Guilherme Akira Demenech Mori

November 20, 2022

Abstract

1 Modelagem dos problemas

Consideramos dois casos do problema de localização de facilidades com capacidade limitada (*Capacitated Facility Location Problem*, CFLP): com fonte única (*Single Source*, SS) e com múltiplas fontes.

1.1 Problema de localização de facilidades com capacidade limitada e fonte única

No caso de fonte única, a limitação de capacidade é um valor só s fixado para todas as facilidades. O custo fixo f de abertura também é o mesmo para todas. O conjunto de facilidades é dado por I e o de clientes por J. A formulação adotada traz a demanda p_{ij} do cliente $j \in J$ se for atendido pela facilidade $i \in I$, sendo possível que o cliente j não possa ser atendido pela facilidade i. O custo de transporte g_{ij} da facilidade $i \in I$ para o cliente $j \in J$ é referente à toda a demanda, não ao transporte de cada unidade (ou medida) requerida. x_{ij} indica se a facilidade $i \in I$ atenderá a demanda do cliente $j \in J$. A variável binária y_i indica se a facilidade $i \in I$ será aberta ou não.

São aplicadas as restrições de capacidade das facilidades (5) e de satisfação da demanda (6).

$$\sum_{j \in J} x_{ij} p_{ij} \le y_i s \quad \forall i \in I \tag{1}$$

$$\sum_{i \in I} x_{ij} \ge 1 \quad \forall j \in J \tag{2}$$

As variáveis devem ser binárias (3) e o objetivo é minimizar os custos de abertura e transporte (4).

$$x_{ij}, y_i \in \{0, 1\} \quad \forall i \in I, j \in J \tag{3}$$

$$\min \sum_{i \in I} (fy_i + \sum_{j \in J} g_{ij} x_{ij}) \tag{4}$$

A relaxação linear das variáveis x (da forma $x_{ij} \in [0,1]$) transformaria esse caso em um problema com múltiplas fontes, o modelo, porém, se tornaria bastante estranho: demandas p_{ij} diferentes poderiam ser parcialmente atendidas, satisfazendo uma demanda mista não-planejada.

1.2 Problema de localização de facilidades com capacidade limitada e múltiplas fontes

No caso de fontes múltiplas, para o conjunto de facilidades I e de clientes J, a capacidade s_i e o custo fixo de abertura f_i não são necessariamente os mesmos para todas as facilidades $i \in I$, enquanto a demanda d_j do cliente $j \in J$ é a mesma independente de qual (ou quais) facilidade(s) a satisfaça(m). O custo de transporte c_{ij} , por unidade, da facilidade $i \in I$ para o cliente $j \in J$ existe para todos os pares.

Da mesma forma que o caso anterior, são aplicadas as restrições de capacidade das facilidades (??) e de satisfação da demanda (??).

$$\sum_{j \in J} x_{ij} d_j \le y_i s_i \quad \forall i \in I \tag{5}$$

$$\sum_{i \in I} x_{ij} \ge 1 \quad \forall j \in J \tag{6}$$

As variáveis de abertura devem novamente ser binárias, enquanto o atendimento deve ser real (7) e o objetivo é minimizar os custos de abertura e transporte (8).

$$y_i \in \{0, 1\}, x_{ij} \ge 0, x_{ij} \in \mathbb{R} \quad \forall i \in I, j \in J$$
 (7)

$$\min \sum_{i \in I} (fy_i + \sum_{j \in J} g_{ij} x_{ij}) \tag{8}$$