7-сегментни дисплеи

Кристиян Стоименов 11 януари 2024 г.

ТУЕС, **ПВМКС**

Устройство - припомняне і

Устройство - припомняне ії

Всеки от входните сигнали (A, B, ..., G) контролира по един *сегмент*. Освен "чертичките" имаме и точка - DP, с която да показваме и дробни числа.

Забележете, че подаваме по един сигнал за всеки един от сегментите, а всички те заедно си споделят GND (в случая).

Устройство - припомняне ііі

Всеки сегмент е всъщност светодиод 1 . Поради тази причина ни е необходимо да до добавим резистор.

Важно е да вземем под внимание дали 7-сегментния ни дисплей е от вида *общ анод* или *общ катод*.

¹Обикновено. Понякога може и да е реализиран по друг начин.

Пример

Нека закачим един 7-сегментен дисплей, на който да визуализираме отброяване от 0 до 15.

Видове управление

Когато всеки от сегментите управляваме постоянно, казваме, че 7-сегментния дисплей се управлява *статично*.

Алтернативният подход е това да се извършва динамично.

Най-лесно можем да илюстираме разликата посредством пример, в който използваме повече от един 7-сегментен дисплей.

Пример за динамично управление

Нека закачим четири 7-сегментни дисплеи, на които да визуализираме броя секунди от началото на програмата.

Видове управление - продължение

Забележете, че във всеки един момент конлираме единствен 7-сегментен дисплей.

Предимства на динамичното управление включват не само факта, че използваме значително по-малко изводи, ами и че хабим по-малко енергия, поради горепосоченото наблюдение.

D тригер - припомняне

СD4511 драйвер і

Symbol	Pin	Description		
ΙΤ	3	lamp test input (active LOW)		
BI	4	ripple blanking input (active low)		
LE	5	latch enable input (active low)		
A, B, C, D	7, 1, 2, 6	BCD address inputs		
GND	8	ground (0 V)		
a, b, c, d, e, f, g	13, 12, 11, 10, 9, 15, 14	segments outputs		
V _{CC}	16	supply voltage		

СD4511 драйвер іі

- LT, (lamp test) избира всички сегменти;
- BI, (blank input) спира всички сегментни;
- LE, (latch enable) -

CD4511 драйвер ііі

Пример за употреба на CD4511

Нека закачим четири 7-сегментни дисплеи, на които да визуализираме броя секунди от началото на програмата.

НС595 отместващ регистър - идейно

- 8-битов serial-in, parallel-out;
- Използва D-тригери, за да "помни";
- Основните изводи са за master reset (MR), shift clock (SHCP), serial input (SD), storage clock (STCP).

НС595 - устройство і

НС595 - устройство іі

НС595 - устройство ііі

Symbol	Pin	Description
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7	15, 1, 2, 3, 4, 5, 6, 7	parallel data output
GND	8	ground (0 V)
Q7S	9	serial data output
MR	10	master reset (active LOW)
SHCP	11	shift register clock input
STCP	12	storage register clock input
OE	13	output enable input (active LOW)
DS	14	serial data input
Q0	15	parallel data output 0
Vcc	16	supply voltage

Control		Input	Output		Function		
SHCP	STCP	OE	MR	DS	Q7S	Qn	
Х	Х	L	L	Х	L	NC	a LOW-level on MR only affects the shift registers
X	1	L	L	Х	L	L	empty shift register loaded into storage register
Х	Х	Н	L	Х	L	Z	shift register clear; parallel outputs in high-impedance OFF-state
1	Х	L	Н	Н	Q6S	NC	logic HIGH-level shifted into shift register stage 0. Contents of all shift register stages shifted through, e.g. previous state of stage 6 (internal Q6S) appears on the serial output (Q7S).
Х	î	L	Н	Х	NC	QnS	contents of shift register stages (internal QnS) are transferred to the storage register and parallel output stages
1	1	L	Н	х	Q6S	QnS	contents of shift register shifted through; previous contents of the shift register is transferred to the storage register and the parallel output stages

НС595 - устройство іч

Пример

Нека закачим един отместващ регистър за 8 светодиода, които да светят подобно на "вълна".

Литература

• "HC595 Datasheet". URL:

```
https://gitlab.com/tues-embedded/vmks/-/blob/master/Datasheets/74HC_HCT595.pdf
```

• "HC4511 Datasheet". URL:

```
https://gitlab.com/tues-embedded/vmks/-/blob/master/Datasheets/74HC_HCT4511.pdf
```