1 The Nakaoka setting

Given a cotorsion pair $(\mathcal{U}, \mathcal{V})$ in a triangulated category \mathcal{C} , it was proved in [1] that it is possible to use it to construct a subcategory $\mathcal{W} \subseteq \mathcal{C}$ such that in the quotient category $\frac{\mathcal{C}}{\mathcal{W}} = \underline{\mathcal{C}}$ a heart \mathcal{H} is defined in such a way that it is an abelian category and there is a homological functor $\mathcal{C} \to \mathcal{H}$.

Our goal is to provide a set of axioms for a (nice) additive category \mathcal{A} and a couple of torsion pairs in it, in such a way that they will guarantee the existence of an abelian heart in \mathcal{A} . In a sense, we want to axiomatize $\underline{\mathcal{C}}$ and the pairs which are referred in Nakaoka's work as $(\underline{\mathcal{C}}^-,\underline{\mathcal{V}})$ and $(\underline{\mathcal{U}},\underline{\mathcal{C}}^+)$.

Now we will briefly recall Nakaoka's setting. Assume that \mathcal{C} is a triangulated category, and $(\mathcal{U}, \mathcal{V})$ is a cotorsion pair in \mathcal{C} , i.e.

- 1. C(U, V[1]) = 0
- 2. $\mathcal{C} = \mathcal{U} * \mathcal{V}[1]$, where $X \in \mathcal{M} * \mathcal{N}$ if and only if there is a distinguished triangle

$$M \to X \to N \to M[1]$$

with $M \in \mathcal{M}$ and $N \in \mathcal{N}$.

Then, we put $W = U \cap V$ and define $\underline{C} = C/W$, and similarly for \underline{U} , \underline{V} , etc. We define the following full subcategories of C:

- $\mathcal{C}^+ = \mathcal{W} * \mathcal{V}[1]$
- $C^- = \mathcal{U}[-1] * \mathcal{W}$

together with their respective quotients $\underline{\mathcal{C}}^+$ and $\underline{\mathcal{C}}^-$. Then, we have the following lemma.

Lemma 1. Let $X \in \mathcal{C}$, TFAE:

- 1. $X \in \mathcal{C}^+$
- 2. There is a monomorphism $\underline{X} \to V[1]$ in $\underline{\mathcal{C}}$, for some $V \in \mathcal{V}$.

The dual also holds:

Lemma 2. Let $X \in \mathcal{C}$, TFAE:

- 1. $\underline{X} \in \underline{\mathcal{C}}^-$,
- 2. There is an epimorphism $U[-1] \to \underline{X}$ in \underline{C} , for some $U \in \mathcal{U}$.

Corollary 3. If $(\mathcal{U}, \mathcal{V})$ is a cotorsion pair in a triangulated category \mathcal{C} , then:

- 1. $^{\perp}\mathcal{V} = \mathcal{C}^{-}$
- 2. $\mathcal{U}^{\perp} = \mathcal{C}^{+}$

Lemma 4. Let $F: \underline{C} \to \underline{C}^+$ be the left adjoint of the inclusion functor $j: \underline{C}^+ \hookrightarrow \underline{C}$. If $\lambda: 1_{\underline{C}} \to j \circ F$ is the unit of the adjunction, then there is a pseudokernel-pseudocokernel sequence

$$U_C \xrightarrow{u} C \xrightarrow{\lambda_C} (j \circ F)(C) \xrightarrow{+}$$

in \underline{C} such that $U_C \in \mathcal{U}$.

With dual:

Lemma 5. Let $G: \underline{C} \to \underline{C}^-$ be the left adjoint of the inclusion functor $i: \underline{C}^- \hookrightarrow \underline{C}$. If $\varepsilon: i \circ G \to 1_{\underline{C}}$ is the co-unit of the adjunction, then there is a pseudokernel-pseudocokernel sequence

$$(i \circ G)(C) \xrightarrow{\varepsilon_C} C \xrightarrow{V}_C \xrightarrow{+}$$

in C such that $V_C \in \mathcal{V}$.

Corollary 6. $(\underline{\mathcal{C}}^-,\underline{\mathcal{V}})$ and $(\underline{\mathcal{U}},\underline{\mathcal{C}}^+)$ are orthogonal pairs in $\underline{\mathcal{C}}$ provided \mathcal{C} has split idempotents.

Remark 1. 1. By prop 5.3 Nakaoka we have that $\underline{\mathcal{C}}^+$ has cokernels and, dually, $\underline{\mathcal{C}}^-$ has reference kernels.

2. We have inclusions $\mathcal{V} \subseteq \mathcal{C}^+$ and $\mathcal{U} \subseteq \mathcal{C}^-$

see page 5.5 of the notes

2 TORSION PAIRS 2

2 Torsion pairs

We fix an additive category \mathcal{X} with pseudokernels and pseudocokernels on which idempotents split.

Definition 1. A pair $\mathbb{t} = (\mathcal{T}, \mathcal{F})$ of full subcategories of \mathcal{X} is a torsion pair in \mathcal{X} if:

1.

$$\mathcal{F} = \mathcal{T}^{\perp} = \{ X \in \mathcal{X} \mid \mathcal{X}(\mathcal{T}, X) = 0 \},$$

$$\mathcal{T} = {}^{\perp}\mathcal{F} = \{ X \in \mathcal{X} \mid \mathcal{X}(X, \mathcal{F}) = 0 \};$$

2. FOr each $M \in \mathcal{X}$ there is a pseudokernel-pseudocokernel sequence

$$T_M \xrightarrow{\varepsilon_M} M \xrightarrow{\lambda_M} F^M$$

where $T_M \in \mathcal{T}$ and $F^M \in \mathcal{F}$.

If in addition the assignment $M \mapsto t(M) := T_M$ (resp. $M \mapsto f(M) := F^M$) is functorial and defines an adjoint pair (i,t) (resp. (f,j)), where $i: \mathcal{T} \hookrightarrow \mathcal{X}$ (resp. $j: \mathcal{F} \hookrightarrow \mathcal{X}$) is the inclusion functor, then we say that \mathbb{t} is left (resp. right) functorial. In such a case, ε (resp. λ) is the counit (resp. unit) of the given adjoint pair. We say that \mathbb{t} is functorial if it is right and left functorial.

Remark 2. Let $\mathbb{t} = (\mathcal{T}, \mathcal{F})$ be a left functorial torsion pair in \mathcal{X} . Then

(a) For any $M \in \mathcal{X}, T' \in \mathcal{T}$ and $\alpha \in \mathcal{X}(T', M)$ there is a unique $\alpha' \in \mathcal{X}(T', t(M))$ such that $\varepsilon_M \circ \alpha' = \alpha$, i.e.

$$t(M) \xrightarrow{\exists ! \alpha'} \int_{\alpha}^{T'} \int_{\alpha}^{\pi} dt$$

(b) Let $g: T_1 \to T_2$ be a morphism in \mathcal{T} , which admits a pseudocokernel $g^C: T_2 \to \operatorname{PCok}_{\mathcal{T}}(g)$ in \mathcal{T} . Then g^C is a pseudocokernel of g in \mathcal{X} .

Proof. (a) Since (i, t) is an adjoint pair, we have a functorial isomorphism

$$\Theta: \operatorname{Hom}_{\mathcal{T}}(T', t(M)) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{X}}(i(T'), M) = \operatorname{Hom}_{\mathcal{X}}(T', M).$$

Let
$$\alpha' := \Theta^{-1}(\alpha)$$
. Then, $\varepsilon_M \circ \alpha' = \Theta(\alpha') = \alpha$.

(b) Let $X \in \mathcal{X}$ and $h: T_2 \to X$ such that hg = 0. Consider the commutative diagram

$$T_{1} \xrightarrow{g} T_{2} \xrightarrow{g^{C}} \operatorname{PCok}_{\mathcal{T}}(g)$$

$$\downarrow^{h} \qquad \downarrow^{\exists h'} \qquad \downarrow^{\exists h''}$$

$$X \leftarrow_{\varepsilon_{X}} t(X).$$

Then, $h' \circ g = 0$. In fact, $0 = h \circ g = \varepsilon_X \circ h' \circ g$ and $\varepsilon_X \circ 0 = 0$, so, by (a), $h' \circ g = 0$. Since $h' \circ g = 0$, it follows that there is a map $h'' : \operatorname{PCok}_{\mathcal{T}}(g) \to t(X)$ such that $h'' \circ g^C = h'$. Finally, $h = (\varepsilon_X \circ h'') \circ g^C$.

The dual also holds.

3 AXIOMATIZATION

3

3 Axiomatization

Definition 2. Let \mathcal{X} be an additive category with pseudokernels and pseudocokernels, a *compatible* torsion pair $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ in \mathcal{X} consists of the two pairs $\mathbb{t}_1 = (\mathcal{T}_1, \mathcal{F}_1)$ and $\mathbb{t}_2 = (\mathcal{T}_2, \mathcal{F}_2)$ of full subcategories of \mathcal{X} satisfying the following axioms:

- (CT1) $\mathbb{t}_1 = (\mathcal{T}_1, \mathcal{F}_1)$ and $\mathbb{t}_2 = (\mathcal{T}_2, \mathcal{F}_2)$ are respectively a left functorial and a right functorial torsion pair
- (CT2) $\mathcal{T}_2 \subseteq \mathcal{T}_1$ (equiv. $\mathcal{F}_1 \subseteq \mathcal{F}_2$)
- (CT3) Any morphism $g: T_1 \to T_1'$ in \mathcal{T}_1 admits a pseudocokernel $g^C: T_1' \to \operatorname{PCok}_{\mathcal{X}}(g)$, with $T_1'':=\operatorname{PCok}_{\mathcal{X}}(g) \in \mathcal{T}_1$, such that

$$0 \longrightarrow (T_1'',-)_{|\mathcal{F}_2} \stackrel{(g^C,-)}{\longrightarrow} (T_1',-)_{|\mathcal{F}_2} \stackrel{(g,-)}{\longrightarrow} (T_1,-)_{|\mathcal{F}_2}$$

is an exact sequence of functors.

(CT3)*Dual of (CT3).

Notation. In the case of a compatible torsion pair $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ in \mathcal{X} , we have the adjoint pairs

$$(i_1, t_1): \mathcal{T}_1 \xleftarrow{i_1} \mathcal{X}$$
 and $(t_2, j_2): \mathcal{F}_2 \xleftarrow{t_2} \mathcal{X}$

In this case there are also the counit $\varepsilon_{1,M}: t_1(M) \to M$ and the unit $\lambda_{2,M}: M \to f_2(M)$. The heart of \mathbb{I} is defined as $\mathcal{H} = \mathcal{H}_{\mathbb{I}} := \mathcal{T}_1 \cap \mathcal{F}_2$.

Lemma 7. Let $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ be a compatible torsion pair in \mathcal{X} . Then the following statements hold true.

- (a) $\mathcal{F}_1 \cap \mathcal{T}_2 = 0$,
- (b) $f_2(\mathcal{T}_1) \subseteq \mathcal{H}$ and $t_1(\mathcal{F}_2) \subseteq \mathcal{H}$.

Proof. (a) Since $\mathcal{T}_2 \subseteq \mathcal{T}_1$, we have $\mathcal{F}_1 \cap \mathcal{T}_2 \subseteq \mathcal{F}_1 \cap \mathcal{T}_1 = 0$.

(b) Let $T_2 \in \mathcal{T}_2$ and $F_2 \in \mathcal{F}_2$. Then,

$$\operatorname{Hom}_{\mathcal{X}}(T_2, t_1(F_2)) \cong \operatorname{Hom}_{\mathcal{X}}(T_2, F_2) = 0.$$

Hence, $t_1(F_2) \in \mathcal{T}_2^{\perp} = \mathcal{F}_2$. An analogous proof shows that $f_2(\mathcal{T}_1) \subseteq \mathcal{T}_1$.

Proposition 8. Let $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ be a compatible torsion pair in \mathcal{X} and $f : H_1 \to H_2$ be a morphism in \mathcal{H} . Then

(a) if $f^C: H_2 \to T_1$ is the pseudocokernel of f, given by (CT3) and $\lambda_{2,T_1}: T_1 \to f_2(T_1)$, then

$$\operatorname{Coker}(H_1 \xrightarrow{f} H_2) = (H_2 \xrightarrow{\tilde{f}^C} f_1(T_1))$$

in \mathcal{H} , where $\tilde{f}^C := \lambda_{2,T_1} \circ f^C$;

(b) if $f^K: F_2 \to H_1$ is the pseudokernel of f, given by (CT3)* and $\varepsilon_{1,F_2}: t_1(F_2) \to F_2$,

$$\operatorname{Ker}(H_1 \xrightarrow{f} H_2) = (t_1(F_2) \xrightarrow{\tilde{f}^K} H_1)$$

in \mathcal{H} , where $\tilde{f}^K = f^K \circ \varepsilon_{1,F_2}$.

3 AXIOMATIZATION 4

Proof. (a) Let $g: H_2 \to H$ in \mathcal{H} such that gf = 0. And consider the solid part of the following diagram

$$H_1 \xrightarrow{f} H_2 \xrightarrow{f^C} T_1 \xrightarrow{\lambda_2, T_1} f_2(T_1)$$

$$\downarrow^g f' f'' f''$$

$$H$$

with $T_1 \in \mathcal{T}_1$ and $f_2(T_1) \in \mathcal{H}$ (by lemma 7). Since $H \in \mathcal{H} \subseteq \mathcal{F}_2$, by (CT3) there is a unique $f': T_1 \to H$ such that $f'f^C = g$. By Remark 2(a), there is a $f'': f_2(T_1) \to H$ making the diagram commute. Hence, $g = f'' \circ \tilde{f}^C$.

As for unicity, let $r: f_2(T_1) \to H$, such that $g = r \circ \tilde{f}^C$. Then, $(f'' \circ \lambda_{2,T_1}) \circ f^C = (r \circ \lambda_{2,T_1}) \circ f^C$, so $f'' \circ \lambda_{2,T_1} = r \circ \lambda_{2,T_1}$ by **(CT3)**, and f'' = r by Remark 2(a)

(b) Dual.

Proposition 9. Let $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ be a compatible torsion pair in \mathcal{X} . Then, for any $f: H \to H'$ in \mathcal{H} we have that:

- (a) f is a monomorphism in \mathcal{H} if and only if there is a pseudokernel PKer $\mathcal{F}_2(f) \in \mathcal{F}_1$;
- (b) f is an epimorphism in \mathcal{H} if and only if there is a pseudocokernel $PCok_{\mathcal{T}_1}(f) \in \mathcal{T}_2$.

Proof. (a) Let $f: H \to H'$ be a morphism in \mathcal{H} . By item (b) there is a diagram

$$F_{2} \xrightarrow{f^{K}} H \xrightarrow{f} H'$$

$$\downarrow^{\varepsilon_{1},F_{2}} \downarrow^{f^{K}}$$

$$\downarrow^{t_{1}F_{2}}$$

with Ker $(H \xrightarrow{f} H') = (t_1(F_2) \xrightarrow{\tilde{f}^K} H)$.

Assume that f is a monomorphism, then $t_1(F_2) = 0$, so $0 = \operatorname{Hom}_{\mathcal{X}}(Z, t_1(F_2)) \cong \operatorname{Hom}_{\mathcal{X}}(Z, F_2)$ for all $Z \in \mathcal{T}_1$. Hence, $F_2 \in \mathcal{F}_1$.

Conversely, let $f': F_1 \to H$ be a pseudokernel of f in \mathcal{F}_2 , with $F_1 \in \mathcal{F}_1$. Consider the solid part of the diagram

Since f^K and f' are pseudokernel of f in \mathcal{F}_2 , there exist u and v such that $f' = f^K \circ v$ and $f^K = f' \circ u$. Therefore, $f^K = f^K \circ v \circ u$, and so $\tilde{f}^K = f^K \circ \varepsilon_{1,F_2} = f^K \circ v \circ u \circ \varepsilon_{1,F_2}$. Notice that $u \circ \varepsilon_{1,F_2} = 0$ since $\operatorname{Hom}_{\mathcal{X}}(\mathcal{T}_1, \mathcal{F}_1) = 0$. Thus, f has the zero morphism as its kernel in \mathcal{H} , i.e. f is a monomorphism.

(b) Dual.

Definition 3. A compatible torsion pair $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ in \mathcal{X} is strong if the following axioms hold:

(CT4) Let $f: H_1 \to H_2$ in \mathcal{H} be such that there is a pseudokernel PKer $\mathcal{F}_2(f) \in \mathcal{F}_1$. Then, for the commutative diagram

$$H_1 \xrightarrow{f} H_2 \xrightarrow{f^C} T_1 := \operatorname{PCok}_{\mathcal{X}}(f)$$

$$\downarrow^a \qquad \qquad \downarrow \qquad \qquad \downarrow^{\lambda_{2,T_1}}$$

$$t_1(F)_2 \xrightarrow{\varepsilon_{1,F_2}} F_2 := \operatorname{PKer}_{\mathcal{X}}(g) \xrightarrow{g^K} H_2 \xrightarrow{g} f_2(T_1)$$

there exists a morphism $b: t_1(F_2) \to H_1$ such that $ab = \varepsilon_{1,F_2}$

(CT4)*Dual

With these axioms we can prove that the heart has kernels and cokernels.

Theorem 10. Let $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ be a compatible torsion pair in \mathcal{X} . Then, the following are equivalent:

- (a) \mathbb{t} is strong,
- (b) H is an abelian category.

Proof.

 $(a) \Rightarrow (b)$ By definition \mathcal{H} is an additive subcategory of \mathcal{X} . In order to prove that (a) implies (b) observe that \mathcal{H} is preabelian by proposition 8. To prove that \mathcal{H} is abelian, we just need to show that any monomorphism (resp. epimorphism) is the kernel (resp. cokernel) of some morphism in \mathcal{H} .

Check referencing in TeX

Let $f: H_1 \to H_2$ be a monomorphism in \mathcal{H} . By (CT3) and (CT3)* we can consider the solid part of the commutative diagram

$$H_1 \xrightarrow{f} H_2 \xrightarrow{f^C} T_1 = \operatorname{PCok}_{\mathcal{X}}(f)$$

$$\downarrow^a \qquad \qquad \downarrow^{\lambda_{2,T_1}}$$

$$t_1(F_2) \xrightarrow{\varepsilon_{1,F_2}} F_2 = \operatorname{PKer}_{\mathcal{X}}(g) \xrightarrow{g^K} H_2 \xrightarrow{g} f_2(T_1)$$

 \mathcal{F}_1 since f is a monomorphism in \mathcal{H} (by proposition 9(a)). So by (CT4) there is a map $b: t_1(F_2) \to H_1$ making the diagram commute. We claim that $\operatorname{Ker} g = f$. Let $\alpha: H \to H_2$ be a morphism such that $g\alpha = 0$. Since $F_2 = \operatorname{PKer}_{\mathcal{X}}(g)$, there is a morphism $\alpha': H \to F_2$ such that $g^K \alpha' = \alpha$. By remark

where $gf = \lambda_{2,T_1}(f^C f) = 0$, so there exists $a: H_1 \to F_2$. Note that $\exists PKer_{\mathcal{F}_2}(f) \in$

Add proper reference

 $H_{1} \xrightarrow{f} H_{2} \xrightarrow{f^{C}} T_{1} = \operatorname{PCok}_{\mathcal{X}}(f)$ $\downarrow^{a} \qquad \qquad \downarrow^{\lambda_{2,T_{1}}}$ $t_{1}(F_{2}) \xrightarrow{\varepsilon_{1,F_{2}}} F_{2} = \operatorname{PKer}_{\mathcal{X}}(g) \xrightarrow{g^{K}} H_{2} \xrightarrow{g} f_{2}(T_{1})$

2, α' factors as $\varepsilon_{1,F_2}\alpha''$, as in the diagram:

By setting $\alpha''' := b\alpha'' : H \to H_1$, we get $f\alpha''' = g^K ab\alpha'' = g^K \varepsilon_{1,F_2} \alpha'' = g^K \alpha' = \alpha$. Thus, any morphism $\alpha : H \to H_2$ such that $g\alpha = 0$ factors through f. To conclude that f is a kernel of g, it suffice to observe that f is a monomorphism, so α''' must be unique.

 $(b) \Rightarrow (a)$ Let \mathcal{H} be an abelian category. We only check (CT4) since the proof of (CT4)* is reference analogous.

Consider the solid part of the commutative diagram

$$H_1 \xrightarrow{f} H_2 \xrightarrow{f^C} T_1 = \operatorname{PCok}_{\mathcal{X}}(f)$$

$$\downarrow^a \qquad \qquad \downarrow \qquad \qquad \downarrow^{\lambda_{2,T_1}}$$

$$t_1(F^2) \xrightarrow{\xi_{1,F_2}} F_2 = \operatorname{PKer}_{\mathcal{X}}(g) \xrightarrow{g^K} H_2 \xrightarrow{g} f_2(T_1)$$

where $f: H_1 \to H_2$ is a morphism in \mathcal{H} such that $PKer_{\mathcal{F}_2}(f) \in \mathcal{F}_1$. Since f is a monomorphism in \mathcal{H} by 9(a) and \mathcal{H} is abelian, we have that f = Ker Coker (f). On Fix reference the other hand, by 2 (a) there is $\beta: H_1 \to t_1(F_2)$ such that $\varepsilon_{1,F_2}\beta = a$ completing the diagram above. Since f = Ker Coker (f), it follows that β is an isomorphism. Therefore, (CT4) follows by setting $b := \beta^{-1}$.

3.1The case of an abelian category

Let's consider the case $\mathcal{X} = \mathcal{A}$ of an Abelian category with two torsion pairs $\mathbb{t}_i = (\mathcal{T}_i, \mathcal{F}_i)$ for i = 1, 2. Consider $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$.

Remark 3. In the case of an Abelian category $\mathcal{X} = \mathcal{A}$, we have that \mathbb{I} is compatible if and only if $\mathcal{T}_2 \subseteq \mathcal{T}_1$.

Proof. Let $\mathcal{T}_2 \subseteq \mathcal{T}_1$, we need to show that item (CT1), item (CT3) and item (CT3)

- (CT1) It is well known that any torsion pair in an abelian category is functorial.
- (CT3) Let $g: T_1 \to T'_1$ be a morphism in \mathcal{T}_1 . Consider the cokernel morphism of g in \mathcal{A}

$$\operatorname{Coker}_{\mathcal{A}}(T_1 \xrightarrow{g} T_1') = (T_1' \xrightarrow{c_g} \operatorname{Coker}(g)).$$

Since \mathcal{T}_1 is closed under quotient objects, we get that $\operatorname{Coker}(g) \in \mathcal{T}_1$. Therefore, we can choose $c_g: T_1' \to \operatorname{Coker}(g)$ as $g^C: T_1' \to \operatorname{PCok}_{\mathcal{A}}(g)$.

(CT3)*Anologous to the previous.

Is there an explicit choice that we made somewhere before when we talk about PCok A?

Corollary 11. Let $\mathbb{E} = (\mathbb{E}_1, \mathbb{E}_2)$ be a torsion pair in \mathcal{A} with $\mathcal{T}_2 \subseteq \mathcal{T}_1$. Then, for $f: H_1 \to \mathbb{E}_2$ H_2 in \mathcal{H} , the following statements hold:

(a) the cokernel of f in \mathcal{H} is the composition of the morphisms

$$H_2 \xrightarrow{c_f} \operatorname{Coker}(f)^{\lambda_{2,\operatorname{Coker}(f)}} f_2(\operatorname{Coker}(f));$$

(b) the kernel of f in \mathcal{H} is the composition of the morphisms

$$t_1(\operatorname{Ker}(f)) \xrightarrow{\varepsilon_{1,\operatorname{Ker}(f)}} \operatorname{Ker}(f) \xrightarrow{k_f} H_1;$$

- (c) f is an epimorphism in \mathcal{H} if and only if $\operatorname{Coker}(f) \in \mathcal{T}_2$;
- (d) f is a monomorphism in \mathcal{H} if and only if $\operatorname{Ker}(f) \in \mathcal{F}_1$.

Proof. (a) and (b) follow from the proof of Remark 3 and proposition 8. (c)

this should be a remark, fix it

 \Leftarrow is trivial.

 \Rightarrow By proposition 9 (b) there exists $f^C: H_2 \to T_2$, where $T_2 = \operatorname{Coker}_{T_1}(f) \in \mathcal{T}_2$. Then, we have

$$H_{2} \xrightarrow{f^{C}} T_{2}$$

$$\downarrow v$$

$$Coker (f)$$
such that
$$\begin{cases} uf^{C} = c_{f}, \\ vc_{f} = f^{C}. \end{cases}$$

Hence, $uvc_f = c_f$, but c_f is epi, therefore uv = 1. Hence, $\operatorname{Coker}(f)$ is a direct summand of $T_2 \in \mathcal{T}_2$ so $\operatorname{Coker}(f) \in \mathcal{T}_2$.

(d) Similar to the previous proof.

Theorem 12. Let $\mathbb{t}_i = (\mathcal{T}_i, \mathcal{F}_i)$ be a torsion pair in an abelian category \mathcal{A} , for i = 1, 2, such that $\mathcal{T}_2 \subseteq \mathcal{T}_1$. Then, for $\mathcal{H} := \mathcal{T}_1 \cap \mathcal{F}_2$ the following statements are equivalent:

- (a) H is an abelian category.
- (b) The following conditions hold:
 - (b1) For any $f: H \to H'$ in \mathcal{H} , with $\operatorname{Ker}(f) \in \mathcal{F}_1$, we have that $\operatorname{Ker}(f) = 0$.
 - (b2) For any $f: H \to H'$ in \mathcal{H} , with $\operatorname{Coker}(f) \in \mathcal{T}_2$, we have that $\operatorname{Coker}(f) = 0$.
 - (b3) \mathcal{H} is closed under kernels (resp. cokernels) of epimorphisms (resp. monomorphisms) in \mathcal{A} .
- (c) \mathcal{H} is closed under kernels and cokernels in \mathcal{A} .

3.2 Related torsion pairs in triangulated categories

Let $\mathcal{X} = \mathcal{T}$ be a triangulated category on which idempotents split. We start by recalling the definition of a t-structure in \mathcal{T} .

Definition 4. A pair (A, B) of full subcategories of T is a t-structure in T if

- (a) $\mathbb{t} = (\mathcal{A}, \mathcal{B}[-1])$ is a torsion pair in \mathcal{T} , and
- (b) $\mathcal{A}[1] \subseteq \mathcal{A}$.

Remark 4. It is well known that any t-structure $(\mathcal{A}, \mathcal{B})$ in \mathcal{T} gives a functional torsion pair $\mathbb{t} = (\mathcal{A}, [-1])$ and $\mathbb{B}[-1] \subseteq \mathcal{B}$. Furthermore, \mathcal{A} and \mathcal{B} are closed under extensions and direct summands. Note that the t-structure $(\mathcal{A}, \mathcal{B})$ depends only on \mathcal{A} , since $\mathcal{B} = \mathcal{A}^{\perp}[1]$.

Definition 5. A related torsion pair $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ in triangulated category \mathcal{T} consists of the torsion pairs $\mathbb{t}_1 = (\mathcal{T}_1, \mathcal{F}_1)$ and $\mathbb{t} = (\mathcal{T}_2, \mathcal{F}_2)$ in \mathcal{T} such that $\mathcal{T}_1[1] \subseteq \mathcal{T}_2 \subseteq \mathcal{T}_1$.

Proposition 13. Let $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ be a related torsion pair in \mathcal{T} . Then

- (a) $(\mathcal{T}_1, \mathcal{F}_1[1])$ and $(\mathcal{T}_2, \mathcal{F}_2[1])$ are t-structures in \mathcal{T} ;
- (b) \mathbb{L} is a compatible torsion pair in \mathcal{T} ;
- (c) the heart $\mathcal{H}_{\mathbb{B}} := \mathcal{T}_1 \cap \mathcal{F}_2[1]$ is a preabelian category.

Definition 6. A related torsion pair $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ in the triangulated category \mathcal{T} is *strong* if for any morphism $f: H_1 \to H_2$, in $\mathcal{H} := \mathcal{T}_1 \cap \mathcal{F}_2$, and a distinguished triangle $Z \to H_1 \xrightarrow{f} H_2 \to Z[1]$, the following conditions hold true

(RST1) $Z \in \mathcal{F}_1$ if and only if $Z \in \mathcal{F}_2[-1]$;

(RST2) $Z[1] \in \mathcal{T}_2$ if and only if $Z \in \mathcal{T}_1$.

Theorem 14. Let $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ be a strongly related torsion pair in the triangulated category \mathcal{T} . Then, the heart $\mathcal{H} = \mathcal{H}_{\mathbb{t}}$ is an abelian category.

Example 1. Let $(\mathcal{A}, \mathcal{B})$ be a t-structure in \mathcal{T} . Consider $\mathbb{I}_1 := (\mathcal{A}, \mathcal{B}[-1])$ and $\mathbb{I}_2 := (\mathcal{A}[1], \mathcal{B})$. It is not hard to see that $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ is a strongly related torsion pair in \mathcal{T} . In this case, by theorem 14, we get that $\mathcal{H} = \mathcal{A} \cap \mathcal{B}$ is an abelian category (BBD theorem).

Example 2. Let \mathcal{D} be a triangulated category with two t-structures $(\mathcal{U}_1, \mathcal{U}_1^{\perp})$ and $(\mathcal{U}_2, \mathcal{U}_2^{\perp})$ such that $\mathcal{U}_1[1] \subseteq \mathcal{U}_2 \subseteq \mathcal{U}_1$. Then, these satisfy axioms (CT1)-(CT3),(CT3)*, hence $\mathcal{H} = \mathcal{U}_1 \cap \mathcal{U}_2^{\perp}$ has kernels and cokernels. Moreover, TFAE:

- 1.a (CT4) holds.
- 1.b If $V_1 \to H_1 \xrightarrow{f} H_2 \xrightarrow{+}$ is a distinguished triangle such that $H_1, H_2 \in \mathcal{H}$ and $V_1 \in \mathcal{U}_1^{\perp}$, then $V_1 \in \mathcal{U}_2^{\perp}[-1]$.

And, dually, there is an equivalence of the following:

- 2.a (CT4)* holds.
- 2.b If $H_1 \xrightarrow{f} H_2 \to U_2 \xrightarrow{+}$ is a distinguished triangle such that $H_1, H_2 \in \mathcal{H}$ and $U_2 \in \mathcal{U}_2$, then $U_2 \in \mathcal{U}_1[1]$.

Proof of the equivalences in example 2. Let's \mathcal{D} be a triangulated category with two tstructures as in example 3. The pseudocokernel of a morphism in \mathcal{U}_1 can be computed by taking the cone in \mathcal{D} , i.e. given a morphism $f: U_1 \to U_1'$ in \mathcal{U}_1 we can compute a pseudocokernel in \mathcal{U}_1 by completing f to a triangle

$$U_1 \xrightarrow{f} U_1' \to \operatorname{Cone}(f) \xrightarrow{+} .$$

Moreover, this pseudocokernel satisfies (CT3).

Now, assume that (CT1)-(CT3),(CT3)* are satisfied together with axiom 1.b, and consider the solid part of the diagram as in (CT4):

$$\operatorname{Cone}(f)[-1] \xrightarrow{f^K} H_1 \xrightarrow{f} H_1 \xrightarrow{f^C} \operatorname{Cone}(f)$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\lambda}$$

$$\tau_{\mathcal{U}_1}(V_2) \xrightarrow{\varepsilon} V_2 \xrightarrow{} H_2 \xrightarrow{} \tau^{\mathcal{U}_2^{\perp}} \operatorname{Cone}(f)$$

with $\operatorname{Cone}(f)[-1] \in \mathcal{U}_1^{\perp}$ and where the upper row is a distinguished triangle. By **1.b** then it belongs to $\mathcal{U}_2^{\perp}[-1]$, i.e. $\operatorname{Cone}(f) \in \mathcal{U}_2^{\perp}$, so λ is an iso, consequently α is an iso and so is ε , so there exist a map $\beta = \alpha^{-1} \circ \varepsilon$ making the diagram commute, that is (CT4) holds.

Conversely, assume that (CT1)-(CT3),(CT3)* are satisfied together with (CT4). Consider again the solid part of the diagram

with $\operatorname{Cone}(f)[-1] \in \mathcal{U}_1^{\perp}$. Neeman guarantees that α can be taken so that the square on \square Add reference the left is a pullback. Axiom (CT4) gives the existence of $\beta: \tau_{\mathcal{U}_1}(V_2) \to H_1$ such that $\alpha \circ \beta = \varepsilon$.

Since $\tau_{\mathcal{U}_1}$ is a functor, there is also a morphism $\tau_{\mathcal{U}_1}(\alpha) : \tau_{\mathcal{U}_1}(H_1) = H_1 \to \tau_{\mathcal{U}_1}(V_2)$ such that $\varepsilon \circ \tau_{\mathcal{U}_1}(\alpha) = \alpha$, hence $\varepsilon \circ \tau_{\mathcal{U}_1}(\alpha) \circ \beta = \varepsilon$. By the functoriality of the torsion pair $(\mathcal{U}_1, \mathcal{U}_1^{\perp})$, this means that $\tau_{\mathcal{U}_1}(\alpha) \circ \beta = 1_{\tau_{\mathcal{U}_1}(V_2)}$. Then, β is a section. Hence, we can write $\tau_{\mathcal{U}_1}(\alpha) : H_1 \to \tau_{\mathcal{U}_1}(V_2)$ as

$$\tau_{\mathcal{U}_1}(\alpha) : \tau_{\mathcal{U}_1}(V_2) \oplus H_1' \xrightarrow{(*\ 0)} \tau_{\mathcal{U}_1}(V_2)$$

for some $H_1' \underset{\oplus}{<} H_1$ such that α vanishes on H_1' . If we consider the solid part of the diagram

$$H'_{1} \downarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix} \downarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\operatorname{Cone}(\tau_{\mathcal{U}_{1}}(\alpha))[-1] \longrightarrow H_{1} \xrightarrow{\tau_{\mathcal{U}_{1}}(\alpha)} \tau_{\mathcal{U}_{1}}(V_{2}) \xrightarrow{-\stackrel{+}{\longrightarrow}}$$

we can construct the dashed arrow, and the fact that the triangle commutes means that $H'_1 \leq \operatorname{Cone}(\tau_{\mathcal{U}_1}(\alpha))[-1].$

Observe that $Cone(\alpha) = Cone(\lambda)[-1]$, since the square

$$\begin{array}{ccc}
\operatorname{Cone}(f)[-1] & \xrightarrow{f^K} & H_1 \\
\downarrow^{\lambda[-1]} & & \downarrow^{\alpha} \\
\tau_{\mathcal{U}_{2}^{\perp}}(\operatorname{Cone}(f))[-1] & \longrightarrow & V_2
\end{array}$$

is a pullback. Moreover, $\operatorname{Cone}(\lambda)[-1] = (\tau_{\mathcal{U}_2}(\operatorname{Cone}(f))[1])[-1] = \tau_{\mathcal{U}_2}(\operatorname{Cone}(f))$. Hence, $\operatorname{Cone}(\alpha) \in \mathcal{U}_2$ and $\tau^{\mathcal{U}_1^{\perp}}(\operatorname{Cone}(\alpha)) = 0$, that is, $\operatorname{Cone}(\alpha) \in \mathcal{U}_1$, and since there is a distinguished triangle

$$H_1 \xrightarrow{\alpha} V_2 \to \operatorname{Cone}(\alpha) \xrightarrow{+}$$

with H_1 , $\operatorname{Cone}(\alpha) \in \mathcal{U}_1$ it follows that $V_2 \in \mathcal{U}_1$. Hence, $\tau_{\mathcal{U}_1}(V_2) \cong V_2$. We can then write $V_2 \leq H_1$ and consider the commutative diagram

$$H_1 \cong H_1' \oplus V_2 \xrightarrow{\left(f' \ \hat{f}\right)} H_2$$

$$\downarrow^{(0\ 1)} \qquad \qquad \parallel$$

$$V_2 \longrightarrow H_2$$

so f'=0. Hence, the inclusion $\begin{pmatrix} 1\\0 \end{pmatrix}: H'_1 \to H'_1 \oplus V_2$ can be lifted to $\operatorname{Cone}(f)[-1]$ and $H'_1 \leqslant \operatorname{Cone}(f)[-1]$. Since $\operatorname{Cone}(f)[-1] \in \mathcal{U}_1^{\perp}$, so does H'_1 . Similarly, $H'_1 \in \mathcal{U}_1$ because $H_1 \in \mathcal{U}_1$. Hence, $H'_1 = 0$ and $\alpha: H_1 \to V_2$ is an iso. The same follows for λ . Therefore, $\operatorname{Cone}(f) \in \mathcal{U}_2^{\perp}$ which proves $\mathbf{1.b}$.

Example 3. Let R be any (associative with 1) ring. Consider the triangulated category $\mathcal{T} := \mathcal{D}(R)$. The derived category $\mathcal{D}(R)$ has the so called natural t-structure $(\mathcal{D}^{\leq 0}(R), \mathcal{D}^{\geq}(R))$ where

$$\mathcal{D}^{\leq 0}(R) := \{ X \in \mathcal{D}(R) \mid H^i(X) = 0 \text{ for } i > 0 \},$$

$$\mathcal{D}^{\geq 0}(R) := \{ X \in \mathcal{D}(R) \mid H^i(X) = 0 \text{ for } i < 0 \}.$$

For any ideal $I \leq R$, we have the TTF-triple $(C_I, \mathcal{T}_I, \mathcal{F}_I)$ associated to I, where

$$\begin{split} \mathcal{C}_I &:= \{ M \in \operatorname{Mod-}R \, | \, IM = M \}, \\ \mathcal{T}_I &:= \{ M \in \operatorname{Mod-}R \, | \, IM = 0 \} \cong \operatorname{Mod-}\frac{R}{I}, \\ \mathcal{F}_I &:= \{ M \in \operatorname{Mod-}R \, | \, Ix = 0 \text{ and } x \in M \Rightarrow x = 0 \}. \end{split}$$

Consider the t-structure (Happel-Reiten-Smalo) $(\mathcal{D}_{t_I}^{\leq 0}(R), \mathcal{D}_{t_I}^{\geq 0}(R))$ associated to the torsion pair $t_I = (\mathcal{C}_I, \mathcal{T}_I)$, where

$$\mathcal{D}_{t_I}^{\leq 0}(R) := \{ X \in \mathcal{D}^{\leq 0}(R) \, | \, H^0(X) \in \mathcal{C}_I \},$$

$$\mathcal{D}_{t_I}^{\geq 0}(R) := \{ X \in \mathcal{D}^{\geq 0}(R) \, | \, H^0(X) \in \mathcal{T}_I \}.$$

It can be seen that $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ where $\mathbb{t}_1 := (\mathcal{D}^{\leq 0}(R), \mathcal{D}^{\geq 1}(R))$ and $\mathbb{T}_2 := (\mathcal{D}_{t_I}^{\leq 0}(R), \mathcal{D}_{t_I}^{\geq 1}(R))$ is a strongly related torsion pair in $\mathcal{T} = \mathcal{D}(R)$.

3.3 Polishchuk correspondence

We recall the following bijection given by A. Polishchuk, and in order to do that, for a t-structure $(\mathcal{U}_1, \mathcal{U}_1^{\perp}[1])$ in \mathcal{T} , we have the cohomological functor $H_1^0: \mathcal{T} \to \mathcal{H}_1 := \mathcal{U}_1 \cap \mathcal{U}_1^{\perp}[1]$ $(\mathcal{H}_1 \text{ is an abelian category}).$

Proposition 15 (Polishchuk). Let $(\mathcal{U}_1, \mathcal{U}_1^{\perp}[1])$ be a t-structure in a triangulated category. Then we have a bijection (Polishchuk's bijection)

$$\left\{\begin{array}{c} \textit{torsion pairs in} \\ \mathcal{H}_1 = \mathcal{U}_1 \cap \mathcal{U}_1^{\perp}[1] \end{array}\right\} \stackrel{\text{Pol}_{\mathcal{H}_1}}{\longleftrightarrow} \left\{\begin{array}{c} \textit{t-structures } (\mathcal{U}_2, \mathcal{U}_2^{\perp}) \\ \textit{in } \mathcal{D} \textit{ satisfying} \\ \mathcal{U}_1[1] \subseteq \mathcal{U}_2 \subseteq \mathcal{U}_1 \end{array}\right\}$$

$$(\mathcal{X}, \mathcal{Y}) \longmapsto (\mathcal{U}_2, \mathcal{U}_2^{\perp}[1])$$

$$(\mathcal{U}_2 \cap \mathcal{H}_1, \mathcal{U}_2^{\perp} \cap \mathcal{H}_1) \longleftarrow (\mathcal{U}_2, \mathcal{U}_2^{\perp}[1])$$

where

$$\mathcal{U}_2 = \{ X \in \mathcal{U}_1 \mid H_1^0(X) \in \mathcal{X} \}$$

$$\mathcal{U}_2^{\perp} = \{ Y \in \mathcal{U}_1^{\perp} \mid H_1^0(Y) \in \mathcal{Y} \}.$$

Remark 5. (1) Note that $\operatorname{Pol}_{\mathcal{H}_1}^{-1}(\mathcal{U}_2, \mathcal{U}_2^{\perp}[1]) = (\mathcal{U}_2 \cap \mathcal{U}_1^{\perp}[1], \mathcal{H})$, where $\mathcal{H} := \mathcal{U}_1 \cap \mathcal{U}_2^{\perp}$.

(2) By (1), it follows that \mathcal{H} is a torsion free class in the abelian category $\mathcal{H}_1 := \mathcal{U}_1 \cap \mathcal{U}_1^{\perp}[1]$.

Theorem 16. Let $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ be a related torsion pair in a triangulated category \mathcal{T} . Then, the following statements are equivalent.

(a) For any distinguished triangle $V \to H_1 \xrightarrow{f} H_2 \xrightarrow{+}$, with f a morphism in $\mathcal{H} = \mathcal{H}_{\mathbb{t}} := \mathcal{T}_1 \cap \mathcal{F}_2$, we have that

$$V \in \mathcal{F}_1 \Rightarrow V[1] \in \mathcal{F}_2.$$

- (b) For any monomorphism $\alpha: H_1 \hookrightarrow H_2$, in the abelian category $\mathcal{H}_1 := \mathcal{T}_1 \cap \mathcal{F}_1[1]$, with $H_1, H_2 \in \mathcal{H}$, we have that $\operatorname{Coker}_{\mathcal{H}_1}(\alpha) \in \mathcal{H}$.
- (c) \mathcal{H} is closed under kernels and cokernels in the abelian category \mathcal{H}_1
- (d) \mathcal{H} is an abelian category.
- (e) For any epimorphism $H \to X$ in \mathcal{H}_1 , with $H \in \mathcal{H}$, we have that $X \in \mathcal{H}$ (i.e. \mathcal{H} is closed under quotients in \mathcal{H}_1).

Let t = (A, B) be a pair of full subcategories of the triangulated category T. We will use the following notation:

$$t[1] := (\mathcal{A}[1], \mathcal{B}[1]),$$
$$\bar{t} := (\mathcal{A}, \mathcal{B}[1]).$$

Note that \bar{t} is a t-structure in \mathcal{T} if and only if t is a torsion pair \mathcal{T} such that $\mathcal{A}[1] \subseteq \mathcal{A}$. Remark 6. Consider $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$, where $\mathbb{t}_i := (\mathcal{U}_i, \mathcal{U}_i^{\perp})$ for i = 1, 2. We have

1.
$$\mathcal{H}_{\mathbb{t}} := \mathcal{U}_1 \cap \mathcal{U}_2^{\perp}, \, \mathcal{H}_i := \mathcal{U}_i \cap \mathcal{U}_i^{\perp}[1],$$

2.
$$\mathbb{t}' := (\mathbb{t}_2, \mathbb{t}_1[1])$$

Note that

3. $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ is a related torsion pair in \mathcal{T}

$$\begin{array}{l} \Leftrightarrow \mathcal{U}_1[1] \subseteq \mathcal{U}_2 \subseteq \mathcal{U}_1 \\ \Leftrightarrow \mathcal{U}_2[1] \subseteq \mathcal{U}_1[1] \subseteq \mathcal{U}_2 \\ \Leftrightarrow \mathbb{E}' = (\mathbb{E}_2, \mathbb{E}_1[1]) \text{ is a related torsion pair in } \mathcal{T}. \end{array}$$

4. Let $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ is a related torsion pair in \mathcal{T} . In this case, we have

$$\begin{split} \mathcal{H}_{\mathbb{b}} &= \mathcal{U}_{1} \cap \mathcal{U}_{2}^{\perp}, \ \mathcal{H}_{\mathbb{b}'} = \mathcal{U}_{2} \cap \mathcal{U}_{1}^{\perp}[1], \\ \operatorname{Pol}_{\mathcal{H}_{1}}^{-1}(\bar{\mathbb{b}}_{2}) &= \operatorname{Pol}_{\mathcal{H}_{1}}^{-1}(\mathcal{U}_{2}, \mathcal{U}_{2}^{\perp}[1]) = (\mathcal{H}_{\mathbb{b}'}, \mathcal{H}_{\mathbb{b}}), \\ \operatorname{Pol}_{\mathcal{H}_{2}}^{-1}(\bar{\mathbb{b}}_{1}[1]) &= \operatorname{Pol}_{\mathcal{H}_{1}}^{-1}(\mathcal{U}_{1}[1], \mathcal{U}_{1}^{\perp}[2]) = (\mathcal{H}_{\mathbb{b}}[1], \mathcal{H}_{\mathbb{b}'}). \end{split}$$

Thus, $(\mathcal{H}_{\mathbb{L}'}, \mathcal{H}_{\mathbb{L}})$ is a torsion pair in the abelian category \mathcal{H}_1 , $(\mathcal{H}_{\mathbb{L}}[1], \mathcal{H}_{\mathbb{L}'})$ is a torsion pair in the abelian category \mathcal{H}_2 .

Corollary 17. Let $\mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2)$ be a related torsion pair in a triangulated category \mathcal{T} . Then, the following statements are equivalent:

- (a) For any distinguished triangle $V \to H_1 \xrightarrow{f} H_2 \xrightarrow{+}$, with f a morphism in $\mathcal{H}_{\mathbb{P}'} = \mathcal{T}_2 \cap \mathcal{F}_1[1]$, we have that $V \in \mathcal{F}_2$ implies $V \in \mathcal{F}_1$.
- (b) For any monomorphism $\alpha: H_1 \hookrightarrow H_2$, in the abelian category $\mathcal{H}_2 := \mathcal{T}_2 \cap \mathcal{F}_2[1]$, with $H_1, H_2 \in \mathcal{H}_{\mathbb{P}'}$, we have that $\operatorname{Coker}_{\mathcal{H}_2}(\alpha) \in \mathcal{H}_{\mathbb{P}'}$.
- (c) $\mathcal{H}_{\mathbb{R}'}$ is closed under kernels and cokernels in the abelian category \mathcal{H}_2 .
- (d) $\mathcal{H}_{\mathbb{L}'}$ is an abelian category.
- (e) $\mathcal{H}_{\mathbb{I}'}$ is closed under quotients in \mathcal{H}_2 .

We recall that a torsion pair $(\mathcal{T}, \mathcal{F})$ in an abelian category \mathcal{A} is cohereditary if the class \mathcal{F} is closed under quotients in \mathcal{A} .

Definition 7. For a triangulated category \mathcal{T} , we consider the following classes:

- 1. $RtAb(\mathcal{T}) := \{ \text{related torsion pairs } \mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2) \text{ in } \mathcal{T} \text{ s.t. } \mathcal{H}_{\mathbb{t}} \text{ is abelian} \};$
- 2.

$$t-\mathit{stCoh}(\mathcal{T}) := \left\{ \begin{array}{l} pairs \; (\overline{\mathbb{I}}_1,\tau) \; s.t. \; \overline{\mathbb{I}}_1 \; is \; a \; t\text{-structure in } \mathcal{T} \; and \; \tau \; is \; a \\ \text{cohereditary torsion pair in the abelian category} \\ \mathcal{H}_1 := \mathcal{U}_1 \cap \mathcal{U}_1^{\perp}[1] \end{array} \right\};$$

1'. $RtAb'(\mathcal{T}) := \{ \text{related torsion pairs } \mathbb{t} = (\mathbb{t}_1, \mathbb{t}_2) \text{ in } \mathcal{T} \text{ s.t. } \mathcal{H}_{\mathbb{t}'} \text{ is abelian} \};$

2'.

$$t-stCoh'(\mathcal{T}) := \left\{ \begin{array}{l} \mathrm{pairs}\; (\overline{\mathbb{I}}_2,\tau) \; \mathrm{s.t.} \; \overline{\mathbb{I}}_2 \; \mathrm{is} \; \mathrm{a} \; \mathrm{t-structure} \; \mathrm{in} \; \mathcal{T} \; \mathrm{and} \; \tau \; \mathrm{is} \; \mathrm{a} \\ \mathrm{cohereditary} \; \mathrm{torsion} \; \mathrm{pair} \; \mathrm{in} \; \mathrm{the} \; \mathrm{abelian} \; \mathrm{category} \\ \mathcal{H}_2 := \mathcal{U}_2 \cap \mathcal{U}_2^{\perp}[1] \end{array} \right\}.$$

Theorem 18. For a triangulated category \mathcal{T} , the following statements hold true.

(a) There is a bijective correspondence

$$RtAb(\mathcal{T}) \stackrel{\alpha}{\longleftarrow} t - stCoh(\mathcal{T})$$

$$\mathbb{t} \longmapsto (\bar{\mathbb{t}}_1, \operatorname{Pol}_{\mathcal{H}_1}^{-1}(\bar{\mathbb{t}}_2))$$

$$(\mathbb{t}_1, \mathbb{t}_2) \longleftarrow (\bar{\mathbb{t}}_1, \tau)$$

where
$$\overline{\mathbb{t}}_2 = \operatorname{Pol}_{\mathcal{H}_1}(\tau)$$
.

 $(b)\ \ There\ is\ a\ bijective\ correspondence$

$$RtAb'(\mathcal{T}) \xleftarrow{\alpha'} t - stCoh'(\mathcal{T})$$

$$\mathbb{t} \longmapsto (\overline{\mathbb{t}}_2, \operatorname{Pol}_{\mathcal{H}_2}^{-1}(\overline{\mathbb{t}}_1[1]))$$

$$(\mathfrak{k}_1,\mathfrak{k}_2) \longleftarrow (\overline{\mathfrak{k}}_2, au)$$

where $\bar{\mathbb{t}}_1 = \operatorname{Pol}_{\mathcal{H}_2}(\tau)[-1]$.

4 Induced torsion theories

In this section and the following we study the case of a torsion pair $(\mathcal{T}, \mathcal{F})$ in a (nice) category \mathcal{A} , such that there is a subcategory $\mathcal{W} \subseteq \mathcal{F}$ of \mathcal{A} for which it makes sense to consider $\underline{\mathcal{A}} = \mathcal{A}/\mathcal{W}$. The goal is to describe the cases where $(\mathcal{T}, \mathcal{F})$ induces a torsion pair in $\underline{\mathcal{A}}$.

add a better description of the setting

4.1 Torsion pairs in A

Lemma 19. Let \mathcal{A} be a (nice) category and $\mathcal{W} \subseteq \mathcal{A}$ a subcategory such that $\operatorname{add}(\mathcal{W}) = \mathcal{W}$. If $(^{\perp}\mathcal{F}, \mathcal{F})$ is a torsion pair such that $\mathcal{W} \subseteq \mathcal{F}$, then $(^{\perp}(\underline{\mathcal{F}}), \underline{\mathcal{F}})$ is an orthogonal pair in $\underline{\mathcal{A}} = \frac{\mathcal{A}}{\mathcal{W}}$.

Lemma 20. Let \mathcal{A} and $\mathcal{W} \subseteq \mathcal{A}$ be defined as above and let $(^{\perp}\mathcal{F}, \mathcal{F})$ be a torsion pair in \mathcal{A} such that $\mathcal{W} \subseteq \mathcal{F}$. Call $p: \mathcal{A} \to \underline{\mathcal{A}}$ the quotient functor. The following assertions hold:

1.
$$p^{-1}(^{\perp}(\underline{\mathcal{F}})) = \operatorname{add}(^{\perp}\mathcal{F} * \mathcal{W}).$$

2. If W is precovering in \mathcal{F} , then $(^{\perp}\mathcal{F}, \mathcal{F})$ is a torsion pair in $\underline{\mathcal{A}}$.

Lemma 21. Let \mathcal{A} be a (nice) category with a torsion pair $(^{\perp}\mathcal{F}, \mathcal{F})$ and a precovering class $\mathcal{W} \subseteq \mathcal{F}$ such that for any $F \in \mathcal{F}$ there is an admissible sequence

$$F' \to W \to F$$

such that $F' \in \mathcal{F}$.

Then the torsion pair $(\perp(\underline{\mathcal{F}}),\underline{\mathcal{F}})$ is left functorial.

Recall that the truncation $t: \underline{A} \to {}^{\perp}(\underline{\mathcal{F}})$ is given by the following construction. Let $M \in \mathcal{A}$ be any object, take an admissible sequence

$$T_M \to M \to F^M$$

with $T_M \in {}^{\perp}\mathcal{F}$ and $F^M \in \mathcal{F}$. Moreover, consider $W_F \to F^M$ with $W_M \in \mathcal{W}$ as before, and take the admissible pullback:

$$\begin{array}{ccc}
t(M) & \longrightarrow W_F \\
\downarrow & & \downarrow \\
M & \longrightarrow F
\end{array}$$

Then, t restricts to a functor $t: \mathcal{A} \to {}^{\perp}\mathcal{F}$.

In order to prove that $(^{\perp}(\underline{\mathcal{F}}), \underline{\mathcal{F}})$ is left functorial we need to show that \underline{t} admits a right adjoint.

Proof. Let $M \in \mathcal{A}$ and consider $M \to F^M$ and $W_F \to F^M$ as above. For any $T \in {}^{\perp}\mathcal{F} * \mathcal{W}$ consider any morphism $f: T \to M$. Since $T \to M \to F^M$ is 0 in $\underline{\mathcal{A}}$ we that the solid part of the following diagram commutes.

Since $W_F \to F^M$ is a precover there is a morphism $\phi: W \to W_F$ making the diagram commute, and since the square is an admissible pullback there is a morphism $\psi: T \to t(M)$ making the diagram commutative.

Hence, $\mathcal{A}(T,t(M)) \to \mathcal{A}(T,M)$ is surjective. To conclude the proof we need to show that when restricted to $\underline{\mathcal{A}}$ it becomes an iso. Assume that there are two morphisms $\underline{\psi}$ and ψ' in $\underline{\mathcal{A}}$ such that the following commutes:

$$T \xrightarrow{\underline{\psi}} t(M)$$

$$T \xrightarrow{\underline{\psi}'} \downarrow$$

$$M$$

So, if we call $h = \psi - \psi'$ in \mathcal{A} , we have that $T \xrightarrow{h} t(M) \to M$ factors through W so that we have that the solid part of the following diagram commutes:

where $\eta: W \to W_F$ comes from the fact that $W_F \to F^M$ is a precover, and γ from the fact that the square is an admissible pullback, and they make the complete diagram commute.

Let's call $h' = \gamma \circ p$, then composing both h and h' with $\rho : t(M) \to M$ gives the same morphism g. Hence, $\rho \circ (h - h') = 0$. But since $F' \xrightarrow{i} t(M) \to M$ is an admissible sequence we have the following exact sequence of abelian groups:

$$A(T,F) \longrightarrow A(T,t(M)) \longrightarrow A(T,M)$$

$$h - h' \longmapsto 0$$

So there is a map $k: T \to F'$ such that $i \circ k = h - h'$, but $\underline{k} = 0$ so $\underline{h} = \underline{h'} = 0$, hence $\psi - \psi' = 0$ which proves that $\underline{\mathcal{A}}(T, t(M)) \cong \underline{\mathcal{A}}(T, M)$.

 $\overline{\text{The}}$ naturality of the isomorphism in T and M is clear.

4.2 Abelian categories

Now we work in an abelian category with two torsion pairs $(\mathcal{T}_1, \mathcal{F}_1)$ and $(\mathcal{T}_2, \mathcal{F}_2)$ such that $t_2(\mathcal{F}_1) \subseteq \mathcal{F}_1$ and $f_1(\mathcal{T}_2) \subseteq \mathcal{T}_2$ and let $\mathcal{W} = \mathcal{T}_2 \cap \mathcal{F}_1$.

Recall that $(\underline{\mathcal{T}}_1 * \underline{\mathcal{W}}, \underline{\mathcal{F}}_1)$ (resp. $(\underline{\mathcal{T}}_2, \underline{\mathcal{W}} * \underline{\mathcal{F}}_2)$) is a left (resp. right) functorial torsion pair in $\underline{\mathcal{A}} = \frac{\mathcal{A}}{\mathcal{W}}$. Moreover, they satisfy $TC1 - 3, 3^*$.

Lemma 22. The inclusion $i: \mathcal{T}_1 * \mathcal{W} \hookrightarrow \mathcal{A}$ admits a right adjoint \hat{t} .

Proof. For $M \in \mathcal{A}$ consider the exact sequence

$$0 \to T_1 \to M \to f_1(M) \to 0$$

with $T_1 \in \mathcal{T}_1$ and $f_1(M) \in \mathcal{F}$. Take $t_2 f_1(M) \hookrightarrow f_1(M)$ and observe that $t_2 f_1(M) \in \mathcal{W}$. Call it W_M and take the pullback diagram

$$\widehat{t}(M) \longrightarrow W_M
\downarrow \qquad \qquad \downarrow
M \longrightarrow f_1(M)$$

then $\widehat{t}(M) \in \mathcal{T}_1 * \mathcal{W}$.

Now for any morphism $\widehat{T} \to M$ with $\widehat{T} \in \widehat{\mathcal{T}}$ the solid part of the following diagram commutes

 $\widehat{T} \to M$ is mono by Buhler prop. 2.14: pullback of monic along epic is monic

Since the composition $T_1 \to \widehat{T} \to M \to f_1(M)$ is zero, there exists the dashed morphism $W_1 \to f_1(M)$, which lifts to the morphism $W_1 \to W$ (since $W \to f_1(M)$ is a W-precover). Hence, there is a morphism $\widehat{T} \to \widehat{t}(M)$ making the diagram commutative. This means that

$$\mathcal{A}(\widehat{T},\widehat{t}(M)) \xrightarrow{\mathcal{A}(\widehat{T},\widehat{t}(M)\to M)} \mathcal{A}(\widehat{T},M)$$

is surjective. But it is also injective, since $\operatorname{Ker}(\widehat{t}(M) \to M) = 0$. Hence, it is an iso and \widehat{t} is right adjoint to i.

functoriality should follow immediately

Lemma 23. Let $\widehat{T}_1 \in \mathcal{T}_1 * \mathcal{W}$, i.e. there is an exact sequence

$$0 \to t_1(\widehat{T}_1) \to \widehat{T}_1 \to W_1 \to 0.$$

If

$$\widehat{T}_1 \xrightarrow{p} W_1
\downarrow^g \qquad \qquad \downarrow^{g'}
\widehat{T}'_1 \xrightarrow{q} N$$

is a pushout diagram, then $N \in \mathcal{T}_1 * \mathcal{W}$.

Proof. Since it is a pushout, $\widehat{T}'_1 \to N$ is epi, then consider $\widehat{t}(N)$ and the following commutative diagram

where the map $\widehat{T}'_1 \to \widehat{t}(N)$ is given by the adjunction (i, \widehat{t}) . Since $q = \varepsilon \circ \rho$ is epi, then ε is epi. But it is mono, so it is an isomorphism, hence $N \in \mathcal{T}_1 * \mathcal{W}$.

Lemma 24. In the same notation as the previous lemma, if $\varphi: N \to P$ is any map s.t. $\varphi \circ q = \underline{0}$ in $\underline{\mathcal{A}}$, then φ factors through \mathcal{W} .

Proof. Since $\underline{\varphi} \circ \underline{q} = \underline{0}$ it means that $\varphi \circ q$ factors through \mathcal{W} , hence we have that the solid part of the following diagram is commutative.

Since $t_1(T_1') \to \widehat{T}_1 \to \widehat{T}_1' \to W$ is zero, there is the dashed morphism $W_1 \to W$ making the diagram commute. Since the square on the right is a pushout there is a map $N \to W$, and again the diagram commutes. Hence φ factors through W.

REFERENCES 16

Lemma 25. If \mathcal{H} is balanced (i.e. mono and epi implies iso), then whenever $f: H_1 \to H_2$ is mono and epi in \mathcal{H} , there are bicartesian squares in \mathcal{A}

$$\begin{array}{cccc}
F_1 & \longrightarrow & H_1 & \longrightarrow & W_1 \\
\downarrow & & \downarrow f & & \downarrow \\
W_2 & \longrightarrow & H_2 & \longrightarrow & T_2
\end{array}$$

where $W_1 = f_1(H_1)$ and $W_2 = t_2(H_2)$. In particular there is an exact sequence

$$0 \to F_1 \to W_1 \oplus W_2 \to T_2 \to 0.$$

Proof. We can build the pullback on the left and the pushout on the right as usual

$$F_{1} \xrightarrow{f^{K}} H_{1} \xrightarrow{r} W_{1}$$

$$\downarrow u \qquad \qquad \downarrow f \qquad \qquad \downarrow s$$

$$W_{2} \xrightarrow{v} H_{2} \xrightarrow{f^{C}} T_{2}$$

$$(1)$$

We will only prove that the square on the right hand side is a pullback, since the proof that the left square is a pushout is dual. The statetment that the square on the right is a pushout is equivalent to saying that there is an exact sequence

$$H_1 \xrightarrow{\left(f\atop r\right)} H_2 \oplus W_1 \xrightarrow{\left(f^C\ s\right)} T_2 \longrightarrow 0$$
 (2)

Since f is both a mono and an epi in \mathcal{H} , then it is an iso and hence both a section and a retraction. Consider $g: H_2 \to H_1$ such that $\underline{g} \circ \underline{f} = \underline{1_{H_1}}$, that is there are maps $\alpha: H_1 \to W$ and $\beta: W \to H_1$ such that

$$H_1 \xrightarrow{\begin{pmatrix} f \\ \alpha \end{pmatrix}} H_2 \oplus W \xrightarrow{\begin{pmatrix} g & \beta \end{pmatrix}} H_1$$

is commutative in A, and hence H_1 is a direct summand of $H_2 \oplus W$. We can actually choose $W = W_1$, in fact consider the commutative diagram

$$H_{1} \xrightarrow{\begin{pmatrix} f \\ r \end{pmatrix}} H_{2} \oplus W_{1} \xrightarrow{\begin{pmatrix} f^{C} - s \end{pmatrix}} T_{2}$$

$$\downarrow \qquad \qquad \downarrow \begin{pmatrix} 1 & 0 \\ 0 & \rho \end{pmatrix}$$

$$H_{1} \xrightarrow{\begin{pmatrix} f \\ \alpha \end{pmatrix}} H_{2} \oplus W \xrightarrow{\begin{pmatrix} g & \beta \end{pmatrix}} H_{1}$$

where $\rho: W_1 \to W$ comes from the fact that $H_1 \to W_1$ is a W-preenvelope. Hence, $\begin{pmatrix} g \beta \end{pmatrix} \circ \begin{pmatrix} 1 & 0 \\ 0 & \rho \end{pmatrix} \circ \begin{pmatrix} f \\ r \end{pmatrix} = 1_{H_1}$, that is H_1 is a direct summand of $H_2 \oplus W_1$. Moreover, it means that $\begin{pmatrix} f \\ r \end{pmatrix}$ is a section, that is the sequence in (2) is also exact on the left and the corresponding square in (1) is a pullback diagram.

Since both squares in (1) are bicartesian, it follows that the square

$$\begin{array}{ccc}
F_1 & \longrightarrow & W_1 \\
\downarrow & & \downarrow \\
W_2 & \longrightarrow & T_2
\end{array}$$

is bicartesian as well.

References

[1] Hiroyuki Nakaoka. "General heart construction on a triangulated category (I): unifying t-structures and cluster tilting subcategories". In: *Applied Categorical Structures* 19.6 (2011), pp. 879–899.