Tarea 3

September 6, 2025

1 Perceptrón Multicapa (MLP) para clasificación de imágenes

En esta libreta aprenderemos los pasos para implementar un clasificador (discriminador) de imágenes (las del conjunto de datos MNIST), usando un perceptrón multicapa y Keras.

```
[1]: import numpy as np
import matplotlib.pyplot as plt

from tensorflow.keras import layers, models, optimizers, utils, datasets
```

1.1 1. Preparar los datos

1.1 Descargar el dataset

```
[2]: (x_train, y_train), (x_test, y_test) = datasets.mnist.load_data()

[3]: print(x_train.shape)
    print(y_train.shape)
    print(y_test.shape)

    print(y_test.shape)

(60000, 28, 28)
(60000,)
(10000, 28, 28)
(10000,)

[4]: plt.imshow(x_train[1])
    plt.axis('off')
    plt.show()
```


1.2 Escalar los valores de las imágenes

```
[5]: # Normalizar el dataset
     x_train = x_train.astype("float32") / 255.0
     x_test = x_test.astype("float32") / 255.0
[6]: x_train[1]
[6]: array([[0.
                          , 0.
                                       , 0.
                                                     , 0.
                                                                  , 0.
                          , 0.
                                       , 0.
                                                                  , 0.
              0.
                                                     , 0.
              0.
                          , 0.
                                       , 0.
                                                     , 0.
                                                                  , 0.
              0.
                          , 0.
                                       , 0.
                                                     , 0.
              0.
                                       , 0.
              0.
                          , 0.
                                       , 0.
             [0.
                          , 0.
                                       , 0.
                                                    , 0.
                                                                  , 0.
                                       , 0.
                                                    , 0.
              0.
                          , 0.
                                                                  , 0.
              0.
                          , 0.
                                       , 0.
                                                     , 0.
                                                                  , 0.
              0.
                          , 0.
                                                    , 0.
                                       , 0.
                                                                  , 0.
                                                    , 0.
                                                                  , 0.
              0.
                          , 0.
                                       , 0.
              0.
                          , 0.
                                       , 0.
                                                    ],
             [0.
                          , 0.
                                       , 0.
                                                    , 0.
              0.
                          , 0.
                                       , 0.
                                                    , 0.
                                                                  , 0.
                                       , 0.
              0.
                          , 0.
                                                     , 0.
                                                                  , 0.
```

```
, 0. , 0.
0.
        , 0.
              , 0.
0.
                         , 0.
                                  , 0.
        , 0.
                , 0.
0.
                          ],
        , 0.
                 , 0.
[0.
        , 0.
                 , 0.
                          , 0.
                                   , 0.
0.
        , 0.
                 , 0.
                          , 0.
                                   , 0.
                          , 0.
Ο.
                                   , 0.
        , 0.
                 , 0.
                                   , 0.
0.
        . 0.
                 , 0.
                          . 0.
Ο.
        , 0.
                          , 0.
                 , 0.
                                   , 0.
0.
        . 0.
                 , 0.
                          ],
ГО.
                 , 0.
                          , 0.
                                  , 0.
                         , 0.
                                  , 0.
0.
                 . 0.
        . 0.
                , 0.
                         , 0.
0.
                                , 0.
0.2
        , 0.62352943, 0.99215686, 0.62352943, 0.19607843,
0.
        , 0. , 0. , 0. , 0. , 0.
0.
        , 0.
                , 0.
                         ],
                                , 0. ,
[0.
        , 0.
                , 0.
                         , 0.
                                  , 0.
0.
                , 0.
                         , 0.
        , 0.
        , 0. , 0. , 0. , 0. , 0.1882353 ,
0.
0.93333334, 0.9882353 , 0.9882353 , 0.9882353 , 0.92941177,
0. , 0. , 0. , 0. , 0. , 0.
                , 0.
0.
        , 0.
                         ],
ГО.
       , 0.
                , 0.
                         , 0. , 0.
                         , 0. , 0.
0.
       , 0.
                , 0.
     , 0. , 0. , 0.21176471, 0.8901961 ,
0.
0.99215686, 0.9882353, 0.9372549, 0.9137255, 0.9882353,
0.22352941, 0.02352941, 0. , 0. , 0. , 0.
0. , 0. , 0.
                         ],
                , 0.
                     , 0. , 0.
, 0. , 0.
ГО.
       , 0.
       , 0. , 0.
0.
      , 0.03921569, 0.23529412, 0.8784314 , 0.9882353 ,
0.99215686, 0.9882353, 0.7921569, 0.32941177, 0.9882353,
0.99215686, 0.47843137, 0. , 0.
                               , 0. ,
                        ],
0. , 0. , 0.
                         , 0. , 0.
[0.
                , 0.
       , 0.
       , 0. , 0. , 0. , 0.
0.
0. , 0.6392157 , 0.9882353 , 0.9882353 , 0.9882353 ,
0.99215686, 0.9882353 , 0.9882353 , 0.3764706 , 0.7411765 ,
0.99215686, 0.654902 , 0. , 0. , 0. , 0.
0. , 0. , 0.
                         ],
                , 0.
                         , 0.
                               , 0.
[0.
       , 0.
                       , 0.
0.
       , 0. , 0.
0.2 , 0.93333334, 0.99215686, 0.99215686, 0.74509805,
0.44705883, 0.99215686, 0.89411765, 0.18431373, 0.30980393.
1. , 0.65882355, 0. , 0. , 0. , 0.
        , 0. , 0.
0.
                         ],
                                 , 0.
        , 0. , 0. , 0. , 0.
[0.
                         , 0.
, 0.
0.
                                  , 0.1882353 ,
```

```
0.93333334, 0.9882353, 0.9882353, 0.7019608, 0.04705882,
0.29411766, 0.4745098, 0.08235294, 0. , 0. ,
0.99215686, 0.9529412 , 0.19607843, 0. , 0.
0. , 0. , 0. ],
                          , 0. , 0.
                , 0.
       , 0.
ГО.
0. , 0. , 0. , 0.14901961, 0.64705884,
0.99215686, 0.9137255 , 0.8156863 , 0.32941177, 0.
0. , 0. , 0. , 0. , 0.
0.99215686, 0.9882353 , 0.64705884, 0. , 0.

      0.
      , 0.
      , 0.
      ],

      [0.
      , 0.
      , 0.
      , 0.
      , 0.

      0.
      , 0.
      , 0.02745098, 0.69803923, 0.9882353 ,

[0.
0.9411765 , 0.2784314 , 0.07450981, 0.10980392, 0.
0. , 0. , 0. , 0. , 0.
0.99215686, 0.9882353, 0.7647059, 0. , 0.
0. , 0. , 0. ],
              , 0. , 0. , 0.
, 0.22352941, 0.9882353 , 0.9882353
[0.
       , 0.
0. , 0.
0.24705882, 0. , 0. , 0.
0. , 0. , 0. , 0.
                , 0. , 0. , 0. , , 0.
                                   , 0.
0.99215686, 0.9882353, 0.7647059, 0. , 0.
0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0.
[0.
       0.
0.
0.
1.
       , 0. , 0. ],
, 0. , 0. , 0. , 0.
0.
ΓΟ.
       , 0.29803923, 0.9647059 , 0.9882353 , 0.4392157 ,
0.
       , 0. , 0. , 0. , 0.
0.
0. , 0. , 0. , 0. , 0. , 0. , 0. 
0. 99215686, 0.9882353 , 0.5803922 , 0. , 0.
0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0.
ΓΟ.
0.
       , 0.33333334, 0.9882353 , 0.9019608 , 0.09803922,
       , 0. , 0. , 0. , 0.
0.
       , 0. , 0. , 0.02745098, 0.5294118 ,
0.99215686, 0.7294118 , 0.04705882, 0. , 0. ,
0. , 0. , 0. ],
       , 0. , 0. , 0. , 0.
[0.
        , 0.33333334, 0.9882353 , 0.8745098 , 0.
       , 0. , 0. , 0. , 0.
0.
      , 0. , 0.02745098, 0.5137255 , 0.9882353 ,
[0.
```

```
, 0.33333334, 0.9882353 , 0.5686275 , 0.
0.
        , 0. , 0. , 0. , 0.
0.
        , 0.1882353 , 0.64705884, 0.9882353 , 0.6784314 ,
0.
        , 0. , 0. , 0. , 0. , 0. , 0. , 0.
0.
0.
        , 0. , 0. , 0. , 0.
ГО.
        , 0.3372549 , 0.99215686, 0.88235295, 0.
0.
       , 0. , 0. , 0. , 0.
0.44705883, 0.93333334, 0.99215686, 0.63529414, 0.
       , 0. , 0. , 0. , 0.
       , 0. , 0. ],
, 0. , 0. , 0. , 0.
0.
ГО.
0.
       , 0.33333334, 0.9882353 , 0.9764706 , 0.57254905,
0.1882353 , 0.11372549, 0.33333334, 0.69803923, 0.88235295,
0.99215686, 0.8745098, 0.654902, 0.21960784, 0.
0. , 0. , 0. , 0. , 0.
                , 0.
                         ],
0.
       , 0.
       , 0. , 0. , 0. , 0.
[O.
O.
       , 0.33333334, 0.9882353 , 0.9882353 , 0.9882353 ,
0.8980392 , 0.84313726, 0.9882353 , 0.9882353 , 0.9882353 ,
0.76862746, 0.50980395, 0. , 0. , 0.
                      , o. , o.
0. , 0. , 0.
0. , 0. , 0.
       , 0. , 0. , 0.
ГО.
                               , 0.
0. , 0.10980392, 0.78039217, 0.9882353 , 0.9882353 ,
0.99215686, 0.9882353, 0.9882353, 0.9137255, 0.5686275,
0. , 0. , 0. , 0. , 0.
0.
        , 0.
                , 0.
                       , 0.
0.
       , 0.
                , 0.
                         ],
                , 0. , 0. , 0.
[0.
       , 0.
            , 0.09803922, 0.5019608 , 0.9882353 ,
       , 0.
0.99215686, 0.9882353, 0.5529412, 0.14509805, 0.
            , 0. , 0. , 0.
       , 0.
0.
        , 0.
                 , 0.
                         , 0.
                                   , 0.
0.
        , 0.
                          ],
                 , 0.
                 , 0.
ГО.
        , 0.
                         , 0.
                          , 0.
        , 0.
0.
                 , 0.
                                   , 0.
0.
        , 0.
                 , 0.
                         , 0.
                                   , 0.
                         , 0.
0.
                                  , 0.
        . 0.
                 . 0.
0.
        , 0.
                 , 0.
                          , 0.
                                   , 0.
0.
        , 0.
                 , 0.
                          ],
                          , 0.
                                  , 0.
        , 0.
ГО.
                 , 0.
        , 0.
                 , 0.
                         , 0.
                                  , 0.
0.
                         , 0.
        , 0.
0.
                 , 0.
                                   , 0.
        , 0.
0.
                 , 0.
                         , 0.
                                   , 0.
0.
        , 0.
                 , 0.
                          , 0.
                                   , 0.
0.
        , 0.
                          ],
                 , 0.
```

```
[0.
            , 0.
                          , 0.
0.
            , 0.
                          , 0.
                                        , 0.
0.
            , 0.
                                        , 0.
                          , 0.
                                                      , 0.
0.
            , 0.
                          , 0.
                                        , 0.
                                                      , 0.
0.
            , 0.
                          , 0.
                                        , 0.
                                                      , 0.
0.
            , 0.
                          , 0.
[0.
            , 0.
                          , 0.
                                        , 0.
0.
            , 0.
                          , 0.
                                        , 0.
0.
            , 0.
                                                      , 0.
                          , 0.
                                        , 0.
0.
            , 0.
                          , 0.
                                        , 0.
                                                      , 0.
Ο.
            , 0.
                                        , 0.
                                                      , 0.
                          , 0.
0.
            , 0.
                          , 0.
                                        ]], dtype=float32)
```

```
[7]: plt.imshow(x_train[1])
plt.axis('off')
plt.show()
```


1.3 Codificar las etiquetas con one-hot-encoding.

```
[8]: # To categorical

y_train = utils.to_categorical(y_train, num_classes=10)
y_test = utils.to_categorical(y_test, num_classes=10)
```

Veamos las primeras 10 imágenes del conjunto de entrenamiento junto con sus etiquetas codificadas usando one-hot encoding.

1.2 2. Construir el modelo

```
[10]: # Clasificador de CIFAR10

model = models.Sequential()
model.add(layers.Flatten(input_shape=(28, 28, 1)))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
```

/Users/roicort/GitHub/PCIC/GenAI/.venv/lib/python3.13/sitepackages/keras/src/layers/reshaping/flatten.py:37: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead. super().__init__(**kwargs)

Podemos utilizar el método model.summary() para inspeccionar la forma de la red en cada capa.

```
[11]: model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
flatten (Flatten)	(None, 784)	0
dense (Dense)	(None, 512)	401,920
dense_1 (Dense)	(None, 128)	65,664
dense_2 (Dense)	(None, 10)	1,290

Total params: 468,874 (1.79 MB)

Trainable params: 468,874 (1.79 MB)

Non-trainable params: 0 (0.00 B)

1.3 3. Compilar el modelo

En este paso, compilamos el modelo con un optimizador y una función de pérdida. También pasamos al método compile del modelo un parámetro metrics donde podemos especificar cualquier métrica adicional que nos gustaría reportar durante el entrenamiento, como el accuracy.

1.4 4. Entrenar el modelo

```
[13]: model.fit(x_train, y_train, epochs=10, batch_size=64, validation_data=(x_test,_u \( \text{y_test} \))
```

```
Epoch 1/10
938/938
                    2s 2ms/step -
accuracy: 0.9384 - loss: 0.2081 - val_accuracy: 0.9599 - val_loss: 0.1222
Epoch 2/10
938/938
                    2s 2ms/step -
accuracy: 0.9747 - loss: 0.0806 - val_accuracy: 0.9735 - val_loss: 0.0841
Epoch 3/10
938/938
                    2s 2ms/step -
accuracy: 0.9832 - loss: 0.0527 - val_accuracy: 0.9734 - val_loss: 0.0798
Epoch 4/10
938/938
                    2s 2ms/step -
accuracy: 0.9870 - loss: 0.0395 - val accuracy: 0.9770 - val loss: 0.0781
Epoch 5/10
938/938
                    2s 2ms/step -
accuracy: 0.9901 - loss: 0.0304 - val_accuracy: 0.9734 - val_loss: 0.0882
Epoch 6/10
938/938
                    2s 2ms/step -
accuracy: 0.9921 - loss: 0.0248 - val_accuracy: 0.9804 - val_loss: 0.0655
Epoch 7/10
938/938
                    2s 2ms/step -
accuracy: 0.9939 - loss: 0.0177 - val_accuracy: 0.9782 - val_loss: 0.0861
Epoch 8/10
938/938
                    2s 2ms/step -
```

```
accuracy: 0.9941 - loss: 0.0170 - val_accuracy: 0.9833 - val_loss: 0.0707

Epoch 9/10

938/938

2s 2ms/step -
accuracy: 0.9942 - loss: 0.0165 - val_accuracy: 0.9771 - val_loss: 0.0913

Epoch 10/10

938/938

2s 2ms/step -
accuracy: 0.9956 - loss: 0.0136 - val_accuracy: 0.9789 - val_loss: 0.0956
```

1.5 5. Evaluar el modelo

Hasta ahora sabemos que el modelo tiene un desempeño del 99% en el conjunto de entrenamiento, pero ¿cómo se desempeña con imágenes que no ha visto? Para contestar esta pregunta, podemos usar el método evaluate que provee Keras.

```
[14]: model.evaluate(x_test, y_test)
```

[14]: [0.09557777643203735, 0.9789000153541565]

[13]: <keras.src.callbacks.history.History at 0x15d2c7230>

La salida es una lista de las métricas que estamos monitoreando: entropía cruzada categórica y precisión. Podemos observar que la precisión del modelo es aún del 97% incluso en imágenes que nunca ha visto antes. Cabe destacar que, si el modelo adivinara al azar, lograría aproximadamente un 10% de precisión (porque hay 10 clases), por lo que un 97% es excelente resultado.

Podemos observar algunas de las predicciones en el conjunto de prueba utilizando el método predict: 1.- preds es un arreglo de forma [10000, 10], es decir, un vector de 10 probabilidades de clase para cada observación. 2.-Convertimos este arreglo de probabilidades en una única predicción utilizando la función argmax de numpy. Aquí, axis = -1 le indica a la función que colapse el arreglo sobre la última dimensión (la dimensión de las clases), de modo que la forma de preds_single sea entonces [10000, 1]. 3.-actual_single contiene la etiqueta real esperada.

```
[15]: CLASSES = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

preds = model.predict(x_test)

preds_single = CLASSES[np.argmax(preds, axis=-1)]
actual_single = CLASSES[np.argmax(y_test, axis=-1)]
```

```
313/313 0s 461us/step
```

Podemos visualizar algunas de las imágenes junto con sus etiquetas y predicciones utilizando el siguiente código:

```
[16]: n_to_show = 10
indices = np.random.choice(range(len(x_test)), n_to_show)

fig = plt.figure(figsize=(15, 3))
fig.subplots_adjust(hspace=0.4, wspace=0.4)
```

```
for i, idx in enumerate(indices):
    img = x_test[idx]
    ax = fig.add_subplot(1, n_to_show, i + 1)
    ax.axis("off")
    ax.text(
       0.5,
        -0.35,
        "pred = " + str(preds_single[idx]),
        fontsize=10,
        ha="center",
        transform=ax.transAxes,
    )
    ax.text(
        0.5,
        -0.7,
        "act = " + str(actual_single[idx]),
        fontsize=10,
        ha="center",
        transform=ax.transAxes,
    )
    ax.imshow(img)
```


act = 8

pred = 9 act = 9

pred = 8 act = 8

act = 4

pred = 7 act = 7

pred = 8 act = 8

act = 2

act = 4

act = 8