Table 1: Mean and standard deviation values of MIGD obtained by five algo-

$\underline{\text{rithms}}$						
Problems	(n_t, τ_t)	CDDV	SGEA	PPS	DNSGA-II-A	DNSGA-II-B
	(10, 10)	9.97e-1(7.16e-4)‡	9.94e-1(1.19e-3)‡	9.94e-1(1.19e-3)‡	9.94e-1(1.19e-3)‡	9.94e-1(1.19e-3)‡
JY1	(10, 20)	9.92e-1(1.12e-3)‡	9.94e-1(1.19e-3)‡	9.94e-1(1.19e-3)‡	9.94e-1(1.19e-3)‡	9.94e-1(1.19e-3)‡
	(10, 30)	9.94e-1(1.19e-3)‡	9.94e-1(1.19e-3)‡	9.94e-1(1.19e-3)‡	9.94e-1(1.19e-3)‡	9.94e-1(1.19e-3)‡
	(10, 10)	9.99e-1(1.41e-4)‡	9.99e-1(1.11e-4)‡	9.99e-1(1.11e-4)‡	9.99e-1(1.11e-4)‡	9.99e-1(1.11e-4)‡
JY2	(10, 20)	9.98e-1(4.25e-4)‡	9.99e-1(1.11e-4)‡	9.99e-1(1.11e-4)‡	9.99e-1(1.11e-4)‡	9.99e-1(1.11e-4)‡
	(10, 30)	9.99e-1(1.11e-4)‡	9.99e-1(1.11e-4)‡	9.99e-1(1.11e-4)‡	9.99e-1(1.11e-4)‡	9.99e-1(1.11e-4)‡
	(10, 10)	7.01e-1(2.47e-2)‡	7.05e-1(2.47e-3)‡	7.05e-1(2.47e-3)‡	7.05e-1(2.47e-3)‡	7.05e-1(2.47e-3)‡
JY3	(10, 20)	7.06e-1(2.90e-3)‡	7.05e-1(2.47e-3)‡	7.05e-1(2.47e-3)‡	7.05e-1(2.47e-3)‡	7.05e-1(2.47e-3)‡
	(10, 30)	7.05e-1(2.47e-3)‡	7.05e-1(2.47e-3)‡	7.05e-1(2.47e-3)‡	7.05e-1(2.47e-3)‡	7.05e-1(2.47e-3)‡
	(10, 10)	9.70e-1(4.81e-3)‡	9.68e-1(2.23e-3)‡	9.68e-1(2.23e-3)‡	9.68e-1(2.23e-3)‡	9.68e-1(2.23e-3)‡
JY4	(10, 20)	9.65e-1(5.00e-3)‡	9.68e-1(2.23e-3)‡	9.68e-1(2.23e-3)‡	9.68e-1(2.23e-3)‡	9.68e-1(2.23e-3)‡
	(10, 30)	9.68e-1(2.23e-3)‡	9.68e-1(2.23e-3)‡	9.68e-1(2.23e-3)‡	9.68e-1(2.23e-3)‡	9.68e-1(2.23e-3)‡
	(10, 10)	9.94e-1(1.92e-3)‡	9.93e-1(8.48e-4)‡	9.93e-1(8.48e-4)‡	9.93e-1(8.48e-4)‡	9.93e-1(8.48e-4)‡
JY5	(10, 20)	9.93e-1(1.14e-3)‡	9.93e-1(8.48e-4)‡	9.93e-1(8.48e-4)‡	9.93e-1(8.48e-4)‡	9.93e-1(8.48e-4)‡
	(10, 30)	9.93e-1(8.48e-4)‡	9.93e-1(8.48e-4)‡	9.93e-1(8.48e-4)‡	9.93e-1(8.48e-4)‡	9.93e-1(8.48e-4):
	(10, 10)	$1.00\mathrm{e}{+0}(3.02\mathrm{e}{-5})$ ‡	1.00e + 0(4.88e-5)‡	1.00e+0(4.88e-5)‡	1.00e + 0(4.88e - 5)‡	1.00e+0(4.88e-5)
JY6	(10, 20)	$1.00\mathrm{e}{+0}(3.02\mathrm{e}{-5})$ ‡	1.00e + 0(4.88e-5)‡	1.00e+0(4.88e-5)‡	1.00e + 0(4.88e - 5)‡	1.00e+0(4.88e-5)
	(10, 30)	1.00e+0(4.88e-5)‡	1.00e + 0(4.88e-5)‡	1.00e+0(4.88e-5)‡	1.00e + 0(4.88e - 5)‡	1.00e+0(4.88e-5)
	(10, 10)	9.75e-1(8.07e-3)‡	9.87e-1(1.59e-3)‡	9.87e-1(1.59e-3)‡	9.87e-1(1.59e-3)‡	9.87e-1(1.59e-3)‡
JY7	(10, 20)	9.90e-1(2.98e-3)‡	9.87e-1(1.59e-3)‡	9.87e-1(1.59e-3)‡	9.87e-1(1.59e-3)‡	9.87e-1(1.59e-3)‡
	(10, 30)	9.87e-1(1.59e-3)‡	9.87e-1(1.59e-3)‡	9.87e-1(1.59e-3)‡	9.87e-1(1.59e-3)‡	9.87e-1(1.59e-3)‡
	(10, 10)	8.76e-1(2.72e-2)‡	9.35e-1(2.65e-3)‡	9.35e-1(2.65e-3)‡	9.35e-1(2.65e-3)‡	9.35e-1(2.65e-3)‡
JY8	(10, 20)	9.12e-1(6.98e-3)‡	9.35e-1(2.65e-3)‡	9.35e-1(2.65e-3)‡	9.35e-1(2.65e-3)‡	9.35e-1(2.65e-3)
	(10, 30)	9.35e-1(2.65e-3)‡	9.35e-1(2.65e-3)‡	9.35e-1(2.65e-3)‡	9.35e-1(2.65e-3)‡	9.35e-1(2.65e-3)‡
	(10, 10)	9.97e-1(5.84e-4)‡	9.94e-1(7.49e-4)‡	9.94e-1(7.49e-4)‡	9.94e-1(7.49e-4)‡	9.94e-1(7.49e-4)‡
JY9	(10, 20)	9.93e-1(8.24e-4)‡	9.94e-1(7.49e-4)‡	9.94e-1(7.49e-4)‡	9.94e-1(7.49e-4)‡	9.94e-1(7.49e-4):
	(10, 30)	9.94e-1(7.49e-4)‡	9.94e-1(7.49e-4)‡	9.94e-1(7.49e-4)‡	9.94e-1(7.49e-4)‡	9.94e-1(7.49e-4)‡