

New Fields: Emerging Novel Targeted Treatments for ER-Positive Breast Cancer

Javier Cortés, MD, PhD
Vall d'Hebron University Hospital
Vall d'Hebron Institute of Oncology
Barcelona, Spain

Treatment Guidelines for HR+, HER2- Advanced Breast Cancer: Focusing on Endocrine Therapy

ESMO Treatment Guidelines for HR+, HER2- ABC1

•In HR+, HER2- disease, ET is the treatment of first choice independent of metastatic site, unless rapid response is needed. Limited visceral metastases are not a contraindication for ET

ABC2 Treatment Guidelines for HR+, HER2- ABC²

•ET is the preferred option for HR⁺ disease, even in the presence of visceral disease, unless there is concern or proof of endocrine resistance or rapidly progressive disease needing a fast response

AGO Treatment Guidelines for HR+, HER2- ABC³

•Endocrine therapy represents the first choice for HR⁺ metastatic breast cancer except for acute, life-threatening disease

ABC, advanced breast cancer; AGO, Association of Gynecological Oncology; AI, aromatase inhibitor; ESMO, European Society for Medical Oncology; ET, endocrine therapy; HR hormone receptor; HER2, human epidermal growth factor receptor 2

^{1.} Cardoso F, et al. Ann Oncol. 2012;23(suppl 7):vii11-vii19. 2. Cardoso F, et al. Ann Oncol. 2014;25(10):1871-1888.

^{3.} AGO Breast Committee. Diagnosis and Treatment of Patients with Primary and Metastatic Breast Cancer. Recommendations 2014. Available at http://www.ago-online.de.

Endocrine and Targeted Therapies

The Present Future...

Why does hormonal resistance occur?

Novel Target Agents

mTOR, mammalian target of rapamycin; PI3K, phosphatidylinositol 3-kinase.

Pivotal BOLERO-2 Study: Exemestane (EXE) ± Everolimus (EVE) in ABC Progressing After NSAI: Non Steroidal Aromatase Inhibitors, NSAIs

N = 724**Everolimus 10 mg/day** PMW with HR+ HFR2-ABC refractory to LET or **Primary endpoint:** Exemestane 25 mg/day ANA, defined as **PFS** (n = 485)Recurrence during or within 12 months **Secondary endpoints:** Placebo (PBO) + after end of adjuvant OS, ORR, CBR, safety, treatment, or **Exemestane 25 mg/day** QoL, bone markers Progression during or (n = 239)within 1 month after end of treatment for Stratification advanced disease 1. Sensitivity to prior hormonal therapy 2. Presence of visceral disease

ANA, anastrozole; CBR, clinical benefit rate; LET, letrozole; NSAI, nonsteroidal aromatase inhibitor; ORR; overall response rate; OS, overall survival; PFS, progression-free survival; PMW, postmenopausal women; QoL, quality of life Baselga J, et al. *N Engl J Med.* 2012;366(6):520-529.

No cross-over

The PI3K Cascade Regulates Cell Growth and Survival

Clinical Activity of the First Pl3K Inhibitors Monotherapy

		BEZ235	BKM120	GDC0980 QD	GDC094 1	PF-4691502	SF-1126	XL- 147	XL- 765 [¥]	Σ
	PR	1	1		2					4
Breast	SD	4	1 a 3			1		1	1	8 - 10
	С								1†	1
NSCLC	PR	1						1		2
	SD					1		3	1	5
Mesothelioma	PR			*						0*
	SD			3					1	4
	actividad	1‡								1
Cervical ADK	PR				1					1

[†] Response in skin lesions

^{* 29%} reduction

^{\$\}pm\$<30\% reduction (NOS)

BELLE2: Hormone Receptor-Positive HER2-Negative Disease, mTORi Naïve

Study objectives:

Co-primary: PFS (local assessment)[‡]

Co-key secondary: OS[‡]

Secondary: Efficacy (ORR,^{‡§} CBR,^{‡§} PFS,[§] OS[§]), safety^{II}, PK¶, patient-reported outcomes[‡] ECOG PS^{‡§}

^{*}PI3K pathway activation is defined as mutation in the PIK3CA gene and/or loss of PTEN expression by immunohistochemistry;

[‡]Tested in the main (known status) and/or full (all patients) or PI3K activated populations.

[§]Tested in the PI3K nonactivated and PI3K status unknown populations.

[&]quot;Tested in the main and full populations only.

[¶]Tested in all patients only.

BELLE-3: Hormone Receptor—Positive HER2-Negative Disease, mTORi Pretreated Study Design CBKM120F2303

Study objectives:

Co-primary: PFS (local assessment)

Co-key secondary: OS

Secondary: Efficacy (ORR, CBR), safety, PK, patient-reported outcomes time to ECOG PS deterioration

Selective Targeting of PI3K Alpha (*PIK3CA*)

Two leading selective inhibitors
Inhibit alpha >> beta alpelisib
taselisib

(alpha selective) (beta sparing)

Clinical responses with alpelisib (BYL719) in PIK3CA mutant cancer

Baseline

End cycle 8

Selective Targeting of PI3K Alpha (*PIK3CA*)

Two leading selective inhibitors Inhibit alpha > beta

alpelisib taselisib

(alpha selective) (beta sparing)

Clinical responses with GDC0032 in PIK3CA mutant cancer

Dose escalation patients

Baseline

End cycle 8

Rapalogs Disturb a Negative Feedback Activating AKT

Example of a Partial Response to Ridaforolimus + Dalotuzumab

History

- 56 year-old female
 - Stage IV breast cancer
- ER+/PR+/HER2 neg, Ki67 20%
- Adjuvant chemotherapy4 prior chemotherapy regimens3 prior hormone therapies
- Patient remained on study treatment for 9 months before progression

PI3K/mTORC Inhibition in HER2 Overexpressing Cells Activates MAPK (and Is HER2 Dependent)

Combination of PI3K/mTOR and HER2 Inhibition or MEK Inhibition Shows Enhanced Anticancer Activity

BT474-Tr xenografts

B- BEZ235 (20 mg/Kg QD); T- Trastuzumab (10mg/Kg, BIW) B-BEZ235 (25 mg/Kg QD); A- AZD6244 (8mg/Kg QD)

Serra V, et al. Oncogene. 2011;30(22):2547-2557.

New Receptors...

Sustaining proliferative signaling

FGFR, fibroblast growth factor receptor

Turner N, et al. Cancer Res. 2010;70(5):2085-2094. Roidl A, et al. Clin Cancer Res. 2009;15(6):2058-2066.

Dovitinib (TKI258) in Breast Cancer

A multicenter, open-label phase II trial of dovitinib, an FGFR1 inhibitor, in FGFR1-amplified and -nonamplified metastatic breast cancer

Andre F, et al. J Clin Oncol. 2012;30(15S): Abstract 508.

E3810: FGF+ Breast Cancer Patients With Measurable Disease

One patient with non-measurable target lesions and off study for PD not shown

Patient 18032 (VHIO)

Baseline Sept. 20, 2011

C3D1 Nov. 18, 2011

- HR+/HER2-, FGFR1 ampl (ratio 2.21) and CGH
- Bone, lung and pleura metastases
- 14 prior treatment lines, including 5 Phase 1 trials
- E-3810 at 20 mg/day

Cell Cycle

Evading Growth Suppressors

Summary of Ongoing Clinical Trials of CDK4/6 Inhibitors in ER+ ABC

Agent	Phase	Regimen	Patients (planned enrollment, N)		
	Phase III (PALOMA-2) (NCT01740427)	Palbociclib+LET vs LET+PBO	ER+, HER2- ABC, no prior systemic therapy for ABC (450)		
Palbociclib (PD0332991)	Phase III (PALOMA-3) (NCT01942135)	Palbociclib+FUL vs FUL+PBO	ER+, HER2- MBC or LABC after progression on endocrine therapy (417)		
	Phase I/II (TRIO-18/PALOMA-1) (NCT00721409)	PD0332991+LET vs LET	Untreated ER+, HER2- ABC, no prior therapy for ABC (177)		
Ribociclib (LEE011)	Phase III (MONALEESA-2) (NCT01958021)	Ribociclib+LET vs LET+PBO	ER+, HER2- ABC, no prior systemic therapy for ABC (500)		
	Phase I/II (NCT01857193)	Ribociclib+EVE+EXE	ER+, HER2- MBC or LABC resistant to LET or ANA (185)		
	Phase I/II (NCT01872260)	Ribociclib+alpelisib+LET	ER+ MBC or LABC (130)		
Abemaciclib (LY2835219)	Phase III (MONARCH-2) NCT02107703	Abemaciclib+FUL vs FUL	ER+, HER2- MBC (no prior endocrine therapy OR progression on prior Al/antiestrogen) (550)		

Palbociclib is being evaluated as a breakthrough therapy by the FDA

PALOMA-1/TRIO-18: Progression-Free Survival

PAL, palbociclib

Finn RS, et al. Presented at: American Association of Cancer Research Annual Meeting 2014; April 5-9, 2014; San Diego. Abstract #CT101.

PALOMA-1/TRIO-18: OS (Intent-to-Treat)
Positive Trend in Favor of Palbociclib Arm at
Time of Final PFS Analysis

Finn RS, et al. Presented at: American Association of Cancer Research Annual Meeting 2014; April 5-9, 2014; San Diego. Abstract #CT101.

Luminal Androgen Receptor Subtype

- Triple negative breast cancer is comprised of 6 molecularly distinct subtypes
 - 10% are "Luminal AR" (LAR)
 - LAR express higher levels of AR mRNA vs other TNBC subtypes
 - LAR breast cancers are heavily enriched in hormonally-regulated pathways
 - Luminal AR is more closely related to hormone receptor positive breast cancer (Luminal A and B) than to other subtypes

Luminal Androgen Receptor Subtype Sensitivity to Bicalutamide and Enzalutamide

Denne L, et al. Presented at: 36th Annual San Antonio Breast Cancer Symposium; December 10-14, 2013; San Antonio, Texas. Abstract P2-09-05.

Phase II Trial of Bicalutamide in Androgen Receptor Positive, Estrogen Receptor Negative Metastatic Breast Cancer

Pts with clinical benefit on bicalutamide	AR%	ER%	PgR%	HER2	Site of Testing	Site of Mets	Prior Therapy LABC/ MBC	DOR on Prior Therapy (weeks)	DOR on bicalutamide (weeks)
1	10-20	1	0	Neg	1°	LN	0	NA	231+
#2	>80	3	0	Neg	Met	GI	0	NA	54
#3	>80	0	0	-/+	1 °	Breast LN	1	NR	25
#4	>90	0	0	Neg	1 °	LN Bone	1	158	35
#5	>50	0	0	Neg	10	LN Bone	1	15	43+

Stage I Phase II Trial of Enzalutamide in Androgen Receptor Positive, Triple Negative Metastatic Breast Cancer

Beyond Kinases: Other Targets in Clinical Development (1/2)

Target	Select agents	Stage of development in BC
Histone deacetylases	Vorinostat ¹ MS-275 (entinostat) ² PDX1011 (belinostat) ³ LBH789 (panobinostat) ⁴	Phase II, metastatic/recurrent BC Phase II, HR+ BC Phase I, solid tumors Phase I, metastatic HER2+ BC
IAPs	GEM640 (AEG35156) ⁵ LCL161 ⁶ HGS1029 (AEG40826) ⁷	Phase I/II, mBC Phase I, solid tumors Phase I, solid tumors
Microtubules	Sagopilone (ZK-EPO)8	Phase II, mBC
HSP90	AUY922 ⁹ Ganetespib (STA-9090) ¹⁰	Phase II, solid tumors
PARP	AZD2281 ¹¹ Rucaparib ^{12, 13}	Phase II, TNBC Phase II, locally advanced or mBC; TNBC

IAP, inhibitor of apoptosis

National Institutes of Health. Available at: http:// clinicaltrials.gov. Accessed: December 6, 2014: 1. NCT01153672; 2. NCT01349959; 3. NCT00413075; 4. NCT00788931. 5. NCT00558545; 6. NCT01098838; 7. NCT00708006; 8. NCT00313248; 9. NCT00526045; 10. NCT00687934; 11. NCT007077707; 12. NCT00664781; 13. NCT01074970.

Beyond Kinases: Other Targets in Clinical Development (2/2)

Target	Select Agents	Stage of Development in BC
VEGF	Bevacizumab ¹ Aflibercept ² Ramucirumab ³	EMA-approved (with paclitaxel) in mBC Phase II, mBC Phase III, BC
IGF1R	Ganitumumab ⁴ ; OSI-906 ⁵ ; MEDI-573 ⁶ BMS-754807 ⁷ ; Cixutumumab ^{8,9} ; Dalotuzumab ¹⁰	Phase II, HR+ ABC Phase II, HR+ ABC Phase II, HER2+ ABC
cMET	ARQ 197 ¹¹	Phase II, TNBC
AKT	MK 2206 ¹²	Phase II, ABC with PIK3CA mutation and/or PTEN loss; Phase I HER2+ ABC
AP	LCL161 ¹³	Phase II, TNBC
Porcupine enzyme	LGK974 ¹⁴	Phase I, solid tumors dependent on WNT ligands

^{1.} EMA 2010. From:http://www.ema.europa.eu/ema. Accessed December 2014. National Institutes of Health, Available at: http:// clinicaltrials.gov. Accessed: December 6, 2014: 2. NCT00369655; 3. NCT00703326; 4. NCT00626106; 5. NCT01205685; 6. NCT01446159; 7. NCT01225172; 8. NCT00728949; 9. NCT00684983;

10. NCT01234857; 11. NCT01542996; 12. NCT01277757; 13. NCT01617668; 14. NCT01351103.

The Future... Reality or Fiction?

IHQ and Gene Expression of a Basal Like Breast Cancer, a SQCLC With a Basal Like Profile and a Luminal A Breast Cancer

IHQ and Gene Expression of a Basal Like Breast Cancer, a SQCLC With a Basal Like Profile and a Luminal A Breast Cancer

Conclusion

Cortés J, et al. CA Cancer J Clin. 2014;64(1):70-74.

