Topologia Geral – SEMINÁRIO – 30/06

Cálculo de Partições

 $(6) \rightarrow (3)_2^2$: "Em qualquer festa com seis pessoas, existem 3 que se conhecem mutuamente ou existem 3 que se desconhecem mutuamente."

Notação Se I é conjunto, denotamos por $[I]^n$ o conjunto $\{A \subseteq I : |A| = n\}$. Usaremos κ, λ, σ para cardinais (não necessariamente infinitos, por enquanto).

1. Definição. Seja $n < \omega$. Chamamos $c: [I]^n \to \sigma$ uma **coloração**. Dizemos que $H \subseteq I$ é **homogêneo** se c é constante sobre $[H]^n$.

Notação

$$\kappa \to (\lambda)^n_{\sigma}$$

significa que para todo conjunto X de cardinalidade κ e para todo coloração $c \colon [X]^n \to \sigma$ existe $H \subseteq X$ tal que $|H| = \lambda$ e H é homogêneo para c.

2. Teorema (Ramsey'30 & Erdős – Szekeres'35). Para quaisquer $n, \sigma \in \omega$,

$$(\omega) \to (\omega)^n_{\sigma}$$
.

3. Teorema (Ramsey – versão finita). Para quaisquer $n, \sigma, l \in \omega$ existe $k \in \omega$ tal que $(k) \to (l)^n_{\sigma}$.

Demonstração do Teorema de Ramsey para n = 2.

Dado uma colaração $c\colon [\omega]^2 \to \sigma$ tome $S_0 = \omega$ e defina S_i e n_i , recursivamente sobre $i<\omega$:

- 1. fixado S_i escolha arbitrariamente $n_i \in S_i$,
- 2. escolhido $n_i \in S_i$, tome

$$T_j = \{ u \in S_i : c(\{n_i, u\}) = j \},$$

e observe que os T_j 's particionam $S_i \setminus \{n_i\}$ infinito. Portanto, existe j' tal que $T_{j'}$ é infinito. Defina $S_{i+1} = T_{j'}$ (observe que $S_{i+1} \subseteq S_i$).

Então, para todo i < j, k vale que $c(\{n_i, n_j\}) = c(\{n_i, n_k\})$ pois $n_j \in S_j \subseteq S_{i+1}$ e $n_k \in S_k \subseteq S_{i+1}$ e para todo $u \in S_{i+1}$, $c(\{n_i, u\})$ é constante.

Portanto, está bem definida a coloração f da sequência $\{n_i\}_{i\in\omega}$, dada por

$$f(n_i) = c(\lbrace n_i, n_i \rbrace)$$
, para todo $j > i$.

Como f é uma partição de um conjunto infinito em finitas partes (o número de cores é finito), existe $j \in \sigma$ e uma subsequência $\{n_{i_j}\}_{j \in \omega}$ tal que $f(n_{i_s}) = j$, para todo $s \in \omega$. Agora, para todo $0 \le s < t$ temos $c(\{n_{i_s}, n_{i_t}\}) = f(n_{i_s}) = j$, portanto, $A = \{n_{i_s} : s \in \omega\}$ é homogêneo.

Observe que pelo teorema acima temos $(\omega) \to (l)_{\sigma}^2$ para todo $l < \omega$.

Demonstração do Teorema de Ramsey – versão finita – para n = 2.

Suponha que não, i.e. para todo natural n, existe c_n : $[n]^2 \to \sigma$ sem $A \subseteq n$, |A| = l e A homogêneo. Denote por F_n o conjunto das funções de $[\omega]^2$ em σ tais que para $f \upharpoonright [n]^2$ não existe $A \subseteq n$ de cardinalidade l e homogêneo. Então, por hipótese, $F_n \neq \emptyset$.

Note que se $\bigcap F_n \neq \emptyset$ temos uma contradição pois, neste caso, temos uma f, coloração de $[\omega]^2$, tal que para todo n natural $f \upharpoonright [n]^2$ não admite A de cardinalidade l e homogêneo, contra $(\omega) \to (l)^2_{\sigma}$.

Tome o espaço topológico σ com a topologia discreta e $X=[\omega]^2\sigma$ com a topologia produto. Então, pelo Teorema de Tychonoff, X é compacto. Observe que para todos $n_1,\ldots,n_j\in X$ e para todos $r_1,\ldots,r_j\in\sigma$, o conjunto $\{f\in X\colon f(n_i)=r_i,\ i=1,\ldots,j\}$ é fechado, e que F_n é reunião finita de conjuntos dessa forma, i.e. F_n é fechado. Ainda, a família de fechados $\{F_n\}_{n\in\omega}$ tem a propriedade da intersecção finita (segue de $F_{n_1}\cap\cdots\cap F_{n_j}\supseteq F_{\bigcup n_i}$ e $F_{\bigcup n_i}\neq\emptyset$ por hipótese).

Como X é compacto, $\bigcap F_n \neq \emptyset$. Absurdo.

4. Proposição. Para qualquer κ infinito

$$(2^k) \not\to (3)^2_{\kappa}$$
.

Demonstração Identifique 2^{κ} com $^{\kappa}2$. Defina $c(\{f,g\}) = \min\{\alpha \colon f(\alpha) \neq g(\alpha)\}$.

5. Teorema (Erdős – Rado'56). Para todo $\kappa \geq \omega$

$$((2^{\kappa})^+) \to (\kappa^+)^2_{\kappa}$$
.

Aplicações

Seja X um espaço topológico. Dizemos que X é **c.c.c.** se toda família de abertos nãovazios 2-a-2 disjuntos é enumerável.

6. Teorema (Hajnal – Juhász). Todo espaço topológico Hausdorff, c.c.c. que satisfaz o primeiro axioma de enumerabilidade tem cardinalidade $\leq 2^{\omega}$.

Demonstração Suponha $|X|>2^{\omega}$ e tome $\{V_x^n\colon n<\omega\}$ base enumerável decrescente em x. Como X é Hausdorff, para quaisquer x,y distintos de X, existem $m,n<\omega$ tais que V_x^n e V_y^m são disjuntos. Supondo, sem perda de generalidade, que n>m temos $V_x^n\cap V_y^n=\emptyset$. Defina uma coloração

$$c: [X]^2 \to \omega$$

 $\{x, y\} \leadsto n \text{ onde } n = \min\{m: V_x^m \cap V_y^m = \emptyset\}.$

De $|X|>2^{\omega}$ e $((2^{\omega})^+)\to (\omega_1)^2_{\omega}$ temos que existe $H\subseteq X$ tal que $c\upharpoonright [H]^2=\{k\}$ e $|H|=\omega_1>\omega$. Agora, basta notar que $\{V^k_x\colon x\in H\}$ é uma família de abertos 2-a-2 disjuntos de cardinalidade $>\omega$.

Uma família \mathcal{V} de abertos de X é uma **pseudo-base** para $p \in X$ se para todo $V \in \mathcal{V}$ $p \in V$ e $\bigcap \mathcal{V} = \{p\}$.

7. Teorema (Hajnal – Juhász). Se X é um espaço topológico T_1 tal que todo subespaço discreto é enumerável e todo ponto admite pseudo-base enumerável, então $|X| \leq 2^{\omega}$.

Demonstração Suponha $|X|>2^\omega$ e tome $\{V_x^n\colon n<\omega\}$ pseudo-base enumerável decrescente em x. Então, para quaisquer x,y distintos de X, existem $m,n<\omega$ tais que $y\not\in V_x^n$ e $x\not\in V_y^m$. Supondo, sem perda de generalidade, que n>m temos $y\not\in V_x^n$ e $x\not\in V_y^n$. Defina uma coloração

$$c: [X]^2 \to \omega$$
 $\{x, y\} \leadsto n \text{ onde } n = \min\{m: y \notin V_x^m \text{ e } x \notin V_y^m\}.$

De $|X| > 2^{\omega}$ e $((2^{\omega})^+) \to (\omega_1)^2_{\omega}$ temos que existe $H \subseteq X$ tal que $c \upharpoonright [H]^2 = \{k\}$ e $|H| = \omega_1 > \omega$. Agora, basta notar que para todo $x \in H$ temos $H \cap V_x^k = \{x\}$, portanto, H é um subespaço discreto de cardinalidade maior que ω . Absurdo.