Digital Signal Processing for Music

Part 26: Perceptual Coding

Andrew Beck

Introduction

Overview

Overview

Psycho-Acoustic Model: Overview

- >> Objective:
 - >> Identify components perceptible and imperceptible by humans
- >> Approach:
 - >> Build model of human sound perception (analysis only!)
- >> Processing Steps:
 - 1. Transform to **frequency domain**
 - 2. Map to perceptual frequency scale
 - 3. Group into bands
 - 4. Compute (perceptual) masking threshold
 - 5. Compute **Signal-to-Mask Ratio** (SMR)
 - 6. Compute additional analysis results
- >> Recommendation only! No standardization of implementation

Psycho-Acoustic Model 1-3: Frequency Transform

- 1. Frequency transformation (AAC: FFT)
- 2. Frequency Warping (AAC: Bark Scale)
- 3. Group power in bands (AAC $\frac{1}{3}$ Bark resolution)

- >> Humans are not able to perceive every possible detail in an audio signal
 - >> Frequency resolution (see above)
 - >> Sensitivity for specific frequency regions

- >> Humans are not able to perceive every possible detail in an audio signal
 - >>> Frequency resolution (see above)
 - >> Sensitivity for specific frequency regions
 - >> Components masked by other components

- >> Humans are not able to perceive every possible detail in an audio signal
 - >> Frequency resolution (see above)
 - >> Sensitivity for specific frequency regions
 - >> Components masked by other components
 - >> Masking threshold depends on
 - >> Frequency of masker
 - >> Noisiness of masker
 - >> Level of masker
 - >> Duration of masker

AAC computation of masking threshold (recommendation)

- >> Take hearing threshold as minimum masking threshold
- >> Convolve band spectrum with spreading function

>>> Compute tonality (with phase deviation) and apply to masking threshold (from original spectrum)

Psycho-Acoustic Model: Visualization

Psycho-Acoustic Model: Additionally extracted information

Control of:

- >> Window length switching
- >> Bit reservoir
- >> Joint stereo parameters

Bit Allocation

Bit Allocation

- >> How many bits are **required** (SMR)? Exact output rate is unknown (entropy coding)
- >> How many bits are **available** per block?
- >> Are there bits available in the **bit reservor** (~6000*bits*, bit rate dependent)
 - >> Actual rate must never exceed channel capacity
 - >> Some frames might need more bits to properly encode
 - >> Allow deviation from constant bitrate
 - >> Has to be allocated from previous frames
 - >> Causes additional decoder delay

>> Intelligently distribute available bits over bands

Quantization & Entropy Coding

>> Quantization

- >>> Re-quantize the spectrum per band
- >> Each band has different scaling factor and word length
- >> Non-uniform quantization

>> Entropy Coding

- Apply lossless coding (multiple dictionaries)
- >> Submit the gained bits to bit allocation (re-iterate?)

Artifacts: Transient Smearing and Pre-Echo

Tweaks: Block Switching

- ➤ AAC: transients are encoded by 8 short frames (256) instead of 1 long frame (2048)
- >> Introduces additional encoding delay because of different start window shape

Tweaks: Other tools (MPEG-4 AAC, 1st generation)

- >> Joint Stereo Coding:
 - >>> MS (Mid/Side stereo)

 Exploit inter-channel *redundancy* by mid/side encoding
 - >> IS (Intensity Stereo)
 Remove *irrelevancy* of stereo information: replace stereo by one signal with directional information
 Works for high frequencies (per band)
 May result in spatial distortions

Tweaks: Other tools (MPEG-4 AAC, 1st generation)

- >> Prediction
 - >>> FDP (Frequency Domain Prediction)

 Backward adaptive per band

 Increases decoder complexity
 - >>> LTP (Long term prediction)

 Time domain predictor, forward adaptive, one coefficient, large lag

Tweaks: Other tools (MPEG-4 AAC, 1st generation)

- >> TNS (Temporal Noise Shaping)
 - >> Transient artifacts remain problematic
 - D*PCM in the frequency domain → time-domain envelope of the error shaped after signal envelope
 - >> Shift quantization error power to high amplitude regions

Tweaks: Other tools (MPEG-4 AAC, 2nd generation)

- >> PNS (Perceptual Noise Substitution)
 - >> Transmit noise level and inter-channel correlation instead of encoding noise subbands
- >> **PS** (Parametric Stereo)
 - >> Extends the IS concept:
 - >>> Encode *one* channel and transmit control info to generate the other channel

Artifacts

- >> Transient Smearing
 - Transients are smoothed out
- >> Musical Noise (ringing)

 Switch high frequency bands on and off
- >>> Stereo Imaging
 Changing localization and spatial impression
- >> Roughness
 - Time-variant granular quantization noise

Audio Examples (MP3)

Bitrate Models

- >> Constant Bit Rate (CBR):
 - >> Bit rate constant over time
 - >> Quality changes over time
- >> Variable Bit Rate (VBR):
 - >>> Bit rate changes over time
 - >> Quality constant over time (Depends on psychoacoustic model)

Algorithms & Properties

Name	Sampling Rates	Channels	Bit Rates
MPEG2 Layer 2	16-48k	5.1	8-160
MPEG2 Layer 3	8-96k	5.1	8-320
MPEG4 Layer	16-48k	16	8-320
AAC			
ATRAC1	44.1k	2	146
ATRAC3	44.1k	2	66,33
SDDS	44.1k	7.1	146
AC-3	32-48k	5.1	32-640
E-AC-3	32-48k	13.1	32-6144
DTS (Cine)	44.1k	5.1 / 6.1	192
DTS (Home)	32-96k	8	8-512

Quality Evaluation

- >> Quality depends on:
 - >> Bit Rate
 - >>> General coding algorithm
 - >> Encoder implementation
 - >> Encoder options
 - >> Input signal & its properties
 - >> Listener
- >> Objective, technical measures for quality evaluation fail

Blind listening tests with hidden reference

Example Results

approach	SDG (app.)
AAC/128, AC-3/192	-0.5
PAC/160	-0.8
PAC/128, AC-3/160, AAC/96, Layer 2/192	-1.21.0
ITIS/192	-1.4
Layer 3/128, Layer 2/160, PAC/96, ITIS/160	-1.81.7
AC-3/128, Layer 2/128, ITIS/128	-2.22.1
PAC/64	-3.1
ITIS/96	-3.3
- -	

Requirements

- >> Quality (see above)
- >> Latency (not important for file encoding, but for real-time transmission and real-time systems)
- >> Complexity (encoder vs decoder)
- >> Achievable bit rates
- >> Efficiency (sound quality to bit rate)
- >> Availability & licensing
- >> Editability, scrolling capabilities
- >> Error resilience

Summary

- >> Perceptual codecs take advantage of properties of human hearing and combine this with principles of redundancy coding
- >>> (MPEG) encoders are only specified by their output stream ⇒ different encoders have different quality
- >> Bitrate/quality tradeoff cannot be completely overcome, however, synthesis-based approaches are more and more successful at low bitrates