Physical Layer I

Lecture #7
Prof. Raj Rajkumar

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

Outline of Previous Lecture

- Basic Terms and Building Blocks
- Sensor Taxonomy
- Some Sensor Principles and Types
- Some Actuator Types

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Administrivia

- Quiz #1 next Wednesday?
- · All materials through Monday's lecture

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

Readings

Required Reading

On Piazza

- "Physical Layer"
- Regulatory Considerations: An Easy Read
- Optional Readings
 - "The Physical Layer"

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Outline of Today's Lecture

- Communication Schemes
 - Propagation Modes
 - Fading
 - Encoding Schemes
 - Spread Spectrum

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

Communication Schemes

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Topics

- OSI Physical Layer
- Frequency
- Propagation Modes
- Encoding Techniques
- Spread Spectrum
- References
 - [1] W. Stallings, *Wireless Communications & Networks*, 2nd Ed, Prentice Hall, 2005
 - [2] Holger Karl, Andreas Willig, *Protocols and Architectures for Wireless Sensor Network*, Wiley, 2005
 - [3] Simon Haykin, Communications Systems, 4ed ,Wiley 2000

18-748: Wireless Sensor Networks

Carnegie Mellon

OSI Physical Layer

- Concerned with the transmission of unstructured bit streams over the physical medium
- Deals with accessing the physical medium
 - Mechanical characteristics
 - Electrical characteristics
 - Functional characteristics
 - Procedural characteristics

Is the WSN Physical Layer compatible with the OSI Physical Layer?

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Propagation Modes

- Ground-wave propagation
- · Sky-wave propagation
- · Line-of-sight propagation

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Ground Wave Propagation

- · Follows the contour of the earth
- Can propagate considerable distances
- Frequencies up to 2 MHz
- Example
 - AM radio

Sky Wave Propagation

- Signal reflected from the ionized layer of atmosphere back down to earth
- Signal can travel a number of hops, back and forth between ionosphere and earth's surface
- Reflection effect caused by refraction
- Examples
 - Amateur radio
 - CB radio

Electrical & Computer ENGINEERING

Line-of-Sight Propagation

- Transmitting and receiving antennas must be within line of sight
 - Satellite communication signal above 30 MHz not reflected by ionosphere
 - Ground communication antennas within effective line of sight due to refraction
- Refraction bending of microwaves by the atmosphere
 - Velocity of electromagnetic wave is a function of the density of the medium
 - When wave changes medium, speed changes
 - Wave bends at the boundary between two media

Line-of-Sight Impairments

- Impairments
 - Attenuation
 - Free space loss
 - Noise
 - Atmospheric absorption
 - Fading
 - · Large-scale fading: Multi-path
 - · Small-scale fading
 - Refraction

18-748: Wireless Sensor Networks

Free Space Loss

$$\frac{P_t}{P_r} = \frac{(4\pi d)^2}{\lambda^2}$$

where,

- P_t = signal power at transmitting antenna
- P_r = signal power at receiving antenna
- λ = carrier wavelength
- *d* = propagation distance between antennas

Thus, as the wavelength goes up, the signal loss is reduced and as the distance goes up, the signal loss is increased.

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

Noise Sources

- Thermal Noise
 - Noise seen in switching circuits due to electrons
 - Function of temperature

$$N = kTB$$

- N: Noise, k: Boltzmann constant, T: Temperature, B: Bandwidth
- · Inter-modulation noise
 - Noise caused by signals at different frequencies on the same medium
- Crosstalk
 - Coupling between signal paths
- Impulse Noise
 - Power spike (e.g. from thunder)

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Large-Scale Fading: Multi-path (1 of 4)

- Multi-path: obstacles reflect signals so that multiple copies with varying delays are received
 - Reflection occurs when signal encounters a surface that is large relative to the wavelength of the signal
 - Diffraction occurs at the edge of an impenetrable body that is large compared to the wavelength of radio wave
 - Scattering occurs when incoming signal hits an object whose size in the order of the wavelength of the signal or less

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Large-Scale Fading: Multi-path (3 of 4)

Andersen, JB, T.S. Rappaport and S. Yeshiva, "Propagation Measurements and Models for Wireless Communications Channels", *IEEE Communications Magazine*, 1995, pp. 42-49.

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

Large-Scale Fading: Multi-path (4 of 4)

- · Effects of Multi-path
 - Multiple copies of a signal may arrive at different phases
 - If phases add destructively, the signal level relative to noise declines, making signal detection more difficult
 - Inter-symbol interference (ISI)
 - One or more delayed copies of a pulse may arrive at the same time as the primary pulse for a subsequent bit

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Small-Scale Fading

- Distortion of Signal
 - Time-spreading of the underlying digital pulses in signal
- Motion
 - Time-variant behavior of the channel due to motion

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Encoding Techniques (2 of 2)

- Digital data → digital signal
 - e.g. Moving logic (digital data) between ICs on LVTTL level (digital signal)
- Analog data → digital signal
 - e.g. Voice (analog data) converted by ADC to TTL level (digital signal)
- Digital data → analog signal
 - e.g. ASCII files (digital data) on LAN cables (analog signal)
- Analog data → analog signal
 - e.g. Music (analog data) over AM Radio (analog signal)

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

Digital Data to Analog Signal (1 of 2)

- ASK: Amplitude Shift Key
 - Amplitude difference of carrier freque
- FSK: Frequency Shift Key
 - Frequency difference around carrier (a) ASK
- PSK: Phase Shift Key
 - Phase change on carrier frequency (b) BFSK

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Digital Data to Analog Signal (2 of 2)

- QPSK: Quadrature PSK
- QAM: ASK + PSK

Spread Spectrum

- Concept
 - Effect of increasing bandwidth of signal to be transmitted by modulating the signal with a sequence of digits
 - Spreading code or spreading sequence
 - Generated by pseudo-noise, or pseudo-random number generator
- Benefits
 - Immunity from various kinds of noise and multi-path distortion
 - Used for hiding and encrypting signals
 - Several users can independently use the same higher bandwidth with very little interference
- Types
 - Direct Sequence Spread Spectrum (DSSS)
 - Frequency Hopping Spread Spectrum (FHSS)

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Physical Layer for Wireless Communications

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

Topics

- Physical Layers for various Wireless Applications
- Examples of Wireless Sensor Networks
 - PicoRadio
 - WINS
 - µAMPS
- · Constraints on Wireless Sensor Networks
 - Cost
 - Power

References

- [1] Thomas H. Lee, *The Design of CMOS Radio-Frequency Integrated Circuits*, Cambridge, 2004
- [2] Holger Karl, Andreas Willig, Protocols and Architectures for Wireless Sensor Network, Wiley, 2005
- [3] Edgar H. Callaway, Wireless Sensor Networks: Architectures and Protocols, Auerbach, 2003

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Physical Layer for Various Wireless Applications (1 of 3)

Parameter	CDMA	802.11.b	802.11.a	Bluetooth	IEEE 802.15.4	
	1900MHz					
Frequency range	1850-1990 MHz	2400-2483.5 MHz	5150-5350MHz 5725-5825MHz	2402-2480 MHz	2402- 2480 MHz	902-928 MHz
Channel spacing	1250kHz	FHSS: 1MHz DSSS: 25MHz	OFDM: 20MHz	1MHz	5MHz	5MHz
Number of channels	48	3 non- overlapping	12 non- overlapping	79	16	10
Multiple access method	CDMA/FDM	CSMDA/CA	CSMA/CA	Frequency hop	CSMA/CA	CSMA/CS
Duplex method	FDD	TDD	TDD	TDD	FDD	FDD
Modulation	QPSK/OQPSK	FHSS:GFSK	OFDM:64 QAM	GFSK	OQPSK	OQPSK
Bit or symbol rate	1.2288Mb/s	1,2, or 11Mbps	5.5-54Mb/s	1MS/s	250kb/s	250kb/s
Applications	Mobile phones	WiFi	WiFi	Power on wireless	Home automation	

From Thomas H. Lee, *The Design of CMOS Radio-Frequency Integrated Circuits*, Cambridge, 2004

Electrical & Computer ENGINEERING 18-748: Wireless Sensor Networks

Carnegie Mellon

Physical Layer for Various Wireless Applications (2 of 3)

- Ultra-Wideband (UWB)
 - How: Use impulse-like spark transmissions.
 - Small spike in time domain → Large spectrum in frequency domain
 - Common Definition
 - If transmitted signal's fractional bandwidth > 25%
 - Total BW > 1.5GHz

Fractional bandwidth = the bandwidth of a device divided by its center frequency.
a device that has a bandwidth of 1 MHz with center frequency 10 MHz has a fractional bandwidth of 1/10, or 10%.

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Physical Layer for Various Wireless Applications (3 of 3)

- UWB Advantages
 - Low power consumption
 - Low cost: Nearly "all digital" with minimal RF electronics
 - A low probability of signature detection (noise-like)
- UWB Applications
 - Wireless USB
 - ...

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Examples of Wireless Sensor Networks

Name	From	Focus		
PicoRadio	UC Berkeley	Power: Wakeup radios Cost: Use easier integration at the cost of bandwidth http://bwrc.eecs.berkeley.edu/research/Pico_Radio/Publications.htm		
WINS	UCLA	Cost: Low-cost fabrication with CMOS circuit technology Power: Low power http://www.janet.ucla.edu/WINS/		
μAMPS	MIT	Power: Multi-level signaling to minimize network time http://mtlweb.mit.edu/researchgroups/icsystems/uamps/		

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

Constraints of Physical Layer in WSN

- Cost
 - Digital Circuits or Analog Circuits?
 - · Digital circuits get cheaper with technology advance
 - Analog circuits are harder to develop with reducing feature size
 - It turns out more chip area and power is devoted to the analog circuits!
 - → All digital-circuit approach is becoming the preferred method

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Constraints of Physical Layer in WSN

- · Power supply & Power consumption
 - Power supply is hard to increase
 - · Battery development cycle
 - Power consumption can be reduced by
 - · Pulsating power
 - Charge recovery by small amounts of power consumption.
 - · Choosing the right communication frequency
 - · Choosing the distance between WSN Nodes
 - · Choosing the Modulation/Demodulation method

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Carnegie Mellon

Modulation/Demodulation

- For high data rates at low symbol rates
 - m-ary modulation
 - m-ary PSK or m-ary FSK
 - Tradeoffs
 - · More complex digital and analog circuitry
 - Requires a higher E_{ν}/N_{o} ratio
 - m-ary modulation only efficient when startup time is small

m		2	4	8	16	32	64
<i>m</i> -ary PSK Bandwidth efficiency		0.5	1.0	1.5	2.0	2.5	3.0
	E_b/N_o	10.5	10.5	14.0	18.5	23.4	28.5
<i>m</i> -ary FSK	Bandwidth efficiency	0.40	0.57	0.55	0.42	0.29	0.18
	E_b/N_o	13.5	10.8	9.3	8.2	7.5	6.9

Bandwidth efficiency is the <u>information rate</u> that can be transmitted over a given <u>bandwidth</u> in a specific communication system (often measured in bits/Hz).

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks

Summary of Today's Lecture

- Communication Schemes
 - Propagation Modes
 - Fading
 - Encoding Schemes
 - Spread Spectrum

Electrical & Computer ENGINEERING

18-748: Wireless Sensor Networks