Gergely Daróczi

Looong report

Thu Jul 26 13:33:30 2012

Contents

ataset	2
escriptives	6
In details	6
$\operatorname{mpg} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	6
cyl	7
disp	8
hp	10
drat	11
wt	13
qsec	15
vs	17
am	18
	19
	20
orrelation	21
ome models	24
$\operatorname{mpg} \ \ldots \ldots$	24
cyl	25
disp	25

hp .						•	•						•		•	•			25
drat																			26
qsec																			26
vs .																			26
am .																			26
gear	•																		27
carb																			27

I have written the below report in 10 mins:

Dataset

Here I will do a pretty fast report on mtcars which is:

	mpg	cyl	disp	hp	drat
Mazda RX4	21.0	6	160.0	110	3.90
Mazda RX4 Wag	21.0	6	160.0	110	3.90
Datsun 710	22.8	4	108.0	93	3.85
Hornet 4 Drive	21.4	6	258.0	110	3.08
Hornet Sportabout	18.7	8	360.0	175	3.15
Valiant	18.1	6	225.0	105	2.76
Duster 360	14.3	8	360.0	245	3.21
Merc 240D	24.4	4	146.7	62	3.69
Merc 230	22.8	4	140.8	95	3.92
Merc 280	19.2	6	167.6	123	3.92
${ m Merc}~280{ m C}$	17.8	6	167.6	123	3.92
Merc~450SE	16.4	8	275.8	180	3.07
${ m Merc}~450{ m SL}$	17.3	8	275.8	180	3.07
${f Merc~450SLC}$	15.2	8	275.8	180	3.07
Cadillac Fleetwood	10.4	8	472.0	205	2.93
Lincoln Continental	10.4	8	460.0	215	3.00
Chrysler Imperial	14.7	8	440.0	230	3.23
Fiat 128	32.4	4	78.7	66	4.08
Honda Civic	30.4	4	75.7	52	4.93
Toyota Corolla	33.9	4	71.1	65	4.22
Toyota Corona	21.5	4	120.1	97	3.70
Dodge Challenger	15.5	8	318.0	150	2.76
AMC Javelin	15.2	8	304.0	150	3.15
Camaro Z28	13.3	8	350.0	245	3.73
Pontiac Firebird	19.2	8	400.0	175	3.08
Fiat X1-9	27.3	4	79.0	66	4.08
Porsche 914-2	26.0	4	120.3	91	4.43
Lotus Europa	30.4	4	95.1	113	3.77
Ford Pantera L	15.8	8	351.0	264	4.22
Ferrari Dino	19.7	6	145.0	175	3.62
Maserati Bora	15.0	8	301.0	335	3.54
Volvo 142E	21.4	3 4	121.0	109	4.11

	wt	qsec	vs	am
Mazda RX4	2.620	16.46	0	1
Mazda RX4 Wag	2.875	17.02	0	1
Datsun 710	2.320	18.61	1	1
Hornet 4 Drive	3.215	19.44	1	0
Hornet Sportabout	3.440	17.02	0	0
Valiant	3.460	20.22	1	0
Duster 360	3.570	15.84	0	0
Merc 240D	3.190	20.00	1	0
Merc 230	3.150	22.90	1	0
Merc 280	3.440	18.30	1	0
Merc 280C	3.440	18.90	1	0
Merc~450SE	4.070	17.40	0	0
${ m Merc}~450{ m SL}$	3.730	17.60	0	0
${f Merc~450SLC}$	3.780	18.00	0	0
Cadillac Fleetwood	5.250	17.98	0	0
Lincoln Continental	5.424	17.82	0	0
Chrysler Imperial	5.345	17.42	0	0
Fiat 128	2.200	19.47	1	1
Honda Civic	1.615	18.52	1	1
Toyota Corolla	1.835	19.90	1	1
Toyota Corona	2.465	20.01	1	0
Dodge Challenger	3.520	16.87	0	0
AMC Javelin	3.435	17.30	0	0
Camaro Z28	3.840	15.41	0	0
Pontiac Firebird	3.845	17.05	0	0
Fiat X1-9	1.935	18.90	1	1
Porsche 914-2	2.140	16.70	0	1
Lotus Europa	1.513	16.90	1	1
Ford Pantera L	3.170	14.50	0	1
Ferrari Dino	2.770	15.50	0	1
Maserati Bora	3.570	14.60	0	1
Volvo 142E	$2.\overline{7}80$	18.60	1	1

	gear	carb
Mazda RX4	4	4
Mazda RX4 Wag	4	4
Datsun 710	4	1
Hornet 4 Drive	3	1
Hornet Sportabout	3	2
Valiant	3	1
Duster 360	3	4
Merc 240D	4	2
Merc 230	4	2
Merc 280	4	4
Merc 280C	4	4
Merc~450SE	3	3
${ m Merc}~450{ m SL}$	3	3
${ m Merc}~450 { m SLC}$	3	3
Cadillac Fleetwood	3	4
Lincoln Continental	3	4
Chrysler Imperial	3	4
Fiat 128	4	1
Honda Civic	4	2
Toyota Corolla	4	1
Toyota Corona	3	1
Dodge Challenger	3	2
AMC Javelin	3	2
Camaro Z28	3	4
Pontiac Firebird	3	2
Fiat X1-9	4	1
Porsche 914-2	5	2
Lotus Europa	5	2
Ford Pantera L	5	4
Ferrari Dino	5	6
Maserati Bora	5	8
Volvo 142E 5	4	2

Descriptives

	Average	Median	Standard.deviation	Variance
mpg	20.0906	19.200	6.0269	3.632e+01
cyl	6.1875	6.000	1.7859	3.190e+00
disp	230.7219	196.300	123.9387	1.536e + 04
$\mathbf{h}\mathbf{p}$	146.6875	123.000	68.5629	4.701e + 03
drat	3.5966	3.695	0.5347	2.859 e-01
\mathbf{wt}	3.2172	3.325	0.9785	9.574 e - 01
\mathbf{qsec}	17.8487	17.710	1.7869	3.193e+00
vs	0.4375	0.000	0.5040	2.540 e-01
am	0.4062	0.000	0.4990	2.490 e-01
gear	3.6875	4.000	0.7378	5.444e-01
carb	2.8125	2.000	1.6152	2.609e+00

In details

\mathbf{mpg}

We found the folloing values here:

 $21.0,\ 21.0,\ 22.8,\ 21.4,\ 18.7,\ 18.1,\ 14.3,\ 24.4,\ 22.8,\ 19.2,\ 17.8,\ 16.4,\ 17.3,\ 15.2,\ 10.4,\ 10.4,\ 14.7,\ 32.4,\ 30.4,\ 33.9,\ 21.5,\ 15.5,\ 15.2,\ 13.3,\ 19.2,\ 27.3,\ 26.0,\ 30.4,\ 15.8,\ 19.7,\ 15.0\ \text{and}\ 21.4$

The mean of mpg is 20.09 while the standard deviation is: 6.027. The most frequent value in mpg is 10.4, but let us check out the frequency table too:

10.4	13.3	14.3	14.7	15	15.2	15.5	15.8	
2	1	1	1	1	2	1	1	

16.4	17.3	17.8	18.1	18.7	19.2	19.7	21
1	1	1	1	1	2	1	2

21.4	21.5	22.8	24.4	26	27.3	30.4
2	1	2	1	1	1	2

32.4	33.9
1	1

Tables are boring, let us show the same with a histogram:

 \mathbf{cyl}

We found the folloing values here:

6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 8, 6, 8 and 4

The mean of cyl is 6.188 while the standard deviation is: 1.786. The most frequent value in cyl is 8, but let us check out the frequency table too:

4	6	8
11	7	14

Tables are boring, let us show the same with a histogram:

 disp

We found the folloing values here:

 $160.0,\ 160.0,\ 108.0,\ 258.0,\ 360.0,\ 225.0,\ 360.0,\ 146.7,\ 140.8,\ 167.6,\ 167.6,\ 275.8,\ 275.8,\ 275.8,\ 472.0,\ 460.0,\ 440.0,\ 78.7,\ 75.7,\ 71.1,\ 120.1,\ 318.0,\ 304.0,\ 350.0,\ 400.0,\ 79.0,\ 120.3,\ 95.1,\ 351.0,\ 145.0,\ 301.0\ \text{and}\ 121.0$

The mean of disp is 230.7 while the standard deviation is: 123.9. The most frequent value in disp is 275.8, but let us check out the frequency table too:

71.1	75.7	78.7	79	95.1	108	120.1	120.3
1	1	1	1	1	1	1	1

121	140.8	145	146.7	160	167.6	225	258
1	1	1	1	2	2	1	1

275.8	301	304	318	350	351	360	400	_
3	1	1	1	1	1	2	1	

440	460	472
1	1	1

hp

We found the folloing values here:

110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245, 175, 66, 91, 113, 264, 175, 335 and 109

The mean of hp is 146.7 while the standard deviation is: 68.56. The most frequent value in hp is 110, but let us check out the frequency table too:

52	62	65	66	91	93	95	97	105
1	1	1	2	1	1	1	1	1

109	110	113	123	150	175	180	205
1	3	1	2	2	3	3	1

215	230	245	264	335
1	1	2	1	1

Tables are boring, let us show the same with a histogram:

 \mathbf{drat}

We found the folloing values here:

3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92, 3.07, 3.07, 3.07, 2.93, 3.00, 3.23, 4.08, 4.93, 4.22, 3.70, 2.76, 3.15, 3.73, 3.08, 4.08, 4.43, 3.77, 4.22, 3.62, 3.54 and 4.11

The mean of drat is 3.597 while the standard deviation is: 0.5347. The most frequent value in drat is 3.07, but let us check out the frequency table too:

2.76	2.93	3	3.07	3.08	3.15	3.21	3.23
2	1	1	3	2	2	1	1
3.54	3.62	3.69	3.7	3.73	3.77	3.85	3.9
1	1	1	1	1	1	1	2

3.92	4.08	4.11	4.22	4.43	4.93	_
3	2	1	2	1	1	

 \mathbf{wt}

We found the folloing values here:

The mean of wt is 3.217 while the standard deviation is: 0.9785. The most frequent value in wt is 3.44, but let us check out the frequency table too:

1.513	1.615	1.835	1.935	2.14	2.2	2.32
1	1	1	1	1	1	1

2.465	2.62	2.77	2.78	2.875	3.15	3.17
1	1	1	1	1	1	1
3.19	3.215	3.435	3.44	3.46	3.52	3.57
1	1	1	3	1	1	2

3.73	3.78	3.84	3.845	4.07	5.25	_
1	1	1	1	1	1	_

5.345	5.424
1	1

\mathbf{qsec}

We found the folloing values here:

 $16.46,\ 17.02,\ 18.61,\ 19.44,\ 17.02,\ 20.22,\ 15.84,\ 20.00,\ 22.90,\ 18.30,\ 18.90,\ 17.40,\ 17.60,\ 18.00,\ 17.98,\ 17.82,\ 17.42,\ 19.47,\ 18.52,\ 19.90,\ 20.01,\ 16.87,\ 17.30,\ 15.41,\ 17.05,\ 18.90,\ 16.70,\ 16.90,\ 14.50,\ 15.50,\ 14.60 \ \text{and}\ 18.60$

The mean of qsec is 17.85 while the standard deviation is: 1.787. The most frequent value in qsec is 17.02, but let us check out the frequency table too:

14.5	14.6	15.41	15.5	15.84	16.46	16.7	
1	1	1	1	1	1	1	

16.87	16.9	17.02	17.05	17.3	17.4	17.42
1	1	2	1	1	1	1
17.6	17.82	17.98	18	18.3	18.52	18.6
1	1	1	1	1	1	1
18.61	18.9	19.44	19.47	19.9	20	20.01
1	2	1	1	1	1	1

20.22	22.9
1	1

 $\mathbf{v}\mathbf{s}$

We found the folloing values here:

 $0,\ 0,\ 1,\ 1,\ 0,\ 1,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 1,\ 1,\ 1,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 1,\ 0,\ 0,\ 0$ and 1

The mean of vs is 0.4375 while the standard deviation is: 0.504. The most frequent value in vs is 0, but let us check out the frequency table too:

0	1
18	14

am

We found the folloing values here:

The mean of am is 0.4062 while the standard deviation is: 0.499. The most frequent value in am is 0, but let us check out the frequency table too:

0	1
19	13

gear

We found the folloing values here:

The mean of gear is 3.688 while the standard deviation is: 0.7378. The most frequent value in gear is 3, but let us check out the frequency table too:

3	4	5	
15	12	5	

carb

We found the folloing values here:

$$4,\ 4,\ 1,\ 1,\ 2,\ 1,\ 4,\ 2,\ 2,\ 4,\ 4,\ 3,\ 3,\ 3,\ 4,\ 4,\ 4,\ 1,\ 2,\ 1,\ 1,\ 2,\ 2,\ 4,\ 2,\ 1,\ 2,\ 2,\ 4,\ 6,\ 8$$
 and 2

The mean of carb is 2.812 while the standard deviation is: 1.615. The most frequent value in carb is 2, but let us check out the frequency table too:

1	2	3	4	6	8	
7	10	3	10	1	1	

Correlation

And here goes a correlation table:

	mpg	cyl	disp	hp	drat
mpg	1.00000	-0.85216	-0.84755	-0.77617	0.68117
cyl	-0.85216	1.00000	0.90203	0.83245	-0.69994
disp	-0.84755	0.90203	1.00000	0.79095	-0.71021
$\mathbf{h}\mathbf{p}$	-0.77617	0.83245	0.79095	1.00000	-0.44876
\mathbf{drat}	0.68117	-0.69994	-0.71021	-0.44876	1.00000
\mathbf{wt}	-0.86766	0.78250	0.88798	0.65875	-0.71244
\mathbf{qsec}	0.41868	-0.59124	-0.43370	-0.70822	0.09120
vs	0.66404	-0.81081	-0.71042	-0.72310	0.44028
am	0.59983	-0.52261	-0.59123	-0.24320	0.71271
gear	0.48028	-0.49269	-0.55557	-0.12570	0.69961
carb	-0.55093	0.52699	0.39498	0.74981	-0.09079

	wt	qsec	vs	am
mpg	-0.86766	0.41868	0.66404	0.59983
cyl	0.78250	-0.59124	-0.81081	-0.52261
$\operatorname{\mathbf{disp}}$	0.88798	-0.43370	-0.71042	-0.59123
$\mathbf{h}\mathbf{p}$	0.65875	-0.70822	-0.72310	-0.24320
drat	-0.71244	0.09120	0.44028	0.71271
\mathbf{wt}	1.00000	-0.17472	-0.55492	-0.69250
\mathbf{qsec}	-0.17472	1.00000	0.74454	-0.22986
$\mathbf{v}\mathbf{s}$	-0.55492	0.74454	1.00000	0.16835
am	-0.69250	-0.22986	0.16835	1.00000
gear	-0.58329	-0.21268	0.20602	0.79406
carb	0.42761	-0.65625	-0.56961	0.05753

	gear	carb
mpg	0.48028	-0.55093
\mathbf{cyl}	-0.49269	0.52699
disp	-0.55557	0.39498
$\mathbf{h}\mathbf{p}$	-0.12570	0.74981
drat	0.69961	-0.09079
\mathbf{wt}	-0.58329	0.42761
\mathbf{qsec}	-0.21268	-0.65625
$\mathbf{v}\mathbf{s}$	0.20602	-0.56961
am	0.79406	0.05753
gear	1.00000	0.27407
carb	0.27407	1.00000

And the same on a graph:

Yeah, that latter took a while to render in an image file :) That's not a pander issue.

Some models

Okay, let us find out how weight affects other variables:

mpg

A simple linear model: mtcars\$wt ~ mtcars\$mpg

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	6.047e + 00	3.087 e - 01	1.959e + 01	1.204e-18
Independent	-1.409e-01	1.474 e - 02	-9.559e + 00	1.294 e-10

Table 1: Fitting linear model: mtcars\$wt \sim Independent

cyl

A simple linear model: mtcars\$wt ~ mtcars\$cyl

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	5.646e-01	4.006e-01	1.409e+00	1.690e-01
Independent	4.287e-01	6.228 e - 02	6.883e+00	1.218e-07

Table 2: Fitting linear model: mtcars\$wt \sim Independent

${\bf disp}$

A simple linear model: mtcars\$wt ~ mtcars\$disp

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	1.600e + 00	1.730 e-01	9.248e + 00	2.738e-10
Independent	7.010e-03	6.629 e-04	1.058e + 01	1.222e-11

Table 3: Fitting linear model: mtcars\$wt \sim Independent

$\mathbf{h}\mathbf{p}$

A simple linear model: mtcars\$wt ~ mtcars\$hp

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	1.838e + 00	3.165 e-01	5.808e + 00	2.389e-06
Independent	9.401 e-03	1.960 e-03	4.796e + 00	4.146e-05

Table 4: Fitting linear model: mtcars\$wt \sim Independent

\mathbf{drat}

A simple linear model: mtcars\$wt ~ mtcars\$drat

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	7.906e+00	8.522 e-01	9.277e + 00	2.547e-10
Independent	-1.304e+00	2.345 e-01	-5.561e+00	4.784 e-06

Table 5: Fitting linear model: mtcars\$wt \sim Independent

\mathbf{qsec}

A simple linear model: mtcars\$wt ~ mtcars\$qsec

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.924792	1.765407	2.789607	0.009081
Independent	-0.095667	0.098433	-0.971907	0.338868

Table 6: Fitting linear model: mtcars\$wt \sim Independent

\mathbf{vs}

A simple linear model: mtcars\$wt ~ mtcars\$vs

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	3.689e + 00	1.950 e-01	1.891e + 01	3.203e-18
Independent	-1.077e + 00	2.949e-01	-3.654e+00	9.798e-04

Table 7: Fitting linear model: mtcars\$wt ~ Independent

am

A simple linear model: mtcars\$wt ~ mtcars\$am

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.769e + 00	1.646 e-01	2.289e + 01	1.490e-20
Independent	-1.358e+00	2.583e-01	-5.258e + 00	1.125 e-05

Table 8: Fitting linear model: mtcars\$wt \sim Independent

gear

A simple linear model: mtcars\$wt ~ mtcars\$gear

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	6.070e+00	7.392e-01	8.212e+00	3.632e-09
Independent	-7.735e-01	1.967e-01	-3.933e+00	4.587e-04

Table 9: Fitting linear model: mtcars\$wt \sim Independent

carb

A simple linear model: mtcars\$wt ~ mtcars\$carb

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.489e + 00	3.230e-01	7.705e+00	1.353e-08
Independent	2.590 e-01	9.998e-02	2.591e+00	1.464 e - 02

Table 10: Fitting linear model: mtcars\$wt \sim Independent

This report was generated with R (2.15.1) and pander (0.1) in 6.304 sec on x86_64-unknown-linux-gnu platform.