FIX/FIXML Implementation

Sam Johnson, David Rhodes marcusevans professional training, February 2001

- Who are we, and why are we here?
- What is TransactTools, anyway?

Who are you?

- Another Overview of FIX
 - Really quick, like 10 minutes
- FIXML and What It Really Means
 - 30 minutes
- Implementation: FIX-Enabling Your Business
 - 45 minutes
- Actually Getting Connected
 - 1 hour
- Betting the Business on FIX
 - 30 minutes

- FIX is a peer-to-peer networking protocol with a very narrow focus: wholesale financial transactions.
- FIX was created before companies were all interconnected via the Internet and private networks.
- FIX was built with two fundamental objectives:
 - Reliability and timeliness of communication
 - Flexibility of business content

Overview of FIX (again) but from a Systems Perspective This Time

What is FIX, really?

 First, FIX is a transport-independent session protocol that guarantees reliable real-time delivery of data between two directly-connected points.

 Second, FIX is a set of flexible and extensible business message formats.

A FIX Engine, Under the Hood

 A FIX engine is simply a piece of software. It maintains a network connection, creates and parses messages, and recovers if something goes wrong.

What's Special about FIX 4.2?

- Number of fields almost doubled from 4.1
- Number of pages more than doubled
- Thankfully, the number of appendices doubled
- 18 more business messages
 - XML envelope (to wrap FIXML data)
 - Converts, Forex, Derivatives, Options, Bonds
 - Exchange support Market Data, status
 - Japanese trading

So Then What is FIXML, really?

• FIXML is another, more structured way to format the FIX business messages.

FIXML and What It Really Means in the Grand Scheme of Things

Separation of Session and Business Layers

- With FIXML, the FIX Committee publicly acknowledged a need to think about the FIX session and application layers separately
 - Session can transport messages of any format
 - Application messages can be delivered in ways other than via the FIX Session
- And there's an easy migration path from FIX: the old tag-value format can be used like an envelope for a FIXML message (new fields in 4.2)

Structured Business Messages

XML introduces structure into the application message.
 For things like repeating groups of related fields, this is very helpful.

 Strictly speaking, an XML parser can validate that a FIXML message conforms to a DTD in terms of structure only. XML doesn't understand data types.

```
<!ELEMENT StrikePrice (#PCDATA)>
<!ATTLIST StrikePrice
    FIXTag CDATA #FIXED "202"
    DataType CDATA #FIXED "float"
    Min CDATA #FIXED "0"
    Max CDATA #FIXED "99999999999"
>
```

- A Document Type Definition (DTD) describes the conditions necessary for a well-formed XML document:
 - Optional and required elements
 - Structure and grouping of elements
 - Attributes associated with elements
- For example, HTML documents conform to a DTD
- A validating parser (such as a web browser) can use a DTD to check an XML document to make sure that it's correctly constructed.

And, Eventually, XML Schema

- XML doesn't help much with validating data inside a document—it thinks everything is a string
- Schema initiatives aim to provide content validation by defining data types
- It's unclear which, if any, will prevail
 - XML-Data (Microsoft)
 - DDML (Data Definition ML)
 - DCD's (Document Content Definitions)
 - SOX (Schema for Object-oriented XML)

- FIXML messages are large-ish
- Implications for performance in high-volume applications aren't well understood
 - Transfer of larger messages
 - Structure (and content) validation at parse-time
- Nobody is doing it yet

Implementation: FIX-Enabling Your Business

FIX Engines and FIX Libraries

- A lot of FIX engines turn out really to be FIX libraries
- FIX engines are applications that stand alone and provide an interface to internal applications.
 - Financial Fusion, Javelin
- FIX libraries require that either an interface shell or an application be built around them. They aren't standalone applications themselves.
 - Cameron, B2B ITS, and most others

Vendor Solutions

Pricing: 3 tiers of solution

Market share: X 2 leaders

 How much can one pay for a FIX engine?

• hmmm... Why?

High-Availability FIX Engines

- Several vendors now offer premium "HA" versions of their servers. These are all built pretty much the same
 - As messages are received and sent, they are written to a common persistent store and also propagated among connectors (consistent state)

 Redundancy at FIX machine and software levels, guaranteeing there's always an entrance to the FIX system

Making the Build vs. Buy Decision

 It used to be about deciding whether you wanted to depend on a vendor product for FIX messaging

+	-
Saves development cost and time	Little or no control over or access to source code
Vendor responsible for support, enhancements, upgrades	Customer is at the mercy of the vendor

 More and more, as vendors begin to make source code available, it's about deciding whether to reinvent the wheel

+	-
Saves development cost and time	Customer has to learn and support somebody else's code

A Solution that Scales with the Organization

 In many cases, the objective is to FIX-enable an organization rather than a single application.

 Typically, the FIX gateway is configured as a router and interfaced with the company's existing messaging

Actually Getting Connected

Differences in Trading Partners Interfaces

Multiple versions of FIX

- While many firms have moved to 4.1 or 4.2, the vast majority are still on 4.0
- If reliant on a third-party order management system or FIX engine, may not be able to move until the vendor does
- Therefore, may need to support the same business functionality across more than one version of FIX

Differences in Trading Partners Interfaces

- Multiple Configurations
 - Even with a specification, capabilities may differ across firms
 - Often due to different interpretations of the standard, especially in FIX 4.0
 - OrderQty on cancel/replace
 - Some see it as the leaves qty, while some see it as the total order qty
 - Sometimes due to simply not following the spec
 - SendingTime in UTC
 - Some do eastern time or another time zone, making time comparisons difficult
 - OrderQty on order cancels
 - Some send 0, some send the remaining quantity, while spec requires original quantity

Physical Connectivity

- TCP/IP most commonly used transport protocol for FIX
- While testing is often done over the Internet, production configuration is generally over private connections
 - Direct connection
 - Frame relay
 - T-1
 - ISDN (often as a backup)
 - Third-party networks
 - IXnet
 - TNS/MacGregor
 - TradeRoute
 - Virtual private network (VPN)
 - Addresses security, but not performance or reliability issues of the Internet

Physical Connectivity

- Firewall configuration
 - Host firm production servers may be behind firewall, even in private connection configurations
 - Must open access from client hosts or networks to internal hosts or networks
 - Policy decision as to how tight this security should be
 - Client firm may need to open access to specific IP addresses and ports
 - For testing over the Internet
 - For production access, if firewall is between FIX servers and private connection

What About Encryption?

- PGP/DES-MD5 and other current encryption algorithms for FIX are somewhat antiquated
- SSL/TLS (Secure Sockets Layer/Transport Layer Security) is currently being explored as an option for FIX encryption
- SSL/TLS proxying provides a simple way to handle FIX encryption, as it simply fronts existing FIX servers, encrypting messages from and decrypting messages to FIX servers

Trading Networks

- Trading networks, such as TradeRoute and GlobalCrossing, offer more than just TCP/IP connectivity
- Hub-and-spoke model reduces some of the complexities of FIX connectivity, but has drawbacks when compared to point-to-point trading links
 - Security. All transactions flowing through one hub increase the chance of being compromised
 - Performance. Hub itself can become a bottleneck
 - Reliability. Hub itself can be a single point of failure
 - Functionality. Reduces the application-level functionality of FIX to a least-common-denominator across participants

Business-Level Compatibility

- Physical connecting customers and understanding their FIX version and configuration is just the beginning
- Must rigorously test all critical functionality
 - Orders
 - Required parameters and allowed values (e.g. Side, HandlInst)
 - Optional parameters and allowed values (e.g. Execlnst, TimeInForce)
 - Optional order types (e.g. Stop, Stop Limit)

Cancels

- Simple
- After partially filled
- Partially filled while pending cancel
- Unsolicited cancels

Business-Level Compatibility

- Changes (cancel/replace)
 - Simple
 - After partially filled
 - Filled while change is pending

Session-level compatibility

- Verify what happens when things get out-of-whack
 - Stop heartbeats on client and host, simulating connectivity problems
 - Send sequence numbers that are too low and see how FIX engines respond
 - Send sequence numbers that are too high and see how the FIX engines recover
 - Create fills "offline" and see how the client FIX engine deals with messages it thinks it missed while not logged on

How do I test all of this?

- Most of this compatibility testing is done manually (!)
 - Resource-intensive. Requires at least two people, one from the client and one from the host company, usually on the phone in front of FIX engines and log files
 - Time-consuming. Creating these scenarios, testing them, and reviewing and communicating the results takes a significant amount of time
 - Error-prone. Since it is a person reviewing the output of the FIX engine, it is not possible to test a large number of scenarios and a number of variables within each scenario without making a mistake or two.

How much testing do I need?

- The more testing you can do, the better.
 - Ultimately saves time and money for both parties
 - Less time is required in production support handling common problems
 - Difficulty logging in again after a lost connection due to problems handling resend requests or gap fills
 - Fewer trades are disputed
 - No more tracking down partial fills that a client's FIX engine missed
 - No more disputing the intent of a cancel/replace on order quantity

Automating the Testing Process: Archipelago

- Archipelago was the first to launch a fully-automated FIX interface certification service consisting of:
 - 7 required session-level tests
 - 7 required orderflow tests
 - 30 optional orderflow tests
 - 4 required cancel tests
 - 15 optional cancel/replace tests
- Archipelago no longer does any manual certification testing with trading partners

Production Support and Monitoring

- Successful large-scale point-to-point connectivity requires a great deal of monitoring
 - More than just server and operating system tools
 - Need proactive, rules-based notification of a variety of events that can occur in a high-volume trading environment
 - Connections that have dropped more than X times in some period
 - Cancels or changes that have been pending for more than Y minutes
 - Partial fills send with OrdStatus=6 for customers A, B and C who have had trouble with those in the past

Betting the Business on FIX ...?

• There are too many egos in this business to ever settle on one protocol. Even if it were the right thing to do.

Can FIX Scale to 1000 Connections?

- It can, but not very easily.
- FIX connectivity requires not only that peers speak the same language, but also that they can have meaningful business conversations
 - Trading partner testing is critical
- FIX was designed as a persistent point-to-point protocol, and doesn't fail-over well
 - Production network monitoring is critical

Let's Revisit the whole Peer-to-Peer Thing

- A lot has happened since FIX was originally created
 - WebMethods:
 proprietary XML-based solutions for stateless
 business-to-business transactions
 - Gnutella, Freenet, OpenCOLA:
 distributed, real-time content routing among peers
 - Napster: centralized directory combined with a peer-to-peer transaction platform

Alternate Session Layers

- The fact that FIX relies on a predetermined, persistent machine-to-machine connection is pretty limiting
- The idea of separating application messages from the underlying transport (introduced with FIXML in 4.2) has prompted users to experiment with alternate transports
 - http: polling messages like web pages
 - smtp: mail-based routing
 - beep: standardized reliable point-to-point layer
 - www.bxxp.org
 - instant messenger: anyone??

What is FLIRT, and can it work?

- Simple Object Access Protocol (SOAP) is an open standard for transporting XML documents over HTTP.
 - This is cool because HTTP is pretty firewall-proof
 - This is not so cool for FIX because HTTP is a oneway protocol and FIX is a two-way protocol
 - Even so, the right software can implement a pretty good two-way session on top of HTTP
- FLIRT is FIXML over HTTP, so technically it's not exactly the same thing as SOAP but really there's no difference.

Lessons from Napster

 Napster uses a dynamic, central directory to facilitate getting peers connected.

• This is an example of what some p2p luminaries call "distributed enough"

But Whatever Shall We Do In The Mean Time?

- Find a better solution for trading partner interface and capability discovery
- Create better, more automated solutions for peer-topeer testing, all the way up to the business transaction
- Build peer network monitoring and notification architectures that aren't blind beyond the firewall

transacttools

135 West 29th Street, 9th fl New York, New York 10001

Sam Johnson 212-244-1343 NY

David Rhodes 708-763-0406 Chicago

www.transacttools.net