

# ΗΥ360 Αρχεία και Βάσεις Δεδομένων

Διδάσκων: Δ. Πλεξουσάκης

Συναρτησιακές Εξαρτήσεις Αξιώματα Armstrong Ελάχιστη κάλυψη

Φροντιστήριο



- Οι Συναρτησιακές εξαρτήσεις είναι περιορισμοί ακεραιότητας πάνω σε σύνολα γνωρισμάτων των σχέσεων ενός σχήματος.
- Σε οποιαδήποτε σχέση R, αν α ⊆ Head(R) και β ⊆ Head(R) η συναρτησιακή εξάρτηση <math>α → βκαθορίζει ότι για οποιεσδήποτε δύο πλειάδες t1 και t2 της R:

Av t1[α] = t2[α], τότε t1[β] = t2[β].

| # | DeptNo | SupSSN | City      | # |
|---|--------|--------|-----------|---|
|   | 2      | 1234   | N.York    |   |
|   | 3      | 5432   | Paris     |   |
| ( | 2      | 1234   | Barcelona |   |
|   | 3      | 5432   | N.York    |   |
|   | 2      | 1234   | Chicago   |   |



- Έστω ότι ο διευθυντής τμήματος είναι μόνο σε ένα τμήμα. Και κάθε τμήμα έχει έναν διευθυντή. Ένα τμήμα είναι σε πολλές πόλεις.
- Ισχύει η συναρτησιακή εξάρτηση SupSSn → DeptNo
  - Το SupSSn καλείται προσδιοριστικό
- Αλλά δεν ισχύει SupSSn → City
- Ούτε ισχύει DeptNo → City

| # | DeptNo | SupSSN | City      | # |
|---|--------|--------|-----------|---|
|   | 2      | 1234   | N.York    |   |
|   | 3      | 5432   | Paris     |   |
|   | 2      | 1234   | Barcelona |   |
|   | 3      | 5432   | Paris     |   |
|   | 2      | 1234   | Chicago   |   |



- Έστω ότι ο διευθυντής τμήματος διευθύνει μόνο ένα τμήμα σε κάποια πόλη.
- Ισχύει η συναρτησιακή εξάρτηση {City, DeptNo } → SupSSN
  - Το {City, DeptNo } προσδιορίζει συναρτησιακά το SupSSN.
  - Το SupSSN εξαρτάται συναρτησιακά από το {City, DeptNo }.
- Αλλά δεν ισχύει SupSSn → { City, DeptNo}
- Ούτε ισχύει {SupSSN, DeptNo } → City

| # | DeptNo | SupSSN | City      | # |
|---|--------|--------|-----------|---|
|   | 2      | 1234   | N.York    |   |
|   | 2      | 1234   | Moscow    |   |
|   | 4      | 1234   | Chicago   |   |
|   | 3      | 5432   | N.York    |   |
|   | 2      | 1234   | Barcelona |   |



- Οι συναρτησιακές εξαρτήσεις έχουν να κάνουν με <u>όλ</u>α τα πιθανά έγκυρα στιγμιότυπα μιας βάσης.
  - δεν εξάγεται μια συναρτησιακή εξάρτηση που ικανοποιεί απλά κάποιο ή κάποια από τα πιθανά στιγμιότυπα μιας σχέσης.
- Οι συναρτησιακές εξαρτήσεις απαιτούν η τιμή ορισμένων γνωρισμάτων να προσδιορίζει μοναδικά την τιμή άλλων γνωρισμάτων.
- Οι περιορισμοί του κύριου κλειδιού αποτελεί μια ειδική περίπτωση συναρτησιακών εξαρτήσεων.
  - Οι τιμές των γνωρισμάτων του **κλειδιού <u>προσδιορίζουν μοναδικά</u>** ολόκληρες τις πλειάδες μιας σχέσης



### Κλείσιμο (Closure)

- Σε ένα σχεσιακό σχήμα R, αν διαθέτουμε ένα σύνολο συναρτησιακών εξαρτήσεων F, τότε ίσως μπορούμε να συνεπάγουμε λογικά ότι ισχύουν και κάποιες άλλες.
- Για παράδειγμα:
  - -R = (A, B, C, D)
  - Και ισχύει
    - A→B
    - A→C
    - B→D
  - Τότε
    - A→D
    - Α→Α (τετριμμένηΣ.Ε.)
- Αν έχουμε ένα σύνολο από συναρτησιακές εξαρτήσεις F, τότε το σύνολο F<sup>+</sup> όλων των συναρτησιακών εξαρτήσεων που συνεπάγονται λογικά καλείται κλείσιμο του F.



### Αξιώματα Armstrong

- Σε ένα σχεσιακό σχήμα, αν διαθέτουμε τα σύνολα γνωρισμάτων Α, Β, C που είναι μη κενά υποσύνολα μιας σχέσης R, τότε:
  - Ανακλαστικότητα:
    - Av B ⊆ A, τότε A → B
      - Παράδειγμα: XYZ → XY
  - Προσαύξηση:
    - Av A  $\rightarrow$  B , tóte AC  $\rightarrow$  BC.
      - Παράδειγμα: XY → Z και W, τότε XYW → ZW
  - Μεταβατικότητα ή Επαγωγή:
    - Av A  $\rightarrow$  B kai B  $\rightarrow$  C, tote A  $\rightarrow$  C
      - Παράδειγμα:  $XY \rightarrow Z$ ,  $Z \rightarrow WV$ , τότε  $XY \rightarrow WV$



### Αξιώματα Armstrong

- Ενώ το παραπάνω σύνολο κανόνων είναι έγκυρο και πλήρες, προκύπτουν και οι χρήσιμοι κανόνες:
  - Ένωση:
    - Av A  $\rightarrow$  B kai A  $\rightarrow$  C, tote A  $\rightarrow$  BC
  - Αποσύνθεση:
    - Av A  $\rightarrow$  BC , tóte A  $\rightarrow$  B kai A  $\rightarrow$  C.
  - Ψευδό-μεταβατικότητα:
    - Av A  $\rightarrow$  B kai BC  $\rightarrow$  D, tote AC  $\rightarrow$  D



- Έστω R = (A,B,C,G,H,I)
- Και οι συναρτησιακές εξαρτήσεις:

```
A\rightarrow B
A\rightarrow C
CG\rightarrow H
CG\rightarrow I
B\rightarrow H
```

- Τότε εξάγονται και οι μη τετριμμένες ( μέσω Armstrong)
  - ο A→H, από μεταβατικότητα μέσω A→B, B → H
  - ο A→BC, από **ένωση** μέσω A→B, A→C
  - ο AG  $\rightarrow$  I, από ψευδό-μεταβατικότητα μέσω A  $\rightarrow$  C, CG  $\rightarrow$  I
  - o CG → HI, από <u>ένωση</u> μέσω CG → I, CG → H



## Κάλυψη

- Ένα σύνολο συναρτησιακών εξαρτήσεων F μιας σχέσης R, λέμε ότι καλύπτει ένα άλλο σύνολο συναρτησιακών εξαρτήσεων G της σχέσης R, αν το σύνολο G μπορεί να εξαχθεί από το F, με την εφαρμογή κανόνων συνεπαγωγής.
  - Ώστε το G να είναι υποσύνολο του F<sup>+</sup>



## Υπολογισμός του Χ+

- Σε ένα σχήμα R, το σύνολο των γνωρισμάτων που εξαρτώνται από το σύνολο γνωρισμάτων X, δεδομένου ενός συνόλου συναρτησιακών εξαρτήσεων F, καλείται X<sup>†</sup>:
- Αλγόριθμος:

```
X_{+} = X
Aρχή_επανάληψης
Παλιό_X_{+} = X_{+}
Για κάθε συναρτησιακή εξάρτηση Y \rightarrow Z στο F
Aν Y \subseteq X_{+} τότε X_{+} = X_{+} U Z
μέχρι_ότου (Παλιό_X_{+} == X_{+})
```



```
X + = X
Αρχή_επανάληψης
            \Piαλιό X_+ = X_+
           Για κάθε συναρτησιακή εξάρτηση Y → Z στο F
                      Av Y \subseteq X+ TÓTE X+ = X+ U Z
μέχρι_ότου (Παλιό_Χ+ == Χ+)
• \dot{E}\sigma\tau\omega R = (A,B,C,G,H,I)
• Kai F= \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}
• Για το (AG) +:
     - AG
     - ABG
                      , από A → B
     - ABCG , από A → C
     - ABCGH , από CG \rightarrow H (ή από B \rightarrow H)
                   , από CG → I
     ABCGHI
```



X + = X

Αρχή\_επανάληψης

### Παράδειγμα 2

```
    μέχρι_ότου (Παλιό_X+ == X+)
    Χ <sup>+</sup>=A<sup>+</sup>
    0. A <sup>+</sup>= {A}
    1. A <sup>+</sup>= {A, B}, από A→B
    2. A = {A, B, C}, από A→C
    3. A <sup>+</sup>= {A, B, C, D}, από BC→D
    4. A <sup>+</sup>= {A, B, C, D, E}, από D→E
```

 $\Pi$ αλιό  $X_+ = X_+$ 

Για κάθε συναρτησιακή εξάρτηση Y → Z στο F Αν Y ⊆ X+ τότε X+ = X+ U Z

• 
$$\text{Έστω R} = (A,B,C,D,E)$$

• 
$$F = \{A \rightarrow B, A \rightarrow C, BC \rightarrow D, D \rightarrow E\}$$



```
X + = X
Αρχή_επανάληψης
            \Piαλιό X_+ = X_+
           Για κάθε συναρτησιακή εξάρτηση Y → Z στο F
                       Av Y \subseteq X+ TÓTE X+ = X+ U Z
μέχρι_ότου (Παλιό_Χ+ == Χ+)
• \text{Eot} R = (A,B,C,D,E) \text{ kai } F = \{D \rightarrow E, BC \rightarrow D, A \rightarrow C, A \rightarrow D\}
• Τα αποτελέσματα του αλγορίθμου για μερικές περιπτώσεις του Χ.
     - Για το (A) + ACDE
     - Για το (B)<sup>+</sup> B
     - Για το (C)<sup>+</sup>: C
     - Για το (D) <sup>†</sup> DE
     - Για το (E)+: E
     - Για το (BC) + BCDE
     - Για το (AB) + ABCDE
```



## Ελάχιστη Κάλυψη

- Δοθέντος ενός συνόλου F από συναρτησιακές εξαρτήσεις (ΣΕ), το ελάχιστο σύνολο ισοδύναμων συναρτησιακών εξαρτήσεων καλείται Fc (ελάχιστο κάλυμμα ή ελαχιστοποιημένη κάλυψη).
  - Η ελαχιστοποιημένη κάλυψη περιέχει εξαρτήσεις με όσο το δυνατόν <u>πιο</u> οικονομική σύνταξη.
  - Η ελαχιστοποιημένη κάλυψη περιέχει όλες τις εξαρτήσεις ώστε το κλείσιμο της να ισούται με το κλείσιμο του αρχικού συνόλου F +

#### • Αλγόριθμος υπολογισμού της ελάχιστης κάλυψης ενός συνόλου ΣΕ

- Δημιουργούμε ένα νέο σύνολο G ισοδύναμο του F όπου φροντίζουμε να έχουμε ΣΕ, με μόνο ένα γνώρισμα στο δεξιό μέλος της συνάρτησης.
   (Αποσύνθεση)
- Αντικαθιστούμε τις ΣΕ με άλλες, που έχουν λιγότερα γνωρίσματα στο αριστερό μέλος <u>εφόσον</u> δεν επηρεάζουν την κλειστότητα του.
- Αφαιρούμε από το G όλες τις ΣΕ που δεν επηρεάζουν την κλειστότητα του G αν αφαιρεθούν, (πλεονάζουσες)
- Συγχωνεύουμε τις ΣΕ που έχουν το ίδιο αριστερό μέλος



- Έστω R = (A,B,C,D)
- $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$ 
  - Αποσυνθέτουμε συναρτησιακές εξαρτήσεις
    - H A→BC γίνεται, A→B, A→C
    - G =  $\{A \rightarrow B, A \rightarrow C, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$
  - Αφαιρώ τις πλεονάζουσες
    - Δεν επηρεάζει την κλειστότητα η αφαίρεση μιας Α→Β (υπάρχει δύο φορές)
    - G =  $\{A \rightarrow B, A \rightarrow C, B \rightarrow C, AB \rightarrow C\}$
  - Αφαιρώ την AB→C αφού δεν επηρεάζει την κλειστότητα (συνεπάγεται από A→C και B→C)
    - $G = \{A \rightarrow B, A \rightarrow C, B \rightarrow C\}$
  - Αφαιρώ την Α→C αφού δεν επηρεάζει την κλειστότητα (συνεπάγεται από Α→B και B→C)
    - G =  $\{A \rightarrow B, B \rightarrow C\}$
- Η ελάχιστη κάλυψη είναι{Α→Β, Β→C}



- $\dot{E}$   $\sigma$   $\tau$   $\omega$  R = (A,B,C,D,E,F,G,H)
- F= {A→B, ABCD→E, EF→G, EF→H, ACDF→EG}
  - Αποσυνθέτουμε συναρτησιακές εξαρτήσεις
    - H ACDF→EG γίνεται, ACDF→E, ACDF→G
    - G =  $\{A \rightarrow B, ABCD \rightarrow E, EF \rightarrow G, EF \rightarrow H, ACDF \rightarrow E, ACDF \rightarrow G\}$
  - Αντικαθιστώ την ABCD→E με ACD→E, αφού υπάρχει η A→B
    - G =  $\{A \rightarrow B, ACD \rightarrow E, EF \rightarrow G, EF \rightarrow H, ACDF \rightarrow E, ACDF \rightarrow G\}$
  - Αφαιρώ την ACDF→G αφού δεν επηρεάζει την κλειστότητα (συνεπάγεται από ACD→E και EF→G)
    - G =  $\{A \rightarrow B, ACD \rightarrow E, EF \rightarrow G, EF \rightarrow H, ACDF \rightarrow E\}$
  - Αφαιρώ την ACDF→Ε πού αποτελεί πλεονασμό αφού υπάρχει η ACD→Ε.
    - G =  $\{A \rightarrow B, ACD \rightarrow E, EF \rightarrow G, EF \rightarrow H\}$
- Η ελάχιστη κάλυψη είναι

 $\{A\rightarrow B, ACD\rightarrow E, EF\rightarrow G, EF\rightarrow H\}$ 



# Ελάχιστη Κάλυψη

 Ένας αναλυτικός αλλα χρονοβόρος αλγόριθμος για την εύρεση της ελάχιστης κάλυψης G ενός συνόλου συναρτησιακών εξαρτήσεων F είναι:

```
G = F
!2 Αποσυνθέτω για να φτιάξω ΣΕ με δεξί μέλος να περιέχει ένα γνώρισμα
Αποσύνθεσε όλες τις ΣΕ με πολλαπλό δεξί μέλος.
!3 Αφαιρώ τις πλεονάζουσες
Για κάθε ΣΕ X → A στο G επανάλαβε
    Υπολόγισε το X+ με αναφορά στο σύνολο \{G - (X → A)\}
    Αν το Χ+ περιέχει το Α τότε
           G = \{G - (X \rightarrow A)\}, δηλαδή αφαιρώ αυτήν την ΣΕ
    Τέλος Αν
Τέλος Επανάληψης
!4 Ελαχιστοποιώ τα αριστερά μέλη
Για κάθε ΣΕ X \rightarrow A στο G με πολλαπλό X επανάλαβε
     Για κάθε γνώρισμα Β στο Χ επανάλαβε
          Υπολόγισε το (X-B)+ με αναφορά στο σύνολο \{G - (X → A)\} \cup \{(X-B) → A\}
          Αν το (Χ-Β)+ περιέχει το Β τότε
                 G = \{G - (X \rightarrow A)\} U \{(X-B) \rightarrow A\}, δηλαδή αφαιρώ αυτό το γνώρισμα
                                                 από το αριστερό μέλος της ΣΕ
          Τέλος Αν
    Τέλος Επανάληψης
Τέλος Επανάληψης
```



- Έστω R = (A,B,C,D,E,F) με ΣΕ:
- F= {AB→D, B→C, AE→B, A→D, D→EF}
  - Εφαρμόζω τον αλγόριθμο:

### Βήμα 1:

$$G = \{AB \rightarrow D, B \rightarrow C, AE \rightarrow B, A \rightarrow D, \underline{D \rightarrow EF}\}$$

### Βήμα 2:

Αποσυνθέτουμε συναρτησιακές εξαρτήσεις

• G = {AB $\rightarrow$ D, B $\rightarrow$ C, AE $\rightarrow$ B, A $\rightarrow$ D, D $\rightarrow$ E, D $\rightarrow$ F}



### Βήμα 3:

### Αφαιρώ τις πλεονάζουσες

- Για την  $AE \rightarrow B$ , στο  $\{B \rightarrow C, A \rightarrow D, D \rightarrow E, D \rightarrow F\}$ βρίσκω AE + = AEDF, δεν περιέχει το B το G παραμένει -  $G = \{B \rightarrow C, AE \rightarrow B, A \rightarrow D, D \rightarrow E, D \rightarrow F\}$
- $\Gamma$ I $\alpha$   $\tau$ η $\nu$   $A \rightarrow D$ ,  $\sigma$ το  $\{B \rightarrow C, AE \rightarrow B, D \rightarrow E, D \rightarrow F\}$   $\beta$ ρίσκω A + = A, δεν περιέχει το D το G παραμένει -  $G = \{B \rightarrow C, AE \rightarrow B, A \rightarrow D, D \rightarrow E, D \rightarrow F\}$
- Για την D $\rightarrow$ E, στο {B $\rightarrow$ C, AE $\rightarrow$ B, A $\rightarrow$ D, D $\rightarrow$ F} βρίσκω D+ = DF, δεν περιέχει το E το G παραμένει G = {B $\rightarrow$ C, AE $\rightarrow$ B, A $\rightarrow$ D, D $\rightarrow$ E, D $\rightarrow$ F}



```
Βήμα 4:
       Ελαχιστοποιώ τα αριστερά μέλη στην
        G = \{B \rightarrow C, AE \rightarrow B, A \rightarrow D, D \rightarrow E, D \rightarrow F\}
             Για την ΑΕ→Β, που είναι η μόνη με πολλαπλό αριστερό μέλος
                  Για το A: στο \{B\rightarrow C, E\rightarrow B, A\rightarrow D, D\rightarrow E, D\rightarrow F\}
                    » E+ = EBC που δεν περιέχει το A η ΑΕ→Β παραμένει στο G
                    \rightarrow G = {B\rightarrowC, AE\rightarrowB, A\rightarrowD, D\rightarrowE, D\rightarrowF}
             - \Gamma \alpha To E: \sigmaTo \{B \rightarrow C, A \rightarrow B, A \rightarrow D, D \rightarrow E, D \rightarrow F\}
                    » A+ =ABCDEF που περιέχει το Ε, άρα αντικαθιστώ την
                         AE \rightarrow B, \mu\epsilon to A \rightarrow B
                         G = \{B \rightarrow C, \underline{A \rightarrow B}, A \rightarrow D, D \rightarrow E, D \rightarrow F\}
Η ελάχιστη κάλυψη είναι:
       G = \{B \rightarrow C, A \rightarrow B, A \rightarrow D, D \rightarrow E, D \rightarrow F\}
```



### Εύρεση κλειδιών

- Το κλείσιμο του συνόλου των γνωρισμάτων που αποτελεί κλειδί, είναι το σύνολο των γνωρισμάτων της σχέσης.
- Για να βρω <u>τα κλειδιά μιας σχέσης</u>
  - Ξεκινάω να ελέγξω το κλείσιμο ατομικών γνωρισμάτων.
    - Αν το κλείσιμο του μου δίνει το σύνολο των γνωρισμάτων της σχέσης αποτελεί κλειδί.
  - Αν κανένα ατομικό γνώρισμα δεν είναι κλειδί δοκιμάζω με το κλείσιμο ενός συνόλου με δύο γνωρίσματα. Δοκιμάζω όλα τα διμελή σύνολα μέχρι να βρω κλειδί.
  - Αν δεν έχω βρει κλειδί η διαδικασία συνεχίζεται με τριμελή σύνολα κ.ο.κ.
- Μια <u>βελτιστοποίηση</u> που μπορούμε να κάνουμε είναι:
  - Εντοπίζω τα γνωρίσματα που <u>δεν βρίσκονται σε κανένα δεξί μέλος των</u> <u>εξαρτήσεων.</u>
    - Το σύνολο τους Χ θα είναι απαραίτητα μέρος του κλειδιού.
    - Αν το σύνολο αυτό δεν είναι κενό, ξεκινάω για την εύρεση κλειδιού με το κλείσιμο αυτού του συνόλου και όχι με ατομικά γνωρίσματα.
    - Αν το κλείσιμο του δεν είναι το σύνολο των γνωρισμάτων της σχέσης άρα δεν είναι κλειδί, τότε προσθέτω ένα ακόμα γνώρισμα στο σύνολο και συνεχίζω.



- Έστω η σχέση R(A,B,C,D,E) και το σύνολο ΣΕ: F={ A ->B, BC ->E, ED->A}
  - Στα δεξιά μέλη δεν έχω D ούτε C. Ξεκινάω με το CD.
  - CD = CD, δεν είναι το σύνολο των γνωρισμάτων της σχέσης άρα συνεχίζω με
  - Προσθέτω το Α:
    - ACD = ACDBE, Το ACD είναι κλειδί
  - Προσθέτω το Β:
    - $BCD^+$  = BCDEA, Το BCD είναι κλειδί
  - Προσθέτω το Ε:
    - $CDE^+$  = ACDBE, Το CDE είναι κλειδί
- Κλειδιά είναι τα ACD, BCD, CDE



## Κλειδιά και Γνωρίσματα

- Τα γνωρίσματα που είναι μέρη κλειδιών ονομάζονται πρωτεύοντα (prime).
  - Στο προηγούμενο παράδειγμα με κλειδιά τα ACD, BCD, CDE, πρωτεύοντα είναι τα γνωρίσματα A, B, C, D, E, και δεν υπάρχουν μη-πρωτεύοντα γνωρίσματα.
  - Στην σχέση R( A, B, C, D, E), αν κλειδιά είναι τα AB και BC τότε:
    - Πρωτεύοντα(prime): A, B, C
    - Μη πρωτεύοντα(non-prime): D, E