Weather Trend Forecasting

This notebook analyzes the "Global Weather Repository.csv" dataset to forecast future weather trends. Includes EDA, anomaly detection, forecasting with Ridge Regression, and interactive geospatial visualizations.

PM Accelerator Mission

"By making industry-leading tools and education available to individuals from all backgrounds, we level the playing field for future PM leaders. This is the PM Accelerator motto, as we grant aspiring and experienced PMs what they need most – Access. We introduce you to industry leaders, surround you with the right PM ecosystem, and discover the new world of AI product management skills."

Dataset Overview

The dataset includes over 60,000 weather records globally. It includes over 40 features such as temperature, precipitation, wind, and air quality metrics. This cell loads the data and checks its structure.

Parsing and Sorting Dates

We convert the 'last_updated' column to datetime format and sort the dataframe by date to enable proper time series analysis.

	latitude	longitude	last_updated_epoch	temperature_celsius	temperature_fahrenl
count	60411.000000	60411.000000	6.041100e+04	60411.000000	60411.000
mean	19.137636	22.183645	1.729311e+09	22.155538	71.881
std	24.474532	65.808862	7.802518e+06	9.628106	17.330
min	-41.300000	-175.200000	1.715849e+09	-24.900000	-12.800
25%	3.750000	-6.836100	1.722688e+09	16.900000	62.400
50%	17.250000	23.316700	1.729330e+09	25.000000	77.000
75%	40.400000	50.580000	1.736072e+09	28.400000	83.100
max	64.150000	179.220000	1.742723e+09	49.200000	120.600

8 rows × 31 columns

<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 60411 entries, 2024-05-16 01:45:00 to 2025-03-23 22:45:00 Data columns (total 41 columns):

Data	cotumns (total 41 cotumns).							
#	Column	Non-Null Count	Dtype					
0	country	60411 non-null	object					
1	location_name	60411 non-null	object					
2	latitude	60411 non-null	float64					
3	longitude	60411 non-null	float64					
4	timezone	60411 non-null	object					
5	last_updated_epoch	60411 non-null	int64					
6	temperature_celsius	60411 non-null	float64					
7	temperature_fahrenheit	60411 non-null	float64					
8	condition_text	60411 non-null	object					
9	wind_mph	60411 non-null	float64					
10	wind_kph	60411 non-null	float64					
11	wind_degree	60411 non-null	int64					
12	wind_direction	60411 non-null	object					
13	pressure mb	60411 non-null	float64					
14	pressure in	60411 non-null	float64					
15	precip_mm	60411 non-null	float64					
16	precip in	60411 non-null	float64					
17	humidity	60411 non-null	int64					
18	cloud	60411 non-null	int64					
19	feels_like_celsius	60411 non-null	float64					
20	feels_like_fahrenheit	60411 non-null	float64					
21	visibility_km	60411 non-null	float64					
22	visibility_miles	60411 non-null	float64					
23	uv_index	60411 non-null	float64					
24	gust_mph	60411 non-null	float64					
25	gust_kph	60411 non-null	float64					
26	air_quality_carbon_monoxide	60411 non-null	float64					
27	air_quality_ozone	60411 non-null	float64					
28	<pre>air_quality_nitrogen_dioxide</pre>	60411 non-null	float64					
29	air_quality_sulphur_dioxide	60411 non-null	float64					
30	air_quality_pm2.5	60411 non-null	float64					
31	air_quality_pm10	60411 non-null	float64					
32	air_quality_us-epa-index	60411 non-null	int64					
33	air_quality_gb-defra-index	60411 non-null	int64					
34	sunrise	60411 non-null	object					
35	sunset	60411 non-null	object					
36	moonrise	60411 non-null	object					
37	moonset	60411 non-null	object					
38	moon_phase	60411 non-null	object					
39	moon_illumination	60411 non-null	int64					
40	target	60411 non-null	float64					
dtype	dtypes: float64(24), int64(7), object(10)							

memory usage: 19.4+ MB

		country	location_name	latitude	longitude	timezone	last_updated_eរុ
I	ast_updated						
	2024-05-16 01:45:00	United States of America	Washington Park	46.60	-120.49	America/Los_Angeles	1715849
	2024-05-16 02:45:00	El Salvador	San Salvador	13.71	-89.20	America/El_Salvador	1715849
	2024-05-16 02:45:00	Costa Rica	San Juan	9.97	-84.08	America/Costa_Rica	171584!
	2024-05-16 02:45:00	Guatemala	Guatemala City	14.62	-90.53	America/Guatemala	171584!
	2024-05-16 02:45:00	Nicaragua	Managua	12.15	-86.27	America/Managua	171584!
5 rows × 41 columns							
							>

Initial Data Inspection

Here we examine data types, missing values, and summary statistics to understand feature distributions and potential issues.

Basic Exploratory Data Analysis (EDA)

We begin with standard EDA to understand temperature distribution, wind patterns, and basic weather conditions. This helps us detect initial outliers, get a sense of data trends, and choose suitable features for further modeling.

Correlation Heatmap

The heatmap helps visualize relationships between numeric features, revealing which variables are most closely associated. This heatmap shows that the humidity has strong negative correlation to uv index and air quality ozone which will be demonstrated by plots further in this report. Another interesting correlation showed by the heatmap is the fairly strong negative correlation between latitude and temperature, but not longitude.

Temperature Anomaly Detection

Temperature Anomaly Detection

We apply Z-score thresholding to detect extreme deviations in temperature. These anomalies may indicate measurement errors, natural disasters, or exceptional weather events. Removing or flagging them ensures our models are not skewed.

Climate Trends Over Time

Long-Term Temperature Trend

By resampling temperature data monthly, we observe long-term warming or cooling trends globally. This chart helps visualize whether temperatures are generally increasing over the months available.

Ridge Regression Forecasting

We train a Ridge Regression model to forecast temperature. Ridge helps mitigate multicollinearity and is suitable for linear relationships.

MAE: 6.98 RMSE: 8.85

Forecasting with XGBoost Regressor

XGBoost Model

XGBoost is a gradient boosting model that captures nonlinear relationships. It may improve accuracy compared to linear models.

XGBoost MAE: 9.26 XGBoost RMSE: 11.54

Ridge Regression Forecasting Performance

We backtested the Ridge Regression model across multiple windows and measured its Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results suggest the model performs reasonably well given the short-term nature of the data.

Environmental Impact: Air Quality Analysis

Feature Importance Visualization

This chart highlights the most influential features in the Ridge model, offering interpretability and insight into key drivers.

Environmental Impact Analysis

Here we explore the relationship between temperature and air quality metrics (e.g., PM2.5, NO2) to understand environmental correlations.

This chart shows peak PM2.5/poor air quality when temperatures are between 0-10C with another peak around 30C

This plot shows higher peaks of pm2.5 (poorer air quality) with higher humidity

This plot shows higher pm2.5 levels with lower UV index, indicating higher uv indexes lead to better air quality.

This plot shows better air quality with higher wind speeds, with perfect air quality with wind speeds above about 90km/h

Global Climate Choropleth Maps

Geospatial Weather Visualization

We use Folium to plot country-level average temperature and precipitation. This reveals geographic weather patterns globally.

Areas with the highest temperatures are close to the equator and/or are in arid (dry, desert) climates.

Proximity to equator seems to have an effect on average precipitation in an area.

Africa has the highest UV index as it is closest to the sun due to the earth's rotational tilt. This map illustrates that effect.

This chart highlights zones of similar pressure that seem to cross over continental lines creating new zones.

This map shows a few countries with the highest wind speeds. It seems Africa has the highest wind speeds by continent.

This map shows that the americas may have highest humidity levels compared to the rest of the planet.

Conclusion

- Completed climate analysis through extensive data cleaning, feature engineering, and exploratory analysis.
- Developed and evaluated Ridge and XGBoost models for temperature prediction.
- Analyzed air quality and climate data to find environmental impact.
- Analyzed and visualized geographical patterns in the data through spatial analysis.
- Future improvements may include seasonal decomposition, deep learning, or ensemble modeling.