Student Information

Full Name : Zeynep Özalp Id Number : 2237691

Answer 1

1.1

Table 1: a) Tautology

						37		
p	\mathbf{q}	\mathbf{r}	\neg r	$\mathbf{p} o \mathbf{q}$	$\mathbf{p} \wedge \neg \mathbf{r}$	$(\mathbf{p} o \mathbf{q}) \leftrightarrow (\mathbf{p} \wedge eg \mathbf{r})$	$\neg (\mathbf{q} \wedge \mathbf{r})$	RESULT
T	Т	Т	F	Т	F	F	F	T
T	Γ	F	Τ	Т	T	${ m T}$	T	T
T	F	${ m T}$	F	F	F	${ m T}$	T	T
T	F	\mathbf{F}	Τ	F	T	${f F}$	${ m T}$	T
F	Γ	${ m T}$	F	Т	F	${f F}$	F	T
F	Γ	\mathbf{F}	Τ	Т	F	${f F}$	${ m T}$	T
F	F	${ m T}$	F	Т	F	${f F}$	${ m T}$	${ m T}$
F	F	F	Τ	Т	F	F	${ m T}$	T

RESULT: $((\mathbf{p} \to \mathbf{q}) \leftrightarrow (\mathbf{p} \land \neg \mathbf{r})) \to \neg (\mathbf{p} \land \mathbf{r})$

Table 2: b) Contradiction

\mathbf{p}	\mathbf{q}	¬ p	$\mathbf{p} \lor \mathbf{q}$	$\mathbf{p} o \mathbf{q}$	$\mathbf{(p\veeq)}\wedge\mathbf{(p\rightarrow q)}$	$\mathbf{q} \to \neg \; \mathbf{p}$	RESULT
T	T	F	Т	Т	T	${ m F}$	F
T	F	F	T	F	${ m F}$	${ m T}$	\mathbf{F}
F	$\mid T \mid$	Γ	Γ	Т	${ m T}$	${ m T}$	${f F}$
F	F	T	F	T	F	${ m T}$	${f F}$

RESULT: $\neg((p \lor q) \land (p \to q) \lor (q \to \neg p))$

1.2

a) This argument is **invalid**. Let $D = \{-1, 1\}$ be a domain for P(x) and Q(x). Suppose P(x): x < 0 and Q(x): x > 0. Note that P(x) is true for x = -1 and Q(x) is true for x = 1 in domain D. So, there exists at least one x which P(x) is true and there exists at least some other x which Q(x) is true. Note that first and second quantifiers' scopes are different on the left hand side so that one can choose different x values. Thus, the argument $\exists x P(x) \land \exists x Q(x)$ is valid for different choices of x. However, since on the right hand side, one quantifier's scope is $P(x) \land P(x) \land P(x)$, one can choose only one x for both P(x) and P(x). Therefore, the argument $P(x) \land P(x) \land P(x)$ is invalid for x = -1 and x = 1. In conclusion, the argument $P(x) \land P(x) \land P(x) \land P(x)$ is invalid.

b) This argument is **valid**. This argument is invalid if one can prove that the left hand side is true but the right hand side is false. Choose some arbitrary constant c in the domain of P(x) and suppose the left hand side is true. This means for all choices of x, P(x) is true; moreover, P(c) is true. So, there exist at least one x that P(x) is true. Thus, the argument $\exists x P(x)$ is true. Hence, if the left hand side is true, the right hand side must be true and the argument $\forall x P(x) \to \exists x P(x)$ is valid.

Answer 2

1.	$(\neg p \lor p) \to ((p \land \neg q) \to r)$	Premise
2.	$T \to ((p \land \neg q) \to r)$	Negation Law
3.	$\neg T \lor ((p \land \neg q) \to r)$	Table 7/Line 1
4.	$F \lor ((p \land \neg q) \to r)$	Negation
5.	$(p \land \neg q) \to r$	Identity Law
6.	$\neg (p \land \neg q) \lor r$	Table 7/Line 1
7.	$(\neg p \lor q) \lor r$	De Morgan's Law
8.	$\neg p \lor q \lor r$	Associative Law
9.	$q \lor r \lor \neg p$	Commutative Law
10.	$(q \lor r) \lor \neg p$	Associative Law

Answer 3

```
 \begin{array}{l} 1. \ \forall x(W(x) \rightarrow Has\_CS\_Degree(x)) \\ 2. \ \forall x\forall y((Phd(x) \land Phd(y) \land W(x) \land W(y) \land (x \neq y)) \rightarrow Knows(x,y)) \\ 3. \ \forall x((W(x) \land (x \neq Cenk)) \rightarrow Older(Cenk,x)) \\ 4. \ \forall x((W(x) \land (x \neq Selen)) \rightarrow Phd(x)) \\ 5. \ \neg(\forall x\forall y((W(x) \land W(y) \land (x \neq y)) \rightarrow Knows(x,y))) \\ 6. \ (\exists xPhd(x) \land \exists yPhd(y) \land (x \neq y)) \rightarrow \forall z((z \neq x) \land (z \neq y) \rightarrow \neg Phd(z)) \\ 7. \ (\exists x\exists y\exists z((x \neq y \neq z \neq Gizem) \land Older(x,Gizem) \land Older(y,Gizem) \land Older(z,Gizem))) \\ 8. \ \exists x(Phd(x) \land W(x)) \rightarrow (\forall y((y \neq x) \rightarrow \neg (Phd(y) \land W(y)))) \end{array}
```

Answer 4

1.	$(p \to r) \lor (q \to r)$	premise
2.	$p \to r$	assumed
3.	$p \wedge q$	assumed
4.	p	$\wedge e, 3$
5.	r	$\rightarrow e, 2, 4$
6.	$(p \land q) \to r$	$\rightarrow i, 3-5$

7.	$q \rightarrow r$	assumed
8.	$p \wedge q$	assumed
9.	q	$\wedge e, 8$
10.	r	$\rightarrow e, 7, 9$
11.	$(p \land q) \to r$	$\rightarrow i, 8-10$
12.	$(p \land q) \rightarrow r$	$\forall e, 1, 2-6, 7-11$

Answer 5

1.	$(\neg p \vee \neg q)$	premise
2.	$p \wedge q$	assumed
3.	p	$\wedge e, 2$
4.	q	$\wedge e, 2$
5.	$\neg p$	assumed
6.	上	$\neg e, 5, 3$
7.	r	$lemma$ " $\bot \vdash X$ "
8.	$\neg q$	assumed
9.	上	$\neg e, 8, 4$
10.	$\mid r$	$lemma$ " $\bot \vdash X$ "
11.	r	$\forall e, 1, 5 - 7, 8 - 10$
12.	$(p \land q) \to r$	$\rightarrow i, 2-11$

Proof for lemma " $\bot \vdash X$ ":

1.
$$\perp$$
 premise
2. $\neg A$ assumed
3. \perp $copy1$
4. $\neg \neg A$ $\neg i, 2-3$
5. A $\neg \neg e, 4$

Answer 6

1.	$\forall x (P(x) \to (Q(x) \to R(x)))$	premise
2.	$\exists x P(x)$	premise
3.	$\forall x(\neg R(x))$	premise
4.	P(c)	assumed
5.	$(P(c) \to (Q(c) \to R(c)))$	$\forall e, 1$
6.	$Q(c) \to R(c)$	$\rightarrow e, 5, 4$
7.	$\neg R(c)$	$\forall e, 3$
8.	Q(c)	assumed
9.	R(c)	$\rightarrow e, 6, 8$
10.	1	$\neg e, 9, 7$
11.	$\neg Q(c)$	$\neg i, 8 - 10$
12.	$\exists x (\neg Q(x))$	$\exists i, 11$
13.	$\exists x(\neg Q(x))$	$\exists e, 2, 4-12$