

Sequence Listing

<110> Ashkenazi, Avi J.
Frantz, Gretchen
Goddard, Audrey
Gonzalez, Lino
Gurney, Austin L.
Polakis, Paul
Polson, Andrew
Wood, William
Wu, Thomas D.
Zhang, Zemin

<120> COMPOSITIONS AND METHODS FOR THE DIAGNOSIS AND TREATMENT OF TUMOR

<130> P5032R1-US

<140> US 10/712,892

<141> 2003-11-13

<150> US 60/426,847

<151> 2002-11-15

<150> US 60/431,250

<151> 2002-12-06

<150> US 60/437,344

<151> 2002-12-31

<160> 42

<210> 1

<211> 2625

<212> DNA

<213> Homo sapiens

<400> 1

cggcagcct gacgtgatga gctcaaccag cagagacatt ccatcccaag 50
agaggtctgc gtgacgcgtc cgggaggcca ccctcagcaa gaccaccgta 100
cagttggtgg aaggggtgac agctgcattc tcctgtgcct accacgtaac 150
caaaaatgaa ggagaactac tgtttacaag ccgccctggt gtgcctgggc 200
atgctgtgcc acagccatgc ctttgcccca gagcggcggg ggcacctgcg 250
gccctccttc catgggcacc atgagaaggg caaggaggg caggtgctac 300
agcgctccaa gcgtggctgg gtctggaacc agttcttcgt gatagaggag 350
tacaccgggc ctgaccccgt gcttgtgggc aggcttcatt cagatattga 400

ctctggtgat gggaacatta aatacattct ctcaggggaa ggagctggaa 450 ccatttttgt gattgatgac aaatcaggga acattcatgc caccaagacg 500 ttggatcgag aagagagac ccagtacacg ttgatggctc aggcggtgga 550 cagggacacc aatcggccac tggagccacc gtcggaattc attgtcaagg 600 tccaggacat taatgacaac cctccggagt tcctgcacga gacctatcat 650 gccaacgtgc ctgagaggtc caatgtggga acgtcagtaa tccaggtgac 700 agetteagat geagatgace ceaettatgg aaatagegee aagttagtgt 750 acagtateet egaaggacaa eeetatttt eggtggaage acagacaggt 800 atcatcagaa cagccctacc caacatggac agggaggcca aggaggagta 850 ccacgtggtg atccaggcca aggacatggg tggacatatg ggcggactct 900 cagggacaac caaagtgacg atcacactga ccgatgtcaa tgacaaccca 950 ccaaagtttc cgcagaggct ataccagatg tctgtgtcag aagcagccgt 1000 ccctggggag gaagtaggaa gagtgaaagc taaagatcca gacattggag 1050 aaaatggctt agtcacatac aatattgttg atggagatgg tatggaatcg 1100 tttgaaatca caacggacta tgaaacacag gagggggtga taaagctgaa 1150 aaagcctgta gattttgaaa ccgaaagagc ctatagcttg aaggtagagg 1200 cagccaacgt gcacatcgac ccgaagttta tcagcaatgg ccctttcaag 1250 gacactgtga ccgtcaagat ctcagtagaa gatgctgatg agccccctat 1300 gttcttggcc ccaagttaca tccacgaagt ccaagaaaat gcagctgctg 1350 gcaccgtggt tgggagagtg catgccaaag accctgatgc tgccaacagc 1400 ccgataaggt attccatcga tcgtcacact gacctcgaca gatttttcac 1450 tattaatcca gaggatggtt ttattaaaac tacaaaacct ctggatagag 1500 aggaaacagc ctggctcaac atcactgtct ttgcagcaga aatccacaat 1550 cggcatcagg aagcccaagt cccagtggcc attagggtcc ttgatgtcaa 1600 cgataatgct cccaagtttg ctgcccctta tgaaggtttc atctgtgaga 1650 gtgatcagac caagccactt tccaaccagc caattgttac aattagtgca 1700 gatgacaagg atgacacggc caatggacca agatttatct tcagcctacc 1750 ccctgaaatc attcacaatc caaatttcac agtcagagac aaccgagata 1800 acacagcagg cgtgtacgcc cggcgtggag ggttcagtcg gcagaagcag 1850

gacttgtacc ttctgcccat agtgatcagc gatggcggca tcccgcccat 1900 gagtagcacc aacaccctca ccatcaaagt ctgcgggtgc gacgtgaacg 1950 gggcactgct ctcctgcaac gcagaggcct acattctgaa cgccggcctg 2000 agcacaggcg ccctgatcgc catcctcgcc tgcatcgtca ttctcctggt 2050 cattgtagta ttgtttgtga ccctgagaag gcaaaagaaa gaaccactca 2100 ttgtctttga ggaagaagat gtccgtgaga acatcattac ttatgatgat 2150 gaaggggtg gggaagaaga cacagaagcc tttgatattg ccaccctcca 2200 gaatcctgat ggtatcaatg gatttatccc ccgcaaagac atcaaacctg 2250 agtatcagta catgcctaga cctgggctcc ggccagcgcc caacagcgtg 2300 gatgtcgatg acttcatcaa cacgagaata caggaggcag acaatgaccc 2350 cacggctcct ccttatgact ccattcaaat ctacggttat gaaggcaggg 2400 gctcagtggc cgggtccctg agctccctag agtcggccac cacagattca 2450 gacttggact atgattatct acagaactgg ggacctcgtt ttaagaaact 2500 agcagatttg tatggttcca aagacacttt tgatgacgat tcttaacaat 2550 aacgatacaa atttggcctt aagaactgtg tctggcgttc tcaagaatct 2600 agaagatgtg taacaggtat ttttt 2625

<210> 2

<211> 1371

<212> DNA

<213> Homo sapiens

<400> 2

aactcaaact cetetetet ggaaaacgeg gtgettgete eteceggagt 50 ggeettggea gggtgttgga geeeteggte tgeeeegtee ggtetetggg 100 geeaaggetg ggttteeete atgtatggea agagetetae tegtgeggtg 150 ettettetee ttggeataea geteacaget etttggeeta tageagetgt 200 ggaaatttat aceteeeggg tgetggagge tgttaatggg acagatgete 250 ggttaaaatg caetttetee agetttgeee etgtgggtga tgetetaaca 300 gtgacetgga atttegtee tetagaeggg ggacetgage agtttgtatt 350 etactaceae atagateeet teeaacecat gagtgggegg tttaaggaee 400 gggtgtettg ggatgggaat eetgageggt acgatgeete cateettete 450 tggaaactge agttegaega caatgggaea tacacetgee aggtgaagaa 500

cccacctgat gttgatgggg tgatagggga gatccggctc agcgtcgtgc 550 acactgtacg cttctctgag atccacttcc tggctctggc cattggctct 600 gcctgtgcac tgatgatcat aatagtaatt gtagtggtcc tcttccagca 650 ttaccggaaa aagcgatggg ccgaaagagc tcataaagtg gtggagataa 700 aatcaaaaga agaggaaagg ctcaaccaag agaaaaaggt ctctgtttat 750 ttagaagaca cagactaaca attttagatg gaagctgaga tgatttccaa 800 gaacaagaac cctagtattt cttgaagtta atggaaactt ttctttggct 850 tttccagttg tgacccgttt tccaaccagt tctgcagcat attagattct 900 agacaagcaa cacccctctg gagccagcac agtgctcctc catatcacca 950 gtcatacaca gcctcattat taaggtctta tttaatttca gagtgtaaat 1000 tttttcaagt gctcattagg ttttataaac aagaagctac atttttgccc 1050 ttaagacact acttacagtg ttatgacttg tatacacata tattggtatc 1100 aaaggggata aaagccaatt tgtctgttac atttcctttc acgtatttct 1150 tttagcagca cttctgctac taaagttaat gtgtttactc tctttccttc 1200 ccacattctc aattaaaagg tgagctaagc ctcctcggtg tttctgatta 1250 acagtaaatc ctaaattcaa actgttaaat gacattttta tttttatgtc 1300 tctccttaac tatgagacac atcttgtttt actgaatttc tttcaatatt 1350 ccaggtgata gatttttgtc g 1371

<210> 3

<211> 1274

<212> DNA

<213> Homo sapiens

<400> 3

agracegage gatteaggg agggageaac tggageetea ggeeeteeag 50 agracegage etgaceaece tggageeeae agaageeeag gaegteteee 100 gegaggeete eeegtgtgt getgaggatg getgageage agggeeggga 150 gettgagget gagtgeeeg tetgetggaa eeeetteaae aacaegttee 200 ataeeeeeaa aatgetggat tgetgeeaet eettetgegt ggaatgtetg 250 geeeaeetea geettgtgae teeageeegg egeegeetge tgtgeeeaet 300 etgtegeeag eeeaagtge tggeeteagg geageetgte aetgaettge 350 eeaeggaeae tgeeatgete aeeetgetee geetggagee eeaeeatgte 400

atcctggaag gccatcagct gtgcctcaag gaccagccca agagccgcta 450 cttcctgcgc cagcctcgag tctacacgct ggaccttggc ccccagcctg 500 ggggccagac tgggccgccc ccagacacgg cctctgccac cgtgtctacg 550 cccatcctca tccccagcca ccactctttg agggagtgtt tccgcaaccc 600 tcagttccgc atctttgcct acctgatggc cgtcatcctc agtgtcactc 650 tgttgctcat attctccatc ttttggacca agcagttcct ttggggtgtg 700 gggtgagtgc tgttcccaga caagaaacca aacctttttc ggttgctgct 750 gggtatggtg actacggagc ctcatttggt attgtcttcc tttgtagtgt 800 tgtttatttt acaatccagg gattgttcag gccatgtgtt tgcttctggg 850 aacaatttaa aaaaaaaca aaaaaacgaa aagcttgaag gactgggaga 900 tgtggagcga cctccgggtg tgagtgtggc gtcatggaag ggcagagaag 950 cggttctgac cacagagctc cacagcaagt tgtgccaaag ggctgcacag 1000 tggtatccag gaacctgact agcccaaata gcaagttgca tttctcactg 1050 gagctgcttc aaaatcagtg catatttttt tgagttgctc ttttactatg 1100 ggttgctaaa aaaaaaaaa aaaaaattgg gaagtgagct tcaattctgt 1150 gggtaaatgt gtgtttgttt ctctttgaat gtcttgccac tggttgcagt 1200 aaaaaaaaa aaaaaaaaaa aaaa 1274

<210> 4

<211> 2032

<212> DNA

<213> Homo sapiens

<400> 4

gaagegeget eeegggagg tgttgeagee atggetaegg eageeggege 50 gaeetaettt eagegaggea gtetgttetg gtteacagte ateaceetea 100 getttggeta etacaeatgg gttgtettet ggeeteagag tateeettat 150 eagaacettg ggeeeetggg eeeetteaet eagtaettgg tggaeeacea 200 teacaeeete etttgeaatg ggtattgget tgeetggetg atteatgtgg 250 gagagteett gtatgeeata geattggea ageataaagg eateaeaagt 300 ggtegggete agetaetetg gtteetaeag aetttettet ttgggatage 350 gteteteace atettgattg ettaeaaaeg gaagegeeaa aaaeaaett 400

gaagttgtct gaaagcttgc tctacacttt tacattcatc ctcacccttt 450 tttttgtggg gtagaggagg tgcagtaatt tactcagtga tctttctact 500 ttctagaaac tgtccttcaa agctctttaa gaccccctcg ttagtcagtt 550 tcttctctta tatgctctgg ttgagcttga atagaccagt tgttacttaa 600 gaaagaaaca gagaaagatt ttagcttttc aatcctattt ggcagaggac 650 ttcagctacc ttcttacagt ctttggctgt gttggtaccc tcgtgtgctc 700 tgagctaagc cacatactaa actgactttt tggttttgtat acccttgctc 750 ccgccttctg atgaaaacac cttaccctca caaccaccat ctttcctctc 800 ctttccaaag ctctttccac cttgctgcac taagataaag tgacacttcc 850 actatatgtc aattccacac acatttatta ggtacctgtg aggtaggatc 900 ctatcctctc aaacttccat ttctcatgct acagagaaag ataaggaaga 950 tgagcaagtg cctggaatgg ggcaggctga gcagtcacac aggcatagag 1000 gcacgctgag aacctggagg ggagactgca gagtgccttc cctgatgctg 1050 cagceggaag tgateettee etceacetgg eecetgggae aetgtgetet 1100 gcagtgtgca gggcctgatg gcactgctag attgctcctt cagctcaggg 1150 ccacagetta aacagettta cettteecet cageacetgt eccaetatet 1200 tgcacacagg tgctctaacc atgtttattg aacaaaggag ggaaactgat 1250 ttcactttca cttgttcatt atcattccaa tttttatgtg aaaatggcac 1300 aacccatttg gggtaccctc accccaaaat aaaagcccaa gtctaccttt 1350 gactggtacc accttttttg tggtttcgtt ggtgagaaac ctttatcttt 1400 ttcatacctt tctattctca atcacttctc caaaagtgtg tctttccagc 1450 tctgatttat tcaaaacaca agcatttctg tttagagatt ctagcccatg 1500 ggttatctgg ctagttatta cctctcctgt tcacttagtt atactttatt 1550 attgctcaca ggctggggag gcagaatgac tctgtcacca ctaggagcca 1600 ttagggette tteeetggag gaetgeetge ttgetttetg gggaeactag 1650 ccctcatttc ccttctgtgg tacagtgggg caaattattt gtattaagca 1700 aacatttatg ggaaacaacc cgctcccgaa aacggagccc ccaagtaaag 1750 cacaaccctg aaagattatg aactatgaat tgtctctagt agagataaat 1800 ttctgcaaac atatctcagt cttccctctg tttctctggt gattaagaag 1850 tteettttg gtaaggaaaa ggattttaa eeatagagtt aggeateatg 1900 gaaatteaaa eeagatttet taataeetgg tetteeteaa agagaaataa 1950 taacagtaat agtggtgetg ggaacaatat ggeagattat tgaatgaaat 2000 tgattaaett gaataaaatg etgtgaattt te 2032

<210> 5

<211> 1572

<212> DNA

<213> Homo sapiens

<400> 5

ggcacgaggc cgcagcggac tgccctttcc caagatggcg tcgaagatag 50 gttcgagacg gtggatgttg cagctgatca tgcagttggg ttcggtgctg 100 ctcacacgct gccccttttg gggctgcttc agccagctca tgctgtacgc 150 tgagagggct gaggcacgcc ggaagcccga catcccagtg ccttacctgt 200 atttcgacat gggggcagcc gtgctgtgcg ctagtttcat gtcctttggc 250 gtgaagcggc gctggttcgc gctgggggcc gcactccaat tggccattag 300 cacctacgcc'gcctacatcg ggggctacgt ccactacggg gactggctga 350 aggtccgtat gtactcgcgc acagttgcca tcatcggcgg ctttcttgtg 400 ttggccagcg gtgctgggga gctgtaccgc cggaaacctc gcagccgctc 450 cctgcagtcc accggccagg tgttcctggg tatctacctc atctgtgtgg 500 cctactcact gcagcacagc aaggaggacc ggctggcgta tctgaaccat 550 ctcccaggag gggagctgat gatccagctg ttcttcgtgc tgtatggcat 600 cctggccctg gcctttctgt caggctacta cgtgaccctc gctgcccaga 650 teetggetgt actgetgeec cetgteatge tgeteattga tggeaatgtt 700 gcttactggc acaacacgcg gcgtgttgag ttctggaacc agatgaagct 750 ccttggagag agtgtgggca tcttcggaac tgctgtcatc ctggccactg 800 atggctgagt tttatggcaa gaggctgaga tgggcacagg gagccactga 850 gggtcaccct gccttcctcc ttgctggccc agctgctgtt tatttatgct 900 ttttggtctg tttgtttgat cttttgcttt tttaaaattg ttttttgcag 950 ttaagaggca gctcatttgt ccaaatttct gggctcagcg cttgggaggg 1000 caggagecet ggeactaatg etgtacaggt tttttteetg ttaggagage 1050 tgaggccagc tgcccactga gtctcctgtc cctgagaagg gagtatggca 1100 agactgggat gcggctactg agagtgggag agtgggagac agaggaagga 1150
agatggagat tggaagtgag caaatgtgaa aaattcctct ttgaacctgg 1200
cagatgcagc taggctctgc agtgctgttt ggagactgtg agagggagtg 1250
tgtgtgttga cacatgtgga tcaggcccag gaagggcaca ggggctgagc 1300
actacagaag tcacatgggt tctcagggta tgccaggggc agaaacagta 1350
ccggctctct gtcactcacc ttgagagtag agcagaccct gttctgctct 1400
gggctgtgaa ggggtggagc aggcagtggc cagctttgcc cttcctgctg 1450
tctctgtttc tagctccatg gttggcctgg tgggggtgga gttccctccc 1500
aaacaccaga ccacacagtc ctccaaaaat aaacatttta tatagacaaa 1550
aaaaaaaaaa aaaaaaaaa aa 1572

<210> 6

<211> 1451

<212> DNA

<213> Homo sapiens

<220>

<221> Unsure

<222> 1141

<223> Unknown base

<400> 6

tggtgtctgg gccctgctgg ccttgatcct ttgcccaggg gtcccggaag 100
agttgtttga ggtttctatt tggccaagtc aggccctggt ggagtttgga 150
cagtccctag tgtgcaactg cagcactact tgcccagacc caggacccag 200
tggaattgag accttcttaa agaaaactca ggtggacaaa gggcctcagt 250
ggaaagagtt tcttctggag gatgtcacag agaattccat cctgcagtgc 300
ttcttctctt gtgcaggat tcaaaaggac acaagccttg gcatcactgt 350
gtatcagca ccagagcaag tgatcctga gctgcagcct gcctggtgg 400
ccgtggacga agccttcaca gtgaagtgc atgtaccag tgtagcacc 450
ttggaagtc tcacccttgc ccttctcag ggtaaccaag aactgcatag 500
aaaagaacttt acgagcttgg ctgtggcctc ccaaagagct gaagtcatca 550
tcagtgtcag agcccaaaag gagaatgaca gatgcaattc ttcctgccat 600
gcagaactgg acttgagttt gcaaggtgg aggctctttc aaggcagct 650
acccatcaga atagtccgga tctttgaatt ctctcagagt ccccacatct 700

gggtctcttc cctttggag gctgggatgg cggagactgt gagctgcgag 750 gtggctaggg tgttccagc caaagaagtt atgttccada tgttcctgga 800 agaccaagag ctgagctcct ccctttcctg ggagggggac acagcatggg 850 ccaatgctac cattcggacc atggaggctg gtgatcagga actgtcttgc 900 ttttgcatctc tgggtgcaat ggaacagaag acaagaaagc tagtgcatag 950 ctacagcttc cctccaccaa tcctggagct aaaagaatca tacccattgg 1000 cagggaccga cattaatgtg acctgctcag ggcatgtatt aacatcaccc 1050 agccctactc ttcggcttca gggagccca gacctccctg ctggggagcc 1100 tgcctggctt ctacttactg ccagggagga agatgatggc ngaaatttct 1150 cctgcgaggc ctctttggtg gtgcagggtc agcggttgat gaaaaccact 1200 gtgatccagc tccatatcct aaagccacag ttagaggaat ccagttgccc 1250 tggcaaacag acctggctg aagggatgga acacacgctc gcctgcgtcc 1300 caaagggaaa cccagctcca gccttggtg gtacctggaa tggggtggtc 1350 tttgaccttg aagtgccaca gaaggcaacc tagaaccac ctggaaccta 1400 ccgctacaca gccactaacc agctgggctc tgtcagcaaa gacattgctg 1450

t 1451 <210> 7

<211> 2652

<212> DNA

<213> Homo sapiens

<400> 7

ccacgcgtcc gttctgaggt gcattcttt tttgatgaga ggcatctcta 50 ggtaccatcc ctgacctggt cctcatgctg ccgaggctgt tgctgttgat 100 ctgtgctcca ctctgtgaac ctgccgagct gtttttgata gccagcccct 150 cccatcccac agaggggagc ccagtgaccc tgacgtgtaa gatgcccttt 200 ctacagagtt cagatgcca gttccagttc tgcttttca gagacacccg 250 ggccttgggc ccaggctgga gcagctcccc caagctccag atcgctgca 300 tgtggaaaga agacacaggg tcatactggt gcgaggcaca gacaatggcg 350 tccaaagtct tgaggagcag gagatcccag ataaatgtgc acatcccggt 400 gtctcgcca atcctcatgc tcagggctcc cagggcccag gctgcagtgg 450 aggatgtgct ggagcttcac tgtgaggccc tgagaggctc tcctccaatc 500

ctgtactggt tttatcacga ggatatcacc ctggggagca ggtcggcccc 550 ctctggagga ggagcctcct tcaacctttc cctgactgaa gaacattctg 600 gaaactactc ctgtgaggcc aacaatggcc tgggggccca gcgcagtgag 650 geggtgacac teaactteac agtgeetact ggggeeagaa geaateatet 700 tacctcagga gtcattgagg ggctgctcag cacccttggt ccagccaccg 750 tggccttatt attttgctac ggcctcaaaa gaaaaatagg aagacgttca 800 gccagggatc cactcaggag ccttccagcc ttaccccaag agttcaccta 850 cctcaactca cctaccccag ggcagctaca gcctatatat gaaaatgtga 900 atgttgtaag tggggatgag gtttattcac tggcgtacta taaccagccg 950 gagcaggaat cagtagcagc agaaaccctg gggacacata tggaggacaa 1000 ggtttcctta gacatctatt ccaggctgag gaaagcaaac attacagatg 1050 tggactatga agatgctatg taaggttatg gaagattctg ctctttgaaa 1100 accatccatg accccaagcc tcaggcctga tatgttcttc agagatcctg 1150 gggcattagc tttccagtat acctettetg gatgccattc tccatggcac 1200 tattccttca tctactgtga agtgaagttg gcgcagccct gaagaaacta 1250 cctaggagaa ctaatagaca caggagtgac agggactttg ttatcagaac 1300 cagattectg ceggeteett tgaaaacagg teatattgtg etettetgtt 1350 tacaagagga aacaagatgg aataaaagaa attgggatct tgggttggag 1400 ggacagtgaa gcttagagca catgaactca aggttagtga ctctgcagga 1450 cttcacagag agagctgtgc ccatcattca gtccaagtgc tttctctgcc 1500 cagacagcac agaactccag ccccgctact tacatggatc atcgagtttc 1550 cacctaaaat atgattctat ttattttgag tcactgttac caaattagaa 1600 ctaaaacaaa gttacataaa aagttattgt gactccactt aattttagtg 1650 acgtattttt gtatatatag gccaacctat accacatcca aaattatgta 1700 tctattacag cccctagaag ctttataaat acagtgtgtc ttcttttatt 1750 cacaaaattt ttgaaatcgt ggtaatatgg tttgaaacct gtatcttaat 1800 tatttttttt ttaaattgag acagggtctc actctgtcac tcaatctgga 1850 atgcagtggc acaatcttgc ctcactgcaa cgcctgcctc tcaggctcaa 1900 gcaaacctct cacctcagcc tgctgagtag ctgggactac aggcacatgc 1950

<210> 8

<211> 3459

<212> DNA

<213> Homo sapiens

<400> 8

tttatgcaga gaagaagctt actgagctca ctgctggtgc 50
tggtgtaggc aagtgctgct ttggcaatct gggctgacct ggcttgtctc 100
ctcagaactc cttctccaac cctggagcag gcttccatgc tgctgtgggc 150
gtccttgctg gcctttgctc cagtctgtgg acaatctgca gctgcacaca 200
aacctgtgat ttccgtccat cctccatgga ccacattctt caaaggagag 250
agagtgactc tgacttgcaa tggatttcag ttctatgcaa cagagaaaac 300
aacatggtat catcggcact actggggaga aaagttgacc ctgaccccag 350
gaaacaccct cgaggttcgg gaatctggac tgtacagatg ccaggcccgg 400
ggctccccac gaagtaaccc tgtgcgcttg ctctttctt cagactcctt 450
aatcctgcag gcaccatatt ctgtgtttga aggtgacaca ttggttctga 500
gatgccacag aagaaggaaa gagaaattga ctgctgtgaa atatacttgg 550

aatggaaaca ttctttccat ttctaataaa agctgggatc ttcttatccc 600 acaagcaagt tcaaataaca atggcaatta tcgatgcatt ggatatggag 650 atgagaatga tgtatttaga tcaaatttca aaataattaa aattcaagaa 700 ctatttccac atccagagct gaaagctaca gactctcagc ctacagaggg 750 gaattetgta aacetgaget gtgaaacaca getteeteea gageggteag 800 acaccccact tcacttcaac ttcttcagag atggcgaggt catcctgtca 850 gactggagca cgtacccgga actccagctc ccaaccgtct ggagagaaaa 900 ctcaggatcc tattggtgtg gtgctgaaac agtgaggggt aacatccaca 950 agcacagtcc ctcgctacag atccatgtgc agcggatccc tgtgtctggg 1000 gtgctcctgg agacccagcc ctcagggggc caggctgttg aaggggagat 1050 gctggtcctt gtctgctccg tggctgaagg cacaggggat accacattct 1100 cctggcaccg agaggacatg caggagagtc tggggaggaa aactcagcgt 1150 tccctgagag cagagctgga gctccctgcc atcagacaga gccatgcagg 1200 gggatactac tgtacagcag acaacagcta cggccctgtc cagagcatgg 1250 tgctgaatgt cactgtgaga gagaccccag gcaacagaga tggccttgtc 1300 geogeggag ceaetggagg getgeteagt getettetee tggetgtgge 1350 cctgctgttt cactgctggc gtcggaggaa gtcaggagtt ggtttcttgg 1400 gagacgaaac caggeteeet eeegeteeag geecaggaga gteeteeeat 1450 tccatctgcc ctgcccaggt ggagcttcag tcgttgtatg ttgatgtaca 1500 ccccaaaaag ggagatttgg tatactctga gatccagact actcagctgg 1550 gagaagaaga ggaagctaat acctccagga cacttctaga ggataaggat 1600 gtctcagttg tctactctga ggtaaagaca caacacccag ataactcagc 1650 tggaaagatc agctctaagg atgaagaaag ttaagagaat gaaaagttac 1700 gggaacgtcc tactcatgtg atttctccct tgtccaaagt cccaggccca 1750 gtgcagtcct tgcggcacct ggaatgatca actcattcca gctttctaat 1800 tcttctcatg catatgcatt cactcccagg aatactcatt cgtctactct 1850 gatgttggga tggaatggcc tctgaaagac ttcactaaaa tgaccaggat 1900 ccacagttaa gagaagaccc tgtagtattt gctgtgggcc tgacctaatg 1950 cattccctag ggtctgcttt agagaagggg gataaagaga gagaaggact 2000 gttatgaaaa acagaagcac aaattttggt gaattgggat ttgcagagat 2050 gaaaaagact gggtgacctg gatctctgct taatacatct acaaccattg 2100 teteactgga gaeteacttg cateagtttg tttaactgtg agtggetgea 2150 caggcactgt gcaaacaatg aaaagcccct tcacttctgc ctgcacagct 2200 tacactgtca ggattcagtt gcagattaaa gaacccatct ggaatggttt 2250 acagagaga gaatttaaaa gaggacatca gaagagctgg agatgcaagc 2300 tctaggctgc gcttccaaaa gcaaatgata attatgttaa tgtcattagt 2350 gacaaagatt tgcaacatta gagaaaagag acacaaatat aaaattaaaa 2400 acttaagtac caactctcca aaactaaatt tgaacttaaa atattagtat 2450 aaactcataa taaactctgc ctttaaaaaa agataaatat ttcctacgtc 2500 tgttcactga aataattacc aaccccttag caataagcac tccttgcaga 2550 gaggttttat tctctaaata ccattccctt ctcaaaggaa ataaggttgc 2600 ttttcttgta ggaactgtgt ctttgagtta ctaattagtt tatatgagaa 2650 taattettge aataaatgaa gaaggaataa aagaaatagg aagccacaaa 2700 tttgtatgga tatttcatga tacacctact ggttaaataa ttgacaaaaa 2750 ccagcagcca aatattagag gtctcctgat ggaagtgtac aataccacct 2800 acaaattatc catgccccaa gtgttaaaac tgaatccatt caagtctttc 2850 taactgaata cttgttttat agaaaatgca tggagaaaag gaatttgttt 2900 aaataacatt atgggattgc aaccagcaaa acataaactg agaaaaagtt 2950 ctatagggca aatcacctgg cttctataac aaataaatgg gaaaaaaatg 3000 tgaagaaaag taattagaat attttcaaca taaagaaaag acgaatattt 3100 aaggtgacag atatcccaac tacgctgatt tgatctttac aaattatatg 3150 agtgtatgaa tttgtcacat gtatcacccc caaaaaaaga gaaaaagaaa 3200 aatagaagac atataaatta aatgagacga gacatgtcga ccaaaaggaa 3250 tgtgtgggtc ttgtttggat cctgactcaa attaagaaaa aataaaacta 3300 cctacgaaat actaagaaaa atttgtatac taatattaag aaattgttgt 3350 gtgttttgga tataagtgat agtttattgt agtgatgttt ttataaaagc 3400 aaaaggatat tcactttcag cgcttatact gaagtattag attaaagctt 3450

attaacgta 3459

- <210> 9 <211> 1869
- <212> DNA
- <213> Homo sapiens

<400> 9 gccgagctga gcggatcctc acatgactgt gatccgattc tttccagcgg 50 cttctgcaac caagegggte ttaccecegg tecteegegt etceagteet 100 cgcacctgga accccaacgt ccccgagagt ccccgaatcc ccgctcccag 150 gctacctaag aggatgagcg gtgctccgac ggccggggca gccctgatgc 200 tetgegeege cacegeegtg etactgageg eteagggegg accegtgeag 250 tccaagtcgc cgcgctttgc gtcctgggac gagatgaatg tcctggcgca 300 cggactcctg cagctcggcc aggggctgcg cgaacacgcg gagcgcaccc 350 gcagtcagct gagcgcgctg gagcggcgcc tgagcgcgtg cgggtccgcc 400 tgtcagggaa ccgagggtc caccgacctc ccgttagccc ctgagagccg 450 ggtggaccct gaggtccttc acagcctgca gacacaactc aaggctcaga 500 acagcaggat ccagcaactc ttccacaagg tggcccagca gcagcggcac 550 ctggagaagc agcacctgcg aattcagcat ctgcaaagcc agtttggcct 600 cctggaccac aagcacctag accatgaggt ggccaagcct gcccgaagaa 650 agaggetgee egagatggee cagecagttg acceggetea caatgteage 700 cgcctgcacc ggctgcccag ggattgccag gagctgttcc aggttgggga 750 gaggcagagt ggactatttg aaatccagcc tcaggggtct ccgccatttt 800 tggtgaactg caagatgacc tcagatggag gctggacagt aattcagagg 850 cgccacgatg gctcagtgga cttcaaccgg ccctgggaag cctacaaggc 900 ggggtttggg gatccccacg gcgagttctg gctgggtctg gagaaggtgc 950 atagcatcac gggggaccgc aacagccgcc tggccgtgca gctgcgggac 1000 tgggatggca acgccgagtt gctgcagttc tccgtgcacc tgggtggcga 1050 ggacacggcc tatagcctgc agctcactgc acccgtggcc ggccagctgg 1100 gegecaceae egteceaece ageggeetet eegtaceett etecaettgg 1150 gaccaggatc acgacctccg cagggacaag aactgcgcca agagcctctc 1200 tggaggctgg tggtttggca cctgcagcca ttccaacctc aacggccagt 1250 acttecgete cateceacag cageggeaga agettaagaa gggaatette 1300 tggaagacet ggeggggeeg etactaceeg etgeaggeea ecaceatgtt 1350 gateceagee atggeageag aggeageete etagegteet ggetgggeet 1400 ggteceagge ecacegaaga eggtgaetet tggetetgee egaggatgtg 1450 geegtteet geetgggeag gggeteeaag gaggggeeat etggaaactt 1500 gtggacagag aagaagacea egaetggaga ageeeettt etggaaactt 1500 ggggggetgea tgeegtteet eetgagateg aggetgeagg atatgeteag 1550 gggggetgea tgeegttgeet eetgagateg aggetgeagg atatgeteag 1600 actetagagg egtggaeeaa ggggeattgga getteaetee ttgetggeea 1650 gggagttggg gaeteagagg gaeeaettgg ggeeageeag actggeetea 1700 atggeggaet eagteacatt gaetgaeggg gaeeaggget tgtgtgggte 1750 gagageegee teatggteet ggtgetgttg tgtgtaggte eeetgggae 1800 acaageagee geeaatggta tetgggegga geteacagag ttettggaat 1850 aaaageaace teagaacac 1869

<210> 10

<211> 685

<212> DNA

<213> Homo sapiens

<400> 10

gatgtgctcc ttggagctgg tgtgcagtgt cctgactgta agatcaagtc 50 caaacctgtt ttggaattga ggaaacttct cttttgatct cagcccttgg 100 tggtccaggt cttcatgctg ctgtgggtga tattactggt cctggctcct 150 gtcagtggac agtttgcaag gacacccagg cccattattt tcctccagcc 200 tccatggacc acagtcttcc aaggagagag agtgaccctc acttgcaagg 250 gatttcgctt ctactcacca cagaaaacaa aatggtacca tcggtacctt 300 gggaaagaaa tactaagaga aaccccagac aatatccttg aggttcagga 350 atctggagg tacagatgcc aggcccaggg ctcccctct agtagccctg 400 tgcacttgga ttttcttca gagatggat ttcctcatgc tgcccaggct 450 aatgtgaac tcctgggctc aagtgatctg ctcacctagg cctctcaaag 500 cgctgggatt acagcttcgc tgatcctgca agctccactt tctgtgtttg 550 aaggagactc tgtggttctg aggtgccggg caaaggcgga agtaacactg 600 aataatacta tttacaagaa tgataatgtc ctggcattcc ttaataaaag 650

aactgacttc caaaaaaaaa aaaaaaaaa aaaaa 685

- <210> 11
- <211> 5645
- <212> DNA
- <213> Homo sapiens
- <400> 11
- cgcccgcgcg ctgcagcccc atctcctagc ggcagcccag gcgcggaggg 50 agcgagtccg ccccgaggta ggtccaggac gggcgcacag cagcagccga 100 ggctggccgg gagagggagg aagaggatgg cagggccacg ccccagccca 150 tgggccaggc tgctcctggc agccttgatc agcgtcagcc tctctgggac 200 cttggcaaac cgctgcaaga aggccccagt gaagagctgc acggagtgtg 250 tccgtgtgga taaggactgc gcctactgca cagacgagat gttcagggac 300 cggcgctgca acacccaggc ggagctgctg gccgcgggct gccagcggga 350 gagcategtg gtcatggaga gcagetteca aateacagag gagacecaga 400 ttgacaccac cctgcggcgc agccagatgt ccccccaagg cctgcgggtc 450 cgtctgcggc ccggtgagga gcggcatttt gagctggagg tgtttgagcc 500 actggagage eccgtggace tgtacatect catggaette tecaacteca 550 tgtccgatga tctggacaac ctcaagaaga tggggcagaa cctggctcgg 600 gtcctgagcc agctcaccag cgactacact attggatttg gcaagtttgt 650 ggacaaagtc agcgtcccgc agacggacat gaggcctgag aagctgaagg 700 agccctggcc caacagtgac cccccttct ccttcaagaa cgtcatcagc 750 ctgacagaag atgtggatga gttccggaat aaactgcagg gagagcggat 800 ctcaggcaac ctggatgctc ctgagggcgg cttcgatgcc atcctgcaga 850 cagctgtgtg cacgagggac attggctggc gcccggacag cacccacctg 900 ctggtcttct ccaccgagtc agccttccac tatgaggctg atggcgccaa 950 cgtgctggct ggcatcatga gccgcaacga tgaacggtgc cacctggaca 1000 ccacgggcac ctacacccag tacaggacac aggactaccc gtcggtgccc 1050 accetggtge geetgetege caageacaae ateateeeca tetttgetgt 1100 caccaactac tectataget actaegagaa getteacace tattteeetg 1150 teteeteact gggggtgetg caggaggaet egteeaacat egtggagetg 1200 ctggaggagg ccttcaatcg gatccgctcc aacctggaca tccgggccct 1250

agacagecee egaggeette ggacagaggt cacetecaag atgttecaga 1300 agacgaggac tgggtccttt cacatccggc ggggggaagt gggtatatac 1350 caggtgcagc tgcgggccct tgagcacgtg gatgggacgc acgtgtgcca 1400 gctgccggag gaccagaagg gcaacatcca tctgaaacct tccttctccg 1450 acggcctcaa gatggacgcg ggcatcatct gtgatgtgtg cacctgcgag 1500 ctgcaaaaag aggtgcggtc agctcgctgc agcttcaacg gagacttcgt 1550 gtgcggacag tgtgtgtgca gcgagggctg gagtggccag acctgcaact 1600 gctccaccgg ctctctgagt gacattcagc cctgcctgcg ggagggcgag 1650 gacaageegt geteeggeeg tggggagtge cagtgeggge actgtgtgtg 1700 ctacggcgaa ggccgctacg agggtcagtt ctgcgagtat gacaacttcc 1750 agtgtccccg cacttccggg ttcctctgca atgaccgagg acgctgctcc 1800 atgggccagt gtgtgtgta gcctggttgg acaggcccaa gctgtgactg 1850 tcccctcagc aatgccacct gcatcgacag caatgggggc atctgtaatg 1900 gacgtggcca ctgtgagtgt ggccgctgcc actgccacca gcagtcgctc 1950 tacacggaca ccatctgcga gatcaactac tcggcgatcc acccgggcct 2000 ctgcgaggac ctacgctcct gcgtgcagtg ccaggcgtgg ggcaccggcg.2050 agaagaaggg gcgcacgtgt gaggaatgca acttcaaggt caagatggtg 2100 gacgagetta agagagecga ggaggtggtg gtgegetget cetteeggga 2150 cgaggatgac gactgcacct acagctacac catggaaggt gacggcgccc 2200 ctgggcccaa cagcactgtc ctggtgcaca agaagaagga ctgccctccg 2250 ggeteettet ggtggeteat ecceetgete etecteetee tgeegeteet 2300 ggccctgcta ctgctgctat gctggaagta ctgtgcctgc tgcaaggcct 2350 gcctggcact tctcccgtgc tgcaaccgag gtcacatggt gggctttaag 2400 gaagaccact acatgctgcg ggagaacctg atggcctctg accacttgga 2450 caegeceatg etgegeageg ggaaceteaa gggeegtgae gtggteeget 2500 ggaaggtcac caacaacatg cagcggcctg gctttgccac tcatgccgcc 2550 agcatcaacc ccacagagct ggtgccctac gggctgtcct tgcgcctggc 2600 ccgcctttgc accgagaacc tgctgaagcc tgacactcgg gagtgcgccc 2650 agetgegeca ggaggtggag gagaacetga acgaggteta caggeagate 2700

teeggtgtac acaageteea geagaceaag tteeggeage ageecaatge 2750 cgggaaaaag caagaccaca ccattgtgga cacagtgctg atggcgccc 2800 gctcggccaa gccggccctg ctgaagctta cagagaagca ggtggaacag 2850 agggeettee aegaeeteaa ggtggeeece ggetaetaea eeeteaetge 2900 agaccaggac gcccggggca tggtggagtt ccaggagggc gtggagctgg 2950 tggacgtacg ggtgcccctc tttatccggc ctgaggatga cgacgagaag 3000 cagetgetgg tggaggecat egaegtgeee geaggeaetg ceaecetegg 3050 ccgccgcctg gtaaacatca ccatcatcaa ggagcaagcc agagacgtgg 3100 tgtcctttga gcagcctgag ttctcggtca gccgcgggga ccaggtggcc 3150 egeatecetg teateeggeg tgteetggae ggegggaagt eeeaggtete 3200 ctaccgcaca caggatggca ccgcgcaggg caaccgggac tacatccccg 3250 tggagggtga gctgctgttc cagcctgggg aggcctggaa agagctgcag 3300 gtgaagctcc tggagctgca agaagttgac tccctcctgc ggggccgcca 3350 ggtccgccgt ttccacgtcc agctcagcaa ccctaagttt ggggcccacc 3400 tgggccagcc ccactccacc accatcatca tcagggaccc agatgaactg 3450 gaccggaget teacgagtea gatgttgtea teacageeae ecceteaegg 3500 cgacctgggc gccccgcaga accccaatgc taaggccgct gggtccagga 3550 agatccattt caactggctg cccccttctg gcaagccaat ggggtacagg 3600 gtaaagtact ggattcaggg tgactccgaa tccgaagccc acctgctcga 3650 cagcaaggtg ccctcagtgg agctcaccaa cctgtacccg tattgcgact 3700 atgagatgaa ggtgtgcgcc tacggggctc agggcgaggg accctacagc 3750 tecetggtgt cetgeegeac ceaceaggaa gtgeecageg ageeagggeg 3800 totggcottc aatgtogtot cotcoacggt gaccoagctg agotgggctg 3850 agccggctga gaccaacggt gagatcacag cctacgaggt ctgctatggc 3900 ctggtcaacg atgacaaccg acctattggg cccatgaaga aagtgctggt 3950 tgacaacct aagaaccgga tgctgcttat tgagaacctt cgggagtccc 4000 agecetaceg ctacaeggtg aaggegegea aeggggeegg etgggggeet 4050 gagegggagg ccatcatcaa cctggccacc cagcccaaga ggcccatgtc 4100 catccccatc atccctgaca tccctatcgt ggacgcccag agcggggagg 4150 actacgacag cttccttatg tacagcgatg acgttctacg ctctccatcg 4200 ggcagccaga ggcccagcgt ctccgatgac actgagcacc tggtgaatgg 4250 ccggatggac tttgccttcc cgggcagcac caactccctg cacaggatga 4300 ccacgaccag tgctgctgcc tatggcaccc acctgagccc acacgtgccc 4350 caccgcgtgc taagcacatc ctccaccctc acacgggact acaactcact 4400 gaccegetea gaacacteae actegaceae actgeegagg gactacteea 4450 ccctcacctc cgtctcctcc cacgactctc gcctgactgc tggtgtgccc 4500 gacacgccca cccgcctggt gttctctgcc ctggggccca catctctcag 4550 agtgagetgg caggageege ggtgegageg geegetgeag ggetacagtg 4600 tggagtacca gctgctgaac ggcggtgagc tgcatcggct caacatcccc 4650 aaccetgece agaceteggt ggtggtggaa gaceteetge ccaaccacte 4700 ctacgtgttc cgcgtgcggg cccagagcca ggaaggctgg ggccgagagc 4750 gtgagggtgt catcaccatt gaatcccagg tgcacccgca gagcccactg 4800 tgtcccctgc caggctccgc cttcactttg agcactccca gtgccccagg 4850 cccgctggtg ttcactgccc tgagcccaga ctcgctgcag ctgagctggg 4900 ageggeeacg gaggeeeaat ggggatateg teggetacet ggtgacetgt 4950 gagatggccc aaggaggagg gccagccacc gcattccggg tggatggaga 5000 cagccccgag agccggctga ccgtgccggg cctcagcgag aacgtgccct 5050 acaagttcaa ggtgcaggcc aggaccactg agggcttcgg gccagagcgc 5100 gagggcatca tcaccataga gtcccaggat ggaggaccct tcccgcagct 5150 gggcagccgt gccgggctct tccagcaccc gctgcaaagc gagtacagca 5200 gcatcaccac cacccacacc agegecaccg agecetteet agtggatggg 5250 ccgaccctgg gggcccagca cctggaggca ggcggctccc tcacccggca 5300 tgtgacccag gagtttgtga gccggacact gaccaccagc ggaaccctta 5350 gcacccacat ggaccaacag ttcttccaaa cttgaccgca ccctgcccca 5400 ccccgccat gtcccactag gcgtcctccc gactcctctc ccggagcctc 5450 cagagcaggg gctaggtgtc tcctgggagg catgaagggg gcaaggtccg 5550 tcctctgtgg gcccaaacct atttgtaacc aaagagctgg gagcagcaca 5600

- <210> 12
- <211> 4381
- <212> DNA
- <213> Homo sapiens
- <400> 12
- gccttcaact accatcccac cacctgctga ggagaaaaat tcttcaagac 50 tcagagcaca cagccagcac cagaggcccc atgaccctgg acagaccagg 100 ggagggggcc accatgctga agacattcac tgttttgctc ttttgcattc 150 ggatgagtct gggtatgaca tcgatagtga tggaccctca accggagttg 200 tggatagagt ccaactaccc ccaggcccct tgggagaaca tcacgctttg 250 gtgccgaagc ccctctcgga tatcaagcaa gttcctgctg ctgaaggata 300 agacacaaat gacctggatc cgcccttccc acaagacctt ccaagtttca 350 ttccttatag gtgcccttac tgagtccaat gcaggtcttt accggtgctg 400 ctactggaag gagacaggct ggtcaaagcc cagtaaagtt ctagagttgg 450 aggcaccagg ccaactgccc aagcccatct tctggattca ggctgagacc 500 cccgctcttc ctgggtgtaa tgttaacatc ctctgccatg gctggctgca 550 ggatttggta ttcatgctgt ttaaagaggg atatgcagag cctgtggatt 600 accaagtccc aactgggaca atggccatat tctccattga caacctgaca 650 cctgaggatg aaggggttta catctgccgc actcatatcc agatgctccc 700 caccetgtgg teagageeca geaaceeect gaagetggtt gtageaggae 750 tctaccccaa accaactttg acagcccatc ctgggcccat catggcacct 800 ggagaaagcc tgaatctcag gtgccaaggg ccaatctatg gaatgacctt 850 tgctctaatg agggttgaag acttggagaa gtccttttac cacaagaaga 900 caataaaaaa tgaggcaaat ttcttcttcc agtctttgaa gatccaagat 950 actggacatt acctctgttt ttactatgac gcatcatata gaggttcact 1000 ccttagtgat gtcctgaaaa tctgggtaac tgacactttc cccaagacct 1050 ggctacttgc tcggcccagt gctgtggtcc aaatgggtca gaatgtgagc 1100 ctacggtgtc gaggaccagt ggatggagtg ggtcttgcac tctataagaa 1150 aggagaagac aaaccacttc aatttttgga tgccaccagc atcgatgaca 1200 acacatcatt cttcctcaac aatgtaacct acagtgatac tggcatctat 1250

agetgecaet atetteteae etggaagaee teeattagga tgecateaea 1300 caacactgtg gagcttatgg ttgtagataa gcccccaaa ccctccctgt 1350 cagettggcc aagcactgtg ttcaagctag gaaaggccat caccettcag 1400 tgccgagtat ctcatccagt actggaattt tctctggaat gggaagaaag 1450 agaaacattc caaagattct cagtaaacgg agacttcatc atcagtaatg 1500 ttgacgggaa aggcacaggg acctacagtt gcagctatcg cgtagagaca 1550 catcctaaca tgtggtcaca tcgcagtgag cccctgaagc tgatggggcc 1600 agcaggctat ctcacctgga attacgttct gaatgaagct atcaggttgt 1650 ctctaatcat gcagcttgtt gccttgctgt tggtagtgct gtggataagg 1700 tggaagtgtc ggagactcag aatcagagaa gcctggttgc tgggaacagc 1750 tcaaggggtc accatgetet teatagteae ggeeettete tgetgtggae 1800 tgtgcaatgg ggtattgata gaagagactg aaatagtcat gccaacccct 1850 aagcetgage tgtgggeaga gaceaaettt cetetggeee egtggaagaa 1900 cttaaccctc tggtgcagaa gcccttctgg ctcaactaag gagtttgtgt 1950 tgctgaagga tgggaccggg tggatcgcca ctcgcccggc ctcagagcag 2000 gtccgggctg ccttccccct tggcgccctg acccagagcc acaccgggag 2050 ctaccactgc cattcatggg aggagatggc tgtatcggag cccagtgagg 2100 cacttgaget ggtggggaca gacatectee ceaaacetgt catttetget 2150 tcccccacaa tccggggcca ggaactacaa ctccggtgca aaggatggct 2200 ggcaggcatg gggtttgctc tgtataagga gggagagcaa gaacctgtcc 2250 agcaacttgg tgctgttgga agagaagcct tctttacaat ccagagaatg 2300 gaggataaag acgaaggcaa ttacagctgc cgcactcaca ctgaaaaact 2350 ccccttcaag tggtctgagc ccagtgagcc gctggagctt gtcataaaag 2400 aaatgtaccc taagcccttc ttcaagacat gggccagccc tgtggtcacc 2450 cctggtgccc gagtgacttt caattgctcc acccccacc agcatatgag 2500 ctttattctt tacaaagatg gaagtgaaat agcatccagt gacaggtcct 2550 gggcaagtcc gggggccagt gcagctcact ttctaatcat ttcggtgggc 2600 attggtgatg gagggaatta cagctgccga tattatgact tttctatctg 2650 gtctgagccc agcgaccctg tggagctcgt ggtgacagaa ttctacccca 2700

aacccactct cctggcacag ccaggtcctg tggtgtttcc tgggaagagt 2750 gtgatcctgc gctgccaagg gactttccag ggcatgaggt tcgccctctt 2800 gcaggaggga gcccatgttc ccttacagtt tcggagtgtc tcagggaact 2850 cagetgactt cettetecae actgttggag cagaggacte tgggaactat 2900 agctgtatct actatgagac aaccatgtca aacagggggt catatctcag 2950 tatgcccctt atgatctggg tgactgacac attccctaag ccatggttgt 3000 ttgctgagcc cagttctgtg gttcccatgg ggcagaatgt tactctctgg 3050 tgccgagggc cggtccatgg agtaggatac attctgcaca aagaaggaga 3100 agccacttca atgcagetet ggggatecae cagtaatgae ggggeattee 3150 ccatcaccaa tatatctggt actagcatgg ggcgttacag ctgctgctac 3200 caccetgact ggaceagtte tateaagata caacetagea acaceetgga 3250 actcctagtc acaggcttac tccccaaacc cagcctatta gcccagcctg 3300 gtcccatggt ggcccctggc gaaaatatga ctcttcagtg tcaaggggaa 3350 ctgccagact caacatttgt gctgttgaag gagggggctc aggagccttt 3400 agagcaacag aggccaagtg ggtacagggc tgacttctgg atgccagcag 3450 tgagaggtga agactctggg atctatagct gtgtttatta tttggactct 3500 actccctttg cagcttcaaa tcacagtgac tccctggaga tctgggtgac 3550 tgataagccc cctaaaccct ctctgtcagc ctggcccagc accatgttca 3600 agttagggaa ggacatcacc cttcagtgcc gaggacccct gccaggtgtt 3650 gaatttgttc tagaacatga tggagaagaa gcacctcagc agttttcaga 3700 ggatggagac tttgtcatca acaacgtaga aggaaaaggc attggaaact 3750 acagetgeag ctacegeete caggeetace etgatatetg gteagageet 3800 agtgatcccc tggagctggt gggggcagca gggcctgttg ctcaggagtg 3850 cactgtaggg aacattgtcc gaagtagcct aatcgtggtg gttgttgtag 3900 ccttgggggt agtgctagcc atagagtgga agaagtggcc tcgactgcga 3950 accagagget cagagacaga eggaagagae cagaceattg eeettgaaga 4000 gtgtaaccaa gaaggagaac caggcacccc tgccaattct ccttcatcaa 4050 cctctcagag aatctctgtg gaactgcccg ttccaatata ataatctcct 4100 cctttacaag agctttcctc tcctctctct tgctctcaga gacctataaa 4150

tccaaccagt taccetgcaa gtcagececa tetgetgtte ettggtetet 4200
aateacetga getgggtaaa ggggattetg ggagttgaga getetgeeag 4250
ggtgagatgt ttcctgaaga gaggtteece acceetgtaa eteeteactg 4300
tactgattta etggegeatg aaattetatt aaaaatgeat tettetgaat 4350
aaaaagagta tteactattt aactteaatt t 4381

<210> 13

<211> 1068

<212> DNA

<213> Homo sapiens

<400> 13

cgccggagga gttctgcgtc tcggggtggt gactgggtcc agaatggctt 50 cggattcggg gaaccagggg accetetgca cgttggagtt cgcggtgcag 100 atgacctgtc agagctgtgt ggacgcggtg cgcaaatccc tgcaaggggt 150 ggcaggtgtc caggatgtgg aggtgcactt ggaggaccag atggtcttgg 200 tacacaccac tetacecage caggaggtge aggetetect ggaaggeacg 250 gggcggcagg cggtactcaa gggcatgggc agcggccagt tgcagaatct 300 gggggcagca gtggccatcc tgggggggcc tggcaccgtg cagggggtgg 350 tgcgcttcct acagctgacc cctgagcgct gcctcatcga gggaactatt 400 gacggcctgg agcctgggct gcatggactc cacgtccatc agtacgggga 450 ccttacaaac aactgcaaca gctgtgggaa tcactttaac cctgatggag 500 catctcatgg gggcccccag gactctgacc ggcaccgcgg agacctgggc 550 aatgteegtg etgatgetga eggeegegee atetteagaa tggaggatga 600 gcagctgaag gtgtgggatg tgattggccg cagcctgatt attgatgagg 650 gagaagatga cctgggccgg ggaggccatc ccttatccaa gatcacaggg 700 aactccgggg agaggttggc ctgtggcatc attgcacgct ccgctggcct 750 ' tttccagaac cccaagcaga tctgctcttg cgatggcctc accatctggg 800 aggagcgagg ccggcccatc gctggcaagg gccgaaagga gtcagcgcag 850 ccccctgccc acctttgagc aggacctcac cttggctctg ttgctgtcct 900 ccagggcgag cactttccac ttccagaggg ggccagaggg actttgcctg 950 cccagtcttt ggagagctca gtacagggca ggagctgctg tggtgttccc 1000 ttggcaaatg aaagttttat tttcgtttgg gaaaaaaaaa aaaaaaaaa 1050

aaaaaaaaa 1068

- <210> 14
- <211> 2402
- <212> DNA
- <213> Homo sapiens
- <220>
- <221> Unsure
- <222> 2138
- <223> Unknown base
- <400> 14
- ggagaggtgc gggccgaatc cgagccgagc gagaggaatc cggcagtaga 50 gageggacte cageeggegg accetgeage cetegeetgg gacageggeg 100 cgctgggcag gcgcccaaga gagcatcgag cagcggaacc cgcgaagccg 150 gcccgcagcc gcgacccgcg cagcctgccg ctctcccgcc gccggtccgg 200 gcagcatgag gcgcgcggcg ctctggctct ggctgtgcgc gctggcgctg 250 agectgeage tggecetgee geaaattgtg getactaatt tgececetga 300 agatcaagat ggctctgggg atgactctga caacttctcc ggctcaggtg 350 caggtgcttt gcaagatatc accttgtcac agcagacccc ctccacttgg 400 aaggacacgc agctcctgac ggctattccc acgtctccag aacccaccgg 450 cctggaggct acagctgcct ccacctccac cctgccggct ggagagggc 500 ccaaggaggg agaggctgta gtcctgccag aagtggagcc tggcctcacc 550 gcccgggagc aggaggccac cccccgaccc agggagacca cacagctccc 600 gaccactcat caggcctcaa cgaccacagc caccacggcc caggagcccg 650 ccacctccca cccccacagg gacatgcagc ctggccacca tgagacctca 700 acccctgcag gacccagcca agctgacctt cacactcccc acacagagga 750 tggaggtcct tctgccaccg agagggctgc tgaggatgga gcctccagtc 800 ageteceage ageagagge tetggggage aggaetteae etttgaaace 850 tegggggaga atacggetgt agtggeegtg gageetgace geeggaacea 900 gtccccagtg gatcaggggg ccacgggggc ctcacagggc ctcctggaca 950 ggaaagaggt gctgggaggg gtcattgccg gaggcctcgt ggggctcatc 1000 tttgctgtgt gcctggtggg tttcatgctg taccgcatga agaagaagga 1050 cgaaggcagc tactccttgg aggagccgaa acaagccaac ggcggggcct 1100 accagaagcc caccaaacag gaggaattct atgcctgacg cgggagccat 1150

```
gegeeecte egeetgeea eteactagge ecceaettge etetteettg 1200
aagaactgca ggccctggcc tcccctgcca ccaggccacc tccccagcat 1250
tccagcccct ctggtcgctc ctgcccacgg agtcgtgggt gtgctgggag 1300
ctccactctg cttctctgac ttctgcctgg agacttaggg caccaggggt 1350
ttctcgcata ggacctttcc accacagcca gcacctggca tcgcaccatt 1400
ctgactcggt ttctccaaac tgaagcagcc tctccccagg tccagctctg 1450
gaggggaggg ggatccgact gctttggacc taaatggcct catgtggctg 1500
gaagatetge gggtgggget tggggeteae acacetgtag caettaetgg 1550
taggaccaag catcttgggg gggtggccgc tgagtggcag ggacaggagt 1600
cactttgttt cgtggggagg tctaatctag atatcgactt gtttttgcac 1650
atgtttcctc tagttctttg ttcatagccc agtagacctt gttacttctg 1700
aggtaagtta agtaagttga ttcggtatcc ccccatcttg cttccctaat 1750
ctatggtcgg gagacagcat cagggttaag aagacttttt tttttttt 1800
ttaaactagg agaaccaaat ctggaagcca aaatgtaggc ttagtttgtg 1850
tgttgtctct tgagtttgtc gctcatgtgt gcaacagggt atggactatc 1900
tgtctggtgg ccccgtttct ggtggtctgt tggcaggctg gccagtccag 1950
gctgccgtgg ggccgccgcc tctttcaagc agtcgtgcct gtgtccatgc 2000
gctcagggcc atgctgaggc ctgggccgct gccacgttgg agaagcccgt 2050
gtgagaagtg aatgctggga ctcagccttc agacagagag gactgtaggg 2100
agggcggcag gggcctggag atcctcctgc agaccacncc cgtcctgcct 2150
gtgcgccgtc tccaggggct gcttcctcct ggaaattgac gaggggtgtc 2200
ttgggcagag ctggctctga gcgcctccat ccaaggccag gttctccgtt 2250
agctcctgtg gccccaccct gggccctggg ctggaatcag gaatattttc 2300
caaagagtga tagtcttttg cttttggcaa aactctactt aatccaatgg 2350
gtttttccct gtacagtaga ttttccaaat gtaataaact ttaatataaa 2400
```

gt 2402

<210> 15

<211> 1145

<212> DNA

<213> Homo sapiens

<400> 15

gctccggcca gccgcggtcc agagcgcgcg aggttcgggg agctccgcca 50 ggctgctggt acctgcgtcc gcccggcgag caggacaggc tgctttggtt 100 tgtgacctcc aggcaggacg gccatcctct ccagaatgaa gatcttcttg 150 ccagtgctgc tggctgccct tctgggtgtg gagcgagcca gctcgctgat 200 gtgcttctcc tgcttgaacc agaagagcaa tctgtactgc ctgaagccga 250 ccatctgctc cgaccaggac aactactgcg tgactgtgtc tgctagtgcc 300 ggcattggga atctcgtgac atttggccac agcctgagca agacctgttc 350 cccggcctgc cccatcccag aaggcgtcaa tgttggtgtg gcttccatgg 400 gcatcagetg etgecagage tttetgtgca attteagtgc ggccgatggc 450 gggctgcggg caagegteac cetgetgggt gccgggctgc tgctgagect 500 getgeeggee etgetgeggt ttggeecetg accgeecaga ecetgteece 550 cgatccccca gctcaggaag gaaagcccag ccctttctgg atcccacagt 600 gtatgggagc ccctgactcc tcacgtgcct gatctgtgcc cttggtccca 650 ggtcaggccc acccctgca cctccacctg ccccagcccc tgcctctgcc 700 caagtgggcc agctgccctc acttctgggg tggatgatgt gaccttcctt 750 gggggactgc ggaagggacg agggttccct ggagtcttac ggtccaacat 800 cagaccaagt cccatggaca tgctgacagg gtccccaggg agaccgtgtc 850 agtagggatg tgtgcctggc tgtgtacgtg ggtgtgcagt gcacgtgaga 900 gcacgtggcg gcttctgggg gccatgtttg gggagggagg tgtgccagca 950 gcctggagag cctcagtccc tgtagccccc tgccctggca cagctgcatg 1000 cacttcaagg gcagcctttg ggggttgggg tttctgccac ttccgggtct 1050 aggecetgee caaatecage cagteetgee ceageceace eccaeattgg 1100 agccctcctg ctgctttggt gcctcaaata aatacagatg tcccc 1145

<400> 16

cagcaggtca cagcccctcg aggcgacagc ggccccgccg caccagagca 50 gtggtacagg catggatggg aagaaatgca gcgtatggat gttcctacct 100 cttgtattta ctttgtttac ttcagctgga ttgtggatag tatacttcat 150

<210> 16

<211> 1743

<212> DNA

<213> Homo sapiens

agctgtggaa gatgacaaaa ttttaccatt aaattcagct gaaaggaaac 200 ctggtgtgaa gcatgcacca tatataagca ttgcaggtga tgatcctcct 250 gcaagctgtg tgtttagtca agttatgaac atggcagcct tcctagccct 300 tgtggtagct gttctgcgct tcatacaact gaaaccgaag gttttaaacc 350 cgtggctgaa tattagtgga ttggtggctc tgtgtctggc ttccttcgga 400 atgaccttac ttggtaattt tcagctcaca aatgatgaag aaatccataa 450 cgtcggaact tccttgacct ttggatttgg cacattgacc tgctggatcc 500 aggctgcgct gacactcaag gtcaacatca agaatgaagg acggagagtt 550 ggaattccac gggttattct gtcggcatct atcactctct gtgtggtcct 600 ctacttcatc ctcatggccc aaagcatcca catgtatgca gccagggtcc 650 agtggggcct ggtcatgtgc ttcctgtctt attttggcac ctttgccgtg 700 gagttccggc attaccgcta tgagattgtt tgctctgagt accaggagaa 750 tttcctaagc ttctcagaaa gcctgtcaga agcttctgaa tatcagactg 800 accaggtgta aaccatcagt ttttccttgc tggtgaggtg ggtgtgacag 850 tgggggaggg gccagtagga cacactcaca ggacttgaca tagaacctca 900 tttcacacac acacacac acacattcat ggccacattt gccaaatgag 950 cttttcaggg cgagttattt ctttaatgaa aaagcacaag cccttatgtg 1000 tcgaaataca cgctgttaca ctgaaaatat atgcacgaca gagcaagaag 1050 cttgtgcatg atcacttctt atccgtcccc ttcccagcac tccctcctct 1100 tcccattctc tccacatgtc tcaagcaccc taccgagtag ggcaggccaa 1150 atgttccttg ggagtaatgc caactcccga cgttgccttc aggtccaaag 1200 ggcttggaac cagctcgtga ggaagttctg aatctggcac taatattctt 1250 gagtggataa tagtgtatca tagaatagga cggaaattgt attgagatgt 1300 gaccetgtgt egeetgtgga aaggeatagt gagaagaact tteecacgaa 1350 agcccccttc atcgttgttc agtggtcggc tgtgtggatc ccaggagaga 1400 catatgccac agactgtgag agcaaagccc gccgctgtga tctggacttg 1450 atgcactgtg actgagaatg atttccaaat gtgaatatgt gtagggacgt 1500 ggtctatcag gcctggaaca agatgggggc agtgaaggta tggtttagtg 1550 tttgctttca tagtatgcca tgtacaatgt tttatatttc atagtttctt 1600 ttaagtaact accatgagte tetetaagee teatggacaa agatgtagae 1650 caaatgeaag agetgagett getttgggtt caaccatgat caaagaaaaa 1700 etgaggteac etgeaggett aegtgggaag etaagacaat ate 1743

<210> 17

<211> 1939

<212> DNA

<213> Homo sapiens

<400> 17 ctgcctccac tgctctgtgc tgggatcatg gaacttgcac tgctgtgtgg 50 gctggtggtg atggctggtg tgattccaat ccagggcggg atcctgaacc 100 tgaacaagat ggtcaagcaa gtgactggga aaatgcccat cctctcctac 150 tggccctacg gctgtcactg cggactaggt ggcagaggcc aacccaaaga 200 tgccacggac tggtgctgcc agacccatga ctgctgctat gaccacctga 250 agacccaggg gtgcggcatc tacaaggact attacagata caacttttcc 300 caggggaaca tccactgctc tgacaaggga agctggtgtg agcagcagct 350 gtgtgcctgt gacaaggagg tggccttctg cctgaagcgc aacctggaca 400 cctaccagaa gcgactgcgt ttctactggc ggccccactg ccgggggcag 450 acccctgggt gctagaagcc cacaccctct accctgttcc tcagcatgga 500 gctctggcat ccccacctca gtatctaacc tgaaccagcc tggcttttca 550 aacactccgg ggggaggtag tcccagcctc ccccggaacc ctctaccaat 600 gccttctgac cttctgaagc tttccgaatc ctcccagttg aggcagtagc 650 tgtgtcctct gagggtggat gggaatcttg ggagaagccc aagcaaggga 700 gccctcagag gtggtgtttg gaccaaagca tcggggtggg ggaggggtct 750 geogetytee eccacetyet gyceceetty teetteetea ecceeteeaa 800 tatagtotog gagotacaac tgcagcagcc actataaagg gcaatattga 850 tetttetgte catgtggete tatettttaa aaceteaagg ceetecaetg 900 tectaagata aageetetea taggeaetgg ggaeeetgea cagtetggee 950 atgtgaccet etceecagge aagetetgaa gteeetgeag gtggaggeea 1000 tgcctgtctt aaactcagtt gcatccctgg tgcccaaagc aacaccagaa 1050 ccaagaagga gctccataaa tccttcttgg gtgaagccta gacaaagccg 1100 ccaggtcttg tggctccagg caccagagcc ttgagtactt tctcctgcct 1150 ccaggcattg gctcagggtg aattacaagg ggctactgaa tggctattac 1200 tttcatcacg actgatcccc acctcctcag ggtcaaaggg ctactttctg 1250 gaagtctccc caggctgact cettetecet gactgcaagg getcactccc 1300 tectecaage teccacaatg etteatgget etgeegetta cetagettgg 1350 cctagagtgg caaatggaac ttctctgatc tcccccaact agactggagc 1400 ccccgaagga tggagaccat gtctgtgcca tctctgtttc ccctgttttc 1450 ccacatacta ggtgctcaat tcatgcctgt gaatggcgtg agcccataat 1500 ggatacacag aggttgcagc agatggtgtg ggtacctcac ccagatatct 1550 tccaggccca aggcccctct ccctgagtga ggccaggtgt tggcagccaa 1600 ctgctccaat ctgcctcctt cccctaaata ctgccctggt ctagtgggag 1650 ctgccttccc cctgccccac ctctcccacc aagaggccac ctgtcactca 1700 tggccaggag agtgacacca tggagggtac aattgccagc tcccccgtgt 1750 ctgtgcagca ttgtctgggt tgaatgacac tctcaaattg ttcctgggat 1800 cgggctgagg ccaggcctct cctggaacca cctctctgct tggtctgacc 1850 ccttggccta tccagttttc ctggttccct cacaggtttc tccagaaagt 1900 actccctcag taaagcattt gcacaagaaa aaaaaaaaa 1939

<210> 18

<211> 5420

<212> DNA

<213> Homo sapiens

<220>

<221> Unsure

<222> 5094

<223> Unknown base

<400> 18

ggctgaaaga gcctgagctg tgcctctcca ttccactgct gtggcagggt 50 cagaaatctt ggatagaga aaccttttgc aaacgggaat gtatctttgt 100 aattcctagc acgaaagact ctaacaggtg ttgctgtggc cagttcacca 150 accagcatat cccccctctg ccaagtgcaa cacccagcaa aaatgaagag 200 gaaagcaaac aggtggagac tcagcctgag aaatggtctg ttgccaagca 250 cacccagagc tacccaacag attcctatgg agttcttgaa ttccagggtg 300 gcggatattc caataaagcc atgtatatcc gtgtatccta tgacaccaag 350 ccagactcac tgctccatct catggtgaaa gattggcagc tggaactccc 400

caagetetta atatetgtge atggaggeet ceagaacttt gagatgeage 450 ccaagctgaa acaagtcttt gggaaaggcc tgatcaaggc tgctatgacc 500 accggggcct ggatcttcac cgggggtgtc agcacaggtg ttatcagcca 550 cgtaggggat gccttgaaag accactcctc caagtccaga.ggccgggttt 600 gtgctatagg aattgctcca tggggcatcg tggagaataa ggaagacctg 650 gttggaaagg atgtaacaag agtgtaccag accatgtcca accctctaag 700 taagetetet gtgeteaaca acteecacae ceaetteate etggetgaea 750 atggcaccct gggcaagtat ggcgccgagg tgaagctgcg aaggctgctg 800 gaaaagcaca tctccctcca gaagatcaac acaagactgg ggcagggcgt 850 geocetegtg ggtetegtgg tggaggggg ceetaacgtg gtgtecateg 900 tcttggaata cctgcaagaa gagcctccca tccctgtggt gatttgtgat 950 ggcagcggac gtgcctcgga catcctgtcc tttgcgcaca agtactgtga 1000 agaaggcgga ataataaatg agtccctcag ggagcagctt ctagttacca 1050 ttcagaaaac atttaattat aataaggcac aatcacatca gctgtttgca 1100 attataatgg agtgcatgaa gaagaaagaa ctcgtcactg tgttcagaat 1150 gggttctgag ggccagcagg acatcgagat ggcaatttta actgccctgc 1200 tgaaaggaac aaacgtatct gctccagatc agctgagctt ggcactggct 1250 tggaaccgcg tggacatagc acgaagccag atctttgtct ttgggcccca 1300 ctggacgccc ctgggaagcc tggcaccccc gacggacagc aaagccacgg 1350 agaaggagaa gaagccaccc atggccacca ccaagggagg aagaggaaaa 1400 qqqaaaqgca agaagaaagg gaaaqtgaaa gaggaagtgg aggaagaaac 1450 tgacccccgg aagatagagc tgctgaactg ggtgaatgct ttggagcaag 1500 cgatgctaga tgctttagtc ttagatcgtg tcgactttgt gaagctcctg 1550 attgaaaacg gagtgaacat gcaacacttt ctgaccattc cgaggctgga 1600 ggagetetat aacacaagae tgggteeace aaacacaett catetgetgg 1650 tgagggatgt gaaaaagagc aaccttccgc ctgattacca catcagcctc 1700 atagacatcg ggctcgtgct ggagtacctc atgggaggag cctaccgctg 1750 caactacact cggaaaaact ttcggaccct ttacaacaac ttgtttggac 1800 caaagaggcc taaagctctt aaacttctgg gaatggaaga tgatgagcct 1850 ccagctaaag ggaagaaaaa aaaaaaaag aaaaaggagg aagagatcga 1900 cattgatgtg gacgaccetg cogtgagteg gttccagtat ccettccacg 1950 agctgatggt gtgggcagtg ctgatgaaac gccagaaaat ggcagtgttc 2000 ctctggcagc gaggggaaga gagcatggcc aaggccctgg tggcctgcaa 2050 gctctacaag gccatggccc acgagtcctc cgagagtgat ctggtggatg 2100 acatetecca ggaettggat aacaatteca aagaettegg ccagettget 2150 ttggagttat tagaccagtc ctataagcat gacgagcaga tcgctatgaa 2200 actcctgacc tacgagctga aaaactggag caactcgacc tgcctcaaac 2250 tggccgtggc agccaaacac cgggacttca ttgctcacac ctgcagccag 2300 atgctgctga ccgatatgtg gatgggaaga ctgcggatgc ggaagaaccc 2350 cggcctgaag gttatcatgg ggattcttct acccccacc atcttgtttt 2400 tggaatttcg cacatatgat gatttctcgt atcaaacatc caaggaaaac 2450 gaggatggca aagaaaaaga agaggaaaat acggatgcaa atgcagatgc 2500 tggctcaaga aagggggatg aggagaacga gcataaaaaa cagagaagta 2550 ttcccatcgg aacaaagatc tgtgaattct ataacgcgcc cattgtcaag 2600 ttctggtttt acacaatatc atacttgggc tacctgctgc tgtttaacta 2650 cgtcatcctg gtgcggatgg atggctggcc gtccctccag gagtggatcg 2700 tcatctccta catcgtgagc ctggcgttag agaagatacg agagatcctc 2750 atgtcagaac caggcaaact cagccagaaa atcaaagttt ggcttcagga 2800 gtactggaac atcacagatc tcgtggccat ttccacattc atgattggag 2850 caattetteg cetacagaac cageeetaca tgggetatgg cegggtgate 2900 tactgtgtgg atatcatctt ctggtacatc cgtgtcctgg acatctttgg 2950 tgtcaacaag tatctggggc catacgtgat gatgattgga aagatgatga 3000 tegacatget gtactttgtg gteateatge tggtegtget catgagttte 3050 ggagtagccc gtcaagccat tctgcatcca gaggagaagc cctcttggaa 3100 actggcccga aacatcttct acatgcccta ctggatgatc tatggagagg 3150 tgtttgcaga ccagatagac ctctacgcca tggaaattaa tcctccttgt 3200 ggtgagaacc tatatgatga ggagggcaag cggcttcctc cctgtatccc 3250 cggcgcctgg ctcactccag cactcatggc gtgctatcta ctggtcgcca 3300 acatectget ggtgaacetg etgattgetg tgttcaacaa tactttettt 3350 gaagtaaaat caatatccaa ccaggtgtgg aagttccagc gatatcagct 3400 gattatgaca tttcatgaca ggccagtcct gccccaccg atgatcattt 3450 taagccacat ctacatcatc attatgcgtc tcagcggccg ctgcaggaaa 3500 aagagagaag gggaccaaga ggaacgggat cgtggattga agctcttcct 3550 tagcgacgag gagctaaaga ggctgcatga gttcgaggag cagtgcgtgc 3600 aggagcactt ccgggagaag gaggatgagc agcagtcgtc cagcgacgag 3650 cgcatccggg tcacttctga aagagttgaa aatatgtcaa tgaggttgga 3700 agaaatcaat gaaagagaaa cttttatgaa aacttccctg cagactgttg 3750 accttcgact tgctcagcta gaagaattat ctaacagaat ggtgaatgct 3800 cttgaaaatc ttgcgggaat cgacaggtct gacctgatcc aggcacggtc 3850 ccgggcttct tctgaatgtg aggcaacgta tcttctccgg caaagcagca 3900 tcaatagcgc tgatggctac agcttgtatc gatatcattt taacggagaa 3950 gagttattat ttgaggatac atctctctcc acgtcaccag ggacaggagt 4000 caggaaaaaa acctgttcct tccgtataaa ggaagagaag gacgtgaaaa 4050 cgcacctagt cccagaatgt cagaacagtc ttcacctttc actgggcaca 4100 agcacatcag caaccccaga tggcagtcac cttgcagtag atgacttaaa 4150 gaacgctgaa gagtcaaaat taggtccaga tattgggatt tcaaaggaag 4200 atgatgaaag acagacagac tctaaaaaag aagaaactat ttccccaagt 4250 ttaaataaaa cagatgtgat acatggacag gacaaatcag atgttcaaaa 4300 cactcagcta acagtggaaa cgacaaatat agaaggcact atttcctatc 4350 ccctggaaga aaccaaaatt acacgctatt tccccgatga aacgatcaat 4400 gcttgtaaaa caatgaagtc cagaagcttc gtctattccc ggggaagaaa 4450 gctggtcggt ggggttaacc aggatgtaga gtacagttca atcacggacc 4500 agcaattgac gacggaatgg caatgccaag ttcaaaagat cacgcgctct 4550 catagcacag atattcctta cattgtgtcg gaagctgcag tgcaagctga 4600 gcaaaaagag cagtttgcag atatgcaaga tgaacaccat gtcgctgaag 4650 caattcctcg aatccctcgc ttgtccctaa ccattactga cagaaatggg 4700 atggaaaact tactgtctgt gaagccagat caaactttgg gattcccatc 4750

tetcaggica aaaagittac atggacatce taggaatgig aaatecatte 4800 agggaaagit agacagatet ggacatgeca gtagtgtaag cagettagta 4850 attgtgtetg gaatgacage agaagaaaaa aaggitaaga aagagaaage 4900 teccacagaa actgaatget agtetgitti gittettaa tittittit 4950 taacagteag aaaceeacta atgggigtea tettggeeca tectaaacae 5000 atmiceaati teetaaaaac attiteeeti aaaaaattit ggaaatteag 5050 actigatita caatitaatg cactaaaagi agtatitigi tagnatatgi 5100 tagtaggeti agittitea gitgeagtag tateaaatga aagigatgat 5150 actgaacga agataaatig getaateagi atacaaagat atacaatete 5200 titattacig agggeeacea aatageetag gaagigeeeti egageactga 5250 agteaceati aggicacea agaagtaage aactagetgi geacagigge 5300 teatgeetgi aateetaga cittgggagi ecaaggeaga aagatageti 5350 aggiceagga gittgagace ageetgggea acatagtgat aceecatete 5400 ttaaaaaaaa aaaaaaaaa 5420

<210> 19

<211> 1664

<212> DNA

<213> Homo sapiens

<400> 19

aatgtgatge gecacaggta teagegtetg gategeeact teaegtttta 100 gecacaagtg acteagtga agatecagag teaacagagg etegteagga 150 agatgtetae agaaaaggta gaccaaaaagg aggaagetgg ggaaaaaggag 200 gtgtgeggag accagateaa aggaceggae aaagaggagg aaceaceage 250 tgetgeatee catggeeagg ggtggegtee aggtggeaga geagetagga 300 acgaaaggee tgaacetgg gecagacace etgeteteee ggecatggte 350 aacgacete eagtacetge ettaetgtg gecaagaagg tgggecaagt 400 ettggeagge egtgeeega ggetgetget geagtttggg gtgetettet 450 geaceateet eettttgete tgggtgtetg tetteetea tggeteette 500 taetatteet atatgeegae agteageeae etcaceteg tgeattteta 550 etacaggaee gaetgtgatt eetteeaeea etcacetege teetteeetg 600

ttgccaatgt ctcgctgact aagggtggac gtgatcgggt gctgatgtat 650 ggacagccgt atcgtgttac cttagagctt gagctgccag agtcccctgt 700 gaatcaagat ttgggcatgt tcttggtcac catttcctgc tacaccagag 750 gtggccgaat catctccact tcttcgcgtt cggtgatgct gcattaccgc 800 tcagacctgc tccagatgct ggacacactg gtcttctcta gcctcctgct 850 atttggcttt gcagagcaga agcagctgct ggaggtggaa ctctacgcag 900 actatagaga gaactcgtac gtgccgacca ctggagcgat cattgagatc 950 cacagcaagc gcatccagct gtatggagcc tacctccgca tccacgcgca 1000 cttcactggg ctcagatacc tgctatacaa cttcccgatg acctgcgcct 1050 tcataggtgt tgccagcaac ttcaccttcc tcagcgtcat cgtgctcttc 1100 agctacatgc agtgggtgtg ggggggcatc tggccccgac accgcttctc 1150 tttgcaggtt aacatccgaa aaagagacaa ttcccggaag gaagtccaac 1200 gaaggatete tgeteateag ceagggeetg aaggeeagga ggagteaact 1250 ccgcaatcag atgttacaga ggatggtgag agccctgaag atccctcagg 1300 gacagagggt cagctgtccg aggaggagaa accagatcag cagcccctga 1350 gcggagaaga ggagctagag cctgaggcca gtgatggttc aggctcctgg 1400 gaagatgcag ctttgctgac ggaggccaac ctgcctgctc ctgctcctgc 1450 ttctgcttct gcccctgtcc tagagactct gggcagctct gaacctgctg 1500 ggggtgctct ccgacagcgc cccacctgct ctagttcctg aagaaaaggg 1550 gcagactect cacattecag cactttecca cetgaetect eteceetegt 1600 aaaaaaaaa aaaa 1664

<210> 20

<211> 4719

<212> DNA

<213> Homo sapiens

<400> 20

aaccggctgc ggggatgggg ccaccgctcc cgctgctgct gctgctactg 50 ctgctgctgc cgccacgcgt cctgcctgcc gccccttcgt ccgtcccccg 100 cggccggcag ctcccggggc gtctgggctg cctgctcgag gagggcctct 150 gcggagcgtc cgaggcctgt gtgaacgatg gagtgtttgg aaggtgccag 200

aaggttccgg caatggactt ttaccgctac gaggtgtcgc ccgtggccct 250 gcagcgcctg cgcgtggcgt tgcagaagct ttccggcaca ggtttcacgt 300 ggcaggatga ctatactcag tatgtgatgg accaggaact tgcagacctc 350 ccgaaaacct acctgaggcg tcctgaagca tccagcccag ccaggccctc 400 aaaacacagc gttggcagcg agaggaggta cagtcgggag ggcggtgctg 450 ccctggccaa cgccctccga cgccacctgc ccttcctgga ggccctgtcc 500 caggececag ceteagacgt getegecagg acceatacgg egeaggacag 550 accccccgct gagggtgatg accgcttctc cgagagcatc ctgacctatg 600 tggcccacac gtctgcgctg acgtaccctc ccgggccccg gacccagctc 650 egggaggace teetgeegeg gaceetegge eageteeage eagatgaget 700 cagccctaag gtggacagtg gtgtggacag acaccatctg atggcggccc 750 tcagtgccta tgctgcccag aggcccccag ctcccccgg ggagggcagc 800 ctggagccac agtaccttct gcgtgcaccc tcaagaatgc ccaggccttt 850 gctggcacca gccgccccc agaagtggcc ttcacctctg ggagattccg 900 aagacccctc cagcacaggc gatggagcac ggattcatac cctcctgaag 950 gacctgcaga ggcagccggc tgaggtgagg ggcctgagtg gcctggagct 1000 ggacggcatg gctgagctga tggctggcct gatgcaaggc gtggaccatg 1050 gagtagctcg aggcagccct gggagagcgg ccctgggaga gtctggagaa 1100 caggoggatg gccccaaggc caccetecgt ggagacaget ttccagatga 1150 cggagtgcag gacgacgatg atagacttta ccaagaggtc caccgtctga 1200 gtgccacact cgggggcctc ctgcaggacc acgggtctcg actcttacct 1250 ggagccctcc cctttgcaag gcccctcgac atggagagga agaagtccga 1300 gcaccctgag tcttccctgt cttcagaaga ggagactgcc ggagtggaga 1350 acgtcaagag ccagacgtat tccaaagatc tgctggggca gcagccgcat 1400 teggageeeg gggeegetge gtttggggag etecaaaace agatgeetgg 1450 gccctcgaag gaggagcaga gccttccagc gggtgctcag gaggccctca 1500 gegacggect geaattggag gtecageett eegaggaaga ggegegggge 1550 tacatcgtga cagacagaga ccccctgcgc cccgaggaag gaaggcggct 1600 ggtggaggac gtcgcccgcc tcctgcaggt gcccagcagt gcgttcgctg 1650 acgtggaggt tctcggacca gcagtgacct tcaaagtgag cgccaatgtc 1700 caaaacgtga ccactgagga tgtggagaag gccacagttg acaacaaaga 1750 caaactggag gaaacctctg gactgaaaat tcttcaaacc ggagtcgggt 1800 cgaaaagcaa actcaagttc ctgcctcctc aggcggagca agaagactcc 1850 accaagttca tegegeteac cetggtetec etegeetgea teetgggegt 1900 cctcctggcc tctggcctca tctactgcct ccgccatagc tctcagcaca 1950 ggctgaagga gaagctctcg ggactagggg gcgacccagg tgcagatgcc 2000 actgccgcct accaggagct gtgccgccag cgtatggcca cgcggccacc 2050 agaccgacct gagggcccgc acacgtcacg catcagcagc gtctcatccc 2100 agttcagcga cgggccgatc cccagcccct ccgcacgcag cagcgcctca 2150 tcctggtccg aggagcctgt gcagtccaac atggacatct ccaccggcca 2200 catgatectg tectacatgg aggaceaect gaagaacaag aaceggetgg 2250 agaaggagtg ggaagcgctg tgcgcctacc aggcggagcc caacagctcg 2300 ttegtggeec agagggagga gaacgtgeec aagaaceget eeetggetgt 2350 gctgacctat gaccactccc gggtcctgct gaaggcggag aacagccaca 2400 gccactcaga ctacatcaac gctagcccca tcatggatca cgacccgagg 2450 aaccccgcgt acatcgccac ccagggaccg ctgcccgcca ccgtggctga 2500 cttttggcag atggtgtggg agagcggctg cgtggtgatc gtcatgctga 2550 caccectege ggagaaegge gteeggeagt getaceacta etggeeggat 2600 gaaggeteca atetetacea catetatgag gtgaacetgg tetecgagea 2650 catctggtgt gaggacttcc tggtgaggag cttctatctg aagaacctgc 2700 agaccaacga gacgcgcacc gtgacgcagt tccacttcct gagttggtat 2750 gaccgaggag tecetteete etcaaggtee etcetggaet teegcagaaa 2800 agtaaacaaa tgctacaggg gccgttcttg tccgataatt gttcattgca 2850 gtgacggtgc aggccggagc ggcacctacg tcctgatcga catggttctc 2900 aacaagatgg ccaaaggtgc taaagagatt gatatcgcag cgaccctgga 2950 gcacttgagg gaccagagac ccggcatggt ccagacgaag gagcagtttg 3000 agttcgcgct gacagccgtg gctgaggagg tgaacgccat cctcaaggcc 3050 cggatgttgt caggaatcat gatctgactt taattgtgtg tcttctatta 3150 taactgcata gtaatagggc ccttagctct cccgtagtca gcgcagttta 3200 gcagttaaaa gtgtattttt gtttaatcaa acaataataa agagagattt 3250 gtggaaaaat ccagttacgg gtggagggga atcggttcat caattttcac 3300 ttgcttaaaa aaaatacttt ttcttaaagc acccgttcac cttcttggtt 3350 gaagttgtgt taacaatgca gtagccagca cgttcgaggc ggtttccagg 3400 aagagtgtgc ttgtcatctg ccactttcgg gagggtggat ccactgtgca 3450 ggagtggccg gggaagctgg cagcactcag tgaggccgcc cggcacacaa 3500 ggcacgtttg gcatttctct ttgagagagt ttatcattgg gagaagccgc 3550 ggggacagaa ctgaacgtcc tgcagcttcg gggcaagtga gacaatcaca 3600 geteeteget gegteteeat caacactgeg eegggtacea tggaeggeec 3650 cgtcagccac accggtcagc ccaagcagag tgattcaggg gctccccggg 3700 ggcagacacc tgtgcacccc atgagtagtg cccacttgag gctggcactc 3750 ccctgacctc acctttgcaa agttacagat gcaccccaac attgagatgt 3800 gtttttaatg ttaaaatatt gatttctacg ttatgaaaac agatgccccc 3850 gtgaatgett acctgtgaga taaccacaac caggaagaac aaatctgggc 3900 attgagcaag ctatgagggt ccccgggagc acacgaaccc tgccaggccc 3950 ccgctggctc ctccaggcac gtcccggacc tgtggggccc cagagagggg 4000 acatttccct cctgggagag aaggagatca gggcaactcg gagagggctg 4050 cgagcatttc cctcccggga gaggaaatca gggcgacctg cacgcactgc 4100 gtagagectg gaagggaagt gagaaaccag ccgaccggcc ctgccctct 4150. tcccgggatc acttaatgaa ccacgtgttt tgacatcatg ttaacctaag 4200 cacgtacaga tgattccgga tttgacaaaa taacatttga gtatccgatt 4250 cgccatcacc cctacccccg aaataggaca actcacttca ttgaccagga 430,0 tgatcacatg gaaggcggcg cagaggcagc tgtgtgggct gcagatttcc 4350 tgtgtggggt tcagcgtata aaacgcacct ccatcccgcc cttcccacag 4400 cattecteca tettagatag atggtaetet ceaaaggeee taceagaggg 4450 aacacggcct actgagcgga cagaatgatg ccaaaatatt gcttatgtct 4500 ctacatggta ttgtaatgaa tatctgcttt aatatagcta tcatttcttt 4550

tccaaaatta cttctcttta tctggaattt aattaatcga aatgaattta 4600 tctgaatata ggaagcatat gcctacttgt aatttctaac tacttatgtt 4650 tgaagagaaa cctccggtgt gagatataca aatatattta attgtgtcat 4700 attaaacttc ccggaattc 4719

<210> 21

<211> 1453

<212> DNA

<213> Homo sapiens

<400> 21

gcatctggtt tgtcagatcc gagaggctct gaaactgcgg agcggccacc 50 ggacgccttc tggagcaggt agcagcatgc agccgcctcc aagtctgtgc 100 ggacgegece tggttgeget ggttettgee tgeggeetgt egeggatetg 150 gggagaggag agaggettee egeetgaeag ggeeacteeg ettttgeaaa 200 ccgcagagat aatgacgcca cccactaaga ccttatggcc caagggttcc 250 aacgccagtc tggcgcggtc gttggcacct gcggaggtgc ctaaaggaga 300 gacccatcga gatcaaggag actttcaaat acatcaacac ggttgtgtcc 400 tgccttgtgt tcgtgctggg gatcatcggg aactccacac ttctgagaat 450 tatctacaag aacaagtgca tgcgaaacgg tcccaatatc ttgatcgcca 500 gcttggctct gggagacctg ctgcacatcg tcattgacat ccctatcaat 550 gtctacaagc tgctggcaga ggactggcca tttggagctg agatgtgtaa 600 gctggtgcct ttcatacaga aagcctccgt gggaatcact gtgctgagtc 650 tatgtgctct gagtattgac agatatcgag ctgttgcttc ttggagtaga 700 attaaaggaa ttggggttcc aaaatggaca gcagtagaaa ttgttttgat 750 ttgggtggtc tctgtggttc tggctgtccc tgaagccata ggttttgata 800 taattacgat ggactacaaa ggaagttatc tgcgaatctg cttgcttcat 850 cccgttcaga agacagcttt catgcagttt tacaagacag caaaagattg 900 gtggctgttc agtttctatt tctgcttgcc attggccatc actgcatttt 950 tttatacact aatgacctgt gaaatgttga gaaagaaaag tggcatgcag 1000 attgctttaa atgatcacct aaagcagaga cgggaagtgg ccaaaaccgt 1050 cttttgcctg gtccttgtct ttgccctctg ctggcttccc cttcacctca 1100

<210> 22

<211> 796

<212> PRT

<213> Homo sapiens

<400> 22

Met Lys Glu Asn Tyr Cys Leu Gln Ala Ala Leu Val Cys Leu Gly
1 5 10 15

Met Leu Cys His Ser His Ala Phe Ala Pro Glu Arg Arg Gly His 20 25 30

Leu Arg Pro Ser Phe His Gly His His Glu Lys Gly Lys Glu Gly
35 40 45

Gln Val Leu Gln Arg Ser Lys Arg Gly Trp Val Trp Asn Gln Phe
50 55 60

Phe Val Ile Glu Glu Tyr Thr Gly Pro Asp Pro Val Leu Val Gly 65 70 75

Arg Leu His Ser Asp Ile Asp Ser Gly Asp Gly Asn Ile Lys Tyr 80 85 90

Ile Leu Ser Gly Glu Gly Ala Gly Thr Ile Phe Val Ile Asp Asp
95 100 105

Lys Ser Gly Asn Ile His Ala Thr Lys Thr Leu Asp Arg Glu Glu
110 115 120

Arg Ala Gln Tyr Thr Leu Met Ala Gln Ala Val Asp Arg Asp Thr 125 130 135

Asn Arg Pro Leu Glu Pro Pro Ser Glu Phe Ile Val Lys Val Gln
140 145 150

Asp Ile Asn Asp Asn Pro Pro Glu Phe Leu His Glu Thr Tyr His
155
160
165

Ala Asn Val Pro Glu Arg Ser Asn Val Gly Thr Ser Val Ile Gln
170 175 180

Val	Thr	Ala	Ser	Asp 185	Ala	Asp	Asp	Pro	Thr 190	Tyr	Gly	Asn	Ser	Ala 195
Lys	Leu	Val	Tyr	Ser 200	Ile	Leu	Glu	Gly	Gln 205	Pro	Tyr	Phe	Ser	Val 210
Glu	Ala	Gln	Thr	Gly 215	Ile	Ile	Arg	Thr	Ala 220	Leu	Pro	Asn	Met	Asp 225
Arg	Glu	Ala	Lys	Glu 230	Glu	Tyr	His	Val	Val 235	Ile	Gln	Ala	Lys	Asp 240
Met	Gly	Gly	His	Met 245	Gly	Gly	Leu	Ser	Gly 250	Thr	Thr	Lys	Val	Thr 255
Ile	Thr	Leu	Thr	Asp 260	Val	Asn	Asp	Asn	Pro 265	Pro	Lys	Phe	Pro	Gln 270
Arg	Leu	Tyr	Gln	Met 275	Ser	Val	Ser	Glu	Ala 280	Ala	Val	Pro	Gly	Glu 285
Glu	Val	Gly	Arg	Val 290	Lys	Ala	Lys	Asp	Pro 295	Asp	Ile	Gly	Glu	Asn 300
Gly	Leu	Val	Thr	Tyr 305	Asn	Ile	Val	Asp	Gly 310	Asp	Gly	Met	Glu	Ser 315
Phe	Glu	Ile	Thr	Thr 320	Asp	Tyr	Glu	Thr	Gln 325	Glu	Gly	Val	Ile	Lys 330
Leu	Lys	Lys	Pro	Val 335	Asp	Phe	Glu	Thr	Glu 340	Arg	Ala	Tyr	Ser	Leu 345
Lys	Val	Glu	Ala	Ala 350	Asn	Val	His	Ile	Asp 355	Pro	Lys	Phe	Ile	Ser 360
Asn	Gly	Pro	Phe	Lys 365	Asp	Thr	Val	Thr	Val 370	Lys	Ile	Ser	Val	Glu 375
Asp	Ala	Asp	Glu	Pro 380	Pro	Met	Phe	Leu	Ala 385	Pro	Ser	Tyr	Ile	His 390
Glu	Val	Gln	Glu	Asn 395	Ala	Ala	Ala	Gly	Thr 400	Val	Val	Gly	Arg	Val 405
His	Ala	Lys	Asp	Pro 410	Asp	Ala	Ala	Asn	Ser 415	Pro	Ile	Arg	Tyr	Ser 420
Ile	Asp	Arg	His	Thr 425	Asp	Leu	Asp	Arg	Phe 430	Phe	Thr	Ile	Asn	Pro 435
Glu	Asp	Gly	Phe	Ile 440	Lys	Thr	Thr	Lys	Pro 445	Leu	Asp	Arg	Glu	Glu 450
Thr	Ala	Trp	Leu	Asn 455	Ile	Thr	Val	Phe	Ala 460	Ala	Glu	Ile	His	Asn 465
Arg	His	Gln	Glu	Ala	Gln	Val	Pro	Val	Ala	Ile	Arg	Val	Leu	Ásp

	470	47	75	480
Val Asn Asp Asn	Ala Pro Lys 485	Phe Ala Al 49		Gly Phe 495
Ile Cys Glu Ser	Asp Gln Thr 500	Lys Pro Le		Pro Ile 510
Val Thr Ile Ser	Ala Asp Asp 515	Lys Asp As 52	=	Gly Pro 525
Arg Phe Ile Phe	Ser Leu Pro 530	Pro Glu II 53		Pro Asn 540
Phe Thr Val Arg	Asp Asn Arg 545	Asp Asn Th	_	Tyr Ala 555
Arg Arg Gly Gly	Phe Ser Arg 560	Gln Lys Gl 56	_	Leu Leu 570
Pro Ile Val Ile	Ser Asp Gly 575	Gly Ile Pr 58		Ser Thr 585
Asn Thr Leu Thr	Ile Lys Val 590	Cys Gly Cy 59		Gly Ala 600
Leu Leu Ser Cys	Asn Ala Glu 605	Ala Tyr Il 61		Gly Leu 615
Ser Thr Gly Ala	Leu Ile Ala 620	Ile Leu Al	_	Ile Leu 630
Leu Val Ile Val	Val Leu Phe 635	Val Thr Le		Lys Lys 645
Glu Pro Leu Ile	Val Phe Glu 650	Glu Glu As 65		Asn Ile 660
Ile Thr Tyr Asp	Asp Glu Gly 665	Gly Gly Gl 67		Glu Ala 675
Phe Asp Ile Ala	Thr Leu Gln 680	Asn Pro As		Gly Phe 690
Ile Pro Arg Lys	Asp Ile Lys 695	Pro Glu Ty 70		Pro Arg 705
Pro Gly Leu Arg	Pro Ala Pro 710	Asn Ser Va		Asp Phe 720
Ile Asn Thr Arg	Ile Gln Glu 725	Ala Asp As		Ala Pro 735
Pro Tyr Asp Ser	Ile Gln Ile 740	Tyr Gly Ty		Gly Ser 750
Val Ala Gly Ser	Leu Ser Ser 755	Leu Glu Se 76		Asp Ser 765

Asp Leu Asp Tyr Asp Tyr Leu Gln Asn Trp Gly Pro Arg Phe Lys Lys Leu Ala Asp Leu Tyr Gly Ser Lys Asp Thr Phe Asp Asp Asp Ser <210> 23 <211> 215 <212> PRT <213> Homo sapiens <400> 23 Met Tyr Gly Lys Ser Ser Thr Arg Ala Val Leu Leu Leu Gly Ile Gln Leu Thr Ala Leu Trp Pro Ile Ala Ala Val Glu Ile Tyr Thr Ser Arg Val Leu Glu Ala Val Asn Gly Thr Asp Ala Arg Leu Lys Cys Thr Phe Ser Ser Phe Ala Pro Val Gly Asp Ala Leu Thr Val Thr Trp Asn Phe Arg Pro Leu Asp Gly Gly Pro Glu Gln Phe Val Phe Tyr Tyr His Ile Asp Pro Phe Gln Pro Met Ser Gly Arg Phe Lys Asp Arg Val Ser Trp Asp Gly Asn Pro Glu Arg Tyr Asp Ala Ser Ile Leu Leu Trp Lys Leu Gln Phe Asp Asp Asn Gly Thr Tyr Thr Cys Gln Val Lys Asn Pro Pro Asp Val Asp Gly Val Ile Gly Glu Ile Arg Leu Ser Val Val His Thr Val Arg Phe Ser Glu Ile His Phe Leu Ala Leu Ala Ile Gly Ser Ala Cys Ala Leu Met Ile Ile Val Ile Val Val Leu Phe Gln His Tyr Arg Lys Lys Arg Trp Ala Glu Arg Ala His Lys Val Val Glu Ile Lys Ser

Lys Glu Glu Glu Arg Leu Asn Gln Glu Lys Lys Val Ser Val Tyr

Leu Glu Asp Thr Asp

<210> 24 <211> 796 <212> PRT <213> Homo sapiens <400> 24

Met Lys Glu Asn Tyr Cys Leu Gln Ala Ala Leu Val Cys Leu Gly Met Leu Cys His Ser His Ala Phe Ala Pro Glu Arg Arg Gly His Leu Arg Pro Ser Phe His Gly His His Glu Lys Gly Lys Glu Gly Gln Val Leu Gln Arg Ser Lys Arg Gly Trp Val Trp Asn Gln Phe Phe Val Ile Glu Glu Tyr Thr Gly Pro Asp Pro Val Leu Val Gly Arg Leu His Ser Asp Ile Asp Ser Gly Asp Gly Asn Ile Lys Tyr Ile Leu Ser Gly Glu Gly Ala Gly Thr Ile Phe Val Ile Asp Asp Lys Ser Gly Asn Ile His Ala Thr Lys Thr Leu Asp Arg Glu Glu Arg Ala Gln Tyr Thr Leu Met Ala Gln Ala Val Asp Arg Asp Thr Asn Arg Pro Leu Glu Pro Pro Ser Glu Phe Ile Val Lys Val Gln Asp Ile Asn Asp Asn Pro Pro Glu Phe Leu His Glu Thr Tyr His Ala Asn Val Pro Glu Arg Ser Asn Val Gly Thr Ser Val Ile Gln Val Thr Ala Ser Asp Ala Asp Asp Pro Thr Tyr Gly Asn Ser Ala 185 190 195 Lys Leu Val Tyr Ser Ile Leu Glu Gly Gln Pro Tyr Phe Ser Val 200 Glu Ala Gln Thr Gly Ile Ile Arg Thr Ala Leu Pro Asn Met Asp 215 Arg Glu Ala Lys Glu Glu Tyr His Val Val Ile Gln Ala Lys Asp Met Gly Gly His Met Gly Gly Leu Ser Gly Thr Thr Lys Val Thr

Ile	Thr	Leu	Thr	Asp 260		Asn	Asp	Asn	Pro 265	Pro	Lys	Phe	Pro	Gln 270
Arg	Leu	Tyr	Gln	Met 275	Ser	Val	Ser	Glu	Ala 280	Ala	Val _.	Pro	Gly	Glu 285
Glu	Val	Gly	Arg	Val 290	Lys	Ala	Lys	Asp	Pro 295	Asp	Ile	Gly	Glu	Asn 300
Gly	Leu	Val	Thr	Tyr 305	Asn	Ile	Val	Asp	Gly 310	Asp	Gly	Met	Glu	Ser 315
Phe	Glu	Ile	Thr	Thr 320	Asp	Tyr	Glu	Thr	Gln 325	Glu	Gly	Val	Ile	Lys 330
Leu	Lys	Lys	Pro	Val 335	Asp	Phe	Glu	Thr	Glu 340	Arg	Ala	Tyr	Ser	Leu 345
Lys	Val	Glu	Ala	Ala 350	Asn	Val	His	Ile	Asp 355	Pro	Lys	Phe	Ile	Ser 360
Asn	Gly	Pro	Phe	Lys 365	Asp	Thr	Val	Thr	Val 370	Lys	Ile	Ser	Val	Glu 375
Asp	Ala	Asp	Glu	Pro 380	Pro	Met	Phe	Leu	Ala 385	Pro	Ser	Tyr	Ile	His 390
Glu	Val	Gln	Glu	Asn 395	Ala	Ala	Ala	Gly	Thr 400	Val	Val	Gly	Arg	Val 405
His	Ala	Lys	Asp	Pro 410	Asp	Ala	Ala	Asn	Ser 415	Pro	Ile	Arg	Tyr	Ser 420
Ile	Asp	Arg	His	Thr 425	Asp	Leu	Asp	Arg	Phe 430	Phe	Thr	Ile	Asn	Pro 435
Glu	Asp	Gly	Phe	Ile 440	Lys	Thr	Thr	Lys	Pro 445	Leu	Asp	Arg	Glu	Glu 450
Thr	Ala	Trp	Leu	Asn 455	Ile	Thr	Val	Phe	Ala 460	Ala	Glu	Ile	His	Asn 465
Arg	His	Gln	Glu	Ala 470	Gln	Val	Pro	Val	Ala 475	Ile	Arg	Val	Leu	Asp 480
Val	Asn	Asp	Asn	Ala 485	Pro	Lys	Phe	Ala	Ala 490	Pro	Tyr	Glu	Gly	Phe 495
Ile	Cys	Glu	Ser	Asp 500	Gln	Thr	Lys	Pro	Leu 505	Ser	Asn	Gln	Pro	Ile 510
Val	Thr	Ile	Ser	Ala 515	Asp	Asp	Lys	Asp	Asp 520	Thr	Ala	Asn	Gly	Pro 525
Arg	Phe	Ile	Phe	Ser 530	Leu	Pro	Pro	Glu	Ile 535	Ile	His'	Asn	Pro	Asn 540
Phe	Thr	Val	Arg	Asp	Asn	Arg	Asp	Asn	Thr	Ala	Gly	۷al	Tyr	Ala

				545					550					555
Arg	Arg	Gly	Gly	Phe 560	Ser	Arg	Gln	Lys	Gln 565	Asp	Leu	Tyr	Leu	Leu 570
Pro	Ile	·Val	Ile	Ser 575	Asp	Gly	Gly	Ile	Pro 580	Pro	Met	Ser	Ser	Thr 585
Asn	Thr	Leu	Thr	Ile 590	Lys	Val	Cys	Gly	Cys 595	Asp	Val	Asn	Gly	Ala 600
Leu	Leu	Ser	Cys	Asn 605	Ala	Glu	Ala	Tyr	Ile 610	Leu	Asn	Ala	Gly	Leu 615
Ser	Thr	Gly	Ala	Leu 620	Ile	Ala	Ile	Leu	Ala 625	Cys	Ile	Val	Ile	Leu 630
Leu	Val	Ile	Val	Val 635	Leu	Phe	Val	Thr	Leu 640	Arg	Arg	Gln	Lys	Lys 645
Glu	Pro	Leu	Ile	Val 650	Phe	Glu	Glu	Glu	Asp 655	Val	Arg	Glu	Asn	Ile 660
Ile	Thr	Tyr	Asp	Asp 665	Glu	Gly	Gly	Gly	Glu 670	Glu	Asp	Thr	Glu	Ala 675
Phe	Asp	Ile	Ala	Thr 680	Leu	Gln	Asn	Pro	Asp 685	Gly	Ile	Asn	Gly	Phe 690
Ile	Pro	Arg	Lys	Asp 695	Ile	Lys	Pro	'Glu	Tyr 700	Gln	Tyr	Met	Pro	Arg 705
Pro	Gly	Leu	Arg	Pro 710	Ala	Pro	Asn	Ser	Val 715	Asp	Val	Asp	Asp	Phe 720
Ile	Asn	Thr	Arg	Ile 725	Gln	Glu	Ala	Asp	Asn 730	Asp	Pro	Thr	Ala	Pro 735
Pro	Tyr	Asp	Ser	Ile 740	Gln	Ile	Tyr	Gly	Tyr 745	Glu	Gly	Arg	Gly	Ser 750
Val	Ala	Gly	Ser	Leu 755	Ser	Ser	Leu	Glu	Ser 760	Ala	Thr	Thr	Asp	Ser 765
Asp	Leu	Asp	Tyr	Asp 770	Tyr	Leu	Gln	Asn	Trp 775	Gly	Pro	Arg	Phe	Lys 780
Lys	Leu	Ala	Asp	Leu 785	Tyr	Gly	Ser	Lys	Asp 790	Thr	Phe	Asp	Asp	Asp 795
Ser														

Ser

<210> 25 <211> 123 <212> PRT <213> Homo sapiens

<400> 25 Met Ala Thr Ala Ala Gly Ala Thr Tyr Phe Gln Arg Gly Ser Leu Phe Trp Phe Thr Val Ile Thr Leu Ser Phe Gly Tyr Tyr Thr Trp Val Val Phe Trp Pro Gln Ser Ile Pro Tyr Gln Asn Leu Gly Pro Leu Gly Pro Phe Thr Gln Tyr Leu Val Asp His His His Thr Leu 55 Leu Cys Asn Gly Tyr Trp Leu Ala Trp Leu Ile His Val Gly Glu Ser Leu Tyr Ala Ile Ala Leu Cys Lys His Lys Gly Ile Thr Ser Gly Arg Ala Gln Leu Leu Trp Phe Leu Gln Thr Phe Phe Gly Ile Ala Ser Leu Thr Ile Leu Ile Ala Tyr Lys Arg Lys Arg Gln 120 Lys Gln Thr <210> 26 <211> 257 <212> PRT <213> Homo sapiens <400> 26 Met Ala Ser Lys Ile Gly Ser Arg Arg Trp Met Leu Gln Leu Ile Met Gln Leu Gly Ser Val Leu Leu Thr Arg Cys Pro Phe Trp Gly Cys Phe Ser Gln Leu Met Leu Tyr Ala Glu Arg Ala Glu Ala Arg Arg Lys Pro Asp Ile Pro Val Pro Tyr Leu Tyr Phe Asp Met Gly Ala Ala Val Leu Cys Ala Ser Phe Met Ser Phe Gly Val Lys Arg Arg Trp Phe Ala Leu Gly Ala Ala Leu Gln Leu Ala Ile Ser Thr Tyr Ala Ala Tyr Ile Gly Gly Tyr Val His Tyr Gly Asp Trp Leu 105

120

Lys Val Arg Met Tyr Ser'Arg Thr Val Ala Ile Ile Gly Gly Phe

Leu Val Leu Ala Ser Gly Ala Gly Glu Leu Tyr Arg Arg Lys Pro Arg Ser Arg Ser Leu Gln Ser Thr Gly Gln Val Phe Leu Gly Ile Tyr Leu Ile Cys Val Ala Tyr Ser Leu Gln His Ser Lys Glu Asp Arg Leu Ala Tyr Leu Asn His Leu Pro Gly Gly Glu Leu Met Ile Gln Leu Phe Phe Val Leu Tyr Gly Ile Leu Ala Leu Ala Phe Leu Ser Gly Tyr Tyr Val Thr Leu Ala Ala Gln Ile Leu Ala Val Leu Leu Pro Pro Val Met Leu Leu Ile Asp Gly Asn Val Ala Tyr Trp 220 His Asn Thr Arg Arg Val Glu Phe Trp Asn Gln Met Lys Leu Leu Gly Glu Ser Val Gly Ile Phe Gly Thr Ala Val Ile Leu Ala Thr 245 Asp Gly <210> 27 <211> 460 <212> PRT <213> Homo sapiens <220> <221> Unsure <222> 381 <223> Unknown amino acid <400> 27 Gly Arg Gly Ser Pro Leu Ala Leu Leu Ile Arg Met Lys Thr Leu Leu Phe Gly Val Trp Ala Leu Leu Ala Leu Ile Leu Cys Pro Gly Val Pro Glu Glu Leu Phe Glu Val Ser Ile Trp Pro Ser Gln Ala Leu Val Glu Phe Gly Gln Ser Leu Val Cys Asn Cys Ser Thr Thr 55 . Cys Pro Asp Pro Gly Pro Ser Gly Ile Glu Thr Phe Leu Lys Lys Thr Gln Val Asp Lys Gly Pro Gln Trp Lys Glu Phe Leu Leu Glu

Asp Val	Thr	Glu	Asn 95	Ser	Île	Leu	Gln	Cys 100	Phe	Phe	Ser	Cys	Ala 105
Gly Ile	Gln	Lys	Asp 110	Thr	Ser	Leu	Gly	Ile 115	Thr	Val	Tyr	Gln	Pro 120
Pro Glu	Gln	Val	Ile 125	Leu	Glu	Leu	Gln	Pro 130	Ala	Trp	Val	Ala	Val 135
Asp Glu	Ala	Phe	Thr 140	Val	Lys	Cys	His	Val 145	Pro	Ser	Val	Ala	Pro 150
Leu Glu	Ser	Leu	Thr 155	Leu	Ala	Leu	Leu	Gln 160	Gly	Asn	Gln	Glu	Leu 165
His Arg	Lys	Asn	Phe 170	Thr	Ser	Leu	Ala	Val 175	Ala	Ser	Gln	Arg	Ala 180
Glu Val	Ile	Ile	Ser 185	Val	Arg	Ala	Gln	Lys 190	Glu	Asn	Asp	Arg	Cys 195
Asn Ser	Ser	Cys	His 200	Ala	Glu	Leu	Asp	Leu 205	Ser	Leu	Gln	Gly	Gly 210
Arg Leu	Phe	Gln	Gly 215	Ser	Ser	Pro	Ile	Arg 220	Ile	Val	Arg	Ile	Phe 225
Glu Phe	Ser	Gln	Ser 230	Pro	His	Ile	Trp	Val 235	Ser	Ser	Leu	Leu	Glu 240
Ala Gly	Met	Ala	Glu 245	Thr	Val	Ser	Cys	Glu 250	Val	Ala	Arg	Val	Phe 255
Pro Ala	Lys	Glu	Val 260	Met	Phe	His	Met	Phe 265	Leu	Glu	Asp	Gln	Glu 270
Leu Ser	Ser	Ser	Leu 275	Ser	Trp	Glu	Gly	Asp 280	Thr	Ala	Trp	Ala	Asn 285
Ala Thr	Ile	Arg	Thr 290	Met	Glu	Ala	Gly	Asp 295	Gln	Glu	Leu	Ser	Cys 300
Phe Ala	Ser	Leu	Gly 305	Ala	Met	Glu	Gln	Lys 310	Thr	Arg	Lys	Leu	Val 315
His Ser	Tyr	Ser	Phe 320	Pro	Pro	Pro	Ile	Leu 325	Glu	Leų	Lys	Glu	Ser 330
Tyr Pro	Leu	Ala	Gly 335	Thr	Asp	Ile	Asn	Val 340	Thr	Cys	Ser	Gly	His 345
Val Leu	Thr	Ser	Pro 350	Ser	Pro	Thr	Leu	Arg 355	Leu	Gln	Gly	Ala	Pro 360
Asp Leu	Pro	Ala	Gly 365	Glu	Pro	Ala	Trp	Leu 370	Leu	Leu	Thr	Ala	Arg 375
Glu Glu	Asp	Asp	Gly	Xaa	Asn	Phe	Ser	Cys	Glu	Ala	Ser	Leu	Val

				380					385					390
Val	Gln	Gly	Gln	Arg 395	Leu	Met	Lys	Thr	Thr 400	Val	Ile	Gln	Leu	His
Ile	Leu	Lys	Pro	Gln	Leu	Glu	Glu	Ser	Ser	Cys	Pro	Gly	Lys	Gln
				410					415		_		_	420
Thr	Trp	Leu	Glu	Gly 425	Met	Glu	His	Thr	Leu 430	Ala	Cys	Val	Pro	Lys '435
Gly	Asn	Pro	Ala	Pro 440	Ala	Leu	Val	Cys	Thr 445	Trp	Asn	Gly	Val	Val 450
Phe	Asp	Leu	Glu	Val 455	Pro	Gln	Lys	Ala	Thr 460					
<210: <211: <212: <213:	> 332 > PR	r	apier	ns										
<400: Met 1		Pro	Arg	Leu 5	Leu	Leu	Leu	Ile	Cys 10	Ala	Pro	Leu	Cys	Glu 15
Pro	Ala	Glu	Leu	Phe 20	Leu	Ile	Ala	Ser	Pro 25	Ser	His	Pro	Thr	Glu 30
Gly	Ser	Pro	Val	Thr 35	Leu	Thr	Cys	Lys	Met 40	Pro	Phe	Leu	Gln	Ser 45
Ser	Asp	Ala	Gln	Phe 50	Gln	Phe	Cys	Phe	Phe 55	Arg	Asp	Thr	Arg	Ala 60
Leu	Gly	Pro	Gly	Trp 65	Ser	Ser	Ser	Pro	Lys 70	Leu	Gln	Ile	Ala	Ala 75
Met	Trp	Lys	Glu	Asp 80	Thr	Gly	Ser	Tyr	Trp 85	Cys	Glu	Ala	Gln	Thr 90
Met	Ala	Ser	Lys	Val 95	Leu	Arg	Ser	Arg	Arg 100	Ser	Gln	Ile	Asn	Val 105
His	Ile	Pro	Val	Ser 110	Arg	Pro	Ile	Leu	Met 115	Leu	Arg	Ala	Pro	Arg 120
Ala	Gln	Ala	Ala	Val 125	Glu	Asp	Val	Leu	Glu 130	Leu	His	Cys	Glu	Ala 135
Leu	Arg	Gly	Ser	Pro 140	Pro	Ile	Leu	Tyr	Trp 145	Phe	Tyr	His	Glu	Asp 150
Ile	Thr	Leu	Gly	Ser 155	Arg	Ser	Ala	Pro	Ser 160	Gly	Gly	Gly	Ala	Ser 165
Phe	Asn	Leu	Ser	Leu 170	Thr	Glu	Glu	His	Ser 175	Gly	Asn	Tyr	Ser	Cys 180

 Glu
 Ala
 Asn
 Asn
 Gly
 Leu
 Gly
 Ala
 Gln
 Arg
 Ser
 Glu
 Ala
 Val
 Thr
 195

 Leu
 Asn
 Phe
 Thr
 Val
 Pro
 Thr
 Gly
 Ala
 Arg
 Ser
 Asn
 His
 Leu
 Thr
 210

 Ser
 Gly
 Val
 Ile
 Glu
 Gly
 Leu
 Ser
 Thr
 Leu
 Gly
 Pro
 Ala
 Thr
 225

 Val
 Ala
 Leu
 Phe
 Cys
 Tyr
 Gly
 Leu
 Lys
 Arg
 Lys
 Ile
 Gly
 Pro
 Arg
 240

 Arg
 Ser
 Ala
 Arg
 Asp
 Pro
 Leu
 Arg
 Ser
 Leu
 Lys
 Arg
 Lys
 Arg
 Arg
 Arg
 Ser
 Leu
 Pro
 Ala
 Leu
 Pro
 255
 Gly
 Arg
 Gly
 Pro
 265
 Gly
 Arg

Ala Met

<210> 29

<211> 515 <212> PRT

<213> Homo sapiens

<400> 29

Met Leu Leu Trp Ala Ser Leu Leu Ala Phe Ala Pro Val Cys Gly
1 5 10 15

Gln Ser Ala Ala Ala His Lys Pro Val Ile Ser Val His Pro Pro 20 25 30

Trp Thr Thr Phe Phe Lys Gly Glu Arg Val Thr Leu Thr Cys Asn 35 40 45

Gly Phe Gln Phe Tyr Ala Thr Glu Lys Thr Thr Trp Tyr His Arg
50 55 60

His Tyr Trp Gly Glu Lys Leu Thr Leu Thr Pro Gly Asn Thr Leu
65 70 75

Glu Val Arg Glu Ser Gly Leu Tyr Arg Cys Gln Ala Arg Gly Ser 80 85 90

Pro Arg Ser Asn Pro Val Arg Leu Leu Phe Ser Ser Asp Ser Leu

				95					100					105
Ile	Leu	Gln	Ala	Pro 110	Tyr	Ser	Val	Phe	Glu 115	Gly	Asp	Thr	Leu	Val 120
Leu	Arg	Cys	His	Arg 125	Arg	Arg	Lys	Glu	Lys 130	Leu	Thr	Ala	Val	Lys 135
Tyr	Thr	Trp	Asn	Gly 140	Asn	Ile	Leu	Ser	Ile 145	Ser	Asn	Lys	Ser	Trp 150
Asp	Leu	Leu	Ile	Pro 155	Gln	Ala	Ser	Ser	Asn 160	Asn	Asn	Gly	Asn	Tyr 165
Arg	Cys	Ile	Gly	Tyr 170	Gly	Asp	Glu	Asn	Asp 175	Val	Phe	Arg	Ser	Asn 180
Phe	Lys	Ile	Ile	Lys 185	Ile	Gln	Glu	Leu	Phe 190	Pro	His	Pro	Glu	Leu 195
Lys	Ala	Thr	Asp	Ser 200	Gln	Pro	Thr	Glu	Gly 205	Asn	Ser	Val	Asn	Leu 210
Ser	Cys	Glu	Thr	Gln 215	Leu	Pro	Pro	Glu	Arg 220	Ser	Asp	Thr	Pro	Leu 225
His	Phe	Asn	Phe	Phe 230	Arg	Asp	Gly	Glu	Val 235	Ile	Leu	Ser	Asp	Trp 240
Ser	Thr	Tyr	Pro	Glu 2 4 5	Leu	Gln	Leu	Pro	Thr 250	Val	Trp	Arg	Glu	Asn 255
Ser	Gly	Ser	Tyr	Trp 260	Cys	Gly	Ala	Glu	Thr 265	Val	Arg	Gly	Asn	Ile 270
His	Lys	His	Ser	Pro 275	Ser	Leu	Gln	Ile	His 280	Val	Gln	Arg	Ile	Pro 285
Val	Ser	Gly	Val	Leu 290	Leu	Glu	Thr	Gln	Pro 295	Ser	Gly	Gly	Gln	Ala 300
Val	Glu	Gly	Glu	Met 305	Leu	Val	Leu	Val	Cys 310	Ser	Val	Ala	Glu	Gly 315
Thr	Gly	Asp	Thr	Thr 320	Phe	Ser	Trp	His	Arg 325	Glu	Asp	Met	Gln	Glu 330
Ser	Leu	Gly	Arg	Lys 335	Thr	Gln	Arg	Ser	Leu 340	Arg	Ala	Glu	Leu	Glu 345
Leu	Pro	Ala	Ile	Arg 350	Gln	Ser	His	Ala	Gly 355	Gly	Tyr	Tyr	Cys	Thr 360
Ala	Asp	Asn	Ser	Tyr 365	Gly	Pro	Val	Gln	Ser 370	Met	Val	Leu	Asn	Val 375
Thr	Val	Arg	Glu	Thr 380	Pro	Gly	Asn	Arg	Asp 385	Gly	Leu	Val	Ala	Ala 390

Gly Ala Thr Gly Gly Leu Leu Ser Ala Leu Leu Leu Ala Val Ala Leu Leu Phe His Cys Trp Arg Arg Lys Ser Gly Val Gly Phe Leu Gly Asp Glu Thr Arg Leu Pro Pro Ala Pro Gly Pro Gly Glu Ser Ser His Ser Ile Cys Pro Ala Gln Val Glu Leu Gln Ser Leu Tyr Val Asp Val His Pro Lys Lys Gly Asp Leu Val Tyr Ser Glu Ile Gln Thr Thr Gln Leu Gly Glu Glu Glu Glu Ala Asn Thr Ser Arg Thr Leu Leu Glu Asp Lys Asp Val Ser Val Val Tyr Ser Glu Val Lys Thr Gln His Pro Asp Asn Ser Ala Gly Lys Ile Ser Ser Lys Asp Glu Glu Ser <210> 30 <211> 453 <212> PRT <213> Homo sapiens <400> 30 Met Thr Val Ile Arg Phe Phe Pro Ala Ala Ser Ala Thr Lys Arg Val Leu Pro Pro Val Leu Arg Val Ser Ser Pro Arg Thr Trp Asn Pro Asn Val Pro Glu Ser Pro Arg Ile Pro Ala Pro Arg Leu Pro Lys Arg Met Ser Gly Ala Pro Thr Ala Gly Ala Ala Leu Met Leu Cys Ala Ala Thr Ala Val Leu Leu Ser Ala Gln Gly Gly Pro Val Gln Ser Lys Ser Pro Arg Phe Ala Ser Trp Asp Glu Met Asn Val Leu Ala His Gly Leu Leu Gln Leu Gly Gln Gly Leu Arg Glu His Ala Glu Arg Thr Arg Ser Gln Leu Ser Ala Leu Glu Arg Arg Leu 110 Ser Ala Cys Gly Ser Ala Cys Gln Gly Thr Glu Gly Ser Thr Asp

				125					130					135
Leu :	Pro	Leu	Ala	Pro 140	Glu	Ser	Arg	Val	Asp 145	Pro	Glu	Val	Leu	His 150
Ser :	Leu	Gln	Thr	Gln 155	Leu	Lys	Ala	Gln	Asn 160	Ser	Arg	Ile	Gln	Gln 165
Leu :	Phe	His	Lys	Val 170	Ala	Gln	Gln	Gln	Arg 175	His	Leu	Glu	Lys	Gln 180
His :	Leu	Arg	Ile	Gln 185	His	Leu	Gln	Ser	Gln 190	Phe	Gly	Leu	Leu	Asp 195
His :	Lys	His	Leu	Asp 200	His	Glu	Val	Ala	Lys 205	Pro	Ala	Arg	Arg	Lys 210
Arg :	Leu	Pro	Glu	Met 215	Ala	Gln	Pro	Val	Asp 220	Pro	Ala	His	Asn	Val 225
Ser 2	Arg	Leu	His	Arg 230	Leu	Pro	Arg	Asp	Cys 235	Gln	Glu	Leu	Phe	Gln 240
Val (Gly	Glu	Arg	Gln 245	Ser	Gly	Leu	Phe	Glu 250	Ile	Gln	Pro	Gln	Gly 255
Ser :	Pro	Pro	Phe	Leu 260	Val	Asn	Cys	Lys	Met 265	Thr	Ser	Asp	Gly	Gly 270
Trp '	Thr	Val	Ile	Gln 275	Arg	Arg	His	Asp	Gly 280	Ser	Val	Asp	Phe	Asn 285
Arg :	Pro	Trp	Glu	Ala 290	Tyr	Lys	Ala	Gly	Phe 295	Gly	Asp	Pro	His	Gly 300
Glu	Phe	Trp	Leu	Gly 305	Leu	Glu	Lys	Val	His 310	Ser	Ile	Thr	Gly	Asp 315
Arg i	Asn	Ser	Arg	Leu 320	Ala	Val	Gln	Leu	Arg 325	Asp	Trp	Asp	Gly	Asn 330
Ala	Glu	Leu	Leu	Gln 335	Phe	Ser	Val	His	Leu 340	Gly	Gly	Glu	Asp	Thr 345
Ala '	Tyr	Ser	Leu	Gln 350	Leu	Thr	Ala	Pro	Val 355	Ala	Gly	Gln	Leu	Gly 360
Ala '	Thr	Thr	Val	Pro 365	Pro	Ser	Gly	Leu	Ser 370	Val	Pro	Phe	Ser	Thr 375
Trp 7	Asp	Gln	Asp	His 380	Asp	Leu	Arg	Arg	Asp 385	Lys	Asn	Cys	Ala	Lys 390
Ser 1	Leu	Ser	Gly	Gly 395	Trp	Trp	Phe	Gly	Thr 400	Cys	Ser	His	Ser	Asn 405
Leu Z	Asn	Gly	Gln	Tyr 410	Phe	Arg	Ser	Ile	Pro 415	Gln	Gln	Arg	Gln	Lys 420

Leu Lys Lys Gly Ile Phe Trp Lys Thr Trp Arg Gly Arg Tyr Tyr 435

Pro Leu Gln Ala'Thr Thr Met Leu Ile Gln Pro Met Ala Ala Glu 440

Ala Ala Ser

<210> 31
<211> 124

<210> 31 <211> 124 <212> PRT <213> Homo sapiens

Trp Thr Thr Val Phe Gln Gly Glu Arg Val Thr Leu Thr Cys Lys

35 40 45

Gly Phe Arg Phe Tyr Ser Pro Gln Lys Thr Lys Trp Tyr His Arg
50 55 60

Tyr Leu Gly Lys Glu Ile Leu Arg Glu Thr Pro Asp Asn Ile Leu 65 70 75

Glu Val Gln Glu Ser Gly Glu Tyr Arg Cys Gln Ala Gln Gly Ser 80 85 90

Pro Leu Ser Ser Pro Val His Leu Asp Phe Ser Ser Glu Met Gly 95 100 105

Phe Pro His Ala Ala Gln Ala Asn Val Glu Leu Leu Gly Ser Ser 110 115 120

Asp Leu Leu Thr

<210> 32 <211> 1752 <212> PRT <213> Homo sapiens

and name of

Lys Asp Cys Ala Tyr Cys Thr Asp Glu Met Phe Arg Asp Arg Arg

				50					55					60
Cys	Asn	Thr	Gln	Ala 65	Glu	Leu	Leu	Ala	Ala 70	Gly	Cys	Gln	Arg	Glu 75
Ser	Ile	Val	Val	Met 80	Glu	Ser	Ser	Phe	Gln 85	Ile	Thr	Glu	Glu	Thr 90
Gln	Ile	Asp	Thr	Thr 95	Leu	Arg	Arg	Ser	Gln 100	Met	Ser	Pro	Gln	Gly 105
Leu	Arg	Val	Arg	Leu 110	Arg	Pro	Gly	Glu	Glu 115	Arg	His	Phe	Glu	Leu 120
Glu	Val	Phe	Glu	Pro 125	Leu	Glu	Ser	Pro	Val 130	Asp	Leu	Tyr	Ile	Leu 135
Met	Asp	Phe	Ser	Asn 140	Ser	Met	Ser	Asp	Asp 145	Leu	Asp	Asn	Leu	Lys 150
Lys	Met	Gly	Gln	Asn 155	Leu	Ala	Arg	Val	Leu 160	Ser	Gln	Leu	Thr	Ser 165
Asp	Tyr	Thr	Ile	Gly 170	Phe	Gly	Lys	Pḥe	Val 175	Asp	Lys	Val	Ser	Val 180
Pro	Gln	Thr	Asp	Met 185	Arg	Pro	Glu	Lys	Leu 190	Lys	Glu	Pro	Trp	Pro 195
Asn	Ser	Asp	Pro	Pro 200	Phe	Ser	Phe	Lys	Asn 205	Val	Ile	Ser	Leu	Thr 210
Glu	Asp	Val	Asp	Glu 215	Phe	Arg	Asn	Lys	Leu 220	Gln	Gly	Glu	Arg	Ile 225
Ser	Gly	Asn	Leu	Asp 230	Ala	Pro	Glu	Gly	Gly 235	Phe	Asp	Ala	Ile	Leu 240
Gln	Thr	Ala	Val	Cys 245	Thr	Arg	Asp	Ile	Gly 250	Trp	Arg	Pro	Asp	Ser 255
Thr	His	Leu	Leu	Val 260	Phe	Ser	Thr	Glu	Ser. 265	Ala	Phe	His	Tyr	Glu 270
Ala	Asp	Gly	Ala	Asn 275	Val	Leu	Ala	Gly	Ile 280	Met	Ser	Arg	Asn	Asp 285
Glu	Arg	Cys	His	Leu 290	Asp	Thr	Thr	Gly	Thr 295	Tyr	Thr	Gln	Tyr	Arg 300
Thr.	Gln	Asp	Tyr	Pro 305	Ser	Val	Pro	Thr	Leu 310	Val	Arg	Leu	Leu	Ala 315
Lys	His	Asn	Ile	Ile 320	Pro	Ile	Phe	Ala	Val 325	Thr	Asn	Tyr	Ser	Tyr 330
Ser	Tyr	Tyr	Glu	Lys 335	Leu	His	Thr	Tyr	Phe 340	Pro	Val	Ser	Ser	Leu 345

Gly Val Le		Glu A 350	sp 8	Ser	Ser	Asn	Ile 355	Val	Glu	Leu	Leu	Glu 360
Glu Ala Ph		Arg I 365	le	Arg	Ser	Asn	Leu 370	Asp	Ile	Arg	Ala	Leu 3 7 5
Asp Ser Pr	_	Gly L 380	eu i	Arg	Thr	Glu	Val 385	Thr	Ser	Lys	Met	Phe 390
Gln Lys Th	_	Thr G 395	Sly :	Ser	Phe	His	Ile 400	Arg	Arg	Gly	Glu	Val 405
Gly Ile Ty		Val G 410	ln :	Leu	Arg	Ala	Leu 415	Glu	His	Val	Asp	Gly 420
Thr His Va		Gln L 425	.eu	Pro	Glu	Asp	Gln 430	Lys	Gly	Asn	Ile	His 435
Leu Lys Pr		Phe S 440	Ser 2	Asp	Gly	Leu	Lys 445	Met	Asp	Ala	Gly	Ile 450
Ile Cys As		Cys T 455	hr (Cys	Glu	Leu	Gln 460	Lys	Glu	Val	Arg	Ser 465
Ala Arg Cy		Phe A 470	sn (Gly	Asp	Phe	Val 475	Cys	Gly	Gln	Cys	Val 480
Cys Ser Gl	_	Trp S 485	Ser (Gly	Gln	Thr	Cys 490	Asn	Cys	Ser	Thr	Gly 495
Ser Leu Se	_	Ile G 500	3ln	Pro	Cys	Leu	Arg 505	Glu	Gly	Glu	Asp	Lys 510
Pro Cys Se	_	Arg G 515	Sly	Glu	Cys	Gln	Cys 520	Gly	His	Cys	Val	Cys 525
Tyr Gly Gl	_	Arg T 530	yr (Glu	Gly	Gln	Phe 535	Cys	Glu	Tyr	Asp	Asn 540
Phe Gln Cy		Arg T 545	hr :	Ser	Gly	Phe	Leu 550	Cys	Asn	Asp	Arg	Gly 555
Arg Cys Se		Gly G 560	3ln	Cys	Val	Cys	Glu 565	Pro	Gly	Trp	Thr	Gly 570
Pro Ser Cy		Cys F 575	ro :	Leu	Ser	Asn	Ala 580	Thr	Cys	Ile	Asp	Ser 585
Asn Gly Gl		Cys A 590	Asn (Gly	Arg	Gly	His 595	Cys	Glu	Cys	Gly	Arg 600
Cys His Cy		Gln G 605	iln :	Ser	Leu	Tyr	Thr 610	Asp	Thr	Ile	Cys	Glu 615
Ile Asn Ty		Ala I 620	le :	His	Pro	Gly	Leu 625	Cys	Glu	Asp	Leu	Arg 630
Ser Cys Va	l Gln (Cys G	ln .	Ala	Trp	Gly	Thr	Gly	Glu	Lys	Lys	Gly

		635					640					645
Arg Thr Cys	Glu	Glu 650	Cys	Asn	Phe	Lys	Val 655	Lys	Met	Val	Asp	Glu 660
Leu Lys Arg	Ala	Glu 665	Glu	Val	Val	Val	Arg 670	Cys	Ser	Phe	Arg	Asp 675
Glu Asp Asp	Asp	Cys 680	Thr	Tyr	Ser	Tyr	Thr 685	Met	Glu	Gly	Asp	Gly 690
Ala Pro Gly	Pro	Asn 695	Ser	Thr	Val	Leu	Val 700	His	Lys	Lys	Lys	Asp 705
Cys Pro Pro	Gly	Ser 710	Phe	Trp	Trp	Leu	Ile 715	Pro	Leu	Leu	Leu	Leu 720
Leu Leu Pro	Leu	Leu 725	Ala	Leu	Leu	Leu	Leu 730	Leu	Cys	Trp	Lys	Tyr 735
Cys Ala Cys	Cys	Lys 740	Ala	Cys	Leu	Ala	Leu 745	Leu	Pro	Cys	Cys	Asn 750
Arg Gly His	Met	Val 755	Gly	Phe	Lys	Glu	Asp 760	His	Tyr	Met	Leu	Arg 765
Glu Asn Leu	Met	Ala 770	Ser	Asp	His	Leu	Asp 775	Thr	Pro	Met	Leu	Arg 780
Ser Gly Asn	Leu	Lys 785	Gly	Arg	Asp	Val	Val 790	Arg	Trp	Lys	Val	Thr 795
Asn Asn Met	Gln	Arg 800	Pro	Gly	Phe	Ala	Thr 805	His	Ala	Ala	Ser	Ile 810
Asn Pro Thr	Glu	Leu 815	Val	Pro	Tyr	Gly	Leu 820	Ser	Leu	Arg	Leu '	Ala 825
Arg Leu Cys	Thr	Glu 830	Asn	Leu	Leu	Lys	Pro 835	Asp	Thr	Arg	Glu	Cys 840
Ala Gln Leu	Arg	Gln 845	Glu	Val	Glu	Glu	Asn 850	Leu	Asn	Glu	Val	Tyr 855
Arg Gln Île	Ser	Gly 860	Val	His	Lys	Leu	Gln 865	Gln	Thr	Lys	Phe	Arg 870
Gln Gln Pro	Asn	Ala 875	Gly	Lys	Lys	Gln	Asp 880	His	Thr	Ile	Val	Asp 885
Thr Val Leu	Met	Ala 890	Pro	Arg	Ser	Ala	Lys 895	Pro	Ala	Leu	Leu	Lys 900
Leu Thr Glu	Lys	Gln 905	Val	Glu	Gln	Arg	Ala 910	Phe	His	Asp	Leu	Lys 915
Val Ala Pro	Gly	Tyr .920	Tyr	Thr	Leu	Thr	Ala 925	Asp	Gln	Asp	Ala	Arg 930

- Gly Met Val Glu Phe Gln Glu Gly Val Glu Leu Val Asp Val Arg 935 945

 Val Pro Leu Phe Ile Arg Pro Glu Asp Asp Asp Glu Lys Gln Leu
- Leu Val Glu Ala Ile Asp Val Pro Ala Gly Thr Ala Thr Leu Gly 965 970 975
- Arg Arg Leu Val Asn Ile Thr Ile Ile Lys Glu Gln Ala Arg Asp 980 985 990
- Val Val Ser Phe Glu Gln Pro Glu Phe Ser Val Ser Arg Gly Asp 995 1000 1005
- Gln Val Ala Arg Ile Pro Val Ile Arg Arg Val Leu Asp Gly Gly
 1010 1015 1020
- Lys Ser Gln Val Ser Tyr Arg Thr Gln Asp Gly Thr Ala Gln Gly
 1025 1030 1035
- Asn Arg Asp Tyr Ile Pro Val Glu Gly Glu Leu Leu Phe Gln Pro
 1040 1045 1050
- Gly Glu Ala Trp Lys Glu Leu Gln Val Lys Leu Leu Glu Leu Gln
 1055 1060 1065
- Glu Val Asp Ser Leu Leu Arg Gly Arg Gln Val Arg Arg Phe His
 1070 1075 1080
- Val Gln Leu Ser Asn Pro Lys Phe Gly Ala His Leu Gly Gln Pro 1085 1090 1095
- His Ser Thr Thr Ile Ile Ile Arg Asp Pro Asp Glu Leu Asp Arg 1100 1105 1110
- Ser Phe Thr Ser Gln Met Leu Ser Ser Gln Pro Pro Pro His Gly
 1115 1120 1125
- Asp Leu Gly Ala Pro Gln Asn Pro Asn Ala Lys Ala Ala Gly Ser 1130 1135 1140
- Arg Lys Ile His Phe Asn Trp Leu Pro Pro Ser Gly Lys Pro Met 1145 1150 1155
- Gly Tyr Arg Val Lys Tyr Trp Ile Gln Gly Asp Ser Glu Ser Glu 1160 1165 1170
- Ala His Leu Leu Asp Ser Lys Val Pro Ser Val Glu Leu Thr Asn 1175 1180 1185
- Leu Tyr Pro Tyr Cys Asp Tyr Glu Met Lys Val Cys Ala Tyr Gly
 1190 1195 1200
- Ala Gln Gly Glu Gly Pro Tyr Ser Ser Leu Val Ser Cys Arg Thr 1205 1210 1215
- His Gln Glu Val Pro Ser Glu Pro Gly Arg Leu Ala Phe Asn Val

1220	1225	1230

Val	Ser	Ser	Thr Val 1235	Thr	Gln	Leu	Ser Trp 1240	Ala	Glu	Pro	Ala Glu 1245
Thr	Asn	Gly	Glu Ile 1250	Thr	Ala	Tyr	Glu Val 1255	Cys	Tyr	Gly	Leu Val 1260.
Asn	Asp	Asp	Asn Arg 1265	Pro	Ile	Gly	Pro Met 1270	Lys	Lys	Val	Leu Val 1275
Asp	Asn	Pro	Lys Asn 1280	Arg	Met	Leu	Leu Ile 1285	Glu	Asn	Leu	Arg Glu 1290
Ser	Gln	Pro	Tyr Arg 1295	Tyr	Thr	Val	Lys Ala 1300	Arg	Asn	Gly	Ala Gly 1305
Trp	Gly	Pro	Glu Arg 1310	Glu	Ala	Ile	Ile Asn 1315	Leu	Ala	Thr	Gln Pro 1320
Lys	Arg	Pro	Met Ser 1325	Ile	Pro	Ile	Ile Pro 1330	Asp	Ile	Pro	Ile Val 1335
Asp	Ala	Gln	Ser Gly 1340	Glu	Asp	Tyr	Asp Ser 1345	Phe	Leu	Met	Tyr Ser 1350
Asp	Asp	Val	Leu Arg 1355	Ser	Pro	Ser	Gly Ser 1360	Gln	Arg	Pro	Ser Val 1365
Ser	Asp	Asp	Thr Glu 1370	His	Leu	Val	Asn Gly 1375	Arg	Met	Asp	Phe Ala 1380
Phe	Pro	Gly	Ser Thr 1385	Asn	Ser	Leu	His Arg 1390	Met	Thr	Thr	Thr Ser 1395
Ala	Ala	Ala	Tyr Gly 1400	Thr	His	Leu	Ser Pro 1405	His	Val	Pro	His Arg 1410
Val	Leu	Ser	Thr Ser 1415	Ser	Thr	Leu	Thr Arg 1420	Asp	Tyr	Asn	Ser Leu 1425
Thr	Arg	Ser	Glu His 1430	Ser	His	Ser	Thr Thr 1435	Leu	Pro	Arg	Asp Tyr 1440
Ser	Thr	Leu	Thr Ser 1445	Val	Ser	Ser	His Asp 1450	Ser	Arg	Leu	Thr Ala 1455
Gly	Val	Pro	Asp Thr 1460	Pro	Thr	Arg	Leu Val 1465	Phe	Ser	Ala	Leu Gly 1470
Pro	Thr	Ser	Leu Arg 1475	Val	Ser	Trp	Gln Glu 1480	Pro	Arg	Cys	Glu Arg 1485
Pro	Leu	Gln	Gly Tyr 1490	Ser	Val	Glu	Tyr Gln 1495	Leu	Leu	Asn	Gly Gly 1500
Glu	Leu	His	Arg Leu 1505	Asn	Ile	Pro	Asn Pro 1510	Ala	Gln	Thr	Ser Val 1515

Val Val Glu Asp Leu Leu Pro Asn His Ser Tyr Val Phe Arg Val 1520 1530

Arg Ala Gln Ser Gln Glu Gly Trp Gly Arg Glu Arg Glu Gly Val 1535 1540 1545

Ile Thr Ile Glu Ser Gln Val His Pro Gln Ser Pro Leu Cys Pro
1550 1555 1560

Leu Pro Gly Ser Ala Phe Thr Leu Ser Thr Pro Ser Ala Pro Gly
1565 1570 1575

Pro Leu Val Phe Thr Ala Leu Ser Pro Asp Ser Leu Gln Leu Ser 1580 1585 1590

Trp Glu Arg Pro Arg Pro Asn Gly Asp Ile Val Gly Tyr Leu 1595 1600 1605

Val Thr Cys Glu Met Ala Gln Gly Gly Pro Ala Thr Ala Phe 1610 1615 1620

Arg Val Asp Gly Asp Ser Pro Glu Ser Arg Leu Thr Val Pro Gly
1625 1630 1635

Leu Ser Glu Asn Val Pro Tyr Lys Phe Lys Val Gln Ala Arg Thr 1640 1645 1650

Thr Glu Gly Phe Gly Pro Glu Arg Glu Gly Ile Ile Thr Ile Glu 1655 1660 1665

Ser Gln Asp Gly Gly Pro Phe Pro Gln Leu Gly Ser Arg Ala Gly 1670 1680

Leu Phe Gln His Pro Leu Gln Ser Glu Tyr Ser Ser Ile Thr Thr 1685 1690 1695

Thr His Thr Ser Ala Thr Glu Pro Phe Leu Val Asp Gly Pro Thr
1700 1705 1710

Leu Gly Ala Gln His Leu Glu Ala Gly Gly Ser Leu Thr Arg His 1715 1720 1725

Val Thr Gln Glu Phe Val Ser Arg Thr Leu Thr Thr Ser Gly Thr 1730 1735 1740

Leu Ser Thr His Met Asp Gln Gln Phe Phe Gln Thr 1745 1750

<210> 33

<211> 1336

<212> PRT

<213> Homo sapiens.

<400> 33

Met Thr Leu Asp Arg Pro Gly Glu Gly Ala Thr Met Leu Lys Thr 1 5 10 15

Phe Thr Val Leu Leu Phe Cys Ile Arg Met Ser Leu Gly Met Thr

				20					25					30
Ser	Ile	Val	Met	Asp 35	Pro	Gln	Pro	Glu	Leu 40	Trp	Ile	Glu	Ser	Asn 45
Tyr	Pro	Gln	Ala	Pro 50	Trp	Glu	Asn	Ile	Thr 55	Leu	Trp	Cys	Arg	Ser 60
Pro	Ser	Arg	Ile	Ser 65	Ser	Lys	Phe	Leu	Leu 70	Leu	Lys	Asp	Lys	Thr 75
Gln	Met	Thr	Trp	Ile 80	Arg	Pro	Ser	His	Lys 85	Thr	Phe	Gln	Val	Ser 90
Phe	Leu	Ile	Gly	Ala 95	Leu	Thr	Glu	Ser	Asn 100	Ala	Gly	Leu	Tyr	Arg 105
Cys	Cys	Tyr	Trp	Lys 110	Glu	Thr	Gly	Trp	Ser 115	Lys	Pro	Ser	Lys	Val 120
Leu	Glu	Leu	Glu	Ala 125	Pro	Gly	Gln	Leu	Pro 130	Lys	Pro	Ile	Phe	Trp 135
Ile	Gln	Ala	Glu	Thr 140	Pro	Ala	Leu	Pro	Gly 145	Cys	Asn	Val	Asn	Ile 150
Leu	Cys	His	Gly	Trp 155	Leu	Gln	Asp	Leu	Val 160	Phe	Met	Leu	Phe	Lys 165
Glu	Gly	Tyr	Ala	Glu 170	Pro	Val	Asp	Tyr	Gln 175	Val	Pro	Thr	Gly	Thr 180
Met	Ala	Ile	Phe	Ser 185	Ile	Asp	Asn	Leu	Thr 190	Pro	Glu	Asp	Glu	Gly 195
Val	Tyr	Ile	Cys	Arg 200	Thr	His	Ile	Gln	Met 205	Leu	Pro	Thr	Leu	Trp 210
Ser	Glu	Pro	Ser	Asn 215	Pro	Leu	Lys	Leu	Val 220	Val	Ala	Gly	Leu	Tyr 225
Pro	Lys	Pro	Thr	Leu 230	Thr	Ala	His	Pro	Gly 235	Pro	Ile	Met	Ala	Pro 240
Gly	Glu	Ser	Leu	Asn 245	Leu	Arg	Cys	Gln	Gly 250	Pro	Ile	.Tyr	Gly	Met 255
Thr	Phe	Ala	Leu	Met 260	Arg	Val	Glu	Asp	Leu 265	Glu	Lys	Ser	Phe	Tyr 270
His	Lys	Lys	Thr	Ile 2 7 5	Lys	Asn	Glu	Ala	Asn 280	Phe	Phe	Phe	Gln	Ser 285
Leu	Lys	Ile	Gln	Asp 290	Thr	Gly	His	Tyr	Leu 295	Cys	Phe	Tyr	Tyr	Asp 300
Ala	Ser	Tyr	Arg	Gly	Ser	Leu	Leu	Ser	Asp	Val	Leu	Lys	Ile	Trp

Val	Thr	Asp	Thr	Phe 320	Pro	Lys	Thr	Trp	Leu 325	Leu	Ala	Arg	Pro	Ser 330
Ala	Val	Val	Gln	Met 335	Gly	Gln	Asn	Val	Ser 340	Leu	Arg	Cys	Arg	Gly 345
Pro	Val	Asp	Gly	Val 350	Gly	Leu	Ala	Leu	Tyr 355	Lys	Lys	Gly	Glu	Asp 360
Lys	Pro	Leu	Gln	Phe 365	Leu	Asp	Ala	Thr	Ser 370	Ile	Asp	Asp	Asn	Thr 375
Ser	Phe	Phe	Leu	Asn 380	Asn	Val	Thr	Tyr	Ser 385	Asp	Thr	Gly	Ile	Tyr 390
Ser	Cys	His	Tyr	Leu 395	Leu	Thr	Trp	Lys	Thr 400	Ser	Ile	Arg	Met	Pro 405
Ser	His	Asn'	Thr	Val 410	Glu	Leu	Met	Val	Val 415	Asp	Lys	Pro	Pro	Lys 420
Pro	Ser	Leu	Ser	Ala 425	Trp	Pro	Ser	Thr	Val 430	Phe	Lys	Leu	Gly	Lys 435
Ala	Ile	Thr	Leu	Gln 440	Cys	Arg	Val	Ser	His 445	Pro	Val	Leu	Glu	Phe 450
Ser	Leu	Glu	Trp	Glu 455	Glu	Arg	Glu	Thr	Phe 460	Gln	Arg	Phe	Ser	Val 465
Asn	Gly	Asp	Phe	Ile 470	Ile	Ser	Asn	Val	Asp 475	Gly	Lys	Gly	Thr	Gly 480
Thr	Tyr	Ser	Cys	Ser 485	Tyr	Arg	Val	Glu	Thr 490	His	Pro	Asn	Met	Trp 495
Ser	His	Arg	Ser	Glu 500	Pro	Leu	Lys	Leu	Met 505	Gly	Pro	Ala	Gly	Tyr 510
Leu	Thr	Trp	Asn	Tyr 515	Val	Leu	Asn	Glu	Ala 520	Ile	Arg	Leu	Ser	Leu 525
Ile	Met	Gln	Leu	Val 530	Ala	Leu	Leu	Leu	Val 535	Val	Leu	Trp	Ile	Arg 540
Trp	Lys	Cys	Arg	Arg 545	Leu	Arg	Ile	Arg	Glu 550	Ala	Trp	Leu	Leu	Gly 555
Thr	Ala	Gln	Gly	Val 560	Thr	Met	Leu	Phe	Ile 565	Val	Thr	Ala	Leu	Leu 570
Cys	Cys	Gly	Leu	Cys 575	Asn	Gly	Val	Leu	Ile 580	Glu	Glu	Thr	Glu	Ile 585
Val	Met	Pro	Thr	Pro 590	Lys	Pro	Glu	Leu	Trp 595	Ala	Glu	Thr	Asn	Phe 600
Pro	Leu	Ala	Pro	Trp	Lys	Asn	Leu	Thr	Leu	Trp	Cys	Arg	Ser	Pro

	605	6:	10	615
Ser Gly Ser Thi	Lys Glu Phe		eu Lys Asp Gl _i 25	y Thr Gly 630
Trp Ile Ala Thr	Arg Pro Ala 635		ln Val Arg Ala 40	a Ala Phe 645
Pro Leu Gly Ala	Leu Thr Gln 650		hr Gly Ser Ty: 55	r His Cys 660
His Ser Trp Glu	ı Glu Met Ala 665		lu Pro Ser Gla 70	u Ala Leu 675
Glu Leu Val Gly	Thr Asp Ile 680	-	ys Pro Val Ilo 85	e Ser Ala 690
Ser Pro Thr Ile	e Arg Gly Gln 695		ln Leu Arg Cy 00	s Lys Gly 705
Trp Leu Ala Gly	Met Gly Phe	_	yr Lys Glu Gl 15	y Glu Gln 720
Glu Pro Val Glr	n Gln Leu Gly 725		ly Arg Glu Al 30	a Phe Phe 735
Thr Ile Gln Arg	Met Glu Asp 740	_	lu Gly Asn Ty: 45	r Ser Cys 750
Arg Thr His Thr	Glu Lys Leu 755	_	ys Trp Ser Gl 60	u Pro Ser 765
Glu Pro Leu Glu	ı Leu Val Ile 770	_	et Tyr Pro Ly 75	s Pro Phe 780
Phe Lys Thr Tr	Ala Ser Pro 785		hr Pro Gly Al	a Arg Val 795
Thr Phe Asn Cys	Ser Thr Pro 800		is Met Ser Pho 05	e Ile Leu 810
Tyr Lys Asp Gl	Ser Glu Ile 815		er Asp Arg Se 20	r Trp Ala 825
Ser Pro Gly Ala	a Ser Ala Ala 830		eu Ile Ile Se 35	r Val Gly 840
Ile Gly Asp Gl	Gly Asn Tyr 845	_	rg Tyr Tyr As 50	p Phe Ser 855
Ile Trp Ser Gli	Pro Ser Asp 860	_	lu Leu Val Va 65	l Thr Glu 870
Phe Tyr Pro Lys	Pro Thr Leu 875		ln Pro Gly Pro 80	o Val Val 885
Phe Pro Gly Lys	Ser Val Ile 890	_	ys Gln Gly Th 95	r Phe Gln 900

Gly Met Arg Phe Ala Leu Leu Gln Glu Gly Ala His Val Pro Leu Gln Phe Arq Ser Val Ser Gly Asn Ser Ala Asp Phe Leu Leu His Thr Val Gly Ala Glu Asp Ser Gly Asn Tyr Ser Cys Ile Tyr Tyr Glu Thr Thr Met Ser Asn Arg Gly Ser Tyr Leu Ser Met Pro Leu Met Ile Trp Val Thr Asp Thr Phe Pro Lys Pro Trp Leu Phe Ala Glu Pro Ser Ser Val Val Pro Met Gly Gln Asn Val Thr Leu Trp 980 Cys Arg Gly Pro Val His Gly Val Gly Tyr Ile Leu His Lys Glu Gly Glu Ala Thr Ser Met Gln Leu Trp Gly Ser Thr Ser Asn Asp 1010 1015 Gly Ala Phe Pro Ile Thr Asn Ile Ser Gly Thr Ser Met Gly Arg Tyr Ser Cys Cys Tyr His Pro Asp Trp Thr Ser Ser Ile Lys Ile Gln Pro Ser Asn Thr Leu Glu Leu Leu Val Thr Gly Leu Leu Pro 1055 Lys Pro Ser Leu Leu Ala Gln Pro Gly Pro Met Val Ala Pro Gly 1075 Glu Asn Met Thr Leu Gln Cys Gln Gly Glu Leu Pro Asp Ser Thr 1085 1090 1095 Phe Val Leu Leu Lys Glu Gly Ala Gln Glu Pro Leu Glu Gln Gln 1100 1105 Arg Pro Ser Gly Tyr Arg Ala Asp Phe Trp Met Pro Ala Val Arg 1115 1120 1125 Gly Glu Asp Ser Gly Ile Tyr Ser Cys Val Tyr Tyr Leu Asp Ser 1130 1135 Thr Pro Phe Ala Ala Ser Asn His Ser Asp Ser Leu Glu Ile Trp 1145 1150 Val Thr Asp Lys Pro Pro Lys Pro Ser Leu Ser Ala Trp Pro Ser 1160 1165 1170 Thr Met Phe Lys Leu Gly Lys Asp Ile Thr Leu Gln Cys Arg Gly 1175 1180 1185 Pro Leu Pro Gly Val Glu Phe Val Leu Glu His Asp Gly Glu Glu

1190	1195	1200

Ala Pro Gln Gln Phe Ser Glu Asp Gly Asp Phe Val Ile Asn Asn 1205 1210 1215

Val Glu Gly Lys Gly Ile Gly Asn Tyr Ser Cys Ser Tyr Arg Leu 1220 1225 1230

Gln Ala Tyr Pro Asp Ile Trp Ser Glu Pro Ser Asp Pro Leu Glu 1235 1240 1245

Leu Val Gly Ala Ala Gly Pro Val Ala Gln Glu Cys Thr Val Gly
1250 1255 1260

Asn Ile Val Arg Ser Ser Leu Ile Val Val Val Val Val Ala Leu 1265 1270 1275

Gly Val Val Leu Ala Ile Glu Trp Lys Lys Trp Pro Arg Leu Arg 1280 1285 1290

Thr Arg Gly Ser Glu Thr Asp Gly Arg Asp Gln Thr Ile Ala Leu 1295 1300 1305

Glu Glu Cys Asn Gln Glu Gly Glu Pro Gly Thr Pro Ala Asn Ser 1310 1315 1320

Pro Ser Ser Thr Ser Gln Arg Ile Ser Val Glu Leu Pro Val Pro 1325 1330 1335

Ile

<210> 34

<211> 1907

<212> PRT

<213> Homo sapiens

<400> 34

Met Ala Pro Glu Pro Ala Pro Gly Arg Thr Met Val Pro Leu Val 1 5 10 15

Pro Ala Leu Val Met Leu Gly Leu Val Ala Gly Ala His Gly Asp 20 25 30

Ser Lys Pro Val Phe Ile Lys Val Pro Glu Asp Gln Thr.Gly Leu 35 40 45

Ser Gly Gly Val Ala Ser Phe Val Cys Gln Ala Thr Gly Glu Pro
50 55 60

Lys Pro Arg Ile Thr Trp Met Lys Lys Gly Lys Lys Val Ser Ser 65 70 75

Gln Arg Phe Glu Val Ile Glu Phe Asp Asp Gly Ala Gly Ser Val 80 85 90

Leu Arg Ile Gln Pro Leu Arg Val Gln Arg Asp Glu Ala Ile Tyr 95 100 105

Glu	Cys	Thr	Ala	Thr 110	Asn	Ser	Leu	Gly	Glu 115	Ile	Asn	Thr	Ser	Ala 120
Lys	Leu	Ser	Val	Leu 125	Glu	Glu	Glu	Gln	Leu 130	Pro	Pro	Gly	Phe	Pro 135
Ser	Ile	Asp	Met	Gly 140	Pro	Gln	Leu	Lys	Val 145	Val	Glu	Lys	Ala	Arg 150
Thr	Ala	Thr	Met	Leu 155	Cys	Ala	Ala	Gly	Gly 160	Asn	Pro	Asp	Pro	Glu 165
Ile	Ser	Trp	Phe	Lys 170	Asp	Phe	Leu	Pro	Val 175	Asp	Pro	Ala	Thr	Ser 180
Asn	Gly	Arg	Ile	Lys 185	Gln	Leu	Arg	Ser	Gly 190	Ala	Leu	Gln	Ile	Glu 195
Ser	Ser	Glu	Glu	Ser 200	Asp	Gln	Gly	Lys	Tyr 205	Glu	Cys	Val	Ala	Thr 210
Asn	Ser	Ala	Gly	Thr 215	Arg	Tyr	Ser	Ala	Pro 220	Ala	Asn	Leu	Tyr	Val 225
Arg	Val	Arg	Arg	Val 230	Ala	Pro	Arg	Phe	Ser 235	Ile	Pro	Pro	Ser	Ser 240
Gln	Glu	Val	Met	Pro 245	Gly	Gly	Ser	Val	Asn 250	Leu	Thr	Cys	Val	Ala 255
Val	Gly	Ala	Pro	Met 260	Pro	Tyr	Val	Lys	Trp 265	Met	Met	Gly	Ala	Glu 270
Glu	Leu	Thr	Lys	Glu 275	Asp	Glu	Met	Pro	Val 280	Gly	Arg	Asn	Val	Leu 285
Glu	Leu	Ser	Asn	Val 290	Val	Arg	Ser	Ala	Asn 295	Tyr	Thr	Cys	Val	Ala 300
Ile	Ser	Ser	Leu	Gly 305	Met	Ile	Glu	Ala	Thr 310	Ala	Gln	Val	Thr	Val 315
Lys	Ala	Leu	Pro	Lys 320	Pro	Pro	Ile	Asp	Leu 325	Val	Val	Thr	Glu	Thr 330
Thr	Ala	Thr	Ser	Val 335	Thr	Leu	Thr	Trp	Asp 340	Ser	Gly	Asn	Ser	Glu 345
Pro	Val	Thr	Tyr	Tyr 350	Gly	Ile	Gln	Tyr	Arg 355	Ala	Ala	Gly	Thr	Glu 360
Gly	Pro	Phe	Gln	Glu 365	Val	Asp	Gly	Val	Ala 370	Thr	Thr	Arg	Tyr	Ser 375
Ile	Gly	Gly	Leu	Ser 380	Pro	Phe	Ser	Glu	Tyr 385	Ala	Phe	Arg	Val	Leu 390
Ala	Val	Asn	Ser	Ile	Gly	Arg	Gly	Pro	Pro	Ser	Glu	Ala	Val	Arg

	. 395	•				400					405
Ala Arg Thr	Gly Glu 410	Gln	Ala	Pro	Ser	Ser 415	Pro	Pro	Arg	Arg	Val 420
Gln Ala Arg	Met Leu 425	Ser	Ala	Ser	Thr	Met 430	Leu	Val	Gln	Trp	Glu 435
Pro Pro Glu	Glu Pro 440	Asn	Gly	Leu	Val	Arg 445	Gly	Tyr	Arg	Val	Tyr 450
Tyr Thr Pro	Asp Ser 455	Arg	Arg	Pro	Pro	Asn 460	Ala	Trp	His	Lys	His 465
Asn Thr Asp	Ala Gly 470	Leu	Leu	Thr	Thr	Val 475	Gly	Ser	Leu	Leu	Pro 480
Gly Ile Thr	Tyr Ser 485	Leu	Arg	Väl	Leu	Ala 490	Phe	Thr	Ala	Val	Gly 495
Asp Gly Pro	Pro Ser 500	Pro	Thr	Ile	Gln	Val 505	Lys	Thr	Gln	Gln	Gly 510
Val Pro Ala	Gln Pro 515	Ala	Asp	Phe	Gln	Ala 520	Glu	Val	Glu	Ser	Asp 525
Thr Arg Ile	Gln Leu 530	Ser	Trp	Leu	Leu	Pro 535	Pro	Gln	Glu	Arg	Ile 540
Ile Met Tyr	Glu Leu 545	Val	Tyr	Trp	Ala	Ala 550	Glu	Asp	Glu	Asp	Gln 555
Gln His Lys	Val Thr 560	Phe	Asp	Pro	Thr	Ser 565	Ser	Tyr	Thr	Leu	Glu 570
Asp Leu Lys	Pro Asp 575	Thr	Leu	Tyr	Arg	Phe 580	Gln	Leu	Ala	Ala	Arg 585
Ser Asp Met	Gly Val 590	Gly	Val	Phe	Thr	Pro 595	Thr	Ile	Glu	Ala	Arg 600
Thr Ala Gln	Ser Thr 605	Pro	Ser	Ala	Pro	Pro 610	Gln	Lys	Val	Met	Cys 615
Val Ser Met	Gly Ser 620	Thr	Thr	Val	Arg	Val 625	Ser	Trp	Val	Pro	Pro 630
Pro Ala Asp	Ser Arg 635	Asn	Gly	Val	Ile	Thr 640	Gln	Tyr	Ser	Val	Ala 645
His Glu Ala	Val Asp 650	Gly	Glu	Asp	Arg	Gly 655	Arg	His	Val	Val	Asp 660
Gly Ile Ser	Arg Glu 665	His	Ser	Ser	Trp	Asp 670	Leu	Val	Gly	Leu	Glu 675
Lys Trp Thr	Glu Tyr 680	Arg	Val	Trp	Val	Arg 685	Ala	His	Thr	Asp	Val 690

Gly	Pro	Gly	Pro	Glu 695	Ser	Ser	Pro	Val	Leu 700	Val	Arg	Thr	Asp	Glu 705
Asp	Val	Pro	Ser	Gly 710	Pro	Pro	Arg	Lys	Val 715	Glu [.]	Val	Glu	Pro	Leu 720
Asn	Ser	Thr	Ala	Val 725	His	Val	Tyr	Trp	Lys 730	Leu	Pro	Val	Pro	Ser 735
Lys	Gln	His	Gly	Gln 740	Ile	Arg	Gly	Tyr	Gln 745	Val	Thr	Tyr	Val	Arg 750
Leu	Glu	Asn	Gly	Glu 755	Pro	Arg	Gly	Leu	Pro 760	Ile	Ile	Gln	Asp	Val 765
Met	Leu	Ala	Glu	Ala 770	Gln	Trp	Arg	Pro	Glu 775	Glu	Ser	Glu	Asp	Tyr 780
Glu _.	Thr	Thr	Ile	Ser 785	Gly	Leu	Thr	Pro	Glu 790	Thr	Thr	Tyr	Ser	Val 795
Thr	Val	Ala	Ala	Tyr 800	Thr	Thr	Lys	Gly	Asp 805	Gly	Ala	Arg	Ser	Lys 810
Pro	Lys	Ile	Val	Thr 815	Thr	Thr	Gly	Ala	Val 820	Pro	Gly	Arg	Pro	Thr 825
Met	Met	Ile	Ser	Thr 830	Thr	Ala	Met	Asn	Thr 835	Ala	Leu	Leu	Gln	Trp 840
His	Pro	Pro	Lys	Glu 845	Leu	Pro	Gly	Glu	Leu 850	Leu	Gly	Tyr	Arg	Leu 855
Gln	Tyr	Cys	Arg	Ala 860	Asp	Glu	Ala	Arg	Pro 865	Asn	Thr	Ile	Asp	Phe 870
Gly	Lys	Asp	Asp	Gln 875	His	Phe	Thr	Val	Thr 880	Gly	Leu	His	Lys	Gly 885
Thr	Thr	Tyr	Ile	Phe 890	Arg	Leu	Ala	Ala	Lys 895	Asn	Arg	Ala	Gly	Leu 900
Gly	Glu	Glu	Phe	Glu 905	Lys	Glu	Ile	Arg	Thr 910	Pro	Glu	Asp	Leu	Pro 915
Ser	Gly	Phe	Pro	Gln 920	Asn	Leu	His	Val	Thr 925	Gly	Leu	Thr	Thr	Ser 930
Thr	Thr	Glu	Leu	Ala 935	Trp	Asp	Pro	Pro	Val 940	Leu	Ala	Glu	Arg	Asn 945
Gly	Arg	Ile	Ile	Ser 950	Tyr	Thr	Val	Vạl	Phe 955	Arg	Asp	Ile	Asn	Ser 960
Gln	Gln	Glu	Leu	Gln 965	Asn	Ile	Thr	Thr	Asp 970	Thr	Arg	Phe	Thr	Leu 975
Thr	Gly	Leu	Lys	Pro	Asp	Thr	Thr	Tyr	Asp	Ile	Lys	Val	Arg	Ala

	980				985						990			
Trp	Thr	Ser	Lys	Gly	Ser	Gly	Pro	Leu	Ser	Pro	Ser	Ile	Gln	Ser

- Arg Thr Met Pro Val Glu Gln Val Phe Ala Lys Asn Phe Arg Val
- Ala Ala Met Lys Thr Ser Val Leu Leu Ser Trp Glu Val Pro
- Asp Ser Tyr Lys Ser Ala Val Pro Phe Lys Ile Leu Tyr Asn Gly
- Gln Ser Val Glu Val Asp Gly His Ser Met Arg Lys Leu Ile Ala
- Asp Leu Gln Pro Asn Thr Glu Tyr Ser Phe Val Leu Met Asn Arg
- Gly Ser Ser Ala Gly Gly Leu Gln His Leu Val Ser Ile Arg Thr
- Ala Pro Asp Leu Leu Pro His Lys Pro Leu Pro Ala Ser Ala Tyr
- Ile Glu Asp Gly Arg Phe Asp Leu Ser Met Pro His Val Gln Asp
- Pro Ser Leu Val Arg Trp Phe Tyr Ile Val Val Val Pro Ile Asp
- Arg Val Gly Gly Ser Met Leu Thr Pro Arg Trp Ser Thr Pro Glu
- Glu Leu Glu Leu Asp Glu Leu Leu Glu Ala Ile Glu Gln Gly Gly
- Glu Glu Gln Arg Arg Arg Arg Gln Ala Glu Arg Leu Lys Pro
- Tyr Val Ala Ala Gln Leu Asp Val Leu Pro Glu Thr Phe Thr Leu
- Gly Asp Lys Lys Asn Tyr Arg Gly Phe Tyr Asn Arg Pro Leu Ser
- Pro Asp Leu Ser Tyr Gln Cys Phe Val Leu Ala Ser Leu Lys Glu
- Pro Met Asp Gln Lys Arg Tyr Ala Ser Ser Pro Tyr Ser Asp Glu
- Ile Val Val Gln Val Thr Pro Ala Gln Gln Glu Glu Pro Glu
- Met Leu Trp Val Thr Gly Pro Val Leu Ala Val Ile Leu Ile Ile

- Leu Ile Val Ile Ala Ile Leu Leu Phe Lys Arg Lys Arg Thr His
 1280 1285 1290
- Ser Pro Ser Ser Lys Asp Glu Gln Ser Ile Gly Leu Lys Asp Ser 1295 1300 1305
- Leu Leu Ala His Ser Ser Asp Pro Val Glu Met Arg Arg Leu Asn 1310 1315 1320
- Tyr Gln Thr Pro Gly Met Arg Asp His Pro Pro Ile Pro Ile Thr 1325 1330 1335
- Asp Leu Ala Asp Asn Ile Glu Arg Leu Lys Ala Asn Asp Gly Leu 1340 1345 1350
- Lys Phe Ser Gln Glu Tyr Glu Ser Ile Asp Pro Gly Gln Gln Phe 1355 1360 1365
- Thr Trp Glu Asn Ser Asn Leu Glu Val Asn Lys Pro Lys Asn Arg 1370 1375 1380
- Tyr Ala Asn Val Ile Ala Tyr Asp His Ser Arg Val Ile Leu Thr 1385 1390 1395
- Ser Ile Asp Gly Val Pro Gly Ser Asp Tyr Ile Asn Ala Asn Tyr 1400 1405 1410
- Ile Asp Gly Tyr Arg Lys Gln Asn Ala Tyr Ile Ala Thr Gln Gly
 1415 1420 1425
- Pro Leu Pro Glu Thr Met Gly Asp Phe Trp Arg Met Val Trp Glu 1430 1435 1440
- Gln Arg Thr Ala Thr Val Val Met Met Thr Arg Leu Glu Glu Lys 1445 1450 1455
- Ser Arg Val Lys Cys Asp Gln Tyr Trp Pro Ala Arg Gly Thr Glu 1460 1465 1470
- Thr Cys Gly Leu Ile Gln Val Thr Leu Leu Asp Thr Val Glu Leu 1475 1480 1485
- Ala Thr Tyr Thr Val Arg Thr Phe Ala Leu His Lys Ser Gly Ser 1490 1495 1500
- Ser Glu Lys Arg Glu Leu Arg Gln Phe Gln Phe Met Ala Trp Pro 1505 1510 1515
- Asp His Gly Val Pro Glu Tyr Pro Thr Pro Ile Leu Ala Phe Leu 1520 1525 1530
- Arg Arg Val Lys Ala Cys Asn Pro Leu Asp Ala Gly Pro Met Val 1535 1540 1545
- Val His Cys Ser Ala Gly Val Gly Arg Thr Gly Cys Phe Ile Val 1550 1555 1560
- Ile Asp Ala Met Leu Glu Arg Met Lys His Glu Lys Thr Val Asp

1565	1570	1575

Ile Tyr Gly His Val Thr Cys Met Arg Ser Gln Arg Asn Tyr Met Val Gln Thr Glu Asp Gln Tyr Val Phe Ile His Glu Ala Leu Leu Glu Ala Ala Thr Cys Gly His Thr Glu Val Pro Ala Arg Asn Leu Tyr Ala His Ile Gln Lys Leu Gly Gln Val Pro Pro Gly Glu Ser Val Thr Ala Met Glu Leu Glu Phe Lys Leu Leu Ala Ser Ser Lys Ala His Thr Ser Arg Phe Ile Ser Ala Asn Leu Pro Cys Asn Lys Phe Lys Asn Arg Leu Val Asn Ile Met Pro Tyr Glu Leu Thr Arg Val Cys Leu Gln Pro Ile Arg Gly Val Glu Gly Ser Asp Tyr Ile Asn Ala Ser Phe Leu Asp Gly Tyr Arg Gln Gln Lys Ala Tyr Ile Ala Thr Gln Gly Pro Leu Ala Glu Ser Thr Glu Asp Phe Trp Arg Met Leu Trp Glu His Asn Ser Thr Ile Ile Val Met Leu Thr Lys Leu Arg Glu Met Gly Arg Glu Lys Cys His Gln Tyr Trp Pro Ala Glu Arg Ser Ala Arg Tyr Gln Tyr Phe Val Val Asp Pro Met Ala Glu Tyr Asn Met Pro Gln Tyr Ile Leu Arg Glu Phe Lys Val Thr Asp Ala Arg Asp Gly Gln Ser Arg Thr Ile Arg Gln Phe Gln Phe Thr Asp Trp Pro Glu Gln Gly Val Pro Lys Thr Gly Glu Gly Phe Ile Asp Phe Ile Gly Gln Val His Lys Thr Lys Glu Gln Phe Gly

Gln Asp Gly Pro Ile Thr Val His Cys Ser Ala Gly Val Gly Arg

Thr Gly Val Phe Ile Thr Leu Ser Ile Val Leu Glu Arg Met Arg

<210> 35 <211> 310 <212> PRT <213> Homo sapiens

<400> 35 Met Arg Arg Ala Ala Leu Trp Leu Trp Leu Cys Ala Leu Ala Leu Ser Leu Gln Leu Ala Leu Pro Gln Ile Val Ala Thr Asn Leu Pro Pro Glu Asp Gln Asp Gly Ser Gly Asp Asp Ser Asp Asn Phe Ser Gly Ser Gly Ala Gly Ala Leu Gln Asp Ile Thr Leu Ser Gln Gln Thr Pro Ser Thr Trp Lys Asp Thr Gln Leu Leu Thr Ala Ile Pro Thr Ser Pro Glu Pro Thr Gly Leu Glu Ala Thr Ala Ala Ser Thr Ser Thr Leu Pro Ala Gly Glu Gly Pro Lys Glu Gly Glu Ala Val Val Leu Pro Glu Val Glu Pro Gly Leu Thr Ala Arg Glu Gln Glu Ala Thr Pro Arg Pro Arg Glu Thr Thr Gln Leu Pro Thr Thr His Gln Ala Ser Thr Thr Thr Ala Thr Thr Ala Gln Glu Pro Ala Thr Ser His Pro His Arg Asp Met Gln Pro Gly His His Glu Thr Ser Thr Pro Ala Gly Pro Ser Gln Ala Asp Leu His Thr Pro His Thr Glu Asp Gly Gly Pro Ser Ala Thr Glu Arg Ala Ala Glu Asp Gly Ala Ser Ser Gln Leu Pro Ala Ala Glu Gly Ser Gly Glu Gln Asp

				200					205	•				210
Phe	Thr	Phe	, Glu	Thr 215	Ser	Gly	Glu	Asn	Thr 220	Ala	Val	Val	Ala	Val 225
Glu	Pro	Asp	Arg	Arg 230	Asn	Gln	Ser	Pro	Val 235	Asp	Gln	Gly	Ala	Thr 240
Gly	Ala	Ser	Gln	Gly 245	Leu	Leu	Asp	Arg	Lys 250	Glu	Val	Leu	Gly	Gly 255
Val	Ile	Ala	Gly	Gly 260	Leu	Val	Gly	Leu	Ile 265	Phe	Ala	Val	Cys	Leu 270
Val	Gly	Phe	Met	Leu 275	Tyr	Arg	Met	Lys	Lys 280	_	Asp	Glu	Gly	Ser 285
Tyr	Ser	Leu	Glu	Glu 290	Pro	Lys	Gln	Ala	Asn 295	Gly	Gly	Ala	Tyr	Gln 300
Lys	Pro	Thr	Lys	Gln 305	Glu	Glu	Phe	Tyr	Ala 310					
<210: <211: <212: <213:	> 13: > PR:	Г	apier	ns										
<400: Met 1		Ile	Phe	Leu 5	Pro	Val	Leu	Leu	Ala 10	Ala	Leu	Leu	Gly	Val 15
Glu	Arg	Ala	Ser	Ser 20	Leu	Met	Cys	Phe	Ser 25	Cys	Leu	Asn	Gln	Lys 30
Ser	Asn	Leu	Tyr	Cys 35	Leu	Lys	Pro	Thr	Ile 40	Cys	Ser	Asp	Gln	Asp 45
Asn	Tyr	Cys	Val	Thr 50	Val	Ser	Ala	Ser	Ala 55	Gly	Ile	Gly	Asn	Leu 60
Val	Thr	Phe	Gly	His 65	Ser	Leu	Ser	Lys	Thr 70	Cys	Ser	Pro	Ala	Cys 75
Pro	Ile	Pro	Glu	Gly 80	Val	Asn	Val	Gly	Val 85	Ala	Ser	Met	Gly	Ile 90
Ser	Cys	Cys	Gln	Ser 95	Phe	Leu	Cys	Asn	Phe 100	Ser	Ala	Ala	Asp	Gly 105
Gly	Leu	Arg	Ala	Ser 110	Val	Thr	Leu	Leu	Gly 115	Ala	Gly	Leu	Leu	Leu 120
Ser	Leu	Leu	Pro	Ala 125	Leu	Leu	Arg	Phe	Gly 130	Pro				
<210: <211:		€												

<212> PRT <213> Homo sapiens

<400> 37 Met Asp Gly Lys Lys Cys Ser Val Trp Met Phe Leu Pro Leu Val Phe Thr Leu Phe Thr Ser Ala Gly Leu Trp Ile Val Tyr Phe Ile Ala Val Glu Asp Asp Lys İle Leu Pro Leu Asn Ser Ala Glu Arg Lys Pro Gly Val Lys His Ala Pro Tyr Ile Ser Ile Ala Gly Asp Asp Pro Pro Ala Ser Cys Val Phe Ser Gln Val Met Asn Met Ala Ala Phe Leu Ala Leu Val Val Ala Val Leu Arg Phe Ile Gln Leu Lys Pro Lys Val Leu Asn Pro Trp Leu Asn Ile Ser Gly Leu Val Ala Leu Cys Leu Ala Ser Phe Gly Met Thr Leu Leu Gly Asn Phe Gln Leu Thr Asn Asp Glu Glu Ile His Asn Val Gly Thr Ser Leu Thr Phe Gly Phe Gly Thr Leu Thr Cys Trp Ile Gln Ala Ala Leu Thr Leu Lys Val Asn Ile Lys Asn Glu Gly Arg Arg Val Gly Ile Pro Arg Val Ile Leu Ser Ala Ser Ile Thr Leu Cys Val Val Leu Tyr Phe Ile Leu Met Ala Gln Ser Ile His Met Tyr Ala Ala Arg 185 195 Val Gln Trp Gly Leu Val Met Cys Phe Leu Ser Tyr Phe Gly Thr Phe Ala Val Glu Phe Arg His Tyr Arg Tyr Glu Ile Val Cys Ser 220 225 Glu Tyr Gln Glu Asn Phe Leu Ser Phe Ser Glu Ser Leu Ser Glu 235 240 Ala Ser Glu Tyr Gln Thr Asp Gln Val

<210> 38
<211> 145

<212> PRT

245

<213> Homo sapiens

<400> 38 Met Glu Leu Ala Leu Leu Cys Gly Leu Val Val Met Ala Gly Val Ile Pro Ile Gln Gly Gly Ile Leu Asn Leu Asn Lys Met Val Lys Gln Val Thr Gly Lys Met Pro Ile Leu Ser Tyr Trp Pro Tyr Gly Cys His Cys Gly Leu Gly Gly Arg Gly Gln Pro Lys Asp Ala Thr Asp Trp Cys Cys Gln Thr His Asp Cys Cys Tyr Asp His Leu Lys Thr Gln Gly Cys Gly Ile Tyr Lys Asp Tyr Tyr Arg Tyr Asn Phe Ser Gln Gly Asn Ile His Cys Ser Asp Lys Gly Ser Trp Cys Glu Gln Gln Leu Cys Ala Cys Asp Lys Glu Val Ala Phe Cys Leu Lys Arg Asn Leu Asp Thr Tyr Gln Lys Arg Leu Arg Phe Tyr Trp Arg Pro His Cys Arg Gly Gln Thr Pro Gly Cys <210> 39 <211> 1533 <212> PRT <213> Homo sapiens Met Tyr Ile Arg Val Ser Tyr Asp Thr Lys Pro Asp Ser Leu Leu His Leu Met Val Lys Asp Trp Gln Leu Glu Leu Pro Lys Leu Leu 30 Ile Ser Val His Gly Gly Leu Gln Asn Phe Glu Met Gln Pro Lys Leu Lys Gln Val Phe Gly Lys Gly Leu Ile Lys Ala Ala Met Thr Thr Gly Ala Trp Ile Phe Thr Gly Gly Val Ser Thr Gly Val Ile

Ser His Val Gly Asp Ala Leu Lys Asp His Ser Ser Lys Ser Arg

Gly Arg Val Cys Ala Ile Gly Ile Ala Pro Trp Gly Ile Val Glu

80

75

	95					100					105
Asn Lys Glu	Asp Leu 110	Val	Gly	Lys	Asp	Val 115	Thr	Arg	Val	Tyr	Gln 120
Thr Met Ser	Asn Pro	Leu	Ser	Lys	Leu	Ser 130	Val	Leu	Asn	Asn	Ser 135
His Thr His	Phe Ile 140	Leu	Ala	Asp	Asn	Gly 145	Thr	Leu	Gly	Lys	Tyr 150
Gly Ala Glu	Val Lys 155	Leu	Arg	Arg	Leu	Leu 160	Glu	Lys	His	Ile	Ser 165
Leu Gln Lys	Ile Asn 170	Thr	Arg	Leu	Gly	Gln 175	Gly	Val	Pro	Leu	Val 180
Gly Leu Val	Val Glu 185	Gly	Gly	Pro	Asn	Val 190	Val	Ser	Ile	Val	Leu 195
Glu Tyr Leu	Gln Glu 200	Glu	Pro	Pro	Ile	Pro 205	Val	Val	Ile	Cys	Asp 210
Gly Ser Gly	Arg Ala 215	Ser	Asp	Ile	Leu	Ser 220	Phe	Ala	His	Lys	Tyr 225
Cys Glu Glu	Gly Gly 230	Ile	Ile	Asn	Glu	Ser 235	Leu	Arg	Glu	Gln	Leu 240
Leu Val Thr	Ile Gln 245	Lys	Thr	Phe	Asn	Tyr 250	Asn	Lys	Ala	Gln	Ser 255
His Gln Leu	Phe Ala 260	Ile	Ile	Met	Glu	Cys 265	Met	Lys	Lys	Lys	Glu - 270
Leu Val Thr	Val Phe 275	Arg	Met	Gly	Ser	Glu 280	Gly	Gln	Gln	Asp	Ile 285
Glu Met Ala	Ile Leu 290	Thr	Ala	Leu	Leu	Lys 295	Gly	Thr	Asn	Val	Ser 300
Ala Pro Asp	Gln Leu 305	Ser	Leu	Ala	Leu	Ala 310	Ţrp	Asn	Arg	Val	Asp 315
Ile Ala Arg	Ser Gln 320	Ile	Phe	Val	Phe	Gly 325	Pro	His	Trp	Thr	Pro 330
Leu Gly Ser	Leu Ala 335	Pro	Pro	Thr	Asp	Ser 340	Lys	Ala	Thr	Glu	Lys 345
Glu Lys Lys	Pro Pro 350	Met	Ala	Thr	Thr	Lys 355	Gly	Gly	Arg	Gly	Lys 360
Gly Lys Gly	Lys Lys 365	Lys	Gly	Lys	Val	Lys 370	Glu	Glu	Val	Glu	Glu 375
Glu Thr Asp	Pro Arg 380	Lys	Ile	Glu	Leu	Leu 385	Asn	Trp	Val	Asn	Ala 390

Leu	Glu	Gln	Ala	Met 395	Leu	Asp	Ala	Leu	Val 400	Leu	Asp	Arg	Val	Asp 405
Phe	Val	Lys	Leu	Leu 410	Ile	Glu	Asn	Gly	Val 415	Asn	Met	Gln	His	Phe 420
Leu	Thr	Ile	Pro	Arg 425	Leu	Glu	Glu	Leu	Tyr 430	Asn	Thr	Arg	Leu	Gly 435
Pro	Pro	Asn	Thr	Leu 440	His	Leu	Leu	Val	Arg 445	Asp	Val	Lys	Lys	Ser 450
Asn	Leu	Pro	Pro	Asp 455	Tyr	His	Ile	Ser	Leu 460	Ile	Asp	Ile	Gly	Leu 465
Val	Leu	Glu	Tyr	Leu 470	Met	Gly	Gly	Ala	Tyr 475	Arg	Cys	Asn	Tyr	Thr 480
Arg	Lys	Asn	Phe	Arg 485	Thr	Leu	Tyr	Asn	Asn 490	Leu	Phe	Gly	Pro	Lys 495
Arg	Pro	Lys	Ala	Leu 500	Lys	Leu	Leu	Gly	Met 505	Glu	Asp	Asp	Glu	Pro 510
Pro	Ala	Lys	Gly	Lys 515	Lys	Lys	Lys	Lys	Lys 520	Lys	Lys	Glu	Glu	Glu 525
Ile	Asp	Ile	Asp	Val 530	Asp	Asp	Pro	Ala	Val 535	Ser	Arg	Phe	Gln	Tyr 540
Pro	Phe	His	Glu	Leu 545	Met	Val	Trp	Ala	Val 550	Leu	Met	Lys	Arg	Gln 555
Lys	Met	Ala	Val	Phe 560	Leu	Trp	Gln	Arg	Gly 565	Glu	Glu	Ser	Met	Ala 570
Lys	Ala	Leu	Val	Ala 575	Cys	Lys	Leu	Tyr	Lys 580	Ala	Met	Ala	His	Glu 585
Ser	Ser	Glu	Ser	Asp 590	Leu	Val	Asp	Asp	Ile 595	Ser	Gln	Asp	Leu	Asp 600
Asn	Asn	Ser	Lys	Asp 605	Phe	Gly	Gln	Leu	Ala 610	Lèu	Glu	Leu	Leu	Asp 615
Gln	Ser	Tyr	Lys	His 620	Asp	Glu	Gln	Ile	Ala 625	Met	Lys	Leu	Leu	Thr 630
Tyr	Glu	Leu	Lys	Asn 635	Trp	Ser	Asn	Ser	Thr 640	Cys	Leu	Lys	Leu	Ala. 645
Val	Ala	Ala	Lys	His 650	Arg	Asp	Phe	Ile	Ala 655	His	Thr	·Cys	Ser	Gln 660
Met	Leu	Leu	Thr	Asp 665	Met	Trp	Met	Gly	Arg 670	Leu	Arg	Met	Arg	Lys 675
Asn	Pro	Gly	Leu	Lys	Val	Ile	Met	Gly	Ile	Leu	Leu	Pro	Pro	Thr

	680		68	5		690
Ile Leu Phe Leu	Glu Phe	Arg Thr	Tyr As	-	Ser Tyr	Gln 705
Thr Ser Lys Glu	Asn Glu 710	Asp Gly	Lys Gl 71		Glu Glu	Asn 720
Thr Asp Ala Asn	Ala Asp 725	Ala Gly	Ser Ar 73		Asp Glu	Glu 735
Asn Glu His Lys	Lys Gln 740	Arg Ser	Ile Pr 74		Thr Lys	Ile 750
Cys Glu Phe Tyr	Asn Ala 755	Pro Ile	Val Ly 76	_	Phe Tyr	Thr 765
Ile Ser Tyr Leu	Gly Tyr 770	Leu Leu	Leu Ph		Val Ile	Leu 780
Val Arg Met Asp	Gly Trp 785	Pro Ser	Leu Gl 79		Ile Val	Ile 795
Ser Tyr Ile Val	Ser Leu 800	Ala Leu	Glu Ly 80		Glu Ile	Leu 810
Met Ser Glu Pro	Gly Lys 815	Leu Ser	Gln Ly 82	_	Val Trp	Leu 825
Gln Glu Tyr Trp	Asn Ile 830	Thr Asp	Leu Va 83		Ser Thr	Phe 840
Met Ile Gly Ala	Ile Leu 845	Arg Leu	Gln As 85		Tyr Met	Gly 855
Tyr Gly Arg Val	Ile Tyr 860	Cys Val	Asp Il 86		Trp Tyr	Ile 870
Arg Val Leu Asp	Ile Phe 875	Gly Val	Asn Ly 88		Gly Pro	Tyr 885
Val Met Met Ile	Gly Lys 890	Met Met	Ile As 89		Tyr Phe	Val 900
Val Ile Met Leu	Val Val 905	Leu Met	Ser Ph	_	Ala Arg	Gln 915
Ala Ile Leu His	Pro Glu 920	Glu Lys	Pro Se 92	_	Leu Ala	Arg 930
Asn Ile Phe Tyr	Met Pro 935	Tyr Trp	Met Il	_	Glu Val	Phe 945
Ala Asp Gln Ile	Asp Leu 950	Tyr Ala	Met Gl 95		Pro Pro	Cys 960
Gly Glu Asn Leu	Tyr Asp 965	Glu Glu	Gly Ly 97		Pro Pro	Cys 975

- Ile Pro Gly Ala Trp Leu Thr Pro Ala Leu Met Ala Cys Tyr Leu 980 985 990
- Leu Val Ala Asn Ile Leu Leu Val Asn Leu Leu Ile Ala Val Phe 995 1000 1005
- Asn Asn Thr Phe Phe Glu Val Lys Ser Ile Ser Asn Gln Val Trp
 1010 1015 1020
- Lys Phe Gln Arg Tyr Gln Leu Ile Met Thr Phe His Asp Arg Pro 1025 1030 1035
- Val Leu Pro Pro Met Ile Ile Leu Ser His Ile Tyr Ile Ile 1040 1045 1050
- Ile Met Arg Leu Ser Gly Arg Cys Arg Lys Lys Arg Glu Gly Asp 1055 1060 1065
- Gln Glu Glu Arg Asp Arg Gly Leu Lys Leu Phe Leu Ser Asp Glu 1070 1075 1080
- Glu Leu Lys Arg Leu His Glu Phe Glu Glu Gln Cys Val Gln Glu
 1085 1090 1095
- His Phe Arg Glu Lys Glu Asp Glu Gln Gln Ser Ser Asp Glu
 1100 1105 1110
- Arg Ile Arg Val Thr Ser Glu Arg Val Glu Asn Met Ser Met Arg
 1115 1120 1125
- Leu Glu Glu Ile Asn Glu Arg Glu Thr Phe Met Lys Thr Ser Leu 1130 1135 1140
- Gln Thr Val Asp Leu Arg Leu Ala Gln Leu Glu Glu Leu Ser Asn 1145 1150 1155
- Arg Met Val Asn Ala Leu Glu Asn Leu Ala Glý Ile Asp Arg Ser 1160 1165 1170
- Asp Leu Ile Gln Ala Arg Ser Arg Ala Ser Ser Glu Cys Glu Ala 1175 1180 1185
- Thr Tyr Leu Leu Arg Gln Ser Ser Ile Asn Ser Ala Asp Gly Tyr 1190 1195 1200
- Ser Leu Tyr Arg Tyr His Phe Asn Gly Glu Glu Leu Leu Phe Glu 1205 1210 1215
- Asp Thr Ser Leu Ser Thr Ser Pro Gly Thr Gly Val Arg Lys Lys 1220 1225 1230
- Thr Cys Ser Phe Arg Ile Lys Glu Glu Lys Asp Val Lys Thr His 1235 1240 1245
- Leu Val Pro Glu Cys Gln Asn Ser Leu His Leu Ser Leu Gly Thr 1250 1255 1260
- Ser Thr Ser Ala Thr Pro Asp Gly Ser His Leu Ala Val Asp Asp

1265	1270	1275

Leu Lys Asn Ala Glu Glu Ser Lys Leu Gly Pro Asp Ile Gly Ile 1280 1285 1290

Ser Lys Glu Asp Asp Glu Arg Gln Thr Asp Ser Lys Lys Glu Glu 1295 1300 1305

Thr Ile Ser Pro Ser Leu Asn Lys Thr Asp Val Ile His Gly Gln 1310 1315 1320

Asp Lys Ser Asp Val Gln Asn Thr Gln Leu Thr Val Glu Thr Thr
1325 1330 1335

Asn Ile Glu Gly Thr Ile Ser Tyr Pro Leu Glu Glu Thr Lys Ile 1340 1345 1350

Thr Arg Tyr Phe Pro Asp Glu Thr Ile Asn Ala Cys Lys Thr Met 1355 1360 1365

Lys Ser Arg Ser Phe Val Tyr Ser Arg Gly Arg Lys Leu Val Gly
1370 1375 1380

Gly Val Asn Gln Asp Val Glu Tyr Ser Ser Ile Thr Asp Gln Gln 1385 1390 1395

Leu Thr Thr Glu Trp Gln Cys Gln Val Gln Lys Ile Thr Arg Ser 1400 1405 1410

His Ser Thr Asp Ile Pro Tyr Ile Val Ser Glu Ala Ala Val Gln
1415 1420 1425

Ala Glu Gln Lys Glu Gln Phe Ala Asp Met Gln Asp Glu His His
1430 1435 1440

Val Ala Glu Ala Ile Pro Arg Ile Pro Arg Leu Ser Leu Thr Ile 1445 1450 1455

Thr Asp Arg Asn Gly Met Glu Asn Leu Leu Ser Val Lys Pro Asp 1460 1465 1470

Gln Thr Leu Gly Phe Pro Ser Leu Arg Ser Lys Ser Leu His Gly
1475 1480 1485

His Pro Arg Asn Val Lys Ser Ile Gln Gly Lys Leu Asp Arg Ser 1490 1495 1500

Gly His Ala Ser Ser Val Ser Ser Leu Val Ile Val Ser Gly Met 1505 1510 1515

Thr Ala Glu Glu Lys Lys Val Lys Lys Glu Lys Ala Ser Thr Glu 1520 1525 1530

Thr Glu Cys

<210> 40 <211> 462

<212> PRT

<213> Homo sapiens

<400> 40 Met Ser Thr Glu Lys Val Asp Gln Lys Glu Glu Ala Gly Glu Lys Glu Val Cys Gly Asp Gln Ile Lys Gly Pro Asp Lys Glu Glu Glu Pro Pro Ala Ala Ala Ser His Gly Gln Gly Trp Arg Pro Gly Gly Arg Ala Ala Arg Asn Ala Arg Pro Glu Pro Gly Ala Arg His Pro Ala Leu Pro Ala Met Val Asn Asp Pro Pro Val Pro Ala Leu Leu Trp Ala Gln Glu Val Gly Gln Val Leu Ala Gly Arg Ala Arg Arg Leu Leu Gln Phe Gly Val Leu Phe Cys Thr Ile Leu Leu Leu Leu Trp Val Ser Val Phe Leu Tyr Gly Ser Phe Tyr Tyr Ser Tyr Met Pro Thr Val Ser His Leu Ser Pro Val His Phe Tyr Tyr Arg 135 Thr Asp Cys Asp Ser Ser Thr Thr Ser Leu Cys Ser Phe Pro Val Ala Asn Val Ser Leu Thr Lys Gly Gly Arg Asp Arg Val Leu Met 160 Tyr Gly Gln Pro Tyr Arg Val Thr Leu Glu Leu Glu Leu Pro Glu Ser Pro Val Asn Gln Asp Leu Gly Met Phe Leu Val Thr Ile Ser 185 ·190 195 Cys Tyr Thr Arg Gly Gly Arg Ile Ile Ser Thr Ser Ser Arg Ser Val Met Leu His Tyr Arg Ser Asp Leu Leu Gln Met Leu Asp Thr 215 220 225 Leu Val Phe Ser Ser Leu Leu Phe Gly Phe Ala Glu Gln Lys 230 Gln Leu Leu Glu Val Glu Leu Tyr Ala Asp Tyr Arg Glu Asn Ser 255 250

Tyr Val Pro Thr Thr Gly Ala Ile Ile Glu Ile His Ser Lys Arg

260

265

270

Ile	Gln	Leu	Tyr	Gly 275	Ala	Tyr	Leu ·	Arg	Ile 280	His	Ala	His	Phe	Thr 285
Gly	Leu	Arg	Tyr	Leu 290	Leu	Tyr	Asn	Phe	Pro 295	Met	Thr	Cys	Ala	Phe 300
Ile	Gly	Val	Ala	Ser 305	Asn	Phe	Thr	Phe	Leu 310	Ser	Val	Ile	Val	Leu 315
Phe	Ser	Tyr	Met	Gln 320	Trp	Val	Trp	Gly	Gly 325	Ile	Trp	Pro	Arg	His 330
Arg	Phe	Ser	Leu	Gln 3β5	Val	Asn	Ile	Arg	Lys 340	Arg	Asp	Asn	Ser	Arg 345
Lys	Glu	Val	Gln	Arg 350	Arg	Ile	Ser	Ala	His 355	Gln	Pro	Gly	Pro	Glu 360
Gly	Gln	Glu	Glu	Ser 365	Thr	Pro	Gln	Ser	Asp 370	Val	Thr	Glu	Asp	Gly 375
Glu	Ser	Pro	Glu	Asp 380	Pro	Ser	Gly	Thr	Glu 385	Gly	Gln	Leu	Ser	Glu 390
Glu	Glu	Lys	Pro	Asp 395	Gln	Gln	Pro	Leu	Ser 400	Gly	Glu	Glu	Glu	Leu 405
Glu	Pro	Glu	Ala	Ser 410	Asp	Gly	Ser	Gly	Ser 415	Trp	Glu	Asp	Ala	Ala 420
Leu	Leu	Thr	Glu	Ala 425	Asn	Leu	Pro	Ala	Pro 430	Ala	Pro	Ala	Ser	Ala 435
Ser	Ala	Pro	Val	Leu 440	Glu	Thr	Leu	Gly	Ser 445	Ser	Glu	Pro	Ala	Gly 450
Gly	Ala	Leu	Arg	Gln 455	Arg	Pro	Thr	Cys	Ser 460	Ser	Ser			
<210:	. 41													
<211:	> TO:	LO												

<212> PRT

<213> Homo sapiens

<400> 41

Met Gly Pro Pro Leu Pro Leu Leu Leu Leu Leu Leu Leu Leu

Pro Pro Arg Val Leu Pro Ala Ala Pro Ser Ser Val Pro Arg Gly 20 25 30

Arg Gln Leu Pro Gly Arg Leu Gly Cys Leu Leu Glu Glu Gly Leu

Cys Gly Ala Ser Glu Ala Cys Val Asn Asp Gly Val Phe Gly Arg

Cys Gln Lys Val Pro Ala Met Asp Phe Tyr Arg Tyr Glu Val Ser

				65					70					75
Pro	Val	Ala	Leu	Gln 80	Arg	Leu	Arg	Val	Ala 85	Leu	Gln	Lys	Leu	Ser 90
Gly	Thr	Gly	Phe	Thr 95	Trp	Gln	Asp	Asp	Tyr 100	Thr	Gln	Tyr	Val	Met 105
Asp	Gln	Glu	Leu	Ala 110	Asp	Leu	Pro	Lys	Thr 115	Tyr	Leu	Arg	Arg	Pro 120
Glu	Ala	Ser	Ser	Pro 125	Ala	Arg	Pro	Ser	Lys 130	His	Ser	Val	Gly	Ser 135
Glu	Arg	Arg	Tyr	Ser 140	Arg	Glu	Gly	Gly	Ala 145	Ala	Leu	Ala	Asn	Ala 150
Leu	Arg	Arg	His	Leu 155	Pro	Phe	Leu	Glu	Ala 160	Leu	Ser	Gln	Ala	Pro 165
Ala	Ser	Asp	Val	Leu 170	Ala	Arg	Thr	His	Thr 175	Ala	Gln	Asp	Arg	Pro 180
Pro	Ala	Glu	Gly	Asp 185	Asp	Arg	Phe	Ser	Glu 190	Ser	Ile	Leu	Thr	Tyr 195
Val	Ala	His	Thr	Ser 200	Ala	Leu	Thr	Tyr	Pro 205	Pro	Gly	Pro	Arg	Thr 210
Gln	Leu	Arg	Glu	Asp 215	Leu	Leu	Pro	Arg	Thr 220	Leu	Gly	Gln	Leu	Gln 225
Pro	Asp	Glu	Leu	Ser 230	Pro	Lys	Val	Asp	Ser 235	Gly	Val	Asp	Arg	His 240
His	Leu	Met	Ala	Ala 245	Leu	Ser	Ala	Tyr	Ala 250	Ala	Gln	Arg	Pro	Pro 255
Ala	Pro	Pro	Gly	Glu 260	Gly	Ser	Leu	Glu	Pro 265	Gln	Tyr	Leu	Leu	Arg 270
Ala	Pro	Ser	Arg	Met 275	Pro	Arg	Pro	Leu	Leu 280	Ala	Pro	Ala	Ala	Pro 285
Gln	Lys	Trp	Pro	Ser 290	Pro	Leu	Gly	Asp	Ser 295	Glu	Asp	Pro	Ser	Ser 300
Thr	Gly	Asp	Gly	Ala 305	Arg	Ile	His	Thr	Leu 310	Leu	Lys	Asp	Leu	Gln 315
Arg	Gln	Pro	Ala	Glu 320	Val	Arg	Gly	Leu	Ser 325		Leu	Glu	Leu	Asp 330
Gly	Met	Ala	Glu	Leu 335	Met	Ala	Gly	Leu	Met 340	Gln	Gly	Val	Asp	His 345
Gly	Val	Ala	/Arg	Gly 350	Ser	Pro	Gly	Arg	Ala 355	Ala	Leu	Gly	Glu	Ser 360

Gly	Glu	Gln	Ala	Asp 365	Gly	Pro	Lys	Ala	Thr 370	Leu	Arg	Gly	Asp	Ser 375
Phe	Pro	Asp	Asp	Gly 380	Val	Gln	Asp	Asp	Asp 385	Asp	Arg	Leu	Tyr	Gln 390
Glu	Val	His	Arg	Leu 395	Ser	Ala	Thr	Leu	Gly 400	Gly	Leu	Leu	Gln	Asp 405
His	Gly	Ser	Arg	Leu 410	Leu	Pro	Gly	Ala	Leu 415	Pro	Phe	Ala	Arg	Pro 420
Leu	Asp	Met	Glu	Arg 425	Lys	Lys	Ser	Glu	His 430	Pro	Glu	Ser	Ser	Leu 435
Ser	Ser	Glu	Glu	Glu 440	Thr	Ala	Gly	Val	Glu 445	Asn •	Val	Lys	Ser	Gln 450
Thr	Tyr	Ser	Lys	Asp 455	Leu	Leu	Gly	Gln	Gln 460	Pro	His	Ser	Glu	Pro 465
Gly	Ala	Ala	Ala	Phe 470	Gly	Glu	Leu	Gln	Asn 475	Gln	Met	Pro	Gly	Pro 480
Ser	Lys	Glu	Glu	Gln 485	Ser	Leu	Pro	Ala	Gly 490	Ala	Gln	Glu	Ala	Leu 495
Ser	Asp	Gly	Leu	Gln 500	Leu	Glu	Val	Gln	Pro 505	Ser	Glu	Glu	Glu	Ala 510
Arg	Gly	Tyr	Ile	Val 515	Thr	Asp	Arg.	Asp	Pro 520	Leu	Arg	Pro	Glu	Glu 525
Gly	Arg	Arg	Leu	Val 530	Glu	Asp	Val	Ala	Arg 535	Leu	Leu	Gln	Vaļ	Pro 540
Ser	Ser	Ala	Phe	Ala 545	Asp	Val	Glu	Val	Leu 550	Gly	Pro	Ala	Val	Thr 555
Phe	Lys	Val	Ser	Ala 560	Asn	Val	Gln	Asn	Val 565	Thr	Thr	Glu	Asp	Val 570
Glu	Lys	Ala	Thr	Val 575	Asp	Asn	Lys	Asp	Lys 580	Leu	Glu	Glu	Thr	Ser 585
Gly	Leu	Lys	Ile	Leu 590	Gln	Thr	Gly	Val	Gly 595	Ser	Lys	Ser	Lys	Leu 600
Lys	Phe	Leu	Pro	Pro 605	Gln	Ala	Glu	Gln	Glu 610	Asp	Ser	Thr	Lys	Phe 615
Ile	Ala	Leu	Thr	Leu 620	Val	Ser	Leu	Ala	Cys 625	Ile	Leu	Gly	Val	Leu 630
Leu	Ala	Ser	Gly	Leu 635	Ile	Tyr	Cys	Leu	Arg 640	His	Ser	Ser	Gln	His 645
Arg	Leu	Lys	Glu	Lys	Leu	Ser	Gly	Leu	Gly	Gly	Asp	Pro	Gly	Ala

		650					655					660
Asp Ala Thr	Ala	Ala 665	Tyr	Gln	Glu	Leu	Cys 670	Arg	Gln	Arg	Met	Ala 675
Thr Arg Pro	Pro	Asp 680	Arg	Pro	Glu	Gly	Pro 685	His	Thr	Ser	Arg	Ile 690
Ser Ser Val	Ser	Ser 695	Gln	Phe	Ser	Asp	Gly 700	Pro	Ile	Pro	Ser	Pro 705
Ser Ala Arg	Ser	Ser 710	Ala	Ser	Ser	Trp	Ser 715	Glu	Glu	Pro	Val	Gln 720
Ser Asn Met	Asp	Ile 725	Ser	Thr	Gly	His	Met 730	Ile	Leu	Ser	Tyr	Met 735
Glu Asp His	Leu	Lys 740	Asn	Lys	Asn	Arg	Leu 745	Glu	Lys	Glu	Trp	Glu 750
Ala Leu Cys	Ala	Tyr 755	Gln	Ala	Glu	Pro	Asn 760	Ser	Ser	Phe	Val	Ala 765
Gln Arg Gli	Glu	Asn 770	Val	Pro	Lys	Asn	Arg 775	Ser	Leu	Ala	Val	Leu 780
Thr Tyr Asp	His	Ser 785	Arg	Val	Leu	Leu	Lys 790	Ala	Glu	Asn	Ser	His 795
Ser His Ser	Asp	Tyr 800	Ile	Asn	Ala	Ser	Pro 805	Ile	Met	Asp	His	Asp 810
Pro Arg Asr	Pro	Ala 815	Tyr	Ile	Ala	Thr	Gln 820	Gly	Pro	Leu	Pro	Ala 825
Thr Val Ala	Asp	Phe 830	Trp	Gln	Met	Val	Trp 835	Glu	Ser	Gly	Cys	Val 840
Val Ile Val	Met	Leu 845	Thr	Pro	Leu	Ala	Glu 850	Asn	Gly	Val	Arg	Gln 855
Cys Tyr His	Tyr	Trp 860	Pro	Asp	Glu	Gly	Ser 865	Asn	Leu	Tyr	His	Ile 870
Tyr Glu Val	Asn	Leu 875	Val	Ser	Glu	His	Ile 880	Trp	Cys	Glu	Asp	Phe 885
Leu Val Arg	Ser	Phe 890	Tyr	Leu	Lys	Asn	Leu 895	Gln	Thr	Asn	Glu	Thr 900
Arg Thr Val	Thr	Gln 905	Phe	His	Phe	Leu	Ser 910	Trp	Tyr	Asp	Arg	Gly 915
Val Pro Sei	Ser	Ser 920	Arg	Ser	Leu	Leu	Asp 925	Phe	Arg	Arg	Lys	Val 930
Asn Lys Cys	Tyr	Arg 935	Gly	Arg	Ser	Cys	Pro 940	Ile	Ile	Val	His	Cys 945

Ser Asp Gly Ala Gly Arg Ser Gly Thr Tyr Val Leu Ile Asp Met Val Leu Asn Lys Met Ala Lys Gly Ala Lys Glu Ile Asp Ile Ala Ala Thr Leu Glu His Leu Arg Asp Gln Arg Pro Gly Met Val Gln Thr Lys Glu Gln Phe Glu Phe Ala Leu Thr Ala Val Ala Glu Glu 1000 Val Asn Ala Ile Leu Lys Ala Leu Pro Gln 1010 <210> 42 <211> 442 <212> PRT <213> Homo sapiens <400> 42 Met Gln Pro Pro Pro Ser Leu Cys Gly Arg Ala Leu Val Ala Leu Val Leu Ala Cys Gly Leu Ser Arg Ile Trp Gly Glu Glu Arg Gly Phe Pro Pro Asp Arg Ala Thr Pro Leu Leu Gln Thr Ala Glu Ile Met Thr Pro Pro Thr Lys Thr Leu Trp Pro Lys Gly Ser Asn Ala Ser Leu Ala Arg Ser Leu Ala Pro Ala Glu Val Pro Lys Gly Asp Arg Thr Ala Gly Ser Pro Pro Arg Thr Ile Ser Pro Pro Pro Cys Gln Gly Pro Ile Glu Ile Lys Glu Thr Phe Lys Tyr Ile Asn Thr Val Val Ser Cys Leu Val Phe Val Leu Gly Ile Ile Gly Asn Ser Thr Leu Leu Arg Ile Ile Tyr Lys Asn Lys Cys Met Arg Asn Gly Pro Asn Ile Leu Ile Ala Ser Leu Ala Leu Gly Asp Leu Leu His Ile Val Ile Asp Ile Pro Ile Asn Val Tyr Lys Leu Leu Ala Glu Asp Trp Pro Phe Gly Ala Glu Met Cys Lys Leu Val Pro Phe Ile

Gln Lys Ala Ser Val Gly Ile Thr Val Leu Ser Leu Cys Ala Leu

	185		190	195	
Ser Ile Asp A	rg Tyr Arg 200	Ala Val Ala	Ser Trp Ser 205	Arg Ile Lys 210	
Gly Ile Gly V	al Pro Lys 215	Trp Thr Ala	Val Glu Ile 220	Val Leu Ile 225	
Trp Val Val S	er Val Val 230	Leu Ala Val	Pro Glu Ala 235	Ile Gly Phe 240	
Asp Ile Ile T	hr Met Asp 245	Tyr Lys Gly	Ser Tyr Leu 250	Arg Ile Cys 255	
Leu Leu His P	ro Val Gln 260	Lys Thr Ala	Phe Met Gln 265	Phe Tyr Lys 270	
Thr Ala Lys A	sp Trp Trp 275	Leu Phe Ser	Phe Tyr Phe 280	Cys Leu Pro 285	
Leu Ala Ile T	hr Ala Phe 290	Phe Tyr Thi	Leu Met Thr 295	Cys Glu Met 300	
Leu Arg Lys L	ys Ser Gly 305	Met Gln Ile	e Ala Leu Asn 310	Asp His Leu 315	
Lys Gln Arg A	rg Glu Val 320	Ala Lys Thi	Val Phe Cys 325	Leu Val Leu 330	
Val Phe Ala L	eu Cys Trp 335	Leu Pro Leu	His Leu Ser 340	Arg Ile Leu 345	
Lys Leu Thr L	eu Tyr Asn 350	Gln Asn Asp	Pro Asn Arg 355	Cys Glu Leu 360	
Leu Ser Phe L	eu Leu Val 365	Leu Asp Tyr	Ile Gly Ile 370	Asn Met Ala 375	
Ser Leu Asn S	er Cys Ile 380	Asn Pro Ile	e Ala Leu Tyr 385	Leu Val Ser 390	
Lys Arg Phe L	ys Asn Cys 395	Phe Lys Ser	Cys Leu Cys 400	Cys Trp Cys 405	
Gln Ser Phe G	lu Glu Lys 410	Gln Ser Lei	Glu Glu Lys 415	Gln Ser Cys 420	
Leu Lys Phe L	ys Ala Asn 425	Asp His Gly	Tyr Asp Asn 430	Phe Arg Ser 435	
Ser Asn Lys T	yr Ser Ser 440	Ser		·	