					3		
$f_{1^-}^{\#2}$	0	0	0	$-\frac{2}{3}$ Ikt $_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^{ ext{-}}}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}$ i $\sqrt{2}$ kt ₃
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 \left(r_1 + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 <i>ikt</i> 3 3
$^{\chieta}f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_1^{\#_2^2}$	0	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 (2 r_1 + r_5)$	0	0	0	0	0	0
,	$t^{\alpha\beta}$	$\mathfrak{t}^{\alpha eta}$	$L^{lphaeta}$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_{1}^{\#2} +^{lpha}$	†	†

Lagrangian density $\begin{split} \frac{2}{3}t_3\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$\frac{2}{3}t_3 \ \omega_{\kappa\lambda}^{\ \lambda} \ \partial^{\kappa} f'_{\ \prime} - \frac{4}{3}t_3 \ \partial^{\alpha} f_{\kappa\alpha} \ \partial^{\kappa} f'_{\ \prime} + \frac{2}{3}t_3 \ \partial_{\kappa} f^{\lambda}_{\ \lambda} \ \partial^{\kappa} f'_{\ \prime} + \frac{2}{3}t_3 \ \omega_{\alpha}^{\ \prime} \ \partial^{\kappa} f'_{\ \kappa} + \frac{2}{3}t_3 \ \omega_{\alpha}^{\ \prime} \partial^{\kappa} f'_{\ \kappa} + \frac{2}{3}t_3 \ \partial^{\alpha} f^{\lambda}_{\ \kappa} + \frac{2}{3}t_1 \ \partial^{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3}t_1 \ \partial^{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3}t_1 \ \partial^{\beta} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\alpha\beta}^{\ \prime} + t_5 \ \partial_{\alpha} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - t_5 \ \partial_{\theta} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} + \frac{2}{3}t_1 \ \partial^{\beta} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\alpha\beta}^{\ \prime} + t_5 \ \partial_{\alpha} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - t_5 \ \partial_{\theta} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} + \frac{2}{3}t_1 \ \partial^{\beta} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\alpha\beta}^{\ \prime} + t_5 \ \partial_{\alpha} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - t_5 \ \partial_{\theta} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} + \frac{2}{3}t_1 \ \partial^{\beta} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} + t_5 \ \partial_{\alpha} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - t_5 \ \partial_{\theta} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} + t_5 \ \partial_{\alpha} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - t_5 \ \partial_{\beta} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} + t_5 \ \partial_{\alpha} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - t_5 \ \partial_{\beta} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} + t_5 \ \partial_{\alpha} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - t_5 \ \partial_{\beta} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} + t_5 \ \partial_{\alpha} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - t_5 \ \partial_{\beta} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - t_5 \ \partial_{\beta} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} + t_5 \ \partial_{\alpha} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - t_5 \ \partial_{\beta} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - t_5 \ \partial_{\beta} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} + t_5 \ \partial_{\alpha} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - t_5 \ \partial_{\alpha} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - t_5 \ \partial_{\alpha} \omega_{\alpha}^{\ \prime} \partial^{\lambda} \omega_{$
---	--

 $\omega_0^{\#1}$

 $f_{0+}^{\#1} \dagger \sqrt{2} kt_3$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2-\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$f_2^{#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_{2^{-}}^{\#1}\dagger^{lphaeta\chi}$	0	0	$k^2 r_1$

0

$\omega_0^{-1}\dagger$ 0 0 0	τ# ²	0	0	0	0
25 5 3 3 3 1 1 1 #	$ au_0^{\#1}$	$i \sqrt{2} k$ $+2 k^2)^2 t_3$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
straints S $\sigma_{1}^{\#2}\alpha == 0$		$\frac{1}{t_3} - \frac{\bar{l}}{(1+\frac{1}{2})}$	t ₃ (1+2		
e constrair irreps 0 0 0 $i k \sigma_{0+}^{\#1} == 0$ == 0 == 0 == 0 == 0 #:	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2}$	$i \sqrt{2} k$ $(1+2k^2)^2$	0	0
Source constraints SO(3) irreps $\sigma_{0}^{\#1} == 0$ $\tau_{0}^{\#2} == 0$ $\tau_{0}^{\#2} - 2ik\sigma_{0}^{\#1} == 0$ $\tau_{1}^{\#2} - 2ik\sigma_{1}^{\#2} == 0$ $\tau_{1}^{\#1} = 0$ $\tau_{1}^{\#1} = 0$ $\tau_{1}^{\#1} = 0$ $\tau_{1}^{\#2} = 0$ $\tau_{2}^{\#1} = 0$ $\tau_{2}^{\#1} = 0$ Total #:		$\sigma_{0}^{\#1}$ †	$\tau_{0}^{#1} +$	$\tau_{0}^{#2} +$	$\sigma_{0}^{\#1}\dagger$

 $f_{0}^{#2} \omega_{0}^{#1}$

 $-i\sqrt{2} kt_3$

 $2 k^2 t_3$

?	/	
~	$\stackrel{k^{\mu}}{\longrightarrow}$	- '
,		
•	\ ?	

/	Quadratic pole				
?	Pole residue:	$\left -\frac{1}{r_1 (r_1 + r_5) (2 r_1 + r_5) p^2} > 0 \right $			
	Polarisations:	2			

(No massive particles)