

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AP2 1° semestre de 2019 GABARITO

Professores: Otton Teixeira da Silveira Filho e Regina Célia de Paula Toledo

1 - Primeira questão (2,0 pontos)

Uma distribuição de probabilidade é definida pela junção de duas funções: uma parábola dada por $y = \frac{3}{2}x^2$ no intervalo [0,1] e por um segmento de uma reta que passa pelos pontos (1,1) e

(2,0) e contido dentro do intervalo (1,2] . Assim definida, a distribuição de probabilidade será válida no intervalo [0,2] .

a) Prove que a função definida acima é distribuição de probabilidade;

Resolução:

Vemos com facilidade que esta composição de funções nunca toma valores negativos. Para integrarmos a função no intervalo [1,2], determinemos a reta que passa pelos pontos (1,1) e (2,0). Usando para a equação da reta a expressão y=ax+b, teremos para cada ponto as expressões $1=a\times 1+b$ e $0=a\times 2+b$. Resolvendo este sistema de equações teremos a=-1; b=2, ou seja, a equação da reta que passa por estes pontos é y=-x+2. Integremos para verificarmos se estamos com um distribuição de probabilidades.

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{1} \frac{3}{2} x^{2} dx + \int_{1}^{2} (2 - x) dx = \frac{3}{2} \int_{0}^{1} x^{2} dx + 2 \int_{1}^{2} dx - \int_{1}^{2} x dx = \frac{3}{2} \frac{x^{3}}{3} |_{0}^{1} + 2 x|_{1}^{2} - \frac{x^{2}}{2}|_{1}^{2}$$

que desenvolvendo nos dá

$$\int_{-\infty}^{+\infty} f(x) dx = \frac{1}{2} \times 1 + 2 \times (2 - 1) - \frac{2^2 - 1}{2} = \frac{1}{2} + 2 - \frac{3}{2} = 1 ,$$

portanto é uma distribuição de probabilidade.

b) Calcule a média da distribuição;

Resolução:

Usemos a definição de média para funções contínuas

$$\mu = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} x \frac{3}{2} x^{2} dx + \int_{1}^{2} x (2-x) dx = \frac{3}{2} \int_{0}^{1} x^{3} dx + 2 \int_{1}^{2} x dx - \int_{1}^{2} x^{2} dx = \frac{3}{2} \frac{x^{4}}{4} \Big|_{0}^{1} + 2 \frac{x^{2}}{2} \Big|_{1}^{2} - \frac{x^{3}}{3} \Big|_{1}^{2}$$

ou ainda

$$\mu = \frac{3}{8} \times 1 + (2^2 - 1^1) - \frac{2^3 - 1^3}{3} = \frac{3}{8} + 3 - \frac{7}{3} = \frac{25}{24} .$$

c) Calcule a variância da distribuição;

Resolução:

Usarmos a definição de variância para funções contínuas, ou seja,

$$\sigma = \int_{-\infty}^{+\infty} x^2 f(x) dx - \mu^2 ,$$

e como já temos a média, calculemos a integral acima

$$\int_{-\infty}^{+\infty} x^2 f(x) dx = \int_{0}^{1} x^2 \frac{3}{2} x^2 dx + \int_{1}^{2} x^2 (2-x) dx = \frac{3}{2} \int_{0}^{1} x^5 dx + 2 \int_{1}^{2} x^2 dx - \int_{1}^{2} x^3 dx = \frac{3}{2} \frac{x^5}{5} \Big|_{0}^{1} + 2 \frac{x^3}{3} \Big|_{1}^{2} - \frac{x^4}{4} \Big|_{1}^{2}$$

e desenvolvendo teremos

$$\int_{-\infty}^{+\infty} x^2 f(x) dx = \frac{3}{10} \times 1 + 2 \frac{(2^3 - 1^3)}{3} - \frac{2^4 - 1^4}{4} = \frac{3}{10} + \frac{14}{3} - \frac{15}{4} = \frac{73}{60}.$$

Voltando a definição de variância obteremos

$$\sigma = \int_{-\infty}^{+\infty} x^2 f(x) dx - \mu^2 = \frac{73}{60} - \left(\frac{25}{24}\right)^2 = \frac{379}{2880} \approx 0,1316 .$$

d) Dê a moda da distribuição.

Resolução:

Sendo a moda o valor para o qual a probabilidade é máxima, dentro dos domínios especificado de cada função, teremos que temos uma distribuição de probabilidade monomodal e a moda é igual a 1.

2 – Segunda questão (2,0 ponto)

Verifique quais das funções abaixo são distribuições de probabilidade. Caso alguma das funções não seja distribuição devido à constante de normalização, apresente a função normalizada.

a)
$$f(x) = \frac{1}{17}(x^2 - 1)(x + 1); x \in [1,3]$$

Resolução:

Por simples inspeção vemos que a função não toma valores negativos no intervalo estabelecido. Integremos

$$\int_{1}^{3} f(x) dx = \int_{1}^{3} \frac{1}{17} (x^{2} - 1)(x + 1) dx = \frac{1}{17} \int_{1}^{3} (x^{3} + x^{2} - x - 1) dx = \frac{1}{17} \left[\int_{1}^{3} x^{3} dx + \int_{1}^{3} x^{2} dx - \int_{1}^{3} x dx - \int_{1}^{3} x dx \right]$$

ou

$$\int_{1}^{3} f(x) dx = \frac{1}{17} \left[\frac{x^4}{4} \Big|_{1}^{3} + \frac{x^3}{3} \Big|_{1}^{3} - \frac{x^2}{2} \Big|_{1}^{3} - x \Big|_{1}^{3} \right] = \frac{1}{17} \left[\frac{3^4 - 1^4}{4} + \frac{3^3 - 1^3}{3} - \frac{3^2 - 1^2}{2} - (3 - 1) \right] = \frac{1}{17} \left(20 + \frac{26}{3} - 4 - 2 \right) = \frac{4}{3} .$$

Assim, a função normalizada será

$$f(x) = \frac{3}{4} \frac{1}{17} (x^2 - 1)(x + 1) = \frac{3}{68} (x^2 - 1)(x + 1); x \in [1,3] .$$

b)
$$f(x) = \frac{1}{\pi} x sen(x); x \in [0, \pi]$$

Resolução:

É fácil verificarmos que a função acima é não negativa apenas usando os conhecimentos elementares sobre o seno neste intervalo. Integremos, então,

$$\int_{0}^{\pi} \frac{1}{\pi} x \, sen(x) dx = \frac{1}{\pi} \int_{0}^{\pi} x \, sen(x) \, dx = \frac{1}{\pi} \left[sen(x) - x \cos(x) \right]_{0}^{\pi} ,$$

onde acima usamos integração por partes. Continuando o cálculo

$$\int_{0}^{\pi} \frac{1}{\pi} x \, sen(x) dx = \frac{[sen(\pi) - \pi \cos(\pi)] - [sen(0) - 0 \times \cos(0)]}{\pi} = \frac{\pi}{\pi} = 1 \quad ,$$

portanto, esta função é distribuição de probabilidade.

c)
$$f(x) = \frac{1}{4}(x-1)(x^2+1); x \in [1,3]$$

Resolução:

A função toma valor nulo em x = 1 e no restante do intervalo só pode tomar valores positivos, portanto, integremos

$$\int_{1}^{3} \frac{1}{4} (x-1)(x^{2}+1) dx = \frac{1}{4} \int_{1}^{3} (x^{3}-x^{2}+x-1) dx = \frac{1}{4} \left[\int_{1}^{3} x^{3} dx - \int_{1}^{3} x^{2} dx + \int_{1}^{3} x dx - \int_{1}^{3} x dx - \int_{1}^{3} x dx \right] ,$$

ou

$$\int_{1}^{3} \frac{1}{4} (x-1)(x^{2}+1) dx = \frac{1}{4} \left[\frac{x^{4}}{4} \Big|_{1}^{3} - \frac{x^{3}}{3} \Big|_{1}^{3} + \frac{x^{2}}{2} \Big|_{1}^{3} - x \Big|_{1}^{3} \right] = \frac{1}{4} \left[\frac{3^{4}-1^{4}}{4} - \frac{3^{3}-1^{3}}{3} + \frac{3^{2}-1^{1}}{2} - (3-1) \right]$$

e finalmente,

$$\int_{1}^{3} \frac{1}{4} (x-1)(x^{2}+1) dx = \frac{1}{4} \left(20 - \frac{26}{3} + 4 - 2 \right) = \frac{1}{4} \frac{40}{3} = \frac{10}{3} .$$

Assim, para termos a função normalizada teremos que escrever

$$f(x) = \frac{3}{40}(x-1)(x^2+1); x \in [1,3]$$
.

d)
$$f(x) = \frac{1}{17}x(x+1)^2; x \in [0,1]$$

Resolução:

A função só tomará valores positivos dentro do intervalo, exceto na origem onde a função se anula. Integremos

$$\int_{0}^{1} \frac{1}{17} x(x+1)^{2} dx = \frac{1}{17} \int_{0}^{1} (x^{3} + 2x^{2} + x) dx = \frac{1}{17} \left[\int_{0}^{1} x^{3} dx + 2 \int_{0}^{1} x^{2} dx + \int_{0}^{1} x dx \right] = \frac{1}{17} \left[\frac{x^{4}}{4} \Big|_{0}^{1} + 2 \frac{x^{3}}{3} \Big|_{0}^{1} + \frac{x^{2}}{2} \Big|_{0}^{1} \right]$$

que desenvolvendo resulta em

$$\int_{0}^{1} \frac{1}{17} x(x+1)^{2} dx = \frac{1}{17} \left[\frac{1}{4} + \frac{2}{3} + \frac{1}{2} \right] = \frac{1}{17} \times \frac{17}{12} = \frac{1}{12} ,$$

portanto, a função normalizada será

$$f(x) = \frac{12}{17}x(x+1)^2; x \in [0,1]$$
.

3 – Terceira questão (1,5 pontos)

Numa fábrica de móveis modulados se usava pinos de madeira para fixação. A questão era que haviam reclamações dos montadores quanto o diâmetro do pino num lote da produção. Uma amostra de 12 pinos de madeira forneceu uma média de 1,04 cm de diâmetro e uma variância amostral de 1,44 cm². Suponha que possamos usar a distribuição Normal.

a) Calcule a probabilidade de se encontrar um pino como menos de 1 cm de diâmetro;

Resolução:

Pela especificação do problema, usaremos

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma / \sqrt{n}} < Z < \frac{b - \mu}{\sigma / \sqrt{n}}\right)$$

e pelos valores dados obtemos

$$\frac{\sigma}{\sqrt{n}} = \frac{\sqrt{1,44}}{\sqrt{12}} = \frac{0,6}{\sqrt{3}} \approx 0,3464$$
.

Para este item escreveremos

$$P(X<1)=P\left(Z<\frac{1-1,04}{0,3464}\right)=P\left(Z<-\frac{0,04}{0,3464}\right)\approx P\left(Z<-0,1155\right)\approx 0,5-P\left(Z<0,12\right)=0,5-0,0478=0,4522$$
.

b) Calcule a probabilidade de se encontrar um pino com mais de 1,2 cm de diâmetro;

Resolução:

Partindo de

$$P(Z>1,2)=0,5-P(Z<1.2)$$

podemos calcular

$$P(Z>1,2)=0,5-P\left(Z<\frac{1,2-1,04}{0,3464}\right)=P\left(Z<\frac{0,16}{0,3464}\right)\approx0,5-P\left(Z<0,4619\right)$$

ou

$$P(Z>1,2)\approx 0,5-P(Z<0,46)=0,5-0,1772=0,3228$$
.

c) Calcule a probabilidade de se encontrar um pino com comprimento no intervalo [0,95; 1,05]. **Resolução:**

$$P(0,95 < X < 1,05) = P\left(\frac{0,95 - 1,04}{0,3464} < Z < \frac{1,05 - 1,04}{0,3464}\right) = P\left(-\frac{0,09}{0,3464} < Z < \frac{0,01}{0,3464}\right) \approx P(-0,2598 < Z < 0,0289)$$

$$P(0.95 < X < 1.05) \approx P(-0.26 < Z < 0.03) = P(-0.26 < Z) + P(Z < 0.03) = 0.1026 + 0.0120 = 0.1146$$
.

4 – Quarta questão (2,0 pontos)

Calcule as probabilidades solicitadas:

a) $P(0.8 \le X \le 1.8)$ para a distribuição da primeira questão.

Resolução:

O cálculo de probabilidade da primeira questão é feita pela expressão

$$P(a < X < b) = \int_{a}^{b} f(x) dx = \int_{a}^{1} \frac{3}{2} x^{2} dx + \int_{1}^{b} (2 - x) dx$$

lembrando que a distribuição de probabilidade é válida no intervalo [0,2] . No caso do item teremos

$$P(0,8 < X < 1,8) = \int_{0,8}^{1} \frac{3}{2} x^{2} dx + \int_{1}^{1,8} (2-x) dx = \frac{3}{2} \int_{0,8}^{1} x^{2} dx + 2 \int_{1}^{1,8} dx - \int_{1}^{1,8} x dx$$

$$P(0,8 < X < 1,8) = \frac{x^{3}}{2} \Big|_{0,8}^{1} + 2x \Big|_{1}^{1,8} - \frac{x^{2}}{2} \Big|_{1}^{1,8} = \frac{1^{3} - 0,8^{3}}{2} + 2(1,8 - 1) - \frac{1,8^{2} - 1^{2}}{2} = 0,244 + 1,6 - 1,12 = 0,724 .$$

b) P(0,8 < X < 1,8) para distribuição Normal com média 2,2 e variância 18,49;

Resolução:

Usaremos a fórmula

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

e daí escreveremos

$$P(0,8 < X < 1,8) = P\left(\frac{0,8-2,2}{\sqrt{18,49}} < Z < \frac{1,8-2,2}{\sqrt{18,49}}\right) = P\left(-\frac{1,4}{4,3} < Z < -\frac{0,4}{4,3}\right) \approx P(-0,3256 < Z < -0,0930)$$

ou

$$P(0.8 < X < 1.8) \approx P(-0.33 < Z < -0.09) = P(0.33 < Z) - P(Z < 0.09) = 0.1293 - 0.0359 = 0.0934$$
.

c) P(0,8 < X < 1,8) para a distribuição Normal com média 0,2 e variância 18,49;

Resolução:

Aproveitando os cálculos anteriores vamos escrever

$$P(0,8 < X < 1,8) = P\left(\frac{0,8-0,2}{4,3} < Z < \frac{1,8-0,2}{4,3}\right) = P\left(\frac{0,6}{4,3} < Z < \frac{1,6}{4,3}\right) \approx P(0,1395 < Z < 0,3721)$$

ou

$$P(0.8 < X < 1.8) \approx P(0.14 < Z < 0.37) = 0.1443 - 0.0557 = 0.0886$$
.

d) P(0,8 < X < 1,8) para a distribuição Exponencial com α = 7,72 .

Resolução:

Usaremos aqui

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b}$$

que para os valores dados resulta em

$$P(0.8 X < 1.8) = e^{-6.176} - e^{-13.896} \approx 0.0020$$
.

5 – Quinta questão (2,5 pontos)

Numa pesquisa tentava-se determinar o desenvolvimento radicular de uma variedade de arroz. Abaixo temos a massa radicular seca em gramas medida com amostras colhidas depois de 65 dias de desenvolvimento.

P(g)	9,82	9,23	9,10	9,94	10,08	9,89	9,12	9,32	9,35	9,85

Supondo válido o uso da distribuição Normal, calcule:

a) A média e a variância desta amostra usando estimadores não viciados. (1,0 ponto).

Resolução:

Usaremos os seguintes estimadores

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \mathbf{e} \quad \sigma^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n \, \bar{X}^{2} \right).$$

Calculemos o estimador para a média

$$\hat{\mu} = \frac{1}{10} \sum_{i=1}^{10} x_i = \frac{(9.82 + 9.23 + 9.10 + 9.94 + 10.08 + 9.89 + 9.12 + 9.32 + 9.35 + 9.85)}{10} = \frac{95.7}{10} = 9.57$$

Agora achemos o seguinte somatório

$$\sum_{i=1}^{10} x_i^2 = 9.82^2 + 9.23^2 + 9.10^2 + 9.94^2 + 10.08^2 + 9.89^2 + 9.12^2 + 9.32^2 + 9.35^2 + 9.85^2 = 917.1392$$

Com estes dois últimos resultados podemos calcular a variância

$$\sigma^2 = \frac{1}{9} (917,1392 - 10 \times 9,57^2) = \frac{1,2902}{9} \approx 0,1434 \Rightarrow \sigma \approx 0,3787$$
.

b) Supondo que a amostra seja significativa para a totalidade do experimento, dê a probabilidade de termos elementos da amostra com peso menor que 9,5 g de massa seca (0,5 ponto);

Resolução:

Agora usaremos

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

que resultará em

$$P(X<9,5)=P\left(Z<\frac{9,5-9,57}{0,3787}\right)=P\left(Z<-\frac{0,07}{0,3787}\right)\approx P(Z<-0,1848)$$

ou seja,

$$P(X<9,5)\approx 0.5-P(Z<0.18)=0.5-0.0714=0.4286$$
.

c) Dê o intervalo de confiança para a média com coeficiente de confiança igual a 92% (1,0 ponto). **Resolução:**

$$IC(\mu,\gamma) = \left[\overline{X} - z_{\gamma/2} \frac{\sigma}{\sqrt{n}} ; \overline{X} + z_{\gamma/2} \frac{\sigma}{\sqrt{n}} \right]$$

que com os dados do problema nos dão

$$\frac{\sigma}{\sqrt{n}} = \frac{0.3787}{\sqrt{10}} \approx 0.1198$$
 e $z_{0.92/2} = z_{0.46} = 1.75$,

portanto podemos escrever

$$IC(\mu,\gamma)=[9,57-1,75\times0,1198;9,57+1,75\times0,1198]\approx[9,3604;9,7797]\approx[9,36;9,78]$$
.

Tabela da distribuição Normal N(0,1)

Z _c	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0476	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0, 1	0,1001	0,1001	0,1020	0,1001	0,1700	0,1750	0,1772	0,1000	0,1011	0,1075
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
,	-,-	-,-	-,-	-,	-,-	-,-	-,	-,	-,	-,
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.