Part I: Combinational Circuit Study Report

Vitaly Slabada^b, Group 8 (JB Ruutelmann, Samson George, Vitaly Slabada)

ABSTRACT

The main goal of the experiment is to create a more efficient TV population algorithm, that provides better fault coverage results. Once new TVs are created, compare coverage to results from ece464 project 2, and analyze improvements (if any).

1 INTRODUCTION

Several different PRNGs were considered to come up with better ways to generate new TVs. For example, John von Neumann's "Middle Square" method. Biggest flow of it is that it cannot constantly generate new number 256 times in a row without repeating itself (for any seed). The thought of designing an experiment that was initially destined to failure was not very appealing. After some research, it became clear that it might be challenging to beat performance of 5 TVs described in Project 2 for that same reason. Therefore, it was decided to attempt to modify TVs from Project 2 to get better results with same or less efforts in testing.

Hypothesis:

Better fault coverage could be achieved by flipping test vector bit-wise values

- for every TV in a certain sequence of TVs "Flip Everything"
- for every odd TV in a certain sequence of TVs "Alt-Flip"

Within this experiment both ways are examined.

2 METHODS AND PROCEDURES

Experiment Design:

The values of lines in the circuit should be changed to discover new faults. The more values are changed with application of new TV – the more fault coverage can be obtained. At the same time if one part of the circuit never changes values from TV to TV, it will provide similar coverage, wasting time and resources. It makes sense to attempt to improve on techniques of populating randomized TVs used in project 2.

2.1 Flipping every TV's bit - "Flip Everything".

Most of gates in provided circuits are either AND or NAND gates. For example circuits below:

- c880.bench : 143 ANDs + 150 NANDs + 29 ORs + 61 NORs + 26 buffers
- \bullet c499.bench: 56 ANDs + 40 NANDs + 2 ORs + 104 XORs
- c432.bench: 4 ANDs + 119 NANDs + 19 NORs + 18 XORs

AND gates change values only if all inputs are 1s. Part of randomization is to try introduce more 1s in TV. For the first part of the experiment, every bit of populated TVs was flipped in the following matter:

Before Flipping	Flip Everything
TV_A - Notepad	TV_A1 - Notepad
File Edit Format View Help	File Edit Format View Help
000000000000000000000000000000000111\pm11111	111111111111111111111111111111111000000
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	11111111111111111111111111111111111111000
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	1111111111111111111111111111111111110100
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	11111111111111111111111111111111111110010
000000000000000000000000000000000000000	11111111111111111111111111111111111110001
000000000000000000000000000000000000000	1111111111111111111111111111111111110000
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	111111111111111111111111111111111111111

Figure 1. Modify TVs with Flip Everything method

Amount of 1s within test vector heavily depends on the seed for all of the TVs used in Project 2, except for TV A, where seed only affects first 8 bits from right. So it makes sense to flip remaining bits to have more 1's total. For TVs B-E it is not proper to judge whether Hypothesis is correct or not, because the seed affects the whole length of the TV (not just last 8 bits), which means that initial input could be selected to include more 1's without "flipping" technique at all. So in this case we are mostly interested in TV A, even though results for this particular test were better for every TV. Seed = 255, Batch = 10 Circuit c432. **Figure 3**.

Since TV A method, generally speaking, is not the most effective algorithm, it was decided to not continue testing circuits using "flip everything" method.

2.2 Flipping every second TV's bit - "Alt-Flip".

1

Flipping every second TV in a set is attempted. It provides significant change of TV and also would still provide unrepeated list of TVs in a set.* Every set is modified in the following manner:

Before Flipping	Alt-Flip
TV_A - Notepad	TV_A1 - Notepad
File Edit Format View Help	File Edit Format View Help
000000000000000000000000000000000111111	000000000000000000000000000000000000000
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	1111111111111111111111111111111111111001
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	111111111111111111111111111111111111111
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	11111111111111111111111111111111111110001
000000000000000000000000000000000000000	000000000000000000000000000000000000000

Figure 2. Flip Everything method results for c432 circuit. Green color shows better coverage.

Three different circuits were tested using Alt-Flip method: c432, c499 and c880. See Results section for testing results (**Figures 4 - 9**)

^{1*} TV B and TV C in fact are exceptions, since flipping bits actually produces repetition of TVs. But it is unrepeated for TV A, E and D, including TV E - test vector with best coverage.

3 RESULTS

$3.1 \quad Results \ of \ "Flip \ Everything".$

This section shows testing results for Flip Everything method. It was tested with c432 circuit.

Circuit:						Circuit: c432									
Seed $= 2$	255					Seed = 255									
Batch size = 10							Batch size = 10								
NO FLIP	NO FLIPPING						Flip Everything								
		_	-		E	batch #	Α	В	С	D	E	:			
1		38.25188	30.73308	43.1391		1	40.13158	45.0188	49.53008	40.13158	54.41729				
2		44.3609	36.74812		63.43985	2	45.30075	52.16165	57.14286	44.26692	69.73684				
3	35.33835	44.73684	38.53383	55.6391	75.93985	3	45.77068		58.83459	56.95489	76.12782				
4	39.84962		53.66541	59.49248	83.08271	4	45.95865	52.81955	62.31203	57.33083	80.26316				
5	40.50752		58.45865	59.49248	84.49248	5	46.05263		64.75564		83.7406				
6	40.50752		62.21805	59.49248	85.52632	6	46.05263		64.75564		93.1391				
7	40.6015	51.31579	62.59398	59.49248	86.09023	7	48.1203	58.92857		58.36466	93.1391				
8	40.6015	51.31579	62.59398	59.49248	87.68797	8	48.21429			59.68045	93.32707				
9	40.6015	51.31579	62.59398	59.49248	89.84962	9	48.40226	60.24436		59.68045	94.54887				
10	40.97744	51.69173	64.84962	59.49248	90.31955	10	48.68421	60.24436		59.68045	94.73684				
11	41.2594	51.69173	66.16541		90.31955	11	48.68421	60.24436		59.68045	94.83083				
12	41.44737	52.81955	67.19925	60.6203	90.31955	12	48.68421	60.24436		59.68045	94.83083				
13	41.44737	52.81955	71.42857	61.74812	90.50752	13	48.68421			59.68045	94.92481				
14	41.44737	57.33083	77.63158	61.74812		14	48.68421		83.83459		94.92481				
15	41.44737	57.70677	78.57143	62.12406	90.50752	15	48.68421		87.96992		94.92481				
16	41.44737	57.80075	80.26316	62.12406	90.6015	16		62.31203		59.86842	94.92481				
17	41.44737	58.83459	83.36466	62.31203	90.6015	17	48.68421	62.31203		59.86842 59.86842	95.67669 95.67669				
18	41.44737	60.15038	83.92857	62.5	90.78947	19	48.68421		88.06391	62.5	95.67669				
19	41.44737	60.15038	83.92857	62.5	90.88346	20		62.31203	88.06391	62.5	95.77068				
20	41.44737	60.15038	83.92857	62.5	91.91729	20	48.68421	62.5	88.43985	62.5	95.77068				
21	41.44737	60.15038	83.92857	62.5	91.91729	22	48.68421	62.5	88.90977	62.5	95.77068				
22	41.44737	60.15038	83.92857	62.5	91.91729	23	48.68421	62.5	88.90977	62.5	95.77068				
23	41.44737	60.99624	85.6203	62.5	91.91729	23	48.68421	62.5	88.90977	62.5	95.77068				
24	41.44737	60.99624	85.90226	62.5	91.91729	25	48.68421	62.5		62.5					
25	41.44737	62.5	85.99624	62.5	91.91729		40.00421	02.5	00.30377	02.5	33.77008	-			

 $\textbf{Figure 3.} \ \ \textbf{Flip Everything method results for c432 circuit. Green color shows better coverage. }$

3.2 Results of "Alt-Flip".

This section shows testing results for Alt-Flip method. It was tested with c432, c499 and c880 circuits.

Circuit:	:432					Circuit: c432							
Seed = 2	255		Seed = 255										
Batch siz	ze = 10			Batch size = 10									
NO FLIPPING							,						
110 1 2						Alt-Flip							
batch#	Α	В	С	D	E	batch #		A	В	С	D	E	
1	35.24436	38.25188	30.73308	43.1391	49.06015		1	45.48872	39.09774	47.93233	38.90977	52.63158	
2	35.33835	44.3609	36.74812	55.54511	63.43985		2	48.59023	41.44737	55.54511	44.45489	66.82331	
3	35.33835	44.73684	38.53383	55.6391	75.93985		3	48.68421	47.55639	57.89474	46.99248	74.53008	
4	39.84962	46.42857	53.66541	59.49248	83.08271		4	51.2218	47.74436	65.88346	58.08271	78.28947	
5	40.50752	49.81203	58.45865	59.49248	84.49248		5	51.78571	51.12782	68.42105	59.30451	80.16917	
6	40.50752	50.93985	62.21805	59.49248	85.52632		6	51.78571	52.25564	69.07895	59.49248	87.5	
7	40.6015	51.31579	62.59398	59.49248	86.09023		7	51.78571	53.00752	70.58271	59.68045	90.03759	
8	40.6015	51.31579	62.59398	59.49248	87.68797		8	51.78571	53.00752	70.58271	59.68045	90.03759	
9	40.6015	51.31579	62.59398	59.49248	89.84962		9	51.97368	53.38346	70.58271	59.68045	92.10526	
10	40.97744	51.69173	64.84962	59.49248	90.31955	1	LO	51.97368	53.38346	70.77068	59.68045	92.66917	
11	41.2594	51.69173	66.16541	59.49248	90.31955	1	11	51.97368	53.38346	71.52256	59.68045	93.98496	
12	41.44737	52.81955	67.19925	60.6203	90.31955	1	L2	51.97368	53.38346	71.52256	59.68045	93.98496	
13	41.44737	52.81955	71.42857	61.74812	90.50752	1	L3	53.47744	53.38346	71.80451		94.64286	
14	41.44737	57.33083	77.63158	61.74812	90.50752	1	L4	53.47744	53.38346	76.97368	60.05639	94.64286	
15	41.44737	57.70677	78.57143	62.12406	90.50752	1	15	53.47744			60.05639	94.73684	
16	41.44737	57.80075	80.26316	62.12406	90.6015		16	53.47744		78.47744	60.05639	95.0188	
17	41.44737	58.83459	83.36466	62.31203	90.6015		L7	53.47744		78.66541		95.58271	
18	41.44737	60.15038	83.92857	62.5	90.78947		18	53.47744		78.66541		95.58271	
19	41.44737	60.15038	83.92857	62.5	90.88346	_	19	53.47744		78.66541		95.67669	
20	41.44737	60.15038	83.92857	62.5	91.91729	_	20	53.66541		79.04135	61.18421	95.86466	
21	41.44737	60.15038	83.92857	62.5	91.91729		21	53.66541		79.04135	61.18421	95.86466	
22	41.44737	60.15038	83.92857	62.5	91.91729		22	53.66541		79.04135	61.18421	95.86466	
23	41.44737	60.99624	85.6203	62.5	91.91729		23	53.66541		79.51128	61.18421	95.86466	
24	41.44737	60.99624	85.90226	62.5	91.91729		24	53.66541			61.18421	95.86466	
25	41.44737	62.5	85.99624	62.5	91.91729	2	25	53.66541	53.38346	79.69925	61.18421	95.95865	

 ${\bf Figure~4.~~Alt-Flip~method~results~for~c432~circuit.~~Green~color~shows~better~coverage.}$

Figure 5. Comparison of TVs for c499

Circuit: c	499				Circuit: c499										
Seed = 255							Seed = 255								
Batch siz	atch size = 10						Batch size = 10								
NO FLIPI	IO FLIPPING														
TV E vs TV							Alt-Flip TV E alt								
batch #	Α	В	С	D	batch #	A	В	С	D	E					
1	43.54839	32.8725	47.23502	53.45622	54.60829	1	45.92934	33.48694	49.84639	38.47926	37.4808				
2	46.39017	37.78802	62.90323	67.28111	66.97389	2	55.83717	38.32565	57.29647	66.89708	60.36866				
3	48.92473	55.76037	65.89862	67.74194	70.96774	3	65.36098	56.2212	58.75576	67.35791	65.51459				
4	49.15515	59.83103	68.89401	73.19508	75.49923	4	65.74501	62.21198	59.06298	69.58525	73.19508				
5	49.15515	60.21505	69.81567	74.57757	76.42089	5	66.05223	63.05684	59.21659	74.03994	73.96313				
6	49.15515	61.52074	72.11982	74.57757	79.26267	6	67.43472	63.97849	59.21659	74.11674	74.27035				
7	49.53917	61.98157	76.26728	74.57757	79.26267	7	68.04916	65.20737	63.74808	74.11674	75.9600€				
8	49.53917	62.13518	78.03379	75.11521	81.87404	8	68.20276	67.66513	63.74808	75.19201	78.72504				
9	49.53917	70.58372	78.1874	75.11521	84.79263	9	68.20276	78.26421	63.74808	75.65284	80.95238				
10	49.53917	73.65591	78.87865	75.11521	87.01997	10	68.20276	80.26114	63.74808	77.88018	83.25653				
11	49.53917	74.80799	80.10753	76.88172	87.4808	11	68.20276	83.56375	63.74808	77.88018	83.25653				
12	49.53917	76.80492	80.56836	78.64823	87.4808	12	68.20276	85.56068	63.74808	80.41475	84.56221				
13	49.69278	77.11214	81.2596	79.87711	87.94163	13	68.20276	86.02151	63.74808	80.41475	85.8679				
14	49.76959	77.57296	82.71889	80.41475	88.40246	14	68.20276	86.02151	64.36252	80.41475	85.8679				
15	49.76959	79.87711	83.25653	82.33487	91.01382	15	68.20276	86.02151	64.36252	81.64363	88.40246				
16	49.76959	81.10599	83.25653	82.33487	91.01382	16	68.20276		64.36252		90.553				
17	49.76959	83.25653	83.71736	83.64055	91.01382	17			64.36252		90.553				
18	49.76959	84.02458	83.71736	84.4086	92.62673	18	68.20276	86.02151							
19	49.76959	85.56068	83.71736	84.56221	92.62673	19	68.20276				92.39631				
20	49.76959	86.02151	86.55914	85.02304	93.54839	20	68.20276		67.2043	84.4086	93.702				
21	49.76959	86.02151	88.32565	85.40707	93.54839	21			67.2043	84.4086	93.702				
22	49.76959	86.48233	89.0169	85.56068	94.00922	22	68.20276		67.2043	84.56221	94.16283				
23	49.76959	86.94316	89.40092	86.17512	94.77727	23	68.20276		67.2043	84.94624	94.77727				
24	49.76959	86.94316	90.16897	86.17512	95.08449	24	68.20276		67.2043	85.40707	95.39171				
25	49.76959	86.94316	90.6298	86.94316	95.39171	25	68.20276	86.02151	67.2043	85.40707	95.39171				

 $\textbf{Figure 6.} \ \ \textbf{Flip Everything method results for c499 circuit. Green color shows better coverage.}$

Figure 7. Flip Compare TVEs for c499 circuit

Circuit: c88					Circuit: c880									
Seed = 255						Seed = 255								
Batch size :					Batch size = 10									
NO FLIPPIN					Alt-Flip ©									
TV_E vs TV		•		-	JV E alt									
	В	C	_	E		Α	-	С	D	E				
19.06997			71.67235	70.69113		30.84471			72.31229					
19.41126		63.3959	78.66894	81.10068		30.9727		69.15529	75.93857	77.09044				
19.53925			82.72184	84.343		30.9727	71.11775	69.83788	80.11945	81.39932				
19.92321	73.33618	70.43515		85.79352		31.69795	74.36007	72.78157	82.16724	82.67918				
19.92321	76.10922	71.41638	84.51365	87.54266		31.69795	76.70648	73.12287	82.80717	85.79352				
19.92321	77.09044	72.09898	86.2628	89.0785		31.69795	77.34642	73.59215	86.09215	87.58532				
19.92321	78.88225	74.78669	86.73208	89.29181		31.95392	78.157	74.36007	86.2628	87.96928				
19.92321		76.19454	87.41468	89.29181		31.95392	79.09556	74.70137	87.37201	88.22526				
19.92321	82.33788	76.53584	87.41468	89.29181		31.95392	80.16212	74.78669	87.58532	89.16382				
20.00853	82.59386	77.17577	87.8413	89.33447		32.03925	80.46075	75.04266	87.8413	89.24915				
20.00853	82.76451	77.17577	88.35324	89.4198		32.03925	81.39932	75.08532	87.88396	90.35836				
20.00853	82.84983	77.34642	88.7372	89.71843		32.03925	81.39932	75.08532	88.65188	90.52901				
20.05119	83.40444	79.65017	88.7372	90.44369	١	32.16724	81.44198	75.17065	88.90785	90.99829				
20.05119	84.42833	80.11945	88.7372	90.87031		32.16724	81.44198	75.17065	88.90785	91.68089				
20.05119	84.59898	80.11945	88.77986	90.87031		32.16724	81.44198	75.17065	88.95051	91.68089				
20.05119	86.68942	80.11945	88.77986	90.87031		32.16724	81.44198	75.17065	88.99317	91.68089				
20.13652	86.77474	80.46075	88.90785	91.12628		32.16724	81.44198	75.17065	88.99317	91.72355				
20.13652	86.86007	80.50341	88.90785	91.12628		32.16724	81.44198	75.17065	88.99317	91.72355				
20.13652	88.09727	80.93003	88.99317	91.16894		32.16724	81.44198	75.17065	88.99317	91.72355				
20.26451	88.90785	82.12457	88.99317	91.2116		32.16724	81.44198	75.17065	88.99317	91.72355				
20.26451	89.33447	82.29522	89.24915	91.25427		32.16724	81.44198	75.17065	88.99317	91.72355				
20.26451	89.63311	82.29522	89.24915	91.25427		32.16724	81.44198	75.17065	89.03584	91.76621				
20.34983	89.9744	82.38055	89.24915	91.25427		32.16724		75.17065	89.03584					
20.34983	89.9744	82.38055	89.80375	91.25427		32.16724		75.21331		91.76621				
20.34983	89.9744	82.38055	89.80375	91.25427		32.16724		75.21331	89.0785	91.76621				
				'	7)—————————————————————————————————————			22.2.00	-1				

 $\textbf{Figure 8.} \ \ \textbf{Flip Everything method results for c880 circuit. Green color shows better coverage.}$

Figure 9. Flip Compare TVEs for c880.

4 DISCUSSION

4.1 Analysis of "Flip Everything" method.

The main point of testing of Flip Everything is to test TV A. Increase in coverage by 7.2 percent was achieved for c432 circuit. Other TVs also show improvements, but similar result could be achieved by selecting different seed (without flipping any bits). More research could be implemented in developing techniques of seed selection, but it is not part of this experiment.

4.2 Analysis of "Alt-Flip" method.

c432 showed best results in coverage improvement. TVE coverage grew by 4.04 percent. TVA showed better coverage for all three circuits. c499 has exact same results for TVE. Overall out of 3 circuits tested none of tests gave worse results for Alt-Flip TVs than for regular TVs.

CONCLUSIONS

Overall the experiment turned out to be a success. It was possible to improve on the existing counter and lfsr TV-generation methods. It became clear during the experiment that Flipping Everything method only improves coverage of TV A (see Analysis of "Flip Everything" method.), so primary focus of the experiment switched to Alt-Flip method. Depending on the circuit, were were able to achieve improvement in coverage between 0 and 4.04 percent for the TV E (multiple 8-bit lfsr). TV A coverage was improved for all three circuits, but it is a minor achievement since TV A is not the most efficient TV out of all considered within this experiment. There might be a relationship between the size of the circuit and the benefit of using Alt-Flip. Just from results of testing three circuits it is assumed that the bigger the circuit the less is the effect of using Alt-Flip. Of course, this theory requires much more testing data.

REFERENCES

1. Middle square Method, https://en.wikipedia.org/wiki/Middle-square-method (accessed Dec.2, 2019)