Epigenetics

Genomic imprinting and X chromosome inactivation

AS3323/5621 Lecture 25 Dec, 4th 2018

C.H. Waddington 1942 Epigenetics landscape

Epigenetics

 Epigenetics: changes above or in addition to genetics to explain differentiation

Epigenetics

GENETICS

MANA DNA

mutations

inherited germ line **EPIGENETICS**

alterations

ncRNAs

- DNA methylation
- Histone modification
- Non-coding RNA

stable? Environmental influence

soma and germline

Epigenetic features

- Gene expression switch: ON/OFF
- Epigenetic markers transmitted during DNA replication/cell division
- Can be influenced by many factors
 eg. age, stress, environment, diets,
 toxic chemicals, life style etc.
- Erasable
 - Embryonic development
 - Germline specification

DNA methylation reprogramming

- Happens in cycles
- Erased and re-set in the embryo and gonads
- Multi-generational effects

Epigenetic phenomenon

Chromosome 17

3-year old identical twins

50-year old identical twins

- Yellow indicates shared epigenetic markers
- Environmental influence
- Epigenome of twins has diverged

- Different hair colors
- Diseases are not the same in identical twins

Epigenetic processes

- Genomic imprinting
- X chromosome inactivation
- Cell differentiation
- Cancer formation

Genomic imprinting

What is imprinting?

- Behavior definition
- A type of learning limited to a sensitive period of an animal's life, generally irreversible
- Recognition of parents immediately after hatching
- First studied in birds,
 Konrad Lorenz (Nobel prize 1973)

Figure 51.9 Imprinting: Konrad Lorenz with imprinted geese

Behavioral Imprinting

Examples of genomic imprinting in animal science

Donkey

Horse

Mule Horse X Donkey

Hinny Donkey X Horse

Parental specific effect: size, coat, strength, etc

Mendelian dominant inheritance

Inheritance pattern of genomic imprinting

Figure 1: Hypothetical imprinted gene responsible for body color. LEFT: the pigment gene is paternally expressed. Matings between a male who possesses the allele for pigment and a female who possesses the allele for no pigment produces offspring that show only the pigmented phenotype. RIGHT: the pigment gene is not inherited from the father and offspring do not show the pigmented phenotype.

Genomic Imprinting

In mammals, it describes the establishment, maintenance, and downstream effects of functional inequalities between a gene's two parental alleles

What is genomic imprinting?

Imprinted = inhibited

- DNA methylation
- Histone modification
- Non-coding RNA

Maternally Imprinted = Paternally Expressed

Paternally Imprinted = Maternally Expressed

How was genomic imprinting studied?

- Sexual reproduction in mammals
- Parental specific effects in development suspected
- A Surani (UK), D Solter (Germany) 1980s
- Nuclear transplantation experiment:
 - Gynogenetic embryos: "big" fetus, small placenta
 - Androgenetic embryos: "big" placenta, small fetus
 - Development retardation and fetal death in both cases

Nuclear transplantation

Fertilized egg (zygote)

Male and Female Pronuclei

Nuclear transplantation

In the mouse male pronucleus bigger

Nuclear Transplantation

Androgenetic (♂♂) embryo

Surani, McGrath and Solter, 1984-1987

Examples of imprinted genes

Most famous pair of genomic imprinted genes

- Insulin-like growth factor II (*IGF2*), paternally expressed, promotes growth, especially in placenta
- IGF-II receptor (IGF2R), maternally expressed, inhibits growth

How is genomic imprinting in life cycles

- •Somatic cells: maintain parental imprints
- •Germ cells: Imprints are erased in the primordial germ cells
- •Imprints are re-established on the DNA in male or female gametes for maternal or paternal imprints
- •In a new embryo, the imprints are maintained during embryonic development, erased again in the germ cells.

Why imprinting?

- Evolution advantage of imprinting?
 - Undermine the benefit from diploid

- Ensures no asexual reproduction in mammals
 - Gynogenetic/Androgenetic embryos will not develop naturally

- Why imprinting is still with us?
 - Several hypotheses proposed
 - Parental conflict hypothesis

Parental Conflict Theory

- Conflicts at the placenta (maternal-fetal interface)
- Father wants to increase the survival of his offspring: promote placenta/fetal growth.
- Mother wants to promote the survival of all her offspring (including subsequent pregnancies) and preserve herself: inhibit placenta/fetal growth.
- Most imprinted genes regulate fetal and post-natal growth, many are only imprinted during fetal development or only in the placenta

Imprinting diseases

Deletion on the long arm of chromosome 15 (q13)

- If deletion in maternal allele: Angelman syndrome
- If deletion in paternal allele: Prader-Willi syndrome

Blue: paternally expressed
Red: maternally expressed

Black: bi-allelically expressed

Beckwith-Wiedemann syndrome (overgrowth disorder)

- Large newborn (large for gestational age)
- Large placenta
- Large tongue, sometimes protruding
- Large prominent eyes
- Creases in ear lobes
- Abdominal wall defect: <u>umbilical hernia</u>
- Separated abdominal muscles (<u>diastasis recti</u>)
- Undescended testicles (cryptorchidism)
- Low blood sugar (hypoglycemia)
- Lethargy (lots of sleep)
- Seizures
- Enlargement of some organs and tissues

Imprinting and embryo biotechnology

- Human IVF
 - Beckwith-Wiedemann syndrome
- Embryo culture effect (large offspring syndrome):
 - overweight at birth, reluctant to suckle, difficulty breathing and standing, hypothermia, large placenta, death (slow suffocation)
- Mono-allelic expression maintained during early embryo development, sub-optimal culture conditions can affect this

Summary of genomic imprinting

- Examples of genomic imprinting
- Genomic imprinting definition
- Nuclear transplantation experiments
- Parental conflict hypothesis
- Life cycle of genomic imprints
- Imprinting diseases

Questions

Genomic imprinting refers to the fact that

https://www.polleverywhere.com/multiple_choice_polls/GxDR66QbokvdNEg

- A. Some proteins are made from mRNA transcribed by the mother.
- B. One cell type follows the developmental path of another.
- C. New born birds recognition of parents immediately after hatching.
- D. Gene activity depends upon whether the gene is of maternal or paternal origin.

Questions

When the specific imprinted gene region from the chromosome 15 of the mother's missing it leads

https://www.polleverywhere.com/multiple_choice_polls/PNQaY3MxCKXGv9s

- A. Pader Willi syndrome
- B. Angelman syndrome
- C. Down's syndrome
- D. Beckwith-Wiedemann syndrome

X Chromosome Inactivation (XCI)

Gene dosage

- Diploid is essential
- Genetic diversity and masks recessive mutated gene
- Deviations from 2N can be lethal
- Chromosome 21: smallest, few genes
 - Down's syndrome
- Trisomy of other chromosomes: partial and or mosaic
- Incompatible with life

Gene dosage problem in sex chromosomes?

- Both derived from autosomes
- Specialized in sex determination
- Different in
 - Size
 - Function
 - Gene content

X chromosome inactivation

For every 2n, one active X (Xa)

XCI in mammals

The Barr body = the inactivated X (Xi) condensed heterochromatin

 XCI escapee: 5-15% of X-linked genes escape XCI in female, pseudoautosomal region (PAR)

Random and imprinted X-inactivation

How does the single X balance with AA?

X: AA?

Susumu Ohno

Ohno's Hypothesis: X chromosome dosage compensation in mammals

Male

Mechanisms of X-inactivation

Counting

Initiation

Spreading

Maintenance

Counting X chromosomes

Karyotype	Sex	Xi number
46 (2N), XY	Male	0
46 (2N), XX	Female	1
45, XO (Turners)	Female	0
47, XXY (Klinefelter's)	Male	1
48, XXXY (Klinefelter's)	Male	?
47, XXX (super female)	Female	?
48, XXXX (super female)	Female	?
4N, XXXX cells		?
4N, XXYY cells		?

Initiation: The Xist Gene

- X-inactivation specific transcript (XIST)
- Xist is a switch for X inactivation.
- Located in the X inactivation center (XIC)
- Transcribed only from the inactive X (one of XCI escapees)
- Methylated on active X in male and female

Spreading:

Maintenance of inactive state of Xi:

- Maintained by numbers of histone modifications, protein complexes, and noncoding RNA for the Xi
- Maintained through cell divisions

Dosage compensation of X-linked genes in mammals is achieved by

https://www.polleverywhere.com/multiple_choice_polls/3I2o3gEhDTiQ7Zc

- A. Forming genetic mosaics in females with cells with one functional X-chromosome and double the X outputs.
- B. A gene that is turned off on Y-chromosome in males that allows expression of the X-chromosome.
- C. A site on a chromosome which controls X-expression called the X-hyperactivation center.
- D. Both X-chromosomes in the female being inactivated.

Which of the following doesn't agree with XIST

https://www.polleverywhere.com/multiple_choice_polls/3bm6vsa58rm5iE5

A. It codes for a non-coding RNA that coats the inactive X chromosome into a barr body

B. It is the only active gene in inactive X chromosome

C. Inactivation is seen in female somatic cells

D. XIST gene on the active X chromosome of males and females is typically methylated

Genetic diseases associated with abnormal sex chromosomes

- Turner's syndrome (45/X,0)
- Klinefelter's syndrome (47/XX,Y)

A Turner's patient with a 45, X karyotype

Ozkul et al., Ann. Genet. 2002; 45:181-3.

1 in 2,500 girls

Why X aneuploidy is tolerated?

- X aneuploidy in humans is relatively common
- X chromosome upregulation:
 - Turner syndrome (X0);1/2,500 girls
- X chromosome inactivation:
 - Klinefelter syndrome (XXY); 1/600 boys
 - XXXY
 - XXX
- Mild effects caused by XCI-escape genes

Example of XCI

Summary on XCI

- Number of inactive X
- Mechanism of XCI
- Escaping XCI
- Genetic diseases associated with abnormal sex chromosomes

How many X chromosome does a Klinefelter syndrome (XXXY) body inactive?

https://www.polleverywhere.com/multiple_choice_polls/yIZ19gXrKpvfE64

A. 0

B. 1

C. 2

D. 3

Which of following statement is incorrect

https://www.polleverywhere.com/multiple_choice_polls/rgnXcwLMBn5Dlco

- A. Both genomic imprinting and XCI are regulated by epigenetic mechanisms also seen in cell differentiation.
- B. Epigenetic markers except imprints are erased during embryonic development.
- C. Parental conflict hypothesis refers to parents has a lot of disagreements and fights.
- D. Large offspring syndrome and Beckwith-Wiedemann syndrome could both caused by sub-optimal culture conditions.