ФОРМУЛЫ ФИЗИКА ЕГЭ

МЕХАНИКА

1	1-й закон Ньютона	F=0 (при $v=const=0$)	<i>F</i> [H]
2	2-й закон Ньютона	F = ma	$m[кг]$ $a[м/c^2]$
3	3-й закон Ньютона	$F_1 = F_2$	
4	Сила Тяжести	$F_{\scriptscriptstyle \mathrm{T}} = mg$	$g = 10 \text{ m/c}^2$
5	Сила Трения	$F_{\mathrm{Tp}} = \mu N = \mu mg$	μ[-]
6	Сила упругости	$F_{\text{ynp}} = kx$	$k\begin{bmatrix} \frac{H}{M} \end{bmatrix}$ $x[M]$
7	Сила Притяжения (ЗВТ)	$F_{\rm np} = G \frac{Mm}{R^2}$	M
8	Кинетическая энергия	$F_{\text{np}} = G \frac{Mm}{R^2}$ $E_k = \frac{mv^2}{2}$	[Дж]
9	Потенциальная энергия	$E_{\pi} = mgh$	[Дж]
10	Импульс (две формулы)	$p = mv$ $Ft = \Delta p$	p [кг · м/с] вектор! $\Delta p = p_2 - p_1$
11	ЗСИ	Сумма импульсов до удара равна сумме импульсов после	Уравнения пишут в проекциях!
12	3СЭ	$mgh = \frac{mv^2}{2}$	Когда бросок или горка
13	Работа	$A = FScos\alpha$	A[Дж] $S[м]$
14	Мощность	$N = \frac{A}{t} = Fv$	<i>N</i> [B _T]
15	Рычаг	$F_1 l_1 = F_2 l_2$	«Правило моментов»
16	Момент силы	M = Fl	$M[ext{H} \cdot ext{M}]$ F и l перпенд
17	Давление (две формулы)	$P = \frac{F}{S} \qquad P_{\mathcal{K}} = \rho_{\mathcal{K}} g h$	<i>P</i> [Па]
18	Плотность	$P = \frac{F}{S} \qquad P_{\mathcal{K}} = \rho_{\mathcal{K}} g h$ $\rho = \frac{m}{V}$	ρ [$\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$] V [M^3]
19	Сила Архимеда	$F_A = ho_{lpha} g V_{\scriptscriptstyle m T}$	$\sim mg$
20	Матем. маятник (нитяной)	$T=2\pi\sqrt{\frac{l}{g}}$	Леди Гага
21	Пружинный маятник	$T=2\pi\sqrt{\frac{m}{k}}$	Московский Кремль
22	Потенциальная энергия пружины	$E_{\Pi} = \frac{kx^2}{2}$ $v = \frac{1}{T} T = \frac{1}{v}$	x = A [M] $T = 4A$
23	Частота и период	$\nu = \frac{1}{T} \qquad T = \frac{1}{\nu}$	$[\Gamma \mathbf{u}] = [c^{-1}]$
24	Скорость волны	$v = \nu \lambda$	$oldsymbol{v} = rac{oldsymbol{\lambda}}{T}$
25	Равноускоренное движение	$S = v_0 t + \frac{at^2}{2}$	Не зависит от массы!
		$S = \frac{v^2 - v_0^2}{2a} \qquad S = \frac{v + v_0}{2}t$	
26	Ускорение и скорость	$a = \frac{v - v_0}{t} \qquad v = v_0 + at$	
27	Движение по окружности	$a = \frac{v - v_0}{t} \qquad v = v_0 + at$ $a_{\parallel} = \frac{v^2}{R} \qquad v = \frac{2\pi R}{T} \qquad \omega_{\text{YFM}} = \frac{v}{R}$	$oldsymbol{\omega}_{ ext{yr}_{ extsf{T}}}$ [рад/с]

ЭЛЕКТРОДИНАМИКА

28	Сила Ампера	$F_A = BIlsin\alpha$	Правило левой руки
29	Сила Лоренца	$F_{\pi} = Bqvsin\alpha$	Правило левой руки
30	Закон Кулона	$F = k \frac{q}{R^2} = qE$	F[H] q[Кл]
31	Напряжённость	$E = k \frac{q}{R^2}$	<i>E</i> [H/M]
32	Емкость конденсатора (две формулы)	$C = \frac{q}{U} = \frac{\varepsilon \varepsilon_0 S}{d}$ $I = \frac{q}{t}$	[Ф] - фарады
33	Сила тока (по опр.)	$I = \frac{q}{t}$	[A]
34	Сопротивление (по опр.)	$R = \frac{\rho l}{S}$ $U = \frac{A}{S}$	[Om]
35	Напряжение (по опр.)	$U = \frac{A}{q}$	[B]
36	Закон Ома для участка	$I = \frac{U}{R}$	U I R
37	Закон Ома для полной	$I = \frac{\varepsilon}{R+r}$	ε,r + R
38	Мощность тока	$P = UI = I^2R = \frac{U^2}{R}$	[Вт]
39	Работа и теплота тока	$A = Q = UIt = I^2Rt = \frac{U^2}{R}t$ $U_2 = U_1 + U_2 \qquad I_3 = I_4 = I_4$	[Дж]
40	Последовательное соед.	$U_0 = U_1 + U_2$ $I_0 = I_1 = I_2$ $I_0 = R_1 + R_2$	U_1 U_2 R_1 R_2 I
41	Параллельное соед.	$U_0 = U_1 = U_2 \qquad I_0 = I_1 + I_2$ $\frac{1}{R_o} = \frac{1}{R_1} + \frac{1}{R_2}$	$\begin{array}{c c} U \\ \hline I_1 & R_1 \\ \hline I_2 & R_2 \\ \end{array}$
42	ЭДС (три формулы)	$E = \frac{\Delta \Phi}{\Delta t} = \frac{BS \cos \alpha}{\Delta t} = B v l$	
43	ЭДС самоиндукции	$E_s = L \frac{\Delta I}{\Delta t}$	Только когда ток меняется
44	Магнитный поток (две формулы)	$\Phi = BScos\alpha \Phi = LI$	Ф [Вб] Вебер <i>L</i> [Гн] Генри
45	Энергия конденсатора	$Wc = \frac{CU^2}{2} = \frac{q^2}{2C} = \frac{qU}{2}$	«купрум»
46	Энергия катушки	$Wc = \frac{CU^2}{2} = \frac{q^2}{2C} = \frac{qU}{2}$ $W_L = \frac{LI^2}{2}$	«литий»
47	Период колеб. контура	$T = 2\pi\sqrt{LC} T = \frac{2\pi}{\omega}$	$\omega_{ ext{цикл}} = \frac{1}{\sqrt{LC}}$
48	3СЭ в колеб. контуре	$\frac{CU^2}{2} = \frac{LI^2}{2} = \frac{q^2}{2C}$	$\omega_{\text{ЦИКЛ}} = \frac{1}{\sqrt{LC}}$ $\frac{CU_m^2}{2} = \frac{LI_m^2}{2} = \frac{CU^2}{2} + \frac{LI^2}{2}$
49	Частица в магнитном поле	$\frac{CU^2}{2} = \frac{LI^2}{2} = \frac{q^2}{2C}$ $ma = Bqv \qquad m\frac{v^2}{R} = Bqv$ $m\frac{v}{R} = Bq \qquad T = \frac{2\pi m}{Bq}$	$\vec{B} \odot \vec{q}$ \vec{v} \vec{r} \vec{r} \vec{r}

ТЕРМОДИНАМИКА

50	0	DI DI DI M DI	Vannus Maura anna
50	Основное уравнение	$PV = \nu RT$ $PV = \frac{m}{M}RT$	Уравнение Менделеева-
	идеального газа		Клайперона
51	Основное уравнение МКТ	$P = nkT = \frac{2}{3}nE_k$	$T \sim E_k = \frac{mv^2}{2}$
52	Первый закон	$Q = \Delta U + A$	Входящие энергии
	термодинамики		равны исходящим!
53	Работа газа (площадь)	$A = P \cdot \Delta V$	А зависит от V
54	Внутренняя энергия	$U = \frac{3}{2}vRT = \frac{3}{2}PV$	U зависит от T
55	кпд	$\eta = \frac{Q_{\mathrm{H}} - Q_{\mathrm{X}}}{Q_{\mathrm{H}}} = \frac{T_{\mathrm{H}} - T_{\mathrm{X}}}{T_{\mathrm{H}}} = \frac{A}{Q_{\mathrm{H}}}$	$A = Q_{\rm H} - Q_{\rm X}$
56	Относительная влажность	$oldsymbol{arphi} = rac{oldsymbol{P}_{\scriptscriptstyle ext{H}}}{oldsymbol{P}_{\scriptscriptstyle ext{H}}} = rac{oldsymbol{ ho}_{\scriptscriptstyle ext{H}}}{oldsymbol{ ho}_{\scriptscriptstyle ext{H}}} = rac{oldsymbol{n}_{\scriptscriptstyle ext{H}}}{oldsymbol{n}_{\scriptscriptstyle ext{H}}}$	При 100^{0} : 100 кПа или $oldsymbol{arphi} = oldsymbol{P}_{\Pi}$
57	Кол. теплоты при нагревании	$Q = cm\Delta T$	$c=rac{Q}{m\Delta T}$ — удельная теплоемкость
58	Кол. теплоты при	$Q = \lambda m$	λ-удельная теплота
	плавлении		плавления
59	Кол. теплоты при	Q = rm	r-удельная теплота
	парообразовании		парообразования
60*	Количество теплоты	$Q = \frac{5}{2}p\Delta V = \frac{5}{2}A$	при изобарном
61*	Количество вещества	$v = \frac{m}{M} = \frac{N}{N_A}$	<i>М</i> и <i>N</i> _A − из таблицы
	(моль)	$V = \frac{1}{M} = \frac{1}{N_A}$	

ОПТИКА

62	Скорость света	$c = \nu \lambda$	$\mathrm{c}=3\cdot\mathbf{10^8}$ M/ c
63	Частота и период	$\nu = \frac{1}{T} \qquad T = \frac{1}{\nu}$	
64	Показатель преломления	$\mathbf{n} = \frac{\sin \alpha}{\sin \beta} = \frac{v_{6}}{v_{M}}$	$\lambda, v \downarrow \beta$
65	Полное внутреннее отражение	$n = \frac{1}{\sin\beta}$	β
66	Оптическая сила	$D = \frac{1}{F}$	D [дптр] <i>F</i> [м] - фокус
67	Уравнение собирающей линзы	$\frac{1}{F} = \frac{1}{d_{\pi p}} + \frac{1}{f_{\text{\tiny M3}}}$	
68	Увеличение	$k = \frac{f}{d}$	$\Gamma = k = \frac{f}{d} = \frac{H}{h}$
69	Дифракционная решетка	$d\sin\varphi = k\lambda$	к - дифр. максимум (целое число)
70	кожзгсф	рас. линза: мнимое, уменьшенное, прямое	рас. линза: $-rac{1}{F} = rac{1}{d_{\pi p}} - rac{1}{f_{_{ m M3}}}$

ядро

71	Протоны, электроны,	внизу	²⁷ ₁₃ Al
	заряд, № в т.		15
	Менделеева		
72	Нуклоны, массовое	вверху	²⁷ ₁₃ Al
	число		13
73	Нейтроны	Вверх – низ	$^{27}_{13}Al$ $27 - 13 = 14$
74	протон	1 ₁ p	положителен
75	нейтрон	$\frac{1}{0}n$	нейтрален
76	электрон	$\beta = {}^0_{-1}e$	отрицателен
77	Альфа-частица	$\alpha = {}_{2}^{4}He$	положительна
78	Период полураспада	$N = \frac{N_0}{t}$	Альфа-распад
		$N - \frac{1}{2\overline{T}}$	${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}He$
		21	Бета-распад
			${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}Y + {}_{-1}^{0}e$
79	$T \rightarrow 2T \rightarrow 3T \rightarrow 4T$	$\frac{1}{2} \rightarrow \frac{1}{4} \rightarrow \frac{1}{8} \rightarrow \frac{1}{16}$	T 2T 3T 1/8 1/8 3T 100% 50% 25% 12,5%
80	Импульс фотона	hv h	Длина волны $\lambda = \frac{c}{v}$
	, mining/ibe quitonia	$P = \frac{R}{c} = \frac{R}{\lambda}$	$\lambda = \frac{1}{v}$
81	Энергия фотона	$P = \frac{hv}{c} = \frac{h}{\lambda}$ $E = hv = \frac{hc}{\lambda}$	1эB = 1,6 · 10 ^{−19} Дж
82	Фотоэффект	$hv = A_{\text{BMX}} + E_k E_k = eU_3$	$hv = hv_{\rm kp} + E_k$
			$rac{m{h}m{c}}{m{\lambda}} = rac{m{h}m{c}}{m{\lambda}_{ ext{Kp}}} + m{E}_{m{k}}$
83	Работа выхода	$A_{\scriptscriptstyle m B} = m{h}m{ u}_{\scriptscriptstyle m Kp} = rac{m{h}m{c}}{m{\lambda}_{\scriptscriptstyle m Kp}}$	Не изменяются!
		$\lambda_{ m kp}$	
84	Излучение	Стрелки вниз	Е, поглощение
85	Поглощение	Стрелки вверх	
			E ₂ 1,6 - 08 эВ 1,6 - 08 эВ 1,6 - 08 эВ
86*	Мощность	$P = \frac{Nhc}{\lambda t} = \frac{Nhv}{t}$	КПД: $oldsymbol{\eta} = rac{Nhc}{P\lambda t} = rac{Nhv}{Pt}$

АСТРОНОМИЯ

87	Солнце	T = 6000 K	Желтый карлик
		Спектральный класс : G	
88	Первая космическая скорость	$v_1 = \sqrt{gR}$	$v_2 = \sqrt{2}v_1$
	(чтобы вышло на орбиту)	$v_2 = \sqrt{2gR}$	$\sqrt{2} = 1,41$
	Вторая космическая скорость	Для Земли $oldsymbol{v_1}pprox oldsymbol{8}$ км/с	
	(чтобы тело вышло в СС)	$v_2 pprox 11$ км/с	
		$\nu_2 \sim 11 \text{ km/c}$	
89	Ускорение св. падения g	Мерк=3,7 Вен=8,9 Земля=9,8	Эксцентриситет
	$ ho_{\text{солн}} = 1 \frac{\Gamma}{\text{см}^3}$	Марс=3,7 Ю=25,8 Сат=11,3	(сплюснутость)
	CM ³	Уран=9 Нептун=11,6 СОЛ=247	

