Student Information

Full Name : Ozan Akın Id Number : 2309599

Answer 1

- a) (i) $A \cap (B \cup C)$
 - (ii) $(A \cap B) \cup C$
 - (iii) $A ((A \cap B) C)$
- b) (i) $(A \times B) \times C = A \times (B \times C)$
 - Let A, B, C different sets given as;

$$A = \{a, b\}$$

$$B=\{c,d\}$$

$$C=\{e\}$$

•
$$A \times B = \{(a,c), (a,d), (b,c), (b,d)\}$$

$$B \times C = \{(c, e), (c, e)\}$$

•
$$(A \times B) \times C = \{((a,c),e), ((a,d),e), ((b,c),e), ((b,d),e)\}\$$

 $A \times (B \times C) = \{(a,(c,e)), (a,(d,e)), (b,(c,e)), (b,(d,e))\}\$

As a result, $(A \times B) \times C \neq A \times (B \times C)$

(ii)

$$(A \cap B) \cap C = A \cap (B \cap C)$$

A	$\mid B \mid$	C	$A \cap B$	$B \cap C$	$(A \cap B) \cap C$	$A \cap (B \cap C)$			
1	1	1	1	1	1	1			
1	1	0	1	0	0	0			
1	0	1	0	0	0	0			
1	0	0	0	0	0	0			
0	1	1	0	1	0	0			
0	1	0	0	0	0	0			
0	0	1	0	0	0	0			
0	0	0	0	0	0	0			
As a result, $(A \cap B) \cap C = A \cap (B \cap C)$.									

(iii)

$$(A \oplus B) \oplus C = A \oplus (B \oplus C)$$

A	B	$\mid C$	$A \oplus B$	$B \oplus C$	$(A \oplus B) \oplus C$	$A \oplus (B \oplus C)$		
1	1	1	0	0	1	1		
1	1	0	0	1	0	0		
1	0	1	1	1	0	0		
1	0	0	1	0	1	1		
0	1	1	1	0	0	0		
0	1	0	1	1	1	1		
0	0	1	0	1	1	1		
0	0	0	0	0	0	0		
As a result, $(A \oplus B) \oplus C = A \oplus (B \oplus C)$.								

Answer 2

- a) $A_0 \subseteq f^{-1}(f(A_0))$
 - To show $A_0 \subseteq f^{-1}(f(A_0))$, we have to prove that $\forall x (x \in A_0 \to x \in f^{-1}(f(A_0)))$.
 - Since $x \in A_0$ and $A_0 \subseteq A$, there must be $f(x) \in B$.
 - Since f is injective, $f(a) = f(b) \to a = b$, there must be $C_0 \subseteq B$ such that $f(x) \in C_0$.
 - As a result, there must be $x \in f^{-1}(C_0)$.
 - Since also $f(A_0) = C_0$, $A_0 = f^{-1}(f(A_0))$
 - This also implies $A_0 \subseteq f^{-1}(f(A_0))$
- b) $f(f^{-1}(B_0)) \subseteq B_0$
 - To show $f(f^{-1}(B_0)) \subseteq B_0$, we have to show that $\forall x (x \in f(f^{-1}(B_0)) \to x \in B_0)$.
 - Let $f^{-1}(B_0) \in C_0$, then $f(C_0) = B_0$.
 - $f(C_0) \subseteq B_0$ if and only if f is surjective, since there can be elements that does not belong to $f(f^{-1}(B_0))$.
 - As a result, $f(f^{-1}(B_0)) \subseteq B_0$.

Answer 3

Let A be a nonempty set. Show that the following are equivalent

- (i) A is countable
- (ii) There is a surjective function $f: \mathbb{Z}^+ \to A$
- (iii) There is a injective function $f: A \to \mathbb{Z}^+$
 - 1) If A is countable, that means either A is a finite set, or A has same cardinality with the set Z^+ (defn. 3 from textbook p. 171).
 - 2) The sets A and \mathbb{Z}^+ have the same cardinality if and only if there is one to one correspondence from A to \mathbb{Z}^+ (defn. 1 from textbook p. 170).
 - 3) If there is one to one correspondence from A to \mathbb{Z}^+ , then they the cardinality of A is less then or same as the cardinality of \mathbb{Z}^+ (defn. 2 from textbook p. 170).
 - 4) Let $f: \mathbb{Z}^+ \to A$. If A is countable and $|A| \leq |\mathbb{Z}^+|$, then using (3) we can define f such that f is a surjective function. $(i) \to (ii)$
 - 5) Let $g: A \to \mathbb{Z}^+$. As a result from f and (3) we can define g as injective, since there is one to one correspondence from A to \mathbb{Z}^+ . $(ii) \to (iii)$
 - 6) Since $|A| \leq |\mathbb{Z}^+|$, we can say that A is countable using (1). $(iii) \to (i)$

Answer 4

- a) Show that the set of finite binary strings is countable.
 - We can define a function f from binary strings which is a sequence of 0s and 1s to positive integers such as f("0001") = 1, f("0101") = 5 etc.
 - Since we can enumerate positive integers, \mathbb{Z}^+ is countable, the set of finite binary strings must be countable.
- b) Show that the set of infinite binary strings is uncountable.
 - If the consider infinite binary strings, then we cannot define a function f from binary strings which is a sequence of 0s and 1s to positive integers since there will be infinite positive integers that can be represented by a binary string.
 - Since we cannot define the function f, we cannot represent binary strings as positive integers.
 - Since we cannot enumerate the infinite binary strings as they are uncountable, also the set of infinite binary string is uncountable.

Answer 5

- a) Determine whether $\log n!$ is $\Theta(n \log n)$.
 - 1) Consider that $\log(a \cdot b) = \log(a) + \log(b)$.
 - 2) In order to prove $\log n!$ is $\Theta(n \log n)$, we have to prove both $\log n!$ is $O(n \log n)$ and $n \log n$ is $\Omega(\log n!)$.

3)
$$\log(n!) = \log(n \cdot (n-1) \cdot (n-2) \cdot (n-3) \dots 1)$$

 $\log(n!) = \log(n) + \log(n-1) + \log(n-2) + \dots + \log(1)$
 $\log(n!) \le \log n + \log n + \log n + \dots + \log n \text{ (n times)}$
 $\log(n!) \le n \log n$

- 4) So, $\log n!$ is $O(n \log n)$.
- 5) $\log(n!) = \log(n \cdot (n-1) \cdot (n-2) \cdot (n-3) \dots 1)$ $\log(n!) = \log(n) + \log(n-1) + \log(n-2) + \dots + \log(1)$ $\log(n!) \ge \log(n) + \dots + \log(\frac{n}{2} + 1) + \log(\frac{n}{2})$ (delete second half) $\log(n!) \ge \log(\frac{n}{2}) + \dots + \log(\frac{n}{2}) + \log(\frac{n}{2})$ (replace all by $\frac{n}{2}$, which is much smaller) $\log(n!) \ge \frac{n}{2} \cdot \log(\frac{n}{2})$
- 6) So, $\log n!$ is $\Omega(n \log n)$.
- 7) As a result from both (4) and (6), $\log n!$ is $\Theta(n \log n)$.
- b) Which function grows faster, n! or 2^n ?

• Let
$$f(n) = \frac{n!}{2^n}$$

•
$$L = \lim_{n \to \infty} \left| \frac{f(n+1)}{f(n)} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!}{2^{n+1}} \cdot \frac{2^n}{n!} \right| = \lim_{n \to \infty} \left| \frac{(n+1) \cdot n!}{2 \cdot 2^n} \cdot \frac{2^n}{n!} \right| = \frac{n+1}{2}$$

- For $n \in \mathbb{Z}^+, L \geq 1$.
- As a result, from ratio test n! grows faster than 2^n .