Pioneer sound.vision.soul

Service Manual

ORDER NO. CRT3501

HIGH POWER CD/MP3/WMA PLAYER WITH FM/AM TUNER

DEH-27MP

This service manual should be used together with the following manual(s) listed below. For the parts numbers, adjustments, etc. which are not shown in this manual, refer to the following manual(s).

Model No.	Order No.	Mech. Module	Remarks
DEH-2750MP/XN/GS	CRT3396		
CX-3158	CRT3394	S10.1AAC	CD Mech. Module : Circuit Description, Mech. Description, Disassembly

SAFETY INFORMATION

WARNING

This product contains lead in solder and certain electrical parts contain chemicals which are known to the state of California to cause cancer, birth defects or other reproductive harm.

Health & Safety Code Section 25249.6 - Proposition 65

EXPLODED VIEWS AND PARTS LIST

PACKING(Page 8)

PACKING SECTION PARTS LIST

*: Non spare part

Mark	No.	Description	DEH-2750MP/XN/GS	DEH-27MP/XN/UC
	1 Accessory Assy C		CEA4850	CEA4610
	2 Screw Assy C		CEA3849	CEA4611
	10	Polyethylene Bag	CEG-162	CEG1173
	11	Carton	CHG5434	CHG5578
	12	Contain Box	CHL5434	CHL5578
	15-1	Owner's Manual	CRD3939	CRD4001
	15-2	Installation Manual	CRD3940	CRD4002
*	15-4	Caution Card	Not used	CRP1294
*	15-5	Card	Not used	ARY1048
	16	Case Assy	CXB3520	Not used
	18	Screw	Not used	CBA1488

Owner's Manual, Installation Manual

Part No. Language	
CRD4001	English, French, Spanish
CRD4002	English, French, Spanish

EXTERIOR(Page 10)

EXTERIOR SECTION PARTS LIST

Mark	No.	Description	DEH-2750MP/XN/GS	DEH-27MP/XN/UC
	9 Tuner Amp Unit		CWM9693	CWN1393
36 Screw		Screw	IMS20P030FZK	IMS20P030FTB
	38	Detach Grille Assy	CXC3748	CXC5516(Grille Assy)
	39	Screw	BPZ20P100FZK	BPZ20P100FTB
	56	Grille Unit	CXC3643	CXC5479
	61	Panel	YNS5045	CNS8046
	62	Screw	Not used	BMZ40P140FTC
	63	Holder	Not used	CNV7619

ELECTRICAL PARTS LIST(Page 42)

TUNER AMP UNIT

Circuit Symbol and No.	DEH-2750MP/XN/GS	DEH-27MP/XN/UC
IC601 IC	PE5447A	PE5523A
R151, 152	RD1/4PU471J	Not used
R153, 154	RS1/16S471J	RS1/16S0R0J
R353, 354	RS1/16S331J	RS1/16S821J

2

DEH-27MP/XN/UC

Pioneer sound.vision.soul

Service Manual

ORDER NO. CRT3396

DEH-2790MP/XN/ID

DEH-2750MP/xn/cs

This service manual should be used together with the following manual(s):

Model No.	Order No.	Mech.Module	Remarks
CX-3158	CRT3394	S10.1AAC	CD Mech. Module : Circuit Description, Mech. Description, Disassembly

PIONEER CORPORATION 4-1, Meguro 1-chome, Meguro-ku, Tokyo 153-8654, Japan PIONEER ELECTRONICS (USA) INC. P.O. Box 1760, Long Beach, CA 90801-1760, U.S.A. PIONEER EUROPE NV Haven 1087, Keetberglaan 1, 9120 Melsele, Belgium PIONEER ELECTRONICS ASIACENTRE PTE. LTD. 253 Alexandra Road, #04-01, Singapore 159936 © PIONEER CORPORATION 2004

SAFETY INFORMATION

This service manual is intended for qualified service technicians; it is not meant for the casual do-it-yourselfer. Qualified technicians have the necessary test equipment and tools, and have been trained to properly and safely Α repair complex products such as those covered by this manual.

Improperly performed repairs can adversely affect the safety and reliability of the product and may void the warranty. If you are not qualified to perform the repair of this product properly and safely, you should not risk trying to do so and refer the repair to a qualified service technician.

Service Precaution

- 1. You should conform to the regulations governing the product (safety, radio and noise, and other regulations), and should keep the safety during servicing by following the safety instructions described in this manual.
- 2. Before disassembling the unit, be sure to turn off the power. Unplugging and plugging the connectors during power-on mode may damage the ICs inside the unit.
- 3. To protect the pickup unit from electrostatic discharge during servicing, take an appropriate treatment (shorting-solder) by referring to "the DISASSEMBLY".
- 4. After replacing the pickup unit, be sure to check the grating.

С

Ε

DEH-2790MP/XN/ID

In this manual, procedures that must be performed during repairs are marked with the below symbol.

Please be sure to confirm and follow these procedures.

1. Product safety

Please conform to product regulations (such as safety and radiation regulations), and maintain a safe servicing environment by following the safety instructions described in this manual.

① Use specified parts for repair.

Use genuine parts. Be sure to use important parts for safety.

2 Do not perform modifications without proper instructions.

Please follow the specified safety methods when modification(addition/change of parts) is required due to interferences such as radio/TV interference and foreign noise.

3 Make sure the soldering of repaired locations is properly performed.

When you solder while repairing, please be sure that there are no cold solder and other debris. Soldering should be finished with the proper quantity. (Refer to the example)

Make sure the screws are tightly fastened.

Please be sure that all screws are fastened, and that there are no loose screws.

5 Make sure each connectors are correctly inserted.

Please be sure that all connectors are inserted, and that there are no imperfect insertion.

6 Make sure the wiring cables are set to their original state.

Please replace the wiring and cables to the original state after repairs. In addition, be sure that there are no pinched wires, etc.

Make sure screws and soldering scraps do not remain inside the product.

Please check that neither solder debris nor screws remain inside the product.

® There should be no semi-broken wires, scratches, melting, etc. on the coating of the power cord.

Damaged power cords may lead to fire accidents, so please be sure that there are no damages. If you find a damaged power cord, please exchange it with a suitable one.

(9) There should be no spark traces or similar marks on the power plug.

When spark traces or similar marks are found on the power supply plug, please check the connection and advise on secure connections and suitable usage. Please exchange the power cord if necessary.

10 Safe environment should be secured during servicing.

When you perform repairs, please pay attention to static electricity, furniture, household articles, etc. in order to prevent injuries. Please pay attention to your surroundings and repair safely.

2. Adjustments

To keep the original performance of the products, optimum adjustments and confirmation of characteristics within specification. Adjustments should be performed in accordance with the procedures/instructions described in this manual.

3. Lubricants, Glues, and Replacement parts

Use grease and adhesives that are equal to the specified substance. Make sure the proper amount is applied.

4. Cleaning

For parts that require cleaning, such as optical pickups, tape deck heads, lenses and mirrors used in projection monitors, proper cleaning should be performed to restore their performances.

5. Shipping mode and Shipping screws

To protect products from damages or failures during transit, the shipping mode should be set or the shipping screws should be installed before shipment. Please be sure to follow this method especially if it is specified in this manual.

DEH-2790MP/XN/ID 7 ■ 8

Δ

A

В

С

D

E

F

CONTENTS

Е

SAFETY INFORMATION	
1. SPECIFICATIONS	5
2. EXPLODED VIEWS AND PARTS LIST	8
2.1 PACKING	8
2.2 EXTERIOR	
2.3 CD MECHANISM MODULE	
3. BLOCK DIAGRAM AND SCHEMATIC DIAGRAM	14
3.1 BLOCK DIAGRAM	
3.2 OVERALL CONNECTION DIAGRAM(GUIDE PAGE)	16
3.3 KEYBOARD UNIT	
3.4 CD MECHANISM MODULE(GUIDE PAGE)	
4. PCB CONNECTION DIAGRAM	
4.1 TUNER AMP UNIT	
4.2 KEYBOARD UNIT	
4.3 CD CORE UNIT(S10.1)	
5. ELECTRICAL PARTS LIST	
6. ADJUSTMENT	
6.1 CD ADJUSTMENT	
6.2 CHECKING THE GRATING AFTER CHANGING THE PICKUP UNIT	
6.3 ERROR MODE	
6.4 SYSTEM MICROCOMPUTER TEST PROGRAM	
7. GENERAL INFORMATION	
7.1 DIAGNOSIS	
7.1.1 DISASSEMBLY	
7.1.2 CONNECTOR FUNCTION DESCRIPTION	
7.2 PARTS	
7.2.1 IC	
7.2.2 DISPLAY	
7.3 OPERATIONAL FLOW CHART	
7.4 CLEANING	

В

D

Е

● DEH-2790MP/XN/ID, DEH-2750MP/XN/GS

General
Rated power source14.4 V DC
(allowable voltage range: 12.0 – 14.4 V DC)
Grounding system Negative type
Max. current consumption
10.0 A
Dimensions (W \times H \times D):
Backup current 5 mA or less
DIN
Chassis 178 \times 50 \times 157 mm
Nose 188 \times 58 \times 18 mm
D
Chassis178 \times 50 \times 162 mm
Nose 170 \times 48 \times 13 mm

Audio

Continuous power output is 22 W per channel minimum into 4 ohms, both channels driven 50 to 15,000 Hz with no more than 5% THD.

Maximum power output 50 W \times 4 Load impedance 4 Ω (4 – 8 Ω allowable) Preout max output level/output impedance

Weight1.3 kg

Bass/Treble:

Bass

Frequency 100 Hz Gain ±12dB Treble

Frequency 10 kHz Gain±12dB

Loudness contour

(volume: –30 dB)

CD player

FM tuner

Frequency range	87.5 – 108.0 MHz
Usable sensitivity	8 dBf (0.7 μ V/75 Ω , mono,
	S/N: 30 dB)
50 dB quieting sensitivity	10 dBf (0.9 μ V/75 Ω , mono)
Signal-to-noise ratio	75 dB (IEC-A network)
Distortion	0.3 % (at 65 dBf, 1 kHz,
	stereo)
	0.1 % (at 65 dBf, 1 kHz,
	mono)
Frequency response	30 - 15,000 Hz (±3 dB)
Stereo separation	45 dB (at 65 dBf, 1 kHz)

AM tuner

Frequency range531 – 1,602 kHz (9 kHz)
530 – 1,640 kHz (10 kHz)
Usable sensitivity 18 µV (S/N: 20 dB)
Signal-to-noise ratio 65 dB (IEC-A network)

DEH-2790MP/XN/ID

⁻ 7 **-** 8

● DEH-2770MP/XN/CS

General

Δudio

Continuous power output is 22 W per channel minimum into 4 ohms, both channels driven 50 to 15,000 Hz with no more than 5% THD.

Bass/Treble: Bass Free

Frequency 100 Hz Gain ±12dB

irebie

Frequency 10 kHz Gain±12dB

Weight1.3 kg

Loudness contour

(volume: –30 dB)

CD player

FM tuner

i ivi carioi	
Frequency range	87.5 – 108.0 MHz
Usable sensitivity	8 dBf (0.7 μ V/75 Ω , mono,
	S/N: 30 dB)
50 dB quieting sensitivity	10 dBf (0.9 μ V/75 Ω , mono)
Signal-to-noise ratio	75 dB (IEC-A network)
Distortion	0.3 % (at 65 dBf, 1 kHz,
	stereo)
	0.1 % (at 65 dBf, 1 kHz,
	mono)
Frequency response	30 - 15,000 Hz (±3 dB)
Stereo separation	45 dB (at 65 dBf, 1 kHz)

AM tuner

Frequency range530 – 1,6	640 kHz (10 kHz)
Usable sensitivity 18 µV (S	5/N: 20 dB)
Signal-to-noise ratio65 dB (II	EC-A network)

DEH-2790MP/XN/ID

6

Ε

2

3

5 В С Е DEH-2790MP/XN/ID

2. EXPLODED VIEWS AND PARTS LIST

NOTES: • Parts marked by "*" are generally unavailable because they are not in our Master Spare Parts List.

- The \triangle mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- Screw adjacent to ∇ mark on the product are used for disassembly.
- For the applying amount of lobricants or glue, follow the instructions in this manual. (In the case of no amount instructions, apply as you think it appropriate.)

2.1 PACKING

Α

В

Ε

(1) PACKING SECTION PARTS LIST

<u>Mark</u>	<u>No.</u>	Description	Part No.	Mark No.	<u>Description</u>	Part No.	
	1	Accessory Assy	CEA4850				
	2	Screw Assy	CEA3849	11	Carton	See Contrast table(2)	Α
	3	Screw	CBA1650	12	Contain Box	See Contrast table(2)	•
*	4	Polyethylene Bag	CEG-127	13	Protector	CHP2664	
	5	Screw	CRZ50P090FTC	14	Protector	CHP2868	
				15-1	Owner's Manual	See Contrast table(2)	
	6	Screw	TRZ50P080FTC				_
*	7	Polyethylene Bag	CEG-158	15-2	Installation Manual	See Contrast table(2)	
	8	Handle	CNC5395	15-3	Caution Card	CRP1310	
	9	Bush	CNV3930	16	Case Assy	CXB3520	
	10	Polyethylene Bag	CEG-162	17	Cord Assy	XDE7008	

(2) CONTRAST TABLEDEH-2790MP/XN/ID, DEH-2750MP/XN/GS and DEH-2770MP/XN/CS are constructed the same except for the following:

Mark	No.	Description	DEH-2790MP/XN/ID	DEH-2750MP/XN/GS	DEH-2770MP/XN/CS
	11	Carton	CHG5470	CHG5434	CHG5435
	12	Contain Box	CHL5470	CHL5434	CHL5435
	15-1	Owner's Manual	CRD3939	CRD3939	CRD3937
	15-2	Installation Manual	CRD3940	CRD3940	CRD3938

Owner's Manual, Installation Manual

Part No.	Language		
CRD3939 English, Traditional Chinese, Arabic			
CRD3940	English, Traditional Chinese, Arabic		
CRD3937 English, Spanish, Portuguese(B)			
CRD3938	English, Spanish, Portuguese(B)		

DEH-2790MP/XN/ID

В

С

D

Ε

(1) EXTERIOR SECTION PARTS LIST

5

<u>Mark</u>	<u>No.</u>	<u>Description</u>	Part No.	Mark No.	<u>Description</u>	Part No.	
	1	Screw	BSZ26P060FTC	32	Panel	CNS8044	
	2	Screw	BSZ26P100FTC	33	Arm	CNV4692	Α
	3	Cable	CDE7703	34	Arm	CNV4728	,,
	4	Cord Assy	XDE7008	35	Arm	CNV5576	
	5	•••••					
				36	Screw	IMS20P030FZK	
	6	Case	CNB2793	37	Chassis Unit	CXC3600	
	7	Holder	CNC8659	38	Detach Grille Assy	See Contrast table(2)	
	8	Insulator	CNM9145	39	Screw	BPZ20P100FZK	
	9	Tuner Amp Unit	See Contrast table(2)	40	Button(TA, VOLUME(+/-))	CAC8924	
	10	Screw	ASZ26P060FTC				
				41	Button(UP, DOWN, LEFT, RIGHT)	CAC8926	
	11	Screw	BMZ26P160FTC	42	Button(BTB, SOURCE)	CAC8927	В
	12	Screw	BPZ26P080FTC	43	Button(1-6, LOCAL/BSM)	CAC8929	
<u>^</u>	13	Fuse(10A)	CEK1208	44	Button(EJECT, AUDIO)	CAC8930	
	14	Pin Jack(CN352)	CKB1059	45	Button(DETACH)	CAC8931	
	15	Plug(CN901)	CKM1376				
				46	Button(DISPLAY, BAND)	CAC8934	
	16	Connector(CN831)	CKS3581	47	Spring	CBH2210	
	17	Connector(CN651)	CKS3837	48	Cover	CNS8042	
	18	Antenna Jack(CN401)	CKX1056	49	LCD	CAW1848	
	19	Holder	CND2413	50	Connector(CN1801)	CKS3580	
	20	Holder	CND2414				
				51	Holder	CND2412	С
	21	Heat Sink	CNR1762	52	Sheet	CNM9144	
	22	FM/AM Tuner Unit	CWE1912	53	Lighting Conductor	CNV8190	
	23	Holder	CND1054	54	Rubber	CNV8191	
	24	Terminal(CN402)	VNF1084	55	Connector	CNV8192	
	25	Button(DETACH)	CAC4836				
				56	Grille Unit	See Contrast table(2)	
	26	Spring	CBH1835	57	CD Mechanism Module(S10.1AACA)		
	27	Spring	CBH2208	58	Screw	ISS26P055FTC	
	28	Spring	CBH2367	59	IC(IC302)	PAL007A	
	29	Bracket	CNC6791	60	Transistor(Q911, 921, 991)	2SD2396	D
	30	Holder	CNC8042				U
				61	Panel	See Contrast table(2)	
	31	Cover	CNM6276				

(2) CONTRAST TABLEDEH-2790MP/XN/ID, DEH-2750MP/XN/GS and DEH-2770MP/XN/CS are constructed the same except for the following:

Mark	No.	Description	DEH-2790MP/XN/ID	DEH-2750MP/XN/GS	DEH-2770MP/XN/CS
	9	Tuner Amp Unit	CWM9693	CWM9693	CWM9970
	38	Detach Grille Assy	CXC4395	CXC3748	CXC4391
	56	Grille Unit	CXC4239	CXC3643	CXC4236
	61	Panel	YNS5045	YNS5045	CNS8048

DEH-2790MP/XN/ID

Е

3 2.3 CD MECHANISM MODULE 13— 86 23-38 2 76 B 59[′] (A)(Q) 33 1 ①GEM1024 ②GEM1045 ③GEM1035 70 Е 31-C 65--85 85 DEH-2790MP/XN/ID

<u>Description</u>	ECTION PARTS LIST				
	Part No.	Mark No.	<u>Description</u>	Part No.	
re Unit(S10.1)	CWX3096	50	Gear	CNV8379	
ctor(CN101)	CKS4182				٨
ctor(CN901)	CKS4017	51	Gear	CNV8380	Α
0.01(0.1001)	BMZ20P035FTC	52	Gear	CNV8381	
	BSZ20P040FTC	53	Gear	CNV8382	
	B3220F040F1C	54	Gear	CNV8383	
(MO::4)	CDA42C2	55	Gear	CNV8384	
(M2x4)	CBA1362	33	Geal	CIV 0304	
(M2x3)	CBA1824	50	Deel	ONIV (0205	_
(M2x3)	CBA1825	56	Rack	CNV8385	
		57	Arm	CNV8386	
er	CBF1038	58	Arm	CNV8387	
		59	Guide	CNV8388	
er	CBF1060	60	Roller	CNV7218	В
	CBH2390				
	CBH2606	61	Gear	CNV8389	
	CBH2607	62	Arm	CNV8391	
	CBH2608	63	Arm	CNV8390	
		64	Arm	CNV8392	
	CBH2609	65	Damper	CNV7313	
	CBH2610				
		66	Damper	CNV7314	
	CBH2735	67	Arm	CNV8394	
	CBH2612	68	Arm	CNV8395	
	CBH2613				С
		69	Guide	CNV8396	C
	CBH2614	70	Guide	CNV8397	
	CBH2615				
	CBH2616	71	Holder	CNV8398	
	CBH2617	72	Arm	CNV8402	
	CBH2620	73	Gear	CNV8400	1
		74	Damper	CNV7618	_
	CBH2621	75	Motor Unit(M1)	CXC4440	
	CBH2641				
	CBH2642	76	Chassis Unit	CXC2318	
	CBH2643	77	Screw Unit	CXB8729	
	CBH2659	78	Gear Unit	CXC2397	D
	02.12000	79	Arm Unit	CXC2316	
	CBH2688	80	Arm	CND1896	
	CBI 12000			0.12.000	
	CI A 4 4 4 4	81	Arm	CND1894	
	CLA4441	82	Motor Unit(M2)	CXB8933	
	CNC9962				•
	CNC9963	83	Bracket	CNC9985	
		84	0 (140 5)	ED 4 4000	
et	CND2712	85	Screw(M2x5)	EBA1028	
et	CND1895				
	CNC9968	86	Screw	JFZ20P020FTC	Е
	CND1909	87	Screw	JGZ17P022FTC	
	CND2032	88	•••••		
		89	Washer	YE20FTC	
	CNC9984	90	Pickup Unit(P10)(Service)	CXX1641	
	CNM8134				
	CNV7798	91	Screw	IMS26P030FTC	
	CNV7799	92	Spring	CBL1635	
	CNV8403	93	Clamper	CNV8372	
	01440400		•		
	CNI\/8374				
					F
					Г
	CINV83/8				
		CNV8374 CNV8376 CNV8377 CNV8378	CNV8376 CNV8377 CNV8378	CNV8376 CNV8377	CNV8376 CNV8377 CNV8378

6 DEH-2790MP/XN/ID 7 8

3. BLOCK DIAGRAM AND SCHEMATIC DIAGRAM

3.2 OVERALL CONNECTION DIAGRAM(GUIDE PAGE)

Α

В

Ε

Note: When ordering service parts, be sure to refer to "EXPLODED VIEWS AND PARTS LIST" or "ELECTRICAL PARTS LIST"

3

В

1 -

DEH-2790MP/XN/ID

-

DEH-2790MP/XN/ID

DEH-2790MP/XN/ID

NOTE1) GND ...CD LSI.RFAMP.CPU
PGND ...Actuator.Motor Driver
AGND ...Actuator.Motor Driver
AGND ...Audio ...Aud Monitor land (ø1.2mm) #:Monitor land(#0.8mm)

[] Land for manual soldering SWITCHES:
CD CORE UNIT(S10.1)
S901:HOME SWITCH......ON-OFF
S903:DSCSNS SWITCH.....ON-OFF
S904:12£J SWITCH......ON-OFF
S905:BEJ SWITCH......ON-OFF The underlined indicates the switch position SIGNAL LINE
FOCUS SERVO LINE TACKING SERVO LINE
CARRIAGE SERVO LINE O100 1763GJ SPINDLE SERVO LINE C257 C CD CORE UNIT(S10.1) P DOUT O MP3&WMA DECODER 3.3V REGULATOR SND 2 R243 \$T= C283 V3R3D 20E (688) (1688) 25 TERRIT . ∰ 69 278 68 8777 228 XASTB 67 8778 XREAD 665 8778 XREAD 665 8778 XREAD 11 MAIL 11 MAI AND 175 AND 17 76 A05
778 A07
778 A07
778 A07
778 A07
778 A07
778 A07
800 A08
801 A018
802 A011
803 A018
803 A010
804 A018
805 A011
806 A018
807 A010
807 CLCONT LOEJ ROMCK ROMCK 5 228 MICRO COMPUTER VDZ O IC701 EMPH EMPH Α CS (1688) 3V REGULATOR SRAMLEVEL1
SRAMLEVEL0
EVDD
EVSS
12EJ
BEJ
DSCSNS CN651 CN901 PE5454A C785 B2XEN | P981 228 - P 2 68 N. BRS1 BRS0 BRS0 FTxD 颠纜 VID 2 FLMD8 R716 4R7K X781 4.88M7 4.78M7 4.77 4.77 4.77 19 VDCON 28 GND 21 GND 22 PGND 23 PGND C722 4R7(2125) 989 1/0

5

C

8

В

С

D

Ε

DEH-2790MP/XN/ID 6

5

В

1 2 - 3 - 4

Waveforms

В

С

D

Ε

Note: 1. The encircled numbers denote measuring points in the circuit diagram.
2. Reference voltage REFO1(1.65V)

DEH-2790MP/XN/ID

30

F

3

DEH-2790MP/XN/ID

8

В

D

Е

5

ь

5 В С Е DEH-2790MP/XN/ID 33

4. PCB CONNECTION DIAGRAM 4.1 TUNER AMP UNIT

A TUNER AMP UNIT

В

С

D

Е

2

C36Ø ₹ R354 | 8 8 Î R454 R3Ø1 R153¶ ¶R154 #R407 Ф R415 Ლ R4Ø6 Ლ R421 IC601 0402 C4Ø8 IC9Ø1 170 150 120 160 140 130 110 100 90 80 DEH-2790MP/XN/ID 3 4

3

A

3 **4.2 KEYBOARD UNIT B** KEYBOARD UNIT SIDE A S1810 S1815 160 S1822 <u>\$1823</u> S1819 %° 150 EJECT \$1829 00_00 S1817 140 S1828 \$1818 X 130 C18Ø2 D18Ø9 \$1820 120 D1810 0 CN1802 o (л 110 51811 100 D1804 0 01 0U S1802 9Ø ° ° ° D18Ø3 0 \$1812 80 D1808 0 300 ekl• 31804 70 \$1806 \$1806 D1807 60 0 D18Ø6 50 \$1808 \$1827 \$1809 8 **8** 40 30 S1825 20 Š \$18030 51801 10 Υ Ø 10 20 30 40 В Χ DEH-2790MP/XN/ID

В

С

D

4.3 CD CORE UNIT(\$10.1)

5. ELECTRICAL PARTS LIST

NOTE:

- Parts whose parts numbers are omitted are subject to being not supplied.
- The part numbers shown below indicate chip components.

Chip Resistor

 $RS1/\bigcirc S\bigcirc\bigcirc\bigcirc J, RS1/\bigcirc\bigcirc S\bigcirc\bigcirc\bigcirc J$

Chip Capacitor (except for CQS.....)

CKS....., CCS....., CSZS.....

• The \triangle mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.

В	Circ	uit Symbol and No.	Part No.	<u>Circ</u>	uit Symbol and No.	Part No.
_		-		L 401	(A,154,54) Inductor	LAU2R2K
				L 402	(A,143,91) Inductor	LAU2R2K
				L 404	(B,157,97) Inductor	LCTAW4R7J2520
	Α			L 601	(A,90,81) Ferri-Inductor	LAU100K
		b C\A/N40C02/C/	C ID/	_ 00.	(, 1,00,01)	0 .00
		mber:CWM9693(G		L 602	(A,101,63) Inductor	LAU2R2K
	Unit Nur	mber:CWM9970(CS	3)	L 651	(A,47,54) Ferri-Inductor	LAU100K
_		ne:Tuner Amp Ùni	-	L 801	(A,90,21) Inductor	LAU2R2K
	Unit Mai	ne. runer Amp Om	ι	L 901	(A,34,104) Choke Coil 600µH	
				X 601	(A,100,68) Radiator 12.58291MHz	
	MISCELL/	<u>ANEOUS</u>		X 001	(A, 100,08) Radiator 12.36291WHz	1 033 1402
				 ∱FU352	(B,141,131) Fuse 3A	CEK1286
_	IC 151	(B,131,81) IC	PML010A	AR401	(A,158,106) Surge Protector	
С	IC 302	(A,92,131) IC	PAL007A	<u> </u>	Fuse 10A	CEK1208
	IC 601	(B,84,58) IC	PE5447A	<u> </u>		
	IC 901	(B,140,25) IC	BA33BC0FP		FM/AM Tuner Unit	CWE1912
	IC 961	(A,55,77) IC	S-80834CNY			
		(,,,, , ,		RESISTO	<u>RS</u>	
	Q 352	(B,158,125) Transistor	UMH3N			
	Q 452	(B,136,124) Transistor	UMD2N	R 151	(A,117,90)	RD1/4PU471J
_	Q 801	(B,81,22) Transistor	2SA1036K	R 152	(A,120,90)	RD1/4PU471J
	Q 821	(B,39,12) Transistor	2SA1036K	R 153	(B,123,102)	RS1/16S471J
	Q 822	(B,28,14) Transistor	DTC114EU	R 154	(B,121,102)	RS1/16S471J
	Q 022	(B,20,14) Halisistol	D1011420	R 157	(B,124,94)	RAB4C102J
	Q 911	(A,5,112) Transistor	2SD2396			
	Q 911	(B,11,141) Transistor	UMD2N	R 301	(B,90,100)	RS1/16S153J
D	Q 912 Q 921	(A,5,100) Transistor	2SD2396	R 353	(B,142,124)	RS1/16S331J
				R 354	(B,162,124)	RS1/16S331J
	Q 923	(B,22,75) Transistor	UMD2N	R 357	(B,143,129)	RS1/16S223J
	Q 931	(B,58,103) Transistor	UMX1N	R 358	(B,162,131)	RS1/16S223J
	Q 991	(A,5,65) Transistor	2SD2396		, ,	
				R 405	(B,153,59)	RS1/16S681J
	Q 992	(B,19,54) Transistor	UMD2N	R 407	(B,157,84)	RAB4C681J
-	D 551	(A,59,122) Diode	MPG06G-6415G3	R 414	(B,157,87)	RS1/16S681J
	D 552	(A,57,122) Diode	MPG06G-6415G3	R 420	(B,96,44)	RS1/16S681J
	D 831	(A,107,17) Diode	1SS270	R 421	(B,158,76)	RS1/16S473J
		(1.100.17) 7: 1	1000-0		(2,100,10)	1101/1001/00
	D 832	(A,109,17) Diode	1SS270	R 454	(B,133,123)	RS1/16S103J
	D 833	(A,114,17) Diode	1SS270	R 455	(B,137,127)	RS1/16S153J
Е	D 834	(A,107,9) Diode	1SS270	R 456	(B,137,129)	RS1/16S221J
	D 835	(A,109,9) Diode	1SS270	R 457	(B,96,46)	RS1/16S681J
	D 836	(A,114,9) Diode	1SS270	R 601	(B,98,54) (GS,ID)	RS1/16S473J
				1. 001	(2,00,07) (00,12)	1.01/1004/00
	D 837	(A,112,17) Diode	1SS270	R 602	(B,105,52) (CS)	RS1/16S473J
	D 838	(A,112,9) Diode	1SS270	R 606	(B,108,58)	RS1/16S104J
_	D 901	(A,33,128) Diode	MPG06G-6415G3	R 607	(B,102,59)	RS1/16S222J
-	D 902	(A,33,125) Diode	MPG06G-6415G3	R 609	(B,100,40)	RS1/16S473J
	D 911	(A,16,103) Diode	MPG06G-6415G3	R 610	(B,96,48)	RS1/16S681J
				1 010	(B,90,40)	131/1030013
	D 912	(A,11,125) Diode	HZS6L(B2)	R 611	(B,109,70)	RS1/16S473J
	D 921	(A,22,84) Diode	HZS9L(B3)	R 614	(B,69,63)	RS1/16S104J
	D 931	(A,67,112) Diode	HZS7L(C3)	R 633	(B,51,70)	RS1/16S104J
F	D 932	(A,49,109) Diode	HZS7L(A1)		, , ,	
	D 991	(A,17,62) Diode	HZS7L(C3)	R 653	(B,44,37)	RS1/16S104J
				R 654	(B,73,51)	RS1/16S102J
	L 151	(A,142,66) Inductor	LAU2R2K	D GEE	(// 60 54)	RD1/4PU102J
				R 655	(A,69,54)	ND 1/4FU 102J
	42		DEH-2790MP/2	XN/ID		
	12	1 -	2		3 -	4

		5	6			7	8		
	Circu	it Symbol and No.	Part No.		Circu	it Symbol and No.	Part No.		
R 6	558	(B,105,37)	RS1/16S473J		C 353	(A,132,116)	CEJQ2R2M50		
R 6	559	(B,74,40)	RS1/16S221J		C 354	(A,132,107)	CEJQ2R2M50		
R 6		(B,90,44)	RS1/16S221J		C 401	(B,158,66)	CKSRYB103K50		
R 6		(B,109,38)	RS1/16S682J			, , ,			Α
		(_,,,,,,,			C 402	(B,152,56)	CKSRYB103K50		
R 6	863	(B,68,41)	RS1/16S682J		C 403	(A,149,54)	CEJQ470M6R3		
R 6		(B,57,38)	RS1/16S104J			(A,148,91)	CEJQ101M10		
		,				,			
R 8		(B,77,22)	RS1/16S153J		C 405	(B,165,93)	CKSRYB103K50		
R 8		(B,81,25)	RS1/16S153J		C 409	(B,144,54)	CCSRCH470J50		
R 8	303	(B,93,18)	RS1/16S222J						
					C 420	(B,102,40)	CCSRCH470J50		_
R 8	321	(B,32,14)	RS1/16S562J		C 451	(A,129,131)	CEJQ330M10		
R 8	322	(B,68,18)	RS1/16S102J		C 601	(B,66,79)	CKSRYB103K50		
R 8	323	(B,35,11)	RS1/16S103J		C 603	(A,98,85)	CEJQ4R7M35		
R 8		(A,78,7)	RD1/4PU222J		C 604	(B,96,71)	CCSRCH200J50		
R 8		(A,80,7)	RD1/4PU222J			, , ,			
		(,, - ,, ,			C 605	(B,99,71)	CCSRCH200J50		В
R 8	25	(A,68,15)	RD1/4PU102J		C 606	(B,106,67)	CKSRYB104K16		
R 8		(A,74,18)	RD1/4PU104J			(B,98,63)	CCSRCH101J50		
		,							
R 8		(A,78,15)	RD1/4PU103J		C 608	(B,88,42)	CCSRCH470J50		
R 8		(B,87,85)	RS1/16S102J		C 610	(A,98,79)	CEJQ4R7M35		
R 8	341	(B,47,11)	RS1/16S1R0J						
					C 613	(B,97,75)	CKSRYB105K6R3		
R 8	348	(A,103,44)	RD1/4PU102J		C 651	(B,54,41)	CKSRYB683K16		-
R 8	351	(A,100,44)	RD1/4PU102J			(B,91,18)	CKSRYB104K16		
R 8		(B,89,85)	RS1/16S102J		C 832	(B,43,9)	CKSRYB104K16		
R 9		(B,16,137)	RS1/16S223J		C 901	(A,34,136)	CEAT332M16(P45)		
		, , ,			0 301	(4,54,150)	CLA1332W10(1 43)		
R 9	112	(A,10,130)	RD1/4PU152J		0.044	(4.44.00)	05.10.4701440		
					C 911	(A,14,92)	CEJQ470M10		_
R 9		(A,17,86)	RD1/4PU821J		C 912	(B,16,141)	CKSRYB103K50		С
R 9	926	(B,11,97)	RS1/16S221J		C 913	(A,20,140)	CEAT331M16		
R 9	931	(B,63,108)	RS1/16S473J		C 921	(A,22,62) 330µF/16V	CCH1326		
R 9		(B,63,106)	RS1/16S104J		C 922	(A,21,79)	CEJQ101M16		
R 9		(A,52,112)	RD1/4PU102J			(,_ ,, ,,			
	,00	(71,02,112)	NB 1741 0 1020		C 923	(B,20,82)	CKSRYB103K50		
р с	24	(D 50 100)	DC1/16C472 I						_
R 9		(B,58,106)	RS1/16S472J		C 961	(B,51,78)	CKSRYB473K50		
R 9		(B,53,102)	RS1/16S473J			(A,61,78)	CEJQ100M16		
R 9		(B,53,106)	RS1/16S223J		C 981	(B,130,21)	CKSRYB334K10		
R 9	940	(B,84,78)	RS1/16S104J		C 983	(A,142,34)	CEJQ470M10		
R 9	941	(B,86,78)	RS1/16S104J						
					C 991	(B,15,60)	CKSRYB473K50		
R 9	961	(B,65,74)	RS1/16S102J		C 992	(A,14,50)	CEJQ221M10		
R 9		(B,61,74)	RS1/16S822J		C 994	(A,16,32)	CEJQ221M10		D
R 9		(A,17,57)	RD1/4PU271J		0 004	(71, 10,02)	OLUGEZINITO		
R 9									
		(A,12,65)	RD1/4PU221J		В				
R 9	993	(B,37,16)	RS1/16S222J						
					Unit Nun	nber:			
R 9	94	(B,44,41)	RS1/16S472J		Unit Nam	ne:Keyboard Unit			
					Omit Han	ic.itcyboard offic			
CA	PACITO	RS							
					MISCELLA	<u>INEOUS</u>			
C 1	51	(B,158,70)	CKSRYB224K10						
C 1		(B,158,72)	CKSRYB224K10		IC 1801	(B,26,93) IC	PD6340A		
		, ,			D 1803	(A,37,84) LED	SML-310PT		
C 1		(B,122,74)	CKSRYB105K6R3		D 1804	(A,37,96) LED	SML-310PT		
C 1		(B,141,75)	CKSRYB105K6R3		D 1805	(A,37,108) LED	SML-310PT		Ε
C 1	55	(A,121,80)	CEJQ4R7M35		D 1806	(A,37,48) LED	SML-310PT		
					D 1000	(A,37,46) LED	SIVIL-STUPT		
C 1	56	(A,141,80)	CEJQ4R7M35		5	(4.07.00) 1.75	0		
C 1	65	(B,139,69)	CKSRYB104K16		D 1807	(A,37,60) LED	SML-310PT		
C 1	66	(A,136,67)	CEJQ470M10		D 1808	(A,37,72) LED	SML-310PT		
C 1		(A,126,67)	CEJQ100M16		D 1809	(A,37,120) LED	SML-310PT		
C 3		(A,130,125)	CFTNA224J50		D 1810	(A,23,119) LED	CL-490S-WF-SD		
0 3	,,, i	(1,100,120)	OI IIWAZZ T OJU		X 1801	(B,33,83) Ceramic Resonator 5.00MHz			_
~ ~	000	(4.426.407)	CETNIA OO 4 ICO			,			
C 3		(A,126,107)	CFTNA224J50		IL 1801	(B,20,20) Lamp 40mA,14V	CEL1651		
C 3		(A,130,121)	CFTNA224J50		IL 1802	(B,20,150) Lamp 40mA,14V			
C 3		(A,120,107)	CFTNA224J50		IL 1002				
C 3	309	(B,133,128)	CKSQYB225K10			LCD	CAW1848		
C 3		(B,135,132)	CKSQYB225K10			_			F
					RESISTOR	<u>ks</u>			•
C 3	312	(A,101,121)	CEJQ100M16						
C 3		(B,98,138)	CKSRYB104K16		R 1801	(B,22,59)	RS1/16S222J		
0.0		(=,00,100)	SIGNIBIOANIO		R 1802	(B,24,59)	RS1/16S222J		
				ELL SESS		· · · · · · · · · · · · · · · · · · ·	- · · · 		
_		_		EH-2790	MP/XN/ID	7	-	43	
		5	6			7 -	8		

_		_	_		3 -	4
	Circ	uit Symbol and No.	Part No.	Circ	cuit Symbol and No.	Part No.
		-			•	
	R 1803	(B,14,158)	RS1/16S0R0J	R 310	(A,35,88)	RS1/16SS183J
	R 1805	(B,29,155)	RS1/16S0R0J	R 601	(B,43,59)	RS1/16S101J
	R 1807	(B,21,32)	RS1/4SA471J			
Α		, , ,		R 602	(B,41,62)	RS1/16S101J
	R 1808	(B,18,32)	RS1/4SA471J	R 606	(B,44,67)	RS1/16S0R0J
	R 1809	(B,32,122)	RS1/4SA471J	R 607	(B,43,56)	RS1/16SS0R0J
	R 1810	(B,36,91)	RS1/16S104J	R 608	(B,36,67)	RS1/16SS0R0J
				R 705	(B,50,59)	RS1/16SS221J
	CAPACITO	<u>DRS</u>				
				R 706	(B,57,61)	RS1/16SS221J
-	C 1801	(B,37,96)	CKSRYB103K50	R 707	(A,62,47)	RS1/16SS473J
	C 1802	(A,18,124)	CKSRYF104Z25	R 708	(B,50,57)	RS1/16SS221J
	0 1002	(1, 10, 124)	OKOKII 104223	R 710	(A,28,77)	RS1/16SS102J
				R 711	(B,44,53)	RS1/16SS221J
	C			1 711	(D,44,55)	10002210
				D 714	(D 54 52)	DC4/46CC470 I
В	Unit Nur	nber:CWX3096		R 714	(B,51,53)	RS1/16SS473J
Ь	Unit Nan	ne:CD Core Unit(S	10 1)	R 716	(A,63,56)	RS1/16SS472J
	Offic Ivan	ne.CD Core onit(S	10.1)	R 719	(B,49,45)	RS1/16SS221J
				R 720	(B,46,52)	RS1/16SS471J
	MISCELL	ANEOUS		R 724	(A,62,42)	RS1/16S473J
					, ,	
	IC 201	(A,39,24) IC	UPD63763GJ	R 725	(B,57,43)	RS1/16SS222J
	IC 201	(B,45,78) IC	NJM2885DL1-33	R 726	(A,52,41)	RS1/16SS103J
		,			· · · · /	
	IC 301	(A,49,88) IC	BA5835FP	R 727	(B,50,54)	RS1/16SS473J
	IC 701	(A,48,51) IC	PE5454A	R 729	(A,57,40)	RS1/16SS223J
	IC 703	(A,30,44) IC	S-812C33AUA-C2N	R 730	(A,65,41)	RS1/16SS473J
	Q 101	(A,20,22) Transistor	2SA1577	R 731	(A,53,41)	RS1/16SS104J
	Q 701	(B,62,59) Transistor	UN2111	R 737	(A,41,42)	RS1/16SS104J
С	L 203	(A,53,32) Inductor	CTF1389	R 740	(A,35,46)	RS1/16SS473J
				R 742	(A,50,41)	RS1/16SS104J
	L 207	(A,53,31) Inductor	CTF1389		,	
	L 209	(A,26,20) Inductor	CTF1389	R 746	(B,60,56)	RS1/16SS104J
	L 703	(A,64,49) Inductor	CTF1389	R 750	(A,39,59)	RS1/16SS473J
	X 201	(A,51,35) Ceramic Resonator 16.934MHz	CSS1603	R 754	(B,48,60)	RS1/16SS102J
	X 701	(A,59,53) Ceramic Resonator 4.00MHz	CSS1652	R 755	(A,43,61)	RS1/16SS102J
_	S 901	(A,15,43) Switch(HOME)	CSN1067	R 765	(B,51,40)	RAB4CQ221J
	S 903	(B,53,100) Switch(DSCSNS)		R 769	(B,48,40)	RAB4CQ221J
	0 000	(2,00,100) Smion(200010)	33,11000		(2, 13, 13)	
	S 904	(B,35,108) Switch(12EJ)	CSN1067	R 773	(B,39,37)	RAB4CQ221J
	S 905	(B,48,109) Switch(8EJ)	CSN1067	R 777	(B,48,51)	RS1/16SS221J
П				R 778	(B,48,52)	RS1/16SS221J
D	RESISTOR	<u>RS</u>		R 779	(B,45,54)	RS1/16SS221J
				R 901	(B,52,65)	RAB4CQ221J
	R 101	(A,22,24)	RS1/10SR2R4J			
	R 102	(A,22,26)	RS1/10SR2R4J	R 905	(B,54,60)	RS1/16SS221J
		(A,25,25)	RS1/10SR2R7J	R 906	(B,56,68)	RS1/16SS221J
	R 103	· · · · /		R 908	(B,45,69)	RS1/16SS0R0J
	R 201	(A,53,16)	RS1/16SS102J	R 910		RS1/16SS0R0J
	R 202	(A,55,21)	RS1/16SS333J		(B,44,69)	
				R 911	(B,40,73)	RS1/16SS102J
	R 221	(B,31,18)	RS1/16SS103J	0.5.5:-		
	R 222	(B,26,18)	RS1/16SS103J	<u>CAPACIT</u>	<u>UKS</u>	
	R 225	(A,27,8)	RS1/16SS103J			
	R 226	(A,27,7)	RS1/16SS393J	C 103	(B,14,8) 100µF/16V	CCH1504
_	R 227	(B,33,10)	RS1/16SS562J	C 105	(A,19,15)	CKSSYB104K10
Е	IX ZZI	(0,00,10)	NO 1/ 10000020	C 108	(B,39,16)	CKSSYB104K10
	D 000	(D. 200.0)	DC4/4CCC400 I			
	R 228	(B,36,8)	RS1/16SS122J	C 110	(A,18,6)	CKSSYB104K10
	R 229	(B,34,8)	RS1/16SS472J	C 201	(A,51,14)	CKSSYB102K50
	R 232	(B,35,10)	RS1/16SS122J			
	R 241	(B,42,28)	RS1/16SS333J	C 202	(B,50,17)	CKSSYB104K10
_	R 243	(B,44,28)	RS1/16SS333J	C 203	(A,55,23)	CKSSYB104K10
		•		C 204	(B,28,22)	CEVW220M6R3
	R 245	(A,39,38)	RS1/16SS333J	C 205	(A,53,25)	CKSSYB104K10
	R 301	(A,48,78)	RS1/16SS183J	C 208	(B,44,25)	CKSSYB104K10
		,		0 200	(0,77,20)	51.00 I D 1041(10
	R 302	(A,42,78)	RS1/16SS822J	0.555	(4.54.00)	01/00/20/20/20
	R 304	(A,50,78)	RS1/16SS183J	C 209	(A,54,29)	CKSSYB104K10
	R 305	(A,42,77)	RS1/16SS822J	C 212	(A,45,37)	CKSRYB105K10
F				C 216	(A,25,8)	CKSSYB332K50
	R 307	(A,36,85)	RS1/16SS183J	C 217	(A,28,12)	CKSSYB104K10
	R 308	(A,32,83)	RS1/16SS183J	C 218	(A,25,7)	CKSSYB473K10
	R 309	(A,38,89)	RS1/16SS183J	-		
	1. 505	(, 1,00,00)	1.01/10001000			
			BEI!	()/) [/]		
	44		DEH-2790MP/	XIV/ID		

DEH-2790MP/XN/ID

•		5	6
	Circu	uit Symbol and No.	Part No.
	C 219	(A,34,7)	CKSSYB104K10
	C 220	(A,33,11)	CKSSYB182K50
	C 221	(B,35,6)	CKSSYB104K10
	C 222	(B,35,8)	CCSSCH560J50
	C 223	(B,33,8)	CCSSCH4R0C50
	0 220	(2,00,0)	00000114110000
	C 224	(B,40,16)	CKSSYB104K10
	C 225	(B,45,14)	CKSSYB103K16
	C 226	(B,43,12)	CCSSCH680J50
	C 227	(A,45,10)	CCSSCH470J50
	C 228	(A,49,9)	CKSSYB103K16
	C 234	(B,36,81)	CEVW221M4
	C 237	(B,38,29)	CKSSYB104K10
	C 239	(B,34,10)	CCSSCH220J50
	C 242	(B,58,32)	CKSSYB104K10
	C 243	(B,39,76)	CKSSYB104K10
		(=,==,:=)	
	C 244	(B,49,70)	CKSSYB104K10
	C 246	(A,23,19)	CKSSYB104K10
	C 251	(B,28,31)	CKSRYB102K50
	C 260	(A,54,25)	CKSSYB104K10
	C 301	(A,43,78)	CKSSYB221K50
	C 302	(A,50,79)	CKSSYB221K50
	C 303	(A,37,85)	CKSSYB472K25
	C 304	(A,39,89)	CKSSYB103K16
	C 305	(B,34,92)	CEVW101M16
	C 307	(B,56,90)	CKSSYB104K10
	0.004	(D. 40.00)	000001400150
	C 601	(B,46,60)	CCSRCH102J50
	C 602	(B,41,65)	CCSRCH102J50
	C 701	(A,64,46)	CKSSYB104K10
	C 703 C 706	(B,50,61)	CKSSYB103K16 CKSSYB104K10
	C 700	(B,50,62)	CK351B104K10
	C 707	(A,36,45)	CKSSYB104K10
	C 712	(A,22,42)	CKSRYB224K16
	C 714	(B,60,45)	CKSSYB104K10
	C 716	(A,61,40)	CKSSYB103K16
	C 722	(B,52,48)	CKSQYB475K6R3
	C 723	(A,26,41)	CKSRYB105K10
	C 903	(B,56,70)	CKSSYB471K50
	C 906	(A,40,77)	CKSRYB224K16
	C 907	(A,47,76)	CKSSYB103K16
	C 910	(B,60,71)	CKSQYB225K10
		,	

Miscellaneous Parts List

	Pickup Unit(P10)(Service)	CXX1641
M 1	Motor Unit(SPINDLE)	CXC4440
M2	Motor Unit/LOADING/CARRIAGE	CVB9033

DEH-2790MP/XN/ID

6. ADJUSTMENT 6.1 CD ADJUSTMENT

Α

- 1) Cautions on adjustments
- In this product the single voltage (3.3V) is used for the regulator. The reference voltage is the REFO1 (1.65V) instead of the GND.
- If you should mistakenly short the REFO1 with the GND during adjustment, accurate voltage will not be obtained, and the servo's misoperation will apply excessive shock to the pickup. To avoid such problems:
- a. Do not mix up the REFO1 with the GND when connecting the (-) probe of measuring instruments. Especially on an oscilloscope, avoid connecting the (-) probe for CH1 to the GND.
- b. In many cases, measuring instruments have the same potential as that for the (-) probe. Be sure to set the measuring instruments to the floating state.
- c. If you have mistakenly connected the REFO1 to the GND, turn off the regulator or the power immediately.
- Before mounting and removing filters or leads for adjustment, be sure to turn off the regulator.
- For stable circuit operation, keep the mechanism operating for about one minute or more after the regulator is turned on.
- In the test mode, any software protections will not work. Avoid applying any mechanical or electrical shock to the mechanism during adjustment.
- The RFI and RFO signals with a wide frequency range are easy to oscillate. When observing the signals, insert a resistor of 1k ohms in series.
- The load and eject operation is not guarantied with the mechanism upside down. If the mechanism is blocked due to mistaken eject operation, reset the product or turn off and on the ACC to restore it.

2) Test mode

This mode is used to adjust the CD mechanism module.

• To enter the test mode.

While pressing the 4 and 6 keys at the same time, reset.

• To exit from the test mode.

Turn off the ACC and back up.

Notes

- a. During ejection, do not press any other keys than the EJECT key until the loaded disc is ejected.
- b. If you have pressed the (\rightarrow) key or (\leftarrow) key during focus search, turn off the power immediately to protect the actuator from damage caused by the lens stuck.
- c. For the TR jump modes except 100TR, the track jump operation will continue even if the key is released.
- d. For the CRG move and 100TR jump modes, the tracking loop will be closed at the same time when the key is released.
- e. When the power is turned off and on, the jump mode is reset to the single TR (91), the RF amp gain is set to 0dB, and the auto-adjustment values are reset to the default settings.

Flow Chart

5

*1)		TYP		\rightarrow	-6dB	\rightarrow	-12dB	
	TRK	MIN	SEC		TRK 06 MIN 06 SEC 06		TRK 12 MIN 12 SEC 12	

*2) Focus Close \rightarrow S.Curve check setting \rightarrow FEQ measurement setting TRK 00 MIN 00 SEC 01 (TRK 90 MIN 90 SEC 99) TRK 01 MIN 01 SEC 01 \rightarrow FEQ measurement setting TRK 02 MIN 02 SEC 02

*3) F.Offset Display \to T.Offset Display \to Switch to the order of the original display \uparrow

*4) 1TR / 32TR / 100TR

*5) Single TR \rightarrow 32TR \rightarrow 100TR \rightarrow CRG Move 9x(8x) : 91(81) 92(82) 93(83) 94(84)

*6) Only at the time of CRG move, 100TR jump

*7) TRK/MIN/SEC \rightarrow F.AGC \rightarrow T.AGC \rightarrow F Bias \rightarrow RF AGC \uparrow

*8) CRG motor voltage = 2[V]

*9) Applicability: A, B, C, D, E, F							
TYP(1X)	\rightarrow 2X	\rightarrow 1X					
TRK MIN SEC	TRK 22 MIN 22 SEC 22	TRK 11 MIN 11 SEC 11					

As for the double speed (2x), audio output cannot be supported $\label{eq:control} % \begin{center} \begin{cen$

[Key]	Operation	
[Key]	Test Mode	
[BAND]	Power On / Off	
[→]	CRG + / TR Jump + (Direction of the external surface)	
[←]	CRG - / TR Jump - (Direction of the internal surface)	
[1]	U.CLS and AGC and Applicable servomechanism / AGC, AGC display setting	
[2]	RF Gain switching / Offset adjustment display / T.Balance adjustment / T.Open	
[3] Close, S.Curve / Rough Servo and RF AGC / F, T, RF AGC		
[4]	SPDL 1X / 2X switching As for the double speed (2x), audio output cannot be supported.	
[5]	Error Rate measurement 1st - ON : ERR count Beginning (30Sec) 2nd - ON : BER display data [%]	
[6]	F.Mode switching / Tracking Close / CRG • TR Jump switching	

DEH-2790MP/XN/ID

47

В

С

D

Ε

5

6

6.2 CHECKING THE GRATING AFTER CHANGING THE PICKUP UNIT

· Note:

The grating angle of the PU unit cannot be adjusted after the PU unit is changed. The PU unit in the CD mechanism module is adjusted on the production line to match the CD mechanism module and is thus the best adjusted PU unit for the CD mechanism module. Changing the PU unit is thus best considered as a last resort. However, if the PU unit must be changed, the grating should be checked using the procedure below.

• Purpose :

To check that the grating is within an acceptable range when the PU unit is changed.

· Symptoms of Mal-adjustment :

If the grating is off by a large amount symptoms such as being unable to close tracking, being unable to perform track search operations, or taking a long time for track searching.

· Method:

Measuring Equipment
 Oscilloscope, Two L.P.F.

Measuring Points
Disc
Mode
E, F, REFO1
TCD-782
TEST MODE

CD CORE UNIT(S10.1)

Checking Procedure

- 1. In test mode, load the disc and switch the 3V regulator on.
- 2. Using the \rightarrow and \leftarrow buttons, move the PU unit to the innermost track.
- 3. Press key 3 to close focus, the display should read "91". Press key 2 to implement the tracking balance adjustment the display should now read "81". Press key 3. The display will change, returning to "81" on the fourth press.
- 4. As shown in the diagram above, monitor the LPF outputs using the oscilloscope and check that the phase difference is within 75°. Refer to the photographs supplied to determine the phase angle.
- 5. If the phase difference is determined to be greater than 75° try changing the PU unit to see if there is any improvement. If, after trying this a number of times, the grating angle does not become less than 75° then the mechanism should be judged to be at fault.

Note

Because of eccentricity in the disc and a slight misalignment of the clamping center the grating waveform may be seen to "wobble" (the phase difference changes as the disc rotates). The angle specified above indicates the average angle.

Hint

Reloading the disc changes the clamp position and may decrease the "wobble".

DEH-2790MP/XN/ID

48

F

Ε

- 2

5

7

6

Ech \rightarrow Xch 20mV/div, AC Fch \rightarrow Ych 20mV/div, AC

8

В

С

D

Е

F

•

5

DEH-2790MP/XN/ID

Error Messages

Error is displayed with number for Error cause when CD is inoperative or stops with Error during operation. The purpose is to reduce nonsense calls from users as well as to assist all related analysis and repair for defects at service station.

- (1) Basic Display Method
- 1) When CSMOD (CD mode area for system) is SERRORM, Error code will be written in DMIN (minutes area for display), DSEC (seconds area for display). The same data shall be written in DMIN and DSEC. DTNO is blank as usual.
- 2) Display Example of Head Unit

The following is about LCD display ability. xx is Error number.

8 digits
ERROR-xx

6 digits	
ERR-xx	
OR	
Err vv	П

4 digits	
E-xx	

(2) Error Code List

No.	Classification	Contents	Details • Cause		
10	Electricity	Carriage Home NG	CRG can't move to the inner.		
			CRG can't move from the inner.		
			ightarrow HOME SW failure, CRG movement failure.		
11	Electricity	Focus Search NG	Focus can't be caught.		
			ightarrow Back of Disc / Severe dirt and vibration.		
12	Electricity	Spindle Lock NG	Not spindle, lock. Wrong subcode (can't read).		
		Subcode NG	ightarrow Defective Spindle. Scratch and dirt on Disc. Intense vibration.		
		RF-amp NG	The appropriate gain of the RF amp cannot be obtained.		
			ightarrow Defective spindle.		
			ightarrow Scratched or dirty disc. Severe vibration. Abnormal CD signals.		
			ightarrow Blanc CD-R disc. Disc inserted upside down.		
17	Electricity	Setup NG	AGC protection doesn't work, out of Focus soon.		
			ightarrow Scratch on Disc/Severe dirt and vibration.		
22	Disc	Impossible to play	There is no playable MP3 or WMA file present in a disc.		
			ightarrow No MP3 or WMA file exists in a CD-ROM disc inserted.		
23	Disc	File Format NG	Contents are stored in an incompatible file format.		
			\rightarrow The contents in a CD-ROM disc inserted are recorded in a file format other than ISO9660 Level-1 and 2.		
30	Electricity	Search Time Out	Can't reach the target address.		
			ightarrow Defective CRG/tracking, or scratch on Disc.		
44	Disc	Impossible to play	There is no playable TRK No. present in a disc.		
			\rightarrow All TRK Nos. In a disc inserted are specified as a track which should be skipped, in the track skip information.		
50	Mecha	Disc Load / Eject NG	Disc loading/ejection cannot be complete.		
			\rightarrow Foreign objects entered into the mechanism. Disc caught in between during loading/ejection.		
A0	System	Power NG	Power supply (VD) isn't connected to the ground.		
			ightarrow Defective SW transistor. Abnormal power (failed connector)		

Note: Error doesn't display in mechanism only. (CD off causes mechanism off)

If TOC can't be read, error wouldn't occur, but mechanism still continues its operation.

The upper digits of error code is mainly classified by 3 kinds as follows:

1x: Setup related error, 3x: Search related error, Ax: Other errors.

DEH-2790MP/XN/ID

50

F

Ε

6.4 SYSTEM MICROCOMPUTER TEST PROGRAM

(S

PCL Output

In the normal operation mode (with the detachable panel installed, the ACC switched ON, the standby mode cancelled), shift the TESTIN (Pin 15) terminal to H. The clock signal is output from the PCL terminal (Pin 14). The frequency of the clock signal is 786.432kHz that is one 16th of the fundamental frequency. The clock signal should be 786.432kHz ± 31.5 Hz. If the clock signal is out of the range, the X'tal (X601) should be replaced with new one.

DEH-2790MP/XN/ID

R

В

С

7. GENERAL INFORMATION

7.1 DIAGNOSIS

7.1.1 DISASSEMBLY

- Removing the Case (not shown)
- 1. Remove the Case.

■ Removing the CD Mechanism Module (Fig.1)

В

С

Remove the four screws.

Disconnect the connector and then remove the CD Mechanism Module.

Removing the Grille Assy (Fig.1)

Release the two latchs and then remove the Grille Assy.

CD Mechanism Module

Grille Assy

Fig.1

Removing the Tuner Amp Unit (Fig.2)

Remove the screw.

Remove the three screws.

Straighten the tabs at three locations indicated.

Remove the screw and then remove the Tuner Amp Unit.

Tuner Amp Unit

Fig.2

DEH-2790MP/XN/ID

- 1. Hold the top and bottom frame.
- 2. Do not squeeze top frame's front portion too tight, because it is fragile.

Upper Frame

Removing the Upper and Lower Frames

- 1. With a disc clamped, remove the four springs (A), the two springs (B), the two springs (C), and the four screws.
- 2. To remove the upper frame, open it on the fulcrum A.
- 3. While lifting the carriage mechanism, remove the three dampers.
- 4. With the frames removed, insert the connectors coming from the main unit and eject the disc.

Caution: Before installing the carriage mechanism in the frames, be sure to apply some alcohol to the dampers and set the mechanism to the clamp mode.

DEH-2790MP/XN/ID

=

53

В

D

Е

ь

2

Removing the Pickup Unit

В

Ε

1. Apply shorting solder to the Pickup flexible cable. Disconnect the cable.

- 2. Set the mechanism to the clamp mode.
- 3. Remove the lead wires from the inner holder.
- 4. Remove the washer, styling holder, change arm, and pickup lock arm.
- 5. While releasing from the hook of the inner holder, lift the end of the feed screw.

Caution: In assembling, move the planet gear to the load/eject position before setting the feed screw in the inner holder.

DEH-2790MP/XN/ID

1

3

7.1.2 CONNECTOR FUNCTION DESCRIPTION

Pin No.		Pin No.	
1	B.UP	9	RL-
2	GND	10	FL-
3	ACC	11	RL+
4	NC	12	FL+
5	NC	13	RR-
6	B.REM	14	FR-
7	NC	15	RR+
8	NC	16	FR⊥

С

D

Е

F

55

DEH-2790MP/XN/ID

8

5

7.2 PARTS 7.2.1 IC

● Pin Functions(PE5447A)

Pin No.	Pin Name	I/O	Function and Operation	
1	MODEL1	I	Model select input	
2, 3	NC		Not used	
4	AVSS		GND	
5, 6	NC		Not used	
7	AVREF1		VDD	
8	KYDT	ı	Display microcomputer data input	
9	DPDT	0	Display microcomputer communication data output	
10	ADPW	0	A/D converter power supply output	
11	TUNPDI	Ī	PLL data input	
12	TUNPDO	0	PLL data output	
13	TUNPCK	0	PLL clock output	
14	PCL	0	Clock adjustment output	
15	TESTIN	Ī	Test program input	
16	BSI	i	P-BUS serial data input	
17	BDATA	0	P-BUS serial data output	
18	BSCK	I/O	P-BUS serial clock input/output	
19, 20	NC	-, -	Not used	
21	SWVDD	0	Display microcomputer chip select output	
22	ILMPW	0	Illumination power output	
23	NC		Not used	
24	XRST	0	CD LSI reset control output	
25	XA0	Ö	CD LSI command data control output	
26	XSTB	0	CD LSI strobe output	
27	XTALEN	Ö	CD LSI ceramic oscillator oscillation output	
28	CONT	0	Driver output	
29	LOEJ	0	Load/eject output	
30	CLCONT	0	Driver control output	
31	NC		Not used	
32	DALMON	0	Output for dark current reduction circuit	
33	VSS		GND	
34	BRST	0	B-PUS reset signal output	
35	BRXEN	1/0	P-BUS reception enable signal input/output	
36	NC	1/0	Not used	
37	ROMDATA	0	ROM collection data output	
38	ROMCLK	0	ROM collection clock output	
39	ROMCS	0	ROM collection chip select output	
40	RECEIVE	0	RDS decoder receiving output(Not used)	
41	VDCONT	0	VD output	
42	NC	0	Not used	
43	SYSPW	0	System power output	
44, 45	NC		Not used	
44, 45	STRKEY2	ı	Wired remote control input	
46	NC	1	Not used	
47	MUTE	0	System mute output	
49	ANTPW	0	Auto antenna control output	
50	NC		Not used	
51	VST	0	E.VOL strobe output	
	VDT			
52	VCK	0	E.VOL alook output	
53 54	NC	0	E.VOL clock output	
			Not used	
55	TUNPCE2	0	PLL chip enable output 2	
<u>56</u>	TUNPCE	0	PLL chip enable output	
57	RDT	1	RDS LK input(Not used)	
58	RDSLK	1	RDS clock input(Not used)	
59	RDS57K	I	RDS 57K input(Not used)	
60	RESET		Reset	
61	LDET	1	PLL lock detection input	

DEH-2790MP/XN/ID

56

Е

2

Pin No.	Pin Name	I/O	Function and Operation
62	RCK	I/O	RDS clock input
63	ASENS	i	ACC sense input
64	BSENS	i	Back up sense input
65	DSENS	i	Grille detach sense input
66	SOURCE	i	Source sense input
67	VSS		GND
68	VDD		VDD
69, 70	X2, 1		Crystal oscillator connection pin
71	IC(VPP)		GND
72	NC		Not used
73	VSS		VSS
74	AVDD		VDD
75	AVREF1		VDD
76	SL	I	Signal level input
77	TEMP	i	Temperature detection input
78	VDSENS	i	VD power supply short circuit input
79	BSRQ	i	P-BUS serial pole request input
80	STRKEY1	I	Wired remote control input(Not used)

6

* PE5447A

5

IC's marked by * are MOS type.

Be careful in handling them because they are very liable to be damaged by electrostatic induction.

7

8

В

С

D

Е

BA33BC0FP

5

DEH-2790MP/XN/ID

8

● Pin Functions(PD6340A)

1

Α

В

С

D

Ε

Pin No.	Pin Name	I/O	Function and Operation
1-5	SEG4-0	0	LCD segment output
6-9	COM3-0	0	LCD common output
10	VLCD		LCD drive power supply
11-14	KST3-0	0	Key strobe output
15,16	KDT0,1	I	Key data input (analogue input)
17	REW	1	Remote control reception input
18	DPDT	1	Display data input
19	NC		Not used
20	KYDT	0	Key data output
21	MODA		GND
22	X0		Crystal oscillator connection pin
23	X1		Crystal oscillator connection pin
24	VSS		GND
25,26	KDT2,3	I	Key data input
27	NC		Not used
28	KST4	0	Key strobe output
29-32	NC		Not used
33-55	SEG35-13	0	LCD segment output
56	VDD		Power supply
57-64	SEG12-5	0	LCD segment output

3

2

* PD6340A

DEH-2790MP/XN/ID

58

_

3

■ Din Eunations/HDD62762C I)

5

Pin No.	Pin Name	I/O	Function and Operation	
1	D.VDD		Power supply for digital circuits	
2	D1.GND		GND for 1.6V digital circuits	
3	RESET		Input of reset	
4-8	AB12-8	i	Address bus 12-8 from the microcomputer	
9-16	AD7-0	1/0	Address/data bus 7-0 to the microcomputer	
17	CS CS	1/0	Chip selection	
18	ASTB	<u> </u>	Address strobe	
19	READ			
		<u> </u>	Control signals(read)	
20	WRITE		Control signals(write)	
21	WAIT	0	Control signals(wait)	
22	INTQ	0	Interruption signals to the external microcomputer	
23, 24	IFMODE0, 1	l l	Switching the microcomputer I/F 0, 1	
25	D1.VDD		Power supply for 1.6V digital circuits	
26	DA.VDD		Power supply for DAC	
27	ROUT	0	Output of audio for the right channel	
28	DA.GND		GND for DAC	
29	REGC		Connected to the capacitor for band gap	
30	DA.GND		GND for DAC	
31	LOUT	0	Output of audio for the left channel	
32	DA.VDD		Power supply for DAC	
33	X.VDD		Power supply for the crystal oscillator	
34	XTAL	ı	Connected to the crystal oscillator(16.9344MHz)	
35	XTAL	Ö	Connected to the crystal oscillator(16.9344MHz)	
36	X.GND		Ground for the crystal oscillator	
37	VDDREG15		Control of 1.6V regulator	
38	PWMSW0		Setup 0 for PWM output(SD, MD)	
39-41	TEST3-1	i	Connected to GND	
42	PWMSW1	i i	Setup 1 for PWM output(FD, TD)	
43	TESTEN	 	Connected to GND	
44	D1.GND	- '	GND for 1.6V digital circuits	
45	DIN			
-			Input of audio data	
46	DOUT	0	Output of audio data	
47	SCKIN	I	Clock input for audio data	
48	SCKO	0	Clock output for audio data	
49	LRCKIN	I	Input of LRCK for audio data	
50	LRCK	0	Output LRCK for audio data	
51	XTALEN		Permission to oscillate 16.9344MHz	
52	D1.VDD		Power supply for 1.6V digital circuits	
53	RFCK/HOLD	0	Output of RFCK/HOLD signal	
54	WFCK/MIRR	0	Output of WFCK/MIRR signal	
55	PLCK/RFOK	0	Output of PLCK/Output of RFOK	
56	LOCK/RFOK	0	Output of LRCK/Output of RFOK	
57	C1D1/C8M	0	Information on error correction/C8M : 8MHz	
58	C1D2/C16M	0	Information on error correction/C16M: 16MHz	
59	C2D1/RMUTE	0	Information on error correction/Mute for Rch	
60	C2D2/LMUTE	0	Information on error correction/Mute for Lch	
61	C2D3/SHOCK	0	Information on error correction/Detection of vibration	
62	D1.GND		GND for 1.6V digital circuits	
63	C33M	0	Output of 33.8688MHz(CLK for SDRAM)	
64	(RCS)	0	DRAM CS	
65	RA11	0	Output of DRAM address 11	
66	(CKE)	0	Output of DRAM CKE	
67	RAS	0	Output of DRAM RAS	
68	CASO(LDQM)	0	Output of DRAM lower CAS(LDQM)	
69	CAS1(UDQM)	0	Output of DRAM upper CAS(UDQM)	
70	WE (DAG)	0	Output of DRAM WE	
71	OE(CAS)	0	Output of DRAM OE(CAS)	
72	D.GND		Ground for digital circuits	
73-88	RDB0-15	I/O	Input/output of DRAM data0-15	
89-99	RA0-10	0	Output of DRAM address0-10	

DEH-2790MP/XN/ID 7 8

Α

В

С

D

Ε

F

2 3 4

Pin No.	Pin Name	I/O	Function and Operation	
100	D.VDD		Power supply for digital circuits	
101	FD+	0	Output of focus drive PWM +	
102	FD-	0	Output of focus drive PWM -	
103	TD+	0	Output of tracking drive PWM +	
104	TD-	0	Output of tracking drive PWM -	
105	SD+	0	Output of thread drive PWM +	
106	SD-	0	Output of thread drive PWM -	
107	MD+	0	Output of spindle drive PWM +	
108	MD-	0	Output of spindle drive PWM -	
109	REFOUTSV	0	REFOUT for servo	
110	AD.VDD		Power supply for ADC	
111	EFM	0	Output of EFM signals	
112	ASY	I	Input of asymmetry	
113	ATEST	0	Analog tests	
114	RFI	I	Input of RF	
115	AD.GND		Ground for the analog system	
116	AGCO	0	Output of RF	
117	C3T	0	Connection to the capacitor for detecting 3T	
118	AGCI	I	Input of AGC	
119	RFO	0	Output of RF(AGC)	
120, 121	EQ2, 1	ı	Equalizer 2, 1	
122	RF2-	I	Reversal input of RF2	
123	RF-	I	Reversal input of RF	
124	A.GND		Ground for the analog system	
125	Α	I	Input of A	
126	С	I	Input of C	
127	В	ı	Input of B	
128	D	I	Input of D	
129	F	ı	Input of F	
130	E	I	Input of E	
131	VREFIN	ı	Input of reference voltage	
132	A.VDD		Power supply for the analog system	
133	REFOUT	0	Output of reference voltage	
134	REFC	I	Connected to the capacitor for output of REFOUT	
135	FE-	I	Reversal input of FE	
136	FEO	0	Output of FE	
137	ADIN	I	Input of FE, TE A/D converter	
138	TE-	I	Reversal input of TE	
139	TEO	0	Output of TE	
140	TE2	0	TE2	
141	TEC	I	TEC	
142	LD	0	Output of LD	
143	PD	I	Input of PD	
144	D.GND		Ground for digital circuits	

* UPD63763GJ

1

Α

В

С

D

Е

DEH-2790MP/XN/ID

3

Pin Functions(PF5454A)

5

5

	tions(PE5454A)	1/0	Гашаа	Function and Operation
Pin No.	Pin Name	I/O	Format	Function and Operation
1	AVREF			A power supply Positive power supply(5V)
2	AVSS			A power supply GND
3	RFOK	0	С	Output of state of RFOK
4	NC			Not used
5	EVDD			E power supply Positive power supply
6, 7	NC			Not used
8	IC/FLMD0			IC : VSS direct connection/FLMOD0 : Pull-down
9	VDD			Positive power supply(5V)
10	REGC			Connected to the capacity stabilizing output of the regulator
11	VSS			GND
12	X1	I		Oscillator connection for mainclock
13	X2			Oscillator connection for mainclock
14	RESET	1		System reset input
15	XT1	i		Connected to the oscillator for subclock
		•		(connected to VSS via the resistor)
16	XT2			Connected to the oscillator for subclock(Open)
17	NC			Connected to EVDD or EVSS via the resistor
18	NC			Not used
19	XINT		С	CD LSI interruption signal input
	NC			Connected to VSS via the resistor
20		- 1		
21	BRST	<u> </u>		P-Bus reset input
22	BSI	<u> </u>	_	P-Bus serial data input
23	BSO	0	С	P-Bus serial data output
24	BSCK	I/O	/C	P-Bus serial clock input/output
25	FTXD	0	С	For flash rewriting(transmitted signal)
26	FRXD	ı		For flash rewriting(received signal)
27	BRXEN	I/O	/C	It is possible to receive P-Bus
28	BSRQ	I/O	/C	P-Bus service request demand
29	NC			Not used
30	DSCSNS	I		Disc state sense input
31	8EJ(S905)	I		Input of detection of 8 cm disc ejection
32	12EJ(S904)	I		Input of detection of 12 cm disc ejection
33	EVSS			E power supply GND
34	EVDD			E power supply Positive power supply
35, 36	SRAMLEVEL0, 1	0	С	SRAM level meter output
37	EMPH	0	C	Emphasis information output
38	EMPH	0	C	Emphasis information output
39-42	NC			Not used
43	ADENA	0	С	A/D reference voltage supply control output
43	LRCKOK	0	C	(DOUT mute output)
	SRAMLEVEL2	0	C	SRAM level meter output
45				
46	CD3VON	0	С	CD +3.3V power supply control output
47	CONT	0	С	Servo driver power supply control output
48	XRST	0	С	CD LSI reset control output
49	VDCONT	0	C	VD power supply control output
50	ROMDATA	I/O	/C	E2PROM data input/output
51	ROMCS	0	С	E2PROM chip selection output
52	ROMCK	0	С	E2PROM clock output
53	LOEJ	0	С	The direction change output of LOAD/EJECT
54	CLCONT	0	С	Driver input change output
55	CDMUTE	0	С	CD mute control output
56-58	NC			Not used
59	XCS	0	С	CD LSI chip selection output
60	NC			Not used
61	XWAIT	I		CD LSI write control signal output
62	CLKOUT	0	С	Internal system clock output(Open)
63	LOCK	ı		Spindle lock input
64	NC	•		Not used
65	XWRITE	0		CD LSI write control signal output
66	NC			Not used
00	NO			110t u36u

DEH-2790MP/XN/ID 7 8

В

С

D

Ε

61

F

Pin No.	Pin Name	I/O	Format	Function and Operation
67	XREAD	0		CD LSI read control signal output
68	XASTB	0		CD LSI address strobe output
69	BVSS			B power supply GND
70	BVDD			B power supply Positive power supply
71-83	AD0-12	I/O	/C	Address/data Bus 0-12
84-86	NC			Not used
87	FMODE	I		For flash rewriting Connected to VSS via the resistor
88	FLRQ	0	С	For flash rewriting
89-93	NC			Not used
94	CSENS	I		Flap closing sense input
95	TYPE_A/D	I		CD-DA analog/digital output change setup
96	TESTIN	I		Chip check test program starting input
97	HOME	I		Home SW sense input
98	TEMP			Temperature information sense input
00	VIDOENIO			100

Not used

VD power supply short sense input

3

3

2

* PE5454A

99

100

VDSENS

NC

Α

В

С

D

Ε

F

Format	Meaning
С	CMOS

NJM2885DL1-33

DEH-2790MP/XN/ID 62

● FM/AM Tuner Unit

5

7

6

No.	Symbol	I/O	Explain		
1	AMANT	-	AM antenna input	AM antenna input high impedance AMANT pin is connected with	
				an all antenna by way of 4.7μH. (LAU type inductor) A series circuit	
				including an inductor and a resistor is connected with RF ground for	
				the countermeasure against the hum of power transmission line.	
2	RFGND		RF ground	Ground of antenna block	
3	FMANT		FM antenna input	Input of FM antenna 75 Ω Surge absorber(DSP-201M-S00B) is necessary.	
4	VCC		power supply	The power supply for analog block. D.C 8.4V \pm 0.3V	
5	SL	0	signal level	Output of FM/AM signals level	
6	CE2	-1	chip enable-2	Chip enable for EEPROM "Low" active	
7	NC		non connection	Not used	
8	CE1	- [chip enable-1	Chip enable for AF•RF "High" active	
9	CK	ı	clock	Clock	
10	DI	П	data in	Data input	
11	NC		non connection	Not used	
12	OSCGND		osc ground	Ground of oscillator block	
13	ROM_VDD		power supply	Power supply for EEPROM pin 13 is connected with a power supply of	
				micro computer.	
14	DO	0	data out	Data output	
15	DGND		digital ground	Ground of digital block	
16	NC		non connection	Not used	
17	VDD_3.3		power supply	The power supply for digital block. $3.3V \pm 0.2V$	
18	NC		non connection	Not used	
19	NC		non connection	Not used	
20	NC		non connection	Not used	
21	NC		non connection	Not used	
22	AUDIOGND		audio ground	Ground of audio block	
23	L ch	0	L channel output	FM stereo "L-ch" signal output or AM audio output	
24	R ch	0	R channel output	FM stereo "R-ch" signal output or AM audio output	

DEH-2790MP/XN/ID

5 **a** 6 **b** 7 **a** 8

8

В

С

D

Е

● LCD(CAW1848)

Α

В

С

D

Е

F

64

DEH-2790MP/XN/ID

3

4

Completes power-on operation.(After that, proceed to each source operation.)

DEH-2790MP/XN/ID

65

В

С

D

7.4 CLEANING

A

В

D

Е

Before shipping out the product, be sure to clean the following portions by using the prescribed cleaning tools:

Portions to be cleaned	Cleaning tools
CD pickup lenses	Cleaning liquid : GEM1004
	Cleaning paper : GED-008

DEH-2790MP/XN/ID

Head unit

1 CLOCK button

Press to change to the clock display.

② BTB button

Press to select various BTB (bass treble booster) setting.

Press and hold to turn loudness on or off.

3 Disc loading slot

Insert a disc to play.

4 DISPLAY button

Press to select different displays.

5 EJECT button

Press to eject a CD from your built-in CD player.

6 AUDIO button

Press to select various sound quality controls.

⑦ ▲/▼/◄/▶ buttons

Press to do manual seek tuning, fast forward, reverse and track search controls. Also used for controlling functions.

8 DETACH button

Press to remove the front panel from the head unit.

9 BAND button

Press to select among three FM bands and one AM band and to cancel the control mode of functions.

10 LOCAL/BSM button

Press to turn local function on or off.

Press and hold to turn BSM function on or off.

1 1–6 buttons

Press for preset tuning.

12 SOURCE button

This unit is turned on by selecting a source. Press to cycle through all the available sources.

① VOLUME (+/-) buttons

Press to increase or decrease the volume.

DEH-2790MP/XN/ID

Ε

5

'

Playing a CD

1 Track number indicator

Shows the track currently playing.

2 Play time indicator

Shows the elapsed playing time of the current track.

1 Insert a CD into the CD loading slot.

Playback will automatically start.

- Be sure to turn up the label side of a disc.
- After a CD has been inserted, press **SOURCE** to select the built-in CD player.
- You can eject a CD by pressing **EJECT**.
- 2 Use VOLUME to adjust the sound level.
- 3 To perform fast forward or reverse, press and hold ◀ or ▶.
- If you select **ROUGH**, pressing and holding ◀ or ▶ enables you to search every 10 tracks in the current disc.

4 To skip back or forward to another track, press ◀ or ▶.

Pressing ► skips to the start of the next track. Pressing ◀ once skips to the start of the current track. Pressing again will skip to the previous track.

 The built-in CD player plays one, standard, 12cm or 8-cm (single) CD at a time. Do not use an adapter when playing 8-cm CDs.

- Do not insert anything other than a CD into the CD loading slot.
- If an error message such as **ERROR-11** is displayed. ■

Repeating play

Repeat play lets you hear the same track over again.

• Press 5 repeatedly to turn repeat play on or off.

When repeat play is on, **RPT** appears in the display.

■ If you perform track search or fast forward/reverse, repeat play is automatically cancelled. ■

Playing tracks in a random order

Random play lets you play back tracks on the CD in a random order.

• Press 4 repeatedly to turn random play on or off.

When random play is on, **RDM** appears in the display. ■

Scanning tracks of a CD

Scan play lets you hear the first 10 seconds of each track on the CD.

1 Press 3 to turn scan play on.

SCAN appears in the display. The first 10 seconds of each track is played.

■ After scanning of a CD is finished, normal playback of the tracks will begin again. ■

Pausing CD playback

Pause lets you temporarily stop playback of the CD.

• Press 6 repeatedly to turn pause on or off.

When pause is on, **PAUSE** appears in the display. \blacksquare

DEH-2790MP/XN/ID

· **=**

В

About the fixing screws for the front panel

1

Α

В

D

Е

2

3

If you do not operate the Detaching and Replacing the Front Panel Function, use the supplied fixing screws and fix the front panel to this unit.

DEH-2790MP/XN/ID

70

3

Jigs List

В

С

D

Е

Name	Jig No.	Remarks	
Test Disc	TCD-782	Checking the grating	
L.P.F.		Checking the grating (Two pieces)	

72 DEH-2790MP/XN/ID

Pioneer sound.vision.soul

Service Manual

ORDER NO. CRT3394

CD MECHANISM MODULE(S10.1AAC)

CX-3158

- This service manual describes the operation of the CD mechanism module incorporated in models listed in the table below.
- When performing repairs use this manual together with the specific manual for model under repair.

Model	Service Manual	CD Mechanism Module	
DEH-P770MP/XN/UC	CRT3333	CXK5617	
DEH-P7700MP/XN/EW	CRT3334	CXK5663	
DEH-P670MP/XN/UC	CRT3335	CXK5663	
DEH-3730MP/XN/EW	CRT3395	CXK5663	
DEH-3700MP/XN/EW			
DEH-2750MP/XN/GS	CRT3396	CXK5663	
DEH-2790MP/XN/ID			
DEH-2770MP/XN/CS			
DEH-3700MP/XU/UC	CRT3397	CXK5668	
DEH-4700MP/XU/EW	CRT3398	CXK5668	
DEH-4700MPB/XU/EW			
DEH-3750MP/XU/GS	CRT3399	CXK5668	
DEH-3770MP/XU/CS		CXK5669	
DEH-3750MP/XU/CN			
DEH-P470MP/XM/UC	CRT3400	CXK5668	
DEH-P4700MP/XM/UC			
DEH-P4750MP/XM/GS	CRT3401	CXK5668	
DEH-P4790MP/XM/ID			
DEH-P4770MP/XM/CS			
DEH-P3700MP/XU/UC	CRT3402	CXK5668	

CONTENTS

1.	CIRCUIT DESCRIPTIONS	2
2.	MECHANISM DESCRIPTIONS	19
3.	DISASSEMBLY	2

PIONEER CORPORATION
4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153-8654, Japan PIONEER ELECTRONICS (USA) INC.
PIONEER EUROPE NV Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium PIONEER ELECTRONICS ASIACENTRE PTE.LTD. 253 Alexandra Road, #04-01, Singapore 159936

1. CIRCUIT DESCRIPTIONS

Recently, most CD LSI's have included DAC, RF amplifier and other peripheral circuits, as well as the core circuit DSP. This series of mechanisms employ a multi-task LSI UPD63763GJ, which has CD-ROM decoder and MP3/WMA decoder in addition to the CD block as shown in the Fig.1.0.1. This enables to reproduce a CD-ROM where MP3/WMA data is recorded.

3

Fig.1.0.1 Block diagram of CD LSI UPD63763GJ

2

D

Ε

, .

CX-3158

3

In the preamplifier block, the pickup output signals are processed to generate signals that are used for the next-stage blocks: the servo block, demodulator, and control.

After I/V-converted by the preamplifier with built-in photo detectors (inside the pickup), the signals are applied to the preamplifier block in the CD LSI UPD63763GJ (IC201). After added by the RF amplifier in this block, these signals are used to produce necessary signals such as RF, FE, TE, and TE zero-cross signals.

The CD LSI employs a single power supply system of + 3.3V. Therefore, the REFO (1.65V) is used as the reference voltage both for this CD LSI and the pickup. The LSI produces the REFO signal by using the REFOUT via the buffer amplifier and outputs from the pin 133. All the measurements should be made based on this REFO.

Caution: Be careful not to short the REFO and GRD when measuring.

1.1.1 APC (Automatic Power Control)

A laser diode has extremely negative temperature characteristics in optical output at constant-current drive. To keep the output constant, the LD current is controlled by monitor diodes. This is called the APC circuit. The LD current is calculated at about 30mA, which is the voltage between LD1 and V3R3D divided by 7.5 (ohms).

Fig. 1.1.1 APC

5

3

8

Ε

F

В

1.1.2 RF and RFAGC amplifiers

The photo-detector outputs (A + C) and (B + D) are added, amplified, and equalized inside this LSI, and then provided as the RF signal from the RFI terminal. The RF signal can be used for eye-pattern check.

The low frequency component of the RFO voltage is:

$$RFO = (A + B + C + D) \times 2$$

The RFO is used for the FOK generation circuit and RF offset adjustment circuit.

The RFI output from the pin 119 is A/C-coupled outside this LSI, and returned to the pin 118 of this LSI. The signal is amplified in the RFAGC amplifier to obtain the RFAGC signal. This LSI is equipped with the RFAGC auto-adjustment function as explained below. This function automatically controls the RFO level to keep at 1.5V by switching the feedback gain for the RFAGC amplifier.

B The RFO signal is also used for the EFM, DFCT, MIRR, and RFAGC auto-adjustment circuits.

Fig. 1.1.2 RF/AGC/FE

Ε

1.1.3 Focus error amplifier

The photo-detector outputs (A + C) and (B + D) are applied to the differential amplifier and the error amplifier to obtain the (A + C - B - D) signal, which is then provided from the pin 91 as the FE signal.

7

The low frequency component of the FE voltage is:

 $FE = (A + C - B - D) \times 8.8/10k \times 111k/61k \times 160k/72k$

$$= (A + C - B - D) \times 3.5$$

The FE output shows 1.5Vp-p S-shaped curve based on the REFO. For the next-stage amplifiers, the cutoff frequency is 14.6kHz.

1.1.4 RFOK

The RFOK circuit generates the RFOK signal, which indicates focus-close timing and focus-close status during the play mode, and outputs from the pin 55. This signal is shifted to "H" when the focus is closed and during the play mode.

The DC level of the RFI signal is peak-held in the digital block and compared with a certain threshold level to generate the RFOK signal. Therefore, even on a non-pit area or a mirror-surface area of a disc, the RFOK becomes "H" and the focus is closed.

This RFOK signal is also applied to the microcomputer via the low-pass filer as the FOK signal, which is used for protection and RF amplifier gain switching.

1.1.5 Tracking error amplifier

The photo-detector outputs E and F are applied to the differential amplifier and the error amplifier to obtain the (E - F) signal, and then provided from the pin 136 as the TE signal.

The low frequency component of the TE voltage is:

 $TEO = (E - F) \times 63k/112k \times 160k/160k \times 181k/45.4k \times 160k/80k$

$$= (E - F) \times 4.48$$

The TE output provides the TE waveform of about 1.3Vp-p based on the REFO. For the next-stage amplifiers, the cutoff frequency is 21.1kHz.

Fig. 1.1.3 TE

5

5

F

Α

В

CX-3158

1.1.6 Tracking zero-cross amplifier

The tracking zero-cross signal (hereinafter TEC signal) is obtained by amplifying the TE signal 4 times, and used to detect the tracking-error zero-cross point.

By using the information on this point, the following two operations can be performed:

- 1. Track counting in the carriage move and track jump modes
- 2. Sensing the lens-moving direction at the moment of the tracking close (The sensing result is used for the tracking brake circuit as explained below.)

The frequency range of the TEC signal is between 300Hz and 20kHz.

TEC voltage = TE level x 4

The TEC level can be calculated at 4.62V. This level exceeds the D range of the operational amplifier, and the signal gets clipped. However, it can be ignored because the CD LSI only uses the signal at the zero-cross point.

1.1.7 EFM

В

D

Е

The EFM circuit converts the RF signal into a digital signal expressed in binary digits 0 and 1. The AGCO output from the pin 116 is A/C-coupled in the peripheral circuit, fed back to the LSI from the pin 114, and sent to the EFM circuit inside the LSI.

On scratched or dirty discs, part of the RF signal recorded may be missing. On other discs, part of the RF signal recorded may be asymmetric, which was caused by dispersion in production quality. Such lack of information cannot be completely eliminated by this AC coupling process. Therefore, by utilizing the fifty-fifty occurrence ratio of binary digits (0 and 1) in the EFM signal, the EFM comparator reference voltage ASY is controlled, so that the comparator level always stays around the center of the RFO signal. The reference voltage ASY is made from the EFM comparator output via the low-pass filter. The EFM signal is put out from the pin 111.

Fig. 1.1.4 EFM

1.2 SERVO BLOCK (UPD63763GJ: IC201)

The servo block controls the servo systems for error signal equalizing, in-focus, track jump and carriage move and so on. The DSP block is a signal-processing block, where data decoding, error correction, and compensation are performed.

After A/D-converted, the FE and TE signals (generated in the preamplifier block) are applied to the servo block and used to generate the drive signals for the focus, tracking, and carriage servos.

The EFM signal is decoded in the DSP block, and finally sent out as the audio signal after D/A-converted. In this decoding process, the spindle servo error signal is generated, supplied to the spindle servo block, and used to generate the spindle drive signal.

The drive signals for focus, tracking, carriage, and spindle servos (FD, TD, SD, and MD) are provided as PWM3 data, and then converted to the analog data by the low-pass filter embedded in the driver IC BA5835FP (IC301). These analog drive signals can be monitored by the FIN, TIN, CIN, and SIN signals respectively. Afterwards, the signals are amplified and applied to each servo's actuator and motor.

1.2.1 Focus servo system

In the focus servo system, the digital equalizer block works as its main equalizer. The figure 1.2.1 shows the block diagram of the focus servo system.

To close the focus loop circuit, the lens should be moved to within the in-focus range. While moving the lens up and down by using the focus search triangular signal, the system tries to find the in-focus point. In the meantime, the spindle motor rotation is kept at the prescribed one by using the kick mode.

The servo LSI monitors the FE and RFOK signals and automatically performs the focus close operations at an appropriate timing. The focus loop will close when the following three conditions are satisfied at the same time:

- 1) The lens moves toward the disc surface.
- 2) The RFOK signal is shifted to "H".
- 3) The FE signal is zero-crossed. At last, the FE signal comes to the zero level (or REFO).

When the focus loop is closed, the FSS bit is shifted from "H" to "L". The microcomputer starts monitoring the RFOK signal obtained through the low-pass filter 10msec after that.

If the RFOK signal is detected as "L", the microcomputer will take several actions including protection.

The timing chart for focus close operations is shown in fig. 1.2.2.

(This shows the case where the system fails focus close.)

In the test mode, the S-shaped curve, search voltage, and actual lens movement can be confirmed by pressing the focus close button when the focus mode selector displays 01.

Fig. 1.2.1 Block diagram of the focus servo system

5

フ

8

С

Ε

Fig. 1.2.2 Timing chart for focus close operations

1.2.2 Tracking servo system

In the tracking servo system, the digital equalizer block is used as its main equalizer. The figure 1.2.3 shows the block diagram of the tracking servo system.

(a) Track jump

С

D

Ε

Track jump operation is automatically performed by the auto-sequence function inside the LSI with a command from the microcomputer. In the search mode, the following track jump modes are available: 1, 4, and 100

In the test mode, 1, 32, and 32*3 track jump modes, and carriage move mode are available and can be switched by selecting the mode.

For track jumps, first, the microcomputer sets about half the number of tracks to be jumped as the target. (Ex. For 10 track jumps, it should be 5 or so.) Using the TEC signal, the microcomputer counts up tracks. When the counter reaches the target set by the microcomputer, a brake pulse is sent out to stop the lens. The pulse width is determined by the microcomputer. Then, the system closes the tracking loop and proceeds to the normal play. At this moment, to make it easier to close the tracking loop, the brake circuit is kept ON for 50msec after the brake pulse, and the tracking servo gain is increased.

In the normal operation mode, the FF/REW operation is realized by continuously repeating single jumps about 10 times faster than the normal single jump operation.

(b) Brake circuit

8

The brake circuit stabilizes the servo-loop close operation even under poor conditions, especially in the setting-up mode or track jump mode. This circuit detects the lens-moving direction and emits only the drive signal for the opposite direction to slow down the lens. Thus, this makes it easier to close the tracking servo loop. The off-track direction is detected from the phases of the TEC and MIRR signals.

CX-3158

6

7

8

Α

В

С

D

Ε

F

Fig. 1.2.3 Block diagram of the tracking servo system

5

Fig. 1.2.4 Single-track jump

9

CX-3158

8

2

3

2.9mS (4.10 TRACK JUMP) 5.8mS (32 TRACK JUMP)

-- t ->-

OFF OPEN

CLOSED

Fig. 1.2.5 Multi-track jump

SERVO

SD

В

С

Note : Equalizer output assumed to have same phase as TEC.

Fig. 1.2.6 Track brake

10

-

CX-3158

_

1.2.3 Carriage servo system

5

In the carriage servo system, the low frequency component from the tracking equalizer (the information on the lens position) is transferred to the carriage equalizer, where the gain is increased to a certain level, and then sent out from the LSI as the carriage drive signal. This signal is applied to the carriage motor via the driver IC.

7

8

Α

В

С

Ε

F

6

During the play mode, when the lens offset reaches a certain level, it is necessary to move the pickup toward the FOR-WARD direction. The equalizer gain is adjusted so that the output over the carriage motor starting voltage is sent out in such a case. In actual operations, only when the equalizer output exceeds the threshold level preset in the servo LSI, the drive signal is sent out. This can reduce the consumption power.

With an eccentric disc loaded, before the whole pickup starts moving, the equalizer output may exceed the threshold level a few times. In this case, the drive signal applied from the LSI shows pulse-like waveforms.

Fig. 1.2.7 Block diagram for the carriage servo block

Fig. 1.2.8 Waveforms of the carriage signal

5

11

1.2.4 Spindle servo system

In the spindle servo system, the following seven modes are available:

1) Kick

Used to accelerate the disc rotation in the setting-up mode.

- 2) Offset
- a. Used in the setting-up mode until the TBAL adjustment completes after the kick mode.
- b. Used when the focus loop is unlocked during the play mode and until it is locked again.

In both cases, the mode is to keep the disc rotation near to the appropriate one.

3) Applicable servo

In the normal operation, the CLV servo mode is used.

The EFM demodulation block detects through WFCK/16 sampling whether or not the frame sync signal and the internal frame counter output are synchronized, and generates the status signal based on the sampling result, synchronized or non-synchronized. If eight consecutive "non-sync" signals are obtained, the system senses the status as "non-sync". If not, the system senses as "sync". In the applicable servo mode, the leading-in servo mode is automatically selected at the non-sync status, and the normal servo mode is at the sync status.

4) Brake

В

D

Е

Used to stop the spindle motor.

In accordance with the microcomputer's command, the brake voltage is sent out from the servo LSI. At this moment, the EFM waveform is being monitored in this LSI. When the longest EFM pattern exceeds a certain cycle (or the rotation slows down enough), a flag is set inside the LSI, and the microcomputer switches off the brake voltage. If a flag is not set within a certain period, the microcomputer shifts the mode from the brake mode to the stop mode, and keeps this for a certain period. In the eject mode, after the mode is shifted to the stop mode and a certain period passes, the loaded disc is ejected.

5) Stop

Used when the power is turned on and during the eject mode. At this moment, the voltage through the spindle motor is 0V.

6) Rough servo

Used when the carriage is moved (or in the carriage move mode such as long search).

By obtaining the linear velocity from the EFM waveform, "H" or "L" is applied to the spindle equalizer. In the test mode, this mode is used for grating confirmation.

Fig.1.2.9 Block diagram of the spindle servo system

12

2

CX-3158

1.3 AUTOMATIC ADJUSTMENT FUNCTION

This system automatically handles the circuit adjustment inside the CD LSI. All adjustments are performed whenever a disc is inserted or the CD mode is selected by pressing the source key. Each adjustment will be explained below.

1.3.1 TE, FE, and RF offset auto-adjustment

This adjustment is made to adjust the offsets of the TE, FE, and RF amplifiers in the preamplifier block to their target values on the basis of the REFO when the power is turned on. (The target values for TE, FE, and RE offsets are 0V, 0V, and -0.8V respectively.)

<Adjusting procedures>

- 1) With the LD OFF status, the microcomputer reads each offset through the servo LSI.
- 2) The microcomputer calculates the voltages for correction from the measured values, and inputs the calculated results as the offset adjustment values.

1.3.2 Tracking balance (T.BAL) auto-adjustment

This adjustment is to equalize the pickup output offsets for E-ch and F-ch by changing the amplifier gain inside the LSI. Actually, the gain is adjusted so that the TE waveform becomes symmetrical on each side of the REFO.

- <Adjusting procedures>
- 1) The focus loop is closed.
- 2) The lens is kicked in the radial direction to make certain that the TE waveform is generated.
- 3) The microcomputer reads the TE offset calculated in the LSI through the servo LSI.
- 4) The microcomputer takes either of the following steps depending on the calculated offset:
- When the offset is 0, the adjustment completes.
- When the offset is positive or negative, the amp gains for E-ch and F-ch should be changed.

The steps 2) to 4) are repeatedly taken until the offset becomes 0 or the repeating time reaches the limit frequency.

1.3.3 EF bias auto-adjustment

This adjustment obtains the best focus point during the play mode and maximizes the RFI level by utilizing the phase difference between the 3T level of the RF signal and that of the signal obtained when focus error disturbance is applied to the focus loop. At this moment, the auto-gain control (AGC), where focus error disturbance is applied to the focus and tracking loops, is also performed as explained below.

<Adjusting procedures>

- 1) The microcomputer transmits the command to apply disturbance component to the focus loop (inside the servo LSI).
- 2) In the LSI, the 3T-offset component of the RF signal is detected.
- 3) From the relation between the 3T detected component and the disturbance, the LSI obtains the volume and direction of the focus offset.
- 4) The microcomputer transmits the command and reads out the detecting result from the servo LSI.
- 5) The microcomputer calculates the necessary correction and inputs the result as the bias adjustment value to the servo LSI.

The adjusting steps are repeated a few times for higher adjustment accuracy as same as those for the AGC.

1.3.4 Focus and tracking AGC

This function automatically adjusts the focus and tracking servo loop gains.

- <Adjusting procedures>
- 1) Disturbance component is applied to the servo loop.
- 2) The error signals (FE and TE) are extracted through the band pass filter as the G1 and G2 signals.
- 3) The microcomputer reads the G1 and G2 signals through the servo LSI.
- 4) The microcomputer calculates the necessary correction and performs the loop gain adjustment inside the servo LSI. For higher adjustment accuracy, the above steps are repeated a few times.

13

Ε

Α

В

1.3.5 RF level auto-adjustment (RFAGC)

This adjustment minimizes the dispersion of the RF level (RFO), which may be caused by disc-related errors, for more stable signal transmission by changing the amp gain between RFI and RFO.

<Adjusting procedures>

В

- 1) The microcomputer sends the command to the servo LSI to read out the output from the RF level detecting circuit inside the servo LSI.
- 2) The microcomputer calculates the appropriate amp gain by using the output read out to adjust the RFO level at the prescribed one.
- 3) The microcomputer sends the command to the servo LSI to adjust the amp gain into the calculated one.
- This adjustment is automatically performed when:
 - 1) During the setting-up mode, only the focus close operation ends.
 - 2) Immediately before the setting-up ends (or right before the play mode starts)

1.3.6 Preamplifier gain adjustment

In this adjustment, when the reflected beams from disc surface are extremely weak (ex. when the lens is dirty, and a CD-RW is loaded), the whole gain in the RFAMP block (FE, TE, and RF amplifiers) is increased by +6dB or +12dB.

<Adjusting procedures>

When the system senses that the reflected beams from disc surface are extremely weak during the setting-up mode, the whole RFAMP gain is increased by +6dB or +12dB.

After the gain is changed, the setting-up mode is restarted.

14

Е

CX-3158

3

1.3.7 Initial values in adjustment

All automatic adjustments immediately after inserting a disc are conducted from the initial value. Automatic adjustments by source change or ACC ON are conducted basically using the previous adjustment value as the initial value.

1.3.8 Adjustment result display

For some of the adjustments (FE and RF offset, FZD cancel, F and T gain, and RFAGC), the adjustment results can be displayed and confirmed in the test mode.

1) FE and RF offset

Reference coefficient = 32 ("32" indicates no adjustment required)

The display is expressed in the unit of about 32mV.

Ex. When the FE offset coefficient is 35:

 $35 - 32 = 3 \times 32 \text{mV} = 96 \text{mV}$

This means that the correction is about +96mV, and the FE offset before adjustment is -96mV.

2) F and T gain adjustment

Reference coefficient for focus and tracking = 20

The displayed coefficient / the reference coefficient indicates the adjusted gain.

Ex. When the AGC coefficient is 40:

40/20 = 2 times (+6dB)

That is, the gain was adjusted by +6dB.

(The original loop gain was half the target one. So, the whole gain was doubled.)

3) RF level adjustment (RFAGC)

Reference coefficient = 8

The coefficient 9 to 15 indicates increasing the RF level.

The coefficient 0 to 7 indicates decreasing the RF level.

When the coefficient display changes by 1, the gain changes by 0.7 to 1dB.

When the coefficient is 15, the gain is maximum or TYP + 7.9dB.

When the coefficient is 0, the gain is minimum or TYP - 4.6dB.

15

Ε

F

Α

7

1.4 POWER SUPPLY AND LOADING BLOCK

The VD $(7.5 \pm 0.5\text{V})$, the VD2 $(7.5 \pm 0.5\text{V})$ and the VDD $(5.0 \pm 0.25\text{V})$, which are supplied from the main unit, are used for the power supply. In this system, the following four power-supply signals are available: the VD (for the drive system), the V3R3 obtained from the VD2 via the 3.3V regulator (for the control system: 3.3V), the VDD (for the microcomputer: 5V), and the 3VDD obtained from the VDD via the 3.3V regulator (for the microcomputer: 3.3V).

ON/OFF of other than Load/Eject of CD driver and 5V ON/OFF are controlled by "CONT" and "CD5VON", respectively, with microcomputer. Loading drive ON/OFF is not equipped with a control terminal, but the input signal "LOEJ" has an equivalent role. LCO output switches LOADING MODE and CARRIAGE MODE by "CLCONT."

Fig. 1.4.1 Power supply/loading block

Fig. 1.4.2 Loading/carriage mode shift

16

В

D

Е

-

CX-3158

_

To control the load and eject operations, the clamp switch located in the mechanism unit and the three detecting switches located in the control unit are used. Depending on the combination of these switches' ON/OFF status, the DSCSNS voltage changes.

The microcomputer can detect the status (A to E) by observing the voltage at the A/D port. The disc size detection (8 or 12cm) is also performed through this status change. The DSCSNS status and the status change in the load and eject modes are shown in the figures 1.4.3 and 1.4.4 respectively.

Status	Α	В	С	D	Е
SW1(S903)	ON	OFF	OFF	OFF	ON
SW2(S905)	OFF	OFF	ON	ON	OFF
SW3(S904)	OFF	OFF	OFF	ON	OFF
SW4(S901)	OFF	OFF	OFF	OFF	ON
Mechanism state	With no disk				Clamp state

Fig.1.4.3 DSCSNS status

5

5

В

С

Ε

F

Fig.1.4.4 Status change in LOAD and EJECT modes

Α

В

D

Е

2. MECHANISM DESCRIPTIONS

Loading actions

- 1. When a disc is inserted, SW Arm L and R rotate. Due to the rotation of Arm L, SW1 is switched from ON to OFF and the Load Carriage Motor starts.
- 2. If the disc is 12cm-disc, when it is carried to the position shown with the dotted line in the drawing, SW 3 switches to ON due to such rotation of Arm. Then, the microcomputer judges that the disc is 12cm-disc.
- 3. In case of 8cm-disc, the disc cannot reach such dotted line position, and from such limitation of approach, the microcomputer judges that the disc is 8cm-disc and simply triggers clamp actions.

(Movement of SW Arm L and R are connected together. So, if pushing force is fed to only one arm, the distance between tow arms cannot be widened beyond the specific degree, because the coupling part is locked in such case.)

Disc centering mechanism

- 1. In case of 12cm-disc, the 12cm-Disc Detection Arm rotates, and with such rotation, it raises the Centering Arms to retreat the arms from disc's trace. The disc passes through under the arms, and at the inner part, it is centered.
- 2. In case of 8cm-disc, it is just centered at the position where its edge touches the front portion of the Centering Arm.

19

Е

7

Clamp actions

В

- 1. When an 8 or 12cm disc is placed on the center of the spindle, the detection arm starts moving.
- 2. The movement of the detection arm engages the loading rack with the 2-stage gear.
- 3. The clamp lever slides to lower the clamp arm. At this time, the roller up arm rotates to separate the roller arm from the disc. The roller arm moves the mech lock lever and turns the mech lock arm to release the mech lock. At the position where the clamp switch is turned off, the clamp operation ends.
- 4. After the clamp operation, the clamp lever moves to rotate the gear lock arm. The planet gear separates from the 2-stage gear to get engaged with the pickup feed screw's gear. Then the carriage operation will start.

Eject actions

- 1. Eject actions start when the Pickup is fed to the position inner than "Home SW ON" point in the internal circumference of the circle, caused by backward rotation of the Load Carriage Motor. Eject actions follow the foregoing procedures (steps taken in loading, centering and clamping actions), but each action in those steps is performed in reversed manner.
- 2. In case of 12cm-disc, Eject is completed when SW3 completes its condition- transition of OFF \rightarrow ON \rightarrow OFF.
- 3. For 8cm-disc, Eject is completed when SW2 completes its condition-transition of OFF \rightarrow ON \rightarrow OFF.

Е

3. DISASSEMBLY

How to hold the Mechanism Unit

- 1. Hold the top and bottom frame.
- 2. Do not squeeze top frame's front portion too tight, because it is fragile.

Upper Frame

Screw

Do not squeeze.

Screw

Removing the Upper and Lower Frames

- 1. With a disc clamped, remove the four springs (A), the two springs (B), the two springs (C), and the four screws.
- 2. To remove the upper frame, open it on the fulcrum (A).
- 3. While lifting the carriage mechanism, remove the three dampers.
- 4. With the upper and lower frames removed, insert the connectors coming from the main unit and eject the disc.

Caution: Before installing the carriage mechanism in the lower frame, be sure to apply some alcohol to dampers and set the mechanism to the clamp mode.

Removing the Guide Arm Assy

- 1. Remove the upper and lower frames and set the mechanism to the clamp mode.
- 2. Remove the two springs.

5

- 3. Remove the two screws and bevel gear bracket. (See page 22.)
 - Note that the gears come off.
- 4. Slide the guide arm assy in the direction marked with the arrow ① and open it upwards.
- 5. At the angle of about 45 degrees, slide the guide arm assy in the direction marked with the arrow3 to remove it.

21

8

В

С

Ε

CX-315

■ 6 **■** 7

Bevel Gear Bracket

Removing the CD Core Unit

- 1. Apply shorting solder to the Pickup flexible cable. Disconnect the cable.
- 2. Remove the solder from the four leads, and loosen the screw.
- 3. Remove the CD core unit.
- Caution: When assembling the CD core unit, set the mechanism to the clamp mode to protect the switches from any damage.

Removing the Roller Arm Assy

- 1. Remove the guide arm assy and set the mechanism to the eject mode.
- 2. Remove the CD core unit. (You do not have to remove the solder from the four leads.)
- 3. Remove the spring.
- 4. Slide the roller arm assy in the direction marked with an arrow.

22

D

3158

Removing the Pickup Unit

- 1. Set the mechanism to the clamp mode.
- 2. Remove the lead wires from the inner holder.
- 3. Remove the washer, styling holder, change arm, and pickup lock arm.
- 4. While releasing from the hook of the inner holder, lift the end of the feed screw.

Caution: In assembling, move the planet gear to the load/eject position before setting the feed screw in the inner holder.

Removing the Load Carriage Motor Assy

- 1. Release the leads from the styling holder and remove the holder.
- 2. Remove the two screws.

5

3. Remove the load carriage motor assy.

23

8

В

С

D

Е

Removing the Clamp Arm Assy

- Remove the five springs.
 While lifting the clamp arm assy, slide it in the direction marked with the arrow ② to remove it.

Removing the Spindle Motor

1. Remove the two screws. Take off the spindle motor.

24

D

Е