Advanced Robotics

Zusammenfassung

Joel von Rotz / Quelldateien

Inhaltsverzeichnis -

Repetition Linear Algebra	1
Vektoren	1
Skalarprodukt	1
	1
Winkel & Orthogonalität	1
Kreuzprodukt	1
Matrizen	1

Repetition Linear Algebra -

Vektoren

Skalarprodukt

Das Skalarprodukt entspricht der Multiplikation der Projektion $\overrightarrow{b_a}$ auf \overrightarrow{a} mit \overrightarrow{a}

$$\overrightarrow{a} \bullet \overrightarrow{b} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \bullet \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = a_1 \cdot b_1 + \dots + a_n \cdot b_n = \sum_{i=1}^n a_i \cdot b_i$$

Winkel & Orthogonalität

Beim Berechnen des Winkels zwischen zwei Vektoren

$$\varphi = \arccos \frac{x \bullet y}{\|x\| \cdot \|y\|}$$

Es gilt:

•
$$\overrightarrow{a}$$
 • \overrightarrow{b} > 0 wenn $\varphi < \frac{\pi}{2}$

•
$$\overrightarrow{a}$$
 • \overrightarrow{b} < 0 wenn $\varphi > \frac{\pi}{2}$

I Definition Orthogonalität

Sind zwei Vektoren *orthogonal/senkrecht* zueinander, ergibt das Skalarprodukt

$$\overrightarrow{a} \bullet \overrightarrow{b} = 0$$
 und $\varphi = \frac{\pi}{2}$

\mathbf{i} Richtungswinkel in \mathbb{R}^3

$$\cos \alpha = \frac{a_X}{a} \& \cos \beta = \frac{a_Y}{a} \& \cos \gamma = \frac{a_Z}{a}$$

$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$

Kreuzprodukt

Matrizen

Schiefsymmetrische Matrix: $A = -A^T$

Asymmetrische Matrix: $A = A^T$

Diagonalmatrix

Selektion Untermatrizen oder Vektoren

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

A(1:2,1:2) A(1:2,1:2)

$$E = \begin{bmatrix} -2 & 4 & 1 \\ 4 & -1 & 0 \\ 1 & 0 & 4 \end{bmatrix}$$

$$Inv(E) = E^{-1} = \frac{adj(E)}{det(E)}$$

$$adj(E) =$$