

More frequent words are read faster/ more accurately than less frequent ones

more frequent words have stronger connections and are then processed faster Considered as an evidence of the existence of a dictionary

o DRC: lexical access speed depends on frequency, these frequencies are stored in the lexicon

 PDP: frequency effect emerges from independent principles, it is a consequence of the learning procedure

frequent words

non frequent words

Effect of frequency

More frequent words are read faster/ more accurately than less frequent ones

- o Considered as an evidence of the existence of a dictionary
- o DRC: lexical access speed depends on frequency, these frequencies are stored in the lexicon
- o PDP : frequency effect emerges from independent principles, it is a consequence of the learning procedure

non frequent words

more frequent words have stronger connections and are then processed faster

frequent words

Simulating effects observed in human reading

New List of Benchmark Effects

Name of effect	Benchmark data set	Description	Triangle	DRC	CDP+
Frequency	Jared (2002, Experiment 2) Weekes (1997)	High-frequency words are faster/more accurate than low-frequency words.	+	+	+
Lexicality	McCann and Besner (1987) Weekes (1997)	Words are faster/more accurate than pseudowords.	+	+	+
Frequency × Regularity	Paap and Noel (1991) Jared (2002, Experiment 2)	Irregular words are slower/less accurate than regular words. Jared (2002) reported no interaction with frequency.	_	+	+
Word consistency	Jared (2002, Experiment 1)	Inconsistent words are slower/less accurate than consistent words. The size of the effect depends on the friend–enemy ratio.	+	_	+
Nonword consistency	Andrews and Scarratt (1998)	Nonword pronunciations show graded consistency effects; that is, people do not always use the most common grapheme—phoneme correspondences.	_	_	+
Length × Lexicality	Weekes (1997) Ziegler et al. (2001)	Nonword naming latencies increase linearly with each additional letter.	_	+	+
Position of irregularity	Rastle and Coltheart (1999)	The size of the regularity effect is bigger for words with first position irregularities (e.g., <i>chef</i>) than for words with second- or third-position irregularities.	_	+	+
Body neighborhood	Ziegler et al. (2001)	Words with many body neighbors are faster/ more accurate than words with few body neighbors.	_	_	+
Masked priming	Forster and Davis (1991)	Words preceded by an onset prime are faster/ more accurate than words preceded by unrelated primes.	?	+	+
Pseudohomophone advantage	McCann and Besner (1987) Reynolds and Besner (2005)	Nonwords that sound like real words (e.g., <i>bloo</i>) are faster/more accurate than orthographic controls.	+	+	+
Surface dyslexia	Patterson and Behrmann (1997)	Patient MP showed specific impairment of irregular word reading, which was modulated by the consistency ratio of the words.	+	_	+
Phonological dyslexia	Derouesné and Beauvois (1985) ^a	Patient LB showed specific impairment of nonword reading, which was reduced when nonwords were orthographically similar pseudohomophones.	+b	+	+
Large-scale databases	Spieler and Balota (1997) Balota and Spieler (1998)	Naming latencies of the model were regressed onto the average naming latency of each item in large-scale databases containing thousands of items.	_	_	+