Problem 1: 2.2.10

- (a) $\dot{x} = f(x) = 0$. For all $x \in \mathbb{R}$, $\dot{x} = 0$, so every real number is a fixed point.
- (b) If there are no fixed points, for all $x \in \mathbb{R}$, $\dot{x} = f(x) \neq 0$. One function that satisfies $\dot{x} = 1$.

Problem 2: 2.4.1

 $\frac{dx}{dt} = x(1-x)$. The fixed points are x = 0, 1.

$$\frac{df}{dt} = \frac{df}{dx} \cdot \frac{dx}{dt} = \frac{d}{dx}(x - x^2) \cdot 1 = 1 - 2x$$

Evaluated at x = 0, $\frac{df}{dt} = 1 > 0$. Hence, x = 0 is a unstable fixed point. Evaluated at x = 1, $\frac{df}{dx} = 1 - 2(1) = -1$. So, x = 1 is a stable fixed point.

Problem 3: 2.4.2

 $\dot{x} = x(1-x)(2-x)$. Fixed points: x = 0, 1, 2.

$$\frac{df}{dt} = 3x^2 - 6x + 2$$

Evaluated at x=0, $\frac{df}{dt}=2>0$. So, x=0 is a unstable fixed point. Evaluated at x=1, $\frac{df}{dt}=-1<0$. So x=1 is a stable fixed point. Evaluated at x=2, $\frac{df}{dt}=-2<0$. So x=2 is a stable fixed point.

Problem 4: 2.4.4

 $\dot{x} = x^2(6-x)$. Fixed points: x = 0, 6.

$$\frac{df}{dt} = 12x - 3x^2$$

Evaluated at x = 0, $\frac{df}{dt} = 0$. Linear Stability Analysis fails at x = 0. Evaluated at x = 6, $\frac{df}{dt} = -36 < 0$. So x = 6 is a stable fixed point.

Problem 5: 2.7.2

$$-\frac{dV}{dx} = 3$$

$$V = -3x + \epsilon$$

Choose c = 0. V(x) = 0 is not a local minimum and maximum, so equilibrium does not occur. This is obvious since $\dot{x} = 3 \neq 0$.