Zusatztutorium Mathe A WS19/20

Anton Hanke, Maximillian Kohnen, Felix Schnabel Fragestunde: 27/11/19

Contents

Mathematische Logik	-
Aussagen	
Quantoren	
Beweise	
Mengen und algebraische Struckturen	;
sonder mengen & Mengen Relationen	;
Abbildungen	;
Vektorrechnung	
Komplexe Zahlen und trignometrische Funktionen	į.
Darstellungen Komplexer Zahlen	ļ
Rechenoperationen Komplexer Zahlen	
Trigonometrische Funktione	
Matrizen und Lineare Algebra	į
Matrixrechung	(
Eliminationsverfahren	
Lösbarkeit	9

Mathematische Logik

!!MACHT FELIX!!

Aussagen

!!MACHT FELIX!!

Quantoren

 \forall : Für alle

 \exists : Es existiert mindestens ein

 $\exists !$: Es exsitiert genau ein

 $\neg \exists$: Es exsitiert kein

Beweise

Um etwas Mathematisch zu Beweisen gibt mehrere Ansätze. Die wichtigsten sind:

• Direkter Beweis: Wir beweisen A => B mittels A => A' => A'' => B

Bsp: Sei $n \in \mathbb{N}$ Dann gilt: n ungerade => n^2 auch ungerade

n ungerade
$$=> \exists m \in \mathbb{N} : 2m+1=n$$

$$=>(2m+1)^2 = 4m^2 + 4m + 1 = 2(2m^2 + 2m) + 1 => n^2$$

mit
$$2(2m^2 + 2m) \in \mathbb{N}$$
 und gerade

Da
$$n^2 = 2(2m^2 + 2m) + 1$$
 ist auch n^2 eine ungerade Zahl.

• Kontraposition Anstatt A => B z.z., zeigt man $\neg B => \neg A$

Bsp: Sei $n \in \{k^2 | k \in \mathbb{N}\}$ Dann gilt:

$$n \text{ gerade} => \sqrt{n} \text{ gerade}$$

Kontraposition:

$$\sqrt{n}$$
 gerade $->$ n ungerade

$$\forall m \in \mathbb{N} : n = k^2 => k^2 \text{ gerade} => k \text{ gerade}$$

• Indirekter Beweis (Widerspruchsbeweis) Wir nehmen A => B, dann können wir sagen wenn $\neg B \land A => \neg A$ an und zeigen, dass es zum Widerspruch führt

$$\neg (A \land (\neg B)) <=> A => B$$

Bsp: Für $A=B=\{-1,1\}$ gilt min(A)*min(B)=min(A*B) mit $A*B:= \forall a\in A \land b\in B, A*B=a*b$

$$min(A) = -1, min(B) = -1, min(A * B) = -1$$

$$min(A) * min(B) = -1 * -1 = 1 \neq -1 = min(A * B)$$

Beweis über vollständige Induktion

Bei der Vollständigen Induktion wird für eine finite Definitionsmenge die Aussage bewiesen.

Zu zeigen sind:

- Induktionsanfang: Die Aussage gilt für das erste Element / die ersten X Element
- Induktionsannahme: Wir nehmen an: die Aussage gilt für beliebige und feste Elemente der Menge
- Induktionschritt : Wir beweisen, dass für das nächste Element / die nächsten Elemente die Bedingung auch erfüllt wird mittels verwendung der Induktionsannahme

-Bsp:

$$\forall n \ge 1 \text{ gilt } \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

-Induktionsanfang: Wir zeigen, dass die Formel für n=1 richtig ist.

$$\sum_{k=1}^{1} k = 1 <=> \frac{1(1+1)}{2} = \frac{2}{2} = 1$$

-Induktionsannahme: Wir nehmen an, $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ gilt für alle feste und beliebiege n.

-Induktionsschritt Wir zeigen, dass $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ für n->n+1 gilt.

$$\sum_{k=1}^{n+1} k = (n+1) + \sum_{k=1}^{n} k$$

mittels Induktionsannahme nehmen wir an:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

somit ist

$$\textstyle \sum_{k=1}^{n+1} k = (n+1) + \sum_{k=1}^{n} k = \sum_{k=1}^{n} k = (n+1) + \frac{n(n+1)}{2} = \frac{2(n+1)}{2} \frac{n(n+1)}{2}$$

• ausklammern von (n+1)

$$=\frac{(n+2)*(n+1)}{2}=\frac{((n+1)+1)*(n+1)}{2}$$
 was der Form $\sum_{k=1}^{n}k=\frac{n(n+1)}{2}$ für $n->n+1$ entspricht

Wir haben mittels Induktionsannahme bewiesen, dass für jedes Element n die gleichung für das darrauffolgende Element n+1 gilt. Da die Gleichung für das erste Element n=1 gilt und für alle darauffolgenden gilt:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \qquad \forall n \ge 1$$

Mengen und algebraische Struckturen

Mengen sind Zusammenfassungen bestimmter, wohlunterscheidbarer Objekte. Für jedes Objekt ist eine klare zuordnung zur Menge erkentlich

Mengen sind keine Aussagen!!

sonder mengen & Mengen Relationen

- $\emptyset \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$
- $A \subset B$! Aussage!
- $A \cap B$
- A ∪ B
- $A \setminus B \wedge B \setminus A$
- $A \times B = \{(a, b) : a \in A, b \in B\}$

Abbildungen

$$f:A\to B$$

- A = Definitionsmenge, von hier bilden wir ab.
- B = Zielmenge, hierdrauf wird abgebildet.
- Bildmenge: $\subset B$ welche sich aus f(A) ergibt.
- 1. Injektive Abbildung: $\forall i \in B | \#(a \in A) \leq 1 : f(a) \rightarrow i$
- 2. Surjektive Abbildung: $\forall i \in B \mid \#(a \in A) \geq 1 : f(a) \rightarrow i$
- 3. Bijektive Abbildung: $\forall i \in B \mid \#(a \in A) = 1 : f(a) \to i$ (1. \land 2.)

Gruppen (G, \oplus)

• Abgeschlossenheit

$$a \in G, b \in G : a \oplus b \in G$$

Assoziativität

$$(b \oplus a) \oplus c = a \oplus (b \oplus c)$$

• Neutrales Element D₀

$$\exists e \in G, \forall a \in G : a \oplus e = a$$

• Inverses Element

$$\forall a \in G, \exists \bar{a} \in G : a \oplus \bar{a} = e$$

• Kommultativität (abelsche Gruppe):

$$\forall a \in G, \forall b \in G : a \oplus b = b \oplus a$$

Ringe (M, \oplus, \otimes)

1. (M, \oplus) ablesche Gruppe

2. $a \otimes (b \otimes c) = (a \otimes b) \otimes c$ assoziativität gegeben.

3. Distributiv: $\forall a, b, c \in M : a \otimes (b \oplus c) = a \otimes b \oplus a \otimes c$.

• Kommutativ wenn: $a \otimes b = b \otimes a$

• unitär wenn: $\exists 1 \in M : a \otimes 1 = 1 \otimes a = a$.

Körper (K, \oplus, \otimes)

1. (K, \oplus) is abelsche Gruppe mit $D_0 = 0$.

2. $(K \setminus \{0\}, \otimes)$ abelsche Gruppe mit $D_0 = 1$.

3. Distributivgesetz gilt.

• Unterschied zu Ringen: (M, \otimes) keine abelsche Gruppe, kein Inverses!

Vektorrechnung

Vektoren sind tupel mit n elementen $(n = \dim V)$.

Sie erfüllen alle bedingungen eines Körpers und lassen sich nicht mit sich selbst multiplizieren.

• Linearkombination:

$$\vec{z} = \sum_{i=1}^{k} \mu_i \vec{x}_i \in V$$

Hierbei sind μ skalare ($\mu \in \mathbb{R}$)

• Skalarprodukt: "Vektor multiplikation".

$$\mathbb{R}^n\mathbb{R}^n=\mathbb{R}$$

Relevant ist, das beide Vektoren gleiche Dimension haben.

$$\vec{v} \cdot \vec{w} = \sum_{i=1}^{n} v_i w_i \in \mathbb{R}$$

• Vektor betrag:

$$\begin{aligned} |\vec{v}|^2 &= \vec{v} \cdot \vec{v} \\ \Rightarrow |\vec{v}| &= \sqrt{\sum_{i=1}^{n} {}^nv_i^2} \end{aligned}$$

Ein Vektor lässt sich normieren mit: $\vec{e}_v = \frac{\vec{v}}{|\vec{v}|}$. In \mathbb{R}^2 gilt: $\vec{e} = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$

• Winkel zwischen Vektoren: Sind vektoren ortogonal ($\alpha = 90^{\circ}$) gilt: $\vec{u} \cdot \vec{v} = 0 \Leftrightarrow \vec{u} \perp \vec{v}$ Allgemein berechnet sich der Winkel mit:

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

Basis eines Vektorraums

Die Basis eines Vektorraums ist die Menge an vektoren, mit welchen sich über Linearkombination jeder Vektor im Vektorraum berechnen lässt, sie wird der span des Raums gennant:

$$\forall \vec{v} \in V : \exists \lambda_1, \dots, \lambda_k \in \mathbb{R} : \vec{v} = \sum_{i=1}^n \lambda_i \vec{e_i}$$

Die Vektoren dieser Basis spannen den Vektorraum auf und werden als spanV bezeichent, wobei $V:\Leftrightarrow\{\vec{v}_i,\ldots,\vec{v}_k\}\in\mathbb{R}$

Drei relevante Basen sind:

- 1. Kanonische Basis: $\mathbb{R}^n \{ \vec{e}_1 = (1, \dots, 0), \vec{e}_i = (0, \dots, 1, \dots, 0), \vec{e}_n = (0, \dots, 1) \}$ $i = 1, \dots, n$
- 2. normierte Basis: $\{\vec{v}_i \in X\}: |\vec{v}_i| = 1 \quad \forall i = 1, \dots, n$
- 3. orthogonale Basis: $\{\vec{v}_i \in X\}: \vec{v}_i \cdot \vec{v}_j = 0 \ \forall i, j = 1, \dots, n$

Alle Vektoren der Basis des Vektorraums müssen linear unabhängig voneinander sein:

$$\sum_{i=1}^{r} \lambda_1 \vec{v}_1 + \ldots_i + \lambda_r \vec{v}_r^2 = \vec{O} \Leftrightarrow \lambda_i = 0 \quad i = 1, \ldots, r$$

Lineare Abbhängigkeit ist gegeben, wenn $\exists \lambda \neq 0 \text{ sodass } \lambda \vec{v}_1 \cdot \lambda \vec{v}_2 = \vec{0}.$

Die Dimension des (aufgespannten) Vektorraums entspricht der Anzahl an Basis oder Span Vektoren.

$$\dim V = \operatorname{span}(V)$$

Komplexe Zahlen und trignometrische Funktionen

Darstellungen Komplexer Zahlen

Kartesische Darstellung

Polarkoordinaten Darstellung

Euler Darstellung

Rechenoperationen Komplexer Zahlen

Trigonometrische Funktione

Geometrische Interpretation

Eigenschaften und wichtige Gleichungen

Wichtige Werte

Matrizen und Lineare Algebra

Lineare Gleichungssysteme stellen sich wie folgt da:

$$\begin{cases} \lambda_{1,\,1} \,\, x_1 + \lambda_{1,\,\ldots} \,\, x_{\ldots} + \lambda_{i,\,1} \,\, x_i &= b_1 & \text{Gl. 1} \\ \lambda_{1,\,\ldots} \,\, x_1 + \lambda_{\ldots,\,\ldots} \,\, x_{\ldots} + \lambda_{i,\,\ldots} \,\, x_i &= b_{\ldots} & \text{Gl. } \ldots \\ \lambda_{1,\,j} \,\, x_1 + \lambda_{\ldots,\,j} \,\, x_{\ldots} + \lambda_{i,\,j} \,\, x_i &= b_k & \text{Gl. } k \end{cases}$$

Dies lässt sich wie folgt umschreiben:

$$Ax = b$$

Dabei sind x und b vectoren. A ist eine Matrix.

$$A = \begin{pmatrix} \lambda_{1, 1} & \lambda_{1, \dots} & \lambda_{i, 1} \\ \lambda_{1, \dots} & \lambda_{\dots, \dots} & \lambda_{i, \dots} \\ \lambda_{1, j} & \lambda_{\dots, j} & \lambda_{i, j} \end{pmatrix}$$

Eine Matrix wird durch ihre Dimensionen beschreiben:

- m: # Zeilen
- n: # Spalten

Die Lösungsmenge eines LGS ist durch äquivalente umformungen unverändert.

Matrixrechung

Matrizen haben folgende Eigenschaften:

- 1. Assoziativ
- 2. Dissoziativ
- 3. nicht kommutativ!

Matrix addition/subtraktion

Matrizen müssen identische Dimensionen haben. Addition der einzelnen Elemente aufeinander.

Matrix multiplikation

Kriterium: innere Dimensionen gleich.

$$\underset{m\times n}{A}\times\underset{n\times p}{B}=\underset{m\times p}{C}$$

An sich ergibt sich die Ergebnismatrix aus Skalarprodukten der Zeilen und Spalten der Inputmatrizen.

$$\begin{pmatrix} i_1 & i_C & i_k \end{pmatrix} \begin{pmatrix} j_i \\ j_C \\ j_k \end{pmatrix} \begin{pmatrix} C_{ij} \end{pmatrix} \iff C_{i,j} = \sum_{k=1}^n a_{ik} \cdot b_{jk}$$

Das neutrale Element der Matrix multiplikation ist die Identitätsmatrix, eine Diagonalmatrix, mit der Determinante 1:

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Linearkombinationen für Berechnungen:

1. Spalten:

$$j_C = x_B^j \lambda_A + y_B^j \theta_A + z_B^j \mu_A$$

Die Spalte j von C ergibt sich aus der Vektorsumme der Spalten von A multipliziert mit den Elementen in der jten Spalte von B.

2. Zeilen:

$$i_C = x_A^i \lambda_B + y_A^i \theta_B + z_A^i \mu_B$$

Die Zeile i von C ergibt sich aus der Vektersumme der Zeilen von B multipliziert mit den Elementen in der iten Zeile von A.

Matrix transposition

"Rotation einer matrix":

$$A_{m \times n} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix} \longrightarrow A_{m \times n}^{T} = \begin{pmatrix} a_{1,1} & \cdots & a_{m,1} \\ \vdots & & \vdots \\ a_{1,n} & \cdots & a_{m,n} \end{pmatrix}$$

Spiegelung um die Diagonale.

Wenn gilt: $A = A^T$ so ist die Matrix Spiegelsymmetrisch.

Diagonalmatrizen immer Spiegelsymmetrisch.

Matrix inverse

Die Inverse Matrix ist das Inverse Element eines Elements in dem Körper der Matrix Multiplikation. Es gilt: $A^{-1}A = AA^{-1} = I$

Nur, aber nicht alle, quadratischen Matrizen sind invertierbar.

Matrizen sind invertierbar, wenn sie nicht-Singulär sind.

$$\exists A \mid \det A \neq 0 \Rightarrow \exists ! A^{-1} : AA^{-1} = I$$

Demnach sind LGS mit genau einer Lösung lösbar, wenn die Matrix invertierbar ist.

Matrix Diagonalisierung und determinanten

Durch Diagonalisierung (alle Elemente der Matrix $\ddot{u}ber/unter$ Diagonale = 0) lassen sich die **Pivot Elemente** (Elemente auf Diagonale) bestimmen. Generel:

$$EA = A'$$

Dabei E = Eliminationsmatrix. Eigenschaften:

- Immer invertierbar
- $\det E = 1$
- Lower oder Upper Diagonalmatrix

Die Eliminationsmatrix die Benötigt wird um eine Matrix vollständig in eine Upper Diagnalmatrix zu überführen ist die lower Diagonalmatrix der Matrix A.

$$\underbrace{E'}_{A''}\underbrace{EA}_{A''}$$

Somit:

$$\underbrace{E''}_{ ext{under triangel}} A = \overbrace{A''}^{ ext{Upper triangel}}$$

Aus den Diagonalmatrizen kann man die Pivot Elemente a

$$\begin{pmatrix}
\boxed{x} & x & x \\
0 & \boxed{x} & x \\
0 & 0 & \boxed{x}
\end{pmatrix}$$

- ▶ Beachte Multiplikationsreihenfolge, nicht kummutativ ◀
- ▶ E sind Einheitsmatrizen und somit 1 auf Diagnoale! $(\det(E) = 1)$ ◀

Die Determinante einer matrix:

$$\det A = \prod \text{Pivot Elemente}$$

In einer Matrix mit det $A \neq 0$ gibt es entweder 0 oder ∞ viele Lösungen für Gleichungssysteme. Die Matrix ist Singulär und hat kein Inverses.

Spalten und Nullraum

Eliminationsverfahren

- 1. Gleichungssystem aufstellen
- 2. Gleichungen äquivalent umformen, bis eine dieser nurnoch von einer Variable abhängig ist. Erlaubte Umformungen:
 - Permutationen (Gleichungen vertauschen)
 - Skalieren von Gleichungen mit $\lambda \neq 0$
 - Linearkombination von Gleichungen
- 3. Auflösen der Variable.
- 4. Resubstitution und schrittweise ermittlung der weiteren Variablen.

Matrix Erweiterung

Erweiterte Matrix aufstellen (A|b):

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} & b_1 \\ \vdots & \ddots & \vdots & b_m \\ a_{m,1} & \cdots & a_{m,n} & b_m \end{pmatrix}$$

Multiplikation der erweiterten Matrix mit E (siehe Diagonalisierung, entweder L oder U).

$$\begin{pmatrix}
\alpha_{1,1} & \cdots & \alpha_{1,n} \\
0 & \ddots & \vdots \\
0 & 0 & \alpha_{m,n}
\end{pmatrix} E \times b_{\dots} \\
b_{m}$$

Damit ist das Gleichungssystem durch substitution von unten nach oben lösbar. So können sowohl nicht Singuläre systeme vollständig gelöst als auch die Lösungsmengen Singulärer Systeme bestimmt werden.

Gauß-Jordan-Verfahren

Hat eine Matrix ein Inverses so kann die Eindeutige Lösung mit diesem Berechnet werden:

$$x = bA^{-1}$$

Um das Inverse einer Matrix zu berechnen, kann man eine Erweiterete Matrix von A mit I aufstellen:

$$\left(\begin{array}{c|ccc}
A & & I \\
\hline
a_{1,1} & \cdots & a_{1,n} \\
\vdots & \ddots & \vdots \\
a_{m,1} & \cdots & a_{m,n}
\end{array}\right) \begin{array}{c|ccc}
I & & & \\
\hline
1 & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right)$$

In Schritten wird nun die Linke Matrix (A) mittels E in eine I umgewandelt. Hierbei wird auch immer I mit E multipliziert. Erhalten wird:

$$\left(\begin{array}{c|cccc}
 & EA & & EI \\
\hline
1 & \cdots & 0 & & \\
\vdots & \searrow & \vdots & & \\
0 & \cdots & 1 & & \\
\end{array}\right)$$

$$\begin{array}{c|cccc}
 & EI & & \\
 & \alpha_{1,1} & \cdots & \alpha_{1,n} \\
\vdots & \ddots & \vdots & \\
 & \alpha_{m,1} & \cdots & \alpha_{m,n}
\end{array}\right)$$

Hierbei ist nun: $EI = A^{-1}$ und wir können somit das Gleichungssystem $x = A^{-1}b$ lösen.

Lösbarkeit