Full Custom And Or Inverter(AOI) Layout Satya Raviteja Erpina, Haranadh Chintapalli, Soma Sai Charitha Group Number - 5

Date – 2/24/2017 Introduction and Physical Properties

Cell Description

AOI logic is a two-level compound logic functions constructed from the combination of one or more AND gates followed by a NOR gate. In this report we discuss about the AOI with the below logic function:

$$Q = \sim (AB + C)$$

where Q is output and A, B, C are input.

AND operation is done on A and B. OR operation is done on AB and C. NOT operation is done on AB + C.

The AOI logics are employed in the circuit design because their construction using MOSFET's is simpler and more efficient than the sum of individual gates. As a result, it is faster and consumes lesser power. Its size is smaller and as a result, the fabrication cost is minimal.

CELL SYMBOL

Cell Truth Table

Truth table of AOI is as shown below. Logic function is same as that of Inverter.

$$Q = \sim (AB + C)$$

Where Q is output and A,B,C are input.

С	CELL OU	TPUTS		
А	В	С		
0	0	0	Н	1
0	0	1	L	0
0	1	0	Н	1
0	1	1	L	0
1	0	0	Н	1
1	0	1	L	0
1	1	0	L	0
1	1	1	L	0

Table 1: AOI truth table

Input and Output Parasitic Capacitance Table

From the schematic calculate each input's capacitance normalized to the nominal inverter (your inverter standard cell) by the width of the transistor or drain area as needed. This entry should be an integer fraction similar to Weste and Harris. [Note the normalization is to a standard inverter (the standard cell inverter INV1X). Repeat the rows as needed.]

Computed Cell Input Capacitance				
Input Name Capacitance (/Cinv)				
Output Name Capacitance (/Cinv)				

Performance Analysis

Rise and Fall Times

[Note: It is highly desirable to split the simulation work load among the team members so that each team member learns how to use the tools.]

FOx denotes output loads. The loads are defined by the number of identical logic gates. Use 20%-80% swings for the output rise and fall entries. Use a 1.2V power supply.

For each output load in the table complete transient simulations. Remember to include a CMOS non-inverting buffer between the ideal voltage source and the logic gate driving the FOx load. Note rise $t_{\rm r}$ / fall $t_{\rm f}$ times are at the input to the logic gate driving the load, **not** the rise/fall times for the input ideal voltage source.

Complete the number needed copies (copies = No. input stacks x No. outputs) of the table below.

For multi-input gates, complete tables for each transistor stack (i.e. each branch connected to the output) using the stack's worst case single controlling input transition in the stack. Label the tables with worst case input in each stack and the output. Replace **X** below with the signal name.

Input X: Output Rise Time Data t _r (ns)					
Input rise/fall Output Load (FOx)					
time (ns)	0	1	2	4	8
0.04					
0.06					

Stack Input Combination: Replace with Boolean Product

Stack S, Input X: Output Fall Time Data t_f (ns)

Input rise/fall	Output Load (FOx)				
time (ns)	0	1	2	4	8
0.04					
0.06					

Stack Input Combination: Replace with Boolean Product

Propagation Delays

For the range of output loads shown in the table simulate propagation delays (low to high t_{plh} and high to low t_{phl}) for the stack's worst case single controlling input transition. The input controlling the output is the same input reported in the rise and fall time section. Use a 1.2V power supply and timing measurements start when input to the logic gate driving the FOx load crosses the 50% of the rail and stop when the logic gate driving output crosses 50% of the rail. Negative values are entered as 0.

Label the tables with the Boolean product (e.g. AB) of the transistor stack and the output. Complete copies of the table below for each branch connected to the output.

Data Worst Case Low to High Propagation Delay Data t _{plh} (ns)					
Input rise/fall	Output Load (FOx)				
time (ns)	0	1	2	4	8
0.04					
0.06					

Worse Case Input Combination: Replace with Boolean Product

Data Worst Case High to Low Propagation Delay Data t _{phl} (ns)					
Input rise/fall	Output Load (FOx)				
time (ns)	0	1	2	4	8
0.04					
0.06					

Worse Case Input Combination: Replace with Boolean Product

From each row of the slew rate data compute the best fit linear propagation delay equation for low-to-high T_{plh} (h) and high-to-low T_{phl} (h). The model predicts a

delay, in nanoseconds, as a function of the output load, h, Cout/Cin = FOx. The model line is parameterized by a slope, m, and an intercept, b. The units of m are (ns/FOx) and the units of b are ns.

Complete the table below by increasing the number of rows for multiple input gates. The row labeled **All data** is the computed slope and intercept after combining data from all slew rates.

Complete the **Model** row for the gate using the assumptions and methods of the linear delay model from Weste and Harris. Only skewed standard cells will have different values propagation models for rising and falling inputs.

All data means combine the results for both slew rates into a single model.

Discuss in your own words the differences in the calibration and the Weste Harris linear delay model. Discuss the differences in high-to-low versus low-to-high models.

	Data Model Propagation Delay Equation $T_{pd}(h) = b + m \cdot h$						
Input Slew	Rising Logical	Falling Logical	Parasitic	Parasitic			
Rate (ns) (br)	Effort (m _r)	Effort (m _f)	Rising Delay (br)	Falling Delay			
0.04							
0.06							
All data							

In the table below normalize the model for the T_{pd} (h) results of the table above to give the logical effort model D(h) described in Weste and Harris. D(h) is a unitless value and predicts the delay as multiples of the standard inverter delay. Normalization is based on the observed CMOS inverter parasitic delay, b_{inv} . *Recall all data* $p_{inv} \square 1$.

Inverte	Inverter Normalized Data Model Propagation Delay Equation $D(h) = p + g \cdot h$						
Input Slew	Rising Logical	Falling Logical	Parasitic	Parasitic			
Rate (ns) (pr)	Effort (gr)	Effort (g _f)	Rising Delay (pr)	Falling Delay			
0.04							
0.06							
All data							
W&H							
Model							

Power-Delay

Simulate the cell for a sequence of input combinations based on the Gray code and compute the time averaged power (mW), average delay (ns), and average powerdelay product (mW ns = pJ). The Gray code restricts the simulations to single input transitions and ignores the large number of multiple input change combinations. Use the same slew rate for all input transitions. Use equal output loads for multiple output gates. Use a period of 2X maximum output delay with FO=8.

Average Power Data (mW)								
Input Slew Output Load (FOx)								
(ns)	0	0 1 2 4 8						
0.04								
0.06								

verage Delay Data (ns)					
Input Slew Output Load (FOx)					
(ns)	0	1	2	4	8
0.04					
0.06					

Average Power-Delay Data (pJ)

Input Slew	Output Load (FOx)				
(ns)	0	1	2	4	8
0.04					
0.06					

Schematic diagram

Figure 1 : Schematic diagram of AOI Custom

Transistor Dimensions

Save a color or black and white layout of the cell in EPS (i.e. Encapsulated Postscript) format. The cell dimensions are saved in both lambda (\square) and microns (\square m). Record the transistor length and width dimensions (nm). [Repeat the transistor row as needed.]

Cell Physical Dimensions							
	X	Y					
Cell Dimension in □□							
Cell Dimension in □m							
Transisto	r Dimensions						
UNIT Name	Length (nm)	Width (nm)					
NMOS N0, N1, N2	50	180					
PMOS P0, P1, P2	50	270					

Table 2: AOI Transistor dimensions

Cell Layout

 $\ \ \, \textbf{Figure 2:Layout diagram of AOI full custom} \\$

DRC REPORT

====== =====

=== CALIBRE::DRC-F SUMMARY REPORT

===

Execution Date/Time: Wed Feb 22 22:47:29 2017

Calibre Version: v2013.2_35.25 Wed Jul 3 15:43:57 PDT 2013

```
Rule File Pathname:
                           /u/erpina/cadence/DRC-files/_calibreDRC.rul_
Rule File Title:
Layout System:
                           GDS
Layout Path(s):
                          AOI.calibre.db
Layout Primary Cell: AOI
Current Directory: /u/erpina/cadence/DRC-files
User Name: erpina
Maximum Results/RuleCheck: 1000
Maximum Result Vertices: 4096
DRC Results Database: AOI.drc.results (ASCII)
Layout Depth:
                         ALL
Text Depth:
                         PRIMARY
Summary Report File: AOI.drc.summary (REPLACE)
Geometry Flagging: ACUTE = NO SKEW = NO ANGLED = NO OFFGRID = NO
NONSIMPLE POLYGON = NO NONSIMPLE PATH = NO
Excluded Cells:
CheckText Mapping: COMMENT TEXT + RULE FILE INFORMATION
                         MEMORY-BASED
Layers:
Keep Empty Checks: YES
______
--- RUNTIME WARNINGS
--- ORIGINAL LAYER STATISTICS
LAYER pwell ..... TOTAL Original Geometry Count = 5
LAYER nwell ..... TOTAL Original Geometry Count = 5
LAYER active ..... TOTAL Original Geometry Count = 44
LAYER poly ..... TOTAL Original Geometry Count = 27
LAYER pimplant ... TOTAL Original Geometry Count = 4
LAYER nimplant ... TOTAL Original Geometry Count = 4
LAYER vth ...... TOTAL Original Geometry Count = 0
LAYER vtg ...... TOTAL Original Geometry Count = 0
LAYER metal1 .... TOTAL Original Geometry Count = 28
LAYER metal2 ..... TOTAL Original Geometry Count = 0
LAYER metal3 ..... TOTAL Original Geometry Count = 0
LAYER metal4 .... TOTAL Original Geometry Count = 0
LAYER metal5 ..... TOTAL Original Geometry Count = 0
LAYER metal6 .... TOTAL Original Geometry Count = 0
LAYER metal7 .... TOTAL Original Geometry Count = 0
LAYER metal8 .... TOTAL Original Geometry Count = 0
LAYER metal9 ..... TOTAL Original Geometry Count = 0
LAYER metal10 .... TOTAL Original Geometry Count = 0
LAYER contact .... TOTAL Original Geometry Count = 23
LAYER vial ..... TOTAL Original Geometry Count = 0
LAYER via2 ..... TOTAL Original Geometry Count = 0
LAYER via3 ..... TOTAL Original Geometry Count = 0
LAYER via4 ..... TOTAL Original Geometry Count = 0
LAYER via5 ..... TOTAL Original Geometry Count = 0
LAYER via6 ..... TOTAL Original Geometry Count = 0
LAYER via7 ..... TOTAL Original Geometry Count = 0
```

```
LAYER via8 ...... TOTAL Original Geometry Count = 0
LAYER via9 ..... TOTAL Original Geometry Count = 0
--- RULECHECK RESULTS STATISTICS
RULECHECK Well.1 ..... TOTAL Result Count = 0
RULECHECK Well.2 ..... TOTAL Result Count = 0
RULECHECK Well.4 ..... TOTAL Result Count = 0
RULECHECK Poly.1 ..... TOTAL Result Count = 0
RULECHECK Poly.2 ..... TOTAL Result Count = 0
RULECHECK Poly.3 ..... TOTAL Result Count = 0
RULECHECK Poly.4 ..... TOTAL Result Count = 0
RULECHECK Poly.5 ..... TOTAL Result Count = 0
RULECHECK Poly.6 ..... TOTAL Result Count = 0
RULECHECK Active.1 .... TOTAL Result Count = 0
RULECHECK Active.2 .... TOTAL Result Count = 0
RULECHECK Active.3 .... TOTAL Result Count = 0
RULECHECK Active.4 .... TOTAL Result Count = 0
RULECHECK Implant.1 ... TOTAL Result Count = 0
RULECHECK Implant.2 ... TOTAL Result Count = 0
RULECHECK Implant.3 ... TOTAL Result Count = 0
RULECHECK Implant.4 ... TOTAL Result Count = 0
RULECHECK Implant.6 ... TOTAL Result Count = 0
RULECHECK Contact.1 ... TOTAL Result Count = 0
RULECHECK Contact.2 ... TOTAL Result Count = 0
RULECHECK Contact.3 ... TOTAL Result Count = 0
RULECHECK Contact.4 ... TOTAL Result Count = 0
RULECHECK Contact.5 ... TOTAL Result Count = 0
RULECHECK Contact.6 ... TOTAL Result Count = 0
RULECHECK Metal1.1 .... TOTAL Result Count = 0
RULECHECK Metal1.2 .... TOTAL Result Count = 0
RULECHECK Metal1.3 .... TOTAL Result Count = 0
RULECHECK Metal1.4 .... TOTAL Result Count = 0
RULECHECK Via1.1 ..... TOTAL Result Count = 0
RULECHECK Via1.2 ..... TOTAL Result Count = 0
RULECHECK Via1.3 ..... TOTAL Result Count = 0
RULECHECK Via1.4 ..... TOTAL Result Count = 0
RULECHECK Metal2.1 .... TOTAL Result Count = 0
RULECHECK Metal2.2 .... TOTAL Result Count = 0
RULECHECK Metal2.3 .... TOTAL Result Count = 0
RULECHECK Metal2.4 .... TOTAL Result Count = 0
RULECHECK Via2.1 ..... TOTAL Result Count = 0
RULECHECK Via2.2 ..... TOTAL Result Count = 0
RULECHECK Via2.3 ..... TOTAL Result Count = 0
RULECHECK Via2.4 ..... TOTAL Result Count = 0
RULECHECK Metal3.1 .... TOTAL Result Count = 0
RULECHECK Metal3.2 .... TOTAL Result Count = 0
RULECHECK Metal3.3 .... TOTAL Result Count = 0
RULECHECK Metal3.4 .... TOTAL Result Count = 0
RULECHECK Via3.1 ..... TOTAL Result Count = 0
RULECHECK Via3.2 ..... TOTAL Result Count = 0
RULECHECK Via3.3 ..... TOTAL Result Count = 0
```

RULECHECK	Via3.4	TOTAL	Result	Count	=	0
RULECHECK	Metal4.1	TOTAL	Result	Count	=	0
RULECHECK	Metal4.2	TOTAL	Result	Count	=	0
RULECHECK	Metal4.3	TOTAL	Result	Count	=	0
RULECHECK	Via4.1	TOTAL	Result	Count	=	0
RULECHECK	Via4.2	TOTAL	Result	Count	=	0
RULECHECK	Via4.3	TOTAL	Result	Count	=	0
RULECHECK	Via4.4	TOTAL	Result	Count	=	0
RULECHECK	Metal5.1	TOTAL	Result	Count	=	0
RULECHECK	Metal5.2	TOTAL	Result	Count	=	0
RULECHECK	Metal5.3	TOTAL	Result	Count	=	0
RULECHECK	Via5.1	TOTAL	Result	Count	=	0
RULECHECK	Via5.2	TOTAL	Result	Count	=	0
RULECHECK		TOTAL	Result	Count	=	0
	Via5.4	TOTAL	Result		=	0
	Metal6.1	TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		-	Result		=	0
RULECHECK		-	Result		=	0
RULECHECK		-	Result		=	0
RULECHECK		-	Result		=	0
	Via6.4		Result		=	0
	Metal7.1	-	Result		=	0
RULECHECK		-	Result		=	0
	Metal7.3	-	Result	Count	=	0
	Via7.1		Result		=	0
	Via7.1 Via7.2	-	Result	Count	=	0
	Via7.3	-	Result		=	0
	Via7.3 Via7.4		Result		=	0
	Metal8.1		Result		=	0
RULECHECK					=	0
			Result			0
RULECHECK			Result		=	0
	Via8.1 Via8.2		Result		=	-
			Result		=	0
	Via8.3		Result		=	0
	Via8.4		Result		=	0
	Metal9.1		Result			0
	Metal9.2		Result			
	Metal9.3		Result			0
	Via9.1		Result			0
RULECHECK		-	Result			0
RULECHECK			Result			0
RULECHECK			Result			0
	Metal10.1		Result			0
	Metal10.2		Result			0
	Metal10.3		Result			0
	Metal1.5		Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK	Metal2.6	TOTAL	Result	Count	=	0

						_
RULECHECK			Result		=	0
RULECHECK		-	Result		=	0
RULECHECK		-	Result		=	0
RULECHECK		-	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result	Count	=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK	Metal6.7	TOTAL	Result	Count	=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result	Count	=	0
	Metal10.5	TOTAL	Result	Count	=	0
	Metal10.6	TOTAL	Result	Count	=	0
RULECHECK		TOTAL	Result	Count	=	0
RULECHECK		TOTAL	Result	Count	=	0
RULECHECK		TOTAL	Result	Count	=	0
RULECHECK		TOTAL	Result	Count	=	0
RULECHECK		TOTAL	Result	Count	=	0
RULECHECK	Grid.6	TOTAL	Result	Count	=	0
RULECHECK			Result		=	0
RULECHECK RULECHECK			Result		=	-
RULECHECK			Result Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK			Result			-
RULECHECK			Result			
TO LL CITECIO	0114.20	TOTUL	ICDUIC	Count	-	J

```
RULECHECK Grid.24 ..... TOTAL Result Count = 0
RULECHECK Grid.25 .... TOTAL Result Count = 0
RULECHECK Grid.26 ..... TOTAL Result Count = 0
______
--- SUMMARY
TOTAL CPU Time:
                          0
TOTAL REAL Time:
TOTAL Original Layer Geometries: 140
TOTAL DRC RuleChecks Executed: 156
TOTAL DRC Results Generated:
```

LVS REPORT

```
##
  CALIBRE SYSTEM
            ##
##
            ##
##
   LVS REPORT
            ##
```

```
REPORT FILE NAME:
                     AOI.lvs.report
LAYOUT NAME:
                  /u/erpina/cadence/LVS-files/AOI.src.net ('AOI')
/u/erpina/cadence/LVS-files/_calibreLVS.rul_
LVS Rule File for FreePDK45
                      AOI.calibre.db
SOURCE NAME:
RULE FILE:
RULE FILE TITLE:
                     Mask
LVS MODE:
RULE FILE NAME:
CREATION TIME:
                    /u/erpina/cadence/LVS-files/_calibreLVS.rul_
                     Wed Feb 22 22:48:13 2017
CURRENT DIRECTORY:
                     /u/erpina/cadence/LVS-files
USER NAME:
                      erpina
CALIBRE VERSION:
                      v2013.2 35.25 Wed Jul 3 15:43:57 PDT 2013
******************
                           OVERALL COMPARISON RESULTS
*****************
                                           #
```

CORRECT

	# # #		# # \/ ##################
INITIAL NUMBERS	S OF OBJEC		
	Layout	Source	Component Type
Nets:	8	8	
Instances:	3	3	mn (4 pins) mp (4 pins)
Total Inst:	6	6	
NUMBERS OF OBJE	ECTS AFTER	TRANSFOR	RMATION
	Layout	Source	Component Type
Nets:	6	6	
Instances:	1 1 1	1 1 1	mn (4 pins) SMN2 (4 pins) SPMP_2_1 (5 pins)
Total Inst:	3	3	
******	******	* * * * * * * * * * * * * * * * * * *	LVS PARAMETERS
o LVS Setup:			
LVS COMPONED LVS COMPONED // LVS PIN N LVS POWER NA LVS GROUND N LVS CELL SUB LVS RECOGNIZ LVS IGNORE B	NT SUBTYPE NAME PROPE AME NAME PPLY ZE GATES	PROPERTY	element model "VDD" "VSS" "GROUND" NO ALL YES

LVS EXACT SUBTYPES NO LAYOUT CASE NO SOURCE CASE NO LVS COMPARE CASE NO LVS DOWNCASE DEVICE NO LVS REPORT MAXIMUM 50	LAYOUT CASE NO SOURCE CASE NO LVS COMPARE CASE NO LVS DOWNCASE DEVICE NO	LVS CHECK PORT NAMES LVS IGNORE TRIVIAL NAMED PORTS LVS BUILTIN DEVICE PIN SWAP LVS ALL CAPACITOR PINS SWAPPABLE LVS DISCARD PINS BY DEVICE LVS SOFT SUBSTRATE PINS LVS INJECT LOGIC LVS EXPAND UNBALANCED CELLS LVS FLATTEN INSIDE CELL LVS EXPAND SEED PROMOTIONS LVS PRESERVE PARAMETERIZED CELLS LVS GLOBALS ARE PORTS LVS SPICE PREFER PINS LVS SPICE ALLOW FLOATING PINS // LVS SPICE ALLOW UNQUOTED STRINGS LVS SPICE CONDITIONAL LDD LVS SPICE CULL PRIMITIVE SUBCIRCUITS LVS SPICE IMPLIED MOS AREA // LVS SPICE MULTIPLIER NAME LVS SPICE REDEFINE PARAM LVS SPICE REDEFINE PARAM LVS SPICE SCALE X PARAMETERS LVS SPICE STRICT WL // LVS SPICE OPTION LVS STRICT SUBTYPES	NO NO YES NO NO YES NO NO YES NO NO YES YES NO NO NO YES YES NO
	// LVS SIGNATURE MAXIMUM // LVS FILTER UNUSED OPTION	LVS DOWNCASE DEVICE LVS REPORT MAXIMUM	NO 50
LVS REPORT UNITS // LVS NON USER NAME PORT // LVS NON USER NAME NET // LVS NON USER NAME INSTANCE	// BECOUNT IOU		VFC
// LVS NON USER NAME PORT // LVS NON USER NAME NET // LVS NON USER NAME INSTANCE // Reduction		LVS REDUCE SERIES MOS LVS REDUCE SEMI SERIES MOS LVS REDUCE SPLIT GATES LVS REDUCE PARALLEL BIPOLAR LVS REDUCE SERIES CAPACITORS LVS REDUCE PARALLEL CAPACITORS	YES YES YES YES YES YES YES
// LVS NON USER NAME PORT // LVS NON USER NAME NET // LVS NON USER NAME INSTANCE // Reduction LVS REDUCE SERIES MOS YES LVS REDUCE PARALLEL MOS YES LVS REDUCE SEMI SERIES MOS YES LVS REDUCE SPLIT GATES YES LVS REDUCE PARALLEL BIPOLAR YES LVS REDUCE SERIES CAPACITORS YES	LVS REDUCE SERIES MOS YES LVS REDUCE PARALLEL MOS YES LVS REDUCE SEMI SERIES MOS YES LVS REDUCE SPLIT GATES YES LVS REDUCE PARALLEL BIPOLAR YES LVS REDUCE SERIES CAPACITORS YES	TAS VEDOCE LAVATUEL CALACITORS	тго

LVS RE	EDUCE PARA	ES RESISTORS LLEL RESISTORS LLEL DIODES RIORITY			7	YES YES YES PARALLEL
	HORT EQUIV. ace Proper	ALENT NODES			1	10
TRACE	PROPERTY	mn(nmos vtl)	1	1	4e-09	ABSOLUTE
TRACE	PROPERTY	mn (nmos vtl)				
TRACE	PROPERTY	mp (pmos vtl)				
TRACE	PROPERTY	mp (pmos vtl)				
TRACE	PROPERTY	mn (nmos vth)				ABSOLUTE
TRACE	PROPERTY	mn (nmos vth)	W	W	4e-09	ABSOLUTE
TRACE	PROPERTY	mp (pmos vth)	1	1	4e-09	ABSOLUTE
TRACE	PROPERTY	mp (pmos vth)				
TRACE	PROPERTY	mn(nmos vtg)	1	1	4e-09	ABSOLUTE
TRACE	PROPERTY	mn(nmos vtg)	W	W	4e-09	ABSOLUTE
TRACE	PROPERTY	mp(pmos_vtg)	1	1	4e-09	ABSOLUTE
TRACE	PROPERTY	mp (pmos vtg)	W	W	4e-09	ABSOLUTE
TRACE	PROPERTY	mn(nmos thkox)	1	1 4e-0	9 ABSOLUTE
TRACE	PROPERTY	mn(nmos thkox)	W	w 4e-0	9 ABSOLUTE
TRACE	PROPERTY	mp (pmos thkox)	1	1 4e-0	9 ABSOLUTE
TRACE	PROPERTY	mp(pmos_thkox				

	Matched Layout	Matched Source	Unmatched Layout	Unmatched Source	Component Type
Nets:	6	6	0	0	
<pre>Instances: mn(NMOS VTL)</pre>	1	1	0	0	
_	1	1	0	0	SMN2
	1	1	0	0	SPMP_2_1
Total Inst:	3	3	0	0	

o Initial Correspondence Points:

Nets: vdd! C B A Y

******	***********

	SUMMARY
******	***********

Total CPU Time: 0 sec Total Elapsed Time: 0 sec