

Data Preparation

Every data science endeavor begins with source data that will hopefully provide insights on a question (business, technical, scientific, etc).

Each data set will present with its own characteristic data quality issues that must be identified, characterized, and (if problematic) corrected or mitigated.

The objective of data preparation is to yield a data set that can be effectively analyzed and, if desired, used as a training resource to make predictions with machine learning methods.

Background of this project

This work was originally performed to create a submission to the MIT Applied Data Science Program Mega Hackathon for Wilson Analytics in 2022 Winter.

Problem Statement

One of the leading financial institutions in India wants to leverage Machine Learning techniques to determine the client's loan repayment abilities and take proactive steps to reduce the magnitude of exposure to default

Goal

The goal of the problem is to predict whether a client will default on the loan payment or not, given the recent data of all the loan transactions. This can help the institution to distinguish future applicants who might default. For each ID in the Test Dataset, you must predict the "Default" level.

Data Cleaning Workflow

- **Data Collection:** Collect the data from various sources like databases, spreadsheets, web scraping, or APIs. This step may also include combining data from multiple sources.
- **Data Exploration and Preprocessing:** Explore the data to understand its structure and characteristics. Preprocess the data by handling missing values, identifying outliers, and transforming variables.
- **Data Cleaning:** Clean the data by removing duplicate entries, correcting typos, standardizing variables, and dealing with inconsistencies in the data.
- **Data Transformation:** Transform the data by normalizing, scaling, or encoding variables as required.
- **Feature Engineering:** Engineer new features that might improve model performance. This might include creating new variables based on existing variables, aggregating data, or extracting features from text or images.
- **Data Sampling:** Sample the data to ensure that the data is representative of the population it comes from.
- **Data Splitting:** Split the data into training, validation, and testing sets for model building and evaluation.
- **Data Visualization:** Visualize the data to understand patterns, correlations, and outliers in the data.
- **Iterative Refinement:** Iterate through the previous steps to refine the data as needed. This process involves going back and forth between steps until the data is ready for modeling.
- Data Reporting: Report on the cleaning process, including any changes made to the data, and document the final cleaned dataset.

Tech Stack

A representative tech stack for data cleaning might include the following tools:

- **Data Wrangling Libraries:** Libraries like **pandas** in **Python** or **data.table** in **R** are commonly used to manipulate and transform data, which is a key step in the data cleaning process.
- **Data Visualization Libraries:** Libraries like **matplotlib** or **ggplot2** are used for data visualization, which can help identify outliers, inconsistencies, and other data quality issues.
- Text Processing Libraries: Text data is often a major source of data cleaning challenges, so libraries like NLTK or spaCy can be used for cleaning, preprocessing, and feature engineering on textual data.
- Data Quality Tools: Data quality tools like OpenRefine or Trifacta are used for identifying and correcting errors in data, handling missing data, and dealing with inconsistencies.
- **Version Control Tools:** Version control tools like **Git** are used to track changes made to the data cleaning process and to collaborate with other team members.
- Cloud Storage and Computing: Cloud platforms like Amazon Web Services, Microsoft Azure, or Google Cloud
 Platform can be used for storing large datasets and for accessing computing resources needed to process data at
 scale.
- Data Cleaning Frameworks: Some data cleaning frameworks like Dora or Great Expectations can automate some
 parts of the data cleaning process and ensure that the data is cleaned and prepared for analysis according to the best
 practices and guidelines.

Tech Stack specific to this project

Python

collection of libraries and tools for tasks such as data cleaning, visualization, statistical analysis, and machine learning

numpy

Provides efficient array-based computing capabilities used to handle missing values, reshape data, and transform variables

pandas

Provides functions for handling missing data, merging and reshaping datasets, and filtering and transforming data

matplotlib

Used to create customizable and high-quality plots and visualizations to aid in identifying patterns and trends in the data

pyplot

Matplotlib module used to create interactive visualizations and facilitate data exploration

seaborn

Visualization capabilities that can help identify outliers and other data quality issues

sklearn(scikit-learn)

Supports various data preprocessing techniques, such as handling missing values and scaling features.

parquet

A columnar storage format, compatible with a wide range of data processing tools, including Hadoop, Spark, and SQL-based databases)

Data Quality Assessment

Data Dictionary

Whether data is sourced from consumer surveys, sensors, legacy excel files, web scraping, or many of the other ways that data can be accessed, certain parameters of the data should be accessible, captured and curated in a Data Dictionary.

A Data Dictionary usually provides a listing (table in this case) of the precise label for each row and column, attributes (data type) and a description of the data found in each column.

For this project, a data dictionary was provided, as shown in the following slide. This dictionary also provides guidance on the values (strings) to be encoded with respect to the categorical data.

A first activity is to evaluate the data dictionary for veracity. For example, in this case, 'Business' had three strings and not two, as shown in the provided dictionary.

Features	Description
ID	ld of the Applicant.
Date_Of_Disbursement	The Date when the Loan is Disbursed.
Business	Type of Business. Existing or New. ENCODE: Existing = 0, New = 1
Jobs_Reatained	The total number of Jobs Retained by the business.
Jobs_Created	The total number of Jobs Created by the business.
Year_Of_CommitmentXS	Fiscal year of commitment.
Guaranteed_ApprovedXS_Loan	The Guaranteed Amount of Loan that has been approved by the Financial Company.
Borrower_NameXS	The Name of the borrower.
Low_Documentation_Loan	Whether the Documentation is low or not? ENCODE: No = 0, Yes = 1
Demography	Whether the borrower belongs to urban or rural locality? ENCODE: urban = 0, rural = 1
State_Of_Bank	The State of the Bank which has approved the Loan
ChargedOff_Amount	The Amount that has been charged off
Borrower_City	The City where the borrower lives.
Borrower_State	The State where the borrower lives.
Gross_Amount_Balance	The Gross amount that has been outstanding in the Loan.
Count_Employees	The total number of employees in the business.
Classification_CodeXS	North American Industry Classification Code.
Loan_Approved_Gross	Application process day
Gross_Amount_Disbursed	The total Loan Amount that has been disbursed.
Loan_Term	The total Loan term in months.
Commitment_Date	The date when the SBA commitment is issued.
Primary_Loan_Digit	The Primary Key Identifier of the Loan Account.
Code_Franchise	The Franchise Code.
Name_Of_Bank	The Name of the Bank that has approved the Loan.
Revolving_Credit_Line	Revolving Line of Credit. (Yes/No) ENCODE: Yes = 0, No = 1
Default (TARGET VARIABLE)	Did not default = 0, Defaulted = 1

XS = extra space to be removed

train_data ID **Business**

Source data CSV files are ingested into dataframes (Pandas) and then displayed to provide an initial analysis of data quality issues.

Column label "Jobs Reatained" is misspelled

Several column labels have inappropriate extra spaces that need to be removed (blue arrows)

Date data appears in two different formats

Some of the monetary data contains both numerical and string data

test_data

	0	1	2	3	4
ID	105000	105001	105002	105003	105004
Date_Of_Disbursement	31-Mar-06	31-Jan-95	30-Sep-06	31-Jul-00	30-Jun-05
Business	Existing	Existing	Existing	New	Existing
Jobs_Reatained	19	0	7	2	0
Jobs_Created	0	0	5	0	0
Year_Of_Commitment	2006	1995	2006	2000	2005
Guaranteed_Approved _Loan	Rs.4064000.0	Rs.1463040.0	Rs.812800.0	Rs.2032000.0	Rs.23469600.0
Borrower_Name	Diversified Display Products o	FOOTE CONSULTING GROUP, INC.	INTEGRATED COMERCIAL ENTERPRIS	FIRST IN RESCUE EQUIPMENT	GLASGOW AUTOMOTIVE, INC.
Low_Documentation_Loan	No	Yes	No	No	No
Demography	Urban	Undefined	Urban	Urban	Rural
State_Of_Bank	GJ	AS	ML	TR	TR
ChargedOff_Amount	Rs.8050784.0	Rs.0.0	Rs.1625600.0	Rs.0.0	Rs.0.0
Borrower_City	Safidon	Nanjikottai	Tonk	Musabani	Adityapur
Borrower_State	Haryana	Tamil Nadu	Rajasthan	Jharkhand	Jharkhand
Gross_Amount_Balance	Rs.0.0	Rs.0.0	Rs.0.0	Rs.0.0	Rs.0.0
Count_Employees	17	2	2	2	6
Classification_Code	326199	0	541611	0	441310
Loan_Approved_Gross	Rs.8128000.0	Rs.1625600.0	Rs.1625600.0	Rs.4064000.0	Rs.31292800.0
Gross_Amount_Disbursed	Rs.9403852.16	Rs.1625600.0	Rs.3450336.0	Rs.6916196.48	Rs.31292800.0
Loan_Term	57	90	81	18	219
Commitment_Date	9-Mar-06	14-Dec-94	25-Aug-06	28-Jun-00	2-May-05
Primary_Loan_Digit	1702825000	7908833003	2361626001	3814664008	8830244003
Code_Franchise	0	1	1	1	1
Name_Of_Bank	ICICI Bank Ltd.	South Indian Bank Ltd.	IDBI Bank Limited	Aryavart Bank	Paschim Banga Gramin Bank
Revolving_Credit_Line	Yes	No	Yes	Yes	No

Check for dataframe shape

```
# Determine the shape of the TRAINING dataset
train_data.shape
```

(105000, 26)

```
# Determine the shape of the TESTING dataset
test_data.shape
```

(45000, 25)

Training Data

- Rows = **105,000**
- Columns = **26**

Testing Data

- Rows = **45,000**
- Columns = **25**
 - As expected, the testing data set lacks the target variable column

Observations on Initial Data

These columns will be dropped:

- 'Jobs_Retained'
- 'Jobs_Created'
- 'Count_Employees'
- 'ID'
- 'Date Of Disbursement'
- 'Commitment_Date'
- 'Code_Franchise'
- 'Year_Of_Commitment'
- 'Classification Code'
- 'Borrower Name'
- 'Borrower_City'
- 'Gross Amount Balance'
- 'Revolving_Credit_Line'
- 'State_Of_Bank'
- 'Borrower_State'
- 'Name_Of_Bank'
- 'Primary_Loan_Digit'
- 'Loan_Approved_Gross'

Target Variable = 'Default' (Did not default = 0, Defaulted = 1)

Categorical variables that need to be encoded:

- 'Business' (Existing or New)
- 'Low_Documentation_Loan' (Low or Not)
- 'Demography' (Undecided, Urban or Rural)

Data Pre-Processing

Renaming misspelled and poorly formatted column names

```
columns = {'ChargedOff_Amount ': 'ChargedOff_Amount', 'Gross_Amount_Disbursed ': 'Gross_Amount_Disbursed', 'Guaranteed_Approved_Loan': 'Guaranteed_Approved_Loan', 'Jobs_Reatained': 'Jobs_Retained', 'Borrower_Name ': 'Borrower_Name', 'Classification_Code ': 'Classification_Code', 'Year_Of_Commitment ': 'Year_Of_Commitment'}

train_data = train_data.rename(columns, axis = 1)

test_data = test_data.rename(columns, axis = 1)
```

Note:

- Many of these renamed columns will be dropped in the next step
- I have included this here as a demonstration of one important aspect of the data cleaning workflow

Dropping columns

```
cols_to_drop = ['Jobs_Retained', 'Jobs_Created ', 'Count_Employees', 'ID', 'Date_Of_Disbursement', 'Commitment_Date', 'Code_Franchise', 'Year_Of_Commitment', 'Classification_Code', 'Borrower_Name', 'Borrower_City', 'Gross_Amount_Balance', 'Revolving_Credit_Line', 'State_Of_Bank', 'Borrower_State', 'Name_Of_Bank', 'Primary_Loan_Digit', 'Loan_Approved_Gross'] train_data.drop(columns=cols_to_drop, inplace=True) test_data.drop(columns=cols_to_drop, inplace=True)
```

After dropping these columns

```
train_data.shape = 8 columns and 105,000 rows
test_data.shape = 7 columns and 45,000 rows
```

New Data Dictionary, after pre-processing

Features	Description
Business	Type of business. ENCODE: Existing = 0, New = 1
Guaranteed_Approved_Loan	The guaranteed amount of loan that has been approved by the financial company.
Low_Documentation_Loan	Whether the loan documentation is low or not. ENCODE: No = 0, Yes = 1
Demography	Whether the borrower lives in an urban or rural locality? ENCODE: Undefined = 0, Urban = 1, Rural = 2
ChargedOff_Amount	The amount that has been charged off (loss to financial company due to default)
Gross_Amount_Disbursed	The total loan amount that has been disbursed.
Loan_Term	The total loan term in months.
Default (TARGET VARIABLE)	Did not default = 0, Defaulted = 1

Checking for data types

train_data test data train data.dtypes test data.dtypes object Business object Business Guaranteed Approved Loan object Guaranteed Approved Loan object object Low Documentation Loan object Low Documentation Loan Demography object Demography object ChargedOff Amount object ChargedOff Amount object Gross Amount Disbursed Gross Amount Disbursed object object Loan Term int64 Loan Term int64 Default int64 dtype: object dtype: object

Fields in the red boxes SHOULD be numeric but are being detected as 'object' (string)

Correcting Monetary Data Issues

All of the following columns have entries that relate to monetary amounts:

- 'Guaranteed_Approved_Loan'
- 'Gross_Amount_Balance'
- 'Gross_Amount_Disbursed'
- 'ChargedOff_Amount'

These monetary columns are detected as an 'object' because, in addition to the numerical data, a prefix indicating that these numbers are in Rupees ('Rs.') is present

Various monetary columns, listing rupee amounts, are detected as 'object' due to the string 'Rs." being included.

train data.head().T 1 2 3 4 **Business** Existing New Existing New Existing Rs.32735520.0 Rs.1422400.0 Rs.2032000.0 Guaranteed Approved Loan Rs.33121600.0 Rs.22981920.0 Low Documentation Loan No No No No No Demography Undefined Urban Urban Urban Urban Rs.0.0 Rs.22862519.68 ChargedOff_Amount Rs.0.0 Rs.38283367.68 Rs.0.0 Rs.43647360.0 Rs.5961400.32 Rs.4064000.0 Rs.30642560.0 Gross_Amount_Disbursed Rs.40640000.0 Loan_Term 126 123 126 104 Default 0 0 0 1

test_data

Code to address the data heterogeneity

```
def replace and cast to int(data, columns, replace dict):
  for column in columns:
    data[column] = data[column].replace(replace_dict, regex=True).astype(float)
    data[column] = data[column].apply(lambda x: int(round(x)))
columns = ['Guaranteed Approved Loan', 'Gross Amount Disbursed', 'ChargedOff Amount']
replace dict = {'Rs.': ", ',': "}
replace and cast to int(train data, columns, replace dict)
replace and cast to int(test data, columns, replace dict)
```

Corrected monetary columns

train_data

train_data.head().T

	0	1	2	3	4
Business	Existing	New	Existing	New	Existing
Guaranteed_Approved_Loan	33121600.0	32735520.0	1422400.0	2032000.0	22981920.0
Low_Documentation_Loan	No	No	No	No	No
Demography	Undefined	Urban	Urban	Urban	Urban
ChargedOff_Amount	0.0	38283367.68	0.0	0.0	22862519.68
Gross_Amount_Disbursed	40640000.0	43647360.0	5961400.32	4064000.0	30642560.0
Loan_Term	126	123	90	126	104
Default	0	1	0	0	1

test_data

test_data.head().T

0	1	2	3	4
Existing	Existing	Existing	New	Existing
4064000.0	1463040.0	812800.0	2032000.0	23469600.0
No	Yes	No	No	No
Urban	Undefined	Urban	Urban	Rural
8050784.0	0.0	1625600.0	0.0	0.0
9403852.16	1625600.0	3450336.0	6916196.48	31292800.0
57	90	81	18	219
	Existing 4064000.0 No Urban 8050784.0 9403852.16	Existing Existing 4064000.0 1463040.0 No Yes Urban Undefined 8050784.0 0.0 9403852.16 1625600.0	Existing Existing Existing 4064000.0 1463040.0 812800.0 No Yes No Urban Undefined Urban 8050784.0 0.0 1625600.0 9403852.16 1625600.0 3450336.0	Existing Existing Existing New 4064000.0 1463040.0 812800.0 2032000.0 No Yes No No Urban Urban Urban Urban 8050784.0 0.0 1625600.0 0.0 9403852.16 1625600.0 3450336.0 6916196.48

Check data type

train data

Business

Demography

Loan Term

dtype: object

Default

train data.dtypes

ChargedOff Amount

Guaranteed Approved Loan

Low Documentation Loan

Gross Amount Disbursed

Check data type by using this code:

train_data.dtypes test_data.dtypes

Once the 'Rs.' string was deleted from the monetary columns the data type has changed to the correct type (from 'object' to 'int64')

train data test data train data.dtypes test data.dtypes object Business object Business Guaranteed Approved Loan Guaranteed Approved Loan object object Low Documentation Loan Low Documentation Loan object object Demography object Demography object ChargedOff Amount object object ChargedOff Amount object Gross Amount Disbursed object Gross Amount Disbursed Loan Term int64 Loan Term int64 Default int64 dtype: object dtype: object

object

object

object

int64

int64

int64

int64

int64

test data

Business

Demography

Loan Term

dtype: object

test data.dtypes

ChargedOff Amount

Guaranteed Approved Loan

Low Documentation Loan

Gross Amount Disbursed

object

int64

object

object

int64

int64

int64

Check for missing data

Missing Data

train_data

train_data.isnull().sum()*100/len(train_data)

Business 0.014286 Guaranteed Approved Loan 0.000000 Low Documentation Loan 0.349524 Demography 0.000000 ChargedOff Amount 0.000000 Gross Amount Disbursed 0.000000 Loan Term 0.000000 Default 0.000000 dtype: float64

test_data

test_data.isnull().sum()*100/len(test_data)

Business 0.013333
Guaranteed_Approved_Loan
Low_Documentation_Loan 0.295556
Demography 0.000000
ChargedOff_Amount 0.000000
Gross_Amount_Disbursed 0.000000
Loan_Term 0.000000
dtype: float64

Observations

Missing Values in **TRAINING data**:

- 'Business' = 0.014 %
- 'Low_Documentation_Loan' = 0.35 %

Missing Values in **TESTING data**:

- 'Business' = 0.013 %
- 'Low_Documentation_Loan' = 0.30 %

Examine unique values

Unique Values

train_data

test_data

<pre>train_data.nunique()</pre>		test_data.nunique()	
Business	3	Business	3
Guaranteed_Approved_Loan	10138	Guaranteed_Approved_Loan	6151
Low_Documentation_Loan	7	Low_Documentation_Loan	7
Demography	3	Demography	3
ChargedOff_Amount	23059	ChargedOff_Amount	10833
Gross_Amount_Disbursed	23443	Gross_Amount_Disbursed	11723
Loan Term	344	Loan_Term	329
Default	2	dtype: int64	
dtype: int64			

Encode Categorical Data

Encoding of Categorical Values

As shown at the beginning of this project, certain columns must be translated from a text string (eg, 'Yes', 'No', etc) into a numeric quantity to make it accessible to further statistical analysis and inclusion in prediction models.

A method called **Nominal Label Encoding** will be used to prepare the categorical data for machine learning methods

In Nominal Label Encoding, a specific value is assigned to a specific string found in a specific column of data. This method uses dictionaries to map the assigned numeric value in the place of the specified string value.

This method can be considered a simple solution as it **does NOT create new columns** as is the case of One Hot Encoding.

As has been the case throughout this project, all data preparation done on the training data set is also done on the testing data set.

Encoding of Categorical Values

'Business'

- **'Existing**' = 0
- 'New' = 1

'Low_Documentation_Loan'

- '**No**' = 0
- 'Yes' = 1
- All **173** of the '**O**' entries remain '**O**' (UNCHANGED DURING ENCODING)
- All 95 of the 'S' entries are assigned '0'
- All 60 of the 'A' entries are assigned '0'
- All 89 of the 'C' entries are assigned '1'
- All 6 of the 'R' entries are assigned '1'

'Demography'

- **'Undefined'** = 0
- 'Urban' = 1
- 'Rural' = 2

Code

def encode column(data, column, encoding dict):

```
return data[column].map(encoding dict)
# Encoding dictionaries
business encoding dict = {'Existing': 0, 'New': 1}
low encoding dict = {'No': 0, 'Yes': 1, 'S': 0, 'A': 0, 'C': 1, 'R': 1}
dem encoding dict = {'Undefined': 0, 'Urban': 1, 'Rural': 2}
# Encode columns in train data
train data['Business'] = encode column(train data, 'Business', business encoding dict)
train data['Low Documentation Loan'] = encode column(train data, 'Low Documentation Loan', low encoding dict)
train data['Demography'] = encode column(train data, 'Demography', dem encoding dict)
# Encode columns in test data
test data['Business'] = encode column(test data, 'Business', business encoding dict)
test data['Low Documentation Loan'] = encode column(test data, 'Low Documentation Loan', low encoding dict)
test data['Demography'] = encode column(test data, 'Demography', dem encoding dict)
```

After encoding

	train_c	data							
	Business	Guaranteed_Approved	_Loan I	Low_Documentation_Loan	Demography	ChargedOff_Amount	Gross_Amount_Disbursed	Loan_Term	Default
0	0.0	331	121600	0.0	0	0	40640000	126	0
1	1.0	327	735520	0.0	1	38283368	43647360	123	1
2	0.0	14	122400	0.0	1	0	5961400	90	0
3	1.0	20	032000	0.0	1	0	4064000	126	0
4	0.0	229	981920	0.0	1	22862520	30642560	104	1
									
	test_c	data							
	Business	Guaranteed_Approve	ed_Loan	Low_Documentation_Loar	Demography	y ChargedOff_Amoun	t Gross_Amount_Disburse	d Loan_Ter	m
0	0.0)	4064000	0.0	,	1 805078	4 940385	2 5	7
1	0.0		1463040	1.0) ()	0 162560	0 9	0

0.0

0.0

0.0

0.0

1.0

0.0

After encoding

After encoding, nulls still exist

<pre>train_data.isnull().sum()</pre>	
Business	120
Guaranteed_Approved_Loan	0
Low_Documentation_Loan	540
Demography	0
ChargedOff_Amount	0
Gross_Amount_Disbursed	0
Loan_Term	0
Default	0
dtype: int64	

```
test_data.isnull().sum()

Business 60
Guaranteed_Approved_Loan 0
Low_Documentation_Loan 197
Demography 0
ChargedOff_Amount 0
Gross_Amount_Disbursed 0
Loan_Term 0
dtype: int64
```

Removing the nulls

```
def fill na(df, columns):
 for col in columns:
    df[col] = df[col].fillna(0)
 return df
columns to fill = ['Business', 'Low Documentation Loan']
train data = fill na(train data, columns to fill)
columns to fill = ['Business', 'Low Documentation Loan']
test data = fill na(test data, columns to fill)
```

```
train_data.isnull().sum()

Business 0
Guaranteed_Approved_Loan 0
Low_Documentation_Loan 0
Demography 0
ChargedOff_Amount 0
Gross_Amount_Disbursed 0
Loan_Term 0
Default 0
dtype: int64
```

```
Business 0
Guaranteed_Approved_Loan 0
Low_Documentation_Loan 0
Demography 0
ChargedOff_Amount 0
Gross_Amount_Disbursed 0
Loan_Term 0
dtype: int64
```

Outliers

Addressing Outliers

Rationale for normalization to address outliers

- Some machine learning methods assume normal distributions in the input data
- Data with significant variance/outliers may compromise ML performance
- Outliers and variance are often important aspects of data so they should not be simply dropped
- I will be comparing the impact of the use of StandardScaler(), log transform and no normalization on data distribution and then, later, on ML performance in another project.

Addressing Outliers - StandardScaler()

Rationale for using StandardScaler() to address outliers

- This is a method/function provided by Sklearn library, specifically Preprocessing (sklearn.preprocessing.StandardScaler)
- It standardizes features by removing the mean and scaling to unit variance
- Centering and scaling happens independently on each feature by computing the relevant statistics on the samples in the training set.
- Some machine learning methods assume that all features are centered around
 and have variance in the same order. If a feature has a variance that is orders of magnitude larger than others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected.

Addressing Outliers - Log Transform

Rationale for using Log Transformation to address outliers

- Machine learning methods assume normal distributions in the input data
- Data with significant variance/outliers may compromise ML performance
- Outliers and variance are often important aspects of data so they should not be simply dropped
- Log Transformation brings data into a distribution more effectively approximating a standard curve
- It preserves relative changes and magnitude of change

Addressing Outliers

A LOG transform is done on variable data and is placed into the data set as a NEW column called 'columnName_log'

```
train_data['Loan_Term_log'] = np.log(train_data['Loan_Term'].where(train_data['Loan_Term'] > 0, 1))
```

This code:

- checks for the elements in the 'Loan_Term' column that are greater than 0 using the where method.
 - If >0, the value is passed as it is to the log function
 - If NOT > 0, the value 1 is passed to the log function
- This is done so that the log function is not called on negative or zero values (which would be undefined and return negative infinite values)
- For 0 values 1 is substituted to yield a zero (the natural log of 1)
- Is repeated for other variables

StandardScaler() and log transform code

StandardScaler()

```
scaler = StandardScaler()

column_name_column = train_data[['column_name']].values
column_name_column_scaled = scaler.fit_transform(column_name_column)

train_data['column_name_scaled'] = column_name_column_scaled
```

Log transform

```
train_data['column_name_log'] = np.log(train_data['column_name'].where(train_data['column_name'] > 0, 1))
```

'Loan_Term'

Impact of normalization (log transformation) on 'Loan_Term' variable

Impact of normalization (log transformation) on 'Loan_Term' variable

Box Plot

'ChargedOff_Amount'

Impact of normalization (log transformation) on 'ChargedOff_Amount' variable

Impact of normalization (log transformation) on 'ChargedOff_Amount' variable

0 (orange) = no default 1 (dk orange) = defaulted

Box Plot

'Guaranteed_Approved_Loan'

Impact of normalization (log transformation) on 'Guaranteed_Approved_Loan' variable

Impact of normalization (log transformation) on 'Guaranteed_Approved_Loan' variable

Impact of normalization (log transformation) on 'Guaranteed_Approved_Loan' variable

'Gross_Amount_Disbursed'

Impact of normalization (log transformation) on 'Gross_Amount_Disbursed' variable

Impact of normalization (log transformation) on 'Gross_Amount_Disbursed' variable

0 (orange) = no default 1 (dk orange) = defaulted

Box Plot

