

Lab 5

CPS 563 – Data Visualization

Dr. Tam Nguyen

tamnguyen@udayton.edu

Outline

• Practice with parallel coordinates

Start MATLAB

Create Lab 5 folder

Create new script file: Lab5.m

Lab5.m

```
close all;
clear all;
clc;
```

Generate random data

```
npoints=10;
ndims = 4;
data = zeros(ndims, npoints);
for i = 1:npoints
  for j = 1:ndims
    data(j,i) = randn;
  end
end
```

Plot data points

```
hold on
for i = 1:npoints
    plot(data(:,i));
end
hold off
```

Run Lab5.m

Update the labels

```
hold on
for i = 1:npoints
    plot(data(:,i));
end
hold off
```



```
% set(gca, 'xtick',[1 2 3 4]);
set(gca, 'xticklabel', {'x1', 'x2','x3', 'x4'});
```

Increase the number of data points

```
clear all;
close all;
clc;
npoints=150;
ndims = 4;
data = zeros(ndims, npoints);
```


Create new script: Lab5b.m

Lab5b.m

```
close all;
clear all;
clc;
```

Load Iris dataset

close all; clear all; clc;

load fisheriris;

Examine the data

Set the labels

load fisheriris;

labels = {'Sepal Length','Sepal Width','Petal Length','Petal Width'};

Parallel Coordinates

labels = {'Sepal Length','Sepal Width','Petal Length','Petal Width'};

parallelcoords(meas,'Group',species,'Labels',labels);

Update the line width

h = parallelcoords(meas,'Group',species,'Labels',labels);
h(1).LineWidth = 3;

Copy data from MATLAB to Excel

Select data and choose graph

Radar Chart

Switch Row/Column

Delete legend

Parallel Coordinates vs. Radar Chart

Q&A