А2. Кубическое пробирование

Демченко Георгий Павлович, БПИ-235

Условия

1. Общий анализ

Кластеризация

- **Квадратичное пробирование**: Уменьшает первичную кластеризацию, но сохраняет вторичную кластеризацию
- Кубическое пробирование:
 - За счёт кубического члена увеличивает шаг между пробами, что теоретически снижает вторичную кластеризацию.
 - При неудачном выборе констант (c_1 , c_2 , c_3) или размера таблицы (M) возможны циклы и неполное покрытие ячеек.

Распределение ключей

- **Квадратичное пробирование**: Гарантирует $\geq \left[\frac{p}{2} \right]$ покрытие таблицы при условии, что:
 - \circ М простое число, c_1 и $c_2 \neq 0$.
 - \circ M степень двойки, $c_1 = c_2 = rac{1}{2}$
- Кубическое пробирование:
 - Для полного покрытия требуется строгий выбор М и констант. Например, если М степень простого числа, а с₃ ≠ 0, последовательность проб может не покрыть все ячейки.
 - В общем случае покрытие менее предсказуемо, чем у квадратичного метода.

Преимущества кубического пробирования

- Снижение вторичной кластеризации за счёт более "хаотичного" шага между пробами.
- Лучшее распределение при малой нагрузке, если константы и М подобраны корректно.
- Гибкость: Добавление кубического члена позволяет точнее настраивать поведение пробирования.

Недостатки кубического пробирования

- Риск неполного покрытия таблицы из-за циклов (особенно при М ≠ 2^m или М ≠ простому числу).
- Сложность выбора параметров. Оптимизация c₁, c₂, c₃ требует эмпирических или аналитических исследований для конкретных сценариев.

Заключение

Кубическое пробирование не гарантирует значительного улучшения по сравнению с квадратичным в общем случае.

• Применимые ситуации:

- Таблицы с динамическим размером и низкой нагрузкой.
- Специфические распределения ключей, где кубический член компенсирует паттерны коллизий.

Квадратичное пробирование остаётся предпочтительным для большинства задач благодаря предсказуемости, полному покрытию и балансу между производительностью и равномерностью распределения. Кубическое пробирование требует тщательной настройки и обоснования в каждом конкретном случае.