Graphical representation of various runtime complexities:

Complexities are also known as :-

complexity O(1) O(log n) O(n) O(n^a) O(a^n) called as constant logarithmic lenier polinomial exponential

Few log formula that will become handy:

- $\log_a 1 = 0$
- $\log_a a = 1$
- $\log_a(x^*y) = \log_a x + \log_a y$
- $\log_a(x/y) = \log_a x \log_a y$
- $\log_a \mathbf{x}^p = \mathbf{p} \log_a \mathbf{x}$

Log in Mathematics is generally to base 10. But, in Computer Science, log is to base 2, by default.

We can remember the log in the below simple manner. Since the base is 2, we get the log value of a particular number by calculating the number of steps required bring the number to 1, by dividing it by 2.

Mercy Technologies

Let's take an example:

Say input is 8. We can divide 8 with 2, for 3 times to make its value to be 1.

- 1. 8/2=4
- 2. 4/2=2
- 3. 2/2=1

Now, say input is 16, we need 4 steps.

- 1. 16/2=8
- 2. 8/2=4
- 3. 4/2=2
- 4. 2/2=1

Log values for first 25 numbers:

log ₂ (x)	Notation	Value
log ₂ (1)	lb(1)	0
log ₂ (2)	lb(2)	1
log ₂ (3)	lb(3)	1.584963
log ₂ (4)	lb(4)	2
log ₂ (5)	lb(5)	2.321928
log ₂ (6)	lb(6)	2.584963
log ₂ (7)	lb(7)	2.807355
log ₂ (8)	lb(8)	3
log ₂ (9)	lb(9)	3.169925
log ₂ (10)	lb(10)	3.321928
log ₂ (11)	Ib(11)	3.459432
log ₂ (12)	lb(12)	3.584963
log ₂ (13)	lb(13)	3.70044
log ₂ (14)	lb(14)	3.807355
log ₂ (15)	lb(15)	3.906891
log ₂ (16)	lb(16)	4
log ₂ (17)	lb(17)	4.087463
log ₂ (18)	lb(18)	4.169925
log ₂ (19)	lb(19)	4.247928
log ₂ (20)	lb(20)	4.321928
log ₂ (21)	lb(21)	4.392317
log ₂ (22)	lb(22)	4.459432
log ₂ (23)	lb(23)	4.523562
log ₂ (24)	lb(24)	4.584963
log ₂ (25)	lb(25)	4.643856

Class Explanation:-

Linear Search vs Binary Search:

<u>Linear search:</u> Searching for an element, one element at a time without skipping any item.

<u>Binary Search:</u> Cut down your search to half as soon as you find middle of a sorted list.

```
public class LinearSearch {
    public static void main(String[] args) {
        int[] arr = { 10, 20, 30, 40, 50 };
        boolean result = linearSearch(arr, 166);
        System.out.println(result);
    }
    static boolean linearSearch(int[] arr, int x) {
        for (int i = 0; i < arr.length; i++) {
            if (arr[i] == x) {
                return true;
            }
        }
        return false;
    }
}</pre>
```

Mercy Technologies

```
public class BinarySearch {
      public static void main(String[] args) {
             int[] arr = { 10, 20, 30, 40, 50 };
             boolean result = binarySearch(arr, 50, 0, arr.length - 1);
             System.out.println(result);
      private static boolean binarySearch(int[] arr, int x, int low, int high) {
             while (low <= high) {</pre>
                    int mid = (low + high) / 2;
                    if (arr[mid] == x) {
                           return true;
                    } else if (arr[mid] < x) {</pre>
                           low = mid + 1;
                    } else if (arr[mid] > x) {
                           high = mid - 1;
             return false;
      }
}
```