Foundations of Mathematics and the Foundational Crisis

Kevin Kappelmann

June 12, 2017

Technical University of Munich

Overview

- 1. Causes of the Crisis
- 2. The Foundational Crisis
 - 2.1 Logicism
 - 2.2 Intuitionism
 - 2.3 Formalism
 - 2.4 End of the Crisis
- 3. Aftermath and Prospects

Causes of the Crisis

Given a line ℓ and a point P not lying on ℓ , there exists one line through P parallel to ℓ .

Given a line ℓ and a point P not lying on ℓ , there exists no line through P parallel to ℓ .

Given a line ℓ and a point P not lying on ℓ , there exist at least two lines through P parallel to ℓ .

Given a line ℓ and a point P not lying on ℓ , there exist ? many lines through P parallel to ℓ .

Which axioms represent the truth?

Axiomatisation of systems in the late 19th century $% \left(1\right) =\left(1\right) \left(1\right) \left($

Axiomatisation of systems in the late 19th century

• Arithmetic of natural numbers by Peano

Axiomatisation of systems in the late 19th century

- Arithmetic of natural numbers by Peano
- Euclidean Geometry by Hilbert and Pasch

Axiomatisation of systems in the late 19th century

- Arithmetic of natural numbers by Peano
- Euclidean Geometry by Hilbert and Pasch
- Predicate logic by Frege

Axiomatisation of systems in the late 19th century

- Arithmetic of natural numbers by Peano
- Euclidean Geometry by Hilbert and Pasch
- Predicate logic by Frege

Desire for a universal and consistent system

Cantor's Set Theory

"A set is a gathering together into a whole of definite, distinct objects of our perception or of our thought – which are called elements of the set."

Georg Cantor

Cantor's Set Theory

"A set is a gathering together into a whole of definite, distinct objects of our perception or of our thought – which are called elements of the set."

Georg Cantor

Certainly universal, but fairly naive

Frege's Logic System

Frege tried to build a consistent foundation by reducing mathematics to logic.

Frege's Logic System

Frege tried to build a consistent foundation by reducing mathematics to logic.

Just before finishing his work, he received a letter from Russell...

Russell's Paradox

Consider the set of all sets that are not members of themselves:

$$R := \{X \mid X \notin X\}$$

Russell's Paradox

Consider the set of all sets that are not members of themselves:

$$R := \{X \mid X \notin X\}$$

Question: Is R a member of itself? That is, does $R \in R$ hold?

Russell's Paradox

Consider the set of all sets that are not members of themselves:

$$R := \{X \mid X \notin X\}$$

Question: Is R a member of itself? That is, does $R \in R$ hold?

Answer: $R \in R \iff R \notin R$, a contradiction!

The Begin of the Crisis

"Hardly anything more unfortunate can befall a scientific writer than to have one of the foundations of his edifice shaken after the work is finished."

- Gottlob Frege

The Begin of the Crisis

"Hardly anything more unfortunate can befall a scientific writer than to have one of the foundations of his edifice shaken after the work is finished."

- Gottlob Frege

A new foundation of mathematics had to be found.

The Foundational Crisis

The Three Schools of Thought

Three schools of thought tried to establish a new foundation.

- Logicism
- Intuitionism
- Formalism

The Foundational Crisis

Logicism

 Russell and Whitehead revisited Frege's idea of reducing mathematics to logic.

 Russell and Whitehead revisited Frege's idea of reducing mathematics to logic.

- Russell and Whitehead revisited Frege's idea of reducing mathematics to logic.
- Only fundamentally logical laws as axioms

- Russell and Whitehead revisited Frege's idea of reducing mathematics to logic.
- Only fundamentally logical laws as axioms
 - Justify the use of the axioms

• Type theory to avoid antinomies

- Type theory to avoid antinomies
- Difficulties in explaining some axioms

- Type theory to avoid antinomies
- Difficulties in explaining some axioms
- Regarded as "the outstanding example of an unreadable masterpiece"

Principia Mathematica's infamous proof of 1 + 1 = 2

```
*54*43.  \vdash :: \alpha, \beta \in 1 . \supset : \alpha \cap \beta = \Lambda . \equiv . \alpha \cup \beta \in 2 

Dem.
  \vdash .*54*26 . \supset \vdash :: \alpha = \iota' x . \beta = \iota' y . \supset : \alpha \cup \beta \in 2 . \equiv . x \neq y .
[*51*231]  \equiv . \iota' x \cap \iota' y = \Lambda .
[*13*12]  \equiv . \alpha \cap \beta = \Lambda  (1)
  \vdash . (1) . *11*11*35 . \supset 
  \vdash :. (\exists x, y) . \alpha = \iota' x . \beta = \iota' y . \supset : \alpha \cup \beta \in 2 . \equiv . \alpha \cap \beta = \Lambda  (2)
  \vdash . (2) . *11*54 . *52*1 . \supset \vdash . Prop
```

From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2.

The Foundational Crisis

Intuitionism

Proofs with Real Evidence

 Mathematics is a constructive process conducted by humans.

Proofs with Real Evidence

 Mathematics is a constructive process conducted by humans.

Proofs with Real Evidence

- Mathematics is a constructive process conducted by humans.
- The existence of an object is equivalent to the possibility of its construction.

Proofs with Real Evidence

- Mathematics is a constructive process conducted by humans.
- The existence of an object is equivalent to the possibility of its construction.
- \Rightarrow Some assumptions of classical logic must be rejected.

Intuitionists reject the law of excluded middle:

For any proposition P, either P or its negation is true.

Intuitionists reject the law of excluded middle:

For any proposition P, either P or its negation is true.

Proposition: There exist two irrational numbers a and b such that a^b is rational.

Intuitionists reject the law of excluded middle:

For any proposition P, either P or its negation is true.

Proposition: There exist two irrational numbers a and b such that a^b is rational.

Proof. It is known that $\sqrt{2}$ is irrational. Let us consider the number $\sqrt{2}^{\sqrt{2}}$.

Intuitionists reject the law of excluded middle:

For any proposition P, either P or its negation is true.

Proposition: There exist two irrational numbers a and b such that a^b is rational.

Proof. It is known that $\sqrt{2}$ is irrational. Let us consider the number $\sqrt{2}^{\sqrt{2}}$.

If it is rational, our statement is proved.

$$P \vee \neg P \equiv ?$$

Intuitionists reject the law of excluded middle:

For any proposition P, either P or its negation is true.

Proposition: There exist two irrational numbers a and b such that a^b is rational.

Proof. It is known that $\sqrt{2}$ is irrational. Let us consider the number $\sqrt{2}^{\sqrt{2}}$.

If it is rational, our statement is proved.

If it is irrational, $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = 2$ proves our statement.

What a Hassle!

"Taking the law of excluded middle from the mathematician would be the same as, say, denying the astronomer his telescope and the boxer the use of his fists."

- David Hilbert

What a Hassle!

"Taking the law of excluded middle from the mathematician would be the same as, say, denying the astronomer his telescope and the boxer the use of his fists."

- David Hilbert

Only a few scholars adhered to intuitionism.

The Foundational Crisis

Formalism

 Mathematics shall be based on meaningless symbols and syntactic operations.

 Mathematics shall be based on meaningless symbols and syntactic operations.

- Mathematics shall be based on meaningless symbols and syntactic operations.
- No need to justify the existence of objects

- Mathematics shall be based on meaningless symbols and syntactic operations.
- No need to justify the existence of objects
- The system's consistency must be verified.

The Foundational Crisis

End of the Crisis

The Incompleteness of Mathematics

In 1931, Gödel ended the crisis with his two *incompleteness theorems*.

The Incompleteness of Mathematics

In 1931, Gödel ended the crisis with his two *incompleteness theorems*.

Theorem (First Incompleteness Theorem)

Any consistent formal system within which a certain amount of elementary arithmetic can be carried out is incomplete.

The Incompleteness of Mathematics

In 1931, Gödel ended the crisis with his two *incompleteness theorems*.

Theorem (First Incompleteness Theorem)

Any consistent formal system within which a certain amount of elementary arithmetic can be carried out is incomplete.

Theorem (Second Incompleteness Theorem)

Any consistent formal system within which a certain amount of elementary arithmetic can be carried out cannot prove its own consistency.

Aftermath and Prospects

Modern Mathematics

To this day, formalism poses the foundation of mathematics.

Modern Mathematics

To this day, formalism poses the foundation of mathematics.

• Zermelo-Fraenkel set theory (ZFC) as established foundation

Modern Mathematics

To this day, formalism poses the foundation of mathematics.

• Zermelo-Fraenkel set theory (ZFC) as established foundation

Most mathematicians do not deal with foundational research.

Mathematics ∪ Computer Science

Digitalisation of mathematics

Mathematics ∪ Computer Science

Digitalisation of mathematics

 Some see it as an inevitable enrichment; others face it with distrust.

Mathematics ∪ **Computer Science**

Digitalisation of mathematics

- Some see it as an inevitable enrichment; others face it with distrust.
- Can we trust proofs by computers?

Are we part of the next mathematical crisis?

Thanks for your attention! Any questions?

References I

Beiträge zur Begründung der transfiniten Mengenlehre.

Mathematischen Annalen, 46:481, 1895.

P. J. Davis, R. Hersh, and E. A. Marchisotto.

The Mathematical Experience.

Modern Birkäuser Classics, 2012.

G. Frege.

Grundgesetze der Arithmetik, volume 2.

1902.

References II

D. Hilbert.

Die Grundlagen der Mathematik.

Abhandlungen aus dem Mathematischen Seminar der Hamburger Universität, page 80, 1928.

Image Sources I

- Euclid's Elements: math.ubc.ca/~cass/Euclid/papyrus/tha.jpg
- Geometries: upload.wikimedia.org/wikipedia/commons/ thumb/7/78/Noneuclid.svg/2000px-Noneuclid.svg.png
- Cantor: upload.wikimedia.org/wikipedia/commons/e/ e7/Georg_Cantor2.jpg
- Frege: nndb.com/people/523/000179983/ gottlob-frege-2-sized.jpg
- Schools of Thought: geopolicraticus.tumblr.com/post/142561195372

Image Sources II

 Schools of Thought (comic): maa.org/sites/default/ files/pdf/upload_library/22/Allendoerfer/1980/ 0025570x.di021111.02p0048m.pdf

 Gödel: newyorker.com/tech/elements/waiting-for-godel