Real		
Test	Positive	Negative
Positive	True Positive	False Positive
Negative	False Negative	True Negative

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

Real		
Test	Positive	Negative
Positive	True Positive	False Positive
Negative	False Negative	True Negative

$$Precision = \frac{TP}{TP + FP}$$

Real		
Test	Positive	Negative
Positive	True Positive	False Positive
Negative	False Negative	True Negative

$$Recall = Sensitivity = \frac{TP}{TP + FN}$$

Real		
Test	Positive	Negative
Positive	True Positive	False Positive
Negative	False Negative	True Negative

$$Specificity = \frac{TN}{TN + FP}$$

$$F1 = 2 \frac{Recall * Precision}{Recall + Precision}$$

(a) Comparison in ROC space

(b) Comparison in PR space

RoC >> the relationship between TPR & FPR, the greater TPR and smaller FPR the better, upper left region is better

Note:
$$TPR = Sensitivity = \frac{TP}{TP + FN}$$
, $FPR = \frac{FP}{FP + TN}$

AUC value>> Area under curve, the area under the RoC curve, the larger the better

PR curve >> The greater precision and recall the better, which means upper right region is better