Работа 2.3.1 Современные методы измерения и получения вакуума

Валеев Рауф Раушанович группа 825

1 апреля 2019 г.

Краткая теоритическая справка

Основные понятия

Основы процесса откачки и связанные с ним понятия рассмотрим на примере простейшей вакуумной системы (рис. 1).

- 1 откачиваемый объём, 2 вакуумный насос, 3 вакуумпровод (трубка),
- 4 впускной патрубок (вход) насоса, 5 выпускной патрубок (выход) насоса

Рис. 1: Простейшая вакуумная система

Здесь и далее L - единица измерения длины, M - единица измерения массы, T - единица измерения времени.

1. **Предельное остаточное давление** (предельный вакуум) $P_{\text{пр}}[L^{-1}MT^{-2}]$ - наименьшее давление газа, которое формируется в процессе откачки в

рассматриваемом сечении вакуумпровода (рассматриваемой точке вакуумной системы). Обычно выделяют предельное давление в камере или на входе в насос.

- 2. **Наибольшее выпускное давление** $[L^{-1}MT^{-2}]$ максимально допустимое давление газа на входе насоса.
- 3. **Быстрота откачивающего действия** (скорость откачки) вакуумной системы $S[L^3T^{-1}]$ объем газа, проходящий через рассматриваемое сечение вакуумпровода в единицу времени при текущем давлении в данном сечении:

$$S = \frac{dV}{dT}$$

Следовательно быстродействие насоса $S_{\rm H}$ определяется как:

$$S_{\scriptscriptstyle \mathrm{H}} = rac{dV_{\scriptscriptstyle \mathrm{H}}}{dt}$$

А эффективная скорость откачки камеры S_0 :

$$S_0 = \frac{dV_0}{dt}$$

4. Падение давления вдоль вакуумпровода $\Delta P = P_1 - P_2$ определяется его **пропускной способностью** (проводимостью) $U[L^3T^{-1}]$:

$$U = \frac{Q}{P_1 - P_2}$$

где $Q[L^2MT^{-3}]$ - **поток газа** через вакуумпровод с соответствующими давлениями на концах.

5. Величина $Z[L^{-3}T]$, обратная проводимости, называется импедансом вакуумпровода:

$$Z = \frac{1}{U}$$

В общем случае указанные величины $S,\ U,\ Q,\ Z$ как и сами давления P_1 и P_2 зависят от времени. Но в конце процесса откачки устанавливается квазистационарный режим, при котором поток газа становится практически постоянным и равным количеству поступающего в систему газа в единицу времени вследствие наличия течей, т.е. нарушения герметичности (в основном в местах механического соединения отдельных узлов вакуумной системы). Для стационарного режима можно записать условие непрерывности потока откачиваемого газа:

$$P_1S_0 = PS = P_2S_{\scriptscriptstyle \mathrm{H}} = Q$$

6. Основное уравнение вакуумной техники

$$\frac{1}{S_0} = \frac{1}{S_{\mathrm{H}}} + \frac{1}{U}$$

Проводимость длинного трубопровода

$$U_{\rm Tp} = \frac{Q}{P_2 - P_1} = P \frac{\pi R^4}{8\nu L} \sim \frac{R^4}{L} \frac{P}{\sqrt{Tm}}$$

$$U_{\rm Tp} = \frac{Q}{P_2 - P_1} = \frac{4}{3} \frac{R^3}{L} \sqrt{\frac{2\pi kT}{m}} \sim \frac{R^3}{L} \sqrt{\frac{T}{m}}$$

В случае последовательного соединения:

$$U_{\Sigma} = \frac{1}{Z_{\Sigma}} = \frac{1}{\Sigma Z_i}$$

$$S_0 = \frac{S_{\rm H} U_{\Sigma}}{S_{\rm H} + U_{\Sigma}} = \frac{S_{\rm H}}{\frac{S_{\rm H}}{U_{\Sigma}} + 1} \approx S_{\rm H}$$

Время откачки

Положим, что за промежуток dt давление в откачиваемом объеме V_0 снижается на dP_1 . Тогда за промежуток времени dt количество газа, поступающего в трубу равно S_0P_1dt , а эта же убыль газа в объеме равна V_0dP_1 , следовательно

$$S_0 P_1 dt = -V_0 dP_1$$

$$dt = -\frac{V_0}{S_0} \frac{dP_1}{P_1}$$

$$dt = -V_0 \left(\frac{1}{S_H} + \frac{1}{U}\right) \frac{dP_1}{P_1}$$

Итого получаем, что

$$P(t) = P_1 \exp\left(-\frac{S_0}{V_0}t\right)$$

Экспериментальная установка

Экспериментальный стенд выполнен на основе компактного безмасляного высоковакуумного откачного поста Pfeiffer Vacuum серии HiCube 80 Есо с диафрагменным и турбомолекулярным насосами, вакуумметров Pfeiffer Vacuum

Рис. 2: Схема экпериментальной установки

серии DigiLine, и вакуумных быстроразъёмных компонентов. Управление основными функциями откачного поста, контроль и запись параметров установки осуществляется блоком управления (БУ) через цифровой интерфейс RS-485 с помощью специального программного обеспечения PV TurboViewer8. Вакуумный пост Pfeiffer Vacuum HiCube 80 Eco (РМ S03 555 A) выполнен на базе диафрагменного форвакуумного насоса MVP 015 (ДН) и турбомолекулярного насоса НіРасе 80 (ТМН). Откачка вакуумной камеры (К) может происходить как двумя насосами (ТМН и ДН) через шиберный затвор (ШЗ) и мембранный кран 1 (МК1), так и только форвакуумным насосом (ДН) по схеме «байпас» (англ. bypass — обходной путь), выполненной на основе вакуумных компонентов: сильфона (С), мембранного крана 2 (МК2), тройников (Т), переходников, шланга (Ш). Для контроля и измерения давления в вакуумной камере используются цифровой вакууметр РРТ 100 (В1) типа Пирани (терморезисторный) и комбинированный вакуумметр МРТ 100 (В2) типов Пирани (терморезисторный) и холодный катод (инвертированный магнетрон). Контролированный напуск воздушной атмосферы в камеру осуществляется через кран-натекатель EVN 116 (KH) с регулируемым потоком. Дополнительный выход с краном 3 (МК3) закрыт заглушкой (3) и служит для присоединения дополнительного объёма в случае необходимости.

Ход работы

Подготовка оборудования

- 1. В первую очередь нужно выровнять давление во всех частях установки.
- 2. Затем впускаем атмосферный воздух в установку через кран-натекатель с верхней и нижней ручкой регулировки.
- 3. Далее нужно отгорадить систему от внешней атмосферы, чтобы создать вакуум.
- 4. Готовим компьютер и блок управления установкой к работе и записи данных.

Определение откачиваемого объёма и измерение скорости откачки форвакуумным насосом

- 1. Выключаем турбомолекулярный насос.
- 2. Откачиваем установку форвакуумным насосом.
- 3. Присоединяем к установке сильфон с воздухом при атмосферном давлении. $(V_{\text{сильфона}}=V_0=265ml).$
- 4. Выравниваем давление в сильфоне и вакуумной камере экспериментального стенда.
- 5. Выравниваем давление в вакуумной камере К и форвакуумной магистрали установки.
- 6. Напустим воздух в установку до атмосферного давления.
- 7. Готовим установку к повтору предыдущих пунктов. Повторяем их еще 1-2 раза.
- 8. По данным, полученным с установки считаем все объемы. $P_{\text{для камеры}} = 220 mbar$, $P_{\text{для всей установки}} = 170 mbar \Rightarrow V_{\text{камеры}} = \frac{P_{\text{атм}}V_0}{P_1} V_0 \approx (0, 84 \pm 0, 05)$ л, Vвсей установки $= \frac{P_{\text{атм}}V_0}{P_2} \approx (1, 26 \pm 0, 05)$ л, \Rightarrow Vфорвакуумной магистрали $= (0, 5 \pm 0, 05)$ л

	1		2		
t, c	P, mbar	$\sigma_P, mbar$	t, c	P, mbar	$\sigma_P, mbar$
2	700,0	0,1	2	1000,0	0,1
4	560,0	0,1	4	480,0	0,1
6	400,0	0,1	6	340,0	0,1
8	320,0	0,1	8	220,0	0,1
10	300,0	0,1	10	160,0	0,1
12	300,0	0,1	12	120,0	0,1
14	300,0	0,1	14	90,0	0,1
16	300,0	0,1	16	68,0	0,1
18	300,0	0,1	18	58,0	0,1
20	230,0	0,1	20	44,0	0,1
22	180,0	0,1	22	37,0	0,1
24	150,0	0,1	24	31,0	0,1
26	120,0	0,1	26	26,0	0,1
28	98,0	0,1	28	20,0	0,1
30	83,0	0,1	30	18,0	0,1
32	69,0	0,1	32	15,0	0,1
34	62,0	0,1	34	13,0	0,1
36	55,0	0,1	36	11,0	0,1
38	46,0	0,1	38	9,5	0,1
40	38,0	0,1	40	8,5	0,1
42	35,0	0,1	42	7,5	0,1
44	32,0	0,1	44	6,8	0,1
46	29,0	0,1	46	6,4	0,1
48	25,0	0,1	48	6,1	0,1
50	21,0	0,1	50	5,7	0,1
52	18,0	0,1	52	5,4	0,1
54	17,0	0,1	54	5,1	0,1
56	16,0	0,1	56	4,9	0,1
58	14,0	0,1	58	4,6	0,1
60	13,0	0,1	60	4,4	0,1
62	11,0	0,1	62	4,1	0,1
64	10,0	0,1	64	3,9	0,1
66	9,3	0,1	66	3,9	0,1
68	8,7	0,1	68	3,8	0,1
70	8,1	0,1	70	3,7	0,1
72	7,7	0,1	72	3,6	0,1
74	7,1	0,1	74	3,6	0,1

1			2			
t, c	P, mbar	$\sigma_P, mbar$	t, c	P, mbar	$\sigma_P, mbar$	
76	6,8	0,1	76	3,5	0,1	
78	6,5	0,1	78	3,5	0,1	
80	6,3	0,1	80	3,4	0,1	
82	6,1	0,1	82	3,4	0,1	
84	5,9	0,1	84	3,3	0,1	
86	5,7	0,1	86	3,3	0,1	
88	5,5	0,1	88	3,3	0,1	
90	5,4	0,1	90	3,2	0,1	
92	5,2	0,1	92	3,2	0,1	
94	5,0	0,1	94	3,2	0,1	
96	4,9	0,1	96	3,1	0,1	
98	4,8	0,1	98	3,1	0,1	
100	4,6	0,1	100	3,1	0,1	
102	4,5	0,1	102	3,1	0,1	
104	4,4	0,1	104	3,1	0,1	
106	4,2	0,1	106	3,0	0,1	
108	4,1	0,1	108	3,0	0,1	
110	4,1	0,1	110	3,0	0,1	
112	3,9	0,1	112	3,0	0,1	
114	3,9	0,1	114	3,0	0,1	
116	3,9	0,1	116	2,9	0,1	
118	3,8	0,1				
120	3,8	0,1				
122	3,8	0,1				
124	3,7	0,1				
126	3,7	0,1	-			
128	3,7	0,1	_			
130	3,7	0,1	-			
132	3,6	0,1	-			
134	3,6	0,1	_			
136 138	3,6	0,1	-			
	3,6	0,1	-			
140	$\frac{3,6}{3,5}$	$\begin{array}{ c c }\hline 0,1\\\hline 0,1\\ \end{array}$	-			
142	3,5	0,1 $0,1$	-			
144	3,5	0,1 $0,1$	-			
148	$\frac{3,5}{3,5}$	0,1 $0,1$	-			
150	$\frac{3,5}{3,5}$	0,1 $0,1$	_			
150	$\frac{3,5}{3,5}$	0,1 $0,1$	_			
102		0,1	J			

- 9. считаем эффективную скорость форвакуумной откачки, для этого мы в на графике $ln(P/P_1)$ от t ищем наклон графика на интервале 10-100 мбар. Потом считаем $\tau=-\frac{t}{ln(P/P_1)}=(16,06\pm0,02)$ с. А далее, зная объем камеры расчитываем эффективную скорость откачки $S_0=V$ всей установки $/ au\approx(0,25\pm0,05)m^3/c$
- 10. Зная S_0 и $S_{\scriptscriptstyle
 m H}$ мы находим U по формуле

$$U = \frac{S_{\rm H} - S_0}{S_{\rm H} \cdot S_0} \approx 0, 2m^3/c$$

Рис. 3: График зависимости $ln(P/P_1)$ от t для форвакуумного насоса

Измерение скорости откачки турбомолекулярным насосом и определение предельного вакуума

1. Откачиваем установку форвакуумным насосом.

- 2. Откачиваем объем турбомолекулярным насосом.
- 3. считаем скорость откачки воздуха $\tau \approx 0,049c,\, S_0 \approx 49l/c$

<i>t</i> .c.	D mhan		
t, c	P, mbar	t, c	P, mbar
2	2,800000	54	0,000120
4	1,800000	56	0,000110
6	$\mid 0,630000 \mid$	58	0,000110
8	0.015000	60	0,000100 $0,000095$
10	0,003800	-	,
12	0,002400	62	0,000091
14	0,001500	64	0,000088
16	0,001100	66	0,000083
18	0,001000	68	0,000080
$\frac{10}{20}$	0,001000	70	0,000076
$\frac{20}{22}$	0.001000	72	0,000073
	,	74	0,000069
24	0,000870	76	0,000067
26	0,000660	78	0,000065
28	0,000580	80	0,000064
30	0,000500	82	0,000062
32	0,000390	84	0,000061
34	0,000350	86	0,000059
36	0,000310	88	0,000058
38	0,000280	90	0,000057
40	0,000240	92	0,000057
42	0,000190	94	<u>'</u>
44	0,000180	_	0,000054
46	0,000170	96	0,000053
48	0,000150	98	0,000052
50	0,000140	100	0,000051
$\frac{50}{52}$	0,000130	102	0,000050
	_ 5,555 - 50		

4. Определяем уровень течей по ухудшению вакуума после перекрытия насосом ТМН. Считаем $Q_{\rm H}=V\frac{dP}{dt}\approx 1, 4l/c$ Проверяем, что выполяняется условие того, что $Q_{\rm H}<< Q$

Рис. 4: График зависимости $ln(P/P_1)$ от t для турбомолекулярного насоса