1 Construct and Plot Matrices

In this exercise you need to make use of the Python packages numpy and matplotlib.

- 1. Construct an identity matrix I of dimension 100x100 as numpy array.
- 2. Construct a banded matrix A of the form

$$A = \frac{100^2}{4\pi^2} \begin{bmatrix} -2 & 1 & 0 & 0 & \dots & 0 & 0\\ 1 & -2 & 1 & 0 & \dots & 0 & 0\\ 0 & 1 & -2 & 1 & \dots & 0 & 0\\ 0 & 0 & 1 & -2 & \dots & 0 & 0\\ \dots & \dots & \dots & \dots & \dots & \dots\\ 0 & 0 & 0 & 0 & \dots & -2 & 1\\ 0 & 0 & 0 & 0 & \dots & 1 & -2 \end{bmatrix}$$

of dimension 100×100 as numpy array.

- 3. Plot both matrices with the function imshow() of the package matplotlib.pyplot.
- 4. Construct a vector z with the linspace() function of the numpy package. It should contain a grid of 102 values between 0 and 2π .
- 5. Use Python's slicing capabilities to save all except from the first and the last value of z into another vector x.
- 6. Calculate $y = \sin(x)$ and the matrix vector product d = Ay using numpy.sin() and numpy.dot().
- 7. Plot y and d into the same plot using plot() from the matplotlib.pyplot package.

Hint: You might need to use matplotlib.pyplot.show() in order to guarantee that the notebook shows some output.

Solution: