

. Allioo 989822

NBS PUBLICATIONS

NBS MONOGRAPH

135

Standards

Properties of Glasses in Some Ternary Systems Containing BaO and Sio₂

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Measurement Services and the following divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Linac Radiation ² — Nuclear Radiation ² — Applied Radiation ² — Quantum Electronics * — Electromagnetics * — Time and Frequency * — Laboratory Astrophysics " — Cryogenics 3.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Reactor Radiation—Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute also monitors NBS engineering standards activities and provides liaison between NBS and national and international engineering standards bodies. The Institute consists of a Center for Building Technology and the following divisions and offices:

Engineering and Product Standards-Weights and Measures-Invention and Innovation-Product Evaluation Technology-Electronic Technology-Technical Analysis-Measurement Engineering-Building Standards and Code Services 4—Housing Technology 4—Federal Building Technology 4—Structures, Materials and Life Safety4-Building Environment4-Technical Evaluation and Application4—Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards—Computer Information—Computer Services —Systems Development—Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world, and directs the public information activities of the Bureau. The Office consists of the following organizational units:

Office of Standard Reference Data-Office of Technical Information and Publications—Library—Office of International Relations.

Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.
 Part of the Center for Radiation Research.
 Located at Boulder, Colorado 80302.
 Part of the Center for Building Technology.

Properties of Glasses in Some Ternary Systems Containing BaO and SiO₂

Given W. Cleek

Institute for Materials Research National Bureau of Standards Washington, D.C. 20234

C. L. Babcock

Optical Sciences Center University of Arizona Tuscon, Ariz. 85721

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Library of Congress Catalog Number: 73-600135

National Bureau of Standards Monograph 135

Nat. Bur. Stand. (U.S.), Monogr. 135, 42 pages (Sept. 1973)

CODEN: NBSMA6

Properties of Glasses in Some Ternary Systems Containing BaO and SiO,*

G. W. Cleek and C. L. Babcock**

The glass forming regions in six ternary oxide systems containing BaO, SiO₂, and a third oxide have been determined. The properties of the resulting glasses were measured and the results reported. The data on refractive indices, dispersions, and specific volumes were evaluated by computer methods in an attempt to identify "substructures" containing the cations present in the glasses.

Key words: Barium glasses; barium silicates; glass properties; glass property factors; oxide glasses; silicate substructures; ternary glasses.

1. Introduction

During the course of several years, while working on the development of special purpose oxide glasses for various applications, surveys of the regions of glass formation in some ternary systems containing BaO and SiO₂ have been made. The systems surveyed are as follows:

- 1. BaO-TiO₂-SiO₂
- 2. BaO-La₂O₃-SiO₂
- 3. BaO-Ta₂O₅-SiO₂
- 4. BaO-ZnO-SiO₂
- 5. BaO-Nb₂O₅-SiO₂
- 6. BaO-Al₂O₃-SiO₂

It was believed that the properties measured on the glasses are of sufficient interest to glass technologists to be made generally available and are published here.

2. Experimental Procedure

The experimental glasses were normally made in 500 g melts from batch materials of sufficient purity to satisfy the requirements for the production of optical glass. The standard procedure was to melt the batches in platinum crucibles, 6.5 cm in diameter by 7.5 cm deep. After the batch was melted, the melt was stirred for 2 h with a motor driven platinum-10-percent-rhodium, double-bladed propeller-type stirrer. The furnace used for melting was heated by silicon carbide resistance elements so that the furnace atmosphere was not contaminated by combustion products. After the melt was stirred, it was poured into a heated metal mold to form a block about 7.5 cm by 7.5 cm by 2.0 cm thick. When sufficiently rigid, the glass block was transferred to an electric muffle furnace, which was cooled to room temperature in approximately 18 h.

Only those compositions that could be melted below 1500 °C and in which no appreciable devitrification occurred during cooling were considered to produce glasses. These experimental conditions were used to define the regions of glass formation in the ternary systems studied, and no attempt was made to enlarge these regions by melting at a higher temperature or by cooling the melts more rapidly to avoid devitrification.

The properties determined for most of the experimental glasses included the following:

- (1) Sag Point [1] 1
- (2) Refractive index for the C ($\lambda = 0.6563 \ \mu \text{m}$), D ($\lambda = 0.5893 \ \mu m$), and F ($\lambda = 0.4861 \ \mu m$) spectral lines. From these the reciprocal dispersive power, commonly known as the Nu value, ν , was calculated.

$$\nu = \frac{n_D - 1}{n_F - n_C}$$

- (3) Liquidus temperature [2]
- (4) Infrared transmittances for 2 mm thickness from 1 to 6 μ m.

For the more promising glasses certain other properties were measured. These included infrared transmittances for greater thicknesses, usually 8 mm, so that absorption coefficients could be computed; infrared refractive indices; linear coefficient of thermal expansion; and deformation temperature. For some glasses density, chemical durability, and elastic constants were also measured.

In addition, data on refractive indices (n_D) , dispersions and specific volume were evaluated, using previously described methods [3]. One purpose of this evaluation is to develop quantitative property-composition relations for use by technologists in formulating glasses for optical uses. A further purpose is to clarify presently incomplete knowledge of the ternary phase diagrams of these glass-forming systems and to identify, if possible, 'substructures" containing the cations present in the glasses.

^{*}Part of the work described in this report was sponsored by the Department of the Navy at the National Bureau of Standards, and by Project Themis, U.S. Air Force, at the University of Arizona. **Address: Optical Sciences Center, University of Arizona, Tucson, Arizona 85721.

¹ The figures in brackets indicate the literature references at the end of the paper.

3. Glass-Forming Systems Investigated

Several ternary silicate systems were investigated as to the extent of the region of glass formation and the properties of the glasses obtained.

3.1. The BaO-TiO₂-SiO₂ System

In an effort to produce glasses having high values of refractive index at wavelengths of 2.0 to 2.5 μm , good infrared transmittances and good chemical durability melts were made in the ternary system BaO-TiO₂-SiO₂ [4]. Most high-index glasses presently available are either extra-dense flint glasses, which have a high PbO content, or rare-earth borate glasses [5]. The extra-dense flint glasses have fairly good infrared transmittances, cutting off, as do most silicate glasses, at about 5 μm . They have high refractive indices, but their chemical durability is rather poor and they have low deformation temperatures. The B₂O₃ content of most rare-earth glasses makes them useless for infrared applications.

The phase equilibrium diagram for the ternary system BaO-TiO₂-SiO₂ has not been determined, but information is available on the binary sides

of the ternary system [6, 7, 8]. Rase and Roy have determined the liquidus temperatures and phase relations along the line BaO TiO₂-SiO₂ in the ternary diagram [9]. This information was very useful in selecting compositions in the ternary system that could be melted and cooled as glasses.

The composition of all melts made in the ternary system are given in table 1 and are plotted in the ternary diagram in figure 1. As may be seen from the figure, the longest BaO isopleth along which glasses were formed is the 25 mol percent line. Although glasses are not formed on this line to the BaO-SiO₂ binary, glass formation begins at about the 20 mol percent of TiO₂ and extends to relatively high concentrations of TiO₂. This line of glass formation seems to follow a valley in the liquidus surface, as may be seen from table 1.

The color of the glasses changed very markedly as the TiO₂ content was increased. Those containing up to about 15 mol percent of TiO₂ were nearly colorless, whereas those containing intermediate amounts from 20 to 35 mol percent of TiO₂, were orange colored, and the others having about 40 mol percent of TiO₂ were dark brown to black. Evidently, as the TiO₂ content is increased, the absorption increases at the shorter wavelengths in the visible region, and at higher TiO₂ concentrations very little visible light is transmitted.

FIGURE 1. Compositions studied in the system BaO-TiO2-SiO2.

Table 1. Ternary BaO-TiO2-SiO2 compositions

D	Inciliation	Devit in mold. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do	uevit. Do. Do. Opal in center. Glass. Do. Do. Do. Do. Do. Do. Do. Black glass. Considerable	devit. Do. Considerable	Glass. Do.	Do.	Do. Do.	Some devit. in end of block.
Coef.	thermal exp.				9.2 ×	. 0.9 × 9.9 × 9.6	10.0 × 3.00	, 01
Sag	သို့		860 850 840 835 835 835 835		820 820	815 815	815 820	820
Liquidus	C.	1468 1464 1462 1462 1464 1440 1440 1440 1248	1408 1345 1265 1250 1248 1218 1242 1260 1305	1333 1266	1288 1356 1301	1330 1342	1344 1350	1337
	Density ρ		3.699 3.804 3.887 3.954		3.743	3.859 3.945	4.004	4.159
;	,		34.0 30.6 27.6 25.3		49.9	38.6	30.9	25.8
ş	da		1.74562 1.79589 1.84382 1.89161		1.64037 1.68347	1.72596 1.76986	1.81434 1.85847	1.90465
,	an a		1.73021 1.77760 1.82236 1.86682		1.63139 1.67250	1.71276 1.75412	1.79585 1.83697	1.87998
1	nc.		1.72414 1.77046 1.81406 1.85733		1.62772	1.70750	1.78860 1.82865	1.87050
	TiO ₂ Mol %	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 1 10 2 10 2 10 2 10 2 10 2 10 2 10 2	55 45	35 5 10	15 20	25 30	35
Composition	BaO Mol %	25.55 25.55	ននននននននននន	25 27.5	27.5 30 30	30	30	30
	SiO ₂ Mol %	65 66 65 66 65 65 65 83 83 83 83 83 83 83 83 83 83 83 83 83	255 255 255 255 255 255 255 255 255 255	20 27.5	37.5 65 60	55	45 40	35
7 54	Men No.	F294 F293 F292 F291 F300 F316 F331 F332 F337 F364 F364	F151 F149 F148 F147 F146 F145 F289 F317 F317	F336 F366	F368 F152 F 35	F 49 F 40	F 95 F138	F139

Table 1. Ternary BaO-TiO₂-SiO₂ compositions — Continued

C A	Nelliarks	Some devit. Considerable	Do.	Glass. Do.	Do. Considerable	aevn. Do. Devit. in mold. Do	Cloudy. Some devit. Considerable	devit. Devit. in mold. Do. Do.	Devit. in mold. Do. Do.
Coef.	thermal exp.								
Sag	Joint O°C			860 860	840 835				
Liquidus	C.	1354 1313	1331	1405 1367 1354	1393 1415	1420	1441 1341 1441	1462	1404 1462 1462 1488
	Density ρ			3.634	4.047				
	2			49.4	38.3				
2	nr.			1.64310	1.74401				
\$	up			1.63399	1.73037				,
5	nc		-	1.63026	1.72494				
1	TiO Mol %	35 40	45 50	55.3 10	15 20	25 30 35	25 01 15 05 51	8258	20 10 20 20 20 20
Composition	BaO Mol %	30	30	35.3 35.3	35	355	3 9 9 9	044	24444 2525
	SiO ₂ Mol %	30	2023	55 0 55	50 45	04.8 55.	55 50 54 50	93.5 30.5 30.5 30.5 30.5 30.5 30.5 30.5 3	862448 86248
Male	No.	F288 F290	F334 F335	r 353 F144 F143	F142 F141	F140 F315	F282 F283 F284	F295 F285 F986	F296 F297 F298 F299

The liquidus temperature [2] for each composition is given in table 1. It will be noticed from the table that in no case was a glass formed from a composition that had a liquidus temperature greater that 1400 °C. The lowest liquidus temperatures were found along the 25 mol percent BaO isopleth, which is also the longest line of glass formation in the system. Furthermore, the shape of the liquidus curve of the 25 mol percent BaO series in the areas of best glass formation is relatively flat, indicating a high degree of dissociation of the primary phase at the liquidus temperature. Probably, the ease of glass formation is related to the degree of dissociation of the primary phase in the melt, because similar observations have been made for this and other glass forming systems [10]. In the BaO-B₂O₃-SiO₂ system, the glasses whose compositions lie in the 3BaO · 3B₂O₃ · 2SiO₂ primary field, which has a flat liquidus curve, were the ones that were melted and homogenized with the least difficulty and had the least tendency to devitrify.

The refractive index, n_D , and ν are plotted in figure 2 for the three BaO isopleths along which glasses were obtained. The values of n_D varied from 1.63139 to 1.87988, and ν from 49.9 to 25.3. The refractive index appears to be a linear function of composition. The plots of ν definitely show curvature.

Figures 3 to 9, inclusive, give the transmittances for 2-mm thicknesses of the ternary glasses over the spectral range 1 to 5 μ m. The figures compare glasses of constant TiO₂ content. In general the glasses giving the highest transmittance at 4 μ m lie on the 30-mol percent BaO isopleth up to a TiO₂ concentration of 25 mol percent, then the compositions shift to the 25-mol-percent BaO iospleth. There are considerable differences in the transmittances of the various glasses, but no simple relationship between transmittance and composition is readily evident.

The values of chemical durability [11] of five representative ternary glasses are given in table 2

Figure 2. Plot of refractive index and ν as a function of composition for the glass-forming compositions in the BaO-TiO₂-SiO₂ system.

FIGURE 3. Spectral transmittance of 2-mm thickness of two glasses containing 5 mol percent of TiO₂. ●F152,×F144.

Figure 4. Spectral transmittance of 2-mm thickness of two glasses containing 10 mol percent of TiO₂. \bullet F35, \times F143.

FIGURE 5. Spectral transmittance of 2-mm thickness of three glasses containing 15 mol percent of TiO₂. ● F149, ○F142, × F49.

FIGURE 6. Spectral transmittance of 2-mm thickness of two glasses containing 20 mol percent of TiO₂. ● F148,× F40.

FIGURE 7. Spectral transmittance of 2-mm thickness of two glasses containing 25 mol percent of TiO₂. ● F147,×F95.

FIGURE 8. Spectral transmittance of 2-mm thickness of two glasses containing 30 mol percent of TiO₂. •F146,×F138.

FIGURE 9. Spectral transmittance of 2-mm thickness of two glasses containing 35 mol percent of TiO₂. •F145,×F139.

and are plotted as a function of pH in figure 10. All values are for 6 h of exposure at 80 °C. As may be seen from the figure, the glass containing 60 mol percent of SiO_2 is attacked in the alkaline range. As SiO_2 is replaced by TiO_2 , the attack in this range is decreased, and although slight attack or swelling is noticed at pH 2, the glasses containing 20 mol percent and more of TiO_2 show no attack in the alkaline range.

The hygroscopicity [12], or the tendency of a powdered-glass sample to absorb water in a humid atmosphere, was very low for the samples of the ternary glasses on which determinations were made. The values obtained were, in all cases, equal or less than fused silica which was used for purposes of comparison. These data are given in table 2 and plotted in figure 11.

The resistance of these glasses to chemical attack and their low hygroscopicity make them unique as compared to known oxide glasses.

The linear coefficient of thermal expansion [13] has been determined for only three representative ternary glasses. The values obtained were 9 or 10×10^{-6} /°C, which is near the values of most commercial soda-lime-silica glasses. The deformation temperatures are somewhat higher than the usual values for silicate glasses. The expansion curves for three glasses are plotted in figure 12.

FIGURE 10. Chemical durability of five BaO-TiO2-SiO2 glasses as a function of pH.

Table 2. Hygroscopicity and chemical durability of BaO-TiO₂-SiO₂ glasses

M	Wa sorl		Surfa		eration, sures, 6		ges, at 80 °C)	рН —
Melt	1 h	2 h	2.0	4.1	6.0	8.2	10.2	11.88
	mg/cm ³	mg/cm ³			,			
F35	5.7	10.0	ND	ND	ND	ND	1/2 A	2 A
F49	6.1	9.1	ND	ND	ND	ND	ND	2/10 A
F40	5.2	8.2	1/10 A	ND	ND	ND	ND	ND
F95			2/10 S	ND	ND	ND	ND	ND
F138			1/10 S	ND	ND	ND	ND	ND
Corning								
7740	15.9	28.3	ND	ND	ND	DA	1/4 A	, 1 3 A
Fused SiO ₂	6.2	12.1	ND	ND	ND	ND	DA	1/2 A

^a ND, No detectable attack; A, attack of surface; S, swelling of surface; DA, detectable, but not measurable attack.

The deformation temperatures varied from 767 °C for glass F35, containing 10 mol percent of TiO₂, to 791 °C for glass F138, having 30 mol percent of TiO₂. The high deformation temperatures of these glasses make them unique as compared to most commercial glasses. Other data given in table 1 are the densities of several of the glasses as well as their sag points.

Figure 11. Hygroscopicity of three BaO-TiO_2-SiO_2 glasses compared with Corning 7740 glass and fused SiO_2.

FIGURE 12. Thermal expansion curves of three BaO-TiO₂-SiO₂ glasses as determined by an interferometric method.

3.2. The BaO-La₂O₃-SiO₂ System

Lanthanum oxide is used in optical glasses to produce relatively high values of refractive index with little or no increase in the dispersion values in the visible region. A survey of the glass forming region of the ternary system BaO-La₂O₃-SiO₂ was made. No data on the liquidus temperatures in the system were available except those in the binary BaO-SiO₂ system [8] which forms one side of the

FIGURE 13. Compositions studied in the system BaO-La2O3-SiO2.

ternary system. Since then a tentative diagram for the BaO-La₂O₃ system [14] has been published. A eutectic point at about 1370 °C near the composition 30 mol percent BaO-70 mol percent SiO₂ served as a starting point.

The region of glass formation is shown in the triangular diagram in figure 13. Glasses were formed to the 12 mol percent La₂O₃ isopleth. While these compositions appear to contain rather small amounts of La₂O₃, it must be remembered that on a weight percent basis the La₂O₃ content amounts to about 35 percent. The compositions melted and the properties of the resulting glasses are listed in table 3.

The refractive index, n_D , varied from 1.6097 to 1.7027 with ν from 56.0 to 50.8. The densities of the glasses ranged from 3.623 to 4.169 g/cm³, and the coefficient of thermal expansion ranged from 8.4 to 11.4×10^{-6} /°C.

The coefficients of thermal expansion of the glasses are plotted as a function of the composition in figure 14. The plots show an anomolous behavior

FIGURE 14. Plot of linear coefficients of thermal expansion as a function of composition for glasses in the BaO-La₂O₃-SiO₂ system.

TABLE 3. Ternary BaO-La2O3-SiO2 compositions

	Remarks	Opal glass. Opal in center of block. Clear glass. Do.	Do.	Opal glass. Clear glass. Do.	Do. Do. Do. Do. Contains some devit.	Opal glass. Clear glass. Do. Do. Do. Do. Do.	Clear glass. Do. Do. Contains some devit. Devitrified. Contains some devit. Devitrified.	Do. Contains some devit. Clear glass.
Liquidus	temp.	> 1426 1338 1355 1351	1373 1392 1388	> 1424 1213 1256	1261 1275 1305 1307 1322 1340	1410 1260 1246 1335 1398 1405	> 1421 > 1427 1398 1398 > 1404 > 1431 > 1424 > 1421	> 1421 > 1424 > 1424
Deformation	point °C	747	755	775	775	793 792 794 797	817	
Expansion	per °C × 10°	9.8	10.0	8. 4	9.4 10.8 11.4 10.8	8.6 9.8 11.3 10.9	6.6	
Sag	point °C	781 798 798	790	798	798 798 810 810 835	848 835 840 835 840	862 850 868 860 880	855
Sag Expansi	Density ρ	3.623	3.918 3.997	3.663	3.885 3.964 4.076 4.132 4.243	3.849 3.923 4.121 4.276 4.387	4.085	:
	2	56.0	54.3	55.4	53.3 52.6 51.9	54.2 53.8 52.6 51.5 50.8	52.3 52.7 52.0 50.8	50.8
	n_F	1.61743	1.65462 1.65462	1.62864	1.67007 1.67598 1.68584	1.65270 1.66086 1.68057 1.69530 1.70467	1.67942 1.68352 1.69172 1.71255	1.70927
	\boldsymbol{n}_D	1.60974	1.62865 1.63865 1.64611	1.62076	1.64299 1.66126 1.66700 1.67660	1.64428 1.65227 1.67152 1.68584 1.69496	1.67032 1.67445 1.68243 1.70275	1.69950
	n_C	1.60655	1.02310 1.63521 1.64261	1.61743	1.03952 Striated 1.65768 1.66330 1.67280	1.64081 1.64872 1.66779 1.68199 1.69098	1.66660 1.67071 1.67861 1.69872	1.69550
	SiO ₂ Mol %	75 73 70 68	3 89 9	75 70 70	65 60 58 53	73 68 63 55 53	70 65 62 68 58 55	68 65
Composition	La ₂ O ₃ Mol %	20000	12121	יטיטיטי	2 2 2 2 2 2 2	777777	2020202	12 12 12
Co	BaO Mol %	23 28 30 30	38.	23 23 30 30 30 30 30 30 30 30 30 30 30 30 30	33 33 33 40	20 23 25 30 30 40 40 40	325 337 337 337 337 337 337 337 337 337 33	20 23
	Melt No.	F547 F548 F518 F634	F558 F561	F550 F551 F536	F525 F525 F527 F564 F528	F562 F538 F530 F539 F553 F553	F627 F554 F554 F555 F555 F631 F632	r 633 F 629 F 628

Figure 15. Spectral transmittance of 2-mm thickness of glasses containing 2 mol percent of La₂O₃. ● F558, ○ F548, × F634.

for the 5 and 7 mol percent La₂O₃ lines, and it is possible that the 2 mol percent line would show a similar behavior if data were obtained at higher BaO concentrations. The increase in the values of coefficient of expansion with increasing amounts of BaO, and decreasing SiO₂ content, is not surprising. But the curve reaches a maximum and then decreases as the SiO₂ content continues to decrease. An explanation for this behavior is not readily apparent.

At the same time, for each La_2O_3 isopleth, there is little change in deformation temperature, so that it does not appear that the increase in the coefficient of expansion is due solely to a loosening of the structure as more BaO is incorporated into the glass. As shown in the table the deformation temperatures of the glasses vary little within each series, but definitely increase as the La_2O_3 content of the glasses increases.

The transmittance curves for 2-mm thicknesses of glasses in the 2, 5, 7, and 10 mol percent La₂O₃ series are plotted in figures 15, 16, 17, and 18. The curves are plotted from the limit of transmittance in the ultraviolet to 0.5 μ m and from 2.0 μ m to the limit of transmittance in the infrared. While transmittance values have not been measured from 0.5 to 1.0 μ m, there is no reason to expect any change in transmittance in this region because the glasses are clear and show no evidence of absorption. The ultraviolet limit of transmittance, about 0.260 μ m, is somewhat beyond the usual run of glasses. Window glass, for instance, does not transmit beyond about 0.320 μ m in 2.0 mm thicknesses. thicknesses. In the infrared there are variations in

FIGURE 16. Spectral transmittance of 2-mm thickness of glasses containing 5 mol percent of La₂O₃. •F525, ×F551, -- F527.

the transmittance curves between 3 and 4 μ m, but no simple relation with composition is readily evident.

3.3. The BaO-Ta₂O₅-SiO₂ System

Tantalum oxide, used as a component of glass, imparts higher refractive index values and higher dispersions than does La₂O₃. A survey of the glassforming region of the BaO-Ta₂O₅-SiO₂ ternary system was made. Again no data were found on the liquidus temperatures in the systems except for the BaO-SiO₂ binary system [8]. The eutectic point in the binary system at about 1370 °C served again as a starting composition.

Figure 17. Spectral transmittance of 2-mm thickness of glasses containing 7 mol percent of La₂O₃. ●F552, × F530, − F553.

FIGURE 18. Spectral transmittance of 2-mm thickness of glasses containing 10 mol percent of La₂O₃. ◆ F554, × F545, ○F555.

The region of glass formation is shown in the triangular diagram in figure 19. The compositions melted and the properties of the glasses are given in table 4. The glasses form series along the 2, 5, 7, and 10 mol percent Ta_2O_5 isopleths as may be seen from the figure. The refractive index, n_D , varied from 1.6112 to 1.7708 with ν from 53.5 to 39.4. The densities of the glasses ranged from 3.672 to 5.015 g/cm³. The coefficients of thermal expansion were determined for only two glasses, one in the 5 mol percent and one in the 10-mol-percent Ta_2O_5

series. The values were 8.3×10^{-6} and 9.5×10^{-6} /°C respectively. The deformation points for the two glasses were 800 and 853 °C, which are rather high compared to those of most silicate glasses.

The transmittances from the limit of transmittance in the ultraviolet to 0.500 μ m, and from 2 μ m to the limit of transmittance in the infrared for 2-mm thicknesses of glasses from the 2, 5, 7, and 10 mol percent series are given in figures 20, 21, 22, 23, and 24.

	Remarks	Opal glass. Clear glass. Do. Do. Do. Do.	Opal glass. Clear glass. Do. Do. Do. Do. Do. Do. Considerable devit.	Opal glass. Some devitrification. Clear glass. Do. Do. Do. Do. Do. Do. Do.	Slight devitrification. Clear glass. Do.
Liquidus	temp.	> 1414 1337 1340 1355 1376 1371 1403	> 1414 1390 1237 1240 1285 1322 1317 1325 1326 1326 1344	> 1425 > 1425 > 1405 > 1408 345 1350 1293 1289 1326	> 1431 > 1425 > 1425
Deformation	point °C		800		853
Expansion	per °C × 10 ⁶		ω		9.5
Sag	point °C	835 820 820 810 825 825	860 855 855 860 860 860 860	885 867 870 870	880
	Density ρ	3.672 3.770 3.929 4.005 4.151	3.952 4.140 4.317 4.418 4.481 4.676 4.696	4.480 4.508 4.646 4.703 4.816 4.771 4.787	5.015
	2	53.5 53.2 52.3 51.9 50.3	48.9 48.4 52.5 47.6 46.0 45.7	4.5.4.4.4.4.4.4.6.6.4.4.4.8.8.8.3.5.5.4.4.8.8.3.5.5.8.4.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	39.4 42.2 41.0
	n_F	1.61928 1.62972 1.64571 1.65237 1.67244 1.67037	1.65258 1.66942 1.68066 1.68972 1.69834 1.70809 1.72349 1.72431	1.70907 1.71136 1.72403 1.72991 1.74023 1.73749 1.73778	1.76153 1.76564 1.78424
	u	1.61119 1.62145 1.63706 1.64360 1.66309 1.66117	1.64325 1.65974 1.67160 1.67959 1.68799 1.69750 1.71249	1.69814 1.70039 1.71274 1.71844 1.72848 1.72595 1.72624 1.74166	1.74766 1.75293 1.77082
	D u	1.60786 1.61803 1.63352 1.63998 1.65926 1.65926	1.63942 1.65577 1.66787 1.6784 1.68377 1.70802 1.70802	1.69368 1.69592 1.70816 1.71379 1.72379 1.72115 1.72115	1.74254 1.74781 1.76542
u	SiO ₂ Mol %	73 70 68 65 63 60 58	70 68 60 60 53 55 50 48 48	68 63 60 60 53 53 54 74 44 45	50 45 42
Composition	Ta ₂ O ₅ Mol %	0000000	0 0 0 0 0 0 0 0 0 0	~~~~~~~~	10 10
Ö	BaO Mol %	25 30 33 33 35 40	252 272 332 332 340 40 50 50	25 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	40 45 48
	Melt No.	F575 F522 F531 F576 F577 F588	F578 F579 F532 F534 F534 F580 F535 F542 F581	F541 F533 F584 F582 F591 F592 F604 F615	F593 F616 F617

FIGURE 19. Compositions studied in the system BaO-Ta₂O₅-SiO₂.

3.4. The BaO-ZnO-SiO₂ System

ZnO may be used as a component of glass. It imparts intermediate values of refractive index and some glasses containing ZnO have relatively low values of thermal expansion. A survey of the glassforming region of the BaO-ZnO-SiO₂ system was

made. Data on the binary BaO-SiO₂ [8] and the ZnO-SiO₂ [15] systems are available.

The region of glass formation found in the system is shown in the triangular diagram in figure 25, and the compositions melted are listed in table 5. As may be seen from the figure clear glasses were obtained over a considerable area of the diagram.

The liquidus temperatures of the various compositions are also given in table 5. The glasses, over a relatively large composition area, have liquidus temperatures below 1300 °C. A smaller area has liquidus temperatures below 1200 °C and a still smaller area has temperatures below 1100 °C. The minimum liquidus temperature found was 1089 °C for a glass on the 26-mol-percent BaO isopleth.

The refractive index values for glasses in the system are also given in the table. The values range from 1.5878 to 1.6785 for n_D with ν from 48.4 to 56.8.

The transmittance curves for 2-mm thicknesses of glasses from the 36, 30, 26, 20, 14, and 10 mol percent BaO series are given in figures 26, 27, 28, 29, 30, and 31, respectively. For each series there is considerable spread in the transmittance values for the region between 2.75 to 4.0 μ m as the SiO₂ content is varied. If one examines the transmittance values at 3.5 μ m as the BaO content is decreased, it appears that the trend is for a decrease in transmittance from the 36 to the 30 mol percent series. Then the trend is for a gradual increase from the 30 to the 10 mol percent series. It would appear from the general shapes of the curves that some of the variations are due to the (OH)⁻ content of the glasses.

FIGURE 20. Spectral transmittance of 2-mm thickness of glasses containing 2 mol percent of Ta₂O₅, ● F522, × F588, ○ F576.

Figure 21. Spectral transmittance of 2-mm thickness of glasses containing 5 mol percent of Ta_2O_5 . \bullet F532, \times F534, Δ F542.

Figure 22. Spectral transmittance of 2-mm thickness of glasses containing 5 mol percent of Ta_2O_5 . \bullet F579, \times F580, \circ F540.

Figure 23. Spectral transmittance of 2-mm thickness of glasses containing 7 mol percent of Ta₂O₅. \bullet F584, \times F615, \circ F591.

Figure 24. Spectral transmittance of 2-mm thickness of glasses containing 10 mol percent of Ta₂O₅. ●F616, ○F617.

TABLE 5. Ternary BaO-ZnO-SiO₂ compositions

	Remarks		Some devit. Some devit. Clear glass. Devit in mold.	Some devit.	Some devit.	Clear glass. Clear glass. Clear glass. Clear glass. Devit in mold. Did not melt.	Some devit.	Clear glass. Clear glass. Clear glass. Clear glass. Clear glass. Clear glass.	Clear glass.	Clear glass. Clear glass. Devit in mold.	Slight devit. Slight devit. Clear glass.
	Coef. of Thermal	$\exp. \times 10^6$				10.5					
	Sag Point	သို့	810 800 800	992	785	800 765 765 748	982	728	795	728	764 764 764
osttons	Liquidus	Temp. °C	1345 1304 1288 1387	1407	1395	1341 1268 1212 1281 > 1414	1400	1329 1277 1193 1167 1229 1221 1315	1374	1172 1152 1405	1400 1385 1350
J-SiO ₂ comp	n		49.7			53.8 52.1 50.8 49.6		52.8 51.7 51.1 50.3 50.0	55.5	51.4	
TABLE 5. Ternary BaO-LnO-SiO2 compositions	i i	į	1.68817			1.64406 1.66261 1.67474 1.68574		1.65327 1.66222 1.67112 1.67841 1.67968	1.61862	1.66504	
TABLE 5. I		a a	1.67848			1.63568 1.65371 1.6544 1.67605		1.64461 1.65327 1.66192 1.66898 1.67017	1.61084	1.65598	
		<i>J</i>	1.67453			1.63224 1.65006 1.66165 1.67210		1.64106 1.64960 1.65815 1.66512 1.66629	1.60761	1.65227 1.65849	
		SiO ₂ Mol %	54 50 46 42	28	09	58 54 46 38 38	62	09 22 23 44 44 44 44 44 44 44 44 44 44 44 44 44	64	52 50 42	99
	Composition	ZnO Mol %	6 10 14 18	က	6	6 10 14 18 22 26	က	0 10 14 18 20 20 22	က	16 18 26	27 4
		BaO Mol %	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	39	37	% % % % % % % % % % % % % % % %	35	\$ \$ \$ \$ \$ \$ \$ \$ \$	33	32 32 32	30 30
	N. J.	Melt	F829 F830 F831 F832	F850	F847	F828 F786 F787 F788 F833	F848	F783 F760 F761 F764 F762 F765	F849	F784 F766 F835	F690 F691 F692

TABLE 5. Ternary BaO-ZnO-SiO₂ compositions-Continued

	Remarke	Nelliains	Clear glass. Devit in mold. Devit in mold.	Clear glass. Clear glass. Striated. Clear glass.	Clear glass.
	Coef. of	$\exp \times 10^6$	9.5	9.2 9.2 9.5	
	Sag Doint	Sag roun	764 764 767 760 760 768 768 750	769 760 760 767 768 750 750 750	802 780 775 767 762 768 768
s - Continued		Liquidus Temp. °C	1312 1298 1269 1224 1193 1142 1110 1170 1285 > 1425	1355 1335 1318 1290 1278 1220 1181 1171 1141 1165 1261 1306	1333 1315 1300 1285 1255 1255 1199 1148 1177
composition		À	55.3 54.6 54.6 53.5 52.7 52.0 51.5 50.8 49.6	56.8 55.2 54.6 53.9 52.8 52.8 51.4 50.0	56.6 55.5 55.2 54.5 53.6 53.6 52.5 51.7
I ernary BaO-LnO-SiO2 compositions - Continued		n_F	1.62156 1.62980 1.63625 1.64071 1.65002 1.65335 1.66330 1.66949 1.68316	1.60134 1.61816 1.62682 1.63360 1.64354 1.64892 1.66112 1.67672 1.68412	1.59672 1.60528 1.61272 1.61723 1.62581 1.63164 1.64201 1.64201 1.64201
IABLE 5. Ternary		u_D	1.61369 1.62172 1.62800 1.63232 1.64141 1.64852 1.65430 1.66028	1.59392 1.61035 1.61880 1.62540 1.63501 1.64029 1.65212 1.66725 1.67438	1.58933 1.59772 1.60941 1.61779 1.62336 1.63354 1.63842 1.64729
IAB		nc n	1.61047 1.61841 1.62461 1.62890 1.63785 1.64489 1.65060 1.655060 1.65650	1.59088 1.60711 1.61549 1.63151 1.63674 1.64842 1.66336 1.67040	1.58630 1.59460 1.60183 1.60618 1.61147 1.62000 1.63005 1.63488 1.64365
		SiO ₂ Mol %	64 60 60 60 60 60 60 60 60 60 60 60 60 60	0.886.296.886.886.426.886.886.886.886.886.886.886.886.886.8	72 68 69 60 60 60 78 85 85 86 87 87
	Composition	ZnO Mol %	30 20 30 30 30 30 30 30 30 30 30 30 30 30 30	2468655558888888888888888888888888888888	2 4 4 8 6 4 4 2 10 8 8 6 4 5 8 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
)	BaO Mol %	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	222222222
	Mal	Melt	F693 F694 F695 F711 F712 F713 F714 F715 F722 F758	F696 F699 F700 F701 F702 F717 F718 F719 F720 F720 F723 F775	F704 F705 F706 F708 F708 F709 F710 F716 F716

Table 5. Ternary BaO-ZnO-SiO₂ compositions-Continued

	Remarks	Clear glass. Clear glass. Considerable devit.	Opal glass. Opal glass. Clear glass.	Clear glass. Clear glass. Clear glass.	Opal glass. Slight opal. Clear glass.
Coef. of	Thermal exp. × 106	9.3	6.7		6.9
	Sag Point °C	760	768 763 763 763 760 760 750 750 750 750 763 763 763	727 755 755	755 755
	Liquidus Temp. °C	1250 1325 1316	> 1425 1408 1327 1228 1140 1102 1158 1201 1224 1274 1325 1327 1327 1327 1327 125 1125 1125 1126 1274	1263 1340 1298 1276	1336 1127
	2	50.4	56.6 55.5 53.0 53.0 53.0 51.0 54.9 54.9 53.2 53.2 53.2 53.2 53.2	50.2 48.9	52.7
	u_F	1.67044	1.59519 1.60990 1.62426 1.63772 1.64977 1.65473 1.66017 1.67157 1.61084 1.62985 1.6288	1.65891	1.62604
	q_{u}	1.66112	1.58785 1.60228 1.61622 1.62932 1.64102 1.64584 1.65114 1.66216 1.66216 1.62158 1.64940 1.64940 1.65553	1.64976 1.66436	1.61774
	n_C	1.65731	1.58480 1.59904 1.61290 1.62586 1.63743 1.64742 1.65830 1.5986 1.5986 1.62306 1.64567 1.64567	1.64598	1.61432
	SiO ₂ Mol %	50 44 44	4555 368 85 85 85 85 85 85 85 85 85 85 85 85 85 85	44 52 48	68 64 60
Composition	ZnO Mol %	24 28 30	2490148222222222222222222222222222222222222	34 34 34	16 20 24
	BaO Mol %	7 50 20 20 20	**************************************	20 18 18	16
Mel	Meit	F724 F757 F789	F725 F726 F698 F727 F727 F728 F730 F736 F734 F732 F733 F734 F733 F734 F735 F735 F735 F735 F735 F735	F811 F803 F806	F792 F793 F794

TABLE 5. Ternary BaO-ZnO-SiO₂ compositions-Continued

ę	Kemarks	Clear glass. Clear glass. Clear glass. Some devit.	Opal glass. Slight devit. Slight devit.	Slight devit. Clear glass. Clear glass. Clear glass. Clear glass.	Slight devit. Clear glass. Clear glass. Clear glass. Clear glass. Slight devit.	Slight opal. Clear glass. Clear glass. Clear glass.	Clear glass.	Opal glass. Opal glass. Clear glass. Considerable devit.	Devit in mold. Devit in mold.
Coef. of	Inermal exp. × 10 ⁶				7.2		5.7		
Sag Doint	Sag rount	738 727 728	766	765 737 727 725	745 737 738 730	735 727 727 735	738	735 727	
Liquidus	Temp. °C	1162 1205 1259 1333	>1407 1257 1254	1283 1203 1260 1252 1326	1233 1246 1304 1402	1293 1307 1340 1390	1371	> 1412 > 1408 1403 1407	> 1425 > 1407
2	2	50.5 49.5	53.0	51.4 49.9 48.5 48.0	51.8 50.4 49.2 48.4 47.9	50.1 49.4 48.4	48.7	49.0	
ŭ	42	1.64727	1.61966	1.63789 1.65593 1.66906 1.67816	1.62989 1.63543 1.64699 1.66235 1.66847	1.64572 1.65348 1.66776	1.66047	1.65066	
74	an .	1.63832	1.61148	1.62923 1.64675 1.65940 1.66826	1.62139 1.62677 1.63803 1.65292 1.65882	1.63671 1.64424 1.65810	1.65098	1.64134	
å	nC	1.63462	1.60812	1.62566 1.64298 1.65546 1.66423	1.61789 1.62320 1.63434 1.64908 1.65487 1.66526	1.63301 1.64045 1.65416	1.64709	1.63757	
	SiO_2 Mol %	56 50 46	62 62 63	56 57 58 48 57 58	58 54 50 48 84 84	56 54 52 48	20	56 52 48	50 52
Composition	ZnO Mol %	38 38 38	22 24 26	28 30 34 40	32 32 34 38 45 40 45 45 45	34 36 38 42	42	38 40 46 46	44 44
	BaO Mol %	16 16 16 16	14 14 14	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	22 22 22 22 23 23 23 23 23 23 23 23 23 2	10 10 10	8	999	44
Mel	Meit	F795 F808 F797 F810	F845 F844 F838	F837 F816 F802 F805 F839	F841 F840 F809 F798 F842 F843	F817 F813 F801 F804	F799	F818 F814 F807 F815	F800 F846

FIGURE 25. Compositions studied in the system BaO-ZnO-SiO₂.

Figure 26. Spectral transmittance of 2-mm thickness of glasses containing 36 mol percent of BaO. ● F786, △ F787, × F788.

FIGURE 27. Spectral transmittance of 2-mm thickness of glasses containing 30 mol percent of BaO. − F690, ● F692, Δ F694, × F711.

Figure 29. Spectral transmittance of 2-mm thickness of glasses containing 20 mol percent of BaO. \bullet F733, \triangle F763, \times F735.

FIGURE 31. Spectral transmittance of 2-mm thickness of glasses containing 10 mol percent of BaO. ● F813, △ F801, × F804.

3.5. The BaO-Nb₂O₅-SiO₂ System

 Nb_2O_5 , when used as a component of glass, imparts relatively high values of refractive index along with high dispersion, or low ν . The glass-forming region of the BaO-Nb₂O₅-SiO₂ system was determined. Information on the binary sides, BaO-SiO₂ [8], BaO-Nb₂O₅ [16], and Nb₂O₅-SiO₂ [17], is available, but the ternary system has not been worked out.

The region of glass formation in the system is shown in the triangular diagram in figure 32, and the compositions melted and their measured properties are listed in table 6. Except for the 2 and 6 mol percent glasses, most of the melts had liquidus temperatures below 1300 °C. A minimum value of 1152 °C was found for one glass in the 14-mol-percent Nb₂O₅ series. Glasses were formed to remarkably low SiO₂ contents, as may be seen from the table and from figure 32. Glass F1466 contained 38-mol-percent SiO₂.

The refractive index, n_D , ranged from 1.615 to 1.902 with ν from 51.7 to 27.6.

The transmittance curves for 2 mm thicknesses of the glasses from the 2, 6, 10, 14, 18, and 22 mol percent Nb₂O₅ series are shown in figures 33 to 38, respectively. As the Nb₂O₅ content of the glasses increase the minimum in transmittance in the 2.75 to 4 μ m region increases. This evidently is related to the (OH)⁻ content of the glasses and to the manner in which (OH)⁻ is bound, but no general explanation of this behavior is readily seen.

FIGURE 32. Compositions studied in the system BaO-Nb₂O₅-SiO₂.

TABLE 6. Ternary BaO-Nb2O5-SiO2 compositions

;
Nb ₂ O ₅ Mol %
2 1.61152 2 1.63111 2 1.6421 2 1.66006
6 1.68287 6 1.6921 6 1.71062 6 1.72775
10 10 1.73419 10 1.74802 10 1.75390 10 1.76825 10
14 1.78176 14 1.79500 14 1.80584 14 1.81450 14 1.82084
18 1.82988 18 1.84130 18 1.84890 18 1.85714 18 1.86176
22 22 1.88213 22 1.89258 22 22
26 26

FIGURE 33. Spectral transmittance of 2-mm thickness of glasses containing 2 mol percent of Nb₂O₅. ○F1431, ●F1432, +F1433, ×F1434.

FIGURE 35. Spectral transmittance of 2-mm thickness of glasses containing 10 mol percent of Nb₂O₅. •F1442, ○F1443, +F1444.

Figure 34. Spectral transmittance of 2-mm thickness of glasses containing 6 mol percent of Nb₂O₅. •F1437, ○F1438, +F1439.

FIGURE 36. Spectral transmittance of 2-mm thickness of glasses containing 14 mol percent of Nb₂O₅. + F1448, •F1449, ○F1451.

FIGURE 37. Spectral transmittance of 2-mm thickness of glasses containing 18 mol percent of Nb₂O₅, ○F1460, +F1461, ●F1462, △ F1463.

Figure 38. Spectral transmittance of 2-mm thickness of glasses containing 22 mol percent of Nb₂O₅. ◆F1465, +F1466.

Figure 39. Compositions studied in the system BaO-Al₂O₃-SiO₂ and approximate phase boundaries.

Table 7. Ternary BaO-Al₂O₃-SiO₂ compositions

Q	Кетагкѕ	Seedy.	Seedy. Do. Do. Striated. Impossible to measure index.	Seedy. Do. Striated. Striated. Striated.	Seedy. Do. Do.	Striated. Striated. Striated.	Striated.
0000	Sag Point	857 857 840 840 832 832 832	874 874 853 840 838 838 838 838 838	848 827 833 833 830 840 840 850	833	872 879 899 885 892	895 895
	Liquidus Temp. °C	1208 1268 1286 1277 1263 1290	1162 1166 1205 1177 1172 1176 1176	1332 1368 1377 1412 1368 1355 1367 1292	>1404 >1411 >1411 >1425	1337 >1445 1379	
	۵	55.3 55.5 55.6 54.3 54.3	56.6 54.8 55.4 55.4 53.4 53.4	57.0 56.1 55.4 54.2 54.2 53.8		54.7 53.7 52.9 52.5 51.4 52.5 51.7	53.0
	n_F	1.61537 1.61991 1.62264 1.63672 1.63993 1.64415	1.60501 1.62827 1.63280 1.63626 1.64309 1.65063	1.60132 1.60942 1.61535 1.62396 1.633094 1.63784 1.63784		1.63163 1.64501 1.65254 1.65852 1.66591 1.64452 1.665635	1.65565
	u u	1.60758 1.61207 1.61483 1.62862 1.63170 1.63586	1.59760 1.62023 1.62473 1.62822 1.63475 1.64207	1.59397 1.60200 1.60770 1.61612 1.62289 1.63127 1.62964		1.62357 1.63660 1.64390 1.64972 1.65685 1.63611 1.64765	1.64080
	n_C	1.60438 1.60887 1.61158 1.62514 1.62831 1.63238	1.59445 1.61694 1.62142 1.62491 1.63133 1.63861	1.59091 1.50885 1.60452 1.61284 1.61956 1.62786 1.62626		1.62024 1.63315 1.64036 1.64614 1.65313 1.63264 1.64402 1.65000	1.63727
	Al ₂ O ₃ Mol %	000000	x x x x x x x x x x x x	0000000000	12 12 12 12 12 12 12 12 12 12 12 12 12 1	1222222444	16
Compositions	BaO Mol %	32 33 34 34 38 38 38	2,4,2,8,8,8,8,8,4,4,8,8,8,8,8,8,8,8,8,8,	8 8 8 8 8 8 8 9 4	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	283343334	40
ŭ	SiO ₂ Mol %	66 62 60 58 58 54 54	66 66 66 67 68 68 68 68 68 68 68 68 68 68 68 68 68	70 62 62 60 53 54 50 50 48	64 64 65 64 65 64 65 65 65 65 65 65 65 65 65 65 65 65 65	5 5 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44
	Melt No.	F1170 F1169 F1168 F1167 F1166 F1165	F1119 F1158 F1148 F1145 F1124 F1131 F1132 F1132	F1121 F1143 F1123 F1128 F1129 F1129 F1144	F1161 F1162 F1163 F1122	F1196 F1197 F1210 F1210 F1200 F1200	F1207

3.6. The BaO-Al₂O₃-SiO₂ System

Alumina is widely used as a component of glass. Morey [18] states that "alumina in small quantity is a frequent constituent of glass. It gives greater chemical durability, lower coefficient of expansion, and greater freedom from devitrification." It has long been known that small amounts of Al₂O₃ improved the flame working properties of thermometer glass [19].

Aluminate glasses [20, 21] have been of interest because of their improved infrared transmittance as compared to most silicate glasses. An area of glass formation in the CaO-Al₂O₃ system is the basis for these glasses. Aluminosilicate glasses [22] containing 20 to 40 percent Al₂O₃, have high softening temperatures, relatively low thermal expansion coefficients, and high values of hardness. They have been used for lamp envelopes, chemical combustion tubes and "top-of-stove" ware.

The ternary diagram for the BaO-Al₂O₃-SiO₂ system [23] has been published along with isofracts for the ternary glasses [24]. More recently Forster et al. [25] have made further studies in this ternary system and have revised the earlier diagram.

The compositions melted in this work are listed in table 7 along with the properties measured on the resulting glasses. The 10 mol percent Al_2O_3 series fall near the phase boundary between the ternary compound $BaO \cdot Al_2O_3 \cdot 2SiO_2$ and the binary barium silicates. This is illustrated in the ternary diagram shown in figure 39, where the compositions melted and the approximate location of the phase boundaries as determined by Foster et al. [25], and by Thomas [24] are plotted. The refractive index, n_D varied from 1.5940 to 1.6536 with ν in the range from 51.4 to 57.0.

The transmittance curves for 2-mm thicknesses of representative glasses from 6, 8, and 10 mol percent Al_2O_3 series are plotted in figures 40, 41, and 42, respectively. Again, as the Al_2O_3 content of the glasses increase the minimum in transmittance in the 2.75 to 4.0 μ m region moves to higher values. No general explanation of this behavior is readily evident other than that it is related to $(OH)^-$ content of the glasses and the manner in which the $(OH)^-$ is bound.

The thermal expansion of glass F1123 is shown in figure 43. The linear coefficient of thermal expansion over the temperature range from 100 to 600 °C is 8.1×10^{-6} /°C which is only slightly lower than ordinary window or plate glass. The deformation temperature is 797 °C which is considerably higher than most ordinary glasses.

Figure 40. Spectral transmittance of 2-mm thickness of glasses containing 6 mol percent of Al₂O₃. ●F1164, × F1166, △ F1169.

FIGURE 41. Spectral transmittance of 2-mm thickness of glasses containing 8 mol percent of Al₂O₃. ● F1124. × F1132. △ F1133.

Figure 42. Spectral transmittance of 2-mm thickness of glasses containing 10 mol percent of Al₂O₃. ●F1123, − F1129, − − − F1130, × F1143.

4. Analytical Representation of Data

Composition-property data in the six ternary barium silicate glass systems have been quantitatively evaluated following the method of Babcock [3]. Data on refractive index and specific volume, in a number of silicate glass systems, were segregated into groups according to the composition ranges and areas covered by the known primary crystallization phase fields involved. The separate groups of data, one group for each primary phase field, were then subjected to least-squares computer analysis. The program called for determining the role of each oxide in linear equations of the form

Glass Property =
$$A \operatorname{SiO}_2 + B \operatorname{CaO} + C \operatorname{Na}_2 \operatorname{O} + \dots$$

A, B, and C are numerical constants characteristic of the respective oxides and amounts of oxides are expressed in mole fractions. The fidelity with which the equations represent the measured data is indicated by the computerized standard error

$$\sqrt{\frac{\sum (\Delta P)^2}{N-1}}$$

FIGURE 43. Thermal expansion of Glass F 1123 as determined by an interferometric method.

Linear coefficient of thermal expansion (100-600 °C) is 8.1 × 10-6/°C and deformation temperature is 797 °C.

wherein ΔP is the difference between measured and calculated data and N equals the number of measurements.

This work [3] demonstrated that data on several hundred silicate glasses, measured by the National Bureau of Standards and the Geophysical Laboratory, Carnegie Institute of Washington, could be accurately represented to the fourth decimal place by such linear equations. This accuracy was good enough to permit calculation of phase boundaries and compositions of invariant points in binary and ternary silicate glass systems. Approximate phase diagrams were developed in this manner simply by using linear composition-property equations. It follows from this method that boundaries between primary phases are straight lines and that three such property planes may intersect in an invariant point for ternary systems. It must be emphasized that development of an approximate phase diagram in this manner is not meant to replace the wellestablished phase equilibrium methods of Gibbs [26], Morey [27], and others. This quantitative analytical method [3] has two important uses: (1) Formulation of glass compositions for specific property applications, (2) Furnishing first-approximation information on incomplete or nonexistent phase diagrams of silicate glass systems.

A modified procedure has been used for the ternary barium silicates since phase diagrams do not exist for most of these systems. The glasses have been segregated into groups within which the data can be quantitatively represented by linear equations. This procedure made it necessary to adopt an arbitrary criterion for the grouping of glasses. In terms of intended usage of the data and the precision of the measurements, it was decided that the standard error for refractive index for a given group be limited to 0.001. This criterion resulted in placing 71 percent of the glasses in groups which can be referred to here as "compatibility groups." The differences between measured and calculated values, of the other 29 percent, were 0.0020 or greater and were arbitrarily left out of the computerized groups. The interested reader will, of course, draw his own conclusions in this regard and use the measured data and computerized information to fit his own particular needs.

It is pointed out that refractive index, partial dispersions and specific volume are properties of the glasses, but that the ν -value, and its inverse, the dispersive power, are empirical ratios. These properties are linear functions of mole compositions, but the ν -values are not. Linear equations representing ν -values are only first approximations and are shown here for estimation purposes only.

It is also to be noted that the previous work [3] involved a larger number of glasses within groups than were available for the barium silicate glasses. The compositions were chemically analyzed while the barium silicate compositions are calculated from batch compositions. It is to be expected, therefore, that the placement of glasses in given groups and the boundaries between groups will be somewhat less definite in the case of the barium silicate glasses. However, the composition-property information on the barium silicates is quite good enough for the formulation of glasses. As a practical matter the refractive index of a glass depends on the composition, the homogeneity, and the annealing treatment. The determination of the refractive index is dependent upon the precision and accuracy of the measurement process and the environmental conditions of measurement. Unfortunately, annealing procedures cannot be specified quantitatively, and depending on the glass composition in question, may cause differences in the third decimal place in refractive index. To achieve greater precision, say in the fourth or fifth decimal places as in the case of commercial optical glasses, it is necessary to pay much closer attention to all the factors influencing refractive index.

Detailed information on analytical representation of data in the barium silicates is shown in the following sections. Tables 8 to 13 give property-composition equations. Figures 44 to 51 are graphical plots of the derived composition-property relations.

4.1. The BaO-TiO₂-SiO₂ System

Table 8 shows equations relating compositions and properties of glasses in the two compatibility groups in this system. Equations for the partial dispersions are obtained simply by taking differences between the respective refractive index equations. A given partial dispersion may be calculated either by using the partial dispersion oxide factors or by calculating each refractive index and taking differences between the two. The same value will be obtained in the two cases. Calculated values of ν are only first approximations.

TABLE 8. BaO-TiO₂-SiO₂ glasses

	Glass Fr	operty = $A SiO_2 + B$	B DO2+C BaO	
Property	A	В	С	Std. Error
		Group I Glas	ses	
n_C	1.47915	2.27530	1.84290	0.00066
n_D	1.48163	2.29497	1.84628	.00062
n_F	1.48594	2.34396	1.85834	.00070
$n_F - n_D$	0.00431	0.04899	0.01206	
$n_D - n_C$.00248	.01967	.00338	
$n_F - n_C$.00679	.06866	.01544	
ν	60.06	-43.03	41.56	.4418
Volume	0.36089	0.23177	0.08893	.00078
Average	of difference	es between	measured an	d calculate
densitie	s = 0.096			

Group II Glasses 1.48429 2.32814 1.79030 0.00116 n_C 2.35228 1.79234 .00119 1.48553 n_D 1.79543 n_F 1.48783 2.41798 .00127 $n_F - n_D$ 0.00230 0.06570 0.00309 .00124 .02414 .00204 $n_D - n_C$.08984 .00513 $n_F - n_C$.0035441.27 -10.7349.93 0.16330.34946 Volume 0.25306 0.09806 00027 measured and calculated Average of differences between densities = 0.003

Figure 44 shows compositions of glasses used in the two computerized groups. The position of the boundary between the two groups, shown as a broken line, was obtained by solving the following equations simultaneously

I
$$n_D$$
= 1.48163 SiO₂ + 2.29497 TiO₂ + 1.84628 BaO
II n_D = 1.48553 SiO₂ + 2.35228 TiO₂ + 1.79234 BaO
SiO₂ + TiO₂ + BaO = 1

Solutions and calculation checks are as follows

SiO ₂	0.35	SiO ₂	0.55
TiO_2	.30	TiO ₂	.20
BaO	.35	BaO	.25
$n_D(I)$	1.8533		1.7354
n_D (II)	1.8529		1.7356

Figure 44. Compositional plot showing the groups into which glasses in the BaO-TiO₂-SiO₂ system were divided by computer evaluation of property data.

Numbers of glasses in each group are those from earlier composition tables with \boldsymbol{F} omitted.

The averages of differences between measured and calculated densities (reciprocals of the specific volumes) are shown in the tables.

Representation of the data in terms of linear equations permits arranging the information in a number of ways. Figure 45, for example, shows lines of equal n_D in a SiO_2 - TiO_2 plot. It will be noted that the equal property lines are continuous across the boundary between the two groups. Similar plots can be made of equal values of partial dispersions and specific volume. Plots showing lines of equal density can be made, but they will

FIGURE 45. Isofracts in the BaO-TiO2-SiO2 system.

not be quite linear. Figure 46 shows lines of equal ν in a SiO₂-TiO₂ plot. As previously mentioned, ν is an empirical ratio and the lines of equal value are not continuous across the boundary.

Reference to partial phase diagram information by Rase and Roy [6] and by Cleek and Hamilton [4] suggests that glasses in Group I may lie in the BaO·2SiO₂ phase field and those in Group II may lie in the BaO·TiO₂·SiO₂ phase field.

FIGURE 46. Lines of constant v in the BaO-TiO2-SiO2 system.

4.2. The BaO-La₂O₃-SiO₂ System

Table 9 shows equations representing data in the two groups of glasses in this system. It will be noted that La₂O₃ has negative volume factors in both groups. The volume equations represent the density data quite closely.

Figure 47 shows compositions of glasses used in the computerized groups. Information on this system does not permit calculating the exact location of the broken line separating the two groups It is drawn roughly to denote the separation. That glass F549 is in Group I and glass F530 in Group II is verified by the following differences between measured and calculated n_D when equations for the two groups are used

	Group I	Group II
F530	0.0023	0.0002
F549	.0004	.0039

TABLE 9. BaO-La₂O₃-SiO₂ glasses Glass property = $A SiO_2 + B La_2O_3 + C BaO$

Property	A	В	С	Std. Error
		Group I Glass	ses	
n_C	1.48825	2.51281	1.83983	0.00068
n_D	1.49036	2.52380	1.84518	.00068
n_F	1.49538	2.55158	1.85810	.00070
$n_F - n_D$	0.00502	0.02778	0.01292	
$n_D - n_C$.00211	.01099	.00535	
$n_F - n_C$.00713	.03877	.01827	
ν	63.00	6.90	41.88	0.0913
Volume	0.35428	-0.17875	0.10807	.00076
Average densities	of difference = 0.009	s between 1	measured an	d calculated

	(Group II Glas	ses	_
n_C	1.51660	2.46619	1.79980	0.00037
n_D	1.51872	2.47735	1.80510	.00039
n_F	1.52372	2.50559	1.81819	.00039
$n_F - n_D$	0.00500	0.02824	0.01309	
$n_D - n_C$.00212	.01116	.00530	
$n_F - n_C$.00712	.03940	.01839	
ν	63.54	5.35	40.78	0.0965
Volume	0.32645	-0.10865	0.14791	.00030
Average	of differences	between	measured and	calculated
densiti	es = 0.005			

Figure 47. Compositional plot showing the groups into which glasses in the BaO-La₂O₃-SiO₂ system were divided by computer evaluation of property data.

Numbers of glasses in each group are those from earlier composition tables with F omitted.

4.3. The BaO-Ta₂O₅-SiO₂ System

Table 10 shows equations representing data in the three groups in this system. It will be noted that Ta_2O_5 has negative ν in all groups and negative volume factors in groups I and II.

Figure 48 shows compositions of glasses used in the computerized groups. The data are not sufficient to allow calculation of the boundaries between the three groups. The broken lines roughly indicate the separations. Calculation of n_D for the four glasses near boundaries, F588, F534, F592, and F542 indicates that the glasses have been correctly grouped. The following indicates differences between measured and calculated n_D using the indicated equations:

TABLE 10. BaO-Ta₂O₅-SiO₂ glasses

Glass property = A SiO2 + B Ta2O5 + C BaO

Glass Property	A	В	С	Std. Error
		Group I Glas	ses	
n_C	1.43819	2.68156	1.95482	0.00028
n_D	1.43974	2.70166	1.96134	.00028
n_F	1.44331	2.75161	1.97761	.00028
$n_F - n_D$	0.00357	0.04995	0.01627	
$n_D - n_C$.00155	.02010	.00652	
$n_F - n_C$.00512	.07005	.02279	
ν	65.77	-96.27	34.13	0.2208
Volume	0.37394	-0.34930	0.06008	.00077
Average of	of differenc	es between	measured ar	id calculated
densities	s = 0.007			

	-	Group II Gla	sses	
n_C	1.50395	2.48739	1.85520	0.00048
n_D	1.50627	2.50586	1.86048	.00048
n_F	1.51030	2.57296	1.87262	.00045
$n_F - n_D$	0.00463	0.06710	0.01214	
$n_D - n_C$.00172	.01847	.00528	
$n_F - n_C$.00635	.08557	.01742	
ν	59.09	-85.41	47.28	0.4249
Volume	0.31595	-0.16059	0.14165	.00071
Average	of difference	es between	measured and	calculated
densitie	es = 0.010			

		Group III Gla	isses	
n_C	1.65915	2.31775	1.69455	0.00003
n_D	1.66596	2.33911	1.69456	.00000
n_F	1.67132	2.36772	1.70992	.00004
$n_F - n_D$	0.00536	0.02861	0.01536	
$n_D - n_C$.00681	.02136	.00001	
$n_F - n_C$.01217	.04997	.01537	
ν	50.87	-12.64	46.87	0.2008
Volume	0.24761	0.02726	0.19721	.00009
Average	of difference	es between	measured a	and calculated
densitie	es = 0.002			

	Group I	Group II	Group III
F588 F534 F592 F542	0.0001	0.0026 .0006 .0001 .0028	0.0014 .0000

Figure 48. Compositional plot showing the groups into which glasses in the BaO-Ta₂O₅-SiO₂ system were divided by computer evaluation of property data.

Numbers of glasses in each group are those from earlier composition tables with F omitted.

4.4. The BaO-ZnO-SiO₂ System

Table 11 shows composition-property equations for glasses in the five groups in this system. This table identified glasses placed in the different groups. Figure 49 gives compositions of the 57 glasses used in the evaluations. The broken lines serve to separate the five groups. Exact composition locations of the boundaries could not be calculated. The equations indicate that the property contributions of ZnO and BaO, in terms of their factors, are similar quantitatively. In this connection, all 57 glasses were run as one group on the computer. The resulting n_D equation in this case was $n_D = 1.47000$ SiO₂ + 1.81955 ZnO + 1.87614 BaO with a standard error of 0.00205. Differences between measured and calculated n_D ranged from -0.0073 to 0.0038. However, the range of standard errors for n_D for the five separate groups from 0.00048 to 0.00064 indicates proper placement of the glasses. The interested reader can determine by calculation that n_D values, for example, of glasses not used in groups, have measured minus calculated differences greater than 0.001.

TABLE 11. BaO-ZnO-SiO₂ glasses
Glass property = $A SiO_2 + B ZnO + C BaO$

Glass property	A	В	С	Std. Error
Group I	Glasses: a 705	5, 698, 706, 7	707, 727, 693,	694, 702, 70
•		728, 695		
	703, 710, 730,	712, 718, 731	, 784, 714, 766	5, 713
$\iota_{\mathcal{C}}$	1.46539	1.80155	1.88253	0.00065
ip	1.46731	1.80723	1.88812	.00064
i_F	1.47172	1.82073	1.90237	.00064
$n_F - n_D$	0.00441	0.01350	0.01425	
$n_D - n_C$.00192	.00568	.00559	
$n_F - n_C$.00633	.01918	.01984	
,	64.55	33.86	39.39	0.1057
n_C	1.46248	1.81986	1.88284	0.00056
ic	1.40248	1.01900	1.00204	0.00050
	1 46499	1.09500	1 00064	
n_D	1.46422	1.82590	1.88864	.00057
i_F	1.46800	1.84130	1.90279	
$n_F - n_D$	1.46800 0.00378	$\begin{array}{c} 1.84130 \\ 0.01540 \end{array}$	1.90279 0.01415	.00057
n_F $n_F - n_D$ $n_D - n_C$	1.46800 0.00378 .00174	1.84130 0.01540 .00604	1.90279 0.01415 .00580	.00057
$n_F - n_D$	1.46800 0.00378	$\begin{array}{c} 1.84130 \\ 0.01540 \end{array}$	1.90279 0.01415	.00057
$n_F = n_D$ $n_D = n_C$ $n_F = n_C$	1.46800 0.00378 .00174 .00552	1.84130 0.01540 .00604 .02144 32.00	1,90279 0.01415 .00580 .01995 42.13	.00057 .00058
n_{F} $n_{F} - n_{D}$ $n_{D} - n_{C}$ $n_{F} - n_{C}$ $\sigma_{F} - \sigma_{C}$	1.46800 0.00378 .00174 .00552 63.73	1.84130 0.01540 .00604 .02144 32.00	1,90279 0.01415 .00580 .01995 42.13	.00057 .00058
$n_F = n_D$ $n_D = n_C$ $n_F = n_C$	1.46800 0.00378 .00174 .00552 63.73	1.84130 0.01540 .00604 .02144 32.00	1.90279 0.01415 .00580 .01995 42.13	.00057 .00058 0.1076
n_{F} $n_{F} - n_{D}$ $n_{D} - n_{C}$ $n_{F} - n_{C}$ σ σ σ	1.46800 0.00378 .00174 .00552 63.73	1.84130 0.01540 .00604 .02144 32.00 es: 733, 734, 7	1.90279 0.01415 .00580 .01995 42.13 794, 735, 841, 1.74302	.00057 .00058 0.1076 795, 840 0.00047
$ \begin{array}{c} n_F \\ n_F - n_D \\ n_D - n_C \\ n_F - n_C \end{array} $ $ \begin{array}{c} Green $	1.46800 0.00378 .00174 .00552 63.73 oup III Glasse 1.52488 1.52747	1.84130 0.01540 .00604 .02144 32.00 es: 733, 734, 7	1,90279 0.01415 .00580 .01995 42.13 794, 735, 841, 1.74302 1.74696	.00057 .00058 0.1076 795, 840 0.00047 .00048
$ \begin{array}{c} n_F \\ n_F - n_D \\ n_D - n_C \\ n_F - n_C \end{array} $ $ \begin{array}{c} Green $ $ Green $ $ n_C \\ n_D \\ n_F $	1.46800 0.00378 .00174 .00552 63.73 oup III Glasse 1.52488 1.52747 1.53373 .00626 .00259	1.84130 0.01540 .00604 .02144 32.00 es: 733, 734, 7 1.74916 1.75428 1.76683	1,90279 0.01415 .00580 .01995 42.13 794, 735, 841, 1.74302 1.74696 1.75636	.00057 .00058 0.1076 795, 840 0.00047 .00048
Gr Gr Gr n_{C} n_{C} n_{C} n_{C} n_{C} n_{C} n_{D} n_{F} n_{F}	1.46800 0.00378 .00174 .00552 63.73 oup III Glasse 1.52488 1.52747 1.53373 .00626	1.84130 0.01540 .00604 .02144 32.00 ss: 733, 734, 7 1.74916 1.75428 1.76683 .01255	1,90279 0.01415 .00580 .01995 42.13 794, 735, 841, 1.74302 1.74696 1.75636 0.00940	.00057 .00058 0.1076 795, 840 0.00047 .00048
Gr Gr n_{C} n_{D} n_{D} n_{C} n_{D} n_{D} n_{F} n_{D} n_{C} n_{D} n_{C} n_{D} n_{C} n_{D} n_{C}	1.46800 0.00378 .00174 .00552 63.73 oup III Glasse 1.52488 1.52747 1.53373 .00626 .00259	1.84130 0.01540 .00604 .02144 32.00 ss: 733, 734, 7 1.74916 1.75428 1.76683 .01255 .00512	1,90279 0.01415 .00580 .01995 42.13 794, 735, 841, 1.74302 1.74696 1.75636 0.00940 .00394	.00057 .00058 0.1076 795, 840 0.00047 .00048

n_C	1.49409	1.84200	1.80081	0.00051
n_D	1.49602	1.84844	1.80587	.00051
n_F	1.50064	1.86444	1.81811	.00053
$n_F - n_D$	0.00462	0.01600	0.01224	
$n_D - n_C$.00193	.00644	.00506	
$n_F - n_C$.00655	.02244	.01730	
ν	63.29	28.97	45.02	0.0827

Group V Glasses: 760, 786, 787, 764, 762, 788

n_C	1.46984	1.75656	1.89008	0.00056
n_D	1.47139	1.76190	1.89640	.00056
n_F	1.47458	1.77476	1.91280	.00056
$n_F - n_D$	0.00319	0.01286	0.01640	
$n_D - n_C$.00155	.00534	.00632	
$n_F - n_C$.00474	.01820	.02272	
ν	69.07	38.17	30.43	0.0652

^a Numbers of Glasses in each group are those from earlier composition tables with F omitted.

4.5. The BaO-Nb₂O₅-SiO₂ System

Table 12 gives equations for glasses in the two groups in this system. It will be noted that ν values for Nb₂O₅ are negative.

Figure 49. Compositional plot showing the groups into which glasses in the BaO-ZnO-SiO₂ system were divided by computer evaluation of property data.

Figure 50 shows compositions of glasses used in the two computer groups. The position of the boundary between the groups, indicated by a broken line, was determined by solving the following equations simultaneously

I
$$n_D = 1.49408 \text{ SiO}_2 + 2.80691 \text{ Nb}_2\text{O}_5 + 1.85111 \text{ BaO}$$

II $n_D = 1.56558 \text{ SiO}_2 + 2.69145 \text{ Nb}_2\text{O}_5 + 1.78584 \text{ BaO}$
 $\text{SiO}_2 + \text{Nb}_2\text{O}_5 + \text{BaO} = 1$

Solutions and calculation checks are as follows

SiO ₂	0.477	0.516
Nb_2O_5		.100
BaO	.523	.384
$n_D(\mathbf{I})$	1.6808	1.7624
$n_D({ m II})$	1.6808	1.7627

TABLE 12. BaO-Nb2O5-SiO2 glasses

Glass property = $A \operatorname{SiO}_2 + B \operatorname{Nb}_2 O_5 + C \operatorname{BaO}$

Glass property	A	В	С	Std. Error
		Group I Glasse	s	
n_C	1.49209	2.78035	1.84569	0.00053
n_D	1.49408	2.80691	1.85111	.00053
n_F	1.49870	2.87595	1.86462	.00055
$n_F - n_D$	0.00462	0.06904	0.01351	
$n_D - n_C$.00199	.02656	.00542	
$n_F - n_C$.00661	.09560	.01893	
ν	59.38	-103.22	43.03	0.3705
		Group II Glasse	es	
n_C	1.56263	2.66145	1.78253	0.00112
n_D	1.56558	2.69145	1.78584	.00110
n_F	1.57170	2,77114	1.79431	.00109
$n_F - n_D$	0.00612	0.07969	0.00847	
$n_D - n_C$.00295	.03000	.00331	
$n_F - n_C$.00907	.10969	.01178	
ν	42.36	-35.25	47.86	0.3004

Figure 50. Compositional plot showing the groups into which glasses in the Ba-Nb₂O₅-SiO₂ system were divided by computer evaluation of property data.

4.6. The BaO-Al₂O₃-SiO₂ System

Table 13 gives composition-property equations for the two groups of glasses in this system. Phase diagrams for this ternary system and the three binary systems have been published [23, 24, 25]. Figure 51 is a mol fraction plot converted from published diagrams 210 and 556 [23]. This figure shows the compositions of glasses used in computerized groups. Glasses situated in the solid solution area of BaO · 2SiO 2 and 2BaO · 3SiO 2 were placed in Group I. Those in the BaO · Al₂O₃ · 2SiO₂ primary phase field were placed in Group II. In each case the criterion, previously mentioned, for "compatibility groups" was adhered to. Location of the boundary between the two groups cannot be calculated exactly as was the case in some of the other systems.

TABLE 13. BaO-Al₂O₃-SiO₂ glasses
Glass Property = A SiO₂ + B Al₂O₃ + C BaO

Property	A	В	С	Std. Error
Group I Glasses: a 1131, 1132, 1133, 1164, 1165, 1166				
Solid Solu	tion of BaO · 2	SiO2 and 2Ba	aO · 3SiO ₂	
n_C	1.56751	1.38164	1.75764	0.00029
n_D	1.57129	1.37834	1.76167	.00032
n_F	1.57893	1.38051	1.77168	.00032
$n_F - n_D$	0.00764	0.00217	0.01001	
$n_D - n_C$.00378	-0.00330	.00403	
$n_F - n_C$.01142	-0.00113	.01404	
ν	50.05	95.47	53.80	0.2210

Group II Glasses: 1143, 1123, 1128, 1129, 1130, 1196, 1197, 1198, 1210, 1207, 1211, 1209, 1208

BaO · Al	O ₃ · 2SiO ₂ Prim	ary Phase		
n_C	1.48964	1.57531	1.82391	0.00074
n_D	1.49166	1.57848	1.82924	.00075
n_F	1.49601	1.58578	1.84299	.00076
$n_F - n_D$	0.00435	0.00730	0.01375	
$n_D - n_C$.00202	.00317	.00533	
$n_F - n_C$.00637	.01047	.01908	
ν	66.90	55.62	36.61	0.2063

^a Numbers of Glasses in each group are those from earlier composition tables with F omitted.

Previous work [3] has indicated that oxide factors for refractive index are characteristic of the primary phase field involved. For example, the n_D factors for SiO₂ in SiO₂ fields (particularly cristobalite and tridymite) is reasonably close to 1.458, the refractive index n_D for fused silica. Likewise the specific volume factor for such glasses corresponds to a density of 2.20 approximating the density of fused silica. The n_D factor of 1.57848 for glasses in Group II is reasonably close to those found for Al₂O₃ in other glass systems [3]. However, the 1.37834 n_D factor for Al₂O₃ for glasses in Group I is low and suggests the need for more data in this area.

Numbers of glasses in each group are those from earlier composition tables with F omitted.

FIGURE 51. Triangular plot showing the phase fields and groups into which glasses in the BaO-Al₂O₃-SiO₂ system were divided by computer evaluation of property data.

5. Formulation of Glasses for Specific Optical Applications

The glass technologist and optical designer can use the foregoing quantitative relations between glass compositions and properties to calculate compositions having desired optical properties. The use of this method [3] must be based on reliable experimental data. The data shown in this report are considered to meet this criterion. The method can best be understood by outlining examples of its use.

5.1. Example One

Values of n_D in Group I TiO₂ glasses can be determined using the equation: $n_D = 1.48163$ SiO₂+2.29497 TiO₂+1.84628 BaO. Consider glass F35 having a calculated $n_D = 1.67236$. It is desired to increase the index by 0.0050. This can be done in three ways: (1) substitution of TiO₂ for SiO₂, (2) substitution of BaO for SiO₂, or (3) substitution of TiO₂ for BaO. Differences between factors for these substitutions are respectively 0.81334, 0.36465, and 0.44869. The composition change for the first substitution is 0.0050/0.81334=0.0061 TiO₂ for SiO₂. The others are determined in the same manner. The following table shows compositions and calculated values for n_D , mean dispersion $n_F - n_C$, ν , and densities for the four glasses.

	F35	(1)	(2)	(3)
SiO ₂	0.6000	0.5939	0.5863	0.6000
TiO ₂	.1000	.1061	.1000	.1111
BaO	.3000	.3000	.3137	.2889
n_D	1.67236	1.67732	1.67736	1.67734
$n_F - n_C$	0.01558	0.01594	0.01569	0.01616
ν	44.20	43.57	43.95	43.27
Density	3.754	3.765	3.807	3.732

5.2. Example Two

Consider glass F1432 in Group I Nb₂O₅ glasses which has a measured n_D of 1.63471. It is desired to calculate the exact composition having this index value. Since it contains three oxides one must be fixed arbitrarily. Assume that SiO₂ = 0.66. The solution is obtained by solving these equations simultaneously:

$$n_D = 1.49408 \text{ SiO}_2 + 2.80691 \text{ Nb}_2\text{O}_5 + 1.85111 \text{ BaO}$$

 $\text{SiO}_2 + \text{Nb}_2\text{O}_5 + \text{BaO} = 1$

Then; 1.63471 = 1.49408 (.66) + 2.80691 $Nb_2O_5 + 1.85111$ $(0.34 - Nb_2O_5)$

	Glass F1432	Calculated
SiO ₂	0,6600	0.6600
Nb_2O_5	.0200	.0201
BaO	.3200	.3199
n_D	1.63471	1.63468
$n_F - n_C$	0.01241	0.01234
ν	51.10	50.87
(Measured table 6)	values for F14	32 are fro

5.3. Example Three

Glass F583 in Group II Ta_2O_5 glasses has a measured mean dispersion of 0.01612. Calculate the exact composition assuming $SiO_2 = 0.53$. The answer is obtained from the equation:

$$0.01612 = 0.00635 (0.53) + 0.08557 (0.47 - BaO) + 0.01742 BaO$$

	F583 (Table 4)	Calculated
SiO ₂	0.5300	0.5300
Ta ₂ O ₅	.0700	.0670
BaO	.4000	.4030
n_D	1.71844	1.71598
$n_F - n_C$	0.01612	0.01612
ν	44.60	44.65
Density	4.703	4.678

5.4. Example Four

Glass F553 in Group II La_2O_3 glasses has a measured density of 4.387 (volume = 0.22795). Assume SiO_2 =0.55 and calculate exact composition. The solution is given by: 0.22795 = 0.32645 (0.55) - 0.10865 La_2O_3 + 0.14791 (0.45 - La_2O_3)

	F553 (Table 3)	Calculated
SiO ₂ La ₂ O ₃ BaO Density n_D $n_F - n_C$	0.5500 .0700 .3800 4.387 1.69496 0.01369 50.80	0.5500 .0708 .3792 4.387 1.69519 0.01368 50.79

5.5. Example Five

Figure 45 shows lines of equal n_D in the TiO₂ glasses and figure 46 shows lines of constant ν in this system. Superposition of these two figures indicates that the 1.75 n_D line crosses the 35 ν line in Group I. However, the 1.75 n_D line crosses the 30 ν line in Group II glasses. Calculate the two compositions.

(a) Composition of the glass having an n_D of 1.75 and a ν of 35 is obtained by solving the following equations simultaneously:

$$1.75 = 1.48163 \text{ SiO}_2 + 2.29497 (1 - \text{SiO}_2 - \text{BaO}) + 1.84628 \text{ BaO}$$

 $35 = 60.06 \text{ SiO}_2 - 43.03 (1 - \text{SiO}_2 - \text{BaO}) + 41.56 \text{ BaO}$

The composition is found to be:

SiO_{2}	0.4918
${ m TiO}_2$.1851
BaO	.3231

A check calculation shows the values as 1.75000 and 35.01.

(b) Composition of the glass having an n_D of 1.75 and a ν of 30 is obtained by solving the equations:

$$1.75 = 1.48553 \text{ SiO}_2$$

 $+ 2.35228 (1 - \text{SiO}_2 - \text{BaO}) + 1.79234 \text{ BaO}$

$$30 = 41.27 \text{ SiO}_2 -10.73 (1 - \text{SiO}_2 - \text{BaO}) + 49.93 \text{ BaO}$$

The composition is:

$$\begin{array}{ccc} SiO_2 & 0.5852 \\ TiO_2 & .2450 \\ BaO & .1698 \end{array}$$

A check calculation gives the values as 1.74998 and 30.00.

6. Summary

The areas of glass formation in the following ternary oxide systems have been determined:

BaO-TiO₂-SiO₂ BaO-La₂O₃-SiO₂ BaO-Ta₂O₅-SiO₂ BaO-ZnO-SiO₂ BaO-Nb₂O₅-SiO₂ BaO-Al₂O₃-SiO₂

Property measurements, including sag point, refractive index and dispersion, liquidus temperature, and infrared transmittance, were made on the resulting glasses. In addition, composition-property data were evaluated to develop quantitative relations for use by glass technologists in formulating glasses having specific property values.

The writers wish to thank John A. Moore, who melted the experimental glasses; Thomas G. Scuderi, who helped in making the property measurements; and I. H. Malitson, who made the refractive index measurements.

7. References

- [1] Spinner, Sam, Cleek, Given W., and Hamilton, Edgar H., Determination and use of the sag point as a reference point in the heating of glasses, J. Res. Nat. Bur. Stand. (U.S.), 59, No. 3, 227-231 (Sept. 1957) RP2791.
- [2] Grauer, Oscar H., and Hamilton, Edgar H., An improved apparatus for the determination of liquidus temperatures and rates of crystal growth in glasses. J. Res. Nat. Bur. Stand. (U.S.), 44, 495-502 (May 1950) RP2096.
- [3] (a) Babcock, C. L., Substructures in silicate glasses, J. Amer. Ceram. Soc. 51, 163 (1968);
- (b) Babcock, C. L., Substructure classification of silicate glasses, Ibid. 52, 151 (1969).
- [4] Cleek, Given W., and Hamilton, Edgar H., Properties of barium titanium silicate glasses. J. Res. Nat. Bur. Stand. (U.S.), 57, No. 6, 317-323 (Dec. 1956) RP2720.
- [5] Phillips, C. J., Glass the miracle maker, p. 120 (Pittman Publishing Corp., 1948).
- [6] Rase, D. E., and Roy, Rustum, Phase equilibria in the sys-
- tem BaO-TiO₂, J. Am. Ceram. Soc. **38**, 102 (1955). [7] (a) Bunting, E. N., Phase equilibria in the systems TiO₂, TiO2-SiO2 and TiO2-Al2O3, J. Res. Nat. Bur. Stand. (U.S.), 11, 719 (1933) RP619;
 - (b) Ricker, T. W., and Hummel, F. A., Reactions in the system TiO2-SiO2; revision of the phase diagram, J. Am. Ceram. Soc. 34, 271 (1951);
 - (c) DeVries, R. C., Roy, Rustum, and Osborn, E. F., The system TiO2-SiO2, Trans. Brit. Ceram. Soc. 53, 525 (1954)
- [8] (a) Eskola, P., The silicates of strontium and barium, Am. J. Sci. 5th series, 4, 331 (1922);
 - (b) Grieg, J. W., Immiscibility of silicate melts, Am. J. Sci., 5th series, 13, 1 (1927).
- [9] Rase, D. E., and Roy, Rustum, Phase equilibria in the system BaTiO₃-SiO₂, J. Am. Ceram. Soc. 38, 389 (1955). Correction: Ibid. 39, 120 (1956).
- [10] Hamilton, Edgar H., and Cleek, Given W., Shape of the liquidus surface as a criterion of stable glass formation. J. Res. Nat. Bur. Stand. (U.S.), 60, No. 6, 593-596 (June 1958) RP2872.

[11] Hubbard, Donald, and Hamilton, Edgar H., Studies of the chemical durability of glass by an interferometric method, J. Research J. Res. Nat. Bur. Stand. (U.S.), 27, 143-157 (Aug. 1941) RP1409.

[12] Hubbard, Donald, Hygroscopicity of optical glasses as an indicator of serviceability, J. Res. Nat. Bur. Stand. (U.S.),

36, 365-375 (April 1946) RP1706.

[13] Saunders, James B., An apparatus for photographing interference phenomena, J. Res. Nat. Bur. Stand. (U.S.), 35, 157-186 (Sept. 1945) RP1668.

[14] Levin, Ernest M., Robbins, Carl R., and McMurdie, Howard F., Phase diagrams for ceramists, Figure 209, American

Ceramic Society (1964).

[15] Bunting, E. N., Phase equilibria in the system SiO₂-ZnO, J. Res. Nat. Bur. Stand. (U.S.), 4, 131-136 (1930) RP136.

[16] Roth, R. S., and Waring, J. L., Phase relations in the binary system barium oxide-niobium pentoxide. J. Res. Nat. Bur. Stand. (U.S.), 65A (Phys. and Chem.), No. 4, 337–344 (July-Aug. 1961).

[17] Ibrahim, M., and Bright, N.F.H., The binary system Nb₂O₅-

SiO₂, J. Amer. Ceram. Soc. 45 [5], 221 (1962).

[18] Morey, G. W., Properties of glass, 2nd Edition (Reinhold Publishing Corp., New York, N.Y., 1954), p. 75.

[19] Scholes, S. R., Modern Glass Practice (Industrial Publications, Inc., Chicago, Ill, 1941), p. 48.

[20] Morey, G. W., Properties of glass, 2nd Edition (Reinhold Publishing Corp., New York, N.Y., 1954), p. 85. [21] Rawson, H., Inorganic glass-forming systems (Academic Press, London, 1967), p. 199.

[22] Stanworth, J. E., Physical properties of glass (Oxford at the Clarendon Press, Oxford, 1950), p. 5.

[23] Levin, Ernest M., Robbins, Carl R., and McMurdie, Howard F., Phase diagrams for ceramists, Figures 556 and 557, American Ceramic Society (1964).

[24] Thomas, Robert H., Phase equilibrium in a portion of the ternary system BaO-Al₂O₃-SiO₂, J. Amer. Ceram. Soc.

33, 35 (1950).

[25] (a) Lin, H. C., and Foster, W. R., System BaO-Al₂O₃-SiO₂: I Amer. Mineral. 53 [1-2], 134 (1968);

(b) Foster, W. R., and Lin, H. C., System BaO-Al₂O₃-SiO₂: II Amer. J. Sci. 267A, 134 (1969);

(c) Lin, H. C., and Foster, W. R., System BaO-Al₂O₃-SiO₂: III Mineral, Mag. **37** [288], 459 (1969);

(d) Semler, C. E., and Foster, W. R., System BaO-Al₂O₃-SiO₂: IV J. Amer. Ceram. Soc. **52** [12], 679 (1969);

(e) Lin, H.C., and Foster, W. R., System BaO-Al₂O₃-SiO₂: VJ. Amer. Ceram. Soc. **53** [10], 549 (1970);

(f) Semler, C. E., and Foster, W. R., System BaO-Al₂O₃-SiO₂: VI J. Amer. Ceram. Soc. **53** [11], 595 (1970).

[26] Gibbs, J. W., The Scientific Papers of J. Willard Gibbs, (Longmans Green, New York, 1906).

[27] (a) Morey, G. W., Section G in Commentary on the Scientific Writings of J. Willard Gibbs (Yale University Press, 1936);

(b) Morey, G. W., The Properties of Glass (Reinhold, New York, 1954).

FORM NBS-114A (1-71)			
U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET 1. PUBLICATION OR REPORT NO. NBS-MN-135	2. Gov't Accession No.	Recipient's	Accession No.
4. TITLE AND SUBTITLE			Date
PROPERTIES OF IN SOME TERNARY SYSTEMS CONTAINING	NG	September 1973	
BaO AND SiO ₂	(Performing O	rganization Code
7. AUTHOR(S)		Performing C	Organization
G.W. Cleek and C.L. Babcock		, I cirotaing c	28
9. PERFORMING ORGANIZATION NAME AND ADDRESS		0. Project/Ta	sk/Work Unit No.
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234		1. Contract/G	rant No.
12. Sponsoring Organization Name and Address		3. Type of Re	port & Period
Same as 9.		Final	
Same as 9.		14. Sponsoring Agency Code	
15. SUPPLEMENTARY NOTES			
The second secon			
1/ .pomp.cm/4.200 1 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1			
16. ABSTRACT (A 200-word or less factual summary of most significant bibliography or literature survey, mention it here.)	information. If document	includes a sig	nificant
The glass forming regions in six ternary of	xide systems cont	aining Ba	o, sio ₂
and a third oxide have been determined. The proj	perties of the re	sulting g	lasses
were measured and the results are reported. The	data on refracti	ve indice:	s, dis-
persions and specific volumes were evaluated by	computer methods	in an atte	empt to
identify "substructures" containing the cations	orecent in the al	25505	
identity substitutities containing the cations	present in the gr	asses.	
17. KEY WORDS (Alphabetical order, separated by semicolons)			
Barium glasses; barium silicates; glass proper		rty factor	cs;
oxide glasses; silicate substructures; ternary g			
18. AVAILABILITY STATEMENT	19. SECURITY (THIS REPO		1. NO. OF PAGES
	(THIS KEP)	, KI	42
TUNLIMITED.	UNCL ASSI	TED	
FOR OFFICIAL PLOTES TO THE PROPERTY OF THE PRO	20. SECURITY		2. Price
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS.	(THIS PAG		z. Fince

70 cents

UNCL ASSIFIED

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts. Includes listings of other NBS papers as issued.

Published in two sections, available separately:

Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$17.00; Foreign, \$21.25.

• Mathematical Sciences (Section B)

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$9.00; Foreign, \$11.25.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's measurement, research, developmental, cooperative, and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Includes listing of all NBS papers as issued. Annual subscription: Domestic, \$6.50; Foreign, \$8.25.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Burcau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality, and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other-agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89–306, and Bureau of the Budget Circular A-86 entitled, Standardization of Data Elements and Codes in Data Systems.

Consumer Information Series. Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service (Publications and Reports of Interest in Cryogenics).

A literature survey issued weekly, Annual subscription: Domestic, \$20.00; foreign, \$25.00.

Liquefied Natural Gas. A literature survey issued quarterly. Annual subscription: \$20.00.

Superconducting Devices and Materials. A literature survey issued quarterly. Annual subscription: \$20.00. Send subscription orders and remittances for the preceding bibliographic services to the U.S. Department of Commerce, National Technical Information Service, Springfield, Va. 22151.

Electromagnetic Metrology Current Awareness Service (Abstracts of Selected Articles on Measurement Techniques and Standards of Electromagnetic Quantities from D-C to Millimeter-Wave Frequencies). Issued monthly. Annual subscription: \$100.00 (Special rates for multi-subscriptions). Send subscription order and remittance to the Electromagnetic Metrology Information Center, Electromagnetics Division, National Bureau of Standards, Boulder, Colo. 80302.

Order NBS publications (except Bibliographic Subscription Services) from: Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use, \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE COM-215

