TP2 - R1.03 Initiation à l'architecture des ordinateurs

version 2021-2022 (PN 2021 BUT)

Table of Contents

1. Partie 1 : Conversion Binaire - Code ASCII

2. Partie 2 : Conversion en décimal de valeurs signées saisies en base {2,8,16}

REPRESENTATION DE L'INFORMATION

Ce TP est à réaliser à l'aide d'un tableur Calc (LibreOffice) ou Excel (Microsoft)

*Fonctions utiles disponibles sur tableur *:

- SI
- ET
- OU
- RECHERCHEV
- NBCAR
- GAUCHE
- DROITE

1. Partie 1: Conversion Binaire - Code ASCII

L'objectif est de décoder une chaine de caracteres saisie en binaire et d'afficher les caractères ASCII correspondants. Pour ce faire, on dispose de la table de correspondance Décimal/ASCII dans la feuille "ASCII" du fichier TP2.odt.

Etapes de développement :

- invite de saisie dans la cellule B3
- o saisie d'une chaine de digits binaires de la cellule C3 à J3 (8 caractères max)
- vérification : pour chaque cellule de digits binaires, le nombre de digits saisis doit être égal à 8 et la valeur saisie doit être comprise dans l'intervalle [32 .. 138]
- \rightarrow Si oui, on recherche la correspondance dans la table des codes ASCII et on affiche le caractère correspondant dans la cellule en-dessous de la cellule binaire (C4 pour la traduction de C3, etc.);
- → Si non on affiche "..." dans la cellule en dessous de la cellule saisie invalide.

<u>A noter</u>: On peut passer par une ligne de traduction intermédiaire du message binaire en décimal en réutilisant la fonction de conversion binaire/décimal du TP1.

Exemple:

	A	В	С	D	E	F		G	H		1		J	
1	Traducteur	Binaire/ASCII												
2														
3		Texte binaire	10111000	11100110	01101100	11110000	(00001111	10101010		01010101		00100111	
4		Décimal				108						85		39
5		ASCII			I						U		&	
6														
7														
8		Texte binaire	01000010	01001111	01001110	01001010	(01001111	01010101		01010010		00100001	
9		Décimal	66	7	'9	78	74	7	9	85		82		33
10		ASCII	В	0	N	J	(0	U		R		!	
11														

- Table de correspondance Décimal/ASCII ; feuille 2
 - o insértion de la feuille "ASCII" fournie dans le fichier TP2.odt

Remarque : la recherche du code ASCII dans la table de correspondance peut se faire à l'aide de la fonction RECHERCHEV.

2. Partie 2 : Conversion en décimal de valeurs <u>signées</u> saisies en base {2,8,16}

L'objectif est de convertir en décimal une valeur saisie en binaire, octal ou hexadécimal sachant que les valeurs sont signées.

Afin de simplifier le traitement, les valeurs seront saisies <u>impérativement</u>:

- sur 12 bits en binaire
- sur 4 digits en octal
- sur 3 digits en hexadécimal.

De cette façon, quelle que soit la base initiale, la valeur est codée sur 12 bits.

Afin de conserver l'ensemble des digits saisis, y compris les o non significatifs, il est recommandé de fixer le format de la cellule de saisie en format "Texte".

Affichages attendus en décimal:

- Si la valeur saisie est négative (bit de poids fort = 1 en binaire, >=4 en octal, >=8 en hexadécimal), on affichera le signe "-" suivi de la conversion décimale du complément de la valeur saisie ;
- Si la valeur saisie est positive, on affichera le signe "+" suivi de la conversion décimale de la valeur saisie ;
- Si la valeur saisie est nulle, on n'affichera aucun signe devant la valeur o n décimal.

<u>A toutes fins utiles</u>: Sur 12 bits, l'intervalle de valeurs non signées codable est [0..4095]. Cela peut être utile pour calculer le complément arithmétique ...