Chapter 2

Improper integrals

2.1 Integrals of functions defined over an unbounded interval

Our goal in this chapter is to compute integrals over unbounded intervals (ranging up to $-\infty$, 0, or $+\infty$), or integrals on a bounded interval of functions having an infinite limit at some point of the integration interval, a type of integral called an improper integral. Example: $\int_{-1}^{1} \frac{1}{x} dx = ?$

Why is the answer unclear?

Definition 2.1 The integral defined by $\int_a^b f(x)dx$ is called an improper or generalized integral if:

- 1. f(x) tends toward infinity at one or more points in [a,b] (point of infinite discontinuity).
- 2. At least one of the integration bounds is infinite $(\pm \infty)$.

Example 2.1 (a) $\int_1^{+\infty} \frac{dt}{t^2+1}$ is improper at $+\infty$.

- (b) $\int_0^1 \frac{dt}{\sqrt{1-t}}$ is improper at 1.
- (c) $\int_0^2 \frac{1}{x} dx$ is improper at 0.
- (d) $\int_{7}^{\infty} \frac{1}{x-5} dx$ has an infinite bound.

Definition 2.2 (Singular Point) A point x_0 is called a singular point for a function f if it is not bounded at that point, i.e., $\lim_{x\to x_0} f(x) = \pm \infty$.

Definition 2.3 Two integrals are said to be of the same nature if they are either both convergent or both divergent.

2.1.1 Improper Integrals of Functions Defined on an Unbounded Interval

Let $f:[a,b] \to \mathbb{R}$ be a Riemann-integrable function on [a,b], where at least one of the bounds of the interval [a,b] is infinite.

Definition 2.4 Let f be a Riemann-integrable function on $[a, +\infty[$. We say that the improper integral $\int_0^{+\infty} f(t)dt$ converges if the limit $\lim_{x\to+\infty} \int_0^x f(t)dt$ is finite. In this case, we define:

$$\int_0^{+\infty} f(t)dt = \lim_{x \to +\infty} \int_0^x f(t)dt$$

In the contrary case, if:

$$\lim_{x \to +\infty} \int_0^x f(t)dt = \pm \infty$$

we say that the integral diverges.

Remark 2.1 For $\int_{-\infty}^{b} f(t)dt$, the definition can be adapted in an obvious way.

Example 2.2 1. Let $f(t) = \frac{1}{t}$. It is defined and continuous on $[1, +\infty[$. Indeed:

$$\lim_{x \to \infty} \int_{1}^{x} \frac{1}{t} dt = \lim_{x \to \infty} (\ln x - \ln 1) = +\infty$$

Thus, the generalized or improper integral $\int_{1}^{+\infty} \frac{1}{t} dt$ diverges.

2. Let $f(t) = \frac{1}{(t-1)^2}$. It is defined and continuous on $[2, +\infty[$.

$$\lim_{x \to \infty} \int_{2}^{x} \frac{1}{(t-1)^{2}} dt = \lim_{x \to \infty} \left(\frac{-1}{x-1} + 1 \right) = 1$$

Thus, the generalized integral $\int_2^{+\infty} \frac{1}{(t-1)^2} dt$ converges.

3. The integral $\int_0^{+\infty} \frac{1}{1+t} dt$ diverges:

$$\int_0^n \frac{1}{1+t} dt = \lim_{n \to \infty} \ln(1+n) = +\infty$$

Let $f(t) = \frac{1}{(t-1)^2}$. It is defined and continuous on $]-\infty,0]$.

$$\lim_{x\to\infty}\int_x^0\frac{1}{(t-1)^2}\,dt=\lim_{x\to\infty}\left[\frac{-1}{t-1}\right]_x^0=\lim_{x\to\infty}\left(1+\frac{1}{t-1}\right)=1.$$

Thus, the integral converges.

2.2 Improper integrals of functions defined on a bounded interval:

Let f be a function defined on [a, b].

Definition: Let $f:[a,b] \to \mathbb{R}$ be integrable on [a,b]. We say that the improper integral converges if

$$\lim_{x \to b} \int_{a}^{x} f(t) dt$$

is finite. In this case, we write:

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt.$$

In the contrary case, we say that the improper integral $\int_a^b f(t) dt$ diverges.

Remark 2.2 For a function f defined and integrable on [a, b], the definition adapts accordingly.

Example 2.3 1. Let $f(t) = \frac{1}{t}$, defined and continuous on [0,1]. Indeed,

$$\lim_{x \to 0} \int_{x}^{1} \frac{1}{t} dt = \lim_{x \to 0} (-\ln x) = +\infty.$$

Thus, $\int_0^1 \frac{1}{t} dt$ diverges.

2. Let $f(t) = \frac{1}{\sqrt{-t}}$, a function defined on [-1,0[and integrable in the sense of Riemann on [-1,0[. Indeed,

$$\lim_{x \to 0} \int_{-1}^{x} \frac{1}{\sqrt{-t}} dt = \lim_{x \to 0} (-2\sqrt{-x} + 2) = 2.$$

Thus, the improper integral converges on [-1, 0[.

Proposition 2.1 Let f be a function defined and integrable on [a, b]

Let $c \in]a, b[$ be a singular point, i.e., the function f is defined on $[a, b] \setminus \{c\}$. We say that:

$$\int_{a}^{b} f(t) dt$$

converges if both improper integrals,

$$\lim_{x \to c^{-}} \int_{a}^{x} f(t) dt \quad and \quad \lim_{x \to c^{+}} \int_{x}^{b} f(t) dt,$$

are finite. In this case, we define:

$$\int_{a}^{b} f(t) dt = \lim_{x \to c^{-}} \int_{a}^{x} f(t) dt + \lim_{x \to c^{+}} \int_{x}^{b} f(t) dt.$$

Otherwise, we say the integral diverges.

[Chasles' Relation]

Let $-\infty \le a < b \text{ (resp. } a < b \le +\infty) \text{ and let } f:[a,b[\to \mathbb{R} \text{ be continuous on } [a,b[\text{ (resp. }]a,b]). Suppose the improper integral } \int_a^b f(t) \, dt \text{ converges. Let } c \in]a,b[.$ Then:

- 1. $\int_a^c f(t) dt$ converges.
- 2. Moreover, we have:

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt.$$

2.2.1 Positivity of the Improper Integral:

Proposition 2.2 Let $f, g : [0, +\infty[\to \mathbb{R} \text{ be continuous functions. If both functions have convergent improper integrals and <math>f \leq g$, then:

$$\int_{a}^{+\infty} f(x) \, dx \le \int_{a}^{+\infty} g(x) \, dx.$$

In particular, for a non-negative function f, if $f \ge 0$, then:

$$\int_0^{+\infty} f(x) \, dx \ge 0.$$

Corollary 2.1 (Symmetry of the Improper Integral) Let $a \in \mathbb{R} \cup \{+\infty\}$, and let $f : [-a, a] \to \mathbb{R}$ be continuous on]-a, a[.

1.

If f is even, then:

$$\int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx.$$

If f is odd, then:

$$\int_{-a}^{a} f(x) \, dx = 0.$$

2.2.2 Convergence Criteria

1. Improper Bounded Integral

Theorem 2.1 Let $a \in \mathbb{R}$ and $b \in \mathbb{R}$ with a < b. Let $f : [a, b] \to \mathbb{R}$ be a piecewise continuous function with $f \geq 0$. The improper integral $\int_a^b f(t)dt$ is convergent if and only if:

$$\exists M \in \mathbb{R}_+, \quad \forall x \in [a, b[, \quad F(x) = \int_a^x f(t)dt \leqslant M.$$

Example 2.4 Let's study the behavior of the integral I with:

$$I = \int_0^2 \cos^2\left(\frac{1}{t}\right) dt.$$

Thus, the integral $\int_0^2 \cos^2\left(\frac{1}{t}\right) dt$ converges.

2. Riemann Integrals

A Riemann integral is:

$$\int_{1}^{+\infty} \frac{1}{t^2} dt.$$

In this case, the antiderivative is explicit:

$$\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt = \begin{cases} \lim_{x \to \infty} \left[\frac{1}{-\alpha + 1} t^{-\alpha + 1} \right]_{1}^{x}, & \text{if } \alpha \neq 1, \\ \lim_{x \to +\infty} [\ln t]_{1}^{x}, & \text{if } \alpha = 1. \end{cases}$$

We can immediately deduce the nature of Riemann integrals: if $\alpha > 1$, then $\int_1^{+\infty} \frac{1}{t^{\alpha}} dt$ converges; if $\alpha \leq 1$, then $\int_1^{+\infty} \frac{1}{t^{\alpha}} dt$ diverges.

Theorem 2.2 (Comparison Criterion) Let $a < b \le +\infty$ (or $-\infty < a < b$). Let f and $g: [a, b[\to \mathbb{R} \ be \ two \ continuous \ functions \ on \ [a, b[\ (or \]a, b])$. Suppose:

$$\forall x \in [a, b[, 0 \leqslant f(x) \leqslant g(x)].$$

Then:

- If $\int_a^b g(x)dx$ converges, then $\int_a^b f(x)dx$ converges.
- If $\int_a^b f(x)dx$ diverges, then $\int_a^b g(x)dx$ also diverges.

Furthermore, in the case where both converge, we have:

$$0 \leqslant \int_{a}^{b} f(x)dx \leqslant \int_{a}^{b} g(x)dx.$$

Remark 2.3 The comparison criterion is not applicable to functions that change sign.

Example 2.5 We aim to determine the convergence of:

$$I = \int_0^{+\infty} \frac{\sin^2(t)}{1 + t^2} dt.$$

The function $f(t) = \frac{\sin^2(t)}{1+t^2}$ is continuous, hence integrable in the Riemann sense over $[0, +\infty[$.

We have a potential issue with convergence at $t \to +\infty$. However, since the function is positive, we can apply the comparison criterion.

We know that:

$$0 \le \frac{\sin^2(t)}{1+t^2} \le \frac{1}{1+t^2} \quad \forall t \in [0, +\infty[.$$

Since the integral $\int_0^{+\infty} \frac{1}{1+t^2} dt$ converges, due to the fact that its antiderivative is $\arctan(t)$ and $\arctan(t) \to \frac{\pi}{2}$ as $t \to +\infty$, we conclude that:

$$\int_0^{+\infty} \frac{\sin^2(t)}{1+t^2} dt$$

also converges by the comparison test.

3. Absolutely Convergent Integral

Let $f:[a,b[\to \mathbb{R}$ be a function that is integrable on [a,b[. We say that the improper integral $\int_a^b f(t)dt$ converges absolutely if and only if:

$$\int_{a}^{b} |f(t)| dt \quad converges.$$

Proposition 2.3 If $\int_a^b |f(t)| dt$ converges, then $\int_a^b f(t) dt$ also converges and we have the inequality:

$$\left| \int_{a}^{b} f(t)dt \right| \leq \int_{a}^{b} |f(t)|dt.$$

Example 2.6 Consider the integral:

$$I = \int_{1}^{+\infty} \frac{\sin(t)}{t^2} dt.$$

We define the function $f(t) = \frac{\sin(t)}{t^2}$. This function is continuous on $[1, +\infty[$, and for all $t \in [1, +\infty[$, we have:

$$|f(t)| = \left|\frac{\sin(t)}{t^2}\right| \le \frac{1}{t^2}.$$

Since the integral $\int_1^{+\infty} \frac{1}{t^2} dt$ converges (this is a standard Riemann integral), we conclude that:

$$\int_{1}^{+\infty} \frac{\sin(t)}{t^2} dt$$

 $also\ converges.$