Feuille 3 Inversion et déterminants

Les feuilles d'exercices sont découpées en trois types d'exercice :

- Les *indispensables* : à savoir faire en autonomie.
- Les exercices d'application : pour mieux maîtriser et comprendre le cours.
- Pour aller plus loin : exercices présentant des développements mathématiques ou des études de modélisations de phénomènes issues d'autres disciplines.

Indispensables

Exercice 1. Soit
$$A = \begin{pmatrix} -3 & 5 & 6 \\ -1 & 2 & 2 \\ 1 & -1 & -1 \end{pmatrix}$$
.

1. En utilisant la méthode du pivot de Gauss, effectuer des opérations sur les lignes jusqu'à obtenir la matrice identité.

Solution:

On prend le 1 de la troisième ligne pour pivot et l'on effectue $L_1 \leftarrow L_1 + 3L_3$ et $L_2 \leftarrow L_2 + L_3$ pour obtenir

$$\begin{pmatrix} 0 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & -1 & -1 \end{pmatrix}$$

On prend maintenant le 1 de la deuxième colonne pour pivot en faisant $L_1 \leftarrow L_1 - 2L_2$ et $L_3 \leftarrow L_3 + L_2$ pour obtenir

$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{pmatrix}$$

On termine en faisant $L_2 \leftarrow L_2 - L_1$ puis $L_3 \leftrightarrow L_1$.

2. Réaliser les mêmes opérations que précédemment sur la matrice identité. Noter A' la matrice obtenue.

Solution: On trouve
$$A' = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 3 & 0 \\ 1 & -2 & 1 \end{pmatrix}$$

3. Quel est le lien entre A et A'? Justifier que la méthode permet de trouver l'inverse d'une matrice (si elle existe).

Solution: On a $A.A' = I_3$ donc $A' = A^{-1}$. Réaliser des opérations élémentaires sur les lignes revient à multiplier par une matrice inversible. Appelons $P_1, P_2, ..., P_6$ les matrices correspondant aux opérations sur A

1

$$P_1 = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, P_3 = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, P_5 = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P_6 = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

LU1MA002 Mathématiques pour les Études Scientifiques II

$$P_6 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

On trouve

$$P_6P_5...P_1A = I_3$$

donc

$$P_6...P_2P_1 = A^{-1}$$

Appliquer les mêmes opérations sur la matrice identité revient à calculer

$$P_k...P_2P_1I_3 = A^{-1}$$

Exercice 2. (déterminant 2x2) Soit $a, b, c, d \in \mathbb{R}$. Pour $(e_1, e_2) \in \mathbb{R}^2$, on définit $(S_{(e_1, e_2)}) : \begin{cases} ax + by = e_1 \\ cx + dy = e_2 \end{cases}$

1. À quelle condition $(S_{(e_1,e_2)})$ admet des solutions quel que soit $(e_1,e_2) \in \mathbb{R}^2$?

Solution: Par le théorème du cours, il faut que rangA = 2. Alors, si a = 0, on a besoin d'avoir $b, c \neq 0$. Si $a \neq 0$ on peut prend a comme pivot. Pour avoir le deuxième pivot il faut que $d \neq b \frac{c}{a}$.

2. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. À quelle condition les lignes de A ne sont-elles pas colinéaires? Montrer que sous cette condition, A est inversible et trouver son inverse.

Solution: les lignes de A sont colinéaires ssi $\exists \lambda \in \mathbb{R}$ tq $a = \lambda c$ et $b = \lambda d$. (ou l'inverse). Si $\lambda = 0$ on a une ligne nulle. Sinon, on a ad = cb. Réciproquement, si ad = bc soit tout le monde est nul (et les deux lignes sont bien colinéaires), soit on a par exemple $d \neq 0$ et alors en posant $\lambda = \frac{b}{d}$ on a $a = \lambda c$ et $b = \lambda d$, La condition est donc $ad \neq bc$, c.a.d., $d\acute{e}t = ad - bc \neq 0$. Sous cette condition on peut inverser la matrice:

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Exercice 3. Soient $B = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ et $C = \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix}$. Calculer $\det B$, $\det C$, $\det(BC)$ et $\det(B+C)$. Que remarquez-vous? Cette formule est-elle générale?

Solution:

$$\det B = -1 - 4 = -5$$
, $\det C = 3 + 2 = 5$.

$$BC = \begin{pmatrix} 5 & 0 \\ 5 & -5 \end{pmatrix}.$$

LU1MA002 Mathématiques pour les Études Scientifiques II

$$\det(BC) = -25 = \det(B)\det(C)$$

Par contre,

$$\det(B+C) = \det\begin{pmatrix} 4 & 0 \\ 3 & 0 \end{pmatrix} = 0 \neq -25$$

La formule du produit est toujours vrai par le théorème du cours.

Exercice 4 (Systèmes linéaires et déterminant). On considère la matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 2 & 3 \end{pmatrix}$.

1. Calculer $\det(A)$ et rang A. En déduire que le système AX = B a une unique solution, quel que soit $B \in \mathbb{R}^3$.

Solution: Faisons $L_2 \leftarrow L_2 - L_1$. On obtient $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix}$ puis en développant par rapport à la première colonne:

$$\det \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} = 3 - 4 = -1$$

A est donc inversible avec rang A=3 et le système à l'unique solution $X=A^{-1}.B.$

2. Mêmes questions avec la matrice $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$

Solution: En faisant $L_2 \leftarrow L_2 - 2L_1$ et $L_3 \leftarrow L_3 - L_4$ on a

$$\det \begin{pmatrix} 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} = \det \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

En développant par rapport à la troisième ligne, on obtient =

1.
$$\det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

et en développant par rapport à la première ligne =

$$1.1. \det \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = 1$$

Donc la matrice est inversible, de rang = 4.

3. En utilisant la même méthode, déterminer l'ensemble des $x \in \mathbb{R}$ tel que $A_x X = B$ a une solution pour tout $B \in \mathbb{R}^3$, où $A_x = \begin{pmatrix} 1 & 4 & 16 \\ 1 & x & x^2 \\ 1 & 5 & 25 \end{pmatrix}$

Solution:

Développons A_x par rapport à la deuxième ligne. On obtient le polynôme en x:

$$-1. \det \begin{pmatrix} 4 & 16 \\ 5 & 25 \end{pmatrix} + x \det \begin{pmatrix} 1 & 16 \\ 1 & 25 \end{pmatrix} - x^2 \det \begin{pmatrix} 1 & 4 \\ 1 & 5 \end{pmatrix} = -20 + 9x - x^2 = -(x-4)(x-5)$$

L'ensemble $\{x \in \mathbb{R} : x \neq 4 \ et \ x \neq 5\}$ est la solution do problème.

Exercice 5. Calculer le déterminant des matrices suivantes, puis en effectuant des opérations sur les lignes du couple $(A \mid I)$, calculer leur inverse. Que se passe-t-il, si avec cette méthode, on essaie de calculer l'inverse d'une matrice non inversible?

$$A_1 = \begin{pmatrix} 1 & 3 & 4 \\ 0 & 2 & 6 \\ 2 & 4 & 2 \end{pmatrix}; A_2 = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 0 \\ -1 & 4 & 4 \end{pmatrix}; A_3 = \begin{pmatrix} 2 & 3 & 1 & 5 \\ 1 & 0 & 3 & 1 \\ 0 & 2 & -3 & 2 \\ 0 & 2 & 3 & 1 \end{pmatrix}$$

Solution:

- dét $A_1 = -0$. dét $\begin{pmatrix} 3 & 4 \\ 4 & 2 \end{pmatrix} + 2$ dét $\begin{pmatrix} 1 & 4 \\ 2 & 2 \end{pmatrix} 6$ dét $\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} = 2(2-8) 6(4-6) = 0$ donc A_1 n'est pas inversible.
- dét $A_2 = -(-1)$. dét $\begin{pmatrix} 2 & 3 \\ 4 & 4 \end{pmatrix} + 1$ dét $\begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix} 0$. dét $\begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix} = 8 12 + 4 + 3 \neq 0$ donc A_2 est inversible. Par pivot de gauss en faisant

$$L_1 \leftarrow L_1 + L_2 \ , L_3 \leftarrow L_3 - L_2 \ , L_3 \leftarrow L_3 - L_1 \ , L_1 \leftarrow L_1 - 3L_3 \ , L_1 \leftarrow \frac{1}{3}L_1 \ , L_2 \leftarrow -L_2 + L_1 \ , L_2 \leftrightarrow L_1 + L_2 + L_2 + L_3 + L$$

On obtient

$$A_2^{-1} = \begin{pmatrix} 4/3 & 4/3 & -1 \\ 4/3 & 7/3 & -1 \\ -1 & -2 & 1 \end{pmatrix}$$

— En développant par rapport à la première colonne,

$$\det A_3 = 2 \det \begin{pmatrix} 0 & 3 & 1 \\ 2 & -3 & 2 \\ 2 & 3 & 1 \end{pmatrix} - 1 \cdot \det \begin{pmatrix} 3 & 1 & 5 \\ 2 & -3 & 2 \\ 2 & 3 & 1 \end{pmatrix}$$

Ensuite:

Donc dét $A_3 = 2 \times 18 - 35 = 1 \neq 0$. On doit trouver

$$A_3^{-1} = \begin{pmatrix} 18 & -35 & -28 & 1\\ 9 & -18 & -14 & 1\\ -2 & 4 & 3 & 0\\ -12 & 24 & 19 & -1 \end{pmatrix}$$

Exercice 6. On se place dans $M_n(\mathbb{R})$ et l'on considère la matrice suivante, disons pour n=4:

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$

1. En calculant $d\acute{e}t(A)$, déterminer si A est inversible et si oui, calculer son inverse.

Solution:

On trouve dét
$$A = -3$$
 et $A^{-1} = \frac{1}{3} \begin{pmatrix} -2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 1 \\ 1 & 1 & -2 & 1 \\ 1 & 1 & 1 & -2 \end{pmatrix}$

2. Écrire la matrice $A + I_4$ et calculer son carré.

3. (*) Sachant que $(A + I_4)(A + I_4) = A^2 + 2A + I_4$, déduire de la question précédente une égalité $A(A + aI_4) = bI_4$ pour des réels a, b que l'on déterminera. Comparer avec le résultat de la question 1.

Solution: On a $A^2 + 2A + I_4 = 4A + 4I_4$ puis $A^2 - 2A = 3I_4$ puis $A(A - 2I_4) = 3I_4$. On en déduit que A est inversible d'inverse $A^{-1} = \frac{1}{3}(A - 2I_4)$

Applications _____

Exercice 7 (Aires et volumes). 1. Calculer l'aire du parallélogramme construit sur les vecteurs : $\vec{u} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$.

2. Calculer le volume du parallélépipède construit sur les vecteurs

$$\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \vec{v} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} \text{ et } \vec{w} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

3. Montrer que le volume d'un parallélépipède dont les sommets sont des points de \mathbb{R}^3 à coefficients entiers est un nombre entier.

Solution:

- 1. L'aire \mathcal{A} du parallélogramme construit sur les vecteurs $\vec{u} = \begin{pmatrix} a \\ c \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} b \\ d \end{pmatrix}$ est la valeur absolue du déterminant $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ donc $\mathcal{A} = |ad bc|$. Ici on trouve $\mathcal{A} = \text{abs} \begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} = +5$ où abs désigne la fonction valeur absolue.
- 2. Le volume du parallélépipè de construit sur trois vecteurs de \mathbb{R}^3 est la valeur absolue du déterminant de la matrice des trois vecteurs. Ici

$$\mathcal{V} = \operatorname{abs} \begin{vmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 3 & 1 \end{vmatrix} = \operatorname{abs} \left(+1 \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} + 1 \begin{vmatrix} 2 & 1 \\ 0 & 3 \end{vmatrix} \right) = 4$$

ou l'on a développé par rapport à la première ligne.

3. Si un parallélépipède est construit sur trois vecteurs de \mathbb{R}^3 dont les coefficients sont des entiers alors le volume correspond au déterminant d'une matrice à coefficients entiers. C'est donc un entier.

Exercice 8. On considère le parallèlogramme défini par les vecteurs suivants $(t \in [0,1])$:

$$U = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad V_t = \begin{pmatrix} t \\ -t^2 \end{pmatrix}$$

- 1. Calculer l'aire du parallèlogramme.
- 2. Pour quelle valeur de t obtient-on l'aire maximale? Que vaut-elle?

Solution: 1. L'aire recherchée est la valeur absolue du déterminant $\begin{vmatrix} 1 & t \\ -1 & -t^2 \end{vmatrix}$, c'est à dire $|-t^2+t|$. 2. $t-t^2=t(1-t)$ est positif sur [0,1]. Donc l'aire est égale à $t-t^2$. Une étude de fonction montre que la fonction $t-t^2$ est croissante sur $[0,\frac{1}{2}]$ et décroissante sur $[\frac{1}{2},1]$. Elle prend donc sa valeur maximale sur $t=\frac{1}{2}$. L'aire maximale est donc $t=\frac{1}{2}$.

Exercice 9. 1. En s'inspirant de l'exercice 4 du TD1, donner l'expression générale de la matrice 3×3 de la rotation autour de l'axe Oz et d'angle θ dans \mathbb{R}^3 .

Solution:

$$A = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

6

2. Calculer le déterminant de cette matrice et l'inverse de cette matrice.

Solution:

$$A^{-1} = \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) & 0\\ \sin(-\theta) & \cos(-\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

3. Donner l'expression générale de la matrice 3×3 correspondant à la symétrie par rapport au plan xOy.

Solution:

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

4. Calculer le déterminant de cette matrice et l'inverse de cette matrice.

<u>Solution</u>:

$$\det B = -1$$

$$B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

5. Donner l'expression générale de la matrice 3×3 correspondant à la rotation autour de l'axe Oz et d'angle $\theta = \pi$ suivie par la symétrie par rapport au plan xOy. De quelle transformation s'agit-il?

Solution:

$$B.A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} \cos \pi & -\sin \pi & 0 \\ \sin \pi & \cos \pi & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

C'est la symétrie par rapport à l'origine.

6. Calculer le déterminant de cette matrice et l'inverse.

Solution: On a $\det(A.B) = \det(A)$. $\det(B)$, donc $\det(AB) = 1.(-1) = -1$. Aussi, on a

$$(A.B)^{-1} = B^{-1}.A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \cos(-\pi) & -\sin(-\pi) & 0 \\ \sin(-\pi) & \cos(-\pi) & 0 \\ 0 & 0 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Pour aller plus loin

Exercice 10. Soit

$$A = \begin{pmatrix} a_1 & 0 & 0 & \cdots & 0 \\ 0 & a_2 & 0 & \cdots & 0 \\ 0 & 0 & a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & a_p \end{pmatrix}$$

où $a_1, a_2, a_3, \cdots, a_p$ sont p réels. A quelle condition A est-elle inversible?

Solution : Par le théorème du cours, A inversible ssi dét $A \neq 0$ ssi $a_1.a_2....a_p \neq 0$. Pour qu'un produit fini soit non-nul, il faut que chaque $a_i \neq 0$.

Exercice 11. Soit $A \in \mathcal{M}_2(\mathbb{K})$.

1. Écrire une relation linéaire entre A^2 , A et I_2 faisant intervenir les coefficients de la matrice A.

Solution: Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Alors
$$A^2 = \begin{pmatrix} a^2 + bc & ba + bd \\ ca + cd & cb + d^2 \end{pmatrix} = \begin{pmatrix} a^2 + bc - da + da & ba + bd \\ ca + cd & cb + d^2 - ad + ad \end{pmatrix} =$$

$$= \begin{pmatrix} a(a+d) & b(a+d) \\ c(a+d) & d(a+d) \end{pmatrix} + \begin{pmatrix} bc - da & 0 \\ 0 & bc - da \end{pmatrix} = (a+d).A - \det A.Id_2$$

$$A^2 - (a+d).A + (\det A).I = 0$$

| Ici, a + d c'est la trace de A, trA,

2. En déduire une condition nécessaire et suffisante (sans utiliser le déterminant) pour que A soit inversible. Donner alors l'expression de A^{-1} .

Solution:

$$-A^{2} + tr(A).A = (\det A).I$$
$$A.\left[\frac{1}{\det A}(tr(A).I - A)\right] = I$$

3. On suppose que la somme des éléments diagonaux de A est non nulle. Montrer que pour tout $B \in \mathcal{M}_2(\mathbb{K}), A^2B = BA^2 \Longrightarrow AB = BA$.

Solution: Supposons $A^2B = BA$. Alors

$$(tr(A).A - \det A.I)B = B.(tr(A).A - \det A.I)$$

donc

$$tr(A).AB - (\det A).B) = tr(A).BA - (\det A)B$$

Alors:

$$tr(A).AB = tr(A).BA$$

| par l'hypothèse $tr(A) \neq 0$, on a que AB = BA.

Exercice 12 (Déterminant de Vandermonde). Soient \mathbb{K} un corps et $n \in \mathbb{N}^*$. Pour $a_1, \ldots, a_n \in \mathbb{K}$, on considère le déterminant :

$$V(a_1, \dots, a_n) = \det \begin{pmatrix} 1 & 1 & \dots & 1 \\ a_1 & a_2 & \dots & a_n \\ a_1^2 & a_2^2 & \dots & a_n^2 \\ \vdots & \vdots & & \vdots \\ a_1^{n-1} & a_2^{n-1} & \dots & a_n^{n-1} \end{pmatrix}.$$

Le but de l'exercice est de démontrer la formule : $V(a_1, \ldots, a_n) = \prod_{1 \le i < j \le n} (a_j - a_i)$.

1. Expliquer pourquoi la formule est vraie si deux des a_i sont égaux.

<u>Solution</u> : Le déterminant est nul car la matrice n'est pas inversible avec deux colonnes identiques. La formula est nulle aussi.

2. Vérifier le résultat pour n=2 et n=3.

Solution: Pour n=2 on a dét $\begin{pmatrix} 1 & 1 \\ a_1 & a_2 \end{pmatrix} = a_2 - a_1$.

Pour n=3 on a

$$\det \begin{pmatrix} 1 & 1 & 1 \\ a_1 & a_2 & a_3 \\ a_1^2 & a_2^2 & a_3^2 \end{pmatrix} = 1 \det \begin{pmatrix} a_2 & a_3 \\ a_2^2 & a_3^2 \end{pmatrix} - \det \begin{pmatrix} a_1 & a_3 \\ a_1^2 & a_3^2 \end{pmatrix} + \det \begin{pmatrix} a_1 & a_2 \\ a_1^2 & a_2^2 \end{pmatrix} =$$

$$= a_2 a_3^2 - a_2^2 a_3 - a_1 a_3^2 + a_1^2 a_3 + a_1 a_2^2 - a_1^2 a_2$$

coïncide avec

$$\prod_{1 \le i < j \le 3} (a_j - a_i) = (a_2 - a_1).(a_3 - a_2).(a_3 - a_1)$$

3. En réalisant des opérations bien choisies sur les lignes, puis en développant par rapport à la première colonne, montrer que

(†)
$$V(a_1, \dots, a_n) = V(a_2, \dots, a_n) \prod_{i=2}^{n} (a_i - a_1).$$

 $|\underline{\text{Solution}}|$: On fait $L_i \leftarrow L_i - a_1 L_{i-1}$ aveci = n puis i = n-1 jusqu'à i = 2:

$$V(a_1, \dots, a_n) = \det \begin{pmatrix} 1 & 1 & \dots & 1 \\ 0 & a_2 - a_1 & \dots & a_n - a_1 \\ 0 & (a_2 - a_1)a_2 & \dots & (a_n - a_1)a_n \\ \vdots & \vdots & & \vdots \\ 0 & (a_2 - a_1)a_2^{n-2} & \dots & (a_n - a_1)a_n^{n-2} \end{pmatrix}.$$

En factorisant chacune les lignes par $a_i - a_1$ et en développant par rapport à la première colonne on obtient le résultat.

4. Conclure alors par récurrence.

Solution : On raisonne sur n. L'initialisation a été faite à la question 2. Pour l'hérédité il suffit d'utiliser la formule précédente et d'appliquer l'hypothèse de récurrence.

Exercice 13. Soient $x_0, x_1, \dots, x_p \in \mathbb{R}$. À quelle condition sur x_0, x_1, \dots, x_p telle que pour tout $y_0, y_1, \dots, y_p \in \mathbb{R}$, il existe un polynôme P de degré $\leq p$ tel que $P(x_i) = y_i$ $(i \in \{0, 1, \dots, p\})$?

Solution:

Notons $P(X) = c_0 + c_1 X + ... c_p X^p$. La condition s'écrit VC = Y avec

$$C = \begin{pmatrix} c_0 \\ \vdots \\ c_p \end{pmatrix}, \quad Y = \begin{pmatrix} y_0 \\ \vdots \\ y_p \end{pmatrix}, \quad V = \begin{pmatrix} 1 & x_0 & \cdots & x_0^p \\ 1 & x_1 & \cdots & x_1^p \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_p & \cdots & x_p^p \end{pmatrix}$$

Donc le système a une solution pour tout Y ssi V est inversible et donc, par l'exercice précédent, ssi les x_i sont distincts.

Exercice 14. Soient X une valeur indéterminée et $A=\begin{pmatrix}2-X&-3&-6\\0&5-X&6\\-1&-5&-5-X\end{pmatrix}\in M_3(\mathbb{R}[X]).$

Calculer le polynôme $P = \text{dét}(A) \in \mathbb{R}[X]$ et déterminer ses racines. Si λ est racine de P, que peut-on dire sur A?

Solution : On trouve dét $A = -X^3 + 2X^2 + X - 2 = -(X - 1)(X^2 - X - 2) = -(X - 1)(X - 2)(X + 1)$. Si $P(\lambda) = 0$ alors

$$\left(\begin{array}{ccc}
2 - \lambda & -3 & -6 \\
0 & 5 - \lambda & 6 \\
-1 & -5 & -5 - \lambda
\end{array}\right)$$

est non-inversible.

Exercice 15. Soit A une matrice nilpotente de $\mathcal{M}_n(\mathbb{K})$ (il existe $n \in \mathbb{N}$ tel que $A^n = 0$). En remarquant que $A = A - I_n + I_n$ et en utilisant la formule du binôme de Newton montrer que $A - I_n$ est inversible.

Solution : Par la formula du binôme de Newton, on a

$$A^{N} = [(A-I)+I]^{N} = \sum_{i=0}^{N} (A-I)^{i} \cdot I^{N-i} \binom{N}{i} = \sum_{i=1}^{N} (A-I)^{i} \binom{N}{i} + I = (A-I) [\sum_{i=0}^{N-1} (A-I)^{i} \binom{N}{i}] + I = (A-I) [\sum_{$$

Donc, par hypothèse $A^N = 0$ on a

$$(A-I)\left[\sum_{i=0}^{N-1} (A-I)^{i} \binom{N}{i}\right] + I = 0$$

donc

LU1MA002 Mathématiques pour les Études Scientifiques II

$$(A-I)[\sum_{i=0}^{N-1} (A-I)^{i} \binom{N}{i}] = -I$$

donc

$$(A-I)[-\sum_{i=0}^{N-1}(A-I)^i\binom{N}{i}]=I$$

Exercice 16. Calculer les déterminants des matrices suivantes :

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ 3456 & 1 \end{pmatrix},$$

$$D = \begin{pmatrix} 4 & 3 & 3 & 4 & 7 \\ 9 & 1 & 5 & 9 & 5 \\ 5 & 4 & 6 & 5 & 4 \\ 3 & 9 & 9 & 3 & 5 \\ 3 & 7 & 2 & 3 & 6 \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 6 & 8 & 10 \\ 6 & 12 & 5 & 0 & 2 \\ 1 & 14 & 11 & 3 & 18 \\ 1 & 2 & 6 & 1 & 11 \end{pmatrix}, \quad F = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 1 & 1 \end{pmatrix},$$

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 3 & 8 & 3 & 7 & 2 \\ 0 & 0 & 2 & 8 & -1 & 1 \\ 0 & 0 & 0 & 1 & 8 & 5 \\ 0 & 0 & 0 & 0 & -1 & 9 \\ 0 & 0 & 0 & 0 & 0 & 4 \end{pmatrix}, \quad M = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 0 & 0 & 0 & 0 & 5 \\ 3 & 0 & 0 & 0 & 0 & 3 \\ 5 & 0 & 0 & 0 & 0 & 2 \\ 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}.$$