Finding the DC Operating Point

- Known as the *Q-point* (*quiescent point*)
- Defined by (I_D, V_D)
- Two solution techniques:
 - ➤ Graphical Method (Using Load Line)
 - > Iterative Method (Self-Consistent)
- Graphical Method:
 - ightharpoonup Use diode I-V relation: I_D = I₀exp(V_D/V_T)
 - $ightharpoonup Use Load Line equation: I_D = (2 V_D)/(1 \text{ k}\Omega)$
 - > Intersection point is the operating point

 V_{DQ} , I_{DQ} : Quiescent values of V_D , I_D = 0.7 V, 1.3 mA (obtained from iterative method using I_0 = 3 fA)

DC Quiescent Power Dissipation = $V_{DO} \times I_{DO} = 0.9 \text{ mW}$

Graphical Method

The two *end points* of the *load line*:

1.
$$V_D = 0$$
: $I_D = 2/(1 \text{ k}) = 2 \text{ mA}$

2.
$$I_D = 0$$
: $V_D = 2 V$

• Iterative Method:

- ➤ Also known as *self-consistent analysis*
- > I-V relation and load line equation form a set of transcendental equations
 - Analytical solution not possible
 - Have to resort to *numerical* (*iterative*) analysis

> Procedure:

- Choose $V_D = 0.7 V$ and find I_D from load line equation
- Use this I_D to find V_D from I-V relation (convert to ln form first)
- *Repeat till convergence is achieved* (pretty quick!)

Series Resistance Effect

- The two *quasi-neutral regions* (p and n) have their own *bulk resistances*
- Denoted as r_p and r_n
- For small I_D , their effects are negligible
- However, for large I_D , the potential dropped across them reduces the actual voltage appearing across the junction of the diode
- Known as the Series Resistance Effect