Fizyka układów złożonych Dwuwymiarowy model Isinga

Krzysztof Malarz

W przypadku dwuwymiarowym, eneriga całkowita kwadratowej sieci L^2 oddziaływujących spinów σ_i wynosi

$$E = -\frac{1}{2} \sum_{(i,j)} J_{i,j} \sigma_i \sigma_j - \sum_i B \sigma_i, \tag{1}$$

gdzie zmienne spinowe σ_i przyjmują wartości ± 1 , $J_{i,j}$ jest tak zwaną całką wymiany, a B natężeniem zewnętrznego pola magnetycznego a w pierwsze sumowanie odbywa się po parach najbliższych sąsiadów (sąsiedztwo von Neumanna — (x,y) ma czterech sąsiadów: (x-1,y), (x+1,y), (x,y-1), (x,y+1)).

Załóżmy brak pola magnetycznego B=0, układ składający się z $N=L^2=(32)^2$ spinów i taką samą wartość całek wymiany między każdą parą najbliższych sąsiadów spinów $J_{i,j}=J=1$ oraz $k_B=1$. (Te dwie ostatnie równości, są tożsame z przyjęciem jednostek, w których temperatura mierzona jest w jednostkach $[J/k_B]$.) Zakładamy periodyczne warunki brzegowe. Tak jak poprzednio ewolucję czasową układu prowadzimy w oparciu o schemat Metropolisa.

Zadanie 1 (25 pkt.): Zaczynamy od stablicowania prawdopodbieństwa akceptacji $p(\Delta E)$ stanu próbnego. Proszę wypisać tablice prawdopodobieńswa $p(\Delta E)$ dla T=1,0;2,0;2,5;4,0. Powinno da się zauważyć pewną symetrię: prawdopodobieństwa te są zależne od sumę zmiennych spinowych σ_j w czterech najbliższych sąsiadach i niezależnie od ich przestrzennego rozłożenia:

- same +1: $\sum_{j} \sigma_{j} = +4$;
- trzy +1 i jedna -1: $\sum_{j} \sigma_{j} = +2;$
- dwie +1 i dwie -1: $\sum_i \sigma_i = 0$;
- trzy -1 i jedna +1: $\sum_{i} \sigma_{i} = -2$;
- same -1: $\sum_{i} \sigma_{i} = -4$.

Zadanie 2 (25 pkt.): Początkowo ustawiamy wszystkie spiny na wartość +1. Obserwujemy ewolucję czasową gęstości namagnesowania $m(t) = L^{-2}M(t) = L^{-2}\sum_i \sigma_i(t)$ przez pierwsze 10^5 MCS dla T = 1,0; 2,0; 2,5; 4,0. Zapisujemy stan sieci w postaci $(x, y, \sigma(x, y))$ na końcu symulacji.

Zadanie 3 (25 pkt.): Wizualizujemy mapę wartości spinowych σ_i dla T=1,0; 2,0; 2,5; 4,0 na końcu symulacji (np. stawiając czarną kropkę w pozycjach (x,y), dla których $\sigma(x,y)=-1$).

Zadanie 4 (25 pkt.): Automatyzujemy proces wyliczania średniej czasowej $\langle M(t) \rangle$ oraz $\langle M^2(t) \rangle$ dla T od 0,25 do 4,0 co 0,25 z $\tau = 10^4$ ostatnich spośród 10^5 MCS i sporządzamy wykres gęstości namagnesowania

$$m(T) = \frac{1}{L^2} \cdot \langle M(t) \rangle$$

oraz podatności magnetycznej

$$\chi(T) = \frac{1}{T} \cdot \frac{1}{L^2} \cdot \left(\langle M^2(t) \rangle - \langle M(t) \rangle^2 \right)$$

od temperatury T. Analityczna postać zależności namagnesowania od tempreatury to

$$m(T) = \begin{cases} \sqrt[8]{1 - \sinh^{-4}(2/T)} & \text{dla } T < T_C, \\ 0 & \text{dla } T > T_C. \end{cases}$$

Poniżej przykłady tych zależności dla L=64 przy dziesięciokrotnie dłuższym czasie symulacji i dziesięciokrotnie dłuższym czasie τ .

