Resolución

Cristian Sáez Mardones

04-12-2020

Resolución

Pregunta 1

$$\vec{AB} = (0-1, 3-2) = (-1, 1)$$

Buscamos vector $\vec{CD} = (d_x - c_x, d_y - c_y)$ que cumpla que $(d_x - c_x, d_y - c_y) = (-1, 1)$

Así $d_x-c_x=-1 \Rightarrow d_x=c_x-1$, y $d_y-c_y=1 \Rightarrow d_y=1+c_y$, con esto buscamos un punto $(c_x,\ c_y)\in\mathbb{R}^2$

Si consideramos c=(0,0), tendremos $d=(0-1,\ 1+0) \Rightarrow d=(-1,1)$, con lo que podemos afirmar que el vector \vec{CD} es equivalente al vector \vec{AB} .

Pregunta 2

$$\vec{AB} = (6-3, -2-5) = (3, -7)$$

Ahora buscamo \vec{D} , tal que, $\vec{CD} = (d_x - (-1), d_y - 0) = (3, -7)$.

Así
$$d_x + 1 = 3 \Rightarrow d_x = 2 \text{ y } d_y = -7$$

Con lo que D = (2, -7)

Finalmente el vector equivalente resulta $\vec{CD} = (2 - (-1), -7 - 0) = (3, -7)$

Pregunta 3

Modulo: $|OA|^2 = 7^2 + (-5)^2 = 49 + 25 = 74 \Rightarrow |OA| = \sqrt{74}$

Ángulo del vector $tan(\alpha) = -\frac{5}{7} \Rightarrow \alpha = arctan(-\frac{5}{7}) = -0.62025$ radianes.

atan(-5/7)

[1] -0.6202495

Convertimos $-0.62025 \mathrm{rad} \cdot \frac{360^{\circ}}{2 \cdot \pi \mathrm{\ rad}} = -35.5377$, que es equivalente a 324.4623°

$$-0.62025 * 360 / (2 * pi)$$

[1] -35.53771

$$360 + (-0.62025 * 360 / (2 * pi))$$

[1] 324.4623

Pregunta 4

```
x = 8 \cdot cos(135^{\circ}) = 8 \cdot -0.7071 = -5.6568

y = 8 \cdot sen(135^{\circ}) = 8 \cdot 0.7071 = 5.6568

8 * -0.7071

## [1] -5.6568

8 * 0.7071
```

Pregunta 5