برقی آلات

خالد خان يوسفر. كي

جامعہ کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

ix		ديباچه
3	<i>ڡ</i> ؙ <i>ڹ</i>	1 بنیادی خ
3	ينياد ي اکائيال	1.1
3	غيرستى	1.2
4	سمتير	1.3
5		1.4
5	1.4.1 كارتيسى محدد ي نظام	
7	1.4.2 نىکى محددى نظام	
9	سمتيررقبر	1.5
11	رقبه عمودی تراش	1.6
12	ىر قى اور مقناطىيى مىدان	1.7
12	1.7.1 برتی میدان اور برتی میدان کی شدت	
13	1.7.2 متناطیسی میدان اور مقناطیسی میدان کی شدت	

iv

13	سطحیاور حجمی کثافت	1.8	
13	1.8.1 منطحی ثثافت		
14	محجى كثافت	1.9	
15	صليبي ضرب اور ضرب نقط	1.10	
15	1.10.1 صلیبی ضرب		
17	1.10.2 نقطى ضرب نقطى ضرب.		
20	تفرق اور جزوی تفرق	1.11	
20	خطی تکمل	1.12	
21	سطح تمل	1.13	
22	دوری سمتنی	1.14	
27) او وار	يمقناطيسي	2
2727)اد وار مزاحمت اور نتچکچاہٹ		2
		2.1	2
27	مزاحمت اور نتکچابث	2.1	2
27 28 30	مزاحمت اور نتیکچابٹ	2.1	2
27 28 30 32	مزاحمت اور نتیکچابث	2.1 2.2 2.3	2
27 28 30 32 34	مزاجمت اور نیکچاب میران کی شدت گافت برقی رواور برقی میدان کی شدت گافت برقی او دار میدان کی شدت برقی او دار میدان کی شدت متناطبیی دور حصه اول میناطبی کی دور حصه کی دور	2.1 2.2 2.3 2.4	2
27 28 30 32 34 36	مزاحمت اور نتیکچابث کثافت برتی رواور برتی میدان کی شدت برقی ادوار مقناطیسی دور حصه اول کثافت متناطیسی بهاواور متناطیسی میدان کی شدت	2.1 2.2 2.3 2.4 2.5	2
27 28 30 32 34 36	مزاجمت اور نیمکیاب گافت برقی رواور برقی میدان کی شدت برقی ادوار مقناطیسی دور حصه اول گافت مقناطیسی بهاواور مقناطیسی میدان کی شدت مقناطیسی دور حصه دوم	2.1 2.2 2.3 2.4 2.5 2.6	2

عـــنوان

57																																^	نسفار	ٹران	3
58						•			•																		ت	اہمیہ	کی	ار م	رانسفا	*	3	.1	
61																											مام	لحاقه	ر_	ار م	رانسفا	رُ	3	.2	
61																													باو	قىد	الی بر	ا	3	.3	
63											•							•						ياع	ىن	قالب	واور	قىرو	ربرا	انگيز	بجان	Ĩ	3	.4	
66	•		•			•			•	•											Ü	واح	کے خو	رو_	_ قی	له	تباد	واور	ادبا	برقی	بادله	تې	3	.5	
70											•												ژ	با)جان	رائح	كاابتا	وجھ	ب بو	جانسه	انوی.	ť	3	.6	
71						•																ب	طله	الار	نطوا	ير پر نق	ت	علام	کی	ار م	رانسفا	<i>*</i>	3	.7	
72											•							•										لہ .	نبادا	ك كا:	كاور	'n	3	.8	
77											•							•							بئر	يميد	ك-ا	ولر <u>.</u>	کاو	ار م	رانسفا	,	3	.9	
79											•							•					ار	ادو	باوك	رمر	بداور	امال	ر_	ار م	رانسفا	,	3.1	0	
79																نا	ہ کر	نده	عليح	امليه	امتعه	کی	.اگ	ف اور	حمت	مزا	ے کی	"	3	3.1	0.1	1			
81																										. ،	نامال	دِست	3	3.1	0.2	2			
82																			ن	ران	کےاث	_,	لب	ور قا	رواه	۔ تی	ی بر	ثانو	3	3.1	0.3	3			
83											•	•										باو	قى د	بابر	كالمالخ	يھے	ب ی -	ثانو	3	3.1	0.4	4			
83																ت	رار	اثر	2	مله	متعا	ور	تا	زاحمه	کی مز	ر گھے	ب ی	ثانو	3	3.1	0.5	5			
85																			وليه	. تبا	انب	ناج	نانو ک	ئىية	بتدا	16.	وٹ	رکا	3	3.1	0.6	5			
87																		ار	ادوا	وی	مسا	ين	ەتر	ساد	کے	. مر	سفار	ٹران	3	3.1	0.7	7			
88						•																		ائنه	ر مع	ردو	ركس	نداو	حا يَ	ورم	کھلے و	<u>-</u>	3.1	1	
89																									ئنہ	معا	دور	كطلا	3	3.1	1.1	1			
91											•														ئنه	معا	ردور	كم	3	3.1	1.2	2			
95																								•		٠.	رمر	نسفا)ٹرا	وري	نين و	;	3.1	2	
103				_															زر	کا گز	ارو	رق	ی ر	ه محر	ز باد	لمحد	تے	لو کر	حال	ار م	. انسفا	ٹر	3.1	3	

vi

ميكانى توانائى كا با يمى شادله	بر قی اور	4
مقناطليسى نظام ميں قوت اور قوت مروڑ	4.1	
تبادلية توانا كي والاايك لچھے كانظام	4.2	
توانائی اور چمه توانائی	4.3	
متعدد کیچھوں کامقناطیسی نظام	4.4	
شین کے بنیادی اصول	گھومتے'	5
قانون فيرادك	5.1	
معاصر مشين	5.2	
محرک برتی د باو	5.3	
ت كليل كحجه اور سائن نمامقناطيسي دياو	5.4	
5.4.1 بدلق رووالے مثین		
مقناطىيى د باو كى گھومتى موجىيں	5.5	
5.5.1 يك دورى كي لپڻي مشين		
5.5.2 تين دورکي لپڻي مشين کا تحليلي تجربير		
5.5.3 تين دورکي لپڻي مشين کاتر سيمي تجزيه		
محرک برتی د باد	5.6	
5.6.1 بدلتی روبر تی جزیئر		
5.6.2 کیک مستی روبرتی جزیئر		
ہموار قطب مثینوں میں قوت مروڑ	5.7	
5.7.1 توانائی کے طریقے ہے میکانی قوت مروڑ کا حماب		
5.7.2 مقناطيري بماديس مريكاني قويت م وژكاحياب		

vii

ر مشين 179	ال حال، بر قرار چالو معاص	6 كيا
ىرمشين	6 متعدد مرحله معاص	.1
امالہ	6 معاصر مشین کے ا	.2
الله	6.2.1 نود	
تر که الله	6.2.2 شخ	
صراماله	6.2.3 معا	
ماوى دوريارياضى نمونه	6 معاصر مثين كامسا	.3
لى	6 برقی طاقت کی منتقا	.4
ر چالو مثین کے خصوصیات	6 كيسان حال، برقرار	.5
196	6.5.1 معا	
197	6.5.2 معا	
رمعائنه	6 کھلے دوراور کسرِ دو	.6
يەدور معائنە	6.6.1	
ر دور موائد	6.6.2 کبر	

211	امالی مشیر	7
ساكن کچھوں کی گھومتی مقناطیبی موج	7.1	
مشین کی سر کنے اور گھومتی موجول پر تبصرہ	7.2	
ساكن كېھول مين امالي برقي د باو	7.3	
ساکن کچھوں کی موج کا گھومتے کچھوں کے ساتھ اضافی رفتار اور ان میں پیدا امالی برقی دباو	7.4	
گھو متے کچھوں کی گھو متی متناطبی دیاو کی موج یہ	7.5	
گھوٹے کچھوں کے مساوی فرضی ساکن کچھے ۔	7.6	
المالي موشر كامساوى برقى دور	7.7	
مىادى بر قى دور پرغور	7.8	
امالي موٹر كامساوى تقونن دوريارياضى نمونه	7.9	
پنچرانماامالي موٹر	7.10	
ب يو جھ موٹراور جامد موٹر كے معائند	7.11	
7.11.1 بي بو چھ موثر كامعائنہ		
7.11.2 جامد موٹر کامعائنہ		
رومشين	يك سمتى	8
ميكاني ست كاركي بنيادى كاركروگى	8.1	
8.1.1 ميكاني سمت كاركى تفصيل		
ىك سى جزيرً كى برقى د باو	8.2	
قوت مرور مرور مرور مرور مرور مرور مرور مر	8.3	
يروني بيجان اور خود بيجان يك سمتى جزير	8.4	
يك سمتى مشين كى كار كرو گى كے خط	8.5	
8.5.1 حاصل برقی د باو بالقابل برقی بوجھ		
8.5.2 رفمار بالمقابل قوت مرور گریستان مرور گریستان مرور گریستان کرور گرور گریستان کرور گریستان ک		
269	ا	فرہناً

عـــنوان

0.8.3

باب5

گھومتے مشین کے بنیادی اصول

اس باب میں مختلف گھومتے مشینوں کے بنیادی اصولوں پر غور کیا جائے گا۔ظاہری طور پر مختلف مشین ایک ہی قشم کے اصولوں پر کام کرتے ہیں جنہیں اس باب میں اکٹھا کیا گیا ہے۔

5.1 قانون فيراد ك

قانور فیراڈے 1 کے تحت جب بھی کسی کچھے کا ارتباط بہاو λ وقت کے ساتھ تبدیل ہو، اس کچھے میں برقی دباو پیدا ہو گا:

$$(5.1) e = \frac{\partial \lambda}{\partial t} = N \frac{\partial \phi}{\partial t}$$

چونکہ ہمیں برقی دباو کی قیمت ناکہ اس کے ہے ہے ولچین ہے لہذا اس مساوات میں منفی کی علامت کو نظر انداز کیا گیا ہے۔

گھومتے مشین میں ارتباط بہاو کی تبدیلی مختلف طریقوں سے پیدا کی جا سکتی ہے۔مثلاً کچھے کو ساکن مقناطیسی بہاو میں گھما کر یا ساکن کچھے میں مقناطیس گھما کر، وغیرہ وغیرہ۔

Faraday's law¹

ان برقی مثینوں میں کچھے مقناطیسی قالب² پر لییٹے جاتے ہیں۔ اس طرح کم سے کم مقناطیسی دباو سے زیادہ سے زیادہ سے زیادہ مقناطیسی بہاو ماصل کیا جاتا ہے اور کچھوں کے مابین مشتر کہ مقناطیسی بہاو بڑھایا جاتا ہے۔ مزید قالب کی شکل تبدیل کر کہ مقناطیسی بہاو کو ضرورت کے مقام پر پہنچایا جاتا ہے۔

ان مشینوں کے قالب میں مقناطیسی بہاو وقت کے ساتھ تبدیل ہوتا ہے للذا قالب میں بھنور نما برقی رو³ پیدا ہوتا ہے۔ان بھنور نما برقی رو کو کم سے کم کرنے کی خاطر باریک لوہے کی پتری⁴ تہہ در تہہ رکھ قالب بنایا جاتا ہے۔ ۔ آپ کو یاد ہو گا، ٹرانسفار مرکا قالب بھی اس طرح بنایا جاتا ہے۔

5.2 معاصر مشين

شکل 5.1 میں معاصر برقی جزیئر کا ایک بنیادی شکل دکھایا گیا ہے۔ اس کے قالب میں ایک مقناطیس ہے جو کہ گھوم سکتا ہے۔ مقناطیس کا مقام اس کے میکانی زاویہ θ_m سے بتلائی جاتی ہے۔ افتی کیبر سے گھڑی کے مخالف زاویہ θ_m ناپا جاتا ہے۔

یہاں کچھ باتیں وضاحت طلب ہیں۔ اگر مقناطیں ایک مقررہ رفتار ہے، فی سینڈ n مکمل چکر کائنا ہو تب ہم کہتے ہیں کہ اس مقناطیں کے گھومنے کا تعدد n ہرٹر آئی ہے۔ اس بات کو یوں بھی بیان کیا جاتا ہے کہ مقناطیں 60n فی منٹ 6 کی رفتار سے گھوم رہا ہے۔ آپ جانتے ہیں کہ ایک چکر 360 زاویہ یا 2π ریڈ بیک 7 پر مشتمل ہوتا ہے للذا گھومنے کی اس رفتار کو 2π ریڈ بیک فی سیکٹہ بھی کہہ سکتے ہیں۔ یوں اگر مقناطیس f ہرٹز کی رفتار سے گھوم رہا ہو تب ہے 2π میں خوام کی جاتا ہے۔

$$(5.2) \omega = 2\pi f$$

اس كتاب مين كهومنے كى رفتار كو عموماً ريدينن في سينٹر مين بيان كيا جائے گا۔

شکل 5.1 میں مثین کے دو مقاطیسی قطب ہیں، اس لئے اس کو دو قطبی مثین کہتے ہیں۔ ساکن قالب میں، اندر کی جانب دو شگاف ہیں، جن میں N چکر کا کچھا موجود ہے۔ کچھے کو a اور a سے ظاہر کیا گیا ہے۔اس کچھے کی بنا

magnetic core²
eddy currents³
laminations⁴
Hertz⁵

nertz-

rounds per minute, rpm⁶ radians⁷

5.2 معاصر مشين

شکل 5.1: دوقطب، یک دوری معاصر جنریٹر۔

اس مشین کو ایک کچھے کا مشین بھی کہتے ہیں۔ چونکہ یہ کچھا جزیٹر کے ساکن حصہ پر پایا جاتا ہے للذا یہ کچھا بھی ساکن ہو گا جس کی بنا اسے ساکھے کچھا⁸ کہتے ہیں۔

مقناطیس کا مقناطیسی بہاو شالی قطب 9 N سے خارج ہو کر خلائی درز میں سے ہوتا ہوا، باہر گول قالب میں سے گزر کر، دوسرے خلائی درز میں سے ہوتا ہوا، مقناطیس کے جنوبی قطب 10 S میں داخل ہو گا۔ اس مقناطیسی بہاو کو ہلکی سیابی کے کمیروں سے دکھایا گیا ہے۔ یہ مقناطیسی بہاو، سارا کا سارا، ساکن کچھے میں سے بھی گزرتا ہے۔ شکل 5.1 میں مقناطیس سیدھی سلاخ کی مانند دکھایا گیا ہے۔

شکل 5.2 میں مقناطیس تقریباً گول ہے اور اس کے محور کا زاویہ θ_m صفر کے برابر ہے۔ مقناطیس اور ساکن قالب کے پچ صفر زاویہ، $0 = \theta$ ، پر خلائی درز کی لمبائی کم سے کم اور نوے زاویہ، $0 = |\theta|$ ، پر زیادہ سے زیادہ سے کم خلائی درز پر پچکچاہٹ کم ہو گی جبکہ زیادہ خلائی درز پر پچکچاہٹ زیادہ ہو گی للذا $0 = \theta$ پر خلائی درز سے زیادہ مقناطیسی بہاو گزرے گا۔خلائی درز کی لمبائی یوں تبدیل کی جاتی ہے کہ خلائی درز میں سائن نما مقناطیسی بہاو پیدا ہو۔ مقناطیسی بہاو مقناطیس سے قالب میں عمودی زاویہ پر داخل ہوتا ہے۔ اگر خلائی درز میں 0 = 0 سائن نما ہو

$$(5.3) B = B_0 \cos \theta_p$$

تب کثافت مقناطیسی بہاو B صفر زاویہ $\theta_p=0^\circ$ ، پر زیادہ سے زیادہ اور نوے زاویہ، $\theta_p=90^\circ$ ، پر صفر ہو گل اور خلائی درز میں مقناطیسی بہاو $\theta_p=0$ کے ساتھ تبدیل ہو گا۔ $\theta_p=0$ کو مقناطیس کے شالی قطب سے گھڑی کے مخالف

stator coil⁸ north pole⁹ south pole¹⁰

شكل 5.2: كثافت مقناطيسي بهاواور زاويه كاتبديلي_

رخ ناپا جاتا ہے۔ شکل 5.2 میں ساکن جے کے باہر نو کیلی لکیروں کی لمبائی سے کثافت مقناطیسی بہاو کی مطلق قیمت اور کلیروں کے رخ سے بہاو کا رخ دکھایا گیا ہے۔ اس شکل میں ہاکی سیابی سے $^{\circ}0$ - $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ باتی آ دھے میں مخالف کے مخالف ہے۔ یوں شکل 5.2 میں آ دھے خلائی درز میں کثافت مقناطیسی بہاو کا ترسیم سائن نما ہو گا۔ شکل 5.3 میں مقناطیس دوسرے زاویہ پر دکھایا گیا ہے۔ یاد رہے کثافت مقناطیسی بہاو کی مطلق قیمت مقناطیس کے شائی قطب پر زیادہ سے زیادہ ہو گا۔ ور شائی قطب پر کثافت مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رہ وگا۔ شکل قطب پر کثافت مقناطیسی بہاو رداسی درج ذیل کھا جا سکتا ہے۔

(5.4)
$$B = B_0 \cos \theta_p$$
$$\theta_p = \theta - \theta_m$$

يوں درج ذيل ہو گا۔

$$(5.5) B = B_0 \cos(\theta - \theta_m)$$

شکل 5.3 میں مقناطیس اور اس کا سائن نما مقناطیسی دباو پیش کیا گیا ہے۔ جیسا شکل 5.4 میں دکھایا گیا ہے، ایسے مقناطیسی دباو کو عموماً ایک سمتیہ سے ظاہر کیا جاتا ہے جہاں سمتیہ کا طول مقناطیسی دباو کا حیطہ اور سمتیہ کا رخ مقناطیس کے شال کو ظاہر کرتا ہے۔ 5.2 معاصر مشين

شکل 5.5: چار قطب یک دوری معاصر جنریٹر۔

شکل 5.3 میں مقناطیس کو لمحہ t_1 ، زاویہ $\theta_m(t_1)$ پر دکھایا گیا ہے جہاں ساکن کچھے کا ارتباط بہاو $\theta_m(t_1)$ مقناطیس گھڑی کے مخالف رخ ایک مقررہ رفتار ω_0 سے گھوم رہا ہو تب ساکن کچھے میں اس لمحہ پر برقی دباو e(t) پیدا ہو گا:

(5.6)
$$e(t) = \frac{\mathrm{d}\lambda_{\theta}}{\mathrm{d}t}$$

آوھے چکر، π ریڈیئن گھومنے کے، بعد مقناطیسی قطبین آپس میں جگہیں تبدیل کرتے ہیں، کچھے میں مقناطیسی بہاو کا رخ الٹ ہو گا، کچھے میں ارتباط بہاو θ_0 اور اس میں امالی برقی دباو e(t) ہو گا۔ ایک مکمل چکر بعد مقناطیس دوبارہ ای مقام پر ہو گا جو شکل 5.3 میں دکھایا گیا ہے، ساکن کچھے کا ارتباط بہاو دوبارہ θ_0 اور اس میں امالی برقی دباو کی دباو کو گا۔ یوں جب بھی مقناطیس $\theta_m = 2\pi$ میکانی زاویہ طے کرے، امالی برقی دباو کے برقی زاویہ میں $\theta_m = 2\pi$ میکانی زاویہ طے کرے، امالی برقی دباو کے برقی زاویہ میں دو سرے کے برابر تبدیلی رونما ہوگی لہذا دو قطب، ایک کچھے کی مثنین میں میکانی زاویہ θ_m اور برقی زاویہ θ_0 ایک دو سرے کے برابر ہوں گ

$$\theta_e = \theta_m$$

اس مشین میں میکانی زاویہ θ_m اور برقی زاویہ θ_e وقت کے ساتھ تبدیل ہونے کے باوجود آپس میں ایک تناسب رکھتے ہیں لہٰذا ایسے مشین کو معاصر مشین 0 کہتے ہیں۔ یہاں یہ تناسب ایک کے برابر ہے۔

frequency¹¹

Hertz¹²

synchronous machine¹³

5.2 معاصر مشين

شکل 5.5 میں چار قطب، یک دوری معاصر جزیٹر دکھایا گیا ہے۔ چھوٹے مشینوں میں عموماً مقناطیس جبکہ بڑے مشینوں میں برقی مقناطیس 14 استعال ہوتے ہیں۔ اس شکل میں برقی مقناطیس استعال کیے گئے ہیں۔ دو سے زائد قطبین والے مشینوں میں کسی ایک شالی قطب کو حوالہ قطب تصور کیا جاتا ہے۔ شکل میں اس حوالہ قطب کو θ_m پر دکھایا گیا ہے اور یوں دوسرا شالی قطب کو θ_m زاویہ پر ہے۔

حییا کہ نام سے واضح ہے، اس مشین میں مقناطیس کے چار قطبین ہیں۔ ہر ایک ثالی قطب کے بعد ایک جنوبی قطب آتا ہے۔ یک دوری آلات میں مقناطیسی قطبین کے جوڑوں کی تعداد اور ساکن کچھوں کی تعداد ایک دوسرے قطب آتا ہے۔ یک دوری آلات میں مثنا سے قطبین قطبین ہیں، للذا اس مشین کے ساکن حصہ پر کے برابر ہوتی ہے۔ شکل 5.5 میں مشین کے چار قطب یعنی دو جوڑی قطبین ہیں، للذا اس مشین کے ساکن حصہ پر دو ساکن کچھے ہوں ہیں۔ ایک کچھے کو واشح کیا گیا ہے اور دوسرے کو ہے ہے۔ کچھے کو قالب میں موجود دوشگان اور a_1 میں رکھا گیا ہے۔ ان وونوں کچھوں دوشگان اور a_2 میں رکھا گیا ہے۔ ان دونوں کچھوں میں یکسال برقی دباو پیدا ہوتا ہے۔ دونوں کچھوں کو سلسلہ وار 15 جوڑا جاتا ہے۔ اس طرح جزیڑ سے حاصل برقی دباو ایک کچھے میں پیدا برقی دباو کا دگنا ہو گا۔ یک دوری آلات میں قالب کو مقناطیس کے قطبین کی تعداد کے برابر حصوں میں تقسیم کرنے سے مشین کا ہر ساکن کچھا ایک حصہ گھرتا ہے۔ شکل 5.5 میں چار قطبین ہیں للذا اس کا ایک کچھا میں تقسیم کرنے سے مشین کا ہر ساکن کچھا ایک حصہ گھرتا ہے۔ شکل 5.5 میں چار قطبین ہیں للذا اس کا ایک کچھا نوے مکانی زاویہ کے اطاطے کو گھیرتا ہے۔

ساکن اور حرکی کیجھوں کی کار کردگی ایک دوسرے سے مختلف ہوتی ہے۔اس کی وضاحت کرتے ہیں۔

جیسا پہلے بھی ذکر کیا گیا چھوٹی گھومتی مشینوں میں مقناطیسی میدان ایک مقناطیس فراہم کرتا ہے جبکہ بڑی مشینوں میں برقی مقناطیس کو گھومتا حصہ دکھایا گیا ہے، حقیقت میں برقی مقناطیس کی مشین میں گومتا اور کسی میں ساکن ہو گا۔ میدان فراہم کرنے والا لچھا مشین کے کل برقی طاقت میں مقناطیس کسی مشین میں گھومتا اور کسی میں ساکن ہو گا۔ میدان فراہم کرنے والے اس کچھے کو میدانی لچھا¹⁶ کہتے ہیں۔اس کے چند فی صد برابر برقی طاقت استعال کرتا ہے۔میدان فراہم کرنے والے اس کچھے کو میدانی لچھا کہ ہیں۔اس کے برعکس مشین میں موجود دوسری نوعیت کے لچھے کو قومی لچھا¹⁷ کہتے ہیں۔برقی جزیر کے قوی کچھے سے برقی طاقت کے برعکس مشین میں موجود دوسری نوعیت کے لچھے میں چند فی صد برقی طاقت کے ضیاع کے علاوہ تمام برقی طاقت وی کچھے کو فراہم کی جاتی ہے۔

شکل 5.6 میں گھومتے اور ساکن حصہ کے بی خلائی درز میں شالی قطب سے مقناطیسی بہاو باہر نکل کر قالب میں داخل ہوتا ہے۔ شکل 5.6 میں داخل ہوتا ہے۔ شکل 5.6 میں

electromagnet¹⁴

series connected 15

field coil¹⁶

armature coil¹⁷

شكل 6.5: چار قطب، دولچھے مثین میں مقناطیسی بہاو۔

اس مقناطیسی بہاو کی کثافت کو دکھایا گیا ہے۔ یوں اگر ہم اس خلائی درز میں ایک گول چکر کا ٹیس تو مقناطیسی بہاو کا رخ دو مرتبہ باہر کی جانب اور دو مرتبہ اندر کی جانب ہو گا۔ ان مشینوں میں کوشش کی جاتی ہے کہ خلائی درز میں B سائن نما ہو۔ یہ کیسے کیا جاتا ہے، اس پر آگے خور کیا جائے گا۔ اگر تصور کر لیا جائے کہ B سائن نما ہے تب خلائی درز میں B کی مطلق قیت شکل 5.7 کی طرح ہو گی جہاں θ برتی زاویہ ہے۔

P قطبی مقناطیس کے معاصر مثین کے لئے لکھ درج ذیل ہو گا۔

$$\theta_e = \frac{P}{2}\theta_m$$

$$(5.8) f_e = \frac{P}{2} f_m$$

یہاں برقی اور میکانی تعدد کا تناسب 2 ہے۔

مثال 5.1: پاکستان میں گھریلو اور صنعتی صارفین کو $_{\rm Hz}$ کی برتی طاقت فراہم کی جاتی ہے۔یوں ہمارے ہاں $f_e=50$

- اگر برقی طاقت دو قطبی جزیٹر سے حاصل کی جائے تب جزیٹر کی رفتار کتنی ہو گی؟۔
 - اگر جزیر کے بیں قطب ہوں تب جزیر کی رفار کتنی ہو گی؟

حل:

5.2 معاصر شين

شکل 5.8: دو قطب، تین دوری معاصر مثین ـ

- مساوات 5.8 تحت وو قطبی، P=2، جنریٹر کا میکانی رفتار $f_m=\frac{2}{2}(50)=50$ چکر نی سیکنڈ لیمن P=2، جنریٹر کا میکانی رفتار 18 جن گاہ ہوگا۔
- بیں قطبی، P=20، جزیٹر کا میکانی رفتار $f_m=rac{2}{20}(50)=5$ چکر فی سینٹر لیعنی P=20، جزیٹر کا میکانی رفتار P=20

اب یہ فیصلہ کس طرح کیا جائے کہ جزیر کے قطب کتنے رکھے جائیں۔ در حقیقت پانی سے چلنے والے جزیر سست رفتار جبکہ ٹربائن سے چلنے والے جزیر تیزر فلار ہوتے ہیں، للذا پانی سے چلنے والے جزیر نریدہ قطب رکھتے ہیں جبکہ ٹربائن سے چلنے والے جزیر عموماً دو قطب کے ہوتے ہیں۔

a شکل 5.8 میں دو قطب تین دوری معاصر مشین دکھایا گیا ہے۔اس میں تین ساکن کچھے ہیں۔ان میں ایک کچھا a جو قالب میں شکاف a اور a میں رکھا گیا ہے۔ اگر اس شکل میں باقی دو کچھے نہ ہوتے تب یہ بالکل شکل a میں دیا گیا مشین ہی تھا۔البتہ دیے گئے شکل میں ایک کی بجائے تین ساکن کچھے ہیں۔

لچھے کا رخ درج ذیل طریقہ سے تعین کیا جاتا ہے۔

rpm, rounds per minute¹⁸

شكل 5.9: دوقطب تين دوري مشين ـ

• دائیں ہاتھ کی چار انگلیوں کو دونوں شافوں میں برقی رو کے رخ کیپیٹیں۔ دائیں ہاتھ کا انگوٹھا کچھے کا رخ دے گا

شکل 5.8 میں کچھا a کا برتی رو شگاف a میں، کتاب کے صفحہ کو عمودی، باہر رخ جبکہ a' میں اس کے مخالف اندر رخ تصور کرتے ہوئے کچھا a کا رخ تیر دار لکیر سے دکھایا گیا ہے۔ اس رخ کو ہم صفر زاویہ تصور کرتے ہیں۔ یوں کچھا a صفر زاویہ پر لپیٹا گیا ہے، لیعنی a a ہے۔ باتی کچھوں کے زاویات کچھا a کے رخ سے، گھڑی کے مخالف رُخ نایے جاتے ہیں۔

شکل 5.9 میں دکھائے گئے لمحہ t_1 پر اگر کچھے a کا ارتباط بہاو $\lambda_a(t_1)$ ہو تو جب مقناطیس $\lambda_a(t_1)$ کا زاویہ طے کر $\lambda_a(t_1)$ ہو گا۔ ہم دیکھتے ہیں کہ لمحہ $\lambda_b(t_2)$ ہو گا ارتباط بہاو $\lambda_b(t_2)$ ہو گا۔ ہم دیکھتے ہیں کہ لمحہ $\lambda_b(t_2)$ مقناطیس اور لجھا $\lambda_b(t_2)$ ہو گا جتنا لمحہ $\lambda_b(t_2)$ ہو گا جتنا لمحہ کے ساتھ ہو گا ہ

$$\lambda_b(t_2) = \lambda_a(t_1)$$

اسی طرح اگر مقناطیس مزید °120 زاویہ طے کرے تو اس لمحہ t_3 پر لچھا c کا ارتباط بہاو (t_3) ہو گا اور مزید ہیہ کہ بیہ کہ کے برابر ہو گا۔ یوں

$$\lambda_c(t_3) = \lambda_b(t_2) = \lambda_a(t_1)$$

. 5. معاصر مثين 5. معاصر مثين

شكل5.10: چار قطب، تين دوري معاصر مشين ـ

ہیں۔ان کمحات پر ان کیھوں میں

(5.11)
$$e_a(t_1) = \frac{\mathrm{d}\lambda_a(t_1)}{\mathrm{d}t}$$

(5.12)
$$e_b(t_2) = \frac{\mathrm{d}\lambda_b(t_2)}{\mathrm{d}t}$$

$$(5.13) e_c(t_3) = \frac{\mathrm{d}\lambda_c(t_3)}{\mathrm{d}t}$$

ہوں گے۔مساوات 5.10 کی روشنی میں

(5.14)
$$e_a(t_1) = e_b(t_2) = e_c(t_3)$$

اگرشکل 5.9 میں صرف لچھا a پایا جاتا تو یہ بالکل شکل 5.1 کی طرح ہوتا اور اب اگر اس میں مقناطیس کو گھڑی کی اُلٹی سمت ایک مقررہ رفتار a سے گھمایا جاتا تو، جیسے پہلے تذکرہ کیا گیا ہے، کچھے a میں سائن نما برقی دباو پیدا ہوتی۔ شکل 5.9 میں کسی ایک کچھے کو کسی دوسرے کچھے پر کوئی برتری حاصل نہیں۔ للذا اب شکل 5.9 میں اگر مقناطیس اسی طرح گھمایا جائے تو اس میں موجود تینوں سائن کچھوں میں سائن نما برقی دباو پیدا ہو گی البتہ مساوات a مقناطیس اسی طرح گھمایا جائے تو اس میں موجود تینوں سائن کچھوں میں سائن نما برقی دباو پیدا ہو گی البتہ مساوات a کے تحت بیہ برقی دباو آپس میں a 120° کے زاویہ پر ہوں گے۔

شکل 5.10 میں چار قطب، تین دوری معاصر مشین دکھایا گیا ہے۔ گھومتے تھے پر شال اور جنوبی قطب باری باری پائے جاتے ہیں۔ یوں شال اور جنوب قطب کی ایک جوڑی °180 میکانی زاویہ طے کرتے ہیں۔ یہی °360 برتی زاویہ بنتا ہے۔ جبیبا شکل 5.8 سے ظاہر ہے کہ ساکن تھے کے °360 برتی زاویہ پر تمین دوری کچھے نسب کئے جاتے ہیں۔ شکل 5.10 سے گل 5.8 میں گھری کی الٹی سمت میں م، ن، ن، ن، ن، ن دور کا ای ترتیب سے پائے جاتے ہیں۔ شکل 5.10 میں دو قطبین کے احاطے یعنی °180 میکانی زاویہ میں آپ کو بالکل ای طرح تین دور کے 41 م'ن نام، نام، '10، '10، '10 نظر آتے ہیں۔ بقایا دو قطبین کے احاطے میں بھی بالکل ای طرح آپ کو 22، '22، نوکر '22 نظر کے اور '22 نظر آتے ہیں۔ بقایا دو قطبین کے احاطے میں بھی بالکل ای طرح آپ کو 23، '25، 20، دوری دوری دورکی اور کے ماسلہ وار یا متوازی جوڑ کر تین دوری برتی دباو حاصل کی جاتی ہے۔ شکل میں انہیں متوازی جوڑ کر دکھایا گیا ہے جہاں مے کہے کو صفر زاویہ پر تصور کیا گیا ہے۔

5.3 محرک برقی د باو

قانونِ لوریز 19 کے تحت اگر برقی بار 20 مقاطیسی میدان B میں سمتی رفتار v سے حرکت کر رہا ہو تو اس پر قوت F اثر کرے گی جہاں

$$(5.15) F = q(\boldsymbol{v} \times \boldsymbol{B})$$

کے برابر ہے۔

یہاں سمتی رفتار سے مراد برقی بارکی سمتی رفتار ہے للذا مقناطیسی میدان کو ساکن تصور کر کے اس میں برقی بار کی سمتی رفتار ن ہو گی۔

اس قوت کی سمت دائیں ہاتھ کے قانون سے معلوم کی جاتی ہے۔اگریہ برقی بار شروع کے نقطہ سے آخری نقطہ تک سمتی فاصلہ 1 طے کرے قواس پر W کام ہو گا جہاں

$$(5.16) W = \mathbf{F} \cdot \mathbf{l} = q(\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

 $\begin{array}{c} {\rm Lorentz~law^{19}} \\ {\rm charge^{20}} \end{array}$

5.3. محسر كب بر قي دباو

شكل 5.11: ابك چكر كالجھامقناطيسي ميدان ميں گھوم رہاہے۔

اکائی مثبت برقی بار کو ایک نقطہ سے دوسرے نقطہ منتقل کرنے کے لئے درکار کام کو ان دو نقطوں کے مابین برقھ دباو²¹ کہتے ہیں اور اس کی اکائی وولھے ²² ک ہے۔ یوں اس مساوات سے ان دو نقطوں کے مابین حاصل برقی دباو

(5.17)
$$e = \frac{W}{q} = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

وولٹ ہو گی۔

اس طرح حرکت کی مدد سے حاصل برتی دباو کو محرکے برتی دباو²³ کہتے ہیں۔ روایتی طور پر کسی بھی طریقہ سے حاصل برتی دباو کھ کے ہیں۔ یوں کیمیائی برتی سیل وغیرہ کی برتی دباو کھی محرک برتی دباو کہلاتی ہے۔

اس مساوات کو شکل 5.11 میں استعال کرتے ہیں۔ گھومتے حصہ پر ایک چکر کا لچھا نسب ہے۔ بائیں جانب خلاء میں کچھے کی برقی تار پر غور کریں۔ مساوات 5.15 کے تحت اس تار میں موجود مثبت برقی بار پر صفحہ کی عمودی سمت میں باہر کی جانب قوت اثر انداز ہو گی اور اس میں موجود منفی برقی بار پر اس کی اُلٹ سمت قوت عمل کرے گی۔ اس طرح مساوات 5.17 کے تحت صفحہ سے باہر جانب برقی تار کا سرا برقی دباو e کا مثبت سرا ہو گا اور صفحہ کی اندر جانب برقی تار کا سرا برقی دباو e کا مثبت سرا ہو گا اور صفحہ کی اندر جانب برقی تار کا سرا برقی دباو e کا منفی سرا ہو گا۔

اگر گھومتے حصہ کی محور پر نکلی محدد قائم کی جائے تو جنوبی مقناطیسی قطب کے سامنے خلاء میں B رداس کی سمت میں ہے جبکہ شالی مقناطیسی قطب کے سامنے خلاء میں B رداس کی اُلٹ سمت میں ہے۔یوں جنوبی قطب کے سامنے شگاف میں برتی تار b کے لئے ہم لکھ سکتے ہیں

$$egin{aligned} oldsymbol{v}_S &= v oldsymbol{a}_{ heta} = \omega r oldsymbol{a}_{ heta} \ oldsymbol{B}_S &= B oldsymbol{a}_{ ext{T}} \ oldsymbol{l}_S &= l oldsymbol{a}_{ ext{Z}} \end{aligned}$$

potential difference, voltage 21 volt 22 electromotive force, emf 23

للذا اس جانب لحصے کی ایک تار میں پیدا محرک برقی دباو

(5.19)
$$e = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

$$= \omega r B l(\mathbf{a}_{\theta} \times \mathbf{a}_{r}) \cdot \mathbf{a}_{z}$$

$$= \omega r B l(-\mathbf{a}_{z}) \cdot \mathbf{a}_{z}$$

$$= -\omega r B l$$

ہو گی۔

جنوبی مقناطیسی قطب کے سامنے شگاف میں برقی تارکی لمبائی کی سمت a_z کی گئی ہے۔اس مساوات میں برقی دباو کے منفی ہونے کا مطلب ہے کہ برقی تارکا مثبت سرا a_z کی سمت میں ہے لینی اس کا نجلا سرا مثبت اور اوپر والا سرا منفی ہے۔ یوں اگر اس برقی تارمیں برقی روگزر سکے تو اس کی سمت a_z لینی صفحہ کی عمودی سمت میں اندرکی جانب ہوگی جے شگاف میں دائرہ کے اندر صلیبی نشان سے ظاہر کیا گیا ہے۔

اسی طرح شالی مقناطیسی قطب کے سامنے شگاف میں موجود برقی تار کے لئے ہم لکھ سکتے ہیں

$$egin{aligned} oldsymbol{v}_N &= v oldsymbol{a}_{ heta} &= \omega r oldsymbol{a}_{ heta} \ oldsymbol{B}_N &= -B oldsymbol{a}_{ ext{r}} \ oldsymbol{l}_N &= l oldsymbol{a}_{ ext{z}} \end{aligned}$$

اور لول

(5.21)
$$e_{N} = (\mathbf{v}_{N} \times \mathbf{B}_{N}) \cdot \mathbf{l}_{N}$$

$$= -\omega r B l (\mathbf{a}_{\theta} \times \mathbf{a}_{r}) \cdot \mathbf{a}_{z}$$

$$= -\omega r B l (-\mathbf{a}_{z}) \cdot \mathbf{a}_{z}$$

$$= \omega r B l$$

شالی مقناطیسی قطب کے سامنے شگاف میں برقی تارکی لمبائی کی سمت a_z لی گئی ہے۔اس مساوات میں برقی دباو کے مثبت ہونے کا مطلب ہے کہ برقی تارکا مثبت سرا a_z کی سمت میں ہے بعنی اس کا اوپر والا سرا مثبت اور نجلا سرا مثنی ہے۔یوں اگر اس برقی تار میں برقی روگزر سکے تو اس کی سمت a_z یعنی صفحہ کی عمودی سمت میں باہر کی جانب ہوگی جے شگاف میں دائرہ کے اندر نقطہ کے نشان سے دکھایا گیا ہے۔

یہ دو برقی تار مل کر ایک چکر کا لچھا بناتے ہیں۔ ان دونوں کے نچلے سرے سلسلہ وار جڑے ہیں جو شکل میں نہیں دکھایا گیا۔یوں اس کچھے کے اوپر نظر آنے والے سروں پر کل برقی دباو e ان دو برقی تاروں میں پیدا برقی دباو

كالمجموعه هو گاليتني

$$(5.22) e = 2rlB\omega = AB\omega$$

یہاں کچھے کا رقبہ N ہوتی ہے تو N کھے کا رقبہ N ہوتی ہے تو N کھے سے اتنی برقی دباہ حاصل ہوتی ہے تو N

(5.23)
$$e = \omega NAB$$
$$= 2\pi f NAB$$
$$= 2\pi f N\phi$$

حاصل ہو گا۔

گومتی آلوں میں خلائی درز میں B اور v ہر لمحہ عمودی ہوتے ہیں۔ مساوات 5.17 سے ظاہر ہے کہ اگر گھومنے کی رفتار اور محوری لمبائی معین ہوں تو پیدا کردہ برقی دباو ہر لمحہ B کے براہِ راست متناسب ہو گا۔للذا اگر خلائی درز میں زاویہ کے ساتھ تبدیل ہو گا۔یوں جس شکل میں زاویہ کے ساتھ تبدیل ہو گا۔یوں جس شکل کی برقی دباو خلائی درز میں پیدا کرنی ہو گی۔اگر سائن نما برقی دباو پیدا کرنی مقصد ہو تو خلائی درز میں محیط پر سائن نما کشافتِ مقناطیسی بہاو ضروری ہے۔

ا گلے جھے میں خلائی درز میں ضرورت کے تحت B پیدا کرنے کی ترکیب بتلائی جائے گی۔

5.4 تھیلے کچھے اور سائن نمامقناطیسی دیاو

ہم نے اب تک جتنے مثین دیکھے ان سب میں گچھ ²⁴ کچھے دکھائے گئے۔ مزید یہ کہ ان آلوں میں گھومتے تھے پہ موجود مقناطیس کے ابھرے قطبے ²⁵ تھے۔ در حقیقت آلوں کے عموماً ہموار قطبے ²⁶ ہوتے ہیں اور ان میں پھیلے کچھ ²⁷ پائے جاتے ہیں۔ ایسا کرنے سے ہم ساکن اور گھومتے حصوں کے در میان خلائی درز میں سائن نما مقناطیسی دباو اور سائن نما کثافتِ مقناطیسی بہاو پیدا کر سکتے ہیں۔

non-distributed coils²⁴ salient poles²⁵

non-salient poles²⁶

distributed winding²⁷

شکل 5.12: ساکن لچھا گچھ کی شکل میں ہے۔

شكل 5.13 : يجم لجھے كى خلائى در زميں مقناطيسى دباو۔

شکل 5.12 میں ایک لچھا گیچھ کی شکل کا دکھایا گیا ہے۔اس کے گھومنے والا حصہ گول شکل کا ہے اور اس کا $\mu_r \to \infty$ کی سیانی کی $\mu_r \to \infty$ کے کا مقناطیسی دباو π ہے۔ π مقناطیسی دباو π ہے۔ π مقناطیسی دباو π کی کیر ول سے ظاہر کیا گیا ہے۔ مقناطیسی بہاو کو کچھے کے گرد ایک چکر کا شخنطی کی درز میں سے دو مرتبہ گزرنا پڑتا ہے۔ لہذا

$$\tau = Ni = 2Hl_a$$

یوں ساکن کچھے کا آدھا مقناطیسی دباو ایک خلائی درز اور آدھا دوسرے خلائی درز میں مقناطیسی بہاو پیدا کرتا ہے۔ مزید یہ کہ خلائی درز میں کہیں پہ مقناطیسی دباو (اور مقناطیسی بہاو)، رداس²⁸ کی ست میں ہیں اور کہیں پہ خلائی درز

 $radius^{28}$

میں مقناطیسی د باو (اور مقناطیسی بہاو)، رواس کی اُلٹی سمت میں ہیں۔ اگر ہم رواس کی سمت کو مثبت لیں تو مقناطیسی بہاو (اور مقناطیسی د باو) و $\frac{\pi}{2} < \theta < \frac{\pi}{2} < \theta < \frac{\pi}{2}$ در میان رواس ہی کی سمت میں ہیں لہذا یہاں ہے مثبت ہیں جبکہ بتی جبکہ مقناطیسی د باو (اور مقناطیسی بہاو) رواس کی اُلٹ سمت میں ہیں لہذا یہاں ہے منفی ہیں۔ ایسا ہی شکل 5.13 میں و کھایا گیا ہے۔ اس شکل میں خلائی ورز میں مقناطیسی د باو کو زاویہ کے ساتھ ترسیم کیا گیا ہے۔ $\frac{\pi}{2} < \theta < \frac{\pi}{2} < \theta < \frac{\pi}{2}$ کہ در میان خلائی ورز میں مقناطیسی د باو کھے کے مقناطیسی د باو τ کا آدھا ہے اور اس کی سمت مثنی سمت منفی ہے۔ یاد رہے کہ مقناطیسی د باو کی سمت کیا جاتا ہے۔ $\frac{\pi}{2} < \theta < \frac{\pi}{2}$

5.4.1 بدلتی رووالے مثین

برلتی رو (اے سی) مشین بناتے وقت یہ کوشش کی جاتی ہے کہ خلائی درز میں مقناطیسی دباو سائن نما ہو۔اییا کرنے کی خاطر کچھوں کو ایک سے زیادہ شگافوں میں تقسیم کیا جاتا ہے۔ اس سے سائن نما مقناطیسی دباو کیسے حاصل ہوتی ہے، اس بات کی یہاں وضاحت کی جائے گی۔

$$f(\theta_p)$$
 کو یوں لکھ سکتے ہیں۔ $f(\theta_p)$ کا گھو سکتے ہیں۔ $f(\theta_p) = \sum_{n=0}^{\infty} (a_n \cos n\theta_p + b_n \sin n\theta_p)$

اگر اس تفاعل کا دوری عرصه T^{31} ہوتت

(5.26)
$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(\theta_p) d\theta_p$$
$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\theta_p) \cos n\theta_p d\theta_p$$
$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\theta_p) \sin n\theta_p d\theta_p$$

Fourier series²⁹ function³⁰ time period³¹

کے برابر ہول گے۔

مثال 5.2: شکل 5.13 میں دیئے گئے مقناطیسی دباو کا

- فوريئر تشلسل حاصل كريں۔
- تيسري موسيقائي جز³² اور بنيادي جز³³ کي نسبت معلوم کريں۔

ىل:

• مباوات 5.26 کی مدد سے

$$a_{0} = \frac{1}{2\pi} \left[\int_{-\pi}^{-\pi/2} \left(-\frac{Ni}{2} \right) d\theta_{p} + \int_{-\pi/2}^{\pi/2} \left(\frac{Ni}{2} \right) d\theta_{p} + \int_{\pi/2}^{\pi} \left(-\frac{Ni}{2} \right) d\theta_{p} \right]$$

$$= \frac{1}{2\pi} \left[\left(-\frac{Ni}{2} \right) \left(-\frac{\pi}{2} + \pi \right) + \left(\frac{Ni}{2} \right) \left(\frac{\pi}{2} + \frac{\pi}{2} \right) + \left(-\frac{Ni}{2} \right) \left(\pi - \frac{\pi}{2} \right) \right]$$

$$= 0$$

اسی طرح

$$a_n = \frac{2}{2\pi} \frac{Ni}{2} \left[\int_{-\pi}^{-\pi/2} -\cos n\theta_p \, d\theta_p + \int_{-\pi/2}^{\pi/2} \cos n\theta_p \, d\theta_p + \int_{\pi/2}^{\pi} -\cos n\theta_p \, d\theta_p \right]$$

$$= \frac{Ni}{2\pi} \left[-\frac{\sin n\theta_p}{n} \Big|_{-\pi}^{-\pi/2} + \frac{\sin n\theta_p}{n} \Big|_{-\pi/2}^{\pi/2} - \frac{\sin n\theta_p}{n} \Big|_{\pi/2}^{\pi} \right]$$

$$= \frac{Ni}{2n\pi} \left[\sin \frac{n\pi}{2} + 2\sin \frac{n\pi}{2} + \sin \frac{n\pi}{2} \right]$$

$$= \left(\frac{4}{n\pi} \right) \left(\frac{Ni}{2} \right) \sin \frac{n\pi}{2}$$

third harmonic component³² fundamental component³³

اس مساوات میں
$$n$$
 کی قیمت ایک، دو، تین وغیرہ کے لئے ماتا ہے

$$a_1 = \left(\frac{4}{\pi}\right) \left(\frac{Ni}{2}\right), \quad a_3 = -\left(\frac{4}{3\pi}\right) \left(\frac{Ni}{2}\right), \quad a_5 = \left(\frac{4}{5\pi}\right) \left(\frac{Ni}{2}\right)$$

$$a_2 = a_4 = a_6 = 0$$

اسی طرح

$$b_n = \frac{2}{2\pi} \frac{Ni}{2} \left[\int_{-\pi}^{-\pi/2} -\sin n\theta_p \, d\theta_p + \int_{-\pi/2}^{\pi/2} \sin n\theta_p \, d\theta_p + \int_{\pi/2}^{\pi} -\sin n\theta_p \, d\theta_p \right]$$
$$= \frac{Ni}{2\pi} \left[\frac{\cos n\theta_p}{n} \Big|_{-\pi}^{-\pi/2} - \frac{\cos n\theta_p}{n} \Big|_{-\pi/2}^{\pi/2} + \frac{\cos n\theta_p}{n} \Big|_{\pi/2}^{\pi} \right]$$
$$= 0$$

• ان جوابات سے

$$\left| \frac{a_3}{a_1} \right| = \frac{\left(\frac{4}{3\pi}\right) \left(\frac{Ni}{2}\right)}{\left(\frac{4}{\pi}\right) \left(\frac{Ni}{2}\right)} = \frac{1}{3}$$

حاصل ہوتا ہے۔للذا تیسری موسیقائی جزو بنیادی جزو کے تیسرے جھے یعنی 33.33 فی صد کے برابر ہے۔

مثال 5.2 میں حاصل کئے گئے a_1, a_2, \cdots استعال کرتے ہوئے ہم خلائی درز میں مقناطیسی دباو τ کا فوریئر سلسل ہوں کھھ سکتے ہیں۔

(5.27)
$$\tau_a = \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p - \frac{4}{3\pi} \frac{Ni}{2} \cos 3\theta_p + \frac{4}{5\pi} \frac{Ni}{2} \cos 5\theta_p + \cdots$$

مثال 5.2 سے ظاہر ہے کہ مقناطیسی دباو کے موسیقائی اجزاء کی قیمتیں اتنی کم نہیں کہ انہیں رد کیا جا سکے۔جیسا آپ اس باب میں آگے دیکھیں گے کہ حقیقت میں استعال ہونے والے مقناطیسی دباو میں موسیقائی اجزاء قابل نظر انداز ہوں گے اور ہمیں صرف بنیادی جزو سے غرض ہو گا۔ای حقیقت کو مد نظر رکھتے ہوئے ہم تسلسل کے موسیقائی اجزاء کو نظر انداز کرتے ہوئے ای مساوات کو یوں لکھتے ہیں۔

(5.28)
$$\tau_a = \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p = \tau_0 \cos \theta_p$$

جہاں

$$\tau_0 = \frac{4}{\pi} \frac{Ni}{2}$$

ے برابر ہے۔ اس مساوات سے ہم دیکھتے ہیں کہ شکل 5.12 میں کچھے سے حاصل مقناطیسی دباو بالکل اسی طرح ہے جیسے شکل 5.2 میں سلاخ نما مقناطیس صفر زاویہ پر رکھے حالت میں دیتا۔ اگر یہاں یہ لچھا کسی ایسے زاویہ پر رکھا گیا ہوتا کہ اس سے حاصل مقناطیسی دباو زاویہ θ_m پر زیادہ سے زیادہ ہوتا تو یہ بالکل شکل 5.3 میں موجود مقناطیس کی طرح کا ہوتا۔ شکل 5.18 ایک ہی مثال ہے۔ ہم بالکل مساوات 5.62 کی طرح اس شکل میں لچھا a کے لئے لکھ سکتے ہیں۔

(5.30)
$$\begin{aligned} \tau_a &= \tau_0 \cos \theta_{p_a} \\ \theta_{p_a} &= \theta - \theta_{m_a} = \theta - 0^{\circ} \\ \tau_a &= \tau_0 \cos(\theta - \theta_m) = \tau_0 \cos \theta \end{aligned}$$

اسی طرح کیجھا b اور c کے چونکہ $\theta_{m_b}=120^\circ$ اور $\theta_{m_b}=120^\circ$ ابدا ان کے لئے ہم لکھ سکتے ہیں۔

(5.31)
$$\begin{aligned} \tau_b &= \tau_0 \cos \theta_{p_b} \\ \theta_{p_b} &= \theta - \theta_{m_b} = \theta - 120^{\circ} \\ \tau_b &= \tau_0 \cos(\theta - \theta_{m_b}) = \tau_0 \cos(\theta - 120^{\circ}) \end{aligned}$$

(5.32)
$$\begin{aligned} \tau_c &= \tau_0 \cos \theta_{p_c} \\ \theta_{p_c} &= \theta - \theta_{m_c} = \theta - 240^{\circ} \\ \tau_c &= \tau_0 \cos(\theta - \theta_{m_c}) = \tau_0 \cos(\theta - 240^{\circ}) \end{aligned}$$

ا گرچہ ظاہری طور پر خلائی درز میں مقناطیسی دباو سائن نما ہر گر نہیں لگتا لیکن مساوات 5.27 ہمیں بتلاتی ہے کہ یہ محض آئکھوں کا دھوکہ ہے۔ اس مقناطیسی دباو کا بیشتر حصہ سائن نما ہی ہے۔ اب اگر ہم کسی طرح مساوات 5.27 میں پہلے رکن کے علاوہ باقی سب رکن کو صفر کر سکیں تو ہم بالکل سائن نما مقناطیسی دباو حاصل کر سکتے ہیں۔

شکل 5.14 میں تقسیم شدہ کچھا دکھایا گیا ہے۔ یہاں شکل 5.12 میں دکھائے گئے N چکر کے کچھے کو تین چھوٹے کیساں کچھوں میں تقسیم کیا گیا ہے۔ المذا ان میں ہر چھوٹا کچھا $\frac{N}{3}$ چکر کا ہے۔ ایسے چھوٹے کچھوں کو سلسلہ وار جوڑا 34 جاتا ہے اور یوں ان میں کیسال برقی رو i گرزے گی۔ ان تین کچھوں کو تین مختلف شگافوں میں رکھا گیا

شكل 5.14: كيميلا ليجها_

شكل 5.15: تھيلے کچھے كاكل مقناطيسى دباو۔

ہے۔ پہلے کچھے کو شگاف a_{45} اور a_{45}' میں رکھا گیا ہے۔ دوسرے کچھے کو شگاف a_{90} اور a_{90}' میں اور تیسرے کچھے کو شگاف a_{135} اور a_{135}' میں رکھا گیا ہے۔

شگافوں کے ایک جوڑے کو ایک ہی طرح کے نام دیئے گئے ہیں، البتہ ایک شگاف کو a اور دوسرے کو a نام دیا گیا ہے۔ یوں شگافوں کا پہلے جوڑا a_{45} اور a_{45} اور a_{45} ہے۔ a شگافوں کے نام ان کے زاویوں کی نسبت سے رکھے گئے ہیں۔ الہذا شگاف a_{45} ورحقیقت a_{45} زاویہ پر ہے، شگاف a_{90} نوے درجہ زاویہ پر ہے۔ درجہ زاویہ پر ہے۔ درجہ زاویہ پر ہے۔

چو نکہ ہر کچھا $\frac{N}{8}$ چکر کا ہے اور ان سب میں یکسال برقی روi ہے، للذا شکل 5.14 میں دیئے گئے تھیلے کچھے سے حاصل مقناطیسی دباو کا زاویہ کے ساتھ ترسیم شکل 5.15 کے نچلے ترسیم کی طرح ہو گا۔ اس شکل میں سب سے اُوپر کچھا کھی دباو کا ترسیم ہے۔ یہ بالکل شکل 5.15 میں دیئے ترسیم کی طرح ہے البتہ یہ صفر زاویہ سے -45 میں دیئے ترسیم کی طرح ہے جبکہ اس سے پنچے کچھا a_{135} کا ہے جو ہو بہو شکل کی طرح ہے جبکہ اس سے پنچے کچھا a_{135} کا ترسیم ہے جو صفر زاویہ سے -45 ہے۔ اُن تینوں ترسیم سے جو صفر زاویہ سے -45 ہے۔ اُن تینوں ترسیمات میں طول -10 ہے۔

ان تینوں ترسیمات سے کل مقاطیسی دباو کا ترسیم یوں حاصل ہوتا ہے۔اس شکل میں عمودی نقطہ دار کیبریں لگائی گئی ہیں۔ بائیں جانب پہلی کلیر کی بائیں طرف علاقے کو الف کہا گیا ہے۔اس علاقے میں پہلے تینوں ترسیمات کی مقدار $\frac{N_i}{6}$ ہے لہٰذا ان کا مجموعہ $\frac{N_i}{2}$ ہو گا۔ یہی سب سے نچلے کل مقناطیسی دباو کی ترسیم میں دکھایا گیا ہے۔ اس طرح $\frac{N_i}{6}$ ہو عدار $\frac{N_i}{6}$ ہو دوسری ترسیم کی مقدار $\frac{N_i}{6}$ ہو دوسری ترسیم کی $\frac{N_i}{6}$ ہو اور تیسری کی بھی $\frac{N_i}{6}$ ہے۔ ان کا مجموعہ $\frac{N_i}{6}$ ہیں جن کا مجموعہ $\frac{N_i}{6}$ ہی کل مقاطیسی دباو ہے۔علاقہ ج میں دکھایا گیا ہے۔ اس طرح آپ پورا ترسیم تھینج سکتے ہیں۔ مقاطیسی دباو ہے جو سب سے نچلے ترسیم میں دکھایا گیا ہے۔ اس طرح آپ پورا ترسیم تھینج سکتے ہیں۔

شكل 5.15 كے نچلے ترسيم كو شكل 5.16 ميں دوبارہ و كھايا گيا ہے۔

شکل 5.16 کا اگر شکل 5.15 کے ساتھ نقابل کیا جائے تو محض دیکھنے سے بھی یہ ظاہر ہے کہ شکل 5.16 زیادہ سائن نما موج کے نوعیت کا ہے۔ ہمیں فور بیرُ تسلسل حل کرنے سے بھی یہی نتیجہ ملتا ہے۔ ہم دیکھ سکتے ہیں کہ شکافوں کی جگہ اور ان میں کچھوں کے چکر کو یوں رکھا جا سکتا ہے کہ ان سے پیدا کردہ مقناطیسی دباو سائن نما کے زیادہ قریب ہو۔

series connected³⁴

شكل 5.16: تھلے لیھے كامقناطیسی د باو۔

شكل 5.17: تھيلے لچھے كاجزو پھيلاو۔

چونکہ کھیلے کچھ کے مختلف محے ایک ہی زاویہ پہ مقناطیسی دباو نہیں بناتے للذا ان سے حاصل کل مقناطیسی دباو کا حیطہ ایک کچھ کچھ کے حیطہ سے قدر کم ہوتا ہے۔اس اثر کو مساوات 5.29 میں جزو k_w کے ذریعہ یوں ظاہر کیا جاتا ہے۔

(5.33)
$$\tau_0 = k_w \frac{4}{\pi} \frac{Ni}{2}$$

$$\tau_a = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$\tilde{\kappa}_w = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

مثال 5.3: شکل 5.14 میں دیئے گئے تھیلے کچھے کے لئے k_w معلوم کریں۔

winding factor 35

حل: شکل 5.17 سے رجوع کریں۔ یہ تین چھوٹے کچھ برابر مقناطیسی دباو $\frac{4}{\pi} \frac{ni}{2}$ پیدا کرتے ہیں، البتہ ان کی سمتیں مختلف ہیں۔ یہاں چونکہ ایک کچھا $\frac{N}{3}$ چکر کا ہے لہذا $\frac{N}{3}$ ہے۔ ہم ان سمتیوں کو جمع کر کے ان کا مجموعی مقناطیسی دباو au معلوم کرتے ہیں۔

$$\tau_a = \tau_n \cos 45^\circ + \tau_n + \tau_n \cos 45^\circ$$
$$= 2.4142\tau_n$$

لعتني

$$\tau_a = 2.4142 \frac{4}{\pi} \frac{ni}{2} = \frac{2.4142}{3} \frac{4}{\pi} \frac{Ni}{2} = 0.8047 \frac{4}{\pi} \frac{Ni}{2}$$

للذا 0.8047 کے برابر ہے۔

مثال 5.4: تین دوری 50 ہر ٹڑ پر چلنے والا ستارہ نما جڑے جزیٹر کو 3000 چکر فی منٹ کی رفتار سے چلایا جا رہا $k_{w,q}=0.833$ ہیں۔ تیس چکر کے میدانی کچھے کا جزو بھیلاو 0.9 $k_{w,m}=0.9$ جبکہ پندرہ چکر قوی کچھے کا جزو بھیلاو 0.7495 ہیں۔ شین کا رداس 0.7495 میٹر اور اس کی لمبائی $l_k=0.04$ میٹر ہیں۔ خلائی درز $l_k=0.04$ میٹر ہے۔اگر اس کے میدانی کچھے میں 1000 ایمپیئر برقی رو ہے تو معلوم کریں

- میدانی مقناطیسی دباو کی زیادہ سے زیادہ مقدار۔
 - خلائی درز میں کثافتِ مقناطیسی بہاو۔
 - ایک قطب پر مقناطیسی بہاو۔
 - محرک تار پر برقی د باو۔

حل:

 $\tau_0 = k_{w,m} \frac{4}{\pi} \frac{N_m i_m}{2} = 0.9 \times \frac{4}{\pi} \times \frac{30 \times 1000}{2} = 17\,186\,\text{A} \cdot \text{turns/m}$

$$B_0 = \mu_0 H_0 = \mu_0 \frac{\tau_0}{l_k} = 4\pi 10^{-7} \times \frac{17186}{0.04} = 0.54 \,\mathrm{T}$$

 $\phi_0 = 2B_0 lr = 2 \times 0.54 \times 2.828 \times 0.7495 = 2.28915 \text{ Wb}$

$$E_{rms} = 4.44 f k_{w,q} N_q \phi_0$$

= 4.44 × 50 × 0.833 × 15 × 2.28915
= 6349.85 V

للذا ساره جڑی جزیٹر کی تار کی برقی دباو

 $\sqrt{3} \times 6349.85 \approx 11000 \,\text{V}$

٦ - ا

جیسا پہلے ذکر ہوا ہم چاہتے ہیں کہ سائن نما مقناطیسی دباو حاصل کر سکیں۔ چھوٹے کچھوں کے چکر اور شگافوں کی جگہ یوں چنے جاتے ہیں کہ یہ بنیادی مقصد پورا ہو۔ شکل 5.16 میں ہم دیکھتے ہیں کہ صفر زاویہ کی دونوں جانب مقناطیسی دباو کی موج کیساں طور پر گھٹی یا بڑھتی ہے۔ یعنی جمع اور منفی پینتالیس زاویہ پر مقناطیسی دباو $\frac{N}{3}$ گھٹ جاتی ہے۔ اس طرح جمع اور منفی نوے زاویہ پر یہ کیسال طور پر مزید گھٹی ہے، وغیرہ وغیرہ۔ یہ ایک بنیادی اصول ہے جس کا خیال رکھنا ضروری ہے۔

چھوٹے لیجھوں کے چکر اور شگافوں کی جگہوں کا فیصلہ فوریئر تسلسل کی مدد سے کیا جاتا ہے۔فوریئر تسلسل میں موسیقائی جزو کم سے کم اور اس میں بنیادی جزو زیادہ سے زیادہ رکھے جاتے ہیں۔

ساکن کچھوں کی طرح حرکت کرتے کچھوں کو بھی ایک سے زیادہ چھوٹے کچھوں میں تقسیم کیا جاتا ہے تا کہ سائن نما مقناطیسی دباو حاصل ہو۔

5.5 مقناطیسی د باو کی گھومتی موجیں

گومتے آلوں میں لچھوں کو برقی دباو دیا جاتا ہے جس سے اس کا گھومنے والا حصہ حرکت میں آتا ہے۔ یہاں ہم اس بات کا مطالعہ کرتے ہیں کہ یہ گھومنے کی حرکت کیسے پیدا ہوتی ہے۔

5.5.1 يك دوري كي ليني مشين

مساوات 5.33 میں ایک لچھے کی مقناطیسی دباو یوں دی گئی ہے۔

$$\tau_a = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta$$

اگراس لچھے میں مقناطیسی بہاو بھی سائن نما ہو یعنی

$$(5.36) i_a = I_0 \cos \omega t$$

تو

(5.37)
$$\tau_a = k_w \frac{4}{\pi} \frac{NI_0}{2} \cos \theta \cos \omega t = \tau_0 \cos \theta \cos \omega t$$

ہو گا جہاں

(5.38)
$$\tau_0 = k_w \frac{4}{\pi} \frac{NI_0}{2}$$

ے برابر ہے۔ مساوات 5.37 کہتا ہے کہ یہ مقناطیسی دباو زاویہ θ اور لحمہ t کے ساتھ تبدیل ہوتا ہے۔ اس مساوات کو ہم مندرجہ ذیل قلیہ سے دو گلڑوں میں توڑ سکتے ہیں۔

$$\cos \alpha \cos \beta = \frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2}$$

للذا

(5.39)
$$\tau_a = \tau_0 \left[\frac{\cos(\theta + \omega t) + \cos(\theta - \omega t)}{2} \right] = \tau_a^- + \tau_a^+$$

لکھا جا سکتا ہے۔ یوں

$$\tau_a^- = \frac{\tau_0}{2}\cos(\theta + \omega t)$$

(5.41)
$$\tau_a^+ = \frac{\tau_0}{2}\cos(\theta - \omega t)$$

ہیں۔اس مساوات سے یہ بات سامنے آتی ہے کہ در حقیقت یہ مقناطیسی دباو دو اُلٹ سمتوں میں گھومنے والے مقناطیسی دباو کی موجیں ہیں۔ اس کا پہلا جزو au_{-} زاویہ au_{-} گھنے کی جانب گھومتا ہے یعنی گھڑی کی سمت میں اور اس کا دوسرا جزو au_{-} گھڑی کی اُلٹی سمت گھومتا ہے یعنی یہ زاویہ بڑھنے کی جانب گھومتا ہے۔ au_{-}

ایک دورکی لیٹی آلوں میں یہ کوشش کی جاتی ہے کہ ان دو گھومتے متناطیسی دباو میں سے ایک کو بالکل ختم یا کم سے کم کیا جائے۔ اس طرح کرنے سے ایک ہے سمت میں کل مقناطیسی دباو گھومتا ماتا ہے جو بالکل اس طرح کا ہوتا ہے جیسے ایک مقناطیس گھمایا جا رہا ہو۔ تین دوری آلوں میں یہ کرنا نہایت آسان ہوتا ہے للذا انہیں پہلے سمجھ لینا زیادہ بہتر ہوگا۔

5.5.2 تين دور كي لپڻي مشين كاتحليلي تجزيه

شکل 5.18 میں تین دور کی لپٹی مثین دکھائی گئی ہے۔ مساوات 5.30 ، 5.31 اور 5.32 میں ایسے تین کچھوں کی فور بیر تسلسل کی بنیادی جزو دیئے گئے ہیں جو کے یہ ہیں۔

(5.42)
$$\tau_a = k_w \frac{4}{\pi} \frac{N_a i_a}{2} \cos \theta$$
$$\tau_b = k_w \frac{4}{\pi} \frac{N_b i_b}{2} \cos(\theta - 120^\circ)$$
$$\tau_c = k_w \frac{4}{\pi} \frac{N_c i_c}{2} \cos(\theta + 120^\circ)$$

اگر ان تین کچھول میں تین دوری برقی رو ہو یعنی

(5.43)
$$i_a = I_0 \cos(\omega t + \alpha)$$
$$i_b = I_0 \cos(\omega t + \alpha - 120^\circ)$$
$$i_c = I_0 \cos(\omega t + \alpha + 120^\circ)$$

شكل 5.18: تين دوركي لپڻي مشين۔

تو بالكل مساوات 5.47 كى طرح بهم مساوات 5.43 كى مددست مساوات 5.42 كو يول لكھ سكتے ہيں۔

(5.44)
$$\tau_{a} = k_{w} \frac{4}{\pi} \frac{N_{a} I_{0}}{2} \cos \theta \cos(\omega t + \alpha)$$

$$\tau_{b} = k_{w} \frac{4}{\pi} \frac{N_{b} I_{0}}{2} \cos(\theta - 120^{\circ}) \cos(\omega t + \alpha - 120^{\circ})$$

$$\tau_{c} = k_{w} \frac{4}{\pi} \frac{N_{c} I_{0}}{2} \cos(\theta + 120^{\circ}) \cos(\omega t + \alpha + 120^{\circ})$$

اگر

$$N_a = N_b = N_c = N$$

ہو تو انہیں

(5.45)
$$\tau_{a} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha) + \cos(\theta - \omega t - \alpha) \right]$$

$$\tau_{b} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha - 240^{\circ}) + \cos(\theta - \omega t - \alpha) \right]$$

$$\tau_{c} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha + 240^{\circ}) + \cos(\theta - \omega t - \alpha) \right]$$

لکھ سکتے ہیں جہاں

(5.46)
$$\tau_0 = k_w \frac{4}{\pi} \frac{NI_0}{2}$$

ے۔ کل مقناطیسی دباو au ان سب کا مجموعہ ہو گا۔ انہیں جمع کرنے سے پہلے ہم ثابت کرتے ہیں کہ $\cos\gamma + \cos(\gamma - 240^\circ) + \cos(\gamma + 240^\circ) = 0$

کے برابر ہے۔ ہمیں معلوم ہے کہ

 $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$

اگر ہم $lpha=\gamma$ اور $eta=240^\circ$ کیں تو

 $\cos(\gamma + 240^{\circ}) = \cos\gamma\cos 240^{\circ} - \sin\gamma\sin 240^{\circ}$ $\cos(\gamma - 240^{\circ}) = \cos\gamma\cos 240^{\circ} + \sin\gamma\sin 240^{\circ}$

 $\sin 240^\circ = -rac{\sqrt{3}}{2}$ الدُا $\sin 240^\circ = -rac{1}{2}$ البُدُا

 $\cos(\gamma + 240^{\circ}) = -\frac{1}{2}\cos\gamma + \frac{\sqrt{3}}{2}\sin\gamma$ $\cos(\gamma - 240^{\circ}) = -\frac{1}{2}\cos\gamma - \frac{\sqrt{3}}{2}\sin\gamma$

اب اس مساوات کو اگر جم $\gamma \cos \gamma \cos \gamma$ ساتھ جمع کریں تو جواب صفر ملتا ہے، لینی

 $\cos \gamma + \cos(\gamma + 240^{\circ}) + \cos(\gamma - 240^{\circ}) = 0$

ے لئے اس مساوات کو یوں لکھ سکتے ہیں۔ $\gamma= heta+\omega t+lpha$

(5.47) $\cos(\theta + \omega t + \alpha) + \cos(\theta + \omega t + \alpha + 240^{\circ}) + \cos(\theta + \omega t + \alpha - 240^{\circ}) = 0$

اب ہم اگر مساوات 5.45 میں دیے au_b ، au_c اور au_c کو جمع کریں اور ان میں مساوات 5.45 کا استعمال کریں تو ملتا ہے

(5.48)
$$\tau^{+} = \tau_{a} + \tau_{b} + \tau_{c} = \frac{3\tau_{0}}{2}\cos(\theta - \omega t - \alpha)$$

مساوات 5.48 کہتا ہے کہ کل مقاطیسی دباو کا حیطہ کسی ایک کچھے کے مقناطیسی دباو کے حیطہ کے ﴿ گَا ہے۔ مزید سیک کہ سید مقاطیسی دباو کی موج گھڑی کی اُلٹی سمت گھوم رہی ہے۔ للذا تین کچھوں کو °120 زاوبیہ پر رکھنے اور انہیں تین دوری بر قی رو، جو آپس میں °120 پر ہوں، سے ہیجان کرنے سے ایک ہی گھومتی مقناطیسی دباو کی موج وجود میں آتی ہے۔ یباں اس بات کا ذکر کرنا ضروری ہے کہ اگر کوئی دو برقی رو آپس میں تبدیل کئے جائیں تو مقناطیسی موج کے گھومنے کی سمت تبدیل ہو جاتی ہو جاتی میں واضح کیا گیا ہے۔

اب ہم دیکھتے ہیں کہ مساوات 5.48 ایک گھومتے موج کو ظاہر کرتی ہے۔یہ کرنے کے لئے ہمیں اس موج کی چوٹی کو دیکھنا ہو گا۔ہم اپنی آسانی کے لئے α کو صفر لیتے ہیں۔ اس مثال میں ہم برقی رو کی تعدد α کی سے ہیں۔

شکل 5.19: حرکت کرتی موج په

اس موج کی چوٹی در حقیقت $\cos(\theta-\omega t)$ کی چوٹی ہی ہے لہذا ہم اس کی چوٹی کو مد نظر رکھتے ہیں۔ ہمیں معلوم ہے کہ $\cos(\alpha)$ کی نیادہ سے زیادہ مقدار ایک کے برابر ہے لیخی اس کی چوٹی ایک کے برابر ہے اور یہ اس مقام پر پائی جاتی ہمیں $\cos(\alpha)$ کی خوٹی اس مقام پر پائی جاتی ہمیں $\cos(\alpha)$ ہمیں مقام پر پائی جاتی ہو گی جہال $\cos(\alpha)$ مفر کے برابر ہو گی جہال $\cos(\alpha)$ کی چوٹی وہیں ہو گی جہال $\cos(\alpha)$ مفر کے برابر ہو لیخی $\cos(\theta-\omega t)$ کی جوٹی وہیں ہو گی جہال $\cos(\alpha)$ مفر کے برابر ہو لیخی $\cos(\theta-\omega t)$ کے برابر ہو گئی وہیں ہو گی جہال رہ سے اس مقر کے برابر ہو لیکن وہیں ہو گی جہال رہ سے اس مقر کے برابر ہو لیکن وہیں ہو گی جہال رہ سے اس مقر کے برابر ہو لیکن وہیں ہو گی جہال رہ سے برابر ہو لیکن وہیں ہو گی جہال رہ سے اس مقر کے برابر ہو لیکن وہیں ہو گی جہال رہ سے برابر ہو لیکن وہیں ہو گی جہال رہ سے برابر ہو لیکن وہیں ہو گی جہال رہ سے برابر ہو گئی ہو گئ

اب ابتدائی کمحہ لیعنی
$$t=0$$
 پر $t=0$ کی چوٹی $t=0$ کی چوٹی $t=0$ کرتے ہیں۔ $\theta-\omega t=0$ $\theta-\omega t=0$ $\theta-\omega t=0$ $\theta-\omega t=0$ $\theta=0$

ہم دیکھتے ہیں کہ موج کی چوٹی صفر برتی زاویہ پر ہے۔اسے شکل 5.19 میں بلکی سیاہی میں نقطہ داو کلیر سے دکھایا گیا ہے۔ہم اس چوٹی کو کچھ وقفے کے بعد دوبارہ دیکھتے ہیں مثلاً t=0.001 سینڈ کے بعد۔

$$\begin{aligned} \theta - \omega t &= 0 \\ \theta - \omega \times 0.001 &= 0 \\ \theta &= 0.001 \omega = 0.001 \times 2 \times \pi \times 50 = 0.3142 \, \mathrm{rad} \end{aligned}$$

اب یہ چوٹی 0.3142 یا $\frac{\pi}{10}$ برقی ریڈیئن لیعنی 18° کے برقی زاویہ پر ہے۔اسے شکل میں ہلکی سیاہی کے مخوس لکیر سے دکھایا گیا ہے۔یہ بات واضح ہے کہ مقناطیسی دباوکی موج گھڑی کی اُلٹی سمت یعنی زاویہ بڑھنے کی سمت میں گھوم گئی ہے۔ اسی طرح 0.002 یہ یہ چوٹی 36° برقی زاویہ پر نظر آئے گی۔کسی بھی لمحہ t پر بالکل اسی طرح چوٹی کا مقام معلوم کیا جا سکتا ہے جے شکل میں تیز سیاہی کے مخوس لکیر سے دکھایا گیا ہے۔

$$\theta - \omega t' = 0$$
$$\theta = \omega t'$$

اس مساوات سے یہ واضح ہے کہ چوٹی کا مقام متعین کرنے والا زاویہ بتدر کی بڑھتا رہتا ہے۔اس مساوات سے ہم ایک مکمل 2π برتی زاویہ کے چکر کا وقت T حاصل کر سکتے ہیں یعنی

(5.49)
$$t = \frac{\theta}{\omega}$$

$$T = \frac{2\pi}{2\pi f} = \frac{1}{f}$$

اگر برقی روکی تعدد 50 ہو تو یہ مقناطیسی دباوکی موج ہر $0.02=\frac{1}{50}$ سینڈ میں ایک مکمل برقی چکر کا ٹتی ہے۔ ایک سینڈ میں 50 برقی چکر کا ٹتی ہے۔

اس مثال میں برقی زاویہ کی بات ہوتی رہی۔ دو قطب کی آلوں میں برقی زاویہ θ_e اور میکانی زاویہ θ_m برابر ہوتے ہیں۔ للذا اگر دو قطب کی آلوں کی بات کی جائے تو مساوات 5.49 کے تحت ایک سینڈ میں مقناطیسی دباو کی موج f برقی یا میکانی چکر کاٹے گی جہال f برقی رو کی تعدد ہے اور اگر f قطب رکھنے والی آلوں کی بات کی جائے تو چونکہ

$$\theta_e = \frac{P}{2}\theta_m$$

للذا ایسے آلوں میں یہ مقاطیسی دباو کی موج ایک سینڈ میں f مقاطیسی چکر یعنی $\frac{2}{D}f$ میکانی شکر کائے گ۔

اگر ہم برتی رو کی تعدد کو f_e سے ظاہر کریں، مقناطیسی دباو کی موج کی چوٹی کے برتی زاویہ کو θ_e اور اس کے میکانی زاویہ کو θ_m سے ظاہر کریں اور اس طرح اس مقناطیسی دباو کی موج کے گھومنے کی رفتار کو θ_m یا ω_m سے ظاہر کریں تو

(5.51)
$$\omega_{m} = \frac{2}{P}\omega_{e} \quad \text{rad/s}$$

$$f_{m} = \frac{2}{P}f_{e} \quad \text{Hz}$$

$$n = \frac{120f_{e}}{P} \quad \text{rpm}$$

 ω_e اس موج کی معاصر رفتار برقی زاویہ فی سینڈ میں ہے جبکہ ω_m بہی معاصر رفتار میکانی زاویہ فی سینڈ میں ہے۔ اس طرح f_e اس کی میکانی معاصر رفتار g_e میکانی ہرٹز میں ہے۔ برقی معاصر رفتار g_e معاصر رفتار g_e معاصر رفتار g_e کہ ایک سینڈ میں یہ موج g_e برقی چکر کا فاصلہ طے کرے گی جہاں ایک معاصر رفتار g_e کی ایک سینڈ میں یہ موج g_e برقی چکر کا فاصلہ طے کرے گی جہاں ایک

synchronous speed 36

برتی چکر دو قطب کا فاصلہ لیخی π 2 ریڈیئن کا زاویہ ہے۔ای طرح میکانی معاصر رفتار f_m ہرٹز ہونے کا مطلب ہے کہ یہ موج ایک سیکنڈ میں ایک چکر کا فاصلہ طے کرے گی۔ایک میکانی چکر عام زندگی میں ایک چکر کو ہی کہتے ہیں۔ اس مساوات میں n میکانی چکر فی منٹ 37 کو ظاہر کرتے ہیں۔ یہ مساوات معاصر رفتار کی مساوات ہے۔

یہاں اس بات کا ذکر کرنا ضروری ہے کہ ہم q دور کی لپٹی مشین جس کے لیجے $\frac{2\pi}{q}$ برقی زاویہ پر رکھے گئے ہوں اور جن میں q دوری برقی رو ہو، ایک ہی سمت میں گھومتی مقناطیسی دباو کی موج کو جنم دیتی ہے جیسے ہم نے تین دوری مشین کے لئے دیکھا۔ مزید یہ کہ اس موج کا حیطہ کسی ایک لیجھے سے پیدا مقناطیسی دباو کے حیطہ کے $\frac{q}{2}$ گنا ہو گا اور اس کے گھومنے کی رفتار $w_e = 2\pi f$ برقی ریڈیئن فی سینڈ ہو گی۔

5.5.3 تين دور کي لپڻي مشين کاتر سيمي تجزيه

شکل 5.18 میں تین دور کی لیٹی مشین دکھائی گئی ہے۔ اس میں مثبت برتی رو کی سمتیں بھی دکھائی گئی ہیں، مثلاً α شگاف میں برتی رو صفحہ سے عمود کی سمت میں باہر جانب کو ہے اور یہ بات نقطہ سے واضح کی گئی ہے۔ اس طرح α شگاف میں برتی دباو صفحہ سے عمود کی سمت میں اندر کی جانب کو ہے اور یہ بات صلیب کے نشان سے واضح کی گئی ہے۔ اگر برتی رو مثبت ہو تو اس کی یہی سمت ہو گی اور اس سے پیدا مقناطیسی دباو α صفر زاویہ کی جانب ہو گا جیسے شکل میں دکھایا گیا ہے۔ لیچھے میں برتی رو سے پیدا مقناطیسی دباو کی سمت دائیں ہاتھ کے قانون سے معلوم کی جا سکتی ہے۔ اب اگر اس کچھے میں برتی رو منفی ہو تو اس کا مطلب ہے کہ برتی رو اُلٹ سمت میں ہے۔ یعنی اب برتی رو مو شخب کے عمود کی سمت میں باہر کی جانب شکاف میں صفحہ کے عمود کی سمت میں باہر کی جانب کو ہے۔ لہذا اس برتی رو سے پیدا مقناطیسی دباو بھی پہلے سے آلٹ سمت میں ہو گی یعنی یہ شکل میں دیے گئے α کو ہے۔ لہذا اس برتی رو سے پیدا مقناطیسی دباو بھی پہلے سے آلٹ سمت میں ہو گی یعنی یہ شکل میں دیے گئے ہے کہ برتی رو کے منفی بالکل اُلٹ سمت میں ہو گی۔ اس تذکرہ کا بنیادی مقصد سے تھا کہ آپ پر بیہ بات واضح ہو جائے کہ برتی رو کے منفی بالکل اُلٹ سمت میں ہو گی۔ اس تذکرہ کا بنیادی مقصد سے تھا کہ آپ پر بیہ بات واضح ہو جائے کہ برتی رو کے منفی بونے سے اس سے پیدا مقناطیسی دباو کی سمت آلٹ ہو جاتی ہے۔

اس شکل میں لیچھوں میں برقی رو اور مقناطیسی دباویہ ہیں

$$i_a = I_0 \cos \omega t$$

$$i_b = I_0 \cos(\omega t - 120^\circ)$$

$$i_c = I_0 \cos(\omega t + 120^\circ)$$

rpm, rounds per minute³⁷

(5.53)
$$\tau_{a} = k_{w} \frac{4}{\pi} \frac{Ni_{a}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos \omega t = \tau_{0} \cos \omega t$$

$$\tau_{b} = k_{w} \frac{4}{\pi} \frac{Ni_{b}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos(\omega t - 120^{\circ}) = \tau_{0} \cos(\omega t - 120^{\circ})$$

$$\tau_{c} = k_{w} \frac{4}{\pi} \frac{Ni_{c}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos(\omega t + 120^{\circ}) = \tau_{0} \cos(\omega t + 120^{\circ})$$

جبکہ ان کے مثبت سمتیں شکل میں دیئے گئے ہیں۔ اب ہم مختلف او قات پر ان مقداروں کا حساب لگاتے ہیں اور ان کا کل مجموعی مقناطیسی دباو حل کرتے ہیں۔

لمحہ t=0 پر ان مساوات سے ملتا ہے۔

(5.54)
$$\begin{aligned} i_a &= I_0 \cos 0 = I_0 \\ i_b &= I_0 \cos (0 - 120^\circ) = -0.5 I_0 \\ i_c &= I_0 \cos (0 + 120^\circ) = -0.5 I_0 \end{aligned}$$

(5.55)
$$\begin{aligned} \tau_a &= \tau_0 \cos 0 = \tau_0 \\ \tau_b &= \tau_0 \cos (0 - 120^\circ) = -0.5 \tau_0 \\ \tau_c &= \tau_0 \cos (0 + 120^\circ) = -0.5 \tau_0 \end{aligned}$$

5.18 یہاں رکھ کر ذرا غور کریں۔اس لمحہ پر i_a مثبت ہے جبکہ i_b اور i_c منفی ہیں۔ للذا i_a اُس مت میں ہے جو شکل i_c میں i_b میں ویے گئے سمتوں کے اُلٹ میں i_c میں i_c میں اور i_c شکل میں ویے گئے سمتوں کے اُلٹ ہیں۔ ان تینوں بر قی روکی اس لمحہ پر درست سمتیں شکل 5.20 میں دکھائی گئی ہیں۔اس شکل میں تینوں مقاطیسی دباو مجبی دکھائے گئے ہیں۔

کل مقناطیسی دباو با آسانی بذریعہ ترسیم، مجموعہ سمتیات سے معلوم کیا جا سکتا ہے یا پھر الجبرا کے ذریعہ ایسا کیا جا سکتا ہے۔

(5.56)
$$\begin{aligned} \boldsymbol{\tau}_{a} &= \tau_{0} \boldsymbol{a}_{\mathbf{X}} \\ \boldsymbol{\tau}_{b} &= 0.5 \tau_{0} \left[\cos(60^{\circ}) \boldsymbol{a}_{\mathbf{X}} - \sin(60^{\circ}) \boldsymbol{a}_{\mathbf{Y}} \right] \\ \boldsymbol{\tau}_{c} &= 0.5 \tau_{0} \left[\cos(60^{\circ}) \boldsymbol{a}_{\mathbf{X}} + \sin(60^{\circ}) \boldsymbol{a}_{\mathbf{Y}} \right] \end{aligned}$$

(5.57)
$$\boldsymbol{\tau} = \boldsymbol{\tau}_a + \boldsymbol{\tau}_b + \boldsymbol{\tau}_c = \frac{3}{2}\tau_0 \boldsymbol{a}_{\mathrm{X}}$$

شكل5.20: لمحه $t_0=0$ پر بر قی رواور مقناطیسی د باوی

کل مقناطیسی دباو ایک کچھ کے مقناطیسی دباو کے ڈیڑھ گنا ہے اور یہ صفر زاویہ پر ہے۔ اب ہم گھڑی کو چلنے دیتے ہیں اور کچھ کمیے بعد t_1 پر دوبارہ بہی سب حساب لگاتے ہیں۔ چونکہ مساوات 5.52 اور مساوات 5.53 میں متغیرہ یمیں اور کچھ کمیے بعد t_1 پر دوبارہ بہی سب حساب لگاتے ہیں۔ چونکہ مساوات ωt کا استعال زیادہ آسمان ہے لہذا ہم کھہ t_1 کو یوں چنتے ہیں کہ $\omega t_1 = 30^\circ$ کے برابر ہو۔ ایسا کرنے ہمیں یہ دو مساواتوں سے حاصل ہوتا ہے۔

(5.58)
$$i_a = I_0 \cos 30^\circ = \frac{\sqrt{3}}{2} I_0$$
$$i_b = I_0 \cos(30^\circ - 120^\circ) = 0$$
$$i_c = I_0 \cos(30^\circ + 120^\circ) = -\frac{\sqrt{3}}{2} I_0$$

(5.59)
$$\tau_a = \tau_0 \cos 30^\circ = \frac{\sqrt{3}}{2} \tau_0$$
$$\tau_b = \tau_0 \cos(30^\circ - 120^\circ) = 0$$
$$\tau_c = \tau_0 \cos(30^\circ + 120^\circ) = -\frac{\sqrt{3}}{2} \tau_0$$

یہ شکل 5.21 میں دکھایا گیا ہے۔کل مقناطیسی دباو کا طول ← کو تکون کے ذریعہ یوں حل کیا جا سکتا ہے۔ اسی طرح اس کا زاویہ بھی اسی سے حاصل ہوتا ہے۔ یعنی

(5.60)
$$\tau = \sqrt{\tau_a^2 + \tau_c^2 - 2\tau_a\tau_c\cos 120^\circ} = \frac{3}{2}\tau_0$$

اور چونکہ اس تکون کے دو اطراف برابر ہیں للذا اس کے باقی دو زاویہ بھی برابر اور °30 ہیں۔

5.6. محسر ك_برقى دباو

شكل 5.21. لمحه $t_1=30^\circ$ لمحه $t_1=30^\circ$ باوس

ہم دیکھتے ہیں کہ کل مقاطیسی و باو جو پہلے صفر زاویہ پر تھا اب وہ 30° کے زاویہ پر ہے بعنی وہ گھڑی کے اُلٹ ست گھوم گیا ہے۔ اگر ہم ای طرح 40° 40° 40° پر دیکھیں تو ہمیں کل مقناطیسی و باو اب بھی $\frac{3}{2}\tau_0$ مقناطیسی و باو اب بھی 45° ہی ملے گا البتہ او کل مقناطیسی و باو سے سارا حساب کیا جائے تو کل مقناطیسی و باو اب بھی 45° ہی ملے گا البتہ یہ 45° کے زاویہ پر ہو گا۔ اگر کسی کے گا البتہ یہ 45° ہی ملے گا البتہ یہ 45° کے زاویہ پر ہو گا۔

5.6 محرك برقى دباو

یہاں محرک برقی دباو³⁸ کو ایک اور زاویہ سے پیش کیا جاتا ہے۔

5.6.1 بدلتی روبر قی جزیٹر

شکل 5.22 میں ایک بنیادی بدلتے روجن پر 39 دکھایا گیا ہے۔اس کا گھومتا برقی مقناطیس، خلائی درز میں سائن نما مقناطیسی دباو پیدا کرتا ہے جس سے درز میں سائن نما کثافت مقناطیسی بہاو B پیدا ہوتی ہے، یعنی

$$(5.61) B = B_0 \cos \theta_p$$

³⁸ بتداء میں حرکت سے پیدا ہونے والی بر تی دیاد کو محرک بر تی دیاد کتھ تھے۔اب روایتی طور پر کسی مجی طرع پیدا کردہ بر تی دیاو کو محرک بر تی دیاو کتھ ہیں۔ ac generator³⁹

شكل 5.23: لجھے میں سے گزر تامقناطیسی بہاو۔

یہ مقناطیس ω زاویاتی رفتار سے گھوم رہا ہے۔ یوں اگر ابتدائی لمحہ t=0 پریہ a کچھے کی سمت یعنی ہلکی سیاہی کی افقی کیر کی سمت میں ہو تو لمحہ t پریہ گھوم کر زاویہ $\theta_m=\omega t$ پر ہو گا۔اس طرح یہی مساوات یوں بھی کھھا جا سکتا ہے۔

(5.62)
$$B = B_0 \cos(\theta - \theta_m)$$
$$= B_0 \cos(\theta - \omega t)$$

شکل 5.23 میں B کو زاویہ θ اور θ_p کے ساتھ ترسیم کیا گیا ہے۔ اس ترسیم میں کچھا a بھی دکھایا گیا ہے۔اس شکل a میں ہلکی سیائی سے لمحہ b پر a دکھایا گیا ہے جب گھومتے برقی مقناطیس کا محور اور اس کچھے کا محور ایک ہی سمت میں ہوتے ہیں جبکہ کالی سیائی میں اس a کو کسی بھی لمحہ a پر دکھایا گیا ہے۔اس لمحہ پر برقی مقناطیس کے محور اور کچھے کے محور کے مابین a زاویہ ہے۔ یہ زاویہ برقی مقناطیس کے گھومنے کی رفتار a پر مخصر ہے یعنی

$$(5.63) \theta = \omega t$$

5.6 محسرک پرقی دیاو 165

لمحہ t=0 پر کھھے میں سے زیادہ سے زیادہ مقناطیسی بہاو گزر رہی ہے۔ اگر خلائی درز بہت باریک ہو، تو اس کے اندر t=0اور ماہر جانب کے رداس تقریباً بکیاں ہوں گے۔ برقی مقناطیس کے محور سے اس خلائی درزیک کا اوسط رداسی فاصلیہ ا گر $_{0}$ ہو اور برقی مقناطیس کا دھر ہے 40 کی سمت میں محوری لمپائی 1 ہو تو اس کچھے میں وہی مقناطیسی بہاو ہو گا جو اس خلائی درز میں $rac{\pi}{2} < heta < rac{\pi}{2}$ مابین ہے۔ لمحہ t=0 یر اسے یوں معلوم کیا جا سکتا ہے

(5.64)
$$\phi_a(0) = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} (B_0 \cos \theta_p) (l\rho d\theta_p)$$

$$= B_0 l\rho \sin \theta_p \Big|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= 2B_0 l\rho$$

$$= \phi_0$$

جہاں آخر میں $\phi_a(0)$ کو $\phi_a(0)$ کہا گیا ہے۔ یہی حساب اگر لمحہ t پر کی جائے تو کچھ یوں ہو گا۔

(5.65)
$$\phi_{a}(t) = \int_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta} (B_{0} \cos \theta_{p}) (l\rho d\theta_{p})$$

$$= B_{0} l\rho \sin \theta_{p} \Big|_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta}$$

$$= 2B_{0} l\rho \cos \vartheta$$

$$= 2B_{0} l\rho \cos \omega t$$

 $axle^{40}$

axial length⁴¹

جہاں $\theta=\omega t$ لیا گیا ہے۔اسی مساوات کو یوں بھی حل کیا جا سکتا ہے

$$\phi_{a}(t) = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} (B_{0} \cos(\theta - \omega t))(l\rho d\theta)$$

$$= B_{0}l\rho \sin(\theta - \omega t)|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= B_{0}l\rho \left[\sin\left(\frac{\pi}{2} - \omega t\right) - \sin\left(-\frac{\pi}{2} - \omega t\right) \right]$$

$$= 2B_{0}l\rho \cos \omega t$$

اس مرتبہ تکمل زاویہ 6 کے ساتھ کیا گیا ہے۔ انہیں مساوات 5.64 کی مدد سے یوں کھا جا سکتا ہے۔

$$\phi_a(t) = 2B_0 l \rho \cos \omega t = \phi_0 \cos \omega t$$

بالکل مساوات 5.66 کی طرح ہم b اور c کچھوں کے لئے بھی مقناطیسی بہاو کی مساواتیں حل کر سکتے ہیں۔ شکل مساوات 5.22 میں d کچھے میں زاویہ d ناویہ d کے سے d کے حک کا مقناطیسی بہاو گزرتا ہے۔ اس لئے d معلوم کرنے کے لئے مساوات 5.20 میں مکمل کے حدود یہی رکھے گئے تھے۔ اسی شکل سے واضح ہے کہ d کچھے کے حکمل کے حدود d کو میں میں رکھے گئے تھے۔ اسی شکل سے واضح ہے کہ d کچھے کے حکمل کے حدود d اور d بیں۔ یہ زاویے ریڈیٹن میں دیئے گئے ہیں۔ یوں

$$\phi_b(t) = \int_{\frac{\pi}{6}}^{\frac{7\pi}{6}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{\frac{\pi}{6}}^{\frac{7\pi}{6}} (B_0 \cos(\theta - \omega t)) (l\rho d\theta)$$

$$= B_0 l\rho \sin(\theta - \omega t) \Big|_{\frac{\pi}{6}}^{\frac{7\pi}{6}}$$

$$= B_0 l\rho \left[\sin\left(\frac{7\pi}{6} - \omega t\right) - \sin\left(\frac{\pi}{6} - \omega t\right) \right]$$

$$= 2B_0 l\rho \cos(\omega t - \frac{2\pi}{3})$$

5.6. محسر ك_بر قي دباو

اور

$$\phi_{c}(t) = \int_{\frac{5\pi}{6}}^{\frac{11\pi}{6}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{\frac{5\pi}{6}}^{\frac{11\pi}{6}} (B_{0} \cos(\theta - \omega t))(l\rho d\theta)$$

$$= B_{0}l\rho \sin(\theta - \omega t) \Big|_{\frac{5\pi}{6}}^{\frac{11\pi}{6}}$$

$$= B_{0}l\rho \left[\sin\left(\frac{11\pi}{6} - \omega t\right) - \sin\left(\frac{5\pi}{6} - \omega t\right) \right]$$

$$= 2B_{0}l\rho \cos(\omega t + \frac{2\pi}{3})$$

$$= 2B_{0}l\rho \cos(\omega t + \frac{2\pi}{3})$$

$$- \mathcal{L}_{c} = N\phi_{a}(t) = N\phi_{0} \cos \omega t$$

$$\lambda_{b} = N\phi_{b}(t) = N\phi_{0} \cos(\omega t - 120^{\circ})$$

$$\lambda_{c} = N\phi_{c}(t) = N\phi_{0} \cos(\omega t + 120^{\circ})$$

$$\lambda_{c} = N\phi_{c}(t) = N\phi_{0} \cos(\omega t + 120^{\circ})$$

ان مساوات میں $\frac{2\pi}{3}$ ریڈیٹن کو 120° لکھا گیا ہے۔ان سے کچھوں میں پیدا امالی برقی دباو کا حساب یوں لگایا جا سکتا ہے۔

(5.71)
$$e_a(t) = -\frac{\mathrm{d}\lambda_a}{\mathrm{d}t} = \omega N \phi_0 \sin \omega t$$
$$e_b(t) = -\frac{\mathrm{d}\lambda_b}{\mathrm{d}t} = \omega N \phi_0 \sin(\omega t - 120^\circ)$$
$$e_c(t) = -\frac{\mathrm{d}\lambda_c}{\mathrm{d}t} = \omega N \phi_0 \sin(\omega t + 120^\circ)$$

ان مساوات کو یوں بھی لکھ سکتے ہیں

(5.72)
$$\begin{aligned} e_a(t) &= \omega N \phi_0 \cos(\omega t - 90^\circ) \\ e_b(t) &= \omega N \phi_0 \cos(\omega t + 150^\circ) \\ e_c(t) &= \omega N \phi_0 \cos(\omega t + 30^\circ) \end{aligned}$$

یہ مساوات تین دوری محرک برقی دباو کو ظاہر کرتے ہیں جو آپس میں °120 زاویہ پر ہیں۔ان سب کا حیطہ E_0 کیسال ہے جہال

$$(5.73) E_0 = \omega N \phi_0$$

اور ان برقی دباو کی موثر قیمت⁴²

(5.74)
$$E_{\dot{\tau}, \tau} = \frac{E_0}{\sqrt{2}} = \frac{2\pi f N \phi_0}{\sqrt{2}} = 4.44 f N \phi_0$$

ہو گی۔ چونکہ $\phi = BA$ ہوتا ہے لہذا ہیہ مساوات بالکل صفحہ 52 پر دئے مساوات 2.52 کی طرح ہے۔

مساوات 5.72 سائن نما برقی دباو کو ظاہر کرتا ہے۔ اگرچہ اسے بیہ سوچ کر حاصل کیا گیا کہ خلائی درز میں مقناطیسی بہاو صرف برقی مقناطیس کی وجہ سے ہے تاہم برقی دباو کا اس سے کوئی تعلق نہیں کہ خلائی درز میں مقناطیسی بہاو جزیئر کے بہاو کس طرح وجود میں آئی اور بیہ مساوات ان حالات کے لئے بھی درست ہے جہاں بیہ مقناطیسی بہاو جزیئر کے ساکن چیدا ہوئی ہو۔

مساوات 5.74 ہمیں ایک گیھ لیچھ میں پیدا برقی دباو دیتی ہے۔ اگر لیھا تقسیم شدہ ہو تو اس کے مختلف شکافوں میں موجود اس کیچھ کے حصوں میں برقی دباو ہم قدم نہیں ہوں گے للذا ان سب کا مجموعی برقی دباو ان سب کا حاصل جمع نہیں ہوگا بلکہ اس سے قدرِ کم ہوگا۔ اس مساوات کو ہم ایک تھیلے کیھے کے لئے یوں لکھ سکتے ہیں۔

(5.75)
$$E_{z, r} = 4.44 k_w f N \phi_0$$

تین دوری برقی جزیٹر وں کے k_w کی قیمت 0.85 تا 0.95 ہوتی ہے۔ یہ مساوات ہمیں یک دوری برقی دباو دیتی ہے۔ تین دوری برقی جزیٹر وں میں ایسے تین کچھوں کے جوڑے ہوتے ہیں اور ان کو Y یعنی شارہ نما یا Δ یعنی شکونی جوڑا جاتا ہے۔

5.6.2 يك سمتى روبرتى جزيٹر

ہر گھومنے والا برقی جزیٹر بنیادی طور پر بدلتی رو جزیٹر ہی ہوتا ہے۔ البتہ جہاں یک سمتی برقی دباو⁴³ کی ضرورت ہو وہاں مختلف طریقوں سے بدلتی برقی دباو کو یک سمتی برقی دباو میں تبدیل کیا جاتا ہے۔ ایباالیکٹرائنس کے ذریعہ جزیٹر کے باہر برقیاتی سمتے کار⁴⁴ کی مدد سے کیا جا سکتا ہے یا پھر میکانی طریقے سے میکانی سمتے کار⁴⁵ کی مدد سے جزیٹر کے اندر ہی کیا جا سکتا ہے۔ مساوات 5.71 میں دیئے گئے برقی دباو کو یک سمتی برقی دباو میں تبدیل کیا جائے تو یہ شکل 5.24 کی طرح ہو گا۔

rms4

DC voltage⁴³

rectifier⁴⁴ commutator⁴⁵

مثال 5.5: شکل 5.24 میں یک سمتی برقی دباو دکھائی گئی ہے۔اس یک سمتی برقی دباو کی اوسط قیمت حاصل کریں۔

ىل:

$$E_{ extsf{Lost}} = rac{1}{\pi} \int_0^{\pi} \omega N \phi_0 \sin \omega t \, \mathrm{d}(\omega t) = rac{2\omega N \phi_0}{\pi}$$

یک سمتی برقی جزیر پر باقاعدہ تبحرہ کتاب کے باب میں کیا جائے گا۔

5.7 هموار قطب مشينول مين قوت مر ورا

اس جھے میں ہم ایک کامل مشین میں قوضے مرور 46 کا حساب لگائیں گے۔ ایسا دو طریقوں سے کیا جا سکتا ہے۔ ہم مشین کو دو مقناطیس سمجھ کر ان کے مابین قوتِ کشش، قوتِ دفع اور قوت مروڑ کا حساب لگا سکتے ہیں یا پھر اس میں ساکن اور گوشتے کچھوں کو امالہ سمجھ کر باب چار کی طرح توانائی اور کو توانائی کے استعمال سے اس کا حساب لگائیں۔ پہلے توانائی کا طریقہ استعمال کرتے ہیں۔

 $\rm torque^{46}$

شكل 5.25: ساكن اماليه اور گھومتااماليه۔

5.7.1 توانائی کے طریقے سے میکانی قوت مروڑ کا حیاب

یہاں ہم ایک دوری مثین کی بات کریں گے۔ اس سے حاصل جوابات کو با آسانی زیادہ دور کی آلوں پر لا گو کیا جا سکتا ہے۔ شکل 5.25 میں یک دوری کامل مثین دکھائی گئی ہے۔ کسی بھی لمحہ اس کی دو کچھوں میں پچھ زاویہ ہو گا جے θ سے ظاہر کیا گیا ہے۔ خلائی درز ہر جگہ کیساں ہے لہٰذا یہاں اُبھرے قطب کے اثرات کو نظر انداز کیا جائے گا۔ مزید یہ کہ قالب کی θ سے تصور کی گئی ہے لہٰذا کچھوں کی امالہ صرف خلائی درز کی مقاطیسی مستقل 47 گرے مزید یہ کہ قالب کی θ سے سلم بھور کی گئی ہے لہٰذا کچھوں کی امالہ صرف خلائی درز کی مقاطیسی مستقل 47 پر مخصر ہے۔

 $L_{ar}(\theta)$ ال مشتر کہ امالہ $L_{ar}(\theta)$ اور گھوے کچھے کی امالہ L_{rr} مقررہ ہیں جبکہ ان کا مشتر کہ امالہ $L_{ar}(\theta)$ زاویہ θ پر منحصر ہو گا۔ جب $\theta=0$ یا $\theta=\pm 2\pi$ یا $\theta=0$ یا $\theta=\pm 180$ نراز ہو تو ایک لیجھے کا سارا مقناطیسی بہاو دوسرے کچھے سے بھی گزرتا ہے۔ ایسے حالت میں ان کا مشتر کہ امالہ زیادہ سے زیادہ ہو گا جسے بھی گزرتا ہے البتہ اس کھے اس کی سمت ہو اس کھے ایک مرتبہ پھر ایک کچھے کا سارا مقناطیسی بہاو دوسرے کچھے سے بھی گزرتا ہے البتہ اس کھے اس کی سمت اُلٹ ہوتی ہے لہذا اب ان کا مشتر کہ منفی ہو گا یعنی $-L_{ar0}$ اور جب $-L_{ar0}$ ہو تب ان کا مشتر کہ اللہ صفر ہو گا۔ اگر ہم یہ ذہن میں رکھیں کہ خلائی درز میں مقناطیسی بہاو سائن نما ہے تب

$$(5.76) L_{ar} = L_{ar0}\cos\theta$$

ہو گا۔ ہم ساکن اور گھومتے کچھوں کی ارتباط بہاو کو یوں لکھ سکتے ہیں

(5.77)
$$\lambda_a = L_{aa}i_a + L_{ar}(\theta)i_r = L_{aa}i_a + L_{ar0}\cos(\theta)i_r$$
$$\lambda_r = L_{ar}(\theta)i_a + L_{rr}i_r = L_{ar0}\cos(\theta)i_a + L_{rr}i_r$$

magnetic constant, permeability⁴⁷

ا گر ساکن کچھے کی مزاحمت R_a اور گھومتے کچھے کی مزاحمت R_r ہو تو ہم ان کچھوں کے سروں پر دیئے گئے برقی دباو کو یوں لکھ سکتے ہیں۔

$$(5.78) v_a = i_a R_a + \frac{\mathrm{d}\lambda_a}{\mathrm{d}t} = i_a R_a + L_{aa} \frac{\mathrm{d}i_a}{\mathrm{d}t} + L_{ar0} \cos\theta \frac{\mathrm{d}i_r}{\mathrm{d}t} - L_{ar0}i_r \sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t}$$
$$v_r = i_r R_r + \frac{\mathrm{d}\lambda_r}{\mathrm{d}t} = i_r R_r + L_{ar0} \cos\theta \frac{\mathrm{d}i_a}{\mathrm{d}t} - L_{ar0}i_a \sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} + L_{rr} \frac{\mathrm{d}i_r}{\mathrm{d}t}$$

یہاں θ برقی زاویہ ہے اور وقت کے ساتھ اس کی تبدیلی رفتار ω کو ظاہر کرتی ہے یعنی

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega$$

میکانی قوت مروڑ بذریعہ کو توانائی حاصل کی جا سکتی ہے۔ کو توانائی صفحہ 127 پر مساوات 4.72 سے حاصل ہوتی ہے۔ یہ مساوات موجودہ استعال کے لئے یوں لکھا جا سکتا ہے۔

(5.80)
$$W'_{m} = \frac{1}{2} L_{aa} i_{a}^{2} + \frac{1}{2} L_{rr} i_{r}^{2} + L_{ar0} i_{a} i_{r} \cos \theta$$

اس سے میکانی قوت مروڑ T_m یوں حاصل ہوتا ہے۔

(5.81)
$$T_{m} = \frac{\partial W'_{m}(\theta_{m}, i_{a}, i_{r})}{\partial \theta_{m}} = \frac{\partial W'_{m}(\theta, i_{a}, i_{r})}{\partial \theta} \frac{\partial \theta}{\partial \theta_{m}}$$

چونکہ P قطب مشینوں کے لئے

$$\theta = \frac{P}{2}\theta_m$$

للذا ہمیں مساوات 5.81 سے ملتا ہے

(5.83)
$$T_m = -\frac{P}{2}L_{ar0}i_ai_r\sin\left(\frac{P}{2}\theta_m\right)$$

اس مساوات میں قوت مروڑ T_m منتی ہے۔ اس کا مطلب ہے کہ اگر کسی لمحہ پر ساکن اور گھومتے کچھوں کے مقناطیسی بہاو کو ایک بہاو کے در میان زاویہ مثبت ہو تو ان کے مابین قوت مروڑ منتی ہو گا یعنی قوت مروڑ ان دونوں مقناطیسی بہاو کو ایک سمت میں رکھنے کی کوشش کرے گا۔

شكل 5.26: لچھوں كے قطبين۔

5.7.2 مقناطيسي بهاوسے ميكاني قوت مر وڑ كاحساب

شکل 5.26 میں دو قطب والی یک دوری مشین دکھائی گئی ہے۔ اس شکل میں بائیں جانب صرف گھومتے کچھے میں برقی رو ہے۔ اس کھی میں بائیں جانب صرف گھومتے کچھے میں برقی رو ہے۔ اس کچھے کا مقناطیسی بہاو تیر کے نشان سے دکھایا گیا ہے، لیغنی تیر اس مقناطیس کے محور کو ظاہر کرتا ہے۔ یہاں اگر صرف گھومتے جھے پر توجہ دی جائے تو یہ واضح ہے کہ گھومتا حصہ ایک مقناطیس کی مانند ہے جس کے شالی اور جنوبی قطبین شکل میں دیئے گئے ہیں۔ اس طرح شکل میں دائیں جانب صرف ساکن کچھے میں برقی رو ہے۔ اگر اس مرتبہ صرف ساکن حھے پر توجہ دی جائے تو اس کے بائیں جانب سے مقناطیسی بہاو نکل کر خلائی درز میں داخل ہوتی ہے، لہٰذا یہی اس کا شالی قطب ہے اور اس مقناطیس کا محور بھی اسی تیر کی سمت میں ہے۔

یبال بیہ واضح رہے کہ اگرچہ کچھ لیچھ دکھائے گئے ہیں لیکن در حقیقت دونوں کچھوں کے مقناطیسی دباو سائن-نما ہی ہیں اور تیر کے نشان ان مقناطیسی دباوکی موج کے چوٹی کو ظاہر کرتے ہیں۔

شکل 5.27 میں اب دونوں کچھوں میں برقی رو ہے۔ یہ واضح ہے کہ یہ بالکل دو مقناطیسوں کی طرح ہے اور ان کے اُلٹ قطبین کے مابین قوتِ کشش ہو گا، یعنی یہ دونوں کچھے ایک ہی سمت میں ہونے کی کوشش کریں گے۔

یہاں بیہ زیادہ واضح ہے کہ بیہ دو مقناطیس کوشش کریں گے کہ $heta_{ar}$ صفر کے برابر ہو یعنی ان کا میکانی قوت مروڑ $heta_{ar}$ کے اُلٹ سمت میں ہو گا۔ یہی کچھ مساوات 5.83 کہتا ہے ۔

ان برقی مقناطیسوں کے مقناطیسی دباو کو اگر ان کے مقناطیسی محور کی سمت میں au_a اور au_r سے ظاہر کیا جائے جہاں ہوں تو خلاء میں کل مقناطیسی دباو au_a ان کا جمع سمتیات ہو گا جیسے جہاں au_a

شكل 5.27: خلائي در زمين مجموعي مقناطيسي دياو په

(5.84)
$$au_{ar} = au_a^2 + au_r^2 - 2 au_a au_r \cos(180^\circ - heta_{ar})$$
 $au_a^2 = au_a^2 + au_r^2 - 2 au_a au_r \cos(180^\circ - heta_{ar})$ $au_a^2 + au_r^2 + 2 au_a au_r \cos heta_{ar}$

خلائی ورز میں یہ کل مقناطیسی و باو، مقناطیسی شدت H_{ar} کو جنم دے گا جو اس قلیہ سے حاصل ہوتا ہے۔ $au_{ar} = H_{ar} l_g$ (5.85)

مقناطیسی شدت کی چوٹی کو ظاہر کرتا ہے۔ اب جہاں خلاء میں مقناطیسی شدت H ہو وہاں مقناطیسی ہمہ توانائی کی کثافت H_{ar} کی کثافت H^2 ہوتی ہے۔ خلائی درز میں اوسط ہمہ توانائی کی کثافت اس خلائی درز میں H^2 کی اوسط ضربِ H^2 کی کثافت اس خلائی درز میں اوسط ضرب H^2 کی اوسط H^2 کی اوسط نے H^2 کی اوسط کیا جاتا ہے۔ ہوگی۔ کسی بھی سائن نما موج H^2 کی اوسط H^2 کا اوسط H^2 کی اوسط کیا جاتا ہے۔

(5.86)
$$H_{\text{br,s}}^{2} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} H^{2} d\theta$$

$$= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} H_{0}^{2} \cos^{2} \theta d\theta$$

$$= \frac{H_{0}^{2}}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} d\theta$$

$$= \frac{H_{0}^{2}}{\pi} \frac{\theta + \frac{\sin 2\theta}{2}}{2} \Big|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= \frac{H_{0}^{2}}{2}$$

cosine law⁴⁸

للذا خلائی درز میں اوسط ہمہ توانائی کی کثافت $\frac{\mu_0}{2} \frac{H_{ar}^2}{2}$ ہو گی اور اس خلاء میں کل ہمہ توانائی اس اوسط ہمہ توانائی ضربِ خلاء کی حجم کے برابر ہو گا یعنی

(5.87)
$$W'_{m} = \frac{\mu_0}{2} \frac{H_{ar}^2}{2} 2\pi r l_g l = \frac{\mu_0 \pi r l}{2l_g} \tau_{ar}^2$$

اس مساوات میں خلائی درز کی رداسی لمبائی $_{g}l_{p}$ ہور اس کی دھرے 49 کی سمت میں محوری لمبائی 50 ہے۔ محور سے خلاء کی اوسط رداسی فاصلہ $_{r}$ ہے۔ مزید بیہ کہ $_{g}l_{g}$ ہے۔ اس طرح خلاء میں رداسی سمت میں کثافت مقناطیسی بہاو کی تبدیلی کو نظر انداز کیا جا سکتا ہے۔ اس مساوات کو ہم مساوات کی مدد سے یوں لکھ سکتے ہیں۔

(5.88)
$$W'_{m} = \frac{\mu_{0}\pi r l}{2l_{q}} \left(\tau_{a}^{2} + \tau_{r}^{2} + 2\tau_{a}\tau_{r}\cos\theta_{ar} \right)$$

اس سے میکانی قوت مروڑ یوں حاصل کیا جا سکتا ہے

(5.89)
$$T_m = \frac{\partial W'_m}{\partial \theta_{ar}} = -\frac{\mu_0 \pi r l}{l_g} \tau_a \tau_r \sin \theta_{ar}$$

یہ حساب دو قطب والی مشین کے لئے لگایا گیا ہے۔ P قطب والے مشین کے لئے یہ مساوات ہر جوڑی قطب کا میکانی توت مروڑ دیتا ہے للذا ایسے مشین کے لئے ہم لکھ سکتے ہیں

$$(5.90) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_a} \tau_a \tau_r \sin \theta_{ar}$$

یہ ایک بہت اہم مساوات ہے۔ اس کے مطابق مشین کا میکانی قوت مروڑ اس کے ساکن اور گھومتے لیجھوں کے مقاطیسی دباو کے چوٹی کے براہ راست متناسب ہے۔ اس طرح یہ ان دونوں کے درمیان برقی زاویہ θ_{ar} کے سائن کے بھی براہ راست متناسب ہے۔ منفی میکانی قوت مروڑ کا مطلب ہے کہ یہ زاویہ θ_{ar} کے الٹ جانب ہے لیعنی یہ میکانی قوت مروڑ اس زاویہ کو کم کرنے کی جانب کو ہے۔ مشین کے ساکن اور گھومتے حصوں پر ایک برابر گر الٹ ستوں میں میکانی قوت مروڑ ہوتا ہے البتہ ساکن جے کا قوت مروڑ مشین کے وجود کے ذریعہ زمین تک منتقل ہو جاتا ہے جبکہ گھومتے جے کا میکانی قوت مروڑ اس جے کو گھماتا ہے۔

چونکہ مقناطیسی وباو برقی رو کے براہ راست متناسب ہے للذا au_a اور i_a آپس میں براہ راست متناسب ہیں جبکہ اور au_r اور i_r آپس میں براہ راست متناسب ہیں۔ اس سے یہ ظاہر ہوتا ہے کہ مساوات 5.83 اور 5.90 ایک جیسے au_r اور حقیقت یہ ثابت کیا جا سکتا ہے کہ یہ دونوں بالکل برابر ہیں۔

 $axis^{49}$

axial length⁵⁰

شکل 5.28: مقناطیسی بہاواوران کے زاویے۔

شکل 5.28 میں ایک مرتبہ پھر ساکن اور گھومتے کچھوں کے مقناطیسی دباو دکھائے گئے ہیں۔ شکل میں بائیں جانب تکون ΔAEC اور ΔBEC میں CE مشتر کہ ہے اور ان دو تکونوں سے واضح ہے کہ

$$(5.91) CE = \tau_r \sin \theta_{ar} = \tau_{ar} \sin \theta_a$$

اس مساوات کی مدد سے مساوات 5.90 یوں لکھا جا سکتا ہے۔

$$(5.92) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_a \tau_{ar} \sin \theta_a$$

$$(5.93) WQ = \tau_a \sin \theta_{ar} = \tau_{ar} \sin \theta_r$$

اب اس مساوات کی مدد سے مساوات 5.90 یوں لکھا جا سکتا ہے۔

$$(5.94) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_r \tau_{ar} \sin \theta_r$$

مهاوات 5.90 مهاوات 5.92 اور مهاوات 5.94 كو ايك جبكه لكھتے ہيں۔

(5.95)
$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{a} \tau_{r} \sin \theta_{ar}$$

$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{a} \tau_{ar} \sin \theta_{a}$$

$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{r} \tau_{ar} \sin \theta_{r}$$

ان مساوات سے یہ واضح ہے کہ میکانی قوت مروڑ کو دونوں کچھوں کے مقناطیسی دباو اور ان کے مابین زاویہ کی شکل میں لکھا میں لکھا جا سکتا ہے یا پھر ایک کچھے کی مقناطیسی دباو اور کل مقناطیسی دباو اور ان دو کے مابین زاویہ کی شکل میں لکھا جا سکتا ہے۔

اس بات کو یول بیان کیا جاسکتا ہے کہ میکانی قوت مروڑ دو مقناطیسی دباو کے آپس میں رد عمل کی وجہ سے وجود میں آتا ہے اور یہ ان مقناطیسی دباو کی چوٹی اور ان کے مابین زاویہ پر منحصر ہوتا ہے۔

مقناطیسی دباو، مقناطیسی شدت، کثافت مقناطیسی بہاو اور مقناطیسی بہاو سب کا آپس میں تعلق رکھتے ہیں للذا ان مساوات کو کئی مختلف طریقوں سے لکھا جا سکتا ہے۔ مثلاً خلائی درز میں کل مقناطیسی دباو au_{ar} اور وہاں کثافت مقناطیسی بہاو B_{ar} کا تعلق

$$(5.96) B_{ar} = \frac{\mu_0 \tau_{ar}}{l_q}$$

استعال کر کے مساوات 5.95 کے آخری جزو کو یوں لکھا جا سکتا ہے

$$(5.97) T_m = -\frac{P}{2}\pi r l \tau_r B_{ar} \sin \theta_r$$

مقناطیسی آلوں میں مقناطیسی قالب کی مقناطیسی مستقل μ کی محدود صلاحیت کی وجہ سے قالب میں کثافت مقناطیسی بہاو تقریباً ایک ٹسلا تک ہی بڑھائی جا سکتی ہے۔ لہذا مثین بناتے وقت اس حد کو مد نظر رکھنا پڑتا ہے۔ اس طرح گھومتے کچھے کا مقناطیسی دباو اس کچھے میں برتی رو پر مخصر ہوتا ہے۔ اس برتی رو سے کچھے کی مزاحمت میں برتی توانائی ضائع ہوتی ہے جس سے یہ لچھا گرم ہوتا ہے۔ برتی رو کو اس حد تک بڑھایا جا سکتا ہے جہاں تک اس کچھے کو ٹھنڈا کرنا ممکن ہو۔ لہذا مقناطیسی دباو کو اس حد کے اندر رکھنا پڑتا ہے۔ چونکہ اس مساوات میں یہ دو بہت ضروری حدیں واضح طور پر سامنے ہیں اس لئے یہ مساوات مثین بنانے کی غرض سے بہت اہم ہے۔

اس مساوات کی ایک اور بہت اہم شکل اب دیکھتے ہیں۔ ایک قطب پر مقناطیسی بہاو ϕ_P ایک قطب پر اوسط کا رقبہ A_P ہوتا ہے۔ جہاں کثافت مقناطیسی بہاو اوسطB ضرب ایک قطب کا رقبہ A_P ہوتا ہے۔ جہاں

(5.98)
$$B_{\nu,l} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} B_0 \cos \theta \, d\theta = \frac{2B_0}{\pi}$$

$$(5.99) A_P = \frac{2\pi rl}{P}$$

للذا

$$\phi_P = \frac{2B_0}{\pi} \frac{2\pi rl}{P}$$

أور

(5.101)
$$T_m = -\frac{\pi}{2} \left(\frac{P}{2}\right)^2 \phi_{ar} \tau_r \sin \theta_r$$

فرہنگ

earth, 94	ampere-turn, 32
eddy current loss, 62	armature coil, 131, 251
eddy currents, 62, 126	axle, 161
electric field intensity, 10 electrical rating, 59 electromagnet, 131 electromotive force, 61, 137 emf, 137 enamel, 62 energy, 43 Euler, 21 excitation, 61	carbon bush, 177 cartesian system, 4 charge, 10, 136 circuit breaker, 178 coercivity, 46 coil high voltage, 56 low voltage, 56 primary, 55
excitation, 61 excitation current, 50, 60, 61 excitation voltage, 61 excited coil, 61	secondary, 55 commutator, 164, 241 conductivity, 25 conservative field, 108
Faraday's law, 38, 125 field coil, 131, 251 flux, 30 Fourier series, 63, 142 frequency, 130 fundamental, 142 fundamental component, 64	core, 55, 126 core loss, 62 core loss component, 64 Coulomb's law, 10 cross product, 13 cross section, 9 current transformation, 66 cylindrical coordinates, 5
ac, 159 ground current, 94 ground wire, 94 harmonic, 142	delta connected, 92 design, 195 differentiation, 18 dot product, 15
harmonic components, 64	E,I, 62

ئىرىتاك 270

parallel connected, 253	Henry, 39
permeability, 26	hunting, 178
relative, 26	hysteresis loop, 46
phase current, 94	
phase difference, 23	impedance transformation, 71
phase voltage, 94	in-phase, 69
phasor, 21	induced voltage, 38, 49, 61
pole	inductance, 39
non-salient, 140	
salient, 140	Joule, 43
power, 43	
power factor, 23	lagging, 22
lagging, 23	laminations, 31, 62, 126
leading, 23	leading, 22
power factor angle, 23	leakage inductance, 79
power-angle law, 188	leakage reactance, 79
primary	line current, 94
side, 55	line voltage, 94
	linear circuit, 226
rating, 96, 97	load, 98
rectifier, 164	Lorentz law, 136
relative permeability, 26	Lorenz equation, 102
relay, 101	
reluctance, 25	magnetic constant, 26
residual magnetic flux, 45	magnetic core, 31
resistance, 25	magnetic field
rms, 49, 164	intensity, 11, 33
rotor, 36	magnetic flux
rotor coli, 104	density, 33
rpm, 155	leakage, 78
	magnetizing current, 64
saturation, 47	mmf, 30
scalar, 1	model, 81, 207
self excited, 251	mutual flux linkage, 43
self flux linkage, 42	mutual inductance, 42
self inductance, 42	
separately excited, 251	name plate, 97
side	non-salient poles, 177
secondary, 55	
single phase, 23, 59	Ohm's law, 26
slip, 209	open circuit test, 86
slip rings, 176, 229	orthonormal, 3

ف رہنگ

unit vector, 2	star connected, 92
unit vector, 2	· · · · · · · · · · · · · · · · · · ·
VA, 75 vector, 2 volt, 137 volt-ampere, 75 voltage, 137 DC, 164 transformation, 66	stator, 36 stator coil, 104, 127 steady state, 175 step down transformer, 58 step up transformer, 58 surface density, 11 synchronous, 130 synchronous inductance, 184 synchronous speed, 155, 176
Watt, 43	
Weber, 32	Tesla, 33
winding distributed, 140 winding factor, 147	theorem maximum power transfer, 229 Thevenin theorem, 226 three phase, 59, 92 time period, 100, 142 torque, 165, 209 pull out, 178 transformer air core, 59 communication, 59 ideal, 65
	transient state, 175

پتریاں،62	ابتدائی
يورا بوجھ، 197	جانب،55
نیچے،80	گچھا، 55
ىتىپ پېش زاويە، 22	ار تباط بهاو، 39
	اضافي
تاخير ي زاويه، 22	زاویا کی رفتار، 212
تار کی برقی د باو،94	اکائی سمتیه، 2
تار کی برقی رو،94	اماله، 39
تانبا،28	امالى بر قى د باو، 38، 49، 61
تبادله	اوہم میٹر،237
ر کاوٹ، 71	ا یک، تین پتریال، 62
مختی،97	ایِک مرحلہ،59
تدريجي تفرق،113 - 120	ايمپيئر - چکر ، 32
تعدد،130 آت 179	
تعقب،178 تفرق،18	136.,
عرن،18 جزوی،18	بر قرار چالو،175،100 م ت
برون. تکمل،18	بر قي بار، 136،106
س،18 تکونی جوڙ،92	بر تي د باد، 28، 137
توني بور، 42 توانائي، 43	تبادله،66،56
وانان، 45،59 تین مرحله، 92،59	ځرک،137
20,000,000	بيجاني،185
ٹرانسفار مر	يك شتى،164 ق
برُ تی د باووالا، 59	بر تی رو،28 بیخور نما،126
بوجھ بردار،68	بسور ما،120 تبادله،66
خلائی قالب،59	مبادله،006 بیجان انگیز،50
د باوبر ماتا، 58	یجان۱ میر،30 برتی سکت،59
د باو ِ گھٹا تا،58	ېري سختي،ود بر تي ميدان،10
ذرائع ابلاغ، 59	بری شیدان،10 شدت،28،10
رووالاء59	مرت.28،10 بش،177
كال65،	بناوك، 86
شلا، 33	بنیادی جزو، 142،644
ٹھنڈی تار،94	بو تھ ، 98
ثانوي جانب، 55	بھٹی،114
33. 4 4031	بجينور نما
جاول،43	برتی رو، 62
97.	ضياع،62
يچىلاو،147	بھنور نمابر تی رو،126
جزوطاقت،23	بے بو جھ ،60
پ <u>ث</u> ن،23	
تاخيرى،23	پ ر ی، 31، 126

<u>ــــرہگ</u>ـــــ

سرك چىلے،176،229	جنزیٹر بدلتی رو، 159 جوڑ تکونی، 92 تالیم نیا 92
سطى تكمل، 181	بدلخارو،159
سطى كثافت،11	جوز گانی ۵۲
سكت،96،96	ستاره نماه 92 ستاره نماه 92
سلسله وار 145	92100
سمت كار، 241	چکر فی منٹ،126
برقیاتی،164	پولى - 211 چۇلى، 211
ميكاني،164	
سمتىيە،2	خطى
عمودياکائي، 3	ېر تې دور، 226
سمتی ر فتار ،102	خو دار تباط بهاو، 42
سير ابيت،47	خوداماله، 42
ضرب	داخلي ڀيجان
نقطه،15	ر ساسله وار ، 253 سلسله وار ، 253
ضرب صليبي، 13	متوازی، 253 متوازی، 253
42 ***	مرکب،253
طاقت،43	دور برطی مرکب، 253
طاقت بالمقابل زاويه، 188 طول موج، 18	دور شکن، 178
طول مون، ۱۵	دوری عرصه، 142،100
عار ضی صور ت، 175	دهره 161
عمودی تراش،9	
ر تبہ،9	رشا
•	اماله، 79
غيرسمتي،1	متعامله، 79
غير معاصر ،178	رستامتعامليت،217
250 / :	رفتار
فورئير،250 : برنسل دې ده د	اضافی زاویاکی، 212
فوريئرنشلىل،63،142	روغن،62
فیراڈے	رياضي نمونه، 207،81
تانون،38،125	ریلے،101
قالب،126	زاویه جزوطاقت، 23
قالبي ضياع، 62	رادييه اردي العربي . زمين ،94
64.9.7.	رين. زيني بر تي رو، 94
قانون	رين برن روم. زيني تار، 94
اوېم،26)-t-000-0
كولمب ،10	ساكن حصه،36
لورينز،136	ساكن كيچها،127،104
قدامت پبند میدان، 108	ستاره نماجوژ،92
قريب جڙي مر ٽب، 253	سرك،209

274 سنرہنگ

مر حلی فرق، 23	قطب
مركب جزيثر، 253	ابھرے،140،177
مزاَحت، 2ُ5ُ	ہموار،140،177
مساوات لورينز، 102	قوت مر و _ل ر، 209، 165
مسكم	انتهائي،178
تھو نن ،226	قوى اليكٹر انكس، 241،207
زیادہ سے زیادہ طاقت کی منتقلی، 228	قوى ك <u>ى</u> ھے، 251
مشتر كه ارتباط اماله، 43	•
مشتركه اماله، 42	كارين بش،177
معاصر،130	كِار گذارى،200
معاصراماله،184	^ک پیسر ،194
معاصر ر فتار ، 176،155	کافت :
معائنه	برقې دو، 27
کھلے دور ،86	کثافت مقناطیسی بهاو
مقناطيس	بقاي،45
برق،131	كسر دور ، 38
معائنه کطیر دور،86 متناطیس برتی،131 چال کادائرہ،46	04
خاتم شدت،46	گرم تار، 94 **
مقناطیسی بر قی رو، 64	گومتاحصه،36
مقناطیسی بهاو،30	گھومتالچھا،104
رتا،78	ليجا
كثافت،33	•
مقناطيسي چال،52	ابترائی،55 سال 140
مقناطیسی د باو، 30	<u>کھلے</u> ،140
سمت، 141	.يىچىدار، 40 ئاندى، 55
مقناطيسي قالب، 55،31	عوی،دی زیاده برتی دباو، 56
مقناطیسی مستقل،166،26	ريده بري د بري د. ساكن، 104
31.26.9.7.	سمت،104 سمت،133
مقناطیسی میدان	ئىت. قوي،131
شدت، 33،11	- دن. کم بر تی د باو، 56
موژ،49،19	ا برن دورد. گومتا، 104
موثر قیت ،164	موم،104 میدانی، 131
 موسیقائی جزو،64،142	131,0
موصلیت،25	محد د
ميداني لچھے، 251	محد د کار تثیمی، 4 نکلی 5
¥ · · ·	تَلَى، 5
واٹ، 43	محرك بر تي د باو، 61
وولٹ،137	161.15
وولٺ-ايمپيئر،75	مخلوط عدد، 192
ويبر،32	مرحلي سمتيه، 186،21

> ك سمتى رو مشين، 241 ك مر حله، 23 ك مر حله برقى د باو، 94 كي مر حله برقى د و، 94 يولر مساوات، 21