Institut de Financement du Développement du Maghreb Arabe

Concours de Recrutement de la 41 ème Promotion - Banque Techniques Quantitatives

Septembre 2021

Durée : une heure et demie

Cette épreuve comporte deux pages

Aucun document n'est autorisé

Exercice 1: (6 points: 1+1+1+1+2).

On s'intéresse à l'évolution du prix d'une matière première noté Y dont la densité de probabilité est définie par la fonction :

$$g(y) = \frac{1}{\sqrt{2\pi}} \frac{1}{y} e^{-\frac{1}{2}(\text{Log}(y))^2} \text{ pour } y > 0 \text{ et } g(y) = 0 \text{ sinon}$$

On pose X = Log(Y)

- 1- Prouver que ΔX l'accroissement de X entre deux périodes consécutives est approximativement égal au taux de croissance du prix Y. Interpréter
- 2- Déterminer la relation entre F et G respectivement les fonctions de répartition de X et de Y
- 3- En déduire la densité de probabilité de X
- 4- Calculer la médiane de Y
- 5- Sachant que pour une loi normale centrée réduite Z la fonction génératrice est définie par $E(\mathbf{e}^{t\,Z})=\mathbf{e}^{\frac{1}{2}\mathbf{t}^2}$

Calculer l'espérance mathématique et la variance de Y

Exercice 2: (8 points: 1+2+2+1+1+1).

On note p_t et q_t respectivement le prix unitaire et la quantité vendue d'un produit donné observés à l'instant t pour t = 1, 2, 3, ...

On admet que les évolutions temporelles de ces grandeurs sont définies par les deux relations suivantes :

$$\begin{cases} p_{t} = \frac{3}{10}p_{t-1} + \frac{6}{10}q_{t-1} + 2 + \varepsilon_{1t} \\ q_{t} = \frac{1}{10}p_{t-1} + \frac{2}{10}q_{t-1} - 1 + \varepsilon_{2t} \end{cases} \text{ pour } t = 1, 2, 3, \dots$$

avec ε_{1t} et ε_{2t} sont deux termes d'erreurs indépendants entre eux centrés et réduits

On note
$$Y_t = \begin{bmatrix} p_t \\ q_t \end{bmatrix}$$
 pour $t = 0, 1, 2, ...$

On admet que pour t=0, l'espérance mathématique et la matrice de variance covariance de Y_0 sont définies par $E(Y_0)=0$ et $V(Y_0)=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

- 1- Prouver que $Y_t=A\ Y_{t-1}$ +B + ε_t où A , B et ε_t sont trois matrices à déterminer
- 2- Prouver que AB = 0 et que $A^t = (\frac{1}{2})^k A$ pour $t \ge 2$, avec k une constante à déterminer.
- 3- En déduire les expressions de p_t et de q_t en fonction de p_0 de q_0 de t et de termes d'erreurs
- 4- Calculer $E(Y_t)$
- 5- Si l'on admet que les deux termes d'erreur ε_{1t} et ε_{2t} sont nuls pour tout t, i- Calculer la matrice de variance covariance $V(Y_t)$
- ii-Trouver la valeur du coefficient de corrélation linéaire de p_t et de q_t . Commenter.

Exercice 3: (6 points: 1+1+1+1+2).

On s'intéresse à la régression $y_i = a x_i + u_i$ avec u_i des termes d'erreur indépendants d'espérance nulle et de variance σ_i^2 pour i=1, 2 et 3 Les valeurs de x_i de y_i et de σ_i^2 sont précisées dans le tableau suivant :

i	1	2	3
x_i	3	7	11
y_i	6	13	23
σ_i^2	1	9	4

- 1- Déterminer l'écriture matricielle de ce modèle en précisant ses principales caractééristiques.
- 2- Déterminer l'estimation de a par les moindres carrés ordinaires
- 3- Cet estimateur est-il sans biais ? Est-il à variance minimale ? justifier vos réponses
- 4- Déterminer l'estimation de a par les moindres carrés généralisés
- 5- Etudier la significativité statistique des deux estimations de *a*.