分类号: R5 单位代码: 10343

学 号: 182000000

温则醫科大學

WENZHOU MEDICAL UNIVERSITY

博士学位论文

论文题目: 温州医科大学博士示例论文

研究生姓名: Angus Zhang

学科专业: 重症医学

类 型: 学术型

指导教师: 潘老师

二O二O 年 六 月

论文题目: 温州医科大学博士示例论文

答辩委员会主席: 张 三 教授 温州医科大学 李 四 主任 温州医科大学 王五五 副教授 上海交通大学 赵六六 副主任 中国科学技术大学 钱七七 主任技师 温州医科大学 孙八八 副主任技师 温州医科大学

论文答辩日期: 二〇二〇年 六月 廿五日

目 录

| 插图 | 索引 | il | | | |
 | |
 | I |
|----|----|----|--------|---|----|------|------|------|------|------|------|------|---------|------|----|
| 附表 | 索马 | il | | | |
 | |
 | IJ |
| 第一 | 章 | 材料 | 与 | 方 | 法. |
 | |
 | 1 |
| 第二 | 章 | 结 | 果 | | |
 | |
 | 7 |
| 第三 | .章 | 分析 | r
与 | 讨 | 沦. |
 | · • • • |
 | 8 |
| 第四 | 章 | 小 | 结 | | |
 | |
 | 9 |
| 附 | 录 | | | | |
 | |
 | 10 |
| 参考 | 文庫 | 戊 | | | |
 | |
 | 10 |
| 致 | 谢 | | | | |
 | |
 | 11 |

插图索引

冬	1:	图片插入	3
冬	2:	温州医科大学题字及 LOGO	2

附表索引

表 1:	希腊字母表	2
表 2:	不同电力系统频率测量算法时间复杂度比较	2

材料与方法

正确编译需要以下几个部分(这是一个列表环境):

- · 一个基本的 TeX 发行版
- CJK 或 XeCJK (供 LAT_EX) 宏包
- ctex 宏包 (提供 ctexbook 文档).
- 中文字体
- 如果要使用 biblatex 进行文献列表和引用的排版的话,还需要 biblatex 宏包。

1. 模板使用

1.1. 模板文件结构

整个模板根目录的文件列表如下:

文件	说明	备注
WMUDoctor.cls	WMUDoctor 宏包	*
WMU.cfg	WMU 宏包配置文件	*
WMUbib.bst	引文样式文件	*
references/reference.bib	bib 数据库	*
figures/wmu.jpg	温州医科大学校名标准字	*
WMUBachelorTemplate.tex	T _E X 样例文件	*

注: *表示 LATEX 模板必须的文件。

1.2. 示例

对于论文中最常使用的一些功能在本节中给出示例。

1.3. 公式

$$\hat{H} = \frac{\varepsilon}{2}\hat{\sigma}_z - \frac{\Delta}{2}\hat{\sigma}_x + \sum_k \omega_k \hat{b}_k^{\dagger} \hat{b}_k + \sum_k \frac{g_k}{2}\hat{\sigma}_z(\hat{b}_k + \hat{b}_k^{\dagger})$$
 (1)

根据公式1可知,这个是对公示的引用。

$$\int_{-\infty}^{+\infty} S(\tau, f) d\tau = \int_{-\infty}^{+\infty} x(t) \left\{ \int_{-\infty}^{+\infty} \frac{|f|}{\sqrt{2\pi}} e^{\frac{-|f|^2(\tau - t)^2}{2}} d\tau \right\} e^{-j2\pi f t} dt$$

$$= \int_{-\infty}^{+\infty} x(t) e^{-j2\pi f t} \left\{ \int_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} e^{-\left[\frac{|f|(\tau - t)}{\sqrt{2}}\right]^2} d\frac{|f|(\tau - t)}{\sqrt{2}} \right\} dt \tag{2}$$

令 $\theta = \frac{|f|(\tau - t)}{\sqrt{2}}$,则式(2)可改写为

$$\int_{-\infty}^{+\infty} S(\tau, f) d\tau = \int_{-\infty}^{+\infty} x(t) e^{-j2\pi f t} dt \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-\theta^2} d\theta$$

$$= \int_{-\infty}^{+\infty} x(t) e^{-j2\pi f t} dt \frac{2}{\sqrt{\pi}} \int_{0}^{+\infty} e^{-\theta^2} d\theta$$

$$= \int_{-\infty}^{+\infty} x(t) e^{-j2\pi f t} dt$$

$$= X(f)$$
(3)

1.4. 表格

表 1: 希腊字母表

Alpha	Beta	Gamma	Delta	Theta
α	β	γ	δ	θ
A	B	Γ	Δ	Θ

这是对表1:的引用

表 2: 不同电力系统频率测量算法时间复杂度比较

算法	加法	乘法	时间复杂度
TQDS WIFFT 本章算法	$QN^{2} + QN/2 + Q + 1 (QN+1)\log_{2}(QN+1) 3(QN+1)\log_{2}(QN+1)$	$QN^{2} (QN+1)*(1+\log_{2}(QN+1)) (QN+1)(1+3\log_{2}(QN+1))$	$O(N^2) \ O(N\log_2 N) \ O(N\log_2 N)$

本章对时域准同步算法(Time Domain Quasi-synchronous,TQDS)、加窗插值 FFT 算法(Windowed Interpolated FFT,WIFFT)以及本章所提算法的时间复杂度进行分析。因 TQDS 需要进行迭代运算,故设总采样点数为 QN+1,其中 Q 为迭代次数,N 为单次迭代所需的数据点长度。TQDS 共需要 QN^2 次加法和 $QN^2+QN/2+Q+1$ 次乘法,因此 TQDS 的时间复杂度为 $O(N^2)$ 。WIFFT 的计算量主要为 FFT 运算,共需进行 $(QN+1)\log_2(QN+1)$ 次加法和 $(QN+1)(1+\log_2(QN+1))$ 次乘法,因此 WIFFT 的时间复杂度为 $O(N\log_2N)$ 。对于本章所提出的算法,由于线性卷积运算采用快速卷积来进行计算,因此共需进行 $3(QN+1)\log_2(QN+1)$ 加法和 $(QN+1)(1+3\log_2(QN+1))$ 次乘法,算法时间复杂度为 $O(N\log_2N)$ 。表 2: 对三种频率测量算法的时间复杂度进行了对比。由表 2: 可见,TQDS 的时间复杂度比其它两种算法要高,本章算法和 WIFFT 时间复杂度相当,有利于算法的实时实现。

1.5. 图形

这个示例为插入图片:

图 1: 图片插入

具体代码:

%抄写环境

\begin{figure}[H]

\centering

\includegraphics[width=0.8\textwidth]{f1.jpg}%图片放在/figures目录下\caption{图片插入\label{fig:fig}}

\end{figure}

温州醫科大學

WENZHOU MEDICAL UNIVERSITY

图 2: 温州医科大学题字及 LOGO

对于图1:和图2:的引用。

1.6. 引用

交叉引用

对所有需要引用的公式、表格、图形,执行插入-标签后,即可使用插入-交叉引用自动产生引用。

- •哈密顿量见方程(1)。
- 希腊字母表见表 1: 。引用格式与方程引用格式不同
- 校名标准字如图 2: 。引用格式与方程引用格式不同

具体见代码:

\begin{itemize}

\item 哈密顿量见方程~\eqref{eq:sbm}。

\item 希腊字母表见表~\ref{tab:Greek}。引用格式与方程引用格式不同

\item 校名标准字如图~\ref{fig:WMU}。 引用格式与方程引用格式不同

\end{itemize}

文献引用

将引文的 bib 数据库 (默认文件名为 reference.bib) 放入模板根目录下的 references 文件夹,即可通过插入—文献引用自动产生引文。

```
Journal: An article [????]。
Book: An book [???]。
Conference: A conference [???]。
Manual: A manual [?].
Master Thesis: [????].
```

2. 伪代码实现

```
      算法 1 放进冰箱的大象

      输入: 有一只大象

      输出: 放进冰箱里

      for 没有剩余的大象 do

      if 大象比冰箱大 then

      把大象分割

      end if

      end for

      第一步

      第二步

      第三步

      AAA
```

2.1. 代码展示

可以把你的程序添加到附录里,展示自己的工作。

```
1 #include <stdio.h>
2 int main(int argc, char ** argv)
3 {
4 /*打印Hello, world*/
5 printf("Hello,□world!\n");
6
7 return 0;
8 }
```

3. 依赖

WMUDoctor 依赖于以下宏包,这些宏包在常见的 \LaTeX 发行版中都包括,在安装使用之前,请确定你的 \TeX 发行版中都已正常安装这些宏包 如果你尚未安装这些宏包,可以启动你的 \LaTeX 发行版的宏包管理器来安装;或者到 \LaTeX $\end{Bmatrix}$ http://www.ctan.org 上搜索下载并安装。

4. 基本设置

- (1) 图片搜索路径默认设置为模板根目录下的 figures/。
- (2) bib 数据库默认设置为模板根目录下的 references/reference.bib。其中 bib 文件可由任意文献库管理软件自动生成。

	依赖等	宏包	
footmisc	amsmath	amsfonts	amssymb
graphicx	svgnames	xcolor	mathptmx
float	fontenc	fancyhdr	lastpage
etoolbox	fancy	caption	array
makecell	forloop	xstring	hyperref
tabularx	enumitem	ntheorem	algorithm
algorithmic listings	bibentry courier	xeCJK	СЈК

5. 文字命令

LATEX 提供了一系列命令,用于修改字体、字号、数字等的呈现形式。本论文中字体如下:

5.1. 字体

宋体:\songti 启用宋体。黑体:\heiti 启用黑体。仿宋:\fangsong 启用仿宋。楷书:\kaishu 启用楷书。

宋体黑体 仿宋 楷书

5.2. 字形

粗体BOLD: \textbf{粗体BOLD} 启用粗体斜体ITALIC: \textbf{粗体BOLD} 启用斜体

粗体 BOLD 斜体 ITALIC

5.3. 字号

初号	小初	一号	小一	二号	小二	三号	小三
0	-0	1	-1	2	-2	3	-3
四号	小四	五号	小五	六号	小六	七号	八号
4	-4	5	-5	6	-6	7	8

18 16 15 四号 14 小四 12 五号 10.5 小五 9 六号 7.5 小六 6.5 七号 5.5 八号

5.4. 划线标记

下划线: \uline{下划线} 启用下划线 双下划线: \uuline{双下划线} 启用双下划线 波浪线: \uwave{波浪线} 启用波浪线 删除线: \sout{删除线} 启用删除线 斜删除线: \xout{斜删除线} 启用斜删除线

下划线 双下划线 波浪线 删除线 斜删除线

结果

我是结果。我是结果。我是结果。我是结果。我是结果。 我是结果。我是结果。我是结果。我是结果。 我是结果。我是结果。我是结果。我是结果。 我是结果。我是结果。我是结果。 我是结果。我是结果。 我是结果。 我是结果。

I'm results. I'm results.

分析与讨论

我是讨论。我是讨论。我是讨论。我是讨论。我是讨论。

我是讨论。我是讨论。我是讨论。我是讨论。我是讨论。

我是讨论。我是讨论。我是讨论。我是讨论。我是讨论。

我是讨论。我是讨论。我是讨论。我是讨论。我是讨论。

I'm discussions. I'm discussions. I'm discussions. I'm discussions.

小 结

我是小结。我是小结。我是小结。我是小结。我是小结。

我是小结。我是小结。我是小结。我是小结。我是小结。

我是小结。我是小结。我是小结。我是小结。我是小结。

我是小结。我是小结。我是小结。我是小结。我是小结。

I'm summaries. I'm summaries. I'm summaries. I'm summaries.

附 录

这里是附录页,附上你的程序或必要的相关知识

若要生成目录和参考文献的编译方式: XeLaTeX -> BibTeX -> XeLaTeX -> XeLaTeX

致 谢

我是致谢。我是致谢。我是致谢。我是致谢。我是致谢。 我是致谢。我是致谢。我是致谢。我是致谢。我是致谢。 我是致谢。我是致谢。我是致谢。我是致谢。 我是致谢。我是致谢。我是致谢。我是致谢。 I'm thanks. I'm thanks.

你好 你好