Lista de exercícios

1 Compressão de Dados

- Q1 Calcule a taxa de compressão de: "ABABABACBABABABA".
- Q2 Utilize o resultado da compressão dos dados para representar: "ACCCCCCCC".
- Q3 Dado um texto qualquer, a compressão é única? Explique o porquê.
- Q4 \square A Lei de Benford é amplamente reconhecida como uma ferramenta eficaz para analisar dados e determinar sua autenticidade ou possíveis indícios de manipulação. Esta abordagem é frequentemente utilizada em diversos contextos, como em pesquisas, para avaliar a validade dos dados coletados. A Lei de Benford sugere que, em um conjunto de números autênticos, os dígitos mais significativos aparecem com uma probabilidade específica, indicando se os números refletem ou não a realidade.

Dígito									
Prob(%)	30.1	17.6	12.5	9.7	7.9	6.7	5.8	5.1	4.6

Posição	Cidade	Pop	Posição	Cidade	Pop
1	São Paulo, SP	12.33 M	26	João Pessoa, PB	809 k
2	Rio de Janeiro, RJ	$6.75~\mathrm{M}$	27	Jaboatão, PE	698 k
3	Brasília, DF	3.11 M	28	S. J. dos Campos, SP	729 k
4	Salvador, BA	$2.88~\mathrm{M}$	29	Ribeirão Preto, SP	711 k
5	Fortaleza, CE	$2.69~\mathrm{M}$	30	Uberlândia, MG	699 k
6	Belo Horizonte, MG	$2.52~\mathrm{M}$	31	Contagem, MG	668 k
7	Manaus, AM	$2.22~\mathrm{M}$	32	Sorocaba, SP	$666 \mathrm{\ k}$
8	Curitiba, PR	$1.95~\mathrm{M}$	33	Aracaju, SE	664 k
9	Recife, PE	$1.65~\mathrm{M}$	34	Feira de Santana, BA	$627 \mathrm{\ k}$
10	Porto Alegre, RS	1.48 M	35	Cuiabá, MT	618 k
11	Belém, PA	$1.49~\mathrm{M}$	36	Joinville, SC	597 k
12	Goiânia, GO	1.53 M	37	Juiz de Fora, MG	563 k
13	Guarulhos, SP	1.39 M	38	Londrina, PR	575 k
14	Campinas, SP	1.2 M	39	Niterói, RJ	515 k
15	São Luís, MA	1.1 M	40	Ap. de GO, GO	590 k
16	São Gonçalo, RJ	$1.05~\mathrm{M}$	41	Ananindeua, PA	$525 \mathrm{\ k}$
17	Maceió, AL	$1.02~\mathrm{M}$	42	Belford Roxo, RJ	502 k
18	Duque de Caxias, RJ	932 k	43	São João de Meriti, RJ	$473 \mathrm{\ k}$
19	Natal, RN	890 k	44	C. dos Goy., RJ	507 k
20	Teresina, PI	$868 \mathrm{\ k}$	45	Caxias do Sul, RS	516 k
21	S. B. do Campo, SP	$837 \mathrm{\ k}$	46	Santos, SP	$434 \mathrm{\ k}$
22	Nova Iguaçu, RJ	818 k	47	Betim, MG	$425 \mathrm{\ k}$
23	Campo Grande, MS	906 k	48	Olinda, PE	390 k
24	Osasco, SP	$696 \mathrm{\ k}$	49	S. J. do R. Preto, SP	$461 \mathrm{\ k}$
25	Santo André, SP	721 k	50	Diadema, SP	416 k

Com base na Lei de Benford, determine computacionalmente se os dados sobre a população das 50 maiores cidades do Brasil (a) obedecem a essa lei e (b) construa uma árvore de Huffman para comprimir dados que seguem esta lei.

2 Árvores AVL

Q5 Considere uma árvore AVL com iniciada apenas com o valor de 50. Realize o processo de inserção dos elementos na ordem indicada nesta árvore AVL.

$$X = \{35, 85, 48, 47, 24, 40, 69, 93, 31, 11, 77, 30, 74, 67, 87, 98, 40, 83, 18, 35\}$$

Após a inserção de cada número, realize o processo de balanceamento, indicando qual rotação foi necessária para balancear.

- Q6 Julgue a seguinte afirmação: "Toda árvore binária de busca cheia é necessariamente uma árvore AVL." Caso seja falso, mostre uma árvore biária de busca completa que não é AVL. Caso seja verdadeiro, explique em termos dos fatores de balanceamento.
- Q7 Julgue a seguinte afirmação: "Toda árvore AVL é necessariamente uma árvore binária de busca completa" Caso seja falso, mostre uma árvore AVL que não é Binária de busca completa. Caso seja verdadeiro, explique em termos dos fatores de balanceamento.
- Q8 Utilizando a árvore construída na questão Q5, realize o processo de remoção dos nós um a um, na mesma ordem que foi inserido. Realize o processo de rotação a cada momento que for necessário.

3 Árvore 23

Q9 Considere uma árvore 23 com iniciada apenas com o valor de 50. Realize o processo de inserção dos elementos na ordem indicada nesta árvore AVL.

$$X = \{12, 86, 68, 99, 82, 59, 65, 70, 16, 58, 40, 67, 22, 48, 59, 11, 52, 91, 65, 73\}$$

Após a inserção de cada número, realize o processo de balanceamento, garantindo que o nós folhas estejam sempre no último nível da árvore.

Q10 Julgue a seguinte afirmação, provando se é verdadeiro ou falso: "Uma árvore 23 com N chaves possui a altura maior com exatamente $\log_3(N)$ níveis".

Q11 Calcule:

- (a) A maior e menor quantidade de chaves que uma Árvore 23 com 10 níveis possui?
- (b) A maior e menor quantidade de nós que uma Árvore 23 com 10 níveis possui?
- (c) A altura de uma Árvore 23 com 10⁵ chaves?

4 HEAP

Q12 Considere uma HEAP como a mostrada logo abaixo para realizar as operações na ordem que são solicitadas:

$$HEAP = \{97, 88, 84, 72, 55, 44, 37, 30, 26, 12, 18, 20, 25, 14, 8, 10, 6, 15, 5, 9\}$$

- (a) Modifique a prioridade de 20 para 40;
- (b) Modifique a prioridade de 9 para 99;
- (c) Modifique a prioridade e 97 para 11;
- (d) Remova o elemento com maior prioridade;
- (e) Remova o elemento com maior prioridade;

Após cada operação certifique-se que a estrutura continua sendo uma HEAP.

Q13 Julgue as afirmações seguintes:

- (a) Toda HEAP-MAX é uma lista em ordem decrescente.
- (b) Toda lista em ordem decrescente é uma HEAP-MAX.
- (c) O menor elemento é o último elemento da lista.
- (d) Um elemento de um nível menor tem prioridade menor do que todos os de níveis acima.
- (e) A HEAP-MIN pode ser construída a partir de uma HEAP-MAX invertendo o vetor de prioridades.

Q14 Construa uma HEAP-MIN com os elementos inseridos na HEAP na ordem indicada:

$$X = \{92, 24, 67, 30, 61, 58, 36, 33, 14, 81, 55, 16, 26, 51, 39, 15, 82, 49, 90, 84\}$$

5 Tabela HASH

- Q15 Apresente o objetivo (pretensão) da tabela Hash e apresente o porquê as colisões dificultam essa estrutura alcançar este objetivo.
- Q16 Considere uma tabela Hash com 16 elementos e tratamento de colisão no formato de endereçamento aberto no formato com sondagem linear. Apresente a configuração final da tabela ao tentar inserir os elementos na ordem apresentada abaixo:

$$X = \{13, 12, 27, 77, 32, 16, 49\}$$

- Q17 Realize o mapeamento da chave 18 utilizando o método da multiplicação em uma tabela com apenas 8 posições. Em qual dessas 8 posições estará o elemento 18?
- Q18 Calcule mapeamentos dos valores:

$$\{61, 58, 36, 33, 14, 81, 55, 16, 26, 51, 39\}$$

- (a) Em uma tabela com 4 posições utilizando método da divisão e tratamento de colisão por endereçamento encadeado exterior;
- (b) Em uma tabela com 20 posições, utilizando o método da dobra e tratamento de colisão por encadeamento exterior com 8 valores primários e o restante para extensão.
- (c) Em uma tabela com 16 posições pelo método da multiplicação sem tratamento de colisão.