Author Index - Volume 25

Arai, T., see Ferrari, C.	219
Bains, O.N., see Nickerson, S.B.	83
Balkenius, C., Spatial learning with perceptually grounded representations	165
Banzhaf, W., see Nordin, P.	105
Beccari, G., S. Caselli and F. Zanichelli, Qualitative spatial representations from task-oriented perception	
and exploratory behaviors	147
Berg, M., see Jörg, KW.	241
Bernardino, A. and J. Santos-Victor, Visual behaviours for binocular tracking	137
Bianco, G., see Rizzi, A.	159
Brameier, M., see Nordin, P.	105
Burgard, W., see Fox, D.	195
Carbonaro, A., see Zingaretti, P.	177
Caselli, S., see Beccari, G.	147
Cassinis, R., see Rizzi, A.	159
Chella, A., M. Frixione and S. Gaglio, An architecture for autonomous agents exploiting conceptual representations	231
Colla, V., see Sabatini, A.M.	117
Durrant Whyte, H., see Nebot, E.M.	73
Fernández, C., see Matellán, V.	33
Ferrari, C., E. Pagello, J. Ota and T. Arai, Multirobot motion coordination in space and time	219
Fox, D., W. Burgard and S. Thrun, Active Markov localization for mobile robots	195
Frixione, M., see Chella, A.	231
Gaglio, S., see Chella, A.	231
Hancock, T.R., see Lin, LJ.	19
Jasiobedzki, P., see Nickerson, S.B.	83
Jenkin, M., see Nickerson, S.B.	83
Jepson, A., see Nickerson, S.B.	83
Jörg, KW. and M. Berg, Sophisticated mobile robot sonar sensing with pseudo-random codes	241
Judd, J.S., see Lin, LJ.	19
Kirchner, F., Q-learning of complex behaviours on a six-legged walking machine	253
Kolacinski, R.M. and R.D. Quinn, A novel biomimetic actuator system	1

Elsevier Science B.V.

Lin, LJ., T.R. Hancock and J.S. Judd, A robust landmark-based system for vehicle location using low-	
bandwidth vision	19
Létang, JM., see Mitiche, A.	43
Matellán, V., C. Fernández and J.M. Molina, Genetic learning of fuzzy reactive controllers	33
Milios, E., see Nickerson, S.B.	83
Mitiche, A. and JM. Létang, Stereokinematic analysis of visual data in active convergent stereoscopy	43
Molina, J.M., see Matellán, V.	33
Nebot, E.M., H. Durrant Whyte and S. Scheding, Frequency domain modeling of aided GPS for vehicle	
navigation systems	73
Nickerson, S.B., P. Jasiobedzki, D. Wilkes, M. Jenkin, E. Milios, J. Tsotsos, A. Jepson and O.N. Bains, The	
ARK project: Autonomous mobile robots for known industrial environments	83
Nordin, P., W. Banzhaf and M. Brameier, Evolution of a world model for a miniature robot using genetic	
programming	105
O. I. F G	***
Ota, J., see Ferrari, C.	219
Pagello, E., see Ferrari, C.	219
Piaggio, M. and R. Zaccaria, Using roadmaps to classify regions of space for autonomous robot navigation	209
Quinn, R.D., see Kolacinski, R.M.	1
Rizzi, A., G. Bianco and R. Cassinis, A bee-inspired visual homing using color images	159
Sabatini, A.M. and V. Colla, A method for sonar based recognition of walking people	117
Santos-Victor, J., see Bernardino, A.	137
Scheding, S., see Nebot, E.M.	73
Thrun, S., see Fox, D.	195
Tsotsos, J., see Nickerson, S.B.	83
von Wichert, G., Mobile robot localization using a self-organized visual environment representation	185
Wilkes, D., see Nickerson, S.B.	83
Zaccaria, R., see Piaggio, M.	209
Zanichelli, F., see Beccari, G.	147
Zingaretti, P. and A. Carbonaro, Route following based on adaptive visual landmark matching	177

Subject Index – Volume 25

Active vision	231	Machine learning	19
Active vision	43, 137	Matched filter	241
Adaptive sensing	185	Mechanism design	1
Autonomous map building	185	Mobile robot	185
Autonomous navigation	19	Mobile robots	83, 159
Autonomous robots	33	Modifiable compliance	1
Autonomous service robots	195	Multirobot coordination	219
		Multirobot motion planning	219
Behavior-based robots	147		
Denavior based robots	***	Navigation	73, 165
Commuter vision	10 42	Neural networks	19
Computer vision	19, 43		• *
Conceptual spaces	231	On line learning	105
Control	165 241	On-line learning	105
Correlation	241		
Crosstalk	241	Planning	105
		Practical planning method	219
Evolutionary robotics	105	Pseudo-random codes	241
Fuzzy	33	Q-learning	253
Gaussian mixture	19	Real-time tracking	137
Genetic algorithms	33, 177	Recognition	209
Genetic programming	105	Reinforcement-learning	253
GPS	73	Representation levels	231
Grounded representations	165	Roadmap	209
•		Robot navigation	159, 209
Hierarchical-learning	253	Robot position estimation	195
Human body detection	117	Robot self-localisation	177
Hybrid processing	231	Robotics	1, 19
Tryona processing	231	Route following	177
Industrial robots	83	Sensing	83
		Sensory information processing	117
Joint compliance	1	Series elastic actuator	1
		Sonar sensing	117, 241
Kalman filter	73	Space variant sensing	137
Kineopsis	43	Stereo heads	137
- Line Opono	,,,	Stereopsis	43
I decode manipution	1.47	System-user interaction	185
Landmark navigation	147	Joen and metalion	.00
Landmark recognition	19, 159	T-1.1	252
Learning	33, 165	Task decomposition	253

Topological maps	147	Visual self-localization	159
Visual landmark matching	177	Walking machine	25:
Visual navigation	185	World model	103

