Unit Assignment: Trigonometry

MHF4U

Virtual High School

Jin Hyung Park

2020.07.21

Question 1.

a. Find all solutions for $sin(x) = \frac{\sqrt{3}}{2}$

Graph

Radians: $x = \frac{\pi}{3} + 2\pi n$, $x = \frac{2\pi}{3} + 2\pi n$

• Take the inverse side of both sides of the equation to extract *x* from inside the sine.

$$\circ \quad x = \arcsin(\frac{\sqrt{3}}{2})$$

• The exact value of $arcsin(\frac{\sqrt{3}}{2})$ is $\frac{\pi}{3}$

$$\circ \quad \chi = \frac{\pi}{3}$$

• The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from π to find the solution in the second quadrant.

$$\circ \quad x = \pi - \frac{\pi}{3}$$

• Simplify $\pi - \frac{\pi}{3}$

$$\circ \quad x = \frac{2\pi}{3}$$

• Find the period of sin(x)

$$\circ$$
 2π

• The period of the sin(x) function is 2π so values will repeat every 2π radians in both directions.

o
$$x = \frac{\pi}{3} + 2\pi n$$
 (for any Integer n)
o $x = \frac{2\pi}{3} + 2\pi n$ (for any Integer n)

b. If $sin(x) = \frac{1}{3}$ and $sec(y) = \frac{5}{4}$, where $0 \le x \le \frac{\pi}{2}$ and $0 \le y \le \frac{\pi}{2}$, evaluate the expression sin(x-y).

Step 1.

- $2 \sin(x-y) + 2 \sin y \cos x = 2 \sin x \cos y$
- Now, divide by 2 which yield:
- sin(x-y) + sinycosx = sinxcosy
- Finally, solve for sin(x-y) and we get the desired identity.
- sin(x y) = sinxcosy sinycosx

Step 2.

•
$$sec(y) = \frac{5}{4}$$

$$\bullet \qquad \frac{1}{\cos(y)} = \frac{5}{4}$$

$$\bullet \quad 5\cos(y) = 4$$

•
$$cos(y) = \frac{4}{5}$$

Step 3.

•
$$sin(x - y) = sinxcosy - sinycosx$$

•
$$sin(x - y) = \frac{1}{3} * \frac{4}{5} - \frac{3}{5} * cos(x)$$

• $cos(x) = \frac{2\sqrt{5}}{3}$

•
$$cos(x) = \frac{2\sqrt{2}}{3}$$

•
$$sin(x-y) = \frac{1}{3} * \frac{4}{5} - \frac{3}{5} * \frac{2\sqrt{5}}{3}$$

• $sin(x-y) = \frac{4}{15} - \frac{2\sqrt{5}}{5}$
• $sin(x-y) = \frac{4-6\sqrt{5}}{15}$

•
$$sin(x-y) = \frac{4}{15} - \frac{2\sqrt{2}}{5}$$

$$\bullet \quad sin(x-y) = \frac{4-6\sqrt{2}}{15}$$

Answer: $sin(x - y) = \frac{4 - 6\sqrt{2}}{15}$

Question 2.

Solve for all values of x in the given intervals:

a)
$$2\cos(x) + \sin(2x) = 0$$
 for $0 \le x \le 2\pi$

$$2\cos(x) + 2\sin(x)\cos(x) = 0$$

•
$$2(\cos(x) + \sin(x)\cos(x)) = 0$$

$$2\cos(x)(1+\sin(x))=0$$

$$\circ$$
 $2cos(x) = 0$

$$\circ \quad cos(x) = 0$$

$$\circ \quad \chi = \frac{\pi}{2}, \frac{3\pi}{2}$$

$$0 1 + sin(x) = 0$$

$$\circ$$
 $sin(x) = -1$

$$\circ \quad x = \frac{3\pi}{2}$$

 $0 x = \frac{3\pi}{2}$ Answer: $x = \frac{\pi}{2}, \frac{3\pi}{2}$

b)
$$2sin^2(x) = 1$$
 for $x \in R$

$$\bullet \quad \sin^2(x) = \frac{1}{2}$$

$$\bullet \quad sin(x) = -\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}$$

• Case 1.
$$sin(x) = -\sqrt{\frac{1}{2}}$$

$$\bullet \quad sin(x) = -\frac{\sqrt{2}}{2}$$

•
$$\arcsin(\sin(x)) = \arcsin(-\frac{\sqrt{2}}{2})$$

$$\bullet \qquad \chi = -\frac{\pi}{4}$$

The sine function to be negative in the 3 and 4 quadrants.

Subtract the reference angle from 2π to find a reference angle.

$$\circ \quad x = 2\pi - \left(-\frac{\pi}{4}\right)$$

Add the aforementioned reference angle to π to find the solution in the third quadrant.

$$\circ \quad x = 2\pi + \frac{\pi}{4} + \pi$$

Simplify the expression.

Since the period of sin(x) is 2π , we can write as the follows:

$$\circ \quad x = \frac{5\pi}{4} + 2\pi n$$

Add 2π to every negative angle to get positive angles.

$$\circ \quad -\tfrac{\pi}{4} + 2\pi$$

$$\circ \quad x = \frac{7\pi}{4}$$

The answer is

$$\circ \quad x = \frac{5\pi}{4} + 2\pi n \text{ (for any Integer } n)$$

o
$$x = \frac{5\pi}{4} + 2\pi n$$
 (for any Integer n)
o $x = \frac{7\pi}{4} + 2\pi n$ (for any Integer n)

• Case 2.
$$sin(x) = \sqrt{\frac{1}{2}}$$

$$\bullet \quad sin(x) = \frac{\sqrt{2}}{2}$$

•
$$arcsin(sin(x)) = arcsin(\frac{\sqrt{2}}{2})$$

$$\bullet \qquad \chi = \frac{\pi}{4}$$

• The sine function to be positive in the 1 and 2 quadrants.

• Subtract the reference angle from π in the second quadrant.

$$\circ \quad x = \pi - \frac{\pi}{4}$$

Simplify $\pi - \frac{\pi}{4}$

$$\circ \quad \chi = \frac{3\pi}{4}$$

Since the period of sin(x) is 2π , which means that the values will repeat every 2π radians in both directions, thus we can write the function as the follows:

```
\circ \quad x = \frac{\pi}{4} + 2\pi n \text{ (for any Integer } n \text{)}
```

$$\circ \quad x = \frac{3\pi}{4} + 2\pi n \text{ (for any Integer } n\text{)}$$

The answer is the following by consolidating the previous answers:

c)
$$tan^2(x) - 3 = 0$$
 for $x \in R$

•
$$tan^2(x) = 3$$

•
$$tan(x) = \sqrt{3}, -\sqrt{3}$$

• Case 1.
$$tan(x) = \sqrt{3}$$

•
$$arctan(tan(x)) = arctan(\sqrt{3})$$

•
$$arctan(tan(x)) = \frac{\pi}{3}$$

$$\bullet \qquad \chi = \frac{\pi}{3}$$

• Since the period of tan(x) is π , the answer is the as follows:

$$\circ \quad x = \frac{\pi}{3} + \pi n$$

• Case 2.
$$tan(x) = -\sqrt{3}$$

•
$$arctan(tan(x)) = arctan(-\sqrt{3})$$

•
$$arctan(tan(x)) = -\frac{\pi}{3}$$

$$\bullet \qquad x = -\frac{\pi}{3}$$

• In order to find second solution, subtract the reference angle from π to get a solution in the third quadrant.

$$\circ \quad x = \pi - \frac{\pi}{3}$$

$$\circ \quad x = \frac{2\pi}{3}$$

• The period of the tan(x) function is π which means that values would repeat every π radians in both sides.

$$\circ \quad x = \frac{2\pi}{3} + \pi n \text{ (for any Integer } n \text{)}$$

The answer is the following:

$$\circ \quad x = \frac{\pi}{3} + \pi n \text{ (for any Integer } n \text{)}$$

$$\circ \quad x = \frac{2\pi}{3} + \pi n \text{ (for any Integer } n \text{)}$$

Question 3.

Prove the following identities: (If it is a one step problem please state the formula used)

- a) $sin(\frac{\pi}{2} + x) = cos(x)$
- We usually begin to work on the side of equality that seems to be more complicated. Thus, choose to work from the left side.
- Using the following formula to solve the equation.
 - \circ $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$
 - o angle a equals $\frac{\pi}{2}$ while angle b equals x
- $sin(\frac{\pi}{2})cos(x) + cos(\frac{\pi}{2})sin(x) = cos(x)$
- $1\cos(x) + \cos(\frac{\pi}{2})\sin(x) = \cos(x)$
- $1\cos(x) + 0\sin(x) = \cos(x)$
- cos(x) = cos(x), prove done.
- b) sin(x)cot(x) = cos(x)
- Applying the following formula:

$$\circ \quad \cot(x) = \frac{\cos(x)}{\sin(x)}$$

- $sin(x)\frac{cos(x)}{sin(x)} = cos(x)$
- $\bullet \quad \frac{\sin(x)\cos(x)}{\sin(x)} = \cos(x)$
- Cancel the common factor of the left side.
- cos(x) = cos(x), prove done.
- c) $cot^{2}(x) + sec^{2}(x) = tan^{2}(x) + csc^{2}(x)$
- Manipulate the left side using the following identity:

$$\circ \quad \cot^2(x) = -1 + \csc^2(x)$$

- $-1 + csc^2(x) + sec^2(x) = tan^2(x) + csc^2(x)$
- Manipulate the left side using the following identity:

$$\circ -1 + sec^2(x) = tan^2(x)$$

- $tan^2(x) + csc^2(x) = tan^2(x) + csc^2(x)$, proof done.
- d) $sin^2(x) sin^2(y) = sin(x+y)sin(x-y)$
- We will choose to work on the right side to reach the left side.
- Using the sine of a sum formula:
 - $\circ \sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$
 - We can write as, $sin(x)^2 sin(y)^2 = (sin(x)cos(y) + cos(x)sin(y))sin(x y)$
 - $\circ \quad \text{Thus, } \sin(x)^2 \sin(y)^2 = (\sin(x)\cos(y) + \cos(x)\sin(y))(\sin(x)\cos(y) \cos(x)\sin(y))$
- $sin(x)^2 sin(y)^2 = (sin(x)cos(y))^2 (cos(x)sin(y))^2$
- Using the following formula:
 - $\circ \quad \cos^2(y) = 1 \sin(y)^2$
 - We can write as, $sin(x)^2 sin(y)^2 = (sin(x)^2(1 sin(y)^2)) (cos(x)sin(y))^2$
 - Thus, $sin(x)^2 sin(y)^2 = sin(x)^2 sin(x)^2 sin(y)^2 (cos(x)sin(y))^2$
- Factoring by $sin(y)^2$

$$\circ \quad \sin(x)^2 - \sin(y)^2 = \sin(y)^2 (-\cos(x)^2 - \sin(x)^2) + \sin(x)^2$$

Factoring by −1

$$\circ -\sin(y)^2(\cos(x)^2 + \sin(x)^2)$$

• Using the following formula:

$$\circ \quad \sin^2(x) + \cos^2(x) = 1$$

• We can write as, $-\sin(y)^2$

• Thus, $sin(x)^2 - sin(y)^2 = sin(x)^2 - sin(y)^2$, prove done.

Question 4.

Describe how to use both an equivalent trigonometric identity and a diagram to demonstrate that two trigonometric ratios are equivalent.

1. Use one of the following equivalent trigonometric expressions:

•
$$sin(\theta + \frac{3\pi}{2}) = -cos(\theta)$$

• we will choose to work on the left side to reach the right side.

• Use the following formula:

$$\circ \quad \sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

o where angle *a* equals θ, angle β equals $\frac{3\pi}{2}$

$$\circ \quad sin(\theta)cos(\frac{3\pi}{2}) + cos(\theta)sin(\frac{3\pi}{2}) = -cos(\theta)$$

• Since $sin(\frac{3\pi}{2}) = -1$

$$\circ \quad sin(\theta)cos(\frac{3\pi}{2}) - cos(\theta) = -cos(\theta)$$

• Since $cos(\frac{3\pi}{2}) = 0$

$$\circ \quad 0 * cos(\frac{3\pi}{2}) - cos(\theta) = -cos(\theta)$$

•
$$-\cos(\theta) = -\cos(\theta)$$
, Proof done.

2. Using a diagram demonstrates how the related angle formulas are true. Create an example to illustrate your findings in part a) (choose a value for θ and solve both sides to prove that they are equal.)

The graph of $sin(\theta)$ and $sin(\theta + \frac{3\pi}{2})$

• The graph is phase-shifted to the left by $\frac{3\pi}{2}$

The graph of cos(x) and -cos(x)

The graph is reflected by x-axis.

We can acknowledge that two graphs are overlapped by each other, which means that the two graphs are identical.

ex) The $\,\theta$ which is set as $\,\frac{7\pi}{12}$ to prove that two expressions are identical.
• $sin(\theta+\frac{3\pi}{2})=-cos(\theta)$

•
$$sin(\theta + \frac{3\pi}{2}) = -cos(\theta)$$

- $sin(\frac{7\pi}{12} + \frac{3\pi}{2}) = -cos(\frac{7\pi}{12})$ $sin(\frac{7\pi + 18\pi}{12}) = -cos(\frac{7\pi}{12})$ $sin(\frac{25\pi}{12}) = -cos(\frac{7\pi}{12})$ $\frac{\sqrt{6}-\sqrt{2}}{4} = \frac{\sqrt{2}-\sqrt{3}}{2}$ The left side 0.25881904 is equal to the right side 0.25881904 , which means that the given statement is always true. True