	ADM: Address Destination Mode 0: Physical 1: Logical
1:0	RV	0h	Reserved

4.11.36 MSIDR[7:1]: MSI Data Register (D1-7, F0)

The MSI Data Register (MSIDR) contains all the data-related information to route MSI interrupts.

Device: 1 - 7 Function: 0 Offset: 60h - 63h					
Bit	Attr	Default	Description		
31:16	RV	00h	Reserved		
15	RW	Oh	TM: Trigger Mode 0: Edge 1: Level This field Specifies the type of trigger operation		
14	RW	Oh	LVL: Level If TM is 0h, then this field is a don't care. Edge triggered messages are always treated as assert messages. For level triggered interrupts, this bit reflects the state of the interrupt input if TM is 1h, then 0: Deassert Messages 1: Assert Messages		
13:11	RW	0h	These bits are don't care in IOxAPIC interrupt message data field specification.		

Device: Function Offset:	1 - 7 n: 0 60h -	63h	
Bit	Attr	Default	Description
10:8	RW	0h	DM: Delivery Mode
			000: Fixed
			001: Lowest Priority
			010: SMI/PMI
			011: Reserved
			100: NMI
			101: INIT
			110: Reserved
			111: ExtINT
7:0	RW	0h	IV: Interrupt Vector

4.11.37 EXP_CAPL[7:1]: PCI Express Capability List Register (D1-7, F0)

The PCI Express capability structure describes PCI Express related functionality, identification and other information such as control/status associated with the ports. It is located in the PCI 2.3-Compatible space and supports legacy operating system by enabling PCI software transparent features.

The PCI Express Capability List register enumerates the PCI Express Capability structure in the PCI 2.3 configuration space.

Device: Function Offset:	1 - 7 n: 0 6Ch -	6Dh	
Bit	Attr	Default	Description
15:8	RO	00h	NXTCAPPTR: Next Capability Pointer This field is set to NULL (00h) as there is no new structure defined from the current PCI Express capability list (i.e last in the link list of PCI 2.3 compatible space).
7:0	RO	10h	CAPID: Capability ID Provides the PCI Express capability ID assigned by PCI-SIG.

4.11.38 EXP_CAP[7:1]: PCI Express Capabilities Register (D1-7, F0)

The PCI Express Capabilities register identifies the PCI Express device type and associated capabilities.

Device: Function Offset:	1 - 7 n: 0 6Eh -	6Fh	
Bit	Attr	Default	Description
15:14	RV	0h	Reserved
13:9	RO	00h	IMN: Interrupt Message Number This field indicates the interrupt message number that is generated from the PCI Express port. When there are more than one MSI interrupt Number, this register field is required to contain the offset between the base Message Data and the MSI Message that is generated when the status bits in the slot status register or root port status registers are set.
8	RWO	0h	SLOT: Slot Implemented O: Indicates that the PCI Express link associated with the port is connected to a non-removable device or is disabled. 1: Indicates that the PCI Express link associated with the port is connected to a slot. This register bit is of type "write once" and is controlled by BIOS/special initialization firmware.
7:4	RO	0100b	DPT: Device/Port Type This field identifies the type of device. It is set to 0100b as defined in the spec since the PCI Express port is a "root port" in the NB.
3:0	RO	0001b	VERS: Capability Version This field identifies the version of the PCI Express capability structure. Set to 0001 by PCI SIG.

4.11.39 EXP_DEVCAP[7:1]: PCI Express Device Capabilities Register (D1-7, F0)

The PCI Express Device Capabilities register identifies PCI Express specific capabilities with this port.

Device: 1 - 7 Function: 0 Offset: 70h - 73h				
Bit	Attr	Default	Description	
31:28	RV	0h	Reserved	
27:26	RO	0h	CSPLS: Captured Slot Power Limit Scale Specifies the scale used for the Slot Power Limit Value. It does not apply to the NB as it is a Root complex. Hardwired to 0h.	

Device: 1 - 7 Function: 0 Offset: 70h - 73h Bit Attr **Default Description** 25:18 RO 00h **CSPLV: Captured Slot Power Limit Value** This field specifies upper limit on power supplied by a slot in an upstream port. It does not apply to the NB as it is a Root complex. Hardwired to 00h. RV Reserved 17:15 0h RO PIPD: Power Indicator Present on Device 14 0h When set, this bit indicates that a Power Indicator is implemented. PIPD is disabled in the NB Reserved 13 RO **AIPD: Attention Indicator Present** 0h When set, this bit indicates that an Attention Indicator is implemented. AIPD is disabled in the NB 1: Reserved 12 RO 0h **ABPD: Attention Button Present** This bit when set indicates that an Attention Button is implemented. 0: ABPD is disabled in the NB 1: Reserved 11:9 RO 111 EPL1AL: Endpoints L1 Acceptable Latency This field indicates the acceptable latency that an Endpoint can withstand due to the transition from L1 state to the L0 state. 000: Less than 1µs 001: 1 µs to less than 2 µs 010: 2 µs to less than 4 µs 011: 4 µs to less than 8 µs 100: 8 μs to less than 16 μs 101: 16 μs to less than 32 μs 110: 32 µs to 64 µs 111: More than 64 µs NOTE: The NB does not support L1 acceptable latency and is set to the maximum value for safety.

Device: 1 - 7 Function: 0 Offset: 70h - 73h

Offset:	70n -	7311	
Bit	Attr	Default	Description
8:6	RO	111b	EPL0AL: Endpoints L0s Acceptable Latency
			This field indicates the acceptable latency that an Endpoint can withstand due to the transition from L0s state to the L0 state.
			000: Less than 64 ns
			001: 64 ns to less than 128 ns
			010: 128 ns to less than 256 ns
			011: 256 ns to less than 512 ns
			100: 512 ns to less than 1 μs
			101: 1 μs to less than 2 μs
			110: 2 μs to 4 μs
			111: More than 4 µs
			NOTE: The NB does not support L0s implementation and for safety, this field is set to the maximum value.
5	RO	0h	ETFS: Extended Tag Field Supported This field indicates the maximum supported size of the Tag field.
			0: For root ports such as the NB, only 5-bit Tag field is supported
			1: Reserved
4:3	RO	0h	PFS: Phantom Functions Supported This field indicates the number of most significant bits of the function number portion of Requester ID in a TLP that are logically combined with the Tag
			identifier.
			0: For root ports, no function number bits for phantom functions are supported
			1: Reserved
2:0	RO	001b	MPLSS: Max Payload Size Supported This field indicates the maximum payload size that the PCI Express* port can
			support for TLPs.
			Defined encodings are:
			000: 128B max payload size
			001: 256B max payload size
			Others: Reserved
			NOTE: The NB only supports up to a maximum of 256B payload (e.g. writes and read completions) for each TLP and violations will be flagged as PCI Express errors.

4.11.40 EXP_DEVCTRL[7:1]: PCI Express Device Control Register (D1-7, F0)

The PCI Express Device Control register controls PCI Express specific capabilities parameters associated with this port.

Device: Function Offset:	Function: 0				
Bit	Attr	Default	Description		
15	RV	0h	Reserved		
14:12	RW	101b	MRRS: Max_Read_Request_Size		
			This field sets maximum Read Request size generated by the NB. The PCI Express port must not generate read requests with size exceeding the set value.		
			000: 128B max read request size		
			001: 256B max read request size		
			010: 512B max read request size		
			011: 1024B max read request size		
			100: 2048B max read request size		
			101: 4096B max read request size		
			110: Reserved		
			111: Reserved		
11	RW	1h	ENNOSNP: Enable No Snoop		
			When set, the PCI Express port is permitted to set the "No Snoop bit" in the Requester Attributes of transactions it initiates that do not require hardware enforced cache coherency. Typically the "No Snoop bit" is set by an originating PCI Express device down in the hierarchy.		
			The NB never sets or modifies the "No snoop bit" in the received TLP even if ENNOSNP is enabled. For outbound traffic, the NB does not need to snoop.		
10	RWST	0h	APPME: Auxiliary Power Management Enable		
			Disables the PCI Express port to draw AUX power independent of PME AUX power.		
			Enables the PCI Express port to draw AUX power independent of PME AUX power.		
			Devices that require AUX power on legacy operating systems should continue to indicate PME AUX power requirements. AUX power is allocated as requested in the AUX_Current field on the Power Management Capabilities Register (PMC), independent of the PMEEN bit in the Power Management Control/Status Register (PMSCR) defined in Section 4.11.31.		
9	RO	0h	PFE: Phantom Functions Enable		
			This bit enables the PCI Express port to use unclaimed functions as Phantom Functions for extending the number of outstanding transaction identifiers. The NB does not implement this bit (Root complex) and is hardwired to '0'.		

Device: 1 - 7 Function: 0 Offset: 74h - 75h

Offset:	74h - 7	5h	
Bit	Attr	Default	Description
8	RO	0h	ETFE: Extended Tag Field Enable
			This bit enables the PCI Express port to use an 8-bit Tag field as a requester. The NB does not use this field (Root complex) and is hardwired to '0'.
7:5	RW	01h	MPS: Max Payload Size
			This field is set by configuration software for the maximum TLP payload size for the PCI Express port. As a receiver, the NB must handle TLPs as large as the set value. As a transmitter, it must not generate TLPs exceeding the set value. Permissible values that can be programmed are indicated by the Max_Payload_Size_Supported in the Device Capabilities register:
			000: 128B max payload size
			001: 256B max payload size
			010: Reserved
			011: Reserved
			100: Reserved
			101: Reserved
			110: Reserved
			111: Reserved
			NOTE: The NB supports max payload sizes up to 256B. These bits should be programmed to the smallest of the max payload size supported between NB and the target.
4	RW	0h	ENRORD: Enable Relaxed Ordering
			If this bit is set, the device is permitted to set the Relaxed Ordering bit in the Attributes field of transactions it initiates that do not require strong write ordering.
			The NB enforces strict ordering only and hence it is initialized to '0'.

Device: 1 - 7 Function: 0 Offset: 74h - 75h **Default** Bit Attr **Description** 3 RW 0h **URREN: Unsupported Request Reporting Enable** This bit controls the reporting of unsupported requests to the NB in the PCI Express port. 0: Fatal error reporting is disabled. 1: Fatal error reporting is enabled. Note that the reporting of error messages (such as ERR_CORR, ERR_NONFATAL, ERR_FATAL) received by PCI Express port is controlled exclusively by the PCI Express Root Control register (EXP_RTCTRL) described in Section 4.11.28. Suggested value: 1h 2 RW Ωh FERE: Fatal Error Reporting Enable This bit controls the reporting of fatal errors internal to the NB in the PCI Express port. Fatal error reporting is disabled. Fatal error reporting is enabled. Suggested value: 1h RW 0h NFERE: Non Fatal Error Reporting Enable This bit controls the reporting of non fatal errors internal to the NB in the PCI Express port. Non Fatal error reporting is disabled. Non Fatal error reporting is enabled. Suggested value: 1h 0 RW **CERE: Correctable Error Reporting Enable** 0h This bit controls the reporting of correctable errors internal to the NB in the PCI Express port. Correctable error reporting is disabled. Correctable Fatal error reporting is enabled

Suggested value: 1h

4.11.41 EXP_DEVSTS[7:1]: PCI Express Device Status Register (D1-7, F0)

The PCI Express Device Status register provides information about PCI Express device-specific parameters associated with this port.

Device: Function Offset:	1 - 7 n: 0 76h -	77h	
Bit	Attr	Default	Description
15:6	RV	000h	Reserved
5	RO	0h	TP: Transactions Pending
			A device reports this bit cleared only when all Completions for any outstanding Non-Posted Requests have been received.
			Indicates that the PCI Express port has issued Non-Posted Requests which have not been completed.
4	RO	0	APD: AUX Power Detected
			0: No AUX power is detected.
			1: AUX power is detected by the PCI Express port.
3	RWC	0	URD: Unsupported Request Detected This bit indicates that the device received an Unsupported Request in the PCI Express port. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control Register.
			1: Denotes Unsupported Request detected
			0: Reserved
			This records the detection of receiving an unsupported request, error IO12 (Refer to Table 6-39 "Errors Detected by the NB" on page 328).
2	RWC	0	FED: Fatal Error Detected This bit indicates status of fatal errors detected in the PCI Express port. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. 1: Denotes Non Fatal errors detected
			0: Reserved
1	RWC	0	NFED: Non Fatal Error Detected This bit indicates the status of non-fatal errors detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. 1: Denotes Non Fatal errors detected
	DV44C	^	OFD: Correctable Force Detected
0	RWC	0	CED: Correctable Error Detected This bit indicates the status of correctable errors which are detected in the PCI Express port. Errors are logged in this register regardless of whether error reporting is enabled or not in the PCI Express Device Control register.
			Denotes correctable errors detected

4.11.42 EXP_LNKCAP[7:1]: PCI Express Link Capabilities Register (D1-7, F0)

The Link Capabilities register identifies the PCI Express specific link capabilities.

Device: Function Offset:	Function: 0					
Bit	Attr	Default	Description			
31:24	RWO	00h	PN: Port Number This field indicates the PCI Express port number for the link and is initialized by software/BIOS.			
23:18	RV	00h	Reserved			
17:15	RO	111b	L1EL: L1 Exit Latency This field indicates the L1 exit latency for the given PCI Express port. It indicates the length of time this port requires to complete transition from L1 to L0.			
			000: <1μs			
			001: 1 μs to less than 2 μs			
			010: 2 μs to less than 4 μs			
			011: 4 μs to less than 8 μs			
			100: 8 μs to less than 16 μs			
			101: 16 μs to less than 32 μs			
			110: 32 µs to 64 µs			
			111: > 64 μs			
14:12	RO	7h	L0sEL: L0s Exit Latency This field indicates the L0s exit latency (i.e L0s to L0) for the PCI Express port.			
			000: <64 ns			
			001: 64 ns to less than 128 ns			
			010: 128 ns to less than 256 ns			
			011: 256 ns to less than 512 ns			
			100: 512 ns to less than 1 μs			
			101: 1 μs to less than 2 μs			
			110: 2 μs to 4 μs			
			111: > 4 ns			
			NOTE: Note that NB does not support L0 Exit Latency implementation and for safety, this field is set to the maximum value.			

Device: 1 - 7 Function: 0 Offset: 78h -7Bh

Offset:	78h -	78h -7Bh				
Bit	Attr	Default	Description			
11:10	RO	0h	ACTPMS: Active State Link PM Support			
			This field indicates the level of active state power management supported on the given PCI Express port.			
			00: Reserved (Disabled) 01: L0s Entry (Supported) 10: Reserved 11: L0s and L1 (Supported) The NB responds to link initiated power management requests, but does not initiate any power management requests on its own even if software attempts			
			to tell the NB to do so.			
9:4	RO	See Table 4-21	MLW: Maximum Link Width This field indicates the maximum width of the given PCI Express Link attached to the port.			
			000100: x4			
			001000: x8			
			Others: Reserved			
			Refer to Table 4-21 for the allowed port configurations and maximum link width.			
3:0	RO	1h	MLS: Maximum Link Speed			
			This field indicates the maximum Link speed of the given PCI Express port. 0001: 2.5 Gb/s Others: Reserved			
			Calcio. Accorda			

4.11.43 EXP_LNKCTRL[7:1]: PCI Express Link Control Register (D1-7, F0)

The PCI Express Link Control register controls the PCI Express Link specific parameters.

Device: Function	1 - 7 1: 0		
Offset:	7Ch -	· 7Dh	
Bit	Attr	Default	Description
15:8	RV	000h	Reserved
7	RW	0h	EXTENDED_SYNCH:
			This bit when set forces extended transmission of FTS ordered sets in FTS and extra TS2 at exit from L1 prior to entering L0. This mode provides external devices monitoring the link time to achieve bit and symbol lock before the link enters L0 state and resumes communication.
6	RW	0h	CCCON: Common Clock Configuration
			Indicates that this PCI Express port and its counterpart at the opposite end of the Link are operating with an <u>asynchronous reference clock</u> .
			Indicates that this PCI Express port and its counterpart at the opposite end of the Link are operating with a <u>distributed common reference clock</u> .
			Components utilize this common clock configuration information to report the correct L0s and L1 Exit Latencies.
5	WO	0h	RLNK: Retrain Link
			This bit, when set by software, initiates link retraining in the given PCI Express port. It always returns '0' when read.
4	RW	0h	LNKDIS: Link Disable
			This field indicates whether the link associated with the PCI Express port is enabled or disabled.
			0: Enables the link associated with the PCI Express port
			Disables the link associated with the PCI Express port
3	RO	0h	RCB: Read Completion Boundary
			The NB supports only 64B read completion boundary and this bit is hardwired to 0h.
2	RV	0h	Reserved
1:0	RW	0h	ACTPMCTRL: Active State Link PM Control
			This field controls the level of active state power management supported on the given PCI Express port.
			00: Disabled
			01: L0s Entry Supported
			10: Reserved
			11: L0s and L1 Supported
			The NB responds to link initiated power management requests, but does not initiate any power management requests on its own even if software attempts to tell the NB to do so.

4.11.44 EXP_LNKLSTS[7:1]: PCI Express Link Status Register (D1-7, F0)

The PCI Express Link Status register provides information on the status of the PCI Express Link such as negotiated width, training, etc.

Device: Function Offset:	1 - 7 : 0 7Eh -	· 7Fh	
Bit	Attr	Default	Description
15:13	RV	00h	Reserved
12	RO	0h	SCCON: Slot Clock Configuration
			This bit indicates that the component uses the same physical reference clock that the platform provides on the connector. If the device uses an independent clock irrespective of the presence of a reference on the connector, this bit must be clear.
			Indicates independent clock on the PCI Express connector from that of the platform.
			Indicates same physical clock in the PCI Express connector as in the platform.
11	RO	0h	LNKTRG: Link Training
			This field indicates the status of an ongoing link training session in the current PCI Express port
			Indicates Link training not in progress - either it has completed or it has not begun.
			1: Indicates Link training is in progress.
			This read-only bit indicates that Link training is in progress; hardware clears this bit once Link training is complete.
10	RV	0h	Reserved
9:4	RO	See Description	NLNKWD: Negotiated Link Width
		Docompact	This field indicates the negotiated width of the given PCI Express link.
			000001: x1
			000010: x2
			000100: x4
			001000: x8
			Others Reserved
			For the port and link assignment refer to Table 4-21.
3:0	RO	01h	LNKSPD: Link Speed
			This field indicates the negotiated Link speed of the given PCI Express Link:
			0001: 2.5 Gb/s PCI Express link
			Others Reserved

Table 4-21. Negotiated Link Width For Different PCI Express Ports

Device	Port	Negotiated Link Width	Default Value
1,2,3,4,5,6,7	D, C0, C1, B0, B1, A0, A1	x1	000001
1,2,3,4,5,6,7	D, C0, C1, B0, B1, A0, A1	X2	000010
1,2,3,4,5,6,7	D, C0, C1, B0, B1, A0, A1	X4	000100
2,4,6	C0, B0, A0	X8	001000a

NOTES:

4.11.45 EXP_SLOTCAP[7:1]: PCI Express Slot Capabilities Register (D1-7, F0)

The Slot Capabilities register identifies the PCI Express specific slot capabilities. When this register is written, the NB sends the Slot Power Limit Value and Slot Power Limit Scale in a Slot Power Limit Message outbound.

Device:	1 - 7		
Function Offset:	: 0 80h - 8	3h	
Bit	Attr	Default	Description
31:19	RWO	0000h	PSN: Physical Slot Number
			This field indicates the physical slot number connected to the PCI Express* port. It should be initialized to 0 for ports connected to devices that are either integrated on the system board or integrated within the same silicon as the Root port (NB).
18:17	RV	0h	Reserved
16:15	RWO	Oh	SPLS: Slot Power Limit Scale This field specifies the scale used for the Slot Power Limit Value. Range of Values: 00: 1.0x 01: 0.1x 10: 0.01x 11: 0.001x
14:7	RWO	00h	SPLV: Slot Power Limit Value This field specifies the upper limit on power supplied by the slot in conjunction with the Slot Power Limit Scale value defined previously. Power limit (in Watts) = SPLS x SPLV
6	RWO	0h	HPC: Hot-plug Capable This field defines hot-plug support capabilities for the PCI Express port. 0: Indicates that this slot is not capable of supporting Hot-plug operations.
			1: Indicates that this slot is capable of supporting Hot-plug operations.

a. Ports 3,5 and 7 report an undefined value

Device: 1 - 7 Function: 0 Offset: 80h - 83h

Onset.	3311 - 0		
Bit	Attr	Default	Description
5	RWO	0h	HPS: Hot-plug Surprise This field indicates that a device in this slot may be removed from the system without prior notification.
			0: Indicates that surprise hot-plug is not supported.
			1: Indicates that surprise hot-plug is supported.
4	RWO	0h	PIP: Power Indicator Present
			This bit indicates that a Power Indicator is implemented on the chassis for this slot.
			0: Indicates that Power Indicator is not present.
			1: Indicates that Power Indicator is present.
3	RWO	0h	AIP: Attention Indicator Present
			This bit indicates that an Attention Indicator is implemented on the chassis for this slot.
			0: Indicates that an Attention Indicator is not present.
			1: Indicates that an Attention Indicator is present.
2	RWO	0h	MRLSP: MRL Sensor Present
			This bit indicates that an MRL Sensor is implemented on the chassis for this slot.
			0: Indicates that an MRL Sensor is not present.
			1: Indicates that an MRL Sensor is present.
1	RWO	0h	PCP: Power Controller Present
			This bit indicates that a Power Controller is implemented on the chassis for this slot.
			0: Indicates that a Power Controller is not present.
			1: Indicates that a Power Controller is present.
0	RWO	0h	ABP: Attention Button Present
			This bit indicates that an Attention Button is implemented on the chassis for this slot.
			0: Indicates that an Attention Button is not present.
			1: Indicates that an Attention Button is present.
1			

4.11.46 EXP_SLOTCTRL[7:1]: PCI EXPRESS Slot Control Register (D1-7, F0)

The Slot Control register identifies the PCI Express specific slot control specific parameters for operations such as Hot-plug and Power Management.

Device: Function Offset:	1 - 7 : 0 84h - 85h		
Bit	Attr	Default	Description
15:11	RV	0h	Reserved
10	RW	0h	PWRCTRL: Power Control This bit indicates the current state of the Power applied to the slot of the
			PCI Express port:
			0: Power On
			1: Power Off
9:8	RW	0h	PWRLED: Power Indicator Control
			This bit indicates the current state of the Power Indicator of the PCI Express port:
			00: Reserved. The NB drives the LED into BLINK state.
			01: On
			10: Blink (The NB drives 1.5 Hz square wave for Chassis mounted LEDs in the case of legacy card form factor for PCI Express devices)
			11: Off
			When this field is written, the NB sends appropriate POWER_INDICATOR messages through the PCI Express port. For legacy-card-based PCI Express devices, the event is signaled via the virtual pins (Refer to Section 6.6, "RAS" on page 320) of the NB. For PCI Express modules with advanced form factor that incorporate LEDs and on-board decoding logic, the PCI Express messages are interpreted directly (No virtual pins).
7:6	RW	0h	ATNLED: Attention Indicator Control
			This bit indicates the current state of the Attention Indicator of the PCI Express port:
			00: Reserved. The NB drives the LED into BLINK state.
			01: On
			10: Blink (The NB drives 1.5 Hz square wave for Chassis mounted LEDs in the case of legacy card form factor for PCI Express devices).
			11: Off
			When this field is written, the NB sends appropriate ATTENTION_INDICATOR messages through the PCI Express port. For legacy card based PCI Express devices, the event is signaled via the virtual pins of the NB. For PCI Express modules with advanced form factor that incorporate LEDs and on-board decoding logic, the PCI Express messages are interpreted directly (No virtual pins).

Device: 1 - 7 Function: 0 Offset: 84h - 85h

Onset.	0411 - 0011		
Bit	Attr	Default	Description
5	RW	Oh	HPINTEN: Hot-plug Interrupt Enable This field enables the generation of Hot-plug interrupts and events in the PCI Express port. 0: Disables Hot-plug events and interrupts. 1: Enables Hot-plug events and interrupts.
4	DW	O.b.	
4	RW	0h	CCIEN: Command Completed Interrupt Enable This field enables the generation of Hot-plug interrupts when a command is completed by the Hot-plug controller connected to the PCI Express port:
			0: Disables hot-plug interrupts on a command completion by a hot-plug Controller.
			Enables hot-plug interrupts on a command completion by a hot-plug Controller.
			Suggested Value: 0.
3	RW	0h	PRSINTEN: Presence Detect Changed Enable This bit enables the generation of hot-plug interrupts or wake messages via a presence detect changed event.
			Disables generation of hot-plug interrupts or wake messages when a presence detect changed event happens.
			Enables generation of hot-plug interrupts or wake messages when a presence detect changed event happens.
2	RW	0h	MRLINTEN: MRL Sensor Changed Enable
			This bit enables the generation of hot-plug interrupts or wake messages via a MRL Sensor changed event.
			Disables generation of hot-plug interrupts or wake messages when an MRL Sensor changed event happens.
			Enables generation of hot-plug interrupts or wake messages when an MRL Sensor changed event happens.
1	RW	0h	PWRINTEN: Power Fault Detected Enable
			This bit enables the generation of hot-plug interrupts or wake messages via a power fault event.
			Disables generation of hot-plug interrupts or wake messages when a power fault event happens.
			Enables generation of hot-plug interrupts or wake messages when a power fault event happens.
<u></u>			

Device: Function Offset:	1 - 7 : 0 84h - 85h		
Bit	Attr	Default	Description
0	RW	0h	ATNINTEN: Attention Button Pressed Enable
			This bit enables the generation of hot-plug interrupts or wake messages via an attention button pressed event.
			Disables generation of hot-plug interrupts or wake messages when the attention button is pressed.
			Enables generation of hot-plug interrupts or wake messages when the attention button is pressed.

4.11.47 EXP_SLOTSTS[7:1]: PCI Express Slot Status Register (D1-7, F0)

The PCI Express Slot Status register defines important status information for operations such as Hot-plug and Power Management.

Device: Function Offset:	1 - 7 : 0 86h - 87h		
Bit	Attr	Default	Description
15:7	RV	0h	Reserved
6	RO	Oh	PDS: Presence Detect State This field conveys the Presence Detect status determined via an in-band mechanism or through the Present Detect pins and shows the presence of a card in the slot. 0: Slot Empty 1: Card Present in slot
5	RO	0h	MRLSS: MRL Sensor State This bit reports the status of an MRL sensor if it is implemented. 0: MRL Closed 1: MRL Open
4	RWC	0h	CMDCOMP: Command Completed This bit is set by the NB when the hot-plug controller completes an issued command. It is subsequently cleared by software after the field has been read and processed.

Device: Function Offset:	1 - 7 : 0 86h - 87h		
Bit	Attr	Default	Description
3	RWC	0h	PRSINT: Presence Detect Changed
			This bit is set by the NB when a Presence Detect Changed event is detected. It is subsequently cleared by software after the field has been read and processed.
2	RWC	0h	MRLSC: MRL Sensor Changed
			This bit is set by the NB when an MRL Sensor Changed event is detected. It is subsequently cleared by software after the field has been read and processed.
1	RWC	0h	PWRINT: Power Fault Detected
			This bit is set by the NB when a power fault event is detected by the power controller. It is subsequently cleared by software after the field has been read and processed.
0	RWC	0h	ABP: Attention Button Pressed
			This bit is set by the NB when the attention button is pressed. It is subsequently cleared by software after the field has been read and processed.
			Note: This bit will not be set if bit 29 in "EXP_CTRL[7:1]: PCI Express Control Register (D1-7, F0)" is set.

Note: Note that the EXP_HPINT pin (Table 3-11 on page 3-48) is held asserted as long as any of the events defined in bits[4:0] (CMDCOMP,PRSINT, MRLSC, PWRINT, ABP) of the EXP_SLOTSTS register are set provided the corresponding events in bits [4:0] of the EXP_SLOTCTRL are enabled.

4.11.48 EXP_RTCTRL[7:1]: PCI Express Root Control Register (D1-7, F0)

The PCI Express Root Control register specifies parameters specific to the root complex port.

Device: Function Offset:	1 - 7 : 0 88h 8	9h	
Bit	Attr	Default	Description
15:4	RV	0h	Reserved
3	RW	0h	PMEINTEN: PME Interrupt Enable This field controls the generation of interrupts for PME messages:
			O: Disables interrupt generation for PME messages. 1: Enables interrupt generation upon receipt of a PME message as reflected in the PME Status bit defined in the PCI Express RTSTS register. A PME interrupt is also generated if the PME Status register bit is set when this bit is set from a cleared state RW.
2	RW	Oh	SEFEEN: System Error on Fatal Error Enable This field controls generation of system errors in the PCI Express port hierarchy for fatal errors: 0: No System Error should be generated on a fatal error (ERR_FATAL) reported by any of the devices in the hierarchy.
			Indicates that a System Error should be generated if a fatal error (ERR_FATAL) is reported by any of the devices in the hierarchy associated with and including this PCI Express port.
1	RW	Oh	SENFEEN: System Error on Non-Fatal Error Enable This field controls generation of system errors in the PCI Express port hierarchy for non-fatal errors: 0: No System Error should be generated on a non-fatal error (ERR_NONFATAL) reported by any of the devices in the hierarchy. 1: indicates that a System Error should be generated if a non-fatal error (ERR_NONFATAL) is reported by any of the devices in the hierarchy associated with and including this PCI Express port.
0	RW	0h	SECEEN: System Error on Correctable Error Enable This field controls generation of system errors in the PCI Express port hierarchy for correctable errors: 0: No System Error should be generated on a correctable error (ERR_COR) reported by any of the devices in the hierarchy associated with and including this PCI Express port. 1: Indicates that a System Error should be generated if a correctable error (ERR_COR) is reported by any of the devices in the hierarchy associated with and including this PCI Express port

4.11.49 EXP_RTSTS[7:1]: PCI Express Root Status Register (D1-7, F0)

The PCI Express Root Status register specifies parameters specific to the root complex port.

Device: Function Offset:	1 - 7 i: 0 8Ch -	· 8Fh	
Bit	Attr	Default	Description
31:18	RV	0h	Reserved
17	RO	0h	PMEPEND: PME Pending
			This field indicates that another PME is pending when the PME Status bit is set. When the PME Status bit is cleared by software, the pending PME is delivered by hardware by setting the PME Status bit again and updating the Requestor ID appropriately. The PME pending bit is cleared by hardware if no more PMEs are pending.
16	RWC	0h	PMESTS: PME Status ^a
			This field indicates status of a PME that is underway in the PCI Express port:
			PME was asserted by a requester as indicated by the PMEREQID field.
			This bit is cleared by software by writing a '1'. Subsequent PMEs are kept pending until the PME Status is cleared.
15:0	RO	0h	PMEREQID: PME Requester ID
			This field indicates the PCI requester ID of the last PME requestor.

NOTES:

4.12 PCI Express Advanced Function (Device 1 - 7, Function 0)

The PCI Express Extended Registers are in Devices 1 -7 (D1-7), function 0 (F0). For the register address map, please refer to Table 4-12.

Warning:

Address locations that are not listed are considered reserved locations. Writes to "Reserved" registers may cause unpredictable behavior. Reads to "Reserved" registers may return a non-zero value.

a. The PME STATUS bit in each of the EXP_RTSTS[7:1] registers are ORed together and the NB will assert the PME_OUT pin to ICH5 for power management. When all the bits are clear, it will deassert PME_OUT.

4.12.1 ENHCAPSTS: Enhanced Advanced Error Reporting Capability Structure (D1-7, F0)

This register identifies the capability structure and points to the next structure.

Device: 1 - 7 Function: 0 Offset: 100h 103h							
Bit	Attr	Default	Description				
31:20	RO	140h	NXTCAPPTR: Next Capability Pointer This field points to the next Capability in extended configuration space.				
19:16	RO	1h	CV: Capability Version Set to 1 for this version of the PCI Express logic.				
15:0	RO	1h	ECID: PCI Express Extended CAP_ID Assigned for advanced error reporting.				

4.12.2 UNCERRSTS: Uncorrectable Error Status (D1-7, F0)

This register identifies uncorrectable errors detected. for PCI Express Port. If an error occurs and is unmasked in the detect register (UNCEDMASK), the appropriate error bit will be recorded in this register. For details on errors listed on this table, refer to the Table 6-39 "Errors Detected by the NB" on page 328.

Device: Function Offset:	Function: 0						
Bit	Attr	Default	Description				
31:21	RV	0h	Reserved				
20	RWCST	0h	IO12Err: Received an Unsupported Request				
19	RV	0h	Reserved				
18	RWCST	0h	IO19Err: Malformed TLP Status				
17	RWCST	0h	IO20Err: Receiver Buffer Overflow Status				
16	RWCST	0h	IO18Err: Unexpected Completion Status				
15	RWCST	0h	IO17Err: Completer Abort Status - Optional				
14	RWCST	0h	IO16Err: Completion Time-out Status				
13	RWCST	0h	IO15Err: Flow Control Protocol ERROR Status				
12	RWCST	0h	IO14Err: Poisoned TLP Status				
11:5	RV	0h	Reserved				
4	RWCST	0h	IO21Err: Data Link Layer Protocol Status				
3:1	RV	0h	Reserved				
0	RWCST	0h	I013Err:Training Error Status				

4.12.3 UNCERRMSK: Uncorrectable Error Mask (D1-7, F0)

This register masks uncorrectable errors from being reported. If an error is recorded in the UNCERRSTS register and the appropriate bit is set (along with the severity bit of the UNCERRSEV register), it determines which bit in the EXP_FERR/EXP_NERR register is set. For details on errors listed on this table, refer to the Table 6-39 "Errors Detected by the NB" on page 328.

Device: Function Offset:	1 - 7 : 0 108h - 10)Bh	
Bit	Attr	Default	Description
31:21	RV	0	Reserved
20	RWST	0	IO12Msk: Received an Unsupported Request
19	RV	0	Reserved
18	RWST	0	IO19Msk: Malformed TLP Status
17	RWST	0	IO20Msk: Receiver Buffer Overflow Mask
16	RWST	0	IO18Msk: Unexpected Completion Mask
15	RWST	0	IO17Msk: Completer Abort Status (Optional)
14	RWST	0	IO16Msk: Completion Time-out Mask
13	RWST	0	IO15Msk: Flow Control Protocol ERROR Mask
12	RWST	0	IO14Msk: Poisoned TLP Mask
11:1	RV	00h	Reserved
4	RWST	0	IO21Msk: Data Link Layer Protocol Error Mask
3:1	RV	00	Reserved
0	RWST	0	I013Msk:Training Error Mask

4.12.4 UNCERRSEV: Uncorrectable Error Severity (D1-7, F0)

This register indicates the severity of the uncorrectable errors. If an error is recorded in the UNCERRSTS register, the appropriate bit of UNCERRSEV determines if the error gets reflected as a device fatal or nonfatal error in the EXP_FERR/EXP_NERR registers. For details on errors listed on this table, refer to the Table 6-39 "Errors Detected by the NB" on page 328

Device: Function Offset:	1 - 7 1: 0 10Ch - 10F	-h	
Bit	Attr	Default	Description
31:21	RV	0h	Reserved
20	RWST	0h	IO12Severity: Received an Unsupported Request
19	RV	0h	Reserved
18	RWST	1	IO19Severity: Malformed TLP Severity
17	RWST	1	IO20Severity: Receiver Buffer Overflow Severity
16	RWST	0h	IO18Severity: Unexpected Completion Severity
15	RWST	0h	IO17Severity: Completer Abort Status - Optional
14	RWST	0h	IO16Severity: Completion Time-out Severity
13	RWST	1	IO15Severity: Flow Control Protocol ERROR Severity
12	RWST	0h	IO14Severity: Poisoned TLP Severity
11:5	RV	00h	Reserved
4	RWST	1	IO21Severity: Data Link Layer Protocol Error Severity
3:2	RV	0	Reserved
0	RWST	1	I013Severity: Training Error Severity

4.12.5 CORERRSTS: Correctable Error Status (D1-7, F0)

This register identifies which unmasked correctable error has been detected. The logical OR of these bits feed the device correctable error bit in the EXP_FERR/EXP_NERR registers (if the error is unmasked in the CORERRMSK register).

Device: Function Offset:		• •				
Bit	Attr	Default	Description			
31:13	RV	0h	Reserved			
12	RWCST	0h	IO11Err: Replay Timer Time-out Status			
11:9	RWCST	0h	Reserved			
8	RWCST	0h	IO10Err: Replay_Num Rollover Status			
7	RWCST	0h	IO9Err: Bad DLLP Status			
6	RWCST	0h	IO8Err: Bad TLP Status			
5:1	RV	0h	Reserved			
0	RWCST	0h	IO7Err: Receiver Error Status			

4.12.6 CORERRMSK: Correctable Error Mask (D1-7, F0)

This register masks correctable errors to not be reported. They are still logged. The appropriate bit will prevent an error from being signaled in the EXP_FERR/EXP_NERR registers.

Device: Function Offset:	Function: 0						
Bit	Attr	Default	Description				
31:13	RV	0h	Reserved				
12	RWST	0h	IO11Msk: Replay Timer Time-out Mask				
11:9	RV	0h	Reserved				
8	RWST	0h	IO10Msk: Replay_Num Rollover Mask				
7	RWST	0h	IO9Msk: Bad DLLP Mask				
6	RWST	0h	IO8Msk: Bad TLP Mask				
5:1	RV	0h	Reserved				
0	RWST	0h	IO7Msk: Receiver Error Mask				

4.12.7 AERCACR: Advanced Error Capabilities and Control Register (D1-7, F0)

This register identifies the capability structure and points to the next structure.

Device: Function Offset:	Function: 0						
Bit	Attr	Default	Description				
31:9	RV	0	Reserved				
8	RWST	0	AERCACR[8]: ECRC Check Enable This bit when set enables ECRC checking.				
7	RO	0	AERCACR[7]: ECRC Check Capable The NB does not support ECRC.				
6	RWST	0	AERCACR[6]: ECRC Generation Enable The NB does not support ECRC.				
5	RO	0	AERCACR[5]: ECRC Generation Capable The NB does not support ECRC.				
4:0	ROST	0	AERCACR[4:0]: First error pointer The First Error Pointer is a read-only register that identifies the bit position of the first error reported in the Uncorrectable Error. The pointer can be overwritten by a more severe error according to the PCI Express Spec (Left-most error bit if multiple bits occurred simultaneously).				

4.12.8 HDRLOG0: Header Log 0 (D1-7, F0)

This register contains the first 32 bits of the header log locked down when the first error occurs. If a subsequent error is more severe, this log will be overwritten, and the header log will be lost for the "true" first error.

	Device: 1 - 7 Function: 0 Offset: 11Ch - 11F						
Bit	Attr	Default	Description				
31:0	ROST	0h	HDRLOG0[31:0]: Header Log 0				

4.12.9 HDRLOG1: Header Log 1 (D1-7, F0)

This register contains the second 32 bits of the header log.

Device: 1 - 7 Function: 0 Offset: 120h - 123h						
Bit	Attr	Default	Description			
31:0	ROST	0h	HDRLOG1[31:0]: Header Log 1			

4.12.10 HDRLOG2: Header Log 2 (D1-7, F0)

This register contains the third 32 bits of the header log.

	Device: 1-7 Function: 0 Offset: 124h - 127h					
Bit	Attr	Default	Description			
31:0	ROST	0h	HDRLOG2[31:0]: Header Log 2			

4.12.11 HDRLOG3: Header Log 3 (D1-7, F0)

This register contains the fourth 32 bits of the header log.

Device: 1 - 7 Function: 0 Offset: 128h - 12Bh						
Bit	Attr	Default	Description			
31:0	ROST	0h	HDRLOG3[31:0]: Header Log 3			

4.12.12 RPERRCMD: Root Port Error Command (D1-7, F0)

This register controls behavior upon detection of errors.

Device: Function Offset:	Function: 0							
Bit	Attr	Default	Description					
31:8	RV	0h	Reserved					
7:3	RV	0h	Reserved					
2	RW	0h	RPERRCMD_EN_FAT Enable interrupt on fatal errors when set.					
1	RW	0h	RPERRCMD_EN_UNCORR Enable interrupt on uncorrectable errors when set.					
0	RW	0h	RPERRCMD_EN_CORR Enable interrupt on correctable errors when set.					

4.12.13 RPERRMSGSTS: Root Port Error Message Status (D1-7, F0)

Device: Function Offset:	1 - 7 i: 0 130h - 133	h	
Bit	Attr	Default	Description
31:27	RO	0h	RPERRMSGSTS_INT_MSGS[4:0] Advanced Error Interrupt Message Number offset between base message data an the MSI message if assigned more than one message number to be used of any status in this capability.
26:7	RV	0h	Reserved
6	RWCST	0h	FATAL: Fatal Error Message Detected
5	RWCST	0h	NONFATAL: NonFatal Error Message Detected
4	RWCST	0h	1st_UNCOR_FATAL: First Uncorrectable Fatal Error Message Detected
3	RWCST	0h	RPERRMSGSTS_NXT_UNCORR: Next Uncorrectable Error Message Detected.
2	RWCST	0h	RPERRMSGSTS_1ST_UNCORR: First Uncorrectable Error Message Detected.
1	RWCST	0h	RPERRMSGSTS_NXT_CORR: Next Correctable Error Message Detected.
0	RWCST	0h	RPERRMSGSTS_1ST_CORR: First Correctable Error Message Detected.

4.12.14 ERRSID: Error Source ID (D1-7, F0)

This register identifies the ID of the first correctable and uncorrectable errors.

Device: Function Offset:	1 - 7 n: 0 134h - 13	7h	
Bit	Attr	Default	Description
31:16	ROST	0h	ERRSID_UNCORR_ID[15:0]: Uncorrectable Error Source ID Requestor ID of the source when an uncorrectable error is received and the First Uncorrectable Error Detected is not already set.
15:0	ROST	0h	ERRSID_CORR_ID[15:0]: Correctable Error Source ID Requestor ID of the source when a correctable error is received and the First Correctable Error Detected is not already set.

4.12.15 NBSPCAPID: NB Specific Capability ID (D1-7, F0)

This register identifies the capability structure and points to the next structure.

Device: 1 - 7 Function: 0 Offset: 140h - 143h						
Bit	Attr	Default	Description			
31:20	RO	0h	NXT_CAP_PTR[11:0]: Next Capability Pointer This field points to the next Capability in extended configuration space.			
19:16	RO	0h	MCH_VENDOR_ID[3:0]: Version Number			
15:0	RO	0h	EXT_CAP_ID[15:0]: Extended CAP_ID			

4.12.16 EXP_unitERR: PCI Express Unit Error Register (D1-7, F0)

Host Bridge Error Commands for doing the various signaling: ERR[2:0] and MCERR. These errors correspond to the "unit" errors of the PCI Express block. For details on errors listed on this table, refer to the Table 6-39 "Errors Detected by the NB" on page 328.

Device: 1 - 7 Function: 0 Offset: 144h - 147h						
Bit	Attr	Default	Description			
31:4	RV	0h	Reserved			
3	RWST	0h	T9Err: SMBus Virtual Pin Interface Error (FATAL Error)			
2	RWST	0h	T10Err: I/O Unit Detected Failure (FATAL Error)			
1	RWST	0h	T2Err: Received an uncorrectable ECC Error from CDC (FATAL Error)			
0	RWST	0h	T1Err: Received a correctable ECC Error from CDC (Corr. Error)			

4.12.17 EXP_ERR_DOCMD: PCI Express Error Do Command Register (D1-7, F0)

Link Error Commands for doing the various signaling: ERR[2:0] and MCERR. For this Register usage refer to Figure 6-16 "Error Integration Model" on page 6-327.

Device: 1 - 7 Function: 0 Offset: 148h - 14Bh						
Bit	Attr	Default	Description			
31:16	RV	0h	Reserved			
15	RW	1	COR_RPT_EN: Correctable internal error report enable			
			1: enable			
			0: disable			
14	RW	1	UNC_RPT_EN: Uncorrectable internal error report enable			
			1: enable			
			0: disable			
13:12	RW	01	EXP_RP_FAT_MAP: Root Port steering for fatal errors			
			00: ERR[0]			
			01: ERR[1]			
			10: ERR[2]			
			11: MCERR (This encoding should not be used)			
			If the ERR[2] enable in the Root Command register is set for fatal errors, all fatal errors will be reported via ERR[2] regardless of the setting of this register. MSI enable takes precedence for this capability feature.			
11:10	RW	01	EXP_RP_NF_MAP: Root Port steering for non-fatal errors			
			00: ERR[0]			
			01: ERR[1]			
			10: ERR[2]			
			11: MCERR			
			If the ERR[2] enable in the Root Command register is set for non-fatal errors, all non-fatal errors will be reported via ERR[2] regardless of the setting of this register. MSI enable takes precedence for this capability feature.			

Device: 1 - 7 Function: 0 Offset: 148h - 14Bh

Offset:	148h - 14l	3h			
Bit	Attr	Default			Description
9:8	RW	01	EXP_I		AP: Root Port steering for correctable errors
				ERR[0]	
			01:	ERR[1]	
			10:	ERR[2]	
			11:	MCERR	
			errors, setting	all correctable of this registe	in the Root Command register is set for correctable e errors will be reported via ERR[2] regardless of the er. ecedence for this capability feature.
7:6	RV	0h	Reser	ved	
5:4	RW	01	_		.P: DEV report steering for fatal errors able is in the Device control register.
			00:	ERR[0]>	Generate ERR[0] if bit 2 (fatal error) is being set in EXP_DEVSTS register and EXP_DEVCTL register has fatal reporting enabled.
			01:	ERR[1]>	Generate ERR[1] if bit 2 (Fatal Error) is being set in EXP_DEVSTS register and EXP_DEVCTL register has fatal reporting enabled.
			10:	ERR[2]>	Generate ERR[2] if bit 2 (fatal error) is being set in EXP_DEVSTS register and DEVCTL has fatal reporting enabled.
			11:	MCERR>	Generate MCERR if bit 2 (Fatal Error) is being set in EXP_DEVSTS register and EXP_DEVCTL register has fatal reporting enabled.
			MSI e	nable takes p	recedence for this capability feature.

Device: Function Offset:	1 - 7 n: 0 148h - 14	Bh	
Bit	Attr	Default	Description
3:2	RW	01	EXP_DEV_NF_MAP: DEV report steering for non-fatal errors
			00: ERR[0]
			01: ERR[1]
			10: ERR[2]
			11: MCERR
			Non-fatal error report enable is in the Device control register.
1:0	RW	01	EXP_DEV_CORR_MAP: DEV report steering for correctable errors
			00: ERR[0]
			01: ERR[1]
			10: ERR[2]
			11: MCERR
			Correctable error report enable is in the EXP_DEVCTL register.

4.12.18 UNCEDMASK: Uncorrectable Error Detect Mask (D1-7, F0)

This register masks (blocks) the detection of the selected bits. Normally, all are detected. When a specific error is blocked, it does NOT get reported or logged. For this Register usage, refer to Figure 6-16 "Error Integration Model" on page 6-327. For a description of the Errors (IOxx), refer to Table 6-39 "Errors Detected by the NB" on page 328.

Device: Function Offset:	1 - 7 1: 0 14Ch - 14	Fh	
Bit	Attr	Default	Description
31:21	RV	0h	Reserved
20	RW	1	IO12DetMsk: Received an Unsupported Request
19	RV	0h	Reserved
18	RW	1	IO19DetMsk: Malformed TLP Status
17	RW	1	IO20DetMsk: Receiver Buffer Overflow Status
16	RW	1	IO18DetMsk: Unexpected Completion Status
15	RW	1	IO17DetMsk: Completer Abort Status
14	RW	1	IO16DetMsk: Completion Time-out Status
13	RW	1	IO15DetMsk: Flow Control Protocol ERROR Status
12	RW	1	IO14DetMsk: Poisoned TLP Status

Device: 1 - 7 Function: 0 Offset: 14Ch - 14Fh						
Bit	Attr	Default	Description			
11:5	RV	0h	Reserved			
4	RW	1	IO21DetMsk: Data Link Layer Protocol Error Status			
3:1	RV	0h	Reserved			
0	RW	1	I013DetMsk:Training Error Status			

4.12.19 COREDMASK: Correctable Error Detect Mask (D1-7, F0)

This register masks (blocks) the detection of the selected bits.

Device: Function Offset:	Function: 0						
Bit	Attr	Default	Description				
31:13	RV	0h	Reserved				
12	RW	1	IO11DetMsk: Replay Timer Time-out Mask Suggested Value: 1				
11:9	RW	0h	Reserved				
8	RW	1	IO10DetMsk: Replay_Num Rollover Mask				
7	RW	1	IO9DetMsk: Bad DLLP Mask				
6	RW	1	IO8DetMsk: Bad TLP Mask				
5:1	RV	0h	Reserved				
0	RW	1	IO7DetMsk: Receiver Error Mask				

4.12.20 RPEDMASK: Root Port Error Detect Mask (D1-7, F0)

This register masks (blocks) the detection of the selected bits.

Device: Function Offset:	1 - 7 : 0 154h -	157h	
Bit	Attr	Default	Description
31:3	RV	0h	Reserved
2	RW	1	IO26DetMsk: Fatal Message Detect Mask
1	RW	1	IO25DetMsk: Uncorrectable Message Detect Mask
0	RW	1	IO24DetMsk: Correctable Message Detect Mask

4.12.21 EXP_unitDMASK: PCI Express Unit Detect Mask Register (D1-7, F0)

This register masks the non-PCI Express unit errors from being recognized and therefore not logged, and no interrupt/messages are generated. These errors correspond to the "unit" errors of the PCI Express block. For details on errors listed on this table, refer to the Table 6-39 "Errors Detected by the NB" on page 328.

Device: Function Offset:	1 - 7 : 0 158h -	15Bh	
Bit	Attr	Default	Description
31:4	RV	0h	Reserved
3	RW	1	T9DetMsk: SMBus Virtual Pin Interface Error
2	RW	1	T10DetMsk: I/O Unit Detected Failure
1	RW	1	T2DetMsk: Received an uncorrectable ECC Error from CDC
0	RW	1	T1DetMsk: Received a correctable ECC Error from CDC

4.12.22 EXP_FERR: PCI Express First Error Register (D1-7, F0)

Locks down after first error in each category type. For details on errors listed on this table, refer to the Table 6-39 "Errors Detected by the NB" on page 328.

Device: Function Offset:	1 - 7 n: 0 160h - 163	Bh	
Bit	Attr	Default	Description
31:10	RV	0h	Reserved
9	RWCST	0h	Unit_FAT_Err: Unit Fatal Error Detected
8	RV	0h	Reserved
7	RWCST	0h	Unit_Corr_Err: Unit Correctable Error Detected
6	RWCST	0h	IO26Err: Root Port Fatal Error Received
5	RWCST	0h	IO25Err: Root Port Non-Fatal Error Received
4	RWCST	0h	IO24Err: Root Port Correctable Error Received
3	RWCST	0h	IO12Err: Device Unsupported Request Detected
2	RWCST	0h	Dev_FAT_Err: Device Fatal Error Detected
1	RWCST	0h	Dev_NF_Err: Device Non-Fatal Error Detected
0	RWCST	0h	Dev_Corr_Err: Device Correctable Error Detected

4.12.23 EXP_NERR: PCI Express Next Error Register (D1-7, F0)

See EXP_FERR for bit definitions. Logs errors after corresponding field in FERR register is locked down.

Device: 1 - 7 Function: 0 Offset: 164h - 167h			
Bit	Attr	Default	Description
31:10	RV	0h	Reserved
9	RWCST	0h	Unit_Nxt_FAT_Err: Unit Fatal Error Detected
8	RV	0h	Reserved
7	RWCST	0h	Unit_Nxt_Corr_Err: Unit Correctable Error Detected
6	RWCST	0h	IO26NXT_ERR: Root Port Fatal Error Received
5	RWCST	0h	IO25NXT_ERR: Root Port Non-Fatal Error Received
4	RWCST	0h	IO24NXT_ERR: Root Port Correctable Error Received
3	RWCST	0h	IO12NXT_ERR: Device Unsupported Request Detected
2	RWCST	0h	Dev_Nxt_FAT_Err: Device Fatal Error Detected
1	RWCST	0	Dev_Nxt_NF_Err: Device Non-Fatal Error Detected
0	RWCST	0h	Dev_Nxt_Corr_Err: Device Correctable Error Detected

4.12.24 EXP_unitEMASK: PCI Express Unit Error Mask Register (D1-7, F0)

This register masks the non-PCI Express unit errors from being recognized (and therefore not logged), and no interrupt/messages are generated. These errors correspond to the "unit" errors of the PCI Express block. For details on errors listed on this table, refer to the Table 6-39 "Errors Detected by the NB" on page 328. A '1' in any field enables that error.

Device: 1 - 7 Function: 0 Offset: 168h - 16Bh				
Bit	Attr	Default	Description	
31:4	RV	0h	Reserved	
3	RW	1	T9Msk: SMBus Virtual Pin Interface Error	
2	RW	1	T10Msk: I/O Unit Detected Failure	
1	RW	1	T2Msk: Received an uncorrectable ECC Error from CDC	
0	RW	1	T1Msk: Received a correctable ECC Error from CDC	

4.13 IMI Registers (Device{8,10,12,14}, Function 0)

The IMI registers are in Devices 8,10, 12, 14 (D{8,10,12,14}), Function 0 (F0). For the register address map please refer to Table 4-13.

Note: There are four sets of the following registers, one set for each IMI. They will all appear in function 0 of a different device as defined below in Table 4-22.

Table 4-22. Device Numbers of IMIs and XMBs

IMI	IMI Device Number	Device Number Of Connected XMB
А	8d	9d
В	10d	11d
С	12d	13d
D	14d	15d

4.13.1 VID: Vendor Identification Register (D{8,10,12,14}, F0)

This register identifies Intel as the manufacturer of the Intel® E8501 chipset North Bridge (NB). Writes to this register have no effect.

Device 8, 10, 1 2, 14 Function: 0 Offset: 00h 01h			
Bit	Attr	Default	Description
15:0	RO	8086h	Vendor Identification Number- The value assigned to Intel.

4.13.2 DID: Device Identification Register (D{8,10,12,14}, F0)

This register combined with the Vendor Identification register uniquely identifies the NB. Writes to this register have no effect. All IMI devices will have the same DID in each function.

	Function: 0		
Bit	Attr	Default	Description
15:0	RO	260Ch	DIN: Device Identification Number Identifies each function of the NB.

4.13.3 RID: Revision Identification Register (D{8,10,12,14}, F0)

This register contains the revision number of the Intel® E8501 chipset North Bridge (NB).

Device Functi Offset:	on: 0	10, 1 2, 14 n	
Bit	Attr	Default	Description
7:4	RO	00h	Major_rev: Major Revision Steppings which require all masks to be regenerated. 1: B stepping
3:0	RO	00h	Minor_rev: Minor Revision Incremented for each stepping which does not modify all masks. Reset for each major revision. 0: x0 stepping 1: x1 stepping 2: x2 stepping

4.13.4 CCR: Class Code Register (D{8,10,12,14}, F0)

This register contains the Class Code for the device.

Device 8, 10, 1 2, 14 Function: 0 Offset: 09h - 0Bh				
Bit	Attr	Default	Description	
23:16	RO	06h	BaseClass: Base Class. This field indicates the general device category. For the NB, this field is hardwired to 06h, indicating it is a "Bridge Device".	
15:8	RO	00h	SubClass: Sub-Class. This field qualifies the Base Class, providing a more detailed specification of the device function. For these Devices default is 00h, indicating "Host Bridge".	
7:0	RO	00h	RLPI: Register-Level Programming Interface. This field identifies a specific programming interface (if any), that device independent software can use to interact with the device. There are no such interfaces defined for "Host Bridge" types, and this field is hardwired to 00h.	

4.13.5 HDR: Header Type Register (D{8,10,12,14}, F0)

This register identifies the header layout of the configuration space.

Device Function Offset:	on: 0	10, 1 2, 14 h	
Bit	Attr	Default	Description
7	RO	0h	Mfd: Multi-function Device.
			Selects whether this is a multi-function device, that may have alternative configuration layouts. Therefore, the IMI is defined to be a single function device, and this bit is hardwired to '0'.
6:0	RO		CfgLayout: Configuration Layout.
		00h	This field identifies the format of the configuration header layout for a PCI-to-PCI bridge from bytes 10h through 3Fh.
			For devices - 8,10,12,14 default is 00h, indicating a conventional type 00h PCI header.

4.13.6 SVID: Subsystem Vendor Identification Register (D{8,10,12,14}, F0)

This register identifies the manufacturer of the system. This 16-bit register combined with the Device Identification Register uniquely identify any PCI device.

Device 8, 10, 1 2, 14 Function: 0 Offset: 2Ch - 2Dh							
Bit	Attr	Default	Default Description				
15:0	RWO	8086h	Vendor Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to this register will have no effect.				

4.13.7 SID: Subsystem Identity (D{8,10,12,14}, F0)

This register identifies the system.

Device Function Offset:	n: 0), 1 2, 14 - 2Fh	
Bit	Attr	Default	Description
15:0	RWO	8086h	Subsystem Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to this register will have no effect.

4.13.8 IMISC: IMI Issue Control (D{8,10,12,14}, F0)

This register controls outbound command issue on the IMI.

Device: Functior Offset:	າ: 0໌ ໌	8, 10, 1 2, 14 0 40h - 43h			
Bit	Attr	Default	Description		
31:27	RW	10h	WRO: Number of Writes Outstanding This field controls the number of writes the NB will issue to the XMB.		
26:22	RW	10000b	RDO: Number of Reads Outstanding This field controls the number of reads the NB will issue before receiving read returns.		
21:19	RV	001b	Reserved		
18:16	RV	010b	Reserved		
15:0	RW	0AF0h	TIMEOUT_COUNT: Time-out Value Defines the maximum interval between command and read return or write acknowledge. The interval is in NB core clocks. At 333 MHz, this is 3 ns per clock. Any retry will be triggered between 1x - 2x this interval. The default value is 8.4 µs.		

4.13.9 IMIST: IMI Status (D{8,10,12,14}, F0)

These registers are inspected by software when it gets an IMI_HPINT to determine the cause of an IMI_HPINT interrupt. This register contains RAID and Mirroring recovery state, Initialization state, and Hot Plug Sequencing status. The IMI_HPINT pin is asserted whenever MRLINT, XMBINT, ANTINT, FALINT, PRSINT or PWRINT bits are set.

Device: Function Offset:	8, 10, 1 2, i: 0 48h - 4Bh		
Bit	Attr	Default	Description
31:24	RO	00h	STATE: IMI State This field describes the current state of the IMI. It can be read by software to determine which IMI is being sequenced through recovery, and how far the IMI has progressed.
			00h: Reset
			10h: Init
			20h: Ready
			30h: Active
			40h: Redundant
			50h: Disabled
			60h: Redundancy Loss
			70h: Recovery Reset
			80h: Recovery Init
			90h: Recovery Ready
			A0h: Resilver
			B0h: Recovered
			C0h: Recovery Failure
23:9	RW	0	SCRATCH: Software Scratchpad
			This field is reserved for use by hot-plug software to record the status of an IMI.
8	RW	0	PWRGOOD: Power Good State
			0: The virtual pin PWRGOOD# is asserted.
			1: The virtual pin PWRGOOD# is not asserted.
			Indicates to software that the IMI_RESET signal can be deasserted.
7	RW	0	MRL: Manually Operated Retention Latch State
			0: The MRL is closed. The virtual pin MRL# is not asserted.
			1: The MRL is open. The virtual pin MRL# is asserted.
			Software can cause interrupts by writing this register when true Hot-Plug behavior is not enabled.

Device: 8, 10, 1 2, 14 Function: 0 Offset: 48h - 4Bh

Offset:	48h - 4Bh		
Bit	Attr	Default	Description
6	RW	0	PRSNT: Presence Detect State
			An XMB is not connected to the NB. The virtual pin PRSNT# is not asserted.
			An XMB is connected to the NB. The virtual pin PRSNT# is asserted. The XMB may or may not be powered.
			Software can cause interrupts by writing this register when true Hot-Plug behavior is not enabled.
5	RWC	0	XMBINT: XMB Interrupt This bit is set whenever the XMB has asserted the "Assert IMI_HPINT" inband signal on the Independent Memory Interface. The MS register in the XMB holds the cause of the interrupt. After software has handled the event, it writes to 1 to clear.
4	RWC	0	MRLINT: Manually Operated Retention Lever Sensor Changed Event Set when the virtual pin MRL# changes state. After software has handled the event, it writes to 1 to clear.
3	RWC	0	ATNINT: Attention Button Pressed Set when the virtual pin ATNBTN# is pressed for this port. After software has handled the event, it writes to 1 to clear.
2	RWC	0	FAILINT: Disabled State Interrupt This bit is set whenever this IMI enters Disabled State. After software has handled the event, it writes to 1 to clear.
1	RWC	0	PRSINT: Presence Detect Changed Event Set when the virtual pin PRSNT# changes state. After software has handled the event, it writes to 1 to clear.
0	RWC	0	PWRINT: Power Fault Detected Set when the virtual pin PWRFLT# is sampled asserted. After software has handled the event, it writes to 1 to clear.

4.13.10 IMIHPC: IMI Hot-Plug Control (D{8,10,12,14}, F0)

This register controls the IMI for Initialization, Hot-Plug, RAID recovery and Mirroring Recovery. It consists of a State field, Hot-Plug Virtual Pin Controls, and Interrupt Enables. Section 6.6, "RAS" on page 320 describes how the Hot-Plug pins controlled by this register are sampled and driven.

Device: Function Offset:	8, 10, 1 2, : 0 4Ch - 4Fh		
Bit	Attr	Default	Description
31:24	RW	00h	NEXTSTATE: IMI State Control field This field is written by software to change the IMI state. It returns the last value written when read. Many states can only be entered under hardware control and should not be written by software. These settings are only valid if bit 18 NNEXTSTATE is set.
			00h: Reset 10h: Init 20h: Ready 30h: Active 40h: Redundant 50h: Disabled 60h: Redundancy Loss - may not be written 70h: Recovery Reset 80h: Recovery Init 90h: Recovery Ready - may not be written A0h: Resilver B0h: Recovered - may not be written C0h: Recovery Failure - may not be written
23	RW	1b	PWRCTL: Power Controller Controls the PWREN# virtual pin. 0: Activate PWREN#. Apply power to the Memory Card. 1: De-activate PWREN#. Power is removed from the Memory Card.
22:21	RW	11b	PWRLED: Power Indicator Control Controls the Virtual PWRLED# pin. 00: Reserved 01: On (drive low) 10: Blink (PWRLED# VP toggles at 1.5 Hz) 11: Off (high impedance)
20:19	RW	11b	ATNLED: Attention Indicator Control Controls the virtual ATNLED# pin. 00: Reserved 01: On (drive low) 10: Blink (ATNLED# VP toggles at 1.5 Hz) 11: Off (high impedance)

Device: 8, 10, 1 2, 14 Function: 0 Offset: 4Ch - 4Fh

Offset:	4Ch - 4Fh		
Bit	Attr	Default	Description
18	RW	0	NNEXTSTATE:
			Software writing a 1 to this bit indicates to hardware that the NEXTSTATE field is also being written at this time and that hardware should change the IMI State according to the new IMI State Control Field.
			Hardware guarantees a 0 will always be read from this bit.
17:14	RW	00h	PARTNERS: IMI's Redundant with this one
			This field defines the IMI's which will cause a transition to "Redundancy Loss" state when they fail. If bit [17] is set, IMI[3] is a partner with this one ([16] for IMI[2], [15] for IMI[1], [14] for IMI[0]). If REDUN.MIRROR is set, the bit should be set for any IMI which appears in IMIR[i].IMIG0WAY[j] when this IMI appears in IMIR[i].IMIG1WAY[j] or vice versa for all i and j.
13	RW	0h	XMBHDR: XMB responds to config access to PCI Header Normally, the NB responds to XMB Function 0 configuration requests whether the XMB is present or not. When set, the NB allows the XMB to respond to Function 0 to allow examination of the revision ID of the XMB.
12	RW	0h	HPC: Hot-Plug Capable Set by software to indicate that the I/O Port specified by VPP is valid.
11:8	RW	00h	VPP: Virtual Pin Port [11:9] = SMBus Address [8] =IO Port Defines the 8-bit IO port that has the Hot-Plug pins for this interface. If the HPC bit is set, the NB will write ANTLED, PWRLED, and PWREN values from this register to the specified IO Port. It will update the ATNBTN, PWRFLT, PRSNT, and MRL values from the IO Port to the IMIHPS register for this port.
7	RV	0h	Reserved
6	RW	0h	HPINTEN: Hot-Plug Interrupt Enable
			0: IMI_HPINT may not be asserted due to events on this IMI.
			IMI_HPINT may be asserted due to events on this IMI. Each event is also individually enabled by bits in this register.
5	RW	0h	XMBINTEN: XMB interrupt enable When set, the NB will assert IMI_HPINT when the "Assert IMI_HPINT" inband signal appears on the IMI.
4	RW	0h	MRLINTEN: Mechanical Retention Latch Interrupt Enable If set, IMI_HPINT will be asserted when the virtual pin MRL# is asserted, indicating latch has opened.
3	RW	0h	ATNINTEN: Attention Button Pressed Interrupt Enable If set, IMI_HPINT will be asserted when the virtual pin ATNBTN# is asserted.
2	RW	0h	FAILINTEN: Redundancy Failure Interrupt Enable If set, IMI_HPINT will be asserted when the IMI transitions to Disabled State.
1	RW	0h	PRSINTEN: Presence Detection Interrupt Enable If set, IMI_HPINT will be asserted when a level change is sampled by the NB on the virtual pin PRSNT#.
0	RW	0h	PWRINTEN: Power Fault Detected Interrupt Enable If set, IMI_HPINT will be asserted when the virtual pin PWRFLT# is asserted.

4.13.11 IMIAPR: IMI Read Return Aperture (D{8,10,12,14}, F0)

This register defines the read return aperture on this IMI.

Device: 8, 10, 1 2, 14 Function: 0 Offset: 60h				
Bit	Attr	Default	Description	
7:6	RV	0h	Reserved	
5:0	RWST	000111b	APERTURE: Read Return Aperture This field sets the size of the window in which a data return may appear. Software should only set this register to values of 1,3, 5 and 7. If set larger than 7, the NB will interpret as 7.	

4.13.12 IMIOFF: IMI Read Return Offset (D{8,10,12,14}, F0)

This register defines the read return offset on this IMI.

Device: Function Offset:	Function: 0				
Bit	Attr	Default	Description		
7:6	RV	0h	Reserved		
5:0	RWST	000010	OFFSET: Read Return offset		
			This field sets the minimum delay between an early read return and inbound data on the IMI. Maximum legal value is 48.		
			This register has an additional reset behavior. It resets to the default value whenever the IMI_{A,B,C,D}_RST# signal is asserted to the attached XMB. Hardware performs this reset.		

4.13.13 IMILINE: IMI Cache Line Size (D{8,10,12,14}, F0)

This register defines the cache line size on this IMI. It is present in case the NB is ever connected to an XMB that does not power up to this parameter value.

	evice: 8, 10, 1 2, 14 unction: 0 ffset: 62h						
Bit	Attr	attr Default Description					
7:0	RO	40h	LINE: Cache line size				
			This encoding specifies 64B.				

4.13.14 IMICHNK: IMI Chunk Size (D{8,10,12,14}, F0)

This register defines the Chunk size used by the NB on the IMI.

Device: 8, 10, 1 2, 14 Function: 0 Offset: 63h								
Bit	Attr	Default	Default Description					
7:0	RO	10h	CHUNK: Chunk size This encoding specifies 16B.					

4.13.15 IMICODE: IMI ECC Code Size (D{8,10,12,14}, F0)

This register defines the Error Correction Code used to cover read returns.

Device: Function Offset:					
Bit	Attr	Default	Description		
7:0	RO	03h	CODE: Error Correction Code		
			This encoding specifies code that corrects x8 DRAM failures used by the NB.		

4.13.16 IMI_FERR: IMI First Errors (D{8,10,12,14}, F0)

The first error for an IMI is logged in this register. When an error is logged in this register the corresponding NRECIMI register latches the appropriate log information. For a description of the Errors (IMIxx) refer to the Table 6-39 "Errors Detected by the NB" on page 328.

Device: Function Offset:	Function: 0					
Bit	Attr	Default	Description			
31:15	RV	00h	Reserved			
14	RWCST	0	IMI14Err: NB Received a Fatal Error signal from the XMB Fatal			
13	RWCST	0	IMI13Err: Failed on last retry. Co-exist with IMI9Err Nonfatal			
12	RWCST	0	IMI12Err: The NB received an uncorrectable error signal from XMB Nonfatal			
11	RWCST	0	IMI11Err: The NB received a correctable error signal from XMB Nonfatal			
10	RWCST	0	IMI10Err: The NB is sending a "poisoned" Config Write to XMB Nonfatal			
9	RWCST	0	IMI9Err: Failed on last retry. Co-exist with IMI13Err Nonfatal			

Device: 8, 10, 1 2, 14 Function: 0 Offset: C0h - C3h

Offset:	C0h - C3h		
Bit	Attr	Default	Description
8	RWCST	0	IMI8Err: Outstanding Requests are posted to a failed IMI Link Nonfatal
7	RWCST	0	IMI7Err: VPP SMBus Hot-Plug error Nonfatal
6	RWCST	0	IMI6Err: Abort Nonfatal
5	RWCST	0	IMI5Err: Inbound link layer control error Idle Flit Sequence Error Link Layer Format Sequence Errors Bad Data Size, Info Bit Sequence Error Aperture Violation Invalid Tag Nonfatal
4	RWCST	0	IMI4Err: Memory write data poisoned The NB has poisoned the flit that contains the error and written the data to memory. Nonfatal
3	RWCST	0	IMI3Err: Inbound CRC Error May or may not get a M7 as well. Nonfatal
2	RWCST	0	IMI2Err: command time-out Nonfatal
1	RWCST	0	IMI1Err: Correctable error in read return packet Nonfatal
0	RWCST	0	IMI0Err: Uncorrectable error in read return packet before retry limit exceeded Nonfatal

4.13.17 IMI_NERR: IMI Next Errors (D{8,10,12,14}, F0)

If an error is already logged in the IMI_FERR register, all subsequent errors are logged in the IMI_NERR. For details on errors listed on this table, refer to the Table 6-39 "Errors Detected by the NB" on page 328.

Device: Function Offset:	-, -, ,		
Bit	Attr	Default	Description
31:15	RV	00h	Reserved
14	RWCST	0	IMI14Err: The NB Received a Fatal Error signal from the XMB Fatal
13	RWCST	0	IMI13Err: Failed on last retry. Co-exist with IMI9Err Nonfatal
12	RWCST	0	IMI12Err: The NB received an uncorrectable error signal from XMB. Nonfatal
11	RWCST	0	IMI11Err: The NB received a correctable error signal from XMB. Nonfatal
10	RWCST	0	IMI10Err: The NB is sending a "poisoned" Config Write to XMB. Nonfatal
9	RWCST	0	IMI9Err: Failed on last retry. Co-exist with IMI13Err Nonfatal
8	RWCST	0	IMI8Err: Outstanding Requests are posted to a failed IMI Link Nonfatal
7	RWCST	0	IMI7Err: SMBus Hot-Plug error. Nonfatal
6	RWCST	0	IMI6Err: Abort Nonfatal
5	RWCST	0	IMI5Err: Inbound link layer control error. Idle flit sequence error Link Layer Format Sequence Errors Bad Data Size, info bit sequence error Aperture Violation Invalid Tag Nonfatal
4	RWCST	0	IMI4Err: Memory write data poisoned. The NB has poisoned the flit that contains the error and written the data to memory. Nonfatal

Device: Function Offset:	8, 10, 1 2, : 0 C4h - C7h		
Bit	Attr	Default	Description
3	RWCST	0	IMI3Err: Inbound CRC Error May or may not get an M7 as well. Nonfatal
2	RWCST	0	IMI2Err: command time-out Nonfatal
1	RWCST	0	IMI1Err: Correctable error in read return packet Nonfatal
0	RWCST	0	IMI0Err: Uncorrectable error in read return packet before retry limit exceeded Nonfatal

4.13.18 NRECIMI: Non-recoverable IMI Error Log Register (D{8,10,12,14}, F0)

This register latches information when the IMI_FERR latches the first detected fatal error.

Device: 8, 10, 1 2, 14 Function: 0 Offset: D4h - D5h				
Bit	Attr	Default	Description	
15:8	ROST	00h	NR_IMI_Tran_ID: IMI Transaction ID of the failed request	
7:0	ROST	00h	NR_IMI_CDC_Tag_ID: CDC TAG ID of the failed request	

4.13.19 RECIMI: Recoverable IMI Error Log Register (D{8,10,12,14}, F0)

This register latches information when the IMI_FERR latches the first detected non-fatal error.

Device: 8, 10, 1 2, 14 Function: 0 Offset: D6h - D7h				
Bit	Attr	Default	Description	
15:8	ROST	00h	Rec_IMI_Tran_ID: IMI Transaction ID of the failed request	
7:0	ROST	00h	Rec_IMI_CDC_Tag_ID: CDC TAG ID of the failed request	

4.13.20 REDIMIL: Recoverable Data IMI Error Log Register (D{8,10,12,14}, F0)

This register latches information when the IMI_FERR latches the first detected non-fatal error.

	Device: 8, 10, 1 2, 14 Function: 0 Offset: D8h - DBh					
Bit	Attr	Default	Description			
31:0	ROST	00000000h	Syndrome: Syndrome Bits			
			ECC syndrome of correctable error.			

4.13.21 REDIMIH: Recoverable IMI Error Log Register (D{8,10,12,14}, F0)

This register latches information when the IMI_FERR latches the first detected non-fatal error.

Device: Function Offset:	8, 10, 1 2, : 0 DCh - DDI		
Bit	Attr	Default	Description
15:0	ROST	0000h	ECC_Locator: identifies the symbol in error for correctable errors
			The bit set identifies which DRAM had the bit in error according to the following list:
			Bit 0: DRAM0, channel 0 had the error
			Bit 1: DRAM1, channel 0 had the error
			Bit 2: DRAM2, channel 0 had the error
			Bit 3: DRAM3, channel 0 had the error
			Bit 4: DRAM4, channel 0 had the error
			Bit 5: DRAM5, channel 0 had the error
			Bit 6: DRAM6, channel 0 had the error
			Bit 7: DRAM7, channel 0 had the error
			Bit 8: DRAM0, channel 1 had the error
			Bit 9: DRAM1, channel 1 had the error
			Bit 10: DRAM2, channel 1 had the error
			Bit 11: DRAM3, channel 1 had the error
			Bit 12: DRAM4, channel 1 had the error
			Bit 13: DRAM5, channel 1 had the error
			Bit 14: DRAM6, channel 1 had the error
			Bit 15: DRAM7, channel 1 had the error
			Using the NB locator bits, it is not possible to determine if the error is present in DRAM8 on either channel 0 or channel 1.

4.13.22 EMASK_IMI[3:0]: IMI Error Mask Register (D{8,10,12,14}, F0)

For details on errors listed on this table, refer to the Table 6-39 "Errors Detected by the NB" on page 328. A '0' in any field enables that error.

Device: 8, 10, 1 2, 14 Function: 0 Offset: DEh - DFh				
Bit	Attr	Default	Description	
15	RV	1	Reserved	
14	RW	1	IMI14Msk: The NB Received a fatal error from the XMB	
13	RW	1	IMI13Msk: Failed on last retry. Co-exist with IMI9Msk	
12	RW	1	IMI12Msk: The NB Received a uncorrectable error from the XMB	
11	RW	1	IMI11Msk: The NB Received a correctable error signal from XMB	
10	RW	1	IMI10Msk: The NB is sending a "poisoned" Config Write to XMB	
9	RW	1	IMI9Msk: Failed on last retry. Co-exist with IMI13Msk	
8	RW	1	IMI8Msk: Outstanding Requests are posted to a failed IMI Link	
7	RW	1	IMI7Msk: SMBus Hot-Plug error	
6	RW	1	IMI6Msk: Inbound link abort	
5	RW	1	IM11Msk: Inbound link layer control error.	
			Idle Flit Sequence Error Link Layer Format Sequence Errors	
			Bad Data Size, Info Bit Sequence Error	
			Aperture Violation	
			Invalid Tag	
4	RW	1	IMI4Msk: Memory write data poisoned	
			The NB has poisoned the flit that contains the error and written the data to memory.	
3	RW	1	IMI3Msk: Inbound CRC Error	
2	RW	1	IIMI2Msk: 1st Request Time-out	
1	RW	1	IMI1Msk: Inbound Correctable ECC Error	
0	RW	1	IMI0Msk: Inbound UnCorrectable ECC Error #1	

4.13.23 IMI_ERR0: IMI Error 0 Enable Register (D{8,10,12,14}, F0)

This register enables the signaling of Err[0] when an error flag is set. Note that one (and only one) error signal should be enabled. For details on errors listed on this table, refer to the Table 6-39 "Errors Detected by the NB" on page 328.

Device: 8, 10, 1 2, 14 Function: 0 Offset: E0h - E1h					
Bit	Attr	Default	Description		
15	RV	0	Reserved		
14	RWST	0	IMI14Err0Sel: The NB Received a fatal error from the XMB		
13	RWST	0	IMI13Err0Sel: Failed on last retry. Co-exist with IMI9Err0Sel		
12	RWST	0	IMI12Err0Sel: The NB Received a uncorrectable error from the XMB		
11	RWST	0	IMI11Err0Sel: The NB Received a correctable error signal from XMB		
10	RWST	0	IMI10Err0Sel: The NB is sending a "poisoned" Config Write to XMB		
9	RWST	0	IMI9Err0Sel: Failed on last retry. Co-exist with IMI13Err0Sel		
8	RWST	0	IMI8Err0Sel: Outstanding Requests are posted to a failed IMI Link		
7	RWST	0	IMI7Err0Sel: VPP SMBus Hot-Plug error		
6	RWST	0	IMI6Err0Sel: Inbound link abort		
5	RWST	0	IMI5Err0Sel: Inbound link layer control error Idle Flit Sequence Error Link Layer Format Sequence Errors Bad Data Size, Info Bit Sequence Error Aperture Violation Invalid Tag		
4	RWST	0	IMI4Err0Sel: Memory write data poisoned The NB has poisoned the flit that contains the error and written the data to memory		
3	RWST	0	IMI3Err0Sel: Inbound CRC Error		
2	RWST	0	IMI2Err0Sel: 1st Request Time-out		
1	RWST	0	IMI1Err0Sel: Inbound Correctable ECC Error		
0	RWST	0	IMI0Err0Sel: Inbound UnCorrectable ECC Error #1		

4.13.24 IMI_ERR1: IMI Error 1 Enable Register (D{8,10,12,14}, F0)

This register enables the signaling of Err[1] when an error flag is set. Note that one and only one error signal should be enabled. For details on errors listed on this table, refer to the Table 6-39 "Errors Detected by the NB" on page 328.

Device: 8, 10, 1 2, 14 Function: 0 Offset: E2h - E3h					
Bit	Attr	Default	Description		
15	RV	0	Reserved		
14	RWST	0	IMI14Err1Sel: The NB Received a fatal error from the XMB		
13	RWST	0	IMI13Err1Sel: Failed on last retry. Co-exist with IMI9Err1Sel		
12	RWST	0	IMI12Err1Sel: The NB Received a uncorrectable error from the XMB		
11	RWST	0	IMI11Err1Sel: The NB Received a correctable error signal from XMB		
10	RWST	0	IMI10Err1Sel: The NB is sending a "poisoned" Config Write to XMB		
9	RWST	0	IMI9Err1Sel: Failed on last retry. Co-exist with IMI13Err1Sel		
8	RWST	0	IMI8Err1Sel: Outstanding Requests are posted to a failed IMI Link		
7	RWST	0	IMI7Err1Sel: VPP SMBus Hot-Plug error		
6	RWST	0	IMI6Err1Sel: Inbound link abort		
5	RWST	0	IMI5Err1Sel: Inbound link layer control error Idle Flit Sequence Error Link Layer Format Sequence Errors Bad Data Size, Info Bit Sequence Error Aperture Violation Invalid Tag		
4	RWST	0	IMI4Err1Sel: Memory write data poisoned The NB has poisoned the flit that contains the error and written the data to memory		
3	RWST	0	IMI3Err1Sel: Inbound CRC Error		
2	RWST	0	IMI2Err1Sel: 1st Request Time-out		
1	RWST	0	IMI1Err1Sel: Inbound Correctable ECC Error		
0	RWST	0	IMI0Err1Sel: Inbound UnCorrectable ECC Error #1		

4.13.25 IMI_ERR2: IMI Error 2 Enable Register(D{8,10,12,14}, F0)

This register enables the signaling of Err[2] when an error flag is set. Note that one and only one error signal should be enabled. For details on errors listed on this table, refer to the Table 6-39 "Errors Detected by the NB" on page 328.

Device: Function Offset:	8, 10, 1 2, : 0 E4h - E5h	14	
Bit	Attr	Default	Description
15	RV	0	Reserved
14	RWST	0	IMI14Err2Sel: The NB Received a fatal error from the XMB
13	RWST	0	IMI13Err2Sel: Failed on last retry. Co-exist with IMI9Err2Sel
12	RWST	0	IMI12Err2Sel: The NB Received a uncorrectable error from the XMB
11	RWST	0	IMI11Err2Sel: The NB Received a correctable error signal from XMB
10	RWST	0	IMI10Err2Sel: The NB is sending a "poisoned" Config Write to XMB
9	RWST	0	IMI9Err2Sel: Failed on last retry. Co-exist with IMI13Err2Sel
8	RWST	0	IMI8Err2Sel: Outstanding Requests are posted to a failed IMI Link
7	RWST	0	IMI7Err2Sel: VPP SMBus Hot-Plug error
6	RWST	0	IMI6Err2Sel: Inbound link abort
5	RWST	0	IMI5Err2Sel: Inbound link layer control error
			IDIe Flit Sequence Error
			Link Layer Format Sequence Errors
			Bad Data Size, Info Bit Sequence Error
			Aperture Violation
			Invalid Tag
4	RWST	0	IMI4Err2Sel: Memory write data poisoned
			The NB has poisoned the flit that contains the error and written the data to memory
3	RWST	0	IMI3Err2Sel: Inbound CRC Error
2	RWST	0	IMI2Err2Sel: 1st Request Time-out
1	RWST	0	IMI1Err2Sel: Inbound Correctable ECC Error
0	RWST	0	IMI0Err2Sel: Inbound UnCorrectable ECC Error #1

4.13.26 IMI_MCERR: IMI MCERR Enable Register (D{8,10,12,14}, F0)

This register enables the signaling of MCERR when an error flag is set. Note that one and only one error signal should be enabled.

Device: Function Offset:	8, 10, 1 2, : 0 E6h - E7h	14	
Bit	Attr	Default	Description
15	RV	0	Reserved
14	RW	0	IMI14MCErrSel: The NB Received a fatal error from the XMB
13	RW	0	IMI13MCErrSel: Failed on Last retry. Co-exist with IMI9MCErrSel
12	RW	0	IMI12MCErrSel: The NB Received a uncorrectable error from the XMB
11	RW	0	IMI11MCErrSel: The NB Received a correctable error signal from XMB
10	RW	0	IMI10MCErrSel: The NB is sending a "poisoned" Config Write to XMB
9	RW	0	IMI9MCErrSel: Failed on Last retry. Co-exist with IMI13MCErrSel
8	RW	0	IMI8MCErrSel: Outstanding Requests are posted to a failed IMI Link
7	RW	0	IMI7MCErrSel: VPP SMBus Hot-Plug error
6	RW	0	IMI6MCErrSel: Inbound link abort
5	RW	0	IMI5MCErrSel: Inbound link layer control error Idle Flit Sequence Error Link Layer Format Sequence Errors Bad Data Size, Info Bit Sequence Error Aperture Violation Invalid Tag
4	RW	0	IMI4MCErrSel: Memory write data poisoned The NB has poisoned the flit that contains the error and written the data to memory
3	RW	0	IMI3MCErrSel: Inbound CRC Error
2	RW	0	IMI2MCErrSel: 1st Request Time-out
1	RW	0	IMI1MCErrSel: Inbound Correctable ECC Error
0	RW	0	IMIOMCErrSel: Inbound UnCorrectable ECC Error #1

162

4.14 Front Side Bus, Boot and Interrupt Registers (Device 16, Function 0)

The Front Side Bus, Boot and Interrupt registers are in Device 16 (D16), function 0 (F0). For the register address map, please refer to Table 4-14.

Warning:

Address locations that are not listed are considered reserved locations. Writes to "Reserved" registers may cause unpredictable behavior. Reads to "Reserved" registers may return a non-zero value.

4.14.1 VID: Vendor Identification Register (D16, F0)

This register identifies Intel as the manufacturer of the Intel[®] E8501 chipset North Bridge (NB). Writes to this register have no effect.

Device Function Offset:	Function: 0				
Bit	Attr	Default	Description		
15:0	RO	8086h	Vendor Identification Number The value assigned to Intel.		

4.14.2 DID: Device Identification Register (D16, F0)

This register, combined with the Vendor Identification register, uniquely identifies the NB. Writes to this register have no effect. All PCI Express devices will have the same DID in each function. All IMI devices will have the same DID in each function.

Device 16 Function: 0 Offset: 02 - 03h			
Bit	Attr	Default	Description
15:0	RO	2610h	Device Identification Number Identifies each function of the NB.

4.14.3 RID: Revision Identification Register (D16, F0)

This register contains the revision number of the Intel® E8501 chipset North Bridge (NB).

Functi	Device 16 Function: 0 Offset: 08h					
Bit	Attr	Default	Description			
7:4	RO	0h	Major_rev: Major Revision Steppings which require all masks to be regenerated. 1: B stepping			
3:0	RO	Oh	Minor_rev: Minor Revision Incremented for each stepping which does not modify all masks. Reset for each major revision. 0: x0 stepping 1: x1 stepping 2: x2 stepping			

4.14.4 CCR: Class Code Register (D16, F0)

This register contains the Class Code for the device.

Function	Device 16 Function: 0 Offset: 09h					
Bit	Attr	Default	Description			
23:16	RO	06h	Base Class This field indicates the general device category. For the NB, this field is hardwired to 06h, indicating it is a "Bridge Device".			
15:8	RO	00h	Sub-Class This field qualifies the Base Class, providing a more detailed specification of the device function. For the NB, this field is hardwired to 00h, indicating it is a "Host Bridge".			
7:0	RO	00h	Register-Level Programming Interface This field identifies a specific programming interface (if any), that device-independent software can use to interact with the device. There are no such interfaces defined for "Host Bridge" types, and this field is hardwired to 00h.			

4.14.5 HDR: Header Type Register (D16, F0)

This register identifies the header layout of the configuration space.

Device 16 Function: 0 Offset: 0Eh					
Bit	Attr	Default	Description		
7	RO	1h	Mfd: Multi-function Device.		
			Selects whether this is a multi-function device, that may have alternative configuration layouts.		
6:0	RO	00h	CfgLayout: Configuration Layout.		
			This field identifies the format of the configuration header layout for a PCI-to-PCI bridge from bytes 10h through 3Fh.		
			For this device the default is 00h, indicating a conventional type 00h PCI header.		

4.14.6 SVID: Subsystem Vendor Identification Register (D16, F0)

This register identifies the manufacturer of the system. This 16-bit register combined with the Device Identification Register, uniquely identifies any PCI device.

Functi	Device 16 Function: 0 Offset: 2Ch				
Bit	Attr	Default	Description		
15:0	RWO	8086h	Vendor Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to a byte will have no effect.		

4.14.7 SID: Subsystem Identity (D16, F0)

This register identifies the system.

Device Function Offset:	Function: 0			
Bit	Attr	Default	Description	
15:0	RWO	8086h	Subsystem Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to a byte will have no effect.	

4.14.8 SYRE: System Reset (D16, F0)

This register controls NB reset behavior. Any resets produced by a write to this register must be delayed until the configuration write is completed on the initiating interface (Front Side Bus, PCI Express, HI, SMBus and JTAG).

Device Function Offset:	16 : 0 40h - 4	41h	
Bit	Attr	Default	Description
15	RV	0	Reserved
14	RW	0	CPURST: Processor Reset If set, the NB will assert processor RESET# immediately on both buses.
13	RV	0	Reserved
12	RW	0	SYSRST: System Hard Reset The rising edge on this bit will lead to the assertion of the ICHRST# pin.The timing of this ICHRST# assertion should not be affected by Hard Reset.
11:10	RW	00h	REFIMI: Refresh from IMI to Gate ROR Designates the PMI to supply the inband REFRESH for ROR-initiated processor reset. 00: IMI A 01: IMI B 10: IMI C 11: IMI D
9	RW	0	ROR: Processor Reset on Refresh If set, the NB will assert processor H_{A/B}_RST# on both buses when a "Refresh Cycle Complete" signal is received on the IMI designated by REFIMI.
8:0	RV	00h	Reserved

4.14.9 REDIRCTL: Redirection Control Register (D16, F0)

This register controls the priority algorithm of the XTPR interrupt redirection mechanism.

Device: Function Offset:	16 n: 0 50h - 51h	ı	
Bit	Attr	Default	Description
15:14	RV	0	Reserved
13	RW	0	FFS:
			0: Use an LRU algorithm to send interrupt to highest XTPR index value when tie.
			Do not use the LRU algorithm in case of ties, instead, the highest XTPR index in the valid pool will always be chosen. This emulates the legacy policy.
12	RW	0	ARBRST: Arbitration Reset
			Neither BIOS nor the OS should use this bit.
			This bit resets the arbitration LRU state to a known state for repeatability of tests.
11:8	RW	Ch	BUCKET2: First priority number not in BUCKET0, BUCKET1, or BUCKET2
			Must be programmed with the same or larger value than BUCKET1 .
			Suggested Value: 0h
7:4	RW	8h	BUCKET1: First priority number not in BUCKET0 or BUCKET1
			Must be programmed with the same or larger value than BUCKET0 .
			Suggested Value: 0h
3:0	RW	4h	BUCKET0: First priority number not in BUCKET0
			Suggested Value: 0h

4.14.10 REDIRDIS: Redirection Disable Register (D16, F0)

This register allows software to force *xtpr_updates* from the given agent to be ignored. The agent number is specified by the thread index as described in eXternal Task Priority Registers, Section 4.14.14.

Device: Function Offset:			
Bit	Attr	Default	Description
31:0	RW	00h	DIS: Disable XTPR_Updates from Agent
			Each bit corresponds to one agent, and each bit has the following usage semantics:
			0: Allow XTPR_Updates from this agent.
			1: Ignore XTPR_Updates from this agent.

4.14.11 REDIRBUCKETS: Redirection Bucket Number Register (D16, F0)

This register allows software to read the current hardware bucket number assigned to each XTPR register.

Device: Functior Offset:	Function: 0						
Bit	Attr	Default	Description				
31:30	RO	00	BUCKET15:Redirection bucket number for XTPR[15]				
29:28	RO	00	BUCKET14: Redirection bucket number for XTPR[14]				
27:26	RO	00	BUCKET13: Redirection bucket number for XTPR[13]				
25:24	RO	00	BUCKET12: Redirection bucket number for XTPR[12]				
23:22	RO	00	BUCKET11: Redirection bucket number for XTPR[11]				
21:20	RO	00	BUCKET10: Redirection bucket number for XTPR[10]				
19:18	RO	00	BUCKET9: Redirection bucket number for XTPR[9]				
17:16	RO	00	BUCKET8: Redirection bucket number for XTPR[8]				
15:14	RO	00	BUCKET7: Redirection bucket number for XTPR[7]				
13:12	RO	00	BUCKET6: Redirection bucket number for XTPR[6]				
11:10	RO	00	BUCKET5: Redirection bucket number for XTPR[5]				
9:8	RO	00	BUCKET4: Redirection bucket number for XTPR[4]				
7:6	RO	00	BUCKET3: Redirection bucket number for XTPR[3]				
5:4	RO	00	BUCKET2: Redirection bucket number for XTPR[2]				
3:2	RO	00	BUCKET1: Redirection bucket number for XTPR[1]				
1:0	RO	00	BUCKET0: Redirection bucket number for XTPR[0]				

4.14.12 POC_FSB{A/B}: Power-on Configuration (D16, F0)

Contrary to its name, this register defines configuration values driven at reset by the NB to the CPU. This register only provides non-default configuration strapping on resets subsequent to the first reset.

The NB drives the contents of this register on A[35:4]# whenever it asserts H_{A/B}_RST#. These values are driven during processor RESET# assertion, and for three host clocks past the trailing edge of processor RESET#.

This register is sticky through reset; that is, the contents of the register remain unchanged during and following a Hard Reset. This allows system configuration software to modify the default values and reset the system to pass those values to all host bus devices. The default values shown in the table represent the state of the register following a *power-good* or *power-up* reset.

The POC_FSB{A/B} bits do not affect the NB operation except for driving A[35:4]#. In order to enable external system logic to override the values driven by the NB, the value sampled on A[7]# can force the NB IOQ depth to 1.

There are other power-on configuration bits in the SYRE register (Section 4.14.8) and $POC_AUX\{A/B\}$ registers (Section 4.14.13).

Device: 16 Function: 0

Functi Offset		63h, 70h - 73h	
Bit	Attr	Default	Description
31:28	RV	0h	Reserved
27	RWST	0h	MTDIS: Disable Multi-Threading If set, A[31]# is asserted, and the processor will disable Multi-threading.
26	RV	0	Reserved
25	RWST	0	A29: A[29]# Value The use of this address bit during reset is reserved by the processor.
24	RV	0	Reserved
23	RWST	0	A27: A[27]# Value The use of this address bit during reset is reserved by the processor.
22	RWST	0	A26: A[26]# Value The use of this address bit during reset is reserved by the processor.
21	RWST	0	A25: A[25]# Value The use of this address bit during reset is reserved by the processor.
20	RWST	0	A24: A[24]# Value The use of this address bit during reset is reserved by the processor.
19	RV	0h	Reserved
18	RWST	0	A22: A[22]# Value The use of this address bit during reset is reserved by the processor.
17:12	RWST	00h	CLKRATIO: Processor core to bus clock ratio A[21:16]# define the bus-to-core clock ratio for the processor.
11	RWST	1	BUSPARK: Request Bus Parking Disable If set, A[15]# is asserted and the processor may not park on the front side bus.
10	RV	0	Reserved
9	RWST	0	A13: Drive A[13]# The use of this address bit during reset is reserved by the processor.
8	RWST	0	APICID1: APIC Cluster ID [1] If set, A[12]# is asserted.
7	RWST	0	APICIDO: APIC Cluster ID [0] The NB will always assert A[11]# on FSB B, regardless of the value of APICIDO. For FSB A, this bit can control the assertion of A[11]#. The default value of 0 causes A[11]# on FSB A to be deasserted.
6	RWST	0	DISBINIT: Disable BINIT# Observation If set, A[10]# will be asserted and All host bus agents will disable BINIT# observation logic.

Device: 16 Function: 0 Offset: 60h - 63h, 70h - 73h Bit Attr **Default Description** 0 5 **RWST DISERR: Disable MCERR# Input** If set, A[9]# will be asserted and all processors will disable MCERR# observation. A8: Drive A[8]# 4 **RWST** 0 The use of this address bit during reset is reserved by the processor. **RWST** 0 IOQDEP: In-Order Queue Depth 1 3 If set, A[7]# will be asserted, and all agents on the host bus will limit their In-Order Queue Depth to 1 (i.e. no pipelining support). The NB must sample the value on A[7]# rather than use this register bit directly so that this feature can be forced by external means.

The use of these address bits during reset is reserved by the processor.

A[6]# is not used for 1M reset vector by the processor.

4.14.13 POC_AUX{A/B}: CPU Tristate Control (D16, F0)

0

RWST

2:0

These registers are extensions of the POC registers, unique to each bus. POC_AUXA controls FSB A, and POC AUXB controls FSB B.

A6DT4: Drive A[6:4]#

The NB drives the contents of these registers on A[39:36]# whenever it asserts H_{A/B}_RST#. These values are driven during processor RESET# assertion and for two host clocks past the trailing edge of processor RESET#.

These registers are sticky through reset; that is, the contents of the registers remain unchanged during and following a Hard Reset. This allows system configuration software to modify the default values and reset the system to pass those values to all host bus devices. The default values shown below represent the state of the register following a *power-good* or *power-up* reset.

Device: Function Offset:		′4h	
Bit	Attr	Default	Description
7:5	RV	0	Reserved
4	RWST	0h	BISTEN: CPU Built In Self Test Enable If set, A[3]# is asserted and the processor will perform BIST when reset.

Device: Functior Offset:	16 n: 0 64h, 7	4h				
Bit	Attr	Default		Description		
3:0	RWST	0	Software n	Processor Kill nay set processor kill bits when the corresponding processor is no that these bits can be used to reflect the number of working s connected to the NB.		
				ared, the associated processor will be allowed to participate in the ving the next reset.		
			When set, the NB will assert the associated front side bus address pin next time it asserts processor RESET#. A processor is tri-stated when address input and it's associated bus request input are asserted during according to the following table:			
			Bit[3]:	A[39]# is asserted, tristating Agent 3		
			Bit[2]:	A[38]# is asserted, tristating Agent 2		
			Bit[1]:	A[37]# is asserted, tristating Agent 1		
			Bit[0]:	A[36]# is asserted, tristating Agent 0		

4.14.14 XTPR[15:0]: eXternal Task Priority Registers (D16, F0)

These registers define the re-directable interrupt priority for xAPIC agents connected to the NB.

For convenience and 4-P dual-core, multi thread support, the NB defines a 5-bit thread index to uniquely identify every possible thread. This thread index is formed as:

```
thread_index = {fsb_num, DID[6:5], Attr[6:5]}
```

For indexing into the 16 XTPR registers, a carefully chosen function is used:

```
xtpr_index[3] = thread_index[4]
xtpr_index[2] = thread_index[2]
xtpr_index[1] = thread_index[1] XOR thread_index[3]
xtpr_index[0] = thread_index[0] XOR thread_index[1]
```

The NB only has 16 XTPR registers, so to support 16 threads (4 sockets of 2 cores of 2 threads each), the NB allows software to choose which threads will be disabled and ignored. This allows support for 4 sockets of single cores or 4 sockets of dual cores without needing any software reprogramming, and allows 4 sockets of dual cores to operate if the appropriate bits in the REDIRDIS[31:0] register are set.

These registers are used for lowest priority delivery through interrupt redirection by the chipset.

4.14.14.1 XTPR0: External Task Priority 0 (D16, F0)

Device: Function Offset:	16 n: 0 80h - 83h		
Bit	Attr	Default	Description
31	RW	0	CLUSTER: Global Cluster Mode (XTPR[0] only)
			Used in interrupt redirection for lowest priority delivery. Updated by every xTPR_Update transaction on either bus (Aa[3]). 0: Flat 1: Cluster
30:24	RV	00h	Reserved.
23	RW	0	TPREN: TPR Enable This bit reflects the value of Ab[31]#. When Ab[31]# is asserted, the value of this bit will be 0h.
22:20	RV	0h	Reserved
19:16	RW	0h	PRIORITY: Task Priority The processor with the lowest enabled value will be assigned the redirectable interrupt. This field is updated with Ab[27:24] of the xTPR_Update transaction.
15:8	RW	0	PHYSID: Physical APIC ID The physical ID of the APIC agent associated with the XTPR entry.
7:0	RW	0	LOGID: Logical APIC ID The logical ID of the APIC agent associated with the XTPR entry. This field is updated with Aa[11:4] of the XTPR_Update transaction.

4.14.14.2 XTPR[15:1]: External Task Priority 1-15 (D16, F0)

Device: Function Offset:		h), (90h - 93h	ı), (98h - 9Bh), (A0h - A3h), (A8h - ABh), (B0h - B3h), (B8h - BBh)
Bit	Attr	Default	Description
31:24	RV	00h	Reserved
23	RW	0	TPREN: TPR Enable This bit reflects the value of Ab[31]#. When Ab[31]# is asserted, the value of this bit will be 0h.
22:20	RV	0h	Reserved
19:16	RW	0h	PRIORITY: Task Priority The processor with the lowest enabled value will be assigned the redirectable interrupt. This field is updated with Ab[27:24] of the XTPR_Update transaction.
15:8	RW	00h	PHYSID: Physical APIC ID The physical ID of the APIC agent associated with the XTPR entry.
7:0	RW	00h	LOGID: Logical APIC ID The logical ID of the APIC agent associated with the XTPR entry. This field is updated with Aa[11:4] of the xTPR_Update transaction.

4.14.15 BOFL[3:0]: Boot Flag (D16, F0)

These registers can be used to select the system boot strap processor or for other cross processor communication purposes. When this register is read, the contents of the register is cleared. Therefore, a processor that reads a non-zero value owns the semaphore. Any value can be written to this register at any time.

An example of usage would be for all processors to read the register. The first one gets a non-zero value and owns the semaphore. Since the read clears the value of the register, all other processors will see a zero value and will spin until they receive further notification. After the winning processor is done, it writes a non-zero value of its choice into the register, arming it for subsequent uses. These registers are also aliased to fixed memory addresses.

Device: 16 Function: 0 Offset: (C0h - C3h), (C4h - C7h), (C8h - CBh), (CCh - CFh)						
Bit	Attr	Default	Description			
31:0	RCW	A5A5A5A5h	SemaVal: Semaphore Value Can be written to any value. Value is cleared when there is a read.			

4.14.16 SPAD[3:0]: Scratch Pad (D16, F0)

These scratch pad registers each provide 32 read/writable bits that can be used by software. They are also aliased to fixed memory addresses.

Device: 16 Function: 0 Offset: (D0h - D3h), (D4h - D7h), (D8h - DBh), (DCh - DFh)					
Bit	Attr	Default	Description		
31:0	RW	00000000h	Scratch Pad Value These bits have no effect on the hardware.		

4.14.17 SPADS[3:0]: Sticky Scratch Pad (D16, F0)

These sticky scratch pad registers each provide 32 read/writable bits that can be used by software. They are also aliased to fixed memory addresses.

Device: Function Offset:	unction: 0						
Bit	Attr	Default	Description				
31:0	RWST	00000000h	Scratch Pad Value				
			These sticky bits have no effect on the hardware.				

4.15 Address Mapping (Device 16, Function 1)

The address mapping registers control transaction routing to the Independent Memory Interface types based on address. The Address Mapping registers are in Device 16 (D0), function 1 (F1). For the register address map, please refer to Table 4-15.

Warning:

Address locations that are not listed are considered reserved locations. Writes to "Reserved" registers may cause unpredictable behavior. Reads to "Reserved" registers may return a non-zero value.

4.15.1 VID: Vendor Identification Register (D16, F1)

This register identifies Intel as the manufacturer of the NB. Writes to this register have no effect.

Device 16 Function: 1 Offset: 00 - 01h					
Bit	Attr	Default	Description		
15:0	RO	8086h	Vendor Identification Number The value assigned to Intel.		

4.15.2 DID: Device Identification Register (D16, F1)

This register combined with the Vendor Identification register uniquely identifies the NB Function in the event that a driver is required. Writes to this register have no effect.

Device Function Offset:	Function: 1					
Bit	Attr	Default	Description			
15:0	RO	2611h	Device Identification Number Identifies each function of the NB.			

4.15.3 RID: Revision Identification Register (D16, F1)

This register contains the revision number of the Intel® E8501 chipset North Bridge (NB).

Functi	Device 16 Function: 1 Offset: 08h					
Bit	Bit Attr Default Description					
7:4	RO	0h	Major_rev: Major Revision Steppings which require all masks to be regenerated. 1: B stepping			
3:0	RO	0h	Minor_rev: Minor Revision Incremented for each stepping which does not modify all masks. Reset for each major revision. 0: x0 stepping 1: x1 stepping 2: x2 stepping			

4.15.4 CCR: Class Code Register (D16, F1)

This register contains the Class Code for the device.

Device Function Offset:	on: 1	- 0Bh		
Bit	Attr	r Default Description		
23:16	RO	06h	BaseClass: Base Class	
			This field indicates the general device category. For the NB , this field is hardwired to 06h, indicating it is a "Bridge Device".	
15:8	RO	00h	SubClass: Sub-Class	
			This field qualifies the Base Class, providing a more detailed specification of the device function.	
			For this Device the default is 00h, indicating "Host Bridge".	
7:0	RO	00h	RLPI: Register-Level Programming Interface	
			This field identifies a specific programming interface (if any), that device independent software can use to interact with the device. There are no such interfaces defined for "Host Bridge" types, and this field is hardwired to 00h.	

4.15.5 HDR: Header Type Register (D16, F1)

This register identifies the header layout of the configuration space.

Device Function Offset:	on: 1	h		
Bit	t Attr Default Description			
7	RO	1h	Mfd: Multi-function Device	
			Selects whether this is a multi-function device, that may have alternative configuration layouts. Therefore, the IMI is defined to be a single function device, and this bit is hardwired to '0'.	
6:0	RO		CfgLayout: Configuration Layout	
		0h	This field identifies the format of the configuration header layout for a PCI-to-PCI bridge from bytes 10h through 3Fh.	
			For this Device the default is 00h, indicating a conventional type 00h PCI header.	

4.15.6 SVID: Subsystem Vendor Identification Register (D16, F1)

This register identifies the manufacturer of the system. This 16-bit register combined with the Device Identification Register uniquely identify any PCI device.

Device Function Offset:	Function: 1					
Bit	Attr	Default	Description			
15:0	RWO	8086h	VIN: Vendor Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to this register will have no effect.			

4.15.7 SID: Subsystem Identity (D16, F1)

This register identifies the system.

Device 16 Function: 1 Offset: 2E - 2Fh					
Bit	Attr	Default	Description		
15:0	RWO	8086h	SID: Subsystem Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to this register will have no effect.		

4.15.8 PAM[6:0]: Programmable Attribute MAP (D16, F1)

The NB allows programmable memory attributes on 13 legacy memory segments of various sizes in the 640 KB to 1 MB address range. 7 Programmable Attribute Map (PAM) Registers are used to support these features.

Each PAM Register controls one or two regions (typically 16 KB in size).

4.15.8.1 PAM0: Programmable Attribute Map 0

This register controls the read, write, and shadowing attributes of the BIOS area from 0F0000h-0FFFFh.

Two bits are used to specify memory attributes for each memory segment. These bits apply to both host accesses and PCI initiator accesses to the PAM areas. These attributes are:

RE - Read Enable. When RE = 1, the processor read accesses to the corresponding memory segment are claimed by the NB and directed to main memory. Conversely, when RE = 0, the host read accesses are directed to HI1.5 (ICH5) to be directed to the PCI bus.

WE - Write Enable. When WE = 1, the host write accesses to the corresponding memory segment are claimed by the NB and directed to main memory. Conversely, when WE = 0, the host write accesses are directed to HI1.5 (ICH5) to be directed to the PCI bus.

The RE and WE attributes permit a memory segment to be Read Only, Write Only, Read/Write, or disabled. For example, if a memory segment has RE = 1 and WE = 0, the segment is Read Only.

Device Function Offset:	16 n: 1 59h				
Bit	Attr	Default	Description		
7:6	RV	00	Reserved		
5:4	RW	00	HIENABLE0: 0F0000-0FFFFF Attribute Register This field controls the steering of read and write cycles that address the BIOS area from 0F0000h to 0FFFFFh. Bit 5 = Write enable, Bit 4 = Read enable		
			Encoding	Description	
			00	DRAM Disabled- All accesses are directed to HI1.5.	
			01	Read Only - All reads are serviced by DRAM. Writes are forwarded to HI1.5.	
			10	Write Only - All writes are sent to DRAM. Reads are serviced by HI1.5.	
			11	Normal DRAM Operation - All reads and writes are serviced by DRAM.	
3:0	RV	00h	Reserved		

4.15.8.2 PAM1: Programmable Attribute Map 1

This register controls the read, write, and shadowing attributes of the BIOS areas from 0C0000h-0C7FFFh.

Device: Function Offset:	16 : 1 5Ah			
Bit	Attr	Default		Description
7:6	RV	00	Reserved	
5:4	RW	00	HIENABLE1: 0C4000-0C7FFF Attribute Register This field controls the steering of read and write cycles that address the BIOS area from 0C4000h to 0C7FFFh. Bit 5 = Write enable, Bit 4 = Read enable.	
			Encoding	Description
			00	DRAM Disabled- All accesses are directed to HI1.
			01	Read Only - All reads are serviced by DRAM. Writes are forwarded to HI1.5.
			10	Write Only - All writes are sent to DRAM. Reads are serviced by HI1.5.
			11	Normal DRAM Operation - All reads and writes are serviced by DRAM.
3:2	RV	00	Reserved	
1:0	RW	00	LOENABLE1: 0C0000-0C3FFF Attribute Register This field controls the steering of read and write cycles that address the BIOS area from 0C0000h to 0C3FFFh. Bit 1 = Write enable, Bit 0 = Read enable.	
			Encoding	Description
			00	DRAM Disabled- All accesses are directed to HI1.5.
			01	Read Only - All reads are serviced by DRAM. Writes are forwarded to HI1.5.
			10	Write Only - All writes are sent to DRAM. Reads are serviced by HI1.5.
			11	Normal DRAM Operation - All reads and writes are serviced by DRAM.

4.15.8.3 PAM2: Programmable Attribute Map 2

This register controls the read, write, and shadowing attributes of the BIOS areas from 0C8000h-0CFFFFh.

Device: Function Offset:	16 n: 1 5Bh			
Bit	Attr	Default		Description
7:6	RV	00	Reserved	
5:4	RW	00	HIENABLE1: 0CC000h- 0CFFFFh Attribute Register This field controls the steering of read and write cycles that address the BIOS area from 0CC000h to 0CFFFFh. Bit 5 = Write enable, Bit 4 = Read enable.	
			Encoding	Description
			00	DRAM Disabled- All accesses are directed to HI1.5.
			01	Read Only - All reads are serviced by DRAM. Writes are forwarded to HI1.5.
			10	Write Only - All writes are sent to DRAM. Reads are serviced by HI1.5.
			11	Normal DRAM Operation - All reads and writes are serviced by DRAM.
3:2	RV	00	Reserved	
1:0	RW	00	LOENABLE1: 0C8000-0CBFFF Attribute Register This field controls the steering of read and write cycles that address the BIC area from 0C8000h to 0CBFFFh. Bit 1 = Write enable, Bit 0 = Read enable.	
			Encoding	Description
			00	DRAM Disabled - All accesses are directed to HI1.5.
			01	Read Only - All reads are serviced by DRAM. Writes are forwarded to HI1.5.
			10	Write Only - All writes are sent to DRAM. Reads are serviced by HI1.5.
			11	Normal DRAM Operation - All reads and writes are serviced by DRAM.

4.15.8.4 PAM3: Programmable Attribute Map 3

This register controls the read, write, and shadowing attributes of the BIOS areas from 0D0000h-0D7FFFh.

Device: Function Offset:	16 : 1 5Ch				
Bit	Attr	Default	Description		
7:6	RV	00	Reserved		
5:4	RW	00	HIENABLE3: 0D4000-0D7FFF Attribute Register This field controls the steering of read and write cycles that address the BIOS area from 0D4000h to 0D7FFFh. Bit 5 = Write enable, Bit 4 = Read enable.		
			Encoding	Description	
			00	DRAM Disabled- All accesses are directed to HI1.5.	
			01	Read Only - All reads are serviced by DRAM. Writes are forwarded to HI1.5.	
			10	Write Only - All writes are sent to DRAM. Reads are serviced by HI1.5.	
			11	Normal DRAM Operation - All reads and writes are serviced by DRAM.	
3:2	RV	00	Reserved		
1:0	RW	00	LOENABLE3: 0D0000-0D3FFF Attribute Register This field controls the steering of read and write cycles that address the BIOS area from 0D0000h to 0D3FFFh. Bit 1 = Write enable, Bit 0 = Read enable.		
			Encoding	Description	
			00	DRAM Disabled- All accesses are directed to HI1.5.	
			01	Read Only - All reads are serviced by DRAM. Writes are forwarded to HI1.5.	
			10	Write Only - All writes are sent to DRAM. Reads are serviced by HI1.5.	
			11	Normal DRAM Operation - All reads and writes are serviced by DRAM.	

4.15.8.5 PAM4: Programmable Attribute Map 4

This register controls the read, write, and shadowing attributes of the BIOS areas from 0D8000h-0DFFFFh.

16 : 1 5Dh			
Attr	Default		Description
RV	00	Reserved	
RW	00	This field contarea from 0D0	ODC000-0DFFFF Attribute Register trols the steering of read and write cycles that address the BIOS C000h to 0DFFFFh. enable, Bit 4 = Read enable.
		Encoding	Description
		00	DRAM Disabled- All accesses are directed to HI1.5.
		01	Read Only - All reads are serviced by DRAM. Writes are forwarded to HI1.5.
		10	Write Only - All writes are sent to DRAM. Reads are serviced by HI1.5.
		11	Normal DRAM Operation - All reads and writes are serviced by DRAM.
RV	00	Reserved	
RW	00	This field contarea from 0D8	: 0D8000-0DBFFF Attribute Register trols the steering of read and write cycles that address the BIOS 8000h to 0DBFFFh. enable, Bit 0 = Read enable
		Encoding	Description
		00	DRAM Disabled- All accesses are directed to HI1.5.
		01	Read Only - All reads are serviced by DRAM. Writes are forwarded to HI1.5.
		10	Write Only - All writes are sent to DRAM. Reads are serviced by HI1.5.
		11	Normal DRAM Operation - All reads and writes are serviced by DRAM.
	E 1 5Dh Attr RV RW	E 1 5Dh Attr	### SDh Attr Default RV 00 Reserved

4.15.8.6 PAM5: Programmable Attribute Map 5

This register controls the read, write, and shadowing attributes of the BIOS areas from 0E0000h-0E7FFFh.

Device: Function Offset:	16 n: 1 5Eh			
Bit	Attr	Default		Description
7:6	RV	00	Reserved	
5:4	RW	00	This field cont area from 0E4	0E4000-0E7FFF Attribute Register rols the steering of read and write cycles that address the BIOS 4000h to 0E7FFFh. enable, Bit 4 = Read enable.
			Encoding	Description
			00	DRAM Disabled- All accesses are directed to HI1.5.
			01	Read Only - All reads are serviced by DRAM. Writes are forwarded to HI1.5.
			10	Write Only - All writes are sent to DRAM. Reads are serviced by HI1.5.
			11	Normal DRAM Operation - All reads and writes are serviced by DRAM.
3:2	RV	00	Reserved	
1:0	RW	00	This field cont area from 0E0	c 0E0000-0E3FFF Attribute Register rols the steering of read and write cycles that address the BIOS 1000h to 0E3FFFh. 1010 enable, Bit 0 = Read enable.
			Encoding	Description
			00	DRAM Disabled- All accesses are directed to HI1.5.
			01	Read Only - All reads are serviced by DRAM. Writes are forwarded to HI1.5.
			10	Write Only - All writes are sent to DRAM. Reads are serviced by HI1.5.
			11	Normal DRAM Operation - All reads and writes are serviced by DRAM.

4.15.8.7 PAM6: Programmable Attribute Map 6

This register controls the read, write, and shadowing attributes of the BIOS areas from 0E8000h-0EFFFFh.

Device: Function Offset:	16 : 1 5Fh			
Bit	Attr	Default		Description
7:6	RV	00	Reserved	
5:4	RW	00	This field cont area from 0E0	OEC000-0EFFFF Attribute Register trols the steering of read and write cycles that address the BIOS C000h to 0DFFFFh. enable, Bit 4 = Read enable.
			Encoding	Description
			00	DRAM Disabled- All accesses are directed to HI1.5.
			01	Read Only - All reads are serviced by DRAM. Writes are forwarded to HI1.5.
			10	Write Only - All writes are sent to DRAM. Reads are serviced by HI1.5.
			11	Normal DRAM Operation - All reads and writes are serviced by DRAM.b
3:2	RV	00	Reserved	
1:0	RW	N 00	This field cont area from 0E8	: 0E8000-0EBFFF Attribute Register trols the steering of read and write cycles that address the BIOS 3000h to 0EBFFFh. enable, Bit 0 = Read enable.
			Encoding	Description
			00	DRAM Disabled- All accesses are directed to HI1.5.
			01	Read Only - All reads are serviced by DRAM. Writes are forwarded to HI1.5.
			10	Write Only - All writes are sent to DRAM. Reads are serviced by HI1.5.
			11	Normal DRAM Operation - All reads and writes are serviced by DRAM.

4.15.9 FDHC: Fixed DRAM Hole Control (D16, F1)

This 8-bit register controls a fixed DRAM hole from 15-16 MB.

Device: Function Offset:	16 n: 1 60h		
Bit	Attr	Default	Description
7	RW	0	HEN: Hole Enable This field enables a memory hole in DRAM space. The DRAM that lies "behind" this space is not remapped. O: No memory hole. 1: Memory hole from 15 MB to 16 MB. Accesses in this range will be sent to HI1.5.
6:0	RV	00h	Reserved

4.15.10 SMRAMC: System Management RAM Control (D16, F1)

The SMRAMC register controls the accessibility to Compatible and Extended SMRAM spaces. The Open, Close, and Lock bits function only when G_SMRAME bit in EXSMRC Register (Section 4.15.11) is set to a "1". Also, the OPEN bit must be reset before the LOCK bit is set.

Device: Function Offset:	16 n: 1 61h		
Bit	Attr	Default	Description
7	RV	0	Reserved
6	RWL	0	D_OPEN: SMM Space Open When D_OPEN=1 and D_LCK=0, the SMM space DRAM is made visible even when SMM decode is not active. This is intended to help BIOS initialize SMM space. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time. This register can be locked by D_LCK.
5	RW	0	D_CLS: SMM Space Closed When D_CLS = 1, SMM space DRAM is not accessible to data references (even if SMM decode is active). Code references may still access SMM space DRAM. This will allow SMM software to reference through SMM space to update the display (even when SMM is mapped over the VGA range). Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time. Note that the D_CLS bit only applies to Compatible SMM space.
4	RWL	0	D_LCK: SMM Space Locked When D_LCK is set to 1, then D_OPEN is reset to 0 and D_LCK, D_OPEN, C_BASE_SEG, H_SMRAM_EN, TSEG_SZ and TSEG_EN become read only. D_LCK can be set to 1 via a normal configuration space write but can only be cleared by a Full Reset. The combination of D_LCK and D_OPEN provide convenience with security. The BIOS can use the D_OPEN function to initialize SMM space and then use D_LCK to "lock down" SMM space in the future so that no application software (or BIOS itself) can violate the integrity of SMM space (even if the program has knowledge of the D_OPEN function).
3	RV	0	Reserved

Device: Function Offset:	16 n: 1 61h		
Bit	Attr	Default	Description
2:0	RO	010b	C_BASE_SEG: Compatible SMM Space Base Segment This field indicates the location of SMM space. SMM DRAM is not re-mapped. It is simply made visible if the conditions are right to access SMM space. Otherwise, the access is forwarded to HI1.5/VGA. Since the NB supports only the SMM space between A0000 and BFFFF, this field is hardwired to 010.

4.15.11 EXSMRC: Extended System Management RAM Control (D16, F1)

The Extended SMRAM register controls the configuration of Extended SMRAM space. The Extended SMRAM (E_SMRAM) memory provides a write-back cacheable SMRAM memory space that is above 1 MByte.

Device: Functior Offset:	16 n: 1 62h		
Bit	Attr	Default	Description
7	RWL	0	H_SMRAME: Enable High SMRAM Controls the SMM memory space location (i.e. above 1 MByte or below 1 MByte). When G_SMRAME is 1 and H_SMRAME is set to 1, the high SMRAM memory space is enabled. SMRAM accesses within the range 0FEDA_0000h to 0FEDB_FFFFh are re-mapped to DRAM addresses within the range 000A0000h to 000BFFFFh. Once D_LCK has been set, this bit becomes read-only.
6	RO	0	MDAP: MDA Present Since the NB does not support MDA, this bit has no meaning.
5	RW	0	APICDIS:APIC Memory Range Disable When set to '1', the NB forwards accesses to the IOAPIC regions to the appropriate interface, as specified by the memory and PCI configuration registers.
			When this bit is clear, the NB will send accesses as defined below:
			between 0_FEC0_0000 and 0_FEC7_FFFF to HI1.5,
			between 0_FEC8_0000 and 0_FEC8_0FFF to PCI Express D,
			between 0_FEC8_1000 and 0_FEC8_1FFF to PCI Express C0,
			between 0_FEC8_2000 and 0_FEC8_2FFF to PCI Express C1,
			between 0_FEC8_3000 and 0_FEC8_3FFF to PCI Express B0,
			between 0_FEC8_4000 and 0_FEC8_4FFF to PCI Express B1,
			between 0_FEC8_5000 and 0_FEC8_5FFF to PCI Express A0,
			between 0_FEC8_6000 and 0_FEC8_6FFF to PCI Express A1.

Device: Function Offset:	16 n: 1 62h		
Bit	Attr	Default	Description
4	RV	0	Reserved
3	RWL	0	G_SMRAME: Global SMRAM Enable If set to a 1, then Compatible SMRAM functions are enabled (providing 128 KB of DRAM accessible at the A0000h address while in SMM (ADS# with SMM decode)). To enable Extended SMRAM function, this bit has be set to 1. Refer to the section on SMM for more details. Once D_LCK is set, this bit becomes "Read" only. (Moved from SMRAM bit3).
2:1	RWL	00	TSEG_SZ: TSEG Size Selects the size of the TSEG memory block if enabled. Memory from (ESMMTOP - TSEG_SZ) to ESMMTOP is partitioned away so that it may only be accessed by the processor interface and only then when the SMM bit (SMMEM#) is set in the request packet. Non-SMM accesses to this memory region are sent to HI1.5 when the TSEG memory block is enabled. Note that once D_LCK is set, these bits become read only. The encodings for TSEG_SZ are: 00: 512K 01: 1M 10: 2M 11: 4M
0	RWL	0	T_EN: TSEG Enable Enabling of SMRAM memory for Extended SMRAM space only. When G_SMRAME =1 and TSEG_EN = 1, the TSEG is enabled to appear in the appropriate physical address space. Note that once D_LCK is set, this bit becomes "Read" only.

4.15.12 EXSMRTOP: Extended System Management RAM Top (D16, F1)

This register defines the location of the Extended (TSEG) SMM range by defining the top of the TSEG SMM range (ESMMTOP).

Device: Function Offset:			
Bit	Attr	Default	Description
7:4	RV	00h	Reserved

Device: 16 Function: 1 Offset: 63h						
Bit	Attr	Default	Description			
3:0	RW	01h	ESMMTOP: Top of Extended SMM Space (TSEG)			
			This field contains address bits 31 to 28. This field points to the top of extended SMM space below 4 GB. Addresses below 4 GB that fall in this range are decoded to be in the extended SMM space and should be routed according to SMM address routing rules:			
			ESMMTOP-TSEG_SZ <= Address < ESMMTOP			
			ESMMTOP is relocatable to accommodate software that wishes to configure the TSEG SMM space before MMIO space is known. This field defaults to the same value that TOLM defaults to.			

4.15.13 EXP_ECBASE: PCI Express Enhanced Configuration Base Address (D16, F1)

This register defines the base address of the enhanced PCI Express configuration memory.

Device: Function Offset:	16 : 1 68 - 6	Bh	
Bit	Attr	Default	Description
31:24	RV	00h	Reserved
23:12	RW	0001h	EXP_ECBASE: PCI Express Enhanced Configuration Base This register contains the address that corresponds to bits 39 to 28 of the base address for PCI Express enhanced configuration space. Configuration software will read this register to determine where the 256 MB range of addresses resides for this particular host bridge. This register defaults to the same address as the default value for TOLM.
11:0	RV	00h	Reserved

4.15.14 TOLM: Top Of Low Memory (D16, F1)

This register contains the maximum address below 4 GB that should be treated as a memory access and is defined on a 256MB boundary.

Device: Function Offset:		- 6Dh	
Bit	Attr	Default	Description
15:12	RW	01h	TOLM: Top of Low Memory This register contains the address that corresponds to bits 31 to 28 of the maximum DRAM memory address that lies below 4 GB. Configuration software should set this value to either the maximum amount of memory in the system or to the minimum address allocated for PCI memory (low MMIO), whichever is smaller.
			Addresses equal to or greater than the TOLM, and less than 4 G, are decoded as low MMIO, MMCFG, Chipset, Interrupt/SMM, or firmware (HI1.5) as described in the address mapping chapter (Section 5). All accesses less than the TOLM are treated as DRAM accesses (except for the 15-16 MB or PAM gaps).
			This register must be set to at least 1000h, for a minimum of 256 MB of DRAM. There is also a minimum of 256 MB of PCI space, since this register is on a 256 MB boundary.
			Configuration software should set this value to either the maximum amount of memory in the system (same as the top IMIR.LIMIT), or to the lower 256 MB boundary of the Memory Mapped I/O range, whichever is smaller. The Memory Mapped I/O range may not get fully configured by software and the NB will send unmapped accesses to ICH5 via subtractive decoding.
11:0	RV	000h	Reserved

4.15.15 IMIR[5:0]: IMI Interleave Range, (D16, F1)

These registers define the IMI that services each address in the main memory space.

Each register defines a range. If the address falls in the range defined by an IMIR, the ways fields in that IMIR define which IMI services accesses with A[7:6] = A,B,C,D.

There are 2 sets of ways fields to support mirroring. The first set, Image0, defines the default primary (The default primary is the primary image at reset. After reset, the primary depends on error detection). If IMG1WAYi is set to the same value as IMG0WAY0, no mirroring occurs. If they are set to different values, writes are sent to both IMIs and reads are sent to the primary.

To bound validation of this capability and eliminate multiple equivalent configurations, any given configuration must obey one of the following 3 sets of rules for all 4 ways (i = A,B,C,D).

Scenario 1: **No Mirroring:**

IMG0WAY[i] = IMG1WAY[i]

Scenario 2: Mirroring across card:

If IMG0WAY[i] = IMI A, IMG1WAY[i] must be IMI C If IMG0WAY [i] = IMI B, IMG1WAY[i] must be IMI D

Scenario 3: Mirroring across XMBs on a card:

If IMG0WAY[i] = IMI A, IMG1 WAY[i] must be IMI B If IMG0WAY [i] = IMI C, IMG1 WAY[i] must be IMI D

When the TOLM register is modified, the NB automatically adjusts the IMI interleaving registers to compensate for the new MMIO gap size. This is done by adjusting the limit of each range upward if it is above TOLM as shown in Table 4-23.

Table 4-23. Governing of Interleaving of an Address by IMIR[i]

Limit above TOLMa	Match IMIR[i] if
IMIR[i].LIMIT[3:0] <= TOLM[15:12]	IMIR[i].LIMIT[12:0] > A[27:12] >= IMIR[i-1].LIMIT[12:0]
IMIR[i].LIMIT[3:0] > TOLM[15:12]	$AIMIR[i].ADJLIMIT[12:0] > A[27:12] >= AIMIR[i-1].ADJLIMIT[12:0]^b.$

NOTES:

a. IMIR[i].LIMIT must be greater than or equal to IMIR[i-1].LIMIT

b. for IMIR[0], IMIR[i-1] is defined to be 0

Device: 16 Function: 1 Offset: (80h - 83h), (84h - 87h), (88H - 8Bh), (8Ch, 8Fh), (90h, 93h), (94 h - 97h) Bit Attr **Default Description** 31:29 RV 0 Reserved RW 28 n RFBI: Read from both Images Reads are issued to Image0 when mirroring. Once an error condition occurs that results in degrading to one memory image, reads are directed to the remaining healthy image. Reads are issued to Image1 if A[22] XOR A[12] XOR A[8] when 1: mirroring. Otherwise, the read is issued to Image0. Once an error condition occurs that results in degrading to one memory image, reads are directed to the remaining healthy image. 27:16 RW 000h This field defines the highest address in the range. This field is compared to A[39:28]. To disable range i, set IMIR[i].LIMIT == IMIR[i-1].LIMIT. 15:14 RW 00 IMG1WAY3 This field defines the IMI which services accesses for which A[7:6]=3 and which mirrors the IMI defined by IMG0WAY3. 13:12 RW 00 **IMG0WAY3** This field defines the IMI which services accesses for which A[7:6]=3.

Device: 16 Function: 1 Offset: (80h - 83h), (84h - 87h), (88H - 8Bh), (8Ch, 8Fh), (90h, 93h), (94 h - 97h) Bit Attr **Default Description** 00 11:10 RW **IMG1WAY2** This field defines the IMI which services accesses for which A[7:6]=2 and which mirrors the IMI defined by IMG0WAY2. RW 00 9:8 This field defines the IMI which services accesses for which A[7:6]=2. **IMG1WAY1** 7:6 RW 00 This field defines the IMI which services accesses for which A[7:6]=1 and which mirrors the IMI defined by IMG0WAY1. RW 00 5:4 This field defines the IMI which services accesses for which A[7:6]=1. RW 00 3:2 This field defines the IMI which services accesses for which A[7:6]=0 and which mirrors the IMI defined by IMG0WAY0. 1:0 RW 00 **IMGOWAYO** This field defines the IMI which services accesses for which A[7:6]=0.

4.15.16 AIMIR[6:0]: Address of IMI Range(D16, F1)

For the convenience of software which is trying to determine the physical location to which a front side bus address is sent, 32 scratch bits are associated with each IMIR.

Device: 16 Function: 1 Offset: (A0h - A3h), (A4h - A7h), (A8h - ABh), (ACh - AFh), (B0h - B3h), (B4h - B7h)					
Bit	Attr	Default	Description		
31:0	RW	00000000h	ADJLIMIT: Adjusted IMIR Limit		

4.15.17 SB_A_IMIR[5:0]: Independent Memory Interface Interleave Range for Front Side Bus A (D16, F1)

This is an additional copy of the IMIR registers duplicated for front side bus A as a micro-architectural convenience. Software must configure SB_A_IMIR[i] the same way as IMIR[i] (for i=0 to 5) before any memory accesses are initiated.

Device: Function: 1 Offset: (C0h - C3h), (C4h -C7h), (C8h - CBh), (CCh - CFh), (D0h - D3h), (D4h - D7h) **Default Description** 31:29 RV 0 Reserved 28 RW RFBI. Read from both Images Reads are issued to Image0 when mirroring. Once an error condition occurs that results in degrading to one memory image, reads are directed to the remaining healthy image. Reads are issues to Image1, if A[22] OR A[12] OR A[8] are 1: asserted when mirroring. Otherwise, the read is issued to Image0. Once an error condition occurs that results in degrading to one memory image, reads are directed to the remaining healthy image. 27:16 RW 000h This field defines the highest address in the range. This field is compared to A[39:28]. To disable range i, set IMIR[i].LIMIT == IMIR[i-1].LIMIT. 15:14 RW 00 This field defines the IMI which services accesses for which A[7:6]=3 and which mirrors the IMI defined by IMG0WAY3. 13:12 RW 00 This field defines the IMI which services accesses for which A[7:6]=3. 11:10 RW იი This field defines the IMI which services accesses for which A[7:6]=2 and which mirrors the IMI defined by IMG0WAY2. RW 9:8 00 This field defines the IMI which services accesses for which A[7:6]=2. 7:6 RW იი This field defines the IMI which services accesses for which A[7:6]=1 and which mirrors the IMI defined by IMG0WAY1. RW 5:4 00 This field Defines the IMI which services accesses for which A[7:6]=1. 3:2 RW 00 This field defines the IMI which services accesses for which A[7:6]=0 and which mirrors the IMI defined by IMG0WAY0. 1:0 RW 00 **IMGOWAYO** This field defines the IMI which services accesses for which A[7:6]=0.

4.15.18 SB_B_IMIR[5:0]: Independent Memory Interface Interleave Range for Front Side Bus B (D16, F1)

This is an additional copy of the IMIR registers duplicated for front side bus B as a micro-architectural convenience. Software must configure $SB_BIMIR[i]$ the same way as IMIR[i] (for i=0 to 5) before any memory accesses are initiated.

Device: Function Offset:		- E3h), (E4h ·	- E7h), (E8h - EBh), (ECh - EFh), (F0h - F3h), (F4h - F7h)
Bit	Attr	Default	Description
31:29	RV	0	Reserved
28	RW	0	RFBI. Read from both Images
			Reads are issued to Image0 when mirroring. Once an error condition occurs that results in degrading to one memory image, reads are directed to the remaining healthy image.
			1: Reads are issues to Image1 if A[22] OR A[12] OR A[8] are asserted when mirroring. Otherwise, the read is issued to Image0. Once an error condition occurs that results in degrading to one memory image, reads are directed to the remaining healthy image.
27:16	RW	000h	LIMIT This field defines the highest address in the range. This field is compared to A[39:28]. To disable range i, set IMIR[i].LIMIT == IMIR[i-1].LIMIT.
15:14	RW	00	IMG1WAY3
			This field defines the IMI which services accesses for which A[7:6]=3 and which mirrors the IMI defined by IMG0WAY3.
13:12	RW	00	IMG0WAY3
			This field defines the IMI which services accesses for which A[7:6]=3.
11:10	RW	00	IMG1WAY2
			This field defines the IMI which services accesses for which A[7:6]=2 and which mirrors the IMI defined by IMG0WAY2.
9:8	RW	00	IMG0WAY2
			This field defines the IMI which services accesses for which A[7:6]=2.
7:6	RW	00	IMG1WAY1
			This field defines the IMI which services accesses for which A[7:6]=1 and which mirrors the IMI defined by IMG0WAY1.
5:4	RW	00	IMG0WAY1
			This field defines the IMI which services accesses for which A[7:6]=1.
3:2	RW	00	IMG1WAY0
			This field defines the IMI which services accesses for which A[7:6]=0 and which mirrors the IMI defined by IMG0WAY0.
1:0	RW	00	IMG0WAY0
			This field defines the IMI which services accesses for which A[7:6]=0.

4.16 RAS (Device 16, Function 2)

The PCI Express registers are in Device 16 (D16), Function 2 (F2). These registers record the first and next errors, logging, detection masks and signaling mask for the two Front Side Buses and Hub Interface. For the register address map, please refer to Table 4-16.

Warning:

Address locations that are not listed are considered reserved locations. Writes to "Reserved" registers may cause unpredictable behavior. Reads to "Reserved" registers may return a non-zero value.

4.16.1 VID: Vendor Identification Register (D16, F2)

This register identifies Intel as the manufacturer of the NB. Writes to this register have no effect.

Device: 16 Function: 2 Offset: 00h - 01h			
Bit	Attr	Default	Description
15:0	RO	8086h	VIN: Vendor Identification Number The value assigned to Intel.

4.16.2 DID: Device Identification Register (D16, F2)

This register combined with the Vendor Identification register uniquely identifies the NB Function in the event that a driver is required. Writes to this register have no effect.

Device: 16 Function: 2 Offset: 02h - 03h			
Bit	Attr	Default	Description
15:0	RO	2612h	DIN: Device Identification Number Identifies each function of the NB.

4.16.3 RID: Revision Identification Register (D16, F2)

This register contains the revision number of the Intel® E8501 chipset North Bridge (NB).

Device Function Offset:	on: 2	1	
Bit	Attr	Default	Description
7:4	RO	Oh	Major_rev: Major Revision Steppings which require all masks to be regenerated. 1: B stepping
3:0	RO	Oh	Minor_rev: Minor Revision Incremented for each stepping which does not modify all masks. Reset for each major revision. 0: x0 stepping 1: x1 stepping 2: x2 stepping

4.16.4 CCR: Class Code Register (D16, F2)

This register contains the Class Code for the device.

Function	Device 16 Function: 2 Offset: 09 - 0Bh				
Bit	Attr	Default	Description		
23:16	RO	06h	BaseClass: Base Class		
			This field indicates the general device category. For the NB, this field is hardwired to 06h, indicating it is a "Bridge Device".		
15:8	RO	00h	SubClass: Sub-Class		
			This field qualifies the Base Class, providing a more detailed specification of the device function.		
			For this device default is 00h, indicating "Host Bridge".		
7:0	RO	00h	RLPI: Register-Level Programming Interface		
			This field identifies a specific programming interface (if any), that device independent software can use to interact with the device. There are no such interfaces defined for "Host Bridge" types, and this field is hardwired to 00h.		

4.16.5 HDR: Header Type Register (D16, F2)

This register identifies the header layout of the configuration space.

Device 16 Function: 2 Offset: 0Eh				
Bit	Attr	Default	Description	
7	RO	1	Mfd: Multi-function Device	
			Selects whether this is a multi-function device, that may have alternative configuration layouts.	
6:0	RO	00h	CfgLayout: Configuration Layout	
			This field identifies the format of the configuration header layout for a PCI-to-PCI bridge from bytes 10h through 3Fh.	
			For this device default is 00h, indicating a conventional type 00h PCI header.	

4.16.6 SVID: Subsystem Vendor Identification Register (D16, F2)

This register identifies the manufacturer of the system. This 16-bit register combined with the Device Identification Register uniquely identifies any PCI device.

Device 16 Function: 2 Offset: 2Ch				
Bit	Attr	Default	Description	
15:0	RWO	8086h	VIN: Vendor Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to a byte will have no effect.	

4.16.7 SID: Subsystem Identity (D16, F2)

This register identifies the system.

Device 16 Function: 2 Offset: 2Eh - 2Fh			
Bit	Attr	Default	Description
15:0	RWO	8086h	SID: Subsystem Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to a byte will have no effect.

4.16.8 GLOBAL_FERR: Global First Error Register (D16, F2)

When the "local" FERRST register captures the error, it closes the log register and signals the recorded error to the GLOBAL_FERR.

Device Function: Offset:	16 : 2 40h - 43h	1	
Bit	Attr	Default	Description
31	RWCST	0	Global_FERR_31 Internal NB Fatal Error
30	RV	0	Reserved
29	RWCST	0	Global_FERR_29 FSB B Fatal Error
28	RWCST	0	Global_FERR_28 FSB A Fatal Error
27	RWCST	0	Global_FERR_27 IMI D Fatal Error
26	RWCST	0	Global_FERR_26 IMI C Fatal Error
25	RWCST	0	Global_FERR_25 IMI B Fatal Error
24	RWCST	0	Global_FERR_24 IMI A Fatal Error
23	RWCST	0	Global_FERR_23 PCI Express A1(Device 7) Fatal Error
22	RWCST	0	Global_FERR_22 PCI Express A0 (Device 6) Fatal Error
21	RWCST	0	Global_FERR_21 PCI Express B1(Device 5) Fatal Error
20	RWCST	0	Global_FERR_20 PCI Express B0 (Device 4) Fatal Error
19	RWCST	0	Global_FERR_19 PCI Express C1 (Device 3) Fatal Error
18	RWCST	0	Global_FERR_18 PCI Express C0 (Device 2) Fatal Error
17	RWCST	0	Global_FERR_17 PCI Express D (Device 1) Fatal Error
16	RWCST	0	Global_FERR_16 HI Fatal Error
15	RWCST	0	Global_FERR_15 Internal NB Non-Fatal Error
14	RV	0	Reserved

Device 16 Function: 2 Offset: 40h - 43h

Offset:	40h - 43h	1	
Bit	Attr	Default	Description
13	RWCST	0	Global_FERR_13
			FSB B Non-Fatal Error
12	RWCST	0	Global_FERR_12
			FSB A Non-Fatal Error
11	RWCST	0	Global_FERR_11
			IMI D Non-Fatal Error
10	RWCST	0	Global_FERR_10
			IMI C Non-Fatal Error
9	RWCST	0	Global_FERR_09
			IMI B Non-Fatal Error
8	RWCST	0	Global_FERR_08
			IMI A Non-Fatal Error
7	RWCST	0	Global_FERR_07
			PCI Express A1(Device 7) Non-Fatal Error
6	RWCST	0	Global_FERR_06
			PCI Express A0 (Device 6) Non-Fatal Error
5	RWCST	0	Global_FERR_05
			PCI Express B1 (Device 5) Non-Fatal Error
4	RWCST	0	Global_FERR_04
	DIMOST		PCI Express B0 (Device 4) Non-Fatal Error
3	RWCST	0	Global_FERR_03 PCI Express C1 (Device 3) Non-Fatal Error
2	DWCCT	0	
2	RWCST	0	Global_FERR_02 PCI Express C0 (Device 2) Non-Fatal Error
1	RWCST	0	Global FERR 01
'	NWOOI	U	PCI Express D (Device 1) Non-Fatal Error
0	RWCST	0	Global FERR 00
	1,00001		HI Non-Fatal Error
l			

4.16.9 GLOBAL_NERR: Global Next Error Register (D16, F2)

Once an error has been logged in the GLOBAL_FERR, subsequent errors are logged in the GLOBAL_NERR register.

Device 16 Function: 2 Offset: 44h - 47h				
Bit	Attr	Default	Description	
31	RWCST	0	Global_NERR_31 Internal NB Fatal Error	
30	RV	0	Reserved	
29	RWCST	0	Global_NERR_29	
			FSB B Fatal Error	
28	RWCST	0	Global_NERR_28 FSB A Fatal Error	
27	RWCST	0		
27	RWCSI	0	Global_NERR_27 IMI D Fatal Error	
26	RWCST	0	Global_NERR_26	
			IMI C Fatal Error	
25	RWCST	0	Global_NERR_25 IMI B Fatal Error	
24	RWCST	0	Global_NERR_24 IMI A Fatal Error	
23	RWCST	0	Global_NERR_23 PCI Express A1 (Device 7) Fatal Error	
22	RWCST	0	Global_NERR_22 PCI Express A0 (Device 6) Fatal Error	
21	RWCST	0	Global_NERR_21 PCI Express B1 (Device 5) Fatal Error	
20	RWCST	0	Global_NERR_20 PCI Express B0 (Device 4) Fatal Error	
19	RWCST	0	Global_NERR_19 PCI Express C1 (Device 3) Fatal Error	
18	RWCST	0	Global_NERR_18 PCI Express C0 (Device 2) Fatal Error	
17	RWCST	0	Global_NERR_17 PCI Express D (Device 1) Fatal Error	
16	RWCST	0	Global_NERR_16 HI Fatal Error	
15	RWCST	0	Global_NERR_15 Internal NB Non-Fatal Error	
14	RV	0	Reserved	

Device 16 Function: 2 Offset: 44h - 47h Default Bit Attr **Description** 13 **RWCST** 0 Global_NERR_13 FSB B Non-Fatal Error 12 **RWCST** Global_NERR_12 FSB A Non-Fatal Error **RWCST** 0 Global_NERR_11 11 IMI D Non-Fatal Error 10 **RWCST** 0 Global_NERR_10 IMI C Non-Fatal Error 9 **RWCST** 0 Global_NERR_09 IMI B Non-Fatal Error 8 **RWCST** 0 Global_NERR_08 IMI A Non-Fatal Error 7 **RWCST** 0 Global_NERR_07

PCI Express A1 (Device 7) Non-Fatal Error

PCI Express A0 (Device 6) Non-Fatal Error

PCI Express B1 (Device 5) Non-Fatal Error

PCI Express B0 (Device 4) Non-Fatal Error

PCI Express C1 (Device 3) Non-Fatal Error

PCI Express C0 (Device 2) Non-Fatal Error

PCI Express D (Device1) Non-Fatal Error

Global_NERR_06

Global_NERR_05

Global_NERR_04

Global_NERR_03

Global_NERR_02

Global_NERR_01

Global_NERR_00 HI Non-Fatal Error

6

5

4

3

2

1

0

RWCST

RWCST

RWCST

RWCST

RWCST

RWCST

RWCST

0

0

0

0

0

0

0

4.16.10 EXSMRAMC - Expansion System Management RAM Control (D16, F2)

This register indicates whether an invalid SMRAM access has taken place. It is located in a different function than the other SMM related registers because it needs to be written by software.

Device: Function Offset:	16 n: 2 60h		
Bit	Attr	Default	Description
7	RWC	0	E_SMERR: Invalid SMRAM Access
			This bit is set when CPU has accessed the defined memory ranges in Extended SMRAM (High Memory and T-segment) while not in SMM space and with the D-OPEN bit = 0. It is software's responsibility to clear this bit. The software must write a 1 to this bit to clear it.
6:0	RV	0h	Reserved

4.16.11 FSB{A/B}_FERR: FSB First Error Register(D16, F2)

For a description of the Errors (Fxx) refer to Table 6-39 "Errors Detected by the NB" on page 328.

Device: Function Offset:	Function: 2				
Bit	Attr	Default	Description		
15:11	RV	0h	Reserved		
10	RWCST	0	F10Err: FSB hang Fatal		
9	RWCST	0	F9Err: Data Parity Error (for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual-Core Intel® Xeon® processor 7000 sequence)		
8	RWCST	0	F8Err: Unsupported Front Side Bus Transaction Fatal		
7	RWCST	0	F7Err: FSB Protocol Error Fatal		
6	RWCST	0	F6Err: Data Strobe Glitch Fatal		
5	RWCST	0	F5Err: Address Strobe Glitch Fatal		
4	RWCST	0	F4Err: Request/Address Parity Error Fatal		

Device: 16 Function: 2 Offset: (80h - 81h), (A0h - A1h) Bit Default Attr **Description** 3 RWCST 0 F3Err: Detected MCERR from a processor Nonfatal 2 **RWCST** 0 F2Err: Detected BINIT from a processor Nonfatal 1 **RWCST** 0 F1Err: Correctable ECC Error Nonfatal 0 **RWCST** 0 F0Err: Multi-Bit ECC Error Nonfatal

4.16.12 FSB{A/B}_NERR: FSB Next Fatal Error Register (D16, F2)

This register logs all FSB subsequent errors after the FERR_FSB has logged the 1st fatal error.

Device: Function Offset:	Function: 2				
Bit	Attr	Default	Description		
15:11	RV	0	Reserved		
10	RWCST	0	F10Err: FSB hang		
9	RWCST	0	F9Err: Data Parity Error (for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual-Core Intel® Xeon® processor 7000 sequence)		
8	RWCST	0	F8Err: Unsupported Front Side Bus Transaction		
7	RWCST	0	F7Err: FSB Protocol Error		
6	RWCST	0	F6Err: Data Strobe Glitch		
5	RWCST	0	F5Err: Address Strobe Glitch		
4	RWCST	0	F4Err: Request/Address Parity Error		
3	RWCST	0	F3NextErr: Detected MCERR		
2	RWCST	0	F2NextErr: Detected BINIT		
1	RWCST	0	F1NextErr: Correctable ECC Error		
0	RWCST	0	F0NextErr: Multi-Bit ECC Error		

4.16.13 RECFSB{A/B}_LOG: Recoverable FSB Error Log Register (D16, F2)

The following error log registers captures the syndrome information of the 32 bytes containing the data in which the data error was detected when a non-Fatal error is logged in the FSB_FERR register.

Device: 16 Function: 2 Offset: (84h - 87h), (A4h - A7h)						
Bit	Attr	Attr Default Description				
31:24	ROST	0h	SYNDROME1: Syndrome bits of 3rd clock of data			
23:16	ROST	0h	SYNDROME3: Syndrome bits of 4th clock of data			
15:8	ROST	0h	SYNDROME0: Syndrome bits of 1st clock of data			
7:0	ROST	0h	SYNDROME2: Syndrome bits of 2nd clock of data			

4.16.14 NRECFSB{A/B}_LOG0: Non-recoverable FSB Error Log 0 Register (D16, F2)

FSB Log registers for non-recoverable errors when a fatal error is logged in its corresponding FSB_FERR Register.

Device: 16 Function: 2 Offset: (88h - 8Bh), (A8h - ABh)							
Bit	Attr	Attr Default Description					
31:3	ROST	0h	ADDR: ADDRa[31:3] fields of the FSB				
2	ROST	0h	ADS: ADS field from the FSB				
1:0	ROST	0h	RCV_PARITY: Address parity received				

4.16.15 NRECFSB{A/B}_LOG1: Non-recoverable FSB Error Log 1 Register (D16, F2)

FSB Log registers for non-recoverable errors when a fatal error is logged in its corresponding FSB_FERR Register.

Device: Function Offset:	Function: 2						
Bit	Attr	Attr Default Description					
31:15	ROST	0h	ADDRB: ADDRb[19:3] fields of the FSB				
14	ROST	0	INFO				
13	ROST	0h	DROVE_ADS: Indicates whether the NB drove this ADS				
12:8	ROST	0h	REQA: REQa[4:0] fields of the FSB				
7:0	ROST	0h	ADDR: ADDRa[39:32] fields of the FSB				

4.16.16 NRECFSB{A/B}_LOG2: Non-recoverable FSB Error Log 2 Register (D16, F2)

FSB Log registers for non-recoverable errors when a fatal error is logged in its corresponding FSB_FERR Register.

Device: 16 Function: 2 Offset: (90h - 93h), (B0 - B3h)								
Bit	Attr	Attr Default Description						
31:25	RV	0h	Reserved					
24:20	ROST	0h	REQB: REQb[2:0] fields of the FSB					
19:0	ROST	0h	ADDRB: ADDRb[39:20] fields of the FSB					

4.16.17 EMASK_FSB{A/B}: FSB Error Mask Register (D16, F2)

A '0' in any field enables that error.

Device: Function Offset:	Function: 2					
Bit	Attr	Default	Description			
15:11	RV	0h	Reserved			
10	RW	1	F10Msk: FSB hang			
9	RW	1	F9MSK: Data Parity Error (for 64-bit Intel® Xeon® processor MP with 1MB L2 cache &)Dual-Core Intel® Xeon® processor 7000 sequence			
8	RW	1	F8Msk: Unsupported Front Side Bus Transaction			
7	RW	1	F7Msk: FSB Protocol Error			
6	RW	1	F6Msk: Data Strobe Glitch			
5	RW	1	F5Msk: Address Strobe Glitch			
4	RW	1	F4Msk: Request/Address Parity Error			
3	RW	1	F3Msk: Detected MCERR			
2	RW	1	F2Msk: Detected BINIT#			
1	RW	1	F1Msk: Correctable ECC Error			
0	RW	1	F0Msk: Multi-Bit ECC Error			

4.16.18 ERR0_FSB{A/B}: FSB Error 0 Mask Register (D16, F2)

This register enables the signaling of Err[0] when an error flag is set. Note that one and only one error signal should be enabled ERR0_FSB, ERR1_FSB, ERR2_FSB, MCERR_FSB, and ICHRST# for each of the corresponding bits.

Device: Function Offset:	Function: 2					
Bit	Attr	Default	Description			
15:11	RV	0h	Reserved			
10	RWST	0	F10Err0: FSB hang			
9	RWST	0	F9Err0: Data Parity Error (for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual-Core Intel® Xeon® processor 7000 sequence)			
8	RWST	0	F8Err0: Unsupported Front Side Bus Transaction			
7	RWST	0	F7Err0: FSB Protocol Error			
6	RWST	0	F6Err0: Data Strobe Glitch			
5	RWST	0	F5Err0: Address Strobe Glitch			
4	RWST	0	F4Err0: Request/Address Parity Error			

	Device: 16 Function: 2 Offset: (96h - 97h), (B6h - B7h)					
Bit	Attr	Attr Default Description				
3	RWST	0	F3Err0: Detected MCERR			
2	RWST	0	F2Err0: Detected BINIT#			
1	RWST	0	F1Err0: Correctable ECC Error			
0	RWST	0	F0Err0: Multi-Bit ECC Error			

4.16.19 ERR1_FSB{A/B}: FSB Error 1 Mask Register (D16, F2)

This register enables the signaling of Err[1] when an error flag is set. Note that one and only one error signal should be enabled ERR0_FSB, ERR1_FSB, ERR2_FSB, MCERR_FSB, and ICHRST# for each of the corresponding bits.

Device: Function Offset:	Function: 2				
Bit	Attr	Default	Description		
15:11	RV	0h	Reserved		
10	RWST	0	F10Err1: FSB hang		
9	RWST	0	F9Err1: Data Parity Error (for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual-Core Intel® Xeon® processor 7000 sequence)		
8	RWST	0	F8Err1: Unsupported Front Side Bus Transaction		
7	RWST	0	F7Err1: FSB Protocol Error		
6	RWST	0	F6Err1: Data Strobe Glitch		
5	RWST	0	F5Err1: Address Strobe Glitch		
4	RWST	0	F4Err1: Request/Address Parity Error		
3	RWST	0	F3Err1: Detected MCERR		
2	RWST	0	F2Err1: Detected BINIT#		
1	RWST	0	F1Err1: Correctable ECC Error		
0	RWST	0	F0Err1: Multi-Bit ECC Error		

4.16.20 ERR2_FSB{A/B}: FSB Error 2 Mask Register (D16, F2)

This register enables the signaling of Err[2] when an error flag is set. Note that one and only one error signal should be enabled ERR0_FSB, ERR1_FSB, ERR2_FSB, MCERR_FSB, and ICHRST# for each of the corresponding bits.

Device: Function Offset:	Function: 2				
Bit	Attr	Default	Description		
15:11	RV	0h	Reserved		
10	RWST	0	F10Err2: FSB hang		
9	RWST	0	F9Err2: Data Parity Error (for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual-Core Intel® Xeon® processor 7000 sequence)		
8	RWST	0	F8Err2: Unsupported Front Side Bus Transaction		
7	RWST	0	F7Err2: FSB Protocol Error		
6	RWST	0	F6Err2: Data Strobe Glitch		
5	RWST	0	F5Err2: Address Strobe Glitch		
4	RWST	0	F4Err2: Request/Address Parity Error		
3	RWST	0	F3Err2: Detected MCERR		
2	RWST	0	F2Err2: Detected BINIT#		
1	RWST	0	F1Err2: Correctable ECC Error		
0	RWST	0	F0Err2: Multi-Bit ECC Error		

4.16.21 MCERR_FSB{A/B}: FSB MCERR Mask Register (D16, F2)

This register enables the signaling of MCERR when an error flag is set. Note that one and only one error signal should be enabled ERR0_FSB, ERR1_FSB, ERR2, MCERR_FSB, and ICHRST# for each of the corresponding bits.

Device: Function Offset:	Function: 2				
Bit	Attr	Default	Description		
15:11	RV	0h	Reserved		
10	RW	0	F10MCErr: FSB hang		
9	RW	0	F9MCErr: Data Parity Error (for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual-Core Intel® Xeon® processor 7000 sequence)		
8	RW	0	F8MCErr: Unsupported Front Side Bus Transaction		
7	RW	0	F7MCErr: FSB Protocol Error		
6	RW	0	F6MCErr: Data Strobe Glitch		
5	RW	0	F5MCErr: Address Strobe Glitch		

Device: 16 Function: 2 Offset: (9Ch - 9Dh), (BC - BDh)					
Bit	Attr	Default	Description		
4	RW	0	F4MCErr: Request/Address Parity Error		
3	RW	0	F3MCErr: Detected MCERR		
2	RW	0	F2MCErr: Detected BINIT#		
1	RW	0	F1MCErr: Correctable ECC Error		
0	RW	0	F0MCErr: Multi-Bit ECC Error. Set for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual-Core Intel® Xeon® processor 7000 sequence.		

4.16.22 ICHRST_FSB{A/B}: FSB ICHRST Mask Register (D16, F2)

This register enables the signaling of ICHRST# when an error flag is set. Note that one and only one error signal should be enabled ERR0_FSB, ERR1_FSB, ERR2, MCERR_FSB, and ICHRST# for each of the corresponding bits.

Device: Function Offset:	Function: 2					
Bit	Attr	Default	Description			
15:11	RV	0h	Reserved			
10	RW	0	F10Rst: FSB hang			
9	RW	0	F9Rst: Data Parity Error (for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual-Core Intel® Xeon® processor 7000 sequence)			
8	RW	0	F8Rst: Unsupported Front Side Bus Transaction			
7	RW	0	F7Rst: FSB Protocol Error			
6	RW	0	F6Rst: Data Strobe Glitch			
5	RW	0	F5Rst: Address Strobe Glitch			
4	RW	0	F4Rst: Request/Address Parity Error			
3	RW	0	F3Rst: Detected MCERR			
2	RW	0	F2Rst: Detected BINIT#			
1	RW	0	F1Rst: Correctable ECC Error			
0	RW	0	F0Rst: Multi-Bit ECC Error			

4.16.23 INT_FERR: Internal First Fatal Error Register (D16, F2)

INT_FERR latches the first NB internal error, whether fatal or non-fatal. All subsequent errors get logged in the INT_NERR.

Device: Function Offset:	16 n: 2 C1h		
Bit	Attr	Default	Description
7	RWCST	0	T2Err: Uncorrectable Memory Error Non-fatal Error Signaled by the NB after a request returns uncorrectable data at least 2 times from an IMI. This error is signaled only after any reconstruction efforts made by RAID or Mirroring logic (if enabled) have also attempted to reconstruct the data. Since poison is maintained, this error is considered non-fatal.
6	RWCST	0	T4Err: Coherency Violation Error Fatal
5	RWCST	0	T3Err: Multi-Tag Hit from CDC Fatal. Not detected.
4	RWCST	0	T8Err: Poison leaving a poison domain Fatal An uncorrectable error marked as poison is leaving an error detection domain and no longer has an indication that the data is incorrect.
3	RWCST	0	T7Err: UnCorrectable Data Error during a Re-silvering Process Non-fatal
2	RWCST	0	T6Err: Poison being passed on to another poison capable domain Non-fatal
1	RWCST	0	T5Err: Address Map Error Non-fatal
0	RWCST	0	T1Err: Correctable ECC Error Non-fatal

4.16.24 INT_NERR: Internal Next Fatal Error Register (D16, F2)

For details on errors listed on this table, refer to the Table 6-39 "Errors Detected by the NB" on page 328.

Device: Function Offset:	16 n: 2 C3h		
Bit	Attr	Default	Description
7	RWCST	0	T2Err: Uncorrectable Memory Error
6	RWCST	0	T4NextErr: Coherency Violation Error Fatal
5	RWCST	0	T3NextErr: Multi-Tag Hit from CDC Fatal. Not detected.
4	RWCST	0	T8NextErr: Poison leaving a poison domain
3	RWCST	0	T7NextErr: UnCorrectable Data Error during a Re-silvering Process Non-fatal
2	RWCST	0	T6Err: Poison being passed on to another poison capable domain Non-fatal
1	RWCST	0	T5NextErr: Address Map Error Non-fatal
0	RWCST	0	T1NextErr: Correctable ECC Error Non-fatal

4.16.25 NRECNB: Non-recoverable NB Error Log Register (D16, F2)

Device: 16 Function: 2 Offset: C4h - C7h				
Bit	Attr	Default	Description	
31:7	RV	0000h	Reserved	
6:0	ROST	0h	FailedCdcld: CDC Entry of Failed Location	

4.16.26 RECNB: Recoverable NB Data Log Register (D16, F2)

Device: 16 Function: 2 Offset: C8h - CBh				
Bit	Attr	Default	Description	
31:7	RV	0h	Reserved	
6:0	ROST	0h	FailedCdcld: CDC Entry of Failed Location	

4.16.27 EMASK_INT: Internal Error Mask Register (D16, F2)

For details on errors listed on this table, refer to the Table 6-39 "Errors Detected by the NB" on page 328. A '0' in any field enables that error.

Device: Function Offset:	16 n: 2 CCh		
Bit	Attr	Default	Description
7	RW	1	T2Msk: Uncorrectable Memory Error
			Signaled by the NB after a request returns uncorrectable data at least 2 times from an IMI. This error is signaled only after any reconstruction efforts made by RAID or Mirroring logic (if enabled) have also attempted to reconstruct the data. Since poison is maintained, this error is considered non-fatal.
6	RW	1	T4Msk: Coherency Violation Error
5	RV	0	Reserved
4	RW	1	T8Msk: Poison leaving a poison domain
			Must be set if ECC disabled. Set for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual-Core Intel® Xeon® processor 7000 sequence .
3	RW	1	T7Msk: UnCorrectable Data Error during a Re-silvering Process
2	RW	1	T6Msk: Poison being passed on to another poison capable domain
			Must be set if ECC disabled. Set for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual-Core Intel® Xeon® processor 7000 sequence .
1	RW	1	T5Msk: Address Map Error
0	RW	1	T1Msk: Correctable ECC Error
			Must be set if ECC disabled. Set for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual-Core Intel® Xeon® processor 7000 sequence .

4.16.28 ERR0_INT: Internal Error 0 Mask Register (D16, F2)

This register enables the signaling of Err[0] when an error flag is set. Note that one and only one error signal should be enabled. Note that one and only one error signal should be enabled in the ERR0_INT, ERR1_INT, ERR2_INT, and MCERR_INT for each of the corresponding bits.

Device: Function Offset:	16 : 2 D0h		
Bit	Attr	Default	Description
7	RWST	0	T2Err0: Uncorrectable Memory Error
6	RWST	0	T4Err0: Coherency Violation Error
5	RV	0	Reserved
4	RWST	0	T8Err0: Poison leaving a poison domain
3	RWST	0	T7Err0: UnCorrectable Data Error during a Re-silvering Process
2	RWST	0	T6Err: Poison being passed on to another poison capable domain
1	RWST	0	T5Err0: Address Map Error
0	RWST	0	T1Err0: Correctable ECC Error

4.16.29 ERR1_INT: Internal Error 1 Mask Register (D16, F2)

This register enables the signaling of Err[1] when an error flag is set. Note that one and only one error signal should be enabled. Note that one and only one error signal should be enabled in the ERR0_INT, ERR1_INT, ERR2_INT, and MCERR_INT for each of the corresponding bits.

Device: Function Offset:	16 : 2 D1h		
Bit	Attr	Default	Description
7	RWST	0	T2Err1: Uncorrectable Memory Error
6	RWST	0	T4Err1: Coherency Violation Error
5	RWST	0	T3Err1: Multi-Tag Hit from CDC
4	RWST	0	T8Err1: Poison leaving a poison domain
3	RWST	0	T7Err1: UnCorrectable Data Error during a Re-silvering Process
2	RWST	0	T6Err: Poison being passed on to another poison capable domain
1	RWST	0	T5Err1: Address Map Error
0	RWST	0	T1Err1: Correctable ECC Error

4.16.30 ERR2_INT: Internal Error 2 Mask Register (D16, F2)

This register enables the signaling of Err[2] when an error flag is set. Note that one and only one error signal should be enabled. Note that one and only one error signal should be enabled in the ERR0_INT, ERR1_INT, ERR2_INT, and MCERR_INT for each of the corresponding bits.

Device: Function Offset:	16 n: 2 D2h		
Bit	Attr	Default	Description
7	RWST	0	T2Err2: Uncorrectable Memory Error
6	RWST	0	T4Err2: Coherency Violation Error
5	RWST	0	T3Err2: Multi-Tag Hit from CDC
4	RWST	0	T8Err2: Poison leaving a poison domain
3	RWST	0	T7Err2: UnCorrectable Data Error during a Re-silvering Process
2	RWST	0	T6Err: Poison being passed on to another poison capable domain
1	RWST	0	T5Err2: Address Map Error
0	RWST	0	T1Err2: Correctable ECC Error

4.16.31 MCERR_INT: Internal MCERR Mask Register (D16, F2)

This register enables the signaling of MCERR when an error flag is set. Note that one and only one error signal should be enabled. Note that one and only one error signal should be enabled in the ERRO_INT, ERR1_INT, ERR2_INT, and MCERR_INT for each of the corresponding bits.

Device: Function Offset:	16 n: 2 D3h		
Bit	Attr	Default	Description
7	RWST	0	T2MCErr: Uncorrectable Memory Error
6	RWST	0	T4MCErr: Coherency Violation Error
5	RWST	0	T3MCErr: Multi-Tag Hit from CDC
4	RWST	0	T8MCErr: Poison leaving a poison domain
3	RWST	0	T7MCErr: UnCorrectable Data Error during a Re-silvering Process
2	RWST	0	T6MCErr: Poison being passed on to another poison capable domain
1	RWST	0	T5MCErr: Address Map Error
0	RWST	0	T1MCErr: Correctable ECC Error

4.16.32 RECINT_LOG0: Recoverable Internal Error Log 0 Register (D16, F2)

The following error log registers capture information about the transaction or access that encountered an internal NB error when a non-Fatal or a Fatal error is logged in the INT_FERR or when certain errors are logged in the IMI_FERR or IMI_ NERR registers.

Device: 16 Function: 2 Offset: D8h - DBh				
Bit	Attr	Default	Description	
31:6	RWST	0h	ADDR31T6: Bits [31:6] of the address	
5:2	RWST	0h	ADDR5T2: Bits [5:2] of the address	
1	RWST	0	WRITE: '1' if the access was a write	
0	RWST	0	DRAM: '1' if the access mapped to DRAM	

4.16.33 RECINT_LOG1: Recoverable Internal Error Log 1 Register (D16, F2)

The following error log registers captures information about the transaction or access that encountered an internal NB error when a non-Fatal or a Fatal error is logged in the INT_FERR.

Device: 16 Function: 2 Offset: DCh - DFh				
Bit	Attr	Default	Description	
31:24	RWST	0h	TAGRAM	
			Zero padded, cpip_rq4_readinfo_ff[top:96]	
23	RWST	0	GOTDATA	
			Internal indication of the status of the line in the internal cache.	
22	RWST	0	NP: Non-Posted	
			'1' if non-posted.	
21	RWST	0	BURN:	
			'1' if the entry was bypassed from an FSB but not used.	
20	RV	0	Reserved	
19:16	RWST	0h	IWB_CNT:	
			How many IWB's were still needed.	
15	RV	0	Reserved	
14:8	RWST	0h	CDCID	
7:0	RWST	0	ADDR39T32: Bits [39:32] of the address	

4.16.34 RECINT_LOG2: Recoverable Internal Error Log 2 Register (D16, F2)

The following error log registers captures information about the transaction or access that encountered an internal NB error when a non-Fatal or a Fatal error is logged in the INT_FERR.

	Device: 16 Function: 2 Offset: E0h - E3h				
Bit	Attr	Default	Description		
31:0	RWST	0000h	TAGRAM cpip_rq4_readinfo_ff[31:0]		

4.16.35 RECINT_LOG3: Recoverable Internal Error Log 3 Register (D16, F2)

The following error log registers captures information about the transaction or access that encountered an internal NB error when a non-Fatal or a Fatal error is logged in the INT_FERR.

	Device: 16 Function: 2 Offset: E4h - E7h			
Bit	Attr	Default	Description	
31:0	RWST	0000h	TAGRAM cpip_rq4_readinfo_ff[63:32]	

4.16.36 RECINT_LOG4: Recoverable Internal Error Log 4 Register (D16, F2)

The following error log registers captures information about the transaction or access that encountered an internal NB error when a non-Fatal or a Fatal error is logged in the INT_FERR.

Device: 16 Function: 2 Offset: E8h - EBh						
Bit	Attr	Attr Default Description				
31:0	RWST	0000h	TAGRAM cpip_rq4_readinfo_ff[95:64]			

4.16.37 INTLOGC: Internal Error Log Control (D16, F2)

The following error log registers controls error logging of the internal error log registers RECINT_LOG[4:0].

Device: Function Offset:	16 n: 2 ECh - I	E F h		
Bit	Attr	Default	Description	
31	RWST	0	Valid: '1' if the error logs are valid	
30:24	RV	0	Reserved	
23	RO	0	TRIG: Set if a log is currently being made. (Logs are expected to change in a few clocks.)	
22:16	RO	0	TRIG_CDCID: If set, the bit indicates the CDCID that will be logged. Could be inaccurate if a previously logged recoverable error exists, but the current logging is being done for a non-recoverable error.	
15	RWST	0	NREC: Enables non-recoverable error logging. Cleared by hardware after logging a non-recoverable error and REARM is clear.	
14	RWST	0	REC: Enables recoverable error logging. Cleared by hardware after logging a recoverable error and REARM is clear.	
13	RWST	0	DIAG: Enables diagnostic logging. Cleared by hardware when logging finished.	
12	RWST	0	REARM: When clear, hardware will log one error of one type, then clear the appropriate enable bit and not log further errors of the same severity.	
11:8	RWST	0	GLOB_EV: Set to enable logging on a global event. Hardware clears on any of global event, recoverable, or non-recoverable error logged unless REARM set.	
7	RWST	0	DEBUG: Set to cause information from the DEBUG_CDCID from CCAM to be logged instead information from the INTLOGC.CDCIC.	
6:0	RWST	0	CDCID: CDCID to log information for when DEBUG field clear.	

4.17 Miscellaneous (Device 17, Function 0)

4.17.1 VID: Vendor Identification Register (D17, F0)

This register identifies Intel as the manufacturer of the NB. Writes to this register have no effect.

Device Function Offset:	ction: 0		
Bit	Attr	Default	Description
15:0	RO	8086h	Vendor Identification Number The value assigned to Intel.

4.17.2 DID: Device Identification Register (D17, F0)

This register combined with the Vendor Identification register uniquely identifies the NB Function in the event that a driver is required. Writes to this register have no effect.

Device Function Offset:	Function: 0			
Bit	Attr	Default	Description	
15:0	RO	2613h	Device Identification Number Identifies each function of the NB.	

4.17.3 RID: Revision Identification Register (D17, F0)

This register contains the revision number of the Intel® E8501 chipset North Bridge (NB).

Device Function Offset:	on: 0	1	
Bit	Attr	Default	Description
7:4	RO	0h	Major_rev: Major Revision Steppings which require all masks to be regenerated. 1: B stepping
3:0	RO	Oh	Minor_rev: Minor Revision Incremented for each stepping which does not modify all masks. Reset for each major revision. 0: x0 stepping 1: x1 stepping 2: x2 stepping

4.17.4 CCR: Class Code Register (D17, F0)

This register contains the Class Code for the device.

Function	Device 17 Function: 0 Offset: 09 - 0Bh						
Bit	Attr	Default	Description				
23:16	RO	06h	BaseClass: Base Class. This field indicates the general device category. For the NB, this field is hardwired to 06h, indicating it is a "Bridge Device".				
15:8	RO	00h	SubClass: Sub-Class. This field qualifies the Base Class, providing a more detailed specification of the device function. For this device default is 00h, indicating "Host Bridge".				
7:0	RO	00h	RLPI: Register-Level Programming Interface. This field identifies a specific programming interface (if any), that device independent software can use to interact with the device. There are no such interfaces defined for "Host Bridge" types, and this field is hardwired to 00h.				

4.17.5 HDR: Header Type Register (D17, F0)

This register identifies the header layout of the configuration space.

Device 17 Function: 0 Offset: 0Eh						
Bit	Attr	Default	Description			
7	RO	1	Mfd: Multi-function Device. Selects whether this is a multi-function device, that may have alternative configuration layouts.			
6:0	RO	00h	CfgLayout: Configuration Layout. This field identifies the format of the configuration header layout for a PCI-to-PCI bridge from bytes 10h through 3Fh. For this device default is 00h, indicating a conventional type 00h PCI header.			

4.17.6 SVID: Subsystem Vendor Identification Register (D17, F0)

This register identifies the manufacturer of the system. This 16-bit register combined with the Device Identification Register uniquely identifies any PCI device.

Device Function Offset:	on: 0	h	
Bit	Attr	Default	Description
15:0	RWO	8086h	VIN: Vendor Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to a byte will have no effect.

4.17.7 SID: Subsystem Identity (D17, F0)

This register identifies the system.

Device 17 Function: 0 Offset: 2Eh - 2Fh					
Bit	Attr	Default	Description		
15:0	RWO	8086h	SID: Subsystem Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to a byte will have no effect.		

4.17.8 FSBDC[A]: Front Side Bus Data Control (D17, F0)

This register controls the Front Side Buses. There is one register for each bus and they must be programmed identically.

Device: Function Offset:	17 : 0 A4h		
Bit	Attr	Default	Description
31:5	RV	XX	Reserved.
4	RW	0	POISONON: Enable poison generation. Must be set for 64-bit Intel® Xeon® processor MP with up to 8MB L3 cache

Device: Function Offset:	17 n: 0 A4h		
Bit	Attr	Default	Description
3	RW	0	PARCHKEN:
			1: Enable DP[3:0] checking. Must be set for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual-Core Intel® Xeon® processor 7000 sequence support.
2	RW	0	ECCCHKEN:
			1: Enable ECC check and correct. Must be set for 64-bit Intel® Xeon® processor MP with up to 8MB L3 cache.
1	RW	1	DRVECC:
			1: Drive DEP[7:0] onto FSB. Must be set for 64-bit Intel® Xeon® processor MP with up to 8MB L3 cache.
0	RW	0	DRVPAR:
			1: Drive DP[3:0] parity bits onto FSB. Must be set for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual-Core Intel® Xeon® processor 7000 sequence support.

4.17.9 FSB[A]AC2: Front Side Bus Control2 (D17,F0)

This is the second register for controlling the Front Side Buses. There is one register for each bus and they must be programmed identically.

Device: 17 Function: 0 Offset: B0h						
Bit	Attr	Default	Description			
31:24	RV	XXX	Reserved			
23:20	RW	6h	CMPL_LIMIT: CMPLQ high water mark Suggested Value: 5h			
19:0	RV	XXX	Reserved			

4.17.10 FSB[A]AC: Front Side Bus Control (D17, F0)

This register controls the Front Side Buses. There is one register for each bus and they must be programmed identically.

Device: Function Offset:	17 : 0 B8h		
Bit	Attr	Default	Description
31:27	RV	XX	Reserved.
26	RW	0	CPUREQ_EXT: BPRI Optimization Enable 1: Enables CPU to get another transaction onto the bus if a BREQ change occurred. Helps get more BWL/BWL back to back cases possible. Suggested Value: 1 for 64-bit Intel® Xeon® processor MP. O for Dual-Core Intel® Xeon® processor 7000 sequence
25:15	RV	XX	Reserved.
14	RW	0	ARB_ADS: ADS Arbitration Optimization Enable 0: The NB doesn't look at ADS to BPRI the bus faster. 1: The NB can take ADS into account to BPRI the bus faster. Suggested Value: 1
13	RW	0	 ARB_BREQ: Arbitration Streaming Optimization Enable 0: The NB will not use the BREQ# pins to drive ADS# early. 1: The NB will observe BREQ# to determine when the processor is requesting the bus. When no processor is requesting the bus, the NB (priority agent) may drive ADS# one cycle after it drives BPRI#. Suggested Value: 1 for 64-bit Intel® Xeon® processor MP, 0 for Dual-Core Intel® Xeon® processor 7000 sequence
12:8	RV	XX	Reserved.
7	RW	0	DPSDIS: Disable Enhanced Defer 0: The NB will listen to DPS# and can complete transactions with IDS#. Only if strapped for 64-bit Intel® Xeon® processor MP with up to 8MB L3 cache 1: The NB will complete deferred transactions with Deferred Reply rather than IDS#.
6	RW	0	MEDEN: Modified Enhanced Defer Enable 0: The NB will assert OOD# at the same time as IDS#. 1: The NB may assert OOD# later than IDS#. Should be set for 64-bit Intel® Xeon® processor MP with up to 8MB L3 cache
5:0	RW	2Dh	CRQDEPTH: Snoop Request Queue Depth The NB will assert flow control when the CRQ reaches this threshold. Suggested Value: 1Dh

4.18 Miscellaneous (Device 17, Function 1)

4.18.1 VID: Vendor Identification Register (D17, F1)

This register identifies Intel as the manufacturer of the NB. Writes to this register have no effect.

Device Function Offset:	17 : 1 00 - 0)1h		
Bit	Attr	Default	Description	
15:0	RO	8086h	Vendor Identification Number The value assigned to Intel.	

4.18.2 DID: Device Identification Register (D17, F1)

This register combined with the Vendor Identification register uniquely identifies the NB Function in the event that a driver is required. Writes to this register have no effect.

Device Function Offset:	Function: 1				
Bit	Attr	Default	Description		
15:0	RO	2614h	Device Identification Number Identifies each function of the NB.		

4.18.3 RID: Revision Identification Register (D17, F1)

This register contains the revision number of the Intel® E8501 chipset North Bridge (NB).

Device 17 Function: 1 Offset: 08h					
Bit	Attr	Default	Description		
7:4	RO	0h	Major_rev: Major Revision Steppings which require all masks to be regenerated. 1: B stepping		
3:0	RO	Oh	Minor_rev: Minor Revision Incremented for each stepping which does not modify all masks. Reset for each major revision. 0: x0 stepping 1: x1 stepping 2: x2 stepping		

4.18.4 CCR: Class Code Register (D17, F1)

This register contains the Class Code for the device.

Device 17 Function: 1 Offset: 09 - 0Bh						
Bit	Attr	Default	Description			
23:16	RO	06h	BaseClass: Base Class This field indicates the general device category. For the NB, this field is hardwired to 06h, indicating it is a "Bridge Device".			
15:8	RO	00h	SubClass: Sub-Class This field qualifies the Base Class, providing a more detailed specification of the device function. For this device default is 00h, indicating "Host Bridge".			
7:0	RO	00h	RLPI: Register-Level Programming Interface This field identifies a specific programming interface (if any), that device independent software can use to interact with the device. There are no such interfaces defined for "Host Bridge" types, and this field is hardwired to 00h.			

4.18.5 HDR: Header Type Register (D17, F1)

This register identifies the header layout of the configuration space.

Device 17 Function: 1 Offset: 0Eh						
Bit	Attr	Default	Description			
7	RO	1	Mfd: Multi-function Device			
			Selects whether this is a multi-function device, that may have alternative configuration layouts.			
6:0	RO	00h	CfgLayout: Configuration Layout			
			This field identifies the format of the configuration header layout for a PCI-to-PCI bridge from bytes 10h through 3Fh.			
			For this device default is 00h, indicating a conventional type 00h PCI header.			

4.18.6 SVID: Subsystem Vendor Identification Register (D17, F1)

This register identifies the manufacturer of the system. This 16-bit register combined with the Device Identification Register uniquely identifies any PCI device.

Functi	Device 17 Function: 1 Offset: 2Ch					
Bit	Attr	Default	Description			
15:0	RWO	8086h	VIN: Vendor Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to a byte will have no effect.			

4.18.7 SID: Subsystem Identity (D17, F1)

This register identifies the system.

Device 17 Function: 1 Offset: 2Eh - 2Fh				
Bit	Attr	Default	Description	
15:0	RWO	8086h	SID: Subsystem Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to a byte will have no effect.	

4.18.8 FSBDC[B]: Front Side Bus Data Control (D17, F1)

This register controls the Front Side Buses. There is one register for each bus and they must be programmed identically.

Device: Function Offset:	17 n: 1 A4h		
Bit	Attr	Default	Description
31:5	RV	XX	Reserved.
4	RW	0	POISONON: Enable poison generation. Must be set for 64-bit Intel® Xeon® processor MP with up to 8MB L3 cache.
3	RW	0	PARCHKEN: 1: Enable DP[3:0] checking. Must be set for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual-Core Intel® Xeon® processor 7000 sequence support.
2	RW	0	ECCCHKEN: 1: Enable ECC check and correct. Must be set for 64-bit Intel® Xeon® processor MP with up to 8MB L3 cache.
1	RW	1	DRVECC: 1: Drive DEP[7:0] onto FSB. Must be set for 64-bit Intel® Xeon® processor MP with up to 8MB L3 cache.
0	RW	0	DRVPAR: 1: Drive DP[3:0] parity bits onto FSB. Must be set for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual-Core Intel® Xeon® processor 7000 sequence support.

4.18.9 FSB[B]AC2: Front Side Bus Control2 (D17, F1)

This is the second register for controlling the Front Side Buses. There is one register for each bus and they must be programmed identically.

Device: 17 Function: 1 Offset: B0h					
Bit	Attr	Default	Description		
31:24	RV	XXX	Reserved		
23:20	RW	6h	CMPL_LIMIT: CMPLQ high water mark.		
			Suggested Value: 5h		
19:0	RV	xxx	Reserved		

4.18.10 FSB[B]AC: Front Side Bus Control (D17, F1)

This register controls the Front Side Buses. There is one register for each bus and they must be programmed identically.

Device: Function Offset:	17 : 1 B8h		
Bit	Attr	Default	Description
31:27	RV	XX	Reserved.
26	RW	0	CPUREQ_EXT: BPRI Optimization Enable
			Enables CPU to get another transaction onto the bus if a BREQ change occurred. Helps get more BWL/BWL back to back cases possible.
			Suggested Value: 1
25:15	RV	XX	Reserved.
14	RW	0	ARB_ADS: ADS Arbitration Optimization Enable
			0: The NB doesn't look at ADS to BPRI the bus faster.
			1: The NB can take ADS into account to BPRI the bus faster.
			Suggested Value: 1
13	RW	0	ARB_BREQ: Arbitration Streaming Optimization Enable
			0: The NB will not use the BREQ# pins to drive ADS# early.
			The NB will observe BREQ# to determine when the processor is requesting the bus. When no processor is requesting the bus, the NB (priority agent) may drive ADS# one cycle after it drives BPRI#. Suggested Value: 1

Device: Function Offset:	17 : 1 B8h		
Bit	Attr	Default	Description
12:8	RV	XX	Reserved.
7	RW	0	DPSDIS: Disable Enhanced Defer
			0: The NB will listen to DPS# and can complete transactions with IDS#. Only if strapped for 64-bit Intel® Xeon® processor MP with up to 8MB L3 cache.
			The NB will complete deferred transactions with Deferred Reply rather than IDS#.
6	RW	0	MEDEN: Modified Enhanced Defer Enable
			0: The NB will assert OOD# at the same time as IDS#.
			The NB may assert OOD# later than IDS#. Should be set for 64-bit Intel® Xeon® processor MP with up to 8MB L3 cache.
5:0	RW	2Dh	CRQDEPTH: Snoop Request Queue Depth
			The NB will assert flow control when the CRQ reaches this threshold.
			Suggested Value: 1Dh

4.18.11 EXP_GCTRL: PCI Express Global Control Register

This 32-bit global register in the NB implements chipset specific operations for generalized control of all PCI Express events and activity such as Power Management. There is only one register for all PCI Express ports.

Device: Function Offset:	17 : 1 DCh		
Bit	Attr	Default	Description
31:16	RV	0	Reserved.
15:2	RV	3FFFh	Reserved.
1	RWST	0	PME_TURN_OFF: Send PME Turn Off Message ^a When set, the NB will issue a PME Turn Off Message to all enabled PCI Express ports. The NB will clear this bit once the Message is sent.
0	RWC	0	PME_TO_ACK: Received PME Time Out Acknowledge Message ^a The NB sets this bit when it receives a PME TO_ACK Message from all enabled PCI Express ports. Software will clear this bit when it handles the Acknowledge.

NOTES:

a. Note that PME_TURN_OFF and PME_TO_ACK bits are defined in the EXP_GCTRL register (global) since the intent was to have one and only one of these status bits unique for all the seven PCI Express ports in the NB.

4.19 Miscellaneous (Device 17, Function 2)

4.19.1 VID: Vendor Identification Register (D17, F2)

This register identifies Intel as the manufacturer of the NB. Writes to this register have no effect.

Device Function Offset:	nction: 2				
Bit	Attr	Default	Description		
15:0	RO	8086h	Vendor Identification Number The value assigned to Intel.		

4.19.2 DID: Device Identification Register (D17, F2)

This register combined with the Vendor Identification register uniquely identifies the NB Function in the event that a driver is required. Writes to this register have no effect.

Device 17 Function: 2 Offset: 02 - 03h				
Bit	Attr	Default	Description	
15:0	RO	2615h	Device Identification Number Identifies each function of the NB.	

4.19.3 RID: Revision Identification Register (D17, F2)

This register contains the revision number of the Intel® E8501 chipset North Bridge (NB).

Device Function Offset:	on: 2	1	
Bit	Attr	Default	Description
7:4	RO	0h	Major_rev: Major Revision Steppings which require all masks to be regenerated. 1: B stepping
3:0	RO	Oh	Minor_rev: Minor Revision Incremented for each stepping which does not modify all masks. Reset for each major revision. 0: x0 stepping 1: x1 stepping 2: x2 stepping

4.19.4 CCR: Class Code Register (D17, F2)

This register contains the Class Code for the device.

Device Function Offset:	on: 2	- 0Bh	
Bit	Attr	Default	Description
23:16	RO	06h	BaseClass: Base Class
			This field indicates the general device category. For the NB, this field is hardwired to 06h, indicating it is a "Bridge Device".
15:8	RO	00h	SubClass: Sub-Class
			This field qualifies the Base Class, providing a more detailed specification of the device function.
			For this device default is 00h, indicating "Host Bridge".
7:0	RO	00h	RLPI: Register-Level Programming Interface
			This field identifies a specific programming interface (if any), that device independent software can use to interact with the device. There are no such interfaces defined for "Host Bridge" types, and this field is hardwired to 00h.

4.19.5 HDR: Header Type Register (D17, F2)

This register identifies the header layout of the configuration space.

Functi	Device 17 Function: 2 Offset: 0Eh				
Bit	Attr	Default	Description		
7	RO	1	Mfd: Multi-function Device Selects whether this is a multi-function device, that may have alternative configuration layouts.		
6:0	RO	00h	CfgLayout: Configuration Layout This field identifies the format of the configuration header layout for a PCI-to-PCI bridge from bytes 10h through 3Fh. For this device default is 00h, indicating a conventional type 00h PCI header.		

4.19.6 SVID: Subsystem Vendor Identification Register (D17, F2)

This register identifies the manufacturer of the system. This 16-bit register combined with the Device Identification Register uniquely identifies any PCI device.

Device Functi Offset:	on: 2	h		
Bit	Attr	Default	Description	
15:0	RWO	8086h	VIN: Vendor Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to a byte will have no effect.	

4.19.7 SID: Subsystem Identity (D17, F2)

This register identifies the system.

Device Function Offset:	on: 2	- 2Fh	
Bit	Attr	Default	Description
15:0	RWO	8086h	SID: Subsystem Identification Number The default value specifies Intel. Each byte of this register will be writable once. Second and successive writes to a byte will have no effect.

4.19.8 IMI_HPTIM: Independent Memory Interface Hot Plug Timer (D17, F2)

This register is reserved for IMI Hot Plug and Redundancy Recovery Software. The timings produced by this register are based on a 166 MHz FSB clock rate. The values must be scaled appropriately for other frequencies. As opposed to the other Hot Plug Registers, there is only one of these registers.

Device: Function Offset:	17 n: 2 B0h				
Bit	Attr	Default	Description		
31:17	RV	0h	Reserved.		
16	RWC	0	TIMER: Timer Interrupt This bit is set whenever IMI_HPINT is asserted due to this register. This bit should be inspected by software whenever it handles an MP Hot-Plug Interrupt. Software must clear this bit by writing a 1 to it.		
15	RW	0	ENABLE: Interrupt Enable		
			When set, IMI_HPINT is asserted when the count elapses.		
14:5	RW	000h	COUNT: The maximum number of 12.5 ms intervals that will elapse between setting the ENABLE bit and IMI_HPINT is asserted. The delay will be between 12.582912*(COUNT-1) and 12.582912*COUNT. The maximum delay is 12.8 seconds.		
4:0	RW	0h	PRESCALE: This field defines the number of FSB clocks before the COUNT field is decremented. COUNT is decremented every 2PRESCALE clocks. Values other than 21 (15h) should be used for validation purposes only.		

4.19.9 REDUN: Memory Redundancy Control (D17, F2)

This register enables RAID and Mirroring as described in Section 6.3.5.1, "Memory Mirroring" and Section 6.3.5.2, "Memory RAID".

Device: Function Offset:	17 : 2 B4h			
Bit	Attr	Default	Description	
31:19	RV	0	Reserved	
18	RW	0	HCP: HardCode Poison When set by software, overwrite uncorrectable memory data with hardcoded value for poison. Reduces debug visibility. Must be set: 1h	
17	RW	0	SD: Scrub Disable When set, disables raid/mirror scrub operation when memory returns uncorrectable data.	
16	RW	0	RF: Retry Forever When set, the NB will not time out due to retries to the IMI links.	
15:2	RV	0	Reserved	
1	RW	0	RAID: RAID Mode Enabled When this bit is set, parity is calculated across sets of 3 cache lines that appear on different IMIs and stored in the fourth IMI. If any IMI fails, the NB will reconstruct the data from the other 3 IMIs.	
0	RW	0	MIRROR: Mirroring Enabled	
			The IMIR registers change how memory reads and writes are performed in mirroring mode, but this bit is set by software to enable secondary aspects of mirroring (such as error detection). Software must set this bit before the NB can handle any memory accesses to mirrored memory.	
			When this bit is set, every IMI is paired with another and data is written to both. If one IMI fails, the NB will deliver data from the other. This bit must be set whenever firmware allows memory accesses and IMIR[j].IMG0WAY[i] != IMIR[j].IMG1WAY[i] for all i=0-3 and j=0-5. If this bit is not set, proper error sequencing is not guaranteed.	

5 System Address Map

This chapter describes the system address maps in memory space, I/O space, and PCI configuration register map.

5.1 Memory Map

The Intel® E8501 chipset platform supports 40 bits of memory address space. All key components and interfaces also support the 40-bit address space.

- The 64-bit Intel[®] Xeon[®] processor MP provides address bits for a 40-bit address space.
- 40-bit local address supported over the Independent Memory Interface (IMI) for the memory space.
- 32- and 64-bit address bit formats supported for PCI Express interface.

The chipset treats accesses to various address ranges in different ways. There are fixed ranges like the compatibility region below 1 MB, interrupt delivery range, and the system region located in the 32 MB directly below 4 GB. In addition, there is a variable region for Memory Mapped I/O. The locations of these ranges in the memory map are illustrated in Figure 5-1.

Figure 5-1. System Memory Address Space

5.1.1 Compatibility Region

This is the range from 0-1 MB (0_0000 to F_FFFF). Requests to the Compatibility region are directed to main memory, the Compatibility Bus, or the VGA device. Any physical DRAM that would be addressed by requests in this region that are mapped to the Compatibility Bus is not recovered. This region is divided into four ranges. Regions below 1M that are mapped to memory are accessible by the processors and by any I/O bus.

Note: The DRAM that has a physical address between 0-1 MB must not be recovered or relocated or reflected. This range must always be available to the OS as DRAM, even if at times addresses in this range are sent to the Compatibility Bus, VGA or other non-DRAM areas.

5.1.1.1 Microsoft MS-DOS* Region

Microsoft MS-DOS applications execute in the lowest 640 KB, in the address range 0h to 9_FFFFh. This range is always mapped to main memory.

5.1.1.2 VGA Memory Range

The 128 KB Video Graphics Adapter Memory range (A_0000h to B_FFFFh) can be mapped to the VGA device which may be on any PCI Express or Hub Interface or it can be mapped to main memory (if it is mapped to SMM space). At power-on this space is mapped to the HI port.

Note that the NB chipset does not support the historical MDA (Monochrome Display Adapter) space which would have appeared in the VGA region.

This region can be redirected by BIOS to point to any bus which has a VGA card. If the VGAEN bit is set in one of the NB.BCTRL configuration registers associated with the PCI Express port, then transactions in this space are sent to that PCI Express port. Note that the VGAEN bit can only be set in one and only one of the NB.BCTRL registers. For more information on the BCTRL registers, refer to Section 4.11.27, "BCTRL[7:1]: Bridge Control Register (D1-7, F0)" on page 4-100.

If any VGAEN bits are set, all the ISAEN bits must be set.

This 128 KB region may also be used for mapping SMM space. The SMM range can overlay the VGA range in the A and B segments. If the SMM range overlaps an enabled VGA range then the state of the SMMEM# signal determines where accesses to the SMM Range are directed. SMMEM# asserted directs the accesses to the memory and SMMEM# deasserted directs the access to the PCI Express bus where VGA has been mapped.

This region cannot be cached.

5.1.1.3 C and D Segments

Writes and reads may be directed to different destinations in the range C_0000 to D_FFFF. Typically, these blocks were used to shadow ISA device BIOS code. For the NB these regions are used to provide address space to PCI devices requiring memory space below 1 MB. The range is divided into 8 sub-ranges. These ranges are defined by NB.PAM registers (similar to MAR registers in the 870 chipset). There is one PAM register for each sub-range that defines the routing of reads and writes (Section 4.15.8, "PAM[6:0]: Programmable Attribute MAP (D16, F1)" on page 4-177).

Table 5-1. PAM Settings

PAM value[5:4]	writes go to	reads go to	Result
00	HI1.5	HI1.5	Mapped to the compatibility PCI
01	HI1.5	Main Memory	Memory Write Protect
10	Main Memory	HI1.5	In-line Shadowed
11	Main Memory	Main Memory	Mapped to main memory

The power-on default for these segments is mapped read/write to the H11.5 (ICH5) which forwards the access to the Compatibility Bus. Software should not set cacheable memory attributes for any of these ranges unless both reads and writes are mapped to main memory. Chipset functionality is not guaranteed if this region is cached in any mode other than both reads and writes being mapped to main memory.

For locks to this region, the NB will complete, but does not guarantee the atomicity of locked-access to this range when writes and reads are mapped to separate destinations.

If inbound accesses are expected, the C and D segments MUST be programmed to send accesses to DRAM.

5.1.1.4 System BIOS (E and F Segments)

The 128 KB region from E0000h to F_FFFFh is divided into 5 sub-ranges. Read/write attributes defined in the NB.PAM registers may be used to direct accesses to the HI1.5 (which will access the FWH) or main memory. At power-on, this area is mapped read/write to the HI1.5. The PAM settings for accesses in this region are defined in Table 5-1, "PAM Settings".

For locks to this region, the NB will complete, but does not guarantee the atomicity of locked access to this range when writes and reads are mapped to separate destinations.

If inbound accesses are expected, the E and F segments MUST be programmed to send accesses to DRAM.

5.1.2 Low/Medium Memory

The low/medium memory regions range from 1 MB to 4 GB. It consists of sub-regions for Firmware, Processor memory mapped functions, and NB chipset specific registers.

5.1.2.1 System Memory

See Section 5.1.4, "Main Memory Region".

5.1.2.2 **ISA Hole**

An ISA "window" can be optionally opened up between 15 MB and 16 MB by setting the NB.FDHC.HEN bit. If this bit is set, accesses to this region will be sent to the ICH5 via the HI1.5. Otherwise, it is decoded as a system memory access. The memory behind this hole cannot be reclaimed.

5.1.2.3 Extended SMRAM Space (TSEG)

SMM space allows system management software to partition a region in main memory that is only accessible by system management software. When the SMM range is enabled, memory in this range is not exposed to the Operating System. The SMM range is accessed only when the processor is in SMM-mode. This is an extended SMM range that is different than the SMM space that may reside that overlaps VGA space. The register fields that define the NB.EXSMRC.TSEG_SZ and NB.EXSMRTOP.ESMMTOP. The TSEG SMM space starts at ESMMTOP-TSEG_SZ and ends at ESMMTOP. This region may be 128KB, 256KB, or 1MB in size, depending on the TSEG_SZ field. ESMMTOP is relocatable to accommodate software that wishes to configure the TSEG SMM space before MMIO space is known. The ESMMTOP will default to the same value as TOLM.

If SMM is enabled, the chipset allows accesses to this range only when the SMMEM# signal on the FSB is asserted with the request.

If SMMEM# is deasserted, accesses to the SMM Range are master aborted. If SMMEM# is asserted the access is routed to main memory. The NB will use the SMM enable and range registers to determine where to route the access.

The NB will not support a locked-access that crosses an SMM boundary. Firmware should not create data structures that span this boundary.

SMM main memory is protected from Inbound accesses.

Note: In order to make cacheable SMM possible, the chipset must accept EWB's (BWL's) and must absorb IWB (HITM) data regardless of the condition of the SMMEM# pin. Because of this, care must be used when attempting to cache SMM space. The chipset/platform cannot protect against processor which attempts to illegally access SMM space that is modified in another processor's cache. Any software that creates such a condition (for example, by corrupting the page table) will jeopardize the protective properties of SMM.

See Table 5-9 "Decoding Processor Requests to SMM and VGA Spaces" on page 5-257 for details on SMM decoding.

5.1.2.4 Memory Mapped Configuration Region

There is one relocatable memory mapped configuration regions on the NB. The FSB address defines the configuration register to be accessed and the FSB data either returns or provides register contents. As opposed to CF8/CFC-based configuration accesses, this mechanism is atomic. The memory mapped configuration region is compatible with the PCI Express enhanced configuration mechanism. It is a 256MB window that maps to PCI Express registers. (Both in the chipset and south of the chipset.) The location of this MMCFG window is defined by the NB.EXP ECBASE register (Section 4.15.13).

The default value of NB.EXP_ECBASE maps these regions into a region where there will be no wasted memory that is lost behind it. The default value for the PCI Express registers is 0100_0000. If this range is moved, the following recommendations will enable reclaiming the memory that is lost to MMCFG accesses.

1. MMCFG range is mapped to a legal location within the range between TOLM and 4GB. Since ranges must not overlap other legal ranges, it is safest to put this range between TOLM and the lowest real MMIO range (The current default is in these ranges).

OR

2. Put the regions above 4GB (above the top of memory and not overlapping above 4GB MMIO space).

This space is also accessible inbound. To protect the chipset under normal operation, inbound accesses can be protected by the NB.EXP_CTRL.DIS_INB_CFG bit (Section 4.11.28).

BIOS/software must ensure there are no outstanding configuration accesses or memory accesses to the old and new MMCFG range addresses when relocating this range.

5.1.2.5 Low Memory Mapped I/O (MMIO)

This is the first of the two NB memory mapped I/O ranges. The low memory mapped I/O range is defined to be between TOLM and FE00_0000h. This low MMIO region is further subdivided between the PCI Express and HI1.5 (ICH5) ports. The following table shows the registers used to define the MMIO ranges for each PCI Express/HI device. These registers are compatible with PCI Express and the PCI-to-PCI bridge specifications. Note that all subranges must be contained in the low memory mapped I/O range (between TOLM and FE00_0000h). In other words, the lowest base address must be above TOLM and the highest LIMIT register must be below FE00_0000h. Subranges must also not overlap each other.

Table 5-2. Low Memory Mapped I/O^a (Sheet 1 of 2)

I/O Port	NB Base	NB Limit	
HI (ICH5)	N/A ^b		
PCI Express D Memory	MBASE1 (MBASE in device 1)	MLIMIT1 (MLIMIT in device 1)	
PCI Express D Prefetchable Memory	PMBASE1 (MBASE in device 1)	PMLIMIT1 (MLIMIT in device 1)	
PCI Express C0 Memory	MBASE2	MLIMIT2	
PCI Express C0 Prefetchable Memory	PMBASE2	PMLIMIT2	
PCI Express C1 Memory	MBASE3	MLIMIT3	

Table 5-2. Low Memory Mapped I/Oa (Sheet 2 of 2)

I/O Port	NB Base	NB Limit
PCI Express C1 Prefetchable Memory	PMBASE3	PMLIMIT3
PCI Express B0 Memory	MBASE4	MLIMIT4
PCI Express B0 Prefetchable Memory	PMBASE4	PMLIMIT4
PCI Express B1 Memory	MBASE5	MLIMIT5
PCI Express B1 Prefetchable Memory	PMBASE5	PMLIMIT5
PCI Express A0 Memory	MBASE6	MLIMIT6
PCI Express A0 Prefetchable Memory	PMBASE6	PMLIMIT6
PCI Express A1 Memory	MBASE7	MLIMIT7
PCI Express A1 Prefetchable Memory	PMBASE7	PMLIMIT7

NOTES:

The NB will decode addresses in this range and route them to the appropriate HI1.5 or PCI Express port. If the address is in the low MMIO range, but is not contained in any of the PCI Express base and limit ranges, it will be routed to the HI1.5.

If the NB.PMLU and NB.PMBU registers are greater than 0, than the corresponding prefetchable region will be located in the high MMIO range instead.

5.1.2.6 Chipset Specific Range

The address range FE00 0000h - FEBF FFFFh region is reserved for chipset specific functions.

- FE60_C000h FE6F_FFFFh: This range is used for memory mapped NB registers. They are accessible only from the FSB. These registers are fixed since they are needed early during the boot process. The registers include:
 - a. 4 Scratch Pad Registers
 - b. 4 Sticky Scratch Pad Registers
 - c. 4 Boot flag registers
 - d. 4 Repeatability registers

These registers are described in the NB Configuration Register Chapter.

Only the first 4 bytes of each 1 K block in this 16 K range is accepted by the NB. The NB will issue requests to the remainder of this region to the ICH unless they map into one of the relocatable regions such as MMCFG. The mechanism for this range can be the same as it is for the memory mapped configuration accesses.

5.1.2.7 Interrupt/LT Region

This 4 MB range is used for processor specific applications. It lies between FEC0_0000h and FEEF_FFFFh and is split into four 1 MB segments.

a. This table assumes NB.PMLU and NB.PMBU are 0's. Otherwise, the prefetchable memory space will be located in high MMIO space.

b. NB does not need base/limit for ICH5 because subtractive decoding will send the accesses to the ICH5. This is OK for software also, since the ICH5 is considered part of the same bus as the NB.

5.1.2.7.1 I/O APIC Controller Range

This address range FEC0_0000 to FEC8_FFFF is used to communicate with the IOAPIC controllers in the Intel 6700PXH/6702PXH 64-bit PCI Hub, or ICH5.

The APIC ranges are hard coded. Reads and writes to each IOAPIC region should be sent to the appropriate HI1.5 or PCI Express as indicated below.

Table 5-3. IOAPIC Address Mapping

IOAPIC0 (HI1.5)	0_FEC0_0000 to 0_FEC7_FFFFa
IOAPIC1 (PCI Express D)	0_FEC8_0000 to 0_FEC8_0FFF
IOAPIC2 (PCI Express C0)	0_FEC8_1000 to 0_FEC8_1FFF
IOAPIC3 (PCI Express C1)	0_FEC8_2000 to 0_FEC8_2FFF
IOAPIC4 (PCI Express B0)	0_FEC8_3000 to 0_FEC8_3FFF
IOAPIC5 (PCI Express B1)	0_FEC8_4000 to 0_FEC8_4FFF
IOAPIC6 (PCI Express A0)	0_FEC8_5000 to 0_FEC8_5FFF
IOAPIC7 (PCI Express A1)	0_FEC8_6000 to 0_FEC8_6FFF
Reserved	0_FEC8_7000 to 0_FEC8_FFFF

NOTES:

a. IOAPIC range is hard coded on the ICH5

For hot-plug IOAPIC support, it is recommended that software use the standard MMIO range to communicate to the Intel 6700PXH 64-bit PCI Hub. To accomplish this, the PXH.MBAR must be programmed within the PCI Express device MMIO region.

Inbound accesses to this memory range should also be routed to the I/O APIC controllers. This could happen if software configures MSI devices to send MSI's to an I/O APIC controller.

5.1.2.7.2 High SMM Range

If high SMM space is enabled by EXSMRC.H_SMRAME, then requests to the address range from FEDA_0000 to FEDB_FFFF will be aliased down to the physical address of A_0000 to B_FFFF. The HIGHSMM space allows cacheable accesses to the compatible (legacy) SMM space. In this range, the chipset will accept EWB's (BWL's) regardless of the SMMEM# pin. Also, if there is an implicit writeback (HITM with data), the chipset will update memory with the new data (regardless of the SMMEM# pin). Note that if the HIGHSMM space is enabled, the aliased SMM space of A_0000-B_FFFF will be disabled.

Note: In order to make cacheable SMM possible, the chipset must accept EWB's (BWL's) and must absorb IWB (HITM) data regardless of the condition of the SMMEM# pin. Because of this, care must be used when attempting to cache SMM space. The chipset/platform cannot protect against processors who attempt to illegally access SMM space that is modified in another processor's cache. Any software that creates such a condition (for example, by corrupting the page table) will jeopardize the protective properties of SMM.

5.1.2.7.3 Interrupt Range

Requests to the address range FEE0_0000 to FEEF_FFFF are used to deliver interrupts. Memory reads or write transactions to this range are illegal from the processor. The processor issues interrupt transactions to this range. Inbound interrupts from the PCI Express devices in the form of memory writes to this range are converted by the NB to FSB interrupt requests.

5.1.2.7.4 Reserved Ranges

The NB will master abort requests to the remaining addresses in the interrupt range. This is the FEF0_0000h - FEFF_FFFFh or FED4_0000h - FEDF_FFFFh ranges. This can be done by sending the request to the compatibility bus (Hub Interface) to be master aborted. In the event the ICH5 adds new registers or functionality in this range in the future, this provides the most likely chance that it will work.

5.1.2.8 Firmware Range

The Intel® E8501 chipset platform allocates 16MB of firmware space from FF00_0000h to FFFF_FFFFh. Requests in this range are directed to the Compatibility Bus. The ICH5 will route these to its FWH interface. This range is accessible from any FSB.

5.1.3 High Extended Memory

This is the range above 4 GB. The range from 4 GB to NB.IMIR5.LIMIT is mapped to system memory. There can also be a memory mapped I/O region is located at the top of the address space. (Just below 1TB). This is described in Section 5.1.3.2.

5.1.3.1 System Memory

See Section 5.1.4, "Main Memory Region".

5.1.3.2 High MMIO

The high memory mapped I/O region is located above the top of memory as defined by NB.IMIR5.LIMIT. These NB.PMBU and NB.PMLU registers in each PCI Express configuration device determine whether there is memory mapped I/O space above the top of memory. If an access is above IMIR5.LIMIT and it falls within the NB.PMBU+PMBASE/NB.PMLU+PMLIMIT range, it should be routed to the appropriate PCI Express port. For accesses above IMIR5.LIMIT (and above 4GB) that are not in a high MMIO region, they should be master aborted.

5.1.3.3 Extended Memory (not applicable)

The range of memory just below 4 GB from TOLM to 4 GB (Low MMIO, Chipset, Interrupt) do not map to memory. If nothing is done, the DRAM memory behind the TOLM to 4 GB range will be unused.

On NB Chipset, the extended memory does not have any meaning because reclamation mechanism is handled by hardware and NB will use IMIR5.LIMIT to indicate the top of usable memory.

5.1.4 Main Memory Region

5.1.4.1 Application of Coherency Protocol

The NB applies the coherency protocol to any accesses to main memory. Table 5-8 defines the conditions under which processor transactions are routed to main memory. Table 5-11 defines the conditions under which inbound transactions are routed to main memory. Application of the coherency protocol includes snooping the other FSB.

Two exceptions are the C_0000 - F_FFFFh and the legacy SMM ranges. (C_0000h-F_FFFFh may not necessarily route both reads and writes to memory, legacy SMM range may target non-memory when not in SMM mode.) These exceptions will not apply the coherency protocol. The NB may malfunction if processors issue coherent transactions such as BRIL's, IWB's, and EWB's to ranges that do not call for application of the coherency protocol to both reads and writes. In addition, the chipset can not guarantee coherency for these ranges regardless of the types of transactions that are issued. Software must not set cacheable attributes for these areas (Only UC and WC attributes are not cacheable).

5.1.4.2 Routing Memory Requests

When a request appears on the FSB, PCI Express link, or Hub Interface, and it does not fall in any of the previously mentioned regions, it is compared against the IMIR.LIMIT registers on the NB and XMB.

The NB.IMIR.LIMIT registers will decode an access into a specific interleaving range. Within the interleaving range, the NB.IMIR.LIMIT register indicates which IMI the address is associated with. In the event that a mirroring event is occurring, memory writes may be associated with 2 IMI's.

The XMB will further decode the address to determine which rank the access is targeted for. The XMB contains the same XMB.IMIR.LIMIT registers as the NB, which helps it identify if the access belongs to that XMB. It also helps with converting the memory (compressing gaps due to

MMIO or IMI interleaving policies). The XMB.DMIR.LIMIT registers also decode the access into a specific interleaving range, which helps decode which rank the access will be directed to. The XMB will also convert the address into the appropriate DDR address, RAS, and CAS signals.

5.1.5 Main Memory interleaving

Memory interleaving can be described at two levels. The lowest level of memory interleaving is at the XMB level where DIMMs/Ranks are interleaved. The highest level of memory interleaving is between IMI ports. Interleaving can be at a fine or coarse granularity. Fine granularity interleaves at the cacheline boundary and provides optimal performance by evenly distributing memory accesses when addresses are accessed somewhat linearly. It helps eliminate hot spots. Coarse granularity interleaves on a boundary that is much coarser than a cacheline, for example, a different address range for each IMI (which some may call 1:1 interleaving). Coarse interleaving enables certain RAS features. A combination of fine and course interleaving will probably achieve the optimal mix of performance and RAS.

The NB supports 6 interleave ranges to interleave across the IMI's. Each range supports 4 way (4:1), 2 way (2:1), or 1 way (1:1) interleaving. The NB.IMIR registers contain the address of the top of the interleave range, the primary and secondary IMI ports (for mirroring) for each way.

The XMB tracks the same 6 interleave ranges. In addition, the XMB supports 5 interleave ranges to interleave across the 8 DIMM ranks. The XMB also comprehends gaps in the address to do MMIO space and IMI interleaving. The MMIO gap is accounted for using the TOLM register and is described in detail in Section 5.1.5.4, "Recovering Main Memory Behind Other Regions". The other gaps due to IMI interleaving are handled by setting the interleave range associated with that address range to not point to any ranks on the XMB.

The interleaving scheme also comprehends mirroring across IMI's, RAID, and DIMM pair sparing. For mirroring, each way of each NB.IMIR register contains a primary and secondary port. Writes are sent to both ports. Reads are sent to one port depending. For RAID, interleaving must use 4 interleaving ranges to enable RAID striping. For sparing (on the XMB), the XMB.DIMIRs reflect the live DIMM ranks. If a sparing event occurs, the DMIR will be automatically updated with the spare DIMM rank.

5.1.5.1 Interleaving Registers

The NB and XMB contain the following registers to support the ranges to do IMI and DIMM rank interleaving.

Table 5-4. Interleaving Registers

Register Name	Field	Description
NB.IMIR[5:0]	LIMIT RFBI (Read From Both Images) IMG1WAY3 IMG1WAY2 IMG1WAY1 IMG1WAY0 IMG0WAY3 IMG0WAY2 IMG0WAY2 IMG0WAY1 IMG0WAY1	IMIR0 Defines the interleave policy for the range from 0 to IMIR0.LIMIT. IMIR[5:1] Defines the interleave policy for the range from IMIR[N-1].LIMIT to IMIR[N].LIMIT.
NB.AIMIR[5:0]	ADJLIMIT	Scratch pad registers reserved for BIOS to use to store interleave information.
XMB.IMIR[5:0]	LIMIT WAY[3:0]	IMIR0 Defines the interleave policy for the range from 0 to IMIR0.LIMIT. IMIR[5:1] Defines the interleave policy for the range from IMIR[N-1].LIMIT to IMIR[N].LIMIT.
XMB.DMIR[6:0]	LIMIT ENABLE RANK[3:0]	DIMIRO Defines the interleave policy for the range from 0 to DIMIRO.LIMIT. DMIR[5:1] Defines the interleave policy for the range from DMIR[N-1].LIMIT to DMIR[N].LIMIT. WAY defines whether a memory request participates in this IMIR range. RANK defines which rank is set to which WAY.

5.1.5.2 Fine grain Interleave Example

This example shows how interleaving can be a fine granularity (per cacheline). Cacheline interleaving provides optimal performance by evenly distributing memory accesses. This example is not meant to be an extensive definition of interleaving, but is more to illustrate the mechanism. For example, this example does not show memory reclamation of space behind MMIO. For details on memory reclamation, please see Section 5.1.5.4, "Recovering Main Memory Behind Other Regions".

For this example, BIOS has chosen to first interleave across all 4 IMI's until the smallest IMI has no more memory. The second range is 2:1 interleaved across IMI1 and IMI2 until these IMI's have no more memory. The third range is 1-way interleaved because only IMI3 has any memory left. Each rectangle constitutes a cacheline. In the case of IMI1 and IMI2 where there are multiple ranks (smallest granularity that the XMB will interleave), different shadings indicate which rank is being accessed.

Figure 5-3. Simple Example of Fine Grained Interleave

5.1.5.3 Coarse Interleave Example

This example shows how a course grain granularity works. It uses the same mechanism as fine grained granularity, except all regions are 1-way interleaved. As in the previous example, each rectangle constitutes a cacheline. In the case of IMI B and IMI C where there are multiple ranks (smallest granularity that the XMB will interleave), different shadings indicate which rank is being accessed.

The map on the left shows the NB interleaving ranges. Each range sends all accesses to a given IMI A. For example, the first range which is bounded by address 0 and NB.IMIRO.LIMIT will send all accesses to IMI B. The next level of interleaving is at the XMB. XMB can also support limited coarse grained interleaving. Since the XMB is limited to 5 DIMM rank interleave ranges, coarse interleaving must be limited to 5 ranges for all DIMM ranks. In this example, XMB B (IMI B) coarsely interleaves between the 2 DIMM ranks. The light dotted line in the address map indicates additional XMB boundaries to differentiated between rank 0 and rank 1. XMB C (IMI C) is still cacheline interleaved.

Figure 5-4. Example of Coarse Grained Interleave

5.1.5.4 Recovering Main Memory Behind Other Regions

The NB will reclaim memory that is lost behind the region between TOLM and 4 GB. To do this, the NB and XMB will automatically adjust the internal LIMIT values (referred to as the adjusted limit ADJLIMIT). The ADJLIMIT value that is used in the range comparators will be:

IF (IMIR.LIMIT >TOLM, THEN ADJLIMIT = IMIR.LIMIT + MMIO_size ELSE ADJLIMIT=IMIR.LIMIT

Note: TOLM will always be below 4 GB.

MMIO_size = 4 GB - TOLM[15:12] (corresponds to A[31:28])

In addition, the XMB will logically perform an address conversion (subtraction) for addresses above the MMIO or other gap. For example, addresses above MMIO will be converted to Address minus the size of the MMIO gap (MMIO_size). Accesses above MMIO and a gap due to global IMI interleaving policies would be converted to Address minus MMIO_size minus size of the interleave range. The following is a logical description of the same XMB conversion.

IMIR_Size = LIMIT[N] - LIMIT[N-1]

IF System_addr > Any unmapped IMIR range
OtherGaps = Sum of Unmapped IMIR_Size below System_addr

IF (System_Addr>4GB, THEN AdjustedAddr = SystemAddr - MMIO_size - OtherGaps
ELSE AdjustedAddr=System_Addr - OtherGaps

Software only needs to program the TOLM register in the NB and XMB. It does not need to adjust the LIMIT registers. In addition, there is a scratch pad register NB.AIMIR that software can use to store pertinent interleave information.

Example of reclaiming MMIO space:

The following example shows how a 1 GB MMIO (TOLM to 4 GB) range would be reclaimed. For this example, the NB/XMB internally adjusts the LIMIT values above 4 GB to IMIR.LIMIT+MMIO_size = IMIR.LIMIT+ 1 GB (1 GB is the MMIO_size). If there were IMIR.LIMIT's below TOLM, they would not have needed any adjustments. In addition, the XMB converts the addresses above 4 GB to System_Address – 1 GB (1 GB is the MMIO_size). Addresses below 4 GB do not need to be adjusted. For addresses above 11 GB, the XMB also subtracts the size of the unmapped IMIR range, which is 6 GB in this example. (Size of the range limited by LIMIT1). Note that the example shows conceptually how the address is processed, but does not necessarily correspond to the exact implementation.

For this picture, LIMIT0 is the same as IMIR0.LIMIT, LIMIT1 is IMIR1.LIMIT, etc.

Figure 5-5. Example of Reclaiming MMIO Memory

5.1.5.5 Interleaving

A number of memory RAS features involve removing or adding memory to the system. Care must be exercised in the interleaving definition to balance RAS robustness with optimal interleaving for performance. For example, the interleaving shouldn't be set up so that removing a DIMM rank results in removing all system memory.

5.1.5.5.1 Interleaving with sparing

If DIMM sparing (without graceful degradation) is desired, at configuration time, a DIMM rank must be set aside to replace a defective DIMM rank. This spare DIMM must not be included in the IMIR and DMIR settings.

5.1.5.5.2 The Effects of Graceful Degradation & Sparing on Interleaving

Graceful degradation is when the memory associated with a bad DIMM rank is removed by software deallocating the memory. If memory is in a region that is pinned (i.e. cannot be removed), an unrelated DIMM pair can be chosen to be deallocated. Once it is deallocated, it can be converted into a spare DIMM.

This feature relies on restrictions to hardware configurations and interleaving policies to be robust. For example, If the DIMMs are interleaved so that none are a good candidate for being a spare, then a spare cannot be made. Software can follow the <u>suggestions</u> below to increase the chance that there will be a good candidate for a spare.

Interleaving restrictions (SW):

- 1. For each XMB, select a rank that can become a spare. This rank must be the largest of all populated ranks.
 - a. If there are any split DIMM's, then the spare must be a split DIMM.
 - b. Since all DIMM's will meet minimum DIMM size restriction, any DIMM can be selected to be predestined to be a spare.
- 2. Interleave the remaining DIMMs. The amount of memory allowable below 4 GB depends on the size of the spare rank. The memory below 4 GB must be able to fit into the spare. For example, if the spare DIMM pair holds 1 GB, then the remaining DIMM's must only have 1 GB of memory below 4 GB.

Put the spare rank above 4 GB. It must be non-interleaved (i.e. 1:1). Restrictions on hardware include:

- 1. If there are any double sided DIMM's, then there needs to be at least 2 double-sided DIMMs.
- 2. Minimum memory capacity must be larger than 4 GB.
- 3. Each XMB must have at least 2 DIMM pairs.
- 4. Restrict the use of small DIMM's. The DIMM size restrictions are dependent the number of XMB's and the IMI interleaving. The following table shows the smallest DIMM size allowable for different configurations. These restrictions are to guarantee that even with limited interleaving to allow for this functionality, there will be full memory.

Table 5-5. Minimum DIMM Size Restriction

Number of XMBs	IMI Interleaving	Smallest DIMM Allowed
4	4:1	1GB
2/4	2:1	2GB
1/2/4	1:1	4GB

5.1.5.5.3 Interleaving with RAID

When Intel® E8501 chipset is in RAID mode, all 4 IMI's must be populated symmetrically. Therefore, all IMI's can be 4:1 interleaved. The reason for 4 IMIR ranges is because the starting point of each range is shifted to enable the RAID striping.

The following diagram shows how memory should be interleaved in RAID mode. This scheme includes space that is reserved in each range to accommodate capacity upgrades. A capacity upgrade with RAID would include replacing memory cards one by one with larger cards while still assuming the original smaller size. Once all 4 cards have been upgraded, a memory hot add is performed to bring the extra memory online. For systems that are not planning to be upgraded, the reserved space is not necessary. In this diagram, "N" is equal to the amount of memory per XMB that is currently installed. "MAX" represents the maximum amount of memory that is allowed per XMB after an upgrade.

Figure 5-6. Address Mapping for RAID

5.1.5.5.4 Interleaving with Mirroring

Only the NB is aware of mirroring. The NB.IMIR registers have WAY fields defined for both image 0 and image 1 (IMG{1/0}WAY[3:0]). The memory on both IMI's that are being mirrored should be the same size, so the IMI interleaving algorithm will result in the same settings for both IMI's. The only difference is that one of the IMI's is image 0 and the other is image 1. For example, if IMI A and IMI B are mirrored images and IMI C and IMI D are mirrored images, software could cacheline interleave between IMI A/B and IMI C/D by setting the IMIR register as follows:

```
IMIR.IMGOWAYO = IMI A
IMIR.IMG1WAYO = IMI B
IMIR.IMGOWAY1 = IMI C
IMIR.IMG1WAY1 = IMI D
IMIR.IMGOWAY2 = IMI A
IMIR.IMG1WAY2 = IMI B
IMIR.IMG0WAY3 = IMI C
IMIR.IMG1WAY3 = IMI D
```

5.1.6 General Interleaving Guidelines

- 1. There can be no enabled XMB.DMIRs above a disabled DMIR. For example, if DMIR[3] is disabled, DMIR[5:4] must be disabled.
- 2. All memory mapped I/O above 4GB (PMBASE/PMLIMIT/PMLU/PMBU) must be higher than the highest IMIR.LIMIT value plus the MMIO hole.
- 3. For IMIR.LIMIT values above 4GB, the value in IMIR.LIMIT cannot exceed IMIR.LIMIT minus the size of the MMIO hole, since the NB will internally adjust the LIMIT value to IMIR.LIMIT+MMIO hole.
- 4. Unused NB.IMIR registers should have their IMIR.LIMIT programmed to the same as the LIMIT of the highest functional IMIR. Similarly, unused XMB.DMIR and XMB.IMIR registers should have their LIMIT set to the same as the highest function IMIR/DMIR.
- 5. For optimal performance when doing 2-way interleaving only on the XMB, the XMB DMIR ways (called RANK[3:0]) should be programmed so that consecutive ways do not go to the

For example, if you have two ranks "m" and "n", the four ways should be programmed as follows:

Way 0	Way 1	Way 2	Way 3
n	m	n	m

OR

Way 0	Way 1	Way 2	Way 3
m	n	m	n

Similarly, if a NB is doing 2:1 interleaving (2 IMI's in the IMIR range), the ways (NB.IMIR.IMG*WAY*) should be programmed so consecutive ways do not go to the same rank.

5.2 Memory Address Disposition

5.2.1 Registers Used for Address Routing

5.2.1.1 Intel® E8501 Chipset North Bridge (NB) Registers

Table 5-6. Intel® E8501 Chipset North Bridge (NB) Memory Mapping Registers

Name	Function		
IMIR[5:0]	Memory Interleaving Registers (IMI interleaving)		
AIMIR[5:0]	Scratch pad register for software to use related to memory interleaving. For example, software can write MMIO gap adjusted limits here to aid in subsequent memory RAS operations.		
PAM[6:0]	Defines attributes for ranges in the C and D segments. Supports shadowing by routing reads and writes to memory of I/O.		
FDHC	Contains HEN which enables the ISA hold.		
SMRAM	SMM Control.		
EXSMRC, EXSMRTOP, EXSMRAMC	Extended SMM Control.		
BCTRL	Contains VGAEN and ISAEN for each PCI Express.		
TOLM	Top of low memory. Everything between TOLM and 4GB will not be sent to memory.		
EXP_ECBASE	Base of the memory mapped configuration region that maps to all PCI Express registers.		
MBASE (Dev 1-7)	Base address for memory mapped I/O to PCI Express ports 1-7.		
IMILIMIT (Dev 1-7)	Limit address for memory mapped I/O to PCI Express ports 1-7.		
PMBASE (Dev 1-7)	Base address for memory mapped I/O to prefetchable memory of PCI Express ports 1-7a.		
PMLIMIT (Dev 1-7)	Limit address for memory mapped I/O to prefetchable memory of PCI Express ports 1-7.		
PMBU (Dev 1-7)	Prefetchable Memory Base (Upper 32 bits) - Upper address bits to the base address of prefetchable memory space. If the prefetchable memory is below 4 GB, this register will be set to all 0's.		
PMLU (Dev 1-7)	Prefetchable Memory Limit (Upper 32 bits) - Upper address bits to the limit address of prefetchable memory space. If the prefetchable memory is below 4 GB, this register will be set to all 0's.		
PCICMD (Dev 1-7)	MAE (Memory Access Enable) bit enables the memory and pre-fetchable ranges.		

NOTES:

a. The chipset treats memory and prefetchable memory the same. These are just considered 2 apertures to the PCI Express port.

5.2.1.2 XMB Registers

Table 5-7. XMB Memory Mapping Registers

Name	Name Function	
IMIR[5:0]	Memory Interleaving Registers (IMI interleaving).	
TOLM	Top of low memory. Used in aiding in the XMB address conversion.	
DMIR[4:0]	Memory Interleaving Registers (DIMM interleaving).	
MTR	Memory Technology Register.	

5.2.2 Address Disposition for Processor

The following tables define the address disposition for the NB. Table 5-8 defines the disposition of outbound requests entering the NB on the FSB. For address dispositions of PCI Express/HI devices, please refer to the specifications for the Intel 6700PXH/6702PXH 64-bit PCI Hub and Intel ICH5. Table 5-8 defines how the NB completes outbound requests. Table 5-11 defines the disposition of inbound requests entering the NB on I/O bus. In these tables, an address listed as "A to B" can be interpreted as $A \le Address \le B$

Table 5-8. Address Disposition for Processor (Sheet 1 of 4)

Address Range	Conditions	NB Behavior	XMB Behavior
DOS	0 to 09FFFFh	Coherent Request to Main Memory. Route to main memory according to NB.IMIR registers. Apply Coherence Protocol.	Route the memory request to the correct rank based on the XMB.IMIR and XMB.DMIR registers.
SMM/VGA	0A0000h to 0BFFFFh, SMM not enabled, and VGAEN=0	Send to HI to be master aborted.	N/A
	0A0000h to 0BFFFFh, SMM not enabled, and VGAEN=1	VGA: Non-coherent request to PCI Express or Hub Interface based on BCTRL and various SMM registers.	N/A
	0A0000h to 0BFFFFh, SMM enabled and valid access to SMM space. ^a	Non-coherent request to main memory. (Coherency does not need to be guaranteed. Coherency protocol can be followed if it simplifies implementation). Route to appropriate XMB according to NB.IMIR registers.	Route the memory request to the correct rank based on the XMB.IMIR and XMB.DMIR register.
	(0A0000h to 0BFFFFh and SMM enabled, and denied access to SMM space and VGAEN=0	Send to HI to be master aborted.	N/A
	(0A0000h to 0BFFFFh and SMM enabled, and denied access to SMM space and VGAEN=1	VGA: Non-coherent request to PCI Express or Hub Interface based on BCTRL registers.	N/A

Table 5-8. Address Disposition for Processor (Sheet 2 of 4)

Address Range	Conditions	NB Behavior	XMB Behavior
C and D BIOS segments (see Table 5-1 for a definition of PAM encodings)	0C0000h to 0DFFFFh and PAM=11	Non-coherent request to main memory. (Coherency does not need to be guaranteed. Coherency protocol can be followed if it simplifies implementation). Route to appropriate XMB according to NB.IMIR registers.	Route the memory request to the correct rank based on the XMB.IMIR and XMB.DMIR register.
	Write to 0C0000h to 0DFFFFh and PAM=10	Non-coherent request to main memory. (Coherency does not need to be guaranteed. Coherency protocol can be followed if it simplifies implementation). Route to appropriate XMB according to NB.IMIR registers.	Route the memory request to the correct rank based on the XMB.IMIR and XMB.DMIR register.
	Read to 0C0000h to 0DFFFFh and PAM=01	Non-coherent request to main memory. (Coherency does not need to be guaranteed. Coherency protocol can be followed if it simplifies implementation). Route to appropriate XMB according to NB.IMIR registers.	Route the memory request to the correct rank based on the XMB.IMIR and XMB.DMIR register.
	Read to 0C0000h to 0DFFFFh and PAM=10	Issue request to Hub Interface.	
	Write to 0C0000h to 0DFFFFh and PAM=01		
	0C0000h to 0DFFFFh and PAM=00		

Table 5-8. Address Disposition for Processor (Sheet 3 of 4)

Address Range	Conditions	NB Behavior	XMB Behavior
E and F BIOS segments (see Table 5-1 for a definition of PAM encodings)	0E0000h to 0FFFFFh and PAM=11	Non-coherent request to main memory. (Coherency does not need to be guaranteed. Coherency protocol can be followed if it simplifies implementation). Route to appropriate XMB according to NB.IMIR registers.	Route the memory request to the correct rank based on the XMB.IMIR and XMB.DMIR register.
	Write to 0E0000h to 0FFFFFh and PAM=10	Non-coherent request to main memory. (Coherency does not need to be guaranteed. Coherency protocol can be followed if it simplifies implementation). Route to appropriate XMB according to NB.IMIR registers.	Route the memory request to the correct rank based on the XMB.IMIR and XMB.DMIR register.
	Read to 0E0000h to 0FFFFFh and PAM=01	Non-coherent request to main memory. (Coherency does not need to be guaranteed. Coherency protocol can be followed if it simplifies implementation). Route to appropriate XMB according to NB.IMIR registers.	Route the memory request to the correct rank based on the XMB.IMIR and XMB.DMIR register.
	Read to 0E0000h to 0FFFFFh and PAM=10	Issue request to Hub Interface	
	Write to 0E0000h to 0FFFFFh and PAM=01		
	0E0000h to 0FFFFFh and PAM=00		
Low/Medium Memory	10_0000 to EF_FFFF	Coherent Request to Main Memory. Route to main memory according to NB.IMIR registers. Apply Coherence Protocol.	Route the memory request to the correct rank based on the XMB.IMIR and XMB.DMIR register.
ISA Hole	F0_0000 to FF_FFFF and FDHC.HEN = 0	Coherent Request to Main Memory. Route to main memory according to NB.IMIR registers. Apply Coherence Protocol.	Route the memory request to the correct rank based on the XMB.IMIR and XMB.DMIR register.
	F0_0000 to FF_FFFF and FDHC.HEN = 1	Issue request to Hub Interface	
Low/Medium Memory (cont)	100_0000 <= Addr < ESMMTOP- TSEG_SZ OR ESMMTOP<= Addr < TOLM	Coherent Request to Main Memory. Route to main memory according to NB.IMIR registers. Apply Coherence Protocol.	Route the memory request to the correct rank based on the XMB.IMIR and XMB.DMIR register.
Extended SMRAM Space	ESMMTOP-TSEG_SZ <= Addr < ESMMTOP and (valid SMM access or SMM range disabled)	Coherent Request to Main Memory. Route to main memory according to NB.IMIR registers. Apply Coherence Protocol.	Route the memory request to the correct rank based on the XMB.IMIR and XMB.DMIR register.
	ESMMTOP-TSEG_SZ <= Addr < ESMMTOP and denied access to SMM space	Master Abort.	
Low MMIO	TOLM <= Addr < FE00_0000 and falls into a legal BASE/LIMIT range	Request to PCI Express based on <mbase <br="" and="" imilimit="" pmbase="">PMLIMIT> registers.</mbase>	
	TOLM <= Addr < FE00_0000 and not in a legal BASE/LIMIT range	Send to HI to be master aborted.	

Address Disposition for Processor (Sheet 4 of 4) **Table 5-8.**

Address Range	Conditions	NB Behavior	XMB Behavior
PCI Express MMCFG	HECBASE <= Addr < HECBASE+256MB	Convert to a configuration access and route according to the Configuration Access Disposition.	
NB specific	FE00_0000h to FEBF_FFFFh AND valid NB memory mapped register address	Issue configuration access to memory mapped register inside NB.	
	FE00_0000h to FEBF_FFFFh AND NOT a valid NB memory mapped register address	Send to HI to be master aborted.	
I/O APIC registers	FEC0_0000 to FEC8_FFFFh	Non-coherent request to PCI Express or HI based on Table 5-3, "IOAPIC Address Mapping".	
ICH/ICH timers	FEC9_0000h to FED1_FFFF	Issue request to Hub Interface.	
High SMM	FEDA_0000h to FEDB_FFFF and (valid SMM access or SMM range disabled)	Coherent Request to Main Memory. Route to main memory according to NB.IMIR registers. Apply Coherence Protocol.	Route the memory request to the correct rank based on the XMB.IMIR and XMB.DMIR register.
	FEDA_0000h to FEDB_FFFF and access denied to SMM space	Master Abort.	
Interrupt	interrupt transaction to FEE0_0000h to FEEF_FFFh (not really memory space)	Route to appropriate FSB(s). See Interrupt Chapter for details on interrupt routing.	
	memory transaction to FEE0_0000h to FEEF_FFFFh	Send to HI to be master aborted.	
Firmware	FF00_0000h to FFFF_FFFFh	Issue request to Hub Interface.	
High Memory	1_0000_0000 to MIR5.LIMIT ^b (max FF_FFFF_FFFF)	Coherent Request to Main Memory. Route to main memory according to NB.IMIR registers. Apply Coherence Protocol.	Route the memory request to the correct rank based on the XMB.IMIR and XMB.DMIR register.
High MMIO	PMBU+PMBASE <= Addr <= PMLU+PMLIMIT	Route request to appropriate PCI Express port.	
All others	All Others (subtractive decoding)	Issue request to Hub Interface.	
	1		1

Access is in SMM space, SMMEM# pin is asserted, and D_OPEN, D_CLS, D_LCK permit access type (code or data). See Table 5-9 "Decoding Processor Requests to SMM and VGA Spaces" on page 5-257
This is the top of legal memory. Even if IMIR5 is not a valid IMIR range, it will still be the top of memory because unused IMIR's should have the

LIMIT's set to match the highest functional IMIR.

5.2.2.1 Processor Access to SMM Space

The FSB has a SMMEM# signal that qualifies the request asserted as having access to a system management memory. The SMM register defines SMM space that may fall in one of three ranges: A0000-BFFFFh, Extended SMRAM Space, or High SMRAM Space. The NB prevents illegal processor access to SMM memory. This is accomplished by routing memory requests from processors as a function of request address, code or data access, the SMMEM# signal accompanying request and the settings of the NB.SMRAM, NB.EXSMRC, and NB.BCTRL registers. Table 5-9 defines request type and Attribute field for each case. Illegal accesses are routed to the Compatibility Bus where they are Master Aborted. SMMEM# only affects NB behavior if it falls in an enabled SMM space. Note that the D_CLS only applies to the Legacy (A0000-BFFFFh) SMM space. The bold values indicate the reason SMM access was denied.

D_CLS closes off the SMM space to all accesses, except for code reads with SMMEM# asserted. EWB/IWB's will also be accepted.

Table 5-9. Decoding Processor Requests to SMM and VGA Spaces

SMM region	Address	BRLC?	EWB/IWB	SMMEM#	D_OPEN	D_CLS	VGAEN	Enabled?a	Access Granted to SMM Space?
Legacy VGA/SMM	A_0000h <= A <= B_FFFFh	Х	Х	Х	Х	Х	0	N	Master abort
		Х	Х	Х	Х	Х	1	N	To VGA
		N	N	0	0	Х	N	Υ	Denied - HI
		N	N	0	0	Х	Υ	Υ	Denied - VGA port
		Х	Х	Х	1	0	Х	Υ	Yes
		Х	Х	Х	1	1	Х	Υ	Illegal programming - HI (master abort)
		Х	Х	1	0	0	Х	Υ	Yes
		N	N	1	0	1	N	Υ	Denied - HI
		N	N	1	0	1	Υ	Υ	Denied - VGA port
		Х	Υ	Х	Х	Х	Х	Х	N/A ^b
		Υ	N	1	0	1	Х	Υ	Yes
Extended SMRAM	(TOLM-TSEG <= A <= TOLM)	Х	Х	Х	Х	Х	Х	N	Access to DRAM
Space (TSEG)	Х	N	0	0	Х	Х	Υ	Denied	
		Х	N	0	1	Х	Х	Υ	Yes
		Х	N	1	0	Х	Х	Υ	Yes
		Х	Υ	Х	Х	Х	Х	Х	Yes
HIGHSMM	FEDA_0000h <= A <= FEDB_7FFFh	Х	Х	Х	Х	Х	0	N	Master abort
		Х	N	0	0	Х	Х	Υ	Denied
		Х	N	0	1	Х	Х	Υ	Yes
		Х	N	1	0	Х	Х	Υ	Yes
		Х	Υ	Х	Х	Х	Х	Х	Yes

NOTES:

- a. See Table 5-10, "Enabled SMM Ranges" for the definition of an enabled space
- b. Software must not cache this region.

Table 5-10 defines when an SMM range is enabled. All the enable bits G_SMRAME, H_SMRAM_EN, and TSEG_EN are located in the NB.EXSMRC register.

Table 5-10. Enabled SMM Ranges

Global Enable G_SMRAME	High Enable H_SMRAM_EN	TSEG Enable TSEG_EN	Legacy SMM Enabled?	HIGHSMM Enabled	Extended SMRAM Space (TSEG) Enabled?
0	X	Х	No	No	No
1	0	0	Yes	No	No
1	0	1	Yes	No	Yes
1	1	0	No	Yes	No
1	1	1	No	Yes	Yes

5.2.3 Inbound Transactions

In general, inbound I/O transactions are decoded and dispositioned similarly to processor transactions. The key differences are in SMM space, memory mapped configuration space and interrupt policies.

For all table entries where an access is forwarded to HI to be master aborted, if an access comes from HI, the NB may master abort a transaction without forwarding it back to the HI.

Table 5-11. Address Disposition for Inbound Transactions (Sheet 1 of 3)

Address Range	Conditions	NB Behavior	XMB Behavior
DOS	0 to 09FFFFh	Coherent Request to Main Memory. Route to main memory according to NB.IMIR registers. Apply Coherence Protocol.	Route the coherent request to the correct rank based on the XMB.IMIR and XMB.DMIR registers.
SMM/VGA	0A0000h to 0BFFFFh, SMM not enabled, and VGAEN=0	Send to HI to be master aborted.	N/A
	(0A0000h to 0BFFFFh and SMM enabled and VGASE=0	Send to HI to be master aborted.	N/A
	0A0000h to 0BFFFFh and VGAEN=1	VGA: Non-coherent request to PCI Express or Hub Interface based on BCTRL and various SMM registers.	N/A
C, D, E, and F BIOS segments (see Table 5-1 for a definition of PAM encodings)	0C0000h to 0FFFFFh and PAM = 11 ^a	Non-coherent request to main memory. (Coherency does not need to be guaranteed. Coherency protocol can be followed if it simplifies implementation.) Route to appropriate XMB according to NB.IMIR registers.	Route the coherent request to the correct rank based on the XMB.IMIR and XMB.DMIR registers.
Low/Medium Memory	10_0000 to EF_FFFF	Coherent Request to Main Memory. Route to main memory according to NB.IMIR registers. Apply Coherence Protocol.	Route the coherent request to the correct rank based on the XMB.IMIR and XMB.DMIR registers.

Table 5-11. Address Disposition for Inbound Transactions (Sheet 2 of 3)

Address Range	Conditions	NB Behavior	XMB Behavior
ISA Hole	F0_0000 to FF_FFFF and FDHC.HEN = 0	Coherent Request to Main Memory. Route to main memory according to NB.IMIR registers. Apply Coherence Protocol.	Route the coherent request to the correct rank based on the XMB.IMIR and XMB.DMIR registers.
	F0_0000 to FF_FFFF and FDHC.HEN = 1	Issue request to Hub Interface.	
Low/Medium Memory (cont)	100_0000 <= Addr < TOLM- TSEG_SZ	Coherent Request to Main Memory. Route to main memory according to NB.IMIR registers. Apply Coherence Protocol.	Route the coherent request to the correct rank based on the XMB.IMIR and XMB.DMIR registers.
Extended SMRAM Space	ESMMTOP-TSEG_SZ <= Addr < ESMMTOP	TSEG SMM enabled: Master Abort. TSEG SMM disabled: Issue request to main memory.	
Low MMIO	TOLM <= Addr < FE00_0000 and falls into a legal BASE/LIMIT range	Request to PCI Express based on <imibase <br="" and="" imilimit="" pmbase="">PMLIMIT> registers.</imibase>	
	TOLM <= Addr < FE00_0000 and not in a legal BASE/LIMIT range	Send to HI to be master aborted.	
PCI Express MMCFG	HECBASE <= Addr < HECBASE+256MB	Inbound MMCFG is allowed when dis_inb_cfg configuration bit is cleared, and, the NB does not modify addresses of peer-to-peer transactions. Inbound MMCFG is not allowed when dis_inb_cfg configuration bit is set. This access should be routed as a general memory mapped I/O access, which should ultimately master abort, since it should not hit any legal MMIO range.	
NB specific	FE00_0000h to FEBF_FFFh AND valid NB memory mapped register address	Inbound MMCFG is not allowed. This access should be routed as a general memory mapped I/O access, which should ultimately master abort, since it should not hit any legal MMIO range.	
	FE00_0000h to FEBF_FFFFh AND NOT a valid NB memory mapped register address	Send to HI to be master aborted.	
I/O APIC registers	FEC0_0000 to FEC8_FFFFh	Non-coherent request to PCI Express or HI based on Table 5-3, "IOAPIC Address Mapping"	
ICH/ICH timers	FEC9_0000h to FED1_FFFF	Issue request to Hub Interface.	
High SMM	FEDA_0000h to FEDB_FFFF	Master Abort.	
Interrupt	Inbound write to FEE0_0000h - FEEF_FFFFh	Route to appropriate FSB(s). See Interrupt Chapter for details on interrupt routing.	
	memory transaction to FEE0_0000h to FEEF_FFFFh	Send to HI to be master aborted.	

Table 5-11. Address Disposition for Inbound Transactions (Sheet 3 of 3)

Address Range	Conditions	NB Behavior	XMB Behavior
Firmware	FF00_0000h to FFFF_FFFh	Master abort.	
High Memory	1_0000_0000 to MIR5.LIMIT (max FF_FFFF_FFFF)	Coherent Request to Main Memory. Route to main memory according to NB.IMIR registers. Apply Coherence Protocol.	Route the coherent request to the correct rank based on the XMB.IMIR and XMB.DMIR registers.
High MMIO	PMBU+PMBASE <= Addr <= PMLU+PMLIMIT	Route request to appropriate PCI Express port.	
All others	All Others (subtractive decoding)	Issue request to Hub Interface.	

NOTES:

5.3 I/O Address Map

The I/O address map is separate from the memory map and is primarily used to support legacy code/drivers that use I/O mapped accesses rather than memory mapped I/O accesses. Except for the special addresses listed in Section 5.3.1, "Special I/O Addresses", I/O accesses are decoded by range and sent to the appropriate HI/PCI Express port, which will route the I/O access to the appropriate device.

5.3.1 Special I/O Addresses

There are two classes of I/O addresses that are specifically decoded by the NB:

- I/O addresses used for VGA controllers.
- I/O addresses used for the PCI Configuration Space Enable (CSE) protocol. The I/O addresses 0CF8h and 0CFCh are specifically decoded as part of the CSE protocol.

Historically, the 64 KB I/O space actually was 64 K+3 bytes. For the extra 3 bytes, A#[16] is asserted. The NB decodes only A#[15:3] when the request encoding indicates an I/O cycle. Therefore accesses with A#[16] asserted are decoded as if they were accesses to address 0 and be forwarded to the Compatibility Bus.

At power-on, all I/O accesses are mapped to the Compatibility Bus.

5.3.2 Outbound I/O Access

The NB chipset allows I/O addresses to be mapped to resources supported on the I/O buses underneath the NB. This I/O space is partitioned into 32 x 2KB segments. Each of the I/O buses can have from 0 to 32 segments mapped to it. Each PCI bus gets contiguous blocks. All PCI busses must be assigned contiguous blocks. The lowest block, from 0 to 0FFFh, is always sent to the Compatibility Bus. For further details on the legacy I/O ranges that the ICH decodes in the lowest block, please refer to Intel® 82801EB I/O Controller Hub 5 (ICH5) and Intel® 82801ER I/O Controller Hub 5 (ICH5R) Datasheet. The ICH5 Datasheet is available at: http://developer.intel.com/design/chipsets/datashts.

Other combinations of PAM's are not allowed if inbound accesses to this region can occur. Just like Cayuse, chipset functionality is not guaranteed.

Figure 5-7. System I/O Address Space

5.3.2.1 Outbound I/O Transaction Routing

The NB applies these routing rules in order:

(A[2:0] for the following is not physically present on the FSB, but are calculated from BE[7:0]).

- 1. I/O addresses used for VGA controllers on PCI Express:
 - If one of the BCTRL.VGAEN bit is set, and each addressed byte is in the following range: A[9:0] = 3B0h-3BBh, 3C0h-3DFh. (A[15:10] are ignored for this decode.)
 - The access is sent to the PCI Express port that VGAEN is set for. Note that only one VGAEN bit can be set.
 - For example, a 2 byte read starting at X3BBh includes X3BB-X3BCh (X can be any number since A[15:10] are ignored).
 - Since A[9:0] = 3BCh which is not one of the VGA bytes, the access is not routed to VGA.
- 2. **Configuration accesses:** If a request is a DW accesses to 0CF8h (See CFGDAT register) or 1-4 B accesses to 0CFCh with configuration space is enabled (See bit 31 of CFGADR register), the request is considered a configuration access. Configuration accesses are routed based on the bus and device numbers.
- 3. **ISA Aliases:** If the BCTRL.ISAEN is set, addresses X100-X3FFh, X500-X7FFh, X900-XBFF, and XD00-XFFFh will result in the access being sent out to the Hub Interface (ICH5). This is the top 768B in each 1KB block.100 =256B 3FF=1K-1
- 4. **I/O defined by IOBASE/IOLIMIT:** If PCICMD.IOAE is set in any of the NB PCI Express devices and the I/O address falls in this range: (IOBASE <= address <= IOLIMIT), then the access will be sent to the PCI Express port that is defined by the correct IOBASE/IOLIMIT registers.
- 5. **Otherwise:** the I/O Read/Write is sent to HI (ICH5).

5.3.3 Inbound I/O Accesses

Inbound I/O's are supported only for peer-to-peer accesses and are decoded the same as processor initiated I/O's. Inbound I/O accesses to the NB (i.e. CF8/CFC) are not supported and will receive a Master Abort response.

§

6 Functional Description

This chapter will cover the Intel[®] E8501 chipset north bridge (NB) functionality and its interface components, including Front Side Bus, IMI, PCI Express and HI1.5. The *Intel*[®] E8501 Chipset North Bridge (NB) Datasheet shall only cover the NB component. Details on the rest of the platform components can be found in each component's respective documentation.

6.1 Processor Support

The NB is the priority agent for the two FSB's and is optimized for two 64-bit Intel[®] Xeon[®] Processor MP on each bus. The Intel[®] E8501 chipset does not allow mixing of 64-bit Intel[®] Xeon[®] processor MP with up to 8MB L3 cache, 64-bit Intel[®] Xeon[®] processor MP with 1MB L2 cache or Dual-Core Intel[®] Xeon[®] processor 7000 sequence within the same platform.

Table 6-1. FSB Feature Summary

Feature	Description
Cache Line Size	64B
Clock Rate	Control@166 MT/s, Address@333 MT/s, Data@667 MT/s. Control@200 MT/s, Address@400 MT/s, Data@800 MT/s
Addresses	NB supports 40 address bits.
Enhanced Defer	NB responds using Defer phase when DPS is asserted.
Modified Enhanced Defer	NB typically drives IDS# 5 clocks before OOD#.
Maximum Deferred Transactions	32
Maximum In-Order Transactions	12
ECC/Parity	NB supports both DEP[7:0]# and DP[3:0]# but not at the same time.
BRIL.OWN	NB ignores the OWN bit.
BWLD	64-bit Intel® Xeon® processor MP processors do not issue this transaction.
BWL.INVLD	Disabled and treated as a BWL.
Threads/cores	NB fully supports 4 logical agents per FSB.
Modified response following clean snoop (buried HITM)	NB supports this for debug, but not for production. The solution will not be performance optimized. Buried HITM is inconsistent with enhanced defer.
Processor Tristate	A[39:36] at reset (see Section 4.14.12, "POC_FSB{A/B}: Power-on Configuration (D16, F0)" on page 168).

6.1.1 Clock Phasing

The FSB clocks run in phase.

6.1.2 Arbitration Phase

The following table shows the arbitration phase signals and the NB usage.

Table 6-2. Arbitration Signals

Signal	Usage
BPRI#	NB asserts this signal when it will drive requests that require a snoop or when it wants to stall the FSB, or to avoid oversubscription of certain internal resources. Processors do not drive this signal.
BNR#	NB may assert this signal for debug.
BREQ[3:0]#	The NB never drives these signals, except for BREQ[0]# at reset. These pins are connected to the processor BR# pins in a rotating order.
	The NB uses an active BREQ# from a processor to determine if it should release BPRI# and return the bus to the processors.
LOCK#	The NB never asserts LOCK#. The NB observes LOCK# and will do all transactions with LOCK# asserted atomically. LOCK# on I/O reads or writes is an illegal transaction.

6.1.3 Symmetric/Priority Agent Arbitration Policy

NB asserts BPRI# as necessary for flow control, and this overrides any arbitration policy on BPRI#.

NB asserts BPRI# for NB transactions only when it has transactions to drive to the bus, and it's not giving priority to CPU agents. NB limits the length of time it will assert BPRI by FSB[1:0]AC.TNBREQ[2:0]. When a CPU asserts a BREQ# signal on the bus, NB will give the bus to the CPUs as long as NB has no transactions to do. Otherwise, NB ensures BPRI stays deasserted for a period of time controlled by FSB[1:0]AC.CPUREQ[1:0]. If NB sees a BREQ change while BPRI is released, FSB[1:0]AC.CPUREQ_EXT controls whether NB allows an extra transaction to occur from the CPUs, to try to make back-to-back BWL's more likely.

NB's arbitration policy is such that as long as CPUs drive their BREQ signals efficiently (releasing it if they have no transactions to perform) and drive ADS as soon as possible when the protocol allows, that NB and the CPUs can share the bus with no dead cycles under any traffic pattern.

6.2 Request Phase

Table 6-3 defines how NB decodes transactions initiated by processors and Table 6-5 defines how NB drives transactions. NB self-samples the common-clock signals. NB does not sample the address or data signals but instead tracks what it has driven internally.

Reserved Read and Write transactions are not issued by 64-bit Intel® Xeon® processor MP. NB will complete these transactions as the most similar well defined transactions in order to enable subsequent transactions to complete. NB will respond to Reserved Read (ReqA[0]=0) as a NOP, returning data from the addressed memory. NB will respond to Reserved Write (ReqA[0]=1) as a BTM.

264

BWL with DEN is not issued by 64-bit Intel® Xeon® processor MP. The NB will not defer any BWL.

If a Deferred Reply is decoded, but the NB has not issued it, the NB will treat it as NOP and set FSB_FERR.F8 (refer to Table 6-39 "Errors Detected by the NB" on page 6-328).

If DEN is not asserted when it is shown to be 1 in Table 6-3, the NB will defer anyway. The "Unsupported FSB Transaction" bit will be set in the FERRST or SERRST register if these are decoded.

If an address/request parity error is detected, the NB will attempt to complete the decoded bus transaction on a best effort basis as if no error has been detected and at the same time log an F4 error. The NB will remain operational after such an error.

NB does require ASZ# (ReqA#[4:3] for memory transactions) to be correct for correct operation.

DSZ# (ReqB#[4:3] for most transactions) has no effect on NB operation.

In the following table "x" indicates that the NB will treat either 0 or 1 the same way; the bit is ignored. "0/1" indicates that the NB will treat 0 different from 1. Both 0 and 1 should be validated for both "x" and "0/1" entries.

Table 6-3. Processor Initiated Transactions Supported by Intel® E8501 Chipset North Bridge (NB) (Sheet 1 of 2)

					Ab co	mbination	s decoded		
Transaction	Variant	Support	BE#[7:0]	LOCK#	DEN#	DPS#	Ab[5	Ab[6]	Ab[7] SMMEN#
BRIL	BRIL	yes	FFh	0	1	0/1	0/1 (OWN)		0/1
	BRIL.OWN	yes	FFh	0	1	0/1	0/1 (OWN)		0/1
	BIL	yes	0	0	1	0/1	x (OWN)		0/1
BRLC	BRLC	yes	contiguous	0	1	0/1	x (OWN)		0/1
BRLD	BRLD	yes	contiguous	0	1	0/1	x (OWN)		0/1
	BLR	yes	contiguous	1	1	х	х	Х	0/1
BWL	INVLD#=0, NZ	yes	FFh	0	0	0	Х	0 (INVLD)	0/1
	INVLD#=0, Z	yes	00h	0	0	0	х	0 (INVLD)	0/1
	BWL.INVLD NZ	yes	FFh	0	0	0	х	1 (INVLD)	0/1
	BWL.INVLD Z	yes	00h	0	0	0	х	1 (INVLD)	0/1
	DEN#	no	any	0	1	1	х	Х	0
BWIL	BLW	yes	?	1	0	0	Х	0	0/1
	BWIL	yes	any	0	0/1	1	х	0	0/1
IACK	IACK	yes	1h	0	1	0/1	0	0	X
SPEC	NOP	yes	0h	0	1	0/1	0	0	Х
	Shut Down	yes	1h	0	1	0/1	0	0	Х
	Flush	yes	2h	0	1	0/1	0	0	Х
	Halt	yes	3h	0	1	0/1	0	0	Х
	SYNC	yes	4h	0	1	0/1	0	0	Х
	Stop Clock	yes	5h	0	1	0/1	0	0	Х
	Stop Grant Ack	yes	6h	0	1	0/1	0	0	Х
	SMIACK	yes	7h	0	1	0/1	0	0	Х
	XTPR Update	yes	8h	0	0	0	0	0	Х
BTM	BTM	yes	FFh	?	0	0	0	0	Х

Table 6-3. Processor Initiated Transactions Supported by Intel® E8501 Chipset North Bridge (NB) (Sheet 2 of 2)

			Ab combinations decoded						
INT/EOI	INT	yes	"3h,Fh"	0	0	0	0	0/1	х
	EOI	yes	1h	0	0	0	1	1	Х
IOR	IOR	yes	contiguous	0	1	1	Х	Х	Х
IOW	IOW	yes	4B boundary	0	1	1	Х	Х	Х
Reserved	Reserved Read	no							
	Reserved Write	no							

The following tables show how the NB decodes the 2nd phase of the address.

Table 6-4. Intel® E8501 Chipset North Bridge (NB) Decoding of 2nd Phase of Address

Ab	Signal	Definition	NB Usage
39:36	reserved	Reserved	Does not affect NB operation.
35:32	reserved	Snoop Count	Does not affect NB operation.
31	ATTR[7]#	XTPR Disable	Redirection Disable for XTPR update transaction, ignored otherwise
30:29	ATTR[6:5]#	Logical ID	NB uses this field to differentiate transactions from different logical processors (threads or cores) within a CPU package.
28	ATTR[4]#	Undefined	Does not affect NB operation
27:24	ATTR[3:0]#	Task Priority	Interrupt Redirection Task Priority for XTPR update transaction
		Caching Attributes	NB ignores.
23	DID[7]#	Priority/Symmetric Agent	0 since processors are symmetric agent
22:21	DID[6:5]#	Agent ID	Returned on defer Reply Or IDS#
20:16	DID[4:0]#	Transaction ID	Returned on defer reply or IDS#.
15:8	BE[7:0]#	byte enables	Indicates which bytes are valid in a data transfer.
7	EXF[4]#	SMMEM#	The NB will generally disallow access to SMM memory unless this bit is set. However, when SMM memory is made cacheable, writes may be evicted without this bit set.
6	EXF[3]#	SPLCK#	If LOCK# is asserted, the NB ignores this signal. It uses LOCK# to decode locked reads and writes.
		INVLD#	If the transaction is a BWL, INVLD#=1 indicates that the processor will invalidate the line
		INT[1]#	If the transaction is a Interrupt or EOI, differentiates different interrupt types
5	EXF[2]#	OWN#	NB ignores.
		INT[0]#	If the transaction is a Interrupt or EOI, differentiates different interrupt types
4	EXF[1]#	DEN#	The NB needs to defer a transactions to ensure coherency, and the DEN is not set, the NB will defer anyway and will detect error F8.
3	EXF[0]#	DPS#	If set, the NB may complete the transaction with a deferred phase (IDS# assertion).

6.2.1 16-Thread Support

The NB supports up to 16 total threads automatically, in case of 2 dual-core CPUs per FSB of 2 threads each.

6.2.2 Intel® E8501 Chipset North Bridge (NB) Requests

Table 6-5 and Table 6-6 show what the NB drives on the FSB. Table 6-5 shows REQ and address driven for the first cycle. Table 6-6 shows the 2nd phase of the address. Any bits not specifically mentioned are driven to 0.

Table 6-5. Encoding of Transactions Initiated by the Intel® E8501 Chipset North Bridge (NB)

Common Bus Transaction	NB Transaction	REQa	REQba	Aa[39:3]
Deferred Reply	Deferred Reply	00000	11011 ^b	A[39:24]=0 A[23:16] = DID[7:0] of original transaction A[15] = Early indication of HIT# A[13] = Debug information (DBGMATCH) A[12:8] = Debug information (PTQID[4:0]) A[3] = A[3] of original request
Zero Length Bus Read Invalidate	BIL	zz010 ^d	11000	Address from other FSB, PCI Express, or Hub Interface
Bus Read Line Code	BRLC	zz100	11000	Address from other FSB, PCI Express, or Hub Interface
Bus Read Line Data	BRLD	zz110	11000	Address from other FSB
Interrupt	INT	01001	11100	0_FEEy_yyy0

NOTES:

- a. RCNT[3:2] are driven on REQb[4:3] if FSB[1:0]AC.DRVRCNT is set
- b. 64B of data will follow
- c. Less than 64B of data will follow.
- d. zz = ASZ[1:0]

Table 6-6. Encoding 2nd Phase of Address for Transactions Initiated by Intel® E8501 Chipset North Bridge (NB) (Sheet 1 of 2)

Ab	Signal	Definition	NB Drives
39:36	Reserved	Reserved	Debug information: SRCINFO[3:0] if FSB[1:0]AC.DRVRCNT = 1, else 0000.
35:32	Reserved	Snoop Count	Debug information: SCNT[3:0] if FSB[1:0]AC.DRVRCNT = 1, else 0000.
31	ATTR[7]#	XTPR Disable	0
30:29	ATTR[6:5]#	Logical ID	0
28:27	ATTR[4]#	Undefined	RCNT[1:0] is driven when the FSB[1:0]AC.DRVRCNT bit is set.
26:24	ATTR[2:0]#	Caching Attributes	111 (writeback)
23	DID[7]#	Agent ID	1

Table 6-6. Encoding 2nd Phase of Address for Transactions Initiated by Intel[®] E8501 Chipset North Bridge (NB) (Sheet 2 of 2)

Ab	Signal	Definition	NB Drives
22:16	DID[6:0]#	Agent ID, Transaction ID	Debug information: CDCID[6:0]
15:8	BE[7:0]#	Byte Enables	11111111 Data present 00000000 No data
7	EXF[4]#	SMMEN#	0
6	EXF[3]#	INT1	0
5	EXF[2]#	INT0	A[5] on IPI for redirected interrupt, otherwise 0.
4	EXF[1]#	DEN#	0
3	EXF[0]#	DPS#	0

6.2.3 Snoop Phase

The snoop phase consists of the following signals: HIT#, HITM#, DEFER#.

The NB can retry a deferred reply that it initiated in order to cause the processor to retry it to fix some BIL conflict cases and buried HITM cases.

The NB requires that any agent that asserts HITM# on a transaction must drive data. It may not drive HITM# and then respond with no data when given a TRDY#. It if does not provide data, the NB cannot guarantee correct operation.

Table 6-7. Snoop Phase Signals

Signal	Usage
HIT#, HITM#	For a deferred BRLC and BRLD, if HIT# is asserted on the local FSB or the remote FSB (if snooped), the shared status will be driven during the deferred completion. Either DHIT# will be driven active during defer phase, or HIT# will be driven during snoop phase of the deferred reply.
	NB only snoop stalls as a debug function.
	If HITM# is asserted (and HIT# de-asserted) on a processor transaction, NB will response with an implicit-write back.
DEFER#	The NB will assert DEFER# followed by a DEFER or RETRY response. The NB never gives a DEFER response to requests that it initiates.

6.2.4 Response Phase

Table 6-3 defines the responses that the NB gives to each FSB transaction. Table 6-5 defines the responses the NB gives to each NB transaction. The conditions are evaluated in the order given, that is the higher condition has priority.

When a request decode is in doubt, the NB will respond in the way that is most likely to keep these processors running. For example, the NB will respond to the transaction it decodes whether an Address/Request Parity error is detected or not. When a transaction is decoded that is not supported by the NB, the NB will treat them as the closest transaction it has been designed to support.

If a coherency violation occurs, the NB will complete the transaction as best it can (e.g deferring memory reads even if DEN=0, giving IWB response to illegal HITM's), but any data delivered after the violation may not be correct.

Table 6-8. Intel® E8501 Chipset North Bridge (NB) Responses to Processor Transactions

Transaction Type	Conditions	Response
BIL	IF modified snoop response (Coherency Protocol Violation: set Unsupported Bus transaction bit in FERRST or SERRST) (can't have illegal data size; is defined to be zero length)	IWB
	ELSEIF NB has established a system lock	Retry
	ELSEIF BIL Conflict	Defer
	ELSE	Defer
BRIL,	IF modified snoop response	lwb
BRLC, BRLD	ELSEIF NB has established a system lock	Retry
	ELSE	Defer
BLR	IF modified snoop response	lwb
	ELSEIF (NB has not yet established a system lock) OR (NB has ordered another BLR from either bus first, and that BLR is not yet complete)	Retry
	ELSE	Normal Data
BWL	All	No Data
BWIL	IF modified snoop response	lwb
	ELSEIF NB has established a system lock	Retry
	ELSE	Defer
BLW	All	No Data
IOR, IOW	IF NB has established a system lock.	Retry
	ELSE	Defer
Reserved Ignore	All	No Data
Reserved Write	IF REQa[2:0] == 011 (treat as BWL)	No Data
	ELSE (treat as BTM)	No Data
Reserved Read	all (treat as NOP)	No Data
IACK, HALT	The NB has established a system lock.	Retry
Shut Down, Stop Grant Ack,	ELSE	Defer
NOP,FLUSH, SYNCH,SMIACK, XTPR Update, BTM	All	No Data
INT	IF NB has established a system lock and interrupt is redirectable	Retry
	ELSE	No Data
EOI	IF NB has established a system lock	Retry
	ELSE	No Data
Deferred Reply	If the NB did not issue. The processor may not issue this transaction.	No Data

Table 6-4 defines the various outcomes of the defer response.

 Table 6-9.
 Defer Response Outcomes

Conditions	Response
If buried HITM#.)	Deferred Reply with Retry response
Elseif BIL conflict	Deferred reply with retry response
Elseif DPS was asserted with transaction and FSB[1:0]AC.MEDEN=0 and not a BIL	Deferred Phase with IDS# and OOD# always asserted together (Enhanced Defer)
Elseif DPS was asserted with transaction and FSB[1:0]AC.MEDEN=1 and not a BIL	Deferred Phase with IDS# and OOD# sometimes asserted separately (Modified Enhanced Defer)
Elseif NB will transfer data to processor	Deferred Reply with Normal Data response
Elseif	Deferred Reply with No Data response

Table 6-10. Intel® E8501 Chipset North Bridge (NB) Responses to Intel® E8501 Chipset North Bridge (NB) Transactions

Transaction Type	Conditions	Response		
Deferred Reply	If Buried HITM# or BIL conflict is detected			
	Elseif original transaction requires that NB transfer data to the processor.	Normal Data		
	Else	No Data		
BIL, BRLD, BRLC	HITM# asserted	IWB		
	Else	No Data		
INT	always	No Data		

6.2.5 Defer Phase

Table 6-11. Defer Phase Signals

Signal	Intel® E8501 Chipset North Bridge (NB) Usage
IDS#	A strobe that indicates the NB is completing a deferred transaction. The chipset returns ownership to the requesting processor when IDS# is asserted. That is, the NB no longer has snoop responsibility for an ADS asserted subsequent to an IDS# assertion. When IDS# is active, ID[7:0] is valid. If the NB will not return data for the transaction, the transaction is completed. If the NB will return data, it will come with the concurrent or next OOD# assertion. Only the NB drives IDS#, so it may be asserted once every two clocks.
ID[7:0]#	Valid while IDS# is asserted. The first phase carries the transaction ID sent in the request phase of the deferred transaction. The second phase of ID carries information about the snoop results of the transaction. The NB asserts DHIT# for BRLD's if the address potentially remains shared in another agent. That is, when HIT# was asserted in the snoop phase for the original transaction or when it was snooped on the other bus. If FSB[1:0]AC.DRVDCNT is set, the NB will drive DCNT on ID[7:5]#. DCNT is defined to be (number of DDEL#
	assertions - number of OOD# assertions) on the cycle before IDS#. If FSB[1:0]AC.DRVCDBD is set, the NB will drive debug information onto the ID[7:0]# signals such that: IDa[7] = CDCID[6] IDb[7:5] = CDCID[5:3] IDb[2:0] = CDCID[2:0]
	NB never asserts DHITM# in response to a BRIL.OWN.
OOD#	This is a data phase signal. See Table 6-13.

6.2.5.1 Modified Enhanced Defer

The NB has an OOD# pin that enables IDS# assertion to give advance notice that a data transfer will occur. IDS# commits the order of deferred phase data transfers, but OOD# indicates when data will be driven.

After reset, the NB will drive OOD# coincident with IDS#. The bus protocol is defined such that this is equivalent to enhanced defer with no early data indication. The processor can sample IDS# but not OOD#. Once the processor is configured to sample both IDS# and OOD#, the FSB{A/B}_AC.MEDEN bit will be set to enable the NB to drive IDS# before OOD#.

When data is returned from the other FSB (Remote HITM#/IWB), the NB will not drive IDS until after TRDY# has been asserted on the remote FSB. If NB asserted IDS# before TRDY# on the remote bus, IDS# might be asserted on both FSB's for a remote HITM, but TRDY# could not enable the IWB transfer on either bus due to the deadlock rule.

When data is returned from memory, the NB will drive IDS# as soon as it can after getting a read return header on an IMI (assuming coherency has already been completed) or after sampling TRDY# for an IWB from the other FSB.

6.2.6 Data Phase

6.2.6.1 Data Transfer Sizes

Table 6-12 defines limitations on the transfer sizes and alignments supported by the Intel® E8501 chipset north bridge (NB). The NB does not support all possible transfer sizes defined by Intel® Xeon® processor family. The NB supports all alignments generated by the 64-bit Intel® Xeon® processor MP profile. When the NB cannot support a length, the length is aliased to a supported length and no error is logged.

Address alignment does not affect which bytes are transferred, but only their order.

Table 6-12. Processor Transfer Sizes and Alignment limitations of the Intel[®] E8501 Chipset North Bridge (NB) (Sheet 1 of 2)

Transaction Type	LEN#,BE#	Alignment	Comment
BRLC	64	Any 8B	Data is returned in critical word first order.
	1-8		Not needed for 64-bit Intel® Xeon® processor MP.
	0		
BRLD	64	Any 8B	Data is returned in critical word first order.
	1-8		
	0		
BRIL	64	Any 8B	Only 64B for 64-bit Intel® Xeon® processor MP.
BIL	0	Any 8B	
BLR,BLW	1-8	Any 8B	Validation must cover cases where the sum of the BE in the BLR's or BWL's total up to 16 bytes.

Table 6-12. Processor Transfer Sizes and Alignment limitations of the Intel® E8501 Chipset North Bridge (NB) (Sheet 2 of 2)

Transaction Type	LEN#,BE#	Alignment	Comment
BWIL	64	Any 8B	Data is received in critical word first order
	1-8		Any combination of byte enables are legal. The BE do not need to be contiguous and any number from 0-8 may be asserted. For example, patterns such as 0001_1111, 0001_0101, 0101_0101 or 1010_1111 are allowed.
			Note: Downstream devices may not be able to support these unrestricted patterns of BE if the address maps to a MMCFG region.
	0		NB will assert TRDY for memory writes with zero data length but the processor will not assert any data transfer signals.
BWL	64B	Any 8B	NB will assert TRDY for memory writes with zero data length but the
	0]	processor will not assert any data transfer signals.
I/O read	1-4 byte	Any 8B	the NB ignores the LEN field. Therefore, if LEN is other than "8 bytes or less" the transaction will be handled as usual and no error will be detected.
I/O write	1-4 byte	Any 8B	the NB ignores the LEN field. Therefore, if LEN is other than "8 bytes or less" the transaction will be handled as usual and no error will be detected. BE may NOT cross 4B boundary.
IACK	n/a	n/a	Reqb[2:0] =000, Address ignored.
SPEC	n/a	n/a	Reqb[2:0] =001, Address ignored.
BTM	n/a	n/a	Reqb[2:0] =000, Address ignored.
INT	2B or 4B	n/a	Address field holds other information.
EOI	1B	n/a	Address is meaningless.
XTPR_UPDATE	?	n/a	Address is meaningless.

6.2.6.2 Data Transfer Signals

Table 6-13 shows the signals used for data transfers.

Table 6-13. Data Transfer Signals (Sheet 1 of 2)

Signal	NB Usage
H_{A/B}_TRDY#	Signals that a symmetric agent may transfer either Write or Implicit-Writeback data.
H_{A/B}_DBSY#	The data bus is owned by some agent that cycle. Does not imply that data is necessarily being transferred that cycle.
H_{A/B}_DRDY#	data is valid. NB asserts for read data.
H_{A/B}_D[63:0]#	64 bits of data transferred at 4x the bus clock frequency.
H_{A/B}_DEP[7:0]#	ECC coverage over D[63:0]. Transferred at 4x the bus clock frequency.
H_{A/B}_DP[3:0]#	Odd parity over DBI and D[63:0]. DP must be disabled if DEP is used.

Table 6-13. Data Transfer Signals (Sheet 2 of 2)

Signal	NB Usage
H_{A/B}_DBI[3:0]#	Each DBI bit is associated with 16 data lines and 2 ECC lines. If most of any of the 18 bits in a group are active, the NB inverts the group and the corresponding DBI bit is set. Note that DBI will cover all quad pumped signals including DEP. Transferred at 4x the bus clock frequency.
H_{A/B}_OOD#	Indicates that the next or concurrent data transfer will be for deferred phase data delivery.
H_{A/B}_DSTBp#[3:0], H_{A/B}_DSTBn#[3:0]	Strobes for D[63:0]#, DEP[7:0]# and DBI[3:0]#.

6.2.7 Error Signals

The NB observes BINIT# and can be configured to drive BINIT# in certain error situations, including propagating BINIT# to the other FSB.

The "observed BINIT#" bit will be set in the FERR register and this may be configured to reset the system via ICHRST#.

The NB can be configured to assert MCERR# on the other bus when a processor asserts MCERR# (see Section 4.16.21).

6.2.8 Bus Assumptions

- BRLC's and BRLD's from the processor that have no BE asserted will get a No-Data Response. A PCI Express or Hub Interface request will be issued, but there are configuration bits to drop these zero length transactions in the I/O subsystem of NB.
- A locked request that is retried by the NB must be reissued unless a fatal processor error occurs.

6.2.9 FSB Coherency Assumptions

The following line state assumptions can be made following the snoop phase of a given transaction on a FSB populated with fully enabled 64-bit Intel[®] Xeon[®] processor MP.

Table 6-14. 64-bit Intel® Xeon® Processor MP FSB Coherency Assumptions (Sheet 1 of 2)

	Possible Bus States after Snoop					
Transaction type	Snoop Result = Modified ^a	Snoop Result = Shared ^b	Snoop Result = Clean ^c			
Processor Initiated BRLC	SI	SI	MESI			
NB initiated BRLC	I	SI	SId			
Processor Initiated BRLD	MESI	SI	MESI			
NB initiated BRLD	I	SI	I			
BRIL.OWN	M	Can't Happen ^e	MESI			
BRIL	MESI Can't Happen		MESI			
Processor Initiated BIL		Can't Happen ^f				

Table 6-14. 64-bit Intel® Xeon® Processor MP FSB Coherency Assumptions (Sheet 2 of 2)

	F	Possible Bus States after Snoop			
NB initiated BIL	I	I			
BWL INVLD=0	Can't Happer	Can't Happen, not snooped			
BWL INVLD=1	Can't Happer	Can't Happen, not snooped			
BWIL	I Can't Happen		I		
BLR	SI	SI	SI		
BLW	Can't happenh	I	I		

NOTES:

- a. HIT# = 0, HITM# = 1. Some agent currently has the line in modified state, but will reduce to shared or invalid
- b. HIT# = 1, HITM# = 0. Some agent intends to keep the line in shared state
- c. HIT# = 0, HITM# = 0. The line is invalid in all processor caches
- d. The shared result is only possible when 64-bit Intel[®] Xeon[®] processor MP L2 is disabled. The NB will assume I when the CDCC.BRLCI bit is set. This should typically be set.
- e. A shared response indicates the agent intends to keep the line in shared state which is illegal for an Invalidating transaction
- f. The 64-bit Intel® Xeon® processor MP does not issue BIL, even when L2 is disabled. It will back invalidate BIL's from Prescott on the IFSB
- g. If attribute was WC, NB could assume I, but NB does not use attributes for coherency assumptions
- h. Must be preceded by a BLR that would invalidate

6.2.10 Power-on Configuration

6.2.10.1 POC Register

If a bit is set in the POC register, it will drive the corresponding address line during reset. See Section 4.14.12, "POC_FSB{A/B}: Power-on Configuration (D16, F0)" on page 168 and Section 4.14.13, "POC_AUX{A/B}: CPU Tristate Control (D16, F0)" on page 170 for the register definition. This includes processor tristate on A[39:36].

6.2.10.2 BREQ0

The NB asserts BREQ[0]# during RESET# on each bus to enable processors to determine their AgentID. In a configuration with 2 processor sockets on each bus, BREQ[0]# should be routed to BREQ[0]# on the first socket (end agent) and BREQ[1]# of the second socket (Middle agent) of each bus so that they use AgentID 0 and 1 on each FSB.

6.2.10.3 Pins that Do Not Connect to NB

The NB does not connect to A20M#, PMI#, SLPCK#, IGNNE#, IERR#, SMI# or STPCLK#.

6.3 Independent Memory Interface (IMI)

6.3.1 Topology

The NB masters 1 to 4 Independent Memory Interface (IMI) Ports, each of which is connects to one XMB. The IMI's are half-width (one byte of payload/transfer) outbound and full-width (2 Bytes of payload/transfer) inbound. Each IMI supports up to 1 Terabyte (2⁴⁰ Bytes) of addressability. The IMI's are operated independently, that is a given cache line request is serviced by 1 IMI. The NB does not support cascaded, or lock-stepped IMI's.

6.3.2 Physical Layer

The physical layer will be based on Scalable Differential electricals. As mentioned above, the NB issues half-width packets outbound and full-width packets inbound. The returning inbound link must be the same frequency and generated from the same clock buffer. This allows NB to perform bit de-skewing once at reset rather than periodically.

The NB drives the IMI outbound at 2.67 GHz or 3.2 GHz (16 times the front side bus clock rate). Since an outbound packet takes 8 transfers, commands can be issued at 333 MHz or 400 MHz. A single Write command transfer takes 9 packets, so writes can be issued at 167 MHz or 200 MHz.

The NB can accept responses inbound at the same rate as the outbound (2.67 GHz or 3.2 GHz). Since the inbound data packet is 4 transfers, the NB can accept one-read returns from each IMI at 667 MHz or 800 MHz. Write acknowledges are accepted at 333 MHz or 400 MHz.

6.3.3 Memory Space

MemRds and MemWrs are issued to memory space. The IMI has more address bits than the FSB's, so NB IMI addresses will be the same as FSB, PCI Express or HI1.5 addresses. NB will always drive Mem_Address[41:40] to zero in IMI packets.

The NB has a set of IMI Interleave Range (IMIR) registers which define the IMI to which a memory request should be issued (Section 4.15.15, "IMIR[5:0]: IMI Interleave Range, (D16, F1)" on page 188). The IMIR registers partition the memory address space at 256 MB boundaries. Within each IMI Interleave Range, cache lines may be interleaved in different ways to support optimum interleaving of arbitrary (non-symmetrical) memory populations.

6.3.4 Configuration Space

NB issues ConfigWrs and ConfigRds to Configuration space. Only one Configuration Space access can be outstanding on the IMI at a time. Configuration accesses are limited to 1, 2 or 4 bytes in size. Any combination of contiguous Byte enables is supported.

6.3.4.1 Device Assignment

The NB assigns device numbers to the 4 IMI's and their corresponding XMBs as described in Table 4-8 on page 60. These all appear on Bus 0.

The XMBDEV register defines the XMB device used for each IMI. They will default to the correct fixed values for the attached XMBs so that BIOS need not perform any enumeration. NB BIOS should not modify these registers, and does not need to read them. The only usage of these registers is for non-NB specific software (e.g. Hot-Plug driver) to determine the device number of an XMB attached to a IMI.

The NB does not support cascaded XMBs, which would require multiple devices.

The IMI requires that the NB toggle a bit in the header for each configuration access so that the NB can distinguish a new command from a retry. The IMI allows only one configuration command outstanding at a time.

Normally, the NB responds to XMB configuration requests for register offsets < 40h whether the XMB is present or not. Most of these registers are read-only so any IMI function can be accessed to provide the data. The NB will return the XMB value for the DID register. The SVID registers are writable once, so it is possible that software could write these registers. The NB maintains separate SID and SVID registers for the XMB functions. When the IMIHPC.XMBHDR bit is set, the NB forwards the accesses to the XMB to allow examination of the revision ID of the XMB.

The NB will master-abort any configuration requests to the XMB when the corresponding IMI is in a state that does not support XMB configuration accesses.

Figure 6-1. Software Visible IMI States

Table 6-15. Software Visible IMI State (Sheet 1 of 2)

State	NB Behavior	Supported IMI activity	SW Usage
Reset	Outputs are disabled. Link, Physical, and Transaction Layers are reset. Configuration reads and writes to this IMI are still supported, but configuration writes to the associated XMB will be Master Aborted. IMI_{A,B,C,D}_RST# is asserted.	None	Software writes this state to force an IMI into reset. Software should place any IMI that is not operational, and which is not currently being considered for recovery in this state. When in this state, IMIHPC.PWRCTL Section 4.13.10, "IMIHPC: IMI Hot-Plug Control (D{8,10,12,14}, F0)" on page 150 can be set so that cards may be added or removed.
Init	NB performs the initialization steps. Configuration reads and writes to this IMI are still supported, but configuration writes to the associated XMB will be Master Aborted.	HW controlled init ops. No system accesses.	Software writes this state to start IMI initialization. Software may not access physical memory behind the XMB nor XMB configuration.
Ready	The IMI sets this state when packet framing is completed, indicating that information can be sent and received on this IMI. Offset must be set before memory configuration accesses will work.	Configuration accesses to XMB.	Software may not write this value, but checks it to determine that the IMI is operational. Software may transition from this state to Reset.
Active	Link is fully configured and operational.	All	Software sets this state when the NB and XMB have been configured to support memory accesses. First, the memory on this link must be de-allocated so that no new memory requests are issued.
Redundant	This implies that the NB is performing Mirroring. The data on this port is duplicated on others either by Mirroring and no error has been detected on this IMI that causes the NB to ignore its contents. The NB can still continue operation if this IMI is taken out of service. Failures that would otherwise be logged as uncorrectable or fatal are now logged as correctable. Inband Fatal or Uncorrectable Signals from the XMB produce the effect of the Correctable Error signal.	All	Software writes this state to indicate that the contents behind an IMI can be reconstructed from the data on other IMI's.
Disabled	A Retry time-out or Fatal Error inband signal from XMB has occurred. This IMI is disabled. The NB is still operational. The NB is directing memory accesses to other IMI's, but it may take some time before this IMI reaches a quiescent state. Configuration accesses to this IMI are still supported, but configuration accesses to the associated XMB will master-abort. The NB will transition to this state from the redundant state when this IMI fails.	Transactions enqueued in the IMI may or may not be initiated. Any outstanding transactions complete. No new transactions from other ports are initiated.	Software may also write this value to take down a working redundant port for an upgrade. Software may not access physical memory behind the XMB nor XMB configuration.
Redundancy Loss	This IMI is no longer redundant. One of the IMI's with which this IMI was redundant is now disabled.	All	Software can return this IMI to redundant state when the all the other IMI's are recovered.

Table 6-15. Software Visible IMI State (Sheet 2 of 2)

State	NB Behavior	Supported IMI activity	SW Usage
Recovery Reset	Same as Reset State.	None	Software writes this value to clear the IMI in preparation for recovery. Software can force entry to this state whenever there are partners for this IMI.
			Once in this state, IMIHPC.PWRCTL can be set so that cards may be added or removed.
Recovery Init	Same as Initialization State.	HW controlled init ops. No system accesses.	Software writes this value to release the IMI reset and initiate recovery.
Recovery Ready	Similar to Ready State, but memory accesses are still being directed to/from other IMI's. Config accesses are enabled to IMI and to XMB.	Config Accesses, but not memory operations.	Software may not write this value. It checks this state to determine whether the NB has completed Recovery Init. SPD reads, XMB Address configuration, Calibration and Memory Test Engine.
Resilver	The NB is reconstructing the memory image on this IMI from its partners in Redundancy Loss State.	Re-silvering writes, System writes.	Software may set this state when the NB and XMB have been configured to support memory accesses. Software writes this value to initiate re-construction of the memory contents for this IMI.
Recovered	The images in the NB are consistent and ready to be put in redundant state. New reads and writes are already being processed the same as in the Redundant State. Any partners of this IMI in Redundancy Loss state should be returned at the same time.	All	Software may not write this value. It checks it to determine whether resilvering succeeded.
Recovery Failed	An uncorrectable error occurred while resilvering. The image on this IMI is not consistent with images on others and this IMI should not be advanced to Redundant state. Configuration reads and writes to this IMI are still supported, but configuration writes to the associated XMB will be master aborted.	None	Software may not write this value. It checks it to determine whether resilvering succeeded. Software may attempt another recovery attempt or force this IMI into Reset State.

6.3.5 Memory RAS

6.3.5.1 Memory Mirroring

In the mirrored configuration, one of the IMI ports will be designated the primary image and the other the secondary (for an overview on mirroring, refer to Section 2.6.3). Both ports will be issued the same write request and both ports will respond to the request (in a ping-pong fashion). The primary designation will toggle between the two IMI ports on detected correctable memory responses. The primary designation will become fixed on a specific port on an uncorrectable error.

Memory Mirroring Write Operation- For the case of memory writes, the write request is issued to both IMI ports. The NB must successfully collect both responses before considering the write completion. If the write request fails on an IMI port, the write will be re-issued to both ports with exactly the same transaction ID. If the retried write is acknowledged by only one port, switch to the single image (no mirror available).

Memory Mirroring Read Operation- For the case of memory reads, the read request does not go to both mirrors. At the successful completion of the read response, the read response is allowed to complete on the front side bus, PCI Express or HI1.5 interface.

In the case of a detected error, the action of the NB is as follows:

- In the case of a detected Correctable Error, the definition of the Primary image will toggle and the read will be issued on the "new" primary image.
- In the case of a detected Uncorrectable Error, the definition of the Primary image will "hard fail" to the other image. In this case, the "failed" image will never become primary until service has replaced the FRU (Field Replaceable Units) and "re-silvered" the images.

In the event of a switch between the primary and secondary port designations, the NB will ensure that the IMI ports are idle at the time of the switch.

Copy Engine (re-silvering the images) - In the event that the memory configuration has changed (as when a failed memory FRU has been replaced), the NB uses a copy engine to walk memory from the primary image and write it back to both ports. When the copy engine is enabled, all writes are issued to both ports.

The steps to copy (or re-silver two memory images) are as follows:

- 1. IMI Link goes through a training and initialization process.
- 2. XMB registers are initialized.
- 3. Memory behind the XMB is tested and initialized ("0" is written with valid ECC).
- 4. NB copy engine is enabled. At this time writes start being issued to both images.
- 5. When copy is completed, re-enable mirroring. (i.e. Failures of the primary memory image are no longer FATAL errors).

Correctable Errors - The NB will just correct the data and provide to the requester. The XMB will also correct the data and write back into memory.

Reasons to degrade to one memory image:

- Receiving two uncorrectable errors (not including poisoned data) for the same access.
- Receiving Fatal Error Signal from an XMB.
- Software disabling an IMI interface.

Re-enabling of memory mirroring:

- Replacement of a Failed Memory FRU via the Hot-Plug procedure.
- Software/Firmware will configure and test a memory card FRU. If the memory card matches in size with the current image, the re-silvering process can be enabled. Upon successful completion of the copying process, the two images can be re-enabled.

6.3.5.2 Memory RAID

Memory RAID Read Operation

Normal Case - Read Requests for a given Cache Line can be issued just as in the normal memory configuration to a given address with the following changes:

- RAID Address decoding must be done to route to the appropriate IMI Port.
- Address conflict check logic must take into account not only an address match for a write in progress, but also an address match of the Memory RAID associative lines. As indicated in Table 6-16, a read of "Cache Line 0" must be delayed to occur after any of the following writes of Cache Line 0.

Reconstructive Case - In the case of a failed IMI port, there are two cases for reading a cache line (for this discussion, we assume that IMI Port D has failed):

- To read Cache Line 0, the NB performs a normal read.
- To read Cache Line 2n (for example when IMI Port D is failed), is to read checkline(2n, n, 0), cache line n and cache line 0 and re-construct cache line 2n, as in the following equation:

 $cacheline(2n) = checkline \oplus cacheline(n) \oplus cacheline(0)$

Memory RAID Write Operation

Normal Case - Write Request for a given cache line requires the cache line to be written and the check line to be updated accordingly. The steps of the write of cache line 0 are as follows:

- 1. Read Cache Line 2n and n.
- 2. Calculate Checkline, which is the exclusive OR of cache line 0, n, 2n.
- 3. Write Cache Line 0 and Check Line (2n,n,0).

Reconstructive Case - In the case of a failed IMI port, there are two cases for writing a cache line (for this discussion, we assume that IMI Port D has failed):

To write Cache Line 0, the NB must read its checkline and cacheline 0 (old value); recalculate
checkline, write new value of checkline and cacheline0. The calculation of the checkline is as
follows:

```
checkline(new) = checkline(old) \oplus cacheline0(old) \oplus cacheline0(new)
```

• To write Cache Line 2 (assuming that IMI Port D is failed), is to update the checkline(2n+2,n+2, 2):

```
checkline(2n+2,n+2,2) = cacheline(2n+2) \oplus cacheline(n+2) \oplus cacheline(2(new))
```

Memory RAID Re-silvering Operation

The re-silvering process for Memory RAID requires the NB to read from the other three IMI ports, regenerate the failed IMI Link data and then write the reconstructed data back. To reconstruct the failed IMI (for this example, IMI port D is being re-silvered), use the following equation:

$$IMID = IMIC \oplus IMIB \oplus IMIA$$

Note: As in the Memory Mirroring Case, all write operations must also happen to maintain cache coherency of the platform.

When the RAID re-silvering reaches terminal count, the re-silver link is available for normal operation. The size of the re-silvering is determined by the base and size programmed in IMIR3.

Cache Line Striping

For Memory RAID, the NB will use all four IMI Ports and provide a check cache line for every three cache lines. Table 6-16 describes how the IMI ports stripe the cache line. Also note the "n" in the table is equal to a fourth of all the memory available in the platform. For example, if a platform had 16GB of memory, "n" = 4 GB, 12 GB would be used as system address space and 4 GB is used for "Check lines".

Table 6-16. Memory RAID IMI Port Striping

IMI RAID Associated Addresses	IMI Port D	IMI Port C	IMI Port B	IMI Port A
0	Cache Line 2n	Cache Line n	Cache Line 0	Check Line 2n, n, 0 (Check Line address - 3n)
1	Cache Line n+1	Cache Line 1	Check Line 2n+1, n+1, 1 (Check Line address - 3n+1)	Cache Line 2n+1
2	Cache Line 2	Check Line 2n+2, n+2, 2 (Check Line address - 3n+2)	Cache Line 2n+2	Cache Line n+2
3	Check Line 2n+3, n+3, 3 (Check Line address - 3n+3)	Cache Line 2n+3	Cache Line n+3	Cache Line 3

The following pseudo code provides a description of the algorithm to map a front side bus address onto an IMI Port. For readability, the code description ignores the TOLM calculation and the possibility of memory addition in the RAID mode.

```
If (in RAID mode) then
        begin
        n=1/4(sum of total available DIMM memory if not in RAID mode)
        if (n > FSB \ address >= 0) then use MIRO Mapping register
        else if (2n > FSB \ address >= n) then use MIR1 Mapping register
        else if (3n > FSB \text{ address} >= 2n) then use MIR2 Mapping register
        else NOT a memory address and route to I/O (i.e. FSB address >= 3n)
        /****************
        IMI Mapping Calculation
        **********************
        /* Determines ROW in Table 9-47 */
        RAID \ Address \ Offset = (FSB \ Address \ [7:6]);
        /* Determine Column and IMI Port in Table 9-47 */
        if (n > FSB \ address >= 0) then IMI Port # = (1 + RAID \ Address \ Offset) && 011b
        else if (2n > FSB \text{ address} >= n) then IMI Port \# = (2 + RAID \text{ Address Offset}) & & 011b
        else then IMI Port \# = (3 + RAID Address Offset) && 011b
```

Else (Map System Address per the description in Main Memory Interleaving subsection in the System Address Map chapter).

The check lines for the platform are at a "3n" base for the system address map. Refer to Table 6-17.

Table 6-17. Raid Related Address for the Independent Memory Interface Port

IMI RAID Associated Address	IMI Port D	IMI Port C	IMI Port B	IMI Port A	
0	0,n,2n,3n	0,n,2n,3n	0,n,2n,3n	0,n,2n,3n	
1	1, n+1, 2n+1, 3n+1				
2	2, n+2, 2n+2, 3n+2				
3	3, n+3, 2n+3, 3n+3	3, n+3, 2n+3, 3n+3	3, n+3, 2n+3, 3n+3	3, n+3, 2n+3, 3n+3.	

Memory Upgrade Support for the Memory RAID

The NB/XMB provide the ability to allow memory upgrade operations while in the RAID configurations. To allow this possibility the user must program the IMIR registers and have holes in the system address map. An example of this map follows:

FF FFFF FFFFh
High MMIO Range
4M+LMMIO_SIZE
System Parity lines and upgrade of Parity lines.
3M+LMMIO_SIZE+N
System Memory
3M+LMMIO_SIZE
Reserved for Memory Upgrade
2M+LMMIO_SIZE+N
System Memory
2M+LMMIO_SIZE
Reserved for Memory Upgrade
1M+LMMIO_SIZE+N
System Memory
1M+LMMIO_SIZE
Reserved for Memory Upgrade
LMMIO_SIZE+N
System Memory
01_0000_0000
Low MMIO HOLE
TOLM (01_0000_0000-LMMIO_SIZE)
System Memory and Legacy Ranges
00_0000_0000

Note: In the example map above, "N" is 1/4 the sum of all the currently installed memory in the platform and "M" represents the maximum amount of memory that is allowed per XMB after an upgrade. "M" is set by BIOS according to system vendor and/or user settings.

Table 6-18 shows the IMIR configuration for this example system map. The user of the platform might prefer not to allow for the possibility of a memory upgrade (this is due to certain OS limitations). The size of the re-silvering is determined by the base and size programmed in IMIR3 LIMIT.

Table 6-18. Raid Memory Upgrade IMIR Possible Settings

		Primary (data)			Secondary (parity)				
IMIR	LIMIT	Way3	Way2	Way1	Way0	Way3	Way2	Way1	Way0
0	М	0	3	2	1	3	2	1	0
1	2M	1	0	3	2	3	2	1	0
2	ЗМ	2	1	0	3	3	2	1	0
3	(3M+N)a	3	2	1	0	3	2	1	0

NOTES:

Figure 6-2 and Figure 6-3 illustrate the pre- and post-upgrade in memory RAID.

Figure 6-2. Pre-Upgrade Memory Map

a. This is due to accurately calculating the top of parity check blocks.

Figure 6-3. Post-Upgrade Memory Map

6.3.5.3 Patrol/Demand Scrubbing and DIMM Sparing

These RAS features are located entirely in the XMBs. For a description of these features, refer to Intel® E8501 Chipset eXternal Memory Bridge (XMB) Datasheet.

6.3.6 Initialization

The NB/XMB initialization sequence is mostly linear. The NB does not implement time-outs for each phase, but there is one time-out for the entire sequence. If the initialization protocol fails to advance, a time-out will cause the link to be reset and try again. When the time-out occurs, the NB will set IMIST.State to "disabled". If the initialization succeeds, IMIST.State will be set to "Ready" (See Section 4.13.9, "IMIST: IMI Status (D{8,10,12,14}, F0)" on page 148). Once software configures the NB and XMB to handle memory transactions it writes IMIHPC.NextState to "Active". This will be reflected in IMIST.State.

6.3.6.1 Initialization Triggers

All IMI's are initialized whenever the NB is reset. An individual IMI is reset when IMIHPC.State is set to "Reset" or "RecoveryReset" for that IMI. Software will reset the IMI to perform Hot-Plug operations. No error detection by the NB directly causes an IMI to reset (an error may cause the system to be reset, in which case RSTIN# will be asserted).

6.3.7 Power Management

Intel® E8501 chipset does not support ACPI power-down of memory. Ports which are not connected to an XMB or connected to a failed XMB can be powered down by setting IMIHPC.STATE to Reset. This will hold the IMI in reset in which state drivers and receivers are not enabled. When in that state, the IMIHCP.PWRCTL can be set, which removes power from the XMB. This is a safe state that allows a memory card to be added without notification.

6.3.8 IMI Hot-Plug

The NB supports memory Hot-Plug feature that includes hot removal and hot addition.

These Hot-Plug operations are visible to the OS if the NB is operating in normal mode (non-redundant mode). Any Hot-Plug operation requires support from the OS including allocation and de-allocation of system memory.

If the NB is operating in mirroring or RAID mode in full redundant strength (not in redundancy fail over mode), the Hot-Plug operations are non-visible to the OS. Firmware/BIOS, however, is required to preform the required functionality for seamless addition and removal of XMB memory.

DIMM sparing (regular sparing or zero overhead sparing) on the DDR channels within an XMB is not within the scope of this document. Readers should refer to the *Intel*® *E8501 Chipset eXternal Memory Bridge (XMB) Datasheet* for information on this topic.

6.3.8.1 Hot-Plug Standard Usage Model

The NB IMI memory Hot-Plug mechanism is designed to allow the system platform to provide the same visual indicators, buttons, and control/status registers as PCI Standard Hot-Plug Controller (SHPC) Specification and PCI Express Hot-Plug standard usage model. The NB IMI memory Hot-Plug mechanism requires support from Intel® E8501 chipset-specific firmware to follow Hot-Plug standard usage model. Intel® E8501 chipset-specific firmware and interrupt service routines together are referred to as software (SW) in this section.

The memory board is a field-replaceable unit or Hot-Pluggable unit. Each memory board implements an attention button, power LED (green), indicator/attention LED (amber), and a Mechanical Retention Latch (MRL) switch to support the standard usage model and to support surprise removal without damage. In this chapter, green LED and power LED are used interchangeably. Indication/attention LED and amber LED are also used interchangeably.

6.3.8.2 Hot-Plug Registers

Each IMI has an IMIHPC (Independent Memory Interface Hot-Plug Control) register to control:

- 1. LED operations
- 2. Power to the XMB
- 3. Hot-Plug interrupt enabling mask
- 4. Next state of the IMI

Each IMI also has a IMIST (Independent Memory Interface Status) register that provides status for:

- Hot-Plug interrupt events
- Current state of the IMI

The NB supports only one IMI Hot-Plug operation at a time. The IMIST register has sufficient information to determine which IMI is being sequenced through the Hot-Plug operation. The IMIHPC register has interrupt enable/disable capability to prevent events from other IMI's from intruding on the current Hot-Plug operation. On completion of any Hot-Plug operation, software must check the status of other IMI's to handle any pending events.

6.3.8.3 Interrupt Support for Hot-Plug

6.3.8.3.1 Event Interrupts

The NB has a pin, IMI_HPINT, dedicated to IMI Hot-Plug interrupts. The 4 IMIST registers have sufficient status information to determine the cause of any IMI_HPINT interrupt.

Interrupt names and associated events triggering IMI_HPINT include:

- XMBINT: XMB has sent an "assert IMI_HPINT" in-band signal on the Independent Memory Interface. Status register in XMB provides the more interrupt information for SW.
- IMIRLINT: MRL sensor change detected whenever the MRL is transition between open and closed positions.
- ATNINT: Attention button pressed is detected for this IMI.
- FAILINT: An IMI has entered the disabled state.
- PRSINT: Present detect changed when PRSNT# changes state.
- PWRINT: Power fault asserted in an IMI.

6.3.8.3.2 Hot-Plug Timer Interrupt

The IMI_HPTIM register controls a timer dedicated to IMI Hot-Plug software that will interrupt after intervals ranging from 12.5 ms to 12.5 sec. Instead of individual timers for each IMI, there is only 1 IMI_HPTIM timer for SW use.

6.3.9 NB IMI States

NB IMIHPC and IMIST registers define the software-visible states of the NB IMI. Transitions from one state to another may be controlled by software or the NB. Software can observe these states via the IMIST register and force into a state via the IMIHPC register.

Typically, the NB only supports one IMI at a time in the Recovery states. Candidates for recovery wait in the "Disabled" state until they are serviced. Configuration accesses are master aborted when the IMI is not in a fully operational state. Otherwise, an access to a redundant failed port (by error handling, or Hot-Plug/recovery software) could result in an unpredictable behavior.

6.3.10 Hot Swap

The NB Memory Port Hot-Plug capability and RAS operating modes enable a hot swap process which consists of a hot removal and a hot addition of a memory board. Hot swap enables the system to electrically isolate a memory board (with hardware error or by user specification) while the system continues to run (such that the memory board could be replaced without taking the system off-line.

6.3.11 NB RAS Operating Modes

Once the RAS operating mode (Normal, Mirroring or RAID) is programmed at boot time, it should not be changed during the Hot-Plug process.

If a system is operating in mirroring mode, either with mirroring pairs {(IMI A, IMI B), (IMI C, IMI D)} or {(IMI A, IMI C), (IMI B, IMI D)}, one XMB/IMI from each mirroring pair (for a total of 2) could be hot removed sequentially. Since all 4 IMI's are participated in providing redundancy, only one XMB/IMI could be hot removed. Once the IMI slot is powered down by the system, it could be replenished by a memory board with adequate capacity/capability by hot addition.

6.3.12 Memory Hot Removal

There are two mechanisms to trigger a hot removal sequence:

- · Hardware initiated hot removal
- Software/user initiated hot removal

6.3.12.1 Hardware Initiated Hot Removals

In this case, NB detects an interrupt and reports it via IMIST register. The interrupt is due to hardware error or surprise removal of XMB card). These interrupts include:

- XMB interrupt: XMB has sent an "assert IMI_HPINT" in-band signal on the Independent Memory Interface. An example is XMB leaky bucket threshold overflow event (for normal mode only).
- IMI entering disabled state in mirroring or RAID mode only
- Mechanical Retention Latch (MRL) sensor changed
- Presence detect change
- · Power fault detection

6.3.12.2 Software/User Initiated Hot Removals

This mechanism is mainly for preventative maintenance or add-on upgrade purposes. NB could support at least two approaches:

- Pushing the attention button on a XMB card to indicate hot removal intention
- User requests hot removal through system software user interface

The following three subsections discuss hot removal flows for three operating modes:

- 1. Normal (non-redundancy),
- 2. Mirroring
- 3. RAID

Proper interrupt enable bits are assumed to be programmed correctly by software (Intel® E8501 chipset-specific firmware and interrupt handling routines).

6.3.12.2.1 Normal Mode (Graceful Degradation)

Figure 6-4 illustrates a hot removal flow in normal mode. The IMI_x is the IMI to be hot removed where x could be A, B, C or D. IMI_x is at active state (IMIST[x].state = active) entering the flow. There are five entry points in this flow: 1, 2, 3, 4 and 5. Each represents an independent entry point.

At point 1, the XMB detects a leaky bucket threshold overflow and sends a IMI in-band "assert IMI_HPINT" signal to the NB. The NB sets IMIST[x].XMBINT that triggers a IMI_HPINT, software sets the amber attention LED via IMIHPC[x].ATNLED to indicate operational problem and processes this interrupt and exits.

At point 2, the software initiates a graceful degradation to remove IMI_x and set the indication LED. A technician can initiate the removal process via pushing the attention button at point 5.

Prompted by the attention LED, the user/technician pushes the attention button following the standard usage model. The attention button pressed event triggers IMI_HPINT interrupt. The servicing software sets the green power LED to blinking state via IMIHPC[x].PWRLED and turns off attention LED. It also clears the IMIST[x].ATNINT and sets IMI_HPTIM timer to interrupt after five seconds and then exits. The NB will set IMI_HPTIM.TIMER after the programmed five second period and triggers a IMI_HPINT. If the button is pushed again during this five second period, the user indicates intention NOT to remove this IMI per standard Hot-Plug usage model. In that case, software turns off IMIHP[x].PWRLED, clears the IMIST[x].ATNINT and processes the event and exits.

If the user's intention is confirmed after the five second period, the software and OS will validate the removal request against system policy (e.g. pinned memory that can not be de-allocated or physical security policy).

Once the request is validated or the NB detects a power fault (entry point C with proper software handling), or the MRL sensor changed (entry point D with proper software handling), OS will deallocate the system memory in this IMI/XMB. Software will flush NB CDC via setting CDCC.FLUSH bit which starts a NB CDC flushing process. When the NB completes the flushing process, it sets CDCS.FLUSH.DONE bit. Software can use the IMI_HPTIM to poll this completion bit periodically. Recommended waiting time is 25 ms.

After the CDC flush is completed, software should set IMIHPC[x].state to reset state. The NB will put the IMI into reset state. Software then turns off power to the IMI/XMB via IMIHPC[x].PWRCTL. The Power LED is then turned off via IMIHPC[x].PWRLED by software. At this point, the IMI port is in reset and power to the XMB slot is turned off. Since the power LED is off, the user can remove the XMB per standard usage model.

292

Figure 6-4. Hot Removal Flow for Capacity Reduction (Graceful Degradation)

6.3.12.2.2 Mirroring Mode

Figure 6-5 illustrates a hot removal flow in mirroring mode. IMI_x is the IMI to be hot removed (where x could be A, B, C or D) while IMI_y is the mirroring partner of IMI_x. Both IMI_x and IMI_y are at redundant state (IMIST[x].state = redundant and IMIST[y].state = redundant) entering the flow. There are five entry points in this flow: 1, 2, 3, 4 and 5. Each represents an independent entry point.

At point 1, the NB detects a fatal error from IMI_x (not fatal in mirroring mode) to fail over mode for the mirroring pair (IMI_x, IMI_y). The NB sets IMIST[x].FAILINT that triggers a IMI_HPINT, software sets the amber attention LED via IMIHPC[x].ATNLED (to indicate an operational problem) and processes this interrupt and exits.

At point 2, the software initiates a hot removal by setting IMIHPC[x].state to "Disabled" state (to remove IMI_x) and sets the indication LED. A technician can initiate the removal process via pushing the attention button at point 5.

Prompted by the attention LED, the user/technician pushes the attention button following the standard usage model. The "attention button pressed" event triggers an IMI_HPINT interrupt. The servicing software sets the green power LED to blinking state via IMIHPC[x].PWRLED and turns off the attention LED. It also clears the IMIST[x].ATNINT, and sets the IMI_HPTIM timer to interrupt after five seconds and then exits. The NB will set IMI_HPTIM.TIMER after the programmed five seconds period and triggers an IMI_HPINT. If the button is pushed again during this five second period, the user indicates intention NOT to remove this IMI per standard Hot-Plug usage model. In that case, software turns off IMIHP[x].PWRLED, clears the IMIST[x].ATNINT, processes the event and exits.

If the user's intention is confirmed after the five second period, the software and OS will validate the removal request against system policy (e.g. physical security policy).

Once the request is validated or NB detects power fault (entry point 3 with proper software handling), or the MRL sensor change (entry point 4 with proper software handling), software will flush the NB CDC via setting CDCC.FLUSH bit which starts a NB CDC flushing process. When the NB completes the flushing process, it sets CDCS.FLUSH.DONE bit. Software can use the IMI HPTIM to poll this completion bit periodically. The recommended waiting time is 25 ms.

After the CDC flush is completed, software should set MIHPC[x].state to "recovery reset" state. The NB will put the IMI into reset state. Software then turns off power to the IMI/XMB via IMIHPC[x].PWRCTL. The Power LED is then turned off via IMIHPC[x].PWRLED by software. At this point, the IMI port is in reset and power to the XMB slot is turned off. Since the power LED is off, the user can remove the XMB per standard usage model.

Figure 6-5. Hot Removal for Mirroring Mode

6.3.12.2.3 RAID Mode

Figure 6-6 illustrates a hot removal flow in RAID mode. It is similar to the Mirroring mode flow in Figure 6-5 on page 6-294 with the main differences in NB RAID layer processing and software processing of redundant partner IMI's. Shadowed areas in the flowchart indicate the differences.

The IMI_x is the IMI to be hot removed where x could be A, B,C or D while IMI_w, IMI_y, and IMI_z are the RAID partners of IMI_x. All IMI's are at redundant state (IMIST[w/x/y/z].state = redundant) entering the flow. There are five entry points in this flow: 1, 2, 3, 4, and 5. Each represents an independent entry point.

At point 1, NB detects a fatal error from IMI_x (not fatal in RAID mode) and NB RAID layer switches to fail over mode in RAID mode. NB sets IMIST[x].FAILINT, which triggers a IMI_HPINT, software sets the amber attention LED via IMIHPC[x].ATNLED to indicate an operational problem, processes this interrupt and exits. At point 2, the software initiates a hot removal by setting IMIHPC[x].state to disabled state to remove IMI_x and set the indication LED. A technician can initiate the removal process by pushing the attention button at point 5.

Prompted by the attention LED, the user/technician pushes the attention button, following the standard usage model. The attention button pressed event triggers IMI_HPINT interrupt. The servicing software sets the green power LED to blinking state via IMIHPC[x].PWRLED and turns off the attention LED. It also clears the IMIST[x].ATNINT and sets IMI_HPTIM timer to interrupt after five seconds, then exits. NB will set IMI_HPTIM.TIMER after the programmed five-second period and triggers a IMI_HPINT. If the button is pushed again during this five-second period, the user indicates his intention NOT to remove this IMI per standard Hot-Plug usage model. In that case, software turns off IMIHP[x].PWRLED, clears the IMIST[x].ATNINT and processes the event and exits.

If the user's intention is confirmed after the five-second period, the software and OS will validate the removal request against system policy (e.g. physical security policy).

Once the request is validated or NB detects power fault (entry point C with NB RAID layer switching and proper software handling) or MRL sensor change (entry point D with NB RAID layer switching and proper software handling), software will flush NB CDC via setting CDCC.FLUSH bit, which starts a NB CDC flushing process. When NB completes the flushing process, it sets CDCS.FLUSH.DONE bit. Software can use the IMI_HPTIM to poll this completion bit periodically. The recommended waiting period is 25 ms; the final value will be tuned with hardware implementation.

After the CDC flush is completed, software should set IMIHPC[x].state to recovery reset state. NB will put the IMI into reset state. Software then turns off power to the IMI/XMB via IMIHPC[x].PWRCTL. Power LED is then turned off via IMIHPC[x].PWRLED by software. At this point, the IMI port is in reset and power to the XMB slot is turned off. Since the power LED is off, the user can remove the XMB per the standard usage model.

Figure 6-6. Hot Remove in RAID Mode

6.3.13 Memory Hot Addition

Software/User initiates hot addition for preventative maintenance or add-on upgrade purposes. NB could support at least two approaches:

- The user inserts an XMB card, closes the MRL switch and then pushes the attention button on a XMB card to indicate hot addition intention.
- User requests hot addition through system software user interface.

Hot addition flows in the chapter illustrate the attention button mechanism only.

6.3.13.1 Normal Mode

Figure 6-7 illustrates a hot addition flow in normal mode. The IMI_x is the IMI to be hot added (where x could be A,B, C or D). IMI_x is at reset state (IMIST[x].state = reset) entering the flow.

At point A, the user/technician inserts a XMB card into slot x and closes the MRL switch. The NB sets IMIST[x].PRSINT, and triggers an IMI_HPINT interrupt. Servicing software processes this interrupt and records the possible addition of IMI_x. The user then pushes the attention button following the standard usage model. The "attention button pressed" event triggers the IMI_HPINT interrupt. The servicing software sets the green power LED to "blinking state" via IMIHPC[x].PWRLED. It also clears the IMIST[x].ATNINT and sets IMI_HPTIM timer to interrupt after five seconds and then exits. The NB will set IMI_HPTIM.TIMER after the programmed five second period and triggers an IMI_HPINT. If the button is pushed again during this five second period, the user indicates intention NOT to add this IMI per standard Hot-Plug usage model. In that case, software turns off the IMIHP[x].PWRLED, clears the IMIST[x].ATNINT, processes the event and exits.

If the user's intention is confirmed after the five second period, the software and OS will validate the addition request against system policy (e.g. physical security policy).

Once the request is validated, software sets the IMI state to reset for a clean start. Software then advances the IMI state to initialization, and the NB will start the initialization process. When the NB completes the initialization process, it sets the IMIST[x].STATE to "ready" state. Software can use the IMI_HPTIM to poll this completion bit periodically. The recommended waiting time is 25 ms.

Once the IMI is in "ready" state, software performs memory configuration, memory testing and memory calibration. If the XMB memory passes the testing and calibration, then software sets the IMIHPC[x].STATE to active and programs IMIR's. The OS will allocate the system memory in this IMI/XMB. This hot addition is completed successfully.

If the XMB memory does not pass the testing and calibration, software sets the IMI state back to reset and turns on the amber attention LED to report operational problem. Software then turns off the XMB slot power via IMIHPC[x].PWREN and turns off green power LED. Finally, software writes to the system log and exits.

Figure 6-7. Hot Addition in Normal Mode

6.3.13.2 Mirroring Mode

Figure 6-8 illustrates a hot addition flow in mirroring mode. The IMI_x is the IMI to be hot added (where x could be 0, 1, 2, or 3), while IMI_y is the mirroring partner of IMI_x. IMI_x is at recovery reset state and IMI_y is at redundancy loss state (IMIST[x].state = recovery reset and IMIST[y].state = redundancy loss) entering the flow.

At point A, the user/technician inserts a XMB card into slot x and closes the MRL switch. The NB sets the IMIST[x].PRSINT and triggers an IMI_HPINT interrupt. Servicing software processes this interrupt and records the possible addition of the IMI_x. The user then pushes the attention button following the standard usage model. The "attention button" pressed event triggers IMI_HPINT interrupt. The servicing software sets the green power LED to "blinking" state via IMIHPC[x].PWRLED, it also clears the IMIST[x].ATNINT, sets IMI_HPTIM timer to interrupt after five seconds and then exits. The NB will set IMI_HPTIM.TIMER after the programmed five second period and triggers an IMI_HPINT. If the button is pushed again during this five second period, the user indicates intention NOT to add this IMI per standard Hot-Plug usage model. In that case, software turns off the IMIHP[x].PWRLED, clears the IMIST[x].ATNINT, processes the event and exits.

If the user's intention is confirmed after the five second period, the software and the OS will validate the addition request against system policy (e.g. physical security policy).

Once the request is validated, software sets the IMI state to "recovery" reset for a clean start. Software then advances the IMI state to recovery initialization and the NB will start the recovery initialization process. When the NB completes the recovery initialization process, it sets the IMIST[x].STATE to recovery ready state. Software can use the IMI_HPTIM to poll this completion bit periodically.

Once the IMI is in the "recovery ready" state, software performs memory configuration, memory testing and memory calibration. If the XMB memory passes the testing and calibration, software then programs the IMIR's and sets the IMIHPC[x].STATE to "resilver" state. If the re-silvering process is successful, NB will set the IMI state to "recovered" state (IMIST[x].STATE = Recovered). Software can use the IMI_HPTIM to poll this completion bit periodically. The recommended waiting time is 25 ms. Software then sets IMIHPC[x].STATE to "redundant" and IMIHPC[y].STATE to "redundant". This hot addition is completed successfully.

If the re-silvering fails as indicated by the NB setting IMIST[x].STATE to "recovery failed" or the XMB memory does not pass the testing and calibration, software writes to system log and sets the IMI state back to "recovery reset" and turns on the amber attention LED to report operational problem. Software then turns off the XMB slot power via IMIHPC[x].PWREN and turns off green power LED. Finally, software writes to the system log and exits.

Figure 6-8. Hot Addition in Mirroring Mode

6.3.13.3 RAID Mode

Figure 6-9 illustrates a hot addition flow in RAID mode. It is similar to the mirroring mode flow in Figure 6-8 on page 6-300 with main differences in NB RAID layer processing and software processing of redundant IMI partners. Shadowed areas in the flowchart indicate the differences.

The IMI_x is the IMI to be hot added where x could be A, B,C or D, while IMI_w, IMI_y, and IMI_z are the RAID partners of IMI_x. IMI_x is at recovery reset state and IMI_w, IMI_y and IMI_z are at redundancy loss state (IMIST[x].state = recovery reset, IMIST[w].state = IMIST[y].state = IMIST[z].state = redundancy loss) entering the flow.

At point 1, the user/technician inserts a XMB card into slot x and closes the MRL switch. NB sets IMIST[x].PRSINT and it triggers a IMI_HPINT interrupt. Servicing software processes this interrupt and records the possible addition of IMI_x. The user then pushes the attention button following the standard usage model. The attention button pressed event triggers IMI_HPINT interrupt. The servicing software sets the green power LED to blinking state via IMIHPC[x].PWRLED. It also clears the IMIST[x].ATNINT and sets IMI_HPTIM timer to interrupt after five seconds and then exits. NB will set IMI_HPTIM.TIMER after the programmed five-second period and triggers a IMI_HPINT. If the button is pushed again during this five-second period, the user indicates his intention NOT to add this IMI per standard Hot-Plug usage model. In that case, software turns off IMIHP[x].PWRLED, clears the IMIST[x].ATNINT and processes the event and exits.

If the user's intention is confirmed after the five-second period, the software and OS will validate the addition request against system policy (e.g. physical security policy).

Once the request is validated, software sets the IMI state to recovery reset for a clean start. Software then advances the IMI state to recovery initialization and NB will start the recovery initialization process. When NB completes the recovery initialization process, it sets the IMIST[x].STATE to recovery ready state. Software can use the IMI_HPTIM to poll this completion bit periodically. The recommended waiting period is 25 ms; the final value will be tuned with hardware implementation.

Once the IMI is in recovery ready state, software performs memory configuration, memory testing and memory calibration. If the XMB memory passes the testing and calibration, software then programs IMIR's and sets the IMIHPC[x].STATE to resilver state. NB RAID layer will re-build the correct image of IMI_x from its RAID partners: IMI_w, IMI_y and IMI_z. If the re-silvering process is successful, NB will set the IMI state to recovered (IMIST[x].STATE = recovered). Software can use the IMI_HPTIM to poll this completion bit periodically. The recommend waiting period is 25 ms.; the final value will be tuned with hardware implementation. Software then sets all IMIHPC[x].STATE, IMIHPC[w].STATE, IMIHPC[y].STATE and IMIHPC[z].STATE to redundant. This hot addition is completed successfully.

If the re-silvering failed as indicated by NB setting IMIST[x].STATE to recovery failed, or if XMB memory does not pass the testing and calibration, software writes to the system log, sets the IMI state back to recovery reset and turns on the amber attention LED to report an operational problem. Software then turns off the XMB slot power via IMIHPC[x].PWREN and turns off the green power LED. Finally, software writes to the system log and exits.

Figure 6-9. Hot Addition in RAID Mode

6.4 PCI Express Interface

PCI Express is the next generation I/O interface replacing PCI-X. It offers a very high bandwidth to pin interface for general-purpose adapters interfacing a wide variety of I/O devices. The *PCI Express Base Specification*, Revision 1.0 provides the details of the PCI Express protocol.

6.4.1 Support

The following table describes the options and limitations supported by the NB-to-PCI Express ports.

Table 6-19. Options and Limitations

Parameter	Support	
Max payload	256B	
Hot-Plug	Serial port to support pins.	
Virtual Channels	NB only supports VC0.	
Isochrony	NB does not support isochrony.	
Ordering	NB only supports strict PCI ordering.	
No Snoop	NB will not snoop processor caches for transactions with the No Snoop attribute.	
Power Management	The NB cannot be powered down, but will forward messages, generate PME_Turn_Off and collect PME_TO_ACKs. It will provide a Capabilities structure.	
Poisoning	NB will poison data that it cannot correct.	

6.4.2 Physical Layer

The PCI Express physical layer implements high-speed serial signalling techniques including:

- Differential signalling (1.6 V peak-to-peak)
- 2.5 GHz data rate (up to 2 GB/s/direction peak bandwidth for an x8 link)
- 8b/10b encoding for embedded clocking and packet framing
- Unidirectional data path in each direction supporting full duplex operation
- · Random idle packets and spread-spectrum clocking for reduced EMI
- Loop-back mode for testability
- · Lane reversal
- Polarity Inversion

Figure 6-10 illustrates the scope of the physical layer on a PCI Express packet. There are two types of packets: Link layer packets and Transaction Layer Packets. The physical layer is responsible for framing these packets with STP/END symbols (Transaction Layer Packets) and SDP/END symbols (Data Link Layer packets). The grayed out segment is not decoded by the Physical layer.

Figure 6-10. PCI Express Packet Visibility by Physical Layer

Each lane of a PCI Express port consists of 4 signals: 1 differential pair per direction. (For description of the PCI Express signals refer to Table 3-5 "Intel® E8501 Chipset North Bridge (NB) Signals (PCI Express)" on page 3-41).

6.4.2.1 Supported Widths and Port Partitioning

Some of the x4 PCI Express ports can be combined to form x8 ports. Ports A0&A1, B0&B1 and C0&C1 can be combined to form x8s. Port D cannot be combined with other ports. Width configuration occurs independently per port through PCI Express training.

Figure 6-11. PCI Express Interface x8 Partitioning

The PCI Express training state machine is capable of automatically determining the port partitioning.

Table 6-20. Width Strapping Options for Port 1 (EXP_{ A1/A0/B1/B0})

EXP1_WIDTH[2:0]	Port A1	Port A0	Port B1	Port B0
000	x4	x4	x4	x4
001	x4	x4	Х	8
010	х	8	x4	x4
011	x8		х	8
10X	Reserved			
110	Reserved			
111	All port widths determined by link negotiation.		otiation.	

Table 6-20 illustrates the strapping options for ports C0 and C1.

Table 6-21. Width Strapping Options for Port 0 (Exp_{ C1/C0/D})

EXP0_WIDTH[1:0]	Port C1	Port C0	Port D
00	x4	x4	x4
01	Reserved		
10	x8		
11	All port widths determined by link negotiation.		

The *PCI Express Base Specification*, Revision 1.0 requires only that a port be capable of negotiating and operating at the native width and x1. However, in order to support a x4 device plugged into a x8 slot, the NB attempts all supported widths narrower than the native width. For example, a port strapped at x8, will first attempt negotiation at x8. If that attempt fails, an attempt is made at x4, then x2 and then x1. When settling on a narrower width and the straps are used to override the auto-negotiation partitioning, the remaining links are unused.

6.4.3 Training State Machine

The *PCI Express Base Specification*, Revision 1.0 defines the training state machine required on each port. This state machine is responsible for establishing:

- Negotiated width of the port
- · Negotiated frequency of the port
- Presence of a PCI Express component

The PCI Express Base Specification, Revision 1.0a defines a training state machine that is incompatible with the state machine defined in specification 1.0. Thus, the NB has strapping pins forcing it to behave with either of the two specifications. The EXP[1:0]_SEPC10A pins control this behavior.

Table 6-22. Training State Machine Mode

Pin	Value	Function
EXP0 SEPC10A	0	PCI Express ports D, C0, C1 will use 1.0 specification.
EXFU_SEPCTUA	1	PCI Express ports D, C0, C1 will use 1.0a specification.
EXP1 SPEC10A	0	PCI Express ports B0, B1, A0, A1 will use 1.0 specification.
EXF 1_OF LOTOX	1	PCI Express ports B0, B1, A0, A1 will use 1.0a specification.

6.4.4 Link Layer

The Data Link Layer of the PCI Express protocol is primarily responsible for data integrity. This is accomplished with the following elements:

- Sequence number assignment for each packet
- ACK/NAK protocol to ensure successful transmission of every packet
- CRC protection of packets
- Time-out mechanism to detect "lost" packets
- Credit exchange

Figure 6-12 illustrates the scope of the link layer on a PCI Express packet. There are two types of packets: Data Link Layer Packets (DLLP) and Transaction Layer Packets (TLP). Data Link Layer Packets are sent between the Link Layers of each PCI Express device and do not proceed to the Transaction Layer.

For Transaction Layer Packets (TLP), the Link Layer is responsible for prepending sequence numbers and appending 32-bit CRC. The grayed out segment is not decoded by the Data Link Layer.

Figure 6-12. PCI Express Packet Visibility by Link Layer

6.4.4.1 Data Link Layer Packets (DLLP)

Refer to *PCI Express Base Specification*, Revision 1.0 for an explicit definition of all the fields in a Data Link Layer packet.

DLLP's are used to ACK or NAK packets as they are sent from the transmitter to the receiver. They are sent by the receivers of the packet to indicate to the transmitter that a packet was successfully received (ACK) or not (NAK). DLLP's are also used to exchange credit information between the transmitter and receiver.

DLLP's are protected with 16b CRC. If the CRC of a DLLP is received indicates an error, the DLLP is dropped. This is safe because the PCI Express protocol supports dropping these packets and the next DLLP allows the transmitter to process successfully.

6.4.4.2 ACK/NAK

The Data Link layer is responsible for ensuring that packets are successfully transmitted between PCI Express agent. PCI Express implements an ACK/NAK protocol to accomplish this. Every packet is decoded by the physical layer (8b/10b) and forwarded to the link layer. The CRC code appended to the packet is then checked. If this comparison fails, the packet is "retried".

If the comparison is successful, an ACK is issued back to the transmitter and the packet is forwarded for decoding by the receiver's Transaction layer. Typically, as each packet is successfully received by the Data Link layer, the receiver issues an ACK. However, the PCI Express protocol allows that ACK's can be combined.

6.4.4.3 Link Level Retry

The PCI Express Base Specification, Revision 1.0 lists all the conditions where a packet gets NAK'ed. One example is on a CRC error. The Link layer in the receiver is responsible for calculating 32b CRC (using the polynomial defined in PCI Express Base Specification, Revision 1.0) for incoming packets and comparing the calculated CRC with the received CRC. If they do not match, then the packet is retried by NAK'ing the packet with a NAK DLLP specifying the sequence number of the last good packet. Subsequent packets are dropped until the reattempted packet is observed again.

When the transmitter receives the NAK, it is responsible for retransmitting the packet specified with the Sequence number in the DLLP + 1. Furthermore, any packets sent after the last good packet will also be resent since the receiver has dropped any packets after the corrupt packet.

6.4.5 Transaction Layer

The PCI Express Transaction Layer is responsible for sending read and write operations between components. This is the PCI Express layer which actually moves software visible data between components. The transaction layer provides the mechanisms for:

- Software configuration of components
- Communication between the FSB and different I/O technologies
- Communication between the memory and different I/O technologies

Figure 6-13 illustrates the scope of the transaction layer on a PCI Express packet. Some transaction layer packets have only a header (e.g. read request). Some transaction layer packets have a header followed by data (e.g. write requests and read completions).

Figure 6-13. PCI Express Packet Visibility by Transaction Layer

6.4.5.1 Supported Transactions

Table 6-23 lists all the transactions supported by the NB which are expected to be received from the PCI Express interface. Similarly, Table 6-25 lists all the transactions to be expected by an attached PCI Express component. Refer to the *PCI Express Base Specification*, Revision 1.0 for the specific protocol requirements of this interface.

Table 6-23. Incoming PCI Express Requests

PCI Express Transaction	Address Space or Message	NB Response	
Inbound Write	Memory	Forward to Main Memory or PCI Express or Hub Interface port depending on address.	
Requests	I/O	Forward to peer PCI Express or Hub Interface port.	
	Configuration	Forward to peer PCI Express or Hub Interface port if enabled.	
	(Type0 or Type1)	Torward to peer 1 of Express of Flub Interface port if enabled.	
	Memory	Forward to Main Memory, or PCI Express or Hub Interface.	
Inbound Read	I/O	Forward to peer PCI Express or Hub Interface port.	
Requests	Configuration	Forward to peer PCI Express or Hub Interface port if enabled.	
	(Type0 or Type1)	Torward to peer 1 of Express of Flub lifterlace port if enabled.	
	ASSERT_INTA	Inband interrupt assertion/de-assertion emulating PCI interrupts.	
	DEASSERT_INTA		
	ASSERT_INTB	Inband interrupt assertion/de-assertion emulating PCI interrupts.	
	DEASSERT_INTB		
	ASSERT_INTC	Inband interrupt assertion/de-assertion emulating PCI interrupts.	
	DEASSERT_INTC		
	ASSERT_INTD	Inband interrupt assertion/de-assertion emulating PCI interrup	
	DEASSERT_INTD		
	ERR_COR	Propagate as an interrupt to system.	
	ERR_UNC	Propagate as an interrupt to system.	
	ERR_FATAL	Propagate as an interrupt to system.	
	PM_PME	Propagate as a general purpose event to the system via the PME_OUT pin.	
Inbound Message	PM_TO_ACK	Set when the NB receives this message from all enabled PCI Express ports.	
	PM_ENTER_L1 (DLLP)	Block subsequent TLP issue and wait for all pending TLPs to ACK. Then, send PM_REQUEST_ACK.	
	ATTENTION_BUTTON_ PRESSED	Terminate the message and set the EXP_SLOTSTS. ATTENTION_ BUTTON_PRESSED.	
		If EXPCTRL.ATTENTION_BUTTON_PRESSED Enable and HOT-PLUG INTERRUPT ENABLE bits are set, assert EXP_HPINT.	
	ASSERT_GPE	Assert the EXP_HPINT output signal unless already asserted. This message should be considered a wired-or input with the other EXP_HPINT inputs.	
		NOTE: This is an Intel vendor-specific message.	
	DEASSERT_GPE	This message should be considered a wired-or input with the other EXP_HPINT inputs.	
		NOTE: This is an Intel vendor-specific message.	
	Others	Set IO12 error, drop transaction and return credit.	

Table 6-24. Incoming PCI Express Completions

PCI Express Transaction	Address Space or Message	NB Response
Completions for Outbound Writes	I/O or Configuration ^a	Forward to the FSB, PCI Express or Hub Interface from which the request originated.
Completions for Outbound Reads	Memory, I/O or Configuration	Forward to the FSB, PCI Express or Hub Interface from which the request originated.

NOTES:

Table 6-25. Outgoing PCI Express Requests

PCI Express Transaction	Address Space or Message	Reason for Issue
Outbound Write Requests	Memory	FSB or peer memory-mapped I/O write targeting PCI Express device.
	I/O	Processor legacy I/O write targeting PCI Express device.
	Configuration	Processor or peer configuration write targeting PCI Express device.
Outbound Read Requests	Memory	Processor or peer memory-mapped I/O read targeting PCI Express device.
	I/O	Processor or peer I/O read targeting PCI Express device.
	Configuration	Processor or peer configuration read targeting PCI Express device.
Outbound Messages	EOI (Intel-specific)	End-of-interrupt cycle received on FSB, NB broadcasts this message to all active PCI Express ports. Devices supporting edge triggered interrupts will ignore this cycle.
	Unlock	When a locked read or write transaction was previously issued to a PCI bridge, "Unlock" releases the PCI lock.
	PM_TURN_OFF	EXP_GCTRL.PME_TURN_OFF bit was set. This message is broadcast to all enabled PCI Express ports.
	PM_REQUEST_ACK (DLLP)	Received PM_ENTER_L1. This message is continuously issued until link is idle.
	Attention_Indicator_On	EXP_SLOTCTRL."Attention Indicator Control" has been set to On.
	Attention_Indicator_Off	EXP_SLOTCTRL."Attention Indicator Control" has been set to Off.
	Attention_Indicator_Blink	EXP_SLOTCTRL."Attention Indicator Control" has been set to Blink.
	Power_Indicator_On	EXP_SLOTCTRL."Power Indicator Control" has been set to On.
	Power_Indicator_Off	EXP_SLOTCTRL."Power Indicator Control" has been set to Off.
	Power_Indicator_Blink	EXP_SLOTCTRL."Power Indicator Control" has been set to Blink.
	Set_Slot_Power_Limit	Whenever the EXP_SLOTCAP register is written, The Slot Power Limit Scale and SLot Power Limit Value are sent in the payload.

a. Outbound Memory writes are posted and have no completions

Table 6-26. Outgoing PCI Express Completions

PCI Express Transaction	Address Space or Message	Reason for Issue
Completion for Inbound Read	Memory	Response for an inbound read to main memory or a peer I/O device.
	I/O	Response for an inbound read to a peer I/O device.
	Configuration (Type0 or Type1)	Response for an inbound read to a peer I/O device.
Completion for Inbound Write	Memory	Response for an inbound non-posted write to main memory or a peer I/O device.
	I/O	Response for an inbound non-posted write to a peer I/O device.
	Configuration (Type0 or Type1)	Response for an inbound non-posted write to a peer I/O device.

6.4.6 Interrupt Handling

On PCI Express, interrupts are represented with either MSI or inbound interrupt messages (ASSERT_INTx/DEASSERT_INTx).

Each PCI Express port of the NB is responsible for tracking assert/deassert messages for each of the four interrupts (INTA, INTB, INTC, INTD) and representing them with four output "virtual wires" to the ICH5's interrupt controller. These virtual wires are represented with DO_PCI_INTA, DO_PCI_INTB, DO_PCI_INTC, and DO_PCI_INTD messages to the ICH5.

Figure 6-14 illustrates how the PCI Express interrupts are routed to the ICH5. The example shown represents Interrupt A and this logic is replicated for the four interrupts. None of the bits depicted are software-visible.

When a PCI Express assert message is received for a specific interrupt, another assert message will not arrive until after a de-assert message has arrived for that interrupt first.

When MSI interrupts are used, the NB treats these writes as any other inbound write. The difference is that MSI writes are detected as a write to addresses in the range FEE0_0000 - FEDF_FFFF. If the write falls within this range, the NB issues the write to both FSB's where it will be claimed by the targeted processor.

Figure 6-14. Legacy Interrupt Routing (INTA Example)

6.4.7 Ordering Rules

This section describes the NB ordering rules for transactions progressing through the PCI Express unit.

6.4.7.1 Inbound Transaction Ordering Rules

Inbound transactions originate from PCI Express and target main memory. In general, the PCI Express cluster holds inbound transactions in FIFO order. There are exceptions to this order under certain situations. For example, PCI Express requires that read completions are allowed to pass read requests. This forces any read completions to bypass any reads which might be back pressured in the queue. The PCI Express ports have no ordering relationship to each other (aside from the peer-to-peer restrictions below).

Sequential, non-posted requests are not required to be completed in the order they were requested. However, if a non-posted request requires multiple sub-completions (typically due to splitting a memory read into cacheline requests), then those sub-completions must be delivered in order.

Inbound writes cannot be posted beyond the PCI Express domain and outbound writes may only be posted after the write is acknowledged by the destination PCI Express cluster. The posting of writes relies on the fact that the system maintains a certain ordering relationship. Since the NB cannot post inbound writes beyond the PCI Express cluster, the NB must wait for snoop responses before issuing subsequent, order-dependent transactions.

6.4.7.2 Inbound Ordering Requirements

In general, there are no ordering requirements between transactions issued on the different PCI Express interfaces. However, the below rules apply to inbound transactions issued on the same interface.

The following rules must be ensured for inbound transactions:

RULE 1:	Outbound non-posted read and write completions must be allowed to progress past
	stalled inbound non-posted requests.

RULE 2: Inbound posted write requests must be allowed to progress past stalled inbound non-posted requests.

RULE 3: Inbound posted write requests, inbound read requests, outbound non-posted read and write completions cannot pass enqueued inbound posted write requests.

RULE 4: The Producer - Consumer model, prevents read requests, write requests, and non-posted read or write completions from passing write requests.

RULE 5: Outbound non-posted read or write completions must push ahead *all* prior inbound posted write transactions from that PCI Express port.

RULE 6: To optimize performance, inbound, coherent, posted writes will issue ownership

requests (RFO) without waiting for prior ownership requests to complete.

RULE 7: Inbound messages follow the same ordering rules as inbound posted writes.

Inbound messages are listed in Table 6-23. Similarly to inbound posted writes, reads should push these commands ahead.

The above rules apply whether the transaction is coherent or non-coherent. Some regions of memory space are considered non-coherent (e.g. the Don't Snoop attribute is set). The PIQ will order all transactions regardless of its destination.

6.4.7.3 Outbound Transaction Ordering Rules

Outbound transactions through the NB are memory, I/O or configuration read/write transactions originating on a processor interface destined for a PCI Express device. Subsequent outbound transactions with different destinations have no ordering requirements between them. Multiple transactions destined for the same PCI Express port are ordered according to the ordering rules specified in *PCI Express Base Specification*, Revision 1.0.

6.4.7.4 Outbound Ordering Requirements

There are no ordering requirements between outbound transactions targeting different PCI Express interfaces. For deadlock avoidance, the following rules must be ensured for outbound transactions within the same PCI Express interface:

- **RULE 1:** Inbound non-posted completions must be allowed to progress past stalled outbound non-posted requests.
- **RULE 2:** Outbound posted write requests must be allowed to progress past stalled outbound non-posted requests.
- **RULE 3:** Outbound non-posted requests, outbound messages, outbound write requests, and inbound completions cannot pass enqueued outbound posted write requests.
- **RULE 4:** The Producer Consumer model prevents read requests, write requests, and read completions from passing write requests.
- **RULE 5:** Posted outbound messages must follow the same ordering rules as outbound posted writes.
- **RULE 6:** If a non-posted inbound request requires multiple sub-completions, then those sub-completions must be delivered in linearly addressing order.

6.4.7.5 NB Ordering Implementation

The following table summarizes the rules enforced on transactions from a given PCI Express port by the NB.

Table 6-27. NB Ordering Implementation

Transaction pass a stalled Posted Request?		Will the transaction pass a stalled Non- Posted Request?	Will the transaction pass a stalled completion?
Posted requests	Posted requests never		always
Non-Posted Requests	never	sometimes	always
Completions	never	always	never

6.4.7.6 Interrupt Ordering Rules

With MSI, SAPIC and XAPIC, interrupts are simply inbound non-coherent writes to the processor. With legacy interrupts, the interrupts are ASSERT and DEASSERT messages (also following posted write ordering rules). This enforces that the interrupt will not be observed until all prior inbound writes are flushed to their destinations. The NB does not, however, guarantee that the interrupt will be observed by the processor before subsequent writes are visible to a processor.

6.4.8 Hot-Plug

Each PCI Express port supports the optional Hot-Plug capability described in *PCI Express Base Specification*, Revision 1.0. The PCI Express Hot-Plug model implies a Hot-Plug controller per port which is identified to software as a capability of the P2P Bridge configuration space.

PCI Express Hot-Plug support requires that the NB supports a set of Hot-Plug messages (listed in Table 6-23 and Table 6-25) to manage the states between the Hot-Plug controller and the device.

The PCI Express form factor has an impact to the level of support required of the NB. For example, some of the Hot-Plug messages are required only if the LED indicators reside on the actual card and are accessed through the endpoint device (SIOM). The NB supports all of the Hot-Plug messages so that the platform is not constrained to any particular form factor.

Hot-Plug Controller:

PCI Express Hot-Plug requires that the NB implements a Hot-Plug controller for every Hot-Pluggable interface. The Hot-Plug controller is a capability of the bridge configuration space and the register set is accessible through the standard PCI capability mechanism defined in *PCI Express Base Specification*, Revision 1.0.

6.4.8.1 PCI Express Add-in Card Hot-Plug Model

The subsections below describe the signals required for PCI Express Add-in Card Hot-Plug. This model is such that the LEDs and remove button reside on the chassis. The NB provides an SMBus interface to a set of external programmable I/O devices that provide the Hot-Plug pins for any PCI Express ports that support Hot-Plug. This interface is described in Section 6.6.

6.4.8.2 Hot-Plug Pins

Table 6-28 describes the Hot-Plug signals used for Hot-Plug. For registers that control or provide the status of these pins please refer to Section 4.16.8, "GLOBAL_FERR: Global First Error Register (D16, F2)" on page 196.

Table 6-28. Hot-Plug Pins

Signal Name	Description
ATNLED#	This indicator is connected to the Attention LED on the baseboard.
PWRLED#	This indicator is connected to the Power LED on the baseboard.
BUTTON#	Input signal per slot which indicates that the user wishes to hot remove or hot add a PCI Express card.
PRSNT#	Input signal that indicates if a "Hot-Plugged" PCI Express device is currently plugged into the slot.
PWRFLT#	Input signal from the power controller to indicate that a power fault has occurred.
PWREN	Output signal allowing software to enable or disable a PCI Express slot.
EXP_HPINT	Hot-Plug interrupt output signal. There is only one EXP_HPINT signal for the NB. Both parallel interfaces drive the same output signal.
MRL#	Manual (mechanical) Retention Latch input indicates that a retention latch is enabled or disabled on the board for this slot. A retention latch is used on the platform to mechanically hold the card in place.

6.4.8.3 SIOM Hot-Plug Model

The SIOM Hot-Plug model is such that the LEDs and remove button reside on the endpoint module. Because of this model, the NB is responsible for issuing in-band messages to the endpoint and the endpoint is responsible for controlling the button, LEDs, etc.

The messages used for the SIOM Hot-Plug model are listed in Table 6-23 and Table 6-25 and describe the behavior of the button and LEDs.

6.5 Hub Interface 1.5 - (Compatibility Interface)

The HI1.5 is an 8-bit port responsible for accepting and sending packets between the NB and the ICH5 component.

6.5.1 Physical Layer

The compatibility interface supports parallel termination. Parallel termination is required for the routing distances required for Intel[®] E8501 chipset chipset-based platforms. Hub Interface uses a point-to-point bus topology using a combination of common clock framing signals and source-synchronous data transfer. The 8-bit data bus rate is 266 MHz (quad-pumped) using strobe signals. This interface is protected with one parity bit per 32 bits of data.

6.5.2 Transaction Layer

Table 6-29 lists all the transactions supported by the NB which are expected to be received from the ICH5. Similarly, Table 6-31 lists all the transactions to be expected by the ICH5. Refer to the I/O Controller Hub5 (ICH5), I/O Controller Hub5-M Datasheet for the specific protocol requirements of this interface.

Table 6-29. Incoming Hub Interface Request Cycles

Hub Interface Transaction	Transaction Type	NB Response
Inbound Write Requests	Memory	Forward to Main Memory or PCI Express port depending on address.
Inbound Read Requests	Memory	Forward to Main Memory or PCI Express.
	Go C0	Ignore. No further action is taken.
	Go C3	Immediately respond with an "ACK C3" special cycle. No further action is taken.
Inbound Special Cycles	Go C3A	Immediately respond with an "ACK C3A" special cycle. No further action is taken.
	APIC Interrupt xmit requested	Since this chipset does not support the serial APIC bus, this special cycle is simply responded to with an "APIC Interrupt xmit granted" special cycle.
	SRC	Special Reserved Cycle. This command is used for supporting parallel termination. This command is sent when the I/O bridge wants to do an RCOMP calculation. The NB stays off the bus for the duration indicated by the length but otherwise ignores this cycle.

Table 6-30. Incoming Hub Interface Completions

Hub Interface Transaction	Transaction Type	NB Response			
Outbound Write	I/O	Forward to the interfece that originated the request			
Completions	Configuration	Forward to the interface that originated the request.			
Outbound Read	Memory				
Completions	I/O	Forward to the interface that originated the request.			
	Configuration				

Table 6-31. Outgoing Hub Interface Requests Cycles

Hub Interface Transaction	Transaction Type	Reason for Issue	
Outbound Write	Memory	FSB or peer memory-mapped I/O write targeting ICH5.	
Requests	I/O	FSB legacy I/O write targeting ICH5.	
	Configuration	Configuration write targeting ICH5.	
Outbound Read	Memory	FSB or PCI Express memory-mapped I/O read targeting ICH5.	
Requests	I/O	FSB or PCI Express I/O read targeting ICH5.	
	Configuration	Configuration read targeting ICH5.	
Outbound Special Cycles	APIC Interrupt xmit granted	The NB will issue this command in response to an "APIC Interrupt xmit requested" command.	
	Unlock	When a locked read or write transaction was previously issued to the ICH5, "Unlock" releases the PCI lock.	
	Shutdown	Forwarded from the "Shutdown" FSB special cycle. Treated as an outbound write with respect to ordering.	
	Halt	Forwarded from the "Halt" FSB special cycle. Treated as an outbound write with respect to ordering.	
	Stop Grant Ack	Forwarded from the "StopGrant Ack" FSB special cycle. Treated as an outbound write with respect to ordering.	
	ACK C3	The NB will issue this command in response to a "Go C3" command.	
	ACK C3A	The NB will issue this command in response to a "Go C3A" command.	
	NOP	This command is used on the compatibility port and occurs during the reset sequence. Completion is required.	
	CPU_RST_DONE	This command is used on the compatibility port and occurs during the reset sequence. Completion is required. The NB de-asserts CPURST# after the completion is received.	
	PHLDA On	The PHOLD protocol has been established and the ISA device can proceed without concern of back-pressure.	
	Interrupt ACK	Issued by the NB when the FSB command INTA is received. Returns data from the ICH5 and must maintain same ordering rules as an outbound read.	
	DO_PCI_INTA		
	DO_PCI_INTB	Issued by the NB when a PCI Express interface receives a legacy interrupt message. These messages are issued for the assertion and	
	DO_PCI_INTC	deassertion of the virtual interrupt wires.	
	DO_PCI_INTD	·	

Table 6-32. Outgoing Hub Interface Completions

Hub Interface Transaction	Transaction Type	Reason for Issue
Inbound Read Completions	Memory	Response for an inbound read to main memory or PCI Express.

6.5.2.1 32/64 Bit Addressing

For inbound and outbound writes and reads, the NB supports 64-bit address format. If an outbound transaction's address is a 32-bit address, the NB will issue the transaction with a 32-bit addressing format on PCI Express. The ICH5 does not support outbound reads or writes with 64-bit addressing and the ICH5 will Master Abort these transactions.

6.5.3 Ordering Rules

Ordering for the HI1.5 interface is identical to that for the PCI Express interfaces. For details, refer to Section 6.4.7, "Ordering Rules" on page 311. However, HI1.5 has a stronger requirement for inbound completions of different requests. HI1.5 is strongly ordered for delayed transactions. For example, assume that a series of inbound reads are received by the NB as Rd1, Rd2, Rd3. The NB is required to complete those reads in the same order as was requested (RdCmp1, RdCmp2, RdCmp3).

6.5.4 Inbound Transactions

The NB will accept the transactions listed in Table 6-29. This section describes handling that is specific to the NB for transactions that target the NB or main memory.

Note: The inbound queue must be deep enough to ensure continuous inbound read requests are not stalled waiting for the first memory read to complete, even under heavily loaded conditions.

6.5.4.1 Read Completion Policy

For inbound read requests, the NB is allowed to split completions into smaller portions if necessary. Typically, this could happen on cacheline boundaries (64B). The maximum size of a read completion is specified by HICTL.MAX_DATA. If the interface is idle, the NB will return a completion for that read starting at the initial address up to the next cacheline boundary.

If the HI1.5 interface is busy (e.g. another outbound or inbound packet), the NB will opportunistically combine subsequent inbound read completions up to HICTL.MAX_DATA or until the initial request length is satisfied.

6.5.4.2 Inbound Write Transactions

Note: This section applies to all write transactions targeting DRAM.

Inbound coherent write transactions actually comprise two operations:

- 1. Request for ownership
- 2. Cache line write (mark to Modified state)

The compatibility interface will enqueue each inbound write as a single atomic instruction. As the compatibility interface enqueues the write, it will also bypass all queues by sending a request-forownership command (RFO) directly to the FSB's requesting line ownership. The RFO commands are allowed to be issued in any order.

If the NB owns the line after all inbound ordering rules have been met, the write command proceeds and the line is modified. If the line is not owned by the NB after all inbound ordering rules have been met, the write is temporarily stalled until ownership is acquired and requests will continue to fill the inbound queue. When the request for ownership completes, the write command is forwarded where the line is marked in the Modified state.

Note: Because of the HI1.5 ordering rules, transactions after an inbound write must wait until after the write is globally visible. The inbound queue must be deep enough to ensure that continuous inbound traffic is not stalled waiting for the above write sequence, even under heavily loaded conditions.

6.5.4.3 Inbound Write Combining

The NB performs write combining opportunistically in the on-chip CDC. If a write is issued to memory and the NB owns the line, the data buffer will overwrite the buffer with the new data (full or partial data).

6.5.4.4 PHOLD Support

The NB supports the PHOLD protocol. This protocol is used for legacy ISA devices which did not allow for the possibility of being both a master and a slave device simultaneously. Example devices that use the PHOLD protocol are legacy floppy drives and parallel port DMA.

6.5.5 Outbound Transactions

The NB will generate the outbound transactions listed in Table 6-31. This section describes handling that is specific to the NB for transactions that target the ICH5.

6.5.5.1 Outbound Non-posted Transactions

Non-posted transactions that the NB propagates includes Interrupt Acknowledge, memory reads, I/O reads and writes, and configuration reads and writes. When a non-posted transaction is issued from the NB, the ICH5 device will respond with a completion.

The ICH5 supports only one outstanding non-posted transaction comprising transactions issued by the processors or a peer PCI Express device.

6.5.5.2 Stalled Non-posted Requests

Non-posted requests are non-blocking transactions. In other words, while a non-posted request is pending, subsequent transactions are required to bypass the transactions which are waiting for a completion.

6.5.5.3 Outbound Posted Transactions

Once a posted request (e.g. memory write) is issued from HI1.5, the request is considered to be complete and the transaction is removed from the outbound queue. For posted requests, the acknowledge has already been sent to the initiating interface (FSB or alternate PCI Express inbound queue) when the write was enqueued in the outbound PCI Express unit, so proper ordering is guaranteed.

6.5.5.4 Outbound Write Combining

The NB does not combine sequential outbound writes. This optimization is left to the processor write combining buffers.

6.5.5.5 Lock Support

For legacy PCI functionality, the NB supports bus locks through an explicit sequence of events. The NB can receive a locked transaction sequence (Read-Write or Read-Read-Write-Write) on a FSB directed to the ICH5. The compatibility interface cluster must support the following capabilities:

- Retry all transactions on the Hub Interface
- Generate a locked read request to the Hub Interface target
- Unlock a locked Hub Interface port

6.5.6 Peer-to-Peer Support

Peer-to-peer support is defined as transactions which initiate on one I/O interface and target another without going through main memory. This support applies to both PCI Express and HI. The NB supports peer-to-peer transactions for memory and I/O transactions. The compatibility interface can be the destination of a peer-to-peer write or read. The compatibility interface can be the source of a posted peer-to-peer write. Non-posted requests may pre-fetch into MMIO (with potential side effects). Peer-to-peer transactions are not observed on any interface except the target and destination (e.g. no FSB snoops).

Peer-to-peer traffic between the PCI Express ports and the ICH5 must sustain the full write bandwidth. For reads, full bandwidth is required for large request sizes. Inbound coherent transactions and peer-to-peer transactions must maintain ordering rules between each other. Peer-to-peer transactions follow inbound ordering rules until it reaches the head of the inbound queue. Once the transaction reaches the head of the inbound queue, the NB routes the transaction to the next available slot in the outbound queue where PCI ordering is maintained until the end of the transaction. The NB does not support peer-to-peer where the source and destination is the same PCI Express Interface.

6.6 RAS

6.6.1 Virtual Pins for Hot-Plug

The NB supports 8 Hot-Plug pins on 11 interfaces. To allow platforms to incur cost proportional to the number of interfaces that may be Hot-Plugged, the NB masters a 100 KHz Hot-Plug SMBus interface (pins GP_SMBCLK, GP_SMBDATA) that connects to a variable number of serial to parallel I/O ports¹. Figure 6-15 shows the NB connected to the maximum number of I/O expanders and a conceptual diagram that shows how values in Hot-Plug registers are translated to pins on the I/O expanders.

The NB only supports SMBus devices with registers mapped as per Table 6-33. These components have 16 I/O's, divided into two 8-bit ports that can be configured as inputs or outputs.

The NB has a crossbar which associates each PCI Express and IMI port with one of these 8-bit ports. The mapping is defined by a Virtual Pin Port register field (IMIHPC.VPP for IMI's and EXP_CTRL.VPP for PCI Express) for each PCI Express or IMI. The VPP register holds the SMBus address and Port (0 or 1) of the I/O Port associated with the PCI Express or IMI. A[2:0] pins on each I/O Port connected to the NB must be strapped uniquely.

Third party IO port NB CrossBar Virtual Pins Registers **SMBus** Port 0 SMBus IMI A Controller Blink IMI B IMIHPC, IMIST Port 1 IMLC IMIHPC IMIST IMI D IMIHPC, IMIST sequence Port 0 PCI Express D EXP_SLOTCTRL, EXP_SLOTSTS PCI Express C0 EXP_SLOTCTRL, EXP_SLOTSTS Port 0 Port 1 PCI Express C1 EXP_SLOTCTRL, EXP_SLOTSTS Port 0 PCI Express B0 EXP_SLOTCTRL, EXP_SLOTST Port 1 PCI Express B1 EXP SLOTCTRL, EXP SLOTST Port 0 Port 1 PCI Express A0 EXP_SLOTCTRL, EXP_SLOTSTS Port 0 PCI Express A1 EXP_SLOTCTRL, EXP_SLOTS1

Figure 6-15. Maximum Configuration for Hot-Plug Pin Expanders

Contact your vendor of choice for the I/O ports.

Table 6-33. I/O Port Reg	gisters Supported b	y Intel® E8501 Chi	pset North Bridg	ge (NB)

Register	Name	Intel [®] E8501 chipset north bridge (NB) Usage	
0	Input Port 0	Continuously Reads Input Values	
1	Input Port 1		
2	Output Port 0	Continuously Writes Output Values	
3	Output Port 1		
4	Polarity Inversion Port 0	Never written by NB	
5	Polarity Inversion Port 1		
6	Configuration Port 0	Direction set as per Table 6-34	
7	Configuration Port 1		

6.6.1.1 Operation

When the NB comes out of reset, the I/O ports are inactive. The NB is not aware of how many I/O Ports are connected to it, what their addresses are, nor what PCI Express or IMI ports are Hot-Pluggable. The NB does not master any commands on the SMBus until a Hot-Plug Capable bit is set.

An IMI port is considered Hot-Plug Capable when IMIHPC.HPC bit is set. A PCI Express port is considered Hot-Plug Capable when EXP_SLOTCAP.HPC bit and EXP_CTRL.EN_VPP are set. When a port is considered Hot-Plug Capable, the NB initializes the associated VPP with Direction and Logic Level configuration as shown in Table 6-34. The polarity is left at the default values and never written. When writing to VPP registers outside the NB, addresses are used as described in Table 6-35 for writes to the VPP registers connected to the I²C port.

When the NB is not responding to a change in whether a port is Hot-Plug Capable, it performs input register reads and output register writes to all the Hot-Plug Capable VPP's. This sequence repeats indefinitely until there is a change in whether a port is Hot-Plug Capable. To minimize the completion time of this sequence and its complexity, both ports are always read and written. For the maximum number of 6 I/O ports, and assuming no clock stretching, this sequence can take up to 51 ms. If new Hot-Plug capability bits are not being set, this is the maximum timing uncertainty in sampling or driving these signals.

Table 6-34. Hot-Plug Signals on a Virtual Pin Port (VPP) (Sheet 1 of 2)

Bit	Present for		Direction	Logic Level	Polarity	Signal
- Bit	PCI Express	IMI	Direction	Logic Level	lolarity	Signal
0	Yes	Yes	Output	1	true	ATNLED#
1	Yes	Yes	Output	1	true	PWRLED#
2	Yes	Yes	Input	1	true	BUTTON#
3	Yes	Yes	Input	1	true	PWRFLT#
4	Yes	Yes	Input	1	true	PRSNT#

Table 6-34. Hot-Plug Signals on a Virtual Pin Port (VPP) (Sheet 2 of 2)

Bit	Present for		Direction	Logic Level	Polarity	Signal
ы	PCI Express	IMI	Direction	Logic Level	Foldrity	Signal
5	Yes	Yes	Output	1	true	PWREN#
6	Yes	Yes	Input	1	true	MRL#
7	No	Yes	Input	1	true	PWRGOOD

Table 6-35 describes the sequence generated for a write to an I/O port. Both 8-bit ports are always written. If a VPP is valid for the 8-bit port, the Output values are updated as per the IMIHPC or the EXP_SLOTCTRL registers for the associated IMI or the PCI Express Hot-Plug registers. The Input values affect the IMIST and PCI Express Hot-Plug registers. If no VPP for the 8-bit port is valid, 0s are written.

Table 6-35. VPP Write Command

Bits	NB Drives	I/O Port Drives	Comment	
1	Start		SDL (Serial Data Line) falling followed by SCL (Serial Clock Line) falling	
7	Address[6:0]		[6:3] = 0100 [2:0] = VPP[3:1]	
1	0		indicates write	
1		ACK	If NACK is received, NB completes with stop and sets Error T9	
8	Register Number		Register Address see Table 6-33 [2:1] = 01 for Output, 11 for Direction [0] = 0	
1		ACK	If NACK is received, NB completes with stop and sets Error T9	
8	Data		One bit for each bit of port 0 as per Table 6-34	
1		ACK	If NACK is received, NB completes with stop and sets Error T9	
8	Data		One bit for each bit of port 1 as per Table 6-34	
1		ACK	If NACK is received, NB completes with stop and sets Error T9	
1	Stop			

The NB issues Read Commands to update NB virtual inputs from the I/O Port. The I/O port requires that a command be sent to sample the inputs, then another command is issued to return the data. The NB always reads inputs from both 8-bit ports. If the VPP is valid, the NB updates the associated MIHPS (for IMI) or the EXP_SLOTSTS (for PCI Express) register according to the values of BUTTON#, PWRFLT#, and PRSNT# read from the value register in the I/O Port. Results from invalid VPP's are discarded. Table 6-36 defines the read command format.

If a VPP register is set to a non-existent address, it will not acknowledge the command and the NB will set the T9 error. The NB will continue to address the existing devices.

Table 6-36. VPP Read Command

Bits	NB Drives	I/O Port Drives	Comment
1	Start		SDL falling followed by SCL falling
7	Address[6:0]		[6:3] = 0100 [2:0] = VPP[3:1]
1	0		Indicates Write
1		ACK	If NACK is received, NB completes with stop and sets Error T9
8	RegisterNumber[2:0]		Register Address [2:1] = 00 [0] = 0
1		ACK	If NACK is received, NB completes with stop and sets Error T9
1	Start		SDL falling followed by SCL falling
7	Address[6:0]		[6:3] = 0100 [2:0] = VPP[3:1]
1	1		Indicates Read
1		ACK	If NACK is received, NB completes with stop and sets Error T9
8		Data	One bit for each bit of port 1 as per Table 6-34. The NB always reads from both ports. Results for invalid VPP's are discarded
1	ACK		
8		Data	One bit for each bit of port 1 as shown in Table 6-34. The NB always reads from both ports. Results for invalid VPP's are discarded
1	NACK		
1	Stop		

6.6.1.2 Limitations

This interface is dedicated to Hot-Plug and does not support aspects of SMBus that are not required for this application.

Table 6-37. Unsupported Aspects of SMBus

Unsupported Aspect	Comment
Command sequences not defined in this specification	Such as Block reads, Process Calls, Host Notification, etc.
Arbitration	NB is the only master.
PEC	The targeted I/O Ports do not support it.
Bus Enumeration	BIOS is required to configure VPP's with this information. Variation in the number of devices is not supported for a particular platform.
Clock Stretching	NB will drive 100 KHz and I/O Ports can support higher frequencies, so they will never stretch the clock.
NACK Retry	SMBus forbids devices from NACK'ing if they are busy.

6.7 Error Reporting

The NB recognizes a variety of errors (or exception conditions) and is the collection point for many of these errors. Some errors are internally detected and others are signaled to it from the external interfaces (PCI Express and IMI). All detected errors eventually cause the NB to do one of the following:

- · Assert MCERR on both FSB's
- Assert Error pins (ERR[2:0])

The error reporting for the NB is comprised of the status registers (FERR and NERR), the error log registers (recoverable and non-recoverable), and the error pins (ERR[2:0]). The individual errors can be programmed to be masked or to be signaled by ERR[2:0] or by MCERR.

6.7.1 Error Types

The errors can be classified into three types: (1) Correctable errors, (2) Uncorrectable Errors, (3) Hardware Fatal errors. The discussion here assumes that for all these error types, hardware provides the capability to detect the error. Errors that cannot be detected by hardware cause silent data corruption, which is an undesirable event.

- Correctable Errors are corrected by the hardware and software is completely oblivious to this event. Examples of such errors include single bit ECC errors and successful link level retry. Such events may be logged and reported by the system for a post-mortem by the firmware or system management software.
- Uncorrectable Errors are not corrected by the hardware or software. OS or other software layers may be able to recover from such errors, but it may not always be possible. Such errors are typically contained in nature, the system state is intact, and the process and the system is restartable. Errors in this category include multi-bit data error, transaction time out, and so on.
- **Fatal Errors** may compromise system integrity and continued operation may not be possible. Errors in this category include protocol errors.

6.7.2 Error Mask and Signaling Mapping Register

Each error is defined to be a recoverable or non-recoverable error. This determines which FERRST, NERRST, and log register get used in reporting the error. In addition, the error also has an Error Mask and Signaling registers. The purpose of the error mask is to mask / allow the observance of the error condition. Each local block has an error mask for the errors detected in that particular block.

Each unmasked error can generally be programmatically routed to the following error signals:

- MCERR
- ERR[2], ERR[1], or ERR[0]
- ICHRST

Note: It is up to software to enable only one of the error signaling possibilities (MCERR, ERR[2], ERR[1] & ERR[0], ICHRST signals). Software should not map PCI Express errors to the MCERR signal.

6.7.3 Error Status and Log Registers

Error status registers are provided; FERR (first error register), and NERR (Next error register). First fatal and/or first non-fatal errors are flagged in the FERR register; subsequent errors are indicated in the NERR register.

The contents of FERR and NERR are "sticky" across a reset (while PWRGOOD remains asserted). This provides the ability for firmware to perform diagnostics across reboots. Note that only the contents of FERR affects the update of the any error log registers.

The FERR/NERR structure is hierarchical. The Global FERR/NERR registers for the Intel[®] E8501 chipset are located in the NB the list of FERR/NERR registers are contained in Table 6-38, "-FERR/NERR and Log Registers".

Once a first error for a type (non-fatal or recoverable) of error has been flagged (and logged), the log registers for that error type remain fixed until either 1) any errors in the local FERR register for which the log is valid are cleared or 2) a power-on reset.

Table 6-38. -FERR/NERR and Log Registers

FERR/NERR Register	Location	Log Register
GLOBAL_FERR	NB	N/A
GLOBAL_NERR		N/A
IMI_FERR	NB Independent Memory Interface	NRECIMI
		RECIMI
IMI_NERR		N/A
FSB{A/B}_FERR	NB FSB[A/B] Interface Blocks	NRECFSB{A/B}
		RECFSB{A/B}
FSB{A/B}_NERR		N/A
INT_FERR	NB	NRECTNB
		RECTNB
		RECINT_LOG[4:0]
		INTLOGC
INT_NERR		N/A
HIFERR	NB Hub Interface Block	NRECHI
		RECHI
HINERR		N/A
EXP_FERR	NB PCI Express Interface Blocks	EXP_DEVSTS
EXP_NERR		HDRLOG[3:0]
		EXP_UNITERR

6.7.4 Error Signaling

Associated with each pair of FERR/NERR registers are three open drain error pins, one for each error type: fatal, uncorrectable and correctable (ERR#[2:0]). If not masked (EMASK register), these pins will reflect the error status for each type of error in the two error status registers. The NB can signal errors via the following pins:

- Err[0] Correctable Errors (Non-Fatal or Recoverable Error)
- Err[1] Uncorrectable Errors (Non-Fatal or Recoverable Error)
- Err[2] Fatal Error
- MCERR- Adhering to the FSB rules for driving MCERR.

The error pins are I/O signals that are synchronous to the 166 MHz bus clock.

6.7.5 Error Integration into Intel® E8501 Chipset North Bridge (NB) Error Model

Refer to Figure 6-5 for how the PCI Express errors map into the NB error registers and for how the flow of error detection and logging is handled inside the NB.

Figure 6-16. Error Integration Model

6.7.6 Error Detection

In the NB chipset-based system, the task of error detection, isolation and recovery of correctable errors is performed by hardware and is distributed among the NB components. Uncorrectable errors are isolated, logged and reported to system firmware / OS for error handling. All errors, including correctable errors, can be reported to the firmware / OS for logging.

All header and data transmission over the PCI Express interface is protected with a CRC. The CRC code is capable of detecting all single bit and many multi-bit errors, as well as all error patterns with burst length of "n" (where "n" is the CRC size). This covers the error pattern due to a single wire failure on the interface. Independent Memory Interface inbound uses CRC on the link layer and ECC on inbound header and data transfers (and CRC on outbound data). IMI outbound uses CRC on all packets.

Table 6-39 provides the list of errors detected by the Intel® E8501 chipset north bridge (NB). Errors are listed by the unit / interface. Some unit / interface may provide additional error logging registers. The last column of the table, defines which component detects the error and the bit position of the register set. For FSB, IMI and NB the errors have the same bit position in the First Error, Next Error, Emask, and Error Select Registers. The I/O Errors for the Hub Interface also apply to this convention but the PCI Express errors do not. The PCI Express errors adhere to the PCI Express definition and location of errors.

Please note that only NB errors are listed here. For the list of XMB errors, readers should refer to the *Intel*® *E8501 Chipset eXternal Memory Bridge (XMB) Datasheet*.

Table 6-39. Errors Detected by the NB (Sheet 1 of 6)

Error#	Error Name	Error type	Log Register(s)	Cause / Action	Definition	Comp. Reg. Bit Position		
FSB Er	FSB Errors							
F0	Multi-bit ECC Error (Do not Include Poisoned Data)	Non- Fatal	RECFSB{A/B}	Received a multi-bit ECC error. Poison Data and forward to the appropriate interface.	The NB monitors the data/dep signals on the FSB. Set when the NB detects an uncorrectable error during the data transfer in which an F0 error is signalled.	NB-0		
F1	Correctable ECC Error	Non- Fatal	RECFSB{A/B}	Correct by Hardware, Cause CMCI.	The NB monitors the data/dep signals on the FSB. Set when the NB detects an correctable error during the data transfer an F1 error is signalled.	NB-1		
F2	Detected BINIT from a processor	Non- Fatal	N/A	Do not propagate to other bus, reset arb. unit, and programatically reset platform.	The NB detected that a processor issued a B-INIT.	NB-2		
F3	Detected MCERR from a processor	Non- Fatal	N/A	If (receive an MCERR) forward the MCERR to the other bus, adhering to the MCERR protocol.	The NB detected that a processor issued an MCERR.	NB-3		
F4	Request/Address Parity Error	Fatal	NRECFSB{A/B} _LOG[2:0]	Complete transaction on FSB, drop transaction, provide a response. Capture Address/Control information.	The NB monitors the address and request parity signals on the FSB. A parity discrepancy over these fields during a valid request.	NB-4		
F5	Address Strobe Glitch	Fatal	NRECFSB{A/B}_LOG[2:0]	Take the received address and attempt to complete the transaction, this may cause the NB to Malfunction. Log which FSB the error occurred on. Let request continue with what it decodes to, correct operation is not guaranteed.	The NB detects that an address strobe toggled when ADS# wasn't valid.	NB-5		

Table 6-39. Errors Detected by the NB (Sheet 2 of 6)

Error#	Error Name	Error type	Log Register(s)	Cause / Action	Definition	Comp. Reg. Bit Position
F6	Data Strobe Glitch	Fatal	NRECFSB{A/B} _LOG[2:0]	Take the received data and attempt to complete the transaction, this may cause the NB to Malfunction.	The NB detects that one (or more) of the complimentary FSB data strobe pairs did not toggle in an alternating fashion.	NB-6
F7	FSB Protocol Error	Fatal	NRECFSB{A/B} _LOG[2:0]	Alias to a known response.	The NB detected an unsupported FSB response encoding.	NB-7
F8	Unsupported FSB Transaction	Fatal	NRECFSB{A/B}_LOG0	Unsupported transaction or unsupported data sizes. Transactions alias to a similar transaction to complete.	The NB detected an FSB Unsupported transaction or unsupported data sizes.	NB-8
F9	Data Parity Error (for 64-bit Intel® Xeon® processor MP with 1MB L2 cache & Dual- Core Intel® Xeon® processor 7000 sequence)	Fatal	NRECFSB	Parity Error was detected on the Data, DINV, DSTB when there was no correctable ECC Error.	The NB detected a Parity Error on the Data, DINV, DSTB when there was no correctable ECC Error.	N/A
F10	FSB Hang	Fatal	NRECFSB{A/B} _LOG0	An access issued on the FSB has timed out.	The NB detected that a timely FSB transaction completion did not occur.	NB -10
IMI.NB	Errors ^a					
IMIO	Uncorrectable Error in read return packet before retry limit exceeded	Non- Fatal	RECIMI, REDPIMIH	Capture the Syndrome, Locator, and Address, If possible, scrub location using redundant resources. Re-Issue IMI Request.	uncorrectable error on an IMI transaction before the retry limit was exceeded.	
IMI1	Inbound Correctable ECC Error	Non- Fatal	RECIMI, REDPIMIH	Capture the Syndrome, Locator, and Address, Correct.	The NB detected an Correctable Error on the 1st request for a IMI transaction.	NB-1
IMI2	Command Time-Out	Non- Fatal	RECIMI	Re-issue Request Over M Link, log CDC and IMI Transaction IDs.	The NB failed to receive a timely response to a request.	NB-2
IMI3	Inbound CRC Error	Non- Fatal	N/A	NB will drop response, and rely on retry to correct.	The NB received a link CRC error.	NB-3
IMI4	Memory Write Data Poisoned.	Non- Fatal	N/A	The NB has poisoned the flit that contains the error and written the data to memory. (See XMI10)	The NB has poisoned the flit that contains the error and written the data to memory. (See IMI.XMB10)	
IMI5	Inbound Link Layer Control Error	Non- Fatal	N/A	N/A	The NB detected a link layer control error on the Inbound link.	
IMI6	Abort	Non- Fatal	RECIMI	N/A	The NB detected a protocol abort from the XMB.	NB-6
IMI7	SMBus Hot-Plug Error	Non- Fatal	N/A	N/A	The NB detected an error on the Hot-Plug SMBus port.	NB-7
	1		1		l	1

Table 6-39. Errors Detected by the NB (Sheet 3 of 6)

18.410		type	Register(s)	Cause / Action Definition		Reg. Bit Position
IMI8	Outstanding request to Failed IMI	Non- Fatal	RECIMI	In RAID/Mirroring config, if requests are pending when IMI enters failed state. Attempt to complete requests using redundant resources. The NB in RAID/Mirroring config, if requests are pending when IMI enters failed state.		NB-8
IMI9	Failed on last retry. Co-exist with IMI13	Non- Fatal	RECIMI	In RAID/Mirroring config, attempt to complete request using redundant resources.	The NB in RAID/Mirroring config and not in Redundancy lost state and not in Resilver state received an uncorrectable data error on the IMI retry request.	NB-9
IMI10	Config write data poisoned.	Non- Fatal	N/A	The NB has poisoned the flit that contains the error and written the config to the XMB. (See XMI18).	The NB sent a Config memory write with poisoned data. (See XMI18)	NB-10
IMI11	NB received a correctable error message from the XMB	Non- Fatal	N/A	NB will signal that XMB recorded an error.	The NB received a IMI virtual wire that the XMB has detected a "correctable" error event.	NB-11
IMI12	NB received an uncorrectable error message from the XMB	Non- Fatal	N/A	NB will signal that XMB recorded an error.	The NB received a IMI virtual wire that the XMB has detected an "uncorrectable" error event.	NB-12
IMI13	Failed on last retry. Co-exist with IMI9	Non- Fatal	RECIMI	If (RAID or Mirror) Capture failed IMI Request.	The NB in RAID/Mirroring config, receives a timeout on the retry of transaction.	NB-13
IMI14	NB received a fatal error message from the XMB	Fatal	N/A	NB will signal that XMB recorded an error.	The NB received an IMI virtual wire "signal" that the XMB has detected a "fatal" error event.	NB-14
IMI15	Reserved	N/A	N/A	N/A	N/A	N/A
HI1.5 Er	rors					
IO0	HI - Target Abort	Non- Fatal	RECHI	Received from the ICH5.	The NB receives a Target- Abort for any cycle for which it was the master from the ICH5.	NB-0
IO1	HI - Cmd Parity Error	Non- Fatal	RECHI	Received from the ICH5.	The NB detected a parity error in the command portion of the packet received from the ICH5.	NB-1
IO2	HI - Data Phase Parity Error	Non- Fatal	RECHI	Received from the ICH5. The NB detected a parity error in the data portion of the packet received from the ICH5.		NB-2
IO3	HI - Parity Error on Outbound Data	Non- Fatal	RECHI	N/A	The NB detected an internal parity error on outbound data.	
IO4	HI - Outbound poison	Non- Fatal	N/A	N/A	The NB detected a parity error in the address/header from the ICH5.	NB-4

Table 6-39. Errors Detected by the NB (Sheet 4 of 6)

Error#	Error Name	Error type	Log Register(s)	Cause / Action	Definition	Comp. Reg. Bit Position
IO5	HI - Port has made an illegal access	Fatal	RECHI	Received from the ICH5	The NB detected unsupported request from the ICH5.	N/A
IO6	HI - Parity Error on Header / Address	Fatal	RECHI	Received from the ICH5	The NB detected a parity error in the address portion of the packet received from the ICH5.	N/A
IO6b	HI - Received STOP during SRC	Fatal	N/A	Received from the ICH5	ICH5 illegally drove STOP.	N/A
PCI Exp	oress Errors		•	-		
107	PCI Express - Receiver Error	Corr	N/A	N/A	Received bad 8b/10b encoding error.	NB - I/O Unit
IO8	PCI Express - Bad TLP Error	Corr	N/A	N/A	Received bad CRC or a bad sequence number in a transport layer packet.	NB - I/O Unit
IO9	PCI Express - BAD DLLP	Corr	N/A	N/A	Log Header of Error'ed Packet.	NB - I/O Unit
IO10	PCI Express - Replay_Num Rollover	Corr	N/A	N/A	Replay maximum count for the Retry Buffer has been exceeded.	NB - I/O Unit
IO11	PCI Express - Replay Timer Timeout	Corr	N/A	N/A	Replay timer timed out waiting for an ACK or NAK DLLP.	NB - I/O Unit
IO12	PCI Express - Received Unsupported Request	UnCorr	HDRLOG[3:0]	Log Header of Packet.	Received an unsupported request, similar to master abort.	NB - I/O Unit
IO13	PCI Express - Training Error	N/A	N/A	N/A	The NB never reports this error.	NB - I/O Unit
IO14	PCI Express - Poisoned TLP	UnCorr	HDRLOG[3:0]	Log Header of Error'ed Packet.	Received a poisoned transaction layer packet from the southbridge.	NB - I/O Unit
IO15	PCI Express - Flow Control Protocol Error	Fatal	N/A	N/A	NB has detected a PCI- Express Flow Control Protocol Error.	NB - I/O Unit
IO16	PCI-Express - Completion Timeout	UnCorr	N/A	N/A	Pending transaction was ACKed in the data link layer but not within the time limit.	NB - I/O Unit
IO17	PCI Express - Completer Abort	UnCorr	HDRLOG[3:0]	Log Header of Error'ed Packet.	Received return CA status for horrible error on the component. This is equivalent to a target abort on PCI.	NB - I/O Unit
IO18	PCI Express - Unexpected Completion Error	UnCorr	HDRLOG[3:0]	Log Header of Error'ed Packet.	Received a Completion RequestorID that matches the requestor but the Tag does not match any pending entries.	NB - I/O Unit
IO19	PCI Express - Malformed TLP	Fatal	HDRLOG[3:0]	Do not update content	Received a transaction layer packet that does not follow the TLP formation rules.	NB - I/O Unit

Table 6-39. Errors Detected by the NB (Sheet 5 of 6)

Error#	Error Name	Error type	Log Register(s)	Cause / Action Definition		Comp. Reg. Bit Position
IO20	PCI Express - Receive Buffer Overflow Error	Fatal	N/A	Correct by Hardware Receiver gets more data or transactions than credits allow.		NB - I/O Unit
IO21	PCI Express - Data Link Layer Protocol Error	Fatal	N/A	N/A The NB detected a DLLP error.		NB - I/O Unit
1022	N/A	N/A	N/A	N/A	N/A	N/A
IO23	N/A	N/A	N/A	N/A	N/A	N/A
IO24	PCI Express - Received Correctable Error Message	Corr	N/A	N/A	NB received a correctable error message from the south bridge.	N/A
IO25	PCI Express - Received NonFatal Error Message	Non- Fatal	N/A	N/A	NB received a non-fatal error message from the south bridge.	N/A
IO26	PCI Express - Received Fatal Error Message	Fatal	N/A	N/A	NB received a fatal error message from the south bridge.	NB - I/O Unit
NB Erro	ors					
T1	Single-bit Data ECC Error from CDC	Non- Fatal	REDTNB	Corrected by Hardware, log CDC entry.	The NB detected in an internal block a correctable ECC error (This error was not generated by receiving bad data from an external interface).	NB-0
T2	Uncorrectable Data ECC Error from CDC (Do not Include Poisoned Data)	Non- Fatal	NREDTNB	Detected by Hardware, log CDC entry.	The NB detected in an internal block an uncorrectable ECC error. (This error was not generated by receiving bad data from an external interface)	NB-7
Т3	Multi-Tag Hit from CDC	Fatal			The NB does not detect this error.	NB-5
T4	Coherency Violation Error	Fatal	NRECTNB	Log CDC entry	The NB detected a cache coherency protocol error.	NB-6
T5	Address Map Error	Non- Fatal	REDTNB		The NB received a request for an address that does not exist in the system.	NB-1
T6	Poison passed to another poison capable domain.	Non- Fatal	REDTNB		The NB created or detected poisoned data and gave that data to another poison capable domain inside NB.	NB-2
T7	Uncorrectable Data Error during a Re- silvering Process	Non- Fatal	RECINT_LOG[4:0]	Logged by RAID/mirror logic in response to PMI9. Capture failed request. Poison data in memory.	The NB detected an uncorrectable error on the primary image and secondary method to recover the data is not available.	NB-3
Т8	Poison leaving a poison capable domain	Fatal	NRECTNB	The NB has non-poison capable domains and poison capable domains. When poison leaves a poison capable domain, this error is detected.		NB-4

Table 6-39. Errors Detected by the NB (Sheet 6 of 6)

Error#	Error Name	Error type	Log Register(s)	Cause / Action	Definition	Comp. Reg. Bit Position
Т9	SMBus Virtual Pin Interface Error	Fatal	N/A		The NB detected an error on the SMBus virtual pin interface.	NB - I/O Unit
T10	I/O Unit Detected Failure	Fatal	N/A		The NB I/O Unit detected an internal failure. Uncorrectable Data Error Detected Address/Control Parity Error.	NB - I/O Unit
T11	I/O Unit Detected a correctable ECC error from CDC.	Non- Fatal	N/A			NB - I/O Unit
T12	I/O Unit Detected an uncorrectable ECC error from CDC.	Fatal	N/A			NB - I/O Unit

NOTES:

6.8 Interrupts

The NB chipset supports both the xAPIC and traditional 8259 methods of interrupt delivery. I/O interrupts, and inter-processor interrupts (IPIs) appear as write or interrupt transactions in the system and are delivered to the target processor via the FSB. This chipset does not support the three-wire sideband bus (the APIC bus) that is used by Pentium® and Pentium® Pro processors.

xAPIC interrupts that are generated from I/O will need to go through an I/O(x)APIC device unless they support Message Signalled Interrupts (MSI). In this document, I/O(x)APIC is an interrupt controller. This functionality will be embedded into the Intel 6700PXH 64-bit PCI Hub and ICH5 components of the chipset.

The legacy 8259 functionality is embedded in the ICH5 component. The NB chipset will support inband 8259 interrupt messages from PCI Express devices for boot. The chipset also supports the processor generated "interrupt acknowledge" (for legacy 8259 interrupts), and "end-of-interrupt" transactions (xAPIC).

Routing and delivery of interrupt messages and special transactions are described in this chapter.

6.8.1 xAPIC Interrupt Message Delivery

For Message Delivery and Format, refer to the Section 2.5, "Interrupt Delivery" on page 31 of this document.

For IMI errors seen from the XMB side, readers should refer to chapter 6 of Intel® E8501 Chipset eXternal Memory Bridge (XMB) Datasheet

6.8.2 **XAPIC** Destination Modes

The destination mode refers to how the processor interprets the destination field of the interrupt message. There are two types of destination modes:

- 1. Physical Destination Mode
- 2. Logical Destination Mode

The destination mode is selected by A[2] in PCI Express and Ab[5] on the FSB.

6.8.2.1 Physical Destination Mode (xAPIC)

In physical mode, the APIC ID is 8 bits, supporting up to 255 agents. Each processor has a Local APIC ID Register where the lower 5 bits are initialized by hardware (Cluster ID=ID[4:3], Bus Agent ID=ID[2:1], thread ID=ID[0]). The upper 3 bits default to 0s at system reset. These values can be modified by software. The Cluster ID is set by address bits A[12:11] during reset. By default, the NB will drive A[12:11] to '00' for Front Side Bus A, and '01' for Front Side Bus B. The value driven on bit A[12] during reset can be modified through the POC register on the NB.

The NB will not rely on the cluster ID or any other fields in the APIC ID to route interrupts. The NB will ensure the interrupt is seen on both busses and the processor with the matching APIC ID will claim the interrupt.

Physical destination mode interrupts can be directed, broadcast, or redirected. An xAPIC message with a destination field of all 1s denotes a broadcast to all.

In a directed physical mode message the agent claims the interrupt if the upper 8 bits of the destination field (DID field) matches the Local APIC ID of the processor or the interrupt is a broadcast interrupt.

6.8.2.2 Logical Destination Mode (xAPIC)

In logical destination mode, destinations are specified using an 8-bit logical ID field. Each processor contains a register called the Logical Destination Register (LDR) that holds this 8-bit logical ID. Interpretation of the LDR is determined by the contents of the processor's Destination Format Register (DFR). The DFR establishes if the processor is in flat or cluster mode. Logical destination mode interrupts can be directed (fixed delivery), redirectable (lowest priority delivery), or broadcast. The LDR is initialized to flat mode (0) at reset and is programmed by firmware (and can be changed by system software). The NB also has an equivalent bit in the XTPR0 register to indicate flat or cluster mode.

Interpretation of the destination field of the xAPIC message and the logical ID of the processor is different whether the processor is in flat or cluster mode. The 2 models are flat and cluster:

Flat Model - The 8-bit logical ID is compared to the 8-bit destination field of the incoming interrupt message. If there is a bit-wise match, then the local xAPIC is selected as a destination of the interrupt. Each bit position in the destination field corresponds to an individual Local xAPIC Unit. The flat model supports up to 4 agents in the system. An xAPIC message where the DID (destination field) is all 1's is a broadcast interrupt.

Cluster Model - The 8-bit logical ID is divided into two fields, where the upper four bits contain a cluster ID, and the lower 4-bits identifies the agent within the cluster using the same encoding scheme as the flat model. Up to 8 logical clusters (2 agents each) can be supported. An xAPIC message where the lower 4-bits of the DID is all 1's is a broadcast interrupt within a cluster. Interrupt redirection can only be applied to processors *within* the cluster.

Interrupt messages that originate from I/O(x)APIC devices or from processing nodes must be routed and delivered to the target agents in the system. In general xAPIC messages are delivered to both FSB's because there is no reliable way to determine the destination node of the message for the destination field. Interrupts originating from I/O can be generated from a PCI agent using MSI interrupts, or by an interrupt controller on a bridge chip such as the Intel 6700PXH 64-bit PCI Hub or ICH5. Table 6-40 shows the routing rules used for routing xAPIC messages in a NB platform. This table is valid for both broadcast and non-broadcast interrupts.

Table 6-40. NB xAPIC Interrupt Message Routing and Delivery

Source	Туре	Routing
1/0	physical or logical directed	Deliver to both FSB's as an interrupt transaction.
Processor	physical or logical directed	Deliver to other FSB as an interrupt transaction.
Any Source	logical, redirectable physical, redirectable	Redirection is performed by the NB and is delivered to both front side buses.

6.8.3 **EOI**

For Intel® Xeon® Processor Family (XPF) platforms using xAPIC, the EOI is a specially encoded FSB transaction with the interrupt vector attached. Since the EOI is not directed, the NB will broadcast the EOI transaction to all I/O(x)APICs.

Since the ICH5 does not support the EOI special cycle, the Intel® E8501 chipset will translate the EOI into a directed write to the EOI register in the ICH5.

6.8.4 I/O Interrupts

For I/O interrupts from the Intel 6700PXH 64-bit PCI Hub and ICH5 components receive interrupts with either dedicated interrupt pins or with writes to the integrated redirection table. The I/OxAPIC controller integrated within these components turns these interrupts into writes destined for the FSB with a specific address.

Interrupts triggered from an I/O device can be triggered with either a dedicated interrupt pin or through an inbound write message from the PCI bus (MSI). Note that if the interrupt is triggered by a dedicated pin, the I/OxAPIC controller in the I/O bridge (Intel 6700PXH 64-bit PCI Hub or ICH5) turns this into an inbound write. On the FSB, the interrupt is converted to an interrupt request. Other than a special interrupt encoding, the FSB interrupt follows the same format as discussed in Section 2.5, "Interrupt Delivery" on page 31. Therefore, to all components other than the Intel 6700PXH 64-bit PCI Hub, ICH5, and the processors, an interrupt is an inbound write following the format mentioned in Section 2.5, the NB will not write combine or cache the APIC address space.

I/O(x)APICs can be configured through two mechanisms. The traditional mechanism is the hard coded FEC0_0000h to FECF_FFFFh range is used to communicate with the IOAPIC controllers in the Intel 6700PXH 64-bit PCI Hub or ICH5.

The second method is to use the standard MMIO range to communicate to the Intel 6700PXH 64-bit PCI Hub. To accomplish this, the PXH.MBAR must be programmed within the PCI Express device MMIO region.

6.8.5 Ordering

Handling interrupts as inbound writes has inherent advantages. First, there is no need for the additional APIC bus resulting in extra pins and board routing concerns. Second, with an out-of-band APIC bus, there are ordering concerns. Any interrupt needs to be ordered correctly and all prior inbound writes must get flushed ahead of the interrupt. The *PCI Local Bus Specification*, Revision 2.2 attempts to address this by requiring all interrupt routines to first read the PCI interrupt register. Since PCI read completions are required to push all writes ahead of it, then all writes prior to the interrupt are guaranteed to be flushed. This, However assumes that all drivers perform this read.

6.8.6 Hardware IRQ IOxAPIC Interrupts

Dedicated pin interrupts may be edge or level-triggered. They are routed to IRQ pins on IOxAPIC device such as the Intel 6700PXH 64-bit PCI Hub and ICH5. The IOxAPIC device will convert the interrupt into either an xAPIC or 8259 interrupt.

For level-triggered interrupts, the I/OxAPIC will generate an interrupt message when any of the interrupt lines coming into it become asserted. The processor will handle the interrupt and eventually write to the initiating device that the interrupt is complete. The device will de-assert the interrupt line to the I/OxAPIC. After the interrupt has been serviced, the processor sends an EOI command to inform the I/OxAPIC that the interrupt has been serviced. Since the EOI is not directed, the NB will broadcast the EOI transaction to all I/O(x)APIC's. If the original I/O(x)APIC sees the interrupt is still asserted, it knows there's another interrupt (shared interrupts) and will send another interrupt message.

For edge-triggered interrupts, the flow is the same except that there is no EOI message indicating that the interrupt is complete. Since the interrupt is issued whenever an edge is detected, EOIs are not necessary.

While not recommended, agents can share interrupts to better utilize each interrupt (implying level-triggered interrupts). Due to ordering constraints, agents can not use an interrupt controller that resides on a different PCI bus. Therefore only agents on the same PCI bus can share interrupts (or the driver MUST follow the PCI requirement that interrupt routines must first read the PCI interrupt register).

The NB supports the INTA (interrupt acknowledge) special bus cycle for legacy 8259 support. These are routed to the compatibility ICH5 in the system. The INTA will return data that provides the interrupt vector.

6.8.7 Message Signalled Interrupts (MSI)

A second mechanism for devices to send interrupts is to issue the Message Signalled Interrupt (MSI) introduced in the *PCI Local Bus Specification*, Revision 2.2 . This appears as a 1 DWORD write on the PCI/PCI-X/PCI Express bus.

With PCI devices, there are 2 types of MSIs. One type is where a PCI device issues the inbound write to the interrupt range. The other type of MSI is where a PCI device issues an inbound write to the upstream APIC controller (for example, in the Intel 6700PXH 64-bit PCI Hub) where the APIC controller converts it into an inbound write to the interrupt range. The second type of MSI can be used in the event the OS doesn't support MSIs, but the BIOS does. For either way, the interrupt will appear as an inbound write to the NB over the PCI Express ports.

MSI is expected to be supported by the operating systems about the same time frame as Intel® E8501 chipset availability. A NB chipset-based platform will also feature a backup interrupt mechanism in the event that there is a short period of time when MSI is not available. This is described in the next section.

6.8.8 Non-MSI Interrupts - "Fake MSI"

For interrupts coming through the Intel 6700PXH 64-bit PCI Hub or ICH5 components, their APIC controller will convert interrupts into inbound writes, so inbound interrupts will appear in the same format as an MSI.

For interrupts that are not coming through an APIC controller (for example Dual Northway, a dual port 1 GbE) it is still required that the interrupt appear as an MSI-like interrupt. If the OS does not yet support MSI, the PCI Express device can be programmed by the BIOS to issue inbound MSI interrupts to an IOxAPIC in the system. The safest IOxAPIC to choose would be the ICH5 since it is always present in a system. The NB does not support the PCI Express "Assert_Int" and "Deassert_Int" packets for xAPIC interrupts.

In this method, PCI Express devices are programmed to enable MSI functionality, and given a write path directly to the pin assertion register in a selected IOxAPIC already present in the platform. The IOxAPIC will generate an interrupt message in response, thus providing equivalent functionality to a virtual (edge-triggered) wire between the PCI Express endpoint and the I/OxAPIC.

All PCI Express devices are strictly required to support MSI. When MSI is enabled, PCI Express devices generate a memory transaction with an address equal to the I/OxAPIC_MEM_BAR + 20 and a 32-bit data equal to the interrupt vector number corresponding to the device. This information is stored in the device's MSI address and data registers, and would be initialized by the system firmware (BIOS) prior to booting a non-MSI aware operating system (With the theory that an MSI aware O/S would then over-write the registers to provide interrupt message delivery directly from the endpoint to the CPU complex).

The PCI Express memory write transaction propagates to the NB and is redirected down the appropriate PCI Express port following the NB IOAPIC address mapping definition. The IOAPIC memory space ranges are fixed and cannot be relocated by the OS. The assert message is indistinguishable from a memory write transaction, and is forwarded to the destination I/OxAPIC (which will then create an upstream APIC interrupt message in the form of an inbound memory write). The write nature of the message "pushes" all applicable pre-interrupt traffic through to the NB core, and the NB core architecture guarantees that the subsequent APIC message cannot pass any posted data already within the NB.

6.8.9 Inter Processor Interrupts (IPIs)

The IPIs will be covered in the future revision of this document.

6.8.10 Chipset Generated Interrupts

The Intel® E8501 chipset can trigger interrupts for chipset errors and for PCI Express and IMI Port Hot-Plug. For these events, the chipset can be programmed to assert pins that the system can route to an APIC controller. The following is a preliminary list of interrupts that can be generated:

1. Chipset Error:

Chipset asserts appropriate ERR pin, depending on severity. This can be routed by the system to generate an interrupt at an interrupt controller. (NB pins ERR[2:0], MCERR, ICH Reset). For details on Chipset error types and reporting, please see Section 6.7.1.

2. IMI Hot-Plug:

Chipset asserts **IMI_HPINT** on behalf of an IMI Hot-Plug event. This can be routed by the system to generate an interrupt. This document assumes that **IMI_HPINT** will be connected either to a system interrupt, SMI interrupt, or SCI (ACPI) general purpose event.

3. PCI Express Error:

Chipset asserts appropriate ERR pin, depending on severity. This can be routed by the system to generate an interrupt.

The NB can receive error indications from the PCI Express ports.
 These are in the form of inbound ERR_COR/UNC/FATAL messages. The NB will assert the appropriate ERR signal just like any internal NB error.

4. PCI Express Hot-Plug:

The NB asserts EXP_HPINT on behalf of a PCI Express Hot-Plug event.

- NB generated Hot-Plug event such as PresDet change, Attn button, MRL sensor changed, power fault, etc. Each of these events has a corresponding bit in the PCI Express Hot-Plug registers (Attention Button, Power Indicator, Power Controller, Presence Detect, MRL Sensor, Port Capabilities/Slot registers). This will generate an interrupt via the EXP_HPINT pin, or it will generate an MSI.
 - EXP_HPINT: When software has completed servicing the Hot-Plug event, it will clear the appropriate bit in the PCI Express Hot-Plug register(s), at which point, the NB can deassert EXP_HPINT.
 - MSI: If the MSICTRL.MSIEN bit (MSI enabled) is set, the NB will generate an MSI in response to a PCI Express Hot-Plug event. More details will be added in the subsequent revision of this document.

- PCI Express Hot-Plug event from downstream. This could be either an MSI or a GPE message.
 - **MSI**: Handled like a normal MSI interrupt.
 - GPE Message: Upon receipt of a Assert_GPE message from PCI Express, NB will assert the EXP_HPINT signal to generate this interrupt. To generate an SCI (ACPI), this signal will be routed to the ICH5 appropriate GPIO pin to match the GPE0_EN register settings. When the Hot-Plug event has been serviced, the NB will receive a Deassert_GPE message. At this point the NB can deassert EXP_HPINT. There needs to be a tracking bit per PCI Express port to keep track of Assert/Deassert_GPE pairs. These tracking bits should be ORed together to determine whether to drive the EXP_HPINT pin. If one or more of the tracking bits are set (meaning we have received one or more Assert_GPE messages), EXP_HPINT must be set until all the matching Deassert_GPE messages are received.
 - Sideband Signals: Some systems may choose to connect the interrupt via sideband signals directly to the ICH5. No action is required from the NB.
- 5. PCI Express PM: The NB asserts PME_OUT pin when a power management event is detected. PCI Express sends a PME message.
 - Upon receipt of the PME message, the NB will assert the PME_OUT signal to generate this interrupt if enabled through bit 3 in 'EXP_RTCTRL[7:1]: PCI Express Root Control Register (D1-7, F0)". To generate an SCI (ACPI), this signal will be routed to the ICH5 appropriate GPIO pin to match the GPE0_EN settings. When software has completed servicing the power management event, it will clear the PCI Express RTSTS.PMESTS bit (by writing 1), at which point the NB can deassert PME OUT.
- 6. PCI Hot-Plug:

The NB will receive an Assert/Deassert GPE message from the PCI Express port when a PCI Hot-Plug event is happening. Assert/Deassert GPE messages should be treated the same as Assert/Deassert GPE messages for PCI Express Hot-Plug. (Keep track of Assert/Deassert GPE messages from each port and assert EXP_HPINT appropriately).

Table 6-41 summarizes the different types of chipset generated interrupts that were discussed. Although the interrupt and SW mechanism is flexible and can be changed depending on how the system is hooked up, for reference this table also describes what SW mechanism is expected to be used.

Table 6-41. Chipset Generated Interrupts

Source	Signalling Mechanism	NB Signal Method	Expected SW Mechanism
Chipset Error	NB Chipset registers	ERR[2:0], MCERR, ICHReset	Any
IMI HP	NB Chipset registers	IMI_INT	Any (SCI, SMI, system (MSI/APIC))
PCI Express Error	PCI Express ERR_COR/UNC/FATAL message	ERR[2:0], MCERR, ICHReset	Any
PCI Express HP (PresDet chg, attn button, etc.)	NB Chipset registers	EXP_HPINT or MSI	SCI->ACPI or MSI
PCI Express HP form downstream device (Native)	MSI	MSI interrupt ^a (FSB)	MSI
PCI Express HP form downstream device (Intel Part, Non-Native)	PCI Express Assert/Deassert GPE	EXP_HPINT	SCI->ACPI
PCI Express HP form downstream device (Intel Part, Non-Native)	Sideband signals directly to ICH5	N/A	SCI->ACPI
Downstream PCI HP	PCI Express Assert/Deassert GPE	EXP_HPINT	SCI->ACPI
Power Management Event (PME)	PCI Express PM_PME message	PME_OUT	SCI->ACPI

NOTES:

6.8.11 Legacy/8259 Interrupts

The 8259 interrupt controller is supported in NB platforms. 8259 interrupt request is delivered using the interrupt group sideband signals LINT[1:0] (a.k.a. NMI/INTR) or through an I/O xAPIC using the message based interrupt delivery mechanism with the delivery mode set to ExtINT (b111). There can be only one active 8259 controller in the system.

The mechanism in which a PCI Express device requests an 8259 interrupt is a PCI Express inband message. (ASSERT_INTA/B/C/D, DEASSERT_INTA/B/C/D).

The target processor for the interrupt uses the interrupt acknowledge transaction to obtain the interrupt vector from the 8259 controller. The NB forwards the interrupt acknowledge to the ICH5 where the active 8259 controller resides.

The NB will support PCI Express devices that generate 8259 interrupts (for example, during boot). 8259 interrupts from PCI Express devices will be sent in-band to the NB which will forward these interrupts to the ICH5.

The NB will have a mechanism to track inband 8259 interrupts from each PCI Express and assert virtual interrupt signals to the 8259 through the inband DO_PCI_INT HL special cycle. This is done by a tracking bit per interrupt (A, B, C, D) in each PCI Express which are combined (ORed) into virtual signals that are sent to the ICH5. Each interrupt signal (A, B, C, D) from each PCI Express is ORed together to form virtual INT A, B, C, and D signals to the ICH5

Technically, this is not chipset generated, but is included for completeness.

(DO_PCI_INTA/B/C/D (assertion encoding)). When all the tracking bits for a given interrupt (A, B, C, or D) are cleared from all PCI Express ports, the virtual signal A, B, C, or D is deasserted via the inband DO_PCI_INT (deassertion encoding).

For PCI Express hierarchies, interrupts will be consolidated at each level. For example, a PCI Express switch connected to a NB PCI Express port will only send a maximum of 4 interrupts at a time, regardless of how many interrupts are issued downstream.

SMI (System Management Interrupt) interrupts are initiated by the SMI# signal in the platform. On accepting a System Management Interrupt, the processor saves the current state and enters SMM.

6.9 Reset

6.9.1 Introduction

This section describes NB-specific aspects of hardware reset. Subsequent I/O initialization procedures requiring configuration register dialogue are not covered in this section.

NB expects to receive RSTIN# from the ICH5 chip. NB uses this signal to reset the internal state of NB, and additionally, forwards this reset to the processor(s) in the system via the H_A_RST# and H_B_RST# signals. NB controls the reset of the XMB chips connected to NB via software using the IMI_{A/B/C/D}_RST# signals which are expected to be connected from NB to XMB.

A system is expected to connect the ICHRST# pin of NB to the PLD controlling the system reset logic that generates the PCIRST# signal into the ICH5 chip.

NB will keep $H_{A/B}_RST\#$ asserted on an FSB which indicates no end agent is present via the $H_{A/B}_PRSNT\#$ pin; the system should keep the core and cache VR disabled in this case to avoid any CPU thermal issues.

6.9.2 Types of Reset

- · Power-up
- Power Good
- PWROK

The PWROK reset spawns a hard reset.

• Hard

The hard reset spawns IMI, PCI Express, and Processor resets.

- IMI
- Warm
- PCI Express
- JTAG
- SMBus

6.9.3 Triggers of Reset

- Energize power supplies
- PWRGOOD de-assertion
- RESTIN# assertion
- NB.SYRE.SYSRST (refer to Section 4.14.8)
- IMI.ICHRST_inband_signal
- NB.SYRE.ROR (refer to Section 4.14.8)
- NB.IMIHPC.NEXTSTATE change (Refer to Section 4.13.10) IMI initialization time-out is covered by STATE change.
- NB.BCTRL.SRESET (Refer to Section 4.11.27)
- SMBus protocol

6.9.4 Trigger to Type Association

This section describes which triggers initiate which types:

- Energize power supplies: Power-up
- PWRGOOD de-assertion: Power good
- RESTIN# assertion: Hard
- NB.SYRE.ROR: Warm
- NB.IMIHPC.NEXTSTATE set to "Reset" or "RecoveryReset": IMI
- NB.BCTRL.SRESET: PCI Express
- TRST# assertion or TCK/TMS protocol: JTAG
- SMBus protocol: SMBus

6.9.5 Logic Domain Behavior

During reset, each of the logic domains is treated as follows:

- Unaffected by reset:
 - PLL's
- Indirectly affected by reset:
 - ArraysInitialized by BIST engines
 - Analog I/O compensation
 Only triggered by power-up
- {Boundary scan chains, JTAG protocol engine}:
 - Asynchronous PWRGOOD de-assertion, PWRGOOD de-asserted, asynchronous TRST# assertion, ITP_TRST# asserted, or synchronous TCK/TMS protocol navigation to reset state: Reset

- SMBus protocol engine:
 - Asynchronous PWRGOOD de-assertion, PWRGOOD de-asserted, or synchronous SMBus reset protocol: Reset
- Sticky configuration bits:

Configuration bits with the "ST" attribute are sticky

- Asynchronous PWRGOOD de-assertion, PWRGOOD de-asserted: Defaults
- (Synchronized RESTIN# assertion or synchronized RESTIN# asserted) while PWRGOOD asserted: No-Change

Sticky configuration bits must be protected from spurious activity at RESTIN# transitions and while RESTIN# is asserted during hard reset.

• IMI (NB):

- Asynchronous PWRGOOD de-assertion, PWRGOOD de-asserted, one cycle after synchronized RESTIN# assertion, IMISC.STATE set to "Reset" or "RecoveryReset" set: reset and tri-state outputs.
- Synchronized RESTIN# de-assertion, IMISC.STATE set to "Reset" or "RecoveryReset" cleared and synchronized RESTIN# de-asserted: Initialize then begin normal operation.

• RESTIN# pad:

Synchronized through two HCLKIN-ed stages
 This is the synchronized RESTIN#.

• ICHRST# pad:

- asynchronous PWRGOOD de-asserted: de-asserted
- ICHRST# cycle counter not extinguished: Asserted

• PCI Express:

- Asynchronous PWRGOOD de-assertion, PWRGOOD de-asserted: Tri-state and Reset
- PWRGOOD asserted, one cycle after synchronized RESTIN# assertion, BCTRL.SRESET set: link down
- RESTIN# de-assertion, BCTRL.SRESET cleared: initialize, train, link up

• IMI_{A/B/C/D}_RST# pad:

- Controlled by BIOS
- Asynchronous PWRGOOD de-assertion, PWRGOOD de-asserted, one cycle after synchronized RESTIN# assertion, IMISC.STATE set to "Reset" or "RecoveryReset" set: Asserted
- Synchronized RESTIN# de-assertion, IMISC.STATE set to "Reset" or "RecoveryReset" cleared and synchronized RESTIN# de-asserted: De-asserted.

• H_{A/B}_RST# pad:

 Asynchronous PWRGOOD de-assertion, PWRGOOD de-asserted, one cycle after synchronized RESTIN# assertion, SYRE.ROR asserted and bus locks cleared and IOQ's flushed and data buffers flushed and IMI.REFRESH detected: assert

• SYRE.ROR configuration bit

 asynchronous PWRGOOD de-assertion, PWRGOOD de-asserted, one cycle after synchronized RESTIN# assertion, 1 HCLKIN after processor RESET# pad asserted: clear

- Power-On Configuration:
 - Minimum of 1 HCLKIN after processor RESET# pad asserted: Assert
 - 2-19 HCLKIN after processor RESET# pad de-asserted: De-assert
- Hub Interface:
 - Asynchronous PWRGOOD de-assertion, PWRGOOD de-asserted, one cycle after synchronized RESTIN# assertion: Reset and Tri-stated
 - Synchronized RESTIN# de-asserted: Send NOP -> wait for NOP_ACK -> send CPU_RESET_DONE

6.9.6 PWRGOOD De-asserted

Trigger = PWRGOOD de-assertion: Asynchronous

Power and master clocks remain stable.

- De-assert ICHRST# asynchronously.
- Assert H_{A/B}_RST# and IMI_{A/B/C/D}_RST# asynchronously.
- De-assert other front side bus I/O asynchronously.
- Tri-state other I/O.
- Toggle PLL outputs.
- Reset I/O Ports.
- Resolve multiple drivers to a non-destructive state.

6.9.7 PWRGOOD Assertion

Trigger = PWRGOOD assertion: Synchronized

Voltages are within specifications. Master clocks are stable. The TCK signal may be in any state.

- Sample straps.
- Enable Power-On-Configuration (POC) to the front side bus.
- Un-tri-state I/O.
- Hold PCI Express link down.

6.9.8 NB ICHRST# Sequence

 $\label{eq:Triggers} Triggers = \{H_{A/B}_RST\#, ICHRST\#, IMI_{A/B/C/D}_RST\# \ Reset \ Signal \ and \ NB.SYRE.SYSRST \ Set\}: Synchronous$

- Assert ICHRST# for approximately 100 μs asynchronously to CLK66
- De-assert ICHRST# asynchronously to CLK66.
 This de-assertion must wait until 100 μs elapses, even though RESTIN# will be asserted before 100 μs elapses.
- Clear SYRE.SYSRST when ICHRST# is asserted.

6.9.9 Hard Reset Asserted

Trigger = RESTIN# assertion: Synchronized

PWRGOOD is asserted.

• Protect sticky configuration bits.

Sticky configuration bits must not log spurious errors resulting from the reset process. These processes include de-activated buses, initialization sequences, and spurious inputs on internal interfaces.

• Synchronously assert internal asynchronous flip-flop initialization inputs.

Private JTAG chains may be reset.

Exceptions: synchronous test-mode flip-flops, sticky configuration bits, JTAG controller and boundary-scan logic, and analog I/O compensation.

- Assert H_{A/B}_RST#.
- Do not assert IMI_{A/B/C/D}_RST# software causes this to assert.
- Initialize non-PCI Express I/O port operation.
- Tri-state IMI I/O after 16 HCLKIN.
- Reset PCI Express protocol.
- Take PCI Express link down.
- Drive processor Power-On-Configuration (POC).
 POC is driven from the SYRE.CPUBIST, POC, and POC_AUX{A/B} configuration registers.
 The default values of these configuration registers do not require any processor request signals to be asserted when PWRGOOD is first asserted.
- De-assert non-POC front side bus signals.

6.9.10 Hard Reset De-assertion

Trigger = RESTIN# de-assertion: synchronized

PWRGOOD is asserted.

- Allow normal operation of sticky configuration bits.
- Initiate physical IMI initialization.
- Initiate each remaining IMI initialization sequence: handshake, link-width negotiation, and deskew-and-frame.
- Send NOP message to Hub Interface. Wait for NOP_ACK reply from Hub Interface. Send CPU_RESET_DONE message to Hub Interface.
- Initialize PCI Express link.
- Engage PCI Express link training.
- Bring PCI Express link up.
- After approximately 1 ms, de-assert processor RESET#.
- After processor RESET# de-assertion + 2 HCLKIN, disable POC.

6.9.11 PCI Express Reset Asserted

Trigger = BCTRL.SRESET set: Synchronous

- Initialize PCI Express protocol.
- Take PCI Express link down.

6.9.12 NB PCI Express Reset De-asserted

Trigger = BCTRL.SRESET cleared: synchronous

- Initialize PCI Express link.
- Engage PCI Express link training.
- Bring PCI Express link up.

6.9.13 NB IMI Reset Assertion

Trigger = IMIHPC.NEXTSTATE set to "Reset" or "RecoveryReset": synchronous

- Assert IMI_{A/B/C/D}_RST#.
- Tri-state IMI I/O (not including IMI_{A/B/C/D}_RST#).

6.9.14 NB IMI Reset De-assertion

Trigger = IMIHPC.NEXTSTATE set to "Init" or "RecoveryInit": Synchronous

- De-assert XMB IMI_RST#.
- IMI initiates physical initialization.
- After completion of IMI physical initialization, each IMI initiates each remaining initialization sequence: handshake, link-width negotiation, and deskew-and-frame.

6.9.15 Warm Reset Sequence

Trigger = SYRE.ROR set or SYRE.CPURST set: Synchronous

- If SYRE.ROR is set, wait for an inband IMI.REFRESH signal from IMI designated by SYRE.REFPMI.
- Assert H {A/B} RST#.

6.9.15.1 Processor Reset Sequence

This is the entry point for a processor reset spawned by a "hard" reset. This is also a continuation of the warm reset sequence.

Trigger = Processor RESET# assertion: Synchronous

• After processor RESET# assertion + minimum of 1 HLCKIN, enable POC. POC is driven from the SYRE.CPUBIST, POC, and POC_AUX[1:0] configuration registers.

- Logically mask front side bus inputs.
- Clear SYRE.ROR and SYRE.CPURST.
- After minimum of 1 ms, de-assert processor RESET#.
- After observing de-assertion of processor RESET#, resume front side bus protocol.
- After processor RESET# de-assertion + minimum of 2 HCLKIN, disable POC.

6.9.16 JTAG Reset Assertion

Triggers = {TRST# assertion: asynchronous; TMS asserted for 5 TCK rising edges: Synchronous}

- Initialize JTAG finite-state-machine.
- Initialize boundary-scan chain.

6.9.17 JTAG Reset De-assertion

Trigger = ITP_TRST# de-assertion: Asynchronous

- Release JTAG port and to operate normally.
- Release boundary-scan chain to operate normally.

6.9.18 SMBus Reset Sequence

Trigger = SMBus protocol: Synchronous

• Reset SMBus interface

6.10 System Management

The NB chipset supports three methods of providing system management to the platform:

- Processor Access All registers of the NB Chipset are available via a FSB access.
- SMBus Access Via an SMBus access to the NB, a register access can be generated to the NB, any XMB, PCI Express device or ICH5. In addition, an SMBus access can go directly to the XMB. It should be noted that unlike processor accesses, the SMBus interface does have some restrictions, namely:
 - SMBus cannot generate a Memory access at the NB or XMB
- **JTAG Access** The same limitation and restrictions that apply to the SMBus interface also apply to the JTAG interface of the NB components.

The NB chipset provides a fully functional SMBus (or JTAG) target interface, which gives direct access to all internal chipset configuration registers. SMBus/JTAG access provides for a highly flexible platform management architecture when used in conjunction with a baseboard management controller (BMC) with an integrated network interface controller (NIC) function.

6.10.1 SMBus Access

System Management software in a NB platform can initiate system management access to the configuration registers. This can be done through SMBus accesses.

The mechanism for the Server Management (SM) software to access configuration registers is a slave port that is close to SMBus Specification, Revision 2.0, but not fully compliant. Some Intel® E8501 chipset components contain this slave port and allow accesses to their configuration registers. The product specific details are compatible with the Intel 6700PXH 64-bit PCI Hub SMBus configuration access mechanism. The NB/XMB do not require the Intel 6700PXH 64-bit PCI Hub memory read/write because all registers (including the Intel 6700PXH 64-bit PCI Hub registers) can be accessed through the configuration mechanism.

SMBus operations are made up of two major steps:

- Writing information to registers within each component
- Reading configuration registers from each component.

The following sections describe the protocol for an SMBus master to access a NB component's internal configuration registers. For the bus protocol, timings, and waveforms, refer to the SMBus Specification, Revision 2.0.

Each component in the NB platform must have a unique address. NB component addresses are defined in Table 6-42.

Table 6-42. SMBus Addresses for the Intel® E8501 Chipset Platform

Intel® E8501 Chipset Component	SMBus Address (bits [7:1])
Intel® E8501 Chipset North Bridge (NB)	0001100
eXternal Memory Bridge D (XMB D)	0001011
eXternal Memory Bridge C (XMB C)	0001010
eXternal Memory Bridge B (XMB B)	0001001
eXternal Memory Bridge A (XMB A)	0001000
Devices south of the NB	0000000 - 0000111

NOTES:

- 1. Bit 0 is not applicable to the address, since it is a R/W bit.
- The NB does not implement the SMBALERT# pin. The fact that NB uses 0001100 means no slave-only device that requires use of the SMBALERT# signal and the subsequent access to the 0001100 address can be used in the system.

6.10.1.1 Supported SMBus Commands

NB components SMBus Rev. 2.0 slave ports support the following six SMBus commands:

- Block Write
- Word Write
- Byte Write

- Block Read
- Word Read
- Byte Read

Sequencing these commands will initiate internal accesses to the component's configuration registers.

Each configuration read or write first consists of an SMBus write sequence which initializes the Bus Number, Device Number, etc. The term sequence is used, since these variables may be written with a single block write or multiple word or byte writes. Once these parameters are initialized, the SMBus master can initiate a read sequence (which perform a configuration read) or a write sequence (which performs a configuration write).

Each SMBus transaction has an 8-bit command driven by the master. The format for this command is illustrated in Table 6-43 below.

Table 6-43. SMBus Command Encoding

7	6	5	4	3:2	1:0
Begin	End	Rsvd	PEC_en	Internal Command: 00 - Read DWord 01 - Write Byte 10 - Write Word 11 - Write DWord	SMBus Command: 00 - Byte 01 - Word 10 - Block 11 - Rsvd

The *Begin* bit indicates the first transaction of a read or write sequence.

The *End* bit indicates the last transaction of a read or write sequence.

The PEC_en bit enables the 8-bit PEC generation and checking logic.

The *Internal Command* field specifies the internal command to be issued by the SMBus slave logic. Note that the Internal Command must remain consistent (i.e. not change) during a sequence that accesses a configuration register. Operation cannot be guaranteed if it is not consistent when the command setup sequence is done.

The *SMBus Command* field specifies the SMBus command to be issued on the bus. This field is used as an indication of the length of transfer so the slave knows when to expect the PEC packet (if enabled).

Reserved bits should be written to zero to preserve future compatibility.

6.10.1.2 Configuration Register Read Protocol

Configuration reads are accomplished through an SMBus write(s) and later followed by an SMBus read. The write sequence is used to initialize the Bus Number, Device, Function, and Register Number for the configuration access. The writing of this information can be accomplished through any combination of the supported SMBus write commands (Block, Word or Byte). The *Internal Command* field for each write should specify Read DWord.

After all the information is set up, the last write (*End* bit is set) initiates an internal configuration read. If the data is not available before the slave interface acknowledges this last write command (ACK), the slave will "clock stretch" until the data returns to the SMBus interface unit. If an error occurs during the internal access, the last write command will receive a NACK. A status field indicates abnormal termination and contains status information such as target abort, master abort, and time-outs. The status field encoding is defined in Table 6-44.

Table 6-44. Status Field Encoding for SMBus Reads (Sheet 1 of 2)

Bit	Description
7:6	Reserved
5	Internal Master Abort

Table 6-44. Status Field Encoding for SMBus Reads (Sheet 2 of 2)

Bit	Description
4	Internal Target Abort
3:1	Reserved
0	Successful

Examples of configuration reads are illustrated below. All of these examples use the NB address and have PEC (Packet Error Code) enabled. Refer to Table 6-42, "SMBus Addresses for the Intel® E8501 Chipset Platform" for other Intel® E8501 chipset component addresses. If the master does not support PEC, then bit 4 of the command would be cleared and there would not be a PEC phase. For the definition of the diagram conventions below, refer to the SMBus Specification, Revision 2.0. For SMBus read transactions, the last byte of data (or the PEC byte if enabled) is NACK'ed by the master to indicate the end of the transaction. For diagram compactness, "Register Number[]" is also sometimes referred to as "Reg Number" or "Reg Num".

Figure 6-17. SMBus Configuration Read (Block Write / Block Read, PEC Enabled)

This is an example using word reads. The final data is a byte read.

Figure 6-18. SMBus Configuration Read (Word Writes / Word Reads, PEC Enabled)

The following example uses byte reads.

Cmd = 10010000 0001_100 WA Bus Number PEC S 0001_100 WA Cmd = 00010000 Α Device/Function PEC Α S 0001_100 WA Cmd = 00010000 Register[15:8] Α PEC S 0001 100 STRETCH WA Cmd = 01010000Register[7:0] PEC 0001 100 Cmd = 10010000 0001 100 R A Status Α PEC 0001_100 Cmd = 00010000 s Sr 0001 100 R A Data[31:24] Α PEC N P s 0001_100 Cmd = 00010000 0001_100 R A Data[23:16] PEC N P s 0001_100 Cmd = 00010000 Α 0001 100 Data[15:8] PEC R A Α N P S 0001 100 Cmd = 01010000 Α 0001 100 PEC R A Data[7:0] N P

Figure 6-19. SMBus Configuration Read (Write Bytes / Read Bytes, PEC Enabled)

6.10.1.3 Configuration Register Write Protocol

Configuration writes are accomplished through a series of SMBus writes. As with configuration reads, a write sequence is first used to initialize the Bus Number, Device, Function, and Register Number for the configuration access. The writing of this information can be accomplished through any combination of the supported SMBus write commands (Block, Word or Byte).

Note: On SMBus, there is no concept of byte enables. Therefore, the Register Number written to the slave is assumed to be aligned to the length of the Internal Command. In other words, for a Write Byte internal command, the Register Number specifies the byte address. For a Write DWord internal command, the two least-significant bits of the Register Number are ignored. This is different from PCI, where the byte enables are used to indicate the byte of interest.

After all the information is set up, the SMBus master initiates one or more writes, which sets up the data to be written. The final write (*End* bit is set) initiates an internal configuration write. The slave interface could potentially clock stretch the last data write until the write completes without error. If an error occurred, the SMBus interface NACK's the last write operation just before the stop bit.

Examples of configuration writes are illustrated below. All of these examples use the NB address. Refer to Table 6-42, "SMBus Addresses for the Intel[®] E8501 Chipset Platform" for other Intel[®] E8501 chipset addresses. For the definition of the diagram conventions below, refer to the *SMBus Specification*, Revision 2.0.

Figure 6-20. SMBus Configuration Write (Block Write, PEC Enabled)

Figure 6-21. SMBus Configuration Write (Word Writes, PEC Enabled)

Figure 6-22. SMBus Configuration Write (Write Bytes, PEC Enabled)

6.10.1.4 SMBus Error Handling

The SMBus slave interface handles two types of errors: Internal and PEC. For example, internal errors can occur when the NB issues a configuration read on the PCI Express port Scalability Port and that read terminates in error. These errors manifest as a Not-Acknowledge (NACK) for the read command (*End* bit is set). If an internal error occurs during a configuration write, the final write command receives a NACK just before the stop bit. If the master receives a NACK, the entire configuration transaction should be reattempted.

If the master supports packet error checking (PEC) and the PEC_en bit in the command is set, then the PEC byte is checked in the slave interface. If the check indicates a failure, then the slave will NACK the PEC packet.

6.10.1.5 SMBus Interface Reset

The slave interface state machine can be reset by the master in two ways:

- The master holds SCL low for 25ms cumulative. "Cumulative" in this case means that all the "low time" for SCL is counted between the Start and Stop bit. If this totals 25 ms before reaching the Stop bit, the interface is reset.
- The master holds SCL continuously high for 50 ms.

Note: Since the configuration registers are affected by the reset pin, SMBus masters will not be able to access the internal registers while the system is reset.

6.10.2 JTAG Access

NB chipset provides a JTAG configuration access mechanism that allows a user to access any register in the system. Table 6-45 defines the mapping of registers to JTAG bit positions.

Table 6-45. JTAG Configuration Register Access

Bit	Description
71:40	Data
39:32	Register Address[7:0]
31:29	Function[2:0]
28:24	Device ID[4:0]
23:16	Bus number[7:0]
15:12	Extended Register Address[11:8]
11:8	Reserved
7:4	Status
3:0	Command: 0xxx = NOP used in polling the chain to determine if the unit is busy. 1001 = write byte 1010 = write word 1011 = write dword 1100 = read dword

6.10.2.1 JTAG Accesses to Registers on Other Components

The Intel® E8501 chipset north bridge (NB) provides functionality that allows accessing registers in the system through the NB JTAG port. The NB will translate these accesses into configuration accesses to the other components. For XMB, ICH5, and PCI Express components, the accesses will be the same as processor initiated register accesses.

7 Ballout/Pinout and Package Information

This chapter specifies the ballout/pinout and mechanical specifications for the Intel[®] E8501 chipset north bridge (NB), and provides references to documents that contain similar information for the remaining core components of the Intel[®] E8501 chipset, specifically:

XMB Intel® E8501 Chipset eXternal Memory Bridge (XMB)

ICH5 Intel® 82801EB I/O Controller Hub 5 (ICH5)

This information is intended to help with component placement and board routing.

7.1 Intel® E8501 Chipset North Bridge (NB) Ballout/ Pinout

The NB ballout includes the front-side bus (FSB) interfaces, the Independent Memory Interfaces (IMI), the PCI Express interfaces, the Hub 1.5 interface, and the various power, ground, and reference pins.

For detailed information about the XMB ballout and pin list, refer to the *Intel*® *E8501 Chipset eXternal Memory Bridge (XMB) Datasheet*.

For detailed information about the ICH5 ballout and pin list, refer to the *Intel*® 82801EB I/O Controller Hub 5 (ICH5) and Intel® 82801ER I/O Controller Hub 5 (ICH5R) Datasheet. The ICH5 Datasheet is available at: http://developer.intel.com/design/chipsets/datashts.

Figure 7-1. NB Ballout (Top View)

Figure 7-2. NB Ballout with Signal Names (Top View - Left Region)

Α	1	2	3	4	5	6	7	8	9	10	11	12	13	Α
В			VSS	VSS	H_B_D44#	H_B_D43#	VSS	H_B_D35#	H_B_D39#	VSS	H_B_D32#	H_B_D15#	VSS H_B_DSTBP	В
С		VSS		H B DEP4#		VSS	H B DBI2#			H B D37# H_B_DSTBN	H B D34#	VSS	0#	С
D	VSS	H B D56#		H B DEP5#	VSS	H B D42#		VSS	2#	2#	VSS	H B D14#	H B D10#	D
E	H B D59#	H B D57#	H B D61#	VSS	H B D46#		VTT	H B D41#	H B D33#		H B D36# H_B_DSTBN	H B D12#	VTT	Е
F	H B D63#	H_B_D58#	VSS	H_B_D55#	H B D53#	VSS	H B D52#	H_B_D50#	VSS	1#	1#	VSS	H B D25#	F
G	H B DEP6#	VSS	H B D60#	H B D54#		H B D51# H_B_DSTBN	H B D48#	VSS	H B DEP3#		VTT	H B D30#		G
н	VSS		H_B_DEP7#	VSS	3#	3#	VSS	H_B_D49#	Reserved	VSS	H_B_DEP2#	H_B_D24#	VSS	Н
J	H_B_ID4#	H_B_ID5#	VTT		H_B_VREF0	VSS	H_B_VREF1	Reserved	VTT	Reserved	Reserved	VSS	H_B_ID6#	J
K	H_B_ID1#	VSS	H_B_ID0#	H_B_REQ4#	VSS		H_B_REQ1#	VSS	H_B_A18# H_B_ADSTB	H_B_A19#	VSS	H_B_IDS#	H_B_OOD#	K
L	VTT	H_B_BPRI# H_B_DEFER	H_B_ID2#	VSS	H_B_REQ2#			H_B_A24#	1#	VSS	H_B_A39#	Reserved	VTT	L
M	H_B_HIT#	#	VSS	H_B_A7#	H_B_A4#	VSS	H_B_REQ0#		VSS	H_B_A25#	H_B_A17#	VSS	H_B_HITM#	М
N	H_B_RS1#	VSS	H_B_RS2#	H_B_A6#	VTT	H_B_A5# H_B_ADSTB	H_B_A8#	VSS	H_B_A29#	H_B_A23#	VTT	H_B_BINIT#		N
P	VSS	H_B_BNR# H_B_BREQ0		VSS	H_B_A9#	0#	VSS	H_B_A21#	H_B_A30#	VSS	H_B_A22#	H_B_AP1#	VSS H_B_MCER	P
R	H_B_TRDY#	#	VTT	H_B_A36#	H_B_A11#	VSS	H_B_A15#	H_B_A34#	VTT	H_B_A20#	H_B_A26#	VSS	R#	R
T	H_B_ADS#	VSS	H_B_DRDY#		VSS	H_B_A12#	H_B_A13#	VSS	H_B_A27#	H_B_A35#	VSS	H_B_RSP#	Reserved	T
U	VTT	H_B_LOCK#	H_B_DB\$Y#	VSS	H_B_A10# IMI_C_ICOM	H_B_A14#	VTT	H_B_A33#	H_B_A31#	VSS	H_B_A32# IMI_C_FRA	H_B_A38#	VTT IMI_C_VCC	U
V	IMI C RXNO	PI	VSS	IMI C RXN1	PO	VSS	IMI C RXN8	Reserved	VSS	IMI C RXN9	ME	VSS	BG IMI_C_VSSB	V
W	IMI C RXP0	VSS	IMI C TXNO	IMI C RXP1	P1V5	IMI C TXN1	IMI C RXP8	VSS IMI_C_RXN1	IMI C TXN8	IMI C RXP9	P1V5 IMI_C_RXN1	IMI C TXN9	G	w
	VSS	IMI_C_RXN2	IMI_C_TXP0	VSS	IMI_C_RXN3	IMI_C_TXP1	VSS IMI C RXN1	0 IMI C RXP1	IMI_C_TXP8	VSS IMI C RXN1	1 IMI C RXP1	IMI_C_TXP9	VSS	
Y	IMI C TXN2	IMI C RXP2	P1V5	IMI C TXN3	IMI C RXP3	VSS	IMI C RXP1	0	P1V5	3	1	VSS IMI C RXN1	Reserved	Y
AA	IMI_C_TXP2	VSS	IMI_C_RXN4	IMI_C_TXP3	VSS	IMI_C_RXN5	2	VSS IMI C RXN1	4 IMI_C_RXP1	3	VSS IMI_C_RXN1	5 IMI C RXP1	Reserved	AA
AB	P1V5	IMI_C_TXN4	IMI_C_RXP4	VSS	IMI_C_TXN5	IMI_C_RXP5		6 IMI C RXP1	4	VSS IMI C LINK	7 IMI C RXP1	5	P1V5	AB
AC	IMI_C_RXN6	IMI_C_TXP4	VSS	IMI_C_RXN7	IMI_C_TXP5	VSS	N0 IMI_C_LINK	6	VSS IMI_D_RXN1	N1	7	VSS IMI C LINK	BG IMI_D_VSSB	AC
AD	IMI_C_RXP6	VSS	IMI_C_TXN6	IMI_C_RXP7	P1V5	IMI_C_TXN7	P0	VSS IMI D RXN1	0	P1	P1V5	N2	G	AD
AE	VSS	IMI_D_RXN0	IMI_C_TXP6	vss	IMI_D_RXN1	IMI_C_TXP7	VSS IMI D RXN1	1	0	VSS	IMI_C_RST#	P2	VSS	AE
AF	IMI_D_TXN0	IMI_D_RXP0	P1V5	IMI_D_TXN1	IMI_D_RXP1	VSS	IMI_D_RXP1	1	P1V5	ICHRST#	ME ME	VSS	Reserved	AF
AG	IMI_D_TXP0	VSS	IMI_D_RXN2	IMI_D_TXP1	VSS	IMI_D_RXN3	2	VSS	3	PME_OUT/EXP1_ WIDTH2	VSS	Reserved	Reserved	AG
AH	P1V5	IMI_D_TXN2	IMI_D_RXP2	VSS	IMI_D_TXN3	IMI_D_RXP3	P1V5	IMI_D_RXN1	IMI_D_RXP1	VSS	EXP_HPINT/EXP1 _WIDTH1	IMI_HPINT	P1V5	ΑH
AJ	IMI D RXN4	IMI D TXP2	VSS	IMI D RXN5	IMI D TXP3	VSS	IMI_D_RXN1 5 IMI D RXP1	IMI_D_RXP1	VSS IMI D RXN1	V3REF1	Reserved	VSS	EXP_D_RXP 0	AJ
AK	IMI_D_RXP4	VSS	IMI_D_TXN4	IMI_D_RXP5	P1V5	IMI_D_TXN5	IMI_D_RXP1 5	VSS	6	Reserved	P1V5	EXP1_SPEC 10A	EXP_D_RXN 0	AK
AL	VSS	IMI D RXN6	IMI D TXP4	VSS	IMI D RXN7	IMI D TXP5		IMI_D_RXN1	IMI_D_RXP1 6	VSS	Reserved	Reserved	VSS	AL
AM	IMI_D_TXN6	IMI_D_RXP6	P1V5	IMI_D_TXN7	IMI_D_RXP7	VSS	N0	IMI_D_RXP1 7	P1V5	Reserved	Reserved	VSS	EXP_D_RXP 1	ΑN
AN	IMI_D_TXP6	VSS	IMI_D_RXN8	IMI_D_TXP7	VSS	IMI_D_RXN9	IMI_D_LINK P0	VSS	IMI_D_LINK N1	Reserved	VSS	2	EXP_D_RXN 1	ΑN
AP	P1V5	IMI D TXN8	IMI D RXP8	VSS	IMI D TXN9	IMI D RXP9	P1V5	N2	IMI_D_LINK P1	VSS	Reserved	EXP_D_TXN 2	P1V5	AP
AR	IMI_D_ICOM PI	IMI_D_TXP8	VSS	IMI_D_ICOM PO	IMI_D_TXP9	VSS	IMI_D_RST#	IMI_D_LINK P2	VSS	Reserved	Reserved	VSS	Reserved	AR
AT	VSS	HI11	HIO	HI3	P1V5	HI10	HI5	VSS	HIRCOMP	Reserved	P1V5	EXP_D_TXP 3	EXP_D_TXN 3	AT
AU		VSS	HI1	HI2	HI8	HI9	VSS	HI7	HIVSWING	VSS	Reserved	Reserved	VSS	AL
AV			VSS	HI_STBS	HI_STBF	VSS	HI4	HI6	P1V5	HIVREF	Reserved	VSS	EXP_D_RXP 3	A۷
	1	2	3	4	5	6	7	8	9	10	11	12	13	

Figure 7-3. NB Ballout with Signal Names (Top View - Center Region)

.	14	15	16	17	18	19	20	21	22	23	24	25	Ī
	H_B_D11#	H_B_D9#	VSS	H_B_D8#	H_B_D4#	VSS	H_A_D46#	H_A_D45#	VSS	H_A_D41#	H_A_D39#	VSS	
	H_B_DSTBN 0#	VTT	H_B_D6#	H_B_D0#	VSS	H_B_DEP1#	H_A_DEP4#	VTT	H_A_D43#	H_A_DBI2#	vss	H_A_D37#	
	VSS	H_B_D5#	H_B_D3#	VSS	H_B_D1#	H_B_DEP0#	VSS	H_A_D44#	H_A_D42#	VSS	H_A_DSTBP 2#	H_A_DSTBN 2#	
	H_B_D13#	H_B_D2#	VSS	H_B_D7#	H_B_DBI0#	VTT	H_A_DEP5#	H_A_D47#	VSS	H_A_D40#	H_A_D38#	VTT	
	H_B_D26#	VSS	H_B_D22#	H_B_D21#	VSS	H_B_D17#	H_A_DEP7#	VSS	H_A_D59#	H_A_D57#	VSS	H_A_D62#	
	VSS	H_B_D27#	H_B_D23#	VTT	H_B_D18#	H_B_D16#	VSS	H_A_D60#	H_A_D58#	VTT	H_A_D61#	H_A_D54#	
	H_B_D29#	H_B_DBI1#	VSS	H_B_D20#	H_B_D19#	VSS	H_A_DEP6#	H_A_D63#	VSS	H_A_D56#	H_A_DBI3#	VSS	
	H_B_DP1#	VTT	H_B_DP0#	H_B_VREF2	VSS	Reserved	Reserved	VTT	H_A_VREF1	H_A_DP0#	vss	H_A_DP1#	
	VSS	H_B_DP2#	H_B_DP3#	VSS	TESTLO4	P1V5	VSS	HCLKINN	HCLKINP	VSS	H_A_DP2#	H_A_BPM5#	
	EXP1_WIDT H0	H_B_ID3#	VSS	H_VSSA	H_VCCA	VTT	VSSA	VCCA	VSS	H_A_DP3#	H_A_BPM4#	VTT	
	H_B_BREQ1 #	VSS	H_SLWCRE S	H_CRES	VSS	Reserved	TESTLO3	VSS	TESTHI1	TESTLO2	VSS	H_A_AP1#	
	VSS	H_B_BPM4#	H_ODTCRE S	VTT	TESTLO1	Reserved	VSS	H_A_PRSNT #	H_B_PRSNT #	VTT	TESTLO5	H_A_BREQ1 #	
	H_B_RST#	H_B_BPM5#	VSS	VSS	P1V5	VSS	P1V5	VSS	P1V5	VSS	H_A_OOD#	VSS	
	VSS	P1V5											
	P1V5	VSS											
	IMI_C_CLKP	P1V5	VSS	P1V5									
	IMI_C_CLKN	VSS	P1V5	IMI_A_CLKP									
	VSS	P1V5	VSS	IMI_A_VCCA									
	IMI_C_VSSA	vss	P1V5	IMI_A_VSSA	,								
	IMI_C_VCCA	P1V5	VSS	IMI_A_VSSB G									
١	IMI_D_CLKP	VSS	P1V5	IMI_A_VCCB G	Å								
3	IMI_D_CLKN	P1V5	VSS	IMI_B_VCCA	1								
;	IMI_D_VSSA	vss	P1V5	IMI_B_VSSA	A								
)	IMI_D_VCCA	P1V5	VSS	IMI_B_CLKN	A								
:	Reserved	vss	P1V5	VSS	P1V5	vss	P1V5	VSS	P1V5	vss	EXP0_WIDT H0	IMI_B_CLKP	A
	Reserved	Reserved	CLK66	HI_VCCA	_	EXP_VSSBG	EXP_CLKP	EXP_CLKN	EXP_VCCA	IMI_B_VSSB G	IMI_B_VCC BG	SMBCLK	Å
;	VSS	EXP_C0_TX P0	Reserved	VSS	EXP_C1_RX N3	EXP_VCCB G	VSS	EXP_B1_RX N3	EXP_VSSA	VSS	P0	GP_SMBDA TA	F
١	EXP_D_TXP 0	EXP_C0_TX N0	VSS	P0	EXP_C1_RX P3	P1V5	P0	EXP_B1_RX P3	VSS	P0	EXP_A0_TX N0	P1V5	A
	EXP_D_TXN 0	VSS	P1	EXP_C0_RX N0	VSS	EXP_B0_RX P0	EXP_B0_TX N0	VSS	N3	EXP_A0_RX N0	VSS	EXP_A0_TX P1	,
١	VSS	P1	EXP_C0_TX N1	P1V5	N3	EXP_B0_RX N0	VSS	P1	EXP_B1_TX P3	P1V5	P1	EXP_A0_TX N1	A
	1	EXP_C0_RX N1	VSS	N2	EXP_C1_TX P3	VSS	EXP_B0_RX P1	EXP_B0_TX N1	VSS	N2	EXP_A0_RX N1	VSS	Å
1	EXP_D_TXN 1	P1V5	P2	EXP_C1_RX P2	VSS	P2	EXP_B0_RX N1	P1V5	N2	EXP_B1_RX P2	VSS	EXP_A0_TX P2	F
1	VSS	P2	EXP_C0_TX N2	VSS	N2	EXP_B0_TX N2	VSS	N1	EXP_B1_TX P2	VSS	P2	EXP_A0_TX N2	A
,	2	EXP_C0_RX N2	VSS	N1	EXP_C1_TX P2	P1V5	P2	EXP_B1_RX P1	VSS	N1	EXP_A0_RX N2	P1V5	A
2	EXP_D_RXN 2	VSS	I	EXP_C1_TX P1	VSS	N1	EXP_B0_RX N2	VSS	EXP_RCOM P	EXP_B1_TX P1	VSS	ITP_TRST#	A
•	VSS	P3	EXP_C0_RX N3	P1V5	Reserved	EXP_C1_RX P1	VSS	P0	EXP_B1_TX N0	P1V5	EXP_A0_RX P3	EXP_A0_RX N3	Å
1	EXP_C0_TX P3	EXP_C0_TX N3	VSS	P0	EXP_C1_RX N0	VSS	P3	EXP_B0_RX N3	VSS	P3	EXP_A0_TX N3	VSS	,
,	EXP_D_RXN 3	P1V5	EXP_C1_TX P0	EXP_C1_TX N0	VSS	EXP_B0_TX P3	EXP_B0_TX N3	P1V5	EXP_B1_RX P0	EXP_B1_RX N0	VSS	EXP_A1_TX P0	A

Figure 7-4. NB Ballout with Signal Names (Top View - Right Region)

٢	26	27	28	29	30	31	32	33	34	35	36	37	38
ŀ	H_A_D32#	H_A_D15#	VSS	H_A_D11#	H_A_D10#	VSS	H_A_D6#	H_A_D0#	VSS	H_A_DEP1#	VSS		1
ŀ	H_A_D33#	VTT	0#	H_A_DSTBN 0#	VSS	H_A_D5#	H_A_D3#	VTT	H_A_D1#	H_A_DEP0#	H_A_D26#	VSS	
ŀ	VSS	H_A_D36#	H A D12#	VSS	H_A_D13#	H_A_D2#	VSS	H_A_D7#	H A DBI0#	VSS	H A DBI1#	H A D23#	VSS
L	H_A_D35#	H_A_D34#	VSS	H_A_D14#	H_A_D9#	VTT	H_A_D8#	H_A_D4#	VSS	Reserved	H_A_D27#	H_A_D22#	H_A_D21#
L	H A D55#	VSS	H A D51#	H A D52#	VSS	H A DEP3#	H A D31#	VSS	H A D28#	H A D25#	VSS	H A D20#	H A D19#
	VSS	H_A_DSTBP 3#	H_A_DSTBN 3#	VTT	H A D50#	H A DEP2#	VSS	H A D24#	H A D30#	VTT	H A D18#	H A D16#	VSS
L	H_A_D53#	H_A_D48#	VSS	H_A_D49#	Reserved	VSS	H_A_DSTBP 1#	H_A_DSTBN 1#	VSS	H A D29#	H A D17#	VSS	H A LOCK#
Ī	Reserved	VTT	Reserved	Reserved	vss	H_A_VREF2	Reserved	VTT	H_A_VREF0	H A A14#	VSS	H_A_DRDY#	H A DBSY#
Ī	VSS	H A RSP#	H A A38#	VSS	H A A31#		VSS	H A A10#	H_A_A13#	VSS	H_A_TRDY#		VSS
Ī	H_A_MCER R#	H A RST#	VSS	H A A35#	H A A27#	VTT	H A A12#	H A A15#	VSS	H A A16#	H_A_BREQ0 #		H A BNR#
İ	H_A_AP0#	VSS	H_A_A32#	H_A_A26#		H_A_A34#	H_A_ADSTB 0#		H_A_A11#	H_A_A36#	vss	H_A_RS2#	
ŀ	VSS	H A BINIT#			VSS H A A21#	H_A_A34#		VSS H_A_A8#	H_A_A11#		H_A_HIT#	H_A_RS2#	
f	H A HITM#			VTT			VSS			VTT	H_A_DEFER		VSS
ŀ		H_A_ID3#	VSS	H_A_A22#	H_A_A29#	VSS	H_A_REQ0#	H_A_A5#	VSS	H_A_A6#	#	VSS	H_A_BPRI#
ŀ	Reserved	VTT	H_A_A25#	H_A_A23#	VSS H_A_ADSTB		H_A_REQ3#	VTT	H_A_A4#	H_A_A7#	VSS	H_A_ID0#	H_A_ID2#
ŀ	VSS	H_A_IDS#	H_A_A17#	VSS	1#	H_A_A24#	VSS		H_A_REQ2#	VSS	H_A_ID4#	H_A_ID1#	VSS
ł	H_A_ID6#	H_A_A39#	VSS IMI_A_LINK	H_A_A19#	H_A_A18#	VTT IMI_A_LINK	H_A_A37#	H_A_A3#	VSS	H_A_REQ4# IMI_A_ICOM		VTT	H_A_ID7# IMI_A_ICON
ľ	MI_A_CLKN	VSS IMI A LINK	P2 IMI A LINK	Reserved	VSS IMI_A_RXP1	P1 IMI A LINK	IMI_A_RST#	VSS	IMI_A_TXP7	PI	VSS	IMI_A_TXP6	PO
ŀ	VSS	P0 IMI_A_LINK	N2	P1V5 IMI A RXP1	7	N1	VSS IMI_A_RXP1	IMI A RXP7	IMI A TXN7	P1V5	IMI A RXP6	IMI A TXN6	VSS
ŀ	Reserved	N0	VSS	6 IMI_A_RXN1	7	VSS	5 IMI_A_RXN1	IMI_A_RXN7	VSS	IMI_A_TXP5	IMI_A_RXN6	VSS	IMI_A_TXP4
ŀ	Reserved	P1V5	IMI_A_RXN1	6	VSS IMI_A_RXP1	3	5	P1V5	IMI_A_RXP5	IMI_A_TXN5	VSS	IMI_A_RXP4	IMI_A_TXN4
ļ	VSS	2	4	VSS IMI_A_RXP1	1	3	VSS	IMI_A_TXP3	IMI_A_RXN5	VSS	IMI_A_TXP2	IMI_A_RXN4	VSS
ŀ	Reserved	IMI_A_RXN1 2	VSS	IMI_A_RXP1	1 1	P1V5	IMI_A_TXP8	IMI_A_TXN3	VSS	IMI_A_RXP3	IMI_A_TXN2	P1V5	IMI_A_RXP2
ŀ	Reserved	VSS	IMI_A_TXP9	0	VSS	IMI_A_RXP8	IMI_A_TXN8	VSS	IMI_A_TXP1	IMI_A_RXN3	VSS	IMI_A_TXP0	IMI_A_RXN2
ļ	VSS	IMI_A_RXP9	IMI_A_TXN9	P1V5	IMI_B_LINK P2	IMI_A_RXN8	VSS	IMI_A_RXP1	IMI_A_TXN1	P1V5	IMI_A_RXP0	IMI_A_TXN0	VSS
L	GP_SMBCL K	IMI_A_RXN9	VSS	IMI_B_RST#	IMI_B_LINK N2	VSS	IMI_B_LINK P1	IMI_A_RXN1	VSS	IMI_B_TXP9	IMI_A_RXN0	VSS	IMI_B_TXP8
L	V3REF0	ITP_TCK	ITP_TDI	IMI_A_FRA ME	VSS	IMI_B_LINK P0	IMI_B_LINK N1	P1V5	IMI_B_RXP9	IMI_B_TXN9	VSS	IMI_B_RXP8	IMI_B_TXN8
L	VSS	EXP_A1_RX N3	PWRGOOD	VSS	IMI_B_RXP1 7	IMI_B_LINK N0	VSS	IMI_B_TXP7	IMI_B_RXN9	VSS	IMI_B_TXP6	IMI_B_RXN8	VSS
	EXP_A1_TX N3	EXP_A1_RX P3	ITP TMS	RSTIN#	IMI_B_RXN1 7	P1V5	IMI_B_RXP1 6	IMI B TXN7	VSS	IMI B RXP7	IMI B TXN6	P1V5	IMI B RXP6
	EXP_A1_TX P3	VSS	Reserved	Reserved	VSS	5	IMI_B_RXN1 6	VSS	IMI_B_TXP5	IMI_B_RXN7	VSS	IMI_B_TXP4	IMI_B_RXN6
	VSS	EXP_A1_RX N2	ERR0#	P1V5	IMI_B_RXP1 4	IMI_B_RXN1 5	VSS	IMI_B_RXP5	IMI_B_TXN5	P1V5	IMI_B_RXP4	IMI_B_TXN4	VSS
ſ	EXP_A1_TX N2	EXP_A1_RX P2	VSS	ERR1#	IMI_B_RXN1 4	VSS		IMI B RXN5	VSS	IMI B TXP3	IMI B RXN4	VSS	IMI B TXP2
ſ	EXP_A1_TX P2	P1V5	EXP0_SPEC 10A		VSS	IMI_B_RXP1 2	IMI_B_RXN1 3			IMI_B_TXN3		IMI_B_RXP2	
ſ	VSS		XDP_ODTC RES	VSS	IMI_B_RXP1 1	IMI_B_RXN1 2	VSS	IMI_B_TXP1	IMI_B_RXN3	VSS	IMI_B_TXP0	IMI_B_RXN2	VSS
Ī		EXP_A1_RX P1		XDP_SLWC RES	IMI_B_RXN1 1	P1V5	IMI_B_RXP1 0	IMI_B_TXN1	VSS		IMI B TXN0		IMI_B_RXP0
İ	EXP_A1_TX P1	VSS	SMBDATA	XDP CRES	VSS		IMI_B_RXN1 0	VSS	IMI_B_ICOM	IMI B RXN1		IMI_B_ICOM PO	IMI_B_RXNO
ľ	VSS	EXP0_WIDTH1	XDP D15#	P1V5	XDP_D13#	XDP_D12#	VSS	XDP_D10#	XDP_D9#	VSS		XDP_DSTBN	
t		EXP_A1_RX N0	ITP_TDO	XDP_D14#	XDP_D5#	P1V5	XDP_D11#	XDP_D2#	P1V5	XDP_D8#	XDP RDY#	VSS	*00
ŀ	EXP_A1_TX N0	P1V5	XDP D7#	XDP_D14#	VSS	XDP D4#	XDP_D11#	VSS	XDP D1#		VSS	voo	l
L						_			_	XDP_D0#		27	22
	26	27	28	29	30	31	32	33	34	35	36	37	38

Table 7-1. NB Pin List (by Ball Number) (Sheet 1 of 13)

Ball No.	Signal
A3	VSS
A4	VSS
A5	H_B_D44#
A6	H_B_D43#
A7	VSS
A8	H_B_D35#
A9	H_B_D39#
A10	VSS
A11	H_B_D32#
A12	H_B_D15#
A13	VSS
A14	H_B_D11#
A15	H_B_D9#
A16	VSS
A17	H_B_D8#
A18	H_B_D4#
A19	VSS
A20	H_A_D46#
A21	H_A_D45#
A22	VSS
A23	H_A_D41#
A24	H_A_D39#
A25	VSS
A26	H_A_D32#
A27	H_A_D15#
A28	VSS
A29	H_A_D11#
A30	H_A_D10#
A31	VSS
A32	H_A_D6#
A33	H_A_D0#
A34	VSS
A35	H_A_DEP1#
A36	VSS
B2	VSS
В3	H_B_D62#
B4	H_B_DEP4#
B5	H_B_D47#

Ball No.	Signal
B6	VSS
B7	H_B_DBI2#
B8	H_B_D38#
B9	VTT
B10	H_B_D37#
B11	H_B_D34#
B12	VSS
B13	H_B_DSTBP0#
B14	H_B_DSTBN0#
B15	VTT
B16	H_B_D6#
B17	H_B_D0#
B18	VSS
B19	H_B_DEP1#
B20	H_A_DEP4#
B21	VTT
B22	H_A_D43#
B23	H_A_DBI2#
B24	VSS
B25	H_A_D37#
B26	H_A_D33#
B27	VTT
B28	H_A_DSTBP0#
B29	H_A_DSTBN0#
B30	VSS
B31	H_A_D5#
B32	H_A_D3#
B33	VTT
B34	H_A_D1#
B35	H_A_DEP0#
B36	H_A_D26#
B37	VSS
C1	VSS
C2	H_B_D56#
C3	H_B_DBI3#
C4	H_B_DEP5#
C5	VSS
C6	H_B_D42#

Ball No.	Signal
C7	H_B_D40#
C8	VSS
C9	H_B_DSTBP2#
C10	H_B_DSTBN2#
C11	VSS
C12	H_B_D14#
C13	H_B_D10#
C14	VSS
C15	H_B_D5#
C16	H_B_D3#
C17	VSS
C18	H_B_D1#
C19	H_B_DEP0#
C20	VSS
C21	H_A_D44#
C22	H_A_D42#
C23	VSS
C24	H_A_DSTBP2#
C25	H_A_DSTBN2#
C26	VSS
C27	H_A_D36#
C28	H_A_D12#
C29	VSS
C30	H_A_D13#
C31	H_A_D2#
C32	VSS
C33	H_A_D7#
C34	H_A_DBI0#
C35	VSS
C36	H_A_DBI1#
C37	H_A_D23#
C38	VSS
D1	H_B_D59#
D2	H_B_D57#
D3	H_B_D61#
D4	VSS
D5	H_B_D46#
D6	H_B_D45#

Table 7-1. NB Pin List (by Ball Number) (Sheet 2 of 13)

Ball No.	Signal
D7	VTT
D8	H_B_D41#
D9	H_B_D33#
D10	VSS
D11	H_B_D36#
D12	H_B_D12#
D13	VTT
D14	H_B_D13#
D15	H_B_D2#
D16	VSS
D17	H_B_D7#
D18	H_B_DBI0#
D19	VTT
D20	H_A_DEP5#
D21	H_A_D47#
D22	VSS
D23	H_A_D40#
D24	H_A_D38#
D25	VTT
D26	H_A_D35#
D27	H_A_D34#
D28	VSS
D29	H_A_D14#
D30	H_A_D9#
D31	VTT
D32	H_A_D8#
D33	H_A_D4#
D34	VSS
D35	Reserved
D36	H_A_D27#
D37	H_A_D22#
D38	H_A_D21#
E1	H_B_D63#
E2	H_B_D58#
E3	VSS
E4	H_B_D55#
E5	H_B_D53#
E6	VSS

Ball No.	Signal
E7	H_B_D52#
E8	H_B_D50#
E9	VSS
E10	H_B_DSTBP1#
E11	H_B_DSTBN1#
E12	VSS
E13	H_B_D25#
E14	H_B_D26#
E15	VSS
E16	H_B_D22#
E17	H_B_D21#
E18	VSS
E19	H_B_D17#
E20	H_A_DEP7#
E21	VSS
E22	H_A_D59#
E23	H_A_D57#
E24	VSS
E25	H_A_D62#
E26	H_A_D55#
E27	VSS
E28	H_A_D51#
E29	H_A_D52#
E30	VSS
E31	H_A_DEP3#
E32	H_A_D31#
E33	VSS
E34	H_A_D28#
E35	H_A_D25#
E36	VSS
E37	H_A_D20#
E38	H_A_D19#
F1	H_B_DEP6#
F2	VSS
F3	H_B_D60#
F4	H_B_D54#
F5	VTT
F6	H_B_D51#

Ball No.	Signal
F7	H_B_D48#
F8	VSS
F9	H_B_DEP3#
F10	H_B_D31#
F11	VTT
F12	H_B_D30#
F13	H_B_D28#
F14	VSS
F15	H_B_D27#
F16	H_B_D23#
F17	VTT
F18	H_B_D18#
F19	H_B_D16#
F20	VSS
F21	H_A_D60#
F22	H_A_D58#
F23	VTT
F24	H_A_D61#
F25	H_A_D54#
F26	VSS
F27	H_A_DSTBP3#
F28	H_A_DSTBN3#
F29	VTT
F30	H_A_D50#
F31	H_A_DEP2#
F32	VSS
F33	H_A_D24#
F34	H_A_D30#
F35	VTT
F36	H_A_D18#
F37	H_A_D16#
F38	VSS
G1	VSS
G2	H_B_ID7#
G3	H_B_DEP7#
G4	VSS
G5	H_B_DSTBP3#
G6	H_B_DSTBN3#

Table 7-1. NB Pin List (by Ball Number) (Sheet 3 of 13)

Ball No.	Signal
G7	VSS
G8	H_B_D49#
G9	RESERVED
G10	VSS
G11	H_B_DEP2#
G12	H_B_D24#
G13	VSS
G14	H_B_D29#
G15	H_B_DBI1#
G16	VSS
G17	H_B_D20#
G18	H_B_D19#
G19	VSS
G20	H_A_DEP6#
G21	H_A_D63#
G22	VSS
G23	H_A_D56#
G24	H_A_DBI3#
G25	VSS
G26	H_A_D53#
G27	H_A_D48#
G28	VSS
G29	H_A_D49#
G30	Reserved
G31	VSS
G32	H_A_DSTBP1#
G33	H_A_DSTBN1#
G34	VSS
G35	H_A_D29#
G36	H_A_D17#
G37	VSS
G38	H_A_LOCK#
H1	H_B_ID4#
H2	H_B_ID5#
НЗ	VTT
H4	H_B_A37#
H5	H_B_VREF0
H6	VSS

Ball No.	Signal
H7	H_B_VREF1
H8	Reserved
H9	VTT
H10	Reserved
H11	Reserved
H12	VSS
H13	H_B_ID6#
H14	H_B_DP1#
H15	VTT
H16	H_B_DP0#
H17	H_B_VREF2
H18	VSS
H19	Reserved
H20	Reserved
H21	VTT
H22	H_A_VREF1
H23	H_A_DP0#
H24	VSS
H25	H_A_DP1#
H26	Reserved
H27	VTT
H28	Reserved
H29	Reserved
H30	VSS
H31	H_A_VREF2
H32	Reserved
H33	VTT
H34	H_A_VREF0
H35	H_A_A14#
H36	VSS
H37	H_A_DRDY#
H38	H_A_DBSY#
J1	H_B_ID1#
J2	VSS
J3	H_B_ID0#
J4	H_B_REQ4#
J5	VSS
J6	H_B_A3#

Ball No.	Signal
J7	H_B_REQ1#
J8	VSS
J9	H_B_A18#
J10	H_B_A19#
J11	VSS
J12	H_B_IDS#
J13	H_B_OOD#
J14	VSS
J15	H_B_DP2#
J16	H_B_DP3#
J17	VSS
J18	TESTLO4
J19	P1V5
J20	VSS
J21	HCLKINN
J22	HCLKINP
J23	VSS
J24	H_A_DP2#
J25	H_A_BPM5#
J26	VSS
J27	H_A_RSP#
J28	H_A_A38#
J29	VSS
J30	H_A_A31#
J31	H_A_A33#
J32	VSS
J33	H_A_A10#
J34	H_A_A13#
J35	VSS
J36	H_A_TRDY#
J37	H_A_ADS#
J38	VSS
K1	VTT
K2	H_B_BPRI#
K3	H_B_ID2#
K4	VSS
K5	H_B_REQ2#
K6	H_B_REQ3#

Table 7-1. NB Pin List (by Ball Number) (Sheet 4 of 13)

Ball No.	Signal
K7	VTT
K8	H_B_A24#
K9	H_B_ADSTB1#
K10	VSS
K11	H_B_A39#
K12	Reserved
K13	VTT
K14	EXP1_WIDTH0
K15	H_B_ID3#
K16	VSS
K17	H_VSSA
K18	H_VCCA
K19	VTT
K20	VSSA
K21	VCCA
K22	VSS
K23	H_A_DP3#
K24	H_A_BPM4#
K25	VTT
K26	H_A_MCERR#
K27	H_A_RST#
K28	VSS
K29	H_A_A35#
K30	H_A_A27#
K31	VTT
K32	H_A_A12#
K33	H_A_A15#
K34	VSS
K35	H_A_A16#
K36	H_A_BREQ0#
K37	VTT
K38	H_A_BNR#
L1	H_B_HIT#
L2	H_B_DEFER#
L3	VSS
L4	H_B_A7#
L5	H_B_A4#
L6	VSS

umber) ((Sheet 4 of 13)
Ball No.	Signal
L7	H_B_REQ0#
L8	H_B_A28#
L9	VSS
L10	H_B_A25#
L11	H_B_A17#
L12	VSS
L13	H_B_HITM#
L14	H_B_BREQ1#
L15	VSS
L16	H_SLWCRES
L17	H_CRES
L18	VSS
L19	Reserved
L20	TESTLO3
L21	VSS
L22	TESTHI1
L23	TESTLO2
L24	VSS
L25	H_A_AP1#
L26	H_A_AP0#
L27	VSS
L28	H_A_A32#
L29	H_A_A26#
L30	VSS
L31	H_A_A34#
L32	H_A_ADSTB0#
L33	VSS
L34	H_A_A11#
L35	H_A_A36#
L36	VSS
L37	H_A_RS2#
L38	H_A_RS0#
M1	H_B_RS1#
M2	VSS
M3	H_B_RS2#
M4	H_B_A6#
M5	VTT
M6	H_B_A5#
	•

Ball No.	Signal
M7	H_B_A8#
M8	VSS
M9	H_B_A29#
M10	H_B_A23#
M11	VTT
M12	H_B_BINIT#
M13	H_B_AP0#
M14	VSS
M15	H_B_BPM4#
M16	H_ODTCRES
M17	VTT
M18	TESTLO1
M19	Reserved
M20	VSS
M21	H_A_PRSNT#
M22	H_B_PRSNT#
M23	VTT
M24	TESTLO5
M25	H_A_BREQ1#
M26	VSS
M27	H_A_BINIT#
M28	H_A_A20#
M29	VTT
M30	H_A_A21#
M31	H_A_A30#
M32	VSS
M33	H_A_A8#
M34	H_A_A9#
M35	VTT
M36	H_A_HIT#
M37	H_A_RS1#
M38	VSS
N1	VSS
N2	H_B_BNR#
N3	H_B_RS0#
N4	VSS
N5	H_B_A9#
N6	H_B_ADSTB0#

NB Pin List (by Ball Number) (Sheet 5 of 13) **Table 7-1.**

Ball No.	Signal
N7	VSS
N8	H_B_A21#
N9	H_B_A30#
N10	VSS
N11	H_B_A22#
N12	H_B_AP1#
N13	VSS
N14	H_B_RST#
N15	H_B_BPM5#
N16	VSS
N17	VSS
N18	P1V5
N19	VSS
N20	P1V5
N21	VSS
N22	P1V5
N23	VSS
N24	H_A_OOD#
N25	VSS
N26	H_A_HITM#
N27	H_A_ID3#
N28	VSS
N29	H_A_A22#
N30	H_A_A29#
N31	VSS
N32	H_A_REQ0#
N33	H_A_A5#
N34	VSS
N35	H_A_A6#
N36	H_A_DEFER#
N37	VSS
N38	H_A_BPRI#
P1	H_B_TRDY#
P2	H_B_BREQ0#
P3	VTT
P4	H_B_A36#
P5	H_B_A11#
P6	VSS

Ball No.	Signal
P7	H_B_A15#
P8	H_B_A34#
P9	VTT
P10	H_B_A20#
P11	H_B_A26#
P12	VSS
P13	H_B_MCERR#
P14	VSS
P15	P1V5
P16	VSS
P17	P1V5
P18	VSS
P19	P1V5
P20	VSS
P21	P1V5
P22	VSS
P23	P1V5
P24	VSS
P25	P1V5
P26	Reserved
P27	VTT
P28	H_A_A25#
P29	H_A_A23#
P30	VSS
P31	H_A_A28#
P32	H_A_REQ3#
P33	VTT
P34	H_A_A4#
P35	H_A_A7#
P36	VSS
P37	H_A_ID0#
P38	H_A_ID2#
R1	H_B_ADS#
R2	VSS
R3	H_B_DRDY#
R4	H_B_A16#
R5	VSS
R6	H_B_A12#

Ball No.	Signal
R7	H_B_A13#
R8	VSS
R9	H_B_A27#
R10	H_B_A35#
R11	VSS
R12	H_B_RSP#
R13	Reserved
R14	P1V5
R15	VSS
R16	P1V5
R17	VSS
R18	P1V5
R19	VSS
R20	P1V5
R21	VSS
R22	P1V5
R23	VSS
R24	P1V5
R25	VSS
R26	VSS
R27	H_A_IDS#
R28	H_A_A17#
R29	VSS
R30	H_A_ADSTB1#
R31	H_A_A24#
R32	VSS
R33	H_A_REQ1#
R34	H_A_REQ2#
R35	VSS
R36	H_A_ID4#
R37	H_A_ID1#
R38	VSS
T1	VTT
T2	H_B_LOCK#
T3	H_B_DBSY#
T4	VSS
T5	H_B_A10#
T6	H_B_A14#

Table 7-1. NB Pin List (by Ball Number) (Sheet 6 of 13)

Ball No.	Signal
T7	VTT
T8	H_B_A33#
Т9	H_B_A31#
T10	VSS
T11	H_B_A32#
T12	H_B_A38#
T13	VTT
T14	IMI_C_CLKP
T15	P1V5
T16	VSS
T17	P1V5
T18	VSS
T19	P1V5
T20	VSS
T21	P1V5
T22	VSS
T23	P1V5
T24	VSS
T25	P1V5
T26	H_A_ID6#
T27	H_A_A39#
T28	VSS
T29	H_A_A19#
T30	H_A_A18#
T31	VTT
T32	H_A_A37#
T33	H_A_A3#
T34	VSS
T35	H_A_REQ4#
T36	H_A_ID5#
T37	VTT
T38	H_A_ID7#
U1	IMI_C_RXN0
U2	IMI_C_ICOMPI
U3	VSS
U4	IMI_C_RXN1
U5	IMI_C_ICOMPO
U6	VSS

Ball No.	Signal
U7	IMI_C_RXN8
U8	Reserved
U9	VSS
U10	IMI_C_RXN9
U11	IMI_C_FRAME
U12	VSS
U13	IMI_C_VCCBG
U14	IMI_C_CLKN
U15	VSS
U16	P1V5
U17	VSS
U18	P1V5
U19	VSS
U20	P1V5
U21	VSS
U22	P1V5
U23	VSS
U24	P1V5
U25	IMI_A_CLKP
U26	IMI_A_CLKN
U27	VSS
U28	IMI_A_LINKP2
U29	Reserved
U30	VSS
U31	IMI_A_LINKP1
U32	IMI_A_RST#
U33	VSS
U34	IMI_A_TXP7
U35	IMI_A_ICOMPI
U36	VSS
U37	IMI_A_TXP6
U38	IMI_A_ICOMPO
V1	IMI_C_RXP0
V2	VSS
V3	IMI_C_TXN0
V4	IMI_C_RXP1
V5	P1V5
V6	IMI_C_TXN1

Ball No.	Signal
V7	IMI_C_RXP8
V8	VSS
V9	IMI_C_TXN8
V10	IMI_C_RXP9
V11	P1V5
V12	IMI_C_TXN9
V13	IMI_C_VSSBG
V14	VSS
V15	P1V5
V16	VSS
V17	P1V5
V18	VSS
V19	P1V5
V20	VSS
V21	P1V5
V22	VSS
V23	P1V5
V24	VSS
V25	IMI_A_VCCA
V26	VSS
V27	IMI_A_LINKP0
V28	IMI_A_LINKN2
V29	P1V5
V30	IMI_A_RXP17
V31	IMI_A_LINKN1
V32	VSS
V33	IMI_A_RXP7
V34	IMI_A_TXN7
V35	P1V5
V36	IMI_A_RXP6
V37	IMI_A_TXN6
V38	VSS
W1	VSS
W2	IMI_C_RXN2
W3	IMI_C_TXP0
W4	VSS
W5	IMI_C_RXN3
W6	IMI_C_TXP1

Table 7-1. NB Pin List (by Ball Number) (Sheet 7 of 13)

Ball No.	Signal
W7	VSS
W8	IMI_C_RXN10
W9	IMI_C_TXP8
W10	VSS
W11	IMI_C_RXN11
W12	IMI_C_TXP9
W13	VSS
W14	IMI_C_VSSA
W15	VSS
W16	P1V5
W17	VSS
W18	P1V5
W19	VSS
W20	P1V5
W21	VSS
W22	P1V5
W23	VSS
W24	P1V5
W25	IMI_A_VSSA
W26	Reserved
W27	IMI_A_LINKN0
W28	VSS
W29	IMI_A_RXP16
W30	IMI_A_RXN17
W31	VSS
W32	IMI_A_RXP15
W33	IMI_A_RXN7
W34	VSS
W35	IMI_A_TXP5
W36	IMI_A_RXN6
W37	VSS
W38	IMI_A_TXP4
Y1	IMI_C_TXN2
Y2	IMI_C_RXP2
Y3	P1V5
Y4	IMI_C_TXN3
Y5	IMI_C_RXP3
Y6	VSS

Ball No.	Signal
Y7	IMI_C_RXN12
Y8	IMI_C_RXP10
Y9	P1V5
Y10	IMI_C_RXN13
Y11	IMI_C_RXP11
Y12	VSS
Y13	Reserved
Y14	IMI_C_VCCA
Y15	P1V5
Y16	VSS
Y17	P1V5
Y18	VSS
Y19	P1V5
Y20	VSS
Y21	P1V5
Y22	VSS
Y23	P1V5
Y24	VSS
Y25	IMI_A_VSSBG
Y26	Reserved
Y27	P1V5
Y28	IMI_A_RXP14
Y29	IMI_A_RXN16
Y30	VSS
Y31	IMI_A_RXP13
Y32	IMI_A_RXN15
Y33	P1V5
Y34	IMI_A_RXP5
Y35	IMI_A_TXN5
Y36	VSS
Y37	IMI_A_RXP4
Y38	IMI_A_TXN4
AA1	IMI_C_TXP2
AA2	VSS
AA3	IMI_C_RXN4
AA4	IMI_C_TXP3
AA5	VSS
AA6	IMI_C_RXN5

Ball No.	Signal
AA7	IMI_C_RXP12
AA8	VSS
AA9	IMI_C_RXN14
AA10	IMI_C_RXP13
AA11	VSS
AA12	IMI_C_RXN15
AA13	Reserved
AA14	IMI_D_CLKP
AA15	VSS
AA16	P1V5
AA17	VSS
AA18	P1V5
AA19	VSS
AA20	P1V5
AA21	VSS
AA22	P1V5
AA23	vss
AA24	P1V5
AA25	IMI_A_VCCBG
AA26	VSS
AA27	IMI_A_RXP12
AA28	IMI_A_RXN14
AA29	VSS
AA30	IMI_A_RXP11
AA31	IMI_A_RXN13
AA32	VSS
AA33	IMI_A_TXP3
AA34	IMI_A_RXN5
AA35	VSS
AA36	IMI_A_TXP2
AA37	IMI_A_RXN4
AA38	VSS
AB1	P1V5
AB2	IMI_C_TXN4
AB3	IMI_C_RXP4
AB4	VSS
AB5	IMI_C_TXN5
AB6	IMI_C_RXP5

Table 7-1. NB Pin List (by Ball Number) (Sheet 8 of 13)

Ball No.	Signal
AB7	P1V5
AB8	IMI_C_RXN16
AB9	IMI_C_RXP14
AB10	VSS
AB11	IMI_C_RXN17
AB12	IMI_C_RXP15
AB13	P1V5
AB14	IMI_D_CLKN
AB15	P1V5
AB16	VSS
AB17	P1V5
AB18	VSS
AB19	P1V5
AB20	VSS
AB21	P1V5
AB22	VSS
AB23	P1V5
AB24	VSS
AB25	IMI_B_VCCA
AB26	Reserved
AB27	IMI_A_RXN12
AB28	VSS
AB29	IMI_A_RXP10
AB30	IMI_A_RXN11
AB31	P1V5
AB32	IMI_A_TXP8
AB33	IMI_A_TXN3
AB34	VSS
AB35	IMI_A_RXP3
AB36	IMI_A_TXN2
AB37	P1V5
AB38	IMI_A_RXP2
AC1	IMI_C_RXN6
AC2	IMI_C_TXP4
AC3	VSS
AC4	IMI_C_RXN7
AC5	IMI_C_TXP5
AC6	VSS

umber) (Sheet 8 of 13)		
Ball No.	Signal	
AC7	IMI_C_LINKN0	
AC8	IMI_C_RXP16	
AC9	VSS	
AC10	IMI_C_LINKN1	
AC11	IMI_C_RXP17	
AC12	VSS	
AC13	IMI_D_VCCBG	
AC14	IMI_D_VSSA	
AC15	VSS	
AC16	P1V5	
AC17	VSS	
AC18	P1V5	
AC19	VSS	
AC20	P1V5	
AC21	VSS	
AC22	P1V5	
AC23	VSS	
AC24	P1V5	
AC25	IMI_B_VSSA	
AC26	Reserved	
AC27	VSS	
AC28	IMI_A_TXP9	
AC29	IMI_A_RXN10	
AC30	VSS	
AC31	IMI_A_RXP8	
AC32	IMI_A_TXN8	
AC33	VSS	
AC34	IMI_A_TXP1	
AC35	IMI_A_RXN3	
AC36	VSS	
AC37	IMI_A_TXP0	
AC38	IMI_A_RXN2	
AD1	IMI_C_RXP6	
AD2	VSS	
AD3	IMI_C_TXN6	
AD4	IMI_C_RXP7	
AD5	P1V5	
AD6	IMI_C_TXN7	

Ball No.	Signal
AD7	IMI_C_LINKP0
AD8	VSS
AD9	IMI_D_RXN10
AD10	IMI_C_LINKP1
AD11	P1V5
AD12	IMI_C_LINKN2
AD13	IMI_D_VSSBG
AD14	IMI_D_VCCA
AD15	P1V5
AD16	VSS
AD17	P1V5
AD18	VSS
AD19	P1V5
AD20	VSS
AD21	P1V5
AD22	VSS
AD23	P1V5
AD24	VSS
AD25	IMI_B_CLKN
AD26	VSS
AD27	IMI_A_RXP9
AD28	IMI_A_TXN9
AD29	P1V5
AD30	IMI_B_LINKP2
AD31	IMI_A_RXN8
AD32	VSS
AD33	IMI_A_RXP1
AD34	IMI_A_TXN1
AD35	P1V5
AD36	IMI_A_RXP0
AD37	IMI_A_TXN0
AD38	VSS
AE1	VSS
AE2	IMI_D_RXN0
AE3	IMI_C_TXP6
AE4	VSS
AE5	IMI_D_RXN1
AE6	IMI_C_TXP7

Table 7-1. NB Pin List (by Ball Number) (Sheet 9 of 13)

Ball No.	Signal
AE7	VSS
AE8	IMI_D_RXN11
AE9	IMI_D_RXP10
AE10	VSS
AE11	IMI_C_RST#
AE12	IMI_C_LINKP2
AE13	VSS
AE14	Reserved
AE15	VSS
AE16	P1V5
AE17	VSS
AE18	P1V5
AE19	VSS
AE20	P1V5
AE21	VSS
AE22	P1V5
AE23	VSS
AE24	EXP0_WIDTH0
AE25	IMI_B_CLKP
AE26	GP_SMBCLK
AE27	IMI_A_RXN9
AE28	VSS
AE29	IMI_B_RST#
AE30	IMI_B_LINKN2
AE31	VSS
AE32	IMI_B_LINKP1
AE33	IMI_A_RXN1
AE34	VSS
AE35	IMI_B_TXP9
AE36	IMI_A_RXN0
AE37	VSS
AE38	IMI_B_TXP8
AF1	IMI_D_TXN0
AF2	IMI_D_RXP0
AF3	P1V5
AF4	IMI_D_TXN1
AF5	IMI_D_RXP1

Ball No.	Signal
AF7	IMI_D_RXN12
AF8	IMI_D_RXP11
AF9	P1V5
AF10	ICHRST#
AF11	IMI_D_FRAME
AF12	VSS
AF13	Reserved
AF14	Reserved
AF15	Reserved
AF16	CLK66
AF17	HI_VCCA
AF18	HI_VSSA
AF19	EXP_VSSBG
AF20	EXP_CLKP
AF21	EXP_CLKN
AF22	EXP_VCCA
AF23	IMI_B_VSSBG
AF24	IMI_B_VCCBG
AF25	SMBCLK
AF26	V3REF0
AF27	ITP_TCK
AF28	ITP_TDI
AF29	IMI_A_FRAME
AF30	VSS
AF31	IMI_B_LINKP0
AF32	IMI_B_LINKN1
AF33	P1V5
AF34	IMI_B_RXP9
AF35	IMI_B_TXN9
AF36	VSS
AF37	IMI_B_RXP8
AF38	IMI_B_TXN8
AG1	IMI_D_TXP0
AG2	VSS
AG3	IMI_D_RXN2
AG4	IMI_D_TXP1
AG5	VSS

Ball No.	Signal
AG7	IMI_D_RXP12
AG8	VSS
AG9	IMI_D_RXN13
AG10	PME_OUT/ EXP1_WIDTH2
AG11	VSS
AG12	Reserved
AG13	Reserved
AG14	VSS
AG15	EXP_C0_TXP0
AG16	Reserved
AG17	VSS
AG18	EXP_C1_RXN3
AG19	EXP_VCCBG
AG20	VSS
AG21	EXP_B1_RXN3
AG22	EXP_VSSA
AG23	VSS
AG24	EXP_A0_TXP0
AG25	GP_SMBDATA
AG26	VSS
AG27	EXP_A1_RXN3
AG28	PWRGOOD
AG29	VSS
AG30	IMI_B_RXP17
AG31	IMI_B_LINKN0
AG32	VSS
AG33	IMI_B_TXP7
AG34	IMI_B_RXN9
AG35	VSS
AG36	IMI_B_TXP6
AG37	IMI_B_RXN8
AG38	VSS
AH1	P1V5
AH2	IMI_D_TXN2
AH3	IMI_D_RXP2
AH4	VSS
AH5	IMI_D_TXN3

Table 7-1. NB Pin List (by Ball Number) (Sheet 10 of 13)

Ball No.	Signal
AF6	VSS
AH7	P1V5
AH8	IMI_D_RXN14
AH9	IMI_D_RXP13
AH10	VSS
AH11	EXP_HPINT/EXP1_WIDTH1
AH12	IMI_HPINT
AH13	P1V5
AH14	EXP_D_TXP0
AH15	EXP_C0_TXN0
AH16	VSS
AH17	EXP_C0_RXP0
AH18	EXP_C1_RXP3
AH19	P1V5
AH20	EXP_B0_TXP0
AH21	EXP_B1_RXP3
AH22	VSS
AH23	EXP_A0_RXP0
AH24	EXP_A0_TXN0
AH25	P1V5
AH26	EXP_A1_TXN3
AH27	EXP_A1_RXP3
AH28	ITP_TMS
AH29	RSTIN#
AH30	IMI_B_RXN17
AH31	P1V5
AH32	IMI_B_RXP16
AH33	IMI_B_TXN7
AH34	VSS
AH35	IMI_B_RXP7
AH36	IMI_B_TXN6
AH37	P1V5
AH38	IMI_B_RXP6
AJ1	IMI_D_RXN4
AJ2	IMI_D_TXP2
AJ3	VSS
AJ4	IMI_D_RXN5
AJ5	IMI_D_TXP3

iumber) (Sneet 10 of 13)
Ball No.	Signal
AG6	IMI_D_RXN3
AJ7	IMI_D_RXN15
AJ8	IMI_D_RXP14
AJ9	VSS
AJ10	V3REF1
AJ11	Reserved
AJ12	VSS
AJ13	EXP_D_RXP0
AJ14	EXP_D_TXN0
AJ15	VSS
AJ16	EXP_C0_TXP1
AJ17	EXP_C0_RXN0
AJ18	VSS
AJ19	EXP_B0_RXP0
AJ20	EXP_B0_TXN0
AJ21	VSS
AJ22	EXP_B1_TXN3
AJ23	EXP_A0_RXN0
AJ24	VSS
AJ25	EXP_A0_TXP1
AJ26	EXP_A1_TXP3
AJ27	VSS
AJ28	Reserved
AJ29	Reserved
AJ30	VSS
AJ31	IMI_B_RXP15
AJ32	IMI_B_RXN16
AJ33	VSS
AJ34	IMI_B_TXP5
AJ35	IMI_B_RXN7
AJ36	VSS
AJ37	IMI_B_TXP4
AJ38	IMI_B_RXN6
AK1	IMI_D_RXP4
AK2	VSS
AK3	IMI_D_TXN4
AK4	IMI_D_RXP5
AK5	P1V5

Ball No.	Signal
AH6	IMI_D_RXP3
AK7	IMI_D_RXP15
AK8	VSS
AK9	IMI_D_RXN16
AK10	Reserved
AK11	P1V5
AK12	EXP1_SPE C10A
AK13	EXP_D_RXN0
AK14	VSS
AK15	EXP_C0_RXP1
AK16	EXP_C0_TXN1
AK17	P1V5
AK18	EXP_C1_TXN3
AK19	EXP_B0_RXN0
AK20	VSS
AK21	EXP_B0_TXP1
AK22	EXP_B1_TXP3
AK23	P1V5
AK24	EXP_A0_RXP1
AK25	EXP_A0_TXN1
AK26	VSS
AK27	EXP_A1_RXN2
AK28	ERR0#
AK29	P1V5
AK30	IMI_B_RXP14
AK31	IMI_B_RXN15
AK32	VSS
AK33	IMI_B_RXP5
AK34	IMI_B_TXN5
AK35	P1V5
AK36	IMI_B_RXP4
AK37	IMI_B_TXN4
AK38	VSS
AL1	VSS
AL2	IMI_D_RXN6
AL3	IMI_D_TXP4
AL4	VSS
AL5	IMI_D_RXN7

Table 7-1. NB Pin List (by Ball Number) (Sheet 11 of 13)

Ball No.	Signal
AJ6	VSS
AL7	VSS
AL8	IMI_D_RXN17
AL9	IMI_D_RXP16
AL10	VSS
AL11	Reserved
AL12	Reserved
AL13	VSS
AL14	EXP_D_TXP1
AL15	EXP_C0_RXN1
AL16	VSS
AL17	EXP_C1_RXN2
AL18	EXP_C1_TXP3
AL19	VSS
AL20	EXP_B0_RXP1
AL21	EXP_B0_TXN1
AL22	VSS
AL23	EXP_B1_RXN2
AL24	EXP_A0_RXN1
AL25	VSS
AL26	EXP_A1_TXN2
AL27	EXP_A1_RXP2
AL28	VSS
AL29	ERR1#
AL30	IMI_B_RXN14
AL31	VSS
AL32	IMI_B_RXP13
AL33	IMI_B_RXN5
AL34	VSS
AL35	IMI_B_TXP3
AL36	IMI_B_RXN4
AL37	VSS
AL38	IMI_B_TXP2
AM1	IMI_D_TXN6
AM2	IMI_D_RXP6
AM3	P1V5
AM4	IMI_D_TXN7
AM5	IMI_D_RXP7

Ball No.	Signal
AK6	IMI_D_TXN5
AM7	IMI_D_LINKN0
AM8	IMI_D_RXP17
AM9	P1V5
AM10	Reserved
AM11	Reserved
AM12	VSS
AM13	EXP_D_RXP1
AM14	EXP_D_TXN1
AM15	P1V5
AM16	EXP_C0_TXP2
AM17	EXP_C1_RXP2
AM18	VSS
AM19	EXP_B0_TXP2
AM20	EXP_B0_RXN1
AM21	P1V5
AM22	EXP_B1_TXN2
AM23	EXP_B1_RXP2
AM24	VSS
AM25	EXP_A0_TXP2
AM26	EXP_A1_TXP2
AM27	P1V5
AM28	EXP0_SPEC10A
AM29	ERR2#
AM30	VSS
AM31	IMI_B_RXP12
AM32	IMI_B_RXN13
AM33	P1V5
AM34	IMI_B_RXP3
AM35	IMI_B_TXN3
AM36	VSS
AM37	IMI_B_RXP2
AM38	IMI_B_TXN2
AN1	IMI_D_TXP6
AN2	VSS
AN3	IMI_D_RXN8
AN4	IMI_D_TXP7
AN5	VSS

Ball No.	Signal
AL6	IMI_D_TXP5
AN7	IMI_D_LINKP0
AN8	VSS
AN9	IMI_D_LINKN1
AN10	Reserved
AN11	VSS
AN12	EXP_D_TXP2
AN13	EXP_D_RXN1
AN14	VSS
AN15	EXP_C0_RXP2
AN16	EXP_C0_TXN2
AN17	VSS
AN18	EXP_C1_TXN2
AN19	EXP_B0_TXN2
AN20	VSS
AN21	EXP_B1_RXN1
AN22	EXP_B1_TXP2
AN23	VSS
AN24	EXP_A0_RXP2
AN25	EXP_A0_TXN2
AN26	VSS
AN27	EXP_A1_RXN1
AN28	XDP_ODTCRES
AN29	VSS
AN30	IMI_B_RXP11
AN31	IMI_B_RXN12
AN32	VSS
AN33	IMI_B_TXP1
AN34	IMI_B_RXN3
AN35	VSS
AN36	IMI_B_TXP0
AN37	IMI_B_RXN2
AN38	VSS
AP1	P1V5
AP2	IMI_D_TXN8
AP3	IMI_D_RXP8
AP4	VSS
AP5	IMI_D_TXN9

Table 7-1. NB Pin List (by Ball Number) (Sheet 12 of 13)

Ball No.	Signal
AM6	VSS
AP7	P1V5
AP8	IMI_D_LINKN2
AP9	IMI_D_LINKP1
AP10	VSS
AP11	Reserved
AP12	EXP_D_TXN2
AP13	P1V5
AP14	EXP_D_RXP2
AP15	EXP_C0_RXN2
AP16	VSS
AP17	EXP_C1_TXN1
AP18	EXP_C1_TXP2
AP19	P1V5
AP20	EXP_B0_RXP2
AP21	EXP_B1_RXP1
AP22	VSS
AP23	EXP_B1_TXN1
AP24	EXP_A0_RXN2
AP25	P1V5
AP26	EXP_A1_TXN1
AP27	EXP_A1_RXP1
AP28	VSS
AP29	XDP_SLWCRES
AP30	IMI_B_RXN11
AP31	P1V5
AP32	IMI_B_RXP10
AP33	IMI_B_TXN1
AP34	VSS
AP35	IMI_B_RXP1
AP36	IMI_B_TXN0
AP37	P1V5
AP38	IMI_B_RXP0
AR1	IMI_D_ICOMPI
AR2	IMI_D_TXP8
AR3	VSS
AR4	IMI_D_ICOMPO
AR5	IMI_D_TXP9

umber) (Sheet 12 of 13)
Ball No.	Signal
AN6	IMI_D_RXN9
AR7	IMI_D_RST#
AR8	IMI_D_LINKP2
AR9	VSS
AR10	Reserved
AR11	Reserved
AR12	VSS
AR13	Reserved
AR14	EXP_D_RXN2
AR15	VSS
AR16	EXP_ICOMPI
AR17	EXP_C1_TXP1
AR18	VSS
AR19	EXP_C1_RXN1
AR20	EXP_B0_RXN2
AR21	VSS
AR22	EXP_RCOMP
AR23	EXP_B1_TXP1
AR24	VSS
AR25	ITP_TRST#
AR26	EXP_A1_TXP1
AR27	VSS
AR28	SMBDATA
AR29	XDP_CRES
AR30	VSS
AR31	IMI_B_FRAME
AR32	IMI_B_RXN10
AR33	VSS
AR34	IMI_B_ICOMPI
AR35	IMI_B_RXN1
AR36	VSS
AR37	IMI_B_ICOMPO
AR38	IMI_B_RXN0
AT1	VSS
AT2	HI11
AT3	HI0
AT4	HI3
AT5	P1V5
	l

Ball No.	Signal
AP6	IMI_D_RXP9
AT7	HI5
AT8	VSS
AT9	HIRCOMP
AT10	Reserved
AT11	P1V5
AT12	EXP_D_TXP3
AT13	EXP_D_TXN3
AT14	VSS
AT15	EXP_C0_RXP3
AT16	EXP_C0_RXN3
AT17	P1V5
AT18	Reserved
AT19	EXP_C1_RXP1
AT20	VSS
AT21	EXP_B1_TXP0
AT22	EXP_B1_TXN0
AT23	P1V5
AT24	EXP_A0_RXP3
AT25	EXP_A0_RXN3
AT26	VSS
AT27	EXP0_WIDTH1
AT28	XDP_D15#
AT29	P1V5
AT30	XDP_D13#
AT31	XDP_D12#
AT32	VSS
AT33	XDP_D10#
AT34	XDP_D9#
AT35	VSS
AT36	XDP_DSTBP
AT37	XDP_DSTBN
AT38	VSS
AU2	VSS
AU3	HI1
AU4	HI2
AU5	HI8
AU6	HI9

Table 7-1. NB Pin List (by Ball Number) (Sheet 13 of 13)

Ball No.	Signal
AR6	VSS
AU8	HI7
AU9	HIVSWING
AU10	VSS
AU11	Reserved
AU12	Reserved
AU13	VSS
AU14	EXP_C0_TXP3
AU15	EXP_C0_TXN3
AU16	VSS
AU17	EXP_C1_RXP0
AU18	EXP_C1_RXN0
AU19	VSS
AU20	EXP_B0_RXP3
AU21	EXP_B0_RXN3
AU22	VSS
AU23	EXP_A0_TXP3
AU24	EXP_A0_TXN3
AU25	VSS
AU26	EXP_A1_RXP0
AU27	EXP_A1_RXN0
AU28	ITP_TDO
AU29	XDP_D14#

Ball No.	Signal
AT6	HI10
AU30	XDP_D5#
AU31	P1V5
AU32	XDP_D11#
AU33	XDP_D2#
AU34	P1V5
AU35	XDP_D8#
AU36	XDP_RDY#
AU37	VSS
AV3	VSS
AV4	HI_STBS
AV5	HI_STBF
AV6	VSS
AV7	HI4
AV8	HI6
AV9	P1V5
AV10	HIVREF
AV11	Reserved
AV12	VSS
AV13	EXP_D_RXP3
AV14	EXP_D_RXN3
AV15	P1V5
AV16	EXP_C1_TXP0

Ball No.	Signal
AU7	VSS
AV17	EXP_C1_TXN0
AV18	VSS
AV19	EXP_B0_TXP3
AV20	EXP_B0_TXN3
AV21	P1V5
AV22	EXP_B1_RXP0
AV23	EXP_B1_RXN0
AV24	VSS
AV25	EXP_A1_TXP0
AV26	EXP_A1_TXN0
AV27	P1V5
AV28	XDP_D7#
AV29	XDP_D6#
AV30	VSS
AV31	XDP_D4#
AV32	XDP_D3#
AV33	VSS
AV34	XDP_D1#
AV35	XDP_D0#
AV36	VSS

Table 7-2. NB Pin List (by Signal Name) (Sheet 1 of 13)

Ball No.	Signal
AF16	CLK66
AK28	ERR0#
AL29	ERR1#
AM29	ERR2#
AJ23	EXP_A0_RXN0
AL24	EXP_A0_RXN1
AP24	EXP_A0_RXN2
AT25	EXP_A0_RXN3
AH23	EXP_A0_RXP0
AK24	EXP_A0_RXP1
AN24	EXP_A0_RXP2
AT24	EXP_A0_RXP3
AH24	EXP_A0_TXN0
AK25	EXP_A0_TXN1
AN25	EXP_A0_TXN2
AU24	EXP_A0_TXN3
AG24	EXP_A0_TXP0
AJ25	EXP_A0_TXP1
AM25	EXP_A0_TXP2
AU23	EXP_A0_TXP3
AU27	EXP_A1_RXN0
AN27	EXP_A1_RXN1
AK27	EXP_A1_RXN2
AG27	EXP_A1_RXN3
AU26	EXP_A1_RXP0
AP27	EXP_A1_RXP1
AL27	EXP_A1_RXP2
AH27	EXP_A1_RXP3
AV26	EXP_A1_TXN0
AP26	EXP_A1_TXN1
AL26	EXP_A1_TXN2
AH26	EXP_A1_TXN3
AV25	EXP_A1_TXP0
AR26	EXP_A1_TXP1
AM26	EXP_A1_TXP2
AJ26	EXP_A1_TXP3
AK19	EXP_B0_RXN0
AM20	EXP_B0_RXN1

al Name)	(Sheet 1 of 13)
Ball No.	Signal
AR20	EXP_B0_RXN2
AU21	EXP_B0_RXN3
AJ19	EXP_B0_RXP0
AL20	EXP_B0_RXP1
AP20	EXP_B0_RXP2
AU20	EXP_B0_RXP3
AJ20	EXP_B0_TXN0
AL21	EXP_B0_TXN1
AN19	EXP_B0_TXN2
AV20	EXP_B0_TXN3
AH20	EXP_B0_TXP0
AK21	EXP_B0_TXP1
AM19	EXP_B0_TXP2
AV19	EXP_B0_TXP3
AV23	EXP_B1_RXN0
AN21	EXP_B1_RXN1
AL23	EXP_B1_RXN2
AG21	EXP_B1_RXN3
AV22	EXP_B1_RXP0
AP21	EXP_B1_RXP1
AM23	EXP_B1_RXP2
AH21	EXP_B1_RXP3
AT22	EXP_B1_TXN0
AP23	EXP_B1_TXN1
AM22	EXP_B1_TXN2
AJ22	EXP_B1_TXN3
AT21	EXP_B1_TXP0
AR23	EXP_B1_TXP1
AN22	EXP_B1_TXP2
AK22	EXP_B1_TXP3
AJ17	EXP_C0_RXN0
AL15	EXP_C0_RXN1
AP15	EXP_C0_RXN2
AT16	EXP_C0_RXN3
AH17	EXP_C0_RXP0
AK15	EXP_C0_RXP1
AN15	EXP_C0_RXP2
AT15	EXP_C0_RXP3

Ball No.	Signal
AH15	EXP_C0_TXN0
AK16	EXP_C0_TXN1
AN16	EXP_C0_TXN2
AU15	EXP_C0_TXN3
AG15	EXP_C0_TXP0
AJ16	EXP_C0_TXP1
AM16	EXP_C0_TXP2
AU14	EXP_C0_TXP3
AU18	EXP_C1_RXN0
AR19	EXP_C1_RXN1
AL17	EXP_C1_RXN2
AG18	EXP_C1_RXN3
AU17	EXP_C1_RXP0
AT19	EXP_C1_RXP1
AM17	EXP_C1_RXP2
AH18	EXP_C1_RXP3
AV17	EXP_C1_TXN0
AP17	EXP_C1_TXN1
AN18	EXP_C1_TXN2
AK18	EXP_C1_TXN3
AV16	EXP_C1_TXP0
AR17	EXP_C1_TXP1
AP18	EXP_C1_TXP2
AL18	EXP_C1_TXP3
AF21	EXP_CLKN
AF20	EXP_CLKP
AK13	EXP_D_RXN0
AN13	EXP_D_RXN1
AR14	EXP_D_RXN2
AV14	EXP_D_RXN3
AJ13	EXP_D_RXP0
AM13	EXP_D_RXP1
AP14	EXP_D_RXP2
AV13	EXP_D_RXP3
AJ14	EXP_D_TXN0
AM14	EXP_D_TXN1
AP12	EXP_D_TXN2
AT13	EXP_D_TXN3

Table 7-2. NB Pin List (by Signal Name) (Sheet 2 of 13)

Ball No.	Signal
AH14	EXP_D_TXP0
AL14	EXP_D_TXP1
AN12	EXP_D_TXP2
AT12	EXP_D_TXP3
AH11	EXP_HPINT/EXP1_WIDTH1
AR16	EXP_ICOMPI
AR22	EXP_RCOMP
AF22	EXP_VCCA
AG19	EXP_VCCBG
AG22	EXP_VSSA
AF19	EXP_VSSBG
AM28	EXP0_SPEC10A
AE24	EXP0_WIDTH0
AT27	EXP0_WIDTH1
AK12	EXP1_SPE C10A
K14	EXP1_WIDTH0
AE26	GP_SMBCLK
AG25	GP_SMBDATA
T33	H_A_A3#
P34	H_A_A4#
N33	H_A_A5#
N35	H_A_A6#
P35	H_A_A7#
M33	H_A_A8#
M34	H_A_A9#
J33	H_A_A10#
L34	H_A_A11#
K32	H_A_A12#
J34	H_A_A13#
H35	H_A_A14#
K33	H_A_A15#
K35	H_A_A16#
R28	H_A_A17#
T30	H_A_A18#
T29	H_A_A19#
M28	H_A_A20#
M30	H_A_A21#
N29	H_A_A22#

Ball No.	Signal
P29	H_A_A23#
R31	H_A_A24#
P28	H_A_A25#
L29	H_A_A26#
K30	H_A_A27#
P31	H_A_A28#
N30	H_A_A29#
M31	H_A_A30#
J30	H_A_A31#
L28	H_A_A32#
J31	H_A_A33#
L31	H_A_A34#
K29	H_A_A35#
L35	H_A_A36#
T32	H_A_A37#
J28	H_A_A38#
T27	H_A_A39#
J37	H_A_ADS#
L32	H_A_ADSTB0#
R30	H_A_ADSTB1#
L26	H_A_AP0#
L25	H_A_AP1#
M27	H_A_BINIT#
K38	H_A_BNR#
K24	H_A_BPM4#
J25	H_A_BPM5#
N38	H_A_BPRI#
K36	H_A_BREQ0#
M25	H_A_BREQ1#
A33	H_A_D0#
B34	H_A_D1#
C31	H_A_D2#
B32	H_A_D3#
D33	H_A_D4#
B31	H_A_D5#
A32	H_A_D6#
C33	H_A_D7#
D32	H_A_D8#

D30	
	H_A_D9#
A30	H_A_D10#
A29	H_A_D11#
C28	H_A_D12#
C30	H_A_D13#
D29	H_A_D14#
A27	H_A_D15#
F37	H_A_D16#
G36	H_A_D17#
F36	H_A_D18#
E38	H_A_D19#
E37	H_A_D20#
D38	H_A_D21#
D37	H_A_D22#
C37	H_A_D23#
F33	H_A_D24#
E35	H_A_D25#
B36	H_A_D26#
D36	H_A_D27#
E34	H_A_D28#
G35	H_A_D29#
F34	H_A_D30#
E32	H_A_D31#
A26	H_A_D32#
B26	H_A_D33#
D27	H_A_D34#
D26	H_A_D35#
C27	H_A_D36#
B25	H_A_D37#
D24	H_A_D38#
A24	H_A_D39#
D23	H_A_D40#
A23	H_A_D41#
C22	H_A_D42#
B22	H_A_D43#
C21	H_A_D44#
A21	H_A_D45#

Table 7-2. NB Pin List (by Signal Name) (Sheet 3 of 13)

Ball No.	Signal
D21	H_A_D47#
G27	H_A_D48#
G29	H_A_D49#
F30	H_A_D50#
E28	H_A_D51#
E29	H_A_D52#
G26	H_A_D53#
F25	H_A_D54#
E26	H_A_D55#
G23	H_A_D56#
E23	H_A_D57#
F22	H_A_D58#
E22	H_A_D59#
F21	H_A_D60#
F24	H_A_D61#
E25	H_A_D62#
G21	H_A_D63#
C34	H_A_DBI0#
C36	H_A_DBI1#
B23	H_A_DBI2#
G24	H_A_DBI3#
H38	H_A_DBSY#
N36	H_A_DEFER#
B35	H_A_DEP0#
A35	H_A_DEP1#
F31	H_A_DEP2#
E31	H_A_DEP3#
B20	H_A_DEP4#
D20	H_A_DEP5#
G20	H_A_DEP6#
E20	H_A_DEP7#
H23	H_A_DP0#
H25	H_A_DP1#
J24	H_A_DP2#
K23	H_A_DP3#
H37	H_A_DRDY#
B29	H_A_DSTBN0#
G33	H_A_DSTBN1#

al Name)	(Sheet 3 of 13)
Ball No.	Signal
C25	H_A_DSTBN2#
F28	H_A_DSTBN3#
B28	H_A_DSTBP0#
G32	H_A_DSTBP1#
C24	H_A_DSTBP2#
F27	H_A_DSTBP3#
M36	H_A_HIT#
N26	H_A_HITM#
P37	H_A_ID0#
R37	H_A_ID1#
P38	H_A_ID2#
N27	H_A_ID3#
R36	H_A_ID4#
T36	H_A_ID5#
T26	H_A_ID6#
T38	H_A_ID7#
R27	H_A_IDS#
G38	H_A_LOCK#
K26	H_A_MCERR#
N24	H_A_OOD#
M21	H_A_PRSNT#
N32	H_A_REQ0#
R33	H_A_REQ1#
R34	H_A_REQ2#
P32	H_A_REQ3#
T35	H_A_REQ4#
L38	H_A_RS0#
M37	H_A_RS1#
L37	H_A_RS2#
J27	H_A_RSP#
K27	H_A_RST#
J36	H_A_TRDY#
H34	H_A_VREF0
H22	H_A_VREF1
H31	H_A_VREF2
J6	H_B_A3#
L5	H_B_A4#
M6	H_B_A5#

Ball No.	Signal
M4	H_B_A6#
L4	H_B_A7#
M7	H_B_A8#
N5	H_B_A9#
T5	H_B_A10#
P5	H_B_A11#
R6	H_B_A12#
R7	H_B_A13#
Т6	H_B_A14#
P7	H_B_A15#
R4	H_B_A16#
L11	H_B_A17#
J9	H_B_A18#
J10	H_B_A19#
P10	H_B_A20#
N8	H_B_A21#
N11	H_B_A22#
M10	H_B_A23#
K8	H_B_A24#
L10	H_B_A25#
P11	H_B_A26#
R9	H_B_A27#
L8	H_B_A28#
M9	H_B_A29#
N9	H_B_A30#
Т9	H_B_A31#
T11	H_B_A32#
Т8	H_B_A33#
P8	H_B_A34#
R10	H_B_A35#
P4	H_B_A36#
H4	H_B_A37#
T12	H_B_A38#
K11	H_B_A39#
R1	H_B_ADS#
N6	H_B_ADSTB0#
K9	H_B_ADSTB1#
M13	H_B_AP0#

Table 7-2. NB Pin List (by Signal Name) (Sheet 4 of 13)

Ball No.	Signal
N12	H_B_AP1#
M12	H_B_BINIT#
N2	H_B_BNR#
M15	H_B_BPM4#
N15	H_B_BPM5#
K2	H_B_BPRI#
P2	H_B_BREQ0#
L14	H_B_BREQ1#
B17	H_B_D0#
C18	H_B_D1#
D15	H_B_D2#
C16	H_B_D3#
A18	H_B_D4#
C15	H_B_D5#
B16	H_B_D6#
D17	H_B_D7#
A17	H_B_D8#
A15	H_B_D9#
C13	H_B_D10#
A14	H_B_D11#
D12	H_B_D12#
D14	H_B_D13#
C12	H_B_D14#
A12	H_B_D15#
F19	H_B_D16#
E19	H_B_D17#
F18	H_B_D18#
G18	H_B_D19#
G17	H_B_D20#
E17	H_B_D21#
E16	H_B_D22#
F16	H_B_D23#
G12	H_B_D24#
E13	H_B_D25#
E14	H_B_D26#
F15	H_B_D27#
F13	H_B_D28#
G14	H_B_D29#

Ball No.	Signal
F12	H_B_D30#
F10	H_B_D31#
A11	H_B_D32#
D9	H_B_D33#
B11	H_B_D34#
A8	H_B_D35#
D11	H_B_D36#
B10	H_B_D37#
B8	H_B_D38#
A9	H_B_D39#
C7	H_B_D40#
D8	H_B_D41#
C6	H_B_D42#
A6	H_B_D43#
A5	H_B_D44#
D6	H_B_D45#
D5	H_B_D46#
B5	H_B_D47#
F7	H_B_D48#
G8	H_B_D49#
E8	H_B_D50#
F6	H_B_D51#
E7	H_B_D52#
E5	H_B_D53#
F4	H_B_D54#
E4	H_B_D55#
C2	H_B_D56#
D2	H_B_D57#
E2	H_B_D58#
D1	H_B_D59#
F3	H_B_D60#
D3	H_B_D61#
В3	H_B_D62#
E1	H_B_D63#
D18	H_B_DBI0#
G15	H_B_DBI1#
B7	H_B_DBI2#
C3	H_B_DBI3#

Ball No.	Signal
Т3	H_B_DBSY#
L2	H_B_DEFER#
C19	H_B_DEP0#
B19	H_B_DEP1#
G11	H_B_DEP2#
F9	H_B_DEP3#
B4	H_B_DEP4#
C4	H_B_DEP5#
F1	H_B_DEP6#
G3	H_B_DEP7#
H16	H_B_DP0#
H14	H_B_DP1#
J15	H_B_DP2#
J16	H_B_DP3#
R3	H_B_DRDY#
B14	H_B_DSTBN0#
E11	H_B_DSTBN1#
C10	H_B_DSTBN2#
G6	H_B_DSTBN3#
B13	H_B_DSTBP0#
E10	H_B_DSTBP1#
C9	H_B_DSTBP2#
G5	H_B_DSTBP3#
L1	H_B_HIT#
L13	H_B_HITM#
J3	H_B_ID0#
J1	H_B_ID1#
K3	H_B_ID2#
K15	H_B_ID3#
H1	H_B_ID4#
H2	H_B_ID5#
H13	H_B_ID6#
G2	H_B_ID7#
J12	H_B_IDS#
T2	H_B_LOCK#
P13	H_B_MCERR#
J13	H_B_OOD#
M22	H_B_PRSNT#

Table 7-2. NB Pin List (by Signal Name) (Sheet 5 of 13)

Ball No.	Signal
L7	H_B_REQ0#
J7	H_B_REQ1#
K5	H_B_REQ2#
K6	H_B_REQ3#
J4	H_B_REQ4#
N3	H_B_RS0#
M1	H_B_RS1#
M3	H_B_RS2#
R12	H_B_RSP#
N14	H_B_RST#
P1	H_B_TRDY#
H5	H_B_VREF0
H7	H_B_VREF1
H17	H_B_VREF2
L17	H_CRES
M16	H_ODTCRES
L16	H_SLWCRES
K18	H_VCCA
K17	H_VSSA
J21	HCLKINN
J22	HCLKINP
AV5	HI_STBF
AV4	HI_STBS
AF17	HI_VCCA
AF18	HI_VSSA
AT3	HI0
AU3	HI1
AU4	HI2
AT4	HI3
AV7	HI4
AT7	HI5
AV8	HI6
AU8	HI7
AU5	HI8
AU6	HI9
AT6	HI10
AT2	HI11
AT9	HIRCOMP

1	al Name)	(Sheet 5 of 13)
	Ball No.	Signal
	AU9	HISWING
	AV10	HIVREF
	AF10	ICHRST#
	U26	IMI_A_CLKN
	U25	IMI_A_CLKP
	AF29	IMI_A_FRAME
	U35	IMI_A_ICOMPI
	U38	IMI_A_ICOMPO
	W27	IMI_A_LINKN0
	V31	IMI_A_LINKN1
	V28	IMI_A_LINKN2
	V27	IMI_A_LINKP0
	U31	IMI_A_LINKP1
	U28	IMI_A_LINKP2
	U32	IMI_A_RST#
	AE36	IMI_A_RXN0
	AE33	IMI_A_RXN1
	AC38	IMI_A_RXN2
	AC35	IMI_A_RXN3
	AA37	IMI_A_RXN4
	AA34	IMI_A_RXN5
	W36	IMI_A_RXN6
	W33	IMI_A_RXN7
	AD31	IMI_A_RXN8
	AE27	IMI_A_RXN9
	AC29	IMI_A_RXN10
	AB30	IMI_A_RXN11
	AB27	IMI_A_RXN12
	AA31	IMI_A_RXN13
	AA28	IMI_A_RXN14
	Y32	IMI_A_RXN15
	Y29	IMI_A_RXN16
	W30	IMI_A_RXN17
	AD36	IMI_A_RXP0
	AD33	IMI_A_RXP1
	AB38	IMI_A_RXP2
	AB35	IMI_A_RXP3
	Y37	IMI_A_RXP4

Ball No.	Signal
Y34	IMI_A_RXP5
V36	IMI_A_RXP6
V33	IMI_A_RXP7
AC31	IMI_A_RXP8
AD27	IMI_A_RXP9
AB29	IMI_A_RXP10
AA30	IMI_A_RXP11
AA27	IMI_A_RXP12
Y31	IMI_A_RXP13
Y28	IMI_A_RXP14
W32	IMI_A_RXP15
W29	IMI_A_RXP16
V30	IMI_A_RXP17
AD37	IMI_A_TXN0
AD34	IMI_A_TXN1
AB36	IMI_A_TXN2
AB33	IMI_A_TXN3
Y38	IMI_A_TXN4
Y35	IMI_A_TXN5
V37	IMI_A_TXN6
V34	IMI_A_TXN7
AC32	IMI_A_TXN8
AD28	IMI_A_TXN9
AC37	IMI_A_TXP0
AC34	IMI_A_TXP1
AA36	IMI_A_TXP2
AA33	IMI_A_TXP3
W38	IMI_A_TXP4
W35	IMI_A_TXP5
U37	IMI_A_TXP6
U34	IMI_A_TXP7
AB32	IMI_A_TXP8
AC28	IMI_A_TXP9
V25	IMI_A_VCCA
AA25	IMI_A_VCCBG
W25	IMI_A_VSSA
Y25	IMI_A_VSSBG
AD25	IMI_B_CLKN

Table 7-2. NB Pin List (by Signal Name) (Sheet 6 of 13)

Ball No.	Signal
AE25	IMI_B_CLKP
AR31	IMI_B_FRAME
AR34	IMI_B_ICOMPI
AR37	IMI_B_ICOMPO
AG31	IMI_B_LINKN0
AF32	IMI_B_LINKN1
AE30	IMI_B_LINKN2
AF31	IMI_B_LINKP0
AE32	IMI_B_LINKP1
AD30	IMI_B_LINKP2
AE29	IMI_B_RST#
AR38	IMI_B_RXN0
AR35	IMI_B_RXN1
AN37	IMI_B_RXN2
AN34	IMI_B_RXN3
AL36	IMI_B_RXN4
AL33	IMI_B_RXN5
AJ38	IMI_B_RXN6
AJ35	IMI_B_RXN7
AG37	IMI_B_RXN8
AG34	IMI_B_RXN9
AR32	IMI_B_RXN10
AP30	IMI_B_RXN11
AN31	IMI_B_RXN12
AM32	IMI_B_RXN13
AL30	IMI_B_RXN14
AK31	IMI_B_RXN15
AJ32	IMI_B_RXN16
AH30	IMI_B_RXN17
AP38	IMI_B_RXP0
AP35	IMI_B_RXP1
AM37	IMI_B_RXP2
AM34	IMI_B_RXP3
AK36	IMI_B_RXP4
AK33	IMI_B_RXP5
AH38	IMI_B_RXP6
AH35	IMI_B_RXP7
AF37	IMI_B_RXP8

Ball No.	Signal
AF34	IMI_B_RXP9
AP32	IMI_B_RXP10
AN30	IMI_B_RXP11
AM31	IMI_B_RXP12
AL32	IMI_B_RXP13
AK30	IMI_B_RXP14
AJ31	IMI_B_RXP15
AH32	IMI_B_RXP16
AG30	IMI_B_RXP17
AP36	IMI_B_TXN0
AP33	IMI_B_TXN1
AM38	IMI_B_TXN2
AM35	IMI_B_TXN3
AK37	IMI_B_TXN4
AK34	IMI_B_TXN5
AH36	IMI_B_TXN6
AH33	IMI_B_TXN7
AF38	IMI_B_TXN8
AF35	IMI_B_TXN9
AN36	IMI_B_TXP0
AN33	IMI_B_TXP1
AL38	IMI_B_TXP2
AL35	IMI_B_TXP3
AJ37	IMI_B_TXP4
AJ34	IMI_B_TXP5
AG36	IMI_B_TXP6
AG33	IMI_B_TXP7
AE38	IMI_B_TXP8
AE35	IMI_B_TXP9
AB25	IMI_B_VCCA
AF24	IMI_B_VCCBG
AC25	IMI_B_VSSA
AF23	IMI_B_VSSBG
U14	IMI_C_CLKN
T14	IMI_C_CLKP
U11	IMI_C_FRAME
U2	IMI_C_ICOMPI
U5	IMI_C_ICOMPO

Ball No.	Signal
AC7	IMI_C_LINKN0
AC10	IMI_C_LINKN1
AD12	IMI_C_LINKN2
AD7	IMI_C_LINKP0
AD10	IMI_C_LINKP1
AE12	IMI_C_LINKP2
AE11	IMI_C_RST#
U1	IMI_C_RXN0
U4	IMI_C_RXN1
W2	IMI_C_RXN2
W5	IMI_C_RXN3
AA3	IMI_C_RXN4
AA6	IMI_C_RXN5
AC1	IMI_C_RXN6
AC4	IMI_C_RXN7
U7	IMI_C_RXN8
U10	IMI_C_RXN9
W8	IMI_C_RXN10
W11	IMI_C_RXN11
Y7	IMI_C_RXN12
Y10	IMI_C_RXN13
AA9	IMI_C_RXN14
AA12	IMI_C_RXN15
AB8	IMI_C_RXN16
AB11	IMI_C_RXN17
V1	IMI_C_RXP0
V4	IMI_C_RXP1
Y2	IMI_C_RXP2
Y5	IMI_C_RXP3
AB3	IMI_C_RXP4
AB6	IMI_C_RXP5
AD1	IMI_C_RXP6
AD4	IMI_C_RXP7
V7	IMI_C_RXP8
V10	IMI_C_RXP9
Y8	IMI_C_RXP10
Y11	IMI_C_RXP11
AA7	IMI_C_RXP12

Table 7-2. NB Pin List (by Signal Name) (Sheet 7 of 13)

Ball No.	Signal
AA10	IMI_C_RXP13
AB9	IMI_C_RXP14
AB12	IMI_C_RXP15
AC8	IMI_C_RXP16
AC11	IMI_C_RXP17
V3	IMI_C_TXN0
V6	IMI_C_TXN1
Y1	IMI_C_TXN2
Y4	IMI_C_TXN3
AB2	IMI_C_TXN4
AB5	IMI_C_TXN5
AD3	IMI_C_TXN6
AD6	IMI_C_TXN7
V9	IMI_C_TXN8
V12	IMI_C_TXN9
W3	IMI_C_TXP0
W6	IMI_C_TXP1
AA1	IMI_C_TXP2
AA4	IMI_C_TXP3
AC2	IMI_C_TXP4
AC5	IMI_C_TXP5
AE3	IMI_C_TXP6
AE6	IMI_C_TXP7
W9	IMI_C_TXP8
W12	IMI_C_TXP9
Y14	IMI_C_VCCA
U13	IMI_C_VCCBG
W14	IMI_C_VSSA
V13	IMI_C_VSSBG
AB14	IMI_D_CLKN
AA14	IMI_D_CLKP
AF11	IMI_D_FRAME
AR1	IMI_D_ICOMPI
AR4	IMI_D_ICOMPO
AM7	IMI_D_LINKN0
AN9	IMI_D_LINKN1
AP8	IMI_D_LINKN2
AN7	IMI_D_LINKP0

ai Name)	(Sneet / of 13)
Ball No.	Signal
AP9	IMI_D_LINKP1
AR8	IMI_D_LINKP2
AR7	IMI_D_RST#
AE2	IMI_D_RXN0
AE5	IMI_D_RXN1
AG3	IMI_D_RXN2
AG6	IMI_D_RXN3
AJ1	IMI_D_RXN4
AJ4	IMI_D_RXN5
AL2	IMI_D_RXN6
AL5	IMI_D_RXN7
AN3	IMI_D_RXN8
AN6	IMI_D_RXN9
AD9	IMI_D_RXN10
AE8	IMI_D_RXN11
AF7	IMI_D_RXN12
AG9	IMI_D_RXN13
AH8	IMI_D_RXN14
AJ7	IMI_D_RXN15
AK9	IMI_D_RXN16
AL8	IMI_D_RXN17
AF2	IMI_D_RXP0
AF5	IMI_D_RXP1
AH3	IMI_D_RXP2
AH6	IMI_D_RXP3
AK1	IMI_D_RXP4
AK4	IMI_D_RXP5
AM2	IMI_D_RXP6
AM5	IMI_D_RXP7
AP3	IMI_D_RXP8
AP6	IMI_D_RXP9
AE9	IMI_D_RXP10
AF8	IMI_D_RXP11
AG7	IMI_D_RXP12
AH9	IMI_D_RXP13
AJ8	IMI_D_RXP14
AK7	IMI_D_RXP15
AL9	IMI_D_RXP16

Ball No.	Signal
AM8	IMI_D_RXP17
AF1	IMI_D_TXN0
AF4	IMI_D_TXN1
AH2	IMI_D_TXN2
AH5	IMI_D_TXN3
AK3	IMI_D_TXN4
AK6	IMI_D_TXN5
AM1	IMI_D_TXN6
AM4	IMI_D_TXN7
AP2	IMI_D_TXN8
AP5	IMI_D_TXN9
AG1	IMI_D_TXP0
AG4	IMI_D_TXP1
AJ2	IMI_D_TXP2
AJ5	IMI_D_TXP3
AL3	IMI_D_TXP4
AL6	IMI_D_TXP5
AN1	IMI_D_TXP6
AN4	IMI_D_TXP7
AR2	IMI_D_TXP8
AR5	IMI_D_TXP9
AD14	IMI_D_VCCA
AC13	IMI_D_VCCBG
AC14	IMI_D_VSSA
AD13	IMI_D_VSSBG
AH12	IMI_HPINT
AF27	ITP_TCK
AF28	ITP_TDI
AU28	ITP_TDO
AH28	ITP_TMS
AR25	ITP_TRST#
J19	P1V5
N18	P1V5
N20	P1V5
N22	P1V5
P15	P1V5
P17	P1V5
P19	P1V5

Table 7-2. NB Pin List (by Signal Name) (Sheet 8 of 13)

Ball No.	Signal
P21	P1V5
P23	P1V5
P25	P1V5
R14	P1V5
R16	P1V5
R18	P1V5
R20	P1V5
R22	P1V5
R24	P1V5
T15	P1V5
T17	P1V5
T19	P1V5
T21	P1V5
T23	P1V5
T25	P1V5
U16	P1V5
U18	P1V5
U20	P1V5
U22	P1V5
U24	P1V5
V5	P1V5
V11	P1V5
V15	P1V5
V17	P1V5
V19	P1V5
V21	P1V5
V23	P1V5
V29	P1V5
V35	P1V5
W16	P1V5
W18	P1V5
W20	P1V5
W22	P1V5
W24	P1V5
Y3	P1V5
Y9	P1V5
Y15	P1V5
Y17	P1V5

Ball No.	Signal
Y19	P1V5
Y21	P1V5
Y23	P1V5
Y27	P1V5
Y33	P1V5
AA16	P1V5
AA18	P1V5
AA20	P1V5
AA22	P1V5
AA24	P1V5
AB1	P1V5
AB7	P1V5
AB13	P1V5
AB15	P1V5
AB17	P1V5
AB19	P1V5
AB21	P1V5
AB23	P1V5
AB31	P1V5
AB37	P1V5
AC16	P1V5
AC18	P1V5
AC20	P1V5
AC22	P1V5
AC24	P1V5
AD5	P1V5
AD11	P1V5
AD15	P1V5
AD17	P1V5
AD19	P1V5
AD21	P1V5
AD23	P1V5
AD29	P1V5
AD35	P1V5
AE16	P1V5
AE18	P1V5
AE20	P1V5
AE22	P1V5

Ball No.	Signal
AF3	P1V5
AF9	P1V5
AF33	P1V5
AH1	P1V5
AH7	P1V5
AH13	P1V5
AH19	P1V5
AH25	P1V5
AH31	P1V5
AH37	P1V5
AK5	P1V5
AK11	P1V5
AK17	P1V5
AK23	P1V5
AK29	P1V5
AK35	P1V5
AM3	P1V5
AM9	P1V5
AM15	P1V5
AM21	P1V5
AM27	P1V5
AM33	P1V5
AP1	P1V5
AP7	P1V5
AP13	P1V5
AP19	P1V5
AP25	P1V5
AP31	P1V5
AP37	P1V5
AT5	P1V5
AT11	P1V5
AT17	P1V5
AT23	P1V5
AT29	P1V5
AU31	P1V5
AU34	P1V5
AV9	P1V5
AV15	P1V5

Table 7-2. NB Pin List (by Signal Name) (Sheet 9 of 13)

Ball No.	Signal
AV21	P1V5
AV27	P1V5
AG10	PME_OUT/EXP1_WIDTH2
AG28	PWRGOOD
D35	RESERVED
G9	RESERVED
G30	RESERVED
H8	RESERVED
H10	RESERVED
H11	RESERVED
H19	RESERVED
H20	RESERVED
H26	RESERVED
H28	RESERVED
H29	RESERVED
H32	RESERVED
K12	RESERVED
L19	RESERVED
M19	RESERVED
P26	RESERVED
R13	RESERVED
U8	RESERVED
U29	RESERVED
W26	RESERVED
Y13	RESERVED
Y26	RESERVED
AA13	RESERVED
AB26	RESERVED
AC26	RESERVED
AE14	RESERVED
AF13	RESERVED
AF14	RESERVED
AF15	RESERVED
AG12	RESERVED
AG13	RESERVED
AG16	RESERVED
AJ11	RESERVED
AJ28	RESERVED

Il Name)	(Sheet 9 of 13)
Ball No.	Signal
AJ29	RESERVED
AK10	RESERVED
AL11	RESERVED
AL12	RESERVED
AM10	RESERVED
AM11	RESERVED
AN10	RESERVED
AP11	RESERVED
AR10	RESERVED
AR11	RESERVED
AR13	RESERVED
AT10	RESERVED
AT18	RESERVED
AU11	RESERVED
AU12	RESERVED
AV11	RESERVED
AH29	RSTIN#
AF25	SMBCLK
AR28	SMBDATA
L22	TESTHI1
M18	TESTLO1
L23	TESTLO2
L20	TESTLO3
J18	TESTLO4
M24	TESTLO5
AF26	V3REF0
AJ10	V3REF1
K21	VCCA
A3	VSS
A4	VSS
A7	VSS
A10	VSS
A13	VSS
A16	VSS
A19	VSS
A22	VSS
A25	VSS
A28	VSS
	Ball No. AJ29 AK10 AL11 AL12 AM10 AM11 AN10 AP11 AR10 AR11 AR13 AT10 AT18 AU11 AU12 AV11 AH29 AF25 AR28 L22 M18 L23 L20 J18 M24 AF26 AJ10 K21 A3 A4 A7 A10 A13 A16 A19 A22 A25

Ball No.	Signal
A31	VSS
A34	VSS
A36	VSS
B2	VSS
B6	VSS
B12	VSS
B18	VSS
B24	VSS
B30	VSS
B37	VSS
C1	VSS
C5	VSS
C8	VSS
C11	VSS
C14	VSS
C17	VSS
C20	VSS
C23	VSS
C26	VSS
C29	VSS
C32	VSS
C35	VSS
C38	VSS
D4	VSS
D10	VSS
D16	VSS
D22	VSS
D28	VSS
D34	VSS
E3	VSS
E6	VSS
E9	VSS
E12	VSS
E15	VSS
E18	VSS
E21	VSS
E24	VSS
E27	VSS

Table 7-2. NB Pin List (by Signal Name) (Sheet 10 of 13)

Ball No.	Signal
E30	VSS
E33	VSS
E36	VSS
F2	VSS
F8	VSS
F14	VSS
F20	VSS
F26	VSS
F32	VSS
F38	VSS
G1	VSS
G4	VSS
G7	VSS
G10	VSS
G13	VSS
G16	VSS
G19	VSS
G22	VSS
G25	VSS
G28	VSS
G31	VSS
G34	VSS
G37	VSS
H6	VSS
H12	VSS
H18	VSS
H24	VSS
H30	VSS
H36	VSS
J2	VSS
J5	VSS
J8	VSS
J11	VSS
J14	VSS
J17	VSS
J20	VSS
J23	VSS
J26	VSS

Ball No.	Signal
J29	VSS
J32	VSS
J35	VSS
J38	VSS
K4	VSS
K10	VSS
K16	VSS
K22	VSS
K28	VSS
K34	VSS
L3	VSS
L6	VSS
L9	VSS
L12	VSS
L15	VSS
L18	VSS
L21	VSS
L24	VSS
L27	VSS
L30	VSS
L33	VSS
L36	VSS
M2	VSS
M8	VSS
M14	VSS
M20	VSS
M26	VSS
M32	VSS
M38	VSS
N1	VSS
N4	VSS
N7	VSS
N10	VSS
N13	VSS
N16	VSS
N17	VSS
N19	VSS
N21	VSS

Ball No.	Signal
N23	VSS
N25	VSS
N28	VSS
N31	VSS
N34	VSS
N37	VSS
P6	VSS
P12	VSS
P14	VSS
P16	VSS
P18	VSS
P20	VSS
P22	VSS
P24	VSS
P30	VSS
P36	VSS
R2	VSS
R5	VSS
R8	VSS
R11	VSS
R15	VSS
R17	VSS
R19	VSS
R21	VSS
R23	VSS
R25	VSS
R26	VSS
R29	VSS
R32	VSS
R35	VSS
R38	VSS
T4	VSS
T10	VSS
T16	VSS
T18	VSS
T20	VSS
T22	VSS
T24	VSS

Table 7-2. NB Pin List (by Signal Name) (Sheet 11 of 13)

Ball No.	Signal
T28	VSS
T34	VSS
U3	VSS
U6	VSS
U9	VSS
U12	VSS
U15	VSS
U17	VSS
U19	VSS
U21	VSS
U23	VSS
U27	VSS
U30	VSS
U33	VSS
U36	VSS
V2	VSS
V8	VSS
V14	VSS
V16	VSS
V18	VSS
V20	VSS
V22	VSS
V24	VSS
V26	VSS
V32	VSS
V38	VSS
W1	VSS
W4	VSS
W7	VSS
W10	VSS
W13	VSS
W15	VSS
W17	VSS
W19	VSS
W21	VSS
W23	VSS
W28	VSS
W31	VSS

al Name) (Sheet 11 of 13)	
Ball No.	Signal
W34	VSS
W37	VSS
Y6	VSS
Y12	VSS
Y16	VSS
Y18	VSS
Y20	VSS
Y22	VSS
Y24	VSS
Y30	VSS
Y36	VSS
AA2	VSS
AA5	VSS
AA8	VSS
AA11	VSS
AA15	VSS
AA17	VSS
AA19	VSS
AA21	VSS
AA23	VSS
AA26	VSS
AA29	VSS
AA32	VSS
AA35	VSS
AA38	VSS
AB4	VSS
AB10	VSS
AB16	VSS
AB18	VSS
AB20	VSS
AB22	VSS
AB24	VSS
AB28	VSS
AB34	VSS
AC3	VSS
AC6	VSS
AC9	VSS
AC12	VSS

Ball No.	Signal
AC15	VSS
AC17	VSS
AC19	VSS
AC21	VSS
AC23	VSS
AC27	VSS
AC30	VSS
AC33	VSS
AC36	VSS
AD2	VSS
AD8	VSS
AD16	VSS
AD18	VSS
AD20	VSS
AD22	VSS
AD24	VSS
AD26	VSS
AD32	VSS
AD38	VSS
AE1	VSS
AE4	VSS
AE7	VSS
AE10	VSS
AE13	VSS
AE15	VSS
AE17	VSS
AE19	VSS
AE21	VSS
AE23	VSS
AE28	VSS
AE31	VSS
AE34	VSS
AE37	VSS
AF6	VSS
AF12	VSS
AF30	VSS
AF36	VSS
AG2	VSS

Table 7-2. NB Pin List (by Signal Name) (Sheet 12 of 13)

Ball No.	Signal
AG5	VSS
AG8	VSS
AG11	VSS
AG14	VSS
AG17	VSS
AG20	VSS
AG23	VSS
AG26	VSS
AG29	VSS
AG32	VSS
AG35	VSS
AG38	VSS
AH4	VSS
AH10	VSS
AH16	VSS
AH22	VSS
AH34	VSS
AJ3	VSS
AJ6	VSS
AJ9	VSS
AJ12	VSS
AJ15	VSS
AJ18	VSS
AJ21	VSS
AJ24	VSS
AJ27	VSS
AJ30	VSS
AJ33	VSS
AJ36	VSS
AK2	VSS
AK8	VSS
AK14	VSS
AK20	VSS
AK26	VSS
AK32	VSS
AK38	VSS
AL1	VSS
AL4	VSS

Ball No.	Signal
AL7	VSS
AL10	VSS
AL13	VSS
AL16	VSS
AL19	VSS
AL22	VSS
AL25	VSS
AL28	VSS
AL31	VSS
AL34	VSS
AL37	VSS
AM6	VSS
AM12	VSS
AM18	VSS
AM24	VSS
AM30	VSS
AM36	VSS
AN2	VSS
AN5	VSS
AN8	VSS
AN11	VSS
AN14	VSS
AN17	VSS
AN20	VSS
AN23	VSS
AN26	VSS
AN29	VSS
AN32	VSS
AN35	VSS
AN38	VSS
AP4	VSS
AP10	VSS
AP16	VSS
AP22	VSS
AP28	VSS
AP34	VSS
AR3	VSS
AR6	VSS

Ball No.	Signal
AR9	VSS
AR12	VSS
AR15	VSS
AR18	VSS
AR21	VSS
AR24	VSS
AR27	VSS
AR30	VSS
AR33	VSS
AR36	VSS
AT1	VSS
AT8	VSS
AT14	VSS
AT20	VSS
AT26	VSS
AT32	VSS
AT35	VSS
AT38	VSS
AU2	VSS
AU7	VSS
AU10	VSS
AU13	VSS
AU16	VSS
AU19	VSS
AU22	VSS
AU25	VSS
AU37	VSS
AV3	VSS
AV6	VSS
AV12	VSS
AV18	VSS
AV24	VSS
AV30	VSS
AV33	VSS
AV36	VSS
K20	VSSA
B9	VTT
B15	VTT

Table 7-2. NB Pin List (by Signal Name) (Sheet 13 of 13)

Ball No.	Signal
B21	VTT
B27	VTT
B33	VTT
D7	VTT
D13	VTT
D19	VTT
D25	VTT
D31	VTT
F5	VTT
F11	VTT
F17	VTT
F23	VTT
F29	VTT
F35	VTT
Н3	VTT
H9	VTT
H15	VTT
H21	VTT
H27	VTT
H33	VTT
K1	VTT
K7	VTT

Ball No.	Signal
K13	VTT
K19	VTT
K25	VTT
K31	VTT
K37	VTT
M5	VTT
M11	VTT
M17	VTT
M23	VTT
M29	VTT
M35	VTT
P3	VTT
P9	VTT
P27	VTT
P33	VTT
T1	VTT
T7	VTT
T13	VTT
T31	VTT
T37	VTT
AR29	XDP_CRES
AV35	XDP_D0#

Ball No.	Signal
AV34	XDP_D1#
AU33	XDP_D2#
AV32	XDP_D3#
AV31	XDP_D4#
AU30	XDP_D5#
AV29	XDP_D6#
AV28	XDP_D7#
AU35	XDP_D8#
AT34	XDP_D9#
AT33	XDP_D10#
AU32	XDP_D11#
AT31	XDP_D12#
AT30	XDP_D13#
AU29	XDP_D14#
AT28	XDP_D15#
AT37	XDP_DSTBN
AT36	XDP_DSTBP
AN28	XDP_ODTCRES
AU36	XDP_RDY#
AP29	XDP_SLWCRES

7.2 Intel® E8501 Chipset North Bridge (NB) Mechanical Package Information

For the NB Mechanical Package drawing, refer to Figure 7-5 through Figure 7-7.

For detailed information about the XMB Mechanical specification, refer to the *Intel*® *E8501* Chipset eXternal Memory Bridge (XMB) Datasheet.

For detailed information about the ICH5 mechanical specifications, refer to the *Intel*® 82801EB *I/O Controller Hub 5 (ICH5) and Intel*® 82801ER *I/O Controller Hub 5 (ICH5R) Datasheet*. The ICH5 Datasheet is available at: http://developer.intel.com/design/chipsets/datashts.

For detailed information about the Intel 6700PXH/6702PXH 64-bit PCI Hub ballout and pin list, refer to the *Intel*[®] 6700PXH 64-bit PCI Hub and Intel[®] 6702PXH 64-bit PCI Hub Datasheet.

Figure 7-5. Intel® E8501 Chipset North Bridge (NB) Package Dimensions (Top View)

Figure 7-6. NB Package Dimensions (Side View)

Figure 7-7. NB Package Dimensions (Bottom View)

§