IPv6技术基础

中国科技网 鲍杰 bao@cstnet.cn 2006-6-15

Agenda

- IPv6技术的产生
- CNGI项目概况
- IPv6技术
 - □IPv6技术特性
 - □IPv6地址格式
 - □IPv6过渡技术
 - □IPv6路由协议
 - □IPv6用户端配置
 - □IPv6域名系统

IPv6技术的出现

- IPv4存在的问题
 - □IPv4地址资源日益紧缺
 - □路由表急剧膨胀
 - □网络安全
 - ...

Agenda

- IPv6技术的产生
- CNGI项目概况
- IPv6技术
 - □IPv6技术特性
 - □IPv6地址格式
 - □IPv6过渡技术
 - □IPv6路由协议
 - □IPv6用户端配置
 - □IPv6域名系统

CNGI项目概况

- ■中国下一代互联网CNGI示范网络
- 由核心网、用户接入网/驻地网、网络交换中心 (含国内/国际)三个部分构成
- 核心网由CERNET、中国电信、中国联通、中国网通/科学院、中国移动和中国铁通6个试验内容和业务定位各具特点并相互独立的主干网互联组成
- 中国网通/中科院CNGI核心网在北京、上海、广州、沈阳、长春、成都、兰州共7个节点进行建设

CNGI项目概况 (续)

Agenda

- IPv6技术的产生
- CNGI项目概况
- IPv6技术
 - □ IPv6技术特性
 - □IPv6地址格式
 - □IPv6过渡技术
 - □IPv6路由协议
 - □IPv6用户端配置
 - □IPv6域名系统

IPv6技术特性

- ■近乎无限的地址空间
- ■更简洁的报文头部
- ■简单的管理: 即插即用
- ■内置的安全性
- ■更好的QoS支持
- ■更好的移动性

Agenda

- IPv6技术的产生
- CNGI项目概况
- IPv6技术
 - □IPv6技术特性
 - □ IPv6地址格式
 - □IPv6过渡技术
 - □IPv6路由协议
 - □IPv6用户端配置
 - □IPv6域名系统

IPv6报文格式

■ IPv6数据包

IPv6报文格式(续)

- IPv6报头
 - □长度为40字节

IPv6地址格式

- IPv6地址表示方法
 - □用十六进制表示
 - □4位一组,中间用":"隔开
 - □若以零开头可以省略,全零的组可用"::"表示
 - □地址前缀长度用"/xx"来表示
- ■例子
 - □ 0001:0123:0000:0000:0000:ABCD:0000:0001/96
 - □ 1:123:0:0:0:ABCD:0:1/96
 - □ 1:123::ABCD:0:1/96

- IPv6地址分类
 - □ 单播地址(Unicast Address)
 - □ 组播地址(Multicast Address)
 - □任播地址(Anycast Address)

w

IPv6地址格式(续)

- 单播地址(Unicast Address)
 - □ 可聚集全球地址 (Aggregateable Global Unicast Addresses)
 - **001**

1/8 total space

- □链路本地地址(Link-Local Unicast Addresses)
 - **11111111010**

1/1024 total space

- automatically configured with interface id
- used for neighbor and router discovery
- □ 节点本地地址(Site-Local Unicast Addresses)
 - **11111111011**

1/1024 total space

100

- 组播地址(Multicast Address)
 - □Flags: 用来表示permanent或transient组播组
 - □Scope:表示组播组的范围
 - 0: 预留
 - ■1: 节点本地范围
 - ■2: 链路本地范围
 - ■5: 站点本地范围
 - □Group ID: 组播组ID

•	•	4	•		Ţ	 ŀ
-	-	-	-	reserved must be zero	-	+ I
-	-				-	 +

- ■任播地址(Anycast Address)
 - □用于标识一组网络接口
 - □目标地址为任播抵制的数据报将发送给最近的 一个接口

- ■回送地址(Loopback Addresses)
 - □::1
 - 类似IPv4中的127.0.0.1
- IPv4兼容IPv6地址
 - □::<IPv4 address>
- 6to4地址
 - □ 2002::/16

IPv6地址管理机构

- IANA Internet Assigned Numbers Authority (IP 地址的顶级管理机构)
- RIR Regional Internet Registry (区域管理机构APNIC/ARIN/RIPE NCC)
- NIR National Internet Registry (国家地址管理机构 CNNIC/JPNIC)
- LIR/ISP Local Internet Registry (本地地址注 册机构 (ISP))
- EU End User (最终用户)
- IR- Internet Registry (所有地址管理机构统称为IR)

IPv6地址分配

м

IPv6地址分配(续)

- 6Bone
 - □3FFE::/16
- ■全球聚合地址
 - **2001::/16**
- APNIC
 - □ 2001:0200::/23 & 2001:0C00::/23
- ■中国科技网IPv6地址
 - □ 2001:0CC0::/32

IPv6地址配置方法

- ■手工配置
- ■有状态地址自动配置(DHCPv6)
- ■无状态地址自动配置

IPv6地址配置方法(续)

- IPv6地址 = 前缀 + 接口标识
 - □前缀:相当于IPv4地址中的网络ID
 - □接口标识:相当于IPv4地址中的主机ID
- ■无状态地址自动配置
 - □前缀获得
 - □接口ID生成
 - IEEE EUI-64规范
 - 将48位MAC地址转化为64bit的接口ID
 - □重复地址检测(DAD)

IPv6地址配置方法(续)

- ■无状态地址自动配置
 - □MAC地址

□接口ID

0	1 1	3 3	4 4	6					
0	5 6	1 2	7 8	3					
+	-			+					
ccccc1gcccccc ccccc111111111 1111110mmmmmmmm mmmmmmmmmm									
+	-			+					

Agenda

- IPv6技术的产生
- ■CNGI项目概况
- IPv6技术
 - □IPv6技术特性
 - □IPv6地址格式
 - □ IPv6过渡技术
 - □IPv6路由协议
 - □IPv6用户端配置
 - □IPv6域名系统

IPv6过渡技术

- ■双栈
- ■隧道
 - □手工隧道
 - □GRE隧道
 - □ 6to4隧道
 - □ 6PE
- IPv6与IPv4互通
 - □ NAT-PT

■双栈

■隧道

- ■手工隧道
 - □IPv6报文被包含在IPv4报文中作为IPv4的载荷
 - □优点
 - ■通用性好
 - 技术成熟, 易于理解
 - □缺点
 - ■维护复杂

- GRE隧道
 - □IPv6报文被包含在GRE报文中作为GRE的载荷
 - □优点
 - ■通用性好
 - 技术成熟, 易于理解
 - □缺点
 - ■维护复杂

- 6to4隧道技术
 - □目的地址为6to4地址,包含的IPv4地址即为隧道末端
 - □ 6to4地址: 2002:a.b.c.d:xxxx:xxxx:xxxx:xxxx:xxxx
 - □可通过6to4中继路由器,使6to4网点连接到大的纯IPv6 网络
 - □优点
 - 不需要为每条隧道预先配置,维护方便
 - □缺点
 - 整个IPv6网点使用特殊的6to4地址

6PE

- □通过IPv4或MPLS网络连接多个IPv6 孤岛,使用BGP交换IPv6可达信息。
- □IPv6网络可被看作VPN网,多个IPv6孤岛属于同一VPN,利用VPN机制在PE之间建立隧道连接
- □可以充分利用已有MPLS或VPN网络

NAT-PT

re.

IPv6过渡技术(续)

NAT-PT

- □工作原理
 - 类似于传统NAT,但是将IPv6地址和IPv4地址互相转换,另加上协议转换
 - 通过中间的NAT-PT协议转换服务器,实现纯IPv6节点和纯 IPv4节点间的互通
 - NAT-PT服务器分配IPv4地址来标识IPv6主机
 - NAT-PT服务器向相邻IPv6网络宣告96位地址前缀信息,用于标识IPv4主机
- □优点
 - 只需设置NAT-PT服务器
- □ 缺点
 - 资源消耗较大,服务器负载重,NAT-PT设备是性能瓶颈

Agenda

- IPv6技术的产生
- ■CNGI项目概况
- IPv6技术
 - □IPv6技术特性
 - □IPv6地址格式
 - □IPv6过渡技术
 - □ IPv6路由协议
 - □IPv6用户端配置
 - □IPv6域名系统

IPv6路由协议

- ■静态路由协议
- ■动态路由协议
 - RIPng
 - □ OSPFv3
 - **ISIS**
 - MBGP

IPv6路由协议(续)

- ■与RIPv2一样,RIPng具备如下特性
 - □RIPng是距离矢量路由协议,利用UDP传输机制(端口号为521)
 - □RIPng用跳数度量路由,16跳为不可达
 - □RIPng利用水平分割与毒性逆转技术来减少环 路发生可能性
- RIPng必须支持IPv6所以RIPng报文格式及 路由数据库与RIPv2不同

IPv6路由协议(续)

- OSPF V3在基本运行机制上未有改变 (flooding, DR election, area support, SPF calculations)
- OSPF V3在如下意义上被重新定义
 - □OSPF报文和基本的LSA去除了编址语义以更 好支持多协议
 - □OSPF V3新定义了一些LSA以携带地址和前缀
 - □OSPF基于链路而不是基于网段运行
 - □OSPF认证机制被去除

IPv6路由协议(续)

■ IS-IS本身是一个可扩展路由协议,它对 IPv4的支持本身就是在对OSI网络的一个扩展。为使其支持IPv6,我们需要定义"IPv6 Reachability" 和 "IPv6 Interface Address" 两个TLV

IPv6路由协议(续)

■ Multi-protocol BGP是一个旨在让BGP可以传输多种协议(不仅仅IPv4)的扩展,也称为BGP4+。与IS-IS类似,MBGP支持IPv6也是比较容易,只需要将IPv6前缀信息和下一跳信息置于新定义的MP-NLRI即可

Agenda

- IPv6技术的产生
- ■CNGI项目概况
- IPv6技术
 - □IPv6技术特性
 - □IPv6地址格式
 - □IPv6过渡技术
 - □IPv6路由协议
 - □ IPv6用户端配置
 - □IPv6域名系统

IPv6用户端配置

- Linux
- Windows
 - □ Windows 2003
 - Windows XP
 - □ Windows 2000

.

- Linux下IPv6配置
 - □ Linux在内核版本2.2.0以后就支持IPv6
 - □ 查看是否已加载IPv6模块
 - /sbin/lsmod
 - □加载IPv6模块
 - /sbin/modprobe ipv6
 - 如果加载出错,说明没有此模块,重新编译内核,以支持IPv6
 - □ 网络启动的时候自动加载IPv6模块
 - 编辑/etc/sysconfig/network文件,加入新的一行 NETWORKING_IPv6=YES

v

- Linux下IPv6相关的命令
 - □ # /sbin/ifconfig eth0 inet6 add 2001:CC0:FFFF::/64 /* 添加固定IPv6地址 */
 - □ # route -A inet6 add 2000::/3 gw 2001:CC0:FFFF::1 /* 添加路由 */
 - # ping6
 - □如果由隧道接入,则进行下面步骤
 - /sbin/ip tunnel add sit1 mode sit ttl 128 remote 159.226.x.x local 159.226.x.x /* 建立隧道 */
 - /sbin/ip link set sit1 up
 - /sbin/ip -6 addr add 2001:CC0:FFFF::/64 dev sit1 /*设定IPv6 地址*/
 - /sbin/ip -6 route add 2000::/3 via 2001:CC0:FFFF::1 /*设置路由*/

10

- Windows XP/2003下的IPv6配置
 - □Windows2003內置了IPv6协议栈
 - □WindowsXP至少升级为SP1
 - □安装IPv6协议
 - ipv6 install
- Windows 2000下的IPv6配置
 - □安装IPv6 协议栈
 - ■下载IPv6协议安装包
 - 在"本地连接"属性中添加IPv6协议栈

M.

- Windows下的IPv6相关命令
 - □查看接口状态
 - ipv6 if
 - □配置命令
 - netsh
 - ipv6
 - □测试命令
 - ping6
 - tracert6

Agenda

- IPv6技术的产生
- CNGI项目概况
- IPv6技术
 - □IPv6技术特性
 - □IPv6地址格式
 - □IPv6过渡技术
 - □IPv6路由协议
 - □IPv6用户端配置
 - □ IPv6域名系统

IPv6域名系统

- IPv4和IPv6共同拥有统一的域名空间
- IPv6地址的正向解析
 - □AAAA纪录
 - ■表示域名和IPv6地址的对应关系
 - ■不支持地址的层次性
 - □A6纪录
 - ■符合IPv6地址的层次结构,支持地址聚合
 - ■修改简单
 - ■延长解析时间,出错的机会也增加

r.

IPv6域名系统(续)

- IPv6地址的反向解析
 - □PTR纪录
 - □地址表示形式
 - ■用"."分隔的半字节16进制数字格式
 - □低位地址在前,高位地址在后,域后缀是"IP6.INT."
 - □与"AAAA"对应
 - ■二进制串格式
 - □以"\["开头,16进制地址(无分隔符,高位在前,低位在后)居中,地址后加"]",域后缀是"IP6.ARPA."
 - □与"A6"记录对应
 - □支持地址层次特性

IPv6域名系统(续)

- ■DNS服务器的自动发现
 - □无状态
 - 为子网内部的DNS服务器配置站点范围内的任播地址
 - ■釆用站点范围内的多播地址或链路多播地址等
 - ■用站点范围内的任播地址作为DNS服务器的地址
 - □有状态
 - 通过类似DHCP这样的服务器把DNS服务器地址、 域名和搜索路径等DNS信息告诉节点

Thank you!