Question 3

Teng Long

February 10, 2017

proposition: For any integer n, the number $n^2 + n + 1$ is odd.

proof: we prove by the fact that multiply an odd integer by an even integer results a even number.

1. the proposition is equal to –For any integer n, the number $n^2 + n$ is even (as an even number plus one equal to an odd number)

- 2. $n^2 + n = n(n+1)$
- 3. for any integer n, and n + 1. If n is odd, then n + 1 is even. if n is even then n + 1is odd. there is no other situation.
 - 4. multiply an odd number by an even number give an even number.
 - 5. therefore $n(n+1) = n^2 + n$ is even 6. **conclusion:** $n^2 + n + 1$ is odd.