충북대 농업생명환경대학 김길하 교수

목**차** (교재 13장)

- 1. 해충방제의 기초이론
- 2. 해충방제의 경제개념
- 3. 해충방제의 종류

□ 해충에 의한 작물의 피해양상

- ① 작물체 부위 가해, 성장 저해
 - 예) 배추흰나비, 파밤나방 등 대부분의 해충
- ② 수확물의 미적 손상으로 상품가치 저하
 - 예) 노린재류의 구침 흔적이나, 진딧물, 깍지벌레 등 감로를 분비하는 해충
- ③ 바이러스병 매개로 작물 고사
 - 예) 꽃노랑총채벌레의 토마토반점위조바이러스 매개(TSWV)
 - 담배가루이의 토마토황화잎말림바이러스 매개(TYLCV)

1) 농생태계의 특성

(1) 에너지의 흐름

- 에너지의 흐름을 사람이 간섭
- 개방체계
- 저장되는 에너지 보다 저장되는 투입에너지가 많아 지속성이 없음

(2) 영양물질의 순환

- 영양물질의 순환이 적음
- 작물의 수확으로 생태계 밖으로 수탈
- 영양물질 유실을 화학비료로 보충

(3) 다양도

- 자연생태계에 비하여 종다양도가 매우 낮음(1종, 2-3종)

(4) 개체군 관리

- 사람이 파종량, 재식밀도, 재배시기 조절
- 개체군 스스로 세대 존속과 조정이 일어나기 어렵다.
- 생물다양성의 축소, 영양구조의 단순화로 생태적 지위를 가지지 못함
- 병해충이 돌발적으로 발생하는 취약한 생태계

(5) 안정성

- 영양물질의 순환이 적음
- 작물의 수확으로 생태계 밖으로 수탈
- 영양물질 유실을 화학비료로 보충

농업생태계와 자연생태계의 구조와 기능 비교

구조와 기능	농업생태계 (농경지)	자연생태계 (산림)
종 다양성	낮음	높음
유전자 다양성	낮음	높음
영양물질 순환	개방	폐쇄
안정성	낮음	높음
인위적 조절	의존적	독립적
지속기간	단시간	장시간
서식처 균질성	간단	다양

2) 해충의 발생시기 예찰

(1) 해충의 밀도변동 요인

① 천적류 – 포식성 곤충이나 기생성 곤충

- ② 물리, 화학적 환경요인 일장, 온도, 습도, 강우, 계절 등
- ③ 숙주식물의 해충에 대한 반응
 - 형태적 : 강모, 털, 경피조직 등
 - 생화학적 : 소화를 저해시키는 2차 대사물질 등

(2) 해충의 발생시기 예찰

- ① 발생시기를 예찰하기 위하여 온도별 실내 사육 시험
- ② 축적된 자료를 바탕으로 발생시기와 장소 예찰
- ③ 해충의 발육기간은 온도가 증가함에 따라 감소하고, 최적온도 이후에는 다시 증가

2) 해충의 발생시기 예찰

(1) 발육기간에 미치는 온도영역의 특징

- ① 저온영역의 발육률은 '0'에 근접, 매우 느리거나 정지
- ② 온도가 높아지면 발육률도 증가, 온도와 발육률은 선형관계
- ③ 고온영역에서는 발육률 급격히 감소, 온도가 더 높아지면 치사

(2) 발육률과 적산온도

- ① 발육률의 누적이 '1.0'이 되면 발육이 완료
- ② 온도와 발육률이 선형적 관계

r(T) = aT + b r(T): 발육률(1/발육기간)

7: 온도 a: 회귀계수(기울기), b: 절편

- ③ 발육영점온도(T_{Ω})는 발육률이 0이 되는 온도, T_{Ω} =-b/a
- ④ 발육완료에 필요한 온량(적산온도)은 기울기의 역수값(1/a)
- ⑤ 적산온도모형은 해충발생예찰 모형으로 가장 많이 이용

(3) 해충발생량 예찰

- ① 생명표(life table)
 - 암컷 한 마리당 산란수,
 - 알에서 성충에 이르는 각 발육단계에서 사망 요인분석
 - 발생량 예측
- ② 해충의 밀도
 - 시간적으로는 산란과 사망
 - 공간적으로는 집합과 분산으로 변동

미국흰불나방의 생명표

발육단계	생존수	사망요인	사망수	사망률
(X)	(/x)	(dxF)	(dx)	(1000 <i>qx</i>)
알	4,278	미부화	125	2.9
부화유충	4,153	거미 등	746	18.0
1령 유충	3,407	자연사	104	3.1
		거미 등	1,093	32.1
2령 유충	2,210	자연사	11	0.5
		거미 등	322	14.6
3령 유충	1,877	거미 등	463	24.7
4령 유충	1,414	거미 등	680	48.1
		새 포식	693	49.0
7령 유층	41	벌등	29	70.7
전용	12	기생봉	3	25.0
번데기	9	기생봉	1	11.1
		병	1	11.1
우화성충	7	총사망률	4,271	99.37

(4) 해충밀도 조사법

- ① 육안 조사법: 직접 육안으로 조사, 진딧물
- ② 유아등 조사법: 주광성을 이용 해충의 방제여부나 방제적기를 예측, 나방류
- ③ 공중포충망 조사법: 공중에 망을 설치해 놓고 잡힌 해충 조사, 비래해충
- ④ 포충망 조사법: 구경 37㎝의 포충망으로 25회 왕복조사, 멸구류 등 미소해충
- ⑤ 황색수반 조사법: 황색에 유인된 해충을 수반에 빠져 죽게 함. 진딧물, 멸구류
- **⑥ 페로몬트랩 조사법**: 파밤나방, 배추좀나방, 복숭아명나방 등

⑦ 먹이트랩(bait trap) 조사법

- -미끼를 이용하여 해충의 밀도 조사
- -멸강나방은 당밀과 술의 혼합물
- -갈색여치는 막걸리와 생선가루
- -나무좀은 이목 미끼

⑧ 끈끈이트랩 조사법

- -해충이 좋아하는 색깔이나 유인물질이 포함된 표면에 끈끈이
- -가루이나 총채벌레의 예찰에 이용

⑨ 털어잡기 조사법

- -식물체를 쳐서 떨어지는 해충수를 조사하는 방법
- -활동성이 약한 해충조사에 유용

⑩ 동력흡충기 조사법

-잎에 서식하는 미소해충의 조사에 유용

해충방제

해충으로 인한 경제적 손실을 최소화하고, 밀도를 낮은 수준으로 유지하는 것

- ① 경제적 피해수준(economic injury level, EIL) 경제적 손실이 나타나는 해충의 최저밀도, 피해액과 방제비가 같은 수준인 밀도
- ② 경제적 피해 허용수준(economic threshold level, ETL)
 경제적 피해수준에 도달하는 것을 억제하기 위하여 방제수단을 써야 하는 밀도 수준
- ③ 일반평형밀도(general equilibrium position, GEP) 외부 간섭에 영향을 받지 않고 장기간에 걸쳐 형성된 밀도

해충 발생유형별 밀도 변동과 방제

(EIL: 경제적 피해수준, ETL: 경제적 피해 허용수준, GEP: 일반평형밀도,

MEP: 변형된 일반평형밀도) 자료: Stern et al. (1959).

(1) 해충 발생의 유형

- ① **잠재해충**(potential pest): 일명 **2차 해충** 방제대상이 되지 않음
- ② 간헐해충(occasional pest): 일명 돌발해충
 잠재해충의 밀도가 급격히 증가하여 경제적 피해 허용수준을 넘어 방제가 필요 외래해충(꽃매미, 미국선녀벌레, 갈색날개매미충 등)
- ③ 수시해충(frequent pest): 일명 관건해충 일반평형밀도가 경제적 피해 허용수준에 이르고 있기 때문에 항상 경계해야 함 목화진딧물, 점박이응애 등
- ④ 상시해충(constant pest): 가장 피해가 심한 해충 일반평형밀도를 경제적 피해허용수준 이하로 변화시켜 유지 복숭아심식나방, 솔수염하늘소 등

(2) 해충의 요방제 수준(control threshold, CT)

방제여부를 결정하는 기준

(예) 혹명나방의 요방제수준은 벼의 유수분화기의 피해엽률이 25% 이하 이면 방제하지 않고, 25% 이상일 때에 방제

작물 및 해충별 요방제 수준				
작물	해충명	요방제 수준		
	벼멸구	조생종: 20마리/20주(7월 하순~8월 상순) 중·만생종: 15마리/20주(7월 하순~8월 상순) ※(): 단시형 암컷 성충		
벼	혹명나방	피해엽률: 유수분화기 25%, 유숙기 6%		
	먹노린재	8마리/50주 (유수분화기)		
	흑다리긴노린재	약충 0.5마리/주 (8월 중하순)		
や	톱다리개미허리노린재	1.5마리/5주 (착협기)		
	담배거세미나방	6마리/1주 (착협기)		
	파밤나방	8마리/20주 (3~4엽기)		

작물 및 해충별 요방제수준

작물	해충명	요방제수준
사과	복숭아순나방	· 25마리 이상/트랩/5일간
고추	꽃노랑총채벌레	·성충 2~6마리/트랩/4일간
	뿌리혹선충	· 30마리/토양 100cm³ (정식 시)
딸기	점박이응애	· 0.8 ~ 1마리/잎 또는 6 ~ 8마리/주(첫 수확기)
ı ul	목화바둑명나방	· 유충 0.4마리/주/착과 전 · 유충 1.0마리/주/착과 후
수박	아메리카잎굴파리	· 유충 굴수 1개/잎/착과 전 · 유충 굴수 7개/잎/과비대기

해충방제의 종류

3 해충방제의 종류

- □ 방제의 뜻:예방 +구제의 합성어
- □ 해충 방제의 종류: 사용되는 재료나 방법을 중심으로 분류
 - 법적 방제 (legal control)
 - 재배적 방제 (cultural control)
 - 기계적․물리적 방제 (mechanical and physical control)
 - 화학적 방제 (chemical control)
 - 생물적 방제 (biological control)
 - 행동적 방제 (ethological control, behavioral control)
 - 종합적 해충관리 (IPM, integrated pest management)

수고하셨습니다.

11감

'해충방제의 기초 이론

레인지웨

12감

해충방제법

