What is regularization:

 Regularization refers to a set of different techniques that lower the complexity of a neural network model during training, and thus prevent the overfitting.

Lasso:

- · Least Absolute Shrinkage and Selection Operator
- If a model uses the L1 regularization technique, then it is called lasso regression.
- Adds the "absolute value of magnitude" of the coefficient as a penalty term to the loss function
- · Also performs automatic feature selection

Ridge:

- Ridge regression is also referred to as L2 Regularization.
- Adds the "squared magnitude" of the coefficient as the penalty term to the loss function.

Type *Markdown* and LaTeX: α^2

Importing Packages

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
from scipy import stats
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_regression
from sklearn.preprocessing import OrdinalEncoder
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
```

Storing the dataset

```
In [2]:
```

```
df_train = pd.read_csv(r"C:\Users\hemaachandhan\OneDrive\Desktop\Notebooks\AML-lab\AML-1
```

```
In [3]:
```

df_test = pd.read_csv(r"C:\Users\hemaachandhan\OneDrive\Desktop\Notebooks\AML-lab\AML-1\

In []:

Basic Analysis

In [4]:

df_train.head()

Out[4]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl
4	5	60	RL	84.0	14260	Pave	NaN	IR1	LvI

5 rows × 81 columns

In [5]:

df_train.shape

Out[5]:

(1460, 81)

In [6]:

df_test.shape

Out[6]:

(1459, 80)

In [7]:

df_train.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1460 entries, 0 to 1459 Data columns (total 81 columns):

Data	· · · · · · · · · · · · · · · · · · ·	81 columns):	
#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
14	Condition2	1460 non-null	object
15	BldgType	1460 non-null	object
16	HouseStyle	1460 non-null	object
17	OverallQual	1460 non-null	int64
18	OverallCond	1460 non-null	int64
19	YearBuilt	1460 non-null	int64
20	YearRemodAdd	1460 non-null	int64
21	RoofStyle	1460 non-null	object
22	RoofMatl	1460 non-null	object
23	Exterior1st	1460 non-null	object
24	Exterior2nd		-
		1460 non-null	object
25	MasVnrType	1452 non-null	object
26	MasVnrArea	1452 non-null	float64
27	ExterQual	1460 non-null	object
28	ExterCond	1460 non-null	object
29	Foundation	1460 non-null	object
30	BsmtQual	1423 non-null	object
31	BsmtCond	1423 non-null	object
32	BsmtExposure	1422 non-null	object
33	BsmtFinType1	1423 non-null	object
34	BsmtFinSF1	1460 non-null	int64
35	BsmtFinType2	1422 non-null	object
36	BsmtFinSF2	1460 non-null	int64
37	BsmtUnfSF	1460 non-null	int64
38	TotalBsmtSF	1460 non-null	int64
39	Heating	1460 non-null	object
40	HeatingQC	1460 non-null	object
41	CentralAir	1460 non-null	object
42	Electrical	1459 non-null	object
43	1stFlrSF	1460 non-null	int64
44	2ndFlrSF	1460 non-null	int64
45	LowQualFinSF	1460 non-null	int64
46	GrLivArea	1460 non-null	int64
47	BsmtFullBath	1460 non-null	int64
48	BsmtHalfBath	1460 non-null	int64
49	FullBath	1460 non-null	int64
50	HalfBath	1460 non-null	int64
51	BedroomAbvGr	1460 non-null	int64
52	KitchenAbvGr	1460 non-null	int64
53	KitchenQual	1460 non-null	object
54	TotRmsAbvGrd	1460 non-null	int64
55	Functional	1460 non-null	object
23	i ulic ciolidi	THOS HOH-HATT	object

```
56 Fireplaces
                                  int64
                   1460 non-null
 57
    FireplaceQu
                   770 non-null
                                  object
58
                                  object
    GarageType
                   1379 non-null
 59
    GarageYrBlt
                   1379 non-null
                                  float64
60 GarageFinish
                   1379 non-null
                                  object
                   1460 non-null
61 GarageCars
                                  int64
62 GarageArea
                   1460 non-null
                                  int64
63
   GarageQual
                   1379 non-null
                                  object
   GarageCond
                   1379 non-null
                                  object
65
    PavedDrive
                   1460 non-null
                                  object
    WoodDeckSF
                   1460 non-null
                                  int64
66
67
    OpenPorchSF
                   1460 non-null
                                  int64
68 EnclosedPorch 1460 non-null
                                  int64
                   1460 non-null
69
    3SsnPorch
                                  int64
70 ScreenPorch
                   1460 non-null
                                  int64
                                  int64
71 PoolArea
                   1460 non-null
72
    PoolQC
                   7 non-null
                                  object
73
    Fence
                   281 non-null
                                  object
74 MiscFeature 54 non-null
                                  object
75
    MiscVal
                   1460 non-null
                                  int64
76 MoSold
                   1460 non-null
                                  int64
77
    YrSold
                   1460 non-null
                                  int64
                                  object
78
   SaleType
                   1460 non-null
    SaleCondition 1460 non-null
                                  object
79
    SalePrice
                   1460 non-null
                                  int64
80
dtypes: float64(3), int64(35), object(43)
```

memory usage: 924.0+ KB

In [8]:

```
df_train.dtypes.value_counts()
```

Out[8]:

object 43 int64 35 float64 3 dtype: int64

In [9]:

```
for i in df_train.columns:
    if df_train[i].isnull().any() == True:
        print(i,end = " ")
        print(df_train.loc[lambda df_train : df_train[i].isnull() == True].shape[0])
```

LotFrontage 259 Alley 1369 MasVnrType 8 MasVnrArea 8 BsmtQual 37 BsmtCond 37 BsmtExposure 38 BsmtFinType1 37 BsmtFinType2 38 Electrical 1 FireplaceQu 690 GarageType 81 GarageYrBlt 81 GarageFinish 81 GarageQual 81 GarageCond 81 PoolQC 1453 Fence 1179 MiscFeature 1406

In [10]:

```
df_train["Electrical"].fillna(df_train["Electrical"].mode()[0],inplace = True)
```

```
In [11]:
```

```
df test.columns
Out[11]:
```

```
Index(['Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Stree
       'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig',
       'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgTyp
е',
       'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemo
dAdd',
       'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrTyp
е',
       'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual',
       'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1',
       'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heatin
g',
       'HeatingOC', 'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF',
       'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'Full
Bath',
       'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
       'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 'Garage
Type',
       'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 'Garage
Qual',
       'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF',
       'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC',
       'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType',
       'SaleCondition'],
      dtype='object')
```

In [12]:

```
for i in df test.columns:
    if df_train[i].isnull().sum() > 500:
        print("Dropped Columns: ",i)
        df_train.drop(columns = [i], axis=1, inplace=True)
        df_test.drop(columns= [i], axis=1, inplace = True)
```

Dropped Columns: Alley Dropped Columns: FireplaceQu Dropped Columns: PoolQC Dropped Columns: Fence

Dropped Columns: MiscFeature

In [13]:

```
df train.shape
```

Out[13]:

(1460, 76)

```
In [ ]:
```

```
Encoding
In [14]:
numeric feature = df train.select dtypes(include=["int64","float64"]).columns
In [15]:
numeric_feature
Out[15]:
Index(['Id', 'MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual',
        'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFin
SF1',
        'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF',
       'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'Full
Bath',
       'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'WoodDeck
SF',
       'OpenPorchSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolA
rea',
       'MiscVal', 'MoSold', 'YrSold', 'SalePrice'],
      dtype='object')
In [16]:
categorical feature = df train.select dtypes(exclude=["int64","float64"]).columns
In [17]:
categorical_feature
Out[17]:
Index(['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities',
        'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition
2',
        'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st',
        'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundatio
n',
       'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinTy
pe2',
        'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'KitchenQual',
       'Functional', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageC
ond',
       'PavedDrive', 'SaleType', 'SaleCondition'],
      dtype='object')
```

```
In [18]:
Ord_encoder = OrdinalEncoder()
In [19]:
for i in categorical_feature:
    df_train[[i]] = Ord_encoder.fit_transform(df_train[[i]])
    df_test[[i]] = Ord_encoder.fit_transform(df_test[[i]])
In [20]:
df_train.dtypes.value_counts()
Out[20]:
float64
           41
int64
           35
dtype: int64
In [21]:
df_test.dtypes.value_counts()
Out[21]:
float64
           49
int64
           26
dtype: int64
No Objects...
In [ ]:
In [ ]:
```

Outlier Analysis & Removal

```
In [22]:
```

```
sns.boxplot(x= df_train.SalePrice)
```

Out[22]:

<AxesSubplot: xlabel='SalePrice'>

In [23]:

```
df_train.SalePrice.quantile([.25,.5,.75])
```

Out[23]:

0.25 129975.00.50 163000.00.75 214000.0

Name: SalePrice, dtype: float64

In [24]:

```
z = np.abs(stats.zscore(df_train.SalePrice))
```

In [25]:

```
df_train.drop(np.where(z>3)[0],axis = 0,inplace = True)
```

```
In [26]:
df_train.shape
Out[26]:
(1438, 76)
In [27]:
df_train.fillna(method = "bfill", inplace = True )
In [28]:
df_test.fillna(method = "bfill", inplace = True )
In [29]:
```

Out[29]:

<AxesSubplot: xlabel='SalePrice'>

sns.boxplot(x= df_train.SalePrice)


```
In [30]:
df_train.SalePrice.quantile([.25,.5,.75])
Out[30]:
0.25
        129500.0
0.50
        161500.0
0.75
        210000.0
Name: SalePrice, dtype: float64
In [ ]:
In [31]:
# Q1=df_train.SalePrice.quantile(.25)
# Q2=df_train.SalePrice.quantile(0.5)
# Q3=df_train.SalePrice.quantile(0.75)
In [32]:
\# IQR = Q3-Q1
# IQR
In [33]:
\# Lower = Q1-1.5*IQR
# upper = Q3+1.5*IQR
In [34]:
# print(lower, "and", upper)
In [35]:
# df_train[(df_train.SalePrice>lower) & (df_train.SalePrice<upper)].shape[0]</pre>
In [ ]:
```

Type *Markdown* and LaTeX: α^2

Splitting of data

```
In [36]:
X = df_train.drop("SalePrice",axis = 1)
In [37]:
Y = df train.SalePrice
In [ ]:
Important Feature Selection
In [38]:
fs = SelectKBest(score_func=f_regression, k=50)
In [39]:
X.fillna(method = "bfill", inplace = True )
In [40]:
X_selected = fs.fit_transform(X, Y)
In [41]:
X_selected
Out[41]:
array([[3.000e+00, 6.500e+01, 8.450e+03, ..., 6.100e+01, 0.000e+00,
        4.000e+00],
       [3.000e+00, 8.000e+01, 9.600e+03, ..., 0.000e+00, 0.000e+00,
        4.000e+00],
       [3.000e+00, 6.800e+01, 1.125e+04, ..., 4.200e+01, 0.000e+00,
        4.000e+00],
       [3.000e+00, 6.600e+01, 9.042e+03, ..., 6.000e+01, 0.000e+00,
        4.000e+00],
       [3.000e+00, 6.800e+01, 9.717e+03, ..., 0.000e+00, 1.120e+02,
        4.000e+00],
       [3.000e+00, 7.500e+01, 9.937e+03, ..., 6.800e+01, 0.000e+00,
        4.000e+00]])
```

```
In [42]:
X_selected.shape
Out[42]:
(1438, 50)
In [ ]:
Model Selection
In [43]:
x_train,x_test, y_train, y_test = train_test_split(X_selected,Y)
In [ ]:
Lasso with cv
In [44]:
la = LassoCV()
In [45]:
la.fit(x_train,y_train)
Out[45]:
 ▼ LassoCV
LassoCV()
In [46]:
y1 = la.predict(x_test)
In [47]:
r2_score(y_test,y1)
Out[47]:
0.7203969041650569
```

```
In [ ]:
Ridge with cv
In [48]:
ri = RidgeCV()
In [49]:
ri.fit(x_train,y_train)
Out[49]:
 ▼ RidgeCV
RidgeCV()
In [50]:
yr = ri.predict(x_test)
In [51]:
r2_score(y_test,yr)
Out[51]:
0.8045605272308718
In [ ]:
Linear Regression
In [52]:
lr = LinearRegression()
In [53]:
lr.fit(x_train,y_train)
Out[53]:
 ▼ LinearRegression
LinearRegression()
```

```
In [54]:
yp = lr.predict(x_test)
In [55]:
r2_score(y_test,yp)
Out[55]:
0.8041996302976034
In [ ]:
Random Forest
In [56]:
rf = RandomForestRegressor(max_depth=100,n_estimators=500)
In [57]:
rf.fit(x_train,y_train)
Out[57]:
                  RandomForestRegressor
RandomForestRegressor(max_depth=100, n_estimators=500)
In [58]:
ypr = rf.predict(x_test)
In [59]:
r2_score(y_test,ypr)
Out[59]:
0.8685917190533834
In [ ]:
In [ ]:
```

Hyperparameter Tuning

```
In [60]:
```

```
params = {'alpha': [0.0001, 0.001, 0.01, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0,
4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200]}
```

In [61]:

```
lasso = Lasso()
folds = 5
model_cv = GridSearchCV(estimator = lasso,
                         param_grid = params,
                         scoring= 'r2',
                         cv = folds,
                         return_train_score=True,
                         verbose = 1)
model_cv.fit(x_train, y_train)
```

Fitting 5 folds for each of 33 candidates, totalling 165 fits

Out[61]:

```
GridSearchCV
▶ estimator: Lasso
     ▶ Lasso
```

In [62]:

```
model_cv.best_params_
```

Out[62]:

{'alpha': 200}

In [63]:

```
model_cv.best_estimator_
```

Out[63]:

```
Lasso
Lasso(alpha=200)
```

In [64]:

```
alpha = model_cv.best_estimator_.alpha
# max_iter = model_cv.best_estimator_.max_iter
lasso = Lasso(alpha=alpha)

lasso.fit(x_train, y_train)
lasso.coef_
```

Out[64]:

```
array([-1.48371917e+03, -6.88416325e+01, 4.18480010e-01, -1.37922075e+0
        3.82950030e+02, -2.17550782e+02, -2.48981520e+03, 1.25214119e+0
4,
        1.10557108e+02, 2.35769483e+02, 2.64180011e+03, -8.50513336e+0
2,
        6.26752454e+02, 1.41943284e+01, -6.06419523e+03, -0.00000000e+0
0,
       -0.00000000e+00, -5.14882000e+03, -2.93559517e+03, -6.39627517e-0
1,
       -6.55930363e+00, 3.26025889e+00, -0.00000000e+00, -1.07157416e+0
3,
       3.77185692e+03, 1.53531301e+02, 4.71321726e+01, 3.98109986e+0
1,
       -2.05276287e+00, 7.41881581e+03, 2.44901518e+02, -0.00000000e+0
0,
       0.00000000e+00, -1.30215951e+04, -6.60248821e+03, 1.42625318e+0
3,
       4.37576499e+03, 5.13444349e+03, -7.18194584e+02, -1.28716595e+0
2,
       -2.75362466e+03, 1.08876150e+04, 6.82193135e+00, 2.08602769e+0
2,
       4.93038289e+02, 3.64222187e+03, 2.54717553e+01, 1.97511806e+0
1,
        1.44662283e+00, 3.38375110e+03])
```

In [65]:

```
y_pred = lasso.predict(x_test)
print(r2_score(y_pred, y_test))
```

0.7907529083887381

In []:

In [66]:

Fitting 10 folds for each of 33 candidates, totalling 330 fits

Out[66]:

```
▶ GridSearchCV▶ estimator: Ridge▶ Ridge
```

In [67]:

```
model_cv.best_estimator_
```

Out[67]:

```
Ridge
Ridge(alpha=70)
```

```
In [68]:
```

```
alpha = model_cv.best_estimator_.alpha
ridge= Ridge(alpha=alpha)
ridge.fit(x_train, y_train)
lasso.coef_
```

Out[68]:

```
array([-1.48371917e+03, -6.88416325e+01, 4.18480010e-01, -1.37922075e+0
        3.82950030e+02, -2.17550782e+02, -2.48981520e+03, 1.25214119e+0
4,
        1.10557108e+02, 2.35769483e+02, 2.64180011e+03, -8.50513336e+0
2,
        6.26752454e+02, 1.41943284e+01, -6.06419523e+03, -0.00000000e+0
0,
       -0.00000000e+00, -5.14882000e+03, -2.93559517e+03, -6.39627517e-0
1,
       -6.55930363e+00, 3.26025889e+00, -0.00000000e+00, -1.07157416e+0
3,
       3.77185692e+03, 1.53531301e+02, 4.71321726e+01, 3.98109986e+0
1,
       -2.05276287e+00, 7.41881581e+03, 2.44901518e+02, -0.00000000e+0
0,
       0.00000000e+00, -1.30215951e+04, -6.60248821e+03, 1.42625318e+0
3,
       4.37576499e+03, 5.13444349e+03, -7.18194584e+02, -1.28716595e+0
2,
       -2.75362466e+03, 1.08876150e+04, 6.82193135e+00, 2.08602769e+0
2,
       4.93038289e+02, 3.64222187e+03, 2.54717553e+01, 1.97511806e+0
1,
        1.44662283e+00, 3.38375110e+03])
```

In [69]:

```
y_r = ridge.predict(x_test)
```

In [70]:

```
r2_score(y_test,y_r)
```

Out[70]:

0.8044679913523669

In []:

```
To [ ].
```

In []:

In []:	
In []:	
In []:	
To [].	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	

In []:			
In []:			
In []:			