Estimating Aerosol Optical Properties Using Mie Theory and Analyzing Their Impact on Radiative Forcing in California

Alison Thieberg¹, Andreas Beyersdorf², Maddy Landi³, Ann Marie Carlton³

Emory University¹, California State University, San Bernardino², University of California, Irvine³

Radiative Forcing in the Anthropocene

(IPCC 2013)

Aerosols and Cooling

(Boucher 2015)

Using Airborne Data

The NASA Langley Aerosol Research Group has been collecting data on SARP flights:

- Aerosol composition (AMS)
- Aerosol size (UHSAS or LAS)
- Aerosol optical properties

(NASA LARGE 2024)

Estimating Size and Refractive Parameters

Determining a refractive index from the weight of:

- Organics
- Ammonium Nitrate
- Ammonium Sulfate
- Black Carbon

Determining an aerosol diameter from:

Weight of size distribution bins

Determining Upscatter Fraction

[in]: miepython.mie(refractive index, size parameter)

[out]: scattering efficiency (Q_{sca}) and back-scattering efficiency (Q_{back})

$$\frac{Q_{back}}{(Q_{sca})(4\pi)} = backscatter fraction (b)$$

 $0.082 + 1.85b - 2.97b^2 = upscatter fraction (\beta)$

(Anderson 1999)

(Barnhart 2020)

Determining Relative Radiative Forcing

Equation calculates radiative forcing due to the aerosol

$$\Delta F_{eff} = -0.5 S_0 T^2 (1-A_C) SSA \beta \{(1-R)^2 - (2R/\beta)[(1/SSA) - 1]\}$$

(Langridge 2012)

Constants:

- S_0 :Solar constant
- T:Atmospheric transmission
- A_c:Cloud fraction
- R:Surface albedo

Variables:

- β : Upscatter fraction (calculated using mie theory)
- SSA: Single scattering albedo (measured or calculated using scattering and absorption measurements)

Data Flow Overview

SARP Data

Applying Theory

Methodology was applied to SARP data from 2016, 2019, and 2024:

- Only observations underneath 2000ft were analyzed
- Observations with missing size, composition, or optical data were disregarded
- Relative radiative forcing was calculated for 383 minute averages
- Regional bounds were created for further analysis

Results by Year

A more negative radiative forcing means more cooling and a less negative radiative forcing means less cooling

Plot does not account for regional differences

Less Cooling Regions

More Cooling Regions

Conclusion

From radiative forcing calculations:

- LA and Inland
 Empire are cooling
 more
- Central Valley is cooling less

Future Work:

- Analyze the difference between the aerosol properties of these regions

Acknowledgments

github.com/alisonthieberg

Faculty Mentors:

- Dr. Andreas Beyerdorf
- Dr. Ann Marie Carlton

Research Mentors:

- Maddy Landi
- Dr. Disha Sardana

Former SARP Students:

- Aly Fritzmann
- Julia Alvarez

Python Developers:

Scott Prahl

Data Source:

Langley AerosolResearch Group

NASA and SARP:

- Stephanie Olaya
- Dr. Karen St. Germain
- Dr. Julie Robinson
- Dr. Jack Kaye
- Dr. Barry Lefer
- Dr. Melissa Martin
- Rachel Wegener

Organizations:

- NASA
- ESD, SMD
- ECR
- UCI

