

1

2

3

© Andrew Scott 2020

4

5

b

© Andrew Scott 2020 2

File Lookup: /home/acs/211 • Often — Search from last directory entry read • Processes typically scan directories sequentially — Use filename caches to speed up access inode 6 I ... Mode, Size, Times 7 dev 9 etc 14 lib 6 home | Mode, Size, Times 30 jim 51 sue 203 do 211 81 photo 17 music

7

Block Size and Efficiency/ Waste

- Values taken off 1.2GB 4.3BSD Unix file-system
 - Wastage as percentage of disk space
 - Larger block sizes allow for larger files
 - More links per index block
 - More data in each referenced data block

Space Used (Mbyte)	%age Waste	Structure
775.2	0.0	(control value) Just the raw data
828.7	6.9	Data & inodes with 512 byte blocks
866.5	11.8	Data & inodes with 1024 byte blocks
948.5	22.4	Data & inodes with 2048 byte blocks
1128.3	45.6	Data & inodes with 4096 byte blocks

8

Block Fragments

- Efficiency best when block and file sizes matched, but
 - Small blocks tend to suit small files
 - Large blocks tend to suit large files
- Tended to move to larger blocks as file sizes increased

 Media files, etc.
- Some file-systems can allocate fragments of blocks
 i.e. 4 x 1K fragments from a single 4K disk block
- Blocks must be multiple of disk sector size

9

© Andrew Scott 2020

Operating Systems 06/11/2020

10

© Andrew Scott 2020 4