

Mechanics of Materials II: Thin-Walled Pressure Vessels and Torsion

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 17 Learning Outcome

 Solve for the maximum shear stress for elastic torsion of a straight cylindrical shaft that is non-prismatic

Elastic Torsion of Straight Cylindrical Shafts that are non-prismatic

(prismatic is a straight engineering member with the same cross-section throughout its length)

A simple model of the torsion bar of a

tracked vehicle is shown below.

Elastic torsion of Straight Cylindrical Shafts that are non-prismatic

(prismatic is a straight engineering member with the same cross-section throughout its length)

Georgia Tech

Worksheet:

The non-prismatic cylindrical bar below is subject to torques as shown.

A portion of the steel section is hollow.

- a) Determine the maximum shear stress in each section.
- b) Determine the angle of twist of end D with respect to end A.

Elastic torsion of Straight Cylindrical Shafts that are non-prismatic (prismatic is a straight engineering member with the same cross-section throughout its length)

Worksheet:

The non-prismatic cylindrical bar below is subject to torques as shown. A portion of the steel section is hollow.

- Determine the maximum shear stress in each section.
- Determine the angle of twist of end D with respect to end A.

FBD – Section CD

FBD – Section BC

Georgia

Tech

$$\sum M_z = 0$$

$$T_{BC} + 15 - 5 = 0$$

$$T_{AB} + 15 - 5 = 0$$

$$T_{AB} = -10$$

$$\vec{T}_{BC} = -10 \quad ft \cdot k \quad \hat{k}$$

$$\vec{T}_{AB} = -10 \quad ft \cdot k \quad \hat{k}$$

Elastic torsion of Straight Cylindrical Shafts that are non-prismatic (prismatic is a straight engineering member with the same cross-section throughout its length)

Worksheet:

The non-prismatic cylindrical bar below is subject to torques as shown. A portion of the steel section is hollow. Determine the maximum shear stress in each section.

- Determine the angle of twist of end D with respect to end A.

$$\vec{T}_{CD} = 5 ft \cdot k \hat{k}$$

$$\underline{\vec{T}_{CD}} = 5 \text{ ft} \cdot k \hat{k} \qquad \underline{\vec{T}_{BC}} = -10 \text{ ft} \cdot k \hat{k} \qquad \underline{\vec{T}_{AB}} = -10 \text{ ft} \cdot k \hat{k}$$

$$-10 ft \cdot k$$

$$\tau_{BC_{MAX}} = \frac{10 \ ft \cdot k \left(\frac{12 \ in}{ft}\right) 4 \ in}{\left[\frac{\pi (4 \ in)^4}{2}\right]} = 1.194 \ ks.$$

$$= \frac{10 \ ft \cdot k \left(\frac{12 \ in}{ft}\right) 4 \ in}{\left[\frac{\pi (4 \ in)^4}{2} - \frac{\pi (1.5 \ in)^4}{2}\right]} = 1.218 \ ks$$

ANS

ANS

Both shear stresses are below the shearing proportional limit of steel, so the elastic torsion formula applies