Closed book, closed notes. Use one $8\frac{1}{2} \times 11$ formula sheet, front and back. Test books will be provided.

- 1. Define the following variables and state which ones are parameters of the system and which ones are parameters of the excitation.
 - (a) ω
 - (b) ω_{dr}
 - (c) ω_b
 - (d) ω_d
 - (e) c_{eq}
 - (f) ω_T
 - (g) ω_r
 - (h) ζ
- 2. The mass of a SDOF system is measure to be 5 kg, while the stiffness is found to be 5000 N/m. It is observed that during free vibration the amplitude decays to 0.25 of its initial value after five cycles. Calculate the viscous damping coefficient c.
- 3. The figure below illustrates the top view of a top loading washing machine. The rotational speed of the drum is $\omega = 30$ rad/s and the radius of the drum is r = .3 m. Assume that all of the wet clothes have gathered into a ball of mass 6 kg (approximated by a point mass at the edge of the tub). The drum rotated within a non-rotating sleeve. The sleeve is rigidly attached to the outer assembly. The total assembly has a mass of 3 kg (excepting the clothes). The assembly is rigidly restrained in the y direction, and is restrained in the x direction by a spring of stiffness k = 500 N/m. Determine the resulting force on the ground due to the motion of the tub.

4. A MDOF system is defined by the matrices M and K shown below. For this system, obtain the natural frequencies, the mode shapes, and the matrices P and S.

$$M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad K = \begin{bmatrix} 6 & -2 \\ -2 & 6 \end{bmatrix}$$

5. Derive the equations of motion for the following system. (*Hint, use Lagrange's equations*)

