Appl. Layer: design appl. Logic & protocols. JOCKETS A Reliable commection, Transport Layer (Congestion control). forward TKT sends Network Layer. A daressing. Rauler

Dalhi postal sys: Addi-Addr: Hierarchical addr

torwarding pkt at the input purt is moved to ontput port affèr consulting a

Cirunta

(Layers). Spikele Appl lower layer Mabel Jarlan Sra Addr. Jest Addr,

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Two key network-layer functions

network-layer functions:

- *forwarding: move packets from router's input to appropriate router output
- *routing: determine route taken by packets from source to destination
 - routing algorithms

analogy: taking a trip

- forwarding: process of getting through single interchange
- routing: process of planning trip from source to destination

Network layer: data plane, control plane

Data plane

- local, per-router function
- determines how datagram arriving on router input port is forwarded to router output port
- forwarding function

values in arriving packet header Oith Confrol Data

Control plane

- network-wide logic
- determines how datagram is routed among routers along end-end path from source host to destination host
- two control-plane approaches:
 - traditional routing algorithms: implemented in routers
 - software-defined networking (SDN): implemented in (remote) servers

Per-router control plane

Control 10-1a

Individual routing algorithm components in each and every router interact in the control plane

Logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs)

Network service model

Q: What service model for "channel" transporting datagrams from sender to receiver?

example services for individual datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a flow of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Network layer service models:

Network		Service	Guarantees ?				Congestion
Architecture Model	Model	Bandwidth	Loss	Order	Timing	feedback	
ı	Internet	best effort	none	no	no	no	no (inferred via loss)
•	ATM	CBR	constant rate	yes	yes	yes	no congestion
-	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

- 4.4 Generalized Forward and SDN
 - match
 - action
 - OpenFlow examples of match-plus-action in action

Farwading.

Router Archi tecture

Ponting Table wists.

pkt:

Acaded

Input que keef buff

Scheduler: decides which

PKT needs to be frauder

FCRE:

Interconnects programmable gets (OH/OFF)

pkf of (in = 1, but=2) pen / closed

pen only offer

open / closed

Router architecture overview

high-level view of generic router architecture:

Input port functions

data link layer:

e.g., Ethernet see chapter 5

decentralizéd switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed'
- queuing: if datagrams arrive faster than forwarding rate into switch fabric

Input port functions

data link layer: e.g., Ethernet see chapter 5

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- destination-based forwarding: forward based only on destination IP address (traditional)
- generalized forwarding: forward based on any set of header field values

Destination-based forwarding

torwarding table				
Destination Address Range	Link Interface			
11001000 00010111 00010000 00000000000	<u>o</u>			
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111	1			
11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111	2			
otherwise	3			

formula valina artalala

Q: but what happens if ranges don't divide up so nicely?

202 105 * x. x ____ 1

Network Layer: Data Plane 4-20

Longest prefix matching

longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011 *** *******	2
otherwise	3

examples:

DA: 11001000 00010111 00010110 10100001

DA: 11001000 00010111 00011000 10101010

which interface? which interface?

Network Layer: Data Plane 4-22

Longest prefix matching

- we'll see why longest prefix matching is used shortly, when we study addressing
- longest prefix matching: often performed using ternary content addressable memories (TCAMs)
 - content addressable: present address to TCAM: retrieve address in one clock cycle, regardless of table size
 - Cisco Catalyst: can up ~IM routing table entries in TCAM