Hybrid Belief Pruning with Guarantees for Viewpoint-Dependent Semantic SLAM

Tuvy Lemberg and Vadim Indelman

Introduction

- ► Today, robots performing complex tasks.
- Semantic maps are often needed.
- Advances in object recognition and classification enable the mapping.
- ▶ Usually it is assumed semantic observations are viewpoint independent $p(z^s \mid c_n)$.

Class- and Viewpoint-Dependent

A viewpoint-dependent observation model is more natural.

- Looking on the people below - it's a floor
- Looking on the people above it's a roof.

Problem Formulation

- ► View-dependent observation model $p(z^s \mid c_n, x^r)$.
- Classes and camera pose are dependent.
- Classes of different objects are dependent.
- #classes^{#objects} hypotheses.
- Pruning hypotheses is essential.

Problem Formulation - Continuation

- $ightharpoonup \Omega^{in}$, Ω^{out} maintained and pruned sets
- $ightharpoonup \tilde{b}[C]$ unnormalized belief.
- $hline \eta = \left(\sum_{C \in \mathcal{C}} \tilde{b}[C]\right)^{-1}$ normalizer.
- lacksquare $\eta_{prun} = \left(\sum_{C \in \Omega^{in}} ilde{b}[C]\right)^{-1}$ after pruning.
- $b[C] = \eta \tilde{b}[C] \le \eta_{prun} \tilde{b}[C].$
- ▶ No indication about pruned hypotheses.

Approach

We consider two cases:

- ▶ Independent prior: $\mathbb{P}_0(C) = \prod_{n=1}^N \mathbb{P}_0(c_n)$.
- ▶ Dependent prior: $\mathbb{P}_0(C) \neq \prod_{n=1}^N \mathbb{P}_0(c_n)$.

By obtaining the normalization factor/lower bound, we

- Probabilities/lower bounds.
- Indication of pruned hypotheses.
- Conservative belief.

Experiments

simulated environment

running time vs #objects

Experiments

 $C^{(t)} \in \Omega^{in}$ Independent prior $C^{(t)} \notin \Omega^{out}$

Conclusions

- ► View-dependent model coupling.
- Exponential number of hypotheses.
- ► Naive pruning overconfident.
- ► The proposed alternatives:
 - ► Guarantee confidence in classification.
 - Runtime nearly same.
 - More accurate.