Partie-Entiere

Exercice 1 Soit $x \in \mathbb{R}$. Simplifier $\lfloor x \rfloor + \lfloor -x \rfloor$.

Exercice 2 Soit $f: x \mapsto x - \lfloor x \rfloor$

 \blacksquare Montrer que f est périodique.

 \blacksquare Représenter f graphiquement.

Exercice 3 A-t-on $\forall x, y \in \mathbb{R} \quad [x+y] = [x] + [y]$?

Exercice 4 Ponner une définition similaire à celle de $\lfloor x \rfloor$ pour $-\lfloor -x \rfloor$.

Représenter la fonction correspondante.

Exercice 5 Soit $x \in \mathbb{R}$ et $n \in \mathbb{Z}$. Montrer que $\lfloor x + n \rfloor = \lfloor x \rfloor + n$.

Exercice 6 Soit $n \in \mathbb{N}^*$

Montrer que le nombre de chiffres dans l'écriture décimale de n est :

$$1 + \lfloor \log n \rfloor$$

Exercice 7 Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, établir :

$$0 \leqslant \lfloor nx \rfloor - n \lfloor x \rfloor \leqslant n - 1$$

Exercice 8 Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

Montrer que

$$\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor$$

Exercice 9 Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Montrer que

$$\lfloor nx \rfloor = \sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor$$

Exercice 10 Montrer que pour tout $x, y \in \mathbb{R}$ on a

$$\lfloor x \rfloor + \lfloor y \rfloor \leqslant \lfloor x + y \rfloor \leqslant \lfloor x \rfloor + \lfloor y \rfloor + 1$$

Exercice 11 Soient x et y deux réels non entiers tels que $x+y\in\mathbb{Z}$. Montrer que $\lfloor x\rfloor+\lfloor y\rfloor=x+y-1$

Exercice 12 Calculer $S = \sum_{k=1}^{100000} \lfloor \sqrt{k} \rfloor$.

Exercice 13 Étudier la fonction $f: x \mapsto x \lfloor x \rfloor$.

Exercice 14 Étudier la fonction $f: x \mapsto \lfloor x - 2 \lfloor \frac{x}{2} \rfloor \rfloor$

Exercice 15 Résoudre $\left\lfloor x^2 + \frac{1}{2} \right\rfloor = \left\lfloor x + 1 \right\rfloor$ (E)

Exercice 16 Représenter graphiquement la fonction

$$f: x \mapsto \left| x + \frac{1}{2} \right| - \left\lfloor x \right\rfloor + \left| x - \frac{1}{2} \right|$$

Exercice 17 Soit x un réel et n un entier naturel non nul.

Montrer que $\left|\frac{\lfloor x\rfloor}{n}\right| = \left\lfloor \frac{x}{n} \right\rfloor$

Exercice 18 Soient $x, y \in \mathbb{R}$.

Montrer que $\lfloor 2x \rfloor + \lfloor 2y \rfloor \geqslant \lfloor x \rfloor + \lfloor y \rfloor + \lfloor x + y \rfloor$

Exercice 19 Soit $x \in \mathbb{R}$. Déterminer $\lim_{n \to +\infty} \frac{\lfloor x \rfloor + \lfloor 2x \rfloor + \dots + \lfloor nx \rfloor}{n^2}$

Exercice 20 Montrer que pour tout $n \in \mathbb{N}$,

$$\left| \frac{n+2 - \left\lfloor \frac{n}{25} \right\rfloor}{3} \right| = \left\lfloor \frac{8n+24}{25} \right\rfloor$$

Exercice 21 Résoudre dans \mathbb{R} l'équation $\left\lfloor 2x + \frac{1}{3} \right\rfloor = \left\lfloor x + \frac{4}{5} \right\rfloor$

Exercice 22 Soit $x \in \mathbb{R}$.

- us La suite des valeurs décimales approchées de x par défaut est la suite d définie par d_n $10^{-n} |10^n x|$
- La suite des valeurs décimales approchées de x par excès est la suite D définie par $D_n = d_n + 10^{-n}$.
- 1. Montrer que les suites d et D sont adjacentes.
- 2. Quelle est leur limite commune?

Exercice 23 Résoudre dans \mathbb{R} l'équation $\lfloor 2x - 1 \rfloor = \lfloor x - 4 \rfloor$

Exercice 24 On pose pour $n \in \mathbb{N}$, $u_n = (2 + \sqrt{3})^n$. Montrer que $u_n - \lfloor u_n \rfloor = 1 - (2 - \sqrt{3})^n$.

Exercice 25 Résoudre dans \mathbb{R} l'équation $\left\lfloor \frac{2x+1}{3} \right\rfloor + \left\lfloor \frac{4x+5}{6} \right\rfloor = \frac{3x-1}{2}$.

Exercice 26 Soient $m, n \in \mathbb{Z}$.

Calculer
$$\left\lfloor \frac{n+m}{2} \right\rfloor + \left\lfloor \frac{n-m+1}{2} \right\rfloor$$

Exercice 27 Résoudre dans \mathbb{R} l'équation $\left|\frac{x}{2}\right| + \left|\frac{x}{3}\right| + \left|\frac{x}{5}\right| = x$

Exercice 28 Montrer que pour tout entier n supérieur ou égal à 3, on a :

$$\left\lfloor \frac{n(n+1)}{2(2n-1)} \right\rfloor = \left\lfloor \frac{n+1}{4} \right\rfloor$$

Exercice 29 Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2 |x|$

 $rac{1}{2}$ f est-elle injective?

 $rac{1}{2}$ f est-elle surjective?

Exercice 30 Soit $x \in \mathbb{R}_+$. Comparer $\left\lfloor \sqrt{\lfloor x \rfloor} \right\rfloor$ et $\lfloor \sqrt{x} \rfloor$.

Exercice 31 Montrer que pour tout entier naturel n non nul, on a :

$$\sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}} < \sqrt{n} - \sqrt{n-1}$$

En déduire la partie entière de

$$\frac{1}{2} \sum_{n=1}^{10000} \frac{1}{\sqrt{n}}$$

Exercice 32 Montrer que pour tout entier naturel n, $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor = \lfloor \sqrt{4n+2} \rfloor$.

Exercice 33 Soit $a \in \mathbb{R}$.

Que dire de la parité de l'entier $\left[a + \frac{1}{2}\right] + \left[a - \frac{1}{2}\right]$?

Exercice 34 Soit $(p,q) \in \mathbb{N}^{*2}$ tels que p et q soient premiers entre eux.

Si k est un entier, on note r_k le reste de la division euclidienne de $k \cdot p$ par q.

- 1. Montrer que les r_k sont deux à deux distincts quand k parcourt $\{0, 1, 2, \ldots, q-1\}$.
- 2. En déduire $\sum_{k=1}^{q-1} r_k$.
- 3. Montrer la relation $\sum_{k=1}^{q-1} \left\lfloor \frac{k \cdot p}{q} \right\rfloor = \frac{(q-1) \cdot (p-1)}{2}$.

Exercice 35 Soit $x \in \mathbb{R} \setminus \mathbb{Q}$ tel que x > 1.

Montrer que pour tout $n \in \mathbb{N}^*$ on a :

$$\left\lfloor \frac{\lfloor nx \rfloor}{x} \right\rfloor = n - 1$$

Exercice 36 Démontrer qu'il existe un unique réel a tel que :

$$\forall n \in \mathbb{N}^* \quad \lfloor a \lfloor na \rfloor \rfloor - \lfloor na \rfloor = n - 1$$

Exercice 37 Soit $x \in \mathbb{R}$. On pose $\{x\} = x - \lfloor x \rfloor$.

Résoudre l'équation

$$\lfloor x \rfloor \cdot \{x\} = 2005 \cdot x$$

Exercice 38 Soient $n \in \mathbb{N}^*$ et $(x_1, \dots, x_n) \in [-1, 1]^n$ tels que $x_1 + \dots + x_n = 0$. Montrer que

$$|x_1 + 2x_2 + \ldots + nx_n| \leqslant \left\lfloor \frac{n^2}{4} \right\rfloor$$

Exercice 39 Montrer que pour $n \in \mathbb{N}$ tel que $n \geqslant 2$, on a :

$$|\sqrt{n}| + |\sqrt[3]{n}| + \ldots + |\sqrt[n]{n}| = \lfloor \log_2 n \rfloor + \lfloor \log_3 n \rfloor + \ldots + \lfloor \log_n n \rfloor$$