

Chapter 9 Medians and Order Statistics

Algorithm Analysis

School of CSEE

Order Statistics

- The *i*th *order statistic* in a set of *n* elements is the *i*th smallest element.
- The minimum is thus the 1st order statistic.
- The *maximum* is the *n*th order statistic.
- The *median* is
 - the (n+1)/2 order statistic, if n is odd.
 - lower median i=n/2, upper median i=(n/2)+1, if n is even.
- How can we calculate order statistics?
- What is the running time?

Simultaneous I Wax Simultaneous

- Input : *n* numbers
- Output: min and max
- *n*-1 comparisons for min, *n*-1 comparisons for max: total 2*n*-2 comparisons
- Can we do better?
- Don't compare each element to min and max separately, but process elements in pairs - compare the elements of a pair to each other.
- Then compare the larger element to the current max so far, and compare the smaller element to the current min so far.

- Only 3 comparisons for every 2 elements
- For initial min and max :
 - If n is even, compare the first two elements and set the larger to max and the smaller to min. Then process the rest in pairs.
 - : 1 initial comparison and 3(n-2)/2 more comparisons = 3n/2 2
 - If n is odd, set both min and max to the first element.
 Then process the rest in pairs.
 - : If n is odd, 3(n-1)/2 comparisons

Algorithm Analysis Chapter 9 4

Finding Order Statistics: The Selection Problem

- A more interesting problem is selection: finding the ith smallest element of a set
- Input: A set A of n (distinct) elements and a number i, with $1 \le i \le n$.
- Output: The element x in A that is larger than exactly i-1 other elements of A

Naive algorithm: Sort and index *i* th element.

Worst-case running time = $\Theta(n \lg n) + \Theta(1)$ $=\Theta(n \log n)$,

Using merge sort.

Finding Order Statistics: The Selection Problem

- We will study two algorithms:
 - A practical randomized algorithm with $\Theta(n)$ expected running time
 - A cool algorithm of theoretical interest only with $\Theta(n)$ worst-case running time

- Key idea: use partition() from quicksort
 - But, only need to examine one subarray
 - This saving shows up in running time: $\Theta(n)$
- Partition the array A[p..r] into two (possibly empty) subarrays A[p..q-1] and A[q+1..r]
- If i=k, return A[q].
- If *i*<*k*, find *i*th in the subarray *A*[*p*..*q*-1].
- If i>k, find (i-k)th smallest element in the subarray A[q+1..r].

Example

Select the $i = 7^{th}$ smallest:

Partition:

Select the 7- $4 = 3^{rd}$ smallest recursively.


```
RandomizedSelect(A, p, r, i)
    if (p == r) then return A[p];
    q = RandomizedPartition(A, p, r)
    k = q - p + 1;
    if (i == k) then return A[q];
    if (i < k) then
        return RandomizedSelect(A, p, q-1, i);
    else
        return RandomizedSelect(A, q+1, r, i-k);
           \leq A[q]
                                      \geq A[q]
  p
```


Intuition for analysis

- (All our analyses today assume that all elements are distinct.)
- Lucky:

$$T(n) = T(9n/10) + \Theta(n)$$
 $n^{\log_{10/9} 1} = n^0 = 1$
= $\Theta(n)$ CASE 3

• Unlucky:

$$T(n) = T(n-1) + \Theta(n)$$

= $\Theta(n^2)$
Worse than sorting!

arithmetic series

- Average case
 - For upper bound, assume ith element always falls in larger side of partition:

$$T(n) \leq \frac{1}{n} \sum_{k=0}^{n-1} T(\max(k, n-k-1)) + \Theta(n)$$

$$\leq \frac{2}{n} \sum_{k=n/2}^{n-1} T(k) + \Theta(n)$$
What happened here?

- Let's show that T(n) = O(n) by substitution

Assume T(n) ≤ cn for sufficiently large c:

$$T(n) \leq \frac{2}{n} \sum_{k=n/2}^{n-1} T(k) + \Theta(n) \qquad \text{The recurrence we started with}$$

$$\leq \frac{2}{n} \sum_{k=n/2}^{n-1} ck + \Theta(n) \qquad \text{Substitute } T(n) \leq cn \text{ for } T(k)$$

$$= \frac{2c}{n} \left(\sum_{k=1}^{n-1} k - \sum_{k=1}^{n/2-1} k \right) + \Theta(n) \qquad \text{"Split" the recurrence}$$

$$= \frac{2c}{n} \left(\frac{1}{2} (n-1)n - \frac{1}{2} \left(\frac{n}{2} - 1 \right) \frac{n}{2} \right) + \Theta(n) \qquad \text{Expand arithmetic series}$$

$$= c(n-1) - \frac{c}{2} \left(\frac{n}{2} - 1 \right) + \Theta(n) \qquad \text{Multiply it out}$$

$$T(n) \leq c(n-1) - \frac{c}{2} \left(\frac{n}{2} - 1\right) + \Theta(n) \qquad \text{The recurrence so far}$$

$$= cn - c - \frac{cn}{4} + \frac{c}{2} + \Theta(n) \qquad \text{Multiply it out}$$

$$= cn - \frac{cn}{4} - \frac{c}{2} + \Theta(n) \qquad \text{Subtract } c/2$$

$$= cn - \left(\frac{cn}{4} + \frac{c}{2} - \Theta(n)\right) \qquad \text{Rearrange the arithmetic}$$

$$\leq cn \quad \text{(if c is big enough)} \qquad \text{What we set out to prove}$$

Thus, T(n) = O(n). And T(n) = O(n) since it takes at least n-1comparisons at first RandomizedPartition(). Therefore, $T(n) = \Theta(n)$.

Worst-Case Linear-Time Selection

- Randomized algorithm works well in practice. But in worst case its time complexity is $O(n^2)$.
- What follows is a worst-case linear time algorithm, really of theoretical interest only.
- Basic idea:
 - Generate a good partitioning element
 - Call this element x

Algorithm Analysis Chapter 9 14

Worst-Case Linear-Time Selection

- Select (*i*, *n*)
 - 1. Divide *n* elements into groups of 5
 - 2. Find median of each group (How? How long?)
 - 3. Use Select() recursively to find median x of the $\lceil n/5 \rceil$ medians
 - 4. Partition the *n* elements around *x*. Let k = rank(x)
 - 5. if (i == k) then return x
 if (i < k) then use Select() recursively to find ith</p>
 smallest element in first partition
 else (i > k) use Select() recursively to find (i-k)th
 smallest element in last partition

Algorithm Analysis Chapter 9 15

Initially...

Algorithm Analysis Chapter 9 16

Initially...

Divide the n elements into groups of 5 : O(n)

Step 2

Find median of each group : $\Theta(n)$?

Step 2

Finding median of each group

- It takes 6 comparisons to find median of 5 elements.
 - Can you prove it?
- We have $\lceil n/5 \rceil$ groups
- Thus, it takes $6(n/5) = \Theta(n)$

Step 3

Use Select() recursively to find median x of the $\lceil n/5 \rceil$ medians : $T(\lceil n/5 \rceil)$

lesser

20

Around the pivot

At least half of the medians are smaller than x, which is at least $\lceil n/5 \rceil / 2 = \lceil n/10 \rceil$ group medians. Therefore at least $3 \lceil n/10 \rceil$ elements are smaller than x.

lesser

greater

Around the pivot

Similarly, at least $3\lceil n/10\rceil$ elements are greater than x.

lesser

Worst-Case Linear-Time Selection

 At least 3 n/10 elements are smaller than x and at least $3 \lceil n/10 \rceil$ elements are greater than x.

 In step4, compare the pivot with the remaining $\Theta(4n/10)$ elements : $\Theta(n)$

 Step 5 takes at most T(7n/10), which is the worst case.

Worst-Case Linear-Time Selection

- Select (*i*, *n*)
- $\Theta(n)$ 1. Divide *n* elements into groups of 5
- $\Theta(n)$ 2. Find median of each group
- 3. Use Select() recursively to find median x of the $\lceil n/5 \rceil$ medians
 - $\Theta(n)$ 4. Partition the *n* elements around *x*. Let k = rank(x)
 - 5. if (i == k) then return x
- T(7n/10) if (i < k) then use Select() recursively to find ith smallest element in first partition else (i > k) use Select() recursively to find (i-k)th smallest element in last partition

हुपा<u>ष्ट्र</u> Worst-Case Linear-Time Selection

The recurrence is therefore:

Assuming $T(n) = \Theta(1)$ for small enough n. Use n < 140

$$T(n) \le \begin{cases} \Theta(1) & \text{if } n < 140 \\ T(n/5) + T(7n/10 + 6) + \Theta(n) & \text{if } n \ge 140. \end{cases}$$

Solve this recurrence by substitution.

(or $\Theta(n)$) term is approximately 1.6n. Thus we can solve this equation using recursion tree method.)

25

$$T(n) = \Theta(n)$$