

Figure 1

Figure 2

Figure 3

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

4/42

400 - 422 **410 Thermal Simulation Module** Requirements Form Module **412** 424 Component Acquisition Module Component Determination Module - 414 Circuit Design Module 416 Schematic Design Module

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

5/42

See Our Disclaimer

ì

Features

WebSIM™, is a browser-based simulator which allows you to probe points in th

Wireless Easy PLL Design Assistant

About Languages. Website Guide. About "Cookies". National is QS 9000 Certified
Site Terms & Conditions of Use. Copyright 2001 © National Semiconductor Corporation
Privacy/Security Statement. MY: Preferences. Feedback

OIPE VOLTA

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

8/42

Your Design Specifications

	Output #1	
VinMin : 20.0 V VinMax : 22.0 V	Vout = 5.0 V I out = 5.0 A	,
VIIIVIAN . ZZ.U V	1 Out - 5.0 A	

Suggested Switching Regulators - Buck Topology

Product Folder	Webench Tools	Max Curr.	Typ. Eff.	On/ Off	Err. Pin	Other Features	Freq. kHz	Est. Price
	Create Design							
LM2678-5.0	WebTHERM TM Enabled Build It — - Custom Kit —	5.0A 806 808	84%	Y	Y		260	\$3.84
	Create Design							
LM2678-ADJ	WebTHERM TM Enabled Build It - Custom Kit	5.0A 800	84%	Y	Y	Adj. Vout	260	\$3.84
	Create Design					SoftStart,		
<u>LM2679-5.0</u>	WebTHERM TM Enabled Build It - Custom Kit	5.0A 806	84%	Y	Y	Adj. Peak Current limit	260	\$4.07
804 —	Create Design					SoftStart, Adj. Peak		
<u>LM2679-ADJ</u>	WebTHERM TM Enabled Build It - Custom Kit	5.0A 806	84%	Y	YY	Current Limit, Adj. Vout	260	\$4.07
802		<u>, — </u>						

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

9/42

Suggested Switching Regulators - Flyback Topology

Product Folder	Webench Tools	Max Curr.	Typ. Eff.	On/ Off	Err. Pin	Other Features	Freq. kHz	Est. Price
LM2585-5.0	Create Design	3.0A	93%	N	N	SoftStart	100	\$3.42
LM2585-ADJ	Create Design	3.0A	80%	Z	,N	SoftStart, Adj. Vout	100	\$3.42
LM2586-5.0	Create Design	3.0A	80%	Y	N	Sync, SoftStart	100	\$3.45
LM2586-ADJ	Create Design	3.0A	80%	Y	N	Sync, SoftStart, Adj. Vout	100	\$3.45
LM2587-5.0	Create Design	5.0A	80%	N	N	SoftStart	100	\$4.51
LM2587-ADJ	Create Design	5.0A	80%	N	N	SoftStart, Adj. Vout	100	\$4.51
LM2588-5.0	Create Design	5.0A	80%	Υ	N	Sync, SoftStart	100	\$4.61
LM2588-ADJ	Create Design	5.0A	80%	Υ	N	Sync, SoftStart, Adj. Vout	100	\$4.61
LM2577-ADJ	Create Design	3.0A	80%	N	N	SoftStart, Adj. Vout	52	\$3.15

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

10/42

Products > Analog - Regulators > Simple Switchers > LM2679

Product Folder

905-

904

Live Simulation

Buy LM2679-5.0 Evaluation Board

LM2679 SIMPLE SWITCHER 5A Step-Down Voltage Regulator with Adjustable Current Limit

Generic P/N 2679

Contents

- General Description
- Features
- Applications
- J Datasheet
 - Package Availability,
 Models, Samples
 & Pricing
 - Design Tools

Parametric Table					
Multiple Output Capability	No				
On/Off Pin	Yes				
Error Flag	Yes				
Input Voltage, min (Volt)	8, 15				
Input Voltage, max (Volt)	40				
Output Current, max	5 Amps				
Output Voltage (Volt)	5, 12, 3.30				
Adjustable Output Voltage	No, Yes				
Switching Frequency (Hz)	260000				
Adjustable Switching Frequency	No				
Sync Pin	No				
Efficiency (%)	84, 92, 82				
Flyback	No				
Step-up	No				
Step-down	Yes				

Invent rs: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

11/42

Webtherm - Thermal Simulation Websim - Electrical Simulation

Co	Components							
Part	Manufacturer	Part#	Attributes	Thermally Modelled*				
Cb	Vishay- Vitramon	VJ1206Y103KXAAT	0.0100 uF	Y	Select Alternate part			
Cin	Vishay- Sprague	594D156X0035D2T	NumCaps=3 15.000 uF 0.2650 Ohms		Select Alternate part			
Cout	Vishay- Sprague	594D187X0016R2T	NumCaps=1 180.00 uF 0.0650 Ohms		Select Alternate part			
Css	Vishay- Vitramon	VJ1206A392JXAAT	0.0039 uF	Y	Select Alternate part			
D1	International Rectifier	6CWQ03FN	0.450000V		Select Alternate part			

1002

Figure 10A

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

12/42

IC	National Semi- conductor	LM2679S-ADJ	ADJV,Buck		Select Alternate part
L1	Coiltronics	UP4B-150	15.000 uH, 0.0200 Ohms		Select Alternate part
Rfb1	Vishay-Dale	CRCW1206- 1001FRT1	1000 Ohms	Y	Select Alternate part
Rfb2	Vishay-Dale	CRCW1206- 3161FRT1	3160 Ohms	Y	Select Alternate part
Rilim	Vishay-Dale	CRCW1206- 4991FRT1	4990 Ohms	Y	Select Alternate part

^{*} Components marked "Y" are not required for Thermal Simulation.

OIPE COLLING TO TRADEMAN

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

13/42

Design: Design #7

Device: LM2679 Mar 17 2001 3:39PM ID: 266796_7

Design Requirements
VinMin = 20.00 V
VinMax = 22.00 V

Under #1
Vout = 5.00 V
I out = 5.00 A

Select Alternate for Component D1									
	Please select from the list of available alternates below. Click on the "Update BOM" buttom when you are done. [1108] Update - BOM [1102]								
Alternates	Part # Manufacturer	Thermally Modelled	Forward Voltage Drop	Max Rated Current	Max Voltage Rating	x,y,z in mm	Price	Quantity Available	
Custom		N	Limit = 0.00	1110 Limit > = 5.00	1112 - Limit >= 26.4				
10	6CWQ03FN International Rectifier		0.45000V	7.000A	30.00V	10.42 6.73 2.38	\$ 0.85	>10 in stock	
20	50WQ03FN International Rectifier		0.46000V	5.500A	30.00V	10.42 6.73 2.38	\$1.83	>10 in stock	
30	12CWQ03- FNTRL International Rectifier		0.47000V	12.00A	30.00V	10.42 6.73 2.38	\$0.82	>10 In stock	
40	50WQ04FN International Rectifier		0.51000V	5.500A	40.00V	10.42 6.73 2.38	\$1.33	>10 in stock	

Figure 11A

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

14/42

5 [⊙]	12CWQ04FN International Rectifier	0.52000V	12.00A	40.00V	10.42 6.73 2.38	\$1.48	>10 in stock
6 ^O	6CWQ04FN International Rectifier	0.53000V	7.000A	40.00V	10.42 6.73 2.38	\$1.00	>10 in stock
70	50WQ06FN International Rectifier	0.57000V	5.500A	60.00V	10.42 6.73 2.38	\$1.07	>10 in stock
80	12CWQ06FN International Rectifier	0.61000V	12.00A	60.00V	10.42 6.73 2.38	\$0.72	>10 in stock
90	6CWQ06- FNTR International Rectifier	 0.61000V	7.000A	60.00V	10.42 6.73 2.38	\$1.08	>10 in stock

VinMin = 20.00 V

VinMax = 22.00 V

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

15 / 42

Vout = 5.00 V

Iout = 5.00 A

Share this Design

I out 5.00 Vin: 22.00 V **SUBMIT**

	Operating Values						
#	Description	Parameter	Value				
1	Pulse Width Modulation (PWM) Frequency	Frequency	260 kHz				
2	Continuous or Discontinuous Conduction Mode, inductor current goes to zero in Discontinuous Conduction	Mode	Cont				
3	Total Output Power	Pout	25.0W				
4	Vin operating point	Vin Op	22.00V				
5	Iout operating point	Iout Op	5.00A				

	Operating Point at Vin = 22.00 V, 5.00 A						
#	Description	Parameter	Value				
1	Bode Plot Crossover Frequency, indication of bandwidth of supply	Cross Freq	97.7 kHz				
2	Steady State PWM Duty Cycle, range limits from 0 to 100	Duty Cycle	25.8%				
3	Steady State Efficiency	Efficiency	85.3%				
4	IC Junction Temperature	IC Tj	120 °C				
5	IC Junction to Ambient Thermal Resistance	ICThetaJA	34.9 °C/W				
6	Bode Plot Phase Margin	Phase Marg	71.0 Deg				
7	Peak-to-peak rippl voltag	Vout p-p	0.07 V				

Figure 12A

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

16/42

	Current Analysis						
#	Description	Parameter	Value				
1	Input Capacitor RMS ripple current	Cin IRMS	2.2 A				
2	Output Capacitor RMS ripple current	Cout IRMS	0.20 A				
3	Peak Current in IC for Steady State Operating Point	IC Ipk	5.5 A				
4	ICs Maximum rated peak current	IC Ipk Max	7.4 A				
5	Average input current	I in Avg	2.3 A				
6	Inductor ripple current, peak-to-peak Value	L Ipp	1.1 A				

F	Power Dissipation Analysis						
#	Description	Parameter	Value				
1	Input Capacitor Power Dissipation \	Cin Pd	0.43 W				
2	Output Capacitor Power Dissipation	Cout Pd	0.0026 W				
3	Diode Power Dissipation	Diode Pd	1.9 W				
4	IC Power Dissipation	IC Pd	1.4 W				
5	Inductor Power Dissipation	L Pd	0.50 W				

About Languages. Website Guide. About "Cookles". National is QS 9000 Certified
Site Terms & Conditions of Use. Copyright 2001 © National Semiconductor Corporation
Privacy/Security Statement. MY: Preferences. Feedback

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

17 / 42

Figure 13

JUN 2 TRADENTE

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

18/42

Click here to see a list of all your WebTHERM Simulations.

Please click Refresh to get updated status of your simulations.

We will also send you email notification when your simulations are complete. It will contain a URL which can be clicked for viewing your simulations.

Queued time is dependent on the number of requests in the queue.

Processing time for each simulation is estimated about 2-3 minutes.

About Languages. Website Guide. About "Cookles". National is QS 9000 Certified Site Terms & Conditions of Use. Copyright 2001 © National Semiconductor Corporation Privacy/Security Statement. MY: Preferences. Feedback

Title: METHOD TO PERFORM THERMAL SIMULATION
OF AN ELECTRONIC CIRCUIT ON A NETWORK
Inventors: Jeffrey R. Perry et al.

Figure 15A

BOM					
Component	Power Dissipation	Manufacturer	Part#		
Cin	0.43 W	Vishay- Sprague	594D156X0035D2T		
Cout	0.0026 W	Vishay- Sprague	594D187X0016R2T		
D1	1.9 W	International Rectifier	12CWQ04FN		
IC	1.4 W	National Semiconductor	LM2679		
L1	0.50 W	Coiitronics	UP4B-150		

Design Assistant Messages

About Languages. Website Guide. About "Cookies". National is QS 9000 Certified Site Terms & Conditions of Use. Copyright 2001 © National Semiconductor Corporation Privacy/Security Statement. MY: Preferences. Feedback

Figure 15B

JUN 2 7 2003

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Jeffrey R. Perry et al. Application N . 09/846,681 Docket No. 50019.44US01/PO4884

21/42

Quick Search Parametric See Our Product Back to
Search Disclaimer Tree Webench

Processing time for each simulation is estimated about 2-3 minutes.

About Languages, Website Guide. About "Cookies". National is QS 9000 Certifi d
Site Terms & Conditions of Use. Copyright 2001 © National Semiconductor Corporation
Privacy/Security Statement. MY: Preferences. Feedback

JUN 2 7 2003

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

22 / 42

WebTHERM[™] Simulations:

Simulation

ID Name

Status

Date

Comments

(click to view)

7 = Design ID

Simulations for Design ID:7

Design ID:7

Simulation for Design 7

Processing

Mar 17 2001 5:05:57 PM

— 1710

Please click Refresh to get updated status of your simulations.

We will also send you email notification when your simulations are complete. It will contain a URL which can be clicked for viewing your simulations.

Queued time is dependent on the number of requests in the queue.

Processing time for each simulation is estimated about 2-3 minutes.

About Languages. Website Guide. About "Cookies". National is QS 9000 Certified Site Terms & Conditions of Use. Copyright 2001 © National Semiconductor Corporation Privacy/Security Statement. MY: Preferences. Feedback

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

23 / 42

Please click Refresh to get updated status of your simulations.

We will also send you email notification when your simulations are complete, It will contain a URL which can be clicked for viewing your simulations.

Queued time is dependent on the number of requests in the queue.

Processing time for each simulation is estimated about 2-3 minutes.

About Languages. Website Guide. About "Cookies". National is QS 9000 Certified

Site Terms & Conditions of Use. Copyright 2001 © National Semiconductor Corporation

Privacy/Security Statement. MY: Preferences. Feedback

JUN 2 7 2003 W

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

24 / 42

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

25 / 42

2030

Operating Temperatures Max Manufacturer Layer Part # Warnings Temp. Vishay-Sprague 82°C Cin 594D156X0035D2T Vishav-Cout 92 °C 594D187X0016R2T Sprague International D1 - Diode 188 °C 12CWQ04FN Rectifier There is **80**me **National** potential 174°C IC - Die LM2679 Semiconductor problem with this design IC - Top 165 °C L1 -Coiltronics 82 °C **UP4B-150** Inductor PCB 182°C

Design Assistant Messages

About Languages. Website Guide. About "Cookles". National is QS 9000 Certified

Site Terms & Conditions of Use. Copyright 2001 © National Semiconductor Corporation

Privacy/Security Statement. MY: Preferences. Feedback

JUN 2 7 2003 W

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

26 / 42

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

27 / 42

Operating Temperatures						
Layer	Max Temp.	Manufacturer	Part #	Warnings		
Cin	50 ℃	Vishay- Sprague	594D156X0035D2T			
Cout	50℃	Vishay- Sprague	594D187X0016R2T			
D1 - Diode	128°C	International Rectifier	12CWQ04FN			
ic - Die	112°C	National Semiconductor	LM2679	There is some potential problem with this design.		
IC - Top	97 °C					
L1 - Inductor	46°C	Coiltronics	UP4B-150			
PCB	1 2 3°C	ì				

Design Assistant Messages

About Languages. Website Guide. About "Cookies". National is QS 9000 Certified Site Terms & Conditions of Use. Copyright 2001 © National Semiconductor Corporation Privacy/Security Statement. MY: Preferences. Feedback

JUN 2 7 2003 JUN 2

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

28 / 42

Your design is supported by a Webench Custom Evaluation Kit. Ordering this kit from Pioneer-Standard provides you with everything you need to realize a prototype of your design quickly and at a very low price.

If for some reason you decide not to order the Custom Evaluation Kit you can always order only the IC from us here.

Custom Evaluation Kit

Bill of View Assembly Doc Order this Kit from Pioneer-Standard >>

item	Manufacturer Part	Qty	Attributes	Component Name(s)	Pioneer Price	Pioneer Availability
1	International Rectifier 12CWQ04FN	1	VFatio = 0.52 V	D1	\$1.48	> 10 in Stock
2	Keystone 5015	4		TP1, TP2, TP3, TP6	\$0.20	> 10 in Stock
3	National Semiconductor 551011367-011	1	Surface Mount, etc	PC Board	\$5.00	> 10 in Stock
4	Vishay-Sprague 594D156X0035D2T	3	Cap=15uF ESR= 0.265 Ohms	Cin	\$1.00	> 10 in Stock
5	Vishay-Sprague 594D187X0016R2T	1	Cap=180uF ESR= 0.065 Ohms	Cout	\$1.00	> 10 in Stock

Figure 21A

OIPE STATE OF THE PROPERTY OF

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Jeffrey R. Perry et al. Applicati n No. 09/846,681 Docket No. 50019.44US01/PO4884

29 / 42

6	Vishay-Dale CRCW1206- 1001FRT1 □	1	Resistance =1000 Ohms	Rfb1	\$0.03	> 10 in Stock
7	Vishay-Dale CRCW1206- 3161FRT1 □■□	1	Resistance =3160 Ohms	Rfb2	\$0.03	> 10 in Stock
8	Vishay-Dale CRCW1206- 4991FRT1 □■□	1	Resistance =4990 Ohms	Rilim	\$0.03	> 10 in Stock
9	National Semiconductor LM2679S-ADJ	1	Package=S, Voltage option=ADJ, Topology= Buck	IC	\$4.75	> 10 in Stock
10	Coiltronics UP4B-150	1	L = 15uH DCR = 0.02 Ohms	/ L1	\$1.50	> 10 in Stock
11	Vishay-Vitramon □ U VJ1206A392JXAAT	1	Cap = 0.0039uF	Css	\$0.05	> 10 in Stock
12	Vishay-Vitramon □□□ VJ1206Y103KXAAT	1	Cap = 0.01uF	СЬ	\$0.05	> 10 in Stock
13	Vishay-Vitramon □ VJ1206Y104KXAAT	1		Cinx	\$0.05	> 10 in Stock
				Total_	\$17.77	

Bill of Materials

View Assembly Doc | Order this Kit from Pioneer-Standard >>

Order the IC

- · Order the LM2679S-ADJ in volume
- · Order a Free Sample

Generic Eval Board for LM2679

- Buy Eval Board for LM2679
- Download Protel File (See Notes Below)

The Protel files are saved as Self Extracting Zip Archives. To download a product's Protel file, click on the corresponding "Protel file now" link, and save the link as a file on your computer. Then run the file on your computer (double click). This will automatically decompress the protel file to your computer's disk

Protel file to your computer's disk.

Note: You must have Protel software or other software that can read Protel PCB layout fil s in order to take advantage of these Protel files.

About Languages. Website Guide. About "Cookies". National is QS 9000 Certified
Site Terms & Conditions of Use. Copyright 2001 © National Semiconductor Corporation
Privacy/Security Statement. MY: Preferences. Feedback

Figure 21B

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884 30 / 42 MY WEBENCH 1 Choose a Part 2 Create a Design 3 Analyze a Design 4 Build It! Help MY Designs

Assembly Document for Your LM2679 Disign #: 7 LM2679 SMD Evaluation Board (LM2679BU1PWB)

FIGURE 1 - Assembly Diagram

Download the Board Layout in Protel format.

GENERAL DESCRIPTION

Figure 22A

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

31 / 42

Th LM2679 SMD Evaluati n Board is designed to provide a flexible PCB platform for customers to develop and test custom power supply designs using tools available on the POWER.NATIONAL.COM website. The LM2679BU1PWB is a single sided surface mount layout using 1 oz copper. The overall board dimensions are 2.475" x 2.700" All components are mounted on the topside copper. WEBENCH TM has automatically placed the components on this board to make sure that the input capacitor Cin (and Cinx) and the diode D1 are as close to the IC as is reasonable minimizing stray circuit inductance. L1 and Cout should also be as close to the IC as reasonable but mostly to minimize the overall dimensions of the required PCB area for the power supply.

The LM2679 SMD Evaluation Board consists of a single layer PCB layout providing major landing areas on the PCB for the power conversion components: Inductor, Diode, Input and Output Capacitors as well as parameter setting small signal passive (resistors and capacitors) in 1206 packages and surface mount test points. Some components are optional or specific to an application, these are highlighted in the schematic. The PCB layout can be optimized for a specific design and lends itself to be dimensionally scalable (i.e. your particular design may have unused board area that can be "cut out" in the final application. This topic is covered in the PCB Layout Optimization section.

Bill of Materials (BOM).

	Manufacturer Component Component					
Item	Part	Qty	Attributes	Name(s)		
1	International Rectifier 12CWQ04FN	1	VFatio = 0.52 V	D1		
2	Keystone 5015	4		TP1, TP2, TP3, TP6		
3	National Semiconductor 551011367-011	1	Surface mount, etc	PC Board		
4	Vishay-Sprague 594D156X0035D2T	3	Cap=15uF ESR=0.265 Ohms	Cin		
5	Vishay-Sprague 594D187X0016R2T	1	Cap=180uF ESR=0.065 Ohms	Cout		

Figure 22B

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

32 / 42

6	Vishay-Dale CRCW1206-1001FRT1	1	Resistance = 1000 Ohms	Rfb1
7	Vishay-Dale CRCW1206-3161FRT1 □■□	1	Resistance = 3160 Ohms	Rfb2
8	Vishay-Dale CRCW1206-4991FRT1 ■	1	Resistance = 4990 Ohms	Rilim
9	National Semiconductor LM2679S-ADJ	1	Package=S, Voltage option=ADJ Topology=Buck	IC
10	Coiltronics UP4B-150	1	L = 15uH DCR = 0.02 Ohms	L1
11	Vishay-Vitramon VJ1206A392JXAAT ■	1	Cap = 0.0039uF	Css
12	Vishay-Vitramon VJ1206Y103KXAAT □■□	1	Cap = 0.01uF	Cb
13	Vishay-Vitramon VJ1206Y104KXAAT □■□	1		Cinx

SCHEMATIC

The Schematic for the LM2679 is shown in FIGURE 2. U1, L1, D1, Cin and Cout are the basic power conversion components. Cinx as a high frequency bypass to the input to the LM2679. Rfb1, Rfb2, and Cf form the feedback network for the adjustable version of the LM2679. For Fixed output versions a zero Ohm resistor (jumper) should be used for Rfb2 (Rfb1 and Cf should be left off the board), this can be replaced by a copper trace as shown in the PCB Layout Optimization section. A space is reserved for a pull-down resistor, Ron, for the ON/OFF (Active low) pin, this may be desired if a Tri-State gate is driving this pin. Otherwise, if the ON/OFF pin is left floating, the LM2679 is normally ON.

JUN 2 7 2003 W

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

33 / 42

Component Testing

Some published data on components in datasheets such as Capacitor ESR and Inductor DC resistance is based on conservative values that will guarantee that the components always exceed the specification. For design purposes it is usually better to work with typical values. Since this data is not always available it is a good practice to measure the Capacitance and ESR values of Cin and Cout, and the inductance and DC resistance of L1 before assembly of the board. Any large discrepancies in values should be electrically simulated to check for instabilities and thermally simulated to make sure critical temperatures are not exceeded.

Soldering Components to the Board

If board assembly is done in house it is best to track down one terminal on the board then solder the other terminal. For the LM2679 the tab on the back of the TO-263 package should be pre-tinned with solder, then tacked into place by one of the pins. To solder the tab down to the board place the iron down on the board while resting against the tab, heating both surfaces simultaneously. Apply light pressure to the top of the plastic case until the solder flows around the part and the part is flush with th PCB. If the solder is not flowing around the board you may need a higher wattage iron (generally 25W to 30W is enough).

Testing

It is best to power up the board by setting the supply voltage to the lowest operating input voltage (Vin min) and set the supplies current limit to zero. With the supply off connect up the supply to Vin and GND. Connect a DVM to Vout and GND. Turn on the supply and slowly turn up the current limit. If the voltage starts to rise on the supply continue increasing the current while watching the output voltage. If the current increases in the supply but the voltage remains near zero there may be a short in a component misplaced on the board. Power down the board and visually inspect for sold in bridges and recheck the diode and capacitor polarities. Once the supply is perational then more extensive testing may include full load testing, transicial in the load and line tests to compare with simulation results.

Figure 22D

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

34 / 42

ARTWORK

FIGURE 3 shows the topside copper and FIGURE 4 shows the bottom sid copper.

The Intent of this board is to provide a flexible PCB layout to allow many different designs to be implemented using the same layout. In lower power designs you may find unused board space, that is not needed for electrical or thermal purposes. The overall layout lends itself to shrinking the design by trimming off the outer edges of the board.

Download the GERBER file for this PC Board.

NOTES: UNLESS OTHERWISE SPECIFICED

- 1. NO FAB SHOP LOGO < DATE CODE REQUIRED
- 2. APPLY GREEN (LPI) SOLDERMASK ON BOTH SIDES
- 3. NO SILKSCREEN
- 4. ADD UL RATING ON BOTTOM SIDE
- 5. MATERIAL: FP-1, GREEN
- 6. BOARD THICKNESS: 0.063 WITH 1 oz COPPER
- 7. FINISH: TIN LEAD

MECHANICAL LAYER 551011367-011A TOP ETCH 551011367-011A

FIGURE 3 - Topside Cooper

NOTES: UNLESS OTHERWISE SPECIFICED

- 1. NO FAB SHOP LOGO < DATE CODE REQUIRED
- 2. APPLY GREEN (LPI) SOLDERMASK ON BOTH SIDES
- 3. NO SILKSCREEN
- 4. ADD UL RATING ON BOTTOM SIDE
- 5. MATERIAL: FP 1, GREEN
- 6. BOARD THICKNESS: 0.063 WITH 1 oz COPPER
- 7. FINISH: TIN LEAD

Figure 22E

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

35 / 42

A110-762110125 REVAL LASINAHOEM BOTTOM ETCH 551011367-011A

FIGURE 4 - Bottom Side Copper

Downloadable files

Schematic File

The Schematic File in Protel format.

Board Layout File

Board Layout in Protel format.

GERBER File

GERBER file for making the PC Board.

About Languages. Website Guide. About "Cookles". National is QS 9000 Certified
Site Terms & Conditions of Use. Copyright 2001 © National Semiconductor Corporation
Privacy/Security Statement. MY: Preferences. Feedback

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 D cket No. 50019.44US01/PO4884

36 / 42

Design: 6

WEBENCH Documentation

Assembly Doc.

The Webench Assembly Document describes in detail how to build your design. It contains the specific assembly diagram for your design, a complete bill of materials and other PC board images and assembly instructions.

Design Doc. ~2440

The WEBENCH Design Document provides a single web page describing your entire design including: design specifications, calculated values, WebSIM simulation results and WebTHERM simulation results.

LM2679 Folder ___2420

LM2679 Product Folder is full of documentation about the National IC used in your design.

My Orders

My Orders is a list of all of your on - line orders.

WEBENCH Downloads

You can download these files to integrate this design into your local CAD environment. These files are self-extracting zip files. For the files stored in Protel format you will need the Protel application or equivalent CAD software capable of opening such files.

Schematic File

The Schematic File in Protel format.

Board Layout File

Board Layout in Protei format.

GERBER File

GERBER file for making the PC Board.

About Languages. W bsite Guide. About "Cookles". National is QS 9000 Certified Site Terms & Conditions of Use. Copyright 2001 © National Semiconductor Corporation Privacy/Security Statement. MY: Preferences. Feedback

JUN 2 7 2003

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

37 / 42

N NATIONAL SEMICONDUCTOR MY WEBENCH TM
2 Create a Design > 3 Analyze a Design > 4 Build It! Buy It! Documentation Help MY Designs
Design Document For Your LM2679 Design #: 7
Table of Contents: 1. Introduction 2. Design Specifications 3. Schematic 4. Operating Values 5. The Selected IC 6. BOM - Bill of Materials 7. WebTHERM Results 8. Build It! 9. Appendices
Introduction Custom power supply designs using tools are available on the POWER. NATIONAL.COM website.
Design Specifications
Design: Design #7 Device: LM2679
Design Requirements Output #1
VinMin = 20.00 V
Schematic Use WebSIM to display your schematic.
Operating Values

Figure 24A

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

38 / 42

Operating Values					
#	Description	Parameter	Value		
1	Pulse Width Modulation (PWM) Frequency	Frequency	260 kHz		
2	Continuous or Discontinuous Conduction Mode, inductor current goes to zero in Discontinuous Conduction	Mode	Cont		
3	Total Output Power	Pout	25.0 W		

0	Operating Point at Vin = 22.00 V					
#	Description	Parameter	Value			
1	Bode Plot Crossover Frequency, indication of bandwidth of supply	Cross Freq	97.7 kHz			
2	Steady State PWM Duty Cycle, range limits from 0 to 100	Duty Cycle	25.8 %			
3	Steady State Efficiency	Efficiency	85.3 %			
4	IC Junction Temperature	ICTj	120 °C			
5	IC Junction to Ambient Thermal Resistance	ICThetaJA	34.9 °C/W			
6	Bode Plot Phase Margin	Phase Marg	71.0 Deg			
7	Peak-to-peak ripple voltage	Vout p-p	0.07 V			

C	Current Analysis					
#	Description	Parameter	Value			
1	Input Capacitor RMS ripple current	Cin IRMS	2.2 A			
2	Output Capacitor RMS ripple current	Cout IRMS	0.20 A			
3	Peak Current in IC for Steady State Operating Point	IC Ipk	5.5 A			
4	ICs Maximum rated peak current	IC Ipk Max	7.4 A			
5	Average input current	I in Avg	2.3 A			
6	Inductor ripple current, peak-to-peak Value	L Ipp	1.1 A			

JUN 2 7 2003

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

39 / 42

P	Power Dissipation Analysis					
#	Description	Parameter	Value			
1	Input Capacitor Power Dissipation	Cin Pd	0.43 W			
2	Output Capacitor Power Dissipation	Cout Pd	0.0026 W			
3	Diode Power Dissipation	Diode Pd	1.9 W			
4	IC Power Dissipation	IC Pd	1.4 W			
5	Inductor Power Dissipation	L Pd	0.50 W			

LM2679 The Selected IC

NSID = LM2679S-ADJ Topology = Buck Package = S

BOM - Bill of Materials

Item	Manufacturer Part	Qty	Attributes	Component Name(s)
1	International Rectifier 12CWQ04FN	1	VFatio = 0.52 V	D1
2	Keystone 5015	4		TP1, TP2, TP3, TP6
3	National Semiconductor 551011367-011	1	Surface Mount, etc	PC Board
4	Vishay-Sprague 594D156X0035D2T	3	Cap=15uF ESR= 0.265 Ohms	Cin
5	Vishay-Sprague 594D187X0016R2T	1	Cap=180uF ESR= 0.065 Ohms	Cout
6	Vishay-Dale CRCW1206- 1001FRT1 □■□	1	Resistance =1000 Ohms	Rfb1
7	Vishay-Dal CRCW1206- 3161FRT1	1	Resistance =3160 Ohms	Rfb2

Figure 24C

JUN 2 7 2003

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

40/42

8	Vishay-Dale CRCW1206- 4991FRT1 □■□	1	Resistance = 4990 Ohm	Rilim
9	National Semiconductor LM2679S-ADJ	1	Package=S, Voltage option = ADJ Topology = Buck	IC
10	Coiltronics UP4B-150	1	L = 15uH DCR = 0.02 Ohm	L1
11	Vishay-Vitramon VJ1206A392JXAAT	1	Cap = 0.0039 uF	Css
12	Vishay-Vitramon VJ1206Y103KXAAT	1	Cap = 0.01 uF	СЬ
13	Vishay-Vitramon VJ1206Y104KXAAT	1		Cinx

WebTHERM - Thermal Simulation Results

You have performed 3 WebTHERM thermal simulation(s) on this design. Here are the results of the most recent one.

Figure 24D

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

41/42

Be sure to electrically simulate this design using webSIM.

Build It!

Webench provides both custom and generic evaluation boards to assist you in the building of prototypes of your design. Additionally, for some designs, it is possible to order the complete BOM (Bill of Materials) on-line using Webench.

A custom evaluation board is available for your design!

Webench provides a custom evaluation board which may be on-line ordered from Pioneer-Standard for designs like yours using National LM2679S-ADJ configured in the Buck topology.

Appendices

A. You have performed 3 thermal simulation(s) on this design.

ID Simulation Name		Date			
1	Simulation for Design 7	Mar 17 2001 5:10 PM			
2	Simulation for Design 7	Mar 17 2001 5:19 PM			
3	Simulation for Design 7	Mar 17 2001 5 : 23 PM			

B. No electrical simulation(s) performed on this design.

About Languages. Website Guide. About "Cookies". National is QS 9000 Certified
Site Terms & Conditions of Use. Copyright 2001 © National Semiconductor Corporation
Privacy/Security Statement. MY: Preferences. Feedback

Figure 24E

JUN 2 7 2003 W

Title: METHOD TO PERFORM THERMAL SIMULATION OF AN ELECTRONIC CIRCUIT ON A NETWORK

Inventors: Jeffrey R. Perry et al. Application No. 09/846,681 Docket No. 50019.44US01/PO4884

42 / 42

Tim Sullivan - You have 7 designs stored in your personal workspace

					-				
ID	Design Name	Device	Creation Date	Modifica- tion Date	Design Assis- tant	Com- ments	Design Operations		
7	Design # 7	LM2679	Mar 17 2001 3 : 39PM	Mar 17 2001 3 : 57PM	Power		Modify, Analyze, Build, Add Notes, Delete, Share		
6	Design # 6	LM2679	Mar 15 2001 3 : 23PM	Mar 15 2001 3 : 23PM	Power		Modify, Analyze, Build, Add Notes, Delete, Share		
5	Design # 5	LM2679	Mar 15 2001 11 : 41AM	Mar 15 2001 11 : 44AM	Power		Modify, Analyze, Build, Add Notes, Delete, Share		
4	Design # 4	LM2679	Mar 13 2001 9 : 52AM	Mar 13 2001 10 : 03AM	Power		Modify, Analyze, Build, Add Notes, Delete, Share		
3	Design # 3	LM2679	Mar 13 2001 9 : 52AM		Power		Modify, Analyze, Build, Add Notes, Delete, Share		
2	Design # 2	LM2678	Mar 13 2001 9: 50AM		Power		Modify, Analyze, Build, Add Notes, Delete, Share		
1	Design # 1	LM2678	Mar 13 2001 9: 50AM		Power		Modify, Analyze, Build, Add Notes, Delete, Share		
Q	Quick Search Parametric See Our Product Back to								
ſ	Search Discialmer Tree Webench								
	About Language Wahelta Gulda About "Cookies" National is OS 9000 Cartified								

About Languages. Website Guide. About "Cookies". National is QS 9000 Certified
Site Terms & Conditions of Use. Copyright 2001 © National Semiconductor Corporation
Privacy/Security Statement. MY: Preferences. Feedback