# Drumuri minime DAG-uri

## **Problema**

- Se dau n activitati numerotate de la 1 la n.
- Aceste activitati nu se pot desfasura in mod independent unele de altele.
- Se dau perechi de forma (x,y) cu semnificatia ca activitatea x trebuie sa se fi desfasurat pentru ca activitatea y sa poata sa inceapa.

## **Problema**

- Se dau n activitati numerotate de la 1 la n.
- Aceste activitati nu se pot desfasura in mod independent unele de altele.
- Sa se determine (daca este posibil) o ordine de desfasurare a acestor activitati care sa respecte regulile de dependenta.



Q: Cum modelam aceasta problema?



- Q: Cum modelam aceasta problema?
- A: Grafuri orientate



• Q: Mai exact?



- A: Grafuri orientate;
- A: Daca doua evenimente, x si y, sunt direct dependente: x trebuie sa se desfasoare inaintea lui y, atunci



• Q: In ce conditii exista solutii?



Acestea nu pot fi programate!







Acestea nu pot fi programate!



- Q: In ce conditii exista solutii?
- A: Daca trei evenimente: x, y si z cu proprietatea



Acestea nu pot fi programate!

Mai exact, nu trebuie sa existe circuite!

**DAG = Directed Acyclic Graph** 



Exemplu: Ordinea in care ne imbracam inainte de plecare

## Modelare - Exemplu

Ordinea in care ne imbracam inainte de plecare - Solutii?







# Sortare Topologica

#### Ordinea in care ne imbracam inainte de plecare



Rezultatul...

# Sortare Topologica

#### Ordinea in care ne imbracam inainte de plecare





TOPOLOGICAL-SORT (G=(V,E))

1. Top-Sort=NULL

- 1. Top-Sort=NULL
- 2. Cat timp am noduri cu gradul incident = 0

- 1. Top-Sort=NULL
- 2. Cat timp am noduri cu gradul incident = 0
  - a. Identificam P multimea nodurilor cu gradul incident = 0

- 1. Top-Sort=NULL
- 2. Cat timp am noduri cu gradul incident = 0
  - a. Identificam P multimea nodurilor cu gradul incident = 0
  - b. Top-Sort.right\_append(P)
  - c. V=V\P

- 1. Top-Sort=NULL
- 2. Cat timp am noduri cu gradul incident = 0
  - a. Identificam P multimea nodurilor cu gradul incident = 0
  - b. Top-Sort.right\_append(P)
  - c. V=V\P
  - d. Reactualizez gradele nodurilor ramase in V

- 1. Top-Sort=NULL
- 2. Cat timp am noduri cu gradul incident = 0
  - a. Identificam P multimea nodurilor cu gradul incident = 0
  - b. Top-Sort.right\_append(P)
  - c. V=V\P
  - d. Reactualizez gradele nodurilor ramase in V
- 3. Daca V nu este NULL
  - a. Afisez "Sortarea nu se poate face"
- 4. altfel
  - a. Afisez Top-Sort;

#### TOPOLOGICAL-SORT (G=(V,E))



**COMPLEXITATE?** 

- 1. Top-Sort=NULL
- 2. Cat timp am noduri cu gradul incident = 0
  - a. Identificam P multimea nodurilor cu gradul incident = 0
  - b. Top-Sort.right\_append(P)
  - c. V=V\P
  - d. Reactualizez gradele nodurilor ramase in V
- 3. Daca V nu este NULL
  - a. Afisez "Sortarea nu se poate face"
- 4. altfel
  - a. Afisez Top-Sort;



- 1. Top-Sort=NULL
- 2. Cat timp am noduri cu gradul incident = 0

- O(|V|+|E|)
- a. Identificam P multimea nodurilor cu gradul incident = 0
- b. Top-Sort.right\_append(P)
- c. V=V\P
- d. Reactualizez gradele nodurilor ramase in V
- 3. Daca V nu este NULL
  - a. Afisez "Sortarea nu se poate face"
- 4. altfel
  - a. Afisez Top-Sort;

# Algoritmul - Corectidudine

- 1. De ce atunci cand exista solutii, solutia furnizata de algoritm este corecta?
- 2. De ce atunci cand nu exista solutii (exista un circuit), algoritmul semnaleaza corect acest lucru?

Dat la intrare un DAG - cu ponderi pe arce - si un nod de start s, sa se determine drumurile de cost minim de la s la toate celelalte noduri.



Dat la intrare un DAG - cu ponderi pe arce - si un nod de start s, sa se determine drumurile de cost minim de la s la toate celelalte noduri.

Observatie 1: Arcele pot avea si cost negativ.

Dat la intrare un DAG - cu ponderi pe arce - si un nod de start s, sa se determine drumurile de cost minim de la s la toate celelalte noduri.

Observatie 1: Arcele pot avea si cost negativ.

Observatie 2: Cand consideram un varf v, pentru a calcula d(s,v) ar

fi util sa stim d(s,u) pentru orice u,v - arc;



Idei?

Dat la intrare un DAG - cu ponderi pe arce - si un nod de start s, sa se determine drumurile de cost minim de la s la toate celelalte noduri.

Observatie 1: Arcele pot avea si cost negativ.

Observatie 2: Cand consideram un varf v, pentru a calcula d(s,v) ar

fi util sa stim d(s,u) pentru orice u,v - arc;



Idee: Sortarea Topologica



- Considerăm vârfurile în ordinea dată de sortarea topologică, începând cu vârful s
- Pentru fiecare vârf u relaxăm arcele uv către vecinii săi (pentru a găsi drumuri noi către aceștia)

s - vârful de start

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u ∈ V executa
    d[u] = ∞; tata[u]=0
d[s] = 0
```

```
s - vârful de start
//initializam distante - ca la Dijkstra

pentru fiecare u ∈ V executa
    d[u] = ∞; tata[u]=0

d[s] = 0

//determinăm o sortare topologică a vârfurilor
//este suficient sa pastrăm vârfurile din sortare începând cu s

SortTop = Topological-Sort(G)
```

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u ∈ V executa
    d[u] = ∞; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
//este suficient sa pastrăm vârfurile din sortare începând
cu s
SortTop = Topological-Sort(G)
pentru fiecare u ∈ SortTop
```

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u E V executa
   d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
//este suficient sa pastrăm vârfurile din sortare începând
cu s
SortTop = Topological-Sort(G)
pentru fiecare u ∈ SortTop
   pentru fiecare uv ∈ E executa
```

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u E V executa
   d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
//este suficient sa pastrăm vârfurile din sortare începând
cu s
SortTop = Topological-Sort(G)
pentru fiecare u ∈ SortTop
   pentru fiecare uv ∈ E executa
       daca d[u]+w(u,v)<d[v] atunci //relaxam uv</pre>
              d[v] = d[u] + w(u,v)
       tata[v] = u
```

## **EXEMPLU**







Sortare topologică

s=3 - vârf de start

Ordine de calcul distanțe:

|               |                     |      |                              | 7    | pro-              |
|---------------|---------------------|------|------------------------------|------|-------------------|
| d/tata [ ∞/0, | ∞ <mark>/</mark> 0, | 0/0, | <sup>4</sup> <sub>∞/0,</sub> | ∞/o, | ∞/ <sup>6</sup> ] |
|               |                     |      |                              |      |                   |
|               |                     |      |                              |      |                   |
|               |                     |      |                              |      |                   |
|               |                     | 73,  |                              |      |                   |



s=3 - vârf de start

Ordine de calcul distanțe: 1, 3, 6, 5, 4, 2

$$u = 1$$
:



s=3 - vârf de start

Ordine de calcul distanțe: 1, 3, 6, 5, 4, 2



s=3 - vârf de start

Ordine de calcul distanțe:

| $d/tata [ \infty/0,$ | $\infty^2/0$ , | 0 <sup>3</sup> 0, | $\frac{4}{\infty}/0$ , | $\infty/0$ , | $\infty/0$ ] |
|----------------------|----------------|-------------------|------------------------|--------------|--------------|
| $u=1:  [ \infty/0,$  | $\infty/0$ ,   | 0/0,              | $\infty/0$ ,           | $\infty/0$ , | ∞/0]         |
| u = 3:               |                |                   |                        |              |              |
|                      |                |                   |                        |              |              |
|                      |                |                   |                        |              |              |
|                      |                |                   |                        |              |              |
|                      |                |                   |                        |              |              |



s=3 - vârf de start

Ordine de calcul distanțe:

| $\frac{d}{tata} \left[ \infty / 0, \right]$ | $\infty^2/0$ , | 070, | <sup>4</sup> ∞/0, | $\infty/0$ , | $\infty/0$ ] |
|---------------------------------------------|----------------|------|-------------------|--------------|--------------|
| $u=1:  [ \infty/0,$                         | $\infty/0$ ,   | 0/0, | $\infty/0$ ,      | $\infty/0$ , | ∞/0]         |
| u = 3:                                      |                |      |                   |              |              |
|                                             |                |      |                   |              |              |
|                                             |                |      |                   |              |              |
|                                             |                |      |                   |              |              |
|                                             |                |      |                   |              |              |



s=3 - vârf de start

Ordine de calcul distanțe:



s=3 - vârf de start

Ordine de calcul distanțe:

| $d/tata \begin{bmatrix} \infty/0, \end{bmatrix}$ | $\infty^2/0$ , | 070, | $\frac{4}{\infty/0}$ , | $\infty^{5}/0$ , | $\infty/0$ ] |
|--------------------------------------------------|----------------|------|------------------------|------------------|--------------|
| $u = 1:  [ \infty/0,$                            | $\infty/0$ ,   | 0/0, | $\infty/0$ ,           | $\infty/0$ ,     | $\infty/0$ ] |
| $u = 3$ : $[\infty/0,$                           | 8/3,           | 0/0, | $\infty/0$ ,           | 4/3,             | $\infty/0$ ] |
| u = 6:                                           |                |      |                        |                  |              |
|                                                  |                |      |                        |                  |              |
|                                                  |                |      |                        |                  |              |
|                                                  |                |      |                        |                  |              |



s=3 - vârf de start

Ordine de calcul distanțe:

| d/tata [ | $\infty/0$ , | $\infty^2/0$ , | 070, | $\infty^4/0$ , | $\infty^{5}/0$ , | $\infty/0$ ] |
|----------|--------------|----------------|------|----------------|------------------|--------------|
| u = 1: [ | $\infty/0$ , | $\infty/0$ ,   | 0/0, | $\infty/0$ ,   | ∞/o <b>,</b>     | $\infty/0$ ] |
| u = 3:   | $\infty/0$ , | 8/3,           | 0/0, | $\infty/0$ ,   | 4/3,             | $\infty/0$ ] |
| u = 6: [ | $\infty/0$ , | 8/3,           | 0/0, | $\infty/0$ ,   | 4/3,             | $\infty/0$ ] |
|          |              |                |      |                |                  |              |
|          |              |                |      |                |                  |              |
|          |              |                |      |                |                  |              |
|          |              |                | Į,   |                |                  |              |



s=3 - vârf de start

Ordine de calcul distanțe:

| $\frac{2}{\infty/0}$ , | 0 <sup>3</sup> 0, | $\frac{4}{\infty}/0$ , | $\infty/0$ ,                                                   | $\infty/0$ ]                                                                        |
|------------------------|-------------------|------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $\infty/0$ ,           | 0/0,              | $\infty/0$ ,           | $\infty/0$ ,                                                   | ∞/0]                                                                                |
| 8/3,                   | 0/0,              | $\infty/0$ ,           | 4/3,                                                           | $\infty/0$ ]                                                                        |
| 8/3,                   | 0/0,              | $\infty/0$ ,           | 4/3,                                                           | $\infty/0$ ]                                                                        |
|                        |                   |                        |                                                                |                                                                                     |
|                        |                   |                        |                                                                |                                                                                     |
|                        |                   |                        |                                                                |                                                                                     |
|                        | ∞/o,<br>8/3,      | 8/3, 0/0,              | $\infty/0$ , $0/0$ , $\infty/0$ , $8/3$ , $0/0$ , $\infty/0$ , | $\infty/0$ , $0/0$ , $\infty/0$ , $\infty/0$ , $8/3$ , $0/0$ , $\infty/0$ , $4/3$ , |



s=3 - vârf de start

Ordine de calcul distanțe:

| $d/tata \begin{bmatrix} \infty/0, \end{bmatrix}$ | $\infty^2/0$ , | 0 <sup>3</sup> 0, | $\frac{4}{\infty}/0$ , | $\infty^{5}/0$ , | $\infty/0$ ] |
|--------------------------------------------------|----------------|-------------------|------------------------|------------------|--------------|
| $u = 1: [\infty/0,$                              | ∞/o <b>,</b>   | 0/0,              | $\infty/0$ ,           | $\infty/0$ ,     | ∞/0]         |
| $u = 3$ : $[\infty/0,$                           | 8/3,           | 0/0,              | ∞/ <b>0</b> ,          | 4/3,             | ∞/0]         |
| $u = 6$ : $[\infty/0,$                           | 8/3,           | 0/0,              | $\infty/0$ ,           | 4/3,             | $\infty/0$ ] |
| $u = 5$ : $[\infty/0,$                           | 8/3,           | 0/0,              | 6/5,                   | 4/3,             | $\infty/0$ ] |
|                                                  |                |                   |                        |                  |              |
|                                                  |                |                   |                        |                  |              |
|                                                  |                |                   |                        | la la            | Ŀ            |



s=3 - vârf de start

Ordine de calcul distanțe:

| $d/tata \begin{bmatrix} \infty/0, \end{bmatrix}$ | 2,             | 23   | 4,           | 5,           | ,6 ,         |
|--------------------------------------------------|----------------|------|--------------|--------------|--------------|
| $[\infty/0,$                                     | $\infty^2/0$ , | 070, | $\infty/0$ , | $\infty/0$ , | $\infty/0$   |
| $u=1:  [ \infty/0,$                              | $\infty/0$ ,   | 0/0, | $\infty/0$ , | $\infty/0$ , | ∞/0]         |
| $u=3:  [ \infty/0,$                              | 8/3,           | 0/0, | $\infty/0$ , | 4/3,         | $\infty/0$ ] |
| $u = 6$ : $[\infty/0,$                           | 8/3,           | 0/0, | $\infty/0$ , | 4/3,         | $\infty/0$ ] |
| $u = 5$ : $[\infty/0,$                           | 8/3,           | 0/0, | 6/5,         | 4/3,         | $\infty/0$ ] |
| u = 4:                                           |                |      |              |              |              |
|                                                  |                |      |              |              |              |
|                                                  |                |      |              |              |              |



s=3 - vârf de start

Ordine de calcul distanțe:

| d/tata | $[\infty]^{0}$ | $\infty^2/0$ , | 0 <sup>3</sup> 0, | $\infty^4/0$ , | $\infty/0$ , | $\infty/_0^6$ ] |
|--------|----------------|----------------|-------------------|----------------|--------------|-----------------|
| u = 1: | $[\infty/0,$   | $\infty/0$ ,   | 0/0,              | $\infty/0$ ,   | $\infty/0$ , | ∞/0]            |
| u = 3: | $[\infty/0,$   | 8/3,           | 0/0,              | $\infty/0$ ,   | 4/3,         | $\infty/0$ ]    |
| u = 6: | $[\infty/0,$   | 8/3,           | 0/0,              | $\infty/0$ ,   | 4/3,         | ∞/0]            |
| u = 5: | $[\infty/0,$   | 8/3,           | 0/0,              | 6/5,           | 4/3,         | $\infty/0$ ]    |
| u = 4: | $[\infty/0,$   | 7/4,           | 0/0,              | 6/5,           | 4/3,         | $\infty/0$ ]    |
|        |                |                |                   |                |              |                 |
|        | 110            |                |                   |                |              |                 |



s=3 - vârf de start

Ordine de calcul distanțe:

| d/tata | $[\infty/0,$ | $\infty^2/0$ , | 0 <sup>3</sup> 0, | $^{4}_{\infty/0}$ , | $\infty^{5}/0$ , | $\infty/0$ ] |
|--------|--------------|----------------|-------------------|---------------------|------------------|--------------|
| u = 1: | $[\infty/0,$ | $\infty/0$ ,   | 0/0,              | $\infty/0$ ,        | $\infty/0$ ,     | ∞/0]         |
| u = 3: | $[\infty/0,$ | 8/3,           | 0/0,              | ∞/0,                | 4/3,             | $\infty/0$ ] |
| u = 6: | $[\infty/0,$ | 8/3,           | 0/0,              | $\infty/0$ ,        | 4/3,             | $\infty/0$ ] |
| u = 5: | $[\infty/0,$ | 8/3,           | 0/0,              | 6/5,                | 4/3,             | $\infty/0$ ] |
| u = 4: | $[\infty/0,$ | 7/4,           | 0/0,              | 6/5,                | 4/3,             | $\infty/0$ ] |
| u = 2: |              |                |                   |                     |                  |              |
|        |              |                |                   |                     |                  | ls.          |



s=3 - vârf de start

Ordine de calcul distanțe:

| d/tata | $[\infty/0,$ | $\frac{2}{\infty/0}$ | 070, | $\frac{4}{\infty}/0$ , | $\infty/0$ , | $\infty/0$   |
|--------|--------------|----------------------|------|------------------------|--------------|--------------|
|        | [ ∞/o,       | 180 18               | 0/0, |                        | $\infty/0$ , | 100          |
| u = 3: | $[\infty/0,$ | 8/3,                 | 0/0, | $\infty/0$ ,           | 4/3,         | ∞/0]         |
| u = 6: | $[\infty/0,$ | 8/3,                 | 0/0, | $\infty/0$ ,           | 4/3,         | $\infty/0$ ] |
| u = 5: | $[\infty/0,$ | 8/3,                 | 0/0, | 6/5,                   | 4/3,         | $\infty/0$ ] |
| u = 4: | $[\infty/0,$ | 7/4,                 | 0/0, | 6/5,                   | 4/3,         | $\infty/0$ ] |
| u = 2: | [ ∞/o,       | 7/4,                 | 0/0, | 6/5,                   | 4/3,         | $\infty/0$ ] |
|        | 1            |                      |      |                        | a l          |              |



Sortare topologică

s=3 - vârf de start

Ordine de calcul distante:

d/tata 1 2 3 4 5 6
Soluție [ 
$$\infty/0$$
, 7/4, 0/0, 6/5, 4/3,  $\infty/0$  ]

Un drum minim de la 3 la 2?

#### **Corectitudine - 2 observatii**

#### Corectitudine

#### **Observatie 1:**

Toate nodurile situate la "stanga" nodului de start in sortarea topologica vor avea distanta catre ele ∞

#### Corectitudine

#### **Observatie 1:**

Toate nodurile situate la "stanga" nodului de start in sortarea topologica vor avea distanta catre ele ∞

#### **Observatie 2:**

Pentru orice alt nod, corectitudinea rezultatului obtinut se bazeaza pe corectitudinea rezultatului obtinut pentru nodurile anterioare in sortarea topologica

Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:

Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:

durata fiecărei activități

# Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:

- durata fiecărei activități
- perechi (i, j) = activitatea i trebuie să se încheie
   înainte să înceapă j

# Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:

- durata fiecărei activități
- perechi (i, j) = activitatea i trebuie să se încheie
   înainte să înceapă j
- activitățile se pot desfășura și în paralel

Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:

- durata fiecărei activități
- perechi (i, j) = activitatea i trebuie să se încheie
   înainte să înceapă j
- activitățile se pot desfășura și în paralel

Se cere: timpul minim de finalizare a proiectului (dacă momentul de start este ora 0) + planificarea activităților

#### n = 6

- •Activitatea 1 durata 7
- •Activitatea 2 durata 4
- Activitatea 3 durata 30
- •Activitatea 4 durata 12
- Activitatea 5 durata 2
- Activitatea 6 durata 5
- °(1, 2)
- °(2, 3)
- °(3, 6)
- °(4, 3)
- °(2, 6)
- °(3, 5)

- n = 6
- •Activitatea 1 durata 7
- •Activitatea 2 durata 4
- •Activitatea 3 durata 30
- Activitatea 4 durata 12
- Activitatea 5 durata 2
- •Activitatea 6 durata 5
- °(1, 2)
- °(2, 3)
- °(3, 6)
- °(4, 3)
- °(2, 6)
- °(3, 5)



Modelare?

- n = 6
- •Activitatea 1 durata 7
- •Activitatea 2 durata 4
- •Activitatea 3 durata 30
- •Activitatea 4 durata 12
- Activitatea 5 durata 2
- Activitatea 6 durata 5
- °(1, 2)
- °(2, 3)
- °(3, 6)
- °(4, 3)
- °(2, 6)
- °(3, 5)





n = 6

- •Activitatea 1 durata 7
- Activitatea 2 durata 4
- •Activitatea 3 durata 30
- •Activitatea 4 durata 12
- Activitatea 5 durata 2
- Activitatea 6 durata 5
- °(1, 2)
- °(2, 3)
- °(3, 6)
- °(4, 3)
- °(2, 6)
- °(3, 5)



Ponderile?











W(i,j)=?





Timpul minim de finalizare a proiectului = costul maxim al unui drum de la S la T



#### **Drumuri Critice: Exemplu**

Timpul minim de finalizare a proiectului = costul maxim al unui drum de la S la T



#### Analiza...



Putem modifica algoritmul de determinare de drumuri minime în grafuri aciclice a.î. să determine drumuri maxime (de cost maxim) de la S la celelalte vârfuri?

#### Analiza...



Putem modifica algoritmul lui Dijkstra de determinare de drumuri minime în grafuri (nu neapărat aciclice) a.î. să determine drumuri maxime de la S la celelalte vârfuri?

# Drumuri minime cu mai multe puncte de start

#### **Problema**

Dandu-se un graf (preferabil fara circuite de cost negativ), se pune problema gasirii in mod eficient a drumurilor de cost minimim de la oricare nod la oricare alt nod

#### **Problema**

Dandu-se un graf (preferabil fara circuite de cost negativ), se pune problema gasirii in mod eficient a drumurilor de cost minimim de la oricare nod la oricare alt nod



Q: Cum retin costul drumurilor dintre i si j?

A: Matricea D[i][j]= costul drumului minim de la i la j

#### **Problema**

Dandu-se un graf (preferabil fara circuite de cost negativ), se pune problema gasirii in mod eficient a drumurilor de cost minimim de la oricare nod la oricare alt nod



Q: Cum retin efectiv drumul dintre i si j?

A: Matricea T[i][j]= Predecesorul nodului j in drumul

de cost minim de la i la j

```
n=|V|
//initializam distante si predecesori
pentru fiecare i,j ∈ V executa
```

```
n=|V|
//initializam distante si predecesori
pentru fiecare i,j ∈ V executa
   D[i][i] = 0; D[i][j] = w[i][j];
   T[i][i] = 0;
   T[i][j] = i - daca ij ∈ E;
   T[i][j] = NULL - altfel ∈ E;
```

```
n=|V|
//initializam distante si predecesori
pentru fiecare i,j ∈ V executa
   D[i][i] = 0; D[i][j] = w[i][j];
   T[i][i] = 0;
   T[i][j] = i - daca ij ∈ E;
   T[i][j] = NULL - altfel;
```

```
//actualizare distante si predecesori
  pentru k de la 1 la n
```

```
//actualizare distante si predecesori
  pentru k de la 1 la n
     pentru i de la 1 la n
     pentru j de la 1 la n
     D'[i][j]= ?
```

```
//actualizare distante si predecesori
  pentru k de la 1 la n
    pentru i de la 1 la n
    pentru j de la 1 la n
    D'[i][j]=min(D[i][j],D[i][k]+D[k][j])
```

```
//actualizare distante si predecesori
   pentru k de la 1 la n
        pentru i de la 1 la n
        pentru j de la 1 la n
        D'[i][j]=min(D[i][j],D[i][k]+D[k][j])
        daca D'[i][j]=D[i][j]
        T'[i][j]=?
```

```
//actualizare distante si predecesori
   pentru k de la 1 la n
        pentru i de la 1 la n
        pentru j de la 1 la n
        D'[i][j]=min(D[i][j],D[i][k]+D[k][j])
        daca D'[i][j]=D[i][j]
        T'[i][j]=T[i][j]
        altfel
        T'[i][j]= ?
```

#### Corectitudine

- Algoritmul incerca sa insereze in drumul minim contruit toate nodurile *k*; un nod *k* este folosit in constructia unui drum de cost minim doar daca ajuta la reducerea costului.
- Ordinea in care sunt construite drumurile?
- Ce se intampla in cazul circuitelor de cost negativ?

# **Questions?**



# The end

