Planos Resumen y notas de clases

Ultima modificación:12 de noviembre de 2003

Plano R³

Tres puntos definen un plano.

Ecuaciones del plano

Ecuación vectorial del plano (3 maneras de expresarlo):

Preciso un punto P₀ perteneciente al plano, y dos vectores (a y b)

$$\begin{split} \vec{OP} &= \vec{OP}_0 + \vec{P_0P} \\ \vec{OP} &= \vec{OP}_0 + \lambda \vec{a} + \mu \vec{b} \\ (x, y, z) &= (x_0, y_0, z_0) + (\lambda a_{1, \lambda} a_{2, \lambda} a_3) + (\mu b_{1, \mu} b_{2, \mu} b_3) \end{split}$$

Ecuación parametrica del plano: (surge de la anterior ecuación)

$$x = x_0 + \lambda a_1 + \mu b_1$$

 $y = y_0 + \lambda a_2 + \mu b_2$
 $z = z_0 + \lambda a_3 + \mu b_3$

Ecuación general o cartesiana del plano:

(preciso un punto $P_0(x_0, y_0, z_0)$ incluido en el plano, y la normal n (n_1, n_2, n_3) del plano.

Luego se hace:

$$(n_{1,}n_{2,}n_{3})\cdot(x-x_{0,}y-y_{0,}z-z_{0})=0$$

 $n_{1}(x-x_{0})+n_{2}(y-y_{0})+n_{3}(z-z_{0})=0$

Y resolviendo y agrupando los términos independientes en n₄ resulta:

$$n_1 \cdot x + n_2 \cdot y + n_3 \cdot z + n_4 = 0 \quad \text{(los coeficientes n1,2,3 son la normal del plano.)}$$

NOTA: La normal del plano es perpendicular a cualquier vector incluido en su plano.

Ecuación segmentaria del plano:

$$\begin{aligned} &\frac{x}{p}\!+\!\frac{y}{q}\!+\!\frac{z}{r}\!=\!1\\ &\text{donde:}-\!\frac{n_4}{n_1}\!=\!p\quad\!-\!\frac{n_4}{n_2}\!=\!q\quad\!-\!\frac{n_4}{n_3}\!=\!r\,;\text{de la ec. general} \end{aligned}$$

Básicamente, se pasa n_4 de la ecuación general al otro miembro (donde esta el 0; n_4 cambia de signo) y se divide todo por ese n_4 con signo cambiado, para de esa manera, igualar todo a 1.

En esta ecuación, p es la intersección del plano con eje x, q con eje y, r con eje z.

Posiciones relativas de un plano

Plano paralelo a un eje coordenado:

 $n_1 \cdot x + n_2 \cdot y + n_4 = 0$ Es paralelo al eje que falta en la ecuación general. (En este ejemplo, es paralelo al eje z.

Plano paralelo a un plano coordenado:

$$\Pi \| xy \rightarrow z = r$$
 $\Pi \| yz \rightarrow x = p$ (r,p,q de la ecuación segmentaria.)
 $\Pi \| xz \rightarrow y = q$

Plano que pasa por el origen de coordenadas

$$n_1 \cdot x + n_2 \cdot y + n_3 \cdot z = 0$$

(no hay ecuación segmentaria, porque n4 = 0)

Angulo entre dos planos

Para obtenerlo, se saca el ángulo entre las normales de ambos planos (que son dos vectores).

Plano paralelo a otro

$$\alpha \parallel \beta \iff \vec{a} \parallel \vec{b} \iff \vec{a} = \lambda \vec{b}$$

 $\alpha y \beta \text{ planos}, \vec{a}, \vec{b} \text{ normales}$

Planos Perpendiculares

$$\alpha \perp \beta \Leftrightarrow \vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$$

 $\alpha y \beta \text{ planos}, \vec{a}, \vec{b} \text{ normales}$

Distancia de un punto a un plano

$$\alpha = \text{plano} = a_1 x + a_2 y + a_3 z + a_4 = 0$$
, $\vec{a} = \text{normal}$, $P_1(x_{1,} y_{1,} z_1) = \text{punto}$

$$distancia {=} \left| \frac{a_1x_1 {+} a_2y_1 {+} a_3z_1 {+} a_4}{|(\vec{\mathbf{a}})|} \right|$$

Si un punto pertenece al plano, la distancia sera cero.

$$\alpha = x + y - z + 2 = 0$$
, $\vec{a} = (1, 1, -1)$, $P_1(2, 3, 4)$

Ejemplo:

$$\left| \frac{1 \cdot 2 + 1 \cdot 3 + (-1) \cdot 4 + 2}{\sqrt{3}} \right| = \frac{3}{\sqrt{3}}$$

Haz del plano (ver el ejercicio en el cuaderno)

 $\underline{Recta} \ \mathbb{R}^2 \ y \ \mathbb{R}^3$

Ecuaciones

Partiendo de $P(x,y) \in r$; $\overrightarrow{P_0} P \subset r$; $\overrightarrow{a} || r \Rightarrow \overrightarrow{P_0} P || \overrightarrow{a}$

Se obtiene la **ecuación vectorial** de la recta ($R^2 y R^3$) $\vec{OP} = \vec{OP}_0 + \vec{P_0P} \Rightarrow \vec{OP} = \vec{OP}_0 + \lambda \vec{a}$

Partiendo de la ecuacion vectorial: $\vec{OP}\!=\!\vec{OP}_0\!+\!\lambda\,\vec{a}$

$$(x,y)=(x_0,y_0)+\lambda(a_1,a_2)$$

Ecuación parametrica:

$$\begin{cases} \mathbf{x} = \mathbf{x}_0 + \lambda \, \mathbf{a}_1 \\ \mathbf{y} = \mathbf{y}_0 + \lambda \, \mathbf{a}_2 \end{cases} \text{en } \mathbb{R}^2 \quad \begin{cases} \mathbf{x} = \mathbf{x}_0 + \lambda \, \mathbf{a}_1 \\ \mathbf{y} = \mathbf{y}_0 + \lambda \, \mathbf{a}_2 \\ \mathbf{z} = \mathbf{z}_0 + \lambda \, \mathbf{a}_3 \end{cases} \text{en } \mathbb{R}^3$$

Ecuación simétrica: (en R² quitar la componente Z)

$$\frac{x-x1}{a_1} = \frac{y-y1}{a_2} = \frac{z-z1}{a_3}$$
 siendo a1,a2,a3 las componentes del **vector director (a)** de la recta.

Importante: en R³ no hay ecuación general de la recta, tampoco segmentaría (no existen!)

Ecuación general de la recta en \mathbb{R}^2 : (para llegar, se parte de la simétrica, y se resuelve la igualdad, hasta igualar a 0; luego, simplemente se cambian los nombres de las vars a n1, n2,n3 por convención.

$$n_1x+n_2y+n_3=0$$
 ; $normal\vec{n}(n_1;n_2)$; $\vec{n}\perp r\Rightarrow \vec{n}\perp \vec{a}\Rightarrow \vec{n}\cdot \vec{a}=0$

Ecuación segmentaría : se iguala la general a 1, y queda asi (previo cambio de nombres por convención) $\frac{x}{p} + \frac{y}{q} = 1$

Angulo entre dos rectas $(\mathbb{R}^2 y \mathbb{R}^3)$

 $\vec{a}\,y\,\vec{b} =$ vectores directores de las rectas $r_1\,y\,r_2$

$$\widehat{\vec{a}} \, \widehat{\vec{b}} = \arccos \left(\frac{\vec{a} \cdot \vec{b}}{\|(\vec{a})\| \|(\vec{b})\|} \right)$$

Angulo entre recta y plano (\mathbb{R}^3)

siendo \vec{n} la normal del plano y \vec{a} el vector director de la recta

$$\widehat{w} \!=\! arcsen \! \left(\frac{\vec{n} \!\cdot\! \vec{a}}{|(\vec{n})| \!\cdot\! |(\vec{a})|} \right)$$

si uso arccos, debere hacer $90-\widehat{w}$ para obtener el angulo (obtengo el complementario con cos

 $\underline{Una\ recta\ es\ paralela\ a\ otra\ si:}\ r_1\|r_2\ \Leftrightarrow\ \vec{a}\|\vec{b}\ \Leftrightarrow\ \vec{a}=\lambda\,\vec{b}$

 $\underline{Una\ recta\ es\ perpendicular\ a\ otra\ si:}\ r_{\scriptscriptstyle 1}\bot r_{\scriptscriptstyle 2}\ \Leftrightarrow\ \vec{a}\bot\vec{b}\ \Leftrightarrow\ \vec{a}\cdot\vec{b}=0$

 $\underline{Recta\ paralela\ a\ plano\ si:}\quad \alpha \| r\ \Leftrightarrow\ \vec{a} \perp \vec{n}\ \Leftrightarrow\ \vec{a} \cdot \vec{n} = 0 \quad (n = normal\ plano)$

 $\underline{Recta\ perpendicular\ a\ plano\ si:}\quad \alpha\bot r\ \Leftrightarrow\ \vec{a}\|\vec{n}\ \Leftrightarrow\ \vec{a}=\lambda\,\vec{n}\quad (n=normal\ plano)$

Distancia de un punto a una recta

siendo
$$P_1(x_{1,}y_1)$$
; $r = \frac{x - x_0}{a_1} = \frac{y - y_0}{a_2}$

En
$$\mathbb{R}^2$$
 : $P_1 \notin r$; $P_0 \in r$; $\vec{a} \parallel r$; $\vec{n} \perp r$

$$dist = \frac{|n_1 x_1 + n_2 y_2 + n_3|}{\|\vec{n}\|}$$

siendo
$$P_1(x_{1,}y_{1,}z_1)$$
; $r=\frac{x-x_0}{a_1}=\frac{y-y_0}{a_2}=\frac{z-z_0}{a_3}$

En
$$\mathbb{R}^3$$
 : $P_1 \notin r$; $P_0 \in r$; $\ddot{a} \parallel r$

 $dist = \frac{\left\|\vec{a} \wedge \vec{P_0P_1}\right\|}{\left\|\vec{a}\right\|} \quad nota: \ es \ el \ modulo \ del \ vector, \ arriba \ y \ abajo \ en \ este \ caso$