n°4 – Généralités sur les fonctions

Notes de Cours

I Notions de fonction

I.A Définitions

Définition I.1 Une fonction d'une variable réelle à valeurs réelles est une application $f: U \to \mathbb{R}$, où U est une partie de \mathbb{R} . En général, U est un intervalle ou une réunion d'intervalles. On appelle U le domaine de définition de la fonction f.

Exemple I.2 La fonction inverse:

$$f:]-\infty, 0[\cup]0, +\infty[\longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{1}{x}.$$

Le **graphe** d'une fonction $f: U \to \mathbb{R}$ est la partie Γ_f de \mathbb{R}^2 définie par $\Gamma_f = \{(x, f(x)) \mid x \in U\}$. Le graphe d'une fonction (à gauche), l'exemple du graphe de $x \mapsto \frac{1}{x}$ (à droite).

I.B Opérations sur les fonctions

Soient $f:U\to\mathbb{R}$ et $g:U\to\mathbb{R}$ deux fonctions définies sur une même partie U de \mathbb{R} . On peut alors définir les fonctions suivantes :

- la **somme** de f et g est la fonction $f+g:U\to\mathbb{R}$ définie par (f+g)(x)=f(x)+g(x) pour tout $x\in U$;
- le **produit** de f et g est la fonction $f \times g : U \to \mathbb{R}$ définie par $(f \times g)(x) = f(x) \times g(x)$ pour tout $x \in U$;
- la **multiplication par un scalaire** $\lambda \in \mathbb{R}$ de f est la fonction $\lambda \cdot f : U \to \mathbb{R}$ définie par $(\lambda \cdot f)(x) = \lambda \cdot f(x)$ pour tout $x \in U$.

Comment tracer le graphe d'une somme de fonction?

I.C Fonctions majorées, minorées, bornées

Définition I.3 Soient $f: U \to \mathbb{R}$ et $g: U \to \mathbb{R}$ deux fonctions. Alors:

- $-f \ge g \ si \ \forall x \in U \ f(x) \ge g(x);$
- $-f \ge 0 \text{ si } \forall x \in U \text{ } f(x) \ge 0;$
- $f > 0 \text{ si } \forall x \in U \text{ } f(x) > 0;$
- f est dite **constante** sur U si $\exists a \in R \ \forall x \in U \ f(x) = a$;
- f est dite **nulle** sur U si $\forall x \in U$ f(x) = 0.

Définition I.4 Soit $f: U \to \mathbb{R}$ une fonction. On dit que :

- f est majorée sur U si $\exists M \in R \ \forall x \in U \ f(x) \leq M$;
- f est minor'ee sur U si $\exists m \in R \ \forall x \in U \ f(x) \ge m$;
- f est **bornée** sur U si f est à la fois majorée et minorée sur U, c'est-à-dire si $\exists M \in R \ \forall x \in U \ |f(x)| \leq M$.

Voici le graphe d'une fonction bornée (minorée par m et majorée par M).

I.D Fonctions croissantes, décroissantes

Définition I.5 Soit $f: U \to \mathbb{R}$ une fonction. On dit que :

- f est **croissante** sur U si $\forall x, y \in U$ $x \leq y \implies f(x) \leq f(y)$
- f est strictement croissante sur U si $\forall x, y \in U$ $x < y \implies f(x) < f(y)$
- f est **décroissante** sur U si $\forall x, y \in U$ $x \leq y \implies f(x) \geq f(y)$
- f est strictement décroissante sur U si $\forall x, y \in U$ $x < y \implies f(x) > f(y)$
- f est monotone (resp. strictement monotone) sur U si f est croissante ou décroissante (resp. strictement croissante ou strictement décroissante) sur U.

Un exemple de fonction croissante (et même strictement croissante) :

I.E Parité et périodicité

Définition I.6 Soit I un intervalle de \mathbb{R} symétrique par rapport à 0 (c'est-à-dire de la forme]-a,a[ou [-a,a] ou \mathbb{R}). Soit $f:I\to\mathbb{R}\mathbb{R}$ une fonction définie sur cet intervalle. On dit que :

- f est **paire** si $\forall x \in I$ f(-x) = f(x),
- f est **impaire** si $\forall x \in I$ f(-x) = -f(x).

I.F Interprétation graphique

:

- f est paire si et seulement si son graphe est symétrique par rapport à l'axe des ordonnées (figure de gauche).
- f est impaire si et seulement si son graphe est symétrique par rapport à l'origine (figure de droite).

Définition I.7 Soit $f: R \to \mathbb{R}$ une fonction et T un nombre réel, T > 0. La fonction f est dite **périodique** de période T si $\forall x \in \mathbb{R}$ f(x+T) = f(x).

I.G Interprétation graphique

f est périodique de période T si et seulement si son graphe est invariant par la translation de vecteur $T\vec{i}$, où \vec{i} est le premier vecteur de coordonnées.

Exemple I.8 Les fonctions sinus et cosinus sont 2π -périodiques. La fonction tangente est π -périodique.

II Continuité en un point

II.A Définition

Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction.

Définition II.1

- On dit que f est **continue en un point** $x_0 \in I$ si $\forall \epsilon > 0$ $\exists \delta > 0$ $\forall x \in I$ $|x x_0| < \delta \implies |f(x) f(x_0)| < \epsilon$ c'est-à-dire si f admet une limite en x_0 (cette limite vaut alors nécessairement $f(x_0)$).
- On dit que f est continue sur I si f est continue en tout point de I.

Intuitivement, une fonction est continue sur un intervalle, si on peut tracer son graphe « sans lever le crayon », c'est-à-dire si sa courbe représentative n'admet pas de saut.

Voici des fonctions qui ne sont pas continues en x_0 :

II.B Propriétés

La continuité se comporte bien avec les opérations élémentaires. Les propositions suivantes sont des conséquences immédiates des propositions analogues sur les limites.

Proposition II.2 Soient $f, g: I \to \mathbb{R}$ deux fonctions continues en un point $x_0 \in I$. Alors

- $\lambda \cdot f$ est continue en x_0 (pour tout $\lambda \in \mathbb{R}$),
- -f + g est continue en x_0 ,
- $f \times g$ est continue en x_0 ,
- $si\ f(x_0) \neq 0$, alors $\frac{1}{f}$ est continue en x_0 .

La composition conserve la continuité (mais il faut faire attention en quels points les hypothèses s'appliquent).

Proposition II.3 Soient $f: I \rightarrow$

R et $g: J \to \mathbb{R}$ deux fonctions telles que $f(I) \subset J$. Si f est continue en un point $x_0 \in I$ et si g est continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

II.C Prolongement par continuité

Définition II.4 Soit I un intervalle, x_0 un point de I et $f: I \setminus \{x_0\} \to \mathbb{R}$ une fonction.

- On dit que f est **prolongeable par continuité** en x_0 si f admet une limite finie en x_0 . Notons alors $\ell = \lim_{x_0} f$.
- On définit alors la fonction $\tilde{f}:I\to\mathbb{R}$ en posant pour tout $x\in I$

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \neq x_0 \\ \ell & \text{si } x = x_0. \end{cases}$$

Alors \tilde{f} est continue en x_0 et on l'appelle le **prolongement par continuité** de f en x_0 .

Dans la pratique, on continuera souvent à noter f à la place de \tilde{f} .

III Fonctions monotones et bijections

III.A Rappels: injection, surjection, bijection

Dans cette section nous rappelons le matériel nécessaire concernant les applications bijectives.

Définition III.1 Soit $f: E \to F$ une fonction, où E et F sont des parties de \mathbb{R} .

- f est injective $si \forall x, x' \in E$ $f(x) = f(x') \implies x = x'$
- f est **surjective** si $\forall y \in F \exists x \in E \ y = f(x)$
- f est **bijective** si f est à la fois injective et surjective, c'est-à-dire si $\forall y \in F$ $\exists ! x \in E$ y = f(x).

Proposition III.2 Si $f: E \to F$ est une fonction bijective alors il existe une unique application $g: F \to E$ telle que $g \circ f = \mathrm{id}_E$ et $f \circ g = \mathrm{id}_F$. La fonction g est la **bijection réciproque** de f et se note f^{-1} .

Remarque III.3

- On rappelle que l'identité, $\mathrm{Id}_E: E \to E$ est simplement définie par $x \mapsto x$.
- $g \circ f \operatorname{Id}_E$ se reformule ainsi : $\forall x \in E \mid g(f(x)) = x$.
- Alors que $f \circ g \operatorname{Id}_F$ s'écrit : $\forall y \in F$ f(g(y)) = y.
- Dans un repère orthonormé les graphes des fonctions f et f^{-1} sont symétriques par rapport à la première bissectrice.

Voici le graphe d'une fonction injective (à gauche), d'une fonction surjective (à droite) et enfin le graphe d'une fonction bijective ainsi que le graphe de sa bijection réciproque.

III.B Fonctions monotones et bijections

Voici un théorème très utilisé dans la pratique pour montrer qu'une fonction est bijective.

Théorème III.4 (Théorème de la bijection) Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Si f est continue et strictement monotone sur I, alors

- 1. f établit une bijection de l'intervalle I dans l'intervalle image J = f(I),
- 2. la fonction réciproque $f^{-1}: J \to I$ est continue et strictement monotone sur J et elle a le même sens de variation que f.

En pratique, si on veut appliquer ce théorème à une fonction continue $f: I \to \mathbb{R}$, on découpe l'intervalle I en sous-intervalles sur lesquels la fonction f est strictement monotone.

IV Exercices

IV.A Monotonie

- 1. (SF I2) (Aspect fondamental) Préciser le domaine de définition et la monotonie des fonctions suivantes :
 - (a) La fonction racine carrée $x \mapsto \sqrt{x}$.
 - (b) Les fonctions exponentielle $\exp: x \mapsto e^x$ et logarithme $\ln: x \mapsto \ln(x)$.
 - (c) La fonction valeur absolue $x \mapsto |x|$.

IV.B Parité

- 1. (SF 38)(Aspect fondamental) Étudier la parité des fonctions suivantes :
 - (a) La fonction définie sur \mathbb{R} par $x \mapsto x^{2n}$ $(n \in \mathbb{N})$.
 - (b) La fonction définie sur \mathbb{R} par $x \mapsto x^{2n+1}$ $(n \in \mathbb{N})$.
 - (c) La fonction $\cos : \mathbb{R} \to \mathbb{R}$ et a fonction $\sin : \mathbb{R} \to \mathbb{R}$.

IV.C Continuité

- 1. (sf 39)(Aspect fondamental) Quel est le domaine de continuité des fonctions suivantes :
 - (a) une fonction constante sur I.
 - (b) la fonction racine carrée
 - (c) les fonctions sin et cos
 - (d) la fonction valeur absolue $x \mapsto |x|$
 - (e) la fonction exp
 - (f) la fonction ln
 - (g) la fonction partie entière E (pour $x \in \mathbb{R}$, E(x) est défini comme l'unique entier $k \in \mathbb{Z}$ tel que $k \le x < k+1$).

IV.D Prolongement par continuité

1. (SF I1) (Aspect fondamental) Considérons la fonction f définie sur \mathbb{R}^* par $f(x) = x \sin(\frac{1}{x})$. Est-elle prolongeable par continuité?

IV.E Injection, surjection, bijection

- 1. (SF 57 et 58)(Aspect fondamental) Les fonctions suivantes sont-elles injectives? Bijectives? Surjectives? Pour chaque fonction, si elle ne l'est pas déjà, modifier l'ensemble de départ et/ou l'ensemble d'arrivée pour que f devienne bijective.
 - (a) $f: [1, +\infty[\to \mathbb{R} \text{ définie par } f(x) = 3x + 1]$
 - (b) $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^3$
 - (c) $f: [1, +\infty[\to \mathbb{R} \text{ définie par } f(x) = \ln(x)]$
 - (d) $f:[0,2\pi]\to\mathbb{R}$ définie par $f(x)=\cos(x)$.
- 2. (SF 2) (Aspect fondamental)
 - (a) Soit $f: x \mapsto x^2 + 1$. Déterminez l'image de 0 et 2 par f. Déterminez le ou les antécédent de 5 par f.
 - (b) Soit $g: x \mapsto \frac{x+1}{x-1}$. Déterminez l'image de 0 et 2 par g. Déterminez le ou les antécédent de 5 par g.
- 3. (SF 216, 57 et 58) (Exercice de réflexion) Considérons la fonction carrée définie sur \mathbb{R} par $f(x) = x^2$. Montrer que f n'est pas bijective et étudier la bijectivité de sa restriction sur $]-\infty,0]$ d'une part et à $[0,+\infty[$ d'autre part. Généralisons pour $n \ge 1$, $f:[0,+\infty[\to [0,+\infty[$ définie par $f(x)=x^n$.
- 4. (SF 5) Ecrire les fonctions suivantes comme une composée de deux fonctions que vous définirez.
 - (a) $x \mapsto \sin(2x)$.
 - (b) $x \mapsto e^{x^2+1}$
 - (c) $x \mapsto \sqrt{x^3 x}$.
 - (d) $u \mapsto \frac{1}{u^2-3}$
 - (e) $t \mapsto \ln(t)^2 1$
- 5. (SF 37 et 38) Déterminer si les fonctions définies par les formules suivantes sont paires, impaires, périodiques. Dans le cas des fonctions périodiques, on précisera la période des fonctions considérées.
 - (a) $f(x) = \sin(2x) + \tan(3x)$
 - (b) $f(x) = \frac{\cos(x)}{x^2+1}$
 - (c) $f(x) = \frac{|x-2|}{x^2-4x+4}$
 - (d) $f(x) = \sin(x+3)\cos(2x-1)$
 - (e) $f(x) = \ln(|x|)\sqrt{1 + \cos(x)}$