EL903006554 US

WHAT IS CLAIMED IS:

- 1. A system for evaluating M modulo J, where J is an integer and M is an integer
- 2 expressed in binary form $(M = \sum_{i=0}^{N} \alpha_{i} 2^{i})$, where α_{i} is 0 or 1, and N+I is the number of digits in a binary word) comprising:
- a first circuit for decomposing M into two integers A and B = M A;
 - a second circuit for evaluating (A modulo J);
- a third circuit for evaluating M' = (A modulo J) + B; and
- a fourth circuit for outputting M' or feeding M' back to the first means to
- 8 evaluate M' modulo J.
- 2. The system of Claim 1, wherein the first circuit includes a multiplexer M1 which passes $B_N = (M \alpha_N 2^N)$ to the second circuit on a first iteration, and passes $B_i = (M' \alpha_i 2^i)$ on all subsequent iterations, where i is an iteration counter starting with N and counting down.
- 3. The system of Claim 1, wherein the second circuit includes a look-up table that stores $C_1 = 2^1$ modulo J for i = 0 to N.
- 4. The system of Claim 3, wherein the second circuit further includes a multiplexer M2 that passes 0 to the third circuit when $(\alpha_i = 0)$, and passes C_i when $(\alpha_i = 1)$.

EL903006554 US

- 5. The system of Claim 1, wherein the third circuit includes an adder A1 whose inputs are B_1 and $(\alpha_i C_1)$ and which passes its output $M' = B_i + (\alpha_i C_i)$ to the fourth circuit.
- 6. The system of Claim 1, wherein the fourth circuit includes a multiplexer M4
 that passes M' as a final output if (M' < J); otherwise i is set to i-1, and M' is fed back to the first circuit.
- 7. The system of Claim 1, wherein the circuit further includes fifth circuit for ensuring convergence.
- 8. The system of Claim 7, wherein the fifth circuit includes a multiplexer M3
 that passes J when the bitwise AND of M' and J equals J, otherwise it passes 0.
- 9. The system of Claim 8, wherein the output of the multiplexer M3 is subtracted
 from M' by an adder A2 and the result is passed to the fourth circuit.
 - 10. A deinterleaver comprising:
- 2 a demultiplexer;
 - a multiplexer; and
- a circuit for connecting the outputs of the demultiplexer to the inputs of the multiplexer, wherein the circuit includes a system for evaluating M modulo J
- 6 comprising:

EL903006554 US

- a first circuit for decomposing M into two integers A and B = M A;
- a second circuit for evaluating (A modulo J);
 - a third circuit for evaluating M' = (A modulo J) + B; and
- a fourth circuit for outputting M' or feeding M' back to the first circuit to evaluate M' modulo J.
 - 11. A method for evaluating M modulo J including the steps of:
 - 2 decomposing M into two integers A and B = M A;

evaluating (A modulo J);

- 4 evaluating M' = (A modulo J) + B; and,
- determining whether to output M' as the final answer, or to feedback M' to the decomposing step to evaluate M' modulo J.
- 12. The method of Claim 11, wherein the decomposing involves passing $B_N =$
- 2 $(M \alpha_N 2^N)$ to the evaluating (A modulo J) step on a first iteration, and passing $B_i = (M' \alpha_i 2^i)$ on all subsequent iterations, where i is an iteration counter starting with N and
- 4 counting down.
- 13. The method of Claim 11, wherein evaluating (A modulo J) involves using a look-up table that stores $C_1 = 2^i$ modulo J for i = 0 to N.
 - 14. The method of Claim 13, wherein the evaluating (A modulo J) further

2

EL903006554 US

- 2 includes passing 0 to the evaluating $M' = (A \text{ modulo } J) + B \text{ step when } (\alpha_i = 0)$, and passes C_i when $(\alpha_i = 1)$.
- 15. The method of Claim 11, wherein the evaluating M' = (A modulo J) + B step2 involves using an adder A1 whose inputs are B_t and $(\alpha_t C_t)$ and which passes its output $M' = B_t + (\alpha_t C_t)$ to the determining step.
- 16. The method of Claim 11, wherein the determining involves passing M' as a
 final output when (M' < J); otherwise i is set to i-1, and M' is fed back to the decomposing step.
 - 17. The method of Claim 12, further comprising ensuring convergence has occurred.
- 18. The method of Claim 17, wherein ensuring convergence includes passes J
 when the bitwise AND of M' and J equals J, otherwise passing 0.