

NORTHWEST UNIVERSITY

3.4 压缩映射原理

压缩映射的定义

设(X,d)是距离空间, $T: X \to X$,若存在 $\theta \in (0,1)$,使得

 $d(Tx, Ty) \le \theta d(x, y),$

对任意 $x, y \in X$ 都成立. 则称T 为X上的**压缩映射**.

如图Tx与Ty的距离要比x与y的距离一致地小.

压缩映射的例

例 1

设 f 为 \mathbb{R} 上的可导函数,且存在 $\theta \in [0,1)$,使得 $|f'(x)| \leq \theta$,则 f 为 \mathbb{R} 上的压缩映射.

$$d(f(x), f(y)) = |f(x) - f(y)| = |f'(\xi)||x - y| \le \theta d(x, y).$$

压缩映射的性质

命题

距离空间X上的压缩映射T必为连续映射.

证

任取 $x_0 \in X$, 当 $x_n \to x_0 (n \to \infty)$ 时,

则

$$d(Tx_n, Tx_0) \le \theta d(x_n, x_0) \to 0 \ (n \to \infty),$$

即 $Tx_n \to Tx_0 \ (n \to \infty)$. 所以, $T \in x_0$ 点连续.

定理

设X 是完备的距离空间, $T: X \to X$ 是压缩映射,则T 有唯一的不动点,即存在唯一的 $\overline{x} \in X$,使得 $T\overline{x} = \overline{x}$.

定理

设X 是完备的距离空间, $T: X \to X$ 是压缩映射,则 T 有唯一的不动点,即存在唯一的 $\overline{x} \in X$,使得 $T\overline{x} = \overline{x}$.

证

(存在性) 任取
$$x_0 \in X$$
, 令 $x_1 = Tx_0$, $x_2 = Tx_1, \dots, x_{n+1} = Tx_n, \dots$

则有

$$d(x_1, x_2) = d(Tx_0, Tx_1) \le \theta d(x_0, x_1),$$

$$d(x_2, x_3) = d(Tx_1, Tx_2) \le \theta d(x_1, x_2) \le \theta^2 d(x_0, x_1),$$

.

一般地,

$$d(x_n, x_{n+1}) \le \theta^n d(x_0, x_1) \ (n = 1, 2, \cdots).$$

证明细节

$$d(x_n, x_{n+p}) \le d(x_n, x_{n+1}) + \dots + d(x_{n+p-1}, x_{n+p})$$

$$\le (\theta^n + \theta^{n+1} + \dots + \theta^{n+p-1}) d(x_0, x_1)$$

$$= \frac{\theta^n (1 - \theta^p)}{1 - \theta} d(x_0, x_1) \le \frac{\theta^n}{1 - \theta} d(x_0, x_1).$$

证 (存在性) 对任意正整数n 与p ,有

$$d(x_n, x_{n+p}) \le \frac{\theta^n}{1-\theta} d(x_0, x_1).$$

定理

设X 是完备的距离空间, $T: X \to X$ 是压缩映射,则T 有唯一的不动点,即存在唯一的 $\overline{x} \in X$,使得 $T\overline{x} = \overline{x}$.

证

(存在性) 对任意正整数n与p,有

$$d(x_n, x_{n+p}) \le \frac{\theta^n}{1-\theta} d(x_0, x_1).$$

由 $0 < \theta < 1$ 知 $\{x_n\}$ 是柯西列。因为X完备,故存在 $\overline{x} \in X$, 使得

$$x_n \to \overline{x} \ (n \to \infty).$$

在 $x_{n+1} = Tx_n$ 两边令 $n \to \infty$ 由 T的连续性即得 $T\overline{x} = \overline{x}$.

定理

设X 是完备的距离空间, $T: X \to X$ 是压缩映射,则T 有唯一的不动点,即存在唯一的 $\overline{x} \in X$,使得 $T\overline{x} = \overline{x}$.

证

(唯一性) 假设 $\overline{y} \in X$ 满足 $\overline{y} = T\overline{y}$, 则

$$d(\overline{x}, \overline{y}) = d(T\overline{x}, T\overline{y}) \le \theta d(\overline{x}, \overline{y}),$$

由于 $0 < \theta < 1$, 必有

$$d(\overline{x}, \overline{y}) = 0,$$

即 $\overline{x} = \overline{y}$.

思考题

- 若将压缩映射定理条件中的完备性去掉,结论还成立吗?
- ② 若将压缩映射的条件 "存在 $\theta \in (0,1)$, 使得 $d(Tx,Ty) \le \theta d(x,y)$ 成立" 改成 "对任意 $x \ne y \in X$, 有 d(Tx,Ty) < d(x,y)" 定理是否还成立?

压缩映射原理的推广

定理

设X 是完备的距离空间, $T: X \to X$ 是映射,若存在正整数 n_0 使得 T^{n_0} 是压缩映射,则T 有唯一的不动点.

证

(存在性) 由压缩映射原理知, T^{n_0} 有唯一的不动点 \overline{x} . 则

$$T^{n_0}(T\overline{x}) = T(T^{n_0}\overline{x}) = T\overline{x},$$

由于 T^{n_0} 的不动点是唯一的,所以

$$T\overline{x}=\overline{x}.$$

即 \overline{x} 是T的不动点.

压缩映射原理的推广

定理

设X 是完备的距离空间, $T: X \to X$ 是映射,若存在正整数 n_0 使得 T^{n_0} 是压缩映射,则T有唯一的不动点.

证 (唯一性) 设 \overline{y} 也是T 的不动点,则 \overline{y} 也是 T^{n_0} 的不动点.由 T^{n_0} 的 不动点是唯一的知 $\overline{y} = \overline{x}$.

小结

- 压缩映射的定义
- 压缩映射原理
- 压缩映射原理的推论