[4]

Q.6	Attempt any two:

- Write any five features of DSP processors which make them 5 i. different from general purpose microprocessor.
- Explain the Super Harvard Architecture (SHARC) and compare 5 ii. with Von Neumann and Harvard Architecture of DSP Processor.
- Describe Instruction Pipelining with a suitable example and 5 iii. diagram.

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering End Sem Examination Dec-2023

EC3CO06 Digital Signal Processing

Programme: B.Tech. Branch/Specialisation: EC

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

The Parseval's Relation is: Q.1 i.

1

(a)
$$\sum_{n=0}^{N-1} x_1(n) x_2^*(n) = \sum_{k=0}^{N-1} X_1(k) X_2^*(k)$$
(b)
$$\sum_{n=0}^{N-1} x_1(n) x_2^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_1(k) X_2^*(k)$$
(c)
$$\sum_{n=0}^{N-1} x_1(n) x_2^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_1^*(k) X_2(k)$$

$$\frac{\sum_{n=0}^{N-1} X_1(n) x_2^*(n)}{\sum_{n=0}^{N-1} X_1^*(n) x_2^*(n)} = \sum_{n=0}^{N-1} X_1^*(n) X_2^*(n)$$

(d)
$$\sum_{n=0} x_1(n)x_2^*(n) = \sum_{k=0} X_1^*(k)X_2^*(k)$$

ii. In DIF radix-2 FFT algorithms:

(a) Output bits are in natural order

- (b) Input are bit reversed
- (c) Output bits are in bit reversal order.
- (d) Both input and output bits are in natural order
- Which of the following condition should the unit sample 1 response of a FIR filter satisfy to have a linear phase?
 - (a) h(M-1-n) n=0,1,2...M-1
 - (b) $\pm h(M-1-n)$ n=0,1,2...M-1
 - (c) -h(M-1-n) n=0,1,2...M-1
 - (d) None of these

P.T.O.

1

iv.	In the Bilinear Transformation mapping, which of the following				
	are correct?				
	•	s are mapped outside the unit circle			
	in the z-plane				
	· · · · •	s are mapped inside the unit circle			
	in the z-plane				
	· · · •	s are mapped on the unit circle in			
	the z-plane				
	-	s are mapped inside the unit circle in			
	the z-plane	1	_		
v.	Which one is the FIR filter re		1		
	(a) Direct Form-II	(b) Ladder			
	(c) Linear Phase	(d) All of these			
vi.	Which structure use Routh's	•	1		
	(a) Direct form	(b) Cascade			
	(c) Ladder	(d) Linear phase realization			
vii.		are Fourier transform pair.	1		
	(a) PDF (b) PSD	(c) CDF (d) Variance			
viii.	If X and Y are random variab	ble then $E(X + Y)$ is equal to	1		
	(a) $E(X).E(Y)$	(b) E(X) + E(Y)			
	(c) E(X) - E(Y)	(d) X + Y			
ix.	Which architecture has seg	parate cache memory for program	1		
	instructions?				
	(a) Von Neumann	(b) SHARC			
	(c) Both (a) and (b)	(d) None of these			
х.	In an ideal case a 3 stage pipelined machine is how many times 1				
	faster than non-pipelined machine.				
	(a) 3 (b) 6	(c) 9 (d) None of these			
i.	Write any two properties of t	widdle factor	2		
ii.	Find the 4-point circular convolution of the signals:				
11.	$x(n) = \delta(n) + \delta(n-1) + \delta(n-2)$				
	, , , , ,	-u(n-2)-u(n-4)			
iii.	$h(n) = 2u(n)$ If $x(n) = \{1,0,1,0,1,0,1,0\}$, Th		5		
iv.	Explain Composite Value of	• •	5		
14.	Explain Composite value of	11 11 101 11-0.	J		

Q.2

OR

Q.3	i. Explain Frequency Warping Concept.			
	ii.	The transfer function of analog filter is:	3	
		$H(s) = \frac{3}{(s+2)(s+3)}$		
		$with T_s = 0.1Sec$		
		Design the Digital IIR filter using BLT		
	iii.	Find the order and poles of a digital filter with following specifications:	5	
		$0.89 \le H(e^{j\omega}) \le 1, \qquad 0 \le \omega \le 0.4\pi$		
		$ H(e^{j\omega}) \leq 0.18, 0.6\pi \leq \omega \leq \pi$		
		Use Impulse Invariance Method.		
OR		Explain Rectangular Window filter designing technique of FIR	5	
		filter and Gibb's Phenomenon.		
Q.4		Attempt any two:		
	i.	Draw the Transposed Form of the Direct Form-II structure of the	5	
		given IIR system.		
		$H(Z) = \frac{1 - 0.2z^{-1} - 0.6z^{-2}}{1 - 0.5z^{-1} + 0.8z^{-2}}$		
		1 0.02 0.02		
	ii.	Realize the Ladder structure of the filter	5	
		$H(Z) = \frac{1 + z^{-1} + 6z^{-2}}{1 + 5z^{-1} + 7z^{-2}}$		
	iii.	For the given FIR filter explain and draw the Linear Phase	5	
	1111.	Structure	J	
		$H(Z) = 1 - 2z^{-1} + 3z^{-2} - 2z^{-3} + z^{-4}$		
Q.5	i.	Describe the different statistical averages which are important to	4	
		describe a random process.	_	
	ii.	Define Binomial Distribution and if a coin has been tossed for ten	6	
		times then find out the probability for four times 'Head' will		
OR	iii.	come. Explain any three:	6	
OK	1111.	(a) Auto and Cross correlation	U	
		(b) Central Limit Theorem		
		(c) Cumulative Distribution Function		
		(d) Power Spectral density		
		(a) I on all operations		

Marking Scheme
EC3CO06 Digital Signal Processing

EC3CO06 Digital Signal Processing						iii.	Correct figure Correct steps (individual steps Final correct answer	1 Marks	2+2 +1
Q.1	i)	В		1	OR	iv.	Correct steps Correct diagram	3 Marks 2 Marks	3+2
	ii)	C		1					
	iii)	В		1	Q.3	i.	Correct figure Explanations	1 Mark 1 Mark	1 + 1
	iv)	D		1		ii.	Correct formula	1 Mark	1 +
	v)	С		1		iii.	Correct steps Frequency conversion	2 Marks 1 Marks	2 1+2
	vi)	C		1			Correct formulas	2 Marks'	+2
	vii)	В		1	OR	iv	1	2 Marks 2 Marks	2+1
	viii)	В		1			Derivation Gibb's phenomenon	1 Mark 2 Marks	+2
	ix)	В		1					
	x)	A		1	Q.4	i. ii.	Direct Form – II structure Transposed structure Correct derivation	2 Marks 3 Marks 3 Marks	2+3 3+2
Q.2	i.	Each property one marks		1 eac h		iii.	Structure Correct steps Diagram 1 marks	2 Marks 4 Marks	4+1
	ii.	Correct value Correct calculation and steps	1 Marks 2 Marks	1+2	Q.5	i.	Correct definition	(1 marks each)	

ii. Definition 2 Marks 2+1
Formula 1 Mark +3
Correct steps 3 marks 3 Marks
OR iii. Each correct definition 2 marks

Q.6

i. Each correct feature (1 marks each)

ii. Definition 2 Marks
Comparison with each (1.5+1.5)
marks

iii. Description 2 Marks
Example 2 Marks
Diagram 1 Mark
