Assignment Three

Showkot Hossain, Roll: SH-042 Constraint Satisfaction (Problem Description)

February 9, 2019

Let, $N = \langle X, D, C \rangle$ is a constraint network where $X = \{X_1, X_2, \dots, X_n\}$ set of all variables, $D = \{D_1, D_2, \dots, D_n\}$ set of all domains, $C = \{C_1, C_2, \dots, C_{n-1}\}$ set of all constraints.

An arc (X_i, X_j) is arc consistent if and only for every value x in the current domain of X_i which satisfies the constraint of (X_i, X_j) such that there is some value y in X_j ($X_i = x$ and $X_j = y$) permitted by the constraints. A CSP is consistent if and only if every arc (X_i, X_j) in it's constraint graph is consistent.

To design this problem, first I generate a graph with 100 nodes, $G = \{V_1, V_2, \dots, V_{100}\}$. Then I assign the edges of the graph. Each edge of the graph is a constraint and can be called an arc. Each of the arc must be satisfied to solve this problem.

I define the constraints as below:

1	C_1 10	[2	y = 2x
т.	$\cup 1 - 10$	$\cdots $ y	-2u

6.
$$C_{51-60}$$
: { $y = x + 1$ }

2.
$$C_{11-20}$$
: { $y = 3x + 1$ }

7.
$$C_{61-70}$$
: { $y = x$ }

3.
$$C_{21-30}$$
: { $y = x^2$ }

8.
$$C_{71-80}$$
: { $y = x^3$ }

4.
$$C_{31-40}$$
: { $y = x^2 - 1$ }

9.
$$C_{81-90}$$
: { $y = 9x + 1$ }

5.
$$C_{41-50}$$
: { $y = x - 1$ }

10.
$$C_{91-99}$$
: { $y = 4x - 1$ }

I define the domains as below:

Let $i = \{z_1, z_2, \dots, z_{20}\}$ where z = any random integer.

1.
$$D_{1-10}: \{i+7\}$$

6.
$$D_{51-60}$$
: { $i^2 + i + 3$ }

2.
$$D_{11-20}: \{i^2\}$$

7.
$$D_{61-70}: \{i^3\}$$

3.
$$D_{21-30}$$
: { $i+5$ }

8.
$$D_{71-80}$$
: { $i^3 - i^2 + 5$ }

4.
$$D_{31-40}: \{i^2+2\}$$

9.
$$D_{81-90}$$
: { 9 $i+5$ }

5.
$$D_{41-50}$$
: { $2i-1$ }

10.
$$D_{91-100}: \{2i^2+3\}$$

Finally using the arc consistency algorithms AC1, AC2, AC3 and AC4, I will measure their performances with respect to run-time and accuracy. I will also plot their performance with graph.