1. Variable Elimination

(a) P(+D): Answer: 0.32

$$P(+D) = \sum_{A,B,C,E} P(A,B,C,+D,E)$$

= $\sum_{A,B,C,E} P(A) * P(B|A) * P(C|A) * P(+D|B,C) * P(E|C)$

Here is the factors: $(\phi : \text{factor symbol that I have used})$

$$\phi_A, \phi_{B|A}, \phi_{C|A}, \phi_{+D|B,C}, \phi_{E|C}$$

First Eliminate A:

Here is the factors list that include A: $\rightarrow \phi_A, \phi_{B|A}, \phi_{C|A}$

When we multiply these factors we will get:

A	В	С	$(\phi_A)(\phi_{B A})(\phi_{C A})$
+	+	+	0.2*0.8*0.2 = 0.032
+	+	-	0.2*0.8*0.8 = 0.128
+	-	+	0.2*0.2*0.2 = 0.008
+	-	-	0.2*0.2*0.8 = 0.032
-	+	+	0.8*0.2*0.05 = 0.008
-	+	-	0.8*0.2*0.95 = 0.152
-	-	+	0.8*0.8*0.05 = 0.032
-	-	-	0.8*0.8*0.95 = 0.608

Summing out A, then we have:

В	С	$\Sigma_A (\phi_A)(\phi_{B A})(\phi_{C A})$
+	+	0.032 + 0.008 = 0.04
+	-	0.128 + 0.152 = 0.28
-	+	0.008 + 0.032 = 0.04
-	-	0.608 + 0.032 = 0.64

Now our new factor is $\phi_{B,C}$

Here is the our factors now: $(\phi_{+D|B,C}), (\phi_{E|C}), (\phi_{B,C})$

Now Eliminate B:

Here is the factors list that include B: $\rightarrow (\phi_{+D|B,C}), (\phi_{B,C})$

В	С	D	$(\phi_{+D B,C})(\phi_{B,C})$
+	+	+	0.8*0.04 = 0.032
+	-	+	0.8*0.28 = 0.224
-	+	+	0.8*0.04 = 0.032
-	-	+	0.05*0.64 = 0.032

Summing out B, then we have:

С	D	$\Sigma_B (\phi_{+D B,C})(\phi_{B,C})$
+	+	0.032 + 0.032 = 0.064
-	+	0.224 + 0.032 = 0.256

Now our new factor is $(\phi_{C,+D})$

Here is the our factors now: $(\phi_{E|C}), (\phi_{C,+D})$

Now Eliminate C:

Here is the factors list that include $C: \to (\phi_{E|C}), (\phi_{C,+D})$

When we multiply these factors we will get:

С	D	E	$(\phi_{E C})(\phi_{C,+D})$
+	+	+	0.8*0.064 = 0.0512
+	+	-	0.2*0.064 = 0.0128
-	+	+	0.6*0.256 = 0.1536
-	+	-	0.4*0.256 = 0.1024

Summing out C, then we have:

D	Е	$\Sigma_C (\phi_{E C})(\phi_{C,+D})$
+	+	0.0512 + 0.1536 = 0.2048
+	-	0.0128 + 0.1024 = 0.1152

Now our new factor is $(\phi_{E,+D})$

Here is the our factors now: $(\phi_{E,+D})$

Now just summing out E:

D	$\Sigma_E (\phi_{E,+D})$
+	0.2048 + 0.1152 = 0.32

Finally we have found that our first equation equal to:

$$P(+D) = \Sigma_{A,B,C,E}P(A,B,C,+D,E)$$

$$= \dots$$

$$= \Sigma_E (\phi_{E,+D})$$

$$= 0.32$$

(b) P(+D,-A) Answer: 0.184

$$\begin{split} P(+D,-A) &= \Sigma_{B,C,E} \ P(-A,B,C,+D,E) \\ &= \Sigma_{B,C,E} \ P(-A) * P(B|-A) * P(C|-A) * P(+D|B,C) * P(E|C) \\ &= P(-A) * (\Sigma_{B,C,E} \ P(B|-A) * P(C|-A) * P(+D|B,C) * P(E|C)) \end{split}$$

We will solve the part $\Sigma_{B,C,E}$... using variable elimination Here is the factors: $(\phi : \text{factor symbol that I have used})$

$$(\phi_{B|-A}), (\phi_{C|-A}), (\phi_{+D|B,C}), (\phi_{E|C})$$

First Eliminate B:

Here is the factors list that include B: $\rightarrow (\phi_{+D|B,C}), (\phi_{B|-A})$

When we multiply these factors we will get:

В	С	$(\phi_{+D B,C})(\phi_{B -A})$
+	+	0.2*0.8=0.16
+	-	0.2*0.8=0.16
-	+	0.8*0.8=0.64
-	-	0.8*0.05=0.04

Summing out B, then we have:

С	$\Sigma_B(\phi_{+D B,C})(\phi_{B -A})$
+	0.16+0.64=0.8
-	0.16 + 0.04 = 0.2

Now our new factor is (ϕ_C)

Here is the our factors now: : $(\phi_{C|-A}), (\phi_{E|C}), (\phi_C)$

Now Eliminate C:

Here is the factors list that include C: $\rightarrow (\phi_{C|-A}), (\phi_{E|C}), (\phi_C)$

When we multiply these factors we will get:

С	Е	$(\phi_{C -A})(\phi_{E C})(\phi_C)$
+	+	0.05*0.8*0.8=0.032
+	-	0.05*0.2*0.8=0.008
-	+	0.95*0.6*0.2=0.114
-	-	0.95*0.4*0.2=0.076

Summing out C, then we have:

Е	$\Sigma_C(\phi_{C -A})(\phi_{E C})(\phi_C)$
+	0.032 + 0.114 = 0.146
-	0.008 + 0.076 = 0.084

Now our new factor is ϕ_E

Finally we have found that our equation equal to:

$$P(+D, -A) = \Sigma_{B,C,E} P(-A, B, C, +D, E)$$

$$= ...$$

$$= P(-A) * (\Sigma_{B,C,E} P(B|-A) * P(C|-A) * P(+D|B, C) * P(E|C))$$

$$= P(-A) * \Sigma_{E} \phi_{E}$$

$$= 0.8 * (0.146 + 0.084)$$

$$= 0.184$$

(c) $P(+E \mid -B)$: Answer: 0.61176

$$P(+E|-B) = \frac{P(+E, -B)}{P(-B)}$$

$$= \frac{P(+E, -B)}{\sum_{E} P(E, -B)}$$

$$= \frac{P(+E, -B)}{P(+E, -B) + P(-E, -B)}$$

Find the part P(+E,-B) and P(-E,-B) respectively using variable elimination

1.
$$P(+E, -B) = \sum_{A,C,D} P(A, -B, C, D, +E)$$

= $\sum_{A,C,D} P(A) * P(-B|A) * P(C|A) * P(D|-B,C) * P(+E|C)$

Here is the factors: $(\phi : factor symbol that I have used)$

$$(\phi_A), (\phi_{-B|A}), (\phi_{C|A}), (\phi_{D|-B,C}), (\phi_{+E|C})$$

First Eliminate A:

Here is the factors list that include A: $\rightarrow (\phi_A), (\phi_{-B|A}), (\phi_{C|A})$

A	С	$(\phi_A)(\phi_{-B A})(\phi_{C A})$
+	+	0.2*0.2*0.2 = 0.008
+	-	0.2*0.2*0.8 = 0.032
-	+	0.8*0.8*0.05=0.032
-	-	0.8*0.8*0.95=0.608

Summing out A, then we have:

С	$\Sigma_A (\phi_A)(\phi_{-B A})(\phi_{C A})$
+	0.008 + 0.032 = 0.04
-	0.032 + 0.608 = 0.64

Now our new factor is (ϕ_C)

Here is the our factors now: $(\phi_{D|-B,C}), (\phi_{+E|C}), (\phi_C)$

Now Eliminate C:

Here is the factors list that include C: $\rightarrow (\phi_{D|-B,C}), (\phi_{+E|C}), (\phi_C)$

When we multiply these factors we will get:

ſ	С	D	$(\phi_{D -B,C})(\phi_{+E C})(\phi_C)$
	+	+	0.8 *0.8*0.04=0.0256
	+	-	0.2*0.8*0.04 = 0.0064
Ī	-	+	0.05*0.6*0.64=0.0192
ĺ	-	-	0.95*0.6*0.64=0.3648

Summing out C, then we have:

D	$\Sigma_C (\phi_{D -B,C})(\phi_{+E C})(\phi_C)$
+	0.0256 + 0.0192 = 0.0448
-	0.0064 + 0.3648 = 0.3712

Now our new factor is (ϕ_D)

Here is the our factors now: (ϕ_D)

Finally we have found that our equation equal to:

1.
$$P(+E, -B) = \Sigma_{A,C,D} P(A, -B, C, D, +E)$$

 $= \Sigma_{A,C,D} P(A) * P(-B|A) * P(C|A) * P(D|-B,C) * P(+E|C)$
 $= \Sigma_{D} \phi_{D}$
 $= 0.0448 + 0.3712 = 0.416$

2.
$$P(-E, -B) = \sum_{A,C,D} P(A, -B, C, D, -E)$$

= $\sum_{A,C,D} P(A) * P(-B|A) * P(C|A) * P(D|-B,C) * P(-E|C)$

Find the $\Sigma_{A,C,D}...$ using variable elimination

Here is the factors: $(\phi : factor symbol that I have used)$

$$(\phi_A), (\phi_{-B|A}), (\phi_{C|A}), (\phi_{D|-B,C}), (\phi_{-E|C})$$

First Eliminate A:

Here is the factors list that include A: $\rightarrow (\phi_A), (\phi_{-B|A}), (\phi_{C|A})$

When we multiply these factors we will get:

A	С	$(\phi_A)(\phi_{-B A})(\phi_{C A})$
+	+	0.2*0.2*0.2 = 0.008
+	-	0.2*0.2*0.8 = 0.032
-	+	0.8*0.8*0.05=0.032
-	-	0.8*0.8*0.95=0.608

Summing out A, then we have:

С	$\Sigma_A(\phi_A)(\phi_{-B A})(\phi_{C A})$
+	0.008 + 0.032 = 0.04
-	0.032 + 0.608 = 0.64

Now our new factor is (ϕ_C)

Here is the our factors now: $(\phi_{D|-B,C}), (\phi_{-E|C}), (\phi_C)$

Now Eliminate C:

Here is the factors list that include C: $\rightarrow (\phi_{D|-B,C}), (\phi_{-E|C}), (\phi_C)$

When we multiply these factors we will get:

С	D	$(\phi_{D -B,C})(\phi_{-E C})(\phi_C)$
+	+	0.8*0.2*0.04=0.0064
+	-	0.2*0.2*0.04=0.0016
-	+	0.05*0.4*0.64=0.0128
-	-	0.95*0.4*0.64=0.2432

Summing out C, then we have:

	D	$\Sigma_C (\phi_{D -B,C})(\phi_{-E C})(\phi_C)$
	+	0.0064 + 0.0128 = 0.0192
ĺ	-	0.0016 + 0.2432 = 0.2448

Now our new factor is (ϕ_D)

Here is the our factors now: (ϕ_D)

Finally we have found that our equation equal to:

2.
$$P(-E, -B) = \sum_{A,C,D} P(A, -B, C, D, -E)$$

 $= \sum_{A,C,D} P(A) * P(-B|A) * P(C|A) * P(D|-B,C) * P(-E|C)$
 $= \sum_{D} \phi_{D}$
 $= 0.0192 + 0.2448 = 0.264$

Now we know the P(+E,-B) and P(-E,-B) using variable elimination. Then, we can get the answer:

$$P(+E|-B) = \frac{P(+E, -B)}{P(-B)}$$

$$= \frac{P(+E, -B)}{\sum_{E} P(E, -B)}$$

$$= \frac{P(+E, -B)}{P(+E, -B) + P(-E, -B)}$$

$$= \frac{0.416}{0.416 + 0.26}$$

$$= 0.6117$$

(d) $P(+A \mid +D,-E)$: Answer: 0.416

$$P(+A|+D,-E) = \frac{P(+A,+D,-E)}{P(+D,-E)}$$
$$= \frac{P(+A,+D,-E)}{P(+A,+D,-E) + P(-A,+D,-E)}$$

1.
$$P(+A, +D, -E) = \Sigma_{B,C} P(+A, B, C, +D, -E)$$

 $= \Sigma_{B,C} P(+A) * P(B| + A) * P(C| + A) * P(+D|B, C) * P(-E|C)$
 $= P(+A) * (\Sigma_{B,C} P(B| + A) * P(C| + A) * P(+D|B, C) + P(-E|C))$

We will solve the part $\Sigma_{B,C}$... using variable elimination Here is the factors: $(\phi : \text{factor symbol that I have used})$

$$(\phi_{B|+A}), (\phi_{C|+A}), (\phi_{+D|B,C}), (\phi_{-E|C})$$

First Eliminate B:

Here is the factors list that include B: $\rightarrow (\phi_{B|+A}), (\phi_{+D|B,C})$

When we multiply these factors we will get:

A	В	С	D	$(\phi_{B +A})(\phi_{+D B,C})$
+	+	+	+	0.8*0.8 = 0.64
+	+	-	+	0.8*0.8 = 0.64
+	-	+	+	0.2*0.8 = 0.16
+	-	-	+	0.2*0.05 = 0.01

Summing out B, then we have

\Box	$\Sigma_B (\phi_{B +A})(\phi_{+D B,C})$
+	0.64 + 0.16 = 0.8
-	0.64 + 0.01 = 0.65

Now our new factor is (ϕ_C)

Here is the our factors now: $(\phi_{C|+A}), (\phi_{-E|C}), (\phi_C)$

Now Eliminate C:

Here is the factors list that include C: \rightarrow $(\phi_{C|+A}), (\phi_{-E|C}), (\phi_{C})$

When we multiply these factors we will get:

A	С	E	$(\phi_{C +A})(\phi_{-E C})(\phi_C)$
+	+	-	0.2*0.8*0.2 = 0.032
+	-	-	0.8*0.65*0.4 = 0.208

Summing out C, then we have:

A E
$$\Sigma_C (\phi_{C|+A})(\phi_{-E|C})(\phi_C)$$

+ - 0.032+0.208=0.24

Finally we have found that our equation equal to:

$$P(+A, +D, -E) = \sum_{B,C} P(+A, B, C, +D, -E)$$
= ...
$$= P(+A) * (\sum_{B,C} P(B|+A) * P(C|+A) * P(+D|B, C) + P(-E|C))$$

$$= P(+A) * \sum_{C} (\phi_{C|+A}) (\phi_{-E|C}) (\phi_{C})$$

$$= 0.2 * 0.24$$

$$= 0.048$$

2.
$$P(-A, +D, -E) = \Sigma_{B,C} P(-A, B, C, +D, -E)$$

 $= \Sigma_{B,C} P(-A) * P(B|-A) * P(C|-A) * P(+D|B, C) * P(-E|C)$
 $= P(-A) * (\Sigma_{B,C} P(B|-A) * P(C|-A) * P(+D|B, C) * P(-E|C))$

We will solve the part $\Sigma_{B,C}$... using variable elimination

Here is the initial factors: $(\phi : \text{factor symbol that I have used})$

$$(\phi_{B|-A}), (\phi_{C|-A}), (\phi_{+D|B,C}), (\phi_{-E|C})$$

First Eliminate B:

Here is the factors list that include B: $\rightarrow (\phi_{B|-A}), (\phi_{+D|B,C})$

When we multiply these factors we will get:

A	В	С	D	$(\phi_{B -A})(\phi_{+D B,C})$
-	+	+	+	0.2*0.8 = 0.16
-	+	-	+	0.2*0.8 = 0.16
-	-	+	+	0.8*0.8 = 0.64
-	-	-	+	0.8*0.05 = 0.04

Summing out B, then we have:

С	$\Sigma_B(\phi_{B -A})(\phi_{+D B,C})$
+	0.16 + 0.64 = 0.8
-	0.16 + 0.04 = 0.2

Now our new factor is (ϕ_C)

Here is the our factors now: $(\phi_{C|-A}), (\phi_{-E|C}), (\phi_C)$

Now Eliminate C:

Here is the factors list that include B: \rightarrow $(\phi_{C|-A}), (\phi_{-E|C}), (\phi_C)$

When we multiply these factors we will get:

A	С	Е	$(\phi_{C -A})(\phi_{-E C})(\phi_C)$
-	+	-	0.05*0.2*0.8 = 0.008
-	-	-	0.95*0.4*0.2 = 0.076

Summing out C, then we have:

A E
$$\Sigma_C (\phi_{C|+A})(\phi_{-E|C})(\phi_C)$$

- 0.008 + 0.076 = 0.084

Finally we have found that our equation equal to:

$$\begin{split} P(-A, +D, -E) &= \Sigma_{B,C} \, P(-A, B, C, +D, -E) \\ &= \dots \\ &= P(-A) * (\Sigma_{B,C} \, P(B|-A) * P(C|-A) * P(+D|B, C) * P(-E|C)) \\ &= P(-A) * \Sigma_{C} \, (\phi_{C|+A}) (\phi_{-E|C}) (\phi_{C}) \\ &= 0.0672 \end{split}$$

Now we can find the result

$$P(+A|+D,-E) = \frac{P(+A,+D,-E)}{P(+D,-E)}$$

$$= \frac{P(+A,+D,-E)}{P(+A,+D,-E) + P(-A,+D,-E)}$$

$$= \frac{0.048}{0.0672 + 0.048}$$

$$= 0.416$$

(e) P(+B,-E|+A): Answer: 0.288

$$P(+B, -E| + A) = \frac{P(+B, -E, +A)}{P(+A)}$$

Now find the P(+B, -E, +A) and P(+A) using variable elimination

1.
$$P(+B, -E, +A) = P(+A) * P(+B|+A) * (\Sigma_{C,D} P(C|+A) * P(D|+B, C) * P(-E|C))$$

Find the part $\Sigma_{C,D}$... using variable elimination

Here is the factors: $(\phi : factor symbol that I have used)$

$$(\phi_{C|+A}), (\phi_{D|+B,C}), (\phi_{-E|C})$$

Firstly Eliminate C:

Here is the factors list that include C: \rightarrow $(\phi_{C|+A}), (\phi_{D|+B,C}), (\phi_{-E|C})$

A	В	С	D	Е	$(\phi_{C +A})(\phi_{D +B,C})(\phi_{-E C})$
+	+	+	+	-	0.2*0.8*0.2 = 0.032
+	+	+	-	-	0.2*0.2*0.2 = 0.008
+	+	-	+	-	0.8*0.8*0.4 = 0.256
+	+	-	-	-	0.8*0.2*0.4 = 0.064

Summing out C, then we have:

D	$\sum_{C} (\phi_{C +A})(\phi_{D +B,C})(\phi_{-E C})$
+	0.032 + 0.256 = 0.288
-	0.008 + 0.064 = 0.072

Now our new factor is (ϕ_D)

Here is the our factors now: (ϕ_D)

Finally we have found that our equation equal to :

1.
$$P(+B, -E, +A) = P(+A) * P(+B| + A) * (\Sigma_{C,D} P(C| + A) * P(D| + B, C) * P(-E|C))$$

= $0.2 * 0.8 * \Sigma_D \phi_D$
= 0.0576

2.
$$P(+A) = P(+A) * (\Sigma_{B,C,D,E} P(B|+A) * P(C|+A) * P(D|B,C) * P(E|C))$$

Find the part $\Sigma_{B,C,D,E}$... using variable elimination

Here is the factors: $(\phi : factor symbol that I have used)$

$$(\phi_{B|+A}), (\phi_{C|+A}), (\phi_{D|B,C}), (\phi_{E|C})$$

Firstly Eliminate B:

Here is the factors list that include B: $\rightarrow (\phi_{B|+A}), (\phi_{D|B,C})$

A	В	С	D	$(\phi_{B +A}), (\phi_{D B,C})$
+	+	+	+	0.8*0.8 = 0.64
+	+	+	-	0.8*0.2 = 0.16
+	+	-	+	0.8*0.8 = 0.64
+	+	-	-	0.8*0.2 = 0.16
+	-	+	+	0.2*0.8 = 0.16
+	-	-	+	0.2*0.05 = 0.01
+	-	+	-	0.2*0.2 = 0.04
+	-	-	-	0.2*0.95 = 0.19

Summing out B, then we have:

С	D	$\Sigma_B (\phi_{B +A}), (\phi_{D B,C})$
+	+	0.64 + 0.16 = 0.8
+	-	0.16 + 0.04 = 0.2
-	+	0.64 + 0.01 = 0.65
-	-	0.16 + 0.19 = 0.35

Now our new factor is $(\phi_{C,D})$

Here is the our factors now: $(\phi_{C|+A}), (\phi_{E|C}), (\phi_{C,D})$

Now Eliminate C:

Here is the factors list that include C: \rightarrow $(\phi_{C|+A}), (\phi_{E|C}), (\phi_{C,D})$

When we multiply these factors we will get:

A	С	D	E	$(\phi_{C +A})(\phi_{E C})(\phi_{C,D})$
+	+	+	+	0.2*0.8*0.8 = 0.128
+	+	+	-	0.2*0.8*0.2 = 0.032
+	+	-	+	0.2*0.2*0.8 = 0.032
+	+	-	-	0.2*0.2*0.2 = 0.008
+	-	+	+	0.8*0.65*0.6 = 0.312
+	-	-	+	0.8*0.35*0.6 = 0.168
+	-	+	-	0.8*0.65*0.4 = 0.208
+	-	-	-	0.8*0.35*0.4 = 0.112

Summing out C, then we have:

D	E	$\Sigma_C (\phi_{C +A})(\phi_{E C})(\phi_{C,D})$
+	+	0.128 + 0.312 = 0.44
+	-	0.032 + 0.208 = 0.24
-	+	0.032 + 0.168 = 0.2
-	-	0.008 + 0.112 = 0.12

Now our new factor is $(\phi_{D,E})$

Here is the our factors now: $(\phi_{D,E})$

Summing out D, then we have:

E	$\Sigma_D(\phi_{D,E})$
+	0.44 + 0.2 = 0.64
-	0.24 + 0.12 = 0.36

Now our new factor is (ϕ_E)

Here is the our factors now: (ϕ_E)

Finally we have found that our equation equal to :

2.
$$P(+A) = P(+A) * (\Sigma_{B,C,D,E} P(B|+A) * P(C|+A) * P(D|B,C) * P(E|C))$$

= $P(+A) * \Sigma_E \phi_E$
= $0.2 * 1$
= 0.2

Finally we know the all the things to get answer:

$$P(+B, -E| + A) = \frac{P(+B, -E, +A)}{P(+A)}$$
$$= \frac{0.0576}{0.2}$$
$$= 0.288$$