0304

February 27, 2021

```
[1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from tqdm.notebook import tqdm
    import warnings
    warnings.filterwarnings("ignore")
    SEED = 123
    np.random.seed(SEED)
[2]: DATA_RAW_PATH = '../data/raw/'
    DATA_INTER_PATH = '../data/interim/'
    FIGURES = '../figures/'
    MODELS = '../models/'
    DATA_RAW_NAME = 'teste_smarkio_lbs.xls'
    DATA_INTER_NAME = 'df_1.csv'
[3]: df = pd.read_csv(DATA_INTER_PATH+DATA_INTER_NAME)
    df.head(7)
[3]:
       Pred_class probabilidade
                                    status True_class
                2
                        0.079892 approved
                                                    0.0
                2
                                                   74.0
    1
                        0.379377
                                  approved
    2
                2
                        0.379377
                                  approved
                                                  74.0
    3
                2
                        0.420930
                                  approved
                                                  74.0
    4
                2
                        0.607437
                                  approved
                                                   2.0
    5
                2
                                                    2.0
                        0.690894
                                  approved
    6
                2
                                                    2.0
                        0.759493
                                  approved
[4]: df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 643 entries, 0 to 642
    Data columns (total 4 columns):
         Column
                       Non-Null Count Dtype
                        -----
```

```
Pred_class
                    643 non-null
                                    int64
 0
    probabilidade 643 non-null
                                    float64
 1
 2
    status
                    643 non-null
                                    object
    True_class
                    643 non-null
                                    float64
dtypes: float64(2), int64(1), object(1)
memory usage: 20.2+ KB
```

0.0.1 Questão 3:

Crie um classificador que tenha como output se os dados com status igual a revision estão corretos ou não (Sugestão : Técnica de cross-validation K-fold)

- input: Pred_class, probabilidade
- output: True class

```
[6]: train = df[df['status'] == 'approved'].drop('status', axis=1)
    test = df[df['status'] == 'revision'].drop('status', axis=1)

X_train = train.iloc[:,:2].values
    y_train = train.iloc[:,2].values

X_test = test.iloc[:,:2].values
    y_test = test.iloc[:,:2].values

print('Treino:',X_train.shape, y_train.shape)
    print('Teste:',X_test.shape, y_test.shape)
```

```
Treino: (600, 2) (600,)
Teste: (43, 2) (43,)
```

```
('ExtraTree', ExtraTreesClassifier(random_state=SEED)),
  ('Adaboost', AdaBoostClassifier(random_state=SEED)),
  ('XGBoost', xgb.XGBClassifier(random_state=SEED)),
  ('LightGBM', lgbm.LGBMClassifier(random_state=SEED)),
  ('Catboost', ctb.CatBoostClassifier(random_state=SEED, verbose=False)),
  ('LogisticRegression', LogisticRegression(random_state=SEED)),
  ('SVC', SVC(random_state=SEED))
```

```
[8]: original = pd.DataFrame()
     for name, model in tqdm(models):
         kfold = KFold(n_splits=3, random_state=SEED, shuffle=True)
         score = cross_validate(model, X_train, y_train, cv=kfold,__
      →scoring=['precision_weighted','recall_weighted','f1_weighted'],□
      →return_train_score=True)
         additional = pd.DataFrame({
         'precision_train': np.mean(score['train_precision_weighted']),
         'precision_test' : np.mean(score['test_precision_weighted']),
         'recall_train': np.mean(score['train_recall_weighted']),
         'recall_test' : np.mean(score['test_recall_weighted']),
         'f1_train' : np.mean(score['train_f1_weighted']),
         'f1_test' : np.mean(score['test_f1_weighted']),
         }, index=[name])
         new = pd.concat([original, additional], axis=0)
         original = new
```

```
0%| | 0/9 [00:00<?, ?it/s]
```

[18:03:17] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed from 'merror' to 'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

[18:03:18] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed from 'merror' to 'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

[18:03:19] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed from 'merror' to 'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

0.0.2 Questão 4:

Compare três métricas de avaliação aplicadas ao modelo e descreva sobre a diferença.

[9]	:	original
LUJ	•	OI IEIIUI

[9]:		precision_tr	ain pred	ision_test	recall_train	\
	DecisionTree	0.997	-	0.593028	0.997500	
	RandomForest	0.997	557	0.539982	0.997500	
	ExtraTree	0.997	536	0.546556	0.997500	
	Adaboost	0.110	871	0.118734	0.222500	
	XGBoost	0.982	366	0.619289	0.988333	
	LightGBM	0.984	414	0.590629	0.983333	
	Catboost	0.973	669	0.572989	0.973333	
	LogisticRegression	0.105	122	0.055064	0.215000	
	SVC	0.104726		0.092244	0.270833	
		recall_test	f1_train	f1_test		
	DecisionTree	0.593333	0.997498	0.573649		
	RandomForest	0.553333	0.997486	0.525923		
	ExtraTree	0.561667	0.997498	0.533728		
	Adaboost	0.225000	0.124007	0.128146		
	XGBoost	0.633333	0.984853	0.605545		
	LightGBM	0.610000	0.982171	0.580296		
	Catboost	0.593333	0.972207	0.559784		
	${\tt LogisticRegression}$	0.185000	0.105144	0.075540		
	SVC	0.241667	0.148538	0.129543		

Como escolher uma dessas métricas?

Dependeria do problema em si do negócio. - Caso os falsos positivos impactassem mais no négocio a escolha seria: *precision*. - Caso os falsos negativos tivessem maior impacto: *recall*. - Caso em que o négocio precisa de um equilíbrio entre essas duas métricas citadas acima: *f1-score*.

Como existe um equilíbrio entre Precision e Recall nesse caso, irei avaliar f1-Score.

Podemos perceber um possível problema com *overfitting*. O modelo está se saindo muito bem no treino, porém no teste não.

Enfrentamos um problema de overfitting

```
[12]: results = []
names = []

for name, model in tqdm(models):
```

```
0%| | 0/9 [00:00<?, ?it/s]
```

[18:06:29] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed from 'merror' to 'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

[18:06:31] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed from 'merror' to 'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

[18:06:32] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed from 'merror' to 'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

Comparação entre algoritmos - F1-Score

Como existem várias classes na previsão, utilizo todas as métricas com *'_weighted', assim consigo, com base na proporção da classe* que está sendo prevista, colocar um ponderar/colocar um peso sobre essa classe.

Modelo selecionado: XGBoost

```
Predict
[13]: model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
0.0	0.00	0.00	0.00	0
2.0	0.00	0.00	0.00	3
3.0	0.27	1.00	0.43	3
4.0	0.00	0.00	0.00	3
11.0	0.00	0.00	0.00	1
12.0	0.00	0.00	0.00	1
17.0	0.00	0.00	0.00	1
22.0	0.00	0.00	0.00	1
24.0	0.00	0.00	0.00	5
25.0	0.00	0.00	0.00	3

32.0	0.00	0.00	0.00	1
36.0	0.00	0.00	0.00	1
39.0	0.00	0.00	0.00	2
43.0	0.00	0.00	0.00	2
55.0	0.00	0.00	0.00	2
60.0	0.00	0.00	0.00	4
74.0	0.00	0.00	0.00	0
77.0	0.00	0.00	0.00	3
81.0	0.00	0.00	0.00	1
84.0	0.00	0.00	0.00	1
86.0	0.00	0.00	0.00	1
96.0	1.00	1.00	1.00	2
110.0	0.00	0.00	0.00	0
113.0	0.00	0.00	0.00	1
114.0	0.00	0.00	0.00	1
accuracy			0.12	43
macro avg	0.05	0.08	0.06	43
weighted avg	0.07	0.12	0.08	43

Modelo conseguiu acertar 56% dos dados que estavam em revision.

```
[14]: pickle.dump(model, open(MODELS+'modelo_classificador.sav', 'wb'))
```

Exportação do modelo.