#### **Contents**

Karnaugh maps



March 2, 2022

#### **Section outline**

- Karnaugh maps
  - KMap technique
  - KMap ex-1
  - KMap ex-2
  - KMap ex-3

- KMap ex-4
- KMap ex-5
- KMap ex-6
- KMap ex-7
- KMap ex-8
- KMap ex-9





 Aim is to have an optimal 2-level SOP (or POS) form





- Aim is to have an optimal 2-level SOP (or POS) form
- Algebraic operation used repeatedly on FPs pz and  $p\overline{z}$  where p is





- Aim is to have an optimal 2-level SOP (or POS) form
- Algebraic operation used repeatedly on FPs pz and pz where p is contained in FPs pz and pz





- Aim is to have an optimal 2-level SOP (or POS) form
- Algebraic operation used repeatedly on FPs pz and pz where p is contained in FPs pz and pz
- $pz + p\overline{z} = p(z + \overline{z}) = p$





- Aim is to have an optimal 2-level SOP (or POS) form
- Algebraic operation used repeatedly on FPs pz and p\overline{z} where p is contained in FPs pz and p\overline{z}
- $pz + p\overline{z} = p(z + \overline{z}) = p$
- FPs pz and  $p\overline{z}$  are adjacent





- Aim is to have an optimal 2-level SOP (or POS) form
- Algebraic operation used repeatedly on FPs pz and pz where p is contained in FPs pz and pz
- $pz + p\overline{z} = p(z + \overline{z}) = p$
- FPs pz and pz are adjacent
- By absorbtion [p = p + p], FPs are not exclusive



$$\underline{\overline{a}b\overline{c}d} + \underline{\overline{a}bcd} + \underline{a}b\overline{c}d + \\
\underline{ab\overline{c}d} + \underline{abcd} + \\
\underline{ab\overline{c}d} + \underline{abcd} + \\
\underline{1100 \leftrightarrow 12} \quad 1111 \leftrightarrow 15$$

$$f = \sum_{m} (0, 7, 9, 12, 15)$$



- Aim is to have an optimal 2-level SOP (or POS) form
- Algebraic operation used repeatedly on FPs pz and  $p\overline{z}$  where p is contained in FPs pz and  $p\overline{z}$
- $pz + p\overline{z} = p(z + \overline{z}) = p$
- FPs pz and  $p\overline{z}$  are adjacent
- By absorbtion [p = p + p], FPs are not exclusive
- For convenience minterms are placed on a Karnaugh map where adjacent minterms get placed in adjacent cells



$$\underline{\overline{a}} \overline{b} \overline{c} \overline{d} + \underline{\overline{a}} \underline{b} \underline{c} \underline{d} + \underline{a} \underline{\overline{b}} \overline{c} \underline{d} + \underline{a} \underline{b} \overline{c} \underline{d} + \underline{a} \underline{b} \overline{c} \underline{d} + \underline{a} \underline{b} \underline{c} \underline{d} + \underline{a} \underline{b} \underline{d} + \underline{a} \underline{b} \underline{d} + \underline{a} \underline{b} \underline{d} + \underline{a} \underline{b} \underline{d} \underline{d} + \underline{a} \underline{b} \underline{d} + \underline{a} \underline{d} + \underline{a} \underline{b} \underline{d} + \underline{a} \underline{b} \underline{d} + \underline{a} \underline{d} + \underline{a} \underline{d} + \underline{a} \underline{d} + \underline$$



- Aim is to have an optimal 2-level SOP (or POS) form
- Algebraic operation used repeatedly on FPs pz and p\overline{z} where p is contained in FPs pz and p\overline{z}
- $pz + p\overline{z} = p(z + \overline{z}) = p$
- FPs pz and  $p\overline{z}$  are adjacent
- By absorbtion [p = p + p], FPs are not exclusive
- For convenience minterms are placed on a Karnaugh map where adjacent minterms get placed in adjacent cells
- Enables easier identification of adjacent FPs for simplification



$$0000 \leftrightarrow 0 \qquad 0111 \leftrightarrow 7 \qquad 1001 \leftrightarrow 9$$

$$\underbrace{ab\overline{c}d}_{1100 \leftrightarrow 12} + \underbrace{abcd}_{1111 \leftrightarrow 15}$$

$$f = \sum_{m} (0, 7, 9, 12, 15)$$



$$f = \overline{abcd} + \overline{abcd} + \overline{abcd} + \overline{abcd} + \underline{abcd} +$$





$$f = \overline{abcd} + \overline{abcd} + \overline{abcd} + \overline{abcd} + \underline{abcd} +$$





$$f = \overline{a}\overline{b}\overline{c}\overline{d} + \overline{a}bcd + a\overline{b}\overline{c}d + ab\overline{c}\overline{d} + abcd$$

$$f = \overline{a}\overline{b}\overline{c}\overline{d} + \overline{a}bcd + a\overline{b}\overline{c}d + ab\overline{c}\overline{d} + abcd$$

$$f = \overline{a}, b = 0$$

$$00 \quad 01 \quad 11 \quad 10$$

$$00 \quad 0 \quad 1 \quad 3 \quad 2$$

$$01 \quad 4 \quad 5 \quad 7 \quad 6$$

$$11 \quad 12 \quad 13 \quad 15 \quad 14$$

$$10 \quad 8 \quad 9 \quad 11 \quad 10$$





$$f = \overline{a}\overline{b}\overline{c}\overline{d} + \overline{a}b\underline{c}d + a\overline{b}\overline{c}d + ab\overline{c}\overline{d} + ab\underline{c}\overline{d} + ab\underline{c}d + ab\underline{c}\overline{d} + ab\underline{c}d + ab\underline{c}$$







$$f = \overline{a}\overline{b}\overline{c}\overline{d} + \overline{a}bcd + \underline{a}\overline{b}\overline{c}d + \underline{a}b\overline{c}\overline{d} + \underline{a}bcd$$

$$00000 \leftrightarrow 0 \quad 01111 \leftrightarrow 7 \quad 1001 \leftrightarrow 9 \quad 1100 \leftrightarrow 12 \quad 11111 \leftrightarrow 15$$

$$f$$

$$a, b$$

$$00 \quad 0 \quad 1 \quad 11 \quad 10$$

$$a, b$$

$$01 \quad 4 \quad 5 \quad 7 \quad 6$$

$$11 \quad 12 \quad 13 \quad 15 \quad 14$$

$$10 \quad 8 \quad 9 \quad 11 \quad 10$$

$$f = bcd + \cdots + \cdots + \cdots$$



$$f = \overline{a}\overline{b}\overline{c}\overline{d} + \overline{a}bcd + \underline{a}\overline{b}\overline{c}d + \underline{a}b\overline{c}\overline{d} + \underline{a}bcd$$

$$00000 \leftrightarrow 0 \quad 0111 \leftrightarrow 7 \quad 1001 \leftrightarrow 9 \quad 1100 \leftrightarrow 12 \quad 11111 \leftrightarrow 15$$

$$f$$

$$a, b$$

$$00 \quad 0 \quad 1 \quad 11 \quad 10$$

$$00 \quad 0 \quad 1 \quad 3 \quad 2$$

$$01 \quad 4 \quad 5 \quad 7 \quad 6$$

$$11 \quad 12 \quad 13 \quad 15 \quad 14$$

$$10 \quad 8 \quad 9 \quad 11 \quad 10$$

$$f = bcd + ab\overline{c}\overline{d} + \dots + \dots$$



$$f = \overline{abcd} + \overline{abcd} + \overline{abcd} + \overline{abcd} + \underline{abcd} + \underline{abcd}$$

$$0000 \leftrightarrow 0 \qquad 0111 \leftrightarrow 7 \qquad 1001 \leftrightarrow 9 \qquad 1100 \leftrightarrow 12 \qquad 1111 \leftrightarrow 15$$

$$f$$

$$a, b \qquad 00 \qquad 0 \qquad 1 \qquad 1 \qquad 10$$

$$a, b \qquad 00 \qquad 0 \qquad 1 \qquad 3 \qquad 2$$

$$01 \qquad 4 \qquad 5 \qquad 7 \qquad 6$$

$$11 \qquad 12 \qquad 13 \qquad 15 \qquad 14$$

$$10 \qquad 8 \qquad 9 \qquad 11 \qquad 10$$

$$f = bcd + ab\overline{c}d + a\overline{b}\overline{c}d +$$



March 2, 2022

$$f = \overline{a}\overline{b}\overline{c}\overline{d} + \overline{a}bcd + \underline{a}\overline{b}\overline{c}d + \underline{a}b\overline{c}\overline{d} + \underline{a}bcd$$

$$0000000 \quad 011100 \quad 100100 \quad 11000012 \quad 11111015$$

$$f \quad 00 \quad 0 \quad 1 \quad 1 \quad 10$$

$$00 \quad 0 \quad 1 \quad 3 \quad 2$$

$$01 \quad 4 \quad 5 \quad 7 \quad 6$$

$$11 \quad 12 \quad 13 \quad 15 \quad 14$$

$$10 \quad 8 \quad 9 \quad 11 \quad 10$$

$$f = bcd + ab\overline{c}\overline{d} + a\overline{b}\overline{c}\overline{d}$$



March 2, 2022

$$f(a, b, c, d) = \sum_{m} (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$



$$f(a, b, c, d) = \sum_{m} (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$

| $f \sim G$ | , <b>d</b> |    |    |    |
|------------|------------|----|----|----|
| a, b       |            | 01 | 11 | 10 |
| 00         | 0          | 1  | 3  | 2  |
| 01         | 4          | 5  | 7  | 6  |
| 11         | 12         | 13 | 15 | 14 |
| 10         | 8          | 9  | 11 | 10 |



5/12

$$f(a, b, c, d) = \sum_{m} (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$



$$f(a,b,c,d) = \sum_{a} (0,1,2,4,5,6,8,9,12,13,14)$$





$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,9,12,13,14)$$



$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,9,12,13,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,9,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,$$

5/12

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,9,12,13,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,9,12,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,9,12,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,9,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,9,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,$$

$$f = \overline{\underline{c}} + \overline{\underline{a}}\overline{\underline{d}} + \underline{\phantom{a}}$$





$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,9,12,13,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,9,12,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,9,12,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,9,12,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,9,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,9,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,9,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1,2,4,5,6,8,14)$$

$$f(a,b,c,d) = \sum_{m} (0,1$$



$$f(a,b,c,d) = \sum_{m} (0,5,7,8,11,13,14,15)$$

| f C a, b | , <i>d</i><br>00 | 01 | 11 | 10 |
|----------|------------------|----|----|----|
| 00       | 0                | 1  | 3  | 2  |
| 01       | 4                | 5  | 7  | 6  |
| 11       | 12               | 13 | 15 | 14 |
| 10       | 8                |    |    |    |



6/12

$$f(a, b, c, d) = \sum_{m} (0, 5, 7, 8, 11, 13, 14, 15)$$



$$f(a, b, c, d) = \sum_{m} (0, 5, 7, 8, 11, 13, 14, 15)$$





$$f(a, b, c, d) = \sum_{m} (0, 5, 7, 8, 11, 13, 14, 15)$$





$$f(a,b,c,d) = \sum_{m} (0,5,7,8,11,13,14,15)$$



$$f(a,b,c,d) = \sum_{m} (0,5,7,8,11,13,14,15)$$

$$f(a,b,c,d) = \sum_{m} (0,5,7,8,14,15)$$

$$f(a,b,c,d) = \sum_{$$







$$f(a,b,c,d) = \sum_{m} (0,5,7,8,11,13,14,15)$$

$$f(a,b,c,d) = \sum_{m} (0,5,7,8,14,15)$$

$$f(a,b,c,d) = \sum_{$$



$$f(a,b,c,d) = \sum_{m} (0,5,7,8,11,13,14,15)$$

$$f(a,b,c,d) = \sum_{m} (0,5,7,8,15)$$

$$f(a,b,c,d) = \sum_{m} (0,5,7,8$$





$$f(a,b,c,d,e) = \sum_{m} (0,1,2,7,8,9,10,15,16,17,18,24,25,26,28,30)$$

$$f(a,b,c,d,e) = \sum_{m} (0,1,2,7,8,9,10,15,16,17,18,24,25,26,28,30)$$

$$f(a,b,c,d,e) = \sum_{m} (0,1,2,7,8,9,10,15,16,17,18,24,25,26,28,30)$$

$$f(a,b,c,d,e) = \sum_{m} (0,1,2,7,8,9,10,15,16,17,18,24,25,26,28,30)$$

c, d, e 000 a, b

$$f(a,b,c,d,e) = \sum_{m} (0,1,2,7,8,9,10,15,16,17,18,24,25,26,28,30)$$

c, d, e 000 a, b

$$f(a,b,c,d,e) = \sum_{m} (0,1,2,7,8,9,10,15,16,17,18,24,25,26,28,30)$$





$$f(a,b,c,d,e) = \sum_{m} (0,1,2,7,8,9,10,15,16,17,18,24,25,26,28,30)$$



$$f = \overline{c} \, \overline{d} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$



$$f(a,b,c,d,e) = \sum_{m} (0,1,2,7,8,9,10,15,16,17,18,24,25,26,28,30)$$



$$f = \underline{\bar{c}}\,\underline{\bar{d}} + \underline{\bar{e}}\,\underline{\bar{c}} + \underline{\qquad} + \underline{\qquad}$$



$$f(a,b,c,d,e) = \sum_{m} (0,1,2,7,8,9,10,15,16,17,18,24,25,26,28,30)$$



$$f = \underline{\bar{c}}\,\underline{\bar{d}} + \underline{\bar{e}}\,\underline{\bar{c}} + \underline{ab}\,\underline{\bar{e}} + \underline{\qquad}$$



$$f(a,b,c,d,e) = \sum_{m} (0,1,2,7,8,9,10,15,16,17,18,24,25,26,28,30)$$



$$f = \underline{\bar{c}}\,\underline{\bar{d}} + \underline{\bar{e}}\,\underline{\bar{c}} + \underline{ab}\,\underline{\bar{e}} + \underline{\bar{a}}\,\underline{c}\,\underline{d}\,\underline{e}$$



$$f(a,b,c,d,e) = \sum_{m} (3,6,7,8,10,12,14,17,20,21,24,25,27,28) + \sum_{d} (0,1,18,19,31)$$



$$f = \underline{\bar{a}b\bar{e}} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad}$$



$$f(a,b,c,d,e) = \sum_{m} (3,6,7,8,10,12,14,17,20,21,24,25,27,28) + \sum_{d} (0,1,18,19,31)$$



$$f = \overline{a}b\overline{e} + a\overline{c}e + \dots + \dots + \dots + \dots + \dots$$



$$f(a,b,c,d,e) = \sum_{m} (3,6,7,8,10,12,14,17,20,21,24,25,27,28) + \sum_{d} (0,1,18,19,31)$$



$$f = \underline{\bar{a}b\bar{e}} + \underline{a\bar{c}e} + \underline{\bar{b}\bar{c}e} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad}$$



$$f(a,b,c,d,e) = \sum_{m} (3,6,7,8,10,12,14,17,20,21,24,25,27,28) + \sum_{d} (0,1,18,19,31)$$



$$f = \underline{\bar{a}b}\underline{\bar{e}} + \underline{a}\underline{\bar{c}e} + \underline{\bar{b}}\underline{\bar{c}e} + \underline{b}\underline{\bar{d}}\underline{\bar{e}} + \underline{\qquad} + \underline{\qquad}$$



$$f(a,b,c,d,e) = \sum_{m} (3,6,7,8,10,12,14,17,20,21,24,25,27,28) + \sum_{d} (0,1,18,19,31)$$



$$f = \underline{\bar{a}b\bar{e}} + \underline{a\bar{c}e} + \underline{\bar{b}\bar{c}e} + \underline{b\bar{d}\bar{e}} + \underline{a\bar{b}c\bar{d}} + \underline{\phantom{a\bar{b}c\bar{d}}} + \underline{\phantom{a\bar{b}c\bar{d}}}$$



$$f(a,b,c,d,e) = \sum_{m} (3,6,7,8,10,12,14,17,20,21,24,25,27,28) + \sum_{d} (0,1,18,19,31)$$



$$f = \underline{\bar{a}b}\underline{\bar{e}} + \underline{a}\underline{\bar{c}e} + \underline{b}\underline{\bar{c}e} + \underline{b}\underline{\bar{d}}\underline{\bar{e}} + \underline{a}\underline{\bar{b}c}\underline{\bar{d}} + \underline{\bar{a}}\underline{\bar{b}c}\underline{\bar{d}}$$



$$f(a,b,c,d,e) = \sum_{m} (0,2,3,4,5,6,7,11,15,16,18,19,23,27,31) + \sum_{d} (1,9,24,30)$$

$$f(a,b,c,d,e) = \sum_{m} (0,2,3,4,5,6,7,11,15,16,18,19,23,27,31) + \sum_{d} (1,9,24,30)$$

c, d, e 000 011 010 110 111 

$$f(a,b,c,d,e) = \sum_{m} (0,2,3,4,5,6,7,11,15,16,18,19,23,27,31) + \sum_{d} (1,9,24,30)$$

*c*, *d*, *e* 000 010 110 111 a, b

$$f(a,b,c,d,e) = \sum_{m} (0,2,3,4,5,6,7,11,15,16,18,19,23,27,31) + \sum_{d} (1,9,24,30)$$



$$f = + +$$

$$f(a,b,c,d,e) = \sum_{m} (0,2,3,4,5,6,7,11,15,16,18,19,23,27,31) + \sum_{d} (1,9,24,30)$$



$$f = \bar{a}\bar{b} + +$$

$$f(a,b,c,d,e) = \sum_{m} (0,2,3,4,5,6,7,11,15,16,18,19,23,27,31) + \sum_{d} (1,9,24,30)$$



$$f = \overline{a}\overline{b} + \underline{d}\underline{e} +$$

$$f(a,b,c,d,e) = \sum_{m} (0,2,3,4,5,6,7,11,15,16,18,19,23,27,31) + \sum_{d} (1,9,24,30)$$

| f    | d 0                     |     |     |     |     |     |     |     |
|------|-------------------------|-----|-----|-----|-----|-----|-----|-----|
| a, b | <i>d</i> , <i>e</i> 000 | 001 | 011 | 010 | 110 | 111 | 101 | 100 |
| 00   | 0                       | 1   | 3   | 2   | 6   | 7   | 5   | 4   |
| 01   | 8                       | 9   | 11  | 10  | 14  | 15  | 13  | 12  |
| 11   | 24                      | 25  | 27  | 26  | 30  | 31  | 29  | 28  |
| 10   | 16                      | 17  | 19  | 18  | 22  | 23  | 21  | 20  |
|      |                         |     | _   |     |     |     |     |     |

$$f = \bar{a}\bar{b} + de + \bar{b}\bar{c}\bar{e}$$

$$f(a, b, c, d, e, f) = \sum_{m} \begin{pmatrix} 0, 2, 4, 8, 10, 13, 15, 16, 18, 20, 23, 24, 26, 32, 34, 40, 41, 42, 45, 47, 48, \\ 50, 56, 57, 58, 60, 61 \end{pmatrix}$$

g d, e, fa, b, c 

$$f(a,b,c,d,e,f) = \sum_{m} \begin{pmatrix} 0,2,4,8,10,13,15,16,18,20,23,24,26,32,34,40,41,42,45,47,48,\\ 50,56,57,58,60,61 \end{pmatrix}$$

| g<br>\ d | . e. f |    |    |    |    |    |    |    |
|----------|--------|----|----|----|----|----|----|----|
| a, b, c  |        |    |    |    |    |    |    |    |
| 000      | 0      | 1  | 3  | 2  | 6  | 7  | 5  | 4  |
| 001      | 8      | 9  | 11 | 10 | 14 | 15 | 13 | 12 |
| 011      | 24     | 25 | 27 | 26 | 30 | 31 | 29 | 28 |
| 010      | 16     | 17 | 19 | 18 | 22 | 23 | 21 | 20 |
| 110      | 48     | 49 | 51 | 50 | 54 | 55 | 53 | 52 |
| 111      | 56     | 57 | 59 | 58 | 62 | 63 | 61 | 60 |
| 101      | 40     | 41 | 43 | 42 | 46 | 47 | 45 | 44 |
| 100      | 32     | 33 | 35 | 34 | 38 | 39 | 37 | 36 |
|          |        |    |    |    |    |    |    |    |

$$g = \overline{\underline{e}}\overline{f} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

4□ > 4回 > 4 = > 4 = > ■ 9 9 €

$$f(a, b, c, d, e, f) = \sum_{m} \begin{pmatrix} 0, 2, 4, 8, 10, 13, 15, 16, 18, 20, 23, 24, 26, 32, 34, 40, 41, 42, 45, 47, 48, \\ 50, 56, 57, 58, 60, 61 \end{pmatrix}$$

| g . d   | , e, f |     |     |     |     |     |     |     |
|---------|--------|-----|-----|-----|-----|-----|-----|-----|
| a, b, c | 000    | 001 | 011 | 010 | 110 | 111 | 101 | 100 |
| 000     | 0      | 1   | 3   | 2   | 6   | 7   | 5   | 4   |
| 001     | 8      | 9   | 11  | 10  | 14  | 15  | 13  | 12  |
| 011     | 24     | 25  | 27  | 26  | 30  | 31  | 29  | 28  |
| 010     | 16     | 17  | 19  | 18  | 22  | 23  | 21  | 20  |
| 110     | 48     | 49  | 51  | 50  | 54  | 55  | 53  | 52  |
| 111     | 56     | 57  | 59  | 58  | 62  | 63  | 61  | 60  |
| 101     | 40     | 41  | 43  | 42  | 46  | 47  | 45  | 44  |
| 100     | 32     | 33  | 35  | 34  | 38  | 39  | 37  | 36  |
|         |        |     |     |     |     |     |     |     |

$$g = \overline{e}\overline{f} + ab\overline{c}f + \underline{\qquad} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad}$$

$$f(a, b, c, d, e, f) = \sum_{m} \begin{pmatrix} 0, 2, 4, 8, 10, 13, 15, 16, 18, 20, 23, 24, 26, 32, 34, 40, 41, 42, 45, 47, 48, \\ 50, 56, 57, 58, 60, 61 \end{pmatrix}$$



$$g = \overline{e}\overline{f} + ab\overline{c}f + \overline{a}\overline{b}\overline{c}\overline{f} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad}$$

KMap ex-7

$$f(a, b, c, d, e, f) = \sum_{m} \begin{pmatrix} 0, 2, 4, 8, 10, 13, 15, 16, 18, 20, 23, 24, 26, 32, 34, 40, 41, 42, 45, 47, 48, \\ 50, 56, 57, 58, 60, 61 \end{pmatrix}$$



$$g = \overline{e}\overline{f} + ab\overline{c}\underline{f} + \overline{a}\overline{b}\overline{c}\overline{f} + \overline{a}\overline{b}cd\underline{e}\underline{f} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad}$$

$$f(a, b, c, d, e, f) = \sum_{m} \begin{pmatrix} 0, 2, 4, 8, 10, 13, 15, 16, 18, 20, 23, 24, 26, 32, 34, 40, 41, 42, 45, 47, 48, \\ 50, 56, 57, 58, 60, 61 \end{pmatrix}$$



$$g = \bar{e}\bar{f} + ab\bar{c}f + \bar{a}\bar{b}\bar{c}\bar{f} + \bar{a}\bar{b}cdef + ab\bar{c}d +$$

4□ > 4周 > 4 E > 4 E > 9 Q O

$$f(a, b, c, d, e, f) = \sum_{m} \begin{pmatrix} 0, 2, 4, 8, 10, 13, 15, 16, 18, 20, 23, 24, 26, 32, 34, 40, 41, 42, 45, 47, 48, \\ 50, 56, 57, 58, 60, 61 \end{pmatrix}$$



$$g = \overline{e}\overline{f} + ab\overline{c}f + \overline{a}\overline{b}\overline{c}\overline{f} + \overline{a}\overline{b}cdef + ab\overline{c}d + b\overline{d}ef$$

$$f = \left\{ \begin{array}{l} \underbrace{\underbrace{(a+b+\overline{c}+\overline{d})}_{0011\leftrightarrow 3}} \underbrace{\underbrace{(a+\overline{b}+c+d)}_{0100\leftrightarrow 4}} \underbrace{\underbrace{(a+\overline{b}+\overline{c}+d)}_{0110\leftrightarrow 6}} \underbrace{\underbrace{(a+\overline{b}+\overline{c}+\overline{d})}_{0111\leftrightarrow 7}} \underbrace{\underbrace{(\overline{a}+b+\overline{c}+\overline{d})}_{1110\leftrightarrow 12}} \underbrace{\underbrace{(\overline{a}+\overline{b}+c+\overline{d})}_{1110\leftrightarrow 14}} \underbrace{\underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111\leftrightarrow 15}} \underbrace{\underbrace{(\overline{a}+b+\overline{c}+\overline{d})}_{1111\leftrightarrow 15}} \underbrace{\underbrace{(\overline{a}+b+\overline{c}+\overline{d})}_{1111}} \underbrace{\underbrace{(\overline{a}+b+\overline{c}+\overline{d})}_{1111}} \underbrace{\underbrace{(\overline{a}+b+\overline{c}+\overline{d})}_{1111}} \underbrace{\underbrace{(\overline{a}+b+\overline{c}+\overline{d})}_{1111}} \underbrace{\underbrace{(\overline{a}$$

• Direct minimisation:  $(s+x)(s+\overline{x})=s$ 



$$f = \left\{ \begin{array}{l} \underbrace{\underbrace{\left(a+b+\overline{c}+\overline{d}\right)}_{0011\leftrightarrow 3} \cdot \underbrace{\left(a+\overline{b}+c+d\right)}_{0100\leftrightarrow 4} \cdot \underbrace{\left(a+\overline{b}+\overline{c}+d\right)}_{0110\leftrightarrow 6} \cdot \underbrace{\left(a+\overline{b}+\overline{c}+\overline{d}\right)}_{0111\leftrightarrow 7} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1110\leftrightarrow 12} \cdot \underbrace{\left(\overline{a}+\overline{b}+\overline{c}+d\right)}_{1110\leftrightarrow 14} \cdot \underbrace{\left(\overline{a}+\overline{b}+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111} \cdot \underbrace{\left(\overline{a}+b+\overline$$

- Direct minimisation:  $(s+x)(s+\overline{x})=s$
- Minimising via  $\bar{f}$



$$f = \left\{ \begin{array}{l} \underbrace{\underbrace{\left(a+b+\overline{c}+\overline{d}\right)}_{0011\leftrightarrow 3} \cdot \underbrace{\left(a+\overline{b}+c+d\right)}_{0100\leftrightarrow 4} \cdot \underbrace{\left(a+\overline{b}+\overline{c}+d\right)}_{0110\leftrightarrow 6} \cdot \underbrace{\left(a+\overline{b}+\overline{c}+\overline{d}\right)}_{0111\leftrightarrow 7} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1110\leftrightarrow 12} \cdot \underbrace{\left(\overline{a}+\overline{b}+\overline{c}+d\right)}_{1110\leftrightarrow 14} \cdot \underbrace{\left(\overline{a}+\overline{b}+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111} \cdot \underbrace{\left(\overline{a}+b+\overline$$

- Direct minimisation:  $(s+x)(s+\overline{x})=s$
- Minimising via  $\bar{f}$
- Cover is obtained where f is false



$$f = \left\{ \begin{array}{l} \underbrace{\underbrace{\left(a+b+\overline{c}+\overline{d}\right)}_{0011\leftrightarrow 3} \cdot \underbrace{\left(a+\overline{b}+c+d\right)}_{0100\leftrightarrow 4} \cdot \underbrace{\left(a+\overline{b}+\overline{c}+d\right)}_{0110\leftrightarrow 6} \cdot \underbrace{\left(a+\overline{b}+\overline{c}+\overline{d}\right)}_{0111\leftrightarrow 7} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1110\leftrightarrow 12} \cdot \underbrace{\left(\overline{a}+\overline{b}+\overline{c}+d\right)}_{1110\leftrightarrow 14} \cdot \underbrace{\left(\overline{a}+\overline{b}+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111} \cdot \underbrace{\left(\overline{a}+b+\overline$$

- Direct minimisation:  $(s+x)(s+\overline{x})=s$
- Minimising via  $\bar{f}$
- Cover is obtained where f is false



$$f = \left\{ \begin{array}{l} \underbrace{\underbrace{(a+b+\overline{c}+\overline{d})}_{0011\leftrightarrow 3} \cdot \underbrace{(a+\overline{b}+c+d)}_{0100\leftrightarrow 4} \cdot \underbrace{(a+\overline{b}+\overline{c}+d)}_{0110\leftrightarrow 6} \cdot \underbrace{(a+\overline{b}+\overline{c}+\overline{d})}_{0111\leftrightarrow 7} \cdot \underbrace{(\overline{a}+b+\overline{c}+\overline{d})}_{1110\leftrightarrow 12} \cdot \underbrace{(\overline{a}+\overline{b}+c+\overline{d})}_{1110\leftrightarrow 14} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111\leftrightarrow 15} \cdot \underbrace{(\overline{a}+b+\overline{c}+\overline{d})}_{1111\leftrightarrow 15} \cdot \underbrace{(\overline{a}+b+\overline{c}+\overline{d})}_{1111} \cdot \underbrace{(\overline{a}+b+$$

- Direct minimisation:  $(s+x)(s+\overline{x})=s$
- Minimising via  $\bar{f}$
- Cover is obtained where f is false

• 
$$f = m_0 + m_1 + m_2 + m_5 + m_8 + m_9 + m_{10}$$

$$\bar{f} = \begin{cases} m_3 + m_4 + m_6 + m_7 + m_{11} + \\ m_{12} + m_{13} + m_{14} + m_{15} \end{cases}$$



$$f = \left\{ \begin{array}{l} \underbrace{\underbrace{\left(a+b+\overline{c}+\overline{d}\right)}_{0011\leftrightarrow 3} \cdot \underbrace{\left(a+\overline{b}+c+d\right)}_{1100\leftrightarrow 12} \cdot \underbrace{\left(a+\overline{b}+c+d\right)}_{1101\leftrightarrow 13} \cdot \underbrace{\left(a+\overline{b}+\overline{c}+d\right)}_{1110\leftrightarrow 14} \cdot \underbrace{\left(a+\overline{b}+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1011\leftrightarrow 11} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{111} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}$$

- Direct minimisation:  $(s+x)(s+\overline{x})=s$
- Minimising via  $\bar{f}$
- Cover is obtained where f is false

• 
$$f = m_0 + m_1 + m_2 + m_5 + m_8 + m_9 + m_{10}$$

$$\bullet \ \overline{f} = \left\{ \begin{array}{l} \overline{M_3} + \overline{M_4} + \overline{M_6} + \overline{M_7} + \overline{M_{11}} + \\ \overline{M_{12}} + \overline{M_{13}} + \overline{M_{14}} + \overline{M_{15}} \end{array} \right.$$



$$f = \left\{ \underbrace{\frac{\left(a+b+\overline{c}+\overline{d}\right)}{0011 \leftrightarrow 3}}_{1100 \leftrightarrow 12} \underbrace{\frac{\left(a+\overline{b}+c+d\right)}{0100 \leftrightarrow 4}}_{1101 \leftrightarrow 13} \underbrace{\frac{\left(a+\overline{b}+\overline{c}+d\right)}{0110 \leftrightarrow 6}}_{1110 \leftrightarrow 14} \underbrace{\frac{\left(a+\overline{b}+\overline{c}+\overline{d}\right)}{0111 \leftrightarrow 7}}_{1111 \leftrightarrow 15} \underbrace{\frac{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}{0111 \leftrightarrow 11}}_{1111 \leftrightarrow 15} \underbrace{\frac{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}{0111 \leftrightarrow 11}}_{1011 \leftrightarrow 11} \underbrace{\frac{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}{0111 \leftrightarrow 11}}_{1111 \leftrightarrow 15} \underbrace{\frac{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}{0111 \leftrightarrow 11}}_{1111 \leftrightarrow 15}$$

- Direct minimisation:  $(s+x)(s+\overline{x})=s$
- Minimising via  $\bar{f}$
- Cover is obtained where f is false

$$\bullet \ \overline{f} = \left\{ \begin{array}{l} m_3 + m_4 + m_6 + m_7 + m_{11} + \\ m_{12} + m_{13} + m_{14} + m_{15} \end{array} \right.$$

$$\bullet \ \overline{f} = \left\{ \begin{array}{l} \overline{M_3} + \overline{M_4} + \overline{M_6} + \overline{M_7} + \overline{M_{11}} + \\ \overline{M_{12}} + \overline{M_{13}} + \overline{M_{14}} + \overline{M_{15}} \end{array} \right.$$



$$f = \left\{ \underbrace{\frac{\left(a+b+\overline{c}+\overline{d}\right)}{0011\leftrightarrow 3}}_{1100\leftrightarrow 12} \cdot \underbrace{\left(a+\overline{b}+c+d\right)}_{1101\leftrightarrow 13} \cdot \underbrace{\left(a+\overline{b}+\overline{c}+d\right)}_{1110\leftrightarrow 14} \cdot \underbrace{\left(a+\overline{b}+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+\overline{b}+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+\overline{b}+\overline{c}+\overline{d}\right)}_{1111} \cdot \underbrace{\left(\overline{a}+\overline{b}$$

- Direct minimisation:  $(s+x)(s+\overline{x})=s$
- Minimising via  $\bar{f}$
- Cover is obtained where f is false

$$\bullet \ \overline{f} = \left\{ \begin{array}{l} m_3 + m_4 + m_6 + m_7 + m_{11} + \\ m_{12} + m_{13} + m_{14} + m_{15} \end{array} \right.$$

$$\bullet \ \overline{f} = \left\{ \begin{array}{l} \overline{M_3} + \overline{M_4} + \overline{M_6} + \overline{M_7} + \overline{M_{11}} + \\ \overline{M_{12}} + \overline{M_{13}} + \overline{M_{14}} + \overline{M_{15}} \end{array} \right.$$



$$f = \left\{ \begin{array}{l} \underbrace{\underbrace{\left(a+b+\overline{c}+\overline{d}\right)}_{0011\leftrightarrow 3} \cdot \underbrace{\left(a+\overline{b}+c+d\right)}_{1100\leftrightarrow 12} \cdot \underbrace{\left(a+\overline{b}+c+d\right)}_{1101\leftrightarrow 13} \cdot \underbrace{\left(a+\overline{b}+\overline{c}+d\right)}_{1110\leftrightarrow 14} \cdot \underbrace{\left(a+\overline{b}+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)$$

- Direct minimisation:  $(s+x)(s+\overline{x})=s$
- Minimising via  $\bar{f}$
- Cover is obtained where f is false

$$\bullet \ \overline{f} = \left\{ \begin{array}{l} \overline{M_3} + \overline{M_4} + \overline{M_6} + \overline{M_7} + \overline{M_{11}} + \\ \overline{M_{12}} + \overline{M_{13}} + \overline{M_{14}} + \overline{M_{15}} \end{array} \right.$$



$$f = \left\{ \begin{array}{l} \underbrace{\underbrace{\left(a+b+\overline{c}+\overline{d}\right)}_{0011\leftrightarrow 3} \cdot \underbrace{\left(a+\overline{b}+c+d\right)}_{1100\leftrightarrow 12} \cdot \underbrace{\left(a+\overline{b}+c+d\right)}_{1101\leftrightarrow 13} \cdot \underbrace{\left(a+\overline{b}+\overline{c}+d\right)}_{1110\leftrightarrow 14} \cdot \underbrace{\left(a+\overline{b}+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111\leftrightarrow 15} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)}_{1111} \cdot \underbrace{\left(\overline{a}+b+\overline{c}+\overline{d}\right)$$

- Direct minimisation:  $(s+x)(s+\overline{x})=s$
- Minimising via  $\bar{f}$
- Cover is obtained where f is false

$$\bullet \ \overline{f} = \left\{ \begin{array}{l} m_3 + m_4 + m_6 + m_7 + m_{11} + \\ m_{12} + m_{13} + m_{14} + m_{15} \end{array} \right.$$

$$\bullet \ \overline{f} = \left\{ \begin{array}{l} \overline{M_3} + \overline{M_4} + \overline{M_6} + \overline{M_7} + \overline{M_{11}} + \\ \overline{M_{12}} + \overline{M_{13}} + \overline{M_{14}} + \overline{M_{15}} \end{array} \right.$$



$$f = \left\{ \begin{array}{l} \underbrace{\underbrace{(a+b+\overline{c}+\overline{d})}_{0011\leftrightarrow 3}}_{1100\leftrightarrow 12} \cdot \underbrace{(a+\overline{b}+c+d)}_{1101\leftrightarrow 13} \cdot \underbrace{(a+\overline{b}+\overline{c}+d)}_{0111\leftrightarrow 14} \cdot \underbrace{(a+\overline{b}+\overline{c}+\overline{d})}_{0111\leftrightarrow 14} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{0111\leftrightarrow 15} \cdot \underbrace{(\overline{a}+b+\overline{c}+\overline{d})}_{1011\leftrightarrow 11} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111\leftrightarrow 15} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111} \cdot \underbrace{(\overline{a$$

- Direct minimisation:  $(s+x)(s+\overline{x})=s$
- Minimising via  $\bar{f}$
- Cover is obtained where f is false

$$\bullet \ \overline{f} = \left\{ \begin{array}{l} \overline{M_3} + \overline{M_4} + \overline{M_6} + \overline{M_7} + \overline{M_{11}} + \\ \overline{M_{12}} + \overline{M_{13}} + \overline{M_{14}} + \overline{M_{15}} \end{array} \right.$$



$$f = \left\{ \begin{array}{l} \underbrace{(a+b+\overline{c}+\overline{d})}_{0011\leftrightarrow 3} \cdot \underbrace{(a+\overline{b}+c+d)}_{1100\leftrightarrow 12} \cdot \underbrace{(\overline{a}+\overline{b}+c+\overline{d})}_{1101\leftrightarrow 13} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+d)}_{1110\leftrightarrow 14} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111\leftrightarrow 15} \cdot \underbrace{(\overline{a}+b+\overline{c}+\overline{d})}_{1011\leftrightarrow 11} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111\leftrightarrow 15} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111\leftrightarrow 15} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d$$

- Direct minimisation:  $(s+x)(s+\overline{x})=s$
- Minimising via  $\bar{f}$
- Cover is obtained where f is false

$$\bullet \ \overline{f} = \left\{ \begin{array}{l} \overline{M_3} + \overline{M_4} + \overline{M_6} + \overline{M_7} + \overline{M_{11}} + \\ \overline{M_{12}} + \overline{M_{13}} + \overline{M_{14}} + \overline{M_{15}} \end{array} \right.$$



$$f = \left\{ \begin{array}{l} \underbrace{(a+b+\overline{c}+\overline{d})}_{0011\leftrightarrow 3} \cdot \underbrace{(a+\overline{b}+c+d)}_{1100\leftrightarrow 12} \cdot \underbrace{(\overline{a}+\overline{b}+c+\overline{d})}_{1101\leftrightarrow 13} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+d)}_{1110\leftrightarrow 14} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111\leftrightarrow 15} \cdot \underbrace{(\overline{a}+b+\overline{c}+\overline{d})}_{1011\leftrightarrow 11} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111\leftrightarrow 15} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111\leftrightarrow 15} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d$$

- Direct minimisation:  $(s+x)(s+\overline{x})=s$
- Minimising via  $\bar{f}$
- Cover is obtained where f is false

$$\bullet \ \overline{f} = \left\{ \begin{array}{l} \overline{M_3} + \overline{M_4} + \overline{M_6} + \overline{M_7} + \overline{M_{11}} + \\ \overline{M_{12}} + \overline{M_{13}} + \overline{M_{14}} + \overline{M_{15}} \end{array} \right.$$



$$f = \left\{ \begin{array}{l} \underbrace{(a+b+\overline{c}+\overline{d})}_{0011\leftrightarrow 3} \cdot \underbrace{(a+\overline{b}+c+d)}_{1100\leftrightarrow 12} \cdot \underbrace{(\overline{a}+\overline{b}+c+\overline{d})}_{1101\leftrightarrow 13} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+d)}_{1110\leftrightarrow 14} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111\leftrightarrow 15} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111\leftrightarrow 15} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1011\leftrightarrow 11} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111\leftrightarrow 15} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111\leftrightarrow 15} \cdot \underbrace{(\overline{a}+\overline{b}+\overline{c}+\overline{d})}_{1111} \cdot \underbrace{(\overline{a}+\overline{$$

- Direct minimisation:  $(s+x)(s+\overline{x})=s$
- Minimising via  $\bar{f}$
- Cover is obtained where f is false

$$\bullet \ \overline{f} = \left\{ \begin{array}{l} \overline{M_3} + \overline{M_4} + \overline{M_6} + \overline{M_7} + \overline{M_{11}} + \\ \overline{M_{12}} + \overline{M_{13}} + \overline{M_{14}} + \overline{M_{15}} \end{array} \right.$$



$$f(a, b, c, d) = \prod_{M} (3, 5, 7, 8, 10, 11, 12, 13)$$





$$f(a, b, c, d) = \prod_{M} (3, 5, 7, 8, 10, 11, 12, 13)$$





$$f(a, b, c, d) = \prod_{M} (3, 5, 7, 8, 10, 11, 12, 13)$$



$$f(a, b, c, d) = \prod_{M} (3, 5, 7, 8, 10, 11, 12, 13)$$









$$f(a, b, c, d) = \prod_{M} (3, 5, 7, 8, 10, 11, 12, 13)$$

$$f = (\bar{a} + \bar{b} + c)$$



$$f(a, b, c, d) = \prod_{M} (3, 5, 7, 8, 10, 11, 12, 13)$$

$$f = (\bar{a} + \bar{b} + c) (a + \bar{b} + \bar{d}) ($$





$$f(a, b, c, d) = \prod_{M} (3, 5, 7, 8, 10, 11, 12, 13)$$

$$f = (\bar{a} + \bar{b} + c) (a + \bar{b} + \bar{d}) (\bar{a} + b + d) ($$



$$f(a, b, c, d) = \prod_{M} (3, 5, 7, 8, 10, 11, 12, 13)$$

$$f = (\bar{a} + \bar{b} + c) (a + \bar{b} + \bar{d}) (\bar{a} + b + d) (b + \bar{c} + \bar{d})$$



