

Theoretische Grundlagen der Informatik

Tutorium 13

Institut für Kryntographie und Sicherheit

Best of Übungsblatt 7

- Abgaben: 5 von 21 (23.8%)
- Mindestens 50% Punkte: 5 von 5 (100%)
- Durchschnittliche erreichte Punktzahl: 11.5

Aufgabenverteilung

Aufgabe 1: Gesamt: 18.25P (durchscnittlich 3.65) Aufgabe 2: Gesamt: 11.5P (durchschnittlich 2.3)

Aufgabe 3: Gesamt: 15.75P (durchschnittlich 3.15)

Aufgabe 4: Gesamt: 5.5P (durchschnittlich 1.1)

Aufgabe 5: Gesamt: 3.75P (durchschnittlich 0.75)

Übungsschein erhalten: 9 von 21 (42%)

Tutoriumsmaterial von Michael Vollmer

Systematische Codes

Damit überprüft werden kann, ob ein Wort richtig übertragen wurde, müssen zusätzlich Daten übermittelt werden.

Eine Möglichkeit der Fehlerprüfung ist die Verwendung von Generatormatrizen.

Dabei werden Wörter der festen Länge k mit Wörter der Länge k+r kodiert. Dazu wird eine Generatormatrix der Form

$$G = \left(\frac{I_k}{A}\right)$$

verwendet, wobei I_k die $k \times k$ -Einheitsmatrix ist und A eine $r \times k$ -Matrix. Das kodierte Wort ω_{codiert} erhält man aus dem dazugehörigen Wort ω mittels der Formel $G\omega = \omega_{\text{codiert}}$.

Systematische Codes

Zu der Generatormatrix gehört eine Prüfmatrix

$$H=(A|I_r)$$

mit deren Hilfe sich das Syndrom $s=H\omega_{\text{codiert}}$ ausrechnen lässt. Ist s=0, wurde die Information im Rahmen der Fehlerkorrektur richtig übertragen. Ist $s\neq 0$ vergleicht man s mit den Spalten von H. Sei H_k die k-te Spalte von H.

- Gilt $H_k = s$ für exakt ein k, dann ist das k-te Bit im gesendeten Wort falsch.
- Gilt H_k = s für mehrere k, dann ist eine ungerade Anzahl der dazugehörigen Bits falsch.
- Gilt $H_k \neq s$ für alle k, dann sind definitiv mehrere Bits falsch übertragen worden.

Tutoriumsmaterial von Michael Vollmer

Aufgabe B13 A2

Sei C ein binärer Code, der durch die folgende Generatormatrix gegeben ist:

$$G = \left(egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \ 1 & 1 & 1 & 1 \end{array}
ight)$$

Dekodieren Sie die folgenden empfangenen Wörter!

1.
$$w_1 = (1 1 0 1 0 1 1)$$

2.
$$w_2 = (0 \ 1 \ 1 \ 0 \ 1 \ 1 \)$$

1.
$$w_1 = (1 1 0 1 0 1 1)$$

2. $w_2 = (0 1 1 0 1 1)$
3. $w_3 = (0 1 1 1 0 0 0)$

- Eine Codierung zur Erkennung von bis zu 2-bit-Fehlern und Korrektur von 1-bit-Fehlern
- n Paritätsbits sichern 2ⁿ bits 1 (Code für Fehlerfrei) n

- Eine Codierung zur Erkennung von bis zu 2-bit-Fehlern und Korrektur von 1-bit-Fehlern
- n Paritätsbits sichern 2ⁿ bits 1 (Code für Fehlerfrei) n

Bildlich:

 $p_1 p_2 d_3$

 $p_1 p_2 d_3$

 $p_1 p_2 d_3$

- Eine Codierung zur Erkennung von bis zu 2-bit-Fehlern und Korrektur von 1-bit-Fehlern
- n Paritätsbits sichern 2ⁿ bits 1 (Code für Fehlerfrei) n

Bildlich:

```
p<sub>1</sub> p<sub>2</sub> d<sub>3</sub> p<sub>4</sub> d<sub>5</sub> d<sub>6</sub> d<sub>7</sub>
```


- Eine Codierung zur Erkennung von bis zu 2-bit-Fehlern und Korrektur von 1-bit-Fehlern
- n Paritätsbits sichern 2ⁿ bits 1 (Code für Fehlerfrei) n

Bildlich:

1100110

1100110 S 1100110 0

1100110	S
1100110	0
1100110	0

1100110

1100110	0
1100110	0
1100110	0
1100110	0

C

1100110

	_		
1100110	0		
1100110	0		
1100110	0		
⇒ Keine Fehler! Datenwort = 0110			

S

1100110 S 1100110 0 1100110 0 1100110 0

 \Rightarrow Keine Fehler! Datenwort = 0110

1100010 S

1100110 S 1100110 0 1100110 0 1100110 0

 \Rightarrow Keine Fehler! Datenwort = 0110

1100010 S 1100010 1

1100110 S 1100110 0 1100110 0 1100110 0

⇒ Keine Fehler! Datenwort = 0110

1100010 S 1100010 1 1100010 0

1100110 S 1100110 0 1100110 0 1100110 0 \Rightarrow Keine Fehler! Datenwort = 0110

1100010 S 1100010 1 1100010 0 1100010 1

Tutoriumsmaterial von Michael Vollmer


```
1100110 S

1100110 0

1100110 0

1100110 0

⇒ Keine Fehler! Datenwort = 0110
```

```
1100010 S
1100010 1
1100010 0
1100010 1
```

 \Rightarrow Fehler an der Stelle $2^0 + 2^2 = 5$

Korrektur: 1100110

Tutoriumsmaterial von Michael Vollmer

⇒ repariertes Datenwort: 0110

Aufgabe B13 A3

Gegeben sei der |7,4|-Hamming-Code \mathcal{C}_H mit der Erzeugermatrix

$$G = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

und der Prüfmatrix

$$H = \left(\begin{array}{ccccccc} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array}\right).$$

Dekodieren Sie die folgenden empfangenen Wörter!

1.
$$w_1 = (0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1)$$

2.
$$w_2 = (1 1 0 0 1 1 1)$$

3.
$$w_3 = (1 1 1 1 0 0 0 0)$$

1.
$$w_1 = (0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1)$$
2. $w_2 = (1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1)$
3. $w_3 = (1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0)$
4. $w_4 = (0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1)$

Tutoriumsmaterial von Michael Vollmer

Verschlüsselungscodierungen

- Caesar-Chiffre: Rotiere alle Zeichen um *n* Stellen im Alphabet
 - ⇒ n ist Schlüssel
- Vigenère-Chiffre: Rotiere alle Zeichen um K_n Stellen
 - K_n ist die nte Stelle des Schlüssels mod |K|
 - |K| ist Schlüssel
- lacksquare One-Time-Pad (OTP), wie Vigenère, aber $|\mathcal{K}|=|\mathit{M}|$

Verbindung mit Informationtheorie

- Eine Chiffre ist perfect sicher, wenn p(M|C) = p(M)
 - $\rho(M)$ ist die Wahrscheinlichkeit die Nachricht M zu erraten
 - p(M|C) ist die Wahrscheinlichkeit die Nachricht M zu erraten, wenn C bekannt ist.
 - Nach Satz von Bayes gilt dann: $p(C|M) = \frac{p(M|C) \cdot p(C)}{p(M)} = p(C)$
 - One-Time-Pads sind perfekt sicher
- Für perfekte Sicherheit gilt: H(M|C) = H(M) also auch I(M;C) = 0

Commitments

Beispiel:

- Alice sendet Bob ein verschlüsseltes Bit b (bspw. Münzwurfergebnis) ohne Schlüssel
- 2. Bob sendet Alice ein unverschlüsseltes Bit b' (bspw. seine Wette)
- 3. Alice sendet Bob den Schlüssel
- 4. $b \oplus b'$ könnte nun das Ergbnis des Münzwurfs sein (bei 1 gewinnt Alice, bei 0 Bob)

Begriffe:

- Commitment c = commit(b): c legt b fest, ohne den Wert von b offenzulegen
 - Unveiling *unveil*(*c*): gibt den Wert von *b*, der durch *c* festegelegt wurde aus
 - Binding $p(unveil(commit(b)) \neq b)$ vernachlässigbar
 - Hiding p(b|c) p((1-b)|c) vernachläsigbar

Tutoriumsmaterial von Michael Vollmer

Pedersen-Commitments

Sei G eine zyklische Gruppe, g und h Erzeuger von G und m die Nachricht. Dann sind:

- commit(m) = $g^m \cdot h^r$, wobei r zufällig gewählt wird
- unveil(c) = Gebe m und r bekannt

Pederson-Commitments erfüllen Binding und Hiding

 Die Sicherheit baut auf der Schwierigkeit des Berechnens von diskreten Logarithmen auf

Bis zum nächsten Mal!

IF YOU DON'T TURN IN AT LEAST ONE HOMEWORK ASSIGNMENT, YOU'LL FAIL THIS CLASS, YEAH. BUT IF I CAN FAIL THIS CLASS, THE GRADES ON MY REPORT CARD WILL BE IN ALPHABETICAL ORDER!

Lizenzen

Dieses Werk ist unter einem "Creative Commons Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland"-Lizenzvertrag lizenziert. Um eine Kopie der Lizenz zu erhalten, gehen Sie bitte zu http://creativecommons.org/licenses/by-sa/3.0/de/ ozterschreiben Sie an Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Davon ausgenommen sind das Titelbild, welches aus der März-April 2002 Ausgabe von American Scientist erschienen ist und ohne Erlaubnis verwendet wird, sowie das KIT Beamer Theme. Hierfür gelten die Bestimmungen der jeweiligen Urheber.

