Solving the heat equation with CUDA

Oliver Meister Decmber 11thth 2013

Last Tutorial

Coalesced Access

- Hardware: warp dispatcher limits thread concurrency
- Warp index computation

PageRank algorithm

- Few non-zeros in the system matrix
- Requires a sparse matrix dense vector product

CSR kernel - scalar

- One row per thread
- Uncoalesced memory access
- Non-uniform matrices

CSR kernel - vectorized

- One row per warp
- Coalesced access to inner loop arrays?

Table of Contents

Heat Equation

Problem Numerical solution

ELLPACK Kernel

CUDA parallelization Performance analysis

CUDA accelerated libraries

Recap: PageRank algorithm cuBLAS cuSPARSE

Assignment 1 - Coalesced Access

Hardware: CUDA $cc \ge 2.0$, NVidia Fermi chipset

Memory accesses per warp for n = 64:

float f =	Aligned	Stride	Loads	Coalesced
A[tx];	Yes	1 × 4B	1 × 128B	Yes
A[tx + 1];	No	$1 \times 4B$	$2 \times 128B$	Partially
A[2 * tx];	Yes	$2 \times 4B$	$2 \times 128B$	Partially
A[tx / 2];	Yes	0 or 1 \times 4B	$1 \times 64 B$	Yes
A[n * tx];	Yes	$n \times 4B$	$32 \times 32 B$	No
A[ty];	Yes	0 or 1 \times 4B	$1 \times \geq 32 B$	Yes
A[(tx*n + ty)*n + tz];	Yes	$n^2 \times 4B$	$32 \times 32 B$	No
A[(tz*n + ty)*n + tx];	Yes	$1 \times 4B$	1 × 128 B	Yes

We imply blockDim.x = blockDim.y = n.

Assignment 2a, 3a - Kernel call

Task: Kernel call

```
if (!bVectorized) {
 //#threads = #rows (= N)
 dim3 grid((N - 1)/TILE_SIZE + 1, 1, 1);
 dim3 block(TILE_SIZE, 1, 1);
 k_csr_mat_vec_mm <<< grid, block >>> (...);
} else {
 //#threads = #rows * #threads per row (= N * WARP_SIZE)
 dim3 grid((N * WARP_SIZE - 1)/TILE_SIZE + 1, 1, 1);
 dim3 block(TILE_SIZE, 1, 1);
 k_csr2_mat_vec_mm <<< grid, block >>> (...);
```

Note: grid size is > 0 if N = 0.

Assignment 2c,d,e - CSR kernel

No major issues:

 Choose grid and block size conservatively reduces overhead caused by scheduling

Results for different matrices:

- $my.mtx: x_4 = 4.042290e-01$
- usroads.mtx: x_58610 = 1.780732e-05
- flickr.mtx: $x_404 = 3.849650e-04$

Assignment 3a,b - Vectorized CSR kernel (setup)

```
__global__ void csr_matvec_v(ptr, indices, data, x, y) {
 __shared__ float vals[TILE_SIZE];
 int thread_id = TILE_SIZE * blockIdx.x + threadIdx.x;
 int warp_id = thread_id / 32;
 int lane = thread_id & (32 - 1);
 int row = warp_id;
 if (row < num rows) {</pre>
   int row_start = ptr[row];
   int row_end = ptr[row + 1];
   //(cont.)
```


Assignment 3a,b - Vectorized CSR kernel (loop)

```
//(cont.)

// compute running sum per thread
vals[threadIdx.x] = 0;

for (int jj = row_start + lane; jj < row_end; jj += 32) {
  vals[threadIdx.x] += data[jj] * x[indices[jj]];
}

//(cont.)</pre>
```


Assignment 3a,b - Vectorized CSR kernel (reduction)

```
//(cont.)
// parallel reduction in shared memory
for (int d = 32 \gg 1; d \gg 1; d \gg 1) {
 if (lane < d) vals[threadIdx.x] += vals[threadIdx.x + d];</pre>
// first thread in a warp writes the result
if (lane == 0) {
 v[row] += vals[threadIdx.x]:
```


Assignment 3a,b - Vectorized CSR kernel

Issues that came up:

- Kernel must be able to handle > WARP_SIZE non-zeros per row
- No need for __synchthreads(), only the threads of a warp have to be synchronized.
- Binary Fan-In: Inverse loop allows for simpler comparison
- Careful: What happens if you remove the line if (lane == 0) in the end?

Assignment 3a,b - Vectorized CSR kernel

Issues that came up:

- Kernel must be able to handle > WARP_SIZE non-zeros per row
- No need for __synchthreads(), only the threads of a warp have to be synchronized.
- Binary Fan-In: Inverse loop allows for simpler comparison
- Careful: What happens if you remove the line if (lane == 0) in the end? → Not specified, concurrent write access to same location in global memory!

Assignment 3c - Comparison of both algorithms

Measurements for different matrices:

Matrix	CSR	Vectorized CSR
my.mtx	0.090s	0.088s
usroads.mtx	0.436s	1.265s
flickr.mtx	23.052s	14.985s

Observations:

contiguous, fully compressed storage of column and value vectors

Example data:

ptr

[0 2 4 7 9]

Access pattern to indices and data by row / warp ID (0-3):

jj = row_start + lane

Observations:

- contiguous, fully compressed storage of column and value vectors
- x is accessed randomly

Example data:

ptr

[0 2 4 7 9]

Access pattern to indices and data by row / warp ID (0-3):

Observations:

- contiguous, fully compressed storage of column and value vectors
- x is accessed randomly
- partially coalesced memory access to indices, data and vals

Example data:

[0 2 4 7 9] ptr

Access pattern to indices and data by row / warp ID (0-3):

[0 0 1 1 2 2 2 3 3] jj = row_start + lane

Observations:

- contiguous, fully compressed storage of column and value vectors
- x is accessed randomly
- partially coalesced memory access to indices, data and vals
- non-coalesced (but also rare) memory access to y

Example data:

ptr

[0 2 4 7 9]

Access pattern to indices and data by row / warp ID (0-3):

Observations:

- contiguous, fully compressed storage of column and value vectors
- · x is accessed randomly
- partially coalesced memory access to indices, data and vals
- non-coalesced (but also rare) memory access to y
- non-uniform distribution of nonzeros is handled to some degree

Example data:

ptr

[0 2 4 7 9]

Access pattern to indices and data by row / warp ID (0-3):

jj = row_start + lane

Observations:

- contiguous, fully compressed storage of column and value vectors
- · x is accessed randomly
- partially coalesced memory access to indices, data and vals
- non-coalesced (but also rare) memory access to y
- non-uniform distribution of nonzeros is handled to some degree
- what about diagonal matrices?

Example data:

ptr

[0 2 4 7 9]

Access pattern to indices and data by row / warp ID (0-3):

jj = row_start + lane

CSR - Drawbacks

Drawbacks:

- Both kernels have problems with deformed matrices.
 Example: n non-zeros in row 0, 0 non-zeros in row 1
- Vectorized kernel: useful only if many non-zeros per row exist.

Ideally: number of non-zeros per row constant (1 for scalar kernel, $k \cdot 32$ for vectorized kernel).

$$q_t(x,t) = c \cdot q_{xx}(x,t)$$
 for $x \in (0,1)$
 $q(x,t) = 0$ for $x \in \{0,1\}$

where:

- c > 0: heat conductivity
- $x \in [0, 1], t \in \mathbb{R}_{>0}$: space and time variables
- $q:[0,1]\times\mathbb{R}_{>0}\to\mathbb{R}$: temperature (function over space and time)

$$q_t(x,t) = c \cdot q_{xx}(x,t)$$
 for $x \in (0,1)$
 $q(x,t) = 0$ for $x \in \{0,1\}$

where:

- c > 0: heat conductivity
- $x \in [0, 1], t \in \mathbb{R}_{\geq 0}$: space and time variables
- $q:[0,1] \times \mathbb{R}_{\geq 0} \to \mathbb{R}$: temperature (function over space and time)

Finite difference discretization over $s \in \mathbb{N}$ unknowns on cartesian grid:

$$\frac{1}{\triangle t}(\mathbf{q}_{i}^{(n+1)} - \mathbf{q}_{i}^{(n)}) = c \frac{1}{(\triangle x)^{2}}(\mathbf{q}_{i+1}^{(n)} - 2\mathbf{q}_{i}^{(n)} + \mathbf{q}_{i-1}^{(n)})$$
$$\mathbf{q}_{i}^{(n+1)} = \mathbf{q}_{i}^{(n)} + c \frac{\triangle t}{(\triangle x)^{2}}(\mathbf{q}_{i+1}^{(n)} - 2\mathbf{q}_{i}^{(n)} + \mathbf{q}_{i-1}^{(n)})$$

As boundary condition, we set $\mathbf{q}_0^{(n)} := \mathbf{q}_1^{(n)}$ and $\mathbf{q}_{s+1}^{(n)} := \mathbf{q}_s^{(n)}$.

$$\mathbf{q}_{i}^{(n+1)} = \mathbf{q}_{i}^{(n)} + c \frac{\triangle t}{(\triangle x)^{2}} (\mathbf{q}_{i+1}^{(n)} - 2\mathbf{q}_{i}^{(n)} + \mathbf{q}_{i-1}^{(n)})$$

In matrix-vector notation this can be written as:

$$\mathbf{q}^{(n+1)} = \mathbf{q}^{(n)} + c \frac{\triangle t}{(\triangle x)^2} \mathbf{A} \ \mathbf{q}^{(n)}$$

where A looks like this:

$$\begin{pmatrix} -2 & 1 & & & & \\ 1 & -2 & 1 & & & \\ & 1 & -2 & 1 & & \dots \\ & & 1 & -2 & 1 & \\ & & \vdots & & \ddots \end{pmatrix}$$

 \Rightarrow **A** is *sparse*, with at most 3 non-zero entries per row.

Explicit Euler

```
Input: \mathbf{x}^{(0)}, \mathbf{A}, c > 0, \epsilon > 0, \Delta x > 0, \Delta t > 0

Output: \mathbf{x}^{(0)}, ..., \mathbf{x}^{(N)} with \mathbf{A} \mathbf{x}^{(N)} \approx 0 for N \in \mathbb{N} n \leftarrow 0;

repeat  \mathbf{y}^{(n+1)} \leftarrow \mathbf{A} \mathbf{x}^{(n)}; \\ \mathbf{x}^{(n+1)} \leftarrow \mathbf{x}^{(n)} + c \frac{\Delta t}{(\Delta x)^2} \mathbf{y}^{(n+1)}; \\ n \leftarrow n+1; \\ \mathbf{until} \ ||\mathbf{y}^{(n)}|| < \epsilon ;
```


Explicit Euler

Input:
$$\mathbf{x}^{(0)}, \mathbf{A}, c > 0, \epsilon > 0, \Delta x > 0, \Delta t > 0$$

Output: $\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(N)}$ with $\mathbf{A} \ \mathbf{x}^{(N)} \approx 0$ for $N \in \mathbb{N}$ $n \leftarrow 0$;
repeat
 $\mathbf{y}^{(n+1)} \leftarrow \mathbf{A} \ \mathbf{x}^{(n)};$
 $\mathbf{x}^{(n+1)} \leftarrow \mathbf{x}^{(n)} + c \frac{\Delta t}{(\Delta x)^2} \mathbf{y}^{(n+1)};$
 $n \leftarrow n+1;$
until $||\mathbf{y}^{(n)}|| < \epsilon$;

If the algorithm terminates, the following condition must hold:

$$c\frac{\triangle t}{(\triangle x)^2} \leq \frac{1}{2}$$
. \Rightarrow Choose $\triangle t = \frac{(\triangle x)^2}{2c}$.

Explicit Euler

```
Input: \mathbf{x}^{(0)}, \mathbf{A}, c > 0, \epsilon > 0, \Delta x > 0

Output: \mathbf{x}^{(0)}, ..., \mathbf{x}^{(N)} with \mathbf{A} \mathbf{x}^{(N)} \approx 0 for N \in \mathbb{N}

\Delta t \leftarrow \frac{(\Delta x)^2}{2c};

n \leftarrow 0;

repeat

\mathbf{y}^{(n+1)} \leftarrow \mathbf{A} \mathbf{x}^{(n)};

\mathbf{x}^{(n+1)} \leftarrow \mathbf{x}^{(n)} + c \frac{\Delta t}{(\Delta x)^2} \mathbf{y}^{(n+1)};

n \leftarrow n + 1;

until ||\mathbf{y}^{(n)}|| < \epsilon;
```

If the algorithm terminates, the following condition must hold:

$$c\frac{\triangle t}{(\triangle x)^2} \leq \frac{1}{2}$$
. \Rightarrow Choose $\triangle t = \frac{(\triangle x)^2}{2c}$.

ELLPACK

ELLPACK matrix-vector multiplication:

```
const int N; // number of matrix rows
const int k_max; // max. number of nonzero columns per row
float a[N][k_max]; // array of nonzero column entries
int j[N][k_max];  // array of nonzero column indices
float x[N];  // input vector x
float y[N]; // result vector y
for(i = 0; i < N; i++) {</pre>
 y[i] = 0;
 for(k = 0: k < k max: k++)
   y[i] += a[i][k] * x[i[i][k]];
```


Heat Equation with cuBLAS and ELLPACK

```
__global__ void ell_matvec(indices, data, x, y) {
   /** TODO **/
```

Task:

- 1. Write an ELLPACK kernel in CUDA
- Take care that access to the arrays indices and data is coalesced, access to x may be uncoalesced.
- 3. We must imply that entries in indices and data are in a specific order Which order is that?

Straightforward approach: each thread multiplies one row with the vector.

```
__global__ void ell_matvec(indices, data, x, y) {
 int row = blockDim.x * blockIdx.x + threadIdx.x;
 if (row < num_rows) {</pre>
   float dot = 0;
   for (int k = 0; k < k \max; k++) {
     int col = indices[num rows * k + row];
     float val = data[num rows * k + row]:
     if (val != 0) dot += val * x[col]:
   y[row] += dot;
```


Observations:

- contiguous, partially compressed storage of column and value vectors
- x is accessed randomly

Example data:

```
indices [0 1 0 1 1 2 2 3 * * 3 *]
data [1 2 5 6 7 8 3 4 * * 9 *]
```


Observations:

- contiguous, partially compressed storage of column and value vectors
- x is accessed randomly
- coalesced memory access to indices, data and y

Example data:

```
indices [0 1 0 1 1 2 2 3 * * 3 *]
data [1 2 5 6 7 8 3 4 * * 9 *]
```


Observations:

- contiguous, partially compressed storage of column and value vectors
- x is accessed randomly
- coalesced memory access to indices, data and y
- non-uniform distribution of nonzeros may degenerate data structure to dense matrix

Example data:

```
indices [0 1 0 1 1 2 2 3 * * 3 *]
data [1 2 5 6 7 8 3 4 * * 9 *]
```


Observations:

- contiguous, partially compressed storage of column and value vectors
- x is accessed randomly
- coalesced memory access to indices, data and y
- non-uniform distribution of nonzeros may degenerate data structure to dense matrix → Solution: hybrid formats

Example data:

```
indices [0 1 0 1 1 2 2 3 * * 3 *]
data [1 2 5 6 7 8 3 4 * * 9 *]
```

PageRank main loop

Let's take a look at the main loop of the PageRank algorithm:

```
for (i = 1; err > EPS; i++) {
 // compute y += Bx
 CSRmatvecmult(ptr, J, Val, N, nnz, x, y, bVectorizedCSR);
 err = 0.0: sum = 0.0:
 for (i = 0; i < N; ++i) {
   newX = alpha * y[j] + (1.0 - alpha) * 1.0/N;
   err += fabs(x[j] - newX);
   x[i] = newX; v[i] = 0;
   sum += x[i];
```

Is this efficient?

PageRank main loop

Let's take a look at the main loop of the PageRank algorithm:

```
for (i = 1; err > EPS; i++) {
 // compute y += Bx
 CSRmatvecmult(ptr, J, Val, N, nnz, x, y, bVectorizedCSR);
 err = 0.0: sum = 0.0:
 for (i = 0; i < N; ++i) {
   newX = alpha * y[j] + (1.0 - alpha) * 1.0/N;
   err += fabs(x[j] - newX);
   x[i] = newX; v[i] = 0;
   sum += x[i];
```

Is this efficient? No, lots of data transfer between CPU and GPU

PageRank main loop

Observations:

- Each time CSRmatvecmult is called, all data is copied back and forth between GPU and CPU.
- alpha, err must be located on the CPU in each iteration
- x and sum must be located on the CPU for output only
- Everything else can remain on the GPU

Two solutions for this problem:

- Write (yet another) two kernels for the j-loop + error reduction and for the sum
- Better: Use a library, only simple linear algebra is required here

cuBLAS

https://developer.nvidia.com/cublas

- Dense linear algebra library by Nvidia
- Data types: single, double, single complex, double complex
- Helper functions: Create, SetVector, SetMatrix, ...
- Level 1: Vector operations: amax, asum, dot, axpy, nrm2, rot, ...
- Level 2: Matrix-vector operations: gemv, gbmv, symv ...
- Level 3: Matrix-matrix operations: gemm, symm, ...

cuBLAS: Helper functions

Helper functions:

- cublasCreate(handle) creates a cuBLAS context
- cublasDestroy(handle) destroys a cuBLAS context
- cublasSetVector(n, elemSize, x, incx, y, incy)
 copies x from host memory to y in device memory
- cublasGetVector(n, elemSize, x, incx, y, incy)
 copies x from device memory to y in host memory

cuBLAS: Dense Vectors

Level 1: Dense Vector operations

- cublas<T>nrm2(handle, n, x, incx, &s) computes a norm: $s = ||\mathbf{x}||$
- cublas<T>dot(handle, n, x, incx, y, incy, &s) computes a dot product: $s = \mathbf{x} \cdot \mathbf{y}$
- cublas<T>axpy(handle, n, &alpha, x, incx, y, incy) computes a weighted sum: $\mathbf{y} = \alpha \mathbf{x} + \mathbf{y}$
- cublasI<T>amax(handle, n, x, incx, &i) computes the index i of the maximum entry: $\max_{i \in [n]} (\mathbf{x}_i)$

where <T> is a template for different data types:

character	data type
S	single
D	double
С	single complex
Z	double complex

Heat Equation with cuBLAS and ELLPACK

```
//(...) Fill indices, data with stencil [1 -2 1]
//(...) Copy indices, data, x, y to device memory

//choose something bigger than epsilon initially
err = 2.0f * epsilon;
for (i = 0; err > epsilon; ++i) {
    ELL_kernel(N, num_cols_per_row, indices_d, data_d, x_d, y_d);
    /** TODO: err = || x_d || **/
    /** TODO: x_d = x_d + dt / (dx * dx) * c * y_d **/
}
/** TODO: x = x_d **/
```

Task:

- Use cuBLAS Level 1 instructions to execute a heat equation loop
- Subtasks: update y_d and compute err in the loop, copy back x_d once the loop is finished
- \rightarrow Homework

cuSPARSE

https://developer.nvidia.com/cusparse.

- Sparse linear algebra library by Nvidia
- Data types: single, double, single complex, double complex
- Sparse formats: COO, CSR, HYB (ELL + COO), BSR, ...
- Helper functions: Create, CreateHybMat, ...
- Level 1: Dense and sparse vectors: axpy, gather, scatter, ...
- Level 2: Sparse matrices and dense vectors: csrmv, hybmv, bsrmv, ...
- Level 3: Sparse and dense matrices: csrmm, ...
- Preconditioners, converters, ...

cuSPARSE: Helper and conversion functions

Helper and conversion functions:

- cusparseCreate(handle) creates a cuSPARSE context
- cusparseDestroy(handle) destroys a cuSPARSE context
- cusparseCreateMatDescr(descrA)
 creates a matrix descriptor, defines matrix type and index base
- cusparseCreateHybMat(hybA)
 creates a matrix in hybrid ELLPACK + COO format
- cusparse<T>csr2hyb(handle, m, n, descrA, csrValA, csrRowPtrA, csrColIndA, hybA, userEllWidth, partitionType) converts a CSR matrix to hybrid format. For the heat equation:
 - userEllWidth = 3
 - partitionType = CUSPARSE_HYB_PARTITION_MAX.

cuSPARSE: Sparse Matrices and Dense Vectors

Level 2: Sparse Matrix and Dense Vector operations

- cusparse<T>csrmv(handle, op, m, n, nnz, alpha, &descrA, csrValA, csrRowPtrA, csrColIndA, x, &beta, y)
 Computes a CSR matrix-vector product y = βy + α op(A)x
- cusparse<T>hybmv(handle, op, alpha, &descrA, hybA, x, &beta, y) Computes a hybrid matrix-vector product $\mathbf{y} = \beta \, \mathbf{y} + \alpha \, op(\mathbf{A}) \, \mathbf{x}$

Heat Equation with cuBLAS and cuSPARSE

Task:

- A sparse matrix in CSR format exists for the heat equation
- Convert CSR to HYB format (ELLPACK > CSR for the heat equation)
- Call cuSPARSE for matrix-vector multiplication in the time step loop
- \rightarrow Homework!

