Credit Risk Modelling

Project Mentor: UdayaPrakash Somasundaram

Table of contents

01

Exploratory Data Analysis

Insights from the data

03

Logistic Regression

Implemented Logistic regression model on WOE values

02

Data Preprocessing

Includes conversion to WOE values and feature encoding

04

Tree and Ensemble

Implemented Decision Tree and Random Forest on processed data

Problem Statement

Based on multiple attributes or features try to determine whether loan should granted to a user or not

Credit Risk Modelling

Credit Risk refers to the risk associated with borrower for not repaying the loan and credit risk modelling stands for developing a data driven risk models which calculates the chances of a borrower defaults on loan.

Data Overview

- The data contains 32,416 unique records and 12 attributes
- 3982 records have some missing values
- "loan_status" is the target variable
- 22% of the records belong to positive class and 78% of the records belong to negative class

Exploratory Data Analysis

Defaulters v/s Non Defaulters

From here we can clearly
observe that the data is
imbalanced and we need to take
care of this during modelling by
choosing a suitable metric for
model evaluation

Person Home Ownership Distribution

person_home_ownership	loan_status	%age
MORTGAGE	0	87.41632
	1	12.58368
OTHER	0	71.2766
1000	1	28.7234
OWN	0	93.33942
	1	6.660584
RENT	0	68.76503
	1	31.23497

Observation: Those who are living on rent have more probability of default

Loan Intent Distribution

loan_intent	loan_status	% age
DEBTCONSOLIDATION	0	71.61
	1	28.39
EDUCATION	0	82.98
	1	17.02
HOMEIMPROVEMENT	0	74.33
	1	25.67
MEDICAL	0	73.15
	1	26.85
PERSONAL	0	80.25
	1	19.75
VENTURE	0	85.38
	1	14.62

Observation: From here we can understand that those who are already having debts are having more chances of default.

Loan Grade Distribution

loan_grade	loan_status	% age
А	0	90.39
А	1	9.61
В	0	84.12
В	1	15.88
С	0	79.70
C	1	20.30
D	0	40.79
	1	59.21
Е	0	35.40
	1	64.60
F	0	30.14
F	1	69.86
G	0	1.69
	1	98.31

Observation: Those who are taking a higher grade loan have more probability of default

Also the categories E,F,G can be merged into E only

02.1

Data preprocessing and Feature Engineering

(For Logistic Regression)

WOE and Information Gain (Overview)

The **weight of evidence** tells the predictive power of an independent variable in relation to the dependent variable. Since it evolved from credit scoring world, it is generally described as a measure of the separation of good and bad customers.

WOE = ln((% of Goods)/(% of Bads)) = ln((% of Non events)/(% of events))

Information Gain for a particular attribute is calculated using the following formula: $IV = \sum (\% \text{ of non-events} - \% \text{ of events}) * WOE$ It is helpful in order to rank variables on the basis of their Importance.

WOE and Information Gain

In credit risk dataset:

- The continuous variables were binned using quantile binning method and monotonic binning was done w.r.t WOE values
- For each bin IV was calculated and summation of all these IV's gave the predictive power of each attribute
- In case of **categorical variables**, the WOE's and IV's were calculated directly for each category.
- Later each bin and category was substituted with its respective WOE value.

<u>Conclusion:</u> cb_person_cred_hist_length and person_age with extremely low predictive power were removed from the dataset

Multicollinearity Check

Linear models are usually affected by multicollinearity since it affects the final equation:

$$\hat{\mathbf{Y}} = \boldsymbol{\omega}_0 + \boldsymbol{\omega}_1 \mathbf{x}_1 + \boldsymbol{\omega}_2 \mathbf{x}_2 + \boldsymbol{\omega}_3 \mathbf{x}_3$$

- $\hat{Y} = \omega_0 + \omega_1 x_1 + \omega_2 x_2 + \omega_3 x_3$ In this case, <u>VIF (Variance Inflation Factor)</u> has been used to detect multicollinearity
- Below is the results, I got from the dataset:

variables	VIF
person_age	1.591779
person_income	1.803525
person_emp_length	1.084557
loan_amnt	1.856605
loan_int_rate	4.239534
loan_percent_income	1.920399
cb_person_cred_hist_length	1.549806
person_home_ownership	1.11126
loan_intent	1.018518
Ioan_grade	4.256187

Observation: Here we can clearly see that loan_int_rate and loan_grade are highly correlated, so one feature can be removed.

Conclusion: loan_int_rate was removed because of having lower predictive power and to avoid multicollinearity

Significance Check

Logistic Regression being a statistical model considers a null hypothesis as: **H**_n:- There is no relationship between independent and dependent variable

Following are the P-values that I got for each variable from the LR model:

VARIABLES	coef	std err	Z	P> z
const	-1.3383	0.02	-66.96	0
person_income	0.754	0.038	20.00	0
person_emp_length	0.4231	0.08	5.525	0
loan_amnt	-0.2332	0.15	-1.53	0.127
loan_percent_income	0.9966	0.03	33.185	0
person_home_ownership	-0.8463	0.03	-26.44	0
loan_intent	-1.3368	0.06	-21.409	0.000
loan_grade	-1.1906	0.02	-51.76	0
cb person default on file	0.0377	0.050	0.76	0.447

Observation: P-value of loan_amnt and cb_preson_default_on_file are more than 0.05, i.e., they are not much impacting my target variable.

Conclusion: Removed these two columns from the dataset.

Missing Value Imputation

person_age	0
person_income	0
person_home_ownership	0
person_emp_length	895
loan_intent	0
loan_grade	0
loan_amnt	0
loan_int_rate	3116
loan_status	0
loan_percent_income	0
cb_person_default_on_file	0
cb_person_cred_hist_length	0

Two columns (person_emp_length) and (loan_int_rate) were having missing values.

So, based on previous analysis, the median imputation was done on loan_int_rate w.r.t loan_grade column, since based on previous analysis, loan_int_rate and loan_grade were highly correlated.

And the remaining missing value records were dropped from the dataset.

Next Steps

• Feature Encoding:

- Performed label encoding on loan_grade column
- Performed dummy variable encoding on rest of the categorical columns

• Train Test Split:

- Splitted the data in the ratio of 80:20 for train and test
- Used <u>stratified sampling</u> during the splitting'

Hyperparameter Tuning:

 Used GridSearch CV to get optimal hyperparameters, to improve the model results.

Performance Metrics

- KS statistic: It basically measures the degree of separation between the CDF's of two classes.
- **ROC AUC score**: It just gives the measurement of the area under the ROC curve made from predictions.
- **Recall Score**:- It basically tells proportion of correctly classified positives out of total positives.

Recall = TP / (TP + FN)

- **F1 Score**:- It is just the weighted average of precision and recall. F1 Score = (precision * recall) / (precision + recall)
- Capture rate: It is the proportion of actual positives in each bin. Predicted probabilities are sorted and divided into 10 bins. A Good model shows staircase pattern from top to bottom in case of capture rate

Results

Logistic Regression (Using WOE)

Decision Tree

Random Forest

Metric	Train	Test
KS	60.6	60.8
ROC AUC	0.74	0.73
Capture Rate (10%)	37.07	36.8
Capture Rate (20%)	62.97	62.1
Recall	0.534	0.52
F1 Score	0.622	0.61

Metric	Train	Test
KS	68.7	66.5
ROC AUC	0.85	0.84
Capture Rate (10%)	46.33	46.3
Capture Rate (20%)	73.9	72.2
Recall	0.76	0.75
F1 Score	0.75	0.74

Metric	Train	Test
KS	64.2	62.8
ROC AUC	0.788	0.79
Capture Rate (10%)	43.65	44
Capture Rate (20%)	68.78	68.1
Recall	0.615	0.62
F1 Score	0.7	0.7