Booten in 15 statt 44 Sekunden

Optimieren durch physikalische Umsortierung

Andreas Rid Gundolf Kiefer

Bootchart

Vorher:

Nachher:

Zugriffszeiten der Festplatte

Zugriffszeit

- □ (8.9 ms) Spurwechselzeit
- (4.2 ms) Rotationsverzögerung
- □ (0.1 ms) Kommando-Latenz

Problem

- Fragmentierte Dateien
- Streuung von Dateien
- Insbesondere im Bootvorgang sehr kleine Dateien

Übersicht

- 1. Was gibt es schon?
- 2. Grundlagen: Das Ext4 Dateisystem
- 3. Ansatz
- 4. Sammeln von Dateizugriffen
- 5. Dateien umsortieren
- 6. Vorführung

Was gibt es schon?

- ureadahead / sreadahead
- Readahead von Fedora
- Upstart, ...

Grundlagen: Das Ext4 Dateisystem

Layout

- I-Node (Index Node)
 - Datei, Verzeichnis, Soft-Link, ...
 - □ Zugriffsrechte
 - □ Block-Mapping

Grundlagen: Das Ext4 Dateisystem

- Neue Features in Ext4
 - □ Flexible Blockgruppen
 - Extents

```
struct ext4_extent {
    __le32 ee_block;
    __le16 ee_len;
    __le16 ee_start_hi;
    __le32 ee_start_lo; }
```

- Neuerungen im Dateisystemtreiber
 - Multi-Block-Allokator
 - □ Pre-Allokation
 - I-Node Pre-Allokation Space
 - Locality Group
 - Online Defragmentierung (e4defrag)

Ansatz

- System überwachen Welche Dateien stehen im Zugriff?
- Dateien physikalisch auf der Festplatte anordnen
 - Suche nach freien Speicher
 - Datei verschieben

Werkzeuge

- 2) e4rat-realloc
 - → Dateien auf der Festplatte umsortieren
- 3) e4rat-preload
 - → Dateien schnell in den Page Cache übertragen

e4rat-collect - relevanter Dateien

- Systemaufrufe überwachen (Linux Audit) execve, open, ...
- Art des Zugriffes Lese- oder Schreibzugriff?
- Befindet sich die Datei bereits im Cache? libc.so

Online Defragmentierung

EXT4_IOC_MOVE_EXT
 Vertauschen von Blockbelegungen
 zwischen zwei Dateien

- E4defrag
 - ☐ Spenderdatei erstellen
 - □ loctl EXT4_IOC_MOVE_EXT
 - Spenderdatei löschen

e4rat-realloc - Modi

- Pre-Allokation
 - □ Kernel Patch einspielen
 - Keine Grenzen durch Multi-Block-Allokator
 - Blöcke gezielt allozieren
 - Suche nach freien Speicherbereichen über die Grenze einer Blockgruppe hinaus

e4rat-realloc - Modi

- Top-Level Directory
 - Orlov-Algorithmus gruppiert Dateien im gleichen Anfangsverzeichnis
 - □ Problem:
 - Block-Allokator alloziert die nächst höhere Potenz von 2
 - Grenze von kleine Dateien erhöhen

e4rat-realloc - Modi

- Locality Group
 - Ursprünglich vorgesehen für kleine Dateien
 - Grenze kleiner Dateien erhöhen
 - Die größe der Locality Group kann gesetzt werden
 - Problem
 - Füllgrad der Locality Group unbekannt
 - Fremde Blockanfragen

Zusammenfassung

- Startzeit verringern durch
 - Blockumsortierung
 - □ IO-Wartezeiten ausnutzen (e4rat-preload)
- Notwendige Schritte
 - Generieren einer Dateiliste
 - Dateiinhalte verschieben

Projektseite: http://e4rat.sf.net

Vorführung

Auf die Plätze ...

Fertig

Los!

Vielen Dank für Ihre Aufmerksamkeit!