Structures algébriques

Loi de composition interne

Exercice 1 [02190] [correction]

On définit une loi de composition interne \star sur $\mathbb R$ par

$$\forall (a,b) \in \mathbb{R}^2, a \star b = \ln(e^a + e^b)$$

Quelles en sont les propriétés ? Possède-t-elle un élément neutre ? Y a-t-il des éléments réguliers ?

Exercice 2 [02191] [correction]

Soit E = [0, 1]. On définit une loi \star sur E par

$$\forall x, y \in E, x \star y = x + y - xy$$

- a) Montrer que * est une loi de composition interne commutative et associative.
- b) Montrer que * possède un neutre.
- c) Quels sont les éléments symétrisables? réguliers?

Exercice 3 [02192] [correction]

Soit \star une loi de composition interne sur E.

Pour $A, B \in \mathcal{P}(E)$ on pose

$$A \star B = \{a \star b/a \in A, b \in B\}$$

Etudier les propriétés de \star sur E (commutativité, associativité, existence d'un neutre) conservées par \star sur $\mathcal{P}(E)$. La loi \star est-elle distributive sur l'union, sur l'intersection?

Exercice 4 [02193] [correction]

Soit E un ensemble et $f: E \to E$.

Montrer que f est un élément régulier de (E^E, \circ) si, et seulement si, f est bijective.

Exercice 5 [02194] [correction]

Soit a un élément d'un monoïde (E, \star) .

Montrer que a est symétrisable si, et seulement si, l'application $f: E \to E$ définie par $f(x) = a \star x$ est bijective.

Exercice 6 [02195] [correction]

Soit (E, \star) un monoïde. Un élément x de E est dit idempotent si, et seulement si, $x \star x = x$.

- a) Montrer que si x et y sont idempotents et commutent, alors $x \star y$ est idempotent.
- b) Montrer que si x est idempotent et inversible, alors x^{-1} est idempotent.

Exercice 7 [02196] [correction]

Soit E et F deux ensembles et $\varphi: E \to F$ une application bijective.

On suppose E muni d'une loi de composition interne \star et on définit une loi \top sur F par :

 $\forall x,y \in F, x \top y = \varphi(\varphi^{-1}(x) \star \varphi^{-1}(y)).$

- a) Montrer que si \star est commutative (resp. associative) alors \top l'est aussi.
- b) Montrer que si \star possède un neutre e alors \top possède aussi un neutre à préciser.

Exercice 8 [02197] [correction]

Soit \star une loi de composition interne associative sur E.

On suppose qu'il existe $a \in E$ tel que l'application $f : E \to E$ définie par $f(x) = a \star x \star a$ soit surjective et on note b un antécédent de a par f.

- a) Montrer que $e=a\star b$ et $e'=b\star a$ sont neutres resp. à gauche et à droite puis que e=e'.
- b) Montrer que a est symétrisable et f bijective.

Exercice 9 [02198] [correction]

Soit \star une loi de composition interne associative sur un ensemble fini E et x un élément régulier de E. Montrer que E possède un neutre.

Exercice 10 [02199] [correction]

Soit (E, \star) un monoïde avec E ensemble fini.

Montrer que tout élément régulier de E est inversible.

Exercice 11 [02200] [correction]

Soit A une partie d'un ensemble E. On appelle fonction caractéristique de la partie A dans E, l'application $\chi_A: E \to \mathbb{R}$ définie par :

$$\chi_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon} \end{cases}$$

De quels ensembles les fonctions suivantes sont-elles les fonctions caractéristiques?

- a) $\min(\chi_A, \chi_B)$ b) $\max(\chi_A, \chi_B)$
- c) $\chi_A.\chi_B$

- d) $1 \chi_A$
- e) $\chi_A + \chi_B \chi_A \cdot \chi_B$ f) $\chi_A + \chi_B 2\chi_A \cdot \chi_B$

Exercice 12 X MP [03043] [correction]

Soit E un ensemble fini non vide muni d'une loi de composition interne associative notée \top .

Montrer qu'il existe $e \in E$ tel que $e \top e = e$.

Groupes

Exercice 13 [02201] [correction]

Soit (G, \star) un groupe tel que

$$\forall x \in G, x^2 = e$$

Montrer que G est commutatif.

Exercice 14 [02202] [correction]

Soit (E, \star) un monoïde de neutre e. On suppose que

$$\forall x \in E, x^{\star 2} = e$$

Montrer que (E, \star) est un groupe abélien.

Exercice 15 [02203] [correction]

Soit (E, \star) un monoïde avec E ensemble fini.

On suppose que tous les éléments de E sont réguliers. Montrer que E est un groupe.

Exercice 16 [02204] [correction]

Soit (G, \star) un groupe à n éléments.

Justifier que sa table de composition est un carré latin c'est à dire que tout élément de G figure une fois et une seule dans chaque ligne et dans chaque colonne.

Exercice 17 [02205] [correction]

Soit $G = \mathbb{R}^* \times \mathbb{R}$ et \star la loi de composition interne définie sur G par

$$(x,y) \star (x',y') = (xx',xy'+y)$$

- a) Montrer que (G, \star) est un groupe non commutatif.
- b) Montrer que $\mathbb{R}^{+\star} \times \mathbb{R}$ est un sous-groupe de (G, \star) .

Exercice 18 [02206] [correction]

Sur G = [-1, 1[on définit une loi \star par

$$\forall x, y \in G, x \star y = \frac{x+y}{1+xy}$$

Montrer que (G, \star) est un groupe abélien.

Exercice 19 [02207] [correction]

[Addition des vitesses en théorie de la relativité]

Soit c > 0 (c correspond à la vitesse – ou célérité – de la lumière) et I =]-c, c[.

a) Montrer

$$\forall (x,y) \in I^2, \ x \star y = \frac{x+y}{1 + \frac{xy}{c^2}} \in I$$

b) Montrer que la loi \star munit I d'une structure de groupe abélien.

Cette loi ★ correspond à l'addition des vitesses portées par un même axe en théorie de la relativité.

Sous-groupe

Exercice 20 [02208] [correction]

Soit $\omega \in \mathbb{C}$ et $H = \{a + \omega b/a, b \in \mathbb{Z}\}.$

Montrer que H est un sous groupe de $(\mathbb{C}, +)$.

Exercice 21 [02209] [correction]

Soit $a \in \mathbb{C}^*$ et $H = \{a^n / n \in \mathbb{Z}\}.$

Montrer que H est un sous groupe de (\mathbb{C}^*, \times) .

Exercice 22 [02210] [correction]

Soit a un élément d'un ensemble E. On forme $H = \{ f \in \mathfrak{S}(E) \mid f(a) = a \}$. Montrer que H est un sous-groupe de $(\mathfrak{S}(E), \circ)$

Exercice 23 [02211] [correction]

Soit (G, \times) un groupe, H un sous groupe de (G, \times) et $a \in G$.

- a) Montrer que $aHa^{-1} = \{axa^{-1}/x \in H\}$ est un sous groupe de (G, \times) .
- b) A quelle condition simple $aH = \{ax/x \in H\}$ est un sous groupe de (G, \times) ?

Exercice 24 [02212] [correction]

On appelle centre d'un groupe (G, \star) , la partie C de G définie par

$$C = \{ x \in G \mid \forall y \in G, x \star y = y \star x \}$$

Montrer que C est un sous-groupe de (G, \star) .

Exercice 25 [02213] [correction]

Soit $f_{a,b}: \mathbb{C} \to \mathbb{C}$ définie par $f_{a,b}(z) = az + b$ avec $a \in \mathbb{C}^*, b \in \mathbb{C}$. Montrer que $(\{f_{a,b}/a \in \mathbb{C}^*, b \in \mathbb{C}\}, \circ)$ est un groupe.

Exercice 26 [02214] [correction]

On considère les applications de $E = \mathbb{R} \setminus \{0, 1\}$ dans lui-même définies par : $i(x)=x, f(x)=1-x, g(x)=\frac{1}{x}, h(x)=\frac{x}{x-1}, k(x)=\frac{x-1}{x}, \ell(x)=\frac{1}{1-x}$ a) Démontrer que ce sont des permutations de E.

- b) Construire la table donnant la composée de deux éléments quelconques de l'ensemble $G = \{i, f, q, h, k, l\}.$
- c) Montrer que G muni de la composition des applications est un groupe non commutatif.

Exercice 27 [02215] [correction]

Soit H et K deux sous-groupes d'un groupe (G,\star) tels que $H\cup K$ en soit aussi un sous-groupe. Montrer que $H \subset K$ ou $K \subset H$.

Exercice 28 [02216] [correction]

Soit (G, \star) un groupe et A une partie finie non vide de G stable pour \star .

a) Soit $x \in A$ et $\varphi : \mathbb{N} \to G$ l'application définie par $\varphi(n) = x^n$.

Montrer que φ n'est pas injective.

b) En déduire que $x^{-1} \in A$ puis que A est un sous-groupe de (G, \star) .

Exercice 29 [02217] [correction]

Pour $a \in \mathbb{N}$, on note $a\mathbb{Z} = \{ak/k \in \mathbb{Z}\}.$

a) Montrer que $a\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$.

On se propose de montrer que, réciproquement, tout sous groupe de \mathbb{Z} est de cette

b) Vérifier que le groupe {0} est de la forme voulue.

Soit H un sous-groupe de $(\mathbb{Z}, +)$ non réduit à $\{0\}$.

- c) Montrer que $H^+ = \{h \in H \mid h > 0\}$ possède un plus petit élément. On note $a = \min H^+$.
- d) Etablir que $a\mathbb{Z} \subset H$.
- e) En étudiant le reste de la division euclidienne d'un élément de H par a montrer que $H \subset a\mathbb{Z}$.
- f) Conclure que pour tout sous-groupe H de \mathbb{Z} , il existe un unique $a \in \mathbb{N}$ tel que $H=a\mathbb{Z}$.

Exercice 30 [03354] [correction]

Pour $n \in \mathbb{N}^*$, on note U_n l'ensemble des racines nème de l'unité :

$$U_n = \{ z \in \mathbb{C}/z^n = 1 \}$$

Montrer que

$$V = \bigcup_{n \in \mathbb{N}^*} U_n$$

est un groupe multiplicatif.

Morphisme de groupes

Exercice 31 [02218] [correction]

Soit $n \in \mathbb{N}^*$ et $f : \mathbb{R}^* \to \mathbb{R}^*$ définie par $f(x) = x^n$.

Montrer que f est un endomorphisme du groupe (\mathbb{R}^*, \times) . En déterminer image et noyau.

Exercice 32 [02219] [correction]

Justifier que exp : $\mathbb{C} \to \mathbb{C}^*$ est un morphisme du groupe $(\mathbb{C}, +)$ vers (\mathbb{C}^*, \times) . En déterminer image et novau.

Exercice 33 [02220] [correction]

Soit G un groupe noté multiplicativement.

Pour $a \in G$, on note τ_a l'application de G vers G définie par $\tau_a(x) = axa^{-1}$.

- a) Montrer que τ_a est un endomorphisme du groupe (G, \times) .
- b) Vérifier que

$$\forall a, b \in G, \tau_a \circ \tau_b = \tau_{ab}$$

- c) Montrer que τ_a est bijective et déterminer son application réciproque.
- d) En déduire que $\mathcal{T} = \{\tau_a \mid a \in G\}$ muni du produit de composition est un groupe.

Exercice 34 [02221] [correction]

Soit $(G, \star), (G', \top)$ deux groupes et $f: G \to G'$ un morphisme de groupes.

- a) Montrer que pour tout sous-groupe H de G, f(H) est un sous-groupe de (G', \top) .
- b) Montrer que pour tout sous-groupe H' de G', $f^{-1}(H')$ est un sous-groupe de $(G,\star).$

Exercice 35 [02222] [correction]

On note Aut(G) l'ensemble des automorphismes d'un groupe (G, \star) . Montrer que $\operatorname{Aut}(G)$ est un sous-groupe de $(\mathfrak{S}(G), \circ)$.

Exercice 36 [02223] [correction]

Soit (G, \star) un groupe et $a \in G$.

On définit une loi de composition interne \top sur G par $x \top y = x \star a \star y$.

- a) Montrer que (G, \top) est un groupe.
- b) Soit H un sous groupe de (G, \star) et $K = \text{sym}(a) \star H = \{\text{sym}(a) \star x/x \in H\}$. Montrer que K est un sous groupe de (G, \top) .
- c) Montrer que $f: x \mapsto x \star \text{sym}(a)$ est un isomorphisme de (G, \star) vers (G, \top) .

Etude du groupe symétrique

Exercice 37 [02224] [correction]

Soient n un entier supérieur à $2, (i, j) \in \{1, 2, ..., n\}^2$ tel que $i \neq j$ et $\sigma \in \mathfrak{S}_n$. Montrer que σ et $\tau = (i \ j)$ commutent si, et seulement si, $\{i, j\}$ est stable par

Exercice 38 [02225] [correction]

Dans \mathfrak{S}_n avec $n \ge 2$, on considère une permutation σ et un p-cycle : $c = (a_1 \quad a_2 \quad \dots \quad a_p).$

Observer que la permutation $\sigma \circ c \circ \sigma^{-1}$ est un p-cycle qu'on précisera.

Exercice 39 [02226] [correction]

Déterminer la signature de :

a)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 4 & 8 & 7 & 6 & 2 & 1 \end{pmatrix}$$
 b) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 2 & 7 & 4 & 8 & 5 & 6 \end{pmatrix}$.

Exercice 40 [02227] [correction]

Soit $n \in \mathbb{N}^*$. Déterminer la signature de la permutation suivante :

a)
$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix}$$
.

a)
$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix}$$
.
b) $\sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & n+1 & n+2 & \cdots & 2n-1 & 2n \\ 1 & 3 & 5 & \cdots & 2n-1 & 2 & 4 & \cdots & 2n-2 & 2n \end{pmatrix}$.

Exercice 41 [02228] [correction]

Soit $n \ge 2$ et τ une transposition de \mathfrak{S}_n .

- a) Montrer que l'application $\sigma \mapsto \tau \circ \sigma$ est une bijection de \mathfrak{S}_n vers \mathfrak{S}_n .
- b) En déduire le cardinal de l'ensemble \mathfrak{A}_n formé des permutations paires de \mathfrak{S}_n .

Exercice 42 [02229] [correction]

Dans (\mathfrak{S}_n, \circ) on considère les permutations

$$\tau = \begin{pmatrix} 1 & 2 \end{pmatrix}$$
 et $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \end{pmatrix}$

- a) Calculer $\sigma^k \circ \tau \circ \sigma^{-k}$ pour $0 \le k \le n-2$.
- b) En déduire que tout élément de \mathfrak{S}_n peut s'écrire comme un produit de σ et de τ .

Exercice 43 [02230] [correction]

Soit $n \ge 5$.

Montrer que si $\begin{pmatrix} a & b & c \end{pmatrix}$ et $\begin{pmatrix} a' & b' & c' \end{pmatrix}$ sont deux cycles d'ordre 3 de \mathfrak{S}_n , alors il existe une permutation σ , paire, telle que

$$\sigma \circ (a \quad b \quad c) \circ \sigma^{-1} = (a' \quad b' \quad c').$$

Exercice 44 [02231] [correction]

Soit $n \ge 2$ et c la permutation circulaire $c = (1 \ 2 \dots n-1 \ n)$. Déterminer toutes les permutations σ de \mathfrak{S}_n qui commutent avec c.

Anneaux

Exercice 45 [02232] [correction]

On définit sur \mathbb{Z}^2 deux lois de compositions internes notées + et \star par : (a,b)+(c,d)=(a+c,b+d) et $(a,b)\star(c,d)=(ac,ad+bc)$.

- a) Montrer que $(\mathbb{Z}^2, +, \star)$ est un anneau commutatif.
- b) Montrer que $A = \{(a,0)/a \in \mathbb{Z}\}$ est un sous-anneau de $(\mathbb{Z}^2, +, \star)$.

Exercice 46 [02233] [correction]

Montrer qu'un anneau $(A, +, \times)$ n'a pas de diviseurs de zéro si, et seulement si, tous ses éléments non nuls sont réguliers

Exercice 47 [02234] [correction]

Soit x et y deux éléments d'un anneau $(A, +, \times)$.

- a) Montrer que si x est nilpotent et que x et y commutent, alors xy est nilpotent.
- b) Montrer que si x et y sont nilpotents et commutent, alors x + y est nilpotent.
- c) Montrer que si xy est nilpotent, alors yx l'est aussi.
- d) Montrer que si x est nilpotent alors 1-x est inversible. Préciser $(1-x)^{-1}$.

Exercice 48 [02235] [correction]

[Anneau de Boole 1815-1864)

On considère $(A, +, \times)$ un anneau de Boole c'est à dire un anneau non nul tel que tout élément est idempotent pour la 2e loi ce qui signifie

$$\forall x \in A, \ x^2 = x$$

a) Montrer

$$\forall (x,y) \in A^2, xy + yx = 0_A$$

et en déduire que

$$\forall x \in A, x + x = 0_A$$

En déduire que l'anneau A est commutatif.

- b) Montrer que la relation binaire définie sur A par $x \preccurlyeq y \Leftrightarrow yx = x$ est une relation d'ordre.
- c) Montrer que

$$\forall (x,y) \in A^2, \ xy(x+y) = 0_A$$

En déduire qu'un anneau de Boole intègre ne peut avoir que deux éléments.

Exercice 49 [02236] [correction]

Soit a,b deux éléments d'un anneau $(A,+,\times)$ tels que ab soit inversible et b non diviseur de 0.

Montrer que a et b sont inversibles.

Sous-anneau

Exercice 50 [02237] [correction]

Soit $d \in \mathbb{N}$, on note $\mathbb{Z}\left[\sqrt{d}\right] = \left\{a + b\sqrt{d} \mid (a, b) \in \mathbb{Z}^2\right\}$.

Montrer que $\mathbb{Z}\left[\sqrt{d}\right]$ est un sous-anneau de $(\mathbb{R}, +, \times)$.

Exercice 51 [02238] [correction]

On note $\mathcal{D} = \left\{ \frac{n}{10^k} \mid n \in \mathbb{Z}, k \in \mathbb{N} \right\}$ l'ensemble des nombres décimaux.

Montrer que \mathcal{D} est un sous-anneau de $(\mathbb{Q}, +, \times)$.

Exercice 52 [02239] [correction]

[Anneau des entiers de Gauss 1777-1855)

On note

$$\mathbb{Z}\left[i\right] = \left\{a + ib \mid (a, b) \in \mathbb{Z}^2\right\}$$

- a) Montrer que $\mathbb{Z}[i]$ est un anneau commutatif pour l'addition et la multiplication des nombres complexes.
- b) Déterminer les éléments inversibles de l'anneau $\mathbb{Z}[i]$.

Exercice 53 [02240] [correction]

Soit $A = \left\{ \frac{m}{n} / m \in \mathbb{Z} \text{ et } n \in \mathbb{N}^*, \text{ impair} \right\}.$

- a) Montrer que A est un sous anneau de $(\mathbb{Q}, +, \times)$.
- b) Quels en sont les éléments inversibles?

Exercice 54 [02241] [correction]

Soit

$$A = \left\{ \frac{m}{2^n} / m \in \mathbb{Z} \text{ et } n \in \mathbb{N} \right\}$$

- a) Montrer que A est un sous anneau de $(\mathbb{Q}, +, \times)$.
- b) Quels en sont les éléments inversibles?

Corps

Exercice 55 [02243] [correction]

Pour $a, b \in \mathbb{R}$, on pose $a \top b = a + b - 1$ et $a \star b = ab - a - b + 2$. Montrer que $(\mathbb{R}, \top, \star)$ est un corps.

Exercice 56 [02244] [correction]

Soit $d \in \mathbb{N}$ tel que $\sqrt{d} \notin \mathbb{Q}$, on note $\mathbb{Q}\left[\sqrt{d}\right] = \left\{a + b\sqrt{d} \mid (a, b) \in \mathbb{Q}^2\right\}$. Montrer que $(\mathbb{Q}\left[\sqrt{d}\right], +, \times)$ est un corps.

Exercice 57 [02245] [correction]

Soit A un anneau commutatif fini non nul.

Montrer que A ne possède pas de diviseurs de zéro si, et seulement si, A est un corps.

Exercice 58 [02246] [correction]

Soit F un sous corps de $(\mathbb{Q}, +, \times)$. Montrer que $F = \mathbb{Q}$.

Corrections

Exercice 1 : [énoncé]

 $\forall a,b \in \mathbb{R}, \ b \star a = \ln(\mathrm{e}^b + \mathrm{e}^a) = \ln(\mathrm{e}^a + \mathrm{e}^b) = a \star b. \ \star \text{ est commutative.}$ $\forall a,b,c \in \mathbb{R}, \ (a \star b) \star c = \ln(\mathrm{e}^{a \star b} + \mathrm{e}^c) = \ln(\mathrm{e}^a + \mathrm{e}^b + \mathrm{e}^c) = a \star (b \star c). \ \star \text{ est associative.}$

 $a \star \varepsilon = a \Leftrightarrow \ln(e^a + e^{\varepsilon}) = a \Leftrightarrow e^{\varepsilon} = 0$. Il n'y a donc pas de neutre. $a \star b = a \star c \Rightarrow \ln(e^a + e^b) = \ln(e^a + e^c) \Rightarrow e^b = e^c \Rightarrow b = c$. Tout élément est régulier

Exercice 2 : [énoncé]

a) 1 - (x + y - xy) = (1 - x)(1 - y) donc si $x \le 1$ et $y \le 1$ alors $x * y \le 1$. Par suite * est bien une loi de composition interne sur

- \star est clairement commutative et associative.
- b) 0 est élément neutre de E.
- c) Si $x \in]0,1]$ alors pour tout $y \in [0,1]$, $x \star y = x(1-y) + y > 0$ et donc x n'est pas inversible (dans [0,1]).

Ainsi, seul 0 est inversible.

Pour tout $x, y, z \in [0, 1], x \star y = x \star z \Leftrightarrow y(1 - x) = z(1 - x).$

Par suite, tout $x \in [0, 1[$ est régulier tandis que 1 ne l'est visiblement pas.

Exercice 3: [énoncé]

 \star est bien une loi de composition interne sur E.

Si \star est commutative sur E, elle l'est aussi sur $\mathcal{P}(E)$.

Si \star est associative sur E, elle l'est aussi sur $\mathcal{P}(E)$.

Si \star possède un neutre e dans E, alors \star possède un neutre dans $\mathcal{P}(E)$ à savoir $\{e\}$.

 $A\star(B\cup C)=\{a\star x/a\in A, x\in B\cup C\}=(A\star B)\cup (A\star C)$

En revanche la distributivité sur l'intersection est fausse.

Exercice 4 : [énoncé]

Supposons f est bijective.

Soient $g, h : E \to E$. Si $f \circ g = f \circ h$ alors $f^{-1} \circ f \circ g = f^{-1} \circ f \circ h$ puis g = h.

De même $g \circ f = h \circ f \Rightarrow g = h$ et donc f est un élément régulier.

Supposons que f est un élément régulier.

Soient $x, x' \in E$. Si f(x) = f(x') alors $f \circ g = f \circ h$ avec g et h les fonctions constantes égales à x et x'.

Par la régularité de f, on obtient g = h et donc x = x'.

Si E est un singleton alors f est nécessairement surjective. Sinon, on peut construire deux fonctions g et h telle que

$$\forall x \in E, g(x) = h(x) \Leftrightarrow x \in \text{Im} f$$

On a $g \circ f = h \circ f$ donc, par la régularité de f, g = h d'où ${\rm Im} f = E$ puis f surjective.

Exercice 5: [énoncé]

Si a est symétrisable alors considérons l'application $g: E \to E$ définie par $g(x) = a^{-1} \star x$.

On a $f \circ g = \operatorname{Id}_E$ et $g \circ f = \operatorname{Id}_E$ donc f est bijective.

Si f est bijective alors considérons b l'antécédent du neutre e. On a $a \star b = e$.

De plus $f(b \star a) = a \star b \star a = e \star a = a = f(e)$ donc $b \star a = e$ car f injective.

Par suite, a est symétrisable et b est son symétrique.

Exercice 6: [énoncé]

- a) $(x \star y) \star (x \star y) = (x \star x) \star (y \star y) = x \star y$.
- b) $x \star x = x \Rightarrow (x \star x)^{-1} = x^{-1} \Rightarrow x^{-1} \star x^{-1} = x^{-1}$.

Exercice 7 : [énoncé]

a) Supposons * commutative :

 $\forall x,y \in F, y \top x = \varphi(\varphi^{-1}(y) \star \varphi^{-1}(x)) = \varphi(\varphi^{-1}(x) \star \varphi^{-1}(y)) = x \top y \text{ donc } \top \text{ est commutative.}$

Supposons \star associative :

 $\forall x,y,z \in F, (x \top y) \top z = \varphi(\varphi^{-1}(x \top y) \star \varphi^{-1}(z)) = 0$

 $\varphi(\varphi^{-1}(x) \star \varphi^{-1}(y) \star \varphi^{-1}(z)) = x \top (y \top z) \text{ donc } \top \text{ est associative.}$

b) Supposons que \star possède un neutre e et montrons que $f=\varphi(e)$ est neutre pour \top .

 $\forall x \in F, x \top f = \varphi(\varphi^{-1}(x) \star e) = \varphi(\varphi^{-1}(x)) = x \text{ et}$ $f \top x = \varphi(e \star \varphi^{-1}(x)) = \varphi(\varphi^{-1}(x)) = x \text{ donc } f \text{ est neutre pour } \top.$

Exercice 8 : [énoncé]

Par la surjectivité de f, il existe $b \in E$ tel que $a \star b \star a = a$.

a) $a \star b = a \star a \star c \star a$

Pour tout $x \in E$, il existe $\alpha \in E$ tel qu'on peut écrire $x = a \star \alpha \star a$.

Pour $e = a \star b$, $e \star x = a \star b \star a \star \alpha \star a = a \star \alpha \star a = x$.

Pour $e' = b \star a$, $x \star e' = x \star b \star a = a \star \alpha \star a \star b \star a = a \star \alpha \star a$.

 $e \star e' = e = e'$.

b) Puisque $a \star b = b \star a = e$, a est symétrisable et sym(a) = b.

De plus $g: x \to b \star x \star b$ est clairement application réciproque de f.

Exercice 9: [énoncé]

Considérons l'application $f: \mathbb{N} \to E$ définie par $f(n) = x^{*n}$.

f n'est pas injective donc $\exists p > q \in \mathbb{N}$ tels que f(p) = f(q) i.e. $x^{*p} = x^{*q}$.

Pour tout $y \in E$. $x^{*p} * y = x^{*q} * y$.

Puisque x est régulier, on obtient : $x^{\star(p-q)} \star y = y$.

De même $y \star x^{\star (p-q)} = y$ et donc $e = x^{\star (p-q)}$ est neutre.

Exercice 10: [énoncé]

Soit a un élément régulier.

Considérons l'application $f: E \to E$ définie par $f(x) = a \star x$.

L'application f est injective.

E est fini donc f est bijective et par suite surjective d'où $\exists b \in E$ tel que $a \star b = e$. f(e) = a et $f(b \star a) = a \star b \star a = e \star a = a$ donc par l'injectivité de $f : b \star a = e$.

Finalement a est inversible.

On peut aussi partir de $f: \mathbb{N} \to E$ définie par $f(n) = a^{*n}$ qui n'est pas injective.

Exercice 11 : [énoncé]

- a) $A \cap B$
- b) $A \cup B$
- c) $A \cap B$
- d) $C_E A$
- e) $A \cup B$
- $f) A\Delta B$

Exercice 12: [énoncé]

Considérons l'application $f: x \mapsto x \top x$ de E vers E.

Pour $x \in E$, la suite des éléments $x, f(x), \ldots, f^n(x), \ldots$ ne peut être formée d'éléments deux à deux distincts car l'ensemble E est fini.

Ainsi il existe $p < q \in \mathbb{N}$ tel que $f^p(x) = f^q(x)$.

Posons $a = f^p(x)$ et $n = q - p \in \mathbb{N}^*$ de sorte que $f^n(a) = a$.

On a $f(a) = a^2$, $f^2(a) = a^4$, $f^3(a) = a^8$,..., $f^n(a) = a^{2^n}$.

Notons qu'ici la notation a^m pour un itéré de a est possible pour $m \in \mathbb{N}^*$ car la loi \top est associative. De plus, on peut affirmer que $a^{\ell} \top a^m = a^{\ell+m}$ pour $\ell, m \in \mathbb{N}^*$.

Pour $e = a^{2^n - 1} \in E$, on a

 $e \top e = e^2 = a^{2^{n+1}-2} = a^{2^n} \top a^{2^n-2} = a \top a^{2^n-2} = a^{2^n-1} = e.$

Exercice 13 : [énoncé]

On observe que

$$\forall x \in G, x^{-1} = x$$

donc

$$\forall x, y \in G, y \star x = (y \star x)^{-1} = x^{-1} \star y^{-1} = x \star y$$

Exercice 14: [énoncé]

Tout élément x de E est symétrisable et $\mathrm{sym}(x) = x$ donc (E,\star) est un groupe. De plus

$$x \star y = \operatorname{sym}(x \star y) = \operatorname{sym}(y) \star \operatorname{sym}(x) = y \star x$$

donc (E, \star) est abélien.

Exercice 15: [énoncé]

 \star est associative et possède un neutre e, il reste à voir que tout élément $a \in E$ est inversible.

Considérons l'application $f: E \to E$ définie par $f(x) = a \star x$.

a est régulier donc l'application f est injective.

E est fini donc f est bijective et par suite surjective d'où l'existence d'un $b \in E$ tel que $a \star b = e$.

f(e) = a et $f(b \star a) = a \star b \star a = e \star a = a$ donc par l'injectivité de $f: b \star a = e$. Finalement a est inversible et (E, \star) est un groupe.

On peut aussi partir de $f: \mathbb{N} \to E$ définie par $f(n) = a^{*n}$ qui n'est pas injective.

Exercice 16: [énoncé]

Si un élément figure deux fois dans une même ligne correspondant aux valeurs de composition avec x, c'est qu'il existe $a \neq b$ tel que $x \star a = x \star b$.

Or tout élément d'un groupe est régulier, ce cas de figure ci-dessus est donc impossible.

Comme le groupe G à n élément, qu'il y a n cases sur chaque ligne et que chaque ligne ne peut contenir deux fois le même élément, chaque ligne contient chaque élément de G une fois et une seule.

On raisonne de même avec les colonnes.

Exercice 17 : [énoncé]

a) La loi \star est bien définie. Soient $(x,y),(x',y'),(x'',y'') \in G$

$$((x,y) \star (x',y')) \star (x'',y'') = (xx',xy'+y) \star (x'',y'') = (xx'x'',xx'y''+xy'+y)$$

 $_{
m et}$

$$(x,y) \star ((x',y') \star (x'',y'')) = (x,y) \star (x'x'',x'y''+y') = (xx'x'',xx'y''+xy'+y)$$

donc \star est associative.

$$(x,y) \star (1,0) = (x,y)$$
 et $(1,0) \star (x,y) = (x,y)$

donc (1,0) est élément neutre.

$$(x,y) \star (1/x, -y/x) = (1,0)$$
 et $(1/x, -y/x) \star (x,y) = (1,0)$

donc tout élément est symétrisable.

Finalement (G, \star) est un groupe.

 $(1,2)\star(3,4)=(3,6)$ et $(3,4)\times(1,2)=(3,10)$ donc le groupe n'est pas commutatif.

b) $H = \mathbb{R}^{+\star} \times \mathbb{R}$ est inclus dans G.

 $(1,0) \in H$.

$$\forall (x,y), (x',y') \in H, (x,y) \star (x',y') \in H$$

car xx' > 0

$$\forall (x,y) \in H, (x,y)^{-1} = (1/x, -y/x) \in H$$

car 1/x > 0.

Ainsi H est un sous groupe de (G, \star) .

Exercice 18 : [énoncé]

Notons que $\frac{x+\hat{y}}{1+xy}$ existe pour tout $x,y\in G$ car 1+xy>0. On a

$$x + y - (1 + xy) = (1 - x)(y - 1) < 0$$

donc $\frac{x+y}{1+xy} < 1$ et de même $\frac{x+y}{1+xy} > -1$ d'où

$$\frac{x+y}{1+xy} \in G$$

Par suite la loi * est bien définie.

La loi \star est clairement commutative.

Soient $x, y, z \in G$,

$$(x \star y) \star z = \frac{(x \star y) + z}{1 + (x \star y)z} = \frac{\frac{x + y}{1 + xy} + z}{1 + \frac{x + y}{1 + xy}z} = \frac{x + y + z + xyz}{1 + xy + xz + yz} = x \star (y \star z)$$

La loi \star est donc associative.

0 est neutre pour ★ puisque

$$\forall x \in G, x \star 0 = x$$

Enfin

$$\forall x \in G, x \star (-x) = 0$$

donc tout élément x de G est symétrisable et $\operatorname{sym}(x) = -x$. Finalement (G, \star) est un groupe commutatif.

Exercice 19 : [énoncé]

a) On a

$$x \star y \in I \Leftrightarrow xy + c(x+y) + c^2 > 0 \text{ et } xy - c(x+y) + c^2 > 0$$

 $\Leftrightarrow (x+c)(y+c) > 0 \text{ et } (x-c)(y-c) > 0$

Par suite

$$\forall (x,y) \in I^2, \ x \star y \in I$$

b) \star est clairement commutative.

* est associative puisque

$$\forall x, y, z \in I, (x \star y) \star z = \frac{x + y + z + \frac{xyz}{c^2}}{1 + \frac{xy + yz + zx}{c^2}} = x \star (y \star z)$$

0 est élément neutre car

$$\forall x \in I, x \star 0 = 0 \star x = x$$

Enfin

$$\forall x \in I, (-x) \star x = x \star (-x) = 0$$

donc tout élément de I est symétrisable dans I. Finalement (I, \star) est un groupe abélien.

Exercice 20 : [énoncé]

 $H \subset \mathbb{C}, 0 = 0 + \omega.0 \in H.$

 $\forall x, y \in H$, on peut écrire $x = a + \omega b$ et $y = a' + \omega b'$ avec $a, b, a', b' \in \mathbb{Z}$. $x - y = (a - a') + \omega (b - b')$ avec $a - a' \in \mathbb{Z}$ et $b - b' \in \mathbb{Z}$ donc $x - y \in H$. Ainsi H est un sous groupe de $(\mathbb{C}, +)$.

Exercice 21 : [énoncé]

 $H \subset \mathbb{C}^*, 1 = a^0 \in H.$

 $\forall x, y \in H$, on peut écrire $x = a^n$ et $y = a^m$ avec $n, m \in \mathbb{Z}$.

 $xy^{-1} = a^{n-m}$ avec $n - m \in \mathbb{Z}$ donc $xy^{-1} \in H$.

Ainsi H est un sous groupe de $(\mathbb{C}_{\star}, \times)$.

Exercice 22 : [énoncé]

 $H \subset \mathfrak{S}(E)$, $\mathrm{Id}_E \in H$ car $\mathrm{Id}_E(a) = a$.

 $\forall f, g \in H, (f \circ g)(a) = f(g(a)) = f(a) = a \text{ donc } f \circ g \in H.$

 $\forall f \in H, f^{-1}(a) = a \text{ car } f(a) = a \text{ donc } f^{-1} \in H.$

Ainsi H es un sous-groupe de $(\mathfrak{S}(E), \circ)$.

Exercice 23 : [énoncé]

a) $aHa^{-1} \subset G$, $e = aea^{-1} \in aHa^{-1}$.

 $\forall axa^{-1}, aya^{-1} \in aHa^{-1} \text{ avec } x, y \in H \text{ on a}$

 $(axa^{-1})(ay^{-1}a^{-1}) = a(xy^{-1})a^{-1} \in aHa^{-1}.$

b) $e \in aH \Rightarrow a^{-1} \in H \Rightarrow a \in H$. Inversement $a \in H \Rightarrow a^{-1} \in H \Rightarrow aH = H$. La condition simple cherchée est $a \in H$.

Exercice 24: [énoncé]

 $C \subset G$ et $e \in G$ car

$$\forall y \in G, e\,\star\, y = y = y\,\star\, e$$

Soient $x, x' \in C$. Pour tout $y \in G$

$$x \star x' \star y = x \star y \star x' = y \star x \star x'$$

donc $x \star x' \in C$

Soit $x \in C$. Pour tout $y \in G$,

$$x \star y^{-1} = y^{-1} \star x$$

donne

$$(x \star y^{-1})^{-1} = (y^{-1} \star x)^{-1} i$$

e.

$$y \star x^{-1} = x^{-1} \star y$$

donc $x^{-1} \in C$.

Ainsi C est un sous-groupe de (G, \star) .

Exercice 25 : [énoncé]

Posons $H = \{f_{a,b}/a \in \mathbb{C}^*, b \in \mathbb{C}\}$ et montrons que H est un sous-groupe de $(\mathfrak{S}(\mathbb{C}), \circ)$.

 $\operatorname{Id}_{\mathbb{C}} = f_{1,0} \in H$. $Z = az + b \Leftrightarrow z = \frac{1}{a}Z - \frac{b}{a}$ donc $f_{a,b} \in \mathfrak{S}(\mathbb{C})$ et $f_{a,b}^{-1} = f_{1/a,-b/a}$. Ainsi $H \subset \mathfrak{S}(\mathbb{C})$ et $\forall f \in H, f^{-1} \in H$. Enfin

 $f_{a,b}\circ f_{c,d}(z)=a(cz+d)+b=acz+(ad+b)$ donc $f_{a,b}\circ f_{c,d}=f_{ac,ad+b}$. Ainsi, $\forall f,g\in H,f\circ g\in H.$ On peut conclure.

Exercice 26: [énoncé]

a) Il est clair que i, f et g sont des permutations de E.

 $h(x) = \frac{x}{x-1} = 1 + \frac{1}{x-1} = 1 - \frac{1}{1-x} = f(g(f(x)))$ donc $h = f \circ g \circ f$ et donc $h \in \mathfrak{S}(E)$.

De même $k = f \circ g \in \mathfrak{S}(E)$ et $\ell = g \circ f \in \mathfrak{S}(E)$

c) \overline{G} est un sous groupe de $\mathfrak{S}(E)$ car G contient i, est stable par composition et par passage à l'inverse. De plus ce groupe n'est pas commutatif car $g \circ f \neq f \circ g$.

Exercice 27 : [énoncé]

Par l'absurde supposons

$$H \not\subset K$$
 et $K \not\subset H$

Il existe $h \in H$ tel que $h \notin K$ et $k \in K$ tel que $k \notin H$.

On a $h,k \in H \cup K$ donc $h \, \star \, k \in H \cup K$ car $H \cup K$ sous-groupe.

Si $h \star k \in H$ alors $k = h^{-1} \star (h \star k) \in H$ car H sous-groupe. Or ceci est exclu. Si $h \star k \in K$ alors $h = (h \star k) \star k^{-1} \in K$ car K sous-groupe. Or ceci est exclu. Ainsi $h \star k \notin H \cup K$. Absurde.

Exercice 28 : [énoncé]

- a) L'application φ est à valeurs dans A qui est un ensemble fini et au départ de $\mathbb N$ qui est infini donc φ n'est pas injective.
- b) Par la non injectivité de φ , il existe $n \in \mathbb{N}$ et $p \in \mathbb{N}^*$ tel que $\varphi(n+p) = \varphi(n)$. On a alors $x^{(n+p)} = x^n \star x^p = x^n$ donc $x^p = e$ par régularité de $x^n \in G$. Par suite $x^{-1} = x^{(p-1)} \in A$.

A est non vide, stable pour \star et stable par inversion donc A est un sous-groupe de $(G,\star).$

Exercice 29 : [énoncé]

a) $a\mathbb{Z} \subset \mathbb{Z}$, $0 = a.0 \in a\mathbb{Z}$.

 $\forall x, y \in a\mathbb{Z}$, on peut écrire x = ak et $y = a\ell$ avec $k, \ell \in \mathbb{Z}$.

 $x - y = a(k - \ell)$ avec $k - \ell \in \mathbb{Z}$ donc $x - y \in a\mathbb{Z}$.

Ainsi $a\mathbb{Z}$ est un sous-groupe de \mathbb{Z} .

b) Pour $a = 0 \in \mathbb{N}$, $\{0\} = a\mathbb{Z}$.

c) Puisque H est non vide et non réduit à $\{0\}$, il existe $h \in H$ tel que $h \neq 0$.

Si h > 0 alors $h \in H^+$, si h < 0 alors $-h \in H$ (car H sous-groupe) et -h > 0 donc $-h \in H^+$.

Dans les deux cas $H^+ \neq \emptyset$.

 H^+ est une partie non vide de $\mathbb N$ donc H^+ possède un plus petit élément.

d) $0 \in H$ et $a \in H$.

Par récurrence, la stabilité de H donne $\forall n \in \mathbb{N}, a.n = a + \cdots + a \in H$.

Par passage à l'opposé, la stabilité de H par symétrisation donne $\forall n \in \mathbb{Z}, an \in H$. Ainsi $a\mathbb{Z} \subset H$.

e) Soit $x \in H$. La division euclidienne de x par $a \neq 0$ donne x = aq + r avec $q \in \mathbb{Z}$ et $0 \leq r < a$.

On a r = x - aq avec $x \in H$ et $aq \in a\mathbb{Z} \subset H$ donc $r \in H$.

Si r > 0 alors $r \in H^+$ or $r < a = \min H^+$ donc cela est impossible.

Il reste r=0 ce qui donne $x=aq\in a\mathbb{Z}$. Ainsi $H\subset a\mathbb{Z}$ et finalement $H=a\mathbb{Z}$.

f) L'existence est établie ci-dessus. Il reste à montrer l'unicité.

Soit $a, b \in \mathbb{N}$ tel que $a\mathbb{Z} = b\mathbb{Z}$. On a $a \in a\mathbb{Z} = b\mathbb{Z}$ donc $b \mid a$ et de même $a \mid b$, or $a, b \geqslant 0$ donc a = b.

Exercice 30 : [énoncé]

Montrons que V est un sous-groupe du groupe (\mathbb{C}^*, \times) .

La partie V est incluse dans \mathbb{C}^* et évidemment non vide.

Soient $z \in V$. Il existe $n \in \mathbb{N}^*$ tel que $z^n = 1$ et alors $(z^{-1})^n = 1$ donc $z^{-1} \in V$.

Soient $z, z' \in V$. Il existe $n, m \in \mathbb{N}^*$ tels que $z^n = z'^m = 1$. On a alors $(zz')^{nm} = (z^n)^m (z'^m)^n = 1$ et donc $zz' \in V$.

Finalement V est bien un sous-groupe de (\mathbb{C}^*, \times) et donc (V, \times) est un groupe.

Exercice 31 : [énoncé]

 $f(xy) = (xy)^n = x^n y^n = f(x)f(y)$ donc f est une endomorphisme de $(\mathbb{R}_{\star}, \times)$. ker $f = f^{-1}(\{1\})$ et $\mathrm{Im} f = \{x^n/x \in \mathbb{R}^{\star}\}$.

Si n est pair alors $\ker f = \{1, -1\}$ et $\operatorname{Im} f = \mathbb{R}^{+\star}$.

Si n est impair alors $\ker f = \{1\}$ et $\operatorname{Im} f = \mathbb{R}^*$.

Exercice 32 : [énoncé]

On sait

$$\forall x, y \in \mathbb{C}, \exp(x+y) = \exp(x) \exp(y)$$

donc $\exp : \mathbb{C} \to \mathbb{C}^*$ est un morphisme de groupes.

$$\exp(x) = 1 \Leftrightarrow \exists k \in \mathbb{Z}, x = 2ik\pi$$

donc

$$\ker \exp = \{2ik\pi/k \in \mathbb{Z}\}\$$

La fonction exponentielle complexe prend toutes les valeurs de \mathbb{C}^{\star} donc

$$\operatorname{Im} \exp = \mathbb{C}^*$$

Exercice 33: [énoncé]

a) Soient $x, y \in G$. On a

$$\tau_a(xy) = axya^{-1} = axa^{-1}aya^{-1} = \tau_a(x)\tau_a(y)$$

 τ_a est donc un endomorphisme du groupe (G, \times) .

b) Pour tout $x \in G$,

$$(\tau_a \circ \tau_b)(x) = \tau_a(bxb^{-1}) = abxb^{-1}a^{-1} = (ab)x(ab)^{-1} = \tau_{ab}(x)$$

donc

$$\tau_a \circ \tau_b = \tau_{ab}$$

c) $(\tau_a \circ \tau_{a^{-1}}) = \tau_1 = \operatorname{Id}_G$ et $(\tau_{a^{-1}} \circ \tau_a) = \tau_1 = \operatorname{Id}_G$ donc τ_a est bijective et $(\tau_a)^{-1} = \tau_{a^{-1}}$.

d) Montrons que \mathcal{T} est un sous-groupe de $(\mathfrak{S}(G), \circ)$.

 $\mathcal{T} \subset \mathfrak{S}(G)$ et $\mathrm{Id}_G \in \mathcal{T}$ car $\mathrm{Id}_G = \tau_1$.

 $\forall f, g \in \mathcal{T}$, on peut écrire $f = \tau_a$ et $g = \tau_b$ avec $a, b \in G$.

 $f \circ g^{-1} = \tau_a \circ (\tau_b)^{-1} = \tau_a \circ \tau_{b^{-1}} = \tau_{ab^{-1}} \in \mathcal{T} \text{ car } ab^{-1} \in G.$

Ainsi \mathcal{T} est un sous-groupe de $(\mathfrak{S}(G), \circ)$ et donc (\mathcal{T}, \circ) est un groupe.

Exercice 34 : [énoncé]

a) $f(H) \subset G'$, $e' = f(e) \in f(H)$ car $e \in H$.

 $\forall y, y' \in f(H)$, on peut écrire y = f(x) et y' = f(x') avec $x, x' \in H$.

 $y \top y'^{-1} = f(x) \top f(x')^{-1} = f(x) \top f(x'^{-1}) = f(x \star x'^{-1}) \text{ avec } x \star x'^{-1} \in H \text{ donc } y \top y'^{-1} \in f(H).$

Ainsi f(H) est un sous-groupe de (G', \top) .

b) $f^{-1}(H') \subset G$ et $e \in f^{-1}(H')$ car $f(e) = e' \in H'$.

 $\forall x, x' \in f^{-1}(H') \text{ on a } f(x), f(x') \in H'.$

 $f(x \star x'^{-1}) = f(x) \top f(x'^{-1}) = f(x) \top f(x')^{-1} \in H' \text{ donc } x \star x'^{-1} \in f^{-1}(H').$

Ainsi $f^{-1}(H')$ est un sous-groupe de (G, \star) .

Exercice 35 : [énoncé]

 $\operatorname{Aut}(G) \subset \mathfrak{S}(G) \text{ et } \operatorname{Id}_G \in \operatorname{Aut}(G).$

Pour tout $f, g \in \text{Aut}(G)$, on a $f \circ g \in \text{Aut}(G)$ et $f^{-1} \in \text{Aut}(G)$ par les propriétés sur les automorphismes.

Ainsi $\operatorname{Aut}(G)$ est un sous-groupe de $(\mathfrak{S}(G), \circ)$.

Exercice 36: [énoncé]

a) $\forall x, y, z \in G$,

$$(x \top y) \top z = (x \star a \star y) \star a \star z = x \star a \star (y \star a \star z) = x \top (y \top z).$$

 $\forall x \in G, x \top \operatorname{sym}(a) = x = \operatorname{sym}(a) \top x.$

 $\forall x \in G$. Posons $y = \text{sym}(a) \star \text{sym}(x) \star \text{sym}(a) \in G$. On a $x \top y = y \top x = \text{sym}(a)$.

b) $K \subset G$, $\operatorname{sym}(a) = \operatorname{sym}(a) \star e \operatorname{donc} \operatorname{sym}(a) \in K$.

 $\forall \operatorname{sym}(a) \star x, \operatorname{sym}(a) \star y \in K \text{ on a } (\operatorname{sym}(a) \star x) \top (\operatorname{sym}(a) \star y)^{\top (-1)} =$

 $\operatorname{sym}(a) \star x \star a \star \operatorname{sym}(a) \star \operatorname{sym}(y) \star a \star \operatorname{sym}(a) = \operatorname{sym}(a) \star (x \star \operatorname{sym}(y)) \in K.$

c) $f(x \star y) = x \star y \star \text{sym}(a) = (x \star \text{sym}(a)) \top (y \star \text{sym}(a)) = f(x) \top f(y)$ et $g: x \mapsto x \star a$ en est l'application réciproque.

Exercice 37: [énoncé]

Si $\{i, j\}$ est stable par σ alors $\{\sigma(i), \sigma(j)\} = \{i, j\}$.

 $\forall x \notin \{i, j\}, (\sigma \circ \tau)(x) = \sigma(x) = (\tau \circ \sigma)(x).$

Pour x = i alors $(\sigma \circ \tau)(i) = \sigma(j) = (\tau \circ \sigma)(i)$ et pour x = j,

 $(\sigma \circ \tau)(j) = \sigma(i) = (\tau \circ \sigma)(j).$

Par suite $\sigma \circ \tau = \tau \circ \sigma$.

Inversement, si $\sigma \circ \tau = \tau \circ \sigma$ alors $\sigma(i) = (\sigma \circ \tau)(j) = (\tau \circ \sigma)(j) = \tau(\sigma(j))$.

Puisque $\tau(\sigma(j)) \neq \sigma(j)$ on a $\sigma(j) \in \{i, j\}$. De même $\sigma(i) \in \{i, j\}$ et donc $\{i, j\}$ stable par σ .

Exercice 38: [énoncé]

Pour $x = \sigma(a_i)$, on a $(\sigma \circ c \circ \sigma^{-1})(x) = \sigma(a_{i+1})$ (en posant $a_{p+1} = a_1$). Pour $x \notin {\sigma(a_1), \dots, \sigma(a_p)}$, on a $(\sigma \circ c \circ \sigma^{-1})(x) = \sigma \circ \sigma^{-1}(x) = x$ car $c(\sigma^{-1}(x)) = \sigma^{-1}(x)$ puisque $\sigma^{-1}(x) \notin {a_1, \dots, a_p}$. Ainsi $\sigma \circ c \circ \sigma^{-1} = (\sigma(a_1) \quad \sigma(a_2) \quad \dots \quad \sigma(a_p)$).

Exercice 39 : [énoncé]

- a) $I(\sigma) = 2 + 3 + 2 + 4 + 3 + 2 + 1 + 0 = 17 \text{ donc } \varepsilon(\sigma) = -1.$
- b) $I(\sigma) = 0 + 1 + 0 + 3 + 0 + 2 + 0 + 0 = 6$ donc $\varepsilon(\sigma) = 1$.

Exercice 40 : [énoncé]

a) $I(\sigma) = (n-1) + (n-2) + \dots + 1 + 0 = \frac{n(n-1)}{2}$ donc $\varepsilon(\sigma) = (-1)^{\frac{n(n-1)}{2}}$.

b) $I(\sigma) = 0 + 1 + 2 + \dots + (n-1) + 0 + \dots + 0 = \frac{n(n-1)}{2}$ donc $\varepsilon(\sigma) = (-1)^{\frac{n(n-1)}{2}}$.

Exercice 41 : [énoncé]

a) L'application $\sigma \mapsto \tau \circ \sigma$ est involutive, donc bijective.

b) L'application $\sigma \mapsto \tau \circ \sigma$ transforme \mathfrak{A}_n en $\mathfrak{S}_n \setminus \mathfrak{A}_n$ donc $\operatorname{Card} \mathfrak{A}_n = \operatorname{Card} \mathfrak{S}_n \setminus \mathfrak{A}_n$, or \mathfrak{S}_n est la réunion disjointe de \mathfrak{A}_n et de $\mathfrak{S}_n \setminus \mathfrak{A}_n$ donc suite $\operatorname{Card} \mathfrak{A}_n = \frac{1}{2} \operatorname{Card} \mathfrak{S}_n = \frac{n!}{2}$.

Exercice 42 : [énoncé]

a) $\sigma \circ \tau \circ \sigma^{-1} = \begin{pmatrix} 2 & 3 \end{pmatrix}, \sigma^2 \circ \tau \circ \sigma^{-2} = \begin{pmatrix} 3 & 4 \end{pmatrix}, \dots,$

 $\sigma^k \circ \tau \circ \sigma^{-k} = (k+1 k+2).$

b) Il est « connu » que toute permutation de \mathfrak{S}_n peut s'écrire comme produit de transpositions de la forme (k k+1). Ces dernières peuvent s'écrire comme produit de σ , de τ , et de σ^{-1} . Or $\sigma^n = \mathrm{Id}$ et donc $\sigma^{-1} = \sigma^{n-1}$ et par conséquent, σ^{-1} peut s'écrire comme produit de σ .

Exercice 43 : [énoncé]

Notons que $\sigma \circ (a \ b \ c) \circ \sigma^{-1} = (\sigma(a) \ \sigma(b) \ \sigma(c)).$

Soit $\sigma: \mathbb{N}_n \to \mathbb{N}_n$ une permutation définie par : $\sigma(a) = a', \sigma(b) = b'$ et $\sigma(c) = c'$.

Si σ est paire alors le problème est résolu.

Si σ est impaire alors soit $c \neq d \in \mathbb{N}_n \setminus \{a, b, c\}$ et $\tau = (c \ d)$.

 $\sigma \circ \tau$ est une permutation paire satisfaisante.

Exercice 44: [énoncé]

Pour commencer, notons que, pour tout $k \in \{1, \dots, n\}$ $c^{k-1}(1) = k$ et par conséquent $c^{-(k-1)}(k) = 1$.

Soit σ une permutation commutant avec c_n .

Posons $k = \sigma(1) \in \{1, 2, ..., n\}$ et $s = c^{-(k-1)} \circ \sigma$ de sorte que s(1) = 1.

Comme σ et c commutent, s et c commutent aussi et on a pour tout $2 \leqslant i \leqslant n$, $s = c^{(i-1)} \circ s \circ c^{-(i-1)}$ d'où

 $s(i) = c^{(i-1)} \circ s \circ c^{-(i-1)}(i) = \sigma^{(i-1)} \circ s(1) = \sigma^{(i-1)}(1) = i \text{ car } c^{-(i-1)}(i) = 1.$

Par conséquent $s = \text{Id puis } \sigma = c^k$.

Inversement les permutations de la forme c^k avec $1 \le k \le n$ commutent avec c.

Exercice 45 : [énoncé]

a) $(\mathbb{Z}^2, +)$ est un groupe commutatif.

 $(a,b) \star (c,d) = (ac,ad+bc) = (c,d) \star (a,b)$. La loi \star est commutative.

$$((a,b) \star (c,d)) \star (e,f) = (ac,ad+bc) \star (e,f) = (ace,acf+ade+bce) = (a,b) \star ((c,d) \star (e,f)).$$

 $(a,b) \star (1,0) = (a,b)$

$$((a,b)+(c,d)) \star (e,f) = (a+c,b+d) \star (e,f) = (ae+ce,af+cf+be+de)$$
 donc

 $((a,b) + (c,d)) \star (e,f) = (ae,af+be) + (ce,cf+de) = (a,b) \star (e,f) + (c,d) \star (e,f)$

Donc $(\mathbb{Z}^2, +, \star)$ est un anneau commutatif.

b) $A \subset \mathbb{Z}^2$, $(1,0) \in A$.

$$\forall (a,0), (b,0) \in A$$
, on a $(a,0) - (b,0) = (a-b,0) \in A$ et $(a,0) \star (b,0) = (ab,0) \in A$. A est donc un sous-anneau de $(\mathbb{Z}^2,+,\star)$.

Exercice 46: [énoncé]

Supposons que A n'ait pas de diviseurs de zéro.

Soit $x \in A$ avec $x \neq 0$. $\forall a, b \in A$, $xa = xb \Rightarrow x(a - b) = 0 \Rightarrow a - b = 0$ car $x \neq 0$ donc a = b.

Ainsi x est régulier à gauche. Il en est de même à droite.

Supposons que tout élément non nul de A soit régulier.

 $\forall x,y\in A,\, xy=0 \Rightarrow xy=x.0 \Rightarrow x=0$ ou y=0 (par régularité de x dans le cas où $x\neq 0$).

Par suite l'anneau A ne possède pas de diviseurs de zéro.

Exercice 47: [énoncé]

- a) Soit $n \in \mathbb{N}$ tel que $x^n = 0$. $(xy)^n = x^n y^n = 0$. $y^n = 0$ donc xy nilpotent.
- b) Soit $n, m \in \mathbb{N}$ tels que $x^n = y^m = 0$.

$$(x+y)^{m+n-1} = \sum_{k=0}^{m+n-1} {m+n-1 \choose k} x^k y^{m+n-1-k} =$$

$$\sum_{k=0}^{n-1} {m+n-1 \choose k} x^k y^{m+n-1-k} + \sum_{k=n}^{m+n-1} {m+n-1 \choose k} x^k y^{m+n-1-k}$$

Or $\forall k \in \{0, ..., n-1\}, y^{m+n-1-k} = 0 \text{ car } m+n-1-k \ge m \text{ et } \forall k \ge n, x^k = 0 \text{ donc } (x+y)^{m+n-1} = 0 + 0 = 0. \text{ Ainsi } x+y \text{ est nilpotent.}$

- c) Soit $n \in \mathbb{N}$ tel que $(xy)^n = 0$. $(yx)^{n+1} = y(xy)^n x = y \cdot 0 \cdot x = 0$ donc yx nilpotent. d) Soit $n \in \mathbb{N}$ tel que $x^n = 0$.
- $1 = 1 x^n = (1 x)y = y(1 x)$ avec $y = 1 + x + \dots + x^{n-1}$

Par suite 1 - x est inversible et y est son inverse.

Exercice 48: [énoncé]

a) $(x+y)^2 = (x+y)$ donne $x^2 + y^2 + xy + yx = x+y$ puis xy + yx = 0 sachant $x^2 = x$ et $y^2 = y$.

Pour y = 1 on obtient $x + x = 0_A$.

b) Comme $x^2 = x$, \leq est réflexive.

Si $x \le y$ et $y \le x$ alors yx = x et xy = y donc xy + yx = x + y = 0.

Or x + x = 0, donc x + y = x + x, puis y = x.

Si $x \leq y$ et $y \leq z$ alors yx = x et zy = y donc zx = zyx = yx = x i.e. $x \leq z$.

Ainsi \leq est une relation d'ordre sur A.

c) $xy(x+y) = xyx + xy^2 = -x^2y + xy^2 = -xy + xy = 0.$

Si A est intègre alors : $xy(x+y) = 0_A \Rightarrow x = 0_A$, $y = 0_A$ ou $x+y=0_A$. Or x+y=0=x+x donne y=x.

Ainsi, lorsqu'on choisit deux éléments de A, soit l'un deux est nul, soit ils sont égaux.

Une telle propriété est impossible si $\operatorname{Card}(A) \geqslant 3$. Par suite $\operatorname{Card}(A) = 2$ car A est non nul.

Exercice 49 : [énoncé]

Soit $x = b(ab)^{-1}$. Montrons que x est l'inverse de a.

On a $ax = ab(ab)^{-1} = 1$ et $xab = b(ab)^{-1}ab = b$ donc (xa - 1)b = 0 puis xa = 1 car b n'est pas diviseur de 0. Ainsi a est inversible et x est son inverse.

De plus $b = a^{-1}(ab)$ l'est aussi par produit d'éléments inversibles.

Exercice 50 : [énoncé]

$$\mathbb{Z}\left[\sqrt{d}\right] \subset \mathbb{R}, \ 1 \in \mathbb{Z}\left[\sqrt{d}\right].$$

 $\forall x, y \in \mathbb{Z} \left\lceil \sqrt{d} \right\rceil$, on peut écrire $x = a + b\sqrt{d}$ et $y = a' + b'\sqrt{d}$ avec $a, b, a', b' \in \mathbb{Z}$.

 $x - y = (a - a') + (b - b')\sqrt{d}$ avec $a - a', b - b' \in \mathbb{Z}$ donc $x - y \in \mathbb{Z}\left[\sqrt{d}\right]$.

 $xy = (aa' + bb'd) + (ab' + a'b)\sqrt{d}$ avec $aa' + bb'd, ab' + a'b \in \mathbb{Z}$ donc $xy \in \mathbb{Z}\left[\sqrt{d}\right]$.

Ainsi $\mathbb{Z}\left|\sqrt{d}\right|$ est un sous-anneau de $(\mathbb{R}, +, \times)$.

Exercice 51 : [énoncé]

 $\mathcal{D} \subset \mathbb{Q}$ et $1 \in \mathcal{D}$ car $1 = \frac{1}{10^0}$.

 $\forall x, y \in \mathcal{D}$, on peut écrire $x = \frac{n}{10^k}$ et $y = \frac{m}{10^\ell}$ avec $n, m \in \mathbb{Z}$ et $k, \ell \in \mathbb{N}$.

 $x - y = \frac{n10^{\ell} - m10^{k}}{10^{k+\ell}} \text{ avec } n10^{\ell} - m10^{k} \in \mathbb{Z} \text{ et } k + \ell \in \mathbb{N} \text{ donc } x - y \in \mathcal{D}.$ $xy = \frac{nm}{10^{k+\ell}} \text{ avec } nm \in \mathbb{Z} \text{ et } k + \ell \in \mathbb{N} \text{ donc } xy \in \mathcal{D}.$

Ainsi \mathcal{D} est un sous-anneau de $(\mathbb{Q}, +, \times)$.

Exercice 52 : [énoncé]

a) Montrer que $\mathbb{Z}[i]$ est un sous anneau de $(\mathbb{C}, +, \times)$. $\mathbb{Z}[i] \subset \mathbb{C}$, $1 \in \mathbb{Z}[i]$. $\forall x, y \in \mathbb{Z}[i]$, on peut écrire x = a + i.b et y = a' + i.b' avec $a, b, a', b' \in \mathbb{Z}$. x - y = (a - a') + i.(b - b') avec $a - a', b - b' \in \mathbb{Z}$ donc $x - y \in \mathbb{Z}[i]$. xy = (aa' - bb') + i(ab' + a'b) avec $aa' - bb', ab' + a'b \in \mathbb{Z}$ donc $xy \in \mathbb{Z}[i]$. Ainsi $\mathbb{Z}[i]$ est un sous-anneau de $(\mathbb{C}, +, \times)$.

b) Soit $x = a + i.b \in \mathbb{Z}[i]$ avec $a, b \in \mathbb{Z}$.

Si x est inversible dans $\mathbb{Z}[i]$, il l'est aussi dans \mathbb{C} et de même inverse. Donc $x \neq 0$ (i.e. $(a,b) \neq (0,0)$) et

$$x^{-1} = \frac{1}{a+ib} = \frac{a-i.b}{a^2+b^2} \in \mathbb{Z}[i]$$

d'où

$$\frac{a}{a^2 + b^2} \in \mathbb{Z} \text{ et } \frac{b}{a^2 + b^2} \in \mathbb{Z}$$

Par suite $\frac{ab}{a^2+b^2} \in \mathbb{Z}$ or $\left| \frac{ab}{a^2+b^2} \right| \leqslant \frac{1}{2}$ donc ab = 0.

Si b = 0 alors $\frac{a}{a^2 + b^2} = \frac{1}{a} \in \mathbb{Z}$ donne $a = \pm 1$.

Si a = 0 alors $\frac{b}{a^2 + b^2} = \frac{1}{b} \in \mathbb{Z}$ donne $b = \pm 1$.

Ainsi, si x = a + ib est inversible, x = 1, i, -1 ou -i.

La réciproque est immédiate.

Exercice 53: [énoncé]

a) $A \subset \mathbb{Q}$, $1 \in A$, $\forall x, y \in A$, $x - y \in A$ et $xy \in A$: clair.

Par suite A est un sous anneau de $(\mathbb{Q}, +, \times)$.

b) $x \in A$ est inversible si, et seulement si, il existe $y \in A$ $\exists y \in A$ tel que xy = 1. $x = \frac{m}{n}, y = \frac{m'}{n'}$ avec n, n' impairs. $xy = 1 \Rightarrow mm' = nn'$ donc m est impair et la réciproque est immédiate.

Ainsi : $U(A) = \left\{ \frac{m}{n} / m \in \mathbb{Z}, n \in \mathbb{N}^* \text{ impairs} \right\}.$

Exercice 54: [énoncé]

a) $A \subset \mathbb{Q}$, $1 \in A$, $\forall x, y \in A$, $x - y \in A$ et $xy \in A$: facile.

Ainsi A est un sous anneau de $(\mathbb{Q}, +, \times)$.

b) $x \in A$ est inversible si, et seulement si, il existe $y \in A$ tel que xy = 1. Puisqu'on peut écrire $x = \frac{m}{2n}, y = \frac{m'}{2n'}$ avec $m, m' \in \mathbb{Z}$ et $n, n' \in \mathbb{N}$,

$$xy = 1 \Rightarrow mm' = 2^{n+n'}$$

Par suite m est, au signe près, une puissance de 2.

La réciproque est immédiate.

Finalement

$$U(A) = \left\{ \pm 2^k / k \in \mathbb{Z} \right\}$$

14

Exercice 55 : [énoncé]

Soit $\varphi : \mathbb{R} \to \mathbb{R}$ définie par $\varphi : x \mapsto x - 1$. φ est une bijection et on vérifie $\varphi(a \top b) = \varphi(a) + \varphi(b)$ ainsi que $\varphi(a \star b) = \varphi(a) \times \varphi(b)$. Par la bijection φ^{-1} la structure de corps sur $(\mathbb{R}, +, \times)$ est transportée sur $(\mathbb{R}, \top, \star)$. Notamment, les neutres de $(\mathbb{R}, \top, \star)$ sont 1 et 2.

Exercice 56 : [énoncé]

Montrons que $\mathbb{Q}\left[\sqrt{d}\right]$ est un sous-corps de $(\mathbb{R}, +, \times)$.

$$\mathbb{Q}\left[\sqrt{d}\right] \subset \mathbb{R}, \ 1 \in \mathbb{Q}\left[\sqrt[d]{d}\right].$$

 $\forall x, y \in \mathbb{Q}\left[\sqrt{d}\right]$, on peut écrire $x = a + b\sqrt{d}$ et $y = a' + b'\sqrt{d}$ avec $a, b, a', b' \in \mathbb{Q}$.

$$x - y = (a - a') + (b - b')\sqrt{d}$$
 avec $a - a', b - b' \in \mathbb{Q}$ donc $x - y \in \mathbb{Q}\left[\sqrt{d}\right]$.

 $xy = (aa' + bb'd) + (ab' + a'b)\sqrt{d}$ avec $aa' + bb'd, ab' + a'b \in \mathbb{Q}$ donc $xy \in \mathbb{Q}\left[\sqrt{d}\right]$.

Si $x \neq 0$ alors $\frac{1}{x} = \frac{1}{a+b\sqrt{d}} = \frac{a-b\sqrt{d}}{a^2-db^2} = \frac{a}{a^2-db^2} - \frac{b\sqrt{d}}{a^2-db^2}$ avec $\frac{a}{a^2-db^2}$, $\frac{b}{a^2-db^2} \in \mathbb{Q}$ Notons que, ici $a-b\sqrt{d} \neq 0$ car $\sqrt{d} \notin \mathbb{Q}$.

Finalement $\mathbb{Q}\left[\sqrt{d}\right]$ est un sous-corps de $(\mathbb{R}, +, \times)$ et c'est donc un corps.

Exercice 57 : [énoncé]

- (\Leftarrow) tout élément non nul d'un corps est symétrisable donc régulier et n'est donc pas diviseurs de zéro.
- (\Rightarrow) Supposons que A n'ait pas de diviseurs de zéros. Soit $a \in A$ tel que $a \neq 0$. Montrons que a est inversible Considérons l'application $\varphi : A \to A$ définie par $\varphi(x) = a.x$.

a n'étant pas diviseur de zéro, on démontre aisément que φ est injective, or A est fini donc φ est bijective. Par conséquent il existe $b \in A$ tel que $\varphi(b) = 1$ i.e. ab = 1. Ainsi a est inversible. Finalement A est un corps.

Exercice 58 : [énoncé]

 $0,1\in F$ puis par récurrence $\forall n\in\mathbb{N}, n\in F$. Par passage à l'opposée $\forall p\in\mathbb{Z}, p\in F$. Par passage à l'inverse : $\forall q\in\mathbb{N}^*, 1/q\in F$. Par produit $\forall r=p/q\in\mathbb{Q}, r\in F$.