金华十校 2024-2025 学年第一学期期末调研考试

高三数学试题卷参考答案与评分标准

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的

1	2	3	4	5	6	7	8
A	A	В	В	С	D	В	A

二、选择题: 本题共 3 小题,每小题 6 分,共 18 分.在每小题给出的选项中,有多项符合题目要

求.全部选对的得6分,部分选对的得部分分,有选错的得0分.

9	10	11
AB	ACD	ABD

三、填空题: 本题共3小题,每小题5分,共15分

12.
$$\frac{1}{2}$$
 13.11 或 6(写出其中一个) 14. $4\sqrt{3}$

四、解答题: 本题共 5 小题。共 77 分.解答应写出文字说明、证明过程或演算步骤

15. (1) 因为
$$f(x) = \sin(\omega x + \varphi)$$
 图像经过 $S\left(\frac{\pi}{3}, 1\right), T\left(\frac{4\pi}{3}, -1\right)$,

又
$$f\left(\frac{\pi}{3}\right) = 1$$
得 $\frac{\pi}{3} + \varphi = 2k\pi + \frac{\pi}{2}, k \in \mathbb{Z}$,又因为 $0 < \varphi < \pi$,

(2) 因为
$$f(A) = f(B)$$
,又 $0 < A + B < \pi$,所以 $A + B = \frac{2}{3}\pi$, $C = \frac{\pi}{3}$

所以 $f(A) = \sin$	$\left(A + \frac{\pi}{6}\right)$	$=\frac{\sqrt{3}}{\sqrt{7}}\times$	$\frac{\sqrt{3}}{2}$	$+\frac{2}{\sqrt{7}}$	$<\frac{1}{2}=$	$=\frac{5\sqrt{7}}{14}$	13	分
------------------	----------------------------------	------------------------------------	----------------------	-----------------------	-----------------	-------------------------	----	---

16. (1) 证明 (1) 连结 A₁B₂; AB = AA₁,∠A₁AB = 60°,∴△ ABA₁ 是等边三角形.

过 A 做 PQ 的垂线,垂足是 A' ,可得 $AA' \perp$ 平面 $CBB_{\scriptscriptstyle 1}C_{\scriptscriptstyle 1}$,连结 A'B' ,

所以∠AB₁A′就是线面角......11 分

易得 $AA' = \sqrt{2}$, $AB_1 = 2\sqrt{3}$,

17.(1)因为渐近线方程是 $y = \pm \frac{1}{2}x$,所以 a = 2b,又 $c = \sqrt{3}$,所以 a = 2, b = 1

(2) 设直线 AP 的方程为
$$x = ty + 2$$
,联立 $\begin{cases} \frac{x^2}{4} - y^2 = 1 \end{cases}$,可得 $(t^2 - 4)y^2 + 4ty = 0$ $x = ty + 2$

设线段 AP 的中点为 N ,则点 N 的坐标为 $\left(\frac{8}{4-t^2},\frac{2t}{4-t^2}\right)$,设点 $M\left(0,m\right)$,

18. (1) 数列 $\{a_n\}$ 是等比数列,设首项是 a_1 ,公比是q,

(2) $\boxplus \exists a_1b_1 + a_2b_2 + a_3b_4 + ... + a_nb_n = (2n-7) \cdot 2^{n+1} + 14$ (1) 则 $a_1b_1 + a_2b_2 + a_3b_3 + ... + a_{n-1}b_{n-1} = (2n-9) \cdot 2^n + 14$, $n \ge 2$ ② 由①-②得 $a_nb_n = (2n-5)\cdot 2^n, n \ge 2$ 当 n=1 时, $a_1b_1=-5\cdot 4+14=-6$,满足上式,因此 $a_nb_n=(2n-5)\cdot 2^n$,所以 $b_n=2n-5\dots 6$ 分 $\frac{b_n}{a} = \frac{2n-5}{2^n}$,接下去求 $\frac{b_n}{a} = \frac{2n-5}{2^n}$ 的前n项和,记 $\frac{b_n}{a} = \frac{2n-5}{2^n}$ 的前n项和是 S_n . $S_n = \frac{-3}{2} + \frac{-1}{2^2} + \frac{1}{2^3} + \dots + \frac{2n-7}{2^{n-1}} + \frac{2n-5}{2^n}$ $\frac{1}{2}S_n = \frac{-3}{2^2} + \frac{-1}{2^3} + \frac{1}{2^4} + \dots + \frac{2n-7}{2^n} + \frac{2n-5}{2^{n+1}}$ (2)..... 由①-②得 $\frac{1}{2}S_n = \frac{-3}{2} + 2(\frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}) - \frac{2n-5}{2^{n+1}}$,整理得: $S_n = -1 - \frac{2n-1}{2^n}$ (3) $c_n = \frac{S_n + 4}{a_n + 4} = \frac{n^2 - 4n + 4}{2^n + 4} = \frac{(n-2)^2}{2^n + 4}$,要求 c_n 的最大项,可以设函数 $f(x) = \frac{(x-2)^2}{2^x + 4}$,x > 0则 $f'(x) = \frac{(x-2)(2^{x+1}-x\cdot 2^x \ln 2 + 2^{x+1} \ln 2 + 8)}{(2^x+4)^2}$ $\Rightarrow \varphi(x) = 2^{x+1} - x \cdot 2^x \ln 2 + 2^{x+1} \ln 2 + 8$ 则 $\varphi'(x) = 2^x \ln 2(1 + 2\ln 2 - \ln 2 \cdot x)$, 分析可得 $\varphi'(3) > 0$, $\varphi'(4) < 0$, $\exists a \in (3,4)$, 使得 $\varphi'(a) = 0$ 所以 $\varphi(x)$ 在(0,a)单调递增, $(a,+\infty)$ 单调递减, $\varphi(5)=64-160\ln 2+64\ln 2+8=72-96\ln 2>0$, $\varphi(6) = 128 - 384 \ln 2 + 128 \cdot \ln 2 + 8 = 136 - 256 \ln 2 < 0, \exists x_0 \in (5,6), \notin \varphi(x_0) = 0$ 当 $x \in (0,2)$ 时, f'(x) < 0, 当 $x \in (2,x_0)$ 时, f'(x) > 0, $x \in (x_0,+\infty)$ 时, f'(x) < 0因此 f(x) 在 $x \in (0,2)$ 单调递减,在 $x \in (2,x_0)$,单调递增,在 $x \in (x_0,+\infty)$,单调递减............15 分 只要比较 f(1), f(5), f(6) 的大小, $f(1) = \frac{1}{6}$, $f(5) = \frac{9}{36} = \frac{1}{4}$, $f(6) = \frac{16}{68} < \frac{1}{4}$. 所以第五项是最大项,k=5...... 此时 $A = \{\alpha \mid \alpha = (x_1, x_2, \dots, x_{10}), x_i \in \{0,1\}\}$, 显然 A 中的每一个元素都恰有 10 个"友好元"。

②c在每一个 B_{d_i} 中至多有一个"友好元"

对于 $c = (c_1, c_2, \dots, c_{2024}) \in C$, 我们有:

由于对于 $1 \le i < j \le t$, B_{d_i} 中的元素第 $2024 - d_{j+1} + 1$, $2024 - d_{j+1} + 2$, \cdots $2024 - d_{j}$ 都是1, 而 B_{d_i} 中 $2024 - d_{j+1} + 1$, $2024 - d_{j+1} + 2$, \cdots $2024 - d_{j}$ 都是0, 且 $d_j - d_i \ge 3$, 从而 b_1 和 b_2 之间至少有 3 位元素不同, 所以不存在 $b_1 \in B_{d_i}$, $b_2 \in B_{d_j}$ 且均是c 的"友好元".

从而 c 在 C 中至少有 2023 个"友好元",所以 2^{2024} $-(2^{d_1}+2^{d_2}+\cdots+2^{d_r})$ 是"好数"……… 17 分