Minimum Spawning Tree

DPHPC

Th. Cambier R. Dang-Nhu Th. Dardinier C. Trassoudaine

ETH Zürich

October 2018

- Problem definition
 - Concepts
 - Use cases
- 2 Algorithms
 - Prim
 - Kruskal
 - Borůvka (Sollin)
 - Others
- 3 Environment
- 4 Benchmarking
 - Reference, baseline, tools

Problem definition

The MST problem

Concepts

(Somewhat) realistic use-cases and input sets?

- G(n,p)
- Preferential attachment
 - Social networks

m uskal růvka (Sollin) hers

Algorithms

Prim Kruskal Borůvka (Sollin) Others

Prim

Prim Kruskal Borůvka (Sollin) Others

Kruskal

Prim Kruskal Borůvka (Sollin) Others

Borůvka (Sollin)

Prim Kruskal Borůvka (Sollin) Others

A few ideas

Correctness

How to verify correctness of the parallelization?

Environment

Architecture

EULER Cluster

Xeon
$$Ex, x \in \{3, 5, 7\}$$

x86_64 architecture

Source: https://scicomp.ethz.ch/wiki/Euler

Tools

- CMake v3.3+
- C++11 GCC v4.9.2+
- OpenMPI (shared memory) v1.6.5+

eference, baseline, tools

Benchmarking

Tools

- Measures : LibSciBench library
- Interpretation :
 - LibSciBench's R scripts
 - (Custom python scripts)

Ref : https://spcl.inf.ethz.ch/Research/Performance/LibLSB/

Baseline

Borůvka's serial algorithm $O(E \cdot log(V))$

https://en.wikipedia.org/wiki/Otakar_Bor%C5%AFvka

