KING MONGKUT'S INSTITUTE OF TECHNOLOGY LATKRABANG SCHOOL OF ENGINEERING COMPUTER ENGINEERING DEPARTMENT

<u>DIGITAL FUNDAMENTALS SYSTEM PROJECT REPORT</u> <u>Title: Character Jumping Game</u>

INSTRUCTED & ADVISED BY: Prof. Sorayut Glomglome

TEAM MEMBERS:

Pattamawat Pleethong (66011136) Win Thawder Aung (66011610) May Thu Kyaw (66011642) Mihini Methasa Welatantrige Boteju (66011666)

DATE OF SUB: 10/04/2024

Table of Contents

Table of Contents	2
List of Figures	3
Motivation	3
List of features	4
Design Concept and Circuit Diagram	5
Top-down Design	5
Modular Design	6
Boolean Expressions	7
Seven segment case (4 to 7 decoder)	7
Symbol Level	9
Seven segment case (4 to 7 decoder)	9
Bill of Materials	10
Testbench Results	11
Experiment results on Basys3 board	14
Project Pictures	18

List of Figures

Fig 1: Top-down design of Character Jumping Game	6
Fig 2: Modular Design of Character Jumping Game	7
Fig 3: Symbol Level of seven segment case	10
Fig 4: Test Bench Results of rand_gend.vhd	12
Fig 5: Test Bench Results of sseg_case_tb.vhd	12
Fig 6: Test Bench Results of sseg_timing_tb.vhd	13
Fig 7: Test Bench Results of shifter_tb.vhd	14
Fig 8: Test Bench Results of score_system_tb.vhd	14
Fig 9: Test Bench Results of player_in_tb.vhd	15
Fig 10: Test Bench Results of player_in_tb.vhd	15
Fig 11: Show about the obstacle is working	16
Fig 12: Show about the obstacle is working	17
Fig 13. Show how to play our game	18
Fig 14: Show the scores	19
Fig 15: 'Game Over' condition	20
Fig 16: Project Pictures_1	21
Fig 17: Project Pictures_2	21
Fig 18: Project Pictures 3	21

Motivation

This idea was motivated by the enthusiasm of platform games where players had to jump over obstacles to proceed. Making use of the Basys3 board's four seven-segment displays and push buttons, and knowledge of VHDL. We imagined developing an engaging game that combines enthusiasm for gaming with the knowledge we learned in the digital fundamental systems class.

We implement our VHDL code to detect our character's position and the locations of obstacles. VHDL senses obstacles when our character leaps, and updates the score. Our game challenges the player in real time with VHDL as perfect timing is more important than simply pressing buttons which makes the gaming experience a lot more thrilling to play. This game is an interactive and responsive one as when the player loses it displays the score for the player. We use four seven-segment displays and a push button to provide a user-friendly interface and a clear view of the game. The game is straightforward but fascinating because every display has an objective. Our goal is to create a game that stimulates interest in FPGA programming using VHDL code and seven-segment displays.

List of features

Obstacle Generation:

Generating obstacles randomly that the player character must jump over to survive in this game. The obstacle generation will happen for every 200ms randomly. The obstacles are represented using 'e' and 'c' segments of all four 7 segment displays.

Jumping over obstacles:

The player must jump over obstacles by holding the 'up' button for 2 seconds. After 2 seconds the player is dropped to the ground level. If the time that player drops to the ground and incoming obstacle's time coincides there will be a game over.

Player and Obstacle Collision:

When the player fails to jump before the collision with the obstacle, on the left seven segment display there will be a 'F' displayed to represent that the player failed the attempt at jumping over the obstacle.

Scoring System:

The minimum and maximum score that the player can score in a one round is 0 to 15. When the player jumps over the obstacle, one point will be added and it is displayed using LEDs in the Basys3 board. Accumulated score will be output by lighting the LEDs which correspond to the score number.

Design Concept and Circuit Diagram

Top-down Design

Fig 1: Top-down design of Character Jumping Game

Modular Design

Fig 2: Modular Design of Character Jumping Game

Boolean Expressions

Seven segment case (4 to 7 decoder)

Truth Table

A	В	С	D	a	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	1
0	0	0	1	1	1	0	1	1	1	1
0	0	1	0	1	1	1	1	0	1	1
0	0	1	1	1	1	0	1	0	1	1
0	1	0	0	1	1	1	1	0	1	1
0	1	0	1	1	1	0	1	0	1	1
0	1	1	0	0	1	1	1	0	0	0
0	1	1	1	0	1	1	1	0	0	0
1	0	0	0	1	1	1	1	1	0	1
1	0	0	1	1	1	0	1	1	0	1
1	0	1	0	1	1	1	1	0	0	1
1	0	1	1	1	1	0	1	0	0	1

For a:

F = NOT(B) + NOT(C)

For b:

F = 1

For c:

F = BC + NOT(D)

For d:

F = 1

For e:

F = AB + NOT(B)NOT(C)

For e:

F = AB + NOT(A)NOT(C)

For g:

F = NOT(B) + NOT(C)

Symbol Level

Seven segment case (4 to 7 decoder)

Fig 3: Symbol Level of seven segment case

Bill of Materials

• Digilent Basys Artix-7 Development Board

Test Bench Results

sseg_actives_tb.vhd(overall program)

Fig 4: Test Bench Results of sseg_actives_tb.vhd

rand_gend.vhd

Fig 5: Test Bench Results of rand_gend.vhd

sseg_case_tb.vhd

Fig 6: Test Bench Results of sseg_case_tb.vhd

sseg_timing_tb.vhd

Fig 7: Test Bench Results of sseg_timing_tb.vhd

shifter_tb.vhd

Fig 8: Test Bench Results of shifter_tb.vhd

score_system_tb.vhd

Fig 9: Test Bench Results of score_system_tb.vhd

player_in_tb.vhd

Fig 10: Test Bench Results of player_in_tb.vhd

Clock_divider_tb.vhd

Fig 11: Test Bench Results of clock_divider_tb.vhd

Experiment results on Basys3 board

(1) Generate the obstacle randomly and moving to the player:

Fig 12: Show about the obstacle is working

(2) The player need to jump not to collide the obstacle to get the scores:

Fig 13. Show how to play our game

(3) Showing the scores how many points the player gets by using leds:

Fig 14: Show the scores

(4) When the player collides with the obstacle, the first segment shows 'F' which represents 'Game Over':

Fig 15: 'Game Over' condition

Project Pictures

Fig 16: Project Pictures_1

Fig 17: Project Pictures_2

Fig 18: Project Pictures_3