

Marketing on YouTube

05.11.2022

Jacob Fishman, Jf4322

Laksh Kataria,

Lvk8525

Ujjwal Vikram Kulkarni, uk2011

Overview

Youtube has slowly become one of the leading entertainment/media conglomerates worldwide. The entertainment/media company opened its "doors" in 2005, and has been making steady progress in captivating all types of audiences. As of today, YouTube boasts impressive numbers, such as 122 million active users daily (1), 2.6 Billion monthly active users (2), and 1 billion hours of view time per day (3). This success has made YouTube one of, if not, the most influential entertainment/media platforms in the world. One of the side effects of this success is gardening a large and broad audience, which includes people all over the world. Over 71% of Canadian citizens visit the site on a monthly basis (4), making Youtube a viable platform for advertisers. Youtube's advertising revenue hit 28.8 billion in the year 2021 (5), and with 500 hours of new videos of content being uploaded every day, there is an untapped market in identifying popular videos before they get popular.

Our mission is to provide customers with an opportunity to effectively advertise to a larger audience by discovering videos that will captivate audiences around Canada before they reach the trending page. Our analysis uses real time data from YouTube's Trending section to understand what videos make it to the most viewed page on the site. Our approach is to analyze the real time data to determine the most effective ways of getting videos to the trending page, such as; time of day to post, best category of videos, useful tags and descriptions, and optimal thumbnails to catch a user's interest.

Our goal is that we want to identify the videos that will reach the largest audience before they get to the trending page. This way your company can reach more viewers for less money than if you waited until the video got to the trending page. We know that this analysis will help your company reach more audiences around Canada, and therefore help your company's advertising goals.

Why do we need Big Data?

To perform our analysis, we have made use of several techniques that are commonly used in a Big Data paradigm. Big Data is an overarching term that encompasses all kinds of data, however, the most common and technical definitions of Big Data aim to define it within the scope of the 'Three V's'. The 'Three V's' of Big Data are Volume, which refers to the size of data that we are dealing with, Variety, which refers to the variation in the fields of the available data, and Velocity, referring to the speed at which the data is collected or accumulated.

The need for our company to utilize Big Data approaches for our analysis is due to the size and variation within the dataset at hand, two of the three "V's". Without these

approaches, it becomes almost impossible to ingest and subsequently operate on this data using traditional data processing methods.

To ingest and operate upon the YouTube video dataset, we are making use of the Pyspark framework. The primary reason for the use of Pyspark is to take advantage of Pandas' extremely efficient capabilities of reading and loading data, while overcoming Pandas' inability to perform or support distributed system operations in cases where we might need additional processing power to support our growing data.

In simple terms, Pandas runs data processing operations on a single machine where as Pyspark runs these operations in a distributed manner, on multiple machines and hence, can give much faster computation times and processing speeds as compared to Pandas, thereby finding extensive application in the fields of Data Science, Analytics and Machine Learning.

For our specific application, the data set we used was over 835MB and included several variations in the data field, per country. This made it incredibly difficult to operate on the data using regular data processing techniques and hence, Pyspark was the go-to solution.

The Data

The Dataset that we are using for this analysis is the Youtube Trending dataset from Kaggle. The Data is split up into 9 different countries, but for our analysis we are using the Canadian dataset, given that the companies we are pitching to want to advertise to Canadian citizens. Our hope is that with the success of this project we will be able to increase our efforts to other countries, and to gain access to all of YouTube's data, not just the Trending data.

The dataset we have spans from 2020-07-27 to 2022-04-24 for all videos that were on Canada's Trending dataset. The features we have are:

```
video_id| title| publishedAt| channelId| channelTitle|categoryId| trending_date| tags|view_count| likes|dislikes|comment_count| thumbnail_link|comments_disabled|ratings_disabled| description
```

The dataset we are working with looks like:

[30]	+	title	+ publishedAt	channelId	+ channelTitle	categoryId trendi
	+	Diliit Dosanih: C	+ 2020-08-11T07:30:02Z	UC7PdNloCgW-RGU1f	+ Diljit Dosanjh	10 2020-08-12T00
			2020-08-11T16:34:06Z			
	M9Pmf9AB4Mo	Apex Legends St	2020-08-11T17:00:10Z	UC0ZV6M2THA81QT9h	Apex Legends	20 2020-08-12T00
			2020-08-11T19:20:14Z			
			2020-08-11T15:10:05Z			26 2020-08-12T00
			2020-08-11T17:15:11Z			27 2020-08-12T00
			2020-08-12T02:30:32Z 2020-08-11T16:00:31Z	· · · · · · · · · · · · · · · · · · ·		
			2020-08-11T20:24:34Z			
			2020-08-11T19:00:09Z			
			2020-08-11T20:00:04Z			
			2020-08-11T16:38:55Z			10 2020-08-12T00
			2020-08-11T10:55:22Z	***		
	GTp-0S82guE		2020-08-11T15:00:13Z 2020-08-11T12:04:40Z			
			2020-08-11T17:00:31Z	• •		
		, ,	2020-08-11T20:14:12Z			2 2020-08-12T00
			2020-08-11T23:00:06Z			22 2020-08-12T00
					Ubisoft North Ame	20 2020-08-12T00
	9AecsACtkB4	Watch Secret Serv	2020-08-10T22:29:23Z	UCi7Zk9baY1tvdlgx	CTV News	25 2020-08-12T00

Our analysis is solely focused on why videos reach and stay on Youtube's Trending page.

Exploratory Data Analysis

The primary aim of our research is to provide our clients with the ability to maximize their discoverability on YouTube and with it, produce substantial improvements in return on investment (ROI) on AdSense (official Google/YouTube partner program) revenue.

One of the major factors to ensure maximum ROI on each video is to advertise on videos with the maximum interactions. Interactions on YouTube are of several different types, including likes, comments, dislikes and most importantly, views.

The AdSense program on Youtube runs in the following manner: once a particular creator has been accepted to the YouTube Partner Program they can switch on the 'monetization' feature on each one of their videos. By monetizing a video, a content creator allows different advertisers to run their advertisements on the video. Advertisements are of varying length and may or may not provide the option to skip through them. For every view the advertisement gets, the advertizer typically pays between \$0.18 to \$0.31 to Google.

Google in turn, pays around 68% of this money to the publisher of the original video. The advertisement payments are varying but the average out to somewhere between \$18 to \$31 per 10,000 views for a content creator.

Hence, the most quantifiable metric to measure the popularity of a video is the number of views that a video garners. There are obviously other factors that could affect the popularity of a video such as the number of subscribers on a channel. However, the most robust metric is still the number of views on a video and our analysis would largely revolve around the same.

Another feature that YouTube offers, is a list of trending videos for each day of the week, and this is the dataset that we would be working with.

Videos are classified as trending on YouTube based on certain criteria, such as new and upcoming creators or artists, the growth in the number of views on a certain video, and what part of the world views come from. This implies that a particular video with the maximum view count for a day would appear on the countries trending video page. Trending videos however, provide us with the optimal dataset to work with in order to expand discoverability. These are the videos that everyone is watching, or everyone will watch at some particular point in time, and hence, advertising on these videos will almost certainly be a guarantee for success.

1. Most Popular Video Categories:

As part of our analysis, we first aim to find the categories of videos that perform the best in terms of the average view count for that category, and the number of videos created within that category.

In order to generate and subsequently visualize this data, we first need to clean up our data set by dropping any null values. After this, we need to ensure that all values listed within the category column are in the appropriate numerical format which can be used for further analysis. Once these checks are complete, we can move forwards with visualizing the data.

```
filepath = "/content/CA_youtube_trending_data.csv"

country_statistics(filepath)
```

The available data set has categories denoted by numerical values between 1 and 30, with each number mapping out to a particular category. However, upon further analysis of the data, it was found that the actual labeled data only contained a subset of these values.

Since there was no way of artificially generating synthetic labels for the available data, we have to work with what is available.

Based on the available data, the most popular categories for Canada were as shown below

Fig: Graph depicting most popular categories by average views

Fig: List of most popular categories by average view count

From the plot, we can clearly see that videos belonging to category 10, perform the best on average in terms of their view counts and those belonging to category 2 do not have great performance. Based on the labeled data available for Canada, category 10 is 'Comedy' and Category 2 is 'Music'.

This goes against our presumptions about categorical popularity, as we assumed Music videos would do pretty well in terms of their popularity and therefore provide the perfect marketplace for advertisement, however, the reality is that Music videos actually seldom make it on to the trending page on YouTube and hence, other avenues should be explored to advertise. We acknowledge that this may also be due to the data being misclassified, but based on the available evidence, our clients might want to steer clear of music videos when looking for advertisement opportunities!

Furthermore, we also provide a pictorial representation of the number of videos produced per category

Fig: Chart showing distribution of videos per category

The plot shows that in terms of distribution, category 24 seems to be the most popular category amongst content creators. Category 24 for Canada is 'Family'. This makes sense as most YouTubers aim to produce family friendly content and we could imagine why a large number of videos from other categories such as 'Kids' or even 'Comedy' may fall into this category. In terms of the average view count however, category 24 lies third on the list.

This graph also highlights our second surprise in the analysis. As we can see from the plot, category 29 has the fewest number of videos produced. Even still, it ranks 2nd on the list of most popular categories by average view count. This implies that almost every video in that category is a guarantee to garner a large chunk of viewers. Category 29 is 'Shorts', which is a new feature implemented by YouTube. Multiple content creators could get paid from this category under a new 'Shorts Fund' created by YouTube, but the avenues for advertising on these videos are limited.

2. Popular Times:

As the second part of our analysis, we aim to find out if the time of day a video is posted has any relation with whether or not the video makes it onto the trending page. We select the entire data set available for Canada, filter down the rows containing null values, and then work on the 'publishedAt' column.

We firstly convert this column into the DateTime format by using the 'unixtime' function within the pyspark.sql.functions library. Then, we split up the values within this column to create a new column containing the corresponding hours.

```
df_new = df_new.withColumn('Time', regexp_replace('publishedAt','T',' '))
df_new = df_new.withColumn('Time_', regexp_replace('Time','Z',''))
df_new = df_new.drop('Time')
df_new = df_new.withColumn("Hour", from_unixtime(unix_timestamp(col("Time_"),"yyyy-MM-dd HH:mm:ss"),"HH"))
```

Fig: Pyspark code snippet of time transformation

We then classify the hours into four different parts of the day, i.e, Morning - 5am to 11am, Afternoon - 12pm to 4pm, Evening - 5pm to 8pm and Night - 9pm to 4am. These are the local times Based on this bifurcation, we create a pie chart depicting the most common timeframe in which a video is posted, such that the video also makes it onto the trending page.

Fig: Chart showing the most common times for publishing trending videos

We can see here that most videos that make it on to the trending page in Canada are actually posted during the afternoon. This provides a great opportunity for advertising, if we keep a track of which videos are being posted during the afternoon times, and identify certain creators or artists that are most likely to make it to the trending page, this could give us a head start in identifying prospective advertisement avenues.

3. Popularity - Factors

As the next part in our analysis, we aim to identify the factors that affect the popularity of a video the most. The popularity of a video, as defined by us, depends upon the three major mediums of interaction with YoutTube videos, i.e, number of Views, Likes, and Comments. We do not consider the number of Dislikes on a video to be a useful metric because YouTube discontinued Dislikes from 2022 onwards, and hence, the dataset would be unnecessarily skewed.

Before we delve into this analysis, it is essential to understand that we use Popularity as a separate metric. This implies that just because a certain video makes it onto the trending page, does not necessarily mean that video is 'popular'. As defined earlier, trending videos are those which show the maximum growth in terms of number views over a particular day, further, the trending page also accommodates new artists and creators each day, and their content might not necessarily be the most viewed. Advertising on trending videos

might be a good way to reach the maximum audience for a given day, but over the long term, advertising on videos with the maximum number of views seems to be the more robust metric.

The data set itself did not provide a binary classification between popular and not-popular videos, this classification was synthetically created by using a Pyspark UDF.

```
popularity_detector = f.udf(lambda x,y,z: (1.0 if x > (500000) and y > (10000) and z > (5000) else 0.0), returnType= FloatType())
popularity_detector_likes = f.udf(lambda x: (1.0 if x > (10000) else 0.0), returnType= FloatType())
popularity_detector_comments = f.udf(lambda x: (1.0 if x > (5000) else 0.0), returnType= FloatType())
df_sea = df_sea.withColumn('Popularity', popularity_detector('Views', 'Likes1', 'Comment_Count1'))
```

Fig: Pyspark code to show how a video was classified as popular

Intuitively, one would think that since the Popularity column has been synthetically created using three other columns from the dataset, all three of them would have equal correlation to the popularity metric, however, this was not observed.

Fig: Heatmap showing feature correlation

Our intuition was somewhat correct, the features, Likes, Views and Comments do have the most correlation with popularity. However, it is observed that videos that are well liked are pushed further by YouTubes algorithm and are more likely to garner a larger number of views in the long run. Hence, while looking for long term advertisement opportunities, it would make sense to keep track of videos with a large number of likes as these will provide a good return on long time investment.

We noticed that the popularity metric we created does not correlate well with any one metric, which is expected given that it was created by using multiple metrics. However, we do observe some positive correlation between the popularity of a video and the month within which it is posted. This forms the basis for the last part of our analysis.

4. Target Months:

As the final part of our analysis, we aim to find the months during which most videos make it onto the trending page on YouTube. Our assumption is that holiday months are usually the most popular for content creators and consumers alike. AdSense revenues are also sky high during these months and hence, we expect maximum production to be during the months from October to February. Let's see if the analysis corroborates this claim.

Fig: Line Chart showing video distribution by month

From the plot, we can see that it is in fact the month of March which is the most popular for uploading videos in Canada, and more specifically, videos that actually make it onto the trending page. However, this particular statistic should be viewed with a lower priority, and here is why. As we mentioned earlier, our data set runs from January of 2020 to April of 2022. This means that for the month of 2022, we only consider 4 months, i.e, January, February, March and April. This could possibly skew the data. However, even with the additional data, October still remains our second most popular month to upload a YouTube video with the best chance to make it onto trending, and the predicted trend of the holiday months being a gold mine for YouTubers and advertisers alike is maintained!

As there could be a possible skew in the data, we would choose the second most popular month by video count, i.e October for our further analysis.

The next bit of analysis we perform is we select our target month (October), and find out if there is a specific time of the day which gives a video the best possible chance to make it onto YouTubes trending page. We had observed earlier that for Canada, a majority of videos were posted between 12pm - 4pm, closely followed by night time, ie, between 8pm and 4am. This should give us some intuition as to what the expected trend should be.

Fig: Line Chart showing video distribution by hour for October

Videos posted in the timeframe of 3pm to 5pm are the ones most likely to make it onto the trending page on YouTube which is updated daily at 00:00:00 UTC. Similarly, we can also visualize how many of these videos are actually popular as per our predefined popularity metric and compare if the trend follows a similar pattern.

Fig: Line Chart showing popular video distribution by hour for October

Videos posted between the times of 3pm to 8pm have the best chance of appearing on the trending page, and qualifying as generally popular videos.

These analyses give our clients the best possible metrics for identifying advertisement opportunities and capitalizing on the same. Based on what we have learnt from these visual representations is that a video belonging to the 'Comedy' category, posted in the month of October, and in the 3pm to 8pm timeframe, might be the best possible target for a company looking to maximize their discoverability through advertisement.

These analyses however are very numerical and static, through the rest of our report, we go through other techniques such as identifying key tags and descriptions of videos which contribute to their popularity.

Tags and Description

The Tags and Description section of YouTube is a creator's ability to describe what their video is about, information about links to other videos, or the ability to promote their channel/other channels that they have. These tags and descriptions are very important to the success of a video, as they help draw people to click on a video given the short buzzwords, and encourage people to watch and stay engaged with the videos with a lively description. Throughout the datasets, we were able to do more analysis on these tags and descriptions with the aim of uncovering the perfect tags and descriptions to get viewers to watch videos.

Tags:

The tags of the videos can be anywhere from 0 tags for a video up to 50 unique tags for a single video. Our analysis of the tags for a video started by identifying the amount of unique tags in the Canadian dataset. There are 153,619 unique tags in the trending dataset. The top tag for all of the videos is the tag "funny" with 7026 unique instances. We use techniques of MinHash LSH that we learned in class in order to determine the similarities between tags of different videos. We tried many different NGram combinations, but the one that gave the most telling results was a Ngram of 2. Using this we were able to get the Jaccardian distances for the tags:

+	+ +		++		++		+	
JaccardDistance	channel_Title_1	Title_1	view_count1	categoryId1	channel_Title_2	Title_2	view_count2	categoryId2
			! -		·			· -
0.0250000000000000022	MTV	BTS Reveals the M		24	MTV	BTS Performs "Tel		10
:	Chelsea Football	Tottenham 0-3 Che		17	Chelsea Football	Chelsea 3-0 Aston		17
0.02857142857142858	Cleetus McFarland	We Just Made the		1	Cleetus McFarland	The Freedom Facto		1
0.02857142857142858	Ed Sheeran	Ed Sheeran - Shiv		10		Ed Sheeran - Shiv		10
0.02941176470588236	Dude Perfect Plus	Unreleased Footag		22	Dude Perfect Plus	Build A Raft Batt		
0.02941176470588236	Dude Perfect Plus	UFC Golf Battle (22	Dude Perfect Plus	Build A Raft Batt		
0.02941176470588236	Dude Perfect Plus	Submarine Minefie		22	Dude Perfect Plus	Build A Raft Batt	306796	
0.02941176470588236	Dude Perfect Plus	Remote Control Ta	462376	22	Dude Perfect Plus	Build A Raft Batt	306796	
0.02941176470588236	Dude Perfect Plus	Chainsaw Carving	437812	22	Dude Perfect Plus	Build A Raft Batt	306796	22
0.02941176470588236	Dude Perfect Plus	Dude Perfect Corn	948998	22	Dude Perfect Plus	Build A Raft Batt	306796	22
0.02941176470588236	Dude Perfect Plus	TY QUITS DUDE PER	3852837	22	Dude Perfect Plus	Build A Raft Batt	306796	22
[0.030303030303030276]	NLE CHOPPA	NLE Choppa - Jigg	804052	10	NLE CHOPPA	NLE Choppa - Brys	5968207	10
[0.030303030303030276]	NLE CHOPPA	NLE Choppa - Jigg	804052	10	NLE CHOPPA	NLE Choppa - Done	823010	10
[0.030303030303030276]	FitMC	The Mystery of 2b	776922	20	FitMC	2b2t Griefers Jus	916080	20
[0.030303030303030276]	FitMC	Why Are 2b2t Play	829378	20	FitMC	2b2t Griefers Jus	916080	20
0.030303030303030276	FitMC	The History of 2b	613462	20	FitMC	2b2t Griefers Jus	916080	20
[0.030303030303030276]	FitMC	2b2t's Final Neth	980677	20	FitMC	2b2t Griefers Jus	916080	20
0.032258064516129004	JxmyHighroller	We Thought This W	975553	17	JxmyHighroller	The NBA is Gettin	801618	17
0.032258064516129004	Paramount Pictures	Scream Official	9428997		Paramount Pictures	Scream (2022) - F	2683321	1
0.03333333333333333	ScreenCrush	LOKI 1x05: Every	912518		ScreenCrush	LOKI 1x04: Every	699548	1
0.03333333333333333	Gucci Mane	Gucci Mane - Seri	951642	10	Gucci Mane	Gucci Mane - Like	733710	10
0.03333333333333333	Gucci Mane	Gucci Mane - Like	733710	10	Gucci Mane	Gucci Mane - Bloo	3449507	10
0.03448275862068961	Kodak Black	Kodak Black - Pur	816341	10	Kodak Black	Kodak Black - Aug	817087	10
0.03448275862068961	Kodak Black	Kodak Black - Pur	816341	10	Kodak Black	Kodak Black - Hal	922902	10
0.03448275862068961	Kodak Black	Kodak Black - Pur	816341	10	Kodak Black	Kodak Black - Clo	3982947	10
0.03448275862068961	Kodak Black	Kodak Black - Pur	816341	10	Kodak Black	Kodak Black - I W	622818	10
0.03448275862068961	JGOD	Warzone Pacific T	256275	20	JGOD	Huge Stealth Chan	207599	20
0.03448275862068961	JGOD	Played Warzone Pa	415705	20	JGOD	Huge Stealth Chan	207599	20
0.03448275862068961	Kodak Black	Kodak Black - Sup		10		Kodak Black - Pur		10
0.03448275862068961	Kodak Black	Kodak Black Ft. R		10		Kodak Black - Pur	816341	10
0.03448275862068961	Kodak Black	Kodak Black Ft. C	2220895	10	Kodak Black	Kodak Black - Pur		10
0.03448275862068961	Kodak Black	Kodak Black - Sen	6418143	10	Kodak Black	Kodak Black - Pur		10
	2		007500			T		

Here we can see that the tags that are the most similar are the ones from similar channels. When we filter out the Jacardian distances between videos from the same channel:

			+			·		
JaccardDistance	channel_Title_1	Title_1	view_count1	categoryId1	channel_Title_2	Title_2	view_count2	ategoryId2
+								
.03448275862068961	Parrot	Can I Solve this	932811	20	Spoke	1,037 Creepers VS	696223	20
.03448275862068961	Parrot	Can I Solve this	932811	20	Spoke	1,017 Withers VS	672911	20
.03703703703703709	TommyInnit	I met KSI in real	9377852	20	TommyOutit	I met George in r	5237577	20
9400000000000000036	MoreTalkFCB	Ronald Koeman SPE	242270	17	TalkFCB	Koeman tells Luis	307148	17
.07017543859649122	KBS World	TWICE(트와이스) - I C	2926854	24	KBS WORLD TV	TWICE(트와이스) 9	960996	24
0.0714285714285714	JYP Entertainment	TWICE The Feels M/V	57594063	10	TWICE	TWICE The Feels C	3836933	10
0.0714285714285714	TWICE	TWICE The Feels 0	1655115	10	JYP Entertainment	TWICE The Feels M/V	57594063	10
.0833333333333337	ITZY	ITZY Performance	2906871	24	JYP Entertainment	ITZY Not Shy Albu	3164828	10
.0833333333333337	JYP Entertainment	ITZY "Not Shy" M/V	6620953	10	ITZY	ITZY Performance	2906871	24
.0833333333333337	JYP Entertainment	ITZY "Not Shy" M/	9073176	10	ITZY	ITZY Performance	2906871	24
.0833333333333337	ITZY	ITZY Not Shy Stag	6984695	24	JYP Entertainment	ITZY Not Shy (Eng	5674657	10
.0833333333333337	ITZY	ITZY Performance	2906871	24	JYP Entertainment	ITZY Not Shy (Eng	5674657	10
.0833333333333337	Sleepy Hallow	Sleepy Hallow x S	585063	10	Sheff G	Sheff G - Start S	654982	10
.09090909090909094	XXIMN	[NMIXX] 占 (TANK)	877983	10	JYP Entertainment	NMIXX 0.0 M/V	41364831	10
.09090909090909094	NMIXX	[NMIXX] 占 (TANK)	877983	10	JYP Entertainment	NMIXX 0.0 M/V Teaser	2821535	10
.099999999999998	XXIMN	[NMIXX] 0.0 Perfo	1754842	10	JYP Entertainment	[NMIXX] Debut Tra	3854729	10
.099999999999998	Simon and Martina	What Happened to	392744	22	Eatyourkimchi Studio	Moving to Japan	190989	19
.099999999999998	Simon and Martina	What's Inside a C	171941	19	Eatyourkimchi Studio	Moving to Japan	190989	19
.10204081632653061	ITZY	ITZY Not Shy Danc	5553183	24	JYP Entertainment	ITZY Not Shy Albu	3164828	10
.10204081632653061	JYP Entertainment	ITZY "Not Shy" M/V	6620953	10	ITZY	ITZY Not Shy Danc	5553183	24
.10204081632653061	JYP Entertainment	ITZY "Not Shy" M/	9073176	10	ITZY	ITZY Not Shy Danc	5553183	24
.10204081632653061	ITZY	ITZY Not Shy Danc	5553183	24	JYP Entertainment	ITZY Not Shy (Eng	5674657	10
.10344827586206895	SEVENTEEN	[Choreography Vid	721340	10	Big Hit Labels	SEVENTEEN (세븐틴) '	9428338	10
.10810810810810811	FIFATV	Tanzania v Congo	277791	17	FIFA	Egypt v Senegal	3039517	17
.10810810810810811	FIFATV	Tanzania v Congo	277791	17	FIFA	Senegal v Egypt	6150008	17
.10810810810810811	FIFATV	Tanzania v Congo	277791	17	FIFA	Algeria v Cameroo	3544648	17
.10810810810810811	FIFATV	Djibouti v Algeri	394556	17	FIFA	Algeria v Cameroo	3544648	17

Where we can see that the videos with the most similar tags are the ones that are from channels of the same creators. This tells us that the tags are very unique to each channel. We can draw from this that the channels that are constantly getting to the Trending page are using their own tags that help them get to the top of their respective categorical charts.

We now looked at the tags for the top 10 channels for each category, to help us know what tags the Content creators can use to help model their tags for their videos to help get a following. The results of this data for the Canadian categories that were present in the trending data is:

ategoryid tags

15 [Psets' Almais', 'Cute animab', 'Wildlife', 'Animal' Rescue', 'animal' video', 'animal' stee dodd, 'dodd', 'pet videos', 'rescuing animals', 'the dodd onimals', 'wildlife videos', 'skit', 'dog', 'Alligator', 'Alligator', 'Shorts shelf', 'YouTube shorts, 'hasture', 'animal', 'animalitherapy,' comedy,'
27 [Psets' Almais', 'Cutres y Tegets', 'Daniel el Travieso', 'David Letterman', 'Eddle Vedder, 'Yoo 'Eghtes', 'Clobal Citteen 'Clobal Citteen 'Eddle,' 'Psets', 'Selavine,' 'Loo,' Selavine,' 'Bube', 'Alligator', 'Allig

These tags are crucial for creators in these categories to get to the top view counts, and stay on the trending page with all of their new videos. These tags will be the baseline for your employees to help them accrue a following to their videos.

Descriptions

The Description place gives a creator more freedom to describe the content of their video, which means there will be more variety in the descriptions of different videos. We use the same technique that we used with the tags to see if there are any similarities between videos in the trending set. Yet again we see very similar results for the Jacarian Distances between descriptions for videos:

JaccardDistance	channel_Title_1	Title_1	view_count1 ca	tegoryId1	channel_Title_2	Title_2 v	iew_count2	categoryId2
0.001901140684410	Brawl Stars Brawl Stars:	Braw	18246708	20	Brawl Stars Brawl	Stars Anima	9084466	20
0.001901140684410	Brawl Stars Brawl Stars:	Braw	22756261	20	Brawl Stars Brawl	Stars Anima	9084466	20
0.001901140684410	Brawl Stars Brawl Stars:	Braw	8382569	20	Brawl Stars Brawl	Stars Anima	9084466	20
0.001901140684410	Brawl Stars Brawl Stars:	Braw	15605938	20	Brawl Stars Brawl	Stars Anima	9084466	20
0.001901140684410	Brawl Stars Brawl Stars:	Braw	26038234	20	Brawl Stars Brawl	Stars Anima	9084466	20
0.001901140684410	Brawl Stars Brawl Stars a	nima	6118652	20	Brawl Stars Brawl	Stars Anima	9084466	20
0.001901140684410	Brawl Stars Brawl Stars:	Braw	8202134	20	Brawl Stars Brawl	Stars Anima	9084466	20
0.001901140684410	Brawl Stars Brawl Stars:	Braw	22756261	20	Brawl Stars Brawl	Stars: Braw	9213036	20
0.001901140684410	Brawl Stars Brawl Stars:	Braw	8382569	20	Brawl Stars Brawl	Stars: Braw	9213036	20
0.001901140684410	Brawl Stars Brawl Stars:	Braw	15605938	20	Brawl Stars Brawl	Stars: Braw	9213036	20
0.001901140684410	Brawl Stars Brawl Stars:	Braw	26038234	20	Brawl Stars Brawl	Stars: Braw	9213036	20
0.001901140684410	Brawl Stars Brawl Stars:	Braw	8202134	20	Brawl Stars Brawl	Stars: Braw	9213036	20
0.001901140684410	Brawl Stars Brawl Stars A	nima	9084466	20	Brawl Stars Brawl	Stars Anima	3768694	20
0.001901140684410	Brawl Stars Brawl Stars A	nima	9084466	20	Brawl Stars Brawl	Stars Anima	5702517	20
0.001901140684410	Brawl Stars Brawl Stars:	Braw	9213036	20	Brawl Stars Brawl	Stars: Braw	18246708	20
0.001901140684410	Brawl Stars Brawl Stars:	Braw	9213036	20	Brawl Stars Brawl	Stars Anima	3768694	20
0.001901140684410	Brawl Stars Brawl Stars:	Braw	9213036	20	Brawl Stars Brawl	Stars anima	6118652	20
0.001901140684410	Brawl Stars Brawl Stars:	Braw	9213036	20	Brawl Stars Brawl	Stars Anima	5702517	20
0.001919385796545	Brawl Stars Brawl Stars:	Braw	22633604	20	Brawl Stars Brawl	Stars Anima	6630505	20
0.001919385796545	Brawl Stars Brawl Stars:	Braw	23809149	20	Brawl Stars Brawl	Stars Anima	6630505	20
0.003795066413662229	Brawl Stars Brawl Stars:	Braw	9213036	20	Brawl Stars Brawl	Stars Anima	9084466	20
0.004132231404958664			550612	22	CouRage Shorts Connor		4678495	22
0.006802721088435382			9068687	10		lay - Higher	607611	10
0.007547169811320753			4807763	20	Clash of Clans Pirate		6062083	20
	Breakfast Club Po The LOX On Sh		850237		eakfast Club Po The Br		995503	24
	Breakfast Club Po The Breakfast		995503	24 Br	eakfast Club Po Pressa	a Talks Toro	161870	24
	Breakfast Club Po The Breakfast	Clu	995503	24 Br	eakfast Club Po Soulja	Boy Goes O	961566	24
0.00917431192660545	Kyle Exum When a Robber	Tri	954438	23	Kyle Exum Robbir		805413	23
0.00917431192660545	Kyle Exum The Mom vs. N	iddl	988343	23	Kyle Exum Robbir	ng Chick-Fil	805413	23
0.00917431192660545			954438	23	Kyle Exum The Mo		988343	23
0.00917431192660545			954438	23	Kyle Exum If Amo		933581	23
0.00917431192660545			805413	23	Kyle Exum If Amo		933581	23
0.00952380952380949			22756261	20	Brawl Stars Brawl		23809149	20
0.00952380952380949			15605938	20	Brawl Stars Brawl		23809149	20
0.00952380952380949	Brawl Stars Brawl Stars:	Braw	26038234	20	Brawl Stars Brawl	Stars: Braw	23809149	20

And when we filter out videos that are from different channels:

JaccardDistance	channel_Title_1	Title_1	view_count1	categoryId1	channel_Title_2	Title_2	view_count2	categoryId2
 0.052083333333333337	+ SMTOWN	CCTATTON 3 TEN EN L	1520815	401	the cratton	CTATION TEN EL .	5384634	401
0.07002801120448177	Jurassic World	[STATION] TEN 텐 ' Jurassic World Do	447161	10	SM STATION Universal Pictures	[STATION] TEN 텐 ' Jurassic World Do	9410344	10 24
0.075555555555556	Miley Cyrus	Miley Cyrus - Liv	3685672	24	Foo Fighters	Foo Fighters - Li	439238	10
0.075555555555556	Miley Cyrus	Miley Cyrus - Liv	903935	10	Foo Fighters	Foo Fighters - Li	439238	10
0.08492201039861347	MoneyBagg Yo	Moneybagg Yo - Fr	639078	10	MoneybaggYoVEV0	Moneybagg Yo - Fr	772427	10
0.08571428571428574		PREGNANCY MUKBANG	928878	23	Colleen Vlogs	I CAN FINALLY TAL	992526	24
0.08571428571428574		PREGNANCY MUKBANG	928878	23	Colleen Vlogs	Holding The Twins	1567423	24
0.08571428571428574		PREGNANCY MUKBANG	928878	23	Colleen Vlogs	BRINGING MAISY HO	2435850	24
0.08571428571428574		PREGNANCY MUKBANG	928878	23	Colleen Vlogs	BRINGING WESLEY H	1973041	24
0.08571428571428574		PREGNANCY MUKBANG	928878	23	Colleen Vlogs	First Trimester N	562426	24
0.08571428571428574		PREGNANCY MUKBANG	928878	23	Colleen Vlogs	Finding Out I'm P	708850	24
0.08571428571428574	Colleen Vlogs	Rumors About TRIP	1387209	24	Colleen Ballinger	PREGNANCY MUKBANG	928878	23
0.08571428571428574	Colleen Vlogs	Visiting my babie	1756877	24	Colleen Ballinger	PREGNANCY MUKBANG	928878	23
0.0861244019138756	SidemenShorts	Why Harry wore ta	668134	22	MoreSidemen	SIDEMEN 8 YEAR AN	2966055	22
0.0861244019138756	SidemenShorts	The Brown Variant		22	MoreSidemen	SIDEMEN 8 YEAR AN	2966055	22
0.08823529411764708		Testing Illegal M	930621	20	Unspeakable	Can You Land In T	2790011	22
0.08823529411764708		Testing Illegal M	930621	20	Unspeakable	LAST TO LEAVE 100	4242056	22
0.08823529411764708		Testing Illegal M	930621	20	Unspeakable	ESCAPING 100 LAYE	3581598	22
0.08823529411764708		Testing Illegal M	930621	20	Unspeakable	EVERY STEP, YOU K	2385647	22
0.08823529411764708	UnspeakablePlays	Testing Illegal M	930621	20	Unspeakable	I Bought A REAL T	3318312	22
0.08823529411764708	UnspeakablePlays	Testing Illegal M	930621	20	Unspeakable	100 Buttons but O	4602973	22
0.08823529411764708		Testing Clickbait	2560841	20	Unspeakable	Can You Land In T	2790011	22
0.08823529411764708	UnspeakablePlays	Testing Clickbait	2560841	20	Unspeakable	LAST To LEAVE 100	4242056	22
0.08823529411764708	UnspeakablePlays	Testing Clickbait	2560841	20	Unspeakable	ESCAPING 100 LAYE	3581598	22
0.08823529411764708	UnspeakablePlays	Testing Clickbait	2560841	20	Unspeakable	EVERY STEP, YOU K	2385647	22
0.08823529411764708	UnspeakablePlays	Testing Clickbait	2560841	20	Unspeakable	I Bought A REAL T	3318312	22
0.08823529411764708	UnspeakablePlays	Testing Clickbait	2560841	20	Unspeakable	100 Buttons but 0	4602973	22
0.08823529411764708	UnspeakablePlays	STRANDED ON AN IS	819695	20	Unspeakable	Can You Land In T	2790011	22
0.08823529411764708	UnspeakablePlays	STRANDED ON AN IS	819695	20	Unspeakable	LAST To LEAVE 100	4242056	22
0.08823529411764708	UnspeakablePlays	STRANDED ON AN IS	819695	20	Unspeakable	ESCAPING 100 LAYE	3581598	22
0.08823529411764708	UnspeakablePlays	STRANDED ON AN IS	819695	20	Unspeakable	EVERY STEP, YOU K	2385647	22
0.08823529411764708	UnspeakablePlays	STRANDED ON AN IS	819695	20	Unspeakable	I Bought A REAL T	3318312	22
0.08823529411764708	UnspeakablePlays	STRANDED ON AN IS	819695	20	Unspeakable	100 Buttons but O	4602973	22
0.08823529411764708	Unspeakable 2.0	We Put A BOAT In	611549	22	UnspeakablePlays	Testing Illegal M	930621	20
0.08823529411764708	Unspeakable 2.0	We Put A BOAT In	611549	22	UnspeakablePlavs	Testing Clickbait	2560841	20

What we learned from this information is that there is no formula to a description that would help garner more views. Tags are the bigger driving force in a video's success and accumulating videos. The last aspect of our analysis focuses on thumbnails, and how they impact a video's popularity.

Object Detection using AWS Rekognition

One of the interesting features in the youtube dataset was the thumbnail link column. A video thumbnail is the viewer's first impression of the video, as it is the first thing that a user sees. A great video thumbnail can mean the difference between thousands of views and just a few. Various thumbnail items can entice the user to play a specific video. Hence, we decided to leverage this feature and used AWS Recognition to recognize objects from the thumbnails.

Rekognition is an AWS service that analyzes your photographs using deep learning. By sending an image or video to the AWS Rekognition API, you can easily incorporate Rekognition into your application. Objects, people, language, scenes, and activities will be identified by the service. Face analysis and recognition are also incredibly accurate with Amazon Rekognition. Face detection, analysis, and comparison are available for a range of applications, including user identification, cataloging, people counting, and public safety.

Our goal is to identify which objects can grab a user's interest quickly.

```
%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import boto3
import time
final = []
client=boto3.client('rekognition',region_name='us-east-1')
for i in range(114869,us_df.shape[0]):
 imageFile=str(i)+'.jpg
 try:
   img=mpimg.imread(imageFile)
 print('Detected labels in ' + imageFile + ':\n')
   objects = []
   for label in response['Labels']:
       obj = label['Name']
       objects.append(obj)
 except Exception as e:
   print('Not detected labels in ' + imageFile + ':\n')
   objects.append([])
 final.append(objects)
Streaming output truncated to the last 5000 lines.
CPU times: user 6.84 ms, sys: 176 \mus, total: 7.02 ms
Wall time: 253 ms
Detected labels in 123893.jpg:
CPU times: user 4.77 ms, sys: 1.34 ms, total: 6.11 ms
Wall time: 392 ms
Detected labels in 123894.jpg:
CPU times: user 4.98 ms, sys: 1.07 ms, total: 6.05 ms
Wall time: 223 ms
Detected labels in 123895.jpg:
```

Highest object count per category:

We can see that a human/person dominates the count for each category. Rekognition often gives an extensive list of synonymous objects which can cause some objects to occur together very frequently. In the given snapshot, it can be seen that person and human are categorized as different entities, even though they indicate the same thing. This analysis does not provide any detail about how the objects play a role in determining views but it does give an idea that almost every image has a human in it.

We can get a deeper understanding of the objects by ranking them and see how they are scattered for each category.

```
↑ ↓ 😊 🗏 🛊 🖟 🗐 📋
dfwords=df.withColumn('obj',split(col('objects'),','))\
    .withColumn('object',explode(col('obj')))\
.drop('objects','obj').groupBy('object','categoryId').agg(count('object')\
    .alias('count')).orderBy('count',ascending=False)
    df_find = dfwords.withColumn("category", recode('categoryId', category))
df_find = df_find.select('category', 'object', 'count')
    df_find.show()
            category|
                               object|count|
                               Person | 19463 |
      Entertainment|
      Entertainment
                                Human | 18339
                               Person | 15843 |
              Gaming
                               Human | 15009
Person | 11581
              Gaming
               Music
                                Human | 10838 |
               Music
                               Person 10631
               Sports
               Sports
                                Human | 10110
     People & Blogs
People & Blogs
                               Person| 8612
      Entertainment
                            Performer 7814
      Entertainment
      Entertainment | Advertisement | 6959
      Entertainment
                              Poster 6444
                             Clothing 6179
Apparel 6151
      Entertainment |
      Entertainment
                            Performer 6128
              Gaming
                             Person 5991
              Comedy
                               People 5949
      Entertainment
              Gaming | Advertisement | 5880 |
    only showing top 20 rows
```

Top 5 ranked objects:

After exploding the dataset, we ranked each object and extracted the top 5 ranked individual objects that appear for each category. Even though all of them have a lot of commonalities, some unique objects do stand out for each category. As you can see, in the category how to & style, females in the thumbnails attract more users. We can leverage this point to advertise female centric products in this category. In the Autos & Vehicles category, Sedan cars dominate over every type of car. Hence, this can again be useful to target a specific set of audience.

Ranking based on individual objects gives an insight as to how objects on its own dominate each category.

```
collect set(object)
category
Science & Technology [Human, Text, Electronics, Phone, Person]
                     [Human, Clothing, Female, Apparel, Person]
Howto & Style
Education
                     [Human, Text, Advertisement, Poster, Person]
People & Blogs
                     [Human, Face, People, Performer, Person]
Film & Animation
                     [Human, Text, Art, Performer, Person]
                     [Human, Text, Advertisement, Poster, Person]
Gaming
Travel & Events
                     [Human, Face, People, Person, Sitting]
Pets & Animals
                     [Canine, Mammal, Pet, Person, Animal]
Sports
                     [Human, Crowd, People, Sport, Person]
Comedy
                     [Human, Clothing, Face, Performer, Person]
Music
                     [Human, Crowd, Apparel, Performer, Person]
News & Politics
                     [Human, Electronics, Crowd, Performer, Person]
Entertainment
                     [Human, Face, People, Performer, Person]
Nature
                     [Human, Text, Face, [], Person]
Autos & Vehicles
                     [Human, Vehicle, Sedan, Person, Car]
```

Top ranked grouped objects:

The next we tried to see was which set of objects frequently together. This will give us a more specific idea about the videos which trend. As it can be inferred, videos containing lphones topped the Science and Technology category, Film and Animation is dominated by Angry Birds and so on.

Thumbnails do matter when it comes to influencing views. We may deduce from the analysis that each category has a distinct set of objects that appeal to the user. Advertisement corporations can leverage their knowledge of such objects to target specific audiences.

```
category
                      |collect_set(objects)
Science & Technology [Phone, Electronics, Mobile Phone, Cell Phone Iphone]
Howto & Style
                      [Electronics, Phone, Mobile Phone, Cell PhonePerson, Human]
Education
                      [Art,Graphics,Symbol,SignLight,Lighting]
People & Blogs
                      Sitting, Person, Human, Indoors Crowd, People, Performer, Clothing, Apparel, Hair, Pants, Office, Music Band, M
Film & Animation
                      [Angry Birds]
Gaming
Travel & Events
                      Person, Human, Sweets, Confectionery Food, Text, Word, Face, People, Dating, Performer, Banner, Birthday Cake,
Pets & Animals
                      [Golden Retriever,Canine,Animal,MammalDog,Pet,Puppy, Sitting,Person,Human,AnimalGolden Retriever,Do
                      [Person, Human, Sport, SportsBoxing, Crowd, Person, Human, Press Conference]
Sports
                      [Person, Human, Performer, HairPeople, Poster, Advertisement, Face, Crowd, []]
Comedy
Music
                      [Painting, Art, Person, Human, Performer, Person, Human, HeadFace, Hair, Advertisement, Poster, Haircut, Miner
News & Politics
                      [Person, Human, Crowd, PerformerPress Conference]
Entertainment
                      [Person, Human, Face, WaterAnimal, People, Aquarium, Sea Life, Outdoors, Photography, Photo, Advertisement, Bi
                      [Blonde, Female, Teen, PersonGirl, Woman, Kid, Human, Child, Tie, Accessories, Accessory, Hair, Dress, Clothing,
Nature
Autos & Vehicles
                      [[Sports Car,Car,Vehicle,TransportationAutomobile,Coupe,Race Car,Mustang,Sedan]
```

Conclusion

We have seen throughout our analysis that there are a multitude of factors that contribute to the overall popularity of a Youtube video. Our company has identified qualities of videos that drive success and overall popularity, such as posting in a Family category, posting in the month of March, tags that match the top 50 per category, and thumbnails that include people. We are confident that we can identify videos that will reach the broadest audience in Canada before they become popular, thus cutting down on the expenses associated with advertising on videos, and making sure we advertise as early as possible. We will be able to test this analysis on upcoming videos throughout the year, and be able to expand our efforts as we receive more information about Youtube videos.

We are excited for the opportunity to help your company grow and to have your product reach a whole new audience of Canadian citizens. As we grow together, we will make your product one of the most popular around the world.

References

- (1) *YouTube Statistics 2022 [Users by Country + Demographics]*. (n.d.). Retrieved May 7, 2022, from https://www.globalmediainsight.com/blog/youtube-users-statistics/
- (2) *Most used social media 2021* | *Statista*. (n.d.). Retrieved May 7, 2022, from https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
- (3) You know what's cool? A billion hours. (n.d.). Retrieved May 7, 2022, from https://blog.youtube/news-and-events/you-know-whats-cool-billion-hours/
- (4) YouTube Stats | AC Social Media. (n.d.). Retrieved May 7, 2022, from https://www.algonquincollege.com/ac-social-media/youtube-stats/
- (5) YouTube Earnings: Video Platform Has More Revenue Than Netflix in Q4 The Hollywood Reporter. (n.d.). Retrieved May 7, 2022, from https://www.hollywoodreporter.com/business/digital/youtube-ad-revenue-tops-8-6b
 https://www.hollywoodreporter.com/business/digital/youtube-ad-revenue-tops-8-6b
 https://www.hollywoodreporter.com/business/digital/youtube-ad-revenue-tops-8-6b
 https://www.hollywoodreporter.com/business/digital/youtube-ad-revenue-tops-8-6b
- (6) Pandas vs PySpark DataFrame. Pandas: | by Prakash R | featurepreneur | Medium. (n.d.). Retrieved May 7, 2022, from https://medium.com/featurepreneur/pandas-vs-pyspark-dataframe-1722cb987fbd

(7)

(8)