Numerische Mathematik I für Ingenieurwissenschaften

4. Übungsblatt zur Vorlesung

Aufgabe 1 3 Punkte

Führe mit Hilfe des Hornerschemas eine Polynomdivision von p(x) mit dem Linearfaktor $x - x_0$ durch. Lies aus dem Hornerschema $p(x_0)$ ab.

Üa)
$$p(x) = 5x^4 + 3x^3 - 30x^2 + 7x + 8$$
, $x_0 = 2$

Ha)
$$p(x) = 4x^4 + 7x^3 + 6x^2 + 71x + 24$$
, $x_0 = -3$ Hb) $p(x) = 11x^3 - 38x^2 + 1$, $x_0 = 4$

Hc)
$$p(x) = x^4 + x^3 + x^2 + x + 1$$
, $x_0 = 1$

Aufgabe 2 2 Punkte

Gegeben seien die folgenden Interpolationsdaten (x_j, f_j) .

Sei $p(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ das zugehörige Interpolationspolynom.

- 1) Stelle ein lineares Gleichungssystem zur Berechnung der Koeffizienten a_k auf. Das Gleichungssystem muss nicht gelöst werden.
- 2) Schreibe das Interpolationspolynom p in Lagrange-Darstellung (d.h. als Linearkombination der Lagrange-Basispolynome) hin. Die dabei entstehenden Terme brauchen nicht ausgerechnet zu werden.

Aufgabe 3 4 Punkte

Leite durch Ableiten einer Interpolationsparabel die folgenden finiten Differenzenformeln her.

$$\ddot{\mathrm{U}}\mathrm{a}) \ f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}.$$

Üb)
$$f''(x) \approx \frac{f(x-h)-2f(x)+f(x+h)}{h^2}$$
.

H)
$$f'(x) \approx \frac{1}{h} \left(-\frac{3}{2} f(x) + 2 f(x+h) - \frac{1}{2} f(x+2h) \right)$$
.

Ü) Gib für a) und b) eine Fehlerabschätzung an.

Aufgabe 4 4 Punkte

Ü) Gegeben sei eine Quadraturformel der Gestalt

$$\int_{a}^{b} f(x) dx \approx (b-a) \left(\gamma_{1} f(a) + \gamma_{2} f(\frac{a+b}{2}) + \gamma_{3} f(b) \right). \tag{*}$$

Bestimme die Gewichte $\gamma_1, \gamma_2, \gamma_3$ so, dass die Quadraturformel für alle Polynome vom Grad ≤ 2 exakt ist.

- Ha) Rechne nach, dass die Formel (*) mit den im Tutorium berechneten Gewichten sogar exakt für alle Polynome vom Grad ≤ 3 ist.
- Hb) Gegeben sei eine Quadraturformel der Gestalt

$$\int_0^1 f(x) \, dx \approx \gamma_1 \, f(0) + \gamma_2 \, f(\frac{1}{3}).$$

Bestimme die Gewichte γ_1, γ_2 so, dass die Quadraturformel für alle Polynome vom Grad ≤ 1 exakt ist. Ist sie dann auch exakt für Polynome vom Grad 2?

Hinweis zu den Programmieraufgaben: In allen MATLAB-Befehlen, die Polynome betreffen, sind die Polynomkoeffizienten folgendermaßen nummeriert:

$$p(x) = a_1 x^n + a_2 x^{n-1} + \ldots + a_n x + a_{n+1}.$$

Der Koeffizient vor der höchsten Potenz hat also den Index 1 usw..

Programmieraufgabe 1

Schreibe eine Funktion interpoly(x,f), welche zu gegebenen Stützpunkten (x_j, f_j) mit $\mathbf{x} = [x_1, ..., x_n]$, $\mathbf{f} = [f_1, ..., f_n]$ das zugehörige Interpolationspolynom berechnet und im Intervall $x \in [\min x_j, \max x_j]$ plottet. Zur Berechnung des Interpolationspolynoms darf eine beliebige Methode benutzt werden. Der Befehl polyfit darf aber nicht verwendet werden. Teste das Programm mit Werten f_j der Funktionen $f(x) = \cos(x)$ und $f(x) = 1/(1+x^2)$; jeweils im Intervall [-6,6]. Verwende sowohl äquidistante Stützstellen als auch Tschebyscheff-Stützstellen (siehe Vorlesung).

Hinweise:

- 1) n äquidistante Stützstellen im Intervall [a, b] kann man mit linspace(a,b,n) erzeugen.
- 2) Beim Plotten des Polynoms sollen <u>nicht nur</u> die Stützpunkte verbunden werden. Beispiel: Bei 3 Stützpunkten (x_j, f_j) , j = 1, 2, 3 ist der Graph des Interpolationspolynoms eine Parabel. Um die Parabel zu zeichnen braucht man man aber nicht nur 3 Punkte (das gibt nur eine Zickzack-Linie), sondern ca. 100 Punkte. Es werden also zwei x-Vektoren gebraucht. Einer zum Berechnen des Polynoms, und einer zum Plotten.

Programmieraufgabe 2

Sei f(x) = p(x)/q(x), wobei $p, q: \mathbb{R} \to \mathbb{R}$ zwei beliebige differenzierbare Funktionen sind.

Das Newton-Verfahren zur Berechnung einer Nullstelle von f kann in der Form

$$x_{k+1} = x_k - \frac{1}{\frac{p'(x_k)}{p(x_k)} - \frac{q'(x_k)}{q(x_k)}} \tag{*}$$

geschrieben werden.¹

Diese Tatsache kann man zur Berechnung aller Nullstellen eines Polynoms p verwenden: Sei $p(x) = a_1 x^n + a_2 x^{n-1} + \ldots + a_n x + a_{n+1}$ ein Polynom mit reellen oder komplexen Koeffizienten a_k . Seien $z_1, \ldots, z_n \in \mathbb{C}$ die Nullstellen von p. Diese sollen mit dem Newton-Verfahren berechnet werden.

Eine der Nullstellen bekommt man durch direkte Anwendung des Newton-Verfahrens für p:

$$x_{k+1} = x_k - \frac{p(x_k)}{p'(x_k)}.$$

Um die weiteren Nullstellen zu bekommen, stellt man folgende Überlegung an. Für das Polynom p gilt (Zerlegung in Linearfaktoren)

$$p(x) = a_1 (x - z_1)(x - z_2) \dots (x - z_n)$$

Angenommen, man hat bereits die Nullstellen z_1, z_2, \ldots, z_ℓ berechnet. Sei

$$q(x) = (x - z_1)(x - z_2)\dots(x - z_\ell). \tag{**}$$

Dann ist

$$f(x) = p(x)/q(x) = a_1 (x - z_{\ell+1}) \dots (x - z_n)$$

$$\frac{f}{f'} = \frac{p/q}{\frac{p'q - q'p}{q^2}} = \frac{1}{\frac{q}{p} \frac{p'q - q'p}{q^2}} = \frac{1}{\frac{p'}{p} - \frac{q'}{q}}.$$

¹Grund: Anwendung der Quotientenregel ergibt

das Polynom, welches die übrigen Nullstellen von p als Nullstellen hat. Das Polynom f könnte durch Polynomdivision bestimmt werden. Dies soll hier jedoch <u>nicht</u> getan werden. Stattdessen soll die Formel (*) angewendet werden: Indem man (**) nach der Produktregel ableitet, bekommt man

$$\frac{q'(x)}{q(x)} = \frac{1}{x - z_1} + \frac{1}{x - z_2} + \ldots + \frac{1}{x - z_\ell}.$$

Diesen Ausdruck setzt man in (*) ein. Die Iteration zur Berechnung der 2. Nullstelle z_2 ist demnach

$$x_{k+1} = x_k - \frac{1}{\frac{p'(x_k)}{p(x_k)} - \frac{1}{x_k - z_1}}.$$

Die Iteration zur Berechnung der 3. Nullstelle z_3 ist

$$x_{k+1} = x_k - \frac{1}{\frac{p'(x_k)}{p(x_k)} - \frac{1}{x_k - z_1} - \frac{1}{x_k - z_2}},$$

usw.

Schreibe eine Funktion z=polyzeros(a), welche alle Nullstellen eines gegebenen Polynoms p mit Koeffizienten $[a_1 \ a_2 \ \dots \ a_{n+1}]$ berechnet. Hinweise:

- Um auch die komplexen Nullstellen zu erwischen, braucht man komplexe Startwerte. Am besten zufällige Startwerte benutzen. Der Befehl dafür ist rand (Für komplexe Werte rand+i*rand).
- Zur Berechnung von p(x) benutze die MATLAB-Anweisung polyval. Zur Berechnung von p'(x) berechne zunächst die Koeffizienten der Ableitung mit polyder und benutze dann polyval.
- Um abzuschätzen, wie nahe man bereits an einer Nullstelle ist, kann man |p(x)| verwenden. Die MATLAB-Anweisung für den Absolutbetrag einer komplexen Zahl ist abs.
- Zum Testen des Programms gibt es mindestens 2 Möglichkeiten:
 - 1. Wähle $z_1, \ldots, z_n \in \mathbb{C}$ aus, und berechne die Koeffienten a_k des Polynoms $p(x) = (x z_1)(x z_2) \ldots (x z_n)$. Wende das Programm auf diese Koeffizienten an. Dann sollten die z_k als Ergebnisse herauskommen.
 - 2. Vergleiche die berechneten Nullstellen mit dem Ergebnis, welches die MATLAB-Anweisung roots liefert.
- Konkretes Testbeispiel: Das Polynom $x^4 1$ (mit Koeffizientenvektor $a=[1\ 0\ 0\ 0\ -1]$) hat die vier Nullstellen ± 1 und $\pm i$. Diese vier Zahlen(+kleine Fehler) stehen bei korrekter Programmierung im Vektor z.

Programmieraufgabe 3. Schreibe eine Funktion ableitungsplot(f,a,b,n,h), welches die Graphen von f, f', f'' im Intervall [a, b] berechnet und plottet. Dabei ist n die Anzahl der Stützpunkte. Zur Berechnung der Ableitungen sollen die Differenzenformeln

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}, \qquad f''(x) \approx \frac{f(x-h) - 2f(x) + f(x+h)}{h^2}$$

verwendet werden. Teste mit den Funktionen $f(x) = \sin(x)$ und $f(x) = x^3$.

Programmieraufgabe 4. Schreibe eine Funktion [T,S]=integral(f,a,b,n), welche das Integral

 $\int_a^b f(x) dx$ mit Hilfe der summierten Trapezregel (Ergebnis T) und mit Hilfe der summierten Simpsonregel (Ergebnis S) berechnet. Dabei ist n die Anzahl der Stützstellen. Die Intervalllänge ist also h=(b-a)/(n-1).