Virtuelle Integration von Datenquellen mit einer Graph-Datenbank

(Projekt ArcoFaMa)

Prof. Dr. Petra Sauer Dipl.-Inf. Frank Herrmann M.Sc. Jan Matusewicz

Ausgangssituation beim Botanischen Garten Berlin

- 43 ha Gartenfläche
- 17.000 m² unter Glas (Schau- und Anzuchtgewächshäuser)
- Ca. 4000 Bäume
- 22.000 Pflanzenarten (wiss. Datenbank der Pflanzensammlung)
- Be- und Entwässerungssystem z.T. noch aus den Gründungsjahren 1899 (Fördermenge ca. 80 – 130 Tsd. m³ / Jahr)
- 300 CAD-Dateien mit Gartenbau- und bewirtschaftungsrelevanten Objekten
- Aufwendige Sanierung des "Großen Tropenhauses" (2006-2009) → z.T. unter Einsatz von 3D-Gebäudemodellen

University of Applied Sciences

4000 Bäume in Baumdatenbank

Gattung/Art	Baum	BG-Ort	Kategorie	Alter	Kronenvitali	Baumhöhe [Kronendurch	Stammdm. [
Ostya virginiana	5	PG-03-001	Pflanzengeo	63	3	über 10	9	50
Celtis occidentalis L.	6	PG-03-001	Pflanzengeo	63	3	über 10	10	49
Aesculus glabra Willd.	7	PG-03-001	Pflanzengeo	78	2	über 20	9	85
Aesculus glabra Willd.	8	PG-03-001	Pflanzengeo	68	2	über 15	8	60
Ostya virginiana	9	PG-03-001	Pflanzengeo	48	3	über 15	9	39
Fraxinus americana L.	10	PG-03-001	Pflanzengeo	63	2	über 15	13	56
Quercus rubra L.	11	PG-03-001	Pflanzengeo	68	3	über 15	13	55
Quercus rubra L.	12	PG-03-001	Pflanzengeo	68	3	über 15	12	60
Quercus rubra L.	13	PG-03-001	Pflanzengeo	63	3	über 15	9	49
Liriodendron tulipifera L.	14	PG-03-001	Pflanzengeo	63	2	über 20	10	48

University of Applied Sciences

Entfernung zu Baum 10?

Genauer Standort?

Weg zum Ausgang?

Gattung/Art	Baum	BG-Ort	Kategorie	Alter	Kronenvitali	Baumhöhe [Kronendurch	Stammdm. [K
Ostya virginiana	5	PG-03-001	Pflanzengeo	63	3	über 10	9	50
Celtis occidentalis L.	6	PG-03-001	Pflanzengeo	63	3	über 10	10	49
Aesculus glabra Willd.	7	PG-03-001	Pflanzengeo	78	2	über 20	9	85
Aesculus glabra Willd.	8	PG-03-001	Pflanzengeo	68	2	über 15	8	60
Ostya virginiana		PG-03-001	Pflanzengeo	48	3	über 15	9	39
Fraxinus americana L.	10	P 03-001	Pflanzengeo	63	2	über 15	13	56
Quercus rubra L.	11	PG-03-001	Pflanzengeo	68	3	über 15	13	55
Quercus rubra L.	12	PG 03-001	Pflanzengeo	68	3	über 15	12	60
Quercus rubra L.	13	PG-0s 31	Pflanzengeo	63	3	über 15	9	49
Liriodendron tulipifera L.	14	PG-03-001	eflanzengeo	63	2	über 20	10	48
		-						

Projekt ArcoFaMa: Zielstellung und Ansatz

Ziel

- Geometrien und Geodaten aus proprietärem CAD-Format in offenes, interoperables Format überführen
- Geodaten u.a. für das Facility Management nutzbar machen
- Integration mit Datenbeständen des Botanischen Gartens (BGBM)

Problematik

- überwiegend isolierte Datenhaltung von Geo- und FM-Daten
- Überwiegend isolierte Datenhaltung von Geo- und BGBM-Daten

Ansatz

- Regelbasierte Transformation von Geodaten aus CAD-Daten
- Einheitliche Datenhaltung in Geodatenbank
- Aufbau einer Integrationsplattform, um heterogene Daten gemeinsam zu verarbeiten
- Entwicklung von Anwendungen, die die Integrationsplattform nutzen

Informationsintegration

University of Applied Sciences

Herausforderungen

- Verteilung der Datenquellen
- Autonomie der Datenquellen
- Beachtung der Heterogenität
 - Datenmodell (relational, OO, XML)
 - Strukturell (Schema)

Informationsintegration

University of Applied Sciences

Entscheidungen

- Virtuelle Integration
 - Verknüpfte Informationen verbleiben in den ursprünglichen Datenbanken
 - Anfrageschnittstellen nutzen
 - Keine schreibenden Zugriffe auf Datenquellen
- Metadatenbasierter Ansatz

Metadaten

- Informationen zur Beschreibung anderer Daten
- Im Kontext einer Integrationsplattform:
 - Welche Datenquellen sind verfügbar?
 - Wie erreicht man diese Datenquellen? (Technologie, Zugriff)
 - Wie sind die Datenquellen strukturiert? (Abbildung)
 - Wie können die Datenquellen miteinander verknüpft werden? (Klassifizierung Knoten / Kanten)
 - Welche impliziten Daten k\u00f6nnen mit einbezogen werden? (Informationsanreicherung)
- Notwendigkeit des Einsatzes eines effizienten
 Datenspeichers mit flexiblen Verwaltungsfunktionalitäten

Property-Graphen

- kombinieren mehrere Besonderheiten:
 - Knoten verfügen über Eigenschaften (Schlüssel-Werte-Paare)
 - Kanten sind gerichtet und verfügen über einen Namen
 - Kanten können über weitere Eigenschaften verfügen
- Property-Graphen sind gewichtete, gerichtete und benannte Multigraphen
- Hypergraphen erlauben die Verbindung von Knoten mit mehr als einer Kante
- M/N Abbildungen können somit vereinfacht dargestellt werden

Prozessierung der Daten

- Native Processing Engine beherrscht indexfreie Adjazenz
- Wesentliches Merkmal der effizienten Prozessierung
- Knoten haben direkten Verweis auf den Nachbarknoten
- Kein ,Nachschlagen' in einem globalen Index nötig
- Großer Geschwindigkeitsvorteil gegenüber non native Graph-DB
- Neo4j ist bezüglich der Speicherung und Prozessierung eine native Graph-Datenbank

Neo4j - Open-Source-Graph-DB

- Native Processing Engine beherrscht indexfreie Adjazenz
- Seit 2003 in Entwicklung, Firma Neo Technology
- Implementiert in der Programmiersprache Java
- Version 1.0 im Jahre 2010, aktuell Version 2.0.1
- Eigens entwickelter Persistenzmechanismus für die Speicherung und Verwaltung
- Persistenzschicht nutzt per Java NIO Blöcke fester Größe zur Speicherung von Knoten und Kanten

Neo4j – Open-Source-Graph-DB

- Unterstützt Transaktionen per JTA, vollständige ACID Eigenschaften / Garantien
 - Atomarität, Konsistenz, Isoliertheit ,Dauerhaftigkeit
- Datenzugriff per
 - Java API
 - Abfragesprache Cypher
 - Traverser Framework
 - REST Schnittstelle
- Abfrage, Verwaltung und Visualisierung über eine Webapplikation

Metadatengraph

University of Applied Sciences

HAS TABLE HAS_TABLE "postgresql" HAS TABLE "BGBM-DB" HAS_TABLE

Geo-Datenbank

Postgresql / Postgis

- Räumlicher Datentyp Geometry (Geography)
- Abfrage nach Geometrietyp und SRID (Koordinatenreferenzsystem)
- Eigenschaften werden im Knoten gespeichert
 - Geometrietyp (POINT, POLYGON etc.)
 - SRID
 - Tabellenknoten hält die BoundingBox-Parameter
- Identifikation möglicher Relationen über Tabellen hinweg
 - Gleichheit der SRID und Geometrietyp
 - Überschneidung/Überlappung der von den BoundingBoxen abgedeckten Zonen

Metadaten-Graph

Metadaten-Graph

Technologien und Werkzeuge Integrationsplattform

University of Applied Sciences

Mobile Apps

Datenaustausch mit proprietären Anwendungen (FM) Webfrontend interaktives Infoportal

Fachdaten

Karten wms/wfs

Webservices AXIS2

GeoServer/GeoTools

JAVA

Datenbankzugriff JDBC

Eingesetzte Produkte / Software-Komponenten

University of Applied Sciences

CAFM-System

Wave Facilities (Loy und Hutz)

ArcoFaMa Integrationsplattform

- GeoServer (<u>www.geoserver.org</u>)
- NoSQL-Datenbank Neo4j (Metadaten)
- Tomcat 6

Verknüpfte Datenquellen

- PostgreSQL 9.3 (Geodatenbank)
 - PostGIS 2.0.4
 - 3DCityDB-Schema
- BIM-Server 1.2 (<u>www.bimserver.org</u>)
- BoGart-Datenbank (MS SQL-Server)
- Wave Facilities-Datenbank (MS SQL-Server)

Schnittstellenstandards

- Industry Foundation Classes (IFC 4)
- CityGML 2.0
- OGC-Services (WebMapService, WebFeatureService)
- JSON (Webservices)

Software zur Konvertierung

- FME (Feature Manipulation Engine);
 Safe Software Inc. (Transformation)
- OpenJump (Java GIS Rotation, Koordinationssystem)
- GrassGIS 7 (Koordinatenumrechnung)

Fazit

- Umfangreiche Aufgabenstellung
- Umfangreiche empirische Untersuchungen
- Best Practice Ansätze finden
- Baustellen :
 - Transformation CAD-Daten / CityGML
 - Anbindung FM-Daten im IFC-Format
 - Weiterentwicklung Integrationsplattform

Kontaktdaten

- Prof. Dr.-Ing. Markus Krämer
 Hochschule für Technik und Wirtschaft Berlin
 Tel. +49 30 5019 4236
 markus.kraemer@htw-berlin.de
- M.Sc. Benjamin Peris
 Hochschule für Technik und Wirtschaft Berlin
 Tel. +49 30 5019 3630
 benjamin.peris@htw-berlin.de
- Prof. Dr. Petra Sauer
 Beuth Hochschule für Technik Berlin
 Tel. +49 30 4504 2691
 sauer@beuth-hochschule.de
- Dipl.-Inform. (FH) Frank Herrmann Beuth Hochschule für Technik Berlin Tel. +49 30 / 4504-3880 fherrmann@beuth-hochschule.de

- Dipl.-Ing. und Dipl.-Kfm. (FH) Karsten Schomaker Botanischer Garten und Botanisches Museum Berlin-Dahlem Freie Universität Berlin k.schomaker@bgbm.org www.bgbm.org
- Dipl.-Inform. (FH) Thomas Kalweit Aviant GmbH <u>thomas.kalweit@aviant.de</u> <u>http://www.aviant.de/</u>
- Holger Fell
 Fell & Kernbach GmbH
 holger.fell@fell-kernbach.de
 http://www.fell-kernbach.de/