Methods and Tools ▼

Job Queue

Usage statistics

API ▼

<u>Citations</u>

<u>Help</u>

Classic

1/2

Datamonkey

A Collection of State of the Art Statistical Models and Bioinformatics Tools

What evolutionary process would you like to detect?

Selection		Recombination	
Would you like to detect selection across branches, individual sites, or an entire gene?			
Branches	Sites	Gene	

Do you want to detect episodic or pervasive selection?

Episodic Pervasive

Is your dataset small (less than this many sequences/sizes) or large?

Do you want to use a Bayesian (recommended) or counting based approach?

Bayesian	Counting

Datamonkey recommends that you use...

SLAC (**S**ingle-**L**ikelihood **A**ncestor **C**ounting) uses a combination of maximum-likelihood (ML) and counting approaches to infer nonsynonymous (dN) and synonymous (dS) substitution rates on a per-site basis for a given coding alignment and corresponding phylogeny. Like FEL, this method assumes that the selection pressure for each site is constant along the entire phylogeny.

For more information, please see the <u>summary on hyphy.org</u> or see <u>Kosakovsky Pond, SL and Frost, SDW. "Not So Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection." Mol. Biol. Evol. 22, 1208--1222 (2005).</u>

https://datamonkey.org

Job Queue Usage statistics

<u>Citations</u>

<u>Help</u>

Classic

<u> 2419522</u>).

https://datamonkey.org