Orthogonality Constraints

A continuation of **Constrained Optimization**

Orthogonality Constrained Optimization

If $Q = x^T A x$, A is a real $n \times n$ symmetric matrix, with eigenvalues

$$\lambda_1 \geq \lambda_2 \cdots \geq \lambda_n$$

and associated normalized eigenvectors

$$u_1,u_2,\ldots,u_n$$

Also,
$$||x|| = 1$$
 AND $x \cdot u_1 = 0$

Then max value of $Q(x)=\lambda_2$ attained at u_2

Then min value of $Q(x)=\lambda_n$ attained at u_n