Here is a solution to problem B5 of the the 2018 Putnam exam.

The positivity of the partials means that each of the two component functions f_1 and f_2 will increase as we move in any direction north or east (" in the first quadrant") from any point. Therefore, if we look at any level curve $\{(x,y) | f_1(x,y) = c\}$, it will stretch vaguely southeast and northwest. (Equivalently, by the Implicit Function Theorem, the level curve is at every point locally the graph of a function with negative derivative.) If we parameterize this path with a parameterization (x,t) = p(t) heading southeast, then $f_1(p(t))$ will stay constant for all t. Computing the derivative then shows $\nabla f_1(p(t)) \cdot p'(t) = 0$ for all t: our velocity vector p'(t) is always perpendicular to the level curve.

On the other hand, $z = f_2(p(t))$ will definitely vary, and indeed will vary monotomically. The derivative $dz/dt = \nabla f_2(p(t)) \cdot p'(t)$ can never be zero, because otherwise that would imply p'(t) is also perpendicular to $\nabla f_2(p(t))$ at some point P, and thus the two gradients, of f_1 and f_2 , would be parallel at P. Since both components of both gradients were given to be positive at each point, there would be a (positive) constant λ such that $\nabla f_2(P) = \lambda \nabla f_1(P)$. But then at the point P we would have

$$\frac{\partial f_1}{\partial x_1} \frac{\partial f_2}{\partial x_2} - \frac{1}{4} \left(\frac{\partial f_1}{\partial x_2} + \frac{\partial f_2}{\partial x_1} \right)^2 = \lambda \frac{\partial f_1}{\partial x_1} \frac{\partial f_1}{\partial x_2} - \frac{1}{4} \left(\frac{\partial f_1}{\partial x_2} + \lambda \frac{\partial f_1}{\partial x_1} \right)^2
= -\frac{1}{4} \left(\frac{\partial f_1}{\partial x_2}^2 - 2\lambda \frac{\partial f_1}{\partial x_2} \frac{\partial f_1}{\partial x_1} + \lambda^2 \frac{\partial f_1}{\partial x_1}^2 \right)
= -\frac{1}{4} \left(\frac{\partial f_1}{\partial x_2} - \lambda \frac{\partial f_1}{\partial x_1} \right)^2 \le 0,$$

a contradiction.

Therefore, as we move along all the points where $f_1 = c$, the other component f_2 must be monotonically increasing or decreasing, and we can never return to a later point where both f_1 and f_2 have the same values as at an earlier point.

To complete this proof we must show that the level curves of f_1 are connected. Indeed suppose, say, $f_1(x,y) = xy$; then the set of points where $f_1 = 1$ is a hyperbola which is a set of 2 disjoint curves. If we travel along either one of them, then the preceding proof shows f_2 will monotonically increase or decrease and so f will be one-to-one there. But I have not proved that there cannot be two points on the two separate branches of the hyperbola where f_2 takes on the same values.

So let's analyze the shape of a level set $C = f_1^{-1}(c)$. Let K be one of its path components, and K_x the projection of K to the x-axis. Then this is also necessarily path-connected, hence it is an interval. If that interval is bounded on the left, let $a = \inf(K_x)$. I claim a is not in K_x . If it were, then there would be a point (a, y) in K. Because the partials of f_1 at (a, y) are positive, by the Implicit Function Theorem there is an neighborhood of this point whose intersection with K is the graph of a function, and in particular K includes points path-connected to (a, y) but having smaller x-coordinates, contradicting the definition of a. So the interval K_x is open on the left, and similarly will be open on the right. Now, we have already noted that f_1 increases as we go north, so that

in particular C will pass the "vertical line test", so that for each $x \in K_x$ there is a unique point (x,y) in K, i.e. K is (globally) the graph of a function g defined on K_x (and the IFT makes it smooth and decreasing). If $L = \lim_{x \to a^+} g(x)$ existed, then by the continuity of f_1 we would have $(a, L) \in K$ and thus $a \in K_x$ after all. So we must have $L = \infty$, that is, the connected component "goes off the top of the plane" (i.e. g has a vertical asymptote at x = a). To recap, then, this path-connected component of $f_1^{-1}(c)$ is the graph of a smooth, decreasing function on an interval, and either this interval extends left to $-\infty$ or the graph of g rises to $+\infty$ as we approach the left end of the interval.

Of course the same remarks apply to the right side of K_x as well, and we could equally well analyze the projection K_y of K to the y-axis. Thus we conclude that each connected component of a level set of f_1 has one of a few shapes: vaguely resembling the graphs of $y = -\tan(x)$ on $(-\pi/2, \pi/2)$ or $y = -\arctan(x)$ on $(-\infty, \infty)$; or of y = 1/x or $y = \log(x)$ on $(0, \infty)$; or of y = 1/x or $y = \log(-x)$ on $(-\infty, 0)$; or of course simply something like the curve x + y = 0, depending on whether K_x and K_y are bounded on the left or right

In most of those cases, either K_x or K_y (or both) is the whole real line. Since C passes the "horizontal line test" as well as the vertical line test, that means this one component K must be the entirety of C, and our earlier proof suffices to show f is one-to-one on C.

The only other possibility is that C contains two components, one with K_x and K_y bounded above and the other with K_x and K_y bounded below — something like the whole hyperbola xy = 1. But this is impossible as well. If (x_1, y_1) is a point in the first component and (x_2, y_2) in the second, then $x_1 < x_2$ and $y_1 < y_2$. But then the positivity of both partial derivatives makes $c = f_1(x_1, y_1) < f_1(x_2, y_1) < f_1(x_2, y_2) = c$, which is a contradiction.

So indeed the level sets $f_1^{-1}(c)$ are all path-connected, and the main part of the proof applies.

Remarks: The test of whether a function is *locally* one to one is simply that the determinant of the derivative matrix not vanish, that is,

$$\frac{\partial f_1}{\partial x_1} \frac{\partial f_2}{\partial x_2} - \frac{\partial f_2}{\partial x_2} \frac{\partial f_1}{\partial x_1} \neq 0$$

at all points in the plane. But that's not quite the same as being globally one-to-one. The classic example is the exponential function $f: \mathbf{C} \to \mathbf{C}$ given by $f(z) = e^z$. Viewing \mathbf{C} as \mathbf{R}^2 we can write this as $f_1(x,y) = e^x \cos(y)$, $f_2(x,y) = e^x \sin(y)$. Then $f(x,y) = f(x,y+2\pi)$ so f is not one-to-one.

Also of interest is the $Jacobian\ Conjecture$, which asks whether the non-vanishing of that determinant makes f globally one-to-one when f is "algebraic". I invite you to research this topic for more details.