Assessment Schedule – 2012: Physics: Demonstrate understanding of aspects of heat (90939)

Assessment Criteria

Question	P	Achievement			М	erit			Excelle	nce
ONE (a)(i) (ii)	States the	term condensa	tion.	States the term condensation. AND When the water vapour / humid air touches the cold glass (surface), and becomes liquid / water. (not accepting: steam)			States the term condensation. AND When the water vapour / humid air touches the cold glass (surface), heat / energy is lost / removed and water vapour becomes liquid / water. (not accepting: steam)			
(b)		1006 × (21 − 8 288 J or 9102 l	*							
(c)	water / wa	that humid air ter vapour, so y is required to	more	hea air. mo hur OR Att req	ater / water vap at capacity con Humid air con are heat energy mid air than dr dempts to calcu- quired for humi- lise mass of dr aining an ansv	npared with drantains water are is required to y air. late energy d air but fails y air is not 690	y nd so heat to 6 kg,	/ water energy than dr Humic compa subtrace	vapour and he is required to ry air by correct lair requires 9 red to dry air;	680.27 kJ correctly oour mass from
(d)(i)	(NOT accedifferent sineither mu	ams are correctly among a correctly are correctly as a correctly are the region to associated when the correctly are correctly as a correctly as a correctly are correctly as a correctly as a correctly are correctly as a correctly as a correctly as a correctly are correctly as a correctly are correctly as a correctly as a correctly as a correctly are correctly as a correctly as a correctly are correctly as a correctly as a correctly as a correctly are correctly as a correct	antly AND gular vith a							
(ii)	answer is g quotes as k $Q_{\text{liquid}} = mR$ = 12 ×	L 168 000		Q_{lic}	lculation is conversion to kJ. $_{\text{quid}} = mL$ $= 12 \times 168 \ 000$ $= 2 \ 016 \ 000 \ J$	C		conver $Q_{\text{liquid}} = 1$	ation is correction to kJ. $= mL$ $2 \times 168\ 000$ $016\ 000\ J$	t including
(iii)	= 2 016	000 kJ			= 2016 kJ			AND Heat lo pipes (OR a mechanistion to pipes, at loss account	
NØ	N1	N2	A3		A4	M5		M6	E7	E8
No evidence	1a	2a	3a		4a	2m		3m	1e	2e

Question	Achievement	Merit	Excellence
TWO (a)	Any ONE of: Floor Aluminium is a (good) reflector of heat energy, reflecting the heat (energy) back to the house. Aluminium is a poor emitter / radiator of heat / energy, so less energy is lost by radiation. The air between the floor board and the foil reduces heat loss as it is a poor conductor / good insulator. The air between the floor board and the foil is trapped and prevents heat loss by convection. Any ONE of: Window	Any TWO of: Floor Aluminium is a (good) reflector of heat energy, reflecting the heat (energy) back to the house. Aluminium is a poor emitter / radiator of heat / energy, so less energy is lost by radiation. The air between the floor board and the foil reduces heat loss as it is a poor conductor / good insulator. The air between the floor board and the foil is trapped and prevents heat loss by convection.	Any THREE of: Floor Aluminium is a (good) reflector of heat energy, reflecting the heat (energy) back to the house. Aluminium is a poor emitter / radiator of heat / energy, so less energy is lost by radiation. The air between the floor board and the foil reduces heat loss as it is a poor conductor / good insulator. The air between the floor board and the foil is trapped and prevents heat loss by convection.
(b)	 Trapped air reduces heat loss by convection. Two layers of glass reduce heat loss by conduction because glass is a poor conductor / insulator. The air between the glass reduces heat loss as it is a poor conductor / good insulator. Two layers of glass reduce heat loss by conduction because the (trapped) air is a poor conductor. (Do NOT accept vacuum.) 	 Window Trapped air reduces heat loss by convection. Two layers of glass reduce heat loss by conduction because glass is a poor conductor / insulator. The air between the glass reduces heat loss as it is a poor conductor / good insulator. Two layers of glass reduce heat loss by conduction because the (trapped) air is a poor conductor. (Do NOT accept vacuum.) 	 Window Trapped air reduces heat loss by convection. Two layers of glass reduce heat loss by conduction because glass is a poor conductor / insulator. The air between the glass reduces heat loss as it is a poor conductor / good insulator. Two layers of glass reduce heat loss by conduction because the (trapped) air is a poor conductor. (Do NOT accept vacuum.)
(c)	Method: By filling the cavity of the wall with pink batts or any non-conducting materials / cotton / insulation.	Method: By filling the cavity of the wall with pink batts or any non-conducting materials / cotton / insulation. AND Reason: trapped air / pockets of air reduces heat loss.	Method: By filling the cavity of the wall with pink batts or any non-conducting materials / cotton / insulation. AND Reason: trapped air / pockets of air reduces heat loss. AND This will reduce the heat loss by conduction / convection.

(d)	J or kJ.		es	The process is cominutes instead of answer of 86 kW (Unit required.) Accept J s ⁻¹ or k. The process is conhas wrong units of kW.	ot an	Total heat loss for 2 minutes = $46 + 68 + 34 + 24$ = $172 \text{ kJ } (172 000 \text{ J})$ $P = \frac{E}{t}$ $t = 2 \times 60 = 120 \text{ s}$ $P = \frac{172 \text{ kJ}}{120} = 1.43 = 1.4 \text{ kW}$ OR $P = \frac{172 000}{120} = 1430 \text{ W} = 1.4 \text{ kW}$ P = 1433 Accept J s ⁻¹ or kJ s ⁻¹			
NØ	N1	N2	A3	A4	M5	N	М6	E7	E8
No evidence	1a	2a	3a	4a	2m	3	3m	2e	3e

Question	A	Achievement			N	Merit			Excelle	ence
THREE (a)	material is energy required unit mass of	ic heat capacit the amount of uired to raise I of substance b emperature.	heat 1.0 kg/							
(b)		faster / water ess fuel needed ded.		the	metal so the	at (energy) to water boils qu uires less fuel	icker/	require the head to the		ne metal more of ill be transferred he water boils
(c)	= 380 OR	$= \frac{45885}{1.05 \times 115}$ orking shown, wer.	but					$c = \frac{1}{2}$	H CORRECT $\frac{Q}{m\Delta T} = \frac{45.88}{1.05 \times}$ O J kg ⁻¹ °C ⁻¹ s required) on L	35 115
(d)(i)	Answer of conversion	0.15 without of to g.	correct	34: m =	$= m L$ $5 000 = m \times 2$ $= \frac{345 000}{2 300 000} = 150 g$				$\frac{345\ 000}{2\ 300\ 000} = 0.$	
(ii)		t is needed / ca ange from liqu to steam.		vaj liq ste OF Th end ten	poorisation whe uid phase to g am. C e vapour conta ergy than the l nperature beca at of vaporisat	os the latent he en changing fr as phase / wat ains more hear iquid at the sa nuse it contain ion as well as to its temperat	om er to t me s latent the	vapor liquic steam AND (The water more the er water allow apart	quired because) he steam are in in the water / separating the be bond breaking to move farther state. he latent heat of hanging from hase / water to	
(e)	transfer that medium / i	is the method out does not req nvolves IR race eat / electroma	uire a diation /							
NØ	N1	N2	A3	1	A4	M5	M	[6	E7	E8
No evidence	1a	2a	3a		4a	2 m	31	m	2e	3e

Question	Achie	vement		Merit			Exceller	ice	
FOUR (a)(i) (ii)	Conduction	1.	Conduction. AND Atoms / particles (gain heat energy and) begin to vibrate. They transfer heat energy to neighbouring atoms / particles (by vibration).						
(b)(i) (ii)	AND	high SHC.	AND It reduces here thermette / m the thermette	at conduction in the tall to the person doesn	from the son's hand, so d safely when	it			
(c)	Mentions the water rises. AND Cold / cold sinks without reference to	er water out any	The water being heated gets warmer and it rises to the top, because it is less dense AND Cold / colder water, being denser, sinks to the bottom.			it rises to AND Cold / co to the bot AND The idea water is r in a speci bottom) t (Consiste particles	Cold / colder water, being denser, sinks to the bottom.		
(d)	Gives any of features con linked to the appropriate transfer me	rrectly e heat	The narrow chimney top reduces the amount hot air / flame loss and hence heat loss by convection through the chimney. (Alternatively: The tapered chimney causes convection currents in the air and smoke, which rapidly draw in air to fuel the flames and create a lot of heat energy.) OR The surrounding water jacket minimises the heat loss by radiation from the chimney because it is not exposed to air outside / is surrounded by the water.			reduces to and hence through to (Alternate causes consmoke, we the flame energy.) y AND Radiation minimise the chimi	e heat loss by on the chimney. Sively: The tape on vection curred which rapidly does and create a search: The surrounds the heat loss ney because it	air / flame loss convection ered chimney ents in the air and raw in air to fuel	
NØ	N1	N2	A3	A4	M5	M6	E7	E8	
No evidence	1a	2a	3a	4a	2m	3m	1e	2 e	

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
Score range	0 – 10	11 – 16	17 – 24	25 – 32