Performance and Power Modeling of ML Accelerators

Ayushi Agarwal

Course: Synthesis of Digital Systems (COL719)

Deep Learning Applications

Deep Learning Application Pipeline

Deep Learning Models

Training

Inference

Written using C++,
Python using
DL frameworks like
Tensorflow, PyTorch

In data centers or on heavy GPU-based machines

On Edge Devices, or Domain-specific Accelerators

Eg. ShiDianNao, Eyeriss, Apple Neural Engine, NVDLA

Deep Convolutional Neural Networks

Challenges with DNN computations

- Large number of parameters in modern deep networks
 - Require many parallel computations → Not suitable for CPU execution
 - Require many data transfers from the memory to compute units → GPU computation is energy-inefficient

DNN Model	Number of Parameters (weights)
AlexNet (2012)	3.98M
VGGNet-16 (2014)	28.25M
GoogleNet (2015)	6.77M
ResNet-50 (2016)	23M
DLRM (2019)	540M

Domain-Specific Accelerators

Example: Eyeriss, Google TPU, NVDLA, ShiDianNao

Systolic Array Architecture

- Designed for Efficient parallel computation
- Composed of identical PEs
- Simpler data routing and communication btw PEs
- Pipelined Dataflow

High Parallelism

Ease of Implementation

Efficient Data Reuse

Aa + Bb + Cc	Ad + Be + Cf
Da + Eb + Fc	Dd + Ee + Ff

Aa + Bb + Cc	Ad + Be + Cf
Da + Eb + Fc	Dd + Ee + Ff

Ad + Be + Cf

Dd + Ee + Ff

Aa + Bb + Cc

Da + Eb + Fc

Modeling Convolutions

Machine Learning Accelerator Trace-Driven Simulator: Scale-Sim: Systolic CNN Accelerator Simulator

- Analytical model for cycle-accurate computation timing, power/energy
 - This is for a specified accelerator hardware configuration and a neural network.
- Provides cycle-level traces for SRAM (on-chip accelerator memory) and offchip DRAM.
- This can be used to analyze the access characteristics of several machinelearning models.
- Example Models: CNNs, RNNs, Transformers, Recommendation Models, etc.

Scale-Sim: Analytical Model of Accelerator

Scale-Sim: Analytical Model of Accelerator

- On-chip Memory Model
 - Double-buffered Memory
 - Model three sets of double-buffered memory for IFMAP, OFMAP, and FIL
- Compute Model
 - Using Systolic Array
- System Interface Model
 - Cycle-accurate DRAM traces that can be integrated into SoC
- Network Supported
 - Any network that can be mapped to Systolic Array as GEMM

Power Modeling of Accelerators

• $P = \alpha.C.V_{DD}^2.f$ (α – Activity), E = P.t (t – compute time)

- Design architecture-level power/energy estimation models.
- Provides accurate power/energy consumption analysis for accelerators.
- Predictions are based on factors like workload, architecture design, and operating conditions.
- Example of such models: Aladdin, Accelergy

Power Modeling Advantages

- Allows designers to optimize for energy efficiency during the design phase.
- Power Optimization
 - Identify design bottlenecks
 - Optimize parameters like clock frequency or memory hierarchy to minimize power consumption.
- Thermal management:
 - Predict power dissipation to analyze the temperature/thermal map of the Accelerator
 - Design efficient cooling methods for the accelerator

Energy Model using Scale-Sim

Dynamic Voltage and Frequency Scaling (DVFS)

DVFS is used to reduce energy consumption.

- Dynamic Scaling of the supply voltage and frequency of the chip
 - Scaling based on workload
 - Scaling done during idle periods or low computational intensity periods
- Performance Trade-offs:
 - Accurate workload prediction low and high compute intensity periods
 - Should not optimize high compute zones
 - Efficient voltage switching mechanisms
 - High switching latency high overheads

DVFS Policy using Scale-Sim

Projects

- Design a DVFS policy for the accelerator, based on
 - Progress compared to a given deadline (time, in *ms*)
 - If AHEAD of the deadline, perform DVFS to optimize the accelerator's energy
 - or/and, Accelerator Activity during the computation
 - Based on activity in the accelerator, perform DVFS on components with low utilization or activity
- Design a Dynamic Thermal Management Policy for the Accelerator using Scale-Sim and Hotspot.
 - Collect interval-wise access counts for each component from Scale-Sim
 - Get a power trace from Accelergy
 - Use HotSpot to obtain a Thermal Map identify the hot regions
 - Use DVFS to optimize temperature maybe slow down the hot regions

Thank You

Questions?

Accelerator Energy Model – Accelergy tool

- Accelergy is an architecture-level energy estimator tool.
- It uses the action counts from the performance simulator to estimate the total energy.

From Scale-Sim or Accelerator Performance Simulator

Module	Action		Counts			
Global SRAM	ffer access()		x1	\		1
Buffer			x2		Energy	
MAC unit			х3		Estimator	
					=	Total Accelera
Module		Energy/action			x1*y1 + x2*y2 +	Energy Estima
Global SR	RAM y1 y2				x3*y3	
Buffer						
MAC unit y3						