自适应滤波器

摘要:本设计实现的自适应滤波器,工作频率为 10kHz~100kHz,采用干扰抵消的方法,滤除特定的干扰信号,并在液晶屏上显示噪声特性。系统由加法器、移相器和自适应滤波器三部分组成,移相器由两级 0°~180°滞后移相电路级联组成,相移角度可以在 0°~180°手动可调。系统实现自适应滤波功能,最小可识别频率差为 8Hz 的信号,输出能有效还原有用信号的波形,且频率和幅度误差均小 10%,响应时间小于 1 秒。

关键词: 自适应滤波器; 噪声对消器; 数字滤波器

一、 系统方案

1. 方案描述

1.1 总体思路

系统通过前级加法器将干扰信号 B 混入有用信号 A, 所得合成信号 C 经移相器进行一定的相移后得到混合信号 D, FPGA 经模数转换器对信号 D 和干扰信号 B 进行采集后,对采集数据计算处理,滤除信号 D 中的干扰信号成分后即可恢复有用信号 A。

1.2 系统框图

图 1 系统框图

二、 理论分析与计算

1. 滤波器理论分析计算

经加法器合成的信号 C 含有有用信号 A 和特定角频率 ω 的干扰信号 B,经过移相器后得到信号 D,设信号 D 中干扰信号分量为 $B_d = |B| \cdot \cos(\omega t)$,干扰信号为 $B = |B| \cdot \cos(\omega t + \varphi)$ 。

本系统实现自适应滤波的原理:通过干扰信号 B 和混合信号 D 计算得到干扰信号 B 相对 B_a 的相位差 φ 后,通过数字延时模块对信号 B 延时相角 φ 从而得到与信号 D 中干扰信号分量 B_a 完全相同的信号,最后令信号 D 减去该信号即可还原信号 A。系统原理如图 2 所示。

得到相位差 φ 的算法:将输入信号 B 与输入信号 D 相乘,得:

$$\left[\stackrel{\bullet}{A} + \left| B \right| \cdot \cos\left(\omega t\right) \right] \left[\left| \left| B \right| \cdot \cos\left(\omega t + \varphi\right) \right| = \stackrel{\bullet}{A} \cdot \cos\left(\omega t + \varphi\right) + \frac{1}{2} \left| B \right|^2 \cdot \cos\left(2\omega t + \varphi\right) + \frac{1}{2} \left| B \right|^2 \cdot \cos\left(\varphi\right) \right]$$

对滤波器的要求:本题要求干扰信号与有用信号频率差最小 10Hz,故 B 与 D 相乘后可得到一最低频率 10Hz 的包络信号,这要求直流低通滤波器在 10Hz 处有足够大的衰减。

图 2 系统原理图

对 ADC 采样率的要求:本题要求在频率为 10kHz~100kHz 范围内干扰信号幅度衰减小于 1%,故对数字移相器分辨率达到 0.6°,故对 ADC 采样率要求为:

$$f_s \ge \frac{360}{0.6} \times \frac{1}{10} = 60MSPS$$

本系统使用高速模数转换器 AD9288, 采样率为 100MSPS 达到理论要求。

数字延迟器的实现方式:使用 FPGA 内部双口 RAM 实现。

三、 电路与程序设计

1. 加法器电路

加法器电路如图 3 所示。该电路实现 $V_C=Vin_A+Vin_B$ 功能。加法器运放选用超低噪声,高压摆率运放 OPA1612,该运放带宽增益积为 40MHz,满足 100kHz 信号的要求。由于输入信号频率最高为 100kHz,峰峰值最高为 2V,由 $S_R \geq 2\pi f V_{om}$,得 $S_{Rmin}=0.628V/\mu s$,故 OPA1612 压摆率 $27~V/\mu s$ 符合要求。

图 3 加法器电路

2. 移相器电路

移相器电路如图 4 所示。因在实际操作中,单级 0°~180°滞后移相电路在边界值180°处难以达到,选择将两级 0°~180°滞后移相电路级联构成。对第一级滞后移相电路分析如下:

$$\dot{U}_{+} = \frac{1}{1 + j\omega R_{2}C} , \qquad \dot{U}_{-} = \frac{R_{3}}{R_{1} + R_{3}} \dot{U}_{i} + \frac{R_{1}}{R_{1} + R_{3}} \dot{U}_{o}$$

$$\dot{U}_{+} = \dot{U}_{-} , \qquad H(j\omega) = \frac{2(1 - j\omega R_{2}C)}{1 + \omega^{2}R^{2}C^{2}}$$

$$R_{1} + \frac{10k}{U} = \frac{R_{3}}{U_{-}} + \frac{10k}{U_{-}} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{R_{1} + R_{3}} \dot{U}_{o}$$

$$R_{2} + \frac{10k}{U_{-}} + \frac{R_{3}}{U_{-}} + \frac{10k}{U_{-}} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{R_{1} + R_{3}} \dot{U}_{o}$$

$$R_{3} + \frac{10k}{U_{-}} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{R_{1} + R_{3}} \dot{U}_{o}$$

$$R_{4} + \frac{10k}{U_{-}} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{4} + \frac{10k}{U_{-}} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{5} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{1} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{2} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{2} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{2} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{1} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{2} + \frac{R_{1}}{U_{-}} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{2} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{3} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{4} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{5} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{2} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{3} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{4} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{5} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{1} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{2} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{3} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{4} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{1} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{2} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{3} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{4} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{1} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{2} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{3} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{4} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{5} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{1} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{2} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{3} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{4} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{1} + \frac{R_{1}}{U_{-}} \dot{U}_{o}$$

$$R_{2} + \frac{R_{$$

图 4 移相器电路

3. 软件程序设计

本系统主要流程在 FPGA 中完成,使用单片机处理浮点运算和显示系统信息,程序框图如图 5 所示:

图 5 程序设计流程图

四、测试方案与测试结果

1. 测试环境

示波器: Tektronix MSO 2002B 数字示波器;

扫频仪: RIGOL DSA1030A 数字频谱分析仪(9kHz~3GHz);

电源: DF1731SL1ATA 稳压源。

2. 测试方案

1) 移相器测试方案

断开前级加法器与后级调理电路,输入峰峰值为 4V,频率为 10kHz 的正弦信号,手动调节电位器,观察输出信号与输入信号的相位差检验 其是否满足0°~180°的调节范围。改变输入信号频率和幅值,重复上述操作。测试结果如表 1 所示。

2) 自适应滤波器测试方案

将经加法器和移相器调理后的信号 D 和干扰信号 B 输入自适应滤波器,观察自适应滤波器输出信号 E 的波形,比较信号 E 和有用信号 A 的幅度和频率,计算出误差是否在频率允许范围内。之后断开有用信号 A,测量输出信号的幅度,以检验对 B 信号的衰减是否符合要求,同时降低示波器水平扫描速度,使示波器能够观测 1~2 秒 E 信号包络幅度的变化。 测量其从加入信号 B 开始,至幅度衰减 1%的时间,得到滤波器电路的响应时间。测量结果如表 2 所示。

3. 测试结果与数据

3.1 移相器测试

表 1 移相器测试表

输入信	输入信	输出信	输出信		最小不失	最大不失
号频率	号峰峰	号频率	号峰峰	增益	真相位差	真相位差
/kHz	值/Vpp	/KHz	值/Vpp		Фmin	Фтах
10	4	10.08	4.02	1.005	265m°	179.6°
10	2	10.06	2.04	1.020	234m°	179.8°
30	4	30.02	3. 98	0.995	365m°	179.4°
30	2	30.01	2.01	1.005	177m°	179.9°
50	4	49.95	3. 92	0.980	323m°	179.6°
50	2	49.97	1.96	0.980	252m°	179.2°
70	4	69.89	3.88	0.970	199m°	179.3°
70	2	69.82	1.92	0.960	222m°	179.8°
100	4	99. 79	3. 79	0.948	78m°	179.5°
100	2	99.81	1.89	0.945	82m°	179.8°

3.2 自适应滤波器测试

表 2 自适应滤波器测试表

输入 信号 A 频率 /kHz	输入信 号 B 频 率/kHz	输入信 号 A 峰 峰值 /Vpp	输入信 号 B 峰 峰值 /Vpp	输出信 号 E 频 率/kHz	频率相 对误差 /%	输出信 号 E 峰 峰值 /Vpp	峰峰值 相对误 差/%
10	10.001	1	1	10. 25	2.5	1.09	9.0
10	10.010	2	2	10.42	4.2	2. 12	6.0
30	29. 999	1	1	31. 25	4.2	1.04	4.0
30	30.010	2	2	32.04	6.8	2. 13	6.5
50	49. 999	1	1	54. 39	8.8	1.05	5.0
50	50.010	2	2	53.46	6.9	2.04	2.0
70	69. 999	1	1	75. 23	7.5	1.09	9.0
70	70.010	2	2	76. 22	8.9	2. 18	9.0
90	89. 999	1	1	95. 21	5.8	1.10	10.0
90	90.010	2	2	94. 32	4.8	2. 17	8.5
100	99. 999	1	1	106.65	6. 7	1.09	9.0
100	100.010	2	2	108.82	8.8	2.16	8.0

表 2 自适应滤波器测试表 续表

输入信 号 A 频 率/kHz	断开 A 后 输出信号 幅值/Vpp	对 B 的 幅度衰 减/%	响应时 间/ms
10	0.0082	0.82	725
30	0.0073	0.73	682
50	0.0035	0.35	568
70	0.0164	0.82	658
90	0.0152	0.76	687
100	0.0128	0.64	852

4. 测试结果分析

▶ 移相器误差:由于一级移相器无法达到理论上的 0~180°相移,故需两级电路级联。电路规模的增大导致分布参数对系统传递函数的影响变大,致使在通带内系统传递函数无法稳定为 1,在某些频点会有增益或衰减。

▶ 测试结果分析:由表 1 可以看出加法器设计满足题目要求。由表 2 可以看出在频率范围为 10kHz~100kHz 的各点频上,移相器可实现相位 0~180°手动调节,且移相器幅度放大倍数控制在 0.945~1.020,满足题目要求。由表 3 可以看出自适应滤波器输出信号 E 能够比较好地恢复信号A 的波形,信号 E 与 A 的频率和幅度误差均小于 10%。滤波器对信号 B 的幅度衰减小于 1%,符合题目要求。

五、 参考文献

- [1]. 严国萍、龙占超、《通信电子线路》,2006年2月,科学出版社;
- [2]. 康华光, 电子技术基础(模拟部分)(第六版), 2005年7月, 高等教育出版社。