Class 08 Mini Project

Olivia Chu

In today's mini-project, we will explore a complete analysis using the unsupervised learning techniques covered in class (clustering and PCA for now).

The data itself comes from the Wisconsin Breast Cancer Diagnostic Data Set FNA breast biopsy data.

Data Import

```
# Save your input data file into your Project directory
fna.data <- "WisconsinCancer.csv"

# Complete the following code to input the data and store as wisc.df
wisc.df <- read.csv(fna.data, row.names=1)
head(wisc.df)</pre>
```

	diagnosis rad	ius_mean	texture_mean	perimeter_mean	area_mean	
842302	M	17.99	10.38	122.80	1001.0	
842517	M	20.57	17.77	132.90	1326.0	
84300903	M	19.69	21.25	130.00	1203.0	
84348301	M	11.42	20.38	77.58	386.1	
84358402	M	20.29	14.34	135.10	1297.0	
843786	M	12.45	15.70	82.57	477.1	
	smoothness_me	an compa	ctness_mean c	oncavity_mean c	oncave.poir	nts_mean
842302	0.118	40	0.27760	0.3001		0.14710
842517	0.084	74	0.07864	0.0869		0.07017
84300903	0.109	60	0.15990	0.1974		0.12790
84348301	0.142	50	0.28390	0.2414		0.10520
84358402	0.100	30	0.13280	0.1980		0.10430
843786	0.127	80	0.17000	0.1578		0.08089
	symmetry_mean	fractal	_dimension_me	an radius_se te	exture_se pe	erimeter_se
842302	0.2419		0.078	71 1.0950	0.9053	8.589

842517	0.1812		0.05667	0.5435	0.7339	3.398
84300903	0.2069		0.05999	0.7456	0.7869	4.585
84348301	0.2597		0.09744	0.4956	1.1560	3.445
84358402	0.1809		0.05883	0.7572	0.7813	5.438
843786	0.2087		0.07613	0.3345	0.8902	2.217
	area_se smoothne	ess_se compa	ctness_se	concavity_se	concave.po	ints_se
842302	153.40 0.0	006399	0.04904	0.05373		0.01587
842517	74.08 0.0	005225	0.01308	0.01860		0.01340
84300903	94.03 0.0	006150	0.04006	0.03832		0.02058
84348301	27.23 0.0	009110	0.07458	0.05661		0.01867
84358402	94.44 0.0	011490	0.02461	0.05688		0.01885
843786	27.19 0.0	007510	0.03345	0.03672		0.01137
	symmetry_se frac	ctal_dimensi	on_se radi	ius_worst text	ture_worst	
842302	0.03003	0.0	006193	25.38	17.33	
842517	0.01389	0.0	03532	24.99	23.41	
84300903	0.02250	0.0	04571	23.57	25.53	
84348301	0.05963	0.0	09208	14.91	26.50	
84358402	0.01756	0.0	005115	22.54	16.67	
843786	0.02165	0.0	05082	15.47	23.75	
	perimeter_worst	area_worst	smoothness	s_worst compa	ctness_wors	t
842302	184.60	2019.0		0.1622	0.665	
842517	158.80	1956.0		0.1238	0.186	6
84300903	152.50	1709.0		0.1444	0.424	5
84348301	98.87	567.7		0.2098	0.866	3
84358402	152.20	1575.0		0.1374	0.205	0
843786	103.40	741.6		0.1791	0.524	9
	concavity_worst	concave.poi	.nts_worst	symmetry_wors	st	
842302	0.7119	-	0.2654	0.460		
842517	0.2416		0.1860	0.27	50	
84300903	0.4504		0.2430	0.36	13	
84348301	0.6869		0.2575	0.663	38	
84358402	0.4000		0.1625	0.236	64	
843786	0.5355		0.1741	0.398	35	
	fractal_dimension	on_worst				
842302		0.11890				
842517		0.08902				
84300903		0.08758				
84348301		0.17300				
84358402		0.07678				
843786		0.12440				

We will not be using the pathologist provided expert diagnosis, so we will be omitting this first column when creating a new data frame.

	radius_mean textu	ıre mean perimet	ter mean area	mean smoothness	s mean
842302	17.99	10.38			.11840
842517	20.57	17.77		26.0 0	.08474
84300903	19.69	21.25			. 10960
84348301	11.42	20.38	77.58 3	86.1 0	. 14250
84358402	20.29	14.34	135.10 12	97.0 0	. 10030
843786	12.45	15.70	82.57 4	77.1 0	. 12780
	compactness_mean	concavity_mean	concave.point	s_mean symmetry	y_mean
842302	0.27760	0.3001	0	.14710	0.2419
842517	0.07864	0.0869	0	.07017	0.1812
84300903	0.15990	0.1974	0	.12790	0.2069
84348301	0.28390	0.2414	0	.10520	0.2597
84358402	0.13280	0.1980	0	.10430	0.1809
843786	0.17000	0.1578	0	.08089	0.2087
	fractal_dimension	n_mean radius_se	e texture_se p	erimeter_se are	ea_se
842302	0.	.07871 1.0950	0.9053	8.589 1	53.40
842517	0.	.05667 0.543	0.7339	3.398	74.08
84300903	0.	.05999 0.7456	0.7869	4.585	94.03
84348301	0.	0.4956	1.1560	3.445	27.23
84358402	0.	.05883 0.7572	0.7813	5.438	94.44
843786	0.	07613 0.3349	0.8902	2.217	27.19
	smoothness_se com	npactness_se con	ncavity_se con	cave.points_se	
842302	0.006399	0.04904	0.05373	0.01587	
842517	0.005225	0.01308	0.01860	0.01340	
84300903		0.04006	0.03832	0.02058	
84348301	0.009110	0.07458	0.05661	0.01867	
84358402	0.011490	0.02461	0.05688	0.01885	
843786	0.007510	0.03345	0.03672	0.01137	
	symmetry_se fract			texture_worst	
842302	0.03003	0.006193		17.33	
842517	0.01389	0.003532		23.41	
84300903	0.02250	0.00457		25.53	
84348301	0.05963	0.009208		26.50	
84358402		0.00511			
843786	0.02165	0.005082		23.75	
	perimeter_worst a			=	
842302	184.60	2019.0	0.1622	0.66	
842517	158.80	1956.0	0.1238	0.186	36

84300903	152.50	1709.0		0.1444	0.4245
84348301	98.87	567.7		0.2098	0.8663
84358402	152.20	1575.0		0.1374	0.2050
843786	103.40	741.6		0.1791	0.5249
	concavity_worst	concave.poin	ts_worst	symmetry_worst	
842302	0.7119		0.2654	0.4601	
842517	0.2416		0.1860	0.2750	
84300903	0.4504		0.2430	0.3613	
84348301	0.6869		0.2575	0.6638	
84358402	0.4000		0.1625	0.2364	
843786	0.5355		0.1741	0.3985	
	fractal_dimension	on_worst			
842302		0.11890			
842517		0.08902			
84300903		0.08758			
84348301		0.17300			
84358402		0.07678			
843786		0.12440			

We will save this diagnosis data to use for later in a new vector as a factor.

```
# Create diagnosis vector for later
diagnosis <- as.factor( wisc.df[,1] )
head(diagnosis)</pre>
```

[1] M M M M M M M Levels: B M

Q1. How many observations are in this dataset?

```
nrow(wisc.data)
```

[1] 569

There are 569 observations in this dataset.

Q2. How many of the observations have a malignant diagnosis?

```
table(wisc.df$diagnosis)
```

```
B M
357 212
```

212 observations have a malignant (M) diagnosis.

Q3. How many variables/features in the data are suffixed with _mean?

First, find column names.

```
colnames(wisc.data)
```

```
[1] "radius_mean"
                                "texture mean"
 [3] "perimeter_mean"
                                "area_mean"
[5] "smoothness_mean"
                                "compactness_mean"
 [7] "concavity_mean"
                                "concave.points_mean"
[9] "symmetry_mean"
                                "fractal_dimension_mean"
[11] "radius_se"
                                "texture_se"
                                "area_se"
[13] "perimeter_se"
[15] "smoothness_se"
                                "compactness_se"
[17] "concavity_se"
                                "concave.points_se"
[19] "symmetry_se"
                                "fractal_dimension_se"
[21] "radius_worst"
                                "texture_worst"
[23] "perimeter_worst"
                                "area_worst"
[25] "smoothness_worst"
                                "compactness_worst"
[27] "concavity_worst"
                                "concave.points_worst"
[29] "symmetry_worst"
                                "fractal_dimension_worst"
```

Next, I need to search within the column names for the "_mean" pattern. The grep() function might help.

```
length( grep("_mean", colnames(wisc.data)) )
```

[1] 10

10 variables/features in the data are suffixed with "_mean".

Q. How many dimensions are in this dataset?

```
dim(wisc.data)
```

There are 569 rows and 30 columns in this dataset.

Principal Component Analysis

First, do we need to scale the data before PCA or not?

Check column means and standard deviations to determine if we need to scale colMeans(wisc.data)

perimeter_mean	texture_mean	radius_mean
9.196903e+01	1.928965e+01	1.412729e+01
compactness_mean	${\tt smoothness_mean}$	area_mean
1.043410e-01	9.636028e-02	6.548891e+02
symmetry_mean	concave.points_mean	concavity_mean
1.811619e-01	4.891915e-02	8.879932e-02
texture_se	radius_se	fractal_dimension_mean
1.216853e+00	4.051721e-01	6.279761e-02
smoothness_se	area_se	perimeter_se
7.040979e-03	4.033708e+01	2.866059e+00
concave.points_se	concavity_se	compactness_se
1.179614e-02	3.189372e-02	2.547814e-02
radius_worst	fractal_dimension_se	symmetry_se
1.626919e+01	3.794904e-03	2.054230e-02
area_worst	perimeter_worst	texture_worst
8.805831e+02	1.072612e+02	2.567722e+01
concavity_worst	${\tt compactness_worst}$	smoothness_worst
2.721885e-01	2.542650e-01	1.323686e-01
${\tt fractal_dimension_worst}$	symmetry_worst	concave.points_worst
8.394582e-02	2.900756e-01	1.146062e-01

apply(wisc.data,2,sd)

perimeter_mean	texture_mean	radius_mean
2.429898e+01	4.301036e+00	3.524049e+00
compactness_mean	${\tt smoothness_mean}$	area_mean
5.281276e-02	1.406413e-02	3.519141e+02
symmetry mean	concave.points_mean	concavity_mean

```
7.971981e-02
                                   3.880284e-02
                                                            2.741428e-02
fractal_dimension_mean
                                      radius_se
                                                              texture_se
          7.060363e-03
                                   2.773127e-01
                                                            5.516484e-01
          perimeter_se
                                        area se
                                                           smoothness se
          2.021855e+00
                                   4.549101e+01
                                                            3.002518e-03
        compactness se
                                   concavity se
                                                       concave.points se
          1.790818e-02
                                   3.018606e-02
                                                            6.170285e-03
           symmetry_se
                           fractal_dimension_se
                                                            radius worst
          8.266372e-03
                                   2.646071e-03
                                                            4.833242e+00
         texture_worst
                                perimeter_worst
                                                              area_worst
          6.146258e+00
                                   3.360254e+01
                                                            5.693570e+02
                              compactness_worst
      smoothness_worst
                                                         concavity_worst
          2.283243e-02
                                   1.573365e-01
                                                            2.086243e-01
                                 symmetry_worst fractal_dimension_worst
  concave.points_worst
          6.573234e-02
                                   6.186747e-02
                                                            1.806127e-02
```

Execute PCA with the prcomp() function on the wisc.data, scaling if appropriate, and assign the output model to wisc.pr.

```
# Perform PCA on wisc.data by completing the following code
wisc.pr <- prcomp(wisc.data)

# Look at summary of results
summary(wisc.pr)</pre>
```

Importance of components:

```
PC2
                      PC1
                                     PC3
                                            PC4
                                                  PC5
                                                         PC6
                                                              PC7
Standard deviation
                   666.170 85.49912 26.52987 7.39248 6.31585 1.73337 1.347
Proportion of Variance
                    0.982 0.01618 0.00156 0.00012 0.00009 0.00001 0.000
                    0.982 0.99822 0.99978 0.99999 0.99999 0.99999 1.000
Cumulative Proportion
                     PC8
                           PC9
                                PC10
                                      PC11
                                             PC12
                                                   PC13
                                                          PC14
Standard deviation
                   0.6095 0.3944 0.2899 0.1778 0.08659 0.05623 0.04649
Proportion of Variance 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000
Cumulative Proportion
                   1.0000 1.0000 1.0000 1.0000 1.00000 1.00000
                     PC15
                           PC16
                                  PC17
                                        PC18
                                               PC19
                                                      PC20
Standard deviation
                   0.03642 0.0253 0.01936 0.01534 0.01359 0.01281 0.008838
1.00000 1.0000 1.00000 1.00000 1.00000 1.00000
Cumulative Proportion
                     PC22
                             PC23
                                    PC24
                                            PC25
                                                   PC26
                                                           PC27
Standard deviation
                   0.00759 0.005909 0.005329 0.004018 0.003534 0.001918
```

round(apply(wisc.data, 2, sd), 3)

n	perimeter_mea	texture_mean	radius_mean
9	24.29	4.301	3.524
n	compactness_mea	${\tt smoothness_mean}$	area_mean
3	0.05	0.014	351.914
n	symmetry_mea	concave.points_mean	concavity_mean
7	0.02	0.039	0.080
е	texture_s	radius_se	<pre>fractal_dimension_mean</pre>
2	0.55	0.277	0.007
е	${\tt smoothness_s}$	area_se	perimeter_se
3	0.00	45.491	2.022
е	concave.points_s	concavity_se	compactness_se
6	0.00	0.030	0.018
t	radius_wors	fractal_dimension_se	symmetry_se
3	4.83	0.003	0.008
t	area_wors	perimeter_worst	texture_worst
7	569.35	33.603	6.146
t	concavity_wors	compactness_worst	smoothness_worst
9	0.20	0.157	0.023
t	fractal_dimension_wors	symmetry_worst	concave.points_worst
8	0.01	0.062	0.066

It looks like we do need to scale.

```
# Perform PCA on wisc.data by completing the following code
wisc.pr <- prcomp( wisc.data, scale=TRUE )

# Look at summary of results
summary(wisc.pr)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172

```
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                   PC18
                                                           PC19
                                                                   PC20
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

The first principal component (PC1) captures 44.27% of the original variance.

- Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?
- 3 PCs are required to describe at least 70% of the original variance in the data (captures 72%).
 - Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?
- 7 PCs are required to describe at least 90% of the original variance in the data (captures 91%).

Interpreting PCA Results

Create a biplot of the wisc.pr using the biplot() function.

```
biplot(wisc.pr)
```


Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

This plot is extremely messy and difficult to analyze and understand. This is because there are too many points concentrated in one area of the plot, making it hard to differentiate which point is which.

PC Plot

We need to make our plot of PC1 vs PC2 (a.k.a. score plot, PC-plot, etc.). The main result of PCA...

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

In the plot with components 1 and 2, it is easier to distinguish the red from the black points since there is somewhat of a clear-cut line to show us the two clusters. In the plot with components 1 and 3, it is harder to distinguish because there are more overlapping points due to a lower variance in component 3 (as opposed to component 2).

Let's make a fancier figure using ggplot2.

```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```


Variance Explained

We can get this from the output of the summary() function.

```
summary(wisc.pr)
```

Importance of components:

	PC1	PC2	PC3	PC4	PC5	PC6	PC7
Standard deviation	3.6444	2.3857	1.67867	1.40735	1.28403	1.09880	0.82172
Proportion of Variance	0.4427	0.1897	0.09393	0.06602	0.05496	0.04025	0.02251
Cumulative Proportion	0.4427	0.6324	0.72636	0.79239	0.84734	0.88759	0.91010
	PC8	PC9	PC10	PC11	PC12	PC13	PC14
Standard deviation	0.69037	0.6457	0.59219	0.5421	0.51104	0.49128	0.39624
Proportion of Variance	0.01589	0.0139	0.01169	0.0098	0.00871	0.00805	0.00523
Cumulative Proportion	0.92598	0.9399	0.95157	0.9614	0.97007	0.97812	0.98335
	PC15	PC1	6 PC1	7 PC1	8 PC1	9 PC2	0 PC21
Standard deviation	0.30681	0.2826	0 0.2437	2 0.2293	9 0.2224	4 0.1765	2 0.1731
Proportion of Variance	0.00314	0.0026	6 0.0019	8 0.0017	5 0.0016	5 0.0010	4 0.0010
Cumulative Proportion	0.98649	0.9891	5 0.9911	3 0.9928	8 0.9945	3 0.9955	7 0.9966
	PC22	PC2	3 PC24	PC25	PC26	PC27	PC28
Standard deviation	0.16565	0.1560	2 0.1344	0.12442	0.09043	0.08307	0.03987

Calculate the variance of each principal component by squaring the sdev component of wisc.pr (i.e. wisc.pr\$sdev^2). Save the result as an object called pr.var.

```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

```
[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357
```

Calculate the variance explained by each principal component by dividing by the total variance explained of all principal components. Assign this to a variable called pve and create a plot of variance explained for each principal component.

Examine the PC Loadings

How much do the original variables contribute to the new PCs that we have calculated? To get this data, we can look at the **\$rotation** component of the returned PCA product.

```
head( wisc.pr$rotation[, 1:3] )
```

	PC1	PC2	PC3
radius_mean	-0.2189024	0.23385713	-0.008531243
texture_mean	-0.1037246	0.05970609	0.064549903
perimeter_mean	-0.2275373	0.21518136	-0.009314220
area_mean	-0.2209950	0.23107671	0.028699526
${\tt smoothness_mean}$	-0.1425897	-0.18611302	-0.104291904
compactness mean	-0.2392854	-0.15189161	-0.074091571

Focus on PC1.

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
wisc.pr$rotation["concave.points_mean",1]
```

[1] -0.2608538

The component of the loading vector for the feature concave.points_mean is -0.2608538.

There is a more complicated mix of variables that go together to make up PC1 - i.e. there are many of the original variables that together contribute highly to PC1.

```
loadings <- as.data.frame(wisc.pr$rotation)

ggplot(loadings) +
  aes(PC1, rownames(loadings)) +
  geom_col()</pre>
```


Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

```
summary(wisc.pr)
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                                PC11
                                                         PC12
                                                                 PC13
                                         PC10
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                           PC19
                                                                   PC20
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                                  PC27
                                                          PC26
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
Cumulative Proportion
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion
                       1.00000 1.00000
```

The minimum number of principal components required to explain 80% of the variance of the data is 5 PCs (84%).

Hierarchial Clustering

First, scale the wisc.data data and assign the result to data.scaled.

```
# Scale the wisc.data data using the "scale()" function
data.scaled <- scale(wisc.data)</pre>
```

Calculate the (Euclidean) distances between all pairs of observations in the new scaled dataset and assign the result to data.dist.

```
data.dist <- dist(data.scaled)</pre>
```

Create a hierarchical clustering model using complete linkage. Manually specify the method argument to hclust() and assign the results to wisc.hclust.

```
wisc.hclust <- hclust(data.dist)</pre>
```

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

The height at which the clustering model has 4 clusters is 19.

Cut this tree to yield cluster membership vector with the cutree() function.

```
wisc.hclust.clusters <- cutree(wisc.hclust, h=19)
table(wisc.hclust.clusters)</pre>
```

```
wisc.hclust.clusters
1 2 3 4
177 7 383 2
```

We can use the table() function to compare the cluster membership to the actual diagnoses.

```
table(wisc.hclust.clusters, diagnosis)
```

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

```
table( cutree(wisc.hclust, h=15) )

1 2 3 4 5 6 7
177 3 370 2 13 2 2
```

Using a height of 15, we can get 7 clusters.

Using different methods

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

The method that gives my my favorite results is the "average" method. This is because average is a good happy-medium similarity when determining cluster linkage. "Complete", which uses the largest similarity, and "single", which uses the smallest similarity, are on the opposite ends of a spectrum, which I don't really like/prefer.

Combine methods: PCA and Hierarchial clustering

My PCA results were interesting as they showed a separation of M and B samples along PC1.

```
plot(wisc.pr$x[, 1], wisc.pr$x[, 2], col=diagnosis)
```


I want to cluster my PCA results - that is use wisc.pr\$x as input to hclust(). Try clustering in 3 PCs, that is PC1, PC2, and PC3.

```
d <- dist(wisc.pr$x[, 1:3])
wisc.pr.hclust <- hclust(d, method="ward.D2")</pre>
```

And my tree result figure.

```
plot(wisc.pr.hclust)
```

Cluster Dendrogram

d hclust (*, "ward.D2")

Let's cut this tree into two groups/clusters.

plot(wisc.pr\$x[,1:2], col=diagnosis)

Q15. How well does the newly created model with four clusters separate out the two diagnoses?

How well do the two clusters separate the M and B diagnoses?

```
table(grps, diagnosis)

diagnosis
grps B M
    1 24 179
    2 333 33

(179+333)/nrow(wisc.data)

[1] 0.8998243
```

The newly created model with 4 clusters separate out the two diagnoses about 90% of the time.