Machine Learning SICCS-Oxford 2021

Dr Thomas Robinson, Durham University

June 2021

Hello!

Today's workshop:

- ▶ 1 hr 15 min lecture
- ▶ 15 minute break/Q&A
- ▶ 1.5 hour coding walkthrough on constructing neural networks in R

Caveat: three hours is not a lot of time!

- Introduce where I think ML is most useful in social sciences
- Equip you with some fundamental tools that can be applied across:
 - Contexts
 - Data sources
 - Algorithms

Lecture content

Goals are threefold:

- 1. Brief overview of machine learning
 - ► What is ML?
 - Prediction problems
 - ► Bias-variance tradeoff
- 2. Building basic neural networks
 - ► Highly flexible, "engineering-grade" ML method
 - ► Now easily implementable in R

(Machine) learning and statistics

ML is a vague term:

"Machine learning is a subfield of **computer science** that is concerned with building **algorithms** which, to be useful, rely on a collection of examples of some phenomenon... the process of solving a practical problem by 1) gathering a dataset, and 2) algorithmically building a statistical model based on that dataset." – Burkov 2019

To me, ML is defined by:

- 1. "Computationally-intensive" methods
- 2. Where researchers underspecify the relationship between variables
- 3. And allow the computer to search for (or learn) these relationships

Machine learning

Expectation: I need a \$1m super computer

Reality: It runs in minutes on a personal computer

Figure 1: Google: Tensor Processing Unit server rack

Why machine learning?

Machine learning can be:

- Powerful
- ▶ Flexible
- Reduce the burden on the researcher

It helps solve lots of **prediction problems** and can assist in **inference problems** too

But ML is not a panacea!

- ▶ ML cannot solve problems of poor research design
- And can introduce its own issues

Twitter apologises for 'racist' imagecropping algorithm

Users highlight examples of feature automatically focusing on white faces over black ones

Prediction and inference

Consider the following linear model:

$$\hat{y}_i = \hat{\beta_0} + \hat{\beta_1} x_{1i}$$

- Inference is concerned with estimating the size/direction of the relationship between variables ($\hat{\beta}$ problems)
- Prediction is concerned with estimating some outcome, using the relationships between variables (\hat{y} problems)

These two facets are clearly connected:

- ▶ If we know the size/direction of the relationships, we can predict the outcome
- ▶ But we rarely know (or even pretend to know) the true model
- lacktriangle Sometimes we can get good at $\hat{m{y}}$ problems without knowing $\hat{m{eta}}$

There are \hat{X} problems too

We can also think about where the prediction problem lies:

- $ightharpoonup \hat{y}$ problems are about the dependent variable
 - ► To predict an election winner...
 - or the probability of revolution...
 - ... or the weather tomorrow
 - ► These are not necessarily inferential problems
- \hat{X} problems are about independent variables
 - Dimensions of interest that may be important to our theory...
 - but which are not directly observable (i.e. latent)
 - We want to make predictions over X so we can test an inferential theory about the relationship between X and y

Bias and variance

Bias is a feature of the estimator:

- ightharpoonup Bias $_{eta}=(\mathbb{E}[\boldsymbol{\hat{eta}}]-eta)$
- lacksquare With OLS under Gauss Markov assumptions, $(\mathbb{E}[\hat{oldsymbol{eta}}]-oldsymbol{eta})=0$

Variance occurs due to resampling from the population:

- Parameter estimates change (slightly) as we re-estimate the model with new data
- $\blacktriangleright \ \mathbb{V}_{\hat{\boldsymbol{\beta}}} = \mathbb{E}[(\mathbb{E}[\hat{\boldsymbol{\beta}}] \hat{\boldsymbol{\beta}})^2]$
- ► The average distance between a particular parameter estimate and the mean of parameter estimates over multiple samples

Visualising bias and variance

Bias-variance trade off

So can't we just choose a low-variance, low-bias modeling strategy? Not quite!

Assume we calculate the mean squared error of some new data \mathbf{X}' given a trained model \hat{f} :

$$\mathsf{MSE} = \mathbb{E}[(\hat{f}(\boldsymbol{X'}) - y)^2].$$

We can decompose this further:

$$\textit{MSE} = \underbrace{\mathbb{E}[(\hat{f}(\mathbf{X'}) - \mathbb{E}[\hat{y}])^2]}_{\text{Variance}} + \underbrace{(\mathbb{E}[\hat{\mathbf{y}}] - \mathbf{y})^2}_{\text{Bias}^2}$$

So holding the MSE fixed, if we reduce the variance we must increase the bias

▶ I.e. there is a bias-variance trade-off

Visualising the trade-off

A bit of bias can be useful

Bias in ML

ML methods are typically powerful because they allow a tradeoff between variance and bias:

- We do this by "regularizing" our estimator
- Good for prediction
- Bad for inference (in simple applications)

A nice introduction to bias, regularisation and ML is provided in: Kleinberg et al (2015). Prediction Policy Problems, AER.

Effect heterogeneity

Suppose we have 8 observations of an outcome, treatment assignment and two covariates:

у	d	Gender	Education	у	d	Gender	Education
12	1	Female	High	?	0	Female	High
13	1	Female	Low	?	0	Female	Low
5	0	Female	High	?	1	Female	High
6	0	Female	Low	?	1	Female	Low
7	1	Male	High	?	0	Male	High
8	1	Male	Low	?	0	Male	Low
7	0	Male	High	?	1	Male	High
6	0	Male	Low	?	1	Male	Low

Table 1: Observed

Table 2: Unobserved counterfactual

 $ATE_{Observed} = 10 - 6 = 4$

The ATE may mask considerable heterogeneity

Conditional Average Treatment Effect

We can break down our ATE into conditional estimates:

$$\mathsf{CATE} = \mathbb{E}[Y|d=1, X=a] - \mathbb{E}[Y|d=0, X=a]$$

In particular, we can think about estimating the individual level effect, i.e.

$$ITE = [Y_i | d = 1] - [Y_i | d = 0]$$

- This is not an average
- Conventionally impossible to estimate given fundamental problem of causal inference

Prediction problem:

► For those treated (control) units, what would they have done under control (treatment)?

Enter the neural network

What we need is a flexible way of modelling the potential relationship between \mathbf{y} , \mathbf{d} and \mathbf{X} :

- Neural networks offer one such approach
- Very popular in industry
- Recently a lot more accessible in R
- Other methods available:
 - ▶ Random forests
 - BART
 - Best subset modelling

Simple perceptron model

Suppose we have a single vector of input data \boldsymbol{x} , and we want to predict the output \boldsymbol{y}

A simple perceptron model looks like the following:

Figure 2: Single node, single layer perceptron model

w is the weight term and b is the bias term – in this simple case, both are scalar.

Activation functions ϕ

The activation function is simply a function applied to the result of wx + b, that controls the range of the output vector

 ϕ may simply be the ${\bf identity}$ function:

▶ I.e.
$$\phi(\mathbf{x}) = \mathbf{x}$$

Sigmoid function:

Rectified Linear Unit (ReLU):

These functions (and others) are particularly useful because they have known derivatives – which we'll return to later!

Gaining a prediction from our simple model

And we observe the following input vector x:

$$\begin{bmatrix} 5 \\ 1 \\ -1 \end{bmatrix}$$

What is \hat{y} ?

Multiple inputs

The first model is very basic, so we can adapt it to accept **multiple** inputs:

- ▶ Let k index input variables, i.e. $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_k\}$
- ▶ Let \mathbf{w} be a vector of weights, i.e. $\mathbf{w} = \{w_1, \dots, w_k\}$

Inside our activation function we replace wx + b with

$$w_1 \mathbf{x}_1 + \ldots + w_k \mathbf{x}_k + b \equiv \sum_k w_k \mathbf{x}_k + b$$

Figure 3: Single node, multiple input perceptron model

Initialisation and training

We need to set up a network structure, prior to feeding in our data.

For a single-node perceptron model with k inputs, that means instantiating the weights and biases

- ightharpoonup A naive option sets w = 0
 - This is rarely optimal it can lead to significantly slower convergence (and can even disrupt convergence entirely)

A now standard approach is to use **Xavier initialisation** where:

$$w_k \sim \mathcal{N}(0, \frac{1}{k})$$

- where *k* is the number of inputs to the node
- ightharpoonup Typically used when ϕ is tanh or sigmoidal
- ▶ Bias terms are instantiated at zero

Loss functions

The goal of the perceptron is to minimise the predictive error between \mathbf{y} and $\hat{\mathbf{y}} = \phi(\sum_k w_k \mathbf{x}_k + b)$

Depending on the type of prediction problem, we want to use a different function:

Continuous y

- $\blacktriangleright \phi$ will be linear or ReLU
- ► Minimise the mean squared error
- ► I.e. $\frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$

Binary y

- $\blacktriangleright \phi$ will be sigmoid
- ► Minimise using **cross-entropy** loss function
- I.e. $= -\frac{1}{N} \sum_{i=1}^{n} \sum_{c=1}^{C} y_{ic} \log(\hat{y}_{ic})$
 - where c indexes the classes within the binary/categorical variable

OLS/Logistic regression as a single-layer perceptron

We can construe OLS as a single-node perceptron model,

$$\mathbf{y} = \phi(\mathbf{b} + \mathbf{w}_1 \mathbf{x}_1 + \dots + \mathbf{w}_k \mathbf{x}_k),$$

when:

- $ightharpoonup \phi$ is the identity function
- **w** is the regression coefficient vector
- b is the intercept

and solved via MLE.

Similarly logistic regression is where ϕ is the sigmoid activation function.

Limitations and extensions

A single-node perceptron model is not particularly exciting:

- With identity/sigmoid activation functions we get conventional estimators
- ► The model is linear in inputs

To complicate our models we need to think about creating a **network** of nodes

- ▶ Increase the number of computational units
- Determine the flow of information along the network

Deep learning

Complicating the network

Figure 4: Multi-layer (but not deep) network

Deep neural network

Figure 5: Multi-layer deep network

Multi-layer network notation

The computation of outputs through layer h of a neural network is:

$$\mathbf{y}^{(h)} = \sigma(\mathbf{W}^{(h)}\mathbf{y}^{(h-1)} + \mathbf{b}^{(h)}),$$

where:

- \triangleright $\mathbf{y}^{(h)}$ is a vector of outputs from layer h
- $ightharpoonup \mathbf{W}^{(h)}$ is a matrix of weights for layer h
- **b** is a vector of biases for layer h
- $ightharpoonup \sigma$ is an activation function

This model can be generalized to an arbitrary number of hidden layers H:

$$\mathbf{y} = \Phi(\mathbf{W}^{(H)}[...[\sigma(\mathbf{W}^{(2)}[\sigma(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)})] + \mathbf{b}^{(2)})]...] + \mathbf{b}^{(H)}),$$

where \mathbf{x} is a vector of inputs and $\boldsymbol{\Phi}$ is a final-layer activation function.

Fully-connected networks

In a fully connected network:

Every output from layer h is an input to every node in layer h+1

Figure 6: Fully-connected neural network

Feed-forward training

We initialise a multi-layer model like a single-layer model:

Set weight terms for each node within each layer via (Xavier) initialisation

During training, an epoch consists of:

- 1. Feeding every observation through the model
 - When there are no cycles in the network, this is called "feed-forward"
- 2. Calculate the loss associated with the prediction
- 3. Adjust weights and biases based on the **gradient** of the loss
 - This is complicated with multiple layers
 - Adjusting the weights and bias affects the output of a node
 - ... and the input of the nodes (plural!) that it feeds into!
 - This process is called backpropagation

Estimating treatment effect heterogeneity

- 1. Train a neural network model on experimental data
- 2. Use trained model to predict counterfactual outcomes
 - ► Invert treatment assignment
 - Keep all covariates the same
- 3. Estimate ITE

$$\begin{pmatrix} \widetilde{y_{i,d=1}} \\ 14 \\ 12 \\ 12 \\ 13 \\ 7 \\ 7 \\ 6 \\ 7 \end{pmatrix} - \begin{pmatrix} \widetilde{y_{i,d=0}} \\ 7 \\ 4 \\ 6 \\ 8 \\ 6 \\ 6 \end{pmatrix} = \begin{pmatrix} \textbf{ITE} & \textbf{Gender} & \textbf{Education} \\ 7 & \textbf{Female} & \textbf{High} \\ 5 & \textbf{Female} & \textbf{Low} \\ 8 & \textbf{Female} & \textbf{High} \\ 7 & \textbf{Female} & \textbf{Low} \\ -1 & \textbf{Male} & \textbf{High} \\ 1 & \textbf{Male} & \textbf{Low} \\ -2 & \textbf{Male} & \textbf{High} \\ 1 & \textbf{Male} & \textbf{Low} \end{pmatrix}$$

4. Examine how ITE varies across covariates