Genome Center Clusters

"If you were plowing a field, which would you rather use: Two strong oxen or 1024 chickens?"

-Seymour Cray

• What is a cluster?

- What is a cluster?
 - A collection of machines that work together

- What is a cluster?
 - A collection of machines that work together
- Why use a cluster?

- What is a cluster?
 - A collection of machines that work together
- Why use a cluster?
 - Chickens are cheaper than oxen

- What is a cluster?
 - A collection of machines that work together
- Why use a cluster?
 - Chickens are cheaper than oxen
 - and easier to feed

- What is a cluster?
 - A collection of machines that work together
- Why use a cluster?
 - Chickens are cheaper than oxen
 - and easier to feed
 - ...but try making 1024 chickens move in the same direction

Parallel

- Parallel
 - fine-grained parallel

- Parallel
 - fine-grained parallel
 - course-grained parallel

- Parallel
 - fine-grained parallel
 - course-grained parallel
 - embarrassingly parallel

- Parallel
 - fine-grained parallel
 - course-grained parallel
 - embarrassingly parallel
- Serial

- Parallel
 - fine-grained parallel
 - course-grained parallel
 - embarrassingly parallel
- Serial
 - Can still benefit from a cluster environment

Available Resources

genbeo

Available Resources

- genbeo
- shiraz

Available Resources

- genbeo
- shiraz
- apple

• 19 nodes

- 19 nodes
- Dual Opteron

- 19 nodes
- Dual Opteron
- 4G memory per node

- 19 nodes
- Dual Opteron
- 4G memory per node
- Gigabit ethernet interconnect

- 19 nodes
- Dual Opteron
- 4G memory per node
- Gigabit ethernet interconnect
- 3.2TB storage

- 19 nodes
- Dual Opteron
- 4G memory per node
- Gigabit ethernet interconnect
- 3.2TB storage
 - 800G User home dirs and mysql

- 19 nodes
- Dual Opteron
- 4G memory per node
- Gigabit ethernet interconnect
- 3.2TB storage
 - 800G User home dirs and mysql
 - 800G Shared applications

- 19 nodes
- Dual Opteron
- 4G memory per node
- Gigabit ethernet interconnect
- 3.2TB storage
 - 800G User home dirs and mysql
 - 800G Shared applications
 - 800G Shared filesystem

- 19 nodes
- Dual Opteron
- 4G memory per node
- Gigabit ethernet interconnect
- 3.2TB storage
 - 800G User home dirs and mysql
 - 800G Shared applications
 - 800G Shared filesystem
 - 800G backups

• 110 nodes

- 110 nodes
- Dual processor, dual core Opteron (4 cores/node)

- 110 nodes
- Dual processor, dual core Opteron (4 cores/node)
- 32 nodes with 8G, remainder with 4G

- 110 nodes
- Dual processor, dual core Opteron (4 cores/node)
- 32 nodes with 8G, remainder with 4G
- Gigabit ethernet interconnect

- 110 nodes
- Dual processor, dual core Opteron (4 cores/node)
- 32 nodes with 8G, remainder with 4G
- Gigabit ethernet interconnect
- 4.4TB attached storage

- 110 nodes
- Dual processor, dual core Opteron (4 cores/node)
- 32 nodes with 8G, remainder with 4G
- Gigabit ethernet interconnect
- 4.4TB attached storage
 - 1.2T User storage

- 110 nodes
- Dual processor, dual core Opteron (4 cores/node)
- 32 nodes with 8G, remainder with 4G
- Gigabit ethernet interconnect
- 4.4TB attached storage
 - 1.2T User storage
 - 1.6T shared databases (PDB, blastdb, ...)

- 110 nodes
- Dual processor, dual core Opteron (4 cores/node)
- 32 nodes with 8G, remainder with 4G
- Gigabit ethernet interconnect
- 4.4TB attached storage
 - 1.2T User storage
 - 1.6T shared databases (PDB, blastdb, ...)
 - 1.6T Shared filesystem

Apple

• 37 nodes

Apple

- 37 nodes
- Dual PowerPC G4

- 37 nodes
- Dual PowerPC G4
- 1-2G memory per node

- 37 nodes
- Dual PowerPC G4
- 1-2G memory per node
- Gigabit ethernet interconnect

- 37 nodes
- Dual PowerPC G4
- 1-2G memory per node
- Gigabit ethernet interconnect
- 1.6TB attached storage

- 37 nodes
- Dual PowerPC G4
- 1-2G memory per node
- Gigabit ethernet interconnect
- 1.6TB attached storage
 - 800G User home directories

- 37 nodes
- Dual PowerPC G4
- 1-2G memory per node
- Gigabit ethernet interconnect
- 1.6TB attached storage
 - 800G User home directories
 - 800G Mysql and postgres databases

The Big Picture

Anatomy of a Cluster

Biological databases:

- Biological databases:
 - pdb

- Biological databases:
 - pdb
 - blastdb

- Biological databases:
 - pdb
 - blastdb
 - •

Compilers

Gnu compiler suite

Compilers

- Gnu compiler suite
- Pathscale floating license

Compilers

- Gnu compiler suite
- Pathscale floating license
- Intel?

- biopython
- clustalw
- EMBOSS
- BLAST
- HMMER
- mrbayes
- t-coffee
- phylip

•

• R

- R
- mysql

- R
- mysql
- Request your app!

Your Cluster Account

Same username/password works on all hosts on which you have an account.

Accessing the cluster

Access using ssh

Accessing the cluster

- Access using ssh
- Transfer files using scp/sftp/rsync

Accessing the cluster

- Access using ssh
- Transfer files using scp/sftp/rsync
- Web interface

ssh username@genbeo.genomecenter.ucdavis.edu

- ssh username@genbeo.genomecenter.ucdavis.edu
- Add –x option (capital!) to forward X connections

- ssh username@genbeo.genomecenter.ucdavis.edu
- Add –x option (capital!) to forward X connections
- Clients for windows:

- ssh username@genbeo.genomecenter.ucdavis.edu
- Add –x option (capital!) to forward X connections
- Clients for windows:
 - putty (free!)

- ssh username@genbeo.genomecenter.ucdavis.edu
- Add –x option (capital!) to forward X connections
- Clients for windows:
 - putty (free!)
 - SecureCRT

- ssh username@genbeo.genomecenter.ucdavis.edu
- Add –x option (capital!) to forward X connections
- Clients for windows:
 - putty (free!)
 - SecureCRT
 - ssh.com

- ssh username@genbeo.genomecenter.ucdavis.edu
- Add –x option (capital!) to forward X connections
- Clients for windows:
 - putty (free!)
 - SecureCRT
 - ssh.com
 - winscp

scp

- scp
 - scp file username@genbeo:

- scp
 - scp file username@genbeo:
- rsync

- scp
 - scp file username@genbeo:
- rsync
 - rsync -a directory username@genbeo:

- scp
 - scp file username@genbeo:
- rsync
 - rsync -a directory username@genbeo:
- sftp

- scp
 - scp file username@genbeo:
- rsync
 - rsync -a directory username@genbeo:
- sftp
 - ftp-like interface that works over ssh

Cluster Web Interface

Cluster Web Interface

Cluster Web Interface

8 9 1

• What is a batch queue?

- What is a batch queue?
 - Manage cluster resources

- What is a batch queue?
 - Manage cluster resources
- Why use the batch queue?

- What is a batch queue?
 - Manage cluster resources
- Why use the batch queue?
 - Share cluster resources

- What is a batch queue?
 - Manage cluster resources
- Why use the batch queue?
 - Share cluster resources
 - You don't need to worry about when/where your jobs run

- What is a batch queue?
 - Manage cluster resources
- Why use the batch queue?
 - Share cluster resources
 - You don't need to worry about when/where your jobs run
 - Submit a whole bunch of jobs and go home!

SGE Terminology: slots

A resource allocated to your job

SGE Terminology: slots

- A resource allocated to your job
- We define one slot per CPU core

SGE Terminology: slots

- A resource allocated to your job
- We define one slot per CPU core
- Can request number of slots when you submit job

 Need to use a PE when you want more than one slot

- Need to use a PE when you want more than one slot
- PE can specify start and stop programs (eg mpirun)

- Need to use a PE when you want more than one slot
- PE can specify start and stop programs (eg mpirun)
- PEs avilable:

- Need to use a PE when you want more than one slot
- PE can specify start and stop programs (eg mpirun)
- PEs avilable:
 - serial

- Need to use a PE when you want more than one slot
- PE can specify start and stop programs (eg mpirun)
- PEs avilable:
 - serial
 - mpich

SGE Terminology: Job Array

Run the same job multiple times

SGE Terminology: Job Array

- Run the same job multiple times
- submit/manage as a single job

SGE Terminology: Job Array

- Run the same job multiple times
- submit/manage as a single job
- Ideal for running the same program repeatedly with different input files or parameters

Job	Slots
A	6
B_1	1
B_2	1
B_3	1
C	4

Queue

Node1 Node2

Three jobs waiting in queue...

Job	Slots
A	6
B_1	1
B_2	1
B_3	1
C	4

A	A	A	A
A	A		

Queue

Node1 Node2

Job A is scheduled

Job	Slots
A	6
B_1	1
B_2	1
B_3	1
C	4

A	A	A	A
A	A	B_1	

Queue

Node1 Node2

Job B_1 is scheduled

Job	Slots
A	6
B_1	1
B_2	1
B_3	1
C	4

A	A	A	A
A	A	B_1	B_2

Queue

Node1 Node2

Job B_2 is scheduled

Job	Slots
B_1	1
B_2	1
B_3	1
C	4

B_1	B_2

Queue

Node1

Node2

Job A finishes

Job	Slots
B_1	1
B_2	1
B_3	1
C	4

Queue

Node1

Node2

Job B_3 is scheduled

Job	Slots
B_2	1
B_3	1
C	4

Queue

Node1 Node2

Job B_1 finishes

Slots
1
4

Queue

Node1 Node2

Job B_2 finishes

Job	Slots			
B_3	1			
C	4			

Queue

Node1 Node2

Job C is scheduled

qsub: submit jobs

- qsub: submit jobs
- qstat: get job status

- qsub: submit jobs
- qstat: get job status
- qdel: remove a job

- qsub: submit jobs
- qstat: get job status
- qdel: remove a job
- qlogin: interactive login

SGE Commands: qsub

Use the qsub command to submit a batch job to the system Simplest case:

```
$ qsub file.sh
Your job 929 ("file.sh") has been submitted.
```

SGE Commands: qstat

Use the -f flag to see all jobs running...

<pre>\$ qstat -f queuename</pre>	qtype	used/tot.	load_avg	arch	states
all.q@compute-0-1.local 2455 0.60500 proAwt	BIP cwu	4/4 r	1.83 06/21/2006	lx26-amd64 5 12:06:06	4
all.q@compute-0-10.local	BIP	0/4 	0.00	1x26-amd64	d
all.q@compute-0-98.local 2823 0.51386 ccr5_SCH_A 2865 0.50500 rungb5b 2944 0.52905 g2l_ff03	BIP twang xjdeng zxwang	4/4 r r r	_,,,		2 1 1
all.g@compute-0-99.local	BIP	0/4	0.00	1x26-amd64	

SGE Commands: qstat

...as well as those waiting to be run.

```
PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS
2947 0.52905 q2f ff03
                           07/09/2006 22:11:04
                                         2.0
                       qw
               zxwanq
2948 0.52905 g2h_ff03
                           07/09/2006 22:11:55
                                         2.0
               zxwanq
                       qw
2949 0.52905 g2q_ff03
                           07/09/2006 22:12:42
                                          20
               zxwang
                       qw
```

SGE Commands: qstat

Use the -j <jobid> flag to get more information about a job:

```
$ qstat -j 2947
job_number:
                             2947
exec_file:
                             job_scripts/2947
submission time:
                             Sun Jul 9 22:11:04 2006
```

SGE Commands: qdel

 Use the qdel command to delete a previously scheduled job from the queue.

SGE Commands: qdel

- Use the qdel command to delete a previously scheduled job from the queue.
- Note: if the job was running, you may still have to kill the processes by hand.

SGE Commands: qdel

- Use the qdel command to delete a previously scheduled job from the queue.
- Note: if the job was running, you may still have to kill the processes by hand.
- The -f (force) option can sometimes be necessary to clean up jobs left behind, for example, if a node dies during the job.

Use the qlogin command to schedule an interactive login.

Default is one slot

Use the qlogin command to schedule an interactive login.

- Default is one slot
- To allocate more slots, use the parallel environment serial and the number of slots qlogin -pe serial 2

Use the qlogin command to schedule an interactive login.

- Default is one slot
- To allocate more slots, use the parallel environment serial and the number of slots qlogin -pe serial 2
- Two slots on genbeo will give you the whole node (4 on shiraz)

Use the qlogin command to schedule an interactive login.

- Default is one slot
- To allocate more slots, use the parallel environment serial and the number of slots qlogin -pe serial 2
- Two slots on genbeo will give you the whole node (4 on shiraz)
- If enough slots are not avilable, qlogin will fail.

Single Threaded single app (simple) BLAST (Basic Local Alignment Search Tool)

SGE script: (sge_blast.sh)

```
# Blast executable binary
BLAST=/opt/Bio/blast-2.2.14/bin/blastall

#$ -cwd
#$ -o blastout
#$ -e blasterr
#$ -q all.q
#$ -S /bin/bash
$BLAST $*
```

Lines with #\$ are command-line flags for SGE.

```
qsub -N serialBlast sge_blast.sh -p blastp -i query.aa -d drosoph.aa -e 1e-40 -o output.blast
```

-N Specify job name (serialBlast)

```
qsub -N serialBlast sge_blast.sh -p blastp -i query.aa -d drosoph.aa -e 1e-40 -o output.blast
```

- -N Specify job name (serialBlast)
- -q Specify queue in which to run job (all.q)

```
qsub -N serialBlast sge_blast.sh -p blastp -i query.aa -d drosoph.aa -e 1e-40 -o output.blast
```

- -N Specify job name (serialBlast)
- -q Specify queue in which to run job (all.q)
- -S Specify interpreter to run script (/bin/bash)

```
qsub -N serialBlast sge_blast.sh -p blastp -i query.aa -d drosoph.aa -e 1e-40 -o output.blast
```

- -N Specify job name (serialBlast)
- -q Specify queue in which to run job (all.q)
- -S Specify interpreter to run script (/bin/bash)
- -o Specify file for stdout of job

```
qsub -N serialBlast sge_blast.sh -p blastp -i query.aa -d drosoph.aa -e 1e-40 -o output.blast
```

- -N Specify job name (serialBlast)
- -q Specify queue in which to run job (all.q)
- -S Specify interpreter to run script (/bin/bash)
- -o Specify file for stdout of job
- -cwd Execute job in the directory from which it was submitted

SGE Example: mpi-BLAST

Parallel version of BLAST using MPI SGE script: (sge_mpiblast,sh)

```
# Basic SGE script to run mpiblast

MPIRUN=/opt/mpich/gnu/bin/mpirun

MPIBLAST=/opt/Bio/mpiblast-1.4.0/bin/mpiblast

#$ -cwd
#$ -o mpiblastout
#$ -e mpiblasterr
#$ -q all.q
#$ -S /bin/bash

$MPIRUN -np $NSLOTS -machinefile /$TMPDIR/machines $MPIBLAST $*
```

SGE Example: mpi-BLAST

```
qsub -N mpiblast1 -pe mpich 4 sge_mpiblast.sh -p blastp -d swissprot -i query.aa -o mpiblast.out -e 1e-40
```

-pe Specify parallel environment and number of slots

SGE Example: R

• -t 1-5:1

SGE Example: R

- -t 1-5:1
- -hold_jid job-name-or-id

SGE Example: qlogin

Things to do

Use the scheduler!

Things to do

- Use the scheduler!
- Checkpoint your job

Things to do

- Use the scheduler!
- Checkpoint your job
- Make use of local storage on the nodes for intermediate results

Things NOT to do

Run jobs on the head node

Things NOT to do

- Run jobs on the head node
- Many simultaneous writes to network filesystem

Things NOT to do

- Run jobs on the head node
- Many simultaneous writes to network filesystem
- Go around scheduler and run directly on the nodes

The end

- Get an account: http://genomecenter.ucdavis.edu/, click on "Administration"
- Documentation and example scripts:

http://wiki.genomecenter.ucdavis.edu/bioinformatics/

Questions?