# НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

Факультет физики

# Лабораторные работы по спектроскопии и дифракции

Работу выполнил студент 3 курса Захаров Сергей Дмитриевич



Москва 2021

# Содержание

| 1. | Постановка цели                                                  | 2 |
|----|------------------------------------------------------------------|---|
|    | 1.1. Оже-спектроскопия                                           | 2 |
|    | 1.2. Сканирующая туннельная микроскопия                          | 2 |
|    | 1.3. Сканирующая туннельная спектроскопия                        |   |
| 2. | Оже-спектроскопия                                                | 2 |
|    | 2.1. Принцип метода                                              | 2 |
|    | 2.2. Подготовка образца                                          | 3 |
|    | 2.3. Анализ Оже-спектра                                          |   |
| 3. | Сканирующая туннельная микроскопия                               | 4 |
|    | 3.1. Принцип метода                                              | 4 |
|    | 3.2. Измерение высоты ступеньки и получение обзорного СТМ-кадра  |   |
|    | 3.3. Наблюдение атомной структуры                                | 4 |
|    | 3.4. Зависимость СТМ-изображения атомной структуры от напряжения | 4 |
|    | 3.5. Наблюдение муара                                            | 4 |
| 4. | Сканирующая туннельная спектроскопия                             | 5 |
|    | 4.1. Принцип метода                                              | 5 |
|    | 4.2. Снятие BAX                                                  |   |
| 5. | Выволы                                                           | 5 |

### 1. Постановка цели

#### 1.1. Оже-спектроскопия

В качестве исследуемого вещества нам был предложен неизвестный сыпучий образец, спрессованный в форму ломкой цилиндрической таблетки. Предлагалось подготовить ее для внесения в вакуумную камеру, после чего внести в нее и получить Оже-спектр, после чего путем его анализа постараться определить, из каких элементов образец состоит.

#### 1.2. Сканирующая туннельная микроскопия

Было решено на уже внесенном в вакуум графите получить обзорный кадр и определить высоту ступеньки. Забегая вперед, в ходе эксперимента проявился т.н. муаровый узор, возникающий при наложении двух периодических сетчатых рисунков, например, слоев решетки графита, поэтому было также предложено по нему определить взаимное расположение слоев, дающих рисунок.

#### 1.3. Сканирующая туннельная спектроскопия

Также на уже внесенном в вакуум графите было предложено получить вольт-амперную характеристику (ВАХ) туннельного тока от напряжения.

### 2. Оже-спектроскопия

#### 2.1. Принцип метода

Мы пользуемся тем фактом, что энергия связи электронов глубоких оболочек атома чувствительна к природе элемента, что позволяет, измеряя кинетическую энергию эмитированных с поверхности под действием фотонной или электронной бомбардировки, получать информацию об **элементном** составе поверхности. Мы также пользуемся тем, что электроны с кинетической энергией 15-1000 эВ обладают очень маленькими длинами свободного пробега в веществе, что позволяет получать информацию о поверхности.

При бомбардировке образца электронами с энергией порядка 3000 эВ происходит несколько параллельных процессов. Во-первых, упругое рассеяние электронов на электронных оболочках атомов. Эти электроны покидают образец без изменения энергии. Во-вторых, неупругое рассеяние электронов на электронных оболочках атомов, в частности нас интересует рассеяние на электронах внутренних оболочек атомов.

Мы рассматриваем оже-пики, которые появляются вследствие т.н. Оже-процесса. Схема процесса представлена на рисунке 1 и состоит из трех этапов. Сперва первичный электрон с энергией порядка 2-3 кЭв выбивает электрон с оболочки атома (этот электрон называется вторичным), образуя тем самым вакансию (а). После этого происходит релаксация за счет внутреннего перехода электрона с более высокого уровня на получившуюся вакансию (б). Наконец, испускается Оже-электрон, который мы детектируем и кинетическую энергию которого мы измеряем (в).



Рис. 1. Схематическая иллюстрация оже-процесса из [5].

#### 2.2. Подготовка образца

Первоначально предлагалось закрепить образец на держателе с помощью танталовой нити с использованием контактной сварки, однако спустя несколько попыток было решено, что данный способ при отсутствии должной практики крайне сложен в практическом исполнении, принимая во внимание тот факт, что образец был цилиндрической формы. По этой причине было решено «накрыть» образец танталовой пластиной, предварительно просверлив в ней отверстие достаточного диаметра для получения Оже-спектра и сделав «ножки», с помощью которых образец бы держался между пластинами.

### 2.3. Анализ Оже-спектра

Изначально был получен Оже-спектр при бомбардировке образца электронами с энергией 3000 эВ с помощью установки, описанной в [2]. С учетом возможности наличия т.н. пиков потерь, которые находятся в той же области, что и оже-пики, было решено проверить их присутствие с помощью увеличения энергии бомбардирующих электронов на 500 эВ. В таком случае Оже-пики, которые являются характеристикой вещества, должны были бы остаться на месте, а пики потерь — сместиться. Из рисунка 2 видно, что смещения ни одного из пиков не наблюдается, что свидетельствует о том, что все пики являются оже-пиками.

В силу совпадения оже-спектров анализ проводился только спектра 3000 эВ. Однако в более «далекой» по энергиям части спектра для того, чтобы лучше разрешить пики, оказался полезен и спектр 3500 эВ. Понятно, что в идеале хотелось бы иметь спектр 5000 эВ, пики с которого соответствовали бы, как и пики с 3000 эВ, каталожным, однако это оказалось невозможно по независящим от нас техническим причинам. Проанализированный спектр 3000 эВ представлен на рисунке 3.

Как было сказано, спектр 3500 эВ оказался полезен в «дальней» части спектра: с его помощью был уточнен пик, предположительно, тулия. Кроме того, благодаря тому, что это сканирование мы запустили с меньшего нижнего порога по энергиям, из него также можно было вытащить один дополнительный пик в начале, который оказался натриевым. Эти два ненайденных с помощью спектра 3000 эВ пика указаны на спектре 3500 эВ на рисунке 4.

В качестве каталожных спектров были взяты спектры из [1].

# 3. Сканирующая туннельная микроскопия

#### 3.1. Принцип метода

Сканирование осуществляется с помощью специальной очень острой металлической иглы, в идеале на крайней точке которого сидит один единственный атом. Если достаточно близко приблизить образец к игле и подать напряжение, то потечет туннельный ток, направление которого может меняться (с образца на иглу, или наоборот) в зависимости от полярности напряжения. По зависимости величины тока от напряжения можно получить информацию о расстоянии между зондом и атомами поверхности образца. Вероятность туннельного эффекта зависит экспоненциально от расстояния, что и обеспечивает высокое разрешение данного метода.

Более полное описание микроскопа GPI-300, на котором проводилось сканирование, представлено в [6]. Для сканирования, как было сказано выше, был выбран графитовый образец.

#### 3.2. Измерение высоты ступеньки и получение обзорного СТМ-кадра

С помощью последовательного сканирования различных областей, была найдена область с несколькими ступенями. Полученное изображение представлено на рисунке 5. График перепада высот на исследованной ступеньке указан на рисунке 6. Из последнего видно, что высота ступени определяется как 3.5~Å.

#### 3.3. Наблюдение атомной структуры

# 3.4. Зависимость СТМ-изображения атомной структуры от напряжения

На одном и том же участке было проведено несколько последовательных сканирований при различных напряжениях с целью найти какую-то зависимость качества изображения от этого напряжения. В результате было определено, что явной зависимости нет, а параметры необходимо подбирать индивидуально. Полученные кадры представлены на рисунке 7, а профили одного из рядов на них — на рисунке 8. Из последнего видно, что с увеличением напряжения "глубина" профиля становится все меньше.

## 3.5. Наблюдение муара

Увиденный нами муар представлен на рисунке 9. Наблюдаются атомные модуляции, а также модуляция сверхструктуры. На Фурье-образе также видно две структуры: атомный гексагон и гексагон сверхструктуры. Было вычислено расстояние между соседними элементами сверхструктуры, которое оказалось равным 7.64~нм/2 = 3.82~нм. Реально было измерено расстояние не между двумя соседними элементами, а между элементами, находящимися через один, чтобы накопить большую статистику.

Было высказано предположение, что муар составлен двумя "слоями" графита ("слои" здесь подразумевают не атомные слои, см. пункт про атомную структуру). С помощью моделирования было установлена, что "слои" должны быть развернуты друг относительно друга на  $6.2^{\circ}$ . Смоделированный муар представлен на рисунке 10.

# 4. Сканирующая туннельная спектроскопия

#### 4.1. Принцип метода

Согласно [7] скажем, что выражения для туннельного тока может быть представлено в следующем виде:

$$dI = A \cdot D(E)\rho_P(E)f_P(E)\rho_S(E)(1 - f_S(E))dE \tag{1}$$

Здесь A — некоторая постоянная, D(E) — прозрачность барьера,  $\rho_P(E)$ ,  $\rho_S(E)$  — плотности состояний в материале зонда и исследуемого образца соответственно, f(E) — функция распределения Ферми.

Предполагая, что плотность состояний вблизи уровня ферми в зонде практически постоянна, а также предполагая, что температуры низкие, мы можем записать:

$$I(V) \propto \int_{0}^{eV} \rho_S(E) dE$$
 (2)

Тогда зависимость туннельного тока от напряжения определяется плотностью состояний в энергетическом спектре образца. Тогда для плотности состояний мы можем записать:

$$\rho_S(eV) \propto \frac{\partial I}{\partial V} \tag{3}$$

То есть на деле, снимая ВАХ, а затем дифференцируя ее, мы можем судить о плотности состояний в исследуемом образце.

#### 4.2. Снятие ВАХ

На уже использованном для СТМ графитовом образце было снято несколько ВАХ на одном и том же месте. После анализа результатов была выбрана наименее зашумленная серия, которая после этого была дополнительно отфильтрована. Полученная ВАХ (исходная и после фильтра) представлена на рисунке 11. Видно, что на ней все еще достаточно много шумов. Чтобы это улучшить, вероятно, стоит изначально подводить иглу ближе к образу (т.е. менять  $U_{\rm base}$ ), а также уменьшить шаг по напряжению.

# 5. Выводы

В результате проведения лабораторной работы:

- 1) Был расшифрован Оже-спектр неизвестного образца. Предположительно он состоит из натрия, фтора, тулия и иттрия. Принимается, что пики углерода и кислорода происходят из остатков газа в вакуумной камере.
- 2) Была измерена высота ступеньки на графитовом образце. Ее высота оказалась равной  $3.5~{\rm \AA}.$
- 3) Были получены различные СТМ-кадры, в том числе и обзорные, и кадры, отображающие атомную структуру.

- 4) Был проведен эксперимент по поиску зависимости СТМ-изображения атомной структуры от напряжения, в ходе которого было установлено, что с ростом напряжения "глубина" кадра уменьшается.
- 5) При сканировании был обнаружен муар, который, по всей видимости, вызывается поворотом двух (или более) "слоев" решетки относительно друг друга. В результате компьютерного моделирования этого предположения было установлено, что в таком случае слои должны быть повернуты друг относительно друга на 6.2°.
- 6) Была получена ВАХ, которая отдаленно напоминает ВАХ, например, из [4], однако она сильно зашумлена. В качестве вариантов решения проблемы в будущем были предложены более близкое подведение иглы к образцу и уменьшение шага по напряжению.

# Список литературы

- [1] Handbook of Auger Electron Spectroscopy. / Lawrence E. Davis, Noel C. MacDonald, Paul W. Palmberg, Greald E. Riach, Roland E. Wever Physical Electrinics Industries, Inc., February 1976.
- [2] Описание работы оже-спектрометра. / ??
- [3] Общее описание СТМ GPI-300. / ??
- [4] Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. / Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and Hiroshi Fukuyama Tokyo, Japan: Department of Physics, University of Tokyo, February 24, 2006.
- [5] Анализ поверхности методами Оже- и рентгеновской фотоэлектронной спектроскопии. / Бригтса Д., Сиха М.М.
- [6] Сверхвысоковакуумный сканирующий туннельный микроскоп GPI-300. / Ельцов К.Н., А.Н. Климов, А.Н. Косяков, О.В. Объедков, В.Ю. Юров, В.М. Шевлюга Москва : Труды института общей физики им. А.М. Прохорова, 2003.
- [7] Основы сканирующей зондовой микроскопии. / В.Л. Миронов Нижний Новгород : Институт физики микроструктур, 2004



Рис. 2. Сравнение Оже-спектров, полученных при 3000 эВ и 3500 эВ.



Рис. 3. Полученный Оже-спектр 3000 эВ с нанесенными названиями элементов, дающих пики.



Рис. 4. Полученный Оже-спектр 3000 эВ с нанесенными названиями элементов, дающих не найденные на 3000 эВ пики.



Рис. 5. Обзорный СТМ-кадр поверхности графита.



Рис. 6. Профиль ступеньки графита.



Рис. 7. СТМ-изображение атомной структуры при различных напряжениях. Слева направо и сверху вниз при напряжении, соответственно: 25.6 мВ, 64.4 мВ, 93.3 мВ, 150.1 мВ, 200 мВ. Размеры всех изображений составляют  $2.6 \times 2.6$  нм, ток -0.4 нА.



Рис. 8. Профили атомного изображения при одинаковых токах (0.4 нA), но при различных напряжениях: зеленый — 25.6 мB, красный — 64.4 мB, синий — 93.3 мB, фиолетовый — 150.1 мB, оранжевый — 200 мВ.



Рис. 9. СТМ-кадр графита с наблюдающимся муаром (a), его Фурье-образ (b), профиль для определения расстояния между элементами сверхструктуры, оказавшегося равным 3.82 нм (c).



Рис. 10. Компьютерное моделирование сверхструктуры.





Рис. 11. Кривая dI/dU, измеренная при  $|U|<400~{\rm mV}$  (сверху) и она же, пропущенная через фильтр (снизу).