Stat511(Section001): Homework #6

Due on Mar. 7, 2022 at $5:00 \mathrm{pm}$

Instructor:Xuming He

Tiejin Chen tiejin@umich.edu

Problem 1

The log-likelihood function of normal distribution is:

$$l(x_1, ..., x_n) = -\frac{n}{2}ln(2\pi) - \frac{n}{2}ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2, \mu \ge 0, \sigma^2 \ge 1$$

We can get:

$$\frac{\partial l(x_1, ..., x_n)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)$$
$$\frac{\partial l(x_1, ..., x_n)}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2$$

Then if $\bar{X} \geq 0$, let the above formula to be zero, we have:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{X}$$

Now let us consider $\bar{X} < 0$:

$$\frac{\partial l(x_1, ..., x_n)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = \frac{1}{\sigma^2} (\sum_{i=1}^n x_i - n\mu) < 0$$

Hence, it is a decreasing function when $\bar{X} < 0$ and $\mu > 0$, Then to make $l(x_1, ..., x_n)$ as larger as possible, μ should be zero. That is to say $\hat{\mu} = \max(\bar{X}, 0)$ is MLE of μ . However, when we consider σ^2 , we have:

$$\frac{\partial l(x_1, ..., x_n)}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \bar{X} + \bar{X} - \mu)^2$$

For $(x_i - \bar{X} + \bar{X} - \mu)^2$ we have:

$$(x_i - \bar{X} + \bar{X} - \mu)^2 = (x_i - \bar{X})^2 + 2(x_i - \bar{X})(\bar{X} - \mu) + (\bar{X} - \mu)^2$$

We know:

$$\sum_{i=1}^{n} (x_i - \bar{X}) = \sum_{i=1}^{n} x_i - n\bar{X} = 0$$

Thus:

$$\sum_{i=1}^{n} 2(x_i - \bar{X})(\bar{X} - \mu) = 0$$

Hence plug back in we can get:

$$\frac{\partial l(x_1, ..., x_n)}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \left[\sum_{i=1}^n (x_i - \bar{X})^2 + n(\bar{X} - \mu)^2 \right]$$
$$= -\frac{n}{2\sigma^2} + \frac{n}{2\sigma^4} (S^2 + (\bar{X} - \mu)^2)$$
$$= \frac{n}{2\sigma^4} (S^2 + (\bar{X} - \mu)^2 - \sigma^2)$$

Then let it to be zero and assumed $\bar{X} < 0, S^2 > 1$, we have

$$\hat{\sigma}^2 = S^2 + (\bar{X} - \mu)^2 \neq S^2$$

Since $\bar{X} < 0, \hat{\mu} = 0$ and $(\bar{X} - \mu)^2 \neq 0$. Thus $\hat{\sigma^2} \neq \max(S^2, 1)$. For σ^2 it is not a MLE estimator. To sum up, $\hat{\mu} = \max(\bar{X}, 0)$ is the MLE estimator of μ where $\hat{\sigma^2} = \max(S^2, 1)$ is not a MLE estimator of σ^2 .

Problem 2

(a)

We know:

$$f(\theta|x) \propto f(x|\theta)f(\theta)$$

Thus we have:

$$f(\theta|x) \propto p^x (1-\theta)^{n-x} I(0$$

We know p is always staisfy 0 . Thus:

$$f(\theta|x) \propto p^x (1-\theta)^{n-x}$$

Then, it must be a Beta distribution. Thus we can have;

$$f(\theta|x) \sim Beta(x+1, n-x+1)$$

Thus, we get Bayes estimator of p is $\frac{x+1}{x+2}$.

(b)

We have:

$$P(p \le y) = P(p^2 \le y^2) = y^2$$

Thus, we have:

$$f_p(y) = 2y$$

Hence, we can get:

$$f(\theta|x) \propto f(x|\theta)f(\theta) = p^{x+1}(1-\theta)^{n-x}$$

Agian, this beta distribution and $f(p|x) \sim Beta(x+2, n-x+1)$. Thus the posterior mean of p is $\frac{x+2}{n+3}$ (c)

We can see that the uniform in p^2 does not mean the uniform in p. Hence they will get different Bayes estimator. Hence, we can say even uniform distribution carry the information.

Problem 3

To seek the best unbiased estimator, we need to find a sufficient statistic for β . First we know $Y_i - \beta X_i$ is independent with X_i . Then it is independent with βX_i . We know that when X_i is given, then βX_i is a scalar. Hence, we consider $Y_i|X_i$, We have:

$$Y_i|X_i = Y_i - \beta X_i + \beta X_i \sim N(\beta X_i, 1)$$

Then we have:

$$f(\beta; Y|X) = \frac{1}{(2\pi)^{\frac{n}{2}}} exp(-\frac{1}{2} \sum_{i=1}^{n} (Y_i - \beta X_i)^2) = \frac{1}{(2\pi)^{\frac{n}{2}}} exp(-\sum_{i=1}^{n} (0.5Y_i^2 - \beta Y_i X_i + 0.5\beta^2 X_i^2))$$

It is a expontional family of distribution. Thus its minimal sufficient statistic is $\sum_{i=1}^{n} Y_i X_i = T$. And let us find a unbiased estimator of β . We have:

$$E(T) = nE(Y_i X_i) = nE_X[E(Y_i X_i | X)] = nE[X_i E(Y_i | X_i)] = \beta nE(X_i^2)$$

Thus:

$$\beta = \frac{nE(Y_i X_i)}{nE(X_i^2)}$$

Hence:

$$\beta \hat{|} T = \frac{\sum_{i=1}^{n} Y_i X_i}{\sum_{i=1}^{n} X_i^2} = \frac{T}{\sum_{i=1}^{n} X_i^2}$$

is the best unbiased estimator of β for any given value of $X_1,...,X_n$ by Rao-Blackwell theorem.

Problem 4

(a)

we have:

$$f(\theta|x) \propto f(x|\theta)f(\theta) = \theta_1^{\alpha_1 + x_1 - 1}\theta_2^{\alpha_2 + x_2 - 1}...\theta_n^{\alpha_n + x_n - 1}$$

Thus the posterior distribution of θ is also a Dirichlet Distribution.

(b)

We know under MSE, the bayes estimator is just posterior mean. Thus we can get:

$$\hat{\theta_i} = \frac{\alpha_i + x_i}{\sum_{j=1}^k \alpha_j + x_j}$$