Formelsammlung Mathematik

November 2016

Dieses Buch ist unter der Lizenz Creative Commons CC0 veröffentlicht.

```
\sin(-x) = -\sin x
\cos(-x) = \cos x
\sin(x+y) = \sin x \cos y + \cos x \sin y
\sin(x - y) = \sin x \cos y - \cos x \sin y
\cos(x+y) = \cos x \cos y - \sin x \sin y
\cos(x - y) = \cos x \cos y + \sin x \sin y
        0000 | 0
                    0
   0
        0001
                     1
   1
               1
   2
        0010
               2
                    2
   3
       0011
               3
                    3
   4
        0100
               4
                     4
       0101
               5
                    5
   5
       0110
                     6
   6
   7
       0111 | 7 |
                    7
   8
        1000
               8
                   10
   9
        1001
               9
                   11
  10
        1010
               Α
                   12
```

1011 B

1100 | C

D

Ε

15 | 1111 | F | 17

Inhaltsverzeichnis

1	Grundlagen				1.2.2	Teilmengenrelation	
	1.1	Komplexe Zahlen	3				
		1.1.1 Rechenoperationen	3	2	Anhang		5
	1.2	Mengenlehre			2.1 Griech	hisches Alphabet	5
		1.2.1 Boolesche Algebra	3		2.2 Frakt	urbuchstaben	5

1 Grundlagen

1.1 Komplexe Zahlen

1.1.1 Rechenoperationen

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$$
 (1.1)

$$z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2)i$$
 (1.2)

$$z_1 z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i$$
 (1.3)

$$\frac{z_1}{z_2} = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + \frac{a_2 b_1 - a_1 b_2}{a_2^2 + b_2^2} i$$
 (1.4)

$$\frac{1}{z} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} i \tag{1.5}$$

Schnitt

1.2 Mengenlehre

1.2.1 Boolesche Algebra

$A \cup A = A$	$A \cap A = A$	Idempotenzgesetze
$A \cup \{\} = A$	$A \cap G = A$	Neutralitätsgesetze
$A \cup G = G$	$A \cap \{\} = \{\}$	Extremalgesetze
$A \cup \overline{A} = G$	$A \cap \overline{A} = \{\}$	Komplementärgesetze
	'	•
$A \cup B = B \cup A$	$A \cap B = B \cap A$	Kommutativgesetze
$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$	Assoziativgesetze
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgansche Regeln
$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$	Absorptionsgesetze

G: Grundmenge

Vereinigung

Umschreibung der Teilmengenrelation:

Distributivgesetze:

Thurivgesetze:
$$A \subseteq B \iff A \cap B = A$$

 $M \cup (A \cap B) = (M \cup A) \cap (M \cup B)$ (1.6) $\iff A \cup B = B$
 $M \cap (A \cup B) = (M \cap A) \cup (M \cap B)$ (1.7) $\iff A \setminus B = \{\}$

1.2.2 Teilmengenrelation

Kontraposition:

Zerlegung der Gleichheit:

$$A = B \iff A \subseteq B \land B \subseteq A$$
 (1.8) $A \subseteq B = \overline{B} \subseteq \overline{A}$

2 Anhang

2.1 Griechisches Alphabet

A	α	Alpha	N	ν	Nu
В	β	Beta	Ξ	ξ	Xi
Γ	γ	Gamma	0	0	Omikron
Δ	δ	Delta	П	π	Pi
E	ε	Epsilon	R	ρ	Rho
\mathbf{Z}	ζ	Zeta	Σ	σ	Sigma
\mathbf{H}	η	Eta	Τ	au	Tau
Θ	θ	Theta	Y	y	Ypsilon
Ι	ι	Jota	Φ	φ	Phi
K	κ	Kappa	X	χ	Chi
Λ	λ	Lambda	Ψ	ψ	Psi
\mathbf{M}	μ	My	Ω	$\dot{\omega}$	Omega

2.2 Frakturbuchstaben

A a B b C c D d	A a B b C c D d	O o P p Q q R r	O o P p Q q R r
E e	E e	S s	S s
F f	F f	T t	T t
G g	G g	U u	U u
H h	H	V v	V v
I i	I i	W w X x Y y Z z	W w
J j	I j		X x
K k	K t		Y y
L l	L l		3 3
${f M} {f m} {f N} {f n}$	$\mathfrak{M}\mathfrak{m}$ \mathfrak{n}		