Modèles Linéaires Appliqués

Arthur Charpentier

Automne 2020

Rappels #4.2 (statistique & tests)

Tests

Soit un modèle paramétrique, $\mathcal{F} = \{F_{\theta}, \theta \in \Theta\}$. Un test d'hypothèses composites sur un paramètre réel θ a pour objectif de décider entre deux hypothèses $H_0: \theta \in \Theta_0$ et $H_1: \theta \in \Theta \setminus \Theta_0$ où $\Theta_0 \subset \Theta$, à partir de données.

- ▶ Lorsque $\Theta = \mathbb{R}$, $\Theta_0 = \theta_0$ et donc $\Theta \setminus \Theta_0 = \{\theta \neq \theta_0\}$, on parle de test bilatéral.
- ▶ Lorsque $\Theta = \mathbb{R}$, $\Theta_0 = \{\theta \leq \theta_0\}$ et donc $\Theta \setminus \Theta_0 = \{\theta > \theta_0\}$, on parle de test unilatéral à droite.
- ▶ Lorsque $\Theta = \mathbb{R}$, $\Theta_0 = \{\theta \ge \theta_0\}$ et donc $\Theta \setminus \Theta_0 = \{\theta < \theta_0\}$, on parle de test unilatéral à gauche.

Tests

Puisqu'il nous faut décider entre les deux hypothèses au vu d'observation, la décision sera entachée d'erreur

	État de la nature		
	H ₀ est vraie	H_1 est vraie	
Ne pas rejeter H_0	décision correcte	erreur de type II	
Rejet de <i>H</i> ₀	erreur de type I	décision correcte	

- ► Erreur de type I: $\mathbb{P}(\text{rejeter } H_0 \mid H_0 \text{ est vraie }) = \alpha$.
- ► Erreur de type II: $\mathbb{P}(\text{ne pas rejeter } H_0 \mid H_0 \text{ est fausse }) = \beta$.
- ▶ Les risques d'erreurs dépendent de θ . $\alpha = \alpha(\theta), \theta \in \Theta_0$; $\beta = \beta(\theta), \theta \in \Theta \setminus \Theta_0$.
- pour les tests unilatéraux, il est fréquent de remplacer l'hypothèse nulle par H_0 : $\theta = \theta_0$, si le risque d'erreur de première espèce est maximisé pour la valeur $\theta = \theta_0$.

Type I and Type II Error Balance

Traditionally we try to set Type I error probability as 5% or 1%, as in there is only a 5 or 1 in 100 chance that the variation that we are seeing is due to chance.

E.g. on student's height, $H_0: \mu_M = \mu_F + 10 \mathrm{cm}$

Tests for Proportion (one sample)

Here
$$Y_i \sim \mathcal{B}(\theta)$$
, with $\theta = \mathbb{E}(Y) = \mathbb{P}(Y = 1)$. Set $\widehat{\theta} = \overline{y}$

```
y = c(1,1,0,1,0,1,0,0,1,0,1)
2 > mean(y)
3 [1] 0.5454545
4 > n = length(y)
```

We want to test H_0 : $\theta = \theta^*$, e.g. $\theta^* = 1/2$.

```
1 > phat = mean(y)
_2 > pstar = 1/2
_3 > alpha = 5/100
```

Gaussian confidence interval

$$\left[\widehat{\theta} \pm \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \sqrt{\frac{\widehat{\theta} (1 - \widehat{\theta})}{n}} \right]$$

```
phat+qnorm(c(.025,.975))*sqrt(phat*(1-phat)/n)
2 [1] 0.2512024 0.8397067
```

Z-test

$$z = \sqrt{n} \frac{\widehat{\theta} - \theta^*}{\sqrt{\theta^* (1 - \theta^*)}}$$

so we reject H_0 at level α if

$$z \notin \left[\Phi^{-1}\left(\frac{\alpha}{2}\right), \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right]$$

- 1 > (z = sqrt(n)*(phat-pstar)/(sqrt(
 pstar*(1-pstar))))
- 2 [1] 0.3015113
- 3 > abs(z)>qnorm(1-alpha/2)
- 4 [1] FALSE

so here, we do not reject H_0

$$z = \sqrt{n} \frac{\widehat{\theta} - \theta^*}{\sqrt{\theta^* (1 - \theta^*)}}$$

We can also use the *p*-value, i.e., if $Z \sim \mathcal{N}(0,1)$, we reject H_0 if

$$p=\mathbb{P}[|Z|>|z|]\leq \alpha$$

- 1 > 2*(1-pnorm(abs(z)))
- 2 [1] 0.7630246

so here, $p > \alpha$ so we do not reject H_0 .

Since proportion is also the mean, use

$$t = \sqrt{n-1} \frac{\widehat{\theta} - \theta^{\star}}{\sqrt{\widehat{\theta}(1-\widehat{\theta})}}$$

- 2 [1] 0.2886751
- 3 > t.test(y,mu = 1/2)
- 4 data: v
- 5 t = 0.28868, p-value = 0.7787
- 6 alternative hypothesis: true mean is not equal to 0.5
- 7 95 percent confidence interval:
- 8 0.1946137 0.8962954
- 9 sample estimates:
- 10 mean of x
- 0.5454545

Test for Proportion (Two Samples)

	randomized	
	size	number
treatment	200,000	57
control	200,000	142
no consent	350,000	92

Jonas Salk's polio vaccine, 1954 H_0 : vaccine has no effect H_0 : $p_t = p_c$

X.: number of observed cases in a group, $X \sim \mathcal{N}(np., np.(1-p.))$ here p. small, $Var(X_{\cdot}) \simeq np$.

 X_t : number of observed cases in the treatment group

 X_c : number of observed cases in the control group

Two groups have similar size (n), $X_c - X_t \sim \mathcal{N}(\star, n(p_c + p_t))$

$$z = \frac{142 - 57}{\sqrt{142 + 57}} \simeq 6.1$$

(very unlikely under H_0 , since Z should follow a $\mathcal{N}(0,1)$)

Acceptation / Rejection Regions

Consider n coin flipping. We observed 55% tails. Is the coin biased?

Not biased (
$$H_0$$
) means $p = p_0 = 50\%$

Under
$$H_0$$
, $\overline{x} \sim \mathcal{N}\left(\frac{1}{2}, \frac{1}{4n}\right)$, i.e. if H_0 is true

with 95% chance,
$$\overline{x} \in \left[\frac{1}{2} \pm \frac{1}{\sqrt{n}}\right]$$

hence, 55% belongs to that interval if $\frac{1}{\sqrt{n}} \ge 5\%$ i.e. $n \le 400$

Equivalently,
$$z = 2\sqrt{n}\left(\overline{x} - \frac{1}{2}\right) \sim \mathcal{N}(0, 1)$$

We reject H_0 if |z| > 2 (or 1.96).

p-value

Consider n coin flipping. We observed 55% tails. Is the coin biased?

Conversely, we can compute

$$\mathbb{P}\!\!\left(|\overline{X}| > 55\%\right)$$
 when $\overline{X} \sim \mathcal{N}\!\left(\frac{1}{2}, \frac{1}{4n}\right)$

called p-value.

We reject H_0 if p < 5%.

If we could replicate experiments of this sample size, how often will we see a statistic this extreme, assuming that H_0 is true?

The "p < 5%" Dogma

"if p is between 10% and 90% there is certainly no reason to suspect the hypothesis tested. If it is below 2% it is strongly indicated that the hypothesis fails to account for the whole of facts [...] We shall not often be astray if we draw a conventional line at 5%" Ronald Fisher

see La guerre des étoiles, p-value and statistical practice or It's time to talk about ditching statistical significance

