Capítulo 4

Regressão Logística

Introdução

Assim como na Regressão Linear, o objetivo da Regressão Logística é encontrar um modelo *razoável, preciso* e *parcimonioso* que descreva a relação entre:

- uma varíavel de saída (variável dependente / resposta); e
- um conjunto de variáveis independentes (variáveis preditoras / explicativas)

O que distingue um modelo de regressão logística de um modelo de regressão linear é que no primeiro a variável resposta é *binária* (*dicotômica*).

Tal diferença entre regressão logística e linear se reflete tanto na escolha do modelo paramétrico como nas premissas. Porém, os princípios gerais são os mesmos em ambas as abordagens.

Regressão Logística Simples

Exemplo: Estudo de doenças arteriais coronarianas

- Para a exposição que segue, apresentamos como motivação um exemplo no qual o interesse é explorar a associação entre idade e a presença/ausência de doença arterial coronariana (coronary heart disease) em uma certa população.
- Dados: amostra de 100 indivíduos contendo a idade (AGE) e a presença (1) ou ausência (0) de doença arterial coronariana (CHD) para cada indivíduo.
- Análise preliminar sugere que a freqüência de CHD entre indivíduos mais velhos é maior do que entre indivíduos mais jovens (vide tabela e gráfico de dispersão).

ID	AGE	CHD	ID	AGE	CHD									
1	20	0	21	34	0	41	41	0	61	48	1	81	57	0
2	23	0	22	34	0	42	42	0	62	48	1	82	57	1
3	24	0	23	34	1	43	42	0	63	49	0	83	57	1
4	25	0	24	34	0	44	42	0	64	49	0	84	57	1
5	25	1	25	34	0	45	42	1	65	49	1	85	57	1
6	26	0	26	35	0	46	43	0	66	50	0	86	58	0
7	26	0	27	35	0	47	43	0	67	50	1	87	58	1
8	28	0	28	36	0	48	43	1	68	51	0	88	58	1
9	28	0	29	36	1	49	44	0	69	52	0	89	59	1
10	29	0	30	36	0	50	44	0	70	52	1	90	59	1
11	30	0	31	37	0	51	44	1	71	53	1	91	60	0
12	30	0	32	37	1	52	44	1	72	53	1	92	60	1
13	30	0	33	37	0	53	45	0	73	54	1	93	61	1
14	30	0	34	38	0	54	45	1	74	55	0	94	62	1
15	30	0	35	38	0	55	46	0	75	55	1	95	62	1
16	30	1	36	39	0	56	46	1	76	55	1	96	63	1
17	32	0	37	39	1	57	47	0	77	56	1	97	64	0
18	32	0	38	40	0	58	47	0	78	56	1	98	64	1
19	33	0	39	40	1	59	47	1	79	56	1	99	65	1
20	33	0	40	41	0	60	48	0	80	57	0	100	69	1

Gráfico 1: Dados individuais de idade e ocorrência de CHD

Agrupando-se os dados em faixas etárias, é possível visualizar melhor a relação entre CHD e AGE.

CHD									
Age Group	n	Absent	Present	Mean (Proportion)					
20 - 29	10	9	1	0.10					
30 - 34	15	13	2	0.13					
35 - 39	12	9	3	0.25					
40 - 44	15	10	5	0.33					
45 - 49	13	7	6	0.46					
50 - 54	8	3	5	0.63					
55 - 59	17	4	13	0.76					
60 - 69	10	2	8	0.80					
Total	100	57	43	0.43					

Gráfico 2: Proporções de ocorrência de CHD por faixa etária

Regressão linear × logística

variável independente.

Em um problema de regressão, a quantidade chave é o valor médio da variável resposta, dado o valor da variável independente. Esta quantidade é denominada *média condicional* e é expressa como E(Y|x), onde Y denota a variável resposta e x denota um valor da

E(Y|x): "Valor esperado de Y, dado o valor x".

Na Regressão Linear, assume-se que esta média pode ser expressa como uma equação linear em x (ou alguma transformação de x ou de Y):

$$E(Y|x) = \beta_0 + \beta_1 x.$$

Isto significa que é possível para E(Y|x) assumir qualquer valor para x variando na reta real $(-\infty, +\infty)$.

Características da média condicional E(Y|x) quando Y é dicotômica:

- $0 \le E(Y|x) \le 1$
- E(Y|x) se aproxima de 0 e de 1 de forma gradual:
 A mudança em E(Y|x) por unidade de variação em x se torna progressivamente menor à medida em que E(Y|x) se aproxima de 0 ou de 1.
- Perfil semelhante ao de uma distribuição acumulada de uma variável aleatória contínua.

É usual utilizar distribuições acumuladas conhecidas como modelos para E(Y|x) quando Y é dicotômica. Na Regressão Logística, a distribuição adotada é a *Distribuição Logística*.

Função Logística / Logito

Função logística

Para simplificar a notação, denotaremos $\pi(x) = E(Y|x)$ a média condicional de Y quando a distribuição logística é utilizada. A forma específica do modelo de regressão utilizado é

$$\pi(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}.$$
 (1)

Transformação logito*

Transformação chave em regressão logística: inversa da função logística:

$$g(x) = \ln\left(\frac{\pi(x)}{1 - \pi(x)}\right) = \beta_0 + \beta_1 x.$$

* logit, em inglês

g(x) é linear nos parâmetros β_0, β_1 , pode ser contínua e pode variar de $-\infty$ a $+\infty$, dependendo do valor de x.

Distribuição do erro na regressão linear

Na regressão linear assume-se que uma observação da variável resposta pode ser expressa como $y=E(Y|x)+\epsilon$. A quantidade ϵ é denominada erro e expressa o desvio de uma observação da respectiva média condicional. Em regressão linear é usual assumir que $\epsilon \sim Normal(0,\sigma^2)$.

Distribuição do erro na regressão logística

Para variáveis resposta dicotômicas, podemos expressar o valor de Y dado x como $y = \pi(x) + \epsilon$.

A quantidade ϵ pode assumir dois valores:

- Com probabilidade $\pi(x)$, y = 1 e portanto $\epsilon = 1 \pi(x)$;
- Com probabilidade 1 $\pi(x)$, y = 0 e portanto $\epsilon = -\pi(x)$.

Logo, ϵ tem uma distribuição com média 0 e variância igual a $\pi(x)[1-\pi(x)]$. Ou seja, Y segue uma distribuição binomial com probabilidade dada pela média condicional, $\pi(x)$.

Ajuste do Modelo de Regressão Logística

- Suponha que tenhamos uma amostra de n observações independentes de pares (x_i, y_i), i = 1, 2, ..., n, onde y_i ∈ {0, 1} denota a ausência (0) ou presença (1) de uma característica dicotômica, e x_i denota o valor da variável independente para o i−ésimo indivíduo.
- Ajustar o modelo de regressão logística da equação (1) sobre um conjunto de dados requer que estimemos os valores de β_0 e β_1 , os parâmetros desconhecidos.
- Usualmente, na regressão logística utiliza-se o método de máxima verossimilhança.
- Notação: denotaremos por $\beta = [\beta_0, \beta_1]$ o vetor de parâmetros.

Função de Verossimilhança

- Se $Y \in \{0, 1\}$, a expressão para $\pi(x)$ na equação (1) fornece, para um dado valor de β , a probabilidade condicional P(Y = 1|x).
- Logo, $1 \pi(x)$ fornece a probabilidade condicional P(Y = 0|x).
- Assim, para os pares (x_i, y_i) onde $y_i = 1$, a contribuição para a função de verossimilhança é $\pi(x_i)$, e para aqueles pares onde $y_i = 0$, a contribuição para a função de verossimilhança é $1 \pi(x_i)$.
- Uma forma conveniente de expressar a contribuição do par (x_i, y_i) para a função de verossimilhança é através da expressão

$$\pi(x_i)^{y_i}[1-\pi(x_i)]^{1-y_i}$$
.

Função de Verossimilhança

 Assumindo-se que as observações sejam independentes, a função de verossimilhança é expressa por

$$I(\beta) = \prod_{i=1}^n \pi(x_i)^{y_i} [1 - \pi(x_i)]^{1-y_i}.$$

• Otimizar a log verossimilhança é mais fácil matematicamente:

$$L(\beta) = \ln I(\beta) = \sum_{i=1}^{n} \{ y_i \ln \pi(x_i) + (1 - y_i) \ln[1 - \pi(x_i)] \}.$$

• Para encontrar o valor de β que maximiza $L(\beta)$ derivamos $L(\beta)$ com respeito a β_0 e β_1 e igualamos as expressões a zero (Cramer, 2003):

$$\sum\nolimits_{i} [y_{i} - \pi(x_{i})] = 0 \; , \quad \sum\nolimits_{i} x_{i} [y_{i} - \pi(x_{i})] = 0 \; .$$

Notação:

 $\hat{\beta}$: estimativa de máxima verossimilhança para β . $\hat{\pi}(x_i)$: estimativa de máxima verossimilhança para $\pi(x_i)$.

No exemplo anterior:

- $\hat{\beta}_0 = -5.309, \, \hat{\beta}_1 = 0.111$
- $\hat{g}(age) = -5.309 + 0.111age$

Interpretação dos parâmetros

Chances (Odds)

- Em certos contextos (p.ex. apostas) é comum se referir à probabilidade de um evento em termos de chances (odds, em inglês).
- Seja p a probabilidade de um evento ocorrer. As chances a favor desse evento são dadas pela razão entre a probabilidade de sucesso e a probabilidade de fracasso: p/(1 - p)
- P.ex. dizer que um indivíduo tem probabilidade 0.8 de desenvolver uma doença arterial coronária (CHD) é equivalente a dizer que a chance a favor da CHD 0.8/0.2, ou ainda 4:1.
- Um inconveniente é que essa medida é assimétrica: No exemplo anterior, o indivíduo tem chance 0.8/0.2 = 4 de desenvolver CHD, e chance 0.2/0.8 = 0.25 de não desenvolver CHD. Essa assimetria pode ser contornada aplicando-se o logaritmo (em qualquer base > 1):

$$log_2(0.8/0.2) = 2, \ log_2(0.2/0.8) = -2.$$

Ou seja,
$$\forall b > 1$$
, $\log_b[p/(1-p)] = -log_b[(1-p)/p]$.

Relação entre coeficientes e chances:

• Uma vez que $\beta_0 + \beta_1 x = \ln \left[\frac{\pi(x)}{1 - \pi(x)} \right]$, temos:

$$g(x+1) - g(x) = \ln \left[\frac{\pi(x+1)}{1 - \pi(x+1)} \right] - \ln \left[\frac{\pi(x)}{1 - \pi(x)} \right]$$
$$= \beta_0 + \beta_1(x+1) - \beta_0 - \beta_1 x = \beta_1.$$

- Logo, β_1 representa o incremento esperado no log das chances a favor do evento Y por unidade de incremento na variável X.
- Outra interpretação: β_1 representa o log da razão de chances entre P(Y = 1|x + 1) e P(Y = 1|x).

Regressão Logística Múltipla

- Considere uma coleção de p variáveis independentes denotada pelo vetor $\mathbf{x}' = (x_1, x_2, \dots, x_p)$.
- Como anteriormente, denotemos a probabilidade condicional π(x) = P(Y = 1|x). O logito do modelo de regressão logística múltipla é dada pela equação

$$g(\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p,$$

e portanto o modelo de regressão logística é

$$\pi(\mathbf{x}) = \frac{e^{g(\mathbf{X})}}{1 + e^{g(\mathbf{X})}} = \frac{1}{1 + e^{-g(\mathbf{X})}}$$

Ajuste do modelo de regressão logística múltipla

- Assuma que tenhamos uma amostra de n observações independentes (x_i, y_i), i = 1, 2, ... n. Denotemos por β' = (β₀, β₁, ..., β_p) o vetor dos parâmetros a serem ajustados.
- A função de log-verossimilhança é trivialmente extendida, assim como suas respectivas derivadas:

$$\sum\nolimits_{i} [y_{i} - \pi(\boldsymbol{x}_{i})] = 0 \; , \quad \sum\nolimits_{i} x_{ij} [y_{i} - \pi(\boldsymbol{x}_{i})] = 0 \; , \; j = 1, 2 \ldots, \rho \; .$$

Covariância dos Parâmetros

- Através de intervalos de confiança para os parâmetros e testes de significância, é possível avaliar a precisão do ajuste e definir as variáveis preditoras importantes no modelo.
- Essas etapas são baseadas na matriz de covariância dos parâmetros.
- O método usualmente adotado é oriundo da teoria de estimação de máxima verossimilhança.
- Essa teoria estabelece que, sob certas condições, os estimadores das variâncias e covariâncias podem ser obtidos a partir da matrix das derivadas parciais de 2ª ordem da função de log-verossimilhança.

 Na regressão logística, essas derivadas parciais possuem a seguinte forma geral:

$$\frac{\partial^2 L(\beta)}{\partial \beta_i^2} = -\sum_{i=1}^n x_{ij}^2 \pi_i (1 - \pi_i)$$

е

$$\frac{\partial^2 L(\beta)}{\partial \beta_j \partial \beta_l} == -\sum\nolimits_{i=1}^n x_{ij} x_{il} \pi_i (1-\pi_i)$$

para $j, j = 0, 1, 2, \dots, p$ onde π_i denota $\pi(\mathbf{x}_i)$.

- A matriz $(p+1) \times (p+1)$ obtida pelas equações anteriores é usualmente denominada *Hessiana* da função de log-verossimilhança, aqui denotada por $\mathbf{H}(\beta)$. A matriz $\mathbf{I}(\beta) = -\mathbf{H}(\beta)$ a *matriz de informação observada de Fisher*.
- A inversa da matriz de informação fornece um limitante inferior para a matriz de covariância dos parâmetros, Var(β) = I⁻¹(β).

Notação

- $\hat{Var}(\hat{\beta})$ denota a matriz obtida pela avaliação de $Var(\beta)$ sobre $\hat{\beta}$.
- $\hat{Var}(\hat{\beta}_i)$ denota o *j*-ésimo elemento da diagonal de $\hat{Var}(\hat{\beta})$.
- $\hat{Cov}(\hat{\beta}_i, \hat{\beta}_j)$ denota o elemento na posição $(i, j), i \neq j$, de $\hat{Var}(\hat{\beta})$.

Erros-padrão dos parâmetros

Os desvios-padrão dos coeficientes estimados, usualmente denominados *erros-padrão*, são estimados por

$$\hat{\mathsf{SE}}(\hat{\beta}_j) = \left[\hat{\mathsf{Var}}(\hat{\beta}_j)\right]^{1/2}.$$

Notação Matricial para a Matriz de Informação

Uma formulação matricial da matriz de informação é dada por $\hat{\mathbf{l}}(\hat{\boldsymbol{\beta}}) = \mathbf{X}'\mathbf{V}\mathbf{X}$

onde **X** é uma matriz $n \times (p+1)$ contendo os dados de cada indivíduo, e **V** é uma matriz diagonal $n \times n$ com os elementos $\hat{\pi}_i(1-\hat{\pi}_i)$:

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix}$$

$$\mathbf{V} = \left[egin{array}{cccc} \hat{\pi}_1(1 - \hat{\pi}_1) & 0 & \dots & 0 \\ 0 & \hat{\pi}_2(1 - \hat{\pi}_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \hat{\pi}_n(1 - \hat{\pi}_n) \end{array}
ight]$$

Intervalos de Confiança

 Como usual, o intervalo de confiança para os parâmetros é obtido a partir de suas estimativas e de seus erros padrões:

$$IC_{(1-\alpha)}(\beta_j) = \hat{\beta}_j \pm z_{1-\alpha/2} \hat{SE}(\hat{\beta}_j),$$

onde $z_{1-\alpha/2}$ corresponde ao quantil $(1-\alpha)$ da distribuição normal padrão.

No exemplo do estudo de doenças arteriais coronarianas,

$$IC_{0.95}(\beta_0) = (-7.531, -3.087), IC_{0.95}(\beta_1) = (0.064, 0.158),$$

sugerindo que o incremento em ano de idade resulta no aumento de 0.064 a 0.158 no log da chance de CHD.

- Outro aspecto de interesse é obter o intervalo de confiança para a previsão g(x).
- Na regressão logística simples, a formulação é direta: Considerando que

$$\hat{g}(x) = \hat{\beta}_0 + \hat{\beta}_1 x ,$$

temos

$$\widehat{\text{Var}}[\widehat{g}(x)] = \widehat{\text{Var}}(\beta_0) + x^2 \widehat{\text{Var}}(\beta_1) + 2x \widehat{\text{Cov}}(\widehat{\beta}_0, \widehat{\beta}_1).$$

 A formulação geral incluindo a regressão múltipla pode ser apresentada em notação matricial:

$$\hat{g}(\mathbf{x}) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p = \mathbf{x}' \hat{\boldsymbol{\beta}}$$

onde $\mathbf{x}' = (1, x_1, x_2, \dots x_p)$. Logo,

$$\hat{\text{Var}}[\hat{g}(\mathbf{x})] = \sum_{j=0}^{p} x_{j}^{2} \hat{\text{Var}}(\hat{\beta}_{j}) + \sum_{j=0}^{p-1} \sum_{k=j+1}^{p} 2x_{j} x_{k} \hat{\text{Cov}}(\hat{\beta}_{j}, \hat{\beta}_{k}).$$

• Recordando a notação $\hat{\mathbf{l}}(\hat{\boldsymbol{\beta}}) = \mathbf{X}'\mathbf{V}\mathbf{X}$, temos

$$\hat{Var}(\hat{\boldsymbol{\beta}}) = (\mathbf{X}'\mathbf{VX})^{-1}.$$

• Assim, $\hat{Var}[\hat{g}(\mathbf{x})]$ pode ser expressa como

$$\hat{\text{Var}}[\hat{g}(\mathbf{x})] = \mathbf{x}' \hat{\text{Var}}(\hat{\beta}) \mathbf{x} = \mathbf{x}' (\mathbf{X}' \mathbf{V} \mathbf{X})^{-1} \mathbf{x}.$$

Teste de Significância dos Coeficientes

Uma vez ajustado o modelo de regressão logística, é necessário confirmar a associação entre as variáveis independentes e a variável resposta. Usualmente, utilizam-se *testes de significância*.

Teste da razão de verossimilhança

- O teste da razão de verossimilhança é um testes bastante difundido, por ter uma formulação geral, intuitiva e de fácil implementação.
- Para verificar a significância de coeficientes individuais β_j , o teste utiliza a estatística

$$G=-2\ln\left[\frac{\text{verossimilhança do modelo }\textit{sem}\text{ a variável }(\beta_j=0)}{\text{verossimilhança do modelo }\textit{com}\text{ a variável }(\beta_j\neq0)}\right]$$

• Sob a hipótese de $\beta_j = 0$, a estatística G possui uma distribuição chi-quadrado com p graus de liberdade (note que o modelo completo possui p + 1 coeficientes, pois inclui β_0).

Teste de Wald

- O teste de Wald compara a estimativa de máxima verossimilhança $\hat{\beta}_i$ com o valor testado ($\beta_i = 0$), assumindo que a diferença entre essas medidas é aproximadamente normal.
- Mais especificamente, o teste é obtido comparando-se a estimativa de máxima verossimilhança do parâmetro de interesse, β̂_i, com a estimativa de seu erro padrão:

$$W = rac{\hat{eta}_j}{\hat{\mathsf{SE}}(\hat{eta}_j)}$$
 .

• Sob a hipótese $\beta_j=0$, a estatística W segue distribuição normal padrão. Assim, considerando-se a hipótese alternativa $\beta_j\neq 0$, o p-valor corresponde à probabilidade P(|z|>W)=2P(z>W), onde z denota uma variável com distribuição normal padrão.

Referências

- D.W.Hosmer, S.Lemeshow (2000). *Applied Logistic Regression*, 2nd ed, Wiley.
- J. S. Cramer (2003). The origins and development of the logit model. Cambridge UP.

```
http://www.cambridge.org/resources/0521815886/
1208_default.pdf
```