Cancer Prediction

Dataset Information:

Target Variable (y):

• Diagnosis (M = malignant, B = benign)

Ten features (X) are computed for each cell nucleus:

- 1. radius (mean of distances from center to points on the perimeter)
- 2. texture (standard deviation of gray-scale values)
- 3. perimeter
- 4. area
- 5. smoothness (local variation in radius lengths)
- 6. compactness (perimeter^2 / area 1.0)
- 7. concavity (severity of concave portions of the contour)
- 8. concave points (number of concave portions of the contour)
- 9. symmetry
- 10. fractal dimension (coastline approximation 1)

For each characteristic three measures are given:

- a. Mean
- b. Standard error
- c. Largest/ Worst

```
# Step 1 : import library
import pandas as pd

# Step 2 : import data
cancer = pd.read_csv('https://github.com/YBIFoundation/Dataset/raw/main/Cancer.csv')
```

cancer.head()

 $\overrightarrow{\exists^*}$

i	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	poi
0	842302	M	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	
1	842517	M	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	
2	84300903	M	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	
3	84348301	M	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	
4	84358402	M	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	

5 rows × 33 columns

cancer.info()

<</pre>
<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):

		٥,٠	
#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	fractal_dimension_mean	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64

```
18 concavity_se
                             569 non-null
                                             float64
19 concave points_se
                             569 non-null
                                             float64
20 symmetry_se
                             569 non-null
                                             float64
 21 fractal_dimension_se
                             569 non-null
                                             float64
                             569 non-null
                                             float64
 22 radius_worst
23 texture_worst
                             569 non-null
                                             float64
24 perimeter worst
                             569 non-null
                                             float64
25 area worst
                             569 non-null
                                             float64
                             569 non-null
                                             float64
 26 smoothness_worst
                             569 non-null
 27 compactness_worst
                                             float64
                             569 non-null
28 concavity_worst
                                             float64
29
    concave points_worst
                             569 non-null
                                             float64
30 symmetry_worst
                             569 non-null
                                             float64
 31 fractal_dimension_worst
                             569 non-null
                                             float64
32 Unnamed: 32
                             0 non-null
                                             float64
dtypes: float64(31), int64(1), object(1)
memory usage: 146.8+ KB
```

```
cancer.describe()
```

₹		id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	c point
	count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.
	mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.
	std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.
	min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.
	25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.
	50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.
	75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.
	max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.

8 rows × 32 columns

```
# Step 3 : define target (y) and features (X)
```

```
cancer.columns
```

```
y = cancer['diagnosis']

X = cancer.drop(['id','diagnosis','Unnamed: 32'],axis=1)
```

```
# Step 4 : train test split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, train_size=0.7, random_state=2529)
```

```
# check shape of train and test sample
X_train.shape, X_test.shape, y_train.shape, y_test.shape
```

```
→ ((398, 30), (171, 30), (398,), (171,))
```

```
# Step 5 : select model
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(max_iter=5000)
```

```
# Step 6 : train or fit model
model.fit(X_train,y_train)
```

```
LogisticRegression LogisticRegression(max_iter=5000)
```

```
model.intercept_
→ array([-30.20269391])
model.coef_
\Rightarrow array([[-0.8644508 , -0.1823121 , 0.26510852, -0.02688942, 0.13284582,
              0.19445151, 0.40918278, 0.20206338, 0.17199488, 0.03798515, 0.0192444, -1.13284188, -0.13597054, 0.11911954, 0.02266663,
             -0.03006638, 0.04691738, 0.02805721, 0.03329433, -0.00980702, -0.27140621, 0.44034405, 0.16566196, 0.01286379, 0.2719812, 0.59704539, 1.06177846, 0.40903862, 0.51193487, 0.08436947]])
# Step 7 : predict model
y_pred = model.predict(X_test)
y_pred
⇒ array(['B', 'M', 'B', 'B', 'B',
                      'B', 'B',
                                                                   'B',
                                'M',
                                     'B',
                                          'B',
                                               'M',
                                                         'M',
                                                              'B',
                                                                   'B',
            'M', 'M',
'M', 'B',
                                                                        'B',
                                          'M',
                                                         'M', 'B', 'M', 'M',
            'B', 'B'], dtype=object)
# Step 8 : model accuracy
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
confusion_matrix(y_test,y_pred)
→ array([[97, 5],
            [ 2, 67]])
accuracy_score(y_test,y_pred)
→ 0.9590643274853801
print(classification_report(y_test,y_pred))
```

_			precision	recall	f1-score	support
		В	0.98	0.95	0.97	102
		М	0.93	0.97	0.95	69
	accur	racy			0.96	171
	macro	_	0.96	0.96	0.96	171 171
wei	.ghted	avg	0.96	0.96	0.96	1/1