

& high-precision L1/L2 GNSS Base based on U-blox ZED-F9P (GPS / GLONASS / BeiDou / Galileo)

Datasheet - In Production

Features

- Built-in 3000mAh batteries
- 5V 150mA power supply
- L1/L2 30dbi active antenna
- 3000mAh built-in batteries
- Battery level LED indicators
- LEDs status: Timepulse/Power/RTK
- Timepulse & External Interrupt
- USB/I²C/SPI/UART digital interfaces

Applications

- **RTK Base**
- Precise navigation
- Automation of moving machinery

Description

The Sirius RTK GNSS Base F9P is an affordable compact and high precision L1/L2 GNSS RTK device.

Based on the last generation of GNSS U-blox ZED-F9P modules, the Sirius F9P Base offers reliable and fast convergence time.

The device allows concurrent reception of GPS / GLONASS / BeiDou & Galileo to improve signal availability.

The built-in 3000mAh batteries give the Base a full working day autonomy.

The JST-GH connectors make them perfect to be connected to any Drotek telemetry kit or autopilot.

The Sirius Base F9P & Nylon PA12 case are guaranteed to operate over a temperature range of -20°C to +70°C.

Table 1. Device summary

Order ref code	Temperature range [°C]	Product size [mm]
0912A10	-20 to +70	98.4 x 98.4 x 39.7

Contents

1. Block diagram and pin description	3
1.1 Block diagram	3
1.2 Pin description	4
1.3 LED description	5
2. Specifications	6
3. Absolute maximum ratings	8
4. Applications	9
4.1 Standalone Base configuration	9
4.2 Autopilot Base configuration	9
4.3 Standalone Base/Rover configuration	10
4.4 Standalone Base/Rover configuration	10
5. Communication interfaces	11
5.1 UART Interface	11
5.2 Slave I2C interface	12
5.3 USB interface	12
6. Mechanical drawings	13
7. Revision history	14
8. Appendix	14

1. Block diagram and pin description

1.1 Block diagram

Figure 1. Sirius F9P Base block diagram & connectivity (top view)

1.2 Pin description

Figure 2. Sirius F9P Base front side

Table 2. Pinout configuration

	Pin	Name	Туре	Function
	A1	5V IN	Р	5V input
	A2	UART1 RX / SPI MOSI	1/0	UART1 receive <u>OR</u> SPI MOSI
UART 1	A3	UART1 TX / SPI MISO	1/0	UART1 transmit <u>OR</u> SPI MISO
UAF	A4	I2C SCL / SPI SCLK	I	I2C clock <u>OR</u> SPI clock
	A5	I2C SDA / SPI CS	1/0	I2C data <u>OR</u> SPI chip select
	A6	GND	Р	Ground reference
	B1	5V IN	Р	5V input
	B2	UART2 RTCM3 TX	1/0	UART2 transmit
UART 2	В3	UART2 RTCM3 RX	1/0	UART2 receive
UAF	B4	EXTINT	0	External interrupt
	B5	TIMEPULSE	0	External interrupt based on Timepulse
	В6	GND	Р	Ground reference

P: Power / I: Input / O: Output

1.3 LED description

Table 3. Sirius F9P Base LED sequence status

LED name	Color	Light sequence	Comment
Timepulse	Green		Blinking LED when RTK fix is available
Power	Blue		Solid blue LED when powered ON
RTK Status	Green		3D fix mode / No RTK fix
			RTK fix but no FIXED RTK fix
			FIXED RTK fix

Table 4. Sirius F9P Base LED battery level status

LED name	Color	Light	Comment
Battery level	Green & red		80% < Battery level < 100%
			50% < Battery level < 80%
			10% < Battery level < 50%
			Battery level < 10%

2. Specifications

 $@Vdd = 5V, T = 25^{\circ}C$ unless otherwise noted

Table 5. Sirius F9P Rover mechanical and electrical specifications

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vusb	USB supply voltage		4.5	5.0	5.5	٧
Vdd	Internal supply voltage			3.3		٧
Vdd_IO	Supply voltage for I/O			3.3		٧
ldd	Current consumption			130		mA
Vil	IO pin low level input voltage		0		0.8	٧
Vih	IO pin high level input voltage		2		Vdd+ 0.3	٧
Vol	IO pin low level output voltage	Iol = 2mA			0.4	٧
Voh	IO pin high level output voltage	loh = 2mA	Vdd- 0.4			٧
W	Weight			130		g
Тор	Operating temperature		-20		+70	°C

Table 6. Sirius F9P Rover general performance

Parameter	Specifications	Value
Receiver type	Multi-band GNSS high precision	
Accuracy of Timepulse	RMS 99%	30 ns 60 ns
Frequency of Timepulse		0.25 Hz to 10 MHz
Operational limits	Dynamics Altitude Velocity	< 4g 50,000 m 500 m/s
Velocity accuracy		0.05 m/s

March 2020

DrotekDoc_0912A10

Rev2

Table 7. Sirius F9P Rover performance in different GNSS mode

GNSS	Parameter	GPS+GLO+GAL +BDS	GPS+GLO	GPS+BDS	GPS
Acquisition	Cold start Hot start Aided start	24 s 2 s 2 s	26 s 2 s 2 s	28 s 2 s 2 s	29 s 2 s 2 s
Update rate	RTK PVT RAW	8 Hz 10 Hz 20 Hz	15 Hz 25 Hz 25 Hz	15 Hz 25 Hz 25 Hz	20 Hz 25 Hz 25 Hz
Convergence time	RTK	< 10 s	< 10 s	< 10 s	< 30 s
Horizontal pos. accuracy	PVT RTK	1.5 m CEP 0.01 m + 1ppm CEP	1.5 m CEP 0.01 m + 1ppm CEP	1.5 m CEP 0.01 m + 1ppm CEP	1.5 m CEP 0.01 m + 1ppm CEP
Vertical pos. accuracy	RTK	0.01 m + 1ppm CEP	0.01 m + 1ppm CEP	0.01 m + 1ppm CEP	0.01 m + 1ppm CEP
Sensitivity	Tracking & Nav. Reacquisition Cold start Hot start	-167 dBm -160 dBm -148 dBm -157 dBm			

Table 8. Sirius F9P Rover moving-base performance in different GNSS mode

GNSS	Parameter	GPS+GLO+GAL +BDS	GPS+GLO	GPS+BDS	GPS
Update rate		5 Hz	8 Hz	8 Hz	10 Hz
Heading accuracy		0.4 deg	0.4 deg	0.4 deg	0.4 deg

3. Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 9. Sirius F9P Base absolute maximum ratings

Symbol	Parameter Maximum value		Unit
Vusb	USB supply voltage	-0.3 to +6	٧
Vdd	Internal supply voltage	-0.5 to +3.6	٧
Vdd_IO	I/O pins supply voltage	-0.5 to Vdd+0.5	٧
Icc_RF	RF output current	100	mA
Prfin	Input power at RF_IN	10	dBm
ТОР	Operating temperature	-20 to +70	°C
TSTG	Storage temperature	-40 to +80	°C

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

4. Applications

4.1 Standalone Base configuration

Figure 3. Sirius F9P Base connected to a 433MHz telemetry kit using UART1/2

Radio Telemetry Kit: https://store-drotek.com/795-radio-telemetry-kit-433-915-mhz.html

4.2 Autopilot Base configuration

Figure 4. Sirius F9P Base connected to a Pixhawk 3 Pro autopilot and a PC running QGroundControl

Drotek Pixhawk 3 Pro: https://store-drotek.com/821-pixhawk-pro-autopilot.html

Radio Telemetry Kit: https://store-drotek.com/795-radio-telemetry-kit-433-915-mhz.html

4.3 Standalone Base/Rover configuration

Figure 5. Sirius F9P Base connected to USB and sending the RTCM data to a Rover via internet using a home router and u-center

Drotek Sirius F9P Rover: https://store-drotek.com/911-sirius-rtk-gnss-rover-f9p.html

4.4 Standalone Base/Rover configuration

Figure 6. Sirius F9P Base connected to USB and sending the RTCM data to a Rover via internet using a cellphone and u-center

Drotek Sirius F9P Rover: https://store-drotek.com/911-sirius-rtk-gnss-rover-f9p.html

5. Communication interfaces

There are several communications interfaces including UART, I2C and USB. All the inputs have internal pull-up resistors in normal operation and can be left open if not used. All the PIOs are supplied by VCC, therefore all the voltage levels of the PIO pins are related to Vdd supply voltage.

5.1 UART Interface

There are two UART interfaces: UART1 and UART2. UART1 and UART2 operate up to and including a speed of 921600 baud. No hardware flow control on UART1 and UART2 is supported.

Table 10. Sirius F9P Rover serial UART timing specifications

Symbol	Parameter	Min.	Max.	Unit
Vil	LOW-LEVEL input voltage	0	0.2xVdd	٧
Vih	HIGH-LEVEL input voltage	0.7xVdd	Vdd+0.3	٧
tECH	HIGH period of external data input	0	0.4	μs
tECL	LOW period of external data input	ТВА	ТВА	μs
Ru	Baudrate	9600	921600	bps
tCR	Rise time of data		5	ns
tCF	Fall time of data		5	ns

5.2 Slave I2C interface

An I2C compliant interface is available for communication with an external host CPU. The interface can be operated in slave mode only. It is fully compatible with Fast-Mode of the I2C industry standard. Since the maximum SCL clock frequency is 400 kHz, the maximum bit rate is 400 kbit/s. The interface stretches the clock when slowed down while serving interrupts, therefore the real bit rates may be slightly lower.

Table 11. Sirius F9P Rover I2C timing specifications

Symbol	Parameter	Min	Max	Unit
Vil	LOW-LEVEL input voltage	Vss-0.3	0.3xVdd	٧
Vih	HIGH-LEVEL input voltage	0.7xVdd	Vdd+0.3	٧
Vol	LOW-LEVEL output voltage		0.4	٧
Voh	HIGH-LEVEL output voltage	Vdd-0.4		٧
Fscl	SCL clock frequency	0	400	KHz

5.3 USB interface

A USB interface, which is compatible to USB version 2.0 FS (Full Speed, 12 Mbit/s), can be used for communication as an alternative to the UART.

6. Mechanical drawings

40,60 88,60 39,69 49.20 32.00-

Figure 8. Sirius RTK GNSS Base v1.0 mechanical drawings

7. Revision history

Table 12. Document revision history

Date	Revision	Changes
05-Nov-2019	1.0	DrotekDoc_0912A10 / Initial release
05-Mar-2020	2.0	L1 & L2 phase points added onto the mechanical drawing Weblinks redirecting towards Drotek products updated

8. Appendix

U-blox ZED-F9P datasheet:

https://www.u-blox.com/sites/default/files/ZED-F9P_DataSheet_%28UBX-17051259%29.pdf

U-blox ZED-F9P integration manual:

https://www.u-blox.com/sites/default/files/ZED-F9P_IntegrationManual_%28UBX-18010802%29.pdf

U-blox ZED-F9P interface description:

https://www.u-blox.com/sites/default/files/u-blox_ZED-F9P_InterfaceDescription_%28UBX-180108_54%29.pdf

Drotek user's guide: https://drotek.gitbook.io/rtk-f9p-positioning-solutions/how-to-get-started

Drotek tutorials : https://drotek.gitbook.io/rtk-f9p-positioning-solutions/tutorials

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Drotek reserves the right to make changes, corrections, enhancements, modifications, and improvements to Drotek products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on Drotek products before placing orders. Drotek products are sold pursuant to Drotek's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of Drotek products and Drotek assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by Drotek herein.

Resale of Drotek products with provisions different from the information set forth herein shall void any warranty granted by Drotek for such product.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

2020 Drotek - All rights reserved

