Combinatorics Notes

Trevor Gunn

2024-04-11

Table of contents

Pr	eface	9	5
ı	Ind	clusion-Exclusion	6
1	Incl	usion/Exclusion	7
	1.1	For two sets	7
	1.2	For three sets	7
	1.3	Binomial coefficients and I/E	8
	1.4	Avoiding properties	9
	1.5	Simplifying notation	10
	1.6	Application 1: Surjections	12
	1.7	Application 2: Derangements	13
2	Eule	er's Totient Function	14
	2.1	The totient function	15
	2.2	Applying Inclusion/Exclusion	16
	2.3	Wrapping up	17
II	Pe	ermutations	19
3	Peri	mutations	20
	3.1	As a shuffle of the symbols	20
	3.2	As a function from X to itself	20
		3.2.1 Composition of functions	21
4	Visu	ual representations of permutations	23
	4.1	As a collection of cycles	23
		4.1.1 Notation	23
	4.2	Braids	24
		4.2.1 Transpositions	25
		4.2.2 Braids versus permutations	

5	Gene	erators	29			
	5.1	Squaring relation	29			
	5.2	Commutating	29			
	5.3	$ABA = BAB \dots \dots$	30			
	5.4	Other relations?	31			
6	Sign	of a Permutation	32			
	6.1	Step 1: reducing to the identity	32			
	6.2	Step 2: setting up the induction hypothesis	33			
	6.3	Step 3: reorganizing the product	34			
		6.3.1 Case 1: disjoint	34			
		6.3.2 Case 2: two numbers in common	34			
		6.3.3 Case 3: larger number in common				
		6.3.4 Case 4: smaller number in common	36			
	6.4	Summary	36			
	6.5	Notation/Computation	37			
7	Inve	rsions	38			
	7.1	Parity of the number of inversions	39			
	7.2	Analysis	39			
8	8 Exercises					
111	Ge	nerating Functions	42			
9	Wei	ght Functions	43			
	9.1	Recap: Strings	43			
	9.2	Definition				
		9.2.1 Key property				
10	Gene	erating Functions	45			
		Definition	45			
		Monomials				
		Infinite series	46			
		10.3.1 When do we care about convergence? $$	47			
11	Mult	tiplication of Generating Functions	49			
		Multiplication of Monomials	49			
		A step further	49			
		Multiplication theorem	50			

	11.4	Strings with 0s followed by 1s	51
		11.4.1 Calculus?	
12	Star	s and Bars Revisited	54
	12.1	From 2 people to k people	54
		12.1.1 Applying the multiplication theorem	
	12.2	Variations of Stars and Bars	55
		12.2.1 Other restrictions	57
	12.3	Slack variables	58
	12.4	Summary	58
13	Coef	fficient Extraction	60
	13.1	Shifts	60
	13.2	Sums and differences	61
	13.3	Derivatives	62
		Newton's Binomial Theorem	
	13.5	Examples	63
		13.5.1 Negative Binomial Theorem	64
		13.5.2 Central Binomial Theorem	65
		13.5.3 Catalan Numbers	68

Preface

Combinatorics notes extending the book Applied Combinatorics by Keller and Trotter.

Contains:

- An alternate proof of the Inclusion/Exclusion formula and a fully worked out proof of the Euler Totient formula
- Notes on the structure of permutations (cycles, inversions, signs)
- Notes on generating functions formalized a bit more

This work © 2024 by Trevor Gunn is licensed under CC BY-SA $4.0\,$

Part I Inclusion-Exclusion

1 Inclusion/Exclusion

1.1 For two sets

Example 1.1. Suppose there are 100 CS students an a school. Of these, 50 know Java and 60 know Python (everyone knows at least one of these two languages). If we add 50 + 60 we get the 100 total students plus 10 students who know both.

$$50 + 60 = 100 + 10$$
.

Given two sets A and B, we can compute $|A \cup B|$ by first adding everything in A and adding everything in B. This counts all of $A \cup B$ except the items in $A \cap B$ were counted twice. Thus

$$|A| + |B| = |A \cup B| + |A \cap B|.$$

1.2 For three sets

Figure 1.1: Inclusion/Exclusion for 3 sets

We can do a similar process for three sets. Start by adding up |A| + |B| + |C| then subtract all the intersections of pairs then add back in $|A \cap B \cap C|$. For items in each region of the Venn diagram, think about how many times an item is added/subtracted overall.

E.g. items in A and B but not C will be added in twice in the first step (|A| + |B|) and subtracted once in the second step $(|A \cap B|)$ so they are counted once.

Items in $A \cap B \cap C$ are added in 3 - 3 + 1 = 1 times.

1.3 Binomial coefficients and I/E

Suppose we are looking at a union of n sets: $A_1 \cup \cdots \cup A_n$. Consider an element x belonging exactly to A_1, \ldots, A_m and no other sets. If we do the same procedure of adding $|A_1| + \cdots + |A_n|$ then we are counting x a total of m times. Then, when we subtract all the pairwise intersections, $|A_i \cap A_j|$, we are subtracting from the count of x a total of $\binom{m}{2}$ because there are $\binom{m}{2}$ ways to choose two indices $\{i, j\} \subset \{1, \ldots, m\}$.

Thus, if we alternate: adding in single sets, subtracting pairs of intersections, adding tripples, subtracting quadruples, etc. we are counting x a total of

$$\binom{m}{1} - \binom{m}{2} + \binom{m}{3} - \binom{m}{4} + \cdots \tag{1.1}$$

times.

Let's have a closer look at this. We know the Binomial Theorem says that

$$(1+x)^m = \binom{m}{0}x^0 + \binom{m}{1}x^1 + \binom{m}{2}x^2 + \dots + \binom{m}{m}x^m.$$

Substituting x = -1, we get

$$0 = {m \choose 0} - {m \choose 1} + {m \choose 2} - \dots + {m \choose m} (-1)^m.$$

And since $\binom{m}{0} = 1$, if we move all the other terms to the other side of the equation, we see that Equation 1.1 evaluates to 1.

Note 1

For this problem we are counting the size of $A_1 \cup \cdots \cup A_n$ so each element is in at least one set $(m \ge 1)$. This is important so that we can say that $0^m = 0$. In the context of the binomial theorem, $(1-1)^0 = \binom{0}{0} = 1$. This will be important later when we want to count elements not belonging to any set.

The general I/E formula is then

$$|A_1 \cup \dots \cup A_n| = \sum_{i} |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \dots$$
$$= \sum_{t=1}^n (-1)^{t+1} \sum_{i_1 < \dots < i_t} |A_{i_1} \cap \dots \cap A_{i_t}|.$$

Note: $(-1)^{t+1}$ takes the values $1, -1, 1, -1, \ldots$ starting at t = 1.

1.4 Avoiding properties

Inclusion/Exclusion appears most frequently in combinatorics not as a means to count $|A_1 \cup \cdots \cup A_n|$ directly but rather as a means to count everything *not* in $A_1 \cup \cdots \cup A_n$.

For example, let $[m] = \{1, ..., m\}$ and suppose we want to count the number of functions $f : [m] \to [n]$ which don't miss anything in the codomain. I.e. if A_i is the set of functions where f(x) never equals i, then we want to count every function not in any set A_i .

Let X be the total set of functions. Then to count the functions avoiding $A_1 \cup \cdots \cup A_n$ we do

$$|X \setminus (A_1 \cup \dots A_n)| = |X| - |A_1 \cup \dots A_n|$$
$$= |X| - \sum_i |A_i| + \sum_{i < j} |A_i \cap A_j| - \dots$$

Caution

The formula $|A \setminus B| = |A| - |B|$ works only when B is contained entirely inside A.

1.5 Simplifying notation.

Let $\mathscr{P} = \{P_1, \dots, P_n\}$ be a collection of sets representing negative properties—conditions we want to avoid. For a subset $S \subseteq \{1, \ldots, n\}$, let $N_{>}(S)$ be the number of items satisfying at least those properties in S. I.e. $\bigcap_{i \in S} P_i$. We will say "x satisfies S" for short. Also, if $S = \{a, b, c\}$, let us write for example, $N_{>}(a,b,c)$ instead of $N_{>}(\{a,b,c\})$ for simplicity.

Let $N_{=}(S)$ be the number of x satisfying exactly those properties in S and no properties not in S. When \mathcal{P} represents properties we wish to avoid, then $N_{=}(\emptyset)$ is the number of elements satisfying none of the properties.

Theorem 1.1 (Inclusion/Exclusion).

$$\begin{split} N_{=}(\varnothing) &= N_{\geq}(\varnothing) - \sum_{i} N_{\geq}(i) + \sum_{i < j} N_{\geq}(i, j) - \cdots \\ &= \sum_{S} (-1)^{|S|} N_{\geq}(S). \end{split}$$

Proof. As in Section 1.3, we will break up the sum focusing on each element. So first, we will write

$$\sum_{S} (-1)^{|S|} N_{\geq}(S) = \sum_{S} (-1)^{|S|} \sum_{\substack{x \text{ satisfies } S}} 1$$

Here we replace the number $N_{>}(S)$ by a count of 1 for each element x which satisfies S. This introduces a second sum into the picture and that will allow us to swap the order of summations. Currently, the second sum is over all x with respect to the relation "x satisfies S." When we put the sum over x outside, we still have the relation "x satisfies S" but rather than summing over all x with this property, we sum over all S:

$$\sum_{S} (-1)^{|S|} \sum_{\substack{x \text{ satisfies } S}} 1 = \sum_{x} \sum_{\substack{S \\ x \text{ satisfies } S}} (-1)^{|S|}.$$

We also move the $(-1)^{|S|}$ inside the second sum because that quantity depends on |S|.

Next, just as we did in Section 1.3, let us say that x satisfies exactly P_{i_1}, \ldots, P_{i_m} (m will depend on x) and let $S_x = \{i_1, \ldots, i_m\}$. This set is the largest set that x satisfies. Every other set that x satisfies will be a subset of S_x .

We now break up our sum based on the size of those subsets $S \subseteq S_x$, using the binomial coefficients to count the number of such S:

$$\sum_{x} \sum_{\substack{S \\ x \text{ satisfies } S}} (-1)^{|S|} = \sum_{x} \sum_{k=0}^{m} \underbrace{\binom{m}{k} (-1)^{k}}_{|S|=k \text{ and } x \text{ satisfies } S}$$

$$\iff |S|=k \text{ and } S \subseteq S_{x}$$

This, by the Binomial Theorem, is the same as

$$\sum_{x} (1-1)^m.$$

Remember here that m depends on x.

As discussed in Note 1, $0^m = 0$ if $m \ge 1$ but if m = 0 then $0^0 = 1$. Saying m = 0 means that x satisfies exactly 0 properties—which is what we are looking for. So the final simplification looks like

$$\sum_{x} 0^{m} = \sum_{\substack{x \\ m=0}} 1 = N_{=}(\varnothing).$$

1.6 Application 1: Surjections

As in Section 1.4, let X be the set of all functions from [m] to [n] and let P_i be the set of functions where i is never an output: $f(x) \neq i$ for any input x.

Lemma 1.1.

- a) The number of functions from an m element set to an n element set is n^m .
- b) The number of functions from an m element set to an n element set that avoid k outputs is $(n-k)^m$.

Proof.

- a) There are n choices for f(1) and n choices for f(2), etc. So there are n^m choices in total for $f(1), \ldots, f(m)$.
- b) If we are avoiding k outputs then there are only n-k choices for each of $f(1), \ldots, f(m)$ so $(n-k)^m$.

With this in mind, we have $N_{\geq}(S) = (n-k)^m$ if |S| = k (we avoid at least the specified k outputs). So by inclusion exclusion, the number of functions which avoid no outputs (i.e. surjections) is

$$N_{\geq}(\varnothing) - \sum_{i} N_{\geq}(i) + \sum_{i < j} N_{\geq}(i, j) - \cdots$$

= $n^m - \sum_{i} (n - 1)^m + \sum_{i < j} (n - 2)^m - \cdots$

And since there are $\binom{n}{k}$ ways to choose k outputs to avoid, we can also write this as

$$n^m - \binom{n}{1}(n-1)^m + \binom{n}{2}(n-2)^m - \dots = \sum_k \binom{n}{k}(-1)^k (n-k)^m.$$

The textbook calls this number S(m, n).

Note

In the above application, $N_{\geq}(S) = (n-k)^m$ only depended on the size k of S. This is true in many but not all examples.

1.7 Application 2: Derangements

Let X be the set of all permutations of [n]. We wish to count the permutations with no fixed points. So let P_i be the property that i is a fixed point. Then $N_{=}(\emptyset)$ is the number of permutations with zero fixed points. This number is called d_n in the textbook.

Lemma 1.2.

- a) The number of permutations of [n] is n!
- b) The number of permutations with at least k specified fixed points is (n k)!

Proof.

- a) Discussed in Chapter 2 of the book.
- b) To say that there are k specified fixed points means were are permuting the other n-k items. Similar to (a), there are (n-k)! ways to permute n-k items.

Applying Inclusion/Exclusion, we thus have

$$d_n = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \dots = \sum_k \binom{n}{k}(-1)^k (n-k)!.$$

Again, there are $\binom{n}{k}$ ways to choose a set S of k fixed points and each of these has the same number $N_{\geq}(S) = (n-k)!$.

2 Euler's Totient Function

Consider the number system of the integers mod n. This means we group the numbers based on whether they have the same remainder when divided by n. For example, $3 \cdot 7 \equiv 1 \pmod{10}$ because both 21 and 1 have the same remainder when divided by 10.

This number system works a lot like the integers. We have addition, subtraction and multiplication. The question is: when can we divide? For example, is it possible to solve $2x \equiv 3 \pmod{10}$ for x? I.e. is there a way to move the 2 to the other side of the equation? The answer is no, because 2x will never have a remainder of 3.

What about $7x \equiv 3 \pmod{10}$? This is trickier. Let's look at our multiples of 7:

Ok so we see that $7 \cdot 9 \equiv 3 \pmod{10}$.

The next theorem gives the criterion for when we can "divide both sides by a."

Theorem 2.1. We can solve the equation $ax \equiv b \pmod{n}$ for any b if and only if gcd(a, n) = 1.

Proof. First, suppose $\gcd(a,n) \neq 1$ and call this $\gcd d$. Consider the equation $ax \equiv 1 \pmod{n}$. This means that ax has a remainder of 1 when divided by n or in other words ax is 1 more than a multiple of n: ax = qn + 1. Now, d is a divisor of both a and n by definition, which means ax - qn should be a multiple of d. But ax - qn = 1 and we said $d \neq 1$, that is impossible. So $ax \equiv 1 \pmod{n}$ has no solution.

Next, suppose gcd(a, n) = 1. By Theorem 3.9 of the Keller/Trotter book, also known as Bézout's theorem, we can find integers u and v such that au + nv = gcd(a, n) = 1. If we rearrange, we get au = 1 - nv. So au and 1 differ by a multiple of n.

Let's apply this to our equation: take the equation $ax \equiv b \pmod{n}$ and multiply by u to get

$$aux = (1 - nv)x \equiv bu \pmod{n}$$

Since (1 - nv)x and x differ by a multiple of n, they share the same remainder. Thus our solution is $x \equiv bu \pmod{n}$.

Example 2.1. Let's follow the steps to solve $7x \equiv 3 \pmod{1}0$. First, we do Euclid's algorithm to find the gcd of 7 and 10.

$$10 = 7 + 3$$
$$7 = 2 \cdot 3 + 1$$

To get Bézout's identity: we solve each equation for the remainder term and then substitute the bigger remainder into the next equation:

$$3 = 10 - 7$$

 $1 = 7 - 2 \cdot 3 = 7 - 2 \cdot (10 - 7) = 3 \cdot 7 - 2 \cdot 10.$

So 3 is our u. Multiply both sides of $7x \equiv 3 \pmod{10}$ by 3 and we get

$$3 \cdot 7x \equiv 3 \cdot 3 \pmod{10}$$
$$1 \cdot x \equiv 9 \pmod{10}$$

2.1 The totient function

Numbers where gcd(a, n) = 1 are called "coprime to n." They show up often when talking about modular arithmetic. We have a function, $\phi(n)$ called "Euler's totient function" which counts

the number of integers less than n which are coprime to n. For example, $\phi(10) = 4$ counting 1, 3, 7, 9.

Euler gave the following formula for $\phi(n)$ in terms of the prime factors p of n:

$$\phi(n) = n \cdot \prod_{\substack{p \mid n \\ p \text{ prime}}} \left(1 - \frac{1}{p}\right)$$

Here $p \mid n$ means p divides n or p is a factor of n.

This is the form we will prove in a minute, but let us also rewrite this formula in maybe a more helpful way. Say $n = p_1^{k_1} \cdots p_r^{k_r}$ is the prime factorization of n. Then

$$\phi(n) = p_1^{k_1} \cdots p_r^{k_r} \cdot \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right).$$

Now look at each pair of factors involving p_i :

$$p_i^{k_i} \left(1 - \frac{1}{p_i} \right) = p_i^{k_i} \left(\frac{p_i - 1}{p_i} \right) = p_i^{k_i - 1} (p_i - 1).$$

Putting that together, we get

$$\phi(n) = p_1^{k_1 - 1}(p_1 - 1) \cdots p_r^{k_r - 1}(p_r - 1).$$

Example 2.2. For $n = 18 = 2 \cdot 3^2$ we have

$$\phi(12) = 2^0(2-1)3^1(3-1) = 6.$$

You can double check this by listing all the numbers coprime to 18.

2.2 Applying Inclusion/Exclusion

For each of the primes p_i which are factors of n. Consider the property P_i which says that a is divisible by p_i . As we've been doing, for a subset of these primes, we want to count the number of a in $0, \ldots, n-1$ which are divisible by at least those primes in S.

Lemma 2.1. Let m be a divisor of n. The number of integers a < n which are a multiple of m is n/m.

Proof. Let's look at an example first. Suppose n=100 and m=5. Then we list the numbers from $0,\ldots,99$ and write the list mod 5. That is:

$$0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, \dots, 0, 1, 2, 3, 4.$$

Because n-1 is one less than n, our last number has a remainder of one less than 5. So we see every number 0,1,2,3,4 exactly the same number of times. Since there are 5 possible remainders, we much see every remainder 100/5 = 20 times. This includes a remainder of 0.

This pattern works generally: we repeat remainders of $0, \ldots, m-1$ and we end on m-1 because n-1 is one less than a multiple of m.

So putting this into our inclusion-exclusion notation, if $S = \{i_1, \ldots, i_k\}$, then

$$N_{\geq}(S) = \frac{n}{p_{i_1} \dots p_{i_k}}.$$

2.3 Wrapping up

By Inclusion/Exclusion, the number of whole numbers a < n not divisible by any p_i is

$$N_{\geq}(\varnothing) - \sum_{i} N_{\geq}(i) + \sum_{i < j} N_{\geq}(i,j) - \cdots$$

and that is

$$n - \sum_{i} \frac{n}{p_i} + \sum_{i < j} \frac{n}{p_i p_j} - \dots = n \left(1 - \sum_{i} \frac{1}{p_i} + \sum_{i < j} \frac{1}{p_i p_j} - \dots \right).$$

We should be able to factor a $(1-1/p_1)$ out of this so let's work at giving that a go by separating terms including p_1 from those

that don't:

$$\begin{split} 1 - \sum_{i} \frac{1}{p_{i}} + \sum_{i < j} \frac{1}{p_{i}p_{j}} - \cdots \\ &= 1 - \frac{1}{p_{1}} - \sum_{1 < i} \frac{1}{p_{i}} + \frac{1}{p_{1}} \sum_{1 < j} \frac{1}{p_{j}} + \sum_{1 < i < j} \frac{1}{p_{i}p_{j}} - \cdots \\ &= \left(1 - \frac{1}{p_{1}}\right) - \left(\frac{1}{p_{1}} \sum_{1 < i} \frac{1}{p_{i}} - \frac{1}{p_{1}} \sum_{1 < j} \frac{1}{p_{j}}\right) + \left(\sum_{1 < i < j} \frac{1}{p_{i}p_{j}} - \frac{1}{p_{1}} \sum_{1 < i < j} \frac{1}{p_{i}p_{j}}\right) - \cdots \\ &= \left(1 - \frac{1}{p_{1}}\right) \left(1 - \sum_{1 < i} \frac{1}{p_{i}} + \sum_{1 < i < j} \frac{1}{p_{i}p_{j}} - \cdots\right). \end{split}$$

Note: in the second term in the second to last line, the sum over all j > 2 is the same as the sum over all i > 2 just with a different name given to the variable.

So we are able to factor out $(1-1/p_1)$ to get a similar expression with one fewer primes. Similarly, we can factor out $(1-1/p_2)$ and so on until there are no more primes. This gives us Euler's product representation for the totient function.

Part II Permutations

3 Permutations

A permutation of a finite set X can be thought of in a few ways. The set of all permutations of $\{1, \ldots, n\}$ will be denoted S_n . This is also called *the symmetric group*.

3.1 As a shuffle of the symbols

E.g. 53214 is a shuffle of $X = \{1, 2, 3, 4, 5\}$.

This gives us one way of counting the number of permutations. For the first position in the shuffle, we may write any of the n numbers. For the second position, we have n-1 numbers to choose from—we cannot repeat the first. Likewise the third has n-2 to choose from, not repeating the first or second. In this way, the number of permutations is

$$n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1$$
, denoted $n!$.

3.2 As a function from X to itself

E.g. The shuffle 53214 may be thought of as a function $\pi: X \to X$ where $\pi(i)$ equals the *i*-th number in the shuffle:

$$\pi(1) = 5, \pi(2) = 3, \pi(3) = 2, \pi(4) = 1, \pi(5) = 4.$$

These functions are often represented by a table:

\overline{i}	1	2	3	4	5
$\pi(i)$	5	3	2	1	4

Something new added by the table/function representation is that we can talk about the inverse function which undoes the shuffle:

$j = \pi(i)$	5	3	2	1	4
$i = \pi^{-1}(j)$	1	2	3	4	5

or reordering the columns:

\overline{j}	1	2	3	4	5
$\pi^{-1}(j)$	4	3	2	5	1

3.2.1 Composition of functions

Given two permutations, $\pi_1, \pi_2 : X \to X$, we can compose them to get a new function $(\pi_1 \circ \pi_2)$. One way to compute this is via the following procedure:

- 1. Write the two functions as tables.
- 2. Reorder the columns of the outermost function in the composition to align with the output of the innermost function.
- 3. Stack the tables on top of eachother.

E.g. Take π_2 to be the function represented by the shuffle 53214 and take π_1 to be represented by the shuffle 13254. So as a table

\overline{i}	1	2	3	4	5
$\overline{\pi_1(i)}$	1	3	2	5	4

Now we shuffle the columns so the top is 53214:

\overline{i}	5	3	2	1	4
$\overline{\pi_1(i)}$	4	2	3	1	5

Then stack this with π_2 :

\overline{i}	1	2	3	4	5
$j = \pi_2(i)$	5	3	2	1	4
$\pi_1(j)$	4	2	3	1	5

The bottom row is $\pi_1 \circ \pi_2$.

Exercise 3.1. Compute this in the other order: $\pi_2 \circ \pi_1$. Observe that the order matters.

Note: in some sources (e.g. books, software), compositions are witten as a product in the reverse order. Here are computation in the software SageMath.

```
\pi 1 = \text{Permutation}([1,3,2,5,4])

\pi 2 = \text{Permutation}([5,3,2,1,4])

\pi 2 * \pi 1
```

[4, 2, 3, 1, 5]

```
\pi 1 * \pi 2
```

[5, 2, 3, 4, 1]

4 Visual representations of permutations

4.1 As a collection of cycles

Let's look at a longer permutation now: 541237896. As in Section 3.2, we can view this as a function where 1 goes to 5, 2 goes to 4 etc. Following the path of a single number we get a cycle: 1 goes to 5 goes to 3 goes to 1. Likewise 2 goes to 4 goes to 2. And so on.

The entire permutation can be broken up into cycles:

```
\pi = Permutation([5,4,1,2,3,7,8,9,6])
\pi.to_digraph().plot(vertex_size=1500)
```


4.1.1 Notation

The cycle $1 \to 5 \to 3 \to 1$ can be written as (153). In general, (a_1, \ldots, a_n) represents the cycle $a_1 \to a_2 \to \cdots \to a_n \to a_1$. We often ommit the commas when every number is a single digit.

Here is how to compute the cycles in SageMath:

```
π.cycle_string()
```

```
'(1,5,3)(2,4)(6,7,8,9)'
```

The answer is given as a product (i.e. composition) of cycles.

Elements which do not go anywhere—also called *fixed-points*—are represented by cycles of length 1 E.g. (123)(4) represents the two cycles $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ and $4 \rightarrow 4$. We often ommit length 1 cycles from the notation so (123)(4) = (123) as a permutation of 1, 2, 3, 4.

Exercise 4.1. Compute the cycle decomposition for 341859672. You can verify your answer in SageMath.

```
\pi = Permutation([3,4,1,8,5,9,6,7,2])

\pi.cycle_string()
```

Note: as mentioned earlier: SageMath ommits the cycle (5) representing the fixed point $\pi(5) = 5$.

4.2 Braids

Another visual representation used frequently in the mathematical study of knots is that of crossing lines. Let's look at an example:

```
B.<a,b> = BraidGroup(3)
plot(a * b * a)
```


This represents a permutation where the first end ends up in the third position $(1 \to 3)$, the second end ends up in the second position $(2 \to 2)$ and the third end ends up in the first position $(3 \to 1)$. Overall, 1 and 3 are swapped, so this permutation is (13).

4.2.1 Transpositions

Cycles of length 2 are called *transpositions*. E.g. (14) is a transposition which switches 1 and 4. The picture above represents a composition of 3 transpositions (13) = (12)(23)(12).

Theorem 4.1 (Product of transpositions).

- a) Every permutation can be written as a product of transpositions
- b) Every permutation can be written as a product of transpositions of adjacent elements.

Another way to say this is that by swapping pairs of elements at a time, we can obtain any possible shuffle.

Proof. We know that a permutation may be written in terms of cycles. So if we can show that any cycle can be written as a successive sequence of swaps we are good. We will give a visual demonstration of this fact:

So the cycle (123456) = (12)(23)(34)(45)(56). Remember that compositions are read from right to left: e.g. $(f \circ g)(i) = f(g(i))$ means first do g then do f.

This kind of decomposition generalizes: you can replace (123456) with any cycle of any length. E.g. (1456) = (14)(45)(56) although one more reminder that products in SageMath are backwards from the function composition standpoint:

```
S = SymmetricGroup(6)
S((5,6)) * S((4,5)) * S((1,4))
```

(1,4,5,6)

For an alternative proof, this decomposition into a sequence of adjacent swaps is exactly how the sorting algorithm BubbleSort works. We can sort any list using BubbleSort which does only adjacent swaps. So the shuffle is obtained by reversing those swaps to go from sorted to shuffled.

4.2.2 Braids versus permutations

You may have noticed in what we did, the word "braid" was used. Braids are similar to permutation except that we keep track of which strand goes above and which strand goes below. E.g. the transposition (12) applied twice looks like

```
B.<a,b> = BraidGroup(3)
plot(a * a)
```


As a permutation this is the trivial shuffle 123. But as a braid it is still twisted.

While we are only focused on permutations rather than braids here, we still make use of braids because SageMath is able to create diagrams for us.

4.2.2.1 The Braid Group in SageMath

The generators of the braid group are adjacent swaps. So the line B.<a, b>=BraidGroup(3) sets a to a swap of 1,2 and sets b to a swap of 2,3. We can obtain the reverse swap with a^-1 or b^-1

```
plot(a^-1 * a^-1)
```


When converting from braids to permutations, we ignore whether a strand goes over or under and just focus on the swapping.

5 Generators

In Theorem 4.1 we saw that every cycle and hence every permutation can be written as a product of adjacent swaps: $(12), (23), (34), \ldots, (n-1, n)$. Here we will identify some relations that hold among these generating elements.

Let us call $\tau_i = (i, i + 1)$ the swap of i and i + 1.

5.1 Squaring relation

We have $\tau_i^2 = 1$ where 1 represents the identity permutation (no shuffling). This says that if we swap i and i + 1 and then swap again, we get back to a sorted list.

5.2 Commutating

From Exercise 3.1, we saw that in general $\pi_1\pi_2 \neq \pi_2\pi_1$. Nonetheless, if we are swapping disjoint sets of pairs like (12) followed by (34) then there is no interaction between the swaps. So the order doesn't matter: (12)(34) = (34)(12). Specifically, τ_i and τ_j commute $(\tau_i\tau_j = \tau_j\tau_i)$ provided i and j are at least 2 apart.

```
B.<a,b,c> = BraidGroup(4)
plot(a * c)
```


True

5.3 ABA = BAB

At the top of Section 4.2 we saw that (12)(23)(12) = (13). We also have (23)(12)(23) = (13). Compare the following pictures.

```
B.<a,b> = BraidGroup(3)
plot(a * b * a)
plot(b * a * b)
```


We can see visually that the middle green strand is sliding from one side of the blue/red crossing to the other.

5.4 Other relations?

It turns out, every way to simplify or manipulate products of transpositions can be reduced to exactly these three rules:

1. $\tau_i^2 = 1$ 2. $\tau_i \tau_j = \tau_j \tau_i$ for $|i - j| \ge 2$ (at least two apart) 3. $\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$

The proof of this has two stages. One which we have already seen. First, you show that every permutation can be written as a product of transpositions of adjacent elements (Theorem 4.1). This shows that you can use τ_1, \ldots, τ_n and these rules to write every element of S_n . I.e. the number of objects generated by these rules is at least n!.

The second step is showing that the number of objects generated by these rules is no more than n! so that it is exactly the same as S_n . This requires more tools than we have available to us (i.e. group theory). A proof for those in-the-know may be found here for instance.

We will take it as a fact that these rules descrie S_n exactly.

6 Sign of a Permutation

We established in Theorem 4.1 that every permutation can be written as a product of transpositions. But more than that, in all our examples, the number of transpositions required to perform a shuffle was always consistently odd or consistently even. For instance, (13) = (12)(23)(12) has an odd number of transpositions on both sides.

If we look at Section 5.4, we said that every possible way to manipulate a permutation can be reduced to three rules, each of which preserves the parity (odd or even) of the number of transpositions.

In case you were unsatisfied with relying on the fact that every relation reduces to the three given relations, we will present two different proofs that the parity is always consistent: one here, one in the next section.

For a visualization of this proof, see https://www.youtube.com/watch?v=p6kCYbKIMak starting at 13:50.

6.1 Step 1: reducing to the identity

Suppose we have two different ways to write a given permutation as a product of transpositions:

$$\pi = \tau_1 \tau_2 \dots \tau_m = \tau_1' \tau_2' \dots \tau_n'.$$

(Here the letter τ means any transposition, not just for adjacent elements.)

Our goal is to show that m and n have the same pairty (both are odd or both are even). Notice that if we multiply both sides by τ_1 , we get

$$\tau_1 \cdot \tau_1 \tau_2 \dots \tau_m = \tau_1 \cdot \tau_1' \tau_2' \dots \tau_n'$$

but $\tau_1 \cdot \tau_1$ means swap the same pair twice, and doing this twice is the same as not doing it at all. Therefore the $\tau_1 \cdot \tau_1$ cancels and we are left with

$$\tau_2 \dots \tau_m = \tau_1 \cdot \tau_1' \tau_2' \dots \tau_n'.$$

Keep doing this from left to right until we have

$$1 = \tau_m \dots \tau_2 \tau_1 \tau_1' \tau_2' \dots \tau_n'.$$

So saying "m and n have the same parity" is equivalent to saying "1 cannot be written as an odd number of transpositions."

6.2 Step 2: setting up the induction hypothesis

Let's introduce some letters now for our transpositions. Say

$$1 = (a_1b_1)(a_2b_2)\cdots(a_kb_k) \tag{6.1}$$

where $a_i \neq b_i$ for all i (we're always swapping two different things).

We know that k isn't 1 since a single transposition is not the same as the identity. So look now at $k \geq 2$. We will show that we can always rewrite this product using k-2 transpositions.

There are a couple ways to phrase this next part of the proof. First, we could say: take as an inductive hypothesis that for all k' < k if the identity is written as a product of k' transpositions then k' is even. In this way, going from k to k' = k - 2 we know that k - 2 is even and hence so is k.

Another way we could say this: we are always reducing by 2 every time so $k-2-2-2-\ldots$ will either end up at 0 or 1 and we know it can't end up at 1.

6.3 Step 3: reorganizing the product

Look back at Equation 6.1. Since (ab) = (ba), to keep things consistent, we will assume that $a_i < b_i$ always. Let a be the smallest number appearing in any transposition. E.g. for (23)(34)(23)(24) we have a = 2.

We will slide all the the transpositions with an a in them to the right (towards the beginning of the composition). Now we can't just move things without changing the product so we have to be strategic.

Let's say we have in the middle of our expression (uv)(xy) where u = a and $x \neq a$ and so we want to move (uv) to the right of (xy).

6.3.1 Case 1: disjoint

If u, v, x, y are all distinct, then the two swaps can be done in either order and (uv)(xy) = (xy)(uv).

6.3.2 Case 2: two numbers in common

If (uv) = (xy) then $(uv)(xy) = (uv)^2 = 1$ and we have reduced the number of transpositions by 2 as we said we would.

6.3.3 Case 3: larger number in common

Consider the product (12)(23) = (123) (swap 2, 3 first then 1, 2)

Compare this with the identity (23)(12)(23) = (13) that we worked out in Chapter 5:

Multiply both sides on the left by (23) and simplify using (23)(23) = 1 to get (12)(23) = (23)(13).

In this way, the smallest number is always moving to the right. The rule is (uv)(xy) = (xy)(uv') where v' is the number in (xy) which wasn't in common.

Exercise 6.1. Work out the diagrams to show that (12)(23) = (23)(13). (I would show you in SageMath, but the software doesn't draw (13) very well.)

6.3.4 Case 4: smaller number in common

Using the previous case, we move all the terms having u = a to the right. So now we have a bunch of terms $(av_1)(av_2)...(av_r)$ in the right of our product. We know we have at least two pairs because if we swap a out of position, something later on has to swap it back into position.

Also, if any of the adjacent pairs are equal, we can cancel them as in Case 2. Otherwise, we do something similar to Case 3 where

$$(12)(23)(12) = (13) \implies (12)(23) = (13)(12)$$

by multiplying on the right by (12)

The feature of this identity is that we have one fewer 1's, or more generally, one fewer a's. And we can keep doing this until we are left with either a single a (impossible) or we eventually find a pair that cancels.

Exercise 6.2. Draw the diagram for this identity.

6.4 Summary

We showed that we can push all the transpositions containing a 1 to the right and then moving those transpositions past each other until we had fewer and fewer 1's and eventuall there must be a pair with both numbers in common because we can't just move 1 a single time in our sequence of transpositions.

Example 6.1. Start with (12)(23)(12)(13). Use Case 3 to swap the first and second: (23)(13)(12)(13). Now use Case 4 to swap the second and third: (23)(23)(13)(13). Now cancel using Case 2.

6.5 Notation/Computation

If π is a permutation, common notations for its parity or sign are: $\operatorname{sgn} \pi$ and $(-1)^{\pi}$. We say the sign is +1 if it is an even length product and the sign is -1 if it is an odd length product.

We have the identity $\operatorname{sgn}(\pi_1\pi_2) = \operatorname{sgn} \pi_1 \operatorname{sgn} \pi_2$ because, for example, multiplying two odd length products creates an even length product $((-1)\cdot(-1)=+1)$

One way to compute this is by decomposing π into cycles. We saw in Theorem 4.1 how to write cycles in terms of transpositions: (12345) = (12)(23)(34)(45). The observation here is that odd length cycles become an even length product of transpositions and vice versa.

So the algorithm is:

- 1. Convert the permutation into a product of cycles.
- 2. Write a + 1 if the cycle has an odd length and a 1 if it has an even length.
- 3. Multiply those numbers together to find the sign.

Example 6.2. Consider the shuffle 376819254. We can write this as (1369485)(27) this is a product of a cycle of length 7 and a cycle of length 2. Therefore the sign is (+1)(-1) = -1.

This computation in SageMath:

```
\pi = Permutation([3,7,6,8,1,9,2,5,4])

sign(\pi)
```

-1

7 Inversions

We present a second (or third depending if you count the proof we didn't prove) proof that the number of transpositions is always ever even or always odd.

Let π be a permutation. An **inversion** for π is a pair of outputs which are not in sorted order. I.e. we have i < j to begin with and $\pi(i) > \pi(j)$ to end with.

In counting inversions, we look at where $\pi(i)$ is greater than $\pi(j)$ for some j that comes after i.

Example 7.1. Consider the permutation represented by 31254.

We have $\pi(1) = 3$ and this is greater than both $\pi(2) = 1, \pi(3) = 2$.

We have $\pi(2) = 1$ but this is not greater than anything that comes after.

We have $\pi(3) = 2$ but this is not greater than anything that comes after.

We have $\pi(4) = 5$ which is greater than $\pi(5) = 4$.

So this permutation has 3 inversions: $(1 < 2) \rightarrow (\pi(1) > \pi(2))$ and $(1 < 3) \rightarrow (\pi(1) > \pi(3))$ and $(4 < 5) \rightarrow (\pi(4) > \pi(5))$.

We can use SageMath to check our work:

```
\pi = Permutation([3,1,2,5,4])
\pi.inversions()
```

[(1, 2), (1, 3), (4, 5)]

7.1 Parity of the number of inversions

Inversions as a concept have a few uses in combinatorics. Relavent to us now is that the number of inversions has the same parity as the permutation. To show this, we will consider how a single transposition affects this parity. But since the total number can go up or down, let us define a quantity which we can analyze to describe the parity.

For the identity permutation, define

$$V(1) = \prod_{i < j} (j - i)$$

E.g. for n = 4 this is (2-1)(3-1)(4-1)(3-2)(4-2)(4-3). We're not interested in the absolute value here but rather the sign—which for the identity permutation is +1.

More generally, define

$$V(\pi) = \prod_{i < j} (\pi(j) - \pi(i)).$$

Note that we will have a factor of $V(\pi)$ which is negative whenever i < j and $\pi(i) > \pi(j)$. So the sign of $V(\pi)$ tells us the parity of the number of inversions.

What's useful here is that factoring out the various -1's and reordering, we can write $V(\pi) = \pm V(1)$ where it is a +1 if we have an even number of inversions and a -1 if we have an odd number.

7.2 Analysis

We want to show that a single transposition changes V(1) to -V(1). Then a sequence of odd length will have a sign of -1 and one of even length will have a sign of +1, matching what we did in Chapter 6.

Suppose we apply the transposition (ij) with i < j. Right away, we get one inversion because now $\pi(i) > \pi(j)$. Let's look at the other numbers. Suppose x < i < j. Then after swapping, we

still have x on the left of i, j\$ so no inversions here. Likewise, if i < j < x then x will still be on the right afterwards.

The last case is that i < x < j. Then we get two inversions going from i, x, j to j, x, i. One between i and x and one between x and j since both these pairs are now out of order.

To summarize, this single transposition gives us:

- 0 inversions for anything left of i or right of j,
- 2 inversions for each number in between,
- 1 inversion for the pair i, j

So overall we get an odd number of inversions for each swap. This shows that the number of inversions is odd if and only if the number of swaps is odd.

8 Exercises

- 1. Convert 2, 12, 3, 5, 4, 9, 8, 7, 6, 10, 1, 11 to a product of cycles and draw the associated digraph.
- 2. Convert (1, 8, 12)(2, 3, 6, 7, 9)(4, 10, 11) to a shuffle of $1, \ldots, 12$
- 3. Show that (12)(23)(34)(23)(12) = (14) by drawing the braid diagram.
- 4. Compute the sign of the permutations in 1. and 2.
- 5. Write (182635) as a product of transpositions.

Part III Generating Functions

9 Weight Functions

9.1 Recap: Strings

Recall that an **alphabet** is a set of characters like $\{0,1\}$ is the alphabet for binary. A **string** is an ordered sequence of characters from a fixed alphabet. E.g. 011011 and 00011 are binary strings.

Additionally, ε will denote the empty string and multiplication of strings will be done by concatenation. E.g. $011 \cdot 000 = 011000$.

For most examples that follow, we will work with binary strings of 0s and 1s unless otherwise specified.

9.2 Definition

Let S be a set of strings (e.g. all binary strings or all ternary strings). A **weight function** on S is a function $f: S \to \mathbf{Z}$ satisfying:

- $f(x) \geq 0$
- f(uv) = f(u) + f(v) when u and v are two strings.

Example 9.1. The length l of a string is a weight. E.g. $l(011) = 3, l(011 \cdot 10011) = l(011) + l(10011)$.

Example 9.2. f(s) =the number of 1s in s is a weight. E.g. f(011) = 2 and $f(011 \cdot 10011) = f(011) + l(10011)$.

9.2.1 Key property

The definition of a weight means they behave kind of like a logarithm. Therefore, if we do $x^{f(s)}$, we get a function which satisfies

$$x^{f(uv)} = x^{f(u)} \cdot x^{f(v)}.$$

This is why we are going to have a bunch of xs all over the next few sections.

10 Generating Functions

10.1 Definition

Let L be a subset of strings. These is also called a **language**. Let f be a weight function. We define the **(ordinary) generating function** of L or **OGF** as

$$\Phi_L(x) = \Phi_L^f(x) = \sum_{s \in L} x^{f(s)}.$$

Note

It is common in mathematical definitions to write something like

$$\Phi_L(x) = \Phi_L^f(x) = \cdots$$

This means that I am calling attention to the fact that Φ depends on f but also saying that because f isn't going to change much, we are going to drop the f from the notation most or all of the time.

It is also common to call generating functions by other letters, like A(x) but this needs to be introduced first by saying that A is the OGF wheras Φ_L means this implicitly.

Example 10.1. Let L be the subset $\{01, 1110, 11, 0, 1, 111000, \varepsilon\}$ of binary strings. Let f be the length weight. The OGF of L is

$$\begin{split} \Phi_L(x) &= x^{f(01)} + x^{f(1110)} + x^{f(11)} + x^{f(0)} + x^{f(1)} + x^{f(111000)} + x^{f(\varepsilon)} \\ &= x^2 + x^4 + x^2 + x^1 + x^1 + x^6 + x^0 \\ &= 1 + 2x + 2x^2 + x^4 + x^6 \end{split}$$

10.2 Monomials

Inside $\Phi_L(x)$, each monomial $a_n x^n$ (after collecting terms) represents that L has a_n strings where f equals n (e.g. the length equals n).

Example 10.2. For the language L of Example 10.1 above, we have for instance, 2 strings of legnth 1, represented by the monomial $2x^1$. We have 1 string of length 6 represented by the monomial $1x^6$. We have no strings of length 5, represented by the lack of a monomial with x^5 . We could also say that the coefficient of x^5 is 0.

Exercise 10.1. Let L be the set of all binary strings of length ≤ 5 which have no 11.

- a) for n = 0, 1, 2, 3, 4, 5, list all the strings with no 11
- b) write down the generating function with respect to the length weight
- c) write down the generating function with respect to the "number of 1s" weight

10.3 Infinite series

We've looked at examples where L is a finite set. In many examples, L will be an infinite set. For instance consider the infinite set of all strings of 0s. I.e. $\{\varepsilon, 0, 00, 000, 0000, \dots\}$. For this language, we have the generating function

$$A = 1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}.$$

Geometric series formula

To prove this formula, we take A and multiply everything by x because that creates a lot of similar terms:

$$A = 1 + x + x^2 + x^3 + \cdots$$
$$xA = x + x^2 + x^3 + \cdots$$
$$A - xA = 1$$

From which we solve for $A = \frac{1}{1-x}$.

Example 10.3. Let L is the language of all binary strings, i.e. $L = \{\emptyset, 0, 1, 00, 01, 10, 11, 000, \dots\}$. We know that there are 2^n binary strings of length n so the OGF of L is

$$\Phi_L(x) = \sum_{n=0}^{\infty} 2^n x^n = \sum_{n=0}^{\infty} (2x)^n = \frac{1}{1 - 2x}.$$

Note

In a calculus or analysis course, we would want to specify here that $|x| < \frac{1}{2}$ for this series to converge. In combinatorics, we treat these series *purely algebraically*. That means as an infinite list of monomials without care whether or not the series converges. People use the term **formal power series** to refer to this concept.

10.3.1 When do we care about convergence?

For the most part, we don't. Meaning an infinite series is still valid even if it doesn't converge other than when x=0. However, there are arguements using analysis which only apply to convergent power series. For instance, the fact that the series

$$1 + x + 2x^{2} + 3x^{3} + 5x^{4} + 8x^{5} + \dots = \frac{1}{1 - x - x^{2}}$$

converges for $|x|<\frac{1}{\phi}$ where $\varphi=\frac{1+\sqrt{5}}{2}$ is connected to the fact that the Fibonnaci numbers are approximately $c\varphi^n$ for some constant c.

Exercise 10.2. In fact, one can show that

$$Fib_n = round \left(\frac{\varphi^n}{\sqrt{5}}\right).$$

Use a calculator or a computer to check this works!

11 Multiplication of Generating Functions

Suppose L, L' are two languages. We define the concatenated language LL' by concatenating a string from L and a string from L' in all possible ways:

$$LL' = \{uv : u \in L, v \in L'\}.$$

The utility of this is that many common languages of strings can be written as concatenations of smaller, more simpler languages. And, it will turn out, we can compute the OGF of the more complex language out of the OGFs for the simpler languages.

11.1 Multiplication of Monomials

Suppose we have a language L which consists of 10 strings, each of length 5. Suppose we also have a language L' consisting of 6 strings, each of length 7. Concatenating any pair of strings will always yield a string of length 12 and there are 60 such pairs. This computation is represented by the following multiplication of generating functions:

$$(10x^5) \cdot (6x^7) = 60x^{12}.$$

11.2 A step further

Now suppose L is the same as before: 10 strings of length 5, and this time L' consists of 3 strings of length 4 and 7 strings of length 8. Now if we concatenate to form LL' we are either combining a string of length 5 with one of length 4 (in $10 \cdot 3$

ways) or a string of length 5 with one of length 8 (in $10 \cdot 7$ ways). Again, this computation is reflected in the product of polynomials

$$10x^5 \cdot (3x^4 + 7x^8) = 30x^9 + 70x^{13}.$$

Exercise 11.1. Suppose L consists of 3 strings of length 4 and 8 of length 6. Suppose L' consists of 2 strings of length 1 and 5 strings of length 4. What will LL' consist of?

11.3 Multiplication theorem

Theorem 11.1. Let L and L' be two different languages. Let f be a common weight function like the length of a string. Then

$$\Phi_{LL'}(x) = \Phi_L(x)\Phi_{L'}(x).$$

Proof. We have

$$\Phi_{LL'}(x) = \sum_{w \in LL'} x^{f(w)}$$

$$= \sum_{u \in L} \sum_{v \in L'} x^{f(uv)}$$

$$= \sum_{u \in L} \sum_{v \in L'} x^{f(u)} x^{f(v)}$$

using Section 9.2.1. Continuing, we get

$$= \sum_{u \in L} x^{f(u)} \sum_{v \in L'} x^{f(v)}$$
$$= \Phi_L(x) \Phi_{L'}(x).$$

Tip

One might wonder whether $\sum a_i \sum b_j$ means $(\sum a_i)(\sum b_j)$ or $\sum (a_i \sum b_j)$. It turns out these are the same, and it is explained by the distributive property of multiplication.

For example,
$$(a_1+a_2+a_3)(b_1+b_2)=a_1(b_1+b_2)+a_2(b_1+b_2)+a_3(b_1+b_2).$$

11.4 Strings with 0s followed by 1s

Let L be the language of strings with only 0s and let L' be the language of strings with only 1s. In Section 10.3, we saw that these languages have generating functions $\frac{1}{1-x}$ (weighting by length). By theorem Theorem 11.1, the language LL' of all strings of 0s followed by 1s has generating function

$$\frac{1}{(1-x)^2}.$$

We can compute this in a couple ways. First, we ask the question: "how many strings are there of length n consisting of a string of 0s followed by a string of 1s?" E.g. for n = 4 there are 5 such strings:

We can look at this as: there are either 0, 1, 2, 3, 4 ones. In general, there will be n+1 strings of length n (corresponding to the monomial $(n+1)x^n$). Therefore

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n = 1 + 2x + 3x^2 + 4x^3 + \cdots$$

11.4.1 Calculus?

The monomials we've just computed look suspiciously like derivatives: 1 is the derivative of x, 2x is the derivative of x^2 , $3x^2$ is the derivative of x^3 , and so on. I.e., we have

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} \frac{d}{dx} x^n.$$

The sums $\sum nx^{n-1}$ and $\sum (n+1)x^n$ are equal. In words: each sum is adding up all monomials whose coefficient is exactly 1 more than the exponent. Algebraically, we can transform the first sum to the second by letting m = n - 1and n = m + 1. Then

$$\sum nx^{n-1} = \sum (m+1)x^m.$$

When working with OGFs, we often want to make such tranformations so that the question of "how many strings of length n" can be read directly from the summand $a_n x^n$: there are a_n strings of length n.

In our calculus courses, we learn that we can often take the derivative of a series term-by-term. Or in other words, we can safely move the derivative operator from inside the term to outside and vice versa:

$$\sum_{n=0}^{\infty} \frac{d}{dx} x^n = \frac{d}{dx} \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} x^n.$$

This we recognize as the geometric series from Section 10.3. So that means we should expect

$$\frac{1}{(1-x)^2} = \frac{d}{dx} \frac{1}{1-x}.$$

Indeed, that is the case.

The following is a result of analysis that is very potent for many OGF problems.

Theorem 11.2. If $\sum a_n x^n$ converges to a function f(x) (and the radius of convergence is not zero), then

$$\sum \frac{d}{dx} a_n x^n = f'(x)$$

(and the radius of convergence is preserved).

In Section 10.3.1, we said that these generating functions are still valid even when they don't converge. But there is utility here in that if we have an expression to represent an infinite sum like how $\frac{1}{1-x}$ represents the geometric series, then we can compute the derivative of the expression and of the infinite series.

Example 11.1. Given that

$$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \dots = \sum nx^{n-1},$$

we can compute the derivative on both sides to obtain

$$\frac{2}{(1-x)^3} = 2 + 6x + 12x^2 + 20x^3 + \dots = \sum n(n-1)x^{n-2}.$$

If we divide by 2 we might recognize this as

$$\frac{1}{(1-x)^3} = \sum \frac{n(n-1)}{2} x^{n-2} = \sum \binom{n}{2} x^{n-2} = \sum \binom{n+2}{2} x^n.$$

12 Stars and Bars Revisited

Suppose we have 2 people and n identical objects to distribute. Let's say for now that a person gets 0 or more objects but all n objects are distributed. An example arrangement we might create with stars and bars would look like

The key insight is that if we change this to

Now it looks like the problem we studied in Section 11.4. The bar here is no longer necessary to know where the first group ends and the second begins.

Now we can check that our stars-and-bars formula agrees with the formula computed in Section 11.4. Indeed, that formula is

$$\binom{n+1}{1} = n+1.$$

12.1 From 2 people to k people

Let's copy the key insight for the k=2 case. A distribution of n objects to k people, with each receiving 0 or more, looks like a string

$$1 \cdots 12 \cdots 23 \cdots 3 \cdots k \cdots k$$
.

Here the number of is in the string is the number of objects person i receives. E.g.

1122223555

means person 1 receives 2 objects, person 2 receives 4, person 3 receives 1, person 5 receives 3, and everyone else (including person 4) receives none.

12.1.1 Applying the multiplication theorem

Let L_i be the language of strings consisting of 0 or more of the character i. Then the stars-and-bars language for k people, is $L_1L_2\cdots L_k$. We also know from Section 10.3 that each of these language has a generating function of $\frac{1}{1-x}$. It follows that our stars-and-bars language has a generating function of

$$\frac{1}{(1-x)^k} = \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} x^n.$$

We know these are the coefficients because we know there are $\binom{n+k-1}{k-1}$ stars-and-bars strings of length n (i.e. that many ways to distribute the n objects among k people).

Exercise 12.1. Use proof by induction to show that

$$\frac{1}{(1-x)^k} = \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} x^n.$$

Use the derivative to go from case k to case k+1. Take the geometric series as the base case (k=1).

Hint: the derivative is going to reduce the exponent from x^n to x^{n-1} so to get a step ahead of that, we can add 1 everywhere we see n:

$$\frac{1}{(1-x)^k} = \sum_{n+1=0}^{\infty} \binom{n+k}{k-1} x^{n+1}.$$

12.2 Variations of Stars and Bars

How do do the stars and bars problem where every person gets at least 1 object? Let's look back at our work:

- 1. Broke up the problem into a concatenation $L_1L_2\cdots L_k$
- 2. $L_i = \{\varepsilon, i, ii, iii, \dots\}$
- 3. The generating function of L_i is $\frac{1}{1-x}$
- 4. Use the multiplication principle to conclude that the generating function of $L_1L_2\cdots L_k$ is $\frac{1}{(1-x)^k}$

The second step is where we need to start making changes; if each person gets at least 1 object, then L_i should instead be $\{i, ii, iii, ...\}$ with generating function

$$x^{f(i)} + x^{f(ii)} + x^{f(iii)} + \dots = x + x^2 + x^3 + \dots = \frac{x}{1 - x}.$$

General Geometric Series

In general, a geometric series will have some initial term a and then each succesive term is multiplied by a common ratio r. We can factor out the initial term a to evaluate:

$$a + ar + ar^{2} + ar^{3} + \dots = a(1 + r + r^{2} + r^{3} + \dots) = \frac{a}{1 - r}.$$

Mnemonic: "initial term over 1 minus the common ratio." E.g. $3x + 6x^3 + 12x^5 + 24x^7 + \cdots$ has an initial term of 3x and a common ratio of $2x^2$. So this evaluates to $\frac{3x}{1-2x^2}$.

Substituting this new generating function into our previous steps, we find that the stars-and-bars generating function with everyone getting at least 1 object is

$$\left(\frac{x}{1-x}\right)^k = \frac{x^k}{(1-x)^k} = x^k \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} x^n = \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} x^{n+k}.$$

In order to get the number of solutions with m objects, we need the coefficient of x^m , so we need n + k = m. Changing n + k to m, we get

$$\frac{x^k}{(1-x)^k} = \sum_{m=k}^{\infty} {m-1 \choose k-1} x^m.$$

This matches our result of $\binom{m-1}{k-1}$ ways to distribute m objects to k people, with each person receiving at least 1.

12.2.1 Other restrictions

Let's take the problem

$$x_1 + x_2 + \dots + x_k = n,$$

$$x^5 + x^6 + \dots + x^{13} = \frac{x^5 - x^{14}}{1 - x}.$$

• Finite Geometric Sums

Suppose we have a finite geometric sum with initial term a, common ratio r and proceeding for some number of steps. Then using the same method as Section 10.3, we can compute the sum

$$S = a + ar + ar^{2} + \dots + ar^{m}$$

$$rS = ar + ar^{2} + \dots + ar^{m} + ar^{m+1}$$

$$S - rS = a - ar^{m+1}$$

This yields the formula $S = \frac{a - ar^{m+1}}{1 - r}$. Mnemonic: take the initial term and subtract from it the term which would come after the last term (first minus next) over 1 - r.

Combining this with the generating functions $\frac{x}{1-x}$ for L_2, L_3, \ldots, L_k , our restricted problem has an overal generating function of

$$\frac{x^5 - x^{14}}{1 - x} \cdot \left(\frac{x}{1 - x}\right)^{k - 1} = \frac{x^{k - 1}(x^5 - x^{14})}{(1 - x)^k}.$$

We will cover how to read the number of solutions from such a generating function in the next section. For now, let's address one last modification.

12.3 Slack variables

Consider the problem

$$x_1 + x_2 + \dots + x_k \le n$$

with $x_i \geq 0$.

The method for solving this is to add a slack variable y with $y \geq 0$. This adds to our proceedure a k+1-st language L_y . This gives us the generating function

$$\frac{1}{(1-x)^{k+1}} = \sum_{n=0}^{\infty} \binom{n+k}{k} x^n$$

Indeed, the coefficient $\binom{n+k}{k}$ matches our previous solution to this problem.

If on the other hand we had $x_i \geq 1$ then the generating functions for the L_i languages is $\frac{x}{1-x}$ and we multiply this still by $\frac{1}{1-x}$ for L_y . Here there is an asymmetry between L_y , which contains the empty string, and the languages L_i which don't. So for this problem, we have

$$\frac{x^k}{(1-x)^{k+1}} = x^k \sum_{n=0}^{\infty} \binom{n+k}{k} x^n = \sum_{n=0}^{\infty} \binom{n+k}{k} x^{n+k} = \sum_{n=k}^{\infty} \binom{n}{k} x^n.$$

12.4 Summary

a) For $x_1 + \cdots + x_k = n$ and $x_i \ge 0$, we have the OGF

$$\frac{1}{(1-x)^k} = \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} x^n.$$

b) For $x_1 + \cdots + x_k = n$ and $x_i \ge 1$, we have the OGF

$$\frac{x^k}{(1-x)^k} = \sum_{n=k}^{\infty} \binom{n-1}{k-1} x^n.$$

c) For $x_1 + \cdots + x_k \le n$ and $x_i \ge 0$, we have the OGF

$$\frac{1}{(1-x)^{k+1}} = \sum_{n=0}^{\infty} \binom{n+k}{k} x^n.$$

d) For $x_1 + \cdots + x_k = n$ and $x_i \ge 1$, we have the OGF

$$\frac{x^k}{(1-x)^{k+1}} = \sum_{n=k}^{\infty} \binom{n}{k} x^n.$$

13 Coefficient Extraction

In this section, we develop some techniques for extracting coefficients from generating functions. Remember that coefficient of x^n represents the number of solutions of weight n. So knowing that the generating function is, for example,

$$A(x) = \frac{x^{k-1}(x^5 - x^{14})}{(1-x)^k} = \sum a_n x^n,$$

our goal is to find a_n . A common notation for this is $a_n =$ $[x^n]A(x)$.

Warning

Be careful! This is not the same thing as A(n). Plugging in n is not the way to find the coefficient. For example, the coefficient of x^2 in the quadratic $f(x) = 2x^2 + 3x + 1$ is $[x^2]f(x) = 2$ and not f(2) which equals 15.

13.1 Shifts

Multiplying A(x) by x^k shifts the sequence left or right (depending on whether k is positive or negative):

$$x^k \sum a_n x^n = \sum a_n x^{n+k} = \sum a_{n-k} x^n.$$

The second equals sign is obtained either by substituting $n \leftarrow$ n+k or by noticing that the coefficient is always k less than the exponent.

Substituting inside a sum

Consider a summation like

$$\sum k = 2^{\infty} k(k-1)x^{k-2}.$$

If we want to write this as a sum where x^k is the exponent in our summand, then we can either

1) add 2 everywhere we see k:

$$\sum_{k+2-2}^{\infty} (k+2)(k+1)x^k = \sum_{k=0}^{\infty} (k+2)(k+1)x^k,$$

2) make a substitution of n = k - 2 and k = n + 2 to get

$$\sum_{n+2=2}^{\infty} (n+2)(n+1)x^n.$$

Both methods are equivalent.

Putting this together, we have the following result.

Theorem 13.1 (Coefficient Shift). If $A(x) = \sum a_n x^n$ then

$$[x^n]x^k A(x) = [x^{n-k}]A(x) = a_{n-k}.$$

"The coefficient of x^n in $x^k A(x)$ is a_{n-k} ."

13.2 Sums and differences

Suppose $A(x) = \sum a_n x^n$, $B(x) = \sum b_n x^n$ are two power series. Then for any constants λ, μ , we have

$$\lambda A(x) + \mu B(x) = \lambda \sum_{n} a_n x^n + \mu \sum_{n} b_n x^n = \sum_{n} (\lambda a_n + \mu b_n) x^n.$$

In terms of our $[x^n]$ operator, we record the following result.

Theorem 13.2 (Linear Combinations).

$$[x^n](\lambda A(x) + \mu B(x)) = \lambda [x^n]A(x) + \mu [x^n]B(x).$$

13.3 Derivatives

As we saw earlier,

$$A'(x) = \sum na_n x^{n-1} = \sum (n+1)a_{n+1}x^n.$$

Theorem 13.3 (Derivatives and Antiderivatives).

$$[x^n]A'(x) = (n+1)[x^{n+1}]A(x).$$

 $Or\ for\ antiderivatives,$

$$[x^n]A(x) = \frac{1}{n}[x^{n-1}]A'(x).$$

13.4 Newton's Binomial Theorem

We've seen the Binomial Theorem,

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

And, in the previous section, we worked out power series for $(1-x)^{-n}$. These kinds of functions are quite common in combinatorics, and not just for integer exponents either.

Definition 13.1. The general binomial coefficient is

$$\binom{r}{k} = \frac{r(r-1)(r-2)\cdots(r-k+1)}{k!}$$

and we define this for any real (or complex) number r.

What Newton observed, is that when you take the derivative of $f(x) = (1+x)^r$ a few times, you get

$$r(1+x)^{r-1}$$
 then $r(r-1)(1+x)^{r-2}$ then $r(r-1)(r-2)(1+x)^{r-3}, \dots$

Theorem 13.4 (Newton's Binomial Theorem). The Taylor series of $(1+x)^r$ is

$$\sum_{k=0}^{\infty} \binom{r}{k} x^k.$$

Proof. We've seen above that for $f(x) = (1+x)^r$, we have

$$f^{(k)}(x) = r(r-1)(r-2)\cdots(r-k+1)(1+x)^{r-k}$$
.

Plugging this into the formula for a Taylor series,

$$(1+x)^r = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \sum_{k=0}^{\infty} \frac{r(r-1)(r-2)\cdots(r-k+1)}{k!} = \sum_{k=0}^{\infty} \binom{r}{k} x^k.$$

i Note

These series converge for at least |x| < 1 (and so techniques of calculus apply to analyzing these series). Convergence for $x = \pm 1$ depends on r. And of course, if r is a whole number then the series is finite and converges everywhere.

13.5 Examples

Let's finally get to solving the problem of Section 12.2.1. Recall that we had the generating function

$$A(x) = \frac{x^{k-1}(x^5 - x^{14})}{(1-x)^k} = \frac{x^{k+4} - x^{k+13}}{(1-x)^k}.$$

Now we're going to combine this with the first formula from Section 12.4 to get

$$[x^{n}] \frac{x^{k+4} - x^{k+13}}{(1-x)^{k}} = [x^{n}] x^{k+4} \frac{1}{(1-x^{k})} - [x^{n}] x^{k+13} \frac{1}{(1-x)^{k}}$$

$$= [x^{n-k-4}] \frac{1}{(1-x)^{k}} - [x^{n-k-13}] \frac{1}{(1-x)^{k}}$$

$$= \binom{(n-k-4)+k-1}{k-1} - \binom{(n-k-13)+k-1}{k-1}$$

$$= \binom{n-5}{k-1} - \binom{n-14}{k-1}.$$

Coefficient extraction with the formulas

The formula from Section 12.4 says

$$\frac{1}{(1-x)^k} = \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} x^n.$$

That means that the coefficient of x^n is

$$[x^n] \frac{1}{(1-x)^k} = \binom{n+k-1}{k-1}.$$

If we want to apply this to a more complex power of x, we do so by substituting where we see n, for example,

$$[x^{n+1}]\frac{1}{(1-x)^k} = \binom{(n+1)+k-1}{k-1} = \binom{n+k}{k-1}.$$

13.5.1 Negative Binomial Theorem

Comparing Theorem 13.4 and formula (a.) of Section 12.4 yields an interesting result:

$$\frac{1}{(1-x)^k} = \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} x^n = \sum_{n=0}^{\infty} \binom{-k}{n} (-x)^n.$$
 (13.1)

Note that we are looking at $(1-x)^{-k}$ not $(1+x)^{-k}$ hence the (-x) on the right.

The next theorem is most often stated with n and k swapped. We also use the identity $\binom{a+b}{a} = \binom{a+b}{b}$.

Theorem 13.5 (Negative Binomial Theorem).

$$\binom{-k}{n}(-1)^n = \binom{n+k-1}{k-1} = \binom{n+k-1}{n}.$$

Or, with n and k in the usual position:

$$\binom{-n}{k}(-1)^k = \binom{n+k-1}{n-1} = \binom{n+k-1}{k}.$$

Like many things in combinatorics, it's interesting to give a second proof of this beyond the generating function proof in Equation 13.1.

Proof.

$$\binom{-n}{k}(-1)^k = \frac{(-n)(-n-1)(-n-2)\cdots(-n-k+1)}{k!}(-1)^k$$

$$= \frac{(n)(n+1)(n+2)\cdots(n+k-1)}{k!}$$

$$= \frac{(n+k-1)(n+k-2)\cdots(n+1)(n)}{k!}$$

$$= \binom{n+k-1}{k}.$$

In line 2, we distribute one -1 to each of the k factors in the numerator.

13.5.2 Central Binomial Theorem

We've seen the binomial theorem with a whole number exponent. We've seen it with a negative integer exponent. The next place to go is fractions. Let's start with $n = \frac{1}{2}$. For reference, here are the first couple values of this:

```
for k in range(4):
    print(binomial(1/2, k))
```

1 1/2 -1/8 1/16

It would seem that these are ± 1 over some power of 2 but if we continue our computation, we find that the next value is -5/128.

In order to get to the bottom of this, we need to work this out from the definition:

$$\binom{1/2}{k} = \frac{\frac{1}{2}(\frac{1}{2} - 1)(\frac{1}{2} - 2)\cdots(\frac{1}{2} - k + 1)}{k!}$$

$$= \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})\cdots(-\frac{2k-3}{2})}{k!}$$

$$= \frac{(-\frac{1}{2})^{k-1}(1)(3)(5)\cdots(2k-3)}{2k!}$$

$$= (-1)^{k-1}\frac{(1)(3)(5)\cdots(2k-3)}{2^kk!}.$$

This is a pretty good formula. We can also write it in terms of the double factorial which is the product of all the odd numbers up to 2k-3. (It's called *double* because the factors decrease by 2 each time instead of 1.)

But like in the Wikipedia article, we can write double factorials in terms of more usual factorials. We do this by adding in the missing even numbers to the numerator and balancing that out in the denominator:

$$\binom{1/2}{k} = (-1)^{k-1} \frac{(1)(3)\cdots(2k-3)\cdot(2)(4)\cdots(2k-2)}{2^k k! \cdot (2)(4)\cdots(2k-2)}$$

$$= (-1)^{k-1} \frac{(1)(2)(3)\cdots(2k-3)(2k-2)}{2^k k! \cdot 2^{k-1}(1)(2)\cdots(k-1)}$$

$$= (-1)^{k-1} \frac{(2k-2)!}{2^{2k-1} k! (k-1)!}$$

$$= (-1)^{k-1} \frac{1}{2^{2k-1} k} \binom{2k-2}{k-1}$$

Let's do this once more with n = -1/2 but going through the steps a bit quicker:

Let us record these results as a theorem.

Theorem 13.6 (Half Binomials).

$$\binom{1/2}{k} = (-1)^{k-1} \frac{1}{2^{2k-1}k} \binom{2k-2}{k-1} \text{ and } \binom{-1/2}{k} = \frac{(-1)^k}{4^k} \binom{2k}{k}.$$

The first formula is only valid for $k \ge 1$. If k = 0 then we get $\binom{1/2}{0} = 1$ (product of zero terms in the numerator equals 1 and the denominator is 0! = 1).

Example 13.1. Take the second formula, and use it with Theorem 13.4. We will put $(-4x)^k$ instead of x^k to cancel the $(-1/4)^k$. That is,

$$\frac{1}{\sqrt{1-4x}} = (1-4x)^{-1/2} = \sum_{k=0}^{\infty} {\binom{-1/2}{k}} (-4x)^k$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{4^k} {\binom{2k}{k}} (-4x)^k$$
$$= \sum_{k=0}^{\infty} {\binom{2k}{k}} x^k$$

This is a neat little result in and of itself but there is deeper implications here. Consider the number of binary strings of length 2k with an equal number of 0s and 1s. That means there

are k of each, and that gives us the formula $\binom{2k}{k}$. These are called the **central binomial coefficients** because they appear right down the center of Pascal's triangle.

For those of you who have taken computer science or mathematical linguistics, there is a concept known as a "regular language"—languages which can be parsed by a regular expresion. For these regular languages, we will see later on, that they always yeild a *rational* generating function. Here we have a non-rational generating function and indeed this language of strings with equal numbers of 0s and 1s is not a regular language.

Going beyond regular languages, the Chomsky–Schützenberger Theorem says that if you have an unambiguous context-free grammar, then the generating function for that language is algebraic. That is what we are looking at with $\frac{1}{\sqrt{1-4x}}$. This is an algebraic function because it is a square root of a rational function. Indeed, the language of strings with equal numbers of 0s and 1s is a context-free language.

13.5.3 Catalan Numbers

If you remember the formula for the Catalan numbers even vaguely, you'll recognize the $\binom{2k}{k}$. If you squint real hard, the first formula of Theorem 13.6 looks vaguely similar once you deal with the $(-1)^k$ and the 4^k as we did in Example 13.1. Let's dig into that.

First, recall the decomposition we had for Dyck paths.

We'll define many of these terms in a later section for those of you who haven't seen them before.

Figure 13.1: Dyck path decomposition based on the first place the path hits the line y=x

In terms of "the language of Dyck paths," what this says is that a Dyck path of length n is equal to

- 1) a shift one step up from the diagonal
- 2) a Dyck path of length k-1
- 3) a Dyck path of length n-k

Here's the beauty of generating functions: as long as we keep track of the shifts, we don't need to keep track of the lengths of the subwords or subpaths. So we can describe the language of Dyck paths in simpler terms: it is a shift, together with two smaller Dyck paths. Therefore, if we represent our shift by the monomial x, and our Catalan generating function by C(x), what we have here is $xC(x)^2$.

We almost have it, we just need to be careful of the edge case. If n = 0, the path from (0,0) to (0,0) is a valid Dyck path which involves no shift. So a Dyck path is either

- a) this length 0 Dyck path, which has OGF $x^0 = 1$
- b) a shift, together with two Dyck paths, with OGF $xC(x)^2$.

Therefore, C(x) satisfies the equation

$$C(x) = 1 + xC(x)^2.$$

If you solve this quadratic equation using the quadratic formula, we find that

$$C(x) = \frac{1 \pm \sqrt{1 - 4x}}{2x}. (13.2)$$

In order to get numbers out of this, we use Theorem 13.4 to expand the square root (separating the k=0 term so we can apply the formula from Theorem 13.6):

$$\sqrt{1-4x} = 1 + \sum_{k=1}^{\infty} {1/2 \choose k} (-4x)^k$$

$$= 1 + \sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{2^{2k-1}k} {2k-2 \choose k-1} (-4x)^k$$

$$= 1 + \sum_{k=1}^{\infty} \frac{-2}{k} {2k-2 \choose k-1} x^k.$$

The presence of the - sign indicates that we want to use the negative square root in Equation 13.2. Doing this, we obtain

$$-\sqrt{1-4x} = -1 + \sum_{k=1}^{\infty} \frac{2}{k} {2k-2 \choose k-1} x^k$$

$$1 - \sqrt{1-4x} = \sum_{k=1}^{\infty} \frac{2}{k} {2k-2 \choose k-1} x^k$$

$$\frac{1 - \sqrt{1-4x}}{2x} = \sum_{k=1}^{\infty} \frac{1}{k} {2k-2 \choose k-1} x^{k-1}$$

$$= \sum_{k=0}^{\infty} \frac{1}{k+1} {2k \choose k} x^k$$

(adding 1 to each k to get from k-1 to k).

We've now found another way to get our Catalan number formula.

Theorem 13.7 (Catalan OGF). The generating function for the Catalan numbers is

$$C(x) = \frac{1 - \sqrt{1 - 4x}}{2x} = \sum_{k=0}^{\infty} \frac{1}{k+1} {2k \choose k} x^k.$$