9/27/2021 - 25 Minutes

Name:

ID number:

Score:

Remember that your work is graded on the quality of your writing and explanation as well as the validity.

Problem 1 (5pts) Notes of discussion

I promise that I will complete this QUIZ independently, and will not use any electronic products or paper-based materials during the QUIZ, nor will I communicate with other students during this QUIZ.

True or False: I have read the notes and understood them.

1 T

Problem 2(10pts) Stack and Queue

(1) (6 Points) Suppose there is an initially empty stack with the capacity 7, then we do a sequential of 7 push and 7 pop operations. If the order of the element pushed in the stack is 1 2 3 4 5 6 7, then for each order of the popped elements listed below, tick a "\sqrt{"}" in the box if it could be existing.

$7\; 6\; 5\; 4\; 3\; 2\; 1$	✓
2 4 6 7 5 3 1	✓
$1\; 3\; 4\; 6\; 7\; 5\; 2$	✓
2 1 4 5 3 6 7	✓
1 5 4 3 2 6 7	✓
4 5 3 6 2 7 1	✓

- (2) (4 Points) Suppose there is an initially empty queue with capacity 7 which is implemented by an array (viewed circularly). Show the array after the following operations being operated and indicate the place of the front and back of the queue.
 - (a) Enqueue(1) Enqueue(3) Enqueue(5)

Dequeue()

Enqueue(7) Enqueue(9) Enqueue(1)

Dequeue()

Enqueue(3) Enqueue(5) Enqueue(7)

Dequeue()

 $5 7(B) \square 7(F) 9 1 3$

(b) Enqueue(1) Enqueue(2) Enqueue(7) Enqueue(6) Enqueue(5)

Dequeue()

Enqueue(1) Enqueue(3) Enqueue(5)

Dequeue() Dequeue()

Enqueue(6) Enqueue(7) Enqueue(8)

Dequeue() Dequeue()

 $5.6.7.8(B) \square \square 3(F)$

Problem 3(10pts) Algorithm Design

(1) (6 Points) Try to convert the polynomial below into the array form which is talked in the class. Note the exponents should be descending.

$$2200x^{2800} + 4396x^{777} + 443x$$

index	0	1	2
coefficient	2200	4396	443
exponent	2800	777	1

(2) (4 Points) Try to do addition on the two polynomial A and B below and store the result in C. Each polynomial is stored in the struct PLY.

```
struct PLY {
    int exponent[VERY_LARGE];
    int coefficient[VERY_LARGE];
    int len;
};
PLY add(PLY &A, PLY &B) {
    PLY C;
    int i = 0;
    int j = 0;
    int k = 0;
    while (__i < A.len__ or j < B.len) {</pre>
        if (j >= B.len or i < A.len and A.exponent[i] > B.exponent[j]) {
            C.exponent[k] = A.exponent[i];
            C.coefficient[k] = A.coefficient[i];
            k++;
        } else if (__i >= A.len__ or __j < B.len__ and A.exponent[i] < B.exponent[j</pre>
            ]) {
            C.exponent[k] = B.exponent[j];
            C.coefficient[k] = B.coefficient[j];
            k++;
            j++;
        } else if (A.exponent[i] == B.exponent[j]) {
            C.exponent[k] = A.exponent[i];
            C.coefficient[k] = __A.coefficient[i] + B.coefficient[j]__;
            k++;
            i++;
            j++;
        }
    }
    C.len = k;
    return C;
}
```

9/27/2021 - 25 Minutes

Problem 4(16pts) Asymptotic Analysis

- (1) (10') Order the following functions so that for all i, j, if f_i comes before f_j in the order then $f_i = O(f_j)$. Do **NOT** justify your answers.
 - $f_1(n) = \sqrt{n}$
 - $f_2(n) = n^{\frac{1}{4}}$
 - $f_3(n) = 5000$
 - $f_4(n) = 2^{\log_2 n}$
 - $f_5(n) = 3^n$
 - $f_6(n) = \frac{1}{2}^n$
 - $f_7(n) = \log_2 n$
 - $f_8(n) = 2^{\sqrt{n}}$
 - $f_9(n) = 3^{\log_2 n}$
 - $f_{10}(n) = n!$

As an answer you may just write the functions as a list, e.g. f_8, f_9, f_1, \cdots

 $f_6, f_3, f_7, f_2, f_1, f_4, f_9, f_8, f_5, f_{10}$

Note: Polynomial dominates Logarithm, Exponential dominates Polynomial.

- (2) (6') For each pair of functions f(n) and g(n), give your answer whether f(n) = o(g(n)), $f(n) = \omega(g(n))$ or $f(n) = \Theta(g(n))$. Give a **proof** of your answers.
 - $f(n) = e^n$ and $g(n) = n^{\epsilon}, \forall \epsilon > 0$
 - $f(n) = \omega(g(n))$
 - -Using L'Hospital's rule:

$$\lim_{x\to\infty}\frac{e^x}{x^\epsilon}=\lim_{x\to\infty}\frac{\frac{d}{dx}e^x}{\frac{d}{dx}x^\epsilon}=\lim_{x\to\infty}\frac{e^x}{\epsilon x^{\epsilon-1}}=\ldots=\infty$$

Therefore $e^n = \omega(n^{\epsilon})$

- f(n) = n! and $g(n) = n^n$
- f(n) = o(g(n))
- One way to prove: Prove by the limit condition:

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0$$

which can be proved by the following statements: we have $n \ge 2k$ for every $1 \le k \le n/2$ and $n \ge k$ for every $n/2 < k \le n$, hence

$$n^n = \prod_{k=1}^n n \ge \prod_{1 \le k \le n/2} (2k) \cdot \prod_{n/2 < k} k = 2^{n/2} \cdot n!$$

then we have,

$$\lim_{n\to\infty}\frac{n!}{n^n}\leq \lim_{n\to\infty}\frac{1}{2^{n/2}}=0$$

- Another way to prove: First prove $n! = O(n^{n-1})$ (which can be easily proved by definition of finding $c = 1, N = 1, \forall n \in \mathbb{N} \geq N, n! \leq c \cdot n^{n-1}$), then prove that $n^{n-1} = o(n^n)$, therefore, $n! = o(n^n)$