PacELF Guideline Part 2

PacMAN

(PacELF Monitoring and Analysis Network)

BOOK:

Country-Specific Monitoring and Evaluation, and Mosquito Control Plans

February 2004

Published by the PacELF Home Office, February 2003.

This publication is the property of the Pacific Programme to Eliminate Lymphatic Filariasis (PacELF). This document is not a formal publication of PacELF, and the Programme reserves all rights. The country data presented in this publication is the property of the 22 countries and territories that comprise PacELF. This document may, however, be freely reviewed, abstracted, reproduced or translated, in part or in whole, but not for sale nor for use in conjunction with commercial purposes.

The views expressed in documents by named authors are solely the responsibility of those authors.

Contributors

Dr. Thomas Burkot, CDC, USA

Dr. Patricia Graves, Public Health Consultant, USA

Dr. Eisaku Kimura, Aichi Medical University, Japan

Dr. Josefa Koroivueta, Ministry of Health, Fiji

Dr. Nguyen Ngoc Lam, Institute Louis Malarde, French Polynesia

Dr. Kazuyo Ichimori, PacELF, WHO

Ms. Maca Colata, PacELF

Mr. Yoshio Furuya, PacELF

Ms. Akiko Takamiya, PacELF

Ms. Emma Gibbons, PacELF

Mr. Charles Washington, PacELF

Acknowledgements

We would like to thank the following individuals for their useful critique of this document: Drs Patrick Lammie, Rafe Henderson and David Addis of the Centers for Disease Control and Prevention, Dr Eric Ottesen of the Emory University Lymphatic Filariasis Support Center, Dr C.P. Ramachandran of University Putra Malaysia, Dr David Durrheim of James Cook University, Drs Kevin Palmer and Gautam Biswas of the World Health Organization and Dr Yankum Dadzie and Mr George Stroh.

Financial support was provided by the Emory University Lymphatic Filariasis Support Center, the government of Japan through the Embassy in Suva, Fiji, GlaxoSmithKline and the World Health Organization.

PacELF Home Office:

Mataika House, Building 30, Tamavua, Suva Fiji Tel: (679) 3323 346 Fax: (679) 3323 341

Email: pacelf1@connect.com.fj Website: www.pacelf.org PacELF Team Leader: Dr Kazuyo Ichimori (WHO)

TABLE OF CONTENTS

TABLE OF FIGURES	5
1. INTRODUCTION	6
2. SURVEILLANCE	9
DEFINITIONS OF SURVEY TYPES AND PURPOSES	9
DIAGNOSTIC TESTS	
PRE MDA ENDEMICITY STATUS	
SAMPLING METHODS FOR TYPE C PREVALENCE ASSESSMENT SURVEYS: FINAL OR POST MDA ASSE	
Method 1: stratified cluster sampling, using villages as clusters	
Method 2: lot quality assessment sampling	
Sampling method for selecting people in villages	
Selecting villagers for sampling when there are more than 200 people in a village Error! B defined.	
Method for selecting people in towns	18
SAMPLING METHODS FOR TYPE D ASSESSMENTS (TRANSMISSION INCIDENCE SURVEYS)	19
3. COUNTRY SPECIFIC MONITORING AND EVALUATION PLANS	21
DIAGRAM LEGENDS FOR FLOWCHARTS	21
AMERICAN SAMOA	
Flowchart	
Suggested Guidelines for Country C Surveys for Final Prevalence Assessment	
Guidelines for Conducting Mosquito Control for Filariasis Vectors	
COOK ISLANDS	
Flowchart	27
Suggested Guidelines for Country C Surveys for Final Prevalence Assessment	28
Guidelines for Conducting Mosquito Control for Filariasis Vectors	29
FEDERATED STATES OF MICRONESIA	
Flowchart: Satawal Island	
Flowchart: Other Areas	
Suggested Guidelines for Country C Surveys for Final Prevalence Assessment	
Guidelines for Conducting Mosquito Control for Filariasis Vectors	
Fiji Islands	
Flowchart	
Suggested Guidelines for Country C Surveys for Final Prevalence Assessment	
Guidelines for Conducting Mosquito Control for Filariasis Vectors	
FRENCH POLYNESIA	
Flowchart	44
Suggested Guidelines for Country C Surveys for Final Prevalence Assessment	45
Guidelines for Conducting Mosquito Control for Filariasis Vectors	
GUAMFlowchart	
Guidelines for Conducting Mosquito Control for Filariasis Vectors	
KIRIBATI	
Flowchart	
Suggested Guidelines for Country C Surveys for Final Prevalence Assessment	
Guidelines for Conducting Mosquito Control for Filariasis Vectors	
MARSHALL ISLANDS	
Flowchart: Mejit Island.	
Flowchart: Other Areas.	
Suggested Guidelines for Country C Surveys for Final Prevalence Assessment	
Guidelines for Conducting Mosquito Control for Filariasis Vectors	
Nauru	
Flowchart	
Guidelines for Conducting Mosquito Control for Filariasis Vectors	61

NEW CALEDONIA	62
Flowchart	
Guidelines for Conducting Mosquito Control for Filariasis Vectors	64
NIUE	65
Flowchart	
Guidelines for Conducting Mosquito Control for Filariasis Vectors	67
NORTHERN MARIANA ISLANDS	
Flowchart	69
Guidelines for Conducting Mosquito Control for Filariasis Vectors	70
Palau	71
Flowchart: Ngardmau	71
Flowchart: Koror Island and the rest of Palau	73
Suggested Guidelines for Country C Surveys for Final Prevalence Assessment	74
PAPUA NEW GUINEA	76
Guidelines for Conducting Mosquito Control for Filariasis Vectors	77
PITCAIRN ISLAND	78
Flowchart	79
Guidelines for Conducting Mosquito Control for Filariasis Vectors	80
SAMOA	81
Flowchart	
Suggested Guidelines for Country C Surveys for Final Prevalence Assessment	83
Guidelines for Conducting Mosquito Control for Filariasis Vectors	85
SOLOMON ISLANDS	
Flowchart	87
Suggested Guidelines for Country C Surveys for Final Prevalence Assessment	88
Guidelines for Conducting Mosquito Control for Filariasis Vectors	
TOKELAU	90
Flowchart	91
Guidelines for Conducting Mosquito Control for Filariasis Vectors	
TONGA	
Flowchart	94
Suggested Guidelines for Country C Surveys for Final Prevalence Assessment	
Guidelines for Conducting Mosquito Control for Filariasis Vectors	
TUVALU	
Flowchart	
Suggested Guidelines for Country C Surveys for Final Prevalence Assessment	
Guidelines for Conducting Mosquito Control for Filariasis Vectors	
Vanuatu	
Flowchart	102
Suggested Guidelines for Country C Surveys for Final Prevalence Assessment	
Guidelines for Conducting Mosquito Control for Filariasis Vectors	
Wallis & Futuna	
Flowchart	
Suggested Guidelines for Country C Surveys for Final Prevalence Assessment	
FUTUNA	
Guidelines for Conducting Mosquito Control for Filariasis Vectors	
Summary of ICT Cards Needed for C Surveys	
APPENDICES	111
APPENDIX 1. TABLE OF 2-DIGIT RANDOM NUMBERS	111
APPENDIX 2. TABLE OF 3-DIGIT RANDOM NUMBERS	

TABLE OF FIGURES

Figure 1: FLOWCHART OF PACELF MDA AND ASSESSMENTS FOR PacELF	7
Figure 2: COUNTRY SPECIFIC PacELF SURVEILLANCE GUIDELINES	8
Figure 3: PRE MDA ENDEMICITY STATUS FLOWCHART	
Figure 4: EXAMPLE OF NATION WITH 3 ISLANDS	12
Figure 5: EXAMPLE OF NATION WITH 3 ISLANDS DIVIDED INTO SUB-	
IMPLEMENTATION UNITS	13

1. INTRODUCTION

The objectives of this manual is to provide to the PacELF programme managers with the following:

- 1- Descriptions of the methodology used in the PacELF surveys.
- 2- Country-specific recommendations for different types of surveys and the timetable of those surveys.
- 3- Country-specific guidelines for conducting mosquito control for filariasis vectors.

Figure 1: FLOWCHART OF PACELF MDA AND ASSESSMENTS FOR PacELF

Figure 2: COUNTRY SPECIFIC PacELF SURVEILLANCE GUIDELINES

Endemicity category	Population size category	Country	Estimated Population in 2005 (WHO*)	A: Baseline prevalence assessment	B: Mid-term prevalence assessment (sentinel and spot-check sites)	C: Final prevalence assessment**: stratified cluster or LQAS***sample plus sentinel sites	D: Transmission (incidence) assessment in school- entering children
	< 10,000	PTC	47	Test whole popn.	No	No	
	< 10,000	TOK	1640	Test whole popn.	No	Test whole population	
Non-endemic	10.000	NAU	13,145	Sample	No	No	All children 5-6 yr
0% positive	10,000 – 200,000	NMI	77,111	Sample	No	No	All children 5-6 yr
	200,000	GUM	170,197	Sample	No	No	All children 5-6 yr
	>200,000	SOL	479,393	Sample	No	Sample by region	Sample children 5-6 yr
	<10,000	(None)					
		WAF	15,227	Sample	Yes (Wallis Is)	Sample by island	All children 5-6 yr
Partially endemic	10,000 – 200,000	PAL	21,582	Sample	Yes (Ngardmau Is)	Sample by island group	All children 5-6 yr
0-1% positive		MAR	58,868	Sample	Yes (Mejit Is)	Sample by island group	All children 5-6 yr
0 170 positive		FSM	131,275	Sample	Yes (Satawal Is)	Sample by state	All children 5-6 yr
	>200,000	NEC	230,541	Sample	Yes	Sample by province	Sample children 5-6 yr
	<10,000	NIU	1,990	Test whole popn.	Test whole popn.	Test whole population	
		TUV	10,704	Sample	Yes	Sample by island group	All children 5-6 yr
		COK	20,062	Sample	Yes	Sample by island group	All children 5-6 yr
	10,000 – 200,000	KIR	99,194	Sample	Yes	Sample by island group	All children 5-6 yr
		ASM	67,687	Sample	Yes	Sample by health district	All children 5-6 yr
Endemic		TNG	102,247	Sample	Yes	Sample by island group	All children 5-6 yr
>1% positive		SMA	181,935	Sample	Yes	Sample by health district	All children 5-6 yr
		VAN	219,319	Sample	Yes	Sample by province	Sample children 5-6 yr
	>200,000	FRP	256,562	Sample	Yes	Sample by island group	Sample children 5-6 yr
		FIJ	882,375	Sample	Yes	Sample by health subdivision	Sample children 5-6 yr
		PNG	5,814,250	Sample	Yes	Sample by district	Sample children 5-6 yr

^{*} Demographic tables for Western Pacific region 2000-05 ** Suggested geographic regions are given for dividing the country into sub-implementation units for sampling. *** LQAS = Lot quality assurance sampling

2. SURVEILLANCE

DEFINITIONS OF SURVEY TYPES AND PURPOSES

A type assessment

- Initial baseline survey: Various methodologies used (e.g. sentinel sites, convenience sampling, cluster sampling, random sampling).
- Purpose: To define the country endemicity regarding LF and to decide whether to implement an MDA or not.

B type assessment

- Mid term assessment: surveys in sentinel sites and spot check sites.
- Purpose: To assess the impact of MDAs, and to check that the programme is being implemented properly.

C type assessment

- Final prevalence assessment: Surveys in all areas of the country and in sentinel sites.
- Purpose: To assess the impact of MDAs, to determine whether all areas are at less than 1% prevalence and to find any remaining pockets of LF.
- Morbidity survey
- During the time of the C (final prevalence survey), a morbidity survey can also be carried out this will minimize the amount of work to find out where people suffering from the symptoms of filariasis are living.

D type assessment

- Transmission assessment: To determine the five year incidence, this survey targets 5-6 year old children (children that were born in the year of the first MDA or after).
- Purpose: To confirm that there is no more LF transmission.

DIAGNOSTIC TESTS

The ICT (Immunochromatographic test, for more information on this test, see the PacELF Handbook) is the main test used for all surveys. However, this test is not perfect. It has about 99% specificity, which means that one out of every hundred samples tested will give a 'false positive' result. This becomes a serious problem when prevalence falls to low levels. At 1% prevalence, about 2% of those tested will be positive, and of the positives about half will be false positives.

It will be necessary to confirm the ICT positives by a second test. It is very unlikely that a sample would give a false positive on both tests.

The choices for a second test are:

- 1. Og4C3 antigen test,
- mf microscopy,
 PCR, or
- 4. IgG4 antibody test.

The Og4C3 antigen test is the first choice for the second test because it detects antigen (i.e. the person has a current infection) and is recommended for a second test. The mf and PCR tests are not very suitable as they will be negative if a person has no mf, even though adult worms are present. IgG4 may be positive if the person had a past infection, which is now cured and it is very difficult to do.

In order to do a second confirming test, either

- 1) Collect additional blood sample on filter paper from every ICT positive person; or
- 2) A blood sample must collected and labelled on filter paper from every person, at the same time as the ICT is done (which increases the workload significantly); or
- The ICT positive cases must be found again later and a second sample taken (i.e. record keeping must be very good).

The first choice may be best, as there will be relatively few people who test positive.

PRE MDA ENDEMICITY STATUS

According to the initial baseline assessment (A survey), if

- ICT+ prevalence = $0\% \Leftrightarrow$ non endemic country
- ICT+ prevalence >0% and <1% \Leftrightarrow partially endemic country
- ICT+ prevalence $\geq 1\% \Leftrightarrow$ endemic country

Figure 3: PRE MDA ENDEMICITY STATUS FLOWCHART

Non-endemic countries: No MDAs are being conducted. If type A assessments were adequate and representative, go straight to verification of no transmission (type D survey) by ICT surveys on 5-6 year old children (all or a sample, depending on size of country).

Partially endemic countries: MDAs are being conducted only in some areas (sub-implementation units). Do midterm assessment (B survey) in these areas mainly to assess the impact of the programme (sentinel surveys), and to check programme implementation. At end of MDAs, do type C survey in whole country to have more comprehensive data and to find other pockets of filariasis. Do transmission assessment (D survey) when all areas are below 1% ICT positive prevalence.

Endemic countries: MDAs are being conducted in the whole country. Mid term assessment (B survey) to assess the impact of the MDA and implementation of the programme (sentinel surveys and spot check sites). After 5 MDAs, final prevalence assessment (C survey) in sentinel sites and in a sample of all areas. Transmission assessment (D survey) when all areas are below 1% prevalence.

SAMPLING METHODS FOR TYPE C PREVALENCE ASSESSMENT SURVEYS: FINAL OR POST MDA ASSESSMENTS

The type C surveys must cover the whole country to make sure there are no pockets of remaining filariasis infection. There are many choices for how to sample the population for this survey. The main requirement is that the whole country is covered. Two of the possible methods are described below. They are 1) stratified cluster sampling and 2) lot quality assurance sampling. *Please see Country-specific: Suggested Guidelines for Country C Surveys for Final Prevalence Assessment.*

For both methods a country is divided into non-overlapping geographical areas that we can call "sub-implementation units" or sub-IUs. This can be done according to administrative boundaries or by health division (e.g. subregion, health area, health district).

Some small countries will have only one sub-IU. Medium size countries will have a few sub-IUs, and some large countries like Fiji may have 20 or more sub-IUs.

Within countries, large islands can be divided into several sub-IUs, while small islands can be grouped with neighbouring islands into 'island groups'. Cities and towns with large concentrated populations may need to be divided into two or more sub-IUs.

An example of an imaginary nation of three islands with different population sizes is shown below (Figure 1). The large island has a population of 100,000, including a city with 50,000. The two smaller islands have populations of 5000 and 500 people.

Figure 4: EXAMPLE OF NATION WITH 3 ISLANDS

We need to divide the island nation into sub-implementation units (sub-IUs) for sampling. The number of people in each sub-IU can vary, but a good range would be about 5,000 to 25,000. For the imaginary country above, we could divide it using a combination of natural divisions (islands) and administrative divisions (see Fig 2).

Figure 5: EXAMPLE OF NATION WITH 3 ISLANDS DIVIDED INTO SUB-IMPLEMENTATION UNITS

The rural part of the big island is divided into three sub-IUs using health area divisions. The town is divided into two parts (e.g. east and west). The two small islands are put together into one sub-IU. We now have 6 sub-IUs and the population of a sub-IU varies from 5,500 to 25,000 (total 105,500).

We have to test a sample of people from every sub-IU. Ideally, we should sample people at random within each sub-IU. However, to do that, we would need a list of every person in the sub-IU, to pick from, and we don't have that. Therefore we have to use a different method.

Two methods are suggested below. Each country, together with the assistance of the PacELF home office, can decide which of these two suggested methods of sampling is best for them (as explained below).

Ideally, we should calculate the required sample size separately for each sub-IU. However, if we use the **average** sample size per IU, this will lead us to sample more people in the smaller sub-IUs and fewer in the more highly populated sub-IUs (such as the towns). This sampling bias is good because it means we will sample proportionally more people in the less-populated areas, like small remote islands, and proportionally less in the urban areas.

To determine the average population size per sub-IU, divide the total country population by the number of sub-IUs. Therefore in this example we would divide 105,500 by 6, giving 17,583.

METHOD 1: STRATIFIED CLUSTER SAMPLING, USING VILLAGES AS CLUSTERS

In this method, each sub-implementation unit (sub-IU) is technically called a 'stratum'. The plural of this word is 'strata'. However we can call them sub-IUs.

Within each sub-IU, we will test all the people in a number of 'clusters' or groups. For clusters we will use villages. To decide how many people to test, do the following:

- 1) Estimate the average number of people per sub-IU, by dividing the total population of the country by the number of sub-IUs. This does not have to be an exact number.
- 2) Using the table below, estimate the number of people to be tested in each sub-IU. (This will tell you the number required to detect with 95% confidence whether the prevalence is 1% (plus or minus 1%)). It is based on double the number required for a simple random sample, to allow for between and within-cluster variance).

Average population in	Sample size needed
sub-IU	(95% confidence)
500	302
1000	432
2000	551
5000	660
10000	707
20000	733
25000	739
50000	750
100000	755

If the average number of people per sub-IU is between two of the numbers in the table, pick the next highest number.

Thus for example, if the average number of people per sub-IU is 17,583, we need to test 733 people per sub-IU to be 95% sure that prevalence is 1% or lower.

3) Now you need a list of villages/settlements in each sub-IU to be tested (these are the 'clusters'). Try and estimate how many villages will be needed to get the number of people to meet the sample size, but add a few extra to allow for refusals and absent people. For example, if there are about 100 people per village, you need eight villages (~800 people) to get at least 733 people. Add a couple more villages just in case, and this gives you 10 villages to pick. Your country sub-IUs will probably have a different number.

You need to select villages randomly. To do this, first get or make a list of the villages.

Each village needs a sequential code number. You can either number them by hand on a list, or use village code numbers which already exist (e.g. in the census).

Here are two possible ways to randomly sample the villages (Choose either i or ii):

i. Write each village code number on a small piece of paper and fold it. Put all the code numbers in a bowl, mix them up thoroughly, and get someone to pick them out one at a time with eyes closed. Write down the code numbers picked out. Continue until you have the required number of villages.

ii. Use a table of random numbers (see Appendices 1 & 2) to pick out the villages. If you have less than 100 villages, use the 2-digit random number table. If you have 100 or more villages, use the 3-digit random number table.

Ask someone to close their eyes and put their finger anywhere on the random number table. The number where the finger lands is the number of the first village. For example, if the finger lands near number 22, then pick the 22nd village on the list.

Continue down the column of numbers from the point where the finger landed. For example, if the next number after 22 is 3, pick the 3rd village on the list. (If a number in the random list is higher than the total number of villages you have, skip that one and go on to the next number). Continue until you have the required number of villages.

Alternatively, you can give the list of villages to the PacELF home office. PacELF will pick the villages in random order for each sub-IU and advise which villages/settlements must be surveyed (The PacELF home office's recommendations are in Section 4).

- 4) Arrange to visit the villages on the randomly-selected list to do blood surveys, continuing until you reach the sample size (see the following section **Sampling Methods for Selecting People in Villages**).
- 5) Ask people to come in family groups to the survey, to maximize the chances of representative sampling by age if you cannot sample the whole village, and to help in tracing people again later.
- 6) If a large village or town is picked, then stop when you get to 200 people and go on to the next village on the randomly-selected list.
- 7) If you are half way through a village when you reach the required number of people, complete that village (up to 200 people). Always do more, rather than fewer than the sample size, to make sure the target number of people is met.
 - Make every effort to do the selected villages. If for some major reason a selected village is not possible (e.g. recent death) go to the next village on the list.
- 8) If you find one or more positives in a village by ICT, this case must be confirmed by another test and treated for filariasis. Therefore make sure that you can find the person a second time by good record-keeping.

METHOD 2: LOT QUALITY ASSESSMENT SAMPLING

(Using Main Health Centre Catchment Areas as 'Lot')

In this method, we assume that each sub-IU (subdivision, district, medical area, etc) is the catchment area for a major health centre or hospital. Each main health centre catchment area is technically called a 'lot' but we can continue to call it a sub-IU.

- 1) Within each sub-IU, pick the largest health facility. It could be a hospital or main health centre. If there is a choice of more than one (e.g. more than one major hospital in an urban sub-IU), toss a coin or pick health facility names out of a hat to choose which facility you will sample.
- 2) Decide how many patients you have to test in each sub-IU using the following table:

Average population in	Number of people to be
sub-IU	tested (95% confidence,
	critical value= 1)
200	155
300	190
400	210
600	235
800	250
1000	260
1500	270
2000	275
2500	280
<u>≥</u> 3000	300

For example, if the average size of the sub-IU (catchment area) is 17,583, you need to sample 300 patients. If you find one or more positive in that number of patients, then the prevalence is estimated to be 1% or more in that sub-IU.

- 3) Test patients who come into the health centre, until you reach the sample size. If there are too many to do every patient, then either test some of them each day (e.g. every tenth patient) or test them only on certain days of the week. If necessary, a special technician might have to come and help you test them.
- 4) If you find a positive, this will have to be confirmed by a second test. The patient should also be followed up and treated for filariasis. Make sure you can find the patient again when necessary.

Technical notes:

1: In Method 1, stopping at 200 people in larger villages means that the populations of these villages will be sampled at lower probability than the populations of smaller villages (in which everyone is tested). This bias may be acceptable in order to increase the number of separate sites sampled. It means that we will be under-sampling more dense populations, which is not a bad thing. However in villages where we stop at 200 people, the cluster may not be representative sample of the total village population.)

2: Method 2 (LQAS at health centres) requires a smaller sample size than Method 1 (stratified random sample of villages). However, it assumes that the health centre is randomly sampling the population within that sub-IU, which is probably not true. Thus, it will probably not test a representative sample of each age group. Also, remember that Method 2 will not reach the people who don't come to health facilities).

SAMPLING METHOD FOR SELECTING PEOPLE IN VILLAGES TO BE SAMPLED WHEN THERE ARE MORE THAN 200 PEOPLE IN THE VILLAGE

Once the villages have been selected randomly, the next step to select who in the villages will be surveyed by ICT card. Ideally we want a random sample with a maximum of 200 people in any one village that is representative of the people in that village. In order to include school children and adult men in the survey, the survey will need to take place when children and men are in the village. This probably means doing the survey in the late afternoon or evening. There are a number of different ways to select people to be tested. Four ways of selecting people are described below.

If you have a list of the families in the villages and know where they live, you can select families randomly and then go to their houses and test them. Two ways of doing this are described (A- House unit and B-Family unit)

A- House unit

In a village, houses can be used as a sampling unit. Every person living in the same selected house has to be ICT tested. All houses have to be numbered arbitrarily (you may begin at one end of the village and give to the first house #1, the second one #2, and proceed so on until you reach the last house of the village). You may put on your list the name of the chief of family of each house (or the name of an person living in this house) in order to track down easily the selected house later. A random number list can be generated using Epi Info 6 (version 6.04c - freeware from the US Centers for Disease Control and Prevention, CDC, www.cdc.gov) as below:

- 1- Open Epi Info;
- 2- Click on the Programme section;
- 3- Go to the Epitable calculator section;
- 4- Open the Sample section at the upper line;
- 5- Choose the random number list option;
- 6- Enter the number of random numbers you need (corresponding to the number of houses you have to ICT test). Pretended this number is 40;

An example:

- The average number of persons in one house of your village is supposed conservatively to be 5 (in reality there are probably more than 5 persons by house);
- You need to ICT tested 200 persons, according to our method, so you need to choose randomly at least 40 houses (200 divided by 5);
- So the number of random numbers you need is theoretically 40.
- 7- Enter the minimum range of numbers: 1 (the first house);
- 8- Enter the maximum range of numbers: that is in fact the total number of houses in the village;
- 9- Click on Calculate;
- 10- You have the list of random numbers that corresponds to the numbered houses you have to visit and ICT test every person living in these houses;
- 11- You have to test **all those 40 houses** even if you reach already 200 persons tested before the end of your house list, otherwise the last houses may be systematically excluded and cause bias to occur.

B- Family unit

If you have the list of all the families in the village, you can use this list as sampling unit. Give the number 1 for the first name on the list, the number 2 for second ones, and so on until you have numbered all the families. The list must be exhaustive and no families can be left off this list. Proceed then with the same method described above to have the list of 40 randomly selected numbers. You have to test all members (living in the same house) of those 40 families in that village.

C. Random line of houses. A third method for selecting people for testing would be based on sampling houses on a "random line":

- 1. Pick a spot at random in the village
- 2. Spin a bottle at the random spot
- 3. Sample all people in all the houses in the line that the bottle pointed at until you get to the end of the village.
- 4. If the number of people in the line of houses sampled is less than 200 then pick another spot, spin the bottle and sample everyone in the houses along the new line (if the new line crosses the previous "random line", people in the houses where the lines cross each other should not be resampled 9people can only be sampled once in a survey)
- 5. Repeat until 200 people have been sampled.

D. Random sector. A fourth way of selecting people in villages for testing, that doesn't require too much extra work is based on sampling "random sector" in a village:

- 1. Get a sketch map of the village (or quickly make one).
- 2. Using the map, divide the village into sections of roughly equal size with 200 people in each section.
- 3. The size of the section needs to be constant for all villages. Villages may have different numbers of sections (a village with 600 people will be divided into 3 sections while villages with 2000 people will be divided into 10 sections).
- 4. Select one section per village at random.
- 5. Survey everyone in that section.

METHOD FOR SELECTING PEOPLE IN TOWNS

If you have towns as the sub implementation unit (sub IU), the population in each town is usually greater than several thousand people, although a similar sampling method can be used. You have to divide the town into smaller sections, (for ex. districts or areas or quarters), then allocate a different number for each of these section. According to the method described in this manual, you have probably no more than 750 persons to sample in your town as sub IU, and theoretically no more than 200 persons by section.

You can use the same random process described above to choose 4 sections out of the total number of sections of your town.

- 1- Open Epi Info;
- 2- Click on the Programme section;
- 3- Go to the Epitable calculator section;
- 4- Open the Sample section at the upper line;
- 5- Choose the random number list option;
- 6- Enter the number 4 for the random numbers;
- 7- Enter the minimum range of numbers : 1 (the first section);
- 8- Enter the maximum range of numbers: that is the number of sections of your town;
- 9- Click on Calculate;
- 10- You have the list of the 4 sections where you have to carry your survey;
- 11- In each section proceed the same way than in village.

SAMPLING METHODS FOR TYPE D ASSESSMENTS (TRANSMISSION INCIDENCE SURVEYS)

The reason for this survey is to confirm that there is no transmission of filariasis. Therefore we have to check for new infections. This is done with 5-6 year-old children who were born after the first PacELF MDA because we know they were not infected at birth.

METHOD: LOT QUALITY ASSURANCE SAMPLING IN SCHOOL-ENTERING CHILDREN (USING SCHOOLS AS 'LOTS').

Remember that this method will not sample the children who do not attend school. You should find out what proportion of children in your country does not attend school at all. If this proportion is large, you should try other methods to find them (e.g. by MCH clinic).

- 1) Get or make a list of all primary schools (government, church, private etc).
- 2) Estimate the number of 5-6 year old children in each school (for planning purposes).
- 3) In some countries, where the total number of children is less than 4000, it is probably easier to test all the children than try to sample them (refer to Section 4).
- 4) In larger countries, we need to sample the children. The table shows how many children you need to sample according to the total number of children.

Total number of 5-6 year	Number of children to be
old children	tested (95% confidence,
	critical value= 1)
2,000	1,550
3,000	1,900
5,000	2,250
10,000	2,600
15,000	2,700
20,000	2,800
25,000	2,850
≥ 30,000	3,000

For example, if there are estimated to be 10,000 5-6 year old children, you need to test 2,600 of them. Allowing some extra in case the total number is under-estimated, we should aim to sample 3000 (about one third of the total). This could be done in two ways:

i) Sample all children in some of the schools.

Select the schools using the random number tables given above. First list the schools and give them sequential numbers, or use an already- existing numbered list of schools.

If you have less than 100 schools, use the 2-digit random number table. If you have 100 or more schools, use the 3-digit random number table (see Appendices 1 & 2).

Ask someone to close their eyes and put their finger anywhere on the random number table. The number on which the finger lands is the code number of the first school. For example, if the finger lands near number 22, then pick the 22^{nd} school on the list.

Continue down the column of numbers from the point where the finger landed. For example, if the

next number after 22 is 3, pick the 3rd school on the list.

If a number in the random list is higher than the total number of schools you have, skip that one and go on to the next number. Continue until you have the required number of schools (in this example, one third of the schools. Your country may have a different proportion).

The PacELF home office can help with the random selection of schools if necessary.

ii) Sample some of the children in each of the schools.

A good way to do this is to have the children pick a ball out of a cloth bag (i.e. without looking). In the bag, put a mixture of black and white balls, stones or shells that are the same except for the colour.

In this example you need to pick one third of children (your country may be different). So one third of the balls should be black and two-thirds white. If a child picks a black ball is picked, that child will be tested.

- 5) Arrange with the school staff and administrators to visit the schools (either all, or selected schools) to do blood surveys, continuing until you have done all the sample of 5-6 year old children required.
- 6) If you find one or more positives by ICT, this case must be confirmed by another test (Og4C3 or Mf) and the child must be treated. Therefore make sure that you can find the child a second time by good record-keeping.
- 7) If you find **any** definite positives in the sampled children, this means that the 5-year cumulative incidence is greater than 0.1%, i.e. transmission is still occurring. Thus, you will need a consultation with the PacELF home office.

3. COUNTRY SPECIFIC MONITORING AND EVALUATION PLANS

The next section will outline, the status, progress made and recommendations for each of the PacELF countries. A flowchart for each country is also provided to assist in planning the C Survey (Final Assessment).

Also included for each country are country specific guidelines for conducting mosquito control for vectors of filariasis.

It is hoped that the country specific guidelines that follow will focus efforts on cost-effective control of the most important mosquitoes that transmit filariasis. During dengue outbreaks or malaria epidemics, other control measures may be more effective and may justify greater costs. Large populations of nuisance mosquitoes may also warrant control measures. The key to all mosquito control is knowledge of the biology of the mosquitoes that we are trying to control in order to choose the control measures that are most likely to be effective. As long-term effective control requires monitoring the effectiveness of the interventions, suggested techniques for monitoring the vector mosquito are also given.

DIAGRAM LEGENDS FOR FLOWCHARTS

AMERICAN SAMOA

Endemic country

Population estimated: 64,100 (2000)

Geographic dispersion: 7 islands

A type survey (Initial Baseline survey): ICT testing in 1999

- Type: whole country (18 villages) - convenience sample

- Result: 3,018 tested - 498 positives

- ICT+ prevalence: 16.5%

MDA for the whole country: 1st round in 1999-2000

B type survey (Mid term evaluation): ICT and mf testings in 2001 (after 2 MDA)

- Type: sentinel sites (Fagasa Pago Pago Faga'itua Aunu'u islands) Random sampling (by CDC Atlanta group)
- Result: 1052 tested 115 (11.5%) ICT positive– 28 (2.6%) mf positive

Recommendation:

C type survey (final assessment):

Stratified sample survey by health district should be carried out in 2005-2006 (if necessary depending on results of CDC survey).

D type survey (transmission assessment):

This ICT (and other testing techniques, if any) survey should be carried out in 2006-07, after the 5th MDA, in all 6 year-old children in American Samoa. The estimated number of this target population is 2,000 persons.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- \triangleright If ICT positive prevalence is $\ge 0.1\%$, do additional investigations around positive cases:
 - o Confirm with other biological test (i.e. Og4C3);
 - o Discussion with the PacELF Monitoring & Evaluation group;
 - Discussion for the post MDA alternative strategies;
 - Partial MDA in still endemic areas;
 - Helminth control programme;
 - Integrated vector control programme.

FLOWCHART: AMERICAN SAMOA

SUGGESTED GUIDELINES FOR COUNTRY C SURVEYS FOR FINAL PREVALENCE ASSESSMENT: AMERICAN SAMOA

- 1. The C survey for American Samoa should take place in 2005-2006 and will be by Stratified Cluster Sampling using villages as clusters.
- 2. The Sub-implementation Units will be the 5 Districts: Central, Eastern, Manu'a, Swains and Western.
- 3. Using the Demographic Tables for the Western Pacific Region 2000-2005 (WHO publication), the estimated population in 2005 for Am Samoa will be 67,687.
- 4. Therefore the average population of each sub-implementation unit will be 13,537 (67,687 divided by 5 districts).
- 5. From the table for Stratified Cluster Sampling (Section 2), the sample size needed for each district (sub-implementation unit) for an average population of 20,000 is 733 (since the table has no average population for 13,537, the next largest average population for a sub-implementation unit is used (e.g., 20,000).
- 6. Villages were chosen randomly with a maximum of 200 people per village. Villages should be sampled in the order given in the table below.

Villages to be Sampled and the Number of People per Village to be Sampled (based on 2000 census village population)

		,	population		
Village	Central	Eastern	Manu'a	Swains	Western
Order	District	District	District	District	District
1	Matu'u-200	Auasi	Si'ufaga	Swains	Llili-200
2	Atu'u-200	Aoa-200	Ofu-200		Nuuuli-200
3	Leloaloa-200	Avaio	Sili		Vaitogi-200
4	Vatia-200	Fagaitua-200	Olosega-200		Maloata
5	Fagatogo*-200	Utumea	Luma-200		Aasu-200
6		Auto-200	Maia*		
7		Sa'ilele*			
8		Alofau*-200			

- Village names in **bold** should have entire population tested by ICT. A maximum of 200 villagers should be tested in villages with more than 200 people (these villages are shown followed by the number '200').
- *Alternative villages to be surveyed if less than 733 people are sampled from the villages listed for each sub-implementation unit.
- 7. Sampling should be done until at least 733 people per district have been sampled by ICT. It is estimated that a total of 2,968 ICT cards will be required.

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: <u>AMERICAN SAMOA</u>

Primary Vector Aedes polynesiensis

Distribution of Primary Vector All islands

Activity pattern Daytime

Biting preference All animals

Location of biting Prefers outdoors but will go inside houses

Resting location Outdoors

Flight range Less than 100m

Breeding sites Man provided containers (tires, drums, small plastic containers)

Natural containers (treeholes, crabholes)

Insecticide resistance Resistance to DDT shown in Fiji and French Polynesia including Tahiti

Other important characters Avoids bright sunlight Also a vector of dengue virus

Monitoring the Primary Vector Larval/pupal survey at least twice a year (once during the wet season, once

during the dry season)

Recommended Control Methods for Primary Vector

1. Breeding source reduction of domestic containers*

- 2. Bednets to protect young children when napping
- 3. Insecticide impregnated curtains and bednets
- 4. Repellents and mosquito coils
- 5. Screening houses

*Effort should be directed towards reducing the number of breeding sites that are producing the most adult mosquitoes. The importance of different container types will be determined from the larval/pupal surveys.

Secondary Vectors Aedes tutuilae

Aedes upolensis

Ochlerotatus samoanus

COOK ISLANDS

Endemic country

Population estimated: 18,700 (2000)

Geographic dispersion: 15 islands

A type survey (Initial Baseline survey): ICT testing in 1999

- Type: whole country (9 islands) - convenience sample

- Result: 1,884 tested - 162 (8.6%) ICT positive

MDA for the whole country: 1st round in 2000

B type survey (Mid term evaluation): ICT testing in 2001

- Type: sentinel sites convenience sampling?
- Result: 460 tested 35 (7.6%) ICT positive

Recommendation:

C type survey (final evaluation):

Stratified sample survey by island group (if necessary depending on results of CDC survey) should be carried out in 2005. Also, a sentinel sites survey should be carried out (in Aitutaki, Mitiaro, Pukapuka, Rarotonga islands).

D type survey (transmission assessment):

This ICT survey should be carried out in 2006, after the 5th MDA, in all 6-year-old children in the Cook Islands. The estimated number of this target population is 460 persons.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination
- \triangleright If ICT positive prevalence is ≥0.1%, do additional investigations around positive cases:
 - o Confirm with other biological test (i.e. Og4C3);
 - Discussion with the PacELF Monitoring & Evaluation group;
 - Discussion for the post MDA alternative strategies;
 - Partial MDA in still endemic areas;
 - Helminth control programme;
 - Integrated vector control programme.

FLOWCHART: COOK ISLANDS

SUGGESTED GUIDELINES FOR COUNTRY C SURVEYS FOR FINAL PREVALENCE ASSESSMENT: COOK ISLANDS

- 1. The C survey for Cooks Islands should take place in 2005 and will be by Stratified Cluster Sampling using villages as clusters.
- 2. The Sub-implementation Units will be the 3 island groups: Rarotonga, Southern, Northern
- 3. Using the Demographic Tables for the Western Pacific Region 2000-2005 (WHO publication), the estimated population in 2004 for Cook Islands will be 19,939.
- 4. Therefore the average population of each sub-implementation unit will be 6,646 (19,939 divided by 3 island groups).
- 5. From the table for Stratified Cluster Sampling (Section 2), the sample size needed for each district (sub-implementation unit) for an average population of 10,000 is 707 (since the table has no average population for 6,646, the next largest average population for a sub-implementation unit is used (e.g., 10,000).
- 6. Villages were chosen randomly with a maximum of 200 people per village. Villages should be sampled in the order given in the table below.

Villages to be Sampled and the Number of People per Village to be Sampled (based on 2000 census village population)

	·	· population)	
Village	Rarotonga	Southern	Northern
Order		Island Group	Island Group
1	Rutaki/Aroa-200	Atiu-200	Palmerston
2	Tupapa/Maraerenga-200	Aitutaki-200	Puka Puka-200
3	Pokoinu-200	Mauke-200	Nassau
4	Tutakimoa/Teotue-200	Mangaia-200	Penrhyn-200
5	Tatuvaine*	Mitiaro*-200	Manihiki-200
6			Suwarrow*

- Village names in **bold** should have entire population tested by ICT. A maximum of 200 villagers should be tested in villages with more than 200 people (these villages are shown followed by the number '200').
- *Alternative villages to be surveyed if less than 707 people are sampled from the villages listed for each sub-implementation unit.
- 7. Sampling should be done until at least 707 people per island group have been sampled by ICT. At least 2,121 ICT cards will be needed for the C surveys in the Cook Islands

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: COOK ISLANDS

Primary Vector Aedes polynesiensis

Distribution of Primary Vector Confirmed in both the Northern (Penrhyn and Manikiki) and Southern (Mitiaro,

Atiu, Mauke, Mangaia, Aitutaki and Rarotonga) Group islands (Ichimori, 1994.

"Stop Aedes aegypti" report)

Activity pattern Daytime

Biting preference All animals

Location of biting Prefers outdoors but will go inside houses

Resting location Outdoors

Flight range Less than 100m

Breeding sites Man provided containers(tires, drums, small plastic containers)

Natural containers (treeholes, crabholes)

Insecticide resistance Resistance to DDT shown in Fiji and French Polynesia including Tahiti

Monitoring the Primary Vector Larval/pupal survey at least twice a year (once during the wet season, once

during the dry season)

Recommended Control Methods for Primary Vector

1. Breeding source reduction of domestic containers*

2. Bednets to protect young children when napping

3. Insecticide impregnated curtains and bednets

4. Repellents and mosquito coils

Screening houses

*Effort should be directed towards reducing the number of breeding sites that are producing the most adult mosquitoes. The importance of different

container types will be determined from the larval/pupal surveys.

Secondary VectorsAedes cooki is a vector of lymphatic filariasis in Niui and is found in the

Northern Cook Islands (but has not been confirmed as a vector in the Cook

Islands)

FEDERATED STATES OF MICRONESIA

Partially endemic country

Population estimated: 107,008 (2000)

Geographic dispersion: 607 islands scattered over vast ocean area

A type survey (Initial Baseline survey): ICT blood testing in 1999-2001

- Type: convenience sample

- Result: 2,392 tested (in Chuuk-Yap) – 5 (0.2%) ICT positive

Additional surveys were carried out:

In Satawal area (2002):

- Type: convenience sample target population: 8 to 15 year old school children
- Result: 971 tested 19 (1.9%) ICT positive (mainly in Satawal island)

In Pohnpei (2002):

- Type: convenience sample Target population: students
- Result: 1000 test 0 (0%) ICT positive

Survey in Kosrae is planned for 2003

Partial MDA - Target population: Satawal island - 1st round in 2002.

Recommendation:

Completion of A survey in former endemic areas

Surveys with convenience sampling or preferentially in adult should be carried out in 2003-2004. The purpose of these additional surveys is to detect other potential LF foci and to decide on the implementation of MDA.

B type survey (Mid term evaluation) in Satawal:

This survey should be carried out in 2004 after the 3rd MDA in Satawal island (all inhabitants should be ICT tested). It should allow assessment of the impact of MDA on the LF endemic areas.

C type survey (Final evaluation):

- For Satawal island, the C type survey should be planned after the last round of MDA (2007). In this case, because of its small population, all inhabitants of Satawal should be tested.
- For the other areas of FSM outside of Satawal, this ICT survey should be carried out in 2005 in villages sampled by state.

D type survey (transmission assessment)

In all 6 year old children. The estimated number of this target population is about 3,000 children.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- ➤ If ICT positive prevalence is \ge 0.1%, do additional investigations around positive cases:
 - o Confirm with other biological test (i.e. Og4C3);
 - o Discussion with the PacELF Monitoring & Evaluation group;
 - Discussion for the post MDA alternative strategies;
 - Partial MDA in still endemic areas;
 - Helminth control programme;
 - Use of DEC medicated salt;
 - Integrated Vector control (*Culex quinquefasciatus*) Impregnated bednets.

FLOWCHART: SATAWAL ISLAND, FEDERATED STATES OF MICRONESIA

FLOWCHART: OTHER AREAS OF FEDERATED STATES OF MICRONESIA

SUGGESTED GUIDELINES FOR COUNTRY C SURVEYS FOR FINAL PREVALENCE ASSESSMENT: FEDERATED STATES OF MICRONESIA

- 1. The C survey for Federated States of Micronesia should take place in 2005 in areas of other than Satawal Island. Satawal Island will be surveyed in 2007. Sampling will be by Stratified Cluster Sampling using villages as clusters in areas other than Satawal Island. The whole population of Satawal Island will be tested in 2007.
- 2. The Sub-implementation Units will be the 4 states (excluding Satawal Island: Yap, Chuuk, Puhnpei and Kosrae.
- 3. Using the Demographic Tables for the Western Pacific Region 2000-2005 (WHO publication), the estimated population in 2004 for Federated States of Micronesia will be 128,549.
- 4. Therefore the average population of each sub-implementation unit will be 32,137 (128,549 divided by 4 states).
- 5. From the table for Stratified Cluster Sampling (Section 2), the sample size needed for each district (sub-implementation unit) for an average population of 50,000 is 750 (since the table has no average population for 32,137, the next largest average population for a sub-implementation unit is used (e.g., 50,000).
- 6. Villages withinunicipalities were chosen randomly with a maximum of 200 people per village to be tested. Municipalities and villages should be sampled in the order given in the table below.

Municipalities to be Sampled and the Number of People per Municipality to be Sampled

37 04 4	C1 1 C4 4	D 1 : C/ /	TZ Ct t
Yap State	Chuuk State	Pohnpei State	Kosrae State
Municipality	Municipality &Village	Municipality &Village	Municipality &Village
&Village Names	Names	Names	Names
Ifalik,	Romanum,	Sapwuafit,	Tafunsak Is-200
Falalap	Chorong-200	Ponparh	
Rawey-200		Welehpw	
		Liksarhwei	
	Nama, Efong	Madolenihmw,	Lelu-200
	Leinuch	Lehdau	
	Pilos	Temwen-200	
Woleai	Patta,	Uh,	Malem-200
Tagailap	Epin-200	Dien	
Wattagai	·	Mwahnd Peidak	
	Nomoluk,	Kitti,	Utwe-200
	Soponewel	Paliapailong	
	Pukos	Seinwar	
		Tamwoaroalong-200	
Lamotrek			
Lamotrek-200			
Maap Amin			
Malway			
Palaw			
Talngith			
	•		

- Village names in **bold** should have entire population tested by ICT. A maximum of 200 people should be tested in villages with more than 200 people (these villages are shown followed by the number '200').
- *Alternative villages to be surveyed if less than 750 people are sampled from the villages listed for each sub-implementation unit.
- 7. Sampling should be done until at least 750 people per district have been sampled by ICT. Approximately 3,000 ICT cards will be needed for the C survey

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: FEDERATED STATES OF MICRONESIA

Primary Vector Culex quinquefasciatus

Distribution of Primary Vector All islands

Activity pattern Nighttime

Biting preference Large animals including humans

Location of biting Indoors and outdoors

Flight range Up to 5 km

Breeding sites Temporary and permanent water including larger an provided containers (tires,

drums, small plastic containers), pit latrines, septic tanks, ditches, marshes, both

clean and polluted water

Insecticide resistance Resistant to DDT, organophosphorus compounds (including malathion and

temephos), carbamatesand pyrethroids in 36 countries

Other important characters Lays eggs in groups called rafts. Known to rapidly develop resistance to

insecticides

Monitoring the Primary Vector Gravid traps for adults. Larval/pupal survey at least twice a year (once during

the wet season, once during the dry season)

Recommended Control Methods

1. Insecticide impregnated curtains and bednets

- Breeding source reduction of domestic containers
- 3. Polystrene beads in pit latrines4. *Bacillus sphaericus* in polluted water
- 5. Drainage of permanent water sources
- Repellents and mosquito coils
- Screening houses

The importance of control methods 2-5 will depend on what is learned during the larval/pupal surveys (e.g., effort should be spent on the breeding sites producing the most adult mosquitoes).

Aedes marshallensis* **Secondary vector**

Day time **Biting habits Hosts** Man

Breeding sites Natural containers (treeholes, coconut shells)

> * Aedes marshallensis is a secondary vector of filariasis in Kiribati. This mosquito is found in the Federated States of Micronesia, but not confirmed as a vector. This is presumably due to Wuchereria bancrofti

being periodic in FSM but A marshallensis is a daytime biting

mosquito.

FIJI ISLANDS

Endemic country

Population estimated: 824,700 (2000)

Geographic dispersion: 2 big islands + 298 scattered islands

Initial Baseline survey in 1997 (Rotuma) and 2000-01 (other areas): ICT testing

- Type: sentinel sites – Target pop. : all inhabitants - convenience sampling

- Results: 5,983 tested – 993 (16.6%) ICT positive

MDA for whole country: 1st MDA at the end of 2002

Mid term evaluations planned on periodic basis (each year): ongoing

- Type: sentinel site
- Target pop.: all inhabitants convenience sampling

Recommendation:

Periodic surveys in sentinel sites

- This ongoing activity should be supported.

C type survey (final assessment):

Stratified survey by health subdivision should be carried out in 2007-08, after the 5th MDA.

D type survey (transmission assessment):

This survey should be carried out in 2009-2010, in a sample of 6 year old children in Fiji. The estimated number of these children is about 21,000. Thus random or systematic sampling of these children is recommended in large islands such as Viti Levu and Vanua Levu, while in other smaller islands all 6 year old children should be ICT tested.

Sample surveys of Viti Levu and Vanua Levu should be planned in 2005-06 with the last data regarding the school distribution of 6 year old children. In addition, it is necessary that surveys should be carried out in previously selected sentinel sites in 2007.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- \triangleright If ICT positive prevalence is $\ge 0.1\%$, further investigations should be done:
 - o With other biological test (i.e. Og4C3);
 - O Discussion with the PacELF Monitoring & Evaluation group;
 - o Discussion for the post MDA alternative strategies;
 - Partial MDA in still endemic areas;
 - Helminth control programme;
 - Integrated Vector control programme;
 - DEC salt.

FLOWCHART: FIJI ISLANDS

SUGGESTED GUIDELINES FOR COUNTRY C SURVEYS FOR FINAL PREVALENCE ASSESSMENT; FIJI ISLANDS

- 1. The C survey for Fiji should take place in 2007 and will be by Stratified Cluster Sampling using villages as clusters
- 2. The Sub-implementation Units will be the medical area. In addition, Suva will be divided into 4 sub-implementation units (Suva, Tamavua, Lami, and [Samabua+Raiwaqa]). The medical areas of Lomaloma and Lakeba are grouped in one sub implementation unit. Thus, Fiji is divided to 23 sub-implementation units
- 3. Using the Demographic Tables for the Western Pacific Region 2000-2005 (WHO publication), the estimated population in 2005 for Fiji will be 882,375.
- 4. Therefore the average population of each sub-implementation unit will be 38,364 (882,375 divided by 23).
- 5. From the table for Stratified Cluster Sampling, the sample size needed for each district (sub-implementation unit) for an average population of 50,000 is 750 (since the table has no average population for 38,364, the next largest average population for a sub-implementation unit is used [e.g., 50,000]).
- 6. Villages were chosen randomly with a maximum of 200 people per village. Villages should be sampled in the order given in the table below.

Villages to be Sampled and the Number of People per Village to be Sampled (based on 1996 census village population)

Villaga			
Village order	Suva (Suva)	Tamavua (Suva)	Lami (Suva)
1	Bega(Muanikau)	SDA Settlement (Colo-I-suva)	Paranome Road (Naboro)
2	Desvouex(Naiqaqi)	Wairua Rd (Wailoku)	Wainadoi AG School (Naboro)
3	Eden(Naiqaqi)	Woodward (Tamavua)	Naboro Primary School (Naboro)
4	Suva(Naiqaqi)	Tamavuaicake (Nuffield)	Navesi Catholic (Naboro)
5	Stoddart(Muanikau)	Salato Rd (Nabua) - 200	Kaudamu (Navesi)
6	Gladstone(Naiqaqi)	Everty PI (Nabua)	Qauia (Lami) - 200
7	Kadavu(Muanikau)	Dokanaisuva (Colo-I-suva) -200	Veisari 71/2 Mls Settlement (Naboro) - 200
8	Goodenough(Naiqaqi)	Damu PI (Tamavua)	Valenicina Settlement (Suvavou) -200
9	Amy(Toorak)	Forestry Station (Colo-I-suva)	Wainamasi Settlement (Naboro)
10	Rewa 1-5(Naiqaqi)		Isa Lei Road (Suvavou)
11	Brewster(Toorak)		Ben Naiveli Farm (Naboro)
12	Moli(Muanikau)		Wailekutu Road (Naboro)
13	O'Brien(Muanikau)		
14	Short(Naiqaqi)		
15	Serea(Naiqaqi)		
16	Anand(Toorak)		
17	Draiba Govt Qrt(Muanikau)		
18	Hercules St(Naiqaqi)		
19	Kavika(Muanikau)		
20	Butt(Naiqaqi)		
21	Yanuca(Muanikau)		
22	Duncan(Muanikau)		

23	Leka(Toorak)	
24	Raojibhai Patel(Naiqaqi)	
25	Hamilton Beatie(Muanikau)	
26	Knolly St(Naiqaqi)	
27	Rewa(Toorak)	

Village order	Raiwaqa-Samabula (Suva)	Valelevu	Rewa
1	Udit Narayan Rd (Raiwaqa)	Secala Rd (Nasole)	Vusuya Mix (Kuku) -200
2	Belo St (2) (Baniwai)	Tuirara/Tovata Housing (Kalabu)	Muana (Davuilevu)-200
3	Lomanikoro Ln (Raiwaqa)	Dovi Seaside Settlement (Nasole)	Matamaivere (Namara)
4	Grantham Housing (Laucala)	Sharda Nand Rd (Nasole)	Tobuniqio (Namara)
5	Spowart Ln (Raiwaqa)	Delana Settlement (Kalabu)	Chandra Prasad Rd (Davuilevu)
6	Ellis PI (Baniwai)	Mamas PI (Wainivula)	Nabuli (Naililili)
7	Tawake St (Baniwai)	Waidranu st (Muanikoso)	Vanualevu (Naililili)
8	Browning St (Raiwaqa)	Ram Purwa Rd Narere Stg 1 (Narere)- 200	Nadali (Nausori)
9	Savita Ben PI (Vatuwaqa)	Kinoya Rd (Nadera)	Lomainasau (Wainibokasi)-200
10	Sawau Street (Baniwai)	Drodrolagi Settlement (Makoi)	
11	Bryce St (Raiwaqa)		
12	Raghwanand Ln (Raiwaqa)		

Village order	Tailevu	Serua Namosi	Naitasiri
1	Saiyavo (Sawakasa)	Tadevo (Navua)	Waibau (Naqali)
2	Waidalice Road site (Waidalice)	Dada (Navunikabi)	Wailase (Naqali)
3	Nabuseini (Wailotua)	Namaqumaqua (Korovisilou)	Waituitui (Muaniweni)
4	Sote (Waidalice)-200	Wainivuniuto (Navunikabi)	Sasarika (Saumakia)
5	Dogo (Sawakasa)	Raviravi (Beqa)	Saumakia (Saumakia)
6	Naiborebore (Verata)	Mataikadawa (Korovisilou)	Naqele (Naqali)
7	Ululoli (Verata)	Navutulevu (Korovisilou)-200	Mataisuva (Vunidawa)
8	Suvasuva settlement (Namalata)- 200	Tokotoko (Navua)	Nauluvatu (Naqali)-200
9	Nasoni (Namena)	Wainiyabia (Galoa)	Navatu (Matailobau)
10	Nabili (Waidalice)	Serua (Korovisilou)	Vuniduba (Matailobau)
11	Nakanacagi (Sawakasa)	Dranikula (Galoa)-200	Sector 5 (Lomaivuna)-200
12	Macoi (Verata)	Galoa Indian (Galoa)	
13	Schools (Dawasamu)		

Village order	Rakiraki	Lautoka	Tavua
1	Katudrau (Vaileka)	Nanuya Lailai (Yaqeta)	Narau (Zone 2)
2	Waimari (Rewasa)-200	Tavewa (Yaqeta)	Koro (Nagatagata)
3	Navoalau II (Ellington)-200	Vitogo - 200	Malele 1-2-3 (Zone 2) -200
4	Dokanavatu (Nanukuloa)	Kenani - 200	Qalinaolo (Nadrau)
5	Nokonoko (Nanukuloa)	Wayalevu (Yalobi)-200	Nakoroboya (Zone 1)
6	Onabua (Nailuva)	Hawrah Cr. (Kenani)	Rabulu Indian (Zone 3)
7	Natakiveilade (Nailuva)	Sukanaivalu Rd (Saru)	Davota (Zone 2)-200
8	Nakorovou (Matawailevu)	Police Barrack (Natokowaqa)	Nadrau (Nadrau)
9	Nailawa (Nanukuloa)		Buyabuya (Nagatagata)
10	Naivutu (Tokaimalo)		Nasomo No.1-7 (Zone 1)-200

Village order	Nadoraga Navosa	Ва	Nadi
1	Yalavou (Yalavou)	Moto (Moto)-200	Sanasana (Namaka)-200
2	Barara (Loma)	Sasa (Sorokoba)-200	Toko (Nausori)
3	Sautabu (Naqalimare)	Wailagi (Vatulaulau)-200	Careras (Votualevu)-200
4	Raunitogo (Naqalimare)	Natanuku (Sorokoba)	Sorovi I (Nawaka Zone)-200
5	Natovi (Zone1 - Korolevu)	Yaloku (Nukuloa)	Nakavu (Martintar Zone)-200
6	Beranana Catholic Sch. (Tuvu)	Vatubia (Namau)	Marasa (Nawaicoba)-200
7	Batiri (Zone1 -Lomawai) -200	Wailailai (Wailailai)-200	Nadi Town (Narewa Zone)-200
8	Lawarua (Zone 1 Namataku)	Balevuto (Moto)-200	
9	Malomalo (Cuvu)	Naitasiri (Namau)	
10	Navovo (Zone 1-Sigatoka)		
11	Korolevu (Cuvu)		
12	Nacocolevu (Loma)		

Village order	Lomaloma-Lakeba	Lomaiviti	Kadavu
1	Sailoama (Naroi Zone)-200?* (Lakeba)	Toki (Levuka)-200	Nabouwalu (Naqara)
2	Saqani (Lomaloma)	Nubu (Bureta)	Lomati (Nalotu)
3	Delana Govt Stations (Mualevu) - (Lomaloma)	Natuvu (Qalivakabau)	Solotavui (Kavala)
4	Udu (Dravuwalu Zone) (Lakeba)	Bentley Lane (Qalivakabau)	Levuka (Gasele)
5	Waciwaci (Lakeba Zone) (Lakeba)	Vunikavika (Qarani)	Tiliva (Kavala)
6	Keteira (Nasoki Zone) (Lakeba)	Tai (Bureta)	Nukuvou (Vacalea)
7	Tubou (Lakeba Zone)-200 (Lakeba)	Nakuloaloa (Qalivakabau)	Drue (Vunisea)
8	Avea (Mualevu) (Lomaloma)	Nasama (Narocake)	Baravi (Nalotu)
9	Oru (Lakeba Zone) (Lakeba)	PWD Depot (Levuka)	Cevai (Vunisea)

10	Tuvuca (Tuvuca) (Lomaloma)	Narocake School (Narocake)	Wailevu (Vunisea)
11	Vanuavatu (Vanuavatu Zone)-200 (Lakeba)	Naicabecabe (Moturiki)	Nagalotu (Nalotu)
12		Wailailai (Levuka)	Nasegai school (Ravitaki)
13		Navaga (Nabasovi)-200	Nakaugasele (Kavala)
14	* Pop unknown	Naitiqatiqa (Nairai)	Baravi (Nalotu)
15		Nasova Prison (Qalivakabau)	Talaulia (Nalotu)
16		Veiuto (Qalivakabau)	
17		Rukuruku rst (Levuka)	
18		Royal Hotel (Qalivakabau)	
19		Raratabu (Levuka)	
20		Saula (Qalivakabau)	
21		Lawaki Toki (Levuka)	
22		Nawai (Nasau)	

Village order	Rotuma	Bua	Taveuni
1	Maftoa (Itumuta)	Burutovoa (Zone 1 Daria)-200	Vunitavola (Zone 2)
2	Motusa (Itutiu)-200	Ganama (Zone 2 Dama)-200	Welagi (Zone 1)-200
3	Islepi (Juju)	Vuninoko (Lekutu Zone 1)-200	Wai (Bouma)
4	Saolei (Itutiu)	Naevuevu (Zone 2)-200	Waiyevo (Zone 2)
5	Pap'tea (Oinafa)	Wailevu (Bua Zone Nurse)-200	Waitavala (Zone 2)
6	Fikioko (Noatau)	Nabau (Zone 1)-200	Waidamudamu (Bouma)
7	Else'e (Malhaha)	Balawavere (Zone 2 Nasarowaqa)-200	Vetaicake (Bouma)
8	Keua (Itumuta)	Nasevu (Zone 1 Daria)-200	Yacata (Yacata)-200
9	Koheatiu (Juju)	Nakale (Lekutu Zone 1)-200	Laucala (Qamea)
10	Hapmak (Itutiu)	Kerekaka Ind. (Lekutu Zone 1)-200	Muaniwaqa (Bouma)
11	Lau (Itutiu)		Waisamuta (Bouma)
12	Matu'ea (Noatau)		Niusawa Prim. Sch (Zone 1)
13	Tuai (Juju)		Naniu (Zone 2)
14			Nakauvadra (Zone 1)
15			Niubavu (Qamea)
16			Naq. Shopping Ctr (Zone 1)-200

Village order	Cakaudrove	Macuata
1	Domoniwai (Bagasau)	Nasealevu (Vunivutu)
2	Nuku (Rabi 1)-200	Vatuvula (Visoqo)
3	Nasobi (Nabalebale)	Doloko (Zone - 2)
4	Berau (Savusavu 3)	Rauriko (Dogotuki)
5	Natewa (Natewa)	Rokanace (Zone - 1)
6	Navorau Indian (Navakaka)	Kaka (Coqeloa)
7	Vatukali (Bagasau)	Vunikawakawa (Zone 8)
8	Waivula (Navakaka)	Vudibasoga (Zone - 2)
9	Nakula Estate (Tawake)	Wavuwavu (Vunivutu)-200
10	Nasoga (Natewa)	Kita (Visoqo)
11	Savuloa (Savusavu 1)	Nadogo (Zone -1)
12	Natovotovo (Tunuloa)	Naduri (Zone - 1)-200
13	Naku (Korotasere)	Nukubati Resort (Naqumu)
14	Naqai (Tunuloa)	Vunicuicui (Korotari Zone 6)-200
15	Nuku (Korotasere)	Nabavatu (Zone 1)-200
16	Natuvu (Saqani)	Vanuavou Fiji. Sett. (Vunivau Zone 9)-200
17	Nawanawa (Nabalebale)	
18	Matoqedelamu (Naweni)	
19	Vadravadra (Savusavu 2)	
20	Nasese (Natewa)	
21	Naduri (Korotasere)	
22	Kasavu Sch-Camp (Bagasau)	
23	Biaratarawa (Savusavu 3)	
24	Naturuku (Bagasau)	
25	Dreketi (Natewa)	
26	Duiloma (Naweni)	
27	Nadawa (Bagasau)	
27	Nacula (Natewa)	
27	Bagasau Block (Bagasau)	
27	Naveli (Saqani)	
27	Levuka (Tawake)	

Village names in **bold** should have entire population tested by ICT. A maximum of 200 villagers should be tested in villages with more than 200 people (these villages are shown followed by the number '200'). Alternative villages (*in italic*) to be surveyed if less than 750 people are sampled from the villages listed for each sub-implementation unit

^{7.} Sampling should be done until at least 750 people per sub-implementation unit have been sampled by ICT.

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: FIJI ISLANDS

Primary Vector Aedes polynesiensis

Distribution All islands

Activity pattern Daytime

Host biting preference All animals

Location of biting activity Prefers outdoors but will go inside houses

Resting location Outdoors

Flight range Less than 100m

Breeding sites Man provided containers (tires, drums, small plastic containers);

Natural containers (treeholes, crabholes)

Insecticide resistance Resistance to DDT shown in Fiji

Other important characters Avoids bright sunlight. Also a vector of dengue virus

Monitoring the Primary Vector Larval/pupal survey at least twice a year (once during the wet season, once

during the dry season)

Recommended Control Methods

- . Breeding source reduction of domestic containers*
- 2. Bednets to protect young children when napping
- 3. Insecticide impregnated curtains and bednets
- 4. Repellents and mosquito coils
- 5. Screening houses

*Effort should be directed towards reducing the number of breeding sites that are producing the most adult mosquitoes. The importance of different container types will be determined from the larval/pupal surveys.

Secondary Vectors

- 1. Aedes pseudoscutellaris (resistance shown to DDT in Fiji)
- 1. Aedes fijiensis
- 2. Aedes rotumae (Rotuma Island only)
- 3. Culex quinquefasciatus **
- **Resistant to DDT, organophosphorus compounds (including malathion and temephos), carbamates and pyrethroids in 36 countries

FRENCH POLYNESIA

Endemic country

Population estimated: 233,000 (2000)

Geographic dispersion: 118 scattered islands

A type survey (Initial Baseline survey): ICT testing in 1997 and 2000:

- Type: sentinel sites (3 endemic islands) Target pop.: all inhabitants of sentinel sites
- Results:
 - o Maupiti (97): 993 tested 24 (2.6%) ICT positive
 - o Tevaitoa-Tahuata (2000): 1,859 tested 256 (13.8%) ICT positive

MDA for the whole country:

- From 1950 to 1983 : MDA with DEC alone (with various dosages and schedules)
- From 1993 to 1999: MDA with DEC alone every 6 months
- Since 2000: yearly MDA with DEC+ALB

B type survey (Mid term evaluation): ICT testing in Jan-Feb 2003:

- Type: sentinel sites (Maupiti-Tevaiota-Tahuata) Target pop.: all inhabitants of the sites
- Result: 2,924 tested 318 (10.9%) ICT positive

Recommendation:

C type survey (final evaluation):

Stratified sampling by island group and sentinel sites survey.

D type survey (final evaluation):

This survey should be carried out in 2007-2008, after the 5th MDA, in a sample of 6-year-old school attendants (or enterers) in FRP. The estimated number of this target population is about 5,000 persons. Alternatively, surveys in 6 year old children can be carried out:

- o In random samples in Tahiti and Moorea islands (the most populated islands)
- o **And** in the whole 6 year old population of other islands.

In addition, it is necessary to carry out surveys in previously selected sentinel sites.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- ➤ If ICT positive prevalence is $\ge 0.1\%$, further investigations should be done:
 - o Confirm with other biological test (i.e. Og4C3);
 - o Discussion with the PacELF Monitoring & Evaluation group;
 - Discussion for the post MDA alternative strategies;
 - Partial MDA in still endemic areas;
 - Helminth control programme;
 - Integrated vector control programme.

FLOWCHART: FRENCH POLYNESIA

SUGGESTED GUIDELINES FOR COUNTRY C SURVEYS FOR FINAL PREVALENCE ASSESSMENT: FRENCH POLYNESIA

- 1. The C survey for French Polynesia should take place in 2005 and will be by Stratified Cluster Sampling using districts as clusters
- 2. The Sub-implementation Units will be the 4 archipelagoes with the Society archipelago divided into 2 parts (Windward and Leeward island groups). Thus, there are 5 Sub IU: Winward, Leeward, Marquesas, Tuamotu Gambier, Australes. In addition the surveys of the sentinel sites will be performed.
- 3. Using the Demographic Tables for the Western Pacific Region 2000-2005 (WHO publication), the estimated population in 2005 for French Polynesia will be 256,562.
- 4. Therefore the average population of each sub-implementation unit will be 51,312 (256,562 divided by 5).
- 5. From the table for Stratified Cluster Sampling, the sample size needed for each district (sub-implementation unit) for an average population of 100,000 is 755 (since the table has no average population for 51,312, the next largest average population for a sub-implementation unit is used (e.g., 100,000).
- 6. Districts were chosen randomly with a maximum of 200 people per district. Districts should be sampled in the order given in the table below.
- 7. Sampling should be done until at least 755 people per sub implementation unit have been sampled by ICT. 4000 cards will be needed for C surveys in French Polynesia

Districts to be Sampled and the Number of People per district to be Sampled (based on district population) census

Village order	Winward	Leeward	Marquesas
1	Maiao (Moorea-Maiao)-200	Faie (Huahine)-200	Puamau (Hiva Oa)-200
2	Faaone (Taiarapu Est)-200	Avera (Raiatea)-200	Fatu Hiva (Fatu Hiva)-200
3	Paopao (Moorea-Maiao)-200	Tapuamu (Tahaa)-200	Atuona (Hiva Oa)-200
4	Papeete1 (Papeete)-200	Puohine (Raiatea)	Taiohae (Nuku Hiva)-200
5	Afaahiti (Taiarapu Est)-200	Maeva (Huahine)-200	Hatiheu (Nuku Hiva)-200
6		Ruutia (Tahaa)-200	
7			

Village order	Tuamotu Gambier	Australes
1	Arutua (Arutua)-200	Vaiuru (Raivavae)-200
2	Makemo (Makemo)-200	Anapoto (Rimatara)
3	Tepoto (Napuka)	Rairua (Raivavae)-200
4	Niau (Fakarava)	Mahu (Tubuai)-200
5	Vairaatea (Nukutavake)	Moerai (Rurutu)-200
6	Kauehi (Farakara)-200	
7	Apataki (Arutua)-200	

District names in **bold** should have entire population tested by ICT. A maximum of 200 inhabitants should be tested in districts with more than 200 people (these districts are shown followed by the number '200').

Alternative districts (*in italics*) to be surveyed if less than 755 people are sampled from the districts listed for each sub-implementation unit.

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: FRENCH POLYNESIA

Primary Vector Aedes polynesiensis

Distribution of Primary Vector Austral, Marquesas, Society and Tuamotu, Archipelagoes

Activity pattern Daytime

Biting preference All animals

Location of biting Prefers outdoors but will go inside houses

Resting location Outdoors

Flight range Less than 100m

Breeding sites Man provided containers (tires, drums, small plastic containers);

Natural containers (treeholes, crabholes)

Insecticide resistance Resistance to DDT shown in French Polynesia including Tahiti

Other important characters Avoids bright sunlight. Also a vector of dengue virus

Monitoring the Primary Vector Larval/pupal survey at least twice a year (once during the wet season, once

during the dry season)

Recommended Control Methods

- 1. Breeding source reduction of domestic containers
- 2. Bednets to protect children when napping
- 3. Insecticide impregnated curtains and bednets
- 4. Repellents and mosquito coils
- 5. Screening houses

*Effort should be directed towards reducing the number of breeding sites that are producing the most adult mosquitoes. The importance of different container types will be determined from the larval/pupal surveys.

GUAM

Non endemic country

Population estimated: 148,200 (2000)

Geographic dispersion: 1 inhabited island

A type survey (Initial Baseline survey): ICT testing in 2001

- Type: convenience sample

- Result: 980 tested (19 villages) – 0 (0%) ICT positive

No MDA

Recommendation:

Implementation of D type survey:

The final ICT survey in all 5-6 year old children in Guam should be carried out in 2005 if possible. The estimated number of this target population is 3,800 persons.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- \triangleright If ICT positive prevalence is \ge 0.1%, additional investigations around positive cases:
 - o Confirm with other biological test (i.e. Og4C3);
 - Geographic location (cluster?);
 - o Survey households of the positive cases;
 - o Discussion with the PacELF Monitoring and Evaluation group;
 - o Partial MDA.

FLOWCHART: GUAM

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: GUAM

Primary Vector Culex quinquefasciatus

Activity pattern Nighttime

Biting preference Large animals including humans

Location of biting Indoors and outdoors

Flight range Up to 5 km

Breeding sites Temporary and permanent water including larger man provided containers (tires,

drums, small plastic containers), pit latrines, septic tanks, ditches, marshes, both

clean and polluted water

Insecticide resistance Resistant to DDT, organophosphorus compounds (including malathion and

temephos), carbamates and pyrethroids in 36 countries

Other important characters Lays eggs in groups called rafts. Known to rapidly develop resistance to

insecticides.

Monitoring the Primary Vector Gravid traps for adults. Larval/pupal survey at least twice a year (once during

the wet season, once during the dry season).

Recommended Control Methods

- 1. Insecticide impregnated curtains and bednets
- 2. Breeding source reduction of domestic containers
- 3. Polystrene beads in pit latrines4. *Bacillus sphaericus* in polluted water
- 5. Drainage of permanent water sources
- 6. Repellents and mosquito coils
- Screening houses

The importance of control methods 2-5 will depend on what is learned during the larval/pupal surveys (e.g., effort should be spent on the breeding sites producing the most adult mosquitoes).

KIRIBATI

Endemic country

Population estimated: 90,700 (2000)

Geographic dispersion: 33 scattered islands

A type survey (Initial Baseline survey): ICT testing in 1999-2000

- Type: Sentinel survey (Gilbert islands) – Convenience sample

- Result: 2,824 tested – 48 (1.7%) ICT positive

Subsequent survey (2001)

- Type: Sentinel survey (Christmas Island) - Convenience sampling

- Result: 400 tested – 27 (6.8%) ICT positive

MDA for the whole country: 1st MDA in 2001

Recommendation:

B type survey (Mid term evaluation):

This ICT survey should be carried out in 2003-04 in sentinel sites, during or after MDA, depending on logistic considerations. Sentinel sites could be 2 villages each in the 3 highly endemic islands (For example: Christmas, Tarawa, Nikunau). The target population consists of all inhabitants of sentinel sites. This survey should allow assessment of the impact of MDA.

C type survey (final evaluation):

Stratified sampling by island group.

D type survey (final evaluation):

This survey should be carried out in 2007, in all 6 year old children in Kiribati. The estimated number of this target population is about 2,500 persons.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- ▶ If ICT positive prevalence is $\ge 0.1\%$, further investigations should be done:
 - o Confirm with other biological test (i.e. Og4C3);
 - o Discussion with the PacELF Monitoring & Evaluation group;
 - o Discussion of the post MDA alternative strategies;
 - Partial MDA in still endemic areas;
 - Integrated Vector control programme, impregnated bednets;
 - Helminth control programme.

SUGGESTED GUIDELINES FOR COUNTRY C SURVEYS FOR FINAL PREVALENCE ASSESSMENT: KIRIBATI

- 1. The C survey for Kiribati should take place in 2006 and will be by Stratified Cluster Sampling using villages as clusters.
- 2. The Sub-implementation Units will be the 4 island groups (South Tarawa Island, North Tarawa Island with the rest of the Gilbert Islands, Phoenix Islands and Central Line Islands).
- 3. Using the Demographic Tables for the Western Pacific Region 2000-2005 (WHO publication), the estimated population in 2005 for Kiribati will be 99,194 (tables do not go to 2006).
- 4. Therefore the average population of each sub-implementation unit will be 24,798 (99,190 divided by 4 island groups).
- 5. From the table for Stratified Cluster Sampling (Section 2), the sample size needed for each district (sub-implementation unit) for an average population of 25,000 is 739 (since the table has no average population for 24,798, the next largest average population for a sub-implementation unit is used (e.g., 25,000).
- 6. Villages were chosen randomly with a maximum of 200 people per village. Villages should be sampled in the order given in the table below.

Villages to be Sampled and the Number of People per Village to be Sampled (based on 2000 census village population)

village population)					
South Tarawa Island	North Tarawa Island and	Phoenix Islands	Central Line Islands		
	the rest of the Gilbert				
	Islands				
Betio-200	Taburao	Makin-200	Banana-200		
Teaoraereke-200	Manoku-200	Kiebu-200	Uteute		
Taborio-200	Tekaman-200	Kanton	Tereitanano		
Tanaea	Kauma-200		Matanibike-200		
Nanikai-200	Buariki-200		Mwanuku		
Abarao*-200	Bakaka*-200		Tenenebo*-200		

- Village names in **bold** should have entire population tested by ICT. A maximum of 200 villagers should be tested in villages with more than 200 people (these villages are shown followed by the number '200').
- *Alternative villages to be surveyed if less than 739 people are sampled from the villages listed for each sub-implementation unit.

Sampling should be done until at least 739 people per island group have been sampled by ICT. A minimum of 3,414 ICT assays will need to be done for the C surveys.

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: KIRIBATI

Primary Vector Culex quinquefasciatus

Distribution of Primary Vector All islands

Activity pattern Nighttime

Biting preference Large animals including humans

Location of biting Indoors and outdoors

Flight range Up to 5 km

Breeding sites Temporary and permanent water including larger man provided containers (tires,

drums, small plastic containers), pit latrines, septic tanks, ditches, marshes, both

clean and polluted water

Insecticide resistance Resistant to DDT, organophosphorus compounds (including malathion and

temephos), carbamates and pyrethroids in 36 countries

Other important characters Lays eggs in groups called rafts. Known to rapidly develop resistance to

insecticides.

Monitoring the Primary Vector Gravid traps for adults. Larval/pupal survey at least twice a year (once during

the wet season, once during the dry season).

Recommended Control Methods

1. Insecticide impregnated curtains and bednets

Breeding source reduction of domestic containers

Breeding source reduction of domesti
 Polystrene beads in pit latrines
 Bacillus sphaericus in polluted water

5. Drainage of permanent water sources

6. Repellents and mosquito coils

Screening houses

The importance of control methods 2-5 will depend on what is learned during the larval/pupal surveys (e.g., effort should be spent on the

breeding sites producing the most adult mosquitoes).

Secondary vector Aedes marshallensis

> **Biting habits** Day time

Hosts Man

Breeding sites Natural containers (treeholes, coconut shells)

Distribution Gilbert Islands

MARSHALL ISLANDS

Partially endemic country

Population estimated: 51,800 (2000)

Geographic dispersion: 5 islands – 29 atolls

A type survey (Initial Baseline survey): ICT testing in 2001

- Type: whole country - convenience sample

- Result: 2,004 tested - 2 (0.1%) ICT positive (from Mejit island)

- Subsequent survey in Mejit island in 2002:

o Result : 294 tested – 130 (44.2%) ICT positive

Partial MDA - Target population: Mejit island - 1st round in 2002

Recommendation:

B type survey (Mid term evaluation):

This survey should be carried out in 2004 during or after the 3rd MDA, depending on logistic considerations, in Mejit island (all inhabitants should be ICT tested) and, if possible, islands in the vicinity of Mejit should be tested. The number of MDA rounds should be determined in relation to the 2004 survey results. This survey should allow assessment of the impact of MDA on the LF endemic areas and detection of other potential foci.

C type survey (final evaluation):

For Mejit island, this final survey should be carried out in 2007. Because of the small population size, all inhabitants of Meijit should be tested. For other areas of Marshall, this ICT survey can be carried out in 2004. Stratified sampling is based on island group.

D type survey (final evaluation):

In Meijit island, the C survey also serves as a D-type survey since the whole population has been tested.

In other areas, this D survey should be carried out in 2007, in all 6 year old children in the Marshall Islands. The estimated number of this target population is about 1,500 persons.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- \triangleright If ICT positive prevalence is ≥0.1%, do additional investigations around positive cases:
 - o Confirm with other biological test (i.e. Og4C3);
 - o Discussion with the PacELF Monitoring & Evaluation group;
 - o Discussion for the post MDA alternative strategies;
 - Extension of partial MDA in still endemic areas;
 - Helminth control programme;
 - Use of DEC medicated salt;
 - Integrated Vector control programme.

FLOWCHART: MEJIT ISLAND, MARSHALL ISLANDS

FLOWCHART: OTHER AREAS, MARSHALL ISLANDS

SUGGESTED GUIDELINES FOR COUNTRY C SURVEYS FOR FINAL PREVALENCE ASSESSMENT: MARSHALL ISLANDS

- 1. The C survey for the Marshall Islands should take place in 2004 for the Marshall Islands other than Mejit, which will be surveyed in 2007. Sampling other than Mejit will be by Stratified Cluster Sampling using villages as clusters.
- 2. The Sub-implementation Units will be the 2 island groups. Majuro, Arno and Mili Islands will be one sub-implementation unit with the remainder of the Marshall Islands (excluding Mejit) making up a second sub-implementation unit. The whole population of Mejit will also be tested by ICT in 2007.
- 3. Using the Demographic Tables for the Western Pacific Region 2000-2005 (WHO publication), the estimated population in 2005 for the Marshall Islands will be 56,868 (table does not go to 2007).
- 4. Therefore the average population of each sub-implementation unit will be approximately 28,434 (56,868 divided by 2 island groups).
- 5. From the table for Stratified Cluster Sampling (Section 2), the sample size needed for each district (sub-implementation unit) for an average population of 50,000 is 750 (since the table has no average population for 28,434, the next largest average population for a sub-implementation unit is used (e.g., 50,000).
- 6. Villages were chosen randomly with a maximum of 200 people per village. Villages should be sampled in the order given in the table below.

Villages to be Sampled and the Number of People per Village to be Sampled (based on 2000 census village population)

Village	Majuro, Arno and Mili	Remainder of Marshall	
Order	Islands	Islands	
1	Langor	lmiej	- Vil
2	Bikonele	Mae	should have en
3	Enemanet	Eneu	by ICT. A maxir
4	Woja-200	Ningi	should be teste than 200 people shown followed
5	Manrar	Anilep	
6	Denmeo	Mejatto	
7	Enajet	Emej]
8	Kilemman	Jabnoren	- *A
9	Anel	Enewe	surveyed if less sampled from the
10	Neenkotkot	Likiep-200	
11	ljoen	Mejatto*	each sub-imple
12	Kejbwe		
13	Aneko		
14	Bikonel Name		
15	Namwi		
16	Eneaidrik		
17	Japo		
18	Matolen*		

- Village names in **bold** should have entire population tested by ICT. A maximum of 200 villagers should be tested in villages with more than 200 people (these villages are shown followed by the number '200').
- *Alternative villages to be surveyed if less than 750 people are sampled from the villages listed for each sub-implementation unit.

7. Sampling should be done until at least 750 people per island group have been sampled by ICT. In addition the entire population of Mejit (approximately 500) will be sampled. Approximately 1,879 ICT cards are needed for the two sub-implementation units plus 500 for Mejit. A total of 2,379 ICT cards will needed for the C surveys.

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: MARSHALL ISLANDS

Primary Vector Culex quinquefasciatus

Distribution of Primary Vector All islands

Activity pattern Nighttime

Biting preference Large animals including humans

Location of biting Indoors and outdoors

Flight range Up to 5 km

Breeding sites Temporary and permanent water including larger man provided containers (tires,

drums, small plastic containers), pit latrines, septic tanks, ditches, marshes, both

clean and polluted water.

Insecticide resistance Resistant to DDT, organophosphorus compounds (including malathion and

temephos), carbamates and pyrethroids in 36 countries.

Other important characters Gravid traps for adults. Lays eggs in groups called rafts. Known to rapidly

develop resistance to insecticides

Monitoring the Primary Vector Larval/pupal survey at least twice a year (once during the wet season, once

during the dry season).

Recommended Control Methods

Insecticide impregnated curtains and bednets

Breeding source reduction of domestic containers

Polystrene beads in pit latrines

Bacillus sphaericus in polluted water

Drainage of permanent water sources

Repellents and mosquito coils

Screening houses

The importance of control methods 2-5 will depend on what is learned during the larval/pupal surveys (e.g., effort should be spent on the breeding

sites producing the most adult mosquitoes).

Secondary vector Aedes marshallensis*

> **Biting habits** Day time

Hosts Man

Breeding sites Natural containers (treeholes, coconut shells)

* Aedes marshallensis is a secondary vector of filariasis in Kiribati. This mosquito is found in the Marshall Islands, but not confirmed as a vector. This is presumably due to Wuchereria bancrofti being periodic in the Marshall Islands, but A marshallensis is a daytime biting

mosquito.

NAURU

Non endemic country

Population estimated: 11,500 (2000)

Geographic dispersion: 1 inhabited island

A type survey (Initial Baseline survey): ICT testing in 1999

Type: whole population - convenience sample Result: 388 tested – 1 (0.3%) ICT positive

No MDA

Recommendation:

Implementation of D type survey:

Final ICT survey in all 6 year old children in Nauru should be carried out in 2005. The estimated number of this target population is about 340 persons. If possible, survey in other target populations (for example: adults) or focal survey in former endemic village should be recommended.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- \triangleright If ICT positive prevalence is $\ge 0.1\%$, do additional investigations around positive cases:
 - o Confirm with other biological test (i.e. Og4C3);
 - Survey of the positive cases household;
 - o Discussion with the PacELF Monitoring and Evaluation group;
 - o Individual treatment (positive persons);
 - O Vector control programme? Impregnated bednets?

FLOWCHART: NAURU

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: NAURU

Primary Vector Culex quinquefasciatus

Activity pattern Nighttime

Biting preference Large animals including humans

Location of biting Indoors and outdoors

Flight range Up to 5 km

Temporary and permanent water including larger man provided containers (tires, **Breeding sites**

drums, small plastic containers), pit latrines, septic tanks, ditches, marshes, both

clean and polluted water.

Insecticide resistance Resistant to DDT, organophosphorus compounds (including malathion and

temephos), carbamates and pyrethroids in 36 countries.

Other important characters Lays eggs in groups called rafts. Known to rapidly develop resistance to

insecticides.

Monitoring the Primary Vector Gravid traps. Larval/pupal survey at least twice a year (once during the wet

season, once during the dry season).

Recommended Control Methods

1. Insecticide impregnated curtains and bednets

- 2. Breeding source reduction of domestic containers
- 3. Polystrene beads in pit latrines4. *Bacillus sphaericus* in polluted water
- 5. Drainage of permanent water sources
- 6. Repellents and mosquito coils
- Screening houses

The importance of control methods 2-5 will depend on what is learned during the larval/pupal surveys (e.g., effort should be spent on the breeding sites producing the most adult mosquitoes).

NEW CALEDONIA

Endemic (or partially endemic?) country

Population estimated: 212,700 (2000)

Geographic dispersion: 1 main island – 4 small inhabited islands

A type survey (Initial Baseline survey): ICT testing in 1999

- Type: sentinel survey – School children (9 to 11 year olds) in Ouvea island

- Result: 136 tested – 2 (1.47%) ICT positive

No MDA for the last 2 decades

Recommendation:

Completion of the A type survey:

ICT Survey in former endemic areas (foci in North Province and Loyalty Islands Province) should be implemented by 2003.

- Target population: all age groups of those areas or all outpatients of medical dispensaries (convenience sample).
- Tests: ICT, and/or mf associated with clinical examination (legs, arms, scrotum, breast) and questionnaire about any known cases of LF chronic signs amongst relatives or friends
- Duration: 3 to 6 months.

The result of this survey should enable the decision whether to implement full MDA in the 2 former endemic provinces, or partial MDA in some areas or individual treatment if the LF prevalence is under 1%.

- ➤ If no new LF area is detected, do partial MDA (in Ouvea island only). Plan mid term evaluation in this sentinel site after 3 MDA with similar methodology to initial survey.
- ➤ If new LF areas are detected, MDA should be considered in these provinces (national MDA or partial MDA).

C and D type survey (final and transmission assessments) should be planned in all 6 year old children when MDA is completed.

FLOWCHART: <u>NEW CALEDONIA</u>

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: NEW CALEDONIA

Primary Vector Ochlerotatus vigilax

Distribution of Primary Vector Wide spread along the coasts of New Caledonia including the Ile des Pins and

Loyalty islands (Ouvea, Lifu and Mare) .

Day and Night time **Activity pattern**

Biting preference Large animals including humans

Location of biting Indoors and outdoors

Resting location Outdoors

Flight range More than 10 km

Breeding sites Salt Marshes

Other important characters

Monitoring the Primary Vector Light traps

Recommended Control Methods

1. Insecticide impregnated bednets

2. Physical control in marshes (ditching, runnels)3. Repellents and mosquito coils

4. Screening houses

NIUE

Endemic country

Population estimated: 1,900 (2000)

Geographic dispersion: 1 island

A type survey (Initial Baseline survey): ICT testing in 1999

- Type: whole country – All inhabitants

- Result: 1,794 tested - 56 (3.1%) ICT positive

MDA for the whole country: 1st MDA in 2000

B type survey (Mid Term evaluation): ICT testing in 2001

- Type: whole country – All inhabitants

- Result: 1,630 tested – 22 (1.3%) ICT positive

Subsequent surveys: ICT surveys were carried out each year in all inhabitants.

Recommendation:

C/D type survey (final and transmission assessments):

This survey should be carried out in 2004, after the 5th MDA, in all inhabitants. In addition to ICT, other testing techniques can be used.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- ► If ICT positive prevalence is $\ge 0.1\%$, further investigations should be done:
 - o Confrim with other biological test (i.e. Og4C3);
 - o Discussion with the PacELF Monitoring & Evaluation group;
 - o Discussion for the post MDA alternative strategies;
 - Selective treatment for positive cases and their relatives (same household);
 - Helminth control programme;
 - Integrated Vector control programme.

FLOWCHART: NIUE

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: NIUE

Primary Vector Aedes cooki

Biting activity pattern Daytime

Biting preference A common human biter

Location of biting Indoors and outdoors

Resting location Indoors (more than other scutellaris group mosquitoes)

Flight range Unknown

Breeding sites Man provided barrels, canoes);

Natural water containers (treeholes, coconut shells, Pandanus axils)

Other important characters A suspected dengue vector. Prefers dense vegetation/shady areas.

Monitoring the Primary Vector Larval/pupal surveys

Recommended Control Methods

1. Removal of breeding site

2. Insecticide impregnated bednets and curtains

3. Repellents and mosquito coils

4. Screening houses

NORTHERN MARIANA ISLANDS

Non endemic country

Population estimated: 76,700 (2000)

Geographic dispersion: 14 inhabited islands

A type survey (Initial Baseline survey): ICT testing in 2001

- Type: convenience sample (3 islands including Saipan)
- Result: 980 tested (19 villages) 0 (0%) ICT positive

No MDA

Recommendation:

Implementation of D type survey:

The final ICT survey in all 6 year old children in the Northern Mariana Islands should be carried out in 2005. The estimated number of this target population is about 1,700 persons.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- ➤ If ICT positive prevalence is \ge 0.1%, do additional investigations around positive cases with other biological test (i.e. Og4C3). If confirmed infection then:
 - o Survey of the positive cases household;
 - o Discussion with the PacELF Monitoring & Evaluation group;
 - O Vector control programme? Impregnated bednets?
 - O Partial MDA? Individual treatment (infected persons)?

FLOWCHART: NORTHERN MARIANA ISLANDS

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: NORTHERN MARIANA ISLANDS

Primary Vector Culex quinquefasciatus

Activity pattern Nighttime

Biting preference Large animals including humans

Location of biting Indoors and outdoors

Flight range Up to 5 km

Breeding sites Temporary and permanent water including larger man provided containers (tires,

drums, small plastic containers), pit latrines, septic tanks, ditches, marshes, both

clean and polluted water.

Resistant to DDT, organophosphorus compounds (including malathion and Insecticide resistance

temephos), carbamates and pyrethroids in 36 countries.

Other important characters Lays eggs in groups called rafts. Known to rapidly develop resistance to

insecticides.

Monitoring the Primary Vector Gravid traps. Larval/pupal survey at least twice a year (once during the wet

season, once during the dry season).

Recommended Control Methods

- 1. Insecticide impregnated curtains and bednets
- Breeding source reduction of domestications.
 Polystrene beads in pit latrines.
 Bacillus sphaericus in polluted water.
 Drainage of permanent water sources. Breeding source reduction of domestic containers

- 6. Repellents and mosquito coils
- Screening houses

The importance of control methods 2-5 will depend on what is learned during the larval/pupal surveys (e.g., effort should be spent on the breeding sites producing the most adult mosquitoes).

PALAU

Partially endemic country

Population estimated: 19,100 (2000)

Geographic dispersion: 1 main island and 9 other islands

A type survey (Initial Baseline survey): ICT testing in 2001

- Result: 2,031 tested - 9 (0.4%) ICT positive (mainly from Ngardmau area)

No MDA until this point

Recommendation:

Palau should be divided in 3 functional units

- Ngardmau area (endemic) where MDA should be started
- The rest of Palau for which non endemicity has to be confirmed will be divided into 2 sub-implementation units (Konor Island and the rest of Palau).

(1) In Ngardmau unit:

B type survey (Mid term evaluation):

This ICT survey should be carried out in Ngardmau area (221 inhabitants) after 2 MDA rounds, because of the LF low prevalence.

C and D type surveys (final and transmission assessments)

If the previous survey shows no infection, C and D surveys will not be necessary

If the previous survey still shows infection, 2 or 3 more MDA rounds should be considered and C and D surveys should be planned after the last MDA, in all inhabitants.

(2) In Koror Island and the rest of Palau:

C type survey (final assessment)

This should be carried out in sampled island group. In any other pockets are found, partial MDA should be done until the prevalence in all areas is <1%.

D type survey (transmission assessment)

This ICT survey should be carried out in 2005 in all 6 year old children in Palau (except in the Ngardmau area). This survey should confirm the lack of LF transmission in these areas. The estimated size of this target population is about 400.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- If ICT positive prevalence is ≥0.1%, do additional investigations around positive cases with other biological test (i.e. Og4C3). If confirmed infection then:
 - o Discussion with the PacELF Monitoring & Evaluation group;
 - Partial MDA Individual treatment;
 - o Integrated Vector control programme Impregnated bednets.

FLOWCHART: NGARDMAU, PALAU

FLOWCHART: KOROR ISLAND AND THE REST OF PALAU

SUGGESTED GUIDELINES FOR COUNTRY C SURVEYS FOR FINAL PREVALENCE ASSESSMENT: PALAU

- 1. The C survey for Palau should take place in 2004, except for Ngardmau. Ngardmau will be tested in 2007. Sampling in areas other than Ngardmauwill be by Stratified Cluster Sampling using villages as clusters. An exception is bIn Ngardmau and the surrounding area the entire population will be tested.
- 2. The Sub-implementation Units will be (1) Konor Island and (2) the remainder of the islands in Palau
- 3. Using the Demographic Tables for the Western Pacific Region 2000-2005 (WHO publication), the estimated population in 2005 (the last year that we have estimated populations for Palau) will be 21,582.
- 4. Therefore the average population of each sub-implementation unit will be 10,680 (21,361 (after subtracting the population of Ngardmau) divided by 2).
- 5. From the table for Stratified Cluster Sampling (Section 2), the sample size needed for each district (sub-implementation unit) for an average population of 20,000 is 733 (since the table has no average population for 10,680, the next largest average population for a sub-implementation unit is used (e.g., 20,000).
- 6. Villages were chosen randomly with a maximum of 200 people per village. Villages should be sampled in the order given in the table below.

Villages to be Sampled and the Number of People per Village to be Sampled (based on 2000 census village population)

Village	Koror Island	Remainder of Islands
Order		
1	Ikelau-200	Ngchesar-200
2	lebukel-200	Ngerchelong-200
3	Dngerongel-200	Aimeliik-200
4	Ngerbeched-200	Ngardmau-200
5	Madalaii*-200	Peleliu*-200

- Village names in **bold** should have entire population tested by ICT. A maximum of 200 villagers should be tested in villages with more than 200 people (these villages are shown followed by the number '200').
- *Alternative villages to be surveyed if less than 733 people are sampled from the villages listed for each sub-implementation unit.
- 7. Sampling should be done until at least 733 people per sub-implementation unit have been sampled by ICT in 2003-2004. In addition the entire population of Ngardmau (about 221) will be sampled in 2007 Approximately 1,600 ICT cards are needed for the two sub-implementation units plus an estimated 221 for Ngardmau. A total of 1,821 ICT cards will needed for the C surveys.

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: PALAU

Primary Vector Culex quinquefasciatus

Activity pattern Nighttime

Biting preference Large animals including humans

Location of biting Indoors and outdoors

Flight range Up to 5 km

Breeding sitesTemporary and permanent water including larger man provided containers (tires,

drums, small plastic containers), pit latrines, septic tanks, ditches, marshes, both

clean and polluted water

Insecticide resistance Resistant to DDT, organophosphorus compounds (including malathion and

temephos), carbamates and pyrethroids in 36 countries.

Other important characters Gravid traps for adults. Lays eggs in groups called rafts. Known to rapidly

develop resistance to insecticides.

Monitoring the Primary Vector Larval/pupal survey at least twice a year (once during the wet season, once

during the dry season).

Recommended Control Methods

- 1. Insecticide impregnated curtains and bednets
- 2. Breeding source reduction of domestic containers
- 3. Polystrene beads in pit latrines
- 4. Bacillus sphaericus in polluted water
- 5. Drainage of permanent water sources
- 6. Repellents and mosquito coils
- 7. Screening houses

The importance of control methods 2-5 will depend on what is learned during the larval/pupal surveys (e.g., effort should be spent on the breeding sites producing the most adult mosquitoes).

PAPUA NEW GUINEA

Endemic country

Population estimated: 4,790,800 (2000)

Geographic dispersion: 1 very large island and other smaller islands

Surveys and special LF elimination programme in some limited areas

Recommendation to follow the WHO LF global guidelines.

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: PAPUA NEW GUINEA

Primary Vectors

Anopheles farauti complex (An. farauti, An punctulatus)

Distribution of Primary Vector Areas below 5500 feet; filariasis has been found in all provinces except Chimbu

Activity pattern Night

Biting preference Large animals (humans, pigs, dogs)

Location of biting Indoors and outdoors

Resting pattern Rests inside houses after feeding until daytime

Flight range 1-2 km

Breeding sites Fresh and brackish water, large swamps, edges of slow flowing rivers

Insecticide resistance An farauti Resistant to DDT in the Solomon Islands; behavioural

resistance shown in Papua New Guinea.

An koliensis Resistant to DDT in Indonesia
An punctulatus Resistant to DDT in Indonesia

Monitoring the Primary Vector Landing catches, bednet baited light traps

Recommended Control Methods for Primary Vectors

- 1. Insecticide impregnated bednets
- 2. Residual insecticide wall spraying
- 3. Mosquito coils, repellents
- 4. Screening houses

Secondary Vectors

- 1. Culex quinquefasciatus**
- 2. Mansonia uniformis
- 3. O. kochi

^{**}Resistant to DDT, organophosphorus compounds (including malathion and temephos), carbamates and pyrethroids in 36 countries.

PITCAIRN ISLAND

Non endemic country

Population: 47

Geographic dispersion: 1 inhabited island

A type survey (Initial baseline survey): ICT testing in 2002

Type: whole country survey
 Results: 33 tested - 0 (0%) ICT positive

No MDA

Recommendation:

Wait for the certification of LF elimination.

FLOWCHART: PITCAIRN ISLAND

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: PITCAIRN ISLAND

Primary Vector Aedes polynesiensis

Activity pattern Daytime

Biting preference All animals

Location of biting Prefers outdoors but will go inside houses

Resting location Outdoors

Flight range Less than 100m

Breeding sites Man provided containers (tires, drums, small plastic containers);

Natural containers (treeholes, crabholes).

Insecticide resistance Resistance to DDT shown in Fiji and French Polynesia including Tahiti.

Other important characters Avoids bright sunlight. Also a vector of dengue virus.

Monitoring the Primary Vector Larval/pupal survey at least twice a year (once during the wet season, once

during the dry season).

Recommended Control Methods

- 1. Breeding source reduction of domestic containers
- 2. Bednets to protect children when napping
- 3. Insecticide impregnated curtains and bednets
- 4. Repellents and mosquito coils
- 5. Screening houses

*Effort should be directed towards reducing the number of breeding sites that are producing the most adult mosquitoes. The importance of different container types will be determined from the larval/pupal surveys.

SAMOA

Endemic country

Population estimated: 169,200 (2000)

Geographic dispersion: 2 big inhabited islands – 7 small islands

A type survey (Initial Baseline survey): ICT testing in 1999

- Type: convenience sample

- Result: 7,006 tested – 317 (4.5%) ICT positive

MDA for the whole country: with DEC+ALB for the whole country starting in 1999 – Last round of MDA in 2003

B type survey (Mid Term evaluation): ICT and mf in 2002

- Type: sentinel sites
- Results:
 - o ICT: 2,141 tested 96 (4.5%) ICT positive
 - o mf: 2,265 tested -6 (0.2%) mf positive

Subsequent surveys were carried out in sentinel sites each year

Recommendation:

C type survey (final assessment):

Stratified sample survey by health districts in 2004-05 after the 5th MDA.

D type survey (transmission assessment):

This ICT survey in all 6 year children Samoa should be carried out in 2006-07. The estimated number of this target population is about 4,800 persons. If possible, surveys in sentinel sites should also be carried out.

- \triangleright If ICT positive prevalence is < 0.1%, await the certification of LF elimination.
- \triangleright If ICT positive prevalence is ≥0.1%, do additional investigations around positive cases:
 - o Confirm with other biological test (i.e. Og4C3);
 - o Discussion with the PacELF Monitoring & Evaluation group;
 - o Discussion for the post MDA alternative strategies;
 - Partial MDA in still endemic areas;
 - Helminth control programme;
 - DEC medicated salt;
 - Integrated vector control programme.

FLOWCHART: SAMOA

SUGGESTED GUIDELINES FOR COUNTRY C SURVEYS FOR FINAL PREVALENCE ASSESSMENT: SAMOA

- 1. The C survey for Samoa should take place in 2004-2005 and will be by Stratified Cluster Sampling using villages as clusters.
- 2. The Sub-implementation Units will be the 16 health districts
- 3. Using the Demographic Tables for the Western Pacific Region 2000-2005 (WHO publication), the estimated population in 2004 for Samoa will be 180,249.
- 4. Therefore the average population of each sub-implementation unit will be 11,265 (180,249 divided by 16).
- 5. From the table for Stratified Cluster Sampling (Section 2), the sample size needed for each district (sub-implementation unit) for an average population of 20,000 is 733 (since the table has no average population for 11,265, the next largest average population for a sub-implementation unit is used (e.g., 20,000).
- 6. Villages were chosen randomly with a maximum of 200 people per village. Villages should be sampled in the order given in the table below.
- 7. Sampling should be done until at least 733 people per health district have been sampled by ICT. Approximately 13,232 ICT cards are needed for the C surveys in the 16 sub-implementation units.

Villages to be Sampled by Health District and the Number of People per Village to be Sampled (based on 2001 census)

	Health District Number							crisus)
Village	1.1-1.7	1.8-1.14	2	3	4	5	6	7
Order								
1					Tafagamanu-			
	Aai o Niue	Vaitoloa-200	Nofoalii-200	Apai	200	Saanapu Uta-200	Matautu	Alafou
2	Togafuafua-			Apolima				
	100	Alamutu-200	Afia	island	Savaia-200	Siumu-200	Piu	Lotofaga-200
3		Tanumapua-	Fasitoo Tai-		Faleseela-			
	Mulivai	200	200	Salua	200	Tafitoala-200	Satalo-200	Lealatele
4	Toomatagi-							
	100	Ululoloa	Sina	Satuilagi	Safaatoa-200	Sataoa Uta-200	Togitogia	Vaigalu
5				Manono Uta-				
	Leififi	Faleula -200	Faleolo	200	Tanumalala*	Siumu Uta*	Salani-200	Saleapaga-200
6								
			Satuimalufiluf					
	Vinifou*	Leauvaa*-200	i-200	Faleu-200			Vaovai-200	Lotopue-200
								,
				Matautu			Saleilua*-200	Ulutogia*
	Health Distr	ict Number		Matauta			Galciida 200	Olutogiu
Villaga	8	9	10	11	12	13	14	15
Village Order	8	9	10	11	12	13	14	13
1	Uafato-200	Salelesi-200	Vaisaulu	Patamea-200	Fatuvalu	Sataua-200	Siutu-200	Coutovoi
2	Uaiai0-200	Salelesi-200	vaisaulu		ratuvalu	Salaua-200	Slutu-200	Gautavai
Z	Samamaa	Saolufata-200	Saasaai-200	Fagamalo- 200	Paia-200	Tufutafoe-200	Foaluga-200	Papa-200
3	Samamea	Saululala-200	3aa3aa1-200	200		TululalUE-200	i valuga-200	r apa-200
3	Toolofogs	Solous	Saipipi-200	Lelepa-200	Lefagaoalii- 200	Falelima-200	Sagone-200	Pitonuu-200
4	Taelefaga	Solaua	Saipipi-200	Leiepa-200	200	Falellilla-200		Pilofiuu-200
4	Musumus	Falefa-200	Salimu-200	Avao-200	Letui-200	Vacturus	Satuiatua- 200	Gataivai-200
5	Musumusu		Sallillu-200	AV80-200		Vaotupua	200	
5	Salimu	Faleapuna- 200	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Salaia* 200	Samauga*-	Lituioo*	Fogotuli* 200	Vaitoomuli*- 200
(Luua-200	Saleia*-200	200	Utuloa*	Fogatuli*-200	200
7	Saletele	Sauniatu*	Asaga*-200					
	Sauao*-200		<u> </u>	L	1	of 200 wills gorg about	<u> </u>	L

Village names in **bold** should have entire population tested by ICT. A maximum of 200 villagers should be tested in villages with more than 200 people (these villages are shown followed by the number '200').

^{- *}Alternative villages to be surveyed if less than 733 people are sampled from the villages listed for each sub-implementation unit

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: <u>SAMOA</u>

Primary Vector Aedes polynesiensis

Distribution of Primary Vector All islands

Activity pattern Daytime

Biting preference All animals

Location of biting Prefers outdoors but will go inside houses

Resting location Outdoors

Flight range Less than 100m

Breeding sites Man provided containers (tires, drums, small plastic containers);

Natural containers (treeholes, crabholes).

Insecticide resistance Resistance to DDT shown in Fiji and French Polynesia including Tahiti.

Monitoring the Primary Vector Larval/pupal survey at least twice a year (once during the wet season, once

during the dry season).

Recommended Control Methods for Primary Vector

1. Breeding source reduction of domestic containers

- 2. Bednets to protect young children when napping
- 3. Insecticide impregnated curtains and bednets
- 4. Repellents and mosquito coils
- Screening houses

*Effort should be directed towards reducing the number of breeding sites that are producing the most adult mosquitoes. The importance of different container types will be determined from the larval/pupal surveys.

Secondary Vectors

- 1. Aedes tutuilae
- 2. Aedes upolensis
- 3. Ochlerotatus samoanus

SOLOMON ISLANDS

Non endemic country

Population estimated: 420,851 (2000)

Geographic dispersion: 992 islands

A type survey (Initial Baseline survey): ICT testing in 1998-2001

- Type: whole country (especially in former endemic areas) Stratification and EPI type cluster sampling
- Test: ICT and clinical survey
- Result: 4,035 tested (19 villages) 0 (0%) ICT positive

No MDA

Recommendation:

Implementation of C type survey:

Additional prevalence sample survey is required due to concern about selection of sites for A survey, remoteness of some islands and former high endemicity. Random sampling of villages, stratified by region, should be done. This will be carried out in 2003-2004. If no pockets of filariasis are uncovered, proceed to type D survey.

Implementation of D type survey:

The final ICT survey in a sampled population of 6 year old children in the Solomon Islands should be carried out in 2006. The estimated number of this target population is about 14,400 persons. Thus, a more cost effective alternative approach for this 6 year old population is to use sampling technique in big islands, while in small islands all 6 year old should be ICT tested. Detailed sampling method should be based on the most recent data regarding the distribution of this target population by areas. *Note:* >30% children do not attend school.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- ➤ If ICT positive prevalence is ≥0.1%, do additional investigations around positive cases. Test with other biological test (i.e. Og4C3).
 - o If infection not confirmed by other test: no further investigation.
 - o If infection confirmed:
 - Survey of the positive cases household;
 - Discussion with the PacELF Monitoring & Evaluation group (Partial MDA, individual treatment for positive persons?);
 - Integrated vector control programme (Roll Back Malaria).

FLOWCHART: SOLOMON ISLANDS

SUGGESTED GUIDELINES FOR COUNTRY C SURVEYS FOR FINAL PREVALENCE ASSESSMENT: SOLOMON ISLANDS

- 1. The C survey for the Solomon Islands should take place in 2003 2004 and will be by Stratified Cluster Sampling using villages as clusters.
- 2. The Sub-implementation Units will be regions (n = 28).
- 3. Using the mid-year population estimate (from the 1999 census), the estimated population in 2003 for the Solomon Islands will be 450,000.
- 4. Therefore the average population of each sub-implementation unit will be 16,071 (450,000 divided by 28).
- 5. From the table for Stratified Cluster Sampling (Section 2), the sample size needed for each district (sub-implementation unit) for an average population of 20,000 is 733 (since the table has no average population for 16,071, the next largest average population for a sub-implementation unit is used (e.g., 20,000).
- 6. Villages were chosen randomly with a maximum of 200 people per village. Villages should be sampled in the order given in the table below.

Number of regions per province and their total sample size.

PROVINCE	Number of	Sample size
	Regions	(calculated)
Temotu	2	1466
Makira Ulawa	4	2932
Malaita	5	3665
Guadalcanal	4	2932
Honiara	2	1466
Central	2	1466
Isabel	2	1478
Western	4	2932
Choiseul	2	1466
Banner Belona	1	733
TOTAL	28	20,524

· A

maximum of 200 villagers should be tested in villages with more than 200 people

Sampling should be done until at least 733 people per region have been sampled by ICT. A total of approximately 20, 524 ICT cards will be required for the C surveys.

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: SOLOMON ISLANDS

Primary Vectors Anopheles farauti complex (An. farauti, An punctulatus)

Distribution of Primary Vector All islands - Rennell and Bellona are malaria-free, but it is unclear if anopheline

mosquitoes are on these two islands

Activity pattern Night

Biting preference Large animals (humans, pigs, dogs)

Location of biting Indoors and outdoors

Resting pattern Rests inside houses after feeding until daytime

Flight range 1-2 km

Breeding sites Fresh and brackish water, large swamps, edges of slow flowing rivers

Insecticide resistance An farauti Resistant to DDT in the Solomon Islands; behavioural

resistance shown in Papua New Guinea

An punctulatus Resistant to DDT in Indonesia

Monitoring the Primary Vector Landing catches, bednet baited light traps

Recommended Control Methods

Insecticide impregnated bednets

2. Residual insecticide wall spraying

3. Mosquito coils, repellents4. Screening houses

TOKELAU

Non endemic country

Population: 1,507 (1996 census)

Geographic dispersion: 3 inhabited islands

A type survey (Initial Baseline survey): ICT testing in 1999

- Type: whole country survey

- Results: 1,311 tested – 1 (0.1%) ICT positive (non resident who has since left the country)

No MDA

Recommendation:

Retest the whole population in combined C/D type survey.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- ➤ If ICT positive prevalence is ≥0.1%, do additional investigations around positive cases. Test with other biological test (i.e. Og4C3):
 - o If infection not confirmed by other test: no further investigation.
 - o If infection confirmed:
 - Survey of the positive cases household;
 - Discussion with the PacELF Monitoring & Evaluation group (Partial MDA, individual treatment for positive persons?).

FLOWCHART: TOKELAU

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: TOKELAU

Primary Vector Aedes polynesiensis

Distribution of Primary Vector All islands

Activity pattern Daytime

Biting preference All animals

Location of biting Prefers outdoors but will go inside houses

Resting location Outdoors

Flight range Less than 100m

Breeding sites Man provided containers (tires, drums, small plastic containers); Natural

containers (treeholes, crabholes).

Insecticide resistance Resistance to DDT shown in Fiji and French Polynesia including Tahiti.

Other important characters Avoids bright sunlight. Also a vector of dengue virus.

Monitoring the Primary Vector Larval/pupal survey at least twice a year (once during the wet season, once

during the dry season).

Recommended Control Methods

- 1. Breeding source reduction of domestic containers*
- 2. Bednets to protect children when napping
- 3. Insecticide impregnated curtains and bednets
- 4. Repellents and mosquito coils
- 5. Screening houses

*Effort should be directed towards reducing the number of breeding sites that are producing the most adult mosquitoes. The importance of different container types will be determined from the larval/pupal surveys.

TONGA

Endemic country

Population estimated: 100,200 (2000)

Geographic dispersion: 3 main islands – 168 small islands

A type survey (Initial Baseline survey): ICT testing in 1999-2000

- Type: Main island – Convenience sampling

- Result: 4,002 tested - 108 (2.7%) ICT positive

MDA for the whole country: 1st MDA in 2001

Recommendation:

B type survey (Mid term evaluation):

This ICT survey should be carried out at the end of 2003 in sentinel sites. Sentinel sites are known high endemic areas (3 villages). The target population is all inhabitants of sentinel sites, with the same sampling method used during initial survey and, if possible, with the same inhabitants. This survey should allow assessment of the impact of MDA.

C type survey (final assessment):

Stratified survey by island groups should be carried out in 2006-2007, after the 5th MDA. In parallel, survey of sentinel sites should be carried out.

D type survey (transmission assessment):

This survey should be carried out in 2007-2008, in all 6 year old children in Tonga. The estimated number of this target population is about 2,500 persons.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- \triangleright If ICT positive prevalence is $\ge 0.1\%$, further investigations should be done:
 - o Confirm with other biological test (i.e. Og4C3);
 - Discussion with the PacELF Monitoring & Evaluation group;
 - o Discussion for the post MDA alternative strategies;
 - Partial MDA in still endemic areas;
 - Helminth control programme;
 - Integrated vector control programme;
 - DEC salt.

FLOWCHART: TONGA

SUGGESTED GUIDELINES FOR COUNTRY C SURVEYS FOR FINAL PREVALENCE ASSESSMENT: TONGA

- 1. The C survey for Tonga should take place in 2006-2007 and will be by Stratified Cluster Sampling using villages as clusters. In addition the sentinel sites will also be surveyed in 2005-2006.
- 2. The Sub-implementation Units will be 5 islands groups, Tongatapu, Vava'u, Ha'apai, 'Eua and Niuas.
- 3. Using the Demographic Tables for the Western Pacific Region 2000-2005 (WHO publication), the estimated population in 2005 for Tonga will be 102,247.
- 4. Therefore the average population of each sub-implementation unit will be 20,449 (102,247 divided by 5).
- 5. From the table for Stratified Cluster Sampling (Section 2), the sample size needed for each island group (sub-implementation unit) for an average population of 25,000 is 739 (since the table has no average population for 20,449, the next largest average population for a sub-implementation unit is used (e.g., 25,000).
- 6. Villages were chosen randomly with a maximum of 200 people per village. Villages should be sampled in the order given in the table below.

Villages to be Sampled and the Number of People per Village to be Sampled (based on 1996 census village population)

population)					
Village	Tongatapu	Vava'u	Ha'apai	'Eua	Niuas
Order					
1	Longoteme	Vaimalo	Fakakai-200	Angaha-200	Mu'a
2		Кара		Mata'aho-	
	Veitongo		Faleloa-200	200	Hihifo-200
3	Kolomotu'a	Toula-200	Holopeka	Fata'ulua	Sapa'ata
4	Tukutonga	Neiafu-200	Koulo-200	Ha'atu'a-200	Falehau-200
5	'Ataa Is.*	Nuapau	Fotua*-200	Pangai*-200	Petani
6	Tatakamotonga*-	Okoa Is*			
	200		'Uiha*-200	Angaha-200	Fata'ulua
7				Pangai*-200	Vaipoa*-200
8					

- Village names in **bold** should have entire population tested by ICT. A maximum of 200 villagers should be tested in villages with more than 200 people (these villages are shown followed by the number '200').
- *Alternative villages to be surveyed if less than 739 people are sampled from the villages listed for each sub-implementation unit.

Sampling should be done until at least 739 people per island group have been sampled by ICT. Approximately 4,041 ICT cards are estimated to be needed for the five sub-implementation units for the C surveys. Additional ICT cards are needed for the sentinel sites.

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: TONGA

Primary Vector Aedes tabu

Distribution of Primary Vector Tongatapu Group

Activity pattern Daytime (midday peak)

Biting preference Humans, dogs

Location of biting Prefers outdoors but will go inside houses

Resting location Outdoors

Flight range Unknown

Breeding sites Natural containers (treeholes, crabholes), taro leaf axils, man provided

containers (tires, drums, small plastic containers).

Other important characters Primarily a "bush" mosquito that prefers shade. Capable of transmitting dengue.

Monitoring the Primary Vector Larval/pupal survey at least twice a year (once during the wet season, once

during the dry season).

Recommended Control Methods

1. Breeding source reduction of domestic containers

- 2. Bednets to protect children when napping
- 3. Insecticide impregnated curtains and bednets
- 4. Repellents and mosquito coils

*Effort should be directed towards reducing the number of breeding sites that are producing the most adult mosquitoes. The importance of different container types will be determined from the larval/pupal surveys.

Secondary vector

Ochlerotatus oceanicus has been reported as a vector of filariasis in Tonga but its importance as a filariasis vector is uncertain in other island groups.

Breeding sitesTaro and Pandanus axils

Biting habits Night biter, infrequent feeder on humans

TUVALU

Endemic country

Population estimated: 9,900 (2000)

Geographic dispersion: 9 islands

A type survey (Initial Baseline survey): ICT testing in 1999

- Type: school children in Funafuti

- Result: 574 tested – 128 (22.3%) ICT positive

MDA for the whole country: 1st MDA in 2001

Recommendation:

B type survey (Mid term evaluation):

This ICT survey should be carried out in 2003-2004 during or after MDA, depending on logistic considerations. The same sampling method and target population as the initial survey can be used. In addition, all 6 year old children of Tuvalu should be ICT tested. The estimated number of this population is about 230 children.

This survey should allow assessment of the impact of MDA and provide more accurate data on the country endemic situation.

C type survey (final assessment):

A stratified survey based on island group should be carried out in 2006-2007, after the 5th MDA. The entire country of Tuvalu will serve as a single sub-implementation unit.

D type survey (transmission assessment):

This survey should be carried out in 2007-2008, in all 6 year old children in Tuvalu. The estimated number of this target population is about 230 persons. Additionally, survey of sentinel sites is recommended (convenience sample – target population: adults).

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- If ICT positive prevalence is $\ge 0.1\%$, further investigations should be done:
 - o Confirm with other biological test (i.e. Og4C3);
 - O Discussion with the PacELF Monitoring & Evaluation group;
 - Discussion for the post MDA alternative strategies;
 - Partial MDA in still endemic areas;
 - Helminth control programme;
 - Integrated vector control programme;
 - DEC salt.

FLOWCHART: <u>TUVALU</u>

SUGGESTED GUIDELINES FOR COUNTRY C SURVEYS FOR FINAL PREVALENCE ASSESSMENT; <u>TUVALU</u>

- 1. The C survey for Tuvalu should take place in 2006-2007 and will be by Stratified Cluster Sampling using villages as clusters.
- 2. The Sub-implementation Unit will be the entire country of Tuvalu
- 3. Using the Demographic Tables for the Western Pacific Region 2000-2005 (WHO publication), the estimated population in 2005 for Tuvalu will be 10,704.
- 4. Therefore the average population of each sub-implementation unit will be 10,704 (10,704 divided by 1).
- 5. From the table for Stratified Cluster Sampling (Section 2), the sample size needed for each district (sub-implementation unit) for an average population of 20,000 is 733 (since the table has no average population for 10,704, the next largest average population for a sub-implementation unit is used (e.g., 20,000).
- 6. Villages were chosen randomly with a maximum of 200 people per village. Villages should be sampled in the order given in the table below.

Villages to be Sampled and the Number of People per Village to be Sampled (based on 2002 census village population)

Village	Island	Village
Order		
1	Nui	Tekaiga-200
2	Nukufetau	Maneapa-200
3	Nanumaga	Toga-200
4	Vaitupu	Muli
5	Niutao*	Teava*-200
6	Funafuti*	Vaiaku*-200

- Village names in **bold** should have entire population tested by ICT. A maximum of 200 villagers should be tested in villages with more than 200 people (these villages are shown followed by the number '200').
- *Alternative villages to be surveyed if less than 733 people are sampled from the villages listed for each sub-implementation unit

Sampling should be done until at least 733 people in Tuvalu have been sampled by ICT. Approximately 748 ICT cards are needed for the C surveys.

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: <u>TUVALU</u>

Primary Vector Aedes polynesiensis

Distribution of Primary Vector All islands

Activity pattern Daytime

Biting preference All animals

Location of biting Prefers outdoors but will go inside houses

Resting location Outdoors

Flight range Less than 100m

Breeding sites Man provided containers (tires, drums, small plastic containers);

Natural containers (treeholes, crabholes).

Insecticide resistance Resistance to DDT shown in Fiji and French Polynesia including Tahiti.

Other important characters Avoids bright sunlight. Also a vector of dengue virus.

Monitoring the Primary Vector Larval/pupal survey at least twice a year (once during the wet season, once

during the dry season).

Recommended Control Methods

- 1. Breeding source reduction of domestic containers*
- 2. Bednets to protect children when napping
- 3. Insecticide impregnated curtains and bednets
- 4. Repellents and mosquito coils
- 5. Screening houses

*Effort should be directed towards reducing the number of breeding sites that are producing the most adult mosquitoes. The importance of different container types will be determined from the larval/pupal surveys.

VANUATU

Endemic country

Population estimated: 199,800 (2000)

Geographic dispersion: 64 inhabited islands

A type survey (Initial Baseline survey): ICT testing in 1997-98:

- Type: whole country (16 villages in 6 provinces) – Stratification - Convenience sampling

- Result: 4,362 tested - 208 (4.8%) positives

MDA for the whole country: 1st MDA in 2000

B type survey (mid term evaluation): ICT and mf testing in 2002

- Type: sentinel sites + other areas (cross sectional survey in outpatients)
- Tests : ICT and mf
- Results:
 - o ICT: 1,940 tested 155 (8%) ICT positive
 - o mf: 1,940 tested 28 (1.4%) mf positive

Recommendation:

C type survey (final assessment):

Stratified survey by provinces and the cities of Port Vila and Luganville should be carried out in 2005-2006, after the 5th MDA. Also, surveys in sentinel sites should be carried out.

D type survey (transmission assessment):

This survey should be carried out in 2007-08, in all 6 year old children in Vanuatu. The estimated number of this target population is about 8,000 persons.

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- ▶ If ICT positive prevalence is $\ge 0.1\%$, further investigations should be done:
 - o Confirm with other biological test (i.e. Og4C3);
 - Discussion with the PacELF Monitoring & Evaluation group;
 - Discussion for the post MDA alternative strategies;
 - Partial MDA in still endemic areas;
 - Integrated Vector control programme (Roll Back Malaria, Dengue), impregnated bednets?
 - Helminth control programme;
 - DEC salt.

FLOWCHART: <u>VANUATU</u>

SUGGESTED GUIDELINES FOR COUNTRY C SURVEYS FOR FINAL PREVALENCE ASSESSMENT: <u>VANUATU</u>

- 1. The C survey for Vanuatu should take place in 2005 and will be by Stratified Cluster Sampling using villages as clusters. In addition, the sentinel villages will also be surveyed
- 2. The Sub-implementation Units will be the 6 provinces plus the town of Port Vila which was divided into two sub-implementation Units (total of 8 sub-implementation units)
- 3. Using the Demographic Tables for the Western Pacific Region 2000-2005 (WHO publication), the estimated population in 2005 for Vanuatu will be 219,319.
- 4. Therefore the average population of each sub-implementation unit will be 27,415 (219,319 divided by 8).
- 5. From the table for Stratified Cluster Sampling, the sample size needed for each district (sub-implementation unit) for an average population of 50,000 is 750 (since the table has no average population for 27,415, the next largest average population for a sub-implementation unit is used (e.g., 50,000).
- 6. Villages were chosen randomly with a maximum of 200 people per village. Villages should be sampled in the order given in the table on the following page.
- 7. Sampling should be done until at least 750 people per sub-implementation unit (province or city) have been sampled by ICT. 6,182 ICT cards will be needed for C surveys in Vanuatu.

Villages to be Sampled and the Number of People per Village to be Sampled (based on 2000 census village population)

popuiau	(UII)		_	
Village				
Order	Port Vila-1	Port Vila-2	Tafea	Torba
1	Malapoa Estate (847) -200	Namburu South Total (810) -200	Yuniel	Qoke
2	Malapoa College (806) - 200	Public Works Total (828) -200	Louniparu	Laingetak
3	Tagabe South (805) -200	Bouganville North Total (814) -200	Waisisi-200	Telaklak
4	Jack Fong (839) -200	Independence Park Total (819) -200	Lakalangia	Tukwetap
5	Tebakor Pressing (808) - 200	Stade Total (812) -200	Lamrao	Avar-200
6	Tagabe Central (802)-200	Crowne Plaza Total (832)	Lowya	Port Patterson
7		Post Office Total (815)	Ipilmai	Lesus
8		Nambatu East Total (827) -200	Lownuo Tuan	Levolvol
9			Louliuliu	Big Water
10	Areas included in Port Vila1	Areas included in Port Vila2	lwarua	Losolava Schoo
11	801 to 809 ; 835 to 839	810 to 832 ; 840 to 845	Kings Cross*	Busman Bay
12	846 and 847			Dorig
13				Qetegaveg
14				Yeugavigamena
15				Lemanman*

Village Order	Shefa	Sanma	Penama	Malampa
1	Sasake	Bene	Lolongwele	Ruplet
2	Woliliu	Talvotor	Longana	Wiel
3	Nalema	Araki	Sakao	Vanjevere
4	Chicken City	Vavavia	Nandunga	Rensarie
5	Melektree	Avunarara	Matai Manaro	Nazareth
6	Votlo	Belinboji	Loigememea	Paamal
7	Ravenga	Peyrolles	Palimarbing-200	Tavie Netan
8	Yopuna	Gingonikoru	Saratamata	Lembetiar
9	Na'Asang	Vorovoke	Tafala Hake	Lorlow*
10	Port Quime	Nambel	Tosi*	
11	Pulpiara	Avunatari-200		
12	Teouma	Jaraty		
13	Samatua	Matantas*		
14	Matangi*-200			

Village names in **bold** should have entire population tested by ICT. A maximum of 200 villagers should be tested in villages with more than 200 people (these villages are shown followed by the number '200').

^{*}Alternative villages (*in blue and italic*) to be surveyed if less than 750 people are sampled from the villages listed for each sub-implementation unit.

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: VANUATU

Primary Vector Anopheles farauti

Distribution of Primary Vector All islands

Activity pattern Night

Biting preference Large animals (humans, pigs, dogs)

Location of biting Indoors and outdoors

Resting pattern Rests inside houses after feeding until daytime

Flight range 1-2 km

Breeding sites Fresh and brackish water, large swamps, edges of slow flowing rivers

Insecticide resistance Resistant to DDT in the Solomon Islands; behavioural resistance shown in

Papua New Guinea.

Monitoring the Primary Vector Landing catches, bednet baited light traps

Recommended Control Methods

1. Insecticide impregnated bednets

2. Residual insecticide wall spraying

3. Mosquito coils, repellents

4. Screening houses

WALLIS & FUTUNA

Partially endemic country

Population estimated: 14,600 (2000)

Geographic dispersion: 2 inhabited islands

A type survey (Initial Baseline survey): ICT testing in 2001

- Type: convenience sample / focal testing around positive cases

- Result: 803 tested -6 (0.7%) positives

MDA for the whole country

- From 1987 to 2001: MDA with DEC alone every 6 months

- Since 2002: yearly MDA with DEC+ALB

Recommendation:

B type survey (Mid term evaluation):

This survey should be carried out in 2004 after the 3rd MDA in sentinel sites of Wallis (Futuna had no positive cases during baseline survey). The same methodology and the same target population as the ones in 2001 survey can be used, or sentinel sites (villages where positive cases were located) can be selected for surveys. If possible, former positive persons should be tested. This survey should allow assessment of the impact of MDA on LF endemicity.

C type survey (final assessment):

Village cluster survey by island in 2006. If any positives are found then partial MDA or other methods can be done until prevalence is below 1%.

D type survey (transmission assessment):

This ICT survey in all 6 year old children in Wallis and Futuna should be carried out in 2007 after the 5th MDA. The estimated number of this target population is about 340 persons. Also, survey in sentinel sites should be carried out (same sampling method as previous surveys).

- ➤ If ICT positive prevalence is <0.1%, await the certification of LF elimination.
- \triangleright If ICT positive prevalence is $\ge 0.1\%$, additional investigations around positive cases:
 - o Confirm with other biological test (i.e. Og4C3);
 - Survey households of the positive cases;
 - O Discussion with the PacELF Monitoring & Evaluation group;
 - Discussion about the post MDA alternative strategies:
 - Extension of MDA (country-wide, Wallis only or selected villages);
 - Helminth control programme;
 - Integrated vector control programme.

FLOWCHART: WALLIS & FUTUNA

SUGGESTED GUIDELINES FOR COUNTRY C SURVEYS FOR FINAL PREVALENCE ASSESSMENT: WALLIS & FUTUNA

- 1 The C survey for Wallis and Futuna should take place in 2006 and will be by Stratified Cluster Sampling using villages as clusters.
- 2 The Sub-implementation Units will be the 2 main islands: Wallis and Futuna. In addition the surveys of the sentinel sites will be performed.
- 3 Using the Demographic Tables for the Western Pacific Region 2000-2005 (WHO publication), the estimated population in 2005 for Wallis and Futuna will be .
- 4 Therefore the average population of each sub-implementation unit will be 7,614 (15,227 divided by 2).
- 5 From the table for Stratified Cluster Sampling, the sample size needed for each district (sub-implementation unit) for an average population of 10,000 is 707 (since the table has no average population for 7,614, the next largest average population for a sub-implementation unit is used (e.g., 10,000).
- Villages were chosen randomly with a maximum of 200 people per village. Villages should be sampled in the order given in the table below.
- Sampling should be done until at least 707 people per sub implementation unit have been sampled by ICT. 1,600 ICT cards will be needed for C surveys in Wallis & Futuna

Villages to be Sampled and the Number of People per Village to be Sampled (based on population)

census village

Village order	Wallis	<u>FUTUNA</u>
1	Alele (Hihifo)-200	Nuku (Royaume de Sigave)-200
2	Tepa (Mua)-200	Fiua (Royaume de Sigave)-200
3	Akaaka (Hahake)-200	Poi (Royaume d'Alo)-200
4	Malae (Hihifo)-200	Taoa (Royaume d'Alo)-200
5	Falaleu (Hahake)-200	Ono (Royaume d'Alo)-200
6	Vailala (Hihifo)-200	Leava (Royaume de Sigave)-200

Village names in **bold** should have entire population tested by ICT. A maximum of 200 villagers should be tested in villages with more than 200 people (these villages are shown followed by the number '200').

Alternative villages (*in italics*) to be surveyed if less than 707 people are sampled from the villages listed for each sub-implementation unit.

GUIDELINES FOR CONDUCTING MOSQUITO CONTROL FOR FILARIASIS VECTORS: WALLIS & FUTUNA

Primary Vector Aedes polynesiensis

Distribution of Primary Vector All islands

Activity pattern Daytime

Biting preference All animals

Location of biting Prefers outdoors but will go inside houses

Resting location Outdoors

Flight range Less than 100m

Breeding sites Man provided containers (tires, drums, small plastic containers);

Natural containers (treeholes, crabholes).

Insecticide resistance Resistance to DDT shown in Fiji and French Polynesia including Tahiti.

Other important characters Avoids bright sunlight. Also a vector of dengue virus.

Monitoring the Primary Vector Larval/pupal survey at least twice a year (once during the wet season, once

during the dry season).

Recommended Control Methods

- 1. Breeding source reduction of domestic containers*
- 2. Bednets to protect children when napping
- 3. Insecticide impregnated curtains and bednets
- 4. Repellents and mosquito coils
- 5. Screening houses

*Effort should be directed towards reducing the number of breeding sites that are producing the most adult mosquitoes. The importance of different container types will be determined from the larval/pupal surveys.

SUMMARY OF ICT CARDS NEEDED FOR C SURVEYS

Country	Year of C	No. ICT for Sub-	Notes of Additional
, and the second	Surveys	Implementation Units	ICT cards Needed
American Samoa	2005-2006	2,968	Plus sentinel sites
Cook Islands	2005	2,121	Plus sentinel sites
FSM	2005	3,000	
	2007	Satawal Island: 650	
Fiji	2007	18,508	Plus sentinel sites
French Polynesia	2005-2006	4,000	Plus sentinel sites
Guam	No C survey	0	
Kiribati	2006	3,414	
Marshall Islands	2004	1,879	
	2007	Mejit: 500	
Nauru	No C survey	0	
New Caledonia	?	?	
Niue	2004	1,972	
Northern Mariana Islands	No C survey	0	
Palau	2004	1,600	
	2007	Ngardmau: 221	
Papua New Guinea	?	?	
Pitcairn	Completed	0	
Samoa	2005	13,232	Plus sentinel sites
Solomon Islands	2003-2004	20,524	
Tokelau	2005	1,640	
Tonga	2006-2007	4,041	Plus sentinel sites
Tuvalu	2006-2007	748	
Vanuatu	2005-2006	6,182	Plus sentinel sites
Wallis and Futuna	2006	1,600	Plus sentinel sites
Total a	as of 1 January 2004:	125,340	

6. APPENDICES

APPENDIX 1. TABLE OF 2-DIGIT RANDOM NUMBERS

59	6	13	20	97	53	53	17
59	27	25	26	20	1	12	57
17	30	81	46	39	91	28	58
81	17	13	77	61	33	15	94
48	70	81	31	54	97	48	41
54	9	59	10	52	8	26	4
80	46	21	56	66	85	32	77
63	70	69	83	86	25	35	10
31	85	70	63	86	16	20	25
29	97	33	87	88		81	50
					77		
2	87	7	68	29	76	10	43
9	14	8	25	8	33	17	62
82	26	29	63	51	93	94	89
57	64	66	51	59	71	91	93
16	40	28	61	84	58	6	46
79	5	60	11	37	31	54	67
46	18	75	54	55	30	7	70
72	77	82	8	32	51	92	12
71	52	67	39	68	8	79	98
98	91	79	36	19	68	74	89
80	6	17	3	38	34	98	8
28	42	61	73	78	32	82	16
61	81	79	27	38	97	93	90
53	15	4	21	8	91	27	62
99	16	75	93	43	43	95	33
70	25	40	78	45	68	44	34
28	90	77	50	93	69	88	64
14	44	30	3	52	37	21	51
6	73	7	7	4	70	27	97
27	54	41	77	16	52	6	3
25	59	48	6	29	72	55	42
14	13	27	56	1	3	97	87
13	42	25	9	1	7	54	91
5	22	20	99	17	53	47	93
43	8	37	24	27	36	41	25
37	26	24	8	74	47	7	33
8	18	6	48	55	85	45	88
73	76	6	10	37	35	46	29
90	18	9	55	57	33	61	70
45	41	78	63	50	4	87	11
25	71	34	83	54	62	27	54
34	68	38	16	34	58	62	13
42	28	33	36	29	97	17	8
78	74	62	72	9	31	46	75
40	81	35	56	34	69	99	45
58	13	89	56	48	75	62	92
14	11	46	64	83	47	78	1
35	62	1	7	24	51	96	16
93	6	8	2	87	30	43	76
93	6	8	2	67	30	43	70

7	69	37	99	90	13	87	25
84	67	76	81	90	41	47	36
38	32	75	4	25	75	16	13
60	76	49	51	7	59	58	65
76	15	69	70	6	8	66	22
20	22	29	15	73	74	72	87
70	11	59	57	50	44	98	14
7	23	22	82	72	46	27	48
76	59	56	52	60	24	45	66
81	93	23	28	97	34	71	27
1	29	53	74	13	45	66	65
65	29	53	47	63	67	29	61
32	30	13	92	82	54	56	14
41	9	27	11	71	3	87	64
79	46	83	61	66	2	55	95
2	81	34	91	55	92	11	85
90	25	60	6	32	86	49	33
36	76	42	63	91	83	87	50
63	45	31	48	23	53	13	29
15	74	15	23	9	85	88	70
52	75	81	16	18	30	78	90
73	38	56	41	19	26	50	41
19	20	82	49	47	95	46	30
18	58	37	14	23	51	68	28
8	92	1	45	24	28	84	32
58	46	53	79	5	29	12	89
75	46	48	32	92	40	52	26
5	10	2	83	39	35	30	66
97	25	97	42	82	72	16	69
29	14	67	17	79	67	2	19
34	64	51	45	7	15	7	79
22	86	96	42	67	64	96	16
49	11	19	31	40	17	97	35
44	66	97	83	23	62	82	14
29	52	86	32	88	73	18	66
32	2	30	82	35	11	4	95
70	67	14	40	43	25	65	15
77	81	46	1	58	63	88	35
46	22	97	42	15	4	9	82
12	30	81	28	39	39	16	53
31	47	73	67	30	26	80	65
11	52	28	41	56	46	4	43
42	19	84	12	87	10	52	99
2	12	20	31	13	53	82	95
31	25	66	15	46	4	26	7
7	41	87	7	49	92	56	77
66	82	43	46	4	87	91	61
56	38	15	15	61	83	42	71
92	74	5	68	91	10	31	99
29	14	98	49	88	37	1	11
49	16	84	89	23	18	51	99
62	39	15	19	94	65	76	46
15	72	27	45	69	19	66	90
61	30	26	54	93	2	57	69

APPENDIX 2. TABLE OF 3-DIGIT RANDOM NUMBERS

737	295	6	34	78	402	91	877
704	982	643	447	842	253	847	759
427	201	465	607	809	221	669	433
22	877	871	196	6	691	349	958
485	850	942	234	562	518	245	647
202	349	560	435	983	330	207	660
389	353	384	674	575	109	808	884
642	320	92	798	11	257	847	859
437	804	876	663	215	354	340	981
5	372	125	588	525	570	973	481
327	843	843	71	150	231	115	953
116	384	755	260	808	911	21	918
898	827	714	344	852	27	438	347
738	642	126	512	260	970	157	456
618	450	252	52	133	378	113	140
732	803	513	142	843	343	9	464
437	291	494	443	87	894	319	677
831	978	914	584	486	127	67	342
397	471	192	111	254	276	155	621
638	327	539	356	667	39	719	681
386	595	407	445	311	937	157	256
708	501	593	283	436	694	741	276
915	145	504	544	598	511	250	755
974	699	933	502	583	712	637	245
784	67	336	513	146	841	281	425
873	211	462	831	454	546	127	39
374	285	926	47	131	86	619	259
384	747	920 5	472	993	187	436	616
805	339	997	488	103	151	816	549
782	947	485	400 401		52		
			417	759		858 455	935
141	515 804	947		682	243	155 542	895
967	804	371	125	193	4	542	233
604	115	89 571	152	438	395	212	649
769	39	571	100	75	971	753	548
786	744	321	633	263	582	903	379
431	526	250	60	162	568	268	87
204	496	487	39	146	627	337	661
509	488	815	686	971	94	25	301
883	54	678	941	760	774	624	293
623	671	480	519	935	580	635	670
89	140	936	776	280	659	859	11
251	974	702	488	189	691	881	129
683	227	685	777	186	405	290	482
271	173	480	722	163	780	256	9
137	47	854	930	727	191	630	818
387	829	133	606	838	342	60	169
61	97	139	32	452	662	994	148
478	29	181	567	121	425	631	981
963	641	313	383	404	284	376	342
726	362	106	766	387	346	244	829
41	493	477	821	671	232	269	464

833	603	308	993	632	721	998	991
192	894	14	451	414	301	433	227
364	459	95	381	750	280	938	474
971	943	612	225	511	840	452	677
527	387	930	272	297	923	617	181
25	901	235	774	38	38	13	159
981	677	293	986	41	715	48	760
679	262	38	540	76	28	852	413
999	142	689	414	566	503	115	621
189	148	215	346	999	735	368	276
400	132	356	475	639	467	402	50
91	871	186	524	787	827	906	881
593	376	108	850	385	127	39	369
868	255	330	723	937	108	616	661
204	427	916	207	412	980	583	445
289	778	878	787	551	472	661	678
643	216	556	909	672	335	651	940
388	15	644	121	695	624	665	166
553	951	847	60	575	391	516	886
919	961	109	41	620	58	906	644
221	999	49	800	505	350	392	898
602	204	851	22	848	776	440	967
527	26	251	800	217	299	888	624
642	737	344	241	985	916	196	557
850	978	466	189	881	813	5	815
429	499	507	926	51	404	122	851
594	499 472	877	920 47	153	86	74	814
59 4 571	397	150	699	246	357	74 701	109
			270		992		
525	58 957	911 989	932	477 545	992 116	526 711	514 145
955	857 691			545			
318 616	681 804	538 731	225 57	639 910	629 132	53	914
						283	940
4	483	912	139	853 775	158	85 53	815
969	101	360	656 770	775 50	19	52 40	671
136	471	242	772	59 7 04	649	19	888
545	282	156 674	611	791	998	923	557
228	696 751	674	104	771	192	348	714
817	751 700	6	956	918	887	12	85
216	763	807	79	439	911	530	144
773	808	194	37	117	5	678	102
898	735	958	705	276	442	616	488
390	410	927	254	844	973	485	803
443	176	316	948	95	992	710	718
953	707	412	367	157	337	991	221
536	318	152	867	23	462	633	730
550	187	261	900	403	299	865	524
528	450	81	838	959	825	694	870
610	354	337	402	258	748	491	620
3	140	202	221	77	635	429	364
750	369	93	645	84	24	581	199
438	200	816	795	430	663	713	823
117	789	991	76	962	162	172	300