CM106 - Otimização I

14 de Junho de 2018 - Prova 2

Gabarito

Encontre e classifique os pontos críticos de $f(x,y)=x^2-y^2$ sujeito à $h(x,y)=1-x^2-y^2 \ge 0$, usando KKT e condições de segunda ordem.

Solution: KKT:

$$\begin{cases}
2x &= -2x\lambda, \\
-2y &= -2y\lambda, \\
(1-x^2-y^2)\lambda &= 0, \\
x^2+y^2 &\leq 1.
\end{cases}$$

Da terceira equação, tiramos $\lambda = 0$ ou $x^2 + y^2 = 1$.

- Se $\lambda = 0$, então x = 0 = y.
- Se $x^2 + y^2 = 1$, da primeira equação tiramos x = 0 ou $\lambda = -1$.
 - Se x = 0, então $y = \pm 1$ e $\lambda = -1$.
 - Se $\lambda = -1$, então y = 0 e $x = \pm 1$ e $\lambda = 1$.

Segunda ordem:

$$\nabla^2 f(x,y) - \lambda \nabla^2 h(x,y) = \left[\begin{array}{cc} 2 & 0 \\ 0 & -2 \end{array} \right] - \lambda \left[\begin{array}{cc} -2 & 0 \\ 0 & -2 \end{array} \right] = \left[\begin{array}{cc} 2 + 2\lambda & 0 \\ 0 & -2 + 2\lambda \end{array} \right].$$

Jacobiana: [-2x - 2y].

- $(x, y, \lambda) = (0, 0, 0)$: Hessiana $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$. Indefinida, logo ponto de sela.
- $(x, y, \lambda) = (0, \pm 1, 1)$: Jacobiana: $\begin{bmatrix} 0 & \mp 2 \end{bmatrix}$, de modo que o núcleo é gerado por $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Hessiana: $\begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$. Daí,

$$\left[\begin{array}{c} 1\\0 \end{array}\right]^T \left[\begin{array}{cc} 4&0\\0&0 \end{array}\right] \left[\begin{array}{c} 1\\0 \end{array}\right] = 4 > 0,$$

 \log o o ponto é um minimizador local.

• $(x, y, \lambda) = (\pm 1, 0, -1)$: Jacobiana: $[\mp 2\ 0]$, de modo que o núcleo é gerado por $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Hessiana:
$$\begin{bmatrix} 0 & 0 \\ 0 & -4 \end{bmatrix}$$
. Daí

$$\left[\begin{array}{c} 0\\1\end{array}\right]^T\left[\begin{array}{cc} 0&0\\0&-4\end{array}\right]\left[\begin{array}{c} 0\\1\end{array}\right]=-4<0,$$

logo o ponto é um maximizador local.

Considere os seguintes problemas:

$$\min_{x,r} \frac{1}{2} ||r||^2 \quad \text{suj. a} \quad Ax + r = b,$$

e

$$\min_{y,t} \frac{1}{2} \|y\|^2 \qquad \text{suj. a} \qquad A^T y = c,$$

onde $A \in \mathbb{R}^{m \times n}$, m > n, onde A não necessariamente tem posto coluna completo, $b, r, y \in \mathbb{R}^m$, $x, c \in \mathbb{R}^n$. Sejam $x = \overline{x}$, $r = \overline{r}$ e $y = \overline{y}$ as soluções dos problemas acima.

(a) 10 Escreva as condições de otimalidade de primeira ordem de cada problema.

Solution: Primeiro:

$$\left[\begin{array}{c} 0 \\ r \end{array}\right] = \left[\begin{array}{c} A^T \\ I \end{array}\right] \lambda \qquad Ax + r = b,$$

ou seja

$$A^T r = 0 \qquad Ax + r = b.$$

Segundo:

$$y = A\lambda$$
 $A^T y = c$.

(b) $\boxed{5}$ Verifique que $\overline{x}^T c = \overline{y}^T b$.

Solution: Temos

$$x^T c = x^T A^T y = x^T A^T A \lambda = b^T A \lambda = b^T y,$$

 $\log x^T c = b^T y.$

(c) 5 Mostre que se $c = A^T b$, então $Ax - y \in Nu(A^T)$.

Solution: Temos

$$A^{T}(Ax - y) = A^{T}Ax - A^{T}y = A^{T}b - c = 0.$$

Resolva o seguinte problema de otimização:

$$\max P(x) = x_1 x_2 \dots x_n$$

suj. a $x_1 + x_2 + \dots x_n = c$,
 $x \ge 0$,

utilizando KKT e justificando o valor máximo.

Solution: KKT:

$$\prod_{j=1, j\neq i}^{n} x_j = \lambda + \mu_i,$$

$$\sum_{j=1}^{n} x_j = c,$$

$$\mu_i x_i = 0.$$

Multiplicando a primeira equação por x_i , e usando a terceira equação, temos

$$P(x) = \lambda x_i.$$

Se algum $x_i = 0$, então P(x) = 0. Como $x_1 + \cdots + x_n = c$, supondo c > 0, teremos algum $x_j \neq 0$. Daí, $\lambda = 0$. Todo ponto satisfazendo isso será minimizador, que não nos interessa.

Vamos supor $x_i > 0$ então. Temos

$$x_i = \frac{P(x)}{\lambda},$$

ou seja $x_i = x_j$ para qualquer i,j. Sendo assim $x_1 + \dots + x_n = c \Rightarrow x_i = \frac{c}{n}$. O máximo será $P(x) = \left(\frac{c}{n}\right)^n$. Sendo o único ponto crítico com $x_i \neq 0$, será o maximizador global, já que a região factível é fechada e limitada.

No problema de minimizar f(x) sujeito à $\ell \leq x \leq u$, com $\ell_i < u_i$, seja $g = \nabla f(x)$ e d definida por

$$d_i = \begin{cases} 0, & \text{se } x_i = \ell_i \text{ e } g_i \ge 0, \\ 0, & \text{se } x_i = u_i \text{ e } g_i \le 0, \\ -g_i, & \text{caso contrário.} \end{cases}$$

(a) 10 Mostre que se $d \neq 0$, então d é uma direção factível e de descida a partir de x.

Solution: Se $d \neq 0$, existe i tal que $d_i = -g_i \neq 0$. Para todo $d_i \neq 0$, temos 3 opções

• $x_i = \ell_i$ e $g_i < 0$, de modo que $d_i > 0$ e $\ell_i < x_i + \alpha d_i < u_i$ para α suficientemente pequeno.

- $x_i = u_i$ e $g_i > 0$, de modo que $d_i < 0$ e $\ell_i < x_i + \alpha d_i < u_i$ para α suficientemente pequeno.
- $\ell_i < x_i < u_i$, de modo que, independentemente do sinal de d_i , $\ell_i < x_i + \alpha d_i < u_i$ para α suficientemente pequeno.

Isso quer dizer que d é factível.

Para mostrar que é descida, é ainda mais fácil

$$d^{T}g = \sum_{i=1}^{n} d_{i}g_{i} = \sum_{i:d_{i}\neq 0} d_{i}g_{i} = \sum_{i:d_{i}\neq 0} -g_{i}^{2} < 0,$$

pois existe ao menos um i tal que $d_i \neq 0$.

(b) 10 Mostre que se x é um minimizador local do problema, então d=0.

Solution: Seja x minimizador local do problema, e suponha que $d \neq 0$. Mas então, pelo exercício anterior, $g^T d = -\sum_{i:d_i \neq 0} g_i^2 < 0$. Mas pelo Teorema de otimalidade para direções factíveis, $g^T d \geq 0$. Absurdo. Logo d = 0.

Outra maneira, é usar as condições de otimalidade

$$\begin{cases}
g = \lambda_L - \lambda_U \\
(x_i - \ell_i)\lambda_{L_i} = 0 \\
(u_i - x_i)\lambda_{U_i} = 0 \\
\lambda_L, \lambda_U \ge 0
\end{cases}$$

e $\ell \le x \le u$. Daqui, temos

- Se $x_i = \ell_i$, então $g_i = \lambda_{L_i} \ge 0$, de modo que $d_i = 0$.
- Se $x_i = u_i$, então $g_i = -\lambda_{U_i} \le 0$, de modo que $d_i = 0$.
- Se $\ell_i < x_i < u_i$, então $d_i = -g_i = 0$.

Logo, d = 0.

Questão 5 $\boxed{20}$

Considere o esboço abaixo, que representa a minimização de uma função quadrática f com 5 restrições lineares de desigualdade $(a_i^T x \ge b_i, i = 1, ..., 5)$. O método de restrições ativas com gradiente projetado pode ser descrito da seguinte maneira:

- 1. Dado x, e $\mathcal{W} = \mathcal{A}(x)$,
- 2. Tente resolver o sistema $\nabla f(x) = \sum_{i \in \mathcal{W}} a_i \lambda_i$. Se não for possível, vá ao passo 3, se for possível vá ao passo 7.,
- 3. Calcule d a projeção de $-\nabla f(x)$ sobre as restrições em \mathcal{W} .
- 4. Calcule o minimizador de $f(x + \alpha d)$, $\alpha \ge 0$ e $a_i^T(x + \alpha d) \ge b_i$.
- 5. Se $x + \alpha d$ encontrou uma ou mais restrições, então adicione essas restrições adicionais em \mathcal{W} .
- 6. Volte ao passo 2.
- 7. Se $\lambda \geq 0$, FIM
- 8. Se algum $\lambda_i < 0$, escolha **uma** restrição com $\lambda_i < 0$ e remova de \mathcal{W} .
- 9. Volte ao passo 2.

Aplique o algoritmo acima no problema esboçado abaixo, a partir do ponto $x_0 = (0, 1)$, **graficamente**. Numere as retas, explique os passos tomados, e em cada ponto, esboce o que seria o gradiente da função e das restrições.

