

2.1 参数检测与变送概述

检测的重要意义

2.1.1 检测仪表

1.传感器

国标《GB7665-87》规定: "能感受规定的被测量 并按照一定的规律将其转换成可用输出信号的器件或装置, 通常由敏感元件和转换元件组成"。

组成框图(图2-1)

2.变送器

将输出信号变成统一标准信号的传感器。

统一标准信号即各仪表之间的通信协议: 0~10mA、0~2V、 20~100kPa; 4~20mA、1~5V→数字信号。

本章要点(只讲2.1)

- 1) 了解参数检测的意义、检测仪表的基本构成及仪表的统一 信号标准:
- 2) 了解检测误差的概念、熟悉仪表的性能以及零点迁移与量 程调整的确定与计算:
- 3) 熟悉变送器的构成原理、信号传输与接线方式:
- 4) 了解温度检测方法、熟悉温度变速器的工资原理、掌握其 使用方法:
- 5) 掌握压力、流量、物位等检测仪表的工作原理与使用方法, 熟悉压力变送器的工作原理及使用特点;
- 6) 熟悉智能式变送器的特点及硬件构成;
- 7) 熟悉成分检测仪表的工作原理及适用范围。

2.1.2 检测误差

1.检测误差的描述 检测误差是指检测仪表的测量值与被测物理量的真值 之间的差值,它反映了仪表的检测精度

(1) 真值 即被测物理量的真实(或客观)取值。 在当前现行的检测体系中,是将"认定设备"的检测结果作为真值。

通常,各国(或国际组织)将其法定计量机构的专用设备作为认定设备,它 的检测精度在这个国家(或国际组织)内被认为是最高的。显而易见,用这 种方法确定的"真值"称为"约定真值"。

(2) 绝对误差 仪表的实测值与"真值"之差 记为 \triangle $x - x_a$

绝对误差不能说明检测精度,如。。。

(3) 相对误差(或标称相对误差)

 $\delta = \frac{\Delta}{100} \times 100\% (\delta' = \frac{\Delta}{100} \times 100\%)$

(4) 引用误差 记为
$$\gamma = \frac{\Delta}{x_{\text{max}} - x_{\text{min}}} \times 100 \%$$

(5) 基本误差

使用标准:220V±5%、(50±2)Hz、(20±5)℃、65%±5%

(6) 附加误差(温度附加、频率附加、电源电压附加)

- 2. 检测误差的规律性
- (1) <mark>系统误差</mark> 对同一被测参数进行多次重复测量时, 按一定规律出现的误差。如。。。

克服系统误差的办法: 负反馈结构

- (2) 随机误差或统计误差:统计计算、滤波消除
- (3) 粗大误差(疏忽误差):剔除
- 2.1.3 检测仪表的基本特性
- 1. 仪表的固有特性及性能指标
- (1) 精确度及其等级
- 1) 不能用绝对误差或相对误差表示?如。。
- 2) 用最大引用误差度量? (量程、最大绝对误差)

度量办法: 去掉最大引用误差中的"士"和"%"表示: 0.001、0.005、0.02、0.05、0.1、0.2、0.4、0.5、1.0、1.5、2.5。

工业常用热电阻的分度表

附表A 附表A-1 铂热电阻(分度号Pt100)分度表

 $(R_0 = 100.00\Omega)$, $\alpha = 0.003850$

ш./.x.												_			\perp
温度 /°C	l	电阻值		9	Ω										
- 200	18. 49	-	-	-	-		-		-		-	-		-	
- 100	60. 25	56. 19	52. 11	48. 00		37	39. 71		35. 5		31. 32	27.		22. 8	
- 0	100.0	96.06	92. 16	88. 22	84.	27	80. 31		76. 3	2	72. 33	68.	33	64.3	0
	100. 00	103. 90	107. 79	111. 67	115	. 54	119. 40	,	123.	24	127. 07	130	. 89	134.	70
00	138. 50	142. 29	146.06	149. 82		. 58	157. 31		161.		164. 76		. 46	172.	
00	175. 84	179. 51	183. 17	186. 32		. 45	194. 07		197.		201. 29		. 88	208.	
00	212. 02	215. 57	219. 12	222. 65		. 17	229. 67		233.		236. 65		. 13	243.	
00	247. 04	250. 48	253. 90	257. 32		. 72	264. 11		267.		270. 86		. 22	277.	
00	280. 90	284. 22	287. 53	290. 83		. 11	297. 39		300.		303. 91		. 15	310.	
00 00	313. 59	316. 80	319. 99	323. 18		. 35	329. 51		332.		335. 79		. 92	342.	
00	345. 13 375. 51	348. 22 378. 48	351. 30 381. 45	354. 37 384. 40		. 42	360. 47 390. 26		363.	50	366. 52	365	. 53	372.	52
.00	3/3. 31	3/8. 48	381. 43	384. 40	38	. 34	390. 20	'	-		-	1 -		-	

热敏电阻的温度特性(图2-13)

三种特性的用。。。

优点:温度系数大;

<mark>缺点:</mark> 互换性差, 非线性严重, 测温范围低: -50~300℃。

适用于家电和汽车的测温。

(2) 热电阻的接线方式(图2-14)

a) R = R + 2r, 用于测量精度不高的场合

b)电桥平衡, 与导线电阻无关

 $R_1 = R_2, R_1 R_3 = R_2 R_t$

(c) 用于高精度的温度测量,如 用内阻很高的电子电位差计测量 附表A-2 铜热电阻(分度号Cu50) 分度表(R0=50.00Ω α=0。004280)

温度	00	10 20		30 40		50	60	70	80	90		
/°C		电阻值 Ω										
- 0 + 0	50.00 50.00	47.85 52.14	45.70 54.28	43.55 56.42	41.40 58.56	39.24 60.70	62.84	- 64.98	67.12	69.26		
100	71.40	73.54	75.68	77.83	79.98	82.13						

2) 半导体热敏电阻的测温

計算:
$$R(T) = R(T_0) \exp \left[B(\frac{1}{T} - \frac{1}{T_0}) \right] T_0 = 0^{\circ} \text{C} = 273.15 \text{K}$$

$$B = \frac{\ln R(T) - \ln R(T_0)}{\frac{1}{T} - \frac{1}{T_0}}, B = 1500 \sim 6000 K$$

温度系数:温度变化1°C时电阻值的相对变化量。

计算:

$$\alpha = \frac{1}{R(T)} \times \frac{dR(T)}{dT} = -\frac{B}{T}$$

负温度系数: NTC型; 正温度系数: PTC型; 临界: CRT型

2. 热电偶及其测温原理(>500℃)

(1) 热电偶的测温原理: 热电效应(图2-15) 接触电势的形成。。。, 温差电势。

$$E_{AB}(t,t_0) = E_{AB}(t) - E_{AB}(t_0) + E_B(t,t_0) - E_A(t,t_0)$$

$$E_{AB}(t,t_0) \approx E_{AB}(t) - E_{AB}(t_0)$$

三点结论: 1) 电极材料相同,总电势为零; 2) 冷、热端温度相同,总电势为零; 3) 电 极材料不同,温度相同,热电势不同。

(2) 热电势的检测与第三导体定律(图2-16) $E_{ABC}(t,t_0) = E_{AB}(t) + E_{BC}(t_0) + E_{CA}(t_0)$ 当 $t = t_0$

$$\begin{split} \underline{E_{ABC}(t_0, t_0)} &= E_{AB}(t_0) + E_{BC}(t_0) + E_{CA}(t_0) = 0 \\ E_{ABC}(t, t_0) &= E_{AB}(t) - E_{AB}(t_0) = E_{AB}(t, t_0) \end{split}$$

第三导体定律: 只要第三导体两接点温度相同, 回路中热电势不变

(3) 冷端延伸与等值替换原理

为什么要延伸?补偿导线的作用?

等值替换原理(图2-17) 等值替换的条件:

 $E_{AB}(t_C, t_0) = E_{CD}(t_C, t_0)$ $t_C \le 100$ C

热电回路的总热电势: $E_{ABCD}(t,t_0) = E_{AB}(t) + E_{BD}(t_C) + E_{DC}(t_0) + E_{CA}(t_C)$

 $t = t_0 = t_C \rightarrow E_{AB}(t_C) + E_{BD}(t_C) + E_{DC}(t_C) + E_{CA}(t_C) = 0$

 $E_{ABCD}(t,t_0) = E_{AB}(t) - E_{AB}(t_C) + E_{DC}(t_0) - E_{DC}(t_C) = E_{AB}(t,t_C) + E_{CD}(t_C,t_0)$

依据 $E_{t}(t_C t_0) = E_{C}(t_C t_0)$

 $E_{ABC}(t,t_0) = E_{AB}(t,t_C) + E_{CC}(t_C,t_0) = E_{AB}(t) - E_{AB}(t_C) + E_{AB}(t_C) - E_{AB}(t_0) = E_{AB}(t,t_0)$

结论:将满足 $E_{AB}(t_C,t_0)=E_{CD}(t_C,t_0)$ 的补偿导线代替热电偶使冷端延 伸,不会改变热电偶的热电势

补偿导线的连接示意图

2) 电桥补偿法: 利用电桥某桥臂电阻因环境温度变化产生的附加电压补 偿热电偶冷端温度变化引起的热电势的变化 (图2-19及说明)

工作原理。。。

示例: 铂铑-铂铑热偶, 0~100℃: 6µv/℃, 桥 臂电流为0.5mA,α= 0.004/℃。全补偿的条 件为:

$I(mA) \times R_{\text{cut}}(\Omega) \times 0.004 / ^{\circ}C = 6(\mu V / ^{\circ}C)$

经计算: $R_{cu}(t_0 = 0^{\circ}\mathbb{C}) = 3\Omega$

加保护套管:可延长使用寿命;但使惯性滞后个(1.5~4min).不加为毫秒级 接触式测温优点:精度高、小范围线性度与稳定性好测温范围宽(500~ 2000℃; 缺点: 高于2000℃时, 不能长期使用, 对运动物体的测温, 不 能使用

(4) 标准热电偶及其补偿导线

标准热电偶: 热电势与温度的关系、允许误差、型号(分 度号)按国际标准(IEC)统一规定。

表2-3 我国部分标准化执由俚及其补偿导线

п											
ı	热电	偶			配套的补偿导线 (绝缘层着色)						
ı	分度号		热电偶材料①	测温范围/℃			型号②	正极材料	负极材料		
ı				长期	短期						
ı	S		铂铑10 -铂③	0~1300	1600		SC	铜 (红)	铜镍 (绿)		
ı	В		铂铑30 - 铂铑6	0~1600	1800		BC	铜 (红)	铜 (灰)		
ı	K		镍铬 - 镍硅	- 50 ~ 1000	1300		KX	镍铬 (红)	镍硅 (黑)		
١	T		铜 - 康铜	- 200 ~ 300	350		TX	铜 (红)	康铜 (白)		

(5) 热电偶的冷端温度校正

为什么要校正?

1) 查表法: $E_{AB}(t,0) = E_{AB}(t,t_n) + E_{AB}(t_n,0)$

示例: K型热偶, 测t,冷端温度 $t_{\rm c}=30^{\circ}$ C

测得 E(t,30)=21.995mV,E(30,0)=1.203mV,经计算: E(t,0)=E(t,30)+E(30,0)=23.198m, 反查分度表: t=560℃

二 非接触式测温(辐射式测温)

1. 非接触式测温及其特点

原理: 载热体→热能→辐射能→受体温度↑。

特点: 无媒介, 无上限, 测速快, 对热场无干扰, 用于运动物体、腐蚀 性介质的测温:

缺点:测量误差大、标定难结构复杂、价格贵

2.常用元件及共性

高温辐射计、低温辐射计、光电温度计; : 热辐射→透镜(反射镜)→ 热电堆(热敏电阻、硅光电池)→电信号。

(1), 高温辐射计: 光学玻璃透镜 (光波长0.7~1.1 µm) 与硅光电池 (700~2000°C→20mV)组成; 误差: <1500°C, ±0.7%; > 1500°C,

±1%: 响应时间<1毫秒

- (2). 低温辐射计: 锗透镜与半导体热敏电阻组成: 接收2~15µm红外 波: 范围: 0~200℃; 误差: ±1%; 响应时间<2毫秒, 信号需放大。
- (3) 光电温度计:光透镜(光波长0.6~2.7 µm) 十流化铅光敏电阻;范 围: 400 ~800°C; 误差: ±1%; 响应时间<1.5毫秒, 信号需放大。

 $\alpha = 4.29 \times 10^{-3} / ^{\circ}\text{C}$

2) 反馈线性化(图2-24)

热电偶特性

线性化校正系数

 $f_{b}(\cdot)$

(3) 热电阻量程单元(图2-26)

与热电偶量程单元的区别:

- 1) 用三线制代替了冷端温度补偿;
- 2) 对铂电阻需进行非线性校正,而 铜电阻则无需校正?
- 3) 采用正反馈方法进行校正。。。

3. 放大单元 的构成及工作 原理(图2一 27)

构成:直一交一 直变换电路;集 成运放; 功放电 路;输出电路; 反馈电路。

各部功能: 。。。

- (1) 输入模版: 多路转换器、信号调理电路、A/D转换和隔离; 功能。
- (2) 主板:微处理器系统、通信控制器、信号整形、本机调整、和电源;功能。
- (3) 显示器:液晶式微功耗数字显示四位半/五位字母
- 3. 软件构成: 系统程序、功能模块

2.3 压力的检测与变送(意义)

(2) 软件:系统程序和用户程序

2.3.1 压力的概念及其检测

2.2.3 智能式变送器

一.特点与结构

二. 实例(TT302)

1. TT302概述。。。

(图2-28) 输入模版、

2. 硬件构成:

主板、显示器

1. 特点

一. 压力的概念:垂直作用于单位面积上的力(1Pa=1N/mm、换算:P43,表2一4)

(1) 通用性强。。。 (2) 使用灵活。。。 (3) 多种补偿校正功能。。。

电源隔离

本机调整

LCD

PROM

EEPROM

RAM

通信控制器 -

液晶显示器

(4) 具有控制功能。。。(5) 具有通信功能。。。(6) 具有自诊断功能

(1) 硬件: 微处理器、输入/输出电路、人/机界面

环境温度 传感器

1. 差压(△P); 2. 绝对压力/大气压; 3. 表压; 4. 负压; 压力关系(图2-29)

二. 弹性式测压元件及原理

1. 弹簧管(波登管)、多圈弹管,

角位移→电信号:

- 2. 波纹管、波/簧组合
- →提高线性度:
- 3. 膜片与膜盒(说明)

HART通信原理图 (图2-44) HT2012:调制器、解调器、载 波监测电路和时基电路构成; 带通 滤波器 NRTS (数字) ITXD (调制) → OTXA (FSK) ORXD (FSK) IRXA (解调) → ORXD (数字) ITXD 载波监测: 4~20mA上叠有数字信号, **中**服版 HT2012 OCD为低电平, 否则为高电平: 时基电路:产生时间基准信号。 5) AD421:数/模转换芯片; 电压调整: 将24V→5V. 6) 监控电路:保护CPU状态, 即工作不正常时:中断→数据 保护→恢复。 ATCH AD421 CLOCK 3. 软件构成: 监控程序和通信程序 BOOS A/D采样、非线性补偿、量程转换、 $\Delta \Delta$ LOOP RTN 线性或开方输出、阻尼及D/A输出 通信模块 C

2.3.4 智能式差压变送器(1151) 1. 1151的特点 1)精度高(±5%)、稳定、可靠: 2) 具有补偿功能 3) 具有数字、模拟输出方式: 4) 具有多种其他功能。。。 2. 硬件构成及其功能 1) 传感器部分: AD42175 T W 电压调整电路 将差压→0~2.5V:供电电 Δ*p*. 传感器 CPU 压: 5V,工作电流: 0.8mA. 2) A/D转换: 带有前 HART 通信部分 置放大,16位,具有自校 此杉由略 准功能。。。 3) CPU:AT89S8252与MCS51兼容; 8KB F ROM、2KB EPROM、256B RAM、32 I/0口线、2个DPTR、三个16位定时/计数器、一个全双工串行口及可编程看门 狗、振荡器与时钟电路等 4) HART通信部分:二进制数字信号与FSK信号之间的转换

