Effects of reservior depletion

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 10.21, pp. 380)

Estimating stress changes in depleting reserviors

$$S_{Hor} = S_{Hmax} = S_{hmin} = \frac{\nu}{1 - \nu} S_{\nu} + \alpha P_{p} \left(1 - \frac{\nu}{1 - \nu} \right)$$

$$\frac{dS_{Hor}}{dP_{p}} = \alpha \frac{1 - 2\nu}{\nu - 1} \qquad \text{during production}$$

$$\Delta S_{Hor} = \alpha \frac{1 - 2\nu}{\nu - 1} \Delta P_p$$

Taking $\nu = \frac{1}{4}$ and $\alpha = 1$

$$\Delta S_{Hor} \sim \frac{2}{3} \Delta P_p$$

Comparison of theory and observation

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.2, pp. 382)

Production induced faulting

$$\frac{S_v - (Pp - \Delta P_p)}{(S_{hmin} - \Delta S_{hmin}) - (Pp - \Delta P_p)} = (\sqrt{\mu^2 + 1} + \mu)^2$$

Simplification leads to

$$\frac{\Delta S_{Hmin}}{\Delta P_p} = 1 - \frac{1}{(\sqrt{\mu^2 + 1} + \mu)^2}$$

For
$$\mu = 0.6$$

$$\frac{\Delta S_{Hmin}}{\Delta P_p} = 0.67$$

Reservoir space plot

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.4a, pp. 386)

GOM Field X

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.3ab, pp. 383)

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.4b, pp. 387)

Valhall field in North Sea

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.5, pp. 388)

Stress rotations with depletion

Original

Depleted

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 12.6ab, pp. 391)

Rotation angle, γ near the fault due to depletion

$$\gamma = \frac{1}{2} \tan^{-1} \left(\frac{Aq \sin(2\theta)}{1 + Aq \cos(2\theta)} \right)$$

with

$$A = \frac{\Delta S_{hmin}}{\Delta P_p}$$

and

$$q = \frac{\Delta P_p}{S_{Hmax} - S_{hmin}}$$

