Clustering Project using HCV dataset

Dataset: https://archive.ics.uci.edu/ml/datasets/HCV+data

Source: UC Irvine Machine Learning Repository

Main objective of the analysis:

The model we build will be focused on **clustering** the dataset, where we try to **find groups or clusters within the dataset**, which helps us to identify inherent patterns, to check any **possible correlation** between different **attributes**, and if at all, any **grouping** can be made among related factors.

Brief description of the data set

Dataset: https://archive.ics.uci.edu/ml/datasets/HCV+data

Problem Type: Clustering

The data set contains laboratory values of blood donors and Hepatitis C patients and demographic values like age.

No target variable(label) is relevant here, as it is UNSUPERVISED LEARNING(Clustering)

Features:

```
['Unnamed: 0', 'Category', 'Age', 'Sex',
```

'ALB',
'ALP',
'AST',
'BIL',
'CHE',
'CHOL',
'CREA',
'GGT',
'PROT']

The data has 615 **rows** and 14 **columns**.

Brief summary of data exploration

Most of the columns are of type = 'float64'

data.dtypes

Unnamed: 0 int64 Category object Age int64 Sex object float64 ALB ALP float64 ALT float64 AST float64 BIL float64 float64 CHE CHOL float64 CREA float64 GGT float64 PROT float64

1. There are **missing values** in the dataset.

The graph is a result of code:

msno.bar(data)

<AxesSubplot:>

The missing values(NaN) are dropped and checked for any NaN values in the dataset.

data.dropna(inplace=True)
data.isna().any()

Unnamed: 0 False Category False Age False Sex False ALB False ALP False ALT False AST False BIL False CHE False CHOL False CREA False GGT False PROT False

dtype: bool

2. We check for the **unique values and their counts** for the **object data types** in columns 'Sex' and "Category" that tell us about 5 types of blood donors and two types of genders, male and female present amongst the donors.

data.Category.value_counts()

0=Blood Donor 526
3=Cirrhosis 24
1=Hepatitis 20
2=Fibrosis 12
0s=suspect Blood Donor 7
Name: Category, dtype: int64

data.Sex.value_counts().sort_index()

f 226 m 363

Name: Sex, dtype: int64

- 3. I have found **correlations** between numerical data columns, i.e, all columns barring 'Category' and "sex" and found the columns that have maximum correlation amongst each other.
- 4. **Skewness** is found out and all the columns with skewness > 0.75 are listed.

CREA 14.955189
BIL 8.089304
ALT 6.815926
GGT 5.936910
AST 5.246583
ALP 4.756845
dtype: float64

5. **Scaling** is done using StandardScaler from sklearn.preprocessing.

Variations of Unsupervised Learning models:

4 variations of the unsupervised model.

For my training of the unsupervised model, I have used 2 different clustering techniques, KMeans and AgglomerativeClustering, both imported from sklearn.cluster

However, for **each** one of them, I have **changed hyperparameters 2 times, in essence using 4** variations of the unsupervised model.

- 1. km = KMeans(n_clusters=5, random_state=42)
- 2. km = KMeans(n_clusters=8, random_state=42)
- 3. ag = AgglomerativeClustering(n_clusters=5, linkage='ward', compute_full_tree=True)
- 4. ag = AgglomerativeClustering(n_clusters=8, linkage='single', compute_full_tree=True)

A paragraph explaining the model that best suits the main objective(s) of this analysis:

I consider model 1:

```
km = KMeans(n clusters=5, random state=42)
```

as a final model that best fits the needs in terms of my dataset, as the "Category" column has 5 different values and I have chosen to make 5 different clusters, which seems to be pretty reasonable.

K-Means clustering is the most widely used model for clustering for general datasets and so for common usage, it comes in pretty handy, so I recommend this KMeans model.

KMeans Clustering model is pretty good when dealing with datasets without outliers and do not tend to overfit. Hence, I decided to go for this model.

As there is no right or wrong answer in Clustering, any fit is a good fit, as long as it serves to form different clusters, as every new cluster reveals new information and follows new patterns of grouping together similar data.

Summary Key Findings and Insights

I have copied here the data frames that are results of a comparative study of different models, put together side by side. It may be noted that although **cluster assignment is arbitrary**, the respective primary cluster numbers for the different categories in "Category" may not be identical to each other, and also may not be the same for both K-means and agglomerative clustering. Though the cluster numbers are not identical, the **clusters are very consistent within a single 'Category" type**.

```
(data[['Category','agglom_W','kmeans_5']]
.groupby(['Category','agglom_W'])
.size()
.to_frame()
.rename(columns={0:'number'}))
```

	number	
Category	agglom_ W	
0=Blood Donor	0	6
	1	24 0
0s=suspect Blood Donor	2	28 0
	0	4
	2	1
	4	2

```
1=Hepatitis
                           0 4
                           1 11
                           2 3
                           4 2
           2=Fibrosis
                           1 8
          3=Cirrhosis
                           0 16
                           1 1
                           3 3
                           4 4
                                                                       In [140]:
(data[['Category','agglom_W','kmeans_8']]
.groupby(['Category','agglom_W'])
.size()
.to_frame()
.rename(columns={0:'number'}))
                                                                       Out[140]:
                                   n
                                   u
                                   m
                                   b
                                   е
                         agglom_W
            Category
       0=Blood Donor
                                0 6
                                   2
                                  4
                                   0
```

```
2
                                2 8
     0s=suspect Blood
                                0 4
              Donor
                                2 1
                                4 2
          1=Hepatitis
                                0 4
                                2 3
                                4 2
           2=Fibrosis
                                0 4
                                1 8
          3=Cirrhosis
                                0 1
                                   6
                                1 1
                                3 3
                                4 4
                                                                       In [141]:
(data[['Category', 'agglom_s', 'kmeans_2']]
.groupby(['Category','agglom_s'])
.size()
.to_frame()
.rename(columns={0:'number'}))
                                                                       Out[141]:
```

numbe

```
Category
       0=Blood Donor
                           0 526
                           0 4
     0s=suspect Blood
              Donor
                           2 1
                           5 1
                           6 1
          1=Hepatitis
                           0 20
           2=Fibrosis
                           0 12
          3=Cirrhosis
                           0 17
                           1 3
                           3 2
                           7 1
                                                                         In [142]:
(data[['Category', 'agglom_s', 'kmeans_8']]
.groupby(['Category','agglom_s'])
.size()
.to frame()
.rename(columns={0:'number'}))
                                                                         Out[142]:
                               numbe
                      agglom_
            Category
       0=Blood Donor
                           0 526
```

agglom_

```
0s=suspect Blood
                       0 4
         Donor
                       2 1
                       5 1
                       6 1
     1=Hepatitis
                       0 20
      2=Fibrosis
                       0 12
     3=Cirrhosis
                       0 17
                       1 3
                       3 2
                       7 1
                                                                           In [ ]:
                                                                           In [ ]:
```

Suggestions for next steps in analyzing this data

Given the **versatile nature of clustering**, there is a great room for improvement in the next iteration of this study/analysis of the HCV+data. Other clustering algorithms like **Mean Shift** or **DBSCAN** might also be used to study this dataset.

Furthermore, we can alter the **hyperparameters** like number of clusters and type of linkage can be changed for Agglomerative Clustering and KMeans Clustering, as the case maybe.