

Ch. 7: Wireless and Mobile Networks

Background:

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-I)!
- # wireless Internet-connected devices equals # wireline Internet-connected devices
 - laptops, Internet-enabled phones promise anytime untethered
 Internet access
- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

Networks

Chapter 7 outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols
- 7.9 Summary

Networks

Networks

Characteristics of selected wireless links

Modes of a wireless network

Modes of a wireless network

ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless network taxonomy

	single hop	multiple hops	
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: mesh net	
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET,VANET	

Chapter 7 outline

7. Introduction

Wireless

- 7.2 Wireless links, characteristics
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols
- 7.9 Summary

Wireless Link Characteristics (I)

important differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

Wireless Link Characteristics (2)

- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- SNR versus BER tradeoffs
 - given physical layer: increase power -> increase SNR->decrease BER
 - given SNR: choose physical layer that meets BER requirement, giving highest thruput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

....... QAM256 (8 Mbps)

– - · QAM16 (4 Mbps)

BPSK (1 Mbps)

Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B,A hear each other
- . B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- B,A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

Chapter 7 outline

7. I Introduction

Wireless

- 7.2 Wireless links, characteristics
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")

(见第5章)

- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols
- 7.9 Summary

802.15: personal area network

- less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- master/slaves:
 - slaves request permission to send (to master)
 - master grants requests
- * 802.15: evolved from Bluetooth specification
 - 2.4-2.5 GHz radio band
 - up to 721 kbps

- Master device
- S Slave device
- P Parked device (inactive)

Chapter 7 outline

7. Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet access
 - architecture
 - standards (e.g., GSM)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols
- 7.9 Summary

Components of cellular network architecture

- * connects cells to wired tel. net.
- manages call setup (more later!)
- handles mobility (more later!)

cell

- covers geographical region
- base station (BS) analogous to 802.11 AP
- * mobile users attach to network through BS
- air-interface: physical and link layer protocol between mobile and BS

Networks

移动通信技术发展

4**G**

3**G**

2.75G

主流技术:EDGE

特点:速度可达 GPRS的3倍,上网 冲浪, 高速体验

传输速率: <379Kb/S

Computer

主流技术:

联通: WCDMA (欧、日)

电信: CDMA2000

(EVDO)

(北美、日、韩)

中国移动:

TD-SCDMA(中国)

特点:面向高速、宽

带数据传输

传输速率: < 2M/S

特点: 快速的数据服务

, 高清视频传输、云端 游戏等

传输速率: ≥100Mb/S

1**G**

模拟移动网 (大哥大时代) 已淘汰

2**G**

主流技术: GSM

特点: 以数字语 音传输技术为核 心,可以实现低 速的数据传输

< 9.6Kb/S

传输速率:

2.5G

主流技术:GPRS

特点:以数字语音

传输技术为核心,

可以实现调整

数据分组传输

< 171.2Kb/S

传输速率:

Cellular networks: the first hop

Two techniques for sharing mobile-to-BS radio spectrum

- combined FDMA/TDMA: divide spectrum in frequency channels, divide each channel into time slots
- CDMA: code division multiple access
 frequency
 bands

Networks

7-21

2G (voice) network architecture

Networks

3G (voice+data) network architecture

Key insight: new cellular data network operates in parallel (except at edge) with existing cellular voice network

- voice network unchanged in core
- data network operates in parallel

Serving GPRS Support Node (SGSN)

GGSN

Gateway GPRS Support Node (GGSN)

3G (voice+data) network architecture

3G versus 4G LTE network architecture

4G: differences from 3G

- all IP core: IP packets tunneled (through core IP network) from base station to gateway
- no separation between voice and data all traffic carried over IP core to gateway

Functional split of major LTE components

Radio+Tunneling: UE – eNodeB – PGW

Quality of Service in LTE

- QoS from eNodeB to SGW: min and max guaranteed bit rate
- QoS in radio access network: one of 12 QCI values

QCI	RESOURCE TYPE	PRIORITY	PACKET DELAY BUDGET (MS)	PACKET ERROR LOSS RATE	EXAMPLE SERVICES
1	GBR	2	100	10 ⁻²	Conversational voice
2	GBR	4	150	10 ⁻³	Conversational video (live streaming)
3	GBR	5	300	10-6	Non-conversational video (buffered streaming)
4	GBR	3	50	10 ⁻³	Real-time gaming
5	Non-GBR	1	100	10⁴	IMS signaling
6	Non-GBR	7	100	10 ⁻³	Voice, video (live streaming), interactive gaming
7	Non-GBR	6	300	10⁴	Video (buffered streaming)
8	Non-GBR	8	300	10⁴	TCP-based (for example, WWW, e-mail), chat, FTP, p2p file sharing, progressive video and others
9	Non-GBR	9	300	10⁴	

5G主要技术

ITU定义的5G八大关键能力

指标 名称	流量密度	连接数密 度	时延	移动性	能效	用户体验速率	频谱效率	峰值 速率
4G 参考值	0.1 Tbps/ Km ²	10万/km²	空口 10ms	350Km/h	1倍	10 Mbps (urban/suburba n)	1倍	1Gbps
5G 取值	10 Tbps/ Km²	100万/Km²	空口1ms	500 Km/h	100倍提升 (网络侧)	0.1-1Gbps	3倍提升 (某些场景 5倍)	20Gbps

IT定义的三大应用场景

中国5G之花

Chapter 7 outline

7. I Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols
- 7.9 Summary

What is mobility?

spectrum of mobility, from the network perspective:

Networks

Mobility: vocabulary

Mobility: more vocabulary

How do you contact a mobile friend:

Consider friend frequently changing addresses, how do you find her?

search all phone books?

- call her parents?
- expect her to let you know where he/she is?

I wonder where Alice moved to?

36

Mobility: approaches

- ❖ let routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange.
 - routing tables indicate where each mobile located
 - no changes to end-systems

Mobility: approaches

- ertise permanent address of let routing handle it: not ual routing table exchange. mobile-nodes-in-r scalable
 - each mobile located routing tables to millions of mobiles no changes to e
- let end-systems handle it:
 - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Mobility: registration

end result:

- foreign agent knows about mobile
- home agent knows location of mobile

39

40

Mobility via indirect routing

李全龙

Indirect Routing: comments

- mobile uses two addresses:
 - permanent address: used by correspondent (hence mobile location is transparent to correspondent)
 - care-of-address: used by home agent to forward datagrams to mobile
- foreign agent functions may be done by mobile itself
- * triangle routing: correspondent-home-network-mobile
 - inefficient when correspondent, mobile are in same network

Indirect routing: moving between networks

- suppose mobile user moves to another network
 - registers with new foreign agent
 - new foreign agent registers with home agent
 - home agent update care-of-address for mobile
 - packets continue to be forwarded to mobile (but with new care-of-address)
- mobility, changing foreign networks transparent: on going connections can be maintained!

Mobility via direct routing

Mobility via direct routing: comments

- overcome triangle routing problem
- non-transparent to correspondent: correspondent must get care-of-address from home agent
 - what if mobile changes visited network?

Accommodating mobility with direct routing

- anchor foreign agent: FA in first visited network
- data always routed first to anchor FA

李全龙

when mobile moves: new FA arranges to have data forwarded from old FA (chaining)

Chapter 7 outline

7. Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols
- 7.9 Summary

Mobile IP

- * RFC 3344
- has many features we've seen:
 - home agents, foreign agents, foreign-agent registration, care-of-addresses, encapsulation (packet-within-apacket)
- three components to standard:
 - indirect routing of datagrams
 - agent discovery
 - registration with home agent

Mobile IP: indirect routing

Mobile IP: agent discovery

agent advertisement: foreign/home agents advertise service by broadcasting ICMP messages (typefield = 9)

H,F bits: home and/or foreign agent

R bit: registration required

Mobile IP: registration example

Components of cellular network architecture

different cellular networks, operated by different providers

Handling mobility in cellular networks

- home network: network of cellular provider you subscribe to (e.g., Sprint PCS, Verizon)
 - home location register (HLR): database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network)
- visited network: network in which mobile currently resides
 - visitor location register (VLR): database with entry for each user currently in network
 - could be home network

GSM: indirect routing to mobile

GSM: handoff with common MSC

- handoff goal: route call via new base station (without interruption)
- reasons for handoff:
 - stronger signal to/from new BSS (continuing connectivity, less battery drain)
 - load balance: free up channel in current BSS
 - GSM doesnt mandate why to perform handoff (policy), only how (mechanism)
- handoff initiated by old BSS

GSM: handoff with common MSC

- 1. old BSS informs MSC of impending handoff, provides list of 1+ new BSSs
- 2. MSC sets up path (allocates resources) to new BSS
- 3. new BSS allocates radio channel for use by mobile
- 4. new BSS signals MSC, old BSS: ready
- 5. old BSS tells mobile: perform handoff to new BSS
- 6. mobile, new BSS signal to activate new channel
- 7. mobile signals via new BSS to MSC: handoff complete. MSC reroutes call
- 8 MSC-old-BSS resources released

GSM: handoff between MSCs

(a) before handoff

- anchor MSC: first MSC visited during call
 - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- optional path minimization step to shorten multi-MSC chain

GSM: handoff between MSCs

(b) after handoff

- anchor MSC: first MSC visited during call
 - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- optional path minimization step to shorten multi-MSC chain

Mobility: GSM versus Mobile IP

GSM element	Comment on GSM element Mo	bile IP element
Home system	Network to which mobile user's permanent phone number belongs	Home network
Gateway Mobile Switching Center, or "home MSC". Home Location Register (HLR)	Home MSC: point of contact to obtain routable address of mobile user. HLR: database in home system containing permanent phone number, profile information, current location of mobile user, subscription information	Home agent
Visited System	Network other than home system where mobile user is currently residing	Visited network
Visited Mobile services Switching Center. Visitor Location Record (VLR)	Visited MSC: responsible for setting up calls to/from mobile nodes in cells associated with MSC. VLR: temporary database entry in visited system, containing subscription information for each visiting mobile user	Foreign agent
Mobile Station Roaming Number (MSRN), or "roaming number"	Routable address for telephone call segment between home MSC and visited MSC, visible to neither the mobile nor the correspondent.	Care-of- address

Wireless, mobility: impact on higher layer protocols

- ❖ logically, impact should be minimal ...
 - best effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- ... but performance-wise:
 - packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff
 - TCP interprets loss as congestion, will decrease congestion window un-necessarily
 - delay impairments for real-time traffic
 - limited bandwidth of wireless links

Chapter 7 summary

Wireless

- wireless links:
 - capacity, distance
 - channel impairments
 - CDMA
- ❖ IEEE 802.11 ("Wi-Fi")
 - CSMA/CA reflects wireless channel characteristics
- cellular access
 - architecture
 - standards (e.g., GSM, 3G, 4G LTE)

Mobility

- principles: addressing, routing to mobile users
 - home, visited networks
 - direct, indirect routing
 - care-of-addresses
- case studies
 - mobile IP
 - mobility in GSM
- impact on higher-layer protocols

