Практична робота№5

Тема «Опуклі множини»

Побудувати множини розв'язків даних систем лінійних нерівностей і знайти координати їх крайніх точок.

Розв'язок

1) Змінено в нерівностях системи знаки нерівностей знаками ріностями і побудуємо відповідні прямі.

$$\begin{cases} 2x_1 + 3x_2 \le 24 \\ x_1 + 2x_2 \le 15 \\ 3x_1 + 2x_2 \le 24' \\ x_1 \ge 0; x_2 \ge 0 \end{cases} = > \begin{cases} 2x_1 + 3x_2 = 24 \text{ (I)} \\ x_1 + 2x_2 = 15 \text{ (II)} \\ 3x_1 + 2x_2 = 24 \text{ (III)} \\ x_1 = 0; x_2 = 0 \text{ (IV)} \end{cases}$$

Знайдемо координати прямих

1)
$$2x_1 + 3x_2 = 24$$

$$\begin{array}{c|cc} x_1 & 0 & 12 \\ x_2 & 8 & 0 \end{array}$$

$$2) x_1 + 2x_2 = 15$$

x_1	15	1
x_2	0	7

3)
$$3x_1 + 2x_2 = 24$$

X	1	0	8
x	2	12	0

Ми знайшли відповідні площини та їх перетин і одержали опуклу множину X, що обмежена п'ятикутником з вершинами A(0;0), B(8;0), C(4,8;4,8), D(3;6), E(0;8), які є крайніми точками множини X.

2) Змінено в нерівностях системи знаки нерівностей знаками ріностями і побудуємо відповідні прямі.

$$\begin{cases} 6x_1 - 5x_2 \ge 0 \\ x_1 + 4x_2 \ge 0 \\ -x_1 + 3x_2 \ge 0 \end{cases} \implies \begin{cases} 6x_1 - 5x_2 = 0 \text{ (I)} \\ x_1 + 4x_2 = 0 \text{ (II)} \\ -x_1 + 3x_2 = 0 \text{ (III)} \end{cases}$$

Знайдемо координати прямих

$$2) 6x_1 - 5x_2 = 0$$

x_1	- 5	5
x_2	-6	6

3)
$$-x_1 + 3x_2 = 0$$

x_1	3	-1
x_2	1	-3

$$2) x_1 + 4x_2 = 0$$

x_1	-4	4
x_2	1	-1

Ми знайшли відповідні площини та їх перетин і одержали опуклу множину X, що обмежена опуклим конусом A(0;0), вона і ε крайньою точкою множини X.

3) Змінено в нерівностях системи знаки нерівностей знаками ріностями і побудуємо відповідні прямі.

$$\begin{cases} 2x_1 - 7x_2 \ge 0 \\ -x_1 + x_2 \ge 0 \\ 3x_1 + 4x_2 \ge 0 \end{cases} \implies \begin{cases} 2x_1 - 7x_2 = 0 \text{ (I)} \\ -x_1 + x_2 = 0 \text{ (II)} \\ 3x_1 + 4x_2 = 0 \text{ (III)} \end{cases}$$

Знайдемо координати прямих

3)
$$2x_1 - 7x_2 = 0$$

x_1	7	14
x_2	2	4

$$2) - x_1 + x_2 = 0$$

x_1	1	-1
x_2	1	-1

$$3) \ 3x_1 + 4x_2 = 0$$

x_1	-4	-8
χ_2	3	6

Ми знайшли відповідні площини та їх перетин і одержали опуклу множину X, що обмежена опуклим конусом A(0;0), вона і ε крайньою точкою множини X.

4) Змінено в нерівностях системи знаки нерівностей знаками ріностями і побудуємо відповідні прямі.

$$\begin{cases} 2x_1 - x_2 \le 12 \\ x_1 + 2x_2 \le 8 \\ 7x_1 + 4x_2 \ge 25, \\ x_1 \ge 0; x_2 \ge 0 \end{cases} = > \begin{cases} 2x_1 - x_2 = 12 \text{ (I)} \\ x_1 + 2x_2 = 8 \text{ (II)} \\ 7x_1 + 4x_2 = 25 \text{ (III)} \\ x_1 = 0; x_2 = 0 \text{ (IV)} \end{cases}$$

Знайдемо координати прямих

4)
$$2x_1 - x_2 = 12$$

x_1	8	6
x_2	4	0

$$2) x_1 + 2x_2 = 8$$

x_1	8	0
x_2	0	4

$$3) 7x_1 + 4x_2 = 25$$

x_1	3,57	1,8
x_2	0	3,1

Ми знайшли відповідні площини та їх перетин і одержали опуклу множину X, що обмежена чотирикутником з вершинами A(1,8;3,1), B(0,8;6,4), C(6;0), D(3,57;0), які є крайніми точками множини X.

5) Змінено в нерівностях системи знаки нерівностей знаками ріностями і побудуємо відповідні прямі.

$$\begin{cases} 3x_1 + 4x_2 \ge 3 \\ 2x_1 + 3x_2 \le 11 \\ 2x_1 + x_2 \le 7 \end{cases} = \begin{cases} 3x_1 + 4x_2 = 3 \text{ (I)} \\ 2x_1 + 3x_2 = 11 \text{ (II)} \\ 2x_1 + x_2 = 7 \text{ (III)} \\ x_1 \ge 0; x_2 \ge 0 \end{cases}$$

Знайдемо координати прямих

1)
$$3x_1 + 4x_2 = 3$$

x_2	1	0
x_1	0	0,75

1)
$$3x_1 + 4x_2 = 3$$
 2) $2x_1 + 3x_2 = 11$

x_2	0	5,5
x_1	3,67	0

3)
$$2x_1 + x_2 = 7$$

x_2	0	3,5
x_1	7	0

Ми знайшли відповідні площини та їх перетин і одержали опуклу множину Х, що обмежена п'ятикутником з вершинами A(0;1), B(0,75;0), C(3,67;0),E(0;3,5)D(2;2,5),які крайніми точками множини X.

6) Змінено в нерівностях системи знаки нерівностей знаками ріностями і побудуємо відповідні прямі.

$$\begin{cases} x_1 + 2x_2 \le 14 \\ -5x_1 + 3x_2 \le 15 \\ 2x_1 + 3x_2 \ge 12 \end{cases} = > \begin{cases} x_1 + 2x_2 = 14 \text{ (I)} \\ -5x_1 + 3x_2 = 15 \text{ (II)} \\ 2x_1 + 3x_2 = 12 \text{ (III)} \end{cases}$$

Знайдемо координати прямих

1)
$$x_1 + 2x_2 = 14$$
.

χ_1	0,92	8
x_2	6,54	3

$$2) -5x_1 + 3x_2 = 15$$

x_1	0,92	-0,43
x_2	6,54	4,49

$$3) 2x_1 + 3x_2 = 12$$

x_1	-0,43	6
x_2	4,49	0

Ми знайшли відповідні площини та їх перетин і одержали опуклу множину Х, що обмежена вершинами А(-0,43;4,49), B(0,92;6,54), які ϵ крайніми точками множини Х.

7) Змінено в нерівностях системи знаки нерівностей знаками ріностями і побудуємо відповідні прямі.

$$\begin{cases} 5x_1 + 4x_2 \ge 31 \\ x_1 + 3x_2 \ge 12 \\ 2x_1 + 3x_2 \le 18 \end{cases} => \begin{cases} 5x_1 + 4x_2 = 31 \text{ (I)} \\ x_1 + 3x_2 = 12 \text{ (II)} \\ 2x_1 + 3x_2 = 18 \text{ (III)} \end{cases}$$

Знайдемо координати прямих

5)
$$5x_1 + 4x_2 = 31$$

x_1	4,1	3
x_2	2,6	4

5)
$$5x_1 + 4x_2 = 31$$
 2) $x_1 + 3x_2 = 12$

x_1	4,1	6
x_2	2,6	2

$$3) \ 2x_1 + 3x_2 = 18$$

x_1	3	6
χ_2	4	2

Ми знайшли відповідні площини та їх перетин і одержали опуклу множину X, що обмежена трикутником з вершинами A(4,1;2,6), B(3;4), C(6;2), які ε крайніми точками множини X.

