ALFABET ŻYCIA: N-GRAMOWA ANALIZA BIAŁEK

MICHAŁ BURDUKIEWICZ

MI² DATA LAB, POLITECHNIKA WARSZAWSKA

BIOINFORMATYKA

nauka zajmująca się stosowaniem narzędzi matematycznych oraz informatycznych do rozwiązywania problemów biologicznych

CEL

Zastosowanie metod uczenia maszynowego do przewidywania właściwości białek.

PLAN PREZENTACJI

- 1 Aminokwasy i białka
- 2 n-gramy i uproszczone alfabety
- 3 Przewidywanie amyloidów
- 4 Badania eksperymentalne

Źródło: byjus.com

Źródło: byjus.com

Źródło: microbenotes.com

BIAŁKA

POZNANE

NIEPOZNANE

BIAŁKA

POZNANE

NIEPOZNANE

Struktura wyższych rzędów określa funkcję białka.

LUDZKI PROTEOM

1937 ludzkich białek ma nieznaną funkcję (dark proteome) (Young-Ki Paik et al., 2018).

CEL

Zastosowanie metod uczenia maszynowego do przewidywania właściwości białek **na podstawie ich struktury pierwszorzędowej**.

n-gramy (k-tuple, k-mery):

- podsekwencje (ciągłe lub z przerwami) *n* reszt aminokwasowych lub nukleotydowych,
- bardziej informatywne niż pojedyncze reszty.

Peptyd I: FKVWPDHGSG Peptyd II: YMCIYRAQTN

Przykłady n-gramów uzyskanych z peptydów I i II:

- 1. 1-gramy: F, Y, K, M,
- 2. 2-gramy: FK, YM, KV, MC,
- 3. 2-gramy (nieciągłe): F-V, Y-C, K-W, M-I,
- 4. 3-gramy (nieciągłe): F-WP, Y-IY, K-PD, M-YR.

Dłuższe n-gramy są bardziej informatywne, ale tworzą większe przestrzenie atrybutów, które są trudniejsze do analizy.

QuiPT

QuiPT (dostępny jako funkcja w pakiecie **biogram**) jest szybszy niż klasyczne testy permutacyjne.

UPROSZCZONE ALFABETY

Uproszczone alfabety:

- aminokwasy są grupowane w większe zbiory na podstawie określonych kryteriów,
- łatwiejsze przewidywanie struktur (Murphy et al., 2000),
- tworzenie bardziej uogólnionych modeli.

UPROSZCZONE ALFABETY

Poniższe peptydy wydają się być całkowicie różne pod względem składu aminokwasowego.

Peptyd I:

FKVWPDHGSG

Peptyd II:

YMCIYRAQTN

Grupa	Aminokwasy
1	C, I, L, K, M, F, P, W, Y, V
2	A, D, E, G, H, N, Q, R, S, T

Peptyd I: $FKVWPDHGSG \rightarrow$ Peptyd II: $YMCIYRAQTN \rightarrow$

11111222221111122222

CEL

Zastosowanie metod uczenia maszynowego do przewidywania właściwości białek na podstawie ich struktury pierwszorzędowej zakodowanej w postaci n-gramów zapisanych w uproszczonym alfabecie.

PRZEWIDYWANIE AMYLOIDÓW

BIAŁKA AMYLOIDOWE

Agregaty białek amyloidowe występują w tkankach osób cierpiących na zaburzenia neurodegeneracyjne, takie jak choroba Alzheimera i Parkinsona, a także wiele innych schorzeń.

Agregaty amyloidowe (czerwone) wokół neuronów (zielone). Strittmatter Laboratory, Yale University.

BIAŁKA AMYLOIDOWE

Za agregację białek amyloidogennych odpowiedzialne są sekwencje peptydowe o właściwościach amyloidogennych (hot spots):

- krótkie (6-15 aminokwasów),
- bardzo zmienny, zazwyczaj hydrofobowy skład aminokwasowy,
- \blacksquare tworzą unikalne β -struktury.

Sawaya et al. (2007)

CEL

Zastosowanie metod uczenia maszynowego do przewidywania właściwości **amyloidogenności** białek na podstawie ich struktury pierwszorzędowej zakodowanej w postaci n-gramów zapisanych w uproszczonym alfabecie.

AMYLOGRAM

AmyloGram: oparte na analizie n-gramowej narzędzie do przewidywania amyloidów (Burdukiewicz et al., 2016, 2017).

Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2017). Amyloidogenic motifs revealed by n-gram analysis. Scientific Reports 7, 12961

DRZEWO DECYZYJNE

DRZEWO DECYZYJNE

LASY LOSOWE

Przewidywania: 🔲 🔲 🗘

Ostateczna decyzja:

Walidacja krzyżowa

Walidacja krzyżowa

Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2017). Amyloidogenic motifs revealed by n-gram analysis. Scientific Reports 7, 12961

STANDARDOWE UPROSZCZONE ALFABETY

Czy standardowe uproszczone alfabety opracowane dla różnych zagadnień biologicznych pomagają lepiej przewidywać amyloidy?

STANDARDOWE UPROSZCZONE ALFABETY

Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2017). Amyloidogenic motifs revealed by n-gram analysis. Scientific Reports 7, 12961

Walidacja krzyżowa

Standardowe alfabety aminokwasowe nie poprawiają jakości predykcji amyloidów.

Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2017). Amyloidogenic motifs revealed by n-gram analysis. Scientific Reports 7, 12961

Nowe uproszczone alfabety

- 17 miar fizykochemicznych wybranych z bazy AAIndex:
 - rozmiar,
 - hydrofobowość,
 - ightharpoonup częstość w β -kartkach,
 - zdolność do tworzenia kontaktów.
- 524 284 uproszczonych alfabetów aminokwasowych o różnej wielkości (od 3 do 6 grup).

Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2017). Amyloidogenic motifs revealed by n-gram analysis. Scientific Reports 7, 12961

Nowe uproszczone alfabety

Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2017). Amyloidogenic motifs revealed by n-gram analysis. Scientific Reports 7, 12961

Walidacja krzyżowa

Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2017). Amyloidogenic motifs revealed by n-gram analysis. Scientific Reports 7, 12961

Wybór najlepszego alfabetu

Wybór najlepszego alfabetu

Dla każdej kategorii alfabety zostały porangowane (ranga 1 dla najlepszego AUC itd.).

WYBÓR NAJLEPSZEGO ALFABETU

Za najlepszy alfabet uznano alfabet z najmniejszą sumą rang.

Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2017). Amyloidogenic motifs revealed by n-gram analysis. Scientific Reports 7, 12961

Grupa	Aminokwasy	
1	G	
2	K, P, R	
3	I, L, V	
4	F, W, Y	
5	A, C, H, M	
6	D, E, N, Q, S, T	

Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2017). Amyloidogenic motifs revealed by n-gram analysis. Scientific Reports 7, 12961

Grupa	Aminokwasy
1	G
2	K, P, R
3	I, L, V
4	F, W, Y
5	A, C, H, M
6	D, E, N, Q, S, T

Grupy 3 i 4 - aminokwasy hydrofobowe.

Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2017). Amyloidogenic motifs revealed by n-gram analysis. Scientific Reports 7, 12961

Grupa	Aminokwasy		
1	G		
2	K, P, R		
3	I, L, V		
4	F, W, Y		
5	A, C, H, M		
6	D, E, N, Q, S, T		

Grupa 2 - reszty aminokwasowe zakłócające β -struktury.

Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2017). Amyloidogenic motifs revealed by n-gram analysis. Scientific Reports 7, 12961

PODOBIEŃSTWO ALFABETÓW I JAKOŚĆ PREDYKCJI

Czy alfabety podobne do najlepszego uproszczonego alfabetu również wspierają przewidywania amyloidów?

SIMILARITY INDEX

Similarity index (Stephenson and Freeland, 2013) mierzy podobieństwo między dwoma uproszczonymi alfabetami (1: identyczne alfabety, 0: zupełnie niepodobne alfabety).

SIMILARITY INDEX

Korelacja między similarity index i średnim AUC jest istotna (p-value $\leq 2.2^{-16}$; $\rho = 0.51$).

Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2017). Amyloidogenic motifs revealed by n-gram analysis. Scientific Reports 7, 12961

47

INFORMATYWNE N-GRAMY

Spośród 65 najbardziej informatywnych n-gramów, 15 (23%) jest również obecnych w motywach aminokwasowych znalezionych ekperymentalnie (Paz and Serrano, 2004).

Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2017). Amyloidogenic motifs revealed by n-gram analysis. Scientific Reports 7, 12961

PORÓWNANIE Z INNYMI NARZĘDZIAMI

Program	AUC	МСС
AmyloGram	0.8972	0.6307
PASTA 2.0 (Walsh et al., 2014)	0.8550	0.4291
FoldAmyloid (Garbuzynskiy et al., 2010)	0.7351	0.4526
APPNN (Família et al., 2015)	0.8343	0.5823

Klasyfikator wytrenowany z wykorzystaniem najlepszego uproszczonego alfabetu, AmyloGram, został porównany z innymi narzędziami do przewidywania amyloidów z użyciem zewnętrznego zbioru danych *pep424*.

Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2017). Amyloidogenic motifs revealed by n-gram analysis. Scientific Reports 7, 12961

50

BADANIA EKSPERYMENTALNE

WALIDACJA EKSPERYMENTALNA

WALIDACJA EKSPERYMENTALNA

Nowe białko amyloidowe

Nowy amyloid funkcjonalny produkowany przez Methanospirillum sp. (Christensen et al., 2018) został wybrany do analiz *in vitro* dzięki wskazaniom AmyloGramu.

PODSUMOWANIE

Modele przewidujące właściwości białek mogą opierać się na regułach precyzyjnych zrozumiałych dla biologów i weryfikowalnych eksperymentalnie nie tracąc na swojej skuteczności.

Podziękowania

Mentorzy:

- Paweł Mackiewicz (Uniwersytet Wrocławski).
- Małgorzata Kotulska (Politechnika Wrocławska).
- Stefan Rödiger (Brandenburg University of Technology Cottbus-Senftenberg).
- Henrik Nielsen (Technical University of Denmark).
- Lars Kaderali (University of Greifswald).
- Jarosław Chilimoniuk (Uniwersytet Wrocławski).
- Piotr Sobczyk (Politechnika Wrocławska).

Podziękowania

Finansowanie:

- Narodowe Centrum Nauki (2015/17/N/NZ2/01845 i 2017/24/T/NZ2/00003).
- COST ACTION CA15110 (Harmonising standardisation strategies to increase efficiency and competitiveness of European life-science research).
- KNOW Wrocław Center for Biotechnology.
- Ministerstwo Edukacji i Badań Naukowych Niemiec (InnoProfile-Transfer-Projekt 03IPT611X).

MI² DATA LAB

MI² Data Lab (https://mi2.mini.pw.edu.pl/), Wydział Matematyki i Nauk Informatycznych, Politechnika Warszawska.

Kontakt: michalburdukiewicz@gmail.com.

REFERENCES I

- Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2017). Amyloidogenic motifs revealed by n-gram analysis. <u>Scientific Reports</u>, 7(1):12961.
- Burdukiewicz, M., Sobczyk, P., Rödiger, S., Duda-Madej, A., Mackiewicz, P., and Kotulska, M. (2016). Prediction of amyloidogenicity based on the n-gram analysis. Technical Report e2390v1, PeerJ Preprints.
- Christensen, L. F. B., Hansen, L. M., Finster, K., Christiansen, G., Nielsen, P. H., Otzen, D. E., and Dueholm, M. S. (2018). The sheaths of methanospirillum are made of a new type of amyloid protein. Frontiers in Microbiology, 9:2729.
- Família, C., Dennison, S. R., Quintas, A., and Phoenix, D. A. (2015). Prediction of Peptide and Protein Propensity for Amyloid Formation. PLOS ONE, 10(8):e0134679.

REFERENCES II

- Garbuzynskiy, S. O., Lobanov, M. Y., and Galzitskaya, O. V. (2010). FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. <u>Bioinformatics (Oxford, England)</u>, 26(3):326–332.
- Murphy, L. R., Wallqvist, A., and Levy, R. M. (2000). Simplified amino acid alphabets for protein fold recognition and implications for folding. Protein Engineering, 13(3):149–152.
- Paz, M. L. d. l. and Serrano, L. (2004). Sequence determinants of amyloid fibril formation. <u>Proceedings of the National Academy of Sciences</u>, 101(1):87–92.
- Sawaya, M. R., Sambashivan, S., Nelson, R., Ivanova, M. I., Sievers, S. A., Apostol, M. I., Thompson, M. J., Balbirnie, M., Wiltzius, J. J. W., McFarlane, H. T., Madsen, A., Riekel, C., and Eisenberg, D. (2007). Atomic structures of amyloid cross-spines reveal varied steric zippers. Nature, 447(7143):453–457.

REFERENCES III

- Stephenson, J. D. and Freeland, S. J. (2013). Unearthing the root of amino acid similarity. <u>Journal of Molecular Evolution</u>, 77(4):159–169.
- Walsh, I., Seno, F., Tosatto, S. C. E., and Trovato, A. (2014). PASTA 2.0: an improved server for protein aggregation prediction. Nucleic Acids Research, 42(W1):W301–W307.