Homework 4

The mean human connectome

1) Sample Space

 $\Xi=\mathcal{A}_n=\{0,1\}^{nxn}$, where \mathcal{A}_n is the set of nxn adjacency matrices.

2) Model

$$\mathcal{P} = \{ P_{\theta} : \theta \in \Theta \}$$

Using the Stochastic Block Model, $SBM_k^n(\vec{p}, \vec{\beta})$ where k is the number of regions of the brain and each vertex is a voxel.

The probability of an edge between nodes u and v is $P(u \sim v) = P_{uv}$, that is, each element a_{uv} in the adjacency matrix (representing an edge between nodes u and v) is $a_{uv} \sim Bernoulli(P_{uv})$.

3) Action space

The action space is the same as the parameter space, $(0,1)^{nxn} = 0$

4) Decision Rule

We want to use mean square error to minimize the loss.

$$\hat{P}=rac{1}{m}\sum_{i=1}^m A^{(i)}+rac{\epsilon}{m^2}J_n$$
 , where J_n is a matrix of ones of the same size as A, i.e.

$$\hat{p}_{uv} = \frac{1}{m} \sum_{i=1}^{m} a_{uv}^{(i)} + \frac{\epsilon}{m^2}$$

5) Loss function

$$\ell: \mathcal{A}^m x \Theta \to \mathbb{R}_+$$

$$\ell = \sum_{u.v} (\bar{a}_{uv} - \hat{p}_{uv})^2$$

where \bar{a}_{uv} is the sample average and \hat{p}_{uv} is the population average.

6) Risk function

The risk function is just the expected loss, $E[\ell]$