Greedy Algorithms

Huffman Coding

Encoding

Example

Suppose we want to store a given a 100,000 character data file. The file contains only 6 characters, appearing with the following frequencies:

	a	Ь	C	d	e	f
Frequency in '000s	45	13	12	16	9	5

- A binary code encodes each character as a binary string or codeword over some given alphabet Σ
 - a code is a set of codewords.
 - e.g., {000, 001, 010, 011, 100, 101}
 and {0, 101, 100, 111, 1101, 1100}

are codes over the binary alphabet $\Sigma = \{0, 1\}$.

Encoding

Given a code C over some alphabet it is easy to encode the message using C. Just scan through the message, replacing the characters by the codewords.

Example

 $\Sigma = \{a, b, c, d\}$ If the code is

$$C_1 = \{a = 00, b = 01, c = 10, d = 11\}$$

then bad is encoded as 01 00 11 If the code is

$$C_2 = \{a = 0, b = 110, c = 10, d = 111\}$$

then bad is encoded as 110 0 111

Fixed Length vs Variable Length Encoding

- In a fixed-length code each codeword has the same length.
- In a variable-length code codewords may have different lengths.

Example						
	a	b	С	d	е	f
Freq in '000s	45	13	12	16	9	5
fixed-len code	000	001	010	011	100	101
variable-len code	0	101	100	111	1101	1100

Note: since there are 6 characters, a fixed-length code must use at least 3 bits per codeword).

- The fixed-length code requires 300,000 bits to store the file.
- The variable-length code requires only $(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) \cdot 1000 = 224,000$ bits, saving a lot of space!
- Goal is to save space!

Decoding

$$C_1 = \{a = 00, b = 01, c = 10, d = 11\}.$$

 $C_2 = \{a = 0, b = 110, c = 10, d = 111\}.$
 $C_3 = \{a = 1, b = 110, c = 10, d = 111\}.$

Given an encoded message, decoding is the process of turning it back into the original message.

Message is uniquely decodable if it can be decoded in only one way.

Example

Relative to C_1 , 010011 is uniquely decodable to bad.

Relative to C_2 , 1100111 is uniquely decodable to bad.

Relative to C_3 , 1101111 is not uniquely decipherable it could have encoded either bad or acad.

In fact, any message encoded using C_1 or C_2 is uniquely decipherable. Unique decipherability property is needed in order for a code to be useful.

Prefix Codes

Fixed-length codes are always uniquely decipherable. WHY?

We saw before that fixed-length codes do not always give the best compression though, so we prefer to use variable length codes.

Definition

A code is called a prefix (free) code if no codeword is a prefix of another one.

Example

```
\{a = 0, b = 110, c = 01, d = 111\} is not a prefix code. \{a = 0, b = 110, c = 10, d = 111\} is a prefix code.
```

Prefix Codes

Important Fact: Every message encoded by a prefix free code is uniquely decipherable.

Because no codeword is a prefix of any other, we can always find the first codeword in a message, peel it off, and continue decoding.

Example

```
code: \{a = 0, b = 110, c = 10, d = 111\}.

01101100 = 01101100 = abba
```

We are therefore interested in finding *good* (best compression) prefix-free codes.

The Optimal Source Coding Problem

Huffman Coding Problem

Given an alphabet $A = \{a_1, \ldots, a_n\}$ with frequency distribution $f(a_i)$, find a binary prefix code C for A that minimizes the number of bits

$$B(C) = \sum_{i=1}^{n} f(a_i) L(c_i)$$

needed to encode a message of $\sum_{i=1}^{n} f(a_i)$ characters, where

- \bullet c_i is the codeword for encoding a_i , and
- $L(c_i)$ is the length of the codeword c_i .

Example

Problem

Suppose we want to store messages made up of 4 characters a, b, c, d with frequencies 60, 5, 30, 5 (percents) respectively. What are the fixed-length codes and prefix-free codes that use the least space?

Solution:

characters	а	Ь	C	d
frequency	60	5	30	5
fixed-length code	00	01	10	11
prefix code	0	110	10	111

To store these 100 characters,

- (1) the fixed-length code requires $100 \times 2 = 200$ bits,
- (2) the prefix code uses only

$$60 \times 1 + 5 \times 3 + 30 \times 2 + 5 \times 3 = 150$$
 bits

a 25% saving.

Let $S = \{a/20, b/15, c/5, d/15, e/45\}$ be the original character set S alphabet and its corresponding frequency distribution.

The first Huffman coding step merges c and d. (could also have merged c and b).

Now have $S = \{a/20, b/15, n1/20, e/45\}.$

② Algorithm merges a and b (could also have merged n1 and b)

Now have $S = \{n2/35, n1/20, e/45\}$.

Algorithm merges *n*1 **and** *n*2.

Now have $S_3 = \{ \frac{n3}{55}, \frac{e}{45} \}$.

Algorithm next merges e and n3 and finishes.

The Huffman code is:

$$a = 000, b = 001,$$

$$c = 010, d = 011,$$

$$e = 1$$
.

Correspondence between Binary Trees and Prefix Codes

1-1 correspondence between leaves and characters.

- Left edge is labeled 0; right edge is labeled 1
- The binary string on a path from the root to a leaf is the codeword associated with the character at the leaf.

Huffman Coding - Algorithm

Set S be the original set of message characters.

- (Greedy idea)
 - Pick two smallest frequency characters x, y from S.
 - Create a subtree that has these two characters as leaves.
 - Label the root of this subtree as z.
- Set frequency f(z) = f(x) + f(y).
 - Remove x, y from S and add z to S
 - $S = S \cup \{z\} \{x, y\}.$
 - Note that |S| has just decreased by one.

Repeat this procedure, called merge, with the new alphabet S, until S has only one character left in it.

The resulting tree is the Huffman code tree.

 It encodes the optimum (minimum-cost) prefix code for the given frequency distribution.

Huffman Coding - Algorithm

Given character set S with frequency distribution $\{f(a) : a \in S\}$: The binary Huffman tree is constructed using a priority queue, Q, of nodes, with frequencies as keys.

0

Χ

```
Huffman(S)

n = |S|;

Q = S; // the future leaves

for i = 1 to n - 1 do

| // Why n - 1? |

z = new node;

x = left[z] = Extract-Min(Q);

y = right[z] = Extract-Min(Q);

f[z] = f[left[z]] + f[right[z]];

lnsert(Q, z);

end
```

return Extract-Min(Q); // root of the tree

Running time is $O(n \log n)$, as each priority queue operation takes time $O(\log n)$.

Slide Credits

• COMP 3711H Design and Analysis of Algorithms Fall 2014