Teoria dos Grafos Aula 5

Aula passada

- Explorando grafos
- Mecanismos genéricos
- Ideias sobre BFS, DFS

Aula de hoje

- Busca em grafos
- Busca em largura (BFS - Breadth-First Search)
- Propriedades

Busca em Grafos

Problema fundamental em grafos

Como explorar um grafo de forma sistemática?

- Muitas aplicações são abstraídas como problemas de busca
- Muitos algoritmos utilizam fundamentos similares

Busca em Grafos

- Como saber se existe caminho entre dois vértices?
 - de maneira eficiente

- Idéia: evitar explorar vértices já explorados
 - marcar os vértices!
 - vértice: descoberto ou explorado

Busca em Grafos

- Definir vértice inicial (origem ou raiz)
- Explorar e marcar vértices
 - Descoberto: vértice foi descoberto (visitado pela primeira vez)
 - Explorado: todas as arestas incidentes ao vértice foram exploradas e vizinhos descobertos
- Algoritmo genérico?

Algoritmo Genérico

- Passo inicial
 - desmarcar todos os vértices
 - selecionar origem e marcá-lo descoberto
- Passo geral (enquanto houver vértice descoberto)
 - Selecionar vértice descoberto, u
 - Considerar aresta não explorada, (u, v)
 - Se v não estiver marcado, marcar v como descoberto
 - Marcar u explorado quando não houver mais arestas incidentes a u a serem exploradas

Ordenação da Exploração

Ordem de visita dos vértices e arestas?

Algoritmo genérico não estabelece ordem

- Qual é uma possível ordem?
 - Sistemática de exploração
- Duas abordagens
 - Explorar o vértice descoberto "mais antigo"
 - Explorar o vértice descoberto "mais recente"

Busca em Largura (BFS)

Explorar vértices descobertos mais antigos primeiro

- Origem: vértice 1
- Em que ordem os vértices são descobertos?

Assumir arestas são exploradas em ordem crescente dos vértices adjacentes (matriz ou lista de adjacência)

Interpretação

- Onda é propagada à partir da raiz
- Onda expande em círculos, descobrindo vértices alcançáveis!

Busca em Largura!

Camadas

- L_i: conjunto de vértices pertencentes a camada i=0, 1, 2, ...
- L₀: vértice origem
- L_{i+1}: conjunto de vértices que não fazem parte de uma camada anterior e que possuem uma aresta com algum vértice da camada L_i

Camadas: Exemplo

- L₀: vértice 2
- L_i:?

Distância

- Comprimento do menor caminho simples entre dois vértices
- Função d(u,v), onde u e v são vértices
 - infinito quando não há caminho

Exemplo

$$=d(1,2)=?$$

$$ad(6, 3) = ?$$

$$d(7, 1) = ?$$

Camadas e Distância

- Qual é a relação entre eles?
- Vértices pertencentes a camada L_i têm distância i da origem!

Busca em largura (BFS) calcula distância!

Grafo Acíclico

- Grafo acíclico é um grafo que não possui ciclos
 - lembram do "ciclo"?
- Exemplo:
 - K₄ é acíclico?

É acíclico?

Como descobrir se um grafo é acíclico?

Algoritmo eficiente!

Árvores

- Uma árvore é um grafo acíclico conexo
 - definição de árvore!
- Folha: vértice com grau 1 5 6
- Raiz: um determinado vértice
 - define orientação na árvore (pai, filhos, descendentes e acenstrais)
- Quantos caminhos (simples) distintos existe entre dois vértices quaisquer?
- Quantas arestas possui uma árvore com n vértices?

Árvore Geradora

- Subgrafo que contém todos os vértices de G e é uma árvore
 - em inglês, "spanning tree"
 - arvore que "alcança" todos os vértices

É árvore geradora?

Árvore Geradora da BFS

- Árvore induzida pela busca em largura
 - Raiz: vértice de origem
 - Pai de v: nó que levou à descoberta de v

- Ordem da busca define árvore
- L_i = nível i da árvore

Menor Caminho

- Árvore geradora define menor caminho
- Dado vértice v (raiz) e outro vértice w qq.
 - menor caminho definido pela sequência de pais de w até a raiz

Árvore geradora (raiz 6)

- menor caminho entre 3 e 6?
- menor caminho entre 3 e 7?
- Cuidado! Árvore define menor caminho para raiz!