Literate programming with Python, R, Julia and Stata**

Miguel Portela

Minho University

3 Julho, 2021

Abstract

In this presentation I will discuss how we can enhance the workflow by using literate programming to combine key features of different statistical packages, namely Stata, R, Julia and Python, on the one hand, and Latex as the typesetting system on the other. The goal is to demonstrate and share a template aiming at producing a highly automated report, or research paper, within the same framework. The tasks will run from exploratory data analysis to regression analysis, where the output, from summary to regression tables and figures, is seamlessly included in the final document. Furthermore, important elements of Latex editing, such as automatic referencing, will be highlighted. We aim at freeing the researcher form repetitive tasks to focus on critical and creative writing. Efficiency and replicability will be at the core of the discussion. RStudio will be used to edit and compile R Markdown. The focus will be on producing PDF outputs. In the presentation I will make use of packages such as bookdown, knitr, stargazer, dlookr, ggplot2, plotly, Statamarkdown, reticulate, JuliaCall, pandas, numpy, matplotlib or FixedEffectModels.

^{**}Corresponding address: miguel.portela@eeg.uminho.pt. The current template adapts part of the Rmd code by Paul C. Bauer, Mannheim Centre for European Social Research.

1 Exploratory data analysis

I start by exploring the data **NLSWORK** (National Longitudinal Survey. Young Women 14-26 years of age in 1968).

2 A tibble: 6 x 21

idcode year birth_yr age race msp nev_mar grade collgrad not_smsa <dbl+lbl> 1 1 70 51 18 2 [black] 0 1 12 0 0 2 1 71 51 19 2 [black] 1 0 12 0 0 3 1 72 51 20 2 [black] 1 0 12 0 0 4 1 73 51 21 2 [black] 1 0 12 0 0 5 1 75 51 23 2 [black] 1 0 12 0 0 6 1 77 51 25 2 [black] 0 0 12 0 0 # ... with 11 more variables: c_city , south , ind_code , # occ_code , union , wks_ue , ttl_exp , tenure , # hours , wks_work , ln_wage

Table 1: Summary statistics

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
idcode	28,534	2,601.284	1,487.359	1	1,327	3,881	5,159
year	28,534	77.959	6.384	68	72	83	88
$birth_yr$	$28,\!534$	48.085	3.013	41	46	51	54
age	28,510	29.045	6.701	14.000	23.000	34.000	46.000
race	$28,\!534$	1.303	0.482	1	1	2	3
msp	$28,\!518$	0.603	0.489	0.000	0.000	1.000	1.000
nev_mar	$28,\!518$	0.230	0.421	0.000	0.000	0.000	1.000
grade	$28,\!532$	12.533	2.324	0.000	12.000	14.000	18.000
collgrad	$28,\!534$	0.168	0.374	0	0	0	1
not_smsa	$28,\!526$	0.282	0.450	0.000	0.000	1.000	1.000
c_city	$28,\!526$	0.357	0.479	0.000	0.000	1.000	1.000
south	$28,\!526$	0.410	0.492	0.000	0.000	1.000	1.000
ind_code	28,193	7.693	2.994	1.000	5.000	11.000	12.000
$\operatorname{occ_code}$	$28,\!413$	4.778	3.065	1.000	3.000	6.000	13.000
union	19,238	0.234	0.424	0.000	0.000	0.000	1.000
wks_ue	22,830	2.548	7.294	0.000	0.000	0.000	76.000
${\rm ttl} {\rm _exp}$	$28,\!534$	6.215	4.652	0.000	2.462	9.128	28.885
tenure	28,101	3.124	3.751	0.000	0.500	4.167	25.917
hours	28,467	36.560	9.870	1.000	35.000	40.000	168.000
wks_work	27,831	53.989	29.032	0.000	36.000	72.000	104.000
ln_wage	28,534	1.675	0.478	0.000	1.361	1.964	5.264