CHAPTER 1

TOPOLOGICAL SPACES

1.1. Topology, Open Sets, closed sets and clopen sets.

Definition 1.1.1.

 $X \neq \emptyset, \tau \subset \mathcal{P}(X) \Rightarrow$

(a) τ is a topology on $X \Leftrightarrow \tau$ satisfies [01] - [03].

Where:

 $[\mathbf{0}\mathbf{1}] X, \emptyset \in \tau$.

 $[02] \forall G_i \in \tau, i \in I; (\cup_{i \in I} G_i) \in \tau.$

 $[03] [03] \forall G_1, G_2 \in \tau; (G_1 \cap G_2) \in \tau.$

- (b) Members of τ are the open sets. [i. e., G is open set \Leftrightarrow G $\in \tau$.]
- (c) (X, τ) is a topological space.
- (d) F is a closed set [denoted $F \in \tau^*$] $\Leftrightarrow F^c$ is open set.

Remark 1.1.2.

In (X, τ) :

- (1) $\tau \equiv \{all\ open\ sets\}$. (2) $\tau^* \equiv \{all\ closed\ sets\}$.
- (3) $\tau \cap \tau^* \equiv \{all\ clopen\ sets\}.$

Example 1.1.3.

Show that:

(a) $X = \{a, b, c, d, e, f\}, \tau_1 = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e, f\}\}$

 $\Rightarrow \tau_1$ is a topology on X.

(b) $X = \{a, b, c, d, e\}, \tau_2 = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, e\}, \{b, c, d\}\}$

 $\Rightarrow \tau_2$ is not topology on X.

(c)
$$X = \{a, b, c, d, e, f\}, \tau_3 = \{X, \emptyset, \{a\}, \{f\}, \{a, f\}, \{a, c, f\}, \{b, c, d, e, f\}\}$$

$$\tau_3 = \{X, \emptyset, \{a\}, \{f\}, \{a, f\}, \{a, c, f\}, \{b, c, d, e, f\}\}.$$

 $\Rightarrow \tau_3$ is not topology on X.

Answer.

- (a) τ_1 satisfies [01] [03].
- (b) τ_2 does not satisfy [02].

$$[\exists \{c,d\}, \{a,c,e\} \in \tau_2, s.t.\{c,d\} \cup \{a,c,e\} = \{a,c,d,e\} \notin \tau_2.]$$

(c) τ_3 does not satisfy [03].

$$[\exists \{a,c,f\},\{b,c,d,e,f\} \in \tau_3, s.t.\{a,c,f\} \cap \{b,c,d,e,f\} = \{c,f\} \notin \tau_3.]$$

Remark 1.1.4.

In (X, τ_1) :

$$\tau_1 = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e, f\}\} \equiv \{all\ open\ sets\}.$$

$$\tau_1^* = \{\emptyset, X, \{b, c, d, e, f\}, \{a, b, e, f\}, \{b, e, f\}, \{a\}\} \equiv \{all\ closed\ sets\}.$$

$$\tau_1 \cap \tau_1^* = \{X, \emptyset, \{a\}, \{b, c, d, e, f\}\} \equiv \{all\ clopen\ sets\}.$$

Note that:

- (i) $A = \{b, c, d, e, f\} \in \tau_1 \cap \tau_1^* \Rightarrow A \ clopen \ set.$
- (ii) $B = \{c, d\} \in \tau_1$, $B = \{c, d\} \notin \tau_1^* \Rightarrow B$ is open set but not closed.
- (iii) $C = \{b, e, f\} \notin \tau_1, C = \{b, e, f\} \in \tau_1^* \Rightarrow C \text{ is closed set but not open.}$
- (iv) $D = \{b\} \notin \tau_1$, $D = \{b\} \notin \tau_1^* \Rightarrow D$ is neither open set nor closed.

Example 1.1.5.

$$au_4 = \{ \mathbb{N} \text{ , } G \subset \mathbb{N} \text{: } G \text{ is a finite set} \} \subset \mathcal{P}(\mathbb{N}).$$

Show that: τ_4 is not topology on \mathbb{N} .

Answer.

 $\exists \{2\}, \{3\}, \{4\}, \{5\}, \ldots \in \tau_4, \ s.t. \ \{2\} \cup \{3\} \cup \{4\} \cup \ldots = (\mathbb{N} \setminus \{1\}) \notin \tau_4.$ $\tau_4 \ does \ not \ satisfy \ [02] \Rightarrow \tau_4 \ is \ not \ topology \ on \ \mathbb{N}.$

Example 1.1.6.

$$\tau_5 = \{\emptyset \text{ , } G \subset \mathbb{Z} : G \text{ is an infinite set}\} \subset \mathcal{P}(\mathbb{N}).$$

Show that: τ_5 is not topology on \mathbb{Z} .

Answer.

$$\exists \ G_1 = \{..., -2, -1, 0\}, G_2 = \{-2, -1, 0, 1, ...\} \in \tau_5, s. t.,$$

$$G_1 \cap G_2 = \{-2, -1, 0\} \notin \tau_5.$$

 τ_5 does not satisfy [03] $\Rightarrow \tau_5$ is not topology on \mathbb{Z} .

Definition 1.1.7.

 $X \neq \emptyset$, $\mathcal{D} = \mathcal{P}(X) \Rightarrow \mathcal{D}$ is a topology on X.

[It is named the discrete topology on X and

 (X, \mathcal{D}) is a discrete space.

Remark 1.1.8.

In (X, \mathcal{D}) : $\mathcal{D} = \mathcal{D}^* = \mathcal{P}(X) \Rightarrow \forall A \subset X, A \text{ is a clopen set.}$

Proposition 1.1.9.

In (X, τ) : $\tau = \mathcal{D} \Leftrightarrow \forall x \in X, \{x\} \in \tau$.

Proof.

$$(\Rightarrow) \tau = \mathcal{D}, x \in X \Rightarrow \{x\} \in \mathcal{P}(X) = \mathcal{D} = \tau \Rightarrow \forall x \in X, \{x\} \in \tau.$$

$$(\Leftarrow) \ \forall \ x \in X, \{x\} \in \tau, A \in \mathcal{D} = \mathcal{P}(X) \Rightarrow A = \bigcup_{x \in A} \{x\} \in \tau \ (By \ [02])$$

$$\Rightarrow \forall A \in \mathcal{D}, A \in \tau \Rightarrow \mathcal{D} \subset \tau \subset \mathcal{P}(X) = \mathcal{D} \Rightarrow \tau = \mathcal{D}.$$

Definition 1.1.10.

 $X \neq \emptyset, \mathcal{I} = \{X, \emptyset\} \subset \mathcal{P}(X) \Rightarrow \mathcal{I} \text{ is a topology on } X.$

[It is named the indiscrete topology on X and

 (X, \mathcal{I}) is an indiscrete space.

Remark 1.1.11. In (X, \mathcal{I}) : $\mathcal{I} = \mathcal{I}^* = \{X, \emptyset\} \Rightarrow$

- (i) The only clopen sets are X, \emptyset .
- (ii) $\forall A \subset X \text{ s.t. } \emptyset \neq A \neq X$; A neither open set nor closed.

Proposition 1.1.12.

 τ_1, τ_2 two topologies on $X \Rightarrow (\tau_1 \subset \tau_2 \Leftrightarrow \tau_1^* \subset \tau_2^*)$.

Proof.

$$(\Rightarrow) \ \tau_1 \subset \tau_2, F \in \tau_1^* \Rightarrow F^c \in \tau_1 \subset \tau_2 \Rightarrow F^c \in \tau_2 \Rightarrow F^{c \ c} = F \in \tau_2^* \Rightarrow \tau_1^* \subset \tau_2^*.$$

$$(\Leftarrow)\ \tau_1^* \subset \tau_2^*, G \in \tau_1 \Rightarrow G^c \in \tau_1^* \subset \tau_2^* \Rightarrow G^c \in \tau_2^* \Leftrightarrow G^{c\ c} = G \in \tau_2 \Rightarrow \tau_1 \subset \tau_2.$$

Remark 1.1.13.

In
$$(X, \tau)$$
: (i) $\mathcal{J} \subset \tau \subset \mathcal{D}$. (ii) $\mathcal{J}^* \subset \tau^* \subset \mathcal{D}^*$.

Proposition 1.1.14.

 $X \neq \emptyset, \tau_f = \{\emptyset, G \subset X : G^c \text{ is finite}\} \subset \mathcal{P}(X) \Rightarrow \tau_f \text{ is a topology on } X.$

[It is named the the co - finite topology on X and

 (X, τ_f) is a co-finite space.]

Proof.

It is required to prove that τ_f satisfies [O1] – [O3].

[O1] $\emptyset \in \tau_f$, by definition and $X \subset X$ s.t. $X^c = \emptyset$ is finite $\Rightarrow X, \emptyset \in \tau_f$.

[O2]
$$G_i \in \tau_f$$
, $i \in I \Rightarrow G_i^c$ is finite, $i \in I \Rightarrow (\cup_i G_i)^c = \cap_i G_i^c$ is finite \Rightarrow $(\cup_i G_i) \in \tau_f$.

[O3] $G_1, G_2 \in \tau_f \Rightarrow G_1^c, G_2^c$ are finite $\Rightarrow (G_1, \cap G_2)^c = G_1^c \cup G_2^c$ is finite $\Rightarrow (G_1 \cap G_2) \in \tau_f$.

Remark 1.1.15.

In (X, τ_f) : (a) $G \in \tau_f \Leftrightarrow G = \emptyset$ or G^c is finite.

(b) $F \in \tau_f^* \Leftrightarrow F = X \text{ or } F \text{ is finite.}$

Example 1.1.16.

In the *co-finite space* (\mathbb{N}, τ_f) :

- (i) $\tau_f \cap \tau_f^* = \{\mathbb{N}, \emptyset\} \Rightarrow$ The only clopen sets are \mathbb{N} and \emptyset .
- (ii) $A = \{5, 6, 7, ... \} \in \tau_f$, $A \notin \tau_f^* \Rightarrow A$ is an open set but not closed.
- (iii) $B = \{2, 5, 13\} \notin \tau_f, B \in \tau_f^* \Rightarrow B \text{ is closed set but not open.}$
- (iv) $C = \{1, 3, 5, ...\} \notin \tau_f, C \notin \tau_f^* \Rightarrow C$ is neither open set nor closed.

Example 1.1.17.

Give an example for a topological space (X, τ) in which:

$$G_i \in \tau, i \in I \Rightarrow (\cap_i G_i) \in \tau.$$

Answer.

(a) Let $\tau = \{\emptyset, G_r = (-r, r) \subset \mathbb{R}: r > 0\}$. Then τ is a topology on \mathbb{R} .

In (\mathbb{R}, τ) : $G_r \in \tau \ \forall \ r > 0$. But $\cap_r G_r = \{0\} \notin \tau$.

(b) In
$$(\mathbb{N}, \tau_f)$$
: Let $G_n = \{1\} \cup \{n+1\} \cup \{n+2\} \cup \{n+3\} \cup \dots$

$$[G_1 = \mathbb{N}, G_2 = \{1, 3, 4, \dots\}, G_3 = \{1, 4, 5, \dots\}, G_4 = \{1, 5, 6, \dots\}, \dots]$$

$$\Rightarrow G_1^c = \emptyset, G_2^c = \{2\}, G_3^c = \{2, 3\}, G_4^c = \{2, 3, 4\}, \dots$$
 finite sets.

$$\Rightarrow G_1^c = \emptyset, G_2^c = \{2\}, G_3^c = \{2, 3\}, G_4^c = \{2, 3, 4\}, \dots \dots \in \tau_f^*.$$

$$\Rightarrow$$
 $G_n \in au_f$, $\forall n \in \mathbb{N}$. $But G = (\cap_n G_n) = \{1\} \notin au_f$.

[Since $G^c = \mathbb{N} \setminus \{1\}$ not finite.]

Proposition 1.1.18.

If (X, τ_f) satisfying: $\tau_f \cap \tau_f^*$ contains at least three clopen sets, then

(i) X is a finite set.

$$(ii) \tau_f = \mathcal{D}.$$

Proof.

(i)
$$\exists A \subset X$$
, s. t. $\emptyset \neq A \neq X$ and $A \in \tau_f \cap \tau_f^* \Rightarrow A$, $A^c \in \tau_f \cap \tau_f^*$

$$\Rightarrow$$
 A, A^c finite \Rightarrow $X = A \cup A^c$ finite.

(ii)
$$G \in \mathcal{D} = \mathcal{P}(X) \Rightarrow G, G^c \ finite \Rightarrow G^c \in \tau_f^* \Rightarrow G \in \tau_f$$

$$\Rightarrow \mathcal{D} \subset \tau_f \Rightarrow \tau_f = \mathcal{D}.$$

Proposition 1.1.19.

In (X, τ) ; τ^* satisfies :

[C1] \emptyset , $X \in \tau^*$.

[C2]
$$F_i \in \tau^*$$
, $i \in I \Rightarrow (\bigcap_{i \in I} F_i) \in \tau^*$.

[C3]
$$F_1, F_2 \in \tau^* \Rightarrow (F_1 \cup F_2) \in \tau^*$$
.

Proof:

[C1]
$$X, \emptyset \in \tau \Rightarrow X^c = \emptyset, \emptyset^c = X \in \tau^*$$
.

[C2]
$$F_i \in \tau^*$$
, $i \in I \Rightarrow F_i^c \in \tau$, $i \in I \Rightarrow (\cup_i F_i^c) = (\cap_i F_i)^c \in \tau \Rightarrow (\cap_i F_i) \in \tau^*$.

[C3]
$$F_1, F_2 \in \tau^* \Rightarrow F_1^c, F_2^c \in \tau \Rightarrow (F_1^c \cap F_2^c) = (F_1 \cup F_2)^c \in \tau$$

$$\Rightarrow$$
 $(F_1 \cup F_2) \in \tau^*$.

Remark 1.1.20.

[Proposition1.1.13: $X \neq \emptyset$, $\tau_f = \{\emptyset, G \subset X : G^c \text{ is finite}\} \subset \mathcal{P}(X) \Rightarrow$

 τ_f is a topology on X.] has another proof: We show that

$$\tau_f^* = \{X, F \subset X : F \text{ is finite}\}$$

satisfies [C1] - [C3].

[C1] $X \in \tau_f^*$, by definition and $\emptyset \subset X$ s.t. \emptyset is finite.

[C2] $F_i \in \tau_f^*$, $i \in I \Rightarrow F_i$ finite, $i \in I \Rightarrow (\cap_i F_i)$ finite $\Rightarrow (\cap_i F_i) \in \tau_f^*$.

[C3] $F_1, F_2 \in \tau^* \Rightarrow F_1, F_2 \text{ finite } \Rightarrow (F_1 \cup F_2) \text{ finite } \Rightarrow (F_1 \cup F_2) \in \tau^*$.

[C1] - [C3] $\Rightarrow \tau_f = \{\emptyset, G \subset X : G^c \text{ is finite}\}\$ is a topology on X.