<u>Goal:</u> Given vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ compute the angle between \mathbf{u} and \mathbf{v} .

Proposition

If \mathbf{u}, \mathbf{v} are non-zero vectors in \mathbb{R}^n and θ is the angle between \mathbf{u} and \mathbf{v} then

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|}$$

Example. Compute $\cos \theta$, where θ is the angle between the following vectors in \mathbb{R}^3 :

$$\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Note. In data science the number

$$\frac{u\cdot v}{\|u\|\cdot\|v\|}$$

is called the $\emph{cosine similarity}$ between vectors \mathbf{u} and \mathbf{v} . The number

$$1 - \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|}$$

is called the cosine distance between \mathbf{u} and \mathbf{v} .