IN THE SPECIFICATION:

Please insert the following new paragraph after the Title and before the first paragraph on page 1:

-- This application is the U.S. National Phase under 35 U.S.C. § 371 of International Application No. PCT/JP2004/000210, filed January 14, 2004, which in turn claims the benefit of Japanese Application No. 2003-337207, filed September 29, 2003, the disclosures of which Applications are incorporated by reference herein in their entirety. --

Please replace the paragraph beginning on page 4, line 14 and ending on page 4, line 23 with the following:

In order to achieve the object, the linear light source of the present invention includes: a square rod-shaped wiring board having a component side; a plurality of light emitting elements which are arranged on the component side of the wiring board at certain intervals along the longitudinal direction of the wiring board and die-bonded thereto; and a plurality of reflectors which are arranged at both sides of each of the light emitting elements on the component side of the wiring board such that the reflectors and the light emitting elements are arranged alternately; wherein the reflectors have opposing surfaces facing each other and the opposing surfaces of the reflectors are inclined such that the cross-sectional area of space the distance between the opposing surfaces increases in the direction of light emitted out of the light emitting element.

Please replace the paragraph beginning on page 6, line 17 and ending on page 7, line 3 with the following:

A method for manufacturing a linear light source according to the present invention includes the steps of: (a) die-bonding light emitting elements which are arranged on a component side of a wiring board at certain intervals; (b) providing, on the component side of the wiring board, a reflector plate which is configured such that reflectors are arranged at both sides of each of the light emitting elements and the opposing surfaces of the reflectors are inclined such that the cross-sectional area of space the distance between the opposing surfaces

increases in the direction of light emitted out of the light emitting element; (c) filling recesses, each of which is defined by the component side of the wiring board, the light emitting element and the opposing surfaces of the reflectors arranged at both sides of the light emitting element, with a light-transmissive resin sealant after the steps (a) and (b); and (d) cutting a square rod-shaped linear light source from the obtained product such that the reflectors are arranged at both sides of each of the light emitting elements to be arranged alternately with the light emitting elements. The order of the steps (a) and (b) may be altered.

Please replace the paragraph beginning on page 8, line 6 and ending on page 8, line 15 with the following:

As described above, according to the linear light source of the present invention, a plurality of light emitting elements are arranged on a narrow square rod-shaped wiring board at certain intervals along the longitudinal direction and die-bonded thereto. Therefore, the range of light distribution of the light emitting elements is enlarged irrespective of the packaging accuracy. Moreover, the reflectors are arranged at both sides of each of the light emitting elements such that the reflectors and the light emitting elements are arranged alternately and the reflectors have opposing surfaces inclined such that the cross-sectional area of space the distance between the opposing surfaces increases in the direction of light emitted out of the light emitting element. Therefore, the lights emitted from the light emitting elements are diffused to overlap each other.

Please replace the paragraph beginning on page 10, line 2 and ending on page 10, line 8 with the following:

FIG. 2A is an oblique view illustrating a plurality of light emitting elements arranged on a wiring board, FIG. 2B is an oblique view illustrating the light emitting elements which are diebonded, FIG. 2C is an oblique view illustrating the wiring board and a reflector plate to be adhered to the wiring board, FIG. 2D is an oblique view illustrating a partial enlargement of FIG. 2C, FIG. 3 2E is an oblique view illustrating a resin sealant filling a recess in the reflector plate and FIG. 2F is an oblique view illustrating how the cutting is carried out.

Please replace the paragraph beginning on page 11, line 4 and ending on page 11, line 17 with the following:

A linear light source according to the first embodiment of the present invention includes a plurality of light emitting elements arranged on a narrow square rod-shaped wiring board along the longitudinal direction thereof and reflectors arranged at both sides of each of the light emitting elements such that the light emitting elements and the reflectors are arranged alternately. The opposing surfaces of the reflectors are inclined such that the cross-sectional area of space the distance between the opposing surfaces increases in the direction of light emitted out of the light emitting element. Further, recesses, each of which is defined by the wiring board, light emitting element and reflectors, are filled with a light-transmissive resin sealant, thereby eliminating air layers from the recesses. Moreover, a strip-shaped reflection member is provided to cover a region ranging from the end face of the wiring board adjoining to the component side thereof to the ends of the reflectors. The rectangular faces of the resin seal layers sandwiched between the ends of the reflectors are flush with each other. The linear light source with the above-described structure achieves high luminance and fewer variations in luminance.

Please replace the paragraph beginning on page 13, line 2 and ending on page 13, line 17 with the following:

The reflectors 6 are obtained by cutting a reflector plate 60 including a plurality of ribs 61 in the form of a trapezoidal prism and a plurality of ribs 62 which are in the form of a substantially symmetrical trapezoidal prism shown in FIG. 2D such that the reflectors 6 are arranged at both sides of each of the light emitting elements 5, i.e., the reflectors 6 and the light emitting elements 5 are arranged alternately. The thickness of the thus cut reflectors 6 and the thickness of the narrow, square rod-shaped printed board 4 are substantially the same (for example, in the range of 0.3 to 1.0 mm). The surfaces 6a (opposing surfaces) of the reflectors 6 sandwiching the light emitting element 5 are inclined such that the cross-sectional area of space the distance between the inclined surfaces 6a increases in the direction of light emitted out of the light emitting element 5. Accordingly, the light from the light emitting element 5 is reflected from and diffused by the inclined surfaces 6a of the reflectors 6. Therefore, even if the light of

the emitting elements 5 is poor in luminance, the diffused rays of light overlap each other, thereby keeping the luminance as uniform as possible. The inclined surfaces 6a of the reflectors 6 are rectangular in shape. The angle of inclination may suitably be adjusted such that the variations in luminance are minimized.

Please replace the paragraph beginning on page 15, line 25 and ending on page 16, line 1 with the following:

Then, as shown in FIG. 2 1B, the reflection sheets 101 are arranged to cover regions ranging from the end faces of the printed board 4 (top and bottom surfaces) adjoining to the component side thereof to the tips of the inclined surfaces 6a of the reflectors 6, respectively.

Please replace the paragraph beginning on page 16, line 23 and ending on page 17, line 11 with the following:

According to the second embodiment of the present invention, the light exit faces of the die-bonded light emitting elements and the wiring board to which the light emitting elements are die-bonded are arranged parallel to the side surface of the light guide plate, thereby improving the efficiency in capturing light into the light guide plate. Moreover, two reflectors which are arranged at both sides of each of the light emitting elements are inclined such that the cross-sectional area of space the distance between the opposing surfaces increases toward the side surface of the light guide plate, thereby capturing the light of the light emitting element emitted along the longitudinal direction of the side surface of the light guide plate into the light guide plate. Further, recesses, each of which is defined by the wiring board, the light emitting element and the two reflectors, are filled with a resin sealant to eliminate air layers from the recesses. In addition, a plate-like reflection sheet is arranged to cover a region ranging from one of the light emitting surfaces of the light guide plate to the wiring board and a strip-shaped reflection sheet is arranged to cover a region ranging from the end of the other light emitting surface of the light guide plate to the wiring board. With the above-described structure, the luminance of the light emitting surface of the light guide plate improves and the luminance is kept uniform.

Please replace the paragraph beginning on page 19, line 15 and ending on page 19, line 26 with the following:

The reflectors 6 have inclined surfaces 6a which are arranged at both sides of each of the light emitting elements 5 and configured such that the cross-sectional area of space the distance between the inclined surfaces 6a increases toward the side surface of the light guide plate 2. Light from each of the light emitting elements 5 is reflected from and diffused by the inclined surfaces 6a of the reflectors 6 to enter the light guide plate 2 from the side surface. The light from the light emitting element 5 is diffused widely to travel into the light guide plate 2 through the side surface. Therefore, even if the light of the emitting elements 5 is poor in luminance, the diffused rays of light from the light emitting elements 5 overlap each other, thereby keeping the luminance of the linear light source 3 uniform. As a result, the luminance of the surface emission by the light guide plate 2 becomes almost uniform. The angle of inclination may suitably be adjusted as required such that the variations in luminance are eliminated.

Please replace the paragraph beginning on page 23, line 4 and ending on page 23, line 11 with the following:

Since the two reflectors are arranged at both sides of each of the light emitting elements and their opposing surfaces are inclined such that the cross-sectional area of space the distance between the opposing surfaces increases toward the side surface of the light guide plate, the light of the light emitting elements emitted along the longitudinal direction of the side surface of the light guide plate is captured into the light guide plate. Therefore, the distribution of light from the light source is freely adjusted by the reflectors, thereby eliminating the variations in luminance of the light guide plate improving the luminance of the light guide plate.