Non-linear trends: using time as a feature

Trend features

Non-linear trends with linear models

Consider the model:

$$y_t = \beta_0 + \beta_1 t$$

Non-linear trends with linear models

Consider the model:

$$y_t = \beta_0 + \beta_1 t + \beta_2 t^2$$

- "When ... extrapolated, the resulting forecasts are often unrealistic." [1]
- Risk of overfitting to the training data and extrapolating poorly.
- Piecewise linear trend is recommended instead for non-linear trends. [1]
- Alternative: try regularizing (e.g., Ridge) to limit overfitting.

Example: Air passengers dataset

Example: Linear regression with t

Example: Linear regression with t and t^2

Example: Linear regression with t, t^2, t^3

Example: Linear regression with t & less data

Example: Linear regression with t, t^2, t^3 & less data

Example: Ridge regression with t, t^2, t^3 & less data

Example: Ridge regression with t, t^2, t^3 & less data

Implementation - Pandas

```
df["time_since_1949-01_2"] = df["time_since_1949-01"]**2
df.head()
          y time_since_1949-01 time_since_1949-01_2
     ds
1949-01 112
                             0
                                                 0
1949-02 118
1949-03 132
1949-04 129
                             3
                                                 9
1949-05 121
                                                 16
                             4
```

Implementation

sklearn.preprocessing.PolynomialFeatures

class sklearn.preprocessing.PolynomialFeatures(degree=2, *, interaction_only=False, include_bias=True, order='C')
[source]

Generate polynomial and interaction features.

Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2].

Read more in the User Guide.

Implementation

Implementation

time_since_1949-01 time_since_1949-01^2

ds		
1949-01	0.0	0.0
1949-02	1.0	1.0
1949-03	2.0	4.0
1949-04	3.0	9.0
1949-05	4.0	16.0
	t	t^2

Summary

It is possible but not recommended to use the non-linear time features to model non-linear trends.

There is a risk of overfitting and extrapolating poorly.

Regularisation can help reduce the risk of overfitting.