第7章 非金属元素及其化合物

- 2, 4, 7, 8, 11
- 2. 写出下列氯化物与水作用的化学方程式:
 - ① MgCl₂; ② ZnCl₂(浓); ③ PCl₅; ④ SnCl₂; ⑤ GeCl₄。
 - 解: ① $MgCl_2$ + H_2O = Mg(OH)Cl + HCl;

 - ③ PCl_5 + $H_2O = H_3PO_4$ + HCl_3 ;
 - 4 SnCl₂ + H₂O = Sn(OH)Cl + HCl;
 - \bigcirc GeCl₄ + H₂O = GeO₂ · 2H₂O + 4HCl₀
- 4. 要把 SnCl₂ 晶体配制成溶液,如何配制才能得到澄清的溶液?
- 解: 先把 $SnCl_2$ 晶体溶于浓 HCl,再加水稀释,这样才可以得到澄清溶液,为防止氧化再加 锡粒。 $SnCl_2 + H_2O = Sn(OH)Cl\downarrow + HCl$ 。
- 7. 试估算 $CaCO_3(s)$ 在标准状态下的热分解温度。已知热分解反应 $CaCO_3(s) = CaO(s) + CO_2(g)$ $\Delta_r H_m^{\Theta}$ 的=177.86 kJ·mol $^{-1}$, $\Delta_r S_m^{\Theta} = 160.59$ J·mol $^{-1}$ · K $^{-1}$ 。

解:
$$\Delta_{\rm r}G_{\rm m}^{\Theta} = \Delta_{\rm r}H_{\rm m}^{\Theta} - T \times \Delta_{\rm r}S_{\rm m}^{\Theta} = 0$$
, $T = \frac{\Delta_{\rm r}H_{\rm m}^{\Theta}}{\Delta_{\rm r}S_{\rm m}^{\Theta}} = \frac{177860}{160.59} = 1108$ K

- 8. 以 NaCl 为基本原料制备下列各化合物,写出各步的主要反应方程式:
 - ① NaOH:
- ② NaClO:
- \Im Ca(ClO)₂;
- 4 KClO₃ o
- ② $Cl_2 + 2NaOH$ (冷) → $NaClO + NaCl + H_2O$
- $3 2Cl_2 + 2Ca(OH)_2 (?) \longrightarrow CaCl_2 + Ca(ClO)_2 + 2H_2O$
- ④ $3Cl_2 + 6KOH$ (热) \longrightarrow $5KCl + KClO_3 + 3H_2O$
- 11. 完成下列方程式:
- \bigcirc Si + NaOH + H₂O \rightarrow
- ② S + HNO₃(浓) →
- $3 NO_2^- + I^- + H^+ \rightarrow$
- $\textcircled{4} \ NO_2^- + MnO_4^- + H^+ \rightarrow$
- ⑤ BiCl₃(s) + H₂O(l) →
- ⑥ NaHCO₃ $\xrightarrow{\Delta}$
- 解: ① $Si + 2NaOH + H_2O \rightarrow Na_2SiO_3 + 2H_2$

②
$$S + 2HNO_3$$
(浓) $\rightarrow H_2SO_4 + 2NO$

$$\begin{tabular}{lll} \hline (3) & 2NO_2^- & + & 2 & I^- & + & 4 & H^+ & \rightarrow 2NO + I_2 + 2H_2O \\ \hline \end{tabular}$$

$$\textcircled{4} \ 5NO_2^- \ + \ 2MnO_4^- \ + \ \ 6H^+ \ \ \rightarrow \ 5NO_3^- \ + \ 2Mn^{2+} \ + 3H_2O$$

⑤
$$BiCl_3(s) + H_2O(l) \rightarrow Bi(OH)Cl + HCl$$