

山东大学微积分

课后习题解析

作者: 洛七

组织: 806136495@qq.com 时间: January 25, 2021

17 1-1. January 25, 2021

版本: 1.0 beta

目录

第1章 无穷级数

1.1 常数项级数的概念和性质

1. 利用级数收敛的定义判断下列技术的敛散性,如收敛则求其和:

(1)
$$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n});$$

(2)
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)};$$

(3)
$$\sum_{n=1}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n});$$

(4)
$$\sum_{n=1}^{\infty} \frac{1}{(3n-2)(3n+1)};$$

(5)
$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1) \cdot (n+2)} + \dots;$$

*(6)
$$\sin \frac{\pi}{6} + \sin \frac{2\pi}{6} + \dots + \sin \frac{n\pi}{6} + \dots$$

2. 利用几何级数、调和级数以及收敛级数的性质,判定下列技术的敛散性: (1) $\frac{1}{3} + \frac{1}{6} + \frac{1}{0} + \frac{1}{12} + \cdots$;

(1)
$$\frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \frac{1}{12} + \cdots;$$

(2)
$$\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \cdots;$$

$$(3) -\frac{8}{9} + \frac{8^2}{9^2} - \frac{8^3}{9^3} + \cdots;$$

$$(4) \ \frac{3}{2} + \frac{3^2}{2^2} + \frac{3^3}{2^3} + \cdots;$$

(5)
$$\left(\frac{1}{6} + \frac{8}{9}\right) + \left(\frac{1}{6^2} + \frac{8^2}{9^2}\right) + \left(\frac{1}{6^3} + \frac{8^3}{9^3}\right) + \cdots;$$

(6)
$$\left(\frac{1}{2} + \frac{1}{10}\right) + \left(\frac{1}{4} + \frac{1}{20}\right) + \left(\frac{1}{8} + \frac{1}{30}\right) + \dots + \left(\frac{1}{2^n} + \frac{1}{10n}\right) + \dots;$$

(7)
$$\frac{1}{2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt[3]{2}} + \dots + \frac{1}{\sqrt[n]{2}} + \dots;$$

$$(8) \sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n}}.$$

1.2 正项级数的审敛法

1. 用比较审敛法考察下列级数的敛散性: (1)
$$1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$$
;

(2)
$$\frac{1}{2 \cdot 5} + \frac{1}{3 \cdot 6} + \dots + \frac{1}{(n+1)(n+4)} + \dots;$$

- (3) $1 + \frac{1+2}{1+2^2} + \frac{1+3}{1+3^2} + \cdots;$
- $(4) \sum_{n=1}^{\infty} \sin \frac{\pi}{2^n};$
- (5) $\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{4^n}$;
- $(6) \sum_{n=1}^{\infty} \frac{1}{n\sqrt[n]{n}};$
- (7) $\sum_{n=1}^{\infty} \frac{1}{1+a^n}$ (a>0);
- (8) $\sum_{n=2}^{\infty} \frac{\ln n}{n^{4/3}}$.
- 2. 判定下列级数的敛散性: (1) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$;
 - *(2) $\sum_{n=1}^{\infty} (a^{\frac{1}{n}} 1) \quad (a > 1);$
 - (3) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+1}}$;
 - $(4) \sum_{1}^{\infty} \frac{n^2}{3^n};$
 - (5) $\sum_{n=1}^{\infty} \frac{1}{n} \tan \frac{1}{n};$
 - (6) $\sum_{n=1}^{\infty} \frac{(2n-1)!!}{3^n \cdot n!};$
 - $(7) \sum_{n=1}^{\infty} \frac{2^n \cdot n!}{n^n};$
 - $(8) \sum_{n=1}^{\infty} \frac{3^n \cdot n!}{n^n};$
 - (9) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!};$
 - $(10) \sum_{n=1}^{\infty} 2^n \cdot \sin \frac{\pi}{3^n};$
 - (11) $\sum_{n=1}^{\infty} \frac{n^2}{\left(1 + \frac{1}{n}\right)^n};$

*(12)
$$\sum_{n=1}^{\infty} \frac{1}{(\ln n)^{\ln n}};$$

$$(13) \sum_{n=1}^{\infty} \sqrt{\frac{n+1}{n}};$$

(14)
$$\sum_{n=1}^{\infty} \left(\frac{b}{a_n}\right)^n$$
, 其中 $a_n \to a(n \to \infty)$, a_n , b , a 均为正数;

(15)
$$\sum_{n=1}^{\infty} \frac{1}{na+b}$$
 $(a>0,b>0);$

(16)
$$\sum_{n=1}^{\infty} \frac{4^n}{5^n - 3^n}.$$

3. 利用级数收敛的必要条件证明: (1)
$$\lim_{n\to\infty} \frac{2^n \cdot n!}{n^n} = 0$$
;

(2)
$$\lim_{n \to \infty} \frac{n^n}{(n!)^2} = 0.$$

4. 若
$$\lim_{n\to\infty} nu_n = a \neq 0$$
,证明级数 $\sum_{n=1}^{\infty} u_n$ 发散.

5. 设
$$\{u_n\}$$
 是正项数列,若 $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=l$,证明 $\lim_{n\to\infty}\sqrt[n]{u_n}=l$.

6. 已知
$$a_n = \int_0^1 x^2 (1-x)^n dx (n=1,2,\cdots)$$
. 证明 $\sum_{n=1}^\infty a_n$ 收敛,并求其和.

*7. 设
$$a_1 = 2$$
, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right)$ $(n = 1, 2, \cdots)$. 证明:

(1)
$$\lim_{n\to\infty} a_n$$
 存在;

(2) 级数
$$\sum_{n=1}^{\infty} \left(\frac{a_n}{a_{n+1}} - 1 \right)$$
 收敛.

*8. 沒
$$a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$$
.

(1)
$$\vec{x} \sum_{n=1}^{\infty} \frac{1}{n} (a_n + a_{n+2})$$
 的值;

(2) 试证: 对任意的常数
$$\lambda > 0$$
, 级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^{\lambda}}$ 收敛.

1.3 交错级数和任意项级数的审敛法

1. 判定下列级数的敛散性: (1)
$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$$
;

(2)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{3^{n-1}};$$

(3)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\ln(n+1)};$$

(4)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$$
;

(5)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[n]{n}};$$

(6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{n+1} \cdot \frac{1}{\sqrt{n}}.$$

2. 判定下列级数的敛散性,如果收敛,是绝对收敛还是条件收敛? $1\sum_{n=1}^{\infty}\frac{1}{n^2}\sin\frac{n\pi}{2};$

$$1 \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi}{2};$$

$$2 \sum_{n=1}^{\infty} (-1)^n \ln \frac{n+1}{n};$$

*(3)
$$\sum_{n=2}^{\infty} \sin\left(n\pi + \frac{1}{\ln n}\right);$$

(4)
$$\frac{1}{3} \cdot \frac{1}{2} - \frac{1}{3} \cdot \frac{1}{2^2} + \frac{1}{3} \cdot \frac{1}{2^3} - \frac{1}{3} \cdot \frac{1}{2^4} + \cdots;$$

(5)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^{n^2}}{n!};$$

(6)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{[n+(-1)^n]^p} \quad (p>0).$$

3. 已知
$$\sum_{n=1}^{\infty} a_n^2$$
 及 $\sum_{n=1}^{\infty} b_n^2$ 收敛,证明级数 $\sum_{n=1}^{\infty} |a_n b_n|$, $\sum_{n=1}^{\infty} (a_n + b_n)^2$, $\sum_{n=1}^{\infty} \frac{|a_n|}{n}$ 都收敛.

4. 设
$$u_n = \int_{n\pi}^{(n+1)\pi} \frac{\sin x}{x} dx$$
, 证明 $\sum_{n=1}^{\infty} u_n$ 收敛.

*5. 已知
$$f(x)$$
 在 $x=0$ 点的某邻域内具有连续的二阶导数,且 $\lim_{x\to 0} \frac{f(x)}{x}=0$,证明级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 绝对收敛. $\left($ 提示:用 $f\left(\frac{1}{n}\right)$ 的一阶麦克劳林公式. $\right)$

1.4 幂级数

1. 已知函数项级数
$$x^2 + \frac{x^2}{1+x^2} + \frac{x^2}{(1+x^2)^2} + \cdots$$
 在 $(-\infty, +\infty)$ 上收敛,求其和函数.

$$(1) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} x^n;$$

(2)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^2 + 1} x^n;$$

(3)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$$
;

(4)
$$1-x+\frac{x^2}{2^2}-\frac{x^2}{3^2}+\cdots;$$

(5)
$$\frac{x}{2} + \frac{x^2}{2 \cdot 4} + \frac{x^3}{2 \cdot 4 \cdot 6} + \cdots;$$

(6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1};$$

(7)
$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{\sqrt{n}};$$

(8)
$$\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2};$$

(9)
$$\sum_{n=1}^{\infty} \left[\frac{(-1)^n}{2^n} + 3^n \right] x^n;$$

(10) 设
$$\sum_{n=0}^{\infty} a_n x^n$$
 的收敛半径为 3,求 $\sum_{n=1}^{\infty} n a_n (x-1)^{n+1}$ 的收敛区间.

- *3. 求幂级数 $\sum_{n=1}^{\infty} \frac{1}{3^n + (-2)^n} \frac{x^n}{n}$ 的收敛半径,并讨论该区间端点处的收敛性.
- 4. 利用逐项积分或者逐项求导,求下列级数在下列区间内的和函数:

(1)
$$\sum_{n=1}^{\infty} nx^{n-1}$$
 $(-1 < x < 1);$

(2)
$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$$
 $(-1 < x < 1)$, 并求 $\sum_{n=0}^{\infty} \frac{1}{2n+1} \cdot \frac{1}{2^{n+1}}$ 的和;

(3)
$$\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2}$$
, $|x| < \sqrt{2}$, 并求 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n}$ 的和;

(4)
$$\sum_{n=1}^{\infty} (2n+1)x^n$$
, $|x| < 1$.

*6. 已知
$$f_n(x)$$
 满足 $f'_n(x) = f_n(x) + x^{n-1}e^x(n$ 为正整数),且 $f_n(1) = \frac{e}{n}$,求函数项级数
$$\sum_{n=1}^{\infty} f_n(x)$$
 之和.

*7. 验证函数
$$y(x) = 1 + \frac{x^3}{3!} + \frac{x^6}{6!} + \dots + \frac{x^{3n}}{(3n)!} + \dots (-\infty < x < +\infty)$$
 满足微分方程
$$y'' + y' + y = e^x.$$

并利用以上结果求幂级数 $\sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}$ 的和函数.

1.5 函数展开成幂级数

1. 用直接展开法求下列函数在给定点的幂级数展开式,并指出收敛域:

(1)
$$f(x) = \cos x$$
, $x_0 = -\frac{\pi}{3}$;

(2)
$$f(x) = a^x$$
, $x_0 = 0$.

- 2. 将下列函数展成x的幂级数,并指出收敛域:
 - (1) $\sin \frac{x}{2}$;
 - (2) $\sin^2 x$;
 - (3) $\ln(a+x)$ (a>0);
 - (4) $\frac{1}{2+r}$;
 - (5) $(1+x)\ln(1+x)$;
 - (6) $\arctan x$;

$$(7) \ \frac{x}{\sqrt{1+x^2}};$$

(8)
$$\frac{1}{x^2 + 4x + 3}$$
.

- 3. 将函数 $f(x) = \frac{1}{x}$ 展成 (x-3) 的幂级数.
- 4. 将函数 $f(x) = \ln(1+x)$ 展成 (x-2) 的幂级数.
- 5. 将函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展成 (x + 4) 的幂级数.
- *7. 设

$$f(x) = \begin{cases} \frac{1+x^2}{x} \arctan x, & x \neq 0, \\ 1, & x = 0, \end{cases}$$

试将 f(x) 展开成 x 的幂级数, 并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{1-4n^2}$ 的和.

8. 将 $f(x) = x \ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2}$ 展成 x 的幂级数.

幂级数的简单应用

1.7 反常积分的审敛法和 Γ 函数

1. 判定下列反常积分的敛散性: (1)
$$\int_0^{+\infty} \frac{x^2}{x^4 + x^2 + 1} dx$$
;

$$(2) \int_0^{+\infty} \frac{\sin x}{\sqrt[3]{x}} \mathrm{d}x;$$

(3)
$$\int_0^{+\infty} \frac{\mathrm{d}x}{1+x|\sin x|};$$

(4)
$$\int_{1}^{+\infty} \frac{x \arcsin x}{1+x^3} dx;$$

(5)
$$\int_{1}^{2} \frac{\mathrm{d}x}{(\ln x)^{3}};$$

(6)
$$\int_0^1 \frac{x^4}{\sqrt{1-x^4}} dx;$$

(7)
$$\int_{1}^{2} \frac{\mathrm{d}x}{\sqrt[3]{x^2 - 3x + 2}};$$

$$(8) \int_0^\pi \frac{\mathrm{d}x}{\sqrt{\sin x}}.$$

2. 用
$$\Gamma$$
 函数表示下列积分,并指出其收敛范围: (1) $\int_0^{+\infty} e^{-x^n} dx$ $(n > 0)$;

(2)
$$\int_0^1 \left(\ln \frac{1}{x} \right)^p \mathrm{d}x.$$

3. 证明下列公式:

(1)
$$2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n = 2^n \Gamma(n+1);$$

(2)
$$1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1) = \frac{\Gamma(2n)}{2^{n-1}\Gamma(n)};$$

(3)
$$\sqrt{\pi}\Gamma(2n) = 2^{2n-1}\Gamma(n)\Gamma\left(n + \frac{1}{2}\right)$$
 (勒让德倍量公式).

1.8 傅里叶级数

1. 下列周期函数 f(x) 的周期为 2π , 其再 $[-\pi,\pi)$ 上的表达式如下, 试将 f(x) 展为傅里叶级

(1)
$$f(x) = \begin{cases} x, & -\pi \leqslant x < 0; \\ 0, & 0 \leqslant x < \pi, \end{cases}$$

(2)
$$f(x) = \begin{cases} bx, & -\pi \leq x < 0, \\ ax, & 0 \leq x < \pi, \end{cases}$$
 $a > b > 0$ 是常数;

(3)
$$f(x) = 3x^2 + 1$$
, $-\pi \le x < \pi$.

2. 将下列函数展为傅里叶级数:

$$(1) f(x) = e^{ax}, \quad -\pi \leqslant \pi;$$

(2)
$$f(x) = \begin{cases} e^x, & -\pi \leqslant x < 0, \\ 1, & 0 \leqslant x \leqslant \pi; \end{cases}$$

(3)
$$f(x) = 2\sin\frac{x}{3}$$
, $-\pi \leqslant x \leqslant \pi$.

3. 设周期函数 f(x) 的周期是 2π , 证明 f(x) 的傅里叶系数可表示为

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx dx \quad (n = 0, 1, 2, \dots),$$

 $b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx dx \quad (n = 1, 2, 3, \dots).$

1.9 正弦级数、余弦级数和一般区间上的傅里叶级数

- 1. 将函数 $f(x) = \frac{\pi x}{2}$ $(0 \le x \le \pi)$ 展开为正弦级数.
- 2. 将函数 $f(x) = 2x^2$ $(0 \le x \le \pi)$ 分别展开成正弦级数和余弦级数.

3. 将
$$f(x) = \begin{cases} \frac{px}{2}, & 0 \leqslant x < \frac{l}{2}, \\ &$$
 展为正弦级数.
$$\frac{p(l-x)}{2}, & \frac{l}{2} \leqslant x \leqslant l \end{cases}$$

4. 将下列周期函数展为傅里叶级数 (下面给出函数在一个周期内的表达式):

(1)
$$f(x) = 1 - x^2 \left(-\frac{1}{2} \leqslant x < \frac{1}{2} \right);$$

(2)
$$f(x) = \begin{cases} 2x+1, & -3 \le x < 0, \\ 1, & 0 \le x < 3. \end{cases}$$

5. 设 $f(x) = x - 1(0 \le x \le 2)$, 将 f(x) 展为以 2 为周期的傅里叶级数.

6. 将
$$f(x) = \begin{cases} x, & 0 \leqslant x < \frac{l}{2} \\ l - x, & \frac{l}{2} \leqslant x \leqslant l \end{cases}$$
 展为正弦级数和余弦级数.

1.10 复数形式的傅里叶级数

1.11 用 MATLAB 计算级数问题

第2章 向量代数与空间解析几何

2.1 向量及其运算

- 1. 设向量 a, b 为非零向量,试作出向量 2a + b, a 2b, b a, $\frac{1}{2}(a + b)$ 的图形.
- 2. 己知向量 a = (-1,3,2), b = (2,5,-1), c = (6,4,-6), 证明 a b = c 平行.
- 3. 证明三角形两边中点连线平行于第三边,且等于第三边的一半.
- 4. 设 |a|=3, |b|=6, 且 a, b 同方向,求 $a \cdot b$, $(a+2b) \cdot (2a-b)$.
- 5. 设 |a| = 2, |b| = 3, 且 a = b 垂直,求 $|a \times b|$, $|(a + b) \times (2a b)|$.
- 6. 设 |a| = 2, |b| = 1, $(\widehat{a,b}) = \frac{2\pi}{3}$, 求 2a + b 与 a + 4b 的夹角.
- 7. 设 a + b + c = 0, 且 |a| = 1, |b| = 2, |c| = 3, 求 $a \cdot b + b \cdot c + c \cdot a$.
- 8. 一向量的重点 $M_2(4,-2,0)$, 它在三个坐标轴上的投影依次为 3, 2, 7, 求该向量的起点 M_1 .
- 9. 设两点 $M_1(2,0,-3)$, $M_2(1,-2,0)$, 在线段 M_1M_2 上求一点 M, 满足 $M_1M=2MM_2$.
- 10. 求向量 $\mathbf{a} = (1, 1, -4), \mathbf{b} = (1, -2, 2)$ 的夹角.
- 11. 设向量 a = (3, 5, -4), b = (2, 1, 8), 向量 ma + b 与 z 轴垂直,求 m.
- 12. 设向量 a = 3i j + 2k, b = i + 2j 2k, 求
 - (1) $(-2a) \cdot b$;
 - (2) $\boldsymbol{a} \times 3\boldsymbol{b}$;
 - (3) $\cos(\widehat{\boldsymbol{a}},\widehat{\boldsymbol{b}})$.
- 13. 设向量 a = -2i + 3j + nk 与 b = mi 6j + 2k 共线, 求 m 和 n.
- 14. 设 a = 3i + 4k, b = -4i + 3j, 求
 - (1) 以 a, b 为邻边的平行四边形的两条对角线的长度;
 - (2) 以a, b 为邻边的平行四边形的面积;
 - (3) 与 a, b 垂直的单位向量.
- 15. 设向量 a = 2i 3j + k, b = i j + 3k, c = i 2j, 计算
 - (1) $(\boldsymbol{a} \cdot \boldsymbol{b})\boldsymbol{c} (\boldsymbol{a} \cdot \boldsymbol{c})\boldsymbol{b}$;
 - (2) $(\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c}$;
 - (3) $(a + b) \times (b + c)$;
 - (4) $(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}$.
- 16. 判别下列向量 a, b, c 是否共面:
 - (1) $\mathbf{a} = (3, -2, 1), \ \mathbf{b} = (2, 1, 2), \ \mathbf{c} = (3, -1, 3);$
 - (2) a = (2, -1, 2), b = (1, 2, -3), c = (3, -4, 7).

17. 设 a = (2, -1, -1), b = (1, 1, z), 问 z 为何值时, a, b 的夹角 (a, b) 最小? 并求出此最小值.

2.2 空间的平面和直线

- 1. 求满足下列条件的平面方程:
 - (1) 过点 M(1,2,3) 且与平面 2x + 3y + z = 0 平行;
 - (2) 过点 $M_1(2,-2,1)$, $M_2(0,1,0)$, $M_3(1,4,5)$ 三点;
 - (3) 过点 (4, -3, -2) 和点 (4, 1, 1) 且平行于 x 轴.
- 2. 画出下列各平面图形:
 - (1) 2x + 3y + 4z = 6;
 - (2) 2x y = 3;
 - (3) x 2y + 3z = 0;
 - (4) z = 2.
- 3. 求距离原点为 3 且平行于 x + y + z = 1 的平面方程.
- 4. 求三平面 $\pi_1: x+y+z=4, \ \pi_2: 3x-y+z=0$ 和 $\pi_3: x+2y-z=6$ 的交点,以及两两平 面之间的夹角.
- 5. 求满足下列条件的直线方程:
 - (1) 过点 $M_1(-3,0,2)$ 和 $M_2(3,1,1)$;
 - (2) 过点 M(1,0,2) 且与两直线 $\frac{x-1}{1} = y = \frac{z+1}{-1}$ 和 $\frac{x}{1} = \frac{y-1}{-1} = \frac{z+1}{0}$ 垂直的直线;
 - (3) 过点 $M_1(2, -3, 1)$ 与平面 3x y + 4z 1 = 0 垂直:
 - (4) 过点 $M_1(0,2,4)$ 与两平面 x + 2z 1 = 0 及 y 3z 2 = 0 都平行;
 - (5) 过点 $M_1(11,9,0)$ 与直线 $\frac{x-1}{2} = \frac{y+3}{4} = \frac{z-5}{5}$ 及直线 $\frac{x}{5} = \frac{y-2}{-1} = \frac{z+1}{2}$ 相交.
- 6. 用对称式方程和参数方程表示直线

$$\begin{cases} 2x + y - z + 1 = 0, \\ 3x - y - 2z - 3 = 0. \end{cases}$$

- 7. 求点 (2,0,1) 到直线 $\frac{x-5}{3} = \frac{y}{2} = \frac{z+1}{-1}$ 的距离.
- 8. 求直线 $\frac{x}{-1} = \frac{1-y}{-1} = \frac{z-1}{2}$ 与平面 2x + y zz + 4 = 0 的交点和夹角.

9. 判断下列平面与直线间的关系: (1)
$$\frac{x+3}{-2} = \frac{y+4}{-7} = \frac{z}{3}$$
, $4x-2y-2z-3=0$;

(2)
$$\frac{x}{3} = \frac{y}{-2} = \frac{z}{7}$$
, $3x - 2y + 7z - 8 = 0$;

(3)
$$\frac{x-2}{3} = \frac{y+2}{1} = \frac{z-3}{-4}, \ x+y+z-3 = 0.$$

10. 问 k 为何值时

(1) 直线
$$\begin{cases} x = kz + 2, \\ y = 2kz + 4 \end{cases}$$
 与平面 $x + y + z = 0$ 平行;

(2) 直线
$$\begin{cases} x = z + k, \\ y = z \end{cases}$$
 与直线
$$\begin{cases} x = 2z + 1, \\ y = 3z + 2 \end{cases}$$
 相交.

- 11. 求直线 $\begin{cases} 2x 3y + 4z 12 = 0, \\ x + 4y 2z 10 = 0 \end{cases}$ 在平面 x + y + z 1 = 0 上的投影直线方程.
- 12. 在 z 轴上求一点,使它与平面 12x + 9y + 20z 19 = 0 和 16x 12y + 15z 9 = 0 等距离.
- 13. 求点 M(4,1,2) 在平面 x + y + z = 1 上的投影.
- 14. 求与平面 x + 6y + z = 0 平行,且与坐标平面围成的四面体体积为 6 的平面方程.

2.3 空间的曲面和曲线

- 1. 建立以点 M(1,5,2) 为球心,且通过坐标原点的球面方程.
- 2. 方程 $x^2 + y^2 + z^2 + 2x 4y + 2z = 0$ 表示什么曲面?
- 3. 一球面过原点和三点 (2,0,0), (1,1,0), (1,0,-1), 试求它的方程.
- 4. 求到两定点 (c,0,0), (-c,0,0) 距离之和为 2a 的动点的轨迹方程 (a>c>0 均为常数).
- 5. 懂点 M 在 xOz 面上,M 到原点和到点 A(5, -3, 1) 等距离,求 M 的轨迹方程.
- 6. 下列方程在平面直角坐标系和空间直角坐标系中各表示怎样的几何图形?
 - (1) y = kx (k 为常数);
 - (2) $x^2 y^2 = 0$:
 - (3) $x^2 + y^2 = 0$:
 - (4) $y^2 = 2px$ (p > 0 为常数);

(5)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1;$$

(6)
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

- 7. 求下列旋转面的方程:
 - (1) xOy 面上曲线 $4x^2 9y^2 = 36$ 绕 y 轴旋转一周;
 - (2) xOz 面上曲线 $z^2 = 5x$ 绕 x 轴旋转一周;
 - (3) xOz 面上曲线 $x^2 z^2 = 9$ 绕 z 轴旋转一周.

(1)
$$\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{9} = 1$$

(2)
$$x^2 + 2y^2 + 3z^2 = 1$$
;

(3)
$$x^2 - \frac{y^2}{4} + z^2 = 1;$$

(4)
$$x^2 - y^2 - z^2 = 1$$
;

(5)
$$\frac{x^2}{9} + \frac{y^2}{16} - \frac{z^2}{25} = 1.$$

9. 下列方程组在平面直角坐标系和空间直角坐标系中各为什么图形?

(1)
$$\begin{cases} x - 3 = 0, \\ y - 2 = 0; \end{cases}$$

(2)
$$\begin{cases} \frac{x^2}{25} + \frac{y^2}{4} = 1, \\ y = 1; \end{cases}$$

(3)
$$\begin{cases} x^2 + y^2 = 1, \\ x = \frac{1}{2}; \end{cases}$$

(4)
$$\begin{cases} 3x + y = 5, \\ 2x + y = -1. \end{cases}$$

10. 求下列空间曲线关于 xOy 面的投影柱面和投影曲线的方程:

(1)
$$\begin{cases} x^2 + y^2 = -z, \\ x + z + 1 = 0; \end{cases}$$

(2)
$$\begin{cases} x^2 + y^2 + z^2 = 9, \\ x + z - 1 = 0; \end{cases}$$

(3)
$$\begin{cases} x^2 + y^2 + z^2 = 1, \\ x^2 + (y-1)^2 + (z-1)^2 = 1; \end{cases}$$

(4)
$$\begin{cases} 2x^2 + y^2 + z^2 = 16, \\ x^2 - y^2 + z^2 = 0. \end{cases}$$

11. 求空间曲线
$$\begin{cases} x+y+z=3, \\ x+2y=1 \end{cases}$$
 在 yOz 面上的投影曲线方程.

12. 求曲线
$$\begin{cases} (x+2y-1) \\ (x-1)^2 + (y+2)^2 + (z-3)^2 = 9, \\ z = 5 \end{cases}$$
 的参数方程.

13. 指出下列曲面的名称,并作图. (1)
$$x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$$
;

(2)
$$\frac{x^2}{4} + \frac{y^2}{9} = z;$$

(3)
$$16x^2 + 4y^2 - z^2 = 64$$
;

(4)
$$u^2 + z^2 - x^2 = 0$$
:

(5)
$$\frac{x^2}{4} - \frac{y^2}{9} + z^2 = -1;$$

(6)
$$y^2 - 9z^2 = 81$$

14. 画出下列各组曲面所围成的立体图形:

- (a). 平面 x + 2y + 3z = 1 与三个坐标面;
- (b). 旋转抛物面 $z = x^2 + y^2$,三个坐标面与平面 x + y = 1;
- (c). 圆柱面 $x^2 + y^2 = r^2$ 和 $y^2 + z^2 = r^2$ 及三个坐标面在第一卦限内;
- (d). 平面 y = 1, 3x + 4y + 2z = 12 及三个坐标面.

第3章 多元函数微分学及其应用

3.1 多元函数的概念及其极限和连续

1. 求下列函数的定义域:

(1)
$$z = \sqrt{\sin(x^2 + y^2)}$$
;

(2)
$$z = \ln(x^2 - 3y + 2);$$

(3)
$$z = \sqrt{R^2 - x^2 - y^2} + \frac{1}{\sqrt{x^2 + y^2 - r^2}} \quad (R > r > 0);$$

$$(4) \ z = \sqrt{x - \sqrt{y}};$$

(5)
$$z = \frac{1}{\sqrt{x+y}} + \frac{1}{\sqrt{x-y}};$$

(6)
$$z = \frac{xy}{x^2 + y^2}$$
;

(7)
$$z = \ln(x - y) - \frac{\sqrt{y}}{\sqrt{1 - x^2 - y^2}};$$

(8)
$$z = \sqrt{1 - x^2} + \sqrt{y^2 - 4}$$
.

2. 若
$$f(x,y) = \frac{2xy}{x^2 + y^2}$$
, 求 $f\left(1, \frac{y}{x}\right)$.

3.
$$\c y f\left(x+y, \frac{y}{x}\right) = x^2 - y^2, \ \c x f(x,y).$$

4. 设
$$z = x + y + f(x - y)$$
, 且当 $y = 0$ 时, $z = x^2$, 求函数 $f(x)$ 和 z 的表达式.

5. 求下列函数的间断点: (1)
$$z = \frac{x+1}{\sqrt{x^2+y^2}};$$

$$(2) \ z = \frac{xy^2}{x+y};$$

(3)
$$z = \ln(a^2 - x^2 - y^2);$$

$$(4) \ z = \frac{1}{\sin x \cdot \sin y}.$$

6. 求下列函数的极限:

(1)
$$\lim_{(x,y)\to(0,1)} \frac{\tan(xy)}{x};$$

(2)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{xy+1}-1};$$

(3)
$$\lim_{(x,y)\to(0,2)} \frac{\sin(xy)}{x}$$
;

(4)
$$\lim_{(x,y)\to(0,1)} \frac{1-xy}{x^2+y^2}$$

**7. 讨论二元函数

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$$

在点 (0,0) 的连续性.

3.2 偏导数与全微分

- 1. 求下列函数在给定点处的偏导数:
 - (1) $z = x^2 + 3xy + y^2$, $\Re z'_r(1,2)$, $z'_r(1,2)$;
 - (2) $z = e^{x^2 + y^2}$, $\Re z'_x(0,1)$, $z'_y(0,1)$;
 - (3) $z = \frac{xy(x^2 y^2)}{x^2 + y^2}$, $\vec{x} z_x'(1,1), z_y'(1,1);$
 - (4) $z = \ln|xy|$, $\Re z'_x(-1, -1)$, $z'_y(1, 1)$.
- 2. 求下列函数的一阶偏导数:
 - $(1) z = \sin(xy) + \cos^2(xy);$
 - $(2) z = \ln(z + \ln y);$
 - (3) $z = x^2 \arctan \frac{y}{x} y^2 \arctan \frac{x}{y}$;
 - $(4) \ z = x \cdot \ln \frac{y}{x};$
 - (5) $z = \arcsin \frac{x}{y}$;
 - (6) $z = e^{\frac{x}{y}} + e^{\frac{y}{x}}$;
 - (7) $z = (1 + xy)^y$;
 - (8) $z = \ln \frac{\sqrt{x^2 + y^2} x}{\sqrt{x^2 + y^2} + x}$
- 3. 求下列函数的二阶偏导数:
 - (1) $z = x \ln(xy)$;
 - (2) $z = x^4 + y^4 4x^2y^2$;
 - (3) $z = \arctan \frac{y}{x}$;
 - (4) $z = y^x$.
- 4. 求下列函数的全微分:
 - (1) $z = e^{x(x^2+y^2)}$:
 - (2) $z = \arctan \frac{x+y}{x-y}$;
 - $(3) \ z = \sqrt{\frac{y}{x}};$
 - $(4) \ z = \sqrt{\ln(xy)}.$
- 5. 证明下列各题:
 - (1) 设 $T = 2\pi\sqrt{\frac{l}{g}}$,证明 $l\frac{\partial T}{\partial l} + g\frac{\partial T}{\partial g} = 0$;
 - (2) 设 $z = x^y \cdot y^x$, 证明 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z(x + y + \ln z)$;
 - (3) 设 z = f(ax + by), 证明 $b\frac{\partial z}{\partial x} = a\frac{\partial z}{\partial y}$;
 - (4) 设 u = (y z)(z x)(x y), 证明 $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$;

(5) 设
$$z = e^{-(\frac{1}{x} + \frac{1}{y})}$$
, 证明 $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = 2z$.

6. 拉普拉斯方程是指偏微分方程 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. 证明下述函数满足拉普拉斯方程:

(1)
$$u = \ln(x^2 + y^2);$$

$$(2) u = e^x \sin y + e^y \cos x.$$

**7. 证明

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$$

在 (0,0) 处可微. 但偏导数不连续.

- *8. 求下列数的近似值:
 - $(1) (1.04)^{2.02};$
 - (2) $\ln(\sqrt[3]{1.03} + \sqrt[4]{0.98} 1)$.
- 9. 设有一圆柱形金属工件, 高为 h = 10cm, 底圆半径 r = 2cm, 求高增加 0.02cm, 半径增加 0.01cm 时, 该工件的体积大致能增加多少?
- 10. 求下列函数的全微分:
 - (1) u = xyz;
 - (2) $u = y^{zx}$.

3.3 多元复合函数和隐函数的微分法

1. 求下列函数的导数或偏导数:

(1)
$$\mbox{if } z = u \ln v, \ u = x^2, \ v = x^2 + y^2, \ \mbox{if } \frac{\partial z}{\partial x}, \ \frac{\partial z}{\partial y};$$

(3)
$$\mbox{if } z = e^{x-2y}, \ x = \sin t, y = t^3, \ \mbox{if } \frac{\mathrm{d}z}{\mathrm{d}t};$$

(4) 设
$$z = f(e^t, t^2, \sin t), f$$
 可微, 求 $\frac{dz}{dt}$;

2. 设 F(x, y, z) = 0 且 F 具有连续偏导数,证明

$$\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x} = -1.$$

3. 求下列方程所确定的隐函数的导数或偏导数:

$$(1) \ y^x = x^y, \, \, \, \, \, \, \, \frac{\mathrm{d}y}{\mathrm{d}x};$$

(2)
$$\sin(xy) = x^2y^2 + e^{xy}, \frac{dy}{dx};$$

(3) 设
$$e^z = xyz$$
, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$;

(4) 设
$$z = e^{xyz}$$
, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$;

(6)
$$2xz - 2xyz + \ln(xyz) = 0$$
, $\Re \frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$;

4. 设 z = xy + xF(u), $u = \frac{y}{x}$, F(u) 为可微函数, 证明

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z + xy.$$

- 5. 求下列函数的二阶偏导数 (其中 f 为二阶可微函数):
 - (1) $z = \ln(e^x + e^y)$;
 - (2) z = f(xy, y);
 - (3) $z = f(x^2y, xy^2)$.

(2) 设
$$z^3 - 3xyz = a^3$$
, 求 $\frac{\partial^2 z}{\partial x \partial y}$;

(2)
$$\begin{cases} x + y + u + v = 0, \\ x^2 + y^2 + u^2 + v^2 = 2, \end{cases} \quad \stackrel{?}{\Re} \frac{\partial u}{\partial x}, \frac{\partial v}{\partial x};$$

(3)
$$\begin{cases} x = e^{u} + u \sin v, \\ y = e^{u} - u \cos v, \end{cases} \quad \stackrel{?}{R} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}.$$

**8. 设函数
$$z = f(x,y)$$
 在点 $(1,1)$ 处可微, 且 $f(1,1) = 1$, $\left. \frac{\partial f}{\partial x} \right|_{(1,1)} = 2$, $\left. \frac{\partial f}{\partial y} \right|_{(1,1)} = 3$, $\varphi(x) = f(x,f(x,x))$, 求 $\left. \frac{\mathrm{d}}{\mathrm{d}x} \varphi^3(x) \right|_{(1,1)}$.

- *9. 设函数 u = f(x, y, z) 有连续偏导数, 且 z = z(x, y) 由方程 $xe^x ye^y = ze^z$ 所确定, 求 du.
- *10. 设函数 z=f(xy,yg(x)), 其中函数 f 具有二阶连续偏导数, 函数 g(x) 可导且在 x=1 处取 得极值 g(1)=1. 求 $\left.\frac{\partial^2 z}{\partial x \partial y}\right|_{\substack{x=1\\ z=1}}$.

3.4 微分法在几何上的应用

1. 求下列曲线在给定点处得切线方程与法平面方程:

(1)
$$x = t - \cos t$$
, $y = 3 + \sin 2t$, $z = 1 + \cos 3t$, $t_0 = \frac{\pi}{2}$;

(2)
$$x = \int_0^t e^u \cos u du$$
, $y = 2\sin t + \cos t$, $z = 1 + e^{3t}$, $t_0 = 0$;

(3)
$$\begin{cases} x^2 + y^2 = 10. \\ y^2 + z^2 = 25, \end{cases} \quad \stackrel{\text{l.}}{\bowtie} (1, 3, 4);$$

- 2. 在曲线 x = t, $y = t^2$, $z = t^3$ 上求出一点, 使该点得切线平行于平面 x + 2y + z = 4.
- 3. 求下列曲面在指定点处得切平面方程与法线方程:

(1)
$$z = 8x + xy - x^2 - 5$$
, $(2, -3, 1)$;

(2)
$$e^z - z + xy = 3$$
, \pm (2, 1, 0);

(3)
$$2^{\frac{x}{z}} + 2^{\frac{y}{z}} = 8$$
, $(2, 2, 1)$.

- 4. 求曲面 $x^2 + 2y^2 + 3z^2 = 21$ 的平行于平面 x + 4y + 6z = 0 的切平面方程.
- 5. 求直线 x = 2, y = 3 被曲面 $z = x^2 + y^2$ 上的点 (1, 1, 2) 的切平面及曲面本身所截线段的长.
- 6. 证明: 曲面 $xyz = a^3(a > 0)$ 上任一点的切平面与三个坐标面所围成的四面体的体积为一定数.
- *7. 设直线 $\Gamma:$ $\begin{cases} x+y+b=0, \\ x+ay-z-3=0 \end{cases}$ 在平面 π 上,而平面 π 与曲面 $z=x^2+y^2$ 相切于点 (1,-2,5),求常数 a,b.

3.5 多元函数的极值与最值

1. 求下列函数的极值:

(1)
$$z = x^2 + xy + y^2 + x - y + 5$$
;

(2)
$$z = 4(x - y) - x^2 - y^2$$
;

(3)
$$z = x^2 + xy + y^2 - 4 \ln x - 10 \ln y$$
;

(4)
$$z = 1 - (x^2 + y^2)^{\frac{2}{3}}$$
.

2. 求下列函数在给定条件下的极值:

(1)
$$z = xy$$
, $x + y = 1$;

(2)
$$z = \frac{1}{x} + \frac{4}{y}$$
, $x + y = 3$;

(3)
$$z = \cos^2 x + \cos^2 y$$
, $x - y = \frac{\pi}{4}$.

3. 从斜边之长为 L 的一切直角三角形中, 求由最大周长的直角三角形.

- 4. 求表面积为S的长方体的最大体积.
- 5. 在平面 xOy 上求一点, 使它到 x = 0, y = 0, x + 2y 16 = 0 三直线的距离平方值和为最小.
- 6. 求内接于半径为 a 的球且由最大体积的长方体.
- 7. 求曲线 $y = \sqrt{x}$ 上的动点到定点 (a,0) 的最小距离.
- 8. 一帐篷,下部为圆柱形,上部覆以圆锥形的蓬顶,设帐篷的溶剂为常数 k,若要使制造帐篷所用的布最少,问圆柱形半径 R 和高 H 以及圆锥形的高 h 之间有什么关系?
- *9. 求由方程 $x^2 + y^2 + z^2 2x + 2y 4z 10 = 0$ 所确定的函数 z = f(x, y) 的极值.
- *10. 求抛物线 $y = x^2$ 和直线 x y 2 = 0 之间的最短距离.

3.6 二元函数泰勒公式

- 1. 设 $f(x,y) = e^{x+y}$, 求 f(x,y) 在点 (0,0) 具有拉格朗日余项的 n 阶泰勒公式.
- 2. 求函数 $f(x,y) = \frac{x}{y}$ 在 (1,1) 点的三阶泰勒公式.
- 3. 求函数 $f(x,y) = \sin x \sin y$ 在点 $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ 的二阶泰勒公式.

3.7 MATLAB 求偏导数

第4章 重积分

4.1 二重积分的概念和性质

- 1. 设 $I_1 = \iint (x^2 + y^2)^3 d\sigma$, 其中 D_1 是矩形闭区域: $-1 \leqslant x \leqslant 1$, $-2 \leqslant y \leqslant 2$, 又 $I_2 = I_2$ $\iint_{D_2} (x^2 + y^2)^3 d\sigma$, 其中 D_2 是庆闭区域: $0 \le x \le 1$, $0 \le y \le 2$, 试用二重积分的几何意义说
- 2. 利用二重积分定义证明:

(1)
$$\iint_D kf(x,y)d\sigma = k \iint_D f(x,y)d\sigma$$
, 其中 k 为常数;

(2)
$$\iint\limits_{D} [f(x,y) \pm g(x,y)] \mathrm{d}\sigma = \iint\limits_{D} f(x,y) \mathrm{d}\sigma \pm \iint\limits_{D} g(x,y) \mathrm{d}\sigma;$$

(3)
$$\iint_D f(x,y) d\sigma = \iint_{D_1} f(x,y) d\sigma + \iint_{D_2} f(x,y) d\sigma$$
, 其中 $D = D_1 \bigcup D_2$, D_1 , D_2 是两个无公共内点的闭区域:

(4)
$$\iint\limits_D f(x,y)\mathrm{d}\sigma = \iint\limits_D \mathrm{d}\sigma = \sigma$$
, 其中 σ 为区域 D 的面积.

*3. 设函数 f(x,y)、g(x,y) 在有界区域 D 上连续, 且 $g(x,y) \geqslant 0$, 试证必存在点 $(\xi,\eta) \in D$, 使

$$\iint\limits_{D} f(x,y)g(x,y)\mathrm{d}\sigma = f(\xi,\eta)\iint\limits_{D} g(x,y)\mathrm{d}\sigma$$

(2)
$$\iint\limits_{D}\ln(x+y)\mathrm{d}\sigma\ \boxminus\iint[\ln(x+y)]^2\mathrm{d}\sigma,D\ 为矩形区域:\ 3\leqslant x\leqslant 5,\ 0\leqslant y\leqslant 1;$$

(3)
$$\iint_D (x+y)^2 d\sigma$$
 与 $\iint_D (x+y)^3 d\sigma$, 其中积分区域 D 由圆周 $(x-2)^2 + (y-1)^2 = 2$ 围成.

5. 利用二重积分的性质估计下列积分的值:

(1)
$$I = \iint_D (x+y+1) d\sigma, D \not \supset \{(x,y) \mid 0 \le x \le 1, 0 \le y \le 2\};$$

(2)
$$I = \iint_D (x + xy - x^2 - y^2) d\sigma$$
, D 为区域 $\{(x, y) \mid 0 \le 1, 0 \le y \le 2\}$;

(3)
$$I = \iint_D (x^2 + 4y^2 + 9) d\sigma$$
, D 为圆域 $x^2 + y^2 \le 4$.

4.2 二重积分的计算

1. 将二重积分 $\iint\limits_D f(x,y)\mathrm{d}\sigma$ 表示为在直角坐标系下的二次积分 (用两种次序给出):

- (2) $D \supset \{(x,y) \mid x+y \leq 1, x-y \leq 1, x \geq 0\};$
- (3) $D \boxplus x + y = 2, y = x^3, y = 0 \exists \vec{R};$
- (4) D 为 {(x,y) | |x| + |y| ≤ 1 }.
- 2. 交换下列二重积分的积分次序:

(1)
$$\int_0^1 \mathrm{d}y \int_y^{\sqrt{y}} f(x,y) \mathrm{d}x;$$

(2)
$$\int_0^a dx \int_x^{\sqrt{2ax-x^2}} f(x,y)dy;$$

(3)
$$\int_0^1 dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx;$$

(4)
$$\int_0^1 dy \int_0^{2y} f(x,y) dx + \int_1^3 dy \int_0^{3-y} f(x,y) dx$$
.

(2)
$$\iint_D x^3 y^2 d\sigma$$
, $D: \{(x,y) \mid x^2 + y^2 \leqslant R^2\}$;

(3)
$$\iint_{D} (x^2 + y) dx dy$$
, D 由曲线 $x^2 = y$ 和 $y^2 = x$ 围成;

(4)
$$\iint_{D} \frac{x^2}{y^2} dx dy$$
, $D \boxplus x = 2$, $y = x$, $xy = 1 \boxplus \vec{x}$;

(5)
$$\iint\limits_{D} \cos(x+y) \mathrm{d}x \mathrm{d}y, \quad D \boxplus x = 0, \ y = \pi, \ x = y \boxplus \vec{\mathbf{p}};$$

(6)
$$\iint_{D} \sqrt{1-x^2-y^2} dx dy$$
, D 是单位圆在第一象限的部分.

- 4. 给出下列二重积分 $\iint f(x,y) dxdy$ 在极坐标下的二次积分:
 - (1) D 为环域 $1 \le x^2 + y^2 \le 4$:
 - (2) D 是由 $x^2 + y^2 2ax = 0$, y = x 围成的第一象限中面积较小的子区域.

5. 将下列二重积分化为极坐标形式: (1)
$$\int_0^R dx \int_0^{\sqrt{R^2-x^2}} f(x,y)dy;$$

(2)
$$\int_0^{2R} dy \int_0^{\sqrt{2Ry-y^2}} f(x,y)dx;$$

(3)
$$\int_0^{\frac{R}{\sqrt{1+R^2}}} \mathrm{d}x \int_0^{Rx} f\left(\frac{y}{x}\right) \mathrm{d}y + \int_{\frac{R}{\sqrt{1+R^2}}}^R \mathrm{d}x \int_0^{\sqrt{R^2-x^2}} f\left(\frac{y}{x}\right) \mathrm{d}y.$$

6. 利用极坐标系计算下列二重积分: (1)
$$\int_0^R \mathrm{d}x \int_0^{\sqrt{R^2-x^2}} \ln(1+x^2+y^2) \mathrm{d}y;$$

(2)
$$\iint_{D} \sqrt{R^2 - x^2 - y^2} dxdy$$
, $D: x^2 + y^2 \leq Rx$;

(3)
$$\iint\limits_{D}\arctan\frac{y}{x}\mathrm{d}x\mathrm{d}y,\quad D \not\in x^2+y^2\leqslant 1$$
在第一象限的部分.

**7. 计算下列曲顶柱体的体积:

(1) 曲顶为
$$z = 1 + x^2 + y^2$$
, 区域 D 由 $x = 0$, $y = 0$, $x = 4$, $y = 4$ 围成;

(2) 曲顶为
$$z = 1 - \frac{x}{a} - \frac{y}{b}$$
, 区域 D 由 $\frac{x}{a} + \frac{y}{b} = 1$, $x = 0$, $y = 0$ 围成;

(3) 由曲面
$$z = \frac{h}{R} \sqrt{x^2 + y^2}$$
, 平面 $z = 0$ 及圆柱面 $x^2 + y^2 = R^2$ 围成;

- (4) 由坐标面、平面 x + y = 1 以旋转抛物面 $z = x^2 + y^2$ 围成.
- *8. 设闭区域 $D: x^2 + y^2 \le y, x \ge 0, f(x, y)$ 为 D 上的连续函数, 且

$$f(x,y) = \sqrt{1 - x^2 - y^2} - \frac{8}{\pi} \iint_{\Omega} f(u,v) du dv,$$

求 f(x,y).

*9. 计算
$$\iint_D \frac{\sqrt{x^2+y^2}}{\sqrt{4a^2-x^2-y^2}} dx dy$$
, 其中 D 是由曲线 $y=-a+\sqrt{a^2-x^2}$ $(a>0)$ 和直线 $y=-x$ 围成的区域.

**10. 计算
$$\iint_D e^{\max\{x^2,y^2\}} dxdy$$
, 其中 $D = \{(x,y) \mid 0 \leqslant x \leqslant 1, \ 0 \leqslant y \leqslant 1\}$.

- 11. 设 g(x) > 0 为已知连续函数, 在圆域 $D = \{(x,y) \mid x^2 + y^2 \leqslant a^2(a > 0)\}$ 上计算二重积分 $I = \iint_D \frac{\lambda g(x) + \mu g(y)}{g(x) + g(y)} \mathrm{d}x \mathrm{d}y$, 其中 λ , μ 为正常数.
- 12. 设 f(x) 为 [0,1] 上的单调增加的连续函数, 证明:

$$\frac{\int_0^1 x f^3 f(x) dx}{\int_0^1 f^2(x, y) dx} \geqslant \frac{\int_0^1 f^3(x) dx}{\int_0^1 f^2(x) dx}.$$

13. 设函数 f(x) 在区间 [0,1] 上连续, 并且 $\int_0^1 f(x)\mathrm{d}x = A$, 求 $\int_0^1 \mathrm{d}x \int_x^1 f(x)f(y)\mathrm{d}y$

4.3 三重积分的概念

- 1. 设有一物体占据空间区域 Ω , 该物体内任一点 M(x,y,z) 处的体密度为 $\rho=\rho(x,y,z)$, 比热 容为 q=q(x,y,z), 且 $\rho(x,y,z)$, q(x,y,z) 在 Ω 上连续, 试求将该物体由温度 T_1 加热到 T_2 所需的热量.
- 2. 比较积分 $\iint_{\Omega} (x+y+z) dV$ 与 $\iint_{\Omega} (x+y+z)^2 dV$ 值得大小, 其中 Ω 是由平面 x+y+z=1 与三个坐标面围成的四面体

3. 估计积分
$$\iiint_{\Omega} (x^2 + y^2 + z^2) dV$$
 的值, 其中

$$\Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \leqslant R^2\}.$$

4.4 三重积分的计算

- 1. 将三重积分 $\iint_D f(x,y,z) dV$ 化为直角坐标系中的累次积分,其中积分区域 Ω 分别是: $\Omega = \{(x,y,z) \mid 0 \leqslant x \leqslant 1, \ 1 \leqslant y \leqslant 2, \ 2 \leqslant z \leqslant 3\}; \Omega = \{(x,y,z) \mid \sqrt{x^2 + y^2} \leqslant z \leqslant 1\};$ $\Omega = \{(x,y,z) \mid 0 \leqslant z \leqslant x^2 + y^2, \ x + y \leqslant 1, \ x \geqslant 0, \ y \geqslant 0\}.$
- 2. 计算下列三重积分

(1)
$$\iiint_{\Omega} (x+y+z) dV$$
, 其中 Ω 由平面 $x+y+z=1$ 与三个坐标面围成;

(2)
$$\iiint\limits_{\Omega}\frac{1}{(1+x+y+z)^3}\mathrm{d}V,$$
 其中 Ω 由平面 $x+y+z=1$ 及三个坐标平面围成;

(3)
$$\iiint_{\Omega} xy^2 dV$$
, Ω 由平面 $z = 0$, $x + y - z = 0$, $x - y - z = 0$ 及 $x = 1$ 围成;

(5)
$$\iiint\limits_{\Omega}xy^2z^3\mathrm{d}V,\Omega$$
 是由马鞍面 $z=xy$ 与平面 $y=x,\;x=1,\;z=0$ 所包围的空间区域.

- 3. 设积分区域 Ω 由 $z \leq \sqrt{4-x^2-y^2}, \ z \geq \sqrt{x^2+y^2}, \ x \geq 0, \ y \geq y \geq 0$ 确定,试将三重积分 $\iiint_{\Omega} f(x^2+y^2+z^2) \mathrm{d}V \ \text{分别表示为直角坐标、柱面坐标和球面坐标系中的累次积分.}$
- 4. 利用柱面坐标变换或球面坐标变换, 计算下列三重积分:

(1)
$$\iiint_{\Omega} (x^2 + y^2) dV, \ \Omega = \{(x, y, z) \mid \sqrt{x^2 + y^2} \le z \le 1\};$$

(2)
$$\iiint_{\Omega} xyz dV, \ \Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1, \ z \ge 0, \ y \ge 0, \ z \ge 0\};$$

(3)
$$\iiint_{\Omega} 2\sqrt{x^2 + y^2} dV$$
, Ω 是由 $z = \sqrt{a^2 - x^2 - y^2}$, $x \ge 0$, $y \ge 0$ 和 $z \ge 0$ 所围成的区域;

$$(4) \ \iiint\limits_{\Omega} x e^{x^2 + y^2 + z^2} / a^2 \mathrm{d}V, \ \Omega = \{(x,y,z) \mid x^2 + y^2 + z^2 \leqslant a^2, \ x \geqslant 0, \ y \geqslant 0, \ z \geqslant 0\};$$

(5)
$$\iiint_{\Omega} \frac{\sin\sqrt{x^2 + y^2 + z^2}}{x^2 + y^2 + z^2} dV, \ \Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \leqslant 1, \ x \geqslant 0, \ y \geqslant 0, \ z \geqslant 0\};$$

(6)
$$\iiint_{\Omega} (x^2 + y^2) dV$$
, Ω 是由曲面 $4z^2 = 25(x^2 + y^2)$ 及平面 $z = 5$ 所围成的区域;

(7)
$$\iiint_{\Omega} (x^2+y^2) dV$$
, Ω 是由不等式 $0 < a \leqslant \sqrt{x^2+y^2+z^2} \leqslant A, \ z \geqslant 0$ 所确定的区域;

*8. 计算
$$\iint_{\Omega} (x^2+y^2) dV$$
, 其中 Ω 为平面曲线 $\begin{cases} y^2=2z \\ x=0 \end{cases}$ 绕 z 轴旋转一周形成的曲面与平面 $z=8$ 所围成的区域.

*5. 做适当变量代换, 计算下列三重积分:

$$(1) \iiint\limits_{\Omega} x^2 \mathrm{d} V, \ \Omega = \{(x,y,z) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leqslant 1\};$$

(2)
$$\iiint_{\Omega} x^2 dV$$
, Ω 是由曲面 $z = ay^2$, $z = by^2$ $(y > 0, 0 < a < b)$, $z = ax$, $z = \beta x (0 < \alpha < \beta)$ 以及 $z = 0$, $z = h(h > 0)$ 所围成.

- 6. 设 $F(t) = \int_0^t \mathrm{d}x \int_0^x \mathrm{d}y \int_0^y f(z) \mathrm{d}z$, 其中 f(z) 连续,试把 F(t) 化为对 z 的定积分,并求 $F^m(t)$
- *7. 设函数 f(z) 在 [-1,1] 上连续,证明

$$\iiint_{\Omega} f(z) dV = \pi \int_{-1}^{1} f(z) (1 - z^{2}) dz,$$

其中 Ω 为球体 $x^2 + y^2 + z^2 \le 1$.

- *8. 设 f(x) 连续, f(0)=a, 函数 $F(t)=\iiint [z+f(x^2+y^2+z^2)] \mathrm{d}V$,其中 $\Omega:0\leqslant z\leqslant z$
- *9. 假设 f(x) 在区间 [0,1] 上连续,并且 $\int_{a}^{2} f(x) dx = A$, 证明:

$$\int_{0}^{1} dx \int_{x}^{1} dy \int_{x}^{y} f(x)f(y)f(z)dz = \frac{A^{3}}{3!}.$$

4.5 重积分的应用

- 1. 设物体在点 P(x,y,z) 处的密度 $\rho = x + y + z$, 试求正方体 $\Omega = \{(x,y,z) \mid 0 \le x \le 1, 0 \le x \le 1,$ $y \le 1, 0 \le z \le 1$ } 的质量.

2. 求下列曲面所包围的均匀物体的质心: (1)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, x \ge 0, y \ge 0, z \ge 0;$$

(2)
$$x^2 + y^3 = 2z$$
, $x + y = z$;

(3)
$$z = 4 - x^2 (x \ge 0)$$
, $x = 0$, $y = 0$, $z = 0 \not \not D$, $y = 6$.

- 3. 设 Σ 是球面 $x^2 + y^2 + z^2 = R^2$ 被平面 z = h(0 < h < R) 所截下的球冠,其上分布质量密 度为 $\rho = \frac{1}{2}$, 求 Σ 的质心.
- 4. 求闭曲线 $(x^2 + y^2)^3 = a^2(x^4 + y^4)$ 所围成的图形的面积 (其中常数 a > 0).
- 5. 求半径为 R,高为 h 的均匀圆柱体对其底面一条直径的转动惯量 I_z .
- 6. 设由一块半径为 R 的圆形薄板, 其面密度 ρ 为常数, 在过中心且垂直于板面的直线上有一 单位质量的质点,它到薄板中心的距离为 a,求薄板对该质点的引力.
- 7. 求均匀上半球面 $z = \sqrt{a^2 x^2 y^2}$ 对位于球心的单位质量质点的引力.
- *9. 设有一半径为 R 的球体, P_0 是此球的表面上的一个定点,球体上任一点的密度于该点到 P_0 距离的平方成正比 (比例常数 k > 0), 求球体的质心坐标.

4.6 用 MATLAB 计算重积分

第5章 曲线积分与曲面积分

5.1 对弧长的曲线积分

- 1. 计算下列对弧长的曲线积分:
 - (1) $\int_L (x+y) ds$, 其中 L 为以 O(0,0), A(1,0), B(0,1) 为顶点的三角形的三条边;
 - (2) $\int_{T} \sqrt{x^2 + y^2} ds$, 其中 L 是圆周 $x^2 + y^2 = ax(a > 0)$;
 - (3) $\int_{L} y^{2} ds$, 其中 L 为摆线 $x = a(t \sin t)$, $y = a(1 \cos t)(0 \le t \le 2\pi)$ 的一拱;
 - (4) $\int_L |y| \mathrm{d}s$, 其中 L 是单位圆的右半圆周,即 $x^2 + y^2 = 1$, $x \geqslant 0$;
 - (5) $\int_{\Gamma} z ds$, 其中 Γ 为圆锥螺线 $x = t \cos t$, $y = t \sin t$, $z = t (0 \leqslant y \leqslant 2)$ 的一段弧;
 - (6) $\int_{\Gamma} \frac{z^2}{x^2 + y^2} ds$, 其中 Γ 为圆柱螺线 $x = a \cos t$, $y = a \sin t$, z = at $(0 \leqslant t \leqslant 2\pi)$ 的一段弧:
 - (7) $\int_{\Gamma} x^2 ds$, 其中 Γ 是球面 $x^2 + y^2 + z^2 = R^2$ 与平面 x + y + Z = 0 的交线.
- 2. 求下列空间曲线段的弧长:
 - (1) x = 3t, $y = 3t^2$, $z = 2t^3$, 从点 O(0,0,0) 到点 A(3,3,2);
 - (2) $x = e^{-t} \cos y$, $y = e^{-t} \sin t$, $z = e^{-t}$, $0 \le t < +\infty$.
- 5.2 对坐标的曲线积分
- 5.3 格林公式及其应用
- 5.4 对面积的曲面积分
- 5.5 对坐标的曲面积分
- 5.6 高斯公式和斯托克斯公式
- 5.7 场论简介
- 5.8 用 MATLAB 计算曲线积分和曲面积分