

Linear and Discrete Optimization

Duality

- Upper bounds
- ► The dual linear program
- Weak and strong duality

Upper bounds

MAX CT.X AEIRMAN AXED DE 12m, CE12n λ∈ IRM and λ≥0, then (λT.A) x ≤ λT.b valid for $_{C}T, X \leq \lambda^{T, b}$ P= { x Enen: Ax < b} If in addition $\chi T.A = C^T$, then VALID FOR ALL FEAS. (XT.b) Is upper bound on obj-values of feasible solutions

Quiz

Given $\max\{c^T x : x \in \mathbb{R}^n, Ax \leq b\}$. Which linear program is the one that yields the best (minimum) valid upper bound on the objective values of feasible solutions?

MIN
$$b^{T}$$
, λ

A^T, $\lambda = C$
 $\lambda \geq 0$

$$\lambda \in \mathbb{R}^m$$
 frestle

 $\lambda \geq 0$
 $\lambda^{T} \cdot A = C$

Thus $C^{T} \cdot X \leq \frac{\lambda^{T} \cdot b}{V}$

VALED FOR ALL facts.

sol. of

The dual linear program

Given max dct.
$$x : x \in \mathbb{R}^n$$
, $Ax \in b^2$, the dual.

Linear program is min $b^T \cdot y$
 $A^Ty = C$
 $A \in \mathbb{R}^{m \times n}$

 $C^{T} \times \leq \lambda^{T} b$

y e 112

420

Weak duality

Theorem (Weak duality)

Consider a linear program $\max\{c^Tx\colon x\in\mathbb{R}^n,\,Ax\leqslant b\}$ and its dual $\min\{b^Ty\colon y\in\mathbb{R}^m,\,A^Ty=c,\,y\geqslant 0\}$. If $x^*\in\mathbb{R}^n$ and $y^*\in\mathbb{R}^m$ are primal and dual feasible respectively, then $c^Tx^*\leqslant b^Ty^*$.

Proof: CT.
$$\times \leq 5^{T} \cdot y^{*}$$
 Is valid for all flos. sol. of primal.

Strong duality

Theorem (Strong duality)

Consider a linear program $\max\{c^Tx\colon x\in\mathbb{R}^n,\,Ax\leqslant b\}$ and its dual $\min\{b^Ty\colon y\in\mathbb{R}^m,\,A^Ty=c,\,y\geqslant 0\}$. If the primal is feasible and bounded, then there exist a primal feasible x^* and a dual feasible y^* with $c^Tx^*=b^Ty^*$.

Strong duality (cont.)

Optimality of B: $\lambda \in 112^{10}$ s. R. $\lambda \in AB = CT$, $\lambda i = 0$ Vi 4B

is ≥ 0 . => λ dual from.

XI.A = CT $\lambda = 0$

$$CT \cdot \chi^* = \lambda_B^T \cdot A_B \chi^* = \lambda_B^T \cdot A_B \cdot A_B^T \cdot b_B = \lambda_B^T \cdot b_B$$

$$= \lambda_B^T \cdot b$$

CASEZ: ronk(A) < n

Strong duality (cont.)

 $\lambda^{T} \cdot A - \lambda^{T}_{2} = cT \implies \lambda^{T} \cdot A \ge cT$ $\lambda^{T} \cdot (A) - \lambda^{T}_{3} = -cT \implies -\lambda^{T} \cdot A \ge -cT$ $\Rightarrow \lambda^{T} \cdot (A) = cT$ $\Rightarrow \lambda^{T} \cdot (A) =$

MAX CTX

 $Ax \leq b$ $A(x_1-x_2) \leq b$

XAIXZZO

TIAX CT(X1-X2)

 $C^{\mathsf{T}}\left(\chi_{1}^{\mathsf{x}}-\chi_{2}^{\mathsf{x}}\right)=\lambda^{\mathsf{T}}\cdot\begin{pmatrix}b\\0\\0\end{pmatrix}=\lambda_{1}^{\mathsf{T}}\cdot b$