Elements Of Data Science - S2022

Week 5: Intro to Machine Learning Models

2/15/2022

TODOs

- Readings:
 - Recommended: <u>https://scikit-</u>

<u>learn.org/stable/supervised_learning.html</u>

- **Read** PDSH Chap 5 In Depth: Linear Regression
- **Read** PDSH Chap 5 In Depth: Support Vector Machines
- **Read** PDSH Chap 5 In Depth: Decision Trees and Random Forests
- **Read** Chapter 3 from HOML
- **Read** Chapter 4 from HOML
- Quiz 5, Due Mon Feb 21st, 11:59pm
- HW1 Due Fri Feb 18th, 11:59pm ET

Today

- Intro to Machine Learning Models
- Various types of ML
- Linear models
- Next week:
 - One Vs. Rest For Multiclass/Multilabel Classification
 - Distance Based: kNN
 - Tree Based: Decision Tree
 - Ensembles: Bagging, Boosting, Stacking

Questions?

Environment Setup

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('darkgrid')
%matplotlib inline
```

Modeling and ML

- What is a Model?
 - Specification of a mathematical (or probabilistic) relationship between different variables.
- What is Machine Learning?
 - Creating and using models that are learned from data.

Questions for Models

In [2]:

```
df_wine = pd.read_csv('../data/wine_dataset.csv',usecols=['alcohol','ash','proline','hue','class'])
df_wine.sample(4,random_state=1)
```

Out[2]:

	alcohol	ash	hue	proline	class
161	13.69	2.54	0.96	680.0	2
117	12.42	2.19	1.06	345.0	1
19	13.64	2.56	0.96	845.0	0
69	12.21	1.75	1.28	718.0	1

- Can we predict target/label "class" from the other columns? (Classification)
- Can we predict target/label "hue" from the other columns? (Regression)
- What are the important features when predicting "hue"? (Feature Selection)
- Can a model tell us about how the features and target/label interact?
 (Interpretation)
- Do the observations group together in feature space? (Clustering)

Data Vocabulary for ML

In [3]:

```
df_wine.sample(5,random_state=1)
```

Out[3]:

		alcohol	ash	hue	proline	class
1	61	13.69	2.54	0.96	680.0	2
1	17	12.42	2.19	1.06	345.0	1
	19	13.64	2.56	0.96	845.0	0
	69	12.21	1.75	1.28	718.0	1
	53	13.77	2.68	1.13	1375.0	0

- *x*, features, attributes, independent/exogenous/explanatory variables
 - Ex: alcohol, trip_distance, company_industry
- y, target, label, outcome, dependent/endogenous/response variables
 - Ex: class, hue, tip_amount, stock_price
- $f(X) \rightarrow y$, Model that maps features X to target y

Variations of ML Tasks

- Supervised vs Unsupervised
 - is there a target/label?
- Regression vs Classification
 - is the target numeric or categorical?
- Prediction vs Interpretation
 - generate predictions or understand interactions?
- Model Families
 - Linear, Tree, Distance, Probability, Neural Net, Ensemble, ...

Supervised vs Unsupervised vs Reinforcement Learning

Is there a target, y?

- Yes:
- **Supervised Learning:** Data consists of (X, y) pairs
- Uses: Classification, Regression
- Ex: What is the relationship between length of ride and tip amount?
- No:
- Unsupervised Learning: Data consists only of (X)
- Uses: Clustering, Topic Modeling, etc.
- Ex: Are there any clusters in length of ride?
- Eventually:
 - Reinforcement Learning
 - After a series of predictions (path) get a reward from a reward function
 - Ex. Poker player

Other Learning Paradigms

- Do we have a mix of labeled and unlabeled?
 - Semi-Supervised Learning
 - Can we use structure of unlabeled data along with labeled?
- Will we continue getting new data?
 - Online Learning
 - Is there an oracle (ground truth) we can consult?
 - Can we select which points to make predictions on?

Supervised Learning: Regression vs Classification

- **Regression** -> predict a numeric value
 - Ex: tip_amount, stock_price, wine_hue
- Classification -> predict a discrete class/category
 - Ex: class of wine, face/not face, object labels in image
- Note: convert a regression problem into classification with binning/thresholding

```
<img src="images/regression.png" width="350px">
<id><img src="images/classification.png" width="350px">
```

From PML

Prediction vs Interpretation

- Do we care more about: the accuracy when generating predictions?
 - Ex: For a given taxi trip, what will the tip size likely be?
 - Ex: For a given loan, will there be a default?
- Do we care more about: understanding how X relates to y?
 - Ex: What happens to tip size as taxi trip length increases?
 - Ex: What is the relationship between debt and loan default?

Model Families for Supervised Learning

- Linear
 - Simple/Multiple Linear Regression
 - Logistic Regression (for Classification)
 - Support Vector Machines
 - Perceptron
- Tree Based
 - Decision Tree
- Distance Based
 - K-Nearest Neighbor

Model Families for Supervised Learning Continued

- Probability
 - Naive Bayes
 - Bayes Net
- Ensemble
 - Random Forest
 - Gradient Boosted Trees
 - Stacking
- Network
 - Multi-layer Perceptron
 - Deep Neural-Networks
 - Convolutional Neural Nets
 - Recurrant Neural Nets

Example: Regression with a Linear Model

What is the relationship between 'proline' (an amino-acid) and 'alcohol' in wine?

```
In [4]:

fig,ax = plt.subplots(1,1,figsize=(12,8))
sns.regplot(x='proline', y='alcohol', data=df_wine);
```


Aside: Correlation

Question: are total_bill and tips correlated?

```
In [5]:
```

```
sns.jointplot(x='proline',y='alcohol',data=df_wine);
```


Obligitory Correlation vs. Causation

https://imgs.xkcd.com/comics/correlation.png

- Correlation does not mean causation!
- Causal Inference
 - controlled experiment
 - control for confounding variables

Spurious Correlation

- Also, look hard enough and you'll find correlation.
 - See **spurious correlations** for examples

Aside: Correlation

- Could calculate Pearson Correlation Coefficient
- Assumes normally distributed data! (which is not true here)
 - On the Effects of Non-Normality on the Distribution
 of the Sample Product-Moment Correlation
 Coefficient](https://www.jstor.org/stable/2346598?
 seq=1#page scan tab contents)

In [6]:

```
from scipy.stats import pearsonr
r,p = pearsonr(df_wine.proline,df_wine.alcohol)
print(f'r: {r:.2f}, p: {p:.2f}')
```

r: 0.64, p: 0.00

• We know that as proline goes up alcohol goes up, but by how much?

Python Modeling Libraries

Prediction - scikit-learn

Interpretation - scikit-learn and statsmodels

Additional Tools - mlxtend

Aside: MLxtend and conda-forge

■ **MLxtend:** (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks.

■ **Conda-Forge:** A community-led collection of recipes, build infrastructure and distributions for the conda package manager.

Simple Linear Regression

$$y = w_1 x + w_0 + \varepsilon_i$$

- y: dependent/endogenous response, target, label (Ex: alcohol)
- x_i : independent/exogenous/explanatory feature, attribute (Exproline)
- w_1 : coefficient, slope
- w_0 : bias term, intercept
- ε_i : error, hopefully small, often assumed $\mathcal{N}(0,\varsigma^2)$
- Want to find values for w_1 and w_0 that best fit the data.
- Find a line as close to our observations as possible

Simple Linear Regression

from PML

Finding w_1 and w_0 with Ordinary Least Squares

- lacksquare prediction: $\hat{y}_i = f(x_i) = w_1 x_i + w_0$
- $lacksquare \mathbf{error}(y_i, \hat{y}_i) = y_i \hat{y}_i$
- **•** sum of squared errors: $\sum_{i=1:n} (y_i \hat{y}_i)^2$
- least squares: make the sum of squared errors as small as possible
- **gradient descent**: minimize error by following the gradient wrt w_1, w_0
 - o can sometimes be optimized in closed form
 - often done iteratively

Aside: Gradient Descent

- Want to maximize or minimize something (Ex: squared error)
- **Gradient** : direction, vector of partial derivatives
 - can get complicated, often estimated
- **Gradient Descent**: take steps wrt the direction of the gradient
 - **maximize**: in the direction of the gradient
 - o **minimize**: in the opposite direction of the gradient
- Global Maximum/Minimum : the single best solution
- Local Maximum/Minimum: the best solution in the neighborhood

Aside: Gradient Descent Cont.

Simple Regression Using scikit-learn

```
In [7]:
# import the model from sklearn
from sklearn.linear model import LinearRegression
In [8]:
 # instantiate the model and set hyperparameters
lr = LinearRegression(fit_intercept=True, # by default
                     normalize=False) # by default
In [9]:
# fit the model
lr.fit(X=df_wine.proline.values.reshape(-1, 1), y=df_wine.alcohol);
In [10]:
# display learned coefficients (trailing underscore indicates learned values)
print(lr.coef )
print(lr.intercept_)
 [0.0016595]
 11.761148483143145
In [11]:
# predict given new values for proline
X = np.array([1000, 2000]).reshape(-1,1)
lr.predict(X)
```

```
Out[11]:
array([13.42064866, 15.08014884])
```

Why .reshape(-1,1)?

scikit-learn models expect the input features to be 2 dimensional

```
In [12]:
df_wine.proline.values[:5]
Out[12]:
array([1065., 1050., 1185., 1480., 735.])
In [13]:
df_wine.proline.values.shape
Out[13]:
(178,)
In [14]:
df_wine.proline.values.reshape(-1,1).shape # -1 means "infer from the data"
Out[14]:
(178, 1)
```

Alternatives:

```
In [15]:

df_wine.loc[:,['proline']].shape

Out[15]:
  (178, 1)

In [16]:

df_wine[['proline']].shape

Out[16]:
  (178, 1)
```

Interpreting Coefficients

```
In [17]:
print(f'w_1 = {lr.coef_[0]:0.3f}, w_0 = {lr.intercept_:0.3f}')

w_1 = 0.002, w_0 = 11.761

In [18]:
print(f'alchohol = {lr.coef_[0]:0.3f}*proline + {lr.intercept_:0.3f}')

alchohol = 0.002*proline + 11.761
```

- When proline goes up by 1, alcohol goes up by .002
- When proline is 0, alcohol is 11.761

Plotting The Model

```
In [19]:
```

```
x_predict = [df_wine.proline.min(),df_wine.proline.max()]
y_hat = lr.predict(np.array(x_predict).reshape(-1,1))

fig,ax = plt.subplots(1,1,figsize=(12,8))
ax = sns.scatterplot(x=df_wine.proline,y=df_wine.alcohol);
ax.plot(x_predict,y_hat);
```


Multiple Linear Regression

Including multiple independent variables

$$y_i=w_0+w_1x_{i1}+w_2x_{i2}+\ldots+w_mx_{im}+arepsilon_i$$

Ex:

Objective: Find a plane that falls as close to our points as possible

Multiple Linear Regression in scikit-learn

In [20]:

```
mlr = LinearRegression()
mlr.fit(df_wine[['proline','hue']],y=df_wine.alcohol);

for (name,coef) in zip(['proline','hue'],mlr.coef_):
    print(f'{name:10s} : {coef: 0.3f}')
print(f'{"intercept":10s} : {mlr.intercept_:0.3f}')
```

proline : 0.002 hue : -0.842 intercept : 12.459

- If we hold everything else constant, what effect does each variable have?
 - If hue is held constant, a rise of 1 proline -> rise of .002 in alcohol
 - If proline is held constant, a rise of 1 hue -> decrease of
 .842 in alcohol
- Can add interaction terms to allow both to move
 - Ex: hue * proline

o more complicated to interpret

Multiple Linear Regression in statsmodels

In [21]:

```
import statsmodels.api as sm

X = df_wine[['proline','hue']].copy()
X['const'] = 1 # or use sm.add_constant(X)
y = df_wine.alcohol
sm_mlr = sm.OLS(y,X).fit() # Note: X,y passed as parameters to object, not fit
sm_mlr.summary()
```

Out[21]:

OLS Regression Results

Dep. Variable:	alcohol	R-squared:	0.467
Model:	OLS	Adj. R-squared:	0.461
Method:	Least Squares	F-statistic:	76.79
Date:	Mon, 11 Oct 2021	Prob (F-statistic):	1.15e-24
Time:	18:56:48	Log-Likelihood:	-158.89
No. Observations:	178	AIC:	323.8

Df Residu	uals:	175			BIC:	333.3	
Df Mode	ıl:	2		_		_	
Covarian	ce Type:	non	robust				
	coef		std err	t	P> t	[0.025	0.975]
proline	0.00	18	0.000	12.325	0.000	0.002	0.002
hue	-0.8	418	0.202	-4.175	0.000	-1.240	-0.444
const	12.4	593	0.203	61.347	0.000	12.058	12.860
Omnibus	5:	0.751	Durbin-Wa	tson: 1.73	34		
Prob(Om	nnibus):	0.687	7 Jarque-Ber	a (JB): 0.60)6		
Skew:		0.142	Prob(JB):	0.73	39		
Kurtosis:		3.028	Cond. No.	4.96	Se+03		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.96e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Dealing With the Intercept/Bias

- Two ways of keeping track of the bias term
- 1. Keep it as a separate parameter:

$$ullet y = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_m x_m$$

•
$$y=w_0+\sum_{i=1}^m w_i x_i$$

1. Append a constant of $x_0=1$ so x and w are the same length

$$ullet y = w_0 x_0 + w_1 x_1 + w_2 x_2 + \ldots + w_m x_m$$

•
$$y = \sum_{i=0}^m w_i x_i$$

Standardizing/Normalizing Features for Interpretation

What would the coefficents look like if the features were on the same scale?

Standardizing/Normalizing Features for Gradient Descent

Multiple Linear Regression with Standardization/Normalization

• DataFrame.apply(): apply a function across rows (axis=0) or columns (axis=1)

```
In [24]:

X_zscore = df_wine[['proline','hue']].apply(lambda x: (x-x.mean())/x.std(), axis=0) # or use StandardScaled

mlr_n = LinearRegression()
mlr_n.fit(X_zscore, df_wine.alcohol)
for (name,coef) in zip(X_zscore.columns,mlr_n.coef_):
    print(f'{name:10s} : {coef: 0.3f}')

proline : 0.568
hue : -0.192

In [25]:

fig,ax = plt.subplots(1,2,figsize=(12,4))
sns.regplot(x=X_zscore.proline,y=df_wine.alcohol,ax=ax[0]);
sns.regplot(x=X_zscore.hue,y=df_wine.alcohol,ax=ax[1]);
```


Aside: apply(axis=), rows vs columns

	proline	hue	
0	1065.0	1.04	
1	1050.0	1.05	axis=0
2	1185.0	1.03	or axis='row
3	1480.0	0.86	
4	735.0	1.04	

Colinarity

- MLR assumes features are linearly independent
 - eg: Can't rewrite one column as a weighted sum of the others
 - Ex: at a restaurant number, of entrees ordered will likely be linearly related to table size
- Issue: Model won't know how to estimate w
 - If we add to one w_i and subtract from another, there will be no change in error
- Try to remove obvious colinearity
 - can use correlation and linear regression to detect
 - Important to consider when constructing categorical features (feature engineering)

```
df_wine.corr()
```

Out[26]:

	alcohol	ash	hue	proline	class
alcohol	1.000000	0.211545	-0.071747	0.643720	-0.328222
ash	0.211545	1.000000	-0.074667	0.223626	-0.049643
hue	-0.071747	-0.074667	1.000000	0.236183	-0.617369
proline	0.643720	0.223626	0.236183	1.000000	-0.633717
class	-0.328222	-0.049643	-0.617369	-0.633717	1.000000

Aside: Interpretation vs. Prediction

- Interpretation: Explain how observed features relate to observed target
- Prediction: Given new features, can we generate a prediction
- Often asked to do one or the other, be clear which is most important
- In prediction, may not worry about interpreting the model!
- There is increased attention on interpretability

Questions re Regression with Linear Models?

Classification

- **Regression** -> predict a numeric value
- Classification -> predict a discrete class, category
- **Binary classification**: two categories
 - pos/neg, cat/dog, win/lose
- Multiclass classification : more than two categories/classes
 - red/green/blue, flower type, integer 0-10
- Multilabel classification: can assign more than one label to an instance
 - paper topics, entities in image

Wine as Binary Classification

```
In [27]:
df wine['class'].value counts() # originally multiclass
Out[27]:
     71
     59
     48
Name: class, dtype: int64
In [28]:
# only keep classes 0 and 1
df wine 2class = df wine[df wine['class'] < 2]</pre>
# rename 'class' as 'target', since class is a reserved python word
df_wine_2class = df_wine_2class.rename({'class':'target'},axis=1)
df_wine_2class.target.value_counts()
Out[28]:
     71
     59
Name: target, dtype: int64
```

Classifying Wine with a Linear Model

Can't use our linear regression model directly

```
fig,ax = plt.subplots(1,1,figsize=(8,6))
sns.regplot(x=df_wine_2class.proline,y=df_wine_2class.target);
```

```
ax.plot([400,800,800,1600],[1,1,0,0],c='r');
```


- Want something with that looks like a threshold
- Would like a prediction between 0 and 1

Logistic Regression

$$logistic(x) = rac{1}{1+e^{(-x)}}$$

In [30]:

```
def logistic(x,w1=1,w0=0):
    return 1 / (1+np.exp(-(w0+w1*x)))

x = np.linspace(-10,10,1000) # generate 1000 numbers evenly spaced between -10 and 10
fig,ax = plt.subplots(1,1,figsize=(8,6))
```

```
ax.plot(x,logistic(x));
ax.set_xlabel('x');ax.set_ylabel('logistic(x)');
```


Logistic Regression with sklearn

ullet Our problem becomes: $P(y_i=1|x_i)=logistic(w_0+w_1x_i)+arepsilon_i$

```
In [31]:
```

```
from sklearn.linear_model import LogisticRegression

X = df_wine_2class.proline.values.reshape(-1,1)
y = df_wine_2class.target

logr = LogisticRegression(fit_intercept=True).fit(X,y)
print(f'w_0 = {logr.intercept_[0]:0.2f}')
print(f'w_1 = {logr.coef_[0][0]:0.2f}')
```

```
w_0 = 11.97
w_1 = -0.01

In [32]:

fig,ax = plt.subplots(1,1,figsize=(6,4))
x = np.linspace(300,1700,1000)
logistic_x = logistic(x,logr.coef_[0],logr.intercept_)
ax.plot(x,logistic_x,c='gray');
sns.scatterplot(x=df_wine_2class.proline,y=df_wine_2class.target, ax=ax);
```


Adding the Threshold

- ullet Can treat the output of the logistic function as P(y=1|x)
- Threshold at .5 (50%) to get class prediction

```
In [33]:
```

```
threshold = x[np.argmin(np.abs(logistic_x - .5))]
predicted_0 = df_wine_2class[df_wine_2class.proline <= threshold]
predicted_1 = df_wine_2class[df_wine_2class.proline > threshold]
```

```
fig,ax = plt.subplots(1,1,figsize=(6,4))
sns.scatterplot(x='proline',y='target', data=predicted_0, color='r',ax=ax);
sns.scatterplot(x='proline',y='target', data=predicted_1, color='b',ax=ax);
ax.plot(x,logistic_x,c='gray');
ax.axvline(threshold,c='k');
```


Getting Predictions from sklearn

In [34]:

```
yhat = logr.predict(X)

predicted_0 = df_wine_2class[yhat==0]
predicted_1 = df_wine_2class[yhat==1]

fig,ax = plt.subplots(1,1,figsize=(8,6))
sns.scatterplot(x='proline',y='target', data=predicted_0, color='r',ax=ax);
sns.scatterplot(x='proline',y='target', data=predicted_1, color='b',ax=ax);
ax.axvline(threshold,c='k');
```


Note we have some errors!

Getting Probabilities from sklearn

ullet said we could use output of logistic as P(y=1|x)

```
In [35]:

p_y = logr.predict_proba(X)
p_y[:5] # p(y=0|x), p(y=1|x)

Out[35]:
array([[9.81833759e-01, 1.81662409e-02],
       [9.77356984e-01, 2.26430157e-02],
       [9.96947414e-01, 3.05258552e-03],
       [9.99963234e-01, 3.67664871e-05],
       [2.77482032e-01, 7.22517968e-01]])
```

plt.scatter(df_wine_2class.proline,p_y[:,1]);

Interpreting Logistic Regression Coefficients

After some math

$$\log\Bigl(rac{y_i}{1-y_i}\Bigr)=w_0+w_1x_{i1}$$

- this is the **log odds ratio** of p(y=1)/p(y=0)
- odds range from 0 to positive infinity
- odds(5) -> 5/1 -> 5 out of 6 times -> .83
- odds(.2) -> 1/5 -> 1 out of 6 times -> .16

See **here** for a good explanation

Logistic Regression with Multiple Features

```
In [37]:
X = df_wine_2class[['proline', 'hue']]
X 	ext{ zscore} = X.apply(lambda 	ext{ x: } (x-x.mean())/x.std())
logrm = LogisticRegression().fit(X zscore,y)
for (name,coef) in zip(X.columns,logrm.coef_[0]):
    print(f'{name:10s} : {coef: 0.3f}')
proline : -3.464
hue
           : 0.488
In [38]:
# need to have run: conda install -n eods-f20 -c conda-forge mlxtend
from mlxtend.plotting import plot decision regions
fig,ax = plt.subplots(1,1,figsize=(6,6))
plot decision regions(X zscore.values, y.values, clf=logrm, ax=ax);
ax.set xlabel(X.columns[0]); ax.set ylabel(X.columns[1]);
```


Linearly Seperable Data

• Logistic Regression depends on data being linearly seperable

Which boundary to choose? Support Vector Machines (SVMs)

- For a linearly seperable dataset, where should we place the decision boundary?
- Support Vector Machine (SVM) tries to "maximize the margin" between classes

SVM Hyperparameter C

• **Hyperparameter**: Something we set

SVM with sklearn

```
In [39]:
```

```
from sklearn.svm import SVC
svm_linear = SVC(kernel='linear')
svm_linear.fit(X_zscore,y);

fig,ax = plt.subplots(1,1,figsize=(6,6))
plot_decision_regions(X_zscore.values, y.values, clf=svm_linear);
plt.xlabel(X.columns[0]); plt.ylabel(X.columns[1]);
```


Non-Linear Boundaries with SVMs Kernel Trick

• Kernel Trick: Map data to a higher dimensional space and find linear boundary there

SVM Kernel Trick with RBF Kernel

• RBF (Radial-Basis Function) kernel

In [40]:

```
svm_rbf = SVC(kernel='rbf')
svm_rbf.fit(X_zscore,y);

fig,ax = plt.subplots(1,1,figsize=(6,6))
plot_decision_regions(X_zscore.values, y.values, clf=svm_rbf);
plt.xlabel(X.columns[0]); plt.ylabel(X.columns[1]);
```


If we have time...

From Perceptron to Artificial Neural Network

Perceptron: Early Neuron Model

Perceptron in sklearn

```
In [43]:
```

```
from sklearn.linear_model import Perceptron
perceptron = Perceptron()
perceptron.fit(X_zscore,y);

fig,ax = plt.subplots(1,1,figsize=(6,6))
plot_decision_regions(X_zscore.values, y.values, clf=perceptron);
plt.xlabel(X.columns[0]); plt.ylabel(X.columns[1]);
```


Perceptron to Adaline

Adaptive Linear Neuron (Adaline)

Adaline to Logistic Regression

Components of Single Layer Neural Net

From PML

Multi-Layer Neural Network

Complex Optimization Space

Activation Functions

Multi-Layer Perceptron with sklearn

Questions re Classification with Linear Models?