

X3-Class HiPerFET™ **Power MOSFET**

IXFK300N20X3 IXFX300N20X3

200V 300A $4m\Omega$

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Rating	gs
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	200	V
V _{DGR}	$T_{_{\mathrm{J}}}$ = 25°C to 150°C, $R_{_{\mathrm{GS}}}$ = 1M Ω	200	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _C = 25°C (Chip Capability)	300	Α
I _{L(RMS)}	External Lead Current Limit	160	Α
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	700	Α
I_A	$T_c = 25^{\circ}C$	150	Α
E _{AS}	$T_{c} = 25^{\circ}C$	3.5	J
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	50	V/ns
P_{D}	T _C = 25°C	1250	W
T _J		-55 +150	°C
T_{JM}		150	°C
T _{stg}		-55 +150	°C
T _L	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
M _d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb
Weight	TO-264 PLUS247	10 6	g g

Symbol	lest Conditions	Maximum Ra	itings
V _{DSS}	$T_{_{\rm J}} = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	200	V
V _{DGR}	$T_{_{\rm J}} = 25^{\circ}\text{C}$ to 150°C, $R_{_{\rm GS}} = 1\text{M}\Omega$	200	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _C = 25°C (Chip Capability)	300	A
L(RMS)	External Lead Current Limit	160	Α
I _{DM}	$T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{JM}	700	Α
I _A	$T_c = 25^{\circ}C$	150	Α
E _{AS}	$T_{c} = 25^{\circ}C$	3.5	J
dv/dt	$I_{\rm S} \leq I_{\rm DM}, V_{\rm DD} \leq V_{\rm DSS}, T_{\rm J} \leq 150^{\circ} \rm C$	50	V/ns
P_{D}	T _C = 25°C	1250	W
T _J		-55 +150	°C
T_{JM}		150	°C
T _{stg}		-55 +150	°C
T _L	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
M _d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb
Weight	TO-264 PLUS247	10 6	g

G =	Gate	D	=	Drain
S =	Source	Tab	=	Drain

Features

- International Standard Packages
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol	Symbol Test Conditions Char		acteristic Values	
$(T_J = 25^{\circ}C, U)$	Inless Otherwise Specified)	Min.	Тур.	Max
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	80	135	S
R _{Gi}	Gate Input Resistance		1.8	Ω
C _{iss}			23.8	nF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		4.0	nF
C _{rss}			3.2	pF
	Effective Output Capacitance			
$\mathbf{C}_{o(er)}$	Energy related $\int V_{GS} = 0V$		1640	pF
$\mathbf{C}_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		5640	pF
t _{d(on)}	Resistive Switching Times		44	ns
t, ($V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		43	ns
t _{d(off)}	$R_{\rm G} = 10$ (External)		184	ns
t,	n _G = 152 (External)		13	ns
Q _{g(on)}			375	nC
Q _{gs}	$V_{gs} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		117	nC
\mathbf{Q}_{gd}			94	nC
R _{thJC}				0.10 °C/W
R _{thCS}			0.15	°C/W

Source-Drain Diode

SymbolTest ConditionsChar $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		cteristic Values Typ. Max		
I _s	V _{GS} = 0V		300	A
I _{SM}	Repetitive, Pulse Width Limited by T_{JM}		1200	Α
V _{SD}	$I_{\rm F} = 100 {\rm A}, \ V_{\rm GS} = 0 {\rm V}, \ {\rm Note} \ 1$		1.4	V
$\left\{ egin{array}{c} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{array} \right\}$	$I_{F} = 150A$, -di/dt = 100A/ μ s $V_{R} = 100V$	172 1.1 12.8		ns µC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

.091 .106 2.30

Q 228 244 5.80 6.20 Q1 .346 .362 8.80 9.20 ØR .150 .165 3.80 4.20 ØR1 .071 .087 1.80 2.20

· A1 **1 - Gate**

2,4 - Drain 3 - Source

NOTE: Leads and back heatsink are Matte Pure Tin plated.

b1 -

x2 e

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.