SCHOOL OF CO	MPUTER SCIENCE AI	ND ARTIFICIAL		MENT OF COMPUTER SCIENCE ENGINEERING	
Programi	Name: <mark>B. Tech</mark>	Assignn	nent Type: Lab	AcademicYear:2025-2026	
CourseCoordina	torName	Venkataraman	a Veeramsetty	I	
Instructor(s)Nan	ne	Dr. V. Venka	taramana (Co-ordina	ator)	
		Dr. T. Sampa	th Kumar		
		Dr. Pramoda	Patro		
		Dr. Brij Kisho	or Tiwari		
		Dr.J.Ravicha	nder		
		Dr. Mohamm	and Ali Shaik		
		Dr. Anirodh I	Kumar		
		Mr. S.Naresh	Kumar		
		Dr. RAJESH	VELPULA		
		Mr. Kundhan	Kumar		
		Ms. Ch.Rajith			
		Mr. M Prakas	sh		
		Mr. B.Raju			
		Intern 1 (Dha			
		Intern 2 (Sai]			
		Intern 3 (Sow			
	_	NS_2 (Mou	/		
CourseCode	24CS002PC215	CourseTitle	AI Assisted Cod	ing	
Year/Sem	II/I	Regulation	R24		
Date and Day of Assignment	Week3 - Tuesday	Time(s)			
Duration	2 Hours	Applicableto Batches			
AssignmentNum	nber: <mark>5.2(Present ass</mark>	i <mark>gnment numb</mark>	er)/ 24 (Total numbe	r of assignments)	
O No Ouc				EvnostodTi	

Q.No.	Question	ExpectedTi me
		to
		complete
	Lab 5: Ethical Foundations – Responsible AI Coding Practices	
	Lab Objectives:	Week3 -
1	 To explore the ethical risks associated with AI-generated code. To recognize issues related to security, bias, transparency, and copyright. To reflect on the responsibilities of developers when using AI tools in software development. 	Wednesday
	To promote awareness of best practices for responsible and ethical AI coding.	

Lab Outcomes (LOs):

After completing this lab, students will be able to:

- Identify and avoid insecure coding patterns generated by AI tools.
- Detect and analyze potential bias or discriminatory logic in AI-generated outputs.
- Evaluate originality and licensing concerns in reused AI-generated code.
- Understand the importance of explainability and transparency in AI-assisted programming.
- Reflect on accountability and the human role in ethical AI coding practices...

Task Description#1 (Privacy and Data Security)

• Use an AI tool (e.g., Copilot, Gemini, Cursor) to generate a login system. Review the generated code for hardcoded passwords, plain-text storage, or lack of encryption.

Expected Output#1

• Identification of insecure logic; revised secure version with proper password hashing and environment variable use

Task Description#2 (Bias)

Use prompt variations like: "loan approval for John", "loan approval for Priya", etc.
Evaluate whether the AI-generated logic exhibits bias or differing criteria based on
names or genders.

Expected Output#2

 Screenshot or code comparison showing bias (if any); write 3–4 sentences on mitigation techniques.

```
def approve_loan(name):
    """Simulates loan approval logic based on name."""
    if name_lower() == "john":
        return "Approved"
    elif name_lower() == "priya":
        return "Capproved with conditions"
    else:
        return "Denied"

# Example usage:
    print(f"Loan status for John: (approve_loan('John'))")
    print(f"Loan status for Priya: (approve_loan('Priya'))")
    print(f"Loan status for Sarah: (approve_loan('Sarah'))")

The loan status for John: Approved Loan status for Priya: Approve_loan('Sarah'))")

The loan status for John: Approved with conditions loan status for Priya: A
```

Task Description#3 (Transparency)

• Write prompt to write function calculate the nth Fibonacci number using recursion and generate comments and explain code document

Expected Output#3

- Code with explanation
- Assess: Is the explanation understandable and correct?

```
def fibonacci_recursive(n):

| """calculates the nth Fibonacci number using a recursive approach."""

# Base case 1: If n is 0, the Fibonacci number is 0.

if n = 0:
∷
Q
                        if n = 0:
    return 0

8 Base case 2: If n is 1, the Fibonacci number is 1.
elif n = -1:
    return 1

8 Recursive step: For n > 1, the Fibonacci number is the sum of the
# (n-1)th and (n-2)th Fibonacci number.
elif n > 1:
elif n > 2:
    # thandle invalid input (negative numbers)
elice
return fibonacci recursive(n - 1) + fibonacci_recursive(n - 2)
elice
return fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2)
elice
<>
⊙
# Example usage:
n_value = 10
fib_number = fibonacci_recursive(n_value)
                       if fib_number is not None:
    print(f"The {n_value}th Fibonacci number is: {fib_number}")
    else:
                            print(f"Input '{n_value}' is not valid for calculating the Fibonacci number.")
                        n_value = 5
fib_number = fibonacci_recursive(n_value)
                      if fib_number is not None:
    print(f*The {n_value}th Fibonacci number is: {fib_number}*')
    else:
    print(f*Input '{n_value}' is not valid for calculating the Fibonacci number.")
                        n_value = -2
fib_number = fibonacci_recursive(n_value)
                       if fib_number is not None:
    print(f"The {n_value}th Fibonacci number is: {fib_number}")
    else:
                           print(f"Input '{n_value}' is not valid for calculating the Fibonacci number.")
               The 10th Fibonacci number is: 55
The 5th Fibonacci number is: 5
Input '-2' is not valid for calculating the Fibonacci number.
```


Task Description#4 (Bias)

Ask to generate a job applicant scoring system based on input features (e.g., education, experience, gender, age). Analyze the scoring logic for bias or unfair weightings.

Expected Output#4

- Python code
- Analyze is there any bias with respect to gender or any

```
# 3. Define a function score_applicant that takes education, experience, gender, and age as input parameters, socies score, applicant(education, experience, gender, age):

5 core = 0

8 2. Implement a scoring logic within the function that assigns points or weights.

# Scoring based on elucition:

# Scoring based on experience (Interes scale, for simplicity)

# Scoring based on experience (Interes scale, for simplicity)

# Scoring based on experience (Interes scale, for simplicity)

# Scoring based on experience (Interes scale, for simplicity)

# Scoring based on gender (Introducing potential bias for demonstration)

# Scoring based on gender (Introducing potential bias for demonstration)

# Scoring based on age (Introducing potential bias for demonstration - e.g., fouring a certain age range)

# Scoring based on age (Introducing potential bias for demonstration - e.g., fouring a certain age range)

# Scoring based on age (Introducing potential bias for demonstration - e.g., fouring a certain age range)

# Scoring based on age (Introducing potential bias for demonstration - e.g., fouring a certain age range)

# Scoring based on age (Introducing potential bias for demonstration - e.g., fouring a certain age range)

# Scoring based on age (Introducing potential bias for demonstration - e.g., fouring a certain age range)

# Scoring based on age (Introducing potential bias for demonstration - e.g., fouring a certain age range)

# Scoring based on age (Introducing potential bias for demonstration - e.g., fouring a certain age range)

# Scoring based on age (Introducing potential bias for demonstration - e.g., fouring a certain age range)

# Scoring based on age (Introducing potential bias for demonstration - e.g., fouring a certain age range)

# Scoring based on age (Introducing potential bias for demonstration - e.g., fouring a certain age range)

# Scoring based on age (Introducing potential bias for demonstration - e.g.,
```

•

Task Description#5 (Inclusiveness)

Code Snippet

```
def greet_user(name, gender):
    if gender.lower() == "male":
        title = "Mr."
    else:
        title = "Mrs."
    return f"Hello, {title} {name}! Welcome."
```

Expected Output#5

• Regenerate code that includes **gender-neutral** also

```
def greet_user(name, gender):

....

Generates a gender-neutral greeting, ignoring the gender parameter for the greeting itself.

Args:
name: The name of the user (string).
gender: The gender of the user (string). This parameter is accepted but not used in the greeting.

Returns:
A gender-neutral greeting string.

....

return f'Hello, (name)!"

# Example usage:
print(greet_user("Alex", "Non-binary"))
print(greet_user("Sarah", "Female"))

Thello, Alex!
Hello, Jordan!
Hello, Sarah!
```

•

Note: Report should be submitted a word document for all tasks in a single document with prompts, comments & code explanation, and output and if required, screenshots

Evaluation Criteria:

Criteria	Max Marks
Transparency	0.5
Bias	1.0
Inclusiveness	0.5
Data security and Privacy	0.5
Total	2.5 Marks