POUTRES EN TRACTION / COMPRESSION

Exercice 1 Traction Pure

Un tirant, constitué d'une barre rectiligne en acier supporte une sollicitation de traction pure $N=5000\ N$

Les caractéristiques du matériau sont les suivantes :

- Acier d'usage courant à 0,32 % de carbone (C32)
- Recuit à 860°
- Re = 370 MPa
- Rm = 650 MPa
- Module d'Young $E=2.10^5$ MPa
- Limite de fatigue σ_D = 270 MPa
- Allongement A%=20

Le but du TD est de dimensionner le Tirant .

Question 1. Calculer l'aire minimale de la section droite du tirant si la charge est appliquée de façon statique (aucune oscillation), en admettant un coefficient de sécurité s=1,2

Question 2. Tracer la répartition de la contrainte dans la section droite

Question 3. Définir les extrémités filetées en admettant un coefficient de concentration de contrainte au pied du filet k=2,5 et un chargement statique

Question 4. En appliquant la loi de Hooke, évaluer la variation de longueur du tirant pour une longueur initiale de 1m (prendre pour l'aire de la section droite la valeur trouvée en 1.)

Exercice 2 Solide d'égale contrainte

Un pillier de béton de hauteur h=6m est appuyé uniformément sur un sol horizontal.

Il supporte en tête une charge F dirigée vers le bas de 1,5.10⁶N.

La masse volumique du béton est estimée à 2,5.103kg/m3

La limite admissible en compression du béton vaut $\sigma_{\rm c}{=}20MPa$.

On prendra g=10m/s² pour l'accélération de la pesanteur.

Question 5. Déterminer la loi de variation de l'aire de la section droite S(z) (de centre G) du pilier pour qu'en tout point la contrainte soit égale à σ_C en fonction de :

- L'altitude $z = \overrightarrow{OG} \cdot \vec{z}$
- La hauteur h
- La masse volumique μ
- La charge F
- La contrainte admissible σ_c

Question 6. En déduire le diamètre de la base du pilier. Faire l'application numérique