机器学习(进阶)纳米学位毕业项目开题报告

猫狗大战

项目背景:

近年来,深度学习的发展突飞猛进,使用深度学习技术解决生活中方方面面的问题也成为可能。计算机视觉作为深度学习最重要的领域之一,应用场景非常丰富,可以用于制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中。

该篇文章讨论的课题是:利用深度学习的方法区分猫和狗的问题,该问题是 kaggle 平台提出的一个比赛问题,旨在使用机器学习,特别是深度学习来实现分类问题。深度学习的方法可以有效提取出图片的特征,并对不同类型的分类进行概率输出,故有很高的可行性。而且解决分类问题,对于各个领域的智能识别都具有重要的意义。

问题描述:

猫狗大战的项目主要是解决猫/狗两个种类的分类问题,是一个有监督的二分类问题。即给定一张图片,模型输出图片上的动物分别是猫和狗的概率。

实现方法:使用卷积神经网络的方法建立模型,顶层使用 1 个节点的 sigmoid 分类器,输出该图片是狗的概率。

数据及输入:

本项目的所有数据均由 kaggle 平台的猫狗大战项目提供(下载地址: https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/data)。

命名格式:其中训练数据集中分别包含了 12500 张猫和狗的图片,格式为 jpg,每张图片使用'类别'+'序号'的格式进行命名(如'cat.0')。测试集有 12500 张图片,格式为 jpg,以序号命名(如'23')。

图片特点:

拍摄场景:绝大部分图片都是在真实的生活场景下拍摄的,拍摄使用的光源包括自然光(如图1)和闪光灯(如图2)。

拍摄特点:大部分图片为猫狗的特写,小部分有人和猫狗同时出现。其中大部分图片为单一主体(即一只猫或一只狗出现在图片中),少部分会出现多个主体的情况(如图3),也有如图4,出现人物占图片大部分。

姿态特点:宠物拍摄时,姿态各异,面部或身体的角度,部分正对镜头(如图 5), 部分有一定角度的旋转(如图 6)

模糊图片和异常图片:少部分图片有模糊的情况(如图7),并且有一些异常图片(如图8)

图 1 自然光环境

图 2 闪光灯

图 3 多个主体

图 4 人物

图 5 正面

图 6 旋转

图 8 异常图片

图片尺寸分布:由下图可以看出,训练集图片的宽分布在[32,768]范围内,其中大部分集中在100-500之间;长分布在[42,1050]范围内,其中大部分集中在200-500。

测试集图片的宽分布在[44,500]范围内,长分布在[37,500]范围内,其中长宽的大部分都集中在100-500之间。

	width	length	
count	25000.000000	25000.00000	
mean	360.478080	404.09904	
std	97.019959	109.03793	
min	32.000000	42.00000	
25%	301.000000	323.00000	
50%	374.000000	447.00000	
75%	421.000000	499.00000	
max	768.000000	1050.00000	

	width	length	
count	12500.000000	12500.000000	
mean	359.930720	404.224480	
std	96.757411	109.330874	
min	44.000000	37.000000	
25%	300.000000	329.000000	
50%	374.000000	447.000000	
75%	418.000000	499.000000	
max	500.000000	500.000000	

图 9 训练集图片尺寸分布

图 10 测试集图片尺寸分布

图 11 训练集长宽分布

图 12 测试集长宽分布

解决方法描述:

确定使用卷积神经网络的方法来解决该项目的问题,可以采用以下两个方法:

- 1. 通过建立卷积神经网络,对图片的特征进行提取,在模型的顶层添加一层全连接层,两个输出节点,分别输出图片对于猫和狗的预测概率。
- 2. 通过迁移学习的方法进行模型搭建。利用 keras 提供的预训练模型如 VGGNet/Xception 等结构进行特征提取,去掉预训练模型的输出层,添加符合该项目的全连接层,以输出概率。

其中方法 1 在训练的过程中会更耗费时间,因为所有的权重都是从随机权重开始训练。 方法 2 利用在 imageNet 的大数据集上训练的模型作为基础来建立的模型,可以只对顶 层的全连接层进行训练,训练难度降低。综合考虑,选择方法 2。

评估标准:

根据 kaggle 官方的标准,应该尽量降低 log loss 的值,计算公式如下:

LogLoss =
$$-\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$$

其中n是测试集的图片数量

ŷi是预测为狗狗的概率值

 y_i 表示如果该图片为狗狗则为 1 , 为猫则为 0

log()表示以e为底的自然对数

基准模型:

kaggle Public Leaderboard 前 10%, 即最低应该达到 0.06127

项目设计:

步骤 1:图片预处理。

▶ 图片异常值处理。

- ▶ 训练集和验证集划分,按照训练集占80%,验证集占20%的比例。
- ▶ 剪裁:训练集中的图片的大小不定,故将图片进行剪裁到固定大小,如采用 Xception 进行迁移学习,则将图片剪裁到(299*299)。
- ▶ 归一化:将图片的每个像素值变成[-1,1]之间的浮点数(Xception 在预训练时将像素值预处理到[-1,1])。
- 数据增强:通过水平翻转、旋转、缩放对图片进行实时增强。

步骤 2:模型建立。

模型	大小	Top-1准确率	Top-5 准确率	参数数量	深度
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.715	0.901	138,357,544	23
VGG19	549 MB	0.727	0.910	143,667,240	26
ResNet50	99 MB	0.759	0.929	25,636,712	168
InceptionV3	92 MB	0.788	0.944	23,851,784	159
InceptionResNetV2	215 MB	0.804	0.953	55,873,736	572
MobileNet	17 MB	0.665	0.871	4,253,864	88
DenseNet121	33 MB	0.745	0.918	8,062,504	121
DenseNet169	57 MB	0.759	0.928	14,307,880	169
DenseNet201	80 MB	0.770	0.933	20,242,984	201

采用迁移学习的方法,采用 keras 提供的 Xception 预训练模型(模型权重大小为 88M,在给出的模型中,TOP-1准确率第二,TOP-5准确率第二,综合以上故采用该模型),加载预训练权重并去掉顶层的输出层,添加符合该项目的输出层。(由于预训练的模型和该项目的分类数据属于相似数据,且该项目数据属于小数据集,所以只训练顶层权重即可)

(图 13 图片来自'机器学习(进阶)纳米学位课程课件')

步骤 3: 调整超参数

主要选择模型的正则化参数λ和 dropout 层比例。计划采用开源调参工具 hyperas (https://qithub.com/maxpumperla/hyperas)

采用早期停止的方式控制训练过程,通过设置 patience 的值来判断模型是否已经收敛,记录 valid loss 最优时的模型权重。

步骤 4:模型评估

可视化训练过程中的训练损失、验证损失、验证集准确率的变化趋势。

抽样可视化预测结果和实际图片的对应情况,观察是否一致。

根据'评估标准'中的公式计算 log loss 的值。

参考文献

- 1. Francois Chollet Xception: Deep Learning with Depthwise Separable Convolutions
- 2. Sun 05 June 2016 By Francois Chollet In Tutorials. Building powerful image classification models using very little data
- 3. Keras 中文文档
- 4. A survey on transfer Learning. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 10, OCTOBER 2010
- 5. Wikipedia(2016). Convolutional neural network Wikipedia, the free encyclopedia. [Online; accessed 1-November-2016]