Mining Data Streams

Week 7

Nurul Afiqah Burhanuddin nurul.afiqah@ukm.edu.my Room 2119

 Data stream: continuous accumulation of data at a rapid rate for realtime processing

- In machine learning: online learning.
- Examples:
 - Online advertisement by continuously analyzing clickstreams on shopping sites.
 - Organization tracks changes in public sentiment on online social networks such as Twitter that continuously generate text data.
 - Traffic monitoring systems that collect data using sensors.
 - Online financial transactions, like credit card purchases generate timecritical data that need to be processed for real-time actions.
 - Data from health monitoring devices.

Challenges in mining data streams:

- One-pass constraint: the data can be processed only once.
- The data may evolve over time
- Limited processing power and memory

Batch data	Streaming data
Data processing within a time span	Data processing in real time
Complex data analytics	Simple/fast tools and functions
Data size is known and finite	Data size unknown and volatile
Multiple passes	One pass

Basic tools used in mining streaming data:

- Stream window
- Reservoir sampling

Stream Window

- Assume that recent data is more useful and pertinent than older data.
- Window types:
 - 1. Count-based window
 - 2. Time-based window
 - 3. Punctuation-based window

Stream Window - Count-based

Stream Window - Time-based

Stream Window – Punctuation-based

Reservoir Sampling

- Allows the maintenance of a random sample without replacement of a particular size in an online fashion.
- A reservoir (usually represented by an array) of elements is maintained whilst the input is read sequentially.
- New elements replace those in the reservoir with uniform probability.
- Suppose the objective is to maintain a random sample of n elements from a stream of N elements, where N is not known a priori and N >> n. Let the stream elements be $x_1, x_2, ..., x_N$.

We want:

a simple random sample of n

with the constraints:

- x_i can only be read once for $i \in \{1, ..., N\}$
- x_i must be read before x_j for i < j with no guarantee of any structure in the ordering.

Reservoir Sampling

- The reservoir sampling algorithm proceeds as follows. For a reservoir of size n, the first n data points in the stream are always included in the reservoir. Subsequently, for the tth incoming stream data point, the following two admission control decisions are applied:
 - 1. Insert the tth incoming data point into the reservoir with probability n/t.
 - 2. If the newly incoming data point was inserted, then eject one of the old data points in the reservoir at random to make room for the newly arriving point.
- A common algorithm for reservoir sampling, Algorithm R:
 - 1. Initialize an empty reservoir $R = \{R_1, ..., R_n\}$ with $x_1, ..., x_n$.
 - 2. For the subsequent input x_t , generate a random number u uniformly in $\{1, ..., t\}$.
 - 3. If $u \in \{1, ..., n\}$, set $R_u = x_t$. Otherwise discard x_t .