Оптимизаторы – алгоритмы, используемые для незначительного изменения параметров с целью ускорения работы модели

Adagrad — оптимизатор, меняющий скорость обучения η для каждого параметра на каждом шаге. Работает на производной функции ошибки.

$$g_t = \nabla_{\! heta} J(\theta_t)$$
 - производная функции

$$G_t = G_t + g_t^2$$

$$heta_{t+1} = heta_t - rac{\eta}{\sqrt{G_t + arepsilon}} \cdot g_t$$
 - обновление параметров

 η - скорость обучения, которая изменяется для заданного параметра θ_i в данный момент времени на основе предыдущих градиентов, рассчитанных для данного параметра.

Adadelta — расширение Adagrad. Ограничивает окно накопленных прошлых градиентов до некоторого фиксированного размера, вместо того чтобы хранить их все. Используется экспоненциальная скользящая средняя, а не сумма градиентов.

$$E[g^{2}]_{t} = \gamma E[g^{2}]_{t-1} + (1 - \gamma)g_{t}^{2},$$

$$RMS[g]_{t} = \sqrt{E[g^{2}]_{t} + \varepsilon}$$

$$RMS[\Lambda\theta]_{t-1}$$

$$\theta_{t+1} = \theta_t - \frac{RMS[\Delta\theta]_{t-1}}{RMS[g]_t} \cdot g_t$$

Adam – работает с импульсами первого и второго порядка. Идея заключается в уменьшении скорости во избежание проскакивания минимума. В дополнение к хранению экспоненциальных скользящих средних (как в Adadelta) сохраняются экспоненциальные скользящие средние прошлых градиентов.

$$\widehat{m}_t = \frac{m_t}{1 - \beta_1^t}, \, \widehat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\widehat{v}_t} + \varepsilon} \cdot \widehat{m}_t$$

Название	Формула	Недостатки
Gradient Descent	$\theta = \theta - \alpha \nabla J(\theta)$	Можно застрять в локальных
		минимумах
		Веса изменяются после
		вычисления градиента для
		всего набора данных
		Требуется большой объем
		памяти для вычисления
		градиента для всего набора
		данных
Stochastic Gradient	$\theta = \theta - \alpha \nabla J(\theta, x_i, y_i), x_i, y_i -$	Высокая дисперсия параметров
Descent	обучающие примеры	модели
		Чтобы получить ту же
		конвергенцию, что и
		градиентный спуск,

		необходимо медленно снижать
Mini Datah	0 0 nTI(0 D) D 5	значение скорости обучения
Mini-Batch	$ heta = heta - lpha abla J(heta, B_i), B_i$ — батчи	Можно застрять в локальных
Gradient Descent	обучающих примеров	минимумах
		При неоптимальном выборе
		скорости обучения потребуется
		много времени для схождения
		градиентного снижения
		(верно и для предыдущих)
SGD + Momentum	$\nu = \gamma \nu + \eta \nabla J(\theta)$	Добавляется параметр, который
	$\theta = \theta - \alpha v$	нужно выбирать вручную и
		достаточно точно
		Скорость обучения постоянна
		(верно и для предыдущих)
Adagrad	$g_t = \nabla_{\theta} J(\theta_t),$ $\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \varepsilon}} \cdot g_t$	Вычислительно дорого
	$\theta_{t+1} = \theta_t - \frac{\eta}{\eta} \cdot q_t$	(считается производная второго
	$\sqrt{G_t + \varepsilon}$ gr	порядка)
	·	Скорость обучения всегда
		снижается (т.е. обучение
		медленное)
Adadelta	$RMS[g]_t = \sqrt{E[g^2]_t + \varepsilon},$	Вычислительно дорого
	$RMS[\Lambda\theta]_{\star}$	
	$\theta_{t+1} = \theta_t - \frac{RMS[g]_{t-1}}{RMS[g]_t} \cdot g_t$	
Adam	$\theta_{t+1} = \theta_t - \frac{RMS[\Delta\theta]_{t-1}}{RMS[g]_t} \cdot g_t$ $\widehat{m}_t = \frac{m_t}{1 - \beta_1^t}, \widehat{v}_t = \frac{v_t}{1 - \beta_2^t},$	Вычислительно дорого
	$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\widehat{v}_t} + \varepsilon} \cdot \widehat{m}_t$	
RMSProp	$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \varepsilon} \cdot \hat{m}_t$ $\theta_{t+1} = \theta_t - \frac{\eta}{RMS[g]_t} \cdot g_t$	Вычислительно дорого
Nesterov	$\nu = \gamma \nu + \eta \nabla J(\theta - \gamma \nu)$	Низкая скорость обучения
Accelerated	$\theta = \theta - \nu$	
Gradient		