Matemáticas/ Ingeniería Informática-Matemáticas

TEORÍA DE GALOIS

Hoja 4. El Teorema Fundamental de la Teoría de Galois.

Recuerda que una extensión E/K es Galois si es normal, finita y separable. Dado $f \in K[x]$, escribimos E = K(f) para denotar al cuerpo de descomposión de f sobre K; en tal caso diremos que el grupo de Galois de f sobre K es Gal(E/K) y lo denotaremos por G(f).

- 1. Sea E un cuerpo y $F \subset E$ su subcuerpo primo. Demuestra que todo automorfismo de E fija a F, en particular, $\mathrm{Aut}E = \mathrm{Gal}(E/F)$.
- 2. Demuestra que la extensión $\mathbb{C}(x)/\mathbb{C}(x^6)$ es normal y separable. Calcula su grupo de Galois.
- 3. Calcula los siguientes grupos de Galois.
 - a) Prueba que $\operatorname{Aut}\mathbb{Q} = \{\operatorname{Id}\}\ y\ \operatorname{Aut}\mathbb{R} = \operatorname{Gal}(\mathbb{R}/\mathbb{Q}) = \{\operatorname{Id}\}.$
- b) Definimos $\sigma: \mathbb{C} \to \mathbb{C}$ como $\sigma(a+bi) = a-bi$. Prueba que $\operatorname{Gal}(\mathbb{C}/\mathbb{R}) = \{1, \sigma\}$. Sugerencia: para el primer apartado, observa que si $0 < x \in \mathbb{R}$ entonces $x = y^2$ y entonces para todo $f \in \operatorname{Aut}\mathbb{R}$ se tiene que x < y implica que f(x) < f(y); después usa que entre dos números reales siempre hay un racional.
- **4.** Sea $E = \mathbb{F}_{p^n}$, con p primo y $n \geq 1$, y sea $\varphi \in \operatorname{Aut}E$ el automorfismo de Frobenius de E. Prueba que E/\mathbb{F}_p es una extensión Galois y que $\operatorname{Gal}(E/\mathbb{F}_p) = \langle \varphi \rangle$. En particular, el grupo de Galois de la extensión E/\mathbb{F}_p tiene orden n.
- **5.** Demuestra que la extensión $\mathbb{F}_3(t)/\mathbb{F}_3(t^3)$ no es Galois y que, en cambio, la extensión $\mathbb{C}(t)/\mathbb{C}(t^3)$ es de Galois. Calcula el grupo de Galois de ambas extensiones.
- **6.** Sea $f(x) = (x^3 2)(x^2 3) \in \mathbb{Q}[x]$.
 - a) Calcula $E = \mathbb{Q}(f)$ y prueba que $L = \mathbb{Q}(\sqrt{3}) \subset E$.
 - b) Calcula el grado de E/\mathbb{Q} y E/L.
 - c) Calcula $Gal(E/\mathbb{Q})$ y Gal(E/L). ¿Qué relación existe entre estos grupos?
- 7. Calcula el grupo de Galois de los siguientes polinomios sobre \mathbb{Q} : $x^{12}-1$, x^6+1 , x^4-2 , x^4+x^2-6 .
- **8.** Sea p es un primo y $f(x) = x^p 1 \in \mathbb{Q}[x]$.
 - a) Halla $E = \mathbb{Q}(f)$.
 - **b)** Prueba que E/\mathbb{Q} es simple de grado p-1.
 - c) Demuestra que $Gal(E/\mathbb{Q})$ es cíclico encontrando un generador del grupo.
- 9. Sea $E = \mathbb{Q}(\xi)$ donde $\xi = e^{\frac{2\pi i}{7}}$. Muestra que E es una extensión de Galois de \mathbb{Q} . Encuentra todos los subcuerpos intermedios de la extensión E/\mathbb{Q} , los subgrupos de $Gal(E/\mathbb{Q})$ que les corresponden y determina qué subcuerpos intermedios se corresponden con extensiónes normales de \mathbb{Q} .
- 10. Halla el cuerpo de escisión E de $f(x) = x^4 + x^3 + x^2 + x + 1$ sobre \mathbb{Q} .
 - a) Calcula $G(f) = \operatorname{Gal}(E/\mathbb{Q})$.
 - b) Describe el retículo de subgrupos de G(f).
 - c) Halla todas las subextensiones de E/\mathbb{Q} indicando aquellas que se corresponden a extensiones nor-

males de \mathbb{Q} .

- 11. Sea ξ una raíz 11-ésima primitiva de la unidad en \mathbb{C} .
 - a) Construye la menor subextensión normal E de \mathbb{Q} que contiene a ξ .
- b) Demuestra que el grupo de Galois de E/\mathbb{Q} es cíclico. Encuentra un generador y expresa todos los automorfismos de $Gal(E/\mathbb{Q})$ en función de este generador.
 - c) ¿Cuántas subextensiones propias tiene $\mathbb{Q}(\xi)/\mathbb{Q}$? ¿Qué grados tienen?
- d) Decide cuáles de los siguientes cuerpos son subextensiones de E/\mathbb{Q} : $\mathbb{Q}(\sqrt{11})$, $\mathbb{Q}(\sqrt{-11})$, $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt[5]{5})$. Sugerencia: Para las de grado dos, calcula un generador del cuerpo fijo correspondiente y a continuacin encuentra su polinomio mínimo.
- 12. Sea E/K una extensión Galois con G = Gal(E/K) un grupo cíclico de orden n. Demuestra que:
 - a) Para cada divisor d de n existe exactamente un cuerpo intermedio L con |E:L|=d.
 - b) Si L_1 y L_2 son dos cuerpos intermedios, entonces $L_1 \subseteq L_2$ si, y solo si, $|E:L_1|$ divide a $|E:L_2|$.
 - c) Si la extensión E/K es sólo normal, ¿siguen valiendo los apartados anteriores?
- 13. Sea E el cuerpo de descomposición de $f(x) = x^p 2$ sobre \mathbb{Q} , donde p es un primo.
 - a) Demuestra que $E = \mathbb{Q}(\alpha, \xi)$ donde $\xi^p = 1, \xi \neq 1$ y $\alpha^p = 2$.
 - **b)** Demuestra que $|E:\mathbb{Q}|=p(p-1)$.
 - c) Sea $H = \left\{ \begin{pmatrix} 1 & 0 \\ c & d \end{pmatrix} \mid d \in \mathbb{F}_p^{\times}, c \in \mathbb{F}_p \right\} \leq \operatorname{GL}(2, p)$. Prueba que $\operatorname{Gal}(E/\mathbb{Q}) \cong H$.
 - d) Si p=5, encuentra los subcuerpos de E fijados por los subgrupos de $\operatorname{Gal}(E/\mathbb{Q})$.
- 14. Sea $f(x) = x^{12} 3 \in \mathbb{Q}[x]$. Considera el cuerpo de escisión E de f sobre \mathbb{Q} .
 - a) Calcula $|E:\mathbb{Q}|$.
 - b) Prueba que $L = \mathbb{Q}(i) \subset E$ y, por tanto, E es el cuerpo de escisión de f sobre L.
 - c) Calcula [E:L] y concluye que f es irreducible sobre L.
 - d) Decide de manera razonada la clase de isomorfía de Gal(E/L).
 - e) Calcula todas las subextensiones de E/L grado 3 sobre L.
 - f) Calcula todas las subextensiones de E/L de grado 4 sobre L.
- **15.** Sea $f(x) = x^4 3x^2 + 4 \in \mathbb{Q}[x]$. Calcula el grupo de Galois de f sobre \mathbb{Q} y los cuerpos fijos por sus subgrupos.
- **16.** Sea $p(x) = x^4 2x^2 + 2 \in \mathbb{Q}[x]$ y $E = \mathbb{Q}(f)$.
 - a) Calcula el grado de E/\mathbb{Q} .
 - b) Describe el grupo de Galois de la extensión E/\mathbb{Q} y determina su clase de isomorfía.
 - c) Encuentra todas las subextensiones de E/\mathbb{Q} grado 4 sobre \mathbb{Q} .
- 17. Sea $x^4 + ax^2 + b$ un polinomio irreducible sobre K, un cuerpo de característica distinta de 2. Sea G su grupo de Galois. Demuestra que:
 - a) Si b es el cuadrado de un elemento de K, entonces $G \cong C_2 \times C_2$.
- b) Si b no es el cuadrado de ningún elemento de K pero $b(a^2-4b)$ sí lo es, entonces G es cíclico de orden 4.

- **18.** Sea $f = (x^2 p)(x^2 q) \in \mathbb{Q}[x]$ donde $p \neq q$ son primos. Determina la clase de isomorfía de Gal(f).
- **19.** Sea E/K una extensión de Galois con $\operatorname{Gal}(E/K) \cong \mathsf{C}_2 \times \mathsf{C}_2$. Supongamos que la característica de K no es 2. Demuestra que existen $a,b \in E$ tales que E = K(a,b) con $a^2,b^2 \in K$. ¿Qué sucede si la característica de K es 2 y suponemos cierta la conclusión?
- **20.** Sea f un polinomio irreducible sobre \mathbb{Q} con el grupo de Galois abeliano y u una raíz de f en \mathbb{C} . Demuestra que el grado de f es primo si, y solo si, no hay extensiones intermedias entre \mathbb{Q} y $\mathbb{Q}(u)$.
- **21.** Sea E/K una extensión de Galois, sea F/K una subextensión y sea $a \in F$. Demuestra que F = K(a) si, y solo si, los elementos de Gal(E/K) que fijan a son exactamente Gal(E/F). Utilizando este resultado demuestra que:
 - **a)** $\mathbb{Q}(\sqrt[3]{5}, \sqrt{5}) = \mathbb{Q}(\sqrt[3]{5} + \sqrt{5});$
 - **b)** El cuerpo de descomposición de $x^6 3x^3 + 2$ es $\mathbb{Q}(\sqrt[3]{2} + 2\sqrt{-3})$.