אנליזה מודרנית שמעון ברוקס, ניר לב מועד ב' תשע"ח

רגב יחזקאל אימרה

February 5, 2025

שאלה 1) תהי E קבוצת כל המספרים הממשיים בקטע [0,1], אשר בפיתוח העשרוני שלהם הספרה "1" מופיעה רק במספר סופי של מקומות. הוכיחו כי E היא קבוצה מדידה לבג, וחשבו את

 $\cdot E$ מידת לבג של

 $E=igoplus_{n=0}^\infty$ בתרון: נסמן E_n קבוצת כל המספרים הממשיים בקטע E_n אשר בפיתוח העשרוני שלהם הספרה 1 מופיעה בדיוק ב- E_n מקומות. לכן

לכן מבורל $E_n^i\subseteq E_n^{i+1}$, כאשר כי היא בת מנייה. בנוסף, $E_n^k\subseteq E_n^{i+1}$ לכן מבורל בורל $E_n^k\subseteq E_n^k$ מדידה כי היא בת מנייה. בנוסף, לכן מבורל בורל אזי $E_n^k\subseteq E_n^k$

, מכאן, $m\left(E_n\right)=0$ לכן $m\left(E_n\right)=0.9^{k-n}0.1^n \underset{k \to \infty}{\longrightarrow} 0$ לכן נקבל נקבל נקבל נקבל $m\left(E_n\right)=m\left(igcup_{i=1}^{\infty}E_n^i\right)=\lim_{k \to \infty}m\left(E_n^k\right)$ מכאן,

כנדרש.
$$m\left(E\right)=0$$
 כלומר $m\left(E\right)=m\left(\biguplus_{n=0}^{\infty}E_{n}\right)=\sum_{n=0}^{\infty}m\left(E_{n}\right)=\sum_{n=0}^{\infty}0=0$

שאלה 2) מצאו את ההיטל האורטוגונלי של הפונקציה f(x)=x על תת המרחב

$$V = \left\{ g : \int_{0}^{1} g(t)dt = 0 \right\}$$

 $L^{2}[0,1]$ של המרחב

 $\langle f,g
angle = \int\limits_0^1$ פתרון: יהיו f(x)=c כך אם f(x)=c כיוון ש-f(x)=c נקבל g(t) נקבל g(t) נשים g(t) נשים g(t) כי אם g(t) פונקציה קבועה אז g(t)=c פתרון: יהיו g(t)=c כי אם g(t) ניקח g(t)

$$g \in V \iff \int\limits_0^1 t - c dt = 0 \iff \left[\frac{t^2}{2} - c t\right]_{t=0}^{t=1} = 0 \iff \frac{1}{2} - c = 0 \iff c = \frac{1}{2}$$

. כנדרש, $g(t)=rac{1}{2}$ הוא V על של f כנדרש, כנדרש, לכן ההיטל

 $A_t=1$ נגדיר לכל $m\left(A
ight), m\left(B
ight)>0$ אינה 3) תהיינה אינה מדידות לבג, כך שלשתיהן לבג, כך שלשתיהן מידת לבג $m\left(A,m\left(B
ight)>0$ שתי קבוצות מדידות לבג, כך שלשתיהן מידת לבג חיובית, כלומר $m\left(A_t\cap B
ight)>0$ לכל \mathbb{R} הוכיחו כי קיים $x+t:x\in A$

 $m\left(A_t\cap B
ight)=\int\limits_{\mathbb{R}}\mathbb{I}_{A_t\cap B}(x)dm=$ בנוסף בשלילה כי לכל $t\in\mathbb{R}$ מתקיים $t\in\mathbb{R}$ מתקיים $t\in\mathbb{R}$ מתקיים $t\in\mathbb{R}$ מתקיים $t\in\mathbb{R}$ מתקיים לכל $t\in\mathbb{R}$ מתקיים $t\in\mathbb{R}$ מתקיים לכל $t\in\mathbb{R}$ מתקיים לכל מתקיים ל

$$0 = \int\limits_{\mathbb{R}} m\left(A_t \cap B\right) dt = \int\limits_{\mathbb{R}} \int\limits_{\mathbb{R}} \mathbb{I}_{A_t} \mathbb{I}_B(x) dm dt$$

נשים \heartsuit כי \mathbb{I} היא פונקציה אינטגרבילית ולכן לפי משפט פוביני

$$\int\limits_{\mathbb{R}}\int\limits_{\mathbb{R}}\mathbb{I}_{A_{t}}\mathbb{I}_{B}(x)dmdt=\int\limits_{\mathbb{R}}\int\limits_{\mathbb{R}}\mathbb{I}_{A_{t}}\mathbb{I}_{B}(x)dtdm=\int\limits_{\mathbb{R}}\mathbb{I}_{B}(x)\int\limits_{\mathbb{R}}\mathbb{I}_{A_{t}}dtdm=\int\limits_{\mathbb{R}}\mathbb{I}_{B}(x)\int\limits_{\mathbb{R}}\mathbb{I}_{A_{t}}dtdm=m\left(A\right)\int\limits_{\mathbb{R}}\mathbb{I}_{B}(x)dm=m\left(A\right)m\left(B\right)$$

. בסתירה $m\left(A\right)m\left(B\right)>0$ לכן $m\left(A\right),m\left(B\right)>0$ אבל

p>1 עבור $L^p(\mathbb{R})$ אבר מתכנס מתכנס מתכנס במרחב במרחב מתכנס מתכנס מתכנס מתכנס מתכנס מתכנס מתכנס מתכנס אור $L^p(\mathbb{R})$

פתרון : נניח בשלילה שכן. לכן הטור הנ"ל מתכנס ב- L^1 מתכנס ב- L^1 מתכנס בשלילה שכן. לכן הטור מתכנס ב-לו מתכנס ב-לו מתכנס ב-לו הסכום באינטגרל ואז אם הטור מתכנס אפשר להחליף את הסכום באינטגרל ולקבל

$$\| \sum_{n=1}^{\infty} \frac{1}{n} \mathbb{I}_{[n,n+1]} \|_1 = \int_{\mathbb{R}} \sum_{n=1}^{\infty} \frac{1}{n} \mathbb{I}_{[n,n+1]} dm = \sum_{n=1}^{\infty} \frac{1}{n} \int_{\mathbb{R}} \mathbb{I}_{[n,n+1]} dm = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

בסתירה.

: p > 1 עבור

$$\|\sum_{n=1}^{\infty}\frac{1}{n}\mathbb{I}_{[n,n+1]}\|_{p} \leq \sum_{n=1}^{\infty}\|\frac{1}{n}\mathbb{I}_{[n,n+1]}\|_{p} = \sum_{n=1}^{\infty}\int_{\mathbb{R}}\left(\frac{1}{n}\mathbb{I}_{[n,n+1]}\right)^{p}dm = \sum_{n=1}^{\infty}\int_{\mathbb{R}}\frac{1}{n^{p}}\mathbb{I}_{[n,n+1]}dm = \sum_{n=1}^{\infty}\frac{1}{n^{p}}<\infty$$

כנדרש.

... $\|f\|_{L^{p_1}[0,1]} \leq \|f\|_{L^{p_2}[0,1]}$ ומתקיים $f \in L^{p_1}[0,1]$ אז $f \in L^{p_2}[0,1]$ הוכיחו כי אם $1 \leq p_1 < p_2 \leq \infty$ ומתקיים $1 \leq p_1 < p_2 \leq \infty$ יהיו בעת, $\int\limits_0^1 |f|^{p_1} \, dm < \int\limits_0^1 |f|^{p_2} \, dm < \infty$ פתרון: $1 \leq p_1 \leq p_2 \leq \infty$ ולכן $1 \leq p_2 \leq \infty$ אז $1 \leq p_2 \leq \infty$ ומתקיים $1 \leq p_2 \leq \infty$ ולכן $1 \leq p_2 \leq \infty$ ולכן $1 \leq p_2 \leq \infty$ אם $1 \leq p_2 \leq \infty$ ולכן $1 \leq p_2$

$$\begin{split} \|f\|_{p_{1}} &= \left(\int\limits_{0}^{1} |f|^{p_{1}} dm\right)^{\frac{1}{p_{1}}} = \left(\int\limits_{0}^{1} |f|^{p_{1}} 1 dm\right)^{\frac{1}{p_{1}}} = \left(\||f|^{p_{1}} 1\|_{1}\right)^{\frac{1}{p_{1}}} \\ &\leq \left(\||f|^{p_{1}}\|_{\frac{p_{2}}{p_{1}}}\|1\|_{\frac{p_{2}-p_{1}}{p_{2}}}\right)^{\frac{1}{p_{1}}} = \left(\||f|^{p_{1}}\|_{\frac{p_{2}}{p_{1}}}\right)^{\frac{1}{p_{1}}} = \left(\left(\int\limits_{0}^{1} ||f|^{p_{1}}|_{\frac{p_{2}}{p_{1}}}\right)^{\frac{1}{p_{2}}}\right)^{\frac{1}{p_{1}}} = \left(\int\limits_{0}^{1} ||f|^{p_{1}}|_{\frac{p_{2}}{p_{1}}}\right)^{\frac{1}{p_{2}}} = \left(\int\limits_{0}^{1} ||f|^{p_{2}} dm\right)^{\frac{1}{p_{2}}} = \|f\|_{p_{2}} \end{split}$$

כנדרש.

*: מאי שיוויון הלדר.