Firstname Lastname

Department of Management and Economics Czech Technical University in Prague

Title of the presentation

Subtitle of the presentation

October 12, 2024

Contents

Elements

Overlays

Contents 1/1

Outline for Elements

1 Elements
Blocks
List Environments
Illustrations

Overlays

Elements 2/

Definition

The definition below is from [1].

Definition

Here is a definition block.

Theorem

The following is proved in [2, pp. 74–75].

Theorem

Here is a theorem block.

Alert

If you want to alert something, just do it.

Notice

I can eat glass. It does not hurt me.

You Can Also Define by Yourself

Conjecture

An (x, bx)-biregular graph $G = (U \cup V, E)$ is the union of b edge-disjoint bipartite x-regular subgraphs.

Unordered/Order List

What a panda cub can bite:

- Bamboos
- Cookies
- Glass, of course

What you have to do next:

- Eat
- Pray
- 6 Love

List With Item Labels

Morgan An American financier and bankerBach A German composer and musicianNaipaul A Trinidad and Tobago-born British writer

Figures

(Photo by Pascal Müller on Unsplash)

Tables

Degree Tree
$$D_i$$
 (Key) D_1 D_2 ... D_{κ} Degree Tree Class V_{D_i} (Value) V_{D_1} V_{D_2} ... $V_{D_{\kappa}}$

Table 1

ID	Age	Salary	Panda
1	11	11111	11
2	7	78	0
3	121	0	302
4	43	18744	1
5	88	-342	6344

Table 2

Outline for Overlays

- Elements
- Overlays
 Usages
 Examples

Overlays 11/1

The command \pause makes the text following it to be shown only from the next slide on, which is a command using \onslide internally.

An example:

The command \pause makes the text following it to be shown only from the next slide on, which is a command using \onslide internally.

An example:

One

The command \pause makes the text following it to be shown only from the next slide on, which is a command using \onslide internally.

An example:

- One
- Two

The command \pause makes the text following it to be shown only from the next slide on, which is a command using \onslide internally.

An example:

- One
- Two
- Three

\uncover, \visible & \only

- **\uncover** The text occupies space and is still typeset, but it is not shown or only shown as if transparent
 - **\visible** It is almost the same as \uncover, except that if the text is not shown, it is never shown transparently, but rather it is not shown at all
 - **\only** The text is inserted only into the specified slides and for other slides, it is thrown away and occupies no space

A labelling is a set of local labelling functions.

• The vertex-labelled graph G

Overlays Examples 14/17

A labelling is a set of local labelling functions.

- The vertex-labelled graph G
- The local labelling function f_{v_3} , for $f_{v_3}(v_2)=2$ and $f_{v_3}(v_4)=1$

A labelling is a set of local labelling functions.

- The vertex-labelled graph G
- The local labelling function f_{v_3} , for $f_{v_3}(v_2)=2$ and $f_{v_3}(v_4)=1$
- The labelling $\mathbf{f} = \{f_{v_1}, f_{v_2}, \frac{f_{v_3}}{f_{v_3}}, f_{v_4}, f_{v_5}\}$

 $S_f = 1$

References

- [1] **Dana Angluin**. "Local and global properties in networks of processors". In: *Proceedings of the twelfth annual ACM symposium on Theory of computing*. Acm. 1980, pp. 82–93.
- [2] Masafumi Yamashita et al. "Computing on anonymous networks: part I—characterizing the solvable cases". In: *IEEE Transactions on parallel and distributed systems* 7.1 (1996), pp. 69–89.

References 16/17

Thank you very much!

Q&A

$$1 \le s_{\mathbf{f}} \le 36$$

T_1		
v_1		

$$1 \le s_{\mathbf{f}} \le 36$$

T_1			
V_1	<i>V</i> ₂		

$$1 \leq s_{\boldsymbol{f}} \leq 18$$

T_1	T_2		
V_1	V ₂ V ₃		
	<i>V</i> 3		

$$2 \le s_{\mathbf{f}} \le 18$$

T_1	T_2	T_3	
V_1	V ₂ V ₃	V4	
	<i>V</i> 3		

$$2 \le s_{\mathbf{f}} \le 12$$

T_1	T_2	T_3	T_4	
V_1	<i>V</i> ₂	V4	<i>V</i> ₅	
	V ₂ V ₃			

$$2 \leq s_{\mathbf{f}} \leq 9$$

T_1	T_2	T_3	T_4	
V_1	<i>V</i> ₂	V4	<i>V</i> ₅	
	V ₂ V ₃	V ₄ V ₆		

$$2 \leq s_{\mathbf{f}} \leq 9$$

T_1	T_2	T_3	T_4	
V_1	<i>V</i> ₂	V4	V ₅ V ₇	
	V ₂ V ₃	V ₄ V ₆	<i>V</i> ₇	

$$2 \leq s_{\mathbf{f}} \leq 9$$

T_1	T_2	T_3	T_4	
V_1	<i>V</i> ₂	<i>V</i> ₄	V ₅ V ₇	
<i>V</i> 8	<i>V</i> 3	V ₄ V ₆	V ₇	

$$2 \le s_{\text{f}} \le 9$$

T_1	T_2	T_3	T_4	
V_1	<i>V</i> ₂	<i>V</i> 4	<i>V</i> ₅	
<i>V</i> 8	<i>V</i> 3	V ₆ V ₉	V ₇	
		V 9		

$$3 \leq s_{\boldsymbol{f}} \leq 9$$

T_1	T_2	T_3	T_4	
v_1	<i>V</i> ₂	<i>V</i> 4	<i>V</i> ₅	
<i>V</i> ₈	<i>V</i> 3	<i>V</i> ₆	V ₇	
		V 9	V ₁₀	

$$3 \le s_{\text{f}} \le 9$$

Given a graph with 36 vertices, s_f can be 1, 2, 3, 4, 6, 9, 12, 18 or 36:

T_1	T_2	T_3	T_4	
V_1	<i>V</i> ₂	V4	<i>V</i> ₅	
<i>V</i> 8	<i>V</i> ₃	<i>V</i> ₆	V ₇	
		V 9	V ₁₀	
			v_{11}	

$$6 \le s_{\mathbf{f}} \le 9$$

1/3

T_1	T_2	T_3	T_4	
V_1	<i>V</i> ₂	V4	V 5	
<i>V</i> ₈	<i>V</i> 3	<i>V</i> ₆	<i>V</i> 7	
		V 9	V ₁₀	
			v_{11}	
			V ₁₂	

$$6 \le s_{\mathbf{f}} \le 9$$

Given a graph with 36 vertices, s_f can be 1, 2, 3, 4, 6, 9, 12, 18 or 36:

-	r_1	T_2	T_3	T_4	T_5
-	/1	<i>V</i> ₂	<i>V</i> 4	<i>V</i> ₅	
١	/8	<i>V</i> ₃	<i>V</i> ₆	<i>V</i> 7	
[V 9	v_{10}	
				v_{11}	
				V_{12}	

$$6 \le s_{\mathbf{f}} \le 9$$

The squares above are v_{13} 's possible places.

Can You Explain the Order of Terms in List of Symbols?

- It is automatically generated by the external *MakeIndex* program along with LTFX package nomencl, using default settings
- Yes, it even looks bizarre to me as well

Your Paper is Hard to Understand ...

After today's presentation, do you feel a little better?

$$\text{Your answer} = \begin{cases} \text{Yes} & \text{Phew, thank you!} \\ \text{No} & \text{Is it too late to say sorry?} \end{cases}$$