

Introdução à Álgebra Linear para Inteligência Artificial

BACKGROUND

- Oficial Superior, com 28 anos de serviço na Marinha do Brasil;
- Colégio Naval;
- Escola Naval;
- Viagem de instrução de Guarda Marinha (VIGM) em 2001;
- 10 anos embarcado em navios de guerra;
 - 10 anos no CASNAV: Pesquisador e Gerente de Projetos na Divisão
- de Pesquisa Operacional;
- Professor de PO do CAAML, EsAO, CIASC e ECEME;
- Especialização em Instrumentação Matemática (UFF);
- Aperfeiçoamento em Matemática (IMPA);
- Governança em TI (FGV-RJ);
- Mestrado em Engenharia de Produção Pesquisa Operacional (COPPE/UFRJ);
- Doutorado e pós-doutorado em Sistemas, apoio à decisão e logística (UFF);
- Pós-doutorado em Ciências e Tecnologias Espaciais (ITA);
- Diretoria da Sociedade Brasileira de Pesquisa Operacional (SOBRAPO);
- Professor do MBA em Data Science e Analystcs (USP);
- Professor do Programa de Pós-graduação em Sistemas e Computação (IME).

www.linkedin.com/in/prof-dr-marcos-santos-45909763/

SUMÁRIO

Introdução

Representação de uma matriz

Matrizes Especiais

Exercícios

Adição e subtração de matrizes

Exercícios

Produto de um escalar por uma matriz

Matriz Transposta

Matriz Simétrica

Matriz Anti-Simétrica

Multiplicação de Matrizes

Exercícios

Matriz Identidade

Matriz Inversa

Exercícios

PRA VOCÊ QUE DESEJA SE TORNAR UM DATA SCIENTIST

PRA VOCÊ QUE DESEJA SE TORNAR UM DATA SCIENTIST

REFERÊNCIAS (da nossa aula especificamente)

INTRODUÇÃO - MATRIZES

	Time	Vitórias	Empates	Derrotas
1	São Paulo	28	8	7
2	Santos	19	5	14
3	Flamengo	17	10	11
4	Fluminense	16	13	9
5	Cruzeiro	18	6	14

Produção de grãos (em miT) no ano de 2005							
	soja	feijão	arroz	milho			
Sudeste	1000	250	400	600			
Centro-Oeste	3000	500	700	1200			
Sul	500	200	200	600			

Produção de grãos (em miT) no ano de 2006							
	soja	feijão	arroz	milho			
Sudeste	900	200	500	700			
Centro-Oeste	2700	450	600	1200			
Sul	600	300	100	450			

TABELA 1. Análise dos substratos utilizados no experimento. Chemical analyses of the substrates used in the experiment.

Subst.	pH (CaCl ₂)	Ca	Mg	K	С	МО	P	Fe	Mn	Cu	Zn	В	S	V
**	Z¢.	Cı	nol _c dm	-3	g	dm ³	276	Y.C.	11	ng dm		XC T		%
S1	5,30	2,52	0,70	0,12	7,82	13,45	10,95	9,06	51,85	0,06	2,32	0,91	4,20	054,9
S2	6,50	4,68	2,52	0,50	19,38	33,33	293,50	43,63	162,29	0,77	28,28	1,23	306,00	079,1
S3	6,70	6,14	4,22	0,94	32,98	56,73	499,80	86,29	174,36	1,39	31,17	1,60	528,00	085,7
S4	6,60	6,89	6,60	1,38	52,70	90,64	460,80	124,30	189,17	1,97	31,61	2,87	852,00	089,5
S5	6,90	7,29	5,63	1,06	51,17	88,01	544,80	89,20	165,46	1,82	31,46	2,61	726,00	090,5
S6	6,70	8,70	8,20	1,80	77,52	133,33	641,20	142,45	192,36	2,70	32,00	4,19	1.104,00	091,5
S7	6,70	13,20	10,67	3,52	92,51	159,12	642,40	127,79	171,67	3,56	26,08	11,44	1.416,00	093,5
S8	6,70	12,24	10,72	3,60	80,04	137,67	673,60	118,26	174,61	3,60	26,19	11,00	2.355,00	093,3
S9	6,50	15,73	11,82	3.92	128,76	221,47	681,60	122,03	161,52	3,69	26,18	12,32	3.030,00	092,7
S10	6,70	14,23	11,87	3,80	118,62	204,03	684,80	126,95	157,15	4,14	26,22	14,95	2.235,00	093,5
S11	6,70	14,87	11,91	3,92	139,78	240,42	704,80	118,72	147,87	4,02	26,19	15,87	3.090,00	093,7

^{*} Fonte: Laboratório de análises: SOLANÁLISE. Extrator Melich: K - P - Fe - Mn - Cu e Zn; Extrator KCl: Ca - Mg - Al; Extrator HCl 0,05N: B; Extrator Fosfato de Cálcio: S. ** (S1) 100% de solo; (S2) 90% de solo e 10% de composto orgânico; (S3) 80% de solo e 20% de composto orgânico; (S4) 70% de solo e 30% de composto orgânico; (S5) 60% de solo e 40% de composto orgânico; (S6) 50% de solo e 50% de composto orgânico; (S7) 40% de solo e 60% de composto orgânico; (S8) 30% de solo e 70% de composto orgânico; (S9) 20% de solo e 80% de composto orgânico; (S10) 10% de solo e 90% de composto orgânico; (S11) 100% de composto orgânico.

INTRODUÇÃO - ARTIGO

HIERARQUIZAÇÃO DE SISTEMAS ERP PARA UMA EMPRESA VENDEDORA DE AUTOMÓVEIS UTILIZANDO O **MÉTODO AHP**

MARCOS DOS SANTOS (Instituto Militar de Engenharia (IME))

marcosdossantos doutorado uff@yahoo.com.br

Cíntia Nunes Mourão (Centro Universitário Augusto Motta -UNISUAM)

cintianunes 125@gmail.com

Marcone Freitas dos Reis (SENAI CETIQT)

marconefreis11@gmail.com

Rubens Aguiar Walker (Universidade Federal Fluminense) rubens walker@hotmail.com

Ernesto Rademaker Martins (Instituto Militar de Engenharia -IME)

radmart@yahoo.com.br

Tabela 5 - Matriz de decisão do problema

Atualmente, os sistemas i necessários em empresa. finalidade controlar e dar

	MATRIZ	DE DECISÃO DO PROBL	<u>EMA</u>	
	CUSTO (Aquisição)	MANUTENÇÃO	TEMPO IMPLANTAÇÃO	SUPORTE
AUTO WEB	499,00	499,00	1,50	12
AUTO CERTO	600,00	270,00	0,50	8
AUTOLINE	650,00	140,00	1,00	12
	1.749	909	3	32

Fonte: Autores (2019)

INTRODUÇÃO - ARTIGOS PUBLICADOS

Anais do XLVIII SBPO Simpósio Brasileiro de Pesquisa Operacional Vitória, ES, 27 a 30 de setembro de 2016.

UMA ABORDAGEM MULTICRITÉRIO PARA SELEÇÃO DE UM NAVIO DE GUERRA DE MÉDIO PORTE A SER CONSTRUÍDO NO BRASIL

Marcos dos Santos (Brazilian Navy & UFF)

marcosdossantos doutorado uff@yahoo.com.br

Carlos Francisco Simões Gomes (Universidade Federal Fluminense - UFF)

cfsg1@bol.com.br

Altina Silva Oliveira (Universidade Federal Fluminense - UFF)

altinaoliveira@id.uff.br

Helder Gomes Costa (Universidade Federal Fluminense – UFF

hgc@latec.uff.br

Tabela 2: Matriz de Decisão

	Modelo 1	Modelo 2	Modelo 3
Raio de Ação	4000	9330	10660
Fuel Endurance	11	26	30
Autonomia	30	25	35
Canhão Principal	25	25	120
Canhão Secundário	1	2	2
Misseis AAW	0	1	1
Custo Inicial	R\$ 290.000.000	R\$ 310.000.000	R\$ 310.000.000
Custo Ciclo de Vida	R\$ 592.000.000	R\$ 633.000.000	R\$ 633.000.000
Tempo Construção	6 anos	8 anos	8 anos

Fonte: Autores (2016)

INTRODUÇÃO - ARTIGOS PUBLICADOS

ESCOLHA DA FORMA DE IMPLANTAÇÃO DE UM HOSPITAL INFORMATION SYSTEM (HIS) NA MARINHA DO BRASIL UTILIZANDO O MÉTODO MULTICRITÉRIO THOR 2

Naia Augusto Barud naiabarud@gmail.com UFF

Tabela 1: Alternativas e Critérios

Alternativas	Custo	Prazo	Dependência Tecnológica
Compra Comercial	R\$ 6.280.131,22	12	100
Software Livre + MB (customizado)	R\$ 583.989,83	78	40
Software Livre + FEMAR (customizado)	R\$ 4.206.620,55	36	50
Desenvolvimento pela MB	R\$ 523.989,83	130	10
Desenvolvimento pela FEMAR	R\$ 12.702.048,10	60	20
Desenvolvimento por Fábrica de <i>Software</i> Terceirizada	R\$ 16.837.941,22	60	30

Fonte: Autores (2020)

INTRODUÇÃO - ARTIGOS PUBLICADOS

ISAHP Article: A Style Guide for Individual Papers To Be Submitted to the International Symposium of the Analytic Hierarchy Process 2020, Web Conference.

APPLICATION OF THE AHP-TOPSIS-2N HYBRID METHOD FOR SELECTION OF AN ATTACK HELICOPTER TO BE ACQUIRED BY THE BRAZILIAN NAVY

ABSTRACT

This paper aims to apply the hybrid method AHP-TOPSIS-2N for the selection of an attack helicopter to be acquired by the Brazilian Navy. Six helicopter models, among the most used by the Armed Forces of developed countries, were compared. The selected helicopter would be employed in the fire support required by the Brazilian Marine Corps Amphibious Operations. The helicopters had seven criteria - maximum speed, payload, number of rockets, number of air-to-ground missiles, range, main cannon and amount of ammunition for the guns – evaluated by airship officers of the Brazilian Navy. The application of the method presented two lists of ordering and prioritization of the helicopters as result, providing a richer and more robust sensitivity analysis, which provides security, transparency and simplicity to the decision-making process. After the application of the method, the AH-64E APACHE and MI-35M helicopters were chosen as the most suitable to be acquired.

5. Data/Model Analysis

Based on the criteria and alternatives established above, the decision matrix is obtained (Table 1).

Table 1 - Decision Matrix.

	Cl	C2	C3	C4	C5	C6	C7
T129 ATAK	281	2710	20	500	76	16	537
Mi-35M	310	2400	23	470	80	20	460
BELL AH-1Z VIPER	370	2615	20	650	76	16	485
Ka-52K Katran	300	3300	30	460	80	12	460
Tiger HAD	271	2030	30	450	68	8	740
AH-64E APACHE	279	2835	30	1200	76	16	476

After applying the AHP-TOPSIS-2N hybrid modeling, the following result was obtained (Table 2).

Table 2 - Final Result.

1st	Normalization	2nd Normalization			
	Classification	Score		Classification	Score
AH-64E APACHE	First	0,7587	AH-64E APACHE	First	0,6852
Mi-35M	2nd	0,4791	Mi-35M	2nd	0,5684
BELL AH-1Z VIPER	Third	0,4421	Ka-52K Katran	Third	0,4965
T129 ATAK	4th	0,3778	BELL AH-1Z VIPER	4th	0,4785
Ka-52K Katran	5th	0,2809	T129 ATAK	5th	0,4333
Tiger HAD	6th	0,2037	Tiger HAD	6th	0,3204

REPRESENTAÇÃO DE UMA MATRIZ

Cada elemento da matriz tem um "endereço".

Vejamos uma matriz com 4 linhas e 5 colunas.

REPRESENTAÇÃO DE UMA MATRIZ

A matriz pode vir com uma regra de formação.

Vamos escrever a matriz
$$A = (a_{ij})_{2 \times 3}$$
 em que $a_{ij} = i - j$.

MATRIZES ESPECIAIS

1. Matriz Linha

2. Matriz Coluna

3. Matriz Nula

MATRIZES ESPECIAIS

4. Matriz Quadrada

5. Diagonal Principal

6. Diagonal Secundária

Comandante Marcos Santos, Prof. Dr.

Indique as matrizes $C = (c_{ij})_{4 \times 1}$, em que $c_{ij} = i^2 + j$, e $D = (d_{ij})_{1 \times 3}$, em que $d_{ij} = i - j$. Que matrizes especiais são essas?

ADIÇÃO E SUBTRAÇÃO DE MATRIZES

Adição de matrizes sinancira, temos: Dessa maneira, temos:

Dadas duas matrizes, $A = (a_{ij})_{m \times n}$ e $B = (b_{ij})_{m \times n}$, a matriz soma A + B é a matriz $C = (c_{ij})_{m \times n}$, em que $c_{ij} = a_{ij} + b_{ij}$ para todo i e todo j.

Exemplo:

Comandante Marcos Santos, Prof. Dr.

- Sejam as matrizes $A = (a_{ij})_{3 \times 2}$, em que $a_{ij} = i j$, e $B = (b_{ij})_{3 \times 2}$, em que $b_{ij} = i + j 1$.
- a) Determine a matriz C = A + B.
- b) Determine a matriz D = A B. Como você representaria, genericamente, um elemento d_{ij} de D?

Resolva as seguintes equações matriciais:

a)
$$X + \begin{pmatrix} 4 & 3 \\ 1 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 2 & 3 \\ 7 & 8 \end{pmatrix}$$

b)
$$X - \begin{pmatrix} 1 & 4 & 7 \\ -2 & 5 & -3 \end{pmatrix} = \begin{pmatrix} -1 & 2 & 11 \\ -3 & 4 & 1 \end{pmatrix}$$

PRODUTO DE UM ESCALAR POR UMA MATRIZ

Comandante Marcos Santos, Prof. Dr.

Sejam as matrizes
$$A = \begin{pmatrix} 2 & 4 \\ 1 & 5 \\ 0 & 7 \end{pmatrix} e B = \begin{pmatrix} 3 & -2 \\ -1 & 6 \\ 9 & 8 \end{pmatrix}$$
.

Determine as seguintes matrizes:

b)
$$A - 3B$$

MATRIZ TRANSPOSTA

MATRIZ SIMÉTRICA

MATRIZ ANTI-SIMÉTRICA

Comandante Marcos Santos, Prof. Dr.

Determine X em $3X + 2A = B^t + 2X$, se

$$A = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{3}{2} & 1 & -1 \\ 1 & 5 & -2 \end{bmatrix} e B = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 1 & 2 \\ -1 & 2 & 6 \end{bmatrix}.$$

MULTIPLICAÇÃO DE MATRIZES

Exemplo:

MULTIPLICAÇÃO DE MATRIZES

observações ——

- A definição garante a existência do produto AB quando o número de colunas de A é igual ao número de linhas de B.
- A matriz produto C = A · B é uma matriz cujo número de linhas é igual ao número de linhas de A e o número de colunas é igual ao número de colunas de B. Observemos o esquema abaixo:

$$A_{(m \times n)} \cdot B_{(n \times p)} = C_{(m \times p)}$$
garante a existência
do produto

Notemos que, se A é do tipo m × n e B é do tipo n × p, com p diferente de m, então AB existe, mas BA não existe, pois:

$$B_{(n \times p)} \cdot A_{(m \times n)}$$
 são diferentes!

Exemplo:

Comandante Marcos Santos, Prof. Dr.

- a) A·B c) A·C e) B·A^t
 b) B·A d) B^t·C

Sejam as matrizes $A = (a_{ij})_{6\times 3}$, em que $a_{ij} = i + j$, e $B = (b_{jk})_{3\times 4}$, em que $b_{jk} = 2j - k$. Sendo $C = (c_{ik})_{6\times 4}$ a matriz produto $A \cdot B$, determine o elemento c_{43} .

MATRIZ IDENTIDADE

Exemplos:

MATRIZ INVERSA

Definição

Seja A uma matriz quadrada de ordem n. A matriz A é dita inversível (ou invertível) se existir uma matriz B tal que:

$$A \cdot B = B \cdot A = I_n$$

Nesse caso, B é dita inversa de A e é indicada por A^{-1} .

Exemplo de matrizes inversas:

MATRIZ INVERSA

Definição

Seja A uma matriz quadrada de ordem n. A matriz A é dita inversível (ou invertível) se existir uma matriz B tal que:

$$A \cdot B = B \cdot A = I_n$$

Nesse caso, B é dita inversa de A e é indicada por A^{-1} .

Cálculo de matrizes inversas:

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right]$$

MATRIZ INVERSA (bizu)

Se A =
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, então
$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
, se ad - bc $\neq 0$

Cálculo de matrizes inversas de ordem 2:

$$\begin{bmatrix} 3 & 3 \\ 4 & 6 \end{bmatrix}_{2X2}$$

Comandante Marcos Santos, Prof. Dr.

- Verifique se $\begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix}$ é a inversa de $\begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$.
- Determine, se existir, a inversa da matriz
- 3. Seja A = $\begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix}$. Determine A^{-1} .
- Sejam as matrizes $A = \begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix} e B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

Determine: lat .s. x(1, b) = A xintam ab open

- a) $A^{-1} + B^{-1}$ b) $A^{-1} \cdot B^{-1}$
- . Determine, se existir, a matriz inversa de
- 5.

CASA DA PESQUISA OPERACIONAL

https://youtube.com/c/CasadaPesquisaOperacional

CASA DA PESQUISA OPERACIONAL

Também temos o nosso grupo de estudos no Telegram. Nesse grupo discutimos problemas, divulgamos vagas de emprego e estágio, sugerimos livros, indicamos cursos etc.

https://t.me/casadapesquisaoperacional

linkedin.com/in/marcos-santos-45909763

researchgate.net/profile/Marcos_Dos_Santos6

marcosdossantos_doutorado_uff@yahoo.com.br

COMANDANTE MARCOS DOS SANTOS, PROF. DR.