Inferență statistică în ML

Cap 8. Proprietățile regresiei multi-variabilă. Variabile categoriale.

May 14, 2019

Proprietățile regresiei multi-variabilă

2 Variabile categoriale (factor)

Regresia cu variabile continue și categoriale

Swiss dataset

- măsura standardizată a fertilității și indicatorii socio-economici pentru
 47 de provincii vorbitoare de limba franceză pentru Elveția anului 1888
- dataframe cu 47 de observații pentru 6 variabile (features), fiecare variabilă exprimată în procente, adică în intervalul [0, 100]
 - Fertility, măsură standardizată a fertilității
 - 2 Agriculture, % bărbați implicați în agricultură ca ocupație
 - 3 Examination, % recruți perfect sănătoși, examenul medical al armatei
 - Education, % educație peste școala primară al celor recrutați în armată
 - Catholic, % catolici din regiune (două religii, catolică vs. protestantă)
 - Infant.Mortality, % născuți vii care trăiesc mai puțin de 1 an
- toate variabilele în afară de Fertility sunt definite ca proporții din populație
- ce variabilă/variabile explică Fertility în aceste provincii?

Swiss: correlations

	District	Fertility	Agriculture	Examination	Education	Catholic	InfantMortality
0	Courtelary	80.2	17.0	15	12	9.96	22.2
1	Delemont	83.1	45.1	6	9	84.84	22.2
2	Franches-Mnt	92.5	39.7	5	5	93.40	20.2
3	Moutier	85.8	36.5	12	7	33.77	20.3
4	Neuveville	76.9	43.5	17	15	5.16	20.6

swiss.corr()

	Fertility	Agriculture	Examination	Education	Catholic	InfantMortality
Fertility	1.000000	0.353079	-0.645883	-0.663789	0.463685	0.416556
Agriculture	0.353079	1.000000	-0.686542	-0.639523	0.401095	-0.060859
Examination	-0.645883	-0.686542	1.000000	0.698415	-0.572742	-0.114022
Education	-0.663789	-0.639523	0.698415	1.000000	-0.153859	-0.099322
Catholic	0.463685	0.401095	-0.572742	-0.153859	1.000000	0.175496
InfantMortality	0.416556	-0.060859	-0.114022	-0.099322	0.175496	1.000000

Swiss: correlations heatmap

```
sns.heatmap(swiss.corr())
plt.show()
```


Swiss: pair plot

```
sns.set(style="ticks")
sns.pairplot(swiss, kind='reg')
plt.show()
       100 -
        80
   Fertility
        60
        40
        20
      100
        50
   Agriculture
      -50
       60
    Examination 8
         0
            Honorius Gâlmeanu
```

Swiss: pair plot (2)

Swiss: Fertility vs. Agriculture

```
sns.lmplot(x='Agriculture', y='Fertility', data=swiss, aspect=2)
plt.show()
print(swiss.corr()['Agriculture']['Fertility'])
```


0.35307918361997476

8/39

Swiss: Fertility Linear Regression

0.104115

1.077048

Catholic

InfantMortality

dtype: float64

Interpretare: Fertility

	coef	std err	t	P> t	[0.025	0.975]
Intercept	66.9152	10.706	6.250	0.000	45.294	88.536
Agriculture	-0.1721	0.070	-2.448	0.019	-0.314	-0.030
Examination	-0.2580	0.254	-1.016	0.315	-0.771	0.255
Education	-0.8709	0.183	-4.758	0.000	-1.241	-0.501
Catholic	0.1041	0.035	2.953	0.005	0.033	0.175
InfantMortality	1.0770	0.382	2.822	0.007	0.306	1.848

- predictorul Agriculture este exprimat în procente
- coeficientul său este estimat la -0.1721
- așteptarea este de o scădere de 0.17% în fertilitate pentru fiecare creștere de 1% în procentul de bărbați angajați în agricultură, dacă celelalte variabile sunt mentinute constante
- Student T test pentru $H_0: \beta_{Agri} = 0$ vs. $H_a: \beta_{Agri} \neq 0$ ($\frac{\beta_{Agri} 0}{stderr_{Agri}}$), este semnificativ statistic (pValue=0.018)

Fertility în funcție doar de Agriculture

```
lm = smf.ols(formula='Fertility ~ Agriculture',
   data=swiss).fit()
lm.summary()
```

Fertility (Agriculture)

Fertility (all)

	coef	std err	t	P> t	[0.025	0.975]		coef	std err	t	P> t	[0.025	0.975]
Intercept	60.3044	4.251	14.185	0.000	51.742	68.867	Intercept	66.9152	10.706	6.250	0.000	45.294	88.536
Agriculture	0.1942	0.077	2.532	0.015	0.040	0.349	Agriculture	-0.1721	0.070	-2.448	0.019	-0.314	-0.030
			Examination	-0.2580	0.254	-1.016	0.315	-0.771	0.255				
							Education	-0.8709	0.183	-4.758	0.000	-1.241	-0.501
							Catholic	0.1041	0.035	2.953	0.005	0.033	0.175
							InfantMortality	1.0770	0.382	2.822	0.007	0.306	1.848

- coeficientul β_{Agri} are acum un efect pozitiv asupra Fertilității (v. https://en.wikipedia.org/wiki/Simpson%27s_paradox)
- în ambele cazuri coeficientul este statistic significant
- va trebui să aducem argumente despre ce predictori e necesar să includem

Exemplu: variabile corelate

```
n = 100 ; x2 = np.array(range(1, n+1))
x1 = .01 * x2 + np.random.uniform(-.1, .1, size=n)
y = -x1 + x2 + np.random.randn(n)*.01
```


• y este asociat negativ cu x1 (scade cu x1) și crește cu x2

Exemplu: $y \sim x1$

$$y = -x1 + x2 + np.random.randn(n)*.01$$

========	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.6444	1.208	-0.533	0.595	-3.042	1.753
x1	98.7365	2.062	47.888	0.000	94.645	102.828

- ullet pentru y \sim x1, x1 are coeficientul 98.74, nu -1 cum ne-am fi așteptat
- efectul lui x2 este capturat în x1

Exemplu: $y \sim x1 + x2$

$$y = -x1 + x2 + np.random.randn(n)*.01$$

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.0032	0.002	-1.593	0.115	-0.007	0.001
x1	-1.0022	0.017	-58.521	0.000	-1.036	-0.968
x2	1.0000	0.000	5944.564	0.000	1.000	1.000

- se obțin corect cei doi coeficienți
- regresia ia x1 și șterge efectul lui x2

Exemplu: $y \sim x1$

Exemplu: $y \sim x1$

- regresia doar în funcție de x1: y crește pe măsură ce x1 crește (coeficientul 98)
- apare acest confounding effect¹, se vede cum variabila x1 este influentată de x2

16 / 39

Exemplu: ey \sim ex1

- panta negativă
- reziduul ex1 nu este influențat de variabila x2
- modelul liniar scoate infuența lui x2 din x1 și din y
- asta nu înseamnă că modul corect este să folosim toate variabilele

Swiss dataset din nou

	Fertility	Agriculture	Examination
Fertility	1.000000	0.353079	-0.645883
Agriculture	0.353079	1.000000	-0.686542
Examination	-0.645883	-0.686542	1.000000
Education	-0.663789	-0.639523	0.698415

- am văzut că semnul coeficientului pentru variabila Agriculture se inversează dacă introducem celelalte variabile (de ex. Examination, Education)
- procentul de bărbați ocupați în Agriculture este corelat negativ cu Education (-0.639), iar Education și Examination (corr = 0.698) par să explice același lucru pentru Fertility
- nu putem susține o asociere directă între Fertility și Agriculture, pentru că dacă scoatem variabile, trendul se inversează

Includerea unei variabile combinatie liniară

```
swiss2 = swiss.copy()
swiss2['z'] = swiss2['Agriculture'] + swiss2['Education'
lm = smf.ols(formula='Fertility ~ Agriculture +
  Examination + Education + Catholic +
  InfantMortality + z', data=swiss2).fit()
lm.summary()
```

InfantMortality	1.0770	0.382	2.822	0.007	0.306	1.84
z	-0.3477	0.073	-4.760	0.000	-0.495	-0.20
Omnibus:	0.058	Durbir	n-Watso	n:	1.454	
Prob(Omnibus):	0.971	Jarque-l	Bera (JB):	0.155	
Skew:	-0.077		Prob(JB):	0.925	
Kurtosis:	2.764		Cond. N	o. 2.36	e+16	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 8.5e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

May 14, 2019

Proprietățile regresiei multi-variabilă

2 Variabile categoriale (factor)

Regresia cu variabile continue și categoriale

Variabilă de tip factor, binară

- dacă pe post de regresori se folosesc variabile factor (categorii), se ajunge la covariance analysis
- considerăm un singur regresor factor, de tip binar, $X_{i1} \in \{0,1\}$ (în grupul de control =0, tratați =1)

$$Y_i = \beta_0 + X_{i1}\beta_1 + \epsilon_i$$

- pentru cei care au primit tratamentul, media este $E[Y_i] = \beta_0 + \beta_1$
- pentru cei din grupul de control (covariate = 0), media lor este $E[Y_i] = \beta_0$
- modelul LS potrivește coeficienții astfel ca $\hat{\beta}_0 + \hat{\beta}_1$ să fie media celor din grupul tratat, iar $\hat{\beta}_0$ media pentru grupul de control
- β_1 este interpretat ca și creșterea sau scăderea răspunsului Y a celor care au fost tratați
- statistica pentru β_1 este exact statistica pentru two-group A/B testing

Honorius Gâlmeanu Inferentă Statistică în ML May 14, 2019 21/39

Variabilă factor cu mai multe valori

- considerăm o variabilă factor cu mai multe nivele (nivelele nu sunt comparabile)
- exemplu de 3 nivele: afiliere politică: Republican, Democrat, Independent

$$Y_i = \beta_0 + X_{i1}\beta_1 + X_{i2}\beta_2 + \epsilon_i$$

- $X_{i1} = 1$ pentru Republicani, 0 în rest
- $X_{i2} = 1$ pentru Democrați, 0 în rest
- nu este nevoie de o a treia variabilă, modelul ar fi redundant
- dacă i este Republican, $E[Y_i] = \beta_0 + \beta_1$
- dacă i este Democrat, $E[Y_i] = \beta_0 + \beta_2$
- dacă i este Independent, $E[Y_i] = \beta_0$
- β_1 compară Republicanii cu Independ., iar β_2 Democrații cu Independ.
- $\beta_1 \beta_2$ compară Republicanii cu Democrații
- ce se alege ca nivel de referință are impact asupra explicării modelului

Insectsprays

```
fig, ax = plt.subplots(1, 1, figsize=(10, 5))
ax = sns.violinplot(x='spray', y='count', data=insectsprays, ax=ax)
ax.grid()
plt.show()
```


Regresia cu variabilă multi-nivel

```
lm = smf.ols(formula='count ~ spray', data=insectsprays).fit()
lm.summary()
```

	coef	std err	t	P> t	[0.025	0.975]
Intercept	14.5000	1.132	12.807	0.000	12.240	16.760
spray[T.B]	0.8333	1.601	0.520	0.604	-2.363	4.030
spray[T.C]	-12.4167	1.601	-7.755	0.000	-15.613	-9.220
spray[T.D]	-9.5833	1.601	-5.985	0.000	-12.780	-6.387
spray[T.E]	-11.0000	1.601	-6.870	0.000	-14.197	-7.803
spray[T.F]	2.1667	1.601	1.353	0.181	-1.030	5.363

ullet totul se compară cu spray A: $ar{X}_A=14.5,\ \hat{eta}_B=0.833$ e schimbarea în medie față de spray A

Regresia pe variabile factor

• de observat diferențele în medii față de spray A

Realizarea manuală a modelului (alegem A ca referință)

```
is2 = insectsprays.copy()
for x in ['A', 'B', 'C', 'D', 'E', 'F']:
    is2[x] = 1*(is2.spray == x) # is2[x] = is2[x].astype(float)
print(is2.head())
lm = smf.ols(formula='count \sim B + C + D + E + F', data=is2).fit()
print(lm.summary())
# vezi condition number cand introducem A (redundant)
   Unnamed: 0 count spray
                          A 1 0 0 0 0 0
A 1 0 0 0 0 0
A 1 0 0 0 0 0
A 1 0 0 0 0 0
                    10
                 20
                   14
                    14
```

26 / 39

Excluderea intercept-ului

```
lm = smf.ols(formula='count ~ spray - 1', data=insectsprays).fit()
lm.summary()
```

	coef	std err	t	P> t	[0.025	0.975]
spray[A]	14.5000	1.132	12.807	0.000	12.240	16.760
spray[B]	15.3333	1.132	13.543	0.000	13.073	17.594
spray[C]	2.0833	1.132	1.840	0.070	-0.177	4.344
spray[D]	4.9167	1.132	4.343	0.000	2.656	7.177
spray[E]	3.5000	1.132	3.091	0.003	1.240	5.760
spray[F]	16.6667	1.132	14.721	0.000	14.406	18.927

- nu mai există o referință, referința e media 0 acum
- de regulă dorim o referință, pentru că testele t vor măsura confidența cu care spray-urile sunt diferite față de referință
- aici, p-Values măsoară dacă mediile sunt diferite de zero (a omorât ceva?)

Sumar

- dacă folosim spray ca factor, pachetul statmodels folosește primul (alfabetic) factor ca referință
- toate testele se referă la comparația cu spray A
- sample mean pentru A este intercept-ul (acel β_0)
- celelalte medii sunt egale cu intercept + coeficientul lor
- ullet dacă se omite intercept-ul, testele sunt pentru media eq 0
- probleme cu modelul:
 - modelarea se face mai degrabă cu distribuții Poisson
 - variația față de medie nu este constantă precum asumă regresia (heteroscedasticity)

28 / 39

1 Proprietățile regresiei multi-variabilă

2 Variabile categoriale (factor)

3 Regresia cu variabile continue și categoriale

Distribuție (foarte) bimodală ca și categorie

 \bullet majoritatea regiunilor au fie un procent >80% catolici, fie <20%

30 / 39

Catholics (red) vs. NonCatholic (blue)

31 / 39

Regresia Fertility ~ Agriculture, C(CatholicBin)

• avem următoarele variabile (răspuns și regresori):

$$Y = Fertility$$

$$X_1 = Agriculture$$

$$X_2 = 1 \, \text{daca} > 50\% \, \text{Catholic}, \, \, \text{altfel} \, \, 0$$

- putem aborda mai multe modele:
 - O linie care nu ține seama de religia provinciei:

$$E[Y|X_1,X_2] = \beta_0 + \beta_1 X_1$$

2 fără interacțiune între variabile, obținem două regresii cu aceeași pantă:

$$egin{aligned} E[Y|X_1,X_2] &= eta_0 + eta_1 X_1 + eta_2 X_2 \ & ext{dacă} \ X_2 &= 0 \ &= eta_0 + eta_1 X_1 \ & ext{dacă} \ X_2 &= 1 \ &= eta_0 + eta_2 + eta_1 X_1 \end{aligned}$$

Regresia Fertility ~ Agriculture, C(CatholicBin) (2)

cu interacțiune între regresori, obținem două linii de regresie, intercepts și slopes diferite:

$$\begin{split} E[Y|X_1,X_2] &= \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 \\ &\text{dacă } X_2 = 0 \\ &= \beta_0 + \beta_1 X_1 \\ &\text{dacă } X_2 = 1 \\ &= (\beta_0 + \beta_2) + (\beta_1 + \beta_3) X_1 \end{split}$$

- coeficientul β_2 asociat Catholics va fi schimbarea de intercept de la Protestant la Catholic
- coeficientul β_3 va fi asociat cu schimbarea de pantă la trecerea de la Protestant la Catholic

Fertility ~ Agriculture

```
fig, ax = plt.subplots(1, 1, figsize=(10, 5))
sns.regplot(y='Fertility', x='Agriculture', data=swiss3, ax=ax)
plt.grid(); plt.show()
```


0.349

Agriculture

0.1942

2.532

0.015

0.040

0.077

Agriculture

0.1942

Fertility ~ Agriculture

```
fig, ax = plt.subplots(1, 1, figsize=(10, 5))
sns.regplot(y='Fertility', x='Agriculture', data=swiss3, ax=ax)
plt.grid() ; plt.show()
```


35 / 39

Fertility \sim Agriculture + C(CatholicBin)

```
lm = smf.ols(formula='Fertility \sim Agriculture + C(CatholicBin)', \ data=swiss3).fit() \\ lm.summary()
```

	coef	std err	t	P> t	[0.025	0.975]
Intercept	60.8322	4.106	14.816	0.000	52.557	69.107
C(CatholicBin)[T.1]	7.8843	3.748	2.103	0.041	0.330	15.439
Agriculture	0.1242	0.081	1.531	0.133	-0.039	0.288

- intercept-ul este 60.83
- panta este aceeași indiferent de religie
- schimbarea de intercept este 7.88 pentru Catholics

Fertility ~ Agriculture + C(CatholicBin) (2)

```
params = smf.ols(formula='Fertility ~ Agriculture + C(CatholicBin)', data=swiss3).fit().params
x = swiss3.Agriculture.values; fig, ax = plt.subplots(1, 1, figsize=(15, 5))
ax.scatter(swiss3.Agriculture, swiss3.Fertility, c=['Red' if x else 'Blue' for x in swiss3.CatholicBin.values])
ax.plot(x, params[0] + params[2] * x, 'b')
ax.plot(x, params[0] + params[1] + params[2] * x, 'r')
ax.set_xlabel('Agriculture'); ax.set_ylabel('Fertility')
ax.legend(['Protestant', 'Catholic']); plt.grid(); plt.show()
```


Fertility ∼ Agriculture * C(CatholicBin)

```
lm = smf.ols(formula='Fertility ~ Agriculture * C(CatholicBin)', data=swiss3).fit()
print(lm.summary())
```

 steluța * din formulă determină statmodels să considere regresorul de tip interacțiune dintre cele două variabile și introduce și efectele liniare ale celor două

	coef	std err	t	P> t	[0.025	0.975]
Intercept	62.0499	4.789	12.956	0.000	52.392	71.708
C(CatholicBin)[T.1]	2.8577	10.626	0.269	0.789	-18.573	24.288
Agriculture	0.0961	0.099	0.973	0.336	-0.103	0.295
Agriculture:C(CatholicBin)[T.1]	0.0891	0.176	0.506	0.615	-0.266	0.444

Fertility ~ Agriculture * C(CatholicBin) (2)

```
x = swiss3.Agriculture.values ; fig, ax = plt.subplots(1, 1, figsize=(15, 5))
ax.scatter(swiss3.Agriculture, swiss3.Fertility, c=['Red' if x else 'Blue' for x in swiss3.CatholicBin.values])
ax.plot(x, lm.params[0] + lm.params[2] * x, 'b')
ax.plot(x, lm.params[0] + lm.params[1] + (lm.params[2] + lm.params[3]) * x, 'r')
ax.set xlabel('Agriculture'); ax.set ylabel('Fertility')
ax.legend(['Protestant', 'Catholic']); plt.grid(); plt.show()
```

