0. 전체 구성 내용

그림 1.

가능한 기능은 BMP 파일 출력, JPEG 파일 출력, HSI 에서 H, S, I 각각 출력, 영상의 Histogram 출력, Gray Level Transformation, Smoothing, Sharpening 그리고 Edge Detector 이다. BMP, JPEG, HIS 를 제외한 나머지는 Mask 들이 존재한다.

1. BMP, JPEG

그림 2.

해당 기능은 BMP 또는 JPEG 파일을 그냥 있는 그대로 출력해준다. 다른 기능은 없지만 이기능을 통해서 다른 기능들을 실행시키는데 도움을 준다.

2. HSI

그림 3. 순서대로 H, I, S

HSI 는 영상에서 H(우측 상단), S(우측 하단), I(좌측 하단) 따로 출력해준다. HIS 는 각각 Hue, Saturation, Intensity 를 나타낸다. Hue 에서는 피부 색이 그저 검은색이고, S 는 피부색이 빛에 따라 다양하게 보여서 여러가지로 보이고, I 는 영상을 Gray Scale Image 처럼 보이게 한다.

3. Histogram

그림 4. Histogram

그림 5. Histogram Equalization

그림 4와 같이 Gray Scale Image 의 Histogram 을 그대로 보여줄 수 있고 그림 5처럼 Histogram Equalization 을 통해서 Histogram 이 한쪽으로 쏠린 영상을 개선되도록 만들어준다. 매우 밝은 사진이나 어두운 사진에도 적용이 가능하다.

4. Gray Level Transformation

그림 6. Original

그림 8. γ = 0.1

그림 10. γ = 0.5

그림 7. Negative

그림 9. γ = 2

그림 11. γ = 10

총 5 가지의 변환(목록이 5 개)을 시켜준다. 반전된 영상과 감마 값을 총 4 개 조절하여 영상을 출력하게 하도록 한다. 어두워 잘 보이지 않은 영상에서는 그림 8,10 과 같이 감마 값을 1 보다 작은 것으로 너무 밝은 영상은 그림 9,11 과 같이 감마 값을 1 보다 큰 값으로 하여 영상을 출력하면 개선된 영상을 확인할 수 있다.

5. Smoothing

그림 12. Noise Image 그림 13. Gaussian

그림 14. Median

그림 15. Average

Smoothing 에서는 Gaussian, Median, Average Filter 를 이용하여 Smoothing 을 해준다. Filter Size 는 3X3, 5X5, 7X7 이 가능하고, Color Image 에서도 적용을 할 수 있도록 따로 목록을 만들었다. Color Image 에서도 똑같이 세 Filter 들을 사용할 수 있고 각각 세개의 Size 를 선택할 수 있도록 했다.

Smoothing 은 Noise 가 있는 영상에서 적절한 Filter 를 사용하여 더욱 개선된 영상을 얻을 수 있게 해준다.

6. Sharpening

그림 16. Original

그림 17. Mask4/A=1.2

그림 18. Mask4/A=1.5

그림 19. Mask8/A=1.2

그림 20. Mask8/A=1.5

HighBoost 를 사용하여 Edge 부분을 강조해주는 기능이다. Mask 는 두가지가 있으며 다음과 같다.

0	-1	0
-1	A + 4	-1
0	-1	0

그림 21. Mask4

-1	-1	-1
-1	A + 8	-1
-1	-1	-1

그림 22. Mask8

위의 Filter 에서 A 부분을 1.2 와 1.5 를 설정할 수 있고 이에 따라서 Edge 부분이 얼마나 강조되는 것인지도 달라진다. 또한, 그림 17, 18 을 비교하면 A 가 커질수록 영상의 밝기는 더욱 밝아진다.

7. Edge Detector

그림 23. Original

그림 24. Prewitt

그림 25. Sobel

그림 26. LoG

Edge 를 뽑아주는 Filter 다. Prewitt, Sobel, LoG Filter 를 사용할 수 있다. LoG Filter 의 경우에는 3X3, 5X5, 9X9 의 Filter Size 를 선택할 수 있다. 다른 Edge Detector 보다 LoG Filter 의 효율이 가장 좋다. Gray Scale Image 에서만 이 기능을 쓸 수 있는 것이 아닌 Color Image 에서도 Edge Detector 를 같이 사용할 수 있다.

8. 구현 내용

대략적인 구현은 OnImgLoadJPEG 함수를 사용하여 JPEG 영상을 가져와서 각 기능에 맞는 Filter를 씌우고 결과를 출력하게 하였다. 각각의 기능은 viewType 번호를 가지고 있으며 이를 이용해서 OnDraw 함수에서 출력할 수 있도록 정했다. 연산 시 종종 0보다 작아지거나 255보다 커지는 경우가 있어 그럴 경우 최소 0최대 255값을 설정하도록 하였다.