Advanced Programming Laboratory

Hema A Murthy

Indian Institute of Technology Madras, India.

September 6, 2021

Lists

The ADT List:

A sequence of zero or more elements of a given *ElementType*:

 $a_1,a_2,a_3,...,a_n$ $n\geq 0 \text{ and } a_i \text{ is of } ElementType$ n- is the length of the List $n\geq 1, \text{ first } element \text{ is } a_1 \text{ and last is } a_n$

Examples for Lists:

- A list of jobs
- A list grocery items
- Representation of sets
- Lists can be used to perform infinite precision arithmetic.

The ADT List I

ADT List { private Data:

- a list of ElementType
- insert (x, p) insert element x at position p
- end() got to the end of the list
- locate(x) find the position of element x in List
- retrieve(p) retrieve the element at position p
- delete(p) delete the element at position p
- next(p) get the position of element at the position next to p
- prev(p) get the position of element at the position before p
- makeNull() create an empty list
- first() get the position of the first element
- print() print all the elements in the list
- \bullet print (p) - print the element at position p

The ADT List II

Figure: The List ADT

Lists I

Figure: The List ADT - array implementation

Lists II

Figure: The List ADT - linked list implementation

Implementation of Lists I

```
/**************
 * Program
          : LinkList.cxx
 * Function
                  : Defines a class List
 ******************
#include "iostream.h"
/* Definition of element of List */
typedef struct CellType* Position;
typedef int ElemType;
struct CellType {
 ElemType value;
  Position next;
};
```

Implementation of Lists II

```
/*Definition of class List */
class List { /* begin { Definition of class List} */
private:
  Position listHead:
                                             //pointer to hea
public:
  void makeNull();
                                             // create a new
  void insertList(ElemType x, Position p); // insert x at F
                                            // delete elemen
  void deleteList (Position p);
  Position first ();
                                             // get Position
  Position end();
                                             // get Position
  Position next (Position p);
                                             // get Position
  void printList();
                                             // print List
}; /* end {Definition of class List} */
```

Implementation of Lists III

```
/* begin {Implementation of class List} */
void List::makeNull() {
  listHead = new CellType;
  listHead \rightarrow next = NULL;
void List::insertList(ElemType x, Position p) {
  Position
                               temp;
  temp = p \rightarrow next;
  p\rightarrow next = new CellType;
  p\rightarrow next\rightarrow next = temp;
  p\rightarrow next\rightarrow value = x:
```

Implementation of Lists IV

Figure: The List ADT - Insertion Operation

Implementation of Lists V

```
void List::DeleteList(Position p) {
    p->next = p->next->next;
}
```


Figure: The List ADT - Deletion Operation

Implementation of Lists VI

```
Position List::First() {
  return(listHead);
Position List::end() {
  Position
                          p;
  p = listHead;
  while (p->next != NULL)
    p = p \rightarrow next;
  return(p);
Position List::next(Position p) {
  return (p->next);
```

Implementation of Lists VII

Implementation of Lists VIII

List Problems

- Storing Sets, performing operations on Sets (union, intersection, set A set B)
- Infinite precision arithmetic the entire number is represented in a list, perform operations of +,-,*,/.

Assignment:

- Write a function to remove duplicates in a give List using only List operations. The function takes argument a list and returns the purged list.
- ② Write a function convert a given unordered list into an ordered list.

Stacks I

Definition: A special ADT to which addition and deletions are made only at one end, LIFO (last-in-first-out).

Figure: The Stack ADT

Stacks II

Application of Stacks: Conversion of infix expressions to postfix.

- While (not end of input) do
 - When an operand is read place it immediately in the output.
 - When an operator is read,
 - \bullet If (TopOfStack has precedence \geq operator) then Pop operators off the stack until TopOfStack has lower precedence
 - Stack current Operator.
 - When a left bracket is read place in on the stack.
 - When a right bracket is read pop all elements until left bracket. Pop left bracket.

endwhile

• Pop all elements off the stack.

Stacks III

Figure: Conversion from infix to postfix

Implementation of Stacks I

```
/* begin { Definition of class stack} */
#define STACK_SIZE 256
class Stack {
  char string[STACK_SIZE];
                                   // A Stack of characters
                                   // A pointer to the top o
  int tos;
public:
  void makeNull();
                                   // creates an Empty Stack
  void push(char x);
                                   // pushes an element on to
                                   // returns the element on
  char top();
  char pop();
                                   // Pops an element from t
                                   // returns 1 if Stack is
  int empty();
/* end{ Definition of class Stack} */
```

Implementation of Stacks II

```
/* begin{Implementation of the class Stack} */
void Stack::makeNull() {
  tos = STACK\_SIZE;
void Stack::push(char x) {
  tos --;
  string[tos] = x;
char Stack::top() {
  if (tos < STACK_SIZE)
   return string[tos];
  else
   return(0);
char Stack::pop() {
  char
                   tmp;
  if (tos >= STACK_SIZE) return 0; else {
```

Implementation of Stacks III

```
tmp = string[tos];
  tos++;
  return tmp;
int Stack::empty() {
  if (tos >= STACK_SIZE)
          return 1;
  else
          return 0:
/*end {Implementation of class Stack} */
Time complexity of Stack operations using arrays - O(1).
```

Assignment:

- Modify the infix to postfix converter to work for right associative operators.
- ② Write a function that uses a stack, to determine whether the parentheses are balanced in C program. The parentheses to be considered are $\{,[,(,),],\}$.
- 3 Write a function that uses a stack, to evaluate a postfix expresssion.

Queues I

Definition: A special kind of ADT, where items are inserted at one end (called the rear) and deleted at the other end (called the front) - first-in-first-out (FIFO).

Figure: The ADT Queue

Queues II

Figure: A sequence of Queue Operations

Implementation of Queues I

struct CellType {

/* Definition of an element of the Queue */
typedef struct CellType* Position;

```
char subString[10];
  Position next;
};
/*Definition of class Queue */
class Queue { /* begin { Definition of class Queue}} */
private:
  Position front, rear;
public:
  void makeNull();
                                             // create a new
                                          // insert x into Qu
  void enQueue(char* x);
  char* front();
                                          // get element at t
  char* deQueue();
                                            //delete element
```

Implementation of Queues II

```
// check whether
  int empty();
}; /* end { Definition of class Queue} */
/* begin {Implementation of class Queue} */
void Queue::enQueue(char* x) {
  rear -> next = new CellType;
  rear = rear \rightarrow next;
  strcpy (rear -> subString,x);
  cout << rear->subString;
  rear \rightarrow next = NULL;
char* Queue::deQueue() {
char*
                        temp;
   if (empty())
     cout << "Queue_is_empty_\n";
   else {
```

Implementation of Queues III

```
temp = front->next->subString;
front = front->next;
return(temp);
}
```

Time complexity of queue operations using Linked list - O(1) .

Continued.

Issues in implementation of Queues using arrays:

- Linear Queue exhausts array size.
- 2 Implement as a circular queue.
 - Difficult to distinguish between empty and full queue.
 - Needs an additional variable.

Assignment:

- Using the Queue ADT simulate a petrol pump.
- ② Write a function to store infinitely long strings in a queue.
- **3** Implement a Queue ADT using a circularly linked list such that all operations on the Queue are performed in O(1) time.

Trees I

Definition: A tree is a hierarchical data structure with a finite set of one or more nodes such that:

- There is a specially designated node called the *root*
- The remaining nodes are partitioned into $n \ge 0$ disjoint sets $T_1, T_2, ..., T_n$, where each set is a tree. $T_1, T_2, ..., T_n$ are called subtrees of the root.

Some terminology with respect trees

Trees II

- Every tree has a designated noted called the root.
- 2 Access to any element in the tree is via the root.
- **3** There are two types of nodes in a tree:
 - Internal nodes root and all other nodes that have subtrees
 - 2 Leaves are the nodes at the bottom of a tree they have no subtrees.
- 4 Height of tree: The length of the longest path from the root to a leaf node is called the height of a tree.
- Level of a node in a tree: number of levels from root to a given node. Root node is at level 1.

Representation of trees: Arrays I

Array Representation

Every node has a pointer to its parent. This representation is useful for representing sets, memberships. This also useful for languages that do not support recursive data structures.

Representation of trees: Linked lists I

Any general tree can have a variable number of subtrees. A general tree is represented by a set of nodes, each node has two pointers

- A pointer to its left most child
- A pointer to its right sibling

The root has not right sibling

Representation of trees: Linked lists II

Figure: Representation of trees using leftMostChild, rightSibling representation

Binary Trees I

Definition: A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called the left and right subtrees.

Figure: Binary trees

Operations on binary trees: I

- CreateBinTree(v,lChild,rChild) Create a binary tree with lChild and rChild as children and v as root.
- makeNull() Create an empty tree.
- Parent(n) returns the parent of a node n.
- \bullet leftChild(n) returns the leftChild a node n.
- rightChild(n) returns the rightChild of a node n.
- root returns the root of tree

Applications of Binary Trees: I

- Representation of Sets
- Huffmann coding
- Heaps
- Dictionaries

Huffmann coding: Encodes a message consisting of a sequence of characters. In each message, the **characters** are **independent** and appear with a known **probability** of occurence in any **position**, the probability being th **same** for **all positions**. The encoding should be such that no code for a character is a **prefix** for any other character. Also, the **shortest average codelength** must be obtained.

Applications of Binary Trees: II

Forest		
wt	root	_
0.12	a	->
0.33	ь	_>
0.15	С	
0.08	d	->
0.32	e	->

Figure: Huffmann tree Construction

Huffmann tree construction:

Initialisation: Assume that every character is in a binary tree by itself. We therefore have as many binary trees as there are letters in alphabet. While there is more than one tree in the forest do

- get the tree with the smallest weight in the forest, say lC.
- get the tree with the next smallest weight in the forest, say rC.
- create a new node with leftChild as lC and rightChild as rC.
- replace the lC tree in the forest by the tree whose root is the new node, with weight equal to the sum of weights of lC and rC.
- delete tree rC from the forest.

endwhile

Implementation of Binary Trees I

```
/* Definition of a node for a Huffmann tree */
typedef struct tnode *treePtr;
typedef struct tnode {
    treePtr left;
     float probability;
    treePtr right;
} Treenode;
/* begin { class Huffmann Tree} */
class HuffTree {
  treePtr root;
 public:
 /*Create a tree with a single node */
 void createTree(float prob){
   root = new Treenode:
   root->probability = prob;
   root \rightarrow left = NULL;
```

Implementation of Binary Trees II

```
root \rightarrow right = NULL;
/* Make a single tree from two trees */
void makeBinTree(HuffTree ltree, HuffTree rtree) {
  float value:
  treePtr lsubtree, rsubtree;
  value = ltree.prob() + rtree.prob();
  root = new Treenode:
  root->probability = value;
  lsubtree = ltree.getRoot();
  rsubtree = rtree.getRoot();
  root \rightarrow left = lsubtree;
  root->right = rsubtree;
/* Get the root of the tree */
treePtr getRoot() {
  return (root);
```

Implementation of Binary Trees III

```
/* Return the probability of the root */
float prob () {
  return (root->probability);
/* Print the tree */
void printTree (treePtr temp) {
  if (temp != NULL) {
    cout << temp->probability << "";
    printTree(temp->left);
    printTree(temp->right);
```

Traversal of Trees I

- Preorder
- Inorder
- Postorder

Preorder Traversal:

- Visit root
- Visit left child in Preorder recursively
- Visit right child in Preorder recursively

Inorder Traversal:

- Visit left child in Inorder recursively
- Visit root
- Visit right child in Inorder recursively

Postorder Traversal:

- Visit left child in Postorder recursively
- Visit right child in Postorder recursively
- Visit root

Construction of Unique Binary tree from results of traversal

Preorder traversal: ABDGECFH
Inorder traversal: DGBEAFHC

Figure: Binary tree construction from traversals

Binary Tree construction

Figure: Binary tree construction from traversals

Binary Search Trees

Definition: A binary search tree is a binary tree. It may be empty. If it is not empty, it satisfies the following properties:

- Every element has a **key** and no two elements have the same key, that is, the **keys are unique**.
- The keys in a nonempty left subtree must be **smaller** than the key on the **root**.
- The keys in a nonempty right subtree must be **larger** than the key at the **root**.
- The left and right subtrees are also binary search trees.

Binary Search Trees are used for Searching (recursively) - similar to binary search on an array of n elements.

Time Complexity of Searching: O(h+1) where h is the height of the tree.

Continued.

Binary Search Trees are identical to Binary Trees except that the property at every node must be maintained.

Both Insertion and Deletion into a Binary Search Tree can cause the tree to become skewed.

Insertion:

Insertion is always done at a leaf node.

Deletion:

When a node is deleted, it is replaced by the **rightmost** child of its **left child**, or the **leftmost** child of **right child**.

Insertion into a Binary Search Tree

Figure: Insertion into a Binary Search Tree

Deletion from a Binary Search Tree

Suppose we want to delete the node that is marked as 14.

Figure: Deletion from a Binary Search Tree

Other problems on binary trees I

- Maximum number of nodes in a binary tree of height h $2^{h+1} 1$. Prove using induction.
- Relation between the number of leaf nodes and internal nodes of degree 2 (n_2) in a binary tree: $n_0 = n_2 + 1$. n_0 is the number of nodes of degree 0.
 - Let n be the number of nodes in a binary tree.
 - $n = n_0 + n_1 + n_2$, where n_0 , n_1 and n_2 correspond to nodes with degree 0, 1, 2, respectively.
 - If B is the number of branches in a tree, then n = B + 1, since every node except the root have a branch leading into it.
 - But $B = n_1 + 2n_2$.
 - Therefore $n_0 = n_2 + 1$.
- How many different binary trees can be formed with 3 unlabeled nodes?
- How many different binary search trees can be formed with 3 labeled nodes?
- Write a simple function to create a mirror image of a binary search tree.

Balanced Binary Trees

To ensure that the height of the tree is of the order log_2n , a BST has to be balanced.

Balanced Binary Trees

- AVL trees uses special rotations after every insertion and deletion
- Splay trees uses the move to root heuristic when an element is accessed.

Implementation of Insertion in a Binary Search Tree

```
treeptr *insert(treeptr tree, int number) {
  if (tree == NULL) {
    tree = new tree;
    tree->symbol = number;
    tree \rightarrow lChild = NULL:
    tree \rightarrow rChild = NULL;
  } else if (number < tree -> symbol)
    tree->lChild = (treeptr) insert(tree->lChild, number)
 else if (number > tree->symbol)
    tree->rChild = (treeptr) insert(tree->rChild, number)
 return (tree);
```

Priority Queues - Heaps I

Definition: A max tree is a tree in which the key value in each node is no smaller than the key values in its children, if any. A **max heap** is a complete binary tree that is also a **max tree**. Operations on Heaps:

- Creation of an empty Heap
- Insertion of a new element into a Heap
- Deletion of the largest element from the Heap

Priority Queues are implemented using Heaps.

Time Complexity: $O(log_2n)$ for both insertion and deletion

Representation of Priority Queues using either linear linked list or linear array is not efficient: Either deletion or insertion takes O(n) time.

Priority Queues are implemented as Complete Binary trees using Arrays.

Continued.

Final position of new node.

For Deletion move last element to Root and Heapify again.

Figure: Heaps - Insertion

Implementation of Heaps I

```
/* The class Heap defines an ADT Heap. */
/* begin { Definition of class Heap} */
#define HEAP_SIZE 256
typedef int ElemType;
typedef int Position;
class Heap {
  ElemType priority [HEAP_SIZE];
                                        // A Heap of integer
  Position last;
public:
                                        // Insertes an eleme
  void insertHeap (ElemType x);
  ElemType deleteRoot();
                                        // DeleteRoot of the
  int empty();
                                        // returns 1 if Heap
  void createHeap();
                                        // creates an empty
                                        // Prints the heap
  void printHeap();
/* end{ Definition of class Heap} */
```

Implementation of Heaps II

```
/* begin{Implementation of the class Heap} */
void Heap::insertHeap(ElemType x) {
  int
  last = last + 1;
  i = last:
  while ((i!=1) \&\& (x > priority[i/2]))  {
    priority[i] = priority[i/2];
    i = i/2;
  priority[i] = x;
ElemType Heap::deleteRoot() {
  ElemType
                      item, temp;
  Position
                      parent, child;
  int
                      flag;
  item = priority[1];
  parent = 1;
```

Implementation of Heaps III

```
child = 2;
temp = priority [last];
last = last - 1;
flag = 0;
while ((child \ll last) \&\& (!flag))
  if ((child < last) && (priority [child] < priority [child]
    child = child + 1;
  if (temp >= priority [child])
    flag = 1:
  else {
    priority [parent] = priority [child];
    parent = child;
    child = parent*2;
priority [parent] = temp;
return (item);
```

Implementation of Heaps IV

```
void Heap::createHeap() {
    last = 0;
/* end {Implementation of Heaps} */
```

The Symbol Table ADT I

- Determine if a particular name is in a table
- Retrieve the attributes of that particular name
- Modify the attributes of that name
- Insert a new name and its attributes
- Delete a name and its attributes

The Symbol Table ADT II

Can we use any of the following data structures?

- Use Lists?
- Use Queues?
- Use Stacks?
- Use Trees?

Issues: When these data structures are used, the search times can be large depending upon the location of the item that is being searchedmodified.

Can we do better?

Hash Table I

Key Idea: Use of a hash function to access an element.

- Static Hashing
- Dynamic Hashing

Static Hashing:

- Identifiers are stored in a fixed-size table called the **hash table**.
- The address or location of an identifier, x, is obtained by computing some arithmetic function, h, of x.
- h(x) gives the address of x in the table.
- The **hash table**, say ht is partitioned into b buckets, ht[0], ht[1], ..., ht[b-1].
- ullet Each bucket is capable of holding s records.
- h(x) maps the set of possible into the integers 0 through b-1.

Hash Table II

Why is hashing effective?

Example: An identifier 6 characters long \implies , that there are

$$T = \sum_{0 \le i \le 5} 26 * 36^i$$

distinct possible values for x, but any application only uses a small fraction of these.

Hash Table III

Definitions:

- Identifier Density: n/T, where n is the number of identifiers and T is total number of possible identifiers.
- Loading factor: $\alpha = n/(sb)$.
- Synonyms: $h(I_1) = h(I_2)$.
- Overflow: A new identifier I is hashed into a full bucket.
- collision: When two nonidentical identifiers hash to the same bucket.

An Example

Hash Table with 26 buckets and two slots per bucket

Figure: Hashing based on the letters of the alphabet

Hash Functions

A hash function, h, transforms an identifier, x, into its bucket address.

- Mid-Square Square the identifier and then use an appropriate number of bits from the middle to obtain the bucket address.
- Division Divide identifier, i.e. compute the remainder when x is divided by M, x%M, and use this as the hash address.
- Folding Partition identifier into different parts, add partitions and use this as the address.