MACRO ECONOMIC DATA

OBJECTIVE:

To understand and analyze the big picture of an economy by studying key indicators and trends, such as GDP growth, inflation, unemployment, and trade, to make informed decisions and policies that support economic well-being and growth.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
df = pd.read_csv(r'/content/macrodata.csv_.csv')
df
```

	Date	year	quarter	realgdp	realcons	realinv	realgovt	realdpi	
0	3/31/1959	1959	1	2710.349	1707.4	286.898	470.045	1886.9	2
1	6/30/1959	1959	2	2778.801	1733.7	310.859	481.301	1919.7	2
2	9/30/1959	1959	3	2775.488	1751.8	289.226	491.260	1916.4	2
3	12/31/1959	1959	4	2785.204	1753.7	299.356	484.052	1931.3	2
4	3/31/1960	1960	1	2847.699	1770.5	331.722	462.199	1955.5	2
198	9/30/2008	2008	3	13324.600	9267.7	1990.693	991.551	9838.3	21
199	12/31/2008	2008	4	13141.920	9195.3	1857.661	1007.273	9920.4	21
200	3/31/2009	2009	1	12925.410	9209.2	1558.494	996.287	9926.4	21
201	6/30/2009	2009	2	12901.504	9189.0	1456.678	1023.528	10077.5	21
202	9/30/2009	2009	3	12990.341	9256.0	1486.398	1044.088	10040.6	21
203 rc	ows × 15 colur	mns							
4									•

df.head()

	Date	year	quarter	realgdp	realcons	realinv	realgovt	realdpi	срі
0	3/31/1959	1959	1	2710.349	1707.4	286.898	470.045	1886.9	28.98
1	6/30/1959	1959	2	2778.801	1733.7	310.859	481.301	1919.7	29.15
2	9/30/1959	1959	3	2775.488	1751.8	289.226	491.260	1916.4	29.35
3	12/31/1959	1959	4	2785.204	1753.7	299.356	484.052	1931.3	29.37
4	3/31/1960	1960	1	2847.699	1770.5	331.722	462.199	1955.5	
4									>

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 203 entries, 0 to 202 Data columns (total 15 columns):

Data	COTUMITS (corai is coinillis):
#	Column	Non-Null Count	Dtype
0	Date	203 non-null	object
1	year	203 non-null	int64
2	quarter	203 non-null	int64
3	realgdp	203 non-null	float64
4	realcons	203 non-null	float64
5	realinv	203 non-null	float64
6	realgovt	203 non-null	float64
7	realdpi	203 non-null	float64
8	cpi	203 non-null	float64
9	m1	203 non-null	float64
10	tbilrate	203 non-null	float64
11	unemp	203 non-null	float64
12	pop	203 non-null	float64
13	infl	203 non-null	float64
14	realint	203 non-null	float64
dtvpe	es: float6	4(12), int64(2),	obiect(1

dtypes: float64(12), int64(2), object(1)

memory usage: 23.9+ KB

```
df['Date'] = pd.to_datetime(df['Date'])

df=df.set_index(['Date'])

df
```

	year	quarter	realgdp	realcons	realinv	realgovt	realdpi	срі	
Date									
1959- 03-31	1959	1	2710.349	1707.4	286.898	470.045	1886.9	28.980	13
1959- 06-30	1959	2	2778.801	1733.7	310.859	481.301	1919.7	29.150	14
1959- 09-30	1959	3	2775.488	1751.8	289.226	491.260	1916.4	29.350	14
1959- 12-31	1959	4	2785.204	1753.7	299.356	484.052	1931.3	29.370	14
1960- 03-31	1960	1	2847.699	1770.5	331.722	462.199	1955.5	29.540	13
2008- 09-30	2008	3	13324.600	9267.7	1990.693	991.551	9838.3	216.889	147
2008- 12-31	2008	4	13141.920	9195.3	1857.661	1007.273	9920.4	212.174	157
4									>

data = pd.DataFrame(df['realgdp'])

data

	realgdp
Date	
1959-03-31	2710.349
1959-06-30	2778.801
1959-09-30	2775.488
1959-12-31	2785.204
1960-03-31	2847.699
2008-09-30	13324.600
2008-12-31	13141.920
2009-03-31	12925.410
2009-06-30	12901.504
2009-09-30	12990.341
203 rows × 1	columns

data.realgdp.plot(figsize=(10,6));

data['1960'].realgdp.plot(figsize=(10,6))

<ipython-input-12-3f8ea63c3e9e>:1: FutureWarning: Indexing a DataFrame with a date
 data['1960'].realgdp.plot(figsize=(10,6))
<Axes: xlabel='Date'>

data['1959-03-31':'1959-12-31'].realgdp.plot(figsize=(10,6))


```
data['1959'].mean()
```

```
<ipython-input-14-c65c702e4eab>:1: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string to slice the
                            data['1959'].mean()
                                                             2762.4605
                    realgdp 2760
dtype: float64
                    4
data['1960'].mean()
                      <ipython-input-15-69875ea1518f>:1: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string to slice the
                            data['1960'].mean()
                      realgdp
                                                               2830.93175
                     dtype: float64
data['1970'].mean()
                     <\!\!\text{ipython-input-16-bf22c9d7c288}\!\!>\!\!:\!\!1\!\text{:} \text{ FutureWarning: Indexing a DataFrame with a datetimelike index using a single string to slice the largest content of the property of the
                            data['1970'].mean()
                      realgdp
                                                               4269.9395
                     dtype: float64
                   4
data['d1']=df.realgdp.diff()
```

data

	realgdp	d1
Date		
1959-03-31	2710.349	NaN
1959-06-30	2778.801	68.452
1959-09-30	2775.488	-3.313
1959-12-31	2785.204	9.716
1960-03-31	2847.699	62.495
2008-09-30	13324.600	-90.666
2008-12-31	13141.920	-182.680
2009-03-31	12925.410	-216.510
2009-06-30	12901.504	-23.906
2009-09-30	12990.341	88.837

203 rows × 2 columns

data.d1.plot(figsize=(10,5))

data['1959'].d1.mean()

```
<ipython-input-20-3214ad96d64c>:1: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string to slice th€
      data['1959'].d1.mean()
     24.9516666666667
data['1960'].d1.mean()
     <ipython-input-21-c28e66afa8f8>:1: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string to slice th€
       data['1960'].d1.mean()
     4.352999999999952
    4
data['1970'].d1.mean()
     <ipython-input-22-476cf48a175d>:1: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string to slice th€
       data['1970'].d1.mean()
     -1.6560000000001764
     4
round(data['1959'].d1.mean())
     <ipython-input-23-719979ca2937>:1: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string to slice th€
      round(data['1959'].d1.mean())
     4
round(data['1960'].d1.mean())
     <ipython-input-24-0f30aceace94>:1: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string to slice th€
      round(data['1960'].d1.mean())
    4
round(data['1970'].d1.mean())
     <ipython-input-25-a07660c039a9>:1: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string to slice th€
      round(data['1970'].d1.mean())
    4
data['d2']=data.realgdp.diff(periods=2)
data
```

	realgdp	d1	d2
Date			
1959-03-31	2710.349	NaN	NaN
1959-06-30	2778.801	68.452	NaN
1959-09-30	2775.488	-3.313	65.139
1959-12-31	2785.204	9.716	6.403
1960-03-31	2847.699	62.495	72.211
2008-09-30	13324.600	-90.666	-42.265
2008-12-31	13141.920	-182.680	-273.346
2009-03-31	12925.410	-216.510	-399.190
2009-06-30	12901.504	-23.906	-240.416
2009-09-30	12990.341	88.837	64.931
203 rows × 3	columns		

from pandas.core.arrays import period data['dd1']=data.d1.diff()

data

```
realgdp
                                 d1
                                          d2
                                                   dd1
           Date
      1959-03-31
                  2710.349
                               NaN
                                         NaN
                                                  NaN
      1959-06-30
                  2778.801
                              68.452
                                         NaN
                                                  NaN
      1959-09-30
                  2775.488
                              -3.313
                                       65.139
                                                -71.765
      1959-12-31
                  2785.204
                               9.716
                                        6.403
                                                13 029
      1960-03-31
                  2847.699
                              62.495
                                       72.211
                                                52.779
      2008-09-30 13324.600
                             -90.666
                                      -42.265 -139.067
      2008-12-31 13141.920 -182.680 -273.346
                                                -92.014
      2009-03-31 12925.410 -216.510 -399.190
                                               -33 830
data['1959'].dd1.mean()
     <ipython-input-30-ad3b13f5a78e>:1: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string to slice the
       data['1959'].dd1.mean()
     -29.36799999999971
data['1960'].dd1.mean()
     <ipython-input-31-4da5448af4d0>:1: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string to slice th€
       data['1960'].dd1.mean()
     -11.5305000000000075
from statsmodels.tsa.seasonal import seasonal_decompose
data.index
     ...
'2007-06-30', '2007-09-30', '2007-12-31', '2008-03-31',
'2008-06-30', '2008-09-30', '2008-12-31', '2009-03-31',
'2009-06-30', '2009-09-30'],
                   dtype='datetime64[ns]', name='Date', length=203, freq=None)
data.realgdp.bfill(inplace=True)
data
```

	realgdp	d1	d2	dd1
Date				
1959-03-31	2710.349	NaN	NaN	NaN
1959-06-30	2778.801	68.452	NaN	NaN
1959-09-30	2775.488	-3.313	65.139	-71.765
1959-12-31	2785.204	9.716	6.403	13.029
1960-03-31	2847.699	62.495	72.211	52.779
•••				
2008-09-30	13324.600	-90.666	-42.265	-139.067
2008-12-31	13141.920	-182.680	-273.346	-92.014
2009-03-31	12925.410	-216.510	-399.190	-33.830
2009-06-30	12901.504	-23.906	-240.416	192.604
2009-09-30	12990.341	88.837	64.931	112.743
203 rows × 4	columns			
seasonal_dec	ompose(data	a.realgdp))	

```
x = seasonal_decompose(data.rea
```

x.plot()

x.trend.plot()

x.seasonal.plot()

x.resid.plot()

data

	realgdp	d1	d2	dd1
Date				
1959-03-31	2710.349	NaN	NaN	NaN
1959-06-30	2778.801	68.452	NaN	NaN
1959-09-30	2775.488	-3.313	65.139	-71.765
1959-12-31	2785.204	9.716	6.403	13.029
1960-03-31	2847.699	62.495	72.211	52.779
2008-09-30	13324.600	-90.666	-42.265	-139.067
2008-12-31	13141.920	-182.680	-273.346	-92.014
2009-03-31	12925.410	-216.510	-399.190	-33.830
2009-06-30	12901.504	-23.906	-240.416	192.604
2009-09-30	12990.341	88.837	64.931	112.743
203 rows × 4	columns			

data = data.copy()

data.index

```
''2007-06-30', '2007-09-30', '2007-12-31', '2008-03-31', '2008-06-30', '2008-09-30', '2008-12-31', '2009-03-31', '2009-06-30', '2009-09-30'],
                    dtype='datetime64[ns]', name='Date', length=203, freq=None)
data=pd.DataFrame(data['realgdp'])
data.index
     ''2007-06-30', '2007-09-30', '2007-12-31', '2008-03-31', 
'2008-06-30', '2008-09-30', '2008-12-31', '2009-03-31', 
'2009-06-30', '2009-09-30'],
                    dtype='datetime64[ns]', name='Date', length=203, freq=None)
data = data['1959':'2009']
data.head()
                  realgdp
           Date
      1959-03-31 2710.349
      1959-06-30 2778.801
      1959-09-30 2775.488
      1959-12-31 2785.204
      1960-03-31 2847.699
Total = data.isnull().sum().sort_values(ascending = False)
Percent = (data.isnull().sum()*100/data.isnull().count()).sort_values(ascending = False)
missing_data = pd.concat([Total,Percent],axis = 1,keys=['Total','Percentage of missing value'])
missing_data
               Total Percentage of missing value
      realgdp
                   0
data.plot(figsize = (15,6),legend = None)
plt.xlabel('Date',fontsize = 14)
plt.ylabel('realgdp',fontsize =14)
plt.title('Observed Monthly Average realgdp')
plt.show()
```

```
Observed Monthly Average realgdp
from statsmodels.tsa.stattools import adfuller
def adf_test(timeseries):
 print('Result of Dickey_fuller Test: ')
  result=adfuller(timeseries,autolag="AIC")
 result=pd.Series(result[0:4], index=[" Test Statistic",'p-value','No. of lags Used','Number of Observations Used'])
 print(result)
  if result[1]<=0.05:
        print("Strong evidence against the null hypothesis")
        print("Reject the null hypothesis")
        print("Data has no unit root and is stationary")
 else:
        print("Strong evidence against the null hypothesis")
        print("Reject the null hypothesis")
        print("Data has no unit root and is stationary")
adf_test(data)
     Result of Dickey_fuller Test:
      Test Statistic
                                      1.750463
     p-value
                                      0.998246
     No. of lags Used
                                     12.000000
     Number of Observations Used
                                    190,000000
     dtype: float64
     Strong evidence against the null hypothesis
     Reject the null hypothesis
     Data has no unit root and is stationary
y = data['realgdp']
     Date
     1959-03-31
                    2710.349
     1959-06-30
                    2778,801
     1959-09-30
                    2775.488
     1959-12-31
                    2785.204
     1960-03-31
                    2847.699
     2008-09-30
                   13324.600
     2008-12-31
                   13141.920
     2009-03-31
                   12925.410
     2009-06-30
                   12901.504
     2009-09-30
                   12990.341
     Name: realgdp, Length: 203, dtype: float64
train = y[:'2005']
test = y['2007':]
pip install pmdarima
     Collecting pmdarima
       Downloading \ pmdarima-2.0.3-cp310-cp310-manylinux\_2\_17\_x86\_64.manylinux2014\_x86\_64.manylinux\_2\_28\_x86\_64.wl \ (1.8 \ MB)
                                                   - 1.8/1.8 MB 9.1 MB/s eta 0:00:00
     Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (1.3.1)
     Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (0.29.36
     Requirement already satisfied: numpy>=1.21.2 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (1.22.4)
     Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (1.5.3)
     Requirement already satisfied: scikit-learn>=0.22 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (1.2.2)
     Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (1.10.1)
     Requirement already satisfied: statsmodels>=0.13.2 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (0.13.5)
     Requirement already satisfied: urllib3 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (1.26.16)
     Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in /usr/local/lib/python3.10/dist-packages (from pmdarima) (67.7.2)
     Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.19->pmdarima) (2.8
     Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.19->pmdarima) (2022.7.1)
     Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.22->pmdarima)
     Requirement already satisfied: patsy>=0.5.2 in /usr/local/lib/python3.10/dist-packages (from statsmodels>=0.13.2->pmdarima) (0.5.3)
     Requirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.10/dist-packages (from statsmodels>=0.13.2->pmdarima) (23
     Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from patsy>=0.5.2->statsmodels>=0.13.2->pmdarima) (1
     Installing collected packages: pmdarima
     Successfully installed pmdarima-2.0.3
from pmdarima.arima import auto arima
arima model=auto arima(train.Seasonal=True.stepwise=False.trace=1.random state=10)
```

```
ARIMA(0,2,0)(0,0,0)[1]
                                   : AIC=2064.739, Time=0.07 sec
ARIMA(0,2,1)(0,0,0)[1]
                                   : AIC=1996.294, Time=0.06 sec
                                   : AIC=1994.614, Time=0.14 sec
ARIMA(0,2,2)(0,0,0)[1]
ARIMA(0,2,3)(0,0,0)[1]
                                   : AIC=1986.538, Time=0.19 sec
ARIMA(0,2,4)(0,0,0)[1]
                                   : AIC=1988.253, Time=0.31 sec
ARIMA(0,2,5)(0,0,0)[1]
                                   : AIC=1987.307, Time=0.37 sec
ARIMA(1,2,0)(0,0,0)[1]
                                   : AIC=2014.148, Time=0.04 sec
ARIMA(1,2,1)(0,0,0)[1]
                                   : AIC=1990.986, Time=0.13 sec
ARIMA(1,2,2)(0,0,0)[1]
                                   : AIC=1999.441, Time=0.22 sec
ARIMA(1,2,3)(0,0,0)[1]
                                   : AIC=1987.740, Time=0.62 sec
ARIMA(1,2,4)(0,0,0)[1]
                                   : AIC=1990.060, Time=0.85 sec
ARIMA(2,2,0)(0,0,0)[1]
                                   : AIC=2011.576, Time=0.12 sec
ARIMA(2,2,1)(0,0,0)[1]
                                   : AIC=1984.973, Time=0.43 sec
ARIMA(2,2,2)(0,0,0)[1]
                                   : AIC=1986.046, Time=0.71 sec
ARIMA(2,2,3)(0,0,0)[1]
                                   : AIC=inf, Time=1.54 sec
                                   : AIC=2004.129, Time=0.13 sec
ARIMA(3,2,0)(0,0,0)[1]
ARIMA(3,2,1)(0,0,0)[1]
                                   : AIC=1986.636, Time=0.64 sec
ARIMA(3,2,2)(0,0,0)[1]
                                   : AIC=1987.841, Time=0.56 sec
ARIMA(4,2,0)(0,0,0)[1]
                                   : AIC=2005.193, Time=0.08 sec
ARIMA(4,2,1)(0,0,0)[1]
                                   : AIC=1987.898, Time=0.37 sec
ARIMA(5,2,0)(0,0,0)[1]
                                   : AIC=2003.722, Time=0.15 sec
```

Best model: ARIMA(2,2,1)(0,0,0)[1]Total fit time: 7.816 seconds

from statsmodels.graphics.tsaplots import plot_acf,plot_pacf

title='Autocorrelation : To determine p value'
lags=40
plot_acf(train,title=title,lags=lags)


```
title='Autocorrelation : To determine q value'
lags=40
plot_pacf(train,title=title,lags=lags,method='ywm')
```


from statsmodels.tsa.arima.model import ARIMA,ARIMAResults

model=ARIMA(train,order=(1,0,0))
results=model.fit()
results.summary()

```
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:471: Val
      self._init_dates(dates, freq)
model=ARIMA(train,order=(1,0,0))
results=model.fit()
results.summary()
pred=results.get_forecast(steps=36)
ax1=y['1959':].plot(label='Observed')
pred.predicted_mean.plot(ax=ax1,label="ARIMA FORECAST",figsize=(15,6),linestyle='dashed')
pred ci=pred.conf int()
ax1.fill\_between(pred\_ci.index,pred\_ci.iloc[:,0],pred\_ci.iloc[:,1],color="k",alpha=0.2)
ax1.set_xlabel('Date')
ax1.set_ylabel('Average Realgdp')
plt.legend(loc= "upper left")
plt.show()
     /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:471: Val
      self._init_dates(dates, freq)
     /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:471: Val
      self._init_dates(dates, freq)
     /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:471: Val
      self._init_dates(dates, freq)
     /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/statespace/sarimax.py:966:
      warn('Non-stationary starting autoregressive parameters'
     /erage
       600
                                                                          2010
from statsmodels.tsa.statespace.sarimax import SARIMAX
fitted_model=model.fit(maxiter=200)
print(fitted_model.summary())
     /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:471: ValueWarning: No frequency information was provided,
      self._init_dates(dates, freq)
            :al/lib/nvthon3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:471: ValueWarning: No frequency information was provided,
```

	it dates(date		ckages/stat	smodels/ts	a/base/tsa_mod	e1.py:4/1:	ValueWarning:
3011111	irc_dates(date	.s, 11 cq)	SARIMA	X Results			
Dep. Varia	ble:	=======	=======	======= realgdp	======== No. Observatio	======= ns:	 188
Model:	SAR	IMAX(1, 1,	2)x(1, 0, [1], 12)	Log Likelihood		-998.489
Date:			Tue, 25 J	ul 2023	AIC		2008.977
Time:			1	0:20:05	BIC		2028.364
Sample:			03-	31-1959 I	HQIC		2016.833
			- 12-	31-2005			
Covariance	Type:			opg			
=======	========		========	=======	========	=======	
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	1.0000	0.000	2619.704	0.000	0.999	1.001	
ma.L1	-0.7721	0.068	-11.274	0.000	-0.906	-0.638	
ma.L2	-0.1459	0.069	-2.118	0.034	-0.281	-0.011	
ar.S.L12	0.8960	0.069	12.987	0.000	0.761	1.031	
ma.S.L12	-0.9937	0.103	-9.664	0.000	-1.195	-0.792	
sigma2	2434.1816	5.13e-05	4.75e+07	0.000	2434.182	2434.182	
====== Ljung-Box	(L1) (0):		0.09	Jarque-Be	======== ra (JB):	======	 9.97
Prob(Q):	, , , , ,		0.76	Prob(JB):			0.01

1.98

Heteroskedasticity (H):

```
Prob(H) (two-sided): 0.01 Kurtosis: 4.1
```

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 3.34e+22. Standard errors may be unstable.

```
pred=results.get_forecast(steps=36)
ax1=y['1950':].plot(label='Observed')
pred.predicted_mean.plot(ax=ax1,label="ARIMA FORECAST",figsize=(15,6),linestyle='dashed')
pred_ci=pred.conf_int()
ax1.fill_between(pred_ci.index,pred_ci.iloc[:,0],pred_ci.iloc[:,1],color="k",alpha=0.2)
ax1.set_xlabel('Date')
ax1.set_ylabel('Average Realgdp')
plt.legend(loc= "upper left")
plt.show()
```



```
model2 = SARIMAX(train ,order=(0,0,1),seasonal_order=(1,0,1,12),enforece_stationarity=False,enforece_invertibility=False)
fitted_model=model2.fit(maxiter=200)
print(fitted_model.summary())
```

/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:471: ValueWarning: No frequency information was provided, self._init_dates(dates, freq)

/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:471: ValueWarning: No frequency information was provided, self._init_dates(dates, freq)

/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/statespace/sarimax.py:978: UserWarning: Non-invertible starting MA paramete warn('Non-invertible starting MA parameters found.'

/usr/local/lib/python3.10/dist⁻packages/statsmodels/tsa/statespace/sarimax.py:997: UserWarning: Non-stationary starting seasonal autoregressive'

SARIMAX Results

Dep. Variable:	realgdp	No. Observations:	188
Model:	SARIMAX(0, 0, 1)x(1, 0, 1, 12)	Log Likelihood	-1400.619
Date:	Tue, 25 Jul 2023	AIC	2809.237
Time:	10:20:06	BIC	2822.183
Sample:	03-31-1959	HQIC	2814.482
	- 12-31-2005		

Covariance Type: opg

========	:========			========	========	=======
	coef	std err	z	P> z	[0.025	0.975]
ma.L1	1.0000	4.089	0.245	0.807	-7.013	9.013
ar.S.L12	0.9905	0.006	160.129	0.000	0.978	1.003
ma.S.L12	0.9998	4.123	0.242	0.808	-7.081	9.081
sigma2	1.048e+05	3.73e-05	2.81e+09	0.000	1.05e+05	1.05e+05
Ljung-Box	(L1) (Q):	=======	44.04	Jarque-Bera	(JB):	2.3
Prob(Q):			0.00	Prob(JB):		0.3
Heterosked	lasticity (H):	:	5.97	Skew:		0.2
Prob(H) (t	:wo-sided):		0.00	Kurtosis:		3.1
========				========		

Warnings:

- $\[1\]$ Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 1.79e+26. Standard errors may be unstable.

Time:

```
pred=results.get_forecast(steps=36)
ax1=y['1950':].plot(label='Observed')
pred.predicted_mean.plot(ax=ax1,label="ARIMA FORECAST",figsize=(15,6),linestyle='dashed')
pred_ci=pred.conf_int()
ax1.fill_between(pred_ci.index,pred_ci.iloc[:,0],pred_ci.iloc[:,1],color="k",alpha=0.2)
ax1.set_xlabel('Date')
ax1.set_ylabel('Average Realgdp')
plt.legend(loc= "upper left")
plt.show()
```



```
y_forecasted_SARIMAX = pred.predicted_mean
y_{truth} = test
mse_SARIMAX = ((y_forecasted_SARIMAX - y_truth)**2).mean()
print('The Mean Squared Error of SARIMAX Forecast is {}'.format(round(mse_SARIMAX,2)))
print('The Root Mean squared Error of SARIMAX Forecast is {} '.format(round(np.sqrt(mse_SARIMAX),2)))
     The Mean Squared Error of SARIMAX Forecast is 232698.8
     The Root Mean squared Error of SARIMAX Forecast is 482.39
model3 = SARIMAX(train ,order=(0,0,2),seasonal\_order=(1,0,1,12),enforece\_stationarity=False,enforece\_invertibility=False)
fitted_model=model3.fit(maxiter=200)
print(fitted_model.summary())
     /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:471: ValueWarning: No frequency information was provided,
       self._init_dates(dates, freq)
     /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:471: ValueWarning: No frequency information was provided,
       self._init_dates(dates, freq)
     /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/statespace/sarimax.py:978: UserWarning: Non-invertible starting MA paramet@
       warn('Non-invertible starting MA parameters found.
     /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/statespace/sarimax.py:997: UserWarning: Non-stationary starting seasonal au
       warn('Non-stationary starting seasonal autoregressive'
                                          SARIMAX Results
     _____
     Den. Variable:
                                                realgdp
                                                          No. Observations:
                                                                                            188
                                                                                       -1298.603
     Model:
                       SARIMAX(0, 0, 2)x(1, 0, [1], 12)
                                                          Log Likelihood
     Date:
                                       Tue, 25 Jul 2023
                                                          AIC
                                                                                       2607.206
```

Sample:			03-31-1959 HQIC - 12-31-2005			2613.76		
Covariance	Type:			opg				
	coef	std err	z	P> z	[0.025	0.975]		
ma.L1	1.0001	0.042	24.087	0.000	0.919	1.081		
ma.L2	0.9989	0.077	12.916	0.000	0.847	1.150		
ar.S.L12	0.9957	0.003	313.629	0.000	0.989	1.002		
ma.S.L12	0.4844	0.078	6.191	0.000	0.331	0.638		
sigma2	4.339e+04	3665.420	11.839	0.000	3.62e+04	5.06e+04		
Ljung-Box (L1) (Q):			43.36	Jarque-Bera (JB):		12.2		
Prob(Q):			0.00	Prob(JB):		0.0	0	
Heteroskedasticity (H):			3.94	Skew:		0.0	2	
<pre>Prob(H) (two-sided):</pre>			0.00	Kurtosis:		4.2	5	

10:20:08

BIC

2623.388

```
Warnings:
```

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
y_forecasted_SARIMAX = pred.predicted_mean
y_truth = test
mse_SARIMAX = ((y_forecasted_SARIMAX - y_truth)**2).mean()
print('The Mean Squared Error of SARIMAX Forecast is {}'.format(round(mse_SARIMAX,2)))
print('The Root Mean squared Error of SARIMAX Forecast is {} '.format(round(np.sqrt(mse_SARIMAX),2)))

The Mean Squared Error of SARIMAX Forecast is 232698.8
   The Root Mean squared Error of SARIMAX Forecast is 482.39

df1= pd.DataFrame(data.realgdp)

train = df1.iloc[:203]
test = df1.iloc[203:]
```

df1

realgdp

Date	
1959-03-31	2710.349
1959-06-30	2778.801
1959-09-30	2775.488
1959-12-31	2785.204
1960-03-31	2847.699
2008-09-30	13324.600
2008-12-31	13141.920
2009-03-31	12925.410
2009-06-30	12901.504
2009-09-30	12990.341
203 rows × 1	columns

df1.plot()

<Axes: xlabel='Date'>

df1.size

203

df1.size-5

198

```
train = df1.iloc[:194]
test = df1.iloc[194:]
train
```

```
realgdp
           Date
      1959-03-31
                  2710.349
                  2778.801
      1959-06-30
      1959-09-30
                  2775.488
      1959-12-31
                  2785.204
      1960-03-31 2847.699
          ...
      2006-06-30 12962.462
      2006-09-30 12965.916
      2006-12-31 13060.679
      2007-03-31 13099.901
      2007-06-30 13203.977
     194 rows × 1 columns
test.size
     9
```

realgdp

test

```
Date
      2007-09-30 13321.109
      2007-12-31 13391.249
      2008-03-31 13366.865
      2008-06-30 13415.266
      2008-09-30 13324.600
      2008-12-31 13141.920
      2009-03-31 12925.410
      2009-06-30 12901.504
      2009-09-30 12990.341
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(train)
      ▼ MinMaxScaler
     MinMaxScaler()
scaled_train = scaler.transform(train)
scaled_train[:5]
```

array([[0.], [0.0065232], [0.00620748], [0.00713338], [0.0130889]])

scaled_test = scaler.transform(test)
scaled_test.max(),scaled_test.min()

```
(1.0201349809617797, 0.9711755552988919)
from keras.preprocessing.sequence import TimeseriesGenerator
scaled_train[:5]
     array([[0.
             [0.0065232],
             [0.00620748],
             [0.00713338],
            [0.0130889]])
n_{input} = 2
n_features = 1
generator = \verb|TimeseriesGenerator| (scaled_train, scaled_train, length=n_input, batch_size=1)|
generator[0]
     (array([[[0.
              [0.0065232]]]),
      array([[0.00620748]]))
x,y = generator[0]
             [[0. ],
[0.0065232]]])
     array([[[0.
У
     array([[0.00620748]])
len(scaled_train)
     194
len(generator)
     192
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
import tensorflow as tf
n_input = 5
n_features = 1
train_generator = TimeseriesGenerator(scaled_train,scaled_train,length=n_input,batch_size=1)
x.shape
     (1, 2, 1)
model = tf.keras.models.Sequential([
    tf.keras.layers.LSTM(100, input_shape = (n_input,n_features), return_sequences= True),
    tf.keras.layers.LSTM(50, return_sequences = True),
    tf.keras.layers.LSTM(10),
    tf.keras.layers.Dense(64, activation = 'relu'),
    tf.keras.layers.Dense(32, activation = 'relu'),
    tf.keras.layers.Dense(1)
model.compile(optimizer = 'adam',loss = 'mse')
model.summary()
     Model: "sequential"
      Layer (type)
                                   Output Shape
                                                              Param #
      1stm (LSTM)
                                   (None, 5, 100)
                                                              40800
```

lst	m_1 (LSTM)	(None,	5, 50)	30200
lst	m_2 (LSTM)	(None,	10)	2440
den	se (Dense)	(None,	64)	704
den	se_1 (Dense)	(None,	32)	2080
den	se_2 (Dense)	(None,	1)	33

Total params: 76,257 Trainable params: 76,257 Non-trainable params: 0

CONCLUSION:

The analysis of real GDP data indicates the actual economic output. The data shows how the economy has performed over a specific period, reflecting its overall health and prosperity. By tracking real GDP, policymakers and businesses can assess the country's economic progress and make informed decisions to support future development