Malware Classification based on Static Analysis

Malware Classification based on Static Analysis

• Write the code to implement the malware classification method based on the below paper:

Nataraj, Lakshmanan, et al. "Malware images: visualization and automatic classification." *Proceedings of the 8th international symposium on visualization for cyber security.* 2011.

• The feature extraction methods (GIST,...), and machine learning methods (CNN,...) are not limited. You can try different ones, and make some *comparison*.

[Some Reference]

- Kumar, Nitish, and Toshanlal Meenpal. "Texture-based malware family classification." 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE, 2019.
- Bensaoud, Ahmed, Nawaf Abudawaood, and Jugal Kalita. "Classifying malware images with convolutional neural network models." *International Journal of Network Security* 22.6 (2020): 1022-1031.
- Kiger, John, Shen-Shyang Ho, and Vahid Heydari. "Malware Binary Image Classification Using Convolutional Neural Networks." *International Conference on Cyber Warfare and Security*. Vol. 17. No. 1. Academic Conferences International Limited, 2022.
- Vasan, Danish, et al. "Image-Based malware classification using ensemble of CNN architectures (IMCEC)." Computers & Security 92 (2020): 101748.

Hints

- 1. Malware dataset: Collect samples from VirusShare or MOTIF Dataset (with labeled virus hash value)
 - Be Careful. You may need to do it in the Virtual Machine (VMWare, VirtualBox, ...).
 - **Do not use pre-existing transformed datasets, such as the Mallmg dataset.** You need to perform the image transformation using your own code.

Hints

2. Transform each malware to a grey image.

• A given malware binary is read as a vector of 8 bit unsigned integers and then organized into a 2D array. This can be visualized as a gray scale image in the range [0,255] (0: black, 255: white). The width of the image is fixed and the height is allowed to vary depending on the file size (Fig. 1). Tab. 1 gives some recommended image widths for different file sizes based on empirical observations.

Fig.1 Visualizing Malware as an Image

Tab. 1: Image Width for	r Various File Sizes
File Size Range	Image Width

File Size Range	Image Width
<10 kB	32
10 kB – 30 kB	64
30 kB – 60 kB	128
60 kB – 100 kB	256
100 kB – 200 kB	384
200 kB – 500 kB	512
500 kB – 1000 kB	768
>1000 kB	1024

- There are several feature extraction methods: GIST, HOG, LBP, ... (Some methods even try to eat the image of the whole file)
- There are many machine learning methods: CNN, SVM, ...
- You could make some comparison, if possible.
- 3. Training and testing by machine learning model for detecting malware (grey image).
- Programming Language is not limited.

Malware Images

Fig. 2. Malware images of 5 different families. Each row having 3 variants of malware of same family [10]

Some Feature Extraction Methods

Fig. 3. GIST and HOG descriptor visualization of 2 variants Fakerean malware family.

Upload the result to Moodle

- Upload your code and the detailed reports to Moodle.
 - Code: You must add some comments in your code for easy understanding.
 - Report Files: Document (Word) and Presentation (PPT).
 - Including the table outlining team member responsibilities.
 - Zipped to a file. The file name should be "Student ID HW3.zip"