Application of PCA Analysis in Forecasting Gold Future Returns

LU Dongrui

Telecom-Paris

10/02/2020

Outline

- 1 Introduction
 - Background
 - Problem Formulation
- 2 Forecast Modelling
 - Constant Mean Model
 - First Order Auto-regressive (AR(1)) Model
 - Second Order Auto-regressive (AR(2)) Model
 - PCA-based Multiple Regression Model
 - Experiments
- 3 Investment Strategy Building
 - Strategy Description
 - Performance Metrics
 - Experiment
- 4 Summary

Introduction - Background

- Motivations
 Gold is a well-known safe and stress-enduring asset. Forecasting
 Gold futures is of great significance to portfolio management in
 terms of both risk hedging and profit generation.
- Project Description
 - Build data profile for Gold future returns
 - 2 Forecast gold futures returns by PCA-based multiple regression analysis
 - 3 Compare with other benchmarks in terms of MSE and MAE
 - 4 Build investment strategy with all forecast models and financially evaluate their performances

Introduction - Problem Formulation

Gold futures return forecast (k-step ahead)

Given a time series $X = x_t, t = 1, 2, ..., T$ modelling Gold future returns, we would like to predict $x_{t+1}, x_{t+2}, ..., x_{t+k}$.

Notations:

- X: time series
- x_t : X's price at time t
- T: window size, train data length
- k: forecast step
- \hat{x}_t : forecast price at time t

Forecast Modelling - Constant Mean

Hypotheses

Data normality and stationarity

Model

$$x_t = \mu + \epsilon_t$$

for t = 1, 2, ..., T, T + 1, ...T + k

 μ : constant, mean of X

 ϵ_t : error, a white noise series with an i.i.d 0 mean

Theoretical Forecast

$$\hat{x}_t = \mu^* = \frac{1}{T} \sum_{t=1}^{T} x_t$$

for t = T + 1, ..., T + k

Forecast Modelling - AR(1)

Hypotheses

Data normality, stationarity, exogeneity and homoscedasticity

Model

$$x_t = \alpha x_{t-1} + \beta + \epsilon_t$$

 α, β : constant coefficient ($\beta = 0$ for centered data)

 ϵ_t : error, a white noise series with an i.i.d 0 mean

Forecast Modelling - AR(1)

Theoretical Forecast

$$\hat{x}_t = \alpha^* \, x_{t-1} + \beta^*$$

with

$$\begin{cases} \alpha^* = \frac{\text{Cov}(X_t, X_{t-1})}{\text{Var}(X_{t-1})} = \text{acf}_1(X) \\ \beta^* = \frac{1}{T-1} \sum_{t=2}^T (x_t - \alpha^* x_{t-1}) \end{cases}$$

Equivalently,

$$\hat{x}_t - \mu_t = \alpha^* (x_{t-1} - \mu_{t-1})$$

with
$$\mu_t = \frac{1}{T-1} \sum_{t=2}^{T} x_t$$
 and $\mu_{t-1} = \frac{1}{T} \sum_{t=2}^{T} x_{t-1}$

 acf_k : k^{th} -order auto-correlation coefficient

Forecast Modelling - AR(2)

Model

$$x_t = \alpha x_{t-1} + \beta x_{t-2} + \omega + \epsilon_t$$

 α, β, ω : constant coefficient ($\omega = 0$ for centered data)

 ϵ_t : error, a white noise series with an i.i.d 0 mean

Theoretical Forecast

$$\hat{x}_t - \mu_t = \alpha^*(x_{t-1} - \mu_{t-1}) + \beta^*(x_{t-2} - \mu_{t-2})$$

with $\mu_t = \frac{1}{T-2} \sum_{t=3}^T x_t$, $\mu_{t-2} = \frac{1}{T-2} \sum_{t=3}^T x_{t-1}$, $\mu_{t-1} = \frac{1}{T-2} \sum_{t=3}^T x_{t-2}$ and

$$\begin{cases} \alpha^* = \frac{\operatorname{acf}_1(X)(1 - \operatorname{acf}_2(X))}{1 - \operatorname{acf}_1(X)^2} \\ \beta^* = \frac{\operatorname{acf}_2(X) - \operatorname{acf}_1(X)^2}{1 - \operatorname{acf}_1(X)^2} = \operatorname{pacf}_2(X) \end{cases}$$

 pacf_k : k^{th} -order partial auto-correlation coefficient

Forecast Modelling - PCA multiple regression

Model - Simple multiple regression

$$x_{t} = \mu_{t} + \epsilon_{t} = \mu + \sum_{i=1}^{n} \alpha_{i} y_{it} + \sum_{j=1}^{p} \beta_{j} x_{t-j} + \epsilon_{t}$$

 x_{t-j} : j^{th} -order lagged series

 y_{it} : explanatory variable

 μ , α_i , β_i : constant coefficient ($\mu = 0$ for centered data)

 ϵ_t : error, a white noise series with an i.i.d 0 mean and constant variance

Hypotheses

No mutlicollinearity of explanatory variables

Forecast Modelling - PCA multiple regression

Model and Theoretical Forecast - PCA multiple regression

$$x_t = \mu + \sum_{i=1}^m \omega_i z_{it} + \epsilon_t$$

 z_{it} : new explanatory variable obtained by PCA

 ω_i : constant coefficient

Hypotheses

PCA applicability

Forecast Experiments - Data

Take Gold futures log-returns, $X = \ln(\frac{P_t}{P_{t-1}})$. Consider 3 forecast tasks:

- Short term forecast (2 years): $2017-10-31 \sim 2019-10-31$
- Mid term forecast (5 years): $2014-10-31 \sim 2019-10-31$
- Long term forecast (10 years): 2009-10-31 ~ 2019 -10-31

Forecast Experiments - Data Profiling

- Stationarity
 Augmented Dickey-Fuller (ADF) Test, autocorrelation matrix
- Normality
 mean, standard deviation, skewness, kurtosis, Jarque-Bera (JB)
 Normality Test
- PCA Applicability
 Barlett's Sphericity Test, Kaiser-Meyer-Olkin (KMO) Measure of
 Sampling Adequacy

Conclusion

- Gold future returns are stationary. They have little (possibly no) correlation with their lagged series.
- Resemble white noise but have more outliers than a standard normal distribution
- Sufficient samples to apply PCA analysis (17 relevant series)

Forecast Experiments - General Settings and Metrics

Rolling forecast default settings:

- rolling window size = 20
- forecast horizon = 1

Metrics:

- MAE, mean absolute error
- MSE, mean square error

Forecast Experiments - R Function API

- getForecastCsteMean(pxs, windowSize, forecastHorizon, rollStep, showGraph = FALSE)
- getForecastAR(pxs, lags, windowSize, forecastHorizon, rollStep, showGraph = FALSE)
- getForecastPCA(pxs, maxLagOrder, windowSize, forecastHorizon, level = 0.8, showGraph = FALSE)

	short-term	mid-term	long-term
MAE	5.0702 e-03	6.0636e-03	0.00709086
MSE	4.8249e-05	6.9511e-05	0.00010291

Table 1: Constant Mean Model

	short-term	mid-term	long-term
MAE	4.9791e-03	5.9162e-03	0.00700516
MSE	4.8094e-05	6.8220e-05	0.00010231

Table 2: AR(1) Model

	short-term	mid-term	long-term
MAE	5.1276e-03	6.0940e-03	0.00717417
MSE	4.9773e-05	7.0166e-05	0.00010502

Table 3: AR(2) Model

	short-term	mid-term	long-term
MAE	4.5524e-03	0.00717584	0.00785713
MSE	3.8419e-05	0.00011482	0.00013621

Table 4: PCA multiple regression Model

Forecast Experiments - Summary

- For every model, MAE and MSE error increase as the forecast period gets longer
- 2 PCA multiple regression model performs the best in short-term forecast, but its power relies on dataset quality and could significantly suffer as forecast period expands
- 3 AR(1) model performs the best for mid-term and long-term forecast
- \bullet AR(2) model performs worse than AR(1) model in all experiments
- Constant Mean model has satisfactory performances in all experiments

Investment Strategy Building - Strategy Description

Strategy

A signal time series S_t that takes values in $\{0,1\}$. 1 means entering the position. 0 means exiting the position. On day t, the possible actions and the corresponding previous signals are:

- buy: 0 at day t-2 and 1 at day t-1. Enter the position on day t.
- hold: 1 at day t-2 and 1 at day t-1. Hold the position on day t.
- sell: 1 at day t-2 and 0 at day t-1. Exit the position on day t.
- keep clear: 0 at day t-2 and 0 at day t-1. Keep empty position on day t.

Strategy Return Calculation Logic

- Generate the allocation (0/1) on day t (10/02/2020) after the close
- Enter/exit the position before the close on day t + 1 (11/02/2020)
- Calculate the returns after the close on day t + 2 (12/02/2020)

Investment Strategy Building - Performance Metrics

Generate strategy based on every forecast model and compare to the underlying strategy in terms of:

- Profitability:
 Annualized Return
- Risk:
 Annualized Volatility, Maximum Drawdown
- Risk-adjusted profitability: Sharpe Ratio, Sortino Ratio

Build strategy for the period 2018-12-01 to 2020-02-05.

Figure 1: Constant Mean Strategy

Figure 2: AR(1) Strategy

Figure 3: AR(2) Strategy

Figure 4: PCA multiple regression Strategy

	CsteMean	AR(1)	AR(2)	PCA-MR
Annualized Return (%)	10.82	9.36	-1.33	18.17
Annualized Volatility (%)	9.57	7.24	7.81	8.45
Sharpe Ratio	1.13	1.29	-0.16	2.15
Sortino Ratio	1.79	1.94	-0.23	3.85
Maximum Drawdown (%)	-6.84	-4.52	-7.26	-4.31

Table 5: Strategy Performance

Conclusion

- Constant Mean model generates much profit but has more risks.
- AR(1) model has good risk-adjusted performance.
- AR(2) model is sub-optimal.
- PCA multiple regression model performs the best

Alphien platform

Alphien platform

Figure 5: project folder

Summary

- Reviewed N.Sopipan's paper on PCA based multiple regression
- Built data profile for Gold future returns and checked PCA applicability with 17 relevant series
- Implemented forecast methods in R
- Developed theoretical analysis for every forecast method and tested forecast functions' validity with the help of closed-form predictions
- Conducted short term, mid term and long term forecast experiments on the dataset
- Built investment strategies based on forecast methods and financially analysed their performance