Adjusting NAS training towards more efficient networks

Miki Naimer Yuval Goddard Tal Van Dijk

Advisor: Matan Friedman

Goal

AutoML for edge devices with limited resources

Approach

- Adjusting NAS training to search for network as small as possible
- Network size is measured by:
 - Number of parameters
 - Flops

NAS - Neural Architecture Search

Zoph et al. 2016

Zoph et al. 2017

NAS - Neural Architecture Search

Search Strategy

Performance

Estimation

Strategy

performance

estimate of A

• Search Space - which architectures can be represented? -

Search Space

• Search Strategy:

• Random search

- Bayesian optimization
- Evolutionary methods
- Reinforcement learning (RL)
- Gradient-based methods.
- Performance Estimation Strategy training

Autokeras

- Network morphism with Bayesian optimization
- Open source https://autokeras.com/

CIFAR 10 – Autokeras first results

First try to decrease model size

Less GPU

First try to decrease model size

• Decrease max model size parameter

Autokeras base architectures

model	params	flops	accuracy
CNN	80720	15243510	0.6296
ResNet	11529354	667985920	0.8884
DenseNet	6974346	273725152	0.86

Deeper look at autokeras network morphism

- Network morphism operations:
 - Deep
 - Wide
 - Add
 - Concat
- Network morphism rate

MobileNet

Depthwise Convolutional Filters

(a) Standard Convolution Filters

$$D_K \bigcap_{D_K} \bigcap_{K} \cdots \bigcap_{K} \cdots$$

(b) Depthwise Convolutional Filters

$$\begin{split} &\frac{D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F}{D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F} \\ = & \frac{1}{N} + \frac{1}{D_K^2} \end{split}$$

MobileNet

- Depthwise Convolutional Filters
- Not supported in autokeras!

(a) Standard Convolution Filters

$$D_K \bigcap_{D_K} \bigcap_{K} \cdots \bigcap_{K} \cdots$$

(b) Depthwise Convolutional Filters

$$\frac{D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F}{D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F}$$

$$= \frac{1}{N} + \frac{1}{D_K^2}$$

Depthwise Convolution support

- Autokeras used PyTorch
- PyTorch parameter groups
- Add groups parameter to autokeras layer

Depthwise Convolution support

- *Groups* constrains:
 - groups controls the connections between inputs and outputs
 - in_channels and out_channels must both be divisible by groups
 - At *groups= in_channels*, each input channel is convolved with its own set of filters, of size: $\left| \frac{out_channels}{in_channels} \right|$
- Weights

Mobilenet as base architectures

Summary & Future work

- Summary
 - NAS a growing field of research
 - Autokeras base architectures
 - Depthwise Convolution in autokeras
- Future work
 - Effect of others base architectures
 - Effect of longer NAS session

