MATH 207: Homework #9

Jesse Farmer

01 December 2003

1. Find $AutD_{2n}$ and $AutS_n$.

Let $\varphi: D_{2n} \to D_{2n}$ be an automorphism. We automatically have, then, $\varphi(I) = I$ and for any $x \in D_{2n}$, $\varphi(x^{-1}) = \varphi(x)^{-1}$. Moreover, we see that if the order of an element x is n then the order of $\varphi(x)$ is also n.

First we consider only the subgroup of rotations, specifically $\varphi(r)$. An element is a generator of this subgroup if and only if it has order n, but an automorphism preserves order. Therefore an automorphism must send r to another generator. Trivially, if an element r^k is a generator then the properties of an automorphism are preserved. Therefore any automorphism of D_{2n} sends r to some generator of the rotational subgroup.

We now consider f, the flip element. As each flip is of order two, sending f to any of f, \ldots, fr^{n-1} . As it is impossible to have more automorphisms here, these are all the automorphisms.

As for the symmetric group, I haven't the slightest.

2. Find $Aut\mathbb{Q}(\sqrt{2})$.

Let $\varphi : \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$ be an automorphism and $a, b \in \mathbb{Q}$. If $x_0 \in \mathbb{Q}$ we know that $\varphi(x_0) = x_0$, so, for any $a + b\sqrt{2} = y_0 \in \mathbb{Q}(\sqrt{2})$ we have $\varphi(y_0) = a + b\varphi(\sqrt{2})$

Notice that $2 = \varphi(2) = \varphi(\sqrt{2}\sqrt{2}) = \varphi(\sqrt{2})\varphi(\sqrt{2}) = \varphi(\sqrt{2})^2$. Thus $\varphi(\sqrt{2}) = \pm\sqrt{2}$ and the only two automorphisms on $\mathbb{Q}(\sqrt{2})$ are $\varphi(a+b\sqrt{2}) = a+b\sqrt{2}$ and $\varphi(a+b\sqrt{2}) = a-b\sqrt{2}$.

3. Find $Aut\mathbb{R}$.

Any automorphism φ on \mathbb{R} must fix \mathbb{Q} . Consider $a \in \mathbb{R}$, a > 0. Then there exists a $b \in \mathbb{R}$ such that $b^2 = a$ and $\varphi(a) = \varphi(b^2) = \varphi(b)^2 > 0$. Next, $a < b \Rightarrow \varphi(b - a) > 0 \Rightarrow \varphi(a) < \varphi(b)$.

Let $y \in \mathbb{R} \setminus \mathbb{Q}$. Assume for contradiction that $y < \varphi(y)$. There exists $r \in \mathbb{Q}$ such that $y < r = \varphi(r) < \varphi(y)$. But then $\varphi(y) < \varphi(r)$ by the fact that φ is increasing, a contradiction.

Likewise, assume for contradiction that $\varphi(y) < y$. There exists $r \in \mathbb{Q}$ such that $\varphi(y) < \varphi(r) = r < y$. But then $\varphi(r) < \varphi(y)$ by the fact that φ is increasing, a contradiction.

Therefore $\varphi(x) = x$ for all $x \in \mathbb{R}$.

4. Given $r \in \mathbb{Q}$ and $|r|_p = 1$ find $k \in \mathbb{Z}$ such that $|r - k|_p \leq \frac{1}{n^m}$ for $m \in \mathbb{N}$.

Let $r = \frac{a}{b}$. We need to find $k \in \mathbb{Z}$ such that $|\frac{a}{b} - k|_p \le \frac{1}{p^m}$. We know that $p \not| b$, so $|b|_p = 1$. Hence we need to find k such that $|\frac{a}{b} - k|_p = |\frac{a - bk}{b}|_p = \frac{|a - bk|_p}{|b|_p} = |a - bk|_p \le \frac{1}{p^m}$ for any $m \in \mathbb{N}$.

First consider $a \cong kb \pmod{p}$. For $k=0,\ldots,p-1$ we see this forms a reduced residue system, and thus that there exists a k which satisfies the above congruence. For each $n=0,\ldots,m-1$ we then have m solutions. Iterating this for each n, that is, for each $n \cong kb \pmod{p^n}$, we arrive at a reduced residue system with one less solution than the previous. Therefore, there is one integer such that $|a-bk|_p \leq \frac{1}{p^m}$ which we find by repeating this process.

- 5. Find a sequence in \mathbb{Q} which is Cauchy but does not converge under the p-adic norm.
 - Choose $a_n = \sum_{k=1}^n p^k$. Assuming n > m without a loss of generality, we have $|a_n a_m|_p = \frac{1}{p^{n+1}}$, so (a_n) is Cauchy. Assume (a_n) converges, then for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $n \geq N \Rightarrow |a_n L|_p < \epsilon$. If $p \not\mid L$ then $|a_n L|_p = 1$ for all n and we are done, so assume p|L and write L in base-p. Even if L is rational we can do this, since the numerator and denominator are integers and they can certainly be written in base-p. Moreover, we can split apart the sum of the denominator to get a sum of rational numbers times a prime power. $|a_n \sum_{k=1}^m b_k p^k|_p = |\sum_{k=1}^n c_k p^k|_p = max_{1 \leq k \leq n} \{|c_k p^k|_p\} > 0$. Therefore we can pick an $\epsilon > 0$ (anything smaller than this number) for which any N will fail, i.e., this sequence does not converge.
- 6. Let $V \subset X'$ be an open set. Show that $f: X \to X'$ is continuous if $f^{-1}(V)$ is open. Let $x_0 \in X$ be arbitrary and $\epsilon > 0$ be fixed. $B_{\epsilon}(f(x_o))$ is open, so $f^{-1}(B_{\epsilon}(f(x_o)))$ is also open by hypothesis. Since $f(x_0) \in B_{\epsilon}(f(x_0))$ we have that $x_0 \in f^{-1}(B_{\epsilon}(f(x_o)))$, and hence that there exists $\delta > 0$ such that $B_{\delta}(x_0) \subset f^{-1}(B_{\epsilon}(f(x_o)))$.

If $\rho(x, x_0) < \delta$ then $x \in B_{\delta}(x_0)$ and, moreover, $x \in f^{-1}(B_{\epsilon}(f(x_0)))$. Therefore, $f(x) \in B_{\epsilon}(f(x_0))$, or, $\rho(f(x), f(x_0)) < \epsilon$. That is, f is continuous.

7. Let $V \subset X'$ be a closed set. Show that $f: X \to X'$ is continuous if $f^{-1}(V)$ is closed. Let $f^{-1}(V)$ be closed.

Claim:
$$f^{-1}(V^c) = f^{-1}(V)^c$$

Proof: $x \in f^{-1}(V^c) \Leftrightarrow f(x) \in V^c$
 $\Leftrightarrow f(x) \notin V$
 $\Leftrightarrow x \notin f^{-1}(V)$
 $\Leftrightarrow x \in f^{-1}(V)^c$

Then $f^{-1}(V)^c = f^{-1}(V^c)$ is open. By the previous problem, this correspondence between open sets and their preimage impluies f is continuous.

8. (a) Show that the set of all homeomorphisms between a set and itself is a group under composition.

We know that the set of all bijections from a set to itself forms a group under composition, so all we must show is that composition preserves continuity. We will denote the set of all homeomorphisms from X to itself as \mathbb{H} .

Let $f, g \in \mathbb{H}$. f is continuous at every point in X, so it is certainly continuous at g(a). Then, there exists a $\delta_1 > 0$ such that for all $y \in X$, $\rho(y, g(a)) < \delta_1 \Rightarrow \rho(f(y), f(g(a))) < \epsilon$ for all $\epsilon > 0$. In particular, y = g(x). Moreover, for some delta > 0 we have $\rho(x, a) < \delta \Rightarrow \rho(g(x), g(a)) < \epsilon$ for all $\epsilon > 0$.

That is, for all $\epsilon > 0$ there exists $\delta > 0$ such that $\rho(x, a) < \delta \Rightarrow \rho(g(x), g(a)) < \delta_1 \Rightarrow \rho(f(g(x)), f(g(a))) < \epsilon$.

As we already have that the inverses are continuous, we now have that their composition is, too. Therefore composition preserves continuity and the set of all homeomorphisms from a set to itself forms a group under composition.

(b) Show that the set of all isometries between a set and itself is a group under composition.

Let f, g be isometries. Since g is a bijection from a set to itself, we have that there exist x, y for any a, b such that g(x) = a and g(y) = b. Then $\rho((f \circ g)(x), (f \circ g)(y)) = \rho(f(a), f(b)) = \rho(g(x), g(y)) = \rho(x, y)$. Therefore the composition of isometries is also an isometry, and, as above, we inherit all the other properties of the group of bijections from a set to itself.