2014年3月実施 問題1 電気工学 (1頁目/2頁中)

Fig. 1 (a), Fig. 1 (b)のような閉ループ制御系がある.ここで, K_1 , K_2 , K_3 は正の定数とする.偏差 E(s)=X(s)-Y(s)として,以下の間に答えよ.

- (1) Fig. 1 (a), Fig. 1 (b)の各々の制御系について、目標値 X(s)から偏差 E(s)までの伝達関数 $\frac{E(s)}{X(s)}$ を求めよ。
- (2) Fig. 1 (a)の制御系において、定常位置偏差(X(s)=1/sに対する定常偏差)が 0 で、かつ単位ステップ応答に行き過ぎが生じない K_1 の最大値を求めよ。また、 K_1 の最大値を用いて定常速度偏差($X(s)=1/s^2$ に対する定常偏差)を求めよ。
- (3) Fig. 1 (a)の制御系において、定常速度偏差が 1 になるように K_1 の値を求めよ. また、ここで求めた K_1 の値を用いて単位ステップ応答の概形を描け.
- (4) Fig. 1 (b)の制御系において, 定常位置偏差が 0 で, かつ定常速度偏差が 1 になるように K_2 , K_3 の値を求めよ.
- (5) 問(2)で求めた K_1 の最大値と問(4)で求めた K_2 , K_3 の値を用いるとき, Fig. 1 (a), Fig. 1 (b) の制御系の単位ステップ応答の違いについて説明せよ.

Consider the closed-loop control systems shown in Fig. 1 (a) and Fig. 1 (b), where the constants K_1 , K_2 and K_3 are positive. The error is defined by E(s) = X(s) - Y(s). Answer the following questions.

- (1) Find the transfer function $\frac{E(s)}{X(s)}$ from the reference X(s) to the error E(s) for the control systems shown in Fig. 1 (a) and Fig. 1 (b), respectively.
- (2) For the control system shown in Fig. 1 (a), find the maximum value of K_1 so that the steady-state position error (steady-state error for X(s) = 1/s) is equal to 0 and the waveform of the unit step response has no overshoot. Find the steady-state velocity error (steady-state error for $X(s) = 1/s^2$) for the maximum value of K_1 .

2014年3月実施 問題1 電気工学 (2頁目/2頁中)

- (3) For the control system shown in Fig. 1 (a), find the value of K_1 so that the steady-state velocity error is equal to 1. Sketch the waveform of the unit step response for the value of K_1 found here.
- (4) For the control system shown in Fig. 1 (b), find the values of K_2 and K_3 so that the steady-state position error is equal to 0 and the steady-state velocity error is equal to 1.
- (5) Explain the differences in the unit step response between the control systems shown in Fig. 1 (a) and Fig. 1 (b), when the maximum value of K_1 found in question (2) and the values of K_2 and K_3 found in question (4) are used.

Fig. 1 (a)

Fig. 1 (b)

2014 年 3 月実施 問題 2 通信工学 (1 頁目/3 頁中)

Fig. 2 (a)に示すような、振幅変調(AM)方式の伝送系がある。伝送路は理想的で、損失はないものとする。ここで s(t) は $s(t) = \sin(2\pi f_m t)$ で表される、周波数 f_m の低周波入力信号である。また $g_{AM}(t)$ と n(t) はそれぞれ AM 信号と両側電力スペクトル密度 kT/2 の白色雑音を表す。ここで、k はボルツマン定数、T は絶対温度で表した周囲温度である。また変調度および搬送波の振幅と周波数をそれぞれ m, A_c , f_c とする。受信機において増幅器の利得はG 、雑音指数は F である。またバンドパスフィルタ(BPF)は中心周波数を f_c とする,通過帯域幅 $2f_T$ の下式で表される理想的な通過特性を持つものとする。

$$H(f) = \begin{cases} 1, & ||f| - f_c| < f_T \\ 0, & その他 \end{cases}$$

なお f_m , f_c および f_T は $0 < f_m < f_T << f_c$ の関係を満足する. このとき,以下の問に答えよ.

- (1) Fig. 2 (b) に示す構成要素を用いて、送信機 (Fig. 2 (a)の破線で囲んだ部分) のブロック 図を描け、ただしそれぞれの構成要素は何度用いてもよい.
- (2) AM 信号 $g_{AM}(t)$ の式を求めよ.
- (3) $g_{AM}(t)$ の電力効率 η_{AM} の式を求めよ.
- (4) 検波器出力信号の信号対雑音電力比(S/N)を dB を単位として求めよ.ただし $g_{\rm AM}(t)$ の電力は -110 dBW (ただし 0 dBW=1W), m=1, $f_m=2$ kHz, F=6 dB, $k=1.38\times10^{-23}$ J/K, T=300 K とする.

必要なら、 $\log_{10} 1.38 \approx 0.14$ 、 $\log_{10} 2 \approx 0.30$ 、 $\log_{10} 3 \approx 0.48$ を用いてよい.

2014 年 3 月実施 問題 2 通信工学 (2 頁目/3 頁中)

Consider a transmission system using amplitude modulation (AM) as shown in Fig. 2(a). The transmission channel is assumed to be ideal and lossless. Here, s(t) denotes a low frequency input signal with a signal frequency of f_m expressed as $s(t) = \sin(2\pi f_m t)$. $g_{AM}(t)$ and n(t) are the AM signal and a white noise whose double-sided power spectral density is kT/2, respectively. Here, k and T are the Boltzmann constant and the ambient temperature represented by the absolute temperature, respectively. The modulation index, amplitude and frequency of the carrier wave are m, A_c and f_c , respectively. In the receiver, the gain and the noise figures of the amplifier are G and F, respectively. The band pass filter (BPF) is assumed to have ideal transmission characteristics expressed by the following equation, with a center frequency f_c and a bandwidth of $2 f_T$.

$$H(f) = \begin{cases} 1, & ||f| - f_c| < f_T \\ 0, & \text{otherwise.} \end{cases}$$

Here, f_m , f_c and f_T satisfy the relation of $0 < f_m < f_T << f_c$. Answer the following questions.

- (1) Draw a block diagram of the transmitter (surrounded by a broken line in Fig. 2(a)) using the constituent elements given in Fig. 2(b). Each element may be used multiple times.
- (2) Derive an expression for the AM signal, $g_{AM}(t)$.
- (3) Derive the power efficiency η_{AM} of $g_{AM}(t)$.
- (4) Derive the signal power to the noise power ratio (S/N) of the output from the detector in units of dB. Here, the power of $g_{AM}(t)$ is assumed to be -110 dBW (with 0 dBW=1W), m=1, $f_m=2\,\mathrm{kHz},\ F=6\,\mathrm{dB},\ k=1.38\times10^{-23}\,\mathrm{J/K},\ \mathrm{and}\ T=300\,\mathrm{K},\ \mathrm{respectively}.$ Use $\log_{10}1.38 \cong 0.14,\ \log_{10}2\cong0.30,\ \log_{10}3\cong0.48,\ \mathrm{if}\ \mathrm{necessary}.$

2014 年 3 月実施 問題 2 通信工学 (3 頁目/3 頁中)

Fig. 2 (a)

Fig. 2 (b)

2014 年 3 月実施 問題 3 電子工学 (1 頁目/2 頁中)

エミッタE, ベースB, コレクタCの端子を持つ npn バイポーラトランジスタの微小信号 等価回路モデルに関連して、以下の間に答えよ.

- (1) エミッタ接地回路において、Fig. 3 (a) に示す微小信号等価回路のT形モデルを考える. ここで α はベース接地電流利得を表す.
 - (a) トランジスタ構造から導出されるT形モデルに対して、Fig. 3 (b)に示す hパラメータ(入力インピーダンス $h_{\rm ie}$ 、電圧帰還率 $h_{\rm re}$ 、電流利得 $h_{\rm fe}$ 、出力アドミッタンス $h_{\rm oe}$)を考える. $v_{\rm BE}$ および $i_{\rm C}$ を、hパラメータと $v_{\rm CE}$ 、 $i_{\rm B}$ を用いて表すとともに、 $h_{\rm fe}$ を実験的に求める測定方法を簡潔に述べよ.
 - (b) 一般に電子回路の設計では、hパラメータのうち $h_{\rm ie}$ と $h_{\rm fe}$ だけが使用される。 $h_{\rm re}$ および $h_{\rm oe}$ をT形モデルの回路定数で表すことにより、 $h_{\rm re}$ と $h_{\rm oe}$ をゼロと近似できる条件を導出せよ。
 - (c) 入力インピーダンスと出力インピーダンスの大小関係を,トランジスタの動作原理 に基づき説明せよ.
- (2) 2 個のトランジスタ Tr_1 , Tr_2 を用いた Fig. 3 (c)のカスコード増幅器を考える. ここで入力電圧 v_{in} および出力電圧 v_{out} は,交流の微小信号電圧である.
 - (a) $h_{\rm re}$, $h_{\rm oe}$ を除いて簡易化したhパラメータモデルを用いて,増幅器の微小信号等価回路を示すとともに,微小信号等価回路から増幅器の電圧利得 $K_{\rm v}$ (= $v_{\rm out}$ $/v_{\rm in}$) を求めよ.ここで,2 個のトランジスタは同じhパラメータ $h_{\rm ie}$, $h_{\rm fe}$ を持つこととする.
 - (b) カスコード増幅器の電圧利得を, Tr2のないエミッタ接地増幅器の電圧利得と比較 するとともに, 高周波動作においてカスコード増幅器が利点を有する理由を述べよ.

Answer the following questions on small-signal equivalent circuit models for an npn bipolar transistor with emitter E, base B and collector C terminals.

- (1) Consider the T model of a small-signal equivalent circuit shown in Fig. 3 (a), for a common-emitter circuit. Here α is the common-base current gain.
 - (a) For the T model derived from a transistor structure, suppose the h parameters (input impedance $h_{\rm ie}$, voltage feedback ratio $h_{\rm re}$, current gain $h_{\rm fe}$ and output admittance $h_{\rm oe}$) are as shown in Fig. 3 (b). Express $v_{\rm BE}$ and $i_{\rm C}$ in terms of the h parameters, $v_{\rm CE}$ and $i_{\rm B}$, and briefly explain the measurement method for evaluating $h_{\rm fe}$ experimentally.

2014年3月実施問題3 電子工学(2頁目/2頁中)

- (b) In general, only h_{ie} and h_{fe} in the h parameters are used for electronic circuit design. Derive the condition for approximating h_{re} and h_{oe} as zero, by expressing h_{re} and h_{oe} in terms of the circuit constants of the T model.
- (c) Explain the magnitude relation between the input impedance and the output impedance, based on the operation principle of the transistor.
- (2) Consider the cascode amplifier using the two transistors Tr_1 and Tr_2 in Fig. 3 (c). Here, the input voltage v_{in} and the output voltage v_{out} are alternating small-signal voltages.
 - (a) Show the small-signal equivalent circuit of the amplifier by using the simplified h parameter model without $h_{\rm re}$ and $h_{\rm oe}$, and derive the voltage gain $K_{\rm v}$ (= $v_{\rm out}/v_{\rm in}$) of the amplifier based on the small-signal equivalent circuit. Here, the two transistors have the same h parameters $h_{\rm ie}$ and $h_{\rm fe}$.
 - (b) Compare the voltage gain of the cascode amplifier with that of a commonemitter amplifier without Tr₂, and describe the reason why the cascode amplifier has an advantage in high-frequency operation.

Question No. 4: Computer science 1 (1/1)

2014年3月実施 問題4 計算機1 (1頁目/1頁中)

クロックに同期して、各時刻 t=1,2,...に 2 つの 1 ビット信号 $x_t,y_t \in \{0,1\}$ を受け取り、2 つの 1 ビット信号 $z_t,b_t \in \{0,1\}$ を出力する順序回路を考える、各時刻 t において、

$$(x_t x_{t-1} \dots x_2 x_1)_2 - (y_t y_{t-1} \dots y_2 y_1)_2 = (z_t z_{t-1} \dots z_2 z_1)_2 - b_t \cdot 2^t$$

が成り立つとする. ただし $\binom{1}{2}$ は2進数の値を表す.

- (1) $(x_3x_2x_1)_2 = 3$ かつ $(y_3y_2y_1)_2 = 5$ のとき、 z_3 、 z_2 、 z_1 、 b_3 の値をそれぞれ求めよ.
- (2) 各時刻tにおいて、 $x_t y_t = z_t 2b_t + b_{t-1}$ であることを証明せよ.
- (3) x_t , y_t , b_{t-1} に関する $z_t \ge b_t$ の真理値表を書け.
- (4) z_t と b_t を x_t , y_t , b_{t-1} に関する最簡積和形(最小論理和形)の論理式で表せ.

Consider a sequential circuit which receives two 1-bit signals $x_t, y_t \in \{0,1\}$ and outputs two 1-bit signals $z_t, b_t \in \{0,1\}$ at each time t = 1,2,... in synchronization with a clock. Suppose that

$$(x_t x_{t-1} \dots x_2 x_1)_2 - (y_t y_{t-1} \dots y_2 y_1)_2 = (z_t z_{t-1} \dots z_2 z_1)_2 - b_t \cdot 2^t$$

holds at each time t. Here $\binom{1}{2}$ denotes the value of a binary number.

- (1) Find each of the values of z_3 , z_2 , z_1 and b_3 when $(x_3x_2x_1)_2 = 3$ and $(y_3y_2y_1)_2 = 5$.
- (2) Prove that $x_t y_t = z_t 2b_t + b_{t-1}$ at each time t.
- (3) Give the truth table of z_t and b_t on x_t , y_t and b_{t-1} .
- (4) Show z_t and b_t as logical expressions in minimum sum-of-products forms in terms of x_t , y_t and b_{t-1} .

Question No. 5: Computer science 2 (1/1)

2014年3月実施 問題5計算機2 (1頁目/1頁中)

- (1) BNF 記法による次の文法 G を考える。ただし、a,b は終端記号、 ϵ は空系列を表す。
 - $\langle S \rangle ::= \langle S \rangle a \langle S \rangle b \mid \langle S \rangle b \mid \epsilon$
 - (a) Gで文字列 abb を生成する構文木を全て示せ、
 - (b) Gで文字列 abb を生成する最左導出を全て示せ.
- (2) 加算 +, 乗算 *, 括弧 (,), および, 変数 w, x, y, z で構成される算術式の集合 F を考える. ただし, *は+より高い優先順をもつものとし,全ての演算子は左結合とする.
 - (a) Fの算術式を生成する曖昧でない文法を BNF 記法で与えよ.
 - (b) 問 (2)(a) で与えた文法を用いて次の算術式を生成する構文木を示せ. w + x * y + (w + x * y) * z
 - (c) w=2, x=3, y=4, z=5 のとき、問 (2)(b) の算術式の値がスタックを用いて計算されるとする。計算に必要なスタック領域の大きさを示せ、その根拠をスタックの状態遷移を示し説明せよ。
- (1) Consider the following grammar G in BNF. Here, a and b denote terminal symbols and ϵ denotes the empty sequence.
 - $\langle S \rangle ::= \langle S \rangle a \langle S \rangle b \mid \langle S \rangle b \mid \epsilon$
 - (a) Give all the syntactic trees for a string abb generated from G.
 - (b) Give all the left-most derivations for a string abb generated from G.
- (2) Consider a set F of arithmetic formulas consisting of addition +, multiplication *, parentheses (,), and variables w, x, y, z. Here, * has a higher precedence than + and all operators are left-associative.
 - (a) Give an unambiguous grammar in BNF that generates arithmetic formulas in F.
 - (b) Give the syntactic tree for the following arithmetic formula generated from the grammar given in question (2) (a).

$$w + x * y + (w + x * y) * z$$

(c) Let w = 2, x = 3, y = 4, z = 5 and suppose that the value of the arithmetic formula in question 2 (b) is computed using a stack. Show the size of the stack space required for the computation. Justify your answer describing the stack state transition.

Question No. 6: Advanced physics 1

2014年3月実施 問題6 物理専門1 (1頁目/1頁中)

関数 f(x) および g(x)の内積を $< f \mid g > = \int f(x)^* g(x) dx$ と定義する. また $< f \mid g > = 0$ のとき, 関数 f(x) と g(x) は直交すると呼ばれる. 以下の間に答えよ.

- (1) $\langle g | f \rangle = \langle f | g \rangle^*$ を示せ.
- (2) 演算子 \hat{A} に対し、 $\hat{A}f|g>=< f|\hat{A}^{\dagger}g>$ を満たすような演算子 \hat{A}^{\dagger} を、 \hat{A} のエルミート共役演算子という。 $(i\hat{A})^{\dagger}=-iA^{\dagger}$ を示せ、ここでiは虚数単位である。
- (3) 与えられた任意の演算子 \hat{A} および \hat{B} に対し、それらの積の演算子 $\hat{A}\hat{B}$ のエルミート共役演算子は $\hat{B}^{\dagger}\hat{A}^{\dagger}$ となることを示せ、
- (4) $\hat{A}^{+} = \hat{A}$ となる演算子 \hat{A} をエルミート演算子という. エルミート演算子の固有値は実数となることを示せ.
- (5) 任意の演算子 \hat{A} に対し、 $\hat{A}+\hat{A}^{\dagger}$ および $i(\hat{A}-\hat{A}^{\dagger})$ がエルミート演算子となることを示せ、
- (6) エルミート演算子 \hat{A} に対する二つの固有値 λ_1 , λ_2 $(\lambda_1 \neq \lambda_2)$ と, それぞれに対する固有関数を ψ_1 , ψ_2 とする. ψ_1 と ψ_2 が直交することを示せ.

Let the inner product of the functions f(x) and g(x) be defined as $\langle f | g \rangle = \int f(x)^* g(x) dx$.

Also, let us call the functions f(x) and g(x) orthogonal when $\langle f | g \rangle = 0$. Answer the following questions.

- (1) Show that $\langle g | f \rangle = \langle f | g \rangle^*$.
- (2) An operator \hat{A}^+ is called an Hermitian adjoint operator of \hat{A} when it satisfies $\langle \hat{A}f | g \rangle = \langle f | \hat{A}^+g \rangle$. Show that $(i\hat{A})^+ = -iA^+$. Here *i* denotes the imaginary unit.
- (3) Show, for any given pair of operators \hat{A} and \hat{B} , that the Hermitian adjoint operator of the product $\hat{A}\hat{B}$ of these operators is given by $\hat{B}^+\hat{A}^+$.
- (4) An operator \hat{A} is called an Hermitian operator when $\hat{A}^+ = \hat{A}$. Show that the eigenvalue of an Hermitian operator is real.
- (5) Show, for any operator \hat{A} , that $\hat{A} + \hat{A}^{\dagger}$ and $i(\hat{A} \hat{A}^{\dagger})$ are Hermitian operators.
- (6) Let the eigenfunctions that correspond to eigenvalues of λ_1 and λ_2 ($\lambda_1 \neq \lambda_2$) be ψ_1 and ψ_2 , respectively. Show that ψ_1 and ψ_2 are orthogonal.

Question No. 7: Advanced physics 2 (1/3)

2014年3月実施 問題7 物理専門2 (1頁目/3頁中)

複素変数zの関数

$$f(z) = \exp(iz^2)$$

を考える. i は虚数単位である. また, C_1 , C_2 , C_3 は,以下のように定義された積分路である (Fig. 7).

$$C_1: z = t \qquad (0 \le t \le R),$$

$$C_2: z = Re^{it} \qquad (0 \le t \le \frac{\pi}{4}),$$

$$C_3:z=e^{-i\frac{\pi}{4}}\big(R-t\big)\qquad (0\leq t\leq R).$$

以下の間に答えよ.

- (1) 複素積分 $\int_{C_1+C_2+C_3} f(z) dz$ を求めよ.
- (2) 任意の実数 x に対して $\int_0^{+\infty} \exp\left(-x^2\right) dx = \frac{\sqrt{\pi}}{2}$ であることを利用して、複素積分 $\lim_{R \to +\infty} \int_{C_3} f(z) dz$ を求めよ.
- (3) 複素変数 z の関数 g(z) が滑らかな曲線 C 上で定義された連続関数であるとき、 $\left|\int_{C}g(z)dz\right|\leq\int_{C}\left|g(z)\right|\left|dz\right|$ が成り立つ.この不等式を利用して,複素積分 $\lim_{R\to+\infty}\int_{C_{2}}f(z)dz$ を求めよ.ただし, $0\leq\theta\leq\frac{\pi}{2}$ を満たす実数 θ に対して成り立つ不等式 $\frac{2\theta}{\pi}\leq\sin\theta\leq\theta$ を用いてよい.
- (4) 実定積分 $\int_0^{+\infty} \sin(x^2) dx$ および $\int_0^{+\infty} \cos(x^2) dx$ を求めよ.

Question No. 7: Advanced physics 2 (2/3)

2014年3月実施 問題7 物理専門2 (2頁目/3頁中)

Consider a function

$$f(z) = \exp(iz^2)$$

of a complex variable z. Let i denote the imaginary unit. C_1 , C_2 , and C_3 are integral paths defined as follows (Fig. 7),

$$C_1: z=t \qquad (0 \le t \le R),$$

$$C_2: z = Re^{it} \qquad (0 \le t \le \frac{\pi}{4}),$$

$$C_3: z=e^{i\frac{\pi}{4}}(R-t) \qquad (0 \le t \le R).$$

Answer the following questions.

- (1) Find the value of the complex integral $\int_{C_1+C_2+C_3} f(z) dz$.
- (2) Using $\int_0^{+\infty} \exp(-x^2) dx = \frac{\sqrt{\pi}}{2}$ for any real x, find the value of the complex integral $\lim_{R \to +\infty} \int_{C_3} f(z) dz$.
- (3) When a function g(z) of a complex variable z is a continuous function defined on a smooth curve C, $\left|\int_C g(z)dz\right| \leq \int_C \left|g(z)\right| dz$ holds. Using this inequality, find the value of the complex integral $\lim_{R\to +\infty} \int_{C_2} f(z)dz$. You may use the inequality equation $\frac{2\theta}{\pi} \leq \sin\theta \leq \theta$, which holds for real number θ satisfying $0 \leq \theta \leq \frac{\pi}{2}$.
- (4) Find the value of the real definite integral $\int_0^{+\infty} \sin(x^2) dx$ and $\int_0^{+\infty} \cos(x^2) dx$.

2014年3月実施 問題7 物理専門2 (3頁目/3頁中)

Fig. 7