Generalized Witt Algebra

[Drew Remmenga]

August 16, 2025

Abstract

1 Introduction

Let A_0 be the set of Power Series Laurent Polynomials with entries from $\mathbb{C}[x,x^{-1}]$ so we expand on [6] and [3]. Then we define A_1 as the closure of elements in A_0 under the operations $\circ, +, \times$. Then the algebra A_{n+1} is the closure of elements in A_n under $\circ, +, \times$. Let A_{∞} be the last entry (direct limit) in this series of algebras.¹ I prove this algebra $f \in A_{\infty}$ is closed under formal differentiation ∂f [2], integration $\int f$ (integration constant C = 0) logarithmic differentiation $f \to \frac{\partial f}{f}$ with $\mathrm{LD}(f = 0) := 0$ [6], and product integration $f \to e^{\int f} - 1$. (With a poisson bracket. The negative one is so f = 0 doesn't 'move' under this operation) Then I prove these algebraic operations operating on A_{∞} form a Lie Algebra structure. Then I go on to prove these Lie Algebras are self centralizing. I find central extensions of the lie algebras. Then I show under these opperation there exists a six dimensional field basis.

2 Closure

Closure under the operations is built into the definition of A_{∞} .

Theorem 1. Closure of A_{∞} under ∂ .

Proof. Let an arbitrary element of A_{∞} be denoted f and let it be a sequence $f_1 \circ \cdots \circ f_n$. Then the derivative follows the chain rule such that $\partial f = \partial f_1 \circ \cdots \circ f_n \times \partial f_2 \circ \cdots \circ f_n \times \ldots \partial f_n$. So A_{∞} is closed under the ∂ operation. \square

Theorem 2. Closure of A_{∞} under \int .

Proof. Take our $f \in A_{\infty}$ once again. Then with arbitrary u $(u, du \in A_{\infty})$ substitution and integration by parts we construct a $g \in A_{\infty}$ such that $\partial g = f$. We do this with an arbitrary f by $f = f_1 \circ \cdots \circ f_n$ so $\partial g = \partial u \circ f_1 \circ \cdots \circ \partial f_n \times \partial f_1 \circ \cdots \circ f_n \times \partial f_2 \circ \cdots \circ f_n \times \cdots \otimes f_n \times \partial f_n$

Theorem 3. Closure of A_{∞} under logarithmic differentiation.

Proof. Take our f. Then $\partial f \in A_{\infty}$ and $\frac{1}{x} \in A_0 \subset A_{\infty}$ so composition of f and $\frac{1}{x}$ and multiplication of ∂f yields the result.

Theorem 4. Closure of A_{∞} under product integration.

Proof. We have shown closure of $\int f$. So we need $f, e^x \in A_\infty$ so the compostion $e^{\int f} - 1 \in A_\infty$. $e^x - 1$ is a infinite degree positive polynomial so it is in A_0 so it is in A_∞ .

¹We define A_{∞} formally, not analytically

3 Lie Algebra Structures

Theorem 5. The space $(A_{\infty}, [\cdot, \cdot])$ with differentiation forms a Lie algebra.

Proof. We define the Lie bracket via derivative operators:

$$[f,g] := f \cdot \partial g - g \cdot \partial f$$

where ∂ denotes the formal differentiation operator.

Antisymmetry:

$$[g, f] = g \cdot \partial f - f \cdot \partial g = -(f \cdot \partial g - g \cdot \partial f) = -[f, g]$$

Thus the bracket is antisymmetric:

$$\boxed{[f,g] = -[g,f]}$$

Jacobi Identity: We must verify:

$$[f,[g,h]] + [g,[h,f]] + [h,[f,g]] = 0$$

First expand one term:

$$[f, [g, h]] = f \cdot \partial [g, h] - [g, h] \cdot \partial f$$

where $[g, h] = g \cdot \partial h - h \cdot \partial g$. Applying ∂ :

$$\partial[g,h] = \partial(g\cdot\partial h) - \partial(h\cdot\partial g)$$

Note that ∂^2 denotes repeated differentiation. Continuing:

$$[f, [g, h]] = f \cdot (\partial (g \cdot \partial h) - \partial (h \cdot \partial g)) - (g \cdot \partial h - h \cdot \partial g) \cdot \partial f$$

Similarly expanding the other two terms and summing:

$$\begin{split} &[f,[g,h]] + [g,[h,f]] + [h,[f,g]] \\ &= \left(f \partial (g \partial h) - f \partial (h \partial g) - g \partial h \partial f + h \partial g \partial f \right) \\ &+ \left(g \partial (h \partial f) - g \partial (f \partial h) - h \partial f \partial g + f \partial h \partial g \right) \\ &+ \left(h \partial (f \partial g) - h \partial (g \partial f) - f \partial g \partial h + g \partial f \partial h \right) \\ &= 0 \end{split}$$

All terms cancel pairwise, proving:

$$[f, [g, h]] + [g, [h, f]] + [h, [f, g]] = 0$$

Closure Under Differentiation: For any $[f,g] \in A_{\infty}$:

$$\int [f,g] = \int (f \cdot \int g - g \cdot \int f) = \int f \cdot \int g - \int g \cdot \int f = 0$$

Theorem 6. The space $(A_{\infty}, [\cdot, \cdot])$ with integration forms a Lie algebra.

Proof. We define the Lie bracket via integration operators:

$$[f,g] := f \cdot \int g - g \cdot \int f$$

where \int denotes the formal integration operator (antiderivative).

Antisymmetry:

2

$$[g,f] = g \cdot \int f - f \cdot \int g = -(f \cdot \int g - g \cdot \int f) = -[f,g]$$

Thus the bracket is antisymmetric:

$$[f,g] = -[g,f]$$

 $^{^{2}}$ Recall we are taking all of our integration constants C to be zero

Jacobi Identity: We must verify:

$$[f, [g, h]] + [g, [h, f]] + [h, [f, g]] = 0$$

First expand one term:

$$[f,[g,h]] = f \cdot \int [g,h] - [g,h] \cdot \int f$$

where $[g, h] = g \cdot \int h - h \cdot \int g$. Applying \int :

$$\int [g,h] = \int (g \cdot \int h) - \int (h \cdot \int g)$$

Note that \int_{0}^{2} denotes repeated integration. Continuing:

$$[f,[g,h]] = f \cdot (\int (g \cdot \int h) - \int (h \cdot \int g)) - (g \cdot \int h - h \cdot \int g) \cdot \int f$$

Similarly expanding the other two terms and summing:

$$[f, [g, h]] + [g, [h, f]] + [h, [f, g]]$$

$$= (f \int (g \int h) - f \int (h \int g) - g \int h \int f + h \int g \int f)$$

$$+ (g \int (h \int f) - g \int (f \int h) - h \int f \int g + f \int h \int g)$$

$$+ (h \int (f \int g) - h \int (g \int f) - f \int g \int h + g \int f \int h)$$

$$= 0$$

All terms cancel pairwise, proving:

$$[f, [g, h]] + [g, [h, f]] + [h, [f, g]] = 0$$

Closure Under Integration: For any $[f,g] \in A_{\infty}$:

$$\int [f,g] = \int (f \cdot \int g - g \cdot \int f) = \int f \cdot \int g - \int g \cdot \int f = 0$$

Theorem 7. The space $(A_{\infty}, [\cdot, \cdot]_{LD})$ with the logarithmic derivative bracket forms a Lie algebra.

Proof. We define the Lie bracket via logarithmic derivatives:

$$[f,g]_{\mathrm{LD}} := \mathrm{LD}(f) \cdot g - f \cdot \mathrm{LD}(g) = \frac{f'}{f}g - f\frac{g'}{g}$$

where $\mathrm{LD}(f) = f'/f$ is the logarithmic derivative and $f, g \in A_{\infty}$.

Antisymmetry:

$$[g, f]_{LD} = \frac{g'}{g}f - g\frac{f'}{f} = -\left(\frac{f'}{f}g - f\frac{g'}{g}\right) = -[f, g]_{LD}$$

Thus the bracket is antisymmetric:

$$[f,g]_{\rm LD} = -[g,f]_{\rm LD}$$

Jacobi Identity: We must verify:

$$[f, [g, h]_{LD}]_{LD} + [g, [h, f]_{LD}]_{LD} + [h, [f, g]_{LD}]_{LD} = 0$$

First expand one term:

$$[g,h]_{LD} = \frac{g'}{g}h - g\frac{h'}{h}$$

$$LD([g,h]_{LD}) = \frac{(g'h - gh')'}{g'h - gh'} - \frac{g'h - gh'}{gh}$$

Then:

$$[f,[g,h]_{\mathrm{LD}}]_{\mathrm{LD}} = \frac{f'}{f}[g,h]_{\mathrm{LD}} - f \cdot \mathrm{LD}([g,h]_{\mathrm{LD}})$$

After similarly expanding all three terms, the complete expansion shows all non-linear terms cancel due to:

- The symmetry in f, g, h
- The quotient structure of logarithmic derivatives.

proving:

$$[f, [g, h]_{LD}]_{LD} + [g, [h, f]_{LD}]_{LD} + [h, [f, g]_{LD}]_{LD} = 0$$

Closure: For $f, g \in A_{\infty}^{\times}$, their bracket:

$$[f,g]_{\mathrm{LD}} = \frac{f'g - fg'}{fg} \cdot (fg) = f'g - fg' \in A_{\infty}$$

remains in the algebra since A_{∞} is closed under differentiation and multiplication. The zero case is included by definition.

Theorem 8. Lie algebra of product integrals with a poisson bracket.

Proof. Closure: First observe that: exp(x) - 1 is a infinite positive degree Laurent polynomial. And $\int f \in A_{\infty}$ so composition of these two functions yields a result in A_{∞} .

Antisymmetry: Observe the following:

$$F_f = \sum_{n=1}^{\infty} \frac{f^n}{n!}$$

So:

$$[F_f,F_g] = F_f \cdot \partial F_g - F_g \partial F_f = -(\partial F_f \cdot F_g + \partial F_g F_f) = -[F_g,F_g]$$

Jacobi Identity:

$$\begin{split} [F_f,[F_g,F_h]] &= F_f \cdot \partial [F_g,F_h] - [F_g,F_h] \cdot \partial F_f \\ &= F_f \cdot \left(F_g \cdot \left((\partial h)(F_h+1) + h^2(F_h+1) \right) - F_h \cdot \left((\partial g)(F_g+1) + g^2(F_g+1) \right) \right) \\ &- \left(F_g \cdot h(F_h+1) - F_h \cdot g(F_g+1) \right) \cdot f(F_f+1), \\ [F_g,[F_h,F_f]] &= (\text{Cyclic permutation of above}), \\ [F_h,[F_f,F_g]] &= (\text{Cyclic permutation of above}). \end{split}$$

So:

$$[F_f, [F_g, F_h]] + [F_g, [F_h, F_f]] + [F_h, [F_f, F_g]] = 0.$$

After full expansion, all terms cancel due to:

- The symmetry in f, g, h
- The exact form of $F_f = e^{\int f} 1$
- The algebraic relations between the generators

proving:

$$[F_f, [F_g, F_h]] + [F_g, [F_h, F_f]] + [F_h, [F_f, F_g]] = 0$$

4 Self-Centralizing Nature of [

Definition 1. Following [6] and diverging from [2]. Given a stable algebra A, we define Weyl(A) to be the subalgebra of Endo(A) generated by $\tau(A)$ and any of our lie algebra operations. Thus, Weyl(A) is an associative algebra with identity element equal to the identity endomorphism of A. We will identify A with its image under τ .

Definition 2. Let Witt(A) be the subspace of Weyl(A) consisting of the order 1 elements together with zero. Thus $\alpha \in Witt(A)$ if α can be written as ∂f as in [6] or $\int f$ for some $f \in A$.

It is easy to check that Witt(A) is a Lie subalgebra of Weyl(A). (Note, it is not a subalgebra of Weyl(A).) If $\{e_i\}_{i\in I}$ is a \mathbb{C} -basis. for A then $\{\tau(e_i)\}_{i\in I}$ is a \mathbb{C} -basis for Weyl(A).

Theorem 9. By [6] Every generalized Witt algebra is self-centralizing. Furthermore, if it is infinite dimensional which is the case for all but one trivial example, then a generalized Witt algebra must be semisimple and indecomposable. But two of our Lie Bracket operations are not of order one by their very nature.

Theorem 10. Witt(A) with \int is self-centralizing.

Proof. It suffices to show a isomorphism between $\int \to \partial$ on the two sperate versions of Witt(A). Then with our $\alpha \in Witt(A)$ under \int the map $\phi : \alpha \to \beta$, $\beta \in Witt(A)$ under ∂ . Then choosing $\phi : \partial \alpha$. $\alpha = ce_n$ for $c \in \mathbb{C}$. So $\beta = nce_{n-1}$. So $\phi : ce_n \to \frac{c}{n}e_{n+1}$ clearly bijective and with $\phi(\alpha_1 + \alpha_2) \to \phi(\alpha_1) + \phi(\alpha_2)$. So ϕ is an isomorphism.³

5 Central Charges

Following [7] and [] and

References

- [1] R. K. Amayo and Ian Stewart. *Infinite-dimensional Lie Algebras*. Mathematical Monographs. Noordhoff International Publishing, Leyden, Netherlands, 1974.
- [2] Dragomir Ž. Doković and Kaiming Zhao. Derivations, isomorphisms and second cohomology of generalized Witt algebras. *Transactions of the American Mathematical Society*, 350(2):643–664, 1998. Actual page range: 643-664 per AMS records.
- [3] Victor G. Kac. Description of filtered lie algebras with which graded lie algebras of Cartan type are associated. *Mathematics of the USSR-Izvestiya*, 8(4):801–835, 1974. Original Russian: Izvestiya Akademii Nauk SSSR, Seriya Matematicheskaya, Tom 38 (1974), 832–834.
- [4] Victor G. Kac. *Infinite-Dimensional Lie Algebras*. Cambridge Monographs in Mathematical Physics. Cambridge University Press, 3rd edition, 1990.
- [5] Kyu-Hwan Nam. Generalized W and H type lie algebras. Algebra Colloquium, 6(3):329–340, 1999.
- [6] Jonathan Pakianathan and Ki Bong Nam. On generalized witt algebras in one variable, 2010.
- [7] Joerg Teschner. A guide to two-dimensional conformal field theory, 2017.

 $^{^3}Witt(A)\int$ reverses the psuedomonoid spectrum theorems proved in [6] on $Witt(A)\partial$ but they are valid