

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет ПИ и КТ

BT

OptMethods edition

Лабораторная работа №5

по дисциплине: <u>«Методы оптимизации»</u> «Линейное программирование» Вариант 1

Выполнил:

Болорболд Аригуун,

группа Р3211

Преподаватель:

Селина Елена Георгиевна

Санкт-Петербург

2024

Задание:

Решить задачу линейного программирования графическим методом:

методом.
$$\begin{cases} -2x_1 - 3x_2 \to \min, \\ 2x_1 - 3x_2 \ge 12, \\ x_1 + x_2 \ge 2, \\ 3x_1 + 6x_2 \le 24, \\ x_1, x_2 \ge 0; \end{cases}$$
 Ланы матрица A и векторы c и b . Решить каноническую

2. Даны матрица A и векторы c и b. Решить каноническую задачу линейного программирования

$$f(x) = cx \to max.$$

при ограничениях

$$Ax = b, x \ge 0$$

с помощью симплекс-метода:

$$c = (5, -1, 1, 0, 0), \\ b = (5, 4, 11), \\ A = \begin{vmatrix} 3 & 1 & 1 & 1 & 1 \\ 2 & -1 & 3 & 0 & 0 \\ 0 & 5 & 6 & 1 & 0 \end{vmatrix}.$$

3. Даны матрица A и векторы c и b. Решить каноническую задачу линейного программирования

$$f(x) = cx \to max.$$

при ограничениях

$$Ax = b, x \ge 0$$

с помощью симплекс-метода для двойственной задачи:

$$c = (-\frac{1}{1}, 0, 0, -1, 0), b = (-1, -1, -1), A = \begin{bmatrix} 12 & 6 & 0 & -18 & 0 \\ 12 & 0 & 6 & -18 & 0 \\ 3 & 0 & 0 & -6 & 3 \end{bmatrix}.$$

Задание 1.

Изобразим на плоскости (x_1, x_2) допустимое множество X данной задачи (многоугольник ABCDE) и одну из линий уровня $-2x_1 - 3x_2 = C$ целевой функции.

Антиградиент $-\nabla f(x)=(2,3)=\vec{e}$ указывает направление убывания функции f(x). Совершая параллельный перенос линии уровня вдоль направления \vec{e} , находим её крайнее положение. В этом положении прямая $-2x_1-3x_2=C$ проходит через вершину C многоугольника ABCDE. Чтобы найти точные координаты этой точки, нам надо найти координаты точки пересечения следующих прямых:

$$\begin{cases} 2x_1 - 3x_2 = 12 \\ 3x_1 + 6x_2 = 24 \end{cases} \begin{cases} 2x_1 - 3x_2 = 12 \\ 10,5x_2 = 6 \end{cases}$$
$$\begin{cases} 2x_1 - 3x_2 = 12 \\ x_2 = \frac{4}{7} \end{cases} \begin{cases} x_1 = \frac{48}{7} \\ x_2 = \frac{4}{7} \end{cases}$$

Следовательно,
$$x_1^* = \frac{48}{7} \approx 6,8571$$
, $x_2^* = \frac{4}{7} \approx 0,5714$ $X^* = \binom{6,8571}{0.5714}$.

Вычислим f^* :

$$f^* = f(X^*) = -2 \cdot 6,8571 - 3 \cdot 0,5714 = -15,4284.$$

Задание 2.

Сначала приведём задачу к каноническому виду, введя дополнительные переменные x_3, x_4, x_5 :

$$\begin{cases} 3x_1 - x_2 + x_3 + 6x_4 + x_5 = 5\\ x_1 + 5x_3 + x_4 - 7x_5 = 4\\ x_1 + 2x_2 + 3x_3 + x_4 + x_5 = 11\\ x_i \ge 0, i = 1, 5 \end{cases}$$

Применим метод искусственного базиса. Для этого введем переменные y_1, y_2, y_3 :

$$\begin{cases} 3x_1 - x_2 + x_3 + 6x_4 + x_5 + y_1 = 5\\ x_1 + 5x_3 + x_4 - 7x_5 + y_2 = 4\\ x_1 + 2x_2 + 3x_3 + x_4 + x_5 + y_3 = 11\\ x_i \ge 0, i = 1, 5\\ y_i \ge 0, i = 1, 3 \end{cases}$$

OptMethods edition

Потом нам требуется решать следующую вспомогательную задачу:

$$W = y_1 + y_2 + y_3 \rightarrow \min.$$

$$y_1 = 5 - 3x_1 + x_2 - x_3 - 6x_4 - x_5$$

$$y_2 = 4 - x_1 - 5x_3 - x_4 + 7x_5$$

$$y_3 = 11 - x_1 - 2x_2 - 3x_3 - x_4 - x_5$$

$$W = y_1 + y_2 + y_3 = -5x_1 - x_2 - 9x_3 - 8x_4 + 5x_5 + 20$$

$$x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad \beta$$

$$y_1 \quad -3 \quad 1 \quad -1 \quad -6 \quad -1 \quad 5$$

$$y_2 \quad -1 \quad 0 \quad -5 \quad -1 \quad 7 \quad 4$$

$$y_3 \quad -1 \quad -2 \quad -3 \quad -1 \quad -1 \quad 11$$

$$W \quad -5 \quad -1 \quad -9 \quad -8 \quad 5 \quad 20$$

Будем выбрать максимальную по модулю отрицательную разницу (Δ). Видно, что при увеличении x_3 быстрее всего до нуля доходит y_2 .

Меняем y_2 и x_3 местами:

$$x_{3} = -0.2x_{1} - 0.2y_{2} - 0.2x_{4} + 1.4x_{5} + 0.8$$

$$y_{1} = -3x_{1} + x_{2} - (-0.2x_{1} - 0.2y_{2} - 0.2x_{4} + 1.4x_{5} + 0.8) - 6x_{4} - x_{5}$$

$$+ 5 = -2.8x_{1} + x_{2} + 0.2y_{2} - 5.8x_{4} - 2.4x_{5} + 4.2$$

$$y_{3} = -x_{1} - 2x_{2} - 3(-0.2x_{1} - 0.2y_{2} - 0.2x_{4} + 1.4x_{5} + 0.8) - x_{4} - x_{5}$$

$$+ 11 = -0.4x_{1} - 2x_{2} + 0.6y_{2} - 0.4x_{4} - 5.2x_{5} + 8.6$$

$$W = -5x_{1} - x_{2} - 9(-0.2x_{1} - 0.2y_{2} - 0.2x_{4} + 1.4x_{5} + 0.8) - 8x_{4}$$

$$+ 5x_{5} + 20$$

$$= -3.2x_{1} - x_{2} + 1.8y_{2} - 6.2x_{4} - 7.6x_{5} + 12.8$$

$$x_{1} - x_{2} - y_{2} - x_{4} - x_{5}$$

y_1	-2,8	1	0,2	-5,8	-2,4	4,2
x_3	-0,2	0	-0,2	-0,2	1,4	0,8
y_3	-0,4	-2	0,6	-0,4	-5,2	8,6
W	-3,2	-1	1,8	-6,2	-7,6	12,8

Будем выбрать максимальную по модулю отрицательную разницу (Δ). Видно, что при увеличении x_5 быстрее всего до нуля доходит y_3 .

Меняем y_3 и x_5 местами:

$$x_5 = -0.07692x_1 - 0.38462x_2 - 0.11538y_2 - 0.07692x_4 - 0.19231y_3 \\ + 1.65385$$

$$y_1 = -2.8x_1 + x_2 + 0.2y_2 - 5.8x_4 \\ - 2.4(-0.07692x_1 - 0.38462x_2 - 0.11538y_2 - 0.07692x_4 \\ - 0.19231y_3 + 1.65385) + 4.2$$

$$= -2.61538x_1 + 1.92308x_2 + 0.07692y_2 - 5.61538x_4 \\ + 0.46154y_3 + 0.23077$$

$$y_3 = -0.2x_1 - 0.2y_2 - 0.2x_4 \\ + 1.4(-0.07692x_1 - 0.38462x_2 - 0.11538y_2 - 0.07692x_4 \\ - 0.19231y_3 + 1.65385) + 0.8$$

$$= -0.30769x_1 - 0.53846x_2 - 0.03846y_2 - 0.30769x_4 \\ - 0.26923y_3 + 3.11538$$

$$W = -3.2x_1 - x_2 + 1.8y_2 - 6.2x_4 \\ - 7.6(-0.07692x_1 - 0.38462x_2 - 0.11538y_2 - 0.07692x_4 \\ - 0.19231y_3 + 1.65385) + 12.8 = \\ = -2.61538x_1 + 1.92308x_2 + 0.92308y_2 - 5.61538x_4 \\ + 1.46154y_3 + 0.23077$$

	x_1	x_2	y_2	x_4	y_3	β
y_1	-2,61538	1,92308	-0,07692	-5,61538	0,46154	0,23077
χ_3	-0,30769	-0,53846	-0,03846	-0,30769	-0,26923	3,11538
x_5	-0,07692	-0,38462	0,11538	-0,07692	-0,19231	1,65385
W	-2,61538	1,92308	0,92308	-5,61538	1,46154	0,23077

Будем выбрать максимальную по модулю отрицательную разницу (Δ). Видно, что при увеличении x_4 быстрее всего до нуля доходит y_1 .

Меняем y_1 и x_4 местами:

$$\begin{aligned} x_4 &= -0.46575x_1 + 0.34247x_2 - 0.0137y_2 - 0.17808y_1 + 0.08219y_3 + 0.0411 \\ x_3 &= -0.30769x_1 + 0.53846x_2 - 0.03846y_2 \\ &\quad -0.30769(-0.46575x_1 + 0.34247x_2 - 0.0137y_2 - 0.17808y_1 \\ &\quad +0.08219y_3 + 0.0411) - 0.26923y_3 + 3.11538 \\ &\quad = -0.16438x_1 - 0.64384x_2 - 0.03425y_2 + 0.05479y_1 \\ &\quad -0.29452y_3 + 3.10274 \end{aligned}$$

$$\begin{aligned} x_5 &= -0.07692x_1 - 0.38462x_2 + 0.11538y_2 \\ &- 0.07692(-0.46575x_1 + 0.34247x_2 - 0.0137y_2 - 0.17808y_1 \\ &+ 0.08219y_3 + 0.0411) - 0.19231y_3 + 1.65385 \\ &= -0.0411x_1 - 0.41096x_2 + 0.11644y_2 + 0.0137y_1 - 0.19863y_3 \\ &+ 1.65068 \end{aligned}$$

$$W = -2.61538x_1 + 1.92308x_2 + 0.92308y_2 \\ &- 5.61538(-0.46575x_1 + 0.34247x_2 - 0.0137y_2 - 0.17808y_1 \\ &+ 0.08219y_3 + 0.0411) + 1.46154y_3 + 0.23077 \approx y_2 + y_1 + y_3 \end{aligned}$$

	x_1	x_2	y_2	y_1	y_3	β
χ_4	-0,46575	0,34247	-0,0137	-0,17808	0,08219	0,0411
χ_3	-0,16438	-0,64384	-0,03425	0,05479	-0,29452	3,10274
x_5	-0,0411	-0,41096	0,11644	0,0137	-0,19863	1,65068
W	0	0	1	1	1	0

Так как здесь уже выполнен критерий оптимальности (все $\Delta \geq 0$), вспомогательная задача решена.

Выбросим вспомогательные переменные y_1, y_2, y_3 , они больше не нужны.

Будем выбрать максимальную по модулю отрицательную разницу (Δ). Видно, что при увеличении x_1 быстрее всего до нуля доходит x_4 .

Меняем x_4 и x_1 местами:

$$x_1 = -2,14706x_4 + 0,73529x_2 + 0,08824$$

$$x_3 = -0,16438(-2,14706x_4 + 0,73529x_2 + 0,08824) - 0,64384x_2$$

$$+ 3,10274 = 0,35294x_4 - 0,76471x_2 + 3,08824$$

$$x_5 = -0,0411(-2,14706x_4 + 0,73529x_2 + 0,08824) - 0,41096x_2$$

$$+ 1,65068 = 0,08824x_4 - 0,44118x_2 + 1,64706$$

$$F = 4,83562(-2,14706x_4 + 0,73529x_2 + 0,08824) - 1,64384x_2$$

$$+ 3,10274 = -10,38235x_4 + 1,91176x_2 + 3,52941$$

	x_4	x_2	β
x_1	-2,14706	0,73529	0,08824
χ_3	0,35294	-0,76471	3,08824
x_5	0,08824	-0,44118	1,64706
f	-10,38235	1,91176	3,52941

Будем выбрать максимальную по модулю отрицательную разницу (Δ). Видно, что при увеличении x_2 быстрее всего до нуля доходит x_5 .

Меняем x_5 и x_2 местами:

$$x_1 = 0.2x_4 - 2.26667x_5 + 3.73333$$

$$x_1 = -2.14706x_4 + 0.73529(0.2x_4 - 2.26667x_5 + 3.73333)$$

$$+ 0.08824 \approx -2x_4 - \frac{5}{3}x_5 + \frac{17}{6}$$

$$x_3 = 0.35294x_4 - 0.76471(0.2x_4 - 2.26667x_5 + 3.73333) + 3.08824 \approx 0.2x_4 + \frac{26}{15}x_5 + \frac{7}{30}$$

$$E = 10.38235x_4 + 1.91176(0.2x_4 - 2.26667x_4 + 3.73333)$$

$$F = -10,38235x_4 + 1,91176(0,2x_4 - 2,26667x_5 + 3,73333) + 3,52941 \approx -10x_4 - \frac{13}{3}x_5 + \frac{32}{3}$$

	x_4	x_5	β
x_1	-2	_ 5	<u>17</u>
	0.0	3	6
x_3	0,2	$\frac{26}{15}$	20
			30
x_2	0,2	_ 34	56
	1	$-\frac{15}{15}$	15
f	-10	13	32
		3	$\frac{\overline{3}}{3}$

Обе характеристические разности — отрицательные. Найдено оптимальное решение:

$$x_{1}^{*} = \frac{17}{6} \approx 2,83333$$

$$x_{2}^{*} = \frac{56}{15} \approx 3,73333$$

$$x_{3}^{*} = \frac{7}{30} \approx 0,23333$$

$$x_{4}^{*} = 0$$

$$x_{5}^{*} = 0$$

$$f^{*} = \frac{32}{3} = 10,66667$$

Задание 3.

Сначала приведём задачу к каноническому виду, введя дополнительные переменные x_3, x_4, x_5 :

$$\begin{cases} 12x_1 + 6x_2 - 18x_4 = -1\\ 12x_1 + 6x_2 - 18x_4 = -1\\ 3x_1 - 6x_4 + 3x_5 = 3\\ x_i \ge 0, i = 1, 5 \end{cases}$$

Двойственная задача имеет вид $\min\{-y_1-y_2+3y_3\}$ при ограничениях:

$$\begin{cases} 12y_1 + 12y_2 + 3y_3 - y_4 = -1 \\ -18y_1 - 18y_2 - 6y_3 - y_5 = -1 \\ y_i \ge 0, i = 1, 5 \end{cases}$$

OptMethods edition

		-		
	y_1	y_2	y_3	β
<i>y</i> ₄	12	12	3	0.5
y_5	-18	-18	-6	1
f	-1	-1	3	0

Выбираем максимальную по модулю отрицательную разницу (Δ). Видно, что при увеличении y_1 быстрее всего до нуля доходит y_5 .

Значит, меняем y_1 и y_5 местами.

$$y_1 = -\frac{5}{90}y_5 - y_2 - \frac{1}{3}y_3 + \frac{5}{90}$$

Далее:

$$y_4 = 12\left(-\frac{5}{90}y_5 - y_2 - \frac{1}{3}y_3 + \frac{5}{90}\right) + 12y_2 + 3y_3 + 0.5 = -\frac{2}{3}y_5 - y_3 + \frac{7}{6}$$

А значит, сама функция:

$$F = -\left(-\frac{5}{90}y_5 - y_2 - \frac{1}{3}y_3 + \frac{5}{90}\right) - y_2 + 3y_3 = \frac{5}{90}y_5 + \frac{10}{3}y_3 - \frac{5}{90}y_5 - \frac{5$$

	y_5	y_2	y_3	β
y_4	$-\frac{2}{3}$	0	-1	$\frac{7}{6}$
<i>y</i> ₁	$-\frac{5}{90}$	-1	$-\frac{1}{3}$	5 90
f	$\frac{5}{90}$	0	$\frac{10}{3}$	$-\frac{5}{90}$

Обе характеристические разности отрицательные. Найдено оптимальное решение:

$$f^* = -\frac{5}{90} \approx -0.05556$$

