# Ústav fyzikální elektroniky PřF MU

# FYZIKÁLNÍ PRAKTIKUM

## Fyzikální praktikum 2

**Zpracoval:** Artem Gorodilov Naměřeno: 21. prosince 2023

**Obor:** Astrofyzika **Skupina:** Čt 8:00 **Testováno:** 

# Úloha č. 2: Charakteristiky tranzistoru

 $T = 21.6 \, {}^{\circ}\text{C}$ 

p = 981 hPa

 $\varphi = 49 \%$ 

## 1. Zadání

Určit charakteristiku tranzistoru. Použít tranzistor jako napěťový zesilovač.

#### 2. Teorie

### 2.1. Charakteristiky tranzistoru

Tranzistor představuje nelineární rezistivní komponentu, což implikuje, že nepodléhá ohmovu zákonu. Jeho výstupní vlastnosti jsou závislé na napětí přes hradlo. Dále je charakteristické pro tranzistory, že mohou fungovat jako zesilovače proudu nebo napětí v určitých elektrických V tomto příkladu se zaměříme na unipolární tranzistor, což značí, že pro vodivost jsou zodpovědné buď elektrony nebo díry. Tyto nábojové nosiče se vyskytují v oblasti nazývané kanál, který je vybaven dvěma elektrickými kontakty, označenými jako source S a drain D. Proud procházející kanálem je ovlivněn napětím mezi source S a izolovanou elektrodou (p-n)přechod nebo oxidová vrstva), která se nazývá gate G.

Při využití tranzistoru jako zesilovače se zaměřím na specifický pracovní bod tranzistoru, určený konstantním napětím na drainu a hradle. Tento bod je lokalizován v místě, kde se protínají křivky převodní a výstupní charakteristiky pro zvolené hodnoty napětí.

S nastaveným pracovním bodem je možné definovat klíčové parametry tranzistoru v tomto bodě,

jako jsou strmost S, vnitřní odpor  $R_i$  a zesilovací faktor  $\mu$ , které jsou určeny specifickými vztahy:

$$S = \left. \frac{\partial I_D}{\partial U_G} \right|_{U_D = const} \tag{1}$$

kde  $\mathcal{I}_D$ je proud na drainu a $\mathcal{U}_G$ je napětí na gate.

$$R_i = \left. \frac{\partial U_D}{\partial I_D} \right|_{U_G = const} \tag{2}$$

kde  $U_D$  je napětí na drainu.

$$\mu = \left. \frac{\partial U_D}{\partial U_G} \right|_{I_D = const} \tag{3}$$

Strmost S, anebo  $R_i$ , je možné vypočítat jako směrnici tečny k převodní nebo výstupní charakteristice tranzistoru v zvoleném pracovním bodě. Zesilovací činitel  $\mu$  pak lze určit pomocí Barkhausenovy rovnice.

$$SR_i \frac{1}{\mu} = 1 \longrightarrow \mu = SR_i$$
 (4)

Při měřeních bylo použito následující schéma:



Figure (1) Schéma zapojení pro měření charakteristik tranzistoru.

#### 2.2. Tranzistor jako zesilovač napětí

Chcete-li tranzistor použít jako zesilovač, musí být zapojen podle obrázku (2).



Figure (2) Schéma zapojení pro použití tranzistoru jako zesilovače napětí.

Toto zapojení lze chápat jako napěťový dělič, kde součet napětí na tranzistoru  $U_D$  a na zátěžovém odporu  $R_Z$  odpovídá napětí E. Zvýšení napětí na G sníží odpor tranzistoru, což vede k poklesu napětí na D a následně k zvýšení napěťového úbytku na zátěžovém odporu. Změna napětí na Dje mnohonásobně větší než změna na G, což vede k napěťovému zesílení.

Zesílení tranzistorového zesilovače  $A_V$  je definováno určitým vztahem:

$$A_V = \frac{SR_Z}{1 + \frac{R_Z}{R_i}} \tag{5}$$

Zatěžovací odpor  $R_Z$  tim padem se spočítá jako:

$$R_Z = \frac{E - U_{D0}}{I_{D0}} \tag{6}$$

kde E je napětí na zdroji,  $U_{D0}$  je napětí na drainu a  $I_{D0}$  je proud na drainu v pracovním bodě. Zesílení  $A_G$  lze dále definovat graficky. Tento způsob je naznačen na obrázku (3) a je znázorněn následujícím vzorcem:

$$A_{G} = \frac{\Delta U_{D}}{\Delta U_{G}}$$
 (7)
$$A_{G} = 3.7 \text{ V}$$

$$A_{G} = 3.6 \text{ V}$$

$$A_{G} = 3.6 \text{ V}$$

$$A_{G} = 3.5 \text{ V}$$

$$A_{G} = 3.4 \text{ V}$$

$$A_{G} = 3.3 \text{ V}$$

$$A_{G} = 3.4 \text{ V}$$

$$A_{G} = 3$$

Figure (3) Výstupní charakteristika tranzistoru. Zesílení  $A_G$  je definováno jako poměr změny napětí na D a G.

Pro určení zesílení  $A_M$  použiji dvoukanálový osciloskop, kterým změřím dvojnásobek amplitudy vstupního napětí  $u_{m1}$  a amplitudu výstupního napětí  $u_{m2}$ . Zesílení následně vypočítám jako poměr výstupní amplitudy napětí ku vstupní amplitudě:

 $A_M = \frac{u_{m2}}{u_{m1}}$ (8)

#### 3. Měření

#### 3.1. Charakteristiky tranzistoru

Na začátku jsme nastavili napětí na drainu na hodnotu  $U_D = 10$  [V], poté jsme změřili napětí na gejtu  $U_G$  a proud na drainu  $I_D$ , z čehož jsme vynesli převodní charakteristiku, která je vidět v grafu (4).



Figure (4) Převodní charakteristika tranzistoru.

Poté jsme nastavili napětí na gejtu  $U_G = 3.4 \text{ [V]},$ načež jsme změřili napětí na dreinu  $U_D$  a sílu proudu na dreinu  $I_D$ , z čehož jsme vynesli výstupní charakteristiku, která je vidět v grafu (5).



Figure (5) Výstupní charakteristika tranzistoru.

Poté jsme změřili převodní charakteristiku pomocí počítače, hodnota  $U_D$  zůstala 10 V. Pomocí počítače jsme změřili také výstupní charakteristiku, v tomto případě jsme nastavili hodnoty  $U_G$  resp: 3.3 V, 3.4 V a 3.5 V. Výsledky jsou znázorněny v grafu (6).

(7)



Figure (6) Převodní (zleva) a výstupní (zprava) charakteristika tranzistoru.

Dále jsme definovali pracovní bod  $P(U_{D0} = 10 \text{ V}, U_{G0} = 3.4 \text{ V}, I_{D0} = 6.639 \text{ mA})$ . Odtud najdeme Strmost S a vnitřní odpor  $R_i$  podle fomulí (1) a (2), přičemž najdeme derivaci v pracovním bodě P pro převodní charakteristiku. Za tímto účelem byla funkce převodní charakteristiky interpolována a extrapolována pomocí knihovny scipy interp1d.

$$S = 24(3) [m\Omega^{-1}]$$
  $R_i = 76.5(2) [k\Omega]$ 

Zesílení  $\mu$  jsme určili pomocí Barkhausenovy rovnice (4):

$$\mu = 1.8(3) \cdot 10^3$$

#### 3.2. Tranzistor jako zesilovač napětí

Při použití tranzistoru jako napěťového zesilovače jsme při znalosti hodnot  $U_{D0}$ ,  $U_{G0}$  a  $I_{D0}$  v našem pracovním bodě P a při znalosti napětí E=20 V zjistili zatěžovací odpor  $R_Z$  podle vzorce (6):

$$R_Z = 1506 \ [\Omega]$$

Proto při znalosti hodnot S a  $R_i$  vypočtených v předchozí části zjistíme hodnotu zesílení  $A_V$  podle vzorce (5):

$$A_V = 35(5)$$

Zesílení  $A_G$  jsme určili graficky podle vzorce (7). Výsledky jsou znázorněny v grafu (6):

$$\Delta U_D = 14 \text{ [V]}$$

$$\Delta U_G = 0.2 \text{ [V]}$$

$$A_G = 70$$

Poté jsme změřili vstupní a výstupní hodnoty dvojnásobku amplitudy napětí  $u_{m1}$  a  $u_{m2}$ , načež jsme pomocí vzorce (8) zjistili hodnoty  $A_M$  pro každou z dvojic hodnot amplitudy. Výsledky jsou uvedeny v tabulce (1).

| $u_{m1}$ [V] | $u_{m2}$ [V] | $A_M$     |
|--------------|--------------|-----------|
| 0.0274       | 1.82         | 66.423358 |
| 0.0728       | 4.88         | 67.032967 |
| 0.1280       | 8.46         | 66.093750 |
| 0.1600       | 10.80        | 67.500000 |
| 0.2280       | 14.80        | 64.912281 |

Table (1) Hodnoty  $A_M$  pro každou z dvojic hodnot amplitud  $u_{m1}$  a  $u_{m2}$ .

Z ní získáme hodnotu  $A_M$ :

$$A_M = 66.4(5)$$

K výpočtu veličin a jejich nejistot byla použita knihovna Uncertinties pro Python: pypi.org/project/uncertainties. Kód je přiložen k protokolu. Chyby byly rozšířeny o Studentův koeficient (2-Tail Confidence Level) s ohledem na stupně volnosti pro každou hodnotu, pro interval spolehlivosti 68%.

#### 4. Závěr

#### 4.1. Charakteristiky tranzistoru

Byla změřena převodní charakteristika tranzistoru, která je znázorněna v grafu (4). Dále byla změřena výstupní charakteristika tranzistoru, která je znázorněna v grafu (5).

Byl určen pracovní bod  $P(U_{D0} = 10 \text{ V}, U_{G0} = 3.4 \text{ V}, I_{D0} = 6.639 \text{ mA})$ . Odtud byly určeny hodnoty strmosti  $S = 24(3) \text{ [m}\Omega^{-1}]$  a vnitřního odporu  $R_i = 76.5 \text{ [k}\Omega$ ].

Zesílení  $\mu=1.8(3)\cdot~10^3$  bylo určeno pomocí Barkhausenovy rovnice.

#### 4.2. Tranzistor jako zesilovač napětí

Byl určen zatěžovací odpor  $R_Z=1506~[\mathrm{k}\Omega]$  a zesílení  $A_V=35(5).$ 

Zesílení  $A_G = 70$  bylo určeno graficky.

Zesílení  $A_M = 66.4(5)$  bylo určeno pomocí dvoukanálového osciloskopu.

#### K výpočtu chyb byl použit následující kód:

```
#Importing the libraries
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
import pandas as pd
from scipy import stats
from scipy.stats import t as t
from scipy.optimize import curve_fit
from uncertainties import *
from uncertainties import *
from uncertainties.umath import *
from scipy.interpolate import interpld
#Reading data
gate_33 = pd.read_csv('data/gate_33.dat', sep='_-')
gate_34 = pd.read_csv('data/gate_34.dat', sep='_-')
gate_35 = pd.read_csv('data/gate_35.dat', sep='_-')
drain_10 = pd.read_csv('data/drain_10.dat', sep='_-')
prev = pd.read_excel('data/prev.xlsx')
vyst = pd.read_excel('data/vyst.xlsx')
amp = pd.read_excel('data/amp.xlsx')
# Constants and values
#Function to compute the uncertainty
def uncert (data_input , uncert_inst):
    t_coeff = t.ppf((1 + 0.6827)/2, len(data_input)-1)
    return np.sqrt((np.std(data_input)/np.sqrt(len(data_input)))**2 + uncert_inst**2)*t_coeff
def derivative_uns(f, x, x_uns, dx=1e-6):
   val = derivative(f, x)
   plus = derivative(f, x + x_uns)
   minus = derivative(f, x - x_uns)
   uns = max(abs(plus - val), abs(val - minus))
   out = ufloat(val, uns)
   return out
        return out
def tangent(y<sub>-1</sub>, y<sub>-2</sub>, x<sub>-1</sub>, x<sub>-2</sub>):

return (y<sub>-2</sub> - y<sub>-1</sub>)/(x<sub>-2</sub> - x<sub>-1</sub>)
#Canculation
#Charakteristika tranzistoru
S = k_prev
print(f"S_=_{S}_Ohm^-1")
R_{-i} = tangent(vyst['I_-D'][3]*10**(-3), vyst['I_-D'][17]*10**(-3), vyst['U_-D'][3], vyst['U_-D'][17])
**(-1)
print(f"R_i_=_{R_i}_Ohm")
U_D_R_val = np.linspace(vyst['U_D'][0], vyst['U_D'][17], 1000)
I_D_R_val = line(U_D_R_val, vyst['U_D'][3], vyst['I_D'][3], (R_i*10**(-3))**(-1))
mu = S * R_i
print(f"mu_=_{mu}\n")
          \# Transistor \ as \ a \ amplifier \\            R_Z = (E - U_D_0) \ / \ I_D_0 \\            \mathbf{print} ( f'' R_Z \_= \{R_Z\}\_Ohm'' ) 
A_{-}V = (S*R_{-}Z) / (1 + (R_{-}Z/R_{-}i))

print (f"A_{-}V)_{-}=_{-}\{A_{-}V\}\setminus n")
delta_U_D = gate_34['U_D'][153] - gate_34['U_D'][13]
print(f"delta_U_D_=_{delta_U_D}_V")
```

```
A_G = delta_U_D / delta_U_G
print(f"A_G_=_{A_G}")

amp['A_M'] = amp['u_m2'] / amp['u_m1']

A_M = ufloat(np.mean(amp['A_M']), uncert(amp['A_M'], 0))
print(f"A_M_=_{A_M}")
```