Assignment 3

Naman Mishra

25 January, 2024

Problem 3.1.

Solution (A). Let b > 1 and n > 0. Let $B = \{t \in \mathbb{R} : t > 0, t^n < b\}$. Since b > 1, $b^n > b$. Moreover, since $x < y \implies x^n < y^n$, where x and y are positive, we have that b is an upper bound for B. By definition of B, $1 \in B$. Thus B has a supremum.

Now if u < v are positive real numbers, then $u^n < v^n$. Thus there can be at most one positive t such that $t^n = b$.

We now show that $(\sup B)^n = b$. For this we show that B has no largest element. For any $u \in B$, let $\delta = \min\left\{\frac{b-u^n}{2^n}, 1\right\}$. Then

$$(u(1+\delta))^n = u^n (1 + n\delta + \dots + \delta^n)$$

$$= u^n + \delta \sum_{j=1}^n \binom{n}{j}$$

$$< u^n + 2^n \delta$$

$$\le u^n + b - u^n$$

$$= b$$

Thus $u(1 + \delta)$ is an element of B greater than u.

This implies that $\sup B \notin B$. Now let $u = \sup B$ and suppose $u^n > b$. Let

$$v = u + \frac{u^n - b}{nb + u^{n-1}}$$
$$= \frac{nbu + b}{nb + u^{n-1}}$$

as before. Then 0 < v < u and

$$v^{n} - b = \frac{(nbu + b)^{n} - b(nb + u^{n-1})^{n}}{(nb + u^{n-1})^{n}}$$

$$> \frac{(nbu + b)^{n} - (nbu + u^{n})^{n}}{(nb + u^{n-1})^{n}}$$

$$> 0$$

But since $x \mapsto x^n$ is