MAT-032: Estadísticas de resumen

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Desde 1988 el SIMCE evalua los resultados de aprendizaje de los estudiantes del sistema de educación chileno.

Objetivos:

- Describir el comportamiento del aprendizaje de los estudiantes.
- Determinar si existe diferencias significativas entre el tipo de dependencia (municipal, subvencionado, particular).

Características del problema:

- Mediciones de un mismo individuo (estudiante) a través del tiempo (4º y 8º básico, 2º medio).¹
- Datos disponibles para los años 2007, 2011 y 2013, pruebas de Lenguaje y Matemáticas.
- Aproximadamente 133K estudiantes para ser analizados (base de datos de mediano porte).

¹Conocido como: datos con estructura longitudinal.

Datos del SIMCE²

Figura: histograma puntajes matemática.

²colegios, 1: municipales, 2: subvencionados y 3: particules.

Figura: densidad puntajes matemática, organizados por Sexo.

Figura: densidad puntajes lenguaje, organizados por Sexo.


```
## Base de datos con aproximadamente 133K individuos > SIMCE
```

```
Sex type math04 math08 math10 spa04 spa08
                                                      spa10
         Male
                1 338.86 303.94 372.51 342.74 327.92 317.38
1
2
      Female
                2 301.98 256.04 324.65 298.30 263.12 322.40
                1 258.45 263.44 225.95 192.59 206.72 216.66
3
      Female
4
        Male
                2 233.13 323.76 288.60 268.91 274.84 251.44
5
        Male
                1 284.17 276.37 293.11 236.55 261.67 283.78
6
         Male
                1 248.64 259.76 210.17 254.34 252.15 280.53
```

. . .

132947	Female	2	211.78	254.21	246.78	244.97	286.21	269.24
132948	Female	3	285.18	315.25	354.90	303.95	341.67	315.81
132949	Male	1	259.05	232.65	224.18	305.65	195.92	217.71

Para pensar:

- ¿Cómo resumir la información del total de 133K datos para cada una de las 8 variables?³
- Podemos usar, digamos unas pocas cantidades para describir esta información?

 $^{^{3}}$ Es decir un poco más de 1 millón de registros.

Lenna y algunas distorsiones de Lenna

Similaridad entre imágenes

- Existen diversos enfoques para estudiar la similaridad entre dos señales, imágenes o (en general) procesos.
- El objetivo de la evaluación de la calidad de una imagen busca representar la percepción de la calidad del ojo humano.
- Se ha diseñado índices para estudiar el desempeño de algoritmos para problemas como: compresión o restauración de imágenes, entre otros. Algoritmos de referencia completa requieren de imágenes distorcionadas y de referencia.
- Se desea un coeficiente apropiado que combine la luminosidad, contraste y estructura (correlación) entre las imágenes. Este tipo de coeficientes son llamados índice de similaridad estructural (SSIM).

Structural Similarity Index (SSIM)

Definición (Wang et al., 2004):4

Sean x, y dos imágenes. El índice SSIM es definido como

$$SSIM(\boldsymbol{x}, \boldsymbol{y}) = l(\boldsymbol{x}, \boldsymbol{y})^{\alpha} \cdot c(\boldsymbol{x}, \boldsymbol{y})^{\beta} \cdot s(\boldsymbol{x}, \boldsymbol{y})^{\gamma},$$

donde α , β y γ son parámetros no negativos,

$$\begin{split} l({m x},{m y}) &= rac{2\,\overline{x}\,\overline{y} + c_1}{\overline{x}^2 + \overline{y}^2 + c_1}, \qquad c({m x},{m y}) = rac{2\,s_x\,s_y + c_2}{s_x^2 + s_y^2 + c_2}, \ s({m x},{m y}) &= rac{s_{xy} + c_3}{s_x\,s_y + c_3}, \end{split}$$

 \overline{x} , \overline{y} , s_x^2 , s_y^2 y s_{xy} representan los promedios muestrales, varianzas y covarianza de x y y.

Las constantes $c_1,\ c_2$ y c_3 garantizan la estabilidad cuando denominadores son cercanos a cero.

⁴IEEE Transactions on Image Processing 13, 600-612.

¿Cómo lucen los datos de Lenna?⁵

Lenna (original):

```
 \begin{pmatrix} 153 & 153 & 153 & 152 & 153 & \dots \\ 153 & 153 & 153 & 152 & 153 & \dots \\ 153 & 153 & 153 & 152 & 153 & \dots \\ 153 & 153 & 153 & 152 & 153 & \dots \\ 153 & 153 & 153 & 152 & 153 & \dots \\ 153 & 153 & 153 & 152 & 153 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}
```

Lenna (sal y pimienta 10% contaminación):

```
\begin{pmatrix} 153 & 153 & 153 & 152 & 153 & \dots \\ 153 & 153 & 30 & 152 & 153 & \dots \\ 153 & 153 & 153 & 152 & 153 & \dots \\ 153 & 153 & 62 & 152 & 153 & \dots \\ 66 & 153 & 153 & 152 & 153 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}
```


⁵Imágenes $512 \times 512 = 262144$ observaciones.

Lenna y algunas distorsiones de Lenna⁶

⁶SSIM: (a) 1.000, (b) 0.989, (c) 0.649, (d) 0.441, (e) 0.346 y (f) 0.288.

Definición 1:

Considere una secuencia de números a_1, a_2, \ldots, a_n . Se define la sumatoria de esta secuencia, como:

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n, \tag{1}$$

donde i denota el índice de la sumatoria, mientras a_i representa un elemento genérico. En este caso, n indica la cantidad de elementos que se están sumando.

Observación:

Es posible apreciar que la suma en (1) puede ser escrita de manera análoga como

$$\sum_{1 \le i \le n} a_i = a_1 + a_2 + \dots + a_n.$$
 (2)

Además, si n=0 el valor de la sumatoria se define como cero.

Sea R un conjunto de índices. Basta considerar el conjunto $R=\{1,2,\ldots,n\}$, para re-escribir la suma en (2) como:

$$\sum_{i \in R} a_i = a_1 + a_2 + \dots + a_n. \tag{3}$$

Observación:

Frecuentemente la notación dada en la Ecuación (3) es utilizada para sumas finitas, esta puede ser adaptada con facilidad para sumas infinitas. Por ejemplo,

$$\sum_{i=1}^{\infty} a_i = \sum_{i \ge 1} a_i = a_1 + a_2 + \cdots.$$

Más formalmente, escribimos

$$\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} \sum_{i=1}^{n} a_i.$$

Resultado 1:

Sea a un número real. De este modo,

$$\sum_{i=1}^{n} a = \underbrace{a + a + \dots + a}_{n \text{ términos}} = na.$$

En general, para r < n tenemos

$$\sum_{i=r}^{n} a = (n-r+1) a, \qquad a \in \mathbb{R}.$$

Resultado 2:

Considere la secuencia x_1, x_2, \ldots, x_n y sea a una constante. Entonces,

$$\sum_{i=1}^{n} a x_i = a x_1 + a x_2 + \dots + a x_n = a(x_1 + x_2 + \dots + x_n)$$
$$= a \sum_{i=1}^{n} x_i.$$

En general, sean x_1,x_2,\ldots,x_n y y_1,y_2,\ldots,y_n dos secuencias de números y $a,b\in\mathbb{R}.$ Entonces,

$$\sum_{i=1}^{n} (a x_i + b y_i) = a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} y_i.$$

Note también que las sumatorias pueden ser descompuestas en varias sumas. En efecto, para una secuencia de números a_1, a_2, \ldots, a_n . Tenemos que

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{k} a_i + \sum_{i=k+1}^{n} a_i, \qquad k < n.$$

En general, sea $R=R_1\cup R_2$, tal que $R_1\cap R_2=\varnothing$. Entonces,

$$\sum_{i \in R} a_i = \sum_{i \in R_1} a_i + \sum_{i \in R_2} a_i.$$

Ejemplo (propiedad telescópica):

Considere a_0, a_1, \ldots, a_n una secuencia de números reales, y considere

$$\sum_{i=1}^{n} (a_i - a_{i-1}) = (a_1 - a_0) + (a_2 - a_1) + \dots + (a_{n-1} - a_{n-2}) + (a_n - a_{n-1})$$
$$= -a_0 + (a_1 - a_1) + \dots + (a_{n-1} - a_{n-1}) + a_n$$
$$= a_n - a_0.$$

Ejemplo (Suma de una progresión geométrica):

Asuma que $x \neq 1$ y $n \geq 0$. Entonces,

$$a + ax + ax^{2} + \dots + ax^{n} = \sum_{j=0}^{n} ax^{j} = a\left(\frac{1 - x^{n+1}}{1 - x}\right).$$

Las siguientes son igualdades que no satisface la suma:

▶ Sean a_1, \ldots, a_n y b_1, \ldots, b_n dos secuencias de números reales. Entonces,⁷

$$\sum_{i=1}^{n} a_i b_i \neq \left(\sum_{i=1}^{n} a_i\right) \left(\sum_{i=1}^{n} b_i\right). \tag{4}$$

Un caso particular del anterior es

$$\sum_{i=1}^{n} x_i^2 \neq \left(\sum_{i=1}^{n} x_i\right)^2.$$

▶ En general, si $f : \mathbb{R} \to \mathbb{R}$ es una función no lineal. Entonces

$$\sum_{i=1}^{n} f(x_i) \neq f\left(\sum_{i=1}^{n} x_i\right).$$

⁷Basta notar que la cantidad de términos involucrados en cada uno de los lados de la ecuación anterior es diferente.

En ocasiones disponemos de secuencias números indexados mediante dos (o más) índices, es decir $\{a_{ij}\}$ para $i=1,\ldots,m; j=1,\ldots,n$. Suponga que deseamos sumar todos los elementos del conjunto $\{a_{ij}\}$. Es decir,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} = a_{11} + \dots + a_{1n} + \dots + a_{m1} + \dots + a_{mn}.$$

Notamos fácilmente que podemos intercambiar el orden de las sumas. En efecto,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij}$$

Observación:

Se debe resaltar que la operación de intercambiar el orden de las sumas no siempre es válido para series infinitas.

Retomando el resultado de la Ecuación (4), es válido considerar

$$\left(\sum_{i=1}^{m} a_i\right)\left(\sum_{j=1}^{n} b_j\right) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j,$$

para comprender mejor esta ecuación, considere un caso especial

$$\left(\sum_{i=1}^{2} a_i\right) \left(\sum_{j=1}^{3} b_j\right) = (a_1 + a_2)(b_1 + b_2 + b_3)$$

$$= (a_1b_1 + a_1b_2 + a_1b_3) + (a_2b_1 + a_2b_2 + a_2b_3)$$

$$= \sum_{i=1}^{2} \left(\sum_{j=1}^{3} a_ib_j\right).$$

Asimismo,

$$\left(\sum_{i=1}^{n} x_i\right)^2 = \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} x_j\right) = \sum_{i=1}^{n} \sum_{i=1}^{n} x_i x_j.$$

Ejemplo:

Otras sumas útiles (que pueden ser probadas usando inducción) son:

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}.$$
$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$

Existe una notación análoga para productos. Considere la siguiente definición

Definición 2:

Sea a_1,a_2,\ldots,a_n una secuencia de números. Se define la productoria de esta secuencia, como:

$$\prod_{i=1}^{n} a_i = a_1 \cdot a_2 \cdots a_n.$$

En general, podemos escribir

$$\prod_{i\in R}a_i,$$

donde R representa un conjunto de índices. Note que si no existe algún entero $i\in R$, el producto se define con el valor uno.

Ejemplo (factorial de un número):

Un ejemplo del uso de productorios es:

$$1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n = \prod_{j=1}^{n} j = n!$$

que se denomina n factorial. Evidentemente,

$$n! = (n-1)! n.$$

Recuerde que 0! por definición es 1.8

⁸Para n=1, tenemos $1!=0!\cdot 1\Longrightarrow 0!=1!/1=1$.

Estadísticas de resumen

Ingredientes:

Conjunto de n observaciones $\{x_1, x_2, \ldots, x_n\}$ conocidas como muestra.

En general, nuestro interés recaerá en resúmenes de la información a través de una estadística, digamos $T=T(x_1,\ldots,x_n)$.

En esta clase consideraremos 3 tipos de estadísticas de resumen 9 para una muestra ${m x}=(x_1,\dots,x_n)^{\top}$,

- medidas de posición.
- medidas de dispersión.
- ► medidas de forma (asimetría y curtosis).

⁹En ocasiones escribiremos T = T(x).

Definición 3 (Media muestral o promedio):

Sea x_1, \ldots, x_n valores muestrales. Se define el promedio o media muestral como:

$$\overline{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Suponga que la observación i-ésima, digamos x_i , se repite n_i veces. Entonces tenemos

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} n_i x_i = \sum_{i=1}^{n} f_i x_i,$$

donde $f_i=n_i/n$ es la frecuencia relativa. En general, considere "pesos" ω_1,\ldots,ω_n asociados a las observaciones x_1,\ldots,x_n . En este caso,

$$\overline{x} = \frac{1}{\sum_{j=1}^{n} \omega_j} \sum_{i=1}^{n} \omega_i x_i.$$

Ejemplo:

Considere el conjunto de datos $\boldsymbol{x} = \{1, 2, 2, 2, 3, 3, 8\}.$ Tenemos n=7, y

$$\sum_{i=1}^{7} x_i = 1 + 2 + 2 + 2 + 3 + 3 + 8$$
$$= 1 + 2 \cdot 3 + 2 \cdot 3 + 8 = 21,$$

así $\overline{x}=21/7=3$. Note también que el gráfico de tallo y hoja, adopta la forma:

```
1 | * 2 | * * * * * 3 | * * * 4 | 5 | 6 | 7 | 8 | *
```


Ejemplo (datos de accidentes):

Suponga el siguiente conjunto de datos:

Número de	Frecuencia	
accidentes (x_i)	(n_i)	$n_i x_i$
0	55	0
1	14	14
2	5	10
3	2	6
4	0	0
Total	76	30

De este modo, $\overline{x}=30/76=0.3947$ es el número promedio de accidentes.

Definición 4 (Estadísticos de orden):

Sea x_1, \ldots, x_n una muestra. Entonces los valores ordenados

$$x_{(1)} \le x_{(2)} \le \dots \le x_{(n)},$$

se denominan estadísticos de orden. Algunas estadísticas de orden son: el mínimo muestral $x_{(1)}$, el máximo muestral $x_{(n)}$.

Definición 5 (Mediana):

Sea $x_{(1)},\ldots,x_{(n)}$ observaciones ordenadas. La mediana es definida como:

$$\mathrm{me}({\pmb x}) = \begin{cases} x_{(n+1)/2}, & n \text{ es impar,} \\ \left(x_{(n/2)} + x_{(n/2+1)}\right)/2, & n \text{ es par.} \end{cases}$$

Observación:

Sea f(x) cualquier función de números reales. 10 Entonces podemos definir

$$\overline{f} = \frac{1}{n} \sum_{i=1}^{n} f(x_i) = \frac{1}{n} (f(x_1) + \dots + f(x_n)).$$

Caso particular (media geométrica):

Suponga x_1, \ldots, x_n números positivos y $f(x) = \log(x)$. Entonces la media geométrica G es dada por:

$$\log G = \frac{1}{n} \left(\log x_1 + \dots + \log x_n \right) = \frac{1}{n} \sum_{i=1}^n \log x_i.$$

Es decir,

$$G = (x_1 \cdot x_2 \cdots x_n)^{1/n} = \left(\prod_{i=1}^n x_i\right)^{1/n}.$$

Datos del SIMCE: Puntajes de matemáticas

```
## sólo puntajes de matemáticas
> MATH
math04 math08 math10
1 338.86 303.94 372.51
2 301.98 256.04 324.65
3 258.45 263.44 225.95
4 233.13 323.76 288.60
5 284.17 276.37 293.11
6 248.64 259.76 210.17
> x <- MATH$math04 # análogamente x <- MATH[,1]
> mean(x)
             # promedio
[1] 261.5766
> median(x) # mediana
[1] 263.96
> library(fastmatrix) # https://faosorios.github.io/fastmatrix
> geomean(x) # media geométrica
[1] 256.0357
# alternativamente: exp(mean(log(x)))
> apply(MATH, 2, mean) # para todas la variables
  math04 math08
                    math10
261.5766 269.6779 276.6267
```


Considere los siguientes conjuntos de datos:

$$D_1 = \{10, 20, 30\}, \qquad D_2 = \{5, 5, 20, 35, 35\}, \qquad D_3 = \{20, 20, 20\},$$

Tenemos los gráficos de tallo-y-hoja:

Datos D_1 :		Da	Datos D_2 :			Datos D_3 :			
5		5	*	*	5				
10	*	10			10				
15		15			15				
20	*	20	*		20	*	*	*	
25		25			25				
30	*	30			30				
35		35	*	*	35				

Sea \overline{x}_j y me_j el promedio y la mediana asociada al conjunto de datos D_j (j=1,2,3). Entonces,

$$\overline{x}_1 = \frac{1}{3}(10 + 20 + 30) = \frac{60}{3} = 20,$$

$$\overline{x}_2 = \frac{1}{5}(2 \cdot 5 + 20 + 2 \cdot 35) = \frac{100}{5} = 20,$$

$$\overline{x}_3 = \frac{3 \cdot 20}{3} = 20.$$

Además, $me_j = 20$ para todo j.

Observación:

Es decir, tenemos tres configuraciones de datos con valores centrales idénticos.

Sean Q_1 y Q_3 las medianas de la mitad inferior y superior de los datos, conocidos como el 1er y 3er cuartiles, respectivamente. Esto permite definir:

$$IQR = Q_3 - Q_1,$$

que es conocido como rango intercuartílico.

También podemos considerar el rango de la muestra como:

$$R = \max\{x_i\}_{i=1}^n - \min\{x_i\}_{i=1}^n = x_{(n)} - x_{(1)}.$$

Algunos software estadísticos (R/S-Plus, Stata, entre otros) reportan:

$$x_{(1)}, Q_1, \text{me}, Q_3, x_{(n)}.$$

Considere subdividir los datos ordenados $x_{(1)},\dots,x_{(n)}$ en secciones de 100%, llamados percentiles. Entonces el percentil de orden j $(1 \le j \le 100)$ está dado por:

$$P_j = x_{(j(n+1)/100)}.$$

Note que $Q_1=P_{25}$, la mediana (o 2º cuartil, Q_2) es $\mathrm{me}=P_{50}$ y $Q_3=P_{75}$.

Ejemplo:

Considere el conjunto de datos $x=\{4,7,18,1,7,13,2\}$ y suponga que deseamos calcular el rango intercuartílico IQR.

Primeramente es necesario ordenar el conjunto de datos:

$$\{x_{(1)},x_{(2)},x_{(3)},x_{(4)},x_{(5)},x_{(6)},x_{(7)}\}=\{1,2,4,7,7,13,18\}.$$

Disponemos de $n=7\,\mathrm{datos}$, luego para obtener el 1er y 3er cuartiles podemos usar

$$Q_1 = P_{25} = x_{(25\cdot(7+1)/100)} = x_{(1\cdot8/4)} = x_{(2)} = 2,$$

$$Q_3 = P_{75} = x_{(75 \cdot (7+1)/100)} = x_{(3 \cdot 8/4)} = x_{(6)} = 13.$$

De este modo, $IQR = Q_3 - Q_1 = 13 - 2 = 11$.

Definición 6 (Varianza muestral):

Considere x_1, \ldots, x_n valores observados, se define su varianza muestral como:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$$

Observación:

 $s=\sqrt{s^2}$ se denomina desviación estándar.

Medidas de dispersión

Observación:

Otras medidas de dispersión:

Desviación absoluta en torno de la media:

$$\frac{1}{n}\sum_{i=1}^{n}|x_i-\overline{x}|.$$

Desviación absoluta en torno de la mediana:

$$\frac{1}{n}\sum_{i=1}^{n}|x_i-\mathrm{me}(\boldsymbol{x})|.$$

► r-ésimo momento centrado en torno de a:11

$$m_r(a) = \frac{1}{n} \sum_{i=1}^{n} (x_i - a)^r.$$

¹¹Para r=2 y $a=\overline{x}$ obtenemos la varianza.

Propiedades:

(a)

$$\sum_{i=1}^{n} (x_i - \overline{x}) = 0.$$

(b)

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$$

(c) \overline{x} es el valor que minimiza la función:

$$S(a) = \sum_{i=1}^{n} (x_i - a)^2.$$

(d) Sea x_1, \ldots, x_n y considere la transformación:

$$y_i = a x_i + b, \qquad i = 1, \dots, n.$$

Entonces
$$\overline{y}=a\,\overline{x}+b$$
 y $s_y^2=a^2s_x^2.$

(a) En efecto,

$$\sum_{i=1}^{n} (x_i - \overline{x}) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \overline{x} = \sum_{i=1}^{n} x_i - n\overline{x} = n\overline{x} - n\overline{x} = 0.$$

(b) (Fórmula de Köning)

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} (x_i^2 - 2x_i \overline{x} + \overline{x}^2) = \sum_{i=1}^{n} x_i^2 - 2\overline{x} \sum_{i=1}^{n} x_i + n\overline{x}^2$$
$$= \sum_{i=1}^{n} x_i^2 - n\overline{x}^2 = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i\right)^2$$

(c) \overline{x} es el valor que minimiza la función $S(a) = \sum_{i=1}^n (x_i - a)^2$. En efecto, note que

$$\frac{d}{da}S(a) = \sum_{i=1}^{n} \frac{d}{da}(x_i - a)^2 = -2\sum_{i=1}^{n} (x_i - a),$$

resolviendo la condición de primer orden, tenemos

$$\sum_{i=1}^{n} (x_i - \widehat{a}) = 0,$$

desde donde sigue que $\widehat{a}=\overline{x}.$ Además

$$\frac{d^2}{da^2}S(a) = -2\sum_{i=1}^{n} \frac{d}{da}(x_i - a) = 2n,$$

y como la segunda derivada es positiva (para cualquier valor de n), obtenemos que \overline{x} es máximo global.

(d) Sea x_1,\ldots,x_n y considere la transformación, $y_i=ax_i+b$, para $i=1,\ldots,n$. Entonces

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b) = \frac{1}{n} \left(a \sum_{i=1}^{n} x_i + b \right)$$
$$= a \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right) + b = a\overline{x} + b.$$

Mientras que

$$s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2,$$

como
$$y_i - \overline{y} = ax_i + b - (a\overline{x} + b) = a(x_i - \overline{x})$$
, sigue que

$$s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2 = \frac{1}{n-1} \sum_{i=1}^n \{a(x_i - \overline{x})\}^2$$
$$= a^2 \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = a^2 s_x^2.$$

Medidas de resumen

Observación:

Un caso particular de importancia es la estandarización del conjunto de datos x_1,\dots,x_n , definida como:

$$z_i = \frac{x_i - \overline{x}}{s}, \quad i = 1, \dots, n.$$

Entonces,12

$$\overline{z} = 0$$
 y $s_z^2 = 1$.

 $^{^{12}}$ Basta hacer a=1/s y $b=\overline{x}/s$ en la Propiedad (d).

Medidas de resumen

Definición 7 (Coeficiente de variación):

Este coeficiente es una medida que compara la desviación estándar con el promedio de una muestra y es definido como

$$CV = s/\overline{x}, \quad \overline{x} \neq 0.$$

El coeficiente es particularmente útil para comparar dos o más muestras (o grupos).

Observación:

Un valor pequeño para el CV está asociado a una muestra homogénea.

Observación:

En Econometría $1/\mathrm{CV}$ es conocido como la razón de Sharpe.

(a) distribuciones simétricas

(b) asimetría negativa (-), positiva (- -)

Definición 8 (Coeficiente de asimetría):

Considere m_3 el tercer momento muestral, entonces se define el coeficiente de asimetría (o sesgo) como:

$$b_1 = \frac{m_3}{s^3} = \frac{1}{n} \sum_{i=1}^n \left(\frac{x_i - \overline{x}}{s} \right)^3.$$

Observación:

- ▶ Si $b_1 = 0$ la distribución es simétrica con relación a \overline{x} .
- ightharpoonup Si $b_1>0$ la distribución tiene sesgo positivo. En caso contrario, decimos que tiene sesgo negativo.

Observación:

Se han definido diversos índices de simetría, por ejemplo la medida de sesgo de Galton:

$$b_{\mathsf{G}} = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{Q_3 - Q_1}.$$

(a) Distribución leptocúrtica (—·–), mesocúrtica (—) y platicúrtica (– –)

Definición 9 (Coeficiente de curtosis):

Considere m_4 el cuarto momento muestral, entonces se define el coeficiente de curtosis 13 como:

$$b_2 = \frac{m_4}{s^4} - 3 = \left\{ \frac{1}{n} \sum_{i=1}^n \left(\frac{x_i - \overline{x}}{s} \right)^4 \right\} - 3.$$

Observación:

El término -3 hace que $b_2=0$ cuando los datos siguen una distribución normal.

¹³ también conocido como exceso de curtosis

Datos del SIMCE: Puntajes de matemáticas¹⁴

```
> z <- quantile(x)
> z
    0%
          25% 50% 75% 100%
 87.74 226.32 263.96 299.29 369.55
> sd(x) # desviación estándar
[1] 51.79042
> var(x) # varianza
[1] 2682.247
> library(fastmatrix) # https://faosorios.github.io/fastmatrix
> moments(x)
$second
[1] 2682,227
$third
Γ11 -30409.6
$fourth
[1] 18784749
$skewness
[1] -0.2189084
$kurtosis
[1] -0.3889947
```

 $^{^{14}}n = 132\,793$ observaciones, así que (n-1)/n = 0.9999925.

Gráfico de cajón con bigotes (boxplot)

