Chapter 1

- 1. For each of the following equations, state the order and whether it is nonlinear, linear inhomogeneous, or linear homogeneous; provide reasons.
 - (a) $u_t u_{xx} + 1 = 0$
 - (b) $u_t u_{xx} + xu = 0$
 - $(c) u_t u_{xxt} + uu_x = 0$
 - (d) $u_{tt} u_{xx} + u/x = 0$
 - (e) $u_x(1+u_x^2)^{-1/2} u_{xy} = 0$
 - (f) $u_t + u_{xxxx} + \sqrt{1+u} = 0$
 - $(g) u_x e^y u_y = 0$
- 2. Solve the equation $2u_t + 3u_x = 0$ with the auxiliary condition $u = \sin x$ when t = 0.
- 3. (a) Solve the equation $yu_x + xu_y = 0$ with the condition $u(0, y) = e^{-y^2}$.
 - (b) In which region of the xy-plane is the solution the IVP in (a) uniquely determined? (Hint: Recall that data is transported along characteristic curves. Look at the characteristic curves and think about what happens to the data of our initial condition.)
- 4. Solve $au_x + bu_y + cu = 0$. (Assume $a, b \in (-\infty, 0) \cup (0, \infty)$.)
- 5. Solve the equation

$$u_x + 2u_y + (2x - y)u = 2x^2 + 3xy - 2y^2.$$

6. Consider the equation

$$u_x + yu_y = 0$$

with the boundary condition $u(x,0) = \phi(x)$.

- (a) Find the general solution to the PDE.
- (b) (BVP without a solution) For $\phi(x) \equiv x$, show that no solution exists.
- (c) (BVP without uniqueness) For $\phi(x) \equiv 1$, show that there are many solutions.