Deterministische Endliche Automaten Lösungen

Aufgabe 1:

Gegeben ist das Alphabet $X = \{X, Y, Z\}$.

Konstruiere einen deterministischen endliche Automaten, der alle Wörter akzeptiert, welche die Zeichenkette XXYZX enthalten.

L = ($\{X, Y, Z\}, \{S_0, S_1, S_2, S_3, S_4, S_5\}, S_0, \delta \text{ gemäß Graph}, \{S_5\}$)

Aufgabe 2: (Altklausuraufgabe vom Fuhr)

Geben Sie einen endlichen deterministischen Automaten A an mit L(A) = L.

 $L = (\{a,b\}, \{S_0, S_1, S_2, S_3, S_4, S_5\}, S_0, \delta \text{ gemäß Graph}, \{S_3\})$

Aufgabe 3:

Gegeben ist das Alphabet $X = \{a, b\}$. Geben sie für folgende Sprachen L einen endlichen deterministischen Automaten A an mit L = L(A). Mit L = L(A)

a) { $w \in X^* | w \text{ endet mit ab } }$

A= $(X, \{S0,S1,S2,S0,\delta\})$ gemäß Graph, $\{S2\}$)

b) { $w \in X^* | |w|_a \neq 3$ }

 $A=(X,{q0,q1,q2,q3,q4}, q0, \delta \text{ gemäß Graph}, {q0,q1,q2,q4})$

c) { $w \in X^* \mid |w|_a = 2 \lor |w|_b = 1 }$

A = (X, {q0,q1,q2,q3,q4,q5,q6}, q0, δ gemäß Graph, {q2,q5,q6})

d) { $w \in X^* | |w|_a = 2 \land |w|_b = 1$ }

A=(X,{q0,q1,q2,q3,q4,q5,q6}, q0, δ gemäß Graph, {q3})

e) { $w \in X^* \mid w = (ab)^n (aabb)^m \text{ mit n, } m \in \mathbb{N}$ }

A=(X, $\{q0,q1,q2,q3,q4,q5,q6,q7,q8,q9,q10\}$, $q0, \delta$ gemäß Graph, $\{q6\}$)

f) { $w \in X^* \mid w = ab^n$; $n \ge 2$ } \cup { $w \in X^* \mid w = ba^m$; $m \ge 2$ }

A = $(X, \{q0,q1,q2,q3,q4,q5,q6,q7\}, q0, \delta \text{ gemäß Graph}, \{q4,q6\})$

Aufgabe 4:

Welche Sprache akzeptiert der dargestellte Automat? Geben sie diese in Mengenschreibweise an.

L = $\{ w \in \{a, b\}^* \mid w = a^j b^k \text{ mit } j, k \in N \text{ und } |w| \text{ gerade} \}$

Aufgabe 5: (Aufgabe 1. Altklausur)

Konstruieren Sie einen deterministisch endlichen Automaten, der genau die Worte aus {0, 1}* mit der Eigenschaft "Zwischen zwei Einsen stehen mindestens zwei Nullen" akzeptiert

 $A = (\{1, 0\}, \{S_0, S_1, S_2, S_3, S_4, S_5\}, S_0, \delta \text{ gemäß Graph}, \{S_4, S_0\})$