

Progettazione logica

Annalisa Franco, Dario Maio Università di Bologna

Il secondo passo...

Progettazione logica

Obiettivo della fase di progettazione logica è pervenire, a partire dallo schema concettuale, a uno schema logico che rappresenti in modo fedele i concetti e i requisiti analizzati e che sia, al tempo stesso, "efficiente".

L'efficienza è legata alle prestazioni, ma poiché queste non sono valutabili precisamente, né a livello concettuale né a livello logico, si ricorre all'impiego di indicatori semplificati.

Progettazione logica "fedele" = equivalenza

- Che cosa s'intende precisamente quando si dice che uno schema relazionale DB_{rel} rappresenta "fedelmente" uno schema concettuale (E/R) DB_{conc} ?
 - Intuitivamente "fedeltà" vuol dire che mediante DB_{rel} possiamo rappresentare esattamente le medesime informazioni documentate con lo schema DB_{conc} (possiamo memorizzare gli stessi dati).
 - Più precisamente "fedeltà" significa che i due schemi sono equivalenti dal punto di vista della loro capacità informativa.
 - Il concetto di capacità informativa ha diverse definizioni, ma per i nostri scopi può essere considerato equivalente all'insieme degli stati legali di uno schema, indicato con SL(DB) e dunque:

 DB_{rel} e DB_{conc} sono equivalenti se $SL(DB_{conc}) = SL(DB_{rel})$

Progettazione che preserva l'informazione (1)

- □ Si consideri una progettazione che traduce un dato schema concettuale DB_{conc} in uno schema logico-relazionale DB_{rel}.
- Questa attività di progettazione può essere vista, a livello astratto, come la definizione di un mapping M che spiega come trasformare ogni stato legale db_{conc} di DB_{conc} in un corrispondente stato db_{rel} di DB_{rel}.
- □ La progettazione preserva l'informazione se M è totale e iniettiva:
 - □ (totale) per ogni stato db_{conc} di DB_{conc} esiste uno stato db_{rel} di DB_{rel} tale che $M(db_{conc}) = db_{rel}$;
 - □ (iniettiva) non esistono due stati $db1_{conc}$ e $db2_{conc}$ tali che $M(db1_{conc}) = M(db2_{conc})$.

Progettazione che preserva l'informazione (2)

□ Preservare l'informazione:

□ la definizione intuitivamente asserisce che lo schema relazionale può contenere i dati dello schema E/R (totalità) e che si può "ritornare indietro" (iniettività).

Perché ciò non basta

e lo schema relazionale:

PERSONE(<u>CF</u>)
AUTOMOBILI(<u>Targa</u>)
PROPRIETÀ(<u>CF</u>, <u>Targa</u>, DataAcquisto)

FK: CF REFERENCES Persone

FK: Targa REFERENCES Automobili

La traduzione preserva l'informazione, ma esistono infinite istanze che sono legali rispetto a DB_{rel} e che non lo sono per DB_{conc} !

PERSONE

CF
BNCGRG78L21A944Z
RSSNNA78A53A944N
VRDMRC79H20F839U

PROPRIETÀ

CF Targa DataAcquisto

BNCGPG78I 21 A 9 4 47 CT 001 MI 12 /08 /2004

BNCGRG78L21A944Z CT 001 MJ 12/08/2004 RSSNNA78A53A944N CT 001 MJ 15/07/2003

Progettazione che garantisce l'equivalenza

- □ Diciamo che la progettazione garantisce l'equivalenza se:
 - preserva l'informazione e
 - per ogni stato legale db_{rel} di DB_{rel} esiste uno stato legale db_{conc} tale che $M(db_{conc}) = db_{rel}$.
- La definizione intuitivamente asserisce che esiste una biiezione tra gli insiemi di stati legali.

Come agire in pratica?

- La definizione data di equivalenza non è "operativa", in quanto non dice nulla su come debba essere effettuata una traduzione che garantisca l'equivalenza degli schemi.
- Tuttavia può essere usata "localmente": in pratica la traduzione da schema E/R a schema relazionale avviene operando una sequenza di trasformazioni/traduzioni semplici, per ognuna delle quali è altrettanto semplice rispettare regole che garantiscono l'equivalenza.
- Per quanto visto, possiamo dividere queste regole in:
 - □ regole che preservano l'informazione (regole sulla "struttura");
 - regole aggiuntive che garantiscono l'equivalenza (regole sui vincoli).
- L'equivalenza può comunque essere solo in parte garantita dal DDL di SQL, infatti alcuni vincoli non possono essere direttamente espressi in SQL.

Fasi della progettazione logica

- La progettazione logica può essere articolata in due fasi principali:
 - Ristrutturazione: eliminazione dallo schema E/R dei costrutti che non possono essere direttamente rappresentati nel modello logico target (relazionale nel nostro caso):
 - eliminazione degli attributi multivalore;
 - eliminazione delle gerarchie di generalizzazione;
 - partizionamento/accorpamento di entità e associazioni;
 - scelta degli identificatori principali.
 - Traduzione: si mappano i costrutti residui in elementi del modello relazionale.

Fase di ristrutturazione

- Si pone l'obiettivo di semplificare la traduzione e "ottimizzare"
 le prestazioni.
- Per confrontare tra loro diverse alternative bisogna conoscere,
 almeno in maniera approssimativa, il "carico di lavoro", ovvero:
 - □ le principali operazioni che la base dati dovrà supportare;
 - □ i "volumi" dei dati in gioco.

Regola 80-20: il 20% delle operazioni produce l'80% del carico.

- Gli indicatori che deriviamo considerano due aspetti
 - spazio: numero di istanze (di entità e associazioni) previste;
 - tempo: numero di istanze visitate durante un'operazione.

Schema di riferimento

Tavola dei volumi

- □ Specifica il numero stimato di istanze per ogni entità (E) e associazione (R) dello schema.
- I valori sono necessariamente approssimati, ma indicativi.

Concetto	Costrutto	Volume
SEDE	Е	10
DIPARTIMENTO	E	80
IMPIEGATO	Е	2000
PROGETTO	Е	500
COMPOSIZIONE	Α	80
AFFERENZA	Α	1900
DIREZIONE	Α	80
PARTECIPAZIONE	Α	6000

Descrizione delle operazioni

- L'analisi delle operazioni principali richiede la codifica di:
 - tipo dell'operazione: Interattiva (I) o Batch (B);
 - frequenza: numero medio di esecuzioni in un certo periodo di tempo;
 - schema di navigazione: frammento dello schema E/R interessato dall'operazione sul quale viene evidenziato (con frecce) il "cammino logico" da percorrere per accedere alle informazioni di interesse.
- Per ogni operazione si costruisce una tavola degli accessi basata sullo schema di navigazione:
 - □ il campo costrutto specifica il tipo di concetto (entità o associazione);
 - nel campo accessi si conta il numero degli accessi;
 - il campo tipo è riferito al tipo di operazione: le operazioni di scrittura (S) sono più onerose di quelle di lettura (L).

Il costo degli accessi in scrittura è in genere considerato doppio rispetto a quello delle letture.

Esempio di valutazione di costo

 Visualizzare tutti i dati di un impiegato, del dipartimento nel quale lavora e dei progetti ai quali partecipa.

Esempio di tavola degli accessi

- Per ogni entità e per ogni associazione interessate dall'operazione, la tavola degli accessi riporta il numero di istanze interessate, e il tipo di accesso (L: lettura; S: scrittura)
- Il numero delle istanze si ricava dalla tavola dei volumi mediante semplici operazioni (assumendo uniformità nella distribuzione dei valori): ad esempio in media ogni impiegato partecipa a 6000/2000 = 3 progetti.

Concetto	Costrutto	Accessi	Tipo
IMPIEGATO	E	1	L
AFFERENZA	Α	1	L
DIPARTIMENTO	Е	1	L
PARTECIPAZIONE	Α	3	L
PROGETTO	Е	3	L

Analisi delle ridondanze

- Una ridondanza in uno schema E-R è un'informazione significativa ma derivabile da altre.
- In questa fase si decide se eliminare o meno le ridondanze eventualmente presenti; è quindi comunque importante averle individuate in fase di progettazione concettuale!
- Se si mantiene una ridondanza
 - si semplificano alcune interrogazioni, ma
 - si appesantiscono gli aggiornamenti e
 - si occupa maggior spazio.
- Le possibili ridondanze riguardano
 - attributi derivabili da altri attributi;
 - **associazioni derivabili** dalla composizione di altre associazioni (presenza di cicli).

Attributi ridondanti

Associazioni ridondanti

Esempio d'analisi di una ridondanza

 L'attributo NumeroResidenti è derivabile da una operazione di conteggio delle istanze di persona residenti in una città.

tabella dei volumi

Concetto	Costrutto	Volume
CITTÀ	Е	200
PERSONA	Е	1000000
RESIDENZA	Α	1000000

Le operazioni...

- Si considerano innanzitutto le operazioni influenzate dalla ridondanza, considerando anche le loro frequenze di esecuzione:
 - operazione 1: inserisci una nuova persona con la relativa città di residenza (500 volte al giorno);
 - operazione 2: visualizza tutti i dati di una città (incluso il numero di residenti) (2 volte al giorno);

□ ...e si costruiscono le tavole degli accessi

...in presenza di ridondanza...

Operazione 1

Concetto	Costrutto	Accessi	Tipo
PERSONA	E	1	S
RESIDENZA	Α	1	S
CITTÀ	E	1	L
CITTÀ	E	1	S

Aggiornamento = 1L + 1S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
CITTÀ	E	1	L

...in assenza di ridondanza

Operazione 1

Concetto	Costrutto	Accessi	Tipo
PERSONA	E	1	S
RESIDENZA	Α	1	S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
CITTÀ	E	1	L
RESIDENZA	Α	5000	L

Mantenere o no la ridondanza?

È importante considerare la frequenza delle operazioni:

- con ridondanza:
 - operazione 1: 1500 accessi in scrittura e 500 accessi in lettura al giorno;
 - operazione 2: 2 accessi in lettura al giorno;
 - totale: 3502 accessi al giorno;
- □ senza ridondanza:
 - operazione 1: 1000 accessi in scrittura al giorno;
 - operazione 2: 10002 accessi in lettura al giorno;
 - totale: 12002 accessi al giorno.
- Si decide pertanto di mantenere la ridondanza, privilegiando l'efficienza.
- In generale si devono fare anche considerazioni sullo spazio in più richiesto per mantenere la ridondanza.

Eliminazione delle gerarchie

- Il modello relazionale non può rappresentare direttamente le gerarchie di generalizzazione.
- Entità e associazioni sono invece direttamente rappresentabili.
- □ Si eliminano perciò le gerarchie, sostituendole con entità e relazioni.

- Vi sono 3 possibilità (più altre soluzioni intermedie):
 - accorpare le entità figlie nel genitore (collasso verso l'alto);
 - accorpare il genitore nelle entità figlie (collasso verso il basso);
 - sostituire la generalizzazione con associazioni.

Schema di riferimento

1. Collasso verso l'alto...

Esempio

Collasso verso l'alto: osservazioni

"Tipo" è un attributo *selettore* che specifica se una singola istanza di E appartiene a una delle N sottoentità.

Copertura

- □ totale esclusiva: Tipo assume N valori, quante sono le sotto-entità;
- parziale esclusiva: Tipo assume N+1 valori; il valore in più serve per le istanze che non appartengono a nessuna sotto-entità;
- sovrapposta: occorrono tanti selettori quante sono le sotto-entità, ciascuno a valore booleano Tipo_i, che è vero per ogni istanza di E che appartiene a E_i; se la copertura è parziale i selettori possono essere tutti falsi, oppure si può aggiungere un selettore.
- □ Le eventuali associazioni connesse alle sotto-entità si trasportano su E,
 le eventuali cardinalità minime diventano 0.

2. Collasso verso il basso...

2. Esempio

Collasso verso il basso: osservazioni

- Se la copertura non è completa il collasso verso il basso non si può applicare:
 - non si saprebbe infatti dove collocare le istanze di E che non sono né in E1, né in E2.
- Se la copertura non è esclusiva introduce ridondanza:
 - una certa istanza può essere sia in E1 sia in E2, e quindi si rappresentano due volte gli attributi che provengono da E.

3. Sostituire con associazioni...

3. Esempio

Sostituire con associazioni: osservazioni

□ Tutte le entità vengono mantenute: le entità figlie sono in associazione binaria con l'entità padre e sono identificate esternamente.

La sostituzione con associazioni è sempre possibile indipendentemente dalla copertura della gerarchia.

Quale alternativa scegliere?

- La scelta fra le alternative illustrate si può fare adottando un metodo simile a quello visto per l'analisi delle ridondanze, considerando sia il numero degli accessi sia l'occupazione di spazio.
- È possibile seguire alcune semplici regole generali (ovvero: mantieni insieme ciò che viene usato insieme):
 - Collasso verso l'alto: conviene se gli accessi all'entità padre e alle entità figlie sono contestuali;
 - Collasso verso il basso: conviene se gli accessi alle entità figlie sono distinti, ma d'altra parte è possibile solo con generalizzazioni totali;
 - Mantenimento di tutte le entità: conviene se gli accessi alle entità figlie sono separati dagli accessi al padre.
- Sono anche possibili soluzioni "ibride", soprattutto in presenza di gerarchie a più livelli.

Una soluzione ibrida...

Partizionamenti e accorpamenti

- □ È possibile ristrutturare lo schema accorpando o partizionando entità e associazioni.
- Queste ristrutturazioni sono effettuate per rendere più efficienti le operazioni in base al principio già visto, ovvero:
- □ gli accessi si riducono:
 - separando attributi di un concetto che vengono acceduti separatamente;
 - raggruppando attributi di concetti diversi a cui si accede insieme.
- □ I casi principali sono:
 - partizionamento verticale di entità;
 - partizionamento orizzontale di associazioni;
 - eliminazione di attributi multivalore;
 - accorpamenti di entità e associazioni.

Partizionamento verticale di entità

Si separano gli attributi in gruppi omogenei:

Eliminazione di attributi multivalore (1)

Si introduce una nuova entità le cui istanze sono identificate dai valori dell'attributo.

 L'associazione può essere uno a molti o molti a molti.

(1,N)

Nome

IDRAULICO

Città

Indirizzo

Eliminazione di attributi multivalore (2)

Se è nota la cardinalità massima K di un attributo multivalore allora è possibile prevedere K attributi a singolo valore.

Eliminazione di attributi multivalore (3)

□ Se un valore dell'attributo **CodComp CodProd Descrizione** multivalore compare una sola (1,N)volta nella ripetizione esso può **PRODOTTO** costituire l'identificatore della nuova entità (o una sua parte). CodProd Descrizione CodComp COMPOSIZIONE **PRODCOMP PRODOTTO** (1,1)(1,N)

Eliminazione di attributi multivalore (4)

Se un valore dell'attributo multivalore può comparire più volte nella ripetizione occorre introdurre un numero d'ordine.

Attributi multivalore: note (1)

- □ Per affinità con la concezione insiemistica che sta alla base del modello E/R sarebbe naturale ipotizzare che i valori di un attributo multivalore siano tutti distinti.
- Alcuni autori e tool di progettazione (es. DB-Main) fanno riferimento a un'estensione del modello in cui è ammessa la duplicazione di valori. In quest'ottica assumono significato gli esempi dei due lucidi precedenti.
- Attenzione! In generale la presenza di valori duplicati in un attributo multivalore può indicare una progettazione errata e/o incompleta. Es. Relativamente ai marcatori della partita ci interessa memorizzare solo il nome? Non è preferibile modellare il concetto di gol, riportando anche il minuto in cui è stato realizzato?

Attributi multivalore: note (2)

Attenzione! Questo schema ammette che possano essere fatti due gol nello stesso minuto, purché da giocatori diversi...

Accorpamento di entità

Partizionamento orizzontale di associazioni

Scelta degli identificatori principali

- È un'operazione indispensabile per la traduzione nel modello relazionale, e corrisponde alla scelta della chiave primaria.
- I criteri da adottare sono:
 - assenza di opzionalità (valori NULL);
 - semplicità;
 - utilizzo nelle operazioni più frequenti o importanti.

Se nessuno degli identificatori soddisfa i requisiti s'introducono nuovi attributi (codici) ad hoc.

Identificatori principali: esempio

- L'identificatore {Interno, Comune, Indirizzo} è opzionale, quindi non può essere scelto come chiave primaria.
- Tra gli attributi CodiceFiscale e CodiceSSN la scelta dipende da quale fra questi è più frequentemente usato per accedere ai dati di una persona.

Traduzione delle entità

Idea di base:

- Ogni entità è tradotta con una relazione con gli stessi attributi.
 - La chiave primaria coincide con l'identificatore principale dell'entità.
 - Gli attributi composti vengono ricorsivamente suddivisi nelle loro componenti, oppure sono mappati in un singolo attributo della relazione, il cui dominio deve essere opportunamente definito.
 - □ Per brevità, si usa l'asterisco (*) per indicare la possibilità di valori nulli.

PERSONE(CF, Cognome, Nome, Via, NCivico*, Città, CAP)

Traduzione delle associazioni

Idea di base:

- Ogni associazione è tradotta con una relazione con gli stessi attributi, cui si aggiungono gli identificatori di tutte le entità che essa collega.
 - Gli identificatori delle entità collegate costituiscono una superchiave.
 - La chiave dipende dalle cardinalità massime delle entità nell'associazione.
 - Le cardinalità minime determinano, a seconda del tipo di traduzione effettuata, la presenza o meno di valori nulli (e quindi incidono sui vincoli e sull'occupazione di memoria).

Entità e associazione molti a molti

IMPIEGATI(Matricola, Nome, Cognome, Stipendio)

PROGETTI(Codice, Nome, Budget)

PARTECIPAZIONI(Matricola, Codice, Datalnizio)

FK: Matricola REFERENCES Impiegati

FK: Codice REFERENCES Progetti

Nomi delle foreign key: ridenominazione

Non è ovviamente necessario mantenere, per gli attributi chiave della relazione che traduce l'associazione, gli stessi nomi delle primary key referenziate, conviene piuttosto far ricorso a nomi più espressivi.

PARTECIPAZIONI(Impiegato, CodProgetto, Datalnizio)

FK: Impiegato REFERENCES Impiegati

FK: CodProgetto REFERENCES Progetti

Ovviamente se le entità collegate hanno un attributo con lo stesso nome la ridenominazione è obbligatoria!

Associazioni ad anello molti a molti

In questo caso i nomi degli attributi che formano la chiave primaria della relazione che traduce l'associazione si possono derivare dai ruoli presenti sui rami dell'associazione stessa.

PRODOTTI(Codice, Nome, Costo)

COMPOSIZIONI(Composto, Componente, Quantità)

FK: Composto REFERENCES Prodotti

FK: Componente REFERENCES Prodotti

Associazioni n-arie molti a molti

□ La chiave è la combinazione degli identificatori delle n entità partecipanti.

DIDA DILAMENITI(Nama Talafana)

DIPARTIMENTI(Nome, Telefono)

FORNITURE(Fornitore, Prodotto, Dipartimento, Quantità)

FK: ...

Associazioni uno a molti (1)

GIOCATORI(Cognome, DataNascita, Ruolo)

SQUADRE(Nome, Città, ColoriSociali)

CONTRATTI(CognomeGiocatore, DataNascitaGiocatore, Squadra, Ingaggio)

FK: (CognomeGiocatore, DataNascitaGiocatore) REFERENCES Giocatori

FK: Squadra REFERENCES Squadre

Il Nome della Squadra non fa parte della chiave di Contratto (perché?)

Associazioni uno a molti (2)

- Poiché un giocatore ha un contratto con una sola squadra, nella relazione Contratto un giocatore non può apparire in più tuple.
- □ Si può pertanto adottare anche una soluzione più compatta, che fa uso di 2 sole relazioni:

GIOCATORI(Cognome, DataNascita, Ruolo, Squadra, Ingaggio)

FK: Squadra REFERENCES Squadre

SQUADRE(Nome, Città, ColoriSociali)

- che corrisponde a tradurre l'associazione insieme a Giocatore (ovvero all'entità che partecipa con cardinalità massima 1).
- Se fosse min-card(Giocatore, Contratto) = 0, allora gli attributi Squadra e Ingaggio dovrebbero entrambi ammettere valore nullo (e per un giocatore o lo sono entrambi o non lo è nessuno dei due).

Associazioni ad anello uno a molti

In questo caso è possibile operare una traduzione con 1 o 2 relazioni.

1 relazione:

IMPIEGATI(<u>Codice</u>, Nome, Cognome, Qualifica, <u>Responsabile</u>*)

FK: Responsabile REFERENCES Impiegati

2 relazioni:

IMPIEGATI(Codice, Nome, Cognome, Qualifica)

DIPENDENZE(<u>Dipendente</u>, Responsabile)

FK: Dipendente REFERENCES Impiegati

FK: Responsabile REFERENCES Impiegati

Entità con identificazione esterna

- Nel caso di entità identificata esternamente, si "importa" l'identificatore della/e entità identificante/i.
- □ L'associazione relativa risulta automaticamente tradotta.

STUDENTI(Matricola, Università, Cognome, Nome, AnnoDiCorso)

FK: Università REFERENCES Università

UNIVERSITÀ (Nome, Città, Indirizzo)

Identificazioni esterne: una precisazione

- Nel caso generale, si possono avere identificazioni esterne in cascata.
- Per operare correttamente occorre partire dalle entità non identificate esternamente e propagare gli identificatori che così si ottengono.

UNIVERSITÀ (Nome, Indirizzo)

CORSIDILAUREA (Università, Codice, Denominazione)

STUDENTI(<u>Università</u>, <u>CodiceCdL</u>, <u>Matricola</u>, Cognome, Nome)

FK:....

Associazioni uno a uno (1)

 Si hanno a disposizione varie possibilità (traduzione con 1, 2 o 3 relazioni)

Tre relazioni:

DIRETTORI(Codice, Nome, Cognome, Stipendio)

DIPARTIMENTI(Nome, Sede, Telefono)

DIREZIONI(<u>Direttore</u>, Dipartimento, Datalnizio)

FK:...

Unique(Dipartimento)

L'identificatore di una delle due entità è scelto come chiave primaria, l'altro dà origine a una chiave alternativa.

La scelta dipende dall'importanza relativa delle chiavi.

Associazioni uno a uno (2)

DIRETTORI(Codice, Nome, Cognome, Stipendio, Dipartimento, Datalnizio)

FK: Dipartimento REFERENCES Dipartimenti

Unique(Dipartimento)

DIPARTIMENTI(Nome, Sede, Telefono)

<u>oppure</u>

DIRETTORI(Codice, Nome, Cognome, Stipendio)

DIPARTIMENTI(Nome, Sede, Telefono, Direttore, Datalnizio)

FK: Direttore REFERENCES Direttori

Unique(Direttore)

Associazioni uno a uno (3)

Una relazione:

DIRETTORI(<u>Codice</u>, Nome, Cognome, Stipendio, Datalnizio, Dipartimento, Sede, Telefono)

Unique(Dipartimento)

<u>oppure</u>

DIPARTIMENTI(Nome, Sede, Telefono, Direttore, NomeDirettore, CognomeDirettore, Stipendio, DataInizio)

Unique(Direttore)

Associazioni uno a uno con opzionalità (1)

□ Se min-card(E,R)=0, tradurre l'associazione R inglobandola in E non è in generale una buona scelta (dipende dai volumi dei dati in gioco).

IMPIEGATI(Codice, Nome, Cognome, Stipendio, Dipartimento*, Datalnizio*)

FK: Dipartimento REFERENCES Dipartimenti

TROPPI VALORI NULLI!

Unique(Dipartimento)

CHECK (((Dipartimento IS NOT NULL) AND (DataInizio IS NOT NULL)) OR ((Dipartimento IS NULL) AND (DataInizio IS NULL)))

DIPARTIMENTI(Nome, Sede, Telefono)

Associazioni uno a uno con opzionalità (2)

- La traduzione con una sola relazione corrisponde a un accorpamento di entità:
 - Se min-card(E1,R) = min-card(E2,R) = 1 si avranno due chiavi, entrambe senza valori nulli (la chiave primaria è "la più importante");
 - Se min-card(E1,R) = 0 e min-card(E2,R) = 1 la chiave derivante da E2 ammetterà valori nulli, e la chiave primaria si ottiene da E1;
 - Se min-card(E1,R) = min-card(E2,R) = 0 entrambe le chiavi hanno valori nulli, quindi si rende necessario introdurre un codice.

IMP_DIP(CodiceImpDip, CodiceImp*, ..., Dipartimento*, ..., DataInizio*)

Associazioni ad anello uno a uno

- In questo caso è possibile operare una traduzione con una o due relazioni.
- La traduzione con una relazione è ancora problematica se entrambe le partecipazioni sono opzionali.

Una relazione:

PERSONE(Codice, CFUomo*, NomeUomo*, CFDonna*, NomeDonna*)

Due relazioni:

PERSONE(CF, Nome)

MATRIMONI(Marito, Moglie)

FK: Marito REFERENCES Persone

FK: Moglie REFERENCES Persone

Unique (Moglie)

Esempio di riferimento

Schema logico relazionale

Per le entità E che partecipano ad associazioni sempre con max-card(E,R) = n la traduzione è immediata:
 SEDI(<u>Città</u>, Via, CAP)
 PROGETTI(<u>Nome</u>, Budget, DataConsegna)

Anche l'associazione Partecipazione si traduce immediatamente:

PARTECIPAZIONI(Impiegato, Progetto)

FK: Impiegato REFERENCES Impiegati

FK: Progetto REFERENCES Progetti

L'entità Dipartimento si traduce importando l'identificatore di Sede e inglobando l'associazione Direzione:

DIPARTIMENTI(Nome, Città, Direttore)

FK: Città REFERENCES Sedi

FK: Direttore REFERENCES Impiegati

L'entità Telefono si traduce con una relazione che ingloba l'associazione Recapito

TELEFONI(Numero, Nome, Città)

FK: Nome, Città REFERENCES Dipartimenti

Per tradurre l'associazione Afferenza, assumendo che siano pochi gli impiegati che non afferiscono a nessun dipartimento, si opta per una rappresentazione compatta

IMPIEGATI(Codice, Nome, Cognome, NomeDip*, CittàDip*, Data*)

FK: NomeDip, CittàDip REFERENCES Dipartimenti

Osservazioni finali

- La progettazione logica, pur potendosi avvalere di strumenti CASE (Computer Aided Software Engineering), non deve essere condotta "alla cieca"; nel caso in cui vi siano varie alternative occorre valutare diversi fattori, tra cui:
 - la presenza o meno di valori nulli, e la loro incidenza, che dipende dal volume dei dati;
 - le porzioni di schema E/R interessate dalle varie operazioni (con particolare riferimento ai join tra le relazioni che vengono create);
 - □ la flessibilità degli schemi relazionali rispetto ad evoluzioni future.
- I casi visti (semplici esempi a scopo didattico) non esauriscono certamente
 l'argomento e lasciano sempre spazio per soluzioni specifiche ad hoc.
- Ad esempio, associazioni uno a molti con max-card(E2,R) = K, con K "piccolo", possono al limite essere tradotte con 1 sola relazione, prevedendo K repliche degli attributi di E2 (es. tipico: numeri di telefono).

Domande?

