学院	专业	成绩				
			姓名			
题号 一 得分	二三三	四	五.	六	七	八
一、填空题: (每题 3 分, 共 30 分)						
$1、行列式 D = \begin{vmatrix} 0 \\ -b \\ d \\ f \end{vmatrix}$	$\begin{vmatrix} 0 & a & 0 \\ 0 & c & 0 \\ 0 & 0 & -e \\ g & h & i \end{vmatrix} = \underline{\hspace{1cm}}$				o	
2、设 α_1 , α_2 , α_3 , β_1 , β_2 均为 4 维列向量,且 $A = (\alpha_1, \alpha_2, \alpha_3, \beta_1)$,						
$B = (\alpha_1, \alpha_2, \beta_1)$	β_2 , α_3), $C = (\alpha_3)$	α_3 , α_2 ,	α_1, β_1	$+\beta_2$),	<mark>如果</mark> A =	=a, B =b,
则 <mark>C</mark> =						
3、设方阵 A 满足 $A^2 + 2A + 3E = 0$,则 $A^{-1} = $ 。						
4、设向量 $\alpha = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\beta = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$,矩阵 $A = \alpha \beta^T$,则 $A^6 = \underline{\hspace{1cm}}$ 。						
5、设 $A = \begin{pmatrix} 1 & 2 & -2 \\ 4 & t & -3 \\ 3 & -1 & 1 \end{pmatrix}$,并且 A 的列向量组线性相关,则 $t = $ 。						
6、设 $A = \left(a_{ij}\right)_{3\times 3}$,	$B = \begin{pmatrix} a_{21} \\ a_{11} \\ a_{31} + a_{11} & a_{32} \end{pmatrix}$	a_{22} a_{12} a_{12} a_{12}	$ \begin{array}{c} a_{23} \\ a_{13} \\ a_{33} + a_{13} \end{array} $,存在统	矩阵 P 使	eta PA = B eta
则 <i>P</i> =						
7、如果 <mark>n</mark> 维向量组	$\alpha_1, \alpha_2, \cdots, \alpha_n$ 线化	生尤美,	当 _n 阶实	(方阵A)	满足	
条件时,向量组	$A\alpha_1, A\alpha_2, \cdots, A\alpha_n$	u _n 也线性	:无关。			
8、设 A 为 n 阶可逆矩阵,其行向量可由 β_1 , β_2 ,…, β_s 线性表出,则 s 满足。						
9、设 <i>n</i> 阶矩阵 <i>A</i> 的名 的通解为	各行元素之和均为	了0,且r((A) = n - 1	1,则齐次	次线性方	程组 Ax = 0

苏州大学《线性代数》课程试卷库(第十四卷)共4页

、设入为n阶非奇异方阵A的一个特征值,则 $(A^*)^3 - 2E$ 必有特征值

二、(10 分) 计算行列式
$$D = \begin{vmatrix} -a_1 & a_1 & 0 & \cdots & 0 & 0 \\ 0 & -a_2 & a_2 & \cdots & 0 & 0 \\ 0 & 0 & -a_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -a_n & a_n \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{vmatrix}$$

三、(10分) 设
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 3 & 0 \\ 1 & 2 & 1 & 4 \end{pmatrix}$$
, 求 A^{-1}

四、(10 分)设A,B,C为三阶可逆方阵,

(1) 化简等式 $(BC^{T}-E)^{T}(AB^{-1})^{T}+[(BA^{-1})^{T}]^{-1};$

(2) 当
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
, $C = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$ 时,求出上式结果.

五、(10分) 求下列向量组的秩和一个极大无关组,并把其余向量用极大无关组线性表示.

$$\alpha_{1} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ -4 \end{pmatrix}, \quad \alpha_{2} = \begin{pmatrix} 2 \\ 3 \\ -4 \\ 1 \end{pmatrix}, \quad \alpha_{3} = \begin{pmatrix} 2 \\ -5 \\ 8 \\ -3 \end{pmatrix}, \quad \alpha_{4} = \begin{pmatrix} 5 \\ 26 \\ -9 \\ -12 \end{pmatrix}, \quad \alpha_{5} = \begin{pmatrix} 3 \\ -4 \\ 1 \\ 2 \end{pmatrix}$$

六、(10 分) 已知方程组
$$\begin{cases} (1-\lambda)x_1 + (1-\lambda)x_2 + & x_3 = 1 + \lambda \\ (1-2\lambda)x_1 + (1-\lambda)x_2 + & x_3 = 1 \\ x_1 + & x_2 + (1-\lambda)x_3 = 1 \end{cases}$$

- (1) 问λ为何值时,方程组有唯一解、无解或有无穷多解?
- (2) 在有无穷多解时求出通解.

七、(10 分) 问
$$a$$
 取何值时矩阵 $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ -2 & a & 3 \end{pmatrix}$ A 可对角化

八、 $(10\,

ota)$ 设 $\lambda_1 = 1$, $\lambda_2 = -1$ 是正交矩阵 A 的两个特征值, α , β 是对应的特征 向量,证明: $\alpha = \beta$ 正交