

Last name, First name

Exercise 1 (value 12)

In the **Set Covering Problem (SCP)** we are given a set I of n elements and a set $S = \{s_1, \ldots, s_m\}$ of subsets of I. The basic problem asks to find the minimum number of subsets from S such that each element of I belongs to at least one of the selected subsets. We extend the SCP by considering, for each $s_j \in S$, a weight w_{s_j} and a class c_{s_j} (let C denote the set of all classes). We want to select some subset from S so that : a) the sum of the weights of the subsets selected is at least W; b) the number selected subsets is minimized; c) each element $i \in I$ belongs to al least one selected subset; d) no more than two subset from the same class are selected; e) if subset s_2 is selected, then subsets s_3 and s_6 are not selected.

Write a linear mathematical model to solve the above problem.

Answer:

$$x_{s_i} = 1$$
 if subset $s_j \in S$ is selected, 0 otherwise

Exercise 2 (value 9)

Consider the following ILP problem.

min
$$-x_2 + x_3$$

 $x_1 + 3x_2 + 3x_3 \le 2$
 $2x_1 + x_2 - x_3 \le 5$
 $x_1, x_2, x_3 > 0 integer$

- Solve with the standard Branch and Bound method for Integer Programming.
 - Solve the relaxed problems with the simplex method and show all the tableaus.
 - Apply Bland's rule.
- Show the search tree.
- Report the final solution and its value.

Answer:

Node P_0 :

x_1	x_2	x_3	s_1	s_2	-z	
0	-1	1	0	0	0	
1	3	3	1	0	2	s_1
2	1	-1	0	1	5	s_2

x_1	x_2	x_3	s_1	s_2	-z
$\frac{1}{3}$	0	2	$\frac{1}{3}$	0	$\frac{2}{3}$
$\frac{1}{3}$	1	1	$\frac{1}{3}$	0	$\frac{2}{3}$
$\frac{5}{9}$	0	-2	$-\frac{1}{2}$	1	$\frac{13}{2}$

The optimal fractional solution is $x = (0, \frac{2}{3}, 0, 0, \frac{13}{3})$ with value $-\frac{2}{3}$. Since the coefficients of the objective function of ILP are integers we have $LB = \lceil -\frac{2}{3} \rceil = 0$. We branch on x_2 imposing $x_2 \le 0$ in Node P_1 and $x_2 \ge 1$ in Node P_2 .

Node $P_1 \ (x_2 \le 0)$:

x_1	x_2	x_3	s_1	s_2	s_3	-z	
$\frac{1}{3}$	0	2	$\frac{1}{3}$	0	0	$\frac{2}{3}$	
$\frac{1}{3}$	1	1	$\frac{1}{3}$.	0	0	$\frac{2}{3}$	
$\begin{bmatrix} \frac{1}{3} \\ \frac{5}{3} \end{bmatrix}$	0	-2	$-\frac{1}{3}$	1	0	$\frac{\frac{2}{3}}{\frac{13}{3}}$	
ő	1	0	0	0	1	ő	
x_1	x_2	x_3	s_1	s_2	s_3	-z	
$\frac{1}{3}$	0	2	$\frac{1}{3}$	0	0	$-\frac{2}{3}$	
$\frac{1}{3}$	1	1	$\frac{1}{3}$	0	0	$\frac{2}{3}$	
$\frac{5}{3}$	0	-2	$-\frac{1}{3}$	1	0	$\frac{13}{3}$	
$-\frac{\frac{1}{3}}{\frac{5}{3}}$ $-\frac{1}{3}$	0	-1	$-\frac{1}{3}$	0	1	$ \begin{array}{c c} & 3 \\ & 13 \\ & 3 \\ & -\frac{2}{3} \end{array} $	
x_1	x_2	x_3	s_1	s_2	-z		
0	0	3	0	0	0	0	
0	1	0	0	0	1	0	
0	0	-7	-2	1	5	1	
1	0	3	1	0	-3	2	
						_	

The integer solution x = (2,0,0,0,1,0) with value 0 has been retrieved. Since it has the same value of the bound found at father Node P_0 , there is no need to evaluate node P_2 .

Exercise 3 (value 6)

Consider the graph G = (V, A) described by the following adjacency matrix with costs:

	1	2	3	4	5	6
1	_	3	8	5	6	4
2	3	_	_	2	2	_
3	6	1	_	_	_	_
4	5	_	_	_	_	1
5	2	3	4	_	_	1
6	1	2	8 - - - 4 12	_	1	_

Find the shortest path from node 1 to node 5 by using Dijkstra's method. Show the tables of labeles and predecessors, and write the optimal path with the associated cost.

Answer:

S		L_{j}				$pred_j$				
	2	3	4	5	6	2	3	4	5	6
{1}	3	8	5	6	4	1	1	1	1	1
$\{1, 2\}$	3	8	5	5	4	1	1	1	2	1
$\{1, 2, 6\}$	3	8	5	5	4	1	1	1	2	1

The shortest path is $\{1, 2, 5\}$ with cost 5.