Cisco Curriculum - Zusammenfassung

18.07.2014

1 Introduction to Routing and Packet Forwarding

Router:

- verantwortlich für die Auslieferung von Paketen über verschiedene Netzwerke. Dazu gehört es
 - den besten Pfad ausfindig zu machen und
 - Pakete weiterzuleiten
- müssen Pakete entpacken und (in ein eventuell andersartiges Paket) verpacken

Hardware des Routers

- CPU
- RAM; speichert:
 - OS
 - Running Configuration File (running-config)
 - IP Routing Table
 - ARP Cache
 - Packet Buffer
- ROM; speichert (bei Cisco-Routern):
 - bootstrap instructions
 - grundlegende Diagnosesoftware
 - vereinfachte Version von IOS
- Flash Memory; speichert:
 - OS
- NVRAM (Nonvolatile RAM); speichert (bei Cisco-Routern):
 - Startup Configuration File (startup-config)

Cisco Internetwork Operating System (IOS)

• multitasking-fähig

Bootvorgang

- 1. POST
 - Selbsttest (testet Hardware)
 - Diagnoseprogramme (im ROM gespeichert) werden ausgeführt
- 2. Bootstrap-Programm laden
 - Bootstrap von ROM in RAM kopieren und ausführen
 - Hauptaufgabe: IOS finden und in den RAM laden
- 3. IOS finden und laden
 - IOS ist üblicherweise im Flash gespeichert, kann aber auch auf einem TFTP (Trivial File Transfer Protocol) Server gespeichert werden
 - Wenn kein (oder ein unvollständiges) IOS Image gefunden werden kann, wir eine vereinfachte Version aus dem ROM geladen
 - Diese Version kann verwendet werden um Probleme zu diagnostizieren
- 4. Startup Configuration File finden und laden oder in den setup-mode wechseln
 - enthält:
 - Interface-Adressen
 - Routing-Informationen
 - Passwörter
 - Alle anderen Konfigurationen, die vom Netzwerkadministrator vorgenommen wurden
 - wird als $\operatorname{running-config}$ in den RAM kopiert
 - Wenn keine running-config vorhanden ist, wird gefragt, ob in den setup-mode gewechselt werden soll
 - Wenn nicht in setup-mode gewechselt wird, wird eine default running-config verwendet

Router#show version (kann verwendet werden um die grundsätzliche Hardund Software zu überprüfen)

Weiter bei 1.1.5 Router Interfaces

- 2 Timm
- 3 Ahmed
- 4 Ahmed
- 5 Leo
- 6 Yunus

6 VLSM and CIDR

- vlsm variable length subnet masing (für classles)
- private netze und vlsm-> mehr hosts möglich
- Netzklassen Prinzip: 0/8, 10/16, 110/24, 1110, 1111
 - A (0xxx.xxxx.xxxx.xxxx) **0**.0.0.0 **127**.255.255.255) /8
 - B (10xx.xxxx.xxxx.xxxx **128.0.0.0** 191**.255.255.255) /16
 - C (110xx.xxxx.xxxx.xxxx **192**.0.0.0 **223**.255.255.255) /24
 - Multicast (1110.xxxx.xxxx.xxxx **224**.0.0.0 **239**.255.255.255)
 - Experimental (1111.xxxx.xxxx.xxxx **240**.0.0.0 255.255.255.255)
 - maske ur für classful relevant
- summarize beispiel:
 - $-\ 172.16.0.0/16 \mid 172.17.0.0/16 \mid 172.18.0.0/16 \mid 172.19.0.0/16$
 - = > 172.16.0.0/14, 2 bits benötigz um von .16 zu .19 zu kommen
- CIDR = summarization
- CIDR ignoriert die vorgaben der Netzklassen

8 Routing Table: A Closer Look

- show ip route -> directly connected, static, dynamic router added/deleted from routing table, jetzt wirds genauer
- cisco routing table ist classful vom design (s. Level 1,2)
- Routen haben level
 - Level 1: Maske gleich oder kleiner als Netzklassenmaske (in netz A /1-/8, in B /1-/16, ...)

Calculating a Route Summary

Step 1: List networks in binary format.

Step 2: Count the number of left-most matching bits to determine the mask. 14 matching bits, /14 or 255.252.0.0

Step 3: Copy the matching bits and add zero bits to determine the network address.

Figure 1: 1

- * entweder Default Route (static route mit IP 0.0.0.0)
- * oder Supernet route (route mit maske kleiner (also auch ungleich) der netzklassenmaske
- * oder Network route (route mit gleicher maske wie Netzklasse)
- * und parent route (s. bild 2, zeile über child route), wenn subnetz iner classful(d.h. maske größer Netzmaske erstellt wird wird diese automatisch miterstellt. Dient nur zum zeigen, dass Level 2-routen folgen.
- Level 2: Subnet des classful (d.h. maske gröer netzmaske)
 - child route (s. bild 2)
- levelunabhängig
 - Ultimate Route: next-hop ist ein interface oder eine IP
- steht beim parent in der table variable subnetted besitzen die childs ver-

Parent and Child Route Details in a Classless Environment

172.16.0.0/24 is subnetted, 2 subnets
C 172.16.2.0 is directly connected, Serial0/0/0
C 172.16.3.0 is directly connected, FastEthernet0/0

8.2.1 GEHTS WEITER

- 7 Leo
- 8 Yunus