**Q 01.** Implement gradient and conjugate-gradient methods<sup>1</sup> for unconstrained minimisation in a coding language of your choice. Use the code to minimise the  $f(\mathbf{x})$  below from  $\mathbf{x}^{(0)} = (0.25, 0.25)$ 

$$f(\mathbf{x}) = x_2^2 + x_2||\mathbf{x}||^2 + ||\mathbf{x}||^4$$
, with  $\mathbf{x} \in \mathbb{R}^2$ 



Q 02. The Stochastic Neighbour Embedding (SNE, G.E. Hinton and S.T. Roweis. Stochastic Neighbor Embedding. In NIPS, 15, 833–840, 2002) is a classic machine learning algorithm for non-linear dimensionality reduction. Find and read the original paper presenting the SNE, implement its plain vanilla algorithm (the one in Section  $2^2$ ) in a programming language of your choice. To optimise the SNE, use your code for gradient and conjugate-gradient minimisation (Q 01, above).

Evaluate your implementations of the SNE using the beloved Glass identification set of data<sup>3</sup>.

<sup>&</sup>lt;sup>1</sup>See next page for an overview.

<sup>&</sup>lt;sup>2</sup>Do not bother about writing code to optimise the perplexity parameter  $\sigma_i$  of the SNE. Rather, set  $\alpha_i = \alpha$  to be equal to some integer (about 5% of the number of observations, like).

<sup>&</sup>lt;sup>3</sup>Experiment with different initial solutions.

**Descent directions (overview)** For some  $f: \mathbb{R}^n \to \mathbb{R}$  called an *objective function*, the problem

minimise 
$$f(\mathbf{x})$$
 in  $\mathcal{R}^n$  (1)

is called an unconstrained optimisation problem. The point  $\hat{\mathbf{x}}$ , the solution of problem (1), is called a global minimiser of f, whereas point  $\hat{\mathbf{x}}$  is called a local minimiser of f if, for some R > 0, we have

$$f(\hat{\mathbf{x}}) \le f(\mathbf{x}), \quad \forall \mathbf{x} \in B(\hat{\mathbf{x}}, R),$$

with  $B(\cdot, \cdot)$  a ball of radius R centred in  $\hat{\mathbf{x}}$ .

Let f be continuous and continuously differentiable in  $\mathbb{R}^n$ ,  $f \in C^1(\mathbb{R}^n)$ . Let  $\nabla f(\mathbf{x})$  be the gradient of f at point  $\mathbf{x}$ ,

$$\nabla f(\mathbf{x}) = \left[ \frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \cdots, \frac{\partial f(\mathbf{x})}{\partial x_n} \right]^T.$$

If  $f \in C^2(\mathbb{R}^n)$ , let  $\nabla^2 f(\mathbf{x})$  or  $\mathbf{H}(\mathbf{x})$  be the hessian of f at point  $\mathbf{x}$ , with

$$\mathbf{H}_{i,j}(\mathbf{x}) = \frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}, \quad i, j = 1, 2, \dots, n.$$

If  $\hat{\mathbf{x}} \in \mathcal{R}^n$  is a local minimiser of f under the condition that  $f \in C^1(B(\hat{\mathbf{x}}, R))$  for a suitable R > 0, then  $\nabla f(\mathbf{x}) = \mathbf{0}$ . Moreover, if  $f \in C^2(B(\hat{\mathbf{x}}, R))$ , the  $\mathbf{H}(\hat{\mathbf{x}})$  is positive semidefinite. If  $\hat{\mathbf{x}} \in B(\hat{\mathbf{x}}, R)$  and  $\mathbf{H}(\hat{\mathbf{x}})$  is positive definite, then  $\hat{\mathbf{x}}$  is a local minimiser of f in  $B(\hat{\mathbf{x}}, R)$ .

A point  $\hat{\mathbf{x}}$  such that  $\nabla f(\hat{\mathbf{x}}) = \mathbf{0}$  is called a *stationary point*. This condition is necessary for optimality to hold. The condition is also sufficient if f is convex in  $\mathcal{R}^n$ : That is, if  $\forall \mathbf{x}, \mathbf{y} \in \mathcal{R}^n$  and for any  $\alpha \in [0, 1]$ ,  $f[\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}] \leq \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$ .

Descent methods are iterative procedures for solving problem (1). They are can be formulated as

• 'Given an initial solution  $\mathbf{x}^{(0)} \in \mathcal{R}^n$ , compute for  $k = 0, 1, 2, \ldots$  the quantity

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$$

until convergence, where  $\mathbf{d}^{(k)}$  is a suitably selected direction and  $\alpha_k$  is a positive parameter called stepsize that indicates the step along the direction  $\mathbf{d}^{(k)}$ ,

As we are minimising f,  $\mathbf{d}^{(k)}$  needs be a descent direction. This is guaranteed by the conditions

$$\mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)}) < 0, \quad \text{if } \nabla f(\mathbf{x}^{(k)}) \neq 0;$$
$$\mathbf{d}^{(k)} = 0, \quad \text{if } \nabla f(\mathbf{x}^{(k)}) = 0.$$

- The gradient method (steepest descent) sets  $\mathbf{d}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$ .
- The conjugate-gradient method sets  $\mathbf{d}^{(k)} = -\nabla f(\mathbf{x}^{(k)}) + \beta_k \mathbf{d}^{(k-1)}$ , with  $\mathbf{d}^{(0)} = -\nabla f(\mathbf{x}^{(0)})$  and  $\beta_k$  a suitable scalar which we could set to be  $\beta_k^{\text{FR}} = \frac{||\nabla f(\mathbf{x}^{(k)})||^2}{||\nabla f(\mathbf{x}^{(k-1)})||^2}$  (Fletcher-Reeves).

The strategies to find good stepsizes  $\alpha_k$  are tedious. A constant value  $\alpha \in (0,1)$  is often acceptable.