ΜΑΣ026 - Μαθηματικά για Μηχανικούς ΙΙ Εαρινό εξάμηνο 2020

Ασκήσεις 5ου Κεφαλαίου

1. Να υπολογιστούν τα διαδοχικά ολοκληρώματα.

i)
$$\int_{0}^{1} \int_{0}^{2} (x+3) \, dy \, dx$$

ii)
$$\int_{2}^{4} \int_{0}^{1} x^2 y \, dx \, dy$$

iii)
$$\int_{0}^{\ln 3} \int_{0}^{\ln 2} e^{x+y} \, dy \, dx$$

iv)
$$\int_{0}^{1} \int_{0}^{1} \frac{x}{(xy+1)^2} \, dy \, dx$$

Απάντηση: i) 7 ii) 2 iii) 2 iv) $1 - \ln 2$

2. Να υπολογιστούν τα ολοκληρώματα στο δοσμένο ορθογώνιο.

i)
$$\iint_R 4xy^3 dA$$
, $R = [-1, 1] \times [-2, 2]$

ii)
$$\iint_R x\sqrt{1-x^2} dA$$
, $R = [0,1] \times [2,3]$

Απάντηση: i) 0 ii) 1/3

3. Περιγράψτε (χωρίς να υπολογίσετε) τον όγκο που εκφράζουν τα παρακάτω ολοκληρώματα.

i)
$$\int_{0}^{5} \int_{1}^{24} 4 \, dx \, dy$$

ii)
$$\int_{0}^{3} \int_{0}^{4} \sqrt{25 - x^2 - y^2} \, dy \, dx$$

4. Να δείξετε ότι αν f(x,y)=g(x)h(y) και $R=[a,b]\times [c,d]$, τότε

$$\iint\limits_R f(x,y) dA = \left[\int\limits_a^b g(x) dx \right] \left[\int\limits_c^d h(y) dy \right]$$

5. Να βρεθεί ο όγκος μεταξύ του επιπέδου z=2x+y και του ορθογωνίου $R=[3,5]\times[1,2].$

Απάντηση: 19

6. Να βρεθεί ο όγκος του στερεού κάτω από την επιφάνεια $z=x^2$ που περικλείεται από τα επίπεδα x=0, x=2, y=3, y=0 και z=0.

1

Απάντηση: 8

7. Να υπολογιστούν τα ολοκληρώματα.

$$i) \int_{0}^{1} \int_{x^2}^{x} xy^2 \, dy \, dx$$

ii)
$$\int_{-\sqrt{\pi}}^{\sqrt{2\pi}} \int_{0}^{x^3} \sin\left(\frac{y}{x}\right) dy dx$$

Απάντηση: i) 1/40 ii) $-\pi/2$

8. Να υπολογιστεί το ολοκλήρωμα $\iint_R x^2 dA$, όπου R το χωρίο που ορίζεται από τις $y=16/x,\,y=x$ και x=8, με δύο τρόπους.

Απάντηση: 576

9. Να υπολογιστούν τα παρακάτω ολοκληρώματα.

i)
$$\iint_{\mathcal{B}} (x-1) \, dA$$
, όπου R το χωρίο στο πρώτο τεταρτημόριο μεταξύ των $y=x$ και $y=x^3$.

ii)
$$\iint\limits_R \sin \left(y^3 \right) dA \text{, όπου } R \text{ το χωρίο μεταξύ των } y = \sqrt{x} \text{, } y = 2 \text{ και } x = 0.$$

Απάντηση: i) -7/60 ii) $(1 - \cos 8)/3$

10. Να βρεθεί με διπλό ολοκλήρωμα το εμβαδόν του χωρίου του επιπέδου που περικλείεται από τις $y^2 = 9 - x$ και $y^2 = 9 - 9x$.

Απάντηση: 32

11. Να βρεθεί με διπλό ολοκλήρωμα ο όγκος του στερεού που φράσσεται από πάνω από το παραβολοειδές $z=9x^2+y^2$, από κάτω από το επίπεδο z=0 και πλευρικά από τα επίπεδα x=0, y=0, x=3 και y=2.

Απάντηση: 11/70

12. Να αλλαχθεί η σειρά ολοκλήρωσης στα παρακάτω ολοκληρώματα.

i)
$$\int_{0}^{2} \int_{0}^{\sqrt{x}} f(x, y) \, dy \, dx$$

ii)
$$\int_{0}^{4} \int_{2y}^{8} f(x,y) \, dx \, dy$$

Απάντηση: i) $\int\limits_{0}^{\sqrt{2}}\int\limits_{y^2}2f(x,y)\,dx\,dy$ ii) $\int\limits_{0}^{8}\int\limits_{0}^{x/2}f(x,y)\,dx\,dy$

13. Να υπολογιστούν τα ολοκληρώματα με αλλαγή της σειράς ολοκλήρωσης.

i)
$$\int_{0}^{1} \int_{4x}^{4} e^{-y^2} \, dy \, dx$$

$$ii) \int_{0}^{4} \int_{\sqrt{y}}^{2} e^{x^3} dx dy$$

Απάντηση: i) $(1 - e^{-16})/8$ ii) $(e^8 - 1)/3$

14. Να βρεθεί το εμβαδόν των παρακάτω επιφανειών με διπλό ολοκλήρωμα.

i) Επιφάνεια του κυλίνδρου $y^2+z^2=9$ πάνω από το ορθογώνιο $R=\{(x,y)\mid 0\leq x\leq 2, -3\leq y\leq 3\}.$ [Υπενθύμιση: $\int \frac{dx}{\sqrt{a^2-x^2}}=\sin^{-1}\frac{x}{a}+CJ$

ii) Επιφάνεια του κώνου $z^2=4x^2+4y^2$ πάνω από το χωρίο που δημιουργούν οι καμπύλες y=x και $y=x^2$ στο πρώτο τεταρτημόριο του xy-επιπέδου.

2

Απάντηση: i) 6π ii) $\frac{\sqrt{5}}{6}$

15. Να υπολογιστούν τα ολοκληρώματα.

i)
$$\int_{-1}^{1} \int_{0}^{2} \int_{0}^{1} (x^{2} + y^{2} + z^{2}) dx dy dz$$

ii)
$$\int_{0}^{2} \int_{-1}^{y^2} \int_{-1}^{z} yz \, dx \, dz \, dy$$

iii)
$$\int_{0}^{3} \int_{0}^{\sqrt{9-z^2}} \int_{0}^{x} xy \, dy \, dx \, dz$$

iv)
$$\int_{1}^{3} \int_{0}^{x^2} \int_{0}^{\ln z} xe^y \, dy \, dz \, dx$$

Απάντηση: i) 8 ii) $\frac{47}{3}$ iii) $\frac{81}{5}$ iv) $\frac{118}{3}$

16. Να υπολογιστούν τα ολοκληρώματα.

- i) $\iint_G xy\sin(yz)\,dV,$ όπου G το ορθογώνιο παραλληλεπίπεδο που ορίζεται από τις σχέσεις $0\leq x\leq \pi,$ $0\leq y\leq 1, 0\leq z\leq \pi/6.$
- ii) $\iint_G y\,dV,$ όπου G το στερεό που περικλείεται από το xy-επίπεδο, το επίπεδο z=y και τον παραβολικό κύλινδρο $y=1-x^2.$

Απάντηση: i) $\frac{\pi(\pi-3)}{2}$ ii) $\frac{32}{105}$

17. Να υπολογιστεί ο όγκος των παρακάτω στερεών με τριπλό ολοκλήρωμα.

- i) Το στερεό στο πρώτο οκτημόριο που περικλείεται από τα επίπεδα $xy,\,xz$ και yz και από το επίπεδο 3x+6y+4z=12.
- ii) Το στερεό που περικλείεται από την επιφάνεια $z=\sqrt{y}$ και τα επίπεδα x+y=1, x=0 και z=0.

Απάντηση: i) 4 ii) $\frac{4}{15}$

18. Δώστε ένα πρόχειρο σχήμα του στερεού με τον αντίστοιχο όγκο.

i)
$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{0}^{y+1} dz dy dx$$

ii)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{2} dy \, dz \, dx$$

19. Να υπολογιστεί το ολοκλήρωμα $\iint_R \frac{x-2y}{2x+y} dA$, όπου R το χωρίο που περικλείεται από τις x-2y=1, x-2y=4, 2x+y=1, 2x+y=3, χρησιμοποιώντας τον μετασχηματισμό u=x-2y, v=2x+y.

Απάντηση: $\frac{3}{2} \ln 3$

20. Να υπολογιστεί το ολοκλήρωμα $\iint_R \sin \frac{1}{2}(x+y)\cos \frac{1}{2}(x-y)\,dA$, όπου R το τρίγωνο με κορυφές (0,0),

3

(2,0), (1,1), χρησιμοποιώντας τον μετασχηματισμό $u=\frac{1}{2}(x+y), v=\frac{1}{2}(x-y).$

Απάντηση: $1 - \frac{1}{2} \sin 2$

21. Να βρεθεί με αλλαγή μεταβλητών το ολοκλήρωμα $\iint\limits_R \frac{y-4x}{y+4x}\,dA,$ όπου R το χωρίο που περικλείεται από τις y=4x, y=4x+2, y=2-4x και y=5-4x.

Απάντηση: $\frac{1}{4} \ln \frac{5}{2}$

22. Χρησιμοποιώντας τον μετασχηματισμό u=x, v=z-y, w=xy να βρεθεί το ολοκήρωμα

$$\iiint\limits_{C} (z-y)^2 xy \, dV,$$

όπου G το χωρίο που περικλείεται από τις επιφάνειες x=1, x=3, z=y, z=y+1, xy=2 και xy=4.

Απάντηση: 2 ln 3.

23. Να υπολογιστούν τα παρακάτω ολοκληρώματα με αλλαγή σε πολικές συντεταγμένες.

i)
$$\iint\limits_R \sin \left(x^2 + y^2 \right) dA$$
, όπου R το χωρίο που περικλείεται από τον κύκλο $x^2 + y^2 = 9$.

ii) $\iint\limits_R \sqrt{9-x^2-y^2}\,dA,$ όπου R το χωρίο που περικλείεται από το τμήμα του κύκλου $x^2+y^2=9$ στο πρώτο τεταρτημόριο.

iii)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2 + y^2) \, dy \, dx$$

iv)
$$\int_{-2}^{-2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} e^{-(x^2+y^2)} dx dy$$

Απάντηση: i) $\pi(1 - \cos 9)$ ii) $9\pi/2$ iii) $\pi/8$ iv) $(1 - e^{-4})\pi$

24. Έστω S η επιφάνεια της σφαίρας $x^2+y^2+z^2=16$ μεταξύ των επιπέδων z=1 και z=2. Να εκφραστεί το εμβαδόν της επιφάνειας S με διπλό ολοκλήρωμα και να υπολογιστεί με αλλαγή σε πολικές συντεταγμένες.

Απάντηση: 8π

25. Να βρεθεί ο όγκος των παρακάτω στερεών με κυλινδρικές συντεταγμένες.

- i) Το στερεό μεταξύ του παραβολοειδούς $z=x^2+y^2$ και του επιπέδου z=9.
- ii) Το στερεό που φράσσεται από πάνω από τη σφαίρα $x^2+y^2+z^2=1$ και από κάτω από τον κώνο $z=\sqrt{x^2+y^2}.$

Απάντηση: i) $81\pi/2$ ii) $\frac{\pi}{3}(2-\sqrt{2})$

26. Να βρεθεί με σφαιρικές συντεταγμένες ο όγκος του στερεού που βρίσκεται μέσα στη σφαίρα $x^2+y^2+z^2=9$, έξω από των κώνο $z=\sqrt{x^2+y^2}$ και πάνω από το xy-επίπεδο.

Απάντηση: $9\sqrt{2}\pi$

27. Να υπολογιστούν τα ολοκληρώματα με αλλαγή σε κυλινδρικές ή σφαιρικές συντεταγμένες.

i)
$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{a-x^{2}-y^{2}} x^{2} dz dy dx \quad (a > 0)$$

ii)
$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} e^{-(x^2+y^2+z^2)^{3/2}} dz dy dx$$

Απάντηση: i)
$$\frac{\pi a^6}{48}$$
 ii) $\frac{\pi}{3}(1 - e^{-1})$