

<u>calculations</u> of Theoretical valuey:

$$\widehat{T} = \frac{V_S}{R_1 + R_2} = \frac{144}{2200 + 470}$$

$$V_2 = \frac{V_S R_1}{R_1 + R_2}$$

$$= \frac{14 \times 470}{2200 + 470}$$

$$V_1 = \frac{V_S R_1}{R_1 + R_2}$$

$$V_2 = \frac{V_S R_2}{R_1 + R_2}$$

$$V = V_1 + V_2$$

$$= 14 \times 9200$$

$$= 11.53 + 2.46$$

Date: 27-01-2020

-Analysis of series and Parallel circuits

TY

prove vollage divider

1.0 P1

-AIM: To analize the series circuit

Apparatus:

15:				-
SNO	Name of the Apparatu	Range	guantity	43 E
1	Ammeter	(0-20)mA	1	4.6
2	WHATCH	(0-20)V	2	
	VOHI WICH	~	1	
3	Broadbood		37	在時
4	Resistons	2.2K.C,4700	2	
	h		As per require	ment
2	connecting wires	15011-1519	Smilnes dT	
6	RPS	(0-30)	2-11	(V)N
7	Patch choods	12 6	2 در ن	1/1/2011

- * Connect the circuit as shown in fig; ? (m) "
- * Vary the RPS (voltage) and note the values of V1, V2 and current (I) as shown in tables column
- * varify the theoretical and Asactical values

Precautions

- * Loose connections Shd be avoided.
- * voltmeters shal be connected in "parallel" to resistor and ammeter shed be connected in series"
- * Parallax error should be avoided

100	0 F.2	Talke T			कार .L : मानामीकाराम् .1	
Tal	Tabolar form: illimit for coince to shelent.					
				12.02	T	
	(v)eV	1_(mg)	V, (v)	V _{2.} (v)	[11]	
	1.3	0.5	1.1 120 u	0.2	e all gillene of : mit.	
	1.9	7.0	1.6	0.3	7	
	2.5	1.0	2-1	0.4	a-t-reagh.	
	34	1.3	2.3	0.6	when the problem	
	4.6	1.7	3.8	0.8		
		£	/		etanHOV -S	
COn	nparison:		201	2 21-1-14	broadboard 2	
	hope	1901 10G		M-sat Z	- 0/6/201/ D	
	1 1	Les coupics		actical	2 connecting since	
	V1(V)	11.5	Ϋ́١	1.6	299 9	
	1/2(V)	2.46	-	.4	Horondo Holes Chandle	
	I (m)	5.2	d in	5.1 worle	Roccollic Also circuit est	
tter	1005 OF 1011 COLOR	bv on ludist i	H olor	EXIE	* Vonnect the RPS (volitage)	
				Jest [-	pros la structural the strove and	
					aroilue or r	
,			babrove	5 od	bre anotomnes sens	
nate	era of	19116	og og	list	a voltander Shill be cons	
	zenaz or botomnos ad bita sotominis bins					
			69	bous	ad bhote none valless? *	

Result:Theoretical and practical values are compared and the circuit is amalyzed

Model circuit diagram:-

Resolt:

$$V_{S} = \frac{IR_{1}R_{2}}{R_{1}+R_{2}}$$

$$I = \frac{V_{S}}{R_{1}} = \frac{IR_{2}}{R_{1}+R_{2}}$$

$$I = \frac{V_{S}(R_{1}+R_{2})}{R_{1}R_{2}}$$

$$I = \frac{V_{S}(R_{1}+R_{2})}{R_{1}R_{2}}$$

Practical circuit diagram

Calculations
Theoritical value

$$\widehat{T} = \frac{9(2670)}{(2200)(470)} \frac{V_{5}(R_{1}+R_{2})}{R_{1}R_{2}}$$

$$I_1 = \frac{IR_2}{R_1 + R_2}$$

$$= \frac{3.2(470)}{2670}$$

Analysis of series and parallel circuit dear

1(p)

the parallel circuits 1.1 Aim: - To analise

Apparatus:

				1
av2	Name of apparatus	Range	Yimou)
١	Arrimoles	(0-20)mA	3 1 2 2 1	
2	Resistor	2.2Ks2, 470a	2_	
	/ 1	D D	192 10)
3	Bread board		1	
4	constinu wing	1	As pen req	
	connecting wires			ì
5	RPS	(0-30)v	1 ,	погінарта) -
6	Patch chards		As per rev	

Procedure:

- * connect the circuit as shown in figh
- * vary the RPS (voltage) and note down the values of

I, I, I2 as shown in tabular column.

* Verify the theoristical rand practical values.

Precautions

- * Loose connections should be avoided
- (ottmeter) Amonders are connected somes to the resistor.
- * Parallar enor should be avoided

1 0 0 1 1 1 2 - 1 Hair				1. con los	mi - px
Tabular Colum	n: Mora	lans (5)	ins.		
V ₅ (y)	I(ma)	I (m4)	I2 (m4)		(d)
1.1 8	16.52	0.5	0.1	- salbns of	- Loia
2.6	6.1	1.1	4.8	20	DIBJER !
6-7	16.9	2.9	13.3	refeminist .	
9	23.1	4 4 54 54	19-1	noteien97 °	
10.1	26.1	4.4	21	ion bond E	
ę	e roq e A	1	ziia	Eulpanao p	
Companison:	.t	v(c2 - u1)		0 2991 ^E	
40	69 24)		. abico	ab dolest 0	225G
	Theontic	al P	ractical,	edore: nnect the c	
to culty sim	2/372) 298 wy 128	
1. (m/)	41.09		4worls		
Γ_{2} (mg)	191911	14 Em	19·1/601/01		
		~		r = 12.11/1 ≠ 5	4.3
	bobio	15 sd	bhode :		
ies the tesisloor.	ted bot	SOUNDS	015 21	Schamme (maken)	
	tobi	UVE 9d	blode	יוסיום אנטונדינין	- 3 M
f.					

Result:
Theorifical & practical values are composed and
the parallel circuit is analysed.

Aim: - To analyze the nodal circuits with the given resistors by using Ammeter & voltmetr

Apparatus required:

HATCH	10 5 7 6 0 0 0			İ
S.NI	components	Type		Danliy
1	RPS 12 0	· Noviable	(0-30)	1
2	Broad boord	c + 10	- F	1
3	Resistor	-	3.2KA,	5
		z <i>ulo</i> v	101317 11 10 TO	,
2	vollmeter	Mc	(0-20)	2
1	Wolfmeter hosting	Johnson Fi	CN 3	AS Per
5	connecting whe	٧٠.	1	

The electric Circuit analysis, nodal analysis, node on electric Circuit analysis, nodal analysis, node voltage analysis, or the (branch current method) is a method of determining the voltages bln modes in an electrical circuit in terms of branch current.

In analyzing a circuit using Kirchoff's circuit laws, one can either do nodal analysis using Kirchoff's current law or mesh analysis using Kirchoff's current law. Nodal analysis unity on eq. at each electrical node, requiring that branch currents incident at node must the Sum to zero.

Nodal analysis is possible when all circuit elements branch constitutive relations. have an admittance representation. Model analysis produce a compact set of eq. for the network, who can be solved by hand it small or can be quickly solved osing linear algebra

Prac	ctical vol	né	17	harry ledes	Coni		
_		20.00					
+ 4-	SNO	V ₃	Vı	V ₂	Les on the		
	1	5	1.2	0.2	#9 ₂₀ ".		
p throad	2-1/"	12	,.3	06	Hicyan sulens (1).		
,	3	19 3/1	104.8	0.9 -79			
'	4	21	5.3	blackers	Sp &		
d	321119		1	10/2/25)	t E		
	izin5qmo:	m vale	ex	(4)			
0	(Ja 3)	21/	/-				
45 m	8.40	Por	imetois	Practical	Theoritical		
	\		Vs voly	المرابع المالي المالي	12 0		
	2		VI way	3	3.12		
Sbon 21 kg	, 2/2/1/2/19 1/21 /20	i listauri	Viz Will	+0:6).	1000000		
labon	uld =	sistel a .	1/2	11- 70 ,212	Turns agellow		
thomas i	lasted 1	o ery/	7. 201 Bloom	notsb je	The election of the election o		
Regres	E'llodsvid	oniao	Ji	100mfs	ele an ele		
pni	ec emb	U Hei lahan		British	ins all		
0 0	U Elevir	is dev	1 20 (5)	140 (15)	DAG . 2WE/		
win.	J. Starte	ino Inte	914 .	+HOWES	Kirchoff's		
tisili- i	macyor	, shon	Inoth	- SPHON	21 lodowy		
History is control to the control of							
pranch contents							
when the new straight of several all circulty straight on the straight of the							
protero	Scarland	Lobo	11 ·claite	lagana sy	- 7 tabe		
day 3	in sent or	JH 10	7	1	· Lanners		
de are suited at late of the state of the same							

Procedure: - connect the circuit as shown in fig; -> Young the Supply voltage by steps until 30v > Note down the values of VI & 1/2 from the respective voltmotor calculate the voltage values theoritically. voiling the circuit by kal at diff. node Now compose the theoritical of prejetical val. 22+22 - 52+82 Precautions: The vollmeter stol be connecting 11-11ed 21-14 Avoid loose connections Avoid terrors in readings - sie + 3/-1/ 11124, -1.1212 = 4.2512 1.124, 5.3742-0-10. . I abon th El Fig. L' = , C $\frac{N-N}{2} + \frac{N-N}{2} = \frac{N-2N}{18}$ (13-N) 5.51 (N-N) 81 N SJ (V. V) +39.6 - 11.84 (V. V2) (1) - a.pe - 2028-11-1011-01 O & O priving gar V1-3124. V2.064 Ams of the Ams of the Ams of the 100

Result: - Hence nodal analysis of theoritical & practical values are verified

1-10/1-1- 1

Mesh-Analysis

Aim: To analyze the branch currents in the meshes (100pi) Materials required

SNO	Name of material	Type	Range	Quantity
1	Bread bocad	Koniably	-	1
2	RPS	Youkible	(0-30)V	1
3	Ammatus	HC	(0-20)mA	3
4	connecting wires	_	-\	AS porvey
5	Pakh caroly) Iu.	2 (1, 10) .	2 , 1 "
6	Resiston	ريد.	3.2KN, 2.2KD, 1.5KN, 470N, 470N	5 . 2/

Procedure:

- i) Find the mashes (loops)-for the given circuits & mosts the currents for the branches of circuit
- ii) connect the circuits as shown in practical circuit of mesh analysis of the Resistors iii) connect the Ammeters in series to the Resistors
- as shown in given circuit
- iv) By vooning the voltages in the RPS note down the values of civirant I, , Iz, Iz, Iz in the terbular colon
- v) For finding the thorritical values use KVL & find a branch currents in the given circuit
- vi) Analyse the theoritical & practical val. in the
- given circuit

Theory

Mesh analysis is a mothod that is used to solve plancy circuit for the currents at any place in the electrical circuit. Phance circuits are circuits that eve can be drawn on a plane surface with no wines clossing each other. A more general reulinique, called

loop analysis can be applied to any circut, plance or not Hesh analysis & 100p analysis both make use of KVI to conive at a set of equations guarantecol to be solvable if the circuit has a solution Precautions The ammeter should be connected in series Avoid bose connections Avoid errors in readings Jost Compres destroy to distribute the most and CI (HON) EV I F-9 (Am) I 9 P.1 P81 (AM) ET. E 51 1. (M) 1. CA 16

Practical readings

S·NO	Vs(voH)	I. (mx)	I2 (mA)	I3 (m)
5.10	5	1.3	0.8	0.6
1 2	10	2.3	1.6	1.3
3	12	್ನ.⊓್ಲ	1.9	1.6
4	20	5	2.3	2

composision table

S:100·	Parameter	Theoritical	Pradical
	(HO) eV	12	12
2	I, (m+)	2.7	2.7
3	To (mA)	1.84	1.9/
4	13 (m)	1.864	1.6

Presult: Hence the most analysis was completed

1/2/202

3(a) Verification of Superposition Theorem

Am: To voilty the superposition theorem.

Appearatus required:

			1117 1	TIV UNIT
Apposatus	E-1	Type	p Range	Quantity
RPS	c e	aldsircov	· 12 (0-30)V	c1 2 :
Resistors	4	Ē J	2.2 KN, 3.3 KN,	3 2
Ammata	C-C	HC.	-10-20) m4	4 125
Patch conds			_	As per
connecting with	<u>norila</u>	_	is the	TN TO
	RPS Resistors Ammatur Patch coads	Resistors A	RPS Vaniable Resistors A = 1 Ammatur Mc Patch coads -	RPS Variable (0-30)V Resistors = 2.2 kr, 3.3 kr, 470r Ammatur Hc -10-20 m/r Patch coods

Statement: - Superposition the states that for a linear sys the response in any branch of a bilateral linear circuit hug more than one independent source equal to algebraic sum of response caused by independent source acting alone, wr. all other independent source are replaced by their internal independence

Theory

The superposition (States) the for electrical circuits states that for a linear sys the response (voltage or current) in any branch of a bilatural linear circuit hug more than one indep. source equals the algebraic sum of responses caused by each independent source acting alone, w. all the other, indep. sources are replaced by their internal impedence.

Ald · MEDINAMIN

Practical Readings with 2 sources:

						AUTO COLOR OF A CAR	
s-N0	V1(V)	V2(v)	1 (mt)	1(m4)	I2 (mA)		-
1	10	5	1.9	0.5	1.3	Programme 1-11	6 4-
2	15	Ö	3.49	Jdr <u>ij</u> aci	2.5	<i>ଅମନ</i>	-1
3	20	15	5	ı. <i>5</i>	4	erstered"	-0,
4	125	50	6.6	SA	2.5	האייעלטו	3
[90]	er		. /	/		t Elosoo dot67	ţ.

normani i jednom com pomer 🐠 🗥 tila

When Vi is shorted

When VL is should

	-			1
	2410	V1(4)	I'(W4)	
21	J. F	5	1.3	- COHER -M
7	2	110	2.5	oranch Of C
į	3 nitor	15	tholes	makani ya l
	4	1640	2.5 10.5 Solid	ופף.פרעליחו ביז

1-10 11	cu.2	V₂(v)	[(m)	contain
onde →m	1	io (0.5	
O denino	2.	້ ເ <u>ວົ</u>	EU TOGET	7 5
-tnog 194	3	20	51/5 P	07 6
ya B	9200 4	25	2-4	Jo Mile
ופריפונטויי	×11	rodto	16 . 14	, ander
270367131	asba	לוחפין ו	Line M	odt 44

comparision-table :-

cutts states	Sico	Parameter	Practical	Theophical	PART SET
gritte 2000	1 2 3 4 5	T2 (md) T(md)	2.5	0.67	

```
Procedure
 * connect the circuit as shown in fig;
    * Vary the supply voltage by steps until 300
  * Note down the current value by voonying the
              Supply nottage VI&V2
* Now, shoot the one voltage source & note the current
      Hollage val. & do the same with the another voltage
  source by shooting the first voltage
  + calculate the current val. theoritically
  * Verify the ckt by KVI at diff loops
  * Now compose the theoritical & practical val
                                                                          I,+I, = I = V-V + V2-V + V2-V + IF3 + IF3 + IF3
Pre cautory
     * The Ammoter shal be connected in Seales
     + troid loose connections Sisking Property 4
       * Avoid errors in roadings v of + V 21

Eques or b or b or b tous se some se
                                                   2.2 x102 + 401 - 2.3 x103 + 3.3 x103 + 470 =
                                                                              \frac{V}{2 \cdot 2} + \frac{V}{4 \cdot 1} = \frac{1}{10!} + \frac{1}{4 \cdot 10!} = \frac{1}{10!} = \frac{1}{10!} + \frac{1}{4 \cdot 10!} = \frac{1}{10!} = \frac{1}{10!} + \frac{1}{4 \cdot 10!} = \frac{1}{10!} = 
                                                                                OLD + 1 (CLD) = -2150-0+6900-0
                                                                                                                0.0018 = (2.87x163) V
                                              V 21.P= Pe O1x800 - VY
                                                                                                                Si = 15-9-75 = 239 mA
                                                                                                                                MMZO UPPOD SP.
                                                                                                                         times of the
```


$$\Gamma_1 = 2.2 \text{ mA}$$
, Similarly $\Gamma_2 = 3.3 \text{ mA}$

$$\Gamma_2 = \Gamma_1 + \Gamma_2$$

Result: Hence the superposition theorem is verified

3b- Verification of Reciprocating theorem

Aim: To verify the reciprocity the orem. I have

Apparation

-		14	
S.110	Name of expainant	Quantity	Range
1.	Bread bood	1	_
2	RPS	T	(0-30)V
3	Ammeta OFF 81	1.48.81 .Fi .	(0-10)mA
4	Resistor (1)	7 3 7005 0	2/2KV 3/3KV
5	comeeting wire	As permi	se <u>l</u> cose
6	Patch cords	ragorpia	SEE BOSE
			JED 1105.

Stakment :.

In any bilateral linear network containing one (a) more independent sources. The ratio of voltages (v) introduced in one mesh to current (I) Lin any second mesh is same as ratio obtained if the position of voltage & current are interchanged.

Procedure:

-) Connect the circuit as shown in fig;
- 2) Note down the practical Wall for II by vorying VI
- 3) By Now connect the circuit as shown in fig.
 4) Repeat the same procedure as in the case of circuit-1
- 5) Calculate the current vol. the ortically
- 6) compare practical & theotical values.

Theory:

In the complete four, the reciprocity the state of that if on emf'e' in one bronch of reciprocity network if on emf'e' in one bronch of reciprocit network in another if emf moved from first to end brench.

In another if emf moved from first to end brench.

In another if the emf has been replaced by shoot crevit.

It there the voltage source & the ammeter used in this theorem must be ideal.

Port

Precautions

The ammeter should be connected in Series.

Avoid loose connections

Avoid emors.

Result

Hence the reciprocity theorem is vorified.

I private bothout

I private bothout

I find the series of the s

Result:

Hence the reciprocity theorem is Verified.

234

4(2). Verification of Therenin's Theorene

Aim: To vorify Thevarin's theorem

Apparatus :

303/2020

, ,		(7-4-)	
S:N0	Apparatus	Range	Quantity
1	RPS	(0-30)V	SH A. Je 11 18
2	Resistors	3.2KR, 4701, 2.2K) (C.C 5 %) ++ 0.088
3	Animetui Voltmetui	(0-20) m#	1
5	Patch chards Connecting wires		-As per requirement

Statement: It states that a linear 2 terminal circuit can be replaced with equivalent circuit consisting of VII in series with RIL where VII is open circuit voltage at terminals & Par is equivalent resistance of at terminals where all independent sources one turned 2511.4.10 Per 10 Per off.

Page - (2011/4) (1000) - 723.091- 1840 Theory * Any combination of batteries & resistances with 2 terminal can be replaced by a single voltage source * The vall of voltage source is open circuit voltage at terminals, val. of series resistance o is divided at the current with terminals should created * The Thevein's voltage used in th. is an ideal, voltage source is eq to open circuit at terminally. * Experimentally the a the vanin's resistance can be found by progressively loading circut until its output VOHage dops to half the openin circuit wortage . A) that pt. load resistance is equal to the venin's resis. (PO. EST) + 11 (PO. #17123.09)

Replacing network by its Hevenin's lequivalent is consimplify the analysis of complex circuit ! living Procedure * connect circuit as shown in diagram in circuit 1 & switch on the supply a note the racidings of voltmeter * Repeat the Same four diff vo Hage val. I tabulde the recollings. × NOW, connect circuit-2 & calculate Rth. * compare the oritical & practical values Tabolasi columbia of Mr. Making Precautions: * Avoid loose connections potter and they love cons x Avoid emors 13 1 0.4 Tables Commo for 18th 1805 weldet a) of the whomen spect pollow one 15T 1.13 E C Julil Walkery the Perential Theoretical Practical 1 VAR(MIN) COB: UN TS1 PO-851 (A) M9 5

Result
Hence therein's theorem is vorified.

(4b). Verification of Norton's, theorem white

Aim: To veity the Nootlon's Theorem.

Apparatus:-

9/3/200

3NO	Apparatus	Range	Quantity.
t-	RPS	V(0E-0)	<u> </u>
ع	Resistor	3.3KL, 4701, 2.24 1KL, 0-2	5 ,5
3	Animetoi	(0-20)mA	to form
	Patch chords	(= 1)	As per require
5	connecting wird	1227 014	

Statement:

It states that a linear two terminal circuit consisting can be replaced by an equivalent circuit consisting of current source (In) in 11e1 with a resistor (RN) of current source (In) in 11e1 with a resistor (RN) where In is the shoot circuited current at cood; where In is equivalent resistor at terminals terminal & BN is equivalent resistor at terminals (100d), when independent source, s turned off.

Product the circuit as shown in fig.

Connect the circuit as shown in fig.

From theoretical circuit by opplying nodal (or)

From theoretical circuit by opplying nodal (or)

mesh analysis final the current of It.

Note down the current of It.

Now by making vollage source (or) RPS at removing vollage source by removing shout, final the equivalent resistance of RN in the course of the course

know name the current as In. to the current IL across RL. *NOW, from practical & theoretical circuit, find the corrent IL across RL. * NOW compare whether RL across circuit Hence Norton's theorem is proved. Precautions: * Avoid loose connections x Avaid enoug Idal norzinogmos Partietus Inevietual Prochas

Tabulon coloumn four practical Values:

510	Vs(V)	IL (MA)
1	5	0.1
2	13	0.2 / 10
3	20	0.4.

composision Table

Povidmetas	Theoretical	Practical
IL(md)	0.25	0.2

Hours sich

Rout: - Hence Mounton's theorem is verified