4

3

3

4

3

3

3

Printed Pages: 3

| Paper | Code | BCS-11 |  |  |  |
|-------|------|--------|--|--|--|

|          | <br>  | <br> | <br> |   |       |
|----------|-------|------|------|---|-------|
| Roll No. |       |      |      | - |       |
|          | <br>• |      | <br> |   | <br>1 |

## B.Tech. 2nd Year

## **Odd Semester Examination 2016-2017**

## DIGITAL CIRCUITS AND LOGIC DESIGN

Time: 3 hrs Max. Marks: 40

Note: Attempt all questions. Each question carries equal marks.

- Q.1 Attempt any three of the following Q.1(a) is compulsory.
  - (a) A packet with data 11000100 is transmitted over a network with even parity with single bit error correction.
    - I. Give expression to for finding out parity check bits.
    - II. Find out how many minimum parity check bits must be included in above data word for single bit error correction.
    - III. What will be final data word including parity check bits before transmission?
    - IV. Suppose data word received at receiver end is 001100010100. Find out error bit.
  - (b) Find the complement of F = x + yz. Show that F.F' = 0 and F+F' = 1. Convert F into canonical sum-of-product form.
  - (c) Determine the value of x if  $(211)_x = (152)_8$ . Convert binary number 110110101 to base x = 3 number system.
  - (d) What is weighted and non-weighted binary codes. Give atleast two example of each.

    Convert Gray code 10111011 to decimal number system.
- Q.2 Attempt any three of the following Q.2(a) is compulsory.
  - (a) Simplify the following Boolean expression F together with don't care d using K-map.

$$F(A, B, C, D, E) = \sum (0,2,3,4,5,6,7,11,15,16,18,19,23,27,31)$$

$$d(A, B, C, D, E) = \sum (1,13,21.29)$$

- (b) Design a combinational circuit with three input and six outputs. The output binary number should be the square of the input binary number.
- (c) Design an eight-bit adder using only four-bit adders. Each four-bit adder has two four-bit inputs and one five-bit output. Your eight-bit adder should have two eight-bit inputs and a one nine-bit output.
- (d) Implement the following Boolean function using an 8 x 1 multiplexer.

$$F(A,B,C,D) = \sum_{i=1}^{n} (0,3,5,6,8,9,14,15)$$

- Q.3 Attempt any three of the following Q.3(a) is compulsory.
  - (a) Consider the following circuit with two D flip-flops.

4



Say a user enters the sequence of inputs given in following table, one after the other. Label what the output of the circuit will settle into after each of the user's inputs.

| а   | b | С | 0   |
|-----|---|---|-----|
| 1   | 1 | 1 | ?   |
| 0   | 1 | 1 | ?   |
| 0   | 0 | 1 | ? . |
| 0   | 0 | 0 | ?   |
| 0   | 1 | 0 | ?   |
| 0   | 0 | 0 | ?   |
| 1   | 0 | 0 | ?   |
| · ~ | _ | 7 | l   |

- (b) Convert D flip flop to JK flip flop. Explain the conversion process in detail.
- (c) Design a 4-bit binary synchronous counter with D flip flop.
- (d) Construct a mod-9 asynchronous up-counter using T Flip-Flop. Give the number of T Flip-Flop required to construct the above counter.

3

3

3

- Q.4 Attempt any three of the following Q.4(a) is compulsory.
  - (a) The following circuit diagram shows a Serial Input Parallel Output shift register with a outputs A and C connected to a NOR gate. The output of the NOR gate is used to generate  $D_{IN}$ .



Initially the shift register is reset so that outputs A, B, C and D are logic 0. Complete the following table to give the state of the output after the given number of clock pulses have been applied.

| Clock Pulse |   |   |   |   |
|-------------|---|---|---|---|
|             | Α | В | С | D |
| 0           | 0 | 0 | 0 | 0 |
| 1           |   |   |   |   |
| 2           |   |   |   |   |
| 3           |   |   |   |   |
| 4           |   |   |   |   |

Page 2 of 3

pipelined processor.

- b) Consider a four-stage floating point adder with a 2-ns delay per stage which equals the pipeline clock period.
  - 1. Name the appropriate functions to be performed by UTE four stages.
  - II. Find the minimum number of periods required to add 100 floating-point numbers A1 + A1 + .....+ An using this pipeline adder, assuming that the output Z of stage S4 can be routed back to either of the two inputs X or Y of the pipeline with delays equal to a multiple of the clock period.
- c) Consider the following reservation table for a four stage pipeline

|           | 1 | 2 | 3 | 4 | 5 | 6 |
|-----------|---|---|---|---|---|---|
| <b>S1</b> | Х |   |   |   |   | Х |
| <b>S2</b> |   | Х |   | х |   |   |
| <b>S3</b> |   |   | х |   |   |   |
| 54        |   |   | - | х | х |   |

- I. Find the forbidden latencies and initial collision vector.
- II. Draw the state transition diagram for scheduling the pipeline and determine the Minimum available latency
- d) Discuss super scalar execution. Also compute the performance of m-issue superscalar machine.