BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI– HYDERABAD CAMPUS FIRST SEMESTER 2020-2021 COURSE HANDOUT (PART II)

17th August 2020

Course No. : ME F213

Course Title : Materials Science and Engineering

Instructor-in-Charge : Sujith R

Instructors : Jella Gangadhar, Amar Sheelwant, Ankit Sharma

- **1. Course Description:** The course gives an introduction to materials science and its structure at the atomic and microscopic level. The relation between structure and properties of materials is also highlighted. The course mainly discusses about the structure and properties of different types of materials such as metals, ceramics and polymers.
- **2. Scope and Objectives:** The primary focus of this course is on the microstructure-processing-properties correlation. This course will help the student to learn the behavior of various material systems such as metals, polymers and ceramics by correlating it to the structure. Study includes atomic structure and bonding, crystal structures, defects in crystals, phase diagrams and phase equilibria, and mechanical properties.

At the end of this course student will be able to apply core concepts in materials science to solve engineering problems.

Prescribed Text Book

T1. Callister William D & R. Balasubramaniam, Materials Science and Engineering, Wiley Student Edition, 7th Edition, 2007.

Reference Books

- R1. William F Smith, Javad Hashmi and Ravi Prakash, Materials Science and Engineering, Fourth Edition, Tata McGraw Hill Education Private Limited, New Delhi.
- R2. George E. Dieter, Mechanical Metallurgy, SI Metric Edition McGraw Hill Book Company, London.
- R3. R. A. Higgins, Applied Physical Metallurgy, Sixth edition, Viva Low priced students edition, New Delhi.
- R4. Thomas. H. Courtney, Mechanical Behavior of Materials, McGraw Hill Publication Company, Materials Science series, II Edition (2000).
- R5. Material Science and Engineering, V. Raghavan, Fifth Edition, Prentice-Hall of India Private Limited (2004).

Lecture No.	Learning Objectives	Topics Covered	Book Chapter
1	Introduction	Course introduction and evaluation scheme, Historical perspective, Why study materials science and engineering?	T1
2-3	Identify the different types of atomic bonds in solids and evaluate the effect of bonding on material properties	Bonding forces and energies; Primary and Secondary bonding	T2
4-6	Distinguish between crystalline and amorphous materials, Identify the crystal structures and specify the miller indices, Define isotropy and anisotropy	Unit cells; Crystal structures: Metals, Ceramics & Polymers; Density computations; Crystallographic directions and planes; Crystalline and Amorphous materials; Determination of crystal structures using X-ray diffraction	ТЗ
6-8	Identify the different type of defects in crystals, Differentiate between the two types of solid solutions, Describe the ionic point defects	Point defects in metals Dislocations, Surface and Volume defects, Microscopic techniques (SEM & TEM), Grain size determination (OM)	T5
9-10	Describe the atomic mechanisms of diffusion, Distinguish between the steady state and non-steady state diffusion.	Diffusion mechanisms; Steady state and Non-steady state	Т6
11-12	Determine the modulus of elasticity, yield strength and toughness of various material systems, Compute impact toughness and hardness	Stress-strain behavior of metals, polymers & ceramics, Viscoelasticity, Impact strength & Hardness	T7
13-15	Describe how plastic deformation occurs by movement of dislocations, Define slip systems, Describe and explain various strengthening mechanisms, Differentiate between hot working and cold working	Slip systems; deformation by twinning; strengthening mechanisms; recovery, recrystallization & grain growth	Т8
16-19	Describe how plastic deformation occurs by movement of dislocations, Define slip systems, Describe and explain various strengthening mechanisms, Differentiate between hot working and cold working	Characteristics of dislocations, Slip systems, Slip in single crystals and polycrystalline materials, Deformation by twinning, Strengthening mechanisms, Recovery, recrystallization and growth	Т8
20-22	Differentiate between ductile and brittle fracture, Define	Fundamentals of fracture: ductile and brittle, Principles of fracture	Т9

	C t t		
	fracture toughness,	mechanics, Fatigue: S-N Curve,	
	Distinguish between fatigue	Crack initiation and propagation,	
	and creep	Generalized creep behavior	
23-26	Identify and interpret one	Definition and basic concepts,	T10
	component and two	Phase equilibria, Unary and binary	
	component phase diagrams,	phase diagrams, Gibbs phase rule,	
	Use Gibbs phase rule to	Iron –iron carbide phase diagram,	
	identify the invariant	Development of microstructure in	
	reactions, Sketch and	iron-carbon alloys, Influence of	
	interpret iron carbon phase	other alloying elements	
	diagram		
27-29	Sketch and interpret time	The kinetics of solid state reactions,	T11
	temperature transformation	Isothermal transformation diagram,	
	diagram and continuous	Continuous cooling transformation	
	cooling transformation	diagrams, Martensite structures and	
	diagram, Design a heat	tempering, Heat treatments, Glass	
	treatment that will produce a	transition temperature.	
	specified microstructure,		
	Explain the mechanism of		
	age hardening.		

Evaluation Scheme:

No.	Evaluation	Duration	Weightage	Date & Time	Nature of
	Component		(%)		Component
1	Test 1	30 min	15	September 10 –September 20 (during scheduled class Hour)	Open Book
2	Test 2	30 min	15	October 9-October 20(during scheduled class hour)	Open Book
3	Test 3	30 min	15	November 10-November 20 during scheduled class hour)	Open Book
2	Comprehensive exam	2 h	25	TBA	Open Book
3	Tutorial quizzes*	-	20		Open Book
4	Quizzes		10		Open Book

^{*} Best 8 out of 10 quizzes will be considered for evaluation.

Note:

- 1. **Chamber Consultation hour:** Friday 4 to 5 pm.
- 2. **Notices:** All notices concerning this course will be displayed on CMS.
- 3. **Make-up Policy**: Make-up will be granted only to genuine cases. For cases related to illness, proper documentary evidence is essential. Prior permission is necessary if the student is out of station on the test date.
- 4. **Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.
- 5. **No Credit Policy:** Failure to gather minimum 20% marks will results in no credits for this course.