

097787690

TRANSMITTAL LETTER TO THE UNITED STATES
DESIGNATED/ELECTED OFFICE (DO/EO/US)
CONCERNING A FILING UNDER 35 U.S.C. 371

INTERNATIONAL APPLICATION NO. PCT/GB99/01958	INTERNATIONAL FILING DATE June 23, 1999	PRIORITY DATE CLAIMED September 22, 1998
---	--	---

TITLE OF INVENTION
FILTERS

JC07 Rec'd PC/PATO 21 MAR 2001

APPLICANT(S) FOR DO/EO/US
David Gordon Stevenson

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

- This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
- This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
- This is an express request to begin national examination procedures (35 U.S.C. 371(f)). The submission must include items (5), (6), (9) and (21) indicated below.
- The US has been elected by the expiration of 19 months from the priority date (Article 31).
- A copy of the International Application as filed (35 U.S.C. 371(c)(2))
 - is attached hereto (required only if not communicated by the International Bureau).
 - has been communicated by the International Bureau.
 - is not required, as the application was filed in the United States Receiving Office (RO/US).
- An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)).
 - is attached hereto.
 - has been previously submitted under 35 U.S.C. 154(d)(4).
- Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
 - are attached hereto (required only if not communicated by the International Bureau).
 - have been communicated by the International Bureau.
 - have not been made; however, the time limit for making such amendments has NOT expired.
 - have not been made and will not be made.
- An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
- An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
- An English language translation of the annexes of the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

Items 11 to 20 below concern document(s) or information included:

- An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
- An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
- A **FIRST** preliminary amendment.
- A **SECOND** or **SUBSEQUENT** preliminary amendment.
- A substitute specification.
- A change of power of attorney and/or address letter.
- A computer-readable form of the sequence listing in accordance with PCT Rule 13ter.2 and 35 U.S.C. 1.821 - 1.825.
- A second copy of the published international application under 35 U.S.C. 154(d)(4).
- A second copy of the English language translation of the international application under 35 U.S.C. 154(d)(4).
- Other items or information:
 - Application Data Sheet
 - Copies of International Search Report and International Examination Report

USPTO FEE PAYMENT FORM

091787690

INTERNATIONAL APPLICATION NO.

JCO2 Rec'd PCT/PTO
PCT/GB99/0195821 MAR 2001
ATTORNEY DOCKET NUMBER
3341521. The following fees are submitted:

BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)):

Neither international preliminary examination fee (37 CFR 1.482)
nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO
and International Search Report not prepared by the EPO or JPO..... \$1000.00International preliminary examination fee (37 CFR 1.482) not paid to
USPTO but International Search Report prepared by the EPO or JPO \$860.00International preliminary examination fee (37 CFR 1.482) not paid to USPTO
but international search fee (37 CFR 1.445(a)(2)) paid to USPTO \$710.00International preliminary examination fee (37 CFR 1.482) paid to USPTO
but all claims did not satisfy provisions of PCT Article 33(1)-(4) \$690.00International preliminary examination fee (37 CFR 1.482) paid to USPTO
and all claims satisfied provisions of PCT Article 33(1)-(4) \$100.00**ENTER APPROPRIATE BASIC FEE AMOUNT =**Surcharge of \$130.00 for furnishing the oath or declaration later than 20 30
months from the earliest claimed priority date (37 CFR 1.492(e)).

CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE	\$
Total claims	23 - 20 =	3	x \$18.00	\$ 54.00
Independent claims	1 - 3 =	0	x \$80.00	\$ 0.00
MULTIPLE DEPENDENT CLAIM(S) (if applicable)			+ \$270.00	\$
TOTAL OF ABOVE CALCULATIONS =				\$ 914.00
<input type="checkbox"/> Applicant claims small entity status. See 37 CFR 1.27. The fees indicated above are reduced by 1/2.			+ \$	
SUBTOTAL =				\$ 914.00
Processing fee of \$130.00 for furnishing the English translation later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(f)).			+ \$	
TOTAL NATIONAL FEE =				\$ 914.00
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property + \$				
TOTAL FEES ENCLOSED =				\$ 914.00
			Amount to be refunded:	\$
			charged:	\$

a. A check in the amount of \$ 914.00 to cover the above fees is enclosed.

b. Please charge my Deposit Account No. _____ in the amount of \$ _____ to cover the above fees.
A duplicate copy of this sheet is enclosed.

c. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any
overpayment to Deposit Account No. 16-0820. A duplicate copy of this sheet is enclosed.

d. Fees are to be charged to a credit card. **WARNING:** Information on this form may become public. Credit card
information should not be included on this form. Provide credit card information and authorization on PTO-2038.

NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137 (a) or (b)) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:

SIGNATURE
Thomas P. Schiller
NAME
20677
REGISTRATION NUMBER

PATENTIN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: David Gordon Stevenson

Title: FILTERS

Docket No.: 33415

PRELIMINARY AMENDMENT

Box PCT
Commissioner for Patents
Washington, D.C. 20231

Sir:

Please amend the above-referenced application prior to its examination as follows:

IN THE CLAIMS:

1. (amended) A device for admitting a backwash fluid to
filter medium of a filter bed, comprising:

3. (i) a member;

4. (ii) a plurality of elongate orifices through said
member;

6. (iii) whereby to allow passage therethrough of said fluid
but not the media.

1. 2. (amended) A device as defined in claim 1, wherein
the elongate through orifices each comprise a slot.

1. 2. (amended) A device as defined in claim 2, wherein
the slots each have a width of less than 0.5 mm.

1 4. (amended) A device as defined in claim 2, wherein
2 the slots each have a width between 0.1-0.3 mm.

1 5. (amended) A device as defined in claim 2, wherein
2 each slot has a width of 0.25 mm.

1 6. (amended) A device as defined in claim 2, wherein
2 the member comprises a tube and wherein the slots are directed
3 longitudinally of the tube.

1 7. (amended) A device as defined in claim 2, wherein
2 the member is a corrugated member, and wherein the slots are
3 in walls of the corrugation and directed longitudinally
4 thereof.

1 8. (amended) A device as defined in claim 6, wherein
2 the slots are arranged in groups of a plurality of slots.

1 9. (amended) A device as defined in claim 7, wherein
2 the slots are arranged in groups of a plurality of slots.

1 10. (amended) A device as defined in claim 9, wherein
2 the slots are arranged in more than one row.

1 11. (amended) A device as defined in claim 8, wherein
2 the slots are arranged in rows whereby to provide slots both
3 close to the bottom and to the top of the tube in any
4 orientation of the tube.

1 12. (amended) A device as defined in claim 10, wherein
2 the length of each slot is not greater than the longitudinal
3 pitch along a particular row of slots.

1 13. (amended) A device as defined in claim 11, wherein
2 the length of each slot is not greater than the longitudinal
3 pitch along a particular row of slots.

1 14. (amended) A device as defined in claim 12, wherein
2 the slots are staggered along the length of the member.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
998
999
999
1000

1 19. (new) A system as defined in claim 18, wherein the
2 fluid supply means comprises a supply pipe for each member and
3 a common manifold to which each supply pipe is connected.

1 20. (new) A filter, side walls and a base, and wherein
2 there is installed a system as defined in claim 19.

1 21. (new) A filter as defined in claim 20, wherein the
2 members extend laterally of the filter.

1 22. (new) A filter as defined in claim 21, wherein the
2 members are positioned at the base of the filter.

1 23. (new) A filter as defined in claim 22, wherein the
2 members are positioned adjacent the base of the filter.

If there are any fees resulting from this communication, the Commissioner is hereby authorized to charge such fees or credit any overpayment to our Deposit Account No. 16-0820, Order No. 33415.

Respectfully submitted,
PEARNE & GORDON LLP

By
Thomas P. Schiller, Reg. No. 20677

526 Superior Avenue East, Suite 1200
Cleveland, Ohio 44114-1484
(216) 579-1700

Date: March 21, 2001

MARKED-UP CLAIMS SHOWING CHANGES

1 1. (amended) A device for admitting a backwash fluid to
2 filter medium of a filter bed, comprising [a member having a
3 plurality of elongate through orifices adapted to allow
4 passage therethrough of the fluid but not the media]:
5 (i) a member;
6 (ii) a plurality of elongate orifices through said
7 member;
8 (iii) whereby to allow passage therethrough of said fluid
9 but not the media.

1 2. (amended) A device [according to] as defined in
2 claim 1, wherein the elongate through orifices each
3 [comprising] comprise a slot.

1 3. (amended) A device [according to] as defined in
2 claim 2, [the slots having] wherein the slots each have a
3 width of less than 0.5 mm.

1 4. (amended) A device [according to] as defined in
2 claim [3] 2, [the width being] wherein the slots each have a
3 width between 0.1-0.3 mm.

1 5. (amended) A device [according to] as defined in
2 claim [4] 2, [the width being] wherein each slot has a width
3 of 0.25 mm.

1 6. (amended) A device [according to] as defined in

2 [any of claims 2 to 5] claim 2, [the member comprising]
3 wherein the member comprises a tube and [the slots being]
4 wherein the slots are directed longitudinally of the tube.

1 7. (amended) A device [according to] as defined in [any
2 of claims 2 to 5] claim 2, [the member being] wherein the
3 member is a corrugated member, and [the slots being] wherein
4 the slots are in walls of the corrugation and directed
5 longitudinally thereof.

1 8. (amended) A device [according to] as defined in
2 claim 6 [or claim 7], [the slots being] wherein the slots are
3 arranged in groups of a plurality of slots.

1 9. (amended) A device [according to] as defined in
2 claim [8] 7, [the slots being] wherein the slots are arranged
3 in groups of a plurality of slots.

1 10. (amended) A device [according to] as defined in
2 claim 9, [the slots being arranged in rows so that they
3 provide slots both close to the bottom and to the top of the
4 tube in any orientation of the tube] wherein the slots are
5 arranged in more than one row.

1 11. (amended) A device [according to] as defined in
2 [claim 9 or claim 10] claim 8, [the length of each slot not
3 being greater than the longitudinal pitch along a particular
4 row of slots] wherein the slots are arranged in rows whereby

5 to provide slots both close to the bottom and to the top of
6 the tube in any orientation of the tube.

1 12. (amended) A device [according to] as defined in
2 claim [11] 10, [the slots being staggered along the length of
3 the member] wherein the length of each slot is not greater
4 than the longitudinal pitch along a particular row of slots.

1 13. (amended) A device [according to] as defined in [any
2 of claims 2 to 12] claim 11, [the slots being formed by a
3 laser or other thermal cutting device] wherein the length of
4 each slot is not greater than the longitudinal pitch along a
5 particular row of slots.

1 14. (amended) A device [according to] as defined in
2 claim [13] 12, [the members comprising stainless steel, brass,
3 aluminum or plastic] wherein the slots are staggered along the
4 length of the member.

1 15. (amended) [A system for backwashing a filter medium
2 of a filter bed, comprising a plurality of members according
3 to any previous claim, extending substantially parallel to or
4 radially of one another and each being connected with a fluid
5 supply means] A device as defined in claim 13, wherein the
6 slots are staggered along the length of the member.

1 16. (amended) [A system according to claim 15, the fluid
2 supply means comprising a supply pipe for each member and a

3 common manifold to which each supply pipe is connected] A
4 device as defined in claim 2, wherein the slots are formed by
5 a laser cutting device.

1 17. (amended) [A filter, comprising a system according
2 to claim 16] A device as defined in claim 16, wherein the
3 members are selected from a group of materials consisting of
4 stainless steel, brass, aluminum, and plastic.

1 18. (amended) [A filter according to claim 17, the
2 members extending laterally of the filter] A system for
3 backwashing a filter medium of a filter bed, comprising:

4 (i) a plurality of members as defined in claim 1; and
5 (ii) wherein said members extend substantially in
6 spatial relation one with another and wherein each
7 is connected with a fluid supply means.

1 19. (amended) A system [according to] as defined in
2 claim 18, [the members being positioned at or adjacent the
3 base of the filter] wherein the fluid supply means comprises a
4 supply pipe for each member and a common manifold to which
5 each supply pipe is connected.

1 20. (new) A filter, side walls and a base, and wherein
2 there is installed a system as defined in claim 19.

1 21. (new) A filter as defined in claim 20, wherein the
2 members extend laterally of the filter.

1 22. (new) A filter as defined in claim 21, wherein the
2 members are positioned at the base of the filter.

1 23. (new) A filter as defined in claim 22, wherein the
2 members are positioned adjacent the base of the filter.

1

FILTERS

The invention relates to a filter, particularly to granular media filters for removing impurities from water in for example water treatment works.

Granular media filters as generally used in water treatment comprise a bed such as sand, anthracite, or the like particulate material, either alone or in combination, contained within a tank or pressure vessel and supported on a porous floor system connected to an outlet.

Water to be filtered is usually fed in at the top, flows through the porous granular bed and out through the floor, or underdrain, systems. The latter must be able to support the dead weight of the medium as well as the pressure loss resulting from the flow and also it must be porous to permit the water to pass while retaining the granular medium in position without passing to the outlet.

In addition, in most types of filter accumulated dirt is removed by passing water in the reverse direction at a higher rate than the forward flow. The distribution of this backwash water is in fact a more critical design feature than the forward flow.

There must be a minimum pressure loss at the point of discharge into the bed to achieve the desired evenness of flow across the bed. There are two factors that have to be considered, firstly the uniformity of flow into an empty filter through the ducts or pipes of the floor or underdrain, and secondly the control of the flow into the bed itself which has an unstable characteristic and can break down from even fluidisation into a situation known as spouting or boiling.

Indeed the rapid sand filtration process for the purification of water was invented early this century and is still used in a broadly similar form. Water treated with chemicals to collect contaminants into tiny particles is passed down through a bed of sand and the contaminants are retained by the sand allowing clean water to be collected in an underdrain system beneath the sand.

A variety of methods have been used to avoid particles of sand being carried down into the underdrain system, ranging from layers of gravel of decreasing size above the holes into the underdrains to the underdrains fitted with nozzles. A further general type of underdrain system comprises a plenum floor of porous material which allows water to flow through the pores.

It is common practice in washing filters to use gas, usually air to assist washing either before water or simultaneously with it. The same underdrain system should therefore be capable of distributing this air uniformly in the same way as with water.

Granular media filters, such as sand filters are generally cleaned of accumulated contaminant particles on a batch basis, using a backwashing process. The backwashing process is primarily a reverse flow of water up through the sand which carries the accumulated contaminants away to waste. In many filters, this process is improved by a flow of air up through the bed of sand which further agitates the sand grains and facilitates the removal of the contaminants.

In some designs of filter, the air and the backwash water are introduced concurrently through individual nozzles for distributing the upwards

flows of water and air respectively. In the majority of existing filters, the air flow precedes the water flow, with the air bubbles serving to loosen adhering contaminants for the water flow to carry away. The air assists the cleaning process by providing agitation.

Some modern systems utilise air and water distributed concurrently into the base of the sand bed, providing a combined air and water backwash. This is more effective than the separate air and water flows but requires special provisions to maintain the uniform distribution of air and water per unit area of filter floor. In some systems the air and water are combined in special nozzles below the sand. In other systems, the air and water are distributed separately and allowed to mingle close to the bottom of the sand bed so that virtually all of the sand bed is subject to a mixture of rising air and water.

Where a separate air distribution system is used, then a key factor is that the minimum aperture size through which the air or water, whether separate or combined, is introduced must be a small proportion of the minimum selected sand grain size to prevent ingress of the sand.

The second requirement for the means of introducing air is that the amount of air introduced to the bottom of the filter must be almost constant per unit area of filter floor, so that a similar amount of air rises up through each portion of the sand in the filter. Were this not the case, then it would be necessary to introduce excessive air into some parts of the filter to ensure an adequate flow to those parts receiving the least. If sufficient air is not supplied, then the sand would become clogged in those parts receiving inadequate air and the clogging would tend to propagate further into the sand bed, leading to failure of the

process.

In many designs the air and water are fed through the same ducts or pipes but the rates are then limited otherwise maldistribution occurs. A common alternative is the use of suspended floors with a plenum chamber below. The depth of the latter guarantees low velocities and stable uniform distribution but with the penalty of additional tank depth and often additional excavation.

To provide the necessary headlosses for distribution and to retain the medium nozzle strainer devices are extensively used. These add to the cost of the underdrain and also can be damaged, in some cases allowing the medium into the plenum or lateral pipes below.

Another prior system involves perforated lateral pipes which are buried in graded gravel of decreasing size from bottom to top. Hitherto it has not been possible to place the working media around the lateral without using gravel, in an economical manner, because of cost limitations and the difficulty of forming fine orifices in long lengths of pipe.

It is possible to operate with air and water distributed in sequence from the same lateral pipe, but difficult with air and water simultaneously over the lengths required for large filters as used in public water supply.

It is accordingly an object of the invention to seek to mitigate these disadvantages.

According to a first aspect of the invention there is provided a device for admitting a backwash fluid to filter medium of a filter bed.

comprising a member having a plurality of elongate through orifices adapted to allow passage therethrough of the fluid but not the media.

Thus, using the invention it is possible to provide elongate orifices, or slits or slots, hereinafter "a slot" or "slots" having a width less than the finest fraction of the filter medium.

The slots may each have a width of less than 0.5mm, suitably between 0.10 - 0.3mm and preferably about 0.25mm. This is operative in use to ensure that the finest fraction of media does not penetrate the member.

The member may comprise a tube and the slots may be directed longitudinally of the tube. This is a relatively simple yet effective construction.

The member may be a corrugated member, and the slots may be in walls of the corrugation and directed longitudinally thereof. This again provides a relatively simple yet effective construction.

The slots may be arranged in groups of a plurality of slots. This provides an effective arrangement for backwashing.

The slots may be arranged in more than one row. This provides for even distribution of air for backwashing.

The slots may be arranged in rows so that they provide slots both close to the bottom and to the top of the tube in any orientation of the tube. This again provides for effective backwashing.

The length of each slot may be not greater than the longitudinal pitch along a particular row of slots. This provides for effective backwashing too, particularly as the slots may be staggered along the length of the member.

The slots may be formed by a laser or other thermal cutting device, and may comprise any suitable material, such as for example stainless steel, brass, aluminium or plastic.

According to a second aspect of the invention there is provided a system for backwashing a filter medium of a filter bed, comprising a plurality of members as hereinbefore defined, extending substantially parallel to or radially of one another and each being connected with a fluid supply means.

The fluid supply means may comprise a supply pipe for each member and a common manifold to which each supply pipe is connected.

According to a third aspect of the invention there is provided a filter, comprising a system as hereinbefore defined.

The members may extend laterally of the filter, suitable at or adjacent the base of the filter.

Devices, systems and granular media filters embodying the invention are hereinafter, described by way of example, with reference to the accompanying drawings.

Fig. 1 is a schematic perspective view of one embodiment of sand filter

according to the invention:

Fig. 2 is an elevational view of part of a member according to the invention, to a larger scale than Fig. 1:

Fig. 3 is an enlarged view of detail 'A' of Fig. 2.

Fig. 4 is an enlarged view of detail 'B' of Fig. 3;

Fig. 5 is a schematic perspective view, partially broken away, of a second embodiment of granular media filter according to the invention;

Fig. 6 shows to a larger scale than that of Fig. 5, a section through the filter floor.

Figs. 7 and 8 show, again to an enlarged scale respective perspective and transverse sectional views of "laterals" for air used in the filter of Figs. 5 and 6.

Fig. 9 shows an embodiment of granular media filter according to the invention where a feed manifold is buried in filter media; and

Figs. 10 shows an embodiment of granular media filter according to the invention utilising alternating water and air layers.

Referring to the drawings there is shown in Fig. 1 a filter 1 which has a backwashing system 2 comprising a plurality of members in the form of slotted stainless steel pipes or tubes, or "laterals", 3 extending laterally of the filter below the filter medium sand in the embodiment.

each tube being substantially parallel and each being connected in the embodiment to a manifold or air supply pipe 5 by a respective supply means or downpipe 6.

Each tube 3 has a plurality of longitudinally extending slots 7, through the circumference of the tubes, the slots being in the embodiment 0.25mm in width and being arranged in groups of three at different "levels", the two "upper" 7', 7" ones as viewed and as in use being angularly spaced by 120°, and the lower one 7''' being in use on the floor of the filter. The slots are preferably formed by a laser cutting device to provide uniformity of width and length, and with little or no swarf.

The filter includes water nozzles 8.

Referring now to Figs. 5 to 10, a second embodiment of sand filter is shown in Fig. 5 which comprises a structure 10 most often in concrete but frequently in steel with side walls 11 and a side channel 12 and duct 13 to provide means of feeding and collecting through flow of water and also backwash water. A granular filtering medium 14 is supported on a floor 15 which incorporates or supports a matrix of nozzles or orifices 16 which collect the filtrate and distribute the backwash water. In the kind of floor shown these orifices or nozzles 16 connect with a set of lateral pipes or manifolds 17 which in turn connect with the main feeder/collector duct or pipe 13.

To assist washing, air may be applied sequentially or simultaneously. In the kind of filter floor described this is achieved by laying a second set of lateral pipes 18 in between the water nozzles 16 or above them.

These air laterals 18 are fed from an air manifold 19 which may be located above the filter medium 14 as in Fig. 5 or buried within it. Fig. 6 shows a section of an arrangement with water laterals 17 set in the concrete floor 15 and with air laterals 18 set above, and within the sand 14.

The air laterals 18, as described, are perforated with lines of fine slots 20 spaced around the lateral pipe as illustrated in Figs. 7 and 8.

Fig. 9 shows an embodiment where the feed manifold 19 is buried in the medium 14 and is also slotted to admit air and retain the medium. In this way the medium above the manifold is also aerated and cleaned.

Fig. 10 shows an embodiment with alternating water 17 and air 18 laterals, where the former are not buried in the concrete but laid above it. In this case the water laterals are not connected to strainers but are of a similar design to the air laterals and are slotted similarly. They will normally be of larger diameter. In this case the water laterals if used in a filter similar to that shown in Fig. 5 would still penetrate the wall of the filter into the duct 13.

Thus, in the embodiments of the invention fine slit lateral tubes, pipes or ducts are used to perform all the necessary functions. The slots, or slits, have a width less than that of the finest fraction of the granular medium so that super-imposed gravel layers are no longer necessary. These lateral pipes are suitably laid directly on the structural floor of the filter to distribute and collect water. They may also be used for the distribution of air and water in sequence. Where air is to be applied simultaneously separate systems of air and water distribution lateral

102233 0927260

pipes may be laid between each other so that alternate pipes admit water and air respectively during washing.

In an alternative, separate air lateral systems are laid above or in between conventional lateral systems, or above gravel packing layers and in conjunction with nozzles which are then used for distribution of water only. One advantage of the separate lateral system is its suitability for retrofit conversions from separate sequential air and water to simultaneous air and water.

A particular feature of the fine slit or slotted pipe is the absence of separate components which as well as adding to cost can also become damaged. The length and width of the slits or slots and their spacing are as desired and the pressure loss is selected to achieve the intended accuracy of distribution. Because there are no intrusions into the pipe, as with many types of nozzle, the required accuracy can be achieved over longer lengths of pipe.

The avoidance of additional components and the labour involved in fitting them also reduces costs.

In one form pipes for use in filter underdrains may be slit with a fine slitting saw, but below 0.4mm these become rather fragile. Also sawing may create swarf which may block the slits unless considerable care is exercised.

In a preferred form laser cuts are used to achieve finer slits or slots. In this case the cut has a fused edge and a stringy swarf is not produced.

It is also preferred that the slits or slots be longitudinal (in contrast to common drainage pipes which are transverse) as in this direction the bending strength of the pipe is not compromised by the slit to the same extent.

It is inevitable that air lateral pipes will fill with water while the filter is in service. Laterals for water likewise may occasionally receive some air (e.g. on start up). Slits are therefore arranged in more than one line round the circumference of the pipe to permit filling and emptying, and the pressure loss through the slits during backwashing is always well in excess of the pressure difference corresponding to the head of water of the diameter.

In addition to laser cutting, and bearing in mind the sizes of filter media currently in use, other methods of forming fine slits may be used.

These could involve fusion of the pipe material, shearing as with expanded metal, and abrasive jet cutting.

By way of example and without restricting the scope of the invention, pipes used for water distribution may have a diameter of 50 to 150mm depending on the length and specific flow rate required, in lengths of several metres.

For air, typical diameters are 20 to 40mm e.g. in a preferred embodiment up to 38mm, say 32mm. Slits may be 0.15 - 0.3mm width and of lengths not exceeding the longitudinal pitch, but as required by the pressure loss calculations. Backwash water and air flow rates both range typically from 4 to 20 litres/m²/second. The spacing between

lateral pipes and the pitch of the slits along the pipes is usually between 150mm and 250mm, but may be outside these limits.

It is usual to connect lateral pipes of such sizes to a larger diameter "header" or feed pipe or pipes which penetrate the outer wall of the tank or vessel. Such headers can cast a shadow on the bed and cause the medium over them to be washed less efficiently. It is a further feature of the invention that such headers may also be cut in a similar way to distribute air, and so eliminate such shadows.

In the above it has been assumed that the slits are formed in a circular section pipe. Rectangular or square ducts may also be slit to allow air or water to be distributed. This may be preferred in the case of headers, which can then be fitted against the wall or bottom corner of the vessel.

Lastly for distribution and collection of water the fine slits or slots described above may be arranged as a matrix in flat or corrugated floor panels. In the latter case rows of slits may be provided at different heights in the side of the corrugations and air may be distributed from below into the inverted channels of the corrugated sheet and thence via the upper slits into the granular media above. The corrugations then act as a set of lateral pipes. However the pressure loss for air will be limited by the height of the corrugations. Also, the slits or slots may be formed in a rollable material, which when rolled into a tubular form provide a device embodying the invention.

It will be understood that the invention described with reference to the drawings may be modified.

Thus, the tubes 3 may extend directly into the manifold 5 at a low level

thereof, without the need for downpipes 6. Also, there may be three or more rows of slots 7 which may be arranged in any desired respective orientation. Where there are three rows, some will be close to the top and some close to the bottom.

It will be further understood that embodiments of the invention as described herein with reference to the drawings utilize slots in a pipe or duct which perform both the function of controlling the pressure loss, and therefore the accuracy of distribution of air and/or water in a cleaning operation for the filter, as well as preventing entry of the filter medium or media into the pipe or duct, without the necessity of providing a porous structure that would in time be blocked by fine dirt and without the need to utilise expensive strainers, nozzles or other fittings attached to lateral pipes or ducts. In addition, the invention allows for adjustment of pressure loss on a site by site basis. The air in all the embodiments does not convey the dirt from the filter, which is effected by the water, but assists the cleaning process by providing agitation of the granular media so as to loosen dirt which is then carried away. This is so whether the air is introduced separately or concurrently with the water.

CLAIMS

1. A device for admitting a backwash fluid to filter medium of a filter bed, comprising a member having a plurality of elongate through orifices adapted to allow passage therethrough of the fluid but not the media.

2. A device according to Claim 1, the elongate through orifices each comprising a slot.

3. A device according to Claim 2, the slots having a width of less than 0.5mm.

4. A device according to Claim 3, the width being between 0.10 - 0.3mm.

5. A device according to Claim 4, each slot having a width of 0.25mm.

6. A device according to any of Claims 2 to 5, the member comprising a tube and the slots being directed longitudinally of the tube.

7. A device according to any of Claims 2 to 5, the member being a corrugated member, and the slots being in walls of the corrugation and directed longitudinally thereof.

8. A device according to Claim 6 or Claim 7, the slots being arranged in groups of a plurality of slots.

9. A device according to Claim 8, the slots being arranged in more

than one row.

10. A device according to Claim 9, the slots being arranged in rows so that they provide slots both close to the bottom and to the top of the tube in any orientation of the tube.

11. A device according to Claim 9 or Claim 10, the length of each slot being not greater than the longitudinal pitch along a particular row of slots.

12. A device according to Claim 11, the slots being staggered along the length of the member.

13. A device according to any of Claims 2 to 12, the slots being formed by a laser or other thermal cutting device.

14. A device according to Claim 13, the members comprising stainless steel, brass, aluminium or plastic.

15. A system for backwashing a filter medium of a filter bed, comprising a plurality of members according to any previous claim, extending substantially parallel to or radially of one another and each being connected with a fluid supply means.

16. A system according to Claim 15, the fluid supply means comprising a supply pipe for each member and a common manifold to which each supply pipe is connected.

17. A filter, comprising a system according to Claim 16.

18. A filter according to Claim 17, the members extending laterally of the filter.

19. A filter according to Claim 18, the members being positioned at or adjacent the base of the filter.

ABSTRACT

FILTERS

The invention relates to a filter 1 which has a backwashing system 2 comprising a plurality of members in the form of slotted stainless steel pipes or tubes, or "laterals", 3 extending laterally of the filter below the filter medium, sand in the embodiment, each tube being substantially parallel and each being connected in the embodiment to a manifold or air supply pipe 5 by a respective supply means or downpipe 6.

Each tube 3 has a plurality of longitudinally extending slots 7, through the circumference of the tubes, the slots being in the embodiment 0.25mm in width and being arranged in groups of three at different "levels", the two "upper" 7', 7" ones as viewed and as in use being angularly spaced by 120°, and the lower one 7''' being in use on the floor of the filter. The slots are preferably formed by a laser cutting device to provide uniformity of width and length, and with little or no swarf.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

Please type a plus sign (+) inside this box →

PTO/SB/01 (10-00)

Approved for use through 10/31/2002. OMB 0651-0032

U.S. Patent and Trademark Office, U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

**DECLARATION FOR UTILITY OR
DESIGN
PATENT APPLICATION**
(37 CFR 1.63)

Declaration Submitted with Initial Filing

Declaration Submitted after Initial Filing (surcharge (37 CFR 1.16 (e)) required)

Attorney Docket Number	33415
First Named Inventor	D.G. Stevenson
COMPLETE IF KNOWN	
Application Number	09 / 787,690
Filing Date	March 21, 2001
Group Art Unit	
Examiner Name	

As a below named Inventor, I hereby declare that:

My residence, mailing address, and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

FILTERS

(Title of the Invention)

the specification of which

 is attached hereto

OR

 was filed on (MM/DD/YYYY)

as United States Application Number or PCT International

(if applicable).

Application Number and was amended on (MM/DD/YYYY)

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment specifically referred to above.

I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR 1.56, including for continuation-in-part applications, material information which became available between the filing date of the prior application and the national or PCT international filing date of the continuation-in-part application.

I hereby claim foreign priority benefits under 35 U.S.C. 119(a)-(d) or 365(b) of any foreign application(s) for patent or inventor's certificate, or 365(a) of any PCT international application which designated at least one country other than the United States of America, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or any PCT international application having a filing date before that of the application on which priority is claimed.

Prior Foreign Application Number(s)	Country	Foreign Filing Date (MM/DD/YYYY)	Priority Not Claimed	Certified Copy Attached? YES	Certified Copy Attached? NO
PCT/GB99/01958	PCT	06/23/1999	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
9820624.6	United Kingdom	09/22/1998	<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>	<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>	<input type="checkbox"/> <input type="checkbox"/>

 Additional foreign application numbers are listed on a supplemental priority data sheet PTO/SB/02B attached hereto:

I hereby claim the benefit under 35 U.S.C. 119(e) of any United States provisional application(s) listed below.

Application Number(s)	Filing Date (MM/DD/YYYY)	<input type="checkbox"/> Additional provisional application numbers are listed on a supplemental priority data sheet PTO/SB/02B attached hereto.

[Page 1 of 2]

Burden Hour Statement: This form is estimated to take 21 minutes to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

DECLARATION — Utility or Design Patent Application

Direct all correspondence to: Customer Number OR Correspondence address below

Name

Address

Address

City

State

ZIP

Country

Telephone

Fax

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

NAME OF SOLE OR FIRST INVENTOR : A petition has been filed for this unsigned inventor

Given Name (first and middle [if any])		Family Name or Surname	
David Gordon		Stevenson	

Inventor's Signature	Date 08.05.2001		
----------------------	-----------------	--	--

Residence: City Newbury	State	U.K. Country	United Kingdom Citizenship
-------------------------	-------	--------------	----------------------------

Mailing Address Firstones, Adbury Holt GBX

Mailing Address Newtown

City Newbury, Berks	State	ZIP RG15 9BN	United Kingdom Country
---------------------	-------	--------------	------------------------

NAME OF SECOND INVENTOR: A petition has been filed for this unsigned inventor

Given Name (first and middle [if any])		Family Name or Surname	
---	--	---------------------------	--

Inventor's Signature	Date		
----------------------	------	--	--

Residence: City	State	Country	Citizenship
-----------------	-------	---------	-------------

Mailing Address

Mailing Address

City	State	ZIP	Country
------	-------	-----	---------

Additional inventors are being named on the _____ supplemental Additional Inventor(s) sheet(s) PTO/SB/02A attached hereto.