Analysis I

Wintersemester 2013/2014

Prof. Dr. D. Lenz

Blatt 9

Abgabe 20.12.2013

(1) Zeigen Sie: Für keine Menge X gibt es eine surjektive Abbildung $J: X \to \mathcal{P}(X)$, wobei die Potenzmenge $\mathcal{P}(X)$ die Menge der Teilmengen von X ist. In diesem Sinne ist also die Potenzmenge einer Menge echt mächtiger als die Teilmengen von X.

Hinweis: Nehmen Sie das Gegenteil an und betrachten Sie $\{x \in X : x \notin J(x)\}\dots$

- (2) Sei (x_n) eine Folge in \mathbb{R} und sei P die Menge der Häufungspunkte von (x_n) . Zeigen Sie, dass die Häufungspunkte jeder Folge aus P wieder Häufungspunkte von (x_n) sind.
- (3) Bestimmen Sie den lim inf und den lim sup der folgenden Folgen
 - (a) $x_n = (-1)^n, n \in \mathbb{N},$
 - (b) $x_n = (-1)^n \frac{1}{n}, n \in \mathbb{N},$
 - (c) $x_n = \frac{42^n}{n^{42}}, n \in \mathbb{N}.$

Gibt es eine Folge (x_n) mit

$$\limsup_{n \to \infty} x_n = 1, \quad \liminf_{n \to \infty} x_n = -1, \quad \lim_{n \to \infty} x_n = 0?$$

Geben Sie gegebenenfalls ein Beispiel an.

- (4) Skizzieren Sie die folgenden Mengen komplexer Zahlen in der Gauß'schen Zahlenebene:
 - (a) $\{z \in \mathbb{C} : |z| \bar{z} = 1 + 2i\},\$
 - (b) $\{z \in \mathbb{C} : |z 1 + i| = |z 3 5i|\},\$
 - (c) $\{z \in \mathbb{C} : |z| \le 1, |z \frac{1}{2}| \ge \frac{1}{2}\}.$

Zusatzaufgaben:

(Z1) Bestimmen Sie lim inf und lim sup der Folge

$$x_n = \sqrt{2}n - \lfloor \sqrt{2}n \rfloor, \ n \in \mathbb{N},$$

wobei $\lfloor x \rfloor$ die größte natürliche Zahl ist, die kleiner als $x \in \mathbb{R}$ ist.

- (Z2) Geben Sie jeweils eine Folge mit
 - (0) keinem,
 - (1) einem,
 - (2) zwei,
 - (3) drei,

:

- (\aleph_0) abzählbar unendlich vielen,
- (\aleph_1) überabzählbar unendlich vielen

Häufungspunkt(en) an.