

Started on	Sunday, 14 May 2023, 9:20 PM	
State	Finished	
Completed on	Sunday, 14 May 2023, 9:33 PM	
Time taken	13 mins 24 secs	
Grade	10.00 out of 10.00 (100 %)	

Question 1

Correct

Mark 1.00 out of 1.00

Given the following unweighted undirected graph please fill in the corresponding adjacency matrix.

	1	2	3	4	5	6
1	0 \$	x	х	X	х	х
2	1 \$	0	х	Х	х	х
3	0	0 \$	0	Х	х	х
4	0	1 \$	1	0	х	Х
5	1	1 \$	0 \$	0	0	х
6	0	1	1 \$	0	0 \$	0

```
Question 2
Correct
Mark 1.00 out of 1.00
```

Which of the following represent the correct pseudo code for non recursive DFS algorithm?

Select one:

```
a. procedure DFS-non_recursive(G,v):
    //let St be a stack
    St.push(v)
    while St is not empty
    v = St.pop()
    if v is not discovered:
        label v as discovered
        for all adjacent vertices of v do
        St.push(v)
```

```
C. procedure DFS-non_recursive(G,v):
    //let St be a stack
    St.pop(v)
    while St is not empty
    v = St.pop()
    if v is not discovered:
        label v as discovered
        for all adjacent vertices of v do
        St.push(a) //a being the adjacent vertex
```

```
d. procedure DFS-non_recursive(G,v):
    //let St be a stack
    St.push(v)
    while St is not empty
    v = St.pop()
    if v is not discovered:
        label v as discovered
    for all adjacent vertices of v do
        St.push(a) //a being the adjacent vertex
```

Your answer is correct.

```
The correct answer is:

procedure DFS-non_recursive(G,v):
   //let St be a stack
   St.push(v)
   while St is not empty
   v = St.pop()
   if v is not discovered:
        label v as discovered
        for all adjacent vertices of v do
            St.push(a) //a being the adjacent vertex
```

0.27 T W	Quiz 3. Attempt fevi
Question 3	
Correct	
Mark 1.00 out of 1.00	
Time Complexity of Depth First Search is:	
Select one:	
○ a. O(V / E)	
○ b. O(V * E)	
○ D. ○(▼ L)	
○ c. O(log(V + E))	
d. O(V + E) ✓	
Your answer is correct.	
The correct answer is: O(V + E)	
Question 4	
Correct	
Mark 1.00 out of 1.00	
Adding a vertex in adjacency list representation is	s harder than adjacency matrix
representation.	
Select one:	
○ True	
False ✓	
The correct answer is 'False'.	

Question $\mathbf{5}$

Correct

Mark 1.00 out of 1.00

Breadth First Search is equivalent to which of the traversal in the Binary Trees?

Select one:

- a. Pre-order Traversal
- b. Post-order Traversal
- oc. In-order Traversal
- d. None of the above

Your answer is correct.

The correct answer is: None of the above

Question 6

Correct

Mark 1.00 out of 1.00

Find the output of Depth-Flrst search of the following tree using pre-order traversal:

Select one:

- a. 3154607298111012
- b. 0123478569101112
- Oc. 3564179111210820

Your answer is correct.

The correct answer is: 0 1 3 4 5 6 2 7 8 9 10 11 12

Question 7	
Correct	
Mark 1.00 out of 1.00	

Correct choice of data structures can improve the performance of algorithms. Match the following algorithms with appropriate data structures

Depth first search	Stack	\$ •
Breadth first search	Queue	\$ •
Sorting	Неар	\$ •

Your answer is correct.

Among the given choices, queue is the most appropriate for BFS, stack for DFS and heap for sorting

The correct answer is: Depth first search \to Stack, Breadth first search \to Queue, Sorting \to Heap

Question 8

Correct

Mark 1.00 out of 1.00

Find the output of Breadth-First Traversal of the following tree:

Select one:

- a. 3564179111210820
- b. 0134562789101112
- © c. 0123478569101112 ✓
- Od. 3154607298111012

Your answer is correct.

The correct answer is: 0 1 2 3 4 7 8 5 6 9 10 11 12

Question 9	
Correct	
Mark 1.00 c	out of 1.00
Which o	of the following data structure is used to implement DFS?
Select o	
a.	Stack ✓
O b.	Linked list
O c.	Queue
O d.	Tree
	swer is correct.
The cor	rect answer is: Stack
Correct Mark 1.00 c	out of 1.00
	the maximum number of edges in an undirected graph with 'n' vertices, ering there are no self-loops or parallel edges?
a.	n(n-1)/2 ✓
O b.	n(n-1)
<u></u> с.	
d.	
ų.	
Your an	swer is correct.
The cor	rect answer is:
n(n-1)/2	2