SEEM 5580: Homework 1

September 28, 2021

PROBLEM 1.1

Since N is a nonnegative integer-valued random variable, then we can obtain that

$$\begin{split} E[N] &= \sum_{k=0}^{\infty} k \cdot P\{N = k\} \\ &= \sum_{k=0}^{\infty} k \cdot [P\{N \geqslant k\} - P\{N \geqslant k + 1\}] \\ &= \sum_{k=1}^{\infty} P\{N \geqslant k\}; \end{split}$$

and also,

$$\begin{split} E[N] &= \sum_{k=0}^{\infty} k \cdot P\{N = k\} \\ &= \sum_{k=1}^{\infty} k \cdot [P\{N > k - 1\} - P\{N > k\}] \\ &= \sum_{k=0}^{\infty} P\{N > k\}. \end{split}$$

Now consider the case where X is nonnegative with distribution F. In this case

$$E[X^{n}] = \int_{0}^{\infty} x^{n} dF(x)$$

$$= \int_{0}^{\infty} \int_{0}^{x} ny^{n-1} dy dF(x)$$

$$= \int_{0}^{\infty} \int_{y}^{\infty} dF(x) ny^{n-1} dy$$

$$= \int_{0}^{\infty} nx^{n-1} \overline{F}(x) dx$$

where in the third equality we have used change of variables and Fubini-Tonelli theorem.

PROBLEM 1.2

(a) First,

$$P\{F(X) \le F(x)\} = P\{X \le x\} = F(x),$$

where the first equality is established because distribution function F is non-decreasing and right-continuous. Now let Z = F(X), z = F(x), then $0 \le z \le 1$ and we have

$$P\{Z \le z\} = z.$$

Then it can be easily obtained that the probability density function of random variable Z is

$$f(z) = 1, 0 \le z \le 1,$$

which means that the random variable F(X) is uniformly distributed over (0,1).

(b) First, since distribution function F is non-decreasing and right-continuous, then its inverse function F^{-1} is also non-decreasing and right-continuous. Thus, we have

$$P\{F^{-1}(U) \le F^{-1}(u)\} = P\{U \le u\} = u = F[F^{-1}(u)],\tag{1}$$

where the second last equality holds because U is a uniform (0,1) random variable, and the last equality holds because the property of inverse function. Equation (1) proves that $F^{-1}(U)$ has distribution F.

PROBLEM 1.3

Since X_n is a binomial random variable with parameters (n, p_n) , then

$$P\{X_n=i\}=\frac{n!}{(n-i)!i!}p_n^i(1-p_n)^{n-i}.$$

Since $np_n \to \lambda$ as $n \to \infty$, then it is implied that $p_n \to 0$ as $n \to \infty$. Thus, we obtain that as $n \to \infty$,

$$(1-p_n)^{n-i} = (1-p_n)^n (1-p_n)^{-i} \sim (1-p_n)^n \sim e^{-np_n} \to e^{-\lambda},$$

Also

$$\frac{n!}{(n-i)!}p_n^i = \frac{n(n-1)\cdots(n-i+1)(n-i)!}{(n-i)!}p_n^i \sim (np_n)^i \to \lambda^i, \quad as \quad n \to \infty,$$

Therefore, we can conclude that if $np_n \to \lambda$ as $n \to \infty$, then

$$P\{X_n = i\} \to e^{-\lambda} \lambda^i / i!$$
 as $n \to \infty$.

PROBLEM 1.8

Let X_1 and X_2 be independent Poisson random variables with means λ_1 and λ_2 .

(a) We apply moment generating function to derive the distribution of $X_1 + X_2$. The moment generating function of $X_1 + X_2$ is

$$\psi_{X_1+X_2}(t) = E[e^{t(X_1+X_2)}]$$

$$= E[e^{tX_1}]E[e^{tX_2}]$$

$$= \psi_{X_1}(t)\psi_{X_2}(t)$$

$$= exp\{(\lambda_1 + \lambda_2)(e^t - 1)\}.$$

where the second equality is derived by independence of X_1 and X_2 , and the last equality is derived from the definition of moment generating function of Poisson random variables. Thus the moment generating function of $X_1 + X_2$ is that of a Poisson random variable with mean $\lambda_1 + \lambda_2$. By uniqueness, this is the distribution of $X_1 + X_2$.

(b) The probability mass function of X_1 given $X_1 + X_2 = n$ is

$$\begin{split} P\{X_1 = x_1 | X_1 + X_2 = n\} &= \frac{P\{X_1 = x_1, X_2 = n - x_1\}}{P\{X_1 + X_2 = n\}} \\ &= \frac{P\{X_1 = x_1\} P\{X_2 = n - x_1\}}{P\{X_1 + X_2 = n\}} \\ &= \frac{\lambda_1^{x_1} \lambda_2^{n - x_1} n!}{(\lambda_1 + \lambda_2)^n x_1! (n - x_1)!} \\ &= C_n^{x_1} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^{x_1} \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{n - x_1}. \end{split}$$

PROBLEM 1.16

(a)

$$P(X \le x) = P\left(Y \le x \middle| U \le \frac{f(Y)}{cg(Y)}\right)$$

$$= \frac{P\left(Y \le x, U \le \frac{f(Y)}{cg(Y)}\right)}{P\left(U \le \frac{f(Y)}{cg(Y)}\right)}$$
(2)

Since U is uniformly distributed on (0,1), the denominator in (2) is given by:

$$P\left(U \le \frac{f(Y)}{cg(Y)}\right) = \int_{R} \frac{f(t)}{cg(t)} g(t) dt = \frac{1}{c}$$
(3)

Making this substitution in (2), we find that:

$$P(X \le x) = cP\left(Y \le x, U \le \frac{f(Y)}{cg(Y)}\right) = c\int_{-\infty}^{x} \frac{f(t)}{cg(t)}g(t)dt = \int_{-\infty}^{x} f(t)dt \tag{4}$$

Since x is arbitrary, this verifies that X has density function f.

(b) In fact, Equation (3) shows that the probability of acceptance on each attempt is 1/c. Because the attempts are mutually independent, the number of iterations of the algorithm needed to generate X is geometrically distributed with mean c.

PROBLEM 1.25

Clearly, we have $M_0 = M_k = 0$ and condition on the first gamble we have $M_n = \frac{1}{2}M_{n-1} + \frac{1}{2}M_{n+1} + 1$. So we have:

$$M_1 = M_2 - M_1 + 2 = M_3 - M_2 + 4 = M_4 - M_3 + 6 = \dots = M_k - M_{k-1} + 2(k-1)$$

By symmetry, we know $M_1 = M_{k-1}$, so $M_1 = M_{k-1} = k-1$ and $M_2 = 2M_1 - 2 = 2(k-2)$. By induction, suppose M_i , i = 1, 2, ... n-1 satisfying $M_i = i(k-i)$. Then $M_n = 2M_{n-1} - M_{n-2} - 2 = 2(n-1)(k-n+1) - (n-2)(k-n+2) - 2 = n(k-n)$.

PROBLEM 1.29

First, we can easily see that X_i itself is a gamma distribution with parameters $(1,\lambda)$. Then by induction, it would suffice to show that a gamma $(1,\lambda)$ plus an independent gamma (s,λ) is a gamma distribution with parameters $(s+1,\lambda)$. Now let X is gamma $(1,\lambda)$, Y is gamma (s,λ) , and X and Y are independent. So

$$f_X(x) = \lambda e^{-\lambda x}, f_Y(y) = \frac{\lambda e^{-\lambda y} (\lambda y)^{s-1}}{(s-1)!}, \quad t \ge 0.$$

Since *X* and *Y* are independent, therefore,

$$f_{X+Y}(t) = \int_0^t f_X(t-y) f_Y(y) dy = \int_0^t \lambda e^{-\lambda(t-y)} \frac{\lambda e^{-\lambda y} (\lambda y)^{s-1}}{(s-1)!} dy = \frac{\lambda e^{-\lambda t} (\lambda t)^s}{s!}.$$

Thus X + Y follows a gamma distribution with parameters $(s + 1, \lambda)$. Therefore, using this result, it is easy to show that $\sum_{i=1}^{n} X_i$ has a gamma distribution with parameters (n, λ) .