## MagMap: Sled localisation and Trajectories

# Jules BERHAULT, Quentin BRATEAU, Paul-Antoine LE TOLGUENEC. Gwendal PRISER

15 décembre 2020



Présentation

## Introduction

blabla

Thicksets: Mapping coverage

### **Thicksets**

#### **Thicksets**

$$\forall [\![ \mathbb{X} ]\!] \in \mathbb{R}^n, \quad \exists (\mathbb{X}^{\subset}, \mathbb{X}^{\supset}) \in (\mathbb{R}^n)^2 :$$
$$[\![ \mathbb{X} ]\!] = [\![ \mathbb{X}^{\subset}, \mathbb{X}^{\supset} ]\!]$$

## Vocabulary

 $\mathbb{X}^{\subset}$  is the *subset bound* and correspond to the red area,

 $\mathbb{X}^{\supset}$  is the *supset bound* and correspond to the orange area.



Figure 1 – Subset Supset

## Viewing range

### Set inversion problem

$$\mathbb{X} = f^{-1}(\mathbb{Y})$$

$$f(\mathbf{x}) = \sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2}$$

#### **Parameters**

 $[a_1]$  and  $[a_2]$  represent a box of  $\mathbb Y$  bounding the magnetometer.

## Algorithm

SIVIA : Set Inverter via Interval Analysis.



Figure 2 – Thicksets bounding the magnetometer measurement

## Mapping coverage

## **Trajectory**

$$\mathbb{X} = \bigcup_{t \in [t_0, t_f]} f_t^{-1}([0, r[))$$

The union of all patch give the mapping coverage.

#### **Areas**

Red area is the set seen for sure.

Orange area is the maybe seen set.

Green area is the not seen set.



**Figure 3** – Mapping coverage along a trajectory

## MagMap: Sled localisation and Trajectories

Jules BERHAULT, Quentin BRATEAU, Paul-Antoine LE TOLGUENEC, Gwendal PRISER

15 décembre 2020

