[Cheng P.3-27] What are the boundary conditions that must be satisfied by the electric potential at an interface between two perfect dielectrics with dielectric constants ε_{r1} and ε_{r2} ?

Solution: First, we know that the electrostatic potential V is continuous across a boundary. To see this, let's find the voltage difference between a and b, two points on either side of the boundary a length Δ apart, in the presence of a constant \mathbf{E} .

$$V_{ab} = -\int_{a}^{b} \mathbf{E} \cdot dl$$
$$V_{ab} = -E_{0}(b - a)$$
$$V_{ab} = -E_{0}(\Delta).$$

Now if we let $\Delta \to 0$, then $V_{ab} \to 0$. So if we have a voltage V_1 on one side of the boundary and V_2 on the other we can say

$$V_1 = V_2$$
,

Futhermore, we know from our electric field boundary conditions we can say

$$\varepsilon_1 \mathbf{E}_{n1} = \varepsilon_2 \mathbf{E}_{n2}$$
$$\mathbf{E} = -\nabla V$$
$$\varepsilon_1 \frac{\partial V_1}{\partial n} = \varepsilon_2 \frac{\partial V_2}{\partial n}.$$

Answer:

$$\varepsilon_1 \frac{\partial V_1}{\partial n} = \varepsilon_2 \frac{\partial V_2}{\partial n}$$
$$V_1 = V_2$$