Assignment3_Solution

Consider the function $J(w) = w_1^2 + w_2^2 + 4w_1 - 6w_2 - 7$. Answer Questions (1-6):

1). What is the theoretical value of min(J(w))?

ans).
$$\frac{dJ}{dw_1} = 2w_1 + 4$$

$$\frac{dJ}{dw_2} = 2w_2 - 6$$

$$argmin_w(J(w_1) : \frac{dJ}{dw_1} = 0 \Rightarrow w_1 = -2$$

$$argmin_w(J(w_2) : \frac{dJ}{dw_2} = 0 \Rightarrow w_2 = 3$$

$$min(J(w_1 = -2, w_2 = 3) = (-2)^2 + 3^2 + 4(-2) - 6(3) - 7$$

$$= -20$$

- 2). What is the theoretical value of the first component of $rgmin_w(J(w)$?
- ans). $argmin_w(J(w_1) : \frac{dJ}{dw_1} = 0$ $\Rightarrow w_1 = -2$
- 3). What is the theoretical value of the first component of $rgmin_w(J(w))$?
- ans). $argmin_w(J(w_2) : \frac{dJ}{dw_2} = 0$ $\Rightarrow w_2 = 3$
- 4). Starting from an initial guess of $[w_1, w_2] = [5, 5]$, for a value of learning rate = 0.3, the value of w_1 at the 5^{th} iteration will be = _____ (Assume that the initial guess is the 1^{st} iteration)
- ans). $w_1 = -1.8208$
- 5). Starting from an initial guess of $[w_1, w_2] = [5, 5]$, for a value of learning rate = 0.3, the value of w_2 at the 5^{th} iteration will be =_____ (Assume that the initial guess is the 1^{st} iteration)
- ans). $w_2 = 3.0512$
- 6). The absolute value of the difference between the values of J at the 5^{th} iteration and the 4^{th} iteration is _____ ans). 0.1824

Matlab code for questions 4 to 6:

clc

clear

syms w1 w2 % defining weights w1 and w2 as system variables

 $J = @(w1,w2) w1.^2+w2.^2+4*w1-6*w2-7;$ % defining cost function J

dJ_w1 =@(w1) 2*w1+4; % defining grading of cost function with respect to w1 dJ w2 =@(w2) 2*w2-6; % defining grading of cost function with respect to w2

w1 = 5; w2 = 5; % defining initial weights

alpha = 0.3; % defining learning rate

W(1,:) = [w1,w2]; % assigning weights variables to a weight matrix

cost(1) = J(w1,w2); % assigning cost with respect to weights w1 and w2 to a cost matrix for i=2:5 % initial weights are taken as 1st iteration. Thus, running for 4 more iterations

Assignment3_Solution

Based on the data provided below, answer questions from 7 to 10.

We consider a function we wish to minimize. $J(w) = \frac{1}{10} \sum_{i=0}^{5} (y^{(i)} - w_1 x^{(i)} - w_0)^2$ where the constants $x^{(i)}$, $y^{(i)}$ are provided in the table below

i	$x^{(i)}$	$y^{(i)}$
1	0	0.8822
2	0.25	1.2165
3	0.50	1.3171
4	0.75	1.7930
5	1.00	1.9826

7).	The dimension of w is		
ans).	2		
8).	If our initial guess of $w = [0, 0]$, then for a learning rate of 1, the value of w_1 at the 5^{th}		
iteration is (assume that the initial guess is the 1 st iteration.)			
ans).	$w_1 = 1.0506$		
9).	If our initial guess of $w = [0, 0]$, then for a learning rate of 1, the value of w_2 at the 5^{th}		
iteratio	on is (assume that the initial guess is the 1 st iteration.)		
ans).	$w_2 = 0.7922$		
10).	If our initial guess of $w = [0, 0]$, then for a learning rate of 1, the value of J at the 5^{th}		
iteratio	on is (assume that the initial guess is the 1 st iteration.)		
ans).	$w_1 = 0.0088$		

Matlab code for questions 7 to 10:

```
clc clear  x = [0;0.25;0.5;0.75;1]; \qquad \text{defining x vector}   y = [0.8822;1.2165;1.3171;1.7930;1.9826]; \qquad \text{defining y vector}   m = \text{size}(x,1); \qquad \text{m is the number of examples}   X = [\text{ones}(m,1),x]; \qquad \text{m appending ones (bias) to input vector}   w = \text{zeros}(\text{size}(X,2),1); \qquad \text{defining weight matrix}   \text{fprintf('Dimension of w is $t$ %d$n', length(w))}   \text{alpha} = 1; \qquad \text{Modefining learning rate}
```

Assignment3_Solution

```
for i=2:5 % initial weights are taken as 1st iteration. Thus, running for 4 more iterations dJ_w = [1/m*sum((X*w-y).*X)]'; % gradient of cost with respect to weights w = w - alpha*dJ_w; % updating weights using gradient descent method J = 1/(2*m)*sum((y-X*w).^2); % cost with respect to updated weights end fprintf('At 5th iteration, w1 = \%0.4f\n', w(1,1)) fprintf('At 5th iteration, w2 = \%0.4f\n', w(2,1)) fprintf('cost at 5th iteration are \%0.4f\n', y(2,1))
```