Commandes Cisco

Commandes de base

Configuration de base de la commutation

Routage Statique

Routage Dynamique (RIPV2)

OSPF (zone unique / zone multiple)

VLAN

Routage inter-vlan

DHCP

Redondance: STP

Redondance: HSRP, GLBP

Agrégation de liaison : Etherchannel

EIGRP

Image Cisco IOS et processus d'obtention

De licence.

WAN: Encapsulation PPP- HDLC

TP: PPP (PAP-CHAP)

Frame-Relay (point to point)

TP- Frame-Relay (multipoint)

NAT-PAT

VPN (protocole GRE)

SYSLOG - NETFLOW

SNMP

CCNA2

CCNA3

CCNA4

CCNA2: Commandes Cisco

DHCP

Commandes de base
Configuration de base de la commutation
Routage Statique
Routage Dynamique (RIPV2)
OSPF (zone unique / zone multiple)
VLAN
Routage inter-vlan

Commandes de bases

Mode privilégié :

Router> enable

Mode Configuration globale:

Router# configur terminal

Changer le nom d'équipement :

Router(config)# hostname R1

Mot de passe (non-crypté):

Router(config)# enable password cisco1234

Mot de passe (crypté):

Router(config)# enable secret cisco1234

Appliquer un cryptage simple à tous les mots de passe :

Router(config)# service password-encryption

Création d'une entrée statique de résolution de nom dans la tabe de host :

Router(config)# ip host TRI 69 192.168.1.33

Activer le serveur http (service web) :

Router(config)# ip http server

Configurer une interface:

R1(config)#interface Serial0/0 R1(config-if)# ip add 192.168.2.1 255.255.255.0 R1(config-if)# no shutdown

Afficher les informations de l'interface :

R1# show interface Serial0/0

Configurer la vitesse de liaison WAN:

Router(config-if)# clock rate 64000

Interface Console:

R1(config)# line console 0
R1(config-line)# logging synchronous
(désactiver messages de non solicitations)
R1(config-line)# password cisco1234
R1(config-line)# login
R1(config-line)# exit

Interface VTY:

R1(config)# line vty 0 4 R1(config-line)# password cisco1234 R1(config-line)# login R1(config-line)# exit

Configurer une interface de bouclage :

Router(config)#interface loopback 0 Router(config-if)#ip address 192.168.1.2 255.255.255.0

Désactiver la recherche DNS:

Router (config)# no ip doman-lookup

Message de bannière de connexion :

R1(config)# banner mtd #message de jour#

Ajouter une description pour l'interface :

R1(config-if)# description # votre Description#

Enregistrer les modifications apportées à un routeur

R1#copy running-config startup-config

Donne des informations sur les voisins CDP comme l'ID

R1#show cdp neighbors

Désactiver le protocole CDP:

R1(config)#no cdp run

Arrêter les annonces CDP sur une interface précise.

R1(config-if)# no cdp enable

Afficher l'heure du système :

Router# show clock

Configurer l'heure sur le routeur :

Router(config)# clock set 22:30:44 13 4 2015

Concepts et configuration de base de la commutation

Configuration de l'interface de gestion :

S1#conf t

S1(config)# interface vlan 99

S1(config-if)# ip address 172.17.99.11 255.255.0.0

S1(config-if)# no shutdown

S1(config-if)# end

S1# copy running-config startup-config

Configuration de la passerelle par défaut :

S1#configure terminal

S1(config)# ip default-gateway 172.17.99.1

S1# end

S1# copy running-config startup-config

Vérifier la configuration :

S1#show ip interface brief

Configuration du mode bidirectionnel de la vitesse (Full-duplex):

S1# configure terminal

S1(config)# interface FastEthernet 0/1

S1(config-if) # duplex full

S1(config-if)# speed 100

S1(config-if)# end

S1# copy running-config startup-config

Configurer l'auto-MDIX:

S1(config-if)# mdix auto

Vérifier l'auto-MDIX :

S1(config-if)# show controllers ethernet-controller fa 0/1 phy linclude auto-mdix

Configuration de SSH:

S1#configure terminal

S1(config)# username admin secret/password ccna

S1(config) # ip ssh version 2

S1(config)# crypto key generate rsa

S1(config)# ip domain-name cisco.com

S1{config-line}# line vty 0 15

S1(config-line)# transport input ssh

S1(config-line)# login local

S1(config-line)# exit

S1(config)# exit

Désactiver les ports inutilisés :

S1#show run

S1(config)# interface range F0/0-5

S1(config-if)# shutdown

S1# copy running-config startup-config

Configurer la surveillance DHCP:

S1(config)#ip dhcp snooping

S1(config)# ip dhcp snooping vlan 10,20

S1(config)# interface fastethernet 0/1

S1(config-if)# ip dhcp snooping limit rate 5 (limite de requête)

S1'config-if)# ip dhcp snooping trust

Vérifier l'état surveillance DHCP:

S1#show ip dhcp snooping

Modifier le mode de violation d'un port :

S1(conft-if)# switchport port-security violation{protect | restrict | shutdown}

Configurer la sécurité des ports rémanents :

S1(config)#interface fastethernet 0/19

S1(config-if)# switchport mode access

S1(config-if)# switchport port-security

S1(config-if)# switchport port-security maximum 50

S1(config-if)# switchport port-security mac-address

S1(config-if)# switchport port-security mac-address sticky

Vérifier les adresses MAC sécurisées :

S1# show port-security address

S1#show port-security interface f/019

Vérifier l'état du port :

S1# show interface f0/18 status

Configurer NTP:

R1(config)# ntp master 1

R2(config)# ntp server 10.1.1.1

R2# show ntp associations

R2# show ntp status

Routage Statique

Syntaxe de la commande ip route ipv4 :

Router(config)# ip route network-address subnet-mask {ip-address | interface-type interface-number [ip-address]} [distance] [name name] [permanent] [tag tag]

Configuration des routes statiques:

R1(config)# ip route 172.16.1.0 255.255.255.0 172.16.2.2 (Route statique en utilisant le tronçon suivant)

R1(config)# ip route 172.16.1.0 255.255.255.0 s0/0/0 (Route statique directement connecté) dans le cas du protocole CEF est désactivé.

R1(config)# ip route 192.168.2.0 255.255.255.0 G0/1 172.16.2.2 (Route statique entièrement spécifiée).

R1(config)# ip route 0.0.0.0 0.0.0.0 172.16.2.2 (Route statique par défaut).

R1(config)# ip route 0.0.0.0 0.0.0.0 172.16.2.2 5 (Route statique flottante DA = 5).

Vérification de la table de routage :

R1# Show ip route ou R1(config)# do sh ip route

R1# show ip route static

R1# show ip route 192.168.2.1

R1# show running config | section ip route

Syntaxe de la commande ip route ipv6 :

Router(config)# ipv6 route ipv6-prefix/prefix-length { ipv6-address | exit-intf }

Configuration des routes statiques :

R1(config)# ip route 2001:DB8:ACAD:3::/64 2001:DB8:ACAD:4::2 (Route statique en utilisant le tronçon suivant)

R1(config)# ip route 2001:DB8:ACAD:3::/64 s0/0/0 (Route statique directement connecté) dans le cas du protocole CEF est désactivé.

R1(config)# ip route 2001:DB8:ACAD:3::/64 fe80::2 (Route statique entièrement spécifiée).

R1(config)# ip route ::/0 2001:DB8:ACAD:4::2 (Route statique par défaut).

R1(config)# ip route ::/0 2001:DB8:ACAD:4::2 5 (Route statique flottante DA =5).

Vérification de la table de routage :

R1# Show ipv6 route ou R1(config)# do sh ipv6 route

R1# show ipv6 route static

R1# show ipv6 route 2001:DB8:ACAD:3::

R1# show running config | section ipv6 route

La récapitulation de réseaux en une seule adresse et un seul masque :

Routage Dynamique (RIP V2)

Activer le Routage Rip V2: R1(config)# router rip R1(config)# version 2 Annonce des réseaux : R1(config-router) network 192.168.1.0 Vérifier les paramètres / les réseaux annoncés dans RIP : R1# show ip protocols Afficher la table de routage Rip : R1# show ip route Désactiver la récapitulation automatique : R1(config-router)# no auto-summary Configurer et vérifier passive interface : R1(config-router)# passive-interface g0/0 Propager une route par defaut :

R1(config-router)# default-information originate

Propager une route statique :

R1(config-router)# redistribute static

Déclarer l'utilisation de clé sur interface :

R1(config-if)# ip rip authentification key-chain nom R1(config-if)# ip rip authentification mode md5

Commandes show:

R1# show ip protocols (Parametres de Rip) R1#show ip route (Vérifier les routes) R1# show ip route rip (Vérifier les routes rip)

: 6val

Activer le Routage Rip V2:

R1(config)# interface gigabitethernet 0/0/0 R1(config-if)# ipv6 rip process1 enable

Maximum Path (pour la repartions de la charge) :

R1(config-if)# ipv6 rip process1 enable R1(config-router)# maximum-paths 1

Désactiver la récapitulation automatique :

R1(config-router)# no auto-summary

Configurer et vérifier passive interface :

R1(config-router)# passive-interface g0/0

Propager une route par defaut :

Router(config-if)# ipv6 rip process1 default-information originate

Propager une route static :

Router(config)# ipv6 router rip tri Router(config-rtr)# redistribute static

Commande show:

R1# show ipv6 protocols (Parametres de Rip ipv6) R1#show ipv6 route (Vérifier les routes) R1# show ipv6 route rip (Vérifier les routes rip)

Activation de Ripng IPV6:

R1(config)# interface S0/0/0 R1(config-if)# ipv6 rip RIP-AS enable R1(config-if)# no shut

OSPF

OSPF v2 (ipv4)

Activer le Routage OSPFv2:

R1(config)# router ospf 10 10=le numéro de système autonome

Configurer l'ID de routeur :

R1(config-router)# router-id 1.1.1.1

Affectation d'interface à une zone OSPF :

R1(config-router)# network 172.16.1.0 0.0.0.255 area 0

Effacer le processus de routage OSPF :

R1# clear ip ospf process

Configurer une interface de bouclage pour l'utiliser comme ID :

R1(config)# interface loopback 0

R1(config-if)# ip address 1.1.1.1 255.255.255.255

R1(config-if)# end

Configurer une interface passive :

R1(config-router)# passive-interface g0/0

Configurer la métrique de la BP :

R1(config)# interface s0/0/1

R1(config-if)# bandwith 64 (en kilo)

Réglage manuel de cout (commande alternative à BP) :

R1(config)# interface s0/0/1

R1(config-if)# ip ospf cost 15625

Changer la référence de la BP:

R1(config-router)# auto-cost reference -bandwith 1000

Afficher la table de voisinage :

R1# show ip ospf neighbors

Vérifier le processus OSPF:

R1# show ip ospf

Vérifier les paramètres OSPF d'une interface :

R1# show ip ospf interface brief

Modifier de la priorité d'un interface :

R1(config)# interface G0/0

R1(config-if)# ip ospf priority 255

R1(config-if)# end

R1# clear ip ospf process

Propagation d'une route par défaut :

R1(config)# ip route 0.0.0.0 0.0.0.0 209.165.200.226

R1(config)# router ospf 10

R1(config-router)# default-information originate

R1(config-router)# end

Modification des intervalles OSPF sur une interface :

R1(config)# interface serial 0/0/0

R1(config-if)# ip ospf hello-interval 5

R1(config-if)# ip ospf dead-interval 20

R1(config-router)# end

OSPF v3 (ipv6)

Activation de routage ipv6 :

R1(config)# ipv6 unicast-routing

Activer le Routage OSPFv3:

R1(config)# ipv6 router ospf 20 20 = le numéro de système autonome

Configurer les adresses link-local :

R1(config)# interface g0/0

R1(config-if)# ipv6 adresse fe80::1 link-local

R1(config)# exit

Effacer le processus de routage OSPF :

R1# clear ipv6 ospf process

Affectation d'interface à une zone OSPF :

R1(config)# interface g0/0

R1(config-if)# ipv6 ospf 10 area 0

Afficher la configuration des interfaces :

R1# show ipv6 ospf interfaces brief

Afficher la table de voisinage :

R1# show ipv6 ospf neighbors

Vérifier la table de routage ipv6 OSPF

R1# show ipv6 route ospf

Propagation d'une route par défaut :

R1(config)# ipv6 route ::/0 2001:DB8:FEED:1::2

R1(config)# ipv6 router ospf 10

R1(config-router)# default-information originate

R1(config-router)# end

Modification des intervalles OSPF sur une interface :

R1(config)# interface serial 0/0/0

R1(config-if)# ipv6 ospf hello-interval 5

R1(config-if)# ipv6 ospf dead-interval 20

R1(config-router)# end

Activation de l'authentification MD5 OSFP globalement :

R1(config)#router ospf 10

R1(config-if)# area 0 authentication message-digest

R1(config-if)# end

R1(config)# interface G0/0

R1(confg-if)#ip ospf message-digest key 1 md5 AZERTY1234

R1(config-if)#exit

OSPF Multizone.

R1(config-router)# network 10.1.1.0 0.0.0.255 area 1 R1(config-router)# network 10.1.2.0 0.0.0.255 area 1

R1(config-router)# network 192.168.10.0 0.0.0.3 area 0

VLAN

Création du VLAN:

S1#conf t

S1(config)# vlan 20

S1(config-vlan)# name ista

S1(config-vlan)# end

Attribution de ports aux VLAN:

S1# configure terminal

S1(config)# interface F0/18

S1(config-if)# switchport mode access

S1(config-if)# switchport access vlan 20

S1(config-if)# end

Suppression d'une attribution de VLAN:

S1(config-if)# no switchport access vlan

Suppression de VLAN:

S1# configure terminal

S1(config)# no vlan 20

S1(config)# end

Afficher infos d'un VLAN:

S1#show vlan name ista

S1#show vlan brief

Afficher infos de vlan sur une interface :

S1#show interfaces f0/1 switchport

Afficher le nombre des vlans configurés :

S1#show vlan summary

Configuration de trunk:

S1#configure terminal

S1(config)# interface FastEthernet0/1

S1(config-if)#switchport mode trunk

S1(config-if)# switchport trunk native vlan 99

Autoriser les vlan 10,20 et 30

S1{config-if}# switchport trunk allowed vlan 10,20,30,99

S1(config)# end

Autoriser tout les vlan:

S1{config-if}# switchport trunk allowed vlan all

Ajouter vlan 60 a la liste des vlans autorisées :

S1{config-if}# switchport trunk allowed vlan add 60

Ajouter tout les vlan a l'expetion de vlan 30 :

 $S1{config-if}$ switchport trunk allowed vlan all

S1(config-if)#switchport trunk allowed vlan except 30

Afficher l'état de l'agrégation :

S1#show interfaces trunk

S1#show interfaces F0/1 switchport

Vérifier si un trunk est établi/verifier la correspondance des VLANS:

S1#show interfaces f0/1 trunk

Réinitialisation de valeurs sur liaison trunk (par defaut) :

S1#configure terminal

S1(config)# interface FastEthernet0/1

S1(config-if)#no switchport mode trunk allowed vlan

S1(config-f)# no switchport trunk native vlan

S1(config)# end

Supprimer fonctionnalité de trunk :

S1(config)#interface f0/1

S1(config-if)# switchport mode access

S1(config-if)# end

Vérifier mode DTP:

S1#show dtp interface 0/1

Désactiver la négociation DTP :

S1(config-if)#switchport nonegociate

Commandes show:

S1#show vlan

S1#show mac address-table interface F0/1

S1#show interfaces

S1#show interfaces F0/1 switchport

VLAN Trunking Protocol VTP:

S1(config)# vtp mode {server|client| transport}

S1(config)# vtp domain ista

S1(config)# vtp password passista

S1(config)# vtp version {1|2}

S1(config)# vtp pruning

Commandes show VTP:

S1#show vtp status

S1#show vtp counters

Routage inter-VLAN

Configuration du routage inter-VLAN existant :

Commutateur:

S1(config)# vlan 10

S1(config)# vlan 30 S1(config-vlan)# interface f0/11

S1(config-if)# switchport access vlan 10

S1(config-if)# interface f0/4

S1(config-if)# switchport access vlan 10

S1(config-if)# interface f0/6

S1(config-if)# switchport access vlan 30

S1(config-if)# interface f0/5

S1(config-if)# switchport access vlan 30

S1(config-if)# end

Configuration du routage inter-VLAN existant :

Routeur:

R1(config)# interface g0/0

R1(config)# ip address 172.17.10.1 255.255.255.0

R1(config)# no shut

R1(config)# interface g0/1

R1(config)# ip address 172.17.30.1 255.255.255.0

R1(config)# no shut

Configuration du routage inter-VLAN existant 172.17.10.1/24 G0/0 G0/1 F0/4 F0/5 VLAN 30 PC1 PC3 172.17.30.23

Configuration du routage inter-VLAN de type router on a stick

Commutateur:

S1(config)# vlan 10

S1(config-vlan)# vlan 30

S1(config-vlan)# interface f0/5

S1(config-if)# switchport mode trunk

S1(config-if) # end

Configuration du routage inter-VLAN de type router on a stick

Routeur:

R1(config)# interface g0/0.10

R1(config-subif)# encapsulation dotlq/isl 10

R1(config-subif)# ip address 172.17.10.1 255.255.255.0

R1(config-subif)# interface g0/0.30

R1(config-subif)# encapsulation dotlq/isl 30

R1(config-subif)# ip address 172.17.30.1 255.255.255.0

R1(config)# interface g0/0

R1(config-if)# no shut

Vérifier les sous interfaces :

S1# show vlans

Vérifier le routage :

S1# ping 172.17.30.23

Configuration du routage inter-VLAN de type router-on-a-stick

Configuration pour ipv4:

Activation de service dhcp

R(config)# service dhcp

Configuration en tant que serveur DHCP:

Exclusion des adresses ipv4:

R1(config)# ip dhcp excluded-address 192.168.10.1 (une adresse) R1(config)# ip dhcp excluded-address 192.168.10.1 192.168.10.9

Configuration d'un pool :

R1(config)# ip dhcp pool pool-name

Configuration des taches spécifique :

Définir le pool d'adresses :

R1(dhcp-config)#network 192.168.10.0 255.255.255.0

Définir le routeur/ l'adresses de passerelle par defaut :

R1(config-dhcp)#default -router 192.168.10.1

Définir un serveur DNS :

R1(config-dhcp)# domain-name ServeurDNS

Définir la durée du bail DHCP :

R1(config-dhcp)# lease { j H M} ou infinite (durée infinie)

Définir le serveur WINS de Netbios :

R1(config-dhcp)# netbios-name-server 192.168.10.22

Commandes Show:

Les commandes DHCPv4 configurées sur R1:

R1# show running-config | section dhcp

Afficher la liste de toutes les liaisons entre adresse IPv4 et adresse MAC / Clients:

R1# show ip dhcp binding

Afficher les statistiques :

R1# show ip dhcp server statistics

Afficher les conflits :

R1# show ip dhcp server conflict

Commande de Relais de DHCPv4:

R(config)# interface g0/0

R(config-if)# ip helper-address 192.168.11.6

R# show ip interface (pour vérifier)

Configuration d'un routeur en tant que Client DHCP :

R1(config)# interface g0/1

R1(config-if)# ip address dhcp

R1(config-if)# no shutdown

R1(config-if# end

R1# show ip interface g0/1 (pour vérifier)

Configuration pour ipv6:

Activation de routage ipv6 :

R1(config)# ipv6 unicast-routing

Configuration en tant que serveur sans etat :

Configuration d'un pool:

R1(config)# ipv6 dhcp pool pool-name

Définir les parametres de Pool :

R1(dhcpv6-config)# dns-server ServeurDNS

R1(dhcpv6-config)# domain-name ServeurDNS

Configuration de l'interface DHCPv6:

R1(config)# interface type-name

R1(config-if)# ipv6 dhcp server pool-name

R1(config-if)#ipv6 nd other-config-flag

Verification d'un serveur sans etat :

R1# show ipv6 dhcp pool

Configuration en tant que client sans etat :

R1(config)# interface g0/1

R1(config-if)# ipv6 enable

R1(config-if)#ipv6 address autoconfig

Verification d'un client sans etat :

R1# show ipv6 dhcp pool o

R1# debug ipv6 dhcp detail

Configuration en tant que serveur <u>avec</u> etat :

Configuration d'un pool:

R1(config)# ipv6 dhcp pool pool-name

Définir les parametres de Pool :

R1(dhcpv6-config)#address prefix 2001:DB8:CAFE:1::/64

lifetime infinite

R1(dhcpv6-config)# domain-name tri2a.ma

R1(dhcpv6-config)# dns-server 192.168.10.22

Configuration de l'interface DHCPv6:

R1(config)# interface type-name

R1(config-if)# ipv6 dhcp server pool-name

R1(config-if)#ipv6 nd managed-config-flag

Verification d'un serveur avec etat :

R1# show ipv6 dhcp binding

Configuration en tant que client avec etat :

R1(config)# interface g0/1

R1(config-if)# ipv6 enable

R1(config-if)#ipv6 address dhcp

Verification d'un client avec etat :

R1# show ipv6 interface g0/1

R1# debug ipv6 dhcp detail

Commande de Relais de DHCPv6:

R(config)# interface g0/0

R(config-if)# ipv6 dhcp relay destination 2001:db8:cafe:1::6

R(config-if) end

R# show ipv6 dhcp interface g0/0 (pour vérifier)

CCNA3: Commandes Cisco

Redondance: STP

Redondance: HSRP, GLBP

Agrégation de liaison : Etherchannel

EIGRP

De licence.

Redondance: STP

Configurer le cout de port :

S1#Conf t

S1(config)# Interface f0/1

S1(config-if)# Spanning-tree cost 25

S1(config-if)# End

Réinitialiser le cout de port :

S1(config-if)# No spanning-tree cost

vérifier le coût de chemin et de port vers le pont racine

S1# Show spanning-tree

PVSTP+: Configuration:

Methode 1:

S1(config)# spanning-tree VLAN 1 root primary

S1(config)# end

S2(config)#spanning-tree VLAN 1 root secondary

S1(config)# end

Methode 2:

S3(config)#spanning-tree VLAN 1 priority 24576

Configuration de PortFast et de la protection BPDU :

S3(config)# interface f0/11

S3(config-if)# spanning-tree portfast

S3(config-if)# spanning-tree bpduguard enable

S3(config-if)# end

Verifier Portfast:

S2# show running-config interface f0/11

affiche le détail de la configuration Spanning Tree

S1# show spanning-tree active

RPVSTP+:

S1#configure terminal

S1(config)# spanning-tree mode rapid-pvst

S1(config)# interface f0/2

S1(config-if)# spanning-tree link-type point-to-point

S1(config-if)# end

S1# clear spanning-tree detected-protocols

Redondance: HSRP,GLBP

Configurez HSRP sur R1:

R1(config)# interface g0/1
R1(config-if)# standby 1 ip 192.168.1.254
R1(config-if)# standby 1 priority 150
R1(config-if)# standby 1 preempt

Configurez HSRP sur R3:

R3(config)# interface g0/1 R3(config-if)# standby 1 ip 192.168.1.254

Vérifiez le protocole HSRP.

R1# show standby R1# show standby brief

Désactivez HSRP:

R1(config)# interface g0/1 R1(config-if)# no standby 1

Configurez le protocole GLBP sur R1.

R1(config)# interface g0/1

R1(config-if)# glbp 1 ip 192.168.1.254

R1(config-if)# glbp 1 preempt

R1(config-if)# glbp 1 priority 150

R1(config-if)# glbp 1 load-balancing round-robin

Configurez le protocole GLBP sur R3.

R3(config)# interface g0/1
R3(config-if)# glbp 1 ip 192.168.1.254
R3(config-if)# glbp 1 load-balancing round-robin

Périphérique	Interface	Adresse IP	Masque de sous-réseau	Passerelle par défaut
R1	G0/1	192.168.1.1	255.255.255.0	N/A
	S0/0/0 (DCE)	10.1.1.1	255.255.255.252	N/A
R2	S0/0/0	10.1.1.2	255.255.255.252	N/A
	S0/0/1 (DCE)	10.2.2.2	255.255.255.252	N/A
	Lo1	209.165.200.225	255.255.255.224	N/A
R3	G0/1	192.168.1.3	255.255.255.0	N/A
	S0/0/1	10.2.2.1	255.255.255.252	N/A
S1	VLAN 1	192.168.1.11	255.255.255.0	192.168.1.1
S3	VLAN 1	192.168.1.13	255.255.255.0	192.168.1.3
PC-A	NIC	192.168.1.31	255.255.255.0	192.168.1.1
PC-C	NIC	192.168.1.33	255.255.255.0	192.168.1.3

Vérifiez le protocole GLBP.

R1# show glbp R1# show glpb brief

Désactivez GLPB:

R1(config)# interface g0/1 R1(config-if)# no glbp 1

Agrégation de liaisons : Etherchannel

Configuration d'Etherchannel:

S1(config)# interface range f0/1-2

S1(config-if-range)# channel-protocol { pagp | lacp }

S1(config-if-range)# channel-group 1 mode active

S1(config-if-range)# interface port-channel 1

S1(config-if)# switchport mode trunk

S1(config-if)# switchport trunk allowed vlan 1,2,20

Activer l'Equilibrage :

S1(config)# port-channel load-balance

Dépannage:

S1# show etherchannel summary

Remarques:

- Dans le cas de pagp , il est préférable d'utiliser le mode désirable .
- Dans le cas de lacp, il est préférable d'utiliser le mode active.

EIGRP

lpv4

Activer le Routage EIGRP :

R1(config)# router eigrp 1 1=le numéro de système autonome

Configurer l'ID de routeur

R1(config-router) eigrp router-id 1.1.1.1

Annonce des réseaux :

R1(config-router) network 192.168.1.0 0.0.0.255

Configurer et vérifier passive interface :

R1(config-router)# passive-interface g0/0

Afficher la table de voisinage :

R1# show ip eigrp neighbors

Affiche d'autres informations sur le routage :

R1# show ip protocols

Désactiver la récapitulation automatique :

R1(config-router)# no auto-summary

Configurer la récapitulation automatique :

R1(config)# router eigrp 2 R1(config-router)# auto-summary

Configurer la métrique :

R1(config-router)# metric weights tos k1 k2 k3 k4 k5

Configurer la métrique de la BP :

R1(config)# interface s0/0/0 R1(config-if)# bandwith 64 (en kilo)

Afficher la table Topologique de EIGRP:

R1# show ip eirgp topology

Afficher la table Topologique de EIGRP (tous les liens:)

R1# show ip eirgp topology all-links

Configurer une route récapitulative manuel :

R1(config)# interface serial 0/0/0

R1(config-if)# ip summary-address eigrp 192.168.0.0 255.255.252.0

Vérifier la route récupitulative :

R1# show ip route eigrp

Configurer et propager une route statique par défaut :

R1(config)# ip route 0.0.0.0 0.0.0.0 s0/0/0

R1(config)# router eigrp 1

R1(config-router) redistribute static

Configurer l'utilisation de BP:

R1(config)# interface serial 0/0/0

R1(config-if) ip bandwith-percent eigrp 1 40 (40 kilo)

Configurer le minuteurs Hello et mise en attente :

R1(config)# interface serial 0/0/0

R1(config-if) ip hello-interval eigrp 1 50 (50 s)

R1(config-if) ip hold-time eigrp 1 150 (150 s)

Equilibrage de la charge :

Router(config-router)# maximum-paths 4 (4 route)

lpv6

Activation de routage ipv6 :

R1(config)# ipv6 unicast-routing

Activer le Routage EIGRP:

R1(config)# ipv6 router eigrp 2

R1(config-rtr) # no shut

Configurer les adresses link-local:

2=le numéro de système autonome

R1(config)# interface s0/0/0

R1(config-if)# ipv6 adresse fe80::1 link-local

Configurer l'ID de routeur

R1(config-router) eigrp router-id 1.1.1.1

Activation du protocole EIGRP dans les interfaces:

R1(config)# interface g0/0

R1(config-if) ipv6 eigrp 2

R1(config-if) exit

Configurer et vérifier passive interface :

R1(config)# ipv6 router eigrp 2

R1(config-rtr)# passive-interface g0/0

Afficher la table de voisinage :

R1# show ip eigrp neighbors

Configurer une route récapitulative manuel :

R1(config)# interface serial 0/0/0

R1(config-if)# ip v6 summary-address eigrp 2 2001:db8:acad::/48

Configurer et propager une route statique par défaut :

R1(config)# ipv6 route ::/0 s0/0/0

R1(config)# ipv6 router eigrp 2

R1(config-rtr)# redistribute static

Configurer l'utilisation de BP:

R1(config)# interface serial 0/0/0

R1(config-if) ipv6 bandwith-percent eigrp 2 40 (40 kilo)

Configurer le minuteurs Helle et mise en attente :

R1(config)# interface serial 0/0/0

R1(config-if) ipv6 hello-interval eigrp 2 50 (50 s)

R1(config-if) ipv6 hold-time eigrp 2 150 (150 s)

Créer une chaine de clés et d'une clé :

R1(config) # key chain EIGRP_KEY

R1(config-keychain)# key 1

R1(config-keychain_key)# key-string cisco123

Configurer l'autentification EIGRRP:

R1(config)# interface g0/0

R1(config-if)# ip authentication mode eigrp as-number md5

R1(config-if)# ip authentication mode eigrp as-number EIGRP_KEY

Images Cisco IOS et processus d'obtention de licences

Afficher l'image système

Router # show flash0:

Création de sauvegarde d'image Cisco IOS:

Étape 1. Vérifier l'accès au serveur TFTP:

R1# ping 172.16.1.100

Étape 2. Déterminer la taille du fichier IOS :

R1# show flash0:

Étape 3. Copier l'image sur le serveur TFTP:

R1# copy flash0 : tftp :

Source filename [] ? C1900-universalk9-mz.SPA.152-4.M3.bin Addresse or name of remote host [] ? 172.168.1.100 Destionation filename ?

Définir l'image à charger au démarrage :

R1 # configure terminal

R1(config)# boot system

flash0://c1900-universalk9-mz.SPA.152-4.M3.bin

R1(config)# exit

R1# copy running-config startup-config

R1# reload

Vérifier la nouvelle image :

R1# show version

Processus d'obtention de licences

Étape 1. Achetez le package logiciel ou la fonctionnalité à installer.

Etape2.Vérifier l'UDI

R1# show licence udi

Etape3. le client reçoit un e-mail contenant les informations de licence permettant d'installer le fichier de licence.

Étape 4. Installation de la licence :

R1# Licence install flash0 : securityk9-CISCO1941-FHH12250057.xml R1# reload

Vérifier que la licence a été installée :

R1# show version

Afficher des informations supplémentaires sur les licences :

R1# show license

Activation d'une licence de droit d'utilisation d'évaluation :

R1# license boot module module-name technology-package package-name

Sauvegarde de la licence :

R1# licence save flash0:all licence.lic

.....

Désinstallation de la licence :

Etape1.Désactiver le package :

R1(config)# licence boot module c1900 technology-package seck9 disable

Etape2.Effacer la licence :

R1# licence clear seck9

R1#configure terminal

R1(config)# no licence boot module c1900 technology-package seck9 disable

R1(config)# exit

R1# reload

CCNA4: Commandes Cisco

WAN: Encapsulation PPP- HDLC

TP: PPP (PAP-CHAP)

Frame-Relay (point to point)

TP- Frame-Relay (multipoint)

NAT-PAT

VPN (protocole GRE)

SYSLOG - NETFLOW

SNMP

CCNA4

WAN: encapsulation PPP - HDLC

Configuration de l'authentification PAP (bidirectionnel)

R1(config)# username User2 password User2-password

R1(config)#interface S0/0/0

R1(config-if)# encapsulation ppp

R1(config-if)# ppp authentication pap

R1(config-if)# ppp pap sent-username User1 password User1-password

R2(config)# username User1 password User1-password

R2(config)#interface S0/0/0

R2(config-if)# encapsulation ppp

R2(config-if)# ppp authentication pap

R2(config-if)# ppp pap sent-username User2 password User2-password

Configuration de l'authentification PAP

Configuration de l'encapsulation HDLC

Router(config)# interface S 0/0/0 Router(config-if)# encapsulation hdlc

Dépannage d'une interface série :

R1# show interface serial 0/0/0 R1# show controllers serial 0/0/0

Configuration de l'authentification CHAP

Configuration de l'authentification CHAP

R1(config)# username User2 password User2-password

R1(config)# interface S0/0/0

R1(config-if)# encapsulation ppp

R1(config-if)# ppp authentication chap

R1(config-if)# ppp chap hostname *User1*

R1(config-if)# ppp chap password User1-password

R2(config)# username User1 password User1-password

R2(config)# interface S0/0/0

R2(config-if)# encapsulation ppp

R2(config-if)# ppp authentication chap

R2(config-if)# ppp chap hostname User2

R2(config-if)# ppp chap password User2-password

Configuration de l'encapsulation PPP

Router(config)# interface serial 0/0/0
Router(config-if)# encapsulation ppp
Router(config-if)# compress [predictor | stac]

Contrôle de la qualité de la liaison PP

Router(config-if)# ppp quality percentage (1-100)

Remarques:

- 1- Pour l'authentification unidirectionnel, il suffit d'utiliser la commande "ppp pap sent user name " Dans un seul routeur.
- 2- On peut remplacer le mot "password" par "secrect" pour appliquer un cryptage simple sur le mot passe.
- 3- Les commandes "ppp chap hostname User2" et "ppp chap password User2-password" sont optionnels.

TP: PPP (PAP - CHAP)

Configurez l'authentification PPP PAP entre R1 et R3

R1(config)# username R3 secret class

R1(config)# interface s0/0/0

R1(config-if)# encapsulation ppp

R1(config-if)# ppp authentication pap

R1(config-if)# ppp pap sent-username R1 password cisco

R3(config)# username R1 secret cisco

R3(config)# interface s0/0/0

R3(config-if)# encapsulation ppp

R3(config-if)# ppp authentication pap

R3(config-if)# ppp pap sent-username R3 password class

Configurez l'authentification PPP PAP entre R2 et R3.

R2(config)# username R3 secret class

R2(config)# interface s0/0/0

R2(config-if)# encapsulation ppp

R2(config-if)# ppp authentication pap

R2(config-if)# ppp pap sent-username R2 password cisco

R3(config)# username R2 secret cisco

R3(config)# interface s0/0/0

R3(config-if)# encapsulation ppp

R3(config-if)# ppp authentication pap

R3(config-if)# ppp pap sent-username R3 password class

Configurez l'authentification PPP CHAP entre R3 et FAI

Router(config)# hostname FAI

FAI(config)# username R3 secret cisco

FAI(config)# interface s0/0/0

FAI(config-if)# ppp authentication chap

R3(config)# username FAI secret cisco R3(config)# interface serial0/1/0 R3(config-if)# ppp authentication chap

Frame-Relay (Point to Point)


```
R1(config)# interface serial 0/0/1
R1(config-if)# ip address 10.1.1.1 255.255.255.0
R1(config-if)# ipv6 address 2001:db8:cafe:1::1 /64
R1(config-if)# ipv6 address fe80::1 link -local
R1(config-if)# encapsulation frame-relay
R1(config-if)# frame-relay map ip 10.1.1.2 102 broadcast
R1(config-if)# frame-relay map ipv6 2001:DB8:CAFE:1::2 102
R1(config-if)# frame-relay map ipv6 FE80::2 102 brodcast
R2(config)# interface serial 0/0/1
R2(config-if)# ip address 10.1.1.2 255.255.255.0
R2(config-if)# ipv6 address 2001:db8:cafe:1::2 /64
R2(config-if)# ipv6 address fe80::2 link -local
R2(config-if)# encapsulation frame-relay
R2(config-if)# frame-relay map ip 10.1.1.1 201 broadcast
R2(config-if)# frame-relay map ipv6 2001:DB8:CAFE:1::1 102
R2(config-if)# frame-relay map ipv6 FE80::1 201 brodcast
```

Vérification d'un mappage statique Frame Relay

R1# show frame-relay map

Frame Relay avec sous interfaces

R1(config)# interface serial 0/0/1 R1(config-if)# encapsulation frame-relay R1(config-if)# no shut R1(config-if)# exit

R1(config)# interface serial 0/0/1.102 point-to-point R1(config-subif)# ip address 10.1.1.1 255.255.255.252 R1(config-subif)#frame -relay interface-dlci 102 R1(config-subif-dlci)# exit R1(config-subif)# exit

R1(config)# interface serial 0/0/1.103 point-to-point R1(config-subif)# ip address 10.1.1.5 255.255.255.252 R1(config-subif)#frame -relay interface-dlci 103

TP- Frame-Relay (Multipoint)

Pour R1:

R1(config)# int S0/0/0 R1(config-if)# encapsulation frame-relay dota R1(config)#frame-relay lmi-type g933a R1(config-if)# no shut R1(config-if)# exit R1(config)# int S0/0/0.1 multipoint R1(config-subif) # ip add 192.168.5.1 255.255.255.248 R1(config-subif) # frame-relay map ip 192.168.5.2 102 broadcast ietf R1(config-subif) # frame-relay map ip 192.168.5.3 103 broadcast ietf R1(config-subif) # frame-relay map ip 192.168.5.4 104 broadcast ietf R1(config-subif) # ip ospf priority 255 R1(config-subif) # ip ospf network broadcast R1(config-subif) # exit R1(config)# router ospf 1 R1 (config-router)# router-id 10.10.10.10 R1(config-router)# neighbor 192.168.5.2 R1(config-router)# neighbor 192.168.5.3 R1(config-router)# neighbor 192.168.5.4 R1(config-router)# network 192.168.1.0 0.0.0.255 area 0 R1(config-router)# network 192.168.5.0 0.0.0.7 area 0 R1(config-router)# end R1# wr

Pour R2:

R2(config)# int S0/0/0
R2(config-if)# encapsulation frame-relay dotq
R2(config-if)# frame-relay lmi-type q933a
R2(config-if)# no shut
R2(config-if)# exit

Pour R3

R3(config)# int S0/0/0 R3(config-if)# encapsulation frame-relay dotq R3(config-if)# frame-relay lmi-type q933a R3(config-if)# no shut R3(config-if)# exit

R3(config)# int S0/0/0.1 multipoint

R3(config-subif) # ip add 192.168.5.3 255.255.255.248
R3(config-subif) # frame-relay map ip 192.168.5.1 301 broadcast ietf
R3(config-subif) # frame-relay map ip 192.168.5.2 301 broadcast ietf
R3(config-subif) # frame-relay map ip 192.168.5.4 301 broadcast ietf

R3(config-subif) # **ip ospf priority 0**R3(config-subif) # **ip ospf network broadcast**R3(config-subif) # exit

R3(config)# router ospf 1 R3(config-router)# **router-id 3.3.3.3** R3(config-router)# neighbor 192.168.5.1

R3(config-router)# network 192.168.3.0 0.0.0.255 area 0 R3(config-router)# network 192.168.5.0 0.0.0.7 area 0 R3(config-router)# end

R3# wr

Pour R4

R4(config)# int S0/0/0 R4(config-if)# encapsulation frame-relay dotq R4(config-if)# frame-relay lmi-type q933a R4(config-if)# no shut R4(config-if)# exit

R4(config)# int S0/0/0.1 multipoint

R4(config-subif) # ip add 192.168.5.4 255.255.255.248

R4(config-subif) # frame-relay map ip 192.168.5.1 401 broadcast ietf R4(config-subif) # frame-relay map ip 192.168.5.2 401 broadcast ietf

R4(config-subif) # frame-relay map ip 192.168.5.3 401 broadcast ietf

R4(config-subif) # ip ospf priority 0

```
K4(CONTIG-SUDIF) # Trame-relay map IP 192.168.5.3 401 Droadcast lett
K2(config-if)# frame-relay lmi-type q933a
R2(config-if)# no shut
R2(config-if)# exit
                                                                       R4(config-subif) # ip ospf priority 0
                                                                       R4(config-subif) # ip ospf network broadcast
R2(config)# int S0/0/0.1 multipoint
                                                                       R4(config-subif) # exit
R2(config-subif) # ip add 192.168.5.2 255.255.255.248
                                                                       R4(config)# router ospf 1
R2(config-subif) # frame-relay map ip 192.168.5.1 201 broadcast ietf
R2(config-subif) # frame-relay map ip 192.168.5.3 201 broadcast ietf
                                                                       R4(config-router)# router-id 4.4.4.4
R2(config-subif) # frame-relay map ip 192.168.5.4 201 broadcast ietf
                                                                       R4(config-router)# neighbor 192.168.5.1
R2(config-subif) # ip ospf priority 0
                                                                       R4(config-router)# network 192.168.4.0 0.0.0.255 area 0
                                                                       R4(config-router)# network 192.168.5.0 0.0.0.7 area 0
R2(config-subif) # ip ospf network broadcast
                                                                       R4(config-router)# end
R2(config-subif) # exit
                                                                       R4# wr
R2(config)# router ospf 1
R2 (config-router)# router-id 2.2.2.2
R2(config-router)# neighbor 192.168.5.1
R2(config-router)# network 192.168.2.0 0.0.0.255 area 0
R2(config-router)# network 192.168.5.0 0.0.0.7 area 0
R2(config-router)# end
                                                         192.168.5.0/29
                                                                                       201
                                                                                    50/0/0:192.168.5.2/29
          s0/0/0:192.168.5.1/29
                                                                                              R2
                                                                                    50/0/0/192.168.5.3/29
                  R1
                                                      Cloud1
                                                                                            R3
                                                                                50/0/0:192.168.5.4/29
```

NAT-PAT

Configuration de la fonction NAT statique :

R2(config)# ip nat inside source static 192.168.10.254 209.165.201.5 R2(config)#interface Serial 0/0//0 R2(config-if)#ip address 10.1.1.2 255.255.255 R2(config_if)# ip nat inside R2(config_if)# exit

R2(config)# interface Serial 0/1//0
R2(config-if)# ip address 209.165.200.225 255.255.254
R2(config_if)# ip nat outside
R2(config-if)# exit

Vérification des traductions NAT statique :

R2# show ip nat translations

Effacer les statistiques des traductions passées :

R2# clear ip nat statics

Configuration de la fonction NAT Dynamique :

R2(config)# ip nat pool NAT-POOL1 209.165.200.226 209.165.200.240 netmask 255.255.255.224 R2(config)# access-list 1 permit 192.168.0.0 0.0.255.255 R2(config-if)#ip address 10.1.1.2 255.255.255.252 R2(config_if)# ip nat inside source list 1 pool NAT-POOL1 R2(config-if)# exit

R2(config)# interface Serial 0/0//0
R2(config_if)# ip nat inside
R2(config-if)# exit
R2(config)# interface Serial 0/1//0
R2(config_if)# ip nat outside
R2(config_if)# exit

Configuration de la fonction PAT

R2(config)# ip nat pool NAT-POOL2 209.165.200.226 209.165.200.240 netmask 255.255.255.224

R2(config)# acces-list 1 permit 192.168.0.0 0.0.255.255 R2(config)# ip nat inside source list 1 pool NAT-POOL2 overload

R2(config)# interface Serial 0/0/0 R2(config-if)# ip nat inside

R2(config)# interface Serial 0/1/0 R2(config-if)# ip nat outside

PAT avec une seule adresse:

R2(config)# ip nat source list 1 interface serial 0/1/0 overload R2(config)# access-list 1 permit 192.168.0.0 0.0.255.255

R2(config)# interface serial 0/0/0 R2(config-if)# ip nat inside R2(config-if)#exit

R2(config)# interface serial 0/1/0 R2(config-if)# ip nat outside R2(config-if)#exit

VPN (protocole GRE)

Pour Routeur 1 :

R1(config)# interface Tunnel 0

R1(config-if)# tunnel mode gre ip

R1(config-if)#ip address 192.168.2.1 255.255.255.0

R1(config-if)# tunnel source 209.165.201.1

R1(config-if)# tunnel destination 198.133.219.87

R1(config-if)# router ospf 1

R1(config-if)# network 192.168.2.0 0.0.0.255 area 0

Pour Routeur 2:

R2(config)# interface Tunnel0

R2(config-if)# tunnel mode gre ip

R2(config-if)#ip address 192.168.2.2 255.255.255.0

R2(config-if)# tunnel source 198.133.219.87

R2(config-if)# tunnel destination 209.165.201.1

R2(config-if)# router ospf 1

R2(config-if)# network 192.168.2.0 0.0.0.255 area 0

<u>Vérification de Tunnel GRE :</u>

R1# show ip interface brief | include Tunnel

R1# show interface Tunnel 0

Vérification de la contiguïté OSPF par le biais de tunnel GRE :

R1# show ip ospf neighbor

Configuration de tunnel GRE

SYSLOG-NETFLOW

Résumé des Commandes Syslog:

Configurez R1 de telle sorte que les événements consignés soient envoyés au serveur Syslog:

R1(config)# logging 192.168.1.3

Modifiez le niveau de gravité de la journalisation à 4 :

R1(config)# logging trap 4

Configurer l'interface source :

R1(config)# logging source-interface g0/0

Envoyer Les horodatages avec les journaux au serveur Syslog:

R1(config)# service timestamps log datetime msec

Vérification de Syslog:

R1 # show logging

Afficher l'heur : Régler l'heur :

R1# show clock R1# clock set 9:39:00 05 july 2013

Configuration NTP:

Configuration R2 en tant que NTP Maitre :

R2(config)# ntp master 1

Configurer R1 en tant que NTP Client :

R1(config)# ntp server 10.1.1.1 R1(config)# ntp update-calendar

Résumé des Commandes NetFlow:

Consigne les messages dans une mémoire tampon par défaut :

R1(config)# logging buffered

Envoyer des messages journaux à la console pour tous les niveaux de

gravité: R1(config)#logging console

Configuration de la capture des données NetFlow (Entrant et Sortant) :

R1(config) # interface g0/1 R1(config-if)# ip flow ingress R1(config-if)# ip flow egress R1(config-if)# exit

Configuration de l'exportation des données NetFlow vers le Collecteur :

R1(config)# flow export destination 192.168.1.3 2055

Version de NetFlow à utiliser lors du formatage des enregistrements

NetFlow envoyés au collecteur: R1(config)# ip flow-export version 5

Vérification de la configuration Netflow:

R1# show ip cache flow Sur pt : show flow cache R1# show ip flow interface R1# show ip flow export

SNMP

Configurez l'identifiant de communauté et le niveau d'accès :

R1(config) # snmp-server community batonaug ro/rw SNMP_ACL

Documentez l'emplacement du périphérique :

R1(config) # snmp-server location NOC SNMP MANAGER

Documentez le contact du système

R1(config) # snmp-server contact Wayne World

Limitez l'accès SNMP aux hôtes NMS:

R1(config) # snmp-server community string access-list-number-or-name.

Spécifiez le destinataire des opérations de déroutement SNMP :

R1(config) # snmp-server host 192.168.1.3 version{1 | 2c | 3 [auth | noauth | priv]}] batonaug

Activer les déroutements sur un agent SNMP :

R1(config) # snmp-server enable traps

Activer l'access list :

R1(config) # ip access-list standard SNMP_ACL R1(config-std-nacl) # permit 192.168.1.3

Verification de la configuration SNMP:

R1 # show snmp

Service de communauté SNMP :

R1 # show snmp community

Créer un nouveau groupe SNMP sur le périphérique :

R1 (config) # snmp-server group groupname {v1 | v2c | v3 {auth | noauth | priv}

Ajouter un nouvel utilisateur au groupe SNMP :

R1(config) # snmp-server user username groupname v3 [encrypted] [auth {md5 | sha} auth-password] [priv {des | 3des | aes {128 | 192 | 256}} priv-password]