Steam Video Game Recommendation System

A Springboard Data Science Career Track Final Capstone Project

Joshua Ogden-Davis
April 2024

Purpose

- 1. Generate an extensive dataset from publicly-available data
- 2. Develop a game recommendation system for existing users

Two Main Sub-Projects

Web Scraping

Create user profiles Create game profiles **Recommendation Engine**

Collaborative + Content Hybrid Filtering (custom)

Overall Flow

Scraping Methods

Database Schema

Games Tables

Condensed Sparse Row Format

	Adventure	Indie	Fem. Protagonist	(446)
game index 1	0	1	0	
game index 2	0.8	0	1	
game index 3	0	0	0	
(100k)	•••	•••	•••	

- "Reduced" games table omits games with <5 tags (arbitrary).
- Because CSR has no separate index, we must maintain:
 - Bidict of full table index <-> app_id
 - Bidict of full table index <-> reduced table index
 - (Steam already indexes tags starting at 1)

Users Tables

Condensed Sparse Row Format

	game 1 col index	game 2 col index	game 3 col index	(100k)
user index 1	1	0	0.2	
user index 2	0.2	0.2	0	
user index 3	0	-1	0.2	
(1.9mil)				

- "Reduced" users table omits users with <10 games (arbitrary).
- Values indicate levels of preference:
 - Recently played: 0.2
 - Positive review: 1
 - Negative review: -1

Modeling Flow

Input:

Full User Table

Single row

Items in **red** are parameters used in model optimization.

Doubles: A bonus for appearing in both filter results

Popularity: A bonus based on overall positive rating percent

Model

Determine most similar users

Take top N similar users
Row vals * sim. scores, sum cols
Select top N col sums

Return games + normd. scores

Determine N most similar games · · ·

Get top N sim. score * pref. score

Return games + normd. scores

Weight and combine scores
 Factor in doubles & popularity
 Return top N games + scores

Red. User Table

All rows

Red. Game Table

All rows

Output:

Pandas Series

Keys: app_id

Values: **score** (ordered)

Testing & Evaluation

 Create test users by removing one liked game and one disliked game from random existing user profiles.

- 2. Generate recommendations for the test user.
- 3. Compare the results to the removed games.
 - If we recommended the liked game, score +1
 - If we recommended the disliked game, score -1

Results

Best parameters*:

'similar_user_limit': 250

'collab_filter_limit': 103

'content_filter_limit': 32

'double_bonus': 1.79

'popular_bias': 1.84

'ratio': 0.71

'recs': 20

Best model performance:

Test users: 100

Good recs: 30

Bad recs: 17

Total score: 13

* via BayesianOptimization()

Next Steps

- Continuously increase dataset
- Include more features (developer, publisher, date released, etc)
- Control for new vs old users (only have "recently" played game info)
- Develop a higher-resolution evaluation function (utilize ranking, etc)
- Implement PostgreSQL database
- Move to the cloud

Springboard Data Science Career Track Final Capstone Project

Joshua Ogden-Davis

April 2024

GitHub: joshtod

Email: ogden.davis@gmail.com