§5. Параболоиды

Определение 5.1. Поверхности второго порядка, определяемые в некоторой прямоугольной декартовой системе координат *Оху* уравнениями

$$\frac{x^2}{p} + \frac{y^2}{q} = 2z, \ p, q > 0, \tag{5.1}$$

$$\frac{x^2}{p} - \frac{y^2}{q} = 2z, \ p, q > 0, \tag{5.2}$$

называются эллиптическим и гиперболическим параболоидами соответственно.

Данные поверхности симметричны относительно координатных плоскостей Oxz и Oyz. В отличие от ранее изученных поверхностей, эллиптические и гиперболические параболоиды не обладают ни центральной симметрией, ни симметрией относительно плоскости Oxy.

1°. Эллиптический параболоид. При принятом предположении p,q>0 вся поверхность расположена в полупространстве, где $z\geq 0$. Начало координат принадлежит эллиптическому параболоиду и называется его *вершиной*.

Сечение эллиптического параболоида плоскостью $P: z = z_0(z_0 > 0)$ — эллипс Γ_1 с полуосями $\sqrt{2pz_0}$ и $\sqrt{2qz_0}$ (рис. 5.1), а в сечении координатными плоскостями x=0 и y=0 имеем параболы $\Gamma_2: y^2 = 2qz$ и $\Gamma_3: x^2 = 2pz$ (рис. 5.1).

2°. Гиперболический параболоид. Сечениями этой поверхности плоскостями x=0 и y=0 являются параболы $\Gamma_1: y^2=-2qz$ и $\Gamma_2: x^2=2pz$ (рис. 5.2). Сечение плоскостью $x=x_0$ ($x_0\neq 0$) есть парабола Γ_3 с вершиной на параболе Γ_2 , а сечение плоскостью $y=y_0$ ($y_0\neq 0$) — парабола Γ_4 с вершиной на параболе Γ_1 (рис. 5.2). Параболы Γ_3 и Γ_4 можно получить путём параллельного переноса парабол Γ_1 и Γ_2 соответственно. Название гиперболический параболоид объясня-

Рис. 5.1. Эллиптический параболоид

Рис. 5.2. Гиперболический параболоид

ется тем, что в сечении этой поверхности плоскостью $z = z_0 (z_0 \neq 0)$ образуется гипербола Γ_5 (рис. 5.2).