A 5-DC-parameter MOSFET model for circuit simulation in QuesStudio and SPECTRE

Deni G. Alves Neto¹, Cristina M. Adornes¹, Gabriel Maranhão¹, Mohamed K. Bouchoucha ^{2,3}, Manuel J. Barragan³, Andreia Cathelin², Marcio C. Schneider¹, Sylvain Bourdel³ and Carlos Galup-Montoro¹

¹Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil

²STMicroelectronics, 38920 Crolles, France

³Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA F-38000, Grenoble, France

Outline

- Introduction
- Velocity saturation effects
- Parameter extraction
- Intrinsic capacitances including velocity saturation and DIBL
- Circuit examples

Introduction: democratizing IC design

Open source PDK

Open source EDA tools

Open source IP & libraries (•,•)

Available compact MOSFET models

We propose: simple 5-DC-parameter **MOSFET** model

Velocity saturation effects

Normalized current vs. normalized charge densities

$$i_D = \frac{(q_S + q_D + 2)}{1 + \zeta |q_S - q_D|} (q_S - q_D)$$

short-channel parameter:

diffusion-related velocity /saturation velocity

$$\zeta = \frac{(\mu_s \phi_t / L)}{v_{sat}}$$

Saturation current due to saturation velocity of the carriers

$$I_{Dsat} = -WQ_{Dsat}v_{sat}$$

*Q*_{Dsat} is the saturation inversion charge density at the drain end of the channel

or using normalized variables

$$i_{Dsat} = \frac{2}{\zeta} q_{dsat}$$

Physics-based saturation: design model

$$i_{Dsat} = \frac{2}{\zeta} q_{dsat} \qquad i_{Dsat} = \frac{(q_S + q_{Ds} + 2)}{1 + \zeta(q_S - q_{Dsat})} (q_S - q_{Dsat})$$

$$q_{Dsat} = q_S + 1 + \frac{1}{\zeta} - \sqrt{\left(1 + \frac{1}{\zeta}\right)^2 + \frac{2q_S}{\zeta}}$$

Unified Charge Control Model including the effect of velocity saturation

$$\frac{V_P - V_{S(D)B}}{\phi_t} = q_{S(D)} - q_{Dsat} - 1 + \ln(q_{S(D)} - q_{Dsat})$$

 ϕ_t = 26 mV@ 300K

Effect of the maximum of $i_D(q_D)$ on the output characteristic $i_D(v_D)$

Output characteristics including DIBL and v_{sat}

DIBL model: $V_T = V_{T0} - \sigma(V_{SB} + V_{DB})$

Transistor	$W/L \ (\mu m/\mu m)$	$V_{T0} (mV)$	$I_{S}(\mu A)$	n	σ	ζ
NMOS2V	5/0.18	528	5.52	1.37	0.025	0.056

$V_T I_S$ and *n* extraction: The g_m/I_D method

$$g_{ms} = \mu \frac{W}{L} n C_{ox} \phi_t q_S = \frac{2I_S}{\phi_t} q_S$$

$$\left. \frac{g_m}{I_D} \right|_{V_{DS} \to 0} = \frac{1}{n\phi_t (1 + q_S)}$$

Thus, at threshold $(q_S = 1) g_m/I_D$ is at

½ of its maximum value,

$$I_D(q_S = 1, V_{DS} = \phi_t/2) \cong g_{mS}\phi_t/2$$

$$= \frac{2I_S}{\phi_t}\phi_t/2 = I_S$$

$$\stackrel{+}{\smile} V_{DS} = \frac{\phi_t}{2}$$

 $V_{GB} = V_{T0}$

Edinburgh, June 2023

Extraction of σ in WI (MI) in saturation

Common Source Intrinsic Gain method

28 nm FD-SOI technology DC characteristics

Parameter extraction for L=60 nm

Transistor	W/L	V_{T0} (mV)	$I_{S}(\mu A)$	n	σ	ζ
LVTNMOS	1μm/60 nm	390.5	3.25	1.138	0.018	0.039
LVTPMOS	1μm/60 nm	403.6	0.755	1.014	0.029	0.024

Model Verification: NMOS & PMOS TRANSISTORS

Intrinsic capacitances including velocity saturation and DIBL

CMOS Inverter VTC and short-circuit current in 28 nm FD-SOI

$$W_n = W_p = 1 \mu m$$

 $L_n = L_p = 60 nm$

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CMOS Inverter in 180 nm bulk VTC and short-circuit current

Transistor	$W/L \ (\mu m/\mu m)$	$V_{T0} (mV)$	$I_{S}(\mu A)$	n	σ	ζ
NMOS	5/0.18	528	5.52	1.37	0.027	0.056
PMOS	5/0.18	-525	1.82	1.40	0.024	0.035

CMOS Inverter in 180 nm bulk Output Voltage and pull-down current

11- stage Ring Oscillator in 180 nm bulk Output Voltage

Conclusion

•For the first time, a truly compact MOSFET model for SPICE formulated with single-piece functions

•With only 5 DC parameters that are extracted from simple and direct methods (automatized) using SPICE

 Good matching with circuit simulations with BSIM and UTSOI2 models

Main References

- C. Galup-Montoro and M. C. Schneider, MOSFET Modeling for circuit analysis and design, World Scientific, 2007.
- C. M. Adornes, D. G. Alves Neto, M. C. Schneider and C. Galup-Montoro, "
 Bridging the gap between design and simulation of low-voltage CMOS circuits,"
 Journal of Low Power Electronics and Applications, vol. 12, issue 2, June 2022.
- Accellera. Verilog-AMS reference manual. [Online]. Available: https://www.accellera.org

