Vorlesung Analysis II

July 2, 2025

Teil 3: Gewöhnliche Differentialgleichungen

an 18: Lineare DGL 1. Ordnung

Stichworte: Variation der Konstanten, zugeh. homogene DGL, partikuläre Lsg.

Literatur: [Hoffmann], kapitel 7.3.

- **18.1.** Einleitung: Bereits die einfache DGL $y' = \alpha y$ beschreibt exponentielles Verhalten (Wachstum für $\alpha > 0$, zerfall für $\alpha < 0$), in vielen Anwendungen ein Standardkonzept. Wir behandeln die DGL y' = f(x)y + g(x) als Verallgemeinerung dieser Form.
- **18.2.** <u>Motivation:</u> Die Lineare DGL 1.Ordnung wird untersucht.
- **18.3.** <u>Vereinbarung:</u> Betr. die DGL y' = f(x)y + g(x) wo $f, g: j \to \mathbb{R}$ stetig, $j \subseteq \mathbb{R}$ ein IV. Die r.s. ist linear in y.
- **18.4.** Bem.: Für $a \in j$ wird durch $y_0(x) := \exp(\int_a^x f(t)dt)$, $x \in j$, eine Lsg. y_0 der zugehörigen homogenen (linearen) DGL auf j erklärt, die $y_0(x) \neq 0$, $y_0(a) = 1$ erfüllt. f' = f(x)y
- **18.5.** Satz: Für $a \in j$ und $b \in \mathbb{R}$ ist die (eindeutig bestimmte) Lsg. y von (*) auf j mit y(a)=b gegeben durch

 $\overline{y(x)} = \overline{y_0(x) \cdot \left(\int_a^x g(t)y_0(t)^{-1}dt + b\right)}$.

•Sämtliche Lösungen von (*) erhält man durch <u>Variation von a und b</u> (d.h. a=a(x), b=b(x)) und <u>Einschränkung auf Teilintervalle</u>.

Beweis: • Sei y eine Lsg. von (*) in einem IV j_0 mit $a \in j_0 \subseteq j$ und $y(a)b \in \mathbb{R}$. Wir schreiben y in der Form $y(x) = c(x)y_0(x)$, $x \in j_0$, "Variation der Konstanten"

mit $c: j_0 \to \mathbb{R}, x$ (stetig)diff'bar (die Glg. kann als Def. für c gelesen werden).

Nehmen wir diese Form $y = cy_0$ an, dann gilt damit

somit notwendig $y(x) = y_0(x) \cdot (\int_a^x g(t)y_0(t)^{-1}dt + b)$, d.h. (+).

• Andererseits wird durch (+) eine Lsg. von (+) mit y(a)=b erklärt.

e18.6. Folgerung: (a) Für die zugeh. homogene DGL $(*)_h$ sind alle Lsg. auf j gegeben durch $y(x) = by_0(x), x \in j, b \in \mathbb{R}.$ (b) Für eine Lsg. y der homogenen DGL $(*)_h$ gilt: $y \neq 0 \Rightarrow \forall x \in j : y(x) \neq 0$. (c) Jede bel. Lsg. von (*) auf j entsteht aus einer speziellen ("partikulären") Lsg. durch Addition eine Lsg. der homogenen DGL $(*)_h$. Bew.: (a): direkt ablesbar aus (+) mit $g(t):=0, t \in j$. (b): aus (a), da $y_0 \neq 0$ für $x \in j$. (c): aus der Linearität der Ableitung folgt: Sind y,z Lsgn. von (*), so gilt (y-z)' = y' - z' = f(y) - f(y) = f(y-z). Also ist y-z Lsg. von $(*)_h$, und y=z+(y-z) die gewünschte Darstellung. Die hier enthaltenen Linearitätsüberlegungen sind aus der Linearen Algebra bereits bei der Lösung Linearer Gleichungssysteme bekannt: **18.7.** Bem.: (a) <u>u,v Lsgn. von</u> $(*)_h \Rightarrow \alpha u + \beta v$ Lsg. von $(*)_h$ für alle $\alpha, \beta \in \mathbb{R}$ (b) <u>u Lsg. von</u> (*) \wedge <u>v Lsg. von</u> (*)(c) $u, v \text{ Lsg. von } (*) \Rightarrow u-v \text{ Lsg. von } (*)_h$ Die Beh. (a) zeigt, dass die Menge der Lsgn. der homogenen DGL (*), bereits einem R-Vektorraum liefert. Bew.: (c): siehe 18.6.(c). (a),(b): ebenso aus der Linearität der Ableitung: $\overline{(\mathbf{a}): (\alpha u + \beta v)'} = \alpha u' + \overline{\beta v'} = \alpha f(u) + \beta f(v) = f(\alpha u + \beta v),$ (b): (u+v)' = u' + v' = (f(u) + g) + f(v) = f(u+v) + g. **18.8. Bsp.:** DGL y'=-xy+3x, y(0)=5. • Zur Lsg. dieser AWA ist in Satz 18.5. zu setzen: $j := \mathbb{R}, a := 0, b := 5, f(x) := -x, g(x) := 3x.$ Es ergibt sich: $y_0(x) := \exp(\int_0^k (-t)dt) = \exp(-\frac{1}{2}x^2)$ $y(x) := y_0(x) \cdot (\int_0^x 3t \exp(-\frac{1}{2}t^2)dt + 5) = y_0(x) \cdot (3\exp(\frac{1}{2}x^2) + 2),$ wegen $\int_0^x 3t \exp(\frac{1}{2}t^2)dt = 3\exp(\frac{1}{2}t^2)\Big|_0^1 = 3(\exp(\frac{1}{2}x^2) - 1)$

Daher ist $y(x)^3 + 2\exp(-\frac{1}{2}x^2)$ die eindeutig bestimmt Lsg. der AWA.

• Dieselbe AWA <u>direkt mit "Variation der Konstanten"</u> gelöst (ohne Formel (+)):

 $y_0(x) = \exp(-\frac{1}{2}x^2)$ erfüllt $y'_0 = -xy_0, y_0(0) = 1$.

Der Ansatz $y(x) = c(x)y_0(x)$ liefert

$$-x(cy_0)+3x = -xy + 3x = y' = c'y_0 + cy_0' = c'y_0 + c(-xy_0)$$

$$\Rightarrow c'y_0 = 3x \Rightarrow c'(x) = 3x \exp(\frac{1}{2}x^2).$$

Daraus folgt $c(x) = 3 \exp(\frac{1}{2}x^2) + \alpha$. DIe Anfangswertbedingung c(0) = y(0) = 5 gibt dann $\alpha = 2$, zusammen also wieder die Lsg. $y(x) = 3 + 2\exp(-\frac{1}{2}x^2)$.

• Oft ist es noch einfacher, eine Lsg. von (*) zu erraten und dann mit Satz 18.6.(c)(und (a)) die allgemeine Lsg. zu notieren:

Schreibt man die geg. DGL in der Form y' = x(-y+3), so erkennt man leicht die Konstante Fkt. $y_n(x) := 3$ als partikuläre Lösung.

Mit der oben schon besimmten Lsg. y₀ der zugeh. homogenen DGL ist die allgemeine Lösung (nach

Satz 18.6.(a) und (c) dann

 $y(x) = by_0(x) + y_p(x) = b \exp(-\frac{1}{2}x^2) + 3$, mit $b \in \mathbb{R}$ bel. Die Forderung y(0) = 5 zeige dann abschließend b=2.