Estructuras algebráicas

1 Generalidades y teorema de Lagrange

1.1 Grupos

Definición 1.1 Un grupo es un conjunto no vacío G en el que se define una operación binaria $G \times G \to G$; $(a,b) \mapsto ab$ que cumple (1) **asociatividad** ((ab)c = a(bc)), (2) **existencia de elemento neutro** $u \in G$; ua = a = au y (3) **existencia de elemento inverso** $a, x \in G$; ax = u = xa. Tanto u como a son únicos. Para la suma u = 0, a = -x y para el producto u = 1, $a = x^{-1}$.

Otras propiedades inmediatas de los grupos son (1) **simplificación**: $ab = ac \iff b = c$; $ba = ca \iff b = c$; (2) **asociatividad generalizada**: $(a_1 \cdots a_k)(a_{k+1} \cdots a_n) = (a_1 \cdots a_l)(a_{l+1} \cdots a_n)$, (3) **inverso de un producto**: $(a_1 \cdots a_n)^{-1} = a_n^{-1} \cdots a_1^{-1}$.

Definición 1.2 Un **grupo simétrico** S_n es el conjunto de biyecciones de un conjunto X con n elementos. Se cumple que $card(S_n) = n!$. Otros ejemplos de grupos son $GL_n(\mathbb{R})$, el grupo de matrices no singulares para la operación producto; o D_n es el conjunto de biyecciones que conserva la distancia en un polígono de n lados.

Definición 1.3 Un grupo es **abeliano** si $ab = ba \ \forall a, b \in G$. Todo grupo con dos elementos es abeliano, pues aa = aa; uu = uu; ua = a = au; pero para $n \ge 3$, S_n no puede ser abeliano. GL_n ; $n \ge 2$, ni D_n ; $n \ge 3$ son abelianos.

Proposición 1.4 (1) Si $x^2 = 1 \ \forall x \in G$, entonces G es abeliano; (2) si $(ab)^2 = a^2b^2$ entonces G es abeliano.

Demostración. (1) Para cada x, $x \cdot x = 1 \iff x = x^{-1}$, luego si $a, b \in G$ entonces $a = a^{-1}$; $b = b^{-1}x$ y si c = ab entonces $ab = c = c^{-1} = (ab)^{-1} = b^{-1}a^{-1} = ba$. (2) Dados $a, b \in G$, se tiene que $a(ba)b = (ab)^2 = a^2b^2 = a(ab)b$ y, por simplificación, ab = ba.

Definición 1.5 Si G, G' son dos grupos con operaciones $G \times G \to G : (a,b) \mapsto ab$; $G' \times G' \to G' : (a',b') \mapsto a'b'$ el **producto cartesiano** $G'' = G \times G''$ es un grupo con operación $G'' \times G'' \to G'' : ((a,a'),(b,b')) = (ab,a'b')$. La asociatividad se mantiene, y se ve que $1_{G''} = (1_G,1_{G'})$. Además, si G, G' son abelianos, G'' también lo es.

1.2 Subgrupos

Definición 1.6 Un subconjunto no vacío $H \subset G$ es un **subgrupo** de G si es un grupo con la misma operación que G. Se puede ver que el elemento neutro de H es 1_G , y que si $x \in H$; $x^{-1} \in H$. Para que (1) H sea subgrupo de G se tiene que cumplir que (2) si $x, y \in H$, entonces $xy^{-1} \in H$.

 $\{1_G\}$ y G son subgrupos de G. El resto de subgrupos se llaman **subgrupos propios** de G. Por ejemplo, $m\mathbb{Z} = \{mx \mid x, m \in \mathbb{Z}; \}$ es un subgrupo de \mathbb{Z} .

Definición 1.8.3 Se denomina a $\langle S \rangle$ al **subgrupo generado** por S.

$$\langle S \rangle = \left\{ s_1^{h_1} \cdots s_n^{h_n} \mid n \in \mathbb{N}, s_i \in S, h_i \in \mathbb{Z}, 1 \le i \le n \right\}$$
. Esto se puede simplificar como

 $\langle S \rangle = \{x_1 \cdots x_m \mid m \in \mathbb{N}, x_i \in S, 1 \le i \le m\}$. Es decir, es el conjunto de todos los elementos de S combinados con operación binaria. Si \mathscr{F}_S es la familia de los subgrupos de G que contienen a S, entonces se cumple que $\langle S \rangle = \bigcap_{H \in \mathscr{F}_S} H$.

Un caso particular es cuando $S = \{a\}$. En tal caso es el **subgrupo generado por a**, $\langle a \rangle = \{a^k \mid k \in \mathbb{Z}\}$. Un subconjunto $S \subset G$ se llama **generador de** G si $G = \langle S \rangle$. Es cierto que $\langle G \rangle = G$.

Definición 1.8.4 Si H es subgrupo de G, se llama **centralizador de** H **en** G a $C_G(H) = \{x \in G \mid ax = xa \ \forall a \in H\}$. El centralizador de G en G, llamado **centro de** G es el caso $Z(G) = \{x \in G \mid xa = ax \ \forall a \in G\}$. Se ve que $C_G(H)$ es un subgrupo de G.

Definición 1.8.5 Si $S \subset G$ y $a \in G$, se llama **conjugado de** S **por** a al conjunto $S^a = \{a^{-1}xa \mid x \in S\}$

Definición 1.8.6 Si $S \subset G$, se llama **normalizador de** S **en** G al conjunto $N_G(S) = \{a \in G \mid S^a = S\}$. El normalizador de S es un subgrupo de G porque si $a, b \in N_G(S)$, entonces $S^{ab^{-1}} = (S^a)^{b^{-1}} = S^{b^{-1}} = (S^b)^{b^{-1}} = S^{bb^{-1}} = S$

Definición 1.8.8 Dados dos subgrupos K, H de G, se define $HK = \{hk \mid h \in H, k \in K\}$. Para que HK sea un subgrupo de G entonces HK = KH. Si $H \subset K$, HK = K = KH.

1.3 Orden de un grupo

Definición 1.9 El **orden** de un subgrupo finito $H \subset G$ es el número de elementos que tiene. Se denota por o(H). Un elemento $a \in G$ es **de torsión** si $\langle a \rangle$ es finito. En tal caso el orden es o(a).

Proposición 1.10 Sea G un grupo y $a \in G$ de torsión. Entonces se cumple que

- Existe $k \ge 1$ tal que $a^k = 1$
- o(a) es el menor número tal que $a^n = 1$
- Si $n = o(a), \langle a \rangle = \{1, a, \dots, a^{n-1}\}$
- $a^k = 1 \sin k$ es múltiplo de n
- $o(a^{-1}) = o(a)$
- Si $x = a^k$ y n = o(a), entonces $o(x) = \frac{n}{mcd(n,k)}$
- Si $b \in G$ es de torsion y ab = ba entonces o(ab) es divisor de mcm(o(a), o(b)). Si o(a), o(b) son primos entre si, o(ab) = o(a)o(b)
- o(ab) = o(ba)

1.4 Índice de un subgrupo

Definición 1.2/Observación 1.12.6/7 Sea G un grupo y $H \subset G$. Sean R^H , R_H las relaciones de equivalencia en G:

$$xR_H y \iff xy^{-1} \in H$$

 $xR^H y \iff x^{-1}y \in H$

Además, se definen $Hx = \{hx \mid h \in H\}; xH = \{xh \mid h \in H\}$. Se cumple que si $x, y \in G$, $y yR_Hx$ entonces $yx^{-1} = h \in H$ y, por tanto, $y = hx \in Hx$.

Además, las aplicaciones $H \to Hx$: $h \mapsto hx$ y su equivalente en xH son biyectivas. Es importante que pese a existir una biyección entre Hx y xH, no siempre Hx y xH son iguales.

Proposición 1.12.3 La aplicación entre conjuntos cocientes $G/R_H \to G/R^H : Hx \to x^{-1}H$ es biyectiva.

Definición 1.12.4 $H \subset G$ es un subgrupo de **índice infinito** si G/R_H es un conjunto infinito. Por otra parte, el índice de H en G, [G:H] es el número de elementos de G/R_H .

Proposición 1.12.8 (T de Lagrange) Sea $H \subset G$ un subgrupo. Se cumple que si G es finito, entonces o(H) es finito, H tiene índice finito en G y $o(G) = o(H) \cdot [G : H]$.

Corolario 1.12.9 Si H, K son subgrupos finitos de G, o(H) = m, o(K) = n, entonces $o(H \cap K) = 1 \iff H \cap K = \{1_G\}$

Proposición 1.12.10 (F de transitividad del índice) Sean H, K subgrupos de G. Si H es subgrupo de K, Y los indices entre subgrupos, Y con Y0, son finitos, entonces se cumple Y1 = Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | Y8 | Y9 | Y9

Proposición 1.12.11 Sean *H*, *K* subgrupos de *G*, finito. Entonces

$$card(HK) = \frac{o(H)o(K)}{o(H \cap K)}$$

Definición 1.15 / **Observación 1.15.4** Un grupo G se llama **cíclico** si existe $a \in G$ tal que $G = \langle a \rangle$. Si o(a) = p, primo, el grupo es cíclico.

Proposición 1.16 / 1.17 Sea G cíclico y n = o(G), para cada divisor m de n existe un único subgrupo de G de orden m, y ese subgrupo es cíclico. Además, todo subgrupo de un grupo cíclico [finito o no] es cíclico.

Definición 1.18 Sea *G* finitamente generado. Un sistema generador *S* se llama **minimal** si cualquier subconjunto de *G* con menos elemenos que *S* no es generador de *G*.

Proposición 1.19 Sea G finito de orden n y $S = \{x_1, \dots, x_p\}$ un sistema generador minimal de G. Entonces $2^p \le n$.

Demostración. Llamamos $S_i = \{x_1, \dots, x_i\}$, $1 \le i \le p$; y $H_i = \langle S_i \rangle$. Evidentemente, $H_i \subset H_{i+1}$. Por ele teorema de Lagrange y la fórmula de la transitividad del índice,

$$[G: H_1] = [H_P: H_1] = [H_P: H_{P-1}][H_{P-1}: H_{P-2}] \cdots [H_2: H_1]$$

Además,

$$[H_{i+1}: H_i] = \frac{o(H_{i+1})}{o(H_i)} > 1 \iff [H_{i+1}: H_i] \ge 2$$

pues los índices son enteros. Por tanto, $[G:H_1] \ge 2^{p-1}$, y como $o(H_1) \ge 2$, entonces, $o(G) = o(H_1)[G:H_1] \ge 2^p$