Ground Cloud Dispersion Measurements During the Titan IV Mission #K23 (14 May 1995) at Cape Canaveral Air Station Volume 1—Test Overview and Data Summary

27 February 1996

Assembled by

Environmental Systems Directorate Systems Engineering Space Launch Operations

Prepared for

SPACE AND MISSILE SYSTEMS CENTER AIR FORCE MATERIEL COMMAND 2430 E. El Segundo Boulevard Los Angeles Air Force Base, CA 90245

19960327 022

Space Systems Group

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Discourage and an included in

This report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691, under Contract No. F04701-93-C-0094 with the Space and Missile Systems Center, 2430 E. El Segundo Blvd., Los Angeles Air Force Base, CA 90245. It was reviewed and approved for The Aerospace Corporation by N. F. Dowling, Systems Director, Environmental Systems, Systems Engineering Directorate.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

B. Fortson, Maj, USAF

SMC/CLN

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

AGENCY USE ONLY (Leave blank)	2. REPORT DATE 27 Feb 1996	T TYPE AND DATES COVERED			
 4. TITLE AND SUBTITLE Ground Cloud Dispersion Measure #K23 (14 May 1995) at Cape Cana Vol 1—Test Overview and Data St 6. AUTHOR(S) Environmental Systems Directorate 	veral Air Station ummary	Mission	5. FUNDING NUMBERS F04701-93-C-0094		
7. PERFORMING ORGANIZATION NAME(S) AND The Aerospace Corporation Technology Operations El Segundo, CA 90245-4691	DADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER TR-96(1410)-1		
9. SPONSORING/MONITORING AGENCY NAME Space and Missile Systems Cen Air Force Materiel Command 2430 E. El Segundo Boulevard Los Angeles Air Force Base, C.	iter		10. SPONSORING/MONITORING AGENCY REPORT NUMBER SMC-TR-96-01		
11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distri			12b. DISTRIBUTION CODE		

13. ABSTRACT (Maximum 200 words)

Launch plume imagery, airborne and ground-level HCl measurement results and meteorological data determined during the launch of a Titan IV vehicle at Cape Canaveral Air Station (CCAS) on 14 May 1995 (mission #K23) are presented. These data will be used to determine the accuracy of the Rocket Exhaust Effluent Diffusion Model (REEDM). The imagery and aircraft-based HCl measurements indicate that the plume separated into ground-cloud and launch-column segments below and above 2000 meters, respectively, that took northeast and southeast trajectories out to sea consistent with rawinsonde data. The ground cloud's stabilization height was twice that predicted by REEDM.

Of numerous deployed dosimeters, large HCl responses (≥100 ppm-min) were obtained only for dosimeters on four lightning towers surrounding the pad and at a southeasterly position on the perimeter fence 180 meters away. REEDM predicted that a low-level inversion layer would prevent the cloud from diffusing back to ground. Aircraft HCl measurements briefly performed at altitudes as low as 400 meters 50 min after launch and 16 km from the pad detected only low levels (0.1–0.5 ppm) of HCl.

	ic hazard corridors, Atmos		15. NUMBER OF PAGES 159
Launch cloud developme monitoring	16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. LIMITATION OF ABSTRACT

Preface

The Air Force's Space and Missile Systems Center's Titan Systems Program Office (SMC/ME) is sponsoring the Atmospheric Dispersion Model Validation Program (MVP). This program will determine the accuracy of atmospheric dispersion models such as REEDM in predicting toxic hazard corridors at the launch ranges. This report presents launch cloud dispersion and meteorological measurements performed during the #K23 mission's Titan IV launch at CCAS as part of the MVP effort.

An MVP Integrated Product Team (IPT) led by Lt J. Schorie (SMC/MEEM) has been directing the MVP effort. H. Lundblad of The Aerospace Corporation's Environmental Systems Directorate (ESD) is the IPT's technical manager. G. Loper of The Aerospace Corporation's Lasers and Optical Physics Department, and H. Lundblad coordinated the preparation of this report from material contributed by personnel participating in the launch cloud dispersion measurements during the #K23 mission.

Visible and infrared imagery measurements were made on the launch cloud by R. Abernathy, G. Harper, B. Kasper, J. Knudtson, and J. Valero of The Aerospace Corporation's Environmental Monitoring and Technology Department (EMTD) and D. Schulthess of Aerospace's Eastern Range Systems Engineering Directorate (ERD) in order to monitor the cloud's growth, stabilization, and trajectory. D. Schulthess coordinated site selection and logistical support with appropriate Range organizations. K. Foster (EMTD) digitized the imagery data for analyses by R. Abernathy. R. Abernathy and R. Heidner (EMTD) prepared the description of the cloud imagery results that comprise an important part of this report.

The aircraft-based and ground-level HCl measurement effort was managed by Capt P. Devane of the 45th Medical Group Bioenvironmental Engineering Services (45 AMDS/SGPB) organization. SRS Associates assisted SMC/MEEM in procuring a plane and pilot from the Florida Institute of Technology for the airborne measurements. The plane was outfitted with a Geomet HCl detector that had been modified and calibrated for airborne sampling by D. Curran of NASA's Toxic Vapor Detection Laboratory (TVDL). A ceramic inlet tube was employed for transporting the air sample to the detector from outside the aircraft. J. Hawkins of SGPB was on-board the aircraft during the sampling measurements to monitor instrument performance. S. Beard of NOAA's Environmental Research Laboratories provided a data logger to TVDL that was used to store the HCl concentrations measured with the aircraft's Geomet detector. G. Start of NOAA provided the raw HCl data to R. Abernathy of Aerospace EMTD, who provided baseline corrections to and plotted the corrected data to correlate the HCl detection with aircraft position relative to the launch pad. R. Abernathy and R. Heidner of EMTD processed and described the airborne HCl measurement data presented here.

The ground-level HCl measurement effort was coordinated by MSgt S. Zeigler of SGPB and D. Schulthess of Aerospace's ERD under the direction of Capt Devane. SGPB and NASA/TVDL personnel deployed and analyzed the HCl dosimeters, respectively. SGPB personnel participating in the effort included: TSgt P. Yocum, Sgt E. Everhart, SSgt Patrick, Sgt Rivera, Amn Voight, and Amn Barker. Capt Devane coordinated risk assessment predictions with 45 SW/SES from the Range Control Center Bioenvironmental Engineering Services console. Capt Devane relayed launch cloud dispersion model predictions to supporting SGPB and TVDL personnel for optimum sensor deployment one hour prior to launch. NASA TVDL personnel who participated in the sampling effort included D. Lueck (TVDL technical contact), T. Hammond, B. Meneghelli, M. Springer, D. Curran, T. Hodge, D. Lemay, C. Fogarty, and R. Barile. This report includes a summary of ground-level HCl measurement results provided by D. Lueck, D. Curran, R. Barile, and B. Meneghelli.

D. Schulthess of Aerospace's ERD and R. Evans of Ensco, Inc.'s Applied Meteorology Unit provided meteorological data determined before and after the launch. These data included measurements of ambient temperature, humidity, and wind speed and direction as a function of time at numerous meteorological towers at various tower elevations as well as rawinsonde and Doppler radar wind profiler data collected at various times. D. Schulthess provided REEDM predicted plume stabilization height and ground-level HCl concentrations for use in this report.

Contents

Exe	cutive	Summary	v					
1.	Intro	duction	1-1					
2.	Imag	agery of the Titan IV K-23 Ground Cloud						
	2.1	Background	2-1					
	2.2	Introduction	2-1					
	2.3	Field Deployment	2-2					
	2.4	Processing of Imagery Data	2-3					
	2.5	Results and Discussion	2-5					
	2.6	Summary and Conclusions						
3.	Airc	raft Elevated HCl Measurements	3-1					
	3.1	Background	3-1					
	3.2	Introduction	3-1					
	3.3	Results and Discussion	3-2					
	3.4	Conclusions	3-13					
4.		and-Level HCl Dosimetry and Preparation of Instrument Measuring Airborne HCl Concentrations	4-1					
	4.1	Dosimeter Monitoring	4-1					
	4.2	Ground Level Monitoring Results	4-1					
	4.3	Preparation of Geomet Instrument for Airborne Sampling	4-5					
Арр	endix .	A—The REEDM Code	A-1					
App	endix :	B—Atmospheric Model Validation Program Activities	B-1					
App		C—REEDM Code Calculations of Cloud Stabilization Heights Ground Level HCl Exposure Doses	C-1					
Ann		D— Meteorological Data Measured at CCAS Before and After the #K23 Launch	D-1					
			1					

Figures

2.1	Implementation of the "box" method with two imagers	2-4
2.2	Implementation of the six-sided polygon method for three imagers	2-5
2.3	A map documenting the imagery sites, the rawinsonde release site, the K-23 ground cloud's track derived from visible imagery, and the 13:27 ZULU (T-0.3 h) rawinsonde wind vectors at the measured plume stabilization heights	2-6
2.4	K-23 launch viewed from SLC-34 blockhouse roof at 00:15 (mm:ss after launch)	2-7
2.5	K-23 launch viewed from UCS-07 site at 05:30 (mm:ss after launch)	2-8
2.6	K-23 launch viewed from press site at 13:00 (mm:ss after launch)	2-8
2.7	Plume rise plot for the bottom of the K-23 plume	2-10
2.8	Plume rise plot for the middle of the K-23 plume	2-11
2.9	Plume rise plot for the top of the K-23 plume	2-12
2.10	The mean of the data (not the third-order polynomial fit) for the three independent determinations for top, middle, and bottom of the ground cloud	2-13
2.11	Ground track for the middle of the K-23 launch cloud	2-14
3.1	Map documenting camera sites, rawinsonde release point, imagery derived plume track, and rawinsonde derived wind vectors for the Titan IV K-23 mission	3-3
3.2	Cartesian plot documenting the aircraft's position relative to SLC-40 and the measured HCl concentration throughout the 100 minute K-23 exhaust cloud sampling mission	3-6
3.3	Summary of the aircraft's HCl concentration measurements and its polar angles (rawinsonde convention) plotted against time (minutes) after the Titan IV K-23 launch	3-7
3.4	Summary of the aircraft's HCl concentration measurements and radial distances (m) from SLC-40 plotted against time (minutes) after the Titan IV K-23 launch	3-8
3.5	Summary of the aircraft's HCl concentration measurements and altitude (m) plotted against time (minutes) after the Titan IV K-23 launch	3-9

3.6	Summary Cartesian plot documenting the aircraft's position and measured HCl concentrations while sampling at altitudes greater than 2000 m after the Titan IV K-23 launch	3-10
3.7	Summary Cartesian plot documenting the aircraft's position and measured HCl concentrations while sampling at altitudes less than 2000 m after the Titan IV K-23 launch	3-11
3.8	Summary Cartesian plot documenting the aircraft's position and measured HCl concentrations while sampling at altitudes less than 1000 m after the Titan IV K-23 launch	3-12
3.9	Summary Cartesian plot documenting the aircraft's position and measured HCl concentrations while sampling at altitudes less than 500 m after the Titan IV K-23 launch	3-13
4.1	Calibration results for set of five dosimeters from batch deployed during 14 May 95 Titan IV launch	4-2
4.2	Far field dosimeter placement	4-3
4.3	Near field dosimeter placement	4-4
4.4	Response data from Geomet precalibration prior to airborne HCl sampling flight May 14, 1995	4-6
	Tables	
3.1	Portion of the aircraft's data file provided to The Aerospace Corporation by NOAA	3-4
4.1	Near-field HCl Dosimeter Location, Stain Measurements, and Doses	4-2

Executive Summary

This report presents plume imagery and aircraft- and ground-based HCl sampling data that document the development and dispersion of the launch plume at Cape Canaveral Air Station (CCAS) during the mission #K23 launch of a Titan IV vehicle. The report also tabulates meteorological tower, rawinsonde, and Doppler radar data to characterize meteorological conditions during mission #K23.

Personnel from The Aerospace Corporation successfully tracked the trajectory and time evolution of the Titan IV vehicle's exhaust plume for 20 minutes following launch using one infrared and three visible camera systems. An Air Force-contracted light aircraft was equipped with a Geomet total HCl analyzer by personnel from NASA's Toxic Vapor Detection Laboratory (NASA TVDL) and used to monitor HCl concentrations within the plume as a function of time for 100 minutes following launch. Personnel from the 45th Medical Group Bioenvironmental Engineering (45 AMDS/SGPB) and TVDL deployed dosimeters to determine ground-level HCl doses. Rawinsonde data were measured before launch, and meteorological tower data were measured before launch and during dispersion of the launch plume. These data and similar results from future launches will be used with data from tracer gas releases to determine the accuracy of atmospheric dispersion models such as REEDM in predicting toxic hazard corridors at CCAS and Vandenberg Air Force Base. The THCs assess the risk of exposing the public to HCl exhaust from vehicles using solid propellants or to the accidental release of hydrazine fuel or nitrogen-tetroxide propellant vapors during launch operations.

The imagery and aircraft-determined HCl data show that the plume separated into ground-cloud and launch-column segments below and above 2000 meters, respectively, that blew out to sea with northeast and southeast trajectories. The stabilization height of the ground cloud at its center (1640 ± 74 meters), as derived from imagery, does not agree well with the REEDM prediction (788 meters). However, the ground cloud's northeast trajectory agrees well with the rawinsonde-determined wind direction at the ground cloud's stabilization height. Aircraft HCl measurements at altitudes above 2000 meters southeast of the launch pad correlate with imagery of the higher altitude launch column, which did not track the lower altitude ground cloud. The aircraft data indicates that this higher altitude launch column did not contribute to measurable HCl below an altitude of 2000 meters. Representative measurement data obtained with the aircraft indicate large spatial variations of HCl in the ground cloud. A peak HCl concentration of 17 ppm was measured 11.5 minutes after launch.

The prediction of out-to-sea winds prevented the deployment of dosimeters for far-field (8-40 mile range) HCl ground sampling. Dosimeters were deployed within a 5.7 mile radius of CCAS Complex 40 to the north, west, and south. Of the dosimeters deployed, only those placed near the launch platform registered responses. Large HCl responses (≥100 ppm-minute) were obtained for dosimeters placed on four lightning towers, 45 meters northeast, southeast, northwest, and southwest of the launch platform and at an east, southeast position on the perimeter fence 180 meters away. REEDM predicted that a low-level inversion layer would prevent the launch cloud from diffusing back to ground level. Safety access limitations and the difficulty of deploying offshore sensors prevented the ground-level monitoring of HCl along the plume's predicted track at distances >180 meters from the launch platform to verify this prediction. However, aircraft HCl measurements performed 50 minutes after launch indicate that the ground cloud contained only low concentrations (0.1-0.5 ppm) of HCl at altitudes as low as 400 meters at distances of 16 km from the launch pad.

Subsequent documents (Volumes II and III of this report) will provide greater detail for the imagery and aircraft HCl measurements summarized here. Volume II will focus on the imagery and use some of the aircraft HCl sampling data to document the position of the aircraft relative to the imaged plume dimensions and to substantiate that the visible cloud contains the bulk of the detectable HCl. Volume III will detail the aircraft's HCl sampling data in formats useful for comparison to model predictions.

1. Introduction

There is a strong need to collect data that can be used to validate the performance of atmospheric dispersion and chemical kinetic models currently used or under development for predicting the transport and fate of hazardous species that may be released into the atmosphere during Air Force launch vehicle operations. Launch vehicles that employ solid propellant rocket motors release ground clouds into the Eastern Range and Western Range launch areas at Cape Canaveral Air Station (CCAS) and Vandenberg Air Force Base (VAFB), respectively, that contain large amounts of hydrogen chloride (HCl). Large quantities of hazardous hydrazine fuels or the nitrogen tetroxide oxidizer could also be accidentally released at the ranges during propellant transfer operations or due to a launch vehicle explosion.

The Air Force launch range safety organizations of the 45th Space Wing at Patrick Air Force Base (45 SPW/SE) and 30th Space Wing at VAFB (30 SPW/SE) are, respectively, responsible for assuring that Eastern and Western Range launches are carried out only when meteorological conditions are such that personnel in communities nearby CCAS and VAFB cannot be exposed to hazardous levels of HCl, the hydrazine fuels, or N₂O₄/NO₂. Predictions of toxic hazard corridors (THCs) that extend into public areas can lead to costly launch delays. The present use of non-validated models requires the use of conservative launch criteria. The development and validation of accurate atmospheric dispersion models is expected to increase launch opportunities and significantly reduce launch costs. The Titan System Program Office (SMC/ME) of the Air Force's Space and Missile Systems Center has thus established the Atmospheric Dispersion Model Validation Program (MVP). MVP is collecting data to determine the accuracy of current and future atmospheric dispersion and chemical kinetic models in predicting THCs during launches of Titan and other vehicles at CCAS and VAFB.

The MVP effort involves the collection of data during Titan launches at CCAS and VAFB to characterize HCl launch cloud rise, growth, and stabilization as well as launch cloud transport and diffusion. These data, as well as data from tracer gas releases, will in particular be used to determine the capability of the Rocket Exhaust Effluent Diffusion Model (REEDM) for predicting THCs at the launch ranges. REEDM (see Appendix A) is used at CCAS and VAFB to predict the locations of THCs in support of launch operations. It is applied to large heated sources of toxic air emissions such as nominal launches, catastrophic failure fireballs, and inadvertent ignitions of solid rocket motors. It uses launch vehicle and meteorological data to generate ground-level concentration isopleths of HCl, hydrazine fuels, NO₂, and other toxic launch emissions. Launch holds may occur when REEDM toxic concentration predictions exceed adopted exposure standards. REEDM is a unique and complex model based on relatively simple modeling physics. It has a long developmental history with the Air Force and NASA, but has never been fully validated. A recent change in toxic exposure standards adopted by the range safety offices has resulted in longer REEDM THCs and a higher potential for launch holds. As a result, validation of REEDM has been identified as a range safety priority.

The MVP has been organized and is being directed by the MVP Integrated Product Team (IPT). SMC/ME is serving as the IPT leader, while the Aerospace Corporation's Environmental Systems Directorate is the IPT technical manager. The IPT consists of personnel with expertise in atmospheric dispersion modeling, meteorology, and atmospheric concentration field measurements. MVP participants include personnel from 30 and 45 SPW (and their contractors), SMC, The Aerospace Corporation, NASA, and NOAA. Key functions include program planning, field data collection, data review and compilation, range coordination, and model validation (see Appendix B).

This report presents the results of measurements performed at CCAS during the launch of a Titan IV vehicle on 14 May, 1995 (mission #K23). Visual and infrared imagery measurements were made to monitor the growth, stabilization, and trajectory of the launch cloud. Measurements were also made during this launch of ground-level HCl doses at selected locations near the launch pad and representative airborne concentrations of HCl within the launch cloud. The imagery and airborne measurement results are presented in sections 2 and 3, respectively. The ground-level HCl doses measured following launch are presented in section 4. REEDM predicted, based upon meteorological data determined 0.3 hours before launch, that no HCl would reach ground level following cloud stabilization. The REEDM input parameters used to predict cloud stabilization heights and surface concentrations are shown in Appendix C. Meteorological data were measured at a number of CCAS monitoring locations prior to launch and during development and dispersion of the launch cloud. These data are tabulated in Appendix D.

Only a qualitative discussion of the accuracy of the REEDM predictions is possible here due to the limited ground-level HCl dose measurements performed. The imagery data obtained show that, for the meteorological conditions present during the #K23 launch, REEDM underestimated the cloud's stabilization height by a factor of 2. However, the imagery data also shows a plume trajectory that is consistent with recorded wind vectors for the stabilized plume. In addition, the imagery indicates that the portions of the initial launch plume track wind vectors at the various altitudes. The variation of wind direction with altitude results in the separation of the high- and low-altitude plume segments into the southeast and northeast quadrants, respectively, as documented by the aircraft's HCl sampling. The aircraft sampling beneath the ground cloud trajectory documented low-level HCl dispersion to the lowest altitude probed (400 meters) at 16 km and 50 minutes after launch. In contrast, sampling beneath the high-altitude plume segment showed no detectable HCl dispersion to levels below the ground cloud's stabilization height. In summary, these results indicate that the ground cloud is the source of low-altitude HCl, that it reaches stabilization height within a time frame easily monitored by visible or infrared imagery, that the trajectory is consistent with rawinsonde data, and that the stabilization height is substantially higher than predicted by REEDM. Review of the results presented in this and subsequent reports will provide insights for improved sampling strategies for future launches.

2. Imagery of the Titan IV K-23 Ground Cloud

[The material in this section was contributed by Drs. R. N. Abernathy and R. F. Heidner III of the Environmental Monitoring and Technology Department of The Aerospace Corporation's Space and Environment Technology Center.]

2.1 Background

On 14 May 1995, the Titan IV K-23 mission was successfully launched from CCAS at 09:45 EDT (13:45 ZULU). This section describes the exhaust cloud imagery data collected by each of three imager sites during the 20 minutes immediately following the launch. It also briefly describes the data acquisition hardware and analysis software. The two-dimensional plume images recorded at each site are combined in a pairwise fashion to produce stereoscopic 3-D information. This analysis yields the plume rise time, stabilization height, dimensions, and ground track.

This section provides an overview of the data collected by the imagery sites. A subsequent report will provide correlation between visible imagery and aircraft HCl measurement data for the first twenty minutes after launch. The latter report will be of particular interest to modelers since it will correlate exhaust cloud imagery with aircraft HCl measurements, rawinsonde measurements, and REEDM predictions.

The raw visible imagery data are archived on VCR tapes. The selected visible images analyzed for this report and all of the infrared imagery are also archived on magneto-optical disks as digital image files.

2.2 Introduction

The Aerospace Corporation imaged the rise, transport, and growth of the ground cloud for the first 20 minutes subsequent to the Titan IV K-23 launch as documented in this Chapter. Analysis of the imagery yields the stabilization time, the stabilization height, and the trajectory of the ground cloud without recourse to additional data sources. Rudimentary knowledge of the rawinsonde wind data and the aircraft HCl sampling data are needed for more quantitative interpretation of the imagery data reported in this Section. As described in detail in Section 3, a modified commercial total HCl (gaseous and aerosol) monitor (Geomet) was mounted in the nose of a Piper Seminole aircraft and measured HCl concentrations in the exhaust cloud for the first 100 min after the Titan IV K-23 launch. A data system logged GPS time and position as well as Geomet response every 0.25 seconds during the flight. The Aerospace Corporation obtained a copy of the aircraft's data as a comma-separated-variable (csv) file, analyzed the HCl data, and provided the interpretation documented in Section 3 and referenced in this Section. The rawinsonde pre-launch meteorology data are documented in Appendix D and referenced in this Section. The REEDM predictions are documented in Appendix C and referenced in this Section.

2.3 Field Deployment

2.3.1 Planning

The Aerospace Corporation's participants are listed in various subteams below. Members of the imaging teams for K-23 are indicated with asterisks.

Technology Operations

Space and Environment Technology Center

Environmental Monitoring and Technology Department

R. N Abernathy*

G. N. Harper*

R. F. Heidner III

B. P. Kasper*

J. T. Knudtson*

J. T. Valero*

Space Launch Operations

Systems Engineering Directorate

Environmental Systems

N. F. Dowling, Systems Director

H. L. Lundblad

Eastern Range

Systems Engineering Directorate

D. R. Schulthess*

2.3.2 Equipment

The equipment at each site included all the hardware and software necessary to record and document the launch, to communicate between sites, and to supply backup power in case of an outage at the fixed power distribution points. The launch of K-23 marked the first opportunity to deploy the Titan IV-dedicated Visible and Infrared Imaging System (VIRIS) hardware.

The VIRIS consists of an array of four plume tracking systems and was designed and fabricated at the request of Space Launch Operations, Systems Engineering Directorate, at The Aerospace Corporation. Each tracking system consists of coaligned visible and infrared (IR) $(8-12 \mu m)$ imagers, mounted on an azimuth- and elevation-encoding tripod, with an associated data acquisition and display console. The combination of visible and IR imagers permits cloud tracking in both daylight and darkness. The unique capabilities built into the VCR hardware include digital insertion of imager azimuth (Az), elevation (El), time, and GPS location. The system electronics are integrated in a single package, which has been ruggedized for field use. Prewiring of this package makes deployment of these imager systems straightforward, usually requiring less than 45 min for instrumentation at a site to become fully operational.

For the Titan IV K-23 mission, the operator at the UCS-7 site set the FOV of the IR imager to its maximum (i.e., $20_v^{\circ} \times 40_h^{\circ}$) using its standard lens. The apertures on the lens of the visible imagers at all sites were set at their widest value ($24_v^{\circ} \times 32_h^{\circ}$) to allow for the best comparison of the visible and IR imagery.

All three imaging systems deployed for the Titan IV K-23 mission were capable of total autonomy. Differential-ready GPS receivers documented each imager's position with moderate spatial resolution. Typically, 35 m is the precision in the horizontal plane. Gasoline powered AC generators (Honda Ex1000) are insurance against loss of fixed power. The Stirling cooler option for the AGEMA 900 series IR imagers was chosen so that liquid nitrogen would not be required at the sites. Each unit was transported in a standard utility wagon (e.g., Ford Explorer).

The Az/El angle encoder for all imager systems was calibrated using reference objects (e.g., SLC-40 or lightning towers at SLC-40) within the field of view of the imagers. When reference objects are not part of the geodetic survey database, the GPS location uncertainty is the dominant term in the positional accuracy. Imager pixelation and operator error in edge detection contribute as well to the error in defining the plume boundary. Step-size in the tripod angle encoders is a third source of error. Typically the VIRIS system provides 0.1 degree precision. The accuracy is usually determined by the availability of optimal references for Az/El calibration.

2.4 Processing of Imagery Data

The processing of the imagery data requires several transformations that are performed upon return to The Aerospace Corporation:

- 1. Digitizing frames of the visible imagery.
- 2. Measuring the pixel locations of the reference sites within each image (i.e., FOV and angular calibration).
- 3. Measuring the pixel locations of plume features in digitized images.
- 4. Converting pixel locations to azimuth and elevation readings.
- 5. Calculating plume characteristics (i.e., position in Cartesian coordinates relative to the launch pad).

The processing requires the use of specialized hardware and software. Images of the plume are digitized at precise times, beginning with time intervals of 15 s, then 30 s, then 1 min as the plume evolves. Time, Az, and El are tabulated for each digitized image. Triads of digitized images exist for selected times following the launch. A setup file is created for each of these triads, containing all relevant information necessary to compute the plume geometry. The Aerospace program **PLMTRACK** is run to digitize the x, y, and z coordinates of plume features.

PLMTRACK is a software program developed in the Environmental Monitoring and Technology Department (EMTD) of The Aerospace Corporation by Brian P. Kasper. It is designed to analyze pairs of plume images synchronized in time. The operator selects the location of a particular plume feature in the images from the two imager sites by moving a screen pointer over the desired point in each image and clicking a mouse button. **PLMTRACK** then calculates the three-dimensional location of this point and writes the information to a data file.

Another implementation of **PLMTRACK** is the "box method," illustrated in Figure 2.1. The operator draws a rectangle about a plume feature in the images from the two imager sites by moving a screen pointer to the extreme corners of the rectangles and clicking a mouse button. **PLMTRACK** then calculates the closest approach for various rays as illustrated in Figure 2.1 and described below. The top of the plume is defined by rays determining T1 and T2 (i.e., T1 × T2); the bottom is determined by rays

defining B1 and B2 (i.e., B1 \times B2); and the middle is defined by the geometric mean of top and bottom (i.e., M1 \times M2). To define the "sides" of the rectangles, the points of closest approach for ray M1 with L2 and R2 (the left and right tangents to the plume from Imager 2) are defined (i.e., M1 \times L2 and M1 \times R2). A similar procedure is used to define the points of closest approach for M2 with L1 and R1, yielding M2 x R1 and M2 \times L1. Thus, seven points are defined for the "box" surrounding the plume (a point in the center of each of the six sides, plus a middle point) and are written to a file.

Figure 2.1. Implementation of the "box" method with two imagers.

When three imagers are viewing the plume simultaneously, a six-sided polygon method (documented in Figure 2.2) has been employed as an initial step in our plan to determine plume volume as a function of time. With three imagers, there is a triply redundant determination of the top, middle, and bottom of the plume by **PLMTRACK**. The horizontal extent of the plume is determined by defining the rays from each imager that are tangential to the widest part of the plume as seen from that site. Projection of these extreme rays for each imager on the x-y ground plane forms a six-sided polygon that bounds all material in the plume at all altitudes, as shown in Figure 2.2. Thus, one expects to see aircraft HCl sampling "hits" fall within this polygon, regardless of the sampling altitude. When the polygon area is combined with the mean plume height (i.e., the difference between the top and the bottom) of the plume, one can obtain an upper bound for plume volume. This upper bound volume may *significantly* overestimate the volume of the plume and has not been used in this report. In a separate report, the polygons from imagery are correlated with aircraft HCl measurements of plume dimensions and average HCl concentrations for the Titan IV K-23 launch cloud.

Figure 2.2. Implementation of the six-sided polygon method for three imagers. The imager positions and rays are actual K-23 exhaust cloud imagery results, while the cartoon of the plume was synthesized for heuristic purposes.

2.5 Results and Discussion

2.5.1 Correlation of Ground Cloud Trajectory with Wind Direction

Figure 2.3 reports the trajectory of the visible ground cloud (249° rawinsonde convention [defined fully in subsection 2.5.4]) determined by imagery as well as the rawinsonde derived wind directions associated with the bottom, middle, and top of the stabilized ground cloud (as determined by visible imagery). Figure 2.3 also documents the locations of the rawinsonde release site and of the three imager sites (UCS-7, Press Site, and SLC-34) used by The Aerospace Corporation while imaging the K-23 exhaust cloud.

It is evident from examination of Figure 2.3 that the low-altitude winds (< 2000 meters) were consistent with the imaged movement of the visible ground cloud into the northeast quadrant relative to the SLC-40 launch pad. This observation was confirmed by aircraft measurements of HCl concentration in the northeast quadrant during the first 55 minutes after launch. The aircraft's HCl concentration profiles are consistent with the plume track documented by the imagers for the ground cloud. The T-0.3 hr rawinsonde data in Figure 2.3 are documented in Appendix D.

It is also evident from Figure 2.3 that the wind direction shifted with altitude suggesting that the highaltitude portion of the plume would move towards the southeast while the lower portion of the plume would move towards the northeast. These conclusions were confirmed by the visible imagery that documented that the high-altitude launch column was attached to the southern end (i.e., originally the top) of the ground cloud and that the bottom of the ground cloud rotated to the northeast relative to the top of the ground cloud. The rawinsonde and imagery data are also consistent with aircraft HCl measurements (Section 3) that detected the presence of a high-altitude cloud in the southeast quadrant. Aircraft sampling beneath this high-altitude cloud found no measurable HCl concentrations at or below the altitude of the stabilized ground cloud at times between 83 to 100 minutes after the launch.

Figure 2.3. A map documenting the imagery sites, the rawinsonde release site, the K-23 ground cloud's track derived from visible imagery, and the 13:27 ZULU (T-0.3 h) rawinsonde wind vectors at the measured plume stabilization heights.

Figures 2.4 through 2.6 are visible images of the Titan IV K-23 launch cloud as seen from each of the three imager sites at the specified times after launch. It is immediately obvious that the plume is not spherically symmetric in any of these images. Figure 2.4 documents imagery from SLC-34, which is south-southeast of the launch pad. Examination of this image reveals that the exhaust duct produces an asymmetry in the ground cloud by ejecting exhaust predominantly to the east (i.e., to the right in Figure 2.4) of the pad. This is consistent with initial aircraft HCl concentration profiles measured due east of

about the mass of the plume that contributes to the stabilized ground cloud. The remainder of the cloud, above and below the arrows in Figure 2.5, dissipates prior to stabilization. For example, the low-altitude residue of such dissipation is barely evident below and to the right of the indicated "bottom of the exhaust duct cloud" in Figure 2.5. In imagery immediately prior to this image, the visible plume extended almost to the inserted text at the bottom of this image. Figure 2.6 documents imagery from Press Site, which is west-northwest of the launch pad. Examination of this image confirms that the bottom of the ground cloud has moved farther to the north (i.e., to the left in Figure 2.6) than the top. During review of a series of images, this appears as clockwise rotation of the bottom of the cloud relative to the top. In addition, Figure 2.6 reveals that there should be detectable HCl above and to the south (i.e., above and to the right in Figure 2.6) of the top of the exhaust cloud. As mentioned previously, this makes the determination of the "top" and "bottom" of the plume somewhat subjective. In some cases, the analyst initially included, at early times, a plume feature that ultimately dissipated by the time the plume had stabilized. Therefore, the data were subjected to an iterative analysis to ensure that only plume features contributing to the stabilized ground cloud (as documented by the entire 20 minutes of imagery) were included in the **PLMTRACK** "boxes."

Figure 2.4. K-23 Launch Viewed from SLC-34 Blockhouse Roof at 00:15 (mm:ss after launch).

Figure 2.5. K-23 Launch Viewed from UCS-07 Site at 05:30 (mm:ss after launch).

Figure 2.6. K-23 Launch Viewed from Press Site at 13:00 (mm:ss after launch).

2.5.2 Plume Rise Times and Stabilization Heights

A series of plots is presented in Figures 2.7 through 2.9, showing the time-dependent altitude of the "bottom," the "middle," and the "top" of the ground cloud. With three imager locations, it is possible to obtain three independent determinations (3!/2) of these plume heights. The data are presented in two ways. First, the raw data for height vs time after launch are displayed for each of the three determinations (ucs7+press, ucs7+slc34, and slc34+press). The data are presented separately for the bottom (Figure 2.7), the middle (Figure 2.8), and the top (Figure 2.9). A polynomial fit is generated using the combined data from these three determinations [the (a) portion of Figures 2.7 through 2.9]. For clarity, all data (without distinction with respect to imaging site) and the polynomial fit are displayed with horizontal lines illustrating the stabilization height +/- 3 σ error levels [the (b) portion of Figures 2.7 through 2.9].

Figure 2.7. Plume rise plot for the bottom of the K-23 plume. (a) Three independent determinations are made from the pairwise combination of data from the three imaging sites. These determinations are labeled as ucs7+press, press+slc34, and ucs7+slc34. The third-order polynomial fit to the entire set of data is plotted as H(t) vs t (in minutes). The variance (R^2) of 0.9625 indicates the high quality of the fit. (b) All three sets of H(t) vs t data are combined and displayed with the third-order polynomial fit and the 3σ error bands for the stabilization height.

Figure 2.8. Plume rise plot for the middle of the K-23 plume: (a) Three independent determinations are made from the pairwise combination of data from the three imaging sites. These determinations are labeled as ucs7+press, press+slc34, and ucs7+slc34. The third-order polynomial fit to the entire set of data is plotted as H(t) vs t (in minutes). The variance (R^2) of 0.9641 indicates the high quality of the fit. (b) All three sets of H(t) vs t data are combined and displayed with the third-order polynomial fit and the 3σ error bands for the stabilization height.

Figure 2.9. Plume rise plot for the top of the K-23 plume: (a) Three independent determinations are made from the pairwise combination of data from the three imaging sites. These determinations are labeled as ucs7+press, press+slc34, and ucs7+slc34. The third-order polynomial fit to the entire set of data is plotted as H(t) vs t (in minutes). The variance (R^2) of 0.9464 indicates the high quality of the fit. (b) All three sets of H(t) vs t data are combined and displayed with the third-order polynomial fit and the 3σ error bands for the stabilization height.

2.5.3 Comparison of REEDM Prediction to Imagery Data

In Figure 2.10, the mean of the three determinations of plume top, plume middle, and plume bottom (rather than the polynomial fits) is plotted as a function of time following the launch. It can be seen that the measured stabilization height of the plume center (1640 + /- 74 m) does not agree well with the calculations generated by REEDM modeling runs (760 + /- 30 m)(Appendix C) performed with prelaunch rawinsonde data (Appendix D). The amount of time required to reach the stabilization height (approximately 11 min) is also in poor agreement with the REEDM predictions (approximately 4.5-5.5 min). The variances (R^2) of the third-order polynomial fits to the data (i.e., Figures 2.7 through 2.9) indicate the fits are very good. A third-order fit was used in those figures as a convenient method to permit the representation of plume overshoot and subsequent damped oscillation around the stabilization height. To be consistent with REEDM, stabilization time and height refer to the first maximum in these fits. REEDM predicts that the plume goes through damped oscillatory motion with a period of $2\pi/S^{1/2}$, where S is the static stability parameter [Ref. 1, Eq. (7)]¹. Examination of Figures 2.8 and 2.9 shows that

Figure 2.10. The mean of the data (not the third-order polynomial fit) for the three independent determinations for top, middle, and bottom of the ground cloud (Figures 2.7 through 2.9) are plotted as H(t) vs t. REEDM modeling run predictions for the plume middle are presented for comparison.

¹ J. R. Bjorklund, User's Manual for the REEDM Version 7 (Rocket Exhaust Effluent Diffusion Model) Computer Program, Vol. I, TR-90-157-01, AF Systems Command, Patrick AFB, FL (April 1990).

period is approximately 15 min for the K-23 ground cloud. Sensitivity of REEDM predictions to input parameters has been examined by Womack.² Careful imaging of launch ground clouds under a variety of meteorological conditions is a vital element in REEDM evaluation.

2.5.4 Plume Trajectory

Figure 2.11 presents data for the ground track of the K-23 ground cloud. The "box" method of analysis for the imagery data does not yield independent values of the plume track for the top, middle, and bottom of the plume. We have chosen to present data for the middle of the plume as defined by **PLMTRACK**.

Figure 2.11. Ground track for the middle of the K-23 launch cloud. Three independent determinations are made from the pairwise combination of data from the three imaging sites. These determinations are labeled as ucs7+press, press+slc34, and ucs7+slc34. The variance ($R^2=0.9258$) of the linear fit to the combined data from all three sets is reported, yielding a track of 249.0° (rawinsonde convention).

² J. M. Womack, *Rocket Exhaust Effluent Diffusion Model Sensitivity Study*, TOR-95(5448)-3, The Aerospace Corporation, El Segundo, CA (May 1995).

To be precise, the ground track in Figure 2.11 represents the ground plane projection of the trajectory of the middle of the plume as a function of time. Figure 2.11 presents data from the three imager-site pairs, as well as an "average" ground track computed as a single linear fit to the combined data sets using the following formula:

$$Y = mX + b , 2.1$$

where Y is the distance in meters along the north-south axis, m is the slope of the fit, X is the distance in meters along the east-west axis, and b is the intercept for the fit. We have permitted the intercept (b) to be nonzero, since the plume from the duct, coupled to low altitude wind shear, can combine to make the apparent origin of the plume different from the location of the launch complex. That displacement can also be modeled within the REEDM code during plume rise.

In this report, the angles will conform to the convention of rawinsonde wind vectors (the angle from which the wind originates that would push the plume to the sampled position). Thus, the angles are related by

$$\vartheta = 180 + \Phi \quad , \tag{2.2}$$

where ϑ is the equivalent rawinsonde wind angle and Φ is the measured polar angle of the aircraft relative to SLC-40 and clockwise of true north. For example, when the aircraft is due east of SLC-40, Φ is 90° and ϑ is 270°. In Figure 2.11, the slope (m) of the fitted line is determined by the angle θ , where $\theta = \tan^{-1} m$, and therefore $\Phi = 90^{\circ} - \theta$. Figure 2.3 showed the mean plume track vector documented in Figure 2.11 along with the wind vectors (T-0.3 h rawinsonde) at the measured stabilization heights superimposed on the map of CCAS/KSC.

2.6 Summary and Conclusions

The Titan IV K-23 mission was launched successfully from the Eastern Range (SLC-40) at 9:45 am (13:45Z) on 14 May 1995. Personnel from The Aerospace Corporation deployed three visible and one IR imaging systems to monitor the event and to track the time evolution and the ground trajectory of the solid rocket motor exhaust cloud. The three chosen sites (UCS-7, SLC 34, and the Press Site) were located to the north-northwest, south-southeast, and west-northwest relative to launch complex SLC-40. Imagery data were recorded for 45 min, although the plume was discernible for roughly half that time. When combined with the Az/El readings and the IRIG-B time data, the visible imagery was used to quantify angular movement and growth of the plume for 20 min after the launch. The launch of K-23 marked the first application of the Titan IV-dedicated VIRIS imaging platforms.

The imagery data documented that the meteorological conditions were favorable for characterization of the launch's exhaust cloud using either visible imagers or IR imagers. The definition of exhaust cloud geometric features was complicated by multiple contributions to the complex shape of the evolving cloud (i.e., asymmetric ejection from the exhaust duct, rapid rise of the hot ground cloud, and separation of the high altitude launch column). This was particularly true in trying to define the "bottom" and "top" of the cloud. The analyst included only the portions of the exhaust cloud that became incorporated into the stabilized ground cloud.

Analysis of the imagery data presented in this report has focused on determining parameters that are directly comparable to REEDM predictions. The most accurately determined quantities by imagery are the cloud rise time, its stabilization height, and its trajectory. For Titan IV K-23, REEDM predicted a stabilization height and time that were a factor of 2 lower than the values measured by imagery. The calculated and measured trajectories were in much better agreement.

3. Aircraft Elevated HCI Measurements

[The material in this section was contributed by Drs. R. N. Abernathy and R. F. Heidner III of the Environmental Monitoring and Technology Department of The Aerospace Corporation's Space and Environment Technology Center.]

3.1 Background

On 14 May 1995, the Titan IV K-23 mission was successfully launched from CCAS at 09:45 EDT. This section describes the HCl concentration data collected by an aircraft that sampled the resulting exhaust cloud for 100 minutes subsequent to the launch. This aircraft sampling campaign was overseen by 45SPW and involved Air Force, NASA, NOAA and contractor organizations. The Aerospace Corporation applied baseline corrections to the raw HCl concentration data and produced the plots included in this section. The aircraft's HCl concentration data document the movement of the low-altitude (< 2000 meters) ground cloud to the northeast following the launch, the dispersion of the ground cloud to altitudes as low as 400 meters (50 minutes after the launch and 16 km from the launch pad), and the movement of the elevated (> 2000 meters) launch column to the southeast without measurable dispersion to lower altitudes (i.e., between 1000 to 2000 meters).

The aircraft HCl concentration data are reported here in several graphical formats to facilitate comparison with modeling and with imagery data. This section provides an overview of the data collected by the aircraft. Two subsequent reports will provide (1) correlation between imagery and aircraft data for the first twenty minutes after launch and (2) a detailed graphical analysis of the aircraft's HCl concentration profiles using polar and Cartesian coordinates for each 10 minute time window throughout the 100 minute flight time. These subsequent detailed analysis reports will be of particular interest to modelers since they will correlate HCl measurements with imagery, rawinsonde measurements, and REEDM predictions. The raw aircraft data are available as comma-separated-variable files providing time, latitude, longitude, altitude, and Geomet response.

3.2 Introduction

As described in detail in Section 4, I-NET, a NASA contractor, modified a commercial total HCl (gaseous and aerosol) monitor (Geomet) for mounting in the nose of a Piper (PA-44-180) Seminole, twinengine, four-seat aircraft. This instrument sampled the air through a horizontal four-foot ceramic inlet wetted with a bromate/bromide-containing reagent. The HCl diffuses to the wetted walls of the ceramic tube and produces bromine vapor through reactions with the reagent. The bromine vapor is swept into a buffered hydrogen peroxide/Luminol solution resulting in photoluminescence detected by a filtered photometric detector. I-NET also disabled the Geomet's autoranging electronics so that a single range produced a millivolt response that was proportional to the combined HCl vapor and aerosol concentration entering the inlet. I-NET calibrated the Geomet before and after the K-23 mission as described in Section 4.

SRS Technologies Inc., a SETA contractor, provided an interface between the I-NET laboratory and the Florida Institute of Technology (FIT) flight crew. NASA, NOAA/Air Resources Laboratory/Field Research Division, I-NET, SRS, and FIT cooperated in the integration of the NOAA data system, the FIT aircraft, and the AF Geomet into an airborne sampling and data logging system. FIT personnel piloted the aircraft during the K-23 mission while 45th AMDS/SGPB personnel operated the NOAA data system and the Geomet detector. The NOAA data system logged GPS time and position as well as Geomet

response every 0.25 seconds during the flight. NOAA provided a comma-separated-variable (csv) raw data file to The Aerospace Corporation.

The Aerospace Corporation imaged the rise, movement, and growth of the ground cloud for the first 20 minutes subsequent to the launch as documented in Section 2. The imagery documented the stabilization height and the trajectory of the ground cloud. Rudimentary knowledge of the rawinsonde wind data (Appendix D), REEDM predictions (Appendix C) and the imagery data (Section 2) is required for the interpretation of the aircraft's HCl sampling data as reported in this Section.

3.3 Results and Discussion

The aircraft data is most easily interpreted in light of some rudimentary rawinsonde and imagery results. Figure 3.1 reproduces a map from Section 2 that reports the trajectory of the visible ground cloud (249° rawinsonde convention [defined fully in subsection 3.3.2]) determined by imagery as well as the rawinsonde derived wind directions associated with the bottom, middle, and top of the visible ground cloud. Figure 3.1 also documents the locations of the three camera sites (UCS-7, Press Site, and SLC-34) used by the Aerospace Corporation while imaging the K-23 mission. As evident from examination of Figure 3.1, the vectors drawn on the map document that the low-altitude winds (< 2000 meters) were consistent with the imaged movement of the visible ground cloud into the northeast quadrant relative to the SLC-40 launch pad. The T-0.3 hr rawinsonde data are documented in Appendix D. It is also evident from Figure 3.1 that the wind direction shifted with altitude suggesting that the high-altitude portion of the plume would move towards the southeast while the lower portion of the plume would move towards the northeast. This was confirmed by the visible imagery that documented that the high-altitude launch column was attached to the southern end of the ground cloud, and that the bottom of the ground cloud rotated to the north of the top of the ground cloud.

3.3.1 Overview of Aircraft Sampling

Table 3.1 presents a sample of the aircraft data delivered to The Aerospace Corporation with added headings. The headings are as follows: Log (mission log number assigned by NOAA); yr (year); d (Julian day of the year); hm (hour and minutes, two digits each); s (seconds); ppm (raw HCl concentration based upon single point calibration and mV response from the Geomet); rng (range of the Geomet, disabled function); mV (Geomet response in millivolts); gps (GPS receiver time in hhmmss [documenting hours minutes seconds as six digits without separation]); lat (latitude, ddmm.mmmm, in degrees and decimal minutes); N/S (label for latitude, North/South); lon (longitude, ddmm.mmmm, in degrees and decimal minutes); E/W (label for longitude, East/West); diff (differential, 2, or normal, 1, GPS mode); # Sat (number of GPS Satellites); HDOP (horizontal dilution of precision [measure of GPS accuracy]); alt (altitude reported from GPS receiver); and units (M, meters for alt). Personnel from The Aerospace Corporation have reviewed these data in 10 minute increments and applied baseline corrections to eliminate apparently negative HCl concentrations. Personnel from The Aerospace Corporation have also performed the conversions necessary to report distance, polar angles, and Cartesian position in meters relative to SLC-40.

Figure 3.1. Map Documenting camera sites, rawinsonde release point, imagery derived plume track, and rawinsonde derived wind vectors for the Titan IV K-23 mission.

Table 3.1. Portion of the Aircraft's Data File Provided to The Aerospace Corporation by NOAA. This data includes the first aircraft pass through the Titan IV K-23 exhaust cloud.

Log	yr	d	hm	s	ppm	mg	mV	gps	lat	N/S	lon	E/W	diff	# Sat	HDOP	alt	units
113	1995	134	1349	20.75	-0.040	1996	-0.997	134922	2833.7618	N	8034.0065	w	1	8	0.9	662	М
113	1995	134	1349	21	0.040	1996	0.997	134922	2833.7618	N	8034.0065	w	1	8	0.9	662	М
113	1995	134	1349	21.25	0.385	1996	9.630	134923	2833.7577	N	8033.9744	W	1	8	0.9	663	M
113	1995	134	1349	21.5	0.518	1996	12.960	134923	2833.7577	N	8033.9744	W	1	8	0.9	663	M
113	1995	134	1349	21.75	0.930	1996	23.250	134923	2833.7577	N	8033.9744	W	1	8	0.9	663	М
113	1995	134	1349	22	1.302	1996	32.550	134923	2833.7577	N	8033.9744	W	1	8	0.9	663	М
113	1995	134	1349	22.25	1.714	1996	42.850	134924	2833.7533	N	8033.9421	W	1	8	0.9	663	M
113	1995	134	1349	22.5	2.365	1996	59.130	134924	2833.7533	N	8033.9421	W	1	8	0.9	663	М
113	1995	134	1349	22.75	2.378	1996	59.460	134924	2833.7533	N	8033.9421	W	1	8	0.9	663	М
113	1995	134	1349	23	2.352	1996	58.800	134924	2833.7533	N	8033.9421	W	1	8	0.9	663	М
113	1995	134	1349	23.25	2.166	1996	54.150	134925	2833.7493	N	8033.9093	W	1	8	0.9	663	М
113	1995	134	1349	23.5	2.564	1996	64.110	134925	2833.7493	N	8033.9093	W	1	8	0.9	663	М
113	1995	134	1349	23.75	2.458	1996	61.450	134925	2833.7493	N	8033.9093	W	1	8	0.9	663	М
113	1995	134	1349	24	1.913	1996	47.830	134925	2833.7493	N	8033.9093	W	1	8	0.9	663	М
113	1995	134	1349	24.25	1.408	1996	35.210	134926	2833.7455	N	8033.8764	W	1	8	0.9	663	М
113	1995	134	1349	24.5	1.741	1996	43.520	134926	2833.7455	N	8033.8764	W	1	8	0.9	663	М
113	1995	134	1349	24.75	4.491	1996	112.300	134926	2833.7455	N	8033.8764	W	1	8	0.9	663	М
113	1995	134	1349	25	6.165	1997	154.100	134926	2833.7455	N	8033.8764	W	1	8	0.9	663	М
113	1995	134	1349	25.25	5.873	1997	146.800	134927	2833.7417	N	8033.8431	W	1	8	0.9	663	М
113	1995	134	1349	25.5	6.086	1997	152.100	134927	2833.7417	N	8033.8431	W	1	8	0.9	663	М
113	1995	134	1349	25.75	5.421	1996	135.500	134927	2833.7417	N	8033.8431	W	1	8	0.9	663	М
113	1995	134	1349	26	5.953	1997	148.800	134927	2833.7417	N	8033.8431	W	1	8	0.9	663	М
113	1995	134	1349	26.25	7.610	1997	190.300	134928	2833.7379	N	8033.8097	W	1	8	0.9	662	М
113	1995	134	1349	26.5	7.670	1997	191.700	134928	2833.7379	N	8033.8097	W	1	8	0.9	662	М
113	1995	134	1349	26.75	5.727	1997	143.200	134928	2833.7379	N	8033.8097	W	1	8	0.9	662	M
113	1995	134	1349	27	6.338	1997	158.500	134928	2833.7379	N	8033.8097	W	1	8	0.9	662	М
113	1995	134	1349	27.25	5.660	1996	141.500	134929	2833.7338	N	8033.7762	W	1	8	0.9	661	М
113	1995	134	1349	27.5	6.205	1997	155.100	134929	2833.7338	N	8033.7762	W	1	8	0.9	661	М
113	1995	134	1349	27.75	7.110	1997	177.700	134929	2833.7338	N	8033.7762	W	1	8	0.9	661	М
113	1995	134	1349	28	7.590	1997	189.700	134929	2833.7338	N	8033.7762	W	1	8	0.9	661	М
113	1995	134	1349	28.25	5.753	1997	143.800	134930	2833.7294	N	8033.7424	W	1	8	0.9	660	M
113	1995	134	1349	28.5	3.402	1996	85.000	134930	2833.7294	N	8033.7424	W	1	8	0.9	660	М
113	1995	134	1349	28.75	3.282	1996	82.000	134930	2833.7294	N	8033.7424	W	1	8	0.9	660	М
Log	yr	d -	hm	S	ppm	mg	mV	gps	lat	N/S	lon	E/W	diff	# Sat	HDOP	alt	units
113	1995	134	1349	29	2.099	1996	52.490	134930	2833.7294	N	8033.7424	W	1	8	0.9	660	М
113	1995	134	1349	29.25	1.448	1996	36.210	134931	2833.7249	N	8033.7083	W	1	8	0.9	658	М
113	1995	134	1349	29.5	1.103	1996	27.570	134931	2833.7249	N	8033.7083	W	1	8	0.9	658	M
113	1995	134	1349	29.75	1.236	1996	30.890	134931	2833.7249	N 	8033.7083	W	1	8	0.9	658	M
113	1995	134	1349	30	1.355	1996	33.880	134931	2833.7249	N	8033.7083	W	1	8	0.9	658	М
113	1995	134	1349	30.25	1.143	1996	28.570	134932	2833.7204	N	8033.6737	W	1	8	0.9	656	M
113	1995	134	1349	30.5	0.917	1996	22.920	134932	2833.7204	N	8033.6737	W	1	8	0.9	656	M
113	1995	134	1349	30.75	0.757	1996	18.930	134932	2833.7204	N	8033.6737	W	1	8	0.9	656	M
113	1995	134	1349	31	0.611	1996	15.280	134932	2833.7204	N	8033.6737	W	1	8	0.9	656	М

113	1995	134	1349	31.25	0.478	1996	11.960	134933	2833.7161	N	8033.6387	W	1	8	0.9	654	М
113	1995	134	1349	31.5	0.452	1996	11.290	134933	2833.7161	N	8033.6387	W	1	8	0.9	654	М
113	1995	134	1349	31.75	0.399	1996	9.970	134933	2833.7161	N	8033.6387	W	1	8	0.9	654	М
113	1995	134	1349	32	0.345	1996	8.640	134933	2833.7161	N	8033.6387	W	1	8	0.9	654	М
113	1995	134	1349	32.25	0.372	1996	9.300	134934	2833.7122	N	8033.6033	W	1	8	0.9	652	М
113	1995	134	1349	32.5	0.345	1996	8.640	134934	2833.7122	N	8033.6033	W	1	8	0.9	652	М
113	1995	134	1349	32.75	0.292	1996	7.310	134934	2833.7122	N	8033.6033	W	1	8	0.9	652	М
113	1995	134	1349	33	0.252	1996	6.312	134934	2833.7122	N	8033.6033	W	1	8	0.9	652	М
113	1995	134	1349	33.25	0.239	1996	5.979	134935	2833.7089	N	8033.5675	W	1	8	0.9	651	М
113	1995	134	1349	33.5	0.213	1996	5.315	134935	2833.7089	N	8033.5675	W	1	8	0.9	651	М
113	1995	134	1349	33.75	0.186	1996	4.651	134935	2833.7089	N	8033.5675	W	1	8	0.9	651	М
113	1995	134	1349	34	0.186	1996	4.651	134935	2833.7089	N	8033.5675	W	1	8	0.9	651	М
113	1995	134	1349	34.25	0.159	1996	3.986	134936	2833.7067	N	8033.5314	W	1	8	0.9	650	М
113	1995	134	1349	34.5	0.133	1996	3.322	134936	2833.7067	N	8033.5314	W	1	8	0.9	650	М
113	1995	134	1349	34.75	0.133	1996	3.322	134936	2833.7067	N	8033.5314	W	1	8	0.9	650	М
113	1995	134	1349	35	0.106	1996	2.657	134936	2833.7067	N	8033.5314	W	1	8	0.9	650	М
113	1995	134	1349	35.25	0.106	1996	2.657	134937	2833.7059	N	8033.4951	W	1	8	0.9	649	М
113	1995	134	1349	35.5	0.106	1996	2.657	134937	2833.7059	N	8033.4951	W	1	8	0.9	649	М
113	1995	134	1349	35.75	0.080	1996	1.993	134937	2833.7059	N	8033.4951	W	1	8	0.9	649	М
113	1995	134	1349	36	0.080	1996	1.993	134937	2833.7059	N	8033.4951	W	1	8	0.9	649	М
113	1995	134	1349	36.25	0.080	1996	1.993	134938	2833.7067	N	8033.4585	W	1	8	0.9	648	М
113	1995	134	1349	36.5	0.080	1996	1.993	134938	2833.7067	N	8033.4585	W	1	8	0.9	648	М
113	1995	134	1349	36.75	0.080	1996	1.993	134938	2833.7067	N	8033.4585	W	1	8	0.9	648	М
113	1995	134	1349	37	0.080	1996	1.993	134938	2833.7067	N	8033.4585	W	1	8	0.9	648	М
113	1995	134	1349	37.25	0.080	1996	1.993	134939	2833.7092	N	8033.4220	W	1	8	0.9	648	М
113	1995	134	1349	37.5	0.080	1996	1.993	134939	2833.7092	N	8033.4220	W	1	8	0.9	648	М
113	1995	134	1349	37.75	0.080	1996	1.993	134939	2833.7092	N	8033.4220	W	1	8	0.9	648	М
113	1995	134	1349	38	0.066	1996	1.661	134939	2833.7092	N	8033.4220	W	1	8	0.9	648	М

Figure 3.2 plots the spatial extent of aircraft sampling in the 100 minutes following the launch of K-23. It represents conversion of the latitude and longitude of the aircraft position to Cartesian coordinates centered on the SLC-40 launch complex. The aircraft position is labeled with HCl concentration data. The HCl concentrations are based on the Geomet instrument calibration performed by the NASA Toxic Vapor Detection/Contamination Monitoring Laboratory and subsequent baseline correction by The Aerospace Corporation. As shown in Figure 3.2, the aircraft flight pattern was largely confined to a 15 km x 15 km square occupying the northeast and southeast quadrants relative to the launch complex. Time (0–100 minutes), polar angle (0 to 360 degrees in the rawinsonde convention), distance (0–18000 meters), and altitude (0–3700m) are variables in the flight tracks presented in Figures 3.3 through 3.5. Thus, the HCl concentration hits noted in Figure 3.2 can be interpreted in light of these other critical variables.

Figure 3.2. Cartesian plot documenting the aircraft's position relative to SLC-40 and the measured HCL concentration throughout the 100 minute K-23 exhaust cloud sampling mission.

Distance (meters) E/W of Pad 40

3.3.2 HCl Concentration Hits as a Function of Bearing from SLC-40

Figure 3.3 substantiates that the aircraft focused on a modest range of polar angles relative to the launch complex. In this report, the angles reported will conform to the convention of rawinsonde wind vectors (the angle from which the wind originates that would push the plume to the sampled position). Thus, the angles are related by

$$\vartheta = 180 + \Phi \quad , \tag{3.1}$$

where ϑ is the equivalent rawinsonde wind angle, and Φ is the measured polar angle of the aircraft relative to SLC-40 and clockwise of true north. For example, when the aircraft is due east of SLC-40, Φ is 90°, and ϑ is 270°. The nominal trajectory of the ground cloud was shown by 3-D imagery to be 249° in a previous report and in Figure 3.1. The T-0.3 hr rawinsonde wind vectors of the bottom, middle, and top of the ground cloud were 235°, 261°, and 280°, respectively, also documented in Figure 3.1. Referring to Fig. 3.3, we will document that there are two groups of HCl aircraft hits (0-50 min and 55-80 min). Subsequent data will show that hits within the first group (0-50 min) are at relatively low altitude (400–1500 m) along the nominal ground cloud track (250 +/- 20°). The second group (55–80 min) of hits occur at higher altitude (2000-3500 m) and are located south (290 +/- 30°) of the nominal ground track. It is our preliminary conclusion that the first group of hits derive from sampling of the ground cloud as it is defined by REEDM and visualized by imagery. The second group of hits apparently derives from the launch column of the vehicle exhaust that was deposited in the higher altitude range and remained southwest and aloft of the ground cloud as documented by imagery during the first 20 minutes following launch.

Summary: Aircraft's Polar Angle and HCL Data: 13:45 to 15:25 Zulu

Figure 3.3. Summary the aircraft's HCl concentration measurements and its polar angles (rawinsonde convention) plotted against time (minutes) after the Titan IV K-23 launch.

3.3.3 HCI Concentration Hits as a Function of Radial Distance from SLC-40

Figure 3.4 can be used to illustrate several logical conclusions regarding the aircraft's sampling campaign. The highest HCl concentrations are encountered at early times and in close proximity (<7 km) to the launch complex. However, significant HCl concentrations (2–4 ppm) were observed at late times and at ranges of 10 + /-2 km from SLC-40. As shown in Figure 3.5 and discussed below, these later hits were at high altitude. All HCl hits representative of the stabilized ground cloud, both initially and after downwind dispersion, were observed along the $250 + /-20^{\circ}$ track discussed in the previous paragraphs. The most remote sampling of the ground cloud occurred 50 minutes after launch and at 16 km from the SLC-40 launch pad. These remote HCl concentrations, although significant, were extremely low compared to high altitude and more proximal cloud samplings.

Summary: Aircraft's Vector Distance and HCL Data: 13:45 to 15:25 Zulu

Figure 3.4. Summary of the aircraft's HCl concentration measurements and radial distances (m) from SLC-40 plotted against time (minutes) after the Titan IV K-23 launch.

3.3.4 HCl Concentration Hits as a Function of Altitude

Figure 3.5 documents that the early time (0-50 min) HCl hits resulted from fly-throughs of the rising and stabilized ground cloud at altitudes below 1500 m. 3-D imagery concluded that the top of the ground cloud stabilized at altitudes between 1500 to 2000 m after an initial rise to 2200 m. Given the altitude range, radial distance range, and polar angle range covered in the time period of 30-60 min, it is perhaps surprising that so few HCl hits were observed. Examination of Figure 3.5 shows that the late time hits (60–80 min) all occurred at an altitude of roughly 2200 m and a bearing (Figure 3.3) of roughly 290 +/- 30°. No HCl hits were detected below 2000 m as the plane descended (80–100 min) beneath this high altitude HCl cloud. Therefore, the launch column derived cloud does not result in measurable dispersion to low altitudes for over 100 min. As noted in Figure 3.1, T-0.3 hr rawinsonde wind vectors at the highest altitude (2200 m) reached by the rising ground cloud (i.e., revealed by imagery) were typically 280° (i.e., close to the bearing of the aircraft's high altitude HCl hits).

Summary: Aircraft's Altitude and HCL Data: 13:45 to 15:25 Zulu

Figure 3.5. Summary of the aircraft's HCl concentration measurements and altitude (m) plotted against time (minutes) after the Titan IV K-23 launch.

3.3.5 HCI Concentration Hits as a Function of Altitude and Aircraft Position

This section will provide substantiation for observations made in previous portions of this overview of the aircraft sampling data. The figures referenced in this section are subsets of the data presented in the Cartesian plot in Figure 3.2.

3.3.5.1 HCl Hits at Altitudes Greater than 2000 m

Figure 3.6 depicts only the highest altitude aircraft sampling data in a Cartesian plot centered at SLC-40. As previously noted, the observed HCl hits at high altitudes are in the southeast quadrant relative to SLC-40. They occur at late times (60–80 min) and in a fairly narrow altitude range centered around 2200 m. It is noteworthy that the imagery of launch cloud documented extensive dispersed plume material above and to the south of the ground cloud. Since no high-altitude track was flown in the northeast quadrant, it is not appropriate to conclude that no detectable high-altitude HCl exists there.

Aircraft's Cartesian Position and HCL Data: Greater Than 2000 m Altitude 13:45 to 15:25 Zulu 7000 - [HCL] <= 0.1 ppm 6000 + 0.1 < [HCL] <= 0.5 5000 * 0.5 < [HCL] <= 1.0 4000 ▲ 1.0 < [HCL] <= 2.0 Distance (meters) N/S of Pad 40 ● 2.0 < [HCL] <= 4.0 3000 ◆ 4.0 < [HCL] <= 8.0 2000 ■ 8.0 < [HCL] <= 16.0 1000 0 -1000 -2000 -3000 -4000 -5000 -6000 -7000 -10000 -6000 -2000 2000 6000 10000 14000 18000 Distance (meters) E/W of Pad 40

Figure 3.6. Summary Cartesian plot documenting the aircraft's position and measured HCl concentrations while sampling at altitudes greater than 2000 m after the Titan IV K-23 launch. The aircraft only sampled altitudes greater than 2000 m at times between 58 and 83 minutes after the K-23 launch.

3.3.5.2 HCI Hits at Altitudes Less than 2000 m

The majority of the stabilized K-23 ground cloud — as determined by 3-D plume imagery — lies below 2000 m and along a plume track centered on 250°. Examination Figure 3.7 shows this observation is consistent with the position of the major HCl hits during aircraft plume transects at altitudes below 2000 m. Figure 3.7 also documents that the southeastern high-altitude cloud does not result in measurable low altitude HCl concentrations.

Aircraft's Cartesian Position and HCL Data: Less Than 2000 m Altitude 13:45 to 15:25 Zulu 7000 t < 58 min -[HCL] <= 0.1 ppm 6000 +0.1 < [HCL] <= 0.5 5000 * 0.5 < [HCL] <= 1.0 4000 ▲ 1.0 < [HCL] <= 2.0 Distance (meters) N/S of Pad 40 • 2.0 < [HCL] <= 4.0 3000 ◆ 4.0 < [HCL] <= 8.0 2000 ■ 8.0 < [HCL] <= 16.0 1000 0 -1000 -2000 -3000 -4000 -5000 83 min < t < 100 min -6000 -7000

Figure 3.7. Summary Cartesian plot documenting the aircraft's position and measured HCl concentrations while sampling at altitudes less than 2000 m after the Titan IV K-23 launch. The aircraft only flew at altitudes less than 2000 m during two time periods: 1) 0 to 58 minutes while sampling the ground cloud as it moved into the Northeast quadrant and 2) 83 to 100 minutes while spiraling to lower altitudes beneath the high altitude plume documented in Figure 3.6 in the Southeast quadrant.

2000

6000

Distance (meters) E/W of Pad 40

10000

14000

18000

3.3.5.3 HCI Hits at Altitudes Less than 1000 m

-6000

-2000

-10000

A small fraction of the aircraft flight time was spent at altitudes below 1000 m. Figure 3.8 shows that the only major hits were at short times (< 8 min) at small distances (< 2.5 km) from the launch complex. There were, however, measurable levels of HCl at later times (47–55 min), at lower altitudes (400–700 m), at remote distances (13–16 km), and at similar angles (245–260°) to the ground cloud trajectory (into the northeast quadrant). These data are qualitatively consistent with downward dispersion from the ground cloud.

Aircraft's Cartesian Position and HCL Data: Less Than 1000 m Altitude 13:45 to 15:25 Zulu

Figure 3.8. Summary Cartesian plot documenting the aircraft's position and measured HCl concentrations while sampling at altitudes less than 1000 m after the Titan IV K-23 launch. The aircraft flew at altitudes less than 1000 m during four time periods: 1) 0 to 7 minutes while sampling the ground cloud immediately adjacent to SLC-40, 2) 29 to 37 minutes while flying beneath the ground cloud in the northeast quadrant, 3) 47 to 55 minutes while flying through the bottom of the ground cloud in the northeast quadrant and climbing into the high-altitude cloud in the Southeast quadrant; and 4) 83 to 100 minutes while passing beneath the high-altitude HCl cloud in the Southeast quadrant (see Figure 3.6).

3.3.5.4 HCl Hits at Altitudes Less than 500 m

Only one brief period ($50-56 \, \text{min}$) was flown at altitudes below $500 \, \text{m}$. The "plus" symbols in Figure 3.9 show a minor hit ($0.1 < \text{HCl} < 0.5 \, \text{ppm}$) along the nominal ground cloud track at a distance of roughly $16 \, \text{km}$ from the complex in the northeast quadrant. These hits extend to $400 \, \text{meters}$, which was the lowest altitude sampled by the aircraft, and document measurable dispersion of the ground cloud to these altitudes some $50 \, \text{minutes}$ after the launch and $16 \, \text{km}$ from the SLC- $40 \, \text{launch}$ pad.

Aircraft's Cartesian Position and HCL Data: Less Than 500 m Altitude 13:45 to 15:25 Zulu 7000 6000 -[HCL] <= 0.1 ppm +0.1 < [HCL] <= 0.5 5000 49 min < t < 54 min * 0.5 < [HCL] <= 1.0 4000 ▲ 1.0 < [HCL] <= 2.0 Distance (meters) N/S of Pad 40 ● 2.0 < [HCL] <= 4.0 3000 ◆ 4.0 < [HCL] <= 8.0 2000 ■ 8.0 < [HCL] <= 16.0 1000 -1000 -2000 -3000 t > 96 min -4000 -5000 -6000 -7000

Figure 3.9. Summary Cartesian plot documenting the aircraft's position and measured HCl concentrations while sampling at altitudes less than 500 m after the Titan IV K-23 launch. The aircraft flew at altitudes less than 500 m during two time periods: 1) 49 to 54 minutes while flying through the bottom of the ground cloud in the Northeast quadrant; and 2) 96 to 100 minutes while returning to the airport after sampling beneath the high-altitude HCl cloud in the Southeast quadrant (see Figure 3.6).

Distance (meters) E/W of Pad 40

2000

6000

10000

14000

18000

3.4 Conclusions

-10000

-6000

-2000

The aircraft's Geomet total HCl detector monitored the effluent plume from the Titan IV K-23 launch and obtained a large quantity of HCl concentration data as a function of time, altitude, and horizontal coordinates of the aircraft. The aircraft's HCl concentration data documented two distinct portions of the launch's exhaust cloud.

The HCl concentration distributions below 2000 m altitudes are consistent with imagery derived ground cloud trajectory (i.e., 250° +/– 20°) and dimensions. The aircraft documents measurable levels of HCl to altitudes as low as 400 m beneath the ground cloud's trajectory some 50 minutes after the launch and 16 km from SLC-40 launch pad. In a separate report, we will correlate the aircraft's HCl measurements with the imagery for the first 20 minutes after launch to document the dimensions and concentration distributions within the rising and stabilized ground cloud.

The HCl concentrations, measured by the aircraft above 2000 m altitude and at times greater than 55 minutes after the launch, document a high-altitude HCl cloud southwest of the ground cloud and southeast of the SLC-40 launch pad $(280^{\circ} + /- 30^{\circ})$. It appears that these higher altitude HCl hits resulted from the launch column that was originally deposited at relatively high altitudes. At high altitudes, the low wind speed and wind orientations from the west-northwest would have pushed the launch column cloud into the

low wind speed and wind orientations from the west-northwest would have pushed the launch column cloud into the southeast quadrant with respect to SLC-40. The aircraft's HCl concentration distributions document that this high altitude cloud does not result in detectable HCl below 2000 m altitude during the first 100 minutes after launch. In a separate report, we will provide a series of polar, Cartesian, and time plots for each ten minute increment in the aircraft's K-23 mission. In addition to plume concentrations, angular spreads and along-wind plume dimensions were extractable for favorable transects. This subsequent detailed data review will provide dispersion modelers with concentration profiles that can be readily compared with dispersion model runs.

4. Ground-Level HCI Dosimetry and Preparation of Instrument for Measuring Airborne HCI Concentrations

[The material in this section was contributed by Dale Lueck, Dan Curran, Ronald Barile, and Barry Meneghelli of NASA KSC's Toxic Vapor Detection/Contamination Monitoring Laboratory.]

4.1 Dosimeter Monitoring

The primary goal for HCl dosimeter monitoring during the #K23 Titan IV launch was collection of ground level data from far-field locations. One hundred dosimeters were fabricated and staged with the equipment required for rapid deployment. The calibration data for the prepared dosimeters are shown in Figure 4.1. Deployment was scheduled to be conducted during the several hours prior to the opening of the launch window [approximately 0730 (11:30 Zulu time) on 14 May 95]. Two deployment teams assembled at 0500 and awaited REEDM predictions at the TVD/CML. The early morning ground-level winds being light and variable apparently made plume movement predictions difficult. The REEDM predictions at 0600 called for the exhaust plume to move east over the ocean, conditions that made far-field ground sampling data unattainable. As a contingency, a total of forty-two HCl dosimeters were deployed within a 30,000 foot radius of the launch complex 40. South of the guard gate on Samuel Phillips Parkway at Complex 37, twenty-three dosimeters were deployed. Nineteen dosimeters were deployed on Static Test Road, Schwartz Road and Samuel Phillips Parkway north of the guard gate just south of Pad 39A (Figure 4.2). Access to Samuel Phillips Parkway between the guard gates at Complex 37 and Pad 39A was not approved.

Several dosimeters were provided to Air Force personnel for near-field placement around the launch complex. A total of nine dosimeters dosimeters were placed around Complex 40 the evening prior to launch day. Five dosimeters were deployed on the perimeter fence five feet above ground level approximately 600 ft (180 meters) from the vehicle. Four dosimeters were placed inside the fence, one on each lightning tower approximately 150 feet (45 meters) from the vehicle. The approximate placement and HCl dose measured by these near field dosimeters is shown in Figure 4.3.

4.2 Ground Level Monitoring Results

The dosimeters placed in the vicinity of launch complex 40 were the only dosimeters that showed response indicating the presence of HCl. The HCl exposure doses recorded with these dosimeters are shown in Table 4.1. The highest doses were recorded at the lightning towers on either side of the flame trench, east of the vehicle. From the HCl levels recorded by the dosimeters on the perimeter fence, it appears that the majority of the ground level HCl moved to the east, south east. However, low levels of HCl were detected at each of the other perimeter fence locations. Dosimeters placed in the same sites during the 22 Dec 94 launch did not detect HCl at any of the perimeter fence locations. This may indicate that during warmer weather conditions the effluent plume does not rise as quickly as it does when ambient temperatures are cooler.

Figure 4.1. Calibration results for set of five dosimeters from batch deployed during 14 May 95 Titan IV launch. Error bars represent \pm two standard deviations.

Table 4.1. Near-field HCl Dosimeter Location, Stain Measurements, and Doses

Dosimeter Location Distance from Vehicle	Stain Length (in.)	Dose (ppm-min)
ENE Perimeter Fence, 600 ft.	0.110	1.4
ESE Perimeter Fence, 600 ft.	1.025	105.4
SSE Perimeter Fence, 600 ft.	0.419	18.8
W Perimeter Fence, 600 ft.	0.100	1.2
NNW Perimeter Fence, 600 ft.	0.155	2.8
NE Lightning Tower, 150 ft.	1.9+(saturated)	350+
SE Lightning Tower, 150 ft.	1.9+(saturated)	350+
NW Lightning Tower, 150 ft.	1.420	197.6
SW Lightning Tower, 150 ft.	1.210	145.1

4.3 Preparation of Geomet Instrument for Airborne Sampling

At the request of the 45th Space Wing Bioenvironmental Engineering Office, one Geomet Model 401B HCl detector was modified and calibrated for airborne effluent plume sampling during the 14 May 95 Titan IV launch. A Piper (PA-44-180) Seminole, twin-engine, four-seat aircraft was used for the plume sampling. The Geomet instrument detects gaseous- or aerosol-based HCl through the use of a luminol-based chemiluminescence reaction. Under laboratory conditions the instrument has a minimum detectable sensitivity of 0.01 ppm of HCl, 5% accuracy, 5% reproducibility, 5% linearity, a noise level of less than 1%, and a 1-second response and recovery time. The limited space available in the nose of the aircraft required that the vapor inlet port be changed from the top of the instrument to the side. A four-foot length of ceramic inlet tube was procured to allow direct transport of the vapor sample from outside of the aircraft to the detector without loss of sample due to adsorption on other surfaces. Because the instrument was oriented with the back side facing down, the liquid chemical supply and waste reservoirs had to be located remotely and tubing lengths were added.

Due to limited time available before the launch and the number of modifications required to allow the unit to be fitted in the aircraft, a complete set of pre-flight qualification tests was not possible. The instrument was calibrated on 11 May 95 at the TVD/CML using a verified vapor sample of 1.1 ppm HCl at 50% R/H and 23 °C. The instrument was then delivered and mounted into the aircraft. After the instrument was installed, some verification tests were performed to confirm unit operation and response while mounted in the flight monitoring position. The unit was functioning properly and responded as expected during these pre-flight tests.

The instrument was returned to the TVD/CML shortly after the monitoring flight was completed. At approximately 1400 h on 14 May 95 a post calibration was performed on the instrument. The instrument was powered up and allowed to stabilize while sampling HCl free air. A baseline shift of less than 0.01 ppm was noted. The unit calibration stability was then evaluated by alternately sample HCl-free air and air mixtures containing 1.1 ppm HCl vapor (see Figure 4.4). The instrument responded within 10% of the calibrated value during post calibration testing.

During this airborne launch monitoring exercise, a functional configuration for the Geomet was firmly established and seemed to perform well. The implementation of Geomet test and calibration procedures as well as the establishment of good interface with the other Titan IV program contractors has laid the foundation for future airborne monitoring activities, if required. The reliability and usefulness of the data collected will only increase with the routine execution of the procedures established for this flight.

Insrument was sampling through a 4 ft. section of coated ceramic tubing in the exact orientation as in the aircraft. Figure 4.4 Response Data from Geomet precalibration prior to Airborne HCI Sampling flight May 14, 1995 Sample concentration: 1.1 ppm Sample rate: 2.2 liters/minute

Appendix A- The REEDM Code

[Material in this Appendix was contributed by Bart Lundblad of The Aerospace Corporation's Environmental Systems Directorate]

The Rocket Exhaust Effluent Diffusion Model (REEDM) is used by range safety offices at the Eastern and Western Ranges to predict toxic hazard corridors (THCs) for a variety of launch vehicles, including Titan and Delta. The code was developed in 1982 for the Air Force by H.E. Cramer Co. Development was based on the earlier NASA multi-layer diffusion model. REEDM is currently operated and periodically modified by a range safety contractor. The latest version can run on a personal computer in several minutes. REEDM calculates atmospheric toxic concentrations based on vehicle emission, meteorological, and launch scenario data provided by the user. Although based on relatively simple atmospheric dispersion physics, the code is complex with a large number of variables.

REEDM has not been fully validated and the accuracy of its concentration predictions has been questioned. Key factors determining predicted values include the cloud source terms, cloud rise and stabilization, cloud transport, cloud diffusion, and atmospheric chemistry.

- Source Term: REEDM predicts vehicle-specific initial cloud characteristics for both nominal launch and catastrophic failure cases. These characteristics include mass, temperature, buoyancy, and upward momentum. The model does not fully account for exhaust interaction with the launch mount and deluge water. It also does not account for HCl removal via washout, impingement, and rainout.
- Cloud Rise and Stabilization: REEDM uses the initial cloud characteristics and the meteorological profile to predict exhaust cloud rise and stabilization. The altitude of the predicted stabilization and the distribution of the cloud about the stabilization height are important determiners of predicted ground-level concentrations. Questions persist as to whether REEDM correctly predicts cloud stabilization heights, and if it properly accounts for cloud interaction with inversion layers that tend to inhibit cloud rise. It is also thought to inaccurately predict air entrainment rates and distribution of cloud mass.
- Transport: REEDM uses a single mean wind vector to predict the downwind trajectory of the stabilized cloud. The vector is calculated by averaging wind vectors from the measured wind profile. This simple method will not produce accurate cloud trajectories. In addition, REEDM does not account for changes in wind direction as the cloud moves downwind. Use of a single wind vector results in predictions of straight line cloud trajectory. This method cannot accurately portray true cloud movement.
- Diffusion: REEDM uses parameters of atmospheric turbulence to predict the rate at
 which toxic species in the elevated cloud will diffuse back down to ground-level. The
 diffusion rate used by the model is crucial to the prediction of ground-level

concentration isopleths. The simple Gaussian diffusion scheme used by REEDM is probably not valid for elevated cloud diffusion. The stabilized cloud may tend to remain elevated and not readily diffuse to ground-level.

• Cloud Chemistry: REEDM does not account for atmospheric chemical reactions of the launch cloud's toxic species. REEDM assumes that all HCl emitted remains in the cloud as gaseous HCl. There are important toxic removal processes occurring in the clouds that will reduce toxic ground-level concentrations. A valid model must account for these reactions.

Appendix B- Atmospheric Model Validation Program Activities

[Material in this Appendix was contributed by Bart Lundblad of The Aerospace Corporation's Environmental Systems Directorate]

The Atmospheric Dispersion Model Validation Program (MVP) is carrying out three major activities designed to validate REEDM: (A) the verification of REEDM's code, (B) the evaluation of REEDM's performance using empirical dispersion data, and (C) the establishment of the prediction confidence limits of REEDM based on the code and performance evaluations.

A. Code Verification

The REEDM code is being subjected to a rigorous review of its construction, equations, assumptions, default values, and uncertainties by a team of personnel with expertise in atmospheric modeling. This code verification process is providing a complete explanation of how the model uses input data to produce toxic concentration isopleths, including the inherent limitations that accompany these predictions. The code verification process will improve the understanding of the accuracy of code output and will provide essential information for ultimate model validation.

B. Model Performance Evaluation

The performance of REEDM in producing accurate toxic concentration predictions is being evaluated using empirical data collected during the monitoring of launch clouds and tracer gases. This evaluation process has three components: data collection, data archiving, and model comparison.

Data Collection: The launch ground clouds produced by nominal launches at the Eastern and Western Ranges are being monitored to collect data on cloud rise, growth, stabilization height, trajectory, diffusion, and toxic ground concentrations. Cloud monitoring potentially includes remote imagery (visible, infrared, and lidar) and both aerial and ground sampling of cloud constituents.

Releases of tracer gas (non toxic, invisible, and inert) at the Eastern and Western Ranges are being employed to supplement the launch cloud monitoring data. The tracer gas is released at various altitudes during non-launch periods to simulate sections of a stabilized toxic cloud. The puffs and plumes of tracer gas are remotely imaged with infrared cameras and also detected in the air and at ground level. The tracer release activity will provide valuable information on cloud trajectory and diffusion patterns in the coastal environments at the ranges. Tracer release sessions are being conducted during different seasons of the year to account for seasonal variations in dispersion characteristics.

An important part of the field data collection activity is the production of a complimentary meteorological data package that can be used to evaluate the meteorological portions of REEDM. Data provided by the existing range

meteorological network will be supplemented, as necessary, by the MVP to ensure that all necessary meteorological data are collected.

Data Archiving: A computerized data storage system will be created to archive cloud dispersion and meteorological data collected during the field activities. The data will be reviewed and reduced prior to archiving. The system will enable a rapid and accurate delivery of requested data to REEDM evaluators. The archive will remain as a valuable resource to be utilized during the evaluations of future range dispersion models.

Model Comparison: Model evaluators will run REEDM using archived meteorological data and compare its output with the empirical cloud dispersion data collected during the field activities. The cloud imagery data will be used to evaluate how closely REEDM can simulate cloud rise growth, and stabilization. Imagery and aerial sampling of the launch and tracer clouds will permit evaluation of cloud trajectory and diffusion. The ground sampling data will allow a direct comparison between REEDM toxic concentration isopleths and the actual gas concentration detected at ground level. The aerial and ground sampling will also provide real cloud chemical composition data that will assist evaluation of atmospheric chemical reactions and conversions. The evaluation team will report on the overall accuracy of the REEDM predictions as well as the accuracy of each REEDM component: cloud rise, transport, diffusion, and ground concentration.

C. Establishment of Confidence Limits

The MVP will use the knowledge gained from the REEDM code examination and the REEDM performance evaluation to establish confidence limits for REEDM use and thereby validate REEDM. These confidence limits will be based on REEDM's strengths and weaknesses and will provide guidance on interpretation of model predictions. Establishment of the confidence limits will validate REEDM by providing a firm basis for REEDM use at the ranges.

<u>Appendix C</u>- REEDM Code Calculations of Cloud Stabilization Heights and Ground-Level HCl Exposure Doses

[Material in this Appendix was contributed by Douglas Schulthess of The Aerospace Corporation's Eastern Range Systems Engineering Directorate]

REEDM code calculations of cloud stabilization heights and ground-level HCl exposure doses are presented here from Rawinsonde data determined at both T - 0.3 (13:27 Zulu time) and T - 1.4 hours (12:22 Zulu time).

1. Cloud Stabilization Heights Calculated from T-0.3 h Rawinsonde Data

Figure C-1: Meteorological Data for 1327 Rawinsonde Sounding (K-23 Launch: -0.3 HR)

Figure C-2: REEDM's HCL predictions for the Stabilized Launch Cloud using 1327 Rawinsonde Data (K-23 Launch: -0.3 HR).

Figure C-3: REEDM HCL Concentration Isopleths for the Stabilized Launch Cloud using 1327 Rawinsonde Data (K-23 Launch: -0.3 HR).

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE 2

VERSION 7.05 AT KSC 1109 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1327 Z 14 MAY 95 T -0.3 HR *************************

---- PROGRAM OPTIONS ----

MODEL CONCENTRATION RUN TYPE

OPERATIONAL

WIND-FIELD TERRAIN EFFECTS MODEL NONE LAUNCH VEHICLE

TITAN IV LAUNCH TYPE NORMAL

LAUNCH COMPLEX NUMBER 40

TURBULENCE PARAMETERS ARE DETERMINED FROM CLIMATOLOGICAL DATA

SPECIES HCL

CLOUD SHAPE ELLIPTICAL CALCULATION HEIGHT STABILIZATION

PROPELLANT TEMPERATURE (DEG. C) 25.74

CONCENTRATION AVERAGING TIME (SEC.) 1800.00

DECAY COEFFICIENT 0.0000 ABSORPTION COEFFICIENT (RNG- 0 TO 1, NO ABSORPTION=0) 0.0000

DIFFUSION COEFFICIENTS LATERAL 1.0000

VERTICAL 1.0000 VEHICLE AIR ENTRAINMENT PARAMETER GAMMAE 0.6400

DOWNWIND EXPANSION DISTANCE (METERS) LATERAL 100.00

VERTICAL 100.00

---- DATA FILES ----

INPUT FILES

RAWINSONDE FILE k23 1327.raw

rdmbase.ksc DATA BASE FILE

OUTPUT FILES

PRINT FILE k23d1327.stb PLOT FILE k23d1327.s p 1***************************** PAGE 3

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.05 AT KSC 1109 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1327 Z 14 MAY 95 T -0.3 HR ****************************

---- METEOROLOGICAL RAWINSONDE DATA ----

RAWINSONDE MSS/MSS TIME- 1327 Z DATE- 14 MAY ASCENT NUMBER 0

---- T -0.3 HR SOUNDING ----

MET . LEV . NO .		ALTITUI GND (FT)	GND	WIND DIR (DEG)	WI SPE (M/S)	ND EED (KTS)		AIR PTEMP (DEG C)	DPTEMP	AIR PRESS (MB)	AIR RH (%)		INT- ERP
1	16	0.0		270	2 1	6.0				1016 8			
2	67	51.3			3.5	6.7	28.8	31.4 30.7		1016.7 1014.9	72.0 73.1		**
3	119	102.5	31.2		3.9	7.5	28.0	30.1		1014.9	74.3		**
4	170	153.8	46.9		4.2	8.2	27.3	29.4		1011.4	75.5		**
5	221	205.0	62.5		4.6	9.0	26.5	28.7		1009.6	77.0		
6	314	297.7	90.7		4.6	9.0	26.3	28.9		1006.4	79.2		**
7	406	390.3	119.0		4.6	9.0	26.2	29.1		1003.2	81.6		**
8	499	483.0	147.2	274	4.6	9.0	26.0	29.2		1000.0	84.0		
9	603	587.0	178.9	269	4.6	9.0	25.9	29.5	23.5	996.4	86.9		**
10	707	691.0	210.6		4.6	9.0	25.7	29.8	23.9	992.9	90.0	*	
11	854	837.5	255.3		4.6	8.9	25.9	30.3	23.2	987.9	85.1		**
12	1000	984.0	299.9		4.5	8.8	26.1	30.8	22.5	983.0	81.0		
13	1253	1237.0	377.0		4.6	9.0	26.4	31.6	21.2	974.4	73.0		
14	1524	1508.0	459.6		4.6	9.0	26.0	32.1	20.9	965.4	73.2		**
15	1795	1779.0	542.2		4.6	9.0	25.7	32.5	20.5	956.4	73.0		
16	2000	1984.0	604.7		4.9	9.5	25.2	32.5	20.1	949.7	73.0		
17	2349	2333.0	711.1		5.1	10.0	24.4	32.7	19.4	938.3	74.0		
18	3000	2984.0	909.5		4.8	9.3	22.8	32.9	18.2	917.4	75.0		
19	3542		1074.7		4.6	9.0	21.3	33.0	17.6	900.0	80.0		
20	3921		1190.2		4.1	8.0	20.4	33.2	17.3	888.3	83.0		
21	4000		1214.3		4.0	7.8	20.2	33.2	17.2	885.8	83.0		
22	4462		1355.1		3.6	7.0	19.2	33.5	16.7	871.6	85.0		
23	5000		1519.1		2.7	5.2	18.3	34.0	14.8	855.2	80.0		
24	5163		1568.8		2.6	5.0	18.2	34.4	14.2	850.0	78.0		
25	5582		1696.4		2.0	3.9	17.6	35.0	13.0	837.6	74.6		* *
26	6000		1823.9		1.4	2.8	17.1	35.6	11.8	825.4	71.0		
27	6863		2087.0		1.0	2.0	15.7	36.2	4.9	800.0	50.0		
28	7000		2128.7		1.0	2.0	15.5	36.2	3.2	796.4	45.0		
29	7259		2207.7		1.0	2.0	15.0	36.2	-0.5	789.1	35.0		
30	7839		2384.5		1.5	3.0	13.4	36.8	5.1	772.8	57.0		
31	8000		2433.5		1.4^{-1}	2.7	13.2	37.0	4.2	768.3	54.0		
32	8650		2631.6		1.5	3.0	12.1		2.3	750.0	51.0		
	9272		2821.1		1.4	2.8	11.0		2.7		57.5		**
34 *	9772		2973.5		1.7	3.2	10.4	39.4	-1.0	720.4	46.5		**
**		ICATES T			ED TOP				XING L			. ~	_

^{** -} INDICATES THAT DATA IS LINEARLY INTERPOLATED FROM INPUT METEOROLOGY

1			
1************************	*****	*****	*****
ROCKET EXHAUST EFFLUENT DI VERSION 7.05 A 1109 EST 14 FI	IFFUSION MODEL RI AT KSC		PAGE 4
RAWINSONDE ASCENT NUMBER 0, 132		DE TO 0 2	TTD.
*****************	**********	,	NK ++++++++
METEOROLOGICAL RAV	VINSONDE DATA		
SURFACE AIR DENSITY (GM/M**3) DEFAULT CALCULATED MIXING LAYER HEIGHT CLOUD COVER IN TENTHS OF CELESTIAL DOME CLOUD CEILING (M)	(M)		1157.37 210.62 0.0 9999.0
PLUME RISE	DATA		
EXHAUST RATE OF MATERIAL- TOTAL MATERIAL OUTPUT- HEAT OUTPUT PER GRAM- VEHICLE RISE TIME PARAMETERS-	(GRAMS/SEC) (GRAMS) (CALORIES) (TK=(A*Z**B)+C)	A= (B= (

1****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE 5

VERSION 7.05 AT KSC 1109 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

0, 1327 Z 14 MAY 95 T -0.3 HR RAWINSONDE ASCENT NUMBER ************************

---- EXHAUST CLOUD ----

	OF LAYER	RISE TIME	RISE RANGE	CLOUD RISE BEARING (DEGREES)	CLOUD RANGE	CLOUD BEARING
1	15.6	2.8	4.4	91.3	0.0	0.0
2	31.2	4.4	12.0	93.4	0.0	0.0
3	46.9	6.0	18.1	95.5	0.0	0.0
4	62.5	7.6	24.8	97.9	0.0	0.0
5	90.7	10.7	35.6	100.9		0.0
6	119.0	14.2	50.9	101.8	0.0	0.0
7	147.2	18.1	68.0	101.1	0.0	0.0
8	178.9	23.0 28.4	88.1 111.5 142.8	99.4	0.0	0.0
9	210.6	28.4	111.5	97.1	0.0	0.0
10	255.3	36.8	142.8	94.0	0.0	0.0
11	299.9	46.3	182.7	90.7	0.0	0.0
12	377.0	64.7	244.3	86.8	1373.4	75.9
			337.7			71.9
			452.4			68.3
			573.1			
			776.7			
			1477.7			
18		312.5 *		62.3	1477.7	
19	1190.2	312.5 *	1477.7	62.3	1477.7	
20	1214.3	312.5 *	1477.7	62.3	1477.7	
21	1355.1	312.5 * 312.5 * 312.5 * 312.5 * 312.5 *	1477.7	62.3	1477.7	62.3
22	1519.1	312.5 *	1477.7	62.3	1477.7	62.3
23	1568.8	312.5 *	1477.7 1477.7 1477.7	62.3 62.3 62.3	1477.7	62.3
24	1696.4	312.5 *	1477.7	62.3	1477.7	62.3
25	1823.9	312.5 *	1477.7	62.3	1477.7	62.3
26		312.5 *	1477.7	62.3	1477.7	62.3
27		312.5 *		62.3	1477.7	
28		312.5 *				
29		312.5 *				
30			1477.7	62.3		
		312.5 *				
32		312.5 *				
33	2973.5	312.5 *	1477.7	62.3	1477.7	62.3

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE 6

VERSION 7.05 AT KSC 1109 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1327 Z 14 MAY 95 T -0.3 HR ************************

---- EXHAUST CLOUD ----

MET. LAYER NO.	TOP OF LAYER (METERS)	LAYER SOURCE STRENGTH (GRAMS)	CLOUD UPDRAFT VELOCITY (M/S)	CLOUD RADIUS (METERS)	STD. DEVIATION ALONGWIND (METERS)	N MATERIAL CROSSWIND (METERS)	DIST.
1	15.6	0.00000E+00	8.9	0.0	0.0	0.0	
2	31.2	0.00000E+00	10.0	0.0	0.0	0.0	
3	46.9	0.00000E+00	9.9	0.0	0.0	0.0	
4	62.5	0.00000E+00	9.5	0.0	0.0	0.0	
5	90.7	0.00000E+00	8.5	0.0	0.0	0.0	
6	119.0	0.0000E+00	7.7	0.0	0.0	0.0	
7	147.2	0.0000E+00	6.9	0.0	0.0	0.0	
8	178.9	0.00000E+00	6.2	0.0	0.0	0.0	
9	210.6	0.00000E+00	5.6	0.0	0.0	0.0	
10	255.3	0.00000E+00	5.0	0.0	0.0	0.0	
11	299.9	0.00000E+00	4.5	0.0	0.0	0.0	
12	377.0	1.72709E+06	3.9	360.0	167.7	167.7	
13	459.6	4.18738E+06	3.3	441.3	205.6	205.6	
14	542.2	6.12597E+06		498.7	232.4	232.4	
15	604.7	5.62284E+06	2.2	533.8	248.7	248.7	
16	711.1	1.08773E+07		560.1	261.0	261.0	
17	909.5 *	2.64416E+07	0.0	574.2	267.6	267.6	
18		2.10760E+07		536.6	250.1	250.1	
19		1.06041E+07		458.8	213.8	213.8	
20		1.63772E+06		396.7	184.8	184.8	
21		4.69957E+06		286.3	133.4	133.4	
22		4.96034E+06		199.9	93.2	93.2	
23		1.44412E+06	0.0	199.9	93.2	93.2	
24		3.59631E+06	0.0	199.9	93.2	93.2	
25	1823.9 *	3.45042E+06	0.0	199.9	93.2	93.2	
26		6.71817E+06		199.9	93.2	93.2	
27		1.02273E+06		199.9	93.2	93.2	
28		1.90376E+06	0.0	199.9	93.2	93.2	
29		4.13163E+06		199.9	93.2	93.2	
30		1.11677E+06		199.9	93.2	93.2	
31		4.38722E+06		199.9	93.2	93.2	
32		4.02796E+06		199.9	93.2	93.2	
33	2973.5 *	3.13370E+06	0.0	199.9	93.2	93.2	

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

1****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

7

VERSION 7.05 AT KSC 1109 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

MINIT

RAWINSONDE ASCENT NUMBER 0, 1327 Z 14 MAY 95 T -0.3 HR

---- CLOUD STABILIZATION ----

CALCULATION HEIGHT	(METERS)	786.45
STABILIZATION HEIGHT	(METERS)	786.45
STABILIZATION TIME	(SECS)	312.48
FIRST MIXING LAYER HEIGHT-	(METERS)	TOP = 210.62
		BASE= 0.00
SECOND SELECTED LAYER HEIGHT-	(METERS)	TOP = 2973.48
		BASE= 210.62
SIGMAR(AZ) AT THE SURFACE	(DEGREES)	13.5102
SIGMER(EL) AT THE SURFACE	(DEGREES)	2.9738

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
1	3.36	0.39	272.38	4.75	11.5724	4.0633
2	3.67	0.39	277.13	4.75	9.2409	5.5360
3	4.05	0.39	281.88	4.75	8.6320	6.1691
4	4.44	0.39	286.63	4.75	8.2705	6.6091
5	4.63	0.00	286.50	-5.00	7.9421	7.0625
6	4.63	0.00	281.50	-5.00	6.9934	6.6960
7	4.63	0.00	276.50	-5.00	6.1181	5.9631
8	4.63	0.00	271.25	-5.50	4.4578	4.3832
9	4.63	0.00	265.75	-5.50	1.9531	1.9531
10	4.60	-0.05	261.25	-3.50	1.0000	1.0000
11	4.55	-0.05	257.75	-3.50	1.0000	1.0000
12	4.58	0.10	253.50	-5.00	1.0000	1.0000
13	4.63	0.00	248.50	-5.00	1.0000	1.0000
14	4.63	0.00	243.50	-5.00	1.0000	1.0000
15	4.76	0.26	240.00	-2.00	1.0000	1.0000
16	5.02	0.26	236.50	-5.00	1.0000	1.0000
17	4.96	-0.36	232.50	-3.00	1.0000	1.0000
18	4.71	-0.15	232.50	3.00	1.0000	1.0000
19	4.37	-0.51	235.00	2.00	1.0000	1.0000
20	4.06	-0.10	236.50	1.00	1.0000	1.0000
21	3.81	-0.41	240.00	6.00	1.0000	1.0000
22	3.14	-0.93	248.00	10.00	1.0000	1.0000
23	2.62	-0.10	254.50	3.00	1.0000	1.0000
24	2.29	-0.57	261.00	10.00	1.0000	1.0000
25	1.72	-0.57	271.00	10.00	1.0000	1.0000
26	1.23	-0.41	280.00	8.00	1.0000	1.0000
27	1.03	0.00	283.50	-1.00	1.0000	1.0000
28	1.03	0.00	282.00	-2.00	1.0000	1.0000
29	1.29	0.51	274.00	-14.00	1.0000	1.0000
30	1.47	-0.15	266.50	-1.00	1.0000	1.0000

1*****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.05 AT KSC 1109 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1327 Z 14 MAY 95 T -0.3 HR ************************

		(CALCULATE	D METEOR	OLOGICAL LA	AYER PARAME	TERS		
	MET. LAYER NO.	WIND SPEED (M/SEC	SH	EED	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	AZI	IA OF ANG PEG)	SIGMA OF ELE ANG (DEG)
	31 32 33	1.47 1.49 1.56	-0	.15 .10 .23	267.50 281.25 308.00	3.00 24.50 29.00	1.0	000 000 000	1.0000 1.0000 1.0000
	TRANSITI VALUE AT	ON LAYER I HEIGHT (METERS)	NUMBER- TEMP. (DEG K)	WIND SPEED (M/SEC)		WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	
	TOP- LAYER- BOTTOM-	210.62	302.90	4.63 4.38 3.09	0.27	263.00 277.03 270.00	5.81	1.0000 6.5618 13.5102	5.2638
	TRANSITI VALUE AT	ON LAYER I HEIGHT (METERS)	NUMBER- TEMP. (DEG K)	2 WIND SPEED (M/SEC)		WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)
_	TOP- LAYER- BOTTOM-	2973.48	312.54	1.67 2.74 4.63		322.50 249.90 263.00	12.37	1.0000 1.0000 1.0000	1.0000

1***************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

c

VERSION 7.05 AT KSC 1109 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

---- MAXIMUM CENTERLINE CALCULATIONS -----

CONCENTRATION OF HCL AT A HEIGHT OF 786.5 METERS DOWNWIND FROM A TITAN IV NORMAL LAUNCH CALCULATIONS APPLY TO THE LAYER BETWEEN 210.6 AND 2973.5 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 10000.000 11000.000 12000.000 13000.000 14000.686 15000.850 16000.000 17000.521 18000.625 19000.732 20000.846 21000.314 22000.371 23000.430 24000.488 25000.551 26000.613 27000.678 28000.141 29000.162 30000.186 31000.209 32000.234 33000.262	64.400 66.349 67.391 67.906 68.167 68.422 68.697 68.913 68.9133 69.251 69.3373 69.251 69.37867 69.37867 69.550 69.5534 69.5534 69.5534 69.5534 69.718 69.708 69.718	41.073 37.211 32.803 28.328 24.329 20.873 17.922 15.418 13.280 11.457 9.900 8.583 7.454 6.503 5.691 4.998 4.412 3.911 3.480 3.111 2.795 2.521 2.284 2.077 1.895 1.736 1.795 1.736 1.595 1.472 1.362 1.264 1.176 1.097	3.717 6.137 9.567 12.765 16.269 19.756 23.230 26.502 29.704 32.897 36.082 39.263 42.442 45.612 48.775 51.941 55.101 58.259 61.414 64.568 67.720 70.870 74.019 77.166 80.313 83.459 86.603 89.747 92.890 96.033 99.175 102.316	8.908 12.552 16.694 22.209 26.745 36.584 55.863 82.662 127.531 141.755 155.978 203.222 220.330 237.424 254.505 271.625 288.729 305.836 322.945 340.056 357.168 374.281 391.395 408.511 425.627 442.744 459.862 476.980 494.099 511.218 528.338 545.458
34000.285 35000.313 36000.340 37000.367 38000.395	69.665 69.657 69.651 69.644 69.638	1.025 0.960 0.901 0.848 0.799	105.457 108.597 111.737 114.877 118.016	562.578 579.699 596.820 613.941 631.063

1*****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.05 AT KSC 1109 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER

0, 1327 Z 14 MAY 95 T -0.3 HR *************************

---- MAXIMUM CENTERLINE CALCULATIONS ----

CONCENTRATION OF HCL AT A HEIGHT OF 786.5 METERS DOWNWIND FROM A TITAN IV NORMAL LAUNCH CALCULATIONS APPLY TO THE LAYER BETWEEN 210.6 AND 2973.5 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
39000.426 40000.453 41000.012 42000.012 43000.016 44000.020 45000.023 46000.027 47000.031 48000.035 49000.035 50000.043 51000.055 53000.055 53000.059 54000.066 55000.070 56000.074 57000.082 58000.086 59000.098	69.632 69.627 69.860 69.855 69.851 69.846 69.842 69.838 69.830 69.827 69.823 69.823 69.827 69.811 69.811 69.811 69.806 69.806 69.806	0.753 0.712 0.673 0.638 0.605 0.575 0.547 0.520 0.496 0.473 0.452 0.431 0.452 0.395 0.378 0.362 0.347 0.333 0.320 0.308 0.296 0.284	121.155 124.294 127.432 130.570 133.708 136.846 139.983 143.120 146.257 149.394 152.530 155.667 158.803 161.939 165.075 168.211 171.347 174.482 177.618 180.754 183.889	648.185 665.307 682.429 699.551 716.674 733.797 750.919 768.042 785.166 802.289 819.412 836.536 853.659 870.783 887.907 905.031 922.154 939.278 956.402 973.526
00000.096	09.190	0.204	187.024	1007.775

RANGE BEARING 2000.0 64.4

41.073 IS THE MAXIMUM PEAK CONCENTRATION

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

11

VERSION 7.05 AT KSC 1109 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995 RAWINSONDE ASCENT NUMBER 0, 1327 Z 14 MAY 95 T -0.3 HR *****************************

---- MAXIMUM CENTERLINE CALCULATIONS ----

CONCENTRATION OF HCL AT A HEIGHT OF 786.5 METERS DOWNWIND FROM A TITAN IV NORMAL LAUNCH CALCULATIONS APPLY TO THE LAYER BETWEEN 210.6 AND 2973.5 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	TOTAL DOSAGE (PPM SEC)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 10000.000 11000.000 12000.000 13000.000 14000.686 15000.850 16000.000 17000.521 18000.625 19000.732 20000.846 21000.314 22000.371 23000.430 24000.488 25000.551 26000.613 27000.678 28000.141 29000.162 30000.186 31000.209 32000.234 33000.262 34000.285 35000.313 36000.340	64.400 66.349 67.391 67.906 68.167 68.422 68.697 68.911 69.053 69.255 69.333 69.255 69.3786 69.3786 69.5567 69.5534 69.5534 69.5534 69.5534 69.5534 69.5534 69.5534 69.668 69.699.668 69.6680 69.6657 69.6557 69.6557	10074.992 9219.285 8278.110 7332.461 6498.502 5784.840 5176.151 4655.458 4201.880 3803.871 3451.903 3143.458 2866.650 2624.609 2408.261 2215.850 2046.688 1895.763 1761.150 1641.085 1535.322 1440.590 1355.593 1279.173 1210.297 1148.055 1091.303 1040.606 994.327 951.942 912.992 877.081 843.860 813.029 784.326	3.717 6.137 9.567 12.765 16.269 19.756 23.230 26.502 29.704 32.897 36.082 39.263 42.442 45.612 48.775 51.941 55.101 58.259 61.414 64.568 67.720 70.870 74.019 77.166 80.313 83.459 86.603 89.747 92.890 96.033 99.175 102.316 105.457 108.597 111.737	8.908 12.552 16.694 22.209 26.745 36.584 55.863 82.662 127.755 155.978 203.222 220.330 237.424 254.505 271.625 288.729 305.835 322.945 322.945 322.945 323.240.056 357.168 374.281 391.395 408.511 425.627 442.744 459.862 476.989 494.099 511.218 528.338 545.458 579.699 596.820
37000.367 38000.395	69.644 69.638	757.523 732.422	114.877 118.016	613.941 631.063

1****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE 12

VERSION 7.05 AT KSC 1109 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1327 Z 14 MAY 95 T -0.3 HR **********************

---- MAXIMUM CENTERLINE CALCULATIONS ----

CONCENTRATION OF HCL AT A HEIGHT OF 786.5 METERS DOWNWIND FROM A TITAN IV NORMAL LAUNCH CALCULATIONS APPLY TO THE LAYER BETWEEN 210.6 AND 2973.5 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	TOTAL DOSAGE (PPM SEC)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
39000.426 40000.453 41000.012 42000.012 43000.016 44000.020 45000.027 47000.031 48000.035 49000.035 49000.051 52000.055 53000.059 54000.059 54000.070 56000.074 57000.082 58000.086	69.632 69.627 69.860 69.855 69.851 69.846 69.842 69.838 69.834 69.830 69.827 69.827 69.823 69.827 69.823 69.821 69.814 69.814 69.814 69.808 69.808	708.852 686.662 664.842 645.223 626.623 608.953 592.140 576.116 560.821 546.203 532.214 518.812 505.960 493.622 481.768 470.370 459.402 448.840 438.664 428.853	121.155 124.294 127.432 130.570 133.708 136.846 139.983 143.120 146.257 149.394 152.530 155.667 158.803 161.939 165.075 168.211 171.347 174.482 177.618 180.754	648.185 665.307 682.429 699.551 716.674 733.797 750.919 768.042 785.166 802.289 819.412 836.536 853.659 870.783 887.907 905.031 922.154 939.278 956.402 973.526
59000.094 60000.098	69.798 69.796	419.389 410.254	183.889 187.024	990.651 1007.775

RANGE BEARING 2000.0 64.4

10074.992 IS THE MAXIMUM TOTAL DOSAGE

1******************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

7:

VERSION 7.05 AT KSC 1109 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1327 Z 14 MAY 95 T -0.3 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

CONCENTRATION OF HCL AT A HEIGHT OF 786.5 METERS
DOWNWIND FROM A TITAN IV NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 210.6 AND 2973.5 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	30.0 MIN. MEAN CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
2000.000 3000.000 4000.000 5000.000 6000.000 8000.000 9000.000 10000.000 12000.000 12000.000 14000.686 15000.850 16000.000 17000.521 18000.625 19000.732 20000.846 21000.314 22000.371 23000.430 24000.488 25000.551 26000.613 27000.678 28000.141 29000.162 30000.186 31000.209	64.400 66.349 67.391 67.906 68.167 68.422 68.697 68.911 69.053 68.9153 69.252 69.333 69.252 69.451 69.390 69.373 69.373 69.550 69.550 69.550 69.550 69.506 69.718 69.708 69.689	5.597 5.122 4.599 4.074 3.610 3.214 2.876 2.586 2.334 2.113 1.918 1.746 1.593 1.458 1.338 1.231 1.137 1.053 0.978 0.978 0.912 0.853 0.753 0.710 0.672 0.637 0.606 0.577 0.551 0.527	3.717 6.137 9.567 12.765 16.269 19.756 23.230 26.502 29.704 32.897 36.082 39.263 42.442 45.612 48.775 51.941 55.101 58.259 61.414 64.568 67.720 70.870 74.019 77.166 80.313 83.459 86.603 89.747 92.890 96.033	8.908 12.552 16.694 22.209 26.745 36.584 55.863 82.662 127.531 141.755 155.978 203.222 220.330 237.424 254.505 271.625 288.729 305.836 322.945 340.056 357.168 374.281 391.395 408.511 425.627 442.744 459.862 476.980 494.099 511.218
32000.234 33000.262 34000.285 35000.313 36000.340 37000.367	69.680 69.672 69.665 69.657 69.651 69.644	0.505 0.485 0.466 0.448 0.432 0.416	99.175 102.316 105.457 108.597 111.737	528.338 545.458 562.578 579.699 596.820 613.941

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE 14

VERSION 7.05 AT KSC 1109 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER

0, 1327 Z 14 MAY 95 T -0.3 HR ********************************

---- MAXIMUM CENTERLINE CALCULATIONS ----

CONCENTRATION OF HCL AT A HEIGHT OF 786.5 METERS DOWNWIND FROM A TITAN IV NORMAL LAUNCH CALCULATIONS APPLY TO THE LAYER BETWEEN 210.6 AND 2973.5 METERS

		30.0 MIN.		
		MEAN	CLOUD	CLOUD
RANGE	BEARING	CONCEN-	ARRIVAL	DEPARTURE
FROM PAD	FROM PAD	TRATION	TIME	TIME
(METERS)	(DEGREES)	(PPM)	(MIN)	(MIN)
38000.395	69.638	0.401	118.016	631.063
39000.426	69.632	0.387	121.155	648.185
40000.453	69.627	0.374	124.294	665.307
41000.012	69.860	0.361	127.432	682.429
42000.012	69.855	0.349	130.570	699.551
43000.016	69.851	0.338	133.708	716.674
44000.020	69.846	0.327	136.846	733.797
45000.023	69.842	0.317	139.983	750.919
46000.027	69.838	0.307	143.120	768.042
47000.031	69.834	0.297	146.257	785.166
48000.035	69.830	0.288	149.394	802.289
49000.039	69.827	0.279	152.530	819.412
50000.043	69.823	0.271	155.667	836.536
51000.051	69.820	0.263	158.803	853.659
52000.055	69.817	0.255	161.939	870.783
53000.059	69.814	0.247	165.075	887.907
54000.066	69.811	0.240	168.211	905.031
55000.070	69.808	0.233	171.347	922.154
56000.074	69.806	0.226	174.482	939.278
57000.082	69.803	0.219	177.618	956.402
58000.086	69.800	0.213	180.754	973.526
59000.094	69.798	0.207	183.889	990.651
60000.098	69.796	0.201	187.024	1007.775

RANGE BEARING 2000.0 64.4

5.597 IS THE MAXIMUM 30.0 MIN. MEAN CONCENTRATION

*** REEDM HAS TERMINATED

2. Ground-Level HCl Exposure Doses Calculated from T-0.3 h Rawinsonde Data

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

100.00

100.00

LATERAL

VERTICAL

2

VERSION 7.05 AT KSC 1334 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1327 Z 14 MAY 95 T -0.3 HR

---- PROGRAM OPTIONS ----

MODEL CONCENTRATION RUN TYPE OPERATIONAL WIND-FIELD TERRAIN EFFECTS MODEL NONE LAUNCH VEHICLE TITAN IV LAUNCH TYPE NORMAL LAUNCH COMPLEX NUMBER TURBULENCE PARAMETERS ARE DETERMINED FROM CLIMATOLOGICAL DATA SPECIES CLOUD SHAPE ELLIPTICAL CALCULATION HEIGHT SURFACE PROPELLANT TEMPERATURE (DEG. C) 25.74 CONCENTRATION AVERAGING TIME (SEC.) 1800.00 DECAY COEFFICIENT 0.0000 ABSORPTION COEFFICIENT (RNG- 0 TO 1, NO ABSORPTION=0) 0.0000 DIFFUSION COEFFICIENTS LATERAL 1.0000 VERTICAL 1.0000 VEHICLE AIR ENTRAINMENT PARAMETER GAMMAE 0.6400

---- DATA FILES ----

DOWNWIND EXPANSION DISTANCE (METERS)

INPUT FILES

RAWINSONDE FILE k23_1327.raw
DATA BASE FILE rdmbase.ksc

OUTPUT FILES

PRINT FILE k23d1327.sur PLOT FILE k23d1327.u p

1******************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.05 AT KSC 1334 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER

0, 1327 Z 14 MAY 95 T -0.3 HR ***********************************

---- METEOROLOGICAL RAWINSONDE DATA ----

RAWINSONDE MSS/MSS

TIME- 1327 Z DATE- 14 MAY 95

ASCENT NUMBER 0

---- T -0.3 HR SOUNDING ----

	. MSL		GND	WIND DIR	SPE	ED				AIR PRESS	RH		INT-
NO.	, ,	(FT) 	(M)	(DEG)	(M/S)	(KTS)		(DEG C)		(MB)	(왕)	M	ERP
1		0.0		270	3.1	6.0	29.5	31.4	23.9	1016.7	72.0		
2	67	51.3	15.6	275		6.7		30.7		1014.9	73.1		**
3	119	102.5	31.2	280	3.9	7.5	28.0	30.1	23.0	1013.1	74.3		**
4	170	153.8	46.9	284	4.2	8.2	27.3	29.4	22.5	1011.4	75.5		**
5	221	205.0	62.5	289	4.6	9.0	26.5	28.7	22.1	1009.6	77.0		
6	314	297.7	90.7	284	4.6	9.0	26.3	28.9	22.4	1006.4	79.2		**
7	406	390.3	119.0	279	4.6	9.0	26.2	29.1	22.8	1003.2	81.6		**
8	499	483.0	147.2		4.6	9.0	26.0	29.2	23.1	1000.0	84.0		
9	603	587.0	178.9			9.0	25.9	29.5	23.5	996.4	86.9		**
10	707	691.0	210.6			9.0	25.7	29.8	23.9	992.9	90.0	*	
11	854	837.5	255.3		4.6	8.9	25.9	30.3	23.2	987.9	85.1		**
12	1000	984.0	299.9		4.5	8.8	26.1	30.8	22.5	983.0	81.0		
13	1253	1237.0	377.0		4.6	9.0	26.4	31.6	21.2	974.4	73.0		
14	1524	1508.0	459.6		4.6	9.0	26.0	32.1	20.9	965.4	73.2		* *
15	1795	1779.0	542.2		4.6	9.0	25.7	32.5	20.5	956.4	73.0		
16	2000	1984.0	604.7		4.9	9.5	25.2	32.5	20.1	949.7	73.0		
17	2349	2333.0	711.1		5.1	10.0	24.4	32.7	19.4	938.3	74.0		
18	3000	2984.0	909.5			9.3	22.8	32.9	18.2	917.4	75.0		
19	3542		1074.7			9.0	21.3	33.0	17.6	900.0	80.0		
20	3921		1190.2			8.0	20.4	33.2	17.3	888.3	83.0		
21	4000		1214.3			7.8	20.2	33.2	17.2	885.8	83.0		
22	4462		1355.1		3.6	7.0	19.2	33.5	16.7	871.6	85.0		
23	5000		1519.1		2.7	5.2	18.3	34.0	14.8	855.2	80.0		
24	5163		1568.8		2.6	5.0	18.2	34.4	14.2	850.0	78.0		
25	5582		1696.4		2.0	3.9	17.6	35.0	13.0	837.6	74.6		**
26	6000		1823.9		1.4	2.8	17.1	35.6	11.8	825.4	71.0		
27	6863		2087.0		1.0	2.0	15.7		4.9	800.0	50.0		
28	7000		2128.7		1.0	2.0	15.5	36.2	3.2	796.4	45.0		
29	7259		2207.7		1.0	2.0	15.0	36.2	-0.5	789.1	35.0		
30	7839		2384.5		1.5	3.0	13.4		5.1	772.8	57.0		
31	8000		2433.5		1.4	2.7	13.2		4.2	768.3	54.0		
32	8650		2631.6		1.5	3.0	12.1		2.3	750.0	51.0		
33	9272		2821.1		1.4	2.8	11.0	38.7		733.6	57.5		**
34	9772		2973.5		1.7	3.2	10.4	39.4	-1.0	720.4	46.5		**
*	- IND	ICATES :	THE CAL	CULAT	ED TOP	OF TH	E SURE	FACE MI	XING L	AYER			

^{** -} INDICATES THAT DATA IS LINEARLY INTERPOLATED FROM INPUT METEOROLOGY

1***************************** ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM VERSION 7.05 AT KSC 1334 EST 14 FEB 1996 launch time: 0945 EDT 14 MAY 1995 RAWINSONDE ASCENT NUMBER 0, 1327 Z 14 MAY 95 T -0.3 HR **************************** ---- METEOROLOGICAL RAWINSONDE DATA ----SURFACE AIR DENSITY (GM/M**3) 1157.37 DEFAULT CALCULATED MIXING LAYER HEIGHT (M) 210.62 CLOUD COVER IN TENTHS OF CELESTIAL DOME 0.0 CLOUD CEILING (M) 9999.0 ---- PLUME RISE DATA ----(GRAMS/SEC) EXHAUST RATE OF MATERIAL-4.22354E+06 TOTAL MATERIAL OUTPUT-(GRAMS) 5.36146E+08 (CALORIES) HEAT OUTPUT PER GRAM-1555.5800 VEHICLE RISE TIME PARAMETERS-(TK=(A*Z**B)+C) A=0.8678

B=

C=

0.4500

0.0000

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE 5

VERSION 7.05 AT KSC 1334 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1327 Z 14 MAY 95 T -0.3 HR *********************

---- EXHAUST CLOUD ----

MET. LAYER	OF LAYER	RISE TIME	RISE RANGE	CLOUD RISE BEARING	CLOUD RANGE	CLOUD BEARING
NO.	(METERS)	(SECONDS)	(METERS)	(DEGREES)	(METERS)	(DEGREES)
			- 			
1	15.6	2.8	4.4	91.3	0.0	0.0
2	31.2	4.4	12.0	93.4	0.0	0.0
3	46.9	6.0	18.1	95.5	0.0	0.0
4	62.5	7.6	24.8	97.9	0.0	0.0
5	90.7	10.7	35.6	100.9	0.0	0.0
6	119.0	14.2	50.9	101.8	0.0	0.0
7	147.2	18.1	68.0	101.1	0.0	0.0
8	178.9	14.2 18.1 23.0	35.6 50.9 68.0 88.1	99.4	0.0	0.0
9	210.6	28.4	111.5	97.1	0.0	0.0
10	255.3	36.8	142.8	94.0	0.0	0.0
				90.7		0.0
12				86.8		
			337.7		1370.1	71.9
			452.4			
			573.1		1375.9	66.0
16	711.1	201.3	776.7	70.2	1325.3	64.5
17	909.5	312.5 *	1477.7	62.3	1477.7	
18	1074.7	312.5 *	1477.7	62.3	1477.7	
19	1190 2	312 5 *	1477 7	62.3	1477.7	62.3
20	1214.3	312.5 *	1477.7	62.3	1477.7	62.3
21	1355.1	312.5 *	1477.7	62.3	1477.7	62.3
22	1519.1	312.5 * 312.5 * 312.5 * 312.5 * 312.5 *	1477.7 1477.7 1477.7 1477.7	62.3 62.3 62.3 62.3	1477.7 1477.7	62.3
23	1568.8	312.5 *	1477.7	62.3	1477.7	62.3
24	1696.4	312.5 *	1477.7	62.3	1477.7	62.3
25	1823.9	312.5 *	1477.7	62.3	1477.7	62.3
26		312.5 *	1477.7	62.3		
27		312.5 *				
28		312.5 *				
29		312.5 *				
30		312.5 *				
31		312.5 *	1477.7		1477.7	
, 32		312.5 *	1477.7	62.3		
33	2973.5	312.5 *	1477.7	62.3	1477.7	62.3

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

1*****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE 6

VERSION 7.05 AT KSC 1334 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1327 Z 14 MAY 95 T -0.3 HR ***********************

---- EXHAUST CLOUD ----

MET. LAYER NO.	TOP OF LAYER (METERS)	LAYER SOURCE STRENGTH (GRAMS)	CLOUD UPDRAFT VELOCITY (M/S)	CLOUD S RADIUS (METERS)	STD. DEVIATIO ALONGWIND (METERS)	N MATERIAL DIST CROSSWIND (METERS)	
1	15.6	0.00000E+00	8.9	0.0	0.0	0.0	
2	31.2	0.00000E+00	10.0	0.0	0.0	0.0	
3	46.9	0.00000E+00	9.9	0.0	0.0	0.0	
4	62.5	0.0000E+00		0.0	0.0	0.0	
5 6	90.7	0.00000E+00	8.5	0.0	0.0	0.0	
	119.0	0.00000E+00	7.7	0.0	0.0	0.0	
7	147.2	0.00000E+00		0.0	0.0	0.0	
8	178.9	0.00000E+00		0.0	0.0	0.0	
9	210.6	0.00000E+00		0.0	0.0	0.0	
10	255.3	0.00000E+00	5.0	0.0	0.0	0.0	
11.	299.9	0.00000E+00	4.5	0.0	0.0	0.0	
12	377.0	1.72709E+06	3.9	360.0	167.7	167.7	
13	459.6	4.18738E+06	3.3	441.3	205.6	205.6	
14	542.2	6.12597E+06		498.7	232.4	232.4	
15	604.7	5.62284E+06		533.8	248.7	248.7	
16	711.1	1.08773E+07		560.1	261.0	261.0	
17		2.64416E+07		574.2	267.6	267.6	
18		2.10760E+07		536.6	250.1	250.1	
19		1.06041E+07		458.8	213.8	213.8	
20		1.63772E+06	0.0	396.7	184.8	184.8	
21		4.69957E+06		286.3	133.4	133.4	
22		4.96034E+06	0.0	199.9	93.2	93.2	
23		1.44412E+06	0.0	199.9	93.2	93.2	
24		3.59631E+06	0.0	199.9	93.2	93.2	
25		3.45042E+06	0.0	199.9	93.2	93.2	
26		6.71817E+06		199.9	93.2	93.2	
27		1.02273E+06		199.9	93.2	93.2	
28		1.90376E+06		199.9	93.2	93.2	
29		4.13163E+06		199.9	93.2	93.2	
30		1.11677E+06		199.9	93.2	93.2	
31		4.38722E+06		199.9	93.2	93.2	
32		4.02796E+06		199.9	93.2	93.2	
33	2973.5 *	3.13370E+06	0.0	199.9	93.2	93.2	

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

1****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

7

VERSION 7.05 AT KSC 1334 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

---- CLOUD STABILIZATION ----

CALCULATION HEIGHT STABILIZATION HEIGHT STABILIZATION TIME	(METERS) (METERS) (SECS)	0.00 786.45 312.48
FIRST MIXING LAYER HEIGHT-	(METERS)	TOP = 210.62
SECOND SELECTED LAYER HEIGHT-	(METERS)	BASE= 0.00 TOP = 2973.48
SIGMAR (AZ) AT THE SURFACE	(DEGREES)	BASE= 210.62 13.5102
SIGMER(EL) AT THE SURFACE	(DEGREES)	2.9738

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
1	3.36	0.39	272.38	4.75	11.5724	4.0633
2	3.67	0.39	277.13	4.75	9.2409	5.5360
3	4.05	0.39	281.88	4.75	8.6320	6.1691
4	4.44	0.39	286.63	4.75	8.2705	6.6091
5	4.63	0.00	286.50	-5.00	7.9421	7.0625
6	4.63	0.00	281.50	-5.00	6.9934	6.6960
7	4.63	0.00	276.50	-5.00	6.1181	5.9631
8	4.63	0.00	271.25	-5.50	4.4578	4.3832
9	4.63	0.00	265.75	-5.50	1.9531	1.9531
10	4.60	-0.05	261.25	-3.50	1.0000	1.0000
11	4.55	-0.05	257.75	-3.50	1.0000	1.0000
12	4.58	0.10	253.50	-5.00	1.0000	1.0000
13	4.63	0.00	248.50	-5.00	1.0000	1.0000
14	4.63	0.00	243.50	-5.00	1.0000	1.0000
15	4.76	0.26	240.00	-2.00	1.0000	1.0000
16	5.02	0.26	236.50	-5.00	1.0000	1.0000
17	4.96	-0.36	232.50	-3.00	1.0000	1.0000
18	4.71	-0.15	232.50	3.00	1.0000	1.0000
19	4.37	-0.51	235.00	2.00	1.0000	1.0000
20	4.06	-0.10	236.50	1.00	1.0000	1.0000
21	3.81	-0.41	240.00	6.00	1.0000	1.0000
22	3.14	-0.93	248.00	10.00	1.0000	1.0000
23	2.62	-0.10	254.50	3.00	1.0000	1.0000
24	2.29	-0.57	261.00	10.00	1.0000	1.0000
25	1.72	-0.57	271.00	10.00	1.0000	1.0000
26	1.23	-0.41	280.00	8.00	1.0000	1.0000
27	1.03	0.00	283.50	-1.00	1.0000	1.0000
28	1.03	0.00	282.00	-2.00	1.0000	1.0000
29	1.29	0.51	274.00	-14.00	1.0000	1.0000
30	1.47	-0.15	266.50	-1.00	1.0000	1.0000

1****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.05 AT KSC 1334 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1327 Z 14 MAY 95 T -0.3 HR ************************

---- CALCULATED METEOROLOGICAL LAYER PARAMETERS ----

MET. LAYER NO.	WIND SPEED (M/SEC)	SH	EED	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	AZI	A OF ANG EG)	SIGMA OF ELE ANG (DEG)	
31	1.47	0		267.50	3.00		000	1.0000	
32 33	1.49 1.56		.10 .23	281.25 308.00	24.50 1.0 29.00 1.0		000	1.0000 1.0000	
TRANSIT: VALUE AT	ION LAYER N HEIGHT (METERS)		WIND SPEED (M/SEC)	WIND SPEED SHEAR	WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE.	
TOP- LAYER- BOTTOM-	210.62	302.90 304.58	4.63 4.38 3.09	0.27	263.00 277.03 270.00	5.81	1.0000 6.5618 13.5102	5.2638	
TRANSIT: VALUE AT	ION LAYER N HEIGHT (METERS)	TEMP.	2 WIND SPEED (M/SEC)		WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)	
TOP- LAYER- BOTTOM-	2973.48 210.62	312.54 302.90	1.67 2.74 4.63	1.12	322.50 249.90 263.00	12.37	1.0000 1.0000 1.0000	1.0000	

1**************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

9

VERSION 7.05 AT KSC

1334 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

---- MAXIMUM CENTERLINE CALCULATIONS ----

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS

DOWNWIND FROM A TITAN IV NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 210.6 METERS

RANGE FROM PAD	BEARING FROM PAD	PEAK CONCEN- TRATION	CLOUD ARRIVAL TIME	CLOUD DEPARTURE TIME
(METERS)	(DEGREES)	(PPM)	(MIN)	(MIN)

** NO HCL FOUND **

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.05 AT KSC 1334 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER

0, 1327 Z 14 MAY 95 T -0.3 HR *********************

---- MAXIMUM CENTERLINE CALCULATIONS ----

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS DOWNWIND FROM A TITAN IV NORMAL LAUNCH CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 210.6 METERS

			CLOUD	CLOUD
RANGE	BEARING	TOTAL	ARRIVAL	DEPARTURE
FROM PAD	FROM PAD	DOSAGE	TIME	TIME
(METERS)	(DEGREES)	(PPM SEC)	(MIN)	(MIN)

** NO HCL FOUND **

3. Cloud Stabilization Heights Calculated from T-1.4 h Rawinsonde Data

Figure C-4: Meteorological Data for 1222 Rawinsonde Sounding (K-23 Launch: -1.4 HR)

Figure C-5: REEDM's Predictions for the Stabilized Launch Cloud using 1222 Rawinsonde Data (K-23 Launch: -1.4 HR)

Figure C-6: REEDM HCL Concentration Isopleths for the Stabilized Launch Cloud using 1222 Rawinsonde Data (K-23 Launch: -1.4 HR).

1*****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

VERSION 7.05 AT KSC 1237 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER

0, 1222 Z 14 MAY 95 T -1.4 HR *************************

---- PROGRAM OPTIONS -----

MODEL CONCENTRATION RUN TYPE OPERATIONAL WIND-FIELD TERRAIN EFFECTS MODEL NONE LAUNCH VEHICLE TITAN IV LAUNCH TYPE NORMAL LAUNCH COMPLEX NUMBER TURBULENCE PARAMETERS ARE DETERMINED FROM CLIMATOLOGICAL DATA SPECIES CLOUD SHAPE ELLIPTICAL CALCULATION HEIGHT STABILIZATION PROPELLANT TEMPERATURE (DEG. C) 25.74 CONCENTRATION AVERAGING TIME (SEC.) 1800.00 DECAY COEFFICIENT 0.0000 ABSORPTION COEFFICIENT (RNG- 0 TO 1, NO ABSORPTION=0) 0.0000 DIFFUSION COEFFICIENTS LATERAL 1.0000 VERTICAL 1.0000 VEHICLE AIR ENTRAINMENT PARAMETER GAMMAE 0.6400 DOWNWIND EXPANSION DISTANCE (METERS) LATERAL LATERAL VERTICAL 100.00 100.00

---- DATA FILES ----

INPUT FILES

RAWINSONDE FILE DATA BASE FILE

k23 1222.raw

rdmbase.ksc

OUTPUT FILES

PRINT FILE PLOT FILE

k23d1222.stb k23d1222.s p 1***************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

VERSION 7.05 AT KSC 1237 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER

0, 1222 Z 14 MAY 95 T -1.4 HR ************************

---- METEOROLOGICAL RAWINSONDE DATA ----

RAWINSONDE MSS/MSS

TIME- 1222 Z DATE- 14 MAY

T-T T TT

ASCENT NUMBER

MITTER

0

---- T -1.4 HR SOUNDING ----

MET.		ALTITUI		WIND) WI	ND		AIR		AIR	AIR		
LEV.			GND	DIR	SPE	ED	TEMP	PTEMP	DPTEMP	PRESS	RH	Η	INT-
NO.						(KTS)		(DEG C)					
1	16	0.0	0.0			5.0		29.0		1016.4	81.0		
2	63	46.8	14.3			5.2	26.8			1016.4	81.9		**
3	110	93.6	28.5		2.8	5.4	26.5			1014.8	82.5		**
4	156	140.4	42.8		2.9	5.6	26.1			1013.2	83.2		**
5	203	187.2	57.1		3.0	5.8	25.8	28.1		1009.9	83.8		**
6	250	234.0	71.3		3.1	6.0	25.5	27.9		1009.3	84.0		~ ~
. 7	329	313.3	95.5		3.3	6.3	25.4			1005.5	84.5		**
8	409	392.7			3.4	6.7	25.4			1003.3	84.5		**
9	488	472.0	143.9		3.6	7.0	25.3			1002.0	85.0	*	
10	659	642.7			3.8	7.3	25.4		22.3		83.2		* *
11	829	813.3	247.9		3.9	7.7	25.4		22.1		81.9		**
12	1000	984.0	299.9		4.1	8.0	25.5		21.9		81.0		
13	1142	1126.0	343.2		4.1	8.0	25.7		21.6		78.0		
14	1414	1398.0	426.1			8.5	25.5		20.9		75.4		**
15	1686	1670.0	509.0			9.0	25.4		20.1		72.0		
16	2000	1984.0			5.0	9.7	24.8		19.8	949.3	74.0		
17	2606	2590.0			5.1	10.0	23.7		18.9	929.6	75.0		
18	3000	2984.0		225	5.0	9.7	22.6		18.4	916.9	77.0		
19	3528	3512.0			4.6	9.0	21.4		17.9	900.0	81.0		
20	4000	3984.0	1214.3	223		7.8	20.1		17.5	885.4	85.0		
21	4717	4701.0	1432.9	226	3.1	6.0	18.2	33.3	16.5	863.3	90.0		
22	5000	4984.0	1519.1	230	2.5	4.8	17.9	33.7	15.3	854.7	85.0		
23	5147		1563.9		2.1	4.0	17.7	33.9	14.7	850.0	83.0		
24	5574		1693.9		1.6	3.2	17.0		13.2		78.6		* *
25	6000		1823.9		1.2	2.4	16.3		11.7		74.0		
26	6323		1922.4		1.0	2.0	15.5		10.8		74.0		
27	6497		1975.3		1.0	2.0	15.3		9.6		69.1		**
28	6670		2028.2		1.0	2.0	15.1		8.3		64.5		**
29	6844		2081.2		1.0	1.9	14.9		7.1		59.0		
30	6922		2104.9		1.0	1.9	14.8		6.2	797.9	57.0		* *
31	7000		2128.7		1.0	1.9	14.7		5.3	795.9	54.0		
32	7427		2258.9		1.0	1.9	14.2			783.8	37.0		
33	8628		2624.9		1.0	1.9	11.9		1.6	750.0	49.0		
34	9500		2890.7		1.0	1.9		39.0			51.5		**
*	- IND	ICATES :	THE CAL	CULAI	ED TOP	OF TH	E SUR	FACE MI	XING L	AYER			

** - INDICATES THAT DATA IS LINEARLY INTERPOLATED FROM INPUT METEOROLOGY

1**************	****		
ROCKET EXHAUST EFFLUENT D VERSION 7.05 1237 EST 14 F launch time: 0945 E	IFFUSION MODEL R AT KSC EB 1996		PAGE 5
RAWINSONDE ASCENT NUMBER 0, 12	22 Z 14 MAY	95 T -1.4	HR
	*****	*****	*****
METEOROLOGICAL RA	WINSONDE DATA		
SURFACE AIR DENSITY (GM/M**3) DEFAULT CALCULATED MIXING LAYER HEIGHT CLOUD COVER IN TENTHS OF CELESTIAL DOME CLOUD CEILING (M)	(M)		1166.55 143.87 0.0 9999.0
PLUME RISE	DATA		2222.0
EXHAUST RATE OF MATERIAL- TOTAL MATERIAL OUTPUT- HEAT OUTPUT PER GRAM- VEHICLE RISE TIME PARAMETERS-	(GRAMS/SEC) (GRAMS) (CALORIES) (TK=(A*Z**B)+C)	5.361 155 A= B=	54E+06 46E+08 5.5800 0.8678 0.4500 0.0000

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

.

VERSION 7.05 AT KSC 1237 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

---- EXHAUST CLOUD ----

LAYER	OF LAYER	RISE TIME	RISE RANGE	CLOUD RISE BEARING (DEGREES)	CLOUD RANGE	STABILIZED CLOUD BEARING (DEGREES)
1	14 3	2.6	3.4	70.4	0 0	0.0
2			8.9			0.0
3	42.8			71.5		0.0
4	57.1	7.0				0.0
5	71.3	8.5	21.6	72.9		0.0
6	95.5	11.3	28.2	73.7		0.0
7	119.7	14 3	37 K		0.0	0.0
8	143.9	17.6	48 5	72.7	0.0	0.0
9	195.9	25.9	69.3	70.5	0.0	0.0
10	247.9	35.5	102.7	67.6	0.0	0.0
	299.9	46.5	142.9	64.6	1109.9	56.4
			185.5	62.0	1130.6	53.6
13	426.1	79.0	252.3	59.0	1132.0	52.0
14	509.0	106.1	359.3	56.0		50.4
15	604.7	146.9	516.0	53.2		
			1319.1		1319.1	48.2
17		286.9 *		48.2	1319.1	48.2
18	1070.5	286.9 *	1319.1	48.2	1319.1	48.2
19	1214.3	286.9 *	1319.1	48.2	1319.1	48.2
20	1432.9	286.9 *	1319.1	48.2	1319.1	48.2
21	1519.1	286.9 *	1319.1	48.2	1319.1	48.2
22	1563.9	286.9 * 286.9 * 286.9 *	1319.1	48.2	1319.1	48.2
23	1693.9	286.9 *	1319.1	48.2	1319.1	48.2
24	1823.9	286.9 *	1319.1 1319.1 1319.1	48.2	1319.1	48.2
25	1922.4	286.9 *	1319.1	48.2 48.2	1319.1	48.2
26	1975.3	286.9 *	1319.1	48.2	1319.1	48.2
27	2028.2	286.9 *	1319.1	48.2	1319.1 1319.1 1319.1 1319.1 1319.1	48.2
28	2081.2	286.9 *	1319.1	48.2	1319.1	48.2
29	2104.9	286.9 *	1319.1	48.2	1319.1	48.2
				48.2	1319.1	48.2
				48.2		
				48.2		
33	2890.7	286.9 *	1319.1	48.2	1319.1	48.2

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

7

VERSION 7.05 AT KSC 1237 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1222 Z 14 MAY 95 T -1.4 HR ************************

---- EXHAUST CLOUD ----

LAYER	TOP OF LAYER (METERS)	STRENGTH		RADIUS	STD. DEVIATIO ALONGWIND (METERS)	N MATERIAL DIST. CROSSWIND (METERS)
1	14.3	0.00000E+00	8.6	0.0	0.0	0.0
2	28.5	0.00000E+00				0.0
3	42.8	0.00000E+00	10.0	0.0	0.0	0.0
4	57 1	0 00000E±00	96		0.0	0.0
5	71.3 95.5	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.74718E+05	9.2	0.0	0.0	0.0
6	95.5	0.00000E+00	8.4	0.0	0.0	0.0
7	119.7	0.00000E+00	7.6	0 - 0	0.0	0.0
8	143.9	0.00000E+00	7.0	0.0	0.0	0.0
9	195.9	0.00000E+00	5.8	0.0	0.0	0.0
10	247.9	0.00000E+00	5.0	0.0	0.0	0.0
	299.9	1.74718E+05	4.5	282.8	131.8	131.8
12	343.2	1.07451E+06	4.0	349.4	162.8	162.8
13	426.1	4.09799E+06		413.2		192.5
		6.28986E+06		471.8		219.8
		9.22714E+06		512.9		239.0
		2.27301E+07		542.6		252.9
17	909.5 *	1.76831E+07	0.0	532.9		
18	1070.5 *	1.89259E+07	0.0	482.9		
19	1214.3 *	9.22771E+06	0.0	365.2		170.2
20	1432.9 *	6.92036E+06	0.0	199.9		93.2
21	1519.1 *	2.57035E+06	0.0	199.9	93.2	93.2
22	1563.9 *	1.30349E+06	0.0	199.9	93.2	93.2
23	1693.9 *	6.92036E+06 2.57035E+06 1.30349E+06 3.66961E+06 3.51775E+06 2.57322E+06	0.0	199.9	93.2	93.2
24	1823.9 *	3.51775E+06	0.0	199.9	93.2	93.2
25	1922.4 *	2.57322E+06	0.0	199.9	93.2	93.2
26	1975.3 *	1.35362E+06	0.0	199.9	93.2	93.2
27	2028.2 *	1.33381E+06	0.0	199.9		
28		1.31480E+06		199.9		
29		5.84536E+05		199.9		
30		5.80916E+05		199.9		
31		3.11866E+06		199.9		
32		8.27526E+06			93.2	
33	2890.7 *	5.61678E+06	0.0	199.9	93.2	93.2

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE 8

VERSION 7.05 AT KSC 1237 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1222 Z 14 MAY 95 T -1.4 HR *************************

---- CLOUD STABILIZATION ----

CALCULATION HEIGHT	(METERS)	738.90
STABILIZATION HEIGHT	(METERS)	738.90
STABILIZATION TIME	(SECS)	286.88
FIRST MIXING LAYER HEIGHT-	(METERS)	TOP = 143.87
		BASE= 0.00
SECOND SELECTED LAYER HEIGHT-	(METERS)	TOP = 2890.72
		BASE= 143.87
SIGMAR(AZ) AT THE SURFACE	(DEGREES)	16.7937
SIGMER (EL) AT THE SURFACE	(DEGREES)	3.6665

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
1	2.64	0.10	250.70	1.40	14.3723	4.7599
2	2.73	0.10	252.10	1.40	11.4436	6.2330
3	2.83	0.10	253.50	1.40	10.6597	6.8573
4	2.93	0.10	254.90	1.40	10.1954	7.2863
5	3.04	0.10	256.30	1.40	9.8669	7.6204
6	3.17	0.17	255.17	-3.67	9.5476	7.9748
7	3.34	0.17	251.50	-3.67	6.5207	5.7838
8	3.52	0.17	247.83	-3.67	2.3361	2.1940
9	3.69	0.17	243.83	-4.33	1.0000	1.0000
10	3.86	0.17	239.50	-4.33	1.0000	1.0000
11	4.03	0.17	235.17	-4.33	1.0000	1.0000
12	4.12	0.00	232.00	-2.00	1.0000	1.0000
13	4.24	0.26	230.00	-2.00	1.0000	1.0000
14	4.50	0.26	228.00	-2.00	1.0000	1.0000
15	4.81	0.36	226.00	-2.00	1.0000	1.0000
16	5.07	0.15	225.00	0.00	1.0000	1.0000
17	5.07	-0.15	225.00	0.00	1.0000	1.0000
18	4.81	-0.36	224.00	-2.00	1.0000	1.0000
19	4.32	-0.62	223.00	0.00	1.0000	1.0000
20	3.55	-0.93	224.50	3.00	1.0000	1.0000
21	2.78	-0.62	228.00	4.00	1.0000	1.0000
22	2.26	-0.41	231.50	3.00	1.0000	1.0000
23	1.85	-0.41	238.75	11.50	1.0000	1.0000
24	1.44	-0.41	250.25	11.50	1.0000	1.0000
25	1.13	-0.21	262.50	13.00	1.0000	1.0000
26	1.02	-0.01	278.75	19.50	1.0000	1.0000
27	1.01	-0.01	298.25	19.50	1.0000	1.0000
28	1.00	-0.01	317.75	19.50	1.0000	1.0000
29	1.00	0.00	334.81	14.63	1.0000	1.0000
30	1.00	0.00	349.44	14.63	1.0000	1.0000

1****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.05 AT KSC 1237 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1222 Z 14 MAY 95 T -1.4 HR

---- CALCULATED METEOROLOGICAL LAYER PARAMETERS ----

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
31 32	1.00	0.00	4.06 16.86	14.63 10.97	1.0000	1.0000
33 TRANSIT	1.00 ION LAYER NUMB	0.00 ER- 1	25.71	6.74	1.0000	1.0000
VALUE AT	,	WI EMP. SPE	ED SHEAR	WIND DIR.	WIND DIR. SIG SHEAR AZ	

VALUE AT	HEIGHT (METERS)	TEMP.	WIND SPEED (M/SEC)	SPEED SHEAR (M/SEC)	WIND DIR. (DEG)	DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)
TOP- LAYER- BOTTOM-	143.87	301.58	3.60 3.09 2.57	0.22	246.00 252.40 250.00	2.76	1.0000 8.6595 16.7937	1.0000 5.9374 3.6665

TRANSITION LAYER NUMBER- 2

VALUE AT	HEIGHT (METERS)	TEMP.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)
TOP- LAYER- BOTTOM-	2890.72 143.87	312.17	1.00 2.15 3.60	1.61	29.09 234.26 246.00	11.81	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

10

VERSION 7.05 AT KSC 1237 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1222 Z 14 MAY 95 T -1.4 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
2000.000 3000.000 4000.009 5000.000 6000.000 7000.000 8000.786 9000.970 10000.644 11000.763 12000.408 13000.475 14000.542 15000.611 16000.224 17000.254 18000.283 19000.313 20000.344 21000.373 22000.404 23000.055 24000.061 25000.068 26000.074 27000.082 28000.090 29000.096 30000.111 32000.111 32000.117 33000.125 34000.133 35000.141 36000.148	50.290 51.821 52.341 52.725 53.127 53.282 53.454 53.416 53.607 53.582 53.784 53.767 53.753 53.740 53.954 53.928 53.928 53.921 53.928 53.921 53.915 53.915 53.915 53.910 54.127 54.123 54.119 54.116 54.110 54.110 54.110 54.101 54.101 54.099 54.095 54.093	41.099 36.163 31.091 26.007 21.360 17.459 14.274 11.743 9.704 8.083 6.767 5.715 4.857 4.153 3.570 3.094 2.697 2.365 2.085 1.848 1.647 1.473 1.326 1.199 1.090 0.994 0.9910 0.994 0.910 0.663 0.616 0.575 0.538 0.504	5.226 6.838 10.151 13.414 16.642 19.841 23.022 26.186 29.338 32.482 35.620 38.752 41.759 47.725 50.688 53.649 56.608 59.566 62.522 65.478 68.432 71.386 74.339 77.291 80.243 83.194 86.144 89.095 92.044 94.994 97.943 100.892 103.841 106.789	8.833 12.406 16.028 21.051 29.278 42.672 71.528 81.438 116.090 179.290 200.930 220.261 238.653 257.047 275.444 293.843 312.243 330.645 349.048 367.452 385.857 404.262 422.668 441.075 459.482 477.889 496.297 514.705 533.114 551.523 569.932 588.341 606.750 625.160 643.570
37000.156 38000.164	54.091 54.089	0.473 0.445	109.738 112.686	661.980 680.390

PAGE 11

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.05 AT KSC 1237 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1222 Z 14 MAY 95 T -1.4 HR *************************

---- MAXIMUM CENTERLINE CALCULATIONS -----

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
39000.172 40000.180 41000.188 42000.195 43000.203 44000.211 45000.020 46000.020 47000.020 49000.016 50000.016 51000.016 52000.016 53000.016 54000.016 55000.016 55000.016 57000.016 57000.016 59000.016 69000.016	54.087 54.086 54.083 54.083 54.080 54.309 54.309 54.306 54.305 54.305 54.305 54.303 54.303 54.301 54.301 54.301 54.301 54.301 54.301 54.301	0.420 0.396 0.375 0.355 0.355 0.336 0.319 0.303 0.288 0.274 0.262 0.250 0.239 0.228 0.218 0.209 0.200 0.192 0.184 0.177 0.170 0.164	115.633 118.581 121.529 124.476 127.423 130.370 133.317 136.264 139.211 142.158 145.104 148.051 150.997 153.944 156.890 159.836 162.783 165.729 168.675 171.621 174.567	698.800 717.210 735.621 754.031 772.442 790.853 809.263 827.674 846.085 864.496 882.907 901.319 919.730 938.141 956.552 974.964 993.375 1011.786 1030.198 1048.609 1067.021
00000.010	54.296	0.157	177.513	1085.432

								RANGE]	BEARING	
4	1.0	099	IS	THE	MUMIXAM	PEAK	CONCENTRATION	2000.	0	50.3	

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

12

VERSION 7.05 AT KSC 1237 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1222 Z 14 MAY 95 T -1.4 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	TOTAL DOSAGE (PPM SEC)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
FROM PAD (METERS)	FROM PAD (DEGREES) 50.290 51.821 52.341 52.725 53.127 53.282 53.454 53.416 53.607 53.582 53.784 53.767 53.753 53.740 53.954 53.944 53.936 53.928	DOSAGE (PPM SEC) 	TIME (MIN) 5.226 6.838 10.151 13.414 16.642 19.841 23.022 26.186 29.338 32.482 35.620 38.752 41.791 44.759 47.725 50.688 53.649 56.608	TIME (MIN) 8.833 12.406 16.028 21.051 29.278 42.672 71.528 81.438 116.090 179.290 200.930 220.261 238.653 257.047 275.444 293.843 312.243 330.645
20000.344 21000.373 22000.404 23000.055 24000.061 25000.068 26000.074 27000.082 28000.090 29000.096 30000.104 31000.111 32000.117 33000.125 34000.133 35000.141 36000.148 37000.156 38000.164	53.921 53.915 53.910 54.132 54.127 54.123 54.119 54.116 54.113 54.110 54.107 54.104 54.101 54.099 54.099 54.099 54.099 54.099 54.099 54.099 54.099	2283.144 2125.320 1984.626 1855.464 1744.063 1644.106 1554.198 1473.113 1399.777 1333.244 1272.692 1217.401 1166.743 1120.173 1077.217 1037.461 1000.548 966.166 934.046	59.566 62.522 65.478 68.432 71.386 74.339 77.291 80.243 83.194 86.144 89.095 92.044 94.994 97.943 100.892 103.841 106.789 109.738 112.686	349.048 367.452 385.857 404.262 422.668 441.075 459.482 477.889 496.297 514.705 533.114 551.523 569.932 588.341 606.750 625.160 643.570 661.980 680.390

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

13

VERSION 7.05 AT KSC 1237 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1222 Z 14 MAY 95 T -1.4 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

CONCENTRATION OF HCL AT A HEIGHT OF 738.9 METERS DOWNWIND FROM A TITAN IV NORMAL LAUNCH CALCULATIONS APPLY TO THE LAYER BETWEEN 143.9 AND 2890.7 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	TOTAL DOSAGE (PPM SEC)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
METERS) 39000.172 40000.180 41000.188 42000.195 43000.203 44000.211 45000.020 47000.020 47000.020 49000.016 51000.016 52000.016 53000.016 54000.016 55000.016 55000.016 55000.016	(DEGREES) 54.087 54.086 54.084 54.083 54.080 54.309 54.309 54.307 54.306 54.305 54.305 54.301 54.301 54.300 54.298	903.952 875.680 849.051 823.910 800.121 777.564 754.214 733.958 714.646 696.205 678.573 661.691 645.511 629.985 615.074 600.740 586.949 573.672	115.633 118.581 121.529 124.476 127.423 130.370 133.317 136.264 139.211 142.158 145.104 148.051 150.997 153.944 156.890 159.836 162.783 165.729	698.800 717.210 735.621 754.031 772.442 790.853 809.263 827.674 846.085 864.496 882.907 901.319 919.730 938.141 956.552 974.964 993.375 1011.786
58000.016 59000.016 60000.016	54.298 54.297 54.296	560.879 548.545 536.648 525.164	168.675 171.621 174.567 177.513	1030.198 1048.609 1067.021 1085.432

12194.985 IS THE MAXIMUM TOTAL DOSAGE

1***************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

14

VERSION 7.05 AT KSC 1237 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

---- MAXIMUM CENTERLINE CALCULATIONS ----

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	30.0 MIN. MEAN CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
2000.000	50.290	6.775	5.226	8.833
3000.000	51.821	6.209	6.838	12.406
4000.009	52.341	5.708	10.151	16.028
5000.000	52.725	5.195	13.414	21.051
6000.000	53.127	4.681	16.642	29.278
7000.000	53.282	4.209	19.841	42.672
8000.786	53.454	3.781	23.022	71.528
9000.970	53.416	3.408	26.186	81.438
10000.644	53.607	3.072	29.338	116.090
11000.763	53.582	2.779	32.482	179.290
12000.408	53.784	2.514	35.620	200.930
13000.475	53.767	2.284	38.752	220.261
14000.542	53.753	2.077	41.791	238.653
15000.611	53.740	1.892	44.759	257.047
16000.224	53.954	1.725	47.725	275.444
17000.254	53.944	1.577	50.688	293.843
18000.283	53.936	1.445	53.649	312.243
19000.313	53.928	1.326	56.608	330.645
20000.344 21000.373	53.921 53.915	1.218 1.122	59.566 62.522	349.048
22000.404	53.915	1.035	65.478	367.452 385.857
23000.404	54.132	0.955	68.432	404.262
24000.061	54.127	0.885	71.386	422.668
25000.068	54.123	0.822	74.339	441.075
26000.074	54.119	0.765	77.291	459.482
27000.082	54.116	0.714	80.243	477.889
28000.090	54.113	0.667	83.194	496.297
29000.096	54.110	0.625	86.144	514.705
30000.104	54.107	0.586	89.095	533.114
31000.111	54.104	0.551	92.044	551.523
32000.117	54.101	0.518	94.994	569.932
33000.125	54.099	0.489	97.943	588.341
34000.133	54.097	0.462	100.892	606.750
35000.141	54.095	0.437	103.841	625.160
36000.148	54.093	0.414	106.789	643.570
37000.156	54.091	0.392	109.738	661.980

1*****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.05 AT KSC 1237 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

---- MAXIMUM CENTERLINE CALCULATIONS ----

CONCENTRATION OF HCL AT A HEIGHT OF 738.9 METERS
DOWNWIND FROM A TITAN IV NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 143.9 AND 2890.7 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	30.0 MIN. MEAN CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
38000.164 39000.172 40000.180 41000.188 42000.195 43000.203 44000.211 45000.020 46000.020 47000.020 49000.016 50000.016 51000.016 52000.016 53000.016 55000.016 55000.016 55000.016 55000.016 57000.016 57000.016 58000.016 59000.016	54.089 54.087 54.086 54.083 54.082 54.080 54.309 54.307 54.306 54.305 54.305 54.303 54.303 54.301	0.373 0.354 0.337 0.321 0.306 0.292 0.279 0.266 0.254 0.244 0.233 0.224 0.215 0.206 0.198 0.190 0.183 0.176 0.163 0.157 0.152 0.146	112.686 115.633 118.581 121.529 124.476 127.423 130.370 133.317 136.264 139.211 142.158 145.104 148.051 150.997 153.944 156.890 159.836 162.783 165.729 168.675 171.621 174.567 177.513	680.390 698.800 717.210 735.621 754.031 772.442 790.853 809.263 827.674 846.085 864.496 882.907 901.319 919.730 938.141 956.552 974.964 993.375 1011.786 1030.198 1048.609 1067.021
	0 - 1 - 2 - 3	0.220	_,,,,,,	1000.102

							RANGE	BEARING
6.775 I	S THE	MUMIXAM	30.0	MIN.	MEAN	CONCENTRATION	2000.0	50.3

*** REEDM HAS TERMINATED

4. Ground-Level HCl Exposure Doses Calculated from T-1.4 h Rawinsonde Data

1************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

GE 3

VERSION 7.05 AT KSC 1433 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

---- PROGRAM OPTIONS ----

MODEL RUN TYPE	· -	ENTRATION ERATIONAL
WIND-FIELD TERRAIN EFFECTS MODEL	OI	NONE
LAUNCH VEHICLE		TITAN IV
LAUNCH TYPE		NORMAL
LAUNCH COMPLEX NUMBER		40
TURBULENCE PARAMETERS ARE DETERMINED FROM	CLIMATOLOG	ICAL DATA
SPECIES		HCL
CLOUD SHAPE	E	LLIPTICAL
CALCULATION HEIGHT		SURFACE
PROPELLANT TEMPERATURE (DEG. C)		25.74
CONCENTRATION AVERAGING TIME (SEC.)		1800.00
DECAY COEFFICIENT		0.0000
ABSORPTION COEFFICIENT (RNG- 0 TO 1, NO ABSORPTION=0)		0.0000
DIFFUSION COEFFICIENTS	LATERAL	1.0000
	VERTICAL	1.0000
VEHICLE AIR ENTRAINMENT PARAMETER	GAMMAE	0.6400
DOWNWIND EXPANSION DISTANCE (METERS)	LATERAL	100.00
	VERTICAL	100.00

---- DATA FILES ----

INPUT FILES

RAWINSONDE FILE k23_1222.raw DATA BASE FILE rdmbase.ksc

OUTPUT FILES

PRINT FILE k23d1222.sur PLOT FILE k23d1222.u p

1****************************** PAGE

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.05 AT KSC 1433 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1222 Z 14 MAY 95 T -1.4 HR **************************************

---- METEOROLOGICAL RAWINSONDE DATA ----

RAWINSONDE MSS/MSS TIME- 1222 Z DATE- 14 MAY 95 ASCENT NUMBER 0

---- T -1.4 HR SOUNDING -----

MET.		ALTITUE GND		WIND		ND		AIR		AIR			
NO.			GND (M)	DIR (DEG)	SPE (M/S)	(KTS)	TEMP	PTEMP (DEG C)		PRESS (MB)	RH (%)		INT-
											(%)	. – –	ERP
1	16	0.0	0.0		2.6	5.0		29.0	23.6	1016.4	81.0		
2	63	46.8	14.3		2.7	5.2	26.8	28.8		1014.8	81.9		* *
3	110	93.6	28.5		2.8	5.4	26.5	28.6		1013.2	82.5		* *
4	156	140.4	42.8		2.9	5.6	26.1	28.3		1011.5	83.2		* *
5	203	187.2	57.1		3.0	5.8	25.8	28.1		1009.9	83.8	•	* *
6	250	234.0	71.3		3.1	6.0	25.5	27.9		1008.3	84.0		
7	329	313.3	95.5		3.3	6.3	25.4	28.1		1005.5	84.5		* *
8 -	409	392.7	119.7		3.4	6.7	25.4	28.2		1002.8	84.5		* *
9	488	472.0	143.9		3.6	7.0	25.3	28.4		1000.0	85.0		
10	659	642.7	195.9		3.8	7.3	25.4	29.0	22.3		83.2		* *
11	829	813.3	247.9		3.9	7.7	25.4	29.5	22.1		81.9	•	* *
12	1000	984.0	299.9		4.1	8.0	25.5	30.1	21.9		81.0		
13	1142	1126.0	343.2		4.1	8.0	25.7	30.7	21.6	977.8	78.0		
14	1414	1398.0	426.1		4.4	8.5	25.5	31.2	20.9	968.7	75.4	•	* *
15	1686	1670.0	509.0		4.6	9.0	25.4	31.8	20.1	959.6	72.0		
16	2000	1984.0	604.7		5.0	9.7	24.8	32.1	19.8	949.3	74.0		
17	2606	2590.0	789.4		5.1	10.0	23.7	32.7	18.9	929.6	75.0		
18	3000	2984.0	909.5		5.0	9.7	22.6	32.8	18.4	916.9	77.0		
19	3528	3512.0			4.6	9.0	21.4	33.1	17.9	900.0	81.0		
20	4000	3984.0			4.0	7.8	20.1	33.2	17.5	885.4	85.0		
21	4717	4701.0			3.1	6.0	18.2	33.3	16.5	863.3	90.0		
22	5000	4984.0			2.5	4.8	17.9	33.7	15.3	854.7	85.0		
23	5147	5131.0			2.1	4.0	17.7		14.7		83.0		
24	5574	5557.5			1.6	3.2	17.0	34.3	13.2	837.3	78.6	•	* *
25	6000	5984.0			1.2	2.4	16.3	34.7	11.7		74.0		
26	6323	6307.0			1.0	2.0	15.5	34.8	10.8	815.4	74.0		
27	6497	6480.7			1.0	2.0	15.3	35.1	9.6	810.2	69.1		* *
28	6670	6654.3			1.0	2.0	15.1	35.3	8.3	805.1	64.5	•	* *
29	6844	6828.0			1.0	1.9	14.9	35.5	7.1	800.0	59.0		
30	6922	6906.0			1.0	1.9	14.8	35.5	6.2	797.9	57.0		* *
31	7000	6984.0			1.0	1.9	14.7	35.6	5.3	795.9	54.0		
32	7427	7411.0			1.0	1.9	14.2	36.0	-0.3	783.8	37.0		
33	8628	8612.0			1.0	1.9	11.9	37.6	1.6	750.0	49.0		
34	9500	9484.0	2890.7	29	1.0	1.9	10.6	39.0	0.8	727.0	51.5		* *

^{* -} INDICATES THE CALCULATED TOP OF THE SURFACE MIXING LAYER

^{** -} INDICATES THAT DATA IS LINEARLY INTERPOLATED FROM INPUT METEOROLOGY

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 5 VERSION 7.05 AT KSC 1433 EST 14 FEB 1996 launch time: 0945 EDT 14 MAY 1995 RAWINSONDE ASCENT NUMBER 0, 1222 Z 14 MAY 95 T -1.4 HR ***************************** ---- METEOROLOGICAL RAWINSONDE DATA ----SURFACE AIR DENSITY (GM/M**3) 1166.55 DEFAULT CALCULATED MIXING LAYER HEIGHT (M) 143.87 CLOUD COVER IN TENTHS OF CELESTIAL DOME 0.0 CLOUD CEILING (M) 9999.0 ---- PLUME RISE DATA ----EXHAUST RATE OF MATERIAL-(GRAMS/SEC) (GRAMS) 4.22354E+06 5.36146E+08 (CALORIES)

EXHAUST RATE OF MATERIAL- (GRAMS/SEC) 4.22354E+06
TOTAL MATERIAL OUTPUT- (GRAMS) 5.36146E+08
HEAT OUTPUT PER GRAM- (CALORIES) 1555.5800
VEHICLE RISE TIME PARAMETERS- (TK=(A*Z**B)+C) A= 0.8678
B= 0.4500
C= 0.0000

1**************************

PAGE

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.05 AT KSC 1433 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

---- EXHAUST CLOUD ----

			CLOUD			STABILIZED
LAYER	OF LAYER	RISE TIME	RISE RANGE	RISE BEARING	CLOUD RANGE	CLOUD BEARING
NO.	(METERS)	(SECONDS)	(METERS)	(DEGREES)	(METERS)	(DEGREES)
_	44.5	0.6	2 4	5 0 4	0 0	
1	14.3	2.6	3.4	70.4	0.0	
2	28.5	4.1	8.9	71.0	0.0	
3		5.6	13.0	71.5		0.0
4	57.1	7.0	17.2	72.2	0.0	0.0
5	71.3	8.5	21.6	72.9		0.0
6	95.5		28.2	73.7	0.0	0.0
7	119.7	14.3	37.6	73.6	0.0	0.0
8	143.9	17.6	48.5	72.7	0.0	0.0
9	195.9 247.9 299.9 343.2	25.9	48.5 69.3 102.7 142.9	70.5	0.0	0.0
10	247.9	35.5	102.7	67.6 64.6	0.0	0.0
11	299.9	46.5	142.9	64.6	1109.9	56.4
12	343.2	56.7	185.5	62.0	1130.6	53.6
13	426.1	79.0	102.7 142.9 185.5 252.3 359.3	59.0	1130.6 1132.0	52.0
14	509.0	106.1	359.3	56.0	1170.6	50.4
15	604.7	146.9	516.0	53.2	1187.1	
16			1319.1			48.2
17	909.5	286.9 *	1319.1	48.2	1319.1	48.2
18	1070.5	286.9 *	1319.1	48.2	1319.1	48.2
19	1214.3	286.9 *	1319.1	48.2	1319.1	48.2
20	1432.9	286.9 *	1319.1	48.2	1319.1	48.2
21	1519.1	286.9 *	1319.1	48.2	1319.1	48.2
22	1563.9	286.9 *	1319.1	48.2	1319.1	48.2
23	1693.9	286.9 *	1319.1	48.2	1319.1	48.2
24		286.9 *		48.2		48.2
25		286.9 *	1319.1	48.2	1319.1	48.2
26		286.9 *	1319.1	48.2	1319.1	48.2
27	2028.2	286.9 *	1319.1	48.2	1319.1	48.2
28	2081.2	286.9 *	1319.1	48.2	1319.1	48.2
29	2104.9	286.9 *	1319.1	48.2	1319.1	48.2
30	2128.7	286.9 *	1319.1	48.2 48.2 48.2 48.2	1319.1 1319.1 1319.1 1319.1 1319.1	48.2
31	2258.9	286.9 *	1319.1	48.2	1319.1	48.2
32	2624.9	286.9 *	1319.1 1319.1 1319.1 1319.1 1319.1	48.2	1319.1	48.2
33	2890.7	286.9 *	1319.1	48.2	1319.1	48.2

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

PAGE

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.05 AT KSC

1433 EST 14 FEB 1996 launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1222 Z 14 MAY 95 T -1.4 HR ***********************

---- EXHAUST CLOUD ----

MET. LAYER NO.	TOP OF LAYER (METERS)	LAYER SOURCE STRENGTH (GRAMS)	CLOUD UPDRAFT VELOCITY (M/S)		ALONGWIND	N MATERIAL CROSSWIND (METERS)	DIST.
1	14.3	0.00000E+00	8.6	0.0	0.0	0.0	
2	28.5	0.00000E+00	9.9	0.0	0.0	0.0	
3	42.8	0.00000E+00	10.0	0.0	0.0	0.0	
4	57.1	0.00000E+00	9.6	0.0	0.0	0.0	
5	71.3	0.0000E+00	9.2	0.0	0.0	0.0	
6	95.5	0.00000E+00	8.4	0.0	0.0	0.0	
7	119.7	0.00000E+00	7.6	0.0	0.0	0.0	
8	143.9	0.00000E+00	7.0	0.0	0.0	0.0	
9	195.9	0.00000E+00	5.8	0.0	0.0	0.0	
10	247.9	0.00000E+00	5.0	0.0	0.0	0.0	
11	299.9	1.74718E+05	4.5	282.8	131.8	131.8	
12	343.2	1.07451E+06	4.0	349.4	162.8	162.8	
13		4.09799E+06		413.2	192.5	192.5	
14		6.28986E+06		471.8	219.8	219.8	
15		9.22714E+06		512.9	239.0	239.0	
16		2.27301E+07		542.6	252.9	252.9	
17		1.76831E+07		532.9	248.3	248.3	
18		1.89259E+07		482.9	225.0	225.0	
19		9.22771E+06		365.2		170.2	
20		6.92036E+06		199.9	93.2	93.2	
21	1519.1 *	2.57035E+06	0.0	199.9		93.2	
22	1563.9 *	1.30349E+06	0.0	199.9		93.2	
23	1693.9 *	3.66961E+06	0.0	199.9		93.2	
24	1823.9 *	3.51775E+06	0.0	199.9	93.2	93.2	
25	1922.4 *	2.57322E+06	0.0	199.9	93.2	93.2	
26	1975.3 *	1.35362E+06	0.0	199.9	93.2	93.2	
27	2028.2 *	1.33381E+06	0.0	199.9		93.2	
28	2081.2 *	2.57322E+06 1.35362E+06 1.33381E+06 1.31480E+06 5.84536E+05	0.0	199.9		93.2	
29	2104.9 *	5.84536E+05	0.0	199.9		93.2	
30	2128.7 *	5.80916E+05	0.0	199.9		93.2	
31	2258.9 *	3.11866E+06	0.0	199.9		93.2	
32	2624.9 *	8.27526E+06	0.0	199.9	93.2	93.2	
33	2890.7 *	5.61678E+06	0.0	199.9	93.2	93.2	

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

1*************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE

8

VERSION 7.05 AT KSC 1433 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

---- CLOUD STABILIZATION ----

CALCULATION HEIGHT	(METERS)	0.00
STABILIZATION HEIGHT	(METERS)	738.90
STABILIZATION TIME	(SECS)	286.88
FIRST MIXING LAYER HEIGHT-	(METERS)	TOP = 143.87
		BASE= 0.00
SECOND SELECTED LAYER HEIGHT-	(METERS)	TOP = 2890.72
	•	BASE= 143.87
SIGMAR(AZ) AT THE SURFACE	(DEGREES)	16.7937
SIGMER(EL) AT THE SURFACE	(DEGREES)	3.6665

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
1	2.64	0.10	250.70	1.40	14.3723	4.7599
2	2.73	0.10	252.10	1.40	11.4436	6.2330
3	2.83	0.10	253.50	1.40	10.6597	6.8573
4	2.93	0.10	254.90	1.40	10.1954	7.2863
5	3.04	0.10	256.30	1.40	9.8669	7.6204
6	3.17	0.17	255.17	-3.67	9.5476	7.9748
7	3.34	0.17	251.50	-3.67	6.5207	5.7838
8	3.52	0.17	247.83	-3.67	2.3361	2.1940
9	3.69	0.17	243.83	-4.33	1.0000	1.0000
10	3.86	0.17	239.50	-4.33	1.0000	1.0000
11	4.03	0.17	235.17	-4.33	1.0000	1.0000
12	4.12	0.00	232.00	-2.00	1.0000	1.0000
13	4.24	0.26	230.00	-2.00	1.0000	1.0000
14	4.50	0.26	228.00	-2.00	1.0000	1.0000
15	4.81	0.36	226.00	-2.00	1.0000	1.0000
16	5.07	0.15	225.00	0.00	1.0000	1.0000
17	5.07	-0.15	225.00	0.00	1.0000	1.0000
18	4.81	-0.36	224.00	-2.00	1.0000	1.0000
19	4.32	-0.62	223.00	0.00	1.0000	1.0000
20	3.55	-0.93	224.50	3.00	1.0000	1.0000
21	2.78	-0.62	228.00	4.00	1.0000	1.0000
22	2.26	-0.41	231.50	3.00	1.0000	1.0000
23	1.85	-0.41	238.75	11.50	1.0000	1.0000
24	1.44	-0.41	250.25	11.50	1.0000	1.0000
25	1.13	-0.21	262.50	13.00	1.0000	1.0000
26	1.02	-0.01	278.75	19.50	1.0000	1.0000
27	1.01	-0.01	298.25	19.50	1.0000	1.0000
28	1.00	-0.01	317.75	19.50	1.0000	1.0000
29	1.00	0.00	334.81	14.63	1.0000	1.0000
30	1.00	0.00	349.44	14.63	1.0000	1.0000

1*****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE 9

VERSION 7.05 AT KSC 1433 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1222 Z 14 MAY 95 T -1.4 HR ************************

---- CALCULATED METEOROLOGICAL LAYER PARAMETERS ----

MET. LAYER NO.	WIND WIND SPEED SPEED SHEAR (M/SEC) (M/SEC)		EED EAR	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	AZI	A OF ANG EG)	SIGMA OF ELE ANG (DEG)
31 32 33	1.00 1.00 1.00	0	.00	4.06 16.86 25.71	14.63 10.97 6.74	1.0	000 000 000	1.0000 1.0000 1.0000
TRANSIT	ION LAYER N	NUMBER-	1					
VALUE AT	HEIGHT (METERS)	TEMP.	WINI SPEEL (M/SEC)	SHEAR	WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	
TOP- LAYER- BOTTOM-	143.87 0.00	301.58 302.12	3.60 3.09 2.57	0.22	246.00 252.40 250.00	2.76	1.0000 8.6595 16.7937	5.9374
AT HEIGHT TEMP. SPEED SHEAR DIR. SHEAR AZI. ELE.								
TOP- LAYER- BOTTOM-	2890.72 143.87	312.17	1.00 2.15 3.60	1.61	29.09 234.26 246.00	11.81	1.0000 1.0000 1.0000	1.0000

1*************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE 10

VERSION 7.05 AT KSC 1433 EST 14 FEB 1996

launch time. OOAE EDE 14 MAY

launch time: 0945 EDT 14 MAY 1995

---- MAXIMUM CENTERLINE CALCULATIONS ----

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS

DOWNWIND FROM A TITAN IV NORMAL LAUNCH

CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 143.9 METERS

		PEAK	CLOUD	CLOUD
RANGE	BEARING	CONCEN-	ARRIVAL	DEPARTURE
FROM PAD	FROM PAD	TRATION	TIME	TIME
(METERS)	(DEGREES)	(PPM)	(MIN)	(MIN)

** NO HCL FOUND **

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE 11

VERSION 7.05 AT KSC 1433 EST 14 FEB 1996

launch time: 0945 EDT 14 MAY 1995

RAWINSONDE ASCENT NUMBER 0, 1222 Z 14 MAY 95 T -1.4 HR ****************************

---- MAXIMUM CENTERLINE CALCULATIONS ----

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS DOWNWIND FROM A TITAN IV NORMAL LAUNCH CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 143.9 METERS

			CLOUD	CLOUD
RANGE	BEARING	TOTAL	ARRIVAL	DEPARTURE
FROM PAD	FROM PAD	DOSAGE	TIME	TIME
(METERS)	(DEGREES)	(PPM SEC)	(MIN)	(MIN)

** NO HCL FOUND **

Appendix D- Meteorological Data Measured at CCAS Before and After the #K23 Launch

[Material in this Appendix was contributed by Douglas Schulthess of The Aerospace Corporation's Eastern Range Systems Engineering Directorate and Randy Evans of Ensco, Inc.'s Applied Meteorology Unit]

Meteorological data were measured at a number of CCAS monitoring locations prior to launch and during development and dispersion of the launch cloud. Representative data of three different types are tabulated here. Data are first presented for meteorological measurements performed at various Zulu times (TIME) at numerous meteorological towers [designated by their latitudinal and longitudinal positions in degrees (LAT and LON, respectively)] at various elevations (Z) in feet. It is noted that the #K23 launch occurred at 13:45 Zulu time (Zulu time is EST + 4 hours). Data are presented on the wind direction in degrees azimuth (DIR), the wind speed in knots (SPD), and the ambient and dew point temperatures in degrees Fahrenheit (T and TD, respectively) at these locations.

Rawinsonde data collected at various Zulu times are presented next. Here altitude (ALT) is expressed in geometric feet, I/R is a measure of the refractive index of air, V/S is the speed of sound in air in knots at the indicated altitude, VPS the saturation vapor pressure of water at the temperature measured at the given altitude, and PW is the precipitable water in the vertical column of air leading up to the altitude indicated.

Doppler radar wind profiler data are presented third. These data were determined at Mosquito Lagoon (latitude 28.60 degrees, longitude 80.59 degrees). Virtual temperature, wind speed, and wind direction data are tabulated as a function of elevation (height) in kilometers and time (Zulu). [In a system of moist air, virtual temperature corresponds to the temperature of dry air that would have the same pressure and density as the moist air. Virtual temperature is approximated by the equation: $T_V = (1 + 0.61q)T$, where T is the temperature and q is the specific humidity.] It should be noted that the Doppler radar data should be used with caution. The Doppler radar system at Mosquito Lagoon has been newly installed and is under evaluation. The system has not yet been certified as an operational system. More complete tabulations of these meteorological data are available from Gary Loper of The Aerospace Corporation, phone (310) 336-5922.

METEOROLOGICAL TOWER DATA AT 10:10:00 ZULU TIME (T - 3 hours and 35 minutes)

95134 101000 28.4338 80.5734 12 219 0.0 95134 101000 28.4338 80.5734 54 232 4.1 77	
95134 101000 28.4598 80.5267 6 75 95134 101000 28.4598 80.5267 12 254 2.9	
95134 101000 28.4598 80.5267 54 229 4.1 77	
95134 101000 28.4466 80.5652 6	
95134 101000 28.7435 80.7005 6 78 95134 101000 28.7435 80.7005 54 220 6.0	75
95134 101000 28.7975 80.7378 6 79 95134 101000 28.7975 80.7378 54 236 6.0	74
95134 101000 28.4721 80.5393 6 95134 101000 28.4721 80.5393 90 227 6.0	
95134 101000 28.5622 80.5785 6 95134 101000 28.5622 80.5785 54 244 2.9	
95134 101000 28.5836 80.5842 6 95134 101000 28.5836 80.5842 54 230 2.9	
95134 101000 28.5130 80.5613 6 72	73
95134 101000 28.5130 80.5613 12 270 0.0 95134 101000 28.5130 80.5613 54 244 4.1 77	
95134 101000 28.5130 80.5613 162 246 8.0	
95134 101000 28.5130 80.5613 204 239 8.0 78	
95134 101000 28.5130 80.5613 6 71	71
95134 101000 28.5130 80.5613 12 248 0.0 95134 101000 28.5130 80.5613 54 241 4.1 76	
95134 101000 28.5130 80.5613 54 241 4.1 76 95134 101000 28.5130 80.5613 162 248 8.0	
95134 101000 28.5130 80.5613 204 246 8.0 78	
95134 101000 28.5358 80.5747 6 78 95134 101000 28.5358 80.5747 12 242 2.9	
95134 101000 28.5358 80.5747 12 242 2.9 95134 101000 28.5358 80.5747 54 235 5.1 78	
95134 101000 28.6141 80.6203 6 75	
95134 101000 28.6141 80.6203 12 239 1.0 95134 101000 28.6141 80.6203 54 238 2.9 77	
95134 101000 28.4048 80.6519 6 77 95134 101000 28.4048 80.6519 54 255 4.1	76
95134 101000 28.4600 80.5711 6 69 95134 101000 28.4600 80.5711 12 0 0.0	
95134 101000 28.4600 80.5711 54 226 4.1 76	
95134 101000 28.6027 80.6414 6 73 95134 101000 28.6027 80.6414 12 0 0.0	
95134 101000 28.6027 80.6414 12 0 0.0 95134 101000 28.6027 80.6414 54 223 2.9 76	

DAY 95134	TIME 101000	LAT 28.6105	LON 80.6069	z 6	DIR	SPD	T	TD 74
95134	101000	28.6105	80.6069		202	1.9	76	
	101000 101000	28.6057 28.6057	80.6016 80.6016	6 60	229	2.9	76 76	74
95134 95134	101000 101000	28.6294 28.6294	80.6235 80.6235	6 60	247	1.9	76	73
95134 95134	101000 101000	28.6248 28.6248	80.6182 80.6182	6 60	259	1.0	75 76	73
	101000 101000	28.4586	80.5923	6	226	4 1	78	
	101000	28.4586 28.4586	80.5923 80.5923		236 229	4.1 6.0	78	
	101000 101000	28.6062 28.6062	80.6739 80.6739	6 12	0	0.0	71	
	101000	28.6062	80.6739		208	1.9	76	
	101000 101000	28.6586 28.6586	80.6998 80.6998	6 12	0	0.0	70	
	101000	28.6586	80.6998		280	0.0	74	
	101000 101000	28.7055 28.7055	80.7265 80.7265	6 54	204	1.9	72	72
95134 95134	101000 101000	28.7755 28.7755	80.8043 80.8043	6 54	9	4.1	79	76
	101000 101000	28.5158 28.5158	80.6400 80.6400	6 12	0	0.0	73	
95134	101000	28.5158	80.6400		259	1.0	75	
	101000 101000	28.5623 28.5623	80.6694 80.6694	6 12	0	0.0	73	
	101000	28.5623	80.6694		225	1.9	75	
95134 95134	101000 101000	28.5986 28.5986	80.6817 80.6817	6 30	169	1.0		
95134 95134	101000 101000	28.6160 28.6160	80.6930 80.6930	6 30	212	2.9	77	74
95134 95134	101000 101000	28.6307 28.6307	80.7027 80.7027	6 30	197	1.9		
95134 95134	101000 101000	28.6431 28.6431	80.7482 80.7482	6 12	0	0.0	73	
95134		28.6431	80.7482		212	1.9	75	
95134 95134	101000 101000	28.4632 28.4632	80.6702 80.6702	6 12	0	0.0	72	
95134	101000	28.4632	80.6702		254	1.0	75	
95134 95134	101000 101000	28.5184 28.5184	80.6962 80.6962	6 12	0	0.0	72	
95134	101000	28.5184	80.6962		225	1.9	76	

DAY	TIME	LAT	LON		DIR	SPD	T	TD
95134 95134	101000 101000	28.7464 28.7464	80.8707 80.8707	6 54	0	0.0	71	
95134 95134	101000 101000	28.4079 28.4079	80.7604 80.7604	6 54				
	101000 101000	28.5272 28.5272	80.7742 80.7742	6 54	0	0.0	75	73
	101000 101000	28.6056 28.6056	80.8248 80.8248	6 54				
	101000 101000	28.5697 28.5697	80.5864 80.5864	6 12	256	1.0	78	76
95134	101000 101000	28.5697 28.5697	80.5864 80.5864		252	2.9 5.1	78	
	101000	28.5697	80.5864	204		6.0	78	
	101000 101000	28.5697 28.5697	80.5864 80.5864	6	262	1 0	78	78
95134	101000 101000 101000	28.5697	80.5864	54	254	1.0 2.9	78	
	101000	28.5697 28.5697	80.5864 80.5864	162 204		5.1 6.0	77	
	101000 101000	28.4843 28.4843	80.7856 80.7856	6 54	0	0.0	71	
95134	101000	28.6445	80.9034	6				
	101000 101000	28.4114 28.4114	80.9284 80.9284	6 54	0	0.0	68	
95134	101000	28.4475	80.8538	6				
	101000 101000	28.4960 28.4960	80.8843 80.8843	6 54				
95134	101000	28.5583	80.9132	6				
	101000 101000	28.6173 28.6173	80.9581 80.9581	6 54	169	1.9	71	
	101000 101000	28.6762 28.6762	80.9987 80.9987	6 54				
	101000 101000	28.5231 28.5231	81.0100 81.0100	6 54				
	101000 101000	28.6489 28.6489	81.0693 81.0693	6 54				
	101000 101000	28.4417 28.4417	81.0291 81.0291	6 54	247	1.9	69	

DAY	TIME	LAT	LON	Z	DIR	SPD	T	TD
95134	101000	28.6256	80.6571	6			71	72
95134	101000	28.6256	80.6571	12	180	0.0		
95134	101000	28.6256	80.6571	54	236	1.9	76	
95134	101000	28.6256	80.6571	162	228	4.1		
95134	101000	28.6256	80.6571	204	232	4.1	78	
95134	101000	28.6256	80.6571	295	233	5.1		
95134	101000	28.6256	80.6571	394	230	6.0		
95134	101000	28.6256	80.6571	492	231	6.0	77	
95134	101000	28.6256	80.6571	6			71	72
95134	101000	28.6256	80.6571	12	0	0.0		
95134	101000	28.6256	80.6571	54	236	1.9	76	
95134	101000	28.6256	80.6571	162	226	6.0		
95134	101000	28.6256	80.6571	204	234	6.0	78	
95134	101000	28.6256	80.6571	295	231	7.0		
95134	101000	28.6256	80.6571	394	236	8.0		
95134	101000	28.6256	80.6571	492	233	9.9	77	
95134	101000	28.3932	80.8211	6			73	73
95134	101000	28.3932	80.8211	54	194	0.0		
95134	101000	28.3382	80.7321	6			73	72
95134	101000	28.3382	80.7321	54	243	1.0		

METEOROLOGICAL TOWER DATA AT 12:15:00 ZULU TIME (T - 1 hours and 30 minutes)

DAY TIME 95134 121500			z dir 6	SPD	T 78	TD
95134 121500 95134 121500					78	
95134 121500 95134 121500	28.4598	80.5267			78	
95134 121500	28.4598	80.5267	54 242	6.0	77	
95134 121500	28.4466	80.5652	6			
95134 121500 95134 121500		80.7005 80.7005	6 54 225	4.1	80	77
95134 121500 95134 121500	28.7975 28.7975		6 54 254	5.1	81	75
95134 121500 95134 121500	28.4721 28.4721	80.5393 80.5393	6 90 236	5.1		
95134 121500 95134 121500	28.5622 28.5622	80.5785 80.5785	6 54 219	4.1		
95134 121500 95134 121500			6 54 204	4.1		
95134 121500 95134 121500	28.5130			1.9	79	78
95134 121500	28.5130	80.5613	54 238	4.1	79	
95134 121500 95134 121500		80.5613 80.5613		5.1 6.0	78	
95134 121500					79	76
95134 121500 95134 121500	28.5130 28.5130	80.5613	12 239 5 4 235	1.9 4.1	79	
95134 121500 95134 121500	28.5130 28.5130	80.5613 80.5613	162 240 204 239	5.1 6.0	78	
95134 121500 95134 121500		80.5747 80.5747	6 12 236	4.1	78	
95134 121500	28.5358	80.5747	54 226	6.0	78	
95134 121500 95134 121500	28.6141 28.6141	80.6203	6 12 213	4 1	78	
95134 121500	28.6141	80.6203 80.6203	54 206	$4.1 \\ 4.1$	78	
95134 121500 95134 121500	28.4048 28.4048	80.6519 80.6519	6 54 243	6.0	78	
95134 121500	28.4600	80.5711	6		78	
95134 121500 95134 121500	28.4600 28.4600	80.5711 80.5711	12 260 54 246	1.9 2.9	78	
95134 121500 95134 121500	28.6027 28.6027	80.6414 80.6414	6 12 224	1.9	78	
95134 121500	28.6027	80.6414	54 224	5.1	78	

DAY	TIME 121500	LAT 28.6105	LON 80.6069	z 6	DIR	SPD	T	TD 75
	121500	28.6105	80.6069		191	6.0	79	15
	121500 121500	28.6057 28.6057	80.6016 80.6016	6 60	209	6.0	79 78	75
	121500 121500	28.6294 28.6294	80.6235 80.6235	6 60	216	6.0	78	74
	121500 121500	28.6248 28.6248	80.6182 80.6182	6 60	221	6.0	79 78	74
	121500 121500	28.4586 28.4586	80.5923 80.5923	6 12	252	5.1	78	
	121500	28.4586	80.5923		242	6.0	77	
	121500 121500	28.6062 28.6062	80.6739 80.6739	6 12	205	2.9	78	
95134	121500	28.6062	80.6739		212	4.1	77	
95134	121500 121500		80.6998 80.6998	6 12	204	1.9	77	
	121500	28.6586	80.6998		0	0.0	78	
	121500 121500	28.7055 28.7055	80.7265 80.7265	6 54	238	1.0	79	76
	121500 121500	28.7755 28.7755	80.8043 80.8043	6 54	237	5.1	82	77
	121500 121500	28.5158 28.5158	80.6400 80.6400	6	229	2.9	77	
	121500	28.5158	80.6400		235	4.1	77	
	121500 121500	28.5623 28.5623	80.6694 80.6694	6 12	225	4.1	77	
95134	121500	28.5623	80.6694		218	5.1	77	
	121500 121500	28.5986 28.5986	80.6817 80.6817	6 30	207	5.1		
95134 95134	121500 121500	28.6160 28.6160	80.6930 80.6930	6 30	214	5.1	80	75
	121500 121500	28.6307 28.6307	80.7027 80.7027	6 30	206	4.1		
	121500 121500	28.6431 28.6431	80.7482 80.7482	6	223	1.9	78	
	121500	28.6431	80.7482		214	2.9	77	
	121500 121500	28.4632 28.4632	80.6702 80.6702	6 12	229	1.9	78	
	121500	28.4632	80.6702		239	2.9	77	
	121500 121500	28.5184 28.5184	80.6962 80.6962	6 12	236	1.9	77	
	121500	28.5184	80.6962		228	4.1	76	

DAY	TIME 121500	LAT 28.7464	LON 80.8707	z 6	DIR	SPD	T 78	TD 76
	121500	28.7464	80.8707		246	1.0	70	70
	121500 121500	28.4079 28.4079	80.7604 80.7604	6 54				
	121500 121500	28.5272 28.5272	80.7742 80.7742	6 54	220	4.1	78	75
	121500 121500	28.6056 28.6056	80.8248 80.8248	6 54				
	121500 121500	28.5697 28.5697	80.5864 80.5864	6	215	2.9	79	77
95134	121500	28.5697 28.5697	80.5864	54	219 219	6.0 6.0	78	
	121500	28.5697	80.5864		219	6.0	78	
	121500 121500	28.5697 28.5697	80.5864 80.5864	6	228	2.9	79	79
95134	121500 121500 121500	28.5697 28.5697	80.5864	54	222 222	6.0 6.0	78	
	121500	28.5697	80.5864		224	7.0	77	
	121500 121500	28.4843 28.4843	80.7856 80.7856	6 54	217	2.9	77	75
95134	121500	28.6445	80.9034	6				
	121500 121500	28.4114 28.4114	80.9284 80.9284	6 54	250	1.0	75	
95134	121500	28.4475	80.8538	6				
	121500 121500	28.4960 28.4960	80.8843 80.8843	6 54				
95134	121500	28.5583	80.9132	6				
	121500 121500	28.6173 28.6173	80.9581 80.9581	6 54	243	4.1	77	75
	121500 121500	28.6762 28.6762		6 54	203	1.9	77	76
	121500 121500	28.5231 28.5231	81.0100 81.0100	6 54	252	2.9	76	76
	121500 121500	28.6489 28.6489	81.0693 81.0693	6 54	206	1.9	74	64
	121500 121500	28.4417 28.4417	81.0291 81.0291	6 54	280	4.1	78	75

DAY	TIME	LAT	LON	Z	DIR	SPD	T	TD
95134	121500	28.6256	80.6571	6			79	76
95134	121500	28.6256	80.6571	12	200	1.9		
95134	121500	28.6256	80.6571	54	210	4.1	78	
95134	121500	28.6256	80.6571	162	215	5.1		
95134	121500	28.6256	80.6571	204	219	4.1	78	
95134	121500	28.6256	80.6571	295	223	5.1		
95134	121500	28.6256	80.6571	394	231	4.1		
95134	121500	28.6256	80.6571	492	250	6.0	78	
95134	121500	28.6256	80.6571	6			79	77
95134	121500	28.6256	80.6571	12	197	1.9		
95134	121500	28.6256	80.6571	54	211	4.1	79	
95134	121500	28.6256	80.6571	162	212	5.1		
95134	121500	28.6256	80.6571	204	223	5.1	77	
95134	121500	28.6256	80.6571	295	222	6.0		
95134	121500	28.6256	80.6571	394	237	6.0		
95134	121500	28.6256	80.6571	492	258	6.0	77	
95134	121500	28.3932	80.8211	6			76	75
95134	121500	28.3932	80.8211	54	259	1.0		
95134	121500	28.3382	80.7321	6			79	77
95134	121500	28.3382	80.7321	54	263	1.9		

METEOROLOGICAL TOWER DATA AT 13:15:00 ZULU TIME (T - 30 minutes)

DAY TIME 95134 131500	LAT 28.4338		Z DIR	SPD	T 81	TD
95134 131500 95134 131500		80.5734 80.5734			80	
95134 131500 95134 131500	28.4598 28.4598	80.5267 80.5267	6 12 243	2.9	82	
95134 131500	28.4598	80.5267	54 234	4.1	80	
95134 131500	28.4466	80.5652	6			
95134 131500 95134 131500	28.7435 28.7435	80.7005 80.7005	6 54 284	8.0	83	76
95134 131500 95134 131500	28.7975 28.7975	80.7378 80.7378	6 54 306	7.0	83	75
95134 131500 95134 131500	28.4721 28.4721	80.5393 80.5393	6 90 249	4.1		
95134 131500 95134 131500	28.5622 28.5622	80.5785 80.5785	6 54 286	2.9		
95134 131500 95134 131500	28.5836 28.5836		6 54 272	2.9		
95134 131500 95134 131500	28.5130 28.5130	80.5613 80.5613	6 12 249	1.9	81	78
95134 131500	28.5130		54 255	4.1 5.1	80	
95134 131500	28.5130	80.5613	204 250	5.1	79	
95134 131500 95134 131500	28.5130	80.5613 80.5613	6 12 247	2.9	81	76
	28.5130	80.5613	54 248	4.1	80	
95134 131500	28.5130 28.5130	80.5613	162 255 204 257	5.1 5.1	79	
95134 131500 95134 131500	28.5358 28.5358	80.5747 80.5747	6 12 262	2.9	80	
95134 131500	28.5358	80.5747	54 256	4.1	79	
95134 131500 95134 131500	28.6141 28.6141	80.6203 80.6203	6 12 263	4.1	81	
95134 131500	28.6141	80.6203	54 256	5.1	80	
95134 131500 95134 131500	28.4048 28.4048	80.6519 80.6519	6 54 249	4.1	80	78
95134 131500 95134 131500	28.4600 28.4600	80.5711 80.5711	6 12 252	2.9	81	
95134 131500	28.4600	80.5711	54 253	5.1	79	
95134 131500 95134 131500	28.6027 28.6027	80.6414 80.6414	6 12 289	1.9	81	
95134 131500	28.6027	80.6414	54 271	2.9	80	

DAY	TIME 131500	LAT 28.6105	LON 80.6069	z dir 6	SPD	T	TD 76
	131500	28.6105	80.6069	60 235	6.0	81	70
	131500 131500	28.6057 28.6057	80.6016 80.6016	6 60 262	6.0	81 80	76
	131500 131500	28.6294 28.6294	80.6235 80.6235	6 60 267	5.1	81	75
	131500 131500	28.6248 28.6248	80.6182 80.6182	6 60 272	5.1	81 81	75
	131500 131500	28.4586 28.4586	80.5923 80.5923	6 12 264	4.1	80	
	131500	28.4586	80.5923	54 257	4.1	79	
	131500 131500	28.6062 28.6062	80.6739 80.6739	6 12 258	2.9	80	
	131500	28.6062	80.6739	54 269	4.1	80	
95134	131500 131500	28.6586 28.6586	80.6998 80.6998	6 12 284	1.9	82	
	131500	28.6586	80.6998	54 269	2.9	83	
	131500 131500	28.7055 28.7055	80.7265 80.7265	6 54 278	5.1	82	75
	131500 131500	28.7755 28.7755	80.8043 80.8043	6 5 4 299	7.0	81	76
	131500 131500	28.5158 28.5158	80.6400 80.6400	6 12 293	2.9	81	
	131500	28.5158	80.6400	54 287	4.1	80	
	131500 131500	28.5623 28.5623	80.6694 80.6694	6 12 267	2.9	81	
	131500	28.5623	80.6694	54 272	4.1	79	
95134 95134	131500 131500	28.5986 28.5986	80.6817 80.6817	6 30 270	4.1		
	131500 131500	28.6160 28.6160	80.6930 80.6930	6 30 290	4.1	83	76
95134 95134	131500 131500	28.6307 28.6307	80.7027 80.7027	6 30 292	5.1		
	131500 131500	28.6431 28.6431	80.7482 80.7482	6 12 260	1.9	82	
	131500	28.6431	80.7482	54 267	5.1	80	
	131500 131500	28.4632 28.4632	80.6702 80.6702	6 12 276	1.9	81	
95134	131500	28.4632	80.6702	54 269	2.9	80	
95134	131500 131500	28.5184 28.5184	80.6962 80.6962	6 12 282	1.9	80	
95134	131500	28.5184	80.6962	54 282	2.9	79	

DAY		LAT	LON		DIR	SPD	T	TD
	131500 131500	28.7464 28.7464	80.8707 80.8707	6 54	314	4.1	82	76
	131500 131500	28.4079 28.4079	80.7604 80.7604	6 54		•		
	131500 131500	28.5272 28.5272	80.7742 80.7742	6 54	292	6.0	81	76
	131500 131500	28.6056 28.6056	80.8248 80.8248	6 54				
	131500 131500	28.5697 28.5697	80.5864 80.5864	6 12	283	1.9	82	78
95134	131500 131500	28.5697 28.5697	80.5864 80.5864	54	284 284	5.1 5.1	80	
	131500	28.5697	80.5864	204		5.1	80	
	131500	28.5697	80.5864 80.5864	6	200	1.0	83	80
95134	131500 131500	28.5697 28.5697	80.5864	54	289 283	1.9 4.1	81	
	131500 131500	28.5697 28.5697	80.5864 80.5864	162 204	285 285	4.1 4.1	80	
	131500 131500	28.4843 28.4843	80.7856 80.7856	6 54	309	4.1	83	76
95134	131500	28.6445	80.9034	6				
	131500 131500	28.4114 28.4114	80.9284 80.9284	6 54	294	5.1	83	77
95134	131500	28.4475	80.8538	6				
	131500 131500	28.4960 28.4960	80.8843 80.8843	6 54				
95134	131500	28.5583	80.9132	6				
	131500 131500	28.6173 28.6173	80.9581 80.9581	6 54	307	4.1	83	75
	131500 131500	28.6762 28.6762	80.9987 80.9987	6 54	317	6.0	82	76
	131500 131500	28.5231 28.5231	81.0100 81.0100	6 54	294	4.1	83	74
	131500 131500	28.6489 28.6489		6 54				
	131500 131500	28.4417 28.4417	81.0291 81.0291	6 54	315	6.0	84	74

DAY	TIME	LAT	LON	Z	DIR	SPD	T	TD
95134	131500	28.6256	80.6571	6			82	76
95134	131500	28.6256	80.6571	12	275	2.9		
95134	131500	28.6256	80.6571	54	277	4.1	80	
95134	131500	28.6256	80.6571	162	274	4.1		
95134	131500	28.6256	80.6571	204	274	5.1	80	
95134	131500	28.6256	80.6571	295	277	5.1		
95134	131500	28.6256	80.6571	394	277	5.1		
95134	131500	28.6256	80.6571	492	280	5.1	78	
95134	131500	28.6256	80.6571	6			82	78
95134	131500	28.6256	80.6571	12	282	1.9		
95134	131500	28.6256	80.6571	54	279	4.1	81	
95134	131500	28.6256	80.6571	162	275	4.1		
95134	131500	28.6256	80.6571	204	284	4.1	80	
95134	131500	28.6256	80.6571	295	278	5.1		
95134	131500	28.6256	80.6571	394	289	5.1		
95134	131500	28.6256	80.6571	492	289	5.1	78	
95134	131500	28.3932	80.8211	6			81	75
95134	131500	28.3932	80.8211	54	287	5.1		
95134	131500	28.3382	80.7321	6			84	78
95134	131500	28.3382	80.7321	54	265	2.9		

METEOROLOGICAL TOWER DATA AT 13:40:00 ZULU TIME (T - 5 minutes)

DAY TIME 95134 134000 95134 134000			Z DIR 6 12 267	SPD	T 82	TD
95134 134000				4.1	80	
95134 134000 95134 134000		80.5267 80.5267	6 12 266	2.9	83	
95134 134000		80.5267	54 261	4.1	81	
95134 134000	28.4466	80.5652	6			
95134 134000 95134 134000	28.7435 28.7435	80.7005 80.7005	6 54 317	5.1	85	77
95134 134000 95134 134000		80.7378 80.7378	6 54 322	6.0	84	76
95134 134000 95134 134000	28.4721 28.4721	80.5393 80.5393	6 90 284	4.1		
95134 134000 95134 134000	28.5622 28.5622	80.5785 80.5785	6 54 300	2.9		
95134 134000 95134 134000	28.5836 28.5836	80.5842 80.5842	6 54 283	2.9		
95134 134000 95134 134000		80.5613 80.5613	6 12 266	1.9	82	79
95134 134000 95134 134000		80.5613 80.5613	54 288 162 280	2.9 4.1	81	
95134 134000		80.5613	204 277	4.1	80	
95134 134000 95134 134000	28.5130	80.5613	6 12 259	1.9	82	77
95134 134000				2.9	82	
95134 134000 95134 134000		80.5613 80.5613		4.1 4.1	80	
95134 134000 95134 134000	28.5358 28.5358	80.5747 80.5747	6 12 279	1.9	82	
95134 134000	28.5358	80.5747	54 272	2.9	80	
95134 134000 95134 134000	28.6141 28.6141	80.6203 80.6203	6 12 293	1.9	83	
95134 134000	28.6141	80.6203	54 284	2.9	82	
95134 134000 95134 134000	28.4048 28.4048	80.6519 80.6519	6 54 285	6.0	82	77
95134 134000	28.4600	80.5711	6		82	
95134 134000 95134 134000	28.4600 28.4600	80.5711 80.5711	12 289 54 285	1.9 2.9	81	
95134 134000 95134 134000	28.6027 28.6027	80.6414 80.6414	6 12 290	1.9	82	
95134 134000	28.6027	80.6414	54 285	2.9	81	

DAY 95134	TIME 134000	LAT 28.6105	LON 80.6069	Z DIR	SPD	T	T D 77
	134000	28.6105	80.6069	60 249	4.1	83	,,
	134000 134000	28.6057 28.6057	80.6016 80.6016	6 60 253	5.1	83 82	77
	134000 134000	28.6294 28.6294	80.6235 80.6235	6 60 290	5.1	82	75
	134000 134000	28.6248 28.6248	80.6182 80.6182	6 60 295	5.1	83 83	75
	134000 134000	28.4586 28.4586	80.5923 80.5923	6 12 262	4.1	81	
	134000	28.4586	80.5923	54 256	4.1	80	
	134000 134000	28.6062 28.6062	80.6739 80.6739	6 12 282	1.9	82	
95134		28.6062	80.6739	54 295	4.1	81	
	134000 134000	28.6586 28.6586	80.6998 80.6998	6 12 311	2.0	83	
	134000	28.6586	80.6998	54 314	2.9 5.1	85	
	134000 134000	28.7055 28.7055	80.7265 80.7265	6 54 290	4.1	83	76
95134 95134	134000 134000	28.7755 28.7755	80.8043 80.8043	6 54 293	7.0	83	76
	134000 134000	28.5158 28.5158	80.6400 80.6400	6 12 299	4.1	82	
	134000	28.5158	80.6400	54 292	5.1	81	
	134000 134000	28.5623 28.5623	80.6694 80.6694	6	2.0	82	
95134		28.5623	80.6694	12 292 5 4 293	2.9 4.1	80	
95134 95134	134000 134000	28.5986 28.5986	80.6817 80.6817	6 30 252	4.1		
	134000 134000	28.6160 28.6160	80.6930 80.6930	6 30 288	6.0	84	75
	134000 134000	28.6307 28.6307	80.7027 80.7027	6 30 291	6.0		
	134000 134000	28.6431 28.6431	80.7482 80.7482	6 12 312	1 0	83	
	134000	28.6431	80.7482	54 302	1.9 5.1	80	
	134000	28.4632	80.6702	6	2.2	82	
	134000 134000	28.4632 28.4632	80.6702 80.6702	12 324 54 307	2.9 2.9	81	
	134000	28.5184	80.6962	6	4 -	81	
	134000 134000	28.5184 28.5184	80.6962 80.6962	12 289 54 284	4.1 6.0	80	

	TIME 134000 134000	LAT 28.7464 28.7464	LON 80.8707 80.8707	Z DIR 6 54 310	SPD 5.1	T 84	TD 75
	134000 134000	28.4079 28.4079	80.7604 80.7604	6 5 4			
	134000 134000	28.5272 28.5272	80.7742 80.7742	6 54 286	5.1	83	76
	134000 134000	28.6056 28.6056	80.8248 80.8248	6 54			
	134000 134000	28.5697 28.5697	80.5864 80.5864	6 12 296	1.9	83	79
	134000 134000	28.5697 28.5697	80.5864 80.5864	54 298 162 298	5.1 5.1	82	
	134000	28.5697	80.5864	204 295	5.1	81	
	134000 134000	28.5697 28.5697	80.5864 80.5864	6 12 298	1.9	84	80
95134	134000 134000	28.5697 28.5697	80.5864 80.5864	54 294 162 295	4.1	82	
	134000	28.5697	80.5864	204 296	4.1	81	
	134000 134000	28.4843 28.4843	80.7856 80.7856	6 54 303	5.1	84	76
95134	134000	28.6445	80.9034	6			
95134 95134	134000 134000	28.4114 28.4114	80.9284 80.9284	6 54 328	6.0	85	76
95134	134000	28.4475	80.8538	6			
95134	134000 134000 134000	28.4960 28.4960 28.5583	80.8843 80.8843 80.9132	6 54 6			
	134000 134000	28.6173 28.6173	80.9581 80.9581	6 5 4 310	5.1	85	75
	134000 134000	28.6762 28.6762	80.9987 80.9987	6 54 317	4.1	84	75
	134000 134000	28.5231 28.5231	81.0100 81.0100	6 54 310	5.1	84	72
	134000 134000	28,6489 28,6489	81.0693 81.0693	6 54 334	4.1	90	72
	134000 134000	28.4417 28.4417	81.0291 81.0291	6 54 330	7.0	85	73
	134000 134000	28.6256	80.6571	6	1 0	83	76
95134	134000		80.6571 80.6571		1.9 4.1	82	
	134000 134000	28.6256 28.6256	80.6571 80.6571	162 287 204 289	5.1 5.1	81	

DAY	TIME	LAT	LON	Z	DIR	SPD	T	TD
95134	134000	28.6256	80.6571	295	287	5.1		
95134	134000	28.6256	80.6571	394	286	5.1		
95134	134000	28.6256	80.6571	492	288	5.1	79	
95134	134000	28.6256	80.6571	.6		•	83	77
95134	134000	28.6256	80.6571	12	316	1.9		
95134	134000	28.6256	80.6571	54	296	4.1	83	
95134	134000	28.6256	80.6571	162	293	5.1		
95134	134000	28.6256	80.6571	204	298	5.1	81	
95134	134000	28.6256	80.6571	295	290	5.1		
95134	134000	28.6256	80.6571	394	297	5.1		
95134	134000	28.6256	80.6571	492	298	5.1	8Ò	
95134	134000	28.3932	80.8211	6			83	75
95134	134000	28.3932	80.8211	54	296	7.0		
95134	134000	28.3382	80.7321	6			87	79
95134	134000	28.3382	80.7321	54	284	2.9		

METEOROLOGICAL TOWER DATA AT 13:45:00 ZULU TIME (T + 0 minutes)

95134	TIME 134500			6		SPD	T 82	TD
	134500	28.4338 28.4338	80.5734		270 278		81	
	134500 134500	28.4598 28.4598	80.5267 80.5267	6 12	280	4.1	83	
		28.4598	80.5267		273		82	
95134	134500	28.4466	80.5652	6				
	134500 134500		80.7005 80.7005	6 54	314	7.0	85	77
	134500 134500	28.7975 28.7975	80.7378 80.7378	6 54	322	6.0	84	76
	134500 134500	28.4721 28.4721	80.5393 80.5393	6 90	268	5.1		
	134500 134500	28.5622 28.5622	80.5785 80.5785	6 54	300	4.1		
	134500 134500	28.5836 28.5836	80.5842 80.5842	6 54	280	4.1		
	134500 134500	28.5130 28.5130	80.5613 80.5613	6	292	1.9	83	79
95134	134500	28.5130 28.5130	80.5613 80.5613	54	290	2.9	82	
95134	134500 134500	28.5130 28.5130	80.5613 80.5613	204		4.1	80 83	77
95134		28.5130 28.5130 28.5130	80.5613 80.5613 80.5613	54	280 283 294		82	
	134500	28.5130	80.5613		293		80	
	134500 134500	28.5358 28.5358		6 12	280	2.9	82	
	134500	28.5358	80.5747		273	4.1	81	
95134	134500 134500	28.6141 28.6141	80.6203 80.6203		294	1.9	83	
	134500 134500	28.6141	80.6203 80.6519	6	282	4.1	82 82	77
	134500	28.4048	80.6519		288	7.0	02	,,
95134		28.4600 28.4600	80.5711 80.5711		265	2.9	83	
	134500	28.4600	80.5711		271	4.1	81	
95134	134500 134500 134500	28.6027 28.6027 28.6027	80.6414 80.6414 80.6414		302 292	1.0 1.9	83 82	

DAY 95134	TIME 134500	LAT 28.6105	LON 80.6069	z dir	SPD	T	TD 78
	134500	28.6105	80.6069	60 254	4.1	84	, 0
	134500 134500	28.6057 28.6057	80.6016 80.6016	6 60 252	5.1	83 82	77
	134500 134500	28.6294 28.6294	80.6235 80.6235	6 60 287	5.1	83	75
	134500 134500	28.6248 28.6248	80.6182 80.6182	6 60 280	5.1	83 83	75
	134500 134500	28.4586 28.4586	80.5923 80.5923	6 12 278	2.9	82	
	134500	28.4586	80.5923	54 269	2.9	80	
95134	134500 134500 134500	28.6062 28.6062 28.6062	80.6739 80.6739 80.6739	6 12 268 54 297	1.9 1.9	83 82	
	134500	28.6586	80.6998	6	1.9	83	
95134	134500 134500	28.6586 28.6586	80.6998 80.6998	12 289 54 292	2.9 4.1	85	
	134500 134500	28.7055 28.7055	80.7265 80.7265	6 54 284	5.1	83	76
	134500 134500	28.7755 28.7755	80.8043 80.8043	6 54 295	8.0	83	76
	134500	28.5158	80.6400	6		82	
	134500 134500	28.5158 28.5158	80.6400 80.6400	12 290 54 282	2.9 4.1	81	
	134500 134500	28.5623 28.5623	80.6694 80.6694	6 12 313	2.9	82	
	134500	28.5623	80.6694	54 301	4.1	80	
	134500 134500	28.5986 28.5986	80.6817 80.6817	6 30 294	4.1		
	134500 134500	28.6160 28.6160	80.6930 80.6930	6 30 307	6.0	85	75
	134500 134500	28.6307 28.6307	80.7027 80.7027	6 30 289	6.0		
	134500 134500	28.6431 28.6431	80.7482 80.7482	6 12 317	2.9	83	
	134500	28.6431	80.7482	54 306	5.1	80	
	134500 134500	28.4632 28.4632	80.6702 80.6702	6 12 312	1.9	83	
	134500	28.4632	80.6702	54 289	2.9	81	
	134500 134500	28.5184 28.5184	80.6962 80.6962	6 12 283	4.1	82	
	134500	28.5184	80.6962	54 279	5.1	80	

DAY 95134	TIME 134500	LAT 28.7464	LON 80.8707	z dir 6	SPD	T 84	TD 75
	134500			54 300	5.1	04	75
	134500 134500	28.4079 28.4079		6 54			
	134500 134500	28.5272 28.5272	80.7742 80.7742	6 54 288	5.1	83	76
	134500 134500	28.6056 28.6056	80.8248 80.8248	6 54			
95134	134500 134500 134500	28.5697 28.5697 28.5697	80.5864 80.5864 80.5864	6 12 296 54 298	2.9 5.1	84 82	79
95134 95134	134500 134500 134500	28.5697 28.5697 28.5697	80.5864 80.5864 80.5864	162 300 204 298	5.1 5.1 5.1	81	0.0
95134 95134	134500	28.5697 28.5697	80.5864 80.5864	12 300 54 294	1.9	84 82	80
	134500	28.5697	80.5864 80.5864	162 298 204 299	5.1 5.1	81	
	134500 134500	28.4843 28.4843	80.7856 80.7856	6 5 4 287	2.9	84	76
95134	134500	28.6445	80.9034	6			
	134500 134500	28.4114 28.4114	80.9284 80.9284	6 54 336	6.0	85	76
95134	134500	28.4475	80.8538	6			
	134500 134500	28.4960 28.4960	80.8843 80.8843	6 54			
95134	134500	28.5583	80.9132	6			
	134500 134500	28.6173 28.6173	80.9581 80.9581	6 54			
	134500 134500	28.6762 28.6762	80.9987 80.9987	6 54 302	4.1	84	75
	134500 134500	28.5231 28.5231	81.0100 81.0100	6 54 298	5.1	84	72
	134500 134500	28.6489 28.6489	81.0693 81.0693	6 54 323	5.1	88	59
	134500 134500	28.4417 28.4417	81.0291 81.0291	6 54 327	6.0	85	73

DAY	TIME	LAT	LON	Z	DIR	SPD	T	TD
95134	134500	28.6256	80.6571	6			84	76
95134	134500	28.6256	80.6571	12	281	1.9		
95134	134500	28.6256	80.6571	54	292	4.1	82	
95134	134500	28.6256	80.6571	162	294	5.1		
95134	134500	28.6256	80.6571	204	298	5.1	81	
95134	134500	28.6256	80.6571	295	308	5.1		
95134	134500	28.6256	80.6571	394	302	6.0		
95134	134500	28.6256	80.6571	492	298	6.0	79	
95134	134500	28.6256	80.6571	6			84	78
95134	134500	28.6256	80.6571	12	286	2.9		
95134	134500	28.6256	80.6571	54	295	4.1	83	
95134	134500	28.6256	80.6571	162	300	5.1		
95134	134500	28.6256	80.6571	204	307	5.1	81	
95134	134500	28.6256	80.6571	295	314	5.1		
95134	134500	28.6256	80.6571	394	314	6.0		
95134	134500	28.6256	80.6571	492	307	6.0	80	
95134	134500	28.3932	80.8211	6			83	75
95134	134500	28.3932	80.8211	54	302	7.0		
95134	134500	28.3382	80.7321	6			87	79
95134	134500	28.3382	80.7321	54	288	2.9		

METEOROLOGICAL TOWER DATA AT 13:50:00 ZULU TIME (T + 5 minutes)

DAY TIME 95134 13500 95134 13500	28.4338 00 28.4338	80.5734	6 12			T 83	TD
95134 13500	00 28.4598	80.5267	6	272		81 83	
95134 13500 95134 13500 95134 13500		80.5267		279 271	4.1 5.1	82	
95134 13500 95134 13500 95134 13500	00 28.7435	80.7005 80.7005	6	319	6.0	85	77
95134 13500	00 28.7975 00 28.7975	80.7378	6	317		84	76
95134 13500 95134 13500	00 28.4721	80.5393	6	266			
95134 13500 95134 13500	00 28.5622 00 28.5622	80.5785 80.5785		286	5.1		
95134 13500 95134 13500	28.5836 28.5836	80.5842 80.5842		279	4.1		
95134 13500 95134 13500 95134 13500	00 28.5130	80.5613	6 12 54	274 293	1.9 4.1	83 82	79
95134 13500 95134 13500	00 28.5130	80.5613 80.5613	162	297	5.1 5.1		
95134 13500 95134 13500 95134 13500	00 28.5130	80.5613 80.5613 80.5613	12	273 283		83 82	77
95134 13500 95134 13500	28.5130 28.5130		162	295 295	4.1	80	
95134 13500 95134 13500 95134 13500	28.5358 00 28.5358 00 28.5358	80.5747 80.5747 80.5747	12	279 279		83	
	0 28.6141	80.6203	12	274	2.9	83	
95134 13500 95134 13500	0 28.4048	80.6203 80.6519	6	275	4.1	82 83	77
95134 13500 95134 13500	0 28.4600		6	306		83	
95134 13500 95134 13500	0 28.4600	80.5711	54	267 274		81	
95134 13500 95134 13500 95134 13500	0 28.6027	80.6414 80.6414 80.6414	12	299 290	2.9	83 82	

DAY	TIME 135000	LAT 28.6105	LON 80.6069	Z DIR	SPD	T	TD 78
	135000	28.6105	80.6069	60 262	5.1	84	70
	135000 135000	28.6057 28.6057	80.6016 80.6016	6 60 251	6.0	83 82	77
	135000 135000	28.6294 28.6294	80.6235 80.6235	6 60 288	6.0	83	75
	135000 135000	28.6248 28.6248	80.6182 80.6182	6 60 279	5.1	83 83	75
95134	135000 135000 135000	28.4586 28.4586 28.4586		6 12 286 54 279	4.1 4.1	82 81	
95134	135000 135000 135000	28.6062 28.6062 28.6062		6 12 259 54 268	2.9 4.1	83 82	
95134	135000 135000 135000	28.6586 28.6586 28.6586	80.6998 80.6998 80.6998	6 12 289 54 288	2.9 4.1	83 85	
95134	135000 135000	28.7055 28.7055	80.7265 80.7265	6 54 290	4.1	83	76
	135000 135000	28.7755 28.7755	80.8043 80.8043	6 54 288	7.0	83	76
95134	135000 135000 135000	28.5158 28.5158 28.5158	80.6400 80.6400 80.6400	6 12 286 54 294	2.9 4.1	83 82	
95134	135000 135000 135000	28.5623 28.5623 28.5623	80.6694 80.6694 80.6694	6 12 315 54 305	2.9	82	
95134	135000 135000 135000	28.5986 28.5986	80.6817 80.6817	6 30 298	4.1 6.0	81	
	135000 135000	28.6160 28.6160	80.6930 80.6930	6 30 302	6.0	85	75
	135000 135000	28.6307 28.6307	80.7027 80.7027	6 30 306	6.0		
95134	135000 135000 135000	28.6431 28.6431 28.6431	80.7482 80.7482 80.7482	6 12 324 54 318	2.9 6.0	83 80	
	135000	28.4632	80.6702	6		83	
95134	135000 135000	28.4632 28.4632	80.6702 80.6702	12 304 54 286	1.9 2.9	82	
	135000 135000	28.5184 28.5184	80.6962 80.6962	6 12 289	2.9	82	
	135000	28.5184	80.6962	54 280	5.1	81	

	TIME 135000 135000	LAT 28.7464 28.7464	LON 80.8707 80.8707	6	DIR 318	SPD 5.1	T 84	TD 74
	135000 135000	28.4079 28.4079	80.7604 80.7604	6 54				
	135000 135000	28.5272 28.5272	80.7742 80.7742	6 54	274	4.1	84	76
	135000 135000	28.6056 28.6056	80.8248 80.8248	6 54				
	135000 135000	28.5697 28.5697	80.5864 80.5864	6	295	2.9	84	79
95134	135000	28.5697	80.5864	54	298	6.0	82	
	135000 135000	28.5697 28.5697	80.5864 80.5864	204	297 295	6.0 6.0	81	
	135000	28.5697	80.5864	6			84	80
95134	135000 135000	28.5697 28.5697	80.5864 80.5864	54	300 294	1.9 5.1	82	
	135000 135000	28.5697 28.5697	80.5864 80.5864	162 204		5.1 5.1	81	
	135000 135000	28.4843 28.4843	80.7856 80.7856	6 54	306	4.1	85	76
95134	135000	28.6445	80.9034	6				
	135000 135000	28.4114 28.4114	80.9284 80.9284	6 54	313	5.1	85	76
95134	135000	28.4475	80.8538	6				
	135000 135000	28.4960 28.4960	80.8843 80.8843	6 54				
95134	135000	28.5583	80.9132	6				
	135000 135000	28.6173 28.6173	80.9581 80.9581	6 54	310	6.0	85	73
95134 95134	135000 135000	28.6762 28.6762	80.9987 80.9987	6 54	325	5.1	85	75
	135000 135000	28.5231 28.5231	81.0100 81.0100	6 54	297	5.1	85	72
	135000 135000	28.6489 28.6489	81.0693 81.0693	6 54	325	4.1	89	60
		28.4417 28.4417		6 54	330	5.1	86	73

DAY	TIME	LAT	LON	Z	DIR	SPD	T	TD
95134	135000	28.6256	80.6571	6			84	76
95134	135000	28.6256	80.6571	12	284	2.9		
95134	135000	28.6256	80.6571	54	282	4.1	83	
95134	135000	28.6256	80.6571	162	287	5.1		
95134	135000	28.6256	80.6571	204	288	6.0	81	
95134	135000	28.6256	80.6571	295	297	6.0		
95134	135000	28.6256	80.6571	394	295	7.0		
95134	135000	28.6256	80.6571	492	290	6.0	80	
95134	135000	28.6256	80.6571	6			84	77
95134	135000	28.6256	80.6571	12	289	2.9		
95134	135000	28.6256	80.6571	54	290	4.1	83	
95134	135000	28.6256	80.6571	162	292	5.1		
95134	135000	28.6256	80.6571	204	299	5.1	81	
95134	135000	28.6256	80.6571	295	301	6.0		
95134	135000	28.6256	80.6571	394	306	6.0		
95134	135000	28.6256	80.6571	492	300	7.0	80	
95134	135000	28.3932	80.8211	6			84	74
95134	135000	28.3932	80.8211	54	317	7.0		
95134	135000	28.3382	80.7321	6			88	79
95134	135000	28.3382	80.7321	54	287	2.9		

METEOROLOGICAL TOWER DATA AT 14:15:00 ZULU TIME (T + 30 minutes)

DAY TIME 95134 141500		LON 80.5734	z dir 6	SPD	T 83	TD
95134 141500 95134 141500		80.5734 80.5734	12 299 54 305	4.1 6.0	82	
95134 141500 95134 141500	28.4598 28.4598	80.5267 80.5267	6 12 295	4.1	84	
95134 141500	28.4598	80.5267	54 292	5.1	82	
95134 141500	28.4466	80.5652	6			
95134 141500 95134 141500	28.7435 28.7435	80.7005 80.7005	6 54 348	8.0	82	77
95134 141500 95134 141500		80.7378 80.7378	6 54 325	6.0	85	76
95134 141500 95134 141500	28.4721 28.4721	80.5393 80.5393	6 90 287	6.0		
95134 141500 95134 141500	28.5622 28.5622	80.5785 80.5785	6 54 299	4.1		
95134 141500 95134 141500	28.5836 28.5836	80.5842 80.5842	6 54 280	4.1		
95134 141500	28.5130	80.5613	6	0.0	84	79
95134 141500 95134 141500	28.5130 28.5130	80.5613 80.5613	12 258 54 280	2.9	83	
95134 141500 95134 141500	28.5130 28.5130	80.5613 80.5613	162 285 204 280	7.0 7.0	81	
95134 141500 95134 141500	28.5130 28.5130	80.5613 80.5613	6 12 256	2.9	84	77
95134 141500 95134 141500	28.5130 28.5130	80.5613	54 274	4.1 6.0	83	
95134 141500	28.5130	80.5613 80.5613		7.0	81	
95134 141500 95134 141500	28.5358 28.5358	80.5747 80.5747	6 12 289	2.9	84	
95134 141500	28.5358	80.5747	54 288	5.1	82	
95134 141500 95134 141500	28.6141 28.6141	80.6203 80.6203	6 12 320	4.1	84	
95134 141500	28.6141	80.6203	54 313	5.1	83	
95134 141500 95134 141500	28.4048 28.4048	80.6519 80.6519	6 54 303	7.0	85	76
95134 141500 95134 141500	28.4600 28.4600	80.5711 80.5711	6 12 305	1.9	84	
95134 141500	28.4600	80.5711	54 293	2.9	82	
95134 141500 95134 141500	28.6027 28.6027	80.6414 80.6414	6 12 305	2.9	85	
95134 141500	28.6027	80.6414	54 299	4.1	83	

	TIME 141500	LAT 28.6105	LON 80.6069	Z DIR	SPD	T	TD 77
95134	141500	28.6105	80.6069	60 273	7.0	85	
	141500 141500	28.6057 28.6057	80.6016 80.6016	6 60 282	6.0	85 84	77
	141500 141500	28.6294 28.6294	80.6235 80.6235	6 60 331	8.9	83	75
	141500 141500	28.6248 28.6248	80.6182 80.6182	6 60 328	8.0	84 84	75
	141500	28.4586	80.5923	6		84	
	141500 141500	28.4586 28.4586	80.5923 80.5923	12 311 54 296	4.1 5.1	82	
	141500 141500	28.6062	80.6739	6	1.0	84	
	141500	28.6062 28.6062	80.6739 80.6739	12 305 54 313	1.9 5.1	83	
	141500	28.6586	80.6998	6		84	
	141500 141500	28.6586 28.6586	80.6998 80.6998	12 308 54 315	4.1 5.1	85	
	141500 141500	28.7055 28.7055	80.7265 80.7265	6 54 294	4.1	85	76
	141500 141500	28.7755 28.7755	80.8043 80.8043	6 54 288	7.0	85	75
	141500 141500	28.5158	80.6400	6	4 7	83	
	141500	28.5158 28.5158	80.6400 80.6400	12 315 54 310	4.1 4.1	82	
	141500	28.5623	80.6694	6		83	
	141500 141500	28.5623 28.5623	80.6694 80.6694	12 289 54 291	2.9 4.1	82	
95134 95134	141500 141500	28.5986 28.5986	80.6817 80.6817	6 30 313	7.0		
	141500 141500	28.6160 28.6160	80.6930 80.6930	6 30 307	7.0	86	75
	141500 141500	28.6307 28.6307	80.7027 80.7027	6 30 311	6.0		
	141500 141500	28.6431 28.6431	80.7482 80.7482	6	2 0	84	
	141500	28.6431	80.7482	12 326 54 309	2.9 6.0	82	
	141500 141500	28.4632 28.4632	80.6702 80.6702	6 12 295	1.9	85	
95134		28.4632	80.6702	54 276	2.9	83	
	141500 141500	28.5184 28.5184	80.6962	6	2.0	83	
	141500	28.5184	80.6962 80.6962	12 308 54 312	2.9 4.1	82	

DAY	TIME	LAT	LON	z	DIR	SPD	T	TD
	141500 141500		80.8707 80.8707	6 54	292	5.1	86	73
					272	0.1		
	141500 141500	28.4079 28.4079	80.7604 80.7604	6 54				
05124	141500	00 5070	00 7740					
	141500 141500	28.5272 28.5272	80.7742	6 54				
95134	141500	28.6056	80.8248	6				
	141500	28.6056	80.8248	54				
95134	141500	28.5697	80.5864	6			85	79
	141500		80.5864	12	302	2.9		
	141500 141500	28.5697 28.5697	80.5864 80.5864		304 301	5.1 5.1	83	
	141500	28.5697	80.5864		298	5.1	82	
95134	141500	28.5697	80.5864	6			85	80
	141500	28.5697	80.5864		304	1.9	00	
	141500 141500	28.5697 28.5697	80.5864 80.5864	54 162	300 299	4.1 5.1	82	
	141500	28.5697	80.5864	204		5.1	81	
95134	141500	28.4843	80.7856	6			87	76
95134	141500	28.4843	80.7856	54	290	5.1		
95134	141500	28.6445	80.9034	6				
95134	141500	28.4114	80.9284	6			86	76
95134	141500	28.4114	80.9284	54	297	5.1		
95134	141500	28.4475	80.8538	6				
95134	141500	28.4960	80.8843	6				
95134	141500	28.4960	80.8843	54				
95134	141500	28.5583	80.9132	6				
95134	141500	28.6173	80.9581	6			86	74
95134	141500	28.6173	80.9581	54	307	5.1		
	141500	28.6762	80.9987	6			86	73
95134	141500	28.6762	80.9987	54	309	7.0		
	141500	28.5231	81.0100	6			86	72
90134	141500	28.5231	81.0100	54	287	5.1		
	141500	28.6489	81.0693	6	222	E 1	93	74
	141500	28.6489	81.0693	54	333	5.1		
	141500 141500	28.4417 28.4417	81.0291 81.0291	6 54	206	E 1	87	73
90104	T#T200	20.441/	01.0291	34	286	5.1		

DAY	TIME	LAT	LON	Z	DIR	SPD	T	TD
95134	141500	28.6256	80.6571	6			85	75
95134	141500	28.6256	80.6571	12	303	4.1		
95134	141500	28.6256	80.6571	54	313	7.0	83	
95134	141500	28.6256	80.6571	162	315	7.0		
95134	141500	28.6256	80.6571	204	315	8.0	82	
95134	141500	28.6256	80.6571	295	317	8.0		
95134	141500	28.6256	80.6571	394	312	8.0		
95134	141500	28.6256	80.6571	492	306	8.0	80	
95134	141500	28.6256	80.6571	6			85	77
95134	141500	28.6256	80.6571	12	312	4.1		
95134	141500	28.6256	80.6571	54	319	7.0	84	
95134	141500	28.6256	80.6571	162	320	8.0		
95134	141500	28.6256	80.6571	204	325	8.0	82	
95134	141500	28.6256	80.6571	295	319	8.0		
95134	141500	28.6256	80.6571	394	324	8.0		
95134	141500	28.6256	80.6571	492	316	8.0	80	
95134	141500	28.3932	80.8211	6			86	74
95134	141500	28.3932	80.8211	54	310	6.0		
95134	141500	28.3382	80.7321	6			89	78
95134	141500	28.3382	80.7321	54	313	4.1		

METEOROLOGICAL TOWER DATA AT 14:40:00 ZULU TIME (T + 55 minutes)

	144000			z dir 6	SPD	T 85	TD
95134 1 95134 1		28.4338 28.4338	80.5734 80.5734			84	
95134 1 95134 1		28.4598 28.4598		6 12 298	4.1	85	
95134 1			80.5267	54 290		84	
95134 1			80.5652	6		٥٠	70
95134 1 95134 1		28.7435 28.7435		6 54 360	7.0	85	78
95134 1 95134 1		28.7975 28.7975	80.7378 80.7378	6 54 10	4.1	84	77
95134 1 95134 1		28.4721 28.4721	80.5393 80.5393	6 90 294	6.0		
95134 1 95134 1		28.5622 28.5622	80.5785 80.5785	6 54 303	2.9		
95134 1 95134 1		28.5836 28.5836	80.5842 80.5842	6 54 269	4.1		
	44000	28.5130 28.5130	80.5613	12 317		84	79
	44000	28.5130 28.5130 28.5130				83	
95134 1		28.5130		6	5.1	82 84	77
95134 1 95134 1	44000		80.5613	12 311 54 299	4.1	83	
95134 1 95134 1			80.5613 80.5613	162 301 204 300	5.1 5.1	82	
95134 1 95134 1	44000	28.5358 28.5358	80.5747	6 12 317	2.9	85	
95134 1		28.5358	80.5747	54 319	4.1	83	
95134 1 95134 1 95134 1	44000	28.6141 28.6141 28.6141	80.6203 80.6203 80.6203	6 12 335 54 330	4.1 6.0	85 83	
95134 1	44000	28.4048	80.6519	6		86	75
95134 1 95134 1		28.4048 28.4600	80.6519 80.5711	54 292 6	6.0	0.4	
95134 1 95134 1 95134 1	44000	28.4600 28.4600 28.4600	80.5711 80.5711	12 301 54 303	2.9 5.1	84 83	
95134 1	44000	28.6027	80.6414	6		86	
95134 1 95134 1		28.6027 28.6027	80.6414 80.6414	12 297 54 290	2.9	84	

DAY TIME 95134 144000	LAT 28.6105	LON 80.6069	Z DIR	SPD	T	TD 77
95134 144000	28.6105	80.6069	60 316	8.0	85	,,
95134 144000 95134 144000	28.6057 28.6057	80.6016 80.6016	6 60 317	5.1	86 84	77
95134 144000 95134 144000	28.6294 28.6294	80.6235 80.6235	6 60 334	8.9	83	75
95134 144000 95134 144000	28.6248 28.6248	80.6182 80.6182	6 60 336	8.9	84 83	75
95134 144000 95134 144000	28.4586 28.4586	80.5923 80.5923	6 12 313	5.1	84	
95134 144000	28.4586	80.5923	54 303	6.0	83	
95134 144000 95134 144000	28.6062 28.6062	80.6739 80.6739	6 12 290	1.9	85	
95134 144000	28.6062	80.6739	54 311	6.0	84	
95134 144000 95134 144000	28.6586 28.6586	80.6998 80.6998	6 12 293	2.9	85	
95134 144000	28.6586	80.6998	54 303	4.1	85	
95134 144000 95134 144000	28.7055 28.7055	80.7265 80.7265	6 54 286	2.9	86	75
95134 144000 95134 144000	28.7755 28.7755	80.8043 80.8043	6 54 289	7.0	85	74
95134 144000 95134 144000	28.5158 28.5158	80.6400 80.6400	6 12 318	4.1	84	
95134 144000	28.5158	80.6400	54 311	4.1	83	
95134 144000 95134 144000	28.5623 28.5623	80.6694 80.6694	6 12 269	4.1	85	
95134 144000	28.5623	80.6694	54 281	4.1	83	
95134 144000 95134 144000	28.5986 28.5986	80.6817 80.6817	6 30 315	6.0		
95134 144000 95134 144000	28.6160 28.6160	80.6930 80.6930	6 30 313	6.0	87	76
95134 144000	28.6307	80.7027	6			
95134 144000	28.6307	80.7027	30 307	7.0		
95134 144000 95134 144000	28.6431 28.6431	80.7482 80.7482	6 12 326	1.9	85	
95134 144000	28.6431	80.7482	54 304	4.1	83	
95134 144000 95134 144000	28.4632 28.4632	80.6702 80.6702	6 12 313	1.9	86	
95134 144000	28.4632	80.6702	54 300	2.9	85	
95134 144000 95134 144000	28.5184 28.5184	80.6962 80.6962	6 12 290	4.1	84	
95134 144000	28.5184	80.6962	54 292	5.1	83	

	TIME 144000 144000	LAT 28.7464 28.7464	LON 80.8707 80.8707	Z DII 6 54 280		T 87	TD 73
	144000 144000	28.4079 28.4079	80.7604 80.7604	6 54			
	144000 144000	28.5272 28.5272	80.7742 80.7742	6 5 4 309	7.0	86	75
	144000 144000	28.6056 28.6056	80.8248 80.8248	6 54			
	144000 144000		80.5864	6		86	79
95134	144000 144000 144000	28.5697 28.5697	80.5864 80.5864 80.5864	12 312 54 318 162 315	7.0	84	
	144000	28.5697	80.5864	204 312		83	
	144000 144000	28.5697 28.5697	80.5864 80.5864	6 12 312	2.9	86	79
	144000 144000	28.5697 28.5697	80.5864 80.5864	54 312 162 311		84	
	144000	28.5697	80.5864	204 309		83	
	144000 144000	28.4843 28.4843	80.7856 80.7856	6 54 317	5.1	88	74
95134	144000	28.6445	80.9034	6			
	144000	28.4114	80.9284	6		88	76
95134	144000	28.4114	80.9284	54 310	5.1		
95134	144000	28.4475	80.8538	6			
	144000 144000	28.4960 28.4960	80.8843 80.8843	6 54			
95134	144000	28.5583	80.9132	6			
	144000 144000	28.6173 28.6173	80.9581 80.9581	6 54 305	5.1	87	73
	144000 144000	28.6762 28.6762	80.9987 80.9987	6 54 322	6.0	87	74
	144000 144000	28.5231 28.5231	81.0100 81.0100	6 54 274	5.1	87	72
	144000 144000	28.6489 28.6489	81.0693 81.0693	6 54 313	7.0	93	62
	144000 144000	28.4417 28.4417	81.0291 81.0291	6 54 297	5.1	88	73

DAY	TIME	LAT	LON	Z	DIR	SPD	T	TD
95134	144000	28.6256	80.6571	6			86	75
95134	144000	28.6256	80.6571	12	319	4.1		
95134	144000	28.6256	80.6571	54	312	5.1	84	
95134	144000	28.6256	80.6571	162	307	7.0		
95134	144000	28.6256	80.6571	204	309	7.0	83	
95134	144000	28.6256	80.6571	295	311	7.0		
95134	144000	28.6256	80.6571	394	313	8.0		
95134	144000	28.6256	80.6571	492	308	8.0	81	
95134	144000	28.6256	80.6571	6			86	78
95134	144000	28.6256	80.6571	12	327	4.1		
95134	144000	28.6256	80.6571	54	319	5.1	85	
95134	144000	28.6256	80.6571	162	313	7.0		
95134	144000	28.6256	80.6571	204	316	7.0	83	
95134	144000	28.6256	80.6571	295	316	7.0		
95134	144000	28.6256	80.6571	394	324	8.0		
95134	144000	28.6256	80.6571	492	321	8.0	81	
95134	144000	28.3932	80.8211	6			87	74
95134	144000	28.3932	80.8211	54	308	6.0		
95134	144000	28.3382	80.7321	6			91	78
95134	144000	28.3382	80.7321	54	302	5.1		

METEOROLOGICAL TOWER DATA AT 14:55:00 ZULU TIME (T + 1 hour and 10 minutes)

	145500			6	DIR	SPD	T 86	TD
	145500 145500	28.4338 28.4338			307 310		84	
95134	145500 145500	28.4598 28.4598			293		85	
95134	145500	28.4598	80.5267	54	288	5.1	83	
95134	145500	28.4466	80.5652	6				
	145500 145500	28.7435 28.7435	80.7005 80.7005	6 54	11	6.0	84	78
	145500 145500	28.7975 28.7975	80.7378 80.7378	6 54	33	4.1	84	78
	145500 145500	28.4721 28.4721	80.5393 80.5393	6 90	315	5.1		
	145500 145500	28.5622 28.5622	80.5785 80.5785	6 54	329	4.1		
	145500 145500	28.5836 28.5836	80.5842 80.5842	6 54	356	6.0		
	145500	28.5130	80.5613	6	222	1 0	86	79
95134		28.5130 28.5130 28.5130		54	330 342	1.9 4.1 6.0	85	
	145500	28.5130	80.5613	162 204		7.0	83	
	145500 145500	28.5130 28.5130		6	326	1.9	86	77
95134	145500	28.5130	80.5613	54	333	4.1	85	
	145500 145500	28.5130 28.5130	80.5613 80.5613	162 204		7.0 6.0	83	
	145500 145500	28.5358 28.5358	80.5747 80.5747	6	312	2.9	86	
	145500	28.5358	80.5747		309	4.1	84	
	145500	28.6141	80.6203	6	0.7		84	
95134 95134	145500 145500	28.6141 28.6141	80.6203 80.6203	12 54	27 13	5.1 8.0	83	
95134 95134	145500 145500	28.4048 28.4048	80.6519 80.6519	6 54	316	7.0	86	76
95134 95134	145500 145500	28.4600 28.4600	80.5711 80.5711	6 12	340	2.9	86	
95134	145500	28.4600	80.5711		331	5.1	84	
95134 95134	145500 145500	28.6027 28.6027	80.6414 80.6414	6 12	303	4.1	86	
95134	145500	28.6027	80.6414		303	5.1	85	

DAY 95134	TIME 145500	LAT 28.6105	LON 80.6069	Z DIR	SPD	T	TD 77
95134		28.6105	80.6069	60 349	8.9	83	
	145500 145500	28.6057 28.6057	80.6016 80.6016	6 60 5	8.0	84 82	77
95134 95134	145500 145500	28.6294 28.6294	80.6235 80.6235	6 60 12	8.0	82	75
	145500 145500	28.6248 28.6248	80.6182 80.6182	6 60 6	8.9	83 82	76
	145500 145500	28.4586 28.4586	80.5923 80.5923	6 12 330	5.1	85	
	145500	28.4586	80.5923	54 316	6.0	83	
	145500 145500	28.6062 28.6062	80.6739 80.6739	6 12 282	1.9	86	
	145500	28.6062	80.6739	54 304	5.1	84	
95134	145500 145500	28.6586 28.6586	80.6998 80.6998	6 12 309	2.9	85	
	145500	28.6586	80.6998	54 318	4.1	86	
	145500 145500	28.7055 28.7055	80.7265 80.7265	6 54 310	2.9	87	75
	145500 145500	28.7755 28.7755	80.8043 80.8043	6 54			
	145500 145500	28.5158 28.5158	80.6400 80.6400	6 12 320	4.1	85	
	145500	28.5158	80.6400	54 311	4.1	84	
	145500 145500	28.5623 28.5623	80.6694 80.6694	6 12 273	2.9	85	
95134	145500	28.5623	80.6694	54 280	5.1	83	
	145500 145500	28.5986 28.5986	80.6817 80.6817	6 30 311	7.0		
	145500 145500	28.6160 28.6160	80.6930 80.6930	6 30 293	5.1	87	76
	145500 145500	28.6307 28.6307	80.7027 80.7027	6 30 319	6.0		
	145500	28.6431	80.7482	6		86	
	145500 145500	28.6431 28.6431	80.7482 80.7482	12 334 54 312	1.9 2.9	84	
	145500 145500	28.4632	80.6702	6	1.0	86	
	145500	28.4632 28.4632	80.6702 80.6702	12 313 54 313	1.9 2.9	85	
	145500 145500	28.5184 28.5184	80.6962 80.6962	6 12 312	4.1	84	
	145500	28.5184	80.6962	54 315	6.0	83	

DAY 95134	TIME 145500	LAT 28.7464	LON 80.8707	z 6	DIR	SPD	T 87	TD 73
	145500	28.7464	80.8707		297	5.1	0,	, 0
	145500 145500	28.4079 28.4079	80.7604 80.7604	6 54				
	145500 145500	28.5272 28.5272	80.7742 80.7742	6 54	332	7.0	87	75
	145500 145500	28.6056 28.6056	80.8248 80.8248	6 54				
	145500 145500			6 12	323	4.1	87	79
95134	145500 145500		80.5864 80.5864	54	339 335		85	
	145500	28.5697	80.5864		332	7.0	83	
	145500 145500	28.5697 28.5697	80.5864 80.5864	6 12	323	2.9	87	79
95134	145500 145500	28.5697 28.5697	80.5864 80.5864	54	333 333	6.0 7.0	84	
	145500	28.5697	80.5864		333	6.0	83	
	145500 145500		80.7856 80.7856	6 54	294	6.0	89	74
95134	145500	28.6445	80.9034	6				
	145500 145500	28.4114 28.4114	80.9284 80.9284	6 54	312	6.0	89	76
	145500	28.4475	80.8538	6	012			
95134	145500	28.4960	80.8843	6				
95134	145500	28.4960	80.8843	54				
95134	145500	28.5583	80.9132	6				
	145500 145500	28.6173 28.6173	80.9581 80.9581	6 54				
	145500 145500	28.6762 28.6762	80.9987 80.9987	6 54	291	6.0	89	74
	145500 145500	28.5231 28.5231	81.0100 81.0100	6 54	308	5.1	87	72
	145500 145500	28.6489 28.6489	81.0693 81.0693	6 54	304	7.0	91	61
	145500 145500	28.4417 28.4417	81.0291 81.0291	6 54	271	6.0	89	73

DAY	TIME	LAT	LON	Z	DIR	SPD	T	TD
95134	145500	28.6256	80.6571	6			86	75
95134	145500	28.6256	80.6571	12	318	4.1		
95134	145500	28.6256	80.6571	54	324	8.0	85	
95134	145500	28.6256	80.6571	162	317	8.9		
95134	145500	28.6256	80.6571	204	317	8.9	83	
95134	145500	28.6256	80.6571	295	320	8.9		
95134	145500	28.6256	80.6571	394	317	8.9		
95134	145500	28.6256	80.6571	492	314	8.9	81	
95134	145500	28.6256	80.6571	6			87	77
95134	145500	28.6256	80.6571	12	326	4.1		
95134	145500	28.6256	80.6571	54	328	7.0	85	
95134	145500	28.6256	80.6571	162	323	8.9		
95134	145500	28.6256	80.6571	204	327	8.9	83	
95134	145500	28.6256	80.6571	295	324	8.9		
95134	145500	28.6256	80.6571	394	328	8.9		
95134	145500	28.6256	80.6571	492	324	8.9	81	
95134	145500	28.3932	80.8211	6			88	74
95134	145500	28.3932	80.8211	54	292	5.1		
95134	145500	28.3382	80.7321	6			92	78
95134	145500	28.3382	80.7321	54	298	4.1		

METEOROLOGICAL TOWER DATA AT 15:10:00 ZULU TIME (T + 1 hour and 25 minutes)

DAY 95134	TIME 151000	LAT 28.4338	LON 80.5734	z 6	DIR	SPD	T 86	TD
	151000 151000	28.4338 28.4338	80.5734 80.5734		287 300		85	
95134	151000 151000	28.4598 28.4598			304		86	
95134	151000	28.4598	80.5267	54	294	6.0	84	
95134	151000	28.4466	80.5652	6				
	151000 151000	28.7435 28.7435		6 54	29	6.0	83	78
	151000 151000	28.7975 28.7975	80.7378 80.7378	6 54	47	5.1	86	78
	151000 151000	28.4721 28.4721	80.5393 80.5393	6 90	320	7.0		
95134	151000	28.5622	80.5785	6				
95134	151000	28.5622	80.5785	54	7	6.0		
	151000 151000	28.5836 28.5836	80.5842 80.5842	6 54	3	6.0		
	151000	28.5130		6			86	80
	151000 151000	28.5130 28.5130	80.5613 80.5613	12 54		2.9 5.1	84	
95134	151000	28.5130	80.5613	162	25	6.0	00	
95134	151000	28.5130	80.5613	204	25	7.0	82	
	151000 151000	28.5130 28.5130	80.5613 80.5613	6 12	38	4.1	85	77
	151000	28.5130	80.5613	54	18	5.1	84	
	151000 151000	28.5130 28.5130	80.5613 80.5613	162 204	18 15	6.0 7.0	82	
	151000	28.5358	80.5747	6			86	
	151000 151000	28.5358 28.5358	80.5747 80.5747		310 309	2.9 2.9	84	
95134	151000	28.6141	80.6203	6			84	
	151000 151000	28.6141 28.6141	80.6203 80.6203	12 54	29 13	5.1 8.0	82	
		28.4048			10		87	76
	151000 151000	28.4048	80.6519 80.6519	б 54	319	7.0	87	76
	151000	28.4600	80.5711	6	246	2 0	86	
	151000 151000	28.4600 28.4600	80.5711 80.5711		346 331	2.9 6.0	84	
	151000	28.6027	80.6414	6	200	0 0	86	
	151000 151000	28.6027 28.6027	80.6414 80.6414		300 298	2.9 4.1	85	

DAY 95134	TIME 151000	LAT 28.6105	LON 80.6069	Z DIR	SPD	Ŧ	TD 76
95134	151000	28.6105	80.6069	60 355	8.0	83	
	151000 151000	28.6057 28.6057	80.6016 80.6016	6 60 11	8.0	83 82	76
	151000 151000	28.6294 28.6294	80.6235 80.6235	6 60 16	8.0	82	75
	151000 151000	28.6248 28.6248	80.6182 80.6182	6 60 12	8.9	83 82	75
	151000 151000	28.4586	80.5923	6	4 1	85	
	151000	28.4586 28.4586	80.5923 80.5923	12 316 54 306	4.1 5.1	84	
	151000 151000	28.6062 28.6062	80.6739 80.6739	6 12 331	1.0	87	
	151000	28.6062	80.6739	54 330	4.1	85	
	151000 151000	28.6586 28.6586	80.6998 80.6998	6 12 337	4.1	86	
	151000	28.6586	80.6998	54 338	5.1	87	
	151000 151000	28.7055 28.7055	80.7265 80.7265	6 54 13	1.0	86	76
	151000 151000	28.7755 28.7755	80.8043 80.8043	6 54 289	6.0	87	75
	151000	28.5158	80.6400	6		86	
	151000 151000	28.5158 28.5158	80.6400 80.6400	12 308 54 307	4.1 5.1	84	
	151000	28.5623	80.6694	6	2.9	86	
	151000 151000	28.5623 28.5623	80.6694 80.6694	12 265 54 266	4.1	84	
	151000 151000	28.5986 28.5986	80.6817 80.6817	6 30 319	5.1		
	151000 151000	28.6160 28.6160	80.6930 80.6930	6 30 301	5.1	88	75
	151000 151000	28.6307 28.6307	80.7027 80.7027	6 30 302	6.0		
95134 95134	151000 151000	28.6431 28.6431	80.7482 80.7482	6 12 324	1.9	87	
95134	151000	28.6431	80.7482	54 312	4.1	84	
95134 95134	151000 151000	28.4632 28.4632	80.6702 80.6702	6	1 0	87	
95134	151000	28.4632	80.6702	12 340 54 319	1.9 2.9	85	
95134	151000 151000	28.5184 28.5184	80.6962 80.6962	6	2 0	85	
95134		28.5184	80.6962	12 288 54 290	2.9 4.1	84	

DAY	TIME 151000	LAT 28.7464	LON 80.8707	z 6	DIR	SPD	T 88	TD 74
	151000	28.7464	80.8707		299	6.0	00	, 1
	151000 151000	28.4079 28.4079	80.7604 80.7604	6 54				
	151000 151000	28.5272 28.5272	80.7742 80.7742	6 54	332	2.9	87	74
	151000 151000	28.6056 28.6056	80.8248 80.8248	6 54				
	151000 151000	28.5697 28.5697	80.5864 80.5864	6 12	7	1.9	87	80
95134	151000 151000	28.5697 28.5697	80.5864 80.5864	54 162	11 4	8.0	84	
	151000	28.5697	80.5864	204	i	8.0	83	
	151000 151000	28.5697 28.5697	80.5864 80.5864	6 12	9	2.9	87	81
95134	151000 151000	28.5697	80.5864 80.5864	54 162		7.0 8.0	84	
	151000	28.5697	80.5864	204		8.0	82	
	151000 151000	28.4843 28.4843	80.7856 80.7856	6 54	324	1.0	90	75
95134	151000	28.6445	80.9034	6				
	151000 151000	28.4114 28.4114	80.9284 80.9284	6 54	293	4.1	89	76
95134	151000	28.4475	80.8538	6				
	151000 151000	28.4960 28.4960	80.8843 80.8843	6 54				
95134	151000	28.5583	80.9132	6				
	151000 151000	28.6173 28.6173	80.9581 80.9581	6 54	274	5.1	88	74
	151000 151000	28.6762 28.6762	80.9987 80.9987	6 54	288	8.9	90	72
	151000 151000	28.5231 28.5231	81.0100 81.0100	6 54				
	151000 151000	28.6489 28.6489	81.0693 81.0693	6 54	301	8.0	84	28
	151000 151000	28.4417 28.4417	81.0291 81.0291	6 54	298	6.0	89	73

DAY	TIME	LAT	LON	Z	DIR	SPD	T	TD
95134	151000	28.6256	80.6571	6			86	76
95134	151000	28.6256	80.6571	12	357	5.1		
95134	151000	28.6256	80.6571	54	358	6.0	84	
95134	151000	28.6256	80.6571	162	351	6.0		
95134	151000	28.6256	80.6571	204	352	6.0	84	
95134	151000	28.6256	80.6571	295	349	6.0		
95134	151000	28.6256	80.6571	394	343	6.0		
95134	151000	28.6256	80.6571	492	334	6.0	81	
95134	151000	28.6256	80.6571	6			86	78
95134	151000	28.6256	80.6571	12	4	5.1		
95134	151000	28.6256	80.6571	54	359	6.0	85	
95134	151000	28.6256	80.6571	162	355	7.0		
95134	151000	28.6256	80.6571	204	359	6.0	83	
95134	151000	28.6256	80.6571	295	352	6.0		
95134	151000	28.6256	80.6571	394	352	6.0		
95134	151000	28.6256	80.6571	492	344	6.0	81	
95134	151000	28.3932	80.8211	6			88	73
95134	151000	28.3932	80.8211	54	261	7.0		
95134	151000	28.3382	80.7321	6			92	78
95134	151000	28.3382	80.7321	54	305	6.0		

METEOROLOGICAL TOWER DATA AT 15:30:00 ZULU TIME (T + 1 hour and 45 minutes)

	153000		LON 80.5734	6		SPD	T 87	TD
	153000 153000	28.4338 28.4338	80.5734 80.5734		286 298	1.9 4.1	86	
95134	153000 153000 153000	28.4598 28.4598 28.4598	80.5267 80.5267	6 12	25		83	
	153000	28.4466	80.5267 80.5652	54 6		8.0	80	
	153000 153000	28.7435 28.7435	80.7005 80.7005	6 54		7.0	84	78
95134	153000 153000	28.7975 28.7975	80.7378 80.7378	6 54		5.1	87	78
	153000 153000	28.4721 28.4721	80.5393 80.5393	6 90		7.0		
	153000 153000	28.5622 28.5622	80.5785 80.5785	6 54	20	6.0		
	153000 153000	28.5836 28.5836	80.5842 80.5842	6 54	9	6.0		
95134	153000 153000 153000	28.5130 28.5130 28.5130	80.5613 80.5613 80.5613	6. 12 54		5.1 8.0	84 83	79
	153000 153000	28.5130 28.5130	80.5613 80.5613	162 204	22	8.9 9.9	81	
95134	153000 153000	28.5130 28.5130	80.5613 80.5613	6 12	30	5.1	84	77
95134	153000 153000 153000	28.5130 28.5130 28.5130	80.5613 80.5613 80.5613	54 162 204		7.0 8.9 8.9	83 81	
95134	153000 153000	28.5358 28.5358	80.5747 80.5747	6 12	9	2.9	86	
	153000	28.5358	80.5747	54	9	6.0	84	
95134	153000 153000 153000	28.6141 28.6141 28.6141	80.6203 80.6203 80.6203	6 12 54	37 17	6.0 7.0	84 82	
	153000 153000	28.4048 28.4048	80.6519 80.6519	6 54	316	6.0	89	75
	153000 153000	28.4600 28.4600	80.5711 80.5711	6 12	322	1.9	86	
	153000	28.4600	80.5711		323	5.1	85	
95134	153000 153000 153000	28.6027 28.6027 28.6027	80.6414 80.6414 80.6414		340 345	2.9 4.1	86 85	

DAY	TIME 153000	LAT 28.6105	LON 80.6069		OIR	SPD	T	TD
95134	153000	28.6105	80.6069	6 60	1	8.0	83	76
	153000 153000	28.6057 28.6057	80.6016 80.6016	6 60	15	8.0	84 82	76
	153000 153000	28.6294 28.6294	80.6235 80.6235	6 60	25	8.0	82	75
	153000 153000	28.6248 28.6248	80.6182 80.6182	6 60	13	8.0	84 83	75
	153000 153000	28.4586 28.4586	80.5923 80.5923	6 12 3	322	4.1	87	
	153000	28.4586	80.5923	54 3		5.1	85	
	153000 153000	28.6062 28.6062	80.6739 80.6739	6 12 3	303	1.9	87	
	153000	28.6062	80.6739	54 3		5.1	85	
	153000 153000	28.6586 28.6586	80.6998 80.6998	6 12 3	313	2.9	87	
	153000	28.6586	80.6998	54 3		4.1	88	
	153000 153000	28.7055 28.7055	80.7265 80.7265	6 54	37	1.9	87	77
95134 95134	153000 153000	28.7755 28.7755	80.8043 80.8043	6 54 2	272	5.1	87	75
	153000 153000	28.5158 28.5158	80.6400 80.6400	6 12 2	986	2.9	86	
95134	153000	28.5158	80.6400	54 2		5.1	85	
	153000 153000	28.5623 28.5623	80.6694 80.6694	6 12 2) 7 7	2.9	87	
	153000	28.5623	80.6694	54 2		4.1	85	
95134 95134	153000 153000	28.5986 28.5986	80.6817 80.6817	6 30 3	316	5.1		
95134 95134	153000 153000	28.6160 28.6160	80.6930 80.6930	6 30 3	331	5.1	90	75
	153000 153000	28.6307 28.6307	80.7027 80.7027	6 30 2	285	5.1		
	153000 153000	28.6431 28.6431	80.7482 80.7482	6 12 2	96	1.9	88	
	153000	28.6431	80.7482	54 2		4.1	85	
	153000 153000	28.4632 28.4632	80.6702 80.6702	6 12 3	110	2.9	87	
	153000	28.4632	80.6702	54 3		4.1	86	
	153000 153000	28.5184 28.5184	80.6962 80.6962	6 12 3	24.4	1.9	85	
	153000	28.5184	80.6962	54 3		2.9	84	

DAY	TIME 153000	LAT 28.7464	LON 80.8707	z 6	DIR	SPD	T 88	TD 74
	153000	28.7464	80.8707		260	5.1	00	/ 1
	153000 153000	28.4079 28.4079	80.7604 80.7604	6 54				
	153000 153000	28.5272 28.5272	80.7742 80.7742	6 54	23	6.0	88	78
	153000 153000	28.6056 28.6056	80.8248 80.8248	6 54				
	153000 153000	28.5697 28.5697	80.5864 80.5864	6 12	12	2.9	86	79
95134	153000 153000	28.5697 28.5697	80.5864 80.5864	54 162	13 15	8.0 8.9	84	
	153000	28.5697	80.5864	204	13	8.9	83	
	153000 153000	28.5697 28.5697	80.5864 80.5864	6 12	13	2.9	86	80
	153000 153000	28.5697 28.5697	80.5864 80.5864	54	9	8.0 8.9	83	
	153000	28.5697	80.5864	162 204	12 12	8.9	82	
	153000 153000	28.4843 28.4843	80.7856 80.7856	6 54	290	5.1	91	74
	153000	28.6445	80.9034	6	290	J.1		
05121	153000		80.9284	6			89	75
	153000	28.4114	80.9284		310	4.1	0.5	13
95134	153000	28.4475	80.8538	6				
	153000 153000	28.4960 28.4960	80.8843 80.8843	6 54				
95134	153000	28.5583	80.9132	6				
95134	153000	28.6173	80.9581	6			89	73
95134	153000	28.6173	80.9581	54	287	6.0		
	153000 153000	28.6762 28.6762	80.9987 80.9987	6 54	285	7.0	90	73
	153000 153000	28.5231 28.5231	81.0100 81.0100	6 54	260	7.0	88	72
		28.6489		6			91	
	153000		81.0693		287	5.1		
	153000 153000	28.4417 28.4417	81.0291 81.0291	6 54	292	6.0	90	72
4			J	- - 1		J. U		

DAY	TIME	LAT	LON	Z	DIR	SPD	T	TD
95134	153000	28.6256	80.6571	6			86	76
95134	153000	28.6256	80.6571	12	11	2.9		
95134	153000	28.6256	80.6571	54	20	4.1	85	
95134	153000	28.6256	80.6571	162	9	5.1		
95134	153000	28.6256	80.6571	204	4	5.1	83	
95134	153000	28.6256	80.6571	295	357	6.0		
95134	153000	28.6256	80.6571	394	350	6.0		
95134	153000	28.6256	80.6571	492	342	7.0	82	-
95134	153000	28.6256	80.6571	6			87	78
95134	153000	28.6256	80.6571	12	13	2.9		
95134	153000	28.6256	80.6571	54	17	4.1	85	
95134	153000	28.6256	80.6571	162	11	5.1		
95134	153000	28.6256	80.6571	204	8	5.1	83	
95134	153000	28.6256	80.6571	295	359	6.0		
95134	153000	28.6256	80.6571	394	359	6.0		
95134	153000	28.6256	80.6571	492	351	7.0	81	
95134	153000	28.3932	80.8211	6			89	73
95134	153000	28.3932	80.8211	54	287	7.0		
95134	153000	28.3382	80.7321	6			93	77
95134	153000	28.3382	80.7321	54	270	5.1		

METEOROLOGICAL TOWER DATA AT 16:00:00 ZULU TIME (T + 2 hours and 15 minutes)

DAY 95134	TIME 160000	LAT 28.4338	LON 80.5734	z 6	DIR	SPD	T 89	TD
	160000 160000	28.4338 28.4338	80.5734 80.5734	12 54	0 3 4 5	1.9 2.9	87	
	160000 160000	28.4598 28.4598	80.5267 80.5267	6 12		6.0	83	
95134	160000	28.4598	80.5267	54	28	8.9	79	
95134	160000	28.4466	80.5652	6				
	160000 160000	28.7435 28.7435	80.7005 80.7005	6 54		6.0	87	79
	160000 160000	28.7975 28.7975	80.7378 80.7378	6 54	62	8.0	87	78
	160000 160000	28.4721 28.4721	80.5393 80.5393	6 90	27	6.0		
	160000 160000	28.5622 28.5622	80.5785 80.5785	6 54	30	6.0		
	160000 160000	28.5836 28.5836	80.5842 80.5842	6 54	23	6.0		
	160000	28.5130	80.5613	6			84	79
	160000 160000	28.5130 28.5130	80.5613 80.5613	12 54	46 37	4.1 6.0	83	
95134	160000	28.5130	80.5613	162	35	8.0		
95134	160000	28.5130	80.5613	204	34	8.9	81	
	160000	28.5130	80.5613	6			84	77
	160000 160000	28.5130 28.5130	80.5613 80.5613	12 54	41 31	5.1 6.0	83	
	160000 160000	28.5130 28.5130	80.5613 80.5613	162 204	28 24	8.0 8.9	80	
	160000	28.5358	80.5747	6			85	
95134 95134	160000 160000	28.5358 28.5358	80.5747	12 54	40 35	2.9		
			80.5747		33	6.0	83	
95134 95134	160000 160000	28.6141 28.6141	80.6203 80.6203	6 12	38	6.0	84	
95134	160000	28.6141	80.6203	54	28	8.0	82	
95134 95134	160000 160000	28.4048 28.4048	80.6519 80.6519	6 54	317	1.9	90	74
95134	160000	28.4600	80.5711	6			88	
95134 95134	160000 160000	28.4600 28.4600	80.5711 80.5711		336 331	1.9 1.9	86	
95134	160000	28.6027	80.6414	6			85	
95134 95134	160000 160000	28.6027 28.6027	80.6414 80.6414	12 54	31 26	$\begin{array}{c} 1.0 \\ 1.9 \end{array}$	85	

DAY	TIME 160000	LAT 28.6105	LON	Z DIR	SPD	T	TD
95134		28.6105	80.6069 80.6069	6 60 19	8.0	83	77
95134 95134	160000 160000	28.6057 28.6057	80.6016 80.6016	6 60 29	8.0	84 83	76
95134 95134		28.6294 28.6294	80.6235 80.6235	6 60 33	7.0	83	75
	160000 160000	28.6248 28.6248	80.6182 80.6182	6 60 31	7.0	84 83	75
95134	160000 160000 160000	28.4586 28.4586 28.4586	80.5923 80.5923 80.5923	6 12 352 54 347	4.1 4.1	87 85	
95134	160000 160000	28.6062	80.6739 80.6739	6 12 327	1.0	87	
95134 95134	160000 160000	28.6586 28.6586	80.6739 80.6998 80.6998	54 317 6 12 44	2.9	86 88	
95134		28.6586	80.6998	54 43	5.1	88	
	160000 160000	28.7055 28.7055	80.7265 80.7265	6 54 55	2.9	86	76
95134 95134	160000 160000	28.7755 28.7755	80.8043 80.8043	6 54 256	2.9	93	76
95134	160000 160000 160000	28.5158 28.5158 28.5158	80.6400 80.6400 80.6400	6 12 264 54 267	2.9 5.1	87 86	
95134	160000 160000 160000	28.5623 28.5623 28.5623	80.6694 80.6694 80.6694	6 12 287 54 287	2.9 5.1	88 86	
	160000 160000	28.5986 28.5986	80.6817 80.6817	6 30 297	4.1		
95134 95134	160000 160000	28.6160 28.6160	80.6930 80.6930	6 30 258	5.1	89	73
95134 95134	160000 160000	28.6307 28.6307	80.7027 80.7027	6 30 304	5.1		
95134 95134 95134	160000 160000 160000	28.6431 28.6431 28.6431	80.7482 80.7482 80.7482	6 12 297 54 289	1.9 4.1	89 86	
95134 95134	160000 160000	28.4632 28.4632	80.6702 80.6702	6 12 352	1.9	89	
	160000	28.4632	80.6702	54 329	4.1	87	

DAY 95134	TIME 160000	LAT 28.5184	LON 80.6962	z 6	DIR	SPD	T 87	TD
	160000 160000	28.5184 28.5184	80.6962 80.6962	12 54	6 7	1.9 2.9	87	
	160000 160000	28.7464 28.7464	80.8707 80.8707	6 54	267	4.1	89	73
	160000 160000	28.4079 28.4079	80.7604 80.7604	6 54				
	160000 160000	28.5272 28.5272	80.7742 80.7742	6 54	41	6.0	87	77
	160000 160000	28.6056 28.6056	80.8248 80.8248	6 54				
95134 95134	160000 160000 160000	28.5697 28.5697 28.5697	80.5864 80.5864 80.5864	6 12 54	39 30	2.9 7.0	86 84	79
95134 95134	160000 160000	28.5697 28.5697	80.5864 80.5864	162 204	22 19	8.0 8.0	83	
95134	160000 160000 160000	28.5697 28.5697 28.5697	80.5864 80.5864 80.5864	6 12 54	39 26	4.1 7.0	86 84	79
	160000 160000	28.5697 28.5697	80.5864 80.5864	162 204	20 18	8.0 8.0	82	
	160000 160000	28.4843 28.4843	80.7856 80.7856	6 54	268	5.1	92	75
95134	160000	28.6445	80.9034	6				
	160000 160000	28.4114 28.4114	80.9284 80.9284	6 54	271	6.0	90	76
95134	160000	28.4475	80.8538	6				
	160000 160000	28.4960 28.4960	80.8843 80.8843	6 54				
95134	160000	28.5583	80.9132	6				
	160000 160000	28.6173 28.6173	80.9581 80.9581	6 54				
	160000 160000	28.6762 28.6762	80.9987 80.9987	6 54	269	7.0	91	73
	160000 160000	28.5231 28.5231	81.0100 81.0100	6 54	272	7.0	89	71
	160000 160000	28.6489 28.6489		6 54	270	4.1	94	63
	160000 160000	28.4417 28.4417	81.0291 81.0291	6 54	288	5.1	91	72

DAY	TIME	LAT	LON	Z	DIR	SPD	T	TD
95134	160000	28.6256	80.6571	6			88	76
95134	160000	28.6256	80.6571	12	7	4.1		
95134	160000	28.6256	80.6571	54	15	5.1	86	
95134	160000	28.6256	80.6571	162	17	5.1		
95134	160000	28.6256	80.6571	204	15	5.1	85	
95134	160000	28.6256	80.6571	295	17	5.1		
95134	160000	28.6256	80.6571	394	11	5.1		
95134	160000	28.6256	80.6571	492	4	5.1	83	
95134	160000	28.6256	80.6571	6			88	78
95134	160000	28.6256	80.6571	12	9	4.1		
95134	160000	28.6256	80.6571	54	14	5.1	86	
95134	160000	28.6256	80.6571	162	16	5.1		
95134	160000	28.6256	80.6571	204	17	5.1	85	
95134	160000	28.6256	80.6571	295	14	4.1		
95134	160000	28.6256	80.6571	394	13	4.1		
95134	160000	28.6256	80.6571	492	3	4.1	83	
95134	160000	28.3932	80.8211	6				
95134	160000	28.3932	80.8211	54				
								,
95134	160000	28.3382	80.7321	6			94	77
95134	160000	28.3382	80.7321	54	298	4.1		

METEOROLOGICAL TOWER DATA AT 16:30:00 ZULU TIME (T + 2 hours and 45 minutes)

DAY	TIME	LAT	LON		DIR	SPD	T	TD
	163000 163000	28.4338 28.4338	80.5734 80.5734	6 12	16	2.9	89	
	163000	28.4338	80.5734	54	21	4.1	87	
	163000	28.4598	80.5267	6	2.5	6.0	83	
	163000 163000	28.4598 28.4598	80.5267 80.5267	12 54	35 30	8.9	79	
93134	103000	20.4590	00.3207	34	30	0.9	13	
95134	163000	28.4466	80.5652	6				
95134	163000	28.7435	80.7005	6			87	79
95134	163000	28.7435	80.7005	54	77	7.0		
05134	163000	28.7975	80.7378	6			85	77
	163000	28.7975	80.7378		104	6.0	0.5	, ,
	20000	2017570	000.0.0	٠.		0.0		
	163000	28.4721	80.5393	6				
95134	163000	28.4721	80.5393	90	29	7.0		
95134	163000	28.5622	80.5785	6				
	163000	28.5622	80.5785	54	42	4.1		
	163000	28.5836	80.5842	6				
95134	163000	28.5836	80.5842	54	31	5.1		
95134	163000	28.5130	80.5613	6			84	79
	163000	28.5130	80.5613	12	51	5.1		
	163000	28.5130	80.5613	54	44	7.0	83	
	163000	28.5130	80.5613	162	40	8.0	0.1	
95134	163000	28.5130	80.5613	204	38	8.9	81	
95134	163000	28.5130	80.5613	6			84	77
95134	163000	28.5130	80.5613	12	44	5.1		
	163000	28.5130	80.5613	54	36	7.0	82	
	163000	28.5130	80.5613	162	33	8.0	0.1	
95134	163000	28.5130	80.5613	204	30	8.9	81	
95134	163000	28.5358	80.5747	6			86	
	163000	28.5358	80.5747	12	35	2.9		
95134	163000	28.5358	80.5747	54	34	5.1	84	
95134	163000	28.6141	80.6203	6			85	
95134	163000	28.6141	80.6203	12	46	5.1	00	
95134	163000	28.6141	80.6203	54	36	6.0	83	
05104	1.60000	00 4040	00 6510	_				
95134	163000 163000	28.4048 28.4048	80.6519 80.6519	6 54	57	4.1	89	76
93134	103000	20.4040	00.0519	74	37	4.1		
95134	163000	28.4600	80.5711	6			89	
95134	163000	28.4600	80.5711		357	1.9		
95134	163000	28.4600	80.5711	54	329	2.9	87	
95134	163000	28.6027	80.6414	6			87	
95134	163000	28.6027	80.6414	12	36	4.1	٠,	
95134	163000	28.6027	80.6414	54	35	6.0	85	

DAY	TIME 163000	LAT 28.6105	LON 80.6069	z 6	DIR	SPD	T	TD 76
95134	163000	28.6105	80.6069	60	23	8.0	84	70
	163000 163000	28.6057 28.6057	80.6016 80.6016	6 60	40	8.0	85 83	77
	163000 163000	28.6294 28.6294	80.6235 80.6235	6 60	42	8.0	83	75
	163000 163000	28.6248 28.6248	80.6182 80.6182	6 60		8.0	84 83	75
	163000 163000	28.4586 28.4586	80.5923 80.5923	6 12	352	5.1	89	
	163000	28.4586	80.5923		341	6.0	86	
	163000 163000	28.6062 28.6062	80.6739 80.6739	6 12	282	1.0	89	
95134		28.6062	80.6739		302	1.9	87	
95134	163000 163000	28.6586 28.6586	80.6998 80.6998	6 12		2.9	88	
	163000	28.6586	80.6998	54	38	5.1	87	
	163000 163000	28.7055 28.7055	80.7265 80.7265	6 54	64	4.1	86	77
95134 95134	163000 163000	28.7755 28.7755	80.8043 80.8043	6 54	92	4.1	89	77
	163000 163000	28.5158 28.5158	80.6400 80.6400	6 12	121	1.0	87	
95134		28.5158	80.6400		125	2.9	85	
	163000 163000	28.5623 28.5623	80.6694 80.6694	6 12	314	1.0	90	
95134	163000	28.5623	80.6694		328	2.9	87	
	163000 163000	28.5986 28.5986	80.6817 80.6817	6 30	342	4.1		
	163000 163000	28.6160 28.6160	80.6930 80.6930	6 30	318	4.1	92	73
	163000 163000	28.6307 28.6307	80.7027 80.7027	6 30	250	5.1		
	163000 163000	28.6431 28.6431	80.7482 80.7482	6	300	1.0	90	
	163000	28.6431	80.7482		295	2.9	87	
	163000 163000	28.4632 28.4632	80.6702 80.6702	6 12	353	2.9	89	
	163000	28.4632	80.6702		325	4.1	87	
	163000 163000	28.5184 28.5184	80.6962 80.6962	6 12	317	1.9	88	
	163000	28.5184	80.6962		332	2.9	87	

DAY	TIME 163000	LAT 28.7464	LON 80.8707	z 6	DIR	SPD	T	TD
	163000	28.7464	80.8707		274	5.1	90	72
	163000 163000	28.4079 28.4079	80.7604 80.7604	6 54				
	163000 163000	28.5272 28.5272	80.7742 80.7742	6 54	46	6.0	88	77
	163000 163000	28.6056 28.6056	80.8248 80.8248	6 54				
	163000 163000	28.5697 28.5697	80.5864 80.5864	6 12	29	2.9	87	78
95134	163000	28.5697	80.5864	54	30	7.0	84	
	163000 163000	28.5697 28.5697	80.5864 80.5864	162 204	32 31	7.0 7.0	83	
	163000	28.5697	80.5864	6	•		87	78
95134	163000 163000		80.5864 80.5864	12 54	29 26	2.9 6.0	84	
	163000 163000	28.5697 28.5697	80.5864 80.5864	162 204	28 30	7.0 7.0	83	
	163000		80.7856	6			92	75
95134	163000	28.4843	80.7856	54	357	1.9		
95134	163000	28.6445	80.9034	6				
95134 95134	163000 163000	28.4114 28.4114	80.9284 80.9284	6 54	256	2.9	91	75
	163000	28.4475	80.8538	6				
Q513 <i>1</i>	163000	28.4960	80.8843	6				
	163000	28.4960	80.8843	54				
95134	163000	28.5583	80.9132	6				
95134	163000	28.6173	80.9581	6			90	73
95134	163000	28.6173	80.9581	54	302	7.0		
95134 95134	163000 163000	28.6762 28.6762	80.9987 80.9987	6 54				
			81.0100		000	F 1	90	71
			81.0100	54	282	5.1		
95134 95134	163000 163000	28.6489 28.6489	81.0693 81.0693	6 54				
95134	163000	28.4417	81.0291	6			92	72
			81.0291		267	7.0	_	_

DAY	TIME	LAT	LON	Z	DIR	SPD	T	TD
95134	163000	28.6256	80.6571	6			88	75
95134	163000	28.6256	80.6571	12	36	4.1		
95134	163000	28.6256	80.6571	54	43	6.0	86	
95134	163000	28.6256	80.6571	162	38	8.0		
95134	163000	28.6256	80.6571	204	37	8.0	85	
95134	163000	28.6256	80.6571	295	33	7.0		
95134	163000	28.6256	80.6571	394	23	7.0		
95134	163000	28.6256	80.6571	492	7	7.0	83	
95134	163000	28.6256	80.6571	6			89	78
95134	163000	28.6256	80.6571	12	35	4.1		
95134	163000	28.6256	80.6571	54	40	5.1	87	
95134	163000	28.6256	80.6571	162	36	5.1		
95134	163000	28.6256	80.6571	204	39	5.1	85	
95134	163000	28.6256	80.6571	295	32	5.1		
95134	163000	28.6256	80.6571	394	27	5.1		
95134	163000	28.6256	80.6571	492	12	7.0	83	
95134	163000	28.3932	80.8211	6			91	73
95134	163000	28.3932	80.8211	54	292	4.1		
95134	163000	28.3382	80.7321	6			90	75
95134	163000	28.3382	80.7321	54	333	2.9		

METEOROLOGICAL TOWER DATA AT 17:00:00 ZULU TIME (T + 3 hours and 15 minutes)

	TIME 1 170000	LAT 28.4338	LON 80.5734	6	DIR	SPD	T 89	TD
95134 95134	170000 170000	28.4338 28.4338	80.5734 80.5734	12 54	53 53	1.9 7.0	86	
95134 95134	170000 170000	28.4598 28.4598	80.5267 80.5267	6 12	48	6.0	82	
95134	170000	28.4598	80.5267	54	44	8.9	80	
95134	170000	28.4466	80.5652	6				
95134 95134	170000 170000	28.7435 28.7435	80.7005 80.7005	6 54	62	8.9	87	78
95134 95134	170000 170000	28.7975 28.7975	80.7378 80.7378	6 54	83	7.0	86	78
95134 95134	170000 170000	28.4721 28.4721	80.5393 80.5393	6 90	45	8.9		
	170000 170000	28.5622 28.5622	80.5785 80.5785	6 54	59	5.1		
	170000 170000	28.5836 28.5836	80.5842 80.5842	6 54	39	7.0		
	170000 170000	28.5130 28.5130	80.5613 80.5613	6 12	56	5.1	85	79
95134	170000 170000	28.5130	80.5613	54	52	6.0	83	
	170000	28.5130 28.5130	80.5613 80.5613	162 204	52 52	8.0 9.9	81	
	170000	28.5130	80.5613	6			84	77
95134		28.5130 28.5130	80.5613 80.5613	12 54	53 44	4.1 6.0	83	
95134 95134	170000 170000	28.5130 28.5130	80.5613 80.5613	162 204	45 44	8.0 8.9	81	
	170000	28.5358	80.5747	6			85	
95134 95134	170000 170000	28.5358 28.5358	80.5747 80.5747	12 54	43 40	5.1 8.9	83	
95134 95134	170000 170000	28.6141 28.6141	80.6203 80.6203	6 12	51	6.0	85	
95134	170000	28.6141	80.6203	54	48	8.0	82	
95134 95134	170000 170000	28.4048 28.4048	80.6519 80.6519	6 54	62	6.0	88	77
95134 95134	170000 170000	28.4600 28.4600	80.5711 80.5711	6 12	40	E 1	89	
95134	170000	28.4600	80.5711	54	49 40	5.1 8.0	86	
95134 95134	170000 170000	28.6027 28.6027	80.6414 80.6414	6 12	66	6.0	86	
95134	170000	28.6027	80.6414	54	60	8.0	84	

DAY 95134	TIME 170000	LAT 28.6105	LON 80.6069	Z DIR	SPD	T	TD 76
95134	170000	28.6105	80.6069	60 32	9.9	83	
95134 95134	170000 170000	28.6057 28.6057	80.6016 80.6016	6 60 50	8.9	85 83	77
95134 95134	170000 170000	28.6294 28.6294	80.6235 80.6235	6 60 48	9.9	83	75
95134 95134	170000 170000	28.6248 28.6248	80.6182 80.6182	6 60 54	8.9	84 83	76
95134 95134	170000 170000	28.4586 28.4586	80.5923 80.5923	6 12 5	4.1	89	
95134	170000	28.4586	80.5923	54 360	4.1	87	
95134 95134	170000 170000	28.6062 28.6062	80.6739 80.6739	6 12 68	2.9	88	
95134	170000	28.6062	80.6739	54 49	2.9	87	
95134	170000 170000	28.6586 28.6586	80.6998 80.6998	6 12 38	4.1	87	
95134	170000	28.6586	80.6998	54 39	6.0	88	
95134 95134	170000 170000	28.7055 28.7055	80.7265 80.7265	6 54 38	2.9	87	77
95134 95134	170000 170000	28.7755 28.7755	80.8043 80.8043	6 54 72	7.0	89	78
95134	170000 170000	28.5158 28.5158	80.6400 80.6400	6 12 57	2.9	87	
95134	170000	28.5158	80.6400	12 57 54 62	6.0	85	
95134 95134	170000 170000	28.5623 28.5623	80.6694 80.6694	6 12 341	1.0	90	
95134	170000	28.5623	80.6694	54 333	2.9	88	
95134 95134	170000 170000	28.5986 28.5986	80.6817 80.6817	6 30 321	6.0		
	170000 170000	28.6160 28.6160	80.6930 80.6930	6 30 293	2.9	92	73
	170000 170000	28.6307 28.6307	80.7027 80.7027	6 30 0	2.9		
	170000 170000	28.6431 28.6431	80.7482 80.7482	6 12 338	2.9	90	
	170000	28.6431	80.7482	54 329	2.9	87	
	170000 170000	28.4632 28.4632	80.6702 80.6702	6 12 321	1.0	90	
95134	170000	28.4632	80.6702	54 307	1.9	89	
95134	170000 170000	28.5184 28.5184	80.6962 80.6962	6 12 314	1.9	89	
95134	170000	28.5184	80.6962	54 324	1.9	88	

DAY		LAT	LON		DIR	SPD	T	TD
	170000 170000	28.7464 28.7464	80.8707 80.8707	6 54	300	6.0	91	71
	170000 170000	28.4079 28.4079	80.7604 80.7604	6 54				
	170000 170000	28.5272 28.5272	80.7742 80.7742	6 54	52	5.1	88	76
	170000 170000	28.6056 28.6056	80.8248 80.8248	6 54				
	170000 170000	28.5697 28.5697	80.5864 80.5864	6 12	58	5.1	87	77
95134 95134	170000 170000 170000	28.5697 28.5697 28.5697	80.5864 80.5864 80.5864	54 162 204	56 47 40	8.9 9.9 8.9	85 83	
	170000	28.5697	80.5864	6	10	0.5	87	77
95134	170000 170000 170000	28.5697	80.5864 80.5864	12	56	4.1 8.9		, ,
95134	170000	28.5697 28.5697	80.5864	54 162	43	8.9	84	
	170000	28.5697	80.5864	204	39	8.9	83	
	170000 170000	28.4843 28.4843	80.7856 80.7856	6 54	64	5.1	91	75
95134	170000	28.6445	80.9034	6				
	170000 170000	28.4114 28.4114	80.9284 80.9284	6 54	267	5.1	92	75
95134	170000	28.4475	80.8538	6				
	170000 170000	28.4960 28.4960	80.8843 80.8843	6 54				
95134	170000	28.5583	80.9132	6				
	170000 170000	28.6173 28.6173	80.9581 80.9581	6 54				
95134 95134	170000 170000	28.6762 28.6762	80.9987 80.9987	6 54	289	8.0	93	73
95134 95134	170000 170000	28.5231 28.5231	81.0100 81.0100	6 54	291	4.1	91	72
	170000 170000	28.6489 28.6489	81.0693 81.0693	6 54				
	170000 170000	28.4417 28.4417	81.0291 81.0291	6 54	310	5.1	93	72

DAY	TIME	LAT	LON	z	DIR	SPD	T	TD
95134	170000	28.6256	80.6571	6			89	75
95134	170000	28.6256	80.6571	12	34	4.1		
95134	170000	28.6256	80.6571	54	46	6.0	87	
95134	170000	28.6256	80.6571	162	37	6.0		
95134	170000	28.6256	80.6571	204	39	6.0	85	
95134	170000	28.6256	80.6571	295	41	7.0		
95134	170000	28.6256	80.6571	394	33	7.0		
95134	170000	28.6256	80.6571	492	21	6.0	83	
95134	170000	28.6256	80.6571	6			89	78
95134	170000	28.6256	80.6571	12	37	4.1		
95134	170000	28.6256	80.6571	54	43	4.1	87	
95134	170000	28.6256	80.6571	162	38	5.1		
95134	170000	28.6256	80.6571	204	41	5.1	85	
95134	170000	28.6256	80.6571	295	40	5.1		
95134	170000	28.6256	80.6571	394	35	5.1		
95134	170000	28.6256	80.6571	492	28	5.1	83	
95134	170000	28.3932	80.8211	6			92	72
95134	170000	28.3932	80.8211	54	319	4.1		
				_	_			
95134	170000	28.3382	80.7321	6			90	75
95134	170000	28.3382	80.7321	54	58	1.9	_	_

RAWINSONDE DATA FROM PRIMARY WINDS SOURCE CAPE CANAVERAL AFS, FLORIDA 07:32 Zulu Time, 14 MAY 95 (T - 6 hours and 13 minutes)

ALT GEOMFT	DIR DEG	SPD KTS	SHR /SEC	TEMP DEG C		PRESS MBS	RH PCT	ABHUM G/M3	DENSITY G/M3	I/R N	V/S KTS	VPS MBS	PW MM
16	190	3.0	.000	24.0	22.3	1015.70	90	19 59	1178.88	379	675	26.86	0
1000		14.8	.020	25.7	17.7	981.83			1135.64				6
	208		.003	24.1	16.0	948.45	60		1103.42			18.15	10
3000	215	8.8	.008	21.6	17.8	915.99	79	14.99				20.39	14
4000	241	4.0	.009	19.4	16.7	884.41	85	14.09			669	19.03	18
5000	302	3.4	.006	16.6	15.4	853.66	93	13.13	1018.43				
6000	333	4.7	.004	14.2	13.3	823.69	94	11.53	991.66	292	663	15.29	26
7000	359	5.5	.004	12.4	11.0	794.56	91	9.98	963.30	276	661	13.15	29
8000	21	6.1	.004	10.2	8.3	766.23	88	8.37	936.98	261	658	10.94	32
9000	17	6.6	.001	10.7	.8	738.81	50	4.94	903.74	232	658	6.47	34
10000	352	7.3	.005	10.4	-4.3	712.34	35	3.41	873.06	216	657	4.47	35
11000	337	7.2	.003	8.4	-7.2	686.70	33	2.75	848.11	206	655	3.57	36
12000	338	7.1	.000	6.0	-9.3	661.78	32	2.35	824.58	198	652	3.03	37
13000	337	7.5	.001	3.9	-11.3	637.58	32	2.01	800.41	191	649	2.57	38
14000			.003	2.0	-13.0	614.10	32	1.77	776.57	184	647	2.25	38
15000			.003		-15.1	591.28	32	1.51	754.82	178	644	1.90	39
16000			.002		-17.9	569.13	30	1.20	732.99	171	641	1.49	39
17000		10.8			-20.1	547.63	29	1.00	710.60	165	639	1.24	39
18000		13.5		-6.4	-21.7	526.81	28	.87	687.57	159	637	1.08	40
19000		13.9			-23.9	506.65	28	.72	667.04	153	634	.88	40
20000				-10.1		487.14	20	.48	644.77	147	632	.58	
21000				-12.5		468.23	21	.41		142	629	.49	40
22000		13.5		-14.7		449.89	24	.40	606.17		627	.48	
23000				-16.9	_	432.13	21	.29		133	624	.35	
24000		13.4		-19.7		414.91	39	.43	570.08	130	621	.50	
25000				-22.1		398.21	35	.31		125	618	.36	
26000		12.7		-24.7		382.02	30	.22	535.52	121		.25	
27000		11.2		-27.2		366.34	25	.14				.16	
	321	11.2		-29.7		351.14	29	.13	502.36		608	.15	
29000		12.5		-31.9		336.45	29	.11	485.79		605	.12	
30000		12.9		-34.4		322.24	28	.08	470.15			.09	
31000		13.0		-36.9		308.48	28	.07	454.95	102	599	.07	41
TERMINA	TION		3217	77 GEOR	PFT S	807 GEOR	PM 2	91.6 M	IBS .				

RAWINSONDE DATA FROM PRIMARY WINDS SOURCE CAPE CANAVERAL AFS, FLORIDA 12:22 Zulu Time, 14 MAY 95 (T - 1 hour and 23 minutes)

ALT	DIR	SPD	SHR	TEMP	DPT	PRESS	RH	ABHUM	DENSITY	I/R	v/s	VPS	₽W
GEOMFT	DEG	KTS	/SEC	DEG C	DEG C	MBS	PCT	G/M3	G/M3	N	KTS	MBS	MM
16	250	5.0	.000	27.1	23.6	1016.40	81	20.97	1166.55	383	679	29.06	0
1000		9.2	.008	25.6	21.7	982.53	79	18.89	1134.34	364	677	26.04	6
2000	225	10.0	.002	24.7	19.7	949.23			1100.20				
3000	224	9.7	.001	22.5	18.4	916.86	78	15.51	1070.86	331	673	21.16	16
4000	222	7.7	.003	19.8	17.4	885.34	-86	14.67	1043.87	321	670	19.84	21
5000	230	4.6	.005	17.7	15.0	854.63	84	12.71	1015.78	303	667	17.06	25
6000	255·	2.3	.005	16.1	11.3	824.78	73	10.05	987.28	281	665	13.41	28
7000	257	1.2	.002	14.6	4.3	795.76	51	6.41	959.37	253	663	8.52	31
8000	212	1.0	.001	12.9	2.4	767.58	49	5.52	931.59	242	660	7.29	32
9000	167	.7	.001	11.1	3.3	740.23	59	5.91	903.50	238	659	7.76	34
10000	25	2.1	.005	9.9		713.71	42	3.94	875.93	220	657	5.15	36
11000	22	4.6	.004	9.2	-8.1	688.04	29	2.56	847.54	205	656	3.33	37
12000	26	6.6	.003	7.4	-10.4	663.17	27	2.14	822.21	197	653	2.77	37
13000	20	8.2	.003	5.7	-13.1	639.04	24	1.73	797.45	189	651	2.23	38
14000		9.1	.006	3.4	-15.0	615.64	25	1.50	774.62	182	649	1.91	38
15000	348	11.4	.005	1.3	-15.7	592.90	27	1.42	751.65	177	646	1.80	39
16000	355	13.6	.004	-1.1	-20.1	570.82	22	.99	730.43	169	643	1.25	39
17000	5	14.7	.005	-3.5	-23.6	549.38	19	.73	709.23	163	640	.91	39
18000	10	15.7	.003	-5.4	-23.0	528.59	23	.77	687.33	158	638	.96	40
19000	3	15.2	.003	-7.3	-24.2	508.46	24	.70	665.96	153	636	.86	40
20000	352	14.2	.005	-9.2	-25.6	488.94	25	. 62	644.84	148	634	.76	40
21000	346	14.0	.003	-11.4	-27.6	470.03	25	.52	625.29	143	631	.63	40
TERMINA	MOITA		2235	3 GEO	PT 6	813 GEO	PM 4	144.4 N	1 BS				

RAWINSONDE DATA FROM PRIMARY WINDS SOURCE CAPE CANAVERAL AFS, FLORIDA 13:27 Zulu Time, 14 MAY 95 (T - 18 minutes)

ALT	DIR	SPD	SHR	TEMP	DPT	PRESS	RH	ABHUM	DENSITY	I/R	v/s	VPS	PW
GEOMFT	DEG	KTS	/SEC	DEG C	DEG C	MBS	PCT	G/M3	G/M3	N	KTS	MBS	MM
									-				
	270	6.0	.000	29.5	23.9	1016.70	72	21.26	1157.37	382	682	29.69	0
1000		8.8	.006	26.1	22.5	982.95	81	19.75	1132.39	369	678	27.27	6
2000		9.5	.005	25.2	20.1	949.70			1098.48				
3000			.002	22.8	18.2	917.37			1070.54				
4000			.003	20.2	17.2	885.85			1043.08			19.67	21
5000			.005	18.3	14.8	855.18			1014.51			16.87	
6000			.005	17.1	11.8	825.39		10.35	984.40				
7000		2.0	.001	15.5	3.2	796.44	45	5.96	957.76			7.94	
8000			.002	13.2	4.2	768.29	54	6.26	930.99			8.28	
9000			.001	11.5	3.1	740.96	56	5.82	903.41			7.65	
10000			.005	10.3	-4.1	714.44	36	3.49	875.93			4.57	
11000			.004	9.0	-7.3	688.74	31	2.71	848.72			3.52	37
12000	11		.003	7.3	-9.5	663.84	29	2.31	823.25			2.99	
13000	24		.003		-11.6	639.66	29	1.96	800.14			2.52	
14000	17		.002		-14.7	616.16	27	1.54	778.09			1.96	
15000	6	9.7	.004		-16.5	593.34	27	1.33	754.61			1.68	
16000	2		.003		-19.2	571.19	25	1.08	732.67			1.35	
17000		12.3			-24.1	549.71	18	.70	709.45	163		.87	
18000		12.4			-24.2	528.91	22	.70	688.43			.86	40
19000		12.9			-24.8	508.73	24	. 67	667.06			.82	
20000		13.7			-25.6	489.17	26	.63	646.12			.76	
21000				-11.8		470.23	26	.54	626.44			. 65	
22000		15.8		-13.5		451.89	22	.39	606.13			. 47	
23000		16.8		-16.1		434.11	23	.34	588.07			.40	
24000				-17.5		416.91	20	.26	568.04			.30	
25000				-20.2	_	400.26	20	.21	551.17			.25	
26000		21.7		-22.6		384.11	21	.18	534.06			.21	
27000				-25.0		368.48	21	.15	517.24			.17	
28000				-27.8		353.32	22	.12	501.52			.14	
29000		13.4		-30.5		338.63	23	.10	486.21			.11	
30000				-33.1		324.40	25	.08	470.77			.09	
31000				-36.0		310.61	26	.07		102		.07	
32000		9.4		-38.4		297.27	23	.05	441.06		597	.05	
33000		9.1		-40.8		284.37	24	.04	426.32		594	.04	
34000				-43.4		271.90	25	.03	412.27		591	.03	
35000		10.8		-46.0		259.86	25	.02	398.50		588	.02	
36000				-48.3		248.21	26	.02	384.64		584	.02	
37000		23.9		-49.4		237.01	26	.02	369.09		583	.02	
38000		28.4		-52.0		226.23	26	.01	356.43	79	580	.01	41
TERMINA	TION		3968	5 GEOP	FT 12	096 GEOP	M 2	07.6 M	BS				

```
Mosquito Lagoon
Latitude/Longitude 28.60
```

3

Date 95 05 14 Time(hrs., min., secs.) 12 15 11 0

5 11 6 2.0

10 32 700 20

409.6 1 1600 14 700

Virtual

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time (hrs., min., secs.) 12 20 25 0

10
8 7 8 5 5 5 2.0 2.0 2.0
188 188 42 42 700 700 43 43

10.1 10.1 1 1700 1700 32 32 700 700

130 67 220 67

Wind Wind			Ol	olique	Vertical	#	of		Si	gnal	to
Height Speed Dir.			<u>Velocities</u>		Velocity	samples		es	Noise Ratio		
(km) (m/sec)	(deg.)	(m/	/sec)	(m/sec)	(8	max	:.)			
0.117	. 4.1	316	-1.64	-0.23	-0.05	6	7	8	25	19	16
0.214	4.3	305	-1.78	0.01	-0.14	7	7	8	26	23	27
0.311	5.3	322	-2.01	-0.42	0.01	7	7	8	26	19	17
0.407	4.0	303	-1.63	0.11	-0.08	7	7	8	20	17	21
0.504	4.2	273	-1.23	1.04	0.07	6	6	8	11	8	11
0.601	5.0	235	-0.38	2.00	0.13	6	6	8	-1	0	9
0.697	5.3	228	-0.30	2.04	-0.01	8	7	8	6	6	10
0.794	5.4	227	-0.29	2.04	-0.05	8	7	8	0	0	-0
0.891	4.4	233	-0.25	1.80	0.15	8	7	8	-8	-6	0
0.987	4.5	228	-0.12	1.83	0.11	8	7	8	-7	-7	-4
1.084	4.7	222	0.01	1.93	0.08	8	7	8	-7	1	-6
1.181	4.4	227	0.03	1.96	0.26	8	7	8	-7	-4	-10
1.277	4.3	226	-0.07	1.75	0.11	8	7	8	-10	-8	-3
1.374	4.1	230	-0.32	1.55	-0.03	8	7	8	-4	-1	-5
1.471	3.9	251	-0.58	1.49	0.21	8	7	6	-3	-2	-13
1.567	4.7	245	-0.98	1.45	-0.23	8	7	5	-5	-9	-15
1.664	3.9	260	-0.99	1.16	-0.07	8	6	4	-12	-13	-17
1.760	3.3	258	-0.85	0.93	-0.08	6	5	8	-12	-14	1
1.857	3.3	251	-0.73	1.06	-0.06	8	7	8	-8	-8	3
1.954	2.3	255	-0.54	0.71	-0.02	8	7	8	4	-1	3
2.050	1.4	279	-0.52	0.25	-0.04	8	7	8	13	2	-8
2.147	1.8	308	-0.63	0.09	0.07	8	7	8	11	1	-10
2.244	1.7	319	-0.62	-0.08	0.02	8	7	8	3	-3	-7
2.340	0.2	349	0.01	0.02	0.06	8	7	8	0	-3	-3
2.437	0.9	181	0.26	0.31	0.05	8	7	8	2	1	-2
2.534	1.4	189	0.27	0.46	-0.01	8	7	8	3	3	-3
2.630	1.7	193	0.25	0.54	-0.04	8	7	8	1	1	-9
2.727	1.7	194	0.19	0.49	-0.12	8	7	8	1	0	-11
2.824	1.5	194	0.20	0.46	-0.07	8	7	6	-3	-2	-13
2.920	2.5	187	0.18	0.47	-0.38	8	7	5	-7	-6	-16
3.017	4.0	164	0.29	-0.14	-1.10	8	7	5	-8	-11	-19
3.114	1.6	61	0.22	-0.57	-1.35	8	7	3	-11	-14	-17

```
Mosquito Lagoon
```

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time(hrs., min., secs.) 12 30 02 0
5
10 5 2.0
10 32 700 20
409.6 1 1600 14 700

Virtual

Height	Temp.	
(km)	(°C)	
0.112	27.7	10
0.218	27.7	10
0.322	27.7	10
0.428	27.8	10
0.533	27.5	10
0.637	27.0	10
0.743	26.5	10
0.848	25.6	10
0.952	24.6	10
1.058	23.6	10
1.163	22.6	10
1.268	21.7	10
1.372	21.0	10
1.477	21.3	7

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time (hrs., min., secs.) 12 35 19 0

10 8 8 8 5 5 5 2.0 2.0 2.0
188 188 42 42 700 700 43 43
10.1 10.1 1 1700 1700 32 32 700 700
130 67 220 67

Wind Wind			Ol	olique	Vertical	#	of	•	Si	gnal	to
Height Speed Dir.			Velocities		Velocity	samples			Noise Ratio		
(km)	(m/sec)		(m,	sec)	(m/sec)	(8	max	:.)			
0.117	3.4	300	-1.44	0.09	-0.16	8	8	8	23	17	20
0.214	2.9	290	-1.35	0.09	-0.32	8	8	8	23	23	24
0.311	3.2	305	-1.46	-0.10	-0.23	8	8	8	25	18	21
0.407	2.9	286	-1.25	0.23	-0.24	8	8	8	19	18	18
0.504	3.7	259	-1.11	0.93	-0.22	8	7	8	8	8	5
0.601	4.7	238	-0.49	1.83	0.08	8	8	8	-1	9	2
0.697	4.5	233	-0.30	1.80	0.10	8	8	8	5	4	2
0.794	5.0	231	-0.32	1.97	0.06	7	8	8	-1	-1	2
0.891	4.0	241	-0.41	1.58	0.14	7	8	8	-3	-1	-3
0.987	4.3	236	-0.40	1.69	0.07	8	8	8	-1	-1	-3
1.084	4.5	231	-0.32	1.75	0.03	8	8	8	-1	-0	-5
1.181	4.6	232	-0.25	1.89	0.13	8	8	8	-4	-1	-7
1.277	3.5	233	-0.20	1.43	0.11	8	7	8	-5	5	-7
1.374	3.8	248	-0.54	1.46	0.16	8	8	8	-5	0	-8
1.471	4.2	255	-0.77	1.54	0.21	8	8	8	-4	-5	-15
1.567	4.1	256	-0.84	1.39	0.10	8	8	7	-9	-5	-13
1.664	3.3	260	-0.83	1.00	1.36	8	8	2	-10	-10	-18
1.760	3.3	263	-0.79	1.00	0.08	7	8	8	-13	-12	-10
1.857	3.1	261	-0.77	0.94	0.03	8	8	8	-11	-13	-0
1.954	2.4	261	-0.63	0.72	-0.01	8	8	8	1	-6	6
2.050	1.7	293	-0.67	0.17	-0.03	8	8	8	10	1	-5
2.147	2.4	315	-0.82	0.04	0.12	8	8	7	8	2	-9
2.244	2.0	309	-0.81	-0.03	-0.05	8	8	8	-0	-4	-6
2.340	0.8	290	-0.34	0.07	-0.04	8	8	8	-5	-3	~5
2.437	0.7	250	-0.12	0.27	0.02	8	8	8	-5	2	-6
2.534	1.1	234	-0.12	0.39	-0.02	8	8	8	-4	1	-3
2.630	1.6	234	-0.19	0.55	-0.04	8	8	8	-0	1	-7
2.727	1.9	233	-0.27	0.61	-0.11	8	8	7	1	1	-12
2.824	2.4	219	-0.31	0.59	-0.36	8	8	5	-1	-1	-16
2.920	1.7	248	-0.31	0.57	7.95	8	8	3	-5	-5	-18
3.017	1.6	246	-0.28	0.57	-0.17	8	8	3	-11	-12	-18
3.114	1.0	357	-0.26	-0.28	8.90	8	8	3	-14	-15	-18

```
Mosquito Lagoon
  Latitude/Longitude 28.60
                               80.59
                                          3
  Date 95 05 14 Time(hrs., min., secs.)
                                          12 45 27
                                                      0
   4
  10 5 2.0
  10 32 700 20
 409.6 1 1600 14 700
          Virtual
   Height Temp.
    (km)
          (°C)
  0.112
          27.8 10
  0.218
          27.8 10
  0.322
          27.8 10
  0.428
          27.8 10
  0.533
          27.5 10
  0.637
          27.0 10
  0.743
          26.5 10
  0.848
          25.7 10
  0.952
          24.7 10
          23.8 10
  1.058
          22.7 10
  1.163
  1.268
          21.8 10
          20.9 10
  1.372
```

20.4 9

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time (hrs., min., secs.) 12 50 14 0

10

8 8 8 5 5 5 2.0 2.0 2.0

188 188 42 42 700 700 43 43

10.1 10.1 1 1700 1700 32 32 700 700

130 67 220 67

Wind Wind			Ob	olique	Vertical	<u> </u>	of		Si	.gnal	to
Height Speed Dir.			Veloc	<u>Velocities</u>		samples			Noise Ratio		
(km)) (deg.)	(m/	sec)	(m/sec)	(8	max	:.)			
0.117	4.1	311	-1.63	-0.04	-0.02	7	8	7	20	16	19
0.214	3.2	295	-1.23	0.31	-0.02	7	8	7	26	23	25
0.311	4.6	321	-1.75	-0.33	0.01	7	8	7	21	17	20
0.407	3.7	298	-1.39	0.32	0.03	8	8	7	20	17	19
0.504	3.6	287	-1.22	0.65	0.10	8	8	7	8	6	6
0.601	4.7	245	-0.56	1.90	0.25	8	8	8	2	3	-4
0.697	3.9	225	-0.01	1.63	0.14	7	8	8	4	-2	4
0.794	4.3	237	-0.35	1.73	0.14	8	8	8	7	4	0
0.891	3.9	235	-0.22	1.64	0.19	8	8	8	3	-0	-4
0.987	3.8	238	-0.22	1.64	0.24	8	8	8	0	-4	-6
1.084	4.0	238	-0.27	1.70	0.23	7	8	8	-7	-3	-7
1.181	4.3	235	-0.29	1.75	0.16	7	8	8	-7	-1	-3
1.277	4.2	225	-0.01	1.80	0.16	7	8	8	-3	4	-2
1.374	4.2	241	-0.38	1.75	0.21	8	8	8	-2	0	-9
1.471	4.5	245	-0.63	1.70	0.13	8	8	7	-8	-5	-11
1.567	4.1	252	-0.75	1.43	0.09	8	8	8	-11	-10	-12
1.664	3.4	252	-0.70	1.14	-4.74	8	8	4	-7	-10	-18
1.760	3.3	261	-0.77	1.08	0.11	8	8	8	-10	-10	-4
1.857	2.9	267	-0.67	0.95	0.18	8	7	8	-8	-7	7
1.954	2.3	295	-0.69	0.39	0.18	8	8	8	4	2	4
2.050	2.3	303	-0.76	0.25	0.15	8	8	8	9	8	-8
2.147	2.9	312	-0.87	0.21	0.27	8	8	8	7	4	-10
2.244	2.6	314	-0.83	0.12	0.20	8	8	8	-1	-3	-6
2.340	1.7	309	-0.50	0.19	0.19	8	8	8	-8	-1	-4
2.437	1.1	296	-0.20	0.30	0.22	8	8	8	-8	2	2
2.534	1.5	277	-0.26	0.53	0.24	8	8	8	-1	0	-0
2.630	2.0	263	-0.31	0.78	0.23	8	8	8	2	2	-5
2.727	2.0	262	-0.33	0.80	0.22	8	8	6	2	2	-12
2.824	2.3	244	-0.36	0.81	-2.30	8	8	3	-0	-1	-19
2.920	2.2	251	-0.38	0.82	0.08	8	8	5	~5	-6	-17
3.017	2.2	246	-0.38	0.78	2.10	8	7	2	-12	-14	-18
3.114	9999.0	9999	1.92	0.53	-7.83	3	3	2	-19	-18	-19

```
Mosquito Lagoon
  Latitude/Longitude 28.60
                               80.59
  Date 95 05 14 Time(hrs., min., secs.) 13 00 23
                                                   0
   4
  10 5 2.0
  10 32 700 20
 409.6 1 1600 14 700
          Virtual
   Height Temp.
          (°C)
    (km)
          27.5 10
  0.112
  0.218
          27.5 10
  0.322
          27.8 10
          27.9 10
  0.428
  0.533
          27.7 10
          27.0 10
  0.637
  0.743
          26.5 10
  0.848
          25.8 10
  0.952
          24.9 10
  1.058
          23.8 10
  1.163
          22.9 10
  1.268
          22.0 10
  1.372
          20.8 10
```

20.5 6

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time (hrs., min., secs.) 13 05 09 0

10 8 8 8 5 5 5 2.0 2.0 2.0
188 188 42 42 700 700 43 43
10.1 10.1 1 1700 1700 32 32 700 700
130 67 220 67

Wind Wind			01	Oblique		# of			Signal to		
Height Speed Dir.			Velo	Velocities		samples			Noise Ratio		
(km)	(m/sec) (deg.)	(m,	/sec)	(m/sec)	(8	max	:.)			
0.117	4.7	319	-1.76	-0.23	0.07	7	7	8	27	24	20
0.214	4.4		-1.67	-0.03	0.04	8	8	8	28	27	27
0.311	5.4	322	-2.02	-0.42	0.04	7	7	8	29	22	19
0.407	4.3		-1.68	-0.13	0.01	8	7	8	25	22	21
0.504	5.5		-2.11	-0.23	0.02	7	8	8	14	8	9
0.601	5.0		-1.16	1.57	0.19	7	7	8	3	2	-1
0.697	5.1	254	-1.09	1.68	0.03	7	7	8	2	6	3
0.794	4.5	241	-0.58	1.71	0.07	8	8	8	2	2	5
0.891	3.8	242	-0.43	1.52	0.15	8	8	8	-0	1	4
0.987	4.4	237	-0.41	1.73	0.11	8	8	8	-2	5	-6
1.084	3.9	227	-0.16	1.54	0.04	7	8	8	2	0	-4
1.181	4.1	233	-0.33	1.60	0.04	8	8	8	5	-0	0
1.277	4.2	238	-0.44	1.61	0.07	8	8	8	1	1	-5
1.374	4.8	239	-0.66	1.71	-0.06	8	8	8	-3	-4	-7
1.471	4.6	255	-1.08	1.43	-0.05	8	8	8	-8	-8	-8
1.567	4.5	256	-1.10	1.34	-0.08	8	8	8	9	-11	-11
1.664	4.1	264	-1.03	1.23	0.10	8	8	6	-8	-10	-13
1.760	4.0	261	-1.05	1.14	-0.04	7	7	8	-10	-13	-3
1.857	2.6	267	-0.79	0.63	-0.06	8	8	8	-3	-6	8
1.954	2.2	284	-0.84	0.31	-0.07	8	8	8	9	5	0
2.050	2.6	295	-0.99	0.24	-0.03	8	8	8	10	8	-9
2.147	3.0	304	-1.07	0.20	0.08	8	8	8	3	3	-8
2.244	2.3	318	-0.69	0.06	0.20	8	8	8	-5	-5	-7
2.340	0.9	285	-0.27	0.19	0.05	8	8	8	-3	-2	-6
2.437	1.2	272	-0.28	0.37	0.09	8	8	8	-3	1	-1
2.534	1.9	267	-0.41	0.62	0.14	8	8	8	-3	-0	1
2.630	2.3	262	~0.53	0.76	0.08	8	8	8	1	-0	-10
2.727	2.6	259	-0.63	0.78	-4.25	8	8	3	1	2	-18
2.824	2.8	260	-0.72	0.85	-1.51	8	8	3	-2	-0	-20
2.920	2.8	256	-0.65	0.88	1.69	8	8	4	-8	-7	-17
3.017		9999	-0.72	-0.03	-5.92	8	4	3	-10	-14	-19
3.114	9999.0	9999	-0.39	-0.50	-6.11	4	8	2	-15	-17	-17

```
Mosquito Lagoon
  Latitude/Longitude 28.60 80.59
  Date 95 05 14 Time(hrs., min., secs.) 13 15 17 0
   5
  11 6 2.0
  10 32 700 20
 409.6 1 1600 14 700
          Virtual
   Height Temp.
    (km)
         (°C)
          28.5 11
  0.112
  0.218
          27.9 11
          27.8 11
  0.322
  0.428
          27.6 11
  0.533
          27.5 11
  0.637
          27.0 11
  0.743
          26.3 11
  0.848
          25.7 11
  0.952
          24.9 11
```

24.0 11

23.0 11

22.1 10

21.3 11

20.3 9

1.058

1.163 1.268

1.372

1.477

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time (hrs., min., secs.) 13 20 31 0
9
8 7 8 5 5 5 2.0 2.0 2.0
188 188 42 42 700 700 43 43
10.1 10.1 1 1700 1700 32 32 700 700
130 67 220 67

Wind Wind			Oblique		Vertical	# of			Signal to		
Height Speed Dir.			Velo	cities	Velocity	sa	mpl	es	Noi	se Ra	tio
(km)	(m/sec	(deg.)	(m,	/sec)	(m/sec)	(8	max	:.)			
0.117	4.8	314	-2.01	-0.27	-0.16	8	7	8	24	23	29
0.214	4.4	304	-1.98	-0.11	-0.31	8	7	8	29	27	28
0.311	4.9	316	-2.27	-0.57	-0.41	8	7	8	25	24	31
0.407	4.3	304	-1.98	-0.16	-0.36	8	7	8	24	21	25
0.504	4.3	298	-1.92	0.08	-0.29	8	7	8	12	12	20
0.601	4.7	266	-1.47	1.14	-0.15	8	7	8	5	7	8
0.697	4.9	247	-0.93	1.62	-0.09	8	6	8	2	-2	-2
0.794	4.0	243	-0.66	1.38	-0.05	8	7	7	3	-1	-2
0.891	4.2	238	-0.51	1.56	0.01	8	7	7	1	-4	-1
0.987	4.0	240	-0.44	1.59	0.12	8	7	8	3	-1	1
1.084	4.3	236	-0.44	1.64	0.04	8	7	8	2	0	3
1.181	4.5	234	-0.47	1.65	-0.06	8	7	8	-1	-1	-3
1.277	4.7	233	-0.45	1.76	-0.04	8	7	8	-5	-6	-8
1.374	4.4	243	-0.70	1.53	-0.05	8	7	8	-5	-9	-11
1.471	5.3	264	-1.42	1.50	0.02	7	7	6	-10	-13	-9
1.567	4.5	268	-1.35	1.12	-0.06	8	6	8	-11	-16	-11
1.664	4.2	259	-1.06	1.22	-0.05	8	7	8	-11	-8	-5
1.760	3.8	272	-1.23	0.88	-0.05	8	7	8	-7	~5	-0
1.857	3.7	270	-1.18	0.87	-0.08	8	7	8	-2	-1	6
1.954	2.7	284	-1.03	0.39	-0.08	8	7	8	7	4	-4
2.050	2.9	290	-1.15	0.30	-0.11	8	7	7	9	4	-12
2.147	2.9	287	-1.25	0.22	-0.24	8	7	8	2	-3	-13
2.244	1.8	304	-0.75	0.03	-0.05	8	7	8	-4	-11	-8
2.340	1.0	277	-0.31	0.22	0.01	8	7	8	-0	-4	-7
2.437	1.1	260	-0.28	0.35	0.01	8	7	8	1	2	-3
2.534	1.6	255	-0.36	0.49	-0.01	8	7	8	-3	0	2
2.630	2.3	246	-0.52	0.71	-0.12	8	7	8	-0	-2	-7
2.727	2.5	262	-0.66	0.74	9.05	8	7	2	3	0	-18
2.824	2.7	265	-0.75	0.75	-6.55	8	7	2	-0	-2	-17
2.920	2.6	267	-0.74	0.70	9.26	8	7	3	-6	-7	-18
3.017	2.0	258	-0.49	0.62	1.53	8	7	3	-11	-14	-19
3.114	9999.0	9999	-0.04	-6.92	-2.34	7	3	3	-18	-17	-15

```
Mosquito Lagoon
  Latitude/Longitude 28.60
                               80.59
                                          3
  Date 95 05 14 Time(hrs., min., secs.) 13 30 14
   5
  11 6 2.0
  10 32 700 20
 409.6 1 1600 14 700
          Virtual
   Height Temp.
          (°C)
    (km)
          27.9 11
  0.112
          27.9 11
  0.218
          27.7 11
  0.322
  0.428
          27.6 11
  0.533
          27.3 11
          27.0 11
  0.637
          26.4 11
  0.743
  0.848
          25.8 11
  0.952
          25.0 11
  1.058
          24.1 11
  1.163
          23.1 11
  1.268
          22.4 10
  1.372
          21.3 9
```

20.5 6

Mosquito Lagoon Latitude/Longitude 28.60 80.59 3 Date 95 05 14 Time (hrs., min., secs.) 13 35 29 0 9 8 7 8 5 5 5 2.0 2.0 2.0 188 188 42 42 700 700 43 43 10.1 10.1 1 1700 1700 32 32 700 700 130 67 220 67 0.117 5.0 326 -1.77 -0.44 0.13 8 7 8

25											
20	24										
	Wind	Wind	Ol	blique	Vertical	#	of	•	Si	gnal	to
Heig	ht Speed	Dir.	Velo	cities	Velocity	s a	mp1	.es		se Ra	
(km) (deg.		/sec)	(m/sec)		max			-	
0.21			-1.87	-0.21	0.12	8	7	8	28	26	31
0.31	1 5.7	331	-1.92	-0.65	0.18	8	7	8	26	20	24
0.40	7 5.4	321	-1.95	-0.29	0.12	8	7	8	23	21	26
0.50			-1.97	0.40	-0.15	8	6	8	13	21	13
0.60	1 4.4	270	-1.43	1.02	-0.11	8	7	8	11	13	8
0.69	7 4.6	265	-1.24	1.28	0.03	8	7	8	4	2	-0
0.79	4 4.0	242	-0.63	1.37	-0.07	8	7	8	3	-0	-2
0.89	1 4.1	242	-0.60	1.50	0.01	8	7	8	-4	3	-6
0.98	7 4.1	237	-0.47	1.51	-0.02	8	7	8	-1	-2	-3
1.08	4 4.3	238	-0.51	1.62	0.03	8	7	8	3	-2	-2
1.18	1 4.7	234	-0.54	1.69	-0.09	8	7	8	2	-1	-3
1.27	7 5.1	229	-0.43	1.82	-0.15	8	7	8	-1	-4	1
1.37	4 4.8	241	-0.79	1.64	-0.14	8	7	8	-7	-7	-6
1.47	1 4.7	257	-1.12	1.46	-0.00	8	7	8	-7	-6	-11
1.56		259	-1.39	1.28	-0.22	8	6	7	-8	-7	-4
1.66	4 4.6	267	-1.43	1.11	-0.12	8	7	8	-5	-11	-6
1.76		275	-1.29	0.95	0.04	8	7	8	-8	-7	1
1.85		280	-1.14	0.78	0.08	8	7	8	1	-2	7
1.95		286	-1.10	0.57	0.07	8	7	8	7	6	-2
2.05		288	-1.21	0.53	0.03	8	7	8	6	7	-10
2.14		290	-1.21	0.48	0.03	8	7	8	-1	0	-10
2.24		284	-0.84	0.44	0.02	8	7	8	-6	-9	-5
2.34		280	-0.40	0.32	0.06	8	7	8	-2	-4	-5
2.43		267	-0.36	0.46	0.07	8	7	8	1	-0	-3
2.53		258	-0.42	0.69	0.07	8	7	8	-1	-0	1
2.63			-0.57	0.90	0.05	8	7	8	-3	-1	-6
2.72		278	-0.79	0.90	0.27	8	7	6	-2	-2	-12
2.82		266	-0.87	0.83	-0.00	8	7	5	-3	-3	-16
2.92		266	-0.83	0.80	-5.30	8	7	3	-6	-7	-18
3.01		260	-0.56	0.67	-5.56	8	7	2	-10	-14	-19
3.11	4 9999.0	9999	-0.48	-0.27	-3.50	8	3	2	-13	-18	-19

```
Mosquito Lagoon
  Latitude/Longitude 28.60
                               80.59
  Date 95 05 14 Time(hrs., min., secs.) 13 45 11
   5
  11 6 2.0
  10 32 700 20
 409.6 1 1600 14 700
          Virtual
   Height Temp.
    (km)
          (°C)
  0.112
          28.4 11
  0.218
         28.1 11
  0.322
          27.8 11
  0.428
          27.6 11
          27.1 11
  0.533
  0.637
          26.9 11
  0.743
          26.4 11
  0.848
          25.9 11
          25.1 11
  0.952
          24.1 11
  1.058
```

23.4 11

22.1 8

1.372 9999.0 5 1.477 9999.0 5

1.163 1.268

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time (hrs., min., secs.) 13 50 26 0
9
8 7 8 5 5 5 2.0 2.0 2.0
188 188 42 42 700 700 43 43
10.1 10.1 1 1700 1700 32 32 700 700
130 67 220 67

Wind Wind		Ol	olique	Vertical	#	of	:	Si	.gnal	to	
Heigh	t Speed	Dir.	Velo	cities	Velocity	88	umpl	es	Noi	se Ra	tio
(km)		(deg.)	(m/	/sec)	(m/sec)	(8	max	:.)			
0.117	5.6		-2.13	-0.46	0.01	7	7	8	22	21	27
0.214	5.5		-2.00	-0.58	0.04	7	7	8	27	24	27
0.311	5.8		-2.26	-0.56	-0.04	8	7	8	25	23	29
0.407	5.7		-2.27	-0.73	-0.13	7	7	8	24	21	27
0.504	5.5		-2.19	-0.70	-0.13	8	7	8	18	12	19
0.601	4.5	311	-2.07	-0.36	-0.35	8	7	8	10	12	8
0.697	4.2	289	-1.38	0.73	0.16	8	7	8	9	7	2
0.794	3.8	279	-1.19	0.84	0.08	8	7	7	2	3	7
0.891	3.6		-0.62	1.35	0.20	7	6	8	2	-0	6
0.987	4.0	245	-0.52	1.58	0.16	8	7	8	1	-0	-3
1.084	4.1	242	-0.52	1.58	0.08	8	7	8	~8	-2	-4
1.181	4.6	249	-0.83	1.63	0.06	8	7	8	-9	-6	-4
1.277	4.9	246	-0.81	1.77	0.05	8	7	8	-6	-4	-3
1.374	5.2	243	-0.82	1.82	-0.03	8	7	8	-3	-2	-3
1.471	5.1	254	-1.12	1.65	0.01	8	7	8	-5	-5	-4
1.567	4.9	268	-1.40	1.28	0.02	8	7	8	-3	-4	-13
1.664	4.3	281	-1.41	0.89	0.08	8	7	8	-8	-8	-12
1.760	3.6	280	-1.16	0.77	0.07	8	7	8	-5	-9	0
1.857	3.4	284	-1.16	0.62	0.04	8	7	8	-2	-3	8
1.954	3.5	291	-1.25	0.48	0.05	8	7	8	8	6	2
2.050	3.8	297	-1.38	0.40	0.06	8	7	8	10	7	-8
2.147	4.0	299	-1.49	0.34	0.05	8	7	8	4	1	-10
2.244	3.2	300	-1.23	0.23	0.02	8	7	8	-4	-8	-8
2.340	1.9	289	-0.68	0.29	0.02	8	7	8	-4	-2	-7
2.437	1.8	271	-0.57	0.40	-0.04	8	7	8	-1	-0	-6
2.534	2.4	257	-0.64	0.68	-0.08	8	7	8	-1	-1	-2
2.630	2.9	253	-0.72	0.87	-0.10	8	7	8	-4	-4	-3
2.727	3.1	268	-0.97	0.72	-0.09	8	7	8	-3	-1	-14
2.824	3.5	276	-1.12	0.75	1.50	8	7	4	-1	-1	-19
2.920	3.5	275	-1.11	0.79	1.97	8	7	3	-5	-5	-19
3.017	2.9	269	-0.87	0.75	-2.49	8	7	3	-11	-12	-17
3.114	9999.0	9999	-0.59	9.29	-8.60	7	2	2	-14	-20	-20

```
Mosquito Lagoon
 Latitude/Longitude 28.60
                              80.59
                                         3
Date 95 05 14 Time(hrs., min., secs.) 14 00 09
 5
 11 6 2.0
 10 32 700 20
409.6 1 1600 14 700
         Virtual
  Height Temp.
         (°C)
   (km)
         27.9 11
 0.112
 0.218
         27.7 11
         27.4 11
 0.322
 0.428
         27.2 11
 0.533
         27.0 11
 0.637
         26.4 11
 0.743
         26.1 11
 0.848
         25.6 11
 0.952
         25.0 11
 1.058
         24.1 11
         23.2 11
 1.163
1.268
         22.0 10
1.372
         21.3 9
1.477
        19.8 8
```

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time (hrs., min., secs.) 14 05 23 0

10
8 7 8 5 5 5 2.0 2.0 2.0

188 188 42 42 700 700 43 43

10.1 10.1 1 1700 1700 32 32 700 700

130 67 220 67

Wind Wind		Ol	olique	<u>Vertical</u>	#	of		Si	gnal	to	
Height	Speed	Dir.	Velo	cities	Velocity	samples			Noise Ratio		
(km)	(m/sec)	(deg.)	(m/	sec)	(m/sec)	(8	max)			
0.117	6.2	323	-2.24	-0.40	0.13	7	7	8	26	22	25
0.214	5.2	322	-1.88	-0.30	0.12	7	7	8	27	25	29
0.311	5.6	328	-2.01	-0.57	0.10	8	7	8	28	23	28
0.407	6.3	327	-2.23	-0.63	0.11	7	7	8	27	22	27
0.504	6.8	328	-2.46	-0.76	0.06	7	7	8	22	14	18
0.601	6.2	327	-2.32	-0.70	-0.01	8	7	8	15	6	9
0.697	4.4	293	-1.55	0.60	0.11	8	7	8	8	7	9
0.794	4.6	282	-1.41	1.02	0.18	8	7	8	8	2	-2
0.891	4.5	275	-1.15	1.31	0.31	8	7	8	3	-2	-3
0.987	4.7	258	-0.86	1.72	0.30	7	7	8	-3	-2	-9
1.084	4.6	246	-0.56	1.83	0.24	8	7	8	-7	-8	-10
1.181	5.3	250	-0.85	1.98	0.21	8	7	8	-8	-9	-2
1.277	5.2	255	-0.89	1.95	0.30	8	7	8	-5	-6	-9
1.374	5.6	251	-0.94	2.07	0.19	8	7	8	-8	-8	-5
1.471	5.3	265	-1.28	1.68	0.23	8	7	8	-5	-7	-2
1.567	5.2	270	-1.38	1.46	0.18	8	7	8	-0	-2	-9
1.664	4.9	269	-1.30	1.42	0.16	8	7	8	-5	-5	-12
1.760	3.8	270	-1.04	1.05	0.11	8	7	8	-8	-6	5
1.857	2.9	286	-1.00	0.52	0.06	8	7	8	-0	-0	8
1.954	3.1	291	-1.11	0.42	0.02	8	7	8	8	7	-1
2.050	3.3	298	-1.25	0.30	0.02	8	7	8	8	6	-8
2.147	3.6	307	-1.33	0.17	0.10	8	7	8	1	-0	-8
2.244	2.7	309	-0.97	0.09	0.09	8	7	8	-4	-8	-7
2.340	2.2	299	-0.70	0.30	0.14	8	7	8	-2	-5	-4
2.437	2.6	286	-0.74	0.60	0.20	8	7	8	-1	-2	13
2.534	3.1	274	-0.78	0.89	0.20	8	7	8	-1	-1	7
2.630	3.5	270	-0.92	1.02	0.15	8	7	8	-3	-2	-3
2.727	3.9	284	-1.05	1.01	0.35	8	7	8	0	2	-13
2.824	4.3	270	-1.27	1.07	0.94	8	7	4	1	3	-17
2.920	4.5	271	-1.35	1.11	6.51	8	7	2	-3	-2	-18
3.017	4.2	272	-1.29	1.01	1.50	8	7	3	-9	-9	-17
3.114	3.5	278	-1.15	0.73	-7.41	8	5	2	-15	-14	-17

```
Mosquito Lagoon
```

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time(hrs., min., secs.) 1 14 15 00 0
5
10 5 2.0
10 32 700 20
409.6 1 1600 14 700

Virtual

Heigh	
(km)	(°C)
0.112	28.6 10
0.218	28.4 10
0.322	28.0 10
0.428	27.1 10
0.533	26.6 10
0.637	26.2 10
0.743	25.8 10
0.848	25.5 10
0.952	24.9 10
1.058	24.2 10
1.163	23.4 10
1.268	22.4 10
1.372	21.2 8
1.477	9999.0 4

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time (hrs., min., secs.) 14 20 18 0
10
8 8 8 5 5 5 2.0 2.0 2.0
188 188 42 42 700 700 43 43
10.1 10.1 1 1700 1700 32 32 700 700
130 67 220 67

Wind Wind Height Speed Dir.		Oblique Velocities		Vertical Velocity	# of samples		-	Signal to Noise Ratio			
(km)		(deg.)		/sec)	(m/sec)	_	max		NOI	se na	1010
0.117	4.8	320	-1.93	-0.43	-0.11	7	8	7	24	28	26
0.214	4.8	320	-1.92	-0.41	-0.09	7	8	7	28	39	28
0.311	5.1	325	-1.89	-0.49	0.05	8	8	7	25	24	24
0.407	5.5	324	-2.24	-0.69	-0.17	7	8	7	26	34	26
0.504	6.2	325	-2.40	-0.67	-0.06	8	8	8	22	21	20
0.601	6.5	320	-2.53	-0.48	-0.05	8	8	8	13	11	15
0.697	4.9	294	-1.90	0.45	-0.08	8	8	8	7	8	9
0.794	4.6	270	-1.47	1.08	-0.10	8	8	8	7	8	2
0.891	4.8	271	-1.31	1.31	0.14	8	8	7	1	-1	-2
0.987	4.8	258	-1.00	1.65	0.16	8	8	7	-4	-4	2
1.084	5.3	252	-0.97	1.86	0.12	8	8	8	-3	-2	-5
1.181	5.8	250	-0.98	2.12	0.18	7	8	7	-8	-4	-10
1.277	6.9	254	-1.42	2.30	0.07	8	6	8	-2	-9	-13
1.374	6.8	266	-1.74	2.04	0.19	8	8	8	-3	-13	-9
1.471	6.0	264	-1.52	1.79	0.12	8	8	8	-6	-10	-2
1.567	5.5	262	-1.37	1.66	0.06	8	8	8	-2	-3	-9
1.664	5.6	263	-1.35	1.72	0.15	8	8	8	-5	-5	-4
1.760	3.7	268	-0.96	1.09	0.13	8	8	8	-5	-9	7
1.857	3.0	288	-1.00	0.54	0.10	8	8	8	1	2	6
1.954	3.1	289	-1.06	0.52	0.09	8	8	8	7	7	-4
2.050	3.5	294	-1.20	0.50	0.13	8	8	8	6	4	-6
2.147	3.5	297	-1.20	0.44	0.14	8	8	8	-0	-5	-4
2.244	2.9	304	-0.97	0.28	0.17	8	8	8	-3	-6	-2
2.340	2.9	295	-0.92	0.45	0.18	8	8	8	-3	-3	-1
2.437	3.2	278	-0.93	0.81	0.15	8	8	8	-2	-1	-0
2.534	3.8	272	-1.01	1.05	0.16	8	8	8	-3	-1	-0
2.630	4.0	274	-1.12	1.06	0.16	8	8	8	1	-2	-11
2.727	4.7	290	-1.29	1.06	0.48	8	8	8	2	0	-16
2.824	4.6	273	-1.42	1.08	0.64	8	8	4	-1	-2	-18
2.920	4.1	274	-1.31	0.94	-9.22	8	8	3	-7	-9	-17
3.017	3.3	267	-0.95	0.88	3.06	8	7	2	-13	-14	-15
3.114	9999.0	9999	-0.99	4.40	7.19	6	2	2	-16	-20	-20

```
Mosquito Lagoon
  Latitude/Longitude 28.60
                              80.59
  Date 95 05 14 Time(hrs., min., secs.) 14 30 26
  4
  10 5 2.0
  10 32 700 20
 409.6 1 1600 14 700
          Virtual
   Height Temp.
          (°C)
    (km)
  0.112
          28.8 10
  0.218
          28.6 10
  0.322
          28.1 10
  0.428
          27.3 10
  0.533
          26.6 10
          26.3 10
  0.637
  0.743
          25.9 10
  0.848
          25.5 10
  0.952
          25.0 10
          24.2 10
  1.058
  1.163
          23.3 10
  1.268
          22.3 9
  1.372
          21.4 9
  1.477
          20.1 6
```

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time (hrs., min., secs.) 14 35 12 0

10

8 8 8 5 5 5 2.0 2.0 2.0

188 188 42 42 700 700 43 43

10.1 10.1 1 1700 1700 32 32 700 700

130 67 220 67

Waj sh	Wind t Speed	Wind	_	olique	Vertical	-	of			gnal	
(km)) (deg.)		sec)	Velocity (m/sec)		mpl max		NOI	se Ra	1210
0.117	6.3		-1.84	0.03	0.61	7	8	8	27	22	33
0.214	5.9	321	-1.79	0.05	0.53	7	8	8	30	25	39
0.311	6.0	324	-1.94	-0.26	0.35	7	8	8	30	23	32
0.407	6.2	322	-1.99	-0.14	0.41	7	7	8	28	24	34
0.504	6.9	328	-2.40	-0.70	0.16	7	8	8	22	17	24
0.601	6.2	323	-2.45	-0.63	-0.11	8	8	8	16	13	17
0.697	5.8	312	-2.23	-0.03	0.04	8	8	8	11	11	8
0.794	5.5	299	-1.89	0.60	0.22	8	8	8	6	6	1
0.891	5.2	285	-1.63	1.06	0.22	8	8	8	4	2	-4
0.987	5.4	272	-1.46	1.48	0.21	8	8	8	-4	-3	-8
1.084	5.3	265	-1.26	1.69	0.23	8	8	8	-8	-3	-8
1.181	5.1	259	-1.04	1.79	0.25	8	8	8	-3	-7	-5
1.277	6.1	256	-1.24	2.08	0.17	7	8	8	-0	2	-9
1.374	6.6	254	-1.36	2.22	0.07	8	8	8	-2	4	3
1.471	6.7	259	-1.61	2.06	0.03	8	8	8	-8	-6	-4
1.567	6.0	257	-1.40	1.90	-0.00	8	8	8	-5	-8	-10
1.664	5.8	258	-1.45	1.70	-0.06	8	8	8	-7	-8	3
1.760	3.0	267	-0.94	0.73	-0.08	8	8	8	-6	-4	9
1.857	3.4	275	-1.18	0.65	-0.10	8	8	8	5	6	1
1.954	3.5	282	-1.25	0.60	-0.04	8	8	8	7	7	-10
2.050	3.7	285	-1.33	0.57	-0.04	8	8	8	4	2	-10
2.147	3.6	292	-1.33	0.42	-0.00	8	8	8	-4	-8	-5
2.244	2.6	295	-0.98	0.29	0.01	8	8	8	-6	-7	-4
2.340	2.7	288	-0.96	0.42	0.02	8	8	8	-2	19	-5
2.437	3.1	276	-1.03	0.63	-0.04	8	8	8	-1	12	-1
2.534	3.7	269	-1.15	0.90	-0.05	8	8	8	-3	-1	-6
2.630	4.1	264	-1.26	1.01	-0.15	8	8	8	-2	-3	-13
2.727	4.5	271	-1.47	1.02	-0.11	8	8	8	-1	-4	-14
2.824	4.8	277	-1.56	1.03	-0.24	8	8	4	-6	-9	-15
2.920	3.9	278	-1.28	0.79	-9.69	8	7	2	-11	-13	-18
3.017	9999.0	9999	-1.15	0.56	-8.71	8	4	3	-15	-17	-17
3.114	9999.0	9999	-1.16	-9.02	-0.10	5	2	3	-17	-18	-19

```
Mosquito Lagoon
  Latitude/Longitude 28.60
                              80.59
  Date 95 05 14 Time(hrs., min., secs.) 14 45 20
   4
  10 5 2.0
  10 32 700 20
 409.6 1 1600 14 700
  0.112
          29.2 10
          Virtual
   Height Temp.
    (km)
          (°C)
  0.218
          28.8 10
  0.322
          28.3 10
          27.8 10
  0.428
  0.533
          27.2 10
          26.5 10
  0.637
  0.743
          25.7 10
  0.848
          25.0 10
  0.952
          24.5 10
  1.058
          23.9 10
  1.163
          23.2 10
  1.268
          22.2
  1.372 9999.0 5
  1.477 9999.0 4
```

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time (hrs., min., secs.) 14 50 07 0

10

8 8 8 5 5 5 2.0 2.0 2.0

188 188 42 42 700 700 43 43

10.1 10.1 1 1700 1700 32 32 700 700

130 67 220 67

Wind Wind		Ob	olique	<u>Vertical</u>	#	of	:	Si	gnal	to		
Heigh	t Speed	Dir.	Velo	cities	Velocity	sa	mpl	.es	Noi	Noise Ratio		
(km)	(m/sec) (deg.)	(m/	sec)	(m/sec)	(8	max	:.)				
0.117	3.9	325	-1.14	-0.08	0.34	7	8	7	27	21	25	
0.214	3.9	332	-1.10	-0.25	0.33	7	8	7	33	22	30	
0.311	4.7	323	-1.38	-0.02	0.44	7	7	7	27	21	25	
0.407	4.7	325	-1.47	-0.17	0.34	7	7	8	29	22	28	
0.504	5.8	325	-1.97	-0.38	0.22	7	7	8	24	19	22	
0.601	6.2	329	-2.18	-0.64	0.15	8	8	8	20	19	20	
0.697	5.8	326	-2.07	-0.53	0.11	8	8	8	17	15	16	
0.794	5.5	316	-2.10	-0.18	0.05	8	8	8	12	6	9	
0.891	5.6	283	-2.29	0.64	-0.37	8	8	8	7	4	4	
0.987	5.6	282	-1.91	1.03	-0.00	8	8	8	4	1	-3	
1.084	5.5	261	-1.71	1.32	-0.34	8	8	7	-2	-5	-4	
1.181	5.7	265	-1.81	1.35	-0.26	8	8	7	-9	-8	0	
1.277	5.7	257	-1.51	1.62	-0.19	7	8	7	-8	-11	-8	
1.374	5.9	248	-1.30	1.84	-0.23	7	7	8	-9	-11	-7	
1.471	6.4	254	-1.66	1.80	-0.29	8	8	8	-8	-9	-8	
1.567	6.3	258	-1.61	1.84	-0.09	8	8	8	-9	-10	-3	
1.664	5.2	256	-1.32	1.55	-0.12	8	8	8	-3	-5	-3	
1.760	4.7	256	-1.17	1.38	-0.11	8	8	8	-1	-4	9	
1.857	2.9	274	-1.00	0.56	-0.10	8	8	8	5	2	5	
1.954	2.9	277	-1.11	0.48	-0.16	8	8	8	9	9	-6	
2.050	3.2	279	-1.25	0.46	-0.19	8	8	8	5	7	-6	
2.147	3.1	282	-1.24	0.42	-0.17	8	8	8	4	-0	-3	
2.244	2.4	287	-1.01	0.21	-0.17	8	8	8	-5	-7	-5	
2.340	2.3	282	-0.93	0.29	-0.14	8	8	8	-1	-3	-8	
2.437	2.7	277	-0.99	0.44	-0.13	8	8	8	-2	-2	-2	
2.534	3.4	271	-1.16	0.69	-0.14	8	8	8	-5	-3	-7	
2.630	3.9	266	-1.31	0.87	-0.21	8	8	8	-2	-2	-13	
2.727	4.4	270	-1.48	0.95	-0.17	8	8	8	-2	-3	-13	
2.824	4.5	277	-1.47	0.94	-1.39	8	8	2	-7	-7	-19	
2.920	3.8	277	-1.25	0.82	1.30	8	8	3	-10	-11	-19	
3.017	3.5	273	-1.08	0.81	-8.84	8	7	2	-12	-16	-19	
3.114	9999.0	9999	-1.15	0.17	-7.83	8	4	3	-15	-19	-20	

```
Mosquito Lagoon
```

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time(hrs., min., secs.) 15 00 15 0
5
11 6 2.0
10 32 700 20
409.6 1 1600 14 700

<u>Virtual</u>

Height	Temp.	
(km)	(°C)	
0.112	28.7	11
0.218	28.3	11
0.322	27.9	11
0.428	27.4	11
0.533	26.8	11
0.637	26.4	11
0.743	26.1	11
0.848	25.7	11
0.952	25.1	11
1.058	24.3	11
1.163	23.5	11
1.268	22.7	11
1.372	21.7	11
1.477	20.3	7

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time (hrs., min., secs.) 15 05 29 0
9
8 7 8 5 5 5 2.0 2.0 2.0
188 188 42 42 700 700 43 43
10.1 10.1 1 1700 1700 32 32 700 700
130 67 220 67

	Wind	Wind	Ob	olique	Vertical	#	of		Si	gnal	to
Heigh	t Speed	Dir.		cities	Velocity	8 a	mpl	.es	Noi	se Ra	tio
(km)	(m/sec) (deg.)	(m/	sec)	(m/sec)	(8	max	:.)			
0.117	5.7	337	-1.81	-0.82	0.18	8	7	6	28	22	39
0.214	3.7	329	-1.73	-0.84	-0.38	8	7	6	32	27	40
0.311	4.7	323	-1.89	-0.54	-0.12	8	7	7	30	23	40
0.407	4.4	327	-1.92	-0.75	-0.28	8	7	7	31	23	35
0.504	5.2	322	-1.98	-0.41	0.02	8	7	8	29	18	27
0.601	5.4	316	-2.18	-0.32	-0.10	7	7	8	24	17	22
0.697	6.3	318	-2.44	-0.35	0.01	8	7	8	18	15	16
0.794	6.4	310	-2.44	0.03	0.05	8	7	8	13	9	9
0.891	6.7	297	-2.48	0.67	0.07	8	7	7	9	4	3
0.987	5.9	279	-2.09	1.05	-0.13	8	7	7	2	4	4
1.084	5.8	268	-1.92	1.29	-0.27	8	7	7	-3	-3	6
1.181	5.8	263	-1.78	1.44	-0.25	8	7	8	-2	-3	5
1.277	6.7	264	-1.86	1.85	-0.03	8	7	8	1	-3	-7
1.374	6.8	264	-1.67	2.11	0.19	8	7	7	-4	-3	-10
1.471	6.8	265	-1.65	2.10	0.24	8	7	8	-9	-10	-8
1.567	6.2	266	-1.55	1.88	0.22	8	7	8	-9	-11	-2
1.664	5.4	269	-1.37	1.64	0.25	8	7	8	-3	-7	-5
1.760	5.0	269	-1.27	1.49	0.22	8	7	8	-2	-4	2
1.857	3.3	280	-0.92	0.85	0.21	8	7	8	1	-5	8
1.954	3.1	287	-0.97	0.61	0.14	8	7	8	8	6	-2
2.050	3.3	279	-1.13	0.62	-0.04	8	7	8	6	7	-11
2.147	3.4	277	-1.21	0.61	-0.11	8	7	8	-3	0	-5
2.244	2.2	281	-0.88	0.31	-0.13	8	7	8	-5	-6	-8
2.340	2.3	297	-0.84	0.22	0.02	8	7	8	-0	-3	-11
2.437	2.5	290	-0.95	0.32	-0.02	8	7	8	-1	-4	-2
2.534	3.3	288	-1.15	0.53	0.06	8	7	8	-6	-7	-5
2.630	4.1	280	-1.37	0.81	0.02	8	6	8	-4	-4	-10
2.727	4.5	279	-1.50	0.93	0.01	8	6	8	-3	-4	-11
2.824	4.5	277	-1.48	0.94	-0.18	8	7	4	-6	-7	-17
2.920	3.7	281	-1.28	0.70	4.23	8	7	3	-8	-10	-18
3.017	3.3	288	-1.18	0.48	-5.71	8	6	2	-10	-13	-18
3.114	9999.0	9999	-1.20	1.01	1.08	8	2	3	-12	-19	-19

```
Mosquito Lagoon
```

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time(hrs., min., secs.) 15 15 12 0
5
11 6 2.0
10 32 700 20
409.6 1 1600 14 700

Virtual

Height	Temp.	
(km)	(°C)	
0.112	28.4	11
0.218	. 28.2	11
0.322	27.9	11
0.428	27.4	11
0.533	26.8	11
0.637	26.2	11
0.743	25.7	11
0.848	25.6	11
0.952	25.0	11
1.058	24.1	11
1.163	23.4	11
1.268	22.6	11
1.372	21.5	9
1.477	20.6	7

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time (hrs., min., secs.) 15 20 27 0
9
8 7 8 5 5 5 2.0 2.0 2.0
188 188 42 42 700 700 43 43
10.1 10.1 1 1700 1700 32 32 700 700
130 67 220 67

Wind Wind		Oh	olique	<u>Vertical</u>	#	of		Si	gnal	to	
Heigh	t Speed	Dir.	Veloc	cities	Velocity	sa	mpl	es	Noi	se Ra	tio
(km)	(m/sec	(deg.)	(m/	sec)	(m/sec)	(8	max	:.)	-		
0.117	5.1	335	-1.60	-0.65	0.22	7	5	6	30	32	26
0.214	4.3	317	-1.54	-0.08	0.12	8	6	6	35	39	29
0.311	4.9	325	-1.58	-0.25	0.27	7	6	6	31	28	27
0.407	4.2	322	-1.53	-0.28	0.07	8	5	7	32	35	28
0.504	3.8	312	-1.60	-0.16	-0.13	8	7	7	25	21	28
0.601	5.6	316	-2.04	-0.11	0.13	8	7	8	22	15	23
0.697	6.0	307	-2.39	0.07	-0.05	8	7	8	19	12	16
0.794	6.8	300	-2.70	0.37	-0.08	8	7	8	14	11	16
0.891	6.8	295	-2.70	0.55	-0.15	8	7	8	7	6	9
0.987	6.2	282	-2.31	0.96	-0.19	8	7	8	2	1	3
1.084	6.1	275	-2.10	1.21	-0.16	8	6	8	3	6	2
1.181	6.5	275	-2.14	1.41	-0.04	8	7	8	2	1	-4
1.277	6.4	272	-1.95	1.57	0.03	8	7	8	-4	-5	-7
1.374	6.8	267	-1.86	1.90	0.08	8	7	8	-9	-9	-11
1.471	6.6	265	-1.74	1.91	0.08	7	7	8	-10	-11	-3
1.567	5.8	271	-1.64	1.57	0.16	8	7	8	-5	-7	0
1.664	5.4	268	-1.38	1.60	0.20	8	7	8	1	-2	-3
1.760	4.9	262	-1.16	1.54	0.14	8	7	8	1	-2	4
1.857	3.5	269	-0.86	1.06	0.18	8	7	8	2	-3	8
1.954	3.3	284	-0.96	0.75	0.20	8	7	8	8	6	-1
2.050	3.6	274	-1.15	0.82	-0.01	8	7	8	5	8	-6
2.147	3.4	270	-1.10	0.79	-0.08	8	7	8	-2	3	-5
2.244	2.5	272	-0.82	0.52	-0.07	8	7	8	-4	-3	-6
2.340	2.3	288	-0.83	0.33	0.00	8	7	8	-3	-3	-11
2.437	2.6	290	-0.96	0.33	-0.01	8	7	8	-5	-3	-1
2.534	3.4	288	-1.23	0.51	-0.00	8	7	8	-5	-5	-9
2.630	4.2	289	-1.43	0.70	0.12	8	7	7	-2	-4	-13
2.727	4.7	287	-1.67	0.76	0.05	8	7	8	-3	-7	-11
2.824	4.5	278	-1.48	0.94	0.34	8	7	3	-9	-13	-17
2.920	4.0	272	-1.23	0.97	9.27	8	6	4	-8	-15	-17
3.017	9999.0	9999	-1.28	-3.98	0.65	8	3	3	-11	-19	-18
3.114	9999.0	9999	-1.25	5.31	6.58	8	4	2	-14	-17	-19

```
Mosquito Lagoon
Latitude/Longitude 28.60 80.59 3
Date 95 05 14 Time(hrs., min., secs.) 15 30 09 0
5
11 6 2.0
10 32 700 20
409.6 1 1600 14 700
```

<u>Virtual</u>

Height	Temp.	_
(km)	(°C)	
0.112	30.2	11
0.218	30.1	11
0.322	29.7	11
0.428	28.9	11
0.533	27.8	11
0.637	27.1	11
0.743	26.3	11
0.848	25.9	11
0.952	25.2	11
1.058	24.3	11
1.163	23.5	11
1.268	22.5	11
1.372	21.4	11
1.477	20.5	11

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time (hrs., min., secs.) 15 35 24 0

10

8 7 8 5 5 5 2.0 2.0 2.0

188 188 42 42 700 700 43 43

10.1 10.1 1 1700 1700 32 32 700 700

130 67 220 67

Wind Wind			Oblique		<u>Vertical</u>				Signal to		
Height Speed Dir.			<u>Velocities</u>		Velocity	samples			Noise Ratio		
(km) (m/sec) $(deg.)$				sec)	(m/sec)	(8	max	:.)			
0.117	. 4.3	343	-1.33	-0.83	0.08	8	5	7	29	31	29
0.214	3.4	355	-1.08	-1.10	-0.18	8	6	6	33	30	34
0.311	9999.0	9999	-1.52	-1.78	-0.39	8	4	7	31	33	32
0.407	3.7	346	-1.22	-0.89	-0.05	7	6	7	31	32	32
0.504	5.0	335	-1.71	-0.75	0.07	8	5	7	30	25	28
0.601	4.6	319	-1.75	-0.25	0.02	8	6	7	25	17	24
0.697	4.0	295	-1.78	0.16	-0.28	7	5	7	19	12	32
0.794	5.1	302	-2.07	0.21	-0.09	7	6	6	12	11	20
0.891	6.7	303	-2.58	0.33	0.02	7	6	7	9	6	9
0.987	7.1	296	-2.63	0.75	0.07	8	7	8	9	6	10
1.084	6.9	285	-2.29	1.28	0.17	8	7	8	7	6	4
1.181	6.9	282	-2.06	1.57	0.32	8	7	7	1	1	-6
1.277	6.0	272	-1.56	1.73	0.31	8	7	8	-2	-0	-7
1.374	6.0	270	-1.50	1.82	0.33	8	7	8	-4	-7	-7
1.471	6.4	272	-1.68	1.85	0.34	8	7	8	-9	-9	1
1.567	5.5	275	-1.47	1.55	0.32	8	7	8	3	-3	4
1.664	5.1	269	-1.22	1.62	0.33	8	7	8	2	2	1
1.760	4.8	265	-1.05	1.58	0.29	8	7	8	-1	1	4
1.857	3.2	265	-0.61	1.17	0.30	8	7	8	2	-1	8
1.954	2.8	279	-0.71	0.82	0.26	8	7	8	8	5	-1
2.050	3.2	275	-0.89	0.85	0.14	8	7	8	5	6	-7
2.147	2.9	275	-0.90	0.65	0.01	8	7	8	-1	1	-10
2.244	1.7	267	-0.57	0.34	-0.11	8	7	8	-3	-0	-7
2.340	1.7	272	-0.58	0.33	-0.07	8	7	8	-1	-1	-11
2.437	1.9	271	-0.69	0.37	-0.12	8	7	8	-2	-1	-11
2.534	2.7	284	-0.96	0.46	-0.02	8	7	3	-6	-4	-15
2.630	3.5	287	-1.26	0.54	0.40	8	7	4	-7	-7	-16
2.727	4.1	284	-1.50	0.65	-0.07	8	7	6	-8	-11	-13
2.824	4.0	284	-1.41	0.69	-9.52	8	7	3	-12	-15	-17
2.920	4.1	268	-1.17	1.07	0.97	8	5	3	-13	-16	-19
3.017	9999.0	9999	-1.33	1.03	-7.14	7	4	3	-14	-17	-19
3.114	9999.0	9999	-1.07	-7.62	-2.44	5	2	3	-16	-18	-18

```
Mosquito Lagoon
```

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time(hrs., min., secs.) 15 45 01 0
5
10 5 2.0
10 32 700 20
409.6 1 1600 14 700
0.112 30.3 10

Virtual

Height	Temp.	
(km)	(°C)	
0.218	30.1	10
0.322	29.1	10
0.428	28.3	10
0.533	27.5	10
0.637	26.2	10
0.743	25.3	10
0.848	24.6	10
0.952	23.9	10
1.058	23.5	10
1.163	22.9	10
1.268	22.0	10
1.372	21.1	10
1.477	20.3	10

Latitude/Longitude 28.60 80.59 3

Date 95 05 14 Time (hrs., min., secs.) 15 50 18 0

10

8 8 8 5 5 5 2.0 2.0 2.0

188 188 42 42 700 700 43 43

10.1 10.1 1 1700 1700 32 32 700 700

130 67 220 67

Wind Wind			Oblique		Vertical # of			Signal to			
Height Speed Dir.			Velocities		Velocity	samples		Noise Ratio		tio	
(km) (m/sec) (deg.)			(m,	/sec)	(m/sec)	(8	max	:.)			
0.117	2.4	348	-0.53	-0.37	0.22	7	7	7	23	26	25
0.214	2.2	345	-0.64	-0.43	0.06	8	7	8	27	28	28
0.311	2.9	348	-0.46	-0.26	0.47	8	6	7	24	27	26
0.407	1.6	339	-0.56	-0.31	-0.02	8	6	8	25	29	28
0.504	2.0	315	-0.70	0.01	0.08	7	6	7	25	31	27
0.601	2.1	271	-0.68	0.45	-0.06	6	6	8	33	27	32
0.697	3.1	272	-1.13	0.57	-0.18	8	6	8	22	21	23
0.794	4.2	284	-1.51	0.65	-0.05	8	6	8	14	15	13
0.891	5.9	291	-1.88	1.07	0.34	8	6	7	6	10	10
0.987	6.4	289	-2.06	1.18	0.30	8	7	8	6	8	8
1.084	6.6	279	-1.88	1.68	0.38	8	7	8	2	6	5
1.181	6.5	267	-1.65	1.92	0.22	8	8	8	-3	-0	7
1.277	6.1	273	-1.57	1.75	0.35	8	8	8	2	0	7
1.374	6.5	271	-1.68	1.91	0.33	8	7	8	3	4	11
1.471	6.3	267	-1.55	1.91	0.26	8	8	8	3	2	8
1.567	5.2	266	-1.20	1.70	0.31	8	8	8	5	3	6
1.664	4.6	264	-0.98	1.57	0.31	8	8	8	6	5	2
1.760	4.5	256	-0.96	1.48	0.08	8	8	8	3	3	2
1.857	3.6	261	-0.89	1.08	0.03	8	8	8	2	1	9
1.954	3.2	266	-1.04	0.75	-0.14	8	8	8	7	7	5
2.050	3.5	262	-1.21	0.73	-0.32	8	8	8	5	9	9
2.147	3.2	261	-1.12	0.64	-0.33	8	8	8	1	5	5
2.244	2.4	262	-0.92	0.41	-0.32	8	8	8	-1	0	-1
2.340	2.0	266	-0.89	0.23	-0.34	8	8	8	-3	-3	-3
2.437	2.2	277	-1.08	0.12	-0.38	8	8	8	-4	-5	-5
2.534	3.0	296	-1.39	0.05	-0.26	8	8	8	-4	-6	-11
2.630	4.3	305	-1.78	0.05	-0.10	8	8	6	-6	-6	-16
2.727	4.9	303	-1.98	0.17	-0.09	8	8	8	-9	-12	-12
2.824	5.1	296	-1.91	0.49	-0.24	8	6	4	-12	-17	-13
2.920	4.2	295	-1.57	0.41	2.06	8	6	3	-11	-16	-18
3.017	4.2	311	-1.64	-0.03	9.82	8	5	2	-10	-14	-17
3.114	4.4	324	-1.68	-0.41	-1.43	7	6	3	-12	-16	-16