

Bias in NLP models - tutorial

Vector Institute "Bias in Al" course

Tutorial roadmap

- 1. Transformer models & attention mechanism overview
- 2. Bias in pre-trained language models
- 3. How can we measure bias?
- 4. Ways to mitigate bias
- 5. Assignment overview

Transformer models and attention mechanism

- Transformers are deep learning models that adopt attention mechanism to perform variety of NLP tasks
- Transformers have set state-of-the-art results on text classification, text generation, machine translation, question answering and so on, and replaced previously used RNN models
- Original transformer model consisted of encoder block and decoder block. Current models have different architectures - encoderonly, decoder-only or both encoder-decoder.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. *Advances in neural information processing systems*, 30.

BERT model

- Bidirectional Encoder Representations from Transformers
 (BERT) is a transformer-based machine learning technique for NLP.
- BERT was developed in 2018 by Jacob Devlin from Google, and is currently used in almost every English search query in Google.
- BERT learns contextualized word embeddings.
- Also, BERT learns sentence representations which can be used for sentence classification (e.g. sentiment classification, grammar correctness etc).

BERT model

BERT model

BERT was pretrained on two tasks:

- 1. Language Modelling (LM) 15% of tokens were masked and BERT was trained to predict them from context
- 2. **Next Sentence Prediction** (NSP) BERT was trained to predict if a chosen next sentence was probable or not given the first sentence.

Summing up

- Attention mechanism allows transformer models to capture word-toword relationships and get contextualized embeddings
- Modern NLP models are trained in a 2-step process pre-training then fine-tuning
- BERT model learns context from both directions and outputs highquality word and sentence representations

Tutorial roadmap

- 1. Transformer models & attention mechanism overview
- 2. Bias in pre-trained language models
- 3. How can we measure bias?
- 4. Ways to mitigate bias
- 5. Assignment overview

- NLP models are pre-trained on the real-world data (wikipedia, books, reddit etc.)
- Our accumulated text data contains our inherent bias (gender / race / social groups bias), hence models learn it
- If we continue to blindly rely on pre-trained models, without accounting for their unfairness, we will accumulate the bias
- Examples with NLP models:
 - Automated CV parsing (gender and racial bias)
 - Biomedical text analysis (preference to a commonly prescribed drug)

 "Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings"

- "Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings"
- Paper used GloVe word embeddings (these embeddings are obtained from word co-occurrence in the large text corpus)
- Embeddings pintpoint sexism present in the training data, for instance:

$$\overrightarrow{man} - \overrightarrow{woman} \approx \overrightarrow{computer programmer} - \overrightarrow{homemaker}$$

 "Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings"

Extreme she 1. homemaker	Extreme he 1. maestro		Gender stereotype she-he analogies		
2. nurse	2. skipper	sewing-carpentry	registered nurse-physician	housewife-shopkeeper	
3. receptionist	3. protege	nurse-surgeon blond-burly	interior designer-architect feminism-conservatism	softball-baseball cosmetics-pharmaceuticals	
4. librarian	4. philosopher	giggle-chuckle	vocalist-guitarist	petite-lanky	
5. socialite	5. captain	sassy-snappy	diva-superstar	charming-affable	
6. hairdresser	6. architect	volleyball-football	l cupcakes-pizzas	lovely-brilliant	
7. nanny	7. financier		Gender appropriate she-he	analogies	
8. bookkeeper	8. warrior	queen-king	sister-brother	mother-father	
9. stylist 10. housekeeper	9. broadcaster10. magician	waitress-waiter	ovarian cancer-prostate canc	prostate cancer convent-monastery	

Figure 1: **Left** The most extreme occupations as projected on to the *she-he* gender direction on w2vNEWS. Occupations such as *businesswoman*, where gender is suggested by the orthography, were excluded. **Right** Automatically generated analogies for the pair *she-he* using the procedure described in text. Each automatically generated analogy is evaluated by 10 crowd-workers to whether or not it reflects gender stereotype.

Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? debiasing word embeddings. *Advances in neural information processing systems*, 29.

```
text = "Australia has a lot of [MASK]."
```

text = "Australia has a lot of [MASK]."

```
1.87 % Australia has a lot of people.
1.6 % Australia has a lot of talent.
1.29 % Australia has a lot of resources.
1.28 % Australia has a lot of diversity.
1.14 % Australia has a lot of history.
1.11 % Australia has a lot of children.
1.09 % Australia has a lot of problems.
0.9 % Australia has a lot of technology.
0.81 % Australia has a lot of money.
0.77 % Australia has a lot of wealth.
```

```
text = "Australia has a lot of [MASK]."

1.87 % Australia has a lot of people.
1.6 % Australia has a lot of talent.
1.29 % Australia has a lot of resources.
1.28 % Australia has a lot of diversity.
1.14 % Australia has a lot of history.
1.11 % Australia has a lot of children.
1.09 % Australia has a lot of problems.
0.9 % Australia has a lot of technology.
0.81 % Australia has a lot of money.
0.77 % Australia has a lot of wealth.
```

```
text = "Australia has a lot of [MASK]."
```

```
1.87 % Australia has a lot of people.
1.6 % Australia has a lot of talent.
1.29 % Australia has a lot of resources.
1.28 % Australia has a lot of diversity.
1.14 % Australia has a lot of history.
1.11 % Australia has a lot of children.
1.09 % Australia has a lot of problems.
0.9 % Australia has a lot of technology.
0.81 % Australia has a lot of money.
0.77 % Australia has a lot of wealth.
```

text = "Thailand has a lot of [MASK]."

```
1.57 % Thailand has a lot of tourists.
1.34 % Thailand has a lot of people.
1.32 % Thailand has a lot of tourism.
0.98 % Thailand has a lot of schools.
0.94 % Thailand has a lot of problems.
0.93 % Thailand has a lot of students.
0.92 % Thailand has a lot of celebrities.
0.92 % Thailand has a lot of talent.
0.81 % Thailand has a lot of universities.
0.73 % Thailand has a lot of politicians.
```

text = "Australia has a lot of [MASK]." 1.87 % Australia has a lot of people. 1.6 % Australia has a lot of talent. 1.29 % Australia has a lot of resources. 1.28 % Australia has a lot of diversity. 1.14 % Australia has a lot of history. 1.11 % Australia has a lot of children. 1.09 % Australia has a lot of problems. 0.9 % Australia has a lot of technology. 0.81 % Australia has a lot of money. 0.77 % Australia has a lot of wealth.

text = "Israel has a lot of [MASK]."

```
10.37 % Israel has a lot of Jews.

1.98 % Israel has a lot of problems.

1.96 % Israel has a lot of children.

1.85 % Israel has a lot of people.

1.64 % Israel has a lot of resources.

1.55 % Israel has a lot of immigrants

1.47 % Israel has a lot of money.

1.16 % Israel has a lot of refugees.

1.09 % Israel has a lot of enemies.

0.96 % Israel has a lot of Muslims.
```

text = "Thailand has a lot of [MASK]."

```
1.57 % Thailand has a lot of tourists.
1.34 % Thailand has a lot of people.
1.32 % Thailand has a lot of tourism.
0.98 % Thailand has a lot of schools.
0.94 % Thailand has a lot of problems.
0.93 % Thailand has a lot of students.
0.92 % Thailand has a lot of celebrities.
0.92 % Thailand has a lot of talent.
0.81 % Thailand has a lot of universities.
0.73 % Thailand has a lot of politicians.
```

text = "Korea has a lot of [MASK]."

```
1.7 % Korea has a lot of technology.
1.46 % Korea has a lot of talent.
1.41 % Korea has a lot of people.
1.25 % Korea has a lot of problems.
1.14 % Korea has a lot of history.
1.12 % Korea has a lot of wealth.
1.05 % Korea has a lot of resources.
0.93 % Korea has a lot of electricity.
0.86 % Korea has a lot of tourism.
0.85 % Korea has a lot of money.
```

Bias in BERT - gender

- We ask BERT to complete sentences "MASK works as a doctor" and "MASK works as a nurse"
- BERT replaces MASK token with "he" for the 1st sentence, and "she" for the 2nd sentence
- We can compute BERT's probabilities of sentences with different professions to investigate the bias

Tutorial roadmap

- 1. Transformer models & attention mechanism overview
- 2. Bias in pre-trained language models
- 3. How can we measure bias?
- 4. Ways to mitigate bias
- 5. Assignment overview

How to measure bias?

- Adopting psychological tests...
- Implicit Association test (IAT) helps to measure psychological bias
- IAT requires users to rapidly categorize two target concepts with an attribute (e.g. the concepts "male" and "female" with the attribute "logical")
- Easier pairings (faster responses) = strongly associated in memory, while difficult pairings (slower responses) = less associated.

- Caliskan et. al. propose WEAT (Word Embedding Association Test)
- WEAT measures associations between two sets of target words X, Y (e.g. male and female) with two sets of attributes A, B (e.g. career and family).
- Original WEAT uses Word2Vec or GloVe word embeddings

$$s(\mathcal{X}, \mathcal{Y}, \mathcal{A}, \mathcal{B}) = \sum_{x \in \mathcal{X}} s(x, \mathcal{A}, \mathcal{B}) - \sum_{y \in \mathcal{Y}} s(y, \mathcal{A}, \mathcal{B})$$

$$s(x, \mathcal{A}, \mathcal{B}) = \max_{a \in \mathcal{A}} \cos(x, a) - \max_{b \in \mathcal{B}} \cos(x, b)$$

• WEAT (Word Embedding Association Test):

$$s(\mathcal{X}, \mathcal{Y}, \mathcal{A}, \mathcal{B}) = \sum_{x \in \mathcal{X}} s(x, \mathcal{A}, \mathcal{B}) - \sum_{y \in \mathcal{Y}} s(y, \mathcal{A}, \mathcal{B})$$

$$s(x, \mathcal{A}, \mathcal{B}) = \max_{a \in \mathcal{A}} \cos(x, a) - \max_{b \in \mathcal{B}} \cos(x, b)$$

```
X = [man, boy, male] A = [career, money, progress, success, job]
```

Y = [woman, girl, female] B = [family, love, care, children, home]

• WEAT (Word Embedding Association Test):

$$s(\mathcal{X}, \mathcal{Y}, \mathcal{A}, \mathcal{B}) = \sum_{x \in \mathcal{X}} s(x, \mathcal{A}, \mathcal{B}) - \sum_{y \in \mathcal{Y}} s(y, \mathcal{A}, \mathcal{B})$$

$$s(x, \mathcal{A}, \mathcal{B}) = \max_{a \in \mathcal{A}} \cos(x, a) - \max_{b \in \mathcal{B}} \cos(x, b)$$

```
X = [man, boy, male]A = [career, money, progress, success, job]Y = [woman, girl, female]B = [family, love, care, children, home]
```

```
s(man, A, B) = 1/5 * [cos(man, career) + cos(man, money) + ... + cos(man, job)] - 1/5 * [cos(man, family) + cos(man, love) + ... + cos(man, home)]
```

• WEAT (Word Embedding Association Test):

$$\begin{split} s(\mathcal{X}, \mathcal{Y}, \mathcal{A}, \mathcal{B}) &= \sum_{x \in \mathcal{X}} s(x, \mathcal{A}, \mathcal{B}) - \sum_{y \in \mathcal{Y}} s(y, \mathcal{A}, \mathcal{B}) \\ s(x, \mathcal{A}, \mathcal{B}) &= \max_{a \in \mathcal{A}} \cos{(x, a)} - \max_{b \in \mathcal{B}} \cos{(x, b)} \end{split}$$

```
X = [man, boy, male] A = [career, money, progress, success, job]  Y = [woman, girl, female] \quad B = [family, love, care, children, home]   s(man, A, B) = 1/5 * [cos(man, career) + cos(man, money) + ... + cos(man, job)] - 1/5 * [cos(man, family) + cos(man, love) + ... + cos(man, home)]   0.11 \qquad 0.3 \qquad 0.02
```

• WEAT (Word Embedding Association Test):

$$egin{aligned} s(\mathcal{X}, \mathcal{Y}, \mathcal{A}, \mathcal{B}) &= \sum_{x \in \mathcal{X}} s(x, \mathcal{A}, \mathcal{B}) - \sum_{y \in \mathcal{Y}} s(y, \mathcal{A}, \mathcal{B}) \\ s(x, \mathcal{A}, \mathcal{B}) &= \max_{a \in \mathcal{A}} \cos{(x, a)} - \max_{b \in \mathcal{B}} \cos{(x, b)}. \end{aligned}$$

• WEAT (Word Embedding Association Test):

$$egin{aligned} s(\mathcal{X}, \mathcal{Y}, \mathcal{A}, \mathcal{B}) &= \sum_{x \in \mathcal{X}} s(x, \mathcal{A}, \mathcal{B}) - \sum_{y \in \mathcal{Y}} s(y, \mathcal{A}, \mathcal{B}) \\ s(x, \mathcal{A}, \mathcal{B}) &= \max_{a \in \mathcal{A}} \cos{(x, a)} - \max_{b \in \mathcal{B}} \cos{(x, b)}. \end{aligned}$$

```
    X = [man, boy, male] A = [career, money, progress, success, job]
    Y = [woman, girl, female] B = [family, love, care, children, home]
    s(man, A, B) = 1/5 * [cos(man, career) + cos(man, money) + ... + cos(man, job)] - 1/5 * [cos(man, family) + cos(man, love) + ... + cos(man, home)]
```

- [s(woman, A, B) + s(girl, A, B) + s(female, A, B)]

S(X, Y, A, B) = [s(man, A, B) + s(boy, A, B) + s(male, A, B)] -

Sentence Encoder Association Test

- SEAT (Sentence Encoder Association Test) uses sentence representations (for example, BERT representations).
- SEAT computes WEAT for sentences.

Problems with WEAT / SEAT

- Issue behind WEAT and SEAT tests is that <u>embeddings similarity is related to</u> words co-occurence
- Hence, commonly used words can be more "related" just by chance.

Target Word Sets	Attribute Word Sets	Test Statistic	Effect Size	<i>p</i> -value	Outcome (WEAT)
{door} vs. {curtain}	{masculine} vs. {feminine} {girlish} vs. {boyish} {woman} vs. {man}	$0.021 \\ -0.042 \\ 0.071$	$ \begin{array}{r} 2.0 \\ -2.0 \\ 2.0 \end{array} $	0.0 0.5 0.0	more male-associated inconclusive more female-associated

Problems with WEAT / SEAT

- Issue behind WEAT and SEAT tests is that <u>embeddings similarity is related to</u> words co-occurence
- Hence, commonly used words can be more "related" just by chance.

Target Word Sets	Attribute Word Sets	Test Statistic	Effect Size	<i>p</i> -value	Outcome (WEAT)
{door} vs. {curtain}	{masculine} vs. {feminine} {girlish} vs. {boyish} {woman} vs. {man}	0.021 -0.042 0.071	2.0 -2.0 2.0	0.0 0.5 0.0	more male-associated inconclusive more female-associated
{dog} vs. {cat}	{masculine} vs. {feminine} {actress} vs. {actor} {womanly} vs. {manly}	0.063 -0.075 0.001	$ \begin{array}{r} 2.0 \\ -2.0 \\ 2.0 \end{array} $	0.0 0.5 0.0	more male-associated inconclusive more female-associated
{bowtie} vs. {corsage}	{masculine} vs. {feminine} {woman} vs. {masculine} {girly} vs. {masculine}	0.017 -0.071 0.054	2.0 -2.0 2.0	0.0 0.5 0.0	more male-associated inconclusive more female-associated

Table 1: By contriving the male and female attribute words, we can easily manipulate WEAT to claim that a given target word is more female-biased or male-biased than another. For example, in the top row, \overrightarrow{door} is more male-associated than $\overrightarrow{curtain}$ when the attribute words are 'masculine' and 'feminine', but it is more female-associated when the attribute words are 'woman' and 'man'. In both cases, the associations are highly statistically significant.

Tutorial roadmap

- 1. Transformer models & attention mechanism overview
- 2. Bias in pre-trained language models
- 3. How can we measure bias?
- 4. Ways to mitigate bias
- 5. Assignment overview

Ways to mitigate bias

- Two common approaches to mitigate bias:
- 1. Use debiased data
- 2. Change the model through debiasing

Ways to mitigate bias

- Using debiased data
- Common approach CDA (counterfactual data augmentation)
- With CDA we can change sentence to create more "balanced" training data (e.g. more "she is a programmer" sentences)

Tutorial roadmap

- 1. Transformer models & attention mechanism overview
- 2. Bias in pre-trained language models
- 3. How can we measure bias?
- 4. Ways to mitigate bias
- 5. Assignment overview