MEMORY FORENSIC COMPUTER FORENSIC

Brief History of Memory Analysis

- Memory Analysis is a relatively new field.
 - The idea of memory captures began in the 1990's. The only capability was string searches with no context or understanding.
 - 2005 DFRWS issued a Memory Analysis Challenge
 - Memparser developed by Chris Betz
 - First tool capable of identifying basic memory structures for forensic analysis. (Process lists, DLLs, PIDs)
 - 2007 Aaron Walters and Nick Petroni release Volatility.
 - Open source tool provided unprecedented understanding of Windows Memory structures (XP only).
 - 2011 Volatility 2.0 released
 - Offers expanded capabilities, additional plug-ins and works on a number of additional platforms.

What's the Big Deal with Memory Analysis?

- 2003 2006 Rootkits became very popular and powerful.
 - Tipped the scales to the malware author's because their code was very good at hiding from the Windows API and difficult to identify via forensic dead drive analysis.
 - Some malware only existed in memory. When the system was shut down, all trace was gone.
- Memory analysis was a huge leap forward for forensic analysis.
 - Provided the ability to directly examine kernel-level processes regardless of their efforts to hide from Windows or the file system.

Analyzing Different Memory Formats

- Most of these analysis techniques can be applied to different types of memory files
 - Acquired RAM dump
 - VMware VMEM file
- Files that need to be converted to a raw image format before analysis
 - Hibernation file
 - BSOD crash dump file
 - Conversion tools include Volatility and Moonsols

Analysis - Recoverable Data

- Active device drivers; potential rootkits
- Past & current network connections (IP & ports)
- Current & closed processes on the system
- Usernames & passwords (including wireless)
- Loaded DLLs (possible injected malware)
- Contents of the Windows keyboard buffer
- Registry keys open for a process
- Keys for encrypted hard drive or files
- IM chat sessions and participants
- Open files for a process
- Unpacked versions of a file

Tool - Volatility

- Free, open source tool used to parse artifacts out of a memory image
- Utilizes Python and is modular
- Currently Supports:
 - 64 & 32 bit systems
 - Windows (XP, All Server Versions, ME, Vista, 7, etc)
 - Linux
 - Macintosh
 - Android
- Current release available from: code.google.com/p/volatility

Volatility Download Types (v 2.3.1)

- Volatility-2.3.1standalone.exe No dependencies required, functions by itself from any media type.
 - Usage example:

volatility-2.3.1.standalone.exe pslist – f "C:\Memorydump\zeus.vmem"

- Volatility-2.3.1win32.exe Installs Volatility Python code. Used for editing and authoring new plug-ins. Requires pre-installed Python.
 - Usage example:

python vol.py pslist - f "C:\Memorydump\zeus.vmem"

Volatility Profile Commands

 Windows XP x86 (32 bit) is the default profile. All others require a specific flag.

volatility-2.3.standalone.exe pslist – f "C:\Memorydump\zeus.vmem" --profile=Win7SP1x64

VOLATILITY COMMAND

Command	Function						
connections	prints list of open TCP connections						
connscan	scans for TCP connection objects (previously closed)						
dIllist	prints list of loaded DLLs for each process						
handles	shows all files, threads, mutexes accessed by a process						
imageinfo	identifies memory image profile						
procexedump	dumps a process to an executable file						
pslist	prints running process list						
psscan	scans for process objects (previously closed)						
cmdscan	prints commands previously used in Windows command shell						
sockets	prints list of open sockets on any protocol (TCP, UDP, RAW, etc)						
sockscan	scans for previously closed socket objects on any protocol						
netscan	scans for network connections on Windows 7, Vista & Server 2008						
malfind	finds hidden and injected code in user mode memory						
yarascan	searches for malware characteristics defined by Yara rules						

Case Study: Analyzing ZeuS with Volatility

ZeuS

- Crimeware kit sold in the cyber underground for \$700 - \$6,000, depending on options
- Monitors online activity, waits for banking / monetary site logins and records all credentials
- Exfils credentials back to the attacker and adds victim box to botnet
- October 2010 5 ZeuS authors detained during Operation Trident Breach (an investigation into \$70 million in losses)
- November 2010 ZeuS merges with SpyEye, a competing banking Trojan with similar capabilities
- May 2011 ZeuS Source Code released to general public

Zeus: Identifying the Profile

- Imageinfo displays key properties of the memory image:
 - Date and time of image
 - Operating System
 - Service Pack
 - Hardware Architecture (32 bit or 64 bit)
 - Shows required volatility profile

```
C:\Volatility 2_2\volatility-2.2.standalone.exe imageinfo -f zeus.vmem
Volatile Systems Volatility Framework 2.2
Determining profile based on KDBG search...

Suggested Profile(s): WinXPSP2x86, WinXPSP3x86 (Instantiated with WinXPSP2x86)

AS Layer1: JKIA32PagedMemoryPae (Kernel AS)

AS Layer2: FileAddressSpace (C:\Volatility 2_2\zeus.vmem)

PAE type: PAE

DIB: 0x319000L

KDBG: 0x80544ce0L

Number of Processors: 1

Image Type (Service Pack): 2

KPCR for CPU 0: 0xffdff000L

KUSER_SHARED_DATA: 0xffdf0000L

Image date and time: 2010-08-15 19:17:56 UTC+0000

Image local date and time: 2010-08-15 15:17:56 -0400
```

Zeus: Identifying Network Activity

- Connections displays a list of all active TCP network connections
- Connscan searches for previously terminated TCP network connections
- Connscan shows us that the victim system was connected to 193.104.41.75 on port 80 from PID 856

```
C:\Volatility 2_2\volatility-2.2.standalone.exe connscan -f zeus.vmem Volatile Systems Volatility Framework 2.2

Offset(P) Local Address Remote Address Pid

0x02214988 172.16.176.143:1054 193.104.41.75:80 856

0x06015ab0 0.0.0.0:1056 193.104.41.75:80 856
```

Who is 193.104.41.75?

- ZeusTracker: Formerly a known
 Zeus Command and Control
- Network Whois: Registered in Ukraine
- Maxmind Geolocation: Server physically located in Moldova

Network Whois record

Queried whois.ripe.net with "-B 193.104.41.75"...

person:	Evgen Sergeevich Voronov
address:	25 October street, 118-15
address:	Tiraspol, Transdnistria
phone:	+373 533 50404
e-mail:	voronoves@i.ua
nic-hdl:	ESV1-RIPE
mnt-by:	VVPN-MNT
changed:	voronoves@i.ua 20100112
source:	RIPE

Try our GeoIP demo:

193.104.41.75

4.41.75

GeoIP Cit	y/ISP/Or	ganization	Results
-----------	----------	------------	---------

IP Address	Country Code	Location	Postal Code	Coordinates	ISP	Organization	Domain	Metro Code
193.104.41.75	MD	Moldova, Republic of		47, 29	PE Voronov Evgen Sergiyovich	PE Voronov Evgen Sergiyovich		

Zeus: Identifying Network Activity

- Connections displays a list of all active TCP network connections
- Connscan searches for previously terminated TCP network connections
- Connscan shows us that the victim system was connected to 193.104.41.75 on port 80 from PID 856

```
C:\Volatility 2_2\volatility-2.2.standalone.exe connscan -f zeus.vmem Volatile Systems Volatility Framework 2.2

Offset(P) Local Address Remote Address Pid

0x02214988 172.16.176.143:1054 193.104.41.75:80 856

0x06015ab0 0.0.0.0:1056 193.104.41.75:80 856
```

Zeus: Identifying Processes

- pslist displays key information about running processes
- psscan shows processes that had previously exited
- pslist shows that PID 856 belongs to an instantiation of svchost.exe and gives its location in memory
- Its parent process was services.exe, which was likely legitimate as it started all other Windows services

C:\Volatility 2_2>volatility-2. Volatile Systems Volatility Fra	2.standalo	ne.exe	pslist	-f zeus	.vmem			
Offset(V) Name	PID	PPID	Thds	Hnds	Sess	Wow64	Start	Exit
0x810b1660 System 0xff2ab020 smss.exe	544	0	58	379		0	2010-08-11 06:06:21	
0xff1ecda0 csrss.exe 0xff1ec978 winlogon.exe	608	544	10	410	00	ø	2010-08-11 06:06:23	
0xff247020 services.exe	676	632	16	288	900	ŏ	2010-08-11 06:06:24	
0xff255020 lsass.exe 0xff218230 vmacthlp.exe	844	16	21	37	ood	S S S S S S S S S S S S S S S S S S S	2010-08-11 06:06:24	
0x80ff88d8 svchost.exe 0xff217560 svchost.exe	936	676	11	288	Ø	900	2010-08-11 06:06:24	
0x80fbf910 svchost.exe 0xff22d558 svchost.exe	1088	676	2	1424	90	900	2010-08-11 06:06:25	
0xff203b80 svchost.exe 0xff1d7da0 spoolsv.exe	1432	676	14	145	900	900	2010-08-11 06:06:26	
0xff1b8b28 vmtoolsd.exe 0xff1fdc88 VMUpgradeHelper	1668 1788	676	25	112	900	900	2010-08-11 06:06:35	
0xff143b28 TPAutoConnSvc.e	1968 216	676	58	106 120	00	90	2010-08-11 06:06:39 2010-08-11 06:06:39	

Zeus: Identifying Process Activity

- handles: displays all files, registry keys, mutexes, named pipes, events, window stations, threads, and objects opened by a process
 - Note: used the -p flag to specify a process and -t to specify return data
- Svchost showed winlogon.exe and the winlogon registry key as open handles
 - Is this the autostart location?

Zeus: Registry Enumeration

- Printkey: displays contents of registry keys running in memory
 - Used the –K command to specify the Winlogon Registry key
- Winlogon key shows the userinit value includes sdra64.exe (known Zeus executable)

```
C:\Volatility 2_2>volatility-2.2.standalone.exe printkey -f zeus.vmem -K "Microsoft\Windows NT\CurrentVersion\Winlogon\Volatile Systems Volatility Framework 2.2
Legend: (S) = Stable (V) = Volatile
    istry: \Device\HarddiskVolume1\WINDOWS\system32\config\software name: Winlogon (S)
t updated: 2010-08-15 19:17:23
             xtensions
                                                                                                        Zeus executable autostart location
                                                       Explorer.exe
                                                       C:\WINDOWS\system32\userinit.exe.C:\WINDOWS\system32\sdra64.exe, rund1132 shell32,Control_RunDLL "sysdm.cpl"
```

Yara introduction

- Yara enables malware researchers to identify & classify malware families
 - Estimated 100,000 new malware pieces every day most are built on the same base code
 - Yara signatures identify base code characteristics and are used to search unknown processes for known malicious properties
 - Yara signature files can use:
 - Text strings (ASCII and Unicode)
 - Hexadecimal strings
 - Regular Expressions
 - Wildcards

Sample Zeus Yara Rule

Zeus: Capability Classification with Yara

- yarascan will scan memory for known malware characteristics
 - Used –p flag to specify svchost
 - Used –yara-file=<pathtofile> flag to specify Yara rules file
- Svchost flags on Yara Zbot rules in multiple locations

Zeus: Identifying Injected Code

- malfind searches for hidden or injected code in user mode memory base
 - Used –p flag to specify process and –D to dump the injected code to the hard drive
- Malfind located two injected code locations in svchost
 - One has an MZ (executable) header Highly suspicious
 - -D extracts the injected executable to the hard drive for further analysis

```
dalone.exe malfind -f zeus.vmem -p 856 -D "C:\Volatility 2 2\zeus export
                           Code injected into sychost has MZ header
```

Antivirus Scan of Extracted Code

- Used AVG antivirus to scan the code extracted from sychost
 - Returned as Win32/Heri infected file this is how AVG classified Zeus

Review of Memory Analysis

- connscan showed PID 856 had a TCP connection with a known Zeus Command and Control site (193.104.41.75)
- pslist showed that PID 856 was svchost.exe
- handles showed sychost used the winlogon registry key, indicating a potential autostart location
- printkey isolated the winlogon key and showed that userinit was set to autorun sdra64.exe (known Zeus executable name)
- yarascan indicated that svchost may contain Zeus, and may have VM
 Debugger identification capabilities
- malfind identified the injected code in svchost.exe and extracted it to the hard drive
- AVG antivirus confirmed that we successfully extracted the malicious Zeus code from sychost.exe in memory

cmdscan & consoles

- Cmdscan provides a history of commands entered into the command shell.
 This may show specific attacker commands.
- Consoles provides the same but includes the screen buffer. It will show what the attacker actually saw.

```
Volatility 2_2>volatility-2.2.standalone.exe consoles -f Keyser_Soze_Memory.raw platile Systems Volatility Framework 2.2
                                                                                                   Volatility Command
                                                                     Command Executed
    achedProcess: DumpIt.exe Pid: 1272 Handle: 0x414
CommandHistory: 0x4f44a8 Application: DumpIt.exe Flags: Allocated CommandCount: 0 LastAdded: -1 LastDisplayed: -1 FirstCommand: 0 CommandCountMax: 50
 rocessHandle: 0x414
                                                                 Dump of console buffer
Screen 0x4f2a88 X:80 Y:300
 DumpIt - v1.3.2.20110401 - One click memory memory dumper
Copyright (c) 2007 - 2011, Matthieu Suiche (http://www.msuiche.net)
Copyright (c) 2010 - 2011, MoonSols (http://www.moonsols.com)
     Address space size:
Free space size:
     * Destination = \??\E:\KEYSER-94C33D35-20120731-184856.raw
     --> Are you sure you want to continue? [y/n] y
```

Other Useful VolatilityCommands

- dlllist lists all dynamic link library (dll) files called by specific processes; great for identifying dll injection attacks
- dlldump extract dll files from a process's memory space
- procexedump extract a process's disk-mode executable from memory
- procmemdump extract a process's memory mode executable (including slack space)

Even More Useful Volatility Commands

- imagecopy convert crashdump, hibernation file, or live firewire session to a raw memory dump capable of analysis.
- userassist lists contents of the NTUSER.DAT UserAssist registry key, showing programs executed by specific users.
- hashdump extract domain password hashes from SYSTEM and SAM registry keys.