Domaine Sciences et Technologies MASTER 1 INFORMATIQUE

Aspects probabilistes pour l'informatique : TD 2 $Code\ UE:\ SINB19AL$

Année 2020-2021

Probabilités continues et inégalités

Exercice 1 A partir de 7 heures, les bus passent toutes les 15 minutes à un arrêt donné. Ils passent donc à 7h00, 7h15, 7h30 et ainsi de suite. Un usager se présente entre 7h00 et 7h30 à cet arrêt, l'heure exacte de son arrivée étant une variable uniforme sur cette période :

- (i) trouver la probabilité qu'il doive attendre moins de 5 minutes
- (ii) puis plus de 10 minutes.

Exercice 2 Soit X une variable aléatoire normale de paramètres $\mu = 3$ et $\sigma^2 = 9$. Calculer $P\{2 < X < 5\}$, $P\{X > 0\}$, et $P\{|X - 3| > 6\}$.

Exercice 3 Lors d'un procès en attribution de paternité, un expert témoigne que la durée de la grossesse, en jours, c'est-à-dire le laps de temps entre la conception et la naissance de l'enfant, est de distribution approximativement normale avec paramètres $\mu=270$ et $\sigma^2=100$. L'un des pères putatifs est en mesure de prouver son absence du pays pendant une période s'étendant entre le 290-ième et le 240-ième jour précédant l'accouchement. Quelle est la probabilité que la conception de l'enfant ait eu lieu plus de 290 jours avant sa naissance ou moins de 240 jours avant?

Exercice 4 On suppose que la durée d'une conversation téléphonique, mesurée en minutes, est une variable aléatoire exponentielle de paramètre $\lambda = \frac{1}{10}$. Vous arrivez à une cabine téléphonique et quelqu'un passe juste devant vous. Avec quelle probabilité devrez-vous attendre : (i) plus de 10 minutes ; (ii) entre 10 et 20 minutes ?

Exercice 5 Le nombre de pièces sontrant d'une usine en espace d'une semaine est une variable aléatoire d'espérence 50. Utiliser les inegalités de Markov ou de Bienaymé-Chebychev pour :

- 1. Estimer la probabilité que la production de la semaine prochaine dépasse 75 pièces.
- 2. On sait de plus que la variance de la production hebdomadaire est de 25. Estimer la probabilité que la production de la semaine à venir soit comprise entre 40 et 60.

Exercice 6 À l'examen, plus de la moitié des copies s'est vue mettre une note supérieure ou égale à 10. Que dire de la moyenne? *Indication : Utiliser Markov*.

Exercice 7 On lance n fois un dé équilibré; le nombre moyen de tirages donnant un 6 est n/6. Comment choisir n pour que la probabilité d'obtenir un nombre de 6 compris entre 0 et n/3 soit supérieure à 0.5, puis à 0.9? Indication : Utiliser Bienaymé-Chebychev.

Exercice 8 Dans l'estimation de π par la méthode de l'aiguille de Buffon, la probabilité qu'une aiguille de taille ℓ intersecte la rainure du parquet de taille ℓ est $p=\frac{2}{\pi}$. En utilisant Bienaymé-Chebychev, combien d'aiguilles faut il lancer pour obtenir une estimation de π à 10^{-3} près pour être sûr du résultat avec une probabilité de 0.99? Même analyse avec les bornes de Chernoff.

Exercice 9 Soientn $X_i, i = 1, 2, ..., 10$ des variables aléatoires uniformes sur l'intervalle (0, 1). Evaluer approximativement $P\{\sum_{i=1}^{10} X_i > 6\}$ par le théorème central limite.

Exercice 10 Un enseignant dispose de 50 copies à évaluer l'une après l'autre. Les temps pour corriger chacune des 50 copies sont indépendants entre eux, avec même distribution, d'espérance de 20 minutes et d'écart-type de 4 minutes. Approximer la probabilité que l'enseignant corrige au moins 25 copies durant les 450 premières minutes.

Table de la fonction de répartition $\Phi(x)$ de la loi normale centrée réduite

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7703	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
3.5	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998
3.6	.9998	.9998	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.7	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.8	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Ligne : première décimale, colonne : deuxième décimale. P. ex. : $\Phi(1,67)=0,9525$ (ligne 1.6, colonne .07)

$$\begin{array}{ll} P\{Z\leq a\}=\Phi(a)\\ \mathbf{Rappels:} & P\{Z>a\}=P\{Z\leq -a\}=\Phi(-a)\\ & \Phi(-a)=1-\Phi(a) \end{array}$$