INDIAN INSTITUTE OF TECHNOLOGY JODHPUR

Grammatical Error Correction for Indian Language

Presented by: Puja Gupta (M21MA004)

Supervisors: Dr. Gaurav Harit and Dr. Kirankumar Hiremath

Project Outline

- Grammatical Error Correction (GEC)
- Motivation
- Problem Formulation
- Phase Wise Implementation
- Experiments on English GEC
- Proposed method for Hindi GEC
- Dataset Used
- Results
- Conclusion
- Future Wok

What is GEC task in NLP?

- Grammatical Error Correction (GEC) is the task of error detection and correction in the text.
- In NLP, GEC can be formulated as a sequence-to-sequence task, where a model is trained using grammatically incorrect sentences as input and return a grammatically correct sentence.

Motivation

- A lot of research and trained models are available for English Language.
- Minimal amount of work on GEC for Indian Languages.
- Need a well trained model for implementing GEC tasks for Indian languages which can help the writers.
- Proposed the work towards GEC for Hindi Language.

Input Sentence : मैं अपने एम.टेक प्रोजेक्ट पर काम कर रही है |

Correct Sentence : मैं अपने एम.टेक प्रोजेक्ट पर काम कर रही हूँ |

Problem Formulation

Phase 1 (Semester 3)

- Literature Review
- Sequence-to-Sequence Architecture (English & Hindi)
 - without Attention
 - with Attention
- Word Embeddings Used
 - Word2Vec
 - Glove
 - FastText

Phase 2 (Semester 4)

- Transformer-Based Architecture (English & Hindi)
 - Encoder-Decoder
 - T5ForConditionalGeneration
 - mT5ForConditionalGeneration
- Copy Augmented Transformer Model
- Comparison with present State-of-the-art Model

Tokenizers

- Breaks down text into smaller unit called tokens.
- Tokenization converts a text into a list of integers
- Embedding converts the list of integers into a list of vectors.
- Choice of tokenizer can have an impact on how the text data is processed and represented.
- Affect the accuracy and efficiency of the models trained on this data.

Text : "मैं अपने एमटेक प्रोजेक्ट पर काम कर रही हूँ।"

Tokens (*Bert-base-multilingual-cased*): ['म', '##ੈਂ', 'अ', '##पने', 'ए', '##म', '##टे', '##क', 'प', '##्र', '##ोज', '##ੈकट', 'प', '##र', 'क', '##ाम', 'क', '##र', 'र', '##ही', 'ह', '##ूँ', '।']

Tokens (RoBERTa-hindi-guj-san):['म', 'ਹੈਂ', 'Ġअ', 'ਧ', 'ਰ', 'ਹੇ', 'Ġएम', 'ਟ', 'ਹੇ', 'क', 'Ġप', 'र', 'Ġक', 'ा', 'ச', 'Ġक', 'र', 'Ġर', 'ह', 'ਹੇ', 'Ġह', '੍ਰ', 'ਹੈਂ', 'l']

Tokens (MuRIL): ['मैं', 'अपने', 'एमटेक', 'प्रोजेक्ट', 'पर', 'काम', 'कर', 'रही', 'हूँ', '।']

Tokenizer	Algorithm Used	Vocabulary Size	Tokenization
Bert-base-multilingual-cased	WordPiece	119547	Sub word level
MuRIL	WordPiece + Rule based method for Indian languages	197285	Word / Subword level
RoBERTa-hindi-guj-san	Byte Pair Encoding	30522	Sub word level

 Larger vocabulary allows to capture more fine-grained linguistic nuances and to handle rare or out-of-vocabulary words more effectively.

Word Embeddings

- Machines does not understand the textual data directly.
- Need to convert the textual data into some word vector representation and feed that to the model for processing.
- Word Embeddings enable to store textual information in a low dimensional vector.
- Words that occur in similar contexts tend to have similar embeddings.
- The vectors are learnt by models, through unsupervised learning.

Contextual Vs Non Contextual Word Embedding

- Non-Contextual Word Embeddings does not capture the sense or context of a word used in a sentence.
- Contextual Word Embeddings are dynamic embeddings and consider the context in which a word has been used in a sentence.

For Example:

Sentence 1: मेरा खाता बैंक में है।

Sentence 2: राम आम खाता है।

Sequence-to-Sequence Model

Figure 2.2: Seq2Seq Encoder Decoder model without Attention

Shortcomings of Seq-to-Seq Model (without attention)

- Compress the information about the i/p sentence into a fixed length vector "Embedding".
- The longer the input sentence the greater the information loss leading to information bottleneck.

Sequence-to-Sequence (With Attention)

Figure 2.3: Seq2Seq Encoder Decoder model with Attention mechanism for GEC in English

Benefits of Attention

- Attention significantly improves Encoder Decoder based Seq2Seq model.
- With Attention, Seq2Seq model does not forget the source input.
- Attention mechanism keeps the context of input sentences to encoder with importance of a particular word.
- Downside: much more computation.

Transformer Model

Transformer Models

Difference in Configuration of used Transformer-based Models

Models EncoderDecoder Model		T5ForConditionalGenerat ion	mT5ForConditionalGenerati on	
Pretrained Model Used	bert-base-multilingual-cased	t5-base	mT5-small	
Pretrained task	Self supervised pre training (Masked lang Modelling & Next Sentence Predict)	Multitask mixture of Unsupervised & Supervised	Pretrained on 101 languages excluding any supervised training	
Number of Encoder layers	12	12	8	
Number of 12 Decoder layers		12	8	
Number of Attention layers	12	12	6	
Hidden Units 768		768		
Embedding 768 Dimension		768	512	
Vocab Size 119547		197285	250112	
Parameters 179M		220M	300M	
Tokenizers	bert-base-multilingual-cased	MuRIL,RoBERTa	MuRIL	
Word Embedding	Contextual	Contextual	Contextual	

Copy Augmented Transformer Architecture

- Base Architecture
 - FairSeqModel byFacebook Al Research

Copying Mechanism

Copy words directly from the source sentence.

Figure 3. Model Architecture.

Copy Mechanism

$$p_t(w) = (1 - \alpha_t^{copy}) * p_t^{gen}(w) + (\alpha_t^{copy}) * p_t^{copy}(w)$$

 P_t : Final Probability distribution

 P_t^{gen} : Generation Distribution

 P_t^{copy} .: Copy Distribution

 $\alpha_t^{copy} \in [0,1]$: Balancing factor (Controls the balance

between copying and generating at each

time stamp t.

Figure 1: Copy-Augmented Architecture.

Input Sentence: ISRO are launching satellites.

Output Vocab: {are , launching , satellites,}

O/p with No copying mechanism : UNK is launching satellites.

Copy Augmentation: {are , launching , satellites,} + {ISRO , ...}

O/p with copy mechanism : ISRO is launching satellites.

Experiments on English Language

- Seq2Seq Encoder Decoder
 - without attention
 - with attention

T5 transformer model

Results on English Language

With Attention

LANG8 dataset (80624 training, 20156 validation, 2000 test sentences)

Without Attention

Results on English Language

Model	Pre-trained	Tokenizer	Epoch	Training Loss	Validation Loss
T5ForConditionalGeneration	t5-base	t5-base	1	0.78800	0.655472

Table: Test results obtained for T5 transformer models for English (45000 training sentences & 5000 validation sentences from the C4 dataset)

```
text = 'You is a kind person.'
print("Incorrect Sentence:", text)
predicted s = correct grammar(text, num return sequences=4)[1]
print("Predicted Sentence:",predicted s)
print("
Incorrect Sentence: Cat drinked milk.
Predicted Sentence: Cat drank milk.
Incorrect Sentence: I doing my M.Tech Project.
Predicted Sentence: I'm doing my M.Tech Project.
Incorrect Sentence: You is a kind person.
Predicted Sentence: You're a kind person.
```

Figure: GEC using T5 model for English

Proposed Method for Hindi GEC

Seq2Seq model with attention produced a decent result for English. These results motivated us to implement the same method for GEC in Hindi as well.

Figure 4.1: Seq2Seq Encoder Decoder model with Attention for GEC in Hindi

Proposed method for Hindi

Table: GEC using Sequence-to-Sequence model with attention

Proposed method for Hindi

DataSet Used

Dataset	Training Sentences	Validation Sentences	Test Sentences	
Etoori	112K	28K	10K	
HiWikEd	2.6M		13K	

enc_input	dec_input
परन्तु वे दोनों उन बातों को ज़्यादा समय तक अप	परन्तु वे दोनों उन बातों को ज़्यादा समय तक अपन
देश में हिन्दी को विस्थापित कर का षड़यंत्र चल	देश में हिन्दी को विस्थापित करने का षड़यंत्र च
तीन साल पहले कातिलाना हमले के प्रकरण में एफआर	तीन साल पहले कातिलाना हमले के प्रकरण में एफआर
रामायण रिविजिटेड अ टेल ऑफ लव एंड एडवेंचर नाम स	रामायण रिविजिटेड अ टेल ऑफ लव एंड एडवेंचर नाम स
तब तक के लिए हमें विराम ले की अनुमति दीजिए ।	तब तक के लिए हमें विराम लेने की अनुमति दीजिए ।

Models used for Hindi

Models	Seq-to-Seq (attention)	EncoderDecoder Model	T5ForCondition alGeneration	mT5ForConditio nalGeneration	Copy Augmentation
Pretrained Model Used	120	bert-base-multilin gual-cased	t5-base	mT5-small	<u>~</u> *
Pretrained task		Self supervised pre training (Masked lang Modelling & Next Sentence Predict)	Multitask mixture of Unsupervised & Supervised*	Pretrained on 101 languages excluding any supervised training	, - ;
Number of Encoder layers	1	12	12	8	6
Number of Decoder layers	1	12	12	8	6
Number of Attention layers	1	12	12	6	16
Copy Attention	-	=		-	1
Hidden Units	32	768	768	-	-
Embedding Dimension	300	768	768	512	512
Vocab Size	73829	119547	197285	250112	73829
Parameters	-	179M	220M	300M	: =
Tokenizers	indic_tokeniz e	bert-base-multilin gual-cased	MuRIL,RoBERTa	MuRIL	Tokenizes based on white spaces
Word Embedding	Non Contextual	Contextual	Contextual	Contextual	Contextual

Hyperparameters used to Train the model:

Models	Seq-to-Seq (attention)	EncoderDecoder Model	T5ForConditiona IGeneration	mT5ForCondition alGeneration	Copy Augmentation
Epochs	50 with early stop	2	10	5	10
Loss	Sparse Cross Entropy	Cross Entropy	Cross Entropy	Cross Entropy	Cross Entropy
Optimizer	Adam	AdamW	AdamW	AdamW	Adam
Learning rate	1e-3	2e-5	2e-5	2e-5	1e-3
Batch Size	32	8	8	1	32
Weight decay	-	0.1	0.1	0.1	-
Dropout	-	0.1	0.1	0.1	0.2
fp16	False	True	True	False	False
Evaluation metric	Accuracy, BLEU Score, GLEU Score	Train/Valid Loss, GLEU Score	Train/Valid Loss, GLEU Score	Train/Valid Loss, GLEU Score	Train Loss, GLEU Score
cuDNN version	8.1.1	8.1.1	8.1.1	7.6.5	7.6.5
Cuda version	11.1	11.1	11.1	10.0	10.0

Result For GEC Task For Hindi - Seq2Seq

Model (Seq2Seq)	Validation Accuracy (%)	BLEU Score	Model Size (Bytes)	Inference Time(ms)
Encoder Decoder	69.55	0.30497	255761972	177
Encoder Decoder (Attention)	99.02	0.76631	331019284	186

Table 2: Encoder Decoder model with attention outperformed Encoder Decoder model without attention

Result For GEC Task For Hindi - Seq2Seq

Model (Seq2Seq)	Embedding	Training Accuracy (%)	Validation Accuracy (%)	BLEU Score (Greedy Search)	GLEU Score
Encoder Decoder (Attention)	Word2Vec	98.08	95.44	0.7796	0.8050
Encoder Decoder (Attention)	Glove	98.86	96.15	0.82002	0.7821
Encoder Decoder (Attention)	FastText	99.30	96.55	0.8458	0.8639

Table 3: Results obtained for different word embeddings for Sequence-to-Sequence model with attention

Figure 5.5: [a] Validation Loss Vs Epoch and [b] Validation Accuracy Vs Epoch for Encoder Decoder Architecture with Attention using Word2Vec Word Embedding

Figure 5.6: [a] Validation Loss Vs Epoch and [b] Validation Accuracy Vs Epoch for Encoder Decoder Architecture with Attention using Glove Word Embedding

Figure 5.7: [a] Validation Loss Vs Epoch and [b] Validation Accuracy Vs Epoch for Encoder Decoder Architecture with Attention using Fasttext Word Embedding

Result For GEC Task For Hindi - Transformers

Model (Transformers)	Pretrained Model	Tokenizer	Training Loss	Validation Loss	Vocabulary Size	GLEU Score
Encoder Decoder	bert-base-multilingual- cased	bert-base-multili ngual-cased	0.32566	0.2248	119547	0.91757
T5ForConditional Generation	t5-base	RoBERTa-hind i-guj-san	0.08328	0.06815	30522	0.82015
T5ForConditional Generation	t5-base	MuRIL	0.43034	0.16969	197285	0.92086
mT5ForCondition alGeneration	mt5-small	MuRIL	0.11250	0.09533	250112	0.90232
Copy Augmented	-	White spaces	0.37821	0.24620	73829	0.8574

Table 3: Results obtained for different Transformer based models

Figure 6.12: [a] Train Loss Vs Epoch and [b] Validation Loss Vs Epoch for Encoder-Decoder (pre-trained: bert-base-multilingual-cased each) transformer based Architecture with bert-base-multilingual-cased Tokenizer

TSForConditionalGeneration (MuRIL Token

Figure 6.13: [a] Train Loss Vs Epoch and [b] Validation Loss Vs Epoch for T5ForConditionalGeneration (pre-trained: t5-base) transformer based Architecture with MuRIL Tokenizer

Figure 6.14: [a] Train Loss Vs Steps and [b] Validation Loss Vs Steps for T5ForConditionalGeneration (pre-trained: t5-base) transformer based Architecture with RoBERTa-hindi Tokenizer

mT5ForConditionalGeneration (Muril Tokenizer)

Figure 6.15: [a] Train Loss Vs Epoch and [b] Validation Loss Vs Epoch for mT5ForConditionalGeneration (pre-trained: mt5-small) transformer based Architecture with MuRIL Tokenizer

Models Comparison

Model	Architecture	Embedding	Tokenizer	Model Size (MB)	Model Parameters	Inference Time (s)
Encoder Decoder (Attention)	Seq2Seq	Word2Vec	indic-tokenizer	195.5136	48870508	0.273
Encoder Decoder (Attention)	Seq2Seq	Glove	indic-tokenizer	195.5136	48870508	0.253
Encoder Decoder (Attention)	Seq2Seq	FastText	indic-tokenizer	195.5136	48870508	0.345
Encoder Decoder	Transformer	Contextual	bert-base-mult ilingual-cased	1465.603	384194811	1.16
T5ForConditional Generation	Transformer	Contextual	RoBERTa-hind i-guj-san	845.604	221670144	1.38
T5ForConditional Generation	Transformer	Contextual	MuRIL	1145.083	300176768	1.02
mT5ForCondition alGeneration	Transformer	Contextual	MuRIL	1334.168	349744128	1.47
Copy Augmented	Copy Augmentation	Contextual	White spaces	1116.105	293570124	1.23

Table 3 : Performance Analysis of different models based on Model Size, Model Parameters and Inference Time

Models Comparison

Model	GLEU Score (Etoori Test Dataset)	GLEU Score (HiWikEd test dataset)
Transf [@]		0.69
MLConv [@]	-	0.73
Copy Augmented*@	0.8574	0.80
Seq2Seq + Attention (Glove)*	0.78218	100 M
Seq2Seq + Attention (Word2Vec)*	0.80502	-Tel
Seq2Seq + Attention (fastText)*	0.86394	-,
Bert based Encoder Decoder (Transformer)*	0.91757	-
mT5ForConditionalGeneration (Transformer)*	0.90232	
Transformer(T5ForConditionalGener ation)* (Trained on 140K Etoori data + 2.6 M Artificially generated Hindi Test dataset)	0.92086	0.8107

Table 3: Performance Analysis of different models based on GLEU Score.

*: Models implemented by me; @: Models implemented by Ankur et al.

Models	Epoch	ADP:INFL	PRON:INFL	ADJ:INFL	VERB:INFL	Full Dataset
Tranf [@]	1	0.62	0.67	0.57	0.79	0.69
Copy Augmented [@]	9	0.84	0.71	0.69	0.87	0.80
T5ForConditionalGe neration*	1	0.8082	0.8095	0.7434	0.8298	0.8107

^{@ :} Performance of Models Implemented by Ankur et al. on HiWikEd test dataset

The T5ForConditionalGeneration model showed:

- Better results than baseline Tranf and Copy Augmented model for PRON:INFL and ADJ:INFL errors.
- Better results than baseline Tranf model for all types of errors and on Full Dataset.
- Better results than baseline Tranf and Copy Augmented model for full dataset.

^{* :} Model Implemented by me (which is giving best performance among other trained model)

GEC -Trained Models

Incorrect Sentence Correct Sentence	घर में <mark>घुस</mark> के बाद भी सुकून नहीं । घर में घुसने के बाद भी सुकून नहीं ।
Model	Predicted Sentence
Seq2Seq_attention (FastText)	घर में घुसने के बाद भी सुकून नहीं ।
encoder_decoder_bert-multilingual	घर में घुसने के बाद भी सुकून नहीं ।
T5_RoBERTa	घर में घुसने के बाद भी सुकून नहीं ।
T5_muRIL	घर में घुसने के बाद भी सुकून नहीं ।
mT5_small	घर में घुसने के बाद भी सुकून नहीं ।
Incorrect Sentence Correct Sentence	मैंने निर्णायक बन कर नहीं बैठता हूँ । मैं निर्णायक बन कर नहीं बैठता हूँ ।
Model	Predicted Sentence
Seq2Seq_attention (FastText)	मैं निर्णायक बन कर नहीं बैठता हूँ ।
encoder_decoder_bert-multilingual	मैं निर्णायक बन कर नहीं बैठता हूँ ।
T5_RoBERTa	मैं निर्णायक बन कर नहीं बैठता हूँ ।
· ·	
T5_muRIL	मैं निर्णायक बन कर नहीं बैठता हूँ ।
T5_muRIL mT5_small	मैं निर्णायक बन कर नहीं बैठता हूँ । मैं निर्णायक बन कर नहीं बैठता हूँ ।

GEC -Trained Models

Incorrect Sentence Correct Sentence	उसनीं बिपाशा ने यह स्वीकार किया है कि उन्हें कभी करीना को समझने का मौका ही नहीं मिला। वहीं बिपाशा ने यह स्वीकार किया है कि उन्हें कभी करीना को समझने का मौका ही नहीं मिला।
Model	Predicted Sentence
Seq2Seq_attention (FastText)	वहीं बिपाशा ने यह स्वीकार किया है कि उन्हें कभी करीना को समझने का मौका ही नहीं मिला ।
encoder_decoder_bert-multilingual	वहीं बिपाशा ने यह स्वीकार किया है कि उन्हें कभी करीना को समझने का मौका ही नहीं मिला ।
T5_RoBERTa	वहीं बिपाशा ने यह स्वीकार किया है कि उन्हें कभी करीना को समझने का मौका ही नहीं मिला ।
T5_muRIL	वहीं बिपाशा ने यह स्वीकार किया है कि उन्हें कभी करीना को समझने का मौका ही नहीं मिला।
mT5_small	वहीं बिपाशा ने यह स्वीकार किया है कि उन्हें कभी करीना को समझने का मौका ही नहीं मिला ।
Incorrect Sentence	सीआरपीएफ अप ट्रेनिंग में लड़कियों को आत्मरक्षा की पूरी जानकारी दी है ।
Correct Sentence	सीआरपीएफ ने अपने ट्रेनिंग में लड़िकयों को आत्मरक्षा की पूरी जानकारी दी है ।
Model	Predicted Sentence
Seq2Seq_attention (FastText)	आरपीएफ ने अपने ट्रेनिंग में लड़िकयों को आत्मरक्षा की पूरी जानकारी दी है ।
encoder_decoder_bert-multilingual	आरपीएफ ने अपने ट्रेनिंग में लड़कियों को आत्मरक्षा की पूरी जानकारी दी है ।
T5_RoBERTa	आरपीएफ ने अपने ट्रेनिंग में लड़कियों को आत्मरक्षा की पूरी जानकारी दी है ।
T5_muRIL	आरपीएफ ने अपने ट्रेनिंग में लड़कियों को आत्मरक्षा की पूरी जानकारी दी है ।
mT5_small	आरपीएफ ने अपने ट्रेनिंग में लड़कियों को आत्मरक्षा की पूरी जानकारी दी है ।

GEC - Trained Models

Seq2Seq_attention (FastText) encoder_decoder_bert-multilingual T5_RoBERTa T5_muRIL mT5_small Incorrect Sentence Correct Sentence

Model

encoder decoder bert-multilingual

Seg2Seg attention (FastText)

T5_RoBERTa

T5 muRIL

mT5 small

Model

Incorrect Sentence

Correct Sentence

मैं निर्णायक बन कर नहीं बैठता हूँ ।
मैं निर्णायक बन कर नहीं बैठता हूँ ।
मैं निर्णायक बन कर नहीं बैठता हूँ ।
मैं निर्णायक बन कर नहीं बैठता हूँ ।
मैं निर्णायक बन कर नहीं बैठता हूँ ।
शहरी व ग्रामीण क्षेत्र में सीवरेज सिस्टम लागू कर का मुख्य उद्देश्य वातावरण को दूषित हो से बचाना है । शहरी व ग्रामीण क्षेत्र में सीवरेज सिस्टम लागू करने का मुख्य उद्देश्य वातावरण को दूषित होने से बचाना है ।
Predicted Sentence
शहरी व ग्रामीण क्षेत्र में सीवरेज सिस्टम लागू करने का मुख्य उद्देश्य वातावरण को दूषित होने से बचाना है ।
शहरी व ग्रामीण क्षेत्र में सीवरेज सिस्टम लागू करने का मुख्य उद्देश्य वातावरण को दूषित होने से बचाना है ।
शहरी व ग्रामीण क्षेत्र में सीवरेज सिस्टम लागू करने का मुख्य उद्देश्य वातावरण को दूषित

Predicted Sentence

शहरी व ग्रामीण क्षेत्र में सीवरेज सिस्टम लागू करने का मुख्य उद्देश्य वातावरण को दुषित

शहरी व ग्रामीण क्षेत्र में सीवरेज सिस्टम लागू करने का मुख्य उद्देश्य वातावरण को दुषित

मैंने निर्णायक बन कर नहीं बैठता हूँ।

मैं निर्णायक बन कर नहीं बैठता हूँ।

होने से बचाना है।

होने से बचाना है।

Conclusion

- Detailed comparison of model performance using various architectures, tokenizers, and word embeddings.
- Sequence-to-Sequence model with attention out performed the one without attention with a huge margin.
- Among Seq2Seq model with non-contextual word embedding, best results obtained using FastText.
- All variations of the transformer model gave better results than the Seq2Seq model, with T5ForConditionalGeneration (using MuRIL Tokenizer), giving the best results.
- Choice of tokenizer and word embedding can significantly impact the model's performance.
- Size and number of parameters of transformer-based models are almost 6-7 times more than the Seq2Seq.
- Seq2Seq-based architecture's Inference time is much better than transformer-based architecture's.

Future Work

- A more inclusive dataset with real time scenarios and more than one error per sentence can be created.
- A simple and efficient sequence tagging approach as proposed by Omelianchuk et. al. in GECToR (https://aclanthology.org/2020.bea-1.16.pdf) can be used for Hindi as well.
- The process can be generalized for other low-resource Indian languages for GEC tasks and made open source.

Thank You

Reference Slides

Encoder Decoder Transformer

- Encoder part : pretrained bert-base-multilingual-cased
- Decoder part : pretrained bert-base-multilingual-cased

The model configuration:

- Number of layers: 12
- Hidden size: 768
- Number of attention heads: 12
- Vocabulary size: 119,547
- Maximum sequence length: 512

```
loading configuration file config. json from cache at /DATA/gupta92/.
5e83dbed325647a63e7e1f5de19f0382ba/config.json
Model config BertConfig {
  " name or path": "bert-base-multilingual-cased",
  "architectures": [
    "BertForMaskedLM"
  "attention probs dropout prob": 0.1,
  "classifier dropout": null.
  "directionality": "bidi",
  "hidden act": "gelu",
  "hidden dropout prob": 0.1,
  "hidden size": 768.
  "initializer range": 0.02.
  "intermediate size": 3072,
  "layer norm eps": 1e-12,
  "max position embeddings": 512,
  "model type": "bert",
  "num attention heads": 12,
  "num hidden layers": 12,
  "pad token id": 0,
  "pooler fc size": 768,
  "pooler num attention heads": 12,
  "pooler num fc layers": 3,
  "pooler size per head": 128,
  "pooler type": "first token transform",
  "position embedding type": "absolute",
  "transformers version": "4.22.2",
  "type vocab size": 2,
  "use cache": true,
  "vocab size": 119547
```

T5ForConditionalGeneration

Initialization: *pretrained t5-base*

The configuration of t5-base model:

- Number of encoder layers: 12
- Number of decoder layers: 12
- Embedding dimension: 768
- Hidden states: 768
- Number of attention heads: 12
- Vocab size :197285

```
loading configuration file t5 gec hindi muRIL 2/config.json
Model config T5Config {
  " name or path": "t5-base",
  "architectures": [
    "T5ForConditionalGeneration"
  "d ff": 3072,
  "d kv": 64,
  "d model": 768,
  "decoder start token id": 0,
  "dense act fn": "relu",
  "dropout rate": 0.1,
  "eos token id": 1,
  "feed forward proj": "relu",
  "initializer factor": 1.0,
  "is encoder decoder": true,
  "is gated act": false,
  "layer norm epsilon": 1e-06,
  "model type": "t5",
  "n positions": 512,
  "num decoder layers": 12,
  "num heads": 12.
  "num layers": 12,
  "output past": true,
  "pad token id": 0,
  "relative attention max distance": 128,
  "relative attention num buckets": 32,
```

mT5ForConditionalGeneration

Initialization: *pretrained mT5-small*

Multilingual variant of T5 model (101 languages)

The configuration of mT5-small model:

- Number of encoder layers: 8
- Number of decoder layers: 8
- Embedding dimension: 512
- Number of attention heads: 6
- Vocab size : 250112

```
Model config MT5Config {
  " name or path": "mT5 Etoori 1",
  "architectures": [
    "MT5ForConditionalGeneration"
  "d ff": 1024,
  "d ky": 64.
  "d model": 512,
  "decoder start token id": 0.
  "dense act fn": "gelu new",
  "dropout rate": 0.1,
  "eos token id": 1,
  "feed forward proj": "gated-gelu",
  "initializer factor": 1.0,
  "is encoder decoder": true,
  "is gated act": true,
  "layer norm epsilon": 1e-06,
  "model type": "mt5",
  "num decoder layers": 8,
  "num heads": 6.
  "num layers": 8,
  "pad token id": 0,
  "relative attention max distance": 128,
  "relative attention num buckets": 32,
  "tie word embeddings": false,
  "tokenizer class": "T5Tokenizer",
  "torch dtype": "float32",
  "transformers version": "4.22.2",
  "use cache": true,
  "vocab size": 250112
```