

COMS4030 Assignment 1 - report

Wesley Earl Stander - 1056114 - Coms Hons

May 21, 2020

1 Question 1

1.1 Question 1.1

Record #	Distance from the record	Label of the record
11	1.752027397046062	0
Prediction		0

1.2 Question 1.2

Record #	Distance from the record	Label of the record
28	1.6488177582740906	1
25	1.7365195075207192	1
27	2.5044160996128424	1
Prediction		1

1.3 Question 1.3

Record #	Distance from the record	Label of the record
36	1.0435516278555652	1
39	1.542335890783846	1
29	2.808006410249093	1
30	3.9457065273534977	1
4	4.538788384580184	0
Prediction		1

K-NN	Training Error Rate	Test Error Rate
1-NN	0.0	0.025
3-NN	0.0	0.025
5-NN	0.05	0.05
7-NN	0.05	0.05
9-NN	0.05	0.05
11-NN	0.05	0.1
13-NN	0.075	0.025

1.4 Question 1.4

2 Question 2

2.1 Question 2.1

 $h\theta(x)$ is in the range of 0 to 1 and if β is negative or 0 then the classifier cannot learn from an arbitrary data set. This is because if β is 0 then the classifier will always return the same label and if β is negative then the label will be inverted.

2.2 Question 2.2

$$\frac{\delta}{\delta\theta_{k}}(h_{\theta}(x^{(n)})) = \frac{\delta}{\delta z}(g(z))$$

$$= (-1)(1 + e^{-\beta z})^{-2}(-\beta e^{-\beta z})$$

$$= \frac{\beta e^{-\beta z}}{(1 + e^{-\beta z})^{2}} = \frac{e^{-\beta z}}{1 + e^{-\beta z}}\beta g(z)$$

$$= (1 - \frac{1}{1 + e^{-\beta z}})\beta g(z) = (1 - g(z))\beta g(z)$$

$$= \beta(1 - h_{\theta}(x^{(n)}))(h_{\theta}(x^{(n)}))$$
(1)

$$\frac{\delta J(\theta)}{\delta \theta_{k}} = \frac{\delta}{\delta \theta_{k}} \left[\frac{1}{4N} \sum_{n=1}^{N} (h_{\theta}(x^{(n)}) - y^{(n)})^{4} \right]
= \frac{1}{N} \sum_{n=1}^{N} (h_{\theta}(x^{(n)} - y^{(n)})^{3} \frac{\delta}{\delta \theta_{k}} (h_{\theta}(x^{(n)}) - y^{(n)})
= \frac{1}{N} \sum_{n=1}^{N} (h_{\theta}(x^{(n)}) - y^{(n)})^{3} \beta (1 - h_{\theta}(x^{(n)})) (h_{\theta}(x^{(n)})) x_{k}^{(n)}
\theta_{k} \leftarrow \theta_{k} - \alpha \left[\frac{1}{N} \sum_{n=1}^{N} (h_{\theta}(x^{(n)}) - y^{(n)})^{3} \beta (1 - h_{\theta}(x^{(n)})) (h_{\theta}(x^{(n)})) x_{k}^{(n)} \right]$$
(2)

COMS4030 Assignment 1 3

2.3 Question **2.3**

Testing record #	Classifier Output $h_{\theta}(x^{(n)})$	Final Output
5	0.19	0
10	0.03	0
15	0.05	0
20	0.12	0
25	0.85	1
30	0.9	1
35	0.86	1
40	0.94	1

3 Question 3

3.1 Question 3.1

$$g_{1}(z) = \frac{1}{1 + e^{-(\theta_{0}x_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4})}}$$

$$g_{2}(z) = \theta_{6}g_{1}(z) + \theta_{5}x_{0}$$

$$g_{3}(z) = \theta_{7}g_{2}(z) + \theta_{8}x_{0}$$

$$h_{\theta}(x) = g_{3}(z)$$

$$= \theta_{7}g_{2}(z) + \theta_{8}x_{0}$$

$$= \theta_{7}(\theta_{6}g_{1}(z) + \theta_{5}x_{0}) + \theta_{8}x_{0}$$

$$= \theta_{7}(\theta_{6}(\frac{1}{1 + e^{-(\theta_{0}x_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4})}) + \theta_{5}x_{0}) + \theta_{8}x_{0}$$

$$(4)$$

3.2 Question 3.2

$$\theta_8 \leftarrow \theta_8 - \alpha \left[\frac{1}{N} \sum_{n=1}^{N} (h_{\theta}(x^{(n)}) - y^{(n)})(x_0) \right]$$
 (5)

$$\theta_7 \leftarrow \theta_7 - \alpha \left[\frac{1}{N} \sum_{n=1}^{N} (h_{\theta}(x^{(n)}) - y^{(n)})(g_2(z)) \right]$$
 (6)

$$\theta_6 \leftarrow \theta_6 - \alpha \left[\frac{1}{N} \sum_{n=1}^{N} (h_{\theta}(x^{(n)}) - y^{(n)}) (\theta_7 g_1(z)) \right]$$
 (7)

$$\theta_5 \leftarrow \theta_5 - \alpha \left[\frac{1}{N} \sum_{n=1}^{N} (h_{\theta}(x^{(n)}) - y^{(n)}) (\theta_7 x_0) \right]$$
 (8)