CS 344: Design and Analysis of Computer Algorithms

(Spring 2022 — Sections 5,6,7,8)

Lecture 15: Graph Reductions, Graph Search: DFS

Graph Reductions

Graph Reductions

- Model the given problem as a graph problem
 - Specify exactly how you can get your graph from the input of the original problem
- Run any black-box algorithm for the graph problem you specified
- Translate back the solution to the graph problem to the solution of your original problem

0	1	0	1	0	0	0	1	0	1
0	0	0	1	0	0	1	1	0	1
0	0	1	1	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1
0	1	0	0	0	1	0	1	1	0
1	1	1	0	0	1	1	1	0	0
0	0	0	1	0	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	1	1	1	0
0	0	0	0	1	1	1	0	0	0

0	1	0	1	0	0	0	1	0	1
0	0	0	1	0	0	1	1	0	1
0	0	1	1	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1
0	1	0	0	0	1	0	1	1	0
1	1	1	0	0	1	1	1	0	0
0	0	0	1	0	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	1	1	1	0
0	0	0	0	1	1	1	0	0	0

0	1	0	1	0	0	0	1	0	1
0	0	0	1	0	0	1	1	0	1
0	0	1	1	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1
0	1	0	0	0	1	0	1	1	0
1	1	1	0	0	1	1	1	0	0
0	0	0	1	0	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	1	1	1	0
0	0	0	0	1	1	1	0	0	0

0	1	0	1	0	0	0	1	0	1
0	0	0	1	0	0	1	1	0	1
0	0	1	1	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1
0	1	0	0	0	1	0	1	1	0
1	1	1	0	0	1	1	1	0	0
0	0	0	1	0	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	1	1	1	0
0	0	0	0	1	1	1	0	0	0

0	1	0	1	0	0	0	1	0	1
0	0	0	1	0	0	1	1	0	1
0	0	1	1	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1
0	1	0	0	0	1	0	1	1	0
1	1	1	0	0	1	1	1	0	0
0	0	0	1	0	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	1	1	1	0
0	0	0	0	1	1	1	0	0	0

0	1	0	1	0	0	0	1	0	1
0	0	0	1	0	0	1	1	0	1
0	0	1	1	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1
0	1	0	0	0	1	0	1	1	0
1	1	1	0	0	1	1	1	0	0
0	0	0	1	0	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	1	1	1	0
0	0	0	0	1	1	1	0	0	0

0	1	0	1	0	0	0	1	0	1
0	0	0	1	0	0	1	1	0	1
0	0	1	1	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1
0	1	0	0	0	1	0	1	1	0
1	1	1	0	0	1	1	1	0	0
0	0	0	1	0	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	1	1	1	0
0	0	0	0	1	1	1	0	0	0

- Input: A pixel map and a starting point
 - An input 2D-array A[1:k][1:k] with entries in {0,1}.
 - A single cell i_s, j_s with $A[i_s][j_s] = 0$ as the starting point
- Output: Find the cells colored by the fill coloring of this pixel map
 - Color starting point,
 - go to any neighboring cell (left, right, top, down) with 0-value in the matrix and color them, go to the neighbor of any cell colored
 - continue until no new cell can be colored

Graph Search

Input:

- An undirected graph G=(V,E)
- A starting vertex s

Output

- All vertices in the connected component of G that contains s
 - Vertices reachable from s in the graph via some path

Reducing Fill Coloring to Graph Search

- Algorithm for Fill Coloring (Reduction):
 - Create a graph G = (V, E) with $n = k^2$ vertices as follows:
 - For any cell (i, j) in the array A create a vertex $v_{i,j}$
 - For any neighboring cells (i, j) and (x, y) if both A[i][j] = A[x][y] = 0 then add an edge $(v_{i,j}, v_{x,y})$.
 - Define the starting vertex of search as $s = v_{i_s,j_s}$ where (i_s,j_s) is the starting point in the fill coloring problem
 - Run any graph search algorithm on G and s and return all cells (i,j) where their corresponding vertex $v_{i,j}$ is output by the search algorithm

0	1	0	1	0	0	0	1	0	1
0	0	0	1	0	0	1	1	0	1
0	0	1	1	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1
0	1	0	0	0	1	0	1	1	0
1	1	1	0	0	1	1	1	0	0
0	0	0	1	0	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	1	1	1	0
0	0	0	0	1	1	1	0	0	0

Graph Search Algorithm

• We prove that the set of cells that should be fill colored is exactly the same as the connected component of the vertex v_{i_s,j_s}

- We prove that the set of cells that should be fill colored is exactly the same as the connected component of the vertex v_{i_s,j_s}
- Part one: any cell that needs to be colored corresponds to a vertex in the connected component of v_{i_c,j_c}
- Part two: any vertex in the connected component of v_{i_s,j_s} corresponds to a cell that needs to be colored

- We prove that the set of cells that should be fill colored is exactly the same as the connected component of the vertex v_{i_s,j_s}
- Part one: any cell that needs to be colored corresponds to a vertex in the connected component of v_{i_c,j_c}
- Part two: any vertex in the connected component of v_{i_s,j_s} corresponds to a cell that needs to be colored

• We should remember to prove **both parts**!

• Part one: any cell that needs to be colored corresponds to a vertex in the connected component of v_{i_s,j_s}

Proof:

- Part two: any vertex in the connected component of v_{i_s,j_s} corresponds to a cell that needs to be colored
- Proof:

Runtime Analysis

- Creating the graph G = (V, E) takes $O(k^2)$ time
- This graph has $n = \Theta(k^2)$ & $m = \Theta(k^2)$
- Let Search(n, m) denote the runtime of the best algorithm for doing a graph search on a graph with n vertices and m edges
- Runtime of our algorithm is $O(k^2 + Search(\Theta(k^2), \Theta(k^2)))$
- In the next lecture, we design different algorithms for graph search and show that Search(n, m) = O(n + m)
- This makes our runtime $O(k^2)$

Graph Search Algorithm 1: Depth-First-Search (DFS)

Graph Search

Input:

- An undirected graph G=(V,E)
- A starting vertex s

Output

- All vertices in the connected component of G that contains s
 - Vertices reachable from s in the graph via some path

A Simple Solution?

- Run the following algorithm on s recursively, i.e., DFS(s)
- **DFS**(u):
 - Output u as part of the connected component
 - For $v \in N(u)$ recursively run DFS(v)

The Actual DFS

- Create an array mark[1:n] = 'false' initially
- Run the following algorithm on s recursively, i.e., DFS(s)
- **DFS**(u):
 - If mark[u] = 'true', terminate; otherwise mark[u] = 'true'
 - For $v \in N(u)$ recursively run DFS(v)
- Output all marked vertices as the connected component of s

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

The Actual DFS

- Create an array mark[1:n] = 'false' initially
- Run the following algorithm on s recursively, i.e., DFS(s)
- **DFS**(u):
 - If mark[u] = 'true', terminate; otherwise mark[u] = 'true'
 - For $v \in N(u)$ recursively run DFS(v)
- Output all marked vertices as the connected component of s

Proof of Correctness

- Create an array mark[1:n] = 'false' initially
- Run the following algorithm on s recursively, i.e., DFS(s)
- **DFS**(u):
 - If mark[u] = 'true', terminate; otherwise mark[u] = 'true'
 - For $v \in N(u)$ recursively run DFS(v)
- Output all marked vertices as the connected component of s

 Set of marked vertices is exactly the CC of s

Proof of Correctness

Runtime Analysis

- Create an array mark[1:n] = 'false' initially
- Run the following algorithm on s recursively, i.e., DFS(s)
- **DFS**(u):
 - If mark[u] = 'true', terminate; otherwise mark[u] = 'true'
 - For $v \in N(u)$ recursively run DFS(v)
- Output all marked vertices as the connected component of s

- We have n subproblems
- The subproblem for vertex v takes O(1+deg(v)) time
- So total runtime is

$$O(\sum_{v \in V} (1 + \deg(v)))$$

• We have
$$\sum_{v \in V} \deg(v) = 2m$$

• So runtime is O(n+m)

Further Extensions

- Can we find a path between all pairs of vertices in the connected components?
- A spanning tree: a subgraph of G which connects all vertices in the connected component of s and is additionally a tree
 - tree: a graph with no cycles

Spanning Tree: Example

Spanning Tree: Example

Spanning Tree: Example

In every tree, there is a unique path between every pairs of vertices

The DFS-Tree Algorithm

- Create an array mark[1:n] = 'false' initially
- Run the following algorithm on s recursively, i.e., DFS-Tree(s)
- DFS-Tree(u):
 - Set mark[u] = 'true'
 - For $v \in N(u)$:
 - If mark[v] = 'false', add the edge (u,v) to the tree (or add v as child-node of u in the tree) and recursively run DFS-Tree(v)

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

- marked vertices
- unmarked vertices
- current recursive call

Further Extensions

- Can we find a path between all pairs of vertices in the connected components?
- A spanning tree: a subgraph of G which connects all vertices in the connected component of s and is additionally a tree
 - tree: a graph with no cycle
- DFS can also be used on directed graphs
 - Set of all vertices reachable from s
 - A path from s to all these vertices