Examen de Mesure et intégration Durée 01h00.

Question de Cours. Donner les définitions des notions suivantes:

- (a) Une function $f:(X,\mathcal{A})\to (Y,\mathcal{B})$ mesurable.
- (b) Une fonction $f:(X,\mathcal{A},\mu)\to\overline{\mathbb{R}}$ intégrable.
- (c) La convergence presque partout d'une suite de fonctions $\{f_n\}_{n\geq 0}$, définie de (X, \mathcal{A}, μ) vers $\overline{\mathbb{R}}$.

<u>Exercice 1</u>- Dire si les propositions suivantes sont vraies ou fausses, en justifiant chaque réponse.

- 1) Soit (X, \mathcal{T}) un espace topologique, alors \mathcal{T} est une σ algèbre sur X.
- 2) La limite simple d'une suite de fonctions mesurable est aussi mesurable.
- 3) Dans $\mathcal{B}(\mathbb{R})$ si $\lambda(A) = 0$ alors A est dénombrable.

<u>Exercice 2</u> Soit $f: \mathbb{R} \longrightarrow \mathbb{R}^+$ une fonction continue et bornée. On définit pour tout $n \ge 1$ la fonction f_n par

$$f_n: \mathbb{R} \longrightarrow \mathbb{R}$$

$$t \longmapsto nf(t)e^{-nt}.\mathbb{I}_{[0,+\infty[}.$$

- 1- Montrer que la fonction f_n est mesurable et intégrable, pour tout $n \geq 1$.
- 2- En utilisant un changement de variable convenable de la forme $u = \varphi(t)$, montrer que

$$\lim_{n \to +\infty} \int_{0}^{+\infty} f_n(t) dt = \int_{0}^{+\infty} f(0) e^{-u} du.$$

3- Calculer $\lim_{n\to+\infty} \int_{\mathbb{D}} f_n(t)dt$.

Exercice 3 Soit $f:(X,\mathcal{A},\mu)\to (Y,\mathcal{B})$ unr fonction mesurable. Montrer que l'aplication $\varphi:\mathcal{B}\longrightarrow \overline{\mathbb{R}}^+$ définit par

$$\forall B \in \mathcal{B} \text{ on a } \varphi(B) = \mu(f^{-1}(B))$$

est une mesure sur (Y, \mathcal{B}) .

Exercice 4 On définit dans \mathbb{R}^2 la fonction f telle que $f(x,y) = \frac{1}{(1+x^2)(1+y)}$ et on considère la partie $D = [0, +\infty[\times[a,b], \text{ où } -1 < a < b.$

- 1- Calculer $\int_{\Omega} f(x,y) dx dy$.
- 2- Que peut-on conclure?

Corrigé de l'examen.

Question de Cours.

(a) Une fonction $f:(X,\mathcal{A})\to (Y,\mathcal{B})$ est dite mesurable si et seulement si : $\forall B\in\mathcal{B}$ $\{^{-1}(B)\in\mathcal{A}.(\mathbf{1.25 pts})$

(b) Une fonction
$$f:(X,\mathcal{A},\mu)\to\overline{\mathbb{R}}$$
 est
intégrable $\Longleftrightarrow \int\limits_X |f|\,d\mu<+\infty$ (ou $\int\limits_X f^+d\mu<+\infty$

et
$$\int_{\mathcal{T}} f^- d\mu < +\infty$$
).(1 pt)

(c) $\{f_n\}_{n\geq 0}$ converge $\mu - p.p.$ vers $f \iff$ il eexiste $A \in \mathcal{A}$, tel que $\mu(A^c) = 0$ et $\lim_{n \to +\infty} f_n(x) = f(x)$ pour tout $x \in A$. (1.25 pts)

Exercice 1

- 1) Faux (0.5 pt), car on n'a pas la stabilité par passage au complémentaire. (0.75 pt)
- 2) Vraie (0.5 pt), c'est un résultat vu au cours.(0.75 pt)
- 3) Faux $(0.5~{
 m pt})$, on a l'ensemble de cantor qui est de mesure nulle et non-dénombrable. $(0.75~{
 m pt})$

<u>Exercice 2</u> Soit $f: \mathbb{R} \longrightarrow \mathbb{R}^+$ une fonction continue et bornée. On définit pour tout $n \ge 1$ la fonction f_n par

$$f_n: \mathbb{R} \longrightarrow \mathbb{R}$$

$$t \longmapsto nf(t)e^{-nt}.\mathbb{I}_{[0,+\infty[}.$$

- 1- On a pour tout $n \ge 1$,
- \odot f_n est continue sur $\mathbb{R}^* \Longrightarrow f_n$ est borélienne sur $\mathbb{R} (1.25 \text{ pts})$ ou bien produit de fonctions mesurables.
- \bigcirc f est une fonction positive et bornée alors: $\exists M>0$ telle que $0 \le f(t) \le M$,pour tout $t \in \mathbb{R}$ (0.5 pt), donc

$$|f_{bn}(t)| < n.M.e^{-nt}.\mathbb{I}_{[0,+\infty]}(t) = q(t) (\mathbf{0.25 pt})$$

et
$$\int_{\mathbb{R}} n.M.e^{-nt}.\mathbb{I}_{[0,+\infty[}(t)dt = M \int_{0}^{+\infty} ne^{-nt}dt \,(\mathbf{0.5 \ pt}) = M \,[-e^{-nt}]_{t=0}^{t\to +\infty} = M \,(\mathbf{0.5 \ pt}) < +\infty,$$
 alors $g \in \mathcal{L}^{1}(\mathbb{R}) \,(\mathbf{0.25 \ pt})$. Par conséquent f_{n} est intégrable sur $\mathbb{R} \,(\mathbf{0.5 \ pt})$.

2- Pour calculer $\int_{0}^{\infty} f_n(t) dt$, on considère le changement de variable suivant $u = nt (\mathbf{0.5 pt}) \Longrightarrow du = ndt (\mathbf{0.25 pt})$. Donc

$$\int_{0}^{+\infty} f_n(t) dt = \int_{0}^{+\infty} f\left(\frac{u}{n}\right) e^{-u} du = \int_{\mathbb{R}} f\left(\frac{u}{n}\right) e^{-u} . \mathbb{I}_{[0,+\infty[}(u) du. (\mathbf{0.5 pt})]$$

Posons
$$F_n(u) = f\left(\frac{u}{n}\right) e^{-u} . \mathbb{I}_{[0,+\infty[}(u), \text{ pour } n \geq 1. \text{ On a}$$

$$\underset{n \to +\infty}{\lim} F_n(u) = \lim_{n \to +\infty} f\left(\frac{u}{n}\right) e^{-u} \mathbb{I}_{[0,+\infty[}(u)) = f\left(\lim_{n \to +\infty} \frac{u}{n}\right) e^{-u} \mathbb{I}_{[0,+\infty[}(u))$$

$$\lim_{n \to +\infty} F_n(u) = \lim_{n \to +\infty} f\left(\frac{u}{n}\right) e^{-u} . \mathbb{I}_{[0,+\infty[}(u))$$

$$(f \text{ est continue}) = f\left(\lim_{n \to +\infty} \frac{u}{n}\right) e^{-u} . \mathbb{I}_{[0,+\infty[}(u)) (\mathbf{0.5 pt})$$

$$= f(0) e^{-u} . \mathbb{I}_{[0,+\infty[}(u)) . (\mathbf{0.5 pt})$$

$$\circledast |F_n(u)| \leq M.e^{-u}.\mathbb{I}_{[0,+\infty[}(u) = G(u) (\mathbf{0.5 pt}) \text{ et } G \in \mathcal{L}^1(\mathbb{R}).(\mathbf{0.25 pt})$$

Donc d'aprés le T.C.D.(0.5 pt) on a

$$\lim_{n \to +\infty} \int_{0}^{+\infty} f_{n}(t) dt = \lim_{n \to +\infty} \int_{\mathbb{R}} F_{n}(u) du$$

$$= \int_{\mathbb{R}} \lim_{n \to +\infty} F_{n}(u) du (\mathbf{0.5 pt})$$

$$= \int_{\mathbb{R}} f(0) e^{-u} . \mathbb{I}_{[0,+\infty[}(u) du = \int_{0}^{+\infty} f(0) e^{-u} du . (\mathbf{0.25 pt})$$

3- D'aprés (2) on a

$$\lim_{n \to +\infty} \int_{\mathbb{R}} f_n(t)dt = \int_{0}^{+\infty} f(0) e^{-u} du = f(0). (\mathbf{0.5 pt})$$

Exercice 3

$$\varphi: \mathcal{B} \longrightarrow \overline{\mathbb{R}}^+$$

$$B \longmapsto \varphi(B) = \mu(f^{-1}(B))$$

Pour montrer que φ est une mesure sur (Y, \mathcal{B}) , on vérifie par définition que $\circledast \varphi(\emptyset) = 0$.

- \circledast $\emptyset \in \mathcal{B}$ et f est une fonction mesurable, alors $\emptyset = f^{-1}(\emptyset) \in \mathcal{A}$ et $\varphi(\emptyset) = \mu(f^{-1}(\emptyset)) = \mu(\emptyset) = 0$. (0.5 **pt**)
- \circledast Soit $\{B_n\}_{n>0} \subset \mathcal{B}$ telle que $B_n \cap B_m = \emptyset$ pour $n \neq m$.

On a pour tout $n \in \mathbb{N}$, $B_n \in \mathcal{B}$ et f est une fonction mesurable, alors $f^{-1}(B_n) \in \mathcal{A}(\mathbf{0.5 pt})$. On a en plus

$$f^{-1}\left(\bigcup_{n\geq 0} B_n\right) = \bigcup_{n\geq 0} f^{-1}(B_n) \text{ et } f^{-1}(B_n) \cap f^{-1}(B_m) = \emptyset, \text{ si } n \neq m \, (\mathbf{0.5 \, pt}).$$

Par conséquent

$$\varphi\left(\bigcup_{n\geq 0} B_n\right) = \mu\left(f^{-1}\left(\bigcup_{n\geq 0} B_n\right)\right) = \mu\left(\bigcup_{n\geq 0} f^{-1}\left(B_n\right)\right) (\mathbf{0.5 pt})$$

$$(\mu \text{ est une mesure}) = \sum_{n\geq 0} \mu\left(f^{-1}\left(B_n\right)\right) (\mathbf{0.5 pt})$$

$$= \sum_{n\geq 0} \varphi\left(B_n\right) (\mathbf{0.5 pt})$$

Exercice 4 e $f(x,y) = \frac{1}{(1+x^2)(1+y)}$ sur $D = [0, +\infty[\times [a,b], \text{ où } -1 < a < b.$ 1- On a

- $* f(x,y) \ge 0, \text{pour tout } (x,y) \in D. (0.5 \text{ pt})$
- \circledast f est continue sur D(0.5 pt), alors elle est mesurable.(0.25 pt)

Donc d'aprés le Théorème de Fubini - Tonelli on a

$$\int_{D} f(x,y)dxdy = \int_{0}^{+\infty} \left[\int_{a}^{b} f(x,y)dy \right] dx = \int_{a}^{b} \left[\int_{0}^{+\infty} f(x,y)dx \right] dy. (\mathbf{0.5 pt})$$

$$\int_{a}^{b} \left[\int_{0}^{+\infty} f(x,y) dx \right] dy. = \int_{a}^{b} \frac{1}{1+y} \left[\int_{0}^{+\infty} \frac{dx}{1+x^{2}} \right] dy \left(\mathbf{0.5 pt} \right)$$

$$= \int_{a}^{b} \frac{1}{1+y} \left[Arctg \ x \right]_{x=0}^{x \to +\infty} dy \left(\mathbf{0.5 pt} \right)$$

$$= \frac{\pi}{2} \int_{a}^{b} \frac{dy}{1+y} \left(\mathbf{0.25 pt} \right) = \frac{\pi}{2} \left[\ln \left(1+y \right) \right]_{y=a}^{y=b}$$

$$= \frac{\pi}{2} \ln \left(\frac{1+b}{1+a} \right) . \left(\mathbf{0.5 pt} \right)$$

2- On a
$$\int_D f(x,y) dx dy < +\infty$$
, alors f est intégrable sur D . (0.5 pt)