The objective of pose graph optimization is to estimate robot trajectory (collection of poses) from relative pose measurements

- Relative pose measurements obtained from:
 - Self-motion (wheel odometry, IMU)
 - Scan matching
 - Visual feature registration (sparse features)
 - ICP & variants (dense point clouds)
 - ...

Related work

- Lu and Milios [Autonomous Robots 1997]: first formulation
- Frese et al. [TRO 2005]: multi-level relaxation
- Thrun and Montemerlo [IJRR 2006]: conjugate gradient-based optimization
- Olson et al. [ICRA 2006]: new parametrization with improved convergence
- Grisetti et al. [ITS 2009]: stochastic gradient on a tree parametrization (TORO)
- Kuemmerle et al. [ICRA 2011]: Gauss-Newton on manifold (g2o)
- Kaess et al. [IJRR 2012]: incremental algorithm (iSAM2)
- Olson and Agarwal [RSS 2012]: estimation robustness
- Sünderhauf and Protzel [ICRA 2012, IROS 2012]: estimation robustness
- Huang et al. [ICRA 2010, RSS 2012]: convergence properties

Related work

- Pose graph optimization leads to a hard non-convex optimization problem
- State-of-the-art approaches apply iterative optimization techniques:
- 1. start from an initial guess
- 2. approximate the original problem with a convex problem
- 3. solve the convex problem, obtaining a new initial guess
- 4. repeat from 2. until convergence

- We now show that in planar pose graph optimization:
 - If the orientations of the robot are known, than pose graph optimization is a convex problem
 - 2. Estimating robot orientations is <u>hard</u> (angles on manifold, multiple local minima)
 - 3. A smart reparametrization of the problem allows to compute a global solution of the orientation estimation problem
 - 4. The global solution is <u>unique</u> with probability one
 - 5. We can <u>quantify</u> how far is the estimate from the real robot orientations
 - But we need some more notation...

$$m{x}_i egin{cases} m{p}_i \in \mathbb{R}^2 & ext{position of node } i \ \check{ heta}_i \in (-\pi, +\pi] & ext{orientation of node } i \end{cases}$$

• Input:

 \emph{m} relative pose measurements for all $(i,j) \in \mathcal{E}$

relative position measurements

$$\boldsymbol{D}_{ij} = \boldsymbol{R}(\check{\theta}_i)^{\mathsf{T}}(\boldsymbol{p}_j - \boldsymbol{p}_i) + \text{noise}$$

relative orientation measurements

$$\check{\delta}_{ij} = \left\langle \check{\theta}_j - \check{\theta}_i + \text{noise} \right\rangle_{2\pi}$$

Output:

Maximum likelihood estimate of the poses $x^* = (p_0^* \ p_1^* \ \cdots \ p_n^* \ \check{\theta}_0^* \ \check{\theta}_1^* \ \cdots \ \check{\theta}_n^*)^\mathsf{T}$

modulus 2π

$$\langle \cdot \rangle_{2\pi} : \mathbb{R} \to (-\pi, +\pi]$$

$$\langle \omega \rangle_{2\pi} \doteq \omega + 2\pi \left| \frac{\pi - \omega}{2\pi} \right|$$

 Several (infinite) poses may produce the same relative pose measurements:

- Absolute poses are not observable from <u>relative</u> pose measurements
- We assume that the first pose is the origin of the reference frame:

$$\mathbf{p}_0 = \mathbf{0}_2 \qquad \check{\theta}_0 = 0$$

Therefore, the maximum likelihood estimate becomes:

$$\boldsymbol{x}^{\star} = (\boldsymbol{p}_{1}^{\star} \cdots \boldsymbol{p}_{n}^{\star} \ \check{\theta}_{1}^{\star} \cdots \check{\theta}_{n}^{\star})^{\mathsf{T}} = (\boldsymbol{p}^{\star}, \check{\boldsymbol{\theta}}^{\star})$$

 Assuming Gaussian noise, the maximum likelihood estimate can be obtained by minimizing the weighted sum of the residual errors:

$$(p^{\star},\check{\theta}^{\star}) = \underset{\boldsymbol{p} \in \mathbb{R}^{2n},\check{\theta} \in (-\pi,+\pi]^n}{\arg\min} \sum_{(i,j) \in \mathcal{E}} \left\| \boldsymbol{R}_i^{\mathsf{T}}(\boldsymbol{p}_j - \boldsymbol{p}_i) - \boldsymbol{D}_{ij} \right\|_{\boldsymbol{P}_{D_{ij}}^{-1}}^2 + \left\| \left\langle \check{\theta}_j - \check{\theta}_i - \check{\delta}_{ij} \right\rangle_{2\pi} \right\|_{\boldsymbol{P}_{\delta_{ij}}^{-1}}^2$$
 Position estimation subproblem Orientation estimation subproblem

We use the standard notation for the Mahalanobis distance:

$$\|oldsymbol{y}\|_{oldsymbol{P}}^2 = oldsymbol{y}^{\mathsf{T}} \ oldsymbol{P} \ oldsymbol{y}$$

 Assuming Gaussian noise, the maximum likelihood estimate can be obtained by minimizing the weighted sum of the residual errors:

$$(\boldsymbol{p}^{\star}, \check{\boldsymbol{\theta}}^{\star}) = \underset{\boldsymbol{p} \in \mathbb{R}^{2n}, \check{\boldsymbol{\theta}} \in (-\pi, +\pi]^n}{\arg \min} \sum_{(i,j) \in \mathcal{E}} \left\| \boldsymbol{R}_i^{\mathsf{T}}(\boldsymbol{p}_j - \boldsymbol{p}_i) - \boldsymbol{D}_{ij} \right\|_{\boldsymbol{P}_{\boldsymbol{D}_{ij}}^{-1}}^2 + \left\| \left\langle \check{\boldsymbol{\theta}}_j - \check{\boldsymbol{\theta}}_i - \check{\boldsymbol{\delta}}_{ij} \right\rangle_{2\pi} \right\|_{\boldsymbol{P}_{\boldsymbol{\delta}_{ij}}^{-1}}^2$$

 If the orientations of the robot are known, than pose graph optimization is a convex problem

$$(\boldsymbol{p}^{\star}, \check{\boldsymbol{\theta}}^{\star}) = \underset{\boldsymbol{p} \in \mathbb{R}^{2n}, \check{\boldsymbol{\theta}} \in (-\pi, +\pi]^n}{\arg\min} \sum_{(i,j) \in \mathcal{E}} \left\| \boldsymbol{R}_i^{\mathsf{T}}(\boldsymbol{p}_j - \boldsymbol{p}_i) - \boldsymbol{D}_{ij} \right\|_{\boldsymbol{P}_{D_{ij}}^{-1}}^2 + \left\| \boldsymbol{P}_{D_{ij}}^{-1} + \boldsymbol{P}_{D_{ij}}^{-1} \right\|_{\boldsymbol{P}_{\delta_{ij}}^{-1}}^2 + \left\| \boldsymbol{P}_{D_{ij}}^{-1} + \boldsymbol{P}_{D_{ij$$

Position estimation becomes a standard least squares problem

$$\min_{oldsymbol{p}} \|oldsymbol{X}^{\mathsf{T}}oldsymbol{p} - oldsymbol{y}\|^2$$

It can be solved in closed form

$$p = (XX^{\mathsf{T}})^{-1}Xy$$

Analysis of the distributed and centralized setup by Barooah and Hespanha [2009] and Russell et al. [2011]

 Now the idea is to solve first the orientation estimation subproblem, and then use the resulting estimate for solving the original problem

$$S^{1} = \underset{\check{\boldsymbol{\theta}} \in (-\pi, +\pi]^{n}}{\operatorname{arg\,min}} \sum_{(i,j) \in \mathcal{E}} \left\| \left\langle \check{\boldsymbol{\theta}}_{j} - \check{\boldsymbol{\theta}}_{i} - \check{\delta}_{ij} \right\rangle_{2\pi} \right\|_{\boldsymbol{P}_{\delta_{ij}}^{-1}}^{2}$$

- 2. Estimating robot orientation is <u>hard</u> (angles on manifold, multiple local minima)
- Iterative optimization techniques
 - need initial guess
 - · incur in local minima
- It is not even clear if the orientation estimation problem admits a unique global minimum

3. A smart reparametrization of the problem allows to compute a global solution of the orientation estimation problem

Original problem on *n* angles

n = number of nodes in the graph

 ℓ = number of cycles in the graph

The first transformation leads to an unconstrained optimization problem

$$S^{1} = \underset{\check{\boldsymbol{\theta}} \in (-\pi, +\pi]^{n}}{\operatorname{arg\,min}} \sum_{(i,j) \in \mathcal{E}} \left\| \left\langle \check{\boldsymbol{\theta}}_{j} - \check{\boldsymbol{\theta}}_{i} - \check{\delta}_{ij} \right\rangle_{2\pi} \right\|_{\boldsymbol{P}_{\delta_{ij}}^{-1}}^{2}$$

 $oldsymbol{ heta}^{\star}
ightarrow \langle oldsymbol{ heta}^{\star}
angle_{2\pi}$

$$S^2 = \underset{\boldsymbol{\theta} \in \mathbb{R}^n}{\arg\min} \sum_{(i,j) \in \mathcal{E}} \left\| \left\langle \theta_j - \theta_i - \check{\delta}_{ij} \right\rangle_{2\pi} \right\|_{\boldsymbol{P}_{\delta_{ij}}^{-1}}^2$$

Constrained optimization

Unconstrained optimization

Mixed-integer optimization

Integer optimization

Integer optimization (v2.0)

Spoiler: removing constraints may simplify the problem

$$\min_{oldsymbol{p}} \|oldsymbol{X}^{\mathsf{T}}oldsymbol{p} - oldsymbol{y}\|^2$$

$$\min_{oldsymbol{p} \in \operatorname{Set}} \|oldsymbol{X}^\mathsf{T} oldsymbol{p} - oldsymbol{y}\|^2$$

The cost function is still non-convex and hard to minimize

• The second transformation gets rid of the modulus 2π

$$S^{2} = \underset{\boldsymbol{\theta} \in \mathbb{R}^{n}}{\operatorname{arg\,min}} \sum_{(i,j) \in \mathcal{E}} \left\| \left\langle \theta_{j} - \theta_{i} - \check{\delta}_{ij} \right\rangle_{2\pi} \right\|_{\boldsymbol{P}_{\delta_{ij}}^{-1}}^{2}$$

$$S^{3} = \underset{\boldsymbol{\theta} \in \mathbb{R}^{n}, k_{ij} \in \mathbb{Z}}{\arg \min} \sum_{(i,j) \in \mathcal{E}} \left\| \theta_{j} - \theta_{i} - \check{\delta}_{ij} + 2\pi k_{ij} \right\|_{\boldsymbol{P}_{\delta_{ij}}^{-1}}^{2}$$

Constrained optimization

Unconstrained optimization

Mixed-integer optimization

Integer optimization

Integer optimization (v2.0)

Trick: overparametrize to get rid on the non-convexity

$$|\langle \omega \rangle_{2\pi}| = \min_{k \in \mathbb{Z}} |\omega + 2\pi k|$$

The cost is now quadratic (convex) with both real-valued and integer variables (mixed-integer convex optimization problem)

$$S^{3} = \underset{\boldsymbol{\theta} \in \mathbb{R}^{n}, k_{ij} \in \mathbb{Z}}{\arg \min} \sum_{(i,j) \in \mathcal{E}} \left\| \theta_{j} - \theta_{i} - \check{\delta}_{ij} + 2\pi k_{ij} \right\|_{\boldsymbol{P}_{\delta_{ij}}^{-1}}^{2}$$

Using matrix notation we obtain:

$$S^{3} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^{n}, \boldsymbol{k} \in \mathbb{Z}^{m}} \left\| \boldsymbol{A}^{\mathsf{T}} \boldsymbol{\theta} - \check{\boldsymbol{\delta}} + 2\pi \boldsymbol{k} \right\|_{\boldsymbol{P}_{\delta}^{-1}}^{2}$$

$$\dot{\boldsymbol{\delta}} = (\dot{\delta}_1 \ \dot{\delta}_2 \ \cdots \ \dot{\delta}_m)^{\mathsf{T}}
\boldsymbol{k} = (k_1 \ \cdots \ k_m)^{\mathsf{T}} \in \mathbb{Z}^m
\boldsymbol{P}_{\delta} = \operatorname{diag}(\boldsymbol{P}_{\delta_1}, \dots, \boldsymbol{P}_{\delta_m}) \in \mathbb{R}^{m \times m}$$

$$\overline{\boldsymbol{A}}^{\mathsf{T}} = \begin{pmatrix} -1 & +1 & 0 & 0 & 0 \\ 0 & -1 & +1 & 0 & 0 \\ 0 & 0 & -1 & +1 & 0 \\ 0 & 0 & 0 & -1 & +1 \\ 0 & +1 & 0 & 0 & -1 \end{pmatrix}$$

$$\overline{\boldsymbol{A}}^{\mathsf{T}}$$

reduced incidence matrix

• Given **k**, the problem becomes quadratic

$$S^{3} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^{n}} \left\| \boldsymbol{A}^{\mathsf{T}} \boldsymbol{\theta} - \check{\boldsymbol{\delta}} + 2\pi \boldsymbol{k} \right\|_{\boldsymbol{P}_{\delta}^{-1}}^{2}$$

and can be solved in closed form (unconstrained problem):

$$\boldsymbol{\theta}^{\star | \boldsymbol{k}} = (\boldsymbol{A} \boldsymbol{P}_{\delta}^{-1} \boldsymbol{A}^{\mathsf{T}})^{-1} \boldsymbol{A} \boldsymbol{P}_{\delta}^{-1} (\check{\boldsymbol{\delta}} - 2\pi \boldsymbol{k})$$

 The third transformation is based on matrix manipulation and algebraic graph theory

$$S^{3} = \underset{\boldsymbol{\theta} \in \mathbb{R}^{n}, \boldsymbol{k} \in \mathbb{Z}^{m}}{\operatorname{arg \, min}} \left\| \boldsymbol{A}^{\mathsf{T}} \boldsymbol{\theta} - \check{\boldsymbol{\delta}} + 2\pi \boldsymbol{k} \right\|_{\boldsymbol{P}_{\delta}^{-1}}^{2}$$

$$S^4 = \operatorname*{arg\,min}_{\boldsymbol{k} \in \mathbb{Z}^m} \left\| \boldsymbol{C} \boldsymbol{k} - \tfrac{1}{2\pi} \boldsymbol{C} \check{\boldsymbol{\delta}} \right\|_{(\boldsymbol{C} \boldsymbol{P}_{\!\delta} \boldsymbol{C}^\mathsf{T})^{-1}}^2$$

Constrained optimization

Unconstrained optimization

Mixed-integer optimization

Integer optimization

Integer optimization (v2.0)

Trick: reduced incidence matrix and cycle basis matrix are orthogonal complements

$$CA^{\mathsf{T}} = \mathbf{0}_{\ell \times n}$$

 Then we can apply a last change of variables, $oldsymbol{\gamma} = C k$ to get the final formulation:

$$\gamma = Ck$$

$$S^{4} = \arg\min_{\boldsymbol{k} \in \mathbb{Z}^{m}} \left\| \boldsymbol{C} \boldsymbol{k} - \frac{1}{2\pi} \boldsymbol{C} \check{\boldsymbol{\delta}} \right\|_{(\boldsymbol{C} \boldsymbol{P}_{\delta} \boldsymbol{C}^{\mathsf{T}})^{-1}}^{2}$$

$$S^5 = \underset{\boldsymbol{\gamma} \in \mathbb{Z}^{\ell}}{\arg \min} \|\boldsymbol{\gamma} - \hat{\boldsymbol{\gamma}}\|_{\boldsymbol{P}_{\gamma}^{-1}}^2 \quad \text{with} \quad \hat{\boldsymbol{\gamma}} = \frac{1}{2\pi} \boldsymbol{C} \check{\boldsymbol{\delta}}, \ \boldsymbol{P}_{\gamma} = \boldsymbol{C} \boldsymbol{P}_{\delta} \boldsymbol{C}^{\mathsf{T}}$$

The final formulation is a quadratic optimization problem in integer variables

Dimension of γ is ℓ (number of cycles in the graph)

Constrained optimization

Unconstrained optimization

Mixed-integer optimization

Integer optimization

Integer optimization (v2.0)

Let us recap the transformations of the original problem

$$S^{1} = \underset{\check{\theta} \in (-\pi, +\pi]^{n}}{\arg\min} \sum_{(i,j) \in \mathcal{E}} \left\| \left\langle \check{\theta}_{j} - \check{\theta}_{i} - \check{\delta}_{ij} \right\rangle_{2\pi} \right\|_{P_{\delta_{ij}}^{-1}}^{2} \qquad \text{Constrained optimization}$$

$$\check{\theta}^{\star} = \left\langle \theta^{\star | k^{\star}} \right\rangle_{2\pi}$$

$$S^{2} = \underset{\theta \in \mathbb{R}^{n}}{\arg\min} \sum_{(i,j) \in \mathcal{E}} \left\| \left\langle \theta_{j} - \theta_{i} - \check{\delta}_{ij} \right\rangle_{2\pi} \right\|_{P_{\delta_{ij}}^{-1}}^{2} \qquad \text{Unconstrained optimization}$$

$$\theta^{\star | k^{\star}}$$

$$S^{3} = \underset{\theta \in \mathbb{R}^{n}, k \in \mathbb{Z}^{m}}{\arg\min} \left\| A\theta - \check{\delta} + 2\pi k \right\|_{P_{\delta}^{-1}}^{2} \qquad \text{Mixed-integer optimization}$$

$$(\theta^{\star | k^{\star}}, k^{\star})$$

$$S^{4} = \underset{k \in \mathbb{Z}^{m}}{\arg\min} \left\| Ck - \frac{1}{2\pi}C\check{\delta} \right\|_{(CP_{\delta}C^{\mathsf{T}})^{-1}}^{2} \qquad \text{Integer optimization}$$

$$k^{\star} = C^{\dagger}\gamma^{\star}$$

$$S^{5} = \underset{\gamma \in \mathbb{Z}^{\ell}}{\arg\min} \left\| \gamma - \hat{\gamma} \right\|_{P_{\gamma}^{-1}}^{2} \qquad \text{Integer optimization (v2.0)}$$

Therefore we can solve the original problem as follows:

4. The global solution is <u>unique</u> with probability one

• Proposition: $S^5 = \arg\min_{\gamma \in \mathbb{Z}^\ell} \|\gamma - \hat{\gamma}\|_{P_{\gamma}^{-1}}^2$ admits a unique solution with probability one.

• <u>Proposition</u>: for any solution of the integer problem there exists a unique solution of the original maximum likelihood problem.

 Corollary: maximum likelihood orientation estimation admits a unique solution with probability one.

 We solved the problem of local minima, but what about computational complexity?

$$S^{5} = \arg\min_{\boldsymbol{\gamma} \in \mathbb{Z}^{\ell}} \|\boldsymbol{\gamma} - \hat{\boldsymbol{\gamma}}\|_{\boldsymbol{P}_{\gamma}^{-1}}^{2}$$

- Quadratic integer programming is hard to solve if the dimension of γ is large
- We propose a polynomial time algorithm that returns a set Γ of plausible solutions of the problem
 - MOLE2D (Multi-hypothesis Orientation-from-Lattice Estimation)

Trick: we have a probabilistic description of the measurements, hence we can perform inference on the admissible values of γ

 Proposition: choosing the minimum cycle basis matrix minimizes the number of admissible γ in the algorithm MOLE2D.

 Tests on standard datasets and different choices of the cycle basis matrix

- MITb (808 nodes, 828 edges)-
- M3500 (3500 nodes, 5598 edges)
- M3500a = M3500 + noise (std = 0.1rad)
- M3500b = M3500 + noise (std = 0.2rad)
- M3500c = M3500 + noise (std = 0.3rad)

 MOLE2D returns a small number of hypotheses for γ

		l	(04)	1.000	1001
	cycle basis	K	u (%)	d (%)	1
INTEL	FCB _o	1	100.00	n/a	1
	FCB _m	1	100.00	n/a	1
	MCB _a	1	100.00	n/a	1
	MCB	1	100.00	n/a	1
TIM	FCB _o	2 iter. 1	80.00	25.78	16
		ter. 2	20.00	n/a	1
	FCB _m	1	100.00	n/a	1
	MCB _a	1	100.00	n/a	1
	MCB	1	100.00	n/a	1
	FCB _o	iter. 1	52.92	1.69	>10100
		iter. 2	21.54	15.61	>10100
		5 { iter. 3	20.06	100.00	$>10^{50}$
_		iter. 4	5.12	100.00	972
M3500		iter. 5	0.36	n/a	1
	FCB _m	2 iter. 1	98.62	2.41	$> 10^{9}$
		iter. 2	1.38	n/a	1
	мсв,	2 iter. 1	99.95	0.48	3
		iter. 2	0.05	n/a	1
	мсв	2 iter. 1	99.95	0.44	3
		iter. 2	0.05	n/a	1
	FCB _o	6	-	_	$>10^{30}$
M3500a	FCB _m	3	-	_	8
M	MCB _a	2	_	_	1
_	MCB	2	_	_	1
M3500b	FCB _o	29	_	_	$>10^{40}$
	FCB _m	4	_	_	27
	MCB _a	3	_	_	3
	мсв	3	_	_	3
M3500c	FCB _o	9	_	_	>10100
	FCB _m	7	_	_	>104
	мсв.	4	_	_	16
	мсв	4	_	_	16
	'	'		'	

 The algorithm is very efficient in practice (MATLAB implementation)

	phase	Computation of $\hat{\gamma}$ and P_{γ}	INTEGER- SCREENING	Computation of Θ from Γ	Total
	lines	11–12	13	14-16	
INTEL	FCB _o	0.07	0.04	≤0.01	0.10
	FCB_m	≤ 0.01	0.03	\leq 0.01	0.04
	MCB _a	≤ 0.01	0.05	≤ 0.01	0.05
	MCB	≤ 0.01	0.04	\leq 0.01	0.04
MIT	FCB _o	≤0.01	0.04	≤0.01	0.04
	FCB_m	≤ 0.01	0.03	\leq 0.01	0.03
	MCB _a	≤ 0.01	0.03	\leq 0.01	0.03
	MCB	\leq 0.01	0.03	\leq 0.01	0.03
M3500	FCB _o	0.72	0.79	≤0.01	1.52
	FCB_m	≤ 0.01	0.47	\leq 0.01	0.47
	MCB _a	≤ 0.01	0.21	\leq 0.01	0.22
	MCB	≤ 0.01	0.21	\leq 0.01	0.22
M3500a	FCB _o	0.72	0.80	(Γ too large to	continue)
	FCB_m	≤ 0.01	0.36	0.04	0.4
	MCB _a	≤ 0.01	0.21	\leq 0.01	0.22
	MCB	\leq 0.01	0.21	\leq 0.01	0.22
M3500b	FCB _o	0.71	1.19	(Γ too large to	continue)
	FCB_m	≤ 0.01	0.51	0.12	0.64
	MCB _a	≤ 0.01	0.23	0.03	0.26
	MCB	\leq 0.01	0.23	0.03	0.26
M3500c	FCB _o	0.72	0.72	(Γ too large to	continue)
	FCB_m	\leq 0.01	0.48	(Γ too large to	continue)
	MCB _a	\leq 0.01	0.23	0.15	0.38
	MCB	≤ 0.01	0.23	0.14	0.37
	•				

 Solving the orientation estimation problem we can obtain an accurate initial guess to be used in pose graph optimization

 Real tests using a ROS implementation of the algorithm

- MOLE2D computes a global estimate of robot orientations (no local minima):
 - we can quantify how far is the estimate from the actual robot orientations (<u>uncertainty quantification</u>)
 - we can to solve pose graph optimization with extreme levels of noise (<u>robustness</u>)
 - we have an accurate initial guess for pose graph optimization, hence iterative techniques require less iterations (efficiency)

Tricks: - introduce integer variables to get rid of non-convexities

exploit graph theoretical notions in the optimization
exploit probabilistic description of measurements to speed-up computation

Open issues:

- In practical problems, several relative measurements are outliers
- State-of-the-art techniques catastrophically fail in presence of few outliers

courtesy of E. Olson and P. Agarwal