The Trace Finite Element Method for PDEs on Surfaces

T. Jawecki, M. Wess

June 23, 2015

Table of Contents

Derivation of the model problem

General setting

• two fluids Ω_1, Ω_2 contained in an open domain, seperated by Γ

Problem

For given initial data c_0 , model the evolution of c.

General setting

- two fluids Ω_1, Ω_2 contained in an open domain, seperated by Γ
- given velocity field \vec{v}

Problem

For given initial data c_0 , model the evolution of c.

General setting

- two fluids Ω_1, Ω_2 contained in an open domain, seperated by Γ
- given velocity field \vec{v}
- concentration c of surfactant agent on Γ

Problem

For given initial data c_0 , model the evolution of c.

Surface gradient and divergence

 $ightharpoonup C^2$ -hypersurface $\Gamma \subseteq \mathbb{R}^d$, outward normal \vec{n}_Γ

Surface gradient and divergence

- ▶ C^2 -hypersurface $\Gamma \subseteq \mathbb{R}^d$, outward normal \vec{n}_{Γ}
- ▶ C^1 -functions $f: \Gamma \to \mathbb{R}, \ \vec{g}: \Gamma \to \mathbb{R}^d$

Surface gradient and divergence

- ▶ C^2 -hypersurface $\Gamma \subseteq \mathbb{R}^d$, outward normal \vec{n}_{Γ}
- ▶ C^1 -functions $f: \Gamma \to \mathbb{R}, \ \vec{g}: \Gamma \to \mathbb{R}^d$

Definition

$$\nabla_{\Gamma} f := P \nabla f := \left(I - \vec{n}_{\Gamma} \vec{n}_{\Gamma}^{T} \right) \nabla f$$
$$\operatorname{div}_{\Gamma} \vec{g} := \nabla_{\Gamma} \cdot \vec{g} := \sum_{i=1}^{d} \vec{e}_{i} \sum_{j=1}^{d} p_{ij} \frac{\partial g_{i}}{\partial x_{j}}$$

Reynolds transport theorem on an interface

Theorem (Reynold's transport theorem on an interface)

The rate of change for a smooth function f(x,t) on $W(t) \subseteq \Gamma$ with a given velocity field \vec{v} can be described by

$$\frac{d}{dt}\int_{W(t)}f(x,t)\,ds=\int_{W(t)}\dot{f}(x,t)+f(x,t)\operatorname{div}_{\Gamma}(\vec{v})\,ds\qquad(1)$$

with the material derivative f defined as

$$\dot{f} := \frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f \tag{2}$$

▶ source function *f*

- source function f
- ightharpoonup velocity \vec{q}

- source function f
- ightharpoonup velocity \vec{q}

$$\frac{d}{dt} \int_{W(t)} c \, ds = - \int_{\partial W(t)} \vec{q} \cdot n_W \, d\tilde{s} + \int_{W(t)} f \, ds$$

- source function f
- velocity $\vec{q} := -\alpha \nabla_{\Gamma} c$

$$\frac{d}{dt} \int_{W(t)} c \, ds = - \int_{\partial W(t)} \vec{q} \cdot n_W \, d\tilde{s} + \int_{W(t)} f \, ds$$

- source function f
- velocity $\vec{q} := -\alpha \nabla_{\Gamma} c$

$$\frac{d}{dt} \int_{W(t)} c \, ds = -\int_{\partial W(t)} \vec{q} \cdot n_W \, d\tilde{s} + \int_{W(t)} f \, ds$$
$$= \int_{W(t)} \operatorname{div}_{\Gamma}(\alpha \nabla_{\Gamma} c) \, ds + \int_{W(t)} f \, ds$$

- source function f
- velocity $\vec{q} := -\alpha \nabla_{\Gamma} c$

$$\frac{d}{dt} \int_{W(t)} c \, ds = -\int_{\partial W(t)} \vec{q} \cdot n_W \, d\tilde{s} + \int_{W(t)} f \, ds$$

$$= \int_{W(t)} \operatorname{div}_{\Gamma}(\alpha \nabla_{\Gamma} c) \, ds + \int_{W(t)} f \, ds$$

$$= \int_{W(t)} \dot{c} + c \operatorname{div}_{\Gamma}(\vec{v}) \, ds$$

$$= \int_{W(t)} \frac{\partial c}{\partial t} + \vec{v} \cdot \nabla c + c \operatorname{div}_{\Gamma}(\vec{v}) \, ds$$

since W(t) was arbitrary and we assume Γ to be stationary:

since W(t) was arbitrary and we assume Γ to be stationary:

$$\frac{\partial c}{\partial t} + \vec{v} \cdot \nabla c + c \operatorname{div}_{\Gamma}(\vec{v}) - \operatorname{div}_{\Gamma}(\alpha \nabla_{\Gamma} c) = f.$$
 (3)

since W(t) was arbitrary and we assume Γ to be stationary:

$$\frac{\partial c}{\partial t} + \vec{v} \cdot \nabla c + c \operatorname{div}_{\Gamma}(\vec{v}) - \operatorname{div}_{\Gamma}(\alpha \nabla_{\Gamma} c) = f.$$
 (3)

 \vec{v} is tangential to Γ

since W(t) was arbitrary and we assume Γ to be stationary:

$$\frac{\partial c}{\partial t} + \vec{v} \cdot \nabla c + c \operatorname{div}_{\Gamma}(\vec{v}) - \operatorname{div}_{\Gamma}(\alpha \nabla_{\Gamma} c) = f.$$
 (3)

$$\vec{v}$$
 is tangential to $\Gamma \Rightarrow \vec{v} \cdot \nabla c = P \vec{v} \cdot \nabla c = \vec{v} \cdot P \nabla c = \vec{v} \cdot \nabla_{\Gamma} c$

since W(t) was arbitrary and we assume Γ to be stationary:

$$\frac{\partial c}{\partial t} + \operatorname{div}_{\Gamma}(c\vec{v}) - \operatorname{div}_{\Gamma}(\alpha \nabla_{\Gamma} c) = f.$$
 (3)

For a given (tangential) velocity field \vec{v} , a source function f and initial data c_0 find c such that

$$\frac{\partial c}{\partial t} + \operatorname{div}_{\Gamma}(c\vec{v}) - \operatorname{div}_{\Gamma}(\alpha \nabla_{\Gamma} c) = f.$$
 (3)