Ohmic Devices

$$V = IR$$

$$P_{\text{diss}} = I^2 R = \frac{V^2}{R}$$

Resistors in Series and Parallel

Series:
$$R_{eq} = R_1 + R_2 + R_3 + ...$$

$$V_1 = \frac{R_1}{R_1 + R_2} V$$

Parallel:
$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

$$\Delta I_1 = \frac{R_2}{R_1 + R_2} I$$

Kirchhoff's Rules

Loop: $\sum_{\text{loop}} V_i = 0$

Junction: $\sum_{\text{junction}} I_i = 0$

+	_
<u> </u>	<u></u>
-	- - +

Phasor Analysis

$$X_{L} = j\omega L \qquad X_{C} = -\frac{j}{\omega C}$$

$$\mathbf{V} = V e^{j\phi_{v}} \qquad \mathbf{I} = I e^{j\phi_{i}}$$

$$\mathbf{I} = \frac{\mathbf{V}}{Z}$$

$$v(t) = Re(\mathbf{V} e^{j\omega t}) \qquad i(t) = Re(\mathbf{I} e^{j\omega t})$$

$$\langle P \rangle = \frac{IV}{2} \cos(\phi_{v} - \phi_{i}) = \frac{V^{2}}{2Z} \cos(\phi_{v} - \phi_{i})$$

AC Voltage Divider

$$\begin{split} \frac{V_{out}}{V_{in}} &= \frac{|\mathbf{V}_{out}|}{|\mathbf{V}_{in}|} = \left|\frac{Z_2}{Z_1 + Z_2}\right| = \sqrt{\left(\frac{Z_2}{Z_1 + Z_2}\right)^* \left(\frac{Z_2}{Z_1 + Z_2}\right)} \\ &\tan \phi = \frac{Im\left(\frac{Z_2}{Z_1 + Z_2}\right)}{Re\left(\frac{Z_2}{Z_1 + Z_2}\right)} \end{split}$$

Resistor Color Codes

color	digit	multiplier
black	0	1
brown	1	10
red	2	100
orange	3	1k
yellow	4	10k
green	5	100k
blue	6	1M
violet	7	10M
gray	8	100M
white	9	1000M

$$\begin{aligned} \textit{R} &= [\mathsf{band1}][\mathsf{band2}] \times 10^{[\mathsf{band3}]} &\pm 5\% \ (\mathsf{gold}) \\ &\pm 10\% \ (\mathsf{silver}) \end{aligned}$$

Breadboard Layout

Schematic Symbols

