T.D. 1 – Corrigé Systèmes de numération entière

Exercice 1

Représentez les nombres 28₁₀, 129₁₀, 147₁₀, 255₁₀ sous leur forme binaire par une autre méthode que les divisions successives. À partir de cette représentation binaire, vous en déduirez leur représentation hexadécimale.

À partir de la valeur des différents poids binaires, et en commençant par le poids le plus fort, on positionne les bits à 0 ou à 1 en fonction de la somme de leur poids.

		128	64	32	16	8	4	2	1
2810	\rightarrow	0	0	0	1	1	1	0	0
129_{10}	\rightarrow	1	0	0	0	0	0	0	1
147_{10}	\rightarrow	1	0	0	1	0	0	1	1
255_{10}	\rightarrow	1	1	1	1	1	1	1	1

Le passage d'une représentation binaire (base 2) vers une représentation hexadécimale (base 16) s'obtient assez facilement en regroupant les bits par paquets de quatre $(2^4 = 16)$; chaque paquet de quatre bits correspond à un chiffre hexadécimal.

```
28_{10} = 0001 \ 1100_2 = 1C_{16}
129_{10} = 1000 \ 0001_2 = 81_{16}
147_{10} = 1001 \ 0011_2 = 93_{16}
255_{10} = 1111 \ 1111_2 = FF_{16}
```

Exercice 2

1. Les nombres 11000010₂, 10010100₂, 11101111₂, 10000011₂, 10101000₂ sont-ils pairs ou impairs ?

Les nombres pairs se terminent par au moins un zéro : 11000010₂, 10010100₂, 10101000₂

- 2. Lesquels sont divisibles par 4, 8 ou 16?
 - Les nombres divisibles par 4 se terminent par au moins deux zéros : 10010100₂, 10101000₂
 - Les nombres divisibles par 8 se terminent par au moins trois zéros : 10101000₂
 - Les nombres divisibles par 16 se terminent par au moins quatre zéros : **aucun nombre**.

T.D. 1 – Corrigé 1/5

3. Donnez le quotient et le reste d'une division entière par 2, 4 et 8 de ces nombres.

	110000	11000010		10010100		11101111		10000011		10101000	
	quotient	reste									
/2	1100001	0	1001010	0	1110111	1	1000001	1	1010100	0	
/4	110000	10	100101	00	111011	11	100000	11	101010	00	
/8	11000	010	10010	100	11101	111	10000	011	10101	000	

- 4. En généralisant, que suffit-il de faire pour obtenir le quotient et le reste d'une division entière d'un nombre binaire par 2^n ?
 - Pour le quotient : il faut réaliser un **décalage de n bits vers la droite** du nombre.
 - Pour le reste : il faut réaliser un **ET logique de 2**ⁿ-**1** avec le nombre.

Les décalages et les opérations logiques sont nettement plus rapides à réaliser pour un microprocesseur que l'opération de division.

5. Si l'on souhaite multiplier un nombre binaire quelconque par une puissance de 2, quelle méthode peut-on utiliser afin d'éviter la multiplication ?

Un décalage logique d'un seul bit vers la gauche est équivalent à une multiplication par 2. Ainsi, un décalage logique de n bits vers la gauche est équivalent à une multiplication par 2^n .

6. Si l'on souhaite multiplier un nombre binaire quelconque par 3 ou par 10, quelle méthode peut-on utiliser pour éviter la multiplication ?

• 3n = 2n + n

Sous cette forme, il apparaît une multiplication par 2 (équivalente à un décalage d'un bit vers la gauche) et une addition.

• 10n = 8n + 2n

Sous cette forme, il apparaît une multiplication par 8 (équivalente à un décalage de 3 bits vers la gauche), une multiplication par 2 (équivalente à un décalage d'un bit vers la gauche), et une addition.

Si le multiplicateur est connu, on peut le décomposer de sorte à n'avoir comme opérations que des décalages et des additions. Ces dernières sont beaucoup plus rapides à réaliser pour un microprocesseur que la multiplication.

T.D. 1 – Corrigé 2/5

Exercice 3

Donnez, en représentation décimale, les valeurs minimales et maximales que peuvent prendre des nombres signés et non signés codés sur 4, 8, 16, 32 et *n* bits.

Bits	Non Signés	Signés
4	0 → 15	-8 → 7
8	0 → 255	−128 → 127
16	0 → 65 535	-32 768 → 32 767
32	$0 \rightarrow 2^{32} - 1$	$-2^{31} \rightarrow 2^{31}-1$
n	$0 \rightarrow 2^n - 1$	$-2^{n-1} \rightarrow 2^{n-1}-1$

Exercice 4

Soit les deux mots binaires suivants : 111111111₂ et 10110110₂.

1. Donnez leurs représentations décimales s'ils sont codés sur 8 bits signés.

· 11111111₂

Sur 8 bits signés, le bit de poids fort vaut 1 : le nombre est négatif.

On effectue son complément à 2 puis on convertit le résultat en décimal :

$$(111111111_2)_{C2} = 000000000_2 + 1_2 = 1_2 = 1$$

La représentation décimale est donc de -1.

· 10110110₂

Sur 8 bits signés, le bit de poids fort vaut 1 : le nombre est négatif.

On effectue son complément à 2 puis on convertit le résultat en décimal :

$$(10110110_2)_{C2} = 01001001_2 + 1_2 = 01001010_2 = 64 + 8 + 2 = 74$$

La représentation décimale est donc de -74.

2. Donnez leurs représentations décimales s'ils sont codés sur 16 bits signés.

• 1111111₂

Sur 16 bits signés, le bit de poids fort vaut 0 (**0**0000000111111111₂) : le nombre est positif.

On effectue une simple conversion binaire-décimal :

$$111111111_2 = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255$$

La représentation décimale est donc de +255.

• 10110110₂

Sur 16 bits signés, le bit de poids fort vaut 0 (**0**00000010110110₂) : le nombre est positif.

On effectue une simple conversion binaire-décimal :

$$10110110_2 = 128 + 32 + 16 + 4 + 2 = 182$$

La représentation décimale est donc de +182.

T.D. 1 – Corrigé 3/5

3. Donnez leurs représentations décimales s'ils sont codés sur 32 bits signés.

• 1111111₂

Sur 32 bits signés, le bit de poids fort vaut 0 (comme sur 16 bits signés): sa valeur est donc identique à celle sur 16 bits signés.

La représentation décimale est donc de +255.

· 10110110₂

Sur 32 bits signés, le bit de poids fort vaut 0 (comme sur 16 bits signés): sa valeur est donc identique à celle sur 16 bits signés.

La représentation décimale est donc de +182.

Soit le nombre entier négatif suivant : -80₁₀.

4. On souhaite le coder sur 8 bits signés. Donnez ses représentations binaire et hexadécimale.

On convertit sa valeur absolue en binaire : $80_{10} = 01010000_2$

On effectue son complément à 2 : $(01010000_2)_{C2} = 10101111_2 + 1_2 = 10110000_2$

Ce qui donne : **10110000**₂ **en binaire.**

B0₁₆ en hexadécimale.

5. On souhaite le coder sur 16 bits signés. Donnez ses représentations binaire et hexadécimale.

Une simple extension de signe suffit pour passer de 8 bits à 16 bits signés.

Ce qui donne : 11111111110110000₂ en binaire.

FFB0₁₆ en hexadécimale.

6. On souhaite le coder sur 32 bits signés. Donnez sa représentation hexadécimale.

Une simple extension de signe suffit pour passer de 16 bits à 32 bits signés.

Ce qui donne : **FFFFFFB0**₁₆ **en hexadécimale.**

T.D. 1 – Corrigé 4/5

Exercice 5

1. Donnez, en puissance de deux, le nombre de bits que contiennent les grandeurs suivantes : 128 Kib, 16 Mib, 2 Kio, 512 Gio.

On sait que :

- 1 Ki = 2^{10} ; 1 Mi = 2^{20} ; 1 Gi = 2^{30} .
- 1 octet = 8 bits = 2^3 bits.

On a donc:

- 128 Kib = $2^7 \times 2^{10}$ bits = 2^{17} bits.
- 16 Mib = $2^4 \times 2^{20}$ bits = 2^{24} bits.
- **2 Kio** = $2^1 \times 2^{10}$ octets = $2^1 \times 2^{10} \times 2^3$ bits = 2^{14} bits.
- 512 Gio = $2^9 \times 2^{30}$ octets = $2^9 \times 2^{30} \times 2^3$ bits = 2^{42} bits.
- 2. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre d'octets que contiennent les grandeurs suivantes : 2 Mib, 2¹⁴ bits, 2²⁶ octets, 2³² octets. Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière.
 - **2 Mib** = $2^1 \times 2^{20}$ bits = $2^1 \times 2^{20} / 2^3$ octets = 2^{18} octets = $2^8 \times 2^{10}$ octets = **256 Kio**.
 - 2^{14} bits = $2^{14} / 2^3$ octets = 2^{11} octets = $2^1 \times 2^{10}$ octets = **2 Kio**.
 - 2^{26} octets = $2^6 \times 2^{20}$ octets = **64 Mio**.
 - 2^{32} octets = $2^2 \times 2^{30}$ octets = **4 Gio**.

T.D. 1 – Corrigé 5/5