Gov 51: Boxplots and QQ-plots

Matthew Blackwell

Harvard University

Assassination attempts

• Load the assassination attempts data see the possible attempt results.

Assassination attempts

Load the assassination attempts data see the possible attempt results.

```
## see the categories of the results variable
leaders <- read.csv("data/leaders.csv")
lev <- levels(leaders$result)
lev</pre>
```

Assassination attempts

Load the assassination attempts data see the possible attempt results.

```
## see the categories of the results variable
leaders <- read.csv("data/leaders.csv")
lev <- levels(leaders$result)
lev</pre>
```

```
##
    [1] "dies between a day and a week"
    [2] "dies between a week and a month"
##
    [3] "dies within a day after the attack"
##
    [4] "dies, timing unknown"
##
    [5] "hospitalization but no permanent disability"
##
   [6] "not wounded"
##
##
   [7] "plot stopped"
   [8] "survives but wounded severely"
##
    [9] "survives, whether wounded unknown"
##
   [10] "wounded lightly"
```

```
leaders$fatal <- ifelse(leaders$result %in% lev[1:4], 1, 0)
## rate of fatal
head(leaders$fatal)</pre>
```

```
leaders$fatal <- ifelse(leaders$result %in% lev[1:4], 1, 0)
## rate of fatal
head(leaders$fatal)</pre>
```

```
## [1] 0 1 0 0 0 0
```

```
leaders$fatal <- ifelse(leaders$result %in% lev[1:4], 1, 0)
## rate of fatal
head(leaders$fatal)</pre>
```

```
## [1] 0 1 0 0 0 0
mean(leaders$fatal)
```

```
leaders$fatal <- ifelse(leaders$result %in% lev[1:4], 1, 0)
## rate of fatal
head(leaders$fatal)</pre>
```

```
## [1] 0 1 0 0 0 0 mean(leaders$fatal)
```

```
## [1] 0.216
```

Remember boxplots?

• Boxplots were a tool to help visual continuous data.

Comparing distribution with the boxplot

What if we want to know how the distribution varies by success?

• First argument is called a formula, y ~ x:

- First argument is called a formula, y ~ x:
 - y is the continuous variable whose distribution we want to explore.

- First argument is called a formula, y ~ x:
 - y is the continuous variable whose distribution we want to explore.
 - x is the grouping variable.

- First argument is called a formula, y ~ x:
 - y is the continuous variable whose distribution we want to explore.
 - x is the grouping variable.
 - When using a formula, we need to add a data argument.

 How do we compare distributions of two variables that are not in the same dataset?

- How do we compare distributions of two variables that are not in the same dataset?
 - Could use boxplots, but it's only a crude summary of the distributions.

- How do we compare distributions of two variables that are not in the same dataset?
 - · Could use boxplots, but it's only a crude summary of the distributions.
- Quantile-quantile plot (Q-Q plot): scatterplot of quantiles.

- How do we compare distributions of two variables that are not in the same dataset?
 - · Could use boxplots, but it's only a crude summary of the distributions.
- Quantile-quantile plot (Q-Q plot): scatterplot of quantiles.
 - (min of *X*, min of *Y*)

- How do we compare distributions of two variables that are not in the same dataset?
 - Could use boxplots, but it's only a crude summary of the distributions.
- Quantile-quantile plot (Q-Q plot): scatterplot of quantiles.
 - (min of *X*, min of *Y*)
 - (median of X, median of Y)

- How do we compare distributions of two variables that are not in the same dataset?
 - Could use boxplots, but it's only a crude summary of the distributions.
- Quantile-quantile plot (Q-Q plot): scatterplot of quantiles.
 - (min of *X*, min of *Y*)
 - (median of X, median of Y)
 - (25th percentile of X, 25th percentile of Y)

- How do we compare distributions of two variables that are not in the same dataset?
 - Could use boxplots, but it's only a crude summary of the distributions.
- Quantile-quantile plot (Q-Q plot): scatterplot of quantiles.
 - (min of *X*, min of *Y*)
 - (median of X, median of Y)
 - (25th percentile of X, 25th percentile of Y)
- · Intuitions:

- How do we compare distributions of two variables that are not in the same dataset?
 - Could use boxplots, but it's only a crude summary of the distributions.
- Quantile-quantile plot (Q-Q plot): scatterplot of quantiles.
 - (min of *X*, min of *Y*)
 - (median of X, median of Y)
 - (25th percentile of X, 25th percentile of Y)
- · Intuitions:
 - If distributions are the same \rightsquigarrow all points on a 45-degree line.

- How do we compare distributions of two variables that are not in the same dataset?
 - Could use boxplots, but it's only a crude summary of the distributions.
- Quantile-quantile plot (Q-Q plot): scatterplot of quantiles.
 - (min of *X*, min of *Y*)
 - (median of X, median of Y)
 - (25th percentile of X, 25th percentile of Y)
- · Intuitions:
 - If distributions are the same → all points on a 45-degree line.
 - Points above 45° line $\rightsquigarrow y$ -axis variable has larger value of the quantile.

- How do we compare distributions of two variables that are not in the same dataset?
 - Could use boxplots, but it's only a crude summary of the distributions.
- Quantile-quantile plot (Q-Q plot): scatterplot of quantiles.
 - (min of *X*, min of *Y*)
 - (median of X, median of Y)
 - (25th percentile of X, 25th percentile of Y)
- · Intuitions:
 - If distributions are the same → all points on a 45-degree line.
 - Points above 45° line $\rightsquigarrow y$ -axis variable has larger value of the quantile.
 - Points below 45° line $\rightsquigarrow x$ -axis variable has larger value of the quantile.

- How do we compare distributions of two variables that are not in the same dataset?
 - Could use boxplots, but it's only a crude summary of the distributions.
- Quantile-quantile plot (Q-Q plot): scatterplot of quantiles.
 - (min of *X*, min of *Y*)
 - (median of X, median of Y)
 - (25th percentile of X, 25th percentile of Y)
- · Intuitions:
 - If distributions are the same → all points on a 45-degree line.
 - Points above 45° line $\rightsquigarrow y$ -axis variable has larger value of the quantile.
 - Points below 45° line $\rightsquigarrow x$ -axis variable has larger value of the quantile.
 - Steeper slope than 45° line $\rightsquigarrow y$ -axis variable has more spread.

- How do we compare distributions of two variables that are not in the same dataset?
 - Could use boxplots, but it's only a crude summary of the distributions.
- Quantile-quantile plot (Q-Q plot): scatterplot of quantiles.
 - (min of *X*, min of *Y*)
 - (median of X, median of Y)
 - (25th percentile of X, 25th percentile of Y)
- Intuitions:
 - If distributions are the same → all points on a 45-degree line.
 - Points above 45° line $\rightsquigarrow y$ -axis variable has larger value of the quantile.
 - Points below 45° line $\rightsquigarrow x$ -axis variable has larger value of the quantile.
 - Steeper slope than 45° line $\rightsquigarrow y$ -axis variable has more spread.
 - Flatter slope than 45° line \rightsquigarrow x-axis variable has more spread.

QQ-plot example

QQ-plot example

