

LMV321, LMV358, LMV324

Low cost, low power, input/output rail-to-rail operational amplifiers

Datasheet - production data

Features

- Operating range from V_{CC} = 2.7 to 6 V
- Rail-to-rail input and output
- Extended V_{icm} (V_{DD} 0.2 V to V_{CC} + 0.2 V)
- Low supply current (145 μA)
- Gain bandwidth product (1 MHz)
- ESD tolerance (2 kV)

Related products

- See LMV321L, LMV358L, LMV324L for newer technology version
- See TSV851, TSV852, TSV854 for enhanced performances

Applications

- Battery powered electronic equipment
- Personal medical care (glucose meters)
- Laptops

Description

The LMV321/358/324 family (single, dual, and quad) answers the need for low cost, general purpose operational amplifiers. They operate with voltages as low as 2.7 V and feature both input and output rail-to-rail, 145 μ A consumption current, and 1 MHz gain bandwidth product (GBP).

With such a low consumption and a sufficient GBP for many applications, these op amps are well suited for any kind of battery supplied and portable equipment application.

The LMV321 device is housed in the space saving 5-pin SOT23-5 package, which simplifies board design. The SOT23-5 has two pinning configurations to answer all application requirements.

Contents

1	Abs	olute maximum ratings and operating conditions 3
2	Elec	trical characteristics 5
3	Pacl	kage information
	3.1	SOT23-5 package information
	3.2	SO8 package information
	3.3	TSSOP8 package information
	3.4	SO14 package information
	3.5	TSSOP14 package information
4	Orde	ering information
5	Revi	sion history

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	7	
V _{id}	Differential input voltage ⁽²⁾	±1	V
V _{in}	Input voltage	V_{DD} -0.3 to V_{CC} +0.3	
T _{oper}	Operating free air temperature range	-40 to + 125	
T _{stg}	Storage temperature	-65 to +150	°C
T _j	Maximum junction temperature	150	
R _{thja}	Thermal resistance junction-to-ambient ⁽³⁾ SOT23-5 SO8 TSSOP8 SO14 TSSOP14 Thermal resistance junction-to-case ⁽³⁾ SOT23-5 SO8 TSSOP8 SO14 TSSOP14	250 125 120 103 100 81 40 37 31	- °C/W
	HBM: human body model ⁽⁴⁾	2	kV
ESD	MM: machine model ⁽⁵⁾	200	V
	CDM: charged device model ⁽⁶⁾	1.5	kV
	Lead temperature (soldering, 10 sec.)	250	°C
	Output short-circuit duration	See ⁽⁷⁾	

- 1. All voltage values, except differential voltage are with respect to network terminal.
- The differential voltage is the non-inverting input terminal with respect to the inverting input terminal. If V_{id} > ±1 V, the maximum input current must not exceed ±1 mA. In this case (V_{id} > ±1 V), an input series resistor must be added to limit input current.
- Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuits on all amplifiers. All values are typical.
- 4. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kW resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 W). This is done for all couples of connected pin combinations while the other pins are floating.
- 6. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. No value specified for CDM on SOT23-5L package. The value is given for SO and TSSOP packages.
- 7. Short-circuits from the output to V_{CC} can cause excessive heating. The maximum output current is approximately 48 mA, independent of the magnitude of V_{CC} . Destructive dissipation can result from simultaneous short-circuits on all amplifiers.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.7 to 6	
V _{icm}	Common mode input voltage range ⁽¹⁾	V _{DD} -0.2 to V _{CC} + 0.2	V
V _{icm}	Common mode input voltage range ⁽²⁾	V _{DD} to V _{CC}	
T _{oper}	Operating free air temperature range	-40 to + 125	°C

^{1.} At 25 °C, for 2.7 £ V_{CC} £ 6 V, V_{icm} is extended to V_{DD} - 0.2 V, V_{CC} + 0.2 V.

^{2.} In full temperature range, both rails can be reached when $\rm V_{\rm CC}$ does not exceed 5.5 V.

2 Electrical characteristics

Table 3. Electrical characteristics at V_{CC} = +2.7 V, V_{DD} = 0 V, C_L and R_L connected to $V_{CC}/2$, T_{amb} = 25 °C (unless otherwise specified)

	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage	$V_{icm} = V_{out} = V_{CC}/2$ $T_{min} \le T_{amb} \le T_{max}$		0.1	3 6	mV
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C
I _{io}	Input offset current	$V_{icm} = V_{out} = V_{CC}/2^{(1)}$ $T_{min} \le T_{amb} \le T_{max}$		1	9 25	1
I _{ib}	Input bias current	$V_{icm} = V_{out} = V_{CC}/2^{(1)}$ $T_{min} \le T_{amb} \le T_{max}$		10	50 85	- nA
CMR	Common mode rejection ratio	$0 \le V_{icm} \le V_{CC}$	55	85		
SVR	Supply voltage rejection ratio	V _{icm} = V _{CC} /2	70	80		-
A _{vd}	Large signal voltage gain	V_{out} = 0.5 V to 2.2 V R_L = 10 k Ω R_L = 2 k Ω	80 70	100 88		dB
V _{OH}	High level output voltage	$V_{id} = 100 \text{ mV}$ $T_{min} \le T_{amb} \le T_{max}$ $R_{L} = 10 \text{ k}\Omega$ $R_{L} = 2 \text{ k}\Omega$	2.6 2.55	2.65 2.6		V
V _{OL}	Low level output voltage	$V_{id} = -100 \text{ mV}$ $T_{min} \le T_{amb} \le T_{max}$ $R_{L} = 10 \text{ k}\Omega$ $R_{L} = 2 \text{ k}\Omega$		15 50	90 100	mV
I _o	Output current	Output source current $V_{id} = 100 \text{ mV}, V_{O} = V_{DD}$ Output sink current $V_{id} = -100 \text{ mV}, V_{O} = V_{CC}$	5 5	46 46		mA
I _{CC}	Supply current (per amplifier)	$\begin{aligned} & V_{out} = V_{CC}/2 \\ & A_{VCL} = 1, \text{ no load} \\ & T_{min} \leq T_{amb} \leq T_{max} \end{aligned}$		145	200 230	μА
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $f = 100 \text{ kHz}$		1		MHz
SR	Slew rate	$R_L = 600 \Omega C_L = 100 pF,$ $A_V = 1$		0.35		V/µs
φm	Phase margin	R _L = 600 Ω C _L = 100 pF		44		Degrees
en	Input voltage noise			40		nV/√Hz
THD	Total harmonic distortion			0.01		%

^{1.} Maximum values include unavoidable inaccuracies of the industrial tests.

Table 4. Electrical characteristics at V_{CC} = +5 V, V_{DD} = 0 V, C_L and R_L connected to $V_{CC}/2$, T_{amb} = 25 °C (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage	$V_{icm} = V_{out} = V_{CC}/2$ $T_{min} \le T_{amb} \le T_{max}$		0.1	3 6	mV
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C
I _{io}	Input offset current	$V_{icm} = V_{out} = V_{CC}/2^{(1)}$ $T_{min} \le T_{amb} \le T_{max}$		1	9 25	n 1
I _{ib}	Input bias current	$V_{icm} = V_{out} = V_{CC}/2^{(1)}$ $T_{min} \le T_{amb} \le T_{max}$		16	63 95	nA
CMR	Common mode rejection ratio	$0 \le V_{icm} \le V_{CC}$	65	95		
SVR	Supply voltage rejection ratio	V _{icm} = V _{CC} /2	70	90		
A _{vd}	Large signal voltage gain	V_{out} = 0.5 V to 4.5 V R_L = 10 kΩ R_L = 2 kΩ	85 77	97 93		dB
V _{OH}	High level output voltage	$V_{id} = 100 \text{ mV}$ $T_{min} \le T_{amb} \le T_{max}$ $R_{L} = 10 \text{ k}\Omega$ $R_{L} = 2 \text{ k}\Omega$	4.85 4.8	4.95 4.91		V
V _{OL}	Low level output voltage	$V_{id} = -100 \text{ mV}$ $T_{min} \le T_{amb} \le T_{max}$ $R_{L} = 10 \text{ k}\Omega$ $R_{L} = 2 \text{ k}\Omega$		40 80	180 200	mV
I _o	Output current	Output source current $V_{id} = 100 \text{ mV}, V_O = V_{DD}$ Output sink current $V_{id} = -100 \text{ mV}, V_O = V_{CC}$	7	48 48		mA
I _{CC}	Supply current (per amplifier)	$V_{out} = V_{CC}/2$ $A_{VCL} = 1$, no load $T_{min} \le T_{amb} \le T_{max}$		162	220 250	μА
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $f = 100 \text{ kHz}$		1.3		MHz
SR	Slew rate	$R_L = 600 \Omega C_L = 100 pF,$ $A_V = 1$		0.45		V/µs
φm	Phase margin	R _L = 600 Ω, C _L = 100 pF		48		Degrees
en	Input voltage noise			40		nV/√Hz
THD	Total harmonic distortion			0.01		%

^{1.} Maximum values include unavoidable inaccuracies of the industrial tests.

Figure 1. Supply current/amplifier vs. supply voltage

Figure 2. Input bias current vs. temperature $(V_{CC} = 3 \text{ V}, V_{icm} = 1.5 \text{ V})$

Figure 3. Input bias current vs. temperature $(V_{CC} = 5 \text{ V}, V_{icm} = 2.5 \text{ V})$

Figure 4. Common mode rejection vs. temperature (V_{CC} = 3 V)

Figure 5. Common mode rejection vs. temperature (V_{CC} = 5 V)

Figure 6. Supply voltage rejection vs. temperature (V_{CC} = 5 V, V_{icm} = 2.5 V)

Figure 7. Open loop gain vs. temperature (V_{CC} = Figure 8. Open loop gain vs. temperature (V_{CC} = 3 V, R_L = 10/2 kW) 5 V, R_L = 10/2 kW)

Figure 9. Supply voltage rejection vs. temperature (V_{CC} = 3 V, V_{icm} = 1.5 V)

110 V_{CC} = 3 V Supply voltage rejection (dB) V_{icm} = 1.5 V 100 90 80 70 60 0 -20 20 60 100 140 Temperature (°C)

Figure 10. Output current vs. output voltage $(V_{CC} = 3 \text{ V}, V_{id} = 0.1 \text{ V}, V_{icm} = 1.5 \text{ V})$

Figure 11. Output current vs. output voltage $(V_{CC} = 5 \text{ V}, V_{id} = 0.1 \text{ V}, V_{icm} = 2.5 \text{ V})$

Figure 12. Noise versus frequency

57

8/17

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

3.1 SOT23-5 package information

Figure 13. SOT23-5 package outline

Table 5. SOT23-5 package mechanical data

	Dimensions							
Symbol		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α	0.90	1.20	1.45	0.035	0.047	0.057		
A1			0.15			0.006		
A2	0.90	1.05	1.30	0.035	0.041	0.051		
В	0.35	0.40	0.50	0.013	0.015	0.019		
С	0.09	0.15	0.20	0.003	0.006	0.008		
D	2.80	2.90	3.00	0.110	0.114	0.118		
D1		1.90			0.075			
е		0.95			0.037			
E	2.60	2.80	3.00	0.102	0.110	0.118		
F	1.50	1.60	1.75	0.059	0.063	0.069		
L	0.10	0.35	0.60	0.004	0.013	0.023		
K	0°	_	10°	0°		10°		

3.2 SO8 package information

D hx45'

C CCC C SEATING PLANE

C GAGE PLANE

1 4 4 e

Figure 14. SO8 package outline

Table 6. SO8 package mechanical data

			Dime	nsions		
Symbol		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	
k	0°		8°	0°		8°
ccc			0.10			0.004

3.3 TSSOP8 package information

Figure 15. TSSOP8 package outline

Table 7. TSSOP8 package mechanical data

	Dimensions							
Symbol		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α			1.20			0.047		
A1	0.05		0.15	0.002		0.006		
A2	0.80	1.00	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.008		
D	2.90	3.00	3.10	0.114	0.118	0.122		
E	6.20	6.40	6.60	0.244	0.252	0.260		
E1	4.30	4.40	4.50	0.169	0.173	0.177		
е		0.65			0.0256			
k	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		
L1		1			0.039			
aaa			0.10			0.004		

3.4 SO14 package information

D

hx 45°

c

SEATING
PLANE
GAGE PLANE

T

e

7

Figure 16. SO14 package outline

Table 8. SO14 package mechanical data

			Dimer	nsions		
Symbol		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	1.35		1.75	0.05		0.068
A1	0.10		0.25	0.004		0.009
A2	1.10		1.65	0.04		0.06
В	0.33		0.51	0.01		0.02
С	0.19		0.25	0.007		0.009
D	8.55		8.75	0.33		0.34
E	3.80		4.0	0.15		0.15
е		1.27			0.05	
Н	5.80		6.20	0.22		0.24
h	0.25		0.50	0.009		0.02
L	0.40		1.27	0.015		0.05
k	8° (max.)					
ddd			0.10			0.004

3.5 TSSOP14 package information

PIN 1 IDENTIFICATION PLANE

PIN 1 IDENTIFICATION PLANE

PIN 1 IDENTIFICATION PLANE

PIN 2 IDENTIFICATION PLANE

PIN 3 IDENTIFICATION PLANE

PIN 1 IDENTIFICATION PLANE

PIN 1 IDENTIFICATION PLANE

PIN 2 IDENTIFICATION PLANE

PIN 3 IDENTIFICATION PLANE

PIN 4 IDENTIFICATION PLANE

PIN 5 IDENTIFICATION PLANE

PIN 1 IDENTIFICATION PLANE

PIN 1 IDENTIFICATION PLANE

PIN 2 IDENTIFICATION PLANE

PIN 3 IDENTIFICATION PLANE

PIN 4 IDENTIFICATION PLANE

PIN 5 IDENTIFICATION PLANE

PIN 6 IDENTIFICATION PLANE

PIN 7 IDENTIFICATION PLANE

PIN 6 IDENTIFICATION PLANE

PIN 7 IDENTIFICATION PLANE

PIN 7 IDENTIFICATION PLANE

PIN 8 IDENTIFICATION PLANE

PIN 9 IDENTIFICATION PLANE

PIN 1 IDENTIFICATION PLANE

PI

Figure 17. TSSOP14 package outline

Table 9. TSSOP14 package mechanical data

		Dimensions							
Symbol		Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α			1.20			0.047			
A1	0.05		0.15	0.002	0.004	0.006			
A2	0.80	1.00	1.05	0.031	0.039	0.041			
b	0.19		0.30	0.007		0.012			
С	0.09		0.20	0.004		0.0089			
D	4.90	5.00	5.10	0.193	0.197	0.201			
E	6.20	6.40	6.60	0.244	0.252	0.260			
E1	4.30	4.40	4.50	0.169	0.173	0.176			
е		0.65			0.0256				
L	0.45	0.60	0.75	0.018	0.024	0.030			
L1		1.00			0.039				
k	0°		8°	0°		8°			
aaa			0.10		_	0.004			

4 Ordering information

Table 10. Order codes

Order code	Temperature range	Package	Packaging	Marking
LMV321ILT		COT22 F		K177
LMV321RILT		SOT23-5	Tana and roal	K176
LMV321IYLT ⁽¹⁾		SOT23-5	Tape and reel	K180
LMV321RIYLT ⁽¹⁾	1	(automotive grade)		K185
LMV358ID LMV358IDT		SO8	Tube or	LMV358
LMV358IYDT ⁽¹⁾		SO8 (automotive grade)	tape and reel	LMV358IY
LMV358IPT	-40 °C to +125 °C	TSSOP8		MV358
LMV358IYPT ⁽¹⁾		TSSOP8 (automotive grade)	Tape and reel	K181Y
LMV324ID LMV324IDT		SO14	Tube or	LMV324
LMV324IYDT ⁽¹⁾		SO14 (automotive grade)	tape and reel	V324Y
LMV324IPT		TSSOP14		MV324
LMV324IYPT ⁽¹⁾		TSSOP14 (automotive grade)	Tape and reel	V324IY

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q 002 or equivalent.

5 Revision history

Table 11. Document revision history

Date	Revision	Changes
1-Dec-2005	1	First release - Products in full production.
25-May-2007	2	Added automotive grade part numbers to order codes table. Moved order codes table to Section 4 on page 15.
20-Feb-2008	3	Added Figure 12: Noise versus frequency on page 8. Updated presentation of package information. Corrected footnote for automotive grade part numbers in order codes table.
18-Jan-2010	4	Updated document format. Updated packages in Chapter 3: Package information. Modified Note 1 and added Note 2 under Table 10: Order codes.
05-Nov-2012	5	Updated <i>Features</i> (added SO8, TSSOP8, SO14, and TSSOP14 package). Updated titles of <i>Figure 2</i> to <i>Figure 11</i> (added conditions). Updated LMV321RIYLT order code in <i>Table 10</i> (status qualified), removed LMV358IYD and LMV324IYD order code from <i>Table 10</i> . Minor corrections throughout document.
16-Aug-2013	6	Updated Features Added Related products Table 3 and Table 4: replaced ΔV_{io} with $\Delta V_{io}/\Delta T$ Table 6: updated minimum inches "k" value (0 instead of 1) Table 10: updated footnote associated with order code LMV358IYPT

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID11887 Rev 6 17/17