1 Rappels de Cours

Definition 1.1 (Distance). Soit E un ensemble. Une application $d: E \times E \to \mathbb{R}^+$ est appelée distance sur E si :

- 1. $d(x,y) \ge 0$ (positivité)
- 2. d(x,y) = d(y,x) (symétrie)
- 3. $d(x,y) \le d(x,z) + d(z,y)$ (inégalité triangulaire)
- 4. $d(x,y) = 0 \Leftrightarrow x = y$ (axiome de séparation)
- (E,d) est appelé espace métrique.

Definition 1.2 (Boule ouverte). Soit (E, d) un espace métrique, $x_0 \in E$ et $r \geq 0$. La boule ouverte de centre x_0 et de rayon r est l'ensemble

$$B(x_0, r) = \{x \in E : d(x_0, x) < r\}$$

Definition 1.3 (Ensemble ouvert). Soit (E,d) un espace métrique. $U \subset E$ est ouvert si

$$\forall x_0 \in U, \exists r > 0 \text{ tel que } B(x_0, r) \subset U.$$

Theorem 1.4 (Propriétés des ouverts). 1. Soit $U_i, i \in I$ une collection d'ouverts. Alors $\bigcup_{i \in I} U_i$ est ouvert.

2. Si U_1, \ldots, U_n sont ouverts, alors $\bigcap_{i=1}^n U_i$ est ouvert.

Definition 1.5 (Ensemble compact). $K \subset E$ est compact si de tout recouvrement ouvert $(U_i)_{i \in I}$ de K, on peut extraire un sous-recouvrement fini, c'est-à-dire qu'il existe un sous-ensemble fini $J \subset I$ tel que $K \subset \bigcup_{i \in J} U_i$.

Theorem 1.6 (Théorème de Borel-Lebesgue). Dans \mathbb{R}^n avec la distance usuelle, $K \subset \mathbb{R}^n$ est compact si et seulement si K est fermé et borné.

2 Exercices et Solutions

TD2 Topo 1 - Exercice 1

Énoncé:

Soit (E, d) un espace métrique.

1. Rappel de cours : Un ensemble $U \subset E$ est ouvert si : $\forall x \in U, \exists \epsilon > 0$ t.q. $B(x, \epsilon) \subset U$. (Rq : on peut prendre $B(x, \epsilon)$ ou $B_d(x, \epsilon)$).

Soit $z \in E$. Est-ce que $\{z\}$ est ouvert ? Non. Il faut $\exists \epsilon > 0$ t.q. $B(z, \epsilon) \subset \{z\}$. Faux. $B(z, \epsilon) = \{x \in E : d(x, z) < \epsilon\}$. Si $\epsilon > 0$, $B(z, \epsilon) \neq \{z\}$ si E contient au moins deux points. $\Longrightarrow \{z\}$ n'est pas ouvert.

Est-ce que E est ouvert ? Oui, évident (pourquoi ?). $\forall x \in E, \exists \epsilon > 0 \text{ t.q. } B(x, \epsilon) \subset E$. On prend $\epsilon = 1$. $B(x, 1) \subset E$.

Est-ce que \emptyset est ouvert ? Oui (pourquoi ?). $\forall x \in \emptyset$ (faux), $\exists \epsilon > 0$ t.q. $B(x, \epsilon) \subset \emptyset$. Vrai par contraposée. Non($\exists x \in \emptyset$, $\exists \epsilon > 0$ t.q. $B(x, \epsilon) \subset \emptyset$). $\nexists x \in \emptyset$ donc la proposition est fausse. Donc la négation est vraie. $\forall x \in \emptyset$, ... est vrai.

- 2. Rappel de cours : Définition d'un fermé : F est fermé $\iff E \setminus F$ est ouvert. D'après 1), $\{z\}^c = E \setminus \{z\}$ est-il ouvert ? Si $E = \mathbb{R}$, $E \setminus \{z\} =] \infty$, $z[\cup]z, +\infty[$ ouvert. Si E contient au moins deux points, $E \setminus \{z\}$ est ouvert ssi $\{z\}$ n'est pas adhérent à $E \setminus \{z\}$. Si $x \in E \setminus \{z\}$, $x \neq z$. On pose r = d(x, z) > 0. $B(x, \frac{r}{2}) \subset E \setminus \{z\}$? Si $y \in B(x, \frac{r}{2})$, $d(y, x) < \frac{r}{2}$. $d(y, z) \geq d(x, z) d(x, y) > r \frac{r}{2} = \frac{r}{2} > 0$. $d(y, z) > 0 \implies y \neq z \implies y \in E \setminus \{z\}$. Donc $B(x, \frac{r}{2}) \subset E \setminus \{z\}$. Donc $E \setminus \{z\}$ est ouvert. Donc $\{z\}$ est fermé.
- 3. Soit $\Omega \subset E$. $U = \bigcup_{x \in \Omega} B(x, \epsilon)$. Est-ce que U est ouvert ? Oui (union d'ouverts). Soit $x \in U = \bigcup_{x \in \Omega} B(x, \epsilon)$. $\Longrightarrow \exists x_0 \in \Omega$ t.q. $x \in B(x_0, \epsilon)$. $B(x_0, \epsilon)$ est ouvert $\Longrightarrow \exists r > 0$ t.q. $B(x, r) \subset B(x_0, \epsilon) \subset U$. $\Longrightarrow U$ est ouvert. (pour r petit, $r < \epsilon d(x, x_0)$). Soit $x \in B(x_0, \epsilon)$. On cherche $\delta > 0$ t.q. $B(x, \delta) \subset B(x_0, \epsilon)$. Il faut que si $y \in B(x, \delta)$, $y \in B(x_0, \epsilon)$. $d(y, x_0) \leq d(y, x) + d(x, x_0) < \delta + d(x, x_0) < \epsilon$. Il suffit de prendre $\delta = \epsilon d(x, x_0)$. Mais δ doit être > 0. Il faut prendre $\delta = \frac{\epsilon d(x, x_0)}{2}$ si $d(x, x_0) < \epsilon$. On peut prendre $\delta = \epsilon d(x, x_0)$ si on veut $\delta > 0$? Non, il faut prendre $\delta = \frac{\epsilon d(x, x_0)}{2}$? Non plus. On prend $\delta = \epsilon d(x, x_0)$ si $d(x, x_0) < \epsilon$. Oui! Si $x \in B(x_0, \epsilon)$, $d(x, x_0) < \epsilon$. On pose $\delta = \epsilon d(x, x_0) > 0$. Si $y \in B(x, \delta)$, $d(y, x) < \delta = \epsilon d(x, x_0)$. $d(y, x_0) \leq d(y, x) + d(x, x_0) < \epsilon d(x, x_0) + d(x, x_0) = \epsilon$. $d(y, x_0) < \epsilon \Longrightarrow y \in B(x_0, \epsilon)$. Donc $B(x, \delta) \subset B(x_0, \epsilon)$. Donc $B(x_0, \epsilon)$ est ouvert.

Donc $U = \bigcup_{x \in \Omega} B(x, \epsilon)$ est ouvert comme union d'ouverts.

TD2 Topo 1 - Exercice 2

Énoncé:

Soit (X, d) espace métrique. Sur $X \times X$ on définit $\delta(x, y) = \min(1, d(x, y))$.

- 1. Montrer que (X, δ) est un espace métrique.
- 2. a) Montrer qu'une suite (u_n) dans X converge pour d si et seulement si elle converge pour δ .
 - b) Les espaces (X, δ) et (X, d) ont-ils les mêmes ensembles ouverts?
- 3. Montrer que $\delta(x,y) \leq d(x,y)$ pour tous $x,y \in X$. Sous quelles conditions existe-t-il une constante C > 0 telle que $d(x,y) \leq C\delta(x,y)$ pour tous $x,y \in X$?

Solution. 1. Pour montrer que (X, δ) est un espace métrique, il faut vérifier les quatre propriétés d'une distance pour δ .

- (a) **Positivité:** $\delta(x,y) = \min(1,d(x,y))$. Comme $d(x,y) \ge 0$ et 1 > 0, $\min(1,d(x,y)) \ge 0$. Donc $\delta(x,y) \ge 0$.
- (b) Symétrie: $\delta(x,y) = \min(1,d(x,y)) = \min(1,d(y,x)) = \delta(y,x)$ car d est symétrique.
- (c) **Séparation:** Si $\delta(x,y) = 0$, alors $\min(1,d(x,y)) = 0$. Comme $\min(a,b) = 0 \implies a = 0$ ou b = 0, et $1 \neq 0$, alors d(x,y) = 0. Puisque d est une distance, $d(x,y) = 0 \implies x = y$. Réciproquement, si x = y, alors d(x,y) = 0, donc $\delta(x,y) = \min(1,0) = 0$.
- (d) Inégalité triangulaire: Il faut montrer que $\delta(x,y) \leq \delta(x,z) + \delta(z,y)$. Posons a = d(x,z) et b = d(z,y). Alors $d(x,y) \leq a+b$. On a $\delta(x,z) = \min(1,a)$ et $\delta(z,y) = \min(1,b)$. On veut montrer que $\min(1,d(x,y)) \leq \min(1,a) + \min(1,b)$. On a $d(x,y) \leq a+b$. Considérons $\min(1,d(x,y))$.
 - Si $a \ge 1$ et $b \ge 1$, alors $\min(1, a) = 1$, $\min(1, b) = 1$, $\min(1, a) + \min(1, b) = 2$. $\delta(x, z) + \delta(z, y) = 2 \ge \delta(x, y) = \min(1, d(x, y)) \le 1$.

- Si a < 1 et b < 1, alors $\min(1, a) = a$, $\min(1, b) = b$, $\min(1, a) + \min(1, b) = a + b$. $\delta(x, z) + \delta(z, y) = a + b \ge d(x, y) \ge \min(1, d(x, y)) = \delta(x, y)$.
- Si a < 1 et $b \ge 1$ (ou $a \ge 1$ et b < 1, c'est symétrique), alors $\min(1, a) = a$, $\min(1, b) = 1$, $\min(1, a) + \min(1, b) = a + 1$. $\delta(x, z) + \delta(z, y) = a + 1 \ge 1 \ge \min(1, d(x, y)) = \delta(x, y)$.

Dans tous les cas, l'inégalité triangulaire est vérifiée. Donc δ est une distance sur X.

- 2. a) Montrer qu'une suite (u_n) dans X converge pour d ssi elle converge pour δ .
 - Supposons que (u_n) converge vers l pour d. Alors $\lim_{n\to\infty} d(u_n,l) = 0$. On veut montrer que $\lim_{n\to\infty} \delta(u_n,l) = 0$. $\delta(u_n,l) = \min(1,d(u_n,l))$. Comme $d(u_n,l) \xrightarrow[n\to\infty]{} 0$, et $\min(1,t) \xrightarrow[t\to 0]{} 0$, alors $\delta(u_n,l) = \min(1,d(u_n,l)) \xrightarrow[n\to\infty]{} 0$. Donc (u_n) converge vers l pour δ .
 - Supposons que (u_n) converge vers l pour δ . Alors $\lim_{n\to\infty} \delta(u_n,l) = 0$. On veut montrer que $\lim_{n\to\infty} d(u_n,l) = 0$. $\delta(u_n,l) = \min(1,d(u_n,l))$. Si $\lim_{n\to\infty} \min(1,d(u_n,l)) = 0$, alors pour n assez grand, $\min(1,d(u_n,l)) < 1$, donc $\min(1,d(u_n,l)) = d(u_n,l)$. Alors pour n assez grand, $\delta(u_n,l) = d(u_n,l)$. Comme $\lim_{n\to\infty} \delta(u_n,l) = 0$, alors $\lim_{n\to\infty} d(u_n,l) = 0$. Donc (u_n) converge vers l pour d.
 - b) Les espaces (X, δ) et (X, d) ont-ils les mêmes ensembles ouverts ? Oui. Car la convergence des suites est la même, et les ouverts sont caractérisés par les suites. Alternativement, montrons que les boules ouvertes sont les mêmes "topologiquement". Soit $B_d(x, r) = \{y \in X : d(x, y) < r\}$ boule ouverte pour d. Soit $B_\delta(x, r) = \{y \in X : \delta(x, y) < r\}$ boule ouverte pour δ .
 - Montrons que $B_{\delta}(x,r)$ est ouvert pour d. Soit $B_{\delta}(x,r)$ une boule ouverte pour δ . Estce que $B_{\delta}(x,r)$ est ouvert pour d? Si r > 1, $B_{\delta}(x,r) = X$ qui est ouvert pour d. Si $r \le 1$, $B_{\delta}(x,r) = \{y \in X : \delta(x,y) < r\} = \{y \in X : \min(1,d(x,y)) < r\}$. Si $r \le 1$, $\min(1,d(x,y)) < r \iff d(x,y) < r$. Donc $B_{\delta}(x,r) = B_{d}(x,r)$ si $r \le 1$. Donc si $r \le 1$, $B_{\delta}(x,r) = B_{d}(x,r)$ est ouvert pour d. Donc $B_{\delta}(x,r)$ est toujours ouvert pour d.
 - Réciproquement, montrer que $B_d(x,r)$ est ouvert pour δ . Soit $B_d(x,r)$ une boule ouverte pour d. Est-ce que $B_d(x,r)$ est ouvert pour δ ? Soit $y \in B_d(x,r)$. Alors d(x,y) < r. On cherche $\epsilon > 0$ t.q. $B_{\delta}(y,\epsilon) \subset B_d(x,r)$. On prend $\epsilon = \min(1,r-d(x,y)) > 0$. Si $z \in B_{\delta}(y,\epsilon)$, alors $\delta(y,z) < \epsilon = \min(1,r-d(x,y)) \le r-d(x,y)$. $\delta(y,z) = \min(1,d(y,z)) < r-d(x,y)$. Donc d(y,z) < r-d(x,y). $d(x,z) \le d(x,y)+d(y,z) < d(x,y)+r-d(x,y)=r$. $d(x,z) < r \implies z \in B_d(x,r)$. Donc $B_{\delta}(y,\epsilon) \subset B_d(x,r)$. Donc $B_d(x,r)$ est ouvert pour δ .

Donc les ouverts sont les mêmes.

3. $\delta(x,y) = \min(1,d(x,y)) \leq d(x,y)$. Donc $\delta(x,y) \leq d(x,y)$. Existe-t-il C>0 t.q. $d(x,y) \leq C\delta(x,y)$? $d(x,y) \leq C\min(1,d(x,y))$. Si $d(x,y) \leq 1$, $\min(1,d(x,y)) = d(x,y)$. Alors $d(x,y) \leq Cd(x,y) \implies C \geq 1$. Si d(x,y) > 1, $\min(1,d(x,y)) = 1$. Alors $d(x,y) \leq C \cdot 1 = C$. Donc il faut $d(x,y) \leq C$ pour tout $x,y \in X$. Il existe C ssi d est bornée. Par exemple si X n'est pas borné pour d, non. Si $X = \mathbb{R}$ et d(x,y) = |x-y|. Non, il n'existe pas de constante C car d n'est pas bornée. Si X est borné pour d, oui. Si $\exists M>0$ t.q. $d(x,y) \leq M$ pour tout $x,y \in X$. On prend C=M. Si $d(x,y) \leq 1$, $d(x,y) \leq C\delta(x,y) = M\delta(x,y) = Md(x,y)$. Vrai. Si d(x,y) > 1, $d(x,y) \leq M\delta(x,y) = M \cdot 1 = M$. Il faut $d(x,y) \leq M$ qui est vrai. Donc existe C ssi d est bornée.

TD2 Topo 1 - Exercice 3 Énoncé:

Dire si les affirmations suivantes sont vraies ou fausses. Si vous pensez qu'une affirmation est juste, donnez en une démonstration. Si vous pensez qu'elle est fausse, donnez en un contre-exemple.

- 1. Si $(u_n) \subset \mathbb{R}^2$ est une suite non bornée, alors $||u_n|| \xrightarrow[n \to +\infty]{} +\infty$ quand $n \to +\infty$. FAUX.
- 2. Soit $(u_n) \subset \mathbb{R}^2$ avec $u_n = (x_n, y_n)$. Si $||u_n|| \xrightarrow[n \to +\infty]{} +\infty$ quand $n \to +\infty$, alors $|x_n| \xrightarrow[n \to +\infty]{} +\infty$ et $|y_n| \xrightarrow[n \to +\infty]{} +\infty$. FAUX.

- 3. Soit (E,d) un espace métrique. $A \subset E$. Si A n'est pas ouvert, alors A est fermé. FAUX.
- 4. Un ouvert non vide de \mathbb{R} contient forcément un intervalle fermé [a,b] avec a < b. VRAI.
- 5. Un ouvert non vide de R contient forcément une infinité dénombrable de points. VRAI.

- 2. Faux. Contre-exemple: $u_n = (n, (-1)^n n)$. $||u_n|| = \sqrt{n^2 + ((-1)^n n)^2} = \sqrt{2n^2} = \sqrt{2}n$ $\xrightarrow[n \to +\infty]{} +\infty$. Cependant $y_n = (-1)^n n$ ne tend pas vers $+\infty$ (en valeur absolue).
- 3. Faux. Contre-exemple: $E = \mathbb{R}$. A =]0,1]. A n'est pas ouvert (car $1 \in A$, $B(1,\epsilon) =]1 \epsilon$, $1 + \epsilon \not\subset A$). A n'est pas fermé car $\mathbb{R} \setminus A =]-\infty,0] \cup]1,+\infty[$ n'est pas ouvert (pb en 0). A =]0,1] n'est ni ouvert, ni fermé.
- 4. **Vrai**. Démonstration : Soit $U \subset \mathbb{R}$ un ouvert non vide. Alors $\exists x_0 \in U$. Comme U est ouvert, $\exists \epsilon > 0$ tel que $B(x_0, \epsilon) =]x_0 \epsilon, x_0 + \epsilon [\subset U]$. On prend $[a, b] = [x_0 \frac{\epsilon}{2}, x_0 + \frac{\epsilon}{2}]$. Alors $a = x_0 \frac{\epsilon}{2} < x_0 + \frac{\epsilon}{2} = b$ car $\epsilon > 0$. Et $[a, b] = [x_0 \frac{\epsilon}{2}, x_0 + \frac{\epsilon}{2}] \subset]x_0 \epsilon, x_0 + \epsilon [= B(x_0, \epsilon) \subset U]$. Donc $[a, b] \subset U$ et a < b.
- 5. Vrai. Démonstration : Soit $U \subset \mathbb{R}$ un ouvert non vide. D'après 4), U contient un intervalle fermé [a,b] avec a < b. $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$. Si a < b, [a,b] contient une infinité non dénombrable de points (autant que \mathbb{R}). Encore plus fort, montrons que [a,b] contient une infinité dénombrable de points. Par exemple, on prend les rationnels $\mathbb{Q} \cap [a,b]$. $\mathbb{Q} \cap [a,b]$ est dénombrable infini si a < b. Donc [a,b] contient une infinité dénombrable de points. Donc U contient une infinité dénombrable de points.

TD2 Topo 2 - Exercice 10

Soit (X, d) espace métrique. $A, B \subset X$. On rappelle $d(A, B) = \inf\{d(a, b) : a \in A, b \in B\}$. On dit que d(A, B) est atteint s'il existe $a_0 \in A, b_0 \in B$ tels que $d(A, B) = d(a_0, b_0)$. Déterminer si d(A, B) est atteint dans les cas suivants :

- 1. A et B sont fermés. FAUX.
- 2. A est fermé, B est compact. VRAI.
- 3. A et B sont compacts. VRAI.

Solution. 1. **Faux**. Contre-exemple: $A=\{(x,y)\in\mathbb{R}^2:y\geq\frac{1}{x},x>0\}$ et $B=\{(x,y)\in\mathbb{R}^2:y\leq 0,x>0\}$. A est fermé (graphe de $y=\frac{1}{x}$ est fermé, et $y\geq\frac{1}{x}$ est fermé). B est fermé (plan y=0 est fermé, et $y\leq 0$ est fermé). $A\cap B=\emptyset$. $d(A,B)=\inf\{d((x_1,y_1),(x_2,y_2)):(x_1,y_1)\in A,(x_2,y_2)\in B\}$. Pour x>0, on prend $a_x=(x,\frac{1}{x})\in A$ et $b_x=(x,0)\in B$. $d(a_x,b_x)=\sqrt{(x-x)^2+(\frac{1}{x}-0)^2}=\frac{1}{x}$. Quand $x\to+\infty,\frac{1}{x}\to 0$. Donc d(A,B)=0. Cependant d(A,B) n'est pas atteint. Il n'existe pas $a_0\in A,b_0\in B$ tels que $d(a_0,b_0)=0$. Si $d(a_0,b_0)=0$, alors $a_0=b_0$. Mais $A\cap B=\emptyset$. Donc $a_0\neq b_0$. Contradiction. Donc d(A,B) n'est pas atteint.

Figure 1: A et B fermés, d(A, B) = 0 non atteint

- 2. **Vrai.** Démonstration : A fermé, B compact. Soit $(a_n,b_n) \subset A \times B$ une suite minimisante de d(A,B). $d(a_n,b_n) \xrightarrow[n \to +\infty]{} d(A,B) = \inf\{d(a,b): a \in A, b \in B\}$. $(b_n) \subset B$ compact. On extrait une sous-suite $(b_{\phi(n)})$ qui converge vers $b_0 \in B$. $(d(a_{\phi(n)},b_{\phi(n)})) \xrightarrow[n \to +\infty]{} d(A,B)$. $d(a_{\phi(n)},b_{\phi(n)}) \le C$ bornée car converge. Donc $a_{\phi(n)}$ est bornée ? Non. Il faut montrer que $(a_{\phi(n)})$ est bornée. On fixe $b_0 \in B$. $d(a_{\phi(n)},b_{\phi(n)}) \ge d(a_{\phi(n)},B) \ge 0$. $d(a_{\phi(n)},b_{\phi(n)}) \xrightarrow[n \to +\infty]{} d(A,B) < +\infty$. $d(a_{\phi(n)},b_{\phi(n)}) \le M < +\infty$ bornée. $d(a_{\phi(n)},b_0) \le d(a_{\phi(n)},b_{\phi(n)}) + d(b_{\phi(n)},b_0) \le M + d(b_{\phi(n)},b_0)$. $d(b_{\phi(n)},b_0) \xrightarrow[n \to +\infty]{} 0$. Donc $d(a_{\phi(n)},b_0)$ est bornée. Donc $(a_{\phi(n)})$ est bornée (car distance à b_0 est bornée). $(a_{\phi(n)})$ bornée dans \mathbb{R}^2 . On peut extraire une sous-suite $(a_{\psi\circ\phi(n)})$ qui converge vers a_0 . Notons $a'_n = a_{\psi\circ\phi(n)}$ et $b'_n = b_{\psi\circ\phi(n)}$. (a'_n) converge vers a_0 . (b'_n) converge vers b_0 . $b'_n = b_{\psi\circ\phi(n)}$ est une sous-suite de $(b_{\phi(n)})$ qui converge vers b_0 . Donc $b'_n \xrightarrow[n \to +\infty]{} b_0$. $a'_n \xrightarrow[n \to +\infty]{} a_0$. $b'_n \subset B$, $b'_n = b_{\phi\circ\phi(n)}$ est continue. $d(a'_n,b'_n) = d(a_{\psi\circ\phi(n)},b_{\psi\circ\phi(n)}) \xrightarrow[n \to +\infty]{} d(A,B)$. Donc $d(a_0,b_0) = d(A,B)$. Donc d(A,B) est atteint en $(a_0,b_0) \in A \times B$.
- 3. Vrai. Démonstration : A et B compacts $\implies A$ fermé et B compact. D'après 2), d(A,B) est atteint.

TD2 Topo 2 - Exercice 11 Énoncé:

Soit $A, B, C \subset E$ des parties d'un espace métrique (E, d). Montrer que :

- 1. Montrer que si $C \subset B$ alors $d(A, C) \geq d(A, B)$.
- 2. On note par $Adh^d(A)$ l'adhérence de l'ensemble A. Montrer que

$$d(A, B) = d(Adh^{d}(A), B) = d(Adh^{d}(A), Adh^{d}(B)).$$

- **Solution.** 1. Montrer que si $C \subset B$ alors $d(A,C) \geq d(A,B)$. Par définition, $d(A,C) = \inf\{d(a,c) : a \in A, c \in C\}$ et $d(A,B) = \inf\{d(a,b) : a \in A, b \in B\}$. Comme $C \subset B$, si $c \in C$, alors $c \in B$. Donc $\{d(a,c) : a \in A, c \in C\} \subset \{d(a,b) : a \in A, b \in B\}$. L'inf sur un ensemble plus grand est plus petit. Donc $\inf\{d(a,c) : a \in A, c \in C\} \geq \inf\{d(a,b) : a \in A, b \in B\}$. Donc $d(A,C) \geq d(A,B)$.
 - 2. Montrer que $d(A,B) = d(\operatorname{Adh}^d(A),B) = d(\operatorname{Adh}^d(A),\operatorname{Adh}^d(B))$. On utilise 1) pour montrer les inégalités. $A \subset \operatorname{Adh}^d(A)$. D'après 1), $d(\operatorname{Adh}^d(A),B) \leq d(A,B)$. Il faut montrer l'inégalité inverse $d(\operatorname{Adh}^d(A),B) \geq d(A,B)$. Par définition, $d(\operatorname{Adh}^d(A),B) = \inf\{d(a',b): a' \in \operatorname{Adh}^d(A), b \in B\}$. Comme $A \subset \operatorname{Adh}^d(A), \{d(a,b): a \in A, b \in B\} \subset \{d(a',b): a' \in \operatorname{Adh}^d(A), b \in B\}$. Donc $\inf\{d(a,b): a \in A, b \in B\} \geq \inf\{d(a',b): a' \in \operatorname{Adh}^d(A), b \in B\}$. Donc $d(A,B) = d(\operatorname{Adh}^d(A), B)$.

Montrons que $d(\operatorname{Adh}^d(A), B) = d(\operatorname{Adh}^d(A), \operatorname{Adh}^d(B))$. $B \subset \operatorname{Adh}^d(B)$. D'après 1), $d(\operatorname{Adh}^d(A), \operatorname{Adh}^d(B)) \leq d(\operatorname{Adh}^d(A), B)$. Il faut montrer l'inégalité inverse $d(\operatorname{Adh}^d(A), \operatorname{Adh}^d(B)) \geq d(\operatorname{Adh}^d(A), B)$. $d(\operatorname{Adh}^d(A), \operatorname{Adh}^d(B)) = \inf\{d(a', b') : a' \in \operatorname{Adh}^d(A), b' \in \operatorname{Adh}^d(B)\}$. $d(\operatorname{Adh}^d(A), B) = \inf\{d(a', b) : a' \in \operatorname{Adh}^d(A), b \in B\}$. Comme $B \subset \operatorname{Adh}^d(B)$, $\{d(a', b) : a' \in \operatorname{Adh}^d(A), b \in B\} \subset \{d(a', b') : a' \in \operatorname{Adh}^d(A), b' \in \operatorname{Adh}^d(B)\}$. Donc $\inf\{d(a', b) : a' \in \operatorname{Adh}^d(A), b \in B\} \geq \inf\{d(a', b') : a' \in \operatorname{Adh}^d(A), b' \in \operatorname{Adh}^d(B)\}$. Donc $d(\operatorname{Adh}^d(A), B) \geq d(\operatorname{Adh}^d(A), \operatorname{Adh}^d(B))$.

Donc $d(A, B) = d(Adh^d(A), B) = d(Adh^d(A), Adh^d(B)).$