CSI - 3105 Design & Analysis of Algorithms Course 12

Jean-Lou De Carufel

Fall 2019

Kruskal Algorithm (1956)

Approach: Maintain a forest. In each step, add an edge of minimum weight that does not create a cycle.

Start: At the beginning, each vertex is a (trivial) tree.

• • •

•

Kruskal Algorithm (1956)

Approach: Maintain a forest. In each step, add an edge of minimum weight that does not create a cycle.

Start: At the beginning, each vertex is a (trivial) tree.

One Iteration: Combine two trees using an edge of minimum weight.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ り♀○

BC, BD, CD, CF, AD, DF, EF, AB, CE, AC

Total weight: 14

Algorithm Kruskal(G)

```
Input: G = (V, E), where V = \{x_1, x_2, ..., x_n\} and m = |E|.
```

Output: A minimum spanning tree of G.

- 1: Sort the edges of E by weight using Merge Sort: $e_1, e_2, ..., e_m$
- 2: **for** i = 1 to n **do**
- 3: $V_i = \{x_i\}$
- 4: end for
- 5: $T = \{ \}$
- 6: **for** k = 1 to m **do**
- 7: let u_k and v_k be the vertices of e_k .
- 8: let *i* be the index such that $u_k \in V_i$
- 9: let j be the index such that $v_k \in V_i$
- 10: if $i \neq j$ then
- 11: $V_i = V_i \cup V_j$
- 12: $V_i = \{ \}$
- 13: $T = T \cup \{\{u_k, v_k\}\}$
- 14: **end if**
- 15: **end for**
- 16: **return** *T*

• Sorting: $O(m \log(m)) = O(m \log(n))$ time

(do you see why?)

• Sorting: $O(m \log(m)) = O(m \log(n))$ time (do you see why?)

• First For-loop: O(n) time

- Sorting: $O(m \log(m)) = O(m \log(n))$ time (do you see why?)
- First For-loop: O(n) time
- Second For-loop:
 - Store T in a linked list. Total time to maintain this list: O(n) time
 - ullet Store the sets V_i using the Union-Find data structure.

- Sorting: $O(m \log(m)) = O(m \log(n))$ time (do you see why?)
- First For-loop: O(n) time
- Second For-loop:
 - Store T in a linked list. Total time to maintain this list: O(n) time
 - Store the sets V_i using the Union-Find data structure.

In this second For-Loop, we do

- 2*m* **Find** operations
- n-1 **Union** operations

So in total for the second For-Loop:

$$O(n) + O(m + n \log(n))$$
 time

- Sorting: $O(m \log(m)) = O(m \log(n))$ time (do you see why?)
- First For-loop: O(n) time
- Second For-loop:
 - Store T in a linked list. Total time to maintain this list: O(n) time
 - Store the sets V_i using the Union-Find data structure.

In this second For-Loop, we do

- 2*m* **Find** operations
- n-1 **Union** operations

So in total for the second For-Loop:

$$O(n) + O(m + n \log(n))$$
 time

So the total time is

$$O(m\log(n)) + O(n) + O(m+n\log(n)) = O(m\log(n))$$

Do you see why?

∢ロト (個) (重) (重) (重) のQで

Conclusion: Kruskal computes an MST in $O(m \log(n))$ time.

Prim Algorithm (1957) [Jarník (1930), Dijkstra (1959)]

Start : \bullet *A* is a set consisting of one (arbitrary) vertex of *V*.

• T is an empty set of edges.

Prim Algorithm (1957) [Jarník (1930), Dijkstra (1959)]

Start : \bullet A is a set consisting of one (arbitrary) vertex of V.

• T is an empty set of edges.

One Iteration :• Take an edge $\{u,v\}$ of minimum weight such that $u \in A$ and $v \in Q$.

- Add the edge $\{u, v\}$ to T.
- Move v from Q to A.

Prim Algorithm (1957) [Jarník (1930), Dijkstra (1959)]

Start : \bullet A is a set consisting of one (arbitrary) vertex of V.

• T is an empty set of edges.

One Iteration :• Take an edge $\{u, v\}$ of minimum weight such that $u \in A$ and $v \in Q$.

- Add the edge $\{u, v\}$ to T.
- Move v from Q to A.

Repeat until A = V (i.e. $Q = \{ \}$)!

Input: G = (V, E)

Output: A minimum spanning tree of G.

- 1: Let $r \in V$ be an arbitrary vertex.
- 2: $A = \{r\}$
- 3: $T = \{ \}$
- 4: while $A \neq V$ do
- 5: find an edge $\{u, v\} \in E$ of minimum weight such that $u \in A$ and $v \in V \setminus A$.
- 6: $A = A \cup \{v\}$
- 7: $T = T \cup \{\{u, v\}\}\}$
- 8: end while
- 9: **return** *X*

8 / 13

Input: G = (V, E)

Output: A minimum spanning tree of *G*.

- 1: Let $r \in V$ be an arbitrary vertex.
- 2: $A = \{r\}$
- 3: $T = \{ \}$
- 4: while $A \neq V$ do
- 5: find an edge $\{u, v\} \in E$ of minimum weight such that $u \in A$ and $v \in V \setminus A$.
- 6: $A = A \cup \{v\}$
- 7: $T = T \cup \{\{u, v\}\}\}$
- 8: end while
- 9: **return** *X*

How to find such an edge $\{u, v\}$?

Input: G = (V, E)

Output: A minimum spanning tree of G.

- 1: Let $r \in V$ be an arbitrary vertex.
- 2: $A = \{r\}$
- 3: $T = \{ \}$
- 4: while $A \neq V$ do
- 5: find an edge $\{u, v\} \in E$ of minimum weight such that $u \in A$ and $v \in V \setminus A$.
- 6: $A = A \cup \{v\}$
- 7: $T = T \cup \{\{u, v\}\}\}$
- 8: end while
- 9: **return** *X*

How to find such an edge $\{u, v\}$? By brute force, it takes O(|E|) time.

Input: G = (V, E)

Output: A minimum spanning tree of G.

- 1: Let $r \in V$ be an arbitrary vertex.
- 2: $A = \{r\}$
- 3: $T = \{ \}$
- 4: while $A \neq V$ do
- 5: find an edge $\{u, v\} \in E$ of minimum weight such that $u \in A$ and $v \in V \setminus A$.
- 6: $A = A \cup \{v\}$
- 7: $T = T \cup \{\{u, v\}\}\}$
- 8: end while
- 9: **return** *X*

How to find such an edge $\{u, v\}$?

By brute force, it takes O(|E|) time.

So the total running time becomes $O(|V| \cdot |E|)$.

To improve the running time, we maintain extra information.

To improve the running time, we maintain extra information.

For each vertex y in Q,

minweight(y): minimum weight of any edge between y and a vertex of A closest(y): vertex x in A for which wt(x,y) = minweight(y)

To improve the running time, we maintain extra information.

For each vertex y in Q,

minweight(y): minimum weight of any edge between y and a vertex of A closest(y): vertex x in A for which wt(x,y) = minweight(y)

Observe that: a shortest edge $\{u, v\}$ connecting A and Q has weight

$$\min_{y \in Q} \{ minweight(y) \}.$$

4 D > 4 D > 4 E > 4 E > E 99 C

What happens if we move v from Q to A?

What happens if we move v from Q to A?

We update minweight(w) and closest(w) for w = x, y, z.


```
Input: G = (V, E)
Output: A minimum spanning tree of G.
   1: Let r \in V be an arbitrary vertex
      A = \{r\}
      for each vertex y \neq r do
   5:
           minweight(y) = \infty
   6:
           closest(y) = NIL
   7:
      end for
      for each edge \{r, y\} do
           minweight(y) = wt(r, y)
  9:
  10:
           closest(y) = r
  11:
      end for
      Q = V \setminus \{r\}
  13:
      k = 1
                         // Stores the size of A
  14:
      while k \neq n do
  15:
           Let v be the vertex of Q for which minweight(v) is minimum
  16:
           u = closest(v)
  17.
           A = A \cup \{v\}
  18:
           Q = Q \setminus \{v\}
  19:
           T = T \cup \{\{u, v\}\}\
  20:
           k = k + 1
  21:
           for each edge \{v, y\} do
  22:
               if y \in Q and wt(v, y) < minweight(y) then
  23:
                   minweight(y) = wt(y, y)
  24:
                   closest(y) = v
  25:
               end if
  26:
           end for
      end while
```

surdate Xs

return T

- Store the vertices of Q in a min-heap. For each vertex $v \in Q$, the key of v is minweight(v).
- Store T in a list.
- With each vertex of V, store one bit indicating whether the vertex belongs to A or to Q.

- Store the vertices of Q in a min-heap. For each vertex $v \in Q$, the key of v is minweight(v).
- Store T in a list.
- With each vertex of V, store one bit indicating whether the vertex belongs to A or to Q.

 Up to the while loop: O(n) time (this includes the time to build the heap).

- Store the vertices of Q in a min-heap. For each vertex $v \in Q$, the key of v is minweight(v).
- Store T in a list.
- With each vertex of V, store one bit indicating whether the vertex belongs to A or to Q.

- Up to the while loop: O(n) time (this includes the time to build the heap).
- One iteration of the while-loop:
 - $extract_min: O(\log(n))$ time
 - At most degree(v) many $decrease_key$ operations: $O(degree(v) \cdot \log(n))$ time

- Store the vertices of Q in a min-heap. For each vertex $v \in Q$, the key of v is minweight(v).
- Store T in a list.
- With each vertex of V, store one bit indicating whether the vertex belongs to A or to Q.

- Up to the while loop: O(n) time (this includes the time to build the heap).
- One iteration of the while-loop:
 - $extract_min: O(\log(n))$ time
 - At most degree(v) many $decrease_key$ operations: $O(degree(v) \cdot \log(n))$ time
- Total time for the while-loop:

$$O\left(\sum_{v\in V} degree(v) \cdot \log(n)\right) = O(2m\log(n)) = O(m\log(n))$$

ロト (個) (重) (重) 重 ののの

Conclusion: Prim computes an MST in $O(m \log(n))$ time.