Wednesday, May 24, 2017

8.29 PM

min R(B) BERP

Directional descent master algorithm

Until stopping criteria:

choose descent direction ut

choose step size 4

update 8+1 = 8+4444

Suppose R is convex, when we choose u_{4} , min $R(\beta_{4} + \gamma u_{4})$ is 1-D & convex $\gamma \in \mathbb{R}$

Performing this min is <u>line search</u> Interval Bisection

 $a_6 = L$, $b_0 = U$ while $(b_1 - a_1) \cdot R'(U) > E$:

if $R'(\frac{a_1 + b_1}{2}) > 0$ thun $a_{11} = a_1 \quad b_{11} = \frac{a_1 + b_2}{2}$ else $a_1 = a_1 + b_2 \quad | \quad -L$

1 pre1 - 2t

te (+1

Other step size selection:

D backtracking line search

7 % decay according to a schedule

eg. 1 = 1

usually schedule is chosen according to props of R.

ey. Lipschitz cont grad. W/ modulus L >> 1=1

Coordinate descent

Until stopping crit:

select coord, j, ut=-e; *

set 7 = argmin R(B+ + 4u+)

update Bttl = Bt + 7+ ut

* j is selected either greedy, random, sequential

Gradient descent

υρδαίο β₂₊₁ = β₊ - η₄ ∇ κ (β₄) υ₄ = - ∇ κ (β₄)

 $\frac{\mathcal{E}Rm}{\mathcal{R}_{n}(\beta_{t})} = \frac{1}{n} \sum_{i=1}^{n} l(y_{i}, x_{i}, \beta_{t})$

(could add regularizer to this)

Stochastic Gradient Descent

Until Stopping Crit:

$$u_{+} = -\frac{1}{151} \sum_{i \in S} \nabla_{s} Lly_{i}, x_{i}, \beta_{k-1}$$

Stochastic Gradient and Online Learning

Wednesday, May 24, 2017 11:11 PM

On line learning

See sample X₁

Predict \hat{y}_{ϵ} See truth y_{ϵ} Incur loss $\ell(y_{\epsilon}, \hat{y}_{\epsilon})$

SGD w/ single sample

while:

ie sample 1,..., n

u, = - \$ 1 (yi, xi, bt)

β++1 ← β++ 7+ U+

Apply to SVM:

Objective: - 1 = (1-y; x; 5)+ + > | | | | | |

Subgradient: $\frac{\partial}{\partial \beta} \left(1 - y_i x_i^{T} \beta \right)_{+} = \begin{cases} -y_i x_i & |-y_i x_i^{T} \beta > 0 \\ 0 & |-y_i x_i^{T} \beta = 0 \end{cases}$

β=0 For i=1,...,n

$$u_{+} = y_{+} \times i \quad \text{if} \quad y_{+} \times i \quad \text{if} \quad y_{+} \times i \quad \text{of therwise}$$

$$-\lambda \beta \quad \text{(for ridge term)} \quad u_{+} = x_{+} \quad \text{if} \quad \text{$$