DM 23 : énoncé

Il s'agit d'un sujet supplémentaire pour votre travail personnel. Il n'est pas à rendre.

Un corrigé sera fourni dans une semaine.

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

On fixe $n_0 \in \mathbb{N}$.

Si
$$(u_n)_{n\geq n_0}$$
 est une suite d'éléments de \mathbb{K} , on note, $\forall n\geq n_0, P_n=\prod_{k=n_0}^n u_k$.

Si la suite $(P_n)_{n\geq n_0}$ converge, on notera $\prod_{k=n_0}^{+\infty}u_k$ sa limite et on dira que le produit

$$\prod_{k=n_0}^{+\infty} u_k \text{ existe.}$$

Première partie:

Dans cette partie $\mathbb{K} = \mathbb{R}$.

- 1) On suppose que, $\forall n \in \mathbb{N}, 0 < u_n < 1$. Montrer que le produit $\prod_{k=0}^{+\infty} u_k$ existe.
- 2) Calculer $\prod_{n=2}^{+\infty} \left(1 \frac{1}{n}\right)$, $\prod_{n=2}^{+\infty} \left(1 \frac{1}{n^2}\right)$ et $\prod_{n=2}^{+\infty} \left(1 \frac{2}{n(n+1)}\right)$.
- 3) a) Vérifier que, $\forall t \in \mathbb{R}^*, \frac{\text{th}t}{\text{th}\frac{t}{2}} = 1 + \frac{1}{\text{ch}t}.$
 - **b)** Soit $x \in \mathbb{R}$ avec x > 1. On note $(v_n)_{n \in \mathbb{N}^*}$ la suite définie par :

$$v_1 = x \text{ et}, \forall n \ge 1, \ v_{n+1} = 2v_n^2 - 1.$$

Montrer qu'il existe $\theta \in \mathbb{R}_+^*$ tel que $v_1 = \mathrm{ch}\theta$.

Montrer que, pour tout $n \in \mathbb{N}^*$, $v_n = \operatorname{ch}(2^{n-1}\theta)$

Montrer l'existence et donner la valeur de $\prod_{n=1}^{+\infty} \left(1 + \frac{1}{v_n}\right)$, d'abord en fonction de θ , puis en fonction de x.

- 4) On suppose que pour tout $n \in \mathbb{N}$, $|u_n| < 1$ et que la série $\sum u_n$ converge.
- a) Dans cette question, on suppose que $\sum u_n^2$ converge. Montrer que la série $\sum_{n} (\ln(1+u_n) u_n)$ converge.

En déduire que $\ln \left(\prod_{n=0} (1+u_n) \right)$ converge lorsque N tend vers $+\infty$.

Montrer que $\prod^{+\infty} (1 + u_n)$ existe et qu'il appartient à \mathbb{R}_+^* .

b) Dans cette question, on suppose que $\sum u_n^2$ diverge.

Montrer que $\prod_{n=0}^{\infty} (1 + u_n)$ existe et qu'il vaut 0.

c) Calculer $\prod_{n=2}^{+\infty} \left(1 + \frac{(-1)^{n+1}}{\sqrt{n}}\right)$ et $\prod_{n=2}^{+\infty} \left(1 + \frac{(-1)^{n+1}}{n}\right)$.

Seconde partie:

- 1) a) Montrer que, pour tout $t \in [0, \frac{\pi}{2}]$, $\sin t \ge \frac{2t}{\pi}$.
 - **b)** Montrer que $\int_0^{\frac{\pi}{2}} (\sin t)^{2n} dt \ge \frac{\pi}{2(2n+1)}$.
 - **c**) En déduire que, pour tout $\alpha \in]0, \frac{\pi}{2}[$, lorsque l'entier n tend vers $+\infty$, le quotient

$$\frac{\int_0^{\frac{\pi}{2} - \alpha} (\sin t)^{2n} dt}{\int_0^{\frac{\pi}{2}} (\sin t)^{2n} dt} \text{ tend vers } 0.$$

Soit $\varphi: [0,\frac{\pi}{2}] \longrightarrow \mathbb{R}$ une application continue telle que $\varphi(\frac{\pi}{2}) \neq 0$.

d) Montrer que, lorsque l'entier n tend vers $+\infty$,

$$\int_{0}^{\frac{\pi}{2}} \varphi(t) (\sin t)^{2n} dt \sim \varphi(\frac{\pi}{2}) \int_{0}^{\frac{\pi}{2}} (\sin t)^{2n} dt.$$

- 2) Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{\pi}{2}} (\sin t)^{2n} dt$.
 - a) Pour $n \ge 1$, montrer que $I_n = \frac{2n-1}{2n}I_{n-1}$.
 - b) Calculer I_n en fonction de n puis montrer que lorsque l'entier n tend vers $+\infty$,

$$I_n \sim \frac{1}{2} \sqrt{\frac{\pi}{n}}.$$

- **3 a)** Calculer la limite de la suite $\left(\int_{0}^{p_{n}} e^{-2t} dt\right)_{p \in \mathbb{N}}$.
- **b)** Soit $n \in \mathbb{N}$. Montrer que la suite $\left(\int_0^{p\pi} e^{-2t} (\sin t)^{2n} dt\right)_{p \in \mathbb{N}}$ est convergente. On notera u_n la limite de cette suite.
 - c) Soit $n \in \mathbb{N}$.

Pour tout $k \in \mathbb{N}$, montrer que $\int_{t-1}^{(k+1)\pi} e^{-2t} (\sin t)^{2n} dt = e^{-2k\pi} \int_{0}^{\frac{\pi}{2}} \varphi(t) (\sin t)^{2n} dt$, où φ est une application indépendante de n que l'on précisera.

d) En déduire que lorsque l'entier n tend vers $+\infty$,

$$u_n \sim \frac{1}{2\mathrm{sh}\pi}\sqrt{\frac{\pi}{n}}.$$

- **4 a)** Pour tout $n \ge 1$, montrer que $u_n = n \lim_{p \to +\infty} \int_0^{p\pi} e^{-2t} (\cos t) (\sin t)^{2n-1} dt$.
 - b) En déduire que pour tout $n \ge 1$, $n(2n-1)u_{n-1} = 2(1+n^2)u_n$.
 - c) Montrer que $u_n = \frac{(n!)^2 I_n}{\pi \prod_{i=1}^n (1+k^2)}$.
 - d) En déduire que $\prod_{k=1}^{+\infty} \left(1 + \frac{1}{k^2}\right)$ existe et que

$$\prod_{k=1}^{+\infty} \left(1 + \frac{1}{k^2}\right) = \frac{\sinh \pi}{\pi}.$$

Troisième partie :

Dans cette partie $\mathbb{K} = \mathbb{C}$.

- 1) Montrer que $\prod_{i=1}^{+\infty} \left| 1 + \frac{i}{n} \right|$ existe et donner sa valeur.
- 2) Soit $n \in \mathbb{N}^*$. On considère n nombres complexes z_1, \ldots, z_n .

par l'établir pour n = 1 et n = 2.

Montrer par récurrence que $\left|-1+\prod_{k=1}^{n}(1+z_k)\right| \leq -1+\prod_{k=1}^{n}(1+|z_k|)$: on commencera

3) Lorsque $(z_n)_{n\in\mathbb{N}}$ est une suite de complexes, on dit que c'est une suite de Cauchy si et seulement si elle vérifie la propriété suivante :

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N \ \forall q \in \mathbb{N} \ |z_{n+q} - z_n| \le \varepsilon.$$

On admettra qu'une suite de complexes est convergente si et seulement si c'est une suite de Cauchy.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de complexes telle que, pour tout $n\in\mathbb{N}, |u_n|<1$, et telle que

la série $\sum_{n=0}^{\infty} u_n$ est absolument convergente. Montrer que $\prod_{n=0}^{+\infty} (1+u_n)$ existe.

4) Soit $(u_n)_{n\in\mathbb{N}}$ une suite de complexes telle que, pour tout $n\in\mathbb{N}$, $|u_n|=1$ et $u_n\neq -1$. On pose, pour tout $n\in\mathbb{N}$, $u_n=e^{i\theta_n}$, avec $\theta_n\in]-\pi,\pi[$.

Montrer que $\prod_{n=0}^{+\infty} u_n$ existe si et seulement si la série $\sum \theta_n$ converge. 5) Le produit $\prod_{n=1}^{+\infty} \left(1 + \frac{i}{n}\right)$ existe-t-il?