Chapter 3 Linear Regression

STAT303-2

A Linear Regression Model

We discussed in the last lecture that:

lacktriangle The main goal of statistical learning is to estimate \hat{f} in

$$\hat{Y} = \hat{f}(X),$$

The underlying function that is impossible to know and estimated as \hat{f} using the observed data.

 \blacktriangleright The simplest approach to this problem is to assume that f is

linear.

$$\hat{Y} = \hat{f}(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

- A linear regression model
- For a dataset with p predictors $\beta_0, \beta_1, ..., \beta_p$ are the **parameters** of the model

Simple Linear Regression (SLR)

- At first, we will consider only one predictor: Simple Linear Regression
- Our assumption becomes:

$$\hat{Y} = \hat{f}(X) = \beta_0 + \beta_1 X_1$$
 Two parameters to estimate: β_0, β_1 (intercept, slope)

Let's visualize this.

Simple Linear Regression - Visualization

Sales vs Advertisement

Simple Linear Regression - Visualization line

Simple Linear Regression - Visualization

Sales vs Advertisement

Simple Linear Regression - Visualization

Simple Linear Regression - Formula

We start with the assumption:

$$Y = \beta_0 + \beta_1 X$$

We have the dataset:

$$X^{1}, X^{2}, ... X^{N}$$

 $Y^{1}, Y^{2}, ... Y^{N}$

Using them, we find the optimum parameters, $\hat{\beta}_0$, $\hat{\beta}_1$

Two questions:

- What does optimum mean?
- How to find the optimum parameters?

Simple Linear Regression - Formula

What does optimum mean?

Parameters that return the "best fit line"

Parameters that minimize the

How to minimize the total prediction error? (and find the optimum parameters?)

Least Squares Method

- Visualization first
- Calculation in hand-written notes

Least Squares - Visualization

Least Squares - Visualization

Least Squares - Calculation

Note that the general formula for RSS is:

$$RSS = e_1^2 + e_2^2 + \dots + e_N^2$$

where N is the total number of observations.

We can write it as:

$$RSS = (Y^{1} - \hat{Y}^{1})^{2} + (Y^{2} - \hat{Y}^{2})^{2} + \dots + (Y^{N} - \hat{Y}^{N})^{2}$$

And then:

$$RSS = (Y^{1} - \hat{\beta}_{0} - \hat{\beta}_{1}X^{1})^{2} + (Y^{2} - \hat{\beta}_{0} - \hat{\beta}_{1}X^{2})^{2} + \dots + (Y^{N} - \hat{\beta}_{0} - \hat{\beta}_{1}X^{N})^{2}$$

Least Squares - Calculation

$$RSS = (Y^{1} - \hat{\beta}_{0} - \hat{\beta}_{1}X^{1})^{2} + (Y^{2} - \hat{\beta}_{0} - \hat{\beta}_{1}X^{2})^{2} + \dots + (Y^{N} - \hat{\beta}_{0} - \hat{\beta}_{1}X^{N})^{2}$$

Minimize RSS with respect to $\hat{\beta}_0$ and $\hat{\beta}_1$.

- The only variables in the equation
- Everything else is known from the data at hand.

The final expressions for $\hat{\beta}_0$ and $\hat{\beta}_1$ are entirely in terms of the data: X's and Y's

Prediction

Given a new observation, plug it in the optimum line formula: $\hat{Y} = \hat{eta}_0 + \hat{eta}_1 X$

Obtain the prediction.

- The data at hand that is used for finding the optimum parameters is called **the training dataset.**
 - In a training dataset, both the predictor(s) and the response must be known.
- The "new" data (data that the model has not seen during training) is called **the test dataset.**
 - The point of it is to assess the trained model on a dataset it has not seen before.
 - In the test dataset, the response should be known if the test performance (RMSE or MAE) is to be obtained and compared with the training performance. (RMSE or MAE)
- If the model returns an RMSE/MAE higher than expected/desired both for training and test:
 - It means the model is not enough a more complex model is necessary.
 - This is called **underfitting**.
 - For basic models such as Linear Regression, underfitting is usually the problem.
- If the model returns a low RMSE/MAE for training and a high RMSE/MAE for test:
 - It means the model parameters are optimized only for the training data not good for previously unseen data
 - This is called overfitting usually the problem of more complex models (STAT 303-3)

We have covered:

- Linear Regression as a concept
- Simple Linear Regression
- Optimizing the parameters training
- Prediction
- Python implementation

Next lecture: (along with the GitHub demo)

- Inference and Uncertainty
 - Confidence intervals
 - Prediction interval
 - Coefficient of Determination (R2)
- Multiple Linear Regression

Reference

Source for slides: https://www.statlearning.com/resources-second-edition