

Algèbre Linéaire

Examen - Durée : 2h00 Licence 2 Informatique (2022-2023)

Guillaume Metzler

Institut de Communication (ICOM)
Université de Lyon, Université Lumière Lyon 2
Laboratoire ERIC UR 3083, Lyon, France

guillaume.metzler@univ-lyon2.fr

L'usage de tout matériel électronique : ordinateur, montre, téléphone et calculatrice est interdit pendant la composition. Seule une feuille A4 recto-verso et manuscrite avec vos notes personnes est autorisée. En cas de tentative de fraude, vous serez exposés à des sanctions disciplinaires.

Enfin, la qualité de la rédaction et les justifications apportées aux réponses seront pris en compte de l'évaluation de la copie.

Résumé

L'examen est volontairement long afin de donner l'opportunité à chacun de trouver des questions qu'il puisse faire pendant le temps imparti. En outre, il permettra de faire une meilleure distinction entre les étudiants. A ce titre, il n'est bien sûr pas attendu à ce que vous traitiez tous les exercices!

Les différents exercices qui composent cet examen sont indépendants. La qualité de la rédaction sera prise en compte de l'évaluation de la copie.

Exercice 1

On considère la famille de vecteurs de \mathbb{R}^3 suivante :

$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix}, \ \text{et } \mathbf{v}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

- 1. Rappeler la définition de famille libre.
- 2. La famille de vecteurs $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ forme-t-elle une famille libre de \mathbb{R}^3 ? Est-elle une famille génératrice de \mathbb{R}^3 ?
- 3. On note $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ la base canonique de \mathbb{R}^3 et soit $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ l'application vérifiant

$$\phi(\mathbf{e}_1) = \mathbf{v}_1, \ \phi(\mathbf{e}_2) = \mathbf{v}_2, \ \text{et } \phi(\mathbf{e}_3) = \mathbf{v}_3.$$

- (a) Déterminer la matrice associée à l'application ϕ dans la base canonique de \mathbb{R}^3 , on la notera $Mat(\phi)$.
- (b) L'application ϕ est-elle inversible? Déterminer son inverse.

Exercice 2

Dans cet exercice, on s'intéresse à l'application linéaire u dont la représentation matricielle, dans la base canonique \mathcal{B} , est donnée par

$$M = Mat_{\mathscr{B}}(u) = \begin{pmatrix} 4 & 2 & 0 & -2 \\ 5 & -1 & 0 & 5 \\ 2 & 6 & 2 & 0 \end{pmatrix}.$$

- 1. Indiquer la dimension de l'espace de départ et d'arrivée de l'application u.
- 2. Cette application peut-elle être injective? Justifier votre réponse.
- 3. Déterminer une base du noyau de u et précisez sa dimension.
- 4. Déterminer une base de l'image de u et préciser sa dimension.

Exercice 3

On considère $E = \mathcal{M}_n(\mathbb{R})$, et A une matrice de E fixée. Enfin, on considère l'ensemble $F = \{M \in E, AM = MA\}$.

- 1. Montrer que F est un sous-espace vectoriel de E.
- 2. On suppose maintenant que $A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$. Déterminer l'ensemble des éléments de F, *i.e.* l'esemble des matrices M telles ques AM = MA.
- 3. Quelle est la dimension de F dans le cas précédent?

Exercice 4

On se place dans l'espace vectoriel $E = \mathbb{R}^3$, on note $\mathscr{B} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ sa base canonique. Soit u un endomorphisme de E dont la représentation matricielle dans la base \mathscr{B} , notée A, est donnée par :

$$A = \begin{pmatrix} 6 & -2 & 2 \\ 0 & 4 & 0 \\ 2 & -2 & 6 \end{pmatrix}$$

On pose $\mathbf{f}_1 = \mathbf{e}_1 + \mathbf{e}_3$, $\mathbf{f}_2 = \mathbf{e}_1 + \mathbf{e}_2$ et $\mathbf{f}_3 = \mathbf{e}_1 - \mathbf{e}_3$.

- 1. Montrer que $\mathcal{B}' = (\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3)$ une base de E. On rappelle que $\mathbf{e}_1 = (1, 0, 0), \mathbf{e}_2 = (0, 1, 0)$ et $\mathbf{e}_3 = (0, 0, 1)$.
- 2. Déterminer $u(\mathbf{f}_1), u(\mathbf{f}_2)$ et $u(\mathbf{f}_3)$ et en déduire une représentation matricielle de A dans cette nouvelle base \mathcal{B}' . Elle sera appelée D dans la suite.
- 3. Déterminer la matrice de passage permettant de passer à cette représentation diagonale de la matrice A.
- 4. Calculer D^n pour tout entier $n \in \mathbb{N}^*$.
- 5. Donner l'expression de A^n pour tout entier $n \in \mathbb{N}^*$ en fonction de la matrice D^n .

Exercice 5

1. Soit $\mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$. Considérons la famille de vecteurs $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$

$$\mathbf{v}_1 = \begin{pmatrix} -4\\2\\4 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \ \text{et } \mathbf{v}_3 = \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}.$$

- (a) Déterminer un vecteur \mathbf{v}_3 tel que la famille $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ forme une famille orthogonale de \mathbb{R}^3 .
- (b) Que doivent vérifier (quelle équation) l'ensemble des vecteurs orthogonaux à \mathbf{v}_1 ? Quelle est la dimension d'un tel espace?

2. On considère l'application $\phi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ par

$$\phi(\mathbf{x}, \mathbf{y}) = (x_1 + y_1)^2 + (x_2 + y_2)^2 - (x_1 - y_1)^2 - (x_2 - y_2)^2$$

Rappeler la définition d'un produit scalaire et montre que l'application ϕ ainsi définie est un produit scalaire.

3. On considère maintenant les vecteurs $\mathbf{w}_1, \mathbf{w}_2$ et \mathbf{w}_3 respectivement définis par

$$\mathbf{w}_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \ \mathbf{w}_2 = \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix}, \ \text{et } \mathbf{w}_3 = \begin{pmatrix} 5 \\ -7 \\ -3 \end{pmatrix}$$

- (a) Déterminer la norme des vecteurs $\mathbf{w}_1, \mathbf{w}_2$ et \mathbf{w}_3
- (b) Déterminer le projeté orthgonal des vecteurs \mathbf{w}_3 et \mathbf{w}_2 sur le vecteur \mathbf{w}_1 . Que remarquez-vous?

Exercice 6

On considère la matrice

$$A = \begin{pmatrix} 4 & 4 & 0 & 0 \\ 2 & 2 & 4 & 0 \\ 1 & 1 & 2 & 4 \\ 1 & 1 & 2 & 4 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}).$$

- 1. Rappeler le lien entre valeurs propres d'une matrice et sa trace.
- 2. Déterminer la dimension du noyau de la matrice A et en déduire la valeur du rang de cette matrice.
- 3. Quel est le déterminant de A?
- 4. Déterminer les valeurs propres de la matrice A. Indication : on pourra effectuer les calculs suivants

$$A \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \quad et \quad A \begin{pmatrix} 2 \\ 0 \\ -1 \\ -1 \end{pmatrix}$$

La matrice A est-elle diagonalisable?

Exercice 7

Dire si les matrices suivantes sont diagonalisables ou non

1. La matrice A de $\mathcal{M}_3(\mathbb{R})$ définie par

$$A = \begin{pmatrix} 4 & -2 & 2 \\ -2 & 1 & 6 \\ 2 & 6 & 0 \end{pmatrix}.$$

2. La matrice B de $\mathcal{M}_3(\mathbb{R})$ définie par

$$B = \begin{pmatrix} 2 & -6 \\ 0 & 2 \end{pmatrix}.$$

3. La matrice C de $\mathcal{M}_3(\mathbb{R})$ définie par

$$C = \begin{pmatrix} 4 & -4 & 4 \\ 3 & -3 & 4 \\ 3 & -3 & 4 \end{pmatrix}.$$

4. La matrice C de $\mathcal{M}_3(\mathbb{R})$ définie par

$$D = \begin{pmatrix} 3 & 0 & -1 \\ 2 & 4 & 2 \\ -1 & 0 & 3 \end{pmatrix}.$$

Exercice 8

1. On considère le système (S) suivant

$$(S): \begin{cases} 6x - 2y &= -2\\ 7x + 4y &= -1 \end{cases}$$

- (a) Le système (S) est-il un système de Cramer?
- (b) Donner les solutions de ce système par la méthode de votre choix.
- 2. On considère le système (S) suivant

$$(S): \begin{cases} 2x - y + 3z &= 1\\ -4x + 2y + z &= 3\\ -2x - y + 4z &= 4\\ 10x - 5y - 6z &= -10 \end{cases}$$

Déterminer l'ensemble des solutions du système (S).