This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

1/23

ATGGCAAATA	AAGCAGTAAA	TGACTTTATA	CTAGCTATGA	40
ATTACGATAA	AAAGAAACTC	TTGACCCATC	AGGGAGAAAG	80
TATTGAAAAT	CGTTTCATCA	AAGAGGGTAA	TCAGCTACCC	120
GATGAGTTTG	TTGTTATCGA	AAGAAAGAAG	CGGAGCTTGT	160
CGACAAATAC	AAGTGATATT	TCTGTAACAG	CTACCAACGA	200
CAGTCGCCTC	TATCCTGGAG	CACTTCTCGT	AGTGGATGAG	240
ACCTTGTTAG	AGAATAATCC	CACTCTTCTT	GCGGTCGATC	280
GTGCTCCGAT	GACTTATAGT	ATTGATTTGC	CTGGTTTGGC	320
AAGTAGCGAT	AGCTTTCTCC	AAGTGGAAGA	TCCCAGCAAT	360
TCAAGTGTTC	GCGGAGCGGT	AAACGATTTG	TTGGCTAAGT	400
GGCATCAAGA	TTATGGTCAG	GTCAATAATG	TCCCAGCTAG	440
AATGCAGTAT	GAAAAAATCA	CGGCTCACAG	CATGGAACAA	480
CTCAAGGTCA	AGTTTGGTTC	TGACTTTGAA	AAGACAGGGA	520
ATTCTCTTGA	TATTGATTTT	AACTCTGTCC	ATTCAGGCGA	560
AAAGCAGATT	CAGATTGTTA	ATTTTAAGCA	GATTTATTAT	600
ACAGTCAGCG	TAGACGCTGT	TAAAAATCCA	GGAGATGTGT	640
TTCAAGATAC	TGTAACGGTA	GAGGATTTAA	AACAGAGAGG	680
AATTTCTGCA	GAGCGTCCTT	TGGTCTATAT	TTCGAGTGTT	720
GCTTATGGGC	GCCAAGTCTA	TCTCAAGTTG	GAAACCACGA	760
GTAAGAGTGA	TGAAGTAGAG	GCTGCTTTTG	AAGCTTTGAT	800
AAAAGGAGTC	AAGGTAGCTC	CTCAGACAGA	GTGGAAGCAG	840
ATTTTGGACA	ATACAGAAGT	GAAGGCGGTT	ATTTTAGGGG	880
GCGACCCAAG	TTCGGGTGCC	CGAGTTGTAA	CAGGCAAGGT	920
GGATATGGTA	GAGGACTTGA	TTCAAGAAGG	CAGTCGCTTT	960

FIG. 1A

2/23

ACAGCAGATC	ATCCAGGCTT	GCCGATTTCC	TATACAACTT		1000
CTTTTTTACG	TGACAATGTA	GTTGCGACCT	TTCAAAATAG		1040
TACAGACTAT	GTTGAGACTA	AGGTTACAGC	TTACAGAAAC		1080
GGAGATTTAC	TGCTGGATCA	TAGTGGTGCC	TATGTTGCCC		1120
AATATTATAT	TACTTGGAAT	GAATTATCCT	ATGATCATCA		1160
AGGTAAGGAA	GTCTTGACTC	CTAAGGCTTG	GGACAGAAAT		1200
GGGCAGGATT	TAACGGCTCA	CTTTACCACT	AGTATTCCTT		1240
TAAAAGGGAA	TGTTCGTAAT	CTCTCTGTCA	AAATTAGAGA	٠	1280
GTGTACCGGG	CTTGCTTGGG	AATGGTGGCG	TACGGTTTAT		1320
GAAAAAACCG	ATTTGCCACT	AGTGCGTAAG	CGGACGATTT		1360
CTATTTGGGG	AACAACTCTC	TATCCGCAGG	TAGAAGATAA		1400
GGTAGAAAAT	GAC				1413

ATGGCAAATA AAGCAGTAAA TGACTTTATA CTAGCTATGA	40
ATTACGATAN ₅₀ AAAN ₅₄ AAACTC TTGACCCATC AGGGAGAAAG	80
TATTGAAAAT CGTTTCAN98CA AAGAGGGTAA TCAGCTACCC	120
$\mathrm{GN}_{122}\mathrm{TGAGTTTG}$ $\mathrm{TTGN}_{134}\mathrm{TAN}_{137}\mathrm{CGA}$ AAGAAAGAAG CGGAGCTTGT	160
CGACAAATAC AAGTGATATT N ₁₈₁ CTGTAN ₁₈₇ CAG CTACCN ₁₉₆ ACGA	200
CAGTCGCCTC TATCCTGGAG CACTTCTCGT AGTGGATGAG	240
ACCTTGTN ₂₄₈ AG AGAATAATCC CACTCTTCTT GCGGTN ₂₇₆ GATC	- 280
GTGCTCCGAT GACTTATAGT $AN_{302}TGN_{305}TTTGC$ CTGGTTTGGC	320
AAGTAGCGAT AGCTTTCTCC AAGTGGAAGA N ₃₅₁ CCCAGCAAT	360
TCAAGTGTTC GCGGAGCGGN ₃₈₀ AN ₃₈₂ ACGATTTG TTGGCTAAGT	400
GGCATCAAGA TTATGGTCAG GTCAATAATG TCCCAGCTAG	440
AAN ₄₄₃ GCAGTAT GAAAAAATN ₄₅₉ A CGGCTCACAG CATGGAACAA	480
CTCAAGGTCA AGTTTGGTTC TGACTTTGAA AAGN ₅₁₄ CAGGGA	520
ATTCTCTTGA TATTGATTTT AACTCTGTCC ATTCAGGN ₅₅₈ GA	560
AAAGCN ₅₆₆ GATT CAGATTGTTA ATN ₅₈₃ TTAAGCA GATTTATTAT	600
ACAGTCAGCG TAGACGCTGT TAAAAATCCA GGAGATGTGT	640
TTCAAGATAC TGTAACGGTA GAGGATTTAA AACAGAGAGG	680
AATTTCTGCA GAGCGTCCTT TGGTCTATAT TTCGAGN717GTT	720
GCTTATGGGC GCCAAGTCTA TCTCAAGTTG GAAACCACGA	760
GTAN ₇₆₄ GAGTGN ₇₇₀ TGAAGTAGAG GCTGCTTTTG AAGCTTTGAT	800
AAAAGGAGTC AAGGTAGCTC CTCAGACAGA GTGGAAGCAG	840
ATTTTGGACA ATACAGAAGT GAAGGCGGTT ATTTTAGGGG	880
GCGACCCAAG TTCGGGTGCC CGAGTTGTAA CAGGCAAGGT	920
GGATATGGTA GAGGACTTGA TTCAAGAAGG CAGTCGCTTT	960
ACAGCAGATC ATCCAGGCTT GCCGATTTCC TATACAACTT	1000

FIG. 2A

CTTTTTTACG	TGACAATGTA GTTGCGACCT TTCAAAAN ₁₀₃₈ AG	1040
TACAGACTAT	GTTGAGACTA AGGTTACAGC TTACAGAAAC	1080
GGAGATTTAC	TGCTGGATCA TAGTGGTGCC TATGTTGCCC	1120
AATATTATAA	TACTTGGN ₁₁₃₈ AT GAATTATCCT ATGATCATCA	1160
AGGTAAGGAA	GTCTTGACTC CTAAGGCTTG GGACAGAAAT	1200
GGGCAGGATT	TN ₁₂₁₂ ACGGCTCA CTTTACCACT AGTATTCCTT	1240
TAAAAGGGAA	TGTTCGTAAT CTCTCTGTCA AAATTAGAGA	1280
GTGTACCGGG	$CTTGCN_{1296}TGGG$ AATGGTGGCG TACGGTTTAT	1320
GAAAAAACCG	ATTTGCCACT AGTGCGTAAG CGGACGATTT	1360
CTATTTGGGG	AACAACTCTC TATCCN ₁₃₈₆ CAGG TAGAN ₁₃₉₅ GATAA	1400
GGTAGAAAAT	GAC	1413

Met Ala Asn Lys Ala Val Asn Asp Phe Ile Leu Ala Met Asn Tyr Asp Lys Lys Leu Leu Thr His Gln Gly Glu Ser Ile Glu Asn Arg Phe Ile Lys Glu Gly 30 Asn Gln Leu Pro Asp Glu Phe Val Val Ile Glu Arg 45 Lys Lys Arg Ser Leu Ser Thr Asn Thr Ser Asp Ile 55 Ser Val Thr Ala Thr Asn Asp Ser Arg Leu Tyr Pro Gly Ala Leu Leu Val Val Asp Glu Thr Leu Leu Glu Asn Asn Pro Thr Leu Leu Ala Val Asp Arg Ala Pro Met Thr Tyr Ser Ile Asp Leu Pro Gly Leu Ala Ser Ser Asp Ser Phe Leu Gln Val Glu Asp Pro Ser Asn 115 Ser Ser Val Arg Gly Ala Val Asn Asp Leu Leu Ala Lys Trp His Gln Asp Tyr Gly Gln Val Asn Asn Val 135 140 Pro Ala Arg Met GIn Tyr Glu Lys Ile Thr Ala His 150 Ser Met Glu Gln Leu Lys Val Lys Phe Gly Ser Asp Phe Glu Lys Thr Gly Asn Ser Leu Asp Ile Asp Phe Asn Ser Val His Ser Gly Glu Lys Gln Ile Gln Ile 185 Val Asn Phe Lys Gln Ile Tyr Tyr Thr Val Ser Val 200 Asp Ala Val Lys Asn Pro Gly Asp Val Phe Gln Asp 210 Thr Val Thr Val Glu Asp Leu Lys Gln Arg Gly Ile 220 Ser Ala Glu Arg Pro Leu Val Tyr Ile Ser Ser Val 235 Ala Tyr Gly Arg Gln Val Tyr Leu Lys Leu Glu Thr Thr Ser Lys Ser Asp Glu Val Glu Ala Ala Phe Glu Ala Leu Ile Lys Gly Val Lys Val Ala Pro Gln Thr 270 Glu Trp Lys Gln Ile Leu Asp Asn Thr Glu Val Lys

FIG. 3A

	290					Asp 295					300
Arg	Val	Val	Thr	Gly 305	Lys	Val	Asp	Met	Val 310	Glu	Asp
Leu	Ile	Gln 315	Glu	Gly	Ser	Arg	Phe 320	Thr	Ala	Asp	His
Pro 325	Gly	Leu	Pro	Ile	Ser 330	Tyr	Thr	Thr	Ser	Phe 335	Leu
			340			Thr		345			
Asp	Tyr 350	Val	Glu	Thr	Lys	Val 355	Thr	Ala	Tyr	Arg	Asn 360
Gly	Asp	Leu	Leu	Leu 365	Asp	His	Ser	Gly	Ala 370	Tyr	Val
Ala	Gln	Tyr 375	Tyr	Ile	Thr	Trp	Asn 380	Glu	Leu	Ser	Tyr
Asp 385	His	Gln	Gly	Lys	Glu 390	Val	Leu	Thr	Pro	Lys 395	Ala
Trp	Asp	Arg	Asn 400	Gly	Gln	Asp	Leu	Thr 405	Ala	His	Phe
Thr	Thr 410	Ser	Ile	Pro	Leu	Lys 415	Gly	Asn.	Val	Arg	Asn 420
				425		Glu	_		430		
		435				Val	440		_		_
445			•		450	Arg				455	_
Gly	Thr	Thr	Leu 460	Tyr	Pro	Gln	Val	Glu 465	Asp	Lys	Val
Glu	Asn 470	Asp									

Met Ala Asn Lys Ala Val Asn Asp Phe Ile Leu Ala Met Asn Tyr Asp Xaa Xaa Lys Leu Leu Thr His Gln Gly Glu Ser Ile Glu Asn Arg Phe Xaa Lys Glu Gly 30 Asn Gln Leu Pro Xaa Glu Phe Val Xaa Xaa Glu Arq Lys Lys Arg Ser Leu Ser Thr Asn Thr Ser Asp Ile 55 Xaa Val Xaa Ala Thr Xaa Asp Ser Arg Leu Tyr Pro Gly Ala Leu Leu Val Val Asp Glu Thr Xaa Leu Glu Asn Asn Pro Thr Leu Leu Ala Val Asp Arg Ala Pro Met Thr Tyr Ser Xaa Xaa Leu Pro Gly Leu Ala Ser Ser Asp Ser Phe Leu Gln Val Glu Asp Pro Ser Asn 115 Ser Ser Val Arg Gly Ala Xaa Xaa Asp Leu Leu Ala 125 Lys Trp His Gln Asp Tyr Gly Gln Val Asn Asn Val 140 Pro Ala Arg Xaa Gln Tyr Glu Lys Xaa Thr Ala His 150 Ser Met Glu Gln Leu Lys Val Lys Phe Gly Ser Asp Phe Glu Lys Xaa Gly Asn Ser Leu Asp Ile Asp Phe Asn Ser Val His Ser Gly Glu Lys Xaa Ile Gln Ile Val Asn Xaa Lys Gln Ile Tyr Tyr Thr Val Ser Val 195 200 Asp Ala Val Lys Asn Pro Gly Asp Val Phe Gln Asp 210 Thr Val Thr Val Glu Asp Leu Lys Gln Arg Gly Ile 220 225 Ser Ala Glu Arg Pro Leu Val Tyr Ile Ser Xaa Val 235 Ala Tyr Xaa Arg Gln Val Tyr Leu Lys Leu Glu Thr 245 Thr Ser Xaa Ser Xaa Glu Val Glu Ala Ala Phe Glu 260 Ala Leu Ile Lys Gly Val Lys Val Ala Pro Gln Thr 270 Glu Trp Lys Gln Ile Leu Asp Asn Thr Xaa Val Lys

FIG. 4A

	290			_	_	295				-	Ala 300
Arg	Val	Val	Thr	Gly 305	Lys	Val	Asp	Met	Val 310	Glu	Asp
Leu	Ile	Gln 315	Glu	Gly	Ser	Arg	Phe 320	Thr	Ala	Asp	His
Pro 325	Gly	Leu	Pro	Ile	Ser 330	Tyr	Thr	Thr	Ser	Phe 335	Leu
Arg	Asp	Asn	Val 340	Val	Ala	Thr	Phe	Gln 345	Asn	Ser	Thr
Asp	Tyr 350	Val	Glu	Thr	Lys	Val 355	Thr	Ala	Tyr	Arg	Asn 360
	_			365	Asp			-	370	•	•
Ala	Gln	Tyr 375	Tyr	Ile	Thr	Trp	Хаа 380	Glu	Leu	Ser	Tyr
Asp 385	His	Gln	Gly	Lys	Glu 390	Val	Leu	Thr	Pro	Lys 395	Ala
			400	_ `	Gln	_		405			
Thr	Thr 410	Ser	Ile	Pro	Leu	Lys 415	Gly	Asn	Val	Arg	Asn 420
Leu	Ser	Val	Lys	Ile 425	Arg	Glu	Cys		Gly 430	Leu	Ala
Trp	Glu	Trp 435	Trp	Arg	Thr	Val	Tyr 440	Glu	Lys	Thr	Asp
Leu 445	Xaa	Leu	Val	Arg	Lys 450	Arg	Thr	Ile	Ser	Ile 455	Trp
Gly	Thr	Thr	Leu 460	Tyr	Pro	Gln	Val	Glu 465	Asp	Lys	Val
Glu	Asn 470	Asp									

FIG. 5

FIG. 7

*

FIG. 13

FIG. 14

RELATIVE FLUORESCENCE INTENSITY

