

Black Bear Road Mortality & Land- use Change in Southern Florida

Naoya Morishita & Yu-Yun Ruan
IDCE 376 Spring 2023
04/28/2023

Background

Study Objectives

Data& Methods

Results

Conclusion & Future Work

Agenda

About Wildlife-Vehicle Conflict (WVC)?

- Physical Damage to
 - Animal
 - Human
- Financial Cost from
 - Cars
 - Accident Treatment

According to previous research....

- Significant risk to bears in FL to be involved in WVC
- mainly factors influencing
- 1. Sociodemographic Factors (e.g., population growth)
- 2. Natural and Built Environmental factors
- Environmental characteristics may be able to forecast WVC -- Use population density and road network predict WVC hotspot

Study Objectives

Basic Overview of WVC data:

How many records in different times and spaces?

Focus Data on Biological Factor of Bears (age, sex) and Land Use

Analyzing LULC (1995,2015) around WVC Points in South FL:

 How did the land change in 20 years around bear mortality?

Test Model to Predict WVC Locations by Land Use Change (Focus on Urban Area)

Data Collection

Data	Source	Description	
State Major Roads	Florida Department of	FL's main road data, polyline shape, total of 1962	
	Transportation	records, projection: UTM 17; Datum: NAD 83	
Land Use Southern	South Florida Water	A series of land use (LU) maps have been	
FL in 1995	Management District	produced by the SFWMD since the early 1970s.	
Land Use Southern	South Florida Water	Land Cover and Land Use for 2014-2016 within	
FL 2014 - 2016	Management District	the boundaries of the SFWMD and supports	
		various missions of the district. In this project	
		will use record 2014-2015	
Black Bear Range	Florida Fish and Wildlife	This shapefile contains four levels of occurrence	
in FL	<u>Conservation</u>	(frequent, common, occasional, and rare range)	
	Commission	for the Florida black bear.	
Black Bear Road	Florida Fish and Wildlife	Locations of black bear (Ursus americanus	
Mortality	Conservation	floridanus) roadkill in the state of Florida. A total	
Locations in	Commission	of 5210 record from 1976 to 2022	
Florida			

Black Bear Road Mortality Records in Geometry Viewer

Land Use 1995 Polygons

Methods

Getting Overview of Mortality and Land Use Change

- Count(), ST_Area() Functions
- WHERE, GROUP BY, ORDER BY Clauses
- Graph Visualizer

Calculating Areas around the Mortality Locations

ST_Buffer(), ST_Intersection(), ST_Area()

Making a Prediction Model

- ST_Intersection, create function: ST_creategrid, ST_Contains, Regressions
 - Independent Variable: Urban Land Use Change Rate
 - Dependent Variable: Mortality Record

2.5km

Data Overview & Land-use Comparison

Collision Buffer LULC in 1995 LU around Collision1 Comparison LULC in 2014 LU around Collision1

Test Regression for WVCs and Urban Area Change

Agenda

- 1. Background
- 2. Study Objectives
- 3. Data& Methods
- 4. Our Results
- 5. Conclusion and Future Work

How Many Records?

When the Record Started & Ended?

How many mortality in each region?

How many mortality in each county?

How many # in each year?

Only 20 Days Record in 2023

In Graph

Showing death in Collier (South) by sex & age

Land Use in 1995 & 2014-2016 in South FL

CRS: NAD83(HARN) / Florida GDL Albers (Unit: Meter)

Land Change Areas and Rate between '95- '15

LU in '95 around the Mortality 2000- in South

LU in '15 around the Mortality 2000- in South

Let's look them again together

So how changed?

- Waterland & Transportation
 - Almost no change
- Agriculture & Barren Land
 - Decreased
- Urban Built Up & Non- forest
 - Drastically increased (Approx 2x for Urban)
- Upland Forest & Water
 - Drastically decreased

Prediction Model- Data Prepare


```
FROM St_Creategrid(45, 20, 0.1, 0.1, 4326) AS Cells;
```

```
CREATE OR REPLACE FUNCTION ST_Creategrid
       nrow integer, ncol integer,
       xsize float8, ysize float8,
       x0 float8 default -82.312, y0 float8 default 24.523,
       OUT "row" integer, OUT col integer,
       OUT geom geometry)
   RETURNS SETOF record AS $$
BEGIN
   RETURN QUERY
   SELECT i + 1 AS row, j + 1 AS col, ST_Translate(cell, j * xsize + x0, i * ysize + y0) AS geom
   FROM generate_series(0, nrow - 1) AS i,
        generate_series(0, ncol - 1) AS j,
   SELECT ('POLYGON((0 0, 0 '||ysize||', '||xsize||' '||ysize||', '||xsize||' 0,0 0))')::geometry AS cell
  ) AS foo;
$$ LANGUAGE plpgsql;
```



```
Create Table grid_cell_clip As
SELECT ST_Intersection(grid_cell_new2.geom, lulc.geom)
FROM grid_cell_new2 JOIN lulc ON ST_Intersects(grid_cell_new2.geom, lulc.geom);
```



```
CREATE Table grid_bear_3 AS
select a.gid,a.geom
From grid_cell_clip as a
Join bear_clip_newtime as b
On ST_Intersects(a.geom,b.geom)
Group by a.gid,a.geom
Having Count(b.gid) >0;
```

```
Create Table Land_1995_urban_Clip As
SELECT ST_Intersection(land_95.geom, Grid_bear_3.geom)
FROM land_95 JOIN Grid_bear_3 ON ST_Intersects(land_95.geom, Grid_bear_3.geom)
WHERE land_95.level_1__1 = 'Urban And Built Up';
ALTER TABLE Land_1995_urban_Clip ADD COLUMN id serial PRIMARY KEY;
select*from Land_1995_urban_Clip;
```

In our study area grids, there are: 275 Black Bear Collision Records 2441 Urban Use Polygons in 1995 4554 Urban Use Polygons in 2015

Assign Urban Land Use polygon to 62 Grids

```
CREATE TABLE urban_15 AS

SELECT Grid_bear_3.gid, array_agg(Land_2015_urban_Clip.id) AS polygon_ids, ST_Union(Land_2015_urban_Clip.st_intersection) AS geom

FROM Grid_bear_3, Land_2015_urban_Clip

WHERE ST_Intersects(Grid_bear_3.geom, Land_2015_urban_Clip.st_intersection)

GROUP BY Grid_bear_3.gid;
```

Create Table Urban_15_area as SELECT gid, ST_Area(geom) AS area

Linear Regression Result:

SELECT regr_slope(count_bear, change_rate) as slope FROM all_rec

Slope:-0.758

select regr_intercept (count_bear, change_rate) as intercept from all_rec;

Intercept: 4.49

select regr_r2 (count_bear, change_rate) as rsq from all_rec;

R2:0.03

	count_bear bigint	urban_area_1995 double precision	urban_area_2015 double precision	change_rate double precision
1	1	0.00027365949547229117	0.0007340982402956139	0.6272167940872719
2	12	4.956288925799008e-05	8.92724962214627e-05	0.444813449205711
3	7	0.0010935797207911786	0.0014286929332287758	0.234559298673269
4	1	1.876819728967817e-05	4.661819994156457e-05	0.5974062208921856
5	2	0	1.0727444012939626e-05	1
6	5	0.004806548000927244	0.0055558223583233035	0.13486290760782774
7	1	0.0006637199139014804	0.0007806238895233066	0.14975710734809103
8	1	0.00010155973403887391	0.00018972108321242917	0.4646892568858133
9	6	9.66391082866939e-06	7.86832596340183e-06	-0.22820417883288188
10	2	0.00019617324966786598	0.00015488923366084855	-0.2665389648541648
11	2	0.005332460429951904	0.007154393384928134	0.2546593200779847
12	1	0.0003088417081179961	0.0020295895629350606	0.8478304610162809
13	15	0.0001890563340424254	0.0002943743325474628	0.3577689589769403
14	4	6.60821135216499e-06	0	0
15	4	0.00202763289531615	0.00434628585644091	0.5334791676641951
16	4	0.0008650846077428578	0.0012016778859246415	0.2801027481027406
17	9	0.0005388085858716116	0.0006170553555168452	0.12680672640738055
18	5	9.524703249711975e-05	9.772528916241502e-05	0.025359420131021777
Total rows: 62 of 62 Query complete 00:00:00.166				

All Record Table

Conclusion

Land Use Chage Around Black Bear Collision Record from 1995-2015:

Urban Built Up & Non- forest

- Drastically increased
- Upland Forest & Water
 - Drastically decreased

Prediction Model in the Study:

Result from Collision Record and Urban Change Rate has No Reference Value, R2 only 0.03

Future Step

- Compare with Road Data
 - Which roads have higher mortality?
 - Road density
- Compare land changes in the whole & around the mortality location
 - Which LC rate is larger?
- Changing Buffer Size on Sex
- Regression by comparing another land use type

Reference

- Ha, H. (2021). Identifying potential wildlife—vehicle collision locations for black bear (ursus americanus) in Florida under different environmental and human population factors. Papers in Applied Geography, 8(2), 185–199. https://doi.org/10.1080/23754931.2021.1977170
- Ha, H., & Shilling, F. (2018). Modelling potential wildlife-vehicle collisions (WVC) locations using environmental factors and human population density: A case-study from 3 state highways in Central California. Ecological Informatics, 43, 212–221. https://doi.org/10.1016/j.ecoinf.2017.10.005
- Llagostera, P., Comas, C., & López, N. (2022). Modeling road traffic safety based on point patterns of wildlife-vehicle collisions. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4032236
- Shilling, F., Collinson, W., Bil, M., Vercayie, D., Heigl, F., Perkins, S. E., & MacDougall, S. (2020). Designing wildlife-vehicle conflict observation systems to inform ecology and Transportation Studies. Biological Conservation, 251, 108797. https://doi.org/10.1016/j.biocon.2020.108797

Thank You!

