CHIMIE

1- Il s'agit de la pile Daniell de symbole :

2-
$$Zn + Cu^{2+} \longrightarrow Zn^{2+} + Cu$$

2-
$$Zn + Cu^{2+}$$
 \longrightarrow $Zn^{2+} + Cu$
3- a- Zn \longrightarrow $Zn^{2+} + 2e^{-}$ Cu
b- $Zn + Cu^{2+}$ \longrightarrow $Zn^{2+} + Cu$

la demi-pile Zn²⁺/ Zn est génératrice d'électrons, ainsi Cu est la borne positive de la pile et Zn la borne négative.

- **4- a -** $n_{(Cu)} = m / M = 4.10^{-3} \text{ mol}$
 - **b-** $n_{0(Cu\ 2^+)} = CV = 5.10^{-3}$, $n_{(Cu\ 2^+)\ restant} = 10^{-3}$ mol, ce qui donne $[Cu^{2^+}] = n_{(Cu)}$ / $V = 2.10^{-2}$ mol.L⁻¹.

b- L'affinage des métaux (purification).

Commentaires

- La purification est la séparation de substances chimiques dans le but de neutraliser des substances.
- La double flèche est exigée pour l'écriture de l'équation chimique associée à cette pile

PHYSIQUE

EXERCICE 1

A-1-
$$u_R(t) = Ri(t)$$
, $u_B(t) = L \frac{di(t)}{dt} + ri(t)$.

2- schéma du circuit exigé La loi des mailles donne :

$$u_B(t) + u_R(t) = E$$
, par la suite $L\frac{di}{dt} + (R+r)i = E$. Ce qui

donne
$$\frac{di}{dt} + \frac{(R+r)}{L}i = \frac{E}{L}$$
.

Avec $\tau = \frac{L}{(R+r)}$ on a l'expression demandée.

3- On a:
$$i = \frac{E}{R+r} (1 - e^{(-\frac{1}{r})})$$
 et $\frac{di}{dt} = \frac{E}{L} e^{(-\frac{1}{r})}$. Ce qui

permet de vérifier qu'on obtient bien : E/L.

4-a- En régime permanent on a : $i(t \to \infty) = I_0 = \frac{E}{D + n}$.

b-
$$U_B(t \rightarrow \infty) = U_{B_0} = rI_0$$
.

B-1- A t= o le terme Ldi/dt est important par rapport à ri.

Commentaires

Pour l'établissement de l'équation différentielle régissant l'évolution temporelle d'une grandeur électrique dans un circuit série, les éléments de réponse exigibles sont:

- Schéma du circuit série,
- Représentation du sens positif du courant.
- Représentation des tensions le long du circuit,

Ecriture de l'équation traduisant la loi des mailles ($u=u_R + u_B$)

• Déduction de l'équation différentielle.

Cependant, en régime permanent la tension aux bornes de la bobine tend vers rl₀. Ainsi, la courbe (b) qui décroit pour tendre vers une valeur limite correspond à u_B(t).

- **2-a** La courbe (a) donne U_{R0} = RI₀ = 5 V , par la suite on a : I₀ = U_{R0} / R = 250 mA.
- **b** U_{Bo} = 1 V, par la suite r = U_{Bo} / I_0 = 4 Ω .
- **c-** La constante τ = 8 ms, par la suite L = 0.192H.
- **C-1-** le circuit est le siège du phénomène de résonance d'intensité, car la tension u(t) et l'intensité i(t) sont en phase.
- **2-** $U_m = (R + r) I_m$ et $U_{Rm} = R I_m$, ainsi la tension u(t) est caractérisée par l'amplitude la plus grande par rapport à $u_R(t)$, ce qui permet de dire que la courbe (a') correspond à u(t).

3-a-
$$N_0 = 80 \text{ Hz}$$
,

b- I =
$$U/(R+r)$$
 = 147.5 mA.

c-
$$T_0^2 = 4\pi^2 LC$$
, ce qui donne : $C = \frac{T_0^2}{4\pi^2 L} = 19.5 \,\mu\text{F}.$

La réponse d'un dipôle RL en courant est constituée de deux régimes : un régime transitoire au cours duquel l'intensité augmente en exponentielle à partir de la valeur zéro en tendant vers la valeur

EXERCICE 2

- 1- Il renferme un composant actif (amplificateur opérationnel).
- **2-a** Pour les faibles fréquences on a T qui tend vers T₀, ainsi le filtre est passant. Pour les hautes fréquences on a T qui tend vers zéro, ainsi le filtre est non passant.
 - **b-** il s'agit d'un filtre passe-bas car il est passant pour les faibles fréquences et opaque pour les hautes fréquences.
 - **c-** A la fréquence de coupure on a : $T = \frac{T_0}{\sqrt{2}}$, par la suite on a : $N_c = \frac{1}{2\pi R_1 C}$.
- **3-a-** $u_E(t)$ est caractérisée par une phase initiale nulle ce qui correspond à la courbe (e), par la suite la courbe (d) représente $u_s(t)$.
- **b-** N₁ = 100 Hz, et pour cette fréquence on a aussi U_{sm} pratiquement égale à $\frac{U_{Em}}{\sqrt{2}}$, ce qui caractérise la fréquence de coupure.
- **c-** On a $N_c = \frac{1}{2\pi R_1 C}$ par la suite $C = \frac{1}{2\pi N_c R_1} = 5 \mu F$

EXERCICE 3: Etude d'un document scientifique

- **1** Générateur, inducteur et la pièce à chauffer.
- 2- Production d'un champ magnétique variable.
- **3-** C'est l'énergie qui résulte du passage d'un courant électrique dans un résistor, c'est l'effet joule.

SCIENCES PHYSIQUES

SECTION : Sciences de l'Informatique session de contrôle 2010-2011 Corrigé

CHIMIE	commentaires
1- On a : $C_1 = \frac{n_1}{V_1}$, par la suite : $n_1 = C_1 V_1 = 7.10^{-3}$ mol. 2- $n_1 = \frac{m}{M} \Rightarrow m = M.n_1 = 1.106$ g 3-a-	
- Solution de KMnO ₄ - Solution ferreuse Nom des solutions Nom des solutions - Burette graduée - Erlenmeyer	- Le schéma du dispositif annoté est indispensable. - Eviter de mettre la double flèche lors de l'écriture de l'équation qui doit être équilibrée. - N'oublier pas de noter l'unité pour chaque valeur calculée.
b- Fe ²⁺ \longrightarrow Fe ³⁺ + 1e ⁻ G'est une oxydation c- 5 Fe^{2+} + MnO ₄ ⁻ + 8 H ₃ O ⁺ \longrightarrow 5 Fe^{3+} + Mn ²⁺ + 12 H ₂ O 4-a- La persistance de la coloration violette (rose). b- A l'équivalence on a : $\frac{n_{\text{Fe}^{2+}}}{5} = \frac{n_{\text{MnO}_4^-}}{1}$, par la suite $\frac{C_2 V_2}{5} = C_1 V'$. c- $C_2 = \frac{5C_1 V'}{V_2} = 5.10^{-2} \text{ mol.L}^{-1}$.	
5- On a : $C_2 = \frac{n_2}{V_2} = \frac{m}{MV_2} \Rightarrow m = C_2.M.V_2 = 0,152g.$	

PHYSIQUE

EXERCICE 1

A-1- $u_R + u_C = E$, avec $u_R = Ri$ et $i = \frac{dq}{dt} = C \frac{du_C}{dt}$.

Ce qui donne $RC \frac{du_c}{dt} + u_c = E \Rightarrow \frac{du_c}{dt} + \frac{1}{RC} u_c = \frac{E}{RC}$.

- **2-** A la fin de la charge d'un condensateur on n'a plus de circulation de courant dans le circuit, d'où la courbe (b) correspond à $u_R(t)$.
- **3**-a- τ = 0,8 ms. Détermination de τ graphiquement:
 - 1 ^{ère} méthode (utilisation de la tangente à l'origine): on montre que τ est l'abscisse du point d'intersection de la tangente à la courbe de $u_c(t)$ à la date t=0 avec l'asymptote (lorsque $t \to +\infty$).
 - $2^{\grave{e}me}$ méthode: à partir du graphe de $u_c(t)$. Pour $t=\tau,\ u_c$ prend la valeur 0,63E

b- τ = RC , ce qui donne C_1 = 2,5 μ F.

B- 1- il s'agit d'un filtre passif car il ne renferme que des composants Passifs.

2-

3- D'après la construction de Fresnel on a : $U_{Fm}^2 = U_{Sm}^2 + (2\pi NRC)^2 U_{Sm}^2$, par la suite:

$$T = \frac{U_{Sm}}{U_{Em}} = \frac{1}{\sqrt{1 + (2\pi NRC)^2}}$$
.

4- A la fréquence de coupure on a :

$$T = \frac{T_0}{\sqrt{2}}$$
, par identification on a : $N_c = \frac{1}{2\pi RC}$.

- **C-1-** Il s'agit d'un filtre passe-bas, car pour les faibles fréquences le gain G en décibel est nul. Pour les hautes fréquences ce gain tend vers $-\infty$.
- 2- N_C = 5 kHz.(on trace l'asymptote à la courbe G(N) puis on lit la valeur de la fréquence correspondante à -3dB du gain G
 - 3- la bande passante est [0; 5 kHz].
 - **4-** Le filtre est non passant pour le signal de fréquence N_2 , car N_2 n'appartient pas à la bande passante.

commentaires

Pour l'établissement de l'équation différentielle régissant l'évolution temporelle d'une grandeur électrique dans un circuit série, les éléments de réponse exigibles sont:

- Schéma du circuit série,
- Représentation du sens positif du courant,
- Représentation des tensions le long du circuit,

Ecriture de l'équation traduisant la loi des mailles ($u=u_R + u_C$) et déduction de l'équation différentielle.

La fréquence de coupure d'un filtre est la fréquence pour laquelle le signal de sortie est décliné de -3dB environ.

Un filtre passe-bas est un filtre qui ne laisse passer que les fréquences dont leurs valeurs inférieures à la fréquence de coupure.

EXERCICE 2

1-
$$U_{réf} + U_{Ro} = 0$$
 $R_0 I_0 = -U_{réf}$. Ainsi, $I_0 = -\frac{U_{réf}}{R_0}$.

2- Pour
$$a_1 = 1$$
, on a $I_1 = -\frac{U_{r\acute{e}f}}{R_1}$, et pour $a_1 = 0$, on a $I_1 = 0$. Ainsi, on peut écrir $I_1 = -\alpha_1 \frac{U_{r\acute{e}f}}{R_1}$.

$$\textbf{3-a-} \ \ i = I_0 + I_1 + I_{2,} \ \text{par la suite} \ \ \text{on a} : \ i = - \left[\alpha_0 \frac{U_{r\acute{e}f}}{R_0} + \alpha_1 \frac{U_{r\acute{e}f}}{R_1} + \alpha_2 \frac{U_{r\acute{e}f}}{R_2} \right], \qquad i = - \frac{U_{r\acute{e}f}}{4R} \left[\alpha_0 + 2\alpha_1 + 4\alpha_2 \right].$$

b-
$$u_s$$
 + $u_{R'}$ + ϵ = 0 ; avec ϵ = 0, on aurait u_s = - $u_{R'}$ = . R'i.

Ainsi,
$$\mathbf{u}_{S} = +\frac{R'U_{réf}}{4R}[4\mathbf{a}_{2} + 2\mathbf{a}_{1} + \mathbf{a}_{0}] = kN.$$

4- La tension pleine échelle P.E =
$$kN_{max} = \frac{R'U_{réf}}{4R}.7 = 10,5 \text{ V}. \text{ q} = \frac{R'U_{réf}}{4R}.1 = 1,5 \text{ V}.$$

5- N = 5, ainsi on a :
$$u_S = +\frac{R'U_{réf}}{4R}.5 = 7,5 \text{ V}$$
.

EXERCICE 3: Etude d'un document scientifique

- **4-** Noyau ferromagnétique et deux bobines.
- 2-a- le phénomène de l'induction magnétique,
 - **b-** le courant induit apparait suite à une variation de l'induction magnétique.
- 3- limitation de la perte d'énergie.

Hedi Khaled