PRODUITS, CONJUGUÉS, MODULES

Déterminer la forme algébrique et le module de : 1

 $\frac{(2-i)(5+2i)}{3-4i}$.

- P On note h la fonction $z \longmapsto \frac{z+1}{z-2}$ sur $\mathbb{C} \setminus \{2\}$. Déterminer l'ensemble des $z \in \mathbb{C}$ pour lesquels :
 - |h(z)|=1.
- 2) $\operatorname{Re}(h(z)) = 0$.
- Montrer que pour tous $u, v \in \mathbb{C}$: 3

$$|u + v|^2 + |u - v|^2 = 2(|u|^2 + |v|^2),$$

puis interpréter géométriquement cette égalité.

- 1) P Étudier les variations sur \mathbb{R}_+ de la fonction $x \longmapsto \frac{x}{1+x}$. 2) P En déduire que pour tous $u, v \in \mathbb{C}$:

$$\frac{|u+v|}{1+|u+v|} \leqslant \frac{|u|}{1+|u|} + \frac{|v|}{1+|v|}.$$

- (P) (P)
 - 1) Déterminer une factorisation de $a^2 + b^2$ dans \mathbb{C} pour tous $a, b \in \mathbb{C}$.
 - **2)** Soient $m, n \in \mathbb{N}$. Montrer que si m et n sont chacun la somme de deux carrés d'entiers, leur produit mn l'est aussi.
- Simplifier: $\operatorname{Re}\left(\frac{1}{1-z}\right)$ pour tout $z \in \mathbb{U} \setminus \{1\}$.
- Simplifier: $\operatorname{Re}\left(\frac{1+r\mathrm{e}^{\mathrm{i}\theta}}{1-r\mathrm{e}^{\mathrm{i}\theta}}\right)$ pour tous $r \in [0,1[$ et $\theta \in \mathbb{R}$.
- Résoudre l'équation : $\operatorname{Im}\left(\frac{1}{z^2+z+1}\right) = 0$ d'inconnue $z \in \mathbb{C} \setminus \{j, \overline{j}\}.$
- Montrer que pour tout $z \in \mathbb{C} \setminus \mathbb{R}_{-}$: 9

$$\left(\frac{z+|z|}{\sqrt{\operatorname{Re}(z)+|z|}}\right)^2 = 2z.$$

10 1) \bigcirc \bigcirc Montrer que pour tous $z, z' \in \mathbb{U}$ pour lesquels $zz' \neq -1$: $\frac{z+z'}{1+\alpha\alpha'} \in \mathbb{R}$.

de même module:

$$\frac{(z_1+z_2)\dots(z_{n-1}+z_n)(z_n+z_1)}{z_1\dots z_n}\in\mathbb{R}.$$

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Déterminer tous les $z \in \mathbb{C}$ pour lesquels :

$$\overline{z}(z-1) = z^2(\overline{z}-1).$$

ÉQUATIONS DU SECOND DEGRÉ

- Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$: **12**
 - $4z^2 16z + 11 12i = 0.$
 - $z^2 5z + 4 + 10i = 0.$ 2)
 - $z^2 + (4 3i)z = 2 + 8i$.
 - $2z^2 + (8 5i)z + (4 13i) = 0.$
 - $6z^2 + (21 14i)z + (5 37i) = 0.$
 - $z^2 + 5z + 7 i = 0.$
 - $(z^2 2z)\cos^2 \varphi + 1 = 0 \quad (\varphi \in \mathbb{R}).$
- 2) $\begin{cases} x + y = 1 + i \\ xy = 2. \\ x + y = 3i \\ xy = -1 3i. \\ x + y = 3 + 4i \\ xy = 5 + 15 \end{cases}$ 4) $\begin{cases} x + y = 1 + i \\ xy = 13i. \\ xy = -5i. \end{cases}$ Résoudre les systèmes suivants d'inconnue $(x, y) \in \mathbb{C}^2$: 13

ARGUMENTS

- 14 1) Déterminer une forme trigonométrique des nombres
 - suivants:

- a) $1 \sqrt{2}$. b) d) $(-3 + i\sqrt{3})^{19}$.
- 2) Déterminer la forme algébrique de $(1+i\sqrt{3})^{1000}$.
- Déterminer tous les $n \in \mathbb{N}$ pour lesquels : (P) (P) 15
 - $2) \quad \left(\sqrt{3} + i\right)^n \in i\mathbb{R}.$ $(1+i)^n \in \mathbb{R}$.
- \bigcirc \bigcirc Résoudre l'équation : $\operatorname{Re}(z^3) = \operatorname{Im}(z^3)$ connue $z \in \mathbb{C}$.
- \bigcirc \bigcirc Soit $\theta \in \mathbb{R}$. On pose : $z = e^{i\theta}$. une forme trigonométrique de $1 + z + z^2$. Déterminer
- P P Soient $a, b, c \in \mathbb{U}$. Montrer qu'alors : 18

$$|a+b+c| = |ab+bc+ca|.$$

19

- 1) P Montrer que pour tout $\theta \in]-\pi, \pi[$, si on pose $x = \tan \frac{\theta}{2}$, alors : $e^{i\theta} = \frac{1+ix}{1-ix}$, puis exprimer $\cos \theta$ et $\sin \theta$ en fonction de x.
- **2)** \bigcirc \bigcirc En déduire pour tout $t \in \mathbb{R}$ une simplification de $\cos(2 \operatorname{Arctan} t)$ et $\sin(2 \operatorname{Arctan} t)$.
- **3)** $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Montrer que pour tout $z \in \mathbb{C} \setminus \mathbb{R}_-$ de forme algébrique z = x + iy:

$$arg(z) \equiv 2 \operatorname{Arctan} \frac{y}{x + |z|} [2\pi].$$

20

- (P) (P) (P)
 - 1) Soient $u, v \in \mathbb{U}$. On suppose que u + v = -1. Montrer qu'alors : $\{u, v\} = \{j, \overline{j}\}.$ 2) Soient $a, b, c \in \mathbb{U}$. On suppose que a + b + c = 0.
 - Que peut-on dire du triangle de sommets a, b et c?

APPLICATIONS TRIGONOMÉTRIQUES

- 1) Linéariser les expressions suivantes :
 - a) $\sin x \cos^2(2x)$. b) $\sin^3(2x)\cos(3x)$.
- 2) Calculer les intégrales suivantes :

 - a) $\int_{0}^{2\pi} \cos^{3} x \sin(3x) dx.$ b) $\int_{0}^{\frac{\pi}{2}} \sin^{4} x \cos^{2} x dx.$

- (P) (P)
 - 1) Pour tout $x \in \mathbb{R}$, exprimer $\cos(5x)$ en fonction
 - 2) En déduire une expression explicite de : a) $\cos^2 \frac{\pi}{10}$. b) $\cos \frac{\pi}{5}$. c) $\sin \frac{\pi}{5}$.

- - 1) a) Résoudre l'équation : $z^4 + z^3 + z^2 + z + 1 = 0$ d'inconnue $z \in \mathbb{C}$.
 - b) Soit z une solution de cette équation. On pose : $x = z + \frac{1}{z}$. Montrer que x est solution d'une équation simple, puis la résoudre.
 - 2) En déduire une expression explicite de $\cos \frac{2\pi}{r}$

- Simplifier pour tous $x, y \in \mathbb{R}$ et $n \in \mathbb{N}$:

 - 1) $\sum_{k=0}^{n} \cos(kx + y)$. 2) $\sum_{k=0}^{n} {n \choose k} \cos(kx)$.

1) \bigcirc Montrer que pour tout $x \in \mathbb{R}$:

$$|\sin x| \geqslant \frac{1 - \cos(2x)}{2}.$$

2) \bigcirc \bigcirc En déduire que pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=1}^{n} |\sin k| \geqslant \frac{n}{2} - \frac{1}{2\sin 1}.$$

 $\textcircled{\ } \textcircled{\ } \textcircled{\ } \textcircled{\ } \textcircled{\ }$ Soient $\omega \in \mathbb{R}$ et $x \in \]-1,1[$. Simplifier la 26

somme: $\sum_{k=0}^{n} x^{k} \sin(\omega k)$ pour tout $n \in \mathbb{N}$, puis mon-

trer l'égalité: $\lim_{n \to +\infty} \sum_{k=0}^{n} x^k \sin(\omega k) = \frac{x \sin \omega}{1 - 2x \cos \omega + x^2}.$

Bésoudre l'équation :

$$\sin(x+y) = \sin x + \sin y$$

d'inconnue $(x, y) \in \mathbb{R}^2$.

EXPONENTIELLE COMPLEXE

Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$: 28

- 1) p a) $e^z = 1 + i$. b) $e^z = -5 12i$.

 \bigcirc On souhaite montrer que la fonction $z \mapsto e^z$ possède des points fixes sur C.

On note f la fonction $x \mapsto e^{\frac{x}{\tan x}} - \frac{x}{\sin x} \text{ sur } \left]0, \frac{\pi}{2}\right[.$

- 1) Que valent $\lim_{x\to 0} \frac{\sin x}{x}$ et $\lim_{x\to 0} \frac{\tan x}{x}$?

 Montrer que : $\exists b \in \left] 0, \frac{\pi}{2} \right[/ f(b) = 0.$
- 2) On pose $a = \frac{b}{\tan b}$ et z = a + ib. Montrer qu'alors

RACINES $n^{\text{èmes}}$

30 $\mathbb{C} \oplus \mathbb{C}$ Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$: 1) $z^8 - 3z^4 + 2 = 0$. 2) $z^6 - 2z^3 \cos \varphi + 1 = 0$ $(\varphi \in \mathbb{R})$.

- Résoudre les équations suivantes d'inconnue z où $n \in \mathbb{N}^*$:

- 1) b a) $(z+2)^3 = 3i$. b) $(z-1)^4 = 4+4i$. c) $z^n + 1 = 0$. 2) b a $z^n = \overline{z}$. b) $\left(\frac{z+1}{z-1}\right)^n = 1$.

32

1)
$$\textcircled{P}$$
 a) $\sum_{\omega \in \mathbb{U}_n} \omega$. b) $\prod_{\omega \in \mathbb{U}_n} \omega$.
2) \textcircled{P} \textcircled{P} a) $\sum_{\omega \in \mathbb{U}_n} (1+\omega)^n$. b) $\sum_{\omega \in \mathbb{U}_n} |\omega - 1|$.

33

$$\omega = \mathrm{e}^{rac{2\mathrm{i}\pi}{n}}$$
 et $S = \sum_{k=0}^{n-1} \omega^{k^2}$ (somme de Gauss).

- 1) Écrire $|S|^2$ comme une somme double, puis mon-
- trer que : $|S|^2 = \sum_{k=0}^{n-1} \sum_{p=-k}^{n-k-1} \omega^{2pk+p^2}$.

 2) a) Montrer que la fonction $\begin{cases} \mathbb{Z} & \longrightarrow \mathbb{C} \\ p & \longmapsto \omega^{2pk+p^2} \end{cases}$ est n-périodique pour tout $k \in [0, n-1]$.
 - **b)** En déduire pour tout $k \in [0, n-1]$ une écriture simplifiée de : $\sum_{n=-k}^{n-k-1} \omega^{2kp+p^2}.$
- 3) Calculer $\sum_{k=0}^{n-1} \omega^{2pk}$ pour tout $p \in \mathbb{Z}$.
- 4) En déduire l'égalité : $|S| = \sqrt{n}$

INTERPRÉTATION GÉOMÉTRIQUE

On note A, B et C les trois points d'affixes respec-34 tifs: a = 1 + i, b = -i et c = -1 + 2i. peut-on dire du triangle ABC?

À quelle condition nécessaire et suffisante sur z: 35

- 1) \bigcirc z et z^2 sont-ils les affixes de deux vecteurs : a) colinéaires? b) orthogonaux?
- 2) \bigcirc 1, z et z^2 sont-ils les affixes de trois points alignés?
- 3) \bigcirc z et \overline{z} sont-ils les affixes de deux vecteurs
- 4) \bigcirc z, $\frac{1}{z}$ et z-1 sont-ils les affixes de points situés sur un même cercle de centre O?
- 5) 🕑 🕑 🗈 z et ses deux racines carrées formentils un triangle rectangle en z?

On note *A* le point d'affixe 1 et *B* le point d'affixe 5. 36

- 1) ② Déterminer le lieu des points *M* pour lesquels:
- MA = MB. a)
- b) $MB = MA\sqrt{2}$.
- 2) (4) (5)
 - a) Montrer, pour tout $\lambda \in \mathbb{R}_+^* \setminus \{1\}$, que le lieu des points M pour lesquels : $MB = \lambda MA$ est un cercle dont on précisera l'affixe du centre et le rayon.

b) Étudier l'allure des cercles trouvées en a) pour λ très grand (resp. proche de 0, resp. proche de 1 par valeurs inférieures, resp. proche de 1 par valeurs supérieures).

37 1) Caractériser géométriquement la similitude :

$$z \longmapsto 2(1+i)z-7-4i$$
.

- 2) Déterminer l'expression complexe de la rotation de centre 1 + i et d'angle de mesure $\frac{\pi}{4}$.
- 3) On note r la rotation de centre 1 et d'angle de mesure $\frac{\pi}{2}$ et s la symétrie centrale de centre 3+i. Caractériser géométriquement la fonction $s \circ r$.
- 4) On note r la rotation de centre 2 + i et d'angle de mesure $\frac{\pi}{3}$ et r' la rotation de centre 3-2i et d'angle de mesure $-\frac{\pi}{3}$. Caractériser géométriquement la fonction $r' \circ r$.

pose: $z_{\alpha} = \frac{e^{i\alpha} - \cos(2\theta)}{\sin(2\theta)}$ et on note h la fonction

- 1) Décrire l'ensemble des z_{α} , α décrivant $]0, \pi[$.
- **2)** Montrer que pour tout $\alpha \in [0, \pi[$:

$$h(z_{\alpha}) = i \frac{\tan \frac{\alpha}{2}}{\tan \theta}.$$

En déduire une description de l'ensemble des $h(z_{\alpha})$, α décrivant $]0, \pi[$.

③ ⑤ ⑤ Soient A, B et C trois points d'affixes respectifs a, b et c. Par définition, le triangle ABC est équilatéral si les distances AB, BC et CA sont égales, mais on admettra qu'il l'est si et seulement si, par exemple, C est l'image de *B* par une certaine rotation de centre *A* et d'angle de mesure à préciser.

Montrer que les assertions suivantes sont équivalentes :

- ABC est un triangle équilatéral.
- j ou j² est racine du polynôme $aX^2 + bX + c$.
- $a^2 + b^2 + c^2 = ab + bc + ca$.