Linear Algebra: Final Exam-B

This is a 120-minutes closed-book exam.

Calculator is allowed.

4 pages in total

- (54 pts) Determine whether the following statements are true (T) or false (F)?
 (Reasoning is required.)
 - (1) If U, V, and W are subspaces of R^3 and if $U \perp V$ and $V \perp W$, then $U \perp W$.
 - (2) If \mathbf{x} and \mathbf{y} are unit vectors in R^n and $|\mathbf{x}^T\mathbf{y}| = 1$, then \mathbf{x} and \mathbf{y} are linearly independent.
 - (3) It is possible to find a nonzero vector \mathbf{y} in the column space of A such that $A^T \mathbf{y} = \mathbf{0}$.
 - (4) If the characteristic polynomial of a matrix A is $det(A \lambda I) = \lambda^2 2\lambda$, then A is invertible.
 - (5) The characteristic equation of a 2×2 matrix A can be expressed as $det(\lambda I A) = \lambda^2 tr(A)\lambda + det(A) = 0$, where tr(A) is the trace of A.
 - (6) Let A be an $n \times n$ matrix and $det(A) \neq 0$. If the matrix A has an eigenvalue λ and its corresponding eigenvector \mathbf{v} , then A^{-1} has a eigenvector \mathbf{v} with eigenvalue $\frac{1}{\lambda}$.
 - (7) If A and B are similar matrices, then they have the same eigenvalues.
 - (8) Let $\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$ be an orthonormal basis for an inner product space V and let $\mathbf{u} = 2 \mathbf{u_1} \mathbf{u_2} + \mathbf{u_3}$ and $\mathbf{v} = \mathbf{u_1} + \mathbf{u_2} \mathbf{u_3}$. We have $\mathbf{u} \perp \mathbf{v}$.
 - (9) If A is a 4×3 matrix of rank 2, then the dimensions of $N(A^T)$ is 2.
 - (10) If the inner product on P_3 is defined by $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$, then $\langle 1-x, 1+x-x^2 \rangle = \frac{2}{3}$.
 - (11) If the inner product on P_3 is defined by $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$, then

$$p_1(x) = 1, p_2(x) = x$$
 and $p_3(x) = x^2 - \frac{1}{2}$ are orthogonal.

- (12) Let $\langle \mathbf{u}, \mathbf{v} \rangle$ be the Euclidean inner product on R^2 , and if $\mathbf{u} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$, then $\langle \mathbf{u}, 2\mathbf{v} \rangle = 12$.
- (13) If a matrix A has the vector $\begin{bmatrix} -1\\1\\-2 \end{bmatrix}$ in row space of A, then the $\begin{bmatrix} 2\\4\\1 \end{bmatrix}$ is in the null space of A.
- (14) The orthogonal complement (正交補餘) of the subspace of R^3 spanned by $\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\2 \end{bmatrix} \right\}$ is spanned by $\left\{ \begin{bmatrix} 2\\-2\\2 \end{bmatrix} \right\}$.
- (15) Let \mathbf{u} and \mathbf{v} be vectors in an inner product space V. If $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} \mathbf{v}$ are orthogonal, then $\|\mathbf{u}\| = \|\mathbf{v}\|$.
- (16) The set $S = \{1, \cos(x), \sin(x)\}$ is a linearly independent subset of $C[-\pi, \pi]$ with respect to the inner product $\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x)dx$
- (17) Let A be an $n \times n$ matrix and let $B = A^2 A + 2I$. If the eigenvalues of A are λ_i , $i = 1, 2, \dots, n$, then the eigenvalues of B are $\lambda_i^2 \lambda_i + 2$, $i = 1, 2, \dots, n$.
- (18) Let Q be an orthogonal matrix, then $det(Q) = \pm 1$.
- (19) If A is a square matrix and $||A\mathbf{u}|| = ||\mathbf{u}||$ for all vectors $\mathbf{u} \neq \mathbf{0}$, then A is orthogonal.
- (20) The matrix $A = \begin{bmatrix} 1 & 1+1i & 2i \\ 1-i & 2 & 1+2i \\ -2i & 1+2i & 3 \end{bmatrix}$ is Hermitian.
- (21) If A is Hermitian and c is a complex scalar, then cA is Hermitian.
- (22) If three points $(x_1, y_1) = (0, 1)$, $(x_2, y_2) = (1, 2)$ and $(x_3, y_3) = (2, 4)$ are given, then the straight line y = 1 + x to minimize $\sum_{i=1}^{3} [y_i (1 + x_i)]^2 = (1, 2)$

$$(x_i)]^2$$
.

(23) Let M_{33} denote the vector space consisting of all 3×3 matrices.

If
$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix}$$
 and $B = \begin{bmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_8 & b_9 \end{bmatrix}$, we define $\langle A, B \rangle = \begin{bmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_8 & b_9 \end{bmatrix}$

$$\sum_{i=1}^{9} a_i b_i$$
 Now, if we have $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -2 \\ -1 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 1 & 0 \\ 2 & 4 & 1 \\ -2 & 1 & 1 \end{bmatrix}$, then

A and B are orthogonal.

(24) Let $\mathbf{e_1}$, $\mathbf{e_2}$, and $\mathbf{e_3}$ be the standard basis for R^3 and if $L: R^3 \to R^3$ be a linear transformation with the properties $L(\mathbf{e_1}) = \mathbf{e_2}$, $L(\mathbf{e_2}) = 2\mathbf{e_1} + \mathbf{e_2}$,

$$L(\mathbf{e_1} + \mathbf{e_2} + \mathbf{e_3}) = \mathbf{e_3}$$
, then $L\begin{pmatrix} 2\\2\\1 \end{pmatrix} = \begin{bmatrix} 2\\2\\1 \end{bmatrix}$.

- (25) If a matrix $A = \begin{bmatrix} -14 & 12 \\ -20 & 17 \end{bmatrix}$ is given, then the $GM_{\lambda_i} = AM_{\lambda_i}$, i = 1,2.
- (26) If a matrix A has singular values $\sigma_1 = 4 > \sigma_2 = 2$, then the eigenvalues of $A^T A$ are 2 and $\sqrt{2}$.
- (27) If a matrix A has singular value decomposition as $A = \begin{bmatrix} \frac{1}{3} & \frac{-2}{3} & \frac{-2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{-1}{3} \\ \frac{2}{3} & -1 & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{-\sqrt{2}}{2} \end{bmatrix}, \text{ then its rank is 2.}$
- 2. (16 pts) Consider a matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 6 & 3 \\ 3 & 6 & 3 \end{bmatrix}$, determine
 - (1) The basis set for the column space of A.
 - (2) The basis set for the row space of A.
 - (3) The range space of A.
 - (4) The basis set for the null space of A.

3. (12 pts) Let
$$A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \\ 2 & 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$

- (1) Use the Gram–Schmidt process to find an orthonormal basis for the column space of A.
- (2) Factor A into a product QR, where Q has an orthonormal set of column vectors and R is upper triangular.
- (3) Solve the least squares problem $A\mathbf{x} = \mathbf{b}$.
- 4. (18 pts) Suppose that A is a 3×3 matrix with eigenvalues $\lambda_1 = -1, \lambda_2 = 0$ and $\lambda_3 = 1$, and corresponding eigenvectors

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} (\lambda_1 = -1), \mathbf{v_2} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} (\lambda_2 = 0), \mathbf{v_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} (\lambda_3 = 1).$$

- (1) Find the matrix A.
- (2) Find A^{20} .
- (3) Find the unique solution of the differential equation $\frac{dY(t)}{dt} = AY(t), t \ge 0$

with the initial condition
$$Y(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
.