CR<u>ll461</u>4 AVAILABLE TO THE PUBLIC

FINAL REPORT

V/STOL TILT ROTOR STUDY VOLUME V

A MATHEMATICAL MODEL FOR REAL TIME FLIGHT SIMULATION OF THE BELL MODEL 301 TILT ROTOR RESEARCH AIRCRAFT

MODEL 301

REPORT 301-099-001

NASA CONTRACT NAS 2-65\$

NASA-CR-114614) V/STOL TILT ROTOR STUDY.
VOLUME 5: A MATHEMATICAL MODEL FOR REAL
TIME FLIGHT SIMULATION OF THE EELL MODEL
301 TILT ROTOR RESEARCH (Bell Helicopter
Co.) 265 p HC \$15.25

0071973 N73-30949 · 一年以前後 の変が できい

G3/02 Unclas G3/02 14158

V/STOL TILT ROTOR STUDY-VOLUME V

A MATHEMATICAL MODEL FOR REAL TIME FLIGHT SIMULATION OF THE BELL MODEL 301 TILT ROTOR RESEARCH AIRCRAFT

by

P. B. HARENDRA

M. J. JOGLEKAR

T. M. GAFFEY

R. L. MARR

BELL HELICOPTER COMPANY REPORT NO. 301-099-001

April 13, 1973

Prepared Under Contract No. NAS2-6599 by Bell Helicopter Company, A Textron Company Fort Worth, Texas

for

National Aeronautics and Space Administration
Ames Research Center

and

United States Army Airmobility Research and Development Laboratory, Ames Directorate

This Data is Furnished in Accordance With the Provisions of Contract NAS2-6599

Foreword

This report is one of a series prepared by the Bell Helicopter Company, Fort Worth, Texas for the National Aeronautics and Space Administration, Ames Research Center, Moffett Field, California under contract NAS2-6599. These Tilt Rotor Research Aircraft studies were jointly funded by NASA and the U.S. Army Air Mobility Research and Development Laboratory, Ames Directorate.

The Administrative Contracting Officer was Mr. Richard J. Abbott. The Technical Monitor was Mr. Martin D. Maisel, Tilt Rotor Research Aircraft Project Office. Mr. Gary B. Churchill, Tilt Rotor Research Aircraft Project provided technical support of the effort reported in Volume V.

Volume I -- V/STOL Tilt Rotor Study, Conceptual Design -- CR11441

Volume II -- V/STOL Tilt Rotor Study, Research Aircraft Design-- CR11442

Volume III -- V/STOL Tilt Rotor Study, Research Aircraft Project Plan--CR11443

Volume IV -- V/STOL Tilt Rotor Study, Wind Tunnel Investigation Plan--CR114444

Volume V -- V/STOL Tilt Rotor Study, A Mathematical Model for Real Time Flight Simulation of the Bell Model 301 Tilt Rotor Research Aircraft--CR114614

Volume VI -- V/STOL Tilt Rotor Study, Hover, Low Speed and Conversion Tests of a Tilt Rotor Aeroelastic Model --CR114615 西京 日本の一日本の一日本の

BELL MODEL 301 TILT ROTOR RESEARCH AIRCRAFT

TABLE OF CONTENTS

Section		Page
LIST OF ILLUSTE	RATIONS	iv
LIST OF TABLES		vi
LIST OF SYMBOLS	· · · · · · · · · · · · · · · · · · ·	vii
I. SUMMARY		1-1
II. DESCRIPTION OF	THE MATHEMATICAL MODEL	II-1
A. Coordinate	Systems and Sign Conventions	11-1
E. Rotor Math	Model	11-1
C. Airframe Ac	erodynamics	11-3
D. Rotor Wake-	-Airframe Aerodynamic Interaction	11-5
E. Flight Cont	trols	11-7
F. Drive Syste	em and Engines	II-7
G. Automaric F	Flight Control System	11-9
H. Equations o	of Motion and Coordinate Transformations	11-10
III. VALIDATION OF T	THE MATHEMATICAL MODEL	III-l
A. Rotor Perfo	ormance	III-1
B. Airframe Ac	erodynamics	III-1
C. Rotor Wake-	Airframe Aerodynamic Interaction	111-2
D. Stability D)erivatives	111-2
E. Static Stat	oility	111-3
F. Dynamic Sta	ability	111-3
G. Control Pow	ver and Damping	111-3
IV. CONTRACTOR EVAL	LUATION OF FSAA SIMULATION	IV-1
A. Mathematica	al Model and Computer Program Deficiencies	IV-1
B. Simulator F	lardware Deficiencies	IV-2
V. RECOMMENDATIONS SIMULATION	S FOR FURTHER DEVELOPMENT OF MODEL 301	V-1
A. Mathematica	al Model and Computer Program	V-1
B. Simulator H	lardware	V - 2
VI. REFERENCES		VI-1
APPENDIX A - MATHEMAT	CICAL MODEL EQUATIONS	A-1
APPENDIX B - MODEL 30	OL INPUT DATA	B-1

301-099-001

iii

LIST OF ILLUSTRATIONS

Number		$\underline{\mathtt{Page}}$
1-1	Block Diagram of Mathematica: Model	1-3
11-1	Rotor Axes Systems and Sign Convention	11-11
11-2	Side-By-Side Rotor Effect on Induced Velocity	11-12
11-3	Wing-Pylon Lift Coefficient Versus Angle of Attack	11-13
II-4	Wing-Pylon Drag Coefficient Versus Angle of Attack	11-14
11-5	Compressibility Correction to Wing-Pylon Lift Coefficient	11-15
11-6	Compressibility Correction to Wing-Pylon Drag Coefficient	11-16
11-7	Wing-Pylon Lift Coefficient at Large Negative Angles of Attack	11-17
11-8	Wing-Pylon Drag Coefficient at Large Negative Angles of Attack	11-18
11-9	Sign Conventions and Notation for Horizontal Stabilizer and Vertical Fin Aerodynamics	11-19
11-10	Horizontal Stabilizer Lift Coefficient Versus Angle of Attack	11-20
11-11	Horizontal Stabilizer Drag Coefficient Versus Angle of Attack	TI-21
II-12	Wing-Pylon Wake Deflection at Horizontal Stabilizer	11-22
11-13	Vertical Stabilizer Side Force Coefficient Versus Sideslip Angle	II-23
11-14	Vertical Stabilizer Drag Coefficient Versus Sideslip Angle	11-24
11-15	Sign Convention and Notation for Mathematical Model of Rotor Wake - Wing Interaction	11-25
11-16	Model of Rotor Wake Induced Velocity at Horizontal Stabilizer	11-26
II-17	Representation of In-Ground Effect Rolling Moment	11-27
II-18	Schematic of Model 301 Flight Control System	11-28
11-19	Computer Representation of Flight Control System Wash-Out Schedule With Conversion Angle	11-29
11-20	Schematic of SCAS Pitch Channel Network	11-30
III-1	Rotor Performance Correlation - Hover	111-7
111-2	Rotor Performance Correlation - $\alpha_{\rm m} = 75^{\rm o}$	11.1-8
111-3	Rotor Performance Correlation - $\alpha_{\rm m} = 60^{\circ}$	111-9

301-099-001

LIST OF ILLUSTRATIONS (Cont'd)

Number		Page
111-4	Rotor Performance Correlation - $\alpha_{\rm m} = 30^{\circ}$	111-10
111-5	Rotor Performance Correlation - $\alpha_{m} = 0^{\circ}$	III-li
III - 6	Rotor Rate Derivative Correlation	111-12
III-7	Airplane Mode Lift Coefficient Correlation	III-13
111-8	Helicopter Mode Lift Coefficient Correlation	111-14
111-9	Airplane Mode Drag Coefficient Correlation	III-15
111-10	Helicopter Mode Drag Coefficient Correlation	III-16
111-11	Airplane Mode Pitching Moment Correlation	III-17
111-12	Helicopter Mode Pitching Moment Correlation	111-18
111-13	Airplane Mode Sideforce Coefficient Correlation	111-19
111-14	Helicopter Mode Sideforce Coefficient Correlation	111-20
111-15	Airplane Mode Rolling Moment Coefficient Correlation	III-21
III-16	Helicopter Mode Rolling Moment Coefficient Correlation	III-22
III-17	Airplane Mode Yawing Moment Coefficient Correlation	III-23
III-18	Helicopter Mode Yawing Moment Coefficient Correlation	111-24
111-19	Aileron Control Power Correlation	III - 25
111-20	Rotor Wake Effect on Wing Lift	111-26
111-21	Level Flight Trim Condition Correlation	III - 27
III - 22	Comparison of Longitudinal Oscillatory Mode Characteristics With MIL-F-83300 Response Requirements	111-28
III -2 3	Comparison of Lateral-Directional Oscillatory Mode Characteristics With MIL-F-83300 Response Requirements	III -2 9
III - 24	Helicopter and Conversion Mode Control Power Correlation	111-30
111-25	Airplane Mode Control Power Correlation	III-31
III - 26	Aircraft Damping Correlation	III-32

LIST OF TABLES

Number		Page
III-1	Stability Derivative Correlation	II I - 4
III-2	Flight Mode Characteristics Correlation	III - 6

over or disclining elof data in this park in subject to the restriction on the title page

LIST OF SYMBOLS

This section describes the symbols used for the time dependent variables that are passed between the subsystems (see subsystems block diagram, Section I).

Key to Nomenclature:

X, Y, Z	Indicate body	axes	forces
D, Y', L	Indicate wind	axes	forces
1, M, N	Indicate body	axes	moments
1', M', N'	Indicate wind	axes	moments

Subscripts	
F	Fuselage
W	Wing
WP	Wing-pylon
Н	Horizontal stabilizer
V	Vertical stabilizer
R	Right rotor
L	Left rotor
SP	Shaft pivot point
P	Pylon
MG	Main gear
NG	Nose gear
d	Aileron
e	Elevator
r	Rudder
PA	Pilot station
CG	Aircraft center of gravity
R/W	Due to rotor at wing
R/H	Due to rotor at horizontal stabilizer
R/V	Due to rotor at vertical stabilizers
W/H	Due to wing at horizontal stabilizer
B R/W	Due to rotor at wing in body axes
B R/H	Due to rotor at horizontal stabilizer, in body axes
B R/V	Due to rotor at vertical stabilizers, in body axes
Symbol Symbol	Description Un. 's
a . a . a .	Blade lift coefficients $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$
	=

Symbol	Description	Units
^a OL	Steady flapping component, left rotor	rad
a OR	Steady flapping component, right rotor	rad
a lL	F/A flapping, left rotor + backward	rad
a 1L	F/A flapping rate, left rotor	rad/sec
a 1R	F/A flapping, right rotor + backward	rad
^a 1R	F/A flapping rate, right rotor	rad/sec
В	Blade tip loss factor	ND
BL _{CG}	Butt line of aircraft C.G.	In.
B _{1L}	Forward cyclic input, left rotor	rad
B _{1R}	Forward cyclic input, right rotor	rad
b _{1L}	Lateral flapping, left rotor, + outboard edge down	rad
ь́ _{1L}	Lateral flapping rate, left rotor	rad/sec
b 1R	Lateral flapping, right rotor, + outboard edge down	rad
ь́ _{1R}	Lateral flapping rate, right rotor	rad/sec
c	Prandtl-Glauert factor, page A-33	
C _{RF}	Rotor thrust coefficient (see page A-18)	ND
C _{RF} C _T	Thrust coefficient, left rotor	ND
c _{TR}	Thrust coefficient, right rotor	ND
D _F	Aero drag on fuselage	Lb.
DH	Aero drag on horizontal stabilizer	Lb.
D _{iWPL}	Aero drag on portion of left wing-pylon immersed in	Lb.
	rotor wake	
$^{ extsf{D}}_{ extsf{iWPL}}$	Aero drag on portion of right wing-pylon immersed in	Lb.
	rotor wake	
D _{MG}	Aero drag on main landing gear	Lb.
D _{NG}	Aero drag on nose landing gear	Lb.
$^{\mathrm{D}}_{\mathrm{VL}}$	Acro drag on left vertical fin	Lb.
${\tt D}_{\tt VR}$	Aero drag on right vertical fin	Lb.
$^{ m D}_{ m WP}$	Aero drag on portion of wing-pylon in freestream	Lb.
E	Distance from takeoff point in the direction grid-	Nautical
	East (+ East)	Miles
Ė	Eastward velocity of aircraft	Knots
ESAS, RSAS,	SCAS actuator inputs to the elevator, rudder, and	In.
ASAS	aileron, respectively	

The second secon

Symbol	Description	Units
F _{LN} , F _T , F _{PD}	Stick and pedal forces from pilot (+ fwd, + right.	Lb.
	+ right)	
FX	Flap position indicator	-
н _L	Aero H-force on left rotor + backward (upward)	Lb.
	in mast axis system	
HP RL	HP required to drive left rotor	HP
HPRR	HP required to drive right rotor	HP
H _R	Aero H force on right rotor + backward (upward)	Lb.
	in mast axis system	
h	Radar altitude of aircraft	ft
h	Aircraft climb rate	ft/sec
IXX	Aircraft rolling incrtia, body axes	slug ft ²
^I xz	Aircraft product of inertia, body axes	slug ft ²
I _{YY}	Aircraft pitching inertia, body axes	slug ft ²
IZZ	Aircraft yawing inertia, body axes	slug ft ²
κ _e	Elevator effectiveness factor, p. B-26	
L _F	Aero lift on fuselage	Lb.
LH	Aero lift on horizontal stabilizer	Lb.
LiWPL	Aero lift on portion of left wing pylon immersed in	Lb.
	rotor wake	
$^{ extsf{L}}_{ extsf{iWPR}}$	Aero lift on portion of right wing-pylon immersed in	Lb.
	rotor wake	
LLG	Landing gear posit_on indicator	ND
L WP	Aero lift on portion of wing-pylon in freestream	Lb.
1 A, M A, N A	Total rolling, pitching and yawing moment on aircraft	Lb.
n, n	about body X, Y, Z axes	
$1_{\mathbf{F}}, \mathbf{M}_{\mathbf{F}}, \mathbf{N}_{\mathbf{F}}$	Rolling, pitching and yawing moments on fuselage about	Lb Ft
1 1 1	body X, Y, Z axes	
1 _L ,M _L ,N _L	Rolling, pitching and yawing moments about body X,Y,Z	Lb Ft
	axes, due to left rotor forces	
1_{R} , M_{R} , N_{R}	Rolling, pitching and yawing moments about X,Y,Z axes,	Lb Ft
л л л	due to right rotor forces	
lwp,Mwp,Nwp	Rolling, pitching and yawing moments due to wing-pylon,	Lb Ft
ME ME ME	about body X,Y,Z axes	

Symbol	Description	Units
1'wp,M'wp,N'wp	Rolling, pitching and yawing moments due to wing-pylon in wind axes system	Lt ft
L _{XH} , L _{YH} , L _{ZH}	Distance from the CG to swashplate, Body X, Y, Z	ſt
M _H	Aero pitching moment due to horizontal stabilizer in body axes	Lb ft
M _H	Aero pitching moment due to horizontal stabilizer in wind axes	Lb ft
M_{N}	Mach number	ND
^l a1L	F/A flapping restraint moment exerted by left rotor on airframe, mast axes system (nose up)	Lb ft
M _{alR}	F/A flapping restraint moment exerted by right rotor on airframe, mast axes system (nose up)	Lb ft
^l b1L	Lateral flapping restraint moment exerted by left rotor on airframe, mast axes system (hub outboard)	Lb ft
1 _{blk}	Lateral flapping restraint moment exerted by right rotor on airframe, mast axes system (hub outboard)	Lb ft
$N_{\overline{N}}$	Distance from takeoff point in the direction grid-	Naut.
	North (+ North)	Miles
N_X, N_Y, N_Z	Linear acceleration components of aircraft cg in body axes system	g
P _{AX} , P _{AY} , P _{AZ}	Position of aircraft cg w r t ground	Naut. Miles
Pa	Ambient pressure, absolute	psia
p,q,r	Aircraft roll, pitch and yaw rates in body axes system	rad/sec
p,q,r	Aircraft angular accelerations in body axes system	rad/sec ²
Q_{L}	Left rotor aero torque, + crying to slow rotor down, mast axes system	Lb ft
$Q_{\mathtt{LPT}}$	Torque supplied by left power turbine	Lb ft
Q_{R}	Right rotor aero torque, + trying to slow rotor down, mast axes system	Lb ft
Q_{RPT}	Torque supplied by right power turbine	Lb ft
R	Rotor radius	ft
$\mathtt{RPM}_{\mathtt{NII}}$	Power Turbine RPM set at 100% (overspeed Governor	RPM
RPM _P	Proprotor RPM selected by the pilot	RPM

Symbol	Description	Units
$R_{\overline{WL}}$	Left rotor wake contraction ratio	ND
SLCG	Station location of aircraft CG	In.
T _L	Left rotor aero. thrust, in mast axis + up (forward)	Lb.
T _R	Right rotor aero, thrust, in mast axis + up (forward)	Lb
T _a	Ambient temperature, absolute	οK
u,v,w	Velocity of aircraft CG, w.r.t. air, in body axes	Ft/sec
•	system, in X,Y,Z direction	
U _{EB} ,V _{EB} ,W _{EB}	Velocity components of aircraft CG, w.r.t. air,	Ft/sec
	along earth-based axes	
$^{\mathrm{U}}_{\mathrm{G}}, ^{\mathrm{V}}_{\mathrm{G}}, ^{\mathrm{W}}_{\mathrm{G}}$	Ground velocity components of aircraft CG	Ft/sec
$\mathbf{v}_{\mathbf{w}},\mathbf{v}_{\mathbf{w}}$	Wind velocity components w.r.t ground	Ft/sec
U _i B	Induced X-velocity at horizontal stabilizer in	Ft/sec
R/H	body axes system, due to rotors	
U _i B _{R/V}	Induced X-velocity at vertical fins, in body axes	Ft/sec
	system, due to rotor	
U _i B R/WL	Induced X-velocity at left wing, in body axes	Ft/sec
IR IR	system, due to rotor	
U i R/WR	Induced X-velocity at right wing, in body axes	Ft/sec
Try HI	system, due to rotor	
V _{CAS}	Calibrated airspeed	MPH
$\mathbf{v}_{\mathbf{T}}$	Total .inear velocity of aircraft c.g. w.r.t. air	Ft/sec
WL _{CG}	Waterline of aircraft CG	In.
${\tt W_{iL}}$	Uniform component of induced velocity at left rotor,	Ft/sec
	+ downward, mast axes system	
w_{iR}	Uniform component of induced velocity at right	Ft/sec
	rotor, + downward, mast axes system	

the or destroyer at hata in this pair is sufficient to the pair.

Symbol	Description	Units
w _i ^B R/H	Induced Z-velocity at horizontal stabilizer, in	Ft/s€c
lea u	body axes system, due to rotors	
w B i R/V	Induced Z-velocity at vertical fins, in body exes	Ft/sec
	system, due to rotors	
W _i B	Induced Z-velocity at left wing in body axes system,	Ft/sec
W B R/WL	due to rotor	
A,Y,Y,X	Total forces on the aircraft in X,Y,Z directions,	Lb.
	body axes system	
XCOL	Collective stick position, inches from full down	ín.
x_F, Y_F, z_F	Aero forces on the fuselage, in body axes system	· Lb.
x _{FL}	Position indicator for flap actuator	ND
x^{H}, z^{H}	Aero forces on horizontal stabilizer, in body axes	Lb
	3 y stem	-
X iWPL, Z iWPL	A ro forces on portion of left wing-pylon in rotor	Lb.
	wake, in body axes system	
X iWPL, 2 iWPL	Aero forces on portion of right wing-pylon in rotor	I.b
	wake, in body axes system	
x_L, y_L, z_L	Left rotor forces in body axes system	Lb.
X _{LG}	Position indicator for landing gear actuator	ND
X _{LN}	Longitudinal stick position, inches from full aft	In.
X _{LT}	Lateral stick position, inches from full left	In.
X _{MG} , Z _{MG}	Aero forces on main landing gear, in budy axes	Lb.
	system	
x_{NG}, z_{NG}	Aero forces on nose gear in body axes system	Lb.
X _{PD}	Position of pedal, inches from full left	In.
x_R, Y_R, z_R	Right rotor forces in body axes system	Lb.
301-099-001		xii

Symbol	Description	Units
X _{VL} ,Y _{VL} ,Z _{VL}	Aero forces on left fin, in body axes system	Lb.
x _{vR} , Y _{vR} , z _{vR}	Aero forces on right fin, in body axes system	Lb.
X _{THL} ,X _{THR}	Angles of the power levers on the fuel controls	Deg.
X _{WP} ,Y _{WP} ,Z _{WP}	Aero forces on wing-pylon in freestream, in body	Lb.
	axes system	
x _ë	Position of mast tilt-actuator, percent	ND
$^{lpha}_{\mathbf{F}}$	Fuselage angle of attack	rad
$\boldsymbol{\dot{\alpha}_F}$	Rate of change of fuselage angle of attack	rad/sec
α' F WR	Angle of attack at portion of right wing immersed in rotor wake	Lad
α' F WR	Angle of attack at portion of left wing immersed	rad
F WR	in rotor wake	
$\alpha_{ m H}$	Angle of attack at horizontal stabilizer	rad
$\alpha_{f W}$	Angle of attack on portion of wing outside rotor wake	rad
$\boldsymbol{\beta}_{\mathbf{F}}$	Fuselage sideship angle	rad
₿ _M	Mast conversion angle, + forward, measured from	deg
rı	body (-Z) axis, 0° is vertical, 90° is zero incidence	
$_{ m v}$	Angle of attack at vertical fins	d∈g
δ ₃	Pitch flap coupling	deg
δ_a	Aileron mean deflection angle, + right aileron up	deg
δ _e	Elevator deflection angle, + up	deg
$\delta_{\mathbf{r}}$	Rudder deflection angle, + right pedal	deg
[€] W/H	Wirg wake deflection at horizontal stabilizer	deg
$\theta_{\mathbf{oL}}$	Left rotor root collective pitch	deg
⁹ ₀L/G	Left rotor collective pitch input from proprotor collective governor	deg

301-099-001

xiii

Ese or disclishing it data in this page is subject to the restriction in the title page.

Symbol	Description	Units
e _{oR}	Right rotor root collective pitch	deg
[⊖] oR/G	Right rotor collective pitch input from propretor	deg
	collective governor	
$^{\lambda}_{ m oL}$	Inflow ratio at left rotor, neglecting rotor-induced	ND
	velocity	
$^{\lambda}$ oR	Inflow ratio at right rotor, neglecting rotor-induced	ND.
	velocity	
$^{\mu}$ L	Tip speed ratio, left rotor	ND
$\mu_{ m R}$	Tip speed ratio, right rotor	ND
ρ	Air density	Slug/ft ³
Ψ ,θ,φ	Euler angles	rad
Ÿ,Ö,Ø	Rate of change of Euler angles	rad/sec
Ψ , 6	Grid heading (+ clockwise from N) and Euler pitch	rad
	angle of wind	
$\Omega_{ t EL}$	Left engine speed	rad/sec
$\Omega_{ m ER}$	Right engine speed	rad/sec
CINT	Interconnect shaft speed	rad/sec
${}^{ m L}$	Left rotor speed w.r.t. aircraft	rad/sec
$^{\Omega}_{ ext{LPT}}$	Left power turbine speed, same as $\Omega_{ ext{EL}}$	rad/sec
$\Omega_{\mathbf{R}}$	Right rotor speed w.r.t. aircraft	rad/sec
$^{\Omega}_{ ext{RPT}}$	Right power turbine speed, same as $\Omega_{ m ER}$	rad/sec
$\phi_{ m m}$	Lateral mast tilt	deg
V _n	Distance from CG to gear	In
^т е	Elevator effectiveness, $\partial \alpha_{\rm H}/2$ e	ND
^τ r	Rudder effectiveness, $\partial \alpha_{\rm V}/\partial \ell_{\rm r}$	ND

日本の大学を大学を大学の大学

I. SUMMARY

This report describes a mathematical model for real-time flight simulation of the Bell Model 301 Tilt Rotor Research Aircraft. The mathematical model was developed under Contract NAS 2-6599 for mechanization of the NASA Ames Flight Simulator for Advanced Aircraft (FSAA)². The objective of this program was to obtain a validated mathematical model of the tilt rotor research aircraft to support the aircraft design, pilot training, and preof-of-concept flight testing.

The development of the mathematical model involved the following specific tasks:

- (1) Derivation of equations representing the kinematic, dynamic, and aerodynamic characteristics of the Model 301's rotor, airframe, flight control system and subsystem. The mathematical model is described in Section II and the equations are presented in Appendix A. Model 301 parameters required as inputs to the equations are given in Appendix 3.
- (2) Checkout and validation of the mathematical model. A non-realtime digital computer program was developed at Bell for this purpose. Comparison of performance and stability and control characteristics predicted using the subject mathematical model with experimental data and with predictions using other computer programs is presented in Section III.
- (3) Support of the Tilt Rotor Research Aircraft Project simulation effort at NASA Ames. This involved providing technical assistance during checkout and validation of the FSAA/Sigma 8 mechanization of the mathematical model, Program BELTR (Program BELTR was developed by Computer Science Corporation under a separate contract and was used for the real time simulation) and evaluation of the simulation by Bell Helicopter Company experimental test pilots. The results of the evaluation are given in Section IV and recommendations for further development of the mathematical model and the simulation are given in Section V.

The structure of the mathematical model is indicated, which convenies shown in Figure I-1. The mathematical model differs from that for a conventional fixed-wing aircraft principally in the added requirements to represent the dynamics and aerodynamics of the rotors, the interaction of the rotor wake with the airframe, and the rotor control and drive systems (Subsystems 1, 2, 8(a) and 19 in Figure I-1). The portion of the block diagram enclosed by a dashed line is common to all simulation mathematical models; in the BELTR Program the equations given in this report were replaced by CSC program BASIC³ which contains essentially identical equations and is used for all FSAA simulations. The land ng gear pleo forces were all generated using the CASIC program.

The rigorousness of the mathematical model of the tilt-rotor research aircraft was constrained by two factors. One was the requirement to keep the fast loop computational time (this was a two loop simulation) to less than 50 milliseconds in order to maintain real time simulation. To achieve this it was necessary to limit the rotor representation to steady, linearized, aerodynamics with uniform inflow and to approximate the rotor following time. Rotor stall and compressibility effects are only used to define a limit for the maximum rotor thrust coefficient as a function of advance ratio. This rot r math model is satisfactory for most handling qualities studies, but may be inadequate to evaluate flight conditions or maneuvers where stall, compressibility or rotor dynamics are significant.

The second factor constraining the rigorousness of the mathematical model was the lack of sufficient experimental data on the rotor wake-airframe aerodynamic interactions such as the rotors' downwash (or upwash) at the horizontal tail. The model of the rotor wake-airframe interaction is presently based on a limited amount of data from the tests of a powered model of a tilt-rotor aircraft similar to the Model 3014. Tests of a powered model of the Model 301 to obtain detailed information on the rotor wake-airframe ae odynamic interaction have been completed and will be used to refine the model of this important characteristic of the tilt rotor VTOL.

301-09 3-001

T-2

FOLDOUT FRAME

Figure I-1. Block Diagram of Mathematica

FOLDOUT FRAME

Use or disclosure of data on this page is

1. Block Diagram of Mathematical Model

II. DESCRIPTION OF THE MATHEMATICAL MODEL

This section describes the mathematical models of the components of the tilt rotor aircraft; the rotors, the airframe, the control system, the engines and drive system, and the automatic flight control systems (Subsystems 1, 2, 3, 4, 5, 6, 7, 8, 9, 17, 18, 19 and 20 in Figure I-1). The math model used for the equations of motion (Subsystems 10 through 16) follows that of Reference 5. The coordinate systems, sign conventions and equations of motion are also described.

A. Coordinate Systems and Sign Conventions

Earth, body, wind and mast axes systems are used in the mathematical model. The rotor flapping, forces and moments are calculated in a "wind-mast" axis system while the airframe aerodynamic forces and moments are calculated in a wind axis system. Forces and moments from the rotor and airframe are resolved into the body axis system for solution of the aircraft equations of motion. The flight path of the aircraft i; described with reference to earth fixed axes with the aircraft orientation given by the Euler angles, Ψ , θ , and ϕ , in that order of rotation.

The mast axis system and sign convention used for the rotor are shown in Figure II-1. The rotor flapping, forces and moments are calculated in the "wind-mast" axis system $(\bar{a}_1, \bar{b}_1, \bar{T}, \bar{H}, \text{ and } \bar{Y})$ and are then transformed into the mast axis system $(a_1, b_1, \bar{T}, \bar{H}, \text{ and } \bar{Y})$.

B. Rotor Math Model (Subsystem 1)

1. Rotor Forces and Moments

The mathematical model of the rotor is similar to that given in References 6 and 7 except that it is derived in a mast axis system (the theory in Reference 6 is based on an axis system perpendicular to the axis of no flapping i.e. the tip-path-plane, and that of Reference 7 is based on the axis of no feathering) and contains provisions for proprotor characteristics such as non-linear twist, flapping restraint and pitch-flap coupling.

The major assumptions that are made in the rotor math model are:

- (1) Average values for the lift curve slope and profile drag coefficient are used over the span of the blade. These are adjusted to approximate the rotor thrust and power required characteristics.
- (2) The blade angle of attack α is approximated by \sin^{α} . Subsitution of \sin^{α} for α in the blade element equations makes it possible to develop equations for rotor forces without restricting blade pitch, θ , and inflow angle, ϕ , to small angles.

301-099-001

- (3) Blade stall and compressibility effects are approximated by limiting the maximum rotor thrust coefficient as a function of advance ratio and by arbitrarily modifying coefficients in the rotor power required equation (rotor profile drag is increased as a function of the cubes of the rotor inflow and advance ratios multiplied by empirically adjusted coefficients).
- (4) Blade flapping with respect to the mast is assumed small so that the small angle assumption can be made. And harmonics of flapping greater than one-per-rev are ignored.
- (5) The blade flapping due to cyclic inputs is assumed to occur instantaneously, i.e. the flapping equations assume the rotor is in an equilibrium condition. This assumption was made because of limits imposed by the computer computation time. Differential equations for blade flapping that would properly account for the rotor following time were determined to require a solution time in excess of that allowable for real time simulation. Furthermore there is a transport lag between the time a control input is made at the cab and the time aircraft response is updated at the cab, of from one to two frame times (0.050 to 0.10 seconds). By neglecting the rotor following time in the equation of motion, it is approximated by the cab-control input to computer time lag (for example, in hover the rotor following time is 0.08 seconds compared to an average computation lag time of 0.075 seconds).

2. Rotor Induced Velocity

The rotor induced velocity is computed by calcularing the induced velocity of an isolated, out of ground effect rotor and modifying the induced velocity to account for the side-by-side rotor effect and for operation in ground effect.

The mean value of the isolated, out-of-ground effect rotor induced velocity is approximated using a modified expression from Reference 8.

$$v_{i} = \frac{(\Omega R)C}{\sqrt{0.866\lambda^{2} + \mu^{2}} + \frac{0.6|C_{T}|^{1.5} (|C_{T}| - 8/3\lambda|\lambda|)}{(|C| + 8\mu^{2}) (|C| + 8\lambda^{2})}}$$

where $C = C_T/2B^2$

(the 0.866 factor on χ^2 has been added to improve power correlation in hover)

The side-by-side rotor effect on the rotor induced velocity is approximated using an expression derived in Reference 9.

$$\Delta v_i = x_{SS} \frac{(\Omega R) c_T}{2B^2 \mu}$$

The factor x_{SS} is called the mutual induction coefficient and is obtained from Figure 3.7 of Reference 9. The term Δv_i is added to the induced velocity for the isolated rotor.

In the determination of x_{SS} , the increased mass flow of the side-by-side configuration is taken into account and the rotor wakes are assumed to remain separate if the distance between the rotor centers is greater than the rotor diameter. The value of x_{SS} depends on the direction of rotation, the distance between the rotors, the advance ratio and the rotor angle of attack. The value of x_{SS} given in Reference 9 is valid for μ greater than 0.15. In this analysis the value of x_{SS} for μ less than 0.15 has been approximated by providing a smooth transition between a value of x_{SS} equal to zero at μ = .06 and the value at μ = 0.15.

The reduction in induced velocity caused by ground proximity is computed using the expression

$$v_{i \text{ IGE}} = v_{i \text{ OGE}} \left[1 + (G-1) \left(\frac{\sqrt{v^2 + v^2}}{30} - 1 \right) \right]$$

where G = 0.76 + 0.24 h/D for $h \leq D$

and G = 1.0 if h > D

The constants 0.76 and 0.24 in the expression for G were derived from model test data. The factor $\sqrt{U^2+V^2}/30$ washes out the effect of ground proximity with forward speed; at 30 feet per second and greater the effect is completely washed out.

The major assumption made with regard to induced velocity is that it is uniform over the rotor disc. The main effect of this assumption is that lateral flapping is underpredicted in the low speed helicopter regime (μ = 0.05 to 0.2). However, lateral flapping has only a second order effect on stability and control characteristics in the helicopter mode so this is not a serious limitation. Presently the tandem rotor effect is neglected when in sideward flight. This effect was not included in the initial development of the mathematical model since other factors significant to sideward flight simulation are only approximated.

C. Airframe Aerodynamics (Subsystem Nos. 3, 4, 5 and 6)

The fuselage, wing-pylon assembly, horizontal tail and vertical fins are modeled separately to facilitate accounting for the influence of the rotor

wake on the airframe aerodynamics. In general the airframe aerodynamics are extracted from wind tunnel test data; where wind tunnel data was not available characteristics were estimated using References 10, 11, and 12.

1. Fuselage (Subsystem No. 3)

Equations for the fuselage lift, drag, side force, pitching moment, yawing moment and rolling moment are referenced to the wind axis system and defined at the fuselage aerodynamics center. The coefficients in the equations for angles of attack and sideslip less than or equal to 20 degrees are based on wind tunnel data. For angles of attack greater than 20 degrees the coefficients have been approximated.

Aircraft angular rates and the rotors wakes are neglected in calculating the fuselage aerodynamic forces and moments.

2. Wing-Pylon Assembly (Subsystem No. 4)

The wing-pylon aerodynamic forces and moments are defined in the local wind axis system. Wing-body interference effects are included in the aerodynamic data.

Carulation of the wing aerodynamic forces and moments is made in two parts; (1) lift and drag generated by the rotors wakes, and (2) the forces and moments generated by the free stream flow. The math model of item (1) is discussed in Section II.3. Item (2) is discussed in the paragraph below.

The wing-pylon lift and drag generated by the freestream flow are functions of angle of attack, conversion angle, flap setting and Mach number. The pitching moment is a function of flap setting. Wing-pylon lift and drag coefficients are provided for mast angles of 0 degrees and 90 degrees, and for four flap settings as shown in Figures II-3 and II-4. Coefficients for intermediate mast angles and flap settings are obtained by interpolation. Mach number corrections are made only for the flaps-up airplane mode condition as shown in Figures II-5 and II-6. The aerodynamic coefficients for angles of attack up to stall are based on wind tunnel data; at angles of attack above stall the coefficients shown in Figures II-7 and II-8 are approximated based on the test data shown in Reference 11.

The angle of attack of the wing is modified to reflect the induction effect of the thrusting rotors. The exp:ession for the wing angle of attack is,

$$\alpha_{W} = \alpha_{F} - 0.26 \times_{R/W} * \frac{2C_{RF}}{MAX^{2}(\mu, 0.15)} * 57.3$$

Where $x_{R/W}$, the induction coefficient is a function of the distance between the rotor and the wing, and c_{RF} is the non dimensionalized rotor force coefficient.

The lateral-directional aerodynamic forces and moments are calculated using equations for stability derivatives from Reference 10. Compressibility effects and the wing loading are included in the lateral-directional characteristics. The dihedral effect of the wing-pylon is based on wind tunnel test data and is a function of angle of attack and flap setting. The aileron effectiveness is also based on wind tunnel data and is a function of angle of attack, mast angle and flaperon deflection.

3. Horizontal Tail (Subsystem No. 5)

The dynamic pressure and angle of attack at the horizontal stabilizer as shown in Figure II-9(a) takes into account wing-body blockage, mast angle, the wing-pylon wake, the rotor wake and the aircraft attitude and angular velocity. The lift and drag coefficients shown in Figures II-10 and II-11 of the stabilizer are determined from wind-tunnel test data for angles of attack up to stall. Above stall the coefficients are approximated using data from Reference 11.

The downwash at the horizontal stabilizer due to the wing-pylon shown in Figure II-12 is determined from wind tunnel data for angles of attack up to stall. Above wing stall the downwash is approximated using data for a high wing-low tail configuration given in Reference 12.

The downwash at the horizontal stabilizer due to the rotor walls is discussed in Section II.3.

4. Vertical Fins (Subsystem No. 6)

The forces and moments on the left and right fins are computed separately to account for the variation in rotor wake effects with sideslip. The dynamic pressure and angle of attack at the fins as shown in Figure II-9(b) take into account the wing-body blockage, mast angle, wing-pylon wake, rotor wake and fuselage attitude and angular rates. The lift and drag coefficients of the fins shown in Figures II-13 and II-14 are determined from wind tunnel data for angles of attack up to stall. Above stall the coefficients are approximated using data from Reference 11.

The sidewash at the fins is a function of flap setting, mast angle, fuselage angle of attack and sideslip angle.

D. Rotor Wake - Airframe Aerodynamic Interaction (Subsystem No. 2 and parts of 4, 5 and 6)

The rotor wake-airframe aerodynamic interference representation consists of three parts:

- (1) The effect of the rotor wakes on the wing lift and drag.
- (2) The effect of the rotor wakes on the horizontal stabilizer and vertical fins lift and drag.

(3) The net rolling moment induced by the rotor wake-airframe-ground interaction when hovering near the ground.

1. Rotor Wake Effect on the Wing

As noted in Section II.C.2.2 the calculation of the wing aerodynamic forces and moments due to rotor wake effects is made separately from the forces and moments generated by the freestream flow. The calculation of the rotor wake effect involves calculating the area and angle of attack and dynamic pressure of the portion of the wing immersed in the wake; Figure II-15 illustrates the representation of this effect.

The area of the wing immersed in the rotor wake, S_{iW} (shown in Figure II-15) is computed as a function of wake radius, conversion angle, wake angle of attack and sideslip angle of the fuselage. The expression used to compute wake radius of a hovering rotor as a function of vertical distance from the rotor disc is derived in Reference 13. Experimental data also shows that the contracted wake remains stable as it reaches the wing and horizontal stabilizer surfaces. The equation for the wake radius (Equation 3 of Reference 13) has been simplified since the wing and stabilizer surfaces are located at approximately .4R below the rotor disc.

$$R_W = \{0.78 + 0.22 \text{ Exp} [-(0.3 + 2 \text{ Z}\sqrt{C_{RF}} + 60 \text{ C}_{RF})]\} * R$$

The rotor induced velocity at the wing varies with speed and mast tilt and is given by the following expression:

$$\mathbf{W_{i}}\big|_{\mathbf{R/W}} = (\kappa_{0} + \kappa_{1} \mu + \kappa_{2} \mu^{2} + \kappa_{3} \lambda + \kappa_{4} \lambda^{2}) \mathbf{W_{iL}}$$

where the constants K_i are determined from powered rotor test data. Wing loads at high negative incidences caused by the rotor wake at low speeds are determined using lift and drag coefficient data tables that are defined up to angles of attack of ± 90 degrees.

Asymmetric flight at low speeds, which causes unequal portion of the left and right wing to be affected by the left and right rotor wakes and generales roll and yaw moments, is taken into account.

2. Rotor Wake Effect at Horizontal Stabilizer and Vertical Fins

The rotor induced velocity at the horizontal stabilizer and vertical fins is based on data from wind tunnel tests of a powered model. The velocity induced at the tail by the rotors was derived by analysis of aircraft pitching moment data with the tail on and off, and with and without the rotors. Figure II-16 shows the induced velocity at the tail (normal to the horizontal stabilizer chordline) as a function of airspeed and mast angle.

The following expression is used to approximate the velocity variation shown in Figure II-16.

$$W_{i}|_{R/H} = \left[h_{0} + h_{1}\beta_{M} + (h_{2} + h_{3}\beta_{M}) \left(\frac{(U-168.89 + h_{4}\beta_{M})^{2}}{168.89}\right)\right] * W_{iL}$$

The coefficients h_0 through h_4 were determined by curve fit of the test data. W_{iL} is the induced velocity at the left rotor.

The induced velocity at the empeninge is presently based on the value for trimmed level flight, and is invarient with angle of attack and sideslip. Data from tests of a powered aeroelastic model indicates a significant variation in induced velocity with angle of attack and/or sideslip. This new data will be used to refine the present representation of the rotor wake effect on the empennage.

3. Rolling Moment Induced by Rotor Wake-Airframe Fround Interaction

When hovering in ground effect (h/D < 1.5) an unstable roll moment is generated by aerodynamic interaction between the roto: wake, the wing and the ground. Figure II-17 shows the rolling moment as a function of h/D measured with 1/5th scale powered model of the Model 301. This effect is represented in the rath model by a polynomial equation for the rolling moment, curve fitted to the test data, and applied at the aircraft center of gravity.

E. Flight Controls (Subsystem No. 8)

he flight controls representation consists of a controls mixing model, and a force gradient model.

The Model 301 flight control system is illustrated schematically in Figure II-18. The math model of the system represents the mixing of the pilot and automatic flight control inputs, wash out of the rotor controls as a function of mast angle and airspeed and conversion, landing gear, and flap controls. Wash out schedules are illustrated in Figure II-19 and are given in tabular form in the math model. The math model does not include friction or free play. The time constants of the control actuators are assumed zero, since in practice they are less than the computer frame time.

The pedal and cyclic stick longitudinal and lateral gradients are specified as a function of airspeed. The location of the gradient detent (zero force position) may be moved by the pilot to trim out steady stick forces.

F. Drive System and Engines (Subsystems 18 and 19)

The drive system is represented by the zero frequency symmetric mode, e.g. the rotors speed up or slow down in response to the unbalance between

301-099-001

aerodynamic torque and engine torque. The frequencies of the flexible modes of the drive system (3.67 cps and 11.8 cps for the first antisymmetric and second symmetric modes respectively) are too high to significantly influence the simulation.

The engine and power turbine (NII) governor models are composed of equations to calculate engine horsepower during transient and steady state operation. The equations are based on the operating characteristics of the combined engine-fuel control system. This approach was taken rather than one involving time constants, inertias and derivation of engine components to minimize the computational requirements.

The engine equations are derived in terms of the optimum power turbine speed and the horsepower developed at that speed. For a given throttle setting (or fuel flow rate) the engine will develop the maximum horsepower if the turbine is operating at the optimum speed. The commanded optimum power, referred to sea level, standard, static conditions is given by

$$HP_{ROC} = \begin{cases} K_8 X_{TH}^2 + K_9 X_{TH} + K_{10} & (\text{for } T_a \le K_7) \\ \left[1 - K_{11} (T_a - K_7)\right] \left[K_{12} + K_{13} (X_{TH} - K_{14})\right] \left[K_8 X_{TH}^2 + K_9 X_{TH} + K_{10}\right] & (\text{for } T_a > K_7) \end{cases}$$

where K8 through K_{14} are constants derived to fit the engine power versus throttle (X_{TH}) setting characteristics given in the engine installation manual 14 .

The referenced optimum power ${\rm HP}_{RO}$ at any time t, after a power lever change is given by the equation

$$HP_{RO} = (HP_{RO})_0 + \int_0^t \frac{dHP_{ROP}}{dt} dt$$

where HP_{RO_0} is the power before the change in the power lever position and $\frac{\text{dHP}_{ROP}}{\text{dt}}$ is the engine power acceleration schedule and is given as

$$\frac{dHP_{ROP}}{dt} = sign (HP_{ROC} - HP_{RO}) * MIN \left\{1, \frac{[100]}{pc tmnp} \left[1 - \frac{HP_{RO}}{HP_{ROC}}\right]\right\} f \left(HP_{RO}, h\right)$$

where f (HPRO, h) is the engine power acceleration schedule, derived to correlate with measured engine acceleration characteristics.

The actual horsepower HP is then computed by correcting the referred optimum horsepower, ${\rm HP}_{RO}$, for nonstandard conditions using the following equation

$$HP = \left[HP_{RO} \delta \sqrt{0} \right] \left[K_1 \left(\frac{\Omega_R}{\Omega_{RO}} \right)^2 + K_2 \left(\frac{\Omega_R}{\Omega_{RO}} \right) + K_3 \right]$$

where K₁, K₂, and K₃ are constants used to curve fit the power to the engine characteristics given in the installation manual, Ω_R is the actual power turbine speed and Ω_{R0} is the referred optimum power turbine speed, and δ and θ are terms used to correct for nonstandard pressure and temperature, respectively.

The equations used for the power turbine governom (N_{II}) are similar to those for the engine except that the optimum power is referred to the N_{II} speed commanded by the pilot rather than the throttle setting. It should be noted that in the Model 301 the N_{II} governing speed is set at that corresponding to the rotor limit speed so that the N_{II} governor is only used to help prevent overspeeding.

G. Automatic Flight Control System (Subsystem No. 17 and 20)

The Model 301's rotor rpm governor and Stability and Control Augmentation System (SCAS) are represented in the math model.

1. Rotor RPM Governor (Subsystem No. 17)

The rotor RPM governor representation consists of a single channel model of the feedback network. In the Model 301 the rotor blade collective pitch is changed so as to maintain constant rpm; the blade pitch is proportional to the integral of the error in rpm (e.g. the difference between the actual and the pilot selected rpm) so that any steady error is completely washed out. The gain of the integral feedback is very low so the governor will not destabilize structural modes.

A position gain is used in parallel with the integral gain to provide damping to the rotor rotational mode under conditions of low inflow, such as in low power descents in helicopter mode. The position gain is phased out as the pylons are converted to airplane mode to prevent destabilizing structural modes.

Control of the RPM governor consists of a thumb operated, three position switch spring loaded-to-center, located on the power lever head. Pushing the switch forward, increases the reference rpm by 20 rpm for each second the switch is depressed; pulling aft decreases the reference rpm by 20 rpm per second. A pointer on the rotor tachometer indicates the selected rpm. This system was modeled in the FSAA cab. At present, this modeling does not include capability to evaluate failure modes.

E

2. SCAS (Subsystem No. 20)

The SCAS math model consists of a single channel representation of the electronic network; SCAS actuator characteristics are not modeled, however, total system authorities are used. A typical channel is shown in Figure II-20. Each channel has three functional circuits; rate feedback to augment the aircraft damping, attitude feedback for attitude retention, and pilot input feed forward to improve the apparent response to pilot control inputs. The pitch channel has, in addition, an airspeed feedback loop (this loop was implemented but not used).

The main feature of the SCAS math model is representation of the systems gains. All gains are functions of both airspeed and pylon angle. This feature was incorporated to facilitate optimizing the SCAS during the design phase.

The attitudes and airspeed hold circuits are switched off or on by the position of the pedals and cyclic stick. When the longitudinal cyclic stick is trimmed (e.g., in the force detent) the pitch channel holds are switched on; when untrimmed the pitch channel holds are switched off. When the lateral cyclic stick and the pedals are trimmed the roll and yaw attitudes holds are switched on; when either the pedal or the lateral cyclic is out of trim the roll and yaw holds are switched off.

H. Equations of Motion and Coordinate Transformations (Subsystem 9, 10, 11, 12)

The equations of motion used to solve for the six degrees of freedom flight path are identical to the ones given in Reference 5. Change in aircraft c.g. location and inertia due to pylon tilt are computed. Equations derived to compute pilot station acceleration take into account the c.g. acceleration due to pylon tilt rate and the c.g. offset location. However, the effects of mast tilt acceleration and rate on the body pitch acceleration and rate are assumed to be small and therefore neglected. The pylon degrees of freedom are neglected as the Model 301 wing-pylon natural frequencies are well above the frequency capability of the simulation software and hardware.

Transformation of forces and moments from wind to body axes and from mast to body axes is required for a number of subsystems. These transformations are given in Subsystem 10. The transformation for the rotor equations are given in Subsystem No. 1. Rotor forces and moments are computed in the wind axis and referenced to the mast. This is noted throughout this report as the "wind-mast" axis system as described in Figure II-1. The forces and moments computed in this axis system are then transformed to the mast axis system. Transformation of rotor forces and moments to the body axis system are given in Section 10b.

B. "WIND-MAST" AXIS SYSTEM.

Figure II-1. Rotor Axcs Systems and Sign Conventions

Figure II-2. Side-By-Side Rotor Effect on Induced Velocity

Figure II-3. Wing-Pylon Lift Coefficient Versus Angle of Attack

301-099-001

II-13

Figure II-4. Wing-Pylon Drag Coefficient Versus Angle of Attack

THE PERSON OF TH

The second secon

Figure II-5. Compressibility Correction to Wing-Pylon Lift Coefficient

gure II-6. Compressibility Correction to Wing-Pylon Drag Coefficient

Figure II-7. Wing-Pylon Lift Coefficient at Large Negative Angles of Attack

The state of the s

THE PARTY OF THE P

Figure II-8. Wing-Pylon Drag Coefficient at Large Negative Angles of Attack

II-18

tise or atisolos are of lata in this paik is subject to the restriction on the fit is paid

NOTE: Angles shown are positive values in mathematical model sign convention.

Figure II-9. Sign Conventions and Notation for Horizontal Stabilizer and Vertical Fin Aerodynamics

Figure II-10. Horizontal Stabilizer Lift Coefficient Versus Angle of Attack

Figure II-11. Horizontal Stabilizer Drag Coefficient Versus Angle of Artack

II-21

Figure II-12. Wing-Pylon Wake Deflection at Horizontal Stabilizer

THE PERSON NAMED IN THE PE

Figure II-13. Vertical Stabilizer Side Force Coefficient Versus Sideslip Angle

Figure II-14. Vertical Stabilizer Drag Coefficient Versus Sideslip Angles

一大大人を変えているとない。 ちゅうし はない

Figure II-15. Sign Convention and Notation for Mathematical Model of Rotor Wake - Wing Interaction

Flap Section Outside of

Rotor Wake

Rotor Wake

Flaperon Section Under

Figure II-16. Model of Rotor Wake Induced Velocity at Horizontal Stabilizer

301-099-001

II-26

Figure II-17. Representation of In-Ground Effect Rolling Moment

FOLDOUT FRAME

Figure II-18. Schematic of Model 301 Flight

FOLDOUT FRAME

Use or disciosure of data on this page is subject to the restriction on the title page

こうかい アン・コー・コート こうかい あいていかい かいこうかい かいしゅうかん ないない 大学 ないしょう かんしゅうしゅう しゅうしゅうしゅう しゅうしゅうしゅう しゅうしゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう

Figure II-19. Computer Representation of Flight Control System Wash-Out Schedule With Conversion Angle

301-099-001

II-30

Figure 11-20. Schematic of SCAS Pitch Channel Network

The state of the state of

III. VALIDATION OF THE MATHEMATICAL MODEL

The accuracy of the mathematical model has been investigated with regard to rotor performance and force characteristics, airframe aerodynamics, rotor wake - airframe aerodynamic interaction, static and dynamic stability characteristics and control power and damping. Test data were used for comparison where avilable; when test data were not available the mathematical model was compared with BHC computer program C81, the program used to predict the Model 301's stability, control, and handling qualities presented in Reference 1.

A. Rotor Performance and Force Characteristics

Rotor forces and power required are compared with data from wind tunnel and whirl tests of the Model 301's 25-foot diameter rotor (References 15 and 16) in Figures III-1 through III-5. In general the correlation reflects the neglect of stall and compressibility in the mathematical model. For a given lift, power required is calculated slightly low and propulsive force sightly high. Collective pitch and longitudinal cyclic are calculated accurately.

Figure III-6 compares the rotor damping characteristics with those calculated with program C81. Agreement between the two analyses is good.

B. Airframe Force and Moment Characteristics

As noted in Section II.3 the mathematical model of the airframe force and moment characteristics in the angle of attack and sideslip range below stall are based on wind tunnel data. In the mathematical model, the wind tunnel data has been broken ' into the contributions of major components; the fuselage, the wing-pylon assembly, the horizontal stabilizers and the fins. Above stall the force and moment characteristics have been approximated.

In order to verify that the force and moment data add up to equal that of the complete airframe a computer "wind tunnel" test of the airframe math model (with the rotors removed) was conducted. The mathematical model force and moment characteristics are compared to the wind tunnel data in Figures III-7 through III-11. Data from two tests are shown: LTV Low Speed Wind Tunnel Test No. 408 performed at a Reynolds number of 1.2 by 10^6 and NASA Langley Transonic Dynamics Test No. 195 performed at a Reynolds number of 3.8 by 10^6 . Vortex generators were installed on the wing during the LTV test to simulate wing stall characteristics at the full-scale Reynolds numbers.

The reasons for significant difference between the mathematical model and the test data are as follows:

 Lift Coefficient (Figures III-7 and III-8). Correlation is good for angles of attack up to stall but above stall the mathematical

Use or disclosure of data on this page is subject to the restriction on the fittle page

model lift coefficient is high. This error is caused by the assumed lift characteristic above stall (Reference 11) and will be corrected for the Phase II simulations.

- Pitching Moment Coefficient (Figures III-11 and III-12). The pitching moment characteristic of the full-scale aircraft is estimated to be close to the TDT test data, hence the mathematical model has been adjusted to obtain the slope of the TDT data. The discontinuity in the mathematical model pitching moment coefficient at positive and negative stall angles is caused by the assumed characteristics of the wing downwash and the fuselage pitching moment above stall. The difference in pitching moment at zero angle of attack as shown in Figure III-11 results from an assumption made in the mathematical model that the wing-pylon zero pitching moment is independent of pylon tilt angle. This will be modified for Phase II simulations.
- Rolling Moment Coefficient (Figures III-15 and III-15). The mathematical model defines wing-pylon dihedral effects accurately up to ±10 degrees sideslip angle. Beyond this range, the dihedral stability of wing-pylon is maintained constant. (The test data do not show zero rolling moment at zero yaw because of model asymmetry.)

Figure III-19 compares the mathematical model aileron control power variation with angle of attack with test data. The decrease in roll control power at high angles of attack is accurately represented.

C. Rotor Wake - Airframe Aerodynamic Interaction

The rotor wake induced velocity at the horizontal tail and the unstable rolling moment in-ground effect are represented using a polynomial fit of test data. The curve fit and test data are compared in Figure II-16.

The effect of the rotor downwash on wing lift is calculated using the analytical model discussed in Section II.D. This effect is compared to test data (from a model of a similar aircraft) in Figure III-20. One to one agreement is not expected because of differences in the configuration of the Model 301 and that of the model. What is significant is the trend in down load with airspeed which is quite good.

D. Stability Derivatives

Stability derivatives calculated with the mathematical model are compared with those calculated with program C81 in Table III-1. Significant differences between the mathematical model and C81 derivatives are evident but are not fully understood. One of the reasons for the difference in the longitudinal derivatives may be explained by the fact that C81 air-frame inputs are linear below the stall angle of attack, whereas the mathematical model accounts for the variation in the coefficients with angle of attack. The lateral-directional derivatives are in better agreement since both the programs use stability derivatives for airframe

301-099-001

inputs; the difference in derivatives is primarily caused by differences in the rotor mathematical models.

However, the differences in computed derivatives of the two programs are small enough that the resulting dynamic stability characteristics are similar, as discussed later in Section IV.F.

E. Static Stability

Figure III-21 compares the level flight trim longitudinal stick position, blade root collective pitch, and fuselage pitch attitude calculated with the mathematical model with those calculated with program C81. These are ir good agreement with the exception of the longitudinal stick position at airspeeds below 50 knots. This difference is caused by the difference in the wing download representation in the two programs. In C81 the center of pressure of the download does not vary with airspeed; in the simulator mathematical model the download center of pressure moves aft with increasing airspeed.

F. Dynamic Stability

Flight mode characteristics calculated with the mathematical model are compared with those calculated by program C81 in Table III-2. Note that characteristics for the mathematical model were determined both from response time histories and by solving the characteristic equations using the derivatives given in Table III-1. The differences in the flight mode characteristics (particularly for the phugoid mode) may be caused by the rotor rpm degree of freedom being active when the response time histories were obtained. A higher short period damping predicted by program C81 is due to a higher estimate of the wing downwash lag derivative $C_{m \dot{\alpha}}$. Differences in short period frequencies are primarily due to inaccuracies in the rotor mathematical model computation of inplane forces resulting from a neglect of stall effects.

The flight mode characteristics computed by the two programs are compared with the MIL-F-83300 level 1 requirements in Figures III-22 and III-23. Characteristics computed from these two programs are such that they meet the level 1 requirements and would be expected to produce similar pilot evaluation.

G. Control Sensitivity and Damping

Figures III-24 and III-25 compare the control sensitivity calculated with the mathematical model with that calculated with program C81. Agreement is good except for the control power at $\alpha_{mast} = 30^{\circ}$. Investigation of this difference revealed that the C81 data is in error at this mast angle; the mathematical model reflects the correct sensitivity.

Comparison of aircraft damping characteristics as shown in Figure III-26 is good throughout the speed and pylon tilt range.

301-099-001

COMPARISON OF STABILITY DERIVATIVES WITH THOSE COMPUTED BY PROGRAM C81 TABLE III-1

		G. W. = 13,	,000 LB.,	= 13,000 LB., AFT CG, SEA LEVEL STANDARD	EVEL STAND	ARD		
FLIGHT	HELICOPTER MO $\alpha_{M} = 90^{\circ}$ FLAPS 4	DE 0/25	CONVE $\alpha_{M} = 60$	CONVERSION MODE $\alpha_{\rm M} = 60^{\circ}$ FLAPS $40/25$	CONVE α _M =30	CONVERSION MODE $\alpha_{\rm M}=30$ FLAPS $40/25$	AIRP	AIRPLANE MODE _o
DERIVATIVE	565 RPM	NOTS	565 RPM	120 KNOTS	565 RPM	140 KNOTS	458 RPM	260 KNOTS
	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
ڮؙڒ	.865	.95	1.64	1,59	3.19	3.05	1.22	.125
-C _Z ,	1.34	.83	.54	.36	.82	.61	1.46	.61
ين پن	.29	67	64	67	-1.26	66*-	887	058
×ْر	909.	.675	-2.72	-1.87	-2.06	-1.80	201	246
, , , , , , , , , , , , , , , , , , ,	9.105	8.45	8.30	8.01	6.59	6.35	6.47	6.47
نو ت	3.5	1.74	2.67	2.61	1.85	2.36	1.32	1.17
×	013	-1.21	5.33	1.17	5.16	1.42	551	-,41
ت آ	39.9	37.4	33.7	39.2	29.2	35.8	29.8	33.8
-C _Y 2-	1.77	1.95	1.8	1.61	1.87	1,62	1.83	1.87
م آ	.365	305	.285	.106	. 289	. 202	, 318	.312
n. g	371	474	38	97*-	303	34	242	305
ر م	.45	.344	ۍر	72	517	-, 366	.158	*000
-c ₁	3.13	3.2	2.7	3.0	2.06	1.96	1.34	1.28

Cont'd on Next Page

のでは、「一般では、これでは、大きなないできる。 「ないできる。 「ないできる。 「ないできる。 「ないできる。」できる。 「ないできる。 「ないできる。」できる。 「ないできる。」 「ないいできる。」 「ないできる。」 「ないできる。」 「ないできん。」 「ないで

から かんし 大学 ないない ないかい

TABLE III-1 COMPARISON OF STABILITY DERIVATIVES WITH 'HOSE COMPUTED BY PROGRAM C81 (CONTINUED)

3. W. = 13,000 LB., AFT CG, SEA LEVEL STANDARD

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\alpha_{\rm M}^{=90}$ F $40/2^{\circ}$, $\alpha_{\rm M}^{=60}$ 565 RPM (1) (2) (1)635276 .4593644 .002 1.13 1.03 1.015
1.48	84	

(1) Mathematical Model - Constant RPM and Collective Pitch

) C&l Program - Constant RPM, for $\alpha_{\rm M} < 20^{\rm O}$ Collective

Pitch Adjusted to Maintain Constant Torque

The second second

TABLE III-2 COMPARISON OF FLIGHT MODE CHARACTERISTICS WITH THOSE PREDICTED BY PROGRAM C81

THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW

G. W. = 13,000 LB., AFT CG, SEA LEVEL STANDARD

FLIGHT CONDITION MODE	HELICOPTER MODE $\alpha_{\rm M}^{\rm =90}$, $\alpha_{\rm K}^{\rm =-40}/25^{\rm o}$	CONVERSION MODE $\alpha_{\rm M} = 60^{\circ}, F_{\rm X} = 40^{\circ}/25^{\circ}$ 565 RPM 1.20 KNOTS	CONVERSION MODE $\alpha_{\rm M} = 30^{\circ} F_{\rm X} - 40^{\circ} / 25^{\circ}$ 565 RPM 140 KNOTS	AIRPLANE MODE ON E O
SHORT PERIOD (3	(1) P=2.0 $t_1=1.0$ (2) P=1.9 $t_2=.48$ (3) P=4.6 $t_2=0.35$		P=2.9 t ₁ =0.6 P=2.4 t ₁ =0.55 P-2.0 t ₁ =0.35	
) QIODNHA		$P=29.5 t_{b}=2.$ $P=23.2 t_{b}^{2}=9.$ $P=41.0 t_{b}^{2}=8.$	רו הו הו הראדאר הו הו	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DUTCH ROLL ((1) $P = 4.8$ $t_1 = 3.0$ (2) $P = 4.6$ $t_2 = 2.24$ (3) $P = 4.0$ $t_2 = 2.9$	P= 4, P= 4, P= 3,	P= 4.0 ty 3.5 P= 1.95 ty 2.25 P- 4.0 ty 1.8	
SPIRAL (.	(1) $t_{\lambda} = 16$ (3) $t_{\lambda} = 17.5$	د, 16.5 در 18.4	τι / .4 τ = 6.3	
ROLL CONVERGENCE ((1) $\tau_{R=0.6} = 0.6$ (2) $\tau_{R=0.63} = 0.44$	TR 1.5 TR 0.61 TR 0.46	TR 0.52	TR 0.57 TR 0.58

Period, P, time to one half amplitude, $\mathbf{t}_{i_{j}}$, are in seconds and time constant au is per second. NOTE:

Characteristics extracted from time histories of airplane response to controi inputs. (1) Mathematical Model

Characteristics obtained by solving characteristic equation using stability derivatives determined from the Mathematical Model (Table III-1)

Characteristics obtained by solving characteristic equation using stability derivatives (data from Section 6, BHC Report 301-199-002). (3) C81 Program

(3)

Figure III-1. Rotor Performance Correlation - Hover

III-7

Figure III-2. Rotor Performance Correlation - $\alpha_m = 75^{\circ}$

Figure III-3. Rotor Performance Correlation - $q_{\rm m}$ = 60°

一年のからないは、大きなないというというないというというないと

The second secon

Figure III-4. Rotor Performance Correlation - $\alpha_{\rm m} = 30^{\rm o}$

Figure ITT-5. Rotor Performance Correlation - $\alpha_{m} = 0^{\circ}$

Figure III-6. Rotor Rate Derivative Correlation

Figure III-7. Airplane Mode Lift Coefficient Correlation

Figure III-8. Helicopter Mode Lift Coefficient Correlation

Figure III-9. Airplane Mode Drag Coefficient Correlation

Use or disclosure of data on this page is subject to the restriction on the title page

Figure III-10. Helicopter Mode Drag Coefficient Correlation

Figure III-11. Airplane Mode Pitching Moment Correlation

Figure III-12. Helicopter Mode Pitching Moment Correlation

ANGLE OF ATTACK, α - DEG

10

2)

-10

-20

30

-1.4

-1.6

-1.8

-40

-30

Figure III-13. Airplane Mode Sideforce Coefficient Correlation

Figure III-14. Helicopter Mode Sideforce Coefficient Correlation

Figure III-15. Airplane Mode Rolling Moment Coefficient Correlation

Figure III-16. Helicopter Mode Rolling Moment Coefficient Correlation

301-099-001

III-22

Figure III-17. Airplane Mode Yawing Moment Coefficient Correlation

Figure III-18. Helicopter Mode Yawing Moment Coefficient Correlation

Angle of attack, degrees

Figure III-19. Aileron Control Power Correlation

工意 國家 都是

Figure III-20. Rotor Wake Effect on Wing Lift

Figure III-21. Level Flight Trim Condition Correlation

301-099-001

Use or disclosure of data on this page is subject to the restriction on the fittle page

Figure III-22. Comparison of Longitudinal Oscillatory Mode Characteristics With MIL-F-83300 Response Requirements

301-099-001

美国的机器部

III-28

Figure III-23. Comparison of Lateral-Directional Oscillatory Mode Characteristics With MIL-F-83300 Response Requirements

Figure III-24. Helicopter Conversion Mode Control Sensitivity Correlation

True air peed, knots

Figure III-25. Airplane Mode Control Sensitivity Correlation

Figure III-26. Aircraft Damping Correlation

おいろ 子間にいれるのであるとない。 大丁

THE REPORT OF THE PARTY OF THE

IV. CONTRACTOR EVALUATION OF ISAA SIMULATION

Contractor evaluation of the Model 301 research aircraft simulation on the NASA Ames FSAA to define deficiencies of the math model, computer program, and the simulator hardware was conducted prior to formal evaluation by the Army/NASA Tilt Rotor Project Office.

A. Math Model and Computer Program Deficiencies

'1) The rotor math model does not include stall or compressibility. The requirement to include these effects in the math model was deleted in order to meet the schedule for the Army/NASA evaluation. However, the first order effects of stall and compressibility have been included by limiting thrust to a value determined using an analysis which includes stall and compressibility and by arbitrarily modifying the rotor power required equation to obtain the correct power at maximum speed in the helicopter and airplane modes.

The rotor flapping time constant is approximated by the transport delay lagging the response to cyclic stick inputs by the computer frame time (0.048 seconds). This gives a minimum delay of 0.048 seconds and a maximum of 0.096 seconds compared to the rotor time constant in hover of 0.08 seconds.

A uniform inflow is assumed which means that lateral flapping in helicopter mode is inaccurate, and the tandem rotor effect on rotor induced velocity in sideward flight is not represented.

(2) Airframe aerodynamics are not adequate in rearward and sideward flight as accurate aerodynamics are limited to α,3 = ±20 degrees. White wing and tail stall are represented, the wing downwash at the tail is be leved subject to error at angles of attack above wing stall.

A change in wing flap setting produces an abrupt change in lift, drag, and pitching moment. The flap setting changes instantaneously and is therefore not representative.

Wing dihedral effects are accurate only for sideslip angles less than ±12 degrees.

(3) Rotor downwash at the horizontal tail is accurate only for level flight as it is not varied as a function of angle of attack or sideslip.

Wake recirculation effects at the horizontal tall in ground effect are not accounted for,

(4) The SCAS and RPM governor systems have not been obtimized. Further wor on these systems is planned for the Phase II simulations.

一個一個一個一個

Here, their performance is satisfactory for preliminary evaluation of aircraft characteristics.

- (5) With the aircraft on the ground and at full down collective pitch, a high frequency oscillation (approximately 5 cps) occurs. This apparently regults from an unstable interaction between the landing gear math model and the rotor induced velocity math model. Raising the collective approximately one inch eliminates the oscillation.
- (6) Several unexplainable computer "crashes" occurred when flying at omast = 60 degrees. These were not repetitive, in that flying back to the same condition did not result in a "crash". The cause of this problem has not yet been determined.

B. Simulator Hardware Deficiencies

(1) The cab controls at a not representative of the Model 301. The cyclic stick has too much inertia which affects the pilots ability to hover 'particularly SCAS off). In hover, numerous rapid and small amplitude motions are required. The high inertia causes a lag and an overshoot, resulting in over controlling. The cyclic also has an excess amount of free play in the force detent. The cyclic, with force feel on, is too "viscous" feeling. Smooth inputs and exact return to trim are difficult. Additionally, there is a ratcheting feel when moving the cyclic fore and aft.

With the force gradient off (magnetic brake button depressed) unacceptable high inertia and viscous damping forces are present. When the brake is released there is a large stick jump.

The pedals also have a high inertia causing lag and overshoot.

- (2) The visual system has no peripheral capability making hovering flight very difficult. The resolution of the display is low causing difficulty in perception of small velocity and attitude changes further increasing the difficulty in hover.
- (3) The instrument panel is a compromise between the two contractors, consequently the panel layout is not that of the Model 301.
- (4) The absence of noise and vibration cues characteristic of rotary wing VTOL's reduces the flight condition information provided the pilot.

こうころは をはないながら できらりを

V. RECOMMENDATIONS FOR FURTHER DEVELOPMENT OF MODEL 301 SIMULATION

The following modifications and additions to the mathematical model, computer program, and FSAA hardware are recommended for implementation prior to the Phase II simulations:

A. Mathematical Model and Computer Program

1. Rotor

The rotor tip-pat. plane flapping degrees of freedom should be included in the mathematical model to improve prediction of transient flapping and rotor inplane shear forces. Differential equations for rotor flapping have already been derived but were not implemented because they required a large increase in computer frame time. The problem with implementing the differential equations lies with the forward precession flapping mode which has a natural frequency of approximately two-per-rev. In order to include the flapping degrees of freedom in the mathematical model it will be necessary to find a means of eliminating the foward precession rode from the solution of the differential equations.

The rotor induced velocity must be modified to include non-uniform inflow and the tandem rotor effect in sideward flight.

2. Airframe

The mathematical model of the airframe aerodynamics should be extended to include ±180 degrees of angle of attack and sideslip so that the aerodynamics are completely valid in vertical, rearward, and sideward flight. Data from the tests of the Model 301 powered aeroelastic model can be used to guide this effort.

The wing downwash representation at angles of attack above wing stall should be improved.

The computer program should be modified to interpolate between flap settings and the flap extend/retract time should be added to the mathematical model.

A representation of the airframe buffet which accompanies lifting surface stall should be added to the model to provide the pilot wich a stall cue

3. Rotor Wake-Airfram -Ground Interaction

The mathematical model of the rotor wake effects on the horizontal stabilizer and fins should be modified to reflect data from the test of the Model and powered aeroelastic model.

Ground effects on the wing and lorizontal tail should be added to improve representation of STOL mode take off and landing.

4. Flight Controls and Subsystems

The mathematical model should be modified to include failures in the subsystems. This will require modeling all channels of the SCAS and RPM governor, the potential failure modes, and failure indicators.

5. Engine and Drive System

A mathematical model of the second engine and the refinements required to improve simulation of engine failure should be incorportated.

B. Simulator Hardware

Cab Cockpit

The FSAA cockpit should be mock-up to represent the Model 301 instrument panel layout, pedal and cyclic stick inertia and free play characteristics (new hardware will probably be necessary), and the power management system. In order to use the simulation to optimize the cockpit layout it will be necessary to represent exactly the location, size and shape of the various levers manipulated by the pilot. It will also be necessary to represent the instrument location and lace characteristics. Location of all switches, knobs and indicator lights should be represented.

2. Noise Cues

A noise cue generator having noise characteristics appropriate to the Model 301 should be developed. The generator should include rotor, engine and drive system noise which varies as a function of rpm, power setting, conversion angle and airspeed.

Use or disclosure of data on this pace is subject to the restriction on the fittle pace

· 一年の日本の一年の日本

VI. LIST OF REFERENCES

- 1. Anon: V/STOL Tilt Rotor Research Aircraft, Bell Helicopter Company Report Nos. 301-199-001 through 301-199-012, January 1973.
- 2. Rathert, G. A. Jr.: NASA Ames Simulation Sciences Division Simulator Facilities Description Sheets, April 1970.
- 3. McFarland, R. E.: Basic Flight Design, Computer Sciences Corporation PRO 103-71, 14 May 1971.
- 4. Anon: Wind Tunnel Tests of a Tilt-Proprotor Mode: (NASA Contract NAS1-11582), Bell Helicopter Company, February 1973.
- 5. Etkin, B.: Dynamics of Flight, John Wiley and Sons, 1959.
- 6. Gessow, A. and Crim, A.: An Extension of Lifting Rotor Theory to Cover Operation at Large Angles of Attack and High Inflow Conditions, NACA TN 2665, April 1952.
- 7. Castles, W. Jr. and New, N.: A Blade Element Analysis for Lifting Rotors That is Applicable for Large Inflow and Blade Angles and Any Reasonable Blade Geometry, NACA TN 2656, 1952.
- 8. Drees, J. M.: A Theory of Airflow Through Rotors and Its Application to Some Helicopter Problems, The Journal of The Helicopter Association of Great Britain, Vol. 3, No. 2, September 1949.
- 9. Mil, M. L., et al: Helicopter Calculation and Design Volume 1, Aero-dynamics, NASA TTF-494, September 1967.
- 10. Anon: USAF Stability and Control Datcom, Air Force Flight Dynamics Laboratory. Wright-Patterson Air Force Base, October 1960 (Revised September 1970).
- 11. Knight, Maud Wenzinger, C. J.: Wind Tunnel Tests on a Series of Wing Models Through 2 Large Angle of Attack Range, Part I - Force Tests, NACA Report No. 317.
- 12. Byrnes, A. L. et al: Effect of Horizontal Stabilizer Vertical Location on the Design of Large Transport Aircraft, Journal of Aircraft, April 1766.
- 13. Landgrebe, A.: An Analytical and Experimental Investigation of Helicopter Rotor Pover Performance and Wake Geometric Characteristics, USAAMRDL TR71-024.
- 14. Anon: T-53-L-11 Gas Turbine Engine Installation Instructions, Lycoming Report No. 13611.1, August 1966.

301-099-001

VI-1

- 15. Anon: Advancement of Proprotor Technology, Task II Wind Tunnel Test Results, NASA Contractor Report CR114363, September 1971.
- 16. Foster, R. and Sambell, K.: Full-Scale Hover Test of a 25-Foot Tilt Rotor, - Interim Report, Bell Helicopter Company Report No. 300-099-009, March 1973.

Use or disclosure of data on this page is subject to the restriction on the title page

APPENDIX A

EQUATIONS FOR TILT-ROTOR
FLIGHT SIMULATION PROGRAM

301-099-001

A-l

Use or disclosure of data on this page is subject to the restriction on the title page

SUBSYSTEM NO. 1: ROTOR AERODYNAMICS

INPUTS

A. Variables

Subsystem Block No.	Symbol	Units
12		
	U	Ft/Sec
	v	Ft/Sec
11)	W	Ft/Sec
	p	Rad/Sec
15)	q	Rad/Sec
	r	Rad/Sec
(8a)	ρ	Slug/Ft ³
	M _N	1
2	$\boldsymbol{\beta}_{\mathbf{N}}$	Rad
19	$\mathbf{w}_{\mathtt{iR}}$	Ft/Sec
82	$\Omega_{ m R}$	Rad/Sec
	^B 1R	Rad
	θ _{OR}	Rad
1	A _{1R}	
2	$\mathtt{w_{iL}}$	Ft/Sec
19	${}^{\Omega}{}^{\Gamma}$	Rad/Sec
8a	^B 1L	Rad
	aor	Rad
	A _{1L}	
9	^A 1L ^h H	Ft

B. Coefficients

$$\delta_0, \delta_1, \delta_2$$

В

 $\mathbf{C}_{\mathbf{T}}$

x_{ss}

Units

$$1/rad$$
, $1/\mu$, $1/\mu^2$

ND

ND

ND

tise or disclosure of data on this page is subject to the restriction on the title page

EQUATIONS

A. Blade Twist Constants (One Time Per Rotor)

$$K_{SO,m} = \frac{1}{\theta_1^m} \left[\cos \left(\theta_1^m X_m \right) - \cos \left(\theta_1^m X_{m-1} \right) \right]$$

$$K_{CO,m} = \frac{1}{\theta_1^m} \left[\sin (\theta_1^m X_{m-1}) - \sin (\theta_1^m X_m) \right]$$

$$K_{S1,m} = \frac{1}{\theta_1^m} \left[K_{C0,m} - \left((X_{m-1} \cos (\theta_1^m X_{m-1}) - X_m \cos (\theta_1^m X_m) \right) \right]$$

$$K_{C1,m} = \frac{-1}{\theta_1^m} \left[K_{S0,m} - \left((X_{m-1} \sin (\theta_1^m X_{m-1}) - X_m \sin (\theta_1^m X_m) \right) \right]$$

$$K_{S2,m} = \frac{2}{\theta_1^m} K_{C1,m} - \frac{1}{\theta_1^m} \left[(X_m - 1)^2 \cos (\theta_1^m X_{m-1}) - (X_m)^2 \cos (\theta_1^m X_m) \right]$$

$$K_{C2,m} = \frac{-2}{\theta_1^m} K_{S1,m} + \frac{1}{\theta_1^m} \left[(X_m - 1)^2 \sin (\theta_1^m X_{m-1}) - (X_m)^2 \sin (\theta_1^m X_m) \right]$$

$$K_{S3,m} = \frac{3}{\theta_1^m} K_{C2,m} - \frac{1}{\theta_1^m} \left[(X_{m-1})^3 \cos (\theta_1^m X_{m-1}) - (X_m)^3 \cos (\theta_1^m X_m) \right]$$

$$K_{C3,m} = \frac{-3}{\theta_1^m} K_{S2,m} + \frac{1}{\theta_1^m} \left[(X_{m-1})^3 \sin (\theta_1^m X_{m-1}) - (X_m)^3 \sin (\theta_1^m X_m) \right]$$

Where
$$\theta_1^m$$
 = twist rate of mth segment = $\left(\frac{\theta_m - (\theta_{m-1})}{X_m - (X_{m-1})}\right)$

 X_{m} = Radial station of m^{th} segment

 θ_{m} = Blade pitch angle at mth segment

K_{Cn,m} = Blade twist constants

$$(n = 0, 1, 2, 3)$$

m = No. of segments of starting from tip (R = B)

to root
$$(R = 0)$$

Define,

$$TW1_{n} = \sum_{1}^{m} K_{Cn,m} \cos \Delta \theta_{Om}$$

$$TW2_{n} = \sum_{1}^{m} K_{Cn,m} \sin \Delta \theta_{Om}$$

$$TW3_n = \sum_{1}^{m} K_{Sn,m} \sin \Delta \theta_{Om}$$

$$TW4_n = \sum_{1}^{m} K_{Sn,m} \cos \Delta \theta_{Om}$$

Where, $\Delta \theta_{0m} = (\theta_m - \theta_R) - x_m \theta_1^m$, θ_R Blade pitch at the rotor center.

B. Initial Transformation Equations
(One Time Per Rotor)

$$A = \pi R^2$$

$$DN' = Ak^2$$

TD3 = TAN
$$(\delta_3)$$

$$\sigma = \frac{n_b c_b}{\pi R}$$

$$\gamma' = \frac{cR^4}{I_b}$$

$$\gamma_m = p \gamma^1$$

C. Long Term Transformations

1. Rotor Angular Velocity in Space.

$$\Omega'_{R} = \Omega_{R} + p \sin \beta_{M} \cos \phi_{M} + q \cos \beta_{M} \sin \phi_{M} - r \cos \beta_{M} \cos \phi_{M}$$

$$\Omega'_{L} = \Omega_{L} + p \sin \beta_{M} \cos \phi_{M} + q \cos \beta_{M} \sin \phi_{M} + r \cos \beta_{M} \cos \phi_{M}$$

2. 'Wind-Mast' Axis Angular Rates

Right Rotor

$$P_{WMR} = P_{HMR} \cos \xi_{WMR} + q_{HMR} \sin \xi_{WMR}$$

where

$$p_{HMR} = p \cos \beta_M - q \sin \beta_M \sin \phi_M + r \sin \beta_M c$$

$$q_{HMR} = q \cos \phi_{M} + r \sin \phi_{M}$$

$$\stackrel{\Lambda}{p_{WMR}} = \frac{p_{WMR}}{\Omega^{\dagger}} \qquad \qquad \stackrel{\Lambda}{q} = \frac{q_{WMR}}{\Omega^{\dagger}}$$

 ξ_{WMR} - Wind azimuth angle defined to be equal to $\tan^{-1} \frac{V_{HMR}}{U_{HMR}}$

Left Rotor

$$P_{WML} = P_{HML} \cos \xi_{WML} + q_{HML} \sin \xi_{WML}$$

where

$$p_{HML} = -p \cos \beta_M - q \sin \beta_M \sin \phi_M - r \sin \beta_M \cos \phi_M$$

$$q_{HML} = q \cos \phi_{M} - r \sin \phi_{M}$$

$$\dot{P}_{WML} = \frac{p_{WML}}{\Omega'} \qquad \qquad \dot{q}_{WML} = \frac{\dot{q}_{WML}}{\Omega'}$$

 ξ_{WML} - Wind azimuth angle defined to be equal to $\tan^{-1} \frac{V_{HML}}{U_{HML}}$

3. Rotor Hub Velocity - Mast Axes

Right Rotor

$$U_{HMR} = U_{HBR} \cos \beta_{M} - V_{HBR} \sin \beta_{M} \sin \phi_{M} + W_{HBR} \sin \beta_{M} \cos \phi_{M}$$

$$v_{HMR}$$
 = $v_{HBR} \cos \phi_{M}$ + $w_{HBR} \sin \phi_{M}$

$$W_{HMR} = -U_{HBR} \sin \beta_{M} - V_{HBR} \cos \beta_{M} \sin \phi_{M} + W_{HBR} \cos \beta_{M} \cos \phi_{M}$$

where,

Left Rotor

$$U_{HML} = U_{HBL} \cos \beta_M + V_{HBL} \sin \beta_M \sin \phi_M + W_{HBL} \sin \beta_M \cos \phi_M$$

$$v_{HML} = -v_{HBL} \cos \phi_M + w_{HBL} \sin \phi_M$$

Use or discloure of data or this page is subject to the restricter of the fifth page

where,

$$U_{KBL} = U + q * L_{ZH} + r * L_{YH}$$

$$V_{HBL} = V + p * L_{ZK} + r * L_{XH}$$

$$W_{HBL} = W - p * L_{YH} - q * L_{XH}$$

4. Aerodynamic Coefficients

Right Rotor

$$DN_R = \rho \Omega \frac{2}{R} DN^*$$

$$DNQ_{R} = DN_{R} (\Omega_{R}^{\dagger} R/550)$$

$$\mu_{R} = \frac{\left[U_{HMR}^{2} + V_{HMR}^{2}\right]^{\frac{1}{2}}}{\Omega'_{R}R}$$

$$\lambda_{OR} = -\frac{W_{HMR}}{\Omega^{*}_{R}R}$$

$$\xi_{WMR} = TAY^{-1} \frac{V_{H}R}{v_{HMR}}$$

$$a_R = a_0 + \mu_R(a_1 - a_2 \mu_R)$$
 $(a_0, a_1, a_2 - blade lift coefficients)$

$$C_{KFAR} = \frac{2/3}{I_{b}} \frac{K_{FA}}{\Omega_{R}^{1/2}}$$
; $C_{KLTR} = \frac{2/3}{I_{b}} \frac{K_{LT}}{\Omega_{R}^{1/2}}$

$$Y_{R} = \frac{9a_{R} cR^{4}}{I_{b}} \qquad \left[1 + \frac{\mu_{R}}{2}\right] = Y_{MR} \left[1 + \frac{\mu_{R}}{2}\right]$$

Define,

$$Q_R = 0.5 \sigma a_R (DN_R)$$

(For Left rotor replace subscript R with L)

- D. Short Term Transformations (Every update Cycle)
 - 1. 'Wind-Mar's' Axis Cyclic Inputs
 Right & Lor

$$\bar{A}_{1R} = A_{1R} \cos \xi_{WMR} - B_{1R} \sin \xi_{WMR}$$

$$\bar{B}_{1R} = A_{1R} \sin \xi_{WMR} + B_{1R} \cos \xi_{WMR}$$

(For left rotor replace subscript R with L)

2. Blade Pitch Constants
Right Rotor

$$C_{SnR} = (TW1_n - TW3_n) \sin \theta_{OR} + (TW2_n + TW4_n) \cos \theta_{OR}$$

$$C_{CnR} = -(TW2_n + TW4_n) \sin \theta_{OR} + (TW1_n - TW3_n) \cos \theta_{OR}$$

(For left rotor replace subscript R with L)

The state of the s

3. Performance Parameters Right Rotor

$$\alpha_{\rm rR} = \frac{7C_{\rm TR}}{\sigma a_{\rm R}}$$

$$C_{d_{fR}} = [\delta_0 + \alpha_{rR} (\delta_1 + \alpha_{rR} \delta_2)] / 2a_R$$

(For left rotor replace subscript R with L)

4. Thrust and Induced Velocity Right Rotor

$$G = (0.76 + .24 * \frac{h_{H}}{2R})$$

If
$$\sqrt{u^2 + v^2} > 30 \text{ or } G > 1 \text{ SET } G = 1$$

$$\boxed{D1} \quad Q_{3R} = \frac{T_R}{2B^2 DN_R}$$

$$Q_{5R} = 0.6(|Q_{3R}|^{1.5})/(|Q_{3R}| + 8\mu_R^2)$$

$$\lambda_{R} = \lambda_{OR} + \lambda_{iR}$$

$$\begin{array}{ll}
\boxed{D2} & Q_{1R} = \lambda_{OR} + \frac{Q_{3R} \left[1 + (G - 1) \left(\frac{\sqrt{U^2 + V^2}}{30} - 1 \right)^2 \right]}{(\mu_R^2 + .866 \lambda_R^2)^{.5} + \frac{Q_{5R} (|Q_{3R}| - \frac{8}{3} \lambda_R |\lambda_R|)}{(|Q_{3R}| + 8 \lambda_R^2)}} \\
 + \frac{x_{SS} f(\mu_R) Q_{3R}}{(\mu_R^2 + .866 \lambda_R^2)^{.5}} + \frac{Q_{5R} (|Q_{3R}| + 8 \lambda_R^2)}{(|Q_{3R}| + 8 \lambda_R^2)}
\end{array}$$

$$\lambda_{iR} = Q_{1R} - \lambda_{OR}$$

If
$$(|Q_{1R} - \lambda_R| > .001 | \lambda_{1R}|)$$
 set $\lambda_R = Q_{1R}$ Go to $D2$

$$\lambda_{R} = 0.7 Q_{1R} + 0.3 \lambda_{R}$$

$$T_{2R} = Q_{6R} \left\{ c_{S2R} + c_{SOR} \frac{\mu^{2}_{R}}{2} - \lambda_{R} (c_{C1R} + c_{d_{fR}}) - \frac{\overline{B}_{1}}{2} \left[\mu_{R} (c_{SOR} \lambda_{R} + 2 c_{C1R}) \right] \right\}$$

$$T_R = T_{2R}$$

$$c_{T_{R}} = \frac{T_{R}}{DN_{R}}$$

$$W_{iR} = \lambda_{iR} \quad (\Omega_R^* R)$$

(For
$$\lambda_{iR}$$
 Initilization use $\lambda_{iR} = \text{Sign } Q_{3R} * (Q_{3R})^{.5}$)

Thrust Limit

If
$$T_R > \overline{T}_{(\mu)}$$
, Set $T_R = \overline{T}_R$
 $\overline{T}_R = C_{\overline{T}} f(\mu) * DN_R$

(For Left Rotor replace subscript R with L)

301-099-001

A - 1

If the distance of talk and the lease a subject to the restriction on the time page.

5. Rotor Flapping (Wind-Mast Axis System) Right Rotor

$$\begin{bmatrix} AR(1,1) & AR(1,2) & AR(1,3) \\ AR(2,1) & AR(2,2) & AR(2,3) \\ AR(3,1) & AR(3,2) & AR(3,3) \end{bmatrix} \begin{bmatrix} a \\ OR \\ a \\ 1R \\ b \\ 1R \end{bmatrix} = \begin{bmatrix} BR(1) \\ BR(2) \\ BR(3) \end{bmatrix}$$

$$AR(1,1) = \frac{2}{\gamma_{MR}} + \frac{\mu_{R}}{2} \overline{A}_{1R} C_{S2R}$$

$$AR(1,2) = \frac{1}{2} \overline{B}_{1R} (C_{S2R} - \frac{\mu_{R}^{2}}{4} C_{S1R})$$

$$AR(1,3) = -\frac{1}{2} A_{1R} (C_{S3R} + \frac{\mu_R^2}{4} C_{S1R}) - \mu_R \tan \delta_3 (C_{C2R} + \frac{\lambda_R}{2} C_{S1R})$$

$$AR(2,1) = \frac{\mu_R^2}{4} \bar{A}_{1R} C_{S1R}$$

$$AR(2,2) = C_{C3R} - \frac{1}{4} \mu_R^2 (C_{C1R} + C_{d_{fR}}) + \frac{1}{2} \left[C_{d_{fR}} + \mu_R \overline{B}_{1R} C_{S2R} \right]$$

$$AR(2,3) = \frac{\mu_R}{2} \overline{A}_{1R} C_{S2R} - C_{KLTR}$$
$$- \tan \delta_3 (C_{C3R} + \frac{3}{4} \mu_R^2 C_{C1R} + \lambda_R^2 C_{S2R})$$

$$AR(3,1) = -\mu_{R} \left[C_{C2R} + \frac{2}{3} C_{d_{fR}} + \frac{\mu_{R}}{4} \overline{B}_{1R} C_{S1R} \right]$$

$$AR(3,2) = \frac{\mu_{R}}{2} \overline{A}_{1R} C_{S2R} + C_{KFAR} + \tan \delta_{3} (\frac{3}{4} \mu_{R}^{2} C_{C1R} + \lambda_{R} C_{S2R} + C_{C3R})$$

Usin or droplosure of data in the page is a position of instance of the page.

$$\begin{aligned} & \text{AR}(3,3) = \text{C}_{\text{C3R}} + \frac{1}{2} \left\{ \text{C}_{\text{d}_{\text{fR}}} + \mu_{\text{R}} \left[\overline{\text{B}}_{1\text{R}} \, \text{C}_{\text{S2R}} + -\frac{\lambda}{2} \, \mu_{\text{R}} \, (\text{C}_{\text{C1R}} + \text{C}_{\text{d}_{\text{fR}}}) \, \right] \right\} \\ & \text{BR}(1) = \text{C}_{\text{S3R}} + \frac{\mu_{\text{R}}^2}{2} \, \text{C}_{\text{S1R}} - \lambda_{\text{R}} \, \text{C}_{\text{C2R}} - \mu_{\text{E}} \, \overline{\text{E}}_{1\text{R}} \, (\text{C}_{\text{C2R}} + \frac{\lambda_{\text{R}}}{2} \, \text{C}_{\text{S1R}}) \\ & \text{BR}(2) = \mu_{\text{R}} \left[2 \, \text{C}_{\text{S2R}} - \lambda_{\text{R}} \, (\text{C}_{\text{C1R}} + \text{C}_{\text{d}_{\text{fR}}}) \right] \\ & - \overline{\text{B}}_{1\text{R}} \, (\text{C}_{\text{C3R}} + \frac{3}{4} \, \mu_{\text{R}}^2 \, \text{C}_{\text{C1R}} + \lambda_{\text{R}} \, \text{C}_{\text{S2R}}) - 4 \, \frac{\Lambda_{\text{WMR}}}{\gamma_{\text{MR}}} \\ & \text{BR}(3) = \overline{\text{A}}_{1\text{R}} \, (\frac{\mu_{\text{R}}^2}{4} \, \text{C}_{\text{C1R}} + \lambda_{\text{R}} \, \text{C}_{\text{S2R}} + \text{C}_{\text{C3R}}) - \frac{4 \Lambda_{\text{WMR}}^2}{\gamma_{\text{MR}}} \end{aligned}$$

6. Rotor flapping in mast axis system

$$a_{1R} = \overline{a}_{1R} \cos \xi_{WMR} + \overline{b}_{1R} \sin \xi_{WMR}$$

$$b_{1R} = -\overline{a}_{1R} \sin \xi_{WMR} + \overline{b}_{1R} \cos \xi_{WMR}$$

(For left rotor replace R with L)

7. Rotor Inplane Forces in Wind-Mast Axis System (Right Rotor)

$$\overline{H}_{R} = Q_{6R} \left\{ \frac{1}{2} C_{SOR} \mu_{R} \lambda_{R} + C_{S2R} \left(\overline{a}_{1R} - \frac{\Lambda}{2} \right) - \frac{1}{3} C_{C1R} \lambda_{R} \overline{b}_{1R} \right\}$$

$$+ C_{C1R} \left[\frac{\mu_{R}}{2} \left(a_{OR}^{2} + \overline{a}_{1R}^{2} \right) - \frac{3}{2} \lambda_{R} \overline{a}_{1R} + \frac{\Lambda}{p} \lambda \right] \quad \text{(Equation Continued on Next Page)}$$

$$-\frac{\overline{B}_{1R}}{2} \left[c_{SOR}^{2} \lambda_{R}^{2} + c_{S2R}^{2} \overline{a}_{1R}^{2} + c_{C1R}^{2} (\lambda_{R}^{2} + \mu_{R}^{2} \overline{a}_{1R}^{2}) \right]$$

$$+\frac{A_{1R}}{2} \left[\frac{1}{4} c_{SOR}^{2} \lambda_{R}^{2} \overline{b}_{1R}^{2} + c_{S1R}^{2} \lambda_{R}^{2} a_{OR}^{2} + c_{C2R}^{2} a_{CR}^{2} \right] + c_{d_{fR}^{2}}^{2} \mu_{R}^{2}$$

$$\begin{split} \overline{Y}_{R} &= Q_{6R} \left\{ C_{S2R} \left(\overline{b}_{1R} - \frac{\Lambda}{2} \right) - \frac{3}{2} C_{S1R} \mu_{R} a_{OR} - \frac{3}{2} C_{C1R} \lambda_{R} \overline{b}_{1R} \right. \\ &\quad + \frac{1}{3} C_{C1R} \lambda_{R} \overline{a}_{1R} - C_{C1R} \lambda_{R} \Lambda_{Q} \\ &\quad + \overline{b}_{1R} \left[-\frac{1}{8} C_{SOR} \lambda_{R} \mu_{R} \overline{b}_{1R} + \frac{1}{2} C_{S1R} \lambda_{R} a_{OR} \right. \\ &\quad + \frac{1}{2} C_{C2R} a_{OR} - C_{C1R} \mu_{R} \overline{b}_{1R} \right] \\ &\quad + \frac{\overline{A}_{1R}}{2} \left[C_{SOR} \lambda_{R} (\lambda_{R} - \mu_{R} \overline{a}_{1R}) + C_{S2R} \overline{b}_{1R} \right. \\ &\quad + C_{C1R} (\lambda_{R} - \mu_{R} \overline{a}_{1R}) \right] \right\} \end{split}$$

8. Rotor Inplane Forces in Mast Axis System

$$H_R = \overline{H}_R \cos \xi_{WMR} + \overline{Y}_R \sin \xi_{WMR}$$

$$Y_R = -\overline{H}_R \sin \xi_{WMR} + \overline{Y}_R \cos \xi_{WMR}$$

(For Left rotor replace subscript R with L)

Tise or disclore e of data on this pacturing of the purpose.

9. Rotor Power and Torque Required

$$\begin{split} \text{HP}_{\text{REQ R}} &= (\text{DNQ}_{\text{R}}) \, \frac{\sigma_{\text{a}_{\text{R}}}}{2} \Bigg\{ C_{\text{C1R}} \, (\lambda_{\text{R}} \, \mu_{\text{R}} \, \overline{a}_{1\text{R}} \, - \, \lambda_{\text{R}}^2) \\ &\quad + C_{\text{S2R}} \, \lambda_{\text{R}} \, - \frac{1}{2} \, C_{\text{C3R}} \, (a^2_{1\text{R}} + \, b^2_{1\text{R}}) \, + \frac{1}{2} \, C_{\text{d}_{\text{fR}}} \\ &\quad (1 + 280 \, \mu_{\text{R}}^3 + 60 \, \lambda_{\text{R}}^3) \, - \, \overline{B}_{1\text{R}} \, \Bigg[\frac{1}{2} \, C_{\text{C3R}} \, \overline{a}_{1\text{R}} \\ &\quad + \frac{1}{2} \, C_{\text{C1R}} \, \lambda_{\text{R}} \, \mu_{\text{R}} \, + \, C_{\text{S2P}} \, \lambda_{\text{R}} \, \overline{a}_{1\text{R}} \Bigg] \\ &\quad + \, \overline{A}_{1\text{R}} \, \Bigg[\frac{1}{2} \, C_{\text{C3R}} \, \overline{b}_{1\text{R}} \, - \, \frac{1}{2} \, C_{\text{C2R}} \, \mu_{\text{R}} \, a_{\text{OR}} \, + \, C_{\text{S2R}} \, \lambda_{\text{R}} \, \overline{b}_{1\text{R}} \Bigg] \, \Bigg\} \\ Q_{\text{R}} &= \frac{(550) \, \text{HP}_{\text{REQ R}}}{\Omega_{\text{R}}^3} \end{split}$$

(For Left rotor replace subscript R with L)

10. Rotor Moments in Mast Axis System

$$M_{a_{1R}} = K_{FA} a_{1R}$$

1
_{b1R} = K _{LT} b _{1R}

(For left rotor replace subscript R with L)

THE ICOP TETE COMPANY		subject to the restrict in on the title layer
OUTPUTS		
Subsystem Block No.	Symbol	Units
2^(19)	^a 1R	Rad
	^b 1R	Rad
2 (10b)	T _R	Lbs
	H _R	Lbs
	$\mathbf{Y}_{\mathbf{R}}$	Lbs
(10b)(19)	$Q_{\mathbf{R}}$	Lb/Ft
(10ь)	M a 1R	Lb/Ft
·	1 _{b1R}	Lb/Ft
	HP REQ R	НР
19	a 1R	Rad/Sec
	$\dot{\mathfrak{b}}_{1\mathrm{R}}$	had/Sec
20 19	a 1L	Rad
	b _{1L}	Rad
(2)(10b)	T _L	Lbs
	$^{ m H}_{ m L}$	Lbs
	Y _L	Lbs
	${ t W_{iL}}$	Ft/Sec
	$Q_{\mathtt{L}}$	Lb/Ft
(10b)	M _a 1L	Lb/Ft
	1 _b 1L	Lb/Ft
17	HP REQ I.	НР
19	å 1L	Rad/Sec
	⁵ _{1L}	Rad/Sec

Contract and the American Contract of the Cont

SUBSYSTEM NO. 2: ROTOR INDUCED VELOCITIES

INPUTS:

A. Variables

Subsystem Block No.

Symbol

•	
$T_{\mathbf{R}}$	
$^{\rm H}$ R	
$\mathbf{Y}_{\mathbf{R}}$	
T _{I.}	
$^{\rm H}$ L	
YL	
w_{iL}	
β _M	

Units
Lbs
Lbs
Lbs
Lbs
Lbs
Ft/Sec
Rad

B. Coefficients

EQUATIONS:

Rotor Wake

$$R_{WL} = R \left\{ 0.78 + 0.22 \text{ EXP} \left[- (0.3 + 2Z\sqrt{c_{RFL}} + 60 c_{RFL}) \right] \right\}$$

where

$$z = \frac{(WL_{HUB} - WL_{W})_{\beta_{M}} = 0}{12R}$$

$$C_{RFL} = \left(\frac{T_L^2 + H_L^2 + Y_L^2}{\rho \pi \Omega_L^{*2} R^4}\right)^{\frac{k}{2}}$$

Rotor Wake at Wing, Horizontal Stabilizer and Vertical Stabilizer in Mast Axes

(For rotor wake effects on the left and right wing, on the horizontal stabilizer and on the vertical stabilizer, the values of the left rotor induced velocity will be used.)

Wing

$$W_{i}|_{R/WL} = (K_{0} + K_{1} \mu_{L} + K_{2} \mu_{L}^{2} + K_{3} \lambda_{L} + K_{4} \lambda_{L}^{2}) W_{iL}$$

Horizontal Stabilizer

$$W_{i|_{R/H}} = \left[h_{0} + h_{1} \beta_{M} + (h_{2} + h_{3} \beta_{M}) \left(\frac{(u - 168.89 + h_{4} \beta_{M})}{168.89}\right)^{2}\right] W_{iL}$$

Vertical Stabilizer

$$W_i \mid_{R/V} = W_i \mid_{R/H}$$

Components of Rotor Wake in Body Axes:

Wing:

$$U_i \Big|_{R/WL}^B = W_i \Big|_{R/WI} \sin \beta_M$$

$$w_i|_{R/WL}^B = -w_i|_{R/WL}^{\cos \beta_M}$$

Horizontal Stabilizer:

$$U_{i}|_{R/H}^{B} = W_{i}|_{R/H}$$
 sin β_{M}

$$W_i \begin{vmatrix} B \\ R/H \end{vmatrix} = -W_i \begin{vmatrix} R/H \end{vmatrix} \cos \beta_M$$

Vertical Stabilizer:

$$U_i \begin{vmatrix} B \\ R/V \end{vmatrix} = U_i \begin{vmatrix} B \\ R/H \end{vmatrix}$$

$$W_1 \begin{vmatrix} B \\ R/V \end{vmatrix} = W_1 \begin{vmatrix} B \\ R/H \end{vmatrix}$$

OU TPUTS

Subsystem Block No.

Symbol

U i B R/WL

 $w_i \begin{vmatrix} B \\ R/WL \end{vmatrix}$

 $v_{i}|_{R/H}^{B}$

W_i|B_{R/H}

U B R/V

 $W_i \mid_{R/V}^B$

Units

Ft/Sec

Ft/Sec

Ft/Sec

Ft/Sec

Ft/Sec

Ft/Sec

Ft/Sec

SUBSYSTEM NO. 3-FUSELAGE AERODYNAMICS

INPUTS

A. Variables

Subsystem Block No.

Symbol

Units

B. Aerodynamic Coefficients

Units

$$E_0, E_1$$
 Ft², $\frac{Ft^2}{Deg}$

$$\operatorname{Ft}^2$$
, $\frac{\operatorname{Ft}^2}{\operatorname{Deg}}$, $\frac{\operatorname{Ft}^2}{\operatorname{Deg}}$, $\frac{\operatorname{Ft}^2}{\operatorname{Deg}}$, Ft^2

$$Ft^3$$
, $\frac{Ft^3}{Deg}$, $\frac{Ft}{Deg}$

$$Ft^2$$
, $\frac{Ft^2}{Deg}$, $\frac{Ft^2}{Deg^2}$

$$Ft^3$$
, $\frac{Ft^3}{Deg}$

$$Ft^3$$
, $\frac{Ft^3}{Deg}$

EQUATIONS:

$$q_F = \frac{1}{2} \rho v_T^2$$

For
$$\alpha_{\overline{F}}$$
 and $\beta_{\overline{F}} \leq 20^{\circ}$

$$L_F = q_F (L_0 + L_1 \alpha_F)$$

$$D_F = q_F (D_0 + D_1 \alpha_F + D_2 \alpha_F^2 + D_3 |\beta_F|)$$

$$\mathfrak{i}_{F}^{\bullet} = \mathfrak{q}_{F} \left(\mathfrak{M}_{0} + \mathfrak{M}_{1} \alpha_{F} + \mathfrak{M}_{2} \mid \beta_{F} \right) = \mathfrak{q}_{F} \left(\mathfrak{U}_{\alpha} \mid f(\alpha_{F}) + \mathfrak{M}_{2} \mid \beta_{F} \right)$$

$$Y_F' = q_F (Y_0 + Y_1 \beta_F + Y_2 \beta_F | \beta_F|)$$

$$1_F^* = q_F (1_0 + 1_1 \beta_F)$$

$$N_F' - q_F (N_O + N_1 \beta_F)$$

For $\alpha_{\overline{F}}$ and $\beta_{\overline{F}} > 20^{\circ}$

For
$$\alpha_{\overline{F}} > 20^{\circ}$$
, $\beta_{\overline{F}} < 70^{\circ}$

$$L_{F} = L_{F}$$

$$v_{F} = v_{F}$$
at $\alpha_{F} = \pm 20^{\circ}$

$$M_F = M_F$$
 at $\alpha_F = \pm 40^{\circ}$, β_F , = $\pm 20^{\circ}$

$$20^{\circ} < 5_{F} < 70^{\circ}$$

Use or disclosure of data on this page is subject to the restriction on the fittle page

$$\begin{cases}
 Y_F^* = Y_F^* \\
 1_F^* = 1_F^* \\
 N_F^* = N_F^*
 \end{cases}$$
At $\beta_F = \pm 20^\circ$

For
$$\beta_F > 70^{\circ}$$
,

$$L_F = M_F = Y_F' = 1_F' = N_F' = 0 D_F = q_F D_4$$
 Wind axis system

Use or disclosure of data on this page is subject to the restriction on the title page

OUTPUTS:

Subsystem Block No.

L_F

D_F

Symbol

Y'F

M'F

N'

Unics

Lbs.

Lbs.

Lbs.

Ft-Lbs

Ft-Lbs

Ft-Lbs

THE PARTY OF THE P

SUBSYSTEM NO. 4-WING-PYLON AERODYNAMICS

INPUTS:

A. Variables

Subsystem Block No.

Symbol

R WL β_M FX

> v_T $\alpha_{\mathbf{F}}$

 $\boldsymbol{\beta}_{\mathbf{F}}$

U

Units Ft/sec

Ft Deg F₁, F₂, F₃, F₄

Deg

Ft/sec Deg

Deg Ft/sec

> Ft/sec Ft/sec Slug/ft³

Ft/sec

ND Rad/sec Rad/sec

Rad/sec

B. Aerodynamic Coefficients

Units

ND, 1/Deg

ND

$$^{\rm C}{}_{\rm MO}{}_{\rm WP}$$

ND

Deg

ND, ND

$$C_{y\beta}|_{M_N} = 0$$

$$C_{yp}/C_{L}|_{M_{N}} = 0$$

1/Rad

$$C_{yr} |_{M_N} = 0$$

1/Rad

$$C_{N} = 0$$
 $C_{N} = 0$ $C_{N} = 0$

1/Rad, 1/Rad

1/Rad

$$C l_r / C_{LWP} |_{M_N} = 0$$
, $\Delta C l_r / (\frac{\delta \alpha}{\delta \delta_f}) \delta_f$

l/Rad, l/Deg

$$c_{n\beta} \left| \begin{array}{l} M_N = 0, c_{n\beta} / c_L^2 \\ C_L = 0 \end{array} \right| M_N = 0$$

l/Rad, l/Rad

$$C_{np}/C_{LWP}|_{M_N} = 0$$

1/Rad

$$c_{nr}/c_{L_{WP}}^2$$
, $c_{nr}/c_{D_{O_{WP}}}$

1/Rad, 1/Rad

$$^{C}\!\boldsymbol{\ell}_{\delta a}\cdot_{1\delta a}$$

1/Deg, ND

1/Deg, ND

$$\textbf{K}_{n\textbf{p}}$$

ND

Use or disclosure of data of this pace is subject to the restriction on the fife page.

EQUATIONS

A. Wing Aerodynamics Affected by Rotor Wake

Computation of wing areas S_{iWR} and S_{iWL} under the rotor wakes.

In this subsection, K is a dummy subscript. It is replaced by R and L while computing S_{iWL} and S_{iWL} respectively.

The logical flow chart shows the sequence of computations necessary for determining $\mathbf{S}_{\text{inc}}.$

 $F_1(C_{1K}, C_{2K})$ and $F_2(C_{1K}, C_{2K})$ are procedures representing computation of a contribution to the wing-area in a rotor wake.

$$\underline{\mathbf{F}_{1}}(\underline{\mathbf{C}_{1K}}, \underline{\mathbf{C}_{2K}})$$

$$s_{iWK} = s_{iWK} + A_{lK}$$

$$XA^{K} = XA^{K} + XA^{IK}$$

$$YA_K = YA_K + XA_{1K} Sin \delta_K$$

F₂(C_{1K}, C_{2K})

$$S_{iWK} = S_{iWK} + \frac{1}{2} A_{1K} + \frac{R_{WYK}}{2R_{WXK}} (\sin \delta_k) (c_{2K}^2 - c_{1K}^2)$$

$$- Y_{TIPK}(C_{2K} - C_{1K})$$

$$XA_{K} = XA_{K} + \frac{1}{2} XA_{1K} + \frac{R_{WYK}}{3R_{WXK}} (\sin \delta_{K})(c_{2K}^{3} - c_{1K}^{3})$$

$$- Y_{T1PK} (c_{2K}^{3} - c_{1K}^{3})$$

$$YA_K = YA_K + \left[\frac{1}{2}XA_{1K} \sin \delta_K + \frac{R_{WYK}}{6R_{WXK}} (\sin^2 \delta_K - \cos^2 \delta_K)\right]$$

$$(C_{2K}^{3} - C_{1K}^{3}) + \frac{1}{2} (R_{WXK}^{2} R_{WYK}^{2} \cos^{2} \delta_{K} - Y_{T1PK}^{2}) * (C_{2K}^{2} - C_{1K}^{2})] \frac{R_{WYX}^{2}}{R_{WXK}^{2}}$$

where:

$$\theta_{C_{1K}} = \sin^{-1} \frac{C_{1K}}{R_{WXK}}$$

$$\theta_{C_{2K}} = \sin^{-1} \frac{C_{2K}}{R_{WXK}}$$

$$A_{1K} = R_{WXK} R_{WYK} | \cos \delta_{K} | \left[\sin \theta_{C_{2K}} \cos \theta_{C_{2K}} \right.$$

$$- \sin \theta_{C_{1K}} \cos \theta_{C_{1K}} + \theta_{C_{2K}} - \theta_{C_{1K}} \right]$$

$$XA_{1K} = -\frac{2}{3} \frac{R_{WYK}}{R_{WXK}} |\cos \delta_{K}| \left[(R_{WXK}^{2} - C_{2K}^{2})^{3/2} - (R_{WXK}^{2} - C_{1K}^{2})^{3/2} \right]$$

and:

$$1' = 1_{M} \cos \beta_{M}$$

$$U_{WK} = -U - W_{i|_{R/WL}} \sin \beta_{M}$$

$$V_{WR} = V, V_{WL} = -V$$

$$W_{WK} = -W + W_{i} \Big|_{R/WL} \cos \beta_{M}$$

If MAX (
$$|V_{WK}|, |V_{WK}|$$
) > 100 $|V_{WK}|$

Use:

$$\frac{U_{WK}}{W_{WK}} = \frac{100 \ U_{WK}}{MAX \ (U_{WK}, V_{WK})}$$

$$\frac{v_{WK}}{w_{WK}} = \frac{100 \text{ V}_{WK}}{\text{MAX (U}_{WK}, V_{WK})}$$

s is the distance forward from wing trailing edge to shaft pivot.

$$\bar{\epsilon} = \frac{(SL_{WTE} - SL_{SP})}{12}$$

$$X_{TEK} = -\bar{\epsilon} - 1_{M} \sin \beta_{M} - 1' \frac{U_{WK}}{W_{WK}}$$

$$X_{LEK} = c_W + X_{TEK}$$

$$Y_{\text{T1PK}} = -\frac{V_{\text{WK}}}{W_{\text{WK}}} 1'$$

$$\delta_{\text{K}} = \tan^{-1} \left(\frac{V_{\text{WK}}}{W_{\text{WK}}} \sin \beta_{\text{M}} \right)$$

$$R_{WXK} = \left[R_{WK} \left(-\cos \beta_{M} + \frac{U_{WK}}{W_{WK}} \sin \beta_{M} \right) \right]$$

$$R_{WYK} = R_{WK} \sqrt{1 + \left(\frac{V_{WK}}{W_{WK}} \sin \beta_{M}\right)^{2}}$$

If
$$\left(R^2 - X^2 \text{ or } R^2 - Y^2\right) \le 0$$
 then $\left(\sqrt{R^2 - X^2 \text{ or } \sqrt{R^2 - Y^2}}\right) = 0$

If
$$X_{TE}^2 > R_{WK}^2$$
 and $X_{TE}^2 > 0$, then $S_{iWK}^2 = 0$

$$Y_{\text{TE1K}} = \frac{R_{\text{WYK}}}{R_{\text{WXK}}} \left(X_{\text{TEK}} \sin \delta_{K} - |\cos \delta_{K}| \sqrt{R_{\text{WXK}}^{2} - X_{\text{TEK}}^{2}} \right)$$

$$Y_{TE2K} = \frac{R_{WYK}}{R_{WXK}} \left(X_{TEK} \sin \delta_{K} + |\cos \delta_{K}| \sqrt{R_{WXK}^{2} - X_{TEK}^{2}} \right)$$

If
$$x_{LE}^2 > R_{WX}^2$$
 and $x_{LE}^2 < 0$ then $S_{iWK} = 0$

$$Y_{LE1K} = \frac{R_{WYK}}{R_{WXK}} \left(X_{LEK} \sin \delta_{K} - |\cos \delta_{K}| \sqrt{R_{WXK}^{2} - X_{LEK}^{2}} \right)$$

$$Y_{LE2K} = \frac{R_{WYK}}{R_{WXK}} \left(X_{LEK} \sin \delta_{K} + |\cos \delta_{K}| \sqrt{R_{WXK}^{2} - X_{LEK}^{2}} \right)$$

If $Y_{TIP}^2 > R_{WY}^2$ and $Y_{TIP} > 0$ then $S_{iWK} = 0$

$$\mathbf{X_{T1P1K}} = \frac{\mathbf{R_{WXK}}}{\mathbf{R_{WYK}}} \left(\mathbf{Y_{T1PK}} \sin \delta_{K} - |\cos \delta_{K}| \sqrt{\mathbf{R_{WYK}^{2} - Y_{T1KK}^{2}}} \right)$$

$$X_{T1P2K} = \frac{R_{WXK}}{R_{WYK}} \left(Y_{T1PK} \sin \delta_{K} + |\cos \delta_{K}| \sqrt{R_{WYK}^{2} - Y_{T1PK}^{2}} \right)$$

$$r_{XWK} = SL_{CG} - SL_{WTE} - X_{TEK} + \bar{X}_{K}$$

$$r_{YWK} = BL_{SP} - BL_{CG} + Y_{T1PK} - \bar{Y}_{R} (for right wing)$$

$$= - BL_{SF} + BL_{CG} - Y_{T1PK} + \bar{Y}_{L} (for left wing)$$

where:
$$\overline{X}_{K} = \frac{XA_{K}}{S_{iWK}}$$

$$\overline{Y}_{K} = \frac{YA_{K}}{S_{iMK}}$$

If
$$\beta_{M} > 30^{\circ}$$
, set S_{iWL} , $S_{iWR} = 0$

Total Velocity:

$$v_{T_{iWL}} = \left[(u + u_i |_{R/WL}^B)^2 + v^2 + (w + w_i |_{R/WL}^B)^2 \right]^{1/2}$$

Resultant angle of sideslip,

$$\beta_{F}^{\prime}|_{W} = Tan^{-1} \frac{V}{\left[(U + U_{i}|_{R/WL}^{B})^{2} + (W + W_{i}|_{R/WL}^{B})^{2} \right]^{1/2}}$$

電気はいいるとう

Resultant angle of attack

$$\alpha_{f}^{*}|_{WL} = \tan^{-1}\left[\frac{W + W_{i}|_{R/WL}^{B}}{U + U_{i}|_{R/WL}^{B}}\right]$$

Dynamic pressure:

$$q_{iWPL} = \frac{1}{2} \rho v_{T_{iWL}}^2$$

Lift in (local) wind axis system:

(right):
$$L_{iWPR} = q_{iWPI} S_{iWR} C_{L_{WP}}$$

Drag in (local) wind axis system:

(left):
$$D_{iWPL} = q_{iWPL} S_{iWL} C_{D_{WP}}$$

B. Wing Aerodynamics in freestream flow

(Wing area subjected to freestream - $S_{\infty W}$)

$$S_{\infty W} = S_W - (S_{iWL} \div S_{iWR})$$

Dynamic Pressure:

$$q_F = \frac{1}{2} \rho V_T^2$$

Use or disclosure of data on this page is subject to the restriction on the title page

Rotor flow field effects at wing:

$$\Delta \alpha_{F/W} = 0.26 \times_{R/W} \frac{2C_{RF}}{MAX^2 (\mu_L, .15)}$$
 (57.3)

Angle of Attack at the wing:

$$\alpha_{W} = \alpha_{F} - \Delta \alpha_{R/W}$$

Lift in (local) wind axis system:

$$L_{WP} = q_F S_{cow} \left[C_{L_{WP}} + C_{L_{\delta a}} * \delta a \right]$$

Drag:

$$D_{WP} = q_F S_{\infty W} C_{D_{WP}} f(\alpha_W, \beta_M, F_X, M_N)$$

Note: $C_{L_{WP}}$ here is a function of α_{W}

Pitching moment:

$$M_{O_{WP}}^{\dagger} = q_F S_{\infty} C_W C_{M_{OWP}}$$

C. Lateral-Directional Equations

Prandtl - Glauert compressibility factor C_8 :

$$C_{\beta} = \frac{AR_{W} + 4 \cos \left(\Lambda_{c/4}\right)_{W}}{AR_{W} B_{C} + 4 \cos \left(\Lambda_{c/4}\right)_{W}}$$

where:

$$B_{C} = \sqrt{1 - M_{N}^{2} \cos^{2} (\Lambda_{c/4})_{W}}$$

for U > 15 ft/sec.

Y - Force in the (local) wind axis system:

$$Y_{WP} = q_F S_{\infty W} \left[C_{Y_{\beta}} \beta_F + \frac{b_W}{2U} (C_{Y_p} p' + C_{Y_r} r') \right]$$

Roll and yaw moments in (local) wind axis:

$$1_{WP}^{'} = q_{F} S_{\infty W} b_{W} \left[c_{1_{\beta}} \beta_{F} + \frac{b_{W}}{2U} (c_{1_{p}} p' + c_{1_{r}} r') + c_{1_{\delta}} \delta_{a} \right]$$

$$N_{WP}^{'} = q_{F} S_{\infty W} b_{W} \left[c_{n_{\beta}} \beta_{F} + \frac{b_{W}}{2U} (c_{n_{p}} p' + c_{n_{r}} r') + c_{n_{\delta}} \delta_{a} \right]$$

where the aircraft angular velocities in wind axis system are,

$$p' = p \cos \alpha_W \cos \beta_F + q \sin \beta_F + r \sin \alpha_W \cos \beta_F$$

$$r' = -p \sin \alpha_W + r \cos \alpha_W$$

and the lateral-directional stability derivatives are,

1.
$$C_{Y\beta} = \begin{pmatrix} C_{Y\beta} | M_N \end{pmatrix} = 0$$
 C_{β}

2.
$$C_{Y_p} = \begin{pmatrix} C_{Y_c} \\ C_{L} \end{pmatrix} \begin{pmatrix} M_N = 0 \end{pmatrix} \begin{pmatrix} C_{L_{WP}} \end{pmatrix} \begin{pmatrix} C_{B} \end{pmatrix} \begin{pmatrix} AR_{W} & B_C + \cos (\Lambda_{C/4 W}) \\ AR_{W} + \cos (\Lambda_{C/4 W}) \end{pmatrix}$$

3.
$$C_{Y_r} = \left(C_{Y_r} |_{M_N} = 0\right) (C_{\beta})$$

4.
$$C_{1_{\beta}} = \left(\begin{array}{c|c} C_{1_{\beta}} & C_{L} = 0 \\ M_{N} = 0 \end{array} \right) \left(\begin{array}{c} C_{\beta} \\ C_{L_{WP}} \end{array} \right) + \left(\begin{array}{c|c} C_{1_{\beta}} \\ C_{L_{WP}} \\ \end{array} \right) M_{N} = 0 \right) C_{L_{WP}}$$

$$\left(\begin{array}{c|c} C_{1_{\beta}} & C_{L} = 0 \\ M_{N} = 0 \end{array} \right) = 0 \text{ for } |\beta_{F}| > 15 \text{ Deg}$$

5.
$$C_{1p} = \begin{bmatrix} C_{1p} & C_{L} = 0 \\ M_{N} = 0 \end{bmatrix} \quad (C_{\beta}) * \begin{bmatrix} \frac{\partial C_{L_{WP}}}{\partial \alpha_{W}} & \alpha_{W} \\ \frac{\partial C_{L_{WP}}}{\partial \alpha_{W}} & C_{L_{WP}} \\ \end{bmatrix}$$
$$- \frac{1}{8} \begin{bmatrix} C_{D_{WP}} - \frac{C_{L_{WP}}^2}{\pi AR_{W}} \end{bmatrix}$$

6.
$$c_{1_r} = \left\{ \left(1 + \frac{Ak_W (1 - B_c)^2}{2B_c (AR_W B_c + 2)} \right) \frac{C_1}{C_{L_{WP}}} \right|_{M_N} = 0 \right\} C_{L_{WP}}$$

$$+ \left[\frac{\Delta C_{1_{r}}}{-\frac{d\alpha}{d\delta_{f}}} \right] \left(\frac{d\alpha}{d\delta_{F}} \right) \delta_{F}$$

If
$$F_1$$
 then $\delta_F = 0^\circ$

If
$$F_2$$
 then $\delta_F = 30^\circ$

If
$$F_3$$
 then $\delta_F = 60^\circ$

1f
$$F_4$$
 then $\delta_F = -15^\circ$

7.
$$C_{1_{\delta_a}} = K_{1_{\delta_a}} * C_{1_{\delta_a}} \mid_{\alpha_{\mathbf{W}}}^{F_1} < 8^{\circ}$$

$$K_{1_{\delta_a}} - f(F_x, \beta_M, \alpha_W)$$

8.
$$C_{n_{\beta}} = \begin{pmatrix} c_{n_{\beta}} & c_{L} = 0 \\ M_{N} = 0 \end{pmatrix} * (c_{\beta}) + \begin{pmatrix} c_{n_{\beta}} \\ c_{L_{WP}}^2 \end{pmatrix} \Big|_{M_{N}} * \begin{pmatrix} c_{L_{WP}} \\ 0 \end{pmatrix}^2$$

301-099-001

9.
$$C_{n_p} = -C_{1_p} \alpha_W - K_{n_p} \left[-C_{1_p} \alpha_W - \left(C_{\beta} \right) \frac{AR_W B_c}{AP_W} - \frac{C_{np}}{C_{L_{WP}}} \right] \times C_{N_p}$$

10.
$$C_{n_r} = \left(\frac{C_{n_r}}{C_{L_{WP}}}\right) \left(C_{L_{WP}}\right)^2 + \left(\frac{C_{n_r}}{C_{D_{0_{WP}}}}\right) C_{D_{0_{WP}}}$$
 $\alpha_W = 0$

11.
$$C_{n_{\delta_a}} = K_{n_{o\delta_a}} + K_{n_{\delta_a}} C_{l_{\delta_a}} C_{l_{WP}}$$

D. Wing Wake Deflection at Horizontal Tail is a function of angle of attack at the inboard section of the wing, mast tilt, flap deflection derived from test data.

$$\epsilon_{W/H}$$
 - $f(\alpha_W, \beta_M, F_x)$

THE PARTY OF THE P

OUTPUTS:

Subsystem	Plack	Mo
Subsystem	DIOCK	NO.

Symbol	
--------	--

€_W/H $\alpha_{F|W}$, $\beta_{F|W}$

L iWPL

D iWPR

 $\alpha_{\mathbf{W}}$

L_{WP}

D_{WP}

MO_{WP}

 \mathbf{L}_{iWPR}

 $^{\mathrm{D}}_{\mathrm{iWPL}}$

N'WP

Units

Deg

Deg

Lbs

Lbs

Lbs

Lbs

Deg

Lbs

Lbs

Ft-Lbs

Lbs

Ft-Lbs

Ft-Lbs

SUBSYSTEM NO. 5-HORIZONTAL STABILIZER AERODYNAMICS

INPUTS:

A. Variables

A. Vallables		=
Subsystem Block No.	Symbol	Units
9	_{Sr} cc	In
$(\widehat{1})$	q	Rad/Sec
②	U _i B _{R/H}	Ft/Sec
	$W_{i R/H}$	Ft/Sec
8 a	β _M	Deg
	δ _e	Deg
•	i _H	Deg
(12)	ប	Ft/Sec
Ť	v	Ft/Sec
	W	Ft/Sec
	$\dot{\alpha}_{\mathbf{F}}$	Rad/Sec
†	$\boldsymbol{\beta}_{\mathbf{F}}$	Rađ
<u> 15</u>	$M_{ m N}$	ND
 	ρ	Slug/ft ³

B. Aerodynamic Coefficients

т. Н	ND
К _е	ND
с _г н, с _г нв	ND, 1/Deg
c^{D^H}	ND
c _{MH}	ND
ī _e	ND

かんけん こういきょう 大一の中でなっています。これのはないのではないないのではないないのであっている。 できない しょうないあんしょう

EQUATIONS

Body-axes velocity components due to vector $(V_T + W_i|_{R/H})$

$$v_{R/H} = v + v_i \Big|_{R/H}^{B}$$

$$w_{R/H} = w + w_i \begin{vmatrix} B \\ R/H \end{vmatrix}$$

 $U_{R/H}$ and $W_{R/H}$ affected by wing wake ($V_{M/H}$) and body pitch rate (q),

$$U_{H} = U_{R/H} \cos(\epsilon_{W/H}) + W_{R/H} \sin(\epsilon_{W/H})$$

$$W_{H} = -U_{R/H} \sin(\epsilon_{W/H}) + W_{R/H} \cos(\epsilon_{W/H}) + 1_{XH} q$$

where,

$$\epsilon_{W/H} = f(\alpha_W, \beta_M, F_x, M_N)$$

$$1_{XH} = (SL_H - SL_{CG})\frac{1}{12}$$

Total velocity:

$$V_{HT} = \sqrt{U_{H}^2 + V^2 + W_{H}^2}$$

Angle of attack for lift equation:

$$\alpha_{\rm HL} = i_{\rm H} + \tan^{-1}\left(\frac{W_{\rm H}}{U_{\rm H}}\right) \ (\text{for } M_{\rm N} < 1.0)$$

=
$$i_H + \tan^{-1} \left(\frac{M_H}{U_H} \right) - (K_e^{\tau_e}) \delta_e$$
 (for $M_N > 1.0$)

Angle of attack for drag equation:

$$\alpha_{HD} = i_H + tan^{-1} \left(\frac{W_H}{U_H} \right) - (K_e \tau_e) \delta_e$$

Dynamic pressure:

$$q_H = \frac{1}{2} \rho v_{HT}^2 (\eta_H)$$

Lift in (local) wind axes:

For U < 67.5 ft/sec, set $\alpha_F = 0$; if $U \le 35$, set U = 35 ft/sec

$$L_{H} = q_{H}S_{H} \left\{ C_{L_{H}}(\alpha_{HL}, \delta_{e}, M_{N}) + \frac{1_{XH}}{U} \left(\frac{\delta C_{LH}}{\delta \alpha_{HL}} \right) \left(\frac{\delta \epsilon_{W/H}}{\delta \alpha_{W}} \right) \right\}$$

$$+ C_{L_{HB}} \left| \beta_{F} \right|$$

For
$$|\beta_F| > 15^\circ$$
, $L_{|\beta|} = L_{|\beta|}$ AT $|\beta_F| = 15^\circ$

Drag in (local) wind axes:

$$D_{H} = q_{H} S_{H} C_{D_{H}} (\alpha_{HD}, M_{N})$$

Local angle of artack (for resolving forces)

$$\alpha_{\rm H} = \tan^{-1} \left(\frac{W_{\rm H}}{U_{\rm H}} \right)$$

Pitching moment:

Use or disclosure of data on this page is subject to the restriction on the title page

OUTPUTS:

Subsystem Block No.

(10a)

Symbol

 $^{\alpha}_{H}$

DH

Units

Deg

Lbs

Lbs

Ft-lbs

SUBSYSTEM NO. 6-VERTICAL STABILIZER AERODYNAMICS

INPUTS:

A. Variables

Subsystem Block No.

15)
8a
12
9

Symbol
U
V
W
P
P
r
$\begin{bmatrix} \mathbf{u}_{\mathbf{i}} \\ \mathbf{R}/\mathbf{V} \end{bmatrix}$
$\mathbf{W_i} \begin{vmatrix} \mathbf{B} \\ \mathbf{R/V} \end{vmatrix}$
${\tt M}_{ m N}$
P
$^{\delta}_{ m R}$
δ _R β _M
r.

B. Aerodynamic Coefficients

$$(1 - \frac{\delta^{\sigma}}{\delta_{\beta F}})$$

$$C_{\Sigma_{V}} \Big|_{\beta_{M}}^{F_{1}} = 90$$

$$\delta\sigma/\delta_p^\Lambda$$
, $\delta\sigma/\delta_r^\Lambda$

$$h_{\rm M} = 90$$
 $h_{\rm M} = 90$
 $h_{\rm M} = 90$
 $h_{\rm M} = 90$
 $h_{\rm M} = 90$

Lise or disclosion in data on this page is subject to the removing ction on the title page

EQUATIONS

The H-Tail is represented as a left and right fin. Velocity at the left fin,

$$V_{V_{L}}^{2} = \left\{ (U + U_{i} \Big|_{R/V}^{B} - q*l_{ZV} + r*l_{VV})^{2} + (V - r*l_{XV} + p*l_{ZV})^{2} + (W - W_{i} \Big|_{R/V}^{B} + q*l_{XV} - p*l_{YV})^{2} \right\}$$

$$U_{i} \Big|_{R/V}^{B} = 0$$

$$W_{i} \Big|_{R/V}^{B} = 0$$
for
$$\left\{ |\beta_{F}| > 60^{\circ} \right\}$$

where,

$$1_{XV} = (SL_{V} - SL_{CG})\frac{1}{12}$$

$$1_{YV} = (BL_{V} - BL_{CG})\frac{1}{12}$$

$$1_{ZV} = (WL_{V} - WL_{CG})\frac{1}{12}$$

Velocity at right fin,

$$V_{VR}^{2} = \left\{ (U + U_{i} \Big|_{R/V}^{B} - q*1_{ZV} - r*1_{YV})^{2} + (V - r*1_{XV} + p*1_{ZV})^{2} + (W - W_{i} \Big|_{R/V}^{B} + q*1_{XV} + p*1_{YV})^{2} \right\}$$

$$U_{i} \Big|_{R/V}^{B} = 0$$

$$W_{i} \Big|_{R/V}^{B} = 0$$

$$for$$

$$\left\{ |\beta_{F}| > 60^{\circ} \right\}$$

Define sideslip angle due to vector $(V_T + W_{i R/V})$

$$\beta_{VL,R}' = \tan^{-1} \left\{ \frac{V}{\sqrt{(U + U_i|_{R/V}^B)^2 + (W + W_i|_{R/V}^B)^2}} \right\}$$

Use or about the state on this page is subject to the state on the title page.

De ine Zero Rudder Sideslip Angle, if $(z + U_1|_{R/V}^B) \le 10$, set = 10.0 ft/sec

$$\beta_{VL,R_o} = \begin{cases} \beta_{VL,R}'(1-\frac{\delta\sigma}{\delta\beta}) + \frac{b_W}{2(U+U_i|_{B/V}^B)} \left[\left(\frac{2 L_{ZV}}{b_W} - \frac{\delta\sigma}{\delta p} \right) \right] p \end{cases}$$

$$-\left(\frac{2}{b_{W}} + \frac{\delta\sigma}{\delta r}\right) r \right]$$
 (57.3)

Sideslip Angle for Y Force Equation,

$$\beta_{VYL,R} = \beta_{VL,R_0}$$
 (For $M_N < 1.0$)
$$= \beta_{VL,R_0} + (K_R \tau_R) * \delta_R \text{ (for } M_N > 1.0)$$

Sideslip Angle for Drag Equation,

$$\beta_{VDL,R} = \beta_{VL,R} + (\kappa_{R}^{\tau}_{R}) * \delta_{R}$$

Dynamic Pressure,

$$q_{VL} = (1/2 p V_{VL}^2) \eta_V \text{ and } q_{VR} = (1/2 p V_{VR}^2) \eta_V$$

Forces in the local wind axes are,

$$Y_{VL}^{\bullet} = \frac{1}{2} S_{V} q_{VL} C_{Y_{V}}$$

$$Y_{VR}^{\dagger} = \frac{1}{2} S_{V} q_{VR} C_{Y_{V}}$$

$$D_{VL} = \frac{1}{2} S_V q_{VL} C_{D_V}$$

$$D_{VR} = \frac{1}{2} S_V q_{VL} C_{D_V}$$

Use or disclosure of data on this page is subject to the restriction on the title page

OUTPUTS:

Subsystem Block No.

102

Symbol

β_{VL'R_o}

YVR

 $\mathbf{D}_{\mathbf{VL}}$

 $\mathbf{D}_{\mathbf{V}\mathbf{R}}$

Units

Deg

Lbs

Lbs

Lbs

Lbs

SUBSYSTEM NO. 7: RETRACTABLE LANDING GEAR

INPUTS:

A. Variables

Subsystem Block No. Symbol Units (8a)ND LLG (10f) h Ft α_F Deg V_T, W_G Ft/Sec Slug/Ft³ Deg θ, Ø

B. Aerodynamic Coefficients

 $D_{OMGU}(t)$ $D_{OMGD}(t)$ $D_{ONGU}(t)$

C. Strut Force Coefficients

 K_{ST1} K_{ST2} K_{ST3} D_{ST1} D_{ST2} D_{ST3} D_{ST3} D_{ST3} D_{ST3} D_{ST3} D_{ST3} D_{ST3} D_{ST3} D_{ST3} D_{ST3}

Use or disclosure of data on this page is subject to the restriction on the title page

Landing Gear Locations

$$X_n = SL_{CG} - SL_{Gn}$$

$$Y_n = BL_{CG} - BL_{Gn}$$

$$z_n = WL_{CG} - WL_{Gn}$$

Butt lines positive to right. Water lines defined with zero loads in landing gears.

Where,

$$n = 1, 2, 3$$

1 = Left Main Gear

2 = Right Main Gear

3 = Nose Gear

Aerodynamic Force Equations

$$q_F = \frac{1}{2} \rho \ v_T^2$$

A. Gears Down

$$D_{MG} = q_F D_{MOGD}(t)$$

$$D_{NG} = q_F D_{ONGD}(t)$$

B. Gears Up

$$D_{MG} = q_F D_{OMGU}(t)$$

$$D_{NG} = q_F D_{ONGU}(t)$$

Strut Force Equations

Strut Deflection

$$^{h}G\theta n = X_{n} \sin \theta - Z_{n} \cos \theta - \gamma_{n}$$

$$h_{G\phi_n} = [Y_n \sin \phi + (Z_n + \gamma_n) (\cos \phi - 1)] \cos \theta$$

$$h_{Tn} = (h + h_{G\Theta n} - h_{G\Phi n})/(\cos \theta \cos \phi)$$

Strut Deflection Rate

$$\dot{h}_{Tn} = + W_G \left(\frac{1}{\cos \theta \cos \phi} \right) + X_n q - Y_n p$$

Strut Vertical Force

IF
$$h_{Tn} > 0$$
, $F_{GZn} = 0$
IF $h_{Tn} < 0$,
 $F_{GZn} = K_{STn} h_{Tn} + D_{STn} h_{Tn}$

Strut Longitudinal Force

$$F_{\mu n} = - \left(\mu_o + \mu_{\underline{i}} B_{Gn} \right) \quad F_{GZn} \quad \frac{U}{|U|}$$

IF
$$U = 0$$
, $F_{\mu n} = 0$.

Strut Side Force

IF
$$V = 0$$
, $F_{Sn} = 0$

IF V
$$\neq$$
 0, $F_{Sn} = -\mu_S F_{GZn} \frac{V}{|V|}$

Force and Moment Contributions of Gear Struts

$$\Delta X_n = F_{\mu n} - F_{GZn}\theta$$

$$\Delta Y_n = F_{Sn} + F_{GZn} \phi$$

$$\Delta Z_n = F_{\mu n} \theta - F_{Sn} \phi + F_{GZn}$$

$$\Delta M_n = -\Delta Z_n X_n + \Delta X_n (Z_n + \gamma_n + h_{Tn})$$

$$\Delta l_n = -\Delta Z_n Y_n - \Delta Y_n (Z_n + \gamma_n + h_{Tn})$$

$$\Delta N_{n} = -\Delta X_{n} Y_{n} + X_{n} \Delta Y_{n}$$

$$\Delta X_{LG} = \sum_{1}^{3} \Delta X_{n}$$

$$\Delta Y_{LG} = \sum_{j=1}^{3} \Delta Y_{j}$$

$$\Delta Z_{LG} = \begin{array}{c} 3 \\ \Sigma \\ 1 \end{array} \Delta Z_{n}$$

$$\Delta 1_{LG} = \sum_{1}^{3} \Delta 1_{n}$$

$$\Delta M_{LG} = \sum_{1}^{3} \Delta M_{n}$$

$$\Delta N_{LG} = \frac{3}{\Sigma} \Delta N_{n}$$

OUTPUTS

Subsystem Block No.

(10a)

13

Symbol

D;;C

D_{NG}

ΔX LG

7A rc

ΔZ_{LG}

 $^{\Delta 1}\text{LG}$

7WTC

 $^{\Lambda N}$ LG

Units

Lbs

Lbs

Lbs

Lbs

Lbs

Lb, ft

Lb. ft

Lb, ft

A CONTRACTOR OF THE PARTY OF TH

A CONTRACTOR OF THE PROPERTY O

SUBSYSTEM NO. 8a CONTROLS MIXER

INPUTS:

Variables

Subsystem Block No.

 $\theta_{OL/G}$, $\theta_{OR/G}$ XLN X_{LT} X_{PD} XCOL **ESAS RSAS**

ASAS $x_{\beta_{M}}$ XFL XLG

Symbol Units Deg Inch Inch Inch Deg Deg Deg Deg

Fwd, 0, Aft

F₁, F₂, F₃, F₄

UP, DN

Ft/Sec

B. Control System Gearing Deg/In, Deg/In $\delta B_1/\delta X_{LN}$, $\delta B_1/\delta X_{PD}$ Deg/In, Deg/In, Deg $\delta\theta_{o}/\delta x_{LT}$, $\delta\theta_{o}/\delta x_{COL}$, $\theta_{o_{\overline{L}L}}$ Deg/In, Deg/In $\delta \delta \sim \delta x_{LN}$, $\delta \delta_R / \delta x_{PD}$ Deg, In $\delta\delta a/\delta X_{LT}$

301-099-001

THE REPORT OF THE PARTY OF THE

The second secon

のでは、「一般のでは、「一般のでは、「ないないないない。」というできない。「ないないないないないないないないないないないない。」というできない。「ない、これできないないないないないないないないないないないないないないないない。「ない、これでは、これをいっている。」というできないない。「ない、これできないないないないないないないないないないないないないないない。」というできないないないないないないないないない。

CONTROL SYSTEM BLOCK DIAGRAM

DEFLECTION SELECT SWITCH OF_X

三重新 的名字

EQUATIONS

A. Collective Pitch

$$\theta_{OR} = (\delta\theta_{0/\delta} X_{COL}) * X_{COL} + \theta_{OLL} + \theta_{OR/G}$$

$$-\left(\frac{\delta\theta_{0}}{\delta X_{LT}}\right) * (X_{LT} - X_{LTN} + ASAS)$$

$$\theta_{OL} = (\delta\theta_{0/\delta} X_{COL}) * (COL + \theta_{OLL} + \theta_{OL/G})$$

$$+\left(\frac{\delta\theta_{0}}{\delta X_{LT}}\right) * (X_{LTN} + ASAS)$$

B. Longitudinal Cyclic

$$B_{1R} = \left(\frac{\delta B_1}{\delta X_{LN}}\right) * (X_{LN} - X_{LNN} + ESAS)$$

$$-\left(\frac{\delta B_1}{\delta X_{PD}}\right) * (X_{PD} - X_{PDN} + RSAS)$$

$$B_{1L} = \left(\frac{\delta B_1}{\delta X_{LN}}\right) * (X_{LN} - X_{LNN} + ESAS)$$

$$+\left(\frac{\delta B_1}{\delta X_{PD}}\right) * (X_{PD} - X_{PDN} + RSAS)$$

3

Use or disclosure of data on this page is subject to the restriction on the title page

C. Elevator, Rudder, Aileron

$$\delta_{\epsilon} = \frac{\delta \delta_{e}}{\delta X_{LN}} * (X_{LN} - X_{LNN} + ESAS)$$

$$\delta_r = \frac{\delta \delta_r}{\delta X_{PD}} *(X_{PD} - X_{PDN} + RSAS)$$

$$\delta_{a} = \frac{5 \delta_{a}}{\delta X_{LT}} * (X_{LT} - X_{T,TN} + ASAS)$$

D. Nacelle Tilt

$$\dot{\beta}_{M}$$
 - f (β_{M}) * (1, 0, -1) (Fwd, Neutral, Aft)

$$\beta_{M} = \int_{0}^{t} \beta_{M} dt$$
 Limits $90^{\circ} \le \beta_{M} \le -5^{\circ}$

E. Flap Selector

Flap/Flaperon Setting is:

$$\mathbf{F}_{1}$$
 (0,0)

F. Landing Gear Selector

$$L_{DG} = [6,1]$$
 (Up, Down)

G. Variable Incidence Stabilizer

$$i_{H} = i_{HO} | X_{LN} = X_{LNN} + i_{H1} (X_{LN} - X_{LNN}) + i_{H2} (X_{LN} - X_{LNN})^{2}$$
 $+ i_{H3} | X_{COL} = 0 + i_{H4} X_{COL}$

おおおおかなななないできます。 こうちょうしょ カントランタン あまなななない からかんないともの きょう

OUTPUTS:

Subsystem Block No.

Symbol

 θ_{OR}

B_{1L}

 B_{1R}

δ_e

 $\mathbf{i}_{\mathbf{H}}$

 $^{\delta}_{R}$

FX

 $\boldsymbol{\theta}^{O\Gamma}$

 \mathbf{L}_{DG}

Units

Deg

Deg

Deg

Deg

Deg

Deg

Deg

Deg

(F₁, F₂, F₃, F₄)

ND

Deg/Sec

Deg

SUBSYSTEM NO. 8b: FORCE FEEL SYSTEM

INPUTS:

A. Variables

Subsystem Block No.

Symbol

X _{LN}	
X _{LT}	
X _{PD}	
X _{LNT}	
X _{LTT}	
X _{PDT}	
v _T	

Units

Inch Inch

Inch

Inch

Inch

Inch

Knots

B. Stick Force a/ien(s

Lb/In

Lb/In/Ft/Sec

Lb/In

Kts

EQUATIONS:

$$F_{LN} = \left[F_{LN_0} + F_{LN_1} (v_T - v_1) + F_{LN_2} (v_T - v_2)\right] * |(X_{LN} - X_{LNT})|$$

$$F_{LT} = \left[F_{LT_0} + F_{LT_1} (v_T - v_1) + F_{LT_2} (v_T - v_2)\right] * |(x_{LT} - x_{LTT})|$$

$$F_{PD} = \left[F_{PD_0} + F_{PD_1} (v_T - v_1) + F_{PD_2} (v_T - v_2)\right] * |(x_{PD} - x_{PDT})|$$

$$F_{COL} = F_4 * X_{COL}$$

Use or disclosure of data on this page is subject to the restriction on the title page

OUTPUTS:

Subsystem Block No.

(8d

Symbol

Units

F_{LN}

Pounds

F_{LT}

Pounds

F_{PD}

Pounds

FCOL

Pounds

Use or disclosure or data on this page is subject to the restriction on the title page

SUBSYSTEM NO. 8c: CONTROL FORCE TRIM SYSTEM

INPUTS:

A. Variables

Subsystem Block No.

(8d)

Symbol

Units

X_{LN}

X_{LT}

Inch

X_{PD}

B_{FT}

On or Off

Inch

Inch

EQUATIONS:

If trim button \underline{is} depressed $(B_{\pi\gamma} \ \underline{ON})$

$$X_{LNT} = X_{LN}$$

$$X_{LTT} = X_{LT}$$

$$X_{PDT} = X_{PD}$$

If trim button is $\underline{\text{not}}$ depressed $(B_{\underline{\mathcal{F}T}} \ \underline{\text{OFF}})$

$$X_{L,T} = X_{LNT}$$

$$X_{LTT} = X_{LTT}$$

$$X_{PDT} = X_{PDT}$$

Use or disclosure of data on this pace is subject to the restriction on the fittle page

OUTPUTS:

Subsystem Block No.

Symbol

Units

(8b)

X_{LNT}

Inch

X_{LTT}

Inch

X_{PDT}

Inch

301-099-001

A-63

SUBSYSTEM NO. 8d: PILOT'S CONTROL FUNCTION

INPUTS:

A. Variables

EQUATIONS:

Pilot in the Loop

OUTPUTS:

		Control	
Subsystem Block No.	Symbol	Mechanism	Units
(8a)	X _{LN}	Long. Stick	Inch
	x _{lt}	Lat. Stick	Inch
	x_{PD}	Pedal	Inch
	xcor	Coll. Stick	Inch
	$x_{\beta_{\underline{M}}}$	Beep Switch	Fwd, Neut., Aft
	X _{FL}	Grip (Floor Mounted)	F _X
\	XLG	Switch	Up, Down
17	$^{\mathtt{RPM}}_{\mathtt{p}}$	Веер	RPM
8c	^B FT	Switch	on/off

Subsystem	Block	No.
0000,000	2200.0	.,.,

(8a

Control Mechanism	Units
Switch	ON/OFF
Switch	ON/OFF
Switch	ON/OFF
	Mechanism Switch Switch

SUBSYSTEM NO. 9-CG AND INERTIA SHIFT WITH PYLON TILT

INPUTS

A. Variables

Subsystem Block No.

Inertia Coefficients

Symbol

 $\boldsymbol{\beta}_{\boldsymbol{M}}$

h

Units

Deg.

Rad/Sec.

Ft.

Use or discr sure of data on this page is subject to the restriction on the fifte page

EQUATIONS

CG Displacement as a Function of Pylon Tilt Angle

$$X_{CG} = Z \sin \beta_M + X (1 - \cos \beta_M)$$

$$Z_{CG} = Z (1 - \cos \beta_{M}) - X \sin \beta_{m}$$

Where,

$$x = \frac{\dot{u}_p}{GW} (SL_{SP} - SL_p)$$

$$z = \frac{W_{P}}{GW} (WL_{SP} - WL_{P})$$

CG Location,

$$SL_{CG} = SL_{CG}|_{\beta_m} = 0 + x_{CG}$$

$$WL_{CG} = WL_{CG} |_{\beta_m} = 0 + z_{CG}$$

Rotor Hub Height From Ground,

$$h_{H} = h + \left\{ 1_{m} \cos \beta_{m} + \frac{(WL_{SP} - WL_{CG})}{12} \right\}$$

CG Velocity Due to Pylon Tilt Rate,

$$\dot{x}_{CG} = Z \left[\dot{\beta}_{M} * \cos \beta_{M} \right] + X \left[\dot{\beta}_{M} * \sin \beta_{M} \right]$$

$$\dot{z}_{CG} \approx z[\dot{\beta}_{M} * \sin \beta_{M}] - X[\dot{\beta}_{M} * \cos \beta_{M}]$$

Use or disclosure of data on this pace is subject to the restriction on the title page

CG Acceleration (Neglecting $\hat{\beta}_{M}$)

$$\ddot{X}_{CG} = -z \left[\dot{\beta}_{M} * \sin \beta_{M} \right] + x \left[\dot{\beta}_{M}^{2} * \cos \beta_{M} \right]$$

$$\ddot{z}_{CG} = z \left[\dot{\beta}_{M}^{2} * \cos \beta_{M} \right] + x \left[\dot{\beta}_{M}^{2} * \sin \beta_{M} \right]$$

Aircraft Inertia Change Due to Pylon Tilt

$$I_{XX}$$
 = $I_{XX} | \beta_M = 0 - K_{I1} | \beta_M$

$$I_{YY}$$
 = $I_{YY} | \beta_M = 0 - K_{I2} | \beta_M$

$$I_{ZZ}$$
 = $I_{ZZ}|_{\beta_M} = 0 + K_{I3}|_{\beta_M}$

$$\mathbf{I}_{XZ} = \mathbf{I}_{XZ} |_{\beta_{M}} = 0 - K_{I4} \beta_{M}$$

OUTPUTS

Subsystem Elock No.

(11)

(14)

14

[11

Symbol

sr^{ce}

WLCG

X_{CCG}

 z_{CG}

х_{сс}

 \dot{z}_{CG}

; ; c_{CG}

ıxx

I_{YY}

ızz

rxz

h_H

ool Units

Inch

Inch

Inch

Inch

Inch/sec

Inch/sec

Inch/sec²

Inch/sec²

Slug - Ft²

Slug - Ft²

Slug - Ft²

Slug - Ft^2

Ft

tise or disclosure of data on this page is subject to the restriction on the title page

SUBSYSTEM NO. 10: AXES TRANSFORMATIONS

10a. Transformation of Airframe Aerodynamic Forces and Moments from Wind to Body Axes

INPUTS:		
Subsystem Block No.	Symbol	Units
3	$lpha_{ extbf{F}}$	Rad
	$\boldsymbol{\beta}_{\mathbf{F}}$	Rad
	$\mathtt{L}_{\mathbf{F}}$	Ibs.
	$D_{\mathbf{F}}$	Lb3
	Y'F	Lbs
	M _F	Ft-Lbs
	1' _F	Ft-Lbs
+	N _F	Ft-Lbs
4)	α' _{F/W}	Rad
	β <mark>'</mark> F/W	Rad
	$^{ m L}$ iwpl	Lbs
	LiWPR	Lbs
	$^{ m D}_{ m iWPL}$	Lbs
	D _{iWPR}	Lbs
	$^{lpha}{}_{f W}$	Rad
	${ m L_{WP}}$	Lbs
	$^{ m D}_{ m WP}$	Lbs
	M'O _{NP}	Ft-Lbs
	Y WP	Lbs
	1'WP	Ft-Lbs
.	N'WP	Ft-Lbs

- - -

tise or disclosure of data on this pack is subject to the restriction on the title page

Subsystem	Block	No.
-----------	-------	-----

Symbol

 $lpha_{H}$ Rad Lbs D_{H} Lbs M_{H}^{\prime} Ft-Lbs $\beta_{VL^{\prime}Ro}$ Rad

Y_{VL}
Y_{VR}
D_{VL}

 ${\color{red} {D_{VL}}}$ Lbs ${\color{red} {D_{VR}}}$

D_{MG}

Lbs

Lbs

Lbs

これでは、これにいいているとのないないないできない。 これには、これには、これにはないといいといいには、これにはないないないとのできるとはないというというというというというというというというというと

Units

Lbs

EQUATIONS:

A. General Form of Transformation

$$\begin{bmatrix} X_{i} \\ Y_{i} \\ z_{i} \end{bmatrix}_{\text{Body}} \begin{bmatrix} \cos \alpha_{i} \cos \beta_{i} - \cos \alpha_{i} \sin \beta_{i} - \sin \alpha_{i} \\ \cos \beta_{i} \\ \cos \beta_{i} \end{bmatrix} \begin{bmatrix} X_{i} \\ -Y_{i} \\ z_{i} \end{bmatrix}_{\text{Wind}}$$

This transformation matrix is also used for the moment transformation. α_i and β_i are the component angle of attack and sideslip angle, respectively.

B. Transformation of Fuselage Forces and Moments

$$\begin{split} \mathbf{X}_{\mathbf{F}} &= -\mathbf{D} \, \cos \, \alpha_{\mathbf{F}} \, \cos \, \beta_{\mathbf{F}} \, - \, \mathbf{Y}_{\mathbf{F}}^{\prime} \, \cos \, \alpha_{\mathbf{F}} \, \sin \, \beta_{\mathbf{F}} \, + \, \mathbf{L}_{\mathbf{F}} \, \sin \, \alpha_{\mathbf{F}} \\ \\ \mathbf{Y}_{\mathbf{F}} &= -\mathbf{D}_{\mathbf{F}} \, \sin \, \beta_{\mathbf{F}} \, + \, \mathbf{Y}_{\mathbf{F}}^{\prime} \, \cos \, \beta_{\mathbf{F}} \\ \\ \mathbf{Z}_{\mathbf{F}} &= -\mathbf{D}_{\mathbf{F}} \, \sin \, \alpha_{\mathbf{F}} \, \cos \, \beta_{\mathbf{F}} \, - \, \, \mathbf{Y}_{\mathbf{F}}^{\prime} \, \sin \, \alpha_{\mathbf{F}} \, \sin \, \beta_{\mathbf{F}} \, - \, \mathbf{L}_{\mathbf{F}} \, \cos \, \alpha_{\mathbf{F}} \end{split}$$

$$\begin{split} \mathbf{L}_{\mathbf{F}} &= \mathbf{1}_{\mathbf{F}}^{\mathbf{I}} \cos \alpha_{\mathbf{F}} \cos \beta_{\mathbf{F}} - \mathbf{M}_{\mathbf{F}}^{\mathbf{I}} \cos \alpha_{\mathbf{F}} \sin \beta_{\mathbf{F}} - \mathbf{N}_{\mathbf{F}}^{\mathbf{I}} \sin \alpha_{\mathbf{F}} \\ \mathbf{M}_{\mathbf{F}} &= \mathbf{1}_{\mathbf{F}}^{\mathbf{I}} \sin \beta_{\mathbf{F}} + \mathbf{M}_{\mathbf{F}}^{\mathbf{I}} \cos \beta_{\mathbf{F}} \\ \mathbf{N}_{\mathbf{F}} &= \mathbf{1}_{\mathbf{F}}^{\mathbf{I}} \sin \alpha_{\mathbf{F}} \cos \beta_{\mathbf{F}} - \mathbf{M}_{\mathbf{F}}^{\mathbf{I}} \sin \alpha_{\mathbf{F}} \sin \beta_{\mathbf{F}} + \mathbf{N}_{\mathbf{F}}^{\mathbf{I}} \cos \alpha_{\mathbf{F}} \end{split}$$

C. Transformation of Wing Forces and Moments

1. Forces Generated by Rotor Wake

$$X_{iWPR} = -D_{iWPR} \cos \alpha'_{F/W} \cos \beta'_{F/W} + L_{iWPR} \sin \alpha'_{F/W}$$

$$Y_{iWPR} = -D_{iWPR} \sin \beta_{F/W}$$

$$Z_{iWPR} = -D_{iWPR} \sin \alpha'_{F/W} \cos \beta'_{F/W} \cdot L_{iWPR} \cos \alpha'_{F/W}$$

2. Forces and Moments Generated by Freestream Flow

$$X_{WP} = -D_{WP} \cos \alpha_W \cos \beta_F - Y_{WP} \cos \alpha_W \sin \beta_F + L_{WP} \sin \alpha_W$$

$$Y_{WP} = -D_{WP} \sin \beta_F + Y_{WP} \cos \beta_F$$

$$Z_{WP} = -D_{WP} \sin \alpha_{W} \cos \beta_{F} - Y_{WP}' \sin \alpha_{W} \sin \beta_{F} - L_{WP} \cos \alpha_{W}'$$

$$L_{WP} = l_{WP}^{\dagger} \cos \alpha_{W} \cos \beta_{F} - M_{O_{WP}}^{\dagger} \cos \alpha_{W} \sin \beta_{F} - N_{WP}^{\dagger} \sin \alpha_{W}^{\dagger}$$

$$M_{WP} = 1_{WP}' \sin \beta_F + M_{O_{WP}}' \cos \beta_F$$

$$N_{WP} = 1_{WP}' \sin \alpha_W \cos \beta_F - M_{O_{WP}}' \sin \alpha_W \sin \beta_F + N_{WP}' \cos \alpha_W$$

D. Transformation of Horizontal Stabilizer Forces and Moments

$$X_{H} = -D_{H} \cos \alpha_{H} \cos \beta_{F} + L_{H} \sin \alpha_{H}$$

$$Y_H = -D_H \sin \beta_F$$

$$Z_{H} = -D_{H} \sin \alpha_{H} \cos \beta_{F} - L_{H} \cos \alpha_{H}$$

 $1_{H} = -M'_{H} \cos \alpha_{H} \sin \beta_{F}$

$$M_{H} = M_{H}^{\prime} \cos \beta_{F}$$

$$N_{H} = -M_{H}^{\bullet} \sin \alpha_{H} \sin \beta_{F}$$

E. Transformation of Vertical Stabilizer Forces.

$$X_{VR} = -D_{VR} \cos \alpha_{H} \cos \beta_{VR_{O}} + Y_{VR}^{\prime} \cos \alpha_{H} \sin \beta_{VR_{O}}$$

$$Y_{VR} = -D_{VR} \sin \beta_{VR_o} - Y_{VR} \cos \beta_{VR_o}$$

$$z_{VR} = -D_{VR} \sin \alpha_H \cos \beta_{VR_o} + Y_{VR} \sin \alpha_H \sin \beta_{VR_o}$$

F. Transformation of Landing Gear Aerodynamic Forces

$$X_{MG} = -D_{MG} \cos \alpha_F \cos \beta_F$$

$$Y_{MG} = -D_{MG} s_n \beta_F$$

$$Z_{MG} = -D_{MG} \sin \alpha_F \cos \beta_F$$

OUTPUTS	:

		- •	
Subs	vstem	Bloc	k No.

	_	_		
(1	3	١	1
- (•	_	J	1

$$(X, Y, Z)_F$$

$$(x, y, z)_{H}$$

$$(x, y)_{VR}$$

$$^{\rm M}_{
m WP}$$

 $^{1}_{\mathrm{H}}$

$$N_{H}$$

101

IN

0 b .	Transformation of Rotor	Forces and Moments from Mast	to Body Axes
NPUT	<u>'S</u> :		
	Subsystem Block No.	Symbol	Units
		$^{\mathrm{T}}_{\mathrm{R}}$	Lbs
	1	H _R	Lbs
	ļ	$^{\mathrm{Y}}$ R	LbJ
		O _R	Ft-Lbs
		M _a 1R	Ft-Lbs
		1 b $_{1R}$	Ft-Lbs
		$^{\mathrm{T}}_{\mathrm{L}}$	Lbs
		H _{J,}	Lbs
		$\mathbf{Y}_{\mathbf{L}}$	ī,bs
		${\sf Q}_{\bf L}$	Ft-Lbs
		M _a 1I	Ft-Lbs
		1 _b _{1L}	Ft-Lbs
	8a	.e ™	Rad

7872 5542

301-099-001

A76

EQUATIONS:

$$X_{R} = -H_{R} \cos \theta_{M} \cos \phi_{M} - Y_{R} \sin \theta_{M} \sin \phi_{M} + T_{R} \sin \theta_{N} \cos \phi_{M}$$

$$Y_{R} = H_{R} \sin \theta_{M} \sin \phi_{M} + Y_{R} \cos \phi_{M} + T_{R} \cos \theta_{M} \sin \phi_{M}$$

$$Z_{R} = -H_{R} \sin \theta_{M} \cos \phi_{M} + Y_{R} \cos \theta_{M} \sin \phi_{M} - T_{R} \cos \theta_{M} \cos \phi_{M}$$

$$X_{L} = -H_{L} \cos \beta_{M} \cos \phi_{M} - Y_{L} \sin \beta_{M} \sin \phi_{M} + T_{L} \sin \beta_{M} \cos \phi_{M}$$

$$Y_{L} = -H_{L} \sin \beta_{M} \sin \phi_{M} - Y_{L} \cos \phi_{M} - T_{L} \cos \beta_{M} \sin \phi_{M}$$

$$Z_{L} = -H_{L} \sin \beta_{M} \cos \phi_{M} + Y_{L} \cos \beta_{M} \sin \phi_{M} - T_{L} \cos \beta_{M} \cos \phi_{M}$$

$$\begin{aligned} &\mathbf{1}_{R} = \mathbf{1}_{b1R} \cos \beta_{M} \cos \phi_{M} - \mathbf{M}_{A1R} \sin \beta_{M} \sin \phi_{M} - \mathbf{Q}_{R} \sin \beta_{M} \cos \phi_{M} \\ &\mathbf{M}_{R} = -\mathbf{1}_{b1R} \sin \beta_{M} \sin \phi_{M} + \mathbf{M}_{A1R} \cos \phi_{M} - \mathbf{Q}_{R} \cos \beta_{M} \sin \phi_{M} \\ &\mathbf{N}_{R} = \mathbf{1}_{b1R} \sin \beta_{M} \cos \phi_{M} + \mathbf{M}_{A1R} \cos \beta_{M} \sin \phi_{M} + \mathbf{Q}_{R} \cos \beta_{M} \cos \phi_{M} \end{aligned}$$

$$\begin{split} \mathbf{1}_{L} &= -\mathbf{1}_{b1R} \cos \beta_{M} \cos \phi_{M} - \mathbf{M}_{A1L} \sin \beta_{M} \sin \phi_{M} + \mathbf{Q}_{L} \sin \beta_{M} \cos \phi_{M} \\ \mathbf{M}_{L} &= -\mathbf{1}_{b1L} \sin \beta_{M} \sin \phi_{M} + \mathbf{M}_{A1L} \cos \phi_{M} + \mathbf{Q}_{L} \cos \beta_{M} \sin \phi_{M} \\ \mathbf{N}_{L} &= -\mathbf{1}_{b1L} \sin \beta_{M} \cos \phi_{M} + \mathbf{M}_{A1L} \cos \beta_{M} \sin \phi_{M} - \mathbf{Q}_{L} \cos \beta_{M} \cos \phi_{M} \end{split}$$

Mark to the second seco

OUTPUTS:

Subsystem Block No.

13

Symbol

(X, Y, Z)_R

 $(X, Y, Z)_{L}$ (1, M, N)_R

(1, M, N)_L

Units

Lbs

Lbs

Ft-Lbs

Ft-Lbs

The second second

10c. Subsystem for Euler Angles

INPUTS:

Subsystem Block No.	Symbol	Units
11)	P	Rad/Sec
	q	Rad/Sec
•	r	Rad/Sec
(10c)	¥	Rad
	θ	Rad
•	ø	Rad

EQUATIONS:

$$\dot{\theta} = q \cos \phi - r \sin \phi$$

$$\dot{\phi} = p + r \tan \theta \cos \phi + q \tan \theta \sin \phi$$

$$\dot{\Psi} = \frac{r \cos \phi + q \sin \phi}{\cos \theta}$$

$$\theta = \int \dot{\theta} dt$$

$$\phi = \int \dot{\phi} dt$$

$$\Psi = \int \dot{\Psi} dt$$

OUTPUTS:

Subsystem Block No.	Symbol Symbol	Units
(16)	Ÿ	Rad/Sec
Y	ė	Rad/Sec
+	ø	Rad/Sec
10c 10d 10f 12 16	¥	Rad
(20) (VFA)	θ	Rad
	Ø	Rad

THE RECEIVED AND THE PARTY OF T

Use or disclosure of data on this page is subject to the restriction on the fitte page

10d. Subsystem for Earth Based Velocities

INPUTS:

Subsystem Block No.	Symbol	Units
(10c)	Y	Rad
	θ	Rad
	φ	Rad
(11)	U	Ft/Sec
	v	Ft/Sec
↓	W	Ft/Sec

EQUATIONS:

$$U_{EB} = U \cos \Psi \cos \theta + V \cos \Psi \sin \theta \sin \phi - V \sin \Psi \cos \phi$$

$$+ W \cos \Psi \sin \theta \cos \phi + W \sin \Psi \sin \phi - U \text{ wind } E$$

$$V_{EB} = U \sin \Psi \cos \theta + V \cos \Psi \cos \phi + V \sin \Psi \sin \theta \sin \phi$$

$$+ W \sin \Psi \sin \theta \cos \phi - W \cos \Psi \sin \phi - V \text{ wind } E$$

$$W_{EB} = -U \sin \theta + V \cos \theta \sin \phi + W \cos \theta \cos \phi + W \text{ wind } E$$

OUTPUTS:

Subsystem Block Nc.	Symbol	Units
(10c)	U _{EB}	Ft/Sec
	V _{EB}	Ft/Sec
ļ	WEB	Ft/Sec

10e. Subsystem for Ground Velocity Summation

INPUTS:

Subsystem Block No.

Wind

10d

Symbol

UW HW YW UEB VEB

WEB

Rad Ft/Sec

Units

Ft/Sec

Rad

Ft/Sec

Ft/Sec

EQUATIONS:

$$U_{WE} = U_{W} (\cos Y_{W} \cos \theta_{W})$$

$$V_{WE} = V_{W} (-\sin Y_{W})$$

$$W_{WE} = U_W (\cos \Psi_W \sin \theta_W)$$

$$U_G = U_{EB} - U_{WE}$$

$$V_G = V_{EB} - V_{WE}$$

$$W_G = W_{EB} - W_{WE}$$

OUTPUT:

Subsystem Block No.

Symbol

U_G

V_G

W_G

Units

Ft/Sec

F*/Sec

Ft/Sec

Use or disclosure of data un this page is subject to the restriction on the title page

10f. Subsystem for Ground Reference Distances

INPUTS:

Subsystem Block No.

Symbol

Units

Ft/Sec

Ft/Sec

Ft/Sec

Inch

EQUATIONS:

$$N_{N} = \frac{1}{1.6878} \int U_{G} dt, P_{AX} = N_{N} + X_{O}$$

$$E = \frac{1}{1.6878} \int V_{G} dt, P_{AY} = E + Y_{O}$$

$$h_{O} = \frac{(WL_{CC} - 11.0)}{12} + h_{I} (h_{I} - Initial CG altitude)$$

$$h = -\int W_{G} dt + h_{O} , P_{AZ} = h + h_{O}$$

$$h = -W_{G}$$

OUTPUTS:

Subsystem Block No.	Symbol	Units
	N _N	NM
	E	NM
9 15 16 18	h	Ft
	PAX	NM
	P AY	NM
•	PAZ	Ft
16	ĥ	Ft/Sec

SUBSYSTEM NO. 11: AIRCRAFT ANGULAR ACCELERATIONS AND VELOCITIES

INPUTS:

A. Variables		
Subsystem Block No.	Symbol	Units
13	x _A	Lts.
	z _A	Lbs
14	1 A	Lb Ft
	M _A	Lb. Ft.
ļ.	N _A	Lb. Ft.
(11)	p	Rad/Sec ²
	ģ	Rad/Sec ²
	ř	Rad/Sec ²
	P	Rad/Sec
	P	Rad/Sec
†	r	Rad/Sec
8a	β _M	Rad
+	β _M	Rad/Sec
9	ıxx	Slug Ft ²
	^I YY	Slug Ft ²
	^I zz	Slug Ft ²
	r _{xz}	Slug Ft ²
	X _{CG} , Z _{CG}	Ft
	^x cg, ^ż cg	Ft/Sec
	x _{CG} , z _{CG}	Ft/Sec ²

こうしょう こうちゅうしゅうしょう 日本の日のことには、これのことをはないないのできないのできないのできないのできないという

"se or disclosure of data on this page is subject to the restriction on the title page

Subsystem Block No.

Symbol

Units

9

SLCG

Inch

WLCG

Inch

EQUATIONS:

A. Aircraft CG Angular Accelerations (Body Axes)

Roll Equation:

$$I_{XX} \dot{p} = (I_{YY} - I_{ZZ}) q r + I_{XZ}(\dot{r} + pq) + 1_A$$

Pitch Equation:

$$I_{YY} \dot{q} = (I_{ZZ} - I_{XX})pr + I_{XZ}(r^2 - p^2) + M_A$$

Yaw Equation:

$$I_{ZZ} \dot{r} = (I_{XX} - I_{YY})pq + I_{XZ}(\dot{p} - rq) + N_A$$

Angular Rate Equations:

$$p = \int \dot{p} dt$$

$$q = \int \dot{q} dt$$

$$r = \int \dot{r} dt$$

B. Pilot Station Accelerations (Body Axes)

$$a_{XPA} = \frac{X_A}{m} + (\dot{q} + pr)(Z_{PA} - Z_{CG}) + (q^2 + r^2)(X_{CG} - 1_{PA})$$

$$+ Y_{PA}(pq - \dot{r}) - 2q \dot{Z}_{CG} - \ddot{X}_{CG}$$

$$a_{YPA} = \frac{Y_A}{m} + (\dot{p} - qr)(Z_{CG} - Z_{PA}) + (\dot{r} + pq)(1_{PA} - X_{CG})$$
$$- Y_{PA}(r^2 + p^2) + 2(p\dot{Z}_{CG} - r\ddot{X}_{CG})$$

$$a_{ZPA} = \frac{z_A}{m} + (\dot{q} - pr)(X_{CG} - l_{PA}) + (p^2 + q^2)(z_{CG} - z_{PA})$$
$$+ Y_{PA}(\dot{p} + qr) + 2q \dot{x}_{CG} - \ddot{z}_{CG}$$

C. Pilot Station Velocities (Body Axes)

$$U_{PA} = U - q * Z_{PA}' - r * Y_{PA}' - X_{CG}'$$

$$V_{PA} = V + r * 1_{PA} - p * 2_{PA}$$

$$W_{PA} = W - q * 1_{PA} + p * Y_{PA} - \dot{Z}_{CG}$$

where,
$$1_{PA}^{\prime} = (SL_{CG} - SL_{PA})/12$$
, $1_{PA} = (SL_{SP} - SL_{PA})/12$

$$Y_{PA}' = (BL_{PA} - BL_{CG})/12, Y_{PA} = \frac{BL_{PA}}{12}$$

$$Z'_{PA} = (WL_{PA} - WL_{CG})/12$$
, $Z_{PA} = (WL_{PA} - WL_{SP})/12$

Use or disclosure of data on this page is subject to the restriction on the title page

OUTPUTS		
Subsystem Block No.	Symbol Symbol	Units
(11)	p	Rad/Sec ²
Ĭ	ģ	Rad/Sec ²
•	ř	Rad/Sec ²
1, 4 3,6, 10, 11, 12	p	Rad/Sec
(FSAA) CAB	q	Rad/Sec
l l	r	Rad/Sec
(FSAA) CAB	^a XPA	Ft/Sec ²
	^a YPA	Ft/Sec ²
	^a ZPA	Ft/Sec ²
	U _{PA}	Ft/Sec
	V _{PA}	Ft/Sec
	W _{PA}	Ft/Sec

SUBSYSTEM NO. 12: BODY AXIS LINEAR ACCELERATIONS AND VELOCITIES

INPUTS:

A. Variables

Symbol	Units
X _A	Pounds
x _A	Pounds
$\mathbf{z}_{\mathbf{A}}$	Pounds
ប	Ft/Sec
v	Ft/Sec
W	Ft/Sec
P	Rad/Sec
q	Rad/Sec
r	Rad/Sec
θ	Rad
Ø	Rad
	X _A X _A Z _A U V W P q r

EQUATIONS:

$$\dot{U} = -g \sin \theta + Vr - Wq + \frac{X_A}{m}$$

$$\dot{V} = g \cos \theta \sin \phi - rU + Wp + \frac{Y_A}{m}$$

$$\dot{W} = g \cos \theta \cos \phi + qU - pV + \frac{Z_A}{m}$$

$$N_{X} = \frac{X_{A}}{GW}$$

$$N_{Y} = \frac{Y_{A}}{GW}$$

$$N_Z = \frac{Z_A}{GW}$$

$$U = \int \dot{U} dt$$

$$V = \int \dot{V} dt$$

$$W = \int \dot{W} dt$$

$$v_{T} = \sqrt{v^2 + v^2 + w^2}$$

Angle of Attack,

$$\alpha_{\mathbf{F}} = \tan^{-1} \frac{\mathbf{W}}{\mathbf{U}}$$

Angle of sideslip

$$\beta_{\rm F} = \tan^{-1} \frac{V}{\sqrt{U^2 + W^2}}$$

OUTPUTS:

Symbol	Units
U	Ft/Sec
v	Ft/Sec
ч	Ft/990
v _T	Ft/Sec
$\alpha_{_{ extbf{F}}}$	Rad
₿ _₽	Rad
N _X	g's
N _Y	g's
N _Z	g's

SUBSYSTEM NO. 13-FORCE SUMMATION

INPUTS:

三年 二年一日本

Subsystem Block No.

103

Symbol

Units

 $(X, Y, Z)_{F}$

Lbs.

(X, Z)

Lbs.

(X, Z)_{iWPR}

Lbs

(X, Y, Z)_{WP}

Lbs.

(X, Y, Z)_H

Lbs.

(X, Z)_{MG}

Lbs.

(X, Z)_{NG}

Lbs.

(X, Y, Z)_L

Lbs.

(., Y, Z)_R

Lbs.

(X, Y)_{VL}

Lbs.

(X, Y)_{VR}

Lbs.

(ΔX, ΔY, ΔZ)_{LG}

Lbs.

EQUATIONS:

$$X_{A} = X_{F} + X_{iWPR} + X_{WP} + X_{H} + X_{MG} + \Delta X_{LG} + X_{NG}$$
 $+ X_{L} + X_{R} + X_{VL} + X_{VR} + X_{iWPL}$
 $Y_{A} = Y_{F} + Y_{WP} + \Delta Y_{LG} + Y_{L} + Y_{R} + Y_{VL} + Y_{VR} + Y_{H}$
 $Z_{A} = Z_{F} + Z_{iWPL} + Z_{WP} + Z_{H} + Z_{MG} + \Delta Z_{LG}$
 $+ Z_{NG} + Z_{L} + Z_{R} + Z_{iWPR}$

OUTPUTS:

Subsystem Block No.

(12

Symbol

Units

 $\mathbf{X}_{\mathbf{A}}$

Lbs.

YA

Lbs.

Z_A

Lbs.

SUBSYSTEM NO. 14-MOMENT SUMMATION

INPUTS:

Subsystem Block No.

Symbol	Units
SLCG	Inch
WL _{CG}	Inch
^{EL} CG	Inch
$(X, Y, Z)_{F}$	Lb.
(X, Z)	Lb.
$(X, Z)_{\text{supp}}$	Lb.
(X, Y, Z) _{UP}	Lb.
(X, Y, Z) _{WP} (X, Y, Z) _H	Lb.
(X, Y) _{VL} "	Lb.
(X, Y) _{VR}	Lb.
(X, Z) _{MG}	Lb.
(X, Z)	Lb.
$(X, Y, Z)_{T}$	Lb.
(X, Y, Z) _R	Lb.
(1, M, N) _F	Ft.1b
(1, M, N) _{WP}	Ft.1b
H _H	Ft.1b
(1, M, N) _L	Ft.1b
(1, M, N) _R	Ft.1b
$(\Delta 1, \Delta M, \Delta N)_{LG}$	Inch
(r _{XW} , r _{YW}) _R	Inch
(r _{XW} , r _{YW}) _L	Inch
ø	Deg.

Ft.

 $\mathbf{h}_{\mathbf{H}}$

EQUATIONS:

$$\begin{split} \text{M}_{A} &= \text{X}_{F} \; (\text{WL}_{CG} - \text{WL}_{F})/12 + \text{Z}_{F} (\text{SL}_{F} - \text{SL}_{CG})/12 + (\text{X}_{iWPL} + \text{X}_{iWPR} + \text{X}_{MP}) \; \star \\ & (\text{WL}_{CG} - \text{WL}_{W})/12 - \text{Z}_{iWPR} \; \star \; \text{x}_{XWR}/12 - \text{Z}_{iWL} \; \star \; \text{x}_{XWL}/12 + \text{Z}_{WP} \; (\text{SL}_{W} - \text{SL}_{CG})/12 \\ & + \text{X}_{H} \; (\text{WL}_{CG} - \text{WL}_{H})/12 + \text{Z}_{H} \; (\text{SL}_{H} - \text{SL}_{CG})/12 + \text{X}_{MG} \; (\text{WL}_{CG} - \text{WL}_{MG})/12 \\ & + \text{Z}_{MG} \; (\text{SL}_{MG} - \text{SL}_{CG})/12 + \text{X}_{NG} \; (\text{WL}_{CG} - \text{WL}_{NG})/12 + \text{Z}_{NG} \; (\text{SL}_{NG} - \text{SL}_{CG})/12 \\ & + (\text{X}_{VL} + \text{X}_{VR}) \; (\text{WL}_{CG} - \text{WL}_{V})/12 + (\text{X}_{L} + \text{X}_{R})[\text{WL}_{CG} - (\text{WL}_{SP} + 12 \; \text{I}_{M} \; \cos \; \beta_{M})]/12 \\ & + (\text{Z}_{L} + \text{Z}_{R}) \; [\text{(SL}_{SP} - 12 \; \text{I}_{M} \; \sin \; \beta_{M}) - \text{SL}_{CG}]/12 + \text{M}_{F} + \text{M}_{WP} \\ & + \text{M}_{H} + \text{M}_{L} + \text{M}_{R} + \Delta \text{M}_{LG} \end{split}$$

$$\begin{split} \mathbf{1}_{A} &= \mathbf{Y}_{F} \ (WL_{F} - WL_{CG})/12 + \mathbf{Z}_{iWPL} * \mathbf{r}_{YWL} \ /12 + \mathbf{Z}_{iWPR} * \mathbf{r}_{WYR} \ /12 \\ &+ (\mathbf{Y}_{iWPR} + \mathbf{Y}_{iWPL} + \mathbf{Y}_{WP}) \ (WL_{W} - WL_{CG})/12 + (\mathbf{Y}_{VL} + \mathbf{Y}_{VR}) (WL_{V} - WL_{CG})/12 \\ &+ (\mathbf{Y}_{L} + \mathbf{Y}_{R}) \ [\ (WL_{SP} + 12 \ \mathbf{1}_{M} \ \cos \ \beta_{M}) - WL_{CG} \]/12 + \mathbf{Z}_{L} (BL_{SPL} - BL_{CG})/12 \\ &+ \mathbf{Z}_{R} \ (BL_{SPR} - BL_{CG})/12 + \mathbf{1}_{F} + \mathbf{1}_{WP} + \mathbf{1}_{L} + \mathbf{1}_{R} + \mathbf{1}_{G} * \phi + \Delta \mathbf{1}_{LG} \end{split}$$

Where,

$$1_{G} = \{1_{G0} + 1_{G1} * \frac{h_{H}}{2R} + 1_{G2} * (\frac{h_{H}}{2R})^{2} + 1_{G3} * (\frac{h_{H}}{2R})^{3}\} *_{e} (-.1V_{T})$$
For $0.5 \le \frac{h_{H}}{2R} \le 1.4$

$$\begin{split} N_{A} &= Y_{F} (SL_{CG} - SL_{F})/12 - X_{iWPL} * r_{YWL}/12 - X_{iWPR} * r_{YWR}/12 \\ &+ Y_{iWPR} * r_{XWR}/12 + Y_{iWPL} * r_{XWL}/12 + Y_{WP} (SL_{CG} - SL_{W})/12 \\ &+ X_{L} (BL_{CG} - BL_{SPL})/12 + X_{R} (BL_{CG} - BL_{SPR})/12 + Y_{H} (SL_{CG} - SL_{H})/12 \\ &+ (Y_{VL} + Y_{VR}) (SL_{CG} - SL_{V})/12 + (X_{VL} - X_{VR}) (BL_{VR} - BL_{CG})/12 \\ &+ (Y_{L} + Y_{R})[SL_{CG} - (SL_{SP} - 12 \ l_{M} \sin \beta_{M})]/12 + N_{F} + N_{WP} + N_{L} \\ &+ N_{R} + \Delta N_{LG} \end{split}$$

Use or disclosure of data (e^{-tt}) is page (x) subject to the restriction (e^{-tt}) the title page

OUTPUTS:

Subsystem Block No.

(11

Symbol

Units

 $\mathbf{M}_{\mathbf{A}}$

Ft.Lb.

1_A

Ft.Lb.

A^N

Ft.Lb.

SUBSYSTEM NO. 15: FLIGHT ENVIRONMENT DATA

INPUTS:

A. Variables

Subsystem Block No.

Symbol

Units

(10f)

h

Ft.

(12)

v_T

Ft/Sec

こうというのまちゃかのできて、これではないないのできないのできないできないというかっちゃ おいましてなる

B. Constants

To

ос

EQUATIONS:

$$T_{a} = 288.15 - .0019812 h + T_{o}$$

$$\theta_{T} = \frac{T_{a}}{288.15}$$

$$\delta_{T} = \left[\frac{T_{a}}{288.15}\right]^{5.255876}$$

$$\sigma' = \left\{\frac{(1 - .00000687 h)^{5.255875}}{1 - .000687 h + \theta_{T}}\right\}$$

$$\rho = (.002378)(\sigma')$$

$$v_S = 661.48 (\theta_T)^{1/2}$$

$$M_N = V_T/V_S$$

$$v_{CAS} = 661.48 \left[5 \left\{ \left(1 + \delta_{T} \left(1 + \frac{\cdot 2}{\theta_{T}} \left(\frac{v_{T}}{661.48} \right)^{2} \right)^{7/2} - 1 \right)^{2/7} - 1 \right\} \right]^{1/2}$$

・ストリン いかを見るのではないのではないのではないのできないのできないのできない

OUTPUTS:

Subsystem Block No.

Symbol

Units

Slugs-Ft²

VCAS

MPH

o_K

4 5 6

v_s

Ft/Sec

SUBSYSTEM NO. 16: PILOT'S FLIGHT INSTRUMENTS

COCKPIT INSTRUMENT DISPLAY

- $\alpha_{\underline{M}}$ Nacelle Tilt Angle
- F_x Flap Position
- Q_E Engine Torque
- $\mathbf{V}_{\mathbf{T}}$ Airspeed
- W Vertical Velocity Indicator
- ∩ Rotor RPM

- h Baro Altimeter
- h, Radar Altimeter
- **₩&V** Turn and Slip
- a Angle of Attack
- 8 Side Slip Angle
- g Normal Acceleration

FSAA - MODEL 301 PILOTS PANEL

SUBSYSTEM NO. 17: ROTOR COLLECTIVE GOVERNOR

INPUTS:

A. Variables

Subsystem Block No.

Symbol

Units

(8d)

RPM_P

RPM

[19]

 Ω_{INT}

Rad/Sec

B. Coefficients

K_{RPG}

ND

さいていて、「南京衛星の歌人な」、地震なる、八年を言いているのであれ、東京は最後の景景を変

K_{1G}

ND

$$\frac{\delta\Omega_{0 \text{ INT}}}{\delta\Omega_{R0}}$$

ND

EQUATIONS:

$$\overline{\theta}_{0G} = K_{RPG} (\beta_{M}) * \left[\frac{1}{s} + K_{1G}\right] \left[\frac{\Omega_{INT} * 9.55}{\left(\frac{8\Omega_{INT}}{\Omega_{RO}}\right)} - RPM_{P}\right]$$

s is Laplace operator

If
$$\overline{\theta}_{OG} > 0$$
 then $\theta_{OL/G}$, $\theta_{OR/G} = MIN \left[\overline{\theta}_{OG}, \theta_{OG_{max}} \right]$
If $\overline{\theta}_{OG} < 0$ then $\theta_{OL/G}$, $\theta_{OR/G} = MIN \left[\overline{\theta}_{OG}, \theta_{OG_{min}} \right]$

OUTPUTS:

Subsystem Block No.

Symbol

wits

(8a)

 $\theta_{OL/G}$, $\theta_{OR/G}$

Leg

SUBSYSTEM NO. 18: ENGINES AND FUEL CONTROLS

INPUTS:

A. Variables

Subsystem Block No.

8d)	
10f	
(12) (15)	
\downarrow	
<u>19</u>	

Symbol

X_{THR}
X_{THL}
h
V_T

T_a

 $\Omega_{ ext{RPT}}$

 $\Omega_{
m LPT}$

Units

neg Deg

Ft.

Ft/Sec Psia

o_K

Rad/Sec

Rad/Sec

B. Engine Coefficients

K₄, K₅, K₆

K₇

 κ_8 , κ_9 , κ_{10} , κ_{11} , κ_{13} , κ_{14}

^tD

potmas, potmap

Po

To

ND

RPM, RPM√HP, HP

°ĸ

HP/Deg², HP/Deg, HP, 1/°K, 1/Deg, 1/Deg², Deg

Sec

%, %

Lb/In²

°K

EQUATIONS:

A. Power-Turbine (N₂) Governor

$$HP_{ROPTG} = (HP_{RO})_{0} + \int_{t_{D}}^{t_{PTG}} \frac{dHP_{ROS}}{dt_{PTG}} dt_{PLG}$$

$$\epsilon_{\rm S} = \left(\frac{9.55 * \Omega_{\rm RPT}}{\rm RIM_{pr}} - 1\right)$$

$$RPM_{N_{T,T}} = 222 \cup 0$$

Integration begins when $|\epsilon_S|$ has exceeded 0.002 for t_D seconds, and continues until $\epsilon_S \leq$ 0.002 at which time $({\rm HP}_{\rm RO})_0$ is least to the current ${\rm HP}_{\rm RO}$, and $t_{\rm PTG}$ is reset to zero.

$$\frac{dHP_{ROS}}{dt_{PTG}} = sign (-\epsilon_S) * MIN \left\{1, \frac{100 * |\epsilon_S|}{pctmxs}\right\} * f_1 (HP_{RO}, h)$$

$$HP_{ROPTG} = MIN \left\{HP_{ROPTG}, PP_{ROTH}\right\}$$

B. Throttle Control

 $^{
m HP}_{
m ROC}$ is the comma: $^{
m C}$ l referred optimum HP on one engine.

If
$$X_{THR} \le 46.0 \text{ HP}_{ROC} = 150$$
.

If
$$T_a \leq K_7$$
,

$$HP_{ROC} = K_8 X_{THR}^2 + K_9 X_{THR} + K_{10}$$

If $T_a > K_7$,

$$HP_{ROC} = [1 - \kappa_{11} (\tau_a - \kappa_7)][\kappa_{12} + \kappa_{13} (\kappa_{THR} - \kappa_{14})][\kappa_8 \kappa_{THR}^2 + \kappa_9 \kappa_{THR} + \kappa_{10}]$$

$$HP_{RC} := (HP_{RO})_{0} + \int_{t_{D}}^{t_{HP}} \frac{dHP_{ROT}}{dt_{TH}} dt_{TH}$$

$$\epsilon_p = \frac{HP_{ROTH}}{HP_{ROC}} - 1$$

Integration begins when ϵ_p has exceeded 0.002 for t_D seconds, and continues till $\epsilon_p \leq$ 0.002, at which time $(HP_{RO})_0$ is reset to the current HP_{RO} , and t_{TH} is reset to zero.

$$\frac{dHP_{ROT}}{dt_{TH}} = SIGN \left(-\epsilon_{p}\right) * min \left\{1, \frac{100 * \epsilon_{p}}{pctmxp}\right\} * f_{1} \left(HP_{RO}, h\right)$$

C. Actual Power Developed

Referred optimum horsepower of one engine

=
$$HP_{RO}$$
 = min $\{HP_{ROPTG}, HP_{ROTH}\}$

$$HP = (HP_{RO} \delta \sqrt{\theta}) \left[K_1 \left(\frac{9.55 * \Omega RPT}{\sqrt{\theta} RPM_{RO}} \right)^2 + K_2 \left(\frac{9.55 * \Omega RPT}{\sqrt{\theta} RPM_{RO}} \right) + K_3 \right]$$

$$RPM_{RO} = K_4 + K_5 \left\{ MAX \left[(HP_{RO} - K_3), 0.1 \right] \right\}^{1/2}$$

$$= \left(\frac{P_a}{P_o}\right) \left[1 + \frac{.0000461}{T_a} V_T^2\right]^{7/2}$$

$$\theta = \begin{pmatrix} \frac{T_a}{T_o} \end{pmatrix} \left[1 + \frac{.0000461 \quad v_T^2}{T_a} \right]$$

The actual power developed by the two engines is given by:

$$HP_R = HP * \eta_{ER}$$

$$HP_L = HP * \eta_{EL}$$

η ER	T _{EL}	Comments	
1	1	Both engines operating	
1	0	Left engine cut	
0	1	Right engine out	

$$Q_{RPT} = \frac{HP_R * 550}{\Omega_{RPT}}$$

$$Q_{LPT} = \frac{HP_L * 550}{\Omega_{LPT}}$$

Initial values: (at the beginning of simulation)

$$(HP_{RO})_0 = HP_{ROC}$$

OUTPUTS:

Subsystem Block No.

S'mbol

Q_{RPT}

Q_{LPT}

Units

Lb. Ft.

Lb. Ft.

新聞の 最高を発生なるということをいるとは、 一般の 一般の からから あるのか かんしょう サー・・

SUBSYSTEM NO. 19: DRIVE SYSTEM DYNAMICS

INPUTS:

A. Variables

Subsystem Block No.

Symbol

Units

 \bigcirc

 Q_{R}

Lb-Ft

18

 $\mathbf{Q}_{\mathbf{L}}$ $\mathbf{Q}_{\mathbf{RPT}}$

Lb-Ft Lb-Ft

 Q_{LPT}

Lb-Ft

B. Constants

Symbol

Units

1₁

Slug-Ft²

 $\boldsymbol{\theta_{RPT1}}$

ND

 $\boldsymbol{\theta_{\text{INT1}}}$

ND

EQUATIONS:

Drive shaft angular acceleration,

$$\vec{\xi} = \frac{F_1(t)}{I_1}$$

$$F_1(t) = -(Q_R + Q_L) + \theta_{RPT1} (Q_{RPT} + Q_{LPT})$$

$$\Omega_{\mathbf{R}} = \Omega_{\mathbf{R}_{\mathbf{0}}} + \xi$$

$$\Omega_{\mathbf{L}} = \Omega_{\mathbf{R}}$$

$$\Omega_{\mathbf{RP}_{k}} = \Omega_{\mathbf{R}} \star \Theta_{\mathbf{RPT1}}$$

$$\Omega_{LPT} = \Omega_{RPT}$$

$$\Omega_{INT} = \Omega_{R} * \Theta_{INT1}$$

OUTPUTS:

Subsystem Block No.

Symbol

Units

 \bigcirc

 $\Omega_{\mathbf{R}}$

Rad/Sec

 $\Omega_{\mathbf{L}}$

Rad/Sec

18

 Ω_{RPT}

Rad/Sec

 $\Omega_{ extsf{LPT}}$

Rad/Sec

(17

 $\Omega_{ ext{INT}}$

Rad/Sec

SUBSYSTEM NO. 20: STABILITY AND CONTROL AUGMENTATION SYSTEM

INE TOTS:

A. Variacies

Subsystem Block No.	Symbol	Units
12	v _T	Ft/Sec
Ţ	U	Ft/Sec
8a	β _M	Deg
84	X _{LN}	In.
	X _{LT}	Ir.
)	x_{PD}	In.
100	P	Rad/Sec
	q	Rad/Sec
	r	Rad/Sec
	Å	Rad
	θ	Rad
	φ	Rad

B. SCAS Gains and Time Constants

$$K_{1P} [U, \beta_{M}], \dots, K_{10P} [U, \beta_{M}]$$
 (Pitch Gains)

 $T_{1P}, T_{2P}, T_{3P}, T_{4P}$ (Pitch Time Constants)

 $K_{1Y} [U, \beta_{M}], \dots, K_{5Y} [U, \beta_{M}]$ (Yaw Gains)

 $T_{1Y}, T_{2Y}, T_{3Y}, T_{4Y}$ (Yaw Time Constants)

 κ_{1R} [u, β_{M}],.... κ_{10R} [u, β_{M}] τ_{1R} , τ_{2R} , τ_{3k}

(Roll Gains)

(Roll Time Constants)

EQUATIONS:

A. Pitch SCAS Electronics

PSCAS =
$$q * \left[K_{3P} + \frac{s}{(sT_{2P})(sT_{3P} + 1)} K_{2P} \right]$$

+ $(X_{LN} - X_{LNN}) * \left[\frac{s K_{1P}}{(sT_{1P} + 1)(sT_{2P} + 1)(sT_{3P} + 1)} \right]$
+ PHOLD
(s is Laplace operator)

where,

PHOLD is the output from the pitch-attitude-hold and airspeed-hold circuits. IFUH and IFPH defined on page A-115.

 $U_{REF}(0) = U(0)$

IFPH = 0, If pitch-attitude-hold is Off.

= 1, If pitch-attitude-hold is Cperative

IFUH = 0, If airspeed-hold is Off.

= 1, If airspeed-hold is Operative and if $U \ge 102$ Ft/Sec

When the airspeed-hold is tripped off due to U dropping below 102 FPS, it can be re-engaged only manually after the aircraft has reached a new trim-point.

Pitch SCAS Parameters

$$K_{1P} = K_{1PU} * K_{1P\beta_M}$$

$$K_{2P} = K_{2PU} * K_{2P\beta_M}$$

$$K_{3P} = K_{3PU} * K_{3P\beta_M}$$

If IFUH = 0,
$$K_{5P} = K_{5PU0} * K_{5PB_{M}0}$$

If IFUH = 1,
$$K_{5P} = K_{5PU1} * K_{5PB_{M}}$$
1

$$K_{9P} = K_{9PU} * K_{9P\beta_M}$$

B. Yaw SCAS Electronics

YSCAS = -r *
$$\left[K_{3Y} + \frac{s K_{2Y}}{(sT_{2Y} + 1)(sT_{3Y} + 1)} \right]$$

+ $\left(X_{PD} - X_{PDN} \right) * \left[\frac{s (sT_{4Y} + 1) K_{1Y}}{(sT_{1Y} + 1)(sT_{2Y} + 1)(sT_{3Y} + 1)} \right]$
+ YHOLD

where,

$$\overline{\text{YHOLD}} = K_{5Y} * \{ \Psi_{\text{REFD}}(t) - 57.3 * \Psi(t) \}$$

$$\Psi_{\text{REFD}}(t) = \int_{0}^{t} K_{4Y} * [1 - IFYH(t)] * [57.3 * \Psi(t) - \Psi_{\text{REFD}}(t)] dt$$

$$\Psi_{REFD}(0) = 57.3 * \Psi(0)$$

YHOLD is the output from the yaw-attitude-hold circuit.

IFYH = 0, If yaw-attitude-hold is Off.

= 1, If yaw-attitude-hold is Operative.

Yaw SCAS Parameters

$$K_{1Y} = K_{1YU} * K_{1Y\beta_M}$$

$$K_{2Y} = K_{2YU} * K_{2Y\beta_M}$$

$$K_{3Y} = K_{3YU} * K_{3YB_M}$$

If IFUH = 0,
$$K_{5Y} = K_{5YU0} * K_{5Y}\beta_{M}^{0}$$

If IFUH = 1, $K_{5Y} = K_{5YU1} * K_{5Y}\beta_{M}^{1}$
 $K_{10Y} = K_{10Y}\beta_{M}$

Roll SCAS Electronics

RSCAS =
$$-p * \left[K_{3R} + \frac{s K_{2R}}{(sT_{2R} + 1)(sT_{3R} + 1)} \right] + \left(X_{LTN} - X_{LTN} \right) * \left[\frac{s K_{1R} * K_{2R}}{(sT_{1R} + 1)(sT_{2R} + 1)(sT_{3R} + 1)} \right] + RHOLD$$

where,

两等五颗器 人所要你直接人

RHOLD = SIGN (RHOLD) * MIN [RHOLD], RHOLD

RHOLD =
$$K_{5R} * \{\phi_{REFD}(t) - 57.3 * \phi(t)\} - K_{9R} * 57.3 * \phi(t)$$

$$\phi_{REFD}(t) = \int_{0}^{t} K_{R} * [1 - IFRH(t)] * [57.3 * \phi(t) - \phi_{REFD}(t)] dt$$

$$\phi_{REFD}(0) = 57.3 * \phi(0)$$

RHOLD is the output from the roll-attitude-hold circuit.

NAME OF THE PERSON OF THE PERS

ストン・コート・アン・リー・これがなると、これがのないないというとうないないとうないないと

Roll SCAS Parameters

$$K_{1R} = K_{1RU} * K_{1R\beta_M}$$

$$K_{2R} = K_{2RU} * K_{2R\beta_M}$$

$$K_{3R} = K_{3RU} * K_{3R\beta_M}$$

$$K_{9R} = K_{9RU} * K_{9R\beta_M}$$

If IFUH = 0,
$$K_{5R} = K_{5RUC} * K_{5R\beta_M}0$$

If IFUH = 1,
$$K_{5R} = K_{5RU1} * K_{5R\beta_M}$$
1

$$K_{10R} = K_{10R}$$

RSAS = SIGN (
$$\overline{RSCAS}$$
) * MIN RSAS_{max}, ABS (\overline{RSCAS})

ASAS = SIGN (
$$\overline{ASCAS}$$
) * MIN ASAS_{max}, ABS (\overline{ASCAS})

*NOTE

ATTITUDE/AIRSPEED HOLD SWITCH LOGIC

- Turn all holds to Off if Mag brake release depressed
- 2. Turn pitch and airspeed holds Off if long stick is out of force detent.
- Turn roll and yaw holds Off if Lat stick or pedal is out of force detent.

OUTPUTS:

Subsystem Block No.

Symbol

Units

8a)

ESAS

Inch

RSAS

Inch

ASAS

Inch

THE PARTY OF THE P

APPENDIX B

INPUT DATA FOR MODEL 301
TILT ROTOR RESEARCH AIRCRAFT

TABLE I - MODEL 301 CG AND INERTIA DATA

DESIGN GW = 13000 lbs

Fwd CG
291.7
0
81.65
42379
14351
49580

Use or disclosure of data on this page is subject to the restriction on the title page

TABLE II-AIRCRAFT DESIGN DATA

ITEM	SYMBOL	M301 VALUE
Fuselage		
	(SL _F	293.0 In.
Center of pressure	BL _F	0.0 In.
	(WL _F	84.0 In.
Wing-Pylon		
	(SL _{WP}	291.17 In.
Center of pressure	BLWP	102.5 In.
	S _W	95.85 In.
Area	s _w	181.0 Ft ²
Span	p.M.	32.17 Ft.
Chord	c.M	5.225 Ft.
Sweep	۸c/ ₄ W	-6.5 Deg.
Aspect Ratio	AR _W	5.7
Trailing Edge	SLWTE	
Horizontal Stabilizer		
	(SL	560.0 In.
Center of pressure	BL"	0.0 In.
	(WLH	103.0 In.
Area	S _H	50.25 Ft. ²
Span	ь <mark>н</mark>	12.83 Ft.
Chord	c <mark>H</mark>	3.92 Ft.
Leading Edge	SL _{HLE}	548.25 In.
Vertical Stabilizer		
	(^{SL} v	570.02 In.
Center of pressure	$\left\{egin{array}{l} \mathtt{SL}_{\mathbf{V}} \\ \mathtt{BL}_{\mathbf{V}} \\ \mathtt{WL}_{\mathbf{V}} \end{array}\right.$	77.0 In.
	(WLV	115.69 In.
Number of Panels	•	2.
Area (Per Panel)	s_{v}	25.25 Ft. ²

2 market 1

Use or disc'osure of data on this page is subject to the restriction on the title page

		M301
ITEM	SYMBOL	VALUE
Vertical Stabilizer (Continued)		:
Span	h	7.68 Ft.
Chord	b _v	3.725 Ft.
Leading Edge	c _V	555.1 In.
Leading Euge	$\mathtt{SL}_{\mathbf{VLE}}$	333.1 In.
Rotors		
	(SL _{SP}	300.0 In.
Location of Shaft Pivot Point	BL _{SP}	193.0 In.
	(WLSP	100.0 In.
Number of Blades P:r Rotor	n _b	3
Radius	R	12.5 Ft.
Chord	с _b	1.167 Ft.
Mast Length	$\ell_{\mathtt{m}}$	4.667 Ft.
Pitch-Flap Coupling	δ3	-15.0 Deg.
Solidity	σ	0.089
Lock Number	Y	3.83
Direction of Rotation		
-inbc ad tip motion-helicopter/air	rplane	Aft/Up
Rotor RPM		
Helicopter		565 RPM
Conversion		565 RPM
Airplane		458 RPM
Blade Flapping Limits		±12 Deg.
Flapping Inertia per Blade	I _b	102.5 Slug-Ft. ²
Flapping Spring Rate/Rotor	K _{FA} /,K _{LAT}	225.0 Ft-L /Deg.
Blade Twist Distribution:	X _M , θ	
	х _{мо} , е _{мо}	1.0, 0.0
	х _{м1} , ө _{м1}	0.6,10.2
	х _{м2} , ө _{м2}	0.5333, 12.3
	х _{м3} , Ө _{м3}	0.4667, 14.5
	х _{м4} , ө _{м4}	0.4000, 17.75

1、1のはいいのでは最初を対象の一大は美術を変がれる。またがあるとのものでは、

ITEM	SYMBOL	M301 Value
Rotors (Continued)		
	х _{м5} , ө _{м5}	0.3333, 21.90
	Х _{М6} , Ө _{М6}	0.2667, 26.15
	х _{м7} , ө _{м7}	0.2000, 30.65
	х _{м8} , ө _{м8}	0.1333, 34.65
	x _{M9} , θ _{M9}	0.0667, 38.00
	x _{m10} , ⁰ m10	0.0 , 40.90
Angle of outboard tilt of mast	axis	
Helicopter	$\phi_{_{ m M}}$	1.0* Deg.
Airplane	M	O Deg.
Conversion range	₿ _M	-5 to + 90 Deg.
Pylon		
	(SL _P	291.7 In.
Center of Gravity	BL _P	193.0 In.
	(ML ^b	118.0 In.
Weight (Two pylons)	W _P	3986 Lbs.
	ı _x	31.4 Slug-Ft. ²
Inertia (Per pylon)	I _Y	431.0 Slug-lt. ²
	$\mathbf{I}_{\mathbf{Z}}^{\mathbf{I}}$	380.0 Slug-Ft. ²
Landing Gear		
	(SL _{MG}	324.0 In.
Main Gear Coordinates	BL	54.75 In.
	(WL _{MG}	7.40 In.
Nose Gear Coordinates	(SL _{NG}	139.0 In.
	} BL _{NG}	0.0 In.
	(WL NG	4.95 In.
*The builtin dihedral of the py reduces the dihedral to 1.0 deg simulation.	lon is 2.5 degrees; in how ree. 0° was erroneously us	er elastic deformation ed during Phase I

35420

Use or disclosure of data on this page is subject to the restriction on the title page

Item	Symbol	M301 Value
Pilot Control Limits		
Collective Stick	xcor	12.0 In.
Longitudinal Stick	X _{LN}	±4.8 In.
Lateral Stick	X _{LT}	±4.8 In.
Pedal	X _{PD}	±2.5 In.
Blade Pitch Governor Lever		7.5 In.
SCAS Actuator Limits		
Longitudinal	ESAS max	1.54 In.
Lateral	ASAS	1.54 In.
Pedal	RSAS _{max}	0.8 In.
Pitch Attitude Hold	PHOLD max	0.77 In.
Yaw Attitude Hold	YHOLD	0.4 In.
Roll Attitude Hold	RHOLD max	0.77 In.
Engine Ratings		
2 Min. Contingency		1760 HP
10 Min. Takeoff		1550 нр
30 Min. Military		1400 HP
Normal Rated		1250 HP
Pilot Station Coordinates		
	SL _{PA}	215.25 In.
Pilot Station	BL _{PA}	17.00 In.
	WL _{PA}	50.5 In.

SUBSYSTEM NO. 1: MODEL 301 ROTOR AERODYNAMIC DATA

Equation	Constant		M301 Value
a _{R,L}	^a 0		5.88
	a 1		9.20
	^a 2		20.0
C _d fL,R	$^{\delta}$ o		0.002
II,	δ ₁		01
	δ ₂		0.50
Q _{3R,L}	В		0.97
Q _{3R,L} T _{R,L}	C _T - f(µ)	μ	C _T
		0	.0146
		.057	.0146
		.114	.0144
		.171	.0138
		.228	.0132
		.285	.0127
		.342	.0125
		.399	.0123
		.456	.0122
Q _{R,L}	× _{SS} - f(μ)	.04 .0	μ 08 .12 .16
	SS _*		
	08		

Equation	Constant	M301 Value
Blade Twist Constants K	x_{mi} , θ_{mi}	See Table II
TD3	tan 8 ₃	0.268
Υ'	ц	102.7 Slug-Ft ²
C _{KFAR}	K _{FA}	225 Ft-Lb/Deg
C _{KLTR}	к _{ът}	225 Ft-Lb/Deg

SUBSYSTEM	NO. 2:	MODEL	301	AERODYNAMIC	DATA

Equation	Constant	M301 Value
W _i R/W	к _о	1.6
	$\kappa_{1}^{}$	0
	ĸ ₂	
	к ₃	
	K ₄	
W _i R/H	h ₀	5838
	h ₁	.01158
	h ₂	.5967
	h ₃	.002547
	h ₄	-2.2519

SUBSYSTEM NO. 3: MODEL 301 FUSELAGE AERODYNAMIC DATA

3053131EM NO	J. MODEL JOI POSEERGE ALKOL	INMILO DALA
Equation	Constant	Model 301 Value
L _F	ro	7.23
	L ₁	0.905
D _F	o ^a	1.56
	$^{\mathtt{D}}_{\mathtt{1}}$	0.
	D ₂	0.036 For Flaps Up Otnerwise = 0
	D_3	0.0023
	D ₄	125.
M _F	^M O	-146.6
	^M 1	17 8 ($\alpha_{\rm F}^{\rm < 8^{\circ}}$)
	M ₂	9.5
	M_{α} -f (α_{F})	(Table F-1)
Y'F	Yo	0.
	Y ₁	-1.44
	Y ₂	0.
1' _F	10	0.
	11	-7.3
N _F	N _O	0.
	N ₁	-23.5

TABLE FI FUSELAGE PITCHING MOMENT COEFFICIENT (M_{χ})

αF	Мα
-40	-282
-36	-282
-32	-282
-28	-282
-24	-282
-20	-282
-16	-282
-12	~320
-8	-2 87
-4	-217
0	-146
4	-75
8	-11.3
12	-56.5
16	-94.1
20	-112.9
24	-112.9
28	-103.5
32	-75 .3
36	-75.3
40	-94.1

MODEL 301 WING-PYLON AERODYNAMIC DATA

Equation

Constant

M301 Value

 $_{\mathrm{iWPL}}^{\mathrm{L}}$

LiWPL

 $C_{L_{WP}} = f(\alpha_F'|_W / \alpha_W \beta_M, F_x, M_N)$ Tables WI, WII

LWP

 $C_{L_{\delta_a}} = f(F_x)$

Table A III

The second of th

 $^{\mathrm{D}}$ iwpl

 $^{\rm D}{}_{\rm iWPR}$

 $^{C}D_{WP} = f\alpha'_{F}|_{W} / \alpha_{W} \beta_{M}, F_{X}, M_{N}$ Tables W III, W IV

 $^{\rm M}{\rm O}_{\rm WP}$

DWP

C_MO_{WP} $= f(F_x)$

F₁(0/0) +0.051

 $-0.057 - \mathbf{F}_{2}(40/25)$

 $-F_3(75/47)$ -0,?o

+6.085 - F₄(-28/-17.5)

 $^{\Delta\!lpha}$ r/w

 $x_{R/W} = f(\beta_M)$

^{∆α}w/rot

 $x_{W/ROT} = f(\mu)$

		Sealest to the 163th chain 2011 to the Pale
Equation	Constant	M301 Value
€₩/ H	$\epsilon_{W/H} = f(\alpha_F')_W / \alpha_W \beta_M, F_X$	Table W V
Y WP	$C_{Y_{\beta}} _{M_{N}}=0$	0
	$\frac{C^{\Gamma}}{C^{\lambda^{b}}} \qquad W^{N} = 0$	С
	Cyr MN = 0	0
l'WP	$ \begin{vmatrix} c_{\mathbf{I}} \\ \mathbf{g} \\ $	β _F ,β _M) Table W VI
	$\frac{c_{1_{\beta}}}{c_{1_{WP}}} \bigg _{M_{N} = 0} = f(F_{x}, \beta_{F})$,,β _M) Table W VII
	$ \begin{pmatrix} c_1 \\ M_N = 0 \end{pmatrix} $	~ .774
	$\frac{c_1}{c_1} = 0$	0.27
	$\left[\frac{\frac{\Delta C_{1}}{\delta^{\frac{\alpha}{\delta}}F}^{r}}{\left(\frac{\delta^{\frac{\alpha}{\delta}}F}{\delta^{\frac{\delta}{\delta}}F}\right)^{\delta}F}\right]$	0016
	δα/δ ^δ _F	0.45

Equation

N'WP

Constant

 $C_{\mathbf{n}_{\mathbf{N}}} = 0$

M301 Value

0.

15د0.-

 $\left(\begin{array}{c} \frac{c_{n_{\widehat{B}}}}{c_{L_{\widehat{MP}}}} \right) \Big|_{N_{\widehat{N}} = 0}$

 $\left(\begin{array}{c} c_{n \atop r} \\ \overline{c_{L_{WP}}^2} \end{array}\right)$

-.016

 $\left(\frac{c^{D^{0}Mb}}{c^{u^{r}}}\right)$

-.32

1'WP

 $K_{l_{\delta_a}} = f(\alpha_W, \beta_M, F_x)$

Table A II

 $\begin{vmatrix} c_{1_{\delta_a}} & F_{1} \\ \alpha_{\mathbf{v}} < 3^{\mathbf{o}} \end{vmatrix}$

0.005

 N_{WP}^{\prime}

 $\frac{\mathbf{C}_{\mathbf{D}}}{\mathbf{C}_{\mathbf{I}}} \mathbf{M} \mathbf{P} \mid \mathbf{M}_{\mathbf{N}} = 0$

-.06

K_np

1.0

 $K_{nO_{\delta_a}} = f(F_x, \beta_M)$

Table A IV

 $K_{n_{\delta_a}} = f(F_x, \beta_M)$

Table A IV

TABLE WI WING-PYLON LIFT COEFFICIENT (CLWP)

FLAP SETTING (F _Y)		F ₁ (0/0)					
mast angle (β _m)			AIRPLAN	E (90°)		HELICOPTER (0°)	
MACH NUMBER (M _N)		02	.4	.5	.6	04	
3	α' _F _W /α _W						
	-40	93				68	
	-36	84				58	
	-32	84	Not			57	
	-28	89	Defined	Not		64	
	-24	-1.00		Defined	Not	72	
	-20	-1.15	84		Defined	88	
	-19.5	-1.15	86			88	
	-16	95	94	675	49	73	
	-15.5	91	945	680	49	70	
	-13.0	75	65	805	50	57	
	-12	67	772	800	50	50	
	-11	60	68	795	50	-,45	
	-8	383	-418	445	46	-,272	
	-4	0625	075	094	105	045	
	0	- 257	.260	.272	.290	.183	
	4	•577	.610	.630	.690	.412	
	8	.88	.960	1.00	.925	.640	
	11	1.10	1.23	1.10	.945	.800	
	12	1.19	1.28	1.09	.940	.870	
	13	1,26	1.29			.930	
	16	1.48	1.23			1.095	
	17	1.50			Not	1.100	
	20	1.38		Not	Defined	.98	
	24	1.22	Not	Defined		•80	
	28	1.20	Defined			.78	
	32	1.27				.86	
	36	1,40				•98	
	40	1.46				1.06	

	TABLE	WII WING	-PYLON LIF	T COEFFIC	CIENT (CL		
			0/25)	_3	5/47)	F ₄ (-28/	-17.5)
MAST ANGLE (β _M)		90	o°	900	00	900	0°
MACH NUMBER (MN				M _N =	040		
	αFW/αW						
	-90	0	0	0	0		
	-80	325	245	235	190		
	-70	520	400	385	305		
	-60	610	480	450	333	j	
	-50	590	420	390	220		
	-40	410	265	240	105	-1.17	96
	-36	400	250	220	090	-1.08	33
Í	-32	425	260	240	095	-1.06	805
1	-28	515	300	275	-,120	-1.11	85
	-24	660	380	340	160	-1.21	945
}	-21.5	690	440	400	-,210	-1.31	-1.03
	-21.0	680	440	400	210	-1.33	-1.06
	-20	640	395	367	188	-1.37	-1.10
	-19.2	580	360	310	140	-1.38	-1.12
	-16	320	165	048	.040	-1.23	95
	-12	0	.0628	.272	.268	95	73
	-8	.320	.291	.591	.496	68	502
	-4	.64	.581	.910	.724	3843	275
	0	.96	.749	1.237	.952	0643	0460
	4	1.24	.975	1.460	1.170	.2557	.182
	8	1.49	1.205	1.680	1.390	.5757	.408
·	11.0	1.68	1.380	1.80	1,50	.770	.590
	12	1.75	1.433	1.79	1.47	.840	.638
	13.6	1.80	1.500	1.71	1.39	.950	.730
	16	1.70	1.400	1.60	1.24	1.10	.864
	1.8.4	1.56	1.260	1.49	1.16	1.20	.950
	20	1.51	1.200	1.46	1.14	1.15	.890
	24	1.48	1.15	1.46	1.16	.93	.680
	28	1.48	1.20	1.54	1.29	.87	.630
	32	1.69	1.32	1.69	1.38	.91	.680
	36	1.76	1.41	1.78	1.44	1.05	.80
	40	1.80	1.47	1.80	1.48	1.14	.89

TABLE WIII WING-PYLON DRAG COEFFICIENT ($C_{\mbox{\scriptsize DWP}}$)

FLAP SETTING (F _X)	X 1						
mast angle (β _m)		90)		0°		
mach number (m _N)	02	02 .4		.6	02		
α _{F W} /α _W				_			
-40	.575				.685		
-36	.505	Not			.635		
-32	.425	Defined	Not		.580		
-28	.327		Defined	Not	.522		
-24	.230	.312		Defined	.450		
-20	.150	.175	.275		.370		
-16	.089	.089	.135	. 240	.295		
-12	.042	.042	.050	.110	. 246		
-8	.025	.0250	.025	.052	.219		
-4	.0170	.0170	.0170	.040	.212		
0	.0170	.0170	.0170	.040	.212		
4	.0353	.0353	.0353	.0555	.231		
8	.0602	.0602	.0700	.1150	. 262		
12	.1000	.1100	.1500	.2500	.300		
16	.1620	.1850	.2800		.354		
20	.247	.3050			.436		
24	.354	.500		Not	.512		
28	.493	(Not	Jefined	.580		
32	.600	Not	Defined		.642		
36	.660	Defined			.698		
40	.705				.748		
	<u> </u>						

-

では、これのでは、これにいないでは、1000年では、これには、これには、これには、これには、1000年で

TABLE WIV WING-PYLON COEFFICIENT (CDHP)							
FLAP SETTING (F_X) F_2 (40/25) F_3 (75/47)						F ₄ (-28/	-17.5)
MAST ANGLE (β _M)		900	00	900	00	900	00
MACH NUMBER (M_N) $M_N = 04$							
$lpha_{ m F}'$	$W^{\alpha}W$						
	-90	1.18	.93	1.145	.90		
	-80	1.10	.91	1.050	.878		
	-70	.93	.855	.89	.822		!
	-60	.705	.775	.67	.740		
	-50	.565	.665	.507	.640		
	-40	.430	.540	.450	.550	.622	.734
	-36	.335	.468	.400	.525	.566	.682
	-32	.245	.405	.350	.500	.500	.632
	-28 ₁	.180	.352	.309	.480	.430	•575
	-24	.130	.310	.278	.462	.345	.502
	-20	.090	. 282	. 260	.450	.255	.422
	-16	.065	. 263	. 243	.440	.186	.350
	-12	.058	. 253	. 246	.445	.130	. 298
	-8	.063	. 254	.261	.464	.086	. 267
	-4	.081	.282	. 288	.494	.055	. 248
	0	.109	.313	.328	.536	.047	.239
	4	.148	.356	.378	.590	.0471	. 243
	8	.200	.410	.444	.658	.0653	. 258
	12	.275	.490	.530	.728	.0950	. 284
	16	.380	. 566	.642	.789	.138	.332
	20	.528	.630	.730	.839	.195	.402
	24	.630	.690	.790	.880	.287	.476
	28	.710	.748	.838	.920	.414	.540
ļ	32	.764	.800	.883	.955	.510	.600
	36	.805	.845	.950	.985	.583	.648
	40	.865	.888	1.025	1.015	.640	.695

301-099-001

B-18

TABLE WV WING WAKE DEFLECTION ON HORIZONTAL STABILIZER (CW/H)						
MACH NUMBER (M _N)		$M_{N} = 0 -$.2			
FLAP SETTING (F _X)	F ₁ (0/0)	F ₂ (40/25)	F ₃ (75/47)	F ₄ (-28/ 7.5)		
α _W						
		1	$400E (\beta_{M} = 9)$	0°)		
-90	0 .	0	0	0		
-25.0	and the second	. 0	0	0		
-17.94	0	0	2.40	0		
-8.82	0	2.00	5.48	0		
-2.35	1.92	4.38	7.70	0		
0.0	2.52	5.25	8.50	.800		
12	6.00	9.90	12.58	4.88		
13.8	6.50	10.75	12.80	5.70		
16	7.i8	11.40	12.35	6.24		
16.5	7.40	11.40	12.10	6.40		
18.8	7.20	10.60	11.10	6.80		
20	6.7	10.00	10.40	6.55		
24	4.20	6.50	7.10	4.00		
28	0	0	0	0		
40	0	0	U	0		
		HELICOPTER	MODE (β _M =	0°)		
-90	0	0	0	0		
-28.65	0	0	0	0		
-22.15	O	0	0	0		
-17.8	o	0	0	0		
-15.5	0	0	0	O		
-12.41	0	1.2	2.0	0		
-7.6	0	3.2	3.75	0		
-2.94	2.0	5.0	5.4	0		
0.0	3.1	6.15	6.3	1.00		
8	6.3	9.25	9.2	3.72		
12	7.8	11.00	10.7	5.08		
13.0	8.30	11.40	11.0	5.40		
14.8	9.00	11.95	11.5	6.00		
16.0	9.6	11.90	11.4	6.44		

TABLE WV WING WAKE DEFLECTION ON HORIZONTAL STABILIZER (CONT)

	F ₁ (0/0)	F ₄ (40/25)	F ₃ (75/47)	F ₄ (-28/-17.5)
αw				
		HELICOPTER I	MODE (CONT)	
 18.0	10.00	11.20	11.2	7.00
20	9.30	. 10.20	10.20	6.70
24	6.00	6.80	6.80	4.20
28-40	0	0	0	0

こうこうこう 大きななない いまくのいない 神楽の こんかい いちない ないない ないない ないない ないないしょう

TABLE W VI - WING-PYLON DIHEDRAL STABILITY AT $C_{L_{WP}} = 0 \{ C_{1} \beta_{WP} | C_{L_{N}} = 0 \} PER RAD.$

FLAP	F ₁ (0/0)	&F ₄ (-28	/-17.5)	F ₂	(40/	25)	F ₃	(75/	47)
SIDESLIP/B _k /	0	5	10	0	5	10	0	5	10
β _M 0	06	065	+.045	2	094	-,045	223	015	125
30	032	061	02	079	074	147	085	087	225
60	021	051	052	.067	052	148	008	088	222
90	025	025	+.035	11	025	025	+.033	04	08

TABLE W VII - WING-PYLON DIHEDRAL STABILITY AS A FUNCTION OF WING LOADING [C_18_WP $^{\prime}$ L_WP]

FLAP	F ₁ (0/0)&F ₄ (-2	8/-17.5)	F ₂	(40/25)	F ₃	(75/47)
SIDESLIP/BF/	0	5	10	0	5	10	0	5	10
₿ _M									
0	0	0	0	+.105	+.013	+.035	+.104	045	+.110
30	+.049	+.079	016	+.069	+.062	+.062	+.049	+.047	+.107
60	+.039	+.071	018	+.032	+.061	+.058	013	+.055	+.082
90	065	065	0	0	085	065	043	045	0

TABLE AI AILERON EFFECTIVENESS ($C_{l\delta a}$)

$$C_{1\delta a} = .005/\text{deg}$$
 $\alpha_W < 8^\circ$

Where $\delta_a = (\delta_1 - \delta_r)/2$

for $\delta_F = 0/0$; (F_1)
 $\beta_W = 90^\circ$; (Airplane)

TABLE ALL ALLERON EFFECTIVENESS CORRECTION FOR FLAP AND MAST (K_{1_e}) FOR $\alpha_{W}^{<}|8^{\circ}|$

		<u>δa</u> "
Flap Setting	Mast Angle	κ _{1δα} (1)
F ₁	0° 90°	.68 1.00
F ₂	0° 90°	.66 .73
F ₃	0° 90°	.45
F ₄	0° 90°	.67 .90

$$(K_{1\delta a} = 0 @ \alpha_W = \pm 25^\circ)$$

(1) Straight Line Variation with Mast Angle

TABLE AIII AILERON EFFECT ON WING LIFT (C $_{L_{\mbox{\scriptsize L}}}$

Flap Setting	Mast Angle	^C Lôa (per Deg)
F ₁	A11	0
F ₂	A11	0
F ₃	All	0
F ₄	A11	0

TABLE AIV AILERON YAW $(C_{n_{\delta a}})$

$$C_{n_{\delta a}} = K_{n_{\delta a}} + K_{n_{\delta a}} C_{L} C_{1_{\delta a}}$$

Where:

Flap Setting	Mast Angle	K _{nc} δa	K _n δa
F ₁	0°	.00046	0348
•	30°	.00092	0354
· 	90°	. 0143	0238
F ₂	0°	.00046	0137
_]	30°	.00109	0052
	90°	.00103	0137
F ₃	0°	00003	0232
	30°	.00035	0050
	90°	.00029	0157
F ₄	0°	0	C205
	30°	0	0301
	90°	0	0215

SUBSYS	STEM NO. 5: MODEL 301 HORIZONT	AL TAIL AERODYNAMIC DATA
Equations	Constant	M301 Value
α _{HL}	^т е	0.0 for $M_{ m N} < 1.0$
(For lift)		0.565 for M _N > 1.0
$^{\alpha}$ HD	^т е	0.565
(For drag)		
$q_{\dot{H}}$	$\eta_{\mathbf{H}}$	$\left\{ egin{array}{ll} ext{ [fhe effect is included]} \ ext{in calculating } egin{array}{c} \egin{array}{c} \egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c}$
т _н	$C_{L_{H}} = f(\alpha_{H}, \delta_{e}, M_{N})$	Tables HI, HII
	С _Т н в	0017
D _H	$C_{D_H} = f(\alpha_H, M_N)$	Table H IV
$M_{\dot{H}}^{\prime}$	$C_{M_H} = f(\alpha_H, M_N)$	0
α H	$K_e = f(\delta_e, M_N)$	Table H III

					COEFFICIE		200
ELEVATOR ANGLE	0°	10°	15°	20°	-10°	-15°	-20°
MACH NUMBER				$M_{N} = 0 -$.2		
α _H	_			_			_
-90	0	0	0	0	0	0	0
-80	425	560	-,580	600	360	- .2 85	220
-70	720	865	890	920	600	490	380
-60	900	-1.060	-1.090	-1.120	770	640	510
	-1.002	-1.175	-1.205	-1.240	890	745	-,600
:	-1.050	-1.240	-1.260	-1.300	960	800	-,640
	-1.030	-1.230	-1.255	-1.290	890	735	-,600
	-1.010	-1.210	-1.240	-1.280	840	680	-,560
-24	980	-1.185	-1.220	-1.260	780	615	500
-20	930	-1.160	-1.198	-1.235	690	500	420
-13.4	920	-1,200	-1.210	-1.240	660	540	480
-17.5	930	-1.260	-1.250	-1.250	710	565	450
-16.8	990	-1.310	-1.290	-1.310	740	550	420
-16.0	-1.12	-1.40	-1.330	-1.330	710	510	380
-15.6	-1.10	-1.44	-1.380	-1.350	700	480	350
-14.2	-1.01	-1.40	-1.55	-1.450	610	400	270
-12.5	880	-1.31	-1.49	-1,60	480	280	150
-12	852	-1.260	-1.454	-1.59	444	240	110
8	,5 68	.160	044	18	.976	1.180	1.330
12.0	.850	.442	.240	.100	1.250	1.420	1.500
12.2	.860	.450	.260	.120	1.270	1.430	1.480
13.0	.920	.520	.330	.170	1.30	1.370	1.450
15.0	1.0	.650	.450	.290	1.200	1.270	1.360
15.0	.98	.690	.475	. 320	1.160	1.240	1.320
16.8	.94	.700	. 490	. 340	1.150	1.200	1.320
18.0	.89	.680	.500	.370	1.130	1.220	1.340
20	.88	.600	.465	. 380	1.180	1.280	1.380
24	.935	.660	.455	.330	1.300	1.380	1.440
2 8	1.00	.730	.500	. 380	1.370	1.440	1.500
32	1.05	.780	.540	.400	1.430	1.490	1.540
36	1.08	.820	.560	.410	1.470	1.535	1.570
40	1.10	.840	.570	.410	1.510	1.560	1.590

TABLE 411 HORIZONTAL STABILIZER LIFT COEFFICIENT (C $_{ m LH}$)

ELEVATOR A	ELEVATOR ANGLE		$o_e = 0^\circ$				
MACH NUMBER	44	02	.4	.5	.6		
	αH						
	-20	930	Not	Not	Not		
<u> </u>	-16	-1.12	Defined	Defined	Defined		
	-12.2	870	92				
	-12.0	852	92				
	-8.8	630	680	72			
	-8.0	568	620	660	50		
	-6.5	460	500	540	55		
	-4.0	284	310	330	350		
i !	0	0	0	0	0		
	4.0	.284	.310	.330	.350		
	4.2	.310	.330	.340	.390		
	8.0	.568	.620	.600	.440		
	16.5	.820	.800	.570			
	12.0	.850	.798	.560	Not		
	15.5	1.00	Not	Not	Defined		
	16.0	.980	Defined	Defined			
	20.0	.880					

TABLE HIII - ELEVATOR/RUDDER EFFECTIVENESS $(\tau_{\varrho}/\tau_{r})$ CORRECTED FOR MACH NO. AND DEFLECTION EFFECTS

ELEVATOR ANGLE - DEC	MACH NUMBER	K _e OR K _r
±15°	G2	1.0
	.4	.965
	•5	.950
	.6	.930
±15°	02	1.0
±20°		.920

丁男八男子母子母 ノモアン 下海

Use or dischasing that a thing a subject to the restrict of the testing.

TABLE HIV HORIZONTAL STABI' LR DRAG COEFFICIENT (CDH)

SUBSYSTEM NO. 6: MODEL 301 VERTICAL FIN AERODYNAMIC DATA

Equations

Constant

M301 Value

$$\beta_{VL,R_o}$$

$$\left(1 - \frac{\delta \sigma}{\delta \beta_F}\right) = f(\beta_F, \beta_M, F_X, \alpha_F)$$

Tables V IV, V V, V VI

$$K_{R} = f (\delta_r, M_N)$$

Table H III

.385

-0.1

$$\frac{\rho_{\rm L}}{\sqrt{V}}$$

0.0

$$^{\rm q}_{\rm VL,R}$$

n v

1

$$c_{y_{V}} = f(\beta_{V}, \delta_{r}, M_{N})$$

Tables VI, VII

$$C_{D_V} = f(\beta_V, \delta_r, M_N)$$

Table V III

TABLE VI	VERTICAL	STABILIZER	LIFT	COEFFICIENT	(C ^X -)
----------	----------	------------	------	-------------	-------------------	---

	 -	· · · · · · · · · · · · · · · · · · ·					
RUDDER A		0°	10°	20°	-10°	-20°	
MACH NUI	1	$M_{N} = 02$					
	β _V						
-9	90	0	0	0	0	0	
-4	40	-1.0	÷ . 96	92	-1.07	-1.11	
-:	32	93	84	82	-1.02	-1.12	
-:	28	94	90	87	-1.02	-1.09	
-2	26	98	93	91	-1.07	-1.11	
-:	24	-1.03	98	92	-1.11	-1.15	
-2	22	-1.05	98	85	-1.14	-1.19	
-2	20	-1.05	88	74	-1.15	-1.22	
-1	18	96	77	64	-1.14	-1.24	
-1	16	86	66	52	-1.05	-1.18	
-1	12	635	45	30	84	99	
-	-8	425	225	09	-,63	76	
	8	.425	.625	.76	.23	.10	
	12	.635	.84	.99	.44	.31	
]]	16	.86	1.05	1.78	.66	.52	
]]	18	.96	1.14	1.24	.77	.64	
	20	1.05	1.15	1.22	.88	.74	
	22	1.05	1.14	1.19	.98	.85	
	24	1.03	1.11	1.15	.98	.92	
	26	.98	1.07	1.11	.93	.91	
	28	.94	1.02	1.09	.90	.87	
j 3	32	.93	1.02	1.12	.84	.82	
4	40	1.0	1.07	1.11	.96	.92	
9	90	0	0	0	0	0	

B-29

TABLE VII VERTICAL STABILIZER LIFT COEFFICIENT (C_{Y_U})

RUDDER ANGLE MACH NUMBER (M _N) 02 .4 .5 .6 β_V -24 -1.05 NOT NOT NOT -22 -1.05 DEFINED DEFINED DEFINED -20 96 96 60 45 -12 635 60 45 32	
-24 -1.05 NOT NOT NOT NOT OF IND OF I	.6
-10	OT INED 32 34 34 33 30 0 30 33 34 34

TABLE VIII VERTICAL STABILIZER DRAG COEFFICIENT ($C_{D_{f V}}$)

RUDDER ANGLE			δ_ = 0	о сору	
MACH NUMBER	(M _N)	02	.4	.5	•6
	β _V		1		
	-90	.800	1 1		
	-40	.600			
	-32	.550	Not Defined		
	-28	.435		Not	Not
	-24	. 290		Defined	Defined
	-20	.162			
	-16	.080	.165		
	-12	.040	.0750	.150	.160
	- 8	.0120	.0220	.0350	.060
	- 4	.0070	.0070	.0075	.010
	0	.00355	.00355	.00355	.00355
	4	.0070	.0070	.0075	.010
	8	.0120	.0220	.0350	.060
	12	.040	.0750	.100	.160
	16	.080	.165		
	20	.162			Not
	24	.290		Not Defined	Defined
	28	.435	Not	permed	
	32	.550	Defined		
	40	.600			
	90	.800			

	TABLE VIV - SIDEWASH FACTOR (1- $\delta\sigma/\delta\beta_F$) FOR FLAPS F ₁ & F ₄								
FLA	PS		F, (0/0) AND F ₄ (-28/-17.5)						
 				SIDESLIP AN		DEG			
β _M DEG	α _F DEG	0	4	8	12	. 16	20 TO 50	>50	
0	<-12	1.0	1.0	. 1.0	1.0	1.0	1.0	1.0	
	-3	1.0	1.1	1.05	1.015	0.985	1.01	1.0	
	0.4	1.0	1.038	1.044	0.965	0.933	1.0	1.0	
 	6.8	1.0	0.863	0.810	0.772	0.787	0.958	1.0	
	13.2	1.0	0.524	0.517	0.474	0.491	0.673	1.0	
	> 28	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
30	<-10.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	-3.	1.0	1.13	1.072	0.97	1.025	1.0	1.0	
	0.5	1.0	1.248	1.093	0.977	1.015	1.056	1.0	
	6.9	1.0	0.995	0.961	0.865	0.845	0.953	1.0	
	13.3	1.0	0.677	0.595	0.523	0.526	0.681	1.0	
	> 28	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
60	< -9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
 	-3.	1.0	1.15	1 05	1.0	1.06	1.1	1.0	
<u> </u>	0.5	1.0	1.21	1.08	0.975	1.02	1.025	1.0	
	6.9	1.0	0.945	0.975	0.9	0.88	0.92	1.0	
	13.3	1.0	0.69	0.645	0.585	0.59	0.7	1.0	
	> 28	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
90	< -8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
]	-3.	1.0	1.09	1.10	1.18	1.15	1.04	1.0	
	0.2	1.0	1.0	1.0	1.0	1.0	1,0	1.0	
	7.0	1.0	0.834	0.865	0.866	0.842	0.924	1.0	
	13.5	1.0	0,659	0.676	0.622	0.642	0.680	1.0	
	> 28	1.0	1.0	1.0	1.0	1.0	1.0	1.0	

このことのこのできます。 こうこうき の名のこのない 小路 あびなりがあるのます 春日 高級 雑音の音楽

Table VV sidewash factor (1 - $\frac{\delta\sigma}{\delta\beta_F}$) for flaps F₂

FLA	PS	F ₂ - (40/25)						
		SIDESLIP ANGLE BF - DEG						
B _M DEG	α _F DEG	0	4	. 8	12	16	20 to 50	>50
0	< -22.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	-3.2	1.0	1.315	1.26	1.185	1.1	1.059	1.0
	1.0	1.0	1.228	1.208	1.12	1.045	1.0	1.0
	7.3	1.0	0.89	0.91	0.86	0.809	0.86	1.0
	13.5	1.0	0.535	0.59	0.396	0.443	0.678	1.0
	≥ 28.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
30	< -21.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	-3.1	1.0	1.065	1.027	1.055	1.14	1.055	1.0
	1.1	1.0	1.1	1.115	1.058	1.12	1.065	1.0
	7.4	1.0	1.025	.935	.972	.882	.86	1.0
	13.6	1.0	.884	0.82	0.629	0.456	ე.689	1.0
	≥ 28.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
60	≤ -19.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	-3.0	1.0	1.02	1.03	1.08	1.117	1.04	1.0
	1.2	1.0	0.945	1.07	0.998	1.05	1.09	1.0
	7.4	1.0	1.03	0.985	1.015	0.95	0.908	1.0
	13.6	1.0	0.915	0.9	0.8	0.61	0.745	1.0
	≥ 26.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
90	≤ -18.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	-3.1	1.0	1.07	1.121	1.16	1.072	1.04	1.0
	1.2	1.0	0.984	1.15	1.09	1.05	1.064	1.0
	5.4	1.0	0.982	1.035	1.03	0.993	1.015	1.0
	14.0	1.0	0.842	0.74	0.77	0.695	0.725	1.0
	≥ 28.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

TABLE VVI SIDEWASH FACTOR (1 $-\frac{\delta\sigma}{\delta\beta_F}$) FOR FLAPS F₃

FLAPS	F3 (75/47)							
β _M	α _F		SIDE SL	P ANGLE	$ \beta_{\mathbf{F}} $ -	DEG		
DEG	DEG	0	4	8	12	16	20 to 50	>50
0	< -30.0	7.0	1.0	1.0	1.0	1.0	1.0	1.0
	-3.1	1.0	1.8	1.22	1.155	1.105	1.048	1.0
	1.2	1.0	1.128	1.185	1.125	1.045	1.01	1.0
	5.3	1.0	0.846	0.99	0 .9 48	0.92	0.862	1.0
	13.5	1.0	0.535	0.65	0.44	0.51	0.65	1.0
	≥ 28.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
30	≤ -29.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	-3.0	1.0	1.05	1.072	1.14	1.135	1.08	1.0
	1.3	1.0	0.979	1.01	1.105	1.1	1.035	1.0
	5.5	1.0	0.82	0.862	0.998	0.986	0.932	1.0
	13.5	1.0	0.65	0.72	0.7	0.52	0.78	1.0
	≥ 28.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
60	< -28.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	-3.0	1.0	1.025	1.082	1.15	1.115	1.075	1.0
	1.3	1.0	^.915	1.005	1.1	1.1	1.04	1.0
	- 5	1.0	0.855	0.90	1.015	0.955	0.995	1.0
	13.5	1.0	0.73	0.8	0.8	0.61	0.82	1.0
	≥ 28.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
90	≤ -26.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	-2.9	1.0	1.058	1.15	1.145	1.075	1.04	1.0
	1.3	1.0	1.0	1.12	1.12	1.05	1.088	1.0
	5.6	1.0	0.905	1.005	1.03	0.99	1.028	1.0
	13.5	1.0	0.782	0.76	0.72	0.66	0.71	1.0
	> 28.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

(小説のとうかのなどとなる) こうこういかはないないしょうしょうには人がなる はちゅうないのはない ではるのはなる

SUBSYSTEM NO. 7: MODEL 301 LANDING GEAR DATA

M301 Value Equation Constant D_{MG} D_{OMGD}f(t) DOMGD D_{ONGD}f(t) D_{NG} DONGD 0,

2

4

TIME, t - SECS.

6

8

10

D OMGU 3 D_{OMGU}f(t) D_{MG} 2 D_{ONGU}f(t) D_{NG} DONGU 0 2 10 0 TIME, t - SECS.

SUBSYSTEM NO. 8	(a): MODEL 301 CONTROL SYSTEM	M DATA
Equation	Constant	M301 Value
θ _{OL} , θ _{OR}	$\frac{g \mathbf{x}^{COT}}{g \theta^{O}}$	Table C IV
	$\theta_{0_{LL}} = f (\beta_{M})$	Table C IV
	$\frac{\delta \theta_0}{\delta x_{LT}} = f (\beta_M)$	Table C III
B _{1R} , B _{1L}	$\frac{\delta B_1}{\delta X_{LN}} = f (\beta_M)$	Table C I
	$\frac{\delta B_1}{\delta X_{PD}} = f (\beta_M, V_T)$	Table C II
δ _e	$\frac{\delta \delta_e}{\delta x_{LN}}$	-4.16
δ _R	δδ _R δX _{PD}	8.0
δ _a	$\frac{\delta \delta_a}{\delta X_{LT}}$	+ 3.93
β _M	$\dot{\beta}_{M} = f(\beta_{M})$	Table C V
i _H	$_{\text{HO}}^{i} _{X_{\text{LN}}} = x_{\text{LNN}}$	

i_{H2}

 $i_{H3}|_{X_{COL}} = 0$

i_{H4}

TABLE CI FORE AND AFT CYCLIC PITCH $(\delta B_1/\delta X_{LN})$

MAST ANGLE (DEG)	oB ₁ oX LN (°/in)
0	2.1
10	2.09
20	1.98
30	1.81
40	1.60
50	1.35
60	1.04
70	.71
80	.362
90	o

$$(X_{LN} = \pm 4.8 \text{ in})$$
 $(B_1 = 10.0625^{\circ} \otimes \beta_{M} = 0^{\circ})$

TABLE CII DIFFERENTIAL CYCLIC PITCH $(\delta B_1/\delta X_{PD})$

MAST ANGLE	δB ₁ δx _{PD}	(°/in)	
(DEG)	0 - 60 KTS	80 KTS	100 KTS→
0	1.6	1.04	.40
10	1.58	1.025	.394
20	1.51	.975	.375
30	1.39	.90	.345
40	1.225	.795	.305
50	1.035	.67	.257
60	.803	.52	. 200
70	.55	.325	.137
80	.28	.18	.069
90	0	n	0

$$X_{PD} = \pm 2.5 \text{ in}$$

$$\Delta B_1 = \pm 4.0^{\circ} 0.0000$$

$$\pm 2.6^{\circ} 80$$

$$\pm 1.0^{\circ} 1000$$

TABLE CIII IFFERENTIAL COLLECTIVE PITCH

MAST ANGLE (DEG)	δθ _ο /δX _{LT} (°/in)
0	0.625
10	.606
20	.575
30	.541
40	.50
50	.438
60	.365
70	.293
8C	.209
90	.121

$$(X_{LT} = \pm 4.8 \text{ in })$$

 $(\Delta \theta_0 = \pm 3^\circ \ \theta_M = 0)$

TABLE CIV COLLECTIVE PITCH ($\delta\theta_{o}/\delta x_{Coll}; \theta_{o}$)

MAST ANGLE (DEG)	δθ _c /δx _{Col} (°/in)	θ CLL (DEG)
0 10 20 30 40 50 60 70 80 90	1.17 1.12 1.08 1.00 0.85 0.69 0.50 0.31 0.13	35.5 36.0 37.1 39.5 42.7 46.6 50.4 53.5 55.9

TABLE CV CONVERSION RATE $(\dot{\beta}_{M})$

MAST ANGLE (DEG)	β _M (°/Sec)
-5 0 2 2.5 17 20 30 40 50 60 70 80 87 87.5	3.0 ⁽¹⁾ 3.0 ⁽¹⁾ 3.0 ⁽¹⁾ 15.0 ⁽²⁾ 14.25 13.3 12.45 11.7 11.4 11.63 12.5 14.0 ⁽²⁾ 2.8 ⁽¹⁾ 2.8 ⁽¹⁾

- (1) When conversion starts at mast angle of -5, 0 or 90; $\dot{\beta}_{M}$ = 2.8 or 3.0. When conversion stops at mast angle of -5, 0, or 90; $\dot{\beta}_{M}$ = 0
- (2) Δt from quarter rate to max rate; $\Delta t = .05$ sec

TABLE CVI XTHR VS XCOL

(INCH) XCOT	X _{THR} (DEG)
0	46.0
1.0	51.0
2.0	56.2
3.0	61.2
4.0	65.8
5.0	70.5
6.0	75.0
7.0	79.3
8.0	83.7
9.0	88.0
10.0	92.3
11.0	96.2
12.0	100.0

β M (DEG)	K _{RPG}
0	0.1
15	0.1
30	0.1
45	0.1
60	0.1
75	0.1
90	0.1

では 日本のでは からなる からなる

wast of the Bound

TABLE CVIII B GOVEPNOR LIMIT

^в м	θ _O G Max
0	-6, +32
15	-6, +32
30	-6, +32
45	-6, +32
60	-6, +32
75	-6, +32
90	-6, +32

301- 199-001

THE PROPERTY OF THE PARTY OF TH

こうで から からをおのなるなる

B-41

SUBSYSTEM 8(b): MODEL 301 FORC' GRADIENT DATA

	SUBSYSTEM 8(b):	MODEL 301 FORCE	GRADIENT DATA	
Equation	ı	Cor.stant		M301 Values
F _{LN}		FLNO		2
		F _{LN1}	0	for $v_T < v_1$
			.0264	for $\mathbf{v_T} \ge \mathbf{v_l}$
		F _{LN2}	0	for $v_T < v_2$
			.056	for $v_T \ge v_2$
		v ₁		35
		v ₂		175
F _{LT}		F _{LTO}		1
		F _{LT1}	0	for $v_T^{} < v_1^{}$
			.0107	for $v_T \ge v_I$
		F _{LT2}	0	for $v_T^{} < v_2^{}$
			.0336	for $V_T \ge V_2$
		v ₁		35
		v ₂		175
$^{\mathrm{F}}_{\mathrm{PD}}$		$\mathbf{F}_{\mathbf{PDO}}$		6
		F _{PD1}	0	for $v_T < v_1$
			.148	for $V_T \ge V_1$
		F _{PD2}	0	for $v_T < v_2$
			1.21	for $v_{T} \geq v_{2}$
		v ₁		0
		v ₂		135

tise or disclosure of data in this pack is subject to the restriction on the fittle pack

FCOL

F₄

C

NOTE: Breakout forces are adjusted by the pilot by varying the friction.

301-099-001

B-43

Use or disclosure of data on this pure is subject to the restriction on the time page

SUBSYSTEM NO. 9: M301 INERTIA COEFFICIENT DATA (AFT CG)

Equation	Constant	M301 Value
ı xx	ĸ _{I1}	20.5 Slugs - Ft ² /deg
I _{YY}	к ₁₂	ll.24 Slugs - Ft ² /deg
I _{ZZ}	к ₁₃	9.26 Slugs - Ft ² /deg
I _{Y7}	K _{TA}	1.76 Slugs - Ft ² /deg

Use or disclosure of data on this page is subject to the restriction on the title page

SUBSYSTEM NO. 14: M301 GROUND EFFECT ROLLING MOMENT COEFFICIENT DATA

Equation	Constant	M301 Value
1 _A	¹ GO	-8270 <u>Ft. 1bs</u> . Deg.
	1 _{G1}	26186 Ft. 1bs. DegFt.
	1 _{G2}	-23369 Ft. 1bs. DegFt ²
	1 _{G3}	6336 <u>Ft. 1bs.</u> DegFt ³

SUBSYSTEM NO. 17: M301 COLLECTIVE GOVERNOR DATA

Equation

 $\overline{\theta}_{OG}$

Constant

K_{1G} (β_M)

K_{RPG} (8_M)

Table C VIII

lise or disclosure in the on this pack is subject to the restriction on the title page.

RPMRO K1 -0.94 K2 1.00 K3 0 RPMRO K4 13100 K5 233 K6 475 Ta K7 288 HPROC K8 0.266 K9 -8.97 0 K10 0 0 K11 0.003 0 K12 0.875 0 K13 0.001 0 K14 0 0 dtPTG pctmxs 6.0	Equations	Constant	M301 Value
RPMRO K ₂ K ₃ RPMRO K ₄ 13100 K ₅ 233 K ₆ 475 T _a K ₇ 288 HPROC K ₈ 0.266 K ₉ -8.97 K ₁₀ 0 K ₁₁ 0.003 K ₁₂ 0.875 K ₁₃ 0.001 K ₁₄ 0 dHP _{ROS} dt _{PTG} pctmxs 6.0		κ,	-0.94
RPM _{RO} RPM _{RO} K ₄ 13100 K ₅ 235 K ₆ 475 T _a K ₇ 288 HP _{ROC} K ₈ 0.266 K ₉ -8.97 K ₁₀ 0 K ₁₁ 0.003 K ₁₂ 0.875 K ₁₃ 0.001 K ₁₄ 6 _s dt _{PTG} pctmxs 6.0			1.02
RPMRO K ₄ 13100 K ₅ 235 K ₆ 475 T _a K ₇ 288 HP _{ROC} K ₈ 0.266 K ₉ -8.97 0 K ₁₀ 0 0 K ₁₁ 0.003 0 K ₁₂ 0.875 0 K ₁₃ 0.001 0 K ₁₄ 0 0 t _D 0.1 0			ı)
K ₅ K ₆ K ₇ Z88 HP _{ROC} K ₈ 0.266 K ₉ -8.97 K ₁₀ 0 K ₁₁ 0.003 K ₁₂ 0.875 K ₁₃ 0.001 K ₁₃ C _s t _D 0.1 dHP _{ROS} dt _{PTG} Detmxs 6.0	RPM _{RO}		13100
K ₆ T _a K ₇ 288 HP _{ROC} K ₈ 0.266 K ₉ -8.97 K ₁₀ 0.003 K ₁₁ 0.003 K ₁₂ 0.875 K ₁₃ 0.003 K ₁₄ 0 c _s dHP _{ROS} dt _{PTG} pctmxs 6.0			235
HP _{ROC} K ₈ 0.266 K ₉ -8.97 K ₁₀ 0.003 K ₁₁ 0.003 K ₁₂ 0.003 K ₁₃ 0.003 K ₁₄ 0 0.1 dHP _{ROS} dt _{PTG} pctmxs 6.0			475
K ₉ -8.97 K ₁₀ 0 K ₁₁ 0.003 K ₁₂ 0.875 K ₁₃ 0.001 K ₁₄ 0 E _s t _D 0.1	T _a	κ _γ	288
K ₉ -8.97 K ₁₀ 0 K ₁₁ 0.003 K ₁₂ 0.875 K ₁₃ 0.001 K ₁₄ 0 E _s t _D 0.1	HP ROC	κ ₈	0.266
K ₁₁ 0.003 K ₁₂ 0.875 K ₁₃ 0.001 K ₁₄ 0 s t _D 0.1 dHP _{ROS} 0.0 dt _{PTG} 0.00			-8,97
K ₁₂ K ₁₃ K ₁₃ O.001 K ₁₄ o t _D O.1 dHP _{ROS} dt _{PTG} pctmxs 6.0		к ₁₀	0
K ₁₃ K ₁₄ C _s t _D O.001 K ₁₄ O.1 dHP _{ROS} dt _{PTG} pctmxs 6.0		к ₁₁	0.0032
$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$		к _{1.2}	0.875
t _D 0.1 dHP _{ROS} dt _{PTG} pctmxs 6.0		к ₁₃	0.00125
dHP _{ROS} pctmcs 6.0		к ₁₄	0
PTG	€ s	^t D	0.1
dHP _{ROS} pctmcp 6.0	dHP _{ROS}	pctmxs	6.0
Cts	dHP _{ROS}	petmxp	6.0

Use or disclosure of data on this page is subject to the restriction on the title page

Figure <u>B1</u>. T53 Engine Acceleration Characteristics

Use or disclosure of data on this page is subject to the restriction on the title page

SUBSYSTEM N	NO. 1	9:	MODEL	301	DRIVE	SYSTEM	DATA

Equation	Constant	M301 Value
Ë	I,	824.0 Slug-Ft ²
F ₁ (t), Ω_{RPT}	$\theta_{ ext{RPT1}}$	35.2
$\Omega_{ ext{INT}}$	$\theta_{ ext{INT1}}$	11.3
$\Omega_{ m R}$	$\Omega_{ ext{RO}}$	

Use or disclosure of data on this pace is subject to the restriction on the title pace

SUBSYSTEM	NO.	20:	M301	SCAS	DATA
-----------	-----	-----	------	------	------

Equation	Constant	M301 Value
PSCAS	κ _{lpu} (υ)	Table SAS I
	κ _{9PU} (υ)	:
	$^{K}_{1P\beta_{M}}$ (β_{M})	Table SAS I
	K10PBM (BM)	
	$^{\mathrm{T}}$ 1P	0.5 Sec
	T _{2P}	3.15 Sec
	T _{3P}	3.15 Sec
	T _{4P}	1.0 Sec
YSCAS	κ _{lyu} (υ)	Table SAS II
	κ _{5yu} (υ)	
	κ _{1Υβ_M} (β _M)	Table SAS II
	K _{5Y} β _M (β _M)	
	TlY	0.6 Sec
	T _{2Y}	2. 7 Sec
	ТЗҮ	2.7 Sec
	T _{4Y}	1.0 Sec
RSCAS	K _{1RU} (U)	Table SAS I
	K _{9RII} (U)	i

このことのは、「これをはない」とはないます。 かましてる

Equation	Constant	M301 Value
	K _{1RB} , (B _M)	Table SAS III
	κ _{lorβ_M} (β _M)	
	T _{1R}	1.0 Sec
	T _{2R}	3.0 Sec
	T _{3R}	3.0 Sec
ESAS	ESAS max	1.54 Inch
RSAS	RSAS max	0.80 Inch
ASAS	ASAS _{max}	1.54 Inch
PHOLD	PHOLD	0.77 Inch
YHOLD	YHOLD	0.4 Inch
RHOLD	RHOLD	77 Inch

The second secon

丁華本 ないのかないできる

Use or discles to 1 sto 1 page is subject to the restriction 1 11 page

