Scope Of Work

Gateway:-P1

It is capable of collecting data from several nodes via the BLE interface. It can store and send collected data to the cloud platform through WiFi. It will also feature a display unit for farm status.

Required Features:

- 1. Updating Wi-Fi Credentials via a html webpage.
- 2. The web page design is attached here

CITY GREENS

Enter yours details

SSID	\"Enter
Password	\"Enter

Alerts

Parameters		Minimum		Maximum
Temperature	~		~	
Humidity	~		~	
Lux	~		~	
CO2	~		~	

Automation

Devices Fan Pad Fogger Dehumidifier Circular Fan	ON Threshold >(Temperature) <(Humidity) >(Humidity) >(Temperature)	OFF Threshold <(Temperature) >(Humidity) <(Humidity) <(Temperature)
	SAVE	
	DEEDES	

3. It save the Wi-Fi credentials & alerts data to its internal memory

- 4. It will check for OTA firmware updates via GitHub
- 5. Display Screen will Initialise
- 6. Scan for BLE nodes, identify our sensor nodes, make a connection with them and collect data via BLE
- 7. It will receive data from 8 Nodes Via BLE Communication.
- 8. Display Screen Design is shown below

- 9. It will save/log the data to an SD card in .csv/.txt format.
- 10. Installation of MQTT software over the server (Digital Ocean Droplet).
- 11. The device will publish saved data to the cloud via MQTT.
- 12. It has a Temp./humidity (HTU21D) sensor on the PCB
- 13. Power Supply has 12V Battery (Li-ion 2500mAh-3s-11.1v-3c-3S1P Protected Battery Pack) with 12V 2A AC Adaptor
- 14. RTC will be used to update time.
- 15. There are three Push Buttons used in the gateway

Reset: it reset the settings of gateway & device will start from its default state; **Configure button:** it will be used as a manual interrupt to firmware for Wi-Fi & Alert Data Updated by User.

Power: It will be used as a Power On & Off Button for the gateway.

16. One LED will used for showing for Power on & off

Gateway Display Screen Flow

1. Splash Screen

2. When user will push the configure button then display screen will show Configure page

Stored Details Wi-Fi Login Credentials SSID:

Password:

Alerts Range

Temperature (°C):Min: Max:

Humidity (%):Min: Max:

Luminous Intensity (lux):Min: Max:

Carbon dioxide (ppm):Min: Max:

SSID: Gateway

To Change Settings, Connect at: Password: 123456789

IP Address: 192.168.1.1

User will open shown ip address 192.168.1.1 in there url then a html page will open & user will fill the login credentials & save alerts value. The saved values shown on screen then the user will again push the configure button.firmware start to connect with given Wi-Fi credential.

3. After connecting with wi-fi firmware will start to search for an OTA firmware update. If any firmware update is there then firmware will start updating & display will show below screen.

New Firmware Available

Please wait while Firmware Upgrades

4. After OTA search main screen will show on display

- 5. Search for available BLE Device ,Connect with them & receive data, when all the data has been collected from BLE Node then screen will update with following data.
 - ❖ wifi status true -> WiFi Connected, false -> WiFi Not Connected
 - internet_status true -> Internet Connected, false -> Internet Not Connected
 - temp_alert true -> Average Temperature in Range, false -> Average Temperature not in Range
 - humidity_alert true -> Average Humidity in Range, false -> Average Humidity not in Range
 - lux_alert true -> Average Lux in Range, false -> Average Lux not in Range
 - co2_alert true -> Average CO2 in Range, false -> Average CO2 not in Range
 - Date in format: DD/MM/YY
 - Time in format: HH:MM
 - average temp Average Temperature from all nodes and onboard sensor
 - average humidity Average Humidity from all nodes and onboard sensor
 - average_lux Average Lux from all nodes and onboard sensor
 - ❖ average co2 Average CO2 from all nodes and onboard sensor
- 6. Screen will update in every 5 min