>>> IHTL final project
>>> Text similarity

Name: Gussseppe Bravo and Arthur Müller

Date: December 12, 2019

>>> Approach Architecture

- 1. Real-valued distance metrics with different approaches:
 - * Lexical-based
 - * Syntactical-based
 - * Sentence-Embeddings-based

	ps	lch	wup	lin	dp	infer	over	uni
0	0.576236	0.478867	0.603125	0.441224	0.944957	0.958609	0.642857	0.308706
1	0.433333	0.366896	0.444444	0.280471	0.916931	0.946287	0.631579	0.121527
2	0.423077	0.371224	0.485209	0.043715	0.939007	0.938343	0.500000	0.044599
3	0.622222	0.355331	0.638889	0.333333	0.950514	0.964189	0.733333	0.394504
4	0.621759	0.593266	0.727564	0.465101	0.879717	0.913712	0.260870	0.143134

- 2. And then apply Tunning and Stacking to Gradient Boosting models:
 - * XGBRegressor
 - * LightGBM

```
>>> Lexical Features
```

Explore step-by-step:

- * Remove stopwords and punctuation
- * Lemmatize
- * PoS tags
- * WordNet synsets (best per lemma)

And then greedy lemma alignment with different distances:

ps Path similarity

Chadanas (namelized)

lch Leacock Chodorow (normalized)

wup Wu Palmer

lin Lin

>>> Syntactical Features

Use CoreNLP:

- * Build dependency trees
- * Filter unique governing and dependent lemmas
- * Filter verbs and nouns with main content
- dp Apply Infersent distance metrics (next slide)

Assumption

Dependency trees will provide <u>more robust</u> way of recognizing verbs and nouns because of relationship between words.

[4/11]

```
[(('bathing', 'NN'), 'nsubj', ('bird', 'NN')),
(('bird', 'NN'), 'det', ('The', 'DT')),
 (('bathing', 'NN'), 'cop', ('is', 'VBZ')),
 (('bathing', 'NN'), 'nmod', ('sink', 'NN')),
 (('sink', 'NN'), 'case', ('in', 'IN')),
   'bathing', 'NN'), 'punct', ('.', '.'))]
                   0 (None)
                       ROOT
                  4 (bathing)
              nsubi
                           nmod
                                    punct
                   /cop
 2 (bird)
               3 (is)
                          7 (sink)
                                        8(.)
     det
  1 (The)
                     5 (in)
                                6 (the)
```

```
[(('washing', 'VBG'), 'nsubi', ('Birdie', 'NNP')),
              'VBG'), 'aux', ('is', 'VBZ')),
(('basin', 'NN'), 'case', ('in', 'IN')),
                            0 (None)
                                ROOT
                          3 (washing)
                           aux dobi
                   nsubi
                                        nmod
 1 (Birdie)
                 2 (is)
                            4 (itself)
                                          8 (basin)
                                                        9(.)
                                         case det
                                                      compound
                               5 (in)
                                          6 (the)
                                                      7 (water)
```

>>> Sentence Embeddings

- * Problematic: encode sentences with different lengths
- * If it had same length we can chain word2vec embeddings and that's it.
- * If not, we can use CBOW or LSTM to deal with fixed representation.
- * The basic idea is to remember each word in a sentence and train an encoder-decoder, so that, we can use the encoder to generate embeddings from its latent space.


```
>>> New Features
```

Word Embeddings models:

infer Infersent
 uni Universal Sentence Encoder

Overlapping:

over Simple word overlap as feature

Notice:

Preprocessing for word embeddings is similar to lexical features, but without WordNet senses.

>>> Evaluation

Base models:

XGBoost Score: 0.751 LightGBM Score: 0.749

Tuning (Hyperopt, Bayesian searcher):

XGBoost Score: 0.750

LightGBM Score: 0.759

Stacking (best two models):

Stacked Score: 0.771

- >>> Metrics & Features' Influence
 - 0.570 lexical alone
 - 0.582 syntactical alone
 - 0.662 lexical + syntetical
 - 0.724 word embeddings + overlapping
 - 0.771 all together

>>> Comparing to SemEval 2012

Best systems back in 2012:

- 0.824 UKP
- 0.814 TakeLab

Some reused approaches from TakeLab example:

- * Greedy Lemma Alignment Overlap
- * Dependency Trees, but other similarity metric
- * Vector space sentence similarity (-> Word Embeddings)

However:

- * TakeLab used far more features, e.g. exploiting of NERC
- * UKP used e.g. Text Expansion Mechanisms to enrich sentences and alleviate lexical gaps

>>> Failed Approaches

- * Blending
- * Features selection
- * AutoML: auto-sklearn, TPOT (GA)
- * AutoHyperparameter: Hyperopt-sklearn

```
>>> Code
```

Notebook

* https://colab.research.google.com/drive/ 1Qb1XkJTMlXuH8P5AeLbxV9VvQ

Repository

* https://github.com/gusseppe/master_artificial_ intelligence/tree/master/Introduction_to_Human_Language_ Technology/deliverables/project

Thanks!