

# 40V 4.2mΩ N-Ch Power MOSFET

#### **Features**

- Ultra-low R<sub>DS(ON)</sub>
- · Low Gate Charge
- High Current Capability
- 100% UIS Tested, 100% R<sub>a</sub> Tested

#### **Product Summary**

| Parameter                                     | Тур. | Unit |
|-----------------------------------------------|------|------|
| V <sub>DS</sub>                               | 40   | V    |
| V <sub>GS(th)</sub>                           | 1.7  | V    |
| $I_D$ (@ $V_{GS} = 10V$ ) (1)                 | 70   | Α    |
| R <sub>DS(ON)</sub> (@ V <sub>GS</sub> = 10V) | 4.2  | mΩ   |

#### **Applications**

- Power Management in Computing, CE, IE 4.0, Communications
- Current Switching in DC/DC & AC/DC (SR) Sub-systems
- Load Switching, Quick/Wireless Charging, Motor Driving

#### PDFN5x6

Top View







#### **Ordering Information**

Rev. 1.1

| Device        | Package | # of Pins | Marking | MSL | T <sub>J</sub> (°C) | Media        | Quantity (pcs) |
|---------------|---------|-----------|---------|-----|---------------------|--------------|----------------|
| JMSL0406AG-13 | PDFN5x6 | 8         | SL0406A | 1   | -55 to 150          | 13-inch Reel | 3000           |

## Absolute Maximum Ratings (@ T<sub>A</sub> = 25°C unless otherwise specified)

| Parameter            |                        | Symbol                            | Value      | Unit |  |
|----------------------|------------------------|-----------------------------------|------------|------|--|
| Drain-to-Source Vol  | tage                   | V <sub>DS</sub>                   | 40         | V    |  |
| Gate-to-Source Volt  | age                    | V <sub>GS</sub>                   | ±20        | V    |  |
| Continuous Drain     | T <sub>C</sub> = 25°C  | 1                                 | 70         | ^    |  |
| Current (1)          | T <sub>C</sub> = 100°C | I <sub>D</sub>                    | 44         | A    |  |
| Pulsed Drain Currer  | nt <sup>(2)</sup>      | I <sub>DM</sub>                   | 254        | A    |  |
| Avalanche Current    | 3)                     | I <sub>AS</sub>                   | 27         | A    |  |
| Avalanche Energy (   | 3)                     | E <sub>AS</sub>                   | 36         | mJ   |  |
| Power Dissipation (4 | T <sub>C</sub> = 25°C  | P <sub>D</sub>                    | 42         | W    |  |
| rower dissipation ** | T <sub>C</sub> = 100°C | L D                               | 17         | VV   |  |
| Junction & Storage   | Temperature Range      | T <sub>J</sub> , T <sub>STG</sub> | -55 to 150 | °C   |  |







## Electrical Characteristics (@ T<sub>J</sub> = 25°C unless otherwise specified)

| Parameter                                    | Symbol               | Conditions                                              | Min. | Тур.       | Max.       | Unit     |
|----------------------------------------------|----------------------|---------------------------------------------------------|------|------------|------------|----------|
| STATIC PARAMETERS                            |                      |                                                         |      | •          | •          |          |
| Drain-Source Breakdown Voltage               | V <sub>(BR)DSS</sub> | $I_D = 250 \mu A, V_{GS} = 0 V$                         | 40   |            |            | V        |
| Zero Gate Voltage Drain Current              | I <sub>DSS</sub>     | $V_{DS} = 32V, V_{GS} = 0V$ $T_{J} = 55^{\circ}C$       |      |            | 1.0<br>5.0 | μΑ       |
| Gate-Body Leakage Current                    | I <sub>GSS</sub>     | $V_{DS} = 0V, V_{GS} = \pm 20V$                         |      |            | ±100       | nA       |
| Gate Threshold Voltage                       | $V_{GS(th)}$         | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                    | 1.2  | 1.7        | 2.5        | V        |
| Static Drain-Source ON-Resistance            | R <sub>DS(ON)</sub>  | $V_{GS} = 10V, I_D = 20A$<br>$V_{GS} = 4.5V, I_D = 15A$ |      | 4.2<br>5.8 | 5.2<br>7.6 | mΩ<br>mΩ |
| Forward Transconductance                     | g <sub>FS</sub>      | $V_{DS} = 5V, I_{D} = 20A$                              |      | 80         |            | S        |
| Diode Forward Voltage                        | $V_{SD}$             | I <sub>S</sub> = 1A, V <sub>GS</sub> = 0V               |      | 0.69       | 1.0        | V        |
| Diode Continuous Current                     | Is                   | T <sub>C</sub> = 25°C                                   |      |            | 42         | Α        |
| DYNAMIC PARAMETERS (5)                       |                      |                                                         |      |            |            |          |
| Input Capacitance                            | C <sub>iss</sub>     |                                                         |      | 1204       |            | pF       |
| Output Capacitance                           | C <sub>oss</sub>     | $V_{GS} = 0V, V_{DS} = 20V, f = 1MHz$                   |      | 536        |            | pF       |
| Reverse Transfer Capacitance                 | C <sub>rss</sub>     | ]                                                       |      | 51         |            | pF       |
| Gate Resistance                              | $R_g$                | $V_{GS} = 0V$ , $V_{DS} = 0V$ , $f = 1MHz$              |      | 1.8        |            | Ω        |
| SWITCHING PARAMETERS (5)                     |                      |                                                         |      |            |            |          |
| Total Gate Charge (@ V <sub>GS</sub> = 10V)  | Qg                   |                                                         |      | 17.9       |            | nC       |
| Total Gate Charge (@ V <sub>GS</sub> = 4.5V) | $Q_g$                | V <sub>GS</sub> = 0 to 10V                              |      | 9.7        |            | nC       |
| Gate Source Charge                           | $Q_{gs}$             | $V_{DS} = 20V, I_{D} = 20A$                             |      | 3.2        |            | nC       |
| Gate Drain Charge                            | $Q_{gd}$             | 1 i                                                     |      | 4.0        |            | nC       |
| Turn-On DelayTime                            | t <sub>D(on)</sub>   |                                                         |      | 4.8        |            | ns       |
| Turn-On Rise Time                            | t <sub>r</sub>       | V <sub>GS</sub> = 10V, V <sub>DS</sub> = 20V            |      | 8.6        |            | ns       |
| Turn-Off DelayTime                           | t <sub>D(off)</sub>  | $R_L = 1.0\Omega$ , $R_{GEN} = 6\Omega$                 |      | 23         |            | ns       |
| Turn-Off Fall Time                           | t <sub>f</sub>       | ]                                                       |      | 15.2       |            | ns       |
| Body Diode Reverse Recovery Time             | t <sub>rr</sub>      | $I_F = 20A$ , $dI_F/dt = 100A/\mu S$                    |      | 50         |            | ns       |
| Body Diode Reverse Recovery Charge           | Q <sub>rr</sub>      | $I_F = 20A$ , $dI_F/dt = 100A/\mu$ S                    |      | 42         |            | nC       |

#### **Thermal Performance**

| Parameter                               | Symbol          | Тур. | Max. | Unit |
|-----------------------------------------|-----------------|------|------|------|
| Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 50   | 60   | °C/W |
| Thermal Resistance, Junction-to-Case    | $R_{\theta JC}$ | 2.3  | 3.0  | °C/W |

#### Notes:

- Computed continuous current assumes the condition of T<sub>J\_Max</sub> while the actual continuous current depends on the thermal & electro-mechanical application board design.
- 2. This single-pulse measurement was taken under  $\rm T_{\rm J\_Max}$  = 150°C.
- 3. This single-pulse measurement was taken under the following condition [L =  $100\mu$ H,  $V_{GS}$  = 10V,  $V_{DS}$  = 20V] while its value is limited by  $T_{J\_Max}$  =  $150^{\circ}$ C.
- 4. The power dissipation  $P_D$  is based on  $T_{J\_Max}$  = 150°C.
- 5. This value is guaranteed by design hence it is not included in the production test.



#### **Typical Electrical & Thermal Characteristics**







Figure 2: Transfer Characteristics



Figure 3:  $R_{DS(ON)}$  vs. Drain Current



Figure 4:  $R_{DS(ON)}$  vs. Junction Temperature



Figure 5: Body-Diode Characteristics



Figure 6: Capacitance Characteristics



#### **Typical Electrical & Thermal Characteristics**







Figure 8: Power De-rating



Figure 9: Maximum Safe Operating Area



Figure 10: Single Pulse Power Rating, Junction-to-Case



Figure 11: Normalized Maximum Transient Thermal Impedance



## PDFN5x6 Package Information

## Package Outline









Front View

#### NOTES:

- 1. 2.
- Dimension and tolerance per ASME Y14.5M, 1994.
  All dimensions in millimeter (angle in degree).
  Dimensions D and E1 do not include mold flash protrusions or gate burrs.

| DIM. | MILLIMETER |      |  |  |
|------|------------|------|--|--|
| DIM. | MIN.       | MAX. |  |  |
| A    | 0.90       | 1.20 |  |  |
| b    | 0.33       | 0.51 |  |  |
| С    | 0.23       | 0.33 |  |  |
| D    | 4.80       | 5.40 |  |  |
| D1   | 3.61       | 4.25 |  |  |
| Е    | 5.90       | 6.30 |  |  |
| E1   | 5.55       | 5.95 |  |  |
| E2   | 3.35       | 3.95 |  |  |
| e    | 1.27 BSC   |      |  |  |
| H    | 0.41       | 0.80 |  |  |
| L    | 0.51       | 0.80 |  |  |
| L1   | - 0.15     |      |  |  |
| a    | 0°         | 12°  |  |  |

## Recommended Footprint



DIMENSIONS: MILLIMETERS