Niveau: Première année de PCSI

COLLE 13 = ESPACES VECTORIELS

Connaître son cours:

- 1. Soit u une application linéaire entre deux \mathbb{K} -espaces vectoriels E et F. Montrer que l'image directe par u d'un sous-espace vectoriel de E est un sous-espace vectoriel de F.
- 2. Montrer que la somme de deux sous-espaces vectoriels est directe si, et seulement si, leur intersection est égale à $\{0_E\}$.
- 3. Soit e_1, \ldots, e_p des vecteurs d'un \mathbb{K} -espace vectoriel E. Montrer que pour tous $\lambda \in \mathbb{K}$ et $i \neq j \in [1, p]$, $\mathrm{Vect}(e_1, \ldots, e_p) = \mathrm{Vect}(e_1, \ldots, e_i + \lambda e_j, \ldots, e_p)$.

Exercices:

Exercice 1. (*)

Dans $\mathbb{R}[X]$, $P(X) = 16X^3 - 7X^2 + 21X - 4$ est-il combinaison linéaire de $P_1(X) = 8X^3 - 5X^2 + 1$ et de $P_2(X) = X^2 + 7X - 2$?

Exercice 2. (**)

Soit $E = \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions continues de \mathbb{R} dans \mathbb{R} . Pour tout $a \in \mathbb{R}$, posons $E_a = \{ f \in E, f(a) = 0 \}.$

- 1. Montrer, que pour tout $a \in \mathbb{R}$, E_a est un sous-espace vectoriel de E.
- 2. Soit $a \neq b$. Montrer que $E = E_a + E_b$.
- 3. La somme de E_a et de E_b peut-elle être directe?

Exercice 3. (**)

1. Montrer par des opérations sur les Vect les égalités :

$$\mathbb{R}_2[X] = \text{Vect}((X-1)^2, (X-1)(X+1), (X+1)^2).$$

2. Montrer que pour tout $n \in \mathbb{N}$:

$$\operatorname{Vect}_{0 \le k \le n} \Big(\Big(x \mapsto \cos(kx) \Big) \Big) = \operatorname{Vect}_{0 \le k \le n} \Big(\Big(x \mapsto \cos^k(x) \Big) \Big).$$

Exercice 4. (**)

Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} . On note F le sous-espace vectoriel des fonctions paires et G le sous-espace vectoriel des fonctions impaires. Montrer que F et G sont supplémentaires après avoir expliqué pour F et G étaient des sous-espaces vectoriels de E.

Niveau: Première année de PCSI

Exercice 5. (***)

Partie A - Exemple d'un projecteur

Notons $E = \mathbb{R}[X]$ l'ensemble des polynômes réels, \mathscr{P} et \mathscr{I} les sous-espaces vectoriels des polynômes pairs et impairs respectivement.

- 1. Montrer que $\mathscr I$ est un supplémentaire de $\mathscr P$ dans E.
- 2. Soit l'application linéaire

$$\varphi: \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ P & \longmapsto & \frac{P(X) + P(-X)}{2} + X \frac{P(X) - P(-X)}{2} \end{array} \right.$$

(a) Déterminer $\operatorname{Im} \varphi$ puis établir que

$$\operatorname{Ker} \varphi = \{(1 - X)P(X), P \in \mathscr{I}\}.$$

- (b) Montrer que φ est un projecteur de E.
- (c) En déduire que $\operatorname{Ker} \varphi$ est un supplémentaire de \mathscr{P} .

Partie B - sous-espaces qui admettent un supplémentaire commun

Soit E un espace vectoriel, F_1 et F_2 deux sous-espaces vectoriels de E

1. Supposons, dans cette question, que F_1 et F_2 sont supplémentaires dans E et qu'il existe un isomorphisme $u: F_1 \to F_2$.

Montrer que $G = \{x - u(x), x \in F_1\}$ est un espace vectoriel puis qu'il est un supplémentaire commun à F_1 et F_2 .

2. Réciproquement supposons dans cette question que F_1 et F_2 admettent un supplémentaire commun G. Montrer que F_1 et F_2 sont isomorphes.