Notes

October 1, 2014

if $\lim \inf x_n = L$ then there exists $\{x_{n_k}\}$ such that $\lim x_{n_k} = L$ $l = \liminf_{n \to \infty} x_n = \lim \left(\inf \left\{ \underbrace{x_{n_1}, x_{n_2}, x_{n_3}, \dots}_{c_n} \right\} \right)$

why not just let c_n be the subsequence? because c_n may not be equal to any of the x_k in the sequence $c_n = \inf\{x_{n_1}, x_{n_2}, \dots\}$ give $\varepsilon = 2^{-n}$ there exists $x_{n_k} \in \{x_{n_1}, x_{n+1}, x_{n+2}, \dots\}$ such that $|c_n - x_{n_k}| < 2^{-n}$ by def of infinum

we has a sequence $\{c_n\}$ given $\varepsilon > 0$ there exists N such that $|c_n - L| < \varepsilon$ if $n \ge N$, we approximate each c_n by some x_{n_k} from the original sequence sutch that

convergence test for series

first we talk about series with positive terms $\sum_{k=1}^{\infty} a_k$, $s_n = \sum_{k=1}^{n} a_k$. So if s_n is bounded about then the series

is convergent. and if not, it is divergent. $\text{geometric series } \sum_{n=0}^{\infty} r^n \text{ is convergent if } |r| < 1. \ s_n = \sum_{k=0}^{\infty} n r^k = 1 + r + r^2 + \dots + r^n, r s_n = r + r^2 + r^3 + \dots, sn - r Sn = 1 - r^{n+1}$ $s_n = \frac{1 - r^{n+1}}{1 - r} \rightarrow \frac{1}{1 - r}$

comparison test

if $\forall n, |a_n| \leq b_n$

- if $\sum_{n=1}^{\infty} b_n$ is convergent then $\sum_{n=1}^{\infty} a_n$ is convergent,
- if $\sum a_n$ is divergent, so is $\sum b_n$.

3.2.b

show that if $(|a_n|)_{n=1}^{\infty}$ is summable then so is $(a_n)_{n=1}^{\infty}$.

$$\sum_{k=n+1}^{m} |a_k| < \varepsilon \text{ for all } N \le n \le m \text{ because is is summable}$$

$$\left| \sum_{k=n+1}^{m} a_k \right| \le \sum_{k=n+1}^{m} |a_k| < \varepsilon$$

so then $\sum a_k$ is also cauchy and summable

cauchy-schwartz inequality

$$\sum_{k=1}^{n} a_k b_k \le \left(\sum_{k=1}^{n} a_k^2\right)^{1/2} \left(\sum_{k=1}^{n} b_k^2\right)^{1/2}$$

3.2.f

leibniz test for alternating series

if $\{a_n\}$ is a monotone decreasing sequence of positive terms with the $\lim a_n = 0$ then $\sum_{n=1}^{\infty} (-1)^n a_n$ is convergent

note!

a sequence my have the property $\lim |a_n - a_{n+1}| = 0$ but not be cauchy

3.2.h

Show that if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with $b_n \ge 0$ such that $\limsup_{n \to \infty} < \infty$ and $\sum_{n=1}^{\infty} b_n < \infty$, then the series $\sum_{n=1}^{\infty} a_n$ converges.

$$\begin{split} \left| \left(\sup_{k \geq n} \frac{|a_k|}{b_k} \right) - L \right| &< \varepsilon \\ \left(\sup_{k \geq n} \frac{|a_k|}{b_k} \right) &< L + \varepsilon \\ \frac{|a_k|}{b_k} &< L \varepsilon \\ |a_k| &< (L + \varepsilon) b_k \end{split}$$

3.2.j

 $\liminf \frac{a_n+1}{a_n} \le \liminf a_n^{\frac{1}{n}} \le \limsup a_n^{\frac{1}{n}} \le \limsup a_n+1$

step 1

if $x \geq r$ for all r > b then x is a lower bound for the set $\{r \in \mathbb{R} : r > b\}$, $x \leq \inf\{r \in \mathbb{R} : r > b\} = b$ we will show that if $\limsup \frac{a_n}{b_n} < r$ then $\limsup a_n^{\frac{1}{n}} \leq r$ and then apply step one. let $r > \limsup \frac{a_{n+1}}{a_n}$ then $\exists N$ such that $r > \frac{a_{n+1}}{a_n} \forall n \geq N$

$$a_{N+1} < ra_N$$

$$a_{N+2} < ra_{N+1} \le r^2 a_N$$

$$a_{N+K} < r^k a_N$$

$$a_{N+k}^{\frac{1}{N+k}} < (r^k a_N)^{\frac{1}{N+k}} Z$$