

9380

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : B65D 81/32, C11D 3/00	A1	(11) International Publication Number: WO 99/29590 (43) International Publication Date: 17 June 1999 (17.06.99)
(21) International Application Number: PCT/US98/09406		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 7 May 1998 (07.05.98)		
(30) Priority Data: 08/987,174 8 December 1997 (08.12.97) US		
(71) Applicant: MINNESOTA MINING AND MANUFACTURING COMPANY [US/US]; 3M Center, P.O. Box 33427, Saint Paul, MN 55133-3427 (US).		
(72) Inventors: BLETTÉ, Russell, E.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). KUBICEK, Brian, A.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US).		
(74) Agents: SCHULTE, Daniel, C. et al.; Minnesota Mining and Manufacturing Company, Office of Intellectual Property Counsel, P.O. Box 33427, Saint Paul, MN 55133-3427 (US).		

(54) Title: DEVICE AND METHOD FOR MIXING AND DISPENSING MULTIPART SOLUTIONS

(57) Abstract

A device for mixing and dispensing a multipart solution is described. The device includes a flexible pouch (1) having a first compartment (2) and a second compartment (3). The first compartment and the second compartment are divided by a barrier (4) that is at least partially breakable. The first compartment can contain a first solution and the second can contain a second solution, such that breaking the breakable barrier results in the mixing and the first and second solutions to form a multipart solution. The flexible pouch contains a dispenser (5) to provide access to the solution within the flexible pouch. A system and method for mixing and dispensing a multipart cleaning solution are also described.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

DEVICE AND METHOD FOR MIXING AND DISPERSING MULTIPART SOLUTIONS

Field

5 This invention relates to a device and system for and dispersing multipart solutions that is useful for mixing and dispersing multipart cleaning solutions.

Background

10 Multipart solutions, i.e., solutions mixed from separate solution components immediately prior to use, are known. Such systems typically involve mixing volumes of separate solution components from separate containers to form in the solution, followed by immediate use of the resultant solution. Mixing of the separate solution components may result in the reaction of the components with 15 each other, including activation of one of the components by one or more of the other components, catalysis by one of the solution components, or the like. It is often desirable to maintain the solution components separate from one another until just prior to use to prevent premature reaction or degradation of the components. One example of such a multipart solution is a two-part cleaning 20 solution in which one solution component contains an oxidizing agent and a second solution component contains a wetting agent and a pH adjusting agent.

 The use of multipart solutions generally requires the user to measure and the components together just prior to use, which can be cumbersome and risks contacting the solutions with the user, which can be harmful if the solution 25 components are toxic or hazardous. In addition, repeated opening of bottles containing separate components of a multipart solution can cause contamination and degradation of the components, such that the performance of the component in a solution is compromised. It is also generally important, in preparing a multipart solution, that the components be mixed in precise volume ratios (e.g., 1:1 mixture

of a two-part solution). If too much or too little of a component is used, the solution may not perform optimally or at all, or the improperly mixed solution could damage its substrate.

5

Summary of the Invention

In one aspect, the invention features a device for mixing and dispersing a multipart solution. The device includes a flexible pouch having first and second compartments. The first compartment is adjacent to the second compartment, and the first compartment is divided from the second compartment by a barrier that is at least partially breakable. The first and second compartments are adapted to contain, respectively, first and second solutions that are components of a multipart solution. Upon breaking of the breakable barrier, the first and second solutions can be mixed to form a desired multipart solution. The flexible pouch includes a dispenser, such as a threaded fitment in the form of a spout sealed into the pouch, in combination with a cap, a vented cap, and/or a spray pump or atomizer, to provide access to the mixed solution within the pouch. The device is useful for mixing and dispensing multipart aqueous or low viscosity solutions, such as aqueous cleaning solutions.

In another aspect, the invention features a system for mixing and dispensing multipart solution. As with the device of the invention, the system includes a flexible pouch having first and second compartments; the first compartment is adjacent to the second compartment, and the first compartment is divided from the second compartment by a barrier that is at least partially breakable. The first and second compartments contain, respectively, first and second solutions that are components of a multipart solution. The flexible pouch includes a dispenser to provide access to the multipart solution within the pouch.

In preferred embodiments, the system is adapted for mixing and dispersing multipart cleaning solution. In these embodiments, one of the compartments preferably contains an oxidizing agent, such as a peroxide, such that mixing of the oxidizing agent with the solution in the other compartment results in the formation of an oxidizing cleaning solution. In a particularly preferred embodiment, one of the first second compartments contains between about 5 and about 30 percent by

weight hydrogen peroxide and the remainder water, and the other compartment contains up to 60% by weight of a wetting agent, and optionally a pH adjusting substance, for example between about 0.1 percent and 5 percent by weight ammonium hydroxide, and the remainder water. The latter compartment 5 preferably contains a sufficient amount of pH adjusting substance such that the final pH of the mixed multipart solution is between about 9.0 and about 10.5. The cleaning solution that results from mixing these components is particularly useful in cleaning carpet and upholstery fibers.

The invention also features a method for mixing and dispensing a multipart 10 solution. The method involves the steps of providing a system as described above, applying pressure to the flexible pouch sufficient to disrupt the breakable barrier, mixing the first solution and second solution such that the first and second solutions form a multipart solution, and dispersing a multipart solution with the dispenser. Preferably, the method relates to mixing and dispensing a multipart 15 cleaning solution.

As described herein, the present invention has several advantages. The compartments of the flexible pouch can be adapted to contain premeasured and specific volumes, such that when the solutions in the compartments are mixed, precise volumes of the components are mixed together to form a desired solution. 20 This feature avoids the possibility of an improperly measured solution that would not perform as well as a correctly calibrated solution or that would damage its intended substrate. It also eliminates the need for the user to have any contact with the components of the solution in mixing the components prior to use. The present invention eliminates the need to repeatedly open bottles of solution components 25 (which can cause degradation of the components over repeated exposure to air) in order to prepare a multipart solution. The system of the invention can be adapted for single use; the compartments of the flexible pouch can contain premeasured volumes such that the multipart solution is of a sufficient volume for a typical single use, and the pouch can be disposed of after the single use. The system is 30 thus very convenient to use, and does not require the cumbersome (and often inaccurate) task of using separate bottles of the solution components to measure and mix the solution.

Other advantages of the invention will be apparent from the following description and drawings, and from the appended claims.

Brief Description of the Drawing

5 FIG. I shows a device for mixing and dispensing a cleaning solution in accordance with one embodiment of the present invention.

FIG. 2 shows a cross section of a device of the present invention.

FIGS. 3A-3C illustrate the use of a device of the present invention in a system for mixing and dispensing a multipart solution.

10

Description of the Preferred Embodiments

Figure 1 shows one embodiment of a device for mixing and dispensing a multipart solution in accordance with the present invention. In the device, a flexible pouch 1 has a first compartment 2 and a second compartment 3. The first 15 and second compartments are divided such that they do not communicate with each other, and are at least partially divided by breakable barrier 4 (shown in cross-section in Figure 2). The first compartment 2 is adapted to contain a first solution and the second compartment 3 is adapted to contain a second solution. The breaking of the breakable barrier (for example by rolling the pouch from the 20 second compartment 3 toward the first compartment 2, and thereby exerting force on the breakable barrier) results in the mixing of the first and second solutions to form a solution within the flexible pouch. The flexible pouch 1 contains a dispenser 5 that provides access to the contents of the flexible pouch.

In a preferred embodiment, and as shown in Figure 1, the dispenser 5 of the 25 flexible pouch 1 may be in the form of a fitment 6, which may be sealed into the periphery of the flexible pouch 1. The fitment 6 may be in the form of a spout adapted to receive a cap 7, as shown in Figure 1. In preferred embodiments, the cap is vented to permit the venting of vapor (e.g., produced by a solution in the first compartment) but not liquid. Such caps are well known in the art. A spray 30 pump or atomizer S, also well known in the art, may be provided to facilitate dispensing of the solution.

The device of the present invention is useful in the packaging, mixing and dispensing of any multipart solution for which it is desired to maintain the individual solution components separately before mixing them just prior to use. The device is particularly useful for mixing and dispensing aqueous, low viscosity 5 multipart solutions, including aqueous multipart cleaning solutions. Other multipart solutions for which the device is useful include multipart curable resin solutions, multipart adhesive compositions, multipart sealing compositions, multipart cleaning solutions, multipart enzymatic solutions, and the like. The device can be useful, for example, where it is desired to keep solution components 10 separate until just prior to use, and where it is desired to accurately mix particular amounts of multipart solution components together.

The flexible pouch 1 of the device may be comprised of any suitable material. Flexible, heat sealable polymeric materials are preferred. For example, the flexible pouch of the device may include first and second sheets of a flexible 15 polymeric materials bonded or sealed together about their peripheries to form a pouch. Suitable materials for use in preparing a flexible pouch include polymeric sheets of laminated or non-laminated films that can be bonded or sealed together alone aligned edges in a manner known in the art. In a preferred embodiment of the invention, a flexible pouch is constructed of a laminate of polyethylene terephthalate (PPT), biaxially oriented nylon, and linear low density polyethylene 20 available from Kapak Corporation of Minneapolis, MN. The flexible pouch material may be darkened, e.g., by the inclusion of darkened layer in a laminate or the use of a darkened material as the flexible pouch itself, to protect material that is sensitive to light. An example of such a darkened material is PET with a 25 rotogravure-black flood coat, which is commercially available. In a preferred embodiment, a laminate used to form the flexible pouch includes a layer of heat-activated adhesive, such as a hot melt adhesive of the type well known in the art, such that first and second polymeric sheets can be heat sealed about their peripheries to form a pouch. In these embodiments, a fitment, such as a molded 30 plastic material in the form of a spout, can also be heat sealed into the flexible pouch to form a dispenser.

Figure 2 shows a cross section of a device in accordance with the invention. Flexible pouch sheets 20 and 21 are bonded about their peripheries 22 and 23 to form a flexible pouch. Breakable barrier 24 divides a first compartment 25 from second compartment 26, which contain, respectively, first and second solutions 28 and 29. The flexible pouch contains a dispenser 27. As shown in Figure 2, the dispenser 27 is in the form of a threaded fitment in the form of a spout, with a portion sealed to the peripheries of flexible pouch sheets 20 and 21. When breakable barrier 24 is broken, the contents of compartments 25 and 26 can be mixed together to form a multipart solution. The dispenser may then be utilized to dispense the solution. The dispenser may be a fitment in the form of a spout, wherein the spout is adapted to receive a cap, as shown in Figure 2. The dispenser may also be a combination of a fitment and spray pump or atomizer, as shown in Figure 1.

The breakable barrier may be formed in a variety of ways. In one example, a thin porous paper coated on both surfaces with a polymeric material can be heat sealed between the inner surfaces of the flexible pouch material using materials and methods known in the art, thereby creating a barrier between first and second compartments that can be broken, for example by rolling the flexible pouch otherwise applying pressure to the pouch. Examples of breakable barrier constructions suitable for use in the device and system of this invention are described in United States Patent 2,932,385. The strength of the breakable barrier is preferably sufficient to allow handling of the pouch in manufacturing, shipping, and storage of the device without breaking, the barrier, but preferably can be broken at pressures of about 3 lb., and in any event, at pressures below those required to break any peripheral bond in the flexible pouch. Other examples of breakable barriers that would be suitable for use in the device include barriers made by sealing a fabric, such as a non-woven or woven fabric, to the inner surfaces of the flexible pouch material or barriers formed by using an adhesive to bond the inner surfaces of the flexible pouch together. The construction of these breakable barriers, and the ability to alter their strength to suite particular application, are within the skill of those practicing in the art. At least part of the barrier that divides the compartments of the flexible pouch must be a breakable

barrier as described herein; a portion of the barrier dividing the compartment of the flexible pouch may be unbreakable at the pressures described above.

Preferably, the entirety of the barrier dividing the compartments is breakable. In Figure 2, breakable barrier 24 includes a porous paper 30, which is bonded to the

5 inner surface of a flexible pouch formed by sheets 20 and 21. Preferably, the sheets used to form the flexible pouch include a heat-activated adhesive such that the material used to form the breakable barrier may be heat sealed to the pouch material.

The device of the invention may also include a third compartment, such
10 that the third compartment is divided from the second compartment at least partially by a breakable barrier. This device would be useful in mixing and dispensing a three-part solution in which the components of the solution are kept separated before use.

The device may be made using a number of methods known in the art. In
15 one embodiment, the flexible pouch is made from a flexible polymeric material constructed of a laminate of polyethylene terephthalate (PET), biaxially oriented nylon (BON), linear low density polyethylene (LLOPE) available from Kapak Corp. (Minneapolis, MN). The flexible pouch is laminated peripherally together by heat lamination, alone, the edges of the polymeric sheets. A dispenser, e.g.,
20 fitment the form of a spout, may be bonded at one end of the pouch during this step. A breakable barrier material may be bonded along the center. The bottom compartment (the compartment not containing the fitment) is left open for filling with one of the solution components, and sealed after filling. The compartment to which the fitment is attached may be filled through the spout with another solution
25 component and then the spout may be sealed with a cap. The cap may then be sealed with a shrinkable tape. If a solution component to be filled into the device generates vapor, it is preferable to fill the vapor-generating component into the compartment that is in communication with the dispenser, and a vented cap that allows venting vapor but not liquid is preferably used to cap the dispenser.

30 As discussed above, the device of the invention is particularly useful as part of a system for mixing and dispensing a multipart solution. Accordingly, the invention features such a system. The system includes a device generally as

described above, wherein the first compartment contains a first solution and the second compartment contains a second solution, and wherein the first and second solutions are parts of a multipart solution.

- In a preferred embodiment, the system is adapted for mixing and
- 5 dispensing a multipart cleaning solution. In this embodiment, one of the first and second solutions preferably contains an oxidizing agent, such as a peroxyhydrate (hydrogen peroxide or a compound which, in an aqueous solution, yields hydrogen peroxide), and the other solution contain a wetting agent and, optionally, a pH adjusting substance. In one preferred embodiment of the system, the first solution
- 10 contains between about 5 percent and about 30 percent by weight hydrogen peroxide as an oxidizing agent, and the second solution contains a wetting agent and, optionally, a pH adjusting substance. The parts of the multipart cleaning solution can be mixed by disruption of the breakable barriers and the contents of the flexible pouch can be accessed and dispensed by a dispenser as described
- 15 above, or simply by accessing the multipart cleaning solution by opening an openable portion of the flexible pouch, such as a perforation alone, or near the periphery of the flexible pouch.

Suitable multipart cleaning solutions that employ an oxidizing agent in one part and a wetting agent in a second part are described in U.S. Patents 5,389,278, 20 5,348,556 and 5,252,243. Any of the multipart cleaning solutions described in these patents is suitable for use in the device or system of the present invention. In general, the multipart cleaning solutions are mixtures of ingredients such that the solution applied to a substrate has been about 3 % and about 15 % of a peroxide. Preferably, the multipart solution contains up to 30% of a wetting agent.

25 Optionally, the solution may contain a pH adjusting substance, such as, for example, between about 0. 1 percent and about 5 percent by weight ammonium hydroxide. In preferred embodiments, there is a sufficient amount of pH adjusting substance such that the final pH of the mixed multipart cleaning solution is between about 9 and about 10.5. These multipart cleaning solutions are useful in

30 the treatment of stains on carpet or upholstery fibers, including stains from soil, food, pets, organic materials, and the like.

A wide variety of wetting agents are suitable in the multipart cleaning, composition. Generally, preferable wetting agents are miscible with water and organically based. Two classes of useful wetting agents are glycols and lower aliphatic alcohols. Exemplary alcohols include water-soluble alcohols containing 5 up to 5 carbon atoms, such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, sec-butyl alcohol, tert-butyl alcohol. The presently preferred alcohol is isopropyl alcohol. Exemplary glycols include glycerol, ethylene glycol, and propylene glycol.

Oxidizing agents that find particular application in the multipart cleaning 10 solution include peroxyhydrates. The term "peroxyhydrate", as used herein, means hydrogen peroxide or any compound which, in an (aqueous) composition, yields hydrogen peroxide. Examples of such compounds include alkali metal peroxides, such as sodium peroxide and potassium peroxide, sodium perborate monohydrate and tetrahydrate, sodium persulfate, sodium percarbonate, sodium 15 peroxydlhydrate, various phosphate peroxyhydrate, such as sodium or potassium peroxydiphosphate, potassium carbonate peroxydihydrate, and organic peroxyhydrates such as urea peroxide. The presently preferred oxidizing agent is hydrogen peroxide.

The amount of oxidizing agent and wetting agent utilized in the multipart 20 cleaning solution may vary over a wide range. The amount of oxidizing agent employed is generally an amount in the range of from about 3 to about 15 percent by weight of multipart solution and, preferably, about 10 percent by weight of solution. The amount of wetting agent is preferably present up to about 30 percent by weight of solution and, more preferably, about 1 to about 5 weight percent 25 based on the weight of the solution.

In the practice of the invention, it is desirable that the pH of the multipart 30 cleaning, solution be in the range of from about 9.0 to about 10.5. The pH can be adjusted using acidic or alkaline compounds well known in the art. Exemplary compounds for adjusting the pH of the solution include sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium carbonate, trisodium phosphate and tetrasodium pyrophosphate. Other pH adjusting substances useful with the present invention will be apparent to those ordinarily skilled in the art.

The presently preferred multipart cleaning solution has a pH of between about 9.0 and about 10.5, and comprises hydrogen peroxide present at about 10 percent by weight of aqueous composition and isopropyl alcohol present at about 1 to 5 percent by weight of aqueous composition. Deionized water is preferably the
5 remaining ingredient. In a system for mixing and dispensing such a multipart
cleaning solution, first and second compartments of a system as described above
may contain equal volumes of first and second solutions, respectively. The first
component may contain 20 percent by weight hydrogen peroxide with the
remainder water, and the second compartment may contain from 2 to 10 percent
10 isopropyl alcohol, ammonium hydroxide in sufficient amount such that the final
pH of the multipart solution is between about 9.0 and 10.5 (preferably about 10),
and the remainder water. The compartments may be mixed together to form the
desired solution.

To use a system of this invention to mix and dispense a multipart cleaning
15 solution, the breakable barrier in the flexible pouch is first broken. This may be
accomplished by rolling the pouch from one end to apply force at the breakable
barrier sufficient to disrupt the barrier. See Figure 3A. After the breakable barrier
is disrupted, the pouch may be manipulated to mix the contents of the
compartments that were separated by the breakable barrier. See Figure 3B. Once
20 mixing is complete, the openable portion of the flexible pouch can be opened by
removing- a vented cap from a spout in a fitment) and the multipart cleaning
solution dispensed (e.g., poured squeezed out of the opening or sprayed from a
spray pump attached to a spout) onto a stained substrate (e.g., carpet or upholstery
fibers) to remove or treat a stain. See Figure 3C. The stained substance or area to
25 which the multipart cleaning solution is applied may be pre-treated by pre-wetting
with water. After application of the multipart cleaning solution to the treatment
area, a vapor barrier material, such as a PAT-IT™ sheet (available from 3M) may
be placed over the treatment area to contain the chemical reaction. The vapor
barrier material is preferably a non-breathable material that traps oxygen
30 generated from the chemical reaction and prevents it from dissipating from the
treatment area, thereby prolonging the treatment process. After a sufficient amount

of time is allowed for the multipart cleaning solution to perform, the treated area can optionally be rinsed with water to remove the cleaning solution.

Other embodiments of the invention are within the scope of the appended claims.

What is claimed is:

1. A device for mixing and dispensing a multipart solution, comprising:
 - a flexible pouch comprising a first compartment and a second compartment, said first compartment adjacent to said second compartment and divided from said second compartment by an at least partially breakable barrier, said first compartment adapted to contain a first solution and said second compartment adapted to contain a second solution, such that breaking of said breakable barrier results in the mixing of said first and said second solutions to form a multipart solution, and said flexible pouch comprising a dispenser.
2. The device of claim 1, wherein said flexible pouch comprises a top layer and a bottom layer, wherein said top and bottom layers are bonded together to form said flexible pouch.
15
3. The device of claim 2, wherein said top layer comprises a first polymeric material and said bottom layer comprises a second polymeric material, said first polymeric material being sealed to said second polymeric material about their peripheries to form said pouch.
20
4. The device of claim 3, wherein at least one of said top and bottom layers further comprises a heat activated adhesive.
5. The device of claim 1, wherein said breakable barrier comprises a barrier material bonded between said top layer and said bottom layer.
25
6. The device of claim 5, wherein said breakable barrier material comprises a porous paper.
- 30
7. The device of claim 5, wherein said barrier material is adhesively sealed between said top layer and said bottom layer.

8. The device of claim 1, wherein said dispenser comprises a fitment.

9. The device of claim 8, wherein said fitment is sealed into the periphery of said flexible pouch.

5

10. The device of claim 8, wherein said fitment comprises a threaded spout and a cap adapted to be attached to said spout.

11. The device of claim 10, wherein said cap comprises a one-way vent capable of permitting venting of vapor but not liquid.

12. The device of claim 10, further comprising a spray pump adapted to be inserted into said flexible pouch through said spout after removal of said cap, said spray pump adapted for attachment to said spout.

15

13. The device of claim 1, wherein said flexible pouch comprises a darkened material capable of protecting light sensitive solutions contained within said flexible pouch from exposure to light.

20

14. The device of claim 1, wherein said flexible pouch further comprises a third compartment adjacent said second compartment and divided from said second compartment by an at least partially breakable barrier.

25

15. A system for mixing and dispensing a multipart solution comprising:

30

a flexible pouch comprising a first compartment and a second compartment, said first compartment adjacent to said second compartment and divided from said second compartment by an at least partially breakable barrier, said first compartment containing a first solution and said second compartment containing a second solution, such that breaking of said breakable barrier results in the mixing of said first and said second solutions to form a multipart solution, and

said flexible pouch having a openable to provide access to said multipart solution within said flexible pouch.

16. The system of claim 15, wherein said first solution comprises an
5 oxidizing agent.

17. The system of claim 16, wherein said oxidizing agent comprises a peroxide.

10 18. The system of claim 15, wherein said second solution comprises a pH adjusting substance.

15 19. The system of claim 18, wherein said pH adjusting substance comprises between about 0.1 percent and about 5 percent by weight ammonium hydroxide, and wherein said second solution comprises a sufficient amount of said pH adjusting substance such that the cleaning solution has a pH of between about 9.0 and about 10.5.

20 20. The system of claim 15, wherein said second solution comprises a wetting agent.

21. The system of claim 20, wherein said wetting agent comprises less than about 60 percent by weight isopropyl alcohol.

25 22. The system of claim 17, wherein said first solution comprises between about 5% and about 30% by weight hydrogen peroxide.

23. A method for mixing and dispensing a multipart solution, said method comprising:

30 providing a device comprising a first compartment and a second compartment, said first compartment adjacent to said second compartment and divided from said second compartment by an at least partially breakable barrier,

said first compartment containing a first solution and said second compartment containing a second solution, such that breaking of said breakable barrier results in the mixing of said first and said second solutions to form a multipart solution, and said flexible pouch having an openable portion to provide access to said multipart
5 solution within said flexible pouch;

- applying pressure to said flexible pouch sufficient to disrupt said breakable barrier;
mixing said first solution and said second solution such that said first and second solutions mix to form a multipart solution;
10 opening said openable portion of said flexible pouch; and
dispensing said multipart solution through said openable portion of said flexible pouch.

24. The method of claim 23 further comprising attaching a spray pump
15 to said openable portion after opening said portion.

25. The method of claim 24, wherein dispensing of said multipart solution comprises spraying of said solution using a spray pump attached to said flexible pouch at said openable portion.
20

26. The method of claim 23, wherein providing pressure to said flexible pouch comprises rolling said pouch.

27. The method of claim 23, wherein said first solution comprises
25 between about 5 percent and 30 percent by weight hydrogen peroxide.

28. The method of claim 23, wherein said second solution comprises
between about 0.1 percent and 5 percent by weight ammonium hydroxide and less
than about 60 percent by weight isopropyl alcohol, said second solution
30 comprising a sufficient amount of said ammonium hydroxide such that the pH of
the multipart solution is between about 9.0 and about 10.5.

29. The method of claim 28, wherein said dispensing comprises dispensing said multipart solution onto carpet fibers.

30. The method of claim 29, further comprising the step of placing a
5 vapor barrier material over said carpet fibers.

1/3

Fig. 1

2/3

Fig. 2

3/3

Fig. 3a**Fig. 3b****Fig. 3c**

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 98/09406

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 B65D81/32 C11D3/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 B65D B05B A61J C11D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 345 774 A (MATERIAL ENG. TECH. LAB.) 13 December 1989	1-4, 8-12, 15, 23-25
Y	see page 4, line 14 - line 43 see page 5, line 31 - line 58; figures ---	5-7, 13, 14, 16-22, 26-30
A	US 3 294 227 A (SCHNEIDER) 27 December 1966 see column 4, line 53 - column 7, line 57; claim 1; figures ---	2-4
Y	US 2 932 385 A (BOLLMEIER) 12 April 1960 cited in the application see column 1, line 54 - column 3, line 74; figures 1-3 ---	5-7, 13
		-/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- * later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- * document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- * document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- * document member of the same patent family

Date of the actual completion of the international search

5 January 1999

Date of mailing of the international search report

19. 01. 99

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Newell, P

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 98/09406

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4 732 299 A (HOYT) 22 March 1988 see figures 1,2,15 ---	10
A	US 3 805 991 A (CHELADZE) 23 April 1974 see the whole document ---	11
A	US 5 337 921 A (WILSON) 16 August 1994 see claim 1; figures ---	12,24,25
Y	GB 2 134 067 A (BARD) 8 August 1984 see page 1, line 111 - page 2, line 90; figures ---	14
Y	US 3 339 716 A (TAYLOR) 5 September 1967 see column 3, line 9 - line 28; figure 3 ---	26
Y	US 5 389 278 A (BASF) 14 February 1995 cited in the application see column 3, line 4 - column 4, line 40 see claims ---	16-22, 27-30
A	EP 0 346 835 A (BASF) 20 December 1989 see column 3, line 17 - column 4, line 57 ---	16-22, 27-30
A	US 5 338 475 A (COREY) 16 August 1994 see column 3, line 10 - column 4, line 59 see column 7, line 1 - line 55 ---	16-22, 27-30
P.A	US 5 728 669 A (RECKITT & COLMAN) 17 March 1998 see column 3, line 23 - column 4, line 46 see column 6, line 42 - column 8, line 5 -----	16-22, 27-30

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 98/09406

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
EP 345774	A	13-12-1989	JP 2004671 A JP 2675075 B DE 68918162 D DE 68918162 T US 4961495 A		09-01-1990 12-11-1997 20-10-1994 11-05-1995 09-10-1990
US 3294227	A	27-12-1966	NONE		
US 2932385	A	12-04-1960	CH 377278 A DE 1186800 B DE 1227382 B FR 75473 E GB 859434 A		25-10-1961
US 4732299	A	22-03-1988	NONE		
US 3805991	A	23-04-1974	NONE		
US 5337921	A	16-08-1994	NONE		
GB 2134067	A	08-08-1984	AU 2277583 A FR 2539713 A JP 59142963 A SE 8306400 A		26-07-1984 27-07-1984 16-08-1984 25-07-1984
US 3339716	A	05-09-1967	NONE		
US 5389278	A	14-02-1995	US 5252243 A US 5348556 A US 5522580 A AT 115179 T AU 611808 B AU 3630789 A CA 1327503 A DE 68919755 D DE 68919755 T EP 0346835 A JP 2034698 A JP 2653699 B		12-10-1993 20-09-1994 04-06-1996 15-12-1994 20-06-1991 21-12-1989 08-03-1994 19-01-1995 27-04-1995 20-12-1989 05-02-1990 17-09-1993
EP 346835	A	20-12-1989	AT 115179 T AU 611808 B AU 3630789 A CA 1327503 A DE 68919755 D DE 68919755 T JP 2034698 A JP 2653699 B US 5522580 A US 5348556 A US 5252243 A US 5389278 A		15-12-1994 20-06-1991 21-12-1989 08-03-1994 19-01-1995 27-04-1995 05-02-1990 17-09-1997 04-06-1996 20-09-1994 12-10-1993 14-02-1995
US 5338475	A	16-08-1994	NONE		
US 5728669	A	17-03-1998	GB 2321251 A AU 4826897 A WO 9831777 A		22-07-1998 07-08-1998 23-07-1998