

Fixed Linear Effect Model

Back to

$$y_i = \beta_0 + \sum_{j=1}^{p} \beta_j x_{ij} + \epsilon_i$$

▶ All $\beta_0, \beta_1, \ldots, \beta_p$ into vector β of length (p+1)

$$y = X\beta + \epsilon$$

ightharpoonup Only random componente: ϵ with

$$E(\epsilon) = 0$$
 and $var(\epsilon) = I * \sigma^2$

Parameter Estimation

Least Squares

$$\hat{eta}_{\mathsf{LS}} = \mathsf{argmin}_{eta} ||y - Xeta||^2$$

Normal Equations

$$(X^T X)\hat{\beta}_{LS} = X^T y$$

- \triangleright Existence of $(X^TX)^{-1}$?
- 1. Yes: $\hat{\beta}_{LS} = (X^T X)^{-1} X^T y$
- 2. No: $b_0 = (X^T X)^- X^T y$

with $(X^TX)^-$ being a generalized inverse of (X^TX)

Generalized Inverse

System of equations

$$Ax = y$$

with coefficient matrix A, vector of unknowns x and vector of right hand side y

- ▶ If A^{-1} exists, then unknowns $x = A^{-1}y$
- ▶ If A^{-1} does not exist, $x = A^{-}y$ is one solution with A^{-} being a generalized inverse
- Generalized inverse A⁻ defined by

$$AA^{-}A = A$$

Solutions

- ▶ Why is *A*[−] a solution
 - \blacktriangleright if $AA^-A = A$, then $AA^-Ax = Ax$
 - when Ax = y, this gives $A(A^-y) = y$
 - ▶ hence $A^-y = x$ is a solution
- ▶ If A^- is a generalized inverse of A then Ax = y has solutions

$$\tilde{x} = A^- y + (A^- A - I)z$$

for aribitrary z

Proof

$$A\tilde{x} = AA^{-}y + A(A^{-}A - I)z = AA^{-}y + (AA^{-}A - AI)z = AA^{-}y = y$$

because $AA^{-}A = A$.

Results

- $lackbox{b}_0 = (X^TX)^-X^Ty$ is a solution to $(X^TX)b_0 = X^Ty$
- ▶ But b_0 is not unique, because for any $(X^TX)^{-1}$

$$\tilde{b}_0 = (X^T X)^- X^T y + ((X^T X)^- (X^T X) - I)z$$

is also a solution

 $ightharpoonup b_0$ cannot be an estimate for eta

Estimable Functions

Idea: construct linear functions $(q^T\beta)$ of the parameters β such that

- ightharpoonup estimator can be found from b_0
- ▶ independent of choice of *b*₀

Such linear functions $q^T \beta$ must satisfy

$$q^T \beta = t^T E(y)$$

for any vector t, then $q^T \beta$ is **estimable**

Determine q as

$$q^T = t^T X$$

Invariance to b_0

When $q^T \beta$ is estimable, then

- $ightharpoonup q^T b_0$ is always the same, independent of choice of b_0
- ► Why?
- ightharpoonup With $q^T = t^T X$

$$q^{T}b_{0} = t^{T}Xb_{0} = t^{T}X(X^{T}X)^{-}X^{T}y$$

is independent of choice of b_0 because $X(X^TX)^-X^T$ is independent of choice of $(X^TX)^-$

Summary

Use of generalized inverse $(X^TX)^-$ of normal equations yields

- ▶ solutions *b*₀
- estimatble functions $q^T b_0$ which estimate $q^T \beta$
- ▶ independent of b₀

But for genomic data

- no possibility to determine important SNP loci
- need an alternative to least squares

Alternatives To Least Squares

Desirable properties

- 1. Subset Selection: determine important predictors
- 2. Shrinkage: limit parameter estimates to certain area
- 3. **Dimension Reduction**: Reduce p predictors to m linear combinations where m < p

LASSO

- stands for Least Absolute Shrinkage and Selection Operator
- combines subset selection (1) and shrinkage (2)
- shrinkage is achieved by introduction of penality term
- subset selection is due to the form of penalty term

Shrinkage

similar to Least Squares

Lambda estimated from data

penalty term added to east squares criterion

$$\hat{\beta}_{LASSO} = \operatorname{argmin}_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

lacksquare large values of $|eta_j|$ are penalized compared to small $|eta_j|$

Minimization

LASSO penalty term:

> grows with the number of elements in beta greater than 0

Find λ

Lambda determines how much penalty is imposed on the estimates > large lambda impose high penalty

- \triangleright λ is an additional parameter to be estimated from data
- use cross validation
 - > split data randomly into training set (80 90%) and test set (10 20%)
 - \blacktriangleright assume a certain λ value and do parameter estimation with training data
 - try to predict test data with estimated parameters
 - repeat this many times
 - lacktriangle take that λ with the best predictive performance

Cross validation:

- divide dataset into two parts (training and test)
- assume a certain lambda
- estimate parameters in training data
- predict observations in test and see prediction accuracy