Summary

State-value function for golf-playing agent (Sutton and Barto, 2017)

Policies

- A **deterministic policy** is a mapping $\pi:S \to A$. For each state $s \in S$, it yields the action $a \in A$ that the agent will choose while in state ss.
- A **stochastic policy** is a mapping $\pi: S \times A \rightarrow [0,1]$. For each state $s \in S$ and action $a \in A$, it yields the probability $\pi(a|s)$ that the agent chooses action aa while in state ss.

State-Value Functions

• The **state-value function** for a policy π is denoted ν_{π} . For each state $s \in S$, it yields the expected return if the agent starts in state ss and then uses the policy to choose its actions for all time steps. That is,

$$v\pi(s) \doteq E\pi[Gt|St=s]$$

We refer to $v\pi(s)$ as the value of state ss under policy $vi\pi$.

• The notation $E_{\pi}[\cdot]$ is borrowed from the suggested textbook, where $E_{\pi}[\cdot]$ is defined as the expected value of a random variable, given that the agent follows policy π .

Bellman Equations

• The Bellman expectation equation for $v\pi$ is: $v\pi(s) = E\pi[R_{t+1} + \gamma v\pi(S_{t+1}) | S_{t} = s]$.

Optimality

• A policy π' is defined to be better than or equal to a policy π if and only if $v_{\pi'}(s) \ge v_{\pi}(s)$ for all $s \in S$.

- An **optimal policy** π_* satisfies $\pi_* \ge \pi$ for all policies π . An optimal policy is guaranteed to exist but may not be unique.
- All optimal policies have the same state-value function v_* , called the **optimal state-** value function.

Action-Value Functions

• The **action-value function** for a policy π is denoted $q\pi$. For each state $s \in S$ and action $a \in A$, it yields the expected return if the agent starts in state s, takes action s, and then follows the policy for all future time steps. That is,

$$q\pi(s,a) \doteq \mathbb{E}\pi[Gt|St=s,At=a]$$

We refer to $q_{\pi}(s,a)$ as the value of taking action a in state s under a policy π (or alternatively as the value of the state-action pair s,a).

• All optimal policies have the same action-value function q_* , called the **optimal action-value function**.

Optimal Policies

• Once the agent determines the optimal action-value function q_* , it can quickly obtain an optimal policy π_* by setting $\pi_*(s) = \arg\max_{a \in A(s)} q_*(s,a)$.