Problema 2.27 (MAX-CUT)

El problema del Tall Maxim (MAX-CUT). Donat un graf no dirigit G = (V, E), el problema del maximum cut (MAX-CUT) es trobar la partició $S \cup \bar{S}$ de V tal que maximitze el nombre d'arestes entre S i \bar{S} ($C(S, \bar{S})$), on $S \subseteq V$ i $\bar{S} = V - S$. La maximització entre totes les possibles particiones de V. El problema del MAX-CUT és NP-hard en general.

Figura 1: Exemple de MAX-CUT, amb cost òptim 5

Donat G = (V, E) considereu el següent algorisme golafre (greedy) pel problema del MAX-CUT:

- Ordeneu els vèrtexs en ordre decreixent respecte al seu grau (nombre veïns). Considereu el resultat de l'ordenació s'escriu com a (v_1, v_2, \dots, v_n) .
- Inicialment tenim $S = \emptyset = \bar{S}$.
- Al primer pas $v_1 \in S$. Al pas *i*-èsim col.loquem v_i a S o \bar{S} de manera que maximitze $|C(S,\bar{S})|$.

a) Demostreu la correctessa i doneu la complexitat de l'algorisme golafre.

El grau d'un vertex es com a molt n. Podem ordenar en ordre decreixent de grau en temps O(n) fent servir counting sort. A cada pas, l'algorisme accedeix només a la llista del seus veïns per comptar quants són a cada costat de la partició i decidir a on s'afegeix. El cost total es O(n+m).

Per una altre part l'algorisme sempre produeix una partició del conjunto de vèrtexs, per tant és trivialment correcte.

b) Demostreu que aquest algorisme golafre és una 2-aproximació al MAX-CUT.

Per analitzar el rati d'aproximació, anomenarem opt(G) al nombre d'arestes a un max-cut de G, i anomenarem c(G) al nombre d'arestes al tall obtingudes per l'algorisme. Donat que cap tall pot tenir més arestes que el total d'arestes del graf, tenim que $opt(G) \leq |E|$.

L'algoritme tracta els vèrtexos en ordre; podem pensar que estem "descobrint" el graf a mesura que hi afegim nous vèrtexs. Al pas i afegim el vèrtex v_i i les arestes $(v_i, v_j) \in E$ amb j < i. Anomenem E_i a aquest conjunt d'arestes, és a dir, $E_i = \{(v_i, v_j) \mid j < i\}$. Observem que $\{E_i\}_{i=1}^n$ és una partició d'E, perquè cada aresta queda assignada de manera única al conjunt corresponent al vèrtex amb índex més gran.

Al pas *i*-èsim, assignem v_i a un conjunt de manera que el nombre d'arestes d' E_i al tall és més gran que el nombre d'arestes d' E_i que no hi formen part. Així, la contribució de v_i a c(G) és més gran o igual que $|E_i|/2$. Si ho sumem per a tots els vèrtexs tenim que $c(G) \ge \sum_{i=1}^n |E_i|/2 = |E|/2$, ja que $\{E_i\}_{i=1}^n$ és una partició d'E. Per altra banda $\mathsf{opt}(G) \le |E|$, per tant tenim que $c(G) \ge \mathsf{opt}(G)/2$. En ser un problema de maximització, $c(G) \le \mathsf{opt}(G)$; posant tots els resultats junts tenim que

$$\frac{1}{2} \le \frac{opt(G)}{c(G)} \le 2$$

i, per tant, l'algorisme proposat és una 2-aproximació.