Solución de Problemas de Programación Lineal Método Simplex III

Luis Norberto Zúñiga Morales

20 de febrero de 2023

Contenido

- Introducción
- Método de las dos fases
- Resumen del método de las dos fases
- Ejemplo: Método de las dos fases
- Sin soluciones factibles
- 6 Variables que pueden ser negativas
 - Variables con una cota sobre valores negativos permitidos
 - Variables sin cota sobre valores negativos permitidos

En la presentación anterior se trabajó el siguiente problema:

$$\min_{x_1, x_2} \quad Z = 0.4x_1 + 0.5x_2$$
s. a.
$$0.3x_1 + 0.1x_2 \le 2.7$$

$$0.5x_1 + 0.5x_2 = 6$$

$$0.6x_1 + 0.4x_2 \ge 6$$

$$x1 \ge 0, x_2 \ge 0$$

- Para llegar a una solución óptima es necesario realizar iteraciones adicionales después de obtener la primera solución factible del problema real.
- De esta forma, puede pensarse que el método de la gran M tiene dos fases.

Iter.	Var.	Ec.		Coeficiente de:									
itei.	Bás.	EC.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	\bar{x}_4	<i>x</i> ₅	<i>x</i> ̄ ₆	Der.			
	Z	(0)	-1	-1.1M+0.4	-0.9M+0.5	0	0	М	0	-12M			
0	<i>x</i> ₃	(1)	0	0.3	0.1	1	0	0	0	2.7			
U	\bar{x}_4	(2)	0	0.5	0.5	0	1	0	0	6			
	\bar{x}_6	(3)	0	0.6	0.4	0	0	-1	1	6			
	Z	(0)	-1	0	$-\frac{16}{30}M + \frac{11}{30}$	11/3 M - 4/3	0	М	0	-2.1M-3.6			
4	<i>x</i> ₁	(1)	0	1	1/3	10/3	0	0	0	9			
'	\bar{x}_4	(2)	0	0	1/3	-5/3	1	0	0	1.5			
	\bar{x}_6	(3)	0	0	0.2	-2	0	-1	1	0.6			
	Z	(0)	-1	0	0	$-\frac{5}{3}M + \frac{7}{3}$	0	$-\frac{5}{3}M + \frac{11}{6}$	$\frac{8}{3}$ M - $\frac{11}{6}$	-0.5M-4.7			
2	<i>x</i> ₁	(1)	0	1	0	20/3	0	5/3		8			
2	\bar{x}_4	(2)	0	0	0	5/3	1	5/3	-5/3	0.5			
	<i>X</i> ₂	(3)	0	0	1	-10	0	-5	5	3			
	Z	(0)	-1	0	0	0.5	M-1.1	0	М	-5.25			
3	<i>x</i> ₁	(1)	0	1	0	5	-1	0	0	7.5			
3	<i>X</i> ₅	(2)	0	0	0	1	0.6	1	-1	0.3			
	<i>X</i> ₂	(3)	0	0	1	-5	3	0	0	4.5			

Figura: La gráfica muestra la región factible y la secuencia de soluciones FEV que se examinaron por el método símplex (el método de la gran *M*) del problema artifical.

Figura: Suponiendo que el problema no tuviera restricciones de igualdad, todavía no podemos usar el origen como punto de inicio o solución básica factible inicial.

- En la primera fase, todas las variables artificiales se hacen cero...
 - Debido a la penalización de *M* por unidad al ser mayores que cero.
- ...con el fin de obtener una solución básica factible inicial para el problema real.
- En la segunda fase, todas las variables artificiales se mantienen en cero, mientras que el método símplex genera una secuencia de soluciones BF que llevan a la solución óptima.
- Esto se conoce como el método de las dos fases.

La función objetivo real es

mín
$$Z = 0.4x_1 + 0.5x_2$$
.

Sin embargo, el método de la gran M utiliza la siguiente función objetivo en todo el procedimiento

mín
$$Z = 0.4x_1 + 0.5x_2 + M\bar{x}_4 + M\bar{x}_6$$
.

Como los dos primeros coeficientes son despreciables comparados con M, el método de las dos fases puede eliminar la M si usan las siguientes dos funciones objetivos que definen Z de manera muy diferente.

Fase 1:
$$\min Z = \bar{x}_4 + \bar{x}_6$$
 hasta $\bar{x}_4 = 0$, $\bar{x}_6 = 0$
Fase 2: $\min Z = 0.4x_1 + 0.5x_2$ con $\bar{x}_4 = 0$, $\bar{x}_6 = 0$

Fase 1:
$$\min Z = \bar{x}_4 + \bar{x}_6$$
 hasta $\bar{x}_4 = 0$, $\bar{x}_6 = 0$
Fase 2: $\min Z = 0.4x_1 + 0.5x_2$ con $\bar{x}_4 = 0$, $\bar{x}_6 = 0$

- La función objetivo de la fase 1 se obtiene si se divide la función objetivo de método de la gran M entre M y se eliminan los términos despreciables.
- Como la fase 1 termina cuando se obtiene una solución BF para el problema real ($\bar{x}_4 = 0, \bar{x}_6 = 0$)...
- Esta solución se usa como la solución BF inicial para aplicar el método símplex al problema real en la fase 2.

Figura: La gráfica muestra la región factible y la secuencia de soluciones FEV que se examinaron por el método símplex (el método de la gran *M*) del problema artifical.

Iter.	Var.	Ec.			Co	peficiente d	le:			Lado
itei.	Bás.	EC.	Z	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	\bar{x}_4	<i>x</i> ₅	<i>x</i> ₆	Der.
	Z	(0)	-1	-1.1M+0.4	-0.9M+0.5	0	0	М	0	-12M
0	<i>x</i> ₃	(1)	0	0.3	0.1	1	0	0	0	2.7
U	\bar{x}_4	(2)	0	0.5	0.5	0	1	0	0	6
	\bar{x}_6	(3)	0	0.6	0.4	0	0	-1	1	6
	Z	(0)	-1	0	$-\frac{16}{30}M + \frac{11}{30}$	$\frac{11}{3}$ M - $\frac{4}{3}$	0	М	0	-2.1M-3.6
-1	<i>x</i> ₁	(1)	0	1	1/3	10/3	0	0	0	9
'	\bar{x}_4	(2)	0	0	1/3	-5/3	1	0	0	1.5
	\bar{x}_6	(3)	0	0	0.2	-2	0	-1	1	0.6
	Z	(0)	-1	0	0	$-\frac{5}{3}M + \frac{7}{3}$	0	$-\frac{5}{3}M + \frac{11}{6}$	$\frac{8}{3}$ M - $\frac{11}{6}$	-0.5M-4.7
2	<i>x</i> ₁	(1)	0	1	0	20/3	0	5/3		8
2	\bar{x}_4	(2)	0	0	0	5/3	1	5/3	-5/3	0.5
	<i>X</i> ₂	(3)	0	0	1	-10	0	-5	5	3
	Z	(0)	-1	0	0	0.5	M-1.1	0	М	-5.25
3	<i>x</i> ₁	(1)	0	1	0	5	-1	0	0	7.5
3	<i>X</i> ₅	(2)	0	0	0	1	0.6	1	-1	0.3
	<i>X</i> ₂	(3)	0	0	1	-5	3	0	0	4.5

Resumen del método de las dos fases

Paso inicial: se revisan las restricciones del problema original y se introducen las variables artificiales según se necesite para obtener una solución BF inicial obvia para el problema artificial.

Resumen del método de las dos fases

Fase 1:

 El objetivo de esta fase es encontrar una solución BF par el problema real. Es decir, se debe

$$mín Z = \sum variables \ artificiales_{g} \ ^{8}$$

sujeta a las restricciones revisadas.

 La solución óptima que se obtiene para ese problema (con Z = 0) será una solución BF para el problema real.

Resumen del método de las dos fases

Fase 2:

- El objetivo de esta fase es encontrar una solución óptima para el problema real. Como las variables artificiales no son parte del problema real, ahora se pueden eliminar.
- Se empieza con la solución BF que se obtuvo al final de la fase 1 y se usa el método símplex para resolver el problema real.

Problema de la fase 1

Problema de la fase 2

$$\min_{x_1, x_2} \quad Z = 0.4x_1 + 0.5x_2
s. a. \quad 0.3x_1 + 0.1x_2 + x_3 = 2.7
0.5x_1 + 0.5x_2 = 6
0.6x_1 + 0.4x_2 - x_5 = 6
x_1 \ge 0, \quad x_2 \ge 0, x_3 \ge 0, \quad x_5 \ge 0$$

- La única diferencia entre estos dos problemas se encuentran en la función objetivo y en la inclusión (fase 1) o exclusión (fase 2) de las variables artificiales x

 4 y x
 6.
- Sin las variables artificiales, el problema de la fase 2 no tiene una solución BF inicial obvia.
- El único propósito de resolver el problema de la fase 1 es **obtener** una solución BF con $\bar{x}_4 = 0$ y $\bar{x}_6 = 0$ que se pueda usar como solución BF inicial para la fase 2.

Ejercicio

Resolver el problema de la fase 1:

$$\min_{\bar{x}_4, \bar{x}_6} \quad Z = \bar{x}_4 \qquad +\bar{x}_6
s. a. \quad 0.3x_1 \qquad +0.1x_2 + x_3 \qquad = 2.7
0.5x_1 \qquad +0.5x_2 \qquad +\bar{x}_4 \qquad = 6
0.6x_1 \qquad +0.4x_2 \qquad -x_5 \qquad +\bar{x}_6 = 6
x_1 \ge 0, \quad x_2 \ge 0, x_3 \ge 0, \quad \bar{x}_4 \ge 0, x_5 \ge 0, \quad \bar{x}_6 \ge 0$$

Atención: No olviden cambiar minimizar por maximizar y eliminar las variables básicas \bar{x}_4 y \bar{x}_6 de Z (deben ser cero en ese renglón para después salir de la base).

Iter.	Var.	Ec.			Coefi	ciente	de:			Lado
itei.	Bás.	LC.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	\bar{x}_4	<i>X</i> 5	\bar{x}_6	Der.
	Z	(0)	-1	-1.1	-0.9	0	0	1	0	-12
0	<i>X</i> ₃	(1)	0	0.3	0.1	1	0	0	0	2.7
U	\bar{x}_4	(2)	0	0.5	0.5	0	1	0	0	6
	\bar{x}_6	(3)	0	0.6	0.4	0	0	-1	1	6
	Z	(0)	-1	0	-16/30	11/3	0	1	0	-2.1
-1	<i>X</i> ₁	(1)	0	1	1/3	10/3	0	0	0	9
1	\bar{x}_4	(2)	0	0	1/3	-5/3	1	0	0	1.5
	\bar{x}_6	(3)	0	0	0.2	-2	0	-1	1	0.6
	Z	(0)	-1	0	0	-5/3	0	-5/3	8/3	-0.5
2	<i>X</i> ₁	(1)	0	1	0	20/3	0	5/3	-5/3	8
2	\bar{x}_4	(2)	0	0	0	5/3	1	5/3	-5/3	0.5
	<i>x</i> ₂	(3)	0	0	1	-10	0	-5	5	3

Iter.	Var.	Ec.			Co	oeficie	nte de) :		Lado
itei.	Bás.	LC.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	\bar{X}_4	<i>X</i> ₅	\bar{x}_6	Der.
	Z	(0)	-1	0	0	-5/3	0	-5/3	8/3	-0.5
2	<i>X</i> ₁	(1)	0	1	0	20/3	0	5/3	-5/3	8
2	\bar{x}_4	(2)	0	0	0	5/3	1	5/3	-5/3	0.5
	<i>X</i> ₂	(3)	0	0	1	-10	0	-5	5	3
	Z	(0)	-1	0	0	0	1	0	1	0
3	<i>X</i> ₁	(1)	0	1	0	0	-4	-5	5	6
ى 	<i>X</i> 3	(2)	0	0	0	1	3/5	1	-1	0.3
	<i>X</i> ₂	(3)	0	0	1	0	6	5	-5	6

La solución que se obtiene al final de la fase 1 es

$$(x_1, x_2, x_3, \bar{x}_4, x_5, \bar{x}_6) = (6, 6, 0.3, 0, 0, 0).$$

• Después de eliminar \bar{x}_4 y \bar{x}_6

$$(x_1, x_2, x_3, x_5) = (6, 6, 0.3, 0).$$

• Esta solución de la fase 1 es una solución BF para el problema real (de la fase 2) ya que es la solución (con $x_5 = 0$) del sistema de ecuaciones del problema de la fase 2.

	Var.	Ec.			Lado					
	Bás.	EC.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	\bar{x}_4	<i>X</i> 5	\bar{x}_6	Der.
	Z	(0)	-1	0	0	0	1	0	1	0
Tabla símplex final	<i>X</i> ₁	(1)	0	1	0	0	-4	-5	5	6
fase 1	<i>X</i> ₃	(2)	0	0	0	1	3/5	1	-1	0.3
	<i>X</i> ₂	(3)	0	0	1	0	6	5	-5	6
	Z	(0)	-1	0	0	0		0		0
Se eliminan \bar{x}_4	<i>X</i> ₁	(1)	0	1	0	0		-5		6
y	<i>X</i> ₃	(2)	0	0	0	1		1		0.3
	<i>X</i> ₂	(3)	0	0	1	0		5		6
	Z	(0)	-1	0.4	0.5	0		0		0
Se sustituye la función	<i>X</i> ₁	(1)	0	1	0	0		-5		6
objetivo de la fase 2	<i>X</i> ₃	(2)	0	0	0	1		1		0.3
	<i>X</i> ₂	(3)	0	0	1	0		5		6
Se restablece la forma	Z	(0)	-1	0	0	0		-0.5		-5.4
	<i>X</i> ₁	(1)	0	1	0	0		-5		6
apropiada de eliminación	<i>X</i> ₃	(2)	0	0	0	1		1		0.3
gaussiana	<i>X</i> ₂	(3)	0	0	1	0		5		6

Iter.	Var.	Ec.		Lado				
itei.	Bás.	LC.	Z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₅	Der.
	Z	(0)	-1	0	0	0	-0.5	-5.4
0	<i>X</i> ₁	(1)	0	1	0	0	-5	6
U	<i>X</i> ₃	(2)	0	0	0	1	1	0.3
	<i>X</i> ₂	(3)	0	0	1	0	5	6
	Z	(0)	-1	0	0	0.5	0	-5.25
1	<i>X</i> ₁	(1)	0	1	0	5	0	7.5
I	<i>X</i> 5	(2)	0	0	0	1	1	0.3
	<i>X</i> ₂	(3)	0	0	1	-5	0	4.5

Figura: La gráfica muestra la secuencia de soluciones FEV de la fase 1 (círculo) y después de la fase 2 (cuadros) cuando se aplica el método de las dos fases.

Ejercicio

En la segunda iteración se eligió al azar la forma de romper el empate. ¿Que hubiera pasado si se elige la otra columna?

Realizar el procedimiento eligiendo la columna correspondiente a x_5 en lugar de la de x_3 .

Ejercicio

¿Qué similitudes tiene el método de las dos fases con el método de la gran *m*?

• La función objetivo del método de la gran *M*:

Minimizar
$$Z = 0.4x_1 + 0.5x_2 + M\bar{x}_4 + M\bar{x}_6$$

Función objetivo del método de las dos fases:

Fase 1: Minimizar $Z = \bar{x}_4 + \bar{x}_6$

Fase 2: Minimizar $Z = 0.4x_1 + 0.5x_2$

• Dado que los términos $M\bar{x}_4$ y $M\bar{x}_6$ dominan a los términos $0.4x_1$ y $0.5x_2$ en la función objetivo de la gran M, esta es esencialmente equivalente a la de la fase 1.

- Debido a estas equivalencias de las funciones objetivo, el método de la gran M y el de las dos fases tienen casi siempre la misma secuencia de soluciones básicas factibles.
- La única excepción es cuando existen empates en la variable básica que entra.
- Las tablas del símplex son similares, pues la única diferencia es que los factores multiplicativos de M se convierten en cantidades únicas.

- Hasta el momento, el método de la gran M o el de las dos fases permite identificar una solución inicial cuando no se dispone de una obvia.
- Con esto, se puede comenzar el recorrido hacias las soluciones BF hasta encontrar una supuesta solución óptima.
- ¿Muy bueno para ser verdad?

- Es posible que no exista una selección obvia para la solución BF inicial...
- Por la simple razón de que no existen soluciones factibles.
- El método de variables artificiales nos puede mentir.
- ¿Cómo identificarlo?

La técnica de variables artificiales proporciona algunas señales que indican lo anterior:

Pista

- Si el problema original no tiene soluciones factibles, cualquier solución óptima que se obtenga con el método de la gran M o en la fase 1...
- ...lleva a una solución final que contiene al menos una variable artificial mayor que cero.
- De otra manera, todas son iguales a cero.

Para ilustrar lo anterior, vamos a cambiar la restricción del ejemplo como sigue:

$$0.3x_1 + 0.1x_2 \le 2.7 \rightarrow 0.3x_1 + 0.1x_2 \le 1.8$$

lo cual provoca que el problema no tenga soluciones factibles. Vamos a ver por qué.

Ejercicio

Consideren el siguiente problema:

$$\min_{x_1, x_2} \quad Z = 0.4x_1 + 0.5x_2$$
s. a.
$$0.3x_1 + 0.1x_2 \le 1.8$$

$$0.5x_1 + 0.5x_2 = 6$$

$$0.6x_1 + 0.4x_2 \ge 6$$

$$x1 \ge 0, x_2 \ge 0$$

- Grafiquen la región factible.
- Intentar resolver con el método de la gran M.

Iter.	Var.	Ec.			Coeficie	ente de:				Lado
ilei.	Bás.	LC.	Z	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	\bar{x}_4	<i>X</i> ₅	<i>x</i> ̄ ₆	der.
	Z	(0)	-1	-1.1M+0.4	-0.9M+0.5	0	0	М	0	-12M
0	<i>x</i> ₃	(1)	0	0.3	0.1	1	0	0	0	1.8
U	\bar{x}_4	(2)	0	0.5	0.5	0	1	0	0	6
	\bar{x}_6	(3)	0	0.6	0.4	0	0	-1	1	6
	Z	(0)	-1	0	$-\frac{16}{30}M + \frac{11}{30}$	$\frac{11}{3}$ M- $\frac{4}{3}$	0	М	0	-5.4M-2.4
1	<i>X</i> ₁	(1)	0	1	1/3	10/3	0	0	0	6
'	\bar{x}_4	(2)	0	0	1/3	-5/3	1	0	0	3
	\bar{x}_6	(3)	0	0	0.2	-2	0	-1	1	2.4
	Z	(0)	-1	0	0	M+0.5	1.6M-1.1	М	0	-0.6M-5.7
2	<i>X</i> ₁	(1)	0	1	0	5	-1	0	0	3
۷	<i>X</i> ₂	(2)	0	0	1	-5	3	0	0	9
	\bar{x}_6	(3)	0	0	0	-1	-0.6	-1	1	0.6

 En la tabla anterior, el método de la gran M indicaría que la solución óptima es

$$(x_1, x_2, x_3, \bar{x}_4, x_5, \bar{x}_6) = (3, 9, 0, 0, 0, 0.6)$$

• Sin embargo, en este caso, ya que la variable artificial $\bar{x}_6 > 0$, el mensaje real es que **el problema no tiene soluciones factibles**.

Variables que pueden ser negativas

En el inicio discutimos sobre el significado que pueden tener las variables de decisión y los valores que pueden tomar.

- Estamos de acuerdo que si manejamos personas, no podemos asignar la mitad o una cuarta parte de ella.
- El valor de producción de un producto debe ser positivo.

Hasta el momento hemos manejado valores donde $x_i >= 0$ o $x_i = 0$. No podemos limitarnos a esto, por lo que vamos a considerar ahora problemas donde $x_i <= 0$

Variables que pueden ser negativas

- El procedimiento para determinar la variable básica saliente requiere que todas las variables tengan restricción de no negatividad.
- Cualquier problema que contenga variables que puedan adquirir valores negativos debe convertirse en un problema equivalente.
- La idea es que sólo emplee variables no negativas antes de aplicar el método símplex.
- La modificación depende de que tenga o no una cota inferior (negativa) sobre los valores permitidos.

Consideremos cualquier variable de decisión x_j que puede tener valores negativos, pero nada más aquellos que satisfacen una restricción de la forma

$$x_j \geq L_j$$

donde L_j es una constante negativa. Esta restricción se puede convertir en una de no negatividad al cambiar de variables

$$x_{j}^{'}=x_{j}-L_{j}$$

entonces $x_j^{'} > 0$. Así, $x_j^{'} + L$ se sustituye por x_j en el modelo y la nueva variable de decisión $x_j^{'}$ no puede ser negativa.

- En el problema de la Wyndor Glass Co., supongamos que el producto 1 ya está en producción.
- La variable de decisión x₁ ahora representa el incremento de la tasa de producción.
- Un valor negativo en la variable indica que debe reducirse la fabricación del producto 1 en esa cantidad.
- En consecuencia, se incrementa la producción del producto 2, más rentable.

Supongamos que la tasa de producción actual del producto 1 en el problema de la Wyndor Glass Co. es 10. Con la definición anterior, la restricción de x_1 se convierte en

$$x_1 \ge -10$$

Supongamos que la tasa de producción actual del producto 1 en el problema de la Wyndor Glass Co. es 10. Con la definición anterior, la restricción de x_1 se convierte en

$$x_1 \ge -10$$

Pregunta

¿Por qué $x_1 \ge -10$?

Supongamos que la tasa de producción actual del producto 1 en el problema de la Wyndor Glass Co. es 10. Con la definición anterior, la restricción de x_1 se convierte en

$$x_1 \ge -10$$

Pregunta

¿Por qué $x_1 \ge -10$?

Para obtener el modelo equivalente, la variable de decisión se redefine como la tasa de producción total del producto 1:

$$x_j^{'}=x_1+10$$

Esto produce los siguientes cambios en la función objetivo y las restricciones:

El problema real

$$\max_{x_1, x_2} \quad Z = 3x_1 + 5x_2
s. a. \quad x_1 \le 4
2x_2 \le 12
3x_1 + 2x_2 \le 18
x_1 \ge -10, x_2 \ge 0$$

El problema modificado

Reduciendo términos, finalmente se obtiene:

Ejercicio

Resolver el problema

$$\max_{x_1, x_2} \quad Z = -30 + x_1' + 5x_2$$
s. a.
$$x_1' \le 14$$

$$2x_2 \le 12$$

$$3x_1' + 2x_2 \le 48$$

$$x_1' > 0, x_2 > 0$$

• En caso de que x_j no tenga una cota inferior en el modelo formulado, se requiere un cambio distinto.

- En caso de que x_j no tenga una cota inferior en el modelo formulado, se requiere un cambio distinto.
- x_j se sustituye en todo el modelo por la diferencia de dos nuevas variables no negativas:

$$x_j = x_j^+ - x_j^-$$

 $\text{donde } x_j^+ \geq 0, x_j^- \geq 0$

- En caso de que x_j no tenga una cota inferior en el modelo formulado, se requiere un cambio distinto.
- x_j se sustituye en todo el modelo por la diferencia de dos nuevas variables no negativas:

$$x_j = x_j^+ - x_j^-$$

donde $x_i^+ \geq 0, x_i^- \geq 0$

 Como x_j⁺ y x_j⁻ pueden tomar cualquier valor no negativo, la diferencia x_j⁺ - x_j⁻ puede tener cualquier valor (positivo o negativo).

- En caso de que x_j no tenga una cota inferior en el modelo formulado, se requiere un cambio distinto.
- x_j se sustituye en todo el modelo por la diferencia de dos nuevas variables no negativas:

$$x_j = x_j^+ - x_j^-$$

donde $x_i^+ \geq 0, x_i^- \geq 0$

- Como x_j⁺ y x_j⁻ pueden tomar cualquier valor no negativo, la diferencia x_j⁺ - x_j⁻ puede tener cualquier valor (positivo o negativo).
- Por lo tanto, es una sustitución legítima en el modelo.

- En caso de que x_j no tenga una cota inferior en el modelo formulado, se requiere un cambio distinto.
- x_j se sustituye en todo el modelo por la diferencia de dos nuevas variables no negativas:

$$X_j = X_j^+ - X_j^-$$

donde $x_i^+ \geq 0, x_i^- \geq 0$

- Como x_j⁺ y x_j⁻ pueden tomar cualquier valor no negativo, la diferencia x_j⁺ - x_j⁻ puede tener cualquier valor (positivo o negativo).
- Por lo tanto, es una sustitución legítima en el modelo.
- Con esto, ya se puede arrancar el método símplex.

El problema real

El problema modificado