Résolution de niveaux du Sokoban

Carrez Valentin

Candidat n°31593

Le jeu du Sokoban

Hiroyuki Imabayashi

XSokoban 1

XSokoban 1 résolu

Problème **PSPACE-complet**

Règles

Déplacements autorisés

Déplacements interdits

Problématique et réalisation

Quelles stratégies adopter pour trouver une solution le plus rapidement possible à un niveau de Sokoban?

```
Welcome to sokoshell - Version 1.0

Type 'help' to show help. More help for a command with 'help command'

sokoshell>
```

Plan

Principe de résolution

Réduction de l'espace de recherche

Analyse statique

Analyse dynamique

Recherche dirigée par une heuristique

Résultats

Annexe

Lien avec le thème de l'année

Source: Indiana Jones et les Aventuriers de l'arche perdue (scène de fin), Steven Spielberg, 1981 https://pbs.twimg.com/media/EyjVShEVEAAQZjK.jpg

Source: https://www.geographicus.com/mm5/graphics/ 00000001/L/NewYork-bridgesmaverick-1807.jpg

Principe de résolution

Arbre des états

Arbre des états

Arbre des états

Calcul du hash d'un état - Hash de Zobrist

Propriétés du XOR:

- 1. a XOR a = 0
- 2. XOR commutatif, associatif
- 3. XOR préserve l'aléatoire

Initialisation:

$$T = \begin{pmatrix} \text{caisse} & \text{joueur} & \text{case} \\ 6357 & 31593 \\ -1378 & 42 \\ \vdots & \vdots \\ 93268 & -278 \end{pmatrix} \quad 0 \\ 1 \\ \vdots \\ wh - 1$$

Calcul du hash d'un état - Hash de Zobrist

• $(c_1, ..., c_n)$ n caisses et p position du joueur :

$$h = \underset{i=0}{\overset{n}{\mathbf{O}}} \mathbf{R} \ T[c_i][0] \ \mathbf{XOR} \ T[p][1]$$

en $\mathcal{O}(n)$

■ Connaissant le hash de l'état parent : $c_i \rightarrow c_i', p \rightarrow p'$

$$h' = h \, \mathsf{XOR} \, T[c_i][0] \, \mathsf{XOR} \, T[c_i'][0] \, \mathsf{XOR} \, T[p][1] \, \mathsf{XOR} \, T[p'][1]$$

$$\boxed{\mathsf{en} \, \, \mathcal{O}(1)}$$

Réduction de l'espace de recherche

Analyse statique

Réduction de l'espace de recherche

Détection des positions mortes (dead tiles)

Détection de tunnels

Détection de tunnels

Au plus une caisse

Coin \Rightarrow un état fils

Deux états fils

Tunnel oneway

Détection de tunnels

Composition d'un tunnel

Salles et ordre de rangement (packing order)

Salles et ordre de rangement (packing order)

Salles et ordre de rangement (packing order)

Résultats intermédiaires

Niveaux résolus dans XSokoban : 1 / 90 (+ 0)

Réduction de l'espace de recherche

Analyse dynamique

Détection d'impasses (deadlocks)

(a) Freeze deadlock n°1

(b) Freeze deadlock n°2

(c) PI Corral deadlock

Détection de freeze deadlocks

(a) Règle n°1

(b) Règle n°2

(c) Règle n°3

Détection de freeze deadlocks

Gelée!

Détection de PI Corral deadlocks

(a) Corral

(b) I Corral

(c) PI Corral

Détection de PI Corral deadlocks

d

Détection de PI Corral deadlocks

Brian Damgaard : émonde l'arbre de recherche d'au moins 20%!

Résultats intermédiaires

Niveaux résolus dans XSokoban : 6 / 90 (+ 4)

Recherche dirigée par une

heuristique

Heuristique simple (Simple Lower Bound)

$$2+4+3=9$$

Heuristique gloutonne (Greedy Lower Bound)

$$2+3+5=10$$

$Caisse \to Cible$	Distance
1 o B	2
$1 o {\mathcal A}$	3
1 o C	3
$3 o \mathbf{C}$	3
$2 \rightarrow B$	4
$3 \rightarrow B$	4
$2 \rightarrow A$	5
2 → <i>C</i>	5
$3 o \mathbf{A}$	5

Vers FESS

- FESS : algorithme utilisé par Festival, meilleur solveur.
- Ordre de priorité :
 - maximiser le nombre de caisses rangées.
 - minimiser le nombre de corral.
 - minimiser l'heuristique précédente.

Résultats intermédiaires

Niveaux résolus dans XSokoban : 15 / 90 (+ 5 + 4)

Résultats

Nombre de niveaux résolus

Limite de temps : 10 min. Limite de RAM : 32 Gio.

Ensemble de niveaux	XSokoban	Large test suite
Nombre de niveaux	90	3272
A*	11	2204
fess0	15	2273
Festival (Yaron Shoham)	90	3202
Sokolution (Florent Diedler)	90	3130
Takaken (Ken'ichiro Takahashi)	90	2944
YASS (Brian Damgaard)	89	2865

Statistiques

Temps moyen passé par niveaux

Solveur	A *	fess0	Festival	Sokolution	Takaken	YASS
Temps moyen	3min 28s	3min 16s	3s	2s	7s	24s

Nombre de niveaux résolus (cumulés) en fonction du temps

Statistiques

Pourcentage de niveaux résolus selon la composition des niveaux

Annexe

Tableau des complexités - Statique

c nombre de caisses, C nombre de cibles, w longueur et h largeur du niveau, t nombre de tunnels, r nombre de salles, N nombre d'états dans la liste des états à explorer.

Statique				
Dead tiles	$\mathcal{O}((wh)^2)$			
Détection des tunnels	$\mathcal{O}((wh)^2)$			
Propriété <i>oneway</i> des tunnels	$\mathcal{O}(twh)$			
Détection des salles	$\mathcal{O}((wh)^2)$			
Packing order	$\mathcal{O}(\mathit{rcwh})$			
Précalcul des distances cibles-	$\mathcal{O}(wh(Cwh + C \log C))$			
caisses				

Tableau des complexités - Dynamique

c nombre de caisses, C nombre de cibles, w longueur et h largeur du niveau, t nombre de tunnels, r nombre de salles, N nombre d'états dans la liste des états à explorer.

Dynamique				
Freeze deadlocks	$\mathcal{O}(c)$			
Détection des <i>corrals</i>	$\mathcal{O}(wh)$			
PI-corral deadlocks	Exponentielle			
Table de <i>deadlocks</i>	$\mathcal{O}(1)$			
Recherche des états enfants	$\mathcal{O}(\mathit{crwh})$			
Ajout des états enfants (A*)	$\mathcal{O}((wh)^2 + \log N)$			
Ajout des états enfants (fess0)	$\mathcal{O}(c + (wh)^2 + \log N)$			

Table de deadlocks

11	12	13	14	
7	8	9	10	
4	5		6	
1	2	1	3	

Table de deadlocks

Précalcul des distances caisses-cibles

Case	Distances			
Case	Α	В	С	
0	1	3	3	
1	2	2	2	
2	3	1	3	
3	0	2	2	
4	1	1	1	
5	2	0	2	
6	1	3	1	
7	2	2	0	
8	3	1	1	

Précalcul des distances caisses-cibles

Case	Distances			
Case	triées			
0	A : 1	B : 3	C : 3	
1	A : 2	B : 2	C : 2	
2	B:1	A : 3	C : 3	
3	A : 0	B : 2	C : 2	
4	A : 1	B:1	C : 1	
5	B : 0	A : 2	C : 2	
6	A : 1	C : 1	B:3	
7	C : 0	A : 2	B : 2	
8	B:1	C : 1	A : 3	

h =

$$h = 1 +$$

$$h = 1 +$$

$$h = 1 + 1 +$$

$$h = 1 + 1 +$$

$$h = 1 + 1 + 3 +$$

$$h = 1 + 1 + 3 + 5 = 10$$

Parcours de graphes : démarquer tous les nœuds en $\mathcal{O}(1)$

Utilisation de *Union-Find* : partition de [0; wh - 1].

Calcul des *corrals* en $\mathcal{O}(wh)$

Calcul des *corrals* en $\mathcal{O}(wh)$

Calcul des *corrals* en $\mathcal{O}(wh)$

