REZA KALANTAR, Ph.D.

San José, CA | (650) 400-9102 | rekalantar@gmail.com | U.S. Green Card holder (NIW) linkedin.com/in/reza-kalantar | https://rekalantar.github.io | medium.com/@rekalantar

Summary

Research Scientist with 6+ years of experience advancing foundational AI via deep learning, generative modeling, and large-scale experimentation across vision and multimodal systems. Ph.D. in AI with a proven track record of incubating novel architectures, scaling models across distributed systems, and translating exploratory research into high-impact applications. Skilled in building vision and multimodal models, with a deep interest in optimization techniques, generalist AI, and AGI-aligned research. Passionate about pushing the frontiers of AI and collaborating across disciplines to drive innovation at scale.

Skills

- Languages & Tools: Python, C++, Shell, Git, Docker, Bash, MATLAB, Swift
- Deep Learning Frameworks: PyTorch, Hugging Face Transformers, TensorFlow, OpenCV, Deepspeed
- Foundation Models: Vision Transformers (ViTs, Swin, TransMorph), Diffusion Models, Autoencoders, GANs, VAEs, Attention Mechanisms, Contrastive & Self-Supervised Learning (SimCLR, BYOL)
- Distributed and Scalable Systems: Multi-GPU training (PyTorch DDP, Deepspeed), Model parallelism, Azure, DVC
- Data Engineering & Ops: Scalable data pipelines for ingestion, preprocessing, and augmentation of large datasets
- **Research & Applications:** Foundation models, generalist model development, optimization techniques, inverse problems, multimodal learning, incubation of real-world AI applications

Experience

MVision AILondon, United KingdomMachine Learning ResearcherDec 2023 - Present

- Incubated foundation models (Swin, TransMorph) for unsupervised registration, boosting alignment accuracy across multimodal datasets.
- Developed and integrated transformer models for unsupervised and adaptive learning, achieving >90% accuracy.
- Created adaptive vision transformers for robust generalization across diverse complex domains.
- Delivered 10x workflow speedup through cloud deployment (Docker, Azure) and GPU acceleration.
- Collaborated cross-functionally to meet clinical and operational performance goals.

Key Project: Foundation Pipeline Incubation for Real-Time Multimodal AI Registration

- Researched and prototyped foundational vision models for real-time cancer treatment planning.
- Built modular AI pipelines for scalable segmentation and alignment on large datasets.

The Institute of Cancer Research

Machine Learning Scientist

London, United Kingdom Oct 2019 – Apr 2023

- Developed a foundational multimodal pipeline using GANs, diffusion models, and transformers for pelvic cancers.
- Achieved 90–99% clinical acceptance on synthesis-guided and adapted segmentations with real-world data.
- Led 7+ peer-reviewed publications; presented at conferences such as ASTRO, MedAI, MIDL, and ISMRM.
- Designed synthetic data strategies to enhance segmentation adaptation and generalization.

Key Project: Multimodal Foundation Pipeline for Synthesis-Segmentation

- Deployed vision transformers and generative models to improve segmentation in data-scarce domains.
- Benchmarked model performance on multimodal datasets, achieving >90% clinical acceptance.

Selected Projects

- Multitask AI pipeline for innovative cancer treatment planning: Developed novel clinical product for registration.
- Segment Anything Model (SAM) for lung segmentation: Adapted and incubated foundation models for medical use.
- COVID-19 AI Detector & iOS App: Large scale transfer learning and AI development from idea to endpoint.

Education

The Institute of Cancer Research, London, United Kingdom

Ph.D. in Deep Learning in Cancer Imaging

Imperial College London, United Kingdom

MRes in Medical Robotics & Image-Guided Interventions – GPA: 4.0

Sep 2018 – Sep 2019

Awards and Scholarships

• Prestigious Ph.D. studentship (~£140,000) from the Institute of Cancer Research

• £12,000 postgraduate scholarship from Imperial College London

Oct 2019

Sep 2018