Adder

Lecture 18

Addition:

111101 augend + 10111 addend

111111 carries
1111101 augend
+ 101111 addend
1010100 sum

111111 carries
1111101 augend
+ 101111 addend
1010100 sum

• both the sum bit and carry bit are 1's

$$1+1+1=(1+1)+1=(10)_2+(01)_2=11$$

- Adders
- Adder or summer is a digital logic device used to carry binary addition of numbers.
- Typical uses involve calculating address in memory, table indices, incrementing or decrementing operators, etc.
- Two kinds of adder: Half Adder & Full Adder
- An n-th Bit Adder can be designed by cascading an arbitrary amount of Full Adders

Quarter adder: Exclusive OR: No Carry

а	b	С
Low	Low	Low
Low	High	High
High	Low	High
High	High	Low

a	b	С
0+	0	0
0+	1	1
1+	0	1
1+	1	0

No Carry

$$f_{XOR}(a,b) = a \oplus b = ab + ab = aa + ab + ba + ba$$

$$= \overline{a}(a+b) + \overline{b}(a+b) = (\overline{a} + \overline{b})(a+b)$$

Exclusive OR

$$a \oplus a = 0$$

$$a \oplus a = 1$$

$$a \oplus 0 = a$$

$$a \oplus 1 = \overline{a}$$

$$\overline{a} \oplus \overline{b} = a \oplus b$$

$$a \oplus b = b \oplus a$$

$$a \oplus (b \oplus c) = (a \oplus b) \oplus c$$

Exclusive OR IEEE Standard

a k)	sum(a,b)	sum(a,b)=1?	$f(a,b)=a \oplus b$
-----	---	----------	-------------	---------------------

Output is modulo-2 sum of input

Half-Adder

$$s_i = x_i \oplus y_i$$
$$c_i = x_i y_i$$

• Truth table

\mathcal{X}_{i}	y_i	C_i	S_{i}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Advanced Digital IC Design

• Full-Adder

- One-bit Full-Adder
- Binary addition adding 2 bits + one carry bit
- Full adder 2-output combinational logic network that add 3 binary bits

\mathcal{X}_{i}	y_i	C_{i-1}	C_i	S_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$s_i = x_i \oplus y_i \oplus c_{i-1}$$

$$c_i = x_i y_i + x_i c_{i-1} + y_i c_{i-1}$$

Full-Adder

$$s_{i} = x_{i} \oplus y_{i} \oplus c_{i-1}$$

$$s_{i} = x_{i} \oplus y_{i} \oplus c_{i-1}$$

$$= x_{i} \overline{y_{i}} c_{i-1} + \overline{x_{i}} \overline{y_{i}} c_{i-1} + \overline{x_{i}} y_{i} c_{i-1} + x_{i} y_{i} c_{i-1}$$

$$c_{i} = x_{i} y_{i} + x_{i} c_{i-1} + y_{i} c_{i-1}$$

- Steps to Designing the Full Adder
- 1 Derive the Truth Table
- 2 Devise the K-Map
- Obtain the Logic Expression
- Draw out the Logic Circuit
- Building Blocks
- 1 NAND Gate
- 2 NOR Gate
- S NOT Gate

- Building Blocks
- 1 NAND Gate

A	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

NAND Truth Table

A	0	1
0	1	1
1	1	

NAND Logic Expression:

$$Y = \overline{A} + \overline{B}$$

- Building Blocks
- 1 NAND Gate

- Building Blocks
- 2 NOR Gate

А	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

NOR Truth Table

A	0	1
0	1	
1		

NOR Logic Expression:
$$Y = \overline{A}\overline{B}$$

$$\begin{array}{c} A \longrightarrow \\ B \longrightarrow \end{array} \qquad \begin{array}{c} Output = \overline{A} \cdot \overline{B} \end{array}$$

NOR Logic Circuit

- Building Blocks
- 2 NOR Gate

- Building Blocks
- B NOT Gate

А	Υ
0	1
1	0

NOT Truth Table

K-MAP Not Needed For NOT Gate

NOT Logic Expression:

NOT Logic Circuit

- Building Blocks
- S NOT Gate

- Blocks
- 1 AND Gate

- Blocks
- 2 XOR Gate

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

XOR Truth Table

XOR K-Map

XOR

Logic Expression:
$$Y = A'B + AB'$$
 or $Y = AE$

XOR Logic Circuit

- Building Blocks
- 1 XOR Gate

Blocks

B Full Adder

Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	0	<mark>1</mark>
0	1	0	0	1
0	1	1	1	0
1	0	0	0	<mark>1</mark>
1	0	1	<mark>1</mark>	0
1	1	0	1	0
1	1	1	<mark>1</mark>	<mark>1</mark>

Full Adder Truth Table

AB <u>Cin</u>	00	01	11	10
0		1		1
1	1		1	

Sum k-map

AB <u>Cin</u>	00	01	11	10
0			1	
1		<u> </u>	1	1

Carry K-map

Full Adder Logic Circuit

- Building Blocks
- B Full Adder

- Brute Force Implementation of Full Adder
- Inverter, OR, AND, XOR,
 Inverter Schematic

OR Schematic

- Brute Force Implementation of Full Adder
- Inverter, OR, AND, XOR,
 AND Schematic

XOR Schematic

• Brute Force Implementation of Full Adder

Brute Force Implementation of Full Adder (Pass Transistor Logic)

CMOS Full Adder

- Full Adder
- If we have carryout propagating from bit 0 to bit 3, then the delay will be increased. The more bits we design the more critical delay it may have.

- Carry Skip Adder
- Calculate the "carry out" at the same time as the sum calculation
- Takes the "propagate" of each adder (a b) into an AND gate as inputs
- If the AND gate output is "0" the output of the MUX is Cout of the final full adder
- If all propagates are "1" then the output of the AND gate is "1" and selector of the MUX chooses CO

If

Carry Skip Adder

8-bit Carry Skip Adder

8-bit Carry Skip Adder

00000000 +11111111 011111111

8-bit Carry Skip Adder

11111111 +11111111 111111110

- Full Adder
- If we have carryout propagating from bit 0 to bit 3, then the delay will be increased. The more bits we design the more critical delay it may have.

- Carry Lookahead Adder (CLA)
- Advantage
- Fast adder
- Good for high speed digital design.

- Disadvantage
- Area consumption
- Extra gates for the functions of 'Propagate' and 'Generate'.

- Defining 3 new variables that only depends on x_i and y_i
- ① Generate (g): $C_i = 1$ independent of C_{i-1} $g_i = x_i y_i$
- Propagate (p): $C_{i-1} = C_i$ $p_i = x_i \oplus y_i$
- Sill, Delete(d): $C_i = 0$ independent of C_{i-1} $d = x_i y_i$

Full-Adder

$$s_i = x_i \oplus y_i \oplus c_{i-1}$$

$$c_i = x_i y_i + x_i c_{i-1} + y_i c_{i-1}$$

Inputs Outputs	C_{i-1}	$_{L} \mid \mathcal{X}_{i}$	y_i	S_i	C_i
iliputs Outputs	Inputs			Outputs	

0	0	0	0	(0)	Delete

Propagate

Generate

0

 Expressing sum and carry in terms of generate, propagte, and delete.

$$c_{0} = g_{0}$$

$$c_{1} = g_{1} + p_{1}c_{0} = g_{1} + p_{1}g_{0}$$

$$c_{2} = g_{2} + p_{2}c_{1} = g_{2} + p_{2}g_{1} + p_{2}p_{1}g_{0}$$

$$s_{i} = x_{i} \oplus y_{i} \oplus c_{i-1} = p_{i} \oplus c_{i-1}$$

$$c_{i}(g, p) = g + pc_{i-1}$$

Carry Lookahead Adder (CLA)

The Ripple-Carry Adder

Worst case delay linear with the number of bits $t_d = O(N)$

$$t_{adder} \approx (N-1)t_{carry} + t_{sum}$$

Goal: Make the fastest possible carry path circuit

Inversion Properties

$$\begin{split} \bar{S}(A,B,C_{i}) &= S(\overline{A},\overline{B},\overline{C}_{i}) \\ \overline{C}_{o}(A,B,C_{i}) &= C_{o}(\overline{A},\overline{B},\overline{C}_{i}) \end{split}$$

Adder

Exploit Inversion Property

The Mirror Adder

24 transistors

The Mirror Adder Cell

The Mirror Adder

Full Adder Implementation

Standard CMOS

Multiplexer-based

TG-based Full adder

Full Adder in DPL

Manchester Carry Chain

Static

Dynamic

- Manchester Carry Chain
 - Implement P with pass-transistors
 - •Implement G with pull-up, kill (delete) with pull-down
 - •Use dynamic logic to reduce the complexity and speed up

Sizing Manchester Carry Chain

$$t_{p} = 0.69 \sum_{i=1}^{N} C_{i} \begin{pmatrix} i \\ \sum R_{j} \\ j=1 \end{pmatrix}$$

Tapering?

Area (in minimum size devices)

- Sizing Manchester Carry Chain
 - Delay equation

$$t_p = 0.69 \sum_{i=1}^{N} C_i \left(\sum_{j=1}^{i} R_j \right) = 0.69 \frac{N(N+1)}{2} RC$$

- Delay is quadratic with N
 - » Progressive sizing should help?

- Sizing Manchester Carry Chain
 - Stick Diagram

 C_{fix} – fixed capacitance at the node (pull-down, pull-up diffusions, metal, + inverter ~15fF $C \sim 2 f F / \mu m$ $R \sim 10 k \Omega \mu m$ When $CW > C_{fix}$ small improvements with sizing, Loading of the input stage

Propagate/Generate Row

$$t_p = 0.69 \frac{N(N+1)}{2} RC = 0.69 \frac{N(N+1)}{2} \frac{R}{W} (C_{fix} + C \cdot W)$$

Adder

Advanced Digital IC Design

- Manchester Carry Chain
- Length of chain is limited to k = 4-8
- Standard solution add inverters
- The overall N-bit adder delay is a sum of N/k segments (linear)

Idea: If (P0 and P1 and P2 and P3 = 1) Bypass (Skip) then $C_{o3} = C_0$, else "kill" or "generate".

MacSorley, Proc IRE 1/61 Lehman, Burla, IRE Trans on Comp, 12/61

Critical Path

For N-bit adder with k-bit groups

$$t_d = (k-1)t_{RCA} + \left(\frac{N}{k} - 2\right)t_{SKIP} + (k-1)t_{RCA}$$

Critical path delay with constant groups

$$t_d = 2(k-1)t_{RCA} + \left(\frac{N}{k} - 2\right)t_{SKIP}$$

Variable Group Length

$$x_1 = x_2 = 4$$
, $x_2 = x_3 = 7$, $x_3 = x_6 = 10$, $x_4 = x_5 = 11$.

$$t_d = c_1 + \sqrt{c_2 N + c_3}$$

Oklobdzija, Barnes, Arith'85

Variable Block Lengths

Oklobdzija, Barnes, Arith'85

Manchester Chain with Carry-skip Adder

Delay model:

PTL with SA-F Implementation

