Matthew Murawski

Neuroscience & Computer Science Graduate | Health Sciences Research Fellow murawskim@pitt.edu | (908) 798-2157 matthew-murawski.github.io/

Profile

Highly motivated graduate from the University of Pittsburgh (B.S. Neuroscience), combining extensive research in primate electrophysiology with hands-on experience in direct patient care. Skilled in quantitative data analysis, experimental design, scientific communication, and essential clinical support.

EDUCATION

University of Pittsburgh, Pittsburgh, PA

Bachelor of Science, Frederick Honors College Joint Degree

Major: Neuroscience

Minors: Computer Science, Chemistry

Certificate: Conceptual Foundations of Medicine

CLINICAL EXPERIENCE

Patient Care Technician, 4 North PCU

UPMC Passavant Hospital — August 2025 - Present

Graduated: April 2025

- Collect diagnostic data by performing phlebotomy, 12-lead EKGs, bladder scans, and blood glucose monitoring.
- Ensure patient safety and comfort by providing direct personal care, assisting with activities of daily living (ADLs), and responding to immediate needs.
- Document patient care in the EHR and immediately communicate critical findings to the nursing team.

RESEARCH EXPERIENCE

Health Sciences Research Fellow, Zhao Lab University of Pittsburgh — September 2025 - Present

- Design and build experimental apparatuses for conducting chronic electrophysiological recordings in frontal cortex of free-moving marmoset monkeys, and simultaneous audio recording
- Analyze the role of frontal cortex in marmoset vocal communication using single-unit and local field potential (LFP) analysis in MATLAB
- Assist in planning of surgical procedures for implantation of chronic electrode microarrays in the marmoset

Research Assistant, Herman Lab

University of Pittsburgh — May 2023 – August 2025

- Independently conducted visual attention experiments on non-human primates (NHPs)
- Performed multi-contact electrophysiological recordings during covert visual attention and saccade tasks in superior colliculus (SC), substantia nigra pars compacta (SNc), and lateral geniculate nucleus (LGN)
- Analyzed data from multi-contact electrodes using computational techniques in MATLAB
- Designed and fabricated 3D printed components for experimental setups using AutoCAD and Nexa3D software

SENIOR THESIS

"Independent Encoding of Salience, Value, and Attention in Primate Superior Colliculus"

- Recorded 220 superior colliculus (SC) neurons in macaques performing a spatially cued covert change detection task and a saccade task that varied reward value and salience.
- Investigated how SC activity is modulated by physical salience, reward, and attention cues.
- Findings complicate the unified priority map model, potentially suggesting that independent modulatory influences support context-specific visually guided behaviors.

Presentations

• Poster Presentation, COSYNE 2025

Independent Encoding of Salience, Value, and Attention in Primate Superior Colliculus View Abstract/Details

• Talk Presentation, VSS 2025 (Attention: neural mechanisms)

Independent Encoding of Salience, Value, and Attention in Primate Superior Colliculus

View Abstract/Details

AWARDS

- Neuroscience Research Excellence Award, University of Pittsburgh (\$250)
- COSYNE Presenters' Travel Grant (\$500)
- VSS Presenters Grant (\$1000)
- University of Pittsburgh Merit Scholarship (\$60,000)

TEACHING EXPERIENCE

Teaching Assistant, Speaking of Science

University of Pittsburgh — Spring 2025

• Assisted in course instruction, helped create class materials, met with students before each presentation, and oversaw class presentations with Drs. Judy Cameron and Susan Sesack.

Teaching Assistant, Intro to Biology 1

University of Pittsburgh — Fall 2022

• Supported course instruction and tutored students with Dr. Lesley Ashmore.

TECHNICAL SKILLS

- Computational: Proficient in Python, MATLAB, R, Java, SQL, and Unix/Linux for statistical modeling, spike train analysis, and data visualization.
- Experimental: Skilled in multi-contact electrophysiology in non-human primates and fabricating custom 3D-printed experimental hardware (AutoCAD, Nexa3D).
- Communication & Design: Experienced with scientific writing and presentation, with strong proficiency in Adobe Creative Suite (Illustrator, Photoshop).