
Document Information	
Title	ERF3002
Subtitle	LTE Cat. M1, Cat. NB2 & GNSS Arduino Shield
Document type	Preliminary Datasheet
Document number	1
Revision and date	R1 17-03-2021

Product status

Mass Production

This document applies to the following products:

Name	Type number	version	Product status
ERF3002	ERF3002	1.0	Mass production

Contents

1 Functional description	
1.1 Product overview	
1.2 Product features	
2 Pin Assignment	
2.1 Arduino headers	
2.2 GPIO header	
2.3 UART header	
3 Interfaces	
3.1 Power	
3.1.1 Electrical Characteristics	
3.1.2 Power headers	
3.2 Antennas	
3.2.1 GNSS_ANT	10
3.2.2 Cellular_ANT	
3.3 Status LED's	10
3.4 SIM interface	1
3.5 UART interface	1
3.6 PCM and I2C interface	12
3.7 ADC interface	12
3.8 GPIO Interaface	13
3.9 GRFC Interface	1
3.10 Temperature Sensor	14
3.11 Current Measurement	1
4 Mechanical specifications	10
5 Product handling	10
6 Related documents	16
About easyRF	1
Ordering information	1
Technical support	1

Preliminary Datasheet ERF3002

ERF3002, LTE Cat. M1, Cat. NB2 & GNSS Arduino shield

1 Functional description

1.1 Product overview

The ERF3002 Arduino shield features the BG77 of Quectel Wireless Solutions. The BG77 is an ultra-compact LPWA module supporting LTE Cat M1, LTE Cat NB2 and integrated GNSS. It is fully compliant with 3GPP Rel-14 specification and provides maximum data rates of 588 kbps downlink and 1119 kbps uplink. It features ultra-low power consumption by leveraging the integrated RAM/flash as well as the ARM Cortex A7 processor supporting ThreadX, achieving up to 70% reduction in PSM leakage and 85% reduction in eDRX current consumption compared to its predecessor.

For easy evaluation of this low power consumption, there is an onboard current measurement system that provides mA accuracy (Range: 1mA ~ 500mA). This current monitoring system is a valuable tool to analyze the modules current consumption during startup, Idle mode, Connecting, and transmitting data.

Finally, there is also a temperature sensor on the shield to provide all the necessary tools to start building your application without having to design any hardware.

The ERF3002 combines the power of the BG77 with an easy to use Arduino platform and allows for rapid testing and development.

1.2 Product features

General fe	eatures			
	Dimensions		52.2 x 50 x 20 mm (± 1)	
	Weight		18 ± 1 g	
	Operating Temperature		-10 °C to +70 °C	
	Temperature Sensor	Range	-40°C to + 150°C ± 2.5°C (maximum)	
	(TMP235)	Accuracy	± 1°C (typical)	
	Current Measurement	Range	0.5 mA to 500 mA	
	(MAX9934T)	Accuracy	TBD	
ERF3002		USB	2.0 low-speed (1.5 Mbps) and full-speed (12 Mbps)	
EKF3UUZ		UART	3x	
		PCM	1x	
		ADC	2x (ADC0 connected to TMP235 temp sensor)	
	Interfaces	GPIO	7x	
		USIM	1 x (1.8V)	
		NETLIGHT	Network Status Indication	
	STATUS		Power ON/OFF Status Indication	
	Cat M1 Supported Band	ls	LTE-FDD:	
			B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B26/B27/B28	
			/B66/B85*	
	Cat NB2 Supported Ban	ds	LTE-FDD:	
			B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B28/B66/B71	
			/B85*	
	Output Power		Max. Power: 21dBm	
	LTE version		3GPP E-UTRA release 14	
BG77	GNSS		GPS, GLONASS, BeiDou, Galileo, QZSS	
ВСТТ	Cat M1 Data Speed		Max. 588 kbps (DL) / 1119 kbps (UL)	
	Cat NB2 Data Speed		Max. 127 kbps (DL) / 158.5 kbps (UL)	
	Protocols		PPP/TCP/UDP/SSL/TLS/FTP(S)/HTTP(S)/NITZ/PING/MQTT/LwM2	
			M/CoAP/IPv6*	
	SMS		Point to point MO and MT, SMS cell broadcast, Text and PDU	
			mode	
	Voice		VoLTE (For Cat M1 Only)	
	Firmware upgrade		DFOTA(Delta Firmware Over the Air) , USB interface	
	Control via AT comman	ds	Through Arduino "Software Serial" interface , of through the	
			USB interface on the shield	

2 Pin Assignment

2.1 Arduino headers

The ERF3002 shield is designed to be an Arduino shield. Below, the interface to the Arduino board can be found.

I/O Parameter Definition

Туре	Description
10	Bidirectional
DI	Digital input
DO	Digital output
PI	Power input
PO	Power output
Al	Analog input
AO	Analog output
OD	Open drain

Header	Name	Power domain	1/0	Description
Arduino header	3.3V	3.3V	PI / PO	External input to power shield (maximum 3.3V). Can also be used to supply external board when ERF3002 is connected to USB port
Arduino header	5V (VIN)	5V	PI / PO	External input to power shield (maximum 5V). Can also be used to supply external board when ERF3002 is connected to USB port.
Arduino header	GND	-	-	Ground
Arduino header	GND	-	-	Ground
Arduino header	5V (VIN)	5V	PI / PO	External input to power shield (maximum 5V). Can also be used to supply external board when ERF3002 is connected to USB port.
Arduino header	ADC _MCU	3.3V	AO	Analog output of current measurement system
Arduino header	GND	-	-	Ground
Arduino header	RXD_MCU	V_level_shifter	DI	Receive data
Arduino header	TXD_MCU	V_level_shifter	DO	Transmit data
Arduino header	MCU_BG77_POWER	3.3V	DI	Turn module On/Off (active high)
Arduino header	MCU_BG77_RESET	3.3V	DI	Reset module (active high)
Arduino header	BG77_ADC_CS	3.3V	DI	Enable current measurement system (active high)

.....

2.2 GPIO header

The GPIO header is connected to all the GPIO related I/O's from the Quectel module on the shield.

Header	Pin No.	Name	Power domain	1/0	Description
GPIO	1	BG77_GPIO4	1.8V	10	General purpose input / output
GPIO	2	BG77_PCM_CLK	1.8V	DO	PCM clock output
GPIO	3	BG77_GPIO1	1.8V	10	General purpose input / output
GPIO	4	BG77_PCM_DOUT	1.8V	DO	PCM data output
GPIO	5	BG77_GPIO6	1.8V	Ю	General purpose input / output
GPIO	6	BG77_PCM_DIN	1.8V	DI	PCM data input
GPIO	7	BG77_GNSS_TXD	1.8V	DO	GNSS UART transmit
GPIO	8	BG77_GPIO2	1.8V	10	General purpose input / output
GPIO	9	BG77_GNSS_RXD	1.8V	DI	GNSS UART receive
GPIO	10	BG77_I2C_SCL	1.8V	OD	I2C serial clock (external pull-up
					resistor is required)
GPIO	11	BG77_PCM_SYNC	1.8V	DO	PCM data frame sync
GPIO	12	BG77_ I2C_SDA	1.8V	OD	I2C serial data (external pull-up
					resistor is required)
GPIO	13	BG77_GPIO7	1.8V	10	General purpose input / output
GPIO	14	BG77_ADC0	0.1V to 1.8V	Al	Analog to digital converter
GPIO	15	BG77_GPIO3	1.8V	10	General purpose input / output
GPIO	16	BG77_AP_READY	1.8V	DI	Application processor ready
GPIO	17	BG77_GPIO5	1.8V	10	General purpose input / output
GPIO	18	BG77_W_DISABLE	1.8V	DI	Airplane mode control
GPIO	19	BG77_ADC1	0.1V to 1.8V	Al	Analog to digital converter
GPIO	20	BG77_GRFC2	1.8V	DO	Generic RF controller (Do not pull up
					before startup)
GPIO	21	BG77_DBG_RXD	1.8V	DI	Debug UART receive
GPIO	22	BG77_PON_TRIGGER	1.8V	DI	Wake up the module from PSM
					(trigger on rising-edge)
GPIO	23	BG77_DBG_TXD	1.8V	DO	Debug UART transmit
GPIO	24	BG77_GRFC1	1.8V	DO	Generic RF controller (Do not pull up
					before startup)

2.3 UART header

The UART header is connected to all UART1 related I/O's from the Quectel module on the shield. All these signals are connected to the level shifter. Depending on the position of the level shift header, the voltage of the signals will be 3.3V or 5.0V.

Header	Pin	Name	Power	1/0	Description
	No.		domain		
UART	1	GND	-		Ground
UART	2	GND	-		Ground
UART	3	VCC_LVL	V_level_shifter	PO	Can be used to supply external board with
					V_level_shifter
UART	4	RXD	V_level_shifter	DI	Receive data
UART	5	RTS	V_level_shifter	DI	Request to send
UART	6	TXD	V_level_shifter	DO	Transmit data
UART	7	CTS	V_level_shifter	DO	Clear to send
UART	8	DTR	V_level_shifter	DI	Data terminal ready (Sleep mode control)
UART	9	DCD	V_level_shifter	DO	Data carrier detection
UART	10	RI	V_level_shifter	DO	Ring indicator

3 Interfaces

3.1 Power

The ERF3002 shield must be supplied through the USB connector, or the VIN pins (5V) on the Arduino header. Voltage must be stable during module operation, taking into account that the current drawn from VCC pins may vary significantly based on the power consumption profile of the IoT system.

Alternatively the shield can also be powered directly through the Arduino header 3.3V pin*.

*When powering the shield through an 3.3V Arduino pin, please keep in mind the voltage must be stable and can't exceed 3.3V.

3.1.1 Electrical Characteristics

Electrical characteristics (ERF3002)				
Parameter	Min.	Тур.	Max.	Unit
VIN	4.8	5.0	5.2	V
VCC (after LDO)	3.0	3.3	3.5	V
Current draw	-	-	500	mA

Current consumption (BG77 module)			
Consumption	LTE Cat M1	Power saving mode	3.2uA
	(typical)	Idle State	19.7mA
		Sleep State	1.63mA @DRX=1.28s
			0.76mA @e-I-DRX=80.92s,
			PTW = 20.48s
		LTE Connected Mode	228mA @21dBm GNSS off
	LTE Cat NB1	Power saving mode	3.2uA
	(typical)	Idle State	15.8mA
		Sleep State	1.5mA @DRX=1.28s
			0.79mA @e-I-DRX=81.92s,
			PTW = 20.48s
		LTE Connected Mode	165mA @21dBm, GNSS off

3.1.2 Power headers

The Shield has 2 power headers, the level shift header and the current measurement header. These are marked with a red box on the following picture:

The level shift header must be placed on either 3.3V (pin 1 and 2) or 5V (Pin 2 and 3), this depends on the microprocessor board used in combination with the shield.

The current measurement header can be soldered on the shield as a reference point for the current measurement system, or this header can be used to supply external boards with 3.3V and use the ERF3002 current measurement to measure the consumed current of external electronics*.

*For more information regarding the current measurement, please see the <u>ERF3002 User guide.pdf</u>

www.easyRF.eu

info@easyRF.eu

rev. -1Subject to change without notice

3.2 Antennas

The ERF3002 uses 2 antennas, 1 GNSS antenna and 1 cellular antenna.

3.2.1 GNSS_ANT

To be defined

3.2.2 Cellular_ANT

The ERF4061 antenna is a GSM PCB antenna. The antenna can be used in the frequency band of $800^{900} / 1500 / 2100^{2300}$ MHz. The antenna can be used for applications, GSM, M2M, NB-IoT and CAT-M.

3.3 Status LED's

The shield has 3 LED's to give an indication of the current status of the shield.

Led	Color	State	Description
PWR	Green	Always on	Shield is powered
		Always off	Shield is not powered
STAT	Red	0.2s on/1.8 off	Searching for network
		1.8s on/0.2s off	Connected to network
		0.125s on/0.125s off	Data transfer is ongoing
		Always on	Voice calling
NET	Yellow	Always on	Module on
		Always off	Module off

^{*}For more information see ERF4061 datasheet

3.4 SIM interface

To register and connect to a network, a SIM card needs to be inserted and activated.

When an activated SIM is inserted, the functionality of the SIM card should be checked with AT+CIMI and AT+QCCID.* The Attend model number of the SIM card socket is 115U-A000.

*For more information see: <u>BG77_AT_Manual.pdf</u>

3.5 UART interface

The ERF3002 shield provides 3 UART ports:

Interface	Supported Baud rates	Description
Main UART	9600, 19200, 38400, 57600, 115200,	The main UART port, this is used for data
	230400, 460800 and 921600bps (115200 is	transmission and AT command communication
	the default value)	
Debug UART	115200bps	The debug UART port, used for debugging and log
		output
GNSS UART	115200bps	The GNSS UART port, used for outputting GNSS and
		NMEA sentences

The Main UART interface can be found on the UART header. All signals are routed through a level shifter. The voltage of the signals can either be 3.3V or 5.0V. this is dependent on the position of the level shift header.

Both the Debug and GNSS UART can be found on the GPIO header, both are in the 1.8V domain.

Please see chapter <u>2.2 GPIO header</u> and <u>2.3 UART header</u> for more details regarding the exact location of the UART signals.

www.easyRF.eu

3.6 PCM and I2C interface

The BG77 provides one Pulse Code Modulation (PCM) digital interface and one I2C interface. These can be used in combination with an audio codec.

The following figure shows a reference design of PCM and I2C interfaces with an external codec.

3.7 ADC interface

The module provides two analog-to-digital converter (ADC) interfaces.

The onboard temperature sensor is connected to ADCO.

AT+QADC=0 command can be used to read the voltage value on ADC0 pin.

AT+QADC=1 command can be used to read the voltage value on ADC1 pin.

For more details about the AT command, please refer to BG77 AT Manual.pdf

Parameter	Min.	Typical	Max.	Unit
Voltage range*	0.1		1.8	V
Resolution		64.979		μV
Analog Bandwidth		500		kHz
Sample Clock		4.8		MHz
Input Resistance	10			МΩ

^{*}ADC input voltage must not exceed 1.8V, and it is prohibited to supply any voltage to ADC pin when VBAT is removed. Finally use of a resistor divider is recommended

3.8 GPIO Interaface

The module provides seven* general-purpose input and output (GPIO) interfaces.

AT+QCFG="gpio" command can be used to configure the status of GPIO pins.

For more details about the AT command, please refer to **BG77 AT Manual.pdf**.

*GPIO5 is a BOOT_CONFIG pin. Don't pull up before module power on.

Logic Levels of the GPIO interfaces

Parameter	Min.	Max.	Unit
$V_{Input\ Low}$	-0.3	0.6	٧
$V_{Input\ High}$	1.2	2.0	V
$V_{Output\ Low}$	0	0.45	V
$V_{Output\ High}$	1.35	1.8	V

3.9 GRFC Interface

The BG77 module provides two generic RF control interfaces for the control of external antenna tuners.

Logic levels of GRFC interface

Parameter	Min.	Max.	Unit
V_{OL}	0	0.45	V
V_{OH}	1.35	1.8	V

Truth table of GRFC interface

GRFC1 Level	GRFC2 Level	Frequeny Range (MHz)	Band
Low	Low	880-2200	B1, B2, B3, B4, B8, B25, B66
Low	High	791-894	B5, B18, B19, B20, B26, B27
High	Low	698-803	B12, B13, B14, B28, B85
High	High	617-698	B71

^{*}GPIO7 can be multiplexed as fast shutdown pin.

3.10 Temperature Sensor

The TMP235 Temperature sensor is connected to ADCO on the BG77, and can be read out using AT+QADC=0.

Because the TMP235 has a 3.3V max analog output signal, a resistor divider is used to lower the output voltage. The resistor divider consists of $2x\ 10\ K\Omega + / - 0.1\%$ resistors to effectively cut the analog output voltage in half and keep it from crossing the 1.8V boundary.

To convert the voltage read from the ADCO pin on the BG77 module into temperature, please use the following formula:

$T_{A,RANGE}$ (°C)	V_{RANGE} (mv)	T_{INFL} (°C)	T_C (mV/°C)	V_{OFFS} (mV)
-40 to +100	< 1500	0	10	500
+100 to +125	1500 to 1752.5	100	10.1	1500
+125 to +150	>1752.5	125	10.6	1752.5

$$T_A = \frac{((2*V_{OUT}) - V_{OFFS})}{(T_C + T_{INFL})}$$

Example:

AT+QADC=0 +QADC: 1,390

OΚ

$$T_A = \frac{((2*390) - 500)}{(10+0)} = 28^{\circ} \mathbf{C}$$

www.easyRF.eu

info@easyRF.eu

rev. -1Subject to change without notice

3.11 Current Measurement

The MAX9934F current sense chip can be used to measure the current consumption of the BG77 module during the different modes. When this data is plotted vs. time you can get a good graphical image of the consumed current by the module.

To convert the voltage measured on the ADC pin into current, please use the following formula:

Parameter	Value	Unit	Description
V_{CC}	3.3	V	Voltage coming from LDO
R_{Sense}	0.015	Ω	Sense resistor
G_{M}	25	μA/mV	Gain of the current sense chip
R_{Out}	16.9	kΩ	Output resistor Current sense chip
ADC_{res}	1024	bits	Arduino UNO ADC resolution is 10 bit
			$(2^{10} = 1024)$
ADC_{read}	-	bits	ADC value read from ADC pin
I_{Load}	-	Α	Current consumption

$$I_{Load} = \frac{V_{CC} \cdot ADC_{read}}{(R_{Sense} \cdot R_{Out} \cdot G_M \cdot ADC_{res})}$$

Example:

$$I_{Load,min} = \frac{3.3 \cdot 1}{(0.015 \cdot 16.9 \cdot 25 \cdot 1024)} = 0.509 \text{ mA}$$

$$I_{Load,max} = \frac{3.3 \cdot 1024}{(0.015 \cdot 16.9 \cdot 25 \cdot 1024)} = 520.71 \text{ mA}$$

Example of plotted data:

*Captured on ERF3002 shield with Saleae Logic Analyser

www.easyRF.eu

info@easyRF.eu

rev. -1Subject to change without notice

4 Mechanical specifications

W

Parameter	Dimension
W (Width)	50 ± 1 mm
L (Length)	52 ± 1 mm
H (Height)	19 ± 1 mm

5 Product handling

6 Related documents

Document	Distributor
ERF4061 GSM Datasheet	easyRF
TBD GNSS Datasheet	easyRF
Quectel_BG77_AT_Commands_Manual.pdf	Quectel / TOP-electronics
ERF3002 User Guide.pdf	easyRF

About easyRF

easyRF is supplier and manufacturer of wireless communication solutions with an easy-to-use approach, targeting different applications and markets. The products are standard off-the-shelf products, but customization of the products is possible.

easyRF is successful in the a wide range of markets, such as: industrial, agriculture, security, building automation.

Ordering information

Please check <u>www.easyRF.eu</u> or <u>www.TOP-electronics.com</u> for more information. The shield is available as the following packages:

Package	ERF3002
Includes	- BG77 Arduino shield
	- GSM antenna
	- GNSS antenna
	- USB cable

Technical support

For all product related questions please contact us via info@easyRF.eu
Or through our distributor, TOP-electronics via support@top-electronics.com