Policy Iterations

Ashwin

University of Colorado Boulder ashwin.asokan@colorado.edu

April 15, 2017

 Ashwin (Demo)
 Policy Iteration
 April 15, 2017
 1 / 11

Improve Policy by Evaluation

- Start with a policy π
- Evaluate the policy π $V_{\pi}(s) = E[R_{t+1} + \gamma R_{t+2} + ... | S_t = s]$
- Improve the policy by acting greedily with respect to V_π $\pi' = \textit{greedy}(V_\pi)$
- Repeat the above steps till policy converges.

Ashwin (Demo) Policy Iteration April 15, 2017 2 / 11

Policy Iteration Algorithm

Algorithm 1: Policy Iterations

```
1 Initialize a policy \pi, compute V_{\pi};

2 for iteration=1,2... do

3 | Evaluate Policy V_{\pi}=\pi(S)

4 | Set New Policy to be the greedy policy for V_{\pi}

5 | \pi(s)=Max_aE_{s'|s,a}[r+\gamma V_{\pi}(s')]

6 end
```

Ashwin (Demo) Policy Iteration April 15, 2017 3 / 11

GridWorld

G	1	2	3
4	5	6	7
8	9	10	11
12	13	14	G

- Two Terminal Goal States G
- 14 Non Terminal States 1,2...14
- Possible Action UP,DOWN,LEFT,RIGHT
- ullet R = 0 for Goal State. R = -1 for every other possible state transition
- No Discounts $(\gamma = 1)$
- $V_{i+1}(s) = \sum_{a \in A} \pi(a|s) \langle R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a V_k(s')$
- $\bullet V_{i+1} = R_{\pi} + \gamma P_{\pi} V_i$

Iterative Policy Evaluation (1)

$V_{i,Randon}$	n

 $\Pi_{Greedy}(V_i)$

$$\begin{array}{|c|c|c|c|c|c|}\hline G & \leftarrow \updownarrow \rightarrow & \leftarrow \updownarrow \rightarrow & \leftarrow \updownarrow \rightarrow \\ \hline \leftarrow \updownarrow \rightarrow & \leftarrow \updownarrow \rightarrow & \leftarrow \updownarrow \rightarrow & \leftarrow \updownarrow \rightarrow \\ \hline \leftarrow \updownarrow \rightarrow & \leftarrow \updownarrow \rightarrow & \leftarrow \updownarrow \rightarrow & \leftarrow \updownarrow \rightarrow \\ \hline \leftarrow \updownarrow \rightarrow & \leftarrow \updownarrow \rightarrow & \leftarrow \updownarrow \rightarrow & \leftarrow \updownarrow \rightarrow \\ \hline \leftarrow \updownarrow \rightarrow & \leftarrow \updownarrow \rightarrow & \leftarrow \updownarrow \rightarrow & G \\ \hline \end{array}$$

$$V_1(i,j) = \frac{1}{4} (R(i,j-1) + (\gamma)(V_0(i,j-1))) + \frac{1}{4} (R(i-1,j) + (\gamma)(V_0(i-1,j))) + \frac{1}{4} (R(i,j+1) + (\gamma)(V_0(i,j+1))) + \frac{1}{4} (R(i+1,j) + (\gamma)(V_0(i+1,j)))$$

$$I = 1$$

I = 0

	0	-1	-1	-1
	-1	-1	-1	-1
	-1	-1	-1	-1
Ì	-1	-1	-1	0

G	\leftarrow	$\leftarrow \updownarrow \rightarrow$	$\leftarrow \updownarrow \rightarrow$
\uparrow	$\leftarrow \updownarrow \rightarrow$	$\leftarrow \updownarrow \rightarrow$	$\leftarrow \updownarrow \rightarrow$
$\leftarrow \updownarrow \rightarrow$	$\leftarrow \updownarrow \rightarrow$	$\leftarrow \updownarrow \rightarrow$	
$\leftarrow \updownarrow \rightarrow$	$\leftarrow \updownarrow \rightarrow$	\rightarrow	G

$$\begin{array}{l} V_1(1,2) = \\ \frac{1}{4}(-1+(1)(0)) + \frac{1}{4}(-1+(1)(0)) + \frac{1}{4}(-1+(1)(0)) + \frac{1}{4}(-1+(1)(0)) = -1 \\ \end{array}$$

Iterative Policy Evaluation (2)

 $V_{i,Random}$

0	-1.7	-2	-2
-1.7	-2	-2	-2
-2	-2	-2	-1.7
-2	-2	-1.7	0

$\Pi_{Greedy}(V_i)$

G	\leftarrow	\leftarrow	$\leftarrow \updownarrow \rightarrow$
↑	←↑	$\leftarrow \updownarrow \rightarrow$	+
↑	$\leftarrow \updownarrow \rightarrow$	$\downarrow \rightarrow$	+
$\leftarrow \updownarrow \rightarrow$	\rightarrow	\rightarrow	G

$$V_3(i,j) = \frac{1}{4}(R(i,j-1) + (\gamma)(V_2(i,j-1))) + \frac{1}{4}(R(i-1,j) + (\gamma)(V_2(i-1,j))) + \frac{1}{4}(R(i,j+1) + (\gamma)(V_2(i,j+1))) + \frac{1}{4}(R(i+1,j) + (\gamma)(V_2(i+1,j)))$$

I=2

0	-2.4		
		-2.9	
			0

G		
		G

$$V_3(1,2) = \frac{1}{4}(-1+(1)(0)) + \frac{1}{4}(-1+(1)(-1.7)) + \frac{1}{4}(-1+(1)(-2)) + \frac{1}{4}(-1+(1)(-2)) = -2.4$$

Iterative Policy Evaluation (3)

$V_{i,Random}$

$$I = 2 \begin{bmatrix} 0 & -1.7 & -2 & -2 \\ -1.7 & -2 & -2 & -2 \\ -2 & -2 & -2 & -1.7 \\ -2 & -2 & -1.7 & 0 \end{bmatrix}$$

$$I = 3 \begin{bmatrix} 0 & -2.4 & -2.9 & -3 \\ -2.4 & -2.9 & -3 & -2.9 \\ -2.9 & -3 & -2.9 & -2.4 \\ -3 & -2.9 & -2.4 & 0 \end{bmatrix}$$

$\Pi_{Greedy}(V_i)$

G	\leftarrow	\leftarrow	$\leftarrow \updownarrow \rightarrow$
\uparrow	←↑	$\leftarrow \updownarrow \rightarrow$	+
\uparrow	$\leftarrow \updownarrow \rightarrow$	$\downarrow \rightarrow$	+
$\longleftarrow \updownarrow \rightarrow$	\rightarrow	\rightarrow	G

G	\leftarrow	\leftarrow	$\leftarrow\downarrow$
↑	$\leftarrow \uparrow$	$\leftarrow \downarrow$	+
\uparrow	$\uparrow \!\! \to$	$\downarrow \rightarrow$	+
$\uparrow \rightarrow$	\rightarrow	\rightarrow	G

Ashwin (Demo) Policy Iteration April 15, 2017 7 / 11

Iterative Policy Evaluation (4)

 $V_{i,Random}$

0	-2.4	-2.9	-3
-2.4	-2.9	-3	-2.9
-2.9	-3	-2.9	-2.4
-3	-2.9	-2.4	0

$\Pi_{Greedy}(V_i)$

G	\leftarrow	\leftarrow	$\leftarrow\downarrow$
↑	$\leftarrow \uparrow$	$\leftarrow \downarrow$	+
↑	$\uparrow \rightarrow$	$\downarrow \rightarrow$	+
$\uparrow \!\! \rightarrow$	\rightarrow	\rightarrow	G

I = 4

I = 3

0	-3.8	
-3.9		0

$$V_3(1,3) = \frac{1}{4}(-1+(1)(-2.4)) + \frac{1}{4}(-1+(1)(-2.9)) + \frac{1}{4}(-1+(1)(-3)) + \frac{1}{4}(-1+(1)(-3)) = -3.8$$

$$V_3(4,1) = \frac{1}{4}(-1+(1)(-3)) + \frac{1}{4}(-1+(1)(-2.9)) + \frac{1}{4}(-1+(1)(-2.9)) + \frac{1}{4}(-1+(1)(-3)) = -3.9$$

Iterative Policy Evaluation (5)

$V_{i,Random}$

	0	-3.1	-3.8	-3.9
	-3.1	-3.7	-3.9	-3.8
I = 4	-3.8	-3.9	-3.7	-3.1
	-3.9	-3.8	-3.1	0

$$I = 10 \begin{bmatrix} 0 & -6.1 & -8.4 & -9 \\ -6.1 & -7.7 & -8.4 & -8.4 \\ -8.4 & -8.4 & -7.7 & -6.1 \\ -9 & -8.4 & -6.1 & 0 \end{bmatrix}$$

$\Pi_{Greedy}(V_i)$

G	\leftarrow	\leftarrow	$\leftarrow\downarrow$
↑	$\leftarrow \uparrow$	$\leftarrow\downarrow$	+
\uparrow	$\uparrow \rightarrow$	$\downarrow \rightarrow$	+
$\uparrow \to$	\rightarrow	\rightarrow	G

G	\leftarrow	\leftarrow	$\leftarrow\downarrow$
\uparrow	$\leftarrow \uparrow$	$\leftarrow\downarrow$	+
\uparrow	$\uparrow \!\! \to$	$\downarrow \rightarrow$	+
$\uparrow \rightarrow$	\rightarrow	\rightarrow	G

 Ashwin (Demo)
 Policy Iteration
 April 15, 2017
 9 / 11

Observations

- We could improve policy by iteratively spreading the information from goal towards the start.
- We have to visit all the states available at each pass to make sure it converges.
- Policy sequence π_0, π_1, π_2 ...is monotonically improving.
- $V_{\pi_1\pi_0\pi_0...} \ge V_{\pi_0\pi_0\pi_0...}$
- $V_{\pi_1\pi_1\pi_0...} \geq V_{\pi_1\pi_0\pi_0...}$
- $V_{\pi_1\pi_1\pi_1...} \geq V_{\pi_0\pi_0\pi_0...}$
- We did only one step look ahead here, why not look ahead few more steps? We are exactly going to do that next.

Ashwin (Demo) Policy Iteration April 15, 2017 10 / 11

References

- Berkeley RL Course: Lecture 5 Value Iteration, Policy Iteration
- UCL RL Course: Lecture 3: Planning by Dynamic Programming
- Value iteration and policy iteration algorithms for Markov decision problem

Ashwin (Demo) Policy Iteration April 15, 2017 11 / 11