16 September 2020 18:30

Q: + A wire is bent into a shape of a parabola $y = K \cdot n^2$. A magnetic field of induction B is applied perpendicular to the plane everywhere A slider PQ is pulsed along the y anis with a constant acceleration a from the years at too. find the Emfinded about the point of contact of the slider f the wire as a fn. of y. Neglect friction of gravity.

Q:+ Find the currents in each branch, if the slider is pulled towards right with a velocity v.

Q:4 A wire of shape of a sine-curve of wavelength A is moved along the x-y plane with a velocity $\overrightarrow{v} = v_x \cdot \hat{i} + v_y \cdot \hat{i}$, in a uniform magnetic field $\overrightarrow{B} = -8 \cdot \hat{k}$. find \overrightarrow{Anc} EMF induced about its ends.

Q:+ calculate the force needed to maintain The constant speed 'v' of the conductor EF. Neglect friction of gravity.

Q: > find the current induced in the loop if the resistance of the loop is R.

Energy consideration of motional EMF:+

