CSE4088 Introduction to Machine Learning

Components of Learning Perceptron Learning Algorithm

Slides are adopted from lecture notes of Yaser Abu-Mostafa

Outline

- Components of learning
- The perceptron learning algorithm
- Types of learning

Review: The essence of machine learning

- A pattern exists
- We can not pin it down mathematically
- We have data on it
- Example:
 - Tree images have a pattern.
 - It is difficult to give a mathematical definition of a tree.
 - However, we can learn to classify tree images if we have enough data.

Exercise

Which of the following problems are best suited for Machine Learning?

- (i) Classifying numbers into primes and non-primes.
- (ii) Detecting potential fraud in credit card charges.
- (iii) Determining the time it would take a falling object to hit the ground.
- (iv) Determining the optimal cycle for traffic lights in a busy intersection.
- [a] (ii) and (iv)
- [**b**] (i) and (ii)
- [c] (i), (ii), and (iii)
- [d] (iii)
- [e] (i) and (iii)

Components of Learning

Application: Credit approval

Applicant information:

age	23 years
gender	male
annual salary	\$30,000
years in residence	1 year
years in job	1 year
current debt	\$15,000
• • •	• • •

Approve credit?

Components of Learning

Formalization:

- Input: **x** (customer application)
- Output: *y* (good/bad customer?)
- Target function: $f: \mathcal{X} \to \mathcal{Y}$ (ideal credit approval formula)
- Data: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)$ (historical records)
 - **↓ ↓ ↓**
- ullet Hypothesis: $g:\mathcal{X}
 ightarrow \mathcal{Y}$ (formula to be used)

A simple hypothesis set – the perceptron

For input $\mathbf{x}=(x_1,\cdots,x_d)$ 'attributes of a customer'

Approve credit if $\sum_{i=1}^{d} w_i x_i > \text{threshold},$

Deny credit if $\sum_{i=1}^d w_i x_i < \text{threshold.}$

This linear formula $h \in \mathcal{H}$ can be written as

$$m{h}(\mathbf{x}) = ext{sign}\left(\left(\sum_{i=1}^d m{w_i} x_i
ight) - ext{threshold}
ight)$$

$$h(\mathbf{x}) = \operatorname{sign} \left(\left(\sum_{i=1}^d \mathbf{w_i} \ x_i \right) + \mathbf{w_0} \right)$$

Introduce an artificial coordinate $x_0 = 1$:

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=0}^{d} \mathbf{w}_{i} \ x_{i}\right)$$

In vector form, the perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

'linearly separable' data

A Simple Learning Algorithm: Perceptron Learning Algorithm (PLA)

The perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\scriptscriptstyle\mathsf{T}}\mathbf{x})$$

Given the training set:

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)$$

pick a misclassified point:

$$sign(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n) \neq y_n$$

and update the weight vector:

$$\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n$$

Iterations of PLA

• One iteration of the PLA:

$$\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$$

where (\mathbf{x}, y) is a misclassified training point.

ullet At iteration $t=1,2,3,\cdots$, pick a misclassified point from

$$(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_N,y_N)$$

and run a PLA iteration on it.

• That's it!

Review: Types of Learning

Basic premise of learning

"using a set of observations to uncover an underlying process"

broad premise \implies many variations

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Supervised Learning

Example from vending machines – $coin\ recognition$

Supervised Learning

- Unknown target function $y = f(\mathbf{x})$
- Data set $(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)$
- Learning algorithm picks g pprox f from a hypothesis set ${\mathcal H}$

