

ANALYTICAL HIERARCHY PROCESS (AHP)

Amalia, ST, MT

- Permasalahan untuk pencarian terhadap solusi terbaik dari sejumlah alternatif dapat dilakukan dengan beberapa teknik, antara lain: tabel keputusan, pohon keputusan, atau beberapa metode pada MADM.
- Secara umum, model Multi-Attribute Decision Making (MADM) dapat didefinisikan sebagai berikut (Zimermann, 1991):
 - Misalkan A = $\{a_i \mid i=1,...,n\}$ adalah himpunan alternatif-alternatif keputusan dan C = $\{c_j \mid j=1,...,m\}$ adalah himpunan tujuan yang diharapkan, maka akan ditentukan alternatif x_0 yang memiliki derajat harapan tertinggi terhadap tujuan—tujuan yang relevan c_i .

- Janko (2005) fitur umum yang akan digunakan dalam MADM, yaitu:
 - Alternatif, adalah obyek-obyek yang berbeda dan memiliki kesempatan yang sama untuk dipilih oleh pengambil keputusan.
 - Atribut, sering juga disebut sebagai karakteristik, komponen, atau kriteria keputusan. Meskipun pada kebanyakan kriteria bersifat satu level, namun tidak menutup kemungkinan adanya sub kriteria yang berhubungan dengan kriteria yang telah diberikan.
 - Konflik antar kriteria, beberapa kriteria biasanya mempunyai konflik antara satu dengan yang lainnya, misalnya kriteria keuntungan akan mengalami konflik dengan kriteria biaya.

- Bobot keputusan, bobot keputusan menunjukkan kepentingan relatif dari setiap kriteria, W = (w₁, w₂, ..., w_n). Pada MADM akan dicari bobot kepentingan dari setiap kriteria
- Matriks keputusan, suatu matriks keputusan X yang berukuran m x n, berisi elemen-elemen x_{ij}, yang merepresentasikan rating dari alternatif A_i (i=1,2,...,m) terhadap kriteria C_i (j=1,2,...,n).
- Masalah MADM adalah mengevaluasi m alternatif A_i
 (i=1,2,...,m) terhadap sekumpulan atribut atau kriteria C_j
 (j=1,2,...,n), dimana setiap atribut saling tidak bergantung satu dengan yang lainnya.

 Pada MADM, matriks keputusan setiap alternatif terhadap setiap atribut, X, diberikan sebagai:

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{11} & \mathbf{x}_{12} & \cdots & \mathbf{x}_{1n} \\ \mathbf{x}_{21} & \mathbf{x}_{22} & \cdots & \mathbf{x}_{2n} \\ \vdots & \vdots & & \vdots \\ \mathbf{x}_{m1} & \mathbf{x}_{m2} & \cdots & \mathbf{x}_{mn} \end{bmatrix}$$

dengan x_{ij} merupakan rating kinerja alternatif ke-i terhadap atribut ke-j.

 Nilai bobot yang menunjukkan tingkat kepentingan relatif setiap atribut, diberikan sebagai, W:

$$W = \{w_1, w_2, ..., w_n\}$$

- Rating kinerja (X), dan nilai bobot (W) merupakan nilai utama yang merepresentasikan preferensi absolut dari pengambil keputusan.
- Masalah MADM diakhiri dengan proses perankingan untuk mendapatkan alternatif terbaik yang diperoleh berdasarkan nilai keseluruhan preferensi yang diberikan (Yeh, 2002).
- Pada MADM, umumnya akan dicari solusi ideal.
- Pada solusi ideal akan memaksimumkan semua kriteria keuntungan dan meminimumkan semua kriteria biaya.

Salah satu metode yang dapat digunakan untuk menyelesaikan masalah MADM adalah Analytical Hierarchy Process (AHP)

Analytical Hierarchy Process (AHP)

- AHP dikembangkan oleh Prof. Thomas L. Saaty tahun 1970, untuk menyelesaikan permasalahan yang komplek dimana data dan informasi statistik dari masalah yang dihadapi sangat sedikit.
- Analytical Hierarchy process (AHP) adalah salah satu bentuk model pengambilan keputusan dengan multiple criteria.
- AHP merupakan metode pengukuran yang digunakan untuk menentukan skala rasio dari perbandingan pasangan yang diskrit maupun kontinu, yang diperoleh dari ukuran aktual ataupun preferensi.
- AHP merupakan metoda pengambilan keputusan yang melibatkan sejumlah kriteria dan alternatif yang dipilih berdasarkan pertimbangan semua kriteria terkait (Saaty, 2004)

PRINSIP POKOK AHP

Tahapan Metode AHP

Mengidentifikasi masalah

Dekomposisi masalah dengan menyusun struktur hierarki

Membuat Pairwise Comparative Judgement Matrices

Sintesis prioritas

Dengan menghitung nilai vektor eigen untuk setiap matriks

Konsisten jika CR < 0.1

Tahapan AHP:

- Identifikasi Masalah
 - Definisikan masalah atau tentukan tujuan utama.
 Tentukan apa yang hendak diwujudkan / diraih
- Decomposition
 - Setelah persoalan didefinisikan, maka dilakukan decomposition yaitu memecah persoalan yang utuh menjadi unsur-unsurnya (proses ini disebut hirarki)
 - Permasalahan pada AHP didekomposisikan ke dalam hirarki kriteria dan alternatif

Contoh:

Tahapan AHP:

- Comparative Judgement
 - Prinsip ini dilakukan dengan membuat penilaian tentang kepentingan relatif dua elemen pada suatu tingkat tertentu dalam kaitannya dengan tingkat diatasnya.
 - Penilaian berpengaruh terhadap prioritas dari elemen-elemen yang ada
 - Hasil dari penilaian ini dituliskan dalam matriks pairwise comparison
 - Dengan perbandingan berpasangan, dapat diketahui derajat kepentingan relatif antar kriteria

Patokan (skala dasar) yang dapat digunakan dalam penyusunan skala kepentingan ini adalah

Tingkat Kepentingan	Definisi
1	Sama pentingnya dibanding yang lain
3	Moderat pentingnya dibanding yang lain
5	Kuat pentingnya dibanding yang lain
7	Sangat kuat pentingnya dibanding yang lain
9	Ekstrim/mutlak pentingnya dibanding yang lain
2,4,6,8	Nilai diantara dua penilaian yang berdekatan
Reciprocal	Jika elemen i memiliki salah satu angka diatas ketika dibandingkan dengan j, maka j memiliki nilai kebalikannya ketika dibandingkan dengan elemen i.

Perhitungan matematis dalam AHP

a. menghitung nilai tingkat kepentingan (prioritas vektor)

$$\frac{\boldsymbol{W}_{1}}{\boldsymbol{W}_{2}} = \boldsymbol{a}_{12}$$

Sehingga matriks perbandingan sebagai berikut:

Contoh matriks *pairwise comparisons* untuk tujuan (*goal*)

Tujuan/Goal	Kriteria 1	Kriteria 2	Kriteria 3	Kriteria 4
Kriteria 1	1	5	2	4
Kriteria 2	1/5	1	1/2	1/2
Kriteria 3	1/2	2	1	2
Kriteria 4	1/4	2	1/2	1

Tahapan AHP:

- Synthesis Of Priority
 - Dari setiap matriks pairwise comparison kemudian dicari local priority atau total priority value (TPV)
 - Matriks-matriks pairwise comparison terdapat pada setiap tingkat, sehingga untuk mendapatkan global priority harus dilakukan sintesis di antara local priority.

Matriks pairwise comparisons untuk tujuan (goal)

Tujuan/Goal	Kriteria 1	Kriteria 2	Kriteria 3	Kriteria 4
Kriteria 1	1	5	2	4
Kriteria 2	1/5	1	1/2	1/2
Kriteria 3	1/2	2	1	2
Kriteria 4	1/4	2	1/2	1
Jumlah	1,95	10	4	7,5

Setelah matriks perbandingan antar elemen-elemen didapat maka dilakukan sintesa dengan menjumlahkan setiap kolom

Matriks yang dinormalisasi:

Tujuan/Goal	Kriteria 1	Kriteria 2	Kriteria 3	Kriteria 4	local priority (TPV)
Kriteria 1	0,5128	0,5	0,5	0,5333	0,5115
Kriteria 2	0,1025	0,1	0,125	0,0667	0,0986
Kriteria 3	0,2564	0,2	0,25	0,2667	0,2433
Kriteria 4	0,1282	0,2	0,125	0,1333	0,1466

local priority / total priority value (TPV) untuk tujuan

Kesimpulan: persentase prioritas atau preferensi untuk kriteria1 51.2%, kriteria2 9.9%, kriteria3 24.3%, kriteria 4 14.7%. Kriteria1 lebih disukai dibandingkan dengan kriteria 2, 3, dan 4

Tahapan AHP:

- Logical Consistency
 - Responden harus memiliki konsistensi dalam melakukan perbandingan elemen.
 - Bila diketahui A adalah matriks pairwise comparisons dimana penilaian kita sempurna pada setiap perbandingan, maka berlaku a_{ij}.a_{jk} = a_{ik} untuk semua i, j, k. dan selanjutnya matriks A dikatakan konsisten
 - Contoh: jika A>B dan B>C, maka secara logis responden harus menyatakan bahwa A>C, berdasarkan nilai-nilai numerik yang disediakan
 - Hasil penilaian yang dapat diterima adalah yang mempunyai CR < 10% (0.1)

Tahapan AHP:

 AHP mengukur seluruh konsistensi penilaian dengan menggunakan Consistency Ratio (CR), yang dirumuskan:

$$CR = \frac{CI}{RI}$$

• Dimana :
$$CI = \frac{(\lambda_{maks} - n)}{n - 1}$$

• λ_{maks} adalah nilai eigen maksimum dari matriks pairwise comparisons.

Nilai Random Index

Orde Matriks	1	2	3	4	5	6	7	8
RI	0,00	0,00	0,58	0,90	1,12	1,24	1,32	1,41
Orde Matriks	9	10	11	12	13	14	15	
RI	1,45	1,49	1,51	1,48	1,56	1,57	1,59	

Saaty menerapkan bahwa suatu matriks perbandingan adalah konsisten bila nilai CR tidak lebih dari sama dengan 0,1 (10%).

Jika tidak, maka penilaian yang telah dibuat mungkin dilakukan secara random dan perlu direvisi

Contoh: Bagaimana melakukan Perhitungan Matematis AHP?

 Menghitung nilai tingkat kepentingan (prioritas vektor)

2. Cara menghitung konsistensi

Mensintesa matriks perbandingan berpasangan

1. Setelah matriks perbandingan antar elemen-elemen didapat maka dilakukan sintesa dengan menjumlahkan setiap kolom

Contoh: Tabel 1. Perbandingan kepentingan

	Toyota	Nissan	Suzuki
Toyota	1	1/2	1/4
Nissan	2	1	1/4
Suzuki	4	4	1
Jumlah	7	5.5	1.5

2. Setelah itu angka dalam setiap sel dibagi dengan jumlah pada kolom yang bersangkutan. Ini akan menghasilkan matriks yang telah dinormalkan (Tabel 2).

Kriteria1	Toyota	Nissan	Suzuki	Jumlah baris	Rata-rata
Toyota	1/7	1/11	1/6	0.4	0.4/3 =0,13
Nissan	2/7	2/11	1/6	0.63	0.63/3= 0,21
Suzuki	4/7	8/11	4/6	1.97	1.97/3= 0,66

Kesimpulan: Untuk kriteria 1, persentase prioritas atau preferensi untuk toyota 13 %, nissan 21 %, suzuki 66 %. Untuk kriteria 1 suzuki lebih disukai dibandingkan dengan nissan dan toyota

Menghitung Rasio Konsistensi

 Melakukan perkalian matriks antara matriks perbandingan (pada Tabel 1) dan vektor prioritas (pada Tabel 2)

	Toyota (0,13)	Nissan (0,21)	Suzuki (0,66)
Toyota	1	0,5	0,25
Nissan	2	1	0,25
Suzuki	4	4	1

	Toyota	Nissan	Suzuki	Jumlah
Toyota	0,13	0,11	0,17	0,41
Nissan	0,26	0,21	0,17	0,64
Suzuki	0,52	0,84	0,66	2,02

 Nilai penjumlahan sel dibagi dengan nilai masingmasing sel pada vektor prioritas.

$$\begin{pmatrix} 0,41 \\ 0,64 \\ 2,02 \end{pmatrix} : \begin{pmatrix} 0,13 \\ 0,21 \\ 0,66 \end{pmatrix} = \begin{pmatrix} 3,15 \\ 3,05 \\ 3,06 \end{pmatrix}$$

3. Mencari nilai eigen λ_{max} dengan perhitungan berikut:

$$\lambda maks = \frac{3,15 + 3,05 + 3,06}{3} = 3,09$$

4. Hitung nilai Consistency Index (CI)

$$CI = \frac{\lambda maks - n}{n - 1} = \frac{3,09 - 3}{3 - 1} = \frac{0,09}{2} = 0,045$$

5. Hitung nilai Consistency Ratio (CR) berdasarkan nilai Random Index (RI)

$$CR = \frac{CI}{RI}$$

$$= \frac{0,045}{0,58} = 0,08$$

Nilai 0,08 ini menyatakan bahwa rasio konsistensi dari hasil penilaian pembandingan di atas mempunyai rasio 8%. Sehingga penilaian di atas dapat diterima karena lebih kecil dari 10% (Saaty).

Contoh: Pemilihan lokasi pabrik

Matriks Nilai Preferensi Kelayakan Lokasi Pabrik

Kelayakan Lokasi Pabrik	Sup. Air	Risiko Politik	Infra	Keb. Pajak	Suplai BB	Lingk. Bisnis	Total Priority Value
Sup. Air	1	1	1	4	l	1/2	0,16
Risk. Pol	1	1	2	4	1	1/2	0,19
Infra	1	1/2	1	5	3	1/2	0,19
Keb. Pjk	1/4	1/4	1/5	1	1/3	1/3	0,05
Sup. BB	1	18 M	1/3	3	1	1	0,12
Lingk. Bis	2	2	2	3	3	11	0,30

Perhitungan untuk mendapatkan TPV:

Kelayakan	Sup.	Risiko	Infra	Keb.	Suplai	Lingk.	Total
Lokasi Pabrik	Air	Politik		Pajak	BB	Bisnis	Priority Value
Sup. Air	1	1	1	4	1	1/2	0,16
Risk. Pol	1	I	2	4	1	1 / 2	0,19
Infra	1	1/2	1	5	3	1 / 2	0,19
Keb. Pjk	1/4	1/4	1 / 5	1	1 / 3	1/3	0,05
Sup. BB	1	1	1 / 3	3	1	1	0,12
Lingk. Bis	2	2	2	3	3	1	0,30
Kolom	1	2	3	4	5	6	
\(\stratam	6 25					3 93	-

	SA	RP	Infra	KP	Sup.BB	Lingk. Bisnis	TPV
SA	(1) / (6,25)	+			+	(1 / 2) / (3,83)	Σ baris / n
•	-					•	•
•	-					•	•
LB	(2) / (6,25)	+				(1) / (3,83)	Σ <i>baris</i> / n

Perhitungan TPV untuk Pilihan Lokasi

Suplai Air	X	Y	Z	TPV
X	l	1/4	1/2	0,14
Y	4	1	3	0,63
Z	2	1/3	1	0,24
Risiko Politik				
X	1	1/4	1/5	0,10
Y	4	1	1/2	0,33
Z	5	2	1	0,57
Infrastruktur				
X	1	3	1/3	0,32
Y	1/3	1	1	0,22
Z	3	1	11	0,40
Kebijakan Pajak				
X	1	1/3	5	0,28
Y	3	1	7	0,65
Z	1/5	1/7	1	0,07
Suplai Bahan Baku				
X	1	. 1	7	0,47
Y	1	1	7	0,47
Z	1/7	1/7	1	0,07
Lingkungan Bisnis				
X	1	7	9	0,77
Y	1/7	1	5	0,17
Z	1/9	1/5	1	0,05

Perhitungan nilai akhir penentuan keputusan lokasi (Final TPV untuk Pemilihan Lokasi)

Pilihan	Suplai Air	Lingk. Bisnis	Final
	(0,16)	(0,30)	Priority Value
X	$0,14 \times 0,16 + \dots$	+ 0,77 x 0,30	0,40
Y	$0,63 \times 0,16 + \dots$	$\dots + 0.17 \times 0.30$	0,34
Z	$0,24 \times 0,16 + \dots$	$ + 0.05 \times 0.30$	0,26

Diagram Final Proses Analitis Berjenjang

MELIHAT PRIORITAS SECARA KESELURUHAN

Gaji tahunan masing-masing Profesor ditentukan oleh 3 kriteria, yaitu cara mengajar, penelitian dan pengabdian kepada universitas. Bagian administrasi menyajikannya dalam bentuk Matriks Pairwise Comparison untuk tiap kriteria berikut ini : Bagian administrasi telah membandingkan antara dua orang profesor dengan memperhatikan cara mengajar mereka, penelitian dan pengabdian mereka tahun lalu. Matriks Pairwise Comparison nya adalah sebagai berikut:

Gaji tahunan	Cara mengajar	Penelitian	Pengabdian
Cara mengajar	1	1/3	3
Penelitian	3	1	2
Pengabdian	1/3	1/2	1

Cara Mengajar:

Profesor 1 Profesor 2

Profesor 1

Profesor 2

Penelitian:

Profesor 1 Profesor 2

Profesor 1

Profesor 2

Pengabdian:

Profesor 1 Profesor 2

Profesor 1

Profesor 2

Pertanyaan:

- Profesor yang manakah yang kenaikan menerima gaji terbesar?
- Periksa Matrik Pairwise Comparison untuk konsistensi!

TUGAS KELOMPOK

(1 kelompok = maksimal 3 orang)

- Buatlah sebuah masalah yang jawabannya dicari menggunakan metode AHP dengan bantuan software Expert Choice!
- Masalah bisa diambil dari: skripsi/tugas akhir/jurnal
- Syarat pembuatan:
 - Buat 3 buah alternatif pilihan
 - Kategori penilaian masalah terdiri dari 5 buah
 - Pada 2 buah kategori, buat subkategorinya
 - Hasil sensitivity graph juga dicantumkan
- Kirim ke email saya: amal.lyach@gmail.com
- Paling lambat.... 29 desember 2016