

TUTORATO 02

PROGRAMMAZIONE E LABORATORIO A.A. 2021/2022

Dipartimento di Matematica ed Informatica

Elena M Galdi

TABORE FRUO

CALENDARIO PROVVISORIO

- Lunedì 11/10:8,30 10,30
- Lunedì 18/10:8,30 10,30
- Lunedì 25/10 : 8,30 10,30
- Venerdì 05/11:8,30 10,30
- Lunedì 08/11:8,30 10,30
- Lunedì 15/11:8,30 10,30
- Lunedì 22/11 : 8,30 10,30
- Lunedì 29/11:8,30 10,30
- Lunedì 06/12 : 8,30 10,30
- Lunedì 13/12:8,30 10,30

COMPILARE ED ESEGUIRE UN FILE .C DA TERMINALE

COMPILAZIONE:

- Compila e crea file eseguibile a.out: gcc nome_file.c
- Compila e crea file eseguibile nome_file: gcc -o nome_file nome_file.c
- Compila per debug e crea file eseguibile a.out: gcc –g nome_file.c
- **Compila e crea file eseguibile nome_file:** gcc -g -o nome_file nome_file.c

ESECUZIONE

- ./a.out
- ./nome_file

CONTROLLO DI FLUSSO: CICLO WHILE

Diagramma di flusso while

while (__cond__)

__istruzione__

CONTROLLO DI FLUSSO: CICLO DO - WHILE

Diagramma di flusso do...while

CONTROLLO DI FLUSSO: WHILEVS DO-WHILE

CONTROLLO DI FLUSSO: CICLO FOR

Diagramma di flusso for

CONTROLLO DI FLUSSO: WHILE VS FOR

Ciclo for: quando si conosce a priori il numero di iterazioni da fare

ESERCIZIO I : INPUT

- Leggere da tastiera una serie di numeri compresi tra 1 e 100 finché non si inserisce 0.
- Stampare poi a video:
 - La somma dei numeri inseriti.
 - Il numero più grande.
 - Il numero più piccolo.

ESERCIZIO 2: COLLATZ

- Sviluppare il seguente algoritmo:
 - Si prenda numero intero positivo n.
 - Se n = 1 l'algoritmo termina.
 - Finché n > 1, se n è pari, lo si divida per 2; se n dispari lo si moltiplichi per 3 e si aggiunga 1.

$$f(n) = \begin{cases} n/2 & \text{se n è pari} \\ 3n+1 & \text{se n è dispari} \end{cases}$$

- La congettura di Collatz asserisce che questo algoritmo giunge sempre a termine, indipendentemente dal valore di partenza.
- Leggere da tastiera due numeri interi a e b e, per tutti i numeri compresi tra a e b, stampare quanti cicli compie
 l'algoritmo

TARRETE UNIVERSE STATE OF THE S

ESERCIZIO 3: NUMERO PERFETTO

- Sviluppare un algoritmo per trovare i numeri perfetti tra 1 e 10000. Un numero si dice perfetto se è uguale alla somma dei suoi divisori.
- Esempio: 28 = 1 + 2 + 4 + 7 + 14 è un numero perfetto

RANGE UNIVERSITY OF THE PROPERTY OF THE PROPER

ESERCIZIO 4: ALGORITMO EUCLIDEO

- L'algoritmo di Euclide è utilizzato per calcolare il massimo comune divisore (mcd) tra due numeri interi. L'algoritmo è il seguente:
 - Siano $a \in b$ due interi con $0 \le b < a$.
 - Se b = 0 allora mcd(a, b) = a.
 - Se $b \neq 0$ allora $a = b * q + r \operatorname{con} 0 \leq r < b$, $\operatorname{con} q$ quoziente e r resto della divisione tra $a \in b$.
 - Porre a = b e b = r.
 - Ripartire dal punto 1.
- L'algoritmo continua finché non si trova un b = 0.
- Se b = 0 allora mcd(a, b) = a.
- Sviluppare un algoritmo che, presi in ingresso due interi a e b, ne calcoli il mcd.
 Es: mcd(126, 147)= 21

ESERCIZIO 5: PALINDROMO

- Leggere da tastiera un numero intero (< 2147483647) e controllare se è palindromo.
- Un numero è palindromo quando le sue cifre rappresentano lo stesso valore sia che siano lette da destra che da

sinistra.

Es: 1234321 è palindromo

ESERCIZIO 6: PIRAMIDE

 Leggere un intero compreso fra 1 e 40 e stampare una piramide di asterischi invertita di altezza pari al numero letto

Ad esempio, se si inserisce 7, stampare quanto segue:

