

Satellite Analytics

Acciona agua www.acciona-agua.com	Alejandro Beivide (alejandro.beivide.garcia@acciona.com) Frank Zamora (frank.zamora.avendano@acciona.com) Clara Sanroma (clara.sanroma.flores@acciona.com) Elena Crespo (elena.crespo.olazabal@acciona.com) Jessica Ruiz (jessica.ruiz.lopez@acciona.com) Cosmin Koch (ckoch@acciona.com) Jose Ivorra (jivorra.bec@acciona.com)
Artelnics www.artelnics.com	Roberto Lopez (<u>robertolopez@artelnics.com</u>) Fernando Gomez (<u>fernandogomez@artelnics.com</u>) Emilio Lucas (<u>emiliolucas@artelnics.com</u>)

Index

1.	Summary	4
2.	Satellites	5
	MODIS Aqua	5
	Sentinel	8
3.	General circulation	10
4.	Surface temperature (C)	11
	Surface temperature time series (entry point)	11
	Surface temperature time series (regions)	12
	Surface temperature statistics	13
	Surface temperature correlations (entry point)	13
5.	Sea floor potential temperature (C)	14
	Sea floor potential temperature time series (entry point)	14
	Sea floor potential temperature time series (regions)	15
	Sea floor potential temperature statistics	16
	Sea floor potential temperature correlations (entry point)	16
6.	Salinity (practical salinity units)	17
	Salinity time series (entry point)	17
	Salinity time series (regions)	18
	Salinity statistics	19
	Salinity correlations (entry point)	19
7.	Northward velocity (m/s)	20
	Northward velocity time series (entry point)	20
	Northward velocity time series (regions)	21
	Northward velocity statistics	22
	Northward velocity correlations (entry point)	22
8.	Eastward velocity (m/s)	23
	Eastward velocity time series (entry point)	23
	Eastward velocity time series (regions)	24
	Eastward velocity statistics	25
	Eastward velocity correlations (entry point)	26
9.	Sea surface height (m)	27
	Sea surface height time series (entry point)	27
	Sea surface height statistics	28
	Sea surface height correlations (entry point)	28

10.	Chlorophyll concentration GSM (mg/m³)	29
C	Chlorophyll concentration GSM time series (regions)	29
C	Chlorophyll concentration GSM statistics	30
11.	Chlorophyll concentration OC3 (mg/m³)	31
C	Chlorophyll concentration OC3 time series (regions)	31
C	Chlorophyll concentration OC3 statistics	32
12.	Mass concentration of chlorophyll (mg/m³)	33
Ν	Mass concentration of chlorophyll time series (regions)	33
Ν	Mass concentration of chlorophyll statistics	34
13.	Photosynthetically available radiation (Einstein/m²)	35
P	Photosynthetically available radiation time series (entry point)	35
P	Photosynthetically available radiation statistics	36
14.	Particle organic carbon (mg/m³)	37
P	Particle organic carbon time series (regions)	37
Р	Particle organic carbon statistics	38
15.	Calcite concentration (mol/m³)	39
C	Calcite concentration time series (regions)	39
C	Calcite concentration statistics	40
16.	Euphotic depth Lee (m)	41
E	Euphotic depth lee time series (regions)	41
E	Euphotic depth lee statistics	42
17.	Satellite scatter charts (entry point)	43
S	Surface temperature scatter charts	43
S	Sea floor temperature scatter charts	46
S	Salinity scatter charts	49
Ν	Northward velocity scatter charts	52
E	Eastward velocity scatter charts	55
S	Sea surface height scatter charts	58
P	Photosynthetically available radiation scatter charts	61

1. Summary

From 02/01/2017 to 26/10/2017	299 days	3 variables

Number of satellites

2. Satellites

MODIS Aqua

The MODIS Aqua is a satellite property of the NASA. It collects data from the ocean several biological and physical variables.

https://oceancolor.gsfc.nasa.gov/

The acquisition of data from MODIS aqua is performed with the application wget.

We are using the level 3 mapped data of the satellite. This data consists in separated NETCDF data files for each day and variable.

The satellite retrieve data daily. It gets the data while orbiting the globe. This cause that the data could have zones without valid data.

The next table shows the possible variables that the satellite offers.

The yellow variables are the same information with different algorithms. A correlation study must be done to determine which one is the best.

Variable	Description	Units
chl_oc3	Chlorophyll Concentration, OC3 algorithm	mg/m ³
chlor_a	Chlorophyll Concentration, OCI algorithm	mg/m ³
Ipar	Instantaneous Photosynthetically Available Radiation	einstein/m² s
Nflh	Normalized fluorescence line height	W/m² um¹ sr¹
ada 442 asm	Absorption due to gelbstoff and detrital material (443nm), GSM	1 /22
adg_443_gsm	algorithm Continue to the algorithm (442 mm) CSM algorithm	1/m
bbp_443_gsm	Particulate backscattering (443nm), GSM algorithm	1/m
chl_gsm	Chlorophyll Concentration, GSM model	mg/m ³
a_412_giop	Total absorption (412nm), GIOP model	1/m
a_443_giop	Total absorption (443nm), GIOP model	1/m
a_469_giop	Total absorption (469nm), GIOP model	1/m
a_488_giop	Total absorption (488nm), GIOP model	1/m
a_531_giop	Total absorption (531nm), GIOP model	1/m
a_547_giop	Total absorption (547nm), GIOP model	1/m
a_555_giop	Total absorption (555nm), GIOP model	1/m
a_645_giop	Total absorption (645nm), GIOP model	1/m
a_667_giop	Total absorption (667nm), GIOP model	1/m
a_678_giop	Total absorption (678nm), GIOP model	1/m
	Absorption due to gelbstoff and detrital material (443nm), GIOP	
adg_443_giop	model	1/m
adg_s_giop	Detrital and gelbstoff absorption spectral parameter for GIOP model	1/m ¹ nm ¹
	Uncertainty in absorption due to gelbstoff and detrital material	
adg_unc_443_giop	(443nm), GIOP model	1/m
aph_443_giop	Absorption due to phytoplankton (443nm), GIOP model	1/m
	Uncertainty in absorption due to phytoplankton (443nm), GIOP	
aph_unc_443_giop	model	1/m
bb_412_giop	Total backscattering (412nm), GIOP model	1/m

bb_443_giop	Total backscattering (443nm), GIOP model	1/m
bb_469_giop	Total backscattering (469nm), GIOP model	1/m
bb_488_giop	8_giop Total backscattering (488nm), GIOP model	
bb_531_giop	Total backscattering (531nm), GIOP model	1/m
bb_547_giop	Total backscattering (547nm), GIOP model	1/m
bb_555_giop	Total backscattering (555nm), GIOP model	1/m
bb_645_giop	Total backscattering (645nm), GIOP model	1/m
bb_667_giop	Total backscattering (667nm), GIOP model	1/m
bb_678_giop	Total backscattering (678nm), GIOP model	1/m
bbp_443_giop	Particulate backscattering (443nm), GIOP model	1/m
bbp_s_giop	Backscattering spectral parameter for GIOP model	1/m ¹ nm ¹
bbp_unc_443_giop	Uncertainty in particulate backscatter (443nm), GIOP model	1/m
Kd_490	Diffuse attenuation coefficient (490nm), KD2 algorithm	1/m
Ndvi	Normalized difference vegetation index	
Sst	Sea surface temperature	ōС
Par	Photosynthetically available radiation	einstein/m²
Pic	Calcite concentration	mol/m³
Poc	Particle organic carbon	mg/m³
a_443_qaa	Total absorption (443nm), QAA algorithm	1/m
	Absorption due to gelbstoff and detrital material (443nm), QAA	
adg_443_qaa	algorithm	1/m
aph_443_qaa	Absorption due to phytoplankton (443nm), QAA algorithm	1/m
bbp_443_qaa	Particulate backscattering (443nm), QAA algorithm	1/m
Angstrom	Aerosol angstrom exponent	
aot_869	Aerosol optical thickness (869nm)	
Rrs_412	Remote sensing reflectance (412nm)	1/sr
Rrs_443	Remote sensing reflectance (443nm)	1/sr
Rrs_469	Remote sensing reflectance (469nm)	1/sr
Rrs_488	Remote sensing reflectance (488nm)	1/sr
Rrs_531	Remote sensing reflectance (531nm)	1/sr
Rrs_547	Remote sensing reflectance (547nm)	1/sr
Rrs_555	Remote sensing reflectance (555nm)	1/sr
Rrs_645	Remote sensing reflectance (645nm)	1/sr
Rrs_667	Remote sensing reflectance (667nm)	1/sr
Rrs_678	Remote sensing reflectance (678nm)	1/sr
sst4	4um sea surface temperature	ōC
Zeu_lee	Euphotic depth, Lee algorithm	M
· · · · · · · · · · · · · · · · · · ·		

Sentinel

The Sentinel-3 satellite belongs to the European programme Copernicus. It provides data of concentration of several components of the water and information of the sea and the currents.

http://marine.copernicus.eu

The acquisition of data from Sentinel aqua is performed using a dedicated Python API.

The access to the data must be done via a Python script in the server. Also, this satellite requires an account to retrieve the data.

The variables of this satellite are separated in physical and biological variables.

Physical variables

The physical variables come from the status of the sea itself.

Variable	Description	Units
usi	Sea ice eastward velocity	m/s
so	Salinity	practical salinity unit

Sithick	Sea ice thickness	M
Thetao	Temperature	ōC
Siconc	Ice concentration	fraction
Uo	Eastward velocity	m/s
Depth	Depth	m
Vo	Northward velocity	m/s
Mlotst	Density ocean mixed layer thickness	m
Zos	Sea surface height	M
Vsi	Sea ice northward velocity	m/s
bottomT	Sea floor potential temperature	ōC

Biological variables

The biological variables represent the concentration of different elements in the sea.

Weekly variables

Variable	Description	Units
Fe	Mole concentration of dissolved iron	mmol/m³
PP	Net primary productivity of carbon	g/m³/day
Si	Mole concentration of silicate	umol/L
NO3	Mole concentration of nitrate	mmol/m³
CHL	Mass concentration of chlorophyll	mg/m³
PHYC	Mole concentration of phytoplankton expressed as carbon	mmol/m³
PO4	Mole concentration of phosphate	mmol/m³
02	Mole concentration of dissolved oxygen	mmol/m³

Daily variables

Variable	Description	Units
CHL	Mass concentration of chlorophyll	mg/m³
SPM*	Inorganic suspended particle matter	g/m³

(*) Data from 1997-09-04 to 2016-08-31 and from 2017-07-06 to present.

3. General circulation

Region	Characteristics	
Strait of Hormuz	High current	
Southern Shallows	High salinity	
Iran Coast	High depth	
Bahrain Gulf	River plume	

4. Surface temperature (C)

Surface temperature time series (entry point)

The surface temperature follows the stationary trend.

Surface temperature time series (regions)

The temperature of all zones follows the stationary trend.

The Bahrain Gulf temperature has the biggest range, and the Hormuz Strait one the smallest.

Surface temperature statistics

	Minimum	Maximum	Mean	Standard deviation
Entry point	15.96	35.98	28.61	5.48
Strait of Hormuz	21.32	34.39	28.95	4.60
Southern Shallows	18.37	35.43	28.40	5.75
Iran Coast	20.48	34.89	28.21	5.07
Bahrain Gulf	17.31	35.13	27.13	6.04

The mean temperatures of all regions are similar.

Surface temperature correlations (entry point)

The surface temperature is highly correlated with the floor temperature and the photosynthetically available radiation, as expected.

The correlation between temperature and salinity is medium and negative.

5. Sea floor potential temperature (C)

Sea floor potential temperature time series (entry point)

At the entry point, the floor potential temperatures are very similar to the surface temperatures.

Sea floor potential temperature time series (regions)

The highest floor temperature is at the Southern Shallows (low depth).

The lowest floor temperature is at the Iran Coast (high depth).

Sea floor potential temperature statistics

	Minimum	Maximum	Mean	Standard deviation
Entry point	16.04	35.89	27.79	6.25
Strait of Hormuz	20.96	28.00	25.09	2.45
Southern Shallows	18.33	35.15	28.07	5.74
Iran Coast	20.39	27.18	23.85	2.39
Bahrain Gulf	17.25	30.05	24.50	4.43

The floor temperature at the entry point is high, since it has low depth.

Sea floor potential temperature correlations (entry point)

The correlations here are very similar than those for the surface temperature.

6. Salinity (practical salinity units)

Salinity time series (entry point)

The salinity at the entry point has a big drop from June to July.

Salinity time series (regions)

The highest salinity is at the Southern Shallows.

The lowest salinity is at the Bahrain gulf.

Salinity statistics

	Minimum	Maximum	Mean	Standard deviation
Entry point	37.26	39.37	38.43	0.497
Strait of Hormuz	36.89	38.61	37.72	0.36
Southern Shallows	38.68	39.35	39.04	0.16
Iran Coast	37.78	38.56	38.21	0.20
Bahrain Gulf	36.22	37.88	37.21	0.59

The salinity at the entry point is higher than that at most of the other regions.

Salinity correlations (entry point)

The variables which are more correlated with the salinity are the temperature and the surface height.

7. Northward velocity (m/s)

Northward velocity time series (entry point)

The wind direction has bigger oscillations between Januray and June, and it becomes more stable between July and November.

During the first half of the year there were some turbidity problems at the plant.

Northward velocity time series (regions)

The wind direction at the Strait of Hormuz seems more different than that at the other regions.

Northward velocity statistics

	Minimum	Maximum	Mean	Standard deviation
Entry point	-0.503	0.236	-0.082	0.133
Strait of Hormuz	-0.074	0.101	0.008	0.031
Southern Shallows	-0.063	0.042	-0.018	0.020
Iran Coast	-0.158	0.113	-0.025	0.048
Bahrain Gulf	-0.142	0.095	-0.025	0.044

Most of the wind in the Persian Gulf comes from the south.

Northward velocity correlations (entry point)

The northward velocity is highly correlated with the eastward velocity.

Also, there is a low correlation with the temperatures and the surface height.

8. Eastward velocity (m/s)

Eastward velocity time series (entry point)

The horizontal temperature also seems less stable during the first half of the year.

During the first half of the year there were some turbidity problems at the plant.

Eastward velocity time series (regions)

The eastward velocity seems more stable at the Iran Coast and less stable at the Southern Shallows.

Eastward velocity statistics

	Minimum	Maximum	Mean	Standard deviation
Entry point	-0.129	0.263	0.045	0.075
Strait of Hormuz	-0.074	0.101	0.008	0.031
Southern Shallows	-0.063	0.042	-0.018	0.020
Iran Coast	-0.158	0.113	-0.025	0.048
Bahrain Gulf	-0.142	0.095	-0.025	0.044

Eastward velocity correlations (entry point)

The eastward velocity is highly correlated with the northward.

There is a medium correlation with the temperatures and the surface height.

9. Sea surface height (m)

Sea surface height time series (entry point)

The surface height oscillates more in the first half of the year.

This might have an impact on the turbidity at the plant.

Sea surface height statistics

	Minimum	Maximum	Mean	Standard deviation
Entry point	-0.089	0.347	0.157	0.072
Strait of Hormuz	0.064	0.294	0.163	0.050
Southern Shallows	0.005	0.421	0.168	0.070
Iran Coast	0.001	0.338	0.130	0.064
Bahrain Gulf	0.004	0.333	0.148	0.066

The biggest mean and standard deviation are produced at the Southern Shallows.

At that region, the salinity is higher. Will that influence the plant?

Sea surface height correlations (entry point)

The variable most correlated with the sea surface height is the salinity.

10. Chlorophyll concentration GSM (mg/m³)

Chlorophyll concentration GSM time series (regions)

The chlorophyll concentration GSM data for the entry point is not available, since it has many missing values at that particular coordinates.

There are a lot of missing values even for the regions, where the data has been averaged.

The missing values have been imputed using the time series data.

We can see peaks of chlorophyll concentration, specially during the winter months.

Chlorophyll concentration GSM statistics

	Minimum	Maximum	Mean	Standard deviation
Strait of Hormuz	0.005	10.00	1.96	2.19
Southern Shallows	0.06	15.10	0.98	1.60
Iran Coast	0.04	18.07	2.42	3.08
Bahrain Gulf	0.009	12.01	2.49	2.51

The regions with the highest chlorophyll are the Bahrain Gulf and the Iran Coast.

11. Chlorophyll concentration OC3 (mg/m³)

Chlorophyll concentration OC3 time series (regions)

The chlorophyll concentration OC3 data for the entry point is not available, since it has many missing values at that particular coordinates.

This variable has high peaks of chlorophyll, especially in the Strait of Hormuz and between January and May.

Chlorophyll concentration OC3 statistics

	Minimum	Maximum	Mean	Standard deviation
Strait of Hormuz	0.43	27.33	2.57	3.20
Southern Shallows	0.34	10.11	1.58	1.39
Iran Coast	0.30	12.16	1.75	1.82
Bahrain Gulf	0.35	11.70	1.97	1.48

The regions with the highest mean chlorophyll using the OC3 algorithm is the Strait of Hormuz.

12. Mass concentration of chlorophyll (mg/m³)

Mass concentration of chlorophyll time series (regions)

The mass concentration of chlorophyll data for the entry point is not available, since it has many missing values at that particular coordinates.

We can see peaks of this variable at the Hormuz Strait, the Southern Shallows and the Bahrain Gulf.

There are more peaks at the Hormuz Strait during the first half of the year and more peaks

Mass concentration of chlorophyll statistics

	Minimum	Maximum	Mean	Standard deviation
Strait of Hormuz	0.12	3.56	0.85	0.51
Southern Shallows	0.04	3.11	0.63	0.42
Iran Coast	0.03	1.56	0.54	0.25
Bahrain Gulf	0.01	3.04	0.85	0.52

The highest means are for the Strait of Hormuz and the Bahrain Gulf.

13. Photosynthetically available radiation (Einstein/m²)

Photosynthetically available radiation time series (entry point)

The photosynthetically available radiation follows the solar declination, as expected.

Between January and March, there are high drops, due to the high cloudiness during that period.

Photosynthetically available radiation statistics

	Minimum	Maximum	Mean	Standard deviation
Strait of Hormuz	6.76	61.35	47.89	12.09
Southern Shallows	11.51	61.04	48.08	11.18
Iran Coast	8.13	61.87	48.07	12.30
Bahrain Gulf	6.55	61.83	47.25	12.19

This variable is very similar for all regions.

14. Particle organic carbon (mg/m³)

Particle organic carbon time series (regions)

There are high peaks of the particle organic carbon at all regions.

Particle organic carbon statistics

	Minimum	Maximum	Mean	Standard deviation
Strait of Hormuz	99	5568	613	782
Southern Shallows	136	8490	861	1436
Iran Coast	80	8102	746	1217
Bahrain Gulf	90	7280	701	864

The region with the highest average of particle organic carbon is Southern Shallows.

15. Calcite concentration (mol/m³)

Calcite concentration time series (regions)

The calcite concentrations have also high peaks at different regions.

Calcite concentration statistics

	Minimum	Maximum	Mean	Standard deviation
Strait of Hormuz	1.3e-05	0.055	0.005	0.010
Southern Shallows	1.3e-05	0.064	0.007	0.008
Iran Coast	1.3e-05	0.028	0.002	0.003
Bahrain Gulf	1.2e-05	0.078	0.008	0.008

The region with more calcite concentration is the Bahrain Gulf.

16. Euphotic depth Lee (m)

Euphotic depth lee time series (regions)

The euphotic depth in all regions follows the solar declination shape.

Does this variable have a relationship with the turbidity?

Euphotic depth lee statistics

	Minimum	Maximum	Mean	Standard deviation
Strait of Hormuz	7.57	56.20	32.59	10.48
Southern Shallows	12.55	63.49	30.37	7.49
Iran Coast	10.58	69.96	36.62	12.03
Bahrain Gulf	7.65	66.42	32.99	9.50

The region with the highest euphotic depth is the Iran coast.

The smallest average value is at the Southern Shallows.

17. Satellite scatter charts (entry point)

Surface temperature scatter charts

Sea floor temperature scatter charts

Salinity scatter charts

Northward velocity scatter charts

Eastward velocity scatter charts

Sea surface height scatter charts

Photosynthetically available radiation scatter charts

