PRINCIPAL COMPONENT AWALYSIS (PCA).
(PCA).
What is PCA?
- Technique of dimensionality reduction of observed data.
- dimensionality reduction will degonde accuracy.
- But DR -> siplify the computation Maintain a borde-of between
Maintain a bronde- of between

Accuracy ~
Compulation Complexity
$\frac{\text{Revirin}}{-\varepsilon V} = \frac{1}{\varepsilon V} (x, SV, SVector)$ $\frac{\text{Cov}(x, y)}{\text{Cov}(x, y)} = \frac{1}{\varepsilon V} (x - \overline{x}) (y - \overline{y}) $ $\frac{\text{F}(x, y)}{\text{F}(x, y)} = \frac{1}{\varepsilon V} (x - \overline{x}) (y - \overline{y}) $
$Var(x) = E[(x-\overline{x})], \overline{x} = E(x)$
Covariance matrix
$= \left(\frac{\text{Cov}(\alpha, x)}{\text{cov}(\alpha, x)} \right)$
$= \left(\frac{\text{Cov}(\alpha, x)}{\text{Cov}(\alpha, y)} \frac{\text{Cov}(\alpha, y)}{\text{Cov}(\gamma, n)} \frac{\text{Cov}(\alpha, y)}{\text{Cov}(\gamma, y)} \right)$

Let, an observation datafrecter of 'm'- dimension (features) y=M+Wx data (observation) matrix with ignel Data Matrix ______ samples . n

Sympists 1-st m-dimensional data sample

mxn m-th m-dinensianel defa samble,

STEPS of PCA

6) After getting raw data, prepare the observation matrix.

1) After getting the data (observation) matrix

find the mean in all dimensions (for each

\[
\frac{7}{7} = \frac{12}{12} \frac{1}{11} + \frac{1}{12} + \fra

 $\frac{1}{2} = \frac{1}{2} \frac{2}{2} \frac{$

2) STANDORDIZATION!

Subtracting mean from each data accross each dimension. $\left(\begin{array}{c} \left(\begin{array}{c} y_{1} - \overline{y}_{1} \\ \end{array}\right) \left(\begin{array}{c} y_{1} - \overline{y}_{1} \\ \end{array}\right) \left(\begin{array}{c} y_{1} - \overline{y}_{1} \\ \end{array}\right) - \left(\begin{array}{c} y_{1} - \overline{y}_{1} \\ \end{array}\right) \right)$ $\left(y_{m}, -\overline{y}_{m}\right)$ $\left(\begin{array}{c} \chi_{m_n} - \overline{\chi}_{m} \end{array} \right)$

11- 10 -----110 post ()x

(3) malcuner au possible de l'amensions, and form the covariance matrix. n, 4, 2 C= COV = (Cov(Y₁, Y₁) cov(Y₁, Y₂) -- Cov(Y₁, Y_m) Cov(Y₂, Y₁) -- - cov(Y_m, Y_m) dependencies dimension Cov(Y_m, Y₁) -- - cov(Y_m, Y_m) Coveriance matern às always SPD. (mom A) find the Eigen rector (rei)
and Eigen values (2i) of coverable Choose components in non-decreasing order of eigen-values.

when $\frac{1}{\lambda_{1} > \lambda_{2} > - \lambda_{1} > \lambda_{2} > \lambda_{1} > \lambda_{1}}{\lambda_{1} > \lambda_{2} > - \lambda_{1} > \lambda_{1} > \lambda_{1}}$

(5) Find Featured vectors?

After arranging eigen-vectors according to non-increasing order of eigen-values, one can keep all the eigen-vectors or can discard less significant eigen-vectors (associated with smaller eigen-values) and form the remaining ones a matrix. This matrix (collection of pion-vectors of the emponents that are

to be kept) eigen-values eigen vectors certain eigen-vector, say: K'. Then, the featured Vector/matrix

MOTE:

PCA transforms data linearly into new properties that are not correlated with each other Le. PCs are uncorrelated as each of them associated with eigen * toincipal components are constructed in such a manner that the first (few) components) accounts (account) for the largest possible variances) in the data set.

SPD: SYMMETRIC POSITIVE DEFINITE
Mahir.

An nxn symmetric real (entris aure
An nxn symmetric real Centris aure matrix per is called positive definit.
If xTMx>0 + non-zero x in R"
$x^TMx>0+x\in \mathbb{R}^n\setminus\{0\}.$
3. Limensianal (variable/features) donta set with 4 observations (samples).
with 4 observations (samples).
jor Self 7 4 687 Canides the PCA and
Director Self 7 4 687 Camides the PCA and recent upto 2-dimenting Clark),
Observation.