知乎





# 京东2023-《搜索意图分类的多粒度匹配注意力网络》论文阅读

已关注



8 人赞同了该文章

# 论文《A Multi-Granularity Matching Attention Network for Query Intent Classification in E-commerce Retrieval》

#### Introduction

本文讨论了在线购物\*中电子商务搜索系统对查询意图分类的需求。现有的多标签分类模型在电子商务应用中效果不佳,因为查询通常很短目对词序不敏感。为了解决这个问题,我们提出了一种新的查询意图分类模型MMAN,它包括三个模块以全面提取特征,并减轻查询和类别之间的表达差距。该模型能够解决长尾查询意图分类中的挑战。本文的主要贡献如下: 1. 建立了新的数学模型,通过该模型可以预测某类现象的发生概率。 2. 通过实验验证了该模型的准确性和有效性。 3. 提出了一种新的算法,可以快速有效地处理大规模数据集。

- 提出了一种新策略,旨在通过明确地引入类别信息来缩小查询和类别之间的表达差距。该策略通过使用特定算法,将类别信息扩展到查询中,从而提高了查询的准确性。这种方法有望在各种应用中提高查询性能。
- 设计了一个模型MMAN,包含自匹配、字符级匹配和语义级匹配三个模块,旨在提高查询表示学习、增强长尾查询和消除语义歧义。该模型对输入进行分割并提取特征,再利用神经网络+进行匹配和表示学习。

## Model

图展示了模型的组件,主要由四个模块组成: (1) 查询和类别表示学习模块; (2) 自我匹配模块; (3) 字符级匹配模块; (4) 语义级匹配模块。该模型通过这四个模块实现。

# 知平



图 1: Multi-granularity Matching Attention Network.

如乎@SmartMindAl

## **Query and Category Representation**

查询和类别表示对齐基础在于两者到同一语义空间\*的映射。BERT广泛应用于工业应用中,我们使用BERT作为查询和类别的编码器。类别字符序列由两部分组成:类别名称和核心产品词。高质量产品词与类别名称拼接后输入BERT进行编码。查询和类别共享BERT模型以映射到同一语义空间。

$$egin{aligned} \mathbf{Q}_i &= \mathrm{BERT_{Token}}([x_1, x_2, \dots, x_{L_q}]) \ , \ \mathbf{C}_j &= \mathrm{BERT_{Token}}([n_1, n_2, \dots, n_{L_n}, m_1, m_2, \dots, m_{L_m}]) \ , \end{aligned}$$

本文研究了BERT最后一层嵌入矩阵在查询和类别令牌嵌入中的应用。其中BERT\*Token不包括CLS,查询和类别令牌嵌入矩阵分别为 $\mathbf{Q}*i\in\mathbb{R}^{L_q\times d}$ 和 $\mathbf{C}*j\in\mathbb{R}^{L_c\times d}$ 。通过应用这些嵌入矩阵,实现了查询和类别令牌之间的映射,提高了系统的性能。

## Self-matching module

研究了文本分类模型,利用自注意力机制<sup>+</sup>对查询嵌入矩阵进行概括,提取对表示查询重要的意图相关词。该模型建立在纯查询文本上,具有显著优势。

$$egin{aligned} \mathbf{u}_i &= \mathbf{v}_i anhig(\mathbf{W}_q\mathbf{Q}_i^Tig)\,, \ \mathbf{q}_i &= \sum_{t=1}^{L_q}\mathbf{Q}_{i,t}\mathbf{softmax}(\mathbf{u}_{i,t})\,, \end{aligned}$$

基于评分函数确定组成当前查询的句子表示中单词重要性的方法。其中, $\mathbf{v}_i \in \mathbb{R}^{1 \times d}$ , $\mathbf{W}_q \in \mathbb{R}^{d \times d}$ , $\alpha = \mathbf{softmax}(\mathbf{u}_{i,t})$ 是相关变量,用于构建查询表示。通过应用评分函数,可以确定单词在句子中的重要性,进而对查询进行更有效的表示。该方法有望提高搜索和问答系统的性能。

#### Char-level matching module

长尾查询情况下,模型缺乏足够训练样本来精确预测用户意图。通过提取查询和类别之间的细粒度 交互特征,利用点积运算<sup>+</sup>,并堆叠查询表示和类别表示在通道维度上,补充辅助知识可促进模型 决策。

$$\mathbf{M}_j = \mathbf{Q}_i \mathbf{W}_{qc} \mathbf{C}_j^T \,, \ \mathbf{M} = \left[ \mathbf{M}_1, \mathbf{M}_2, \dots, \mathbf{M}_C 
ight],$$

# 知乎

阵、特征图以及卷积+模块的应用,进一步提高了任务识别和分类的性能。

$$\mathbf{s}_{i,j}^{(k)} = ReLUigg(\sum_{a=0}^{r_w}\sum_{b=0}^{r_h}\mathbf{W}_{a,b}\mathbf{M}_{i+a,j+b}^{(k)} + \mathbf{b}igg),$$

$$\mathbf{ ilde{s}}_{i,j}^{(k)} = \max_{0 \leq c \leq p_w} \max_{0 \leq d \leq p_h} \mathbf{s}_{i+c,j+d}^{(k)}$$
 ,

对于二维最大池化在特征提取<sup>+</sup>中的应用,通过分析 $p_w$ 和 $p_h$ 对最终特征图的影响。将输出展平并通过线性变换<sup>+</sup>层映射到低维空间中,得到 $\mathbf{Z}_1 \in \mathbb{R}^{|C| \times d}$ ,其中包含查询和每个类别之间的细粒度 $^+$ 匹配特征。

#### Semantic-level matching module

对于字面匹配特征可能不足以捕获用户真实意图的问题,因为查询词可能是多义的。通过获取语义级别的类别表示,对类别表示的时间步长进行平均池化<sup>+</sup>,并将每个类别表示堆叠在一起,能够捕获查询和类别之间的语义相关性。这对于跨类别检索尤为重要。

$$egin{aligned} \mathbf{c_i} &= \mathbf{mean}(\mathbf{C_i})\,, \ \mathbf{C} &= \left[\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_{|C|}
ight], \end{aligned}$$

其中 $\mathbf{C} \in \mathbb{R}^{|C| \times d}$ 表示所有类别的表示。通过应用交叉注意力层,查询和所有类别的表示被整合,有助于提高分类性能。

$$\mathbf{Z}_2 = \mathbf{Q}_i^T \mathbf{softmax}(\mathbf{CW}_{qs}\mathbf{Q}_i^T)$$
 ,

其中 $\mathbf{W}_{qs}\in\mathbb{R}^{d\times d}$ 是可训练的权重, $\mathbf{Z}_2\in\mathbb{R}^{|C|\times d}$ 是查询和标签之间在语义层面上的匹配特征。通过这些特征,可以更准确地识别查询和标签之间的关系。

## **Training and Inference**

经过上述过程,我们得到了查询自我表示q\*i、细粒度查询-类别匹配特征Z\*1和粗粒度匹配特征Z\*2。这些表示用于预测用户意图,矩阵乘法 $^{\dagger}$ 融合了它们。通过引入非线性变换层,特征得到了非线性变换 $^{\dagger}$ 。具体定义为

$$\hat{y} = \mathbf{W}_{x}^{T} ReLU\left(\mathbf{q}_{i} \mathbf{W}_{qf} + [\mathbf{Z}_{1}, \mathbf{Z}_{2}] \mathbf{W}_{z}
ight)$$
 ,

对于多标签交叉熵<sup>+</sup>损失在查询分类任务中的应用。我们使用线性变换矩阵 $^+\mathbf{W}_{qf}$ 、 $\mathbf{W}_z$ 和 $\mathbf{W}_z$ 进行查询分类。真实标签 $y\in\mathcal{R}^{|C|}$ ,其中 $y_i=0,1$ 表示查询是否属于类别i。框架采用多标签交叉熵损失进行训练,损失函数 $^+$ 公式如下。

$$\mathcal{L} = -\sum_{c=1}^{C} y^c \log(\sigma\left(\hat{y}^c
ight)) + (1-y^c) \log(1-\sigma\left(\hat{y}^c
ight))\,,$$

## **Experiment**

#### **Dataset**

本文通过在两个大型真实数据集上实验验证了MMAN的有效性和通用性,数据集统计信息详见表

# 知平

| Statistic        | Scene I   | <b>Data</b> | Category Data      |                   |  |  |
|------------------|-----------|-------------|--------------------|-------------------|--|--|
| Statistic        | Train     | Test        | Train              | Test              |  |  |
| Queries          | 4,459,214 | 9,877       | 4,593,037          | 9,877             |  |  |
| Total Labels     | 8         | 8           | 90                 | 90                |  |  |
| Avg. chars       | 7.63      | 5.00        | 7.69               | 5.00              |  |  |
| Avg. # of labels | 1.04      | 1.67        | 1.19               | 1.77              |  |  |
| Min. # of labels | 1         | 1           | 1                  | 1                 |  |  |
| Max. # of labels | 7         | 3           | жу <b>=26</b> @Sma | rtM <b>2.1</b> AI |  |  |

- 通过抽取查询和点击产品数据,评估了MMAN的性能。类别数据被用作意图分类,通过归一化 点击频率并计算类别概率的累积分布函数<sup>+</sup>(CDF),过滤不可靠类别。当CDF大于0.9时,低概 率类别被移除。
- 通过收集八个不同领域的场景数据,如旅游、酒店预订、医疗咨询、汽车服务等,形成场景数据集。查询类别映射到领域,并由领域专家进行标注,包括查询所属的所有类别。与训练数据不同,测试数据\*集具有更高的准确性。

#### **Baseline Models**

本文比较了MMAN与几个强大的基线,包括广泛使用的多标签分类方法。介绍了多标签文本分类基线,如 RCNN、XML-CNN、LEAM 和 LSAN;也介绍了查询意图分类基线,如 PHC、DPHA、BERT 和 SSA-AC。最后指出使用BERT微调用户的意图是本研究的有效基线。

#### **Experiment Settings**

基于Tensorflow实现模型,提取字符级特征映射,使用Adam算法和学习率设为5e-5,最大长度为16。标签阈值设置为0.5,以评估查询意图分类的微观和宏观精确度、召回率和F1分数。

### **Experimental Results and Analysis**

MMAN在查询意图分类和多标签分类<sup>†</sup>模型比较中表现出显著优势,适用于长文本上下文建模。 MMAN模型能够处理缺乏上下文信息的短查询,提高微观和宏观F1得分约3%。所有组件相互提供 补充信息,是意图分类所必需的。

#### **Online Evaluation**

在生产环境中部署MMAN之前,通常在京东搜索引擎<sup>+</sup>上随机部署MMAN作为测试组,并监控其性能与先前部署的模型进行比较。在线评估使用业务指标,如页面浏览量<sup>+</sup>(PV)、产品点击量(Click)、总商品价值(GMV)、UV值和用户转化率(UCVR)。

与基准组相比,新模型显著改善了PV和Click指标,表明新模型召回的增量类别是用户所需的,且提高相关类别的召回率+导致用户查看和点击更多产品。随着产品选择增加,转化率提高,GMV和UCVR提升(+0.351%)。

# 知乎

|                       | Scene Data |        |       |       | Category Data |       |       |        |         |        |            |       |
|-----------------------|------------|--------|-------|-------|---------------|-------|-------|--------|---------|--------|------------|-------|
| Models                |            | Micro  |       |       | Macro         |       |       | Micro  |         |        | Macro      |       |
|                       | Prec.      | Recall | F1    | Prec. | Recall        | F1    | Prec. | Recall | F1      | Prec.  | Recall     | F1    |
| RCNN [?]              | 94.14      | 77.67  | 85.11 | 83.09 | 86.01         | 83.69 | 69.76 | 54.03  | 60.89   | 70.51  | 62.42      | 62.15 |
| XML-CNN [?]           | 94.73      | 76.00  | 84.34 | 80.87 | 86.47         | 81.91 | 66.73 | 56.36  | 61.11   | 68.08  | 64.15      | 62.12 |
| LEAM [?]              | 94.19      | 68.46  | 79.29 | 88.84 | 78.60         | 82.84 | 72.67 | 49.91  | 59.18   | 69.96  | 47.56      | 52.15 |
| LSAN [?]              | 94.73      | 74.14  | 83.18 | 80.31 | 86.05         | 81.48 | 68.33 | 51.36  | 58.64   | 71.64  | 61.00      | 61.93 |
| PHC [? ]              | 94.63      | 77.93  | 85.47 | 83.17 | 86.62         | 83.74 | 60.12 | 59.41  | 59.76   | 64.08  | 64.90      | 60.67 |
| DPHA [?]              | 95.23      | 77.43  | 85.41 | 82.01 | 84.35         | 82.06 | 71.55 | 54.06  | 61.58   | 75.39  | 54.99      | 61.83 |
| SSA-AC [?]            | 94.82      | 78.15  | 85.68 | 84.15 | 84.26         | 83.92 | 72.36 | 53.20  | 61.32   | 74.38  | 62.19      | 63.38 |
| MMAN                  | 95.52      | 82.26  | 88.39 | 87.26 | 86.15         | 85.93 | 75.64 | 55.07  | 63.74   | 75.77  | 64.56      | 66.47 |
| w/o self-matching     | 96.03      | 81.24  | 88.02 | 88.14 | 85.72         | 84.86 | 75.25 | 54.35  | 63.11   | 73.26  | 64.08      | 65.68 |
| w/o char matching     | 95.16      | 80.28  | 87.09 | 82.12 | 89.38         | 83.74 | 68.72 | 57.13  | 62.39   | 72.16  | 62.58      | 65.12 |
| w/o semantic matching | 95.86      | 81.14  | 87.89 | 84.36 | 87.62         | 84.15 | 72.18 | 50516  | ₹63@7 C | 73.61r | i 196127cl | 65.05 |
| BERT [?]              | 95.39      | 79.22  | 86.56 | 81.20 | 88.48         | 83.00 | 65.88 | 56.23  | 60.67   | 68.47  | 67.28      | 64.53 |

### **Conclusion and Future Work**

提出了一种多粒度匹配注意力网络,从查询-类别交互矩阵的字符级和语义级全面提取特征,显著 改进了长尾查询,消除表达差异,A/B实验带来商业价值,未来工作将探索利用外部知识以提高模 型性能。

发布于 2023-10-24 21:28 · IP 属地北京



## 推荐阅读

