NAME: SOLUTION

PROBLEM 1 (30 pts): Use the mm scale on your ruler to measure all distances. For these problems 10mm=1m. Do two of the three mechanisms.

1a. Given that link 2 is rotating at a rate of 2 1/s ccw, calculate the velocity of point P₂ using instant centers and illustrate v_{P2} on the figure in the appropriate location and to scale. T34 1.5m/s 3.67/5 1.8m -1-

1b. Given that link 2 is rotating at a rate of 5 1/s cw, calculate the angular velocities of the other **3** links.

$$\omega_{4} = \frac{28 \text{ m/s}}{1.2 \text{ m}} = 23 \text{ /s} c\omega$$

3

I23I34

In Isu,

PROBLEM 2 (35pts): Design a double-dwell cam to move a follower from 0 to 2.5 inches in 60°, dwell for 120°, fall 2.5 inches in 30°, and dwell for the reminder. The total cycle must take 4s. Plot the s-*v-a-j* diagrams.

SEGMENT 1: FOLLOWER STARTS AT REST AND IS RAISEN TO 2.5in. IN 60° (77)

SEGMENT 2: DWELL FOR \$200 (397)

SEGMENT 3: FOLLOWER RETURNS TO START POSSITION in 30° (1/6)

SEGMENT 4: DWELL FOR 150° (51)

 $\omega = \frac{2\pi}{4s} = \frac{\pi}{2s}$ 291 V 4 3 0

FIGURE 1: ILLUSTRATION OF THE BOUNDARY CONDITIONS FOR EACH SEGMENT OF THE PROPILE THAT ARE INFORED FROM THE PROBLEM-STATEMENT.

$$S_i = h \left[\frac{\Theta}{3} - \frac{1}{2\pi} \sin(2\pi \frac{\Theta}{3}) \right] = 2.5 \text{ in } \left[\frac{\Theta}{\pi i/3} - \frac{1}{2\pi} \sin(2\pi \frac{\Theta}{\pi i/3}) \right]$$

$$S_1 = 2.5 \ln \left[\frac{3 \cdot \Theta}{9T} - \frac{1}{27} \cdot \sin (6\Theta) \right]$$

$$\mathcal{V}_{1} : \frac{h}{\beta} \left[1 - \cos\left(2\Re\frac{\Theta}{\beta}\right) \right] = \frac{2.5 \text{ in}}{\Re J_{3} \text{ rad}} \left[1 - \cos\left(2\Re\frac{\Theta}{\Re J_{3}}\right) \right]$$

$$V_1 = \frac{7.5}{97} \frac{10}{\text{rad}} \left[1 - \cos(6\theta) \right]$$

SEGMENT 2: 91/3 6069, 06025 291/3, B2 = 291/3

$$h = 2.5 \text{ in} = 52$$

$$V_2 = 0 \frac{\text{in}}{\text{ra}}$$

$$a_1 = 0 \frac{\text{in}}{\text{ra}}$$

$$j_2 = 0 \frac{\text{in}}{\text{ra}}$$

$$S_3 = -\frac{h}{\beta} \left[\Theta - \frac{\beta}{2\pi} \cdot \sin\left(2\pi\frac{\Theta}{\beta}\right)\right] + h = -\frac{2.5 \text{in}}{\pi/6} \cdot \left[\Theta - \frac{\pi/6}{2\pi} \cdot \sin\left(2\pi\frac{\Theta}{\pi/6}\right)\right] + 2.5 \text{in}$$

$$V_3 = -\frac{h}{l^3} \left[1 - \cos \left(2\pi \cdot \frac{\Theta}{l^3} \right) \right] = -\frac{2.51n}{\pi l_6} \left[1 - \cos \left(2\pi \cdot \frac{\Theta}{\pi l_6} \right) \right]$$

$$V_3 = -\frac{15}{91} \frac{10}{100} \left[1 - \cos(12.0) \right]$$

SECHENT 4: #1/6 66629T, 05646 \$, 34 = 59/6

PROBLEM 3 (35pts). Using your numerical program, compute the location of the ground points that will allow this linkage to pivot at A and B and travel through the three positions shown. Make sure to attach your output.

$$\delta_{z} = \tan^{-1} \frac{-20 \text{cm}}{20 \text{cm}} = 315^{\circ}$$
 $\rho_{31} = 50 \text{ cm}$
 $\delta_{3} = 270^{\circ}$
 $\delta_{z} = 340^{\circ}$
 $\delta_{3} = 330^{\circ}$

$$P_{21} = \sqrt{(20cm)^2 + (20cm)^2} = 28.28cm$$

$$\delta_2 = \tan^{-1} \frac{-20cm}{20cm} = 315^{\circ}$$

$$P_{31} = 50cm$$

$$\delta_3 = 270^{\circ}$$

$$\delta_2 = 340^{\circ}$$

$$\delta_3 = 340^{\circ}$$

$$\delta_3 = 330^{\circ}$$

$$\delta_3 = 370^{\circ}$$

THREE POSITION ANALYTICAL MOTION SYNTHESIS

$$\vec{W_2} + \vec{Z}_2 = \vec{W_1} + \vec{Z}_1 + \vec{P}_{21}; \quad \vec{W_3} + \vec{Z}_3 = \vec{W_1} + \vec{Z}_1 + \vec{P}_{31}$$

$$\begin{aligned} & \left| \vec{W_1} \right| = \left| \vec{W_2} \right| = \left| \vec{W_3} \right| = w; \quad \left| \vec{Z_1} \right| = \left| \vec{Z_2} \right| = \left| \vec{Z_3} \right| = z \\ & \vec{W_1} = w \cdot \left[\cos \left(\theta \right) \hat{i} + \sin \left(\theta \right) \hat{j} \right] \\ & \vec{W_2} = w \cdot \left[\cos \left(\theta + \beta_2 \right) \hat{i} + \sin \left(\theta + \beta_2 \right) \hat{j} \right] \\ & \vec{W_3} = w \cdot \left[\cos \left(\theta + \beta_3 \right) \hat{i} + \sin \left(\theta + \beta_3 \right) \hat{j} \right] \\ & \vec{Z_1} = z \cdot \left[\cos \left(\phi \right) \hat{i} + \sin \left(\phi \right) \hat{j} \right] \\ & \vec{Z_2} = z \cdot \left[\cos \left(\phi + \alpha_2 \right) \hat{i} + \sin \left(\phi + \alpha_2 \right) \hat{j} \right] \\ & \vec{Z_3} = z \cdot \left[\cos \left(\phi + \alpha_3 \right) \hat{i} + \sin \left(\phi + \alpha_3 \right) \hat{j} \right] \\ & \vec{P_{21}} = p_{21} \cdot \left[\cos \left(\delta_2 \right) \hat{i} + \sin \left(\delta_2 \right) \hat{j} \right] \end{aligned}$$

FIRST DYAD

GIVEN:	CHOSEN:		FIND:	
P12	28.28 β2	312.00	w	27.220
P13	50.00 β3	224.00	θ	51.086
δ2	315.00		z	28.561
δ3	270.00		ф	98.365
α2	340.00		W1x	17.098
α.3	330.00		W1y	21.179
			Z1x	-4.155
			Z1y	28.257

 $\vec{P}_{31} = p_{31} \cdot \left[\cos \left(\delta_3 \right) \hat{i} + \sin \left(\delta_3 \right) \hat{j} \right]$

	x-coord	y-coord.
O2	-12.943	-49.436
A1	4.155	-28.257
A2	14.237	-47.971
A3	-10.530	-76.548
P1	0.000	0.000
P2	19.997	-19.997
P3	0.000	-50.000

$$\begin{bmatrix} \cos \beta_2 - 1 & -\sin \beta_2 & \cos \alpha_2 - 1 & -\sin \alpha_2 \\ \sin \beta_2 & \cos \beta_2 - 1 & \sin \alpha_2 & \cos \alpha_2 - 1 \\ \cos \beta_3 - 1 & -\sin \beta_3 & \cos \alpha_3 - 1 & -\sin \alpha_3 \\ \sin \beta_3 & \cos \beta_3 - 1 & \sin \alpha_3 & \cos \alpha_3 - 1 \end{bmatrix} \cdot \begin{bmatrix} W_{1x} \\ W_{1y} \\ Z_{1x} \\ Z_{1y} \end{bmatrix} = \begin{bmatrix} p_{21} \cdot \cos \delta_2 \\ p_{21} \cdot \sin \delta_2 \\ p_{31} \cdot \cos \delta_3 \\ p_{31} \cdot \sin \delta_3 \end{bmatrix}$$

$$\vec{U}_{2} + \vec{S}_{2} = \vec{U}_{1} + \vec{S}_{1} + \vec{P}_{21}; \quad \vec{U}_{3} + \vec{S}_{3} = \vec{U}_{1} + \vec{S}_{1} + \vec{P}_{31}$$

$$|\vec{U}_{1}| = |\vec{U}_{2}| = |\vec{U}_{3}| = u; \quad |\vec{S}_{1}| = |\vec{S}_{2}| = |\vec{S}_{3}| = s$$

$$\vec{U}_{1} = u \cdot \left[\cos(\sigma)\hat{i} + \sin(\sigma)\hat{j}\right]$$

$$\vec{U}_{2} = u \cdot \left[\cos(\sigma + \gamma_{2})\hat{i} + \sin(\sigma + \gamma_{2})\hat{j}\right]$$

$$\vec{U}_{3} = u \cdot \left[\cos(\sigma + \gamma_{3})\hat{i} + \sin(\sigma + \gamma_{3})\hat{j}\right]$$

$$\vec{S}_{1} = s \cdot \left[\cos(\psi)\hat{i} + \sin(\psi)\hat{j}\right]$$

$$\vec{S}_{2} = s \cdot \left[\cos(\psi + \alpha_{2})\hat{i} + \sin(\psi + \alpha_{2})\hat{j}\right]$$

$$\vec{S}_{3} = s \cdot \left[\cos(\psi + \alpha_{3})\hat{i} + \sin(\psi + \alpha_{3})\hat{j}\right]$$

$$\vec{P}_{21} = p_{21} \cdot \left[\cos(\delta_{2})\hat{i} + \sin(\delta_{2})\hat{j}\right]$$

$$\vec{P}_{31} = p_{31} \cdot \left[\cos(\delta_{3})\hat{i} + \sin(\delta_{3})\hat{j}\right]$$

SECOND DYAD

GIVEN:		CHOSEN:		FIND:	
P12	28.28	γ2	323.00	u	64.865
P13	50.00	γ3	278.00	σ	18.920
δ2	315.00			s	83.248
δ3	270.00			Ψ	147.062
α2	340.00			Ú1x	61.361
α3	330.00			U1y	21.033
				S1x	-69.867
				S1y	45.265

		x-coord	y-coord.
0	4	8.506	-66.298
B	1	69.867	-45.265
B	2	70.169	-86.428
B	3	37.874	-124.134
P	1	0.000	0.000
P	2	19.997	-19.997
P	3	0.000	-50.000

-19.9970

0.0000

$$\begin{bmatrix} \cos \gamma_2 - 1 & -\sin \gamma_2 & \cos \alpha_2 - 1 & -\sin \alpha_2 \\ \sin \gamma_2 & \cos \gamma_2 - 1 & \sin \alpha_2 & \cos \alpha_2 - 1 \\ \cos \gamma_3 - 1 & -\sin \gamma_3 & \cos \alpha_3 - 1 & -\sin \alpha_3 \\ \sin \gamma_3 & \cos \gamma_3 - 1 & \sin \alpha_3 & \cos \alpha_3 - 1 \end{bmatrix} \cdot \begin{bmatrix} U_{1x} \\ U_{1y} \\ S_{1x} \\ S_{1y} \end{bmatrix} = \begin{bmatrix} p_{21} \cdot \cos \delta_2 \\ p_{21} \cdot \sin \delta_2 \\ p_{31} \cdot \cos \delta_3 \\ p_{31} \cdot \sin \delta_3 \end{bmatrix}$$

NON-QUICK-RETURN (From Three Position Results)

	X-pos	Y-pos	mag	angle	i	j
3P-O2 => O4	-12.943	-49.436	51.102	-104.7	-0.2533	-0.9674
3P-A1	4.155	-28.257	28.561	-81.6	0.1455	-0.9894
3P-A2	14.237	-47.971	50.039	-73.5	0.2845	-0.9587
3P-A3	-10.530	-76.548	77.269	-97.8	-0.1363	-0.9907

F	а	r	ŧ	n	r	c
	a	u	L	v	ш	J

Р	0.5 % dist up Link 4
K	2.5 Length of Link 3+Link 2 wrt B1B2

LIIIK I	30.732	
Link 2	12.619	
Link 3	50.475	
Link 4	13.610	Grashof

φ=	59.6
ψ=	65.1
θ_{2i} =	124.8
$\theta_{2ii}=$	365.5

$$r_3^2 = r_2^2 + (O_2 B)^2 - 2 \cdot r_2 \cdot (O_2 B) \cdot \cos \phi$$

$$r_3^2 = r_2^2 + (O_2 B)^2 - 2 \cdot r_2 \cdot (O_2 B) \cdot \cos \phi$$

$$\phi = \cos^{-1} \frac{r_2^2 + (O_2 B)^2 - r_3^2}{2 \cdot r_2 \cdot (O_2 B)}$$

$$\psi = \tan^{-1} \frac{B_{iy} - O_{2y}}{B_{ix} - O_{2x}}$$

$$\psi = \tan^{-1} \frac{B_{iy} - O_{2y}}{B_{ix} - O_{2x}}$$

$$\theta_{\alpha} = \phi + \psi$$

$$\theta_{2i} = \phi + \psi$$

$$\theta_{2ii} = 360 + \psi - \phi$$

					Norma	l (r)	Perpendic	:ular (θ)
	x comp	y comp	mag	angle	i	j	i	j
rO4	-12.943	-49.436	51.102	-104.7	-0.2533	-0.9674	0.9674	-0.2533
rP3O2-A1	17.098	21.179	27.220	51.1	0.6282	0.7781	-0.7781	0.6282
rP3O2-A2	27.180	1.465	27.220	3.1	0.9985	0.0538	-0.0538	0.9985
rP3O2-A3	2.413	-27.112	27.220	-84.9	0.0887	-0.9961	0.9961	0.0887
rB1	-4.394	-38.846	39.094	-96.5	-0.1124	-0.9937	0.9937	-0.1124
rO4B1	8.549	10.590	13.610	51.1	0.6282	0.7781	-0.7781	0.6282
rB2	-11.737	-62.992	64.076	-100.6	-0.1832	-0.9831	0.9831	-0.1832
rO4B2	1.207	-13.556	13.610	-84.9	0.0887	-0.9961	0.9961	0.0887
rBi	0.647	-48.703	48.708	-89.2	0.0133	-0.9999	0.9999	0.0133
rO4Bi	13.590	0.733	13.610	3.1	0.9985	0.0538	-0.0538	0.9985
rB1B2	-7.342	-24.146	25.238	-106.9	-0.2909	-0.9567	0.9567	-0.2909
rO2	-22.750	-99.211	101.786	-102.9	-0.2235	-0.9747	0.9747	-0.2235
rB102	-18.356	-60.365	63.094	-106.9	-0.2909	-0.9567	0.9567	-0.2909
rBi02	-23.397	-50.508	55.664	-114.9	-0.4203	-0.9074	0.9074	-0.4203
rB202	-11.014	-36.219	37.856	-106.9	-0.2909	-0.9567	0.9567	-0.2909
rA1	-19.079	-87.138	89.202	-102.4	-0.2139	-0.9769	0.9769	-0.2139
rO2A1	3.671	12.073	12.619	73.1	0.2909	0.9567	-0.9567	0.2909
rA2	-26.422	-111.284	114.377	-103.4	-0.2310	-0.9730	0.9730	-0.2310
rO2A2	-3.671	-12.073	12.619	-106.9	-0.2909	-0.9567	0.9567	-0.2909
rAi	-29.950	-88.848	93.760	-108.6	-0.3194	-0.9476	0.9476	-0.3194
rO2Ai	-7.200	10.363	12.619	124.8	-0.5705	0.8213	-0.8213	-0.5705
rAii	-10.190	-98.001	98.530	-95.9	-0.1034	-0.9946	0.9946	-0.1034
rO2Aii	12.561	1.210	12.619	5.5	0.9954	0.0959	-0.0959	0.9954
rB1A1	-14.685	-48.292	50.475	-106.9	-0.2909	-0.9567	0.9567	-0.2909
rBiAi	-30.597	-40.144	50.475	-127.3	-0.6062	-0.7953	0.7953	-0.6062
rBiAii	-10.837	-49.298	50.475	-102.4	-0.2147	-0.9767	0.9767	-0.2147
rB2A2	-14.685	-48.292	50.475	-106.9	-0.2909	-0.9567	0.9567	-0.2909
rO4O2	-9.807	-49.775	50.732	-101.1	-0.1933	-0.9811	0.9811	-0.1933

$\dot{\theta}_2 =$	1.047 1/s
$\ddot{\theta}_2 =$	0.000 1/s^2
ω3-1	-0.262 1/s
ω3-i	0.292 1/s
ω3-ii	0.011 1/s
ω3-2	0.262 1/s
ω4-1	0.000 1/s
ω4-i	-1.213 1/s
ω4-ii	0.959 1/s
ω4-2	0.000 1/s
α3-1	-0.848 1/s^2
α3-i	-0.783 1/s^2
α3-ii	0.027 1/s^2
α3-2	-0.509 1/s^2
α4-1	-3.392 1/s^2
α4-i	1.259 1/s^2
α4-ii	-0.069 1/s^2
α4-2	2.035 1/s^2

Kinematics					Normal (r)		Perpendicular (θ)	
Killellialics		v comp	mag	anglo	i	iai (1 <i>)</i>	reipellu	iculai (0)
.4	x comp	y comp	mag	angle	0.4000)	0.0044	0.4000
r1	9.807	49.775	50.732	78.9	0.1933	0.9811	-0.9811	0.1933
r4-1	8.549	10.590	13.610	51.1	0.6282	0.7781	-0.7781	0.6282
r4-i	13.590	0.733	13.610	3.1	0.9985	0.0538	-0.0538	0.9985
r4-2	1.207	-13.556	13.610	-84.9	0.0887	-0.9961	0.9961	0.0887
r2-1	3.671	12.073	12.619	73.1	0.2909	0.9567	-0.9567	0.2909
r2-i	-7.200	10.363	12.619	124.8	-0.5705	0.8213	-0.8213	-0.5705
r2-ii	12.561	1.210	12.619	5.5	0.9954	0.0959	-0.0959	0.9954
r2-2	-3.671	-12.073	12.619	-106.9	-0.2909	-0.9567	0.9567	-0.2909
r3-1	14.685	48.292	50.475	73.1	0.2909	0.9567	-0.9567	0.2909
r3-i	-30.597	-40.144	50.475	-127.3	-0.6062	-0.7953	0.7953	-0.6062
r3-ii	-10.837	-49.298	50.475	-102.4	-0.2147	-0.9767	0.9767	-0.2147
r3-2	14.685	48.292	50.475	73.1	0.2909	0.9567	-0.9567	0.2909
vA-1	-12.640	3.844	13.212	163.1	-0.9567	0.2909	-0.2909	-0.9567
vA-i	-10.850	-7.538	13.212	-145.2	-0.8213	-0.5705	0.5705	-0.8213
vA-ii	-1.266	13.151	13.212	95.5	-0.0959	0.9954	-0.9954	-0.0959
vA-2	12.640	-3.844	13.212	-16.9	0.9567	-0.2909	0.2909	0.9567
vB-1	0.000	0.000	0.000	undefined	undefind	undefind	undefind	undefind
vB-i	0.889	-16.485	16.509	-86.9	0.0538	-0.9985	0.9985	0.0538
vB-ii	-0.702	13.027	13.046	93.1	-0.0538	0.9985	-0.9985	-0.0538
vB-2	0.000	0.000	0.000	undefined	undefind	undefind	undefind	undefind
aA-1	-4.024	-13.234	13.833	-106.9	-0.2909	-0.9567	0.9567	-0.2909
aA-i	7.892	-11.360	13.833	-55.2	0.5705	-0.8213	0.8213	0.5705
aA-ii	-13.769	-1.326	13.833	-174.5	-0.9954	-0.0959	0.0959	-0.9954
aA-2	4.024	13.234	13.833	73.1	0.2909	0.9567	-0.9567	0.2909
aB-1	35.915	-28.994	46.158	-38.9	0.7781	-0.6282	0.6282	0.7781
aB-i	-20.920	16.026	26.353	142.5	-0.7938	0.6081	-0.6081	-0.7938
aB-ii	-12.437	-1.612	12.541	-172.6	-0.9917	-0.1285	0.1285	-0.9917
aB-2	27.586	2.455	27.695	5.1	0.9961	0.0887	-0.0887	0.9961

BONUS -Mechanism Kinematics

KINEMATIC ANALYSIS - CRITICAL POSITIONS			Normal (r)		Perpendicular (θ)			
	x-coord	y-coord.	mag	angle	i	j	i	j
O2	-12.943	-49.436	51.102	-104.7	-0.2533	-0.9674	0.9674	-0.2533
A1	4.155	-28.257	28.561	-81.6	0.1455	-0.9894	0.9894	0.1455
A2	14.237	-47.971	50.039	-73.5	0.2845	-0.9587	0.9587	0.2845
A3	-10.530	-76.548	77.269	-97.8	-0.1363	-0.9907	0.9907	-0.1363
P1	0.000	0.000	0.000	undefined	undefind	undefind	undefind	undefind
P2	19.997	-19.997	28.280	-45.0	0.7071	-0.7071	0.7071	0.7071
P3	0.000	-50.000	50.000	-90.0	0.0000	-1.0000	1.0000	0.0000

KINEMATIC ANALYSIS - CRITICAL POSITIONS			Normal (r)		Perpendicular (θ)			
	x-coord	y-coord.	mag	angle	i	j	i	j
04	8.506	-66.298	66.841	-82.7	0.1273	-0.9919	0.9919	0.1273
B1	69.867	-45.265	83.248	-32.9	0.8393	-0.5437	0.5437	0.8393
B2	70.169	-86.428	111.326	-50.9	0.6303	-0.7764	0.7764	0.6303
B3	37.874	-124.134	129.783	-73.0	0.2918	-0.9565	0.9565	0.2918
P1	0.000	0.000	0.000	undefined	undefind	undefind	undefind	undefind
P2	19.997	-19.997	28.280	-45.0	0.7071	-0.7071	0.7071	0.7071
P3	0.000	-50.000	50.000	-90.0	0.0000	-1.0000	1.0000	0.0000

SYNTHESIZED	

	DLω4-1 => ω2-1	0.0000 1/s
	DLω4-2i => ω2-2i	-1.2130 1/s
from Link	DLω4-2ii => ω2-2ii	0.9586 1/s
€ ⊐	DLω4-3 => ω2-3	0.0000 1/s
Input Drive	DLα4-1 => α2-1	-3.3915 1/s^2
팔집	DLα4-2i => α2-2i	1.2586 1/s^2
	DLα4-2ii => α2-2ii	-0.0691 1/s^2
	DLα4-3 => α2-3	2.0349 1/s^2
	ω3-1	0.0000 1/s
Ę	ω3-2i	-0.6209 1/s
<u>8</u>	ω3-2ii	0.4907 1/s
Angular Velocity	ω3-3	0.0000 1/s
<u> </u>	ω4-1	0.0000 1/s
屈	ω4-2i	-1.0979 1/s
Ĕ	ω4-2ii	0.8676 1/s
,	ω4-3	0.0000 1/s
	α3-1	-1.3142 1/s^2
	α3-2i	-0.1754 1/s^2
	α3-2ii	-0.5471 1/s^2
E C	α3-3	0.9531 1/s^2
Angular Acceleration	α4-1	-2.3524 1/s^2
Angular Accelera	α4-2i	0.2077 1/s^2
gn ce	α4-2i	-0.6442 1/s^2
Ac An	α4-3	1.7381 1/s^2

						Normal (r)		Perpendicular (θ)	
		x comp	y comp	mag	angle	i	j	i	j
	r1	21.449	-16.862	27.284	-38.2	0.7862	-0.6180	0.6180	0.7862
	r4-1	61.361	21.033	64.865	18.9	0.9460	0.3243	-0.3243	0.9460
	r4-2i	61.663	-20.130	64.865	-18.1	0.9506	-0.3103	0.3103	0.9506
	r4-2ii	61.663	-20.130	64.865	-18.1	0.9506	-0.3103	0.3103	0.9506
	r4-3	29.368	-57.836	64.865	-63.1	0.4528	-0.8916	0.8916	0.4528
	r2-1	17.098	21.179	27.220	51.1	0.6282	0.7781	-0.7781	0.6282
ıts	r2-2i	27.180	1.465	27.220	3.1	0.9985	0.0538	-0.0538	0.9985
ne L	r2-2ii	27.180	1.465	27.220	3.1	0.9985	0.0538	-0.0538	0.9985
Displacements	r2-3	2.413	-27.112	27.220	-84.9	0.0887	-0.9961	0.9961	0.0887
<u>8</u>	r3-1	65.712	-17.008	67.878	-14.5	0.9681	-0.2506	0.2506	0.9681
<u>.s</u>	r3-2i	55.932	-38.457	67.878	-34.5	0.8240	-0.5666	0.5666	0.8240
	r3-2ii	55.932	-38.457	67.878	-34.5	0.8240	-0.5666	0.5666	0.8240
	r3-3	48.404	-47.586	67.878	-44.5	0.7131	-0.7011	0.7011	0.7131
	rAP-1	-4.155	28.257	28.561	98.4	-0.1455	0.9894	-0.9894	-0.1455
	rAP-2i	5.760	27.974	28.561	78.4	0.2017	0.9795	-0.9795	0.2017
	rAP-2ii	5.760	27.974	28.561	78.4	0.2017	0.9795	-0.9795	0.2017
	rAP-3	10.530	26.548	28.561	68.4	0.3687	0.9295	-0.9295	0.3687
	vA-1	0.000	0.000		undefined	undefind	undefind	undefind	undefind
	vA-2i	1.778	-32.971	33.019	-86.9	0.0538	-0.9985	0.9985	0.0538
	vA-2ii	-1.405	26.054	26.092	93.1	-0.0538	0.9985	-0.9985	-0.0538
	vA-3	0.000	0.000		undefined		undefind	undefind	undefind
es	vB-1	0.000	0.000		undefined	undefind	undefind	undefind	undefind
ĊĖ	vB-2i	-22.101	-67.699	71.216	-108.1	-0.3103	-0.9506	0.9506	-0.3103
Velocities	vB-2ii	17.465	53.497	56.276	71.9	0.3103	0.9506	-0.9506	0.3103
×	vB-3	0.000	0.000		undefined		undefind	undefind	undefind
	vP-1	0.000	0.000		undefined	undefind	undefind	undefind	undefind
	vP-2i	19.147	-36.547	41.259	-62.4	0.4641	-0.8858	0.8858	0.4641
	vP-2ii	-15.130	28.880	32.604	117.6	-0.4641	0.8858	-0.8858	-0.4641
	vP-3	0.000	0.000		undefined		undefind	undefind	undefind
	aA-1	71.830	-57.988	92.316	-38.9	0.7781	-0.6282	0.6282	0.7781
	aA-2i	-41.839	32.052	52.705	142.5	-0.7938	0.6081	-0.6081	-0.7938
	aA-2ii	-24.873	-3.224	25.082	-172.6	-0.9917	-0.1285	0.1285	-0.9917
ıs	aA-3	55.171	4.910	55.389	5.1	0.9961	0.0887	-0.0887	0.9961
Ęį	aB-1	49.478	-144.346	152.590	-71.1 450.4	0.3243	-0.9460	0.9460	0.3243
e a	aB-2i	-70.146	37.071	79.339	152.1	-0.8841	0.4672	-0.4672	-0.8841
Accelerations	aB-2ii	-59.381	-24.569	64.263	-157.5	-0.9240	-0.3823	0.3823	-0.9240
ΑĊ	aB-3 aP-1	100.525 108.964	51.044 -52.528	112.742 120.965	26.9 -25.7	0.8916	0.4528 -0.4342	-0.4528 0.4342	0.8916
	aP-1 aP-2i				-	0.9008			0.9008
	aP-2i aP-2ii	-39.154	20.258	44.084	152.6	-0.8882	0.4595	-0.4595	-0.8882
	aP-211 aP-3	-10.955 29.868	-13.110 14.947	17.084 33.399	-129.9 26.6	-0.6412 0.8943	-0.7674 0.4475	0.7674 -0.4475	-0.6412 0.8943
	ar-3	29.868	14.947	33.399	∠0.0	0.8943	0.4470	-0.4475	0.8943