

Nombre del estudiante: Marvin Jaroht Solano Lopez

####1. Llena las palabras faltantes:

El grupo entero de individuos sobre el cual la información es requerida es llamada Los individuos son llamados La es la parte que es examinada para extraer información.

- población, variables explicativas, subgrupo
- b.
- c.
- d.

Respuesta: b

población, unidades de muestreo, muestra muestra, unidades de muestreo, población meta conjunto, ítem de interés, estrato

####2. En un estudio de la ecología de una especie de pez se colectaron las siguientes variables para cada individuo:

Sexo, peso inicial, temperatura corporal, peso ganado.

Escoge la respuesta correcta respecto al tipo de variables que se colectaron

- Nominal, racional, racional, racional a.
- Nominal, racional, intervalo, intervalo b.
- Ordinal, racional, intervalo, racional c.
- Nominal, racional, intervalo, racional d.
- Ordinal, intervalo, racional, intervalo e.

Respuesta: d

####3. A partir de una muestra, el peso (kg) de mapaches del Parque Nacional Manuel Antonio resulta en los siguientes valores:

6.7, 2.7, 2.5, 3.6, 3.4, 4.1, 4.8, 5.9, 8.3

Ayuda: Crea el siguiente objeto "a" en R con los pesos de los mapaches:

a < c(6.7, 2.7, 2.5, 3.6, 3.4, 4.1, 4.8, 5.9, 8.3)

pesosmapaches=a <- c(6.7, 2.7, 2.5, 3.6, 3.4, 4.1, 4.8, 5.9, 8.3)

¿Cuáles son el peso medio y el desvío estándar?

El peso promedio fue de 4.66 kg con una desvío estándar de 1.95.

```
media_peso <- mean(pesosmapaches)
media_peso
## [1] 4.666667
sd(pesosmapaches)
## [1] 1.952562</pre>
```

####4. Estos son los largos totales (cm) de 5 caimanes:

```
165, 175, 176, 159, 170
```

Ayuda: crea un objeto "b" en R con las medidas de los caimanes:

```
b <- c(165, 175, 176, 159, 170)
```

```
medidas_caimanes= b <- c(165, 175, 176, 159, 170)
```

¿Cuáles son la mediana muestral y la media muestral?

Mediana muestral 170cm y media muestral 169 cm.

```
mean(medidas_caimanes)
## [1] 169
median(medidas_caimanes)
## [1] 170
```

La media muestral fue de 169cm y la mediana muestral de 170cm.

####5. Si la mayoría de los valores de un conjunto de datos son de aproximadamente de la misma magnitud excepto por unas pocas medidas que son bastante más grandes, ¿cómo serán la media y la mediana del conjunto de datos y que forma tendría el histograma?

- a. La media sería más pequeña que la mediana y el histograma sería asimétrico con una larga cola izquierda.
- b. La media será más grande que la mediana y el histograma sería asimétrico con una larga cola derecha.
- c. La media sería más larga que la mediana y el histograma sería asimétrico con una larga cola izquierda.
- d. La media sería más pequeña que la mediana y el histograma sería asimétrico con una larga cola derecha.
- e. La media sería igual a la mediana y el histograma sería simétrico.

Respuesta: b

####6. ¿Cuál de los siguientes enunciados es VERDADERO?

- a. La media muestral no es sensible a valores extremos.
- b. El rango muestral no es sensible a valores extremos.
- c. El desvío estándar es una medida de dispersión alrededor de la media.
- d. El desvío estándar es una medida tendencia central alrededor de la media.
- e. Si la distribución es simétrica, entonces la media no es igual a la mediana.

Respuesta: C

####7. Se te permite escoger 4 números del 1 al 10 (sin reemplazo). ¿Cuál de los siguientes enunciados es VERDADERO?

- a. Los números 4,5,6,7, tienen el mayor desvío estándar.
- b. Los números 1,2,3,4, tienen el mayor desvío estándar.
- c. Los números 1,5,6,10, tienen el mayor desvío estándar.
- d. Los números 1,2,9,10, tienen el mayor desvío estándar.
- e. Los números 7,8,9,10, tienen el menor desvío estándar.

```
mediasA
                                     < -
                                                                    c(4,5,6,7)
mediasB
                                     < -
                                                                    c(1,2,3,4)
mediasC
                                    < -
                                                                   c(1,5,6,10)
mediasD
                                    < -
                                                                   c(1,2,9,10)
mediasE
                                     <-
                                                                   c(7,8,9,10)
sd(mediasA)
## [1] 1.290994
sd(mediasB)
## [1] 1.290994
sd(mediasC)
## [1] 3.696846
sd(mediasD)
## [1] 4.654747
sd(mediasE)
## [1] 1.290994
```

Respuesta: d

####8. ¿Cuál de los siguientes enunciados es VERDADERO?:

- a. Los números 3,3,3 tienen un desvío estándar de 3.
- b. Los números 3,4,5 tienen un desvío estándar menor al desvío estándar de los números 1003, 1004, 1005.
- c. La varianza es el desvío estándar al cuadrado.
- d. La moda es el valor que menos se repite.
- e. La media es una medida de dispersión de los datos.

Respuesta: C

####9. Con los datos "alas.txt" (carpeta Datos) que contiene las longitudes de alas de una especie de aves en 2 localidades diferentes, calcula la media para cada localidad. Inserta un R chunk y escribe el código

Localidad A = 24.11748 Localidad B = 25.23504

####10. Con los datos "alas.txt" que contiene las longitudes de alas de una especie de aves en 2 localidades diferentes, realiza un gráfico de caja (boxplot) y un gráfico de violín para cada localidad. Inserta un R chunk y escribe el código

dato	s_alas=	<pre>import("datos01/alas.txt")</pre>		
dato	s_alas			
##			longitud	localidad
##	1	29.31140	_	Α
##	2	25.96292		Α
##	3	24.47853		Α
##	4	22.94904		Α
##	5	22.25191		Α
##	6	25.20959		Α
##	7	19.33376		Α
##	8	25.78789		Α
##	9	22.56246		Α
##	10	25.52483		Α
##	11	22.73126		Α
##	12	23.48272		Α
##	13	25.81436		Α
##	14	23.61457		Α
##	15	24.72731		Α
##	16	28.36228		Α
##	17	24.51804		Α
##	18	16.98068		Α
##	19	28.37925		Α
##	20	24.20590		А

##	21	26.11796	Α
##	22	29.06467	Α
##	23	22.06382	Α
##	24	22.88138	Α
##	25	23.44479	Α
##	26	21.18421	Α
##	27	20.47674	Α
##	28	23.77729	Α
##	29	20.26934	Α
##	30	19.18757	Α
##	31	32.91597	Α
##	32	24.23003	Α
##	33	23.11119	Α
##	34	19.48177	Α
##	35	29.05983	Α
##	36	22.77284	Α
##	37	23.14654	Α
##	38	26.00667	Α
##	39	22.45082	Α
##	40	22.07384	Α
##	41	27.90548	Α
##	42	22.82924	Α
##	43	24.01340	Α
##	44	19.48367	Α
##	45	22.19061	Α
##	46	23.63771	Α
##	47	26.16500	Α
##	48	28.88330	Α
##	49	28.86669	Α
##	50	21.99278	A
##	51	29.81984	В
##	52	25.58656	В
##	53	25.08861	В
##	54	29.47527	B B
##	55 56	29.49170	_
## ##	56 57	23.38806 24.27135	B B
##	58	20.95520	В
##	59	29.63321	В
##	60	25.35347	В
##	61	29.38996	В
##	62	17.82669	В
##	63	27.87755	В
##	64	23.40487	В
##	65	32.02936	В
##	66	28.57462	В
##	67	32.44551	В
##	68	25.92111	В
##	69	31.36365	В
##	70	27.43410	В

##	71	16.89100	В
##	72	28.58179	В
##	73	24.75652	В
##	74	27.93270	В
##	75	28.75290	В
##	76	25.62206	В
##	77	23.56552	В
##	78	23.08194	В
##	79	22.88308	B
##	80	17.25769	В
##	81	29.86668	В
##	82	30.05387	В
##	83	23.35198	В
##	84	21.43363	В
##	85	22.10865	В
##	86	28.06292	В
##	87	22.74691	В
##	88	21.86922 20.94718	В
##	89		В
##	90 91	26.03530 16.06792	B B
## ##	92	30.20290	В
##	93	26.30017	В
##	94	30.51081	В
##	95	15.18989	В
##	96	27.29669	В
##	97	30.14747	В
##	98	23.99693	В
##	99	23.05739	В
##	100	28.78991	В
##	101	29.36690	В
##	102	26.98399	В
##	103	24.55058	В
##	104	24.88922	В
##	105	18.89952	В
##	106	26.95935	В
##	107	34.19588	В
##	108	24.66259	В
##	109	27.19062	В
##	110	23.20390	В
##	111	19.50692	В
##	112	17.15765	В
##	113	27.53538	В
##	114	29.07388	В
##	115	30.81347	В
##	116	21.89080	В
##	117	14.76077	В
##	118	21.59737	В
##	119	20.59379	В
##	120 25.92797	В	

dato	s_alas			
##			longitud	localidad
##	1	29.31140	· ·	Α
##	2	25.96292		Α
##	3	24.47853		Α
##	4	22.94904		Α
##	5	22.25191		Α
##	6	25.20959		Α
##	7	19.33376		Α
##	8	25.78789		Α
##	9	22.56246		Α
##	10	25.52483		Α
##	11	22.73126		Α
##	12	23.48272		Α
##	13	25.81436		Α
##	14	23.61457		Α
##	15	24.72731		Α
##	16	28.36228		Α
##	17	24.51804		Α
##	18	16.98068		Α
##	19	28.37925		Α
##	20	24.20590		Α
##	21	26.11796		Α
##	22	29.06467		Α
##	23	22.06382		Α
##	24	22.88138		Α
##	25	23.44479		Α
##	26	21.18421		Α
##	27	20.47674		Α
##	28	23.77729		Α

##	29	20.26934	А
##	30	19.18757	Ä
##	31	32.91597	A
##	32	24.23003	Ä
##	33	23.11119	A
##	34	19.48177	A
##	35	29.05983	A
##	36	22.77284	A
##	37	23.14654	A
##	38	26.00667	A
##	39	22.45082	A
##	40	22.07384	А
##	41	27.90548	A
##	42	22.82924	A
##	43	24.01340	A
##	44	19.48367	А
##	45	22.19061	A
##	46	23.63771	A
##	47	26.16500	A
##	48	28.88330	А
##	49	28.86669	A
##	50	21.99278	A
##	51	29.81984	В
##	52	25.58656	В
##	53	25.08861	В
##	54	29.47527	В
##	55	29.49170	В
##	56	23.38806	В
##	57	24.27135	В
##	58	20.95520	В
##	59	29.63321	В
##	60	25.35347	В
##	61	29.38996	В
##	62	17.82669	В
##	63	27.87755	В
##	64	23.40487	В
##	65	32.02936	В
##	66	28.57462	В
##	67	32.44551	В
##	68	25.92111	В
##	69	31.36365	В
##	70	27.43410	В
##	71	16.89100	В
##	72	28.58179	В
##	73	24.75652	В
##	74	27.93270	В
##	75	28.75290	В
##	76	25.62206	В
##	77	23.56552	В
##	78	23.08194	В

```
##
        79
                                                                                 В
                     22.88308
##
        80
                     17.25769
                                                                                 В
                     29.86668
##
        81
                                                                                 В
                                                                                 В
##
        82
                     30.05387
                                                                                 В
##
        83
                     23.35198
                                                                                 В
##
        84
                     21.43363
##
        85
                                                                                 В
                     22.10865
                                                                                 В
##
        86
                     28.06292
##
        87
                     22.74691
                                                                                 В
##
        88
                     21.86922
                                                                                 В
##
        89
                     20.94718
                                                                                 В
                                                                                 В
##
        90
                     26.03530
                                                                                 В
##
        91
                     16.06792
                                                                                 В
##
       92
                     30.20290
##
        93
                     26.30017
                                                                                 В
##
        94
                                                                                 В
                     30.51081
                                                                                 В
##
        95
                     15.18989
##
       96
                     27.29669
                                                                                 В
       97
                                                                                 В
##
                     30.14747
##
        98
                     23.99693
                                                                                 В
##
        99
                                                                                 В
                     23.05739
                                                                                 В
##
        100
                 28.78991
##
                                                                                 В
        101
                 29.36690
##
        102
                 26.98399
                                                                                 В
##
        103
                 24.55058
                                                                                 В
##
                                                                                 В
        104
                 24.88922
##
        105
                 18.89952
                                                                                 В
##
                                                                                 В
        106
                 26.95935
                                                                                 В
##
        107
                  34.19588
##
                                                                                 В
        108
                 24.66259
                                                                                 В
##
        109
                 27.19062
                                                                                 В
##
        110
                 23.20390
##
        111
                 19.50692
                                                                                 В
##
        112
                 17.15765
                                                                                 В
##
        113
                 27.53538
                                                                                 В
                                                                                 В
##
        114
                 29.07388
                                                                                 В
##
        115
                 30.81347
                                                                                 В
##
        116
                 21.89080
##
                                                                                 В
        117
                 14.76077
##
                 21.59737
                                                                                 В
        118
##
        119
                  20.59379
                                                                                 В
## 120 25.92797
                           В
caculo_medias
                                                  datos_alas
                                                                               %>%
 group_by
                                      (localidad)
                                                                               %>%
  summarise(media = mean (longitud))
## `summarise()` ungrouping output (override with `.groups` argument)
caculo_medias
```

```
tibble:
                                                                          2
##
                                              localidad
##
                                                                      media
                         <chr>>
                                                                      <dbl>
##
                                                                       24.1
##
       1
## 2 B
                25.2
ggplot(datos_alas,
                           aes(localidad,
                                                     longitud))
  geom_boxplot()
                                                      0.4)
  geom_violin(alpha
                                                      0.2)
  geom_jitter(width
  stat_summary(fun.data = "mean_cl_normal", colour = "red", size = 1)
```


