

Introduzione al Modulo

CALCOLATORI ELETTRONICI – FONDAMENTI DI PROGRAMMAZIONE a.a. 2024/2025

Prof. Roberto Pirrone

Il Docente

Roberto Pirrone

- Studio: Edificio 6, terzo piano, stanza 3025
- Email: roberto.pirrone@unipa.it,

 roberto.pirrone@community.unipa.it (Google)
- Telefono studio: 091238.62625, laboratorio: .62643
- Ricevimento: ogni giovedì dalle 10:00 alle 12:00 presso il proprio studio

Il Laboratorio

- Laboratorio di Interazione Uomo-Macchina
 - Edificio 6, terzo piano, a sx dalle scale
 - Email: chilab@unipa.it
 - Telefono: 091238.62643

E adesso

Cosa vi aspettate da questo corso?

Cosa pensate che sia «Fondamenti di Programmazione»?

- Il modulo di «Fondamenti di Programmazione» non è:
 - Un corso programmazione dei Robot (è ancora troppo presto ...)
 - Un tutorial del linguaggio C (anche se è il linguaggio che impareremo)
 - Un corso avanzato sul software per i calcolatori
 - Sistemi Operativi, Reti, Programmazione e così via hanno bisogno di intere materie dedicate

Non è possibile programmare subito i robot se non si impara a programmare

• Il modulo di «Fondamenti di Programmazione» introduce i concetti di base della Programmazione Strutturata usando il linguaggio C

- Un buon programmatore deve conoscere:
 - Il funzionamento dell'hardware di riferimento (modulo precedente)
 - Le tecniche di programmazione (i fondamenti in questo modulo)

Algoritmi

+

Strutture Dati

=

PROGRAMMI

Niklaus Wirth

Inventore del Linguaggio PASCAL

Algoritmo:

Un insieme ben ordinato di operazioni non ambigue ed effettivamente calcolabili che, eseguito, produce un risultato e termina in una quantità finita di tempo.

- Insieme ben ordinato
- Operazioni non ambigue e calcolabili
- Produce un risultato
- Termina in una quantità finita di tempo

Struttura di dati:

Un'entità usata per organizzare un insieme di dati all'interno della memoria del computer, ed eventualmente per memorizzarli in una memoria di massa.

- Metodo di organizzazione dati
- Prescinde da ciò che è effettivamente contenuto
- Ogni linguaggio di programmazione ne offre diverse
- E' legata all'algoritmo e ne condiziona l'*efficienza*

 Le informazioni complete sugli obiettivi didattici del corso, il programma delle lezioni e i libri di testo si trovano nella Scheda di Trasparenza

- Testi consigliati
 - Jeri R. Anly Elliot B. Koffman, Problem solving e programmazione in C, Apogeo, ISBN-10: 8838786410 (prezzo orientativo € 42,00)
 - J. Glenn *Brookshear* Stephen G. Kochan, Fondamenti di informatica e programmazione in C, Pearson, ISBN-10: 8865183691 (prezzo orientativo € 34,00)

ORE	Lezioni Frontali	Testo rif.
1	Introduzione al Corso.	Slide docente
1	Elaborazione dei dati, architettura dei computer, sistemi operativi, reti di computer. Linguaggi di programmazione, prospettiva storica. Traduzione dei programmi. Indipendenza dalla macchina	Estratti dal Koffman Intro. e cap. 1 e dal Brookshear Intro.
2	Concetto di algoritmo, rappresentazione degli algoritmi, pseudocodice e diagrammi di flusso. Concetti della programmazione tradizionale. Compilazione del primo programma. Esecuzione del primo programma.	Koffman cap. 2
2	Introduzione al linguaggio C. Variabili, tipi di dati ed espressioni aritmetiche. Differenza tra variabili e costanti. Assegnamento. Operatori. Priorità tra gli operatori.	Koffman cap. 2
2 ersita	Concetto di sottoprogramma. Introduzione alle funzioni C. Valori di ritorno delle funzioni. Funzioni con parametri e senza parametri. Progettazione modulare del software: tecniche top-down e diagrammi di struttura. Comprensione e simulazione di algoritmi/programmi.	Koffman cap. 3

ORE	Lezioni Frontali	Testo rif.
2	Strutture di selezione (if-else) e di selezione tra più alternative (switch-case). Diagrammi di flusso per le strutture di selezione. Comprensione e simulazione di algoritmi/programmi.	Koffman cap. 4
2	Programmi iterativi in linguaggio C. Strutture iterative (for, while e do-while). Diagrammi di flusso per le strutture di iterative. Annidamento delle strutture. Comprensione e simulazione di algoritmi/programmi.	Koffman cap. 5
2	Algoritmi iterativi. Efficienza e correttezza di un algoritmo. Introduzione all'analisi computazionale di un algoritmo: complessità di tempo e di memoria.	Slide docente
3	Approfondimento sulle funzioni. Variabili locali. Visibilità e scope di una variabile. Variabili globali, automatiche e statiche. Concetto di puntatore e suo uso nei parametri di funzione.	Estratti dal Koffman cap. 6
2	Concetto di ricorsione. Gestione della memoria di una funzione ricorsiva. Implementazione in linguaggio C.	Estratti dal Koffman cap. 9

ORE	Lezioni Frontali	Testo rif.
3	Concetto di struttura di dati. Gli array: dichiarazione e indicizzazione. Array multidimensionali. Tipo enumerativo e array con indice di tipo enumerativo. Cicli e array. Semplici strutture dati con array: le pile.	Koffman cap. 7
2	Stringhe di caratteri. Utilizzo delle stringhe in C: array di caratteri, stringhe di caratteri di lunghezza variabile, sequenze di escape.	Koffman cap. 8
4	Approfondimento sui puntatori: puntatori e array. Aritmetica dei puntatori. Strutture e unioni. Implementazione di strutture e tipi personalizzati. Implementazione di strutture dati elementari: liste e code. Operazioni di ricerca e di ordinamento in collezioni di dati.	Estratti dal Koffman cap. 13
2	Gestione di input e output nel linguaggio C. Gestione di file.	Estratti dal Koffman cap. 11
2	Direttive di preprocessore. Inclusione di librerie personali.	Estratti dal Koffman cap. 12

ORE	Esercitazioni
4	Progettazione di semplici algoritmi attraverso diagrammi di flusso. Passaggio da diagrammi di flusso a codice C. Primi programmi in C: compilazione, linking ed esecuzione. Implementazione di programmi per la manipolazione di dati numerici.
2	Progettazione di algoritmi che prevedono la selezione e strutture iterative attraverso i diagrammi di flusso. Implementazione corrispondente in linguaggio C.
3	Esercizi sulla progettazione di software modulare attraverso un uso corretto delle funzioni. Progettazione e implementazione di algoritmi che utilizzano la ricorsione.
6	Progettazione e implementazione di algoritmi che utilizzano stringhe di caratteri, vettori e matrici. Utilizzo dei puntatori. Esercizi sull'implementazione di liste, code e pile.
3	Implementazione di software per l'I/O da file.
3	Preparazione alla prova scritta.

- Le esercitazioni saranno svolte in aula, usando Visual Studio Code
- _ I codici risultanti verranno condivisi dal docente nel repository del corso

Il materiale didattico

 Le slide da sole non sono materiale didattico: esse sono a compendio dei libri di testo, della spiegazione orale del docente e degli appunti presi dallo studente

• *Suggerimento*: stampate le slide prima della lezione e annotatele con i vostri appunti

Il materiale didattico

- Repository GitHub del corso
 - Contiene:
 - I file pdf di tutte le slide (incluse queste)
 - I codici delle esercitazioni
 - I dati utilizzati nelle esercitazioni

Gli esami

• Compito scritto al calcolatore di programmazione C

• Verrà svolta almeno una esercitazione di simulazione del compito

- Poi si farà la prova in itinere alla fine del corso (intorno ai primi di giugno)
- Chi non la supera dovrà fare l'esame che è un compito unico sui due moduli che consta appunto di due sezioni

Gli esami

- Com'è fatto il compito scritto al calcolatore di programmazione C
- Vi verrà dato il codice *incompleto* di un programma in linguaggio C, oltre alla traccia stampata del compito
 - Eventuali materiali aggiuntivi saranno forniti insieme al codice (per es. un file di testo da far leggere al programma)
- Il compito consta di *tre quesiti* di diversa difficoltà, ciascuno con un punteggio (il totale è ovviamente 30)
- La soluzione di ogni quesito andrà codificata, secondo le istruzioni del compito, nella relativa sezione del codice chiaramente indicata da appositi commenti

Gli esami

- Valutazione del compito di C e degli esami
- Riceverete una mail personale al vostro indirizzo <u>community.unipa.it</u> contenente il voto totale e la valutazione scritta di ciascun quesito
- Il voto finale dell'intero corso è la *media dei voti riportati nelle due* prove scritte dei due moduli
- Eventuali domande orali saranno fatte a *insindacabile giudizio della* commissione per chiarire meglio eventuali parti dello scritto.

