Problem 6a & 6b

Let
$$A = \{x \in \mathbb{Z} \mid x = 5a + 2 \text{ for some integer } a\}$$
, $B = \{y \in \mathbb{Z} \mid y = 10b - 3 \text{ for some integer } b\}$, $C = \{z \in \mathbb{Z} \mid z = 10c + 7 \text{ for some integer } c\}$.

Prove or disprove each of the following statements.

a. $A \subseteq B$ False

Disproof. $12 \in A$ since 12 = 5(2) + 2 but $12 \notin B$ since $12 = 10b - 3 \iff 15 = 10b$ for some integer b but $10 \nmid 15$.

b. $B \subseteq A$ True

Proof. Let $x \in B$ then $x \in \mathbb{Z} \ni x = 10b - 3$ for some integer b.

$$x = 10b - 3$$

= 5(2b - 1) + 2 by algebra

Let a=2b-1. $a\in\mathbb{Z}$ by the closure of integers by addition and multiplication. So x=5a+2 where $a\in\mathbb{Z}$. $\therefore x\in A$.

Problem 32b

Suppose
$$X = \{a, b\}$$
 and $Y = \{x, y\}$. Find $\mathcal{P}(X \times Y)$

$$X \times Y = \{(a, x), (a, y), (b, x), (b, y)\}$$

$$\mathcal{P}(X \times Y) = \{\emptyset, \{(a, x)\}, \{(a, y)\}, \{(b, x)\}, \{(b, y)\}, \{(a, y), (a, x)\}, \{(b, x), (a, x)\}, \{(b, y)\}, (a, x), \{(b, x), (a, y)\}, \{(b, y), (a, y)\}, \{(b, y), (a, y)\}, \{(b, y), (a, y), (a, x)\}, \{(b, y), (a, y), (a, x)\}, \{(b, y), (b, x), (a, x)\}, \{(b, y), (b, x), (a, y)\}, \{(b, y), (b, x), (a, y)\}, \{(a, x), (a, y), (b, x), (b, y)\}$$