МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Нижегородский государственный университет им. Н.И. Лобачевского»

Национальный исследовательский университет

Институт информационных технологий, математики и механики

ЛАБОРАТОРНАЯ РАБОТА

по параллельному программированию "Двойные интегралы методом Монте-Карло"

Выполнил:
студент группы 381506-3
Прыгин Владислав
Алексеевич
Подпись
Проверил:
Доцент кафедры МОСТ
Кандидат технических наук
Сысоев Александр
Владимирович
Подпись

Нижний Новгород 2018

1.Постановка задачи

Требуется освоить метод Монте-Карло для вычисления двойных интегралов, запрограммировать алгоритм решения задачи на языке C++ с использованием OpenMP и библиотека Intel Threading Building Blocks (TBB).

2. Алгоритм Монте Карло

Идея ММК для численного интегрирования ∫baf(x)dx јаbf(x)dx заключается в использовании теоремы о среднем из математического анализа, в которой утверждается, что интеграл ∫baf(x)dx јabf(x)dx равен произведению длины отрезка (здесь b−ab−a) и среднего значения f f функции ff на отрезке [a,b][a,b]. Среднее значение может быть вычислено с помощью выборки значений ff на множестве случайных точек внутри области и вычислении их арифметического среднего. В многомерном случае, интеграл оценивается как произведение площади (объема) области и среднего значения функции, которое опять вычисляется по выборке на множестве случайных точек.

Введем некоторые величины, которые позволят нам формализовать алгоритм численного интегрирования. Пусть дан двумерный интеграл:

$$\int \Omega f(x,y) dx dy, \int \Omega f(x,y) dx dy,$$

где $\Omega\Omega$ — двумерная область заданная посредством вспомогательной функции g(x,y)g(x,y):

$$\Omega = \{(x,y) : g(x,y) \ge 0\}.\Omega = \{(x,y) : g(x,y) \ge 0\}.$$

Таким образом, граница области $\partial\Omega\partial\Omega$ задана неявной функцией (кривой) g(x,y)=0g(x,y)=0. Такое описание областей распространено в последние десятилетия, при этом gg называется функцией уровня, а граница g=0g=0 — нулевым контуром функции уровня. Для простых областей можно легко построить функцию gg вручную, но в более сложных промышленных приложениях следует обратиться к математическим моделям построения gg.

Пусть $A(\Omega)A(\Omega)$ — площадь области $\Omega\Omega$. Мы можем численно найти интеграл по следующему ММК:

- 1. помещаем область $\Omega\Omega$ внутрь прямоугольника RR;
- 2. генерируем большое число случайных точек на RR;
- 3. вычисляем долю qq точек, которые попали в область $\Omega\Omega$;
- 4. приближаем $A(\Omega)/A(R)A(\Omega)/A(R)$ числом q, т.е., полагаем $A(\Omega)=qA(R)A(\Omega)=qA(R);$
- 5. вычисляем среднее значение f f функции ff на области $\Omega\Omega$;
- 6. вычисляем приближенное значение интеграла как $A(\Omega)f^TA(\Omega)f^T$.

Отметим, что площадь A(R)A(R) прямоугольника RR легко вычислить, при том что площадь $A(\Omega)A(\Omega)$ нам не известна. Однако, если предположить, что доля площади A(R)A(R) занимаемой областью $\Omega\Omega$ такая же как доля случайных точек, попавших внутрь $\Omega\Omega$, можно получить простое приближение для $A(\Omega)A(\Omega)$.

3. Реализаци и схема распараллеливания

Для реализации алгоритма нам понадобятся функции вычисления интеграла и вспомогательная функция вычисления среднего арифметического всех значений заданной функции для улучшения читаемости исходного кода.

4. Подтверждение корректности. Результаты экспериментов по оценке масштабируемости

Алгоритм Монте-Карло дает преимущество при малом количестве потоков.

