Question number	Scheme	Marks
5 (a)	$1 + anx + \frac{n(n-1)}{2}a^2x^2 + \frac{n(n-1)(n-2)}{3!}a^3x^3$	M1 A1 [2]
(b)	$an = 8$ $\frac{n(n-1)}{2}a^2 = 30$	
	$\frac{n(n-1)}{2} \left(\frac{8}{n}\right)^2 = 30 \qquad \text{or} \qquad \frac{\left(\frac{8}{a}\right) \left(\frac{8}{a} - 1\right)}{2} a^2 = 30$	M1
	$32n-32=30n \to n = $ or $64-8a=60 \to a =$	dM1
	$n=16 \qquad a=\frac{1}{2}$	A1 A1 [4]
(c)	$\frac{"16" \times ("16"-1)("16"-2)}{3!} \times \left("\frac{1}{2}"\right)^{3} = 70$	M1 A1 [2]
To		

Part	Mark	Notes
(a)		For an attempt to find the binomial expansion
		• The expansion must begin with 1 or 1 ⁿ
	M1	• The denominators must be correct (ie. 2! And 3!) on the third and fourth terms.
		The power of x must be correct (ie. Must see x , x^2 and x^3 , with the correct corresponding denominators).
		Simplification not necessary – may see $(ax)^2$ and $(ax)^3$
	A1	For a fully correct expression (Allow 1 n for 1) - must see a^2x^2 and a^3x^3 , but 2! And 3! is acceptable
(b)	M1	For correct substitution of either $\frac{8}{n}$ or $\frac{8}{a}$ into their coefficient of x^2
	dM1	For rearranging and forming a linear equation, leading to $a = \text{or } n =$
	A1	For $n = 16$
	A1	For $a = \frac{1}{2}$
(c)	M1	For correct substitution seen of their n and a into their coefficient of x^3
	A1	For 70