JC10 Rec'é PCT/PTO 1 5 MAR 2002

SEQUENCE LISTING

5	\110>	mogam biotechnology Research Institute et al	
3	<120>	A NOVEL ANGIOGENESIS INHIBITOR	
	<160>	14	
10	<170>	KOPATIN 1.5	
	<210>	1	
	<211>	924	
	<212>	DNA	
15	<213>	Homo sapiens	
		•	
	<400>	1	
	aaaagccc	ctg tggtccagga ttgctaccat ggtgatggac ggagttatcg aggcatatcc	60
20	tccaccac	etg tcacaggaag gacctgtcaa tcttggtcat ctatgatacc acactggcat	120
	cagaggac	cc cagaaaacta cccaaatgct ggcctgaccg agaactactg caggaatcca	180
	gattctgg	ga aacaacccig gigitacaca accgaiccgi gigigaggig ggagiacigc	240
25			
	aatctgac	ac aatgeteaga aacagaatea ggtgteetag agaeteeeae tgttgtteea	300
	gttccaago	ca tggaggetea ttetgaagea geaceaactg ageaaaceee tgtggteege	360
30	cagtgctad	cc atggcaatgg ccagagttat cgaggcacat tctccaccac tgtcacagga	420
	aggacatgt	c aatetiggie atecatgaca ecacacegge ateagaggae eccagaaaae	480
2.5	tacccaaat	g atggcctgac aatgaactac tgcaggaatc cagatgccga tacaggccct	540
35	A		
	iggigitit	a ccacggaccc cagcatcagg tgggagtact gcaacctgac gcgatgctca	600

	gacacagaag ggactgtggt cgctcctccg actgtcatcc aggttccaag cctagggcct	660									
	ccttctgaac aagactgtat gtttgggaat gggaaaggat accggggcaa gaaggcaacc	720									
5	actgttactg ggacgccatg ccaggaatgg gctgcccagg agccccatag acacagcacg	780									
	ttcattccag ggacaaataa atgggcaggt ctggaaaaaa attactgccg taaccctgat	840									
	ggtgacatca atggtccctg gtgctacaca atgaatccaa gaaaactttt tgactactgt										
10	gatatecete tetgtgeate etet	924									
1.5	<210> 2 <211> 308										
15	<212> PRT										
	<213> Homo sapiens										
	<400> 2										
20	Lys Ser Pro Val Val Gln Asp Cys Tyr His Gly Asp Gly Arg Ser Tyr										
20	1 5 10 15										
	Arg Gly Ile Ser Ser Thr Thr Val Thr Gly Arg Thr Cys Gln Ser Trp										
	20 25 30										
25											
23	Ser Ser Met Ile Pro His Trp His Gln Arg Thr Pro Glu Asn Tyr Pro										
	35 40 45										
	Asn Ala Gly Leu Thr Glu Asn Tyr Cys Arg Asn Pro Asp Ser Gly Lys										
30	50 55 60										
30											
	Gln Pro Trp Cys Tyr Thr Thr Asp Pro Cys Val Arg Trp Glu Tyr Cys										
35											

	Th	r Va	ıl Va	1 Pro		l Pro	o Sei	Met	105		a His	Sei	· Glu	ı Ala		a Pro
5	Th	r Gl	u Gli 11	n Thr 5	· Pro	Val	l Val	120		ı Cys	Tyr	His	Gly 125		Gly	/ Gln
	Sei	ту 13		g Gly	Thr	Phe	Ser 135		Thr	· Val	Thr	Gly 140		Thr	Cys	Gln
10	Ser 145		p Sei	Ser	Met	Thr 150		His	Ārg	His	Gln 155		Thr	Pro	Glu	Asn 160
15	Tyr	Pro	o Asr	ı Asp	Gly 165		Thr	Met	Asn	Tyr 170		Arg	Asn	Pro	Asp 175	
	Asp	Thi	r Gly	Pro 180	Trp	Cys	Phe	Thr	Thr 185		Pro	Ser	Ile	Arg 190	Trp	Glu
20	Tyr	Cys	s Asn 195	Leu	Thr	Arg	Cys	Ser 200	Asp	Thr	Glu	Gly	Thr 205	Val	Val	Ala
	Pro	Pro 210		Val	Ile	Gln	Val 215	Pro	Ser	Leu	Gly	Pro 220	Pro	Ser	Glu	Gln
25	Asp 225	Cys	Met	Phe	Gly	Asn 230	Gly	Lys	Gly	Tyr	Arg 235	Gly	Lys	Lys	Ala	Thr 240
30	Thr	Val	Thr	Gly	Thr 245	Pro	Cys	Gln	Glu	Trp 250	Ala	Ala	Gln	Glu	Pro 255	His
30	Arg	His	Ser	Thr 260	Phe	Ile	Pro		Thr 265	Asn	Lys	Trp	Ala	Gly 270	Leu	Glu
35	Lys	Asn	Tyr 275	Cys	Arg	Asn	Pro	Asp 280	Gly	Asp	Ile	Asn	Gly 285	Pro	Trp	Cys
	Tyr	Thr	Met	Asn	Pro	Arg	Lys	Leu	Phe	Asp	Tyr	Cys	Asp	Ile	Pro	Leu

290

295

300

Cys Ala Ser Ser 305 5 <210> 3 <211> 273 <212> DNA 10 <213> Homo sapiens <400> 3 60 aaaagccctg tggtccagga ttgctaccat ggtgatggac ggagttatcg aggcatatcc 15 tccaccactg tcacaggaag gacctgtcaa tcttggtcat ctatgatacc acactggcat 120 cagaggaccc cagaaaacta cccaaatgct ggcctgaccg agaactactg caggaatcca 180 gattctggga aacaaccctg gtgttacaca accgatccgt gtgtgaggtg ggagtactgc 240 20 aatctgacac aatgctcaga aacagaatca ggt 273 <210> 4 <211> 91 <212> PRT

25 <213> Homo sapiens

<400>

35

30 Lys Ser Pro Val Val Gln Asp Cys Tyr His Gly Asp Gly Arg Ser Tyr 5 10 15

Arg Gly Ile Ser Ser Thr Thr Val Thr Gly Arg Thr Cys Gln Ser Trp 20 25 30

Ser Ser Met Ile Pro His Trp His Gln Arg Thr Pro Glu Asn Tyr Pro 35 45

Asn Ala Gly Leu Thr Glu Asn Tyr Cys Arg Asn Pro Asp Ser Gly Lys 50

Gln Pro Trp Cys Tyr Thr Thr Asp Pro Cys Val Arg Trp Glu Tyr Cys 65 70 75 80

Asn Leu Thr Gln Cys Ser Glu Thr Glu Ser Gly 90

85

<210>

10

<211> 267

<212> DNA

15 <213> Homo sapiens

5

<400> 5

gtccgccagt gctaccatgg caatggccag agttatcgag gcacattctc caccactgtc 60

acaggaagga catgtcaatc ttggtcatcc atgacaccac accggcatca gaggacccca 20 120

gaaaactacc caaatgatgg cctgacaatg aactactgca ggaatccaga tgccgataca 180

ggcccttggt gttttaccac ggaccccagc atcaggtggg agtactgcaa cctgacgcga 240

tgctcagaca cagaagggac tgtggtc 267

<210>

<211> 30 89

25

<212> PRT

<213> Homo sapiens

<400>

Val Arg Gln Cys Tyr His Gly Asn Gly Gln Ser Tyr Arg Gly Thr Phe 35

1

. 5

10

1009548 031502 PCT/KR99/00554

	Ser Thr Thr Val Thr Gly Arg Thr Cys Gln Ser Trp Ser Ser Met Thr 20 25 30	
5	Pro His Arg His Gln Arg Thr Pro Glu Asn Tyr Pro Asn Asp Gly Leu 35 40 45	
	Thr Met Asn Tyr Cys Arg Asn Pro Asp Ala Asp Thr Gly Pro Trp Cys 50 55 60	
10	Phe Thr Thr Asp Pro Ser Ile Arg Trp Glu Tyr Cys Asn Leu Thr Arg 65 70 75 80	
	Cys Ser Asp Thr Glu Gly Thr Val Val	
15		
	<210> 7 <211> 258 <212> DNA	
20	<213> Homo sapiens	
	<400> 7 gaacaggact gcatgtttgg gaatgggaaa ggataccggg gcaagaaggc aaccactgtt	60
25	actgggacgc catgccagga atgggctgcc caggagcccc atagacacag cacgttcatt	120
	ccagggacaa ataaatgggc aggtctggaa aaaaattact gccgtaaccc tgatggtgac	180
30	atcaatggtc cctggtgcta cacaatgaat ccaagaaaac tttttgacta ctgtgatatc	240
	cctctctgtg catcctct	258
35	<210> 8 <211> 86 <212> PRT <213> Homo sapiens	

7

<400> 8

Glu Gln Asp Cys Met Phe Gly Asn Gly Lys Gly Tyr Arg Gly Lys Lys

1

5

10

15

5

10

Ala Thr Thr Val Thr Gly Thr Pro Cys Gln Glu Trp Ala Ala Gln Glu
20 25 30

Pro His Arg His Ser Thr Phe Ile Pro Gly Thr Asn Lys Trp Ala Gly
35 40 45

Leu Glu Lys Asn Tyr Cys Arg Asn Pro Asp Gly Asp Ile Asn Gly Pro
50 55 60

Trp Cys Tyr Thr Met Asn Pro Arg Lys Leu Phe Asp Tyr Cys Asp Ile
65 70 75 80

Pro Leu Cys Ala Ser Ser

85

20

<210> 9

<211> 29

<212> DNA

25 <213> Artificial Sequence

<220>

<223> single standed oligonucleotide

30 <400> 9

tccatatgaa aagccctgtg gtccaggat

29

<210> 10

35 <211> 33

<212> DNA

<213> Artificial Sequence

100754E . 03150E
PCT/KR99/00554

8

<220>

<223> single stranded oligonucleotide

5 <400> 10

cagtccatat ggtccgccag tgctaccatg gca

33

<210> 11

10 <211> 31

<212> DNA

<213> Artificial Sequence

<220>

15 <223> single stranded olgonucleotide

<400> 11

ggaattccat atggaacagg actgcatgtt t

31

20

<210> 12

<211> 26

<212> DNA

<213> Artificial Sequence

25

<220>

<223> single stranded oligonucleotide .

<400> 12

30 cgggatcctt aacctgattc tgtttc

26

<210> 13

<211> 26

35 <212> DNA

<213> Artificial Sequence

PCT/KR99/00554

9

<220>

<223> single stranded oligonucleotide

<400> 13

5 cgggatcctt agaccacagt cccttc

26

<210> 14

<211> 23

10 <212> DNA

<213> Artificial Sequence

<220>

<223> single stranded oligonucleotide

15

<400> 14

cgggatcctt aagaggatgc aca