

Brandeis University

UNDERGRADUATE THESIS IN COMPUTER SCIENCE

Graph Isomorphism, Reconstruction and the Cycles Invariant

 $Grady\ Ward$

supervised by Prf. James Storer

February 25, 2016

Contents

1	Def	initions and Syntax	4
	1.1	Graphs	4
		1.1.1 Representations, Labeling, Matrices	4
	1.2	Graph Isomorphism and Automorphism	4
		1.2.1 Graph Invariants	4
		1.2.2 Vertex Invariants	4
		1.2.3 Discriminatory Power	4
		1.2.4 Automorphism Groups	4
	1.3	Cycles Invariant	4
		1.3.1 Running Time	4
		1.3.2 Dealing with Large Numbers	4
		1.3.3 Asymptotic Bit Growth	4
	1.4	Reconstructability, Determined, Representation	4
0		lander Carol I and the	_
2	-	cles as a Graph Invariant	5
	2.1	Basic Cycles-Reconstructable Properties	6
		2.1.1 Vertices, Edges, Degree Sequence	6
	0.0	2.1.2 Chromatic Polynomial	6
	2.2	Other Forms of Reconstructability	6
		2.2.1 EA Reconstructability	6
		2.2.2 Deck Reconstructability	6
	2.3	Placing Cycles within a Time/Power Tradeoff	6
	2.4	Discrimination on Tough Graph Classes	6
		2.4.1 Background	6
		2.4.2 1-Sparse Graphs	6
		2.4.3 2-Dense Graphs	6
		2.4.4 Miyizaki Graphs	6
	2.5	Imperfection, Co-Cycles Graphs	6
		2.5.1 Discovering Co-Cycles Graphs	6
		2.5.2 Constructing Co-Cycles Graphs	6
		2.5.3 As a Proposed Dataset for Invariant Analysis	6
	2.6	Discriminatory Agreement By N and M	6
		2.6.1 Expectations Borne out of Graph Counts	6

		2.6.2	An Unexpected Dip	6
3	Cyc	eles as	a Vertex Invariant	7
	3.1	Quant	sifying how Discrimination Varies with P	7
		3.1.1	Limitations of Cycles' Discriminatory Power	7
		3.1.2	Observational Data	7
		3.1.3	Theoretical Explanation: Path vs Cycle Graphs	7
	3.2	Auton	norphism 'Quazi-Equivalence Classes'	7
		3.2.1	Background	7
		3.2.2	Vertex Similarity is Transitive	7
		3.2.3	Internal Structure of QEC's	7
	3.3	Impro	ving upon QECs	7
		3.3.1	Appending a Flag, Somewhat Predictable	7
		3.3.2	Theoretical Justification for Flagging	7
		3.3.3	Analytical Support for Flagging	7
	3.4	Limita	ations to Augmentation	7
		3.4.1	A Second Augmentation Hypothesis	7
4	Cvc	eles and	d the Reconstruction Conjecture	8
	4.1		struction Conjecture	8
		4.1.1	Background	8
		4.1.2		8
		4.1.3		8
	4.2	Cycles	s of a Deck	8
		4.2.1	The Triangle Identity	8
		4.2.2	Further Identities	8
		4.2.3	Translation to Satisfiability	8
	4.3	If the	Reconstruction Conjecture is True	8
		4.3.1	Natural Use of Induction	8
		4.3.2	Using Cycles to Reduce Induction	8
		4.3.3	Using Triangle Identity to Limit Isomorphism Tests .	8
		4.3.4	An Asymptotically Fast Algorithm	8
		4.3.5	Further Lines of Exploration	8
5	Can	onical	Labeling Using Cycles	g
	5.1		round	G
	5.2		nsistent Algorithm	G
	5.3		Growth Comparisons to Faster Algorithms	Ĝ
6	Ran	ndom (Graph Generators and Automorphisms	10
	6.1		e Number of Graphs of a given Size	11
		6.1.1	Proposed Closed Forms	11
	6.2		as as Singular Objects and their Multiple Representations	
			Representations per Graph	11

		6.2.2	Distribution of Representations	11
	6.3	Domir	nant Random Graph Models	11
		6.3.1	Erdos-Reyni Models	11
		6.3.2	Use and Dominance of Erdos Reyni-Models	11
	6.4	Measu	uring Flaws of Random Graph Models	11
		6.4.1	Averaging Model	11
		6.4.2	Variance Model	11
		6.4.3	Kurtosis Model	11
		6.4.4	Probability Ratio Model	11
	6.5	Flaws	in Proofs of Average Case Random Graphs	11
		6.5.1	Selection of Certain Classes of Graphs	11
		6.5.2	Examples Uses in Proofs	11
		6.5.3	Average Case Runtime Under Erdos-Reyni and Worst	
			Case	11
	6.6	Altern	native Ideas for Random Graph Modeling and Creation	11
		6.6.1	Distributional Goals	11
		6.6.2	Cloning Model	11
	6.7	Inhere	ent Limitations on Models by Computational Theory	11
		6.7.1	Uncertainty in Set Size	11
		6.7.2	Computational Verification Limits	11
7	Rof	lection	15 C	12
•	7.1		Project, Unclear Aims	12
	$7.1 \\ 7.2$			12
	7.3		s of Discovery	$\frac{12}{12}$
	• • •			
	7.4	ACKNO	owledgments	12

Definitions and Syntax

- 1.1 Graphs
- 1.1.1 Representations, Labeling, Matrices
- 1.2 Graph Isomorphism and Automorphism
- 1.2.1 Graph Invariants
- 1.2.2 Vertex Invariants
- 1.2.3 Discriminatory Power
- 1.2.4 Automorphism Groups
- 1.3 Cycles Invariant
- 1.3.1 Running Time
- 1.3.2 Dealing with Large Numbers
- 1.3.3 Asymptotic Bit Growth
- 1.4 Reconstructability, Determined, Representation

Cycles as a Graph Invariant

2.1	Basic	Cycles-I	${f Reconstr}$	ructable	Properties

- 2.1.1 Vertices, Edges, Degree Sequence
- 2.1.2 Chromatic Polynomial
- 2.2 Other Forms of Reconstructability
- 2.2.1 EA Reconstructability
- 2.2.2 Deck Reconstructability
- 2.3 Placing Cycles within a Time/Power Tradeoff
- 2.4 Discrimination on Tough Graph Classes
- 2.4.1 Background
- 2.4.2 1-Sparse Graphs
- 2.4.3 2-Dense Graphs
- 2.4.4 Miyizaki Graphs
- 2.5 Imperfection, Co-Cycles Graphs
- 2.5.1 Discovering Co-Cycles Graphs
- 2.5.2 Constructing Co-Cycles Graphs
- 2.5.3 As a Proposed Dataset for Invariant Analysis
- 2.6 Discriminatory Agreement By N and M
- 2.6.1 Expectations Borne out of Graph Counts
- 2.6.2 An Unexpected Dip

Cycles as a Vertex Invariant

3.1	Quantifying	how	Discrir	minatic	n V	aries	with	P

- 3.1.1 Limitations of Cycles' Discriminatory Power
- 3.1.2 Observational Data
- 3.1.3 Theoretical Explanation: Path vs Cycle Graphs
- 3.2 Automorphism 'Quazi-Equivalence Classes'
- 3.2.1 Background
- 3.2.2 Vertex Similarity is Transitive
- 3.2.3 Internal Structure of QEC's
- 3.3 Improving upon QECs
- 3.3.1 Appending a Flag, Somewhat Predictable
- 3.3.2 Theoretical Justification for Flagging
- 3.3.3 Analytical Support for Flagging
- 3.4 Limitations to Augmentation
- 3.4.1 A Second Augmentation Hypothesis

Cycles and the Reconstruction Conjecture

- 4.1 Reconstruction Conjecture
- 4.1.1 Background
- 4.1.2 Manual Verification
- 4.1.3 Novel Manual Verification
- 4.2 Cycles of a Deck
- 4.2.1 The Triangle Identity
- 4.2.2 Further Identities
- 4.2.3 Translation to Satisfiability
- 4.3 If the Reconstruction Conjecture is True
- 4.3.1 Natural Use of Induction
- 4.3.2 Using Cycles to Reduce Induction
- 4.3.3 Using Triangle Identity to Limit Isomorphism Tests
- 4.3.4 An Asymptotically Fast Algorithm
- 4.3.5 Further Lines of Exploration

Canonical Labeling Using Cycles

- 5.1 Background
- 5.2 A Consistent Algorithm
- 5.3 Time Growth Comparisons to Faster Algorithms

Random Graph Generators and Automorphisms

6.1 On the Number of Graphs of a given Siz	6.1	\mathbf{On}	\mathbf{the}	Number	of	Graphs	of a	given	Siz
--	-----	---------------	----------------	--------	----	--------	------	-------	-----

- 6.1.1 Proposed Closed Forms
- 6.2 Graphs as Singular Objects and their Multiple Representations
- 6.2.1 Representations per Graph
- 6.2.2 Distribution of Representations
- 6.3 Dominant Random Graph Models
- 6.3.1 Erdos-Reyni Models
- 6.3.2 Use and Dominance of Erdos Reyni-Models
- 6.4 Measuring Flaws of Random Graph Models
- 6.4.1 Averaging Model
- 6.4.2 Variance Model
- 6.4.3 Kurtosis Model
- 6.4.4 Probability Ratio Model
- 6.5 Flaws in Proofs of Average Case Random Graphs
- 6.5.1 Selection of Certain Classes of Graphs
- 6.5.2 Examples Uses in Proofs
- 6.5.3 Average Case Runtime Under Erdos-Reyni and Worst Case 11
- 6.6 Alternative Ideas for Random Graph Modeling and Creation
- 6.6.1 Distributional Goals
- 6.6.2 Cloning Model

Reflections

- 7.1 Broad Project, Unclear Aims
- 7.2 Modes of Discovery
- 7.3 Freedom to Pursue Interest
- 7.4 Acknowledgments