

OVERVIEW

- The Problem
- The Solution
- Datapath design
- Scalability
- Packet walkthrough
- Future Work

The problem...

The solution...

Offload types...

Synchronous Operation
– cycles wasted waiting for accelerator

Asynchronous Operation

– find other useful work to do while waiting on accelerator to avoid wasted cycles.

Datapath Design - Southbound

Datapath Design - Northbound

Datapath Design - Southbound (altered)

Scalability...

Mapping DMA to OVS?
Per Dataplane Thread

= Scalability!

Add PMD thread

=

Add DMA resource.

Balanced Switch/Copy performance.

Packet walkthrough Guest (VM) **Testpmd** (csum fwd) NIC_RX - Vhost_TX [DMA submit] Virtio DMA **OVS Datapath DPDK** vHost DPIF Miniflow **EMC** SMC **DPCLS** extract **Actions** (TX) DPDK **NIC RX NIC HW**

Packet walkthrough Guest (VM) **Testpmd** Vhost RX (csum fwd) [DMA submit] + [Poll completed] Vhost_TX_Poll_completed Virtio DMA copy phase(TX) DMA **OVS Datapath DPDK** vHost DPIF Miniflow **EMC** SMC **DPCLS** extract **Actions** (TX) **DPDK NIC RX NIC HW**

Packet walkthrough Guest (VM) **Testpmd** (csum fwd) Vhost_RX [DMA submit] + [Poll completed] Virtio Vhost_TX_Poll_completed **DMA OVS Datapath DPDK** vHost DPIF Miniflow **EMC** SMC **DPCLS** extract **Actions** (TX) DPDK **NIC RX NIC HW**

Packet walkthrough Guest (VM) **Testpmd** (csum fwd) DMA copy phase(RX) **Guest Processing DMA OVS Datapath DPDK** vHost DPIF Miniflow **EMC** SMC **DPCLS** extract **Actions** (TX) DPDK **NIC RX NIC HW**

Packet walkthrough Guest (VM) **Testpmd** (csum fwd) Vhost_RX [DMA submit] + [Poll completed] Virtio Vhost_TX_Poll_completed [No packets] DMA **OVS Datapath DPDK** vHost **DPIF** Miniflow **EMC** SMC **DPCLS** extract **Actions** (TX) **DPDK NIC RX NIC HW**

Packet walkthrough Guest (VM) **Testpmd** (csum fwd) Vhost_RX [DMA submit] + [Poll completed] Virtio Vhost_TX_Poll_completed DMA **OVS Datapath DPDK** vHost **DPIF** Miniflow **EMC** SMC **DPCLS** extract **Actions** (TX) DPDK **NIC RX NIC HW**

Packet walkthrough Guest (VM) **Testpmd** (csum fwd) Vhost_RX - NIC_TX Virtio DMA **OVS Datapath** DPIF Miniflow **EMC** SMC **DPCLS** extract **Actions** (TX) DPDK **NIC RX NIC HW**

Next steps

Upstream Design after community review

! Thanks ! ? Questions ?

Sunil Pai G sunil.pai.g@intel.com

Cian Ferriter cian.ferriter@intel.com

Harry van Haaren harry.van.haaren@intel.com

References

Enabling asynchronous Para-virtual IO in OVS, OVS conference 2020

- Talk: https://www.youtube.com/watch?v=jj-00QLe2oU
- <u>Slides: https://www.openvswitch.org/support/ovscon2020/slides/Enabling-asynchronous-Para-virtual-IO-in-</u>OVS.pdf

V2 RFC for vHost async implementation in OVS:

http://patchwork.ozlabs.org/project/openvswitch/patch/20210907120021.4093604-2-sunil.pai.g@intel.com/

V1 RFC for vhost async implementation with DMAdev in vHost library in DPDK:

- https://patches.dpdk.org/project/dpdk/patch/20210823095355.2478423-2-sunil.pai.g@intel.com/
- https://patches.dpdk.org/project/dpdk/patch/20211122105437.3534231-2-jiayu.hu@intel.com/

Previous presentations in DPDK conferences:

- Asynchronous CBDMA Enqueue Framework for vHost-User, 2019 https://www.dpdk.org/wp-content/uploads/sites/35/2019/10/Asynchronous.pdf
- Accelerating Para-Virtual I/O with CBDMA, 2018
 https://www.dpdk.org/wp-content/uploads/sites/35/2018/12/JiayuHu Accelerating paravirtio with CBDMA.pdf

BACKUP

Why Defer of Work is Needed

- Packet copy into guest can be slow
 - Accelerate this using DMA Engine
- Don't stall the CPU while the DMA Engine is active
 - Asynchronous acceleration requires defer of work
 - Call DPDK APIs to start transfer
 - Check back later for completion

Where Defer of Work Fits into OVS

VirtIO

- Para-virtual I/O is a virtualization technique to enhance VM I/O performance.
- <u>VirtIO</u> is a standard of para-virtual I/O, which consists of **VirtIO** front-end in VM and backend in hypervisor.
- Back-end communicates with front-end by copying packet buffers between hypervisor's and VM's memory
- Copying large bulk of data between backend and frontend becomes a hotspot

DPDK API's

vHost async API's (vHost Library)

Northbound API's [Host to Guest]

- rte_vhost_submit_enqueue_burst
- rte_vhost_poll_enqueue_completed

Southbound API's [Guest to Host]

rte_vhost_async_try_dequeue_burst

- /* DMA callbacks */
- struct rte_vhost_async_channel_ops {
 - transfer_data(...);
 - check_completed_copies(...);
 - **}**;
- rte_vhost_async_channel_register_thread_unsafe
- rte_vhost_async_channel_unregister_thread_unsafe
- rte_vhost_async_get_inflight
- rte_vhost_clear_queue
- set RTE_VHOST_USER_ASYNC_COPY capability during rte_vhost_driver_register

DMAdev API's

Control path

- rte dma count avail
- rte_dma_info_get
- rte_dma_configure
- rte_dma_vchan_setup
- rte dma start

Datapath

- rte_dma_copy
- rte_dma_burst_capacity
- rte_dma_submit
- rte_dma_completed

Note: All vHost async and DMAdev API's are experimental

Datapath Design - Southbound

Datapath Design - Northbound

Datapath Design - Southbound (altered)

