Grammar

- Ambiguity
- · Precedence and associativity

Equivalent

How to prove L(G1) = L(G2)?

- Simplify
- · Chomsky normal form
- Push down automata

Parsing (Terminal) Left to right

-	Leftmost	Rightmost Derivation
	Top-down	Bottom-up
	Recursive Descent, LL(1)	LR(0), SLR(1), LR(1)
	Predict-match	Shift-reduce [deterministic]

LL(1)

- Why M?
 - o why First Set, Follow Set?
- And how to write the above formally?
- Why it has non-determinism for some Grammar?
 - Left recursion

$$A \Rightarrow^+ A\alpha$$

- o Add EOF to S
- ∘ Add extra D = then C | epsilon

LR(0)

- Why it has non-determinism for some Grammar?
 - o shift-reduce conflict
 - lacksquare both shift A o lphaullet aeta and reduce B o etaullet , $A,B\in N$
 - lacksquare and no matter whether $a \in FOLLOW(B)$ in an NFA state set.

$$S \to L^{\bullet} := R$$

$$R o L^ullet$$

- o reduce-reduce conflicts
 - see below
- NFA

SLR(1)

- LR(0) table structure
 - same parser operation (shift/ reduce)
 - o one token of lookahead
 - to arbitrate among shift-reduce conflicts
 - DFA (less non-determinism allowed)
- How to construct a Full DFA?
 - Do it directly with epsilon closure. ✓
 - Power set / subset construction for converting NFAs to DFAs. (Time consuming)
- Why it has non-determinism for some Grammar?
 - o shift-reduce
 - lacksquare both shift A o lphaullet aeta and reduce B o etaullet , $A,B\in N$
 - lacksquare and $a \in FOLLOW(B)$ in an NFA state set.

$$S o L^ullet := R$$

$$R
ightarrow L^ullet, (:=) \in FOLLOW(R)$$

- o reduce-reduce
 - lacksquare both $\mathit{reduce}\:A olphaullet$ and $\mathit{reduce}\:B oetaullet$, $A,B\in N$
 - lacksquare and $\exists a.a \in FOLLOW(A)$ and $a \in FOLLOW(B)$ in an NFA state.
 - In particular, hold if A=B.

LR(1)

- ullet shift A o lphaullet aeta, b and reduce B o etaullet, b
 - \circ **reduce** only if the next token is exactly terminal b as $b \in first(B)$ rather than any of those in Follow(B) in SLR(1) parsing.

$$R o L^ullet, b$$

$$S o L^ullet := R, b$$

• but causing more complex DFA

More in Formal Model of Language

- Earley Parser
- Chart Parsing

- Dependency Grammar/Parsing
- Categorical Grammar/Parsing