1 LEC6:

1 Lec6:

1.1 Def: converging sequences

 (\mathbf{x}_n) converges to L if given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|x_n - L| < \epsilon \quad \forall m \geq N$.

n

1.2 Example:

Show that

$$\lim_{m \to \infty} \frac{3m+2}{m+1} = 3$$

using the definition of convergence.

We need to show that given $\epsilon>0,\ \exists N\in\mathbb{N}$ such that $|\frac{3m+2}{m+1}-3|<\epsilon, \forall n\geq N$

We compute

$$\left|\frac{3m+2}{m+1} - 3\right| = \left|\frac{3m+2 - (3m+3)}{m+1}\right| = \left|-\frac{1}{m-1}\right| = \frac{1}{m+1} < \frac{1}{m}$$

Given $\epsilon > 0$, by the archimeadia property, $\exists N \in \mathbb{N}, \frac{1}{N} < \epsilon$ Then, $\forall m \geq N$, we have

$$|\frac{3m+2}{m+1}-3|<\frac{1}{m}\leq\frac{1}{N}<\epsilon$$

1.3 Theorem (Uniqueness of Limits):

Suppose that $L_1, L_2 \in \mathbb{R}$ and (x_n) is a sequence in \mathbb{R} such that $\lim_{n\to\infty} x_n = L_1$, and $\lim_{n\to\infty} x_n = L_2$. Then $L_1 = L_2$

Proof: observe that if $b \in \mathbb{R}$, $b \ge 0$ such that $b < \epsilon \forall \epsilon > 0$, then b = 0 by the Archimedian property.

So to show that $L_1 = L_2$, it suffices to prove that $|L_1 - L_2| < \epsilon \ \forall \epsilon > 0$. For $m \in \mathbb{N}$, we have

$$|L_1 - L_2| = |L_1 - x_n + x_n - L_2| \le |L_1 - x_n| + |x_n - L_2| \tag{*}$$

1 LEC6:

Let $\epsilon > 0$ be given, since $\lim_{m \to \infty} x_n = L_1$, then $\exists N_1 \in \mathbb{N}$ such that

$$|x_m - L_1| < \epsilon/2, \forall m \ge N_1$$

.

Similarly, we can show that since $\lim_{m\to\infty} x_n = L_2$, then $\exists N_2 \in \mathbb{N}$ such that

$$|x_m - L_2| < \epsilon/2, \forall m \ge N_2$$

. Set $N = max\{N_1, N_2\}$, then from (*) we have

$$|L_1 - L_2| < \epsilon/2 * 2 = \epsilon$$

Since $\epsilon > 0$ is arbitrary, it follows that

$$|L_1 - L_2| = 0 \Rightarrow L_1 = L_2$$

1.4 Def 2.5:

We say that a sequence $(\mathbf{x}_n \text{ in } \mathbb{R})$ is bounded if there is $M \in \mathbb{R}$ such that

$$|x_n| \le M, \forall m \in \mathbb{N}$$

that is, $\mathbf{x}_n \in [-M, M], \forall m \in \mathbb{N}$

1.5 Theorem 2.6

Every convergent sequency (x_n) is bounded.

Proof: We need to find $M \in \mathbb{R}$ such that $|x_n| \leq M, \forall m \in \mathbb{N}$. Let $L \in \mathbb{R}$ such that $\lim_{n \to \infty} x_n = L$. We have $\forall n \in \mathbb{N}$

$$|x_n| = |x_n - L + L| \le |x_n - L| + |L|$$

Take $\epsilon = 1$, then there exists N such that

$$|x_n - L| < 1, \forall m > N$$

1 LEC6: 3

Set

$$M = Max\{1 + |L|, |x_1|, |x_2|, ..|x_{N-1}|\}$$

Then for m < N, we have $|x_n| \le M$, also, for $m \ge N$, we have

$$|x_n| \le |x_n - L + L| < 1 + |L| \le M$$

. Hence, (\mathbf{x}_n) is bounded.

1.6 Example

Consider the sequence $((S_m)_{m=1}^{\infty})$, where

$$S_m = 1 + 1/2 + 1/3 + \dots + 1/m$$

Show that (S_m) is unbounded and conclude that S_n diverges

It suffices to show that the sequence S_m that have $m=2^k, \forall k \in \mathbb{N}$, this sequence is unbounded.

We have

$$S_2 = 1 + 1/2, k = 1$$

$$S_4 = 1 + 1/2 + 1/3 + 1/4 > 1 + 1/2 + 1/4 + 1/4 = 1 + 2 * 1/2, k = 2$$

The idea is to show by induction that $S_{2^k} = 1 + 1/2 + ... + 1/2^k > 1 + k * 1/2$