Multimodal Stock Price Prediction: A Case Study of the Russian Securities Market

Kasymkhan Khubiyev, Mikhail Semenov Sirius University of Science and Technology, Sirius, Russia

April 1, 2025

摘要:本文提出了一种结合蜡烛图时间序列和文本新闻流数 态和多模态方法的预测质量指标。 据的多模态方法,用于预测金融资产价格。实验结果表明, 加入文本模态后,预测的平均绝对百分比误差 (MAPE) 降 低了 55%。

1 引言

构建资产价格预测是金融市场参与者的重要任务,能够实 现战略规划、投资组合管理和风险评估。随着深度学习模型 的普及,研究者们开始关注神经网络的应用。同时,新闻流 作为影响市场行为的关键因素,其准确性问题随着生成式人 工智能模型和大型语言模型 (LLMs) 的快速发展而被重新 审视。本文旨在展示一种新的多模态方法的优势,并提出一 个俄语金融新闻数据集。

2 方法

本文提出了一种新的多模态方法,将新闻流整合到时间 序列数值数据中。新闻文本被转换为向量表示,并与时间 序列向量一起输入模型。我们使用预训练模型 RuBERT 和 Vikhr-Qwen2.5-0.5b-Instruct 处理文本数据,使用LSTM 递归神经网络处理时间序列和向量化文本数据。

Figure 1: 资产的归一化收盘价。市场阶段转换日期由垂直 虚线表示。

实验设计 3

我们收集了一个包含 176 只在莫斯科交易所交易的俄罗 斯股票的时间序列数据和 79,555 篇俄语金融新闻文章的独 特数据集。实验分为两部分:仅使用时间序列数据的单模态 方法和结合新闻流数据的多模态方法。预测质量通过两个关 键指标评估:准确率 (Accuracy) 和平均绝对百分比误差 (MAPE).

实验结果与分析 4

实验结果表明,加入文本模态后,预测的平均绝对百分比 误差 (MAPE) 降低了 55%。表 1 和表 2 分别展示了单模

Table 1: 单模态方法预测结果

模型	准确率	MAPE
LSTM	52.020%	0.397
XGB	45.000%	1.627
KNN	46.010%	1.631
RF	48.384%	1.646
LinReg	50.152%	1.669
DT	49.798%	1.824

Table 2: 多模态方法预测结果

模型	准确率	MAPE
LSTM-Qwen-Mean	48.552%	0.256
LSTM-Qwen-Sum	46.970%	0.367
LSTM	52.020%	0.397
LSTM-RuBert-Mean	49.798%	0.437
LSTM-RuBert-Sum	48.148%	0.445

结论

本文提出了一种新的多模态方法,将新闻流整合到时间序 列数值数据中,显著提高了资产价格预测的准确性。未来的 研究方向包括优化文本模态参数,如时间窗口、情感和新闻 消息的时间顺序。