Modello a Variabili di Stato (LTI)

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$$

$$\mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t)$$

Algebra Matriciale Essenziale per l'Analisi

- Autovalori (λ_i): Radici di det($\lambda I A$) = 0. Detti anche modi, determinano il comportamento naturale (risposta libera)
 - Per matrici triangolari/diagonali, sono gli elementi sulla diagonale.
 - Per matrici a blocchi diagonali, l'insieme degli autovalori è l'unione di quelli dei blocchi. Questo permette di analizzare le proprietà del sistema studiando ogni sottosistema in modo indipendente.
- Rango: Numero di righe/colonne lin. indipendenti. matrici quadrate $n \times n$: rank $(A) = n \iff \det(A) \neq 0$.

La stabilità interna dipende esclusivamente dalla posizione degli autovalori di A nel piano complesso.

Stabilità (dagli autovalori $\lambda_i = \sigma_i + j\omega_i$ di A)

- Asintotica: Tutti $\sigma_i < 0$. I modi $e^{\sigma_i t}$ convergono a zero.
- **Semplice**: Tutti $\sigma_i \leq 0$. Per $\sigma_i = 0$, deve essere m.a. = m.g. (molt. algebrica = geometrica). I modi sono costanti/oscillanti, ma limitati.
- Instabile: Almeno un $\sigma_i > 0$, oppure un $\sigma_i = 0$ con m.a. > m.g. (blocco di Jordan che genera modi divergenti del tipo t^k).

Raggiungibilità e Osservabilità

- Raggiungibilità: Lo stato è "guidabile" dall'ingresso.
 - Test di Kalman: Si calcola la matrice di raggiungibilità M_R . Il sistema è raggiungibile se rank (M_R) =

$$M_R = \begin{bmatrix} B & AB & \dots & A^{n-1}B \end{bmatrix}$$

- Test PBH: (Utile per testare un singolo modo). Raggiungibile se per ogni autovalore λ_i :

$$rank \begin{bmatrix} \lambda_i I - A & B \end{bmatrix} = n$$

- Osservabilità: Lo stato è "visibile" dall'uscita.
 - Test di Kalman: Si calcola la matrice di osservabilità \mathcal{O} . Il sistema è osservabile se rank $(\mathcal{O}) = n$.

$$\mathcal{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

- **Test PBH**: Osservabile se per ogni autovalore λ_i :

$$\operatorname{rank} \begin{bmatrix} \lambda_i I - A \\ C \end{bmatrix} = n$$

Funzione di Trasferimento e Laplace

 $G(s) = \frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D$. I **poli** di G(s) sono le radici del denominatore. La stabilità BIBO richiede che tutti i poli abbiano Re(s) < 0.

Funzione $f(t)$	Trasformata $F(s)$
Impulso $\delta(t)$	1
Gradino $1(t)$	$\frac{1}{\epsilon}$
Rampa $t \cdot 1(t)$	$\begin{bmatrix} \frac{1}{s} \\ \frac{1}{s^2} \end{bmatrix}$
$\frac{t^k}{k!} \cdot 1(t)$	$\frac{1}{s^{k+1}}$
Esponenziale e^{at}	$\frac{1}{s-a}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2+\omega^2}$
$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2+\omega^2}$

Derivazione: $\frac{df}{dt}$	sF(s) - f(0)
Integrazione: $\int_0^t f(\tau)d\tau$	$\frac{F(s)}{s}$
Ritardo: $f(t-t_0)$	$e^{-st_0}F(s)$
Traslazione in $s: e^{at} f(t)$	F(s-a)
Valore Iniziale	$\lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s)$
Valore Finale	$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$
	(solo se il limite esiste finito)

Sistema del I Ordine: $G(s) = \frac{K}{1+s\tau}$

- Risposta al gradino: $y(t) = K(1 e^{-t/\tau})$.
- Costante di tempo τ : tempo al 63% del valore finale.
- Tempo di assestamento T_s (al 95%): $T_s \approx 3\tau$.

Sistema del II Ordine: $G(s) = \frac{\omega_n^2}{s^2 + 2\varepsilon\omega_n s + \omega_n^2}$ Poli: $s_{1,2} =$ $-\xi\omega_n \pm j\omega_n \sqrt{1-\xi^2}$.

• Sovraelongazione Massima S%:

$$S\% = 100 \cdot e^{\frac{-\pi\xi}{\sqrt{1-\xi^2}}}$$

- Tempo di Picco T_p : $T_p = \frac{\pi}{\omega_n \sqrt{1-\xi^2}}$
- Tempo di assestamento T_s (al 95%): $T_s \approx \frac{3}{\epsilon_{co.}}$

Criterio di Stabilità di Routh

Dato il polinomio caratteristico $a_n s^n + \cdots + a_0 = 0$.

- 1. Cond. necessaria: tutti i coefficienti a_i devono avere lo stesso segno.
- 2. Tabella di Routh:

- 3. Criterio: Stabilità asintotica \iff tutti gli elementi della prima colonna sono non nulli e hanno lo stesso segno.
- 4. Instabilità: Il numero di radici con Re(s) > 0 è uguale al numero di variazioni di segno nella prima colonna.

Casi speciali:

- Zero in prima colonna: sostituire lo zero con $\epsilon > 0$ e calcolare il limite per $\epsilon \to 0^+$.
- Riga di zeri: indica radici simmetriche (sistema non asintoticamente stabile). Si crea un polinomio ausiliario q(s) dalla riga precedente, si deriva, e si usano i coefficienti di $\frac{dq}{ds}$ per sostituire la riga di zeri.

Luogo delle Radici

Traccia i poli in anello chiuso per l'eq. 1 + KG(s) = 0. Regole per K > 0

- I rami partono dai poli e arrivano agli zeri (o all'infinito).
- Asse reale: un punto appartiene al luogo se ha un numero dispari di poli e zeri reali alla sua destra.
- Asintoti (se n > m):

 - Numero: n-m.

 Angoli: $\phi_k = \frac{(2k+1)180^{\circ}}{n-m}$.

 Centroide: $\sigma = \frac{\sum p_i \sum z_i}{n-m}$.

 Partenza da polo p_k : $\theta_p = 180^{\circ} + \sum \arg(p_k z_i) \sum_{j \neq k} \arg(p_k p_j)$.

 Arrivo a zero z_k : $\theta_z = 180^{\circ} \sum_{j \neq k} \arg(z_k z_j) + \sum \arg(z_k p_k)$ $\sum \arg(z_k - p_i).$

Regole per K < 0 (Luogo Inverso)

- Asse reale: un punto appartiene al luogo se ha un numero pari di poli e zeri reali alla sua destra.
- Angoli asintoti: $\phi_k = \frac{2k \cdot 180^{\circ}}{n-m}$.

Criterio di Stabilità di Nyquist

Determina la stabilità in anello chiuso dal diagramma di Nyquist della funzione d'anello aperto L(s).

- Formula: $N = R^+ P^+$. Per stabilità, si vuole $R^+ = 0$, quindi la condizione diventa $N = -P^+$.
 - N: numero di giri in senso **orario** attorno al punto (-1,0).
 - $-P^+$: numero di poli instabili (Re(s) > 0) di L(s).
- Caso L(s) stabile ($P^+=0$): stabilità in anello chiuso $\iff N = 0$ (il diagramma non accerchia il punto -1).
- Chiusura all'infinito: per h poli nell'origine, il diagramma si chiude con h semicerchi di 180° in senso **orario**.

Diagrammi di Bode

Termine	Modulo (dB)	Fase (gradi)
K_B	Retta orizz. a	0° se $K_B > 0$,
_	$20\log_{10}(K_B)$	$-180^{\circ} \text{ se } K_B < 0$
$1/s^h$	Pendenza -20h	Costante a -90h°
	dB/dec	
$\frac{1}{1+s\tau}$	0 dB fino a ω_c =	Da 0° a -90°
1787	$1/\tau$, poi pendenza	
	-20 dB/dec	
$1+s\tau$	0 dB fino a ω_c =	Da 0° a +90°
	$1/\tau$, poi pendenza	
	$+20~\mathrm{dB/dec}$	
$\frac{1}{1+\dots}$	0 dB fino a ω_n ,	Da 0° a -180°
1 +	poi pendenza -40	
	$\mathrm{dB/dec}$	
1+	0 dB fino a ω_n ,	Da 0° a +180°
	poi pendenza +40	
	$\mathrm{dB/dec}$	
e^{-sT}	0 dB	$-\omega T \frac{180}{\pi}^{\circ}$

Termini a fase non minima (es. polo $1/(1-s\tau)$): il modulo è identico al caso stabile, ma la fase è ribaltata (es. da 0° a $+90^{\circ}$).

Da Variabili di Stato a Funzione di Trasferimento $(SS \rightarrow FdT)$

1. Formula Generale: Dato un modello (A, B, C, D), la sua funzione di trasferimento G(s) si calcola con la formula:

$$G(s) = C(sI - A)^{-1}B + D$$

Il calcolo pratico prevede di calcolare l'inversa della matrice (sI-A) e poi eseguire le moltiplicazioni matriciali.

- 2. Ruolo di Raggiungibilità e Osservabilità: La funzione di trasferimento descrive esclusivamente la parte del sistema che è sia raggiungibile sia osservabile.
 - Il denominatore di G(s) è dato da $\det(sI-A)$, le cui radici sono tutti gli autovalori (modi) del sistema.

Da FdT a Variabili di Stato (FdT \rightarrow SS)

1. Preparazione della FdT: Si scrive la FdT in modo che il denominatore sia un polinomio monico (coefficiente di s^n uguale a 1):

$$G(s) = \frac{b_0 s^n + b_1 s^{n-1} + \dots + b_n}{s^n + a_1 s^{n-1} + \dots + a_n}$$

- 2. Costruzione delle Matrici: Le matrici si scrivono direttamente dai coefficienti a_i e b_i :
 - Matrice A (Forma Compagna):

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ -a_n & -a_{n-1} & \cdots & -a_2 & -a_1 \end{bmatrix}$$

• Matrice B:

$$B = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix}^T$$

• Matrice C:

$$C = \begin{bmatrix} b_n - a_n b_0 & \dots & b_1 - a_1 b_0 \end{bmatrix}$$

• Matrice D:

$$D = [b_0]$$

Risposta Forzata (C.I. = 0, $u(t) \neq 0$)

- 1. Trova G(s): Se non data, ricavala dall'EDO con C.I. nulle.
- 2. Trasforma l'ingresso U(s): Calcola $\mathcal{L}\{u(t)\}$. Es: per gradino, U(s)=1/s.
- 3. Calcola l'uscita Y(s): Moltiplica $Y(s) = G(s) \cdot U(s)$.
- 4. Scomponi in fratti semplici: Decomponi Y(s).
- 5. Antitrasforma: Trova $y_f(t) = \mathcal{L}^{-1}\{Y(s)\}.$

Progettazione del Controllore (Loop Shaping)

Margini di Stabilità (da Bode di $L(j\omega)$)

- Margine di Fase M_{ϕ} : $M_{\phi}=180^{\circ}+\angle L(j\omega_c)$, dove ω_c è la pulsazione di taglio ($|L(j\omega_c)|=0$ dB).
- Margine di Guadagno M_g : $M_g = -|L(j\omega_\pi)|_{dB}$, dove ω_π è la pulsazione a cui $\angle L(j\omega_\pi) = -180^\circ$.

Requisiti tipici: $M_{\phi} > 35^{\circ}$, $M_g > 6$ dB.

G 10	771 1 75 11 11 77 1 11 11	
Specifica	Vincolo Pratico sulla Funzione d'Anello	
	L(s)	
Errore a Regime	Errore a gradino nullo: $L(s)$ deve essere di	
(Statiche)	$Tipo \ge 1$ (il controllore deve avere un polo in	
	s = 0, es. PI).	
	Errore a rampa $\leq \epsilon$: $L(s)$ deve essere di	
	Tipo \geq 1 e la costante di velocità K_v =	
	$\lim_{s\to 0} sL(s)$ deve essere $\geq 1/\epsilon$.	
Disturbi e Rumo-	Reiezione disturbi ($\omega \leq \omega_d$): Si traduce in	
re	un limite inferiore per il modulo. $ L(j\omega) $	
	deve essere "grande", es. $ L(j\omega) \ge 20$ dB.	
	Reiezione rumore ($\omega \geq \omega_n$): Si traduce in	
	un limite superiore per il modulo. $ L(j\omega) $	
	deve essere "piccolo", es. $ L(j\omega) \leq -20$ dB.	
Prestazioni Dina-	Tempo di assest. T_s : Fissa la pulsazione	
miche	di taglio target. $\omega_c \approx 3/T_s$.	
	Sovraelong. $S\%$: Fissa lo smorzamen-	
	to ξ , che a sua volta definisce il margine	
	di fase minimo richiesto. Regola pratica:	
	$M_{\phi}[\text{gradi}] \approx 100 \cdot \xi.$	

1. 1° Tentativo: Controllore Statico (P o PI)

- Scegli la struttura base del controllore per soddisfare le sole **specifiche statiche** (errore a regime).
- Calcola il guadagno K necessario per rispettare i vincoli su L(0) o K_v .
- Traccia i diagrammi di Bode di L(s) con questo primo controllore e analizza i margini e la ω_c .

2. 2º Diagnosi: Quale Specifica è Violata?

- CASO A: La pulsazione di taglio ω_c è circa nella posizione corretta (o troppo bassa), ma il margine di fase è insufficiente (M_φ < M_{φ,req}).
- CASO B: Il margine di fase è insufficiente perché la pulsazione di taglio ω_c è troppo alta e cade in una zona dove la fase del processo è già troppo degradata.

3. 3° Scelta della Rete Correttrice

- SOLUZIONE per il CASO A \rightarrow USARE RETE ANTICIPATRICE (LEAD)
 - Scopo: Aumentare il margine di fase senza spostare troppo ω_c .
 - Come funziona: Introduce un "boost" di fase positivo intorno a ω_c . Rende il sistema più veloce.
 - Forma: $C_{lead}(s) = \frac{1+s\tau_z}{1+s\tau_p} \text{ con } \tau_z > \tau_p.$

• SOLUZIONE per il CASO B \rightarrow USARE RETE RITARDATRICE (LAG)

- Scopo: Mantenere il guadagno statico alto, ma ridurre la ω_c per migliorare il margine di fase.
- Come funziona: Attenua il guadagno alle frequenze medio-alte, "abbassando" la curva del modulo e spostando ω_c a sinistra, in una regione dove la fase del processo è migliore (meno negativa).
- Forma: $C_{lag}(s) = \frac{1+s\tau_z}{1+s\tau_p} \operatorname{con} \tau_p > \tau_z$.

Risposta Libera $(u(t) = 0, C.I. \neq 0)$

ingresso nullo.

- 1. Ricava EDO omogenea: Da $G(s) = \frac{N(s)}{D(s)}$, l'eq. omogenea è D(s)Y(s) = 0. Antitrasformala.
- 2. Trasforma con Laplace: Applica $\mathcal L$ all'EDO, includendo le C.I. date $(y(0),\dot y(0),\dots)$.
- 3. Isola $Y_l(s)$: Risolvi algebricamente per $Y_l(s)$. Il numeratore dipenderà dalle C.I.
- 4. Scomponi in fratti semplici: Decomponi $Y_l(s)$ per isolare i termini base.
- 5. **Antitrasforma**: Usa le tabelle per trovare $y_l(t) = \mathcal{L}^{-1}\{Y_l(s)\}.$