

STW5NB100

N - CHANNEL 1000V - 4Ω - 4.3A - TO-247 PowerMESHTM MOSFET

PRELIMINARY DATA

TYPE	V _{DSS}	R _{DS(on)}	I _D
STW5NB100	1000 V	< 4.4 Ω	4.3 A

- TYPICAL $R_{DS(on)} = 4 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- ±30V GATE TO SOURCE VOLTAGE RATING
- 100% AVALANCHE TESTED
- LOW INTRINSIC CAPACITANCE
- GATE CHARGE MINIMIZED
- REDUCED VOLTAGE SPREAD

DESCRIPTION

Using the latest high voltage MESH OVERLAYTM process, SGS-Thomson has designed an advanced family of power MOSFETs with outstanding performances. The new patent pending strip layout coupled with the Company's proprietary edge termination structure, gives the lowest RDS(on) per area, exceptional avalanche and dv/dt capabilities and unrivalled gate charge and switching characteristics.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SWITCH MODE POWER SUPPLY (SMPS)
- DC-AC CONVERTER FOR WELDING EQUIPMENT AND UNINTERRUPTABLE POWER SUPPLY AND MOTOR DRIVE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	1000	V
V_{DGR}	Drain- gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	1000	V
V _{GS}	Gate-source Voltage	± 30	V
I _D	Drain Current (continuous) at T _c = 25 °C	4.3	Α
I _D	Drain Current (continuous) at T _c = 100 °C	2.7	Α
I _{DM} (•)	Drain Current (pulsed)	17	Α
P _{tot}	Total Dissipation at T _c = 25 °C	160	W
	Derating Factor	1.28	W/°C
dv/dt(1)	Peak Diode Recovery voltage slope	4	V/ns
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

(•) Pulse width limited by safe operating area

(1) $I_{SD} \le 4 \text{ A}$, $di/dt \le 200 \text{ A/}\mu\text{s}$, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$

June 1998

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case	Max	0.78	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	62.5	°C/W
R _{thc-sink}	Thermal Resistance Case-sink	Тур	0.5	°C/W
T_I	Maximum Lead Temperature For Soldering Purpose	!	300	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	4.3	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	373	mJ

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A$ $V_{GS} = 0$	1000			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating$ $T_c = 125$ C			1 50	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 30 V			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V I _D = 2 A		4	4.4	Ω
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $V_{GS} = 10 \text{ V}$	4.3			Α

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
gfs (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_{D} = 2 \text{ A}$	1.5	3		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V f = 1 MHz V _{GS} = 0		1400 117 7	1800 152 10	pF pF pF

2/5

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Cond	Test Conditions		Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Time Rise Time	$V_{DD} = 500 \text{ V}$ $R_G = 4.7 \Omega$	$I_D = 2 A$ $V_{GS} = 10 V$		20 9	28 13	ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 800 V I _D = 4 A	V _{GS} = 10 V		32 12 11	45	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Co	Min.	Тур.	Max.	Unit	
t _{r(Voff)} t _f t _c	Off-voltage Rise Time Fall Time Cross-over Time	$V_{DD} = 800 \text{ V}$ $R_G = 4.7 \Omega$	$I_D = 4 A$ $V_{GS} = 10 V$		15 12 20	21 17 28	ns ns ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)				4.3 17	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 4.3 A V _{GS} = 0			1.6	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 4 \text{ A}$		750		ns
Qrr	Reverse Recovery Charge	,		5.4		μС
I _{RRM}	Reverse Recovery Current			14.5		А

^(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

(•) Pulse width limited by safe operating area

TO-247	MECHA	ANICAL	DATA

DIM.		mm			inch	
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.7		5.3	0.185		0.209
D	2.2		2.6	0.087		0.102
Е	0.4		0.8	0.016		0.031
F	1		1.4	0.039		0.055
F3	2		2.4	0.079		0.094
F4	3		3.4	0.118		0.134
G		10.9			0.429	
Н	15.3		15.9	0.602		0.626
L	19.7		20.3	0.776		0.779
L3	14.2		14.8	0.559	0.413	0.582
L4		34.6			1.362	
L5		5.5			0.217	
М	2		3	0.079		0.118
Dia	3.55		3.65	0.140		0.144

4/5

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1998 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

