$$R^4$$
 R^3
 R^2

Probe	R ¹	R ²	R ³	R ⁴	
o-BMOQBA	OCH ₃	B(OH) ₂	H	H	
m-BMOQBA	OCH ₃	H B(OH) ₂		Н	
p-BMOQBA	OCH ₃	Н	H	B(OH) ₂	
BMOQ	OCH ₃	Н	H	Н	
o-BMQBA	CH ₃	B(OH) ₂	Н	Н	
m-BMQBA	CH_3	Н	B(OH) ₂	Н	
p-BMQBA	CH_3	H.	H	B(OH) ₂	
BMQ	CH ₃	H	Н	Н	

FIGURE 2

FIGURE 3

p-BMOQBA

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

Table 1 - Dissociation constants, K_D (µM³), for the probes with cyanide in water.

Probe	$K_D (\mu M^3)$			
o-BMOQBA	52.9			
m-BMOQBA	84.0			
p-BMOQBA	20.8			
BMOQ	****			
o-BMQBA	16.7			
m-BMQBA	16.9			
p-BMQBA	15.9			
BMQ				

Table 2 - Multiexponential Intensity decay of BMOQ and o-BMOQBA

[Cyanide] µM	τ ₁ (ns)	α1	τ ₂ (ns)	α2	τ (ns)	<τ> (ns)	χ²
*o-BMOQBA							
0	26.71	1.0			26.71	26.71	1.33
5	26.33	1.0		·	26.33	26.33	1.13
10	26.34	1.0			26.34	26.34	1.21
15	26.19	1.0			26.19	26.19	1.30
25	24.78	1.0			24.78	24.78	1.23
35	0.324	0.0160	25.54	0.9840	25.53	25.14	1.35
45	0.326	0.0184	25.10	0.9816	25.09	24.64	1.46
50	0.455	0.0176	25.20	0.9824	25.19	24,76	1.41
*BMOQ							
0	27.30	1.0			27.30	27.30	1.08
5	27.04	1.0			27.04	27.04	1.10
10	26.74	1.0			26.74	26.74	1.12
15	26.53	1.0			26.53	26.53	1.06
20	26.25	1.0			26.25	26.25	1.14
30	25.86	1.0			25.86	25.86	1.17
40	25.37	1.0			25.37	25.37	1.05
50	25.00	1.0			25.00	25.00	1.16

^{*} λ_{ex} = 372 nm, emission was collected with a 416 nm cut-off filter. BMOQ $K_{sv} \approx 2$ nM⁻¹.

Table 3 - Multiexponential Intensity decay of BMQ and o-BMQBA

[Cyanide] µM	τ ₁ (ns)	α1	τ ₂ (ns)	a ₂	(ns)	<t> (ns)</t>	χ²
*o-BMQBA							
0	2.18	0.4646	4.74	0.5354	4.01	3.55	1.00
5	2.14	0.4615	4.45	0.5385	3.78	3.38	1.12
10	2.28	0.5704	4.75	0.4296	3.78	3.34	1.04
15	1.86	0.3265	3.64	0.6735	3.29	3.06	0.97
20	1.88	0.3476	3.69	0.6524	3.30	3.06	1.04
30	1.44	0.1762	3.27	0.8238	3.11	2.95	1.21
40	1.92	0.3511	3.59	0.6489	3.21	3.00	0.90
50	1.87	0.3320	3.58	0.6680	3.22	3.01	1.07
*BMQ					····		
0	2.59	1.0			2.59	2.59	1.07
5	2.58	1.0			2.58	2.58	1.09
10	2.59	1.0			2.59	2.59	1.07
15	2.57	1.0			2.57	2.57	1.02
20	2.57	1.0			2.57	2.57	1.12
30	2.55	1.0	•		2.55	2.55	1.08
40	2.55	1.0			2.55	2.55	1.14
50	2.55	1.0			2.55	2.55	1.17

^{*} λ_{ex} = 372 nm, emission was collected with a 416 nm cut-off filter. BMQ $K_{ev}\approx 0.4$ nM⁻¹.

$$R^3$$
 R^2
 R^2
 R^2
 R^3
 R^4

Probe	R ¹	R ²	\mathbb{R}^3
o-BAQBA	B(OH) ₂	Н	Н
m-BAQBA	Н	B(OH) ₂	H
p-BAQBA	H	Н	B(OH) ₂
			ć
BAQ	Н	Н	Н

FIGURE 12

FIGURE 13

FIGURE 14

FIGURE 15

FIGURE 16

 Table 4: Multiexponential intensity decay of BAQ and o-BAQBA

			·	1			-		7
[Cyanide]	(nc)	α ₁	τ ₂	α_2	τ ₃ (ns)	α3	τ	<\t>>	χ²
μΜ	(ns)		(ns)		(113)				
BAQ	0.40						2 40	2.48	1.10
0	2.48	1	•	-	-		2.48	}	
2	2.48	1	-	-	-	•	2.48	2.48	1.02
4	2.49	1	-	-	-	-	2.49	2.49	1.19
6	2.49	1	-	-	-	-	2.49	2.49	1.32
10	2.49	1			-	-	2.49	2.49	1.18
16	2.49	1			-	-	2.49	2.49	1.28
20	2.47	1	-	-	-	-	2.47	2.47	0.89
o-BAQBA									
(380 nm) ^a									
0	2.04	0.71	3.41	0.29	-	-	2.59	2.44	1.06
2	2.02	0.68	3.367	0.32	-	-	2.61	2.45	0.99
4	1.98	0.67	3.37	0.33	_		2.61	2.44	0.94
6	1.92	0.62	3.23	0.38	-	-	2.59	2.42	1.06
8 ^c	1.55	0.41	2.98	0.59	-	_	2.60	2.39	1.53
10°	0.67	0.19	2.64	0.81	-	-	2.53	2.27	2.15
12.5	0.44	0.22	2.60	0.78	-	-	2.50	2.12	2.37
	0.21	0.17	2.07	0.63	3.99	0.20	2.76	2.14	1.08
15	0.38	0.28	2.61	0.72	-	-	2.49	1.98	2.18
	0.21	0.23	1.85	0.44	3.46	0.32	2.71	1.97	1.01
20	0.38	0.30	2.65	0.70	-	-	2.52	1.97	2.47
	0.19	0.24	1.69	0.39	3.36	0.37	2.72	1.95	1.12
(550 nm) ^b		<u>. </u>							
0	1.99	0.63	3.19	0.37		-	2.57	2.43	0.99
2	1.93	0.59	3.15	0.41	-	-	2.58	2.43	0.98
4	2.04	0.70	3.39	0.30	-	-	2.60	2.45	1.07
6	1.87	0.51	2.97	0.49	_	-	2.53	2.41	1.10
. 8	1.86	0.55	3.14	0.45,	-	-	2.60	2.44	1.01
10	1.75	0.48	3.10	0.52	_	_	2.63	2.45	1.17
12.5	1.85	0.40	3.48	0.39	_	_	2.74	2.49	1.03
	1.32	0.31	2.93	0.69	_	_	2.66	2.43	1.25
15				0.70		<u>-</u>	2.71	2.44	0.92
20	1.19	0.30	2.97	0.70		<u> </u>		4.77	0.02

^a380 nm long-pass filter. ^b550±10 nm interference filter.

^cNo notable improvement in fit could be obtained using a 3-exponent function. Similar values were also found for the meta- and para-BAQBA probes.

FIGURE 18

FIGURE 19

FIGURE 20

FIGURE 21

FIGURE 22

, 3

FIGURE 24

[NaCN] / μM

FIGURE 25

20

30,

[NaCN] / μM

40

50

10

0

FIGURE 27

