CƠ SỞ DỮ LIỆU PHÂN TÁN

NGUYỄN THỊ THANH THỦY

1

Nội dung môn học

- Giới thiệu
- Thiết kế CSDL phân tán
- Điều khiển dữ liệu phân tán
- Xử lý truy vấn phân tán
- Xử lý giao dịch phân tán
- Nhân bản dữ liệu
- Tích hợp CSDL Các hệ thống đa CSDL
- Các hệ thống CSDL song song
- Quản lý dữ liệu ngang hàng (Peer-to-Peer)
- Xử lý dữ liệu lớn
- NoSQL, NewSQL và Polystores
- Quản lý dữ liệu Web

2

Nội dung

- Xử lý truy vấn phân tán
 - □ Phân rã và cục bộ hóa truy vấn
 - □ Tối ưu hóa truy vấn phân tán
 - □ Trình tự kết nối
 - Xử lý truy vấn thích ứng

Các thành phần xử lý truy vấn

- Ngôn ngữ truy vấn
 - SQL: ngôn ngữ truy vấn có cấu trúc
- Thực thi truy vấn
 - Các bước cần phải trải qua khi thực hiện các truy vấn người dùng (khai báo) mức cao.
- Tối ưu hóa truy vấn
 - Làm thế nào xác định được kế hoạch thực hiện "tốt nhất"?
- Giả thiết là có một hệ quản trị CSDLPT đồng nhất

5

Lựa chọn giải pháp

SELECT ENAME

FROM EMP NATURAL JOIN ASG
WHERE RESP = "Manager"

Chiến lược 1

 $\Pi_{\text{ENAME}}(\sigma_{\text{RESP="Manager"} \land \text{EMP.ENO=ASG.ENO}}(\text{EMP} \times \text{ASG}))$

Chiến lược 2

 $\Pi_{\mathsf{ENAME}}(\mathsf{EMP} \bowtie_{\mathsf{ENO}} (\sigma_{\mathsf{RESP="Manager"}}(\mathsf{ASG}))$

Chiến lược 2 tránh được việc tính tích Đề-các, nên có thể tốt hơn.

6

Vấn đề là gì?

Các chiến lược thực thi phân tán tương đương

Chi phí

- Giả thiết
 - □ Kích thước (EMP) = 400, Kích thước (ASG) = 1000
 - □ Chi phí truy nhập bộ = 1 đơn vị; chi phí dịch chuyển bộ = 10 đơn vị
- Chiến lược 1
 - □ Tạo ASG': (10+10) * chi phí truy nhập bộ
 □ Dịch chuyển ASG' tới trạm của EMP: (10+10) * chi phí dịch chuyển bộ
 □ Tạo EMP': (10+10) * chi phí truy nhập bộ * 2
 □ Dịch chuyển EMP' tới trạm kết quả: (10+10) * chi phí dịch chuyển bộ
 □ Tổng chi phí
- Chiến lược 2

□ Dịch chuyển EMP tới trạm 5: 400 * chi phí dịch chuyển bộ	4,000
□ Dịch chuyển ASG tới trạm 5: 1000 * chi phí dịch chuyển bộ	10,000
□ Tạo ASG': 1000 ∗ chi phí truy nhập bộ	1,000
Kết nối EMP và ASG': 400 * 20 * chi phí truy nhập bộ	8,000
Tổng chi phí	23,000

.0,000

Mục tiêu của tối ưu hóa truy vấn

- Tối thiểu hóa hàm chi phí
 - □ Chi phí I/O + chi phí CPU + chi phí truyền thông
 - Có thể có giá trị khác nhau trong các môi trường phân tán khác nhau
- Các mạng diện rộng
 - □ Chi phí truyền thông có thể chiếm ưu thế hoặc thay đổi nhiều
 - Băng thông
 - Tốc đô
 - Chi phí giao thức
- Các mạng cục bộ
 - Chi phí truyền thông không quá lớn nên cần xem xét hàm tổng chi phí
- Cũng có thể tối đa hóa thông lượng

Độ phức tạp của các phép toán quan hệ

Giả thiết

 Các quan hệ có lực lượng là n

Quét tuần tự

Phép toán	Độ phức tạp	
Phép chọn Phép chiếu (không loại bỏ trùng lặp)	O(n)	
Phép chiếu (không loại bỏ trùng lặp) Nhóm (group)	O(n * log n)	
Kết nối		
Nối nửa	O(n * log n)	
Phép chia		
Các phép toán tập hợp		
Tích Đề-các	O(n²)	

10

Các loại tối ưu hóa

- Tìm kiếm đầy đủ
 - Dựa trên chi phí
 - Tối ưu
 - Độ phức tạp tổ hợp về số lượng quan hệ
- Heuristics
 - Không tối ưu
 - Nhóm các biểu thức con phổ biến lại
 - □ Thực hiện các phép chon, chiếu trước
 - □ Thay thế một phép nối bằng một chuỗi các phép nối nửa
 - Sắp xếp lại các phép toán để giảm kích thước quan hệ trung gian
 - Tối ưu hóa các phép toán riêng

Mức độ chi tiết tối ưu hóa

- Truy vấn đơn tại một thời điểm
 - Không thể sử dụng các kết quả trung gian chung
- Nhiều truy vấn tại cùng một thời điểm
 - □ Hiệu quả nếu có nhiều truy vấn tương tự
 - Không gian quyết định lớn hơn nhiều

13

Tối ưu hóa thời gian

- Tĩnh
 - □ Biên dịch → Tối ưu hóa trước khi thực thi
 - Khó ước tính kích thước của các kết quả trung gian → lan truyền lỗi
 - Có thể có khấu hao trong nhiều lần thực thi
- Đông
 - Tối ưu hóa thời gian chạy
 - □ Thông tin chính xác về kích thước của các quan hệ trung gian
 - Phải tối ưu hóa lại cho nhiều lần thực thi
- Lai ghép
 - Biên dịch sử dung thuật toán tĩnh
 - Nếu có lỗi về kích thước ước tính > ngưỡng, hãy tối ưu hóa lại trong thời gian chay

13

Thống kê

- Quan hê
 - Lực lượng
 - Kích thước của một bộ
 - Tỷ lệ các bộ tham gia trong một phép kết nối với một quan hệ khác
- Thuộc tính
 - Lực lượng của miền
 - Số các giá trị khác biệt thực tế
- Đơn giản hóa các giả định
 - □ Tính độc lập giữa các giá trị thuộc tính khác nhau
 - □ Phân phối thống nhất các giá trị thuộc tính trong miền của chúng

14

Các trạm quyết định tối ưu hóa

- Tập trung
 - □ Trạm đơn xác định lịch biểu "tốt nhất"
 - Đơn giản
 - □ Cần kiến thức về toàn bộ hệ cơ sở dữ liệu phân tán
- Phân tán
 - Có sự kết hợp giữa các trạm để xác định lịch biểu
 - Chỉ cần thông tin cục bộ
 - Chi phí hợp tác
- Lai ghép
 - Chỉ môt tram xác định lịch biểu toàn cục
 - Mỗi trạm tối ưu hóa các truy vấn con cục bộ

Hình trạng mạng

- Mạng diện rộng (WAN) điểm-nối-điểm
 - Đặc tính
 - Băng thông tương đối thấp (so với CPU/IO cục bộ)
 - Chi phí giao thức cao
 - Chi phí truyền thông chiếm đa số; bỏ qua tất cả các yếu tố chi phí khác
 - Lịch biểu toàn cục giúp giảm tối thiểu chi phí truyền thông
 - Lịch biểu cục bộ theo tối ưu hóa truy vấn tập trung
- Mang cuc bô (LAN)
 - Chi phí truyền thông không quá lớn
 - Hàm tổng chi phí cần được xem xét
 - Quảng bá có thể được khai thác (kết nối)
 - Có các thuật toán đặc biệt cho các mạng hình sao

16

