UNIVERSITY OF TORONTO FACULTY OF ARTS AND SCIENCE

Test1, Oct 18, 2024

MAT224H1 S

Examiners: A. Berdnikov, N.Jung, M. Volpe

Duration: 100 mins

This test has 12 pages.

Total: 50 marks

-NO AIDS ALLOWED

- -No marks will be given for a completely wrong solution.
- -Unless specified, the vector addition and scalar multiplication of a vector space are all standard ones of the vector space.

- **1.** (6 marks)Let $T: \mathbf{R}^3 \to W$ be a linear transformation with bases $\alpha = \{(-1,0,2),(1,1,0),(1,3,1)\}$ and $\beta = \{\mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3,\mathbf{w}_4\}$ for \mathbf{R}^3 and W respectively. Suppose $\mathrm{Ker}([T]_{\alpha}^{\beta}) = \mathrm{span}\{(1,2,-3)\}$.
 - (a) (3 marks) Find Ker(T).

(b) (3 marks) Find the dimension of Im(T). Is T surjective?

2. (3 marks) Suppose $T:V\to W$ is an isomorphism, where V and W are finite dimensional vector spaces. Show that $\dim(V)=\dim(W)$.

- **3.** (6 marks) The following statements are false. Explain why they are false by providing a counterexample.
 - (a) (3 marks) The mapping $T:C^\infty({\bf R})\longrightarrow C^\infty({\bf R})$ defined by $T(f(x))=x^2(f(x)+x)$ is linear.

(b) (3 marks) Let V be a vector space. If S_1 and S_2 are linearly independent subsets of V, then $S_1 \cup S_2$ is also linearly independent.

- **4.** (7 marks) Let $S = \{ f \in \text{Span}\{e^x, e^{2x}, e^{3x}\} | f(0) = f'(0) = 0 \}.$
 - (a) (3 marks) Show that S is a subspace of $C^{\infty}(\mathbf{R}).$

(b) (4 marks) Find a basis of S.

- **5.** (7 marks) Let $T: V \longrightarrow W$ be a linear transformation defined by $T(\mathbf{v}_1) = \mathbf{w}_1 + 5\mathbf{w}_2$ and $T(\mathbf{v}_2) = -2\mathbf{w}_1 + 3\mathbf{w}_2$, where $\alpha = \{\mathbf{v}_1, \mathbf{v}_2\}$ and $\beta = \{\mathbf{w}_1, \mathbf{w}_2\}$ be bases of the vector spaces V and W respectively.
 - (a) (2 marks) Show that T invertible.

(b) (3 marks) Find $T^{-1}(\mathbf{w}_1)$ and $T^{-1}(\mathbf{w}_2)$.

(c) (2 marks) If $[T(\mathbf{v})]_{\beta} = (-1, 1)$, Compute $[\mathbf{v}]_{\alpha}$.

6. (3 marks) Suppose \mathbf{R}^2 has the following vector addition and scalar multiplication: for any $\mathbf{x} = (x_1, x_2), \mathbf{y} = (y_1, y_2) \in \mathbf{R}^2$, and any $c \in \mathbf{R}$, $\mathbf{x} + '\mathbf{y} = (x_1y_1, x_2y_2)$ and $c \cdot \mathbf{x} = (cx_1, cx_2)$.

Show that ${\bf R}^2$ is not a vector space with the vector addition and scalar multiplication above.

7. (3 marks) Let $S = \{\sin x, \sin(2x)\}$ be a subset of the vector space $C^{\infty}(\mathbf{R})$ with the standard vector addition and scalar multiplication. Show that S is linearly independent.

- 8. (7 marks) Let $\alpha = \{(2,1), (3,1)\}$ and $\beta = \{\mathbf{w}_1, \mathbf{w}_2\}$ be bases for \mathbf{R}^2 . Suppose $[I]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, where I is the identity mapping from \mathbf{R}^2 to \mathbf{R}^2 .
 - (a) (4 marks) Find $[(3,4)]_{\beta}$.

(b) (3 marks) Find \mathbf{w}_1 and \mathbf{w}_2 .

9. (8 marks) Let T be a linear transformation from a vector space V to V, $\alpha = \{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis for V, and

Let
$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$$
.

Suppose $\alpha' = \{\mathbf{w}_1, \mathbf{w}_2\}$ is a new basis for V, $[\mathbf{w}_1]_{\alpha} = (2, 1)$ and $[\mathbf{w}_2]_{\alpha} = (1, 4)$.

- (a) (2 marks) Compute det(T).
- (b) (4 marks) Find $[T]_{\alpha'}^{\alpha'}$.

(c) (2 marks) Find $T(2\mathbf{w}_1 - 4\mathbf{w}_2)$.