4. Électromagnétisme

Table des matières

4.1. Électrostatique

1.	Inte	raction électrique et champ électrique	2
	1.1.	Charge électrique	2
	1.2.	Loi de Coulomb	2
	1.3.	Champ électrostatique créé par une charge ponctuelle	2
	1.4.	Champ électrostatique créé par une distribution de charges ponc-	
		tuelles	2
	1.5.	Distributions continues de charges	2
		Symétrie et invariance du champ électrostatique	3
2.		entiel électrostatique	3
		Circulation du champ électrostatique	3
		Potentiel électrostatique créé par un charge ponctuelle	3
	2.3.	Potentiel électrostatique créé par une distribution de charges ponc-	
		tuelles	3
	2.4.	Gradient	4
	2.5.	Lignes de champ et surfaces équipotentielles	4
	2.6.	Énergie potentielle électrostatique	5
3.	Thé	orème de Gauss	5
	3.1.	Flux du champ électrostatique	5
	3.2.		5
	3.3.	Théorème de Gauss	6
		Théorème de Gauss pour la gravitation	6

5.	Condensateur plan		
	5.1.	Modèle	Ç
	5.2.	Champ électrostatique	Ç
		Capacité	
		Énergie stockée dans le condensateur	
6.	Dip	ôle électrostatique	10
	6.1.	Doublets de charges	10
	6.2.	Potentiel à grande distance	10
	6.3.	Champ électrostatique à grande distance	13
	6.4.	Actions subies par un dipôle dans un champ extérieur	12
		6.4.1. Dans un champ uniforme	12
		6.4.2. Dans un champ non uniforme	12
	6.5.	Énergie potentielle d'interaction	13
		6.5.1. Cas d'un champ \vec{E} uniforme	
		6.5.2. Cas d'un champ non uniforme	13

L.Beau 1

4. Distributions de charge à haut degré de symétrie

Introduction

Logiciel de simulation en électromagnétisme : Visualis Electromagnetism 2.9 téléchargeable gratuitement à l'adresse suivante

http://www.visualis-physics.com/fr/index.html

- 1. Interaction électrique et champ électrique
- 1.1. Charge électrique

1.2. Loi de Coulomb

1.3. Champ électrostatique créé par une charge ponctuelle

1.4. Champ électrostatique créé par une distribution de charges ponctuelles

1.5. Distributions continues de charges

1.6. Symétrie et invariance du champ électrostatique

Voir document dédié.

2.	Dotontial	álastrostation	_
۷٠	1 Otermer	électrostatiqu	C

2.1. Circulation du champ électrostatique

2.2. Potentiel électrostatique créé par un charge ponctuelle

2.3. Potentiel électrostatique créé par une distribution de charges ponctuelles

2.4. Gradient

2.5. Lignes de champ et surfaces équipotentielles

2.6. Énergie potentielle électrostatique

3. Théorème de Gauss

3.1. Flux du champ électrostatique

3.2. Cas d'une charge ponctuelle

3.3. Théorème de Gauss

3.4. Théorème de Gauss pour la gravitation

4. Distributions de charge à haut degré de symétrie

Trois exemples sont exigibles mais d'autres situations se traitent de la même manière.

4.1. Méthode

- 4.2. Boule uniformément chargée
- 4.2.1. Étude des symétries et invariances de la distribution

4.2.2. Choix de la surface de Gauss

4.2.3. Application du théorème de Gauss

4.3. Cylindre infini uniformément chargé

4.4. Plan infini uniformément chargé en sur	tace
---	------

5. Condensateur plan

5.1. Modèle

5.2. Champ électrostatique

5.3. Capacité

? Comment obtenir un condensateur de grande capacité?

Fig. 3. - Structure des condensateurs au papier et à film plastique.

5.4. Énergie stockée dans le condensateur

6. Dipôle électrostatique

6.1. Doublets de charges

Définir le moment dipolaire et donner des ordres de grandeur dans le domaine microscopique.

6.2. Potentiel à grande distance

6.3. Champ électrostatique à grande distance

- 6.4. Actions subies par un dipôle dans un champ extérieur
- 6.4.1. Dans un champ uniforme

6.4.2. Dans un champ non uniforme

6.5. Énergie potentielle d'interaction

6.5.1. Cas d'un champ \vec{E} uniforme

6.5.2. Cas d'un champ non uniforme