Delay-locked loop

Luis Guillermo Macias Rojas

February 19, 2025

- Background
- Analysis
 - Basic concepts
 - Blocks
 - Schematics
- Design

Where is it used?

 The delay-locked loop (DLL) is a circuit that is used to align the phase of a clock signal with the phase of a reference signal.

Where is it used?

- The delay-locked loop (DLL) is a circuit that is used to align the phase of a clock signal with the phase of a reference signal.
- The DLL is used in applications where the phase of the clock signal is critical, such as in high-speed communication systems.

Where is it used?

- The delay-locked loop (DLL) is a circuit that is used to align the phase of a clock signal with the phase of a reference signal.
- The DLL is used in applications where the phase of the clock signal is critical, such as in high-speed communication systems.
- Where you need a PVT robust clock distribution.

• Skew (Δ_T) can be viewed as the difference in phase between two signals.

• Skew (Δ_T) can be viewed as the difference in phase between two signals.

- Skew (Δ_T) can be viewed as the difference in phase between two signals.
- If an interconnection's length is similar to that of the wave length (λ) of the signal, then a delay $(\Delta_{t_{7L}})$ will exist between A and B.

$$\lambda = \frac{\nu_p}{f}$$

- Skew (Δ_T) can be viewed as the difference in phase between two signals.
- If an interconnection's length is similar to that of the wave length (λ) of the signal, then a delay $(\Delta_{t_{TL}})$ will exist between A and B.

$$\lambda = \frac{\nu_p}{f}$$

Skew correction

How can we align CLK_{out} with CLK_{in}?

Skew correction

- How can we align CLK_{out} with CLK_{in}?
- Since CLK_{in} is periodic, an additional delay can be introduced at B₂ so as to make the total delay equal to once clock cycle (T_{CLK}).

Skew correction

- How can we align CLK_{out} with CLK_{in}?
- Since CLK_{in} is periodic, an additional delay can be introduced at B₂ so as to make the total delay equal to once clock cycle (T_{CLK}).

 The DLL can be modeled as a box that takes in a control voltage and CLK_{in}, and outputs CLK_{out} in phase with the reference.

 The DLL can be modeled as a box that takes in a control voltage and CLK_{in}, and outputs CLK_{out} in phase with the reference.

 The DLL can be modeled as a box that takes in a control voltage and CLK_{in}, and outputs CLK_{out} in phase with the reference.

Why use a DLL at all?

 The DLL can be modeled as a box that takes in a control voltage and CLK_{in}, and outputs CLK_{out} in phase with the reference.

Why use a DLL at all?

Because of $\Delta_{t_{TL}}$ and the DLL's ability to generate multiple phases.

DLL block diagram

PFD

 \longrightarrow t

Design of the DLL

 The DLL is composed of a phase detector, a charge pump, a loop filter, and a voltage-controlled delay line.

Design of the DLL

- The DLL is composed of a phase detector, a charge pump, a loop filter, and a voltage-controlled delay line.
- The phase detector compares the phase of the reference signal with the phase of the feedback signal and generates an error signal.

Design of the DLL

- The DLL is composed of a phase detector, a charge pump, a loop filter, and a voltage-controlled delay line.
- The phase detector compares the phase of the reference signal with the phase of the feedback signal and generates an error signal.
- The charge pump convert of the voltage-controlled delay line.

Example

This is a cp deign example.

two column design

lkadjhv;kaj;vkja;vn;;;;ncolum1 column1 akj;akj;av;asadbadbaab

column2 a;fwkjap;hvah;v;ahav;av'a;jv;lajvlaj