Batsim: a Realistic Language-Independent Resources and Jobs Management Systems Simulator

Pierre-François Dutot¹, Michael Mercier^{1,2}, Millian Poquet¹, Olivier Richard¹

DATAMOVE Team. LIG

20th JSSPP Workshop, May 27 2016, Chicago

HPC cluster management

Resources and Jobs Management Systems (RJMS)

- AKA batch scheduler
- Orchestrates resources on HPC clusters
 - Implements scheduling policies
 - Manages parallel jobs
 - Enforces energy policy
- Examples: SLURM, OAR, TORQUE, PBS...

RJMS Facts

- Large scale: from 100 to 100 000 nodes
- Critical production system: downtime is \$
- Need to be energy efficient: HPC energy consumption in MW

Many parameters to consider:

- scheduling policies
- platform

Motivation

- workloads
- metrics

We need to experiment on the RJMS but...

Production systems are not available for testing RJMS

- They are already full of users jobs!
- Energy/time cost of experiments is not affordable

Simulation at rescue

Motivation

- Easy to select workloads, platforms
- Fast comparison of algorithms
 - Real: 33 compute nodes for 3 hours
 - Simu: 1 laptop for 3 seconds
- Closest approches
 - ALEA (Klusáček and Rudová)
 - INSEE based simulator (Pascual et al.)

Common difficulties

- Precision vs. Performance
- Validation: comparison with reality

Batsim: Batch scheduler simulator

Focus on realism, facilitate comparison

Batsim's approach

- Realistic network model
 - → SimGrid network models, topologies
- Multiple job models
 - → From simple to realistic
- Openness
 - → Open source and documented
- Modularity
 - → Language-agnostic text-based protocol
- Easy to evaluate and compare
 - → Any event-based algorithm can be plugged
 - → Including real RJMS ones!

Outline

- Motivation
- 2 How it works
 - General Architecture
 - Communication Protocol
- 3 Evaluation
- 4 Conclusion

Batsim Overview

- Core program (≈ 3k lines of C++ code)
- Several schedulers already adapted
 - In Python, Perl, C++
 - More than 15 scheduling and energy policies
 - From production and research
- Simulates a RJMS and the compute nodes
- Scheduler in another process
- Based on the SimGrid framework
 - Reliable: Has been used for 15+ years, strong community
 - Scalable
 - Topology aware network models

Real vs. Simulated

Batsim inputs

What is a Batsim platform?

● Batsim platform ≃ SimGrid platform

What is a Batsim workload?

- List of jobs
 - Submit time
 - Walltime (user-given maximum runtime)
 - Required resources
- Each job is associated to a profile

Job Profile types

Motivation

Delay

Fixed amount of time

MSG

- A computation vector (1D matrix)
- A communication 2D matrix

Sequence

- A sequence of profiles
- Repeated *n* times
- à la BSP1

¹Bulk Synchronous Parallel model

Communication Protocol

Protocol characteristics

- Textual
- Synchronous
- Request-Reply pattern
- Unix Domain Socket
- More info in the doc

Motivation

- Motivation
 - General Context
 - RJMS Simulation
- 2 How it works
 - General Architecture
 - Communication Protocol
- Evaluation
 - Evaluation process description
 - Our evaluation
 - Results Gantt charts
 - Results Metrics
- Conclusion
 - Results summary

Evaluation process

Same scheduler run in vivo and in simulo

→ Compare the metrics

Our evaluation process is reproducible

	In Vivo	In Simulo
Platform	Grid'5000 testbed cluster	SimGrid XML platform
	33 nodes under 1 switch	
Jobs	NAS Parallel Benchmarks	Job profile generated from
	Type: IS, FT and LU	real execution instrumentation
	Size: from 1 to 32 nodes	
	Total: 47 different jobs	
Workloads	Contains 800 jobs randomly picked	
	Inter arrival times: Weibull dist. (shape = 2, scale = 15)	
	Job size: $2^{\lfloor u \rfloor}$, $u \sim \text{Lognormal dist.}(\mu = 0.25, \sigma = 0.5)$	
	Total: 9 workloads ≈4h each	
	2 runs/workload	1 deterministic simulation
Scheduler	Kamelot: scheduler from OAR (conservative backfilling)	
	Directly executed by OAR	BatAar: BatSim Adaptor for OAR
Resources	10 000+ hour×cores	Only 30s on a laptop

Evaluation instantiation

Motivation

Evaluation

000000000

We need aggregated metrics:

Makespan AKA Cmax

$$max_i(FinishT_i)$$

Mean waiting time

$$\frac{1}{nbJobs} \sum_{i} StartT_{i} - SubmitT_{i}$$

Mean bounded slowdown

$$\frac{1}{nbJobs} \sum_{i} max(\frac{FinishT_{i} - SubmitT_{i}}{max_{i}(K, FinishT_{i} - StartT_{i})}, 1)$$

Real life is not deterministic:

- Every real execution different
- Simulation is deterministic
- → It must be representative

Metrics comparison - One workload

Metrics comparison - All workloads

Metrics comparison - Zoom out

Metrics comparison - Difference overview

Differences

- Waiting times are underestimated
- Beware of overfitting OAR's behaviour

Outline

- Motivation
 - General Context
 - RJMS Simulation
- 2 How it works
 - General Architecture
 - Communication Protocol
- Evaluation
 - Evaluation process description
 - Our evaluation
 - Results Gantt charts
 - Results Metrics
- 4 Conclusion
 - Results summary

Conclusion

Results discussion

Done

- Same scheduler run in vivo and in simulo
 - Delay and MSG model
 - Similar behavior on classic metrics
 - Small workloads
 - Small homogeneous platform

Next steps

- Test other schedulers in vivo and in simulo (e.g. Flux scheduler)
- Characterize real experiment noise (\$\$) (in progress)
- Heterogeneous platforms (\$\$)
- Big platforms (\$\$\$\$\$)
- Validate the energy models
- Include IO simulation (→ big data workload simulation)

Batsim:

https://github.com/oar-team/batsim

Contacts

michael.mercier@inria.fr millian.poguet@inria.fr

References:

- Dalibor Klusáček, Hana Rudová. Alea 2 Job Scheduling Simulator. In proceedings of the 3rd International ICST Conference on Simulation Tools and Techniques (SIMUTools 2010), ICST, 2010.
- Jose A. Pascual, Jose Miguel-Alonso, Jose A. Lozano. Locality-aware policies to improve job scheduling on 3D tori. The Journal of Supercomputing, 2015, vol. 71, no 3, p. 966-994.
- D.G. Feitelson. Workload Modeling for Computer Systems Performance Eval- uation. Cambridge University Press, Cambridge, 2015.

Workload File Example

```
"nb res": 256.
"jobs": [
 {"id": 1, "subtime": 10, "walltime": 120, "res": 4, "profile": "is.B.4"},
 {"id": 2, "subtime": 20, "walltime": 100, "res": 4, "profile": "is.B.4"}
"profiles": {
  "is.B.4": {
    "type": "msg_par",
    "cpu": [3.9e10, 3.8e10, 3.8e10, 3.8e10],
    "com": [163195200.0, 54499200.0, 54499200.0, 54499200.0,
            163195200.0, 54499200.0, 54499200.0, 54499200.0,
            163195200.0, 54499200.0, 54499200.0, 54499200.0,
            163195200.0, 54499200.0, 54499200.0, 54499200.0],
    "command": "mpirun is.B.4"
```

Inner Mechanics overview

What is inside Batsim?

- Batsim is NOT a simple event loop
- Batsim = many processes which interact with each other

Inner Mechanics details

Why does Batsim use such a design?

- Permit fine-grained RJMS simulation
- More complex, but more modular
- Individual parts are well separated and remain simple
- Specific parts can be detailed, without modifying the other parts (e.g. scheduling time, job launchs...)
- More complex designs can be done (e.g. distributed RJMS...)