Table of Contents

depth constraints	2
create t	2
STANLEY create table	
For A events	
For B events	
For C events	3
For D events	
Percentage of Events That are A, B, C, D	
find Percentage of quality events in each month for Stanley events	
MAke Table of Percentage of Quality Events	
Make Table figure	
Histogram of USGS Events by month Stanley	
create standard deviation by month	
Plot Depths now	
Geo Statistics for Stanley	
Geo Statistics for Stanley Horizontal Error	
Geo Statistics for Stanley Vertical Error	
Geo Statistics for Stanley RMSE	
Set Up Time arrays for USGS AND EQT COMPARISON	
%% MATCH THE USGS EVENTS TO EQT for Stanley	
Tiols for Stanley Sawtooth ver (EDT1)	>
% sum_file = 'Stanley.sum';	
% sum_file - Stanley.sum / % c = read_sum_file('stanley_catsum.sum');	
clear all close all;	
c = read_sum_file('import any sum file here')	
c(all(cell2mat(arrayfun(@(x) structfun(@isempty, x), c, 'UniformOutput	. 1
false)), 1)) = [];	- /
Cat = struct2table(c);	
<pre>dates = datetime(Cat.otime, 'convertfrom', 'datenum'); % create a Datetime</pre>	
column	
Cat.Dates = dates;	
<pre>for i = 1:height(Cat)</pre>	
<pre>event_id(i) = (i);</pre>	
<pre>Cat.eventID(i) = event_id(i) ;</pre>	
end	
Error using fgets	
Invalid file identifier. Use fopen to generate a valid file identifier.	
Error in fgetl (line 32)	
<pre>[tline,lt] = fgets(fid);</pre>	
Error in read_sum_file>linecount (line 92)	
tline = fgetl(fid);	
Error in read_sum_file (line 3)	
n = linecount(filename); % determine the number of lines	

```
Error in Stanley_EQT_Events (line 4)
c = read_sum_file('import any sum file here')
```

depth constraints

thresholdmin = 4.99; thresholdmax = 5.09; Cat(Cat.depth > thresholdmin & Cat.depth < thresholdmax,:) = []; % Cat(Cat_badDepths,:)= [];

create t

```
T = readtable('1970_present_EQ_westernUS_M2.5.xlsx'); % this is the full catalog
noe filter using time and space
T2 = length(T.horizontalError);

formatIn = 'yyyy-mm-ddTHH:MM:SS' % tell matlab the format for time in the
    catalog T
t1 = T.time(:,1);
t1 = datenum(t1, formatIn); % Get the correct format to compare the times
    between arrays
T.time = t1;
```

STANLEY create table

```
clear i idx St
St = array2table(zeros(length(T2),6));
St.Properties.VariableNames = { 'otime', 'lon', ...
           'lat', 'depth', 'horErr', 'rms'}
%for loop for horizontal error
for i = 1:T2
    if i>49630 && i< 52643 && 47.46 >= T.latitude(i)...
        && T.latitude(i) >= 41.46 && T.longitude(i) >= -117.636 &&
 T.longitude(i) <= -112.636
        St.otime(i) = T.time(i);
        St.lat(i) = T.latitude(i);
        St.lon(i) = T.longitude(i);
        St.depth(i) = T.depth(i);
        St.horErr(i) = T.horizontalError(i);
        St.rms(i) = T.rms(i);
        %quality
    end
St(\sim St.otime,:) = [] % deletes the rows where otime is 0 and save the table as
```

For A events

```
clear A_evs A_Events B_evs B C C_evs;
```

```
A_Events = strcmp(Cat.quality, 'A') ;% create logical index of all rows that
  are A events = 1 and if not = 0
A_evs = Cat(A_Events, :); % index into table and grab rows with 'A'
A_MR = mean(A_evs.rmse);
AMD = mean(A_evs.depth);
A MST= std(A evs.rmse);
```

For B events

```
B = strcmp(Cat.quality, 'B');
B_evs = Cat(B, :);
B_MR = mean(B_evs.rmse);
BMD = mean(B_evs.depth);
B_MST= std(B_evs.rmse);
```

For C events

```
C = strcmp(Cat.quality, 'C');
C_evs = Cat(C, :);
C_MR = mean(C_evs.rmse);
CMD = mean(C_evs.depth);
C_MST= std(C_evs.rmse);
```

Ac_Events = strcmp(c.quality, 'A') % create logical index of all rows that are A events = 1 and if not = 0 Ac_evs = $c(Ac_Events, :)$ % index into table and grab rows with 'A'

For D events

```
D = strcmp(Cat.quality, 'D');
D_evs = Cat(D, :);
D_MR = mean(D_evs.rmse);
DMD = mean(D_evs.depth);
D_MST= std(D_evs.rmse);
```

Percentage of Events That are A, B, C, D

```
A_st_perc = (height(A_evs)/ height(Cat))*100
B_st_perc = (height(B_evs)/ height(Cat))*100
C_st_perc = (height(C_evs)/ height(Cat))*100
D_st_perc = (height(D_evs)/ height(Cat))*100
```

find Percentage of quality events in each month for Stanley events

```
[C_chron, Idx] = sort(C_evs.otime);
[D_chron, idd] = sort(D_evs.otime);
[A_chron, ida] = sort(A_evs.otime);
[B_chron, idb] = sort(B_evs.otime);
figure(3); clf
```

```
plot(C_evs.Dates(Idx), 'o', 'color', [0.5 0 0.8]); hold on %these are the
  purple
plot( D_evs.Dates(idd), 'o', 'color', [0 0.52 0.10]);  %these are green
plot(B_evs.Dates(idb), 'o', 'color', 'r');
plot(A_evs.Dates(ida), 'o', 'color', 'b');
xlabel('count')
ylabel('DateTime')
view(0,90);
legend('C events', 'D events', 'B events', 'A events')
grid on
title('Stanley Event Perentage in EQT catlog ')
```

MAke Table of Percentage of Quality Events

```
QT = table([ A_st_perc; B_st_perc; C_st_perc; D_st_perc ],[height(A_evs);
height(B_evs); height(C_evs); height(D_evs)], 'VariableNames',
{'Percent', 'Number of Events'}, 'RowNames', {'Stanley As', 'Stanley
Bs', 'Stanley Cs', 'Stanley Ds'})
```

Make Table figure

```
f = figure;
uit = uitable(f, 'Data', table2cell(QT));
uit.ColumnName={QT.Properties.VariableNames{:}};
uit.RowName={QT.Properties.RowNames{:}}; %removing default row numbering as in your uitable
saveas(f, 'figname.png')
```

Histogram of USGS Events by month Stanley

```
dates = datetime(St.otime, 'convertfrom', 'datenum');
St.Dates = dates;
figure(14);
subplot(2,1,1);
St_edges = dateshift(min(Cat.Dates), "start", "month"):
calmonths(1):dateshift(max(St.Dates), "start", "month", "next");
histogram(St.Dates, St_edges)
title('Stanley USGS Events n=1023')
xlabel('Months')
% xticks([ 2 3 4 5 6 7 8 9 10 11 12 13])
% xticklabels({'January', 'Feburuary', 'March', 'April', 'May', 'June',
 'July', 'August', 'September', 'October', 'November', 'December'})
ylabel('Number of Events')
Cat_edges = dateshift(min(Cat.Dates), "start", "month"):
 calmonths(1):dateshift(max(Cat.Dates), "start", "month", "next");
subplot(2,1,2);
histogram(Cat.Dates, Cat edges);
title(sprintf('Stanley EQT Events n=%d', height(Cat)));
xlabel('Months');
```

```
% xticks([ 2 3 4 5 6 7 8 9 10 11 12 13])
% xticklabels({'January', 'Feburuary', 'March', 'April', 'May', 'June',
    'July', 'August', 'September', 'October', 'November', 'December'})
ylabel('Number of Events');
```

create standard deviation by month

```
clear std month
std month = zeros(1,length(Cat edges));
depth_month = zeros(height(Cat), length(Cat_edges));
for ii =
 min(month(Cat.Dates, "monthofyear")):max(month(Cat.Dates, "monthofyear"))
        for i = 1 : height(Cat)
             if Cat.Months(i) == ii
                 depth_month(i, ii) = Cat.depth(i);
                depth_month(depth_month==0) = NaN; %this removes all the zeros
 from the rows
             else
             end
        end
    std_month(:,ii) = nanstd(depth_month(:,ii));
end
%remove zeros from std_month
std_month(std_month == 0)=[];
```

Plot Depths now

```
figure(2); clf
subplot(3,1,1);
sz = 15;
scatter(Cat.Dates(find(Cat.depth ~= 5)), Cat.depth(find(Cat.depth ~=
5)),sz, 'o', 'filled'); hold on
title('All Events')
plot(min(month(Cat.Dates, "monthofyear")):max(month(Cat.Dates, "monthofyear")),
std_month,'r')
ylim([-3 20])
xlabel('Months')
ylabel('Depth (km)')
set(gca, 'YDir', 'reverse')
subplot(3,1,2);
Cat_no_d = Cat(~D, :); %removes the D's from the catalog using ~
scatter(Cat_no_d.Dates(find(Cat_no_d.depth ~= 5)),
Cat no d.depth(find(Cat no d.depth ~=
 5)),sz, 'o', 'filled', 'MarkerFaceColor','r'); hold on
title('No D Events')
ylim([-3 20])
xlabel('Months')
ylabel('Depth (km)')
set(gca, 'YDir', 'reverse')
subplot(3,1,3);
Cat_no_dc = strcmp(Cat_no_d.quality, 'C') ;
```

```
Cat_NDC = Cat_no_d(~Cat_no_dc, :);
scatter(Cat_NDC.Dates(find(Cat_NDC.depth ~= 5)),
   Cat_NDC.depth(find(Cat_NDC.depth ~= 5)),sz, 'o', 'filled', 'MarkerFaceColor','g'); hold on find(Cat_NDC.depth == 5)
title('No D or C Events')
xlabel('Months')
ylabel('Depth (km)')
ylim([-3 20])
set(gca, 'YDir','reverse')
```

Geo Statistics for Stanley

```
figure(3)
Cat md = mean(Cat NDC.depth(find(Cat NDC.depth ~= 5)));
Cat_st = std(Cat_NDC.depth(find(Cat_NDC.depth ~= 5)));
% histogram(Cat_st, 'Normalization','pdf')
x0 = 0:Cat_st/10:(Cat_md+2*Cat_st); %sort the values from least to greatest by
 10 off the average
figure(3); clf
[distr, xbins] = hist(Cat_NDC.depth, x0);
dx = Cat_st/100; %bin width
% dist out = max(distr);
distr = distr / sum(distr)*10; %the probablitly
bar(xbins, distr)
ylabel('Probability')
xlabel('Depth (km)')
ylim([0,1]);
xlim([0, 15]);
view([90,90])
% histogram(Cat_st,xbins)
```

Geo Statistics for Stanley Horizontal Error

```
clear Cat_md Cat_st;

Cat_md = mean(Cat_NDC.Herr(find(Cat_NDC.depth ~= 5)));
Cat_st = std(Cat_NDC.Herr(find(Cat_NDC.depth ~= 5)));
% histogram(Cat_st, 'Normalization','pdf')

x0 = 0:Cat_st/6:(Cat_md+2*Cat_st); %sort the values from least to greatest by 10 off the average

figure(5); clf
[distr, xbins]= hist(Cat_NDC.Herr(find(Cat_NDC.depth ~= 5)), x0);
```

```
dx = Cat_st/100; %bin width
% dist_out = max(distr);
distr = distr / sum(distr);

bar(xbins, distr)
ylabel('Probability')
xlabel('Horizontal Error (km)')
ylim([0,0.2]);
xlim([0, 0.31]);
% histogram(Cat_st,xbins)
```

Geo Statistics for Stanley Vertical Error

```
clear Cat_md Cat_st;
Cat_md = mean(Cat_NDC.Verr(find(Cat_NDC.depth ~= 5)));
Cat st = std(Cat NDC.Verr(find(Cat NDC.depth ~= 5)));
% histogram(Cat_st, 'Normalization','pdf')
x0 = 0:Cat_st/2:(Cat_md+2*Cat_st); %sort the values from least to greatest by
10 off the average
figure(5); clf
[distr, xbins]= hist(Cat_NDC.Verr(find(Cat_NDC.depth ~= 5)), x0);
dx = Cat_st/100; %bin width
% dist_out = max(distr);
distr = distr / sum(distr); %mean of standrad deviations
bar(xbins, distr)
ylabel('Probabilty')
xlabel('Vertical Error')
ylim([0,.4]);
xlim([0, 1]);
```

Geo Statistics for Stanley RMSE

```
figure(3)
Cat_md = mean(Cat_no_d.rmse(find(Cat_NDC.depth ~= 5)));
Cat_st = std(Cat_no_d.rmse(find(Cat_NDC.depth ~= 5)));
% histogram(Cat_st, 'Normalization','pdf')

x0 = 0:Cat_st/20:(Cat_md+2*Cat_st); %sort the values from least to greatest by 10 off the average

figure(3); clf
[distr, xbins] = hist(Cat_NDC.rmse(find(Cat_NDC.depth ~= 5)), x0);
dx = Cat_st/100; %bin width
% dist_out = max(distr);
distr = distr / sum(distr);
```

```
bar(xbins, distr)
ylabel('probabilty')
xlabel('Travel Time Residual Error (seconds)')
ylim([0,.25]);
xlim([-1, 15]);
% histogram(Cat st,xbins)
```

Set Up Time arrays for USGS AND EQT COM-PARISON

%% MATCH THE USGS EVENTS TO EQT for Stanley

```
clear dt dist val ids counter ;
 %Change the format to math the sum files and compare the times
E = referenceEllipsoid('Earth'); % reference ellipse [m] for distance
 calculation
counter = 0;
for ii = 1 : numel(t1) % loop through eqt events CHANGE TO T1
    % find the USGS event that is closest in time to eqt_event(i)
    t diff = t2 st - t1(ii);
    [val, ids(ii)] = min( abs(t_diff) ); % this lets them be negative
    % Display some useful information to the user
    fprintf('EQT: %s, Seisan: %s\n', datestr(t2_st(ids(ii))),
datestr(t1(ii)));
   dt(ii) = val * 24*3600; % [s] convert time difference to seconds
      dt_nm(i) = dt(i);
    if dt(ii) > 10
       counter = counter +1 ;
```

```
% compute distance in meters
    dist(ii) = distance( Cat.lat(ids(ii)), Cat.lon(ids(ii)),... % right
now this is set to run for A events
    St.lat(ii), St.lon(ii), E); %CHANGE CATALOGS HERE
    dist_nm(ii) = dist(ii); %create new vectors that keep track of these
values
%    plot(q_out(idx(i)), dist_nm); % create cross plot that shows
quality type versus delay time
%
% writetable(Cat(ids(ii)),'eqt_matched_sawvel.csv','Delimiter',',')
%    type 'eqt_matched_sawvel.csv'
end
end
```

Plots for Stanley Sawtooth Vel (EDIT)

```
title text = sprintf('n=%d', length(t1)-counter );
h = figure;
% time differences: use 0.1s bins from 0 to 2 seconds
subplot(1,3,1);
histogram(dt, 0:0.1:10); grid on;
xlabel('Origin time difference [s]');
ylabel('No. events'); title(title_text);
% epicenter distance difference: use 1km bins from 0 to 15 kilometers
subplot(1,3,2);
histogram(dist./1000, 0:1:15); grid on;
xlabel('Epicenter location difference [km]');
ylabel('No. events'); title(title_text);
% 1:1 depth plot: plot the USGS depth vs. the USGS depths
subplot(1,3,3);
plot([0, 30],[0, 30],'k'); hold on; title(title_text);
plot(Cat.depth(ids), St.depth, 'ko'); grid on;
xlabel('Revised Depth [km]');
ylabel('USGS Catalog Depth [km]');
axis([0 30 0 30]);
set(h,'color','w');
set( findall( h, '-property', 'FontSize' ), 'FontSize', 18 );
set( findall( h, '-property', 'FontName' ), 'FontName', 'Helvetica' );
set( findall( h, '-property', 'FontWeight' ), 'FontWeight', 'Bold' );
set( h, 'Position', [100 100 1500 400] );
set( h, 'PaperPositionMode', 'auto' );
```

Published with MATLAB® R2021b

else