除了最後一題之外,所有答案請以科學符號表示,例如:

計算出來的答案為 $\frac{1}{3}$,則填寫 3.33×10^{-1} (科學符號的小數第三位,四捨五人進第二 位),

計算出來的答案為 $-\frac{2}{3}$ 則填寫 -6.67×10^{-1} (科學符號的小數第三位,四捨五人進第

計算出來的答案為7,則7.00×10°

計算出來的答案為-7,則-7.00×100

計算出來的答案為 70,則7.00×101

如還不知道怎麼填寫答案,請詢問監考人員,答案以原子筆填寫,每個答案五分

1.計算以下電壓波形 V(t)的直流電壓成分(平均電壓值)= [4]。

及有效電壓值(RMS 電壓值)= \square . 图图 imes 10^{9} 伏特

2.計算以下電壓波形 V(t)的直流電壓成分(平均電壓值)= 0 00 ×

及有效電壓值(RMS 電壓值)= t .

3.有一鐵心在線圈通上電流構成一磁路如右【圖 1】所示,鐵心截面積 A_c 與無隙截面積 A_c 相等均為 $15~cm^2$,氣隙寬度 ℓ_g 為 0.1~cm,鐵心平均路徑 ℓ_c 為 50~cm,線圈匝數 N 為 400~cm,電流 i=1A,磁路中磁場均勻並忽略氣隙邊緣效應及濕磁,鐵心相對導磁係數 $\mu_c=3000$,氣隙導磁係數 $\mu_c=4\pi\times10^7 H/m$,試求:

空氣隙中產生 0.01Wb 之磁通,則線圈電流 i 應為 \Box . \Box ② \times 10 \Box φ 培

$$|1000 \times \lambda = 0.0| \left(\frac{50 \times 10^{-2}}{55 \times 10^{-2}} + \frac{3.14157 \times 10^{-3}}{55 \times 10^{-4}} \right)$$

$$\lambda = 0.0| \left(\frac{5 \times 10^{-1}}{50 \times 10^{-1}} + \frac{3.14159 \times 10^{-3}}{10000 \times 10^{-1}} \right)$$

$$0.0| \left(\frac{10^{5}}{50 \times 10^{-1}} + \frac{3.14159 \times 10^{-3}}{10000 \times 10^{-1}} \right)$$

-5

5.以下變壓器,當一次側電壓 V_1 為 500V 時,二次側電壓 V_2 為 100V ・此時當二次側連接 100 Ω 電阻時,電流 I_1 = \boxed{V} 、 \bullet \bullet \boxed{V} \bullet \bullet \bullet \boxed{V} \bullet \bullet \bullet

$$\frac{V_1}{V_2} = \frac{900}{100} = \frac{N_1}{N_2} = \frac{\tilde{\lambda}_2}{\tilde{\lambda}_1} = \frac{1}{\tilde{\lambda}_1}$$

$$\frac{V_2}{\tilde{\lambda}_1} = \frac{1}{\tilde{\lambda}_2} = \frac{1}{\tilde{\lambda}_1}$$

$$\frac{V_3}{\tilde{\lambda}_1} = \frac{1}{\tilde{\lambda}_2} = \frac{1}{\tilde{\lambda}_1}$$

$$\frac{V_4}{\tilde{\lambda}_1} = \frac{1}{\tilde{\lambda}_2} = \frac{1}{\tilde{\lambda}_1}$$

6.有一電磁裝置如下圖所示,線圈匝數 N=400,鐵心之磁路平均長度 lc=360 mm,鐵心與氣隙之截面積為 $A_c=A_g=20$ cm²,氣隙長度為 g=1.5 mm 時,磁通密度為 B=0.8 (wb/m^2) ,鐵心之邊緣效應忽略,鐵心相對導磁係數 $\mu_r=1250$,自由空間導磁率 $\mu_0=4\pi\times 10^{-7}$ H/m。

線圈之電流 *i=* ☑ . 图 × 10 [®] 安培,鐵心內磁通 Ø = ☑ . 图 ▼ 10 ^{≥3} wb

7.以下電路長時間穩定後, $V_c(\infty)= \mathbb{Z}_0$ 。 \mathbb{Z}_0 \mathbb{Z}_0 X \mathbb{Z}_0 代特,

i_L(∞)=▽. 回回 × 10[□]安培

110 33

8. T<0 開闡閉合,電路達穩定,T=0 開闢即開路,則開路瞬間

