Асимптотична нотация

Учителски екип

Обучение за ИТ кариера https://it-kariera.mon.bg/e-learning/

Съдържание

- 1. Сложност на алгоритъм асимптотична нотация
- 2. Монотонност
- 3. Асимптотични функции
- 4. Типове сложност
- 5. Времева сложност и скорост на изпълнение
- 6. Необходима памет

Сложност на алгоритъм

- Сложност на алгоритъм груба преценка на броя на изпълняваните стъпки, в зависимост от входните данни
- Имерват се с асимптотчна нотация
 - **O(f(n))** чете се "**Big oh** of f(n)"
 - O(f(n)) чете се "Theta of f(n)"
 - $-\Omega(f(n))$ чете се "Omega of f(n)"
 - където f(n) е функция, зависеща от входните данни n

Асимптотични нотации

- O(f(n)) Горна граница
 - -j = O(g)
 - -j = O(h)
- Θ(f(n)) Горна & долна граница
 - \bullet j = $\Theta(j)$
 - $\bullet g = \Theta(g)$
- Ω(f(n)) Долна граница
 - $\bullet h = \Omega(j)$
 - $g = \Omega(j)$

Асимптотична нотация: определение

 За дадена функция g(n), ние отбелязваме с O(g(n)) множеството от функции, които са различни от g(n) с константа

```
O(g(n)) = \{f(n): където съществува с>0 и <math>n_0, такова че f(n) <= c*g(n) за всички n >= n_0\}
```

- Примери:
 - $-2*n^2+10 \in O(n^2)$
 - -10n + 4 ∈ 0(n)
 - $4*n*log_2(3*n+1) + 2*n-1 \in O(n*log n)$

Монотонност (растене) на функция

- O(n) означава, че функцията расте линейно, когато n расте
 - Например

$$f(n)=n+1$$

 O(n²) означава, че функцията расте експоненциално, когато n расте

например

$$f(n)=n^2+2n+2$$

O(1) означава, че функцията не расте,
 когато п расте

Например

$$f(n)=4$$

Асимптотни функции

Типове сложности

Сложност	Нотация	Описание			
константна	0(1)	n = 1 000 > 1-2 операции			
логаритмична	0(log n)	n = 1 000 → 10 операции			
линейна	0(n)	n = 1 000 → 1 000 операции			
Линейно-	O(n*log	n = 1 000 → 10 000 операции			
логаритмична	n)	п – 1 000 / 10 000 операции			
Квадратична	O(n²)	n = 1 000 → 1 000 000 операции			
Кубична	O(n³)	n = 1 000 → 1 000 000 000 операции			
Експоненциал на	O(n ⁿ)	n = 10 → 10 000 000 000 операции			

Стойности на функциите

Function	Value								
	n = 1	n=2	n = 10	n = 100	n = 1000				
5	5	5	5	5	5				
$\log n$	0	1	3,32	6,64	9,96				
n	1	2	10	100	1000				
$n \log n$	0	2	33,2	664	9966				
n^2	1	4	100	10000	106				
n^3	1	8	1000	106	109				
2^n	2	4	1024	10 ³⁰	10300				
n!	1	2	3628800	10157	10 ²⁵⁶⁷				
n^n	1	4	10^{10}	10 ²⁰⁰	103000				

Времева сложност и скорост на програмата

Сложност	10	20	50	100	1 000	10 000	100 000
O(1)	< 1 c.	< 1 c.	< 1 c.	< 1 c.	< 1 c.	< 1 c.	< 1 c.
O(log(n))	< 1 c.	< 1 c.	< 1 c.	< 1 c.	< 1 c.	< 1 c.	< 1 c.
O(n)	< 1 c.	< 1 c.	< 1 c.	< 1 c.	< 1 c.	< 1 c.	< 1 c.
O(n*log(n))	< 1 c.	< 1 c.	< 1 c.	< 1 c.	< 1 c.	< 1 c.	< 1 c.
O(n²)	< 1 c.	< 1 c.	< 1 c.	< 1 c.	< 1 c.	2 c.	3-4 мин.
O(n³)	< 1 c.	< 1 c.	< 1 c.	< 1 c.	20 c.	5 часа	231 дни
O(2 ⁿ)	< 1 c.	< 1 c.	260 дни	увисва	увисва	увисва	увисва
O(n!)	< 1 c.	увисва	увисва	увисва	увисва	увисва	увисва
O(n ⁿ)	3-4 мин.	увисва	увисва	увисва	увисва	увисва	увисва

Необходима памет

- Използваната памет също така трябва да се разглежда, например:
 - Съхраняване на елементите на матрица от ранг N
 - Попълване на матрицата време за изпълнение O(n²)
 - Намиране на елемент по индекс време за изпълнение
 0(1)
 - Необходима памет O(n²)

Асимптотични нотации

https://it-kariera.mon.bg/e-learning/

Министерство на образованието и науката (МОН)

 Настоящият курс (презентации, примери, задачи, упражнения и др.) е разработен за нуждите на Национална програма "Обучение за ИТ кариера" на МОН за подготовка по професия "Приложен програмист"

 Курсът е базиран на учебно съдържание и методика, предоставени от фондация "Софтуерен университет" и се разпространява под свободен лиценз СС-ВҮ-NC-SA

