GEARS: Predicting transcriptional outcomes of novel multi-gene perturbations

Caleb Ellington

Al4Bio

Dec. 15th 2022

Gene regulatory networks define gene expression and phenotypes through functional organization

The complexity of gene regulation

- Multiplexed cooperative binding of transcription factors creates highly non-linear and dynamic gene expression patterns
- ~25,000 protein-coding genes, often modulated by cooperative transcription factor binding

Hill coefficient (n) describes how cooperative the ligand binding is

% bound =
$$\frac{[Ligand]^n}{K_d + [Ligand]^n}$$

How do we model gene regulatory behavior?

More concretely: how does gene regulation change under experimental conditions? Let's start with gene knockouts as our experimental condition.

Preliminaries

- Co-expression graph: pairwise correlations between all genes. Can be viewed as a weighted adjacency matrix. Binarizing into an adjacency matrix can be done by thresholding correlation, or selection top N neighbors.
- Gene Ontology: expert-curated hierarchal annotation of genes on functional, pathway, & molecular attributes. Ignoring annotation hierarchy, this can also be viewed as a bipartite graph between genes & annotations.

Perturb-seq: Experimental Basis & Limitations

Low-order do-interventions on gene regulatory graphs

Baseline models

- Linear: 3 linear graph convolutions, using the gene co-expression graph (linear propagation through 3 neighbor hops)
- CPA: Compositional Perturbation Autoencoder

GEARS

GEARS improves the accuracy of single and multiplexed perturbation predictions

GEARS improves the accuracy of single and multiplexed perturbation predictions

GEARS improves directionality of perturbation predictions

GEARS is sample-efficient and allows inference of unseen states

(phenotype speculation, not experimentally validated)

GEARS accurately models non-linear gene-gene interactions

GEARS characterizes multiplexed interactions at scale

Extra Info

Methods

- 5000 nodes (selected as high variance genes in the training set) + any perturbed genes not in this set
- Perturbation encoder graph is constructed from bipartite gene ontology graph, where neighbors are the top N in terms of Jaccard similarity on their set of annotations.

Losses

$$L_{\text{autofocus}} = \frac{1}{T} \sum_{k=1}^{T} \frac{1}{T_k} \sum_{l=1}^{T_k} \frac{1}{G} \sum_{u=1}^{K} (\mathbf{g}_u - \hat{\mathbf{g}}_u)^{(2+\gamma)}$$

$$L_{\text{direction}} = \frac{1}{T} \sum_{k=1}^{T} \frac{1}{T_k} \sum_{l=1}^{T_k} \frac{1}{G} \sum_{u=1}^{K} \left(\text{sign} \left(\mathbf{g}_u - \mathbf{g}_u^{\text{ctrl}} \right) - \text{sign} \left(\hat{\mathbf{g}}_u - \mathbf{g}_u^{\text{ctrl}} \right) \right)^2$$

$$L_{\text{unc}} = \frac{1}{T} \sum_{k=1}^{T} \frac{1}{T_k} \sum_{l=1}^{T_k} \frac{1}{G} \sum_{u=1}^{K} \exp(-s_u) (\mathbf{g}_u - \hat{\mathbf{g}}_u)^{(2+\gamma)}$$