學號:

Quiz 7

考試日期: 2020/05/21

不可使用手機、計算器,禁止作弊!

1. Find the matrix representations $R_{B,B}$, $R_{B',B'}$ and an invertible C such that $R_{B',B'} = C^{-1}R_{B,B}C$ for the given linear transformation T.

 $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as projection of \mathbb{R}^3 through the plane x+y+z=0; B=E, $B' = ([1,0,-1], [1,-1,0], [1,1,\overline{1}]).$

$$T(\vec{V})_R = R_{B,R} \vec{V}_R , : B = E : T(\vec{V})_R = T(\vec{V}) = A \vec{V}_0$$

in RBB=A : the simir of T.

T= projection through Xtyt 2=0

i.e.
$$T(\vec{h}) = 0 \cdot \vec{h}$$
, where $\vec{h} = [1,1,1]$
 $T(\vec{W}) = \vec{W}$, where \vec{W} in $X+y+z=0$

Note {[1,0,-1], [1,-1,0]} are an orthogonal basis of x+y+z=0

$$A \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A = CDC^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad R_{B,B} = \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 & 2 \\ -1 & 1 & 2 \end{bmatrix}$$

 $T(\vec{v})_{R'} = R_{B',B'} \vec{V}_{B'} = R_{B',B'} \star C_{B,B'} \vec{v}_{B}$ 3

$$C_{B,B'} T(\vec{V})_B = C_{B,B'} R_{B,B} \vec{V}_B$$

:
$$R_{B',B'}C_{B,B'} = C_{B,B'}R_{B,B}$$

$$C_{BB'} = M_{B'}^{-1}M_{B} , \qquad \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$C_{B,B'} = C_{B,B'}M_{B'} = C_{B',B} = M_{B'}M_{B'} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \\ -1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$C_{B,B'} = C_{B',B} = M_{B'}M_{B'} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0$$

(ii)
$$C_{B,B'}^{-1} = C_{B',B} = M_B^{-1} M_{B'} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\mathbb{C} \cdot \mathbb{R}_{B,B} = \mathbb{C}_{B,B'} \mathbb{R}_{BB} \mathbb{C}_{B,B'} \stackrel{\text{def}}{=} \mathbb{C}^{-1} \mathbb{A} \mathbb{C} = \mathbb{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$