AVL

RAJANIKANTH B

Introduction

- **AVL Tree is also a Binary Search Tree but it is balanced tree.**
- Here balanced means the difference between height of right

In AVL Tree every node will have one extra information

known as BALANCE FACTOR.

BalanceFactor = HeightOfRightSubtree – HeightOfLeftSubtree

The AVL tree is named after its two inventors, G.M. Adelson-Velsky and E.M. Landis, who published it in their 1962.

After every insertion / deletion we need to check the BALANCE FACTOR

If it is other than -1 or 0 or +1 then we perform ROTATION to

- **► All AVL Trees are Binary Search Trees but All Binary Search Trees need not be AVL Tree**
- ➤ All Binary Search Trees are Binary Trees but All Binary Trees need not be Binary Search Tree

Rotations

LL Rotation

Insert: A, B, C

RR Rotation

Insert: C, B, A

LR Rotation

Insert: C, A, B

RL Rotation

Insert: A, C, B

Example

Construct AVL Tree by inserting 1 to 10

Deletion

Deletion in AVL Tree have 3

- 1. Deleting node without any child
- 2. Deleting node with one child
- 3. Deleting node with two children

1. Deleting node without any child

Step – 1:

Find given node in AVL Tree by performing search operation

Step – 2:

Remove given node in AVL Tree by using 'delete' operator

Step – 3:

Check balance factor of each node in AVL tree

Step – 4:

If tree is not balanced perform suitable Rotation operation to make tree balanced

2. Deleting node with one child

Step – 1:

Find given node in AVL Tree by performing search operation

Step – 2:

Make a link between its Parent and its Child

Step – 3:

Remove given node in AVL Tree by using 'delete' operator

Step – 4:

Check balance factor of each node in AVL tree

Step – 5:

If tree is not balanced perform suitable Rotation operation to make tree balanced

3. Deleting node with two children

Step – 1:

Find given node in AVL Tree by performing search operation

Step – 2:

Find the Smallest node in its Right Subtree

Step – 3:

Swap both given node and the Smallest node in its right subtree

Step – 4:

Remove given node in AVL Tree by using 'delete' operator

Step – 5:

Check balance factor of each node in AVL tree

Step – 6:

If tree is not balanced perform suitable Rotation operation to make tree balanced

Assignment

Construct AVL Tree by inserting 10 to 1

Write applications of AVL

Trees
Explain Deletion in AVL Tree in detail