Einführung in die Algebra

BLATT 7

Jendrik Stelzner

5. Dezember 2013

Aufgabe 7.1.

Für $x,y\in\mathbb{C}$ mit xy=1 muss |x||y|=1, also $|x|\le 1$ oder $|y|\le 1$. Die einzigen Elemente $z\in\mathbb{Z}\left[\sqrt{-n}\right]$ mit $|z|\le 1$ sind $\{1,-1\}$ für n>1 und $\{1,-1,i,-i\}$ für n=1. Für $x,y\in\mathbb{Z}\left[\sqrt{-n}\right]$ mit xy=1 ist also $x\in\{1,-1\}$ oder $y\in\{1,-1\}$ für n>1 und $x\in\{1,-1,i,-i\}$ oder $y\in\{1,-1,i,-i\}$ für n=1. Da all diese Elemente in $\mathbb{Z}\left[\sqrt{-n}\right]$ invertierbar sind, ist daher

$$\left(\mathbb{Z}\left[\sqrt{-n}\,\right]\right)^* = \begin{cases} \{1,-1,i,-i\} & \text{ für } n=1,\\ \{1,-1\} & \text{ für } n>1. \end{cases}$$

Aufgabe 7.2.

Für $x,y\in\mathbb{C}$ mit xy=21 ist |x||y|=21, also muss $|x|\leq\sqrt{21}$ oder $|y|\leq\sqrt{21}$. Es genügt daher die $a+\sqrt{5}bi=z\in\mathbb{Z}[\sqrt{-5}]$ mit $|z|\leq\sqrt{21}$, also $a^2+5b^2\leq21$ auf Teilbarkeit zu überprüfen. Da für jeden Teiler $z\in\mathbb{Z}[\sqrt{-5}]$ auch $-z,\bar{z},-\bar{z}\in\mathbb{Z}[\sqrt{-5}]$ Teiler von 21 sind, genügt es zudem auch die $a+\sqrt{5}bi\in\mathbb{Z}[\sqrt{-n}]$ mit $a,b\geq0$ auf Teilbarkeit zu überprüfen.

Es ergeben sich mit diesen beiden Beschränkungen die möglichen Kandidaten

$$1, 2, 3, 4, 1 + \sqrt{5}i, 1 + 2\sqrt{5}i, 2 + \sqrt{5}i, 3 + \sqrt{5}i \text{ und } 4 + \sqrt{5}i.$$

Einfaches Hinsehen und gegebenenfalls kurzes Nachrechnen ergibt, dass von diesen Zahlen nur

$$1, 3, 1 + 2\sqrt{5}i \text{ und } 4 + \sqrt{5}i$$

Teiler von 21 sind. Die Teiler von 21 in $\mathbb{Z}\left[\sqrt{-n}\,\right]$, die sich nun nach den obigen Zusammenhängen ergeben, sind also

$$1, -1, 21, -21, 3, -3, 7, -7,$$

$$1 + 2\sqrt{5}i, -1 - 2\sqrt{5}i, 1 - 2\sqrt{5}i, -1 + 2\sqrt{5}i,$$

$$4 + \sqrt{5}i, -4 - \sqrt{5}i, 4 - \sqrt{5}i, -4 - \sqrt{5}i.$$

Aufgabe 7.3.

Definition. Für einen Ring R bezeichnet

$$\operatorname{nil}(R) := \{ x \in R : x^n = 0 \text{ für ein } n \in \mathbb{N} \}$$

das Nilradikal von R.

Bemerkung 1. Sei R ein kommutativer Ring. Dann gilt

- (i) nil(R) ist ein Ideal von R.
- (ii) Für $e \in R^*$ und $a \in nil(R)$ ist $e + a \in R^*$.

Beweis. (i)

Es ist $0\in \mathrm{nil}(R)$, also $\mathrm{nil}(R)$ nicht leer. Für $a,b\in \mathrm{nil}(R)$ gibt es $n,m\in \mathbb{N}$ mit $a^n=b^m=0$, weshalb

$$(a+b)^{n+m} = \sum_{k=0}^{n+m} \binom{n+m}{k} a^{n+m-k} b^k = 0,$$

und deshalb $a+b\in \mathrm{nil}(R)$. Auch ist für alle $r\in R$

$$(ra)^n = r^n a^n = 0,$$

also $ra \in R$. Insbesondere ist daher für alle $a \in \operatorname{nil}(R)$ auch $-a = (-1) \cdot a \in R$.

(ii)

Für $e \in R^*$ und $a \in \text{nil}(R)$ mit $a^n = 0$ ist $1 + e^{-1}a \in R^*$, da $\left(e^{-1}a\right)^n = 0$ und daher

$$\left(\sum_{k=0}^{n-1} \left(-e^{-1}a\right)^k\right) \left(1 + e^{-1}a\right) = 1 + (-1)^{n-1} \left(e^{-1}a\right)^n = 1.$$

Daher ist auch $e + a = e (1 + e^{-1}a) \in \mathbb{R}^*$.

Da $\mathrm{nil}(R)\subseteq\mathrm{nil}(R[X])$ ist auch $(\mathrm{nil}(R))\subseteq\mathrm{nil}(R[X])$. Dabei ist, wie in einem früheren Übungsblatt gezeigt,

$$(\operatorname{nil}(R)) = \left\{ f \in R[X] : f = \sum_{i=0}^n a_i X^i \text{ mit } n \geq 0, a_i \in \operatorname{nil}(R) \text{ für alle } i \right\}.$$

Nach Bemerkung 1 ist also das Polynom $f = \sum_{i=0}^n a_i X^i$ mit $n \geq 0$, $a_0 \in R^*$ und $a_i \in \text{nil}(R)$ für alle i invertierbar.

Sei andereseits $f=\sum_{i=0}^n a_i X^i\in R[X]$, mit $n\geq 0$ und $a_n\neq 0$, invertierbar, d.h. es gibt $g=\sum_{i=0}^m b_i X^i\in R[X]$, mit $m\geq 0$ und $b_m\neq 0$, so dass fg=1. Da insbesondere $a_0b_0=1$ müssen a_0 und b_0 in R invertierbar sein. Für n=0 ist nichts weiter zu zeigen. Ist n>0, so bemerken wir:

Behauptung 2. Es ist $a_n^{k+1}b_{m-k}=0$ für $k=0,\ldots,m$.

Beweis. Der Beweis verläuft per Induktion über k.

Induktionsanfang. Betrachte k=0. Wäre $a_nb_m\neq 0$, so wäre

$$0 = \deg(1) = \deg(fg) = \deg(f) + \deg(g) = n + m \ge n > 0.$$

Induktionsschritt. Sei $1 \le k \le n$ und gelte die Aussage für k-1. Da fg=1 ergibt sich für den n+m-k-ten Koeffizienten des Produktes fg, dass

$$0 = \sum_{\mu + \nu = n + m - k} a_{\mu} b_{\nu}.$$

Multiplikation der Gleichung mit \boldsymbol{a}_n^k ergibt

$$0 = \sum_{\mu + \nu = n + m - k} a_n^k a_\mu b_\nu = a_n^{k+1} b_{m-k}.$$

Aus Behauptung 2 folgt insbesondere, dass $a_n^{m+1}b_0=0$. Da b_0 invertierbar ist, ist $a_n^{m+1}=0$, also a_n nilpotent. Da nach Bemerkung 1 daher auch $f-a_nX^n$ invertierbar ist, ergibt sich durch Wiederholung der obigen Argumentation induktiv, dass a_i für alle $1\leq i\leq n$ nilpotent ist.

Aufgabe 7.4.

Definition. Sei R ein kommutativer Ring. Für $f = \sum_{i=0}^{\infty} a_i X^i \in R[\![x]\!]$ bezeichnet

$$\operatorname{Deg}(f) := \begin{cases} \min\{i \in \mathbb{N} : a_i \neq 0\} & \text{falls } f \neq 0, \\ \infty & \text{falls } f = 0 \end{cases}$$

den Grad von f.

Bemerkung 3. Für einen kommutativen Ring R und $f, g \in R[x]$ ist

$$\label{eq:deg} \begin{split} \operatorname{Deg}(f+g) &\geq \min\{\operatorname{Deg}(f),\operatorname{Deg}(g)\} \ \textit{und} \\ \operatorname{Deg}(fg) &\geq \operatorname{Deg}(f) + \operatorname{Deg}(g). \end{split}$$

Ist R darüber hinaus nullteilerfrei, so gilt sogar

$$\mathrm{Deg}(fg) = \mathrm{Deg}(f) + \mathrm{Deg}(g).$$

Beweis. Der Beweis läuft analog zu dem der entsprechenden (Un)gleichungen der Gradfunktion deg von R[X].

(i)

Ist R kein Integritätsring, so auch $R[\![x]\!]$ nicht, da man R in kanonischer als Unterring von $R[\![x]\!]$ auffassen kann. Ist $R[\![x]\!]$ kein Integritätsring, so gibt es $f,g\in R[\![x]\!]$ mit $f,g\neq 0$, also $\mathrm{Deg}(f),\mathrm{Deg}(g)<\infty$, aber fg=0, also $\mathrm{Deg}(fg)=\infty$. Aus Bemerkung 3 folgt, dass R kein Integritätsring ist.

(ii)

Ist $f=\sum_{i=0}^\infty a_i X^i\in R[\![x]\!]$ invertierbar, so gibt es $g=\sum_{i=0}^\infty b_i X^i\in R[\![x]\!]$ mit fg=1. Insbesondere ergibt sich für den 0-ten Koeffizienten von fg, dass $1=a_0b_0$. Also ist a_0 invertierbar in R.

Ist $f=\sum_{i=0}^\infty a_i X^i\in R[\![x]\!]$ mit a_0 invertierbar, so definieren wir eine Folge $(b_i)_{i\in\mathbb{N}}$ auf R rekursiv durch

$$b_0 := a_0^{-1} \text{ und } b_i := -a_0^{-1} \sum_{j=1}^i a_j b_{i-j},$$

und definieren $g:=\sum_{i=0}^\infty b_i X^i$ als die entsprechende Potenzreihe. Es ergibt sich für $fg:=e=\sum_{i=0}^\infty e_i X^i$, dass $e_0=a_0b_0=1$ und für alle $i\geq 1$

$$e_i = \sum_{j=0}^i a_j b_{i-j} = \sum_{j=1}^i a_j b_{i-j} + a_0 b_i = \sum_{j=1}^i a_j b_{i-j} - \sum_{j=1}^i a_j b_{i-j} = 0.$$

Also ist e=1 und f daher invertierbar mit $f^{-1}=g$. Inbesondere ergibt sich das folgende Lemma:

Lemma 4. Sei K ein Körper und seien $f, g \in K[x]$. Dann gilt:

- (i) f ist genau dann invertierbar, wenn Deg f = 0.
- (ii) Ist $\operatorname{Deg} f = \operatorname{Deg} g$, so sind f und g assoziiert. Genauer: Ist $\operatorname{Deg} f < \infty$, so ist f assoziiert zu $X^{\operatorname{Deg} f}$.
- (iii) Ist $\operatorname{Deg} f \leq \operatorname{Deg} g$, so ist $f \mid g$.

Beweis. (i)

 $f=\sum_{i=0}^{\infty}a_iX^i$ ist genau dann invertierbar, wenn a_0 invertierbar ist, also genau dann wenn $a_0\neq 0$, was äquivalent zu $\mathrm{Deg}\,f=0$ ist.

(ii)

Ist f=g=0 so ist nichts zu zeigen. Ansonsten ist $f=\sum_{i=0}^{\infty}a_iX^i\neq 0$, also $f=X^{\mathrm{Deg}\,f}f'$ mit $f'=\sum_{i=0}^{\infty}a_{i+\mathrm{Deg}\,f}X^i$ und $a_{\mathrm{Deg}\,f}\neq 0$. Nach (i) ist f' invertierbar, also f assoziiert zu $X^{\mathrm{Deg}\,f}$.

(iii)

Ist $\operatorname{Deg} g = \infty$, so ist g = 0 und nichts zu zeigen. Ansonsten ist $g = X^{\operatorname{Deg} g - \operatorname{Deg} f} g'$, wobei g' wegen $\operatorname{Deg} g' = \operatorname{Deg} f$ assozziert zu f ist, also $g = X^{\operatorname{Deg} g - \operatorname{Deg} f} c f$ für $c \in K^*$.

(iii)

f ist in $\mathbb{Z}[X]$ nicht irreduzibel, da f=(X+1)(X+2). Seien $p,q\in\mathbb{Z}[\![x]\!]$ mit $p=\sum_{i=0}^\infty a_iX^i$ und $q=\sum_{j=0}^\infty b_iX^i$ so dass pq=f. Dann ist $a_0b_0=2$. Da $a_0,b_0\in\mathbb{Z}$, und 2 in \mathbb{Z} irreduzibel ist, ist a_0 oder b_0 eine Einheit. Entsprechend ist p oder q nach dem vorherigen Aufgabenteil eine Einheit. Also ist f irreduzibel in $\mathbb{Z}[\![x]\!]$.

Aufgabe 7.5.

Lemma 5. K[x] bildet mit der Gradabbildung Deg einen euklidischen Ring.

Beweis. Da K nullteilerfrei ist, ist $K[\![x]\!]$ ein Integritätsring. Seien $f,g\in K[\![x]\!]$ mit $g\neq 0$. Es gilt zu zeigen, dass es $q,r\in K[\![x]\!]$ gibt, so dass f=qg+r mit r=0 oder $\mathrm{Deg}\, r<\mathrm{Deg}\, g$.

Ist $\operatorname{Deg} f < \operatorname{Deg} g$ so genügt es q=0 und r=f zu wählen. Ist $\operatorname{Deg} f \geq \operatorname{Deg} g$, so folgt aus 4, dass $g \mid f$, es kann also q mit f=qg und r=0 gewählt werden. \square

Aus Lemma 5 folgt direkt, dass $K[\![x]\!]$ ein Hautidealring ist. Für jedes Ideal $(a) \neq 0$ von $K[\![x]\!]$ folgt mit Lemma 4, dass a assoziert zu $X^{\mathrm{Deg}\,a}$ ist, und da $K[\![x]\!]$ ein Integritätsring ist, daher $(a) = \left(X^{\mathrm{Deg}\,a}\right)$. Folglich sind die Ideale in $K[\![x]\!]$ gerade 0 und (X^n) für $n \in \mathbb{N}$. Insbesondere ist (X) das eindeutige maximale Ideal in $K[\![x]\!]$, weshalb $K[\![x]\!]$ lokal ist (dies lässt sich auch direkt aus Lemma 4 folgern).