

INN Project

Neural Networks – Bank Churn Project

December 15, 2024

Contents / Agenda

- Executive Summary
- Business Problem Overview and Solution Approach
- EDA Results
- Data Preprocessing
- Model Performance Summary
- Appendix

Business Problem Overview

Background and Context:

Businesses like banks that provide service have to worry about the problem of 'Churn' i.e. customers leaving and joining another service provider. It is important to understand which aspects of the service influence a customer's decision in this regard.

Management can concentrate efforts on the improvement of service, keeping in mind these priorities.

Objective:

• Given any Bank customer, we must build a neural network-based classifier that can determine whether they will leave or not in the next 6 months.

Solution Approach (Step 1 – Data Exploration)

- Objective: Understand the dataset, identify patterns, and handle missing or inconsistent data.
- Actions:
 - Load and preview the dataset.
 - Check for missing or null values.
 - Understand the distribution of numerical and categorical variables.
 - Evaluate correlations among features.
 - Visualize the distribution of the target variable (Exited).

Solution Approach (Step 2 – Data Preprocessing)

Objective: Prepare the dataset for machine learning by cleaning and encoding.

- **Drop irrelevant features**: CustomerId and Surname do not contribute to the prediction task.
- Encode categorical variables:
 - Convert Gender and Geography into numerical formats (e.g., one-hot encoding for Geography, binary encoding for Gender).
 - Normalize numerical features:
 - Scale features like CreditScore, Age, Balance, and EstimatedSalary to ensure the model trains effectively.
 - Handle imbalances:
 - Check for class imbalance in the Exited column. If imbalanced, use techniques like oversampling, undersampling, or SMOTE.
 - Split data:
 - Divide the dataset into training, validation, and test sets. (80% Training, 20% Test per usual)

 Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Solution Approach (Step 3 – Build the NN Model)

- **Objective**: Create a robust classifier to predict churn.
- Define a neural network architecture:
 - Input layer matching the number of features.
 - Hidden layers with activation functions (e.g., ReLU).
 - Dropout layers to prevent overfitting.
 - Output layer with a single neuron and a sigmoid activation function (binary classification).
- Compile the model:
 - Loss function: Binary cross-entropy.
 - Optimizer: Adam optimizer.
 - Metrics: Accuracy, Precision, Recall, or F1-Score.

Solution Approach (Step 4 – Model Performance Evaluation) POWER AHEAD

- Objective: Optimize the model using the training and validation sets.
 - Train the model using mini-batch gradient descent.
 - Use early stopping to prevent overfitting by monitoring validation loss.
 - Evaluate the model on the test set using metrics like accuracy, confusion matrix, and AUC-ROC
 - We will evaluate the model primarily on Recall and secondly on F-1 Values:
 - Using **recall** as the evaluation metric is a great choice for this business scenario because it emphasizes identifying churned customers (true positives) and minimizes false negatives. In churn prediction, missing a potential churner can be costly for the business.
 - Recall ensures churners (minority class) are identified (higher TP, lower FN)
 - Precision: Slightly reduced but still balanced due to regularization (Dropout).

Solution Approach (Step 4 – Model Performance Evaluation) CLEARNING Solution Approach (Step 4 – Model Performance Evaluation)

- Performance Comparison and Reasoning
- For each model, we will collect the following:
 - Training vs Validation Loss: Assess overfitting.
 - Recall, Precision, and F1-score: To gauge the ability to predict churn.
 - AUC-ROC Curve: For threshold-independent performance.
 - Compare performance to select the best model.
- Choose the Best Model
 - Reason for selection could be:
 - Best recall on validation data (important for churn prediction).
 - Balanced precision-recall trade-off.
 - Generalization ability (minimal overfitting).

Solution Approach (Step 4 – Model Performance Evaluation) POWER AHEAD

Performance Expectations by Model

1. Model 1 (Adam optimizer):

Likely to perform better than a basic SGD model but could struggle with class imbalance, leading to lower recall for churners.

2. Model 2 (Adam optimizer + Dropout):

Improved generalization due to Dropout but still affected by the imbalance, limiting recall for churners.

3. Model 3 (SMOTE + SGD optimizer):

Balancing via SMOTE improves recall but might converge slower and less effectively due to SGD's limitations in complex optimization.

4. Model 4 (SMOTE + Adam optimizer):

Likely to outperform Model 3, as Adam is more efficient and effective with imbalanced data.

5. Model 5 (SMOTE + Adam optimizer + Dropout):

Combines the strengths of SMOTE, Adam optimizer, and Dropout for optimal recall and F1 performance.

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

1. Customer Segmentation:

- Demographic Features: Variables like Age, Gender, and Geography impact churn differently. For example, younger customers might churn more due to competitive offers, while older customers may value stability.
- Behavioral Features: Variables like Balance, Tenure, and NumOfProducts give insights into customer engagement. Customers with low tenure or fewer products are more likely to churn.

2. Credit and Financial Health:

- Credit Score: A low credit score might correlate with a higher likelihood of churn due to financial difficulties or dissatisfaction.
- **Balance and Estimated Salary**: Customers with high balances and low engagement could be at risk of seeking better returns or services elsewhere.

3. Customer Engagement:

1. Activity Level: The IsActiveMember feature highlights engagement with bank services. Inactive

Executive Summary (Business Insights)

3. Customer Engagement:

- Activity Level: The IsActiveMember feature highlights engagement with bank services. Inactive members are more prone to churn.
- HasCrCard: Having a credit card might indicate deeper integration with the bank, reducing churn likelihood.

4. Geography:

 Churn rates often vary across regions due to competition, local economic conditions, or customer satisfaction levels with branch services.

- 1. Focus on Retention Efforts for At-Risk Customers
 - Use churn predictions to segment customers into risk levels.
- For high-risk customers:
 - Offer personalized retention strategies (e.g., discounts, rewards).
 - Provide dedicated account managers to improve satisfaction.
- For medium-risk customers:
 - Increase communication about benefits and services.
 - Offer product bundling to encourage deeper engagement.

1. Focus on Retention Efforts for At-Risk Customers

Predicting churn allows the bank to segment customers by their likelihood of leaving.

Retention is more cost-effective than acquiring new customers, making this a key business strategy.

Proactive Outreach:

- Identify high-risk customers using the churn prediction model and reach out with retention offers.
- For example, a customer with low tenure, minimal balance, or no credit card might receive a
 personalized call or email offering a promotional rate or financial consultation.

Custom Rewards:

 Offer tailored loyalty rewards, such as waiving fees or increasing interest rates for customers with high balances.

Improve Customer Service

Assign relationship managers to high-value customers who are at risk.

• 2. Improve Engagement with Bank Products

- Promote products like credit cards or additional accounts to increase product penetration (captured by NumOfProducts).
- Features like NumOfProducts and IsActiveMember highlight customer engagement. The more
 products a customer uses, the deeper their integration with the bank, reducing churn likelihood.

Cross-Sell Products:

• For customers with only one product, offer bundles or promotions to encourage them to use additional services, such as credit cards, investment accounts, or loans.

Educational Campaigns:

• Educate customers on the benefits of being active members, such as loyalty points or access to premium features.

Gamify Engagement:

• Introduce gamified reward programs where customers earn points for using services frequently Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

- 3. Address Customer Pain Points
- Dissatisfaction often leads to churn. Identifying the specific pain points, whether financial, service-related, or competitive, is critical.
- Recommendations:
- Analyze Churn Reasons:
 - Use surveys or direct feedback to understand why customers leave.
 - Segment this data by geography, demographics, and product usage.
- Provide Financial Support:
 - For customers with low credit scores, offer credit-building products or free financial consultations to reduce frustration.
- Localized Improvements:
 - If churn is geographically skewed, invest in improving services in those regions (e.g., faster transaction times, better branch support).

- 4. Leverage Financial Data
- High-value customers with significant balances are crucial to retain. However, they might churn if they perceive better opportunities elsewhere.
- Premium Services:
 - Offer high-value customers premium accounts with exclusive benefits (e.g., lower fees, higher savings interest rates, or personalized financial advice).
- Interest Rate Adjustments:
 - Provide competitive interest rates for customers with significant balances.
- Tailored Financial Solutions:
 - Recommend tailored investment or wealth management products to customers with substantial savings.

- 5. Evaluate Offers from Competitors
- Competitor banks may offer better interest rates, fee structures, or benefits, enticing customers to switch.
- Market Research:
 - Continuously monitor competitor offerings and adjust the bank's rates and benefits accordingly.
- Price Match Campaigns:
 - Introduce "price matching" campaigns where the bank matches competitor offers for high-risk customers.
- Customer Awareness:
 - Highlight the unique benefits of staying with the bank (e.g., customer service quality, account security, or bundled services).

- 6. Key Metrics for Success
- To measure the effectiveness of these strategies, track:
 - Customer Retention Rate: Percentage of customers retained over a period.
 - Customer Lifetime Value (CLV): Increase in long-term revenue from retained customers.
 - Churn Reduction: Year-over-year decline in churn rate.
 - Engagement Metrics: Growth in active members and average products per customer.

Age and Credit Score Boxplots from raw data

EDA Results – Univariate Analysis

Estimated Salary and Credit Card Balance Box Plots

EDA Results – Univariate Analysis

Graph showing how many customers exit after a given number of years.

EDA Results – Univariate Analysis

Count of those who have credit cards and number of products

Count for Active Members and Number of Products

EDA Results – Bivariate Analysis (Heatmap)

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

EDA Results – Bivariate Analysis

The boxplots for numerical features reveal potential outliers in columns like:

- •Balance: Values near zero might indicate inactive accounts or unusual customer activity.
- •EstimatedSalary: Outliers at the high end, though it seems to have a broader range by nature.
- •Age: Possible outliers for extremely young or very old customers.
- •CreditScore: Few potential outliers below the lower end of the range.

	POWER AREAD						
Exited IsActiveMer	0 mber	1	All				
All	7963	2037	10000				
0	3547		4849				
1	4416	735					
1.0 -			_	0			
				1			
0.8 -							
0.6 -							
0.4 -							
0.2 -							
0.0	0						
IsActiveMember							

EDA Results – Bivariate Analysis

Data Preprocessing

IQR analysis for selected features:

No Duplicate Values or Missing Values detected

The outlier analysis based on the IQR reveals the following:

- **CreditScore**: 16 outliers detected.
- Age: 411 outliers detected (likely very young or very old customers).
- **Tenure**: No outliers detected.
- Balance: No outliers detected.
- NumOfProducts: 60 outliers detected.
- EstimatedSalary: No outliers detected.

IQ	IQR Analysis For Numerical Features							
		Q1	Q3	IQR				
1	CreditScore	-0.6883585719214 899	0.6981093733515 285	1.3864679452730 182				
2	Age	-0.6600184841162 697	0.4842246042993 5044	1.1442430884156 2				
3	Tenure	-0.6959817718881 79	0.6871298574603 482	1.38311162934852 7				
4	Balance	-1.2258476714090 278	0.8199204543114 416	2.0457681257204 694				
5	NumOfProducts	-0.9115834940401 767	0.8077365626180 215	1.71932005665819 83				
6	EstimatedSalary	-0.853593528179 3107	0.8572430923264 887	1.7108366205057 992				

Great Learning

The outlier analysis based on the IQR reveals the following:

CreditScore: 16 outliers detected.

Age: 411 outliers detected (likely very

young or very old customers).

Tenure: No outliers detected.

Balance: No outliers detected.

NumOfProducts: 60 outliers detected.

EstimatedSalary: No outliers detected.

We kept all outliers instead of removing them. Keeping the outliers is a valid choice if they are meaningful and not due to data entry errors or anomalies. This ensures that the model learns from the full range of data, including edge cases.

IQR Analysis For Numerical Features							
		Q1	Q3	IQR			
1	CreditScore	-0.6883585719214 899	0.6981093733515 285	1.3864679452730 182			
2	Age	-0.6600184841162 697	0.4842246042993 5044	1.1442430884156 2			
3	Tenure	-0.6959817718881 79	0.6871298574603 482	1.38311162934852 7			
4	Balance	-1.2258476714090 278	0.8199204543114 416	2.0457681257204 694			
5	NumOfProducts	-0.9115834940401 767	0.8077365626180 215	1.71932005665819 83			
6	EstimatedSalary	-0.853593528179 3107	0.8572430923264 887	1.7108366205057 992			

Proprietary content. © Great Learning, All Rights Reserved. Unauthorized use or distribution prohibited.

Data Preprocessing (Steps)

1. Drop Irrelevant Columns:

• Remove columns Customerld, RowNumber and Surname, which don't contribute to the predictive task.

2. Encode Categorical Variables:

Convert Gender and Geography into numerical representations (e.g., binary or one-hot encoding).

3. Normalize Numerical Features:

Scale features like CreditScore, Age, Balance, and EstimatedSalary to ensure numerical stability.

4. Split Dataset:

- Training Set: 8,000 samples with 11 features.
- **Testing Set**: 2,000 samples with 11 features.
- Handle Class Imbalance (if necessary):
 - 1. Analyze the distribution of the target variable (Exited) and apply balancing techniques if required.

Data Preprocessing

1. Gender:

- Since it has only two categories (Male, Female), binary encoding was used.
- This converts Female and Male into 0 and 1, respectively.

2. Geography:

- This column has multiple categories (e.g., France, Spain, Germany), so one-hot encoding was used.
- This creates separate columns like Geography_Germany and Geography_Spain (while dropping one column to avoid redundancy).

Both methods ensure categorical data is transformed into numerical form without introducing unintended biases.

Data Preprocessing (Feature Engineering)

Added Feature Engineering for the existing Bank Churn Dataset

- 1. Interaction Features:
 - Create combinations of features that might have a synergistic effect:
 - Balance-to-Salary Ratio
 - Age-to-Tenure Ratio: (useful if tenure > 0)
- 2. Customer Activity:
 - 1. Combine IsActiveMember, NumOfProducts, and HasCrCard to create an **Activity Score**:
- 3. Age Groups:
 - Bucket Age into age groups (e.g., 18–25, 26–35, etc.) to capture trends by demographic.
- 4. High Credit Risk:
 - Flag customers with low credit scores (e.g., CreditScore < 500) as a binary feature.

Data Preprocessing (Feature Engineering)

Added Feature Engineering for the existing Bank Churn Dataset

- 4. Geography Impact:
 - Compute average churn rate by geography and add as a feature:
 - For example, if France has a churn rate of 20%, then every French customer gets GeographyChurnRate = 0.20.

6. Product Engagement:

Flag customers with NumOfProducts > 2 as Highly Engaged.


```
      Model: "sequential"
      Output Shape
      Param #

      dense (Dense)
      (None, 64)
      188,480

      dense_1 (Dense)
      (None, 32)
      2,080

      dense_2 (Dense)
      (None, 1)
      33

      Total params: 190,593 (744.50 KB)
```

Total params: 190,593 (744.50 KB)
Trainable params: 190,593 (744.50 KB)

Non-trainable params: 0 (0.00 B)

Code Snippet for fitting the Artificial Neural Network:

```
# Fitting the ANN
history_0 = model_0.fit(
   X_train, y_train,
   batch_size=32, ## Complete the code to specify the batch size to use
    validation_data=(X_val,y_val),
                 ## Complete the code to specify the number of epochs
    verbose=1
Epoch 1/50
200/200
                             4s 6ms/step - loss: 21686340550656.0000 - recall: 0.0302 - val_loss: 0.6766 - val_recall: 0.0000e+00
Epoch 2/50
                            3s 3ms/step - loss: 0.6731 - recall: 0.0000e+00 - val loss: 0.6614 - val recall: 0.0000e+00
200/200
Epoch 3/50
                            - 1s 3ms/step - loss: 0.6586 - recall: 0.0000e+00 - val_loss: 0.6477 - val_recall: 0.0000e+00
200/200 -
Epoch 4/50
200/200 -
                           - 1s 3ms/step - loss: 0.6456 - recall: 0.0000e+00 - val_loss: 0.6353 - val_recall: 0.0000e+00
Epoch 5/50
200/200
                            • 1s 3ms/step - loss: 0.6338 - recall: 0.0000e+00 - val loss: 0.6241 - val recall: 0.0000e+00
Epoch 6/50
                           - 1s 3ms/step - loss: 0.6231 - recall: 0.0000e+00 - val_loss: 0.6139 - val_recall: 0.0000e+00
```

Model Overview Summary

Model 1: Base Model with Adam Optimizer

•Objective: Establish a baseline performance using the Adam optimizer, which is effective at adaptive learning.

•Architecture:

Input Layer: Neurons = number of features.

Hidden Layers: Two layers, 64 and 32 neurons, with ReLU activation.

 Output Layer: 1 neuron, Sigmoid activation (binary classification).

•Optimizer: Adam.

•Loss Function: Binary Crossentropy.

Batch Size: 32.Epochs: 50.

•Outcome: Good initial performance with a focus on

faster convergence.

Model	Key Features	Optimizer	Class Balancing	Overfitting Control
Model 1	Base, no balancing or Dropout	Adam	No	No
Model 2	Dropout for overfitting	Adam	No	Yes
Model 3	Balanced with SMOTE	SGD	Yes	No
Model 4	Balanced with SMOTE	Adam	Yes	No
Model 5	Balanced, SMOTE, Dropout	Adam	Yes	Yes

G Great Learning

Model 2: Adam Optimizer with Dropout

•Objective: Improve the model's generalization ability and reduce overfitting by introducing Dropout layers.

•Architecture:

- Input Layer: Neurons = number of features.
- Hidden Layers: Two layers, 64 and 32 neurons, with ReLU activation.
- Dropout Layers: Added after each hidden layer (Dropout rate = 0.5).
- Output Layer: 1 neuron, Sigmoid activation.

Optimizer: Adam.

•Loss Function: Binary Crossentropy.

·Batch Size: 32.

•Epochs: 50.

•Outcome: Improved performance on validation data due to reduced overfitting.

Model	Key Features	Optimizer	Class Balancing	Overfitting Control
Model 1	Base, no balancing or Dropout	Adam	No	No
Model 2	Dropout for overfitting	Adam	No	Yes
Model 3	Balanced with SMOTE	SGD	Yes	No
Model 4	Balanced with SMOTE	Adam	Yes	No
Model 5	Balanced, SMOTE, Dropout	Adam	Yes	Yes

Great Learning

Model 3: Balanced Data with SMOTE + SGD Optimizer

•Objective: Address class imbalance using SMOTE to oversample the minority class and train the model with the simpler SGD optimizer.

•Preprocessing:

Apply SMOTE to oversample the minority class.

•Architecture:

- Input Layer: Neurons = number of features.
- Hidden Layers: Two layers, 64 and 32 neurons, with ReLU activation.
- Output Layer: 1 neuron, Sigmoid activation.
- •Optimizer: SGD.
- •Loss Function: Binary Crossentropy.
- ·Batch Size: 32.
- •Epochs: 50.
- •Outcome: Higher recall due to balanced data but slower convergence compared to Adam.

Model	Key Features	Optimizer	Class Balancing	Overfitting Control
Model 1	Base, no balancing or Dropout	Adam	No	No
Model 2	Dropout for overfitting	Adam	No	Yes
Model 3	Balanced with SMOTE	SGD	Yes	No
Model 4	Balanced with SMOTE	Adam	Yes	No
Model 5	Balanced, SMOTE, Dropout	Adam	Yes	Yes

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 32)	94,240
dropout (Dropout)	(None, 32)	0
dense_1 (Dense)	(None, 16)	528
dense_2 (Dense)	(None, 8)	136
dropout_1 (Dropout)	(None, 8)	0
dense_3 (Dense)	(None, 8)	72
dense_4 (Dense)	(None, 1)	9

G Great Learning

Model 4: Balanced Data with SMOTE + Adam Optimizer

•Objective: Combine the benefits of SMOTE for class balancing with the faster convergence of the Adam optimizer.

•Preprocessing:

Apply SMOTE to oversample the minority class.

•Architecture:

- Input Layer: Neurons = number of features.
- Hidden Layers: Two layers, 64 and 32 neurons, with ReLU activation.
- Output Layer: 1 neuron, Sigmoid activation.

Optimizer: Adam.

Loss Function: Binary Crossentropy.

•Batch Size: 32.

•Epochs: 50.

•Outcome: Better recall and F1-score compared to

Model 3, with faster convergence.

Model	Key Features	Optimizer	Class Balancing	Overfitting Control
Model 1	Base, no balancing or Dropout	Adam	No	No
Model 2	Dropout for overfitting	Adam	No	Yes
Model 3	Balanced with SMOTE	SGD	Yes	No
Model 4	Balanced with SMOTE	Adam	Yes	No
Model 5	Balanced, SMOTE, Dropout	Adam	Yes	Yes

G Great Learning

Model 5: Balanced Data with SMOTE, Adam Optimizer, and Dropout

•Objective: Achieve the best generalization and recall by combining SMOTE, Adam, and Dropout.

•Preprocessing:

Apply SMOTE to oversample the minority class.

•Architecture:

- Input Layer: Neurons = number of features.
- Hidden Layers: Two layers, 64 and 32 neurons, with ReLU activation.
- Dropout Layers: Added after each hidden layer (Dropout rate = 0.5).
- Output Layer: 1 neuron, Sigmoid activation.
- •Optimizer: Adam.
- Loss Function: Binary Crossentropy.
- •Batch Size: 32.
- •Epochs: 50.
- •Outcome: Most balanced model in terms of recall, precision, and generalization on the proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or the proprietary content.

Model	Key Features	Optimizer	Class Balancing	Overfitting Control				
Model 1	Base, no balancing or Dropout	Adam	No	No				
Model 2	Dropout for overfitting	Adam	No	Yes				
Model 3	Balanced with SMOTE	SGD	Yes	No				
Model 4	Balanced with SMOTE	Adam	Yes	No				
Model 5	Balanced, SMOTE, Dropout	Adam	Yes	Yes				
Model: "sequential"								
Layer (t	уре)	Output Shape		Param #				
dense (D	ense)	(None, 64)		188,480				
dropout	(Dropout)	(None, 64)		0				
dense_1	(Dense)	(None, 32)		2,080				
dropout_	1 (Dropout)	(None, 32)		0				
dense_2	(Dense)	(None, 8)		264				
dense_3	(Dense)	(None, 1)		9				
Trainable	ams: 190,833 (745.44 KB) params: 190,83 o varializard = model_5.pre able params: 0 varializard = model_5.pre production the results as params(varializard) varializard = model_5.pre production the results as params(varializard) varializard = model_5.pre production to res	ing 0.5 as the threshold						

Great Learning

Param #

Model 5: Balanced Data with SMOTE, Adam Optimizer, and Dropout

 Objective: Achieve the best generalization and recall by combining SMOTE, Adam, and Dropout.

•Preprocessing:

Apply SMOTE to oversample the minority class.

•Architecture:

- Input Layer: Neurons = number of features.
- Hidden Layers: Two layers, 64 and 32 neurons, with ReLU activation.
- Dropout Layers: Added after each hidden layer (Dropout rate = 0.5).
- Output Layer: 1 neuron, Sigmoid activation.
- •Optimizer: Adam.
- Loss Function: Binary Crossentropy.
- •Batch Size: 32.
- •**Epochs**: 50.
- Outcome: Most balanced model in terms of recall,

```
Model: "sequential"
  Layer (type)
                                                   Output Shape
  dense (Dense)
 dropout (Dropout)
  dense 1 (Dense)
  dropout_1 (Dropout)
  dense_2 (Dense)
  dense_3 (Dense)
                            (745.44 KB)
 Total params: 190,83
 Trainable params:
 Non-trainable params: 0 (0.00 B)
 v train pred = model 5.predict(X train smote)
    y train pred = (y train pred > 0.5)
    y train pred
 → 319/319
                             1s 3ms/step
    array([[ True],
           [True],
          [ True].
           [True],
          [ True],
[ True]])
[107] y_val_pred = model_5.predict(X_val)
    y_val_pred = (y_val_pred > 0.5)
    y_val_pred
                            0s 2ms/step
    array([[ True],
            True],
           [True],
```

[True], [True]])

precision, and generalization proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Model Overview Summary

Model 5: Balanced Data with SMOTE, Adam Optimizer, and Dropout

•Objective: Achieve the best generalization and recall by combining SMOTE, Adam, and Dropout.

•Preprocessing:

Apply SMOTE to oversample the minority class.

•Architecture:

- Input Layer: Neurons = number of features.
- Hidden Layers: Two layers, 64 and 32 neurons, with ReLU activation.
- Dropout Layers: Added after each hidden layer (Dropout rate = 0.5).
- Output Layer: 1 neuron, Sigmoid activation.
- Optimizer: Adam.
- Loss Function: Binary Crossentropy.
- ·Batch Size: 32.
- •Epochs: 50.
- •Outcome: Most balanced model in terms of recall,
 precision, and generalization proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

20

Epoch

10

model loss

Model 5: Balanced Data with SMOTE, Adam Optimizer, and Dropout

- •Objective: Achieve the best generalization and recall by combining SMOTE, Adam, and Dropout.
- •Model 5 achieved the best recall and F-1 results (or rather the most robust results) out of all 5 model improvements
- Combining SMOTE and ADAM optimizer helped immensely with class imbalances

Clas	sification r	eport					
[109]	cr=class: print(cr		tion_report(y_train_s	mote,y_tra	ain_pred)	
₹			precision	recall	f1-score	support	
		0.0 1.0	0.00 0.50	0.00 1.00	0.00 0.67	5096 5096	
	accu macro weighted	avg	0.25 0.25	0.50 0.50	0.50 0.33 0.33		
0		ifica	on report tion_report(y_val,y_v	al_pred)	## Complete	the c
₹			precision	recall	f1-score	support	
		0.0 1.0	0.00 0.20	0.00 1.00	0.00 0.34	1274 326	
	accu macro weighted	avg	0.10 0.04	0.50 0.20	0.20 0.17 0.07	1600 1600 1600	

Model Overview Summary (Errors)

Overfitting to the Training Data

Explanation:

- •Overfitting occurs when a model learns the training data too well, including noise and irrelevant patterns, but fails to generalize to unseen data.
- •Symptoms:
 - Training metrics (e.g., loss, accuracy) are very high, but test metrics remain stagnant.
 - Recall, Precision, and other metrics on test data might look identical because the model makes similar predictions regardless of architecture differences.

Cause:

- •Insufficient Regularization: Dropout or L2 regularization may not be applied.
- •Small Dataset: Models may memorize patterns in the data due to limited training samples.
- •Too Many Parameters: Complex models (e.g., deep architectures) can overfit if the dataset size is small.
- •Result: Confusion Matrices were the same for Models 1, 2 and 4 on both training and test sets
- •Loss and Recall reports were not satisfactory to my liking SMOTE was not enough

Model Overview Summary (Errors)

Similar Architectures

Explanation:

- •Architectures of models were kept very similar (e.g., same number of layers, neurons, and activation functions), they probably converge to similar decision boundaries.
- •Symptoms:
 - Nearly identical predictions across models, resulting in similar confusion matrices.

Cause:

- •Minimal Architectural Differences: Adam vs. SGD optimizers alone may not lead to significant differences if the rest of the architecture is unchanged.
- •Result: Confusion Matrices were the same for Models 1, 2 and 4 on both training and test sets

Model Overview Summary (Errors)

How to Address This

For Overfitting

1.Regularization:

- 1. Add Dropout layers to prevent overfitting.
- 2. Use L2 regularization on the weights.

2.Increase Data Size:

1. Augment the dataset or gather more samples if possible.

3. Early Stopping:

1. Monitor validation loss and stop training when performance stops improving.

For Validation and Architecture

1. Check Data Splits:

- 1. Ensure stratified splits for balanced class distribution.
- 2. Avoid data leakage by separating training, validation, and test sets properly.

2.Increase Architectural Variety:

Experiment with different numbers of layers, neurons, activation functions, ar go optimizers.

APPENDIX

Data Background and Contents

First 5 and last 5 rows of the dataset for reference:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0		15634602	Hargrave	619	France	Female	42	2	0.00		1	1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3		0	113931.57	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82				79084.10	0

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2			96270.64	
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	0
9997	9998	15584532	Liu	709	France	Female	36	7	0.00		0		42085.58	1
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	1
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79			0	38190.78	0

^{*}Note that RowNumber, CustomerID and Surname were dropped during Data Preprocessing due to being unique but irrelevant values

	count	mean	std	min	25%	50%	75%	max
RowNumber	10000.0	5.000500e+03	2886.895680	1.00	2500.75	5.000500e+03	7.500250e+03	10000.00
CustomerId	10000.0	1.569094e+07	71936.186123	15565701.00	15628528.25	1.569074e+07	1.575323e+07	15815690.00
CreditScore	10000.0	6.505288e+02	96.653299	350.00	584.00	6.520000e+02	7.180000e+02	850.00
Age	10000.0	3.892180e+01	10.487806	18.00	32.00	3.700000e+01	4.400000e+01	92.00
Tenure	10000.0	5.012800e+00	2.892174	0.00	3.00	5.000000e+00	7.000000e+00	10.00
Balance	10000.0	7.648589e+04	62397.405202	0.00	0.00	9.719854e+04	1.276442e+05	250898.09
NumOfProducts	10000.0	1.530200e+00	0.581654	1.00	1.00	1.000000e+00	2.000000e+00	4.00
HasCrCard	10000.0	7.055000e-01	0.455840	0.00	0.00	1.000000e+00	1.000000e+00	1.00
IsActiveMember	10000.0	5.151000e-01	0.499797	0.00	0.00	1.000000e+00	1.000000e+00	1.00
EstimatedSalary	10000.0	1.000902e+05	57510.492818	11.58	51002.11	1.001939e+05	1.493882e+05	199992.48
Exited	10000.0	2.037000e-01	0.402769	0.00	0.00	0.000000e+00	0.000000e+00	1.00

<class #<="" data="" range="" th=""><th>Dtype </th></class>	Dtype 						
0	RowNumber	10000	non-null	int64			
1	CustomerId	10000	non-null	int64			
2	Surname	10000	non-null	object			
3	CreditScore	10000	non-null	int64			
4	Geography	10000	non-null	object			
5	Gender	10000	non-null	object			
6	Age	10000	non-null	int64			
7	Tenure	10000	non-null	int64			
8	Balance	10000	non-null	float64			
9	NumOfProducts	10000	non-null	int64			
10	HasCrCard	10000	non-null	int64			
11	IsActiveMember	10000	non-null	int64			
12	EstimatedSalary	10000	non-null	float64			
13	Exited	10000	non-null	int64			
<pre>dtypes: float64(2), int64(9), object(3) memory usage: 1.1+ MB</pre>							

Missing Values and Unique Values

Count of Unique Values

Data does not have missing values before preprocessing All Data is good before Feature Engineering

Missing Value Treatment

Happy Learning!

