

<u>Sistemas Fuzzy – SEL5755</u>

(Prof. Ivan Nunes da Silva)

EPC-6

Para a confecção de um sistema de injeção eletrônica de combustível em motores de automóveis, observou-se que é de extrema importância para o bom desempenho da válvula de injeção que a variável $\{y\}$, que mede o volume de combustível a ser injetado, possa ser estimada a partir da medição de três outras grandezas $\{x_1, x_2, x_3\}$. Entretanto, em função da complexidade do sistema, sabe-se que este mapeamento é de difícil obtenção por técnicas convencionais, sendo que o modelo matemático disponível para sua representação não fornece resultados satisfatórios.

Assim, a equipe de engenheiros e cientistas pretende utilizar um sistema fuzzy, baseado no modelo de Takagi-Sugeno, para mapear o comportamento do processo, tendo-se como objetivo final de que dado como entrada os valores de $\{x_1, x_2, x_3\}$ o mesmo possa estimar o respectivo valor da variável $\{y\}$ que representa a quantidade de combustível a ser injetado.

Após a análise comportamental do processo, baseado em considerações de especialistas, propôs-se então os seguintes padrões geométricos para as funções de pertinência associadas a cada uma das variáveis.

Página 1 de 3

Sabendo-se que todas as possíveis regras R_i é do tipo "Se $(x_1 \notin ...)$ <u>e</u> $(x_2 \notin ...)$ <u>e</u> $(x_3 \notin ...)$ **Então** $f_i(x_1, x_2, x_3)$ ", faça as seguintes atividades:

- 1. Obtenha as funções de regressão f_i associadas a cada uma das possíveis regras, avaliando-se também se cada uma delas representa com fidelidade a respectiva aproximação realizada.
- Elabore os procedimentos computacionais necessários para obter os valores de saída do método de Takagi-Sugeno em função das contribuições resultantes de todas as regras ativadas.
- 3. Considere os seguintes valores de x_1 , x_2 e x_3 que foram aquisitados em tempo real pelos instrumentos de medição do processo, os quais são definidos por:
 - a) Valor de $x_1 = 0.1399$ e $x_2 = 0.1610$ e $x_3 = 0.2477$
 - b) Valor de $x_1 = 0.9430$ e $x_2 = 0.4476$ e $x_3 = 0.2648$
 - c) Valor de $x_1 = 0.0004$ e $x_2 = 0.6916$ e $x_3 = 0.5006$
 - d) Valor de $x_1 = 0.5102$ e $x_2 = 0.7464$ e $x_3 = 0.0860$
 - e) Valor de $x_1 = 0.0611$ e $x_2 = 0.2860$ e $x_3 = 0.7464$

Determine, para cada um dos valores acima, o valor final de saída do sistema fuzzy considerando a contribuição de cada uma das regras ativadas e suas respectivas funções de regressão, listando ainda quais as regras fuzzy que estarão associadas com o cálculo do resultado final do sistema fuzzy.

- Utilizar 1000 pontos de discretização para todos os universos de discurso.
- Utilizar o operador Mínimo para o conectivo "e".
- Utilizar como operador de ponderação ("agregação") a Média Ponderada.

OBSERVAÇÕES:

- 1. O EPC pode ser realizado em grupo de três pessoas. Se for o caso, entregar então somente um EPC contendo o nome de todos os integrantes.
- 2. As folhas contendo os resultados do EPC devem ser entregue em sequência e grampeadas (não use clips).
- 3. Em se tratando de EPC que tenha implementação computacional, anexe (de forma impressa) também o seu respectivo programa fonte.

Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica e de Computação

ANEXO

Amostra	x_1	x_2	<i>x</i> ₃	f	Amostra	<i>x</i> ₁	x_2	<i>x</i> ₃	f	Amostra	x_1	x_2	<i>x</i> ₃	f
1	0.3644	0.2948	0.3937	0.5240	71	0.8799	0.7998	0.3972	0.8399	141	0.2858	0.9688	0.2262	0.5988
2	0.2014	0.6326	0.9782	0.7143	72	0.5700	0.5111	0.2418	0.6258	142	0.7931	0.8993	0.9028	0.9728
3	0.4039	0.0645	0.4629	0.4547	73	0.6796	0.4117	0.3370	0.6622	143	0.7841	0.0778	0.9012	0.6832
4	0.7137	0.0670	0.2359	0.4602	74	0.3567	0.2967	0.6037	0.5969	144	0.1380	0.5881	0.2367	0.4622
5	0.4277	0.9555	0.0000	0.5477	75	0.3866	0.8390	0.0232	0.5316	145	0.6345	0.5165	0.7139	0.8191
7	0.0259 0.1871	0.7634 0.7682	0.2889	0.4738 0.7397	76 77	0.0271	0.7788 0.8422	0.7445	0.6335	146 147	0.2453	0.5888 0.5436	0.1559	0.4765 0.4953
8	0.3216	0.7682	0.0677	0.4526	78	0.6027	0.1468	0.3759	0.5342	148	0.3667	0.3228	0.6952	0.6376
9	0.2524	0.7688	0.9523	0.7711	79	0.1203	0.3260	0.5419	0.4768	149	0.9532	0.6949	0.4451	0.8426
10	0.3621	0.5295	0.2521	0.5571	80	0.1325	0.2082	0.4934	0.4105	150	0.7954	0.8346	0.0449	0.6676
11	0.2942	0.1625	0.2745	0.3759	81	0.6950	1.0000	0.4321	0.8404	151	0.1427	0.0480	0.6267	0.3780
12	0.8180 0.8429	0.0023	0.1439	0.4018 0.6563	82 83	0.0036	0.1940 0.0161	0.3274 0.5947	0.2697 0.4125	152 153	0.1516 0.4868	0.9824	0.0827	0.4627 0.8116
14	0.8429	0.1704	0.6630	0.0303	84	0.2030	0.6019	0.4376	0.4123	154	0.3408	0.5223	0.7402	0.4559
15	0.1009	0.4190	0.0826	0.3055	85	0.0108	0.3538	0.1810	0.2800	155	0.8146	0.6378	0.5837	0.8628
16	0.7071	0.7704	0.8328	0.9298	86	0.9008	0.7264	0.9184	0.9602	156	0.2820	0.5409	0.7256	0.6939
17	0.3371	0.7819	0.0959	0.5377	87	0.0023	0.9659	0.3182	0.4986	157	0.5716	0.2958	0.5477	0.6619
18	0.1555	0.5599	0.9221	0.6663	88	0.1366	0.6357	0.6967	0.6459	158	0.9323	0.0229	0.4797	0.5731
19 20	0.7318 0.1665	0.1877 0.7449	0.3311	0.5689 0.4508	89 90	0.8621 0.0682	0.7353 0.9624	0.2742 0.4211	0.7718 0.5764	159 160	0.2907	0.7245 0.0545	0.5165 0.0861	0.6911
21	0.8762	0.7449	0.0997	0.7829	91	0.6112	0.6014	0.5254	0.7868	161	0.2636	0.9885	0.0301	0.5847
22	0.9885	0.6229	0.2085	0.7200	92	0.0030	0.7585	0.8928	0.6388	162	0.0350	0.3653	0.7801	0.5117
23	0.0461	0.7745	0.5632	0.5949	93	0.7644	0.5964	0.0407	0.6055	163	0.9670	0.3031	0.7127	0.7836
24	0.3209	0.6229	0.5233	0.6810	94	0.6441	0.2097	0.5847	0.6545	164	0.0000	0.7763	0.8735	0.6388
25 26	0.9189 0.0382	0.5930 0.5515	0.7288 0.8818	0.8989	95 96	0.0803	0.3799 0.8046	0.6020 0.5402	0.4991	165 166	0.4395	0.0501	0.9761	0.5712 0.6826
27	0.0382	0.9988	0.3814	0.7086	97	0.6937	0.3967	0.6055	0.7595	167	0.9339	0.9548	0.4289	0.5527
28	0.4211	0.2668	0.3307	0.5080	98	0.2591	0.0582	0.3978	0.3604	168	0.6112	0.9070	0.6286	0.8803
29	0.2378	0.0817	0.3574	0.3452	99	0.4241	0.1850	0.9066	0.6298	169	0.2010	0.9573	0.6791	0.7283
30	0.9893	0.7637	0.2526	0.7755	100	0.3332	0.9303	0.2475	0.6287	170	0.8914	0.9144	0.2641	0.7966
31 32	0.8203 0.6226	0.0682	0.4260	0.5643 0.4452	101 102	0.3625	0.1592	0.9981	0.5948 0.4716	171 172	0.0061	0.0802	0.8621	0.3711 0.5260
33	0.6226	0.2146	0.1021	0.4432	102	0.9239	0.6779	0.1643	0.4716	172	0.2401	0.4664	0.3821	0.3260
34	0.3471	0.8889	0.1564	0.5875	104	0.0838	0.5472	0.3758	0.4835	174	0.7881	0.9833	0.3038	0.8049
35	0.5762	0.8292	0.4116	0.7853	105	0.0303	0.9191	0.7233	0.6491	175	0.2435	0.0794	0.5551	0.4223
36	0.9053	0.6245	0.5264	0.8506	106	0.9293	0.8319	0.9664	0.9840	176	0.2752	0.8414	0.2797	0.6079
37	0.2860	0.0793	0.0549	0.2224	107 108	0.7268 0.2888	0.1440 0.6593	0.9753 0.4078	0.7096 0.6328	177 178	0.7616	0.4698	0.5337	0.7809 0.1836
39	0.5170	0.3034	0.4423	0.6594	109	0.2888	0.0393	0.4078	0.0328	179	0.3393	0.0022	0.4449	0.1830
40	0.8149	0.0396	0.6227	0.6165	110	0.7683	0.0067	0.5546	0.5708	180	0.8312	0.0961	0.2129	0.4857
41	0.3710	0.3554	0.5633	0.6171	111	0.6462	0.6761	0.8340	0.8933	181	0.9763	0.1102	0.6227	0.6667
42	0.8702	0.3185	0.2762	0.6287	112	0.3694	0.2212	0.1233	0.3658	182	0.8597	0.3284	0.6932	0.7829
43	0.1016 0.3890	0.6382 0.2369	0.3173	0.4957 0.3235	113 114	0.2706 0.6282	0.3222	0.9996 0.8474	0.6310 0.6733	183 184	0.9295 0.2435	0.3275 0.2163	0.7536 0.7625	0.8016 0.5449
45	0.3890	0.2369	0.1218	0.5255	115	0.5861	0.1404	0.3818	0.0733	185	0.2433	0.8356	0.7623	0.8991
46	0.7473	0.6507	0.5582	0.8464	116	0.6057	0.9901	0.5141	0.8466	186	0.8313	0.7566	0.6192	0.9047
47	0.9108	0.2139	0.4641	0.6625	117	0.5915	0.5588	0.3055	0.6787	187	0.1712	0.0545	0.5033	0.3561
48	0.4343	0.6028	0.1344	0.5546	118	0.8359	0.4145	0.5016	0.7597	188	0.0609	0.1702	0.4306	0.3310
49 50	0.6847 0.8657	0.4062 0.9448	0.9318	0.8204 0.9904	119 120	0.5497 0.7072	0.6319 0.1721	0.8382 0.3812	0.8521 0.5772	189 190	0.5899 0.7858	0.9408 0.5115	0.0369	0.6245 0.6066
51	0.8637	0.4138	0.9900	0.7222	120	0.7072	0.1721	0.3812	0.6211	190	1.0000	0.3113	0.0916	0.6066
52	0.5949	0.2600	0.0810	0.4480	122	0.6365	0.5562	0.4965	0.7693	192	0.2007	0.1163	0.3431	0.3385
53	0.1845	0.7906	0.9725	0.7425	123	0.4145	0.5797	0.8599	0.7878	193	0.2306	0.0330	0.0293	0.1590
54	0.3438	0.6725	0.9821	0.7926	124	0.2575	0.5358	0.4028	0.5777	194	0.8477	0.6378	0.4623	0.8254
55 56	0.8398 0.2245	0.1360 0.0971	0.9119 0.6136	0.7222 0.4402	125 126	0.2026	0.3300 0.0476	0.3054 0.5941	0.4261 0.4625	195 196	0.9677	0.7895 0.4669	0.9467 0.1526	0.9782 0.3250
57	0.3742	0.9668	0.8194	0.4402	127	0.4094	0.0476	0.7803	0.6015	197	0.0080	0.8988	0.1320	0.5404
58	0.9572	0.9836	0.3793	0.8556	128	0.1261	0.6181	0.4927	0.5739	198	0.9955	0.8897	0.6175	0.9360
59	0.7496	0.0410	0.1360	0.4059	129	0.1224	0.4662	0.2146	0.4007	199	0.7408	0.5351	0.2732	0.6949
60	0.9123	0.3510	0.0682	0.5455	130	0.6793	0.6774	1.0000	0.9141	200	0.6843	0.3737	0.1562	0.5625
61	0.6954 0.5252	0.5500 0.6529	0.6801	0.8388	131 132	0.8176	0.0358 0.6685	0.2506 0.5075	0.4707 0.8220					
63	0.3252	0.0329	0.5983	0.7893	133	0.0937	0.5411	0.8754	0.6980					<u> </u>
64	0.1460	0.1637	0.0249	0.1813	134	0.6553	0.2609	0.1188	0.4851					
65	0.7780	0.4491	0.4614	0.7498	135	0.8886	0.0288	0.2604	0.4802					
66	0.5959	0.8647	0.8601	0.9176	136	0.3974	0.5275	0.6457	0.7215					ļ
67 68	0.2204	0.1785 0.8264	0.4607 0.7015	0.4276 0.9214	137 138	0.2108 0.8675	0.4910 0.5571	0.5432 0.1849	0.5913 0.6805					-
69	0.7355	0.8264	0.7015	0.9214	139	0.8673	0.5571	0.1849	0.6033					
70	0.9123	0.0000	0.1106	0.7827	140	0.8439	0.4631	0.6345	0.8226					
										1				