

Intelligent Data and Text Analytics Coursework 2

Student Number: 2089114 Course: MSc Data Analytics

Year: 2024

Word count: 2,993

Table of Contents

1.	Data Preprocessing	3
	1.1: Removing punctuation	3
	1.2: Removing numbers	4
	1.3: Changing text to lowercase	4
	1.4: Removing stop words	5
	1.5: Tokenisation	6
	1.6: Lemmatising	6
	1.7: Stemming	7
2.	Bag-of-Words Classification	8
	2.1: Data Preparation	8
	2.2: Classification with Naïve Bayes	8
	2.3: Classification with K-Nearest Neighbour	9
	2.4: Classification with Support Vector Machine	11
	2.5: Classification with Decision Tree	12
	2.6: Classification with Logistic Regression	13
	2.7: Comparison	15
3.	BERT Classification with Fine-Tuning	17
	3.1: Fine-Tuning	17
	3.2 BERT-Classification	17
	3.3: Comparison to section 2 models	18
4.	Topic Detection	20
	4.1: BERT-Topic	20
	4.2: BERT-Topic with K-Means	23
	4.3: Non-Negative Matrix Foundation	26
_	Poforoncos	20

1. Data Preprocessing

Data preprocessing is essential in natural language processing tasks, to clean and standardise the text. This makes machine learning models more suitable for extracting meaningful insights and improving overall model performance. Pre-processed data will be applied to Bag-of-Words classification and topic detection in this report, BERT-based model for classification utilises a built-in preprocessing model, so manual preprocessing is not necessary.

Order of preprocessing tasks can be seen in Figure 1.

Figure 1.Sequence of Text Preprocessing Steps

1.1 Removing punctuation

Punctuation marks such as full stops, commas, question marks, brackets or any other special character are removed from the text. This cleans the data to focus on the actual text without any distracting or unnecessary symbols, see Table 1.1.

Table 1.1 *Removing punctuation*

Example	Original Text	Removing Punctuation		
1	This totally UNfunny movie is so over the	This totally UNfunny movie is so over the		
	top and pathetic and unrealistic that	top and pathetic and unrealistic that		
	throughout the whole 90 minutes of utter	throughout the whole 90 minutes of		
	torture I probably looked at my watch	utter torture I probably looked at my		
	about 70000 times!	watch about 70000 times		
2	Only like 3 or 4 buildings used, a couple of	Only like 3 or 4 buildings used a couple		
	locations MAYBE, & poor hummh!	of locations MAYBE poor hummh		
3	As a European, the movie is a nice	As a European the movie is a nice		
	throwback to my time as a student in the	throwback to my time as a student in the		
	1980's and the experiences I had living	1980s and the experiences I had living		
	abroad and interacting with other	abroad and interacting with other		
	nationalities, although the circumstances	nationalities although the circumstances		
were slightly different.		were slightly different		
4	20th Century Fox's ROAD HOUSE 1948) is	20th Century Foxs ROAD HOUSE 1948 is		
	not only quite a silly noir but is an	not only quite a silly noir but is an		
	implausible unmitigated bore of a movie.	implausible unmitigated bore of a movie		
5	The original Body and Soul (1947) is a	The original Body and Soul 1947 is a		
	masterpiece.	masterpiece		
6	But "Tiny Toons" kept the 90's vibe and	But Tiny Toons kept the 90s vibe and		
	delivered one of the most popular, funny,	delivered one of the most popular funny		
	and underrated cartoons ever created.	and underrated cartoons ever created		
7	I saw it as a child on TV back in 1973, when	I saw it as a child on TV back in 1973		
	it was "The Stranger" and I loved it.	when it was The Stranger and I loved it		
8	Still, it was the SETS that got a big "10" on	Still it was the SETS that got a big 10 on		
	my "oy-vey" scale.	my oyvey scale		

1.2 Removing numbers

Any numerical value is removed from the text, to ensure the model focuses on textual content, avoiding noise introduced by numbers, although removing numbers may sometimes alter the meaning and interpretation of a review, such as example 8, removing the digits makes the text unclear.

Table 1.2 *Text without Numbers*

Example Text after removing punctuation		Text without numbers		
1	This totally UNfunny movie is so over the	This totally Unfunny movie is so over		
	top and pathetic and unrealistic that	the top and pathetic and unrealistic that		
	throughout the whole 90 minutes of utter	throughout the whole minutes of utter		
	torture I probably looked at my watch	torture I probably looked at my watch		
	about 70000 times	about times		
2	Only like 3 or 4 buildings used a couple of	Only like or buildings used a couple of		
	locations MAYBE poor hummh	locations MAYBE poor hummh		
3	As a European the movie is a nice	As a European the movie is a nice		
	throwback to my time as a student in the	throwback to my time as a student in		
	1980 s and the experiences I had living	the s and the experiences I had living		
	abroad and interacting with other	abroad and interacting with other		
	nationalities although the circumstances	nationalities although the circumstances		
	were slightly different	were slightly different		
4 20 th Century Foxs ROAD HOUSE 1948 is not		Th Century Foxs ROAD HOUSE is not		
only quite a silly noir but is an implausible of		only quite a silly noir but is an		
	unmitigated bore of a movie	implausible unmitigated bore of a movie		
5	The original Body and Soul 1947 is a	The original Body and Soul is a		
	masterpiece	masterpiece		
6	But Tiny Toons kept the 90 s vibe and	But Tiny Toons kept the s vibe and		
	delivered one of the most popular funny	delivered one of the most popular funny		
	and underrated cartoons ever created	and underrated cartoons ever created		
7	I saw it as a child on TV back in 1973 when	I saw it as a child on TV back in when it		
	it was The Stranger and I loved it	was The Stranger and I loved it		
8	Still it was the SETS that got a big 10 on my	Still it was the SETS that got a big on my		
	oyvey scale	oyvey scale		

1.3 Changing all text to lowercase

All text has been converted to lowercase, to ensure uniformity in the text, treating all words the same, see Table 1.3.

Table 1.3 *Text all lowercase*

Example	Text after removing numbers	Lowercase		
1	This totally U nfunny movie is so over	this totally unfunny movie is so over the		
	the top and pathetic and unrealistic that	top and pathetic and unrealistic that		
	throughout the whole minutes of utter	throughout the whole minutes of utter		
	torture I probably looked at my watch	torture i probably looked at my watch		
	about times	about times		
2	Only like or buildings used a couple of	only like or buildings used a couple of		
	locations MAYBE poor hummh	locations maybe poor hummh		
3	As a European the movie is a nice	as a european the movie is a nice		
	throwback to my time as a student in	throwback to my time as a student in the		

	the s and the experiences I had living	s and the experiences i had living abroad	
	abroad and interacting with other	and interacting with other nationalities	
	nationalities although the	although the circumstances were slightly	
circumstances were slightly different di		different	
4	th Century Foxs ROAD HOUSE is not	th century foxs road house is not only	
	only quite a silly noir but is an	quite a silly noir but is an implausible	
	implausible unmitigated bore of a	unmitigated bore of a movie	
	movie		
5	The original B ody and S oul is a	the original body and soul is a	
	masterpiece	masterpiece	
6	But T iny T oons kept the s vibe and	but tiny toons kept the s vibe and	
	delivered one of the most popular	delivered one of the most popular funny	
	funny and underrated cartoons ever	and underrated cartoons ever created	
	created		
7	I saw it as a child on TV back in when it	i saw it as a child on tv back in when it	
	was The Stranger and I loved it	was the stranger and i loved it	
8	Still it was the SETS that got a big on my	still it was the sets that got a big on my	
	oyvey scale	oyvey scale	

1.4 Removing stop words

Stop words refer to commonly used words (e.g. 'and,' 'the,' 'is'). Such words do not contribute meaningfully to text and therefore removed. Doing so reduces dimensionality and improves efficiency of machine learning models.

Table 1.4 *Text no stop words*

Example	Text after transformed to lowercase	Text No Stop Words		
1	this totally unfunny movie is so over the top and pathetic and unrealistic that throughout the whole minutes of utter torture i probably looked at my watch about times	totally unfunny movie top pathetic unrealistic throughout whole minutes utter torture probably looked watch times		
2	only like or buildings used a couple of locations maybe poor hummh	like buildings used couple locations maybe poor hummh		
3	as a european the movie is a nice throwback to my time as a student in the s and the experiences i had living abroad and interacting with other nationalities although the circumstances were slightly different	european movie nice throwback time student experiences living abroad interacting nationalities although circumstances slightly different		
4	th century foxs road house is not only quite a silly noir but is an implausible unmitigated bore of a movie	th century foxs road house quite silly noir implausible unmitigated bore movie		
5	the original body and soul is a masterpiece	original body soul masterpiece		
6	but tiny toons kept the s vibe and delivered one of the most popular funny and underrated cartoons ever created	tiny toons kept vibe delivered one popular funny underrated cartoons ever created		

7	i saw it as a child on tv back in when it was the stranger and i loved it	saw child tv back stranger loved
8	still it was the sets that got a big on my ovvey scale	still sets got big oyvey scale

1.5. <u>Tokenisation</u>

This technique splits text into individual words (tokens). This step is essential for further processing, as it enhances the quality of machine learning models, including classification and topic detection.

Table 1.5 *Text tokenised*

Example	Text after removing stop words	Text Tokenised	
1	totally unfunny movie top pathetic	totally, unfunny, movie, top, pathetic,	
	unrealistic throughout whole minutes	unrealistic, throughout, whole, minutes,	
	utter torture probably looked watch	utter, torture, probably, looked, watch,	
	times	times	
2	like buildings used couple locations	like , buildings ,used, couple ,locations ,	
	maybe poor hummh	maybe, poor, hummh	
3	european movie nice throwback time	european, movie, nice, throwback, time,	
	student experiences living abroad	student, experiences, living, abroad,	
	interacting nationalities although	interacting, nationalities, although,	
	circumstances slightly different	circumstances, slightly, different	
4	th century foxs road house quite silly	th, century, foxs, road, house, quite, silly,	
	noir implausible unmitigated bore	noir, implausible, unmitigated, bore,	
	movie	movie	
5	original body soul masterpiece	original, body, soul, masterpiece	
6	tiny toons kept vibe delivered one	tiny, toons, kept, vibe, delivered, one,	
	popular funny underrated cartoons ever	popular, funny, underrated, cartoons,	
	created	ever, created	
7	saw child tv back stranger loved	saw, child, tv, back, stranger, loved	
8	still sets got big oyvey scale	still, sets, got, big,oyvey,scale	

1.5 Lemmatising

Words are reduced to their base or dictionary form, lemmatisation accounts for the context and parts of speech of words, this had very little difference on the examples used since majority of words/tokens were already in their base form.

Table 1.5 *Text with lemmatising*

Example	Text after tokenisation	Text with Lemmatising	
1	totally, unfunny, movie, top, pathetic, unrealistic, throughout, whole, minutes, utter, torture, probably, looked, watch, times	total, unfunny, movie, top, pathetic, unrealistic, throughout, whole, minutes, utter, torture, probably, look, watch, times	
2	like, buildings , used , couple ,locations , maybe, poor, hummh	like, buildings, use, couple, locations, maybe, poor, hummh	

3	european, movie, nice, throwback, time, student, experiences, living, abroad, interacting, nationalities, although, circumstances, slightly, different	european, movie, nice, throwback, time, student, experiences, liv, abroad, interact, nationaliti, although, circumstances, slight, different		
4	th, century, foxs, road, house, quite, silly, noir, implausible, unmitigated, bore, movie	th, century, fox, road, house, quite, silly, noir, implausible, unmitigate, bore, movie		
5	original, body, soul, masterpiece	original, body, soul, masterpiece		
6	tiny, toons, kept, vibe, delivered , one, popular, funny, underrated, cartoons, ever, create	tiny, toons, kept, vibe, deliver, one, popular, funny, underrated, cartoons, ever, created		
7	saw, child, tv, back, stranger, loved	saw, child, tv, back, stranger, love		
8	still, sets, got, big, oyvey, scale	still, sets, got, big, oyvey, scale		

1.6. Stemming

This is similar to lemmatising, but words are reduced to their base or dictionary form by removing suffixes, no matter the grammatical context. It is less precise than stemming but a much faster alternative. Like with lemmatising, there was very little difference in the text here. Lemmatising already reduced words to its base form, stemming further simplifies text that lemmatising does not, primarily by removing tense and plural suffixes:

Table 1.6 *Text with stemming*

Example	Text after lemmatisation	Text with Stemming		
1	total, unfunny, movie, top, pathetic, unrealistic, throughout, whole, minutes , utter, torture, probably , look, watch, times	total, unfunny, movie, top, pathetic, unrealistic, throughout, whole, minute, utter, torture, probabl, look, watch, time		
2	like, buildings , use, couple, locations , maybe, poor, hummh	like, building, use, couple, location, maybe, poor, hummh		
3	european, movie, nice, throwback, time, student, experiences, live, abroad, interact, nationality, although, circumstances, slight, different	european, movie, nice, throwback, time, student, experience, live, abroad, interact, nationality, although, circumstance, slight, different		
4	th, century, fox, road, house, quite, silly, noir, implausible, unmitigate, bore, movie	th, century, fox, road, house, quite, silly, noir, implausible, unmitigate, bore, movie		
5	original, body, soul, masterpiece	original, body, soul, masterpiece		
6	tiny, toons, kept, vibe, deliver, one, popular, funny, underrated, cartoon, ever, create	tiny, toons, kept, vibe, deliver, one, popular, funny, underrat, cartoons, ever, create		
7	saw, child, tv, back, stranger, love	saw, child, tv, back, stranger, love		
8	still, sets , got, big, oyvey, scale	still, set, got, big, oyvey, scale		

Now that the data has been pre-processed, it is ready to be used for classification and topic detection.

Task 2: BoW Classification

2.1 Data Preparation

Data Transformation

 The IMDb reviews dataset was transformed using the TF-IDF Vectoriser, converting text into numerical representation by calculating the term frequency-inverse document frequency. This creates a Bag-of-Words representation for classification.

Train-Test Splitting and Balancing

- The reviews data was split into training and testing sets required for classification models.
- Slicing technique was used to balance the train and test sets, the training set included the first 500 samples, while the test set used the remaining 248 samples:

```
#train dataset by splitting the data
train_reviews = reviewsP.Review[:500]
train_sentiments = reviewsP.Sentiment[:500]

#test dataset
test_reviews = reviewsP.Review[248:]
test_sentiments = reviewsP.Sentiment[248:]

print(train_reviews.shape,train_sentiments.shape)
print(test_reviews.shape,test_sentiments.shape)

(500,) (500,)
(500,) (500,)
```

2.2 Classification with Naïve Bayes:

Table 2.2a. *Performance metrics for Naïve Bayes*

	Precision	Recall	F1-score	Support	Overall	Overall
					Accuracy	AUC
Positive	0.76	0.97	0.85	225	0.852	0.863
Negative	0.97	0.76	0.85	275		

Positive Reviews: Precision score demonstrates that out of all predicted positives, 76% were true positive predictions. A recall of 97% means all actual positive reviews were correctly identified.

Negative Reviews: Precision indicates NB accurately predicted 97% negative instances, outperforming precision of positive reviews in accuracy of identifying correct sentiments. Recall of 0.76 shows NB captured 76% of actual negative instances, recall was higher for positive reviews, suggesting NB exhibited greater sensitivity to positive sentiments.

Overall: Across all instances, 85.20% of predictions were accurately predicted, while an AUC of 86.30% indicates great ability of the model to distinguish between both classes. Overall, NB performed strongly.

Table 2.2b.

Error metrics for NB

Number	True	False	False	True	Total	% of	Total	% of
of	N	N	Р	Р	Correct	correct	incorrect	incorrect
instances					Predictions	predictions	Predictions	predictions
500	218	67	7	208	426	85.20%	74	14.80%

This model performed well, correctly predicting 85.20% instances: 218 positive and 208 negatives reviews.
Although, there is still room for improvement, given 14.80% of instances were not correctly predicted.

Table 2.2c. *Evaluation of NB*

Strengths	Weaknesses
Efficiency: this model is computationally	Feature independence: This assumes features,
efficient and provides quick predictions, great	or text characteristics such as word tokens, are
for larger datasets	independent, which might not always be true in
	real-world datasets.
Simplicity: the simplicity of the Naïve Bayes	Poorer performance in complex relationships:
classifier makes it easy to implement and a	where classes show greater complexity, Naïve
great baseline model that requires minimal	Bayes does not reveal interactions between
training time	features as effectively
Performance on text data: it often performs	
very well on text classification tasks, where	
Naïve Bayes' assumption of feature	
independence can be reasonable, but this is	
also a weakness.	

2.3 Classification with K-Nearest Neighbour

Table 2.3aPerformance metrics for KNN

	Precision	Recall	F1-score	Support	Overall	Overall
					Accuracy	AUC
Positive	0.77	0.71	0.74	225	0.774	0.768
Negative	0.78	0.83	0.80	275		

Positive Reviews: KNN correctly identified 77% positive sentiments out of all positive predictors. A recall of 0.71 means the model captured 71% of all actual positive instances. A F1-score of 0.74 shows the model moderately predicted positive reviews while minimising false negatives and positives.

Negative Reviews: 78% of reviews were correctly predicted as negatives. KNN captured 83% of actual negative reviews, showing greater sensitivity to the negative sentiments than positive. F1-score of 0.80 shows very good balance between precision and recall, slightly outperforming the positive class.

Overall performance: Overall model accuracy is 77.4%, this is relatively a good score but there is still room for improvement, particularly in recall scores for the positive sentiment. An AUC of 0.768 demonstrates moderate performance in distinguishing between positive and negative reviews.

Table 2.3b *Error metrics for KNN*

Number	True	False	False	True	Total	% of	Total	% of
of	N	N	Р	Р	Correct	correct	incorrect	incorrect
instances					Predictions	predictions	Predictions	predictions
500	160	48	65	227	387	77.40%	113	22.60%

KNN performed moderately, correctly predicting 77.40% sentiments, although it identified a reasonable proportion of incorrect predictions (22.60%): 48 false negatives, 65 false positives; suggesting there is a lot of room for improvement.

Table 2.3c *Evaluation of KNN*

Strengths	Weaknesses
Simplicity: KNN is simple and easy to	Requires a lot of memory: KNN stores entire
understand, deeming it appropriate for quick	training dataset, so it can be memory-intensive,
implementations in classification tasks.	particularly with larger datasets.
Performs well in complexity: where decision	Sensitive to irrelevant features: distance
boundaries are complex, KNN can adapt to it,	between instances can be distorted by features
where there is no linearity between decision	that are not of useful information
boundaries, KNN can still make effective	
predictions.	

2.4 Classification with Support Vector Machine

Table 2.4a *Performance metrics for SVM*

	Precision	Recall	F1-score	Support	Overall	Overall
					Accuracy	AUC
Positive	0.81	0.92	0.86	225	0.866	0.871
Negative	0.93	0.82	0.87	275		

Positive reviews: 81% of instances were correctly predicted as positive out of all positive predictors. 92% were identified as acutal positive reviews. A F1-Score 0f 0.86 demonstrates the model balances both false positives and false negatives effectively.

Negative reviews: 93% of sentiments were correctly predicted as negative, a recall of 0.82 indicates 82% were actual negative reviews, giving room for improvement in correctly classifying negative reviews. A similar F1-score to positive instances indicates this model performed well in predicting negative reviews while minimising false negatives and positives.

Overall: SVM made 86.6% accurate sentiment predictions across both classes, a strong performance. An AUC of 0.871 shows the model performed well in distinguishing between both classes.

Table 2.4b *Error metrics for SVM*

Littor interior	Joi Jui	V 1						
Number	True	False	False	True	Total	% of	Total	% of
of	N	N	Р	Р	Correct	correct	incorrect	incorrect
instances					Predictions	predictions	Predictions	predictions
500	208	50	17	225	433	86.60%	67	13.40%

The SVM model performed well in correctly identifying 433 instances (86.60%) while 67 were incorrectly predicted (13.40%). While there is still room for improvement, this model still performed strongly.

Table 2.4c *Evaluation of SVM*

Strengths Weaknesses	
----------------------	--

Effective in high-dimensional spaces: SVM	Training time: computationally expensive and
thrives in situations with many features, such	slow, the training time drastically increases as
as text classification.	the dataset size increases.
Prone to overfitting: robust to overfitting,	Performance limitations: SVM can struggle
particularly in high-dimensional spaces.	with imbalanced datasets - might show bias
	towards the majority class.
Use of Kernels: this allows SVM to handle non-	
linear data as well as linear.	

2.5 Classification with Decision Tree

Table 2.5a *Performance metrics for DT*

	Precision	Recall	F1-score	Support	Overall	Overall
					Accuracy	AUC
Positive	0.81	0.87	0.84	225	0.850	0.852
Negative	0.88	0.84	0.86	275		

Positive Reviews: Of all positive predictors, 81% were accurately identified as a positive review. Recall demonstrates 87% of all actual positive reviews were correctly classified. A F1-score of 0.84 indicates good balance between precision and recall.

Negative Reviews: The DT model performed better in accurately predicting negative instances than positive instances, given a higher precision value (0.88). A recall of 0.84 shows 84% were actual negative instance. F1-score is only marginally higher for negative reviews than positive, also indicating great balance between precision and recall.

Overall: An overall accuracy of 85% is relatively high, while an AUC of 85.20% suggests the model performed well in distinguishing between both positive and negative classes. The DT model performed well overall.

Table 2.5b *Error metrics for DT*

Number	True	False	False	True	Total	% of	Total	% of
of	N	N	Р	Р	Correct	correct	incorrect	incorrect
instances					Predictions	predictions	Predictions	predictions
500	195	45	30	230	425	85.00%	75	15.00%

DT model correctly predicted 425 instances (85%), while incorrectly predicting 75 (15%), 45 instances were positive but predicted as negative, while 30 instances were negative but classified as positive. This model performed very well, but improvements can be implemented to reduce the error.

Table 2.5c *Evaluation of DT*

Strengths	Weaknesses
Simplicity and interpretability: Decision Trees	Overfitting: prone to overfitting, especially
are easy to implement, and understand	when the depth of the tree increases.
Handles non-linear relationships: Decision	Bias towards majority: where data is
Trees can model more complex relationships.	imbalanced, decision trees show bias towards
	the majority class.
Training time: not as computationally	
expensive as other models, even with larger	
datasets.	

2.6 Classification with Logistic Regression

Table 2.6a *Performance metrics for LR*

	Precision	Recall	F1-score	Support	Overall	Overall
					Accuracy	AUC
Positive	0.77	0.96	0.85	225	0.854	0.863
Negative	0.95	0.77	0.85	275		

Positive reviews: 77% of positive classes were correctly predicted out of all positive predictors, a recall of 0.96 indicates LR captured 96% of actual positive instances. An F1-score of 0.85 is high and demonstrates good balance between precision and recall.

Negative reviews: Of all negative predictors, 95% of negative reviews were correctly predicted, although a recall of 0.77 demonstrates only 77% of predictions were actual negative instances. An F1-score of 0.85 demonstrates balance between precision and recall.

Overall: An overall accuracy of 85.40% highlights LR's strong performance. An AUC of 86.30 shows great discriminatory power of the model in distinguishing between positive and negative classes. Although, adjustments can be made to refine the precision of positive reviews and the recall of negative reviews.

Table 2.6b *Error metrics for LR*

Number of	True	False	False	True	Total	% of	Total	% of
instances	N	N	Р	Р	Correct	correct	incorrect	incorrect
					Predictions	predictions	Predictions	predictions
500	215	63	10	212	427	85.40%	73	14.60%

427 instances were correctly predicted (85.40%), a strong performance, although 14.60% of instances were misclassified, with 63 cases being false negatives, and 10 cases appeared to be false positives.

Table 2.6c *Evaluation of LR*

Strengths	Weaknesses
Simplicity and interpretability: LR is easy to implement and understand. It provides insights	Limited application: the assumption of a linear relationship between independent variables
into relationships between features and target variable.	and log-odds of target features limits the application of LR to complex, non-linear relationships
Linear relationships: LR operates on assumptions of linearity, so in cases where there is linear relationship between features and targets, this model performs exceptionally well	Bias towards majority: where data is imbalanced, decision trees show bias towards the majority class.
Efficiency: computationally efficient, works well	Performance limitations: where there is high-
for small datasets.	dimensional data, LR may underperform

2.7 Comparison

Table 2.7 *Table of comparison for all classifiers*

Overall accuracy of models is very similar. KNN performed the worst, LR, DT and NB all performed just as well as each other, but SVM takes the edge by a very slight difference. Nevertheless, LR, DT and NB performed just as strongly,

KNN performed the worst at distinguishing between positive and negative classes. LR, DT and NB exhibited similar performances with only decimal differences between their AUC scores. SVM slightly outperforms these three classifiers, giving this model the greatest discriminatory power.

Once again, KNN performed the worst, with the fewest correct predictions, and greatest incorrect predictions. LR, DT and NB performed very similarly, identifying a similar proportion of correct and incorrect predictions. SVM holds the greatest prediction accuracy, with the most correct and least incorrect predictions.

All classifiers performed well, KNN scores are still relatively good, but it was outperformed by all other models across all metrics, therefore it is the least suitable model for this dataset. The remaining models: LR, DT, NB and SVM performed exceptionally well, all achieving the greatest accuracy in correct predictions. However, across all metrics, LR, DT and NB performed very similarly with the smallest and most marginal differences between them. SVM consistently yielded the best results per metric, only slightly outperforming LR, DT and NB, deeming SVM the most suitable classification technique for this dataset, nevertheless, LR, DT and NB would still be appropriate in practice too.

Task 3: BERT Classification with Fine-Tuning

3.1 Fine-Tuning

To fine-tune the BERT-based model, these steps were conducted:

Optimising: the AdamW optimiser was generated with an initial learning rate of 3e-5, it also calculated warm-up steps (10% of total training steps), and total training steps consisted of 6 epochs, with 448 steps per epoch.

Data splitting: the dataset was split into training (X_train, y_train), test sets (X_test, y_test) and validation (X_val, y_val) to avoid biased evaluation.

3.2 Classification with BERT

Table 3.2a *Performance metrics*

	Precision	Recall	F1-Score	Support	Accuracy	AUC
Positive	0.64	0.68	0.66	73	0.660	0.661
Negative	0.68	0.64	0.66	77		

Positive reviews: The BERT-based model captured only 64% of correct predictions. A recall of 0.68 shows BERT identified 68% of actual positive instances. Precision and recall performance is moderate. An F1-score of 0.66 suggests moderate balance between precision and recall.

Negative reviews: Precision of negative instances slightly outperforms precision of positive instances by 0.04%. BERT identified 68% of correct negative predictions across all negative predictors. 64% are actual negative reviews, with an identical F1-score to positive instances. The BERT-based model performed moderately for classifying negative classes also.

Overall: Accuracy is also moderate, with 66% accurate predictions, and an AUC of 66.10% demonstrates a modest discriminatory power of this model in distinguishing between both classes.

Table 3.2b *Error metrics*

Number	True	False	False	True	Total	% of	Total	% of
of	N	N	Р	Р	Correct	correct	incorrect	incorrect
instances					Predictions	predictions	Predictions	predictions
150	50	28	23	49	99	66.00%	51	34.00%

BERT correctly predicted 99 instances (66%), leaving a large proportion of predictions misclassified (34%), including 28 false negatives and 23 false positives. BERT model did not perform relatively well, requiring substantial improvements and refinements to reduce misclassifications.

Table 3.2c *Evaluation*

Strengths	Weakness
Performance: BERT usually performs exceptionally across natural language processing tasks.	High computational cost: BERT-based models require a lot of computational resources and processing power, it is quite a slow algorithm due to this.
Minimal preprocessing: BERT includes built-in preprocessing models, making it less labour intensive to prepare data for BERT tasks	Overfitting: there is a risk of overfitting on small datasets.

3.3 Comparison to classifiers in section 2

Table 3.3a *Comparison against section 2 classifiers*

	BERT with	Naïve	K-Nearest	Support	Decision	Logistic
	Fine-	Bayes	Neighbour	Vector	Tree	Regression
	Tuning			Machine		
Precision P	0.64	0.76	0.77	0.81	0.81	0.77
Precision N	0.68	0.97	0.78	0.93	0.88	0.95
Recall P	0.68	0.97	0.71	0.92	0.87	0.96
Recall N	0.64	0.76	0.83	0.82	0.84	0.77
F1-Score P	0.66	0.85	0.74	0.86	0.84	0.85
F1-Score N	0.66	0.85	0.80	0.87	0.86	0.85
Overall	0.660	0.852	0.774	0.866	0.850	0.854
accuracy						
AUC	0.661	0.863	0.768	0.871	0.852	0.863

Number of instances	150	500	500	500	500	500
True P	50	218	160	208	195	215
False P	28	67	48	50	45	63
False N	23	7	65	17	30	10
True N	49	208	227	225	230	212
Total Correct Predictions	103	426	387	433	425	427
Percentage of total correct predictions	66.00%	85.20%	77.40%	86.60%	85.00%	85.40%
Total incorrect predictions	51	74	113	67	75	73
Percentage of total incorrect predictions	34.00%	14.80%	22.60%	13.40%	15.00%	14.60%

Across all metrics, BERT with fine-tuning has been outperformed by every model, even KNN, which had the poorest performance across previous models. BERT displays the worst precision, therefore identified the least number of correct predictions across both negative and positive classes; the worst recall, meaning it struggled the most in identifying actual negative and positive instances; and a low F1-score, signifying the worst harmony between precision and recall relative to other classifiers. Overall accuracy scores across other metrics quite distinctly outperform BERT, emphasising this model's poor performance in correctly predicting sentiments. A modest AUC value of 0.661 questions the discriminatory power of this model, relative to all other higher scoring models in comparison. This questions BERT's ability in distinguishing between both positive and negative classes. The confusion matrix emphasises this model's lack of accuracy, with the lowest percentage of total correct predictions and largest proportion of incorrect predictions.

Overall, BERT is the least suited for this dataset, perhaps due to a small number of instances, where BERT models tend to perform better on larger scale natural language processing tasks. However, BERT is a powerful classification model, so it was attempted to improve its performance using ensemble learning. Here, previous models from section 2 were combined with BERT to attempt to improve its overall performance. It is expected that given SVM performed the best in section 2, this will lead to the biggest improvement in BERT with fine-tuning performance, see Table 3.3b.

Table 3.3bOverall performance and error metric comparison across ensemble techniques

	BERT with	BERT +	BERT +	BERT +	BERT + DT	BERT + LR
	Fine-Tuning	NB	KNN	SVM		
Precision P	0.64	0.59	0.59	0.71	0.63	0.76
Precision N	0.68	0.73	0.62	0.72	0.72	0.78
Recall P	0.68	0.82	0.60	0.70	0.77	0.77
Recall N	0.64	0.45	0.61	0.73	0.57	0.77
F1-Score P	0.66	0.69	0.60	0.70	0.69	0.76
F1-Score N	0.66	0.56	0.61	0.72	0.64	0.77
Overall	0.660	0.633	0.607	0.713	0.600	0.767
accuracy						

19

AUC	0.661	0.638	0.607	0.713	0.601	0.767
Number of	150	150	150	150	150	150
instances						
True P	50	60	44	51	48	56
False P	28	42	30	21	35	18
False N	23	13	29	22	25	17
True N	49	35	47	56	42	59
Total Correct Predictions	103	95	91	107	90	427
Percentage of total correct predictions	66.00%	63.33%	60.67%	71.33%	60.00%	76.67%
Total incorrect predictions	51	55	59	43	60	35
Percentage of total incorrect predictions	34.00%	36.67%	39.33%	28.67%	40.00%	23.33%

As predicted, when BERT combined with SVM, it yielded a great improvement achieving 71.33% accuracy, substantially better than its performance alone (66%). Although, this wasn't the greatest improvement, as the BERT-model paired with the Logistic Regressor resulted in the most notable improvement (76.67%). However, pairings with KNN, NB and DT produced mixed results, with accuracies ranging from 60-63% - not all ensemble combinations significantly enhanced BERT model results. Of interest, BERT paired with SVM and LR consistently outperformed all other models in both precision and recall, identifying the fewest false positives and negatives. Their F1-scores outweigh all models, but particularly BERT-model alone, conveying the greatest harmony between precision and recall.

In conclusion, BERT alone performed moderately, but these findings highlight the value of ensemble techniques. Using robust models such as SVM and LR, the BERT models performance enhanced its ability in delivering more reliable predictions.

4. Topic Detection

Topic detection identifies and extracts themes/topics from a large collation of unstructured text data, this will be performed using 3 algorithms:

- 1. BERT-Topic
- **2.** BERT-Topic with K-Means (K-Means)
- **3.** Non-Negative Matrix Foundation (NMF)

4.1 BERT-Topic:

Table 4.1a

Review and interpretation of topics and topic words

Topic	Top 10 Words	Top-Word interpretation	Interpretation
0	good, bad, character, script, scene, look, time, like, make, even	Good: this topic likely reflects general positive opinions within an IMDb review.	This topic implies mixed reviews, with the viewer mentioning good and bad aspects of the film/characters, script and specific scenes.
1	watch, film, movie, bad, like, ever, great, really, see, suck	Watch: topic 1 will may focus on the overall viewing experience.	Focus on general opinions of the film, some praise to the movie but also a strong dislike, using strong negative adjectives such as 'suck.'
2	actor, character, cast, funny, well, played, role, performance, good, many	Actor: topic 2 will focus on a review of an actor	Emphasises the acting performances and character portrayal in a positive light.
3	bad, awful, torture, stupid, dont, frighten, case, minute, spoiler, even	Bad: topic 3 will strongly criticise a movie	A strong negative review of a film, viewer seems incredibly unsatisfied.
4	great, excellent, give, awesome, brilliant, director, like, performance, end, nevertheless	Great: topic 4 will strongly praise a movie	Exceptional reviews, the user highly praised the movie and director's work.
5	waste, boring, time, garbage, don't, trash, shelf, store, anyone, ever	Waste: topic 5 likely reflects a topic of a viewer expressing disappointment and dissatisfaction in the film.	Viewer considered the movie a waste of time and money.
6	music, speak, sound, song, score, soundtrack, terrific, memorable, particularly, period	Music: focus on the soundtrack and music used	Focuses on music and sound, capturing a positive response towards soundtracks and scores used in the film
7	recommend, worth, check, definitely, advise, anyone, commentary, confidence, sorry, see	Recommend: strong viewer endorsements and encouragement for others to watch	The viewer recommends this film, considers it worthwhile to watch, confident in the recommendation too.
8	plot, line, doesnt, way, hoot, astonishingly, anyway, weaker, convince, convolute	Plot: topic 8 likely discusses the storyline and structure of a film	Negative review that criticises the plot of the film as weak, convoluted and unconvincing.

9	act, balance, least,	Act: topic 9 centres around	Focus of this topic is on specific
	however, cast,	acting and character portrayal.	features and characters of a film,
	nimoy, rescue, jet,		but it is not clear if this is a
	kirk, mountain		positive or negative review.

Figure 3Visual representation of top 10 words per topic with word weight

** Note: No bar chart is presented for topic 0 as it is an outlier, but the top 10 words in heaviest weight distribution to lightest is: 'good,' 'bad,' 'character,' 'script,' 'scene,' 'look,' 'time,' 'like,' 'make' and 'even' **

4.1b Sentiment Discussion using Figure 3:

Positive sentiments (Topic 2, 4 and 6, 7):

These charts feature words such as 'excellent,' 'awesome,' 'terrific,' 'recommend,' and 'memorable,' all of which are strongly weighted, indicating enjoyment and appreciation of films from the viewers, particularly in aspects such as actors' performance and soundtracks.

Negative Sentiments (Topic 3 and 5):

These topic charts demonstrate largely weighted negative words such as 'bad,' 'torture,' and 'waste.' The strong weight for these negative terms indicates dissatisfaction from viewers.

<u>Neutral Sentiments</u> (Topic 0, 1 and 8): topics consisting of words such as 'good,' 'bad,' 'watch' and 'plot' are more evenly distributed in weight, revealing mixed and neutral opinions.

4.1c Quality Assessment

Topic coherence measures semantic similarity between the words in each topic. A higher score generally means the topics are more meaningful and interpretable if the words in the topic are more semantically similar. For the BERT-Topic model, the coherence score is **0.442**. This is a moderate score, providing both strengths and limitations of this model:

Strengths of BERT-Topic	Weakness of BERT-Topic
Moderate coherence: this score is not high but	Moderate coherence: this score is not high
not low, its score is acceptable for	enough to determine all topics are entirely
interpretability, indicating that the topics have	meaningful, some terms may be unrelated or
some meaning and cohesivity, but for optimal	loosely related, effecting the quality of the
clarity refinement is needed.	overall model.
Distinctiveness and Relevance: Some topics are	Overlapping themes: some words in topics
coherent while focusing on certain elements of	overlap, for instance, topic 0 and topic 1 both
films that are usually discussed in IMDB	consist of words such as 'film', 'movie' or
reviews, such as 'actor' and 'performance'	'watch,' implying they all just relate to general
(topic 2), 'music' and 'soundtrack' (topic 7)	viewing experience without clear distinction
	between topics, lacking clarity. Such overlap
	also affects the quality of the overall model.
Well-Distributed topics: BERT-topic model	Ambiguous words: some of the words in topics
identifies diverse aspects of these reviews, such	are ambiguous and lack interpretability,
as acting (topic 2), director (topic 4), music	generally low-weighted too. For instance, topic
(topic 6) and recommendations (topic 7).	9 consists of terms such as 'mountain,' 'kirk,' or
	'rescue,' such words are harder to semantically
	group together or group under a cohesive
	theme.

Overall, this model performs reasonably well, topics are interpretable at a moderate quality, they are usually meaningful, although there is a lot of room for improvement in reducing overlap and ambiguity. Some methods to increase coherence scores include fine-tuning the BERT-topic's parameters and preprocessing steps.

4.2 BERT-Topic with K-Means

Table 4.2a

Review and interpretation of topic and topic words

Topic	Top 10 Words	Top-Word interpretation	Overall Interpretation
0	show, even, bad, would, time, torture, people, totally, attempt, predictable	Show: topic likely discusses overall viewing experience or review of television series.	This review emphasises a negative viewing experience. Words such as 'bad' and 'torture' highlight an unpleasant experience.
1	music, great, love, excellent, wonderful, end, song, job, good, make	Music: topic focuses on soundtrack	Focus on a positive review on the film's music and soundtrack. Positive descriptors such as 'great,' 'love,' 'excellent,' and 'wonderful' heavily emphasise an appreciation for the music/soundtracks in the film
2	actor, cast, act, character, well, script, role, good, played, play	Actor: topic centres on actors' performance	This topic discusses a positive reflection of the overall performance and execution of the movie.
3	watch, movie, film, bad, really, ever, such, love, great, like	Watch: this alone suggests viewing endorsements, though other topic words, of lower weight, suggest a mixed opinion.	A mixture of positive and negative reviews with contradicting terms such as 'bad' and 'great.' It is unclear if this review is positive or negative.
4	recommend, worth, avoid, definitely, like, give, rent, good, check, anyone	Recommend: strong endorsement to watch the film	Focus on recommendations, highlighting a positive review and viewing experience, although 'avoid' implies some disapproval.
5	funny, character, scene, entertain, enjoy, tine, animation, still, mickey, get	Funny: topic likely reflects comedic appreciation of a movie	A transparent review reflecting a comedic, animated film generally perceived as funny and entertaining. A highly positive review.
6	bad, start, case, right, slow, never, problem, flaw, half, let	Bad: topic will criticise the film	This review criticises the pace of the film, indicating dissatisfaction towards the structure and execution of the film.
7	plot, waste, boring, time, nothing, garbage, dont, whatsoever, trash, line	Plot: this topic will focus on the storyline and structure of a movie.	Critique of plotlines, negative terms such as 'boring' and 'garbage' reflect disappointment in the structure and storytelling, the viewer strongly dislikes the movie, perhaps considering it a 'waste' of 'time.'
8	art, cinematography, film, set, use, camera, like, movie, documentary, also	Art: topic 8 will address visuals and cinematography.	This reviewer appreciated the visuals in the film, particularly the 'art' and 'cinematography.'
9	awful, stupid, edit, story, scene, terrible, painful, volcano, scar, angeles	Awful: this topic likely reflects a harsh criticism of a film	A harsh critique, words like 'awful,' 'terrible,' and 'painful' imply extreme dissatisfaction with the movie.

Figure 4Visual representation of top 10 words per topic with word weight

4.2b Sentiment discussion using Figure 4

Positive Sentiment (Topics 1, 2, 4, and 5)

These bar charts consist of strongly weighted positive descriptors such as 'great,' 'excellent,' 'recommend,' and 'funny.' These topics highlighted viewers' thorough enjoyment and appreciation for the film, especially in concepts regarding the actors' performance, the music/soundtrack and just overall entertainment aspects.

Negative Sentiment (Topics 0, 3, 6, 7 and 9)

These charts focus on strongly weighted negative descriptors including, 'bad,' 'suck,' 'waste,' 'boring,' and 'awful,' 'predictable,' or 'torture.' Being heavily weighted words, it highlights viewers' extreme dissatisfaction, especially in aspects such as the movie plot, pace of the film or even the movie overall.

Neutral Sentiment (Topic 8)

No clear positive or negative descriptor is captured to reflect if this topic signifies a positive or negative review, seems that this review consists of a general depiction of a movie/documentary.

4.2c Quality Assessment

For this model, the coherence score is **0.420**, a moderate score but slightly lower than that of the BERT-topic model. Given the quality of both models are similar, there is similarity between model strengths and limitations:

Strengths of BERT-Topic with K-Means	Weakness of BERT-Topic with K-Means
Reasonable interpretability: many topics	Moderate coherence: this score is not high
identified by this model are meaningful and	enough to determine all topics are entirely
understandable, suggesting it extracted some	meaningful, some terms may be unrelated or
useful insights into IMDb reviews.	loosely related, effecting the quality of the
	overall model.
Coverage of topics: various themes were	Ambiguous words: some words are too generic
identified, such as music and soundtrack (topic	and vague, for instance, in Topic 9, words like
1), acting (topic 2) or humour and	'volcano' and 'scar' lack any interpretable
entertainment (topic 5); all of which are very	meaning, making it harder to draw useful
relevant to common focus areas in IMDb	insights into the sentiment of reviews.
reviews.	
Balance of sentiments: this model identified	
both positive and negative feedback from	
reviews, such balance adds depth and quality to	
the analysis	

Like BERT-topic, this model performed moderately, with diverse and interpretable topics, relevant to IMDb reviews and somewhat distinct, although improvements can be made for better cohesivity, particularly by addressing ambiguous terms.

4.3 Non-Negative Matrix Foundation

Table 4.3a *Review and interpretation of topic and topic words*

Topic	Top 10 Words	Top-Word Interpretation	Interpretation
1	bad, act, make, series,	Bad: this topic likely	Strong dissatisfaction with a
	film, write, thought, say,	reflects a review that	film, viewer thinks of it as
	review, think	critiques a movie	poorly executed, particularly
			issues in acting and script.
2	like, movie, way, fact, film,	Like: topic 1 addresses	Mixed opinions on a film, sheds
	think, hate, woman,	subjective opinions and	light on societal aspects,
	people, attempt	cultural depictions	sentiment is not clear though.

	and natur make with	Cood, this topic will	Annuaciation to actor cost such
3	good, actor, make, quite,	Good: this topic will	Appreciation to actor, cast and
	job, act, cast, value,	highly praise a film	cinematography, an overall
	cinematography, place		positive review
4	watch, easy, joy,	Watch: this topic likely	Discusses the entertainment
	predictable, thing, that's,	centres on the viewers'	value of a film, it balances pros
	terrible, taped, love, air	watching experience	(easy, joy) and cons
			(predictable, terrible)
5	recommend, highly, saw,	Recommend: topic 4	Highlights a viewers' thorough
	definitely, friend, im, fan,	reflects a viewer's	enjoyment of a film,
	cinema, short, giallo	endorsement and	emphasising a personal
		encouragement to watch	endorsement and a fan of the
		a film	cinema.
6	scene, plot, character,	Scene: topic 5 evaluates	A positive review showing
	real, act, action, line, little,	pivotal scenes	appreciation for action scenes
	place, strong		
7	time, dont, waste, worth,	Time: reflects the	Overall assesses the film
	long, think, money, hour,	viewer's opinion on time	negatively, considering it not
	disliked, enjoy	spent on watching a	worthwhile and a waste time
		movie	and money.
8	great, cast, love, director,	Great: likely focuses on	Viewer shows appreciation for
	saw, actor, end, original,	positive aspects of a film	the cast performance, directors
	disappointment, film		work and the film overall,
			although 'disappointment'
			confuses what sentiment this
			review is.
9	really, funny, character,	Really: topic 8 likely	Balanced view, positivity shown
	didn't, make, work, im,	emphasises positive	towards a character, but
	care, camera, create	traits of a film	critiques aspects of the film,
	,		highlighting areas for
			improvement.
10	look, awful, story, end,	Look: this topic likely	Review focuses on a viewer's
	make, cheap, advise,	reflects critique in visuals	disappointment in visuals and
	create, script, right	,	storyline, criticising it and
			expressing frustration over low-
			quality aspects.
	1		quant, aspects.

Figure 5Visual representation of top 10 words per topic with word weight

4.3b Sentiment Discussion using Figure 5

Positive Sentiments: (Topics 3, 5 and 8)

These topic charts contain very strongly weighted positive descriptors like 'good,' 'recommend,' 'highly,' 'great,' and 'love;' indicating the viewers enjoyed their film, especially in aspects such as acting, plotlines and overall entertainment.

Negative Sentiments: (Topics 1, 7, 10)

These charts reveal strong weight distribution in negative descriptors, including 'bad,' 'waste,' 'awful,' 'cheap,' 'disliked,' and more. These highlight the viewers' disappointment and dissatisfaction in acting (topic 1), time and money spent (topic 7) or script quality (topic 10).

<u>Neutral/Mixed Sentiments:</u> (Topics 2, 4, 6)

These topics are not distinctly positive or negative. Topic 2 may discuss general opinions about film productions and personal societal opinions, while topic 6 centres on specific elements of the movie such as character and plot structure, but without a clear evaluative tone. Topics 4 and 9 talk in an evaluative tone, but consists of both positive and negative features, praising the movie, but identifying some aspects as predictable and terrible (topic 4) or simply did not work (topic 9).

4.3c Quality Assessment

For the NMF Model, coherence equated to 0.553, outperforming both BERT-topic and K-Means. Nevertheless, this score is still moderate, suggesting the model produces interpretable topics, but there is still noise in the data preventing an increase in cohesivity.

Strengths of NMF	Limitations of NMF
Interpretability: topics are fairly interpretable,	Overlapping topics: words such as 'act' (1, 3, 6)
better than that of BERT-topic and K-Means,	and 'film' (topic 1, 2, 8) are present in many
given a higher coherence score; topics are	topics, which blurs distinction between them.
better at providing more meaningful insights	Lack of distinction between topics reduces the
into IMDb reviews.	quality of the model.
Distinctiveness and Relevance: each topic identifies interpretable and specific themes, with minimal overlap. For example, topic 5 centres on positive recommendations, using words such as 'recommend,' and 'highly,' while topic 7 focuses on viewer's frustration capturing words like 'time,' 'waste,' and 'money.' Such distinctiveness increases the	Mixed sentiments: some topics (2, 4, 6) lacked clarity in distinct sentiment, it was harder to classify if these topics refer to a positive or negative review. A lack of clarity like this reduces the model's useful insights, hindering its quality.
quality of the model. Diverse range of words: various descriptors	
identified, conveying the depth and opinions of	
topics. For example, topic 4 highlights specific	
aspects of movies (plot, acting,	
cinematography). Such diversity increases the	
quality of the NMF model.	

The NMF model performed the best across all three algorithms, nevertheless, it has still performed moderately. This model may perform substantially better if issues such as overlapping topics and unclear sentiments are addressed.

References

Arushiprakash. (n.d.). *MachineLearning/BERT Word Embeddings.ipynb at main · arushiprakash/MachineLearning*. GitHub.

https://github.com/arushiprakash/MachineLearning/blob/main/BERT%20Word%20Embeddings.ipynb

Choubey, V. (2021, December 15). Topic modelling using NMF - Voice Tech Podcast - medium. *Medium*. https://medium.com/voice-tech-podcast/topic-modelling-using-nmf-2f510d962b6e

Politi, M. (2022, July 6). Feature Extraction with BERT for Text Classification. *Medium*. https://towardsdatascience.com/feature-extraction-with-bert-for-text-classification-533dde44dc2f

Singh, S. (2024, December 8). *How to Get Started with NLP – 6 Unique Methods to Perform Tokenization*. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2019/07/how-get-started-nlp-6-unique-ways-perform-tokenization/

Thabresh. (2023, June 1). *BERT model for text embeddings*. Kaggle. https://www.kaggle.com/code/thabresh/bert-model-for-text-embeddings

Navlani, A. (2024, August 11). *Python logistic regression tutorial with Sklearn & Scikit*. DataCamp. https://www.datacamp.com/tutorial/understanding-logistic-regression-python