

Overview and Critical Assessment of the Tensile Properties of unirradiated and irradiated EUROFER97

EFDA Workprogramme TW5-TTMS-001 Deliverable 6

E. Lucon and W. Vandermeulen

Revision (1)

October, 2007

NMS SCK•CEN Boeretang 200 2400 Mol Belgium

Distribution list

Name	Institute	Number
A. Al Mazouzi E. Lucon L. Malerba M. Scibetta S. Van Dyck W. Vandermeulen M. Decréton V. Massaut E. Diegele R. Lässer JW. Rensman B. Van der Schaaf E. Gaganidze	NMS, SCK•CEN BSU, SCK•CEN BSU, SCK•CEN EFDA, Garching (D) EFDA, Garching (D) NRG, Petten (NL) NRG, Petten (NL) FZK, Karlsruhe (D)	Number 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (electronic version) 1 (electronic version)
R. Lindau M. Rieth P. Spätig	FZK, Karlsruhe (D) FZK, Karlsruhe (D) PSI, Villingen (CH)	1 (electronic version) 1 (electronic version) 1 (electronic version)
R. Lindau M. Rieth	FZK, Karlsruhe (D) FZK, Karlsruhe (D)	1 (electronic version) 1 (electronic version)
R. Odette T. Yamamoto	UCSB, Santa Barbara (US) UCSB, Santa Barbara (US) Secretariaat NMS	1 (electronic version) 1 (electronic version) 3

		Date	Approval
Author:	E. Lucon		
Verified by:	W. Vandermeulen		
Approved by:	L. Sannen		

RESTRICTED

All property rights and copyright are reserved. Any communication or reproduction of this document, and any communication or use of its content without explicit authorization is prohibited. Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK•CEN, Studiecentrum voor Kernenergie/Centre d'Etude de l'Energie Nucléaire

Stichting van Openbaar Nut – Fondation d'Utilité Publique - Foundation of Public Utility

Registered Office: Avenue Herrmann Debroux 40 – B-1160 Brussel

Operational Office: Boeretang 200 – B-2400 Mol

This report, supported by the European Community, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Overview and Critical Assessment of the Tensile Properties of unirradiated and irradiated EUROFER97

EFDA Workprogramme TW5-TTMS-001 Deliverable 6

E. Lucon and W. Vandermeulen

Revision (1)

October, 2007 Status: Open

NMS SCK•CEN Boeretang 200 2400 Mol Belgium

Abstract

Material research represents a crucial issue for the assessment of fusion as a future viable source of energy. Structural materials, in particular, need to show a superior mechanical and chemical behaviour to guarantee the safe operation of the reactor during its whole lifetime, while retaining low activation characteristics to minimise the environmental impact of the produced waste. In this context, specific efforts have been focused for the last twenty years in Europe, Japan and the US, on developing suitable Reduced Activation Ferritic Martensitic (RAFM) steels as candidate structural materials. EUROFER97 has recently emerged in Europe as the reference material for the DEMO design.

In the framework of the Long-Term Programme of EFDA (European Fusion Development Agreement), a coordinated effort has been launched aimed at providing a critical assessment of the mechanical and microstructural properties of EUROFER97 in the unirradiated and irradiated conditions, based on the results accumulated since the late 90's within numerous EFDA tasks.

SCK•CEN has been in charge of collecting and analyzing tensile data; to this objective, an extensive data base of tensile results for EUROFER97 and other relevant RAFM steels has been compiled. The results of our assessments are presented in this report, where tensile data are investigated in relation with various irradiation parameters, such as test temperature, accumulated dose and irradiation temperature. The effect of other parameters, such as irradiation environment and dose rate, has also been addressed.

Due to the scarcity of information available in the literature, only limited comparisons are presented with other RAFM steels, particularly in the irradiated condition.

Keywords

Fusion research, reduced activation ferritic/martensitic (RAFM) steels, tensile properties, irradiation parameters, EUROFER97.

TABLE OF CONTENTS

Abstract	1
Keywords	1
1 Introduction	3
2 Database of RAFM steels tensile properties	4
3 Strategy used and materials considered	5
4 Unirradiated tensile properties	7
4.1 EUROFER97-1	7
4.1.1 Discussion	10
4.2 EUROFER97-2	11
4.2.1 Discussion	14
4.3 Comparison between EUROFER97-1 and EUROFER97-2	15
4.3.1 Discussion	18
4.4 Comparison with other RAFM steels	18
4.4.1 Discussion	
5 Irradiated tensile properties	22
5.1 Dose dependence	22
5.1.1 Discussion	38
5.1.2 Comparison with other RAFM steels	39
5.2 Irradiation temperature dependence	40
5.3 Test temperature dependence	44
5.3.1 Discussion	46
5.3.2 Comparison with other RAFM steels	46
5.4 Influence of irradiation environment and dose rate	51
6 Tensile data which will become available in the coming months	55
7 Conclusions	56
Acknowledgements	57
References	57

1 Introduction

Ferritic/Martensitic steels, with chromium contents ranging between 9% and 12%, were introduced into fusion material programmes about 30 years ago, when it became evident from research in fast reactor programmes that they possessed better swelling resistance and excellent thermal properties with respect to austenitic stainless steels [1]. Indeed, the choice of possible structural materials for the first wall or the blanket structure of the reactor was limited, since the operating conditions envisage both elevated temperatures (in the range 500-700 °C) and a flux of high-energy neutrons.

In the course of the 80's, attention was redirected towards so-called "low activation" structural materials, which during irradiation would either not activate or give rise to induced radioactivity rapidly decaying to allow safe operation or at least hands-on reactor maintenance [2,3]. However, truly low activation materials were not feasible and "reduced activation" material were proposed instead, whose chemical composition would carefully exclude all elements which could transmute by interaction with neutrons into long-life radioactive elements; low enough radioactivity levels should be achieved in about 100 years, as compared to several thousands for conventional structural steels [4].

Reduced Activation Ferritic/Martensitic (RAFM) steels are presently considered as primary structural materials for a demonstration fusion plant (DEMO). Although service conditions are not yet fully established in terms of temperatures, stresses or environment, simplified studies are available investigating different concepts [5]. As far as temperatures are concerned, designers push for elevated temperatures in order to increase efficiency; considering stresses in the order of 50 MPa, the upper operating temperature for RAFM steels would be similar to that of conventional power plants when creep is a limiting factor, that is approximately 550-600 °C. Depending on the type of coolant, oxidation or liquid-metal corrosion and/or embrittlement could require a reduction of the service temperature [6,7]. Predictably, irradiation effects are of highest concern amongst environmental conditions in a fusion reactor.

The European Fusion Long Term Programme is carried out under the coordination of EFDA (European Fusion Development Agreement) Close Support Unit located in Garching, Germany [8]. Within the area "Materials Development", first priority is given to timely supply a structural material for breeding blankets inserted in DEMO. As these have to be tested in ITER, this material has consequently to be fully qualified also to the needs of Test Blanket Modules (TBMs). The EU reference material is a 9Cr RAFM steel, called EUROFER97, which exhibits a tempered martensitic microstructure and presently allows operation up to 550 °C [9,10].

Since one of the main issues of RAFM steels is the effect of irradiation at temperatures lower than about 400 °C, EFDA has devoted considerable efforts and budget to the characterization of post-irradiation mechanical and microstructural properties of EUROFER97 within a task designated "*Irradiation Performance of EUROFER*" (TTMS-001), which involves numerous European research institutes. Within this task, EUROFER97 has been irradiated in test reactors up to a wide range of radiation damage: from 0.3 up to 70-80 dpa. The investigation of irradiation performance limits of EUROFER includes the irradiation of various product forms at different temperatures, and post-irradiation examinations (both mechanical tests and microstructural investigations).

In 2005, EFDA launched an activity aimed at the collection and critical assessment of the mechanical and microstructural property data of irradiated EUROFER97, based on the information gathered in the framework of TTMS-001 and from other data sources. The activity also included properties of the unirradiated material and comparisons with other RAFM steels, such as F82H, JLF-1, CLAM and others.

The task was split among four European laboratories, namely FZK (Charpy and fracture toughness), NRG (fatigue and creep), PSI (fracture toughness and microstructure) and SCK•CEN (tensile properties).

This report presents a critical assessment of the tensile property data of EUROFER97 in the unirradiated and irradiated conditions.

The information presented herein will be summarized and included in the final report of the task, along with the outcome of the investigations performed by FZK, NRG and PSI. The final report will be issued under the coordination of EFDA, and will hopefully include recommendations for the improvement of the post-irradiation mechanical and microstructural properties of the final version of EUROFER97.

2 Database of RAFM steels tensile properties

The first phase of this activity consisted in the collection of available tensile test results for EUROFER97 in the unirradiated and irradiated conditions. The main sources used were:

- reports issued within EFDA tasks (mainly TTMS-001, but also TTMS-002, TTMS-004 and TTMS-005);
- the "European Database for Reduced Activation Ferritic/Martensitic Steels" developed by F. Tavassoli (CEA), version Dec 2002;
- the RAFM steels tensile properties database assembled by Yamamoto and Odette (UCSB) [11];
- articles published in the open literature.

In a few cases, tensile results are known to exist but have not yet been officially published; the responsible investigators have been contacted and, when possible, data have been provided in an "informal" manner.

Using all collected tensile data, an EXCEL97 database has been compiled in order to facilitate the analysis of the available information. The database, reproduced in Annex 1, contains more than 1000 records (each record corresponds to the results of an invidual tensile test). It includes data for EUROFER97, F82H, JLF-1, CLAM and OPTIFER, as well as for other experimental 9Cr and 12Cr alloys; these latter have not been used for the analyses presented here.

For every record in the database, the following information is provided (when available):

- test identification (literature reference and specimen id);
- material identification (denomination, heat and product form);
- heat treatment information;
- irradiation conditions (name of the experiment, reactor, temperature, dpa, dpa rate, He produced, fast fluence and irradiation environment);
- specimen dimensions;
- test conditions (strain rate, test temperature and test environment);
- test results:
 - yield strength R_{ν} ;
 - (ultimate) tensile strength R_m ;
 - ratio R_m/R_v , which provides an indication of the strain hardening capability;
 - true stress at fracture;
 - uniform elongation ε_u ;
 - total elongation ε_t ;
 - reduction of area *Z*.

O<0.01 Ti<0.01 O<0.01

Ti<0.02

Ti<0.006

Not all tensile parameters have been considered in each analysis, but only the ones which have been deemed relevant to the aspects under investigation.

Literature references referred to in the second column of the database are listed in Annex 2; some of them duplicate references given in the relevant section of this report.

3 Strategy used and materials considered

In the unirradiated condition, EUROFER97 tensile properties have been analyzed as a function of test temperature (T_{test}) and compared to equivalent information for other relevant RAFM steels (F82H, JLF-1, CLAM and OPTIFER). Almost all tests have been performed at strain rates of the order of 10^{-4} s⁻¹; additionally, a few data measured at lower strain rates allow a very limited assessment of strain rate effects.

In most cases, the heat treatment consisted of a normalization at 980 °C, air cooling and temper at 740-760 °C depending on the product form. Further details are provided in the database in Annex 1.

As far as irradiated properties are concerned, the collected information allows tensile results to be analyzed as a function of the following variables:

• test temperature, T_{test} ;

EU97-2

F82H-mod.

JLF-1 OPTIFER

CLAM

< 0.01

< 0.002

0.0002

0.004

- irradiation temperature, T_{irr} ;
- accumulated dose (dpa).

Since irradiated tensile results depend on these three variables, data pooling has been necessary in order to detect and investigate the influence of each experimental variable. Pooling has been performed by grouping available data in terms of T_{irr} , dpa and T_{test} ; for the former two variables, "data bins" have been created by considering data in a reasonably narrow range, where the effect of T_{irr} or dpa variation can be deemed negligible. The results of data pooling are presented in Annex 3 (irradiation temperature), Annex 4 (dose) and Annex 5 (test temperature).

More limited investigations, due to the scarcity of relevant information, have also been performed in terms of dose rate and irradiation environment, using data generated from experiments performed in HFR (Petten) and BR2 (Mol).

The nominal chemical compositions of the RAFM steels considered in this study are summarized in Table 1. Details on the heat treatments are found inside the database (Annex 1).

Steel	C	Cr	W	V	Ta	Mo	Nb
EU97-1	0.09-0.12	8.5-9.5	1.0-1.2	0.15-0.25	0.06-0.09	< 0.005	< 0.001
EU97-2	0.09-0.12	8.5-9.5	1.0-1.2	0.15-0.25	0.06-0.14	< 0.005	< 0.005
F82H-mod.	0.09	7.7	1.96	0.15	0.023		< 0.001
JLF-1	0.1	8.85-8.87	1.94-1.99	0.19-0.2	0.08-0.09	2	
OPTIFER	0.1	8.5	1.16	0.23	0.1		
CLAM	0.10-0.12	8.91-9.0	1.44-1.55	0.20-0.21	0.07-0.15		
Steel	Ni	В	N	Si	Mn	P	S
EU97-1	< 0.005	< 0.001	0.015-0.045	< 0.05	0.20-0.60	< 0.005	< 0.005

0.015-0.045

0.006

0.06

0.02

Table 1 - Nominal chemical compositions of the RAFM steels considered in this study.

< 0.05

0.10

0.04-0.05

0.01

0.20 - 0.60

0.16

0.45 - 0.46

0.6

0.40 - 0.49

< 0.005

< 0.002

0.003

0.004

0.003

< 0.005

0.002

0.004

0.002

For EUROFER97, two batches have been considered. The original batch of 3.5 tons (EUROFER97-1) was produced in 1997 by Böhler under different product forms (bars of 100 mm diameter and plates of 8, 14 and 25 mm thickness) [10]. The second batch (EUROFER97-2) was produced in 2005 by SaarSchmiede as about 8 tons of different product forms (forgings, plates and tubes) according to slightly revised specifications with respect to EUROFER97-1 [12].

F82H and JLF-1 are two 9Cr steels developed in Japan by JAERI and Japanese Universities respectively. The first one is considered the reference Japanese RAFM steel, similar to EUROFER97 in Europe. It was produced in several heats and product forms; however, the so-called "IEA heats" (produced according to the specifications reviewed and accepted by the International Energy Agency) are considered the reference heats and correspond to what is commonly referred to as "F82H-mod" (modified) [13]. Although data from the "pre-IEA heats" are also included in our database, only results for F82H-mod have been considered in the analyses.

OPTIFER is an experimental 9Cr alloy which was developed and investigated in Europe during the phase (mid '90s) which preceded the production of the reference RAFM steels such as E97 or F82H, approximately at the same time as the research on JLF-1 in Japan [14]. Similar materials for which data can be found in the literature are BATMAN, the MANET series and the ORNL developmental alloys [1].

Finally, the CLAM steel (Chinese Low Activation Material) has been recently developed and investigated in China by ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences), based on a wide review of on-going international programs on the development of RAFM steels [15-18]. No irradiated data have yet been published for this material.

In this report, comparisons between EUROFER97 and other RAFM steels are much more extensive and meaningful for the unirradiated than for the irradiated condition. The reasons are:

- all available tensile data for irradiated EUROFER97 are for $T_{irr} \le 350$ °C;
- for F82H-mod and other RAFM steels, most of the irradiated data in our database which correspond to $T_{irr} \le 350$ °C come from experiments conducted in HFR Petten using gas-filled capsules. In these experiments, irradiation temperature was not well controlled inside the capsules and large deviations from the nominal values can be expected¹ [19]; since post-irradiation tensile properties are quite sensitive to T_{irr} , these data have <u>not</u> been used in the analyses, and the irradiation temperatures have been highlighted in yellow in our database;
- most of the <u>reliable</u> results for F82H-mod and other RAFM steels derive from irradiations conducted in Japan (JMTR) and correspond to higher irradiation temperatures (400 °C 580 °C), for which EUROFER97 data do not exist.

¹ It must be noted that even some experiments performed in HFIR (US) on F82H-mod and JLF-1 are questionable as far as the actual irradiation temperature is concerned [20].

4 Unirradiated tensile properties

Tensile properties for the unirradiated materials have been fitted in this study using 5th order polynomial functions, except in cases where the fitting appeared unsatisfactory due to the limited number or the scatter of available data, so that lower order polynomials have been used in order to derive the overall trends.

It must be emphasized that tensile parameters related to specimen ductility, such as uniform elongation, total elongation and reduction or area, are known to be affected by sample configuration, namely by the ratio between gage length and square root of the cross section $(L_o/\sqrt{A_o})$ [21]. Other sources of uncertainty that can also play a role are differences in the methodology used for measuring specimen elongation (extensometer or machine crosshead displacement) or discrepancies in the definition of the reduced section length (L_o) . Therefore, the comparison of such data from non self-similar specimens is less meaningful and affected by larger scatter than for yield or tensile strength values.

Detailed information about specimen configuration, as well as other relevant material characteristics such as heat treatment conditions, are provided in the data base (Annex 1).

4.1 EUROFER97-1

The tensile properties of four different product forms have been considered, namely 8 mm and 14 mm plates (heat E83698), 25 mm plate (heat E83697) and 100 mm bar (heat E83699). Data are shown in Figure 1 to Figure 6 for yield strength, tensile strength, R_m/R_y , uniform elongation, total elongation and reduction of area respectively. Fabrication data provided by Böhler and two test results, obtained by NRG at a significantly lower strain rate (5 × 10^{-6} s⁻¹), are also included. Overall fits are represented by black solid curves.

Figure 1 - Yield strength for unirradiated EUROFER97-1.

Figure 2 - Tensile strength for unirradiated EUROFER97-1.

Figure 3 – Strain hardening capability for unirradiated EUROFER97-1.

Figure 4 – Uniform elongation for unirradiated EUROFER97-1.

Figure 5 – Total elongation for unirradiated EUROFER97-1.

Figure 6 - Reduction of area for unirradiated EUROFER97-1.

The coefficients of the polynomial regression functions (in the form $Y = AX^5 + BX^4 + CX^3 + DX^2 + EX + F$) and the coefficient of determination R^2 are summarized in Table 2.

Coefficient	Variable					
Coefficient	R_{y}	$R_{\rm m}$	ε_{u}	ϵ_{t}	Z	
A	-2.314E-11	-8.215E-12	-	-	-1.922E-12	
В	3.647E-08	1.488E-08	-	-	2.225E-09	
C	-2.138E-05	-1.168E-05	-6.565E-10	6.169E-08	-4.070E-07	
D	5.013E-03	3.865E-03	1.532E-05	7.562E-06	-1.801E-04	
E	-6.020E-01	-8.616E-01	-1.774E-02	-2.236E-02	5.210E-02	
F	545.9	674.2	6.701	21.71	77.05	
R ²	0.98	0.99	0.94	0.61	0.87	

Table 2 - Coefficients of the polynomial regression functions for unirradiated EUROFER97-1.

4.1.1 Discussion

- No significant effect of product form is observed for any of the tensile parameters.
- Yield and tensile strength values are contained in a narrow scatter band. More dispersion characterizes the ductility parameters (as could be expected due to the differences in sample geometries), but overall trends are nevertheless clear.
- The 25 mm plate appears to have slighlty lower mechanical resistance for $T_{test} < 0$ °C. However, differences between this plate and the remaining product forms are way smaller than those which have been reported in terms of Charpy or fracture toughness properties [19].

- The strain hardening capability shows a steady decrease with increasing temperatures above 0 °C, until a minimum is reached at 600 °C.
- Uniform elongation steadily decreases with increasing temperature until it reaches a minimum (<1%) around 600 °C, before increasing again. A slight tendency of the 8 mm plate to provide the highest and of the 25 mm plate to provide the lowest ε_u values is visible between RT and 400 °C.
- Total elongation shows a minimum (\sim 15%) around 350 °C. For higher temperatures, ε_t increases but so does the scatter.
- Reduction or area generally increases with temperature, although between 100 and 400 °C values of Z oscillate between 75% and 85%.
- A decrease of the strain rate causes a significant drop of mechanical resistance and strain hardening capability, while uniform and total reduction appear to increase slightly; reduction of area seems almost unaffected or slightly reduced.

4.2 EUROFER97-2

A more limited number of tensile data are available for the second EUROFER97 batch, all in the unirradiated condition and provided by FZK and SCK•CEN. Tensile properties for the six different heats produced are shown in Figure 7 to Figure 12.

Figure 7 - Yield strength for unirradiated EUROFER97-2.

Figure 8 - Tensile strength for unirradiated EUROFER97-2.

Figure 9 – Strain hardening capability for unirradiated EUROFER97-2.

Figure 10 - Uniform elongation for unirradiated EUROFER97-2.

Figure 11 – Total elongation for unirradiated EUROFER97-2.

Figure 12 - Reduction of area for unirradiated EUROFER97-2.

The coefficients of the polynomial regression functions are summarized in Table 3.

Coefficient	Variable				
Coefficient	R_{y}	R_{m}	$\epsilon_{ m u}$	ϵ_{t}	Z
A	-1.599E-12	4.392E-12	6.116E-13	1.788E-12	-6.711E-13
В	7.901E-09	-4.853E-10	-8.119E-10	-2.652E-09	1.866E-10
C	-1.152E-05	- 7.5633E-06	3.286E-07	1.322E-06	6.296E-07
D	5.344E-03	4.608E-03	-3.091E-05	-1.593E-04	-3.288E-04
E	-1.044	-1.191	-1.328E-02	-3.202E-02	4.629E-02
F	548.9	685.6	697.5	24.65	79.55

0.87

0.70

0.99

Table 3 - Coefficients of the polynomial regression functions for unirradiated EUROFER97-2.

4.2.1 Discussion

- More scatter is observed for yield and tensile strength values than for EUROFER97-1, caused by the fabrication process of the different product forms; additional heat treatments should reduce such dispersion down to level of EUROFER97-1.
- The 100 bars show lower mechanical resistance than the plates below 500 °C, whereas the 8 mm plate exhibits the highest yield and tensile strength up to 400 °C.
- The strain hardening capability shows as similar trend as for EUROFER97-1, with a minimum around 600 °C.
- Uniform and total elongation values measured on the 8 mm plate show large scatter, with the measurements provided by SCK•CEN at RT and 300 °C systematically lower than those by FZK. This could be partially explained in terms of the different specimen configurations used; however, even the FZK measurements in the range 500-700 °C show significant scatter. A minimum for uniform elongation (1%-2%) is observed at 600 °C.
- Plates tend to provide higher reduction of area values than bars.

0.98

4.3 Comparison between EUROFER97-1 and EUROFER97-2

The tensile properties of the first and second batch of EUROFER97 are compared in Figure 13 to Figure 18; no more distinction is made between product forms.

Figure 13 - Comparison between the yield strength of unirradiated EUROFER97-1 and EUROFER97-2.

Figure 14 - Comparison between the tensile strength of unirradiated EUROFER97-1 and EUROFER97-2.

 $\begin{tabular}{ll} Figure~15-Comparison~of~the~strain~hardening~capability~for~unirradiated~EUROFER97-1~and~EUROFER97-2. \end{tabular}$

Figure 16 - Comparison between uniform elongation values of unirradiated EUROFER97-1 and EUROFER97-2.

Figure 17 - Comparison between total elongation values of unirradiated EUROFER97-1 and EUROFER97-2.

Figure 18 - Comparison between reduction of area values of unirradiated EUROFER97-1 and EUROFER97-2.

4.3.1 Discussion

- EUROFER97-1 and EUROFER97-2 are substantially equivalent in terms of mechanical strength, although the second batch exhibits slightly lower yield and tensile strength for temperatures above 400 °C.
- The strain hardening capability of EUROFER97-2 is generally better than EUROFER97-1.
- EUROFER97-2 shows a consistent improvement in ductility over EUROFER97-1 above RT, with a gain of a few % in terms of uniform elongation, total elongation and reduction of area. This is obviously related to the higher strain hardening shown by the second batch.

In short, we observe that the second batch exhibits equivalent strength but better ductility than the first batch.

4.4 Comparison with other RAFM steels

The tensile properties of EUROFER97-1 and EUROFER97-2 are compared to those of other RAFM steels (F82H-mod, JLF-1, CLAM and OPTIFER) in Figure 20 to Figure 25. Only tests performed at strain rates in the range 10^{-3} to 10^{-4} s⁻¹ are considered.

For F82H, as previously mentioned, only the so-called IEA heats (9741 and 9753) have been used for the comparison; these heats, as shown in Figure 19, present slightly lower mechanical strength than the pre-IEA heats, at least up to 550 °C.

For completeness, the tensile properties of the RAFM steels used for comparison are illustrated in Annexes 6 (F82H), 7 (JLF-1), 8 (CLAM) and 9 (OPTIFER).

Figure 19 - Yield strength for different product forms of unirradiated F82H.

Figure 20 - Yield strength for various RAFM steels in the unirradiated condition.

Figure 21 - Tensile strength for various RAFM steels in the unirradiated condition.

Figure 22 – Strain hardening capability for various RAFM steels in the unirradiated condition.

Figure 23 – Uniform elongation for various RAFM steels in the unirradiated condition.

Figure 24 – Total elongation for various RAFM steels in the unirradiated condition.

Figure~25-Reduction~of~area~for~various~RAFM~steels~in~the~unirradiated~condition~(no~data~available~for~OPTIFER).

4.4.1 Discussion

- All RAFM steels considered display equivalent mechanical resistance. A tendency is observed for the yield and tensile strengths of EUROFER97 to be slightly higher than those of F82H-mod at low temperatures (< 0 °C), while the opposite is observed at high temperatures (> 500 °C).
- In terms of strain hardening capability and ductility parameters, the comparisons are complicated by the large experimental scatter (partly induced by the variety of sample configurations). Nevertheless, it appears that F82H has lower strain hardening capability than EUROFER97 above 300 °C and lower ductility above room temperature.
- The CLAM steel shows the highest strain hardening which may explain the comparatively high uniform elongation at RT and 350 °C, although just two experimental values are available in the literature and have been included in our database.

5 Irradiated tensile properties

5.1 Dose dependence

In order to investigate the dose dependence of the tensile properties of EUROFER97, the following approach is followed:

- the test temperature is kept constant (or variable within narrow limits);
- data have been grouped and identified based on the irradiation temperature (different symbols on the same plot).

Along with the tensile parameters considered in the previous section, values of irradiation hardening ΔR_y have been analyzed, using for the reference condition the regression function established for the unirradiated EUROFER97-1 or EUROFER97-2 (Figure 1 and Figure 7).

Based on the tensile results available in our database, the following data sets have been analyzed:

- $T_{test} = \text{RT-50 °C}$, $T_{irr} = 50,60,300,325 °C$ (Figure 26 to Figure 32);
- $T_{test} = 100 \, ^{\circ}\text{C}$, $T_{irr} = 60{,}300 \, ^{\circ}\text{C}$ (Figure 33 to Figure 39);
- $T_{test} = 300-325$ °C, $T_{irr} = 60,300,325,330,336$ °C (Figure 40 to Figure 46);
- $T_{test} = 400 \, ^{\circ}\text{C}$, $T_{irr} = 60,300 \, ^{\circ}\text{C}$ (Figure 47 to Figure 53);
- $T_{test} \sim T_{irr}$, with $T_{irr} = 50 350$ °C (only irradiation hardening, Figure 54).

All tensile parameters are represented as a function of accumulated dose (dpa), except yield strength, irradiation hardening and tensile strength, which are plotted in terms of the square root of dose (\sqrt{dpa}). Such dependence is suggested by the principle of dispersed barrier hardening [22], assuming a 1:1 relationship between hardening feature number density and dose.

Due to scarcity of data and the large scatter, values of strain hardening capability, uniform elongation, total elongation and reduction of area have not been fitted. General trends are usually clearly visible anyhow.

Tensile strength values have been fitted using a second-order polynomial ($Y = AX^2 + BX + Y_o$, with Y_o = value in the unirradiated condition); values of yield strength and irradiation hardening have been fitted as a function of dose using the following general fitting expression [11]:

$$Y = Y_{sat} \left[1 - \exp\left(-\frac{dpa}{dpa_o} \right) \right]^p + Y_o$$
 (1)

where Y can be yield strength, tensile strength or irradiation hardening, Y_{sat} is the value at saturation, dpa_o specifies the dose transient prior to saturation, p is an effective dispersed-barrier hardening exponent. Y_o is an offset which corresponds to the unirradiated value and is equal to 0 in case Y corresponds to irradiation hardening. The initial hardening rate is characterized by Y_{sat}/dpa_o^p .

In the case of simple dispersed barrier hardening with one type, size and strength of hardening feature, and with a number density that initially increases linearly with dose, $p \approx 1/2$. This is the so-called Makin and Minter model [23,24], and for irradiation hardening it reduces to:

$$\Delta R_{y} = \Delta R_{y,sat} \sqrt{1 - \exp\left(-\frac{dpa}{dpa_{o}}\right)}$$
 (2)

with the initial hardening rate given by $\Delta R_{y,sat}/\sqrt{dpa_o}$.

Regressions using p = 1/2 have been performed on yield data, only for $T_{irr} = 300$ °C; results from specimens irradiated at different temperatures have been plotted but not fitted. Data for EUROFER97-1 and EUROFER97-2 have been fitted together.

The regression coefficients are shown in Table 4.

Table 4 - Regression coefficients.

Data set		R_{y} (MPa)			
T_{test} (°C)	T_{irr} (°C)	$R_{y,sat}$	dpa_o	$R_{y,o}$	
RT-50	300	580.427	4.83028	533.191	
100	300	642.075	8.11746	517.922	
300	300	564.649	9.61140	617.000	
400	300	477.89	6.7961	435.93	
Data	a set	ΔR_{ν} (MPa)			
T_{test} (°C)	T_{irr} (°C)	$\Delta R_{v,sat}$ dpa_o			
RT-50	300	581.766	4.76735		
100	300	642.074	8.11742		
300	300	552.357	8.95682		
400	300	477.88	6.7959		
Data set			R_m (MPa)		
T_{test} (°C)	T_{irr} (°C)	A	В	Y_o	
RT-50	300	-3.805	152.81	654.92	
100	300	-1.070	147.53	616.44	
300	300	6.844	108.05	548.71	
400	300	-9.4836	144.94	497.00	

Figure 26 - Yield strength measured at RT-50 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 27 – Irradiation hardening measured at RT-50 °C for irradiated EUROFER97.

Figure 28 – Tensile strength measured at RT-50 °C for irradiated EUROFER97.

Figure 29 – Strain hardening capability at RT-50 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 30 – Uniform elongation measured at RT-50 $^{\circ}$ C for irradiated EUROFER97.

Figure 31 – Total elongation measured at RT-50 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 32 – Reduction of area measured at RT-50 °C for irradiated EUROFER97.

Figure 33 - Yield strength measured at 100 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 34 – Irradiation hardening measured at 100 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 35 – Tensile strength measured at 100 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 36 – Strain hardening capability at 100 °C for irradiated EUROFER97.

Figure 37 – Uniform elongation measured at 100 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 38 – Total elongation measured at 100 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 39 – Reduction of area measured at 100 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 40 - Yield strength measured at 300 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 41 – Irradiation hardening measured at 300 °C for irradiated EUROFER97.

Figure 42 – Tensile strength measured at 300 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 43 – Strain hardening capability at 300 °C for irradiated EUROFER97.

Figure 44 – Uniform elongation measured at 300 °C for irradiated EUROFER97.

Figure 45 – Total elongation measured at 300 °C for irradiated EUROFER97.

Figure 46 – Reduction of area measured at 300 °C for irradiated EUROFER97.

Figure 47 - Yield strength measured at 400 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 48 – Irradiation hardening measured at 400 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 49 – Tensile strength measured at 400 °C for irradiated EUROFER97.

Figure 50 – Strain hardening capability at 400 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 51 – Uniform elongation measured at 400 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 52 – Total elongation measured at 400 $^{\circ}\text{C}$ for irradiated EUROFER97.

Figure 53 – Reduction of area measured at 400 °C for irradiated EUROFER97.

Figure 54 – Irradiation hardening measured at $T_{test} \sim T_{irr}$ for irradiated EUROFER97.

5.1.1 Discussion

The most numerous available data for investigating the dose dependence of EUROFER97 are from irradiations conducted at 300 °C and from tests performed at RT and 300 °C.

- Irradiation hardening increases steeply with dose up to approximately 10 dpa and appears to level off at higher doses (results from irradiation campaigns conducted at 300 °C up to 16-20 dpa, yet unavailable, are needed to confirm this statement); the information presently available does not allow defining neither the dose corresponding to hardening saturation nor the actual saturation level.
- Data measured from irradiations conducted in the range 325-336 °C seem to provide slightly less hardening than for $T_{irr} = 300$ °C, thus indicating that 300 °C represents the most critical irradiation temperature.
- Above 0.7 dpa, the ductility of EUROFER97 is seriously degraded; namely:
 - strain hardening capability vanishes $(R_v \approx R_m)$;
 - uniform and total elongation drop below 0.5% and 15% respectively;
 - reduction of area sharply decreases, albeit with a large dispersion of results.
- For $T_{test} \le 100$ °C, results from irradiations at 60 °C and 300 °C are in general agreement; however, earlier studies [19] have clearly shown that hardening at 60 °C increases and saturates much faster at relatively low doses than at 300 °C. Therefore the observed agreement is coincidental, and depends on the limited results available for $T_{irr} = 60$ °C. Above 100 °C, a predictable annealing effect of the test temperature causes a partial recovery of irradiation effects for $T_{irr} = 60$ °C.
- Considering hardening values measured at or close to irradiation temperature ($T_{test} \sim T_{irr}$), we observe that available results for $T_{irr} = 50 336$ °C fall within a reasonably narrow scatter band (Figure 54).
- The post-irradiation tensile behaviour of EUROFER97-2 is fully comparable to that of EUROFER97-1.

5.1.2 Comparison with other RAFM steels

Relatively few data are available in our database for comparing the dose dependence of EUROFER97 with other RAFM steels. They correspond to F82H-mod and JLF-1 irradiated at 300 °C in HFIR up to approximately 5 dpa and tested at RT and 300 °C, and F82H mod. irradiated at 336 °C in BOR-60 (ARBOR-1 experiment) up to 30.2 dpa. Therefore, any conclusion should be corroborated in the future by a more extensive experimental basis.

Hardening for EUROFER97 irradiated at 300 °C (fitted by simple logarithmic curves), is compared in Figure 55 (RT) and Figure 56 (300 °C) to F82H-mod and JLF-1.

Figure 55 - Irradiation hardening of EUROFER97 tested at RT compared to F82H-mod and JLF-1.

Figure 56 - Irradiation hardening of EUROFER97 tested at 300 °C compared to F82H-mod and JLF-1.

The data presented show that, at both test temperatures and around 5 dpa, EUROFER97 exhibits larger irradiation hardening than F82H-mod and JLF-1. In terms of ductility, uniform elongation is lower for EUROFER97 and total elongation is higher; however, differences in terms of elongation might be primarily caused by different specimen configurations (mostly cylindrical with round cross section for EUROFER97, flat with rectangular cross section for F82H-mod and JLF-1).

5.2 Irradiation temperature dependence

In order to investigate the dependence of the tensile properties of EUROFER97 from irradiation temperature, the following approach has been followed:

- accumulated doses have been fixed within narrow ranges;
- data sets corresponding to different test temperatures have been considered. The first group of tensile data which can be analyzed corresponds to irradiations conducted at 60 °C (SIWAS-09) and 300 °C (SUMO-04 and SOSIA-02), within the dose range 2.10-2.60 dpa. Results obtained at RT/50 °C, 100 °C, 200 °C, 300 °C and 400 °C are available.

Values of irradiation hardening, tensile strength and total elongation are plotted in Figure 57 to Figure 59.

Figure 57 - Irradiation hardening of EUROFER97 irradiated at 60 and 300 °C.

Figure 58 – Tensile strength of EUROFER97 irradiated at 60 and 300 °C.

Figure 59 - Total elongation of EUROFER97 irradiated at 60 and 300 °C.

For the irradiation at 60 °C, test temperature plays an important role. A fully meaningful assessment can only be made for the tests performed at RT/50 °C, where a slight increase in hardening and tensile strenght and a slight decrease of total elongation is noticeable when passing from 60 to 300 °C. Above 50 °C, we observe progressively larger annealing effects of irradiation damage with increasing test temperature.

Within the SUMO-09 experiment [25], tensile specimens of EUROFER97 and VS3104 (a 9Cr2WVTa experimental alloy produced by NRG, with properties very similar to EUROFER97) were irradiated at 250, 300 and 343 °C up to doses ranging from 1.59 to 2.45 dpa. EUROFER97 was tested at -90 °C and at irradiation temperature; VS3104 at room temperature. The effect of irradiation temperature on irradiation hardening, tensile strength, uniform and total elongation is illustrated in Figure 60 to Figure 63.

Figure 60 - Irradiation hardening of EUROFER97 and VS3104 irradiated at 250, 300 and 343 °C.

Figure 61 - Tensile strength of EUROFER97 and VS3104 irradiated at 250, 300 and 343 °C.

Figure 62 – Uniform elongation of EUROFER97 and VS3104 irradiated at 250, 300 and 343 °C.

Figure 63 – Total elongation of EUROFER97 and VS3104 irradiated at 250, 300 and 343 °C.

The results of the SUMO-09 experiment show that:

- 300 °C is indeed the most critical irradiation temperature in terms of hardening and loss of ductility;
- with respect to $T_{irr} \le 300$ °C, samples irradiated at 343 °C exhibit less hardening and retain considerable ductility, due to a partial recovery of irradiation-induced damage.

5.3 Test temperature dependence

The tensile properties of unirradiated and irradiated EUROFER97 are shown in Figure 64 to Figure 68 as a function of test temperature for various dpa ranges, assuming within each range a moderate dose effect. Data plotted include specimens irradiated at temperatures between 50 and 336 °C. In the diagrams, the colour of a data point identifies its irradiation temperature and the shape indicates its dose range.

Figure 64 - Yield strength of unirradiated and irradiated EUROFER97.

Figure 65 - Tensile strength of unirradiated and irradiated EUROFER97.

Figure 66 - Uniform elongation of unirradiated and irradiated EUROFER97.

Figure 67 - Total elongation of unirradiated and irradiated EUROFER97.

Figure 68 - Reduction of area of unirradiated and irradiated EUROFER97.

5.3.1 Discussion

- Using the approach described at the beginning of this section, reasonable trends have been
 obtained, particularly for the yield and tensile strength; in the case of the ductility
 parameters, the picture is complicated by the likely interaction of dose and irradiation
 temperature effects with experimental scatter enhanced by the use of different specimen
 configurations.
- Predictably, increase of mechanical resistance and decrease of ductility are observed at increasing dose, except at test temperatures higher than 400 °C, where considerable ductility is retained due to the partial recovery of irradiation defects.
- The relatively moderate strength increase (Figure 64 and Figure 65) and the slight increase of uniform elongation (Figure 66) which is observed above ~10 dpa seem to indicate that already above 300 °C (320-336 °C) partial annealing of irradiation effects is already taking place.
- The significant agreement between yield and tensile strength values measured at [300 °C, 6.4-9.2 dpa] and [330 °C, 15 dpa] is probably the result of dose and irradiation temperature effects which compensate each other.

5.3.2 Comparison with other RAFM steels

Figure 69 to Figure 72 compare tensile properties from EUROFER97 in the dose range 1.59-9.20 dpa with F82H-mod and JLF-1 irradiated in HFIR up to 4.90-5.00 dpa. Irradiation temperatures are in the range 300-307 °C.

In terms of yield and tensile strength, results from F82H-mod and JLF-1 are similar to those of EUROFER97 irradiated to less than half the same dose. Uniform elongation is

equivalent for F82H-mod, clearly higher for JLF-1; total elongation is consistently better for EUROFER97.

The data presented here confirm the trends already highlighted in §5.1.2.

Figure 69 - Yield strength of irradiated EUROFER97, F82H-mod and JLF-1.

Figure~70-Tensile~strength~of~irradiated~EUROFER97, F82H-mod~and~JLF-1.

Figure 71 – Uniform elongation of irradiated EUROFER97, F82H-mod and JLF-1.

Figure 72 - Total elongation of irradiated EUROFER97, F82H-mod and JLF-1.

The results from the ARBOR-1 irradiation, conducted at 336 °C in BOR-60 up to 30.2 dpa [26], allow a direct comparison of EUROFER97 and F82H-mod tested at 250, 300 and 350 °C. Values of irradiation hardening, tensile strength, uniform elongation and total elongation are shown in Figure 73 to Figure 79.

Figure 73 – Irradiation hardening measured on EUROFER97 and F82H-mod irradiated at 336 $^{\circ}\mathrm{C}$ up to 30.2 dpa.

Figure 74 - Tensile strength measured on EUROFER97 and F82H-mod irradiated at 336 $^{\circ}\text{C}$ up to 30.2 dpa.

Figure 75 – Uniform elongation measured on EUROFER97 and F82H-mod irradiated at 336 $^{\circ}\mathrm{C}$ up to 30.2 dpa.

Figure 76 – Total elongation measured on EUROFER97 and F82H-mod irradiated at 336 °C up to 30.2 dpa.

The results from the ARBOR-1 irradiation show that F82H-mod exhibits less hardening and higher uniform elongation than EUROFER97. Total elongation, however, is better for EUROFER97. Strength differences remain lower than 10%. Elongation differences are more important, although the absolute values remain in all cases lower than 0.5% for both materials.

5.4 Influence of irradiation environment and dose rate

Tensile results from several irradiation campaigns conducted at 300 °C in BR2 (Mol) and in HFR (Petten) have been used for a rough assessment of the effect of two other irradiation parameters: irradiation environment and dose rate (Table 5). Besides the experiments listed in Table 5, other irradiations in HFR were conducted using He-filled sample holders (ILAS, CHARIOT, SINEXT); however, temperature control was not reliable [19] and the corresponding information has been excluded from the analyses.

In terms of irradiation environment, only water and sodium can be compared. As far as dose rate is concerned, the variation is only approixantely one decade (from 1.93×10^{-8} to 2.20×10^{-7} dpa/s).

	-	•	Ü		
Reactor	Experiment	Environment	Duration	Dose rat	e (dpa/s)
reactor	Experiment	Liiviioiiiiieiit	(s)	min	max
	IRFUMA-I	H_20	1.81×10^{6}	1.27×10 ⁻⁷	2.20×10 ⁻⁷
BR2	IRFUMA-II	H_20	7.78×10^6	1.93×10^{-8}	1.14×10^{-7}
	IRFUMA-III	H_20	1.79×10^{7}	2.68×10^{-8}	1.20×10^{-7}
	SOSIA-02	Na	2.14×10^7	1.08×10 ⁻⁷	1.12×10 ⁻⁷
	STROBO-01	Na	2.13×10^6	1.03×10^{-7}	1.31×10^{-7}
HFR	SUMO-02	Na	6.24×10^7	1.17×10^{-7}	1.47×10^{-7}
	SUMO-04	Na	2.14×10^{7}	8.42×10^{-8}	1.26×10^{-7}
	SUMO-09	Na	2.14×10^7	7.42×10^{-8}	1.14×10^{-7}

Table 5 - Irradiation parameters for several campaigns conducted at 300 $^{\circ}\text{C}$ in BR2 and HFR.

Values of irradiation hardening and uniform elongation measured from samples irradiated at 300 °C and tested at RT and 300 °C are shown as a function of dose in Figure 77-Figure 78 and Figure 79-Figure 80, respectively. No clear effect of irradiation environment is observed.

Figure 77 - Irradiation hardening measured at RT from samples irradiated in water (BR2) and in sodium (HFR). The fitting curve is the regression of the whole data set according to eq.(2).

Figure 78 – Uniform elongation measured at RT from samples irradiated in water (BR2) and in sodium (HFR).

Figure 79 - Irradiation hardening measured at 300 $^{\circ}$ C from samples irradiated in water (BR2) and in sodium (HFR). The fitting curve is the regression of the whole data set according to eq.(2).

Figure 80 – Uniform elongation measured at 300 $^{\circ}$ C from samples irradiated in water (BR2) and in sodium (HFR).

A further selection of the data depicted above is made by considering only narrow dose ranges (less than 1 dpa), and plotting the results as a function of dose rate. The results, presented in Figure 81-Figure 82 (RT) and Figure 83-Figure 84 (300 °C), do not indicate any systematic trend with dose rate.

Figure 81 - Irradiation hardening measured at RT as a function of dose rate.

Figure 82 - Uniform elongation measured at RT as a function of dose rate.

Figure 83 - Irradiation hardening measured at 300 $^{\circ}\text{C}$ as a function of dose rate.

Figure 84 – Uniform elongation measured at 300 $^{\circ}\text{C}$ as a function of dose rate.

6 Tensile data which will become available in the coming months

At the time of writing, the following tensile test results from recently terminated irradiations are not yet available for inclusion in our database and should be considered in a future revision of this report.

> SPICE

- responsible institution: FZK

reactor: HFR

- materials: EUROFER97-1 and others (including F82H-mod)

- $T_{irr} = 250, 300, 350, 400, 450 \, ^{\circ}C$

- dose: 16.3 dpa

- status: reporting in progress

➤ ARBOR-2

- responsible institutions: FZK and CEA

- reactor: BOR-60, Dmitrovgrad (Russia)

- materials: EUROFER97-1 and others (including F82H-mod)

T_{irr} < 340 °C
 dose: 70-80 dpa

- status: testing in progress

7 Conclusions

More than 1000 tensile test results for EUROFER97 and other RAFM steels have been collected and organized in database form, in order to analyze their tensile properties in the unirradiated and irradiated conditions.

For the irradiated materials, we have assessed the influence of several irradiation parameters, such as dose, irradiation temperature, dose rate and irradiation environment.

Specific remarks have been given inside the different sections of this report; the main conclusions which have emerged from our investigations are summarized hereafter.

Unirradiated materials

- No influence of product form (plates of different thickness or bars) is observed for EUROFER97-1 (first batch), except for a slightly lower strength of the 25 mm plate at temperatures below RT.
- For EUROFER97-2 (second batch), more scatter is observed between product forms, with the bars and the 8 mm plate delivering the worst and the best tensile properties respectively.
- The two EUROFER97 batches are equivalent in terms of mechanical resistance, but EUROFER97-2 exhibits better ductility.

Effect of accumulated dose

- A steep increase with dose of irradiation hardening up to ~10 dpa is observed, followed by a tendency to saturation; based on the presently available data, it is not possible yet to exactly define the saturation dose or level.
- Above ~0.7 dpa, strain hardening capability vanishes and ductility is significantly reduced (uniform elongation < 0.5%).
- Based on the available information to date, EUROFER97-1 and EUROFER97-2 exhibit the same post-irradiation tensile behaviour.
- Results from irradiations conducted between 325 and 336 °C indicate that in this range, with respect to 300 °C, partial recovery of irradiation damage is already taking place.

Effect of irradiation temperature

- The available information confirms that 300 °C is the most critical irradiation temperature in terms of hardening and loss of ductility.
- Above 300 °C, data suggest that recombination of irradiation defects and annealing recovery start to ensue as early as 325-343 °C. The same phenomena can be observed when the test temperature is higher than 400 °C.

Other effects

• The information available in the database for several irradiations conducted at 300 °C in BR2 and HFR does not allow detecting any significant influence of either irradiation environment (water or sodium) or dose rate (in the range $2 \times 10^{-8} - 2 \times 10^{-7}$ dpa/s).

Comparisons with other RAFM steels

- In the unirradiated condition, EUROFER97 shows equivalent tensile properties (strength and ductility) to other RAFM steels, such as F82H-mod, JLF-1, CLAM and OPTIFER.
- In the irradiated condition, only very limited comparisons could be made due to the scarcity of available data under comparable irradiation conditions. Nevertheless, it appears that EUROFER97 irradiated at 300 °C exhibits more hardening and comparable ductility as compared to F82H-mod and JLF-1. Further comparisons between EUROFER97 and F82H-mod irradiated up to 30.2 dpa at 336 °C show that EUROFER97 exhibits larger irradiation hardening and lower uniform elongation, but higher total elongation.

Further insight into the tensile properties of irradiated EUROFER97 will be gained once PIE results from recently concluded irradiation experiments (namely SPICE and ARBOR-2) are made available.

Acknowledgements

This work, supported by the European Community under the contract of Association between EURATOM and SCK•CEN, was carried out within the framework of the European Fusion Development Agreement (EFDA).

The authors are gratefully indebted to all the colleagues who have kindly provided tensile data, even when still unpublished, namely: Jan-Willem Rensman (NRG), Ana Alamo, Fahrad Tavassoli and Jean Henry (CEA), Edeltraud Materna-Morris (FZK), Philippe Spätig (PSI) and H. Tanigawa (JAERI).

References

- [1] R.L. Klueh, D.R. Harries, *High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, American Society for Testing and Materials*, West Conshohocken, PA (USA), 2001.
- [2] R.W. Conn, et al., *Report on Low Activation Materials for Fusion Applications*, Nucl. Tech./Fusion 5 (1984) 291-310.
- [3] G.W. Butterworth, O.N. Jarvis, Comparison of Transmutation and Activation Effects in Five Ferritic Alloys and AISI 316 Stainless Steel, J. Nucl. Mat. 122-123 (1984) 982-988.

- [4] Reduced Activation Materials for Fusion Reactors, R.L. Klueh, D.S. Gelles, M. Okada, N.H. Packan editors, ASTM STP 1047, American Society for Testing and Materials, Philadelphia, 1990.
- [5] M.S. Tillack, X.R. Wang, J. Pulsifer, S. Malang and D.K. Sze, *ARIES-ST Breeding Blanket Design and Analysis*, Fus. Eng. and Des. 49-50 (2000) 689-695.
- [6] H.U. Borgstedt, H. Glasbrenner, Z. Peric, *Corrosion of Insulating Layers on MANET Steel in Flowing Pb-Li*, J. Nucl. Mat. 212-215 (1994) 1501-1503.
- [7] R.L. Klueh, *Reduced-Activation Bainitic and Martensitic Steels for Nuclear Fusion Applications*, Current Opinion in Solid State and Materials Science, Volume 8, Issue 3-4, June 2004, 239-250.
- [8] M. Gasparotto et al., Survey of In-Vessel Candidate Materials for Fusion Power Plants the European Materials R&D Programme, Fus. Eng. and Des. 66-68 (2003), 129-137.
- [9] B. van der Schaaf, G. Le Marois, A. Moeslang, M. Victoria, *Reduced Activation Structural Materials for Fusion Power Plants the European Union Program*, 19th International Atomic Energy Agency Fusion Energy Conference, Lyon, France, 14-19 October 2002.
- [10] B. van der Schaaf et al., *The Development of EUROFER Reduced Activation Steel*, Fus. Eng. and Des. 69 (2003) 197-203.
- [11] T. Yamamoto, G.R. Odette, H. Kishimoto and J.-W. Rensman, J.-W., On the effects of irradiation and helium on the yield stress changes and hardening and non-hardening embrittlement of 8Cr tempered martensitic steels: Compilation and analysis of existing data, Journal of Nuclear Materials 356, Issue 1-3, 15 Sep 2006, 27-49.
- [12] R. Lindau and W. Dietz, *Final Report on Order of EUROFER Heats*, FZK Interner Bericht 31.40.03, November 2005.
- [13] S. Jitsukawa et al., Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H, Journal of Nuclear Materials 307-311 (2002), 179-186.
- [14] Proceedings of the Second Milestone Meeting of European Laboratories on The Development of Ferritic/Martensitic Steels for Fusion Technology, Karlsruhe, September 9-10, 1996, compiled by E. Daum, K. Ehrlich and M. Schirra, FZK Wissenschaftliche Berichte FZKA 5848, 1997.
- [15] Q. Huang, J. Li and Y. Chen, *Study of irradiation effects in China low activation martensitic steel CLAM*, Journal of Nuclear Materials 329-333, Part 1, 1 August 2004, 268-272.
- [16] Y. Li, Q. Huang, Y. Wu, T. Nagasaka and T. Muroga, *Mechanical properties and microstructures of China low activation martensitic steel compared with JLF-1*, Journal of Nuclear Materials, in press, available online 14 March 2007.
- [17] Q. Huang, C. Li, Y. Li, M. Chen, M. Zhang, L. Peng, Z. Zhu, Y. Song and S. Gao, Progress in development of China Low Activation Martensitic steel for fusion application, Journal of Nuclear Materials, in press, available online 24 March 2007.
- [18] J. Yua, Q. Huangb and F. Wanc, *Research and development on the China low activation martensitic steel (CLAM)*, Journal of Nuclear Materials, in press, available online 2 April 2007.
- [19] J. Rensman, NRG Irradiation Testing: Report on 300 °C and 60 °C Irradiated RAFM Steels, NRG Report 20023/05.68497/P, Petten, 30 August 2005.
- [20] H. Tanigawa, private communication, May 2007.
- [21] ASTM E8-04, Standard Test Methods for Tension Testing of Metallic Materials, Annex X1, Annual ASTM Book of Standards, Volume 03.01.
- [22] R.E. Stallman, "Modern Physical Metallurgy", Third Edition, Butterworths, London, 1970.
- [23] M.J. Makin, A.D. Whapham and F.J. Minter, Philos. Mag. 7 (1962) (74), p. 285.
- [24] M.J. Makin and F.J. Minter, Acta Metall. Mater. 8 (1960) (10), p. 691.

- [25] J. Rensman, E. Lucon, H.N. Nolles and P. ten Pierick, *Irradiation hardening of Eurofer and related steels at 250°C, 300°C, and 350°C*, submitted to the 13th International Conference on Fusion Reactor Materials (ICFRM-13), Nice (France), December 2007.
- [26] C. Petersen et al., *Mechanical properties of Reduced Activation Ferritic/Martensitic Steels after European Reactor Irradiations*, Proceedings of the 21st IAEA Conference, Fusion Energy 2006, Chengdu (China), 16-21 October 2006.

ANNEX 1

Overall database of RAFM steel tensile properties

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 100 111 12 13 134 14 15 15 16 16 17 7 18 18 19 19 20 21 22 22 23 24 25 5 26 7 7 2 8 8 29 9 30 31 32 24 25 5 26 7 7 2 8 8 39 9 40 41 2 42 3 3 4 44 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ROW NR
1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,1	REFERENCE
74H 74G 74B 89 78E 90 78F 74F 90 78F 74F 1 D C I I F I B H A G K E R S T I U W V V X Y B I C I Z A I P H I D I O N M E I I I B B 94 C 25 C 256 C 257 B 89 S C 254 C 258 B 89 C 254 C 258 B 88	Specimen id.:
EU97 EU97 EU97 EU97 EU97 EU97 EU97 EU97	. MAT ame (Capitals)
E	tomp. See
B100 B100 B100 B100 B100 B100 B100 B100	ct form
Section Sect	(realment HEAT TREATMENT TREATMENT (°C) (minor) nalizing (h) ing ing
≥ € 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3	mpering time
IRF I IRF II IRF III IRF	IRRADIATION
Section	or erature
\$\frac{6}{2}	(dpa) rate (dpa/s) oduced
Na	uence β) ile type α/H2O
	rrks e length SPECIMEN
Munion	e diameter
	TEST CONDITIONS TEST CONDITIONS temp (°C) roument if
Section	1.2% pl.def. TEST RESULTS le strength) hardening idity rure (MPa)
Section Sect	iom (%) ((%) ction of %)

Overall database.xls Page 1 of 16

															- V2		
						-				z					CONDITION	SIZ	
	NCE	<u>iā</u>				HEAT TREATMENT (minor)				RRADIATION				EN.	ION	RESULTS	
NR.	REFEREN	men	, tals)		1	ATN.				VDIA.				CIMI	l Cd	TRE	
%O≅	REFI	peci	MAT (Capitals)		1	HEAT TREAT (minor)				RR.				SPEC.	TEST	TEST	
~	4	S.	2 9	3	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		dr a		-		<u>(\$</u>			, , , ,	if. 1	(a)
				du S	Ę	men ng		g temp g time			aire	(dpa	3 č o	gth	(°C)	pl.de rengtl	(MPa) (%)
			ame	id. n.com	ct fo	nal treati °C ormalizii mp (°C)	(h) ing itions	empering (C) empering		i ic	eratı	(dpa) rate (oduce	t fluence :m²) ssule type Na/H2O	dia e	emp emp		fracture (uniform (total (%) eduction ea (%)
			lame nd N	leat i hem	rodu	inal /°C lorms mp (oolin andit	emp C)	e l	lame	C)	lose i	ast fi n/cm 'apsu [e/N ₂	jauge nm)	train (y 0,29 MPa) ensile s MPa) train ha	frac unif total educ
71	2	B906	Z 5 EU97 66/3 66/4	Ξ Ü ≅ E83698	P8	E 全 Z 2 Z 980	0.5 air	£ 0 £	1.5 SUM	Z <u>≃</u> O-04 HFR	300	2.60 1.22E-07	<u>й 5 Он г</u> Na 1	2 5 5 5 5 5 1 20 4	数 章 章 面号 4 5.00E-04 27	908 908 1.00	0.20 12.6 81
72	2	B902	EU97 66/3 66/4	E83698	P8	980	0.5 air	r 760	1.5 SUM	O-04 HFR	300	2.30 1.08E-07	Na 1	1 20 4	4 5.00E-04 50	814 815 1.00	0.10 13.1 72
73 74	2 2	B903 B904	EU97 66/3 66/4 EU97 66/3 66/4	E83698 E83698	P8		0.5 air 0.5 air		1.5 SUM 1.5 SUM		300 300	2.10 9.82E-08 2.50 1.17E-07	Na 1 Na 1	1 20 4	4 5.00E-04 100 4 5.00E-04 200	799 799 1.00 799 799 1.00	0.20 12.9 75 0.20 12.1 76
75	2	B901	EU97 66/3 66/4	E83698	P8	980	0.5 air	r 760	1.5 SUM	O-04 HFR	300	1.80 8.42E-08	Na 1	1 20 4	4 5.00E-04 300	720 723 1.00	0.20 12.1 70
76	2	B907 B905	EU97 66/3 66/4 EU97 66/3 66/4	E83698 E83698	P8		0.5 air 0.5 air		1.5 SUM 1.5 SUM		300 300	2.40 1.12E-07 2.30 1.08E-07	Na 1 Na 1	1 20 4	4 5.00E-04 300 4 5.00E-04 400	735 737 1.00 691 691 1.00	0.20 11.9 74 0.10 11.7 76
78	2	C292	EU97 3/7 4/14	E83698	P14	980	0.5 air	r 760	1.5 STR	OBO HFR	500	0.00 0.00E+00	Na	20 4	4 5.00E-04 -164	919 1003 1.09	9.60 22.4 n.a.
79	2	C291	EU97 3/7 4/14	E83698	P14		0.5 air		1.5 STR			0.00 0.00E+00	Na	20 4	4 5.00E-04 -134	789 911 1.15	9.60 22.5 n.a.
80 81	2 2	C294 C289	EU97 3/7 4/14 EU97 3/7 4/14	E83698 E83698	P14 P14		0.5 air 0.5 air		1.5 STR 1.5 STR			0.00 0.00E+00 0.00 0.00E+00	Na Na	20 4 20 4	4 5.00E-04 -106 4 5.00E-04 -79	673 828 1.23 608 775 1.27	10.00 26.6 n.a. 9.40 21.4 n.a.
82	2	C285	EU97 3/7 4/14	E83698	P14	980	0.5 air	r 760	1.5 STR	OBO HFR		0.00 0.00E+00	Na	20 4	4 5.00E-04 -53	576 746 1.30	10.70 23.0 n.a.
83 84	2 2	C288 C280	EU97 3/7 4/14 EU97 3/7 4/14	E83698 E83698	P14 P14		0.5 air 0.5 air		1.5 STR 1.5 STR			0.00 0.00E+00 0.00 0.00E+00	Na Na	20 4 20 4	4 5.00E-04 -53 4 5.00E-04 0	577 736 1.28 550 692 1.26	8.00 28.5 n.a. 8.00 20.6 n.a.
85	2	C284	EU97 3/7 4/14	E83698	P14	980	0.5 air	r 760	1.5 STR	OBO HFR		0.00 0.00E+00	Na	20 4	4 5.00E-04 0	545 690 1.27	8.10 20.1 n.a.
86 87	2 2	B748 B749	EU97 3/7 4/14 EU97 3/7 4/14	E83698 E83698	P14 P14		0.5 air 0.5 air		1.5 STR 1.5 STR			0.00 0.00E+00 0.00 0.00E+00	Na Na	20 4 20 4	4 5.00E-04 27 4 5.00E-04 27	532 658 1.24 525 663 1.26	5.90 24.0 79 7.00 23.6 78
88	2	C248	EU97 3/7 4/14	E83698	P14	980	0.5 air	r 760	1.5 STR	OBO HFR		0.00 0.00E+00	Na Na	20 4	4 5.00E-04 27	560 662 1.18	4.50 22.4 76
89	2 2	C249 B750	EU97 3/7 4/14 EU97 3/7 4/14	E83698 E83698	P14 P14		0.5 air 0.5 air		1.5 STR 1.5 STR			0.00 0.00E+00 0.00 0.00E+00	Na Na	20 4 20 4	4 5.00E-04 27 4 5.00E-04 200	532 665 1.25 484 580 1.20	6.50 23.0 76 3.80 19.6 82
91	2	B750 B751	EU97 3/7 4/14 EU97 3/7 4/14	E83698 E83698	P14 P14		0.5 air		1.5 STR			0.00 0.00E+00 0.00 0.00E+00	Na Na	20 4	4 5.00E-04 200 4 5.00E-04 200	484 580 1.20 488 582 1.19	4.10 20.5 81
92	2	B752	EU97 3/7 4/14	E83698	P14		0.5 air		1.5 STR	OBO HFR		0.00 0.00E+00	Na	20 4	4 5.00E-04 300	454 543 1.20	3.20 17.6 82
93 94	2 2	B753 C250	EU97 3/7 4/14 EU97 3/7 4/14	E83698 E83698	P14 P14		0.5 air 0.5 air		1.5 STR 1.5 STR			0.00 0.00E+00 0.00 0.00E+00	Na Na	20 4 20 4	4 5.00E-04 300 4 5.00E-04 300	457 542 1.19 466 544 1.17	3.00 17.2 80 3.20 16.5 76
95	2	C251	EU97 3/7 4/14	E83698	P14	980	0.5 air	r 760	1.5 STR	OBO HFR		0.00 0.00E+00	Na	20 4	4 5.00E-04 300	469 544 1.16	3.20 16.7 75
96 97	2 2	B754 B755	EU97 3/7 4/14 EU97 3/7 4/14	E83698 E83698	P14 P14		0.5 air 0.5 air		1.5 STR 1.5 STR			0.00 0.00E+00 0.00 0.00E+00	Na Na	20 4 20 4	4 5.00E-04 400 4 5.00E-04 400	432 506 1.17 438 507 1.16	2.90 16.9 76 2.80 17.1 81
98	2	B756	EU97 3/7 4/14	E83698	P14	980	0.5 air	r 760	1.5 STR	OBO HFR		0.00 0.00E+00	Na	20 4	4 5.00E-04 500	404 438 1.08	1.60 22.8 87
99 100	2 2	B757 B767	EU97 3/7 4/14 EU97 3/7 4/14	E83698 E83698	P14 P14		0.5 air 0.5 air		1.5 STR 1.5 STR			0.00 0.00E+00 0.00 0.00E+00	Na Na	20 4 20 4	4 5.00E-04 500 4 5.00E-04 600	389 438 1.13 298 315 1.06	1.60 22.4 88 0.60 34.2 93
100	2	B768	EU97 3/7 4/14 EU97 3/7 4/14	E83698 E83698	P14		0.5 air		1.5 STR			0.00 0.00E+00 0.00 0.00E+00	Na Na	20 4	4 5.00E-04 600 4 5.00E-04 600	298 315 1.06 304 324 1.07	0.60 34.2 93 0.70 28.4 93
102 103	2	B769	EU97 3/7 4/14	E83698	P14		0.5 air		1.5 STR			0.00 0.00E+00	Na Na	20 4	4 5.00E-06 600 4 5.00E-06 600	170 211 1.24	2.50 29.4 92
103	2 2	B770 H861	EU97 3/7 4/14 EU97 3/7 4/14	E83698 E83698	P14 P14		0.5 air 0.5 air		1.5 STROB 1.5 STROB		300	0.00 0.00E+00 0.26 1.22E-08	Na Na	20 4 20 4	4 5.00E-06 600 4 5.00E-04 300	171 216 1.26 543 577 1.06	3.00 25.8 90 2.10 n.a. 86
105	2	H865	EU97 3/7 4/14	E83698	P14	980	0.5 air	r 760	1.5 STROB	O-01 HFR	300	0.28 1.31E-08	Na	20 4	4 5.00E-04 300	521 543 1.04	0.60 n.a. 80
106 107	2 2	H867 H862	EU97 3/7 4/14 EU97 3/7 4/14	E83698 E83698	P14 P14		0.5 air 0.5 air		1.5 STROB 1.5 STROB		300 300	0.22 1.03E-08 0.54 2.53E-08	Na Na	20 4 20 4	4 5.00E-04 300 4 5.00E-04 300	532 560 1.05 589 594 1.01	1.20 n.a. 82 0.50 n.a. 81
108	2	H866	EU97 3/7 4/14	E83698	P14	980	0.5 air	r 760	1.5 STROB	O-02 HFR	300	0.57 2.67E-08	Na	20 4	4 5.00E-04 300	560 572 1.02	0.40 n.a. 83
109 110	2 2	H868 B606	EU97 3/7 4/14 EU97 2/10 2/11	E83698 E83697	P14 P25		0.5 air 0.5 air		1.5 STROB 1.5 SI	O-02 HFR WAS HFR	300	0.61 2.85E-08 0.00 0.00E+00	Na H2O	20 4 20 4	4 5.00E-04 300 4 5.00E-04 27	577 589 1.02 547 648 1.18	0.50 n.a. 78 5.10 21.2 77
111	2	B607	EU97 2/10 2/11	E83697	P25	980	0.5 air	r 760	1.5 SI	WAS HFR		0.00 0.00E+00	H2O	20 4	4 5.00E-04 27	558 653 1.17	5.10 21.5 79
112 113	2 2	C244 C245	EU97 2/10 2/11 EU97 2/10 2/11	E83697 E83697	P25 P25		0.5 air 0.5 air			WAS HFR WAS HFR		0.00 0.00E+00 0.00 0.00E+00	H2O H2O	20 4	4 5.00E-04 27 4 5.00E-04 27	558 660 1.18 559 667 1.19	4.70 21.6 81 5.30 22.0 76
113	2	B608	EU97 2/10 2/11	E83697	P25	980	0.5 air	r 760	1.5 SI	WAS HFR		0.00 0.00E+00 0.00 0.00E+00	H2O	20 4	4 5.00E-04 200	483 565 1.17	3.50 18.7 79
115 116	2	B609	EU97 2/10 2/11	E83697	P25	980	0.5 air	r 760	1.5 SI	WAS HFR		0.00 0.00E+00	H2O	20 4	4 5.00E-04 200	502 574 1.14	3.10 18.5 79
116 117	2 2	B610 B611	EU97 2/10 2/11 EU97 2/10 2/11	E83697 E83697	P25 P25		0.5 air 0.5 air			WAS HFR WAS HFR		0.00 0.00E+00 0.00 0.00E+00	H2O H2O	20 4 20 4	4 5.00E-04 300 4 5.00E-04 300	466 535 1.15 487 540 1.11	2.80 17.7 81 2.20 17.4 0
118	2	C246	EU97 2/10 2/11	E83697	P25	980	0.5 air	r 760	1.5 SI	WAS HFR		0.00 0.00E+00	H2O	20 4	4 5.00E-04 300	454 541 1.19	3.40 17.0 78
119 120	2 2	C247 B612	EU97 2/10 2/11 EU97 2/10 2/11	E83697 E83697	P25 P25		0.5 air 0.5 air			WAS HFR WAS HFR		0.00 0.00E+00 0.00 0.00E+00	H2O H2O	20 4 20 4	4 5.00E-04 300 4 5.00E-04 400	489 548 1.12 446 498 1.12	2.80 17.1 79 2.00 17.0 79
121	2	B613	EU97 2/10 2/11	E83697	P25	980	0.5 air	r 760	1.5 SI	WAS HFR		0.00 0.00E+00	H2O	20 4	4 5.00E-04 400	465 507 1.09	1.90 16.8 77
122 123	2	B614 B615	EU97 2/10 2/11 EU97 2/10 2/11	E83697 E83697	P25 P25		0.5 air 0.5 air			WAS HFR WAS HFR		0.00 0.00E+00 0.00 0.00E+00	H2O H2O	20 4 20 4	4 5.00E-04 500 4 5.00E-04 500	396 431 1.09 424 434 1.02	1.30 21.2 88 1.10 20.8 88
124	2	B596	EU97 2/10 2/11	E83697	P25	980	0.5 air	r 760	1.5 SIWA	S-09 HFR	60	2.30 1.08E-07	H2O	20 4	4 5.00E-04 27	853 855 1.00	0.30 14.3 87
125	2	B597 B603	EU97 2/10 2/11 EU97 2/10 2/11	E83697 E83697	P25		0.5 air		1.5 SIWA		60	2.30 1.08E-07 2.20 1.03E-07	H2O H2O	20 4	4 5.00E-04 50 4 5.00E-04 50	848 848 1.00 846 849 1.00	0.20 14.7 84
126 127	2	B603 B598	EU97 2/10 2/11 EU97 2/10 2/11	E83697 E83697	P25 P25	980	0.5 air 0.5 air	r 760	1.5 SIWA 1.5 SIWA	S-09 HFR	60 60	2.20 1.03E-07 2.10 9.82E-08	H2O H2O	20 4 20 4	4 5.00E-04 50 4 5.00E-04 100	846 849 1.00 781 783 1.00	0.30 14.7 82 0.30 14.2 84
128	2	B599	EU97 2/10 2/11	E83697	P25	980	0.5 air	r 760	1.5 SIWA	S-09 HFR	60	2.50 1.17E-07	H2O	20 4	4 5.00E-04 200	707 709 1.00	0.30 14.3 84
129 130	2 2	B600 B601	EU97 2/10 2/11 EU97 2/10 2/11	E83697 E83697	P25 P25		0.5 air 0.5 air		1.5 SIWA 1.5 SIWA		60 60	2.50 1.17E-07 2.40 1.12E-07	H2O H2O	20 4 20 4	4 5.00E-04 300 4 5.00E-04 400	618 621 1.00 543 601 1.11	0.20 14.4 89 4.20 18.4 82
131	2	B602	EU97 2/10 2/11	E83697	P25	980	0.5 air	r 760	1.5 SIWA	S-09 HFR	60	2.50 1.17E-07	H2O	20 4	4 5.00E-04 500	433 484 1.12	2.40 21.3 87
132 133	2 2	B616 C299	EU97 2/10 2/11 EU97 2/10 2/11	E83697 E83697	P25 P25		0.5 air 0.5 air		1.5 SUM 1.5 SUM		300 300	2.70 1.26E-07 2.20 1.03E-07	Na 1 Na 1		4 5.00E-04 27 4 5.00E-04 27	910 910 1.00 901 902 1.00	0.20 12.6 75 0.30 13.0 76
134	2	C295	EU97 2/10 2/11	E83697	P25	980	0.5 air	r 760	1.5 SUM	O-04 HFR	300	2.60 1.22E-07	Na 1	1 20 4	4 5.00E-04 50	894 894 1.00	0.20 12.7 75
135 136	2	C296	EU97 2/10 2/11	E83697	P25 P25		0.5 air		1.5 SUM			2.40 1.12E-07	Na 1		4 5.00E-04 100	879 879 1.00	0.10 12.5 71
136	2 2	C297 B617	EU97 2/10 2/11 EU97 2/10 2/11	E83697 E83697	P25 P25		0.5 air 0.5 air		1.5 SUM 1.5 SUM			2.50 1.17E-07 2.50 1.17E-07	Na 1 Na 1	1 20 4	4 5.00E-04 200 4 5.00E-04 300	812 812 1.00 769 770 1.00	0.20 12.2 69 0.10 11.7 78
138	2	C301	EU97 2/10 2/11	E83697	P25	980	0.5 air	r 760	1.5 SUM	O-04 HFR	300	2.10 9.82E-08	Na 1	1 20 4	4 5.00E-04 300	764 764 1.00	0.10 12.1 72
139	2	C298	EU97 2/10 2/11	E83697	P25	980	0.5 air	r 760	1.5 SUM	O-04 HFR	300	2.30 1.08E-07	Na 1	1 20 4	4 5.00E-04 400	710 710 1.00	0.10 11.5 66

Overall database.xls Page 2 of 16

204 205 206	190.5 191 192 193 194 195 196 197 198 199 200 201 202 203 203.5	173.5 174 175 176 177 178 179 180 181 181 182 183 184 185 186 187 188 189 190 190.5	140 141 142 143 144 144 145 166 167 150 151 152 153 154 155 156 160 161 162 163 164 165 166 167 170 171 172 173	W NR
5 5 5	4 4 4 4 4 4 4 4 5 5 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	REFEST	REFERENCE
U1 U2 U3	52 53 54 55 56 57 58 59 61 x x	31 32 33 34 35 36 37 38 39 40 85 91 99 95 A0	B588 B589 B590 B591 B592 B593 B595 B436 C260 C261 B438 B439 B440 C262 C263 B442 B443 B444 B445 B445 B445 B446 K 15D K 15D K 34D K 34D K 34D K 34D	Specimen id.:
OPTIV OPTIV OPTIV	OPTIV	F82H F82H F82H F82H F82H F82H F82H F82H	EU97 2/10 2/11 EU97 M/5 EU97 66/5 EU97 66/5 EU97 66/5 EU97 66/5	T oitals)
5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		## 1	
P P P	P P P P P P P P P P P P P P P P P P P	P P P P P P P P P P P P P P P ann	Harmon Learning Learn	HEAT TREATMENT
900 0.5 900 0.5 900 0.5	900 0.5 900 0.5	1040 0.5 1040 0.5	(could be considered by the constraint of the co	ior)
q	q q q q q q q q	q q q q q q q q q	air	
750 2 750 2 750 2	750 2 750 2 750 2 750 2 750 2 750 2 750 2 750 2 750 2 750 2 750 2 750 2 750 2 750 2 750 2 750 2 750 2 750 2 750 2	750 2 750 2	1.5 1.5	
Phase Ia Phase Ia Phase Ia	Teseo Phase la Phase la Phase la	Teseo	SUMO-02 SUMO-02 SUMO-02 SUMO-02 SUMO-02 SUMO-02 SUMO-02 SUMO-02 SUMO-02 SUMO-04 SUMO-04 SUMO-05 SUMO-05 SUMO-06 SUMO-06 SUMO-07 SUMO-0	RRADIATION
HFR 250 HFR 250 HFR 300	HFR 250 HFR 300 HFR 350 HFR 350 HFR 400 HFR 400 HFR 450 HFR HFR HFR	HFR 250 HFR 350 HFR 350 HFR 350 HFR 400 HFR 450 HFR 450 HFR HFR HFR HFR HFR	HFR 300 HFR	
2.40 2.40 2.40	0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80	0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80	0.00 0.00	
			4E-07 3E-07 9E-07 5E-07 1E-07 0E-07	
He He He	He	He H	Na Na Na Na Na	
18 18 18	18 18 18 18 18 18 18 18 18 18 18 18 18	3 18 18 18 18 18 18 18 18 18 18 18 18 18	Salar Compared C	SPECIMEN
3 1.60E-04 3 1.60E-04 3 1.60E-04	3 1.60E-04 3 1.60E-04	3 1.60E-04 3 1.60E-04	\$\frac{\partial \text{3}}{\partial \text{3}} \\ \frac{\partial \text{3}}	ST CONDITIONS
250	300 350 350 400 400 450 450 20 250 500	250 250 300 350 350 350 400 400 450 20 20 20 300 300 350 450 450	600 20 20	
	623 623 583 587 493 544 499 539 429 476 435 483 514 651 445 546 394 428	1 625 632 632 632 632 638 661 646 645 641 648 654 515 545 655 593 665 591 665 502 554 471 503	914 912 1081 1088 1066 1066 842 843 883 883 546 675 543 677 543 677 545 671 495 590 471 555 473 545 47	TEST RESULTS
7 1.00 4 1.00 6 1.01		1 1.00 9 1.00 8 1.01 0 1.01 2 1.05 9 1.06 3 1.06 1 1.06 5 1.13 9 1.13 9 1.14 6 1.11 4 1.10 6 1.34	4 1.00 1 1.00 1 1.00 2 1.00 2 1.00 7 1.00 3 1.00 7 1.00 3 1.00 5 1.24 5 1.24 5 1.24 5 1.24 5 1.24 6 1 1.15 6 1.16 6 1 1.	
0.27 0.23 0.30	0.40 0.60 2.50 1.90 3.30 3.50 7.00 4.20 1.70	0.50 0.50 0.30 0.40 0.70 0.70 1.20 1.40 4.10 4.10 4.50 2.40 2.50 1.90		
9.8	10.5 11.5 10.0 10.8 12.3 11.5 14.9	10.8 11.1 11.1 10.7 12.1 12.0 13.9 14.6 19.3 17.3 17.3 14.3 14.7	11.3 10.7 10.9 11.2 11.5 10.8 23.1 18.7 21.5 20.8 20.0 19.8 16.9 17.4 15.7 15.9 16.9 16.9 16.9 16.9 16.9 17.4 15.7 15.9 16.9 16.9 16.9 17.4 17.4 17.4 17.4 17.4 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	
77 61 52	74 76 76 73 67 70 74 74 68	80 79 82 82 82 76 77 77 82 82 81 83 84 84 80 86 77 76	(%) waste 772 670 666 74 75 70 17 88 80 77 77 77 78 86 88 94 95 92 93 94 88 88 88 88 85 85 85 85 85 85 85 85 85	

Overall database.xls Page 3 of 16

225.5 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 250 251 252 253 254 255 256 266 267 268 269 270 1272 273 274 275	2077 208 2099 2100 2111 2122 213 2146 215 216 217 218 219 220 221 222 223 224 225
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	REFERENCE 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
na n	U4 U5 U6 U7 U8 11 8.2 83 84 85 866 87 88 89 80 80 80
2,25CrV 2,25CrV 2,25CrV 2,25CrV 2,25CrV 2,25CrV 2,25CrV 2,25CrIWV 2,25CrIWV 2,25CrIWV 2,25CrIWV 2,25CrIWV 2,25CrIWV 2,25CrIWV 2,25CrIWV 2,25CrIWV 2,25Cr2W 2,25Cr2W 2,25Cr2W 2,25Cr2W 2,25Cr2W 2,25Cr2W 2,25Cr2W 2,25Cr2W 2,25Cr2W 2,25Cr2WV 5Cr2WV 5Cr2WV 5Cr2WV 5Cr2WV 5Cr2WV 5Cr2WV 5Cr2WV 5Cr2WV 5Cr2WV 9Cr2WV 9Cr2WVTa	OPTIV OPTIV OPTIV OPTIV OPTIV OPTIV OPTIV OPTIV ILFI ILFI ILFI ILFI ILFI ILFI ILFI IL
OF OF OF OF	2nd Name (Capitals)
ORNL 8 OR	Heat id. Chem.comp. See
P0,76	स्त स्त स्त स्त Product form
7 0/365 5000/365 10000/365 20000/365 10000/365 10000/365 10000/365 20000/365 10000/365 20000/365 10000/365 20000/365 10000/365 20000/365 10000/365 20000/365 10000/365 20000/365 10000/365 20000/365 10000/365 10000/365 10000/365 10000/365 10000/365 10000/365 10000/365 10000/365 10000/365	Final treatment HEAT h/C TREATMENT
1050 1050 1050 1050 1050 1050 1050 1050	900 (0 900 (0 900 (0 900 (0 900 (0 900 (0
1 ac 700 1 1 ac 750 1	(a) Substituted (b) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d
- 1105% 17	Phase Ia Phase Ib
FFIF FFIF FFIF FFIF FFIF FFIF FFIF FFI	HFR 350 HFR 450 HFR 450 HFR 250 HFR 250 HFR 350 HFR 350 HFR 450 HFR 450 HFR 450 HFR 450 HFR 450 HFR 350
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	(((((((((((((((((((
지	Dose rate (dpa/s) He produced (ppm)
?? ?? ?? ?? ?? ?? ?? ?? ?? ??	Fast fluence (Tast fluence (Tast fluence (Tast)) (Capsule type of He of
Na N	Remarks Games looth
7.62 1,52x0,76	Canage diameter Canage (mm) Canage diameter Canage (mm) Canage diameter Canage (mm) Canage diameter Canage (mm)
1.00E-03	1.60E-04 1.60E-04 1.60E-04 1.60E-04 1.60E-04 1.60E-04 1.60E-04 1.60E-04 1.60E-04 1.60E-04 1.60E-04 1.60E-04 1.60E-04 1.60E-04 1.60E-04 1.60E-04 1.60E-04 1.60E-04
365 365 365 365 365 365 365 365 365 365	(C)
649 723 1.11 640 718 1.12 638 731 1.11 640 718 1.12 638 731 1.11 640 718 1.12 950 980 1.03 937 968 1.03 937 968 1.03 883 920 1.04 663 733 1.14 680 763 1.12 687 771 1.12 679 766 1.13 924 959 1.04 976 1026 1.05 924 963 1.04 509 618 1.23 516 633 1.23 516 633 1.23 519 633 1.23 519 633 1.23 519 633 1.23 519 633 1.23 519 630 1.04 747 787 1.05 606 693 1.14 614 705 1.16 788 810 1.03 909 939 1.03 910 940 1.03 537 645 1.20 522 655 1.25 541 646 1.19 522 655 1.25 541 646 1.19 527 642 1.22 729 771 1.06 757 793 1.05 756 690 1.20 576 700 1.22 563 689 1.22 576 700 1.22 563 689 1.22 579 695 1.20 576 690 1.20 576 690 1.20 576 690 1.20 576 691 1.20 579 695 1.20 584 696 1.19 584 701 1.20 669 734 1.10 669 755 1.09 710 769 1.08 522 657 1.26	SLT1038 LEST Graph Graph
4.70 5.00 5.00 5.30 1.10 0.90 1.20 5.30 5.70 5.00 5.70 1.30 1.00 1.40 6.30 6.70 7.30 2.20 1.70 2.00 5.00 6.30 1.40 1.10 1.20 4.70 6.00 6.30 1.40 1.11 1.20 4.70 6.00 5.30 2.40 1.70 1.40 4.70 5.30 5.30 3.50 2.30 4.30 5.00 5.00 5.00 5.30 3.50 2.30 4.30 5.00 5.00 5.00 5.30 3.50 2.30 4.30 5.00 5.00 5.00 5.30 3.50 2.30 4.30 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5	2.90 0.90 3.80 6.50 3.10 2.50 0.26 0.36 1.60 1.50 2.40 3.00 0.46
12.0 12.7 13.0 13.3 6.4 7.0 12.3 13.7 13.7 13.7 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 10.0 12.7 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 15.0 16.0 17.0 18.0 19	(%) was all (%) wa

Overall database.xls Page 4 of 16

29-29-29-29-29-29-29-29-29-29-29-29-29-2	281.5 282.283 284.285 286.285 286.285 288.285 290.291 292.293	276 277 278 279 280 281	ROW NR
78901234557890123 4 5 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4	4 5 7 8 9 9 1	6 7 8 9	
9 129T06 9 129T7 10 10 10 10 10 10 10 10 10 10 10 10 10	9 129T09 9 129T01 9 129T01 9 129T18 9 129T17 9 129T17 9 129T17 9 129T04 9 129T20 9 129T16	7 7 7 7 7	REFERENCE
	1_E1 2_E4 1_2 8 7 2 3 4 0 5	na na na na na	Specimen id.:
EU97 EU97 EU97 EU97 F82H F82H F82H F82H F82H F82H F82H F82H	EU97 EU97 EU97 EU97 EU97 EU97 EU97 EU97	12Cr2WV 12Cr2WV 12Cr2WV 12Cr2WV 12Cr2WV 12Cr2WV	MAT
		2nd Name	(Capitals)
E83697 9741 10	E83697 E83697 E83697 E83697 E83697 E83697 E83697 E83697 E83697 E83697 E83697	1	9
P25 7,5mm P6-10 7,5mm P6-10 7,5mm P6-10 7,5mmP6-18 7,5mmP6-18 7,5mmP6-18 7,5mmP6-14 7,5mmP6-14 7,5mmP6-14 7,5mmP6-14 7,5mmP6-14 7,5mmP6-14 7,5mmP6-14 7,5mmP6-14 7,5mmP6-10 7,5mmP6-10 7,5mmP6-10 7,5mmP6-10 7,5mmP6-10 7,5mmP6-10 7,5mmP6-10 7,5mmP6-10 7,5mmP6-14	P25 P25 P25 P25 P25 P25 P25 P25 P25 P25	P0.766 P0.766 P0.766 P0.76 P0.76	
98 98 104 104 104 104 104 104 104 104 104 104	98 98 98 98 98 98 98 98	5000/365 105 10000/365 105 20000/365 105 10000/365 105 105 105 105 105	HEAT TREATMENT
00 0.5 0 0.66	00 0.5 00 0.5 00 0.5 00 0.5 00 0.5 00 0.5 00 0.5 00 0.5 00 0.5 00 0.5	E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2	(1011111)
ac a	air air air air air air air air air air	ac ac ac ac	
760 90 760 90 750 1	760 90 760 90	750 1 750 1	_
ILAS-4 ILAS-4 ILAS-4 ILAS-4 ILAS-4		Name	IRRADIATION
PIREX 350 PIREX 350 PIREX 350 HFR	PIREX 50 PIREX 250 PIREX 250 PIREX 250 PIREX 250 PIREX 350 PIREX 350 PIREX 350	FFTTF FFTTF FFTTF FFTTF FFTTF FFTTF FFTTF FFTTF FFTTF A655 FFTTF 3655	
0.68 0.68 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.22 0.62 0.62 0.62 1.27 1.27 0.24 0.63 1.36 0.16	0.00 0.00 0.00 0.00 6.40 15.40 27.20	
2.62 H 2.68 H 2.77 H 2.79 H 2.76 H 2.76 H 2.72 H 2.72 H 2.63 H 2.67 H 2.75 H	? ? ? ? ? ? ? ?	<1 ?	
Le		Na N	
5.6 2.5 5.6 2.5 5.6 2.5 5.6 2.5 20 4 20 4 20 4 20 4 20 4 20 4 20 4 20	5.6 2.5 5.6 2.5	H H H H H H H H H H	SPECIMEN
5.00E-04 350 Ar 5.00E-04 350 Ar 5.00E-04 27 5.00E-04 300 5.00E-04 80 5.00E-04 80 5.00E-04 300 5.00E-04 300 5.00E-04 300 5.00E-04 502 5.00E-04 502 5.00E-04 502 5.00E-04 500 5.00E-04 27 5.00E-04 300	500E-04 50 Ar 5.00E-04 50 Ar 5.00E-04 50 Ar 5.00E-04 50 Ar 5.00E-04 50 Ar 5.00E-04 250 Ar 5.00E-04 250 Ar 5.00E-04 250 Ar 5.00E-04 250 Ar 5.00E-04 250 Ar 5.00E-04 350 Ar 5.00E-04 350 Ar	0.00E-03	TEST CONDITIONS
475 529 1.11 476 549 1.15 495 622 1.26 508 625 1.23 509 638 1.25 518 638 1.23 492 610 1.24 497 618 1.24 490 617 1.20 499 625 1.23 508 636 1.25 512 631 1.23 508 636 1.25 512 631 1.23 508 636 1.25 499 601 1.20 499 601 1.20 499 601 1.20 474 554 1.10 473 563 1.19 446 518 1.16 454 520 1.13 419 449 1.12 423 474 1.10 403 443 1.10 403 443 1.10 403 443 1.10 403 443 1.10 403 443 1.10 403 443 1.10 403 443 1.10 403 443 1.10 403 443 1.10 403 443 1.10 403 443 1.10 603 63 377 1.05 70 390 1.05 370 390 1.05 368 398 1.08 365 376 1.03 360 377 1.05 728 770 1.06 770 745 1.06 7717 762 1.06 676 722 1.07 679 723 1.06 676 722 1.07 679 723 1.06 676 722 1.07 679 723 1.06 676 722 1.07 679 723 1.06 676 722 1.07 679 723 1.06 676 722 1.07 679 723 1.00 678 709 1.02 653 660 1.04 653 660 1.04 653 660 1.04 653 660 1.04 653 660 1.04 653 660 1.04 653 660 1.04 663 604 0.04	8 8 711 766 1.08 617 714 1.16 717 762 1.06 636 749 1.18 739 772 1.04 750 823 1.10 515 592 1.15 552 588 1.07 614 661 1.08 570 638 1.12 470 557 1.17	Graph Principle Street	TEST RESULTS
5.30 4.60 4.20 5.00 5.10 4.90 5.20 4.90 4.90 4.30 3.90 3.90 3.90 2.80 2.70 2.50 1.90 2.10 2.00 1.70 1.50 1.40 0.70 0.50 0.80 0.70 0.50 0.80 2.20 2.10 0.60 1.20 0.60 1.20 0.60 1.20 0.70 0.50 0.80 0.80 0.70 0.50 0.80 0.80 0.70 0.50 0.80 0.80 0.90 0.70 0.50 0.80 0.80 0.90 0.70 0.50 0.80 0.80 0.90 0.70 0.50 0.80 0.80 0.90 0.70 0.50 0.80 0.90 0.70 0.50 0.80 0.90 0.70 0.50 0.80 0.90 0.70 0.50 0.90 0.70 0.50 0.90 0.70 0.50 0.90 0.70 0.50 0.90 0.70 0.50 0.90 0.70 0.50 0.90 0.70 0.50	8.00 1.40 1.27 2.50 1.40 1.10 1.75 4.30 3.90 1.80 1.00 6.50 8.20	6.30	
21.8 79 20.2 82 18.6 81 15.9 81 14.2 82 12.5 77 13.6 81 14.7 82 20.1 87 16.3 87 15.3 89 18.3 90 19.8 90 19.8 90 11.9 71 10.1 76 9.1 71 10.1 76 9.1 71 10.5 77 10.0 74	8	(%) Lotal (%) Reduction of But 14.0 14.0 14.0 7.1 8.0	

Overall database.xls Page 5 of 16

342 343 344 345 346 347 348 349 350 351 352 353 354 366 357 368 360 361 362 363 364 365 366 367 373 374 375 373 374 375 376 377 378 380 380 381 382 383 384 385 386 387 387 388 389 380 381 382 383 384 385 386 387 387 388 389 380 380 380 380 380 380 380 380 380 380	ROW NR
10 10 10 10 10 10 10 10 10 10 10 10 10 1	REFERENCE
7191 7205 7187 7206 7188 7161 7164 7145 7146 7155 7156 7157 7148 7153 8820 8833 8824 8825 8827 8848 8827 8848 8837 8849 8838 8842	Specimen id.:
F82H F82H F82H F82H F82H F82H F82H F82H	MAT
	(Capitals)
9741 9741 9741 9741 9741 9741 9741 9741	
38X (diuoz) 100 100 100 100 100 100 100 100 100 10	
7,5mmP6-14 15mmP3-6 15mmP3-6 15mmP3-16 15mmP3-16 15mmP3-11 15mmP3-11 15mmP3-11 15mmP3-11 15mmP3-11 25mmP3IW-20 55mmP3IW-20 55mmP3IW-20 65mmP3IW-20 6	
5000/400 5000/500 5000/550	HEAT
1040 0.66	(minor)
S S S S S S S S S S	
demonstrate Property The state of the state o	
ILAS-4 ILAS-4 ILAS-4 ILAS-4 ILAS-4 ILAS-4 ILAS-4 ILAS-5 ILAS-6 ILAS-7 ILAS-8 ILAS-8 ILAS-9 IL	IRRADIATION
HFR 300 HFR 300 HFR 300 HFR 80 HFR	
3.06 2.52 2.89 2.17 2.64 1.67 1.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	
2.881 2.71 2.80 2.62 2.70 2.29 2.29 2.70 2.24 2.29 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63	
2.E+22 2.E+22 2.E+22 2.E+22 2.E+22 2.E+22 2.E+22	
He 1 He 1 He 1 He 1 He 1 He 1	
T 20. L 20.	SPECIMEN
5	
5.00E-04 5.0	TEST CONDITIONS
1 1 1 1 1 1 1 1 1 1	
Section Sect	TEST RESULTS
Heat Page Heat	
3 4 4 3 3 2 2 3 2 2 0 0 0 0 0 0 2 2 1 1 0 0 2 2 0 1 1 0 0 2 2 0 1 1 0 0 2 2 2 3 3 7 7 7 8 8 3 1 1 1 1 6 3 3 6 3 0 0 8 5 5 1 1 5 5 2 0 0 0 0 1 1 0 0 0 6 4 4 3 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0.40 0.60 0.40 0.20 4.00 4.10 4.80 3.80 4.50 4.90 5.30 4.20 4.90 4.10 3.40 3.00 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2	
19.8 84 82 11.5 8 82 12.4 87 8 82 12.4 87 8 82 12.4 87 12.6 87 8 8 8 12.4 87 12.6 87 8 8 12.4 87 12.6 87 12.6 87 12.6 87 12.6 87 13.8 90 80 10.3 70 10.1 80 70 70 70 70 70 70 70	

Overall database.xls Page 6 of 16

410 411 412 413 414 415 416 417 418 419 420 421 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 461 462 477 478 466 467 468 469 470 471 475 476 477 478 479 479 479 479 479 479 479 479	ROW NR
13 13 13 13 13 13 13 13 13 13 13 13 13 1	REFERENCE
CEAA CEAA CEAA CEAA CEAA CEAA CEAA CEAA	Specimen id.:
12Cr1MoVW 12Cr1MoVWINI 12Cr1MoVWINI 12Cr1MoVWINI 12Cr1MoVWINI 12Cr1MoVWINI 12Cr1MoVWINI 12Cr1MoVWINI 12Cr1MoVW2NI 12Cr1MoVW2	MAT
XAA-3587 13 Sheet 0.76 n AAA-3587 13 Sheet 0.76 n P1354 13 rod 6.35 n P1354 13 rod 6.35 n P1354 13 Sheet 0.76 n AAA-3588 13 Sheet 0.76 n XAA-3588 13 Sheet 0.76 n XAA-3589	(Capitals) See
m	I HEAT TREATMENT (minor)
CTR-RB1 CTR-33 CTR-T2 CTR-82 CTR-33 CTR-T1 CTR-T1 CTR-T2 CTR-RB2 CTR-33 CTR-T1	IRRADIATION
### Body 10 10 10 10 10 10 10 1	
8	(8)
The color of the	SPECIMEN
Section	TEST CONDITIONS ()
The color of th	def. TEST RESULTS gth ing
(Se) 10 10 10 10 10 10 10 1	(F)

Overall database.xls Page 7 of 16

504 505 506 507 508 509 510 511 512 513 314 515 516 617 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 530 531 532 533 534 535 536 537 538 539 539 540 541 542 543 544 545 546 547 547 548 549 549 549 549 549 549 549 549	492 493 494 495 496 497 498 499 500 501 502	480 481 482 483 484 485 486 487 488 489 490 491	ROW NR
100 100 222 222 222 222 222 222 222 222	10 20 20 21 21 10 10 10 10 10	10 10 10 10 10 10 10 10 10 10	REFERENCE
E502 E504 EU2T06 EU2T16 EU2T11 EU2T01 EU2T01 EU2T02 A2 B4 B5 B1 B2 B6 B3 B7	E531 J1 J4 J5 J2 E503 E510 E507 E511 E508 E506	E538 E535 E539 E523 E534 E520 E533 E515 E528 E517 E518	Specimen id.:
ORNL-3791 ORNL-3791 EU97-2 2 nd batch EU97-2 2 nd	JLF-1B Manet II Manet II Manet II Manet II ORNL-3791 ORNL-3791 ORNL-3791 ORNL-3791 ORNL-3791 ORNL-3791 ORNL-3791 ORNL-3791 ORNL-3791	Z. Cl J.F-1B J.F-1B J.F-1 J.F-1 J.F-1B J.F-1B J.F-1B J.F-1 J.F-1B J.F-1 J.F-1 J.F-1B J.F-1 J.F-1	Name MAT Page (Capitals)
993394 993394 993394 993394 993394 993394 993394 833698 833698 833698 833698 833698 8362-01 862-01		# 0%	-feat id. Dem.comp. See Ref
Plate P8 P8 P8 P8 P8 P8 P8 P14 P14 P14 P14 P14 P14 P14	Plate Plate Plate Plate Plate Plate Plate Plate Plate	Plate Plate Plate Plate Plate 15 mm Plate Plate 15 mm	Poduct form
	1050 1	LEZZZZ 1 1050 1 1050 1 1050 1 1050 1 1050 1 1050 1 1050 1 1050 1 1050 1 1050 1 1050 1 1050 1 1050 1 1050 1 1050 1	inal treament HEAT 1/2 TREATMENT Normalizing emp (°C) (minor) Normalizing ime (h)
750 0.5 750 0.5	750 0.5 750 0.5 750 0.5 750 0.5 750 0.5 750 0.5 750 0.5	780 1 780 1	Ooling conditions fempering temp (°C) fempering time h)
ILAS-4 HFR 300 ILAS-4 HFR 300 ILAS-4 HFR 300 JRR-2/JMTR 300 JRR-2/JMTR 300 JRR-2/JMTR 300 JRR-2/JMTR 300 JRR-2/JMTR 580 JRR-2/JMTR 520 J	ILAS-4 HFR 300 Alexandre Osiris 313 Alexandre Osiris 315 Alexandre Osiris 313 Alexandre Osiris 313 Alexandre Osiris 325 ILAS-4 HFR 300 ILAS-4 HFR	ILAS-4	Name IRRADIATION Reactor remperature *C)
3.43 3.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	3.08 0.80 0.80 2.00 3.40 0.00 0.00 0.00 0.00 2.89 3.06 3.26	0.00 0.00 0.00 2.47 2.50 2.64 2.84 2.87 3.01 3.05 3.05	Oose (dpa)
		A HY ES CH &	Ose rate (dpu's) te produced ppm) "ast fluence n'cm? "assule type te/ba/H2O kemarks
2.4 12 2.4 12 2.4 12 2.4 12 2.4 12 2.4 12 2.4 12 8 t=1	8 t=1 mm 8 t=1 mm 8 t=1 mm 8 t=1 mm	<u> </u>	Jauge length SPECIMEN SPECIMEN SPECIMEN SPECIMEN
5.00E-04 400 5.00E-04 300 1.00E-04 -150 1.00E-04 -75 1.00E-04 0 1.00E-04 150 1.00E-04 150 1.00E-04 150 1.00E-04 25 1.00E-04 500	5.00E-04 300 25 325 325 325 325 5.00E-04 27 5.00E-04 300 5.00E-04 300 5.00E-04 300 5.00E-04 27 5.00E-04 200	9.— H W 9 5.00E-04 27 5.00E-04 300 5.00E-04 300 5.00E-04 300 5.00E-04 300 5.00E-04 27 5.00E-04 27 5.00E-04 200 5.00E-04 400 5.00E-04 400 5.00E-04 400 5.00E-04 400	Strain rate (sec- 1) TEST CONDITION Test temp (°C) Tavironment if
848 886 1.04 880 909 1.03 879.1 994.9 1.13 638.3 801.5 1.26 588.5 721.4 1.23 572.1 703.4 1.23 572.1 703.4 1.27 497.5 575.2 1.16 520.0 660.5 1.27 541.1 664.1 1.23 448.1 510.6 1.14 433.8 508.6 1.17 388.1 428.0 1.10 388.1 428.0 1.10 388.1 428.0 1.10 388.1 428.0 1.10 566 660 1.17 573 1.10 566 660 1.17 582 622 1.07 589 627 1.06 347 351 1.01 556 660 1.17 582 622 1.07 589 627 1.06 347 351 1.01 351 355 1.01 351 358 1.03 576 593 1.03 685 672 672 1.00 462 467 1.01 403 408 1.01 847 882 1.01 847 882 1.01 847 882 1.01 847 882 1.01 847 478 1.09	577 614 1.06 961 982 1.02 834 797 990 1005 1.02 790 904 1.14 809 921 1.14 697 784 1.12 726 797 1.10 867 893 1.03 982 1018 1.04 911 942 1.03	502 640 1.27 423 516 1.22 434 528 1.22 540 579 1.07 585 612 1.05 628 702 1.12 688 742 1.08 580 620 1.04 505 559 1.11 558 593 1.04 489 551 1.13	yy 0,2% pl def. TEST RESULTS Tensile strength MPa) Strain hardening
1.00	1.4 10.6 73.7 4.49 14.27 0.04 7.6 28 0.02 0.75 43 0.75 5.5 36 3.90 16.0 69.9 3.40 14.8 70.1 2.30 1.80 0.90 8.6 67.5 1.90 9.3 68.4 1.10 9.1 68.4	S S S S S S S S S S	s fracture (MPa) c uniform (%) c total (%) te eduction of rea (%)

Overall database.xls Page 8 of 16

548 549 550 551 552 553 554 555 556 557 558 560 561 562 563 564 565 566 567 578 579 580 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 577 578 579 580 581 582 583 584 585 586 587 578 579 580 581 582 583 584 585 586 587 578 579 580 581 582 583 584 585 586 587 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 606 607 608 609 601 602 603 604 606 607 608 609 601 601 602 603 604 606 607 608 609 601 601 602 603 604 606 607 608 609 609 601 601 601 602 603 604 605 606 607 606 607 608 609 609 601 601 602 603 604 605 606 607 608 609 609 601 601 602 603 604 605 606 607 606 607 608 609 609 601 601 602 603 604 605 606 607 608 609 609 601 601 602 603 604 605 606 607 606 607 608 609 609 601 601 602 603 604 605 606 606 607 608 609 609 601 601 602 603 604 605 606 606 607 608 609 601 601 602 603 604 605 606 606 607 608 609 609 601 601 602 603 604 605 606 606 607 608 609 609 601 601 602 603 604 605 606 606 607 608 609 609 601 601 602 603 604 605 606 606 607 608 609 609 601 601 602 603 604 605 606 606 607 608 609 609 601 601 602 603 604 605 606 606 607 608 609 609 601 601 602 603 604 605 605 606 606 607 607 608 609 609 609 609 609 609 609 609	ROW NR
277 28 28 28 28 28 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	REFERENCE
11-1-01 12-1-01 12-3-01 13-3-1 14-1-1 14-1-1 15-3-1 16-1-1 17-1-1 18-1-1 6-1.t 17-1-1 17-1 17	Specimen id.:
F82H F82H F82H F82H F82H F82H F82H F82H	MAT
2nd Name	(Capitals)
S62-01 9753 9753 9753 9753 9753 9753 9753 9753	Ş6 X6
plate 1.5 mm plate 2.5 mm plate 2.5 mm plate 2.5 mm plate 7.5 mm plate	
Final treament Final treament Final	TREATMENT (minor) (minor)
JRR-2 and JMTR 500 33.60 0.00 0.00 0.00 0.00 0.00 0.00 0	IRRADIATION
Dose rate (d) He produced (ppm) First fluence (ruch') Capsaile type HerNad/H2O Remarks	970
State Color Colo	SPECIMEN
Section Sect	(sec- TEST CONDITIONS (°C.)
The color of the	pldef. TEST RESULTS ength lening
2.60 1 5.4 5 5.8 6.2 6.5 6.5 6.5 6.5 6.2 6.2 5.9 5.7 5.4 5.9 3.5 3.4 3.3 2.1 3.2 2.2 2.8 2.6 2.4 2.4 2.4 2.4 2.4 2.4 2.5 2.8 2.1 2.1 2.8 2.3 2.6 2.1 2.1 2.8 2.3 2.6 2.4 2.4 2.4 2.4 2.4 2.5 2.8 2.6 2.1 2.1 2.8 2.3 2.6 2.1 2.1 2.8 2.3 2.6 2.1 2.1 2.8 2.3 2.6 2.4 2.4 2.4 2.4 2.4 2.5 2.8 2.1 2.1 2.8 2.3 2.6 2.1 2.1 2.8 2.3 2.6 2.1 2.1 2.8 2.3 2.6 2.1 2.1 2.8 2.3 2.6 2.1 2.1 2.8 2.3 2.6 2.1 2.1 2.8 2.3 2.6 2.1 2.1 2.8 2.3 2.6 2.1 2.1 2.8 2.3 2.6 2.1 2.1 2.8 2.3 2.6 2.1 2.1 2.8 2.3 2.6 2.1 2.1 2.8 2.6 2.1 2.1 2.8 2.6 2.1 2.1 2.8 2.6 2.1 2.1 2.8 2.6 2.1 2.1 2.8 2.6 2.1 2.1 2.8 2.6 2.1 2.1 2.8 2.6 2.1 2.1 2.8 2.6 2.1 2.1 2.8 2.6 2.1 2.1 2.1 2.8 2.6 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	(6)
(%) go (%) go	

Overall database.xls Page 9 of 16

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 641 642 643 645 650 651 652 653 654 655 656 666 667 677 678 677 678 679 680 681 677 678 679 680 681 682 683 684 685 686 687	ROW NR
31 31 31 31 31 31 31 31 32 32 32 32 32	REFERENCE
31W-9-10 31W-9-11 31W-9-11 31W-9-12 31W-9-13	Specimen id.:
F82H F82H F82H F82H F82H F82H F82H F82H	ame MAT
	nd Name (Capitals)
9741 9741 9741 9741 9741 9741 9741 9741	ent id. hem.comp. See ef
plate 7.5 mm plate 7.5 mm plate 1.5 mm plate 1.5 mm plate 1.5 mm plate 7.5 mm plate 1.5 mm plate 7.5 mm plate 1.5 mm plate 7.5 mm plate 15 mm plate 25 mm plate 15 mm	oduct form
	and treatment HEAT rec TREATMENT rec (minor) mp (c') (minor) ornalizing me (l) onling mp ening temp (c)
	ume IRRADIATION
	eactor empenture C)
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	ose (dpa)
	ose rate (dpa's) pm) st fluence 'cm'; spaule type e-Na'H2O
18	auge length nm) SPECIMEN
3	ango cananicos i
	Strain rate (sec-) TEST CONDITIONS (set temp (°C) anvironment if
424 460 1.08 424 462 1.09 424 464 1.09 429 465 1.08 427 468 1.10 430 471 1.10 431 1.09 430 473 1.09 430 473 1.09 430 473 1.09 430 473 1.09 430 473 1.09 430 473 1.09 430 473 1.07 431 1.07 439 421 1.06 427 449 1.05 417 452 1.08 415 447 1.08 415 447 1.08 415 447 1.08 416 459 1.06 417 452 1.08 418 439 1.06 417 452 1.08 418 449 1.05 417 452 1.08 418 449 1.05 417 452 1.08 418 419 1.06 417 452 1.08 418 419 1.06 418 1.06 419 1.06 419 1.06 410 1.08 410 1.08 411 436 1.06 363 388 1.07 372 390 1.05 359 375 1.04 382 398 1.04 382 398 1.04 382 398 1.04 383 395 1.03 382 398 1.04 383 395 1.03 382 398 1.04 383 395 1.03 382 398 1.04 383 395 1.03 382 398 1.04 383 395 1.03 382 398 1.04 383 395 1.03 382 398 1.04 386 402 1.05 347 354 1.02 290 294 1.01 275 286 1.04 231 243 1.05 238 246 1.04 231 243 1.05 246 1.04 251 277 1.02 271 277 1.02 271 277 1.02 271 277 1.02 271 277 1.02 271 277 1.02 271 277 1.02 271 277 1.02 271 277 1.02 271 277 1.02 273 280 1.03 381 286 1.02 504 618 1.23 440 512 1.16 645 519 1.11 6468 519 1.11 6468 519 1.11 6468 519 1.11 647 484 1.13 366 401 1.13 366 401 1.13 366 401 1.10 368 519 1.11 468 519 1.11 468 519 1.11 475 513 1.38 486 479 1.10 480 548 1.14 458 517 1.13	yy 0,2% pldef. TEST RESULTS TEST RESULTS Tensile strength MPa) Mrain hardening
1.9 1.8 1.9 1.9 1.9 1.9 1.9 2.4 2.4 2.3 2.2 2.1 1.9 1.6 6 1.6 1.2 1.1 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	fracture (MPa) uniform (%)
	total (%) ceduction of rea (%)

688 689 690 691 692 693 694 695 696 697 700 701 702 703 704 705 706 707 708 809 710 711 712 713 714 715 716 717 718 719 720 721 721 722 723 733 734 735 736 737 738 738 739 740 741 741 742 743 744 745 746 747 747 748 748 749 740 741 742 743 744 745 746 747 748 749 740 741 744 745 746 747 748 749 740 741 744 745 746 747 748 749 740 741 744 745 746 747 748 749 740 741 742 743 744 745 746 747 748 749 740 741 742 743 744 745 746 747 748 749 740 741 748 749 740 741 741 742 743 744 745 746 747 747 748 749 740 741 742 743 744 745 746 747 747 748 749 740 741 741 742 743 744 745 746 747 747 748 749 740 741 741 742 743 744 745 746 747 748 749 740 741 741 742 743 744 745 746 747 747 748 749 740 740 741 741 742 743 744 745 746 747 747 748 749 740 740 741 741 742 743 744 745 746 747 747 748 749 740 740 741 741 742 743 744 745 746 747 748 749 740 740 741 741 742 743 744 745 746 747 748 749 740 740 740 741 742 743 744 745 746 747 747 748 749 740 740 740 741 741 742 743 744 745 746 747 747 748 749 740 740 740 740 740 740 741 740 740 740 740 740 740 740 740 740 740	ROW	NR
32 32 32 32 32 32 32 32 32 32	REFE	REFERENCE
2	Specin	nen id.:
F82H F82H F82H F82H F82H F82H F82H F82H	Name MAT	
	ind Name (Capitals)	als)
9753 9753 9753 9753 9753 9753 9753 9753	teat id. Shem.comp. See kef	
plate 15 mm	roduct form	
	inal treatment HEAT	HEAT
	Normalizing emp (°C) (minor) Normalizing	
	onditions	
	empering temp °C) empering time	
	kame IRRA1	IRRADIATION
	keactor emperature °C)	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Oose (dpa)	
	Oose rate (dpa/s) 1e produced ppm)	
	ast fluence n/cm²) apsule type 1e/Na/H2O	
30 30 30 30 30 30 30 30 30 30 30 30 30 3	temarks mm) SPECIMEN square diameter	MEN
6 1.0 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	mm)	
00E-04 450 00E-04 550 00E-04 650 00E-04 650 00E-04 650 00E-04 650 00E-04 25 00E-04 25 00E-04 25 00E-04 20 00E-04 300 00E-04 300 00E-04 300 00E-04 400 00E-04 400 00E-04 450 00E-04 550 00E-04 550 00E-04 600 00E-04 20 00E-04 550 00E-04 20 00E-04 20 00E-04 20 00E-04 550 00E-04 550 00E-04 550 00E-04 20 00E-04 20 00E-04 20 00E-04 550	train rate (sec-) TEST est temp (°C) invironment if iff. air	IEST CONDITIONS
437 493 1.13 437 493 1.13 438 420 1.16 296 368 1.24 219 307 1.40 160 243 1.52 598 706 1.16 579 697 1.20 549 657 1.15 540 608 1.13 540 1.10 540 1.10 540 1.10 540 1.10 540 1.10 541 1.10 542 1.10 543 1.11 544 1.11 544 1.11 545 1.15 546 1.15 547 1.16 548 1.15 549 1.16 545 1.17 540 667 1.24 541 1.10 540 647 1.24 541 1.10 540 647 1.24 541 1.10 540 647 1.24 541 1.10 542 1.11 544 1.11 545 1.11 545 1.11 546 1.15 547 1.11 548 1.11 549 1.11 540 647 1.24 541 1.10 541 1.11 542 1.11 543 1.11 544 1.11 545 1.11 545 1.11 546 1.11 547 1.11 548 1.11 549 1.11 540 647 1.24 541 1.10 541 1.11 541 1.11 542 1.11 543 1.11 544 1.11 545 1.11 545 1.11 546 1.11 547 1.11 548 1.11 549 1.11 540 1.11 540 1.11 540 1.11 540 1.11 540 1.11 540 1.11 540 1.11 541 1.11 542 1.11 543 1.11 544 1.11 545 1.11 545 1.11 545 1.11 545 1.11 546 1.11 547 1.11 547 1.11 548 1.11 549 1.11 540 1.11	yy 0,2% pldef. MPa) TEST Fensile strength MPa) Strain hardening rapability	RESULTS
	fracture (MPa)	
1' 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	uniform (%)	
4.8 77 8.2 83.2 9.8 89.1 87.3 60.18 0.2 70.56 7.8 76.01 2.2 78.5 4.0 84 0.4 78.8 2.4 75 3.4 79.4	total (%) teduction of rea (%)	

758 759 7600 761 762 763 764 7655 7666 767 768 769 7700 7711 772 773 774 775 776 777 778 789 790 791 792 793 794 795 796 801 802 803 804 807 808 809 801 811 812 813 814 815 816 817 818 819 820 821	ROW NR
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	DEEEDENCE
37 3 37 3	REFERENCE
3-17-01 3-17-03 3-17-03 3-17-05	Specimen id.:
F82H F82H F82H F82H F82H F82H F82H F82H	kame MAT
	nd Name (Capitals)
9741 9741 9741 9741 9741 9741 9741 9741	lentid. Them.comp. See kef
plate 15 mm	roduct form
	inal treatment HEAT IPEATMENT TREATMENT Germalizing emp (°C) (minor) Germalizing inne (h) Cooling onditions
	empering temp (C) empering time h)
	same IRRADIATION
	teactor emperature °C)
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Oose (dpa)
	Oxer trate (dpu/s) te produced ppm) sist fluence n'cm's teNation
35 3 35 3 25 5 25 5 25 5 35 3 35 3 35 3	iange length mm) SPECIMEN jange diameter mm)
20 20 20 20 20 250 250 250 250 250 250 2	1) TEST CONDITIONS (Set lent) (°C) Test temp (°C) Trest conditionment if fiff, arr
375	oy 0.2% pldef. TEST RESULTS Tressle strength (MPa) Strain hardening
13.40 24.0 75 5.30 9.1 55.6 3.30 17.1 80.6 2.50 16.4 79 2.70 17.7 78.3 3.60 10.1 80.6 8.20 14.6 80 2.70 22.8 78.8 2.80 19.2 77 2.70 8.8 77.2 2.70 8.8 77.2 2.31.0 9.1 78.2 2.90 17.0 78.7 2.30 14.8 76.4 2.20 14.8 76.4 2.20 14.8 76.4 2.20 14.8 76.4 2.20 15.0 16.8 75 2.80 19.2 77 2.50 16.8 75 2.80 19.2 80 1.0 18.0 78.8 2.30 19.6 77 2.50 16.8 25 2.40 89. 77.5 2.85 8.7 78.2 1.80 19.2 80 1.40 12.9 80 1.40 12.9 80 1.40 12.9 80 1.40 12.9 80 1.40 12.9 86.6 1.40 12.4 89.3 1.50 11.2 84 1.30 21.4 89.3 1.50 11.2 84 1.30 21.4 89.3 1.50 11.2 84 1.30 21.4 89.3 1.50 11.2 84 1.30 21.4 89.3 1.50 11.2 84 1.30 21.4 89.3 1.50 11.2 84 1.30 21.4 89.3 1.50 11.2 84 1.30 21.4 89.3 1.50 11.2 84 1.30 22.9 86.6 4.10 10.0 57.4 0.70 30.0 89.7 0.70 26.4 85.6 1.30 24.9 90.5 1.30 24.9 90.5 1.30 24.9 90.5 1.30 24.9 90.5 1.70 89.82 2.30 24.9 90.5 1.70 28.0 77 6.00 27.0 78 2.0 79 2.0 79 2.0 80 2.0 79 2.0 80 2.0 79 2.0 80 2.0 79 2.0 80 2.0 79 2.0 80 2.0 79 2.0 80 2.0 79 2.0 80 2.0 79 2.0 80 2.0 79 2.0 80 2.0 79 2.0 80 3.0 82 2.10 81	r fracture (MPa) uniform (%) total (%) tea (%)

Overall database.xls Page 12 of 16

													9	1		1
~	ENCE	en id.:				MENT		ATION				EN	IEST CONDITION	RESULTS		
SOW NR	REFERENCE	pecime	MAT (Capitals)	•		HEAT TREATMENT (minor)		IRRADIATION				SPECIMEN	EST C	TEST R		
	-	32	2	9. See	E	nent I	temp time		g	dpa/s)	ъ	h eter		pl.def. 7 rength dening	(MPa)	Je
			ame od Name	eat id. hem.comp	oduct for	nal treatur °C ormalizin mp (°C) ormalizin me (h)	onditions onditions empering temp °C) empering time	ame	eactor emperatu C)	ose (dpa)	e producee pm) ust fluence /cm²) apsule type	emarks auge lengt nm) auge diam nm)	rain rate (sec-	y 0,2% p MPa) fensile stre MPa) strain hard	fracture (MP uniform (%)	total (%) eduction of rea (%)
828 829	38 38		F82H F82H	# 0 ≈ H6-02 H6-02	Plate 7.5 mm Plate 7.5 mm	E Z Z Z Z E C	<u> </u>	Ž	<u> </u>	0.00 0.00	<u> 並 </u>	2 55 55	ガニ ビ 直 号 1.00E-04 100 1.00E-04 100	525 630 1.20 465 580 1.25	<u>Б</u>	ω <u>κ</u> ε ε 81 2.0 80
830 831	38 38		F82H F82H	H6-03 H6-04	Plate 15 mm Plate 15 mm					0.00 0.00 0.00			1.00E-04 100 1.00E-04 100 1.00E-04 100	560 570 1.02 495 600 1.21		2.0 80 19.0 81
832 833	38 38		F82H F82H	H5-02 H6-01	Plate 7.5 mm					0.00 0.00			1.00E-04 200 1.00E-04 200	515 500 590 1.18		18.0 82 19.0 82
834 835	38 38		F82H F82H	H6-02 H6-02	Plate 7.5 mm Plate 7.5 mm					0.00 0.00			1.00E-04 200 1.00E-04 200	500 540 1.08 450 545 1.21		82 19.0 81
836 837	38 38		F82H F82H	H6-03 H6-04	Plate 15 mm Plate 15 mm					0.00 0.00			1.00E-04 200 1.00E-04 200	450 545 1.21 480 560 1.17		19.0 81 18.0 82
838 839	38 38		F82H F82H	S62-01 H5-02						0.00			1.00E-04 300 1.00E-04 300	529 616 1.16 510	3.50	13.1 17.0 83
840 841	38 38		F82H F82H	H6-01 H6-02	Plate 7.5 mm Plate 7.5 mm					0.00			1.00E-04 300 1.00E-04 300	490 550 1.12 490 550 1.12		18.0 81
842 843	38		F82H	H6-02	Plate 7.5 mm					0.00			1.00E-04 300	435 520 1.20		18.0 80 18.0 80
844	38 38		F82H F82H	H6-03 H6-04	Plate 15 mm Plate 15 mm					0.00			1.00E-04 300 1.00E-04 300	430 520 1.21 460 530 1.15		17.0 81
845 846	38 38		F82H F82H	S62-01 H5-02						0.00 0.00			1.00E-04 400 1.00E-04 400	460 533 1.16 483	2.50	11.5 15.0 84
847 848	38 38		F82H F82H	H6-01 H6-02	Plate 7.5 mm Plate 7.5 mm					0.00			1.00E-04 400 1.00E-04 400	475 530 1.12 475 530 1.12		17.0 80 80
849 850	38 38		F82H F82H	H6-02 H6-03	Plate 7.5 mm Plate 15 mm					0.00 0.00			1.00E-04 400 1.00E-04 400	420 480 1.14 420 475 1.13		17.0 79 17.0 79
851 852	38 38		F82H F82H	H6-04 H5-02	Plate 15 mm					0.00 0.00			1.00E-04 400 1.00E-04 450	440 500 1.14 464		17.0 79 16.0 83
853 854	38 38		F82H F82H	H5-02 S62-01						0.00 0.00			1.00E-04 450 1.00E-04 500	449 455 503 1.11	2.00	17.0 81 11.6
855 856	38 38		F82H F82H	H5-02 H6-01	Plate 7.5 mm					0.00 0.00			1.00E-04 500 1.00E-04 500	435 420 470 1.12		16.0 82 19.0 84
857 858	38 38		F82H F82H	H6-02 H6-02	Plate 7.5 mm Plate 7.5 mm					0.00			1.00E-04 500 1.00E-04 500	420 470 1.12 375 440 1.17		19.0 84 19.0 84
859	38		F82H	H6-03	Plate 15 mm					0.00			1.00E-04 500	375 440 1.17		19.0 84
860 861	38 38		F82H F82H	H6-04 H5-02	Plate 15 mm					0.00			1.00E-04 500 1.00E-04 550	395 450 1.14 376		19.0 84 19.0 88
862 863	38 38		F82H F82H	H2-01 H5-02						0.00 0.00			1.00E-04 600 1.00E-04 600	314 363 1.16 296		2.0 90 22.0 91
864 865	38 38		F82H F82H	H6-02 H6-03	Plate 7.5 mm Plate 15 mm					0.00 0.00			1.00E-04 600 1.00E-04 600	310 380 1.23 270 350 1.30		23.0 90
866 867	38 38		F82H F82H	H6-04 H2-01	Plate 15 mm					0.00 0.00			1.00E-04 600 1.00E-04 650	285 360 1.26 226 314 1.39		29.0 90 27.0 95
868 869	38 38		F82H F82H	H2-01 H5-02						0.00 0.00			1.00E-04 650 1.00E-04 650	216 314 1.45 217		3.0 95 27.0 95
870 871	38 38		F82H F82H	H2-01 H2-01						0.00 0.00			1.00E-04 700 1.00E-04 700	147 235 1.60 157 235 1.50		33.0 96 32.0 96
872 873	38 38		F82H F82H	H2-01 H5-02						0.00			1.00E-04 700 1.00E-04 700	177 255 1.44 150		26.0 93 31.0 96
874 875	38 39	Böhler	F82H EU97	H5-02	Fabrication data					0.00			1.00E-04 700 25	134 548 690 1.26		33.0 97 21 74
876	39	Böhler	EU97	VC2104	Fabrication data	1050 1	750 2			0.00		20 4	550	367 418 1.14	5.01	18 86
877 878	40 41	A696 A703	9Cr2WVTa 9Cr2WVTa	VS3104 VS3104		1050 1 1050 1	ac 750 2 ac 750 2	SUMO-09	HFR 250	0.00 2.13	Na	20 4	5.00E-04 24 5.00E-04 24	519 643 1.24 780 782 1.00	5.81 0.17	23.9 16.7
879 880	41 41	A702 A709	9Cr2WVTa 9Cr2WVTa	VS3104 VS3104		1050 1 1050 1	ac 750 2 ac 750 2	SUMO-09	HFR 250 HFR 300	1.62 1.68	Na Na	20 4 20 4	5.00E-04 24 5.00E-04 24	752 753 1.00 808 812 1.00	0.18 0.27	13.1 15.3
881 882	41 41	A706 A705	9Cr2WVTa 9Cr2WVTa	VS3104 VS3104		1050 1 1050 1	ac 750 2 ac 750 2		HFR 300 HFR 342.5	2.08 2.43	Na Na	20 4 20 4	5.00E-04 24 5.00E-04 24	827 828 1.00 657 714 1.09	0.25 4.13	10.4 19.6
883 884	41 41	A704 B457	9Cr2WVTa EU97	VS3104 E83699	B100	1050 1	ac 750 2	SUMO-09 SUMO-09	HFR 342.5 HFR 250	2.41 2.10 9.80E-08	Na Na	20 4 20 4	5.00E-04 24 5.00E-04 -90	672 729 1.09 983 983 1.00		19.2 11.0
885 886	41 41	B459 B458	EU97 EU97	E83699 E83699	B100 B100			SUMO-09 SUMO-09	HFR 300 HFR 342.5	2.16 1.01E-07 2.45 1.14E-07	Na Na	20 4 20 4	5.00E-04 -90 5.00E-04 -90	1030 1031 1.00 806 876 1.09		9.6 17.6
887 888	41 41	B774 B776	EU97 EU97	E83698 E83698	P14 P14			SUMO-09 SUMO-09	HFR 250 HFR 300	1.64 7.65E-08 1.59 7.42E-08	Na Na	20 4 20 4	5.00E-04 250 5.00E-04 300	636 636 1.00 701 710 1.01	0.10	10.2 10.0
889	41	B775	EU97	E83698	P14	0.00	7 750	SUMO-09	HFR 342.5	2.37 1.11E-07	Na	20 4	5.00E-04 350	566 600 1.06	1.99	10.8
890 891	42 42		EU97-2 2 nd batch EU97-2 2 nd batch		B100 B100	960 1.5 960 1.5	oil 750 4 oil 750 4			0.00		18 3 18 3	1.00E-04 20 1.00E-04 20	482 624 1.29 483 626 1.30		27.9 79.5 28.1 80.1
892	42		EU97-2 2nd batch	993378	B100	960 1.5	oil 750 4			0.00		18 3	1.00E-04 300	425 509 1.20	4.10	20.6 76.6
893 894	42 42		EU97-2 2 nd batch EU97-2 2 nd batch		B100 B100	960 1.5 960 1.5	oil 750 4 oil 750 4			0.00		18 3 18 3	1.00E-04 300 1.00E-04 400	423 508 1.20 467 ######	4.40	20.8 80.4
895	42		EU97-2 2 nd batch		B100	960 1.5	oil 750 4			0.00		18 3	1.00E-04 400	400 464 1.16	3.20	21.3 76.3

					 			1				9		
	B	id.:				TNC		NOL			7	CONDITION	RESULTS	
Ħ	REFERENCE	men ic	als)			HEAT TREATMENT (minor)		RRADIATION			SPECIMEN	CON	RESI	
ROW	REFF	Speci	MAT (Capitals)			HEAT TREA1 (minor)		IRRA			SPEC	TEST	TEST	
				se	_	ent s	emp			pa/s)	h eter	(°C)	.def.	(MPa) (%) of
			ame	d. comp	et form	or nal treatm or cranalizing mp (°C) ormalizing me (h) ooling	empering temp °C) empering time h)		nctor nperature)	e rate (do produced n) fluence m²) sule type Na/H2O	lengt	in rate (sin rate (continuate	2% pl	fracture (MP uniform (%) total (%) eduction of rea (%)
			Name 2nd N	Heat id. Chem.c Ref	Produe	Final tre h/°C Normali temp (°C Normali time (h) time (h)	Temp (°C) Temp	Name	Reactor Tempor (°C) Dose (Dose 1 He pro (pppm) Fast fl (n/cm? Capsu He/Na	Gauge (mm) Gauge (mm)	Strain 1) Test te Envirc diff. a	σy 0,2% (MPa) Tensile str (MPa) Strain harc	σ fract ε unife ε total Reduc area (%
896	42		EU97-2 2 nd batch	993378	B100	960 1.5 oil			0.00		18 3	1.00E-04 500	351 381 1.09	1.10 27.4 88.9
897 898	42 42		EU97-2 2 nd batch EU97-2 2 nd batch	993378 993378	B100 B100	960 1.5 oil 960 1.5 oil	750 4 750 4		0.00 0.00		18 3 18 3	1.00E-04 500 1.00E-04 600	351 385 1.10 250 264 1.06	1.50 27.2 90.6 1.90 34.6 96.1
899	42		EU97-2 2nd batch	993378	B100	960 1.5 oil	750 4		0.00		18 3	1.00E-04 600	236 267 1.13	1.20 33.0 96.8
900 901	42 42		EU97-2 2 nd batch EU97-2 2 nd batch	993378 993378	B100 B100	960 1.5 oil 960 1.5 oil	750 4 750 4		0.00 0.00		18 3 18 3	1.00E-04 700 1.00E-04 700	112 134 1.20 115 132 1.15	2.60 47.7 99.1 2.80 45.8 99.2
902	42		EU97-2 2 batch	993394	B100	960 1.5 oil	750 4		0.00		18 3	1.00E-04 20	494 628 1.27	7.50 25.0 77.9
903	42		EU97-2 2 nd batch	993394	B100	960 1.5 oil			0.00		18 3	1.00E-04 20	483 627 1.30	7.10 28.3 80.1
904 905	42 42		EU97-2 2 nd batch EU97-2 2 nd batch	993394 993394	B100 B100	960 1.5 oil 960 1.5 oil	750 4 750 4		0.00 0.00		18 3 18 3	1.00E-04 300 1.00E-04 300	431 518 1.20 418 511 1.22	4.20 20.2 78.5 4.40 20.1 79.2
906	42		EU97-2 2nd batch	993394	B100	960 1.5 oil	750 4		0.00		18 3	1.00E-04 400	406 473 1.17	4.80 21.4 79.8
907 908	42 42		EU97-2 2 nd batch EU97-2 2 nd batch	993394 993394	B100 B100	960 1.5 oil 960 1.5 oil	750 4 750 4		0.00		18 3 18 3	1.00E-04 400 1.00E-04 500	401 475 1.18 356 388 1.09	4.60 20.6 78.2 2.50 27.2 88.2
909	42		EU97-2 2 batch	993394	B100	960 1.5 oil			0.00		18 3	1.00E-04 500	353 388 1.10	2.10 28.6 88
910	42		EU97-2 2nd batch	993394	B100	960 1.5 oil	750 4		0.00		18 3	1.00E-04 600	251 263 1.05	1.40 32.1 96.3
911 912	42 42		EU97-2 2 nd batch EU97-2 2 nd batch	993394 993394	B100 B100	960 1.5 oil 960 1.5 oil	750 4 750 4		0.00 0.00		18 3 18 3	1.00E-04 600 1.00E-04 700	244 272 1.11 118 129 1.09	1.30 30.7 96.1 2.70 41.0 99.2
913	42		EU97-2 2nd batch	993394	B100	960 1.5 oil	750 4		0.00		18 3	1.00E-04 700	119 134 1.13	3.20 40.6 98.9
914 915	42 42		EU97-2 2 nd batch EU97-2 2 nd batch	993391 993391	P25 P25	980 0.5 980 0.5	760 1.5 760 1.5		0.00 0.00		18 3 18 3	1.00E-04 20 1.00E-04 20	537 661 1.23 531 657 1.24	7.20 24.5 82.4 5.80 25.4 82.9
915	42		EU97-2 2 batch EU97-2 2 nd batch	993391	P25	980 0.5	760 1.5		0.00		18 3	1.00E-04 20 1.00E-04 300	469 539 1.15	3.80 25.4 82.9
917	42		EU97-2 2 nd batch	993391	P25	980 0.5	760 1.5		0.00		18 3	1.00E-04 300	462 539 1.17	3.70 18.6 80.6
918 919	42 42		EU97-2 2 nd batch EU97-2 2 nd batch	993391 993391	P25 P25	980 0.5 980 0.5	760 1.5 760 1.5		0.00 0.00		18 3 18 3	1.00E-04 400 1.00E-04 400	443 498 1.12 442 498 1.13	2.90 20.4 82.4 2.90 20.3 86.6
920	42		EU97-2 2nd batch	993391	P25	980 0.5	760 1.5		0.00		18 3	1.00E-04 500	387 409 1.06	1.00 24.1 90.8
921 922	42 42		EU97-2 2 nd batch EU97-2 2 nd batch	993391 993391	P25 P25	980 0.5 980 0.5	760 1.5 760 1.5		0.00		18 3 18 3	1.00E-04 500 1.00E-04 600	385 408 1.06 261 270 1.03	1.00 30.3 93.1 0.80 29.1 96.5
922	42		EU97-2 2 batch EU97-2 2 nd batch	993391	P25	980 0.5	760 1.5		0.00		18 3	1.00E-04 600 1.00E-04 600	250 275 1.10	2.60 28.9 95.9
924	42		EU97-2 2 nd batch	993391	P25	980 0.5	760 1.5		0.00		18 3	1.00E-04 700	115 142 1.23	2.20 55.2 98.9
925 926	42 42		EU97-2 2 nd batch EU97-2 2 nd batch	993391 993393	P25 P14	980 0.5 980 0.37	760 1.5 760 1.5		0.00 0.00		18 3 18 3	1.00E-04 700 1.00E-04 20	117 141 1.21 546 683 1.25	4.30 26.3 99.3 6.70 24.9 80.6
927	42		EU97-2 2nd batch	993393	P14	980 0.37	760 1.5		0.00		18 3	1.00E-04 20	540 682 1.26	6.50 24.9 79.5
928 929	42 42		EU97-2 2 nd batch EU97-2 2 nd batch	993393 993393	P14 P14	980 0.37 980 0.37	760 1.5 760 1.5		0.00 0.00		18 3 18 3	1.00E-04 300 1.00E-04 300	483 562 1.16 470 556 1.18	5.00 20.7 84.5 3.50 18.8 80.9
930	42		EU97-2 2 batch	993393	P14	980 0.37	760 1.5		0.00		18 3	1.00E-04 400	448 514 1.15	2.60 20.5 83.7
931	42		EU97-2 2 nd batch	993393	P14	980 0.37	760 1.5		0.00		18 3	1.00E-04 400	453 515 1.14	3.50 18.8 80.6
932 933	42 42		EU97-2 2 nd batch EU97-2 2 nd batch	993393 993393	P14 P14	980 0.37 980 0.37	760 1.5 760 1.5		0.00 0.00		18 3 18 3	1.00E-04 500 1.00E-04 500	391 424 1.08 394 421 1.07	1.50 24.6 91 1.70 22.8 90.6
934	42		EU97-2 2nd batch	993393	P14	980 0.37	760 1.5		0.00		18 3	1.00E-04 600	262 277 1.06	1.30 27.9 96.3
935 936	42 42		EU97-2 2 nd batch EU97-2 2 nd batch	993393 993393	P14 P14	980 0.37 980 0.37	760 1.5 760 1.5		0.00		18 3 18 3	1.00E-04 600 1.00E-04 700	256 276 1.08 109 143 1.31	1.40 32.5 97 2.30 47.4 98.9
937	42		EU97-2 2 nd batch	993393	P14	980 0.37	760 1.5		0.00		18 3	1.00E-04 700	114 143 1.25	3.90 33.3 98.7
938	42		EU97-2 2 nd batch	993394P	P8	980 0.25	760 1.5		0.00		18 3	1.00E-04 20	537 678 1.26	6.20 21.8 77.3
939 940	42 42		EU97-2 2 nd batch EU97-2 2 nd batch	993394P 993394P	P8 P8	980 0.25 980 0.25	760 1.5 760 1.5		0.00 0.00		18 3 18 3	1.00E-04 20 1.00E-04 300	551 676 1.23 473 562 1.19	6.30 24.0 79.5 4.30 19.9 80.6
941	42		EU97-2 2nd batch	993394P	P8	980 0.25	760 1.5		0.00		18 3	1.00E-04 300	479 555 1.16	4.70 20.0 81.2
942	42		EU97-2 2 nd batch EU97-2 2 nd batch	993394P	P8	980 0.25	760 1.5		0.00		18 3	1.00E-04 400 1.00E-04 400	448 517 1.15	4.20 21.1 82.9
943 944	42 42		EU97-2 2 batch EU97-2 2nd batch	993394P 993394P	P8	980 0.25 980 0.25	760 1.5 760 1.5		0.00 0.00		18 3 18 3	1.00E-04 400 1.00E-04 500	427 514 1.20 381 419 1.10	3.90 23.5 80.4 1.50 14.4 91.6
945	42		EU97-2 2 nd batch	993394P	P8	980 0.25	760 1.5		0.00		18 3	1.00E-04 500	382 419 1.10	1.90 27.6 91.4
946 947	42 42		EU97-2 2 nd batch EU97-2 2 nd batch	993394P 993394P	P8	980 0.25 980 0.25	760 1.5 760 1.5		0.00 0.00		18 3 18 3	1.00E-04 600 1.00E-04 600	254 271 1.07 237 279 1.18	1.50 18.6 97.1 1.20 32.4 97
948	42		EU97-2 2nd batch	993394P	P8	980 0.25	760 1.5		0.00		18 3	1.00E-04 700	113 136 1.20	4.00 33.0 99.1
949	42		EU97-2 2 nd batch	993394P	P8	980 0.25	760 1.5		0.00		18 3	1.00E-04 700	109 134 1.23	1.90 51.0 99.3
950 951	42 42		EU97-2 2 nd batch EU97-2 2 nd batch	993402 993402	P25 P25	980 0.5 980 0.5	760 1.5 760 1.5		0.00 0.00		18 3 18 3	1.00E-04 20 1.00E-04 20	549 663 1.21 539 664 1.23	7.50 25.1 83.2 6.30 24.5 82.4
952	42		EU97-2 2 nd batch	993402	P25	980 0.5	760 1.5		0.00		18 3	1.00E-04 300	474 552 1.16	3.60 18.8 85.3

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1016 1017	953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 971 972 973 974 975 976 977 978 979 980 981 981	ROW NR
43,44 45,44 45,44 45,44 45,45 45 45 45 45 45 45 45 45 45 45 45 45 4	42 42 42 42 42 42 42 42 42 9 9 9 9 9 9 9	REFERENCE
A025 A023 A026 A024 A038 A033 A039 A035 EU2T08 EU2T19 EU2T04 EU2T12 EU2T07 EU2T07 EU2T07 EU2T07 EU2T105 EU2T15 EU2T15 EU2T15 EU2T16		Specimen id.:
F82H mod IEA	EU97-2 2 nd batch 993402 EU97-109 E83967 EU97-1099 E83967 EU97-1099 E83967 EU97-1099 E83967 EU97-1099 E83967 EU97-10996-1	me MAT d Name (Capitals) at id. nem comp. See
P8 P8 P8 P8 P8 P8 P8 P8 P8 P8 P8 P8 P8 P	P25	uct form
980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5 980 0.25 760 1.5		inal treatment HEAT YeZ romalizing rom (°C) romalizing rom (h) roding onditions empering temp C) in the (h) roding onditions empering temp C)
	Name React Temp	e IRRADIATION
1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ee (dpa) te rate (dpa/s) produced m) mi msile tyne suile tyne
7.62 =0.7 7.62 =	S	Na/H2O ands ands (c) See length (c) SPECIMEN (c) See diameter (c) See diameter
\$ 1.11E-03 300 1.10E-04 -100 1.00E-02 25 5 1.00E-03 25 1.00E-03 500 5 1.10E-03 500 5 1.10E-03 300 6 1.10E-03 -100 1.11E-03 35 6 1.10E-03 300 6 1.10E-03 -100 1.10E-03 -100 1.10E-04 -150 1.10E-04 -75 1.10E-04 -75 1.00E-04 0 1.00E-04 0 1.00E-04 0 1.00E-04 0 1.00E-04 0 1.00E-04 22 1.00E-04 300 1.00E-04 300		nrate (sec- TEST CONDITIONS temp (°C) onment if
960 968 1.01 0.47 7.6 898 911 1.01 0.45 7.8 889 896 1.01 0.38 8.2 762 770 1.01 0.32 7.3 1002 1002 1.00 0.20 7.2 510 630 1.24 6.66 18.2 527 637 1.21 7.54 18.3 535 620 1.16 4.30 14.5 401 444 1.11 1.92 11.2 678 866 1.28 13.40 22.8 577 734 1.27 7.50 17.8 513 625 1.22 5.00 13.8 1229 1247 1.01 0.40 6.4 1040 1040 1.00 0.17 7.1 918 918 1.00 0.20 6.3 569 942 1023 1.09 1.50 8.5 839 858 1.02 0.80 9.3 755 774 1.03 0.50 6.7 1247 1247 1.00 0.10 11.0 -1 1232 1232 1.00 - 12.6 67.1 961 961 1.00 0.18 12.3 74.6 955 955 1.00 0.12 11.5 79.5 851 851 1.00 0.23 12.2 79.7 853 853 1.00 0.13 11.6 78.8 847 847 1.00 0.18 11.6 82.3 836 836 1.00 0.16 12.4 79.9 700 700 1.00 0.10 10.9 78.8 688 688 1.00 0.12 1.1 79.0 688 688 1.00 0.12 13.8 1012 1012 1.00 0.22 14.1 973 973 1.00 0.21 13.8	10 2 2 2 3 3 2 4 4 4 4 4 4 4 4 4	V 0,2% pl.def. WPa) TEST RESULTS ensile strength MPa) train hardening apabriity fracture (MPa) toral (%) total (%)

ROW NR	REFERENCE	Specimen id.:	MAT	(Capitals)			HEAT TREATMENT	(minor)				IRRADIATION						SPECIMEN		TEST CONDITIONS	TEST RESULTS		_		
			Name	2nd Name	Heat id. Chem.comp. See Ref	Product form	Final treatment h/°C	Normalizing temp (°C)	Normalizing time (h) Cooling	Tempering temp	Tempering time (h)	Name	Reactor Temperature (°C)	Dose (dpa)	Dose rate (dpa/s) He produced (ppm)	Fast fluence (n/cm²) Capsule type He/Na/H2O	Remarks	Gauge length (mm)	Gauge diameter (mm)	Strain rate (sec-1) Test temp (°C) Environment if diff. air	σу 0,2% pl.def. (MPa)	(MPa) Strain hardening capability	σ fracture (MPa)	E uniform (%) E total (%) Reduction of	area (%)
1018	46	E1-17-t	EU97		E83697	P25		980	0.5	760	1.5	ARBOR-1	BOR-60 336	30.20						350	930	930 1.00	0	21 13.5	1
1019	47	EUROF1-s	EU97		E83697	P25		980	0.5	760	1.5	WTZ	BOR-60 330	15.00				15		250	922 9	23.5 1.00	0	24 10.22	
1020	47	EUROF1-s	EU97		E83697	P25		980	0.5	760		WTZ	BOR-60 330	15.00				15		250	922 9			.28 9.82	
1021		EUROF1-s	EU97		E83697	P25		980	0.5	760		WTZ	BOR-60 330	15.00				15		300		911 1.02		.32 9.75	
1022		EUROF1-s	EU97		E83697	P25		980	0.5	760		WTZ	BOR-60 330	15.00				15		300		894 1.02		.30 9.47	
1023		EUROF1-s	EU97		E83697	P25		980	0.5	760		WTZ	BOR-60 330	15.00				15		350		874 1.01		.30 9.41	- 1
1024	47	EUROF1-s	EU97		E83697	P25		980	0.5	760	1.5	WTZ	BOR-60 330	15.00				15		350	864	870 1.01	0	.26 9.45	

Overall database.xls Page 16 of 16

ANNEX 2

Literature references for the tensile properties database

Number Reference

- 1 Mechanical properties of the European reference RAFM steel (Eurofer97) before and after irradiation at 300°C (0,3-2 dpa), Irfuma I-III; SCK-CEN Mol, BLG-962, November 2003, E.Lucon
- 2 NRG Irradiation Testing: Report on 300°C and 60°C Irradiated RAFM Steels, Final Report for Subtask TW2-TTMS-001aD06 and TW2-TTMS-001bD12, Petten, 30 August 2005, 20023/0568497/P. J.Rensman
- 3 Table from Alamo sent by J. Henry 29-08-2006 and report DMN/SRMA/NT/2005-2767/A
- 4 Mechanical properties and microstructure of HFR-irradiated martensitic low-activation alloys, E.I. Materna et al., ASTM-STP 1366, M.L. Hamilton, A.S.Kumar, S.T.Rosinski and M.L.Grossbeck, Eds., ASTM, 1999 and tables from private communication
- 6 Yamamoto database: ref 166 (JAERI) Data not retained in DATABASE: probably averages
- 7 Tensile and Charpy impact properties of irradiated reduced activaion ferritic steels, R.L.Klueh, D.J.Alexander, ASTM-STP 1325, R.K.Nanstad, M.L.Hamilton, F.A.Garner, A.S.Kumar, Eds., ASTM 1999
- 8 The microstructure of Chromium-Tungsten steels, R.L.Klueh, P.J.Maziasz, Met.Trans. A, vol 20A, March 1989, 373-382
- 9 P. Spätig, Effects of proton irradiations on the mechanical properties of the Eurofer97 steel, Final Report TASK TW1-TTMS-001 deliverable 3 Period 01/2002 12/2006, 2/2/2007.
- Tensile properties of 2,5 dpa 300°C neutron irradiated RA FM plate, powder HIP and EB and TIG weld, NRG Report 20023/99,26704/P (20 November 2000) E.V. van Osch, J.Boskeljon, J. van Hoepen, J. Rensman
- 11 Mechanical characterization of EUROFER97 irradiated to 0.32 dpa at 300°C, SCK-CEN Mol BLG-896, March 2002, E.Lucon, A.Leenaers
- 12 Elevated temperature tensile properties of irradiated 9Cr1MoVNb steel, R.L.Klueh, J.M.Vitek, J.Nucl.Mat., 132 (1985) 27-31
- 13 Fluence and helium effects on the tensile properties of ferritic steels at low temperatures, R.L.Klueh, J.M.Vitek, J.Nucl.Mat., 161 (1989) 13-23 [5]
- 14 Z. Fei, W. Kuibei, W. Farong, L. Yi, X. Yongii and H. Qunying, *The Structure and Properties of Low Activation Ferritic/Martensitic Steels*, Materials Science Forum Vols. 475-479 (2005) pp. 1383-1386.
- 15 Q. Huang, Y. Wu, C. Li, Y. Li, M. Chen, M. Zhang, L. Peng, Z. Zhu, Y. Song and S. Gao, *Progress in Development of China Low Activation Martensitic Steel for Fusion Application*, Journal of Nuclear Materials (2007), doi: 10.1016/j.jnucmat.2007.03.153
- 16 Y. Li, Q. Huang, Y. Wu, T. Nagasaka and T. Muroga, Mechanical Properties and Microstructures of China Low Activation Martensitic Steel Compared with JFL-1, Journal of Nuclear Materials (2007), doi: 10.1016/j.jnucmat.2007.03.236
- 17 J. Yu, Q. Huang, F. Wan, Research and Development on the Chinese Low Activation Martensitic Steel (CLAM), Journal of Nuclear Materials (2007), doi: 10.1016/j.jnucmat.2007.03.236
- 18 A. Alamo, P. Wident, S. Urvoy and Y. Tournier, Mechanical Properties of Eurofer 97 Steel in the As-Received Condition, CEA report NT SRMA 01-2419, March 2001
- 19 Rieth, M.; Schirra, M.; Falkenstein, A.; Graf, P.; Heger, S.; Kempe, H.; Lindau, R.; Zimmermann, H., EUROFER 97. Tensile, charpy, creep and structural tests, Report FZKA-6911 (October 2003)
- 20 CEA Report DMT 97/008
- 21 CEA Report DMT 97/463
- 22 SCK, unpublished data
- P. Fernández, A.M. Lancha et al. "Reduced activation ferritic/martensitic steel Eurofer'97 as possible structural material for fusion devices, metallurgical chracterization on as-received condition and after simulated service conditions". Technical Report Ciemat N° 1048, December 2004.
- 24 K.Shiba et al., Euromat 96, October 23,1996, Bournemouth, UK.
- 25 CEA/SRMA, DMT 97/008
- 26 CEA/SRMA, DMT 97/463
- 27 Reference unknown (database Tavassoli)?
- 28 JAERI, Summary Report of IEA Round Robin Testing in Japan

Overall database - References Page 1 of 2

Number Reference

- 29 A. Alamo, CEA/SRMA Report
- 30 CIEMAT in Schirra et al, FZKA 6008, Dec. 1997
- 31 NRG Report
- 32 JAERI internal report
- 33 K.Shiba etd, ICFRM-7, Obninsk, Russia.
- 34 L. Schäfer in Schirra et al, FZKA 6008, Dec. 1997
- 35 M. Schirra, et al, FZK 6265, 1999
- 36 M. Schirra, et al, FZK Interner Bericht 31.02.02, IMF-Nr 046, July 1998
- 37 Schirra et al, FZKA 6008, Dec. 1997
- 38 JAERI Reference unknown?
- 39 Fabrication certificate Böhler
- 40 J. Rensman et al., NRG SPIRE report, October 2004
- 41 SUMO-09, unpublished data
- 42 E. Materna-Morris et al., FZK Report, Interner Bericht 31.40.04, March 2007
- 43 K. Shiba et al., "Tensile Results of Low-Activation Martensitic Steels Irradiated in HFIR aRB-11J and 12J Spectrally Tailored Capsules", Fusion Materials Semiannual Progress Report, DOE/ER-0313/28, 131 (2000)
- 44 H. Tanigawa et al., "Charpy Impact Properties of Reduced Activation Ferritic/Martensitic Steels Irradiated in HFIR Up to 20 dpa", Fusion Science and Technology, Vol.44, 206-210, July 2003.
- 45 E. Lucon, IRFUMA-5M unpublished data
- 46 C. Petersen, ARBOR-1 unpublished data
- 47 C. Petersen, WTZ unpublished data

Overall database - References Page 2 of 2

ANNEX 3

Tensile data pooled according to irradiation temperature

REFERENCE	Specimen id.:	TAM		(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
		Name		2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
	I29T09_E15	EU9			PSI			PIREX	50	0.22		50	711	185.1	766	15.1	1.40		
9	I29T01_E1 I29T02_E4	EU9 EU9			PSI PSI			PIREX PIREX	50 50	0.62 0.62		50 50	617 717	91.1 191.1	714 762	8.8 18.3	1.27 2.50		
9	I29T02_E4	EU9			PSI			PIREX	50	0.62		50	636	110.1	762 749	8.2	1.40		
9	I29T18	EU9			PSI			PIREX	50	1.27		50	739	213.1	772	26.2	1.10		
9	I29T17	EU9			PSI			PIREX	50	1.27		50	750	224.1	823	12.4	1.75		
2	B596	EU9	7 2/10 2	2/11	E83697	P25	SIWAS-09	HFR	60	2.30	5.00E-04	27	853	320.1	855	0.0	0.30	14.3	87
2	B884	EU9			E83698	P8	SIWAS-09	HFR	60	2.40	5.00E-04	27	859	326.1	863	0.0	0.30	14.8	87
2	B603		7 2/10 2		E83697	P25	SIWAS-09	HFR	60	2.20	5.00E-04	50	846	320.1	849	0.0	0.30	14.7	82
2	B597		7 2/10 2		E83697	P25	SIWAS-09	HFR	60	2.30	5.00E-04	50	848	322.1	848	0.0	0.20	14.7	84
2	B885		7 66/3		E83698	P8	SIWAS-09	HFR	60	2.50	5.00E-04	50	831	305.1	832	0.0	0.20	14.8	82
2	B598		7 2/10 2		E83697	P25	SIWAS-09	HFR	60	2.10	5.00E-04	100	781	263.1	783	0.0	0.30	14.2	84
2	B886		7 66/3		E83698	P8	SIWAS-09	HFR	60	2.30	5.00E-04	100	781	263.1	786	0.0	0.30	14.7	0
2	B887	EU9			E83698	P8	SIWAS-09	HFR	60	2.30	5.00E-04	200	705	199.0	706	0.0	0.30	14.7	87
2 2	B599	EU9 EU9	7 2/10 2 7 66/3 (E83697 E83698	P25 P8	SIWAS-09 SIWAS-09	HFR HFR	60	2.50	5.00E-04	200	707	201.0 135.4	709	0.0	0.30	14.3	84
2 2	B888		7 00/3 (7 2/10 2		E83697	P8 P25			60	2.10	5.00E-04 5.00E-04	300	614	135.4	618	0.0 0.0	0.30	14.6	84
2	B600 B889	EU9 EU9			E83698	P23 P8	SIWAS-09 SIWAS-09	HFR HFR	60 60	2.50 2.20	5.00E-04 5.00E-04	300 400	618 533	97.1	621 610	9.3	0.20 4.30	14.4 18.8	89 84
2	В601	EU9			E83697	P25	SIWAS-09	HFR	60	2.20	5.00E-04 5.00E-04	400	543	107.1	601	11.5	4.30	18.8	84 82
2	B890	EU9			E83698	P8	SIWAS-09 SIWAS-09	HFR	60	2.40	5.00E-04 5.00E-04	500	438	55.4	506	8.9	3.40	21.1	82 88
2	B602	EU9			E83697	P25	SIWAS-09	HFR	60	2.50	5.00E-04	500	433	50.4	484	10.7	2.40	21.3	87
10	7161	F82I			9741	7,5mmP6-14	SIWAS-6	HFR	80	1.67	5.00E-04	150	722	234.8	722	0.0	0.20	12.4	87
10	7164	F82I			9741	7,5mmP6-14	SIWAS-6	HFR	80	1.95	5.00E-04	150	726	238.8	726	0.0	0.20	12.6	87

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	σу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
	41 B		EU97		E83699	B100	SUMO-09	HFR	250	2.10	5.00E-04	-90	983	324.3	983	0.0	0.16	11.0	
		29T12	EU97		PSI			PIREX	250	0.24		250	515	20.3	592	9.1	4.30		
		9T13 9T04	EU97		PSI			PIREX	250	0.24		250	552	57.3	588 661	17.7	3.90		
		9104 9T20	EU97 EU97		PSI PSI			PIREX PIREX	250 250	0.63 1.36		250 250	614 570	119.3 75.3	638	15.2 10.6	1.80 1.00		
	41 B		EU97 EU97		E83698	P14	SUMO-09	HFR	250	1.64	5.00E-04	250	636	141.3	636	0.10	10.20		
	4	31			E03070	P	Teseo	HFR	250	0.80	1.60E-04	250	625	141.5	632	704.0	0.50	11.9	80
	4	32	F82H			P	Teseo	HFR	250	0.80	1.60E-04	250	627		630	0.0	0.50	11.7	79
	10	8845			9753	25mmP31W-20	ILAS-6	HFR	275	2.08	5.00E-04	27	840	313.4	851	267.0	0.2	11	81
	10	8838				25mmP31W-20	ILAS-6	HFR	275	2.55	5.00E-04	27	874	347.4	898	49.1	0.4	10.3	70
	10	8842			9753	25mmP31W-20	ILAS-6	HFR	275	2.49	5.00E-04	80	867	363.5	873	0.0	0.3	10.1	80
	10	8844	F82H		9753	25mmP31W-20	ILAS-6	HFR	275	2.06	5.00E-04	325	722	262.0	727	0.0	0.2	9.2	77
	10	8837	F82H		9753	25mmP31W-20	ILAS-6	HFR	275	2.48	5.00E-04	325	801	341.0	801	0.0	0.2	10.1	78
	10	8849			9753	25mmP31W-20	ILAS-6	HFR	275	2.36	5.00E-04	425	674	241.9	686	106.5	0.4	8.7	75
	10	8839			9753	25mmP31W-20	ILAS-6	HFR	275	2.57	5.00E-04	425	750	317.9	762	138.0	0.2	9	78
	10	8848			9753	25mmP31W-20	ILAS-6	HFR	275	2.28	5.00E-04	500	524	126.7	541	38.9	0.5	13	81
	5	81					Phase Ib	HFR	250	2.40	1.60E-04	250	608	183.4	628	38.1	2.50	13.5	79
	5	82	JLF1			_	Phase Ib	HFR	250	2.40		250	610	185.4	621	103.6	1.80	13.1	79
	4	52				P	Teseo	HFR	250	0.80	1.60E-04	250	632	184.9	636	0.0	0.80	11.1	74
	5	U1				P	Phase Ia	HFR	250	2.40	1.60E-04	250	734	286.9	737	0.0	0.27	9.9	77
I	5	U2	OPTIV			P	Phase Ia	HFR	250	2.40	1.60E-04	250	714	266.9	714	0.0	0.23	9.8	61

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION					TEST CONDITIONS		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Sqrt(dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
	1,11	R	EU97		E83699	B100	IRF II	BR2	300	0.15	0.39		-150	972	130.6	1000	45.8	6.78	24.0	67
	l,11 l,11	5	EU97 EU97		E83699 E83699	B100 B100	IRF II IRF I	BR2 BR2	300 300	0.31 0.34	0.56 0.58		-150 -150	993 984	151.6 142.6	1017 993	59.8 0.0	4.34 7.09	19.0 23.0	72 70
	1,11 1,11	D	EU97		E83699	B100	IRF I	BR2	300	0.34	0.58		-150	1001	159.6	1001	0.0	0.17	24.0	74
	41	B459	EU97		E83699	B100	SUMO-09	HFR	300	2.16	1.47	5.00E-04	-90	1030	371.2	1031	0.0	0.29	9.6	, ,
	1,11	C	EU97		E83699	B100	IRF I	BR2	300	0.36	0.60		-75	745	115.5	818	12.3	8.06	22.0	75
1	1,11	I	EU97		E83699	B100	IRF I	BR2	300	0.37	0.61		-75	753	123.5	816	14.1	7.34	21.0	76
	1,11	T	EU97		E83699	B100	IRF II	BR2	300	0.44	0.66		-75	781	151.5	829	18.7	5.68	19.0	73
	1,11	U	EU97		E83699	B100	IRF II	BR2	300	0.57	0.75		-75	816	186.5	848	30.5	4.68	19.0	79
	1,11	P	EU97		E83699	B100	IRF III	BR2	300	0.99	0.99		-75	882	252.5	882	0.0	1.87	13.0	72
-	1,11	H1	EU97	12.6614	E83699	B100	IRF III	BR2	300	1.73	1.32	5 00E 04	-75	958	328.5	961	0.0	0.27	12.0	71 75
	2 2	B900 C299	EU97 66. EU97 2/1		E83698 E83697	P8 P25	SUMO-04 SUMO-04	HFR HFR	300 300	2.00 2.20	1.41 1.48	5.00E-04 5.00E-04	27 27	839 901	306.1 368.1	840 902	0.0 0.0	0.30 0.30	13.3	75 76
	2	C299	EU97 2/1		E83698	P8	SOSIA-02	HFR	300	2.40	1.46	5.00E-04 5.00E-04	27	901 854	321.1	902 862	0.0	0.30	13.0 12.9	80
	2	B906	EU97 66		E83698	P8	SUMO-04	HFR	300	2.60	1.61	5.00E-04	27	908	375.1	908	0.0	0.20	12.6	81
	2	B616	EU97 2/1		E83697	P25	SUMO-04	HFR	300	2.70	1.64	5.00E-04	27	910	377.1	910	0.0	0.20	12.6	75
	2	B594	EU97 2/1		E83697	P25	SUMO-02	HFR	300	7.50	2.74	5.00E-04	27	1047	514.1	1047	0.0	0.10	11.5	70
	2	B589	EU97 2/1		E83697	P25	SUMO-02	HFR	300	9.00	3.00	5.00E-04	27	1081	548.1	1081	0.0	0.20	11.3	69
1	1,11	F	EU97		E83699	B100	IRF I	BR2	300	0.40	0.63		30	672	140.2	720	16.2	5.40	18.0	80
1	1,11	D1	EU97		E83699	B100	IRF III	BR2	300	0.48	0.69		30	667	135.2	699	24.2	3.82	16.0	81
	1,11	V	EU97		E83699	B100	IRF II	BR2	300	0.71	0.84		30	751	219.2	751	0.0	0.32	12.0	79
	1,11	W	EU97		E83699	B100	IRF II	BR2	300	0.83	0.91		30	775	243.2	775	0.0	0.21	13.0	78
	1,11	O	EU97		E83699	B100	IRF III	BR2	300	1.32	1.15		30	839	307.2	840	0.0	0.19	10.0	81
	1,11	N	EU97		E83699	B100	IRF III	BR2	300	1.66	1.29		30	872	340.2	873	0.0	0.20	10.0	75 76
	1,11	M	EU97 EU97		E83699	B100	IRF III IRF I	BR2	300	2.14	1.46		30	898	366.2	899	0.0	0.18	10.0	76 70
-	1,11 2	B902	EU97 EU97 66	/2 66/4	E83699 E83698	B100 P8	SUMO-04	BR2 HFR	300 300	0.23 2.30	0.48 1.52	5.00E-04	32 50	650 814	118.8 288.1	708 815	13.3 0.0	5.65 0.10	18.0 13.1	79 72
	2	C295	EU97 00.		E83697	P25	SUMO-04	HFR	300	2.60	1.61	5.00E-04 5.00E-04	50	894	368.1	894	0.0	0.10	12.7	75
	2	B590	EU97 2/1		E83697	P25	SUMO-04 SUMO-02	HFR	300	8.90	2.98	5.00E-04	50	1066	540.1	1066	0.0	0.20	11.3	70
	2	B903	EU97 66		E83698	P8	SUMO-04	HFR	300	2.10	1.45	5.00E-04	100	799	281.1	799	0.0	0.20	12.9	75
	2	C275	EU97 66		E83698	P8	SOSIA-02	HFR	300	2.40	1.55	5.00E-04	100	832	314.1	835	0.0	0.20	12.6	74
	2	C296	EU97 2/1	10 2/11	E83697	P25	SUMO-04	HFR	300	2.40	1.55	5.00E-04	100	879	361.1	879	0.0	0.10	12.5	71
	2	B593	EU97 2/1	10 2/11	E83697	P25	SUMO-02	HFR	300	8.20	2.86	5.00E-04	100	1029	511.1	1029	0.0	0.10	11.2	75
1	1,11	X	EU97		E83699	B100		BR2	300	0.16	0.40		150	600	87.0	655	13.0	4.95	16.0	80
	1,11	В	EU97		E83699	B100	IRF I	BR2	300	0.33	0.57		150	610	97.0	656	15.4	4.55	17.0	80
	1,11	Y	EU97		E83699	B100	IRF II	BR2	300	0.33	0.57		150	610	97.0	656	15.4	3.30	17.0	80
	1,11	H	EU97		E83699	B100	IRF I	BR2	300	0.39	0.62		150	619	106.0	654 716	20.3	4.25	16.0	81
	l,11 l,11	E1 F1	EU97 EU97		E83699 E83699	B100 B100	IRF III IRF III	BR2 BR2	300 300	0.89 1.17	0.94 1.08		150 150	714 748	201.0 235.0	716 750	0.0 0.0	0.12 0.16	11.0 10.0	81 81
1	2	C276	EU97 EU97 66	/3 66/4	E83698	P8	SOSIA-02	HFR	300	2.30		5.00E-04	200	748 785	233.0	730 789	0.0	0.16	12.2	78
	2	B904	EU97 66		E83698	P8	SUMO-04	HFR	300	2.50		5.00E-04	200	799	293.0	799	0.0	0.20	12.2	76
1	2	C297	EU97 2/1		E83697	P25	SUMO-04	HFR	300	2.50		5.00E-04	200	812	306.0	812	0.0	0.20	12.2	69
1	2	B592	EU97 2/1		E83697	P25		HFR	300	8.40		5.00E-04	200	937	431.0	937	0.0	0.10	10.9	74

1,11	A	EU97		E83699	B100	IRF I	BR2	300	0.27	0.52		225	579	78.1	610	21.5	2.39	14.0	81
1,11	G	EU97		E83699	B100	IRF I	BR2	300	0.40	0.63		225	585	84.1	620	19.2	2.62	14.0	81
1,11	B1	EU97		E83699	B100	IRF II	BR2	300	0.75	0.87		225	681	180.1	681	0.0	0.22	11.0	79
1,11	C1	EU97		E83699	B100	IRF II	BR2	300	0.89	0.94		225	691	190.1	691	0.0	0.22	10.0	75
, 2	H867		3/7 4/14	E83698	P14	STROBO-01	HFR	300	0.22	0.47	5.00E-04	300	532	53.4	560	21.9	1.20	n.a.	82
2	H861		3/7 4/14	E83698	P14	STROBO-01	HFR	300	0.26	0.51	5.00E-04	300	543	64.4	577	18.4	2.10		86
																		n.a.	
2	H865		3/7 4/14	E83698	P14	STROBO-01	HFR	300	0.28	0.53	5.00E-04	300	521	42.4	543	28.0	0.60	n.a.	80
1,11	K	EU97		E83699	B100	IRF I	BR2	300	0.30	0.55		300	562	83.4	597	18.5	2.36	13.0	81
1,11	Е	EU97		E83699	B100	IRF I	BR2	300	0.40	0.63		300	569	90.4	593	28.0	1.43	13.0	81
1,11	Z	EU97		E83699	B100	IRF II	BR2	300	0.47	0.69		300	617	138.4	627	133.4	1.67	11.0	76
2	H862	EU97	3/7 4/14	E83698	P14	STROBO-02	HFR	300	0.54	0.73	5.00E-04	300	589	110.4	594	0.0	0.50	n.a.	81
2	H866	EU97	3/7 4/14	E83698	P14	STROBO-02	HFR	300	0.57	0.75	5.00E-04	300	560	81.4	572	73.5	0.40	n.a.	83
1,11	A1	EU97		E83699	B100	IRF II	BR2	300	0.61	0.78		300	642	163.4	643	0.0	0.54	11.0	76
2	H868		3/7 4/14	E83698	P14	STROBO-02	HFR	300	0.61	0.78	5.00E-04	300	577	98.4	589	77.7	0.50	n.a.	78
	0		3// 7/17			IRF III					J.00L-04	300							82
1,11	`	EU97		E83699	B100		BR2	300	0.66	0.81			626	147.4	629	0.0	0.68	10.0	
1,11	G1	EU97		E83699	B100	IRF III	BR2	300	1.45	1.20		300	720	241.4	724	0.0	0.11	9.0	82
41	B776	EU97		E83698	P14	SUMO-09	HFR	300	1.59	1.26	5.00E-04	300	701	222.4	710	291.3	0.30	10.0	
2	B901	EU97 6	66/3 66/4	E83698	P8	SUMO-04	HFR	300	1.80	1.34	5.00E-04	300	720	241.4	723	0.0	0.20	12.1	70
1,11	I1	EU97		E83699	B100	IRF III	BR2	300	2.01	1.42		300	739	260.4	747	1045.0	0.11	9.0	77
2	C301	EU97 2	2/10 2/11	E83697	P25	SUMO-04	HFR	300	2.10	1.45	5.00E-04	300	764	285.4	764	0.0	0.10	12.1	72
2	C277	EU97 6	66/3 66/4	E83698	P8	SOSIA-02	HFR	300	2.30	1.52	5.00E-04	300	746	267.4	746	0.0	0.20	11.7	74
2	B907	EU97 6	66/3 66/4	E83698	P8	SUMO-04	HFR	300	2.40	1.55	5.00E-04	300	735	256.4	737	0.0	0.20	11.9	74
2	B617	EU97 2		E83697	P25	SUMO-04	HFR	300	2.50	1.58	5.00E-04	300	769	290.4	770	0.0	0.10	11.7	78
2	B595	EU97 2		E83697	P25	SUMO-02	HFR	300	7.30	2.70	5.00E-04	300	883	404.4	883	0.0	0.10	10.8	71
2																			
2	B588	EU97 2		E83697	P25	SUMO-02	HFR	300	9.20	3.03	5.00E-04	300	914	435.4	914	0.0	0.20	10.6	72
2	C278	EU97 6		E83698	P8	SOSIA-02	HFR	300	2.30	1.52	5.00E-04	400	675	239.1	684	247.8	0.40	11.6	57
2	B905	EU97 6		E83698	P8	SUMO-04	HFR	300	2.30	1.52	5.00E-04	400	691	255.1	691	0.0	0.10	11.7	76
	C298	EU97 2	2/10/2/11	E83697	P25	SUMO-04	HFR	300	2.30	1.52	5.00E-04	400	710	274.1	710	0.0	0.10	11.5	66
2								500											00
2 2	B591	EU97 2	2/10 2/11	E83697	P25	SUMO-02	HFR	300	8.70	2.95	5.00E-04	400	842	406.1	842	0.0	0.10	10.7	66
2 2 45	B591	EU97 2	2/10 2/11 2 nd batch								5.00E-04								
	B591 EU2T08	EU97 2	2/10 2/11	E83697	P25	SUMO-02	HFR	300	8.70	2.95	5.00E-04	400	842	406.1	842	0.0	0.10	10.7	
45	B591 EU2T08	EU97 2 EU97-2 2 EU97-2 2	2/10 2/11 2 nd batch 2 nd batch	E83697 993394P	P25 P8	SUMO-02 IRFUMA-5M	HFR BR2	300 300	8.70 1.32	2.95 1.15	5.00E-04 1.00E-04	400 -150 -150	842 1247	406.1 378.3	842 1247	0.0 1.00	0.10 0.10	10.7 11.0 12.6	66 - 67.1
45 45	B591 EU2T08 EU2T19 EU2T04	EU97 2 EU97-2 2 EU97-2 2 EU97-2 2	2/10 2/11 2 nd batch 2 nd batch 2 nd batch	E83697 993394P 993394P 993394P	P25 P8 P8 P8	SUMO-02 IRFUMA-5M IRFUMA-5M IRFUMA-5M	HFR BR2 BR2 BR2	300 300 300 300	8.70 1.32 1.32 1.32	2.95 1.15 1.15 1.15	5.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150 -75	842 1247 1232 961	406.1 378.3 363.1 298.3	842 1247 1232 961	0.0 1.00 1.00 1.00	0.10 0.10 - 0.18	10.7 11.0 12.6 12.3	66 - 67.1 74.6
45 45 45 45	B591 EU2T08 EU2T19 EU2T04 EU2T12	EU97-2 2 EU97-2 2 EU97-2 2 EU97-2 2	2/10 2/11 2 nd batch 2 nd batch 2 nd batch 2 nd batch	E83697 993394P 993394P 993394P 993394P	P25 P8 P8 P8 P8	SUMO-02 IRFUMA-5M IRFUMA-5M IRFUMA-5M	HFR BR2 BR2 BR2 BR2	300 300 300 300 300	8.70 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150	842 1247 1232 961 955	406.1 378.3 363.1 298.3 292.5	842 1247 1232 961 955	0.0 1.00 1.00 1.00 1.00	0.10 0.10 - 0.18 0.20	10.7 11.0 12.6 12.3 12.8	66 67.1 74.6 74.9
45 45 45 45 45	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03	EU97-2 2 EU9	2/10 2/11 2 nd batch 2 nd batch 2 nd batch 2 nd batch 2 nd batch	E83697 993394P 993394P 993394P 993394P	P25 P8 P8 P8 P8	SUMO-02 IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M	BR2 BR2 BR2 BR2 BR2 BR2	300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150 -75	842 1247 1232 961 955 879	406.1 378.3 363.1 298.3 292.5 330.0	842 1247 1232 961 955 879	1.00 1.00 1.00 1.00 1.00	0.10 0.10 - 0.18 0.20 0.15	10.7 11.0 12.6 12.3 12.8 11.5	66 67.1 74.6 74.9 79.5
45 45 45 45 45 45	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20	EU97-2 2 EU97-2 EU	2/10 2/11 2 nd batch 2 nd batch 2 nd batch 2 nd batch 2 nd batch 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P	P25 P8 P8 P8 P8 P8	SUMO-02 IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M	HFR BR2 BR2 BR2 BR2 BR2 BR2 BR2	300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150 -75 -75 0	842 1247 1232 961 955 879 851	406.1 378.3 363.1 298.3 292.5 330.0 302.5	842 1247 1232 961 955 879 851	0.0 1.00 1.00 1.00 1.00 1.00	0.10 0.10 0.18 0.20 0.15 0.23	10.7 11.0 12.6 12.3 12.8 11.5 12.2	66 67.1 74.6 74.9 79.5 79.7
45 45 45 45 45 45 45 45	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07	EU97 2 EU97-2 2	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P	P25 P8 P8 P8 P8 P8 P8	SUMO-02 IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M	HFR BR2 BR2 BR2 BR2 BR2 BR2 BR2	300 300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150 -75 -75 0 0 22	842 1247 1232 961 955 879 851 853	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8	842 1247 1232 961 955 879 851 853	0.0 1.00 1.00 1.00 1.00 1.00 1.00	0.10 0.10 0.18 0.20 0.15 0.23 0.13	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6	66 67.1 74.6 74.9 79.5 79.7 78.8
45 45 45 45 45 45 45 45 45	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09	EU97 2 EU97-2 2	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P	P25 P8 P8 P8 P8 P8 P8 P8	SUMO-02 IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M	HFR BR2 BR2 BR2 BR2 BR2 BR2 BR2 B	300 300 300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150 -75 -75 0 0 22 22	842 1247 1232 961 955 879 851 853 847	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0	842 1247 1232 961 955 879 851 853 847	0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.10 0.10 - 0.18 0.20 0.15 0.23 0.13 0.18	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.6	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3
45 45 45 45 45 45 45 45 45	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09 EU2T13	EU97 2 EU97-2 2	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P	P25 P8 P8 P8 P8 P8 P8 P8 P8	SUMO-02 IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M IRFUMA-5M	HFR BR2 BR2 BR2 BR2 BR2 BR2 BR2 B	300 300 300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150 -75 -75 0 0 22 22 22	842 1247 1232 961 955 879 851 853 847 836	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2	842 1247 1232 961 955 879 851 853 847 836	0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.10 0.10 - 0.18 0.20 0.15 0.23 0.13 0.18 0.17	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.6	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7
45 45 45 45 45 45 45 45 45 45	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09 EU2T13 EU2T21	EU97 2 EU97-2 2	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P	P25 P8 P8 P8 P8 P8 P8 P8 P8	SUMO-02 IRFUMA-5M	HFR BR2 BR2 BR2 BR2 BR2 BR2 BR2 B	300 300 300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150 -75 -75 0 0 22 22 22 22	842 1247 1232 961 955 879 851 853 847 836 808	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6	842 1247 1232 961 955 879 851 853 847 836 808	0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.10 0.10 - 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.6 11.8 12.4	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9
45 45 45 45 45 45 45 45 45 45 45	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09 EU2T13 EU2T21 EU2T05	EU97 2 EU97-2 2	2/10 2/11 2 nd batch	E83697 993394P	P25 P8 P8 P8 P8 P8 P8 P8 P8 P8	SUMO-02 IRFUMA-5M	BR2	300 300 300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150 -75 -75 0 0 22 22 22 22 22 300	842 1247 1232 961 955 879 851 853 847 836 808 700	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0	842 1247 1232 961 955 879 851 853 847 836 808 700	0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.10 0.10 - 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8
45 45 45 45 45 45 45 45 45 45 45 45	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T07 EU2T13 EU2T115 EU2T15	EU97 2 EU97-2 2	2/10 2/11 2 nd batch	E83697 993394P	P25 P8 P8 P8 P8 P8 P8 P8 P8 P8	SUMO-02 IRFUMA-5M	HFR BR2 BR2 BR2 BR2 BR2 BR2 BR2 B	300 300 300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150 -75 -75 0 0 22 22 22 22 22 300 300	842 1247 1232 961 955 879 851 853 847 836 808 700 683	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8	842 1247 1232 961 955 879 851 853 847 836 808	0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.10 0.10 - 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.6 11.8 12.4	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0
45 45 45 45 45 45 45 45 45 45 45	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09 EU2T13 EU2T21 EU2T15	EU97 2 EU97-2 2	2/10 2/11 2 nd batch	E83697 993394P	P25 P8 P8 P8 P8 P8 P8 P8 P8 P8	SUMO-02 IRFUMA-5M	BR2	300 300 300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150 -75 -75 0 0 22 22 22 22 22 300	842 1247 1232 961 955 879 851 853 847 836 808 700	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0	842 1247 1232 961 955 879 851 853 847 836 808 700	0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.10 0.10 - 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8
45 45 45 45 45 45 45 45 45 45 45 45	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T07 EU2T13 EU2T115 EU2T15	EU97 2 EU97-2 2	2/10 2/11 2 nd batch	E83697 993394P	P25 P8 P8 P8 P8 P8 P8 P8 P8 P8	SUMO-02 IRFUMA-5M	HFR BR2 BR2 BR2 BR2 BR2 BR2 BR2 B	300 300 300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150 -75 -75 0 0 22 22 22 22 22 300 300	842 1247 1232 961 955 879 851 853 847 836 808 700 683	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8	842 1247 1232 961 955 879 851 853 847 836 808 700 683	0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.10 0.10 - 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10 0.15	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9 11.1	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0
45 45 45 45 45 45 45 45 45 45 45 45	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T07 EU2T13 EU2T115 EU2T15	EU97 2 EU97-2 2	2/10 2/11 2 nd batch	E83697 993394P	P25 P8 P8 P8 P8 P8 P8 P8 P8 P8	SUMO-02 IRFUMA-5M	HFR BR2 BR2 BR2 BR2 BR2 BR2 BR2 B	300 300 300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150 -75 -75 -75 0 0 22 22 22 22 22 300 300 300 -100	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8 222.5	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688	0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.10 0.10 - 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10 0.15 0.10	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9 11.1 10.8	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0
45 45 45 45 45 45 45 45 45 45 45 44 43,44 24	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T07 EU2T13 EU2T115 EU2T15	EU97-2 2 EU9	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 1EA S62-01	P25 P8 P8 P8 P8 P8 P8 P8 P8 P8	SUMO-02 IRFUMA-5M	BR2	300 300 300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150 -75 -75 -75 0 0 22 22 22 22 22 22 300 300 300 -100 25	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 684	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8 222.5	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 746	0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.10 0.10 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10 0.15 0.10 0.20 4.60	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9 11.1 10.8 7.2 18.7	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0 85.3
45 45 45 45 45 45 45 45 45 45 45 45 45 4	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T07 EU2T13 EU2T115 EU2T15	EU97 2 EU97-2 4 EU97-2 4 EU97-2 5	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 1EA S62-01 S62-01	P25 P8 P8 P8 P8 P8 P8 P8 P8 P8	SUMO-02 IRFUMA-5M	HFR BR2 BR2 BR2 BR2 BR2 BR2 BR2 BR2 BR2 BR	300 300 300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150 -75 -75 -75 0 0 22 22 22 22 22 22 300 300 300 -100 25 25	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 684 689	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8 222.5	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 746 752	0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.10 0.10 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10 0.15 0.10 0.20 4.60 4.70	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.6 11.8 12.4 10.9 11.1 10.8 7.2 18.7 20.0	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0 85.3 80.3 79.5
45 45 45 45 45 45 45 45 45 45 45 45 42 42 24	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09 EU2T13 EU2T21 EU2T05 EU2T15 EU2T18	EU97 2 EU97-2 4 F82H F82H F82H F82H	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 1EA S62-01 S62-01 S62-01	P25 P8 P8 P8 P8 P8 P8 P8 P8 P8	SUMO-02 IRFUMA-5M	HFR BR2 BR2 BR2 BR2 BR2 BR2 BR2 BR2 BR2 BR	300 300 300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04	400 -150 -150 -75 -75 -75 0 0 22 22 22 22 22 22 300 300 -100 25 25 25	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 684 689 684	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8 222.5 329.6	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 746 752 753	0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.10 0.10 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10 0.15 0.10 0.20 4.60 4.70 4.70	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9 11.1 10.8 7.2 18.7 20.0 19.0	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0 85.3 80.3 79.5 80.8
45 45 45 45 45 45 45 45 45 45 45 45 42 42 24	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09 EU2T13 EU2T21 EU2T05 EU2T15 EU2T18	EU97 2 EU97-2 4 F82H F82H F82H F82H F82H	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 93394P 1EA S62-01 S62-01 S62-01 9741	P25 P8	SUMO-02 IRFUMA-5M	BR2	300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04	400 -150 -150 -150 -75 -75 -75 0 0 22 22 22 22 22 300 300 -100 25 25 25 27	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 684 689 684 728	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8 222.5 329.6	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 746 752 753 770	0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.10 0.10 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10 0.15 0.10 0.20 4.60 4.70 4.70 1.80	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9 11.1 10.8 7.2 18.7 20.0 19.0 11.8	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0 85.3 80.3 79.5
45 45 45 45 45 45 45 45 45 45 45 45 42 42 24 10	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09 EU2T13 EU2T21 EU2T05 EU2T15 EU2T18	EU97-2 2 EU97-2	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 93394P 1EA S62-01 S62-01 S62-01 9741	P25 P8	SUMO-02 IRFUMA-5M	BR2	300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04	400 -150 -150 -150 -75 -75 -75 0 0 22 22 22 22 22 22 300 300 300 -100 25 25 27 27	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 684 689 684 728 700	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8 222.5 329.6	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 746 752 753 770 745	0.0 1.00 1	0.10 0.10 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10 0.15 0.10 0.20 4.60 4.70 4.70 1.80 2.20	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9 11.1 10.8 7.2 18.7 20.0 19.0 11.8 12.3	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0 85.3 80.3 79.5 80.8 80
45 45 45 45 45 45 45 45 45 45 45 45 42 40 10 10	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09 EU2T13 EU2T21 EU2T05 EU2T15 EU2T15 EU2T18	EU97-2 2 EU97-2 EU97	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 93394P 93394P 1EA S62-01 S62-01 S62-01 9741 9741	P25 P8	SUMO-02 IRFUMA-5M	BR2	300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 5.00E-04 5.00E-04 5.00E-04	400 -150 -150 -150 -75 -75 -75 0 0 22 22 22 22 22 22 300 300 -100 25 25 27 27	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 684 689 684 728 700 711	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8 222.5 329.6	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 746 752 753 770 745 758	0.0 1.00 1	0.10 0.10 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10 0.15 0.10 0.20 4.60 4.70 4.70 1.80 2.20 2.10	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9 11.1 10.8 7.2 18.7 20.0 19.0 11.8 12.3 12.8	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0 85.3 80.3 79.5 80.8 80 79 78
45 45 45 45 45 45 45 45 45 45 45 45 42 44 24 24 20 10 10	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09 EU2T13 EU2T21 EU2T05 EU2T15 EU2T15 EU2T18	EU97 2 EU97-2 4 F82H F82H F82H F82H F82H F82H F82H F82H	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 1EA S62-01 S62-01 S62-01 9741 9741 9741	P25 P8	SUMO-02 IRFUMA-5M	BR2	300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04	400 -150 -150 -150 -75 -75 0 0 22 22 22 22 22 22 300 300 -100 25 25 27 27 27	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 684 689 684 728 700 711 717	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8 222.5 329.6	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 746 752 753 770 745 758 762	0.0 1.00 1	0.10 0.10 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10 0.15 0.10 0.20 4.60 4.70 4.70 1.80 2.20 2.10 2.30	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9 11.1 10.8 7.2 18.7 20.0 19.0 11.8 12.3 12.8 12.6	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0 85.3 80.3 79.5 80.8 80 79 78 81
45 45 45 45 45 45 45 45 45 45 45 45 42 40 10 10	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09 EU2T13 EU2T21 EU2T05 EU2T15 EU2T15 EU2T18	EU97-2 2 EU97-2 EU	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 1EA S62-01 S62-01 S62-01 9741 9741 9741 9741	P25 P8	SUMO-02 IRFUMA-5M	BR2	300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04	400 -150 -150 -150 -75 -75 0 0 22 22 22 22 22 300 300 300 -100 25 25 27 27 27 80	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 684 689 684 728 700 711 717 676	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8 222.5 329.6	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 746 752 753 770 745 758 762 722	0.0 1.00 1	0.10 0.10 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10 0.15 0.10 0.20 4.60 4.70 4.70 1.80 2.20 2.10 2.30 2.00	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9 11.1 10.8 7.2 18.7 20.0 19.0 11.8 12.3 12.8 12.6 12.5	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0 85.3 80.3 79.5 80.8 80 79 78 81 79
45 45 45 45 45 45 45 45 45 45 45 45 42 44 24 24 20 10 10	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09 EU2T13 EU2T21 EU2T05 EU2T15 EU2T15 EU2T18	EU97 2 EU97-2 4 F82H F82H F82H F82H F82H F82H F82H F82H	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 1EA S62-01 S62-01 S62-01 9741 9741 9741 9741	P25 P8	SUMO-02 IRFUMA-5M	BR2	300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04	400 -150 -150 -150 -75 -75 0 0 22 22 22 22 22 22 300 300 -100 25 25 27 27 27	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 684 689 684 728 700 711 717	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8 222.5 329.6	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 746 752 753 770 745 758 762	0.0 1.00 1	0.10 0.10 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10 0.15 0.10 0.20 4.60 4.70 4.70 1.80 2.20 2.10 2.30	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9 11.1 10.8 7.2 18.7 20.0 19.0 11.8 12.3 12.8 12.6	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0 85.3 80.3 79.5 80.8 80 79 78 81
45 45 45 45 45 45 45 45 45 45 45 45 42 4 24 24 20 10 10 10	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09 EU2T13 EU2T21 EU2T05 EU2T15 EU2T15 EU2T18	EU97-2 2 EU97-2 EU	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 1EA S62-01 S62-01 S62-01 S62-01 9741 9741 9741 9741 9741	P25 P8	SUMO-02 IRFUMA-5M	BR2	300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04	400 -150 -150 -150 -75 -75 0 0 22 22 22 22 22 300 300 300 -100 25 25 27 27 27 80	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 684 689 684 728 700 711 717 676	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8 222.5 329.6	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 746 752 753 770 745 758 762 722	0.0 1.00 1	0.10 0.10 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10 0.15 0.10 0.20 4.60 4.70 4.70 1.80 2.20 2.10 2.30 2.00	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9 11.1 10.8 7.2 18.7 20.0 19.0 11.8 12.3 12.8 12.6 12.5	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0 85.3 80.3 79.5 80.8 80 79 78 81 79
45 45 45 45 45 45 45 45 45 45 45 45 42 4 24 24 24 10 10 10 10	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09 EU2T13 EU2T21 EU2T05 EU2T15 EU2T18 7213 7162 7192 7196 7201 7176	EU97 2 EU97-2 2 EU97-	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 1EA S62-01 S62-01 S62-01 S62-01 9741 9741 9741 9741 9741	P25 P8	SUMO-02 IRFUMA-5M ILAS-4 ILAS-4 ILAS-4 ILAS-4 ILAS-4	BR2	300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04	400 -150 -150 -150 -75 -75 -75 0 0 22 22 22 22 300 300 300 -100 25 25 27 27 27 80 80	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 684 689 684 728 700 711 717 676 679	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8 222.5 329.6	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 746 752 753 770 745 758 762 722 723	0.0 1.00 1	0.10 0.10 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10 0.15 0.10 0.20 4.60 4.70 4.70 1.80 2.20 2.10 2.30 2.00 2.10	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9 11.1 10.8 7.2 18.7 20.0 19.0 11.8 12.3 12.8 12.6 12.5 11.9	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0 85.3 80.3 79.5 80.8 80 79 78 81 79 77
45 45 45 45 45 45 45 45 45 45 45 45 42 4 24 24 24 10 10 10 10 10	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09 EU2T13 EU2T15 EU2T15 EU2T18 7213 7162 7192 7196 7201 7176 7202	EU97 2 EU97-2 2 EU97-	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 1EA S62-01 S62-01 S62-01 S62-01 9741 9741 9741 9741 9741	P25 P8	SUMO-02 IRFUMA-5M ILAS-4 ILAS-4 ILAS-4 ILAS-4 ILAS-4 ILAS-4	BR2	300 300 300 300 300 300 300 300	8.70 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04	400 -150 -150 -150 -75 -75 -75 0 0 22 22 22 22 300 300 -100 25 25 27 27 27 80 80 200	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 684 689 684 728 700 711 717 676 679 698	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8 222.5 329.6 201.4 173.4 184.4 190.4 172.5 175.5 218.2	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 746 752 753 770 745 758 762 722 723 709	0.0 1.00 1	0.10 0.10 0.10 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10 0.15 0.10 0.20 4.60 4.70 4.70 1.80 2.20 2.10 2.30 2.00 2.10 0.60 1.20	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9 11.1 10.8 7.2 18.7 20.0 19.0 11.8 12.3 12.8 12.6 12.5 11.9 9.5 10.4	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0 85.3 80.3 79.5 80.8 80 79 78 81 79 77 76 80
45 45 45 45 45 45 45 45 45 45 45 45 42 4 24 24 24 10 10 10 10	B591 EU2T08 EU2T19 EU2T04 EU2T12 EU2T03 EU2T20 EU2T07 EU2T09 EU2T13 EU2T15 EU2T15 EU2T18 7213 7162 7192 7196 7201 7176 7202	EU97-2 2 EU97-2	2/10 2/11 2 nd batch	E83697 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 993394P 1EA S62-01 S62-01 S62-01 S62-01 9741 9741 9741 9741 9741 9741	P25 P8	SUMO-02 IRFUMA-5M ILAS-4 ILAS-4 ILAS-4 ILAS-4 ILAS-4 ILAS-4	BR2	300 300 300 300 300 300 300 300	8.70 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	2.95 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1	5.00E-04 1.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04 5.00E-04	400 -150 -150 -150 -75 -75 0 0 22 22 22 22 300 300 -100 25 25 27 27 27 27 27 80 80 80 200 200	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 684 689 684 728 700 711 717 676 679 698 653	406.1 378.3 363.1 298.3 292.5 330.0 302.5 324.8 319.0 307.2 279.6 234.0 216.8 222.5 329.6 201.4 173.4 184.4 190.4 172.5 175.5 218.2	842 1247 1232 961 955 879 851 853 847 836 808 700 683 688 1002 746 752 753 770 745 758 762 722 723 709 680	0.0 1.00 1	0.10 0.10 0.18 0.20 0.15 0.23 0.13 0.18 0.17 0.16 0.10 0.15 0.10 0.20 4.60 4.70 4.70 1.80 2.20 2.10 2.30 2.00 2.10 0.60	10.7 11.0 12.6 12.3 12.8 11.5 12.2 11.6 11.8 12.4 10.9 11.1 10.8 7.2 18.7 20.0 19.0 11.8 12.3 12.8 12.6 12.5 11.9 9.5	66 67.1 74.6 74.9 79.5 79.7 78.8 82.3 77.7 79.9 78.8 79.0 85.3 80.3 79.5 80.8 80 79 78 81 79 77

4	4 33	F82H	Pre-IEA P	Teseo	HFR	300	0.80	0.89	1.60E-04	300	658		661	0.0	0.30	10.8	82
4	1 34	F82H	Pre-IEA P	Teseo	HFR	300	0.80	0.89	1.60E-04	300	646		649	0.0	0.40	11.1	82
10	7166	F82H	9741 7,5mmP6-14	ILAS-4	HFR	300	2.37	1.54	5.00E-04	300	653	188.2	662	218.3	0.50		
10	7211	F82H	9741 7,5mmP6-14	ILAS-4	HFR	300	2.51	1.58	5.00E-04	300	590	125.2	618	24.5	0.90	10.1	76
10	7197	F82H	9741 7,5mmP6-14	ILAS-4	HFR	300	2.84	1.69	5.00E-04	300	629	164.2	644	61.2	0.70	9.1	71
10	7181	F82H	9741 7,5mmP6-14	ILAS-4	HFR	300	2.96	1.72	5.00E-04	300	604	139.2	629	28.6	1.00	10.5	77
10	7179	F82H	9741 7,5mmP6-14	ILAS-4	HFR	300	3.00	1.73	5.00E-04	300	618	153.2	640	34.4	1.10	10.0	74
10	7191	F82H	9741 7,5mmP6-14	ILAS-4	HFR	300	3.09	1.76	5.00E-04	300	647	182.2	662	64.1	0.80	9.4	73
10	7205	F82H	9741 7,5mmP6-14	ILAS-4	HFR	300	2.69	1.64	5.00E-04	400	594	153.4	614	37.0	0.90	7.4	70
10	7187	F82H	9741 7,5mmP6-14	ILAS-4	HFR	300	3.06	1.75	5.00E-04	400	577	136.4	598	33.5	0.80	9.8	65
10	7206	F82H	9741 7,5mmP6-14	ILAS-4	HFR	300	2.52	1.59	5.00E-04	500	473	75.7	485	55.4	0.50	12.4	82
10	7189	F82H	9741	ILAS-4	HFR	300	2.69	1.64	5.00E-04	500	462	64.7	467	1048.9	0.30	13.9	88.1
10	7194	F82H	9741	ILAS-4	HFR	300	2.72	1.65	5.00E-04	500	403	5.7	408	344.2	0.20	14.5	88.1
10	7188	F82H	9741 7,5mmP6-14	ILAS-4	HFR	300	2.89	1.70	5.00E-04	500	498	100.7	506	136.5	0.40	11.5	79
10	7168	F82H	9741 7,5mmP6-14	ILAS-4	HFR	300	2.17	1.47	5.00E-04	550	383	19.9	396	36.6	0.60	15.8	88
10	7198	F82H	9741 7,5mmP6-14	ILAS-4	HFR	300	2.64	1.62	5.00E-04	550	396	32.9	405	66.3	0.40	13.8	90
43,44		JLF-1		RB-11J	HFIR	300	5.00	2.24	1.10E-03	-100	942	379.6	1023	2.5	1.50	8.5	
43,44	1	JLF-1		RB-11J	HFIR	300	5.00	2.24	1.10E-03	25	839	345.5	858	2.8	0.80	9.3	
10	E520	JLF-1	Plate 15 mm	ILAS-4	HFR	300	2.64	1.62	5.00E-04	27	628	135.4	702	10.7	3	14.7	77.4
10	E533	JLF-1B	Plate	ILAS-4	HFR	300	2.68	1.64	5.00E-04	27	688	195.4	742	14.9	2.2	12.7	74.2
10	E515	JLF-1	Plate 15 mm	ILAS-4	HFR	300	2.84	1.69	5.00E-04	200	580	146.2	620	16.7	1.4	12.8	78.8
10	E528	JLF-1B	Plate	ILAS-4	HFR	300	2.87	1.69	5.00E-04	200	627	193.2	654	27.4	1.1	10.7	80.6
5		JLF1		Phase Ib	HFR	300	2.40	1.55	1.60E-04	300	652	233.1	652	0.0	0.26	8.9	70
5		-		Phase Ib	HFR	300	2.40	1.55	1.60E-04	300	659	240.1	665	0.0	0.36	8.7	70
10	E523	JLF-1	Plate 15 mm	ILAS-4	HFR	300	2.47	1.57	5.00E-04	300	540	121.1	579	16.0	1.4	11.5	76.7
10	E534	JLF-1B	Plate	ILAS-4	HFR	300	2.50	1.58	5.00E-04	300	585	166.1	612	25.3	0.8	10.4	72.7
10	E518	JLF-1	Plate 15 mm	ILAS-4	HFR	300	3.05	1.75	5.00E-04	300	558	139.1	593	18.3	1.2	11.1	73.2
10		JLF-1B	Plate	ILAS-4	HFR	300	3.08	1.75	5.00E-04	300	577	158.1	614	17.9	1.4	10.6	73.7
43,44	1	JLF-1		RB-11J	HFIR	300	5.00	2.24	1.10E-03	300	755	336.1	774	3.1	0.50	6.7	
10			Plate 15 mm	ILAS-4	HFR	300	3.01	1.73	5.00E-04	400	505	86.9	559	11.5	1.5	10	70.3
10			Plate	ILAS-4	HFR	300	3.05	1.75	5.00E-04	400	489	70.9	551	10.2	1.9	11.2	72.7
4	. 33		P	Teseo	HFR	300	0.80	0.89		300	633	197.7	633	0.0	0.20	10.5	76
4	1 54		P	Teseo	HFR	300	0.80	0.89	1.60E-04	300	653	217.7	655	0.0	0.30	11.5	76
5			P	Phase Ia	HFR	300	2.40	1.55	1.60E-04	300	711	275.7	716	0.0	0.30	7.8	52
5			P	Phase Ia	HFR	300	2.40	1.55	1.60E-04	300	765	329.7	765	0.0	0.23	7.4	54
10		ORNL-3791	Plate	ILAS-4	HFR	300	3.06	1.75	5.00E-04	27	982	182.5	1018	33.2	1.90	9.3	68.4
10		ORNL-3791	Plate	ILAS-4	HFR	300	3.26	1.81	5.00E-04	200	911	167.3	942	36.5	1.10	9.1	68.4
10		ORNL-3791	Plate	ILAS-4	HFR	300	2.89	1.70		300	867	155.5	893	43.3	0.90	8.6	67.5
10		ORNL-3791	Plate	ILAS-4	HFR	300	3.47	1.86	5.00E-04	300	880	168.5	909	38.1	0.90	7.9	63.4
10		ORNL-3791	Plate	ILAS-4	HFR	300	3.43	1.85	5.00E-04	400	848	168.7	886	26.1	1.00	7.4	55.1
43,44		9Cr2WVTa	ORNL3791	RB-11J	HFIR	300	5.00	2.24	1.10E-03	-100	1229		1247	177.8	0.40	6.4	
43,44		9Cr2WVTa	ORNL3791	RB-11J	HFIR	300	5.00	2.24		25	1040		1040	0.0	0.17	7.1	
43,44	1	9Cr2WVTa	ORNL3791	RB-11J	HFIR	300	5.00	2.24	1.11E-03	300	918		918	0.0	0.20	6.3	

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION					TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Sqrt(dpa)	Strain rate (sec-1)	Test temp (°C)	σу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	e uniform (%)	e total (%)	Reduction of area (%)
	EUROF1-s	EU97		E83697	P25	WTZ	BOR-60	330	15.00	3.87		250	922	427.3	923.5	1.00	0.24	10.22	
	EUROF1-s	EU97		E83697	P25	WTZ	BOR-60	330	15.00	3.87		250	922	427.3	928.6	1.01	0.28	9.82	
	EUROF1-s	EU97 EU97		E83697 E83697	P25 P25	WTZ WTZ	BOR-60 BOR-60	330	15.00 15.00	3.87 3.87		300 300	894 880	415.4 401.4	911 894	1.02 1.02	0.32 0.30	9.75 9.47	
	EUROF1-s EUROF1-s	EU97 EU97		E83697	P25 P25	WTZ WTZ	BOR-60	330 330	15.00	3.87		350	880 862	401.4	894 874	1.02	0.30	9.47 9.41	
	EUROF1-s	EU97		E83697	P25	WTZ	BOR-60	330	15.00	3.87		350	864	405.3	870	1.01	0.36	9.41	
3	K 9D	EU97	66/5	E83698	P8	Altair	BOR-60	325	42.30	6.50	1.40E-03	20	1139	603.3	1161	1.02	0.50	7.7	58
3	K10D	EU97	66/5	E83698	P8	Altair	BOR-60	325	42.30	6.50	1.40E-03	325	976	507.0	993	1.02	0.40	6.2	58
46	E1-15-t	EU97		E83697	P25	ARBOR-1	BOR-60	336	30.20	5.50		250	1012	517.3	1012	1.00	0.22	14.1	
46	E1-16-t	EU97		E83697	P25	ARBOR-1	BOR-60	336	30.20	5.50		300	973	494.4	973	1.00	0.21	13.8	
46	E1-17-t	EU97		E83697	P25	ARBOR-1	BOR-60	336	30.20	5.50		350	930	471.3	930	1.00	0.21	13.5	
25	U10	F82H				Alexandre	Osiris	325	0.80	0.89		25	663		700	20.6	4.73	17.8	76
26	U11	F82H				Alexandre	Osiris	313	2.00	1.41		25			685		0.04	5.7	76
43,44	A023	F82H	mod	IEA		RB-11J	HFIR	307	4.90	2.21	1.10E-03	25	898	370.3	911	184.5	0.45	7.8	
43,44	A026	F82H	mod	IEA		RB-11J	HFIR	307	4.90	2.21	1.00E-04	25	889	361.3	896	0.0	0.38	8.2	
26	U8	F82H	,	TE 4		Alexandre	Osiris	325	3.40	1.84	1.105.02	30	847	207.2	852	0.0	0.38	9.8	71
43,44	A024 U7	F82H	mod	IEA		RB-11J	HFIR	307	4.90	2.21	1.10E-03	300	762 573	297.2	770	1812.7	0.32	7.3	
25 25	U / U4	F82H F82H				Alexandre Alexandre	Osiris Osiris	313 325	0.80 0.80	0.89 0.89		325 325	573 576		588 593	52.8 44.2	1.99 1.82	13.4 13.5	78
25 26	U4 U5	F82H				Alexandre	Osiris	313	2.00	1.41		325	672		593 672	0.0	0.26	8.3	62
26	U2	F82H				Alexandre	Osiris	325	3.40	1.41		325	734		734	0.0	0.20	6.2	59
20	J1	Manet II				Alexandre	Osiris	313	0.80	0.89		25	961		982	71.0	4.49	14.27	39
20	J4	Manet II				Alexandre	Osiris	325	0.80	0.89		325	701		834	/1.0	0.04	7.6	28
20	J5	Manet II				Alexandre	Osiris	313	2.00	1.41		325			797		0.04	0.75	43
21	J2	Manet II				Alexandre	Osiris	325	3.40	1.84		325	990		1005	160.4	0.02	5.5	36

										Ž								
巨						NO				FEST CONDITION		TEST RESULTS						
REFERENCE	Specimen id.:		~			IRRADIATION				INO		ESU						
ER	ine	H	(Capitals)			[AD]				TC		TR						
REF	Spec	MAT	(Сар			IRR				TES		TES						
					n					-oe:	C)			strength	ning	(9)		-J
			ne		form			remperature °C)	(dpa)	rate (sec-	Test temp (°C)	оу 0,2% pl.def. (MPa)	uc gı	stren	Strain hardening exponent	uniform (%)	•	Reduction of area (%)
		<u>e</u>	Nan	t id.	luct	je	ctor	pera	e (dj	in ra	tem	0,2% ef. (M	rradiation nardening (MPa)	sile s a)	in ha	ifon	al (%	uctic (%)
		Name	2nd Name	Heat id.	Product	Name	Reactor	Tem (C)	Dose (Strain 1)	Test	σу pl.de	Irradia harden (MPa)	Tensile : (MPa)	Strain har exponent	un s	e total (%)	Redi
	1 B458	EU97		E83699	B100	SUMO-09	HFR	342.5	2.45	5.00E-04	-90	806	147.2	876	13.6	6.60	17.6	
	1 B775	EU97		E83698	P14	SUMO-09	HFR	342.5	2.37	5.00E-04	350	566	107.0	600	19.1	1.99	10.8	
	9 I29T15	EU97		PSI			PIREX	350	0.16		350	470	11.3	557 555	8.0	6.50		
	9 I29T16 9 I29T06E8	EU97 EU97		PSI PSI			PIREX PIREX	350 350	0.16 0.68		350 350	475 475	16.3 16.3	529	8.5 11.0	8.20 2.60		
	9 I29T7	EU97		PSI			PIREX	350	0.68		350	476	17.3	549	9.0	3.50		
4				Pre-IEA	P	Teseo	HFR	350	0.80	1.60E-04	350	641		648	930.6	0.70	11.1	76
4				Pre-IEA	P	Teseo	HFR	350	0.80		350	634	110.2	640	0.0	0.70	10.7	77
5						Phase Ib	HFR HFR	350 350	2.40 2.40		350 350	535 530	118.3 113.3	571 570	17.1 15.4	1.60	10.8	74 73
					р	Phase Ib Teseo	HFR	350	0.80	1.60E-04 1.60E-04	350	623	198.4	623	0.0	1.50 0.40	11.1	73
					P	Teseo	HFR	350	0.80		350	583	158.4	587	0.0	0.60	10.8	67
5					P	Phase Ia	HFR	350	2.40		350	496	71.4	555	10.6	3.40	13.5	61
5	5 U6	OPTIV			P	Phase Ia	HFR	350	2.40	1.60E-04	350	603	178.4	636	21.0	1.10	8.3	42
7	,			ORNL	P0,76		FFTF	365	6.40	1.00E-03	365	857		890	31.2	1.70	8.0	
7				ORNL	P0,76		FFTF	365	15.40	1.00E-03	365	866		902	28.5	1.20	7.1	
7				ORNL ORNL	P0,76 P0,76		FFTF FFTF	365 365	27.20 7.40	1.00E-03 1.00E-03	365 365	900 924		932 959	34.5 31.9	1.30 1.30	8.0 7.5	
2				ORNL	P0,76		FFTF	365	16.20	1.00E-03	365	976		1026	22.6	1.00	7.5	
7				ORNL	P0,76		FFTF	365	25.40	1.00E-03	365	924		963	28.0	1.40	7.7	
7	7 na	1 1		ORNL	P0,76		FFTF	365	7.40	1.00E-03	365	754		799	19.3	2.20	8.8	
7	7 na	2,25Cr2W		ORNL	P0,76		FFTF	365	16.20	1.00E-03	365	796		830	27.6	1.70	7.5	
7		,		ORNL	P0,76		FFTF	365	28.60	1.00E-03	365	747		787	21.5	2.00	10.0	
7	_	,		ORNL	P0,76		FFTF	365	7.40	1.00E-03	365	788		810	47.9	1.40	7.8	
	_	,		ORNL	P0,76		FFTF	365	16.20	1.00E-03	365	909		939 940	38.0	1.10	5.3	
2	7 na 7 na	, , , , , , , , , , , , , , , , , , , ,		ORNL ORNL	P0,76 P0,76		FFTF FFTF	365 365	28.60 7.40	1.00E-03 1.00E-03	365 365	910 950		940 980	38.0 40.3	1.20 1.10	5.9 6.4	
2	7 na			ORNL	P0,76		FFTF	365	16.20	1.00E-03	365	937		968	37.9	0.90	7.0	
7				ORNL	P0,76		FFTF	365	26.00	1.00E-03	365	883		920	28.2	1.20	7.0	
7		_ 1		ORNL	P0,76		FFTF	365	7.70	1.00E-03	365	729		771	20.0	2.40	9.1	
7	7 na	5Cr2WV		ORNL	P0,76		FFTF	365	16.70	1.00E-03	365	757		793	24.5	1.70	7.8	
7	7 na	5Cr2WV		ORNL	P0,76		FFTF	365	27.60	1.00E-03	365	739		766	33.3	1.40	11.2	
7				ORNL	P0,76		FFTF	365	7.70	1.00E-03	365	710		764	15.3	3.50	10.2	
7	_				P0,76				16.70	1.00E-03	365			745	16.8	2.30		
7	7 na																	
7	7 na																	
	_																	
7	7 na 7 na 7 na 7 na 7 na	9Cr2WV 9Cr2WV 9Cr2WV 9Cr2WVTa 9Cr2WVTa	OF		P0,76				7.70	1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03	365			764	15.3	3.50		

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	e uniform (%)	ε total (%)	Reduction of area (%)
4	37	F82H	F	Pre-IEA	P	Teseo	HFR	400	0.80		400	515		542	22.0	1.20	12.1	77
4	38	F82H		Pre-IEA	P	Teseo	HFR	400	0.80	1.60E-04	400	508		539	18.8	1.40	12.0	82
27		F82H		S62-01			JRR-2 and JMTR	400	21.40		400	524		570	13.5	2.10	11.3	
27		F82H		S62-01			JRR-2 and JMTR	400	31.50	1.00E-04	400	513		580	10.0	3.00	13.3	
5	87	JLF1				Phase Ib	HFR	400	2.40	1.60E-04	400	464	45.9	544	8.4	2.40	9.5	63
5	88	JLF1				Phase Ib	HFR	400	2.40	1.60E-04	400	463	44.9	527	9.6	3.00	10.3	63
4	57	OPTIV			P	Teseo	HFR	400	0.80	1.60E-04	400	493	78.2	540	12.6	2.50	12.3	70
4	58	OPTIV			P	Teseo	HFR	400	0.80	1.60E-04	400	499	84.2	539	14.6	1.90	11.5	74
5	U7	OPTIV			P	Phase Ia	HFR	400	2.40	1.60E-04	400	478	63.2	520	13.5	2.60	12.2	61
5	U8	OPTIV			P	Phase Ia	HFR	400	2.40	1.60E-04	400	491	76.2	540	12.2	2.90	13.1	60
12		9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	390	10.00	4.20E-04	22	881		933	19.5	3.60	7.0	
12		9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	390	10.00	4.20E-04	400	781		808	35.7	1.40	4.1	

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	oy 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	e uniform (%)	ε total (%)	Reduction of area (%)
	4	39	F82H		Pre-IEA	P	Teseo	HFR	450	0.80		450	466		493	19.8	1.30	13.9	82
-	4	40	F82H		Pre-IEA	Р	Teseo	HFR	450	0.80		450	463	107.1	491	19.0	1.50	14.6	81
	5	89					Phase Ib	HFR	450	2.40		450	619	196.1	627	282.7	0.46	8.7	71
	3	80				7	Phase Ib	HFR	450	2.40		450	428	5.1	478	10.8	2.50	13.3	61
	4	59				P	Teseo	HFR	450	0.80		450	429	22.9	476	11.3	3.30	14.9	74
	4	61	OPTIV			P	Teseo	HFR	450	0.80		450	435	28.9	483	11.2	3.50	16.5	68
1	5	U9	-			P	Phase Ia	HFR	450	2.40		450	548	141.9	580	19.7	0.90	8.4	53
	5	U0	OPTIV			P	Phase Ia	HFR	450	2.40	1.60E-04	450	457	50.9	510	10.8	3.80	14.5	55
	12		9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	450	10.00	4.20E-04	450	480		575	7.8	3.60	6.9	

REFERENCE		(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
	Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	σ _y 0,2% pl.def. (Mpa)	Irradiation hardening (MPa)	Tensile strength (Mpa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
24	F82H		S62-01			JRR-2/JMTR	520	0.10	1.00E-04	25	611		724	8.0	5.00	22.3	80.3
24	F82H		S62-01			JRR-2/JMTR	520	0.10	1.00E-04	25	596		708	8.0	4.80	19.8	79.8
24	F82H		S62-01			JRR-2/JMTR	520	0.10	1.00E-04	300	538		608	10.0	2.60	15.0	80
24	F82H		S62-01			JRR-2/JMTR	520	0.10	1.00E-04	500	461		493	16.6	1.30	19.0	80.3
24	F82H		S62-01			JRR-2/JMTR	520	0.10	1.00E-04	500	461		489	18.9	1.20	18.3	81.9
27	F82H		S62-01			JRR-2/JMTR	500	31.50	1.00E-04	500	437		478	12.8	1.80	12.4	
27	F82H		S62-01			JRR-2/JMTR	500	33.60	1.00E-04	500	411		494	7.7	2.60	13.3	
43,44 A033	F82H	mod	IEA		RB-12J	HFIR	497	4.80	1.00E-03	25	527	-0.7	637	7.5	7.54	18.3	
43,44 A039	F82H	mod	IEA		RB-12J	HFIR	497	4.80	1.00E-04	25	535	7.3	620	8.8	4.30	14.5	
43,44 A035	F82H	mod	IEA		RB-12J	HFIR	497	4.90	1.00E-03	500	401	3.7	444	11.5	1.92	11.2	
12	9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	500	10.00	4.20E-04	22	558		712	6.7	7.90	12.4	
12	9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	500	10.00	4.20E-04	500	445		536	7.6	3.30	6.8	

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	e uniform (%)	e total (%)	Reduction of area (%)
24		F82H		S62-01			JRR-2/JMTR	580	0.08	1.00E-04	25	566		660	8.5	4.10	16.0	
24		F82H		S62-01			JRR-2/JMTR	580	0.08	1.00E-04	25	578		666	9.0	3.90	16.0	
24		F82H		S62-01			JRR-2/JMTR	580	0.08	1.00E-04	25	562		660	8.3	4.10	16.0	
24		F82H		S62-01			JRR-2/JMTR	580	0.08	1.00E-04	600	347		351	548.1	0.70	22.3	
24		F82H		S62-01			JRR-2/JMTR	580	0.08	1.00E-04	600	351		355	601.5	0.70	22.5	
24		F82H		S62-01			JRR-2/JMTR	580	0.08	1.00E-04	600	347		349	0.0	0.70	22.0	

ANNEX 4

Tensile data pooled according to accumulated dose

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	oy 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
1,11	R	EU97		E83699	B100	IRF II	BR2	300	0.15		-150	972	130.6	1000	45.8	6.78	24.0	67
1,11	X	EU97		E83699	B100	IRF II	BR2	300	0.16		150	600	87.0	655	13.0	4.95	16.0	80
9	I29T15	EU97		PSI			PIREX	350	0.16		350	470	11.3	557	8.0	6.50		
9	I29T16	EU97		PSI			PIREX	350	0.16		350	475	16.3	555	8.5	8.20		
24		F82H		S62-01			RR-2/JMTR	300	0.08	1.00E-04	25	684		746	13.1	4.60	18.7	80.3
24		F82H		S62-01			RR-2/JMTR	300	0.08	1.00E-04	25	689		752	13.1	4.70	20.0	79.5
24		F82H		S62-01			RR-2/JMTR	300	0.08	1.00E-04	25	684		753	12.1	4.70	19.0	80.8
24		F82H		S62-01			RR-2/JMTR	580	0.08	1.00E-04	25	566		660	8.5	4.10	16.0	
24		F82H		S62-01			RR-2/JMTR	580	0.08	1.00E-04	25	578		666	9.0	3.90	16.0	
24		F82H		S62-01			RR-2/JMTR	580	0.08	1.00E-04	25	562		660	8.3	4.10	16.0	7 0.0
24		F82H		S62-01			RR-2/JMTR	300	0.08	1.00E-04	300	582		622	16.8	2.50	14.5	78.9
24		F82H		S62-01			RR-2/JMTR	300	0.08	1.00E-04	300	589		627	17.8	2.50	14.6	78.9
24		F82H		S62-01			RR-2/JMTR	580	0.08	1.00E-04	600	347		351	548.1	0.70	22.3	
24		F82H		S62-01			RR-2/JMTR	580	0.08 0.08	1.00E-04	600	351		355	601.5	0.70	22.5	
24		F82H		S62-01			RR-2/JMTR	580			600	347		349	0.0	0.70	22.0	00.2
24 24		F82H F82H		S62-01 S62-01			RR-2/JMTR RR-2/JMTR	520 520	0.10 0.10		25	611 596		724 708	8.0 8.0	5.00 4.80	22.3 19.8	80.3 79.8
24 24		F82H F82H		S62-01 S62-01			RR-2/JMTR RR-2/JMTR	520 520	0.10		25 300	538		608	10.0	2.60	15.0	79.8 80
24		F82Н		S62-01			RR-2/JMTR RR-2/JMTR	520	0.10		500	338 461		493	16.6	1.30	19.0	80.3
24		F82H		S62-01			RR-2/JMTR RR-2/JMTR	520	0.10		500	461		493 489	18.9	1.30	18.3	80.3
		ГОДП		302-01		J	IXIX-Z/JIVI I K	320	0.10	1.UUE-U4	200	401		409	10.9	1.20	10.3	01.9

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				JEST CONDITIC		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
	9 I29T09_1	E15	EU97		PSI			PIREX	50	0.22		50	711	185.1	766	15.1	1.40		
	9 129T12		EU97		PSI			PIREX	250	0.24		250	515	20.3	592	9.1	4.30		
	9 I29T13		EU97		PSI			PIREX	250	0.24		250	552	57.3	588	17.7	3.90		
1,	11	S	EU97		E83699	B100	IRF II	BR2	300	0.31		-150	993	151.6	1017	59.8	4.34	19.0	72
	11	J	EU97		E83699	B100	IRF I	BR2	300	0.34		-150	984	142.6	993	0.0	7.09	23.0	70
	11	L	EU97		E83699	B100	IRF I	BR2	300	0.23		32	650	118.8	708	13.3	5.65	18.0	79
	11	В	EU97		E83699	B100	IRF I	BR2	300	0.33		150	610	97.0	656	15.4	4.55	17.0	80
	11	Y	EU97		E83699	B100		BR2	300	0.33		150	610	97.0	656	15.4	3.30	17.0	80
1,	11	Α	EU97		E83699	B100	IRF I	BR2	300	0.27		225	579	78.1	610	21.5	2.39	14.0	81
		1867	EU97	3/7 4/14	E83698		STROBO-	HFR	300	0.22		300	532	53.4	560	21.9	1.20		82
		1861	EU97	3/7 4/14	E83698		STROBO-	HFR	300	0.26		300	543	64.4	577	18.4	2.10		86
	2 I	1865	EU97	3/7 4/14	E83698		STROBO-	HFR	300	0.28		300	521	42.4	543	28.0	0.60		80
1,	11	K	EU97		E83699	B100	IRF I	BR2	300	0.30		300	562	83.4	597	18.5	2.36	13.0	81

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIC		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	oy 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
1,11	С	EU97		E83699	B100	IRF I	BR2	300	0.36		-75	745	115.5	818	12.3	8.06	22.0	75
1,11	I	EU97		E83699	B100	IRF I	BR2	300	0.37		-75	753	123.5	816	14.1	7.34	21.0	76
1,11	D	EU97		E83699	B100	IRF I	BR2	300	0.38		-150	1001	159.6	1001	0.0	0.17	24.0	74
1,11	Н	EU97		E83699	B100	IRF I	BR2	300	0.39		150	619	106.0	654	20.3	4.25	16.0	81
1,11	F	EU97		E83699	B100	IRF I	BR2	300	0.40		30	672	140.2	720	16.2	5.40	18.0	80
1,11	G	EU97		E83699	B100	IRF I	BR2	300	0.40		225	585	84.1	620	19.2	2.62	14.0	81
1,11	Е	EU97		E83699	B100	IRF I	BR2	300	0.40		300	569	90.4	593	28.0	1.43	13.0	81
1,11	T	EU97		E83699	B100	IRF II	BR2	300	0.44		-75	781	151.5	829	18.7	5.68	19.0	73

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIC		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	oy 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
	1,11	Z	EU97		E83699	B100	IRF II	BR2	300	0.47		300	617	138.4	627	133.4	1.67	11.0	76
	1,11	D1	EU97		E83699	B100		BR2	300	0.48		30	667	135.2	699	24.2	3.82	16.0	81
L	2	H862	EU97	3/7 4/14	E83698	P14	STROBO-02	HFR	300	0.54	5.00E-04	300	589	110.4	594	0.0	0.50		81

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIC		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	oy 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	e total (%)	Reduction of area (%)
	I29T01_E1	EU97		PSI			PIREX	50	0.62		50	617	91.1	714	8.8	1.27		
9	I29T02_E4	EU97		PSI			PIREX	50	0.62		50	717	191.1	762	18.3	2.50		
9	I29T01_2	EU97		PSI			PIREX	50	0.62		50	636	110.1	749	8.2	1.40		
9	I29T04	EU97		PSI			PIREX	250	0.63		250	614	119.3	661	15.2	1.80		
1,11	U	EU97		E83699	B100	IRF II	BR2	300	0.57		-75	816	186.5	848	30.5	4.68	19.0	79
2	H866	EU97	3/7 4/14	E83698	P14	STROBO-02	HFR	300	0.57	5.00E-04	300	560	81.4	572	73.5	0.40		83
1,11	A1	EU97		E83699	B100		BR2	300	0.61		300	642	163.4	643	0.0	0.54	11.0	76
2	H868	EU97	3/7 4/14	E83698	P14	STROBO-02	HFR	300	0.61	5.00E-04	300	577	98.4	589	77.7	0.50		78

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIC		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	e total (%)	Reduction of area (%)
1	1,11	V	EU97		E83699	B100	IRF II	BR2	300	0.71		30	751	219.2	751	0.0	0.32	12.0	79
1	1,11	B1	EU97		E83699	B100	IRF II	BR2	300	0.75		225	681	180.1	681	0.0	0.22	11.0	79
1	1,11	Q	EU97		E83699	B100	IRF III	BR2	300	0.66		300	626	147.4	629	0.0	0.68	10.0	82
	9	I29T06E8	EU97		PSI			PIREX	350	0.68		350	475	16.3	529	11.0	2.60		
	9	I29T7	EU97		PSI			PIREX	350	0.68		350	476	17.3	549	9.0	3.50		

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIC		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
	1,11	W	EU97		E83699	B100		BR2	300	0.83		30	775	243.2	775	0.0	0.21	13.0	78
	1,11	C1	EU97		E83699	B100		BR2	300	0.89		225	691	190.1	691	0.0	0.22	10.0	75
	1,11	E1	EU97		E83699	B100		BR2	300	0.89	1.605.01	150	714	201.0	716	0.0	0.12	11.0	81
	4	31	F82H		Pre-IEA	P		HFR	250	0.80	1.60E-04	250	625		632	704.0	0.50	11.9	80
	4	32	F82H		Pre-IEA	P		HFR	250	0.80	1.60E-04	250	627		630	0.0	0.50	11.7	79
	4	33 34	F82H F82H		Pre-IEA Pre-IEA	P P		HFR HFR	300 300	0.80 0.80	1.60E-04 1.60E-04	300 300	658 646		661 649	0.0 0.0	0.30 0.40	10.8 11.1	82 82
	4	35	F82H		Pre-IEA	r P		HFR	350	0.80	1.60E-04 1.60E-04	350	641		648	930.6	0.40	11.1	76
	4	36	F82H		Pre-IEA	P		HFR	350	0.80	1.60E-04 1.60E-04	350	634		640	0.0	0.70	10.7	77
	4	37	F82H		Pre-IEA	P		HFR	400	0.80	1.60E-04 1.60E-04	400	515		542	22.0	1.20	10.7	77
	4	38	F82H		Pre-IEA	P		HFR	400	0.80	1.60E-04	400	508		539	18.8	1.40	12.1	82
	4	39	F82H		Pre-IEA	p	Teseo	HFR	450	0.80	1.60E-04	450	466		493	19.8	1.30	13.9	82
	4	40	F82H		Pre-IEA	P	Teseo	HFR	450	0.80	1.60E-04	450	463		491	19.0	1.50	14.6	81
	25	U10	F82H		Pre-IEA	•	Alexandre	Osiris	325	0.80	1.002 01	25	663		700	20.6	4.73	17.8	76
	25	U7	F82H		Pre-IEA		Alexandre	Osiris	313	0.80		325	573		588	52.8	1.99	13.4	
	25	U4	F82H		Pre-IEA		Alexandre	Osiris	325	0.80		325	576		593	44.2	1.82	13.5	78
	4	52	OPTIV			P	Teseo	HFR	250	0.80	1.60E-04	250	632	184.9	636	0.0	0.80	11.1	74
	4	53	OPTIV			P	Teseo	HFR	300	0.80	1.60E-04	300	633	197.7	633	0.0	0.20	10.5	76
	4	54	OPTIV			P	Teseo	HFR	300	0.80	1.60E-04	300	653	217.7	655	0.0	0.30	11.5	76
	4	55	OPTIV			P	Teseo	HFR	350	0.80	1.60E-04	350	623	198.4	623	0.0	0.40	10.0	73
	4	56	OPTIV			P	Teseo	HFR	350	0.80	1.60E-04	350	583	158.4	587	0.0	0.60	10.8	67
	4	57	OPTIV			P	Teseo	HFR	400	0.80	1.60E-04	400	493	78.2	540	12.6	2.50	12.3	70
	4	58	OPTIV			P	Teseo	HFR	400	0.80	1.60E-04	400	499	84.2	539	14.6	1.90	11.5	74
1	4	59	OPTIV			P	Teseo	HFR	450	0.80	1.60E-04	450	429	22.9	476	11.3	3.30	14.9	74
	4	61	OPTIV			P	Teseo	HFR	450	0.80	1.60E-04	450	435	28.9	483	11.2	3.50	16.5	68
	20	J1	Manet II				Alexandre	Osiris	313	0.80	<u> </u>	25	961		982	71.0	4.49	14.27	
	20	J4	Manet II				Alexandre	Osiris	325	0.80		325			834		0.04	7.6	28

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIC		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	σу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
1	,11	P	EU97		E83699	B100	IRF III	BR2	300	0.99		-75	882	252.5	882	0.0	1.87	13.0	72
1	,11	F1	EU97		E83699	B100	IRF III	BR2	300	1.17		150	748	235.0	750	0.0	0.16	10.0	81

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIC		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	σу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	e uniform (%)	ε total (%)	Reduction of area (%)
	9	I29T18	EU97		PSI			PIREX	50	1.27		50	739	213.1	772	26.2	1.10		
	9	I29T17	EU97		PSI	7.400		PIREX	50	1.27		50	750	224.1	823	12.4	1.75	400	
	1,11	O 120T20	EU97		E83699	B100	IRF III	BR2	300	1.32		30	839	307.2	840	0.0	0.19	10.0	81
	9 1,11	I29T20 G1	EU97 EU97		PSI E83699	B100	IRF III	PIREX BR2	250 300	1.36 1.45		250 300	570 720	75.3 241.4	638 724	10.6 0.0	1.00 0.11	9.0	82
	45	EU2T08	EU97-2	2 nd batch	993394P	P8	IRFUMA-5M	BR2	300	1.32	1.00E-04	-150	1247	1247	1.00	0.0	0.10	11.0	02
	45	EU2T19	EU97-2 EU97-2	2 nd batch	993394P	P8	IRFUMA-5M	BR2	300	1.32	1.00E-04 1.00E-04	-150	1237	1237	1.00		0.10	12.6	67.1
	45	EU2T19	EU97-2 EU97-2	2 nd batch	993394P	P8	IRFUMA-5M	BR2	300	1.32	1.00E-04 1.00E-04	-75	961	961	1.00		0.18	12.3	74.6
	45	EU2T12	EU97-2 EU97-2	2 nd batch	993394F 993394P	P8	IRFUMA-5M	BR2	300	1.32	1.00E-04 1.00E-04	-75 -75	955	955	1.00		0.18	12.3	74.0
	45 45	EU2T12 EU2T03	EU97-2 EU97-2	2 nd batch	993394P 993394P	P8	IRFUMA-5M	BR2	300	1.32	1.00E-04 1.00E-04	-/3	933 879	933 879	1.00		0.20	11.5	79.5
	45	EU2T20	EU97-2 EU97-2	2 nd batch	993394F 993394P	P8	IRFUMA-5M	BR2	300	1.32	1.00E-04 1.00E-04	0	851	851	1.00		0.13	12.2	79.3 79.7
		EU2T20	EU97-2 EU97-2	2 nd batch	993394F 993394P	P8	IRFUMA-5M	BR2	300	1.32	1.00E-04 1.00E-04		853	853	1.00		0.23	11.6	78.8
	45			2 batch 2 nd batch								22							
	45	EU2T09	EU97-2		993394P	P8	IRFUMA-5M	BR2	300	1.32	1.00E-04	22	847	847	1.00		0.18	11.6	82.3
1	45	EU2T13	EU97-2	2 nd batch	993394P	P8	IRFUMA-5M	BR2	300	1.32	1.00E-04	22	836	836	1.00		0.17	11.8	77.7
1	45	EU2T21	EU97-2	2 nd batch	993394P	P8	IRFUMA-5M	BR2	300	1.32	1.00E-04	22	808	808	1.00		0.16	12.4	79.9
1	45	EU2T05	EU97-2	2 nd batch	993394P	P8	IRFUMA-5M	BR2	300	1.32	1.00E-04	300	700	700	1.00		0.10	10.9	78.8
1	45	EU2T15	EU97-2	2 nd batch	993394P	P8	IRFUMA-5M	BR2	300	1.32	1.00E-04	300	683	683	1.00		0.15	11.1	79.0
<u> </u>	45	EU2T18	EU97-2	2 nd batch	993394P	P8	IRFUMA-5M	BR2	300	1.32	1.00E-04	300	688	688	1.00		0.10	10.8	85.3

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIC		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	oy 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
1,11	H1	EU97		E83699	B100	IRF III	BR2	300	1.73	1.00E-04	-75	958	328.5	961	0.0	0.27	12.0	71
1,11	N	EU97		E83699	B100	IRF III	BR2	300	1.66	1.00E-04	30	872	340.2	873	0.0	0.20	10.0	75
41	B774	EU97		E83698	P14	SUMO-09	HFR	250	1.64	5.00E-04	250	636	141.3	636	0.0	0.10	10.2	
41	B776	EU97		E83698	P14	SUMO-09	HFR	300	1.59	5.00E-04	300	701	222.4	710	291.3	0.30	10.0	
2	B901	EU97	66/3 66/4	E83698	P8	SUMO-04	HFR	300	1.80	5.00E-04	300	720	241.4	723	0.0	0.20	12.1	70
10	7161	F82H		9741	7,5mmP6-14	SIWAS-6	HFR	80	1.67	5.00E-04	150	722	234.8	722	0.0	0.20	12.4	87
10	7164	F82H		9741	7,5mmP6-14	SIWAS-6	HFR	80	1.95	5.00E-04	150	726	238.8	726	0.0	0.20	12.6	87

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIO		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	e uniform (%)	ε total (%)	Reduction of area (%)
2	2 B598	EU97	2/10 2/11	E83697	P25	SIWAS-09	HFR	60	2.10	5.00E-04	100	781	263.1	783	0.0	0.30	14.2	84
2	2 B888	EU97	66/3 66/4	E83698	P8	SIWAS-09	HFR	60	2.10	5.00E-04	300	614	135.4	618	0.0	0.30	14.6	84
2	2 B890	EU97	66/3 66/4	E83698	P8	SIWAS-09	HFR	60	2.10	5.00E-04	500	438	55.4	506	8.9	3.40	21.1	88
41	B457	EU97		E83699	B100	SUMO-09	HFR	250	2.10	5.00E-04	-90	983	324.3	983	0.0	0.16	11.0	
2	2 B900	EU97	66/3 66/4	E83698	P8	SUMO-04	HFR	300	2.00	5.00E-04	27	839	306.1	840	0.0	0.30	13.3	75
2	2 B903	EU97	66/3 66/4	E83698	P8	SUMO-04	HFR	300	2.10	5.00E-04	100	799	281.1	799	0.0	0.20	12.9	75
1,11	l I1	EU97		E83699	B100	IRF III	BR2	300	2.01		300	739	260.4	747	1045.0	0.11	9.0	77
2	2 C301	EU97	2/10 2/11	E83697	P25	SUMO-04	HFR	300	2.10	5.00E-04	300	764	285.4	764	0.0	0.10	12.1	72
26	5 U11	F82H				Alexandre	Osiris	313	2.00	·	25			685		0.04	5.7	76
26	5 U5	F82H				Alexandre	Osiris	313	2.00		325	672		672	0.0	0.26	8.3	62
10	8844	F82H		9753	25mmP31W-20		HFR	275	2.06	5.00E-04	325	722	262.0	727	0.0	0.2	9.2	77
10	8845	F82H		9753	25mmP31W-20	ILAS-6	HFR	275	2.08	5.00E-04	27	840	313.4	851	267.0	0.2	11	81
21	J 5	Manet II		•		Alexandre	Osiris	313	2.00		325		•	797		0.02	0.75	43

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIC		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	oy 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
2	B603	EU97	2/10 2/11	E83697	P25	SIWAS-09	HFR	60	2.20	5.00E-04	50	846	320.1	849	0.0	0.30	14.7	82
2	B889	EU97	66/3 66/4	E83698	P8	SIWAS-09	HFR	60	2.20	5.00E-04	400	533	97.1	610	9.3	4.30	18.8	84
41	B459	EU97		E83699	B100	SUMO-09	HFR	300	2.16	5.00E-04	-90	1030	371.2	1031	0.0	0.29	9.6	
2	C299	EU97	2/10 2/11	E83697	P25	SUMO-04	HFR	300	2.20	5.00E-04	27	901	368.1	902	0.0	0.30	13.0	76
1,11	M	EU97		E83699	B100	IRF III	BR2	300	2.14	1.00E-04	30	898	366.2	899	0.0	0.18	10.0	76
10	7168	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	2.17	5.00E-04	550	383	19.9	396	36.6	0.60	15.8	88
10	8848	F82H		9753	25mmP31W-20	ILAS-6	HFR	275	2.28	5.00E-04	500	524	126.7	541	38.9	0.5	13	81

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDIFIC		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-	Test temp (°C)	σу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	e uniform (%)	e total (%)	Reduction of area (%)
	2	B596	EU97	2/10 2/11	E83697	P25	SIWAS-09	HFR	60	2.30	5.00E-04	27	853	320.1	855	0.0	0.30	14.3	87
	2	B884	EU97	66/3 66/4	E83698	P8	SIWAS-09	HFR	60	2.40	5.00E-04	27	859	326.1	863	0.0	0.30	14.8	87
	2 2	B597 B886		2/10 2/11 66/3 66/4	E83697 E83698	P25 P8	SIWAS-09 SIWAS-09	HFR HFR	60 60	2.30 2.30	5.00E-04 5.00E-04	50 100	848 781	322.1 263.1	848 786	0.0 0.0	0.20 0.30	14.7 14.7	84
	2	B887		66/3 66/4	E83698	P8	SIWAS-09	HFR	60	2.30	5.00E-04 5.00E-04	200	705	199.0	706	0.0	0.30	14.7	87
	2	B601	EU97	2/10 2/11	E83697	P25	SIWAS-09	HFR	60	2.40	5.00E-04	400	543	107.1	601	11.5	4.20	18.4	82
	2	C274		66/3 66/4	E83698	P8	SOSIA-02	HFR	300	2.40	5.00E-04	27	854	321.1	862	0.0	0.30	12.9	80
	2	B902	EU97		E83698	P8	SUMO-04	HFR	300	2.30	5.00E-04	50	814	288.1	815	0.0	0.10	13.1	72
	2	C275	EU97	66/3 66/4	E83698	P8	SOSIA-02	HFR	300	2.40	5.00E-04	100	832	314.1	835	0.0	0.20	12.6	74
	2	C296	EU97	2/10 2/11	E83697	P25	SUMO-04	HFR	300	2.40	5.00E-04	100	879	361.1	879	0.0	0.10	12.5	71
	2	C276	EU97	66/3 66/4	E83698	P8	SOSIA-02	HFR	300	2.30	5.00E-04	200	785	279.0	789	0.0	0.20	12.2	78
	2	C277	EU97	66/3 66/4	E83698	P8	SOSIA-02	HFR	300	2.30	5.00E-04	300	746	267.4	746	0.0	0.20	11.7	74
	2	B907	EU97	66/3 66/4	E83698	P8	SUMO-04	HFR	300	2.40	5.00E-04	300	735	256.4	737	0.0	0.20	11.9	74
	2	C278	EU97	66/3 66/4	E83698	P8	SOSIA-02	HFR	300	2.30	5.00E-04	400	675	239.1	684	247.8	0.40	11.6	57
	2	B905	EU97	66/3 66/4	E83698	P8	SUMO-04	HFR	300	2.30	5.00E-04	400	691	255.1	691	0.0	0.10	11.7	76
	2	C298	EU97	2/10 2/11	E83697	P25	SUMO-04	HFR	300	2.30	5.00E-04	400	710	274.1	710	0.0	0.10	11.5	66
	41	B458	EU97		E83698	B100	SUMO-09	HFR	342.5	2.45	5.00E-04	-90	806	147.2	876	13.6	6.60	17.6	
L	41	B775	EU97		E83698	P14	SUMO-09	HFR	342.5	2.37	5.00E-04	350	566	107.0	600	19.1	1.99	10.8	0.0
	10	7213	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	2.34	5.00E-04	27	728	201.4	770	19.9	1.80	11.8	80
	10 10	8849 7166	F82H F82H		9753 9741	25mmP31W-20 7,5mmP6-14	ILAS-6 ILAS-4	HFR HFR	275 300	2.36 2.37	5.00E-04 5.00E-04	425 300	674 653	241.9 188.2	686 662	106.5 218.3	0.4 0.50	8.7	75
H	5	81	JLF1		7/41	7,5111111 0-14	Phase Ib	HFR	250	2.40	1.60E-04	250	608	183.4	628	38.1	2.50	13.5	79
	5	82	JLF1				Phase Ib	HFR	250	2.40	1.60E-04	250	610	185.4	621	103.6	1.80	13.1	79
	5	83	JLF1				Phase Ib	HFR	300	2.40	1.60E-04	300	652	233.1	652	0.0	0.26	8.9	70
	5	84	JLF1				Phase Ib	HFR	300	2.40	1.60E-04	300	659	240.1	665	0.0	0.36	8.7	70
	5	85	JLF1				Phase Ib	HFR	350	2.40	1.60E-04	350	535	118.3	571	17.1	1.60	10.8	74
	5	86	JLF1				Phase Ib	HFR	350	2.40	1.60E-04	350	530	113.3	570	15.4	1.50	11.1	73
	5	87	JLF1				Phase Ib	HFR	400	2.40	1.60E-04	400	464	45.9	544	8.4	2.40	9.5	63
I	5	88	JLF1				Phase Ib	HFR	400	2.40	1.60E-04	400	463	44.9	527	9.6	3.00	10.3	63
I	5	89	JLF1				Phase Ib	HFR	450	2.40	1.60E-04	450	619	196.1	627	282.7	0.46	8.7	71
L	5	80	JLF1				Phase Ib	HFR	450	2.40	1.60E-04	450	428	5.1	478	10.8	2.50	13.3	61
	5	U1	OPTIV			P	Phase Ia	HFR	250	2.40	1.60E-04	250	734	286.9	737	0.0	0.27	9.9	77
I	5	U2	OPTIV			P	Phase Ia	HFR	250	2.40	1.60E-04	250	714	266.9	714	0.0	0.23	9.8	61
	5	U3	OPTIV			P	Phase Ia	HFR	300	2.40	1.60E-04	300	711	275.7	716	0.0	0.30	7.8	52 54
	5	U4	OPTIV			P	Phase Ia	HFR	300	2.40	1.60E-04	300	765 406	329.7	765 555	0.0	0.23	7.4	54 61
	5 5	U5 U6	OPTIV OPTIV			P	Phase Ia	HFR	350	2.40 2.40	1.60E-04	350 350	496	71.4 178.4	555 636	10.6 21.0	3.40	13.5 8.3	61 42
	5	U6 U7	OPTIV			P	Phase Ia Phase Ia	HFR HFR	350 400	2.40	1.60E-04 1.60E-04	350 400	603 478	63.2	636 520	13.5	1.10 2.60	8.3 12.2	42 61
	5	U8	OPTIV			r D	Phase Ia	HFR	400	2.40	1.60E-04 1.60E-04	400	491	76.2	540	12.2	2.90	13.1	60
	5	U9	OPTIV			D D	Phase Ia	HFR	450	2.40	1.60E-04 1.60E-04	450	548	141.9	580	19.7	0.90	8.4	53
	5	U0	OPTIV			p	Phase Ia	HFR	450	2.40	1.60E-04	450	457	50.9	510	10.8	3.80	14.5	55

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIC		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	oy 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
	2	B885	EU97	66/3 66/4	E83698	P8	SIWAS-09	HFR	60	2.50	5.00E-04	50	831	305.1	832	0.0	0.20	14.8	82
	2	B904	EU97	66/3 66/4	E83698	P8	SUMO-04	HFR	300	2.50	5.00E-04	200	799	293.0	799	0.0	0.20	12.1	76
	2	B599	EU97	2/10 2/11	E83697	P25	SIWAS-09	HFR	60	2.50	5.00E-04	200	707	201.0	709	0.0	0.30	14.3	84
	2	C297	EU97	2/10 2/11	E83697	P25	SUMO-04	HFR	300	2.50	5.00E-04	200	812	306.0	812	0.0	0.20	12.2	69
	2	B600		2/10 2/11	E83697	P25	SIWAS-09	HFR	60	2.50	5.00E-04	300	618	139.4	621	0.0	0.20	14.4	89
	2	B617	EU97	2/10 2/11	E83697	P25	SUMO-04	HFR	300	2.50	5.00E-04	300	769	290.4	770	0.0	0.10	11.7	78
	2	B602		2/10 2/11	E83697	P25		HFR	60	2.50	5.00E-04	500	433	50.4	484	10.7	2.40	21.3	87
	10	8837	F82H		9753	25mmP31W-20		HFR	275	2.48	5.00E-04	325	801	341.0	801	0.0	0.2	10.1	78
	10	8842	F82H		9753	25mmP31W-20	ILAS-6	HFR	275	2.49	5.00E-04	80	867	363.5	873	0.0	0.3	10.1	80
	10	7211	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	2.51	5.00E-04	300	590	125.2	618	24.5	0.90	10.1	76
	10	7206	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	2.52	5.00E-04	500	473	75.7	485	55.4	0.50	12.4	82
	10	7162	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	2.54	5.00E-04	27	700	173.4	745	17.9	2.20	12.3	79
	10	8838	F82H		9753	25mmP31W-20	ILAS-6	HFR	275	2.55	5.00E-04	27	874	347.4	898	49.1	0.4	10.3	7/0
-	10	8839	F82H		9753	25mmP31W-20	ILAS-6	HFR	275	2.57	5.00E-04	425	750	317.9	762	138.0	0.2	9	78
	10	E523	JLF-1			Plate 15 mm	ILAS-4	HFR	300	2.47	5.00E-04	300	540	121.1	579	16.0	1.4	11.5	76.7
	10	E534	JLF-1B			Plate	ILAS-4	HFR	300	2.50	5.00E-04	300	585	166.1	612	25.3	0.8	10.4	72.7

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDIFIC		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	σу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	e uniform (%)	ε total (%)	Reduction of area (%)
	2	B906	EU97	66/3 66/4	E83698	P8	SUMO-04	HFR	300	2.60	5.00E-04	27	908	375.1	908	0.0	0.20	12.6	81
	2	C295	EU97	2/10 2/11	E83697	P25	SUMO-04	HFR	300	2.60	5.00E-04	50	894	368.1	894	0.0	0.20	12.7	75
	2	B616	EU97	2/10 2/11	E83697	P25	SUMO-04	HFR	300	2.70	5.00E-04	27	910	377.1	910	0.0	0.20	12.6	75
	10	7198	F82H		9741	7,5mmP6-14		HFR	300	2.64	5.00E-04	550	396	32.9	405	66.3	0.40	13.8	90
	10	7205	F82H			7,5mmP6-14		HFR	300	2.69		400	594	153.4	614	37.0	0.90	7.4	70
	10	7189	F82H		9741		ILAS-4	HFR	300	2.69		500	462	64.7	467	1048.9	0.30	13.9	88.1
	10	7202	F82H			· /		HFR	300	2.70		200	698	218.2	709	143.7	0.60	9.5	76
	10	7177	F82H			7,5mmP6-14		HFR	300	2.71		200	653	173.2	680	28.7	1.20	10.4	80
	10	7194	F82H		9741		ILAS-4	HFR	300	2.72		500	403	5.7	408	344.2	0.20	14.5	88.1
	10	E520	JLF-1			Plate 15 mm		HFR	300	2.64		27	628	135.4	702	10.7	3	14.7	77.4
L	10	E533	JLF-1B			Plate	ILAS-4	HFR	300	2.68	5.00E-04	27	688	195.4	742	14.9	2.2	12.7	74.2

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIC		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
10	7197	F82H		9741 7,5	5mmP6-14	ILAS-4	HFR	300	2.84	5.00E-04	300	629	164.2	644	61.2	0.70	9.1	71
10	7201	F82H		9741 7,5	5mmP6-14	ILAS-4	HFR	300	2.87	5.00E-04	80	676	172.5	722	17.0	2.00	12.5	79
10	7176	F82H			5mmP6-14	ILAS-4	HFR	300	2.88	5.00E-04	80	679	175.5	723	17.8	2.10	11.9	77
10	7188	F82H		9741 7,5	5mmP6-14	ILAS-4	HFR	300	2.89	5.00E-04	500	498	100.7	506	136.5	0.40	11.5	79
10	7192	F82H		9741 7,5	5mmP6-14	ILAS-4	HFR	300	2.92	5.00E-04	27	711	184.4	758	17.4	2.10	12.8	78
10	7181	F82H		9741 7,5	5mmP6-14	ILAS-4	HFR	300	2.96	5.00E-04	300	604	139.2	629	28.6	1.00	10.5	77
10	E515	JLF-1	•	Pl	late 15 mm	ILAS-4	HFR	300	2.84	5.00E-04	200	580	146.2	620	16.7	1.4	12.8	78.8
10	E528	JLF-1B			Plate	ILAS-4	HFR	300	2.87	5.00E-04	200	627	193.2	654	27.4	1.1	10.7	80.6
10	E508	ORNL-3791			Plate	ILAS-4	HFR	300	2.89	5.00E-04	300	867	155.5	893	43.3	0.90	8.6	67.5

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	e uniform (%)	ε total (%)	Reduction of area (%)
10	7179	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	3.00	5.00E-04	300	618	153.2	640	34.4	1.10	10.0	74
10	7196	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	3.01	5.00E-04	27	717	190.4	762	18.3	2.30	12.6	81
10	7187	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	3.06	5.00E-04	400	577	136.4	598	33.5	0.80	9.8	65
10	7191			9741	7,5mmP6-14	ILAS-4	HFR	300	3.09		300	647	182.2	662	64.1	0.80	9.4	73
10	E517	JLF-1			Plate 15 mm	ILAS-4	HFR	300	3.01	5.00E-04	400	505	86.9	559	11.5	1.5	10	70.3
10	E518	JLF-1			Plate 15 mm	ILAS-4	HFR	300	3.05		300	558	139.1	593	18.3	1.2	11.1	73.2
10	E529				Plate	ILAS-4	HFR	300	3.05		400	489	70.9	551	10.2	1.9	11.2	72.7
10	E531	JLF-1B			Plate	ILAS-4	HFR	300	3.08	5.00E-04	300	577	158.1	614	17.9	1.4	10.6	73.7
10	E506	ORNL-3791			Plate	ILAS-4	HFR	300	3.06	5.00E-04	27	982	182.5	1018	33.2	1.90	9.3	68.4
13		12Cr1MoVW	X	AA-3587	Sheet 0.76 mm	CTR-T2	HFIR	50	3.20	4.50E-04	50	950		978	44.3	0.80	4.9	

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIC		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	σ _y 0,2% pl.def. (Mpa)	Irradiation hardening (MPa)	Tensile strength (Mpa)	Strain hardening exponent	ε uniform (%)	e total (%)	Reduction of area (%)
26	U8	F82H				Alexandre	Osiris	325	3.40		30	847		852	0.0	0.38	9.8	71
26	U2	F82H				Alexandre	Osiris	325	3.40		325	734		734	0.0	0.20	6.2	59
21	J2	Manet II				Alexandre	Osiris	325	3.40		325	990		1005	160.4	0.75	5.5	36
10	E501	ORNL-3791			Plate	ILAS-4	HFR	300	3.26	5.00E-04	200	911	167.3	942	36.5	1.10	9.1	68.4
10		ORNL-3791			Plate	ILAS-4	HFR	300	3.43	5.00E-04	400	848	168.7	886	26.1	1.00	7.4	55.1
10	E504	ORNL-3791			Plate	ILAS-4	HFR	300	3.47	5.00E-04	300	880	168.5	909	38.1	0.90	7.9	63.4

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS					
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Tensile strength (MPa)	Strain hardening exponent	e uniform (%)	e total (%)	Reduction of area (%)
13		12Cr1MoVW1Ni		XAA-3588	Sheet 0.76 mm	CTR-T2	HFIR	50	4.20	4.50E-04	50	1064	1098	39.7	0.90	3.5	
13		9Cr1MoVNb		XA-3590	Sheet 0.76 mm	CTR-T2	HFIR	50	4.30	4.50E-04	50	907	921	152.1	0.60	4.0	
13		9Cr1MoVNb2Ni		XA-3591	Sheet 0.76 mm	CTR-T2	HFIR	50	4.50	4.50E-04	50	1230	1264	48.6	0.60	2.8	
13		9Cr1MoVNb		XA-3590	Sheet 0.76 mm	CTR-T2	HFIR	50	4.70	4.50E-04	50	932	935	0.0	0.30	2.8	
13		12Cr1MoVW		XAA-3587	Sheet 0.76 mm	CTR-T2	HFIR	50	4.70	4.50E-04	50	976	1004	46.1	0.80	5.1	

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIC		TEST RESULTS					
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
13		9Cr1MoVNb2Ni		XA-3591	rod 6.35 mm	CTR-RB2	HFIR	50	5.00		50	1255	1258	0.0	0.30	1.5	
13		12Cr1MoVW1Ni					HFIR	50	5.10		50	1033	1087	22.1	1.00	2.8	
13		12Cr1MoVW2Ni		XAA-3589		CTR-T2	HFIR	50	5.10		50	1220	1277	24.9	0.90	2.9	
13		9Cr1MoVNb		30176	rod 6.35 mm		HFIR	50	5.30		50	879	881	0.0	0.30	2.0	
13		12Cr1MoVW		91354	rod 6.35 mm	CTR-RB1	HFIR	50	5.50		50	986	998	382.4	0.40	2.0	
43,44		9Cr2WVTa		ORNL3791		RB-11J	HFIR	300	5.00		-100	1229	1247	177.8	0.40	6.4	
43,44		9Cr2WVTa		ORNL3791		RB-11J	HFIR	300	5.00		25	1040	1040	0.0	0.17	7.1	
43,44		9Cr2WVTa		ORNL3791		RB-11J	HFIR	500	5.00		25	569	010	0.0	0.20	6.0	
43,44		9Cr2WVTa		ORNL3791		RB-11J	HFIR	300		1.11E-03	300	918	918	0.0	0.20	6.3	
43,44		F82H	mod	IEA		RB-11J	HFIR	300	5.00		-100	1002	1002	0.0	0.20	7.2	
	A023	F82H	mod	IEA		RB-11J	HFIR	307	4.90		25	898	911	184.5	0.45	7.8	
	A026	F82H	mod	IEA		RB-11J	HFIR	307	4.90		25	889	896	0.0	0.38	8.2	
,	A033	F82H	mod	IEA		RB-12J	HFIR	497	4.80	1.00E-03	25	527	637	7.5	7.54	18.3	
	A039	F82H	mod	IEA		RB-12J	HFIR	497	4.80	1.00E-04	25	535	620	8.8	4.30	14.5	
	A024	F82H F82H	mod	IEA IEA		RB-11J RB-12J	HFIR HFIR	307 497	4.90 4.90		300 500	762 401	770 444	1812.7 11.5	0.32 1.92	7.3	
	A035		mod	IEA												11.2	
43,44		JLF-1				RB-11J	HFIR	300	5.00		-100	942	1023	13.7	1.50	8.5	
43,44		JLF-1				RB-11J RB-11J	HFIR HFIR	300 300	5.00 5.00		25 300	839	858	66.7	0.80	9.3 6.7	
43,44		JLF-1				KB-111	HFIK	300	5.00	1.10E-03	300	755	774	56.1	0.50	6.7	

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITION		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
2	B595	EU97	2/10 2/11	E83697	P25	SUMO-02	HFR	300		5.00E-04	300	883	404.4	883	0.0	0.10	10.8	71
7	na	12Cr2WV		ORNL	P0,76		FFTF	365	6.40	1.00E-03	365	857		890	31.2	1.70	8.0	
7	na	2,25Cr1WV		ORNL	P0,76		FFTF	365	7.40	1.00E-03	365	924		959	31.9	1.30	7.5	
7	na	2,25Cr2W		ORNL	P0,76		FFTF	365	7.40	1.00E-03	365	754		799	19.3	2.20	8.8	
7	na	2,25Cr2WV		ORNL	P0,76		FFTF	365	7.40	1.00E-03	365	788		810	47.9	1.40	7.8	
7	na	2,25CrV		ORNL	P0,76		FFTF	365	7.40	1.00E-03	365	950		980	40.3	1.10	6.4	
13		9Cr1MoVNb	>	XA-3590	rod 6.35 mm	CTR-RB2	HFIR	50	7.10	4.50E-04	50	990		990	0.0	0.30	2.4	
7	na	9Cr2WVTa	OR	NL3791	P0,76		FFTF	365	6.40	1.00E-03	365	669		734	12.4	3.90	11.1	

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	σу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
2	B594	EU97	2/10 2/11	E83697	P25	SUMO-02	HFR	300	7.50	5.00E-04	27	1047	514.1	1047	0.0	0.10	11.5	70
2	B593	EU97	2/10 2/11	E83697	P25	SUMO-02	HFR	300	8.20	5.00E-04	100	1029	511.1	1029	0.0	0.10	11.2	75
2	B592	EU97	2/10 2/11	E83697	P25	SUMO-02	HFR	300	8.40	5.00E-04	200	937	431.0	937	0.0	0.10	10.9	74
7	na	5Cr2WV		ORNL	P0,76		FFTF	365	7.70	1.00E-03	365	729		771	20.0	2.40	9.1	
7	na	9Cr2WV		ORNL	P0,76		FFTF	365	7.70	1.00E-03	365	710		764	15.3	3.50	10.2	

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITION		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	oy 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
2	B591	EU97	2/10 2/11	E83697	P25	SUMO-02	HFR	300	8.70	5.00E-04	400	842	406.1	842	0.0	0.10	10.7	66
2		EU97	2/10 2/11	E83697	P25	SUMO-02	HFR	300	8.90	5.00E-04	50	1066	540.1	1066	0.0	0.20	11.3	70
2		EU97 EU97	2/10 2/11 2/10 2/11	E83697 E83697	P25 P25	SUMO-02 SUMO-02	HFR HFR	300	9.00 9.20	5.00E-04 5.00E-04	27	1081 914	548.1 435.4	1081 914	0.0 0.0	0.20 0.20	11.3	69 72
13	. 5000	12Cr1MoVW		XAA-3587	Sheet 0.76 mm	CTR-33	HFIR	300 50	9.20		300 50	1027	433.4	1047	88.2	0.20	10.6 6.5	72
13		12Cr1MoVW		91354	Sheet 0.76 mm	CTR-33	HFIR	50	9.30		50	983		987	0.0	0.30	2.1	
13		12Cr1MoVW		XAA-3587	rod 6.35 mm	CTR-RB2	HFIR	50	10.30		50	980		992	369.5	0.40	2.9	
13		12Cr1MoVW1Ni		XAA-3588	rod 6.35 mm	CTR-RB2	HFIR	50	9.00		50	978		1001	62.6	0.60	2.6	
13		12Cr1MoVW1Ni		XAA-3588	Sheet 0.76 mm	CTR-33	HFIR	50	9.30		50	1115		1134	117.9	0.60	3.0	
13	,	12Cr1MoVW2Ni		XAA-3589	rod 6.35 mm	CTR-RB2	HFIR	50	9.10	4.50E-04	50	1227		1249	104.9	0.50	2.2	
13		12Cr1MoVW2Ni		XAA-3589	Sheet 0.76 mm	CTR-33	HFIR	50	9.30	4.50E-04	50	1264		1298	50.6	0.80	2.5	
13	,	9Cr1MoVNb		XA-3590	Sheet 0.76 mm	CTR-33	HFIR	50	9.30	4.50E-04	50	878		878	0.0	0.20	3.2	
12	2	9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	390	10.00	4.20E-04	22	881		933	19.5	3.60	7.0	
12	2	9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	500	10.00	4.20E-04	22	558		712	6.7	7.90	12.4	
12		9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	550	10.00		22	544		697	6.6	6.10	10.0	
12		9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	390	10.00	4.20E-04	400	781		808	35.7	1.40	4.1	
12		9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	450	10.00		450	480		575	7.8	3.60	6.9	
12		9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	500	10.00		500	445		536	7.6	3.30	6.8	
12		9Cr1MoVNb		30182	Sheet 0.76 mm	CERT AS	EBRII	550	10.00		550	429		495	8.9	3.10	9.9	
13		9Cr1MoVNb2Ni		XA-3591	Sheet 0.76 mm	CTR-33	HFIR	50	9.30	4.50E-04	50	1289		1297	0.0	0.40	1.6	

REFERENCE	Specimen id.:	MAT	(Capitals)		IRRADIATION				TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	oy 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	ε uniform (%)	e total (%)	Reduction of area (%)
47	EUROF1-s	EU97	E83697	P25	WTZ	BOR-60	330	15.00		250	922	427.3	923.5	1.00	0.24	10.22	
47	EUROF1-s	EU97	E83697	P25	WTZ	BOR-60	330	15.00		250	922	427.3	928.6	1.01	0.28	9.82	
47	EUROF1-s	EU97	E83697	P25	WTZ	BOR-60	330	15.00		300	894	415.4	911	1.02	0.32	9.75	
47		EU97	E83697	P25	WTZ	BOR-60	330	15.00		300	880	401.4	894	1.02	0.30	9.47	
47	EUROF1-s	EU97	E83697	P25	WTZ	BOR-60	330	15.00		350	862	403.3	874	1.01	0.30	9.41	
	EUROF1-s	EU97	E83697	P25	WTZ	BOR-60	330	15.00		350	864	405.3	870	1.01	0.26	9.45	
13		12Cr1MoVW	XAA-3587	Sheet 0.76 mm	CTR-T1	HFIR	50	15.10	4.50E-04	50			1060	1.02	0.60	6.4	
7	na	9Cr2WVTa	ORNL3791	P0,76		FFTF	365	15.4	0.001	365	699		765	1.09	2.9	9.7	
7	na	12Cr2WV	ORNL	P0,76		FFTF	365	15.4	0.001	365	866		902	1.04	1.2	7.1	
7	na	2,25CrV	ORNL	P0,76		FFTF	365	16.20	1.00E-03	365	937		968	1.03	0.90	7.0	
,	na	2,25Cr1WV	ORNL	P0,76		FFTF	365	16.20	1.00E-03	365	976		1026	1.05	1.00	7.5	
7	na	2,25Cr2W	ORNL	P0,76		FFTF	365	16.20	1.00E-03	365 365	796		830	1.04 1.03	1.70	7.5	
7	na	2,25Cr2WV 5Cr2WV	ORNL ORNL	P0,76		FFTF FFTF	365 365	16.20 16.70		365 365	909 757		939 793	1.03	1.10 1.70	5.3 7.8	
7	na na	9Cr2WV	ORNL	P0,76 P0,76		FFTF	365	16.70		365	697		793 745	1.05	2.30	7.8 9.0	
13	IIa	12Cr1MoVW1Ni		Sheet 0.76 mm	CTR-T1	HFIR	50	18.40		50			1194	1.07	0.60	5.0	

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
27		ещ _Х F82H	2nd Name	Reat id.	Product form	Name	JRR-2 and JMTR	Temperature (°C)	0.5 (dpa)	200.1 F0-300.1 1)	OP Test temp (°C)	oy 0,2% pl.def. FZ (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening cylexponent	(%) wuitorm (%)	ε total (%)	Reduction of area (%)
13		9Cr1MoVNb			Sheet 0.76 mm	CTR-T1	HFIR	50		4.50E-04	50	1009		1022	286.7	0.40	5.4	
13		9Cr1MoVNb2Ni			Sheet 0.76 mm		HFIR	50		4.50E-04	50	1357		1383	91.1	0.40	6.3	
13		9Cr1MoVNb		XA-3590	Sheet 0.76 mm	CTR-T1	HFIR	50	22.30	4.50E-04	50	1010		1014	0.0	0.40	5.5	
13		12Cr1MoVW		XAA-3587	Sheet 0.76 mm	CTR-T1	HFIR	50	22.40	4.50E-04	50	1049		1082	40.5	0.60	6.5	
13		12Cr1MoVW1Ni			Sheet 0.76 mm		HFIR	50		4.50E-04	50	1147		1180	45.9	0.60	5.1	
13		12Cr1MoVW2Ni		XAA-3589	Sheet 0.76 mm	CTR-T1	HFIR	50	24.10	4.50E-04	50	1338		1400	25.2	1.00	6.1	

REFERENCE	Specimen id.:	MAT	(Capitals)		IRRADIATION				TEST CONDITIONS		TEST RESULTS					
		Name	2nd Name Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	σ _y 0,2% pl.def. (Mpa)	Tensile strength (Mpa)	Strain hardening exponent	ε uniform (%)	ε total (%)	Reduction of area (%)
7	na	2,25Cr1WV	ORNL	P0,76		FFTF	365	25.40	1.00E-03	365	924	963	28.0	1.40	7.7	
7	na	2,25CrV	ORNL	P0,76		FFTF	365	26.00	1.00E-03	365	883	920	28.2	1.20	7.0	
7	na	9Cr2WV	ORNL	P0,76		FFTF	365		1.00E-03	365	705	756	16.0	2.30	8.7	
7	na	9Cr2WVTa	ORNL3791	P0,76		FFTF	365	27.20		365	710	769	14.2	3.50	12.0	
7	na	12Cr2WV	ORNL	P0,76		FFTF	365	27.20	1.00E-03	365	900	932	34.5	1.30	8.0	
7	na	5Cr2WV	ORNL	P0,76		FFTF	365	27.60	1.00E-03	365	739	766	33.3	1.40	11.2	
7	na	2,25Cr2W	ORNL	P0,76		FFTF	365	28.60	1.00E-03	365	747	787	21.5	2.00	10.0	
7	na	2,25Cr2WV	ORNL	P0,76		FFTF	365	28.60	1.00E-03	365	910	940	38.0	1.20	5.9	

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	oy 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	ε uniform (%)	ε total (%)	Reduction of area (%)
	3	K 9D	EU97	66/5	E83698	P8	Altair	BOR-60	325	42.30	1.40E-03	20	1139	603.3	1161	1.02	0.50	7.7	58
	3	K10D	EU97		E83698	P8	Altair	BOR-60	325	42.30	1.40E-03	325	976	507.0	993	1.02	0.40	6.2	58
	46	E1-15-t	EU97		E83697	P25		BOR-60	336	30.20		250	1012	517.3	1012	1.00	0.22	14.1	
	46	E1-16-t	EU97		E83697	P25	ARBOR-1	BOR-60	336	30.20		300	973	494.4	973	1.00	0.21	13.8	
	46	E1-17-t	EU97		E83697	P25	ARBOR-1	BOR-60	336	30.20		350	930	471.3	930	1.00	0.21	13.5	
	27		F82H		S62-01			JRR-2 and JMTR	400	31.50		400	513		580	1.13	3.00	13.3	
	27		F82H		S62-01			JRR-2 and JMTR	500	31.50		500	437		478	1.09	1.80	12.4	
	27	F4.0	F82H		S62-01			JRR-2 and JMTR	500	33.60	1.00E-04	500	411	10.5.4	494	1.20	2.60	13.3	
	46	F10-t	F82H		9741		ARBOR-1	BOR-60	336	30.20		250	959	486.1	966	1.01	0.44	13.2	
	46	F11-t	F82H		9741		ARBOR-1	BOR-60	336	30.20		300	935	470.2	940	1.01	0.33	11.8	
ı	46	F12-t	F82H	mod	9741		ARBOR-1	BOR-60	336	30.20		350	913	458.6	915	1.00	0.29	6.4	

ANNEX 5

Tensile data pooled according to test temperature

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	e uniform (%)	ε total (%)	Reduction of area (%)
Γ	41	B457	EU97		E83699	B100	SUMO-09	HFR	250	2.10	5.00E-04	-90	983	324.3	983	1.00	0.16	11.0	
	41	B459	EU97		E83699	B100	SUMO-09	HFR	300	2.16	5.00E-04	-90	1030	371.2	1031	1.00	0.29	9.6	
	41	B458	EU97		E83699	B100	SUMO-09	HFR	342.5	2.45	5.00E-04	-90	806	147.2	876	1.09	6.60	17.6	

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	ε uniform (%)	e total (%)	Reduction of area (%)
1,11	С	EU97		E83699	B100	IRF I	BR2	300	0.36		-75	745	115.5	818	1.10	8.06	22.0	75
1,11	I	EU97		E83699	B100		BR2	300	0.37		-75	753	123.5	816	1.08	7.34	21.0	76
1,11	T	EU97		E83699	B100		BR2	300	0.44		-75	781	151.5	829	1.06	5.68	19.0	73
1,11	U	EU97		E83699	B100		BR2	300	0.57		-75	816	186.5	848	1.04	4.68	19.0	79
1,11	P	EU97		E83699	B100	IRF III	BR2	300	0.99		-75	882	252.5	882	1.00	1.87	13.0	72
1,11	H1	EU97		E83699	B100	IRF III	BR2	300	1.73		-75	958	328.5	961	1.00	0.27	12.0	71
45	EU2T04	EU97-2	2 nd batch	993394P	P8	5M	BR2	300	1.32	1.00E-04	-75	961	298.3	961	1.00	0.18	12.3	74.6
45	EU2T12	EU97-2	2 nd batch	993394P	P8	5M	BR2	300	1.32	1.00E-04	-75	955	292.5	955	1.00	0.20	12.8	74.9

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION					TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	sqrt(dose)	Strain rate (sec-1)	Test temp (°C)	σу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	ε uniform (%)	ε total (%)	Reduction of area (%)
	D #0.0	EU97	240244	F02.60#	P. 6		CE CONDITIO		0.00	0.00	# 00F 04	25	533.7	0	654.9	1.23	21.2	21.2	78.2
2 2	B596 B884	EU97 EU97	2/10 2/11 66/3 66/4	E83697 E83698	P25 P8	SIWAS-09 SIWAS-09	HFR HFR	60 60	2.30 2.40	1.52 1.55	5.00E-04 5.00E-04	27 27	853 859	320.1 326.1	855 863	1.00 1.00	0.30 0.30	14.3 14.8	87 87
1,11	L	EU97	00/3 00/4	E83699	B100	IRF I	BR2	300	0.23	0.48	J.00L-04	32	650	118.8	708	1.09	5.65	18.0	79
1,11	F	EU97		E83699	B100	IRF I	BR2	300	0.40	0.63		30	672	140.2	720	1.07	5.40	18.0	80
1,11	D1	EU97		E83699	B100	IRF III	BR2	300	0.48	0.69		30	667	135.2	699	1.05	3.82	16.0	81
1,11 1,11	V W	EU97 EU97		E83699 E83699	B100 B100	IRF II IRF II	BR2 BR2	300 300	0.71 0.83	0.84 0.91		30 30	751 775	219.2 243.2	751 775	1.00 1.00	0.32 0.21	12.0 13.0	79 78
1,11	Ö	EU97		E83699	B100	IRF III	BR2	300	1.32	1.15		30	839	307.2	840	1.00	0.19	10.0	81
1,11	N	EU97		E83699	B100	IRF III	BR2	300	1.66	1.29		30	872	340.2	873	1.00	0.20	10.0	75
2	B900		66/3 66/4	E83698	P8	SUMO-04	HFR	300	2.00	1.41	5.00E-04	27	839	306.1	840	1.00	0.30	13.3	75
1,11	M C299	EU97	2/10 2/11	E83699 E83697	B100 P25	IRF III SUMO-04	BR2 HFR	300 300	2.14 2.20	1.46 1.48	5.00E-04	30 27	898 901	366.2 368.1	899 902	1.00 1.00	0.18 0.30	10.0 13.0	76 76
2	C274		66/3 66/4	E83698	P8	SOSIA-02	HFR	300	2.40	1.55	5.00E-04 5.00E-04	27	854	321.1	862	1.01	0.30	12.9	80
2	B906		66/3 66/4	E83698	P8	SUMO-04	HFR	300	2.60	1.61	5.00E-04	27	908	375.1	908	1.00	0.20	12.6	81
2	B616		2/10 2/11	E83697	P25	SUMO-04	HFR	300	2.70	1.64	5.00E-04	27	910	377.1	910	1.00	0.20	12.6	75
2 2	B594 B589		2/10 2/11 2/10 2/11	E83697 E83697	P25 P25	SUMO-02 SUMO-02	HFR HFR	300 300	7.50 9.00	2.74 3.00	5.00E-04 5.00E-04	27 27	1047 1081	514.1 548.1	1047 1081	1.00 1.00	0.10 0.20	11.5 11.3	70 69
3	K 9D	EU97	66/5	E83698	P8	Altair	BOR-60	325	42.30	6.50	1.40E-03	20	1139	603.3	1161	1.02	0.50	7.7	58
		EU97-2					CE CONDITIO		0.00	0.00		22	528.5	0	657.0	1.24	21.2	21.2	78.1
45	EU2T07		2 nd batch	993394P	P8	5M	BR2	300	1.32	1.15	1.00E-04	22	853	324.8	853	1.00	0.13	11.6	78.8
45	EU2T09		2 nd batch	993394P	P8	5M	BR2	300	1.32	1.15	1.00E-04	22	847	319.0	847	1.00	0.18	11.6	82.3
45	EU2T13		2 nd batch	993394P	P9	5M	BR2	300	1.32	1.15	1.00E-04	22	836	307.2	836	1.00	0.17	11.8	77.7
45	EU2T21		2 nd batch	993394P	P10	5M	BR2	300	0.00	1.15 0.00	1.00E-04	22	808	279.6	808	1.00	0.16	12.4	79.9 79.8
10	8845	F82H F82H		9753	25mmP31W-20	ILAS-6	HFR HFR	275	2.08	1.44	5.00E-04	25 27	526.0 840	0 313.4	641.2 851	1.22	20.1 0.2	20.1 11	79.8 81
10	8838	F82H			25mmP31W-20	ILAS-6	HFR	275	2.55	1.60	5.00E-04	27	874	347.4	898	1.03	0.4	10.3	70
10	7213	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	2.34	1.53	5.00E-04	27	728	201.4	770	1.06	1.80	11.8	80
10	7162	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	2.54	1.59	5.00E-04	27	700	173.4	745	1.06	2.20	12.3	79
10 10	7192 7196	F82H F82H		9741 9741	7,5mmP6-14 7,5mmP6-14	ILAS-4 ILAS-4	HFR HFR	300 300	2.92 3.01	1.71 1.73	5.00E-04 5.00E-04	27 27	711 717	184.4 190.4	758 762	1.07 1.06	2.10 2.30	12.8 12.6	78 81
43,44	A023	F82H	mod	IEA	7,5111111 0-14	RB-11J	HFIR	307	4.90	2.21	1.11E-03	25	898	370.3	911	1.01	0.45	7.8	01
43,44	A026	F82H	mod	IEA		RB-11J	HFIR	307	4.90	2.21	1.10E-04	25	889	361.3	896	1.01	0.38	8.2	
43,44	A033	F82H	mod	IEA		RB-12J	HFIR	497	4.80	2.19	1.00E-03	25	527	-0.7	637	1.21	7.54	18.3	
43,44	A039	F82H F82H	mod	IEA S62-01		RB-12J	HFIR JRR-2/JMTR	497 300	4.80 0.08	2.19 0.28	1.00E-04 1.00E-04	25 25	535 684	7.3	620 746	1.16 1.09	4.30 4.60	14.5 18.7	80.3
24		F82H		S62-01			JRR-2/JMTR	300	0.08	0.28	1.00E-04 1.00E-04	25	689		752	1.09	4.70	20.0	79.5
24		F82H		S62-01			JRR-2/JMTR	300	0.08	0.28	1.00E-04	25	684		753	1.10	4.70	19.0	80.8
26	U11	F82H				Alexandre	Osiris	313	2.00	1.41		25			685		0.04	5.7	76
25 26	U10 U8	F82H F82H				Alexandre Alexandre	Osiris Osiris	325 325	0.80 3.40	0.89 1.84		25 30	663 847		700 852	1.06 1.01	4.73 0.38	17.8 9.8	76 71
24	08	F82H		S62-01		Alexandre	JRR-2/JMTR	520	0.10	0.32	1.00E-04	25	611		724	1.01	5.00	22.3	80.3
24		F82H		S62-01			JRR-2/JMTR	520	0.10	0.32	1.00E-04	25	596		708	1.19	4.80	19.8	79.8
24		F82H		S62-01			JRR-2/JMTR	580	0.08	0.28	1.00E-04	25	566		660	1.17	4.10	16.0	
24		F82H		S62-01			JRR-2/JMTR JRR-2/JMTR	580	0.08		1.00E-04	25	578		666	1.15	3.90	16.0	
24 10	E520	F82H JLF-1		S62-01	Plate 15 mm	ILAS-4	JRR-2/JMTR HFR	580 300	0.08 2.64	0.28 1.62	1.00E-04 5.00E-04	25 27	562 628	135.4	702	1.17	4.10	16.0 14.7	77.4
10	E520 E533	JLF-1 JLF-1B			Plate	ILAS-4 ILAS-4	HFR	300	2.68	1.64	5.00E-04 5.00E-04	27	688	195.4	742	1.12	2.2	14.7	74.2
43,44		JLF-1				RB-11J	HFIR	300	5.00	2.24	1.10E-03	25	839	345.5	858	1.02	0.80	9.3	
20	J1	Manet II	-	-		Alexandre	Osiris	313	0.80	0.89	-	25	961		982	1.02	4.49	14.27	
10	E506	ORNL-3791		DDM 250:	Plate	ILAS-4	HFR	300	3.06	1.75	5.00E-04	27	982	182.5	1018	1.04	1.90	9.3	68.4
43,44 43,44		9Cr2WVTa 9Cr2WVTa		ORNL3791 ORNL3791		RB-11J RB-11J	HFIR HFIR	300 500	5.00 5.00		1.11E-03 1.10E-03	25 25	1040 569	1040	0.0	0.00	7.1		
12		9Cr1MoVNb	,		Sheet 0.76 mm		EBRII	390	10.00	3.16		22	881		933	1.06	3.60	7.0	
12		9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	500	10.00	3.16	4.20E-04	22 22	558		712	1.28	7.90	12.4	
12		9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	550	10.00	3.16	4.20E-04	22	544		697	1.28	6.10	10.0	

REFERENCE		Specimen id.:	MAT	(Capitals)			IRRADIATION					TEST CONDITIONS		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	sqrt(dose)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	ε uniform (%)	ε total (%)	Reduction of area (%)
			EU97				REFERENCI			0.00	0.00		50	525.9	0	639.4	1.22	5.9	20.6	79.2
	9 I29T09_I		EU97		PSI			PIREX	50	0.22	0.46		50	711	185.1	766	1.08	1.40		
	9 I29T01_	_	EU97		PSI			PIREX	50	0.62	0.79		50	617	91.1	714	1.16	1.27		
	9 I29T02_	_	EU97		PSI			PIREX	50	0.62	0.79		50	717	191.1	762	1.06	2.50		
	9 I29T0	_	EU97		PSI			PIREX	50	0.62	0.79		50	636	110.1	749	1.18	1.40		
	9 I297 9 I297		EU97 EU97		PSI PSI			PIREX PIREX	50	1.27	1.13		50 50	739 750	213.1	772	1.04 1.10	1.10		
		603		2/10 2/11	E83697	P25	SIWAS-09	HFR	50 60	1.27 2.20	1.13 1.48	5.00E-04	50 50	846	224.1 320.1	823 849	1.10	1.75 0.30	14.7	82
		597		2/10 2/11	E83697	P25	SIWAS-09	HFR	60	2.30	1.52	5.00E-04 5.00E-04	50	848	320.1	848	1.00	0.30	14.7	84
		885		66/3 66/4	E83698	P8	SIWAS-09	HFR	60	2.50	1.58	5.00E-04 5.00E-04	50	831	305.1	832	1.00	0.20	14.7	82
		902			E83698	P8	SUMO-04	HFR	300	2.30	1.52	5.00E-04	50	814	288.1	815	1.00	0.20	13.1	72
		295		2/10 2/11	E83697	P25	SUMO-04	HFR	300	2.60	1.61	5.00E-04	50	894	368.1	894	1.00	0.20	12.7	75
		590		2/10 2/11	E83697	P25	SUMO-02	HFR	300	8.90	2.98	5.00E-04	50	1066	540.1	1066	1.00	0.20	11.3	70
1.			12Cr1MoVW			Sheet 0.76 mm	CTR-T2	HFIR	50	3.20		4.50E-04	50	950		978	1.03	0.80	4.9	
1.			12Cr1MoVW			Sheet 0.76 mm	CTR-T2	HFIR	50	4.70		4.50E-04	50	976		1004	1.03	0.80	5.1	
1.	3		12Cr1MoVW		91354	rod 6.35 mm	CTR-RB1	HFIR	50	5.50		4.50E-04	50	986		998	1.01	0.40	2.0	
1	3		12Cr1MoVW		XAA-3587	Sheet 0.76 mm	CTR-33	HFIR	50	9.30		4.50E-04	50	1027		1047	1.02	0.60	6.5	
1.	3		12Cr1MoVW		91354	Sheet 0.76 mm	CTR-33	HFIR	50	9.30		4.50E-04	50	983		987	1.00	0.30	2.1	
1.	3		12Cr1MoVW		XAA-3587	rod 6.35 mm	CTR-RB2	HFIR	50	10.30		4.50E-04	50	980		992	1.01	0.40	2.9	
1.	3		12Cr1MoVW		XAA-3587	Sheet 0.76 mm	CTR-T1	HFIR	50	15.10		4.50E-04	50	1041		1060	1.02	0.60	6.4	
1			12Cr1MoVW			Sheet 0.76 mm	CTR-T1	HFIR	50	22.40		4.50E-04	50	1049		1082	1.03	0.60	6.5	
1.			12Cr1MoVW1Ni			Sheet 0.76 mm	CTR-T2	HFIR	50	4.20		4.50E-04	50	1064		1098	1.03	0.90	3.5	
1.			12Cr1MoVW1Ni			Sheet 0.76 mm	CTR-T2	HFIR	50	5.10		4.50E-04	50	1033		1087	1.05	1.00	2.8	
1.			12Cr1MoVW1Ni		XAA-3588	rod 6.35 mm	CTR-RB2	HFIR	50	9.00		4.50E-04	50	978		1001	1.02	0.60	2.6	
1.			12Cr1MoVW1Ni			Sheet 0.76 mm	CTR-33	HFIR	50	9.30		4.50E-04	50	1115		1134	1.02	0.60	3.0	
1.			12Cr1MoVW1Ni			Sheet 0.76 mm	CTR-T1	HFIR	50	18.40		4.50E-04	50	1152		1194	1.04	0.60	5.0	
1.			12Cr1MoVW1Ni			Sheet 0.76 mm	CTR-T1	HFIR	50	23.70		4.50E-04	50	1147		1180	1.03	0.60	5.1	
1.			12Cr1MoVW2Ni			Sheet 0.76 mm	CTR-T2	HFIR	50	5.10		4.50E-04	50	1220		1277	1.05	0.90	2.9	
1.			12Cr1MoVW2Ni 12Cr1MoVW2Ni		XAA-3589	rod 6.35 mm Sheet 0.76 mm	CTR-RB2 CTR-33	HFIR HFIR	50 50	9.10 9.30		4.50E-04 4.50E-04	50 50	1227 1264		1249 1298	1.02 1.03	0.50 0.80	2.2 2.5	
1.			12Cr1MoVW2Ni			Sheet 0.76 mm	CTR-33	HFIR	50	24.10		4.50E-04 4.50E-04	50 50	1338		1400	1.05	1.00	6.1	
1			9Cr1MoVNb			Sheet 0.76 mm	CTR-T1	HFIR	50	4.30		4.50E-04 4.50E-04	50	907		921	1.03	0.60	4.0	
1			9Cr1MoVNb			Sheet 0.76 mm	CTR-T2	HFIR	50	4.70		4.50E-04 4.50E-04	50	932		935	1.02	0.30	2.8	
1			9Cr1MoVNb		30176	rod 6.35 mm		HFIR	50	5.30		4.50E-04 4.50E-04	50	879		881	1.00	0.30	2.0	
1.			9Cr1MoVNb		XA-3590	rod 6.35 mm		HFIR	50	7.10		4.50E-04	50	990		990	1.00	0.30	2.4	
1.			9Cr1MoVNb			Sheet 0.76 mm	CTR-33	HFIR	50	9.30		4.50E-04	50	878		878	1.00	0.20	3.2	
1			9Cr1MoVNb			Sheet 0.76 mm		HFIR	50	20.20		4.50E-04	50	1009		1022	1.01	0.40	5.4	
1			9Cr1MoVNb			Sheet 0.76 mm	CTR-T1	HFIR	50	22.30		4.50E-04	50	1010		1014	1.00	0.40	5.5	
1			9Cr1MoVNb2Ni			Sheet 0.76 mm	CTR-T2	HFIR	50	4.50		4.50E-04	50	1230		1264	1.03	0.60	2.8	
1.			9Cr1MoVNb2Ni		XA-3591	rod 6.35 mm	CTR-RB2	HFIR	50	5.00		4.50E-04	50	1255		1258	1.00	0.30	1.5	
1.	3		9Cr1MoVNb2Ni		XA-3591	Sheet 0.76 mm	CTR-33	HFIR	50	9.30		4.50E-04	50	1289		1297	1.01	0.40	1.6	
1:	3		9Cr1MoVNb2Ni		XA-3591	Sheet 0.76 mm	CTR-T1	HFIR	50	21.10		4.50E-04	50	1357		1383	1.02	0.40	6.3	

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION					TEST CONDITIC		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	sqrt(dose)	Strain rate (sec-1)	Test temp (°C)	oy 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	ε uniform (%)	ε total (%)	Reduction of area (%)
		EU97				REFERENCE	CONDIT	ION	0.00	0.00		100	517.9	0	616.4	1.19	5.1	19.6	80.3
2	B598	EU97	2/10 2/11	E83697	P25	SIWAS-09	HFR	60	2.10	1.45	5.00E-04	100	781	263.1	783	1.00	0.30	14.2	84
2	B886	EU97	66/3 66/4	E83698	P8	SIWAS-09	HFR	60	2.30	1.52	5.00E-04	100	781	263.1	786	1.01	0.30	14.7	
2	B903	EU97	66/3 66/4	E83698	P8	SUMO-04	HFR	300	2.10	1.45	5.00E-04	100	799	281.1	799	1.00	0.20	12.9	75
2	C275	EU97	66/3 66/4	E83698	P8	SOSIA-02	HFR	300	2.40	1.55	5.00E-04	100	832	314.1	835	1.00	0.20	12.6	74
2	C296	EU97	2/10 2/11	E83697	P25	SUMO-04	HFR	300	2.40	1.55		100	879	361.1	879	1.00	0.10	12.5	71
2	B593	EU97	2/10 2/11	E83697	P25	SUMO-02	HFR	300	8.20	2.86	5.00E-04	100	1029	511.1	1029	1.00	0.10	11.2	75

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	oy 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	ε uniform (%)	e total (%)	Reduction of area (%)
Γ	1,11	X	EU97		E83699	B100	IRF II	BR2	300	0.16		150	600	87.0	655	1.09	4.95	16.0	80
	1,11	В	EU97		E83699	B100		BR2	300	0.33		150	610	97.0	656	1.08	4.55	17.0	80
	1,11	Y	EU97		E83699	B100		BR2	300	0.33		150	610	97.0	656	1.08	3.30	17.0	80
	1,11	Н	EU97		E83699	B100	IRF I	BR2	300	0.39		150	619	106.0	654	1.06	4.25	16.0	81
	1,11	E1	EU97		E83699	B100	IRF III	BR2	300	0.89		150	714	201.0	716	1.00	0.12	11.0	81
L	1,11	F1	EU97		E83699	B100	IRF III	BR2	300	1.17		150	748	235.0	750	1.00	0.16	10.0	81
	10	7161	F82H		9741	7,5mmP6-14	SIWAS-6	HFR	80	1.67	5.00E-04	150	722	233.5	722	1.00	0.20	12.4	87
L	10	7164	F82H		9741	7,5mmP6-14	SIWAS-6	HFR	80	1.95	5.00E-04	150	726	237.5	726	1.00	0.20	12.6	87

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	σy 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	ε uniform (%)	ε total (%)	Reduction of area (%)
2	B599	EU97	2/10 2/11	E83697	P25	SIWAS-09	HFR	60	2.50	5.00E-04	200	707	201.0	709	1.00	0.30	14.3	84
2	C297			E83697	P25	SUMO-04	HFR	300	2.50		200	812	306.0	812	1.00	0.20	12.2	69
2	B592		2/10 2/11	E83697	P25	SUMO-02	HFR	300	8.40		200	937	431.0	937	1.00	0.10	10.9	74
10	7202	F82H			7,5mmP6-14	ILAS-4	HFR	300	2.70		200	698	224.2	709	1.02	0.60	9.5	76
10	7177	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	2.71	5.00E-04	200	653	179.2	680	1.04	1.20	10.4	80
10	E515	JLF-1			Plate 15 mm	ILAS-4	HFR	300	2.84	5.00E-04	200	580	146.2	620	1.07	1.4	12.8	78.8
10	E528	JLF-1B			Plate	ILAS-4	HFR	300	2.87	5.00E-04	200	627	193.2	654	1.04	1.1	10.7	80.6
10	E501	ORNL-3791			Plate	ILAS-4	HFR	300	3.26	5.00E-04	200	911	167.3	942	1.03	1.10	9.1	68.4

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	e uniform (%)	e total (%)	Reduction of area (%)
1,11	A	EU97		E83699	B100	IRF I	BR2	300	0.27		225	579	78.1	610	1.05	2.39	14.0	81
1,11	G	EU97		E83699	B100	IRF I	BR2	300	0.40		225	585	84.1	620	1.06	2.62	14.0	81
1,11	B1	EU97		E83699	B100	IRF II	BR2	300	0.75		225	681	180.1	681	1.00	0.22	11.0	79
1,11	C1	EU97		E83699	B100	IRF II	BR2	300	0.89		225	691	190.1	691	1.00	0.22	10.0	75

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	ε uniform (%)	ε total (%)	Reduction of area (%)
9	129T12	EU97		PSI			PIREX	250	0.24		250	515	20.3	592	1.15	4.30		
9	I29T13	EU97		PSI			PIREX	250	0.24		250	552	57.3	588	1.07	3.90		
9	I29T04	EU97		PSI			PIREX	250	0.63		250	614	119.3	661	1.08	1.80		
9	I29T20	EU97		PSI			PIREX	250	1.36		250	570	75.3	638	1.12	1.00		
41	B774	EU97		E83698	P14	SUMO-09	HFR	250	1.64		250	636	141.3	636	1.00	0.10	10.2	
47	EUROF1-s	EU97		E83697	P25	WTZ	BOR-60	330	15.00		250	922	427.3	923.5	1.00	0.24	10.22	
47	EUROF1-s	EU97		E83697	P25	WTZ	BOR-60	330	15.00		250	922	427.3	928.6	1.01	0.28	9.82	
46	E1-15-t	EU97		E83697	P25	ARBOR-1	BOR-60	336	30.20		250	1012	517.3	1012	1.00	0.22	14.1	
4	31	F82H		Pre-IEA	P	Teseo	HFR	250	0.80		250	625		632	1.01	0.50	11.9	80
4	32	F82H		Pre-IEA	P	Teseo	HFR	250	0.80		250	627		630	1.00	0.50	11.7	79
46	F10-t		mod	9741		ARBOR-1	BOR-60	336	30.20		250	959	487.8	966	1.01	0.44	13.2	
5	81	JLF1				Phase Ib	HFR	250	2.40		250	608	183.4	628	1.03	2.50	13.5	79
5	82	JLF1				Phase Ib	HFR	250	2.40		250	610	185.4	621	1.02	1.80	13.1	79
4	52	OPTIV			P	Teseo	HFR	250	0.80		250	632	184.9	636	1.01	0.80	11.1	74
5	U1	OPTIV			P	Phase Ia	HFR	250	2.40		250	734	286.9	737	1.00	0.27	9.9	77
5	U2	OPTIV			P	Phase Ia	HFR	250	2.40	1.60E-04	250	714	266.9	714	1.00	0.23	9.8	61

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION					TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Sqrt(dose)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa	Tensile strength (MPa)	Strain hardening capability	ε uniform (%)	ε total (%)	Reduction of area (%)
	B888	EU97	6612 6614	E02.00	P.O.	REFERENCE C			0.00	0.00	5.00E.04	300	478.6	0	548.7	1.15	2.7	17.4	78.8
2 2	B888 B600		66/3 66/4 2/10 2/11	E83698 E83697	P8 P25	SIWAS-09 SIWAS-09	HFR HFR	60 60	2.10 2.50	1.45 1.58	5.00E-04 5.00E-04	300 300	614 618	135.4 139.4	618 621	1.01 1.00	0.30 0.20	14.6 14.4	84 89
2	H867	EU97	3/7 4/14	E83698	P14	STROBO-01	HFR	300	0.22	0.47	5.00E-04	300	532	53.4	560	1.05	1.20		82
2	H861	EU97	3/7 4/14	E83698	P14	STROBO-01	HFR	300	0.26	0.51	5.00E-04	300	543	64.4	577	1.06	2.10		86
1,11	H865 K	EU97 EU97	3/7 4/14	E83698 E83699	P14 B100	STROBO-01 IRF I	HFR BR2	300 300	0.28 0.30	0.53 0.55	5.00E-04	300 300	521 562	42.4 83.4	543 597	1.04 1.06	0.60 2.36	13.0	80 81
1,11	E	EU97		E83699	B100	IRF I	BR2	300	0.40	0.63		300	569	90.4	593	1.04	1.43	13.0	81
1,11	Z	EU97		E83699	B100	IRF II	BR2	300	0.47	0.69		300	617	138.4	627	1.02	1.67	11.0	76
2	H862	EU97	3/7 4/14	E83698	P14	STROBO-02	HFR	300	0.54	0.73	5.00E-04	300	589	110.4	594	1.01	0.50		81
2 1,11	H866 A1	EU97 EU97	3/7 4/14	E83698 E83699	P14 B100	STROBO-02 IRF II	HFR BR2	300 300	0.57 0.61	0.75 0.78	5.00E-04	300 300	560 642	81.4 163.4	572 643	1.02 1.00	0.40 0.54	11.0	83 76
2	H868	EU97	3/7 4/14	E83698	P14	STROBO-02	HFR	300	0.61	0.78	5.00E-04	300	577	98.4	589	1.02	0.50	11.0	78
1,11	Q	EU97		E83699	B100	IRF III	BR2	300	0.66	0.81		300	626	147.4	629	1.00	0.68	10.0	82
1,11 41	G1 B776	EU97 EU97		E83699 E83698	B100 P14	IRF III SUMO-09	BR2 HFR	300 300	1.45 1.59	1.20 1.26	5.00E-04	300 300	720 701	241.4 222.4	724 710	1.01 1.01	0.11 0.30	9.0 10.0	82
2	B901		66/3 66/4	E83698	P8	SUMO-04	HFR	300	1.80	1.34	5.00E-04 5.00E-04	300	720	241.4	723	1.00	0.30	12.1	70
1,11	I1	EU97		E83699	B100	IRF III	BR2	300	2.01	1.42		300	739	260.4	747	1.01	0.11	9.0	77
2	C301		2/10 2/11	E83697	P25	SUMO-04	HFR	300	2.10	1.45	5.00E-04	300	764	285.4	764	1.00	0.10	12.1	72
2 2	C277 B907		66/3 66/4 66/3 66/4	E83698 E83698	P8 P8	SOSIA-02 SUMO-04	HFR HFR	300 300	2.30 2.40	1.52 1.55	5.00E-04 5.00E-04	300 300	746 735	267.4 256.4	746 737	1.00 1.00	0.20 0.20	11.7 11.9	74 74
2	B617		2/10 2/11	E83697	P25	SUMO-04	HFR	300	2.50	1.58	5.00E-04 5.00E-04	300	769	290.4	770	1.00	0.10	11.7	78
2	B595		2/10 2/11	E83697	P25	SUMO-02	HFR	300	7.30	2.70	5.00E-04	300	883	404.4	883	1.00	0.10	10.8	71
2	B588		2/10 2/11	E83697	P25	SUMO-02 WTZ	HFR	300	9.20	3.03	5.00E-04	300	914	435.4	914	1.00	0.20	10.6	72
47 47	EUROF1-s EUROF1-s	EU97 EU97		E83697 E83697	P25 P25	WTZ	BOR-60 BOR-60	330 330	15.00 15.00	3.87 3.87		300 300	894 880	415.4 401.4	911 894	1.02 1.02	0.32	9.75 9.47	
46	E1-16-t	EU97		E83697	P25	ARBOR-1	BOR-60	336	30.20	5.50		300	973	494.4	973	1.00	0.21	13.8	
45	EU2T05	EU97-2	2 nd batch	993394P	P8	IRFUMA-5M	BR2	300	1.32	1.15	1.00E-04	300	700	234.0	700	1.00	0.10	10.9	78.8
45	EU2T15		2 nd batch	993394P	P8	IRFUMA-5M	BR2	300	1.32	1.15	1.00E-04	300	683	216.8	683	1.00	0.15	11.1	79.0
45	EU2T18		2 nd batch	993394P	P8	IRFUMA-5M	BR2	300	1.32	1.15	1.00E-04	300	688	222.5	688	1.00	0.10	10.8	85.3
24 24		F82H		S62-01			JRR-2/JMTR	300 300	0.08		1.00E-04	300	582 589		622	1.07 1.06	2.50	14.5	78.9 78.9
43,44	A024	F82H F82H	mod	S62-01 IEA		RB-11J	JRR-2/JMTR HFIR	307	4.90	2.21	1.00E-04 1.10E-03	300 300	762	297.2	627 770	1.00	2.50 0.32	14.6 7.3	/8.9
24		F82H		S62-01			JRR-2/JMTR	520	0.10		1.00E-04	300	538		608	1.13	2.60	15.0	80
4	33	F82H		Pre-IEA	P	Teseo	HFR	300	0.80		1.60E-04	300	658		661	1.00	0.30	10.8	82
4 10	34 7166	F82H F82H		Pre-IEA 9741	7,5mmP6-14	Teseo ILAS-4	HFR HFR	300 300	0.80 2.37		1.60E-04 5.00E-04	300 300	646 653	188.2	649 662	1.00 1.01	0.40 0.50	11.1	82
10	7211	F82H			7,5mmP6-14	ILAS-4	HFR	300	2.51		5.00E-04 5.00E-04	300	590	125.2	618	1.01	0.90	10.1	76
10	7197	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	2.84		5.00E-04	300	629	164.2	644	1.02	0.70	9.1	71
10 10	7181 7179	F82H F82H			7,5mmP6-14	ILAS-4	HFR	300 300	2.96		5.00E-04	300 300	604 618	139.2 153.2	629 640	1.04 1.04	1.00 1.10	10.5 10.0	77 74
10	7179 7191	F82H F82H			7,5mmP6-14 7,5mmP6-14	ILAS-4 ILAS-4	HFR HFR	300	3.00 3.09		5.00E-04 5.00E-04	300	618	182.2	640 662	1.04	0.80	9.4	73
46	F11-t	F82H		9741	,	ARBOR-1	BOR-60	336	30.20	5.50		300	935	470.2	940	1.01	0.33	11.8	
5	83	JLF1				Phase Ib	HFR	300	2.40		1.60E-04	300	652	233.1	652	1.00	0.26	8.9	70
5 10	84 E523	JLF1 JLF-1			Plate 15 mm	Phase Ib ILAS-4	HFR HFR	300 300	2.40 2.47		1.60E-04 5.00E-04	300 300	659 540	240.1 121.1	665 579	1.01 1.07	0.36 1.4	8.7 11.5	70 76.7
10	E523 E518	JLF-1 JLF-1			Plate 15 mm	ILAS-4 ILAS-4	HFR	300	3.05		5.00E-04 5.00E-04	300	558	139.1	593	1.07	1.4	11.3	73.2
10	E534	JLF-1B			Plate	ILAS-4	HFR	300	2.50		5.00E-04	300	585	166.1	612	1.05	0.8	10.4	72.7
10	E531	JLF-1B			Plate	ILAS-4	HFR	300	3.08	2.24	5.00E-04	300	577	158.1	614	1.06	1.4	10.6	73.7
43,44	53	JLF-1 OPTIV			D	RB-11J Teseo	HFIR HFR	300 300	5.00 0.80	2.24	1.10E-03 1.60E-04	300	755 633	336.1 197.7	774 633	1.03	0.50	6.7 10.5	76
4	54	OPTIV			P P	Teseo	HFR	300	0.80		1.60E-04	300	653	217.7	655	1.00	0.20	11.5	76 76
5	U3	OPTIV			P	Phase Ia	HFR	300	2.40		1.60E-04	300	711	275.7	716	1.01	0.30	7.8	52
5	U4	OPNIL 2701			P	Phase Ia	HFR	300	2.40		1.60E-04	300	765 867	329.7	765	1.00	0.23	7.4	54
10 10	E508 E504	ORNL-3791 ORNL-3791			Plate Plate	ILAS-4 ILAS-4	HFR HFR	300 300	2.89 3.47		5.00E-04 5.00E-04	300 300	867 880	155.5 168.5	893 909	1.03 1.03	0.90	8.6 7.9	67.5 63.4
43,44		9Cr2WVTa	(ORNL3791		RB-11J	HFIR	300	5.00		1.11E-03	300	918		918	1.00	6.3		

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION					TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Sqrt (dpa)	Strain rate (sec-1)	Test temp (°C)	oy 0,2% pl.MPa. (Mpa)	Irradiation hardening (MPa)	Tensile strength (Mpa)	Strain hardening capability	ε uniform (%)	ε total (%)	Reduction of area (%)
3	K10D	EU97	66/5	E83698	P8	Altair	BOR-60	325	42.30	6.50	1.40E-03	325	976	507.0	993	1.02	0.40	6.2	58
25	U7	F82H				Alexandre	Osiris	313	0.80			325	573		588	1.03	1.99	13.4	
25	U4	F82H				Alexandre	Osiris	325	0.80			325	576		593	1.03	1.82	13.5	78
26	U5	F82H				Alexandre	Osiris	313	2.00			325	672		672	1.00	0.26	8.3	62
10	8844	F82H		9753		ILAS-6	HFR	275	2.06		5.00E-04	325	722	261.1	727	1.01	0.2	9.2	77
10	8837	F82H		9753	25mmP31W-20		HFR	275	2.48		5.00E-04	325	801	340.1	801	1.00	0.2	10.1	78
26	U2	F82H				Alexandre	Osiris	325	3.40			325	734		734	1.00	0.20	6.2	59
20	J4	Manet II				Alexandre	Osiris	325	0.80			325			834		0.04	7.6	28
21	J5	Manet II				Alexandre	Osiris	313	2.00			325			797		0.02	0.75	43
21	J2	Manet II				Alexandre	Osiris	325	3.40			325	990		1005	1.02	0.75	5.5	36

REFERENCE	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
	Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec- 1)	Test temp (°C)	oy 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	ε uniform (%)	ε total (%)	Reduction of area (%)
9 I29T15	EU97		PSI			PIREX	350	0.16		350	470	11.3	557	1.19	6.50		
9 I29T16	EU97		PSI			PIREX	350	0.16		350	475	16.3	555	1.17	8.20		
9 I29T06E8	EU97		PSI			PIREX	350	0.68		350	475	16.3	529	1.11	2.60		
9 I29T7	EU97	,	PSI	D14	CLIMA O OO	PIREX	350	0.68	5.00E.04	350	476	17.3	549	1.15	3.50	10.0	
41 B775	EU97		E83698	P14	SUMO-09	HFR	342.5	2.37	5.00E-04	350	566	107.0 403.3	600 874	1.06	1.99	10.8	
47 EUROF1-s 47 EUROF1-s			E83697 E83697	P25 P25	WTZ WTZ	BOR-60 BOR-60	330 330	15.00 15.00		350 350	862 864	405.3	874 870	1.01 1.01	0.30 0.26	9.41 9.45	
46 E1-17-t			E83697	P25	ARBOR-1	BOR-60	336	30.20		350	930	471.3	930	1.01	0.20	13.5	
4 35			Pre-IEA	D D	Teseo	HFR	350	0.80	1.60E-04	350	641	7/1.5	648	1.01	0.70	11.1	76
4 36			Pre-IEA	P	Teseo	HFR	350	0.80	1.60E-04	350	634		640	1.01	0.70	10.7	77
46 F12-t		mod	9741	-	ARBOR-1	BOR-60	336	30.20	1.002 0.	350	913	458.6	915	1.00	0.29	6.4	, ,
5 85					Phase Ib	HFR	350	2.40	1.60E-04	350	535	118.3	571	1.07	1.60	10.8	74
5 86					Phase Ib	HFR	350	2.40		350	530	113.3	570	1.08	1.50	11.1	73
4 55	OPTIV			P	Teseo	HFR	350	0.80	1.60E-04	350	623	198.4	623	1.00	0.40	10.0	73
4 56	OPTIV			P	Teseo	HFR	350	0.80	1.60E-04	350	583	158.4	587	1.01	0.60	10.8	67
5 U5	OPTIV			P	Phase Ia	HFR	350	2.40	1.60E-04	350	496	71.4	555	1.12	3.40	13.5	61
5 U6	OPTIV			P	Phase Ia	HFR	350	2.40	1.60E-04	350	603	178.4	636	1.05	1.10	8.3	42

REFERENCE	Specimen id.:	MAT	(Capitals)		IRRADIATION				TEST CONDITIONS		TEST RESULTS					
		Name	2nd Name Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	σy 0,2% pl.def. (MPa)	Tensile strength (MPa)	Strain hardening capability	ε uniform (%)	ε total (%)	Reduction of area (%)
7	na	12Cr2WV	ORNL	P0,76		FFTF	365	6.40	1.00E-03	365	857	890	1.04	1.70	8.0	
7	na	12Cr2WV	ORNL	P0,76		FFTF	365	15.40		365	866	902	1.04	1.20	7.1	
7	na	12Cr2WV	ORNL	P0,76		FFTF	365	27.20	1.00E-03	365	900	932	1.04	1.30	8.0	
7	na	2,25Cr1WV	ORNL	P0,76		FFTF	365	7.40	1.00E-03	365	924	959	1.04	1.30	7.5	
7	na	2,25Cr1WV	ORNL	P0,76		FFTF	365	16.20	1.00E-03	365	976	1026	1.05	1.00	7.5	
7	na	2,25Cr1WV	ORNL	P0,76		FFTF	365	25.40	1.00E-03	365	924	963	1.04	1.40	7.7	
7	na	2,25Cr2W	ORNL	P0,76		FFTF	365	7.40	1.00E-03	365	754	799	1.06	2.20	8.8	
, , , , , , , , , , , , , , , , , , ,	na	2,25Cr2W	ORNL	P0,76		FFTF	365	16.20	1.00E-03	365	796	830	1.04	1.70	7.5	
7	na	2,25Cr2W	ORNL	P0,76		FFTF	365	28.60	1.00E-03	365	747	787	1.05	2.00	10.0	
,	na	2,25Cr2WV	ORNL	P0,76		FFTF	365	7.40	1.00E-03	365	788	810	1.03	1.40	7.8	
7	na	2,25Cr2WV	ORNL	P0,76		FFTF	365	16.20	1.00E-03	365	909 910	939	1.03	1.10	5.3	
7	na	2,25Cr2WV	ORNL ORNL	P0,76		FFTF	365 365	28.60	1.00E-03	365 365		940	1.03 1.03	1.20 1.10	5.9 6.4	
7	na	2,25CrV 2,25CrV	ORNL	P0,76 P0,76		FFTF FFTF	365	7.40 16.20	1.00E-03 1.00E-03	365	950 937	980 968	1.03	0.90	7.0	
7	na na	2,25CrV 2,25CrV	ORNL	P0,76		FFTF	365	26.00	1.00E-03 1.00E-03	365	883	920	1.03	1.20	7.0	
7	na	5Cr2WV	ORNL	P0,76		FFTF	365	7.70	1.00E-03	365	729	771	1.04	2.40	9.1	
7	na	5Cr2WV	ORNL	P0,76		FFTF	365	16.70		365	757	793	1.05	1.70	7.8	
7	na	5Cr2WV	ORNL	P0,76		FFTF	365	27.60	1.00E-03	365	739	766	1.03	1.40	11.2	
7	na	9Cr2WV	ORNL	P0,76		FFTF	365	7.70	1.00E-03 1.00E-03	365	710	764	1.04	3.50	10.2	
7	na	9Cr2WV	ORNL	P0,76		FFTF	365	16.70	1.00E-03	365	697	745	1.03	2.30	9.0	
7	na	9Cr2WV	ORNL	P0,76		FFTF	365	26.60	1.00E-03	365	705	756	1.07	2.30	8.7	
7	na	9Cr2WVTa	ORNL3791	P0,76		FFTF	365	6.40	1.00E-03	365	669	734	1.10	3.90	11.1	
7	na	9Cr2WVTa	ORNL3791	P0,76		FFTF	365	15.40	1.00E-03	365	699	765	1.09	2.90	9.7	
7	na	9Cr2WVTa	ORNL3791	P0,76		FFTF	365	27.20	1.00E-03	365	710	769	1.08	3.50	12.0	

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION					TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Sqrt(dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	ε uniform (%)	ε total (%)	Reduction of area (%)
		EU97					E CONDITION		0.00	0.00		400	435.9	0	497.0	1.14	2.0	17.9	80.3
2	B889	EU97	66/3 66/4	E83698	P8		HFR	60	2.20	1.48		400	533	97.1	610	1.14	4.30	18.8	84
2	B601	EU97	_,	E83697	P25		HFR	60	2.40		5.00E-04	400	543	107.1	601	1.11	4.20	18.4	82
2	C278	EU97	66/3 66/4	E83698	P8		HFR	300	2.30		5.00E-04	400	675	239.1	684	1.01	0.40	11.6	57
2	B905	EU97	66/3 66/4	E83698	P8		HFR	300	2.30		5.00E-04	400	691	255.1	691	1.00	0.10	11.7	76
2 2	C298	EU97 EU97	2/10 2/11 2/10 2/11	E83697 E83697	P25		HFR	300	2.30	1.52		400	710	274.1 406.1	710	1.00	0.10	11.5	66
4	B591		2/10 2/11		P25		HFR	300	8.70	2.95	5.00E-04	400	842	406.1	842	1.00	0.10	10.7	66 77
4	37 38	F82H F82H		Pre-IEA Pre-IEA	P	Teseo Teseo	HFR HFR	400 400	0.80 0.80		1.60E-04 1.60E-04	400 400	515 508		542 539	1.05 1.06	1.20 1.40	12.1 12.0	
10	7205	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	2.69		5.00E-04	400	594	159.1	614	1.06	0.90	7.4	82 70
10	7203	F82H		9741	7,5mmP6-14		HFR	300	3.06		5.00E-04 5.00E-04	400	577	142.1	598	1.03	0.90	9.8	65
27	/10/	F82H		S62-01	7,5111111 0-14	ILAS-4	JRR-2 and JMTR	400	21.40		1.00E-04	400	524	142.1	570	1.04	2.10	11.3	03
27		F82H		S62-01			JRR-2 and JMTR	400	31.50		1.00E-04	400	513		580	1.13	3.00	13.3	
5	87	JLF1				Phase Ib	HFR	400	2.40		1.60E-04	400	464	45.9	544	1.17	2.40	9.5	63
5	88	JLF1				Phase Ib	HFR	400	2.40		1.60E-04	400	463	44.9	527	1.14	3.00	10.3	63
10	E517	JLF-1			Plate 15 mm	ILAS-4	HFR	300	3.01		5.00E-04	400	505	86.9	559	1.11	1.5	10	70.3
10	E529	JLF-1B			Plate	ILAS-4	HFR	300	3.05		5.00E-04	400	489	70.9	551	1.13	1.9	11.2	72.7
4	57	OPTIV			P	Teseo	HFR	400	0.80		1.60E-04	400	493	78.2	540	1.10	2.50	12.3	70
4	58	OPTIV			P	Teseo	HFR	400	0.80		1.60E-04	400	499	84.2	539	1.08	1.90	11.5	74
5	U7	OPTIV			P	Phase Ia	HFR	400	2.40		1.60E-04	400	478	63.2	520	1.09	2.60	12.2	61
5	U8	OPTIV			P	Phase Ia	HFR	400	2.40		1.60E-04	400	491	76.2	540	1.10	2.90	13.1	60
10	E502	ORNL-3791		2010-	Plate	ILAS-4	HFR	300	3.43		5.00E-04	400	848	168.7	886	1.04	1.00	7.4	55.1
12		9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	390	10.00		4.20E-04	400	781		808	1.03	1.40	4.1	

	REFERENCE	Specimen id.:	MAT	(Capitals)		IRRADIATION				TEST CONDITIONS		TEST RESULTS						
			Name	2nd Name	Heat id. Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	e uniform (%)	ε total (%)	Reduction of area (%)
	4	39	F82H		re-IEA P	Teseo	HFR	450	0.80		450	466		493	1.06	1.30	13.9	82
_	4	40	F82H	Pr	re-IEA P	Teseo	HFR	450	0.80		450	463		491	1.06	1.50	14.6	81
	5	89	JLF1			Phase Ib	HFR	450	2.40		450	619	196.1	627	1.01	0.46	8.7	71
	5	80	JLF1			Phase Ib	HFR	450	2.40	1.60E-04	450	428	5.1	478	1.12	2.50	13.3	61
	4	59	OPTIV		P	Teseo	HFR	450	0.80		450	429	22.92	476	1.11	3.30	14.9	74
	4	61	OPTIV		P	Teseo	HFR	450	0.80	1.60E-04	450	435	28.92	483	1.11	3.50	16.5	68
	5	U9	OPTIV		P	Phase Ia	HFR	450	2.40		450	548	141.92	580	1.06	0.90	8.4	53
	5	U0	OPTIV		P	Phase Ia	HFR	450	2.40	1.60E-04	450	457	50.92	510	1.12	3.80	14.5	55
	12		9Cr1MoVNb		30182 Sheet 0.76 mm		EBRII	450	10.00	4.20E-04	450	480		575	1.20	3.60	6.9	

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec- 1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	e uniform (%)	ε total (%)	Reduction of area (%)
	2 B8	390	EU97	66/3 66/4	E83698	P8	SIWAS-09	HFR	60	2.10	5.00E-04	500	438	55.4	506	1.16	3.40	21.1	88
	2 Be	602	EU97	2/10 2/11	E83697	P25	SIWAS-09	HFR	60	2.50	5.00E-04	500	433	50.4	484	1.12	2.40	21.3	87
	24		F82H		S62-01			JRR-2/JMTR	520	0.10	1.00E-04	500	461		493	1.07	1.30	19.0	80.3
	24		F82H		S62-01			JRR-2/JMTR	520	0.10	1.00E-04	500	461		489	1.06	1.20	18.3	81.9
		348	F82H		9753	25mmP31W-20	ILAS-6	HFR	275	2.28	5.00E-04	500	524	157.3	541	1.03	0.5	13	81
		206	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	2.52		500	473	106.3	485	1.03	0.50	12.4	82
		89	F82H		9741		ILAS-4	HFR	300	2.69	5.00E-04	500	462	95.3	467	1.01	0.30	13.9	88.1
		94	F82H		9741		ILAS-4	HFR	300	2.72	5.00E-04	500	403	36.3	408	1.01	0.20	14.5	88.1
		88	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	2.89	5.00E-04	500	498	131.3	506	1.02	0.40	11.5	79
	27		F82H		S62-01			JRR-2 and JMTR	500	31.50		500	437		478	1.09	1.80	12.4	
	27		F82H		S62-01			JRR-2 and JMTR	500	33.60		500	411		494	1.20	2.60	13.3	
43,	44 A(35	F82H	mod	IEA		RB-12J	HFIR	497	4.90		500	401	34.3	444	1.11	1.92	11.2	
	12		9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	500	10.00	4.20E-04	500	445		536	1.20	3.30	6.8	

REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITIONS		TEST RESULTS						
		Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	оу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	e uniform (%)	ε total (%)	Reduction of area (%)
10	7168	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	2.17	5.00E-04	550	383	65.9	396	1.03	0.60	15.8	88
10	7198	F82H		9741	7,5mmP6-14	ILAS-4	HFR	300	2.64	5.00E-04	550	396	78.9	405	1.02	0.40	13.8	90
12		9Cr1MoVNb		30182	Sheet 0.76 mm		EBRII	550	10.00	4.20E-04	550	429		495	1.15	3.10	9.9	

	REFERENCE	Specimen id.:	MAT	(Capitals)			IRRADIATION				TEST CONDITION		TEST RESULTS						
			Name	2nd Name	Heat id.	Product form	Name	Reactor	Temperature (°C)	Dose (dpa)	Strain rate (sec-1)	Test temp (°C)	σу 0,2% pl.def. (MPa)	Irradiation hardening (MPa)	Tensile strength (MPa)	Strain hardening capability	ε uniform (%)	ε total (%)	Reduction of area (%)
	24		F82H		S62-01			JRR-2/JMTR	580	0.08	1.00E-04	600	347		351	1.01	0.70	22.3	
I	24		F82H		S62-01			JRR-2/JMTR	580	0.08	1.00E-04	600	351		355	1.01	0.70	22.5	
	24		F82H		S62-01			JRR-2/JMTR	580	0.08	1.00E-04	600	347		349	1.01	0.70	22.0	

Tensile properties of F82H in the unirradiated condition

Tensile properties of JFL-1 in the unirradiated condition

Tensile properties of CLAM in the unirradiated condition

Tensile properties of OPTIFER in the unirradiated condition

