Algorithmen der Bioinformatik I WS 2017/2018

Burkhard Morgenstern Peter Meinicke

Dept. Bioinformatics Institute of Microbiology and Genetics (IMG) University of Göttingen

January 15, 2018

Ockham's razor: among competing hypotheses, the one with the fewest assumptions should be preferred.

Idea for phylogeny reconstruction:

For sequences S_1, \ldots, S_n , find tree that minimizes number of evolutionary events that are necessary to explain S_1, \ldots, S_n .

For number of evolutionary events, branch lengths *not* relevant. Therefore: consider only *topology* of tree, *i.e.* branching scheme without branch lengths.

Topology can be represented by parenthesis, *e.g.*:

$$(((S_1, S_3)S_5)(S_2, S_4))$$

Example

n = 4, three different nucleotides at position 3

- Question: How many mutations have to be assumed to explain evolution of sequences from common ancester along tree *T*?
- Answer: depends on tree T

Generally:

- Given *n* species and *k* characters present in all species.
- For characters, different states possible; input data represented as matrix
- Question: if species evolved from a common ancester, how many events (mutations) must be (at least) assumed, to explain different states of characters?

Number of events depends on tree (topology)

Exampel: evolution of vertebrates, 6 characters, each has two possible states (+ and -)

		CHARACTERS						
		1	2	3	4	5	6	
		amnion	hair	lactation	placenta	antorbital fenestra	wings	
TAXA	Frog		-	8	×		-	
	Bird	+	-	- 1	×	+	+	
	Crocodile	+		•	::	+	-	
	Kangeroo	+	+	+	-	×	181	
	Bat	+	+	+	+	*	+	
	Human	+	+	+	+	-	ě	TREE LENGTH
FIT	Tree 1	1	1	1	1	1	2	7
	Tree 2	1	2	2	2	2	1	10

Supporters of parsimony: Cladists (W. Hennig)

Goal: Systematic of organisms based on evolution. Find *monophyletic* groups

Source: Wikipedia

Example: reptils not monophyletic.

For molecular sequence data:

- Characters are positions in sequences
- States are bases or amino acids in sequences

In this case: data matrix = multiple alignment (ignore columns with gaps)

For sequence data: multiple alignment as 'data matrix'. How many substitutions in alignment column?

```
1 ... G ...
2 ... G ...
3 ... T ...
4 ... T ...
5 ... G ...
```


http://www.allanwilsoncentre.ac.nz/

Two questions to be solved for maximum parsimnoy:

- How to calculate number of necessary substitutions for given tree (topology)?
 'Small parsimony problem'
- How to find best topology, i.e. topology with minimum number of mutations?
 - 'Big parsimony problem'

- Consider number of mutations for *single* columns in alignment, take sum of necessary mutations over all columns.
- For given tree (topology) and given column in alignment: use dynamic programming to calculate for each node k set R_k of nucleotides that are possible at k to minimize number of mutations in subtree below k.

Idea of *DP*: solve smaller sub-problems of a large problem *recursively*.

Figure: The sets R_k of possible nucleotides at inner nodes of a tree for a given column in the alignment. Nucleotides at leaves (in alignment column):

Algorithm:

- Traverse nodes of tree from leaves to root
- For each node k, calculate set R_k of nucleotides that can be placed at k to minimize number of mutations in sub-tree below k
 Recursion formula for node k with daughter nodes i and j:

$$R_k = \begin{cases} R_i \cap R_j & \text{if } R_i \cap R_j \neq \emptyset \\ R_i \cup R_j & \text{if } R_i \cap R_j = \emptyset \end{cases} (1)$$

- Keep counter C for number of necessary mutations
- If (2) applies, increase counter C by 1.

Initial values:

- For leave node *I* with nucleotide x, $R_I = \{x\}$
- C = 0

To find optimal assignments of nucleotides to nodes: Go back from root r to leaves ('trace back')

- Assign arbitrary nucleotide from R_r to root r
- If nucleotide x has been chosen for node k, select nucleotide for daughter node as follows:
 - ▶ If $x \in R_i$, chose x for node i
 - Else, chose arbitrary nucleotide from R_i

Generalisation: weighted parsimony

- 'cost' S(a, b) for mutation $a \rightarrow b$ or $b \rightarrow a$.
- Wanted: tree that minimizes sum of costs of necessary mutations.
- For given alignment column and topology, apply dynamic programming.

Calculate for each node k and nucleotide a minimal costs

$$S_k(a)$$

for subtree T_k below k, if a is at k

Initialise for leave k:

$$S_k(a) = \begin{cases} 0 \text{ if base } a \text{ at leave } k \\ \infty \text{ else} \end{cases}$$

Recursion for inner node *k* with children *i* and *j*:

$$S_k(a) = \min_b [S_i(b) + S(a,b)] + \min_b [S_j(b) + S(a,b)]$$

As above: calculate $S_k(a)$ from leaves to root

If root w reached:

Total cost for tree = $\min_a S_w(a)$

Big parsimony problem:

Find optimal tree topology, i.e. topology that requires minimal number of substitutions.

Problem: number of possible tree topologies huge, no efficient algorithm known to find best topology.

Figure: Figures from Joe Felsenstein, Inferring Phylogenies, 2004

 \Rightarrow 'Heuristic' algorithms necessary, *i.e.* algorithms that find approximate solution quickly.

Popular method: *hill climbing*. Start with arbitrary topology T, consider 'neighbours' of T, *i.e.* similar topologies, go to best neighbour topology, *etc.* until no further improvement can be achieved.

Disadvantage: may end up in local maxima / minima.

Searching best solution for optimization problem by *hill climbing*. Height in landscape represents quality of solution.

To find optimal topology:

- Start with initial topology
- Gradually improve topology by moving to 'neighbouring' topologies.

Different possibility to define 'neighbouring' topology.

General assumption: trees without root

How to define 'neighbours' of tree topologies?

- 1. Possibility': Nearest-neighbor interchanges:
 - Consider *internal* edges in topology \mathcal{T} , *i.e.* edges *not* directly adjacent to a leave.
 - For each internal edge e consider four sub-trees S, T, U, V connected by e
 - There are three possibilities to connect S, T, U, V, i.e. two additional possibilities not realized in T.
 - Consider these topologies as *neighbours* of \mathcal{T} .

is rearranged by dissolving the connections to an interior branch

and reforming them in one of the two possible alternative ways:

Figure: Nearest-neighbour interchanges

For n leaves, there are 2n-3 edges in an unrooted tree.

Thus, there are n-3 internal edges.

Rightarrow For a toplolgy with n leaves, there are 2n-6 neighbouring topologies.

Figure: 'Landscape' of possible solutions (topologies) for *hill climbing* with nearest-neighbour interchanges

```
1 2 3 4 5 6
A 1 0 0 1 1 0
B 0 0 1 0 0 0
C 1 1 0 0 0 0
D 1 1 0 1 1 1
E 0 0 1 1 1 0
```

Figure: Example (from Felsenstein): data matrix for 5 'species' and 6 'characters'

Figure: 'Scores' for all possible solutions (= topologies), *i.e.* number of required substitutions. In *this* example, optimal solution found by *hill climbing* (independently of starting point).

2. Subtree-pruning and regrafting:

Cut off sub-tree T' from T, plant T' into arbitrary edge in remaining sub-tree of T.

Neighbouring trees with 'subtree pruning and regrafting'

3. Subtree bisection and reconnection

Variant of subtree pruning:

Split T into sub-trees T_1 and T_2 ; glue T_1 and T_2 together arbigrarily.

- All three possibilities allow to transform every possible tree topology into every other topology.
- Important: Start hill climbing with good initial tree T₀

