Diskreetin Matematiikan Paja

Tehtäviä viikolle 2. (24.3 - 25.3) Jeremias Berg

Tämän viikon tehtävien teemoina on tulojoukot, relaatiot sekä kuvaukset. Näistä varsinkin relaatiot ja kuvaukset ovat tärkeitä jatkon kannalta. Materiaali käsittelee näitä suurinpiirtein sivuilla 14 - 28. Tässä vaiheessa voi tuntua puuduttavalta tehdä samalta tuntuvaa asiaa uudestaan ja uudestaan. Varmistu kuitenkin siitä että ymmärrät käsiteltävät asiat, ne ovat tärkeässä roolissa melkein kaikessa matematiikassa.

Laskuharjoituksista lisäpisteitä niin että:

85% tehtynä antaa kokeeseen 50% lisäpisteitä.

75% tehtävistä 40% koepisteistä

65% tehtävistä 30% koepisteistä

55% tehtävistä 20% koepisteistä

Toisin sanoen tehtäviä tekemällä voi kurssista päästä läpi saamatta pistettäkään kokeesta (tosin arvosana tällöin 1!) Tässä vaiheessa voi myös huomauttaa että arvosanan 5 saamiseksi ei täydet koepisteet riitä, eli vitosen saamiseksi pitää tehdä ainakin 55% laskuharjoituksista.

- 1. Olkoot $A_1 = \{1, 2, 3\}, A_2 = \{A_1, 5, 6\}, A_3 = \{A_2, A_1, 7\}, D = \{A_1, A_2, A_3\}$ Kirjoita auki seuraavat joukot:
 - (a) $\mathcal{P}(A_1)$
 - (b) $\mathcal{P}(A_2)$
 - (c) $\mathcal{P}(D)$
 - (d) [] D
- 2. Kirjoita auki seuraavat tulojoukot
 - (a) $\{67, 5, 34\} \times \{99, 87\}$
 - (b) $\{67, 5, 34\} \times \emptyset$
 - (c) $\{67, 5, 34\} \times \{\emptyset\}$
 - (d) $\{a, e, i, o, u\} \times \{d, t\}$
- 3. Olkoot $A=\{x\in\mathbb{N}:x<10\}$ ja $B=\{x\in\mathbb{Z}:|x|<3\}$
 - (a) Mitä silloin on joukossa $A \times B$ entä joukossa $B \times A$.
 - (b) Kuinka monta alkiota on joukossa A ja B, entäs $A \times B$.
 - (c) Tee hypoteesi edellisen kohdan havainolle ja osoita yleisesti että jos |A|=m, |B|=n niin $|B\times A|=|A\times B|=n*m$

Huom! Tässä vaiheessa riittää "informaali" käsittely joukon koon käsitteelle, ensi viikolla formalisoimme tämän käsitteen.

4. Todista että kaikille joukoille X, Y ja $A \subset X, B \subset Y$ pätee:

$$C(A \times B) = CA \times Y \cup X \times CB$$

- 5. Piirrä seuraavat järjestetyt parit koordinaatistoon.
 - (a) (3,4)
 - (b) (4,3)
 - (c) (1,2)
 - (d) (2,1)
 - (e) (-3, -5)
 - (f) (-2,2)
 - (g) (2,-2)

Päteekö yleisesti (a, b) = (b, a)?

- 6. Materiaali mainitsee että järjestetyille pareille voidaan antaa joukkoopillinen määritelmä $(a,b)=\{\{a\},\{a,b\}\}$
 - (a) Osoita ensiksi että määritelmänä ei toimi $(a,b) = \{\{a\}, \{b\}\}\$ (Mitä huomasit tehtävässä 5?)
 - (b) *Osoita nyt että $(a, b) = \{\{a\}, \{a, b\}\}$ (Ekstensioaksioma auttaa. Tehtävänä on määritelmää apuna käyttäen osoittaa $(a, b) = (c, d) \Leftrightarrow a = c \land b = d$)
- 7. Olkoot $X = \{1, 2, 3, 4....10\}$ Kirjoita auki seuraavat Relaatiot. Piirrä myös nuolikaaviot (sivu 18).
 - (a) $\mathcal{R} = \{(x, y) \in X \times X : x = 2y\}$
 - (b) $\mathcal{R} = \{(x, y) \in X \times X : x = 5 y\}$
 - (c) $\mathcal{R} = \{(x, y) \in X \times X : x = y\}$
 - (d) $\mathcal{R} = \{(x, y) \in X \times X : \sqrt{x^2 + y^2} \in \mathbb{Z}\}$
- 8. Olkoon X joukko $A \subset X$, $B \subset X$ ja R joukon X relaatio. Osoita seuraavat seikat. (Muista että määrittelemme Relaation käsitteen joukkona, eli näissä todistuksissa käytetään samoja tekniikoita kun viime viikolla osittaessamme joukkoja samoiksi).
 - (a) $R(A \cup B) = R(A) \cup R(B)$
 - (b) $R(A \cap B) \subset R(A) \cap R(B)$ Anna myös esimerkki tapauksesta jossa sisältyminen on aitoa (eli $\exists x \in R(A) \cap R(B) \land x \notin R(A \cap B)$).
- 9. Kirjoita auki tehtävän 7 käänteisrelaatiot.

- 10. Olkoot $X=\{1,2,3,4\}$ Mitkä seuraavista relaatioista ($X\times X$ osajoukoista) ovat funktioita, miksi? Miksi ei? (Perustelujen tukena kannattaa käyttää määritelmää joka löytyy sivulta 22)
 - (a) $\{(1,1),(2,2),(3,3),(4,4)\}$
 - (b) $\{(1,4),(2,3),(2,2),(4,1)\}$
 - (c) $\{(2,3),(2,4),(3,4),(4,4)\}$
 - (d) $\{(1,1),(2,1),(3,1),(4,1)\}$
- 11. Muuta niitä tehtävän 10 relaatioita jotka eivät olleet funktioita jollain sopivalla lailla "tehdäksesi"niistä funktioita. (Huomaa siis että kaikki funktiot ovat relaatioita, mutta kaikki relaatiot eivät ole funktioita).
- 12. Olkoot X taas kuten tehtävässä 10. Olkoot $f: X \to X, f(x) = x+1$ Onko f kuvaus? entä jos $f: \mathbb{N} \to \mathbb{N}$?
- 13. Olkoot $A = \{1, 2\}$
 - (a) Muodosta kaikki kuvaukset $f: A \to A$,
 - (b) Anna esimerkki joukon A relaatiosta joka ei ole funktio
- 14. Olkoon $f: X \to Y$ ja $C, D \subset Y$ Osoita:
 - (a) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$
 - (b) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$

(Tässäkin on kyse joukkojen samaksi osoittamisesta, määritelmiä löytyy sivulta 23).

- 15. Mitkä seuraavista kuvauksista ovat, injektioita? surjektioita? bijektioita? Mikäli kuvaukset ovat bijektoita määrittele käänteiskuvaus. Pyri taas perustelemaan määritelmien avulla.
 - (a) $f: \mathbb{R} \to \mathbb{R}: f(x) = |x|$
 - (b) $f : \mathbb{R} \to \mathbb{R} : f(x) = x^2 + 4$
 - (c) $f: \mathbb{R} \to \mathbb{R}: f(x) = x^3 + 6$
 - (d) $f: \mathbb{R} \to \mathbb{R}: f(x) = |x| + x$
 - (e) $f : \mathbb{R} \to \mathbb{R} : f(x) = x(x-2)(x+2)$

Huomaa myös tälläisten todistusten ja joukkoopillisten todistusten läheinen yhteys, esim surjektivisuus osoitetaan tässä tapauksessa osoittamalla $f(\mathbb{R}) = \mathbb{R}$

- 16. Olkoon $f: \mathbb{Z} \to \mathbb{Z}$ kuvaus. Onko f bijektio kun:
 - (a) f(x) = x
 - (b) $f(x) = x^2$
 - (c) f(x) = 3x
 - (d) $f(x) = \begin{cases} x 1, x < 0, \\ x, x \ge 0 \end{cases}$
- 17. Olkoon $f: A \to B$ surjektio.
 - (a) Osoita että

$$f(f^{-1}(Y)) = Y \,\forall Y \subset B$$

(b) Osoita että

$$f^{-1}(f(X)) = X \,\forall X \subset A \Leftrightarrow f \text{ on injektio}$$

- (c) *Osaatko osoittaa edellisen kohdan \Rightarrow suunnan kahdella "eri tavalla". Sekä suoraan: Olettamalla vasemman puolen ja johtamalla oikean. Että käyttäen hyväksesi Logiikka 1:sen tulosta $p \to q \leftrightarrow \neg q \to \neg p$. Näistä ensimmäistä tapaa sanotaan konstruktiiviseksi todistukseksi ja toista vasta oletukseksi. Huomaa myös miten todistukset eroavat, kumpi oli helpompi?.
- 18. Olkoot A ja B joukkoja joissa A:ssa n alkiota ja B:ssa m (TS. |A|=n, |B|=m) ja $f:A\to B,\ g:B\to A$ kuvauksia.
 - (a) Jos a < b niin mitä johtopäätöksiä liittyen injektiivisyyteen ja surjektiivisuuteen voit sanoa f:stä ja g:stä.
 - (b) Oletetaan nyt että a = b. Osoita että

fon injektiivinen $\Leftrightarrow f$ on surjektiivinen

19. *Olkoot X joukko ja R_1, R_2 sen relaatioita. Määritellään

$$R_1 \circ R_2 = \{(x, y) \in X \times X : \exists z ((z, y) \in R_2 \land (x, z) \in R_1)\}$$

Olkoon nytXjoukkoRsen relaatio. Osoita että

$$R \circ R \subset R \Rightarrow R$$
 on transitiivinen

- 20. *Sitten lopuksi vähän enemmän relaatioista. Varsinkin joukkoopissa relaatiot ovat joskus melkeimpä tärkeämpiä kuin funktiot. olkoot X joukko ja R joukon relaatio. Sanomme että R on ekvivalenssirelaatio jos kaikille $a,b,c\in X$ pätee:
 - (a) $(a, a) \in R$, sanomme että relaatio on refleksiivinen

- (b) $(a,b) \Rightarrow (b,a) \in R$ sanomme että relaatio on symmetrinen
- (c) $(a,b) \in R \land (b,a) \in R \Rightarrow (a,c) \in R$ sanomme että relaatio on transitiivinen

Olkoot nyt $X=\mathbb{N}\times\mathbb{N}$ ja $R=\{((a,b),(c,d))\in X\times X: a+d=b+c\quad a,b,c,d\in\mathbb{N}\}$ Osoita että R on ekvivalenssirelaatio. (Huomaa siis että R on relaatio joukolle \mathbb{N}^4 eli jokainen R:n alkio "koostuu" 4:stä luonnollisesta luvusta