# **Opinion-Fact Classification**

K. Mani Kumar Reddy (MT19065), K. Sarath Chandra Reddy (MT19037), K. Murali Krishna (MT19132)

### **Problem Statement**

- In the present-day technology huge amount of data is being generated every day. So, it's turning out to be a challenging task to handle text-based data.
- In the world of text-based sentences it is not that simple to differentiate between fact and opinions.
- So, our project is to build the model that classifies/identifies facts from/and opinions in the given text by using various machine learning and deep learning techniques.

## **Dataset Description**

- The dataset we will be using for this project is hand annotated. We considered the data from "movies" domain and annotated them into opinions and facts. Here, the plot of a movie is considered as fact. whereas the review of an individual for a movie is considered as opinion. <a href="https://www.kaggle.com/rounakbanik/the-movies-dataset?select=movies\_metadata.csv">https://www.kaggle.com/rounakbanik/the-movies-dataset?select=movies\_metadata.csv</a>
- The dataset contains 94,379 samples which are facts or opinions.
- Dataset has opinion count of 50,000 whereas facts of 44,379.
- The dataset has train, cross-validation & test splits



# **Preprocessing Techniques**

- Stop-Word removal
- Case Conversion
- Tokenization, lemmatization
- Removal of alpha-numeric words and special characters.
- Removal of words of length less than 3.

## **Learning Techniques**

- K-NN (BOW & TFIDF) Baseline
- Naive Bayes (BOW & TFIDF)
- Decision Trees (BOW & TFIDF)
- SVMs (BOW & TFIDF)
- LSTM (Long Short-Term Memory)
- Deployment of best model using flask

#### **Evaluation Metrics Used**

- Accuracy
- Precision
- Recall
- F1-Score
- Confusion matrix
- Binary-Cross Entropy loss (for LSTM)

### Results

| Model       | Word-       | Precision | Recall   | F-Score  | Accuracy |
|-------------|-------------|-----------|----------|----------|----------|
| Implemented | Embedding   | achieved  | achieved | achieved | achieved |
|             | Used        | on Test   | on Test  | on Test  | on test  |
|             |             | Data      | Data     | Data     | data     |
| K-NN        | TF-IDF      | 0.6387    | 0.506    | 0.351    | 50.6%    |
| (baseline)  |             |           |          |          |          |
| K-NN        | BOW         | 0.832     | 0.754    | 0.739    | 75.45%   |
| Naïve Bayes | BOW         | 0.814     | 0.795    | 0.792    | 79.50%   |
| Naïve Bayes | TF-IDF      | 0.811     | 0.788    | 0.7844   | 78.85%   |
| Decision    | BOW         | 0.9062    | 0.9050   | 0.9046   | 90.46%   |
| Trees       |             |           |          |          |          |
| Decision    | TF-IDF      | 0.9192    | 0.9180   | 0.9176   | 91.76%   |
| Trees       |             |           |          |          |          |
| SVM         | BOW         | 0.9576    | 0.956    | 0.9569   | 95.7%    |
| SVM         | TF-IDF      | 0.9542    | 0.953    | 0.9539   | 95.4%    |
| LSTM        | Rank of     | 0.9866    | 0.9870   | 0.9867   | 98.62%   |
|             | word in the |           |          |          |          |
|             | vocabulary  |           |          |          |          |
|             |             |           |          |          |          |

# **Deployment**



• We have deployed the LSTM model (for its better performance compared to other models) using flask web frame work. The created webpage can be seen in the above picture.

## References

- Most of the earlier research on opinion classification i done by Wiebe and his collegues (Weibe et al., 1999). they proposed methods for discriminating subjective and objective features.
- Hatzivassiloglou and McKeown proposed an un supervised model for learning positively and oriented adjectives with accuracy over 90%.
- A similar study was conducted by Ahmet Aker et in his paper titled "Beyond opinion classification: extracting facts and opinions from health forums".
- https://www.youtube.com/watch?v=UbCWoMf80PY&t=692s