Notes of "Fundamental Theorem of Affine Transformations"

Jinxin Wang

1 Overview

2 The vector transformation induced by an affine transformation

Definition 1 (The vector transformation induced by an affine transformation). Let $f: \pi \to \pi$ be an affine transformation on the plane π , then for all vectors $\alpha \parallel \pi$, define $f(\alpha) = f(A)\vec{f}(B)$ in which $A, B \in \pi$ and $\vec{AB} = \alpha$.

Remark 1 (The image and preimage of the zero vector under an induced vector transformation). From the definition, it is clear that $\alpha = 0 \Leftrightarrow f(\alpha) = 0$.

Remark 2 (The fundamental reason behind an induced vector transformation). From the proof of the uniqueness of $f(\alpha)$, we can see the fundamental reason behind the induced vector transformation is the property of an affine transformation that it transforms a line to a line, and keep the parallelism between two lines.

3 Fundamental Theorem of Affine Transformations

Theorem 1 (Fundamental Theorem of Affine Transformations). Let π be a plane.

- **T1** Suppose $f: \pi \to \pi$ is an affine transformation, $I = [O; \vec{e}_1, \vec{e}_2]$ is an affine coordinate system on π , then $I' = [f(O); f(\vec{e}_1), f(\vec{e}_2)]$ is also an affine coordinate system on π , and for all $P \in \pi$, the coordinates of P in I are the same as the one of f(P) in I'.
- **T2** Let $I = [O; \vec{e_1}, \vec{e_2}]$ and $I' = [O'; \vec{e_1}, \vec{e_2}]$ be two affine coordinate systems on π . There exists an mapping $f: \pi \to \pi$ as following: for all $P \in \pi$ with the coordinates (x, y) in I, let f(P) be the point with the same coordinates (x, y) in I', and $f: \pi \to \pi$ is an affine transformation.

Remark 3. A conclusion from the fundamental theorem of affine transformations is that for any two affine coordinate systems I and I' on a plane π , there exists a unique affine transformation $f: \pi \to \pi$ such that f(I) = I'.

T2 proves the existence of $f: \pi \to \pi$.

T1 proves the uniqueness of $f: \pi \to \pi$. If there are two affine transformations $f_1: \pi \to \pi$ and $f_2: \pi \to \pi$ with $f_1(I) = I'$ and $f_2(I) = I'$, then for all $P \in \pi$, $f_1(P)$ and $f_2(P)$ have the same coordinates in I', which is the coordinates of P in I, and thus $f_1(P) = f_2(P)$. Hence $f_1 = f_2$.