$$R,L,C$$
 in series

 $\longrightarrow i = I \sin(\omega_{a}t - \varphi)$

amplitude phase

As the phasors Rotate together, this equality always holds.

=> Em must be equal to the vector sum of the three voltage phasors VR, Vc and VL

$$\mathcal{E}_{m}^{2} = V_{R}^{2} + (V_{L} - V_{c})^{2}$$

$$= (IR)^{2} + (IX_{L} - IX_{c})^{2}$$

$$\Rightarrow I = \frac{\varepsilon_m}{\sqrt{R^2 + (x_L - x_e)^2}}$$

=> I = Em impedance Z of the circuit for the driving angular frequency was:

$$\Rightarrow I = \frac{\varepsilon_m}{Z} \quad X_c = \frac{1}{\omega_{ac}} \quad X_L = \omega_{aL}$$

$$Z = \sqrt{R^2 + (X_L - X_c)^2}$$

$$\Rightarrow I = \frac{\varepsilon_m}{\sqrt{R^2 + (\omega_d L - \frac{1}{\omega_d c})^2}}$$

 $\Rightarrow I = \frac{E_m}{\sqrt{R^2 + (\omega_d L - \frac{1}{\omega_d c})^2}}$ I depends on the difference between $\omega_d L$ and $\frac{1}{\omega_d c}$

X1 and Xc Which of the quantities is greater as the difference is squared.

The culrent we have been describing is the "steady-state" current that occurs after the alternating emf has been applied for some time. When the emf is first applied to a circuit, a Brief "transient current" occurs. Its duration (before settling down into the steady state current) is determined by the time constants is and Zc=RC as the inductive and capacitive elements "then on". The transient current can, for example destroy a motor on start-up if it is not properly taken into account in the motor's circuit design.

The Phase Constant

tan 4 = VL-VC = IXL-IXC

VR IR

tang= X1-Xc -> depending on the relative values of

the Reactances X1 and Xc,

it can be one of the three:

i) X2 > Xc: the circuit is said to be more inductive than capacitive.

4>0 -> phasor I rotates behind phasor Em

ii) Xe>X1: The Creamit is said to the more capacitive than inductive.

400 -> I rotates ahead of Em

(iii) $X_c = X_L$: the circuit is said to be in Resonance Y = 0, $E_m & I$ rotate fogether in phase.

 $I = \frac{\mathcal{E}_{n}}{\sqrt{R^{2} + (X_{L} - X_{C})^{2}}} \quad \text{for a given } R, \text{ the amplitude is maximum}$ $V_{L} = X_{C}$

Since the natural angular frequency to of the RIC is also equal to $\frac{1}{\sqrt{LC}}$, maximum value of I occurs when the driving angular frequency matches the northRal angular frequency,

—) that is at resonance. to so the Cresonance.

Fig. 31-16 Resonance curves for the driven RLC circuit of Fig. 31-7 with $L=100~\mu\text{H}$, C=100~pF, and three values of R. The current amplitude I of the alternating current depends on how close the driving angular frequency ω_d is to the natural angular frequency ω . The horizontal arrow on each curve measures the curve's half-width, which is the width at the half-maximum level and is a measure of the sharpness of the resonance. To the left of $\omega_d/\omega=1.00$, the circuit is mainly capacitive, with $X_C>X_C$; to the right, it is mainly inductive, with $X_L>X_C$.

Driving ω_d equal to natural ω

- · high current amplitude
- · circuit is in resonance
- · equally capacitive and inductive
- X_c equals X_L
- · current and emf in phase
- zero φ

Low driving ω_d

- · low current amplitude
- ICE side of the curve
- · more capacitive
- X_C is greater
- · current leads emf
- negative ϕ

High driving ω_d

- · low current amplitude
- ELI side of the curve
- · more inductive
- X_L is greater
- · current lags emf
- positive ϕ

