ITCS 531: Logic 5 - Basic model theory

Rob Egrot

Structures and languages

- In the last class we introduced the idea of a first-order language \mathscr{L} .
- A mathematical structure is an \mathcal{L} -structure if it has relations, functions and constants corresponding to the non-logical symbols of \mathcal{L} .
- If ϕ is an \mathscr{L} -sentence and A is an \mathscr{L} -structure, if ϕ is true in A we say A is a *model* for ϕ (we write $A \models \phi$).
- ightharpoonup Given a set of \mathscr{L} -sentences, we can try to understand them by studying its models.
- ▶ Conversely, given a structure A we can try to think of it as an \mathcal{L} -structure for some \mathcal{L} .
- ightharpoonup We can study A by looking at the \mathscr{L} -sentences that it models.

Model theory

- This two-way study of logic through structures, and structures through logic, is the starting point of model theory.
- In this class we will look more closely at the concept of models and semantic implication.
- We will also define a concept of deduction based on that for propositional logic.
- We will state soundness and completeness theorems for first-order logic.
- We will see some limitations of first-order logic for studying infinite structures.

Logical implication

▶ If Γ is a set of \mathscr{L} -formulas, and if ϕ is an \mathscr{L} -formula, we write $\Gamma \models \phi$ if, whenever v is an assignment of the variables of \mathscr{L} into an \mathscr{L} -structure A, we have

$$A, v \models \Gamma \implies A, v \models \phi.$$

- We say that φ is a *logical consequence* of Γ.
- Remember sentences are formulas that have no free variables.
- For sentences we can just write, e.g. $A \models \phi$.
- ▶ When $A \models \phi$, we say A is a *model* for ϕ .
- ▶ If Δ is a set of \mathscr{L} -sentences we can write e.g. $A \models \Delta$ when $A \models \phi$ for all $\phi \in \Delta$, and say A is a model for Δ .

Validity and satisfiability

Definition 1

If ϕ is an \mathscr{L} -formula then we say ϕ is:

- ▶ Valid if $A, v \models \phi$ whenever A is an \mathscr{L} -structure and v is an assignment.
- Satisfiable if there is an \mathscr{L} -structure A and an assignment v with $A, v \models \phi$.
- A contradiction if it is not satisfiable, i.e. if there is no A, v with $A, v \models \phi$.

Similarly, if Γ is a set of \mathscr{L} -formulas then Γ is:

- ▶ Valid if $A, v \models \Gamma$ whenever A is an \mathscr{L} -structure and v is an assignment.
- Satisfiable if there is an \mathcal{L} -structure A and an assignment v with $A, v \models \Gamma$.
- ► Contradictory if it is not satisfiable, i.e. if there is no A, v with $A, v \models \Gamma$. If Γ is not satisfiable we write $\Gamma \models \bot$.

Example - arithmetic

Example 2

Let $\mathcal{L} = \{0, 1, \times, +\}$ be the language of arithmetic.

- 1. Let $\phi = \forall x ((x \approx 0) \lor \neg (x \approx 0))$. Then ϕ is valid. More generally, if $\mathscr L$ is a language, and if ϕ_1, \ldots, ϕ_n are $\mathscr L$ -sentences, then any propositional tautology constructed by treating the ϕ_i as basic propositions will be valid.
- 2. Let $\psi = \forall x (\neg (x \approx 0) \to \exists y (x \times y \approx 1))$. This is true if we take $\mathbb R$ as our structure, but not if we take $\mathbb Z$. So ψ is satisfiable but not valid.
- 3. If ϕ_1, \ldots, ϕ_n are \mathscr{L} -sentences, then any propositional contradiction using the ϕ_i as basic propositions will be a contradiction.

Checking satisfiability

Definition 3 (Theory)

If $\mathcal L$ is a language, then an $\mathcal L$ -theory is a satisfiable set of $\mathcal L$ -sentences.

- Checking logical consequence, validity etc. is much more complicated for first-order logic than for propositional logic.
- In propositional logic, you just construct a truth table.
- ► In first-order logic, you might have to check every possible £-structure.
- Generally this is not feasible.
- There is no algorithm for saying whether an arbitrary \mathscr{L} -sentence has a model (proved next semester).

Intended models

- When we write down axioms in first-order logic, there is often some particular system whose behaviour we are trying to formalize.
- ► E.g. we might write down axioms for defining real numbers.
- The intended model here is \mathbb{R} , and we can choose axioms so that \mathbb{R} is indeed a model.
- ▶ But can we choose first-order axioms so that R is the only model?
- ▶ No. In fact, it is impossible to use first-order logic to define a specific infinite structure.
- This is due to the theorem on the next slide.

The Löwenheim-Skolem theorem

Theorem 4

Let Γ be a countable \mathcal{L} -theory. Then, if Γ has an infinite model, it has models of every infinite cardinality.

- ► Theorem 4 gives us an infinite supply of extra models for any theory that has at least one infinite model.
- It also tells us that first-order logic can't 'tell the difference' between different infinite cardinalities.
- Unintended models need not have different cardinalities though, as the example on the next slide illustrates.

Unnatural natural numbers

Example 5

Let $\mathcal{L} = \{0, s\}$, where s is a unary function. Let Γ consist of the following sentences.

- $\phi_1: \ \forall x(\neg(x \approx 0) \to \exists y(x = s(y)).$ $\phi_2: \ \forall x(\neg(x \approx s(x))).$ $\phi_3: \ \forall x\forall y((s(x) \approx s(y)) \to (x \approx y)).$
 - ▶ One model of Γ is \mathbb{N} , where s is interpreted as the 'successor' function.
 - ► Is N the only model?
 - No, for example, the disjoint union of $\mathbb N$ and $\mathbb Z$ is also a model if we interpret 0 as the zero of $\mathbb N$, and s as the successor function in both $\mathbb N$ and $\mathbb Z$.

Technical aside - substitution

- Let ϕ be an \mathcal{L} -formula with free variables $x_1, \dots x_n$.
- We can express this fact by writing $\phi[x_1, \ldots, x_n]$.
- ▶ Let t be an \mathscr{L} -term, and let $i \in \{1, ..., n\}$.
- We can create a new formula from ϕ by replacing every occurrence of the variable x_i with the term t.
- We use the notation $\phi[x_1, \ldots, x_{i-1}, t/x_i, x_{i+1}, \ldots, x_n]$ to denote this new formula.
- ► E.g. let $\phi[x,y] = s(x) \approx y$, let t = s(s(z)).
- Substituting t for x gives in ϕ gives $\phi[t/x, y] = s(s(s(z))) \approx y$.
- Note that $\phi[x,y]$ and $\phi[t/x,y]$ have different free variables.

Deduction in first-order logic

► We can extend the natural deduction system for propositional logic to first-order logic.

We have all the same deduction rules as before (but with first-order formulas in place of propositional sentences).

▶ We also have extra ones for \approx and the quantifiers \forall and \exists .

Inroduction rules

$$\approx_I$$
: $t \approx t$

$$\forall_I$$
: $\frac{\phi[x'/x]}{\forall x \phi}$

$$\exists_I$$
: $\frac{\phi[t/x]}{\exists x \phi}$

Elimination rules

$$pprox_E$$
: $\frac{t_1 pprox t_2 \quad \phi[t_1/z]}{\phi[t_2/z]}$

$$\forall_E$$
: $\frac{\forall x \phi}{\phi[t/x]}$

$$\exists_E$$
: $\frac{\exists x \phi}{\psi}$ $\frac{\psi}{\psi}$

First-order deduction example

Example 6

Let ϕ and ψ be formulas where x occurs free. Then we can deduce $\forall x\psi$ from $\forall x\neg\phi$ and $\forall x(\phi\lor\psi)$.

$$(\forall_{E}) \frac{\forall x \neg \phi}{\neg \phi[x'/x]} \quad (\forall_{E}) \frac{\forall x (\phi \lor \psi)}{\phi[x'/x] \lor \psi[x'/x]} \\ (\forall_{I}) \frac{\psi[x'/x]}{\forall x \psi}$$

p.d. stands for *propositional deduction*.

Another first-order deduction example

Example 7

Let ϕ and ψ be formulas where x occurs free. Then we can deduce $\exists x \psi$ from $\exists x \neg \phi$ and $\forall x (\phi \lor \psi)$.

$$(\exists_{E}) \frac{\exists x \neg \phi \qquad \frac{\left[\neg \phi[x'/x]\right]}{\neg \phi[x'/x]}}{(\mathsf{p.d.}) \frac{\neg \phi[x'/x]}{}{}} \qquad \frac{\forall x (\phi \lor \psi)}{\phi[x'/x] \lor \psi[x'/x]}}{(\exists_{I}) \frac{\psi[x'/x]}{\exists x \psi}} (\forall_{E})$$

Consistency

- As with propositional logic we write $\Gamma \vdash \phi$ if ϕ can be deduced from a set of formulas Γ .
- ▶ We say a set of \mathscr{L} -sentences, Γ, is **consistent** if we do not have Γ \vdash \bot .
- ightharpoonup We sometimes describe a consistent set of \mathscr{L} -sentences as an \mathscr{L} -theory.
- This is consistent with definition 3 because, as in propositional logic, there is a strong link between ⊢ and ⊨ (see next slide).

Soundness and completeness

Theorem 8 (Gödel)

Let Γ be a set of \mathcal{L} -formulas. Then Γ is consistent if and only if it is satisfiable.

Theorem 9 (Extended soundness and completeness)

Let Γ be a set of \mathscr{L} -formulas and let ϕ be an \mathscr{L} -formula. Then

$$\Gamma \vdash \phi \iff \Gamma \models \phi.$$

These two results are equivalent (this is proved in the exercises this week).

Proving theorem 9 - Soundness

- Like the soundness theorem for propositional logic.
- Must show each deduction rule is sound.
- ► E.g.
 - - Assuming deductions of ϕ and ψ are sound, any pair (A, v) satisfying Γ must satisfy ϕ and ψ .
 - ▶ So also satisfies $\phi \wedge \psi$.
 - ▶ The new rules are trickier, but as a sketch:
 - \forall_I : \blacktriangleright Have deduced $\phi[x'/x]$ for arbitrary choice of x'.
 - Assuming this deduction is sound, any pair (A, v) satisfying Γ will also satisfy $\phi[x'/x]$
 - ▶ Must show that $A, v \models \forall x \phi[x]$ too.
 - ▶ I.e. if v' agrees with v except possibly about x then $A, v' \models \phi[x]$.
 - With a little fiddling we can do this (see notes).

Proving theorem 9 - Completeness

- Completeness is harder, but conceptually similar to the propositional version.
- Again, proving completeness is equivalent to proving that every consistent set of formulas is satisfiable.
- ▶ Rather than just building a true/false assignment that satisfies a consistent set of propositional sentences, we must find a pair (A, v) satisfying a set of first-order formulas.
- It is possible to do this, using the formulas themselves as the base for a model.