Physical Sensors and Systems for Environmental Signals A Comparative Study of Denoising Techniques for Speech Audio Signals

Mirko Morello

m.morello11@campus.unimib.it

Mat. 920601

February, 2025

Università degli studi di Milano Bicocca / Artificial Intelligence for Science and Technology

Outline

Introduction

Related Work

Methods

Classical Methods

Neural Network Methods

Loss Functions

Metrics

Experimental Setup

Results

Future Work

Conclusion

Introduction

Introduction

- Environmental acoustic recordings are crucial for applications in ecology, urban planning, and environmental monitoring.
- However, these recordings are often contaminated with noise from various sources.
- In this study, we compare classical denoising techniques with modern neural network approaches.
- Datasets: Clean speech from LibriSpeech and noise from UrbanSound8K.

Related Work

Related Work

Classical Methods:

- Spectral Subtraction [1]
- Wiener Filtering [2]

Neural Network Methods:

- Residual Autoencoder
- U-Net (UNetSpec)
- Hybrid Denoiser
- Transformer Autoencoder

Methods

Spectral Subtraction

Process:

- 1. **STFT:** Compute the Short-Time Fourier Transform (STFT) of the noisy signal to obtain magnitude and phase.
- 2. **Noise Estimation:** Estimate the noise spectrum (often using initial frames assumed to be noise-dominant).
- Subtraction: Subtract the estimated noise magnitude from the noisy magnitude. Use a max operation to avoid negative values.
- iSTFT: Reconstruct the time-domain signal by applying the inverse STFT (iSTFT) using the original phase.
- **Pros:** Simple and computationally efficient.
- Cons: May introduce "musical noise" artifacts due to imperfect noise estimation.

Wiener Filtering

• **Principle:** Minimizes the mean squared error (MSE) between the estimated clean signal and the true clean signal.

Process:

- 1. Estimate the power spectral density (PSD) of both the clean signal and the noise.
- Calculate the Wiener filter, which balances noise reduction and signal preservation.
- 3. Apply the filter in the time domain to the noisy signal.
- Pros: Statistically optimal under assumptions of stationarity.
- Cons: Performance decreases when noise is non-stationary.

Overview of Neural Network Denoisers

- Residual Autoencoder: Processes raw waveforms in the time domain using residual learning.
- U-Net (UNetSpec): Enhances the magnitude spectrogram (frequency domain) with skip connections.
- Hybrid Denoiser: Combines both time-domain and frequency-domain processing for improved denoising.
- Transformer Autoencoder: Uses a simplified attention mechanism to weigh spectrogram features.

Residual Autoencoder (Details)

Architecture:

- **Encoder:** Series of 1D convolutional layers that extract temporal features.
- **Decoder:** Transposed convolutions to reconstruct the signal.
- Residual Connection: The network predicts the noise component; subtracting it from the input yields the denoised signal.
- Advantage: Direct processing of the raw waveform without domain conversion.

U-Net (UNetSpec) (Details)

Architecture:

- Operates on the magnitude spectrogram obtained from the STFT.
- Uses an encoder-decoder structure with skip connections to preserve fine details.
- Reconstructed magnitude is combined with the original phase for the final signal.
- Advantage: Effective at preserving and enhancing spectral details.

Hybrid Denoiser (Details)

- Dual-Branch Architecture:
 - Time-Domain Branch: Similar to the Residual Autoencoder.
 - Frequency-Domain Branch: Processes the magnitude spectrogram using a U-Net-like structure.
- **Fusion:** The outputs of both branches are concatenated and merged to produce the final denoised waveform.
- Advantage: Leverages complementary information from both the time and frequency domains.

Transformer Autoencoder (Details)

Architecture:

- Converts the time-domain signal to a spectrogram via STFT.
- Incorporates a simplified attention block (channel-wise attention) in the bottleneck.
- The decoder reconstructs the enhanced spectrogram, which is then used with the original phase to recover the waveform.
- Advantage: Provides global feature weighting with lower computational overhead compared to full transformer models.

Loss Functions Overview

- Two training loss variants are used:
 - Simple Loss (v1): A combination of L1 loss and Mean Squared Error (MSE) computed in the time domain.
 - 2. **Hybrid Loss (v2):** Combines time-domain loss, frequency-domain loss, and a negative SI-SDR term.

Simple Loss (v1)

$$L_{\text{simple}} = \frac{1}{N} \sum_{i=1}^{N} |x_i - \hat{x}_i| + \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{x}_i)^2$$

- L1 Loss: Penalizes absolute differences; robust to outliers.
- MSE Loss: Emphasizes larger errors.
- The sum of both encourages both overall fidelity and the preservation of fine details.

Hybrid Loss (v2)

- Components:
 - Time-domain L1 Loss:

$$L_{time} = \frac{1}{N} \sum_{i=1}^{N} |x_i - \hat{x}_i|$$

Frequency-domain L1 Loss:

$$L_{freq} = \frac{1}{FT} \sum_{f=1}^{F} \sum_{t=1}^{T} \left| |X(f,t)| - |\hat{X}(f,t)| \right|$$

- Negative SI-SDR: Optimizes the Scale-Invariant Signal-to-Distortion Ratio.
- Overall Hybrid Loss:

$$L_{\text{hybrid}} = \frac{1}{3} \left(L_{time} + L_{freq} + (-\text{SI-SDR}) \right)$$

 This loss encourages accurate reconstruction in both the time and frequency domains while directly minimizing signal distortion.

Metrics

Evaluation Metrics

PESQ (Perceptual Evaluation of Speech Quality):

- Measures the perceived quality of speech.
- Scale: Approximately -0.5 to 4.5 (higher scores indicate better quality).

STOI (Short-Time Objective Intelligibility):

- Assesses the intelligibility of speech.
- Scale: 0 to 1 (values closer to 1 indicate higher intelligibility).

• SI-SDR (Scale-Invariant Signal-to-Distortion Ratio):

- Evaluates the overall distortion introduced by the denoising process.
- Higher values denote less distortion.

MOS (Mean Opinion Score):

A subjective measure of audio quality, typically rated from 1 to
5.

Experimental Setup

Experimental Setup

- **Optimizer:** AdamW with a learning rate of 3e-4 and weight decay of 1e-5.
- **Scheduler:** ReduceLROnPlateau to adjust learning rate when the validation loss plateaus.
- **Training:** Batch size of 24 over 10 epochs (demonstration setting; longer training is recommended).
- Dataset: Synthetic noisy data generated by mixing LibriSpeech with UrbanSound8K at various SNR levels.

Results

Quantitative Results

Method	PESQ	STOI	SI-SDR (dB)	MOS
Baseline (No Denoising)	1.16 ± 0.19	0.74 ± 0.12	0.10 ± 4.22	2.84 ± 0.82
Spectral Subtraction	1.25 ± 0.21	0.80 ± 0.11	3.76 ± 5.72	3.83 ± 0.54
Wiener Filtering	1.33 ± 0.26	0.76 ± 0.14	-0.10 ± 6.51	3.82 ± 0.47
ResAutoencoder (v2)	1.29 ± 0.24	0.81 ± 0.11	3.18 ± 5.69	2.52 ± 0.63
U-Net (v1)	1.35 ± 0.18	0.78 ± 0.08	3.95 ± 3.63	3.54 ± 0.78
Hybrid (v2)	1.81 ± 0.50	0.89 ± 0.08	11.69 ± 5.27	3.79 ± 0.74
Transformer	1.78 ± 0.45	0.88 ± 0.08	11.65 ± 4.90	2.87 ± 0.50

Boxplots of Evaluation Metrics

Comparative Conclusions

- Classical vs. Neural Methods: Neural approaches (especially Hybrid and Transformer models) outperform classical methods in reducing distortion (SI-SDR) and improving intelligibility (STOI).
- Architecture Insights:
 - Hybrid Denoiser: Achieves the highest SI-SDR, indicating minimal distortion.
 - **U-Net:** Excels in preserving spectral details (PESQ and MOS).
 - Transformer: Provides competitive SI-SDR with slightly lower perceptual quality (MOS), suggesting room for further tuning.
- Consistency: Boxplots show that deep learning models not only improve mean performance but also reduce variability.
- **Trade-Offs:** High SI-SDR values must be balanced with perceptual quality, as indicated by MOS.

Future Work

Future Work

- Validate the models on real-world environmental recordings.
- Explore advanced architectures (e.g., full transformer models and GAN-based approaches).
- Develop adaptive and semi-supervised denoising methods.
- Investigate additional evaluation metrics that better capture perceptual quality.

Conclusion

Conclusion

- Deep learning approaches (Hybrid and Transformer) substantially outperform classical methods.
- Combining time- and frequency-domain information is key for effective denoising.
- Neural models achieve improved signal fidelity and intelligibility, though further tuning is needed for optimal perceptual quality.

Thank you for your attention!

References i

Steven F Boll.

Suppression of acoustic noise in speech using spectral subtraction.

IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(2):113–120, 1979.

Norbert Wiener.

Extrapolation, interpolation, and smoothing of stationary time series.

Wiley, 1949.