Le esperienze di Faraday

Evidenze sperimentali (1831):

☐ Muovendo un magnete rispetto ad una spira (o viceversa) si genera una corrente.

Michael Faraday 1791-1867

Le esperienze di Faraday

Se il magnete si muove avvicinandosi e allontanandosi dal loop scorre una corrente nel circuito.

Se il magnete resta fermo non si misura nessuna corrente.

Se il magnete rimane fermo e il loop viene mosso, si misura una corrente.

La corrente si manifesta se c'é un movimento relativo tra il magnete e il loop.

Legge di induzione di Faraday

 La corrente indotta si produce lungo un circuito chiuso ogni volta che il flusso magnetico ad esso concatenato cambia.

$$\Phi_B = \int_A \vec{B} \cdot d\vec{S}$$

La variazione di flusso concatenato induce una forza elettromotrice (f.e.m):

$$fem = -\frac{d\Phi_B}{dt}$$

APPLET: il laboratorio di Faraday

http://phet.colorado.edu/en/simulation/faraday

Forza elettromotrice indotta

La carica viene spostata lungo il loop da un campo elettrico che viene indotto dalle variazioni del campo magnetico.

Questo campo elettrico è sempre tangente al loop e dunque le sue linee sono chiuse

Il lavoro fatto da questo campo e' pari a

$$W = \oint_{c} \vec{F} \cdot d\vec{l} = \oint_{c} q\vec{E} \cdot d\vec{l}$$

La forza elettromotrice è pari al lavoro fatto per unità di carica

$$fem = \oint_{c} \vec{E} \cdot d\vec{l}$$

Questo campo elettrico NON è conservativo

Legge di Faraday

Ricordiamo che la fem è definita come:

$$fem = \oint_{I} \vec{\mathbf{E}} \cdot d\vec{\mathbf{l}}$$

Dunque la legge di Faraday diventa

$$\oint_{I} \vec{\mathbf{E}} \cdot d\vec{\mathbf{l}} = -\frac{\partial}{\partial t} \iint_{S} \vec{\mathbf{B}} \cdot \vec{\mathbf{n}} dS$$
 Legge di Faraday

Notate che la fem è formalmente definita come il potenziale (a meno di un segno); tuttavia ora il risultato dell'integrazione DIPENDE DAL PERCORSO *I*, che racchiude la superficie S

Legge di Faraday

$$\oint_{I} \vec{\mathbf{E}} \cdot d\vec{\mathbf{l}} = -\frac{\partial}{\partial t} \iint_{S} \vec{\mathbf{B}} \cdot \vec{\mathbf{n}} ds$$

In quale direzione abbiamo il flusso positivo?

Il verso della circuitazione dl e la direzione del versore n sono legati dalla regola della mano destra

IMPORTANTE!!!!

Il risultato maggiore della legge di Faraday è che la variazione di flusso magnetico produce un campo elettrico. Non è necessario che ci sia un conduttore chiuso!

Legge di Lenz

Se la spira è chiusa, il campo elettrico produce una corrente elettrica

$$I = \frac{fem}{R} = -\frac{1}{R} \frac{d\psi_B}{dt}$$

Ma che cosa indica il segno meno?

La corrente produce un campo di induzione magnetica

La legge di Lenz stabilisce che il segno della corrente è tale che il campo magnetico da essa prodotto (indotto) si opponga alle variazioni del flusso, e nel caso della calamita in movimento produce una forza che si oppone al moto della calamita

APPLET: la legge di Lenz http://micro.magnet.fsu.edu/electro mag/java/lenzlaw/index.html

Fem indotta in un conduttore mobile immerso in un campo B costante 1/4

Consideriamo un conduttore che si muove con velocità **u** in presenza di un campo magnetico statico. Gli elettroni presenti all'interno del conduttore si trovano sottoposti ad una forza magnetica diretta verso il basso (lungo –**y**) pari a

$$\vec{F}_m = q\vec{u} \times \vec{B} = qu_x \hat{x} \times B_z \hat{z} = -qu_x B_z \hat{y}$$

Gli elettroni sottoposti a questa forza fluiscono dal polo 2 al polo 1 come se ci fosse un campo elettrico equivalente:

$$\vec{\mathbf{E}}_m = \frac{\vec{\mathbf{F}}_m}{q} = -u_x B_z \hat{\mathbf{y}}$$

Fem indotta in un conduttore mobile immerso in un campo B costante 2/4

Si viene perciò a creare una d.d.p. tra le due estremità del conduttore. La fem risultante è pari a:

Fem indotta in un conduttore mobile immerso in un campo B costante 3/4

In generale, se si ha un circuito delineato da un contorno C che si muove con velocità **u** in una regione di spazio in cui è presente un campo statico **B**, si viene a creare una f.e.m. di movimento pari a

$$V_{ind}^{mov} = \oint_C \vec{\mathbf{u}} \times \vec{\mathbf{B}} \cdot d\vec{\mathbf{l}}$$

Si ricorda che soltanto le parti di circuito in movimento creano tale d.d.p.

Quindi, se si ha una sola parte del circuito che si muove, soltanto essa crea la d.d.p.

Fem indotta in un conduttore mobile immerso in un campo B costante 4/4

Consideriamo un circuito in cui l'estremità destra possa muoversi con velocità costante **u** in un campo magnetico statico $B_0x\hat{z}$. La d.d.p. indotta nel circuito vale (ricordiamo che solamente la parte in movimento contribuisce alla ddp indotta):

$$\begin{split} V_{43}^{mov} &= \oint_C \vec{\mathbf{u}} \times \vec{\mathbf{B}} \cdot d\vec{\mathbf{l}} = \int_{y=0}^L u_x \hat{\mathbf{x}} \times B_0 x \hat{\mathbf{z}} \cdot d\vec{\mathbf{l}} = -\int_{y=0}^L u_x B_0 x \big|_{x=x_0} \hat{\mathbf{y}} \cdot dy \hat{\mathbf{y}} \\ &= -u_x B_z x_0 L = -u_x B_z (u_x t) L = -u_x^2 B_z L t = V_{12}^{mov} \end{split}$$

Fem indotta in un conduttore mobile in presenza di un campo magnetico non statico

In tal caso la fem indotta è data dalla somma dei due contributi (fem di movimento e di trasformazione):

$$V_{ind} = V_{ind}^{tr} + V_{ind}^{mov} = -\iint_{S} \frac{\partial \vec{\mathbf{B}}}{\partial t} \cdot d\vec{\mathbf{S}} + \oint_{C} \vec{\mathbf{u}} \times \vec{\mathbf{B}} \cdot d\vec{\mathbf{l}}$$

In realtà, grazie ad un teorema di matematica differenziale (formula di Green), si può dimostrare che la somma di queste due quantità è pari alla legge di Faraday:

$$V_{ind} = V_{ind}^{tr} + V_{ind}^{mov} = -\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} + \oint_{C} \vec{u} \times \vec{B} \cdot d\vec{l} = -\frac{d\Phi(\vec{B})}{dt} = -\frac{d}{dt} \iint_{S} \vec{B} \cdot d\vec{S}$$

A seconda della geometria del problema può essere più conveniente utilizzare la forma generale oppure quella che evidenzia le variazioni del campo e della superficie.

Fem indotta in un conduttore mobile immerso in un campo B costante (bis)

Risolviamo il precedente problema con la legge di Faraday nella formulazione generale:

$$\begin{split} V_{ind} &= -\frac{d}{dt} \iint_{S} \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}} = -\frac{d}{dt} \int_{0}^{L} \int_{0}^{x(t)} B_{0} x dx dy = -\frac{d}{dt} \left[B_{0} \frac{x(t)^{2}}{2} L \right] \\ &= -\frac{d}{dt} \left[B_{0} \frac{(u_{x}t)^{2}}{2} L \right] = -B_{0} u_{x}^{2} L t \end{split} \qquad \text{Il risultato è perfettamente identico a quello trovato precedentemente} \end{split}$$

Legge di Faraday in forma differenziale

 Applichiamo il teorema di Stokes alla legge di Faraday in forma integrale

$$\oint_{l} \vec{\mathbf{E}} \cdot d\vec{\mathbf{l}} = \iint_{S} (\nabla \times \vec{\mathbf{E}}) \cdot \vec{\mathbf{n}} ds = -\frac{\partial}{\partial t} \iint_{S} \vec{\mathbf{B}} \cdot \vec{\mathbf{n}} ds$$

□ Dovendo essere vero per qualunque superficie S

$$\nabla \times \vec{\mathbf{E}} = -\frac{\partial}{\partial t} \vec{\mathbf{B}}$$
 \Box Legge di Faraday in forma differenziale

- ☐ Possiamo ancora definire una tensione tra due punti?
- ☐ Si', ma ora il risultato non coinciderà con la differenza di potenziale, dovendo dipendere dal percorso dell'integrale di linea

Generatore di tensione continua

APPLET: generatore di corrente alternata

(http://micro.magnet.fsu.edu/electromag/java/generator/ac.html)

APPLET: generatore di corrente continua

(http://micro.magnet.fsu.edu/electromag/java/generator/dc.html)

Autoinduzione

La corrente I(t) nel circuito crea un campo di induzione magnetica **B** che si concatena con la superficie del circuito stesso

Definiamo l'induttanza del circuito come

$$L = \frac{\Phi_B}{I}$$

L'induzione magnetica **B** si misura in Weber/ metroquadro Il flusso di **B** si misura in Weber.

Ne deriva che l'induttanza si misura in Weber/Ampere, unità di misura cui si dà il nome di Henry, (simbolo H).

Induttanza

• Si consideri una semplice spira percorsa da una corrente I variabile nel tempo: a causa della variazione del flusso autoindotto si crea una fem La f.e.m. indotta è proporzionale alla derivata del flusso concatenato di **B**. Questo è proporzionale alla corrente che scorre nella spira. Si ha in definitiva una relazione del tipo:

$$fem = -\frac{d\Phi_B}{dt} = -\frac{dLI}{dt} = -L\frac{dI}{dt}$$

Considerando che la corrente del circuito in figura entra dal morsetto positivo allora possiamo scrivere che la caduta di tensione ai capi dell'induttanza è V=-fem

(a) Simbolo circuitale

Induttanza in un circuito elettrico

Se nel circuito per un qualsiasi motivo varia la corrente si genera una f.e.m. che si oppone a tale variazione se la corrente diminuisce, la f.e.m. prodotta tende a farla aumentare, se invece la corrente aumenta, la f.e.m. prodotta tende a farla diminuire.

$$\mathcal{E} - L \frac{dI}{dt} = RI$$

Induttanza di solenoide lungo

Il campo lo conosciamo

$$\mathbf{B} = \mu_0 i n \ \mathbf{u}_z$$

n= numero di spire per unità di lunghezza

Il flusso è N volte quello prodotto da B in una singola spira

$$\Phi_T = N\Phi = (nl)SB = \mu_0 in^2 Sl$$

$$\downarrow L_0 = \mu_0 n^2 Sl$$

Induttanza in un cavo coassiale

- ☐ Ipotizziamo che il campo magnetico sia non nullo solo tra i due conduttori
- ☐ Legge di Ampère (B non dipende dall'angolo per simmetria)

$$2\pi rB = \mu_0 i \quad \Rightarrow \mathbf{B} = \frac{\mu_0 i}{2\pi r} \mathbf{i}_{\phi}$$

☐ Flusso attraverso ABCD:

$$\Phi(\mathbf{B}) = \int_{R_i}^{R_e} \frac{\mu_0 i}{2\pi r} l dr = \frac{\mu_0 i}{2\pi} l \ln \frac{R_e}{R_i}$$

□ Quindi l'induttanza è

$$L = \frac{\mu_0}{2\pi} l \ln \frac{R_e}{R_i}$$

Energia immagazzinata dall'induttore

Ma quant'è l'energia immagazzinata? consideriamo il circuito di prima

 Integriamo la potenza accumulata dal campo magnetico per avere l'energia

$$U_L = \int_0^t Li \frac{di}{dt} dt = \int_0^i Li di = \frac{1}{2} Li^2$$

Energia immagazzinata da un solenoide

• L'energia è

$$U = \frac{1}{2}Li^2 = \frac{1}{2}\mu_0(ni)^2 lS$$

La densità di energia: dividendo per il volume

$$u = \frac{U}{V} = \frac{1}{2}\mu_0(ni)^2 = \frac{1}{2\mu_0}B^2 = \frac{1}{2}\mu_0H^2$$

Il risultato è del tutto generale, e mostra come l'induttanza è un elemento che accumula energia magnetica

Mutua Induttanza

- ☐ Due bobine con campo magnetico variabile
- Consideriamo il caso di un solenoide ideale, sezione S, con avvolta sopra un'altra bobina: il solenoide al suo interno ha un campo pari a

$$B = \mu_0 I_1 N_1 / l$$

Facciamo variare la corrente nel solenoide; la seconda bobina (di sezione più grande) intercetta un flusso variabile

$$fem_2 = -N_2 S \frac{dB}{dt} = -\mu_0 N_1 N_2 \frac{S}{l} \frac{dI_1}{dt} = -M_{21} \frac{dI_1}{dt}$$

☐ Se immettessimo la corrente variabile nella seconda bobina, il conto sarebbe più complicato ma si otterrebbe

$$fem_1 = -M_{12} \frac{dI_2}{dt}$$

Mutua Induttanza

 \square Inoltre si troverebbe che $M_{12} = M_{21}$

Se le due bobine fossero alimentate contemporaneamente, comparirebbe anche il fenomeno dell'autoinduzione: varia il flusso concatenato di ciascuna bobina come effetto della variazione della propria corrente

$$fem_{1} = -L_{1} \frac{dI_{1}}{dt} - M_{12} \frac{dI_{2}}{dt}$$

$$fem_{2} = -M_{21} \frac{dI_{1}}{dt} - L_{2} \frac{dI_{2}}{dt}$$

Trasformatori

Figura 6.5 In un trasformatore le direzioni di I_1 e I_2 sono tali che il flusso Φ generato da una delle due correnti è opposto a quello generato dall'altra. La direzione dell'avvolgimento in (b) è opposta a quella in (a) e così risultano anche la direzione di I_2 e la polarità di V_2 .

APPLET: il laboratorio di Faraday: il trasformatore in aria http://phet.colorado.edu/en/simulation/faraday

APPLET: il trasformatore

http://micro.magnet.fsu.edu/electromag/java/transformer/

Trasformatori ideali

In un trasformatore ideale:

- 1) Tutto il campo magnetico è contenuto nel nucleo ferromagnetico
- 2) Non ci sono perdite negli avvolgimenti
- 3) Non ci sono perdite nel nucleo ferromagnetico

$$V_1 = -N_1 \frac{d\Phi}{dt}$$

$$V_2 = -N_2 \frac{d\Phi}{dt}$$

$$\frac{V_1}{V_2} = \frac{N_1}{N_2}$$

Il trasformatore è utilizzato per trasformare correnti, tensioni e impedenze tra il circuito primario e quello secondario