VIEW-SERIALIZABLE

<u>NỘI DUNG:</u>

- I. View-Equilvalent:
- II. View-Serializable:
- III. Xác định lịch có View-Serializable không?

I. View-Equilvalent:

Định nghĩa:

- Hai lịch S và S' được gọi là tương đương theo chuẩn View-Equilvalent nếu 2 lịch đó thỏa mãn 3 yêu cầu sau :
- 1. Nếu trong S có Wj(A) \rightarrow Ri(A) thi trong S' cũng phải là Wj (A) \rightarrow Ri (A)
- 2. Nếu trong S kết thúc bằng Wi(A) thì trong S' kết thúc cũng bằng Wi(A)
- 3. Nếu trong S, Ti bắt đầu đọc Ri(A) thì trong S', Ti cũng bắt đầu đọc Ri(A).

Ví dụ: Xét 2 lịch sau có View-Equilvalent không?

S1				
T1	T1 T2			
R(A)				
	W(A)			
W(A)				
		W(A)		

S2			
T1	T2	T3	
R(A)			
W(A)			
	W(A)		
		W(A)	

Hướng dẫn:

 $X\acute{e}t \, DK \, 1$: Trong trường hợp này 2 lịch thỏa điều kiện này, vì sau khi T1 thực hiện W(A) không có bất khì 1 Ti (i=2,3) thực hiện R(A) → Không cần xét . (Tương tự với các W khác) → $Thỏa \, DK \, 1$.

Xét ĐK 2: Trong S1, T1 bắt đầu thực hiện R(A) và trong S2 cũng vậy → Thỏa ĐK 2.

Xét ĐK 3: Trong S1, T3 kết thúc thực hiện W(A) và trong S2 cũng vậy → Thỏa ĐK 3.

Từ trên, ta rút ra được kết luận là S1 và S2 tương đương theo chuẩn View-Equilvalent.

II. View-Serializable:

Định nghĩa: 2 lịch S được gọi là View-Serializable khi tồn tại 1 lịch S' tuần tự tương đương với S theo chuẩn View-Equilvalent.

Ví dụ: Lấy lại ví dụ trên

Ta có S1 và S2 tương đương theo chuẩn View-Equilvalent (1)

Và S2 tuần tự (2)

Từ (1) và (2) → S1 là View-Serializable

III. Cách xác định 1 lịch có View-Serializable không?

Bước 1: Chèn 2 giao tác Tb và Tf vào lịch với:

- Tb (viết tắt Transaction for beginning) thực hiện Ghi (Write) tất cả các đơn vị dữ liệu và thực hiện trước tất cả các giao tác khác có trong lịch.
- Tf (viết tắt Transaction for finalization) thực hiện Đọc(Read) trên tất cả các đơn vị dữ liêu.

Ví dụ: Cho lịch S như sau,

T1	T2	T3
	R(B)	
	W(A)	
R(A)		
		R(A)
W(B)		
	W(B)	

Sau khi thêm 2 giao tác Tb và Tf vào ta có:

Tb	T1	T2	T3	Tf
W(A)				
W(B)				
		R(B)		
		W(A)		
	R(A)			
			R(A)	
	W(B)			
		W(B)		
			W(B)	
				R(A)
				R(B)

Bước 2: Lập sơ đồ ưu tiên,

Thành lập các cung theo điều kiện sau:

Nếu trong lịch S có $Wi(A) \rightarrow Rj(A)$ thì ta lập được cung : $Ti \rightarrow Tj$ trên đơn vị dữ liệu A

hay Ti là nguồn của Rj(A) trên Tj

hay Tj có nguồn của Rj(A) là Ti

Ví dụ: Trở lại ví dụ trên ta suy luận như sau:

- T2 có nguồn cua R2(B) là Tb (vì Wb(B) \rightarrow R2(b)) nên ta có **Tb** \rightarrow **T2 trên A.** (1)
- Nguon cua R1(A) trên T1 là T2 (vì T2 ghi lên A trước khi T1 đọc A, W2(A) →R1(A)) nên suy ra T2 → T1 trên A. (2)
 Tương tự ta có:
- Nguồn của R3(A) là T2 nên T2 → T3 trên A. (3)
- Nguồn của Rf(B) trong Tf la T3 nên T3 **Tf trên B.** (4)
- Nguồn của Rf(A) trong Tf la T2 nên T2→Tf trên A. (5)

Từ $^{(1),(2),(3),(4),(5)}$ ta có sơ đồ sau:

Bước 3: Xét trên từng cập Ti → Tj trên ĐVDL X:

Ta xét tất cả các thao táo trong giao tác Tk thực hiện Ghi(Write) trên ĐVDL X sao cho Wk phải nằm trước Ti hoặc nằm sau Tj.

Có 3 trường hợp xảy ra:

- Ti = Tb và Tj = /= Tf: ta thực hiện chèn cung $Tj \rightarrow Tk$.
- Ti = /= Tb và Tj = Tf: ta thực hiện chèn cung $Tk \rightarrow Ti$.
- Ti = /= Tb và Tj = /= Tf: ta thực hiện chèn 2 cung Tk → Ti và Tj → Tk.

Ví dụ: Lấy lại ví dụ trên ta thực hiện tiếp, sau bước 2 ta đã có các cung sau:

- 1. Tb \rightarrow T2 trên \oplus VDL (B).
- 2. $T2 \rightarrow T1 \text{ trên } DVDL (A)$.
- 3. $T2 \rightarrow T3 \text{ trên } DVDL (A)$.
- 4. T2 → Tf trên ĐVDL (A).
- 5. T3 \rightarrow Tf trên \oplus VDL (B).

Xét từng cung ta có:

1. Tb → T2 trên ĐVDL (B).

Tb	T1	T2	T3	Tf
W(A)				
W(B)				
	7	R(B)		
		W(A)		
	R(A)			
			R(A)	
	W(B)			
		W(B)	**	
			W(B)	
				R(A)
				R(B)

Xét Tb → T2, nên ta có Ti = Tb và Tj=T2.

Trên đơn vị dữ liệu B ta có T1 và T3 cũng thực hiện Ghi (Write) B nên suy ra k=1,3. Ta giả sử T_{k1} là T1 và T_{k2} là T3.

Chú ý T1 và T3 đều thực hiện W(B) sau Tj (ở đây là T2).

⇒ Ta có thêm 2 cung từ T2 (Tj) \rightarrow T1 (T_{k1}) và T2 (Tj) \rightarrow T3 (T_{k2}).

Sơ đồ của chứng ta trở thành như sau:

2. $T2 \rightarrow T1 \text{ trên } DVDL (A)$.

Tb	T1	T2	T3	Tf
W(A)				
W(B)				
		R(B)		
		W(A)		
	R(A)			
			R(A)	
	W(B)			
		W(B)		
			W(B)	
				R(A)
				R(B)

Ta có Ti = T2 và Tj = T1.

Trên dữ liệu là A ngoài Tb thực hiện W(A) thì không còn giao tác nào khác ghi A nữa. Xét Tb (Tk), dễ dàng thấy Tb luôn trước Ti và Tj trong mọi trường hợp nên ta lập được cung Tb \rightarrow Ti ở đây là Tb \rightarrow T2. Nhìn trong lược đồ hiện tại ta đã có Tb \rightarrow Ti ở đây là Tb \rightarrow T2. Nên ta rút ra 1 suy luận nhỏ: đối với các thao tác ghi thực hiện trên Tb thì ta không cần xét đến trong bước 3 này, hay không thêm bất kì cung nào vào nữa cả.

Cho nên lược đồ hiện tại của chúng ta vẫn là:

- T2 → T3 trên ĐVDL (A).
 Tương tự như trên với ĐVDL là A, ta cũng không thêm được cung nào vào.
- 4. $T2 \rightarrow Tf trên DVDL (A)$.

Tương tự như trên với θ VDL là A, ta cũng không thêm được cung nào vào. Lược đồ vẫn là :

5. $T3 \rightarrow Tf trên DVDL (B)$.

Tb	T1	T2	T3	Tf
W(A)				
W(B)				
		R(B)		
		W(A)		
	R(A)			
			R(A)	
	W(B)			
		W(B)		
			W(B)	
				R(A)
				R(B)

Ta có Ti=T3 và Tj=Tf.

Xét trên ĐVDL B, ta có T1 và T2 cùng ghi trên B và thực hiện W(B) trước Ti ở đây là T3.

Nên ta lập được thêm 2 cung là:

T1 → T3

T2 → T3

Lược đồ của chúng ta như sau:

Như vậy ta đã xét xong 5 cung chính và thêm được 4 cung mới.

Thực hiện xong bước 3 nhé.

Bước 4: Xét đồ thị sau khi thực hiện bước 3 có chu trình không.

Nếu không thì xác định các bước tuần tự của đồ thị và kết luận lịch S khả tuần tự theo View-Serializable .

Nếu có chu trình ta dẫn đến kết luận S không khả tuần tự theo chuẩn View-Serializable.

Ví dụ: Lại dùng ví dụ trên 1 lần nữa (lần cuối cùng :D).

Xét thấy đồ thị ưu tiên ta lập được sau bước 3 không có chu trình mà tuần tự theo $T2 \rightarrow T1 \rightarrow T3$

Nên ta kết luận S khả tuần tự theo chuẩn View-Serializale và lịch tuần tự tương đương với S theo chuẩn View-Equilvalent là $T2 \rightarrow T1 \rightarrow T3$:

T1	T2	T3
	R(B)	
	W(A)	
	W(B)	
R(A)		
W(B)		
		R(A)