مادة الرياضيات (30 د)

.
$$V_n = \sin\left(\frac{\pi}{n}\right) + \sin\left(\frac{2\pi}{n}\right) + \dots + \sin\left(\frac{n-1}{n}\pi\right)$$
: المعرفة بما يلي (V_n) المعرفة بما يلي : \mathbb{N}^* من \mathbb{N}^* نعتبر المتتالية (V_n) المعرفة بما يلي : المعرفة بما يلي المعر

. $z = cos\left(\frac{\pi}{n}\right) + i sin\left(\frac{\pi}{n}\right)$: نعتبر العدد العقدي z بحيث بعتبر العدد العقدي

$$\lim_{n \to +\infty} \frac{V_n}{n} = 0 \quad .E \qquad V_n = \frac{1}{\tan\left(\frac{\pi}{2n}\right)} \quad .C \qquad V = 1 + z + z^2 + ... + z^{n-1} = 1 + i. \tan\left(\frac{\pi}{2n}\right) \quad .A$$

$$V_n = \tan\left(\frac{\pi}{2n}\right) \quad .D \qquad V = 1 + z + z^2 + ... + z^{n-1} = 1 + i. \cos\left(\frac{\pi}{2n}\right) \quad .B$$

 $S = \sum_{n \ge 1} \frac{1}{n(n+1)}$ نضع $S_n = \sum_{k=1}^n \frac{1}{k(k+1)}$ نضع : 2 السوال

S. C متقاربة و مجموعها 1. E جميع الأجوبة المقترحة خاطنة.
$$S_n = 1 + \frac{1}{n+1}$$
 . A متباعدة. $S_n = 1 + \frac{1}{n+1}$. B

السؤال 3 : نعتبر المتتالية العددية المعرفة بما يلي : $u_0 = e^2 - 1$ و $u_{n+1} = (1+u_n).e^{-2} - 1$ عدد حقيقي .

 $V_n = 3.(1 + u_n)$ نضع

$$\ln V_0 + \ln V_1 + ... + \ln V_n = (n+1)(2-n+\ln 3)$$
 .E $\lim_{n\to\infty} V_n = -1$.C $\lim_{n\to\infty} V_n = -1$.D .A $\lim_{n\to\infty} V_n = -1$.D

 C_{i} و C_{i} المنحنى الممثل لها في معلم متعامد ممنظم C_{i} و $f(x) = x - \frac{1 - 2 \ln(1 + x)}{x + 1}$: f(x) السوال 4 : نعتبر الدالة f(x) : f(x) المنحنى الممثل لها في معلم متعامد ممنظم f(x) : f(x) السوال 4 : نعتبر الدالة f(x) : f(x) المنحنى الممثل لها في معلم متعامد ممنظم f(x) : f(x) المنحنى الممثل لها في معلم متعامد ممنظم f(x) : f(x) المنحنى الممثل لها في معلم متعامد ممنظم f(x) : f(x) المنحنى الممثل لها في معلم متعامد ممنظم f(x) : f(x) :

$$f'(x) = \frac{x^2 + 2x + 4 - 2\ln(x+1)}{(x+1)^2}$$
 .E
$$\lim_{x \to +\infty} f(x) = +1$$
 .C
$$\lim_{x \to +\infty} f(x) = +1$$
 .D
$$\lim_{x \to +\infty} f(x) = +1$$
 .D
$$\lim_{x \to -1^+} f(x) = +\infty$$
 .B

السوال 5: نأخذ نفس معطيات السؤال السابق.

. A. حل المعادلة
$$y=x+\frac{2}{\sqrt{e^3}}$$
 . D. المستقيم ذو المعادلة $y=x+\frac{2}{\sqrt{e^3}}$. D. المستقيم ذو المعادلة $y=x+\frac{2}{\sqrt{e^3}}$. D. $y=x+\frac{2}{\sqrt{e^3}}$. D. $y=x+\frac{2}{\sqrt{e^3}}$. D. $y=x+\frac{2}{\sqrt{e^3}}$. $y=x+\frac{2}{\sqrt{e^3}}$

. C(-2,1,2) و B(3,0,4) ، A(-1,2,0) ، نعتبر النقط: $O(\vec{i},\vec{j},\vec{k})$ و C(-2,1,2) و

E. النقط A و B و C	 C. طول الارتفاع المار من النقطة A في 	 A). مساحة المثلث ABC هي
مستقيمية.	المثلث ABC هو $\sqrt{5}$.	$.5\sqrt{2}$
	D. طول الارتفاع المار من النقطة A	B. مساحة المثلث ABC هي
	في المثلث ABC هو $\sqrt{6}$.	.5√3

		سؤال 7: اختر الجواب الصحيح
 D. الهكتار وحدة الطول . E. جميع الأجوبة المقترحة خاطئة. 	 من بين 9 أشخاص، يمكن اختيار لجنة تضم 5 أشخاص ب 256 طريقة ممكنة. 	
		· ·

. $J = \int_0^{-a} \cos^3(2t) dt$ و $I = 2. \int_0^{-a} (\tan^3(x) + \tan x) dx$ السوال 8 : ليكن

$$J = \sin a. \left(\frac{\cos a. \sin^2 2a}{3} + \cos a \right)$$
 .C $J = \frac{\sin a}{2} \cdot \left(\frac{\cos a. \sin^2 2a}{3} + \cos a \right)$.D $I = 1 - \frac{1}{\cos^2 a}$.A $I = 2 - \frac{1}{\cos^2 a}$.B

. $n \in \mathbb{N}$ مع $I_n = \int_0^{\frac{\pi}{2}} x^n . \cos x . dx$ مع $I_n = \int_0^{\frac{\pi}{2}} x^n . \cos x . dx$

$$.I_{2} = 2 - \frac{\pi^{2}}{4} .E$$

$$.I_{n+2} = \left(\frac{\pi}{2}\right)^{n+1} + (n+1)I_{n} .C$$

$$.I_{0} = -1 .A$$

$$.I_{1} = \frac{\pi}{2} .B$$

$$.I_{n+2} = \left(\frac{\pi}{2}\right)^{n+2} - (n+1)(n+2)I_{n} .D$$

السوال 10: اختر الجواب الصحيح

E. الخاصية التالية: (gof) =f'.g'(f) خاطنة.	$\sqrt{1-\sin 2x} = \cos 2x$.C D. دور الدالة $f(x)=1-8\cos x-4\cos 2x$	$\cos^2 \frac{3\pi}{12} + \cos^2 \frac{5\pi}{12} + \cos^2 \frac{9\pi}{12} + \cos^2 \frac{11\pi}{12} = 3$. A limit is a simple of the contraction of the contract	
---	---	--	--

مادة الفيزياء (30 د)

السوال 11: خلال اقامة التيار في الدارة الكهربانية الممثلة في الشكل التالي تم الحصول على تطور التوتر بين مربطي الموصل الأومي و الممثل في الشكل جانبه:

E = 6V ; $R = 100\Omega$: نعطی

يمثل (T) المماس للمنحنى عند 0=t.

- A. التوتر بين مربطي الموصل الأومى دالة غير متصلة عند t=0.
 - B. التوتر بين مربطي الوشيعة دالة متصلة عند t=0.
 - C. شدة التيار في النظام الدائم هي 50 mA.
- D. شدة التيار في النظام الدائم هي 60 mA.
- E. في النظام الدائم ، التوتر بين مربطي الوشيعة منعدم.

السوال 12: نأخذ نفس معطيات السؤال السابق.

الطاقة القصوى المخزونة في الوشيعة هي :

.0,9 J	.D	.90 mJ	.A	
.3 mJ	.E	.9 mJ	.B	
		.1,5 mJ	.C	

السوال 13: تم إرسال قذيفة كتلتها M من نقطة O بسرعة $\overline{V_0}$ تكون زاوية $\alpha = 53^0$ مع الخط الأفقي قصد الوصول إلى الهدف O(الشكل). يوجد الهدف P في نفس المستوى الأفقي و تم وصوله بعد S8,1 s من إرسال القذيفة من O. نهمل تأثير الهواء و ناخذ و التي نعتبر ها ثابتة. $g = 9.8 \, \text{m.s}^{-2}$

السرعة V عند النقطة O هي:

. 23, 4 m.s ⁻¹	.E	. 288 m.s ⁻¹	.C	. 195 m.s ⁻¹	.A
		. 36 m.s ⁻¹	.D	$.234 \text{m.s}^{-1}$.B

السوال 14 : نعتمد نفس معطيات السؤال 13 و نختار المستوى الأفقي المار من O و P مرجعا لطاقة الوضع الثقالية.

E. طاقة الوضع الثقالية	C. طاقة الوضع الثقالية ،بالجول، عند الارتفاع	A. المسافة OP هي: 2365.
،بالجول، عند الارتفاع الأقصى	الأقصى تقارب: 1,75.10 ⁴ .M .	B. المسافة OP هي: 10730 m.
تقارب: 1,75.M.	D. طاقة الوضع الثقالية ،بالجول، عند الارتفاع	
	الأقصى تقارب: 1,75.10 ² .M.	

السوال 15: نعتمد نفس معطيات السوال 13.

نبقي السرعة V_0 ثابتة و نغير الزاوية α بين 0 و 90 (بالنسبة ل A و B و C و C).

- A. السرعة عند النقطة P تتعلق بالزاوية Δ. D. تحتفظ المسافة OP بنفس القيمة.
 - B. تسارع الحركة يتغير. C. الارتفاع الأقصى يحتفظ بنفس القيمة.
- نبقي قيمتي α و V_0 ثابتتان في هذه الحالة يحتفظ الارتفاع E
- الأقصى بنفس القيمة إذا تم استعمال قذيفة كتلتها M'=2M.

السوال 16: اختر الجواب الصحيح

*	14	659,0		1.	1	7.5
4-	100	11 11	110 11	الحبو د،	171:	A
	- , , ,	. ىر	يسير	الحيودة		

- B. في نفس الوسط ،خلال الحيود تتغير سرعة الموجة .
 - C. لا توجد اشعاعات ضوئية خارج المجال المرئى .

السوال 17: يتكون متذبذب ميكانيكي أفقي (جسم صلب – نابض) من جسم صلب (S)، كتلته m=125g و مركز قصوره G، مثبت بطرف نابض لفاته غير متصلة و كتلته مهملة و صلابته K، و الطرف الآخر

بسرت بسب X في كل لحظة بالأفصول X في المعلم X في كل لحظة بالأفصول X في المعلم (O, \vec{i}) .

نختار الموضع x=0 لمركز القصور Gكمرجع لطاقة الوضع المرنة $E_{\rm pe}$ و المستوى الأفقي المار من G مرجعا لطاقة الوضع الثقالية . نهمل الاحتكاكات .

. x^2 بدلالة E_{ne} بدلالة الوضع المرنة بدلالة ويثمثل المنحنى جانبه تطور طاقة الوضع المرنة

الدور الخاص للمتذبذب هو:

$T_0 \simeq 0.8 \mathrm{s}$.D	$T_0 \simeq 2s$.A
$T_0 \simeq 0.3 s$.E	$T_0 \simeq 0, 2s$.B
		$T_0 \simeq 0.5 \mathrm{s}$.C

السوال 18: نعتمد ما هو وارد في السؤال 17.

عند النقطة ذات الأفصول x = -1 cm ، منظم سرعة G هو:

$V_G \simeq 4.8 \text{cm.s}^{-1}$.E	$V_{G} \approx 15,5 \mathrm{m.s^{-1}}$.C	$V_G \simeq 21,9 \mathrm{m.s^{-1}}$.A
	$V_G \simeq 21,9 \mathrm{cm.s}^{-1}$.D	$V_G \simeq 15,5 \mathrm{cm.s^{-1}}$.B

السوال 19: يتفتت تلقائيا الراديوم Ra^{226}_{88} ليعطى الدقيقة α . النواة المتولدة هي نظير للرادون .

معطيات : عمر النصف لرادون Rn في عمر النصف المادون 3,8 jours . عمر النصف المادون المادون عمر النصف المادون الم

- $oldsymbol{\Lambda}$. تتكون الدقيقة $oldsymbol{lpha}$ من بروتونين و نوترنين و الكترونين.
- B. للدقيقة α و الدقيقة β^- شحن كهربائية اشارتها متقابلة لكن لها نفس القيمة المطلقة.
- المدة 11,4 jours ، نسبة نوى الرادون Rn 222 المتفتتة بالنسبة للعدد البدئي هي 12,5%.
- ${f D}$. نواة الراديوم ${f Ra}_{88}^{236}$ ناتجة عن تفتتات متتالية ${f \alpha}$ و ${f G}$ لنواة الأورانيوم ${f W}_{88}^{236}$.خلال هذه التفتتات المتتالية انبعثت دقيقتين ${f \alpha}$ و دقيقتين ${f G}$.
 - جميع الاقتراحات المدرجة خاطئة.

السؤال 20: نربط مكثفا سعته C ، مشحونا بدئيا، بموصل أومي مقاومته $R=100\,\mathrm{k}\Omega$. تطور شحنته q ممثل في الشكل جانبه .

القيمة المطلقة الطاقة المبددة بمفعول جول في الموصل الأومي بين اللحظتين $t_2 = 5s$ تقارب:

 . 0, 2 mJ	.D	. 20 mJ	.A
جميع الأجوبة المقترحة	.E	. 2 mJ	.B
خاطنة.		. 20 J	.C

 $K = 2.10^3$

مادة الكيمياء (30 د)

. $K = 5.10^{-4}$.D

السموال 21: نذيب 0,01 mol من الإثيل أمين C,H,NH, في حجم 100 mL من الماء المقطر.

. $pK_{A}(C_{2}H_{5}NH_{3}^{+}/C_{2}H_{5}NH_{2})=10,7$; $pK_{e}=14$: 25° C نعطي عند

لتكن ً K ثابتة التوازن المقرونة بتفاعل الإثيل أمين مع الماء .

K .C منعدمة في الحالة البدنية. A. لا تتعلق pK بدرجة الحرارة.

B. تتغير K حسب التركيز البدئي للمتفاعلات.

السؤال 22: نعتمد معطيات السؤال السابق (السؤال 21).

pH المحلول المحصل عليه هو:

. pH≈4,8	.E	.pH≈13,5	.C	. pH≈11,8	.A
		. pH≈3,8	.D	. pH ≈ 6,7	.B

السوال 23: نود تحضير ميثانوات الاثيل باعتماد تفاعل حمض كربوكسيلي مع كحول. بمزج خليط متساوي المولات للحمض و للكحول، تم خط منحنى تطور كمية مادة الاستر و الحمض (الشكل).

 D. يتزايد التقدم النهائي للتفاعل مع تزايد 	الحمض المستعمل هو حمض الإيثانويك .	.A
درجة الحرارة.	التفاعل الذي يحدث هو تفاعل حمض-	.B
E. جميع الاقتراحات خاطئة.	قاعدة.	
	تكون السرعة الحجمية للتفاعل عند t=0	\cdot C
	قصيهية	

السؤال 24: نعتمد نفس معطيات السؤال السابق(السؤال 23).

- C. يقارب زمن نصف التفاعل القيمة D. التقدم النهائي للتفاعل هو 9 mmol 9.
 - E. عند t=20 min ، الكمية المتفاعلة هي
- A. بالنسبة لهذا النوع من التفاعلات، تزداد فقط سرعة التفاعل المياشر باستعمال حفاز
- B. يقارب زمن نصف التفاعل القيمة B.

. 16,8 mmol

السؤال 25: : نعتمد نفس معطيات السؤال 23.

 C. يتعلق مردود هذا التفاعل بدرجة الحرارة. 	 A. خارج التفاعل عند حالة التوازن هو 4.
D. مردود التفاعل هو %27.	 B. نسبة التقدم النهائي للتفاعل هي 33%.
E جميع الأجوبة المقترحة خاطئة.	

السوال 26 : أعطى تحليل استر E صيغته الاجمالية $C_xH_vO_2$ النسب المأوية الكتلية التالية : 88.8 من الكربون ، 31,4% من الأوكسجين و %9,8 من الهيدروجين.

.M(C)=12g.mol⁻¹ ; M(O)=16g.mol⁻¹ ; M(H)=1g.mol⁻¹ ; M(H)=1g.mol⁻¹

E. جميع الأجوبة المقترحة خاطئة.	x=5 و y=10 .	.C	x=5 .A و y=11
	x=5 و y=12 .	.D	x=11 .B و y=5 .

السؤال 27: نعتمد نفس معطيات السؤال السابق (السؤال 26).

ننجز حلماة الاستر E (السؤال السابق)و نفصل الحمض الكربوكسيلي E الناتج عن هذه الحلماة. نحضر محلولا للحمض E تركيزه الكتلي E ننجز حلماة الاستر E . C=5,00 و نفصل الحمول بواسطة محلول مائي لهيدروكسيد الصوديوم تركيزه المولي $E=6,00.10^{-2}$ mol. $E=6,00.10^{-2}$ الحجم المضاف عند التكافؤ هو $E=6,00.10^{-2}$.

E .C هو بوثانوات الايثيل.	1110611101 2110 23 .3 .11
A.D هو حمض الايثانويك.	E .B هو ايثانوات الايثيل .
A .E هو حمض البروبانويك.	. 5

السوال 28: اختر الجواب الصحيح.

E. تفاعل اندرید حمض مع کحول تفاعل بطیئ و محدود.	\mathbf{C} . يعبر عن خارج تفاعل ب $\mathbf{mol}.\mathbf{L}^{-1}$. \mathbf{D}	B. السلسلة الكربونية لأيون الكربوكسيلات
	الأنود.	لصابون هي الجزء الهيدروفوبي.

السؤال 29: نمزج حجما V=10~mL من محلول حمض الفلوريدريك V=10~mL تركيزه $C=0.1~\text{mol.L}^{-1}$ من محلول ايثانوات االصوديوم تركيزه $C=0.1~\text{mol.L}^{-1}$.

. $pK_A(CH_3COOH/CH_3COO^-) = 4.8$; $pK_A(HF/F^-) = 3.2$: معطیات

التقدم النهائي للتفاعل هو:

E. جميع الأجوبة	$x_f \approx 0,1 \text{mmol}$.C	$x_f \approx 0,26 \mathrm{mmol}$.A
المقترحة خاطئة.	$x_f \approx 0.36 \text{mmol}$.D	$x_f \approx 0.86 \text{mmol} \cdot .B$

السؤال 30: نعتمد نفس معطيات السؤال السابق (السؤال 29). pH الخليط التفاعلي المحصل عليه هو:

. pH≃2 . E	pH≃8	.C	pH≃6 .A
	$pH \simeq 9,2$.D	$pH \simeq 4$.B

مادة العلوم الطبيعية (30 د)

السؤال 31 : رياضي يحتاج ل 25 مول من ATP ليزاول رياضته المفضلة. كم من كمية الكَليكوز عليه تناولها في وسط حي هوائي لإنتاج هذه الطاقة علما إن : M(C) = 12 g/mol ; M(H) = 1 g/mol : M(O) = 16 g/mol ؛

- 23,68 g .A
- 47,37 g .B
- 50,27 g .C
- 118,42 g .D
- 120,55 g .E

السؤال 32 : على مستوى دورة كريبس Krebs :

- A. تفاعل الأستيل كوأنزيم A يتم في الغشاء الداخلي للميتوكندري
 - B. جزيئة واحدة من الأستيل كوأنزيم A تعطى ATP 18
 - C. جزيئة واحدة من الأستيل كوأنزيم A تعطي أربعة NADH
- D. يتم إنتاج FADH2 في التفاعل الذي يحول السوكسينات (succinate) الى الفومرات (Fumarate).
 - A من الأستيل كوأنزيم $4 CO_2 + 1ATP + 3NADH + 1FADH_2$ لكل جزيئة واحدة من الأستيل كوأنزيم E

السؤال 33: الليف العضلى:

- A. الليف العضلى ١ لا يستعمل ATP و لا الفوسفوكرياتين لإنتاج الطاقة
 - B. الفوسفوكرياتين يمكن إنتاج ATP بسرعة خلال التخمر اللبني
 - C. الليف العضلي 11 يوجد بكثرة عند عداء الماراتون
- D. دور الشبكة السركوبلازمية هو إنتاج الأدنوزين ثلاثي الفسفاط الضرورية للتقلص العضلي
- E. دور الشبكة السركوبلازمية هو تحرير أيونات الكالسيوم لتسهيل ارتباط الميوزين بالأكتين.

السؤال 34: تخليق البروتينات:

- A. تخليق البروتين ينطلق دائما من جانب Nt الى Ct
- B. تخليق البروتين ينطلق دائما من جانب Ct الى Nt
- c. كل وحدة رمزية يقابلها حمض أميني واحد و لكل حمض أميني يقابله وحدة رمزية لا أكثر
- مل خارجات و باطنات الحمض النووي ناقص الأكسيجين تترجم للبروتينات عند الكائنات ذات الخلايا الحقيقية
 - في البروتينات تنتهى بالميثيونين لان الرمز الوراثي AUG هو دائما نهاية ترجمة ARNm.

السوال 35: مولد المضاد:

- A. مولد المضاد مكون من سلسلة ثابتة ثقيلة و سلسلتين متغيرتين خفيفتين
 - B. المركب CMH يعرض مولدات المضاد على سطح الخلية
 - C. المركب CMH هو مولد المضاد
 - D. مولد المضاد مكون من سلسلتين تقيلتين و سلسلة خفيفة
 - الاستمصال يتم بحقن نفس مولد المضاد (غير ممرض).

السؤال 36: الخلايا المناعتية:

- A. تتكون الخلايا المناعاتية في الغدة العسترية و الطحال
 - B. تتكون الخلايا المناعاتية في الغدة العسترية و الكبد
- لمعالجة التحسس الأرجى يمكن حقن المريض كميات متزايدة من المؤرج لمدة طويلة
 - D. البلعميات عبارة عن خلايا لمفوية تتدخل في المناعة
 - اللمفاوية الذاكرة لا تنتمى إلى خلايا الدفاع المناعاتية.

السؤال 37: الانحراف الجيني هو:

- Α. ظهور صفات جديدة عبر الأجيال عند ساكنة كبيرة
- B ظهور حليلات جديدة و إخفاء أخرى عند ساكنة كبيرة
 -). إخفاء حليلات عبر الأجيال عند ساكنة صغيرة
- D. تطور الحليلات دون إخفانها عبرالأجيال عند ساكنة صغيرة.
- E. إخفاء حليلات و ظهور أخرى عبر الأجيال عند ساكنة صغيرة

السؤال 38: الحمض الننووي ناقص الأكسيجين (ADN) ل Mycobacterium tuberculosis يتكون بنسبة 18% من التيمين Thymine. ما هي نسب الجزئيات الأزوطية الأخرى: (cytosine) C (cytosine) ?

- A. 18,1% من G و 31,9% من C و 31,9% من A
- A من G و 27,3% من C و 27,3% من G و 27,3% من B
- C. 18,1% من A و 31,9% من C و 31,9% من C.
- D. 18,1% من C و 31,9% من G و 31,9% من D.
- E. 18,1% من G و 31,9% من A و 31,9% من E

السؤال 39: في حالة السيادة التامة بين حليلين:

- A. نسبة % 75 من إفراد الجيل الثاني يشبه مظهر أحد الأبوين و %25 يشبه مظهر الأب الأخر
- B. نسبة % 50 من إفراد الجيل الأول يشبه مظهر أحد الأبوين و %50 لهم مظهر خارجي جديد
- .c. نسبة % 50 من إفراد الجيل الأول يشبه مظهر أحد الأبوين و %25 يشبه مظهر الأب الآخر و %25 لهم مظهر خارجي جديد
 - D. نسبة % 75 من إفراد الجيل الثاني يشبه مظهر أحد الأبوين و %25 لهم مظهر خارجي جديد
 - E. نسبة % 100 من إفراد الجيل الثاني يشبه مظهر أحد الأبوين.

السؤال 40: الخريطة الصبغية للإنسان هي:

- A. 47, XYY في مرض كلنفلتر Klinefelter
 - B. 45, 20 في مرض ترنر Turner
 - C. 47, XXX في مرض كلنفلتر
 - D. 34, XXY عند مرض ترنر
 - A7, 47 عند مرض داون Down

Concours d'accès à la FMPO 2016-2017

