Feature Selection Dr. Supaporn Erjongmanee Department of Computer Engineering Kasetsart University fengspe@ku.ac.th Department of Computer Engineering Supaporn Erjongmanee **Statistics in Computer Engineering**

Kasetsart University

1

fengspe@ku.ac.th

Current Trend of Data

- Data nowadays come with large size.
- Variables continuously grow
 - No more 2-3 variables
- Question: If we have 1000 variables, shall we analyze them all?
- Answer: It is better to select subset of variables to study

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 3

3

Feature Selection

- Selecting subset of variables
 - Given n features, how to select m best features
- Also known as variable selection
- Requirement
 - Criterion to select the best
- Performance stops increasing/decreasing
 Predefined number of features is reached.
- Algorithm to select features
- Common methods
 - Filter
 - Wrapper
 - Embedded

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 4

Δ

Feature Selection Benefit

- Why do we perform feature selection?
 - Less data storage
 - Less computation time
 - Easier in analysis (e.g., pattern recognition)
 - Removing redundant variables
 - Easier in visualizing
 - Improving performance

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 5

5

Terminology

- Collinearity
 - Correlation between independent variables
 - When two independent variables are highly correlated,
 - Normally, we remove one of them
 - Concern: Sometimes they must be used together to predict output.
 - Remove one variable -> Increase in p-value (model is worse).
- Multicollinearity
 - When >=2 variables are highly linearly

correlated

Image source: https://medium.com/future-vision/collinearity-what-it-means-why-its-bad-and-how-does-it-affect-other-models-94e1db984168

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering

Outline

- Introduction
- Feature Selection Methods
 - Filter Methods
 - Wrapper Methods
 - Embedded Methods

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 7

7

Filter Method

Independent of learning algorithm

- Generally used for pre-processing
- Given features $x_1, x_2, ..., x_n$, where $1 \le i \le n$, to predict output (dependent variable)
 - Use scoring function S(i) to assign ranks to each feature
 - Remove features with lowest ranks

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 8

Filter Method (cont.)

- Examples of scoring function
 - Missing Value
 - Variance
 - Correlation (R)
 - Mutual information : I(i)
 - Chi-squared test: measure dependency between features
 - Others: Markov blanket, Consistency-based filter.

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 9

9

Missing Value Ratio

- Compute percent (or ratio) of missing data
- Acceptable threshold for %missing data
 - ·~ 20-30%
- What to do if %missing data > threshold
 - Replace missing values with some other values
 - Drop such variable with large %missing values

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering

Variance Filtering

- Consideration:
 - Variables with low variance has small effect on target variable
- Solution
 - Remove variables with very small variance

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 11

11

Correlation Filtering

- When any two variables have high correlation, they are likely to have the same information
 - Normally, one of them can be dropped.
 - May need to consider overall performance after drop one of them
- Acceptable "high" correlation coefficient
 - $\cdot > 0.5 0.6$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 12

Filter Method (cont.)

- Mutual information: I(i)
 - Measure dependency between x_i and y

•
$$I(i) = \int_{x_i} \int_{y} p(x_i, y) \log \frac{p(x_i, y)}{p(x_i)p(y)} dxdy$$

- Can also be computed from
- $I(i) = \sum_{x} \sum_{y} P(X = x, Y = y) \log \frac{P(X = x, Y = y)}{P(X = x)P(Y = y)}$
- If x_i and y are independent I(i) = 0

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 13

Department of Computer Engineering Kasetsart University

13

Filter Method (cont.)

- Goal: Drop highly correlated variables + Keep independent variables
- Methods depends on data types

Source: https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering

Filter Method (cont.)

- Advantage
 - Simple
 - Not computationally intensive
 - Independent from learning model
- Disadvantage
 - In general, feature subset provides lower performance than the other methods
 - Do not consider collinearity among features

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 17

17

Outline

- Introduction
- Feature Selection Methods
 - Filter Methods
 - Wrapper Methods
 - Embedded Methods

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 18

Wrapper Method

- Repetitively select subset of features and test with learning model
- Adjust current subset based on performance from the last subset, until obtaining the best subset

- Equivalent to search algorithm
- Computationally intensive

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 19

19

Wrapper Method (cont.)

- Common methods:
 - Forward feature selection
 - Backward feature elimination
 - Recursive feature elimination
 - Others: Exhaustive feature selection, Bidirectional search

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 20

Forward Feature Selection

- Process of adding features
- Start with subset = no variable
- From each original variable, do the followings
 - 1. Derive model and compute performance
 - Choose one variable that results to highest improve of performance
 - Add variable in step 2 to subset and use with each of remaining variable to derive model
 - Go back to step 1 unless no addition of variable improves performance

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 21

21

Backward Feature Elimination

- Process of removing variables
- Start with subset = n original variables
- Do the followings:
 - 1. Derive model and compute performance
 - 2. Drop one variable that results to least improve of performance
 - Go back to step 1 unless no performance is improved

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 24

Recursive Feature Elimination

- Apply greedy algorithm
- Start with subset = n original variables -> Train model
- Obtain rank of performance for each variable (e.g., coefficient in regression)
- Do the followings:
 - Drop variable with lowest rank from subset
 - Use subset with remaining variables to train model
 - 3. Obtain rank of performance for each remaining variable
 - 4. Go back to step 1 unless all variables are used.

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 27

27

Wrapper Method (cont.)

- Advantage
 - Generally, provide best performance set of features
- Disadvantage
 - Computationally intensive
 - Some methods do not consider collinearity among features

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 28

Outline

- Introduction
- Feature Selection Methods
 - Filter Methods
 - Wrapper Methods
 - Embedded Methods

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 29 Department of Computer Engineering Kasetsart University

29

Embedded Method (cont.)

- Regularization: Adding penalty term during training model to remove insignificant variables
 - Regression
 - · Lasso, Ridge, Elastic net
- Tree-based Feature Importance

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 31

31

Regularization

| Model = Original_Regression + Penalty

- Add penalty during training model to remove insignificant variables
 - Lasso Regulation (L1)
 - During training, add penalty term (using absolute distance) to decrease some coefficients of variables to zero.

These variables are not significant. -> They can be removed

- Ridge Regulation (L2)
 - During training, add penalty term (using *square distance*) to decrease some coefficients of insignificant variables to zero.
- Elastic Net (L1/L2)
 - Combination of using both absolute distance and square distance in penalty

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering
Slide 32

Tree-Based Feature Importance

- Decision tree / Random forest concept
 - Classification model
 - Important variables are put on the top of the tree
 - Variables can be both categorical and numerical data
- Choose subset of significant variables from top of the tree Sex > Age > Sibsp

Image source: https://upload.wikimedia.org/wikipedia/commons/f/f3/CART_tree_titanic_survivors.png

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 33

33

Tree-Based Feature Importance (cont.)

- Feature importance is computed based on
 - Mean decrease accuracy
 - When a variable is left out from model, how much accuracy decreases
 - Mean decrease impurity
 - Impurity: probability of incorrect classification
 - When a variable is left out from model, how much impurity decreases

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering

Kasetsart University

Embedded Method (cont.)

- Advantage
 - Faster than wrapper methods
 - Better performance than filter methods
- Disadvantage
 - Bound to specific learning model

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 35

35

Conclusion

- Feature selection is to choose subset of original features for learning model
 - Aim to choose more relevant features to output
 - Save computation time and data storage
- Mainly there are 3 methods:
 - Filters: Correlation
 - Wrapper: Forward Feature Selection, Backward Feature Elimination
 - Embedded: Bounded to learning model
 - Example: Regression, Forest tree

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering

References

- 1. I. Guon and A. Elisse, "An introduction to variable and feature selection," Journal of Machine Learning Research, No. 3, pp.1157-1182, 2003, Available at http://www.ai.mit.edu/projects/imlr/papers/volume3/guvon03a/source/old.
 - http://www.ai.mit.edu/projects/jmlr/papers/volume3/guyon03a/source/old/guyon03a.pdf
- 2. B. Ghojogh, et.al., "Feature selection and feature extraction in pattern analysis: a literature review",
- 3. A. Jovic, et. al., "A review of feature selection methods in applications"
- 4. https://www.analyticsvidhya.com/blog/2016/12/introduction-to-feature-selection-methods-with-an-example-or-how-to-select-the-right-variables/
- 5. https://heartbeat.fritz.ai/hands-on-with-feature-selection-techniques-embedded-methods-84747e814dab

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 37

