Thread Stack

Automação Residencial

Agenda

- 1. Introdução
 - 1.1. Objetivos
 - 1.2. Características
- 2. Arquitetura
 - 2.1. Tipos de Device
 - 2.2. Endereçamento
 - 2.3. Comissionamento
 - 2.4. Roteamento
- 3. Roteamento
- 4. Certificação

- Thread Group
 - Criado em Julho de 2014 por um conjunto de empresas que atuam em IoT
- Objetivo é definir uma padronização para automação residencial
 - Conectar os devices de uma forma simples a rede
 - Gerenciar toda a rede de forma unificada
- Facilitar a comunicação M2M dentro da própria rede
 - Device-to-Device

- Empresas que fazem parte do Thread Group
 - Nest Labs (Comprada pela Google)
 - Silicon Labs
 - NXP
 - ARM
 - Yale
 - Haiku Home

- Empresas que fazem parte do Thread Group
 - Samsung
 - Somfy
 - Tyco
 - Qualcomm
 - OSRAM
 - Schneider Electric

- Desenvolvido pensando em diversos tipos de dispositivos
- Dispositivos Energizados
 - Portões
 - Lâmpadas
 - Ventiladores
 - Ar Condicionado
- Dispositivos a Bateria
 - Sensores de portas e janelas
 - Sensores de movimento
 - Fechaduras inteligentes

- Dispositivos Energizados ou a Bateria
 - Termostatos
 - Interruptores
 - Detectores de fumaça
 - Campainha
 - Persianas
 - Robôs de limpeza

Objetivos

- Facilidade na instalação e operação da rede
- Devices não se juntam a rede sem antes serem autorizados
- Comunicação criptografada
- Sem ponto único de falha
- Auto recuperação da rede
- Baixo consumo de batería
- Suporte a IPv6 nativo

Características

- Escalável até 200 e 300 nós em uma única rede residencial
- Latência menor do que 100 milissegundos
- Taxa de transmissão de 250 kbps
- Funciona sobre chips 802.15.4 já existentes

Características

- Utiliza como base 6LoWPAN
 - Roteamento baseado no cabeçalho mesh (RFC 4944)
 - Funcionalidade do cabeçalho de fragmentação (RFC 4944)
 - Compressão mais recente do 6LoWPAN (RFC 6282)

Arquitetura

- Thread Stack trabalha entre a camada de adaptação 6LoWPAN e a camada de transporte
- Independente da camada de aplicação
 - Define como os dados serão enviados e não interpretados
- Suporta apenas UDP
- Define uma arquitetura de rede que facilita o roteamento baseado no algoritmo que ela propõe

Arquitetura

Security/Commissioning

Arquitetura - Tipos de Device

- Border Router

- Provê conectividade da rede 802.15.4 para redes externas
- Mais de um pode estar presente na mesma rede

- Router

- Responsável pelo roteamento entre os devices da rede
- Provê serviço de admissão de novos nós na rede
- Podem fazer downgrade para REED
- Sempre conectados a energia
- Não possuem ciclo de sleep

Arquitetura - Tipos de Device

- Router-eligible End Device (REED)
 - Tem capacidade para se tornar um Router na rede dependendo da necessidade
 - A própria rede tem capacidade de tornar um REED um Router quando necessário sem a intervenção do usuário

Sleepy End Device

- Encaminham pacotes apenas para o seu Router pai
- Funcionamento a bateria.
- Possuem ciclos de sleep

Arquitetura

Arquitetura - Tipos de Device

- Leader
 - O primeiro router a entrar na rede se torna o Leader
 - Caso o Leader falhe outro Router se tornará Leader
 - Pode promover REEDs para Router quando achar necessário
 - Analogamente também pode tornar Routers em REED
- Devices quando se juntam a rede tem duas possibilidades
 - Router Eligible
 - End Device

Arquitetura - Tipos de Device

- Sleeping Devices
 - Faz polling para o Router pai para obter suas mensagens
 - Router pai guarda as mensagens dos filhos
 - Trocam automaticamente de Router pai caso percam a conectividade

Arquitetura - Endereçamento

- Cada Device possui um endereço Thread de 16 bits
- Composto por duas partes
 - A primeira referente ao router (6 bits)
 - A segunda referente aos devices (10 bits)
- O endereço de um Router preenche apenas a segunda parte e completa com zeros os demais bits
- Os outros devices tem a primeira parte do endereço com o id do seu Router pai e a segunda com o seu próprio

Arquitetura - Endereçamento

router_id	child_id
u16	

Arquitetura - Endereçamento

- Isso permite que em uma rede Thread tenhamos no máximo 64 endereços de Router
- Por outro lado é permitido que tenhamos no máximo 32 Routers ativos
- Possibilita um pool de endereços não utilizados
 - Não reusa imediatamente o endereço dos Routers que saem da rede

Arquitetura

Border Router

Forwards data to and from cloud/other networks

Provides optional Wi-Fi connectivity

Many

Thread Leader

Manages network parameters

Coordinates commissioners

Makes network decisions

One

Thread Router

Routes traffic among devices

Form the mesh topology

Eligible to become the Leader

Up to 32

End Device

Designed for low power operation

May be powered or sleepy

May be router-eligible if powered

Up to 64 per Router

Hundreds of Devices per Network

Arquitetura - Comissionamento

- Fase de permitir o ingresso de um dispositivo na rede
- Pode ser feito pela web ou utilizando o celular
- Sessão DTLS é criada entre o "comissionador" e o novo device
 - Depois disso as credenciais são apresentadas
- Uma vez que a sessão é encerrada o novo device é adicionado à rede

_

- Roteamento IP utilizando encaminhamento L2
 - Utiliza cabeçalho mesh do 6LoWPAN
 - Utiliza endereçamento Thread no cabeçalho mesh
- Algoritmo de distance vector simplificado (RIP)
 - Algoritmo proativo
 - Todos os Routers recebem informação do next-hop dos demais Routers
 - Utiliza UDP e não define o formato de mensageria utilizado

- Se beneficia dos dispositivos conectados a energia
- Roteamento ocorre apenas entre os Routers
 - Baixo número de roteadores na rede facilita o roteamento (máximo 32)
- End Devices apenas encaminham pacotes para o Router pai
- Ao receber um pacote, qualquer Router sabe o Router de destino
 - Prefixo do endereço Thread provê essa informação explicitamente

- Routers não enviam pacotes diretamente para os End Devices de destino
 - Armazenam esses pacotes por um tempo determinado
- End Devices ficam a cargo de executar uma operação de leitura quando acordam

- Mesh Link Stablishment (MLE)
 - Mensagens utilizadas para estabelecimento e configuração da rede
- Mensagens utilizadas para:
 - Estabelecimento e gerenciamento da rede
 - Detecção de nós vizinhos
 - Manutenção dos custos de roteamento atualizados
- Pode ser utilizado tanto como unicast ou multicast

Certificação

- Thread Group oferece três tipos de filiação
 - Afiliado (\$ 2,500)
 - Contribuidor (\$ 15,000)
 - Patrocinador (\$ 100,000)
- Cada um dos níveis de filiação possui diferentes benefícios
- Para obter a certificação de um produto Thread é necessário ter a filiação de Contribuidor

BENEFIT	AFFILIATE	CONTRIBUTOR	SPONSOR
Receive member communications	•	•	•
Participation in general or annual meetings		•	•
Access to members only website	•	•	•
Use of Alliance Member Logo	•	•	•
Participation in press articles & interviews	•	•	•
Access Final Deliverables	•	•	•
Chair Committees and/or Work Groups		•	•
Certify Compliant Products and Utilize Certification Logo		•	•
Access Draft Deliverables		•	•
Participate and Vote in Work Groups		•	•
Participation and Vote in Committees		•	•
Access to Thread Reference Commissioning App		Source	Source
Ability to purchase Thread Test Bed		•	•
Access to Thread Test Harness		•	•
Approve Operating Budget			•
Approve Final Deliverables			•
Initiate Work Groups or Committees			•
Automatic Seat on Board of Directors			•
Annual Fee	\$2,500	\$15,000	\$100K

Certificação

- Atualmente três fornecedores possuem pilhas implementadas pré-certificadas:
 - Silicon Labs
 - ARM
 - NXP
- A Nest abriu recentemente a implementação de sua pilha
 - OpenThread (Maio de 2016)
 - Nenhum Release até agora

Certificação

- Todos os dispositivos Thread que forem para o mercado precisam passar por certificação
- Um dos benefícios de ser um Contribuidor é o acesso a um app exemplo para gerência de dispositivos na rede
- Utiliza COAP como base para interação com a rede

Referências

- Thread Open House
- Thread Technical Overview
- Thread Stack Fundamentals White Paper
- Thread Usage of 6LoWPAN White Paper