THE UNIVERSITY OF NEW SOUTH WALES

SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE AND ENGINEERING

The Élan Am386SC300 Portable Computer

John Zaitseff (2120715)

Bachelor of Engineering (Computer Engineering)
October 1995

Supervisor: A/Prof. Branko Celler Assessor: Dr. Tim Hesketh

Contents

1	Var	iable compleja	1
	1.1	Potenciación y raices complejas	11
	1.2	Variable compleja	14
	1.3	Límites	19
	1.4	Integración compleja	33
	1.5	Serie compleja	44
		1.5.1 Binomio de Newton	46
		1.5.2 Series de Laurent	48
	1.6	Integrales indefinidas	52

List of Figures

List of Tables

Chapter 1

Variable compleja

Definition 1: (Campo o cuerpo) Sea A un conjunto no vacío, donde estan definidas la suma + y el producto \cdot , se dice que A es un campo si en A se satisfacen las siguientes condiciones:

Bajo la suma:

- 1. Cerradura: Si $a \in A$ y $b \in A$ entonces $a + b \in A$
- 2. Asociatividad: Si $a \in A$, $b \in A$ y $c \in A$ entonces (a + b) + c = a + (b + c)
- 3. Conmutatividad: Si $a \in A$ y $b \in A$ entonces a + b = b + a
- 4. Modulatividad: Existe en A un elemento $b \in A$ tal que para todo $a \in A$ se tiene que a + b = b + a = a a este elemento se le llama neutro y se le denota por b = 0
- 5. Invertividad: Si $a \in A$ entonces existe en A un elemento $b \in A$ tal que a + b = b + a = 0. Este elemento b se le conoce con el nombre de inverso aditivo y se le denota por b = -a, asi que la operación queda descrita por a + (-a) = (-a) + a = 0Bajo la multiplicación
- 1. Cerradura: Si $a \in A$ y $b \in A$ entonces $a \cdot b \in A$
- 2. Asociatividad: Si $a \in A$, $b \in A$ y $c \in A$ entonces $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 3. Conmutatividad: Si $a \in A$ y $b \in A$ entonces $a \cdot b = b \cdot a$
- 4. Modulatividad: Existe en A un elemento $b \in A$ tal que para todo $a \in A$ se tiene que $a \cdot b = b \cdot a = a$, a este elemeto b se le conoce con nombre de módulo y se lenota como b = e ó b = 1 en tal caso se tiene que $a \cdot e = e \cdot a = a$ ó $a \cdot 1 = 1 \cdot a = a$
- 5. Invertividad: Exite en A elementos $b \in A$ tales que para algún $a \in A$ $a \cdot b = b \cdot a = e$ ó $a \cdot b = b \cdot a = 1$, a este elemento b se le conoce con el nombre de inverso multiplicativo y se le denota por $b = a^{-1}$ y por consiguiente en la operación se tiene $a \cdot a^{-1} = a^{-1} \cdot a = e$ ó $a \cdot a^{-1} = a^{-1} \cdot a = 1$
- 6. Distributividad: Si $a \in A$, $b \in A$ y $c \in A$ entonces $a \cdot (b+c) = a \cdot b + a \cdot c$

Definition 2: (Extensión de un conjunto) Sea A un conjunto no vació donde estan bien definidas la suma y la multiplicación, sea $m \notin A$ y sea $U = A + \{m\}$, si en U

se conservan la suma y la multiplicación definidas en A se dice entonces que U es una extensión de A ademas de que en U estan correctamente definidas la suma y la multiplicación

Nota 3: La ecuación $x^2 + 1 = 0$ no presenta solución en los reales ya que todo número elevado al cuadrado siempre es positivo, por tal razón no existe en \mathbb{R} un elemte tal que al elevarlo alcuadrado y sumarlo con uno de por resultado cero, se define por consiguieente solución a la anterior ecuación la forma:

$$x^2 - \left(\sqrt{-1}\right)^2 = 0$$

cuya factorización es:

$$(x-\sqrt{-1})(x+\sqrt{-1})=0$$

de donde el producto de dos númereos es cero si y solo si uno de ellos es cero, por lo tanto

$$(x - \sqrt{-1})(x + \sqrt{-1}) = 0$$

si y solo si

$$x - \sqrt{-1} = 0 \quad \text{\'o} \quad x + \sqrt{-1} = 0$$

de donde

$$x = \sqrt{-1}$$
 ó $x = -\sqrt{-1}$

a este valor de $\sqrt{-1}$ se le denotará por la letra i ó la letra j preferiblemente, luego

$$x = j$$
 δ $x = -j$

Theorem 4: El conjunto $\mathbb{C} = \mathbb{R} + \{j\}$ es una extensión de \mathbb{R} donde en \mathbb{C} se define la suma como a+j y el producto como $a \cdot j = aj$ preferiblemete a+j se denotará como (a,1) y aj se denotará como (0,a). Se define la operación suma dentro del conjunto como: Para $(a,b) \in \mathbb{C}$ y $(m,n) \in \mathbb{C}$ se define la suma en \mathbb{C} como:

$$(a,b) + (m,n) = (a+m,b+n)$$

y se define el producto como:

$$(a,b)\cdot(m,n)=(am-bn,an+bn)$$

Proof.: La prueba es inmediata ya que como se define la suma externa a+j=(a,1), define un elemento del conjunto \mathbb{C} , que no esta en \mathbb{R} , igualmente $a\cdot j=(0,a)$ describe un elemento de \mathbb{C} , que no esta en \mathbb{R} , además define que un elemento $(a,b)\in\mathbb{C}$ opera bajo la suma con otro elemento $(m,n)\in\mathbb{C}$ y dicha operación recae en la forma forma de elementos definida en \mathbb{C} , de igual forma se define el producto. Por consiguiente \mathbb{C} es una extensión de \mathbb{R} .

Theorem 5: El conjunto \mathbb{C} definido anteriormente bajo las operaciones de suma y multiplicación definidas allí es un cuerpo o campo.

Proof. : Bajo la suma

1. Cerradura: Note que como esá definida la suma en \mathbb{C} se tiene que \mathbb{C} es cerrado bajo la suma, ya que si $(a,b) \in \mathbb{C}$ y $(m,n) \in \mathbb{C}$ entonces

$$(a,b) + (m,n) = (a+m,b+n)$$

esta en \mathbb{C} .

2. Asociatividad: Sean $(a,b) \in \mathbb{C}$, $(m,n) \in \mathbb{C}$ y $(x,y) \in \mathbb{C}$, entonces:

$$((a,b) + (m,n)) + (x,y) = (a+m,b+n) + (x,y)$$

$$= ((a+m) + x, (b+n) + y)$$

$$= (a+(m+x),b+(n+y))$$

$$= (a,b) + (m+x,n+y)$$

$$= (a,b) + ((m,n) + (x,y))$$

3. Conmutatividad: Sean $(a,b) \in \mathbb{C}$ y $(m,n) \in \mathbb{C}$ entonces

$$(a,b) + (m,n) = (a+m,b+n)$$

= $(m+a,n+b)$
= $(m,n) + (a,b)$

4. Modulatividad: Sean $(a,b) \in \mathbb{C}$, veamos que existe un elemento $(x,y) \in \mathbb{C}$, tal que

$$(a,b) + (x,y) = (a,b)$$

esto es

$$(a,b) + (x,y) = (a+x,b+y) = (a,b)$$

esto implica que a+x=a y b+y=b por lo tanto $a+x\in\mathbb{R}$, al igual que $b+y\in\mathbb{R}$ entonces se concluye que x=0 e y=0, por lo tanto el módulo de la suma en \mathbb{C} es (0,0) esto implica que para cualquier $(a,b)\in\mathbb{C}$, se tiene que

$$(a,b) + (0,0) = (0,0) + (a,b) = (a,b)$$

5. Invertividad: Sean $(a, b) \in \mathbb{C}$, veamos que existe el inverso aditivo y este se encuentra en \mathbb{C} . Suponga que existe $(x, y) \in \mathbb{C}$, tal que

$$(a,b) + (x,y) = (0,0)$$

esto es:

$$(a,b) + (x,y) = (a+x,b+y) = (0,0)$$

lo que implica que a+x=0 y b+y=0 como esto sucede en los $\mathbb R$ se tiene que x=-a e y=-b, por consiguiente el inverso aditivo de (a,b) es (-a,-b), luego

$$(a,b) + (-a,-b) = (-a,-b) + (a,b) = (0,0)$$

Bajo el producto:

1. Cerradura: Por definición el producto esta bien definido y la multiplicación recae en el conjunto, si $(a,b) \in \mathbb{C}$, y $(m,n) \in \mathbb{C}$ entonces

$$(a,b)\cdot(m,n)=(am-bn,an+bm)$$

esta en \mathbb{C} . Por lo tanto \mathbb{C} es cerrado bajo el producto.

2. Asociatividad: Sean $(a,b) \in \mathbb{C}$, $(m,n) \in \mathbb{C}$ y $(x,y) \in \mathbb{C}$, entonces

$$((a,b) \cdot (m,n)) \cdot (x,y) = (am - bn, an + bm) \cdot (x,y)$$

$$= ((am - bn) x - (an + bm) y, (am - bn) y + (an + bm) x)$$

$$= (amx - bnx - any - bmy, amy - bny + anx + bmx)$$

$$= (a (mx - ny) - b (nx + my), a (my + nx) + b (mx - ny))$$

$$= (a,b) (mx - ny, nx + my)$$

$$= (a,b) ((m,n) \cdot (x,y))$$

por lo tanto \mathbb{C} es asociativo.

3. Conmutatividad: Sean $(a,b) \in \mathbb{C}$ y $(m,n) \in \mathbb{C}$, entonces:

$$(a,b) \cdot (m,n) = (am - bn, an + bm)$$
$$= (ma - nb, na + mb)$$
$$= (m,n) \cdot (a,b)$$

por lo tanto \mathbb{C} es conmutativo

4. Modulativiadad: Sea $(a, b) \in \mathbb{C}$ veamos que en \mathbb{C} existe un (x, y) tal que

$$(a,b) \cdot (x,y) = (a,b)$$

en efecto

$$(a,b)\cdot(x,y) = (ax - by, ay + bx) = (a,b)$$

lo que implica que:

$$ax - by = a$$
 y $ay + bx = b$

analizando y resolviendo el sistema de ecuaciones lineales se tiene que:

$$ax - by = a \qquad (a)$$

$$bx + ay = b (b)$$

$$a^2x - aby = a^2$$

$$b^2x + aby = b^2$$

sumando de arriba hacia abajo se tiene

$$(a^2 + b^2) x = a^2 + b^2$$

de donde

$$x = 1$$

sustituyendo x en cualquiera de las dos ecuaciones se tiene:

$$a(1) - by = a$$

$$-by = 0$$

luego

$$y = 0$$

si $b \neq 0$ por lo tanto (x, y) = (1, 0) siendo este el módulo de la multiplicación.

5. Invertividad: Sea $(a, b) \in \mathbb{C}$, veamos que existe en \mathbb{C} un (x, y) tal que

$$(a,b) \cdot (x,y) = (1,0)$$

esto es:

$$(a,b) \cdot (x,y) = (ax - by, ay + bx) = (1,0)$$

lo que implica que

$$ax - by = 1$$
 y $ay + bx = 0$

resolviendo el sistema de ecuaciones lineales se tiene que:

$$ax - by = 1$$
 (a)

$$bx + ay = 0 (b)$$

$$a^2x - aby = a$$

$$b^2x + aby = 0$$

sumando de arriba hacia abajo componente a componente se tiene que:

$$\left(a^2 + b^2\right)x = a$$

de donde $x = \frac{a}{a^2 + b^2}$. Al sustituir este valor en cualquiera de las dos ecuaciones anteriores se tiene:

$$b\frac{a}{a^2+b^2}+ay=0$$

de donde

$$y = -\frac{b}{a^2 + b^2}$$

con esto se concluye que el inverso multiplicativo de (a,b) es $(x,y) = \left(\frac{a}{a^2 + b^2}, -\frac{b}{a^2 + b^2}\right)$ 6. Distributiviada: Se deja como ejercicio para el lector.

Definition 6: Sea $(a,b) \in \mathbb{C}$, se define el complejo conjugado de (a,b) al complejo (a,-b) y se denota por $\overline{(a,b)}$, es decir:

$$\overline{(a,b)} = (a,-b)$$

Nota 7 : Note que

$$(a,b) \cdot \overline{(a,b)} = (a,b) \cdot (a,-b)$$
$$= (a^2 + b^2, -ab + ab)$$
$$= (a^2 + b^2, 0)$$

el cual seguiremos denotando por

$$(a,b) \cdot \overline{(a,b)} = a^2 + b^2 = |(a,b)|^2$$

Nota 8 Por conveniencia en la manejo matemático de la variable compleja se define el complejo (x, y) como x + jy y por consiguinete para complejos (x_1, y_1) y (x_2, y_2) se tiene que

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

se presentaría como:

$$(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$$

an 'a logamente

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$$

se presentaría como:

$$(x_1 + jy_1) \cdot (x_2 + jy_2) = (x_1x_2 - y_1y_2) + j(x_1y_2 + x_2y_1)$$

por otro lado la magnitud al cuadrado del complejo (x,y) vendría estando dada por:

$$|(x,y)|^2 = (x,y)\overline{(x,y)} = (x^2 + y^2, 0)$$

que bajo la operación anterior estaría dado por:

$$|x + jy|^2 = (x + jy)\overline{(x + jy)} = (x + jy)(x - jy) = x^2 + y^2$$

Nota 9: Note que $j = \sqrt{-1}$ y $j^2 = (\sqrt{-1})^2 = -1$. Ahora note que $j^3 = j^2 j = (-1) j = -j$ y $j^4 = j^2 j^2 = (-1) (-1) = 1$. Si se calcula $j^5 = j^4 j = (1) j = j$ y $j^6 = j^4 j^2 = -1$, ahora $j^7 = j^4 j^3 = -j$ por último $j^8 = j^4 j^4 = 1$ se puede entonces concluir que j^n es cíclico de orden cuatro, es decir que se repite cada cada residuo módulo 4.

Example 10 : Encuentre el valor de:

1.
$$j^{782} = j^2 = -1$$

2.
$$i^{1557} = i^1 = i$$

3.
$$j^{-4593} = j^{-1} = \frac{1}{j} = \frac{1}{j} = -j$$

4.
$$i^{193359} = i^3 = -i$$

Recuerde 11 : De la serie de Taylor se tiene que:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$
 (1.1)

$$sen(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$
 (1.2)

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$
 (1.3)

Que sucede si sustituimos en 1.1.la x por $(j\theta)$ se tiene:

$$\begin{array}{lll} e^{j\theta} & = & 1+j\theta+\frac{(j\theta)^2}{2!}+\frac{(j\theta)^3}{3!}+\ldots+\frac{(j\theta)^n}{n!}+\ldots\\ & = & 1+j\theta-\frac{\theta^2}{2!}-j\frac{\theta^3}{3!}+\frac{\theta^4}{4!}+j\frac{\theta^5}{5!}-\frac{\theta^6}{6!}-j\frac{\theta^7}{7!}+\ldots+\frac{(j\theta)^n}{n!}+\ldots\\ & = & \left(1-\frac{\theta^2}{2!}+\frac{\theta^4}{4!}-\frac{\theta^6}{6!}+\ldots+\frac{(-1)^n\left(\theta\right)^{2n}}{(2n)!}\right)+j\left(\theta-\frac{\theta^3}{3!}+\frac{\theta^5}{5!}-\frac{\theta^7}{7!}+\ldots+\frac{(-1)^n\left(\theta^{2n+1}\right)^n}{(2n+1)!}\right)\\ e^{j\theta} & = & \cos\left(\theta\right)+j\sin\left(\theta\right) \end{array}$$

Conocida como la identidad de Euler

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

Nota 12: Dado que $e^{j\theta} = \cos(\theta) + j\sin(\theta)$, entonces para $\cos(-\theta) = \cos(\theta)$ y $\sin(-\theta) = -\sin(\theta)$ se tiene que:

$$e^{-j\theta} = \cos(-\theta) + j\sin(-\theta)$$

 $e^{-j\theta} = \cos(\theta) - j\sin(\theta)$

realicemos l siguiente operación

$$e^{j\theta} + e^{-j\theta} = \cos(\theta) + j\sin(\theta) + \cos(\theta) - j\sin(\theta)$$

 $e^{j\theta} + e^{-j\theta} = 2\cos(\theta)$

de donde

$$\cos\left(\theta\right) = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

Por otro lado:

$$e^{j\theta} - e^{-j\theta} = \cos(\theta) + j\sin(\theta) - \cos(\theta) + j\sin(\theta)$$

 $e^{j\theta} + e^{-j\theta} = 2j\sin(\theta)$

de donde

$$\sin\left(\theta\right) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

Conocidas como las identidades trigonométricas de Euler.

Observe que todo $z = x + jy \in \mathbb{C}$, se puede escribir de la forma

$$z = x + jy = r\cos(\theta) + jr\sin(\theta)$$
$$= r(\cos(\theta) + j\sin(\theta)) = re^{j\theta}$$

conocida como la forma fasorial de un complejo.

Nota 13 : Se define como fasor de un complejo z a la fase de z y se denota por

$$z = \theta$$

Theorem 14 :(Propiedades de los complejos) Sean z_1 y z_2 dos números complejos entonces:

$$1. \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$2. \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

$$3. \overline{\left[\frac{z_1}{z_2}\right]} = \overline{\frac{z_1}{z_2}}$$

2.
$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$
3.
$$\left[\frac{z_1}{z_2}\right] = \frac{\overline{z_1}}{\overline{z_2}}$$
4.
$$|z_1 + z_2| \le |z_1| + |z_2|$$

5.
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$

5.
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$

6. $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$

Proof. : Sean $z_1 = x_1 + jy_1$ y $z_2 = x_2 + jy_2$ entonces:

1.

$$\overline{z_1 + z_2} = \overline{(x_1 + jy_1) + (x_2 + jy_2)} = \overline{(x_1 + x_2) + j(y_1 + y_2)}$$

$$= (x_1 + x_2) - j(y_1 + y_2) = (x_1 - jy_1) + (x_2 - jy_2)$$

$$= \overline{z_1} + \overline{z_2}$$

2.

$$\overline{z_1 \cdot z_2} = \overline{(x_1 + jy_1) \cdot (x_2 + jy_2)}
= \overline{(x_1x_2 - y_1y_2) + j(y_1x_2 + y_2x_1)}
= (x_1x_2 - y_1y_2) - j(y_1x_2 + y_2x_1)
= (x_1 - jy_1) \cdot (x_2 - jy_2)
= \overline{z_1} \cdot \overline{z_2}$$

3.

$$\overline{\left[\frac{z_1}{z_2}\right]} = \overline{\left[\frac{x_1 + jy_1}{x_2 + jy_2}\right]} = \overline{\left[\frac{(x_1 + jy_1) \cdot (x_2 - jy_2)}{(x_2 + jy_2) \cdot (x_2 - jy_2)}\right]}$$

$$= \overline{\left[\frac{(x_1x_2 + y_1y_2) + j(y_1x_2 - y_2x_1)}{x_2^2 + y_2^2}\right]}$$

$$= \frac{(x_1x_2 + y_1y_2) - j(y_1x_2 - y_2x_1)}{x_2^2 + y_2^2}$$

$$= \frac{(x_1 - jy_1) \cdot (x_2 + jy_2)}{(x_2 + jy_2) \cdot (x_2 - jy_2)} = \frac{(x_1 - jy_1)}{(x_2 - jy_2)}$$

$$= \frac{\overline{z_1}}{\overline{z_2}}$$

4. Note que

$$z \cdot \overline{z} = (x + jy) \cdot (x - jy)$$
$$= x^2 + y^2 = |z|^2$$

por lo tanto

$$|z_{1} + z_{2}|^{2} = (z_{1} + z_{2}) \overline{(z_{1} + z_{2})} = (z_{1} + z_{2}) (\overline{z_{1}} + \overline{z_{2}})$$

$$= z_{1} \overline{z_{1}} + \overline{z_{1}} z_{2} + z_{1} \overline{z_{2}} + z_{2} \overline{z_{2}}$$

$$= |z_{1}|^{2} + \overline{z_{1}} z_{2} + z_{1} \overline{z_{2}} + |z_{2}|^{2}$$

observe que:

$$\overline{z_1}z_2 + z_1\overline{z_2} = (x_1 - jy_1)(x_2 + jy_2) + (x_1 + jy_1)(x_2 - jy_2)$$

$$= 2x_1x_2 + 2y_1y_2$$
(*)

Note que

$$2|z_{1}||z_{2}| = 2\sqrt{x_{1}^{2} + y_{1}^{2}}\sqrt{x_{2}^{2} + y_{2}^{2}}$$

$$= 2\sqrt{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{2}^{2})}$$

$$= 2\sqrt{x_{1}^{2}x_{2}^{2} + x_{1}^{2}y_{2}^{2} + x_{2}^{2}y_{1}^{2} + y_{1}^{2}y_{2}^{2}}$$
(*/*)

Compare (*) con (**)

$$2x_1x_2 + 2y_1y_2 \stackrel{??}{=} 2\sqrt{x_1^2x_2^2 + x_1^2y_2^2 + x_2^2y_1^2 + y_1^2y_2^2}$$

elevando a ambos lados al cuadrado se tiene:

$$(x_{1}x_{2} + y_{1}y_{2})^{2} \stackrel{??}{=} x_{1}^{2}x_{2}^{2} + x_{1}^{2}y_{2}^{2} + x_{2}^{2}y_{1}^{2} + y_{1}^{2}y_{2}^{2}$$

$$x_{1}^{2}x_{2}^{2} + 2x_{1}x_{2}y_{1}y_{2} + y_{1}^{2}y_{2}^{2} \stackrel{??}{=} x_{1}^{2}x_{2}^{2} + x_{1}^{2}y_{2}^{2} + x_{2}^{2}y_{1}^{2} + y_{1}^{2}y_{2}^{2}$$

$$2x_{1}x_{2}y_{1}y_{2} \stackrel{??}{=} x_{1}^{2}y_{2}^{2} + x_{2}^{2}y_{1}^{2}$$

$$0 \stackrel{??}{=} x_{1}^{2}y_{2}^{2} - 2x_{1}x_{2}y_{1}y_{2} + x_{2}^{2}y_{1}^{2}$$

$$0 \stackrel{??}{=} (x_{1}y_{2} - x_{2}y_{1})^{2}$$

$$0 \leq (x_{1}y_{2} - x_{2}y_{1})^{2}$$

por lo tanto

$$2x_1x_2 + 2y_1y_2 \le 2\sqrt{x_1^2x_2^2 + x_1^2y_2^2 + x_2^2y_1^2 + y_1^2y_2^2}$$

por lo tanto

$$\overline{z_1}z_2 + z_1\overline{z_2} \le 2|z_1||z_2|$$

de donde

$$|z_1|^2 + \overline{z_1}z_2 + z_1\overline{z_2} + |z_2|^2 \le |z_1|^2 + 2|z_1||z_2| + |z_2|^2$$

esto es

$$|z_1 + z_2|^2 \le |z_1|^2 + 2|z_1||z_2| + |z_2|^2$$

 $|z_1 + z_2|^2 \le (|z_1| + |z_2|)^2$

de donde

$$|z_1 + z_2| \le |z_1| + |z_2|$$

5.

$$|z_{1} \cdot z_{2}| = |(x_{1} + jy_{1}) \cdot (x_{2} + jy_{2})|$$

$$= |x_{1}x_{2} - y_{1}y_{2} + j(x_{1}y_{2} + x_{2}y_{1})|$$

$$= \sqrt{(x_{1}x_{2} - y_{1}y_{2})^{2} + (x_{1}y_{2} + x_{2}y_{1})^{2}}$$

$$= \sqrt{x_{1}^{2}x_{2}^{2} + x_{1}^{2}y_{2}^{2} + x_{2}^{2}y_{1}^{2} + y_{1}^{2}y_{2}^{2}}$$

$$= \sqrt{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{2}^{2})}$$

$$= \sqrt{(x_{1}^{2} + y_{1}^{2})}\sqrt{(x_{2}^{2} + y_{2}^{2})}$$

$$= |z_{1}| \cdot |z_{2}|$$

6.

$$\begin{vmatrix} \frac{z_1}{z_2} \end{vmatrix} = \begin{vmatrix} \frac{x_1 + jy_1}{x_2 + jy_2} \end{vmatrix} = \begin{vmatrix} \frac{(x_1 + jy_1)(x_2 - jy_2)}{(x_2 + jy_2)(x_2 - jy_2)} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{x_1x_2 + y_1y_2 - j(x_1y_2 - x_2y_1)}{x_2^2 + y_2^2} \end{vmatrix}$$

$$= \frac{\sqrt{(x_1x_2 + y_1y_2)^2 + (x_1y_2 - x_2y_1)^2}}{x_2^2 + y_2^2}$$

$$= \frac{\sqrt{x_1^2x_2^2 + x_1^2y_2^2 + x_2^2y_1^2 + y_1^2y_2^2}}{x_2^2 + y_2^2}$$

$$= \frac{\sqrt{(x_1^2 + y_1^2)(x_2^2 + y_2^2)}}{x_2^2 + y_2^2} = \frac{\sqrt{(x_1^2 + y_1^2)}\sqrt{(x_2^2 + y_2^2)}}{(\sqrt{x_2^2 + y_2^2})^2}$$

$$= \frac{\sqrt{(x_1^2 + y_1^2)}}{\sqrt{x_2^2 + y_2^2}} = \frac{|z_1|}{|z_2|}$$

1.1 Potenciación y raices complejas

Definition 15 : Se define la potencia de un complejo $z \in \mathbb{C}$ al complejo dado por z^n con $n \in \mathbb{C}$

Nota 16: Tenga presente que si $z \in \mathbb{C}$, entonces z puede escribirse como:

$$z = x + jy = re^{j\theta}$$

$$con \ r = \sqrt{x^2 + y^2} \ y \ \theta = \arctan\left(\frac{y}{x}\right), \ por \ lo \ tanto$$

$$z^n = \left(re^{j\theta}\right)^n = r^n e^{j\theta n} = r^n \left(\cos\left(n\theta\right) + j\sin\left(n\theta\right)\right)$$

conocido como el teorema de D'Möivre. Acabamos de demostrar el siguiente teorema

Theorem 17 :(Teorema de D'Möivre) Sea

$$z = x + jy = r(\cos(\theta) + j\sin(\theta))$$

entonces $z^n = (x + jy)^n = r^n (\cos(n\theta) + j\sin(n\theta))$

Example 18 : 1. Calcular $(1+j)^5$.

2. Calcular j^j .

3. Calcular $\left(\frac{1}{2} + j\frac{\sqrt{3}}{2}\right)^{1-j}$

Solution 19:1.

$$(1+j)^5 = \left(\sqrt{2}e^{\frac{\pi}{4}j}\right)^5 = 4\sqrt{2}e^{\frac{5\pi}{4}j} = 4\sqrt{2}\left(\cos\left(\frac{5\pi}{4}\right) + j\sin\left(\frac{5\pi}{4}\right)\right)$$
$$= 4\sqrt{2}\left(-\frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2}\right) = -4 - 4j$$

2.

$$j^j = \left(1e^{\frac{\pi}{2}j}\right)^j = e^{-\frac{\pi}{2}}$$

3.

$$\left(\frac{1}{2} + j\frac{\sqrt{3}}{2}\right)^{1-j} = \left(e^{\frac{\pi}{3}j}\right)^{1-j} = e^{\frac{\pi}{3}j(1-j)} = e^{\frac{\pi}{3}j + \frac{\pi}{3}}$$

$$= e^{\frac{\pi}{3}}\left(\cos\left(\frac{\pi}{3}\right) + j\sin\left(\frac{\pi}{3}\right)\right)$$

$$= e^{\frac{\pi}{3}}\left(\frac{\sqrt{3}}{2} + j\frac{1}{2}\right)$$

Tenga presente que dada una ecuación polinómica de la forma

$$ax^n + b = 0$$

se espera que éstacontenga n soluciones que satisfagan tal ecuación. Pero ai de $ax^n + b = 0$ se despeja la variable x, entonces se obtiene la ecuación:

$$x = \sqrt[n]{-\frac{b}{a}}$$

Luego para $n \in \mathbb{N}$ las n raices tiene que salir $\sqrt[n]{-\frac{b}{a}}$, por lo tanto si se escribe $-\frac{b}{a}$ en su forma polar se obtiene que:

$$-\frac{b}{a} = re^{j\theta}$$

por lo que

$$x = \sqrt[n]{re^{j\theta}}$$

Tenga presente que

$$\cos(\theta + 2\pi) = \cos(\theta)\cos(2\pi) - \sin(\theta)\sin(2\pi) = \cos(\theta)$$

$$\sin(\theta + 2\pi) = \sin(\theta)\cos(2\pi) + \cos(\theta)\sin(2\pi) = \sin(\theta)$$

por lo tanto $e^{j\theta} = e^{j(\theta + 2k\pi)}$ con $k \in \mathbb{N}$. Por consiguiente:

$$x = \sqrt[n]{re^{j(\theta + 2k\pi)}} = r^{\frac{1}{n}}e^{j\frac{(\theta + 2k\pi)}{n}}$$

observe que si k es múltiplo de n entonces la posición de $e^{j\frac{(\theta+2k\pi)}{n}}$ se repite y caería en el mismo lugar, así qu la n raices del polinomio se encuentran en todos los vaslores de $k \in \{0,1,2,...,n-1\}$. Por lo tanto las raices del polinomio se encuentran el la frontera del círculo de radio r^{1n} y en los ángulos dados por $\frac{(\theta+2k\pi)}{n}$. Acabamos de demostrar el siguiente teorema

Theorem 20: Las raices de l complejo z se encuentran en la frontera del cel círculo de radio $r^{\frac{1}{n}}$ y en los ángulos $\frac{(\theta+2k\pi)}{n}$ para $k\in\{0,1,2,...,n-1\}$

Example 21 : 1. Calcule $\sqrt[5]{1}$

2. CAlcule $\sqrt[4]{j}$

3. Calcule
$$\left(\frac{\sqrt{3}}{2} - j\frac{1}{2}\right)^{\frac{1}{4}}$$

Solution 22 1.

$$\sqrt[5]{1} = \sqrt[5]{1e^{j(0+2k\pi)}} = 1^{\frac{1}{5}}e^{j\frac{(2k\pi)}{5}} = e^{j\frac{2k\pi}{5}}$$

$$z_{0} = e^{j\frac{2(0)\pi}{5}} = 1$$

$$z_{1} = e^{j\frac{2(1)\pi}{5}} = \cos\left(\frac{2\pi}{5}\right) + j\sin\left(\frac{2\pi}{5}\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4} + j\left(\frac{1}{4}\sqrt{2}\sqrt{5} + 5\right)$$

$$z_{2} = e^{j\frac{2(2)\pi}{5}} = \cos\left(\frac{4\pi}{5}\right) + j\sin\left(\frac{4\pi}{5}\right) = -\frac{1}{4}\sqrt{5} - \frac{1}{4} + j\left(\frac{1}{4}\sqrt{2}\sqrt{5} - \sqrt{5}\right)$$

$$z_{3} = e^{j\frac{2(3)\pi}{5}} = \cos\left(\frac{6\pi}{5}\right) + j\sin\left(\frac{6\pi}{5}\right) = -\frac{1}{4}\sqrt{5} - \frac{1}{4} + j\left(-\frac{1}{4}\sqrt{2}\sqrt{5} - \sqrt{5}\right)$$

$$z_{4} = e^{j\frac{2(4)\pi}{5}} = \cos\left(\frac{8\pi}{5}\right) + j\sin\left(\frac{8\pi}{5}\right) = \frac{1}{4}\sqrt{5} - \frac{1}{4} + j\left(-\frac{1}{4}\sqrt{2}\sqrt{5} + 5\right)$$

2.

$$\sqrt[4]{j} = \sqrt[4]{1e^{j(\frac{\pi}{2} + 2k\pi)}} = 1^{\frac{1}{4}}e^{j(\frac{\pi}{2} + 2k\pi)} = e^{j(\frac{\pi}{8} + \frac{k\pi}{2})}$$

$$z_{1} = e^{j\left(\frac{\pi}{8} + \frac{(1)\pi}{2}\right)} = e^{j\frac{5\pi}{8}} = \cos\left(\frac{5\pi}{8}\right) + j\sin\left(\frac{5\pi}{8}\right)$$

$$z_{2} = e^{j\left(\frac{\pi}{8} + \frac{(2)\pi}{2}\right)} = e^{j\frac{9\pi}{8}} = \cos\left(\frac{9\pi}{8}\right) + j\sin\left(\frac{9\pi}{8}\right)$$

$$z_{3} = e^{j\left(\frac{\pi}{8} + \frac{(3)\pi}{2}\right)} = e^{j\frac{13\pi}{8}} = \cos\left(\frac{13\pi}{8}\right) + j\sin\left(\frac{13\pi}{8}\right)$$
3.
$$\left(\frac{\sqrt{3}}{2} - j\frac{1}{2}\right)^{\frac{1}{4}} = \sqrt[4]{1e^{j\left(\frac{11\pi}{6} + 2k\pi\right)}} = 1^{\frac{1}{4}}e^{j\left(\frac{11\pi}{6} + 2k\pi\right)} = e^{j\left(\frac{11\pi}{24} + \frac{k\pi}{2}\right)}$$

$$z_{0} = e^{j\left(\frac{11\pi}{24} + \frac{(0)\pi}{2}\right)} = e^{j\frac{11\pi}{24}} = \cos\left(\frac{11\pi}{24}\right) + j\sin\left(\frac{11\pi}{24}\right)$$

$$z_{1} = e^{j\left(\frac{11\pi}{24} + \frac{(1)\pi}{2}\right)} = e^{j\frac{23\pi}{24}} = \cos\left(\frac{23\pi}{24}\right) + j\sin\left(\frac{23\pi}{24}\right)$$

$$z_{2} = e^{j\left(\frac{11\pi}{24} + \frac{(2)\pi}{2}\right)} = e^{j\frac{35\pi}{24}} = \cos\left(\frac{35\pi}{24}\right) + j\sin\left(\frac{35\pi}{24}\right)$$

$$z_{3} = e^{j\left(\frac{11\pi}{24} + \frac{(3)\pi}{2}\right)} = e^{j\frac{47\pi}{24}} = \cos\left(\frac{47\pi}{24}\right) + j\sin\left(\frac{47\pi}{24}\right)$$

 $z_0 = e^{j\left(\frac{\pi}{8} + \frac{(0)\pi}{2}\right)} = e^{j\frac{\pi}{8}} = \cos\left(\frac{\pi}{8}\right) + j\sin\left(\frac{\pi}{8}\right)$

1.2 Variable compleja

Definition 23 : (Variable compleja) Se define la variable compleja como z = x + jy llamada forma Cartesiana o forma de Argant o también como $z = re^{j\theta}$ con $r = \sqrt{x^2 + y^2}$ y $\theta = \arctan\left(\frac{y}{x}\right)$ conocida como la forma de Euler

Definition 24 : (producto cartesiano) Se define el producto cartesianop entre A y B como:

$$A \times B = \{(a, b) / a \in A \ y \ b \in B\}$$

Example 25 : Sea $A = \{1, m, t\}$ y sea $B = \{3, n, 6, u\}$ entonces el producto cartesiano $A \times B$ está dado por:

$$A \times B = \{(1,3), (1,n), (1,6), (1,u), (m,3), (m,n), (m,6), ...$$

 $(m,u), (t,3), (t,n), (t,6), (t,u)\}$

Definition 26 : (Relación) Sean A y B dos conjuntos y $A \times B$ su producto cartesiano, se dice que R es una relación entre A y B lo cual se denota por:

$$R: A \rightarrow B$$
 of $A R B$

Example 27 : Sea $A = \{1, m, t\}$ y sea $B = \{3, n, 6, u\}$ entonces una relación R_1 esta dada por:

$$R_1 = \{(1,3), (1,n), (m,n), (t,3)\}$$

Una relación R_2 puede ser:

$$R_2 = \{(1,3), (1,n), (m,3), (m,6), (t,3)\}$$

Definition 28: (Dominio, codominio y rango) Sean A y B dos conjuntos y R una relación entre A y B, se define el dominio de la relación R como el conjunto formado por los $a \in A$ tal que $(a,b) \in R$. Se define el codominio de la relación R como el conjunto B tal que existe un $b \in B$ tal que $(a,b) \in R$. Se define el rango de R al conjunto formado por los $b \in B$ tal que $(a,b) \in R$

Definition 29 (Función) Sean A y B dos conjuntos y sea R una relación de A en B se dice que R es una función de A en B si se cumplen las siguientes dos condiciones.

- 1. Todo elemento del conjunto de partida es dominio
- 2. Todo elemento del dominio tiene una y solo una imagen.

Nota 30: La función de variable compleja esta definida igual a como esta definida la función entre conjuntos, es decir, $F: U \to \mathbb{C}$ es una función de variable compleja si $U \subset \mathbb{C}$ y:

- 1. Todo elemento de U tiene imagen
- 2. Todo elemento de U tiene una y solo una imagen.

A la función F se le seguirá llamando mapeo, dado que su dominio es un gràfico en el plano de Argant y su imagen será por consiguiente otro gráfico en el plano imagen de Argant.

Tenga presente que $F: U \to \mathbb{C}$ es una función de variable compleja, entonces para $(x,y) \in U$ su imagen es

$$F(x,y) = (u,v) = (u(x,y),v(x,y)) = u(x,y) + jv(x,y)$$

A los conjuntos $U \subset \mathbb{C}$ se les conoce en variable compleja como dominios de \mathbb{C} .

Example 31 : En que es mapeado el dominio y = ax + b a través del mapeo $f(z) = z^2$

Solution 32: Primero se debe escribir la función $f(z) = z^2$ en términos de x y y, con el fin de identificar quienes son u y v. Por lo tanto:

$$f(x,y) = (x+jy)^2 = x^2 - y^2 + 2jxy$$

de donde $u = x^2 - y^2$ y v = 2xy, debemos en ambas ecuaciones eliminar los parámetros x y y de tal forma que v quede en términos de u.

$$u = x^{2} - (ax + b)^{2}$$
 $v = 2x (ax + b)$
 $u = x^{2} (1 - a^{2}) - 2axb - b^{2}$ $v = 2ax^{2} + 2xb$

en ambas ecuaciones despejamos la x, obteniendo que:

$$x = \frac{2ab \pm \sqrt{4a^2b^2 - 4(1 - a^2)(-b^2 - u)}}{2(1 - a^2)}$$
$$x = \frac{-2b \pm \sqrt{4b^2 - 4(2a)(-v)}}{4a}$$

por lo tanto de estas dos últimas ecuaciones sde tiene:

$$\frac{2ab \pm \sqrt{4a^2b^2 - 4(1 - a^2)(-b^2 - u)}}{2(1 - a^2)} = \frac{-2b \pm \sqrt{4b^2 - 4(2a)(-v)}}{4a}$$

Luego se despeja a v en términos de u y se podrá por lo tanto trazar la curva asociada. Se deja como ejercicio para el lector realizar esta operación.

Example 33: En que es mapeado el dominio x = k, a través del mapeo $f(z) = e^z$.

Solution 34: Remedando el proceso anterior se tiene:

$$f(x,y) = e^{x+jy} = e^x e^{jy} = e^x (\cos(y) + j\sin(y))$$

= $e^x \cos(y) + je^x \sin(y)$

de donde

$$u(x,y) = e^x \cos(y)$$
 y $v(x,y) = e^x \sin(y)$

 $como \ x = k \ se \ tiene \ entonces \ que$

$$u(x,y) = e^k \cos(y)$$
 y $v(x,y) = e^k \sin(y)$

 $de \ donde$

$$\frac{u}{e^k} = \cos(y) \qquad y \qquad \frac{v}{e^k} = \sin(y)$$
$$\left(\frac{u}{e^k}\right)^2 = \cos^2(y) \qquad y \qquad \left(\frac{v}{e^k}\right)^2 = \sin^2(y)$$

por lo tanto

$$1 = \cos^2(y) + \sin^2(y) = \left(\frac{u}{e^k}\right)^2 + \left(\frac{v}{e^k}\right)^2$$

obteniendo por consiguiente

$$u^2 + v^2 = e^{2k}$$

 $la \ cual \ es \ una \ circunferencia \ de \ radio \ e^k$

Example 35: En que es mapeado y = k a través del mismo mapeo $f(z) = e^z$

Solution 36: Del resultado obtenido en el ejrcicio anterior se tiene que:

$$u(x,y) = e^x \cos(y)$$
 y $v(x,y) = e^x \sin(y)$

como y = k se tiene por consiquiente que

$$u(x,y) = e^x \cos(k)$$
 y $v(x,y) = e^x \sin(k)$

Ahora si dividimos v sobre u se obtiene:

$$\frac{v}{u} = \frac{e^x \sin(k)}{e^x \cos(k)} = \tan(k)$$

de donde

$$v = \tan(k) u$$

la cual es una recta que pasa por el origen y ntiene pendiente tan(k)

Existen diferentes mapeos y muchhos de ellos deben su nombre a su condición. El mapeo lineal es conocido por su forma ya que esta definido por f(z) = z, análogamente el mapeo cuadrático esta dado por $f(z) = z^2$. Por otro lado otros mapeo son conocidos por lo acción que realiza sobre el dominio, uno de ellos es el mapeo de inversión $f(z) = \frac{1}{z}$ dado que este mapeo, invierte con respecto al eje real cualquier punto del dominio.

Example 37 : en que es mapeado el dominio y = x a través del mapeo de inversión.

Solution 38: como $w = f(z) = \frac{1}{z}$ entonces $z = \frac{1}{w}$ esto es:

$$x + jy = \frac{1}{u + jv} = \frac{u - jv}{(u + jv)(u - jv)}$$
$$= \frac{u}{u^2 + v^2} - j\frac{v}{u^2 + v^2}$$

de donde

$$x = \frac{u}{u^2 + v^2}$$
 y $y = -\frac{v}{u^2 + v^2}$

como y = x se tiene entonces que

$$x = \frac{u}{u^2 + v^2}$$
 y $x = -\frac{v}{u^2 + v^2}$

entonces

$$\frac{u}{u^2+v^2}=-\frac{v}{u^2+v^2}$$

o lo que es lo mismo

$$v = -u$$

Mapeo bilinea

Definition 39: (Mapeo bilineal) Se define el mapeo bilineal como: $f(z) = \frac{\alpha z + \beta}{\gamma z + \delta}$ para α , β , γ y δ en \mathbb{C} y es tal que:

$$z \xrightarrow{dilata \ o \ contrae} \gamma z \xrightarrow{desplaza} \gamma z + \delta \xrightarrow{} \frac{1}{\gamma z + \delta} \xrightarrow{desplaza} \frac{1}{\gamma z + \delta} + \phi = \frac{\alpha z + \beta}{\gamma z + \delta}$$

Siendo $\alpha = \gamma \phi \ y \ \beta = \delta \phi$

Example 40 : 1. En que es mapeado x = k a través del mapeo bilineal $f(z) = \frac{z-1}{z+1}$ 2. En que es mapeado y = k a través del mismo mapeo

Solution 41 : Sea
$$w = f(z) = \frac{z-1}{z+1}$$
 por lo tanto
$$(z+1)w = z-1$$
$$w+wz = z-1$$
$$wz-z = -w-1$$
$$z = \frac{1+w}{1-w}$$

 $como \ z = x + jy \ y \ w = u + jv \ se \ tiene \ entonces \ que$

$$x + jy = \frac{1 + u + jv}{1 - u - jv} = \frac{(1 + u + jv)(1 - u + jv)}{(1 - u - jv)(1 - u + jv)}$$
$$= \frac{(1 - u^2 - v^2) + 2jv}{v^2 + (u - 1)^2}$$
$$= \frac{1 - u^2 - v^2}{v^2 + (u - 1)^2} + j\frac{2v}{v^2 + (u - 1)^2}$$

por lo tanto

$$x = \frac{1 - u^2 - v^2}{v^2 + (u - 1)^2}$$
 y $y = \frac{2v}{v^2 + (u - 1)^2}$

1. Si x = k se tiene que $k = \frac{1 - u^2 - v^2}{v^2 + (u - 1)^2}$ de donde:

$$k\left(v^{2} + (u-1)^{2}\right) = 1 - u^{2} - v^{2}$$

$$ku^{2} - 2ku + kv^{2} + k = 1 - u^{2} - v^{2}$$

$$ku^{2} - 2ku + kv^{2} + u^{2} + v^{2} = 1 - k$$

$$(k+1)u^{2} - 2ku + (k+1)v^{2} = 1 - k$$

$$u^{2} - \frac{2k}{(k+1)}u + v^{2} = \frac{1 - k}{(k+1)}$$

$$u^{2} - \frac{2k}{(k+1)}u + \frac{k^{2}}{(k+1)^{2}} + v^{2} = \frac{1 - k}{(k+1)} + \frac{k^{2}}{(k+1)^{2}}$$

$$\left(u - \frac{k}{k+1}\right)^{2} + v^{2} = \frac{1}{(k+1)^{2}}$$

La cual es una circunferencia con centro en $\left(\frac{k}{k+1},0\right)$ y radio $\frac{1}{k+1}$

2. como y = k se tiene que: $y = \frac{2v}{v^2 + (u-1)^2}$ y por lo tanto:

$$k = \frac{2v}{v^2 + (u - 1)^2}$$

$$k\left(v^2 + (u - 1)^2\right) = 2v$$

$$ku^2 - 2ku + kv^2 + k = 2v$$

$$ku^2 - 2ku + kv^2 - 2v + k = 0$$

$$u^2 - 2u + 1 + v^2 - \frac{2}{k}v = 0$$

$$(u - 1)^2 + v^2 - \frac{2}{k}v + \frac{1}{k^2} = \frac{1}{k^2}$$

$$(u - 1)^2 + \left(v - \frac{1}{k}\right)^2 = \frac{1}{k^2}$$

La cual es una circunferencia con centro en $\left(1,\frac{1}{k}\right)$ y radio $\frac{1}{k}$.

1.3 Límites

Definition 42 : Se define el l'imite de una función f(z) cuando $z \to z_0$ (z tiende a z_0) con $z \in \mathbb{C}$, como:

$$\forall \xi > 0, \exists \delta > 0, \ tal \ que \ |z - z_0| < \delta \ entonces \ |f(z) - L| < \xi$$

y se denota por:

$$\lim_{z \to z_0} f\left(z\right) = L$$

Tenga presente que si z = x + jy y $z_0 = x_0 + jy_0$ entonces

$$|z - z_0| < \delta$$
 es $|x + jy - x_0 - jy_0| < \delta$

esto es

$$\frac{|(x - x_0) + j(y - y_0)|}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} < \delta$$

$$(x - x_0)^2 + (y - y_0)^2 < \delta^2$$

el cual es el interior de una circunferencia con centro en (x_0, y_0) y radio δ . Tenga presente que f(z) = f(x, y) = u(x, y) + jv(x, y), por lo tanto para z = x + jy y $z_0 = x_0 + jy_0$, también visto como z = (x, y) y $z_0 = (x_0, y_0)$, se tiene entonces que $\lim_{z \to z_0} f(z) = L$ se puede ver como:

$$\lim_{z \to z_{0}} f(z) = \lim_{(x,y) \to (x_{0},y_{0})} f(x,y)$$

$$\lim_{(x,y) \to (x_{0},y_{0})} [u(x,y) + jv(x,y)] = \lim_{(x,y) \to (x_{0},y_{0})} u(x,y) + j \lim_{(x,y) \to (x_{0},y_{0})} v(x,y)$$

los cuales son límites de funciones en varias variables.

Una de las formas de calcular los límites en varias variables es a través de la conversión a coordenadas polares o Eulerianas, en donde $x = r\cos(\theta)$ y $y = r\sin(\theta)$. note que decir que (x,y) tiendaa (x_0,y_0) $((x,y) \to (x_0,y_0))$ es lo mismo que decir que $(x-x_0,y-y_0)$ tienda a (0,0) lo que hace que el radio r del sistema en coordenadas polares o Eulerianas tienda a (0,0). Lo que implica que

$$\lim_{(x,y)\to(x_{0},y_{0})}\left[u\left(x,y\right)+jv\left(x,y\right)\right]=\lim_{r\to0}\left[u\left(r\cos\left(\theta\right),r\sin\left(\theta\right)\right)+jv\left(r\cos\left(\theta\right),r\sin\left(\theta\right)\right)\right]$$

Example 43 : Calcular $\lim_{z\to 0} \frac{z}{|z|^2}$

Solution 44:

$$\lim_{z \to 0} \frac{z}{|z|^2} = \lim_{r \to 0} \frac{r \cos(\theta) + jr \sin(\theta)}{r^2}$$
$$= \lim_{r \to 0} \frac{\cos(\theta) + j \sin(\theta)}{r} = no \ existe$$

Example 45 : Calcular $\lim_{(x,y)\to(0,0)} \frac{x^3 + jxy^2}{x^2 + y^2}$

Solution 46:

$$\lim_{(x,y)\to(0,0)} \frac{x^3 + jxy^2}{x^2 + y^2} = \lim_{r\to 0} \frac{r^3 \cos^3(\theta) + jr^3 \cos(\theta) \sin^2(\theta)}{r^2}$$
$$= \lim_{r\to 0} \frac{r^3 \left(\cos^3(\theta) + j\cos(\theta) \sin^2(\theta)\right)}{r^2}$$
$$= \lim_{r\to 0} r \left(\cos^3(\theta) + j\cos(\theta) \sin^2(\theta)\right) = 0$$

Example 47 : Calcular $\lim_{(x,y)\to(0,0)} \frac{2x+3jy^2}{x^2+y^3}$

Solution 48:

$$\lim_{(x,y)\to(0,0)} \frac{2x+3jy^2}{x^2+y^3} = \lim_{r\to 0} \frac{2r\cos(\theta) + 3jr^2sen^2(\theta)}{r^2\cos^2(\theta) + r^3sen^3(\theta)}$$

$$= \lim_{r\to 0} \frac{r\left(2\cos(\theta) + 3jrsen^2(\theta)\right)}{r^2(\cos^2(\theta) + rsen^3(\theta))}$$

$$= \lim_{r\to 0} \frac{2\cos(\theta) + 3jrsen^2(\theta)}{r\left(\cos^2(\theta) + rsen^3(\theta)\right)}$$

$$= No existe$$

Definition 49 :(Continuidad) Se dice que una función f(z) es continua si:

$$\forall \xi > 0, \ \exists \delta > 0, \ tal \ que \ si \ |z - z_0| < \delta \ entonces |f(z) - f(z_0)| < \xi$$

y en tal caso se escribe como:

$$\lim_{z \to z_0} f(z) = f(z_0)$$

Note que si f(z) = f(x,y) = u(x,y) + jv(x,y) se tiene entonces que al tomar el límite

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

se tendría entonces que para z = (x, y) y $z_0 = (x_0, y_0)$ entonces

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{(x,y) \to (x_0, y_0)} \frac{f(x,y) - f(x_0, y_0)}{x + jy - x_0 - jy_0}$$

$$= \lim_{(x,y) \to (x_0, y_0)} \frac{u(x,y) + jv(x,y) - u(x_0, y_0) - jv(x_0, y_0)}{x + jy - x_0 - jy_0}$$

si nos aproximamos a (x_0, y_0) usando el eje imaginario, entonces $x = x_0$, y por lo tanto

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{y \to y_0} \frac{u(x_0, y) + jv(x_0, y) - u(x_0, y_0) - jv(x_0, y_0)}{jy - jy_0}$$
$$= \lim_{y \to y_0} \frac{u(x_0, y) - u(x_0, y_0) + j(v(x_0, y) - v(x_0, y_0))}{j(y - y_0)}$$

si llamamos $\Delta y = y - y_0$, se tiene que para cuando $y \to y_0$, entonces $\Delta y \to 0$, y por consiguiente $y = y_0 + \Delta y$. Reemplazando todo esto en la igualdad anterior se tiene:

$$\lim_{z \to z_{0}} \frac{f(z) - f(z_{0})}{z - z_{0}} = \lim_{\Delta y \to 0} \frac{u(x_{0}, y_{0} + \Delta y) - u(x_{0}, y_{0}) + j(v(x_{0}, y_{0} + \Delta y) - v(x_{0}, y_{0}))}{j\Delta y}$$

$$= \frac{1}{j} \lim_{\Delta y \to 0} \frac{u(x_{0}, y_{0} + \Delta y) - u(x_{0}, y_{0})}{\Delta y} + \lim_{\Delta y \to 0} \frac{j(v(x_{0}, y_{0} + \Delta y) - v(x_{0}, y_{0}))}{j\Delta y}$$

$$= \frac{1}{j} \frac{\partial u(x_{0}, y_{0})}{\partial y} + \frac{\partial v(x_{0}, y_{0})}{\partial y} = \frac{\partial v(x_{0}, y_{0})}{\partial y} - j\frac{\partial u(x_{0}, y_{0})}{\partial y}$$

Ahora si nos aproximamos a (x_0, y_0) por el eje real sucede que $y = y_0$, y por lo tanto

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{x \to x_0} \frac{u(x, y_0) + jv(x, y_0) - u(x_0, y_0) - jv(x_0, y_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{u(x, y_0) - u(x_0, y_0) + j(v(x, y_0) - v(x_0, y_0))}{x - x_0}$$

si llamamos $\Delta x = x - x_0$, se tiene que para cuando $x \to x_0$, entonces $\Delta x \to 0$, y por consiguiente $x = x_0 + \Delta x$. Reemplazando todo esto en la igualdad anterior se tiene:

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0) + j(v(x_0 + \Delta x, y_0) - v(x_0, y_0))}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} + \lim_{\Delta x \to 0} \frac{j(v(x_0 + \Delta x, y_0) - v(x_0, y_0))}{\Delta x}$$

$$= \frac{\partial u(x_0, y_0)}{\partial x} + j\frac{\partial v(x_0, y_0)}{\partial x}$$

como el límite no importa como se aproxime al punto es único entonces

$$\frac{\partial u\left(x_{0}, y_{0}\right)}{\partial x} + j \frac{\partial v\left(x_{0}, y_{0}\right)}{\partial x} = \frac{\partial v\left(x_{0}, y_{0}\right)}{\partial y} - j \frac{\partial u\left(x_{0}, y_{0}\right)}{\partial y}$$

por igualdad de números complejos se tiene entonces que:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 y $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$

Definition 50 : (Derivada compleja) Sea f(z) una función de variable compleja, se dice que f es diferenciable en $z_0 \in D$ con $D \subset \mathbb{C}$ un dominio complejo si existe el límite dado por:

$$f'(z_0) = \frac{df(z_0)}{dz} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Theorem 51: (Cauchy -Riemman) Sea f(z) una función de variable compleja diferenciable en z_0 , entonces para f(z) = f(x,y) = u(x,y) + jv(x,y) se tiene que:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 y $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$

y su derivada esta dada por

$$f'(z_0) = \frac{df(z_0)}{dz} = \frac{\partial v(x_0, y_0)}{\partial y} - j\frac{\partial u(x_0, y_0)}{\partial y} = \frac{\partial u(x_0, y_0)}{\partial x} + j\frac{\partial v(x_0, y_0)}{\partial x}$$

Example 52 : Calcular la derivada de:

- 1. f(z) = z.
- 2. $f(z) = z^2$
- 3. $f(z) = z^3$
- 4. $f(z) = e^z$
- 5. $f(z) = \cos(z)$
- 6. f(z) = sen(z)
- 7. f(z) = senh(z)
- 8. $f(z) = \cosh(z)$

Solution 53 : 1.

$$\frac{df(z_0)}{dz} = \frac{dz}{dz} = \frac{d(x+jy)}{dz} = \frac{\partial x}{\partial x} + j\frac{\partial y}{\partial x} = 1$$

2.

$$\frac{df(z_0)}{dz} = \frac{dz^2}{dz} = \frac{d(x+jy)^2}{dz} = \frac{d(x^2-y^2+2jxy)}{dz}$$
$$= \frac{\partial 2xy}{\partial y} - j\frac{\partial(x^2-y^2)}{\partial y} = 2x + j2y = 2(x+jy)$$
$$= 2z$$

3.

$$\frac{df(z_0)}{dz} = \frac{dz^3}{dz} = \frac{d(x+jy)^3}{dz} = \frac{d(x^3 - 3xy^2 + j(3x^2y - y^3))}{dz}
= \frac{\partial(x^3 - 3xy^2)}{\partial x} + j\frac{\partial(3x^2y - y^3)}{\partial x} = 3x^2 - 3y^2 + j6xy
= 3(x^2 - y^2 + j2xy) = 3z^2$$

4.

$$\frac{de^z}{dz} = \frac{de^{x+jy}}{dz} = \frac{de^x e^{jy}}{dz} = \frac{de^x (\cos(y) + j sen(y))}{dz}$$

$$= \frac{d(e^x \cos(y) + j e^x sen(y))}{dz} = \frac{\partial e^x \cos(y)}{\partial x} + j \frac{\partial e^x sen(y)}{\partial x}$$

$$= e^x \cos(y) + j e^x sen(y) = e^x (\cos(y) + j sen(y))$$

$$= e^x e^{jy} = e^{x+jy} = e^z$$

5. Note que

$$\cos(z) = \frac{e^{jz} + e^{-jz}}{2} = \frac{e^{j(x+jy)} + e^{-j(x+jy)}}{2} = \frac{e^{jx-y} + e^{-jx+y}}{2}$$

$$= \frac{e^{-y}(\cos(x) + jsen(x)) + e^{y}(\cos(x) - jsen(x))}{2}$$

$$= \frac{\cos(x)(e^{-y} + e^{y}) - jsen(x)(e^{y} - e^{-y})}{2}$$

$$= \frac{\cos(x)(e^{-y} + e^{y})}{2} - j\frac{sen(x)(e^{y} - e^{-y})}{2}$$

$$= \cos(x)\cosh(y) - jsen(x)senh(y)$$

 $por\ otro\ lado$

$$sen(z) = \frac{e^{jz} - e^{-jz}}{2j} = \frac{e^{j(x+jy)} - e^{-j(x+jy)}}{2j} = \frac{e^{jx-y} - e^{-jx+y}}{2j}$$

$$= \frac{e^{-y}(\cos(x) + jsen(x)) - e^{y}(\cos(x) - jsen(x))}{2j}$$

$$= \frac{\cos(x)(e^{-y} - e^{y}) + jsen(x)(e^{-y} + e^{y})}{2j}$$

$$= -\frac{\cos(x)(e^{y} - e^{-y})}{2j} + \frac{jsen(x)(e^{-y} + e^{y})}{2j}$$

$$= sen(x)\cosh(y) + j\cos(x)senh(y)$$

por lo tanto:

$$\frac{d\cos(z)}{dz} = \frac{\partial(\cos(x)\cosh(y))}{\partial x} - j\frac{\partial(sen(x)senh(y))}{\partial x}$$

$$= -sen(x)\cosh y - j\cos(x)senh(y)$$

$$= -(sen(x)\cosh y + j\cos(x)senh(y))$$

$$= -sen(z)$$

6.

$$\frac{dsen(z)}{dz} = \frac{d(sen(x)\cosh(y) + j\cos(x)senh(y))}{dz}$$

$$= \frac{\partial(sen(x)\cosh(y))}{\partial x} + j\frac{\partial(\cos(x)senh(y))}{\partial x}$$

$$= \cos(x)\cosh(y) - jsen(x)senh(y)$$

$$= \cos(z)$$

7. Note que

$$senh(z) = \frac{e^{z} - e^{-z}}{2} = \frac{e^{x+jy} - e^{-x-jy}}{2} = \frac{e^{x}e^{jy} - e^{-x}e^{-jy}}{2}$$

$$= \frac{e^{x}(\cos(y) + jsen(y)) - e^{-x}(\cos(y) - jsen(y))}{2}$$

$$= \frac{\cos(y)(e^{x} - e^{-x}) + jsen(y)(e^{x} + e^{-x})}{2}$$

$$= \frac{\cos(y)(e^{x} - e^{-x})}{2} + j\frac{sen(y)(e^{x} + e^{-x})}{2}$$

$$= \cos(y)senh(x) + jsen(y)\cosh(x)$$

por otro lado

$$\cosh(z) = \frac{e^z + e^{-z}}{2} = \frac{e^{x+jy} + e^{-x-jy}}{2} = \frac{e^x e^{jy} + e^{-x} e^{-jy}}{2} \\
= \frac{e^x (\cos(y) + j sen(y)) + e^{-x} (\cos(y) - j sen(y))}{2} \\
= \frac{\cos(y) (e^x + e^{-x}) + j sen(y) (e^x - e^{-x})}{2} \\
= \frac{\cos(y) (e^x + e^{-x})}{2} + j \frac{sen(y) (e^x - e^{-x})}{2} \\
= \cos(y) \cosh(x) + j sen(y) senh(x)$$

por lo tanto

$$\frac{d\left(\operatorname{senh}\left(z\right)\right)}{dz} = \frac{d\left(\cos\left(y\right)\operatorname{senh}\left(x\right) + j\operatorname{sen}\left(y\right)\operatorname{cosh}\left(x\right)\right)}{dz}$$

$$= \frac{\partial\left(\operatorname{sen}\left(y\right)\operatorname{cosh}\left(x\right)\right)}{\partial y} - j\frac{\partial\left(\cos\left(y\right)\operatorname{senh}\left(x\right)\right)}{\partial y}$$

$$= \cos\left(y\right)\operatorname{cosh}\left(x\right) + j\operatorname{sen}\left(y\right)\operatorname{senh}\left(x\right)$$

$$= \operatorname{cosh}\left(z\right)$$

8.

$$\frac{d\left(\cosh\left(z\right)\right)}{dz} = \frac{d\left(\cos\left(y\right)\cosh\left(x\right) + j sen\left(y\right) senh\left(x\right)\right)}{dz}$$

$$= \frac{\partial\left(sen\left(y\right) senh\left(x\right)\right)}{\partial y} - j \frac{\partial\left(\cos\left(y\right)\cosh\left(x\right)\right)}{\partial y}$$

$$= \cos\left(y\right) senh\left(x\right) + j \cosh\left(x\right) sen\left(y\right)$$

$$= senh\left(z\right)$$

Definition 54: Sea f(z) una función de variable compleja diferenciable en todo el dominio D, por lo tanto f cumple las condiciones de Cauchy - Riemman, se dirá entonces que f es una función analítica

Theorem 55: Sean f y g dos funciones de variable compleja analíticas en un dominio D, entonces:

1.
$$\frac{d(f(z) \pm g(z))}{dz} = \frac{df(z)}{dz} \pm \frac{dg(z)}{dz}$$
2.
$$\frac{d(f(z) \cdot g(z))}{dz} = f(z)\frac{dg(z)}{dz} + g(z)\frac{df(z)}{dz}$$
3.
$$\frac{d\left(\frac{f(z)}{g(z)}\right)}{dz} = \frac{g(z)\frac{d(f(z))}{dz} - f(z)\frac{d(g(z))}{dz}}{g^{2}(z)}$$
4.
$$\frac{d(f \circ g)(z)}{dz} = \frac{d(f(g(z)))}{dz} = \frac{d(f(g(z)))}{dz} = \frac{d(f(g(z)))}{dz}$$

Proof. : 1.

$$\frac{d(f(z) \pm g(z))}{dz} = \lim_{z \to z_0} \frac{(f(z) \pm g(z)) - (f(z_0) \pm g(z_0))}{z - z_0}
= \lim_{z \to z_0} \frac{(f(z) - f(z_0)) \pm (g(z) - g(z_0))}{z - z_0}
= \lim_{z \to z_0} \frac{(f(z) - f(z_0))}{z - z_0} \pm \lim_{z \to z_0} \frac{(g(z) - g(z_0))}{z - z_0}
= \frac{df(z)}{dz} \pm \frac{dg(z)}{dz}$$

2.

$$\frac{d(f(z) \cdot g(z))}{dz} = \lim_{z \to z_0} \frac{f(z) \cdot g(z) - f(z_0) \cdot g(z_0)}{z - z_0}
= \lim_{z \to z_0} \frac{f(z) g(z) - f(z_0) g(z_0) + f(z) g(z_0) - f(z) g(z_0)}{z - z_0}
= \lim_{z \to z_0} \frac{[f(z) g(z) - f(z) g(z_0)] + [f(z) g(z_0) - f(z_0) \cdot g(z_0)]}{z - z_0}
= \lim_{z \to z_0} \frac{f(z) [g(z) - g(z_0)] + g(z_0) [f(z) - f(z_0)]}{z - z_0}
= \lim_{z \to z_0} \frac{f(z) [g(z) - g(z_0)] + \lim_{z \to z_0} \frac{g(z_0) [f(z) - f(z_0)]}{z - z_0}
= \lim_{z \to z_0} f(z) \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} + \lim_{z \to z_0} g(z_0) \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}
= f(z_0) \frac{dg(z_0)}{dz} + g(z_0) \frac{df(z_0)}{dz}$$

3.

$$\frac{d\left(\frac{f(z)}{g(z)}\right)}{dz} = \lim_{z \to z_0} \frac{\frac{f(z)}{g(z)} - \frac{f(z_0)}{g(z_0)}}{z - z_0} = \lim_{z \to z_0} \frac{\frac{f(z)g(z_0) - g(z)f(z_0)}{g(z)g(z_0)}}{z - z_0}$$

$$= \lim_{z \to z_0} \frac{f(z)g(z_0) - g(z)f(z_0) + g(z_0)f(z_0) - g(z_0)f(z_0)}{g(z)g(z_0)(z - z_0)}$$

$$= \lim_{z \to z_0} \frac{\frac{f(z)g(z_0) - g(z)f(z_0) - g(z_0)f(z_0) - g(z_0)f(z_0)}{g(z)g(z_0)(z - z_0)}$$

$$= \lim_{z \to z_0} \frac{g(z_0)[f(z) - f(z_0)] - f(z_0)[g(z) - g(z_0)]}{g(z)g(z_0)(z - z_0)}$$

$$= \lim_{z \to z_0} \frac{1}{g(z_0)g(z_0)} \lim_{z \to z_0} \frac{g(z_0)[f(z) - f(z_0)] - f(z_0)[g(z) - g(z_0)]}{(z - z_0)}$$

$$= \frac{1}{g(z_0)g(z_0)} \left[\lim_{z \to z_0} \frac{g(z_0)[f(z) - f(z_0)]}{(z - z_0)} - \lim_{z \to z_0} \frac{f(z_0)[g(z) - g(z_0)]}{(z - z_0)}\right]$$

$$= \frac{1}{g(z_0)g(z_0)} \left[g(z_0)\frac{d(f(z_0))}{dz} - f(z_0)\frac{d(g(z_0))}{dz}\right]$$

$$= \frac{g(z_0)\frac{d(f(z_0))}{dz} - f(z_0)\frac{d(g(z_0))}{dz}}{g^2(z_0)}$$

4.

$$\frac{d((f \circ g)(z))}{dz} = \lim_{z \to z_0} \frac{(f \circ g)(z) - (f \circ g)(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{z - z_0}$$

$$= \lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{z - z_0} \frac{g(z) - g(z_0)}{g(z) - g(z_0)}$$

$$= \lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} \frac{g(z) - g(z_0)}{z - z_0}$$

note que como $g\left(z\right)$ es diferenciable entonces f es continua por lo tanto $\lim_{z\to z_0}g\left(z\right)=g\left(z_0\right)$ por lo tanto

$$\lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} = \lim_{g(z) \to g(z_0)} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)}$$

por lo tanto

$$\frac{d((f \circ g)(z))}{dz} = \lim_{z \to z_0} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0}
= \lim_{g(z) \to g(z_0)} \frac{f(g(z)) - f(g(z_0))}{g(z) - g(z_0)} \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0}
= \frac{df(g(z))}{dg(z)} \frac{dg(z)}{dz}$$

ı

Theorem 56 : Sea f(z) una función de variable compleja, entonces si f(z) es analítica en un dominio D entonces f es continua en D.

Proof. Sea f(z) una función de variable compleja, entonces si f(z) es analítica, entonces existe su derivada, es decir:

$$\frac{df(z)}{dz} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = L$$

esto es que:

$$\forall \xi > 0, \exists \delta > 0, \text{ tal que } |z - z_0| < \delta \text{ entonces } \left| \frac{f(z) - f(z_0)}{z - z_0} - L \right| < \xi$$

como
$$\left| \frac{f(z) - f(z_0)}{z - z_0} - L \right| < \xi \text{ entonces}$$

$$\left| \frac{f(z) - f(z_0)}{z - z_0} \right| - |L| \le \left| \frac{f(z) - f(z_0)}{z - z_0} - L \right| < \xi$$

ya que

$$|z| = |z + z_0 - z_0| = |(z - z_0) + z_0| \le |(z - z_0)| + |z_0|$$

de donde

$$|z| - |z_0| \le |(z - z_0)|$$

luego

$$\left| \frac{f(z) - f(z_0)}{z - z_0} \right| < \xi + |L|$$

pero $\left| \frac{f(z) - f(z_0)}{z - z_0} \right| = \frac{|f(z) - f(z_0)|}{|z - z_0|}$ lo cual implica que:

$$\frac{|f(z) - f(z_0)|}{|z - z_0|} < \xi + |L|$$

esto es:

$$\left|f\left(z\right)-f\left(z_{0}\right)\right|<\left(\xi+\left|L\right|\right)\left|z-z_{0}\right|$$

y como $|z - z_0| < \delta$ entonces:

$$|f(z) - f(z_0)| < (\xi + |L|)|z - z_0| < (\xi + |L|)\delta$$

sea $\xi_1 = (\xi + |L|) \delta$. Por lo tanto lo anterior se cumple para todo $\xi_1 = (\xi + |L|) \delta$, entonces:

$$\forall \xi_1>0, \exists \delta>0, \text{ tal que } |z-z_0|<\delta \text{ entonces } |f\left(z\right)-f\left(z_0\right)|<\xi_1$$

o lo que eds lo mismo:

$$\lim_{z \to z_0} f(z) = f(z_0)$$

por lo tanto f(z) es continua en z_0

Exercise 57: Halle las condiciones de Cauchy - Riemman en coordenadas circulares.

Solution 58 : Teniendo presente ladefinición de derivada y las condiciones de Cauchy-Riemman, se tiene que:

$$\frac{df}{dz} = \frac{d(u+jv)}{dz} = \frac{\partial u}{\partial x} + j\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - j\frac{\partial u}{\partial y}$$

Asumiendo las coordenadas circulares del sistema coordenado, se tiene que:

$$x = r \cdot \cos(\theta)$$
$$y = r \cdot sen(\theta)$$

por lo tanto al usar regla de la cadena para $u(r, \theta)$ y $v(r, \theta)$ se tiene que:

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r}$$

pero
$$\frac{\partial x}{\partial r} = \cos(\theta) \ y \frac{\partial y}{\partial r} = sen(\theta)$$
, por lo tanto:

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x}\cos(\theta) + \frac{\partial u}{\partial y}sen(\theta)$$

analogamente

$$\frac{\partial v}{\partial r} = \frac{\partial v}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial r}$$
$$\frac{\partial v}{\partial r} = \frac{\partial v}{\partial x} \cos(\theta) + \frac{\partial v}{\partial y} \sin(\theta)$$

por otro lado

$$\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta}$$
$$\frac{\partial v}{\partial \theta} = \frac{\partial v}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial \theta}$$

donde $\frac{\partial x}{\partial \theta} = -r \cdot sen(\theta) \ y \ \frac{\partial y}{\partial \theta} = r \cdot cos(\theta) \ de \ donde$:

$$\frac{\partial u}{\partial \theta} = -r \cdot sen(\theta) \frac{\partial u}{\partial x} + r \cdot \cos(\theta) \frac{\partial u}{\partial y}$$
$$\frac{\partial v}{\partial \theta} = -r \cdot sen(\theta) \frac{\partial v}{\partial x} + r \cdot \cos(\theta) \frac{\partial v}{\partial y}$$

teniendo por consiquiente el siquiente par de sistemas de ecuacios diferenciales:

$$\begin{array}{lcl} \frac{\partial u}{\partial r} & = & \cos\left(\theta\right) \frac{\partial u}{\partial x} + sen\left(\theta\right) \frac{\partial u}{\partial y} \\ \frac{\partial u}{\partial \theta} & = & -r \cdot sen\left(\theta\right) \frac{\partial u}{\partial x} + r \cdot \cos\left(\theta\right) \frac{\partial u}{\partial y} \end{array}$$

y

$$\frac{\partial v}{\partial r} = \frac{\partial v}{\partial x} \cos(\theta) + \frac{\partial v}{\partial y} \sin(\theta)
\frac{\partial v}{\partial \theta} = -r \cdot \sin(\theta) \frac{\partial v}{\partial x} + r \cdot \cos(\theta) \frac{\partial v}{\partial y}$$

que en forma matricial lo podemos de la siguiente manera:

$$\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -r \cdot \sin(\theta) & r \cdot \cos(\theta) \end{bmatrix} \begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial r} \\ \frac{\partial u}{\partial \theta} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{bmatrix} = \begin{bmatrix} \cos \theta & -\frac{\sin \theta}{r} \\ \sin \theta & \frac{\cos \theta}{r} \end{bmatrix} \begin{bmatrix} \frac{\partial u}{\partial r} \\ \frac{\partial u}{\partial \theta} \end{bmatrix}$$

de donde

$$\begin{array}{lll} \frac{\partial u}{\partial x} & = & \cos\theta \frac{\partial u}{\partial r} - \frac{sen\theta}{r} \frac{\partial u}{\partial \theta} \\ \frac{\partial u}{\partial y} & = & sen\theta \frac{\partial u}{\partial r} + \frac{\cos\theta}{r} \frac{\partial u}{\partial \theta} \end{array}$$

igaulmente:

$$\begin{array}{lcl} \frac{\partial v}{\partial r} & = & \frac{\partial v}{\partial x}\cos\left(\theta\right) + \frac{\partial v}{\partial y}sen\left(\theta\right) \\ \frac{\partial v}{\partial \theta} & = & -r\cdot sen\left(\theta\right)\frac{\partial v}{\partial x} + r\cdot \cos\left(\theta\right)\frac{\partial v}{\partial y} \end{array}$$

$$\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -r \cdot \sin(\theta) & r \cdot \cos(\theta) \end{bmatrix} \begin{bmatrix} \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial v}{\partial r} \\ \frac{\partial v}{\partial \theta} \end{bmatrix}$$
$$\begin{bmatrix} \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial y} \end{bmatrix} = \begin{bmatrix} \cos\theta & -\frac{\sin\theta}{r} \\ \sin\theta & \frac{\cos\theta}{r} \end{bmatrix} \begin{bmatrix} \frac{\partial v}{\partial r} \\ \frac{\partial v}{\partial \theta} \end{bmatrix}$$

de donde :

$$\begin{array}{lll} \frac{\partial v}{\partial x} & = & \cos\theta \frac{\partial v}{\partial r} - \frac{\sin\theta}{r} \frac{\partial v}{\partial \theta} \\ \frac{\partial v}{\partial y} & = & \sin\theta \frac{\partial v}{\partial r} + \frac{\cos\theta}{r} \frac{\partial v}{\partial \theta} \end{array}$$

de las condicionea de Cauchy - Riemman se tiene que:

$$\frac{df}{dz} = \frac{\partial u}{\partial x} + j\frac{\partial v}{\partial x} = \left(\cos\theta \frac{\partial u}{\partial r} - \frac{\sin\theta}{r} \frac{\partial u}{\partial \theta}\right) + j\left(\cos\theta \frac{\partial v}{\partial r} - \frac{\sin\theta}{r} \frac{\partial v}{\partial \theta}\right)$$

$$\frac{df}{dz} = \frac{\partial v}{\partial y} - j\frac{\partial u}{\partial y} = \left(\sin\theta \frac{\partial v}{\partial r} + \frac{\cos\theta}{r} \frac{\partial v}{\partial \theta}\right) - j\left(sen\theta \frac{\partial u}{\partial r} + \frac{\cos\theta}{r} \frac{\partial u}{\partial \theta}\right)$$

 $y \ que \ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \ y \ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}, \ luego:$

$$\begin{split} \frac{df}{dz} &= \frac{\partial u}{\partial x} - j\frac{\partial u}{\partial y} = \left(\cos\theta \frac{\partial u}{\partial r} - \frac{sen\theta}{r} \frac{\partial u}{\partial \theta}\right) - j\left(sen\theta \frac{\partial u}{\partial r} + \frac{\cos\theta}{r} \frac{\partial u}{\partial \theta}\right) \\ &= \frac{\partial u}{\partial r} \left(\cos\theta - jsen\theta\right) - j\frac{\partial u}{\partial \theta} \left(\frac{1}{j} \frac{sen\theta}{r} + \frac{\cos\theta}{r}\right) \\ &= \frac{\partial u}{\partial r} \left(\cos\theta - jsen\theta\right) - j\frac{1}{r} \frac{\partial u}{\partial \theta} \left(\cos\theta - jsen\theta\right) \\ &= \frac{\partial u}{\partial r} e^{-j\theta} - j\frac{1}{r} \frac{\partial u}{\partial \theta} e^{-j\theta} = e^{-j\theta} \left(\frac{\partial u}{\partial r} - j\frac{1}{r} \frac{\partial u}{\partial \theta}\right) \end{split}$$

$$\begin{split} \frac{df}{dz} &= \frac{\partial v}{\partial y} + j \frac{\partial v}{\partial x} = \left(\sin \theta \frac{\partial v}{\partial r} + \frac{\cos \theta}{r} \frac{\partial v}{\partial \theta} \right) + j \left(\cos \theta \frac{\partial v}{\partial r} - \frac{\sin \theta}{r} \frac{\partial v}{\partial \theta} \right) \\ &= \frac{\partial v}{\partial r} \left(\sin \theta + j \cos \theta \right) + \frac{\partial v}{\partial \theta} \left(\frac{\cos \theta}{r} - j \frac{\sin \theta}{r} \right) \\ &= j \frac{\partial v}{\partial r} \left(\frac{1}{j} \sin \theta + \cos \theta \right) + \frac{1}{r} \frac{\partial v}{\partial \theta} \left(\cos \theta - j \sin \theta \right) \\ &= \frac{1}{r} \frac{\partial v}{\partial \theta} \left(\cos \theta - j \sin \theta \right) + j \frac{\partial v}{\partial r} \left(\cos \theta - j \sin \theta \right) \\ &= \frac{1}{r} \frac{\partial v}{\partial \theta} e^{-j\theta} + j \frac{\partial v}{\partial r} e^{-j\theta} = e^{-j\theta} \left(\frac{1}{r} \frac{\partial v}{\partial \theta} + j \frac{\partial v}{\partial r} \right) \end{split}$$

por lo tanto de éstas dos últimasigualdades se tiene que:

$$\frac{df}{dz} = e^{-j\theta} \left(\frac{\partial u}{\partial r} - j \frac{1}{r} \frac{\partial u}{\partial \theta} \right) = e^{-j\theta} \left(\frac{1}{r} \frac{\partial v}{\partial \theta} + j \frac{\partial v}{\partial r} \right)$$

por iqualdad de complejos se tiene que:

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \qquad y \qquad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

 $conocidas\ como\ las\ condiciones\ de\ cauchy$ - $Riemman\ en\ coordenadas\ polares\ y\ por\ lo\ tanto$:

$$\frac{df}{dz} = e^{-j\theta} \left(\frac{\partial u}{\partial r} + j \frac{\partial v}{\partial r} \right) = e^{-j\theta} \left(\frac{1}{r} \frac{\partial v}{\partial \theta} - j \frac{1}{r} \frac{\partial u}{\partial \theta} \right) = \frac{1}{r} e^{-j\theta} \left(\frac{\partial v}{\partial \theta} - j \frac{\partial u}{\partial \theta} \right)$$

conocida como la derivada de f en coordenadas circulares.

Example 59 : Calcule la derivada de:

1.
$$f(z) = \ln(z)$$

2.
$$f(z) = z^n$$

Solution 60 : 1.

$$f(z) = \ln(z) = \ln(re^{j\theta}) = \ln(r) + \ln(e^{j\theta}) = \ln(r) + j\theta$$

luego:

$$\frac{d\ln(z)}{dz} = e^{-j\theta} \left(\frac{\partial u}{\partial r} + j \frac{\partial v}{\partial r} \right) = e^{-j\theta} \left(\frac{\partial \ln(r)}{\partial r} + j \frac{\partial \theta}{\partial r} \right)$$
$$= e^{-j\theta} \left(\frac{1}{r} + 0 \right) = \frac{1}{re^{j\theta}} = \frac{1}{z}$$

2.

$$f(z) = z^{n} = (r(\cos(\theta) + j\operatorname{sen}(\theta)))^{n} = r^{n}(\cos(n\theta) + j\operatorname{sen}(n\theta))$$

$$\frac{d(z^n)}{dz} = e^{-j\theta} \left(\frac{\partial u}{\partial r} + j \frac{\partial v}{\partial r} \right) = e^{-j\theta} \left(\frac{\partial \left(r^n \cos\left(n\theta\right) \right)}{\partial r} + j \frac{\partial \left(r^n \sin\left(n\theta\right) \right)}{\partial r} \right)
= e^{-j\theta} \left(nr^{n-1} \cos\left(n\theta\right) + jnr^{n-1} sen\left(n\theta\right) \right)
= nr^{n-1} e^{-j\theta} \left(\cos\left(n\theta\right) + jsen\left(n\theta\right) \right) = nr^{n-1} e^{-j\theta} e^{jn\theta}
= nr^{n-1} e^{j(n-1)\theta} = n \left(re^{j\theta} \right)^{n-1} = nz^{n-1}$$

Nota 61: Tenga presente que para toda función que se pueda escribir de la forma f(z)=f(x,y) se tiene que al sustituir z=x+jy y $\overline{z}=x-jy$ se obtiene que $z+\overline{z}=x+jy+x-jy=2x$ de donde $x=\frac{z+\overline{z}}{2}$, de forma análoga se tiene que $z-\overline{z}=x+jy-x+jy=2jy$ de donde $y=\frac{z-\overline{z}}{2j}$ por lo que $f(x,y)=f\left(\frac{z+\overline{z}}{2},\frac{z-\overline{z}}{2j}\right)=f(z)$. Ahora que si f(x,y) es analítica, se tiene que al sustituir en f(x,y) la x=z y y=0, entonces la función es f(x,y)=f(z) igualmente si en f(x,y) se sustituye y=-jz entonces f(x,y)=f(z)

Example 62: pruebe que $f(z) = \overline{z}$ no es analítica.

Solution 63: $f(z) = \overline{z} = x - jy$ de donde u(x,y) = x y v(x,y) = -y, por lo tanto:

$$\frac{\partial u\left(x,y\right)}{\partial x} = \frac{\partial x}{\partial x} = 1 \quad y \quad \frac{\partial v\left(x,y\right)}{\partial y} = \frac{\partial\left(-y\right)}{\partial y} = -1$$

$$\frac{\partial u\left(x,y\right)}{\partial y} = \frac{\partial x}{\partial y} = 0 \quad y \quad \frac{\partial v\left(x,y\right)}{\partial x} = \frac{\partial\left(-y\right)}{\partial x} = 0$$

por lo que $\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}$ y $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$, luego no cumple las condiciones de Cauchy - Riemman y por consiguiente no es analítica.

Example 64: Calcule f(z) dado que $f(x,y) = (x^3 - 3xy^2) + j(3x^2y - y^3)$, igualment determine si f es analítica.

Solution 65: primero veamos qu f es analítica. Esto es

$$\frac{\partial u(x,y)}{\partial x} = \frac{\partial (x^3 - 3xy^2)}{\partial x} = 3x^2 - 3y^2$$

$$\frac{\partial v(x,y)}{\partial y} = \frac{\partial (3x^2y - y^3)}{\partial y} = 3x^2 - 3y^2$$

$$\frac{\partial u(x,y)}{\partial y} = \frac{\partial (x^3 - 3xy^2)}{\partial y} = -6xy$$

$$\frac{\partial v(x,y)}{\partial x} = \frac{\partial (3x^2y - y^3)}{\partial x} = 6xy$$

 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \ y \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$, luego f es analítica y por lo tanto:

$$f(x,0) = (x^3 - 3x(0)^2) + j(3x^2(0) - (0)^3)$$

haciendo x = z, se tiene:

$$f\left(z,0\right) = z^3 = f\left(z\right)$$

Haciéndolo de otra forma se tiene que:

$$f(0,y) = ((0)^3 - 3(0)y^2) + j(3(0)^2y - y^3)$$

sustituyendo y = -jz se tiene:

$$f(0, -jz) = j(-(-jz)^3) = z^3$$

Example 66: Determine si la función $f(x,y) = \frac{x+jy}{x-jy}$ es analítica y determine a f(z).

Solution 67:
$$f(x,y) = \frac{x+jy}{x-jy} = \frac{x+jy}{x-jy} \frac{x+jy}{x+jy} = \frac{x^2-y^2+2jxy}{x^2+y^2}$$
, por lo tanto
$$\frac{\partial u(x,y)}{\partial x} = \frac{\partial \left(\frac{x^2-y^2}{x^2+y^2}\right)}{\partial x} = \frac{4xy^2}{(x^2+y^2)^2}$$

$$\frac{\partial v(x,y)}{\partial y} = \frac{\partial \left(\frac{2xy}{x^2+y^2}\right)}{\partial y} = \frac{2x(x^2-y^2)}{(x^2+y^2)^2}$$

con esto es suficiente para decir que f(x,y) no es analítica. Por lo tanto:

$$f(x,y) = \frac{x+jy}{x-jy} = \frac{\frac{z+\overline{z}}{2} + j\frac{z-\overline{z}}{2j}}{\frac{z+\overline{z}}{2} - j\frac{z-\overline{z}}{2j}} = \frac{z+\overline{z}+z-\overline{z}}{z+\overline{z}-z+\overline{z}}$$
$$= \frac{2z}{2\overline{z}} = \frac{z}{\overline{z}}$$

note que si en $f(x,y) = \frac{x+jy}{x-jy}$ hacemops y = 0, se tiene que $f(x,0) = \frac{x+j(0)}{x-j(0)} = \frac{x}{x} = 1$, si se hubiero hecho por el otro lado en que x = 0, se hubiera tenido que $f(0,y) = \frac{(0)+jy}{(0)-jy} = \frac{jy}{-jy} = -1$, lo caul coincide con lo que está escrito en la nota.

1.4 Integración compleja

Definition 68 : Considere f(z) una función de variable compleja, se define la integral de f(z) en un dominio D, como :

$$I = \lim_{\Delta z \to 0} \sum_{n=0}^{\infty} f(z_n) \, \Delta z$$

se da la integral definida entre dos puntos como el dominio D que una a dichos puntos y la definición se encuentra inmersa en esta misma definición. A la integral I se le denota por:

$$I = \int_{D} f\left(z\right) dz$$

donde D es el dominio sobre el cual se mueve Δz , y f (z) la imagen de dicho dominio. En este caso tenga presente que

$$\Delta z = z_i - z_{i-1} = x_i + jy_i - x_{i-1} - jy_{i-1} = (x_i - x_{i-1}) + j(y_i - y_{i-1})$$
$$= \Delta x + j\Delta y$$

que de forma infinitesimal se vería como:

$$dz = dx + jdy$$

por lo tanto

$$I = \int_{D} f(z) dz = \int_{D} f(x, y) (dx + jdy) = \int_{D} (u(x, y) + jv(x, y)) (dx + jdy)$$

Example 69 : Calcule $\int_D z^2 dz$ donde D es el dominio dado por:

- 1. La recta que une los puntos -1 + j y 2 + 3j
- 2. los segmentos de recta que unen los mismos puntos pero pasando por 2+j

Solution 70 : 1. Este primer dominio posee una ecuación de la forma: $m = \frac{3-1}{2+1} = \frac{2}{3}$, y su ecuación esta dada por: $y-1=\frac{2}{3}(x+1)$ por lo que

$$y = \frac{2}{3}(x+1) + 1 = \frac{2}{3}x + \frac{5}{3}$$

por lo tanto

$$\int_{D} z^{2} dz = \int_{D} (x + jy)^{2} (dx + jdy) = \int_{D} (x^{2} - y^{2} + 2jxy) (dx + jdy)$$
$$= \int_{D} (x^{2} - y^{2}) dx - (2xy) dy + j [(x^{2} - y^{2}) dy + 2xydx]$$

notre que $dy = \frac{2}{3}dx$ y la x varía en el dominio (-1,2) por lo tanto la integral anterior se sonvierte en:

$$\int_{D} z^{2} dz = \int_{-1}^{2} \left(x^{2} - \left(\frac{2}{3}x + \frac{5}{3} \right)^{2} \right) dx - \left(2x \left(\frac{2}{3}x + \frac{5}{3} \right) \right) \left(\frac{2}{3} dx \right)$$

$$+ j \left[\left(x^{2} - \left(\frac{2}{3}x + \frac{5}{3} \right)^{2} \right) \left(\frac{2}{3} dx \right) + 2x \left(\frac{2}{3}x + \frac{5}{3} \right) dx \right]$$

$$= \int_{-1}^{2} \left[\left(-\frac{1}{3}x^{2} - \frac{40}{9}x - \frac{25}{9} \right) + j \left(\frac{46}{27}x^{2} + \frac{50}{27}x - \frac{50}{27} \right) \right] dx$$

$$= -16 + \frac{7}{3}j$$

2. Para el primer segmento que une los puntos -1+j con 2+j el cual denotaremos por D_1 , se tiene que la coordenada y siempre es igual a 1 por lo tanto y=1. lo que implica que dy=0

$$\int_{D_1} z^2 dz = \int_{D_1} (x+jy)^2 (dx+jdy) = \int_{D_1} (x+j)^2 dx$$
$$= \int_{-1}^2 (x+j)^2 dx = 3j$$

ahora el cálculo de la misma integral pero sobre la recta que une los punto 2 + j con 2 + 3j denotado por D_2 , se tiene que la x es siempre constante e igual a 2, es decir x = 2 y por lo tanto dx = 0. Luego:

$$\int_{D_2} z^2 dz = \int_{D_2} (x + jy)^2 (dx + jdy) = j \int_{D_2} (2 + jy)^2 dy$$
$$= j \int_1^3 (2 + jy)^2 dy = j \left(-\frac{26}{3} + 16j + 8 \right)$$
$$= -16 - \frac{2}{3}j$$

por lo tanto

$$\int_{D} z^{2} dz = \int_{D_{1}} z^{2} dz + \int_{D_{12}} z^{2} dz$$
$$= 3j + -16 - \frac{2}{3}j = -16 + \frac{7}{3}j$$

35

Nota 71: La integral compleja según lo visto, esta directamente relacionaa con la energia dada sobre la función, siempre y cuando esta función sea analítica.

Definition 72: (Funciones armónicas) Sea $f(x_1, x_2, ...x_n)$ una función de variables reales en varias variables, se dice que f es una función armónica si f satisface que:

$$\frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2} = 0$$

Theorem 73 : Sea f(z) una función analítica en $\mathbb C$ entonces las funciones componentes de f son armónicas.

Proof. : Como f es analítica se tiene que:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 y $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

y al existir sus derivadas parciales entonces las derivadas cruzadas son iguales, es decir

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x} \quad \text{igaulmente} \quad \frac{\partial^2 v}{\partial x \partial y} = \frac{\partial^2 v}{\partial y \partial x}$$

luego

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y}$$

pero como $\frac{\partial^2 v}{\partial x \partial y} = \frac{\partial^2 v}{\partial y \partial x}$ entonces:

$$\frac{\partial^2 v}{\partial y \partial x} = -\frac{\partial^2 u}{\partial y^2}$$

por lo tanto:

$$\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2}$$

con lo cual se concluye que:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

ose que u es armónica.

Análogamente se demustra que

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

O sea que v es armónica

Nota 74 : Si f es una función analítica y f(x,y) = u(x,y) + jv(x,y) entonces a la función u(x,y) se le conoce como armónico conjugado de v(x,y). Igualmente a v(x,y) se le conoce como armónico conjugado de u(x,y)

Example 75 : Encuentre el armónico conjugado de $u(x,y) = x^3 - 3xy^2$

Solution 76 : Veamos primero si es armónica:

$$\frac{\partial^2 \left(x^3 - 3xy^2\right)}{\partial x^2} = 6x \qquad \frac{\partial^2 \left(x^3 - 3xy^2\right)}{\partial y^2} = -6x$$

de donde u es armónica. Veamos ahora cual es su armónico conjugado.

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

por lo que

$$\frac{\partial \left(x^3 - 3xy^2\right)}{\partial x} = 3x^2 - 3y^2 = \frac{\partial v}{\partial y}$$

por lo que:

$$v(x,y) = \int (3x^2 - 3y^2) dy = 3x^2y - y^3 + g(x)$$

pero $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ por lo tanto:

$$\frac{\partial \left(3x^{2}y - y^{3} + g\left(x\right)\right)}{\partial x} = 6xy + \frac{dg\left(x\right)}{dx}$$

y como

$$\frac{\partial u}{\partial y} = \frac{\partial \left(x^3 - 3xy^2\right)}{\partial y} = -6xy$$

dado que $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ entonces:

$$6xy + \frac{dg(x)}{dx} = -(-6xy)$$

por lo que $\frac{dg(x)}{dx} = 0$, luego g(x) = k, por lo tanto

$$v(x,y) = 3x^2y - y^3 + k$$

y

$$f(x,y) = x^3 - 3xy^2 + j(3x^2y - y^3 + k)$$

resolviendo se tiene que $f(z) = z^3 + k$

Theorem 77 (De Cauchy-Goursat) Sea f(z) una función de variable compleja, analítica en el interior y el contorno del dominio cerrado y regular D (no posee cruces con sigo misma), entonces $\oint_D f(z) dz = 0$

Proof. : Considere a f(z) analítica en el dominio D, entonces f(z) satisface las condiciones de Cauchy-Riemman, por lo tanto para

$$f(z) = f(x, y) = u(x, y) + jv(x, y)$$

se tiene que:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 y $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

o lo que es lo mismo

$$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} = 0$$
 y $\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0$

Note que si D es un dominio cerrado se tiene que:

$$\oint_D f(z) dz = \oint_D (u(x,y) + jv(x,y)) (dx + jdy)$$

$$= \oint_D (u(x,y) dx - v(x,y) dy) + j \oint_D (u(x,y) dy + v(x,y) dx)$$

Como lo antertior se cumple para funciones en varias variables y ademas son diferenciables puesto que cumplen las condiciones de Cauchy-Riemman entonces satisfacen el teorema de Green que dice que si P(x,y) y Q(x,y) son diferenciables en un dominio cerrado C y este dominio es regular, entonces

$$\oint_{C} \left(P(x,y) \, dx + Q(x,y) \, dy \right) = \iint_{A} \left(\frac{\partial Q(x,y)}{\partial x} - \frac{\partial P(x,y)}{\partial y} \right) dx dy$$

siendo A el área encerrada por C. Por lo tanto al satisfacer u(x,y) y v(x,y) las condiciones del teorema de Green se tiene que:

$$\oint_{D} (u(x,y) dx - v(x,y) dy) = \iint_{A_{D}} \left(-\frac{\partial v(x,y)}{\partial x} - \frac{\partial u(x,y)}{\partial y} \right) dxdy$$

$$= -\iint_{A_{D}} \left(\frac{\partial v(x,y)}{\partial x} + \frac{\partial u(x,y)}{\partial y} \right) dxdy$$

$$= 0$$

análogamente

$$\oint_{D} (u(x,y) dy + v(x,y) dx) = \iint_{A} \left(\frac{\partial u(x,y)}{\partial x} - \frac{\partial v(x,y)}{\partial y} \right) dxdy$$

$$= 0$$

por lo tanto

$$\oint_{D} f(z) dz = \oint_{D} (u(x, y) + jv(x, y)) (dx + jdy) = 0$$

Example 78 : Calcule $\oint_D \frac{1}{z} dz$ siendo D una circunferencia con centro en el origen y radio r

Solution 79: Consideremos a z en su forma polar o forma Euleriana, es decir $z = re^{j\theta}$ por lo tanto al calcular dz se tiene que $dz = dre^{j\theta} = jre^{j\theta}d\theta$ por lo tanto

$$\oint_{D} \frac{1}{z} dz = \int_{0}^{2\pi} \frac{1}{re^{j\theta}} j r e^{j\theta} d\theta = j \int_{0}^{2\pi} d\theta = j\theta|_{0}^{2\pi} = 2\pi j$$

Example 80 : Calcule $\oint_D \frac{1}{z-a} dz$ siendo D una circunferencia con centro en $a \in \mathbb{C}$ y radio r

Solution 81: Consideremos a z-a en su forma polar o forma Euleriana, es decir $z-a=re^{j\theta}$ por lo tanto al calcular dz se tiene que $dz=dre^{j\theta}=jre^{j\theta}d\theta$ por lo tanto

$$\oint_{D} \frac{1}{z - a} dz = \int_{0}^{2\pi} \frac{1}{re^{j\theta}} j r e^{j\theta} d\theta = j \int_{0}^{2\pi} d\theta = j\theta \Big|_{0}^{2\pi} = 2\pi j$$

Supongamos que se tiene una función f(z) analítica en un dominio cerrdo D y suponga que $z_0 \in D$ siendo D un dominio complejo entonces veamos cuanto es

$$\oint_{D} \frac{f\left(z\right)}{z - z_{0}} dz$$

como f(z) es analítica en el dominio cerrado D entonces existe su derivada en todo D, en particular existe su derivada en z_0 es decir, existe

$$\frac{df(z_0)}{dz} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = L$$

esto es:

$$\forall \xi > 0, \ \exists \delta > 0 \ \text{tal que } |z - z_0| < \delta \ \text{entonces} \left| \frac{f(z) - f(z_0)}{z - z_0} - L \right| < \xi$$

como $\left| \frac{f(z) - f(z_0)}{z - z_0} - L \right| < \xi$ se umple se tiene tiene entonces lo siguiente

$$\oint_{D} \left| \frac{f(z) - f(z_0)}{z - z_0} - L \right| dz < \oint_{D} \xi dz = \xi \oint_{D} dz$$

por la desigualdad del triángulo

$$\oint_{D} \left(\left| \frac{f\left(z\right) - f\left(z_{0}\right)}{z - z_{0}} \right| - |L| \right) dz \le \oint_{D} \left| \frac{f\left(z\right) - f\left(z_{0}\right)}{z - z_{0}} - L \right| dz < 2\pi\xi$$

por lo tanto

$$\oint_{D} \left| \frac{f(z) - f(z_0)}{z - z_0} \right| dz - \oint_{D} |L| dz < 2\pi\xi$$

o lo que es lo mismo:

$$\oint_{D} \left| \frac{f\left(z\right) - f\left(z_{0}\right)}{z - z_{0}} \right| dz < 2\pi\xi + \oint_{D} |L| dz = 2\pi \left(\xi + |L|\right)$$

Note que

$$\left| \oint_{D} \frac{f(z) - f(z_0)}{z - z_0} dz \right| \le \oint_{D} \left| \frac{f(z) - f(z_0)}{z - z_0} \right| dz < 2\pi \left(\xi + |L| \right)$$

por lo tranto

$$\left| \oint_{D} \left(\frac{f(z)}{z - z_0} - \frac{f(z_0)}{z - z_0} \right) dz \right| \le \left| \oint_{D} \frac{f(z) - f(z_0)}{z - z_0} dz \right|$$

de donde

$$\left| \oint_{D} \frac{f(z)}{z - z_{0}} dz - \oint_{D} \frac{f(z_{0})}{z - z_{0}} dz \right| = \left| \oint_{D} \frac{f(z)}{z - z_{0}} dz - f(z_{0}) \oint_{D} \frac{1}{z - z_{0}} dz \right|$$

$$= \left| \oint_{D} \frac{f(z)}{z - z_{0}} dz - f(z_{0}) 2\pi j \right|$$

pero

$$\left| \oint_{D} \frac{f(z)}{z - z_0} dz - f(z_0) 2\pi j \right| < 2\pi \left(\xi + |L| \right)$$

esto es que si llamamos $\xi_1 = 2\pi (\xi + |L|)$ se tiene que:

$$\forall \xi_1 > 0, \ \exists \delta > 0 \ \text{tal que } |z - z_0| < \delta \ \text{entonces} \left| \oint_D \frac{f(z)}{z - z_0} dz - f(z_0) \, 2\pi j \right| < \xi_1$$

lo que implica que

$$\oint_{D} \frac{f(z)}{z - z_{0}} dz = f(z_{0}) 2\pi j$$

Acabamos de demostrar el siguiente teorema

Theorem 82 : (segundo teorema de Cauchy-Goursat) Sea f(z) una función de variable compleja, analítica en un dominio D y sea $z_0 \in D$, entonces

$$\oint_{D} \frac{f(z)}{z - z_{0}} dz = 2\pi j f(z_{0})$$

Si f(z) una función de variable compleja, analítica en un dominio D y $z_0 \in D$, entonces veamos cuanto es $\oint_D \frac{f(z)}{z-z_0} dz$.

Aislemos el punto z_0 con una circunferencia o dominio C, entonces unamos C con D con un segmento de recta, y llamemos sus puntos extremos como A y B. Obsserve que el dominio trazado por A cruzando por todo D llegando hasta el mismo punto A, ingresando a C por B recorriendo a C en el sentido contrario en el que fue recorrido D volviendo a B y regresando nuevamenta al punto A, se tiene un dominio que no

contiene a z_0 , y por lo tanto $\frac{f(z)}{z-z_0}$ es analítica en z_0 y por consiguiente cumple el primer teorema de Cauchy - Goursat, esto es:

$$\oint_{D} \frac{f(z)}{z - z_0} dz = 0$$

o sea

$$\int_{ADA^{+}} \frac{f(z)}{z - z_{0}} dz + \int_{AB} \frac{f(z)}{z - z_{0}} dz + \int_{BCB^{-}} \frac{f(z)}{z - z_{0}} dz + \int_{BA} \frac{f(z)}{z - z_{0}} dz = 0$$

por lo tanto

$$\int_{ADA^{+}} \frac{f\left(z\right)}{z - z_{0}} dz = -\int_{BCB^{-}} \frac{f\left(z\right)}{z - z_{0}} dz$$

pero

$$-\int_{BCB^{-}} \frac{f(z)}{z - z_{0}} dz = \int_{BCB^{+}} \frac{f(z)}{z - z_{0}} dz$$

por lo tanto

$$\int_{ADA^{+}}\frac{f\left(z\right)}{z-z_{0}}dz=\int_{BCB^{+}}\frac{f\left(z\right)}{z-z_{0}}dz$$

esto es:

$$\oint_{D} \frac{f\left(z\right)}{z - z_{0}} dz = \oint_{C} \frac{f\left(z\right)}{z - z_{0}} dz$$

acabamos de demostrar el siguiente teorema

Theorem 83: Sea f(z) una función analítica en un dominio cerrado D y sea $z_0 \in D$, entonces si c es un dominio cerrado que contiene a z_0 se tiene que:

$$\oint_{D} \frac{f(z)}{z - z_{0}} dz = \oint_{C} \frac{f(z)}{z - z_{0}} dz$$

Example 84 : Calcular $\oint_D \frac{z^2 + 3z - 1}{z - 2j} dz$ siendo D, dado por |z - 1| < 3

Solution 85:
$$\oint_{D} \frac{z^2 + 3z - 1}{z - 2j} = 2\pi j \left((2j)^2 + 3(2j) - 1 \right) = -8\pi j - 12\pi - 2\pi j = -12\pi - 10\pi j$$

Example 86 : Calcular $\oint_D \frac{e^z}{z-1} dz$ siendo D, dado por |z-3| < 1

Solution 87 : $\oint_D \frac{e^z}{z-1} dz = 0$ ya que $\frac{e^z}{z-1}$ es analítica en todo el dominio |z-3| < 1

Example 88 : Calcular $\oint_D \frac{e^z}{z^2 - 1} dz$ siendo D, dado por |z - 1| < 1

Solution 89:
$$\oint_D \frac{e^z}{z^2 - 1} dz = \oint_D \frac{e^z}{(z - 1)(z + 1)} dz = 2\pi i \left(\frac{e^{(1)}}{((1) + 1)}\right) = \pi e i$$

Observe que si f(z) es una función analítica en un dominio cerreado D y z_1 , z_2 , z_3 , ..., z_n son n puntos al interior de D y en su frontera, entonces veamos cuanto es:

$$\oint_{D} \frac{f(z)}{(z-z_{1})(z-z_{2})\cdots(z-z_{n})} dz$$

considere entonces a dicho dominio cerrado D y z_1 , z_2 , z_3 ,..., z_n puntos en D, si ailamos a cada uno de los puntos con subdominios D_1 , D_2 , D_3 ,..., D_n , tales que cada dominio encierra a uno y solo unos de los polos z_1 , z_2 , z_3 ,..., z_n . Observe que si unimos a cada uno de estos dominios aisladores con segmentos en puntos particulares, es posible construir un dominio cerrado que no contiene a ningno de los puntos, o mejor aún

$$\oint_{D} \frac{f(z)}{(z-z_{1})\cdots(z-z_{n})} dz = \oint_{D_{1}} \frac{f(z)}{(z-z_{1})\cdots(z-z_{n})} dz + \dots + \oint_{D_{n}} \frac{f(z)}{(z-z_{1})\cdots(z-z_{n})} dz$$

como D_1 no contiene a ninguno de los otros polos, entonces por teorema

$$\oint_{D_1} \frac{f(z)}{(z-z_1)\cdots(z-z_n)} dz = 2\pi j \left(\frac{f(z_1)}{(z_1-z_2)\cdots(z_1-z_n)} \right)$$

analogamente para cada D_i se presentaría lo mismo, es decir:

$$\oint_{D_{i}} \frac{f\left(z\right)}{\left(z-z_{1}\right)\cdots\left(z-z_{n}\right)} dz = 2\pi i \left(\frac{f\left(z_{i}\right)}{\left(z_{i}-z_{1}\right)\cdots\left(z_{i}-z_{i-1}\right)\left(z_{i}-z_{i+1}\right)\cdots\left(z_{i}-z_{n}\right)}\right)$$

si llamamos a $Res_i = \frac{f(z_i)}{(z_i - z_1) \cdots (z_i - z_{i-1})(z_i - z_{i+1}) \cdots (z_i - z_n)}$, entonces

$$\oint_{D} \frac{f(z)}{(z-z_{1})\cdots(z-z_{n})} dz = 2\pi j \sum_{i=1}^{n} Res_{i}$$

Acabamos de demostrar el siguiente teorema

Theorem 90 (de Cauchy-Goursat) Sea f(z) una función analítica en un dominio cerreado D y $z_1, z_2, z_3, ..., z_n$, n puntos al interior de D y en su frontera, entonces

$$\oint_{D} \frac{f(z)}{(z-z_1)(z-z_2)\cdots(z-z_n)} dz = 2\pi j \sum_{i=1}^{n} Res_i$$

siendo
$$Res_i = \frac{f(z_i)}{(z_i - z_1) \cdots (z_i - z_{i-1}) (z_i - z_{i+1}) \cdots (z_i - z_n)}$$

Example 91 : Considere la función $f(z) = \frac{z^2}{z^3 - 1}$, calcule su integral cewrrada sobre el dominio dado por |z - 1| < 3

Solution 92 : Se pide calcular $\oint_D \frac{z^2}{z^3 - 1} dz$, para ello factorice primero $z^3 - 1$. Esto es

$$z^{3} - 1 = (z - 1) \left(z^{2} + z + 1\right) = (z - 1) \left(\left(z^{2} + z + \frac{1}{4}\right) + \frac{3}{4}\right)$$

$$= (z - 1) \left(\left(z + \frac{1}{2}\right)^{2} - \frac{3}{4}j^{2}\right)$$

$$= (z - 1) \left(z + \frac{1}{2} - \frac{\sqrt{3}}{2}j\right) \left(z + \frac{1}{2} + \frac{\sqrt{3}}{2}j\right)$$

Con esto se distingue que todos las raices del denominador se encuentran dentro del dominio, por lo tanto:

$$\oint_{D} \frac{z^{2}}{z^{3} - 1} dz = \oint_{D} \frac{z^{2}}{(z - 1) \left(z + \frac{1}{2} - \frac{\sqrt{3}}{2}j\right) \left(z + \frac{1}{2} + \frac{\sqrt{3}}{2}j\right)} dz$$

$$= 2\pi j \left(\frac{1^{2}}{\left(1 + \frac{1}{2} - \frac{\sqrt{3}}{2}j\right) \left(1 + \frac{1}{2} + \frac{\sqrt{3}}{2}j\right)} + \frac{\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}j\right)^{2}}{\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}j - 1\right) \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}j\right)^{2}} + \frac{\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}j\right)^{2}}{\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}j - 1\right) \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}j + \frac{1}{2} - \frac{\sqrt{3}}{2}j\right)}\right)$$

por lo tanto

$$\oint_D \frac{z^2}{z^3 - 1} dz = 2\pi i \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right) = 2\pi i$$

Otra forma de resolver dicho problema es extrayendo las fracciones parciales, es decir

$$\frac{z^2}{z^3 - 1} = \frac{z^2}{(z - 1)\left(z + \frac{1}{2} - \frac{\sqrt{3}}{2}j\right)\left(z + \frac{1}{2} + \frac{\sqrt{3}}{2}j\right)}$$

$$= \frac{1}{3(z - 1)} + \frac{1}{3\left(z + \frac{1}{2} - \frac{\sqrt{3}}{2}j\right)} + \frac{1}{3\left(z + \frac{1}{2} + \frac{\sqrt{3}}{2}j\right)}$$

$$\oint_D \frac{z^2}{z^3 - 1} dz = \oint_D \frac{1}{3(z - 1)} + \frac{1}{3\left(z + \frac{1}{2} - \frac{\sqrt{3}}{2}j\right)} + \frac{1}{3\left(z + \frac{1}{2} + \frac{\sqrt{3}}{2}j\right)} dz$$

$$= 2\pi j \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3}\right) = 2\pi j$$

Example 93 : Calcular $\oint_D \frac{e^z}{(z-3)(z^2-1)} dz$ donde el dominio D solo encierra a los polos $3 \ y-1$

Solution 94:

$$\oint_{D} \frac{e^{z}}{(z-3)(z^{2}-1)} \oint_{D} \frac{e^{z}}{(z-3)(z-1)(z+1)}$$

$$= 2\pi j \left(\frac{e^{-1}}{(-1-3)(-1-1)} + \frac{e^{3}}{(3^{2}-1)} \right) = 2\pi j \left(\frac{e^{-1}}{8} + \frac{e^{3}}{8} \right)$$

$$= \frac{\pi j}{4} \left(e^{-1} + e^{3} \right) = \frac{\pi e j}{2} \cosh(2)$$

Exercise 95 : Calcule $\oint_D \frac{f(z)}{(z-z_0)^n} dz$

Solution 96: Se sabe que $\oint_D \frac{f(z)}{(z-m)} dz = 2\pi j f(m)$ por lo tanto $\frac{f(z)}{(z-m)} dz$ y $2\pi j f(m)$ tienen dependencia de m, por lo tanto si se deriva la igualdad $\oint_D \frac{f(z)}{(z-m)} dz = 2\pi j f(m)$ con respecto a m se tendría:

$$\frac{d}{dm} \oint_{D} \frac{f(z)}{(z-m)} dz = \frac{d}{dm} 2\pi j f(m)$$

esto es

$$\frac{d}{dm}\oint_{D}\frac{f\left(z\right)}{\left(z-m\right)}dz=\oint_{D}\frac{d}{dm}\frac{f\left(z\right)}{\left(z-m\right)}dz=2\pi j\frac{df\left(m\right)}{dm}$$

o lo que es lo mismo:

$$\oint_{D} \frac{f(z)}{(z-m)^{2}} dz = 2\pi j \frac{df(m)}{dm}$$

derivando nuevamente con respecto a m, se tiene:

$$\frac{d}{dm}\oint_{D} \frac{f(z)}{(z-m)^{2}} dz = \frac{d}{dm} 2\pi j \frac{df(m)}{dm}$$

esto es

$$2\oint_{D} \frac{f(z)}{(z-m)^{3}} dz = 2\pi j \frac{d^{2} f(m)}{dm^{2}}$$

derivando nuevamente con respecto a m se obtiene:

$$2 \times 3 \oint_{D} \frac{f(z)}{(z-m)^4} dz = 2\pi j \frac{d^3 f(m)}{dm^3}$$

derivando por cuarta vez con respecto a m se obtiene:

$$2 \times 3 \times 4 \oint_{D} \frac{f(z)}{(z-m)^{5}} dz = 2\pi j \frac{d^{4} f(m)}{dm^{4}}$$

aplicando inducción matemática se consiguye que:

$$2 \times 3 \times 4 \times \dots \times (n-1) \oint_{D} \frac{f(z)}{(z-m)^{n}} dz = 2\pi j \frac{d^{n-1}f(m)}{dm^{n-1}}$$

con lo cual para $m = z_0$ se obtendría que:

$$\oint_{D} \frac{f(z)}{(z-z_{0})^{n}} dz = \frac{2\pi j}{(n-1)!} \frac{d^{n-1}f(z_{0})}{dz^{n-1}}$$

Example 97 : Calcule $\oint_D \frac{z^3}{(z-1)^2} dz$ siendo D un dominio cerrado que contiene a $z_0 = 1$.

Solution 98 :
$$\oint_D \frac{z^3}{(z-1)^2} = \frac{2\pi j}{(1)!} \frac{dz^3}{dz}\Big|_{z=1} = 2\pi j \left(3z^2\Big|_{z=1}\right) = 6\pi j$$

Example 99 : Calcule $\oint_D \frac{(z+1)^3}{(z-1)(z-2)^2} dz$ siendo D un dominio cerrado que contiene $a z_0 = 1$ y $z_0 = 2$.

Solution 100 :

$$\oint_{D} \frac{(z+1)^{3}}{(z-1)(z-2)^{2}} = 2\pi j \left(\frac{(z+1)^{3}}{(z-2)^{2}} \bigg|_{z=1} + \frac{1}{(1)!} \frac{d\frac{(z+1)^{3}}{(z-1)}}{dz} \bigg|_{z=2} \right)$$

$$= 2\pi j \left(\frac{(1+1)^{3}}{(1-2)^{2}} \bigg|_{z=1} + \frac{2}{(z-1)^{2}} (z+1)^{2} (z-2) \bigg|_{z=2} \right)$$

$$= 16\pi j$$

1.5 Serie compleja

Definition 101: Se dice que una función de variable compleja f(z) expande en serie de potencias compleja si existen coeficientes $a_n \in \mathbb{C}$ tales que para un $z_0 \in \mathbb{C}$ se tiene que:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

Theorem 102: Se dice que una función de variable compleja f(z) expande en serie de Taylor compleja si existen coeficientes $a_n \in \mathbb{C}$ tales que para un $z_0 \in \mathbb{C}$ se tiene que:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

 $y \ a_n$ se puede ecribir de la siguiente manera:

$$a_n = \frac{1}{n!} \frac{d^n f(z_0)}{dz^n}$$

siendo esto que f(z), $\frac{df(z_0)}{dz}$, $\frac{d^2f(z_0)}{dz^2}$, ... deben ser analíticas en z_0

Example 103 : Halle la serie de Taylor de:

1.
$$f(z) = e^z$$

2.
$$f(z) = sen(z)$$

2.
$$f(z) = sen(z)$$

3. $f(z) = \frac{1}{(z-1)^2}$
alrededor de $z_0 = 0$

Solution 104: 1. Para $f(z) = e^z$ se tiene que: $a_0 = \frac{1}{\Omega} f(0) = e^0 = 1$; $a_1 = 0$ $\frac{1}{1!} \frac{de^z}{dz}\Big|_{z=0} = e^z\Big|_{z=0} = e^0 = 1; \ a_2 = \frac{1}{2!} \frac{d^2e^z}{dz^2}\Big|_{z=0} = \frac{1}{2!} e^z\Big|_{z=0} = \frac{1}{2!} e^0 = \frac{1}{2!}, \ y \ asi$ sucesivamente $a_n = \frac{1}{n!}$, por lo tanto:

$$e^{z} = \sum_{n=0}^{\infty} a_{n} (z - z_{0})^{n} = a_{0} (z - 0)^{0} + a_{1} (z - 0)^{1} + a_{2} (z - 0)^{2} + \dots + a_{n} (z - 0)^{n} + \dots$$

$$= 1 + 1 (z) + \frac{1}{2!} (z)^{2} + \dots + \frac{1}{n!} (z)^{n} + \dots$$

$$= 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \dots + \frac{z^{n}}{n!} + \dots$$

2. Para
$$f(z) = sen(z)$$
 se tiene: $a_0 = \frac{1}{0!}sen(0) = 0$; $a_1 = \frac{1}{1!} \frac{dsen(z)}{dz} \Big|_{z=0} = cos(0) = 1$; $a_2 = \frac{1}{2!} \frac{d^2sen(z)}{dz^2} \Big|_{z=0} = -\frac{1}{2!}sen(0) = 0$; $a_3 = \frac{1}{3!} \frac{d^3sen(z)}{dz^3} \Big|_{z=0} = -\frac{1}{3!}cos(0) = -\frac{1}{3!}$; $a_4 = \frac{1}{4!} \frac{d^4sen(z)}{dz^4} \Big|_{z=0} = \frac{1}{4!}sen(0) = 0$; $a_5 = \frac{1}{5!} \frac{d^5sen(z)}{dz^5} \Big|_{z=0} = \frac{1}{5!}cos(0) = \frac{1}{5!}$ y así sucesivamente, por lo que

$$sen(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n = a_0 (z - 0)^0 + a_1 (z - 0)^1 + a_2 (z - 0)^2 + \dots + a_n (z - 0)^n + \dots$$

$$= 0 + 1 (z)^1 + 0 - \frac{1}{3!} (z)^3 + 0 + \frac{1}{5!} (z)^5 + \dots$$

$$= z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots + (-1)^{n+1} \frac{z^{2n+1}}{(2n+1)!}$$

3. Para
$$f(z) = \frac{1}{(z-1)^2}$$
 se tiene: $a_0 = \frac{1}{0!} \frac{1}{(z-1)^2} \Big|_{z=0} = 1$; $a_1 = \frac{1}{1!} \frac{d \frac{1}{(z-1)^2}}{dz} \Big|_{z=0} = 1$

$$-\frac{2}{(z-1)^3}\Big|_{z=0} = 2 : a_2 = \frac{1}{2!} \frac{d^2 \frac{1}{(z-1)^2}}{dz^2} \Bigg|_{z=0} = \frac{1}{2!} \frac{6}{(z-1)^4} \Big|_{z=0} = \frac{6}{2!} a_3 = \frac{1}{3!} \frac{d^3 \frac{1}{(z-1)^2}}{dz^3} \Bigg|_{z=0} = \frac{1}{3!} - \frac{24}{(z-1)^5} \Big|_{z=0} = \frac{24}{3!}; \ y \ asi \ succesivamente, por \ lo \ que$$

$$\frac{1}{(z-1)^2} = \sum_{n=0}^{\infty} a_n (z-z_0)^n = a_0 (z-0)^0 + a_1 (z-0)^1 + a_2 (z-0)^2 + \dots + a_n (z-0)^n + \dots$$

$$= 1 + 2(z)^1 + \frac{1}{2!} 6(z)^2 + \frac{24}{3!} (z)^3 + \dots$$

$$= 1 + 2z + \frac{1 \times 2 \times 3}{2!} z^2 + \frac{1 \times 2 \times 3 \times 4}{3!} z^3 + \frac{1 \times 2 \times 3 \times 4 \times 5}{4!} z^4 + \dots$$

$$= 1 + 2z + 3z^2 + 4z^3 + 5z^4 + \dots + (n+1)z^n$$

1.5.1 Binomio de Newton

Recuerde como expanden los polinomios:

$$(a \pm b)^{2} = a^{2} \pm 2ab + b^{2}$$
$$(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}$$
$$(a \pm b)^{4} = a^{4} \pm 4a^{3}b + 6a^{2}b^{2} \pm 4ab^{3} + b^{4}$$

: $(a\pm b)^n=a^n\pm na^{n-1}b+\frac{n\,(n-1)}{2!}a^{n-2}b^2\pm\frac{n\,(n-1)\,(n-2)}{3!}a^{n-3}b^3+\cdots\pm\frac{n\,(n-1)\,(n-2)\cdots2\cdot1}{n!}a^0b^n$ Por lo tanto que hubiese pasado si el grado de $(a\pm b)^n$ hubiese sido un real, es decir hagamos una comparación de expandir en serie de Taylor alrededor de $z_0=0$ la función $f(z)=\frac{1}{z-1}$ e igualmente hagamos la expansión de forma análoga a la expuesta anteriormente en el binomio de Newton

En efecto: $f(z) = \frac{1}{z-1}$ satisface que es analítica en $z_0 = 0$ por lo que:

$$f(0) = \frac{1}{0-1} = -1$$

$$\frac{d\frac{1}{z-1}}{dz} \bigg|_{z=0} = -\frac{1}{(z-1)^2} \bigg|_{z=0} = -1$$

$$\frac{d^2 \frac{1}{z-1}}{dz^2} \bigg|_{z=0} = \frac{2}{(z-1)^3} \bigg|_{z=0} = -2$$

$$\frac{d^3 \frac{1}{z-1}}{dz^3} \bigg|_{z=0} = -\frac{6}{(z-1)^4} \bigg|_{z=0} = -6$$

$$\frac{d^4 \frac{1}{z-1}}{dz^4} \bigg|_{z=0} = \frac{24}{(z-1)^5} \bigg|_{z=0} = -24$$

y así sucesivamente por lo que la serie de Taylor asociada estaría dada por:

$$f(z) = \frac{1}{z-1} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} (z-0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n$$

$$= \frac{f^{(0)}(0)}{0!} z^0 + \frac{f'(0)}{1!} z^1 + \frac{f''(0)}{2!} z^2 + \frac{f'''(0)}{3!} z^3 + \frac{f^{(4)}(0)}{4!} z^4 + \dots$$

$$= \frac{-1}{0!} z^0 + \frac{-1}{1!} z^1 + \frac{-2}{2!} z^2 + \frac{-6}{3!} z^3 + \frac{-24}{4!} z^4 + \dots$$

$$= -(1+z+z^2+z^3+z^4+\dots+z^n+\dots)$$

Usemos ahora el binomio de Newton:

$$f(z) = \frac{1}{z-1} = -(1-z)^{-1}$$

$$= -\left(1^{-1} + \frac{(-1)}{1!} \cdot 1^{-1-1} \cdot (-z)^{1} + \frac{(-1)(-2)}{2!} \cdot 1^{-2-1} \cdot (-z)^{2} + \frac{(-1)(-2)(-3)}{3!} \cdot 1^{-3-1} \cdot (-z)^{3} + \frac{(-1)(-2)(-3)(-4)}{4!} \cdot 1^{-4-1} \cdot (-z)^{4} + \dots\right)$$

$$= -\left(1 + z + z^{2} + z^{3} + z^{4} + \dots + z^{n} + \dots\right)$$

Comparando ambas series se puede llegar a la conclusión que el método es similar, por lo tanto la convergencia de series definidas de igual forma que se puedan expandir por el binomio de Newton serán isomorfas a las expandidas en la serie de Taylos alrededor de $z_0 = 0$. Tenga presente la serie geométrica la cual establece que:

$$1 - x^2 = (1 - x)(1 + x)$$
 de donde $\frac{1 - x^2}{1 - x} = 1 + x$ para $x \neq 1$

$$1-x^3 = (1-x)\left(1+x+x^2\right) \text{ de donde } \frac{1-x^3}{1-x} = 1+x+x^2$$

$$1-x^4 = \left(1-x^2\right)\left(1+x^2\right) = (1-x)\left(1+x\right)\left(1+x^2\right) \text{ de donde } \frac{1-x^4}{1-x} = (1+x)\left(1+x^2\right) = 1+x+x^2+x^3$$
 y así sucesivamente
$$\frac{1-x^n}{1-x} = 1+x+x^2+x^3+\ldots+x^{n-1}. \text{ Que sucedería si } n\to\infty \text{ y}$$
 $|x|<1, \text{ entonces } x^n\to0 \text{ y por lo tanto:}$

$$\frac{1-x^n}{1-x} \rightarrow \frac{1}{1-x} = 1+x+x^2+x^3+\ldots+x^k+\ldots$$

Luego si aplicamos este resultado al problema anterior de $f(z) = \frac{1}{z-1}$ se tiene que:

$$f(z) = \frac{1}{z-1} = -\frac{1}{1-z} = -\left(1+z+z^2+z^3+\dots+z^k+\dots\right)$$

el cual coincide con el resultado anterior

1.5.2 Series de Laurent

Definition 105 : (Serie de Laurent) Se dice que una función compleja f(z) expande en serie de Laurent alrededor de z_0 , si ella puede expandirse de la forma:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

Note que esta serie puede partirse en 2 subseries como:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n = \sum_{n=-\infty}^{-1} a_n (z - z_0)^n + \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

a la subserie $\sum_{n=-\infty}^{-1} a_n (z-z_0)^n$ se llama parte principal de la serie de Laurent y a la parte $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ se llama la parte secundaria de la serie de Laurent.

Suponga que f(z) expande en serie de Taylor alredor de z_0 veamos como expande $\frac{f(z)}{z-z_0}$, esto es, como f(z) expande en serie de Taylor alrededor de z_0 entonces exiten los oeficientes $b_0, b_1, b_2, ...$ en \mathbb{C} tales que:

$$f(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n = b_0 (z - z_0)^0 + b_1 (z - z_0)^1 + b_2 (z - z_0)^2 + \dots +$$

$$= b_0 + b_1 (z - z_0) + b_2 (z - z_0)^2 + b_3 (z - z_0)^3 + \dots + b_n (z - z_0)^n + \dots$$

por otro lado se tiene entonces que:

$$\frac{f(z)}{z-z_0} = \frac{b_0 + b_1 (z-z_0) + b_2 (z-z_0)^2 + b_3 (z-z_0)^3 + \dots + b_n (z-z_0)^n + \dots}{z-z_0}$$
$$= \frac{b_0}{z-z_0} + b_1 + b_2 (z-z_0) + b_3 (z-z_0)^2 + \dots + b_n (z-z_0)^{n-1} + \dots$$

si llamamos b_0 como a_{-1} , b_1 como a_0 , b_2 como a_1 y así sucesivamente se obtiene que:

$$\frac{f(z)}{z - z_0} = \frac{a_{-1}}{z - z_0} + a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots + a_{n-1} (z - z_0)^{n-1} + \dots$$
$$= \sum_{n=-1}^{\infty} a_n (z - z_0)^n$$

en este caso a z_0 se le llama polo simple de la función $g(z) = \frac{f(z)}{z - z_0}$.

Observe que que si se integra a esta función $g(z) = \frac{f(z)}{z - z_0}$ alrededor de un dominio cerrado que contiene a z_0 , se tiene que

$$\oint_{D} \frac{f(z)}{z - z_{0}} dz = \oint_{D} \left(\frac{a_{-1}}{z - z_{0}} + a_{0} + a_{1} (z - z_{0}) + a_{2} (z - z_{0})^{2} + \dots + a_{n-1} (z - z_{0})^{n-1} + \dots \right) dz$$

$$= \oint_{D} \frac{a_{-1}}{z - z_{0}} dz + \oint_{D} a_{0} dz + \oint_{D} a_{1} (z - z_{0}) dz + \dots + \oint_{D} a_{n-1} (z - z_{0})^{n-1} dz + \dots$$

$$= 2\pi j (a_{-1}) + 0 + 0 + \dots + 0 + \dots$$

$$= 2\pi j a_{-1}$$

Al valor a_{-1} de la serie se le llama residuo de g(z).

Por otro lado si f(z) expande en serie de Taylor alrededor de z_0 se tiene que para un dominio cerrado D que contiene a z_0 y $n \in \mathbb{N}$, se cumple que:

$$f(z) = b_0 + b_1 (z - z_0) + b_2 (z - z_0)^2 + \dots + b_k (z - z_0)^k + \dots$$

luego

$$\frac{f(z)}{(z-z_0)^n} = \frac{b_0 + b_1(z-z_0) + b_2(z-z_0)^2 + \dots + b_k(z-z_0)^k + \dots}{(z-z_0)^n} \\
= \frac{b_0}{(z-z_0)^n} + \frac{b_1(z-z_0)}{(z-z_0)^n} + \dots + \frac{b_{n-1}(z-z_0)^{n-1}}{(z-z_0)^n} + \frac{b_n(z-z_0)^n}{(z-z_0)^n} + \frac{b_{n+1}(z-z_0)^{n+1}}{(z-z_0)^n} + \dots \\
= \frac{b_0}{(z-z_0)^n} + \frac{b_1}{(z-z_0)^{n-1}} + \dots + \frac{b_{n-1}}{(z-z_0)} + b_n + b_{n+1}(z-z_0) + \dots$$

Si se nombran $b_0=a_{-n},\ b_1=a_{-(n-1)},...,b_{n-1}=a_{-1},\ b_n=a_0,\ b_{n+1}=a_1$ y así sucesivamente, se tiene que:

$$\frac{f(z)}{(z-z_0)^n} = \frac{a_{-n}}{(z-z_0)^n} + \frac{a_{-(n-1)}}{(z-z_0)^{n-1}} + \dots + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + \dots$$

Si $g(z) = \frac{f(z)}{(z-z_0)^n}$ expande como la serie anterior se dice entonces que g(z) presenta

Observe que si se integra a $g(z) = \frac{f(z)}{(z-z_0)^n}$ en el dominio cerrado D que contiene a z_0 se tiene que:

$$\oint_{D} \frac{f(z)}{(z-z_{0})^{n}} dz = \oint_{D} \left(\frac{a_{-n}}{(z-z_{0})^{n}} + \frac{a_{-(n-1)}}{(z-z_{0})^{n-1}} + \dots + \frac{a_{-1}}{(z-z_{0})} + a_{0} + a_{1} (z-z_{0}) + \dots \right) dz$$

$$= \oint_{D} \frac{a_{-n}}{(z-z_{0})^{n}} dz + \oint_{D} \frac{a_{-(n-1)}}{(z-z_{0})^{n-1}} dz + \dots + \oint_{D} \frac{a_{-1}}{(z-z_{0})} dz + \oint_{D} a_{0} dz + \oint_{D} a_{1} (z-z_{0}) dz + \int_{D} a_{1} (z$$

Por último se g(z) expande en serie Laurent con parte principal infinita, es decir:

$$g(z) = \dots + \frac{a_{-n}}{(z - z_0)^n} + \frac{a_{-(n-1)}}{(z - z_0)^{n-1}} + \dots + \frac{a_{-1}}{(z - z_0)} + a_0 + a_1(z - z_0) + \dots$$

se dice que g(z) presenta un polo esencial en z_0 y su integral en el dominio cerrado D está dada por:

$$\begin{split} \oint_D g(z) \, dz &= \oint_D \left(\dots + \frac{a_{-n}}{(z - z_0)^n} + \frac{a_{-(n-1)}}{(z - z_0)^{n-1}} + \dots + \frac{a_{-1}}{(z - z_0)} + a_0 + a_1 (z - z_0) + \dots \right) dz \\ &= \dots + \oint_D \frac{a_{-n}}{(z - z_0)^n} dz + \oint_D \frac{a_{-(n-1)}}{(z - z_0)^{n-1}} dz + \dots + \oint_D \frac{a_{-1}}{(z - z_0)} dz + \oint_D a_0 dz + \oint_D a_1 (z - z_0) dz + \dots \\ &= \dots + \frac{2\pi j}{(n-1)!} \frac{d^{n-1} a_{-n}}{dz^{n-1}} + \frac{2\pi j}{(n-2)!} \frac{d^{n-2} a_{-n}}{dz^{n-2}} + \dots + 2\pi j a_{-1} + 0 + 0 + \dots \\ &= 2\pi j a_{-1} \end{split}$$

Acabamos de demostrar el siguiente teorema:

Theorem 106: (Del residuo) Si g(z) expande en serie de Laurent alrededor de z_0 y D es un dominio cerrado que contiene a z_0 entonces

$$\oint_{D} g(z) dz = 2\pi j a_{-1}$$

 $donde \ a_{-1} \ es \ el \ residuo \ de \ g(z)$

Example 107: Expanda en serie de Laurent las siguientes funciones:

1.
$$f(z) = e^{\frac{1}{z}}$$
 alreador de $z_0 = 0$

2.
$$f(z) = \frac{1}{z-3}$$
 alreador de $|z-2| < 1$

2.
$$f(z) = \frac{1}{z-3}$$
 alreador de $|z-2| < 1$
3. $f(z) = \frac{z+2}{z-3}$ alreador de $|z+2| > 5$

4.
$$f(z) = \frac{z^2 - 4}{z^2 - 4}$$
 alrededor de $|z + 2| > 4$

Solution 108 : 1. $f(z) = e^{\frac{1}{z}}$ alrededor de $z_0 = 0$

se sabe que:

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!} + \dots$$

sustituyendo z por $\frac{1}{z}$ se obtiene:

$$e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{\left(\frac{1}{z}\right)^2}{2!} + \frac{\left(\frac{1}{z}\right)^3}{3!} + \dots + \frac{\left(\frac{1}{z}\right)^n}{n!} + \dots$$
$$= 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \dots + \frac{1}{n!z^n} + \dots$$

con lo cual se consigue la expansión en serie de Laurent donde se muestra que $z_0 = 0$ es un polo esencial tambien conocida como singularidad esencial no removible. Note que si D es dominio cerrado que contiene a $z_0 = 0$ entonces:

$$\oint_D e^{\frac{1}{z}} dz = 2\pi j$$

2. $f(z) = \frac{1}{z-3}$ alrededor de |z-2| < 1

$$\frac{1}{z-3} = \frac{1}{(z-2)-1} = -\frac{1}{1-(z-2)}$$

sea w = z - 2, como |z - 2| < 1 se debe satisfacer entonces |w| < 1, por lo tanto se cumplen las condiciones de la serie geom étrica, esto es

$$-\frac{1}{1-w} = -(1+w+w^2+w^3+...+w^n+...)$$

$$= -1-w-w^2-w^3-...-w^n-...$$

$$= -1-(z-2)-(z-2)^2-(z-2)^3-...-(z-2)^n-...$$

luego

$$\oint_D \frac{1}{z-3} dz = 0$$

3. $f(z) = \frac{z+2}{z-3}$ alreador de |z+2| > 5

$$\frac{z+2}{z-3} = \frac{z+2}{z+2-2-3} = \frac{z+2}{z+2-5}$$

 $sea \ w = z + 2$, por lo tanto como se debe cumplir que |z + 2| > 5 esto es |w| > 5 luego

la condición de la serie geométrica se convierte en: $\frac{5}{|w|} < 1$, por lo tanto:

$$\frac{z+2}{z-3} = \frac{z+2}{z+2-5} = \frac{w}{w-5} = \frac{w}{w\left(1-\frac{5}{w}\right)}$$

$$= \frac{1}{1-\frac{5}{w}} = 1 + \frac{5}{w} + \left(\frac{5}{w}\right)^2 + \left(\frac{5}{w}\right)^3 + \dots + \left(\frac{5}{w}\right)^n + \dots$$

$$= 1 + \frac{5}{z+2} + \left(\frac{5}{z+2}\right)^2 + \left(\frac{5}{z+2}\right)^3 + \dots + \left(\frac{5}{z+2}\right)^n + \dots$$

y por lo tanto

$$\oint_{D} \frac{z+2}{z-3} dz = 2\pi j (5) = 10\pi j$$

 $y z_0 = 2$ es una singularidad esencial en ese dominio

4. $f(z) = \frac{1}{z^2 - 4}$ alreador de |z + 2| > 4.

$$\frac{1}{z^2 - 4} = \frac{1}{(z+2)(z-2)} = \frac{1}{(z+2)(z+2-2-2)} = \frac{1}{(z+2)(z+2-4)}$$

Sea w=z+2 por lo tanto como se debe satisfacer que |z+2|>4 es decir |w|>4 entonces la codición de la serie geométrica se puede reescribir como $\frac{4}{|w|}<1$, por lo tanto

$$\frac{1}{z^2 - 4} = \frac{1}{(z+2)(z+2-4)} = \frac{1}{w(w-4)} = \frac{1}{w^2 (1 - \frac{4}{w})}$$

$$= \frac{1}{w^2} \frac{1}{(1 - \frac{4}{w})} = \frac{1}{w^2} \left(1 + \frac{4}{w} + \left(\frac{4}{w} \right)^2 + \left(\frac{4}{w} \right)^3 + \dots \right)$$

$$= \frac{1}{w^2} \left(1 + \frac{4}{w} + \left(\frac{4}{w} \right)^2 + \left(\frac{4}{w} \right)^3 \right)$$

$$= \frac{1}{w^2} + \frac{4}{w^3} + \frac{16}{w^4} + \frac{64}{w^5} + \dots + \frac{4^n}{w^{n+2}} + \dots$$

$$= \frac{1}{(z+2)^2} + \frac{4}{(z+2)^3} + \frac{16}{(z+2)^4} + \frac{64}{(z+2)^5} + \dots + \frac{4^n}{(z+2)^{n+2}} + \dots$$

y

$$\oint_D \frac{1}{z^2 - 4} dz = 0$$

donde $z_0 = -2$ es una singularidad esencial en el dominio D.

1.6 Integrales indefinidas

En muchas circus
ntancias es posible encontrar integrales que requieren un método de solución básica y sencillo. Suponga que se tiene una función de variable compleja f(z)

entonces al considerar el dominio cerrado comprendido por una semicircunferencia de radio R construida al tomar el eje real y la periferias o contorno generado en el plano de Argant de componente imaginaria positiva y recorrido de forma antihoraria. Suponga que el contorno circular comienza en el punto (R,0) recorre la periferia circular y culmina en (-R,0) el cual llamaremos Γ , por lo tanto:

$$\oint_{D} f(z) dz = \int_{\Gamma} f(z) dz + \int_{-R}^{R} f(z) dz$$

Si f(z) es una función cociente de polinomios y este cociente es propio (el grado del numerador es menor que el grado del denominador), y además f(z) es par en la variable real entonces :

$$f(z) = \frac{p(z)}{q(z)} = \frac{a_m z^m + a_{m-1} z^{m-1} + \dots + a_1 z + a_0}{b_n z^n + b_{n-1} z^{n-1} + \dots + b_1 z + b_0} \text{ con } m < n$$

Recuerde que una función real es par si g(-x) = g(x). Observe que f(z) escrita en forma polar se puede escribir como:

$$f(r,\theta) = \frac{p(r,\theta)}{q(r,\theta)} = \frac{a_m r^m e^{jm\theta} + a_{m-1} r^{m-1} e^{j(m-1)\theta} + \dots + a_1 r e^{j\theta} + a_0}{b_n r^n e^{jn\theta} + b_{n-1} r^{n-1} e^{j(n-1)\theta} + \dots + b_1 r e^{j\theta} + b_0}$$

note que si $r \to \infty$, entonces $f(z) \to 0$, dado que la fracción es propia entonces

$$\lim_{r \to \infty} \frac{a_m r^m e^{jm\theta} + a_{m-1} r^{m-1} e^{j(m-1)\theta} + \ldots + a_1 r e^{j\theta} + a_0}{b_n r^n e^{jn\theta} + b_{n-1} r^{n-1} e^{j(n-1)\theta} + \ldots + b_1 r e^{j\theta} + b_0} = \lim_{r \to \infty} \frac{a_m r^m e^{jm\theta}}{b_n r^n e^{jn\theta}} = 0$$

Por lo tanto la integral $\oint_D f(z) dz$ cuando $R \to \infty$ sucede que $\int_{\Gamma} f(z) dz = 0$, por lo cual

$$\oint_{D} f(z) dz = \int_{\Gamma} f(z) dz + \int_{-\infty}^{\infty} f(x,0) (dx,0) = \int_{-\infty}^{\infty} f(x) dx$$

la cual es una integral real impropia. Por lo tanto una integral real impropia de fracciones propias es igual a la integral cerrada sobre el dominio D definido anteriormenete comprendido por el semiplano de de Argant comprendido por la pare imaginaria positiva.

Example 109 : Calcule:

1.
$$\int_{-\infty}^{\infty} \frac{1}{x^4 - x^2 + 1} dx$$
2.
$$\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 1} dx$$
3.
$$\int_{0}^{\infty} \frac{1}{x^2 + 1} dx$$

Solution 110 : 3.

$$\begin{split} \int_0^\infty \frac{1}{x^2 + 1} dx &= \frac{1}{2} \int_{-\infty}^\infty \frac{1}{x^2 + 1} dx = \frac{1}{2} \oint_D \frac{1}{z^2 + 1} dz \\ &= \frac{1}{2} \oint_D \frac{1}{(z + j)(z - j)} dz = \frac{1}{2} 2\pi j \left(\frac{1}{2j}\right) \\ &= \frac{\pi}{2} \end{split}$$

2.

$$\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 1} dx = \oint_{D} \frac{z^2}{z^4 + 1} dz = \oint_{D} \frac{z^2}{(z^2 + j)(z^2 - j)} dz$$

$$= \oint_{D} \frac{z^2}{\left(z^2 + e^{j\frac{\pi}{2}}\right) \left(z^2 - e^{j\frac{\pi}{2}}\right)} dz$$

$$= \oint_{D} \frac{z^2}{\left(z - je^{j\frac{\pi}{4}}\right) \left(z + je^{j\frac{\pi}{4}}\right) \left(z - e^{j\frac{\pi}{4}}\right) \left(z + e^{j\frac{\pi}{4}}\right)} dz$$

tenga presente que $e^{j\frac{\pi}{4}} = \cos\left(\frac{\pi}{4}\right) + j sen\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + j \frac{\sqrt{2}}{2}$ por consiguiente:

$$\begin{split} \int_{-\infty}^{\infty} \frac{x^2}{x^4 + 1} dx &= \oint_{D} \frac{z^2}{\left(z + \frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2}\right) \left(z - \frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right) \left(z - \frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2}\right) \left(z + \frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right)} dz \\ &= 2\pi j \left(\frac{\left(-\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right)^2}{\left(-\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right) \left(-\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2}\right) \left(-\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right) \left(-\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right) \left(-\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2}\right) \left(-\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right) \left(-\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right) \left(-\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}\right) \\ &= 2\pi j \left(-\frac{j}{2\sqrt{2}j(1-j)} + \frac{j}{2\sqrt{2}j(1+j)}\right) = \frac{2\pi j}{2\sqrt{2}} \left(-\frac{1}{(1-j)} + \frac{1}{(1+j)}\right) \\ &= \frac{2\pi j}{2\sqrt{2}} \frac{(-2j)}{(2)} = \frac{\pi\sqrt{2}}{2} \end{split}$$

Considere ahora una función que depende de senos y cosenos, es decir, considere ahora una función real $f(\cos(\theta), sen(\theta))$ y además su integral en todo el dominio dado por en intervalo $(0, 2\pi)$ esto es:

$$\int_{0}^{2\pi} f(\cos(\theta), sen(\theta)) d\theta$$

Note que si se considera a $z = e^{j\theta}$ entonces

$$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2} = \frac{z + z^{-1}}{2}$$

$$\operatorname{sen}(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j} = \frac{z - z^{-1}}{2j}$$

y por otro lado $dz=je^{j\theta}d\theta=jzd\theta$ de donde $d\theta=\frac{dz}{jz}$, observe que el dominio estaria dado por

$$|z| = \left| e^{j\theta} \right| = \left| \cos\left(\theta\right) + j \sin\left(\theta\right) \right| = \sqrt{\cos^2\left(\theta\right) + \sin^2\left(\theta\right)} = 1$$

el cual es una circunferencia de radio 1 y $\,$ centro en el origen de coordenadas, pr $lo \,$ cual

$$\int_{0}^{2\pi} f\left(\cos\left(\theta\right), sen\left(\theta\right)\right) d\theta = \oint_{D} f\left(z, z^{-1}\right) \frac{dz}{jz} = \oint_{D} \frac{1}{jz} f\left(z\right) dz$$

Example 111 : Calcular las siguientes integrales:

Example 111: Catcular tas signientes into
$$1. \int_{0}^{2\pi} \frac{sen(\theta)}{1 + \cos^{2}(\theta)} d\theta$$
$$2. \int_{0}^{2\pi} \frac{sen(\theta)}{sen(\theta) + \cos(\theta)} d\theta = \int_{0}^{2\pi} \frac{\sin \theta}{\cos \theta + \sin \theta} d\theta$$
$$3. \int_{0}^{2\pi} \frac{1}{3 + 2\cos(\theta)} d\theta$$

Solution 112:

$$\begin{split} \int_0^{2\pi} \frac{sen\left(\theta\right)}{1+\cos^2\left(\theta\right)} d\theta &= \oint_D \frac{1}{jz} \frac{\frac{z-z^{-1}}{2j}}{1+\left(\frac{z+z^{-1}}{2}\right)^2} dz \\ &= -\frac{1}{2} \oint_D \frac{1}{z^2} \frac{z^2-1}{1+\frac{1}{4z^2}+\frac{1}{4}z^2+\frac{1}{2}} dz \\ &= -2 \oint_D \frac{z^2-1}{z^4+6z^2+1} dz = -2 \oint_D \frac{z^2-1}{(z^4+6z^2+9)-8} dz \\ &= -2 \oint_D \frac{z^2-1}{(z^2+3)^2-8} dz = -2 \oint_D \frac{z^2-1}{(z^2+3-2\sqrt{2})\left(z^2+3+2\sqrt{2}\right)} dz \\ &= -2 \oint_D \frac{z^2-1}{\left(z-j\sqrt{3}-2\sqrt{2}\right)\left(z+j\sqrt{3}-2\sqrt{2}\right)\left(z+j\sqrt{3}+2\sqrt{2}\right)\left(z-j\sqrt{3}+2\sqrt{2}\right)} dz \\ &= 2\pi j \left(\frac{\left(j\sqrt{3}-2\sqrt{2}\right)^2-1}{\left(j\sqrt{3}-2\sqrt{2}+j\sqrt{3}-2\sqrt{2}\right)\left(j\sqrt{3}-2\sqrt{2}+j\sqrt{3}+2\sqrt{2}\right)\left(j\sqrt{3}-2\sqrt{2}-j\sqrt{2}\right)} + \frac{\left(-j\sqrt{3}-2\sqrt{2}\right)^2-1}{\left(-j\sqrt{3}-2\sqrt{2}\right)\left(-j\sqrt{3}-2\sqrt{2}+j\sqrt{3}+2\sqrt{2}\right)\left(-j\sqrt{3}-2\sqrt{2}-j\sqrt{2}\right)} \\ &= -2\pi \left(\frac{-3+2\sqrt{2}-1}{\left(\sqrt{3}-2\sqrt{2}+\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}+\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}+\sqrt{3}+2\sqrt{2}\right)} + \frac{-3+2\sqrt{2}-1}{\left(\sqrt{3}-2\sqrt{2}+\sqrt{3}-2\sqrt{2}\right)\left(-\sqrt{3}-2\sqrt{2}+\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}+\sqrt{3}+2\sqrt{2}\right)} \\ &= -2\pi \left(\frac{1}{4}-\frac{1}{4}\right) = 0 \end{split}$$

2.

$$\begin{split} \int_{0}^{2\pi} \frac{\sec n(\theta)}{\sec n(\theta) + \cos(\theta)} d\theta &= \oint_{D} \frac{1}{jz} \left(\frac{\frac{z-z^{-1}}{2j}}{\frac{z-z^{-1}}{2j}} + \frac{z+z^{-1}}{2} \right) dz = \oint_{D} \frac{1}{jz} \left(\frac{\frac{z^{2}-1}{jz}}{\frac{z^{2}-1}{z^{j}} + \frac{z^{2}+1}{z}} \right) dz \\ &= \oint_{D} \frac{1}{jz} \left(\frac{\frac{z^{2}-1}{jz}}{\frac{z^{2}-1+j(z^{2}+1)}{jz}} \right) dz = \oint_{D} \frac{1}{jz} \left(\frac{z^{2}-1}{z^{2}(1+j)-1+j} \right) dz \\ &= \frac{1}{j(1+j)} \oint_{D} \frac{1}{z} \left(\frac{z^{2}-1}{z^{2}-\frac{(1-j)}{(1+j)}} \right) dz = \frac{1}{j(1+j)} \oint_{D} \frac{1}{z} \left(\frac{z^{2}-1}{z^{2}-\frac{(1-j)^{2}}{2}} \right) dz \\ &= \frac{1}{j(1+j)} \oint_{D} \frac{1}{z} \left(\frac{z^{2}-1}{\left(z-\frac{(1-j)}{(1+j)}\right) \left(z+\frac{(1-j)}{\sqrt{2}}\right)} \right) dz \\ &= \frac{1}{j(1+j)} 2\pi j \left(\left(\frac{0^{2}-1}{\left(0-\frac{(1-j)}{\sqrt{2}}\right) \left(0+\frac{(1-j)}{\sqrt{2}}\right)} \right) + \frac{1}{\frac{(1-j)}{\sqrt{2}}} \left(\frac{\left(\frac{(1-j)}{\sqrt{2}}\right)^{2}-1}{\left(\frac{(1-j)}{\sqrt{2}}-\frac{(1-j)}{\sqrt{2}}\right)} \right) + \frac{1}{\frac{(1-j)}{\sqrt{2}}} \left(\frac{\left(\frac{(1-j)}{\sqrt{2}}\right)^{2}-1}{\left(\frac{(1-j)}{\sqrt{2}}-\frac{(1-j)}{\sqrt{2}}\right)} \right) \\ &= \frac{1}{j(1+j)} 2\pi j \left(\frac{2}{(j-1)^{2}} - \frac{1}{(j-1)^{2}} \left(-\frac{1}{2}j^{2} + j + \frac{1}{2} \right) - \frac{1}{j(1+j)} \frac{1}{(j-1)^{2}} \left(-\frac{1}{2}j^{2} + j + \frac{1}{2} \right) - \frac{4\pi j}{(1+j)(j-1)^{2}} - \frac{4\pi j}{j^{2}-j+1} = -\frac{4\pi j}{-j+1-j+1} \quad (encentre\ el\ erro\ \end{split}$$

$$\begin{split} \int_0^{2\pi} \frac{1}{3+2\cos(\theta)} d\theta &= \oint \frac{1}{jz} \frac{1}{3+2\frac{z+z^{-1}}{2}} dz = \oint \frac{1}{jz} \frac{1}{3+\frac{z^2+1}{z}} dz \\ &= \frac{1}{j} \oint \frac{1}{z^2+3z+1} dz = \frac{1}{j} \oint \frac{1}{\left(z^2+3z+\frac{9}{4}\right) - \frac{5}{4}} dz \\ &= \frac{1}{j} \oint \frac{1}{\left(z+\frac{3}{2}\right)^2 - \frac{5}{4}} dz = \frac{1}{j} \oint \frac{1}{\left(z+\frac{3}{2} - \frac{\sqrt{5}}{2}\right) \left(z+\frac{3}{2} + \frac{\sqrt{5}}{2}\right)} dz \\ &= \frac{1}{j} 2\pi j \left(\frac{1}{\left(-\frac{3}{2} + \frac{\sqrt{5}}{2} + \frac{3}{2} + \frac{\sqrt{5}}{2}\right)}\right) = 2\pi \left(\frac{1}{\sqrt{5}}\right) = \frac{2\pi\sqrt{5}}{5} \end{split}$$