Листок № 3

- 1. Приведите примеры отношений на N с разной комбинацией свойств (функциональность и др.), так чтобы среди примеров были как бесконечные, так и конечные множества (когда возможно).
- **2.** Пусть отношение $R \circ Q$ инъективно, а R тотально для rng Q. Докажите, что тогда инъективно Q, но не всегда инъективно R.
 - **3.** Пусть отношение R функционально. Тогда $R^{-1}[X \cap Y] = R^{-1}[X] \cap R^{-1}[Y]$.
- **4.** Пусть отношение $R \subseteq A \times B$ тотально. Тогда $X \subseteq R^{-1}[R[X]]$ для всех $X \subseteq A$. Всегда ли верно обратное включение? А если R функционально?
- **5.** Пусть отношение $R \subseteq A \times B$ функционально. Докажите, что $R[R^{-1}[X]] \subseteq X$ для любого множества X. Всегда ли верно обратное включение? А если R тотально и $X \subseteq B$?
- **6.** Приведите несколько естественных примеров частичных функций $\mathbb{R} \stackrel{p}{\to} \mathbb{R}$. Найдите их области определения и значений.
- **7.** Согласны ли вы с тем, что «на пустом множестве каждая функция $\mathbb{R} \to \mathbb{R}$ ограничена сверху»? Как вам нравится следующая запись (якобы) этого утверждения: $\exists C \in \mathbb{R} \ \forall x \in \varnothing \ f(x) \leqslant C$?
 - **8.** Для $f: A \xrightarrow{p} B$ и $g: B \xrightarrow{p} C$ проверьте тождества:
 - a) $\operatorname{rng}(g \circ f) = g[\operatorname{rng} f];$
 - б) $\operatorname{dom}(g \circ f) = f^{-1}[\operatorname{dom} g].$
- **9.** Пусть $f: A \xrightarrow{p} B$ и $g: B \xrightarrow{p} C$. Докажите, что для всех $a \in A$ верно $(g \circ f)(a) \simeq g(f(a))$.
 - **10.** При каких условиях из $B^A = D^C$ следует A = C и B = D?
- **11.** Пусть $f\colon A\to B$ и $g\colon A\to B$. Докажите, что $f\cap g\colon A\to B$ тогда и только тогда, когда f=g.
 - **12.** Докажите, что $(f \upharpoonright X) \upharpoonright Y = f \upharpoonright (X \cap Y)$.
 - 13. Всегда ли верно, что $f \sim \text{dom } f$, если отношение f функционально?
- **14.** Докажите, что функция $f \colon \mathbb{N}^2 \to \mathbb{N}$, т. ч. $f(m,n) = 2^m (2n+1) 1$, является биекцией.
 - **15.** Докажите, что $A \times \{x\} \sim A$.
- **16.** Что представляют собой элементы множеств $\underline{3}^2$, $\underline{3}^2$ $\underline{2}^3$, \mathbb{N}^2 , $\underline{2}^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{N}}$, $\mathbb{R}^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{R}}$, $\mathbb{N}^{\mathbb{N}}$, если $\underline{2} = \{0, 1\}$ и $\underline{3} = \{0, 1, 2\}$? Приведите примеры таких элементов.
 - 17. Проверьте утверждения:
 - a) $\underline{6}^{\mathbb{N}} \sim \underline{2}^{\mathbb{N}} \times \underline{3}^{\mathbb{N}};$
 - 6) $(X^{\mathbb{N}})^{\mathbb{N}} \sim X^{\mathbb{N}};$
 - $\mathbf{B})\ X^0\times X^{\mathbb{N}}\sim X^{\underline{0}}\times X^{\mathbb{N}}.$

- **18.** Докажите, что $X \lesssim \mathcal{P}(X)$ для всех X.
- **19.** Докажите, что $\mathcal{P}_1(X) \sim X$.
- **20.** Всегда ли верны следующие утверждения? Могут ли выполняться? А при $X \neq \varnothing$?
 - a) $\cup X \lesssim X$;
 - б) $X \lesssim \cup X$.
 - **21.** Пусть $\alpha, \beta \in \mathbb{R}, A = \{\alpha^n \mid n \in \mathbb{N}\}$ и $B = \{\beta^m \mid m \in \mathbb{N}\}$. Докажите, что $A \cup B \lesssim \mathbb{N}$.
- **22.** Предположим, утверждение континуум-гипотезы верно. Тогда из $A \cup B = \mathbb{R}$ следует, что $A \sim \mathbb{R}$ или $B \sim \mathbb{R}$.
 - **23.** Приняв, что $\mathbb{R} \sim \underline{2}^{\mathbb{N}}$, докажите $\mathbb{R}^2 \sim \mathbb{R}$.
 - 24. Докажите, возможно, применяя теорему Кантора-Бернштейна, что:
 - a) $\mathbb{R} \times \mathbb{N} \sim \mathbb{R}$;
 - 6) $(\mathbb{Q} \times \mathbb{Z})^2 \sim (\mathbb{N} \times \mathbb{Z} \times \mathbb{N})^3$;
 - в) подходящая пара фигур на плоскости или в пространстве равномощны;
 - г) множество окружностей на плоскости равномощно \mathbb{R} ;
 - д) множество треугольников на плоскости равномощно \mathbb{R} ;
 - е) если две фигуры на плоскости содержат отрезки прямой (или разумной кривой), то такие фигуры равномощны.