

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C07D 239/94, 487/04, 471/04, 495/04		A1	(11) International Publication Number: WO 97/38983 (43) International Publication Date: 23 October 1997 (23.10.97)
<p>(21) International Application Number: PCT/US97/05778</p> <p>(22) International Filing Date: 8 April 1997 (08.04.97)</p> <p>(30) Priority Data: 60/015,351 12 April 1996 (12.04.96) US</p> <p>(71) Applicant (<i>for all designated States except US</i>): WARNER-LAMBERT COMPANY [-US]; 201 Tabor Road, Morris Plains, NJ 07950 (US).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (<i>for US only</i>): BRIDGES, Alexander, James [US/US]; 3301 Textile Road, Saline, MI 48176 (US). DENNY, William, Alexander [NZ/NZ]; 165 Gossamer Drive, Pakuranga, Auckland (NZ). DOBRUSIN, Ellen, Myra [US/US]; 2205 Winchell, Ann Arbor, MI 48104 (US). DOHERTY, Annette, Marian [GB/US]; 106 Tulip Tree Court, Ann Arbor, MI 48103 (US). FRY, David, W. [US/US]; 4659 Ash Court, Ypsilanti, MI 48197 (US). McNAMARA, Dennis, Joseph [US/US]; 304 Linda Vista, Ann Arbor, MI 48103 (US). SHOWALTER, Howard, Daniel, Hollis [US/US]; 3578 Lamplighter Drive, Ann Arbor, MI 48103 (US). SMAILL, Jeffrey, B. [NZ/NZ]; 16 Lynwood Avenue, Mt. Albert, Auckland (NZ). ZHOU,</p>		<p>Hairong [CN/US]; 4065 Spring Lake Boulevard, Ann Arbor, MI 48108 (US).</p> <p>(74) Agents: RYAN, M., Andrea; Warner-Lambert Company, 201 Tabor Road, Morris Plains, NJ 07950 (US) et al.</p> <p>(81) Designated States: AL, AU, BA, BB, BG, BR, CA, CN, CZ, EE, GE, GH, HU, IL, IS, JP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i></p>	
<p>(54) Title: IRREVERSIBLE INHIBITORS OF TYROSINE KINASES</p> <p>(57) Abstract</p> <p>The present invention provides compounds that are irreversible inhibitors of tyrosine kinases. Also provided is a method of treating cancer, restenosis, atherosclerosis, endometriosis, and psoriasis and a pharmaceutical composition that comprises a compound that is an irreversible inhibitor of tyrosine kinases.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

-1-

IRREVERSIBLE INHIBITORS OF TYROSINE KINASES

5

FIELD OF THE INVENTION

This invention relates to compounds that are
10 irreversible inhibitors of tyrosine kinases. This
invention also relates to a method of treating cancer,
atherosclerosis, restenosis, endometriosis, and
psoriasis, and to a pharmaceutical composition that
comprises a compound that is an irreversible inhibitor
15 of tyrosine kinases.

BACKGROUND OF THE INVENTION

20 Cancer has been viewed as a disease of the
intracellular signalling system, or signal transduction
mechanism. Cells receive instructions from many
extracellular sources, instructing them to either
proliferate or not to proliferate. The purpose of the
25 signal transduction system is to receive these and
other signals at the cell surface, get them into the
cell, and then pass the signals on to the nucleus, the
cytoskeleton, and transport and protein synthesis
machinery.

30 The most common cause of cancer is a series of
defects, either in these proteins, when they are
mutated, or in the regulation of the quantity of the
protein in the cell such that it is over or under
produced. Most often, there are key lesions in the
35 cell which lead to a constitutive state whereby the
cell nucleus receives a signal to proliferate, when
this signal is not actually present. This can occur
through a variety of mechanisms. Sometimes the cell

-2-

may start to produce an authentic growth factor for its own receptors when it should not, the so-called autocrine loop mechanism. Mutations to the cell surface receptors, which usually signal into the cell by means of tyrosine kinases, can lead to activation of the kinase in the absence of ligand, and passing of a signal which is not really there. Alternatively, many surface kinases can be overexpressed on the cell surface leading to an inappropriately strong response to a weak signal. There are many levels inside the cell at which mutation or overexpression can lead to the same spurious signal arising in the cell, and there are many other kinds of signalling defects involved in cancer. This invention touches upon cancers which are driven by the three mechanisms just described, and which involve cell surface receptors of the epidermal growth factor receptor tyrosine kinase family (EGFR). This family consists of the EGF receptor (also known as Erb-B1), the Erb-B2 receptor, and its constitutively active oncoprotein mutant Neu, the Erb-B3 receptor and the Erb-B4 receptor. Additionally, other biological processes driven through members of the EGF family of receptors can also be treated by compounds of the invention described below.

The EGFR has as its two most important ligands Epidermal Growth Factor (EGF) and Transforming Growth Factor alpha (TGF α). The receptors appear to have only minor functions in adult humans, but are apparently implicated in the disease process of a large portion of all cancers, especially colon and breast cancer. The closely related Erb-B2, Erb-B3, and Erb-B4 receptors have a family of Heregulins as their major ligands, and receptor overexpression and mutation have been unequivocally demonstrated as the major risk factor in poor prognosis breast cancer. Additionally, it has been demonstrated that all four of the members

-3-

of this family of receptors can form heterodimeric signalling complexes with other members of the family, and that this can lead to synergistic transforming capacity if more than one member of the family is overexpressed in a malignancy. Overexpression of more than one family member has been shown to be relatively common in human malignancies.

In addition to cancer, restenosis is also a disease in which undesired cellular proliferation occurs. Restenosis involves the proliferation of vascular smooth muscle cells. Restenosis is a major clinical problem associated with coronary angioplasty and other medical procedures. Restenosis generally occurs within about 0 to 6 months in about 30% to 50% of patients who undergo balloon angioplasty to clear clogged coronary arteries in an effort to treat heart disease due to occluded arteries. The resulting restenosis causes substantial patient morbidity and health care expense.

The process of restenosis is initiated by injury of the blood vessel, including arteries and veins, with the subsequent release of thrombogenic, vasoactive, and mitogenic factors. Endothelial and deep vessel injury leads to platelet aggregation, thrombus formation, inflammation, and activation of macrophages and smooth muscle cells. These events induce the production of and release of growth factors and cytokines, which in turn may promote their own synthesis and release from target cells. Thus, a self-perpetuating process involving growth factors such as EGF, platelet derived growth factor (PDGF) or fibroblast growth factor (FGFs) is initiated. Thus, it would be useful to have irreversible inhibitors of signal transduction pathways, particularly of tyrosine kinases like EGF, PDGF, FGF, or src tyrosine kinases.

-4-

The proliferative skin disease psoriasis has no good cure at present. It is often treated by anticancer agents such as methotrexate, which have very serious side effects, and which are not very effective at the toxicity limited doses which have to be used.

5 It is believed that TGF alpha is the major growth factor overproduced in psoriasis, since 50% of transgenic mice which over express TGF alpha develop psoriasis. This suggests that a good inhibitor of EGFR 10 signalling could be used as antipsoriatic agent, preferably, but not necessarily, by topical dosing.

It is especially advantageous to have irreversible tyrosine kinase inhibitors when compared to reversible inhibitors, because irreversible inhibitors can be used 15 in prolonged suppression of the tyrosine kinase, limited only by the normal rate of receptor resynthesis, also called turnover.

Additional information on the role of src tyrosine kinases in biological processes relating to cancer and 20 restenosis can be found in the following documents, which are all hereby incorporated by reference.

Benjamin C.W. and Jones D.A., Platelet-Derived Growth Factor Stimulates Growth Factor Receptor Binding Protein-2 Association With Src In Vascular Smooth Muscle Cells, *JBC*, 1994;269:30911-30916.

Kovalenko M., et al., Selective Platelet-Derived Growth Factor Receptor Kinase Blockers Reverse Cis-transformation, *Cancer Res*, 1994;54:6106-6114.

Schwartz R.S., et al., The Restenosis Paradigm Revisted: An Alternative Proposal for Cellular Mechanisms, *J Am Coll Cardiol*, 1992;20:1284-1293.

Libby P., et al., Cascade Model for Restenosis - A Special Case of Atherosclerosis Progression, *Circulation*, 1992;86:47-52.

35 Additional information on the role of EGF tyrosine kinases in biological processes relating to cancer and

-5-

restenosis can be found in the following document which is hereby incorporated by reference.

5 Jonathan Blay and Morley D. Hollenberg,
Heterologous Regulation Of EGF Receptor Function In
Cultured Aortic Smooth Muscle Cells, *Eur J Pharmacol.*,
Mol Pharmacol Sect, 1989;172(1):1-7.

10 Information that shows that antibodies to EGF or EGFR show in vivo antitumor activity can be found in the following documents which are hereby incorporated by reference.

15 Modjtahedi H., Eccles S., Box G., Styles J.,
Dean C, Immunotherapy Of Human Tumour Xenografts
Overexpressing The EGF Receptor With Rat Antibodies
That Block Growth Factor-Receptor Interaction, *Br J
Cancer*, 1993;67:254-261.

20 Kurachi H., Morishige K.I., Amemiya K., Adachi H.,
Hirota K., Miyake A., Tanizawa O, Importance Of
Transforming Growth Factor Alpha/Epidermal Growth
Factor Receptor Autocrine Growth Mechanism In An
Ovarian Cancer Cell Line In Vivo, *Cancer Res*,
1991;51:5956-5959.

25 Masui H., Moroyama T., Mendelsohn J, Mechanism Of
Antitumor Activity In Mice For Anti-Epidermal Growth
Factor Receptor Monoclonal Antibodies With Different
Isotypes, *Cancer Res*, 1986;46:5592-5598.

30 Rodeck U., Herlyn M., Herlyn D., Molthoff C.,
Atkinson B., Varello M., Steplewski Z., Koprowski H.,
Tumor Growth Modulation By A Monoclonal Antibody To The
Epidermal Growth Factor Receptor: Immunologically
Mediated And Effector Cell-Independent Effects, *Cancer
Res*, 1987;47:3692-3696.

35 Guan E., Zhou T., Wang J., Huang P., Tang W.,
Zhao M., Chen Y., Sun Y, Growth Inhibition Of Human
Nasopharyngeal Carcinoma In Athymic Mice By
Anti-Epidermal Growth Factor Receptor Monoclonal
Antibodies, *Internat J Cell Clon*, 1989;7:242-256.

-6-

Masui H., Kawamoto T., Sato J.D., Wolf B.,
Sato G., Mendelsohn J., Growth Inhibition Of Human Tumor
Cells In Athymic Mice By Anti-Epidermal Growth Factor
Receptor Monoclonal Antibodies, *Cancer Res.*,
5 1984;44:1002-1007.

In addition, the following documents show the
antitumor activity of protein tyrosine kinase
inhibitors. The documents are hereby incorporated by
reference.

10 Buchdunger E., Trinks U., Mett H., Regenass U.,
Muller M., Meyer T., McGlynn E., Pinna L.A.,
Traxler P., Lydon N.B. 4,5-Dianilinophthalimide: A
Protein Tyrosine Kinase Inhibitor With Selectivity For
The Epidermal Growth Factor Receptor Signal
15 Transduction Pathway And Potent In Vivo Antitumor
Activity, *Proc Natl Acad Sci USA*, 1994;91:2334-2338.

Buchdunger E., Mett H., Trinks U., Regenass U.,
Muller M., Meyer T., Beilstein P., Wirz B.,
Schneider P., Traxler P., Lydon N. 4,5-Bis(4-
20 Fluoroanilino)Phthalimide: A Selective Inhibitor Of
The Epidermal Growth Factor Receptor Signal
Transduction Pathway With Potent In Vivo Mdd Antitumor
Activity, *Clinical Cancer Research*, 1995;1:813-821.

Compounds that are reversible inhibitors of
25 tyrosine kinases have been described in U.S. Patent
Numbers 5,457,105, 5,475,001, and 5,409,930 and in PCT
publication Numbers WO 9519774 and WO 9519970. The
presently disclosed compounds, which are structurally
different from the tyrosine kinase inhibitors described
30 in the above-identified documents, are irreversible
inhibitors of tyrosine kinases.

-7-

SUMMARY OF THE INVENTION

The present invention provides compounds having
the Formula I

5

10

15

wherein X is -D-E-F and Y is -SR⁴, halogen, -OR⁴,
-NHR³, or hydrogen, or X is -SR⁴, halogen, -OR⁴,
-NHR³, or hydrogen, and Y is -D-E-F;

20

25

30

35

40

-8-

provided that when E is -S- or -S-, D is not

5

10

R^1 is hydrogen, halogen, or $\text{C}_1\text{-}\text{C}_6$ alkyl;

R^2 , R^3 , and R^4 are independently hydrogen, $\text{C}_1\text{-}\text{C}_6$ alkyl,

$-(\text{CH}_2)_n\text{-N-piperidinyl}$, $-(\text{CH}_2)_n\text{-N-piperazinyl}$,

$-(\text{CH}_2)_n\text{-N}_1\text{-piperazinyl}[\text{N}_4\text{-}(\text{C}_1\text{-}\text{C}_6)\text{alkyl}]$,

15

$-(\text{CH}_2)_n\text{-N-pyrrolidyl}$, $-(\text{CH}_2)_n\text{-pyridinyl}$,

$-(\text{CH}_2)_n\text{-N-imidazoyl}$, $-(\text{CH}_2)_n\text{-imidazoyl}$,

$-(\text{CH}_2)_n\text{-N-morpholino}$, $-(\text{CH}_2)_n\text{-N-thiomorpholino}$,

$-(\text{CH}_2)_n\text{-N-hexahydroazepine}$ or substituted $\text{C}_1\text{-}\text{C}_6$ alkyl, wherein the substituents are selected from

20

A

$-\text{OH}$, $-\text{NH}_2$, or $-\text{N-B}$, A and B are independently hydrogen, $\text{C}_1\text{-}\text{C}_6$ alkyl, $-(\text{CH}_2)_n\text{OH}$,

$-(\text{CH}_2)_n\text{-N-piperidinyl}$, $-(\text{CH}_2)_n\text{-N-piperazinyl}$,

25

$-(\text{CH}_2)_n\text{-N}_1\text{-piperazinyl}[\text{N}_4\text{-}(\text{C}_1\text{-}\text{C}_6)\text{alkyl}]$,

$-(\text{CH}_2)_n\text{-N-pyrrolidyl}$, $-(\text{CH}_2)_n\text{-N-pyridyl}$,

$-(\text{CH}_2)_n\text{-imidazoyl}$, or $-(\text{CH}_2)_n\text{-N-imidazoyl}$;

30

z^1 , z^2 , or z^3 are independently hydrogen, halogen,

$\text{C}_1\text{-}\text{C}_6$ alkyl, $\text{C}_3\text{-}\text{C}_8$ cycloalkyl, $\text{C}_1\text{-}\text{C}_6$ alkoxy, $\text{C}_3\text{-}\text{C}_8$ cycloalkoxy, nitro, $\text{C}_1\text{-}\text{C}_6$ perfluoroalkyl, hydroxy,

$\text{C}_1\text{-}\text{C}_6$ acyloxy, $-\text{NH}_2$, $-\text{NH}(\text{C}_1\text{-}\text{C}_6$ alkyl), $-\text{N}(\text{C}_1\text{-}\text{C}_6$

alkyl) $_2$, $-\text{NH}(\text{C}_3\text{-}\text{C}_8$ cycloalkyl), $-\text{N}(\text{C}_3\text{-}\text{C}_8$

cycloalkyl) $_2$, hydroxymethyl, $\text{C}_1\text{-}\text{C}_6$ acyl, cyano,

azido, $\text{C}_1\text{-}\text{C}_6$ thioalkyl, $\text{C}_1\text{-}\text{C}_6$ sulfinylalkyl, $\text{C}_1\text{-}\text{C}_6$

35

sulfonylalkyl, $\text{C}_3\text{-}\text{C}_8$ thiocycloalkyl, $\text{C}_3\text{-}\text{C}_8$

sulfinylcycloalkyl, $\text{C}_3\text{-}\text{C}_8$ sulfonylcycloalkyl,

mercapto, $\text{C}_1\text{-}\text{C}_6$ alkoxy carbonyl, $\text{C}_3\text{-}\text{C}_8$

cycloalkoxycarbonyl, $\text{C}_2\text{-}\text{C}_4$ alkenyl, $\text{C}_4\text{-}\text{C}_8$

cycloalkenyl, or $\text{C}_2\text{-}\text{C}_4$ alkynyl;

-9-

- R^5 is hydrogen, halogen, C_1-C_6 -perfluoroalkyl,
 $1,1$ -difluoro(C_1-C_6)alkyl, C_1-C_6 alkyl,
 $-(CH_2)_n-N$ -piperidinyl, $-(CH_2)_n$ -piperazinyl,
 $-(CH_2)_n$ -piperazinyl[$N_4-(C_1-C_6)$ alkyl],
5 $-(CH_2)_n-N$ -pyrrolidyl, $-(CH_2)_n$ -pyridinyl,
 $-(CH_2)_n-N$ -imidazoyl, $-(CH_2)_n-N$ -morpholino,
 $-(CH_2)_n-N$ -thiomorpholino, $-C=CH_2$,
 H
10 $-CH=CH-(C_1-C_6)$ alkyl, $-(CH_2)_n-N$ -hexahydroazepine,
 $-(CH_2)_nNH_2$, $-(CH_2)_nNH(C_1-C_6)$ alkyl),
 $-(CH_2)_nN(C_1-C_6)$ alkyl $_2$, -1 -oxo(C_1-C_6)alkyl,
carboxy, (C_1-C_6)alkyloxycarbonyl,
 $N-(C_1-C_6)$ alkylcarbamoyl, phenyl or substituted
15 phenyl, wherein the substituted phenyl can have
from one to three substituents independently
selected from Z^1 , Z^2 , Z^3 or a monocyclic
heteroaryl group, and each C_1-C_6 alkyl group above
in R^5 can be substituted with -OH, -NH₂ or -NAB,
20 where A and B are as defined above, R^6 is hydrogen
or C_1-C_6 alkyl; R^{13} is hydrogen or halogen; and
n is 1 to 4, p is 0 or 1, and the pharmaceutically
acceptable salts, esters, amides, and prodrugs
thereof.
- 25 In a preferred embodiment of the compound of
Formula I, Z^1 and Z^2 are hydrogen, and Z^3 is a halogen.
In a more preferred embodiment of the compounds of
Formula I, Z^3 is bromine.
In another more preferred embodiment of the
30 compounds of Formula I, the bromine is located at the 3
or meta position of the phenyl ring.
In another preferred embodiment, Z^1 is hydrogen,
 Z^2 is F, and Z^3 is Cl.
In another more preferred embodiment, Z^1 is
35 hydrogen, Z^2 is F, and Z^3 is Cl, wherein Z^2 is located
at the 4 position, and Z^3 is located at the 3 position
of the phenyl ring.

-10-

In another preferred embodiment of the compounds of Formula I,

5 $\begin{array}{c} \text{R}^2\text{O} \quad \text{CHR}^5 \\ | \quad | \quad | \\ -\text{N}-\text{C}-\text{C}-\text{R}^1, \text{ and Y is hydrogen, or} \end{array}$

$\begin{array}{c} \text{R}^2\text{O} \quad \text{CHR}^5 \\ | \quad | \quad | \\ \text{X is hydrogen, and Y is } -\text{N}-\text{C}-\text{C}-\text{R}^1. \end{array}$

10 In another preferred embodiment of the compounds of Formula I, Y is -D-E-F, and -D-E-F is

In another preferred embodiment of the compounds of Formula I, X is -D-E-F, and -D-E-F is

-11-

In another preferred embodiment of the compounds of Formula I, R² is hydrogen.

In another preferred embodiment of the compounds of Formula I, Y is -D-E-F and X is -O(CH₂)_n-morpholino.

5 In another preferred embodiment of the compounds of Formula I, R⁵ is carboxy, (C₁-C₆ alkyl)oxycarbonyl or C₁-C₆ alkyl.

In another preferred embodiment of the compounds of Formula I, Y is -D-E-F and X is -O(CH₂)_nmorpholino.

10 In another preferred embodiment of the compounds of Formula I, Y is -D-E-F and X is -O-(CH₂)_n-N₁-piperazinyl[N₄-(C₁-C₆)alkyl].

In another preferred embodiment of the compounds of Formula I, Y is -D-E-F and X is -O-(CH₂)_n-imidazoyl.

15 In another embodiment, the present invention provides compounds having the Formula II

20

-12-

wherein Q is

5

10

p is 0 or 1;

X is -D-E-F, and Y is -SR⁴, -OR⁴, -NHR³ or hydrogen, or

15

X is -SR⁴, -OR⁴, -NHR³ or hydrogen, and Y is

-D-E-F;

20

25

30

35

-13-

5

10

R^1 is hydrogen, halogen, or $\text{C}_1\text{-C}_6$ alkyl;
 R^2 , R^3 , and R^4 are independently hydrogen, $\text{C}_1\text{-C}_6$ alkyl,
 $-(\text{CH}_2)_n\text{-N-piperidinyl}$, $-(\text{CH}_2)_n\text{-N-piperazinyl}$,
 $-(\text{CH}_2)_n\text{-N}_1\text{-piperazinyl}[\text{N}_4\text{-(C}_1\text{-C}_6\text{)alkyl}]$,
 $-(\text{CH}_2)_n\text{-N-pyrrolidyl}$, $-(\text{CH}_2)_n\text{-pyridinyl}$,
 $-(\text{CH}_2)_n\text{-N-imidazoyl}$, $-(\text{CH}_2)_n\text{-imidazoyl}$,
 $-(\text{CH}_2)_n\text{-N-morpholino}$, $-(\text{CH}_2)_n\text{-N-thiomorpholino}$,
 $-(\text{CH}_2)_n\text{-N-hexahydroazepine}$ or substituted $\text{C}_1\text{-C}_6$
alkyl, wherein the substituents are selected from

20

A

$-\text{OH}$, $-\text{NH}_2$, or $-\text{N-B}$, A and B are independently
hydrogen, $\text{C}_1\text{-C}_6$ alkyl, $-(\text{CH}_2)_n\text{OH}$,

25

$-(\text{CH}_2)_n\text{-N-piperidinyl}$, $-(\text{CH}_2)_n\text{-N-piperazinyl}$,
 $-(\text{CH}_2)_n\text{-N}_1\text{-piperazinyl}[\text{N}_4\text{-(C}_1\text{-C}_6\text{)alkyl}]$,
 $-(\text{CH}_2)_n\text{-N-pyrrolidyl}$, $-(\text{CH}_2)_n\text{-N-pyridyl}$,
 $-(\text{CH}_2)_n\text{-imidazoyl}$, or $-(\text{CH}_2)_n\text{-N-imidazoyl}$;

30

E^1 , E^2 , and E^3 are independently halogen, $\text{C}_1\text{-C}_6$ alkyl,
 $\text{C}_3\text{-C}_8$ cycloalkyl, $\text{C}_1\text{-C}_6$ alkoxy, $\text{C}_3\text{-C}_8$ cycloalkoxy,
nitro, $\text{C}_1\text{-C}_6$ perfluoroalkyl, hydroxy, $\text{C}_1\text{-C}_6$
acyloxy, $-\text{NH}_2$, $-\text{NH}(\text{C}_1\text{-C}_6\text{)alkyl}$, $-\text{N}(\text{C}_1\text{-C}_6\text{)alkyl})_2$,
 $-\text{NH}(\text{C}_3\text{-C}_8\text{ cycloalkyl})$, $-\text{N}(\text{C}_3\text{-C}_8\text{ cycloalkyl})_2$,
hydroxymethyl, $\text{C}_1\text{-C}_6$ acyl, cyano, azido, $\text{C}_1\text{-C}_6$
thioalkyl, $\text{C}_1\text{-C}_6$ sulfinylalkyl, $\text{C}_1\text{-C}_6$

35

sulfonylalkyl, $\text{C}_3\text{-C}_8$ thiocycloalkyl, $\text{C}_3\text{-C}_8$
sulfinylcycloalkyl, $\text{C}_3\text{-C}_8$ sulfonylcycloalkyl,
mercapto, $\text{C}_1\text{-C}_6$ alkoxy carbonyl, $\text{C}_3\text{-C}_8$
cycloalkoxycarbonyl, $\text{C}_2\text{-C}_4$ alkenyl, $\text{C}_4\text{-C}_8$
cycloalkenyl, or $\text{C}_2\text{-C}_4$ alkynyl;

-14-

R^5 is hydrogen, halogen, C_1-C_6 -perfluoroalkyl,
 1,1-difluoro(C_1-C_6)alkyl, C_1-C_6 alkyl,
 $-(CH_2)_n$ -N-piperidinyl, $-(CH_2)_n$ -piperazinyl,
 $-(CH_2)_n$ -piperazinyl[N₄-(C_1-C_6)alkyl],
 $-(CH_2)_n$ -N-pyrrolidyl, $-(CH_2)_n$ -pyridinyl,
 $-(CH_2)_n$ -N-imidazoyl, $-(CH_2)_n$ -N-morpholino,
 $-(CH_2)_n$ -N-thiomorpholino, $-C=CH_2$,
 H
 5
 $-CH=CH-(C_1-C_6)$ alkyl, $-(CH_2)_n$ -N-hexahydroazepine,
 $-(CH_2)_nNH_2$, $-(CH_2)_nNH(C_1-C_6)$ alkyl),
 $-(CH_2)_nN(C_1-C_6)$ alkyl)₂, -1-oxo(C_1-C_6)alkyl,
 carboxy, (C_1-C_6)alkyloxycarbonyl,
 10
 $N-(C_1-C_6)$ alkylcarbamoyl, phenyl or substituted
 phenyl, wherein the substituted phenyl can have
 from one to three substituents independently
 selected from Z^1 , Z^2 , Z^3 or a monocyclic
 heteroaryl group, and each C_1-C_6 alkyl group can
 be substituted with -OH, -NH₂ or -NAB, where A
 and B are as defined above, R^6 is hydrogen or
 15
 C_1-C_6 alkyl; and
 n is 1 to 4, p is 0 and 1, and the pharmaceutically
 acceptable salts, esters, amides, and prodrugs
 thereof.
 20
 In a preferred embodiment of the compounds of
 Formula II, E^1 and E^2 are hydrogen, and E^3 is a
 halogen.
 25
 In a more preferred embodiment of the compounds of
 Formula II, the halogen is bromine.
 30
 In another more preferred embodiment of the
 compounds of Formula II, the bromine is located at the
 three or meta position of the phenyl ring.
 In another more preferred embodiment, E^1 is
 hydrogen, E^2 is chlorine, and E^3 is fluorine.

-15-

In another preferred embodiment of the compounds of Formula II, Q is

5

10

15

In another preferred embodiment of the compounds of Formula II, Q is

20

25

30

In another preferred embodiment of the compounds of Formula II, X is

35

-16-

In another preferred embodiment of the compounds of Formula II, X is

In another embodiment, the present invention provides compounds having the Formula III

10

wherein Q is

30

p is 0 or 1;

X is -D-E-F, and Y is -SR⁴, -OR⁴, -NHR³ or hydrogen, or

X is -SR⁴, -OR⁴, -NHR³ or hydrogen, and Y is
-D-E-F;

35

-17-

D is $-N^2-$, $-O-$, $-C^2-$, $-N^2-H$, $-N^2-O-$, $-C^2-N-$, $-C^2-O-$.

5

$\begin{array}{c} \text{R}^2 \\ | \\ -\text{C}-\text{C}- \\ | \quad | \\ \text{H} \quad \text{H} \end{array}$, $\begin{array}{c} \text{R}^2 \\ | \\ -\text{N}-\text{C}- \\ | \quad | \\ \text{H} \quad \text{H} \end{array}$, $\begin{array}{c} \text{R}^2 \\ | \\ -\text{O}-\text{C}- \\ | \\ \text{H} \end{array}$, $\begin{array}{c} \text{R}^2 \\ | \\ -\text{S}-\text{C}- \\ | \\ \text{H} \end{array}$, or absent;

10

E is $-C-$, $-S-$, or $-P-$; O
 O
 OR^2

三

F is $-C=R^1$, $-C\equiv R^5$, or $-C=C=R^1$

25

provided that when E is -S- or -S-, D is not

30

$$-\overset{\text{R}^2}{\underset{\text{H}}{\underset{\text{H}}{\text{N}-\text{C}}}-, \text{ or } -\overset{\text{R}^2}{\underset{\text{H}}{\text{O}-\text{C}}}-$$

R^1 is hydrogen, halogen, or C_1-C_6 alkyl;
 R^2 , R^3 , and R^4 are independently hydrogen, C_1-C_6 alkyl,
 - $(CH_2)_n$ -N-piperidinyl, - $(CH_2)_n$ -N-piperazinyl,
 - $(CH_2)_n$ -N₁-piperazinyl [$N_4-(C_1-C_6)$ alkyl],
 - $(CH_2)_n$ -N-pyrrolidyl, - $(CH_2)_n$ -pyridinyl,
 - $(CH_2)_n$ -N-imidazoyl, - $(CH_2)_n$ -imidazoyl,
 - $(CH_2)_n$ -N-morpholino, - $(CH_2)_n$ -N-thiomorpholino,
 - $(CH_2)_n$ -N-hexahydroazepine or substituted C_1-C_6 alkyl, wherein the substituents are selected from

-18-

$\begin{array}{c} A \\ \uparrow \\ -\text{OH}, -\text{NH}_2, \text{ or } -\text{N}-\text{B}, \text{ A and B are independently} \\ \text{hydrogen, C}_1\text{-C}_6 \text{ alkyl, } -(\text{CH}_2)_n\text{OH,} \\ -(\text{CH}_2)_n\text{-N-piperidinyl, } -(\text{CH}_2)_n\text{-N-piperazinyl,} \\ -(\text{CH}_2)_n\text{-N}_1\text{-piperazinyl[N}_4\text{-(C}_1\text{-C}_6\text{)alkyl],} \\ -(\text{CH}_2)_n\text{-N-pyrrolidyl, } -(\text{CH}_2)_n\text{-N-pyridyl,} \\ -(\text{CH}_2)_n\text{-imidazoyl, or } -(\text{CH}_2)_n\text{-N-imidazoyl;} \\ E^1, E^2, \text{ and } E^3 \text{ are independently halogen, C}_1\text{-C}_6 \text{ alkyl,} \\ C_3\text{-C}_8 \text{ cycloalkyl, C}_1\text{-C}_6 \text{ alkoxy, C}_3\text{-C}_8 \text{ cycloalkoxy,} \\ \text{nitro, C}_1\text{-C}_6 \text{ perfluoroalkyl, hydroxy, C}_1\text{-C}_6 \\ \text{acyloxy, } -\text{NH}_2, -\text{NH(C}_1\text{-C}_6 \text{ alkyl), } -\text{N(C}_1\text{-C}_6 \text{ alkyl)}_2, \\ -\text{NH(C}_3\text{-C}_8 \text{ cycloalkyl), } -\text{N(C}_3\text{-C}_8 \text{ cycloalkyl)}_2, \\ \text{hydroxymethyl, C}_1\text{-C}_6 \text{ acyl, cyano, azido, C}_1\text{-C}_6 \\ \text{thioalkyl, C}_1\text{-C}_6 \text{ sulfinylalkyl, C}_1\text{-C}_6 \\ \text{sulfonylalkyl, C}_3\text{-C}_8 \text{ thiocycloalkyl, C}_3\text{-C}_8 \\ \text{sulfinylcycloalkyl, C}_3\text{-C}_8 \text{ sulfonylcycloalkyl,} \\ \text{mercapto, C}_1\text{-C}_6 \text{ alkoxy carbonyl, C}_3\text{-C}_8 \\ \text{cycloalkoxy carbonyl, C}_2\text{-C}_4 \text{ alkenyl, C}_4\text{-C}_8 \\ \text{cycloalkenyl, or C}_2\text{-C}_4 \text{ alkynyl;} \\ R^5 \text{ is hydrogen, halogen, C}_1\text{-C}_6\text{-perfluoroalkyl,} \\ 1,1\text{-difluoro(C}_1\text{-C}_6\text{)alkyl, C}_1\text{-C}_6 \text{ alkyl,} \\ -(\text{CH}_2)_n\text{-N-piperidinyl, } -(\text{CH}_2)_n\text{-piperazinyl,} \\ -(\text{CH}_2)_n\text{-piperazinyl[N}_4\text{-(C}_1\text{-C}_6\text{)alkyl],} \\ -(\text{CH}_2)_n\text{-N-pyrrolidyl, } -(\text{CH}_2)_n\text{-pyridinyl,} \\ -(\text{CH}_2)_n\text{-N-imidazoyl, } -(\text{CH}_2)_n\text{-N-morpholino,} \\ -(\text{CH}_2)_n\text{-N-thiomorpholino, } -\overset{\underset{\text{H}}{\text{C}}}=\text{CH}_2, \\ -\text{CH=CH- (C}_1\text{-C}_6\text{)alkyl, } -(\text{CH}_2)_n\text{-N-hexahydroazepine,} \\ -(\text{CH}_2)_n\text{NH}_2, -(\text{CH}_2)_n\text{NH(C}_1\text{-C}_6 \text{ alkyl),} \\ -(\text{CH}_2)_n\text{N(C}_1\text{-C}_6 \text{ alkyl)}_2, -1\text{-oxo(C}_1\text{-C}_6\text{)alkyl,} \\ \text{carboxy, (C}_1\text{-C}_6\text{)alkyloxycarbonyl,} \\ \text{N-(C}_1\text{-C}_6\text{)alkyl carbamoyl, phenyl or substituted} \\ \text{phenyl, wherein the substituted phenyl can have} \\ \text{from one to three substituents independently} \\ \text{selected from z}^1, z^2, z^3 \text{ or a monocyclic} \\ \text{heteroaryl group, and each C}_1\text{-C}_6 \text{ alkyl group can} \end{array}$

-19-

be substituted with -OH, -NH₂ or -NAB, where A and B are as defined above, R⁶ is hydrogen or C₁-C₆ alkyl; and

n is 1 to 4, and the pharmaceutically acceptable salts, esters, amides, and prodrugs thereof.

In another preferred embodiment of the compounds of Formula III, Q is

15 In another preferred embodiment of the compounds of Formula III, Q is

In another preferred embodiment of the compounds of Formula III, X is

30 In another preferred embodiment of the compounds of Formula III, E¹ and E² are hydrogen and E³ is bromine.

In another preferred embodiment of the compounds of Formula III, E¹ is hydrogen, E² is chlorine, and E³ is fluorine.

-20-

In another preferred embodiment of the compounds of Formula III, X is

In another preferred embodiment, Q is a 6-substituted benzothieno[3,2-d]pyrimid-4-yl.

The present invention also provides a pharmaceutically acceptable composition that comprises a compound of Formula I, II, or III.

The present invention also provides a method of treating cancer, the method comprising administering to a patient having cancer a therapeutically effective amount of a compound of Formula I, II, or III.

The present invention also provides a method of treating or preventing restenosis, the method comprising administering to a patient having restenosis or at risk of having restenosis, a therapeutically effective amount of a compound of Formula I, II, or III.

The present invention also provides a method of treating psoriasis, the method comprising administering to a patient having psoriasis a therapeutically effective amount of a compound of Formula I, II, or III.

The present invention also provides a method of treating atherosclerosis, the method comprising administering to a patient having atherosclerosis a therapeutically effective amount of a compound of Formula I, II, or III.

The present invention also provides a method of
treating endometriosis, the method comprising
administering to a patient having endometriosis a
therapeutically effective amount of a compound of
Formula I, II, or III.

-21-

The present invention also provides a method of irreversibly inhibiting tyrosine kinases, the method comprising administering to a patient in need of tyrosine kinase inhibition a tyrosine kinase inhibiting amount of a compound of Formula I, II or III.

5 The present invention provides the following compounds:

N-[4-(3-Bromo-phenylamino)-pyrido[4,3-d]-
10 pyrimidin-7-yl]-N-(3-morpholin-4-yl-propyl)-acrylamide;

N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]-
15 pyrimidin-6-yl]-N-(3-morpholin-4-yl-propyl)-acrylamide;

N-[4-(3-Bromo-phenylamino)-quinazolin-7-yl]-
20 acrylamide;

N-[4-[(3-Bromophenyl)amino]quinazolin-7-yl]-
25 N-[3-morpholinopropyl]acrylamide;

3-[4-(3-Bromo-phenylamino)-quinazolin-7-yl-
carbamoyl]-acrylic acid;

3-[4-(3-Bromo-phenylamino)-quinazolin-7-yl-
20 carbamoyl]-acrylic acid ethyl ester;

But-2-enoic acid [4-(3-bromo-phenylamino)-
25 quinazolin-7-yl]-amide;

N-[4-(3-Bromo-phenylamino)-6-(3-morpholin-4-yl-
propylamino)-quinazolin-7-yl]-acrylamide;

N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]-
25 acrylamide;

N-[4-(3-Methyl-phenylamino)-quinazolin-7-yl]-
acrylamide;

N-[4-(3-Chloro-phenylamino)-quinazolin-7-yl]-
acrylamide;

30 N-[4-(3-Bromo-phenylamino)-quinazolin-7-yl]-
methacrylamide;

N-[4-(3-Bromo-phenylamino)-quinazolin-7-yl]-
ethenylsulfonamide;

35 N-[4-[(3-Chlorophenyl)amino]quinazolin-6-yl]-
acrylamide;

-22-

- N-[4-[(3-Methylphenyl)amino]quinazolin-6-yl]-acrylamide;
- 5 N-[4-[(3-(Trifluoromethyl)phenyl)amino]quinazolin-6-yl]acrylamide;
- N-[4-[(3-Bromophenyl)amino]-7-[3-(4-morpholino)-propoxy]quinazolin-6-yl]acrylamide;
- 10 N-[4-[(3-Methylphenyl)amino]-7-[3-(4-morpholino)-propoxy]quinazolin-6-yl]acrylamide;
- N-[4-[(3-Methylphenyl)amino]-7-[3-(4,N-methyl-1,N-piperazino)propoxy]quinazolin-6-yl]acrylamide;
- N-[4-[(3-Bromophenyl)amino]-7-[3-(4,N-methyl-1,N-piperazino)propoxy]quinazolin-6-yl]acrylamide;
- 15 N-[4-[(3-Bromophenyl)amino]-7-[3-(1,N-imidazyl)-propoxy]quinazolin-6-yl]acrylamide;
- N-[4-[(3-Bromophenyl)amino]-7-[4-(N,N-dimethyl-amino)butoxy]quinazolin-6-yl]acrylamide;
- N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]-N-[3-morpholinopropyl]acrylamide;
- 20 N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]-methacrylamide;
- N-[4-(3-Bromo-phenylamino)-quinazolin-7-yl]-ethenylsulfonamide;
- N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]-E-but-2-enamide;
- 25 N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]-4,4,4-trifluoro-E-but-2-enamide;
- N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]propynamide;
- N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]but-30 2-ynamide;
- N-[4-(3-Bromo-phenylamino)-pyrido[4,3-d]pyrimidin-7-yl]-acrylamide;
- N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-acrylamide;
- 35 N-[4-(3-Methyl-phenylamino)-pyrido[3,4-d]-pyrimidin-6-yl]-acrylamide;

-23-

- N- [4- (3-Bromo-phenylamino) -pyrido[3,4-d]pyrimidin-6-yl] -N-methyl acrylamide;
- N- [4- (3-Bromo-phenylamino) -pyrido[3,4-d]pyrimidin-6-yl] -methacrylamide;
- 5 N- [4- (3-Bromo-phenylamino) -pyrido[3,4-d]pyrimidin-6-yl] -ethenylsulfonamide;
- N- [4- (3-Bromo-phenylamino) -pyrido[3,2-d]pyrimidin-6-yl] -acrylamide;
- N- [4- (3-Bromo-phenylamino) -benzo[b]thieno[3,2-d]pyrimidin-8-yl] acrylamide;
- 10 N- [4- (3-Bromo-phenylamino) -benzo[b]thieno[3,2-d]pyrimidin-6-yl] acrylamide;
- N- [4- (3-Bromo-phenylamino) -benzo[b]thieno[3,2-d]pyrimidin-7-yl] acrylamide;
- 15 N- [4- [(3-Bromophenyl) amino] quinazolin-6-yl] buta-2,3-dienamide;
- N- [4- [(3-Bromophenyl) amino] quinazolin-6-yl] -E,4-oxopent-2-enamide;
- N- [4- [(3-Bromophenyl) amino] quinazolin-6-yl] -E,4-ethoxy-4-oxobut-2-enamide;
- 20 N- [4- (3-Bromo-phenylamino) -pyrido[3,4-d]pyrimidin-6-yl] penta-2,4-dienamide;
- N- [4- (3-Bromo-phenylamino) -pyrido[3,4-d]pyrimidin-6-yl] -N- (2- (N,N-dimethylamino) ethyl) acrylamide;
- 25 N- [4- (3-Bromo-phenylamino) -pyrido[3,4-d]pyrimidin-6-yl] E-but-2-enamide;
- N- [4- (3-Bromo-phenylamino) -pyrido[3,4-d]pyrimidin-6-yl] cinnamide;
- N- [4- (3-Bromo-phenylamino) -pyrido[3,4-d]pyrimidin-6-yl] -E,3-chloroacrylamide;
- 30 N- [4- (3-Bromo-phenylamino) -pyrido[3,4-d]pyrimidin-6-yl] -propynamide;
- N- [4- [(3-Bromophenyl) amino] quinazolin-6-yl] -E,4- (3- (N,N-dimethylamino) propoxy-4-oxobut-2-enamide tris trifluoroacetate;

-24-

- 3-[4-(3-Bromo-phenylamino)-quinazolin-6-ylcarbamoyl]-acrylic acid (Z);
N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]-E,4-(3-(N,N-dimethylamino)propylamino-4-oxobut-2-enamide;
5 4-[(3-Bromo-phenyl)amino]-6-(ethenesulfonyl)-pyrido[3,4-d]pyrimidine;
1-[4-(3-Bromo-phenylamino)-quinazolin-6-yl]-pyrrole-2,5-dione;
1-[4-(3-Bromo-phenylamino)-quinazolin-6-yl]-prop-
10 2-en-1-one;
Acrylic acid 4-(3-bromo-phenylamino)-quinazolin-6-yl ester;
Methyl N-[4-[(3-bromophenyl)amino]-P-ethenyl-pyrido[3,4-d]pyrimidin-6-yl]phosphonamide;
15 Acrylic acid 4-(3-bromo-phenylamino)-quinazolin-7-yl ester;
1-[4-(3-Bromo-phenylamino)-quinazolin-6-yl]-but-3-en-2-one;
Acrylic acid 4-(3-chloro-4-fluoro-phenylamino)-7-
20 methoxy-quinazolin-6-yl ester;
N-[4-(3-Bromo-phenylamino)-7-(3-morpholin-4-yl-propoxy)-pyrido[3,2-d]pyrimidin-6-yl]-acryl amide;
Penta-2,3-dienoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
25 Propa-1,2-diene-1-sulfonic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
Methyl N-[4-[(3-bromophenyl)amino]-6-quinazolinyl]-P-(1,2-propadienyl)phosphonamide;
N-[1-(3-Bromo-phenylamino)-9H-2,4,9-triaza-
30 fluoren-7-yl]-acrylamide;
N-[4-(3-Bromo-phenylamino)-9H-1,3,9-triaza-fluoren-6-yl]-acrylamide;
N-[4-(3-Chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-acrylamide;
35 N-(4-Phenylmethylamino-quinazolin-6-yl)-acrylamide;

-25-

(S)-N-[4-(1-Phenyl-ethylamino)-quinazolin-6-yl]-acrylamide;

(R)-N-[4-(1-Phenyl-ethylamino)-quinazolin-6-yl]-acrylamide;

5 But-2-enedioic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide (3-dimethylamino-propyl)-amide;

10 N-[4-(3-Chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-acrylamide;

15 N-[4-(3-Chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-N-methyl-acrylamide;

But-2-enedioic acid [4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide (3-dimethylamino-propyl)-amide;

15 But-2-enedioic acid [4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide (3-imidazol-1-yl-propyl)-amide;

20 4,4-Difluoro-8-morpholin-4-yl-oct-2-enoic acid [4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;

8-Dimethylamino-4,4-difluoro-oct-2-enoic acid [4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;

25 7-Dimethylamino-4,4-difluoro-hept-2-enoic acid [4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;

4,4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid [4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;

30 6-Dimethylamino-hex-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;

6-Morpholin-4-yl-hex-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;

35 7-Dimethylamino-hept-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;

-26-

- 7-Morpholin-4-yl-hept-2-ynoic acid [4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 5-Dimethylamino-pent-2-ynoic acid [4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 5
- 5-Morpholin-4-yl-pent-2-ynoic acid [4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 5-Imidazol-1-yl-pent-2-ynoic acid [4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 10
- 5-(4-Methyl-piperazin-1-yl-pent-2-ynoic acid
[4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-yl]-amide;
- 4-[4-(3-Chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-ylcarbamoyl]-but-3-enoic acid 2-(4-methyl-piperazin-1-yl)-ethyl ester;
- 15
- 4-[4-(3-Chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-ylcarbamoyl]-but-3-enoic acid 2-(imidazol-1-yl)-ethyl ester;
- Pent-2-enedioic acid 1-{[4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide} 5-[(3-morpholin-4-yl-propyl)-amide];
- 20
- Pent-2-enedioic acid 1-{[4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide} 5-[(3-diethylamino-propyl)-amide];
- 25
- 4-[4-(3-Chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-ylcarbamoyl]-but-3-enoic acid 2-morpholin-4-yl-ethyl ester;
- Pent-2-enedioic acid 1-{[4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide} 5-[(3-4-methyl-piperazin-1-yl)-propyl]-amide};
- 30
- (3-Chloro-4-fluoro-phenyl)-{6-[2-(3-dimethylamino-propoxy)-ethenesulfonyl]-pyrido[3,4-d]pyrimidin-4-yl}-amine;
- (3-Chloro-4-fluoro-phenyl)-(6-(2-[4-(4-methyl-piperazin-1-yl)-butylamino]-ethenesulfonyl)-
- 35
- pyrido[3,4-d]pyrimidin-4-yl)-amine;

-27-

(3-Chloro-4-fluoro-phenyl)-[6-(5-morpholin-4-yl-pent-1-ene-1-sulfonyl)-pyrido[3,4-d]pyrimidin-4-yl]-amine;

5 (3-Chloro-4-fluoro-phenyl)-(6-ethenesulfinyl-pyrido[3,4-d]pyrimidin-4-yl)-amine;

3-[4-(1-Phenyl-ethylamino)-quinazolin-6-ylcarbamoyl]-acrylic acid 2-morpholin-4-yl-ethyl ester;

But-2-enedioic acid (4-imidazol-1-yl-butyl)-amide [4-(1-phenyl-ethylamino)-quinazolin-6-yl]-amide;

10 4-[4-(1-Phenyl-ethylamino)-quinazolin-6-ylcarbamoyl]-but-3-enoic acid 3-diethylamino-propyl ester;

Pent-2-enedioic acid 5-{{2-(4-methyl-piperazin-1-yl)-ethyl}-amide} 1-{{4-(1-phenyl-ethylamino)-quinazolin-6-yl}-amide};

4,4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid [4-(1-phenyl-ethylamino)-quinazolin-6-yl]-amide;

7-Dimethylamino-4,4-difluoro-hept-2-enoic acid [4-(1-phenyl-ethylamino)-quinazolin-6-yl]-amide;

20 7-Imidazol-1-yl-hept-2-yneic acid [4-(1-phenyl-ethylamino)-quinazolin-6-yl]-amide;

6-Dimethylamino-hex-2-yneic acid [4-(1-phenyl-ethylamino)-quinazolin-6-yl]-amide;

25 But-2-enedioic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide (3-dimethylamino-propyl)-amide;

But-2-enedioic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide (3-imidazol-1-yl-propyl)-amide;

30 4,4-Difluoro-8-morpholin-4-yl-oct-2-enoic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;

35 8-Dimethylamino-4,4-difluoro-oct-2-enoic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;

-28-

- 7-Dimethylamino-4,4-difluoro-hept-2-enoic acid
[4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-
amide;
- 5 4,4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid
[4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-
amide;
- 10 6-Dimethylamino-hex-2-yneoic acid [4-(3-bromo-
phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 15 6-Morpholin-4-yl-hex-2-yneoic acid [4-(3-bromo-
phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 20 7-Dimethylamino-hept-2-yneoic acid [4-(3-bromo-
phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 25 7-Morpholin-4-yl-hept-2-yneoic acid [4-(3-bromo-
phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 30 5-Dimethylamino-pent-2-yneoic acid [4-(3-bromo-
phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 35 5-Morpholin-4-yl-pent-2-yneoic acid [4-(3-bromo-
phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 20 5-Imidazol-1-yl-pent-2-yneoic acid [4-(3-bromo-
phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 25 5-(4-Methyl-piperazin-1-yl)-pent-2-yneoic acid
[4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-
amide;
- 30 4-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-
6-ylcarbamoyl]-but-3-enoic acid 2-(4-methyl-piperazin-
1-yl)-ethyl ester;
- 35 4-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-
6-ylcarbamoyl]-but-3-enoic acid 2-imidazol-1-yl-ethyl
ester;
- 30 Pent-2-enedioic acid 1-[(4-(3-bromo-phenylamino)-
pyrido[3,4-d]pyrimidin-6-yl)-amide] 5-[(3-morpholin-
4-yl-propyl)-amide];
- 35 Pent-2-enedioic acid 1-[(4-(3-bromo-phenylamino)-
pyrido[3,4-d]pyrimidin-6-yl)-amide] 5-[(3-diethylamino-
propyl)-amide];

-29-

4-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-ylcarbamoyl]-but-3-enoic acid 2-morpholin-4-yl-ethyl ester;

5 Pent-2-enedioic acid 1-[(4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl)-amide] 5-[(3-(4-methyl-piperazin-1-yl)-propyl)-amide];

(3-Bromo-phenyl)-(6-[2-(3-dimethylamino-propoxy)-ethenesulfonyl]-pyrido[3,4-d]pyrimidin-4-yl)-amine;

10 (3-Bromo-phenyl)-(6-{2-[4-(4-methyl-piperazin-1-yl)-butylamino]-ethenesulfonyl}-pyrido[3,4-d]pyrimidin-4-yl)-amine;

(3-Bromo-phenyl)-[6-(5-morpholin-4-yl-pent-1-ene-1-sulfonyl)-pyrido[3,4-d]pyrimidin-4-yl]-amine;

15 (3-Bromo-phenyl)-(6-ethenesulfinyl-pyrido[3,4-d]pyrimidin-4-yl)-amine;

But-2-enedioic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide (3-dimethylamino-propyl)-amide;

20 But-2-enedioic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide (3-imidazol-1-yl-propyl)-amide;

4,4-Difluoro-8-morpholin-4-yl-oct-2-enoic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;

25 8-Dimethylamino-4,4-difluoro-oct-2-enoic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;

30 7-Dimethylamino-4,4-difluoro-hept-2-enoic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;

4,4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;

35 6-Dimethylamino-hex-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;

-30-

- 6-Morpholin-4-yl-hex-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 7-Dimethylamino-hept-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 5
7-Morpholin-4-yl-hept-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 5-Dimethylamino-pent-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 10 5-Morpholin-4-yl-pent-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 5-Imidazol-1-yl-pent-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 15 5-(4-Methyl-piperazin-1-yl)-pent-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- Pent-2-enedioic acid 1-[(4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl)-amide] 5-[(3-morpholin-4-yl-propyl)-amide];
- 20 Pent-2-enedioic acid 1-[(4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl)-amide] 5-[(3-diethylamino-propyl)-amide];
- 4-[4-(3-Chloro-4-fluoro-phenylamino)-quinazolin-6-ylcarbamoyl]-but-3-enoic acid 2-morpholin-4-yl-ethyl ester;
- 25 Pent-2-enedioic acid 1-[(4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl)-amide] 5-[(3-(4-methyl-piperazin-1-yl)-propyl)-amide];
- (3-Chloro-4-fluoro-phenyl)-(6-[2-(3-dimethylamino-propoxy)-ethenesulfonyl]-quinazolin-4-yl)-amine;
- 30 (3-Chloro-4-fluoro-phenyl)-(6-{2-[4-(4-methyl-piperazin-1-yl)-butylamino]-ethenesulfonyl}-quinazolin-4-yl)-amine;
- But-2-enedioic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide (3-dimethylamino-propyl)-amide;
- 35 But-2-enedioic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide (3-imidazol-1-yl-propyl)-amide;

-31-

- 4,4-Difluoro-8-morpholin-4-yl-oct-2-enoic acid
[4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
8-Dimethylamino-4,4-difluoro-oct-2-enoic acid
[4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 5 7-Dimethylamino-4,4-difluoro-hept-2-enoic acid
[4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
4,4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid
[4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
6-Dimethylamino-hex-2-ynoic acid [4-(3-bromo-
10 phenylamino)-quinazolin-6-yl]-amide;
6-Morpholin-4-yl-hex-2-ynoic acid [4-(3-bromo-
phenylamino)-quinazolin-6-yl]-amide;
7-Dimethylamino-hept-2-ynoic acid [4-(3-bromo-
phenylamino)-quinazolin-6-yl]-amide;
- 15 7-Morpholin-4-yl-hept-2-ynoic acid
[4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
5-Dimethylamino-pent-2-ynoic acid [4-(3-bromo-
phenylamino)-quinazolin-6-yl]-amide;
5-Morpholin-4-yl-pent-2-ynoic acid [4-(3-bromo-
20 phenylamino)-quinazolin-6-yl]-amide;
5-Imidazol-1-yl-pent-2-ynoic acid [4-(3-bromo-
phenylamino)-quinazolin-6-yl]-amide;
5-(4-Methyl-piperazin-1-yl)-pent-2-ynoic acid
[4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 25 4-[4-(3-Bromo-phenylamino)-quinazolin-6-
ylcarbamoyl]-but-3-enoic acid 2-(4-methyl-
piperazin-1-yl)-ethyl ester;
4-[4-(3-Bromo-phenylamino)-quinazolin-6-
ylcarbamoyl]-but-3-enoic acid 2-imidazol-1-yl-ethyl
ester;
- 30 Pent-2-enedioic acid 1-{{4-(3-bromo-phenylamino)-
quinazolin-6-yl}-amide} 5-[(3-morpholin-4-yl-propyl)-
amide];
Pent-2-enedioic acid 1-{{4-(3-bromo-phenylamino)-
35 quinazolin-6-yl}-amide} 5-[(3-diethylamino-propyl)-
amide];

-32-

- 4-[4-(3-Bromo-phenylamino)-quinazolin-6-ylcarbamoyl]-but-3-enoic acid 2-morpholin-4-yl-ethyl ester;
- 5 Pent-2-enedioic acid 1-[(4-(3-bromo-phenylamino)-quinazolin-6-yl)-amide] 5-[(3-(4-methyl-piperazin-1-yl)-propyl)-amide];
- 10 3-[4-(1-Phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-ylcarbamoyl]-acrylic acid 2-morpholin-4-yl-ethyl ester;
- 15 But-2-enedioic acid (4-imidazol-1-yl-butyl)-amide [4-(1-phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 20 4-[4-(1-Phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-ylcarbamoyl]-but-3-enoic acid 3-diethylamino-propyl ester;
- 25 Pent-2-enedioic acid 5-[(2-(4-methyl-piperazin-1-yl)-ethyl)-amide] 1-[(4-(1-phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-yl)-amide];
- 30 4,4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid [4-(1-phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 35 7-Dimethylamino-4,4-difluoro-hept-2-enoic acid [4-(1-phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 40 7-Imidazol-1-yl-hept-2-yneic acid [4-(1-phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 45 6-Dimethylamino-hex-2-yneic acid [4-(1-phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 50 But-2-enedioic acid [4-(3-chloro-4-fluorophenylamino)-7-fluoroquinazolin-6-yl]amide (3-dimethylaminopropyl)amide;
- 55 But-2-enedioic acid [7-chloro-4-(3-chloro-4-fluorophenylamino)quinazolin-6-yl]amide (3-dimethylaminopropyl)amide;
- 60 N-[4-[3-(Bromophenyl)amino]-5-fluoro-7-[3-(4-morpholino)propoxy]quinazolin-6-yl]acrylamide; and

-33-

N-[4-[(3-(Chloro-4-fluorophenyl)amino)-5-fluoro-7-(1,N-imidazoyl)propoxy]quinazolin-6-yl]acrylamide.

5

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides compounds having the Formula I

10

15

20

wherein X is -D-E-F, and Y is -SR⁴, halogen, -OR⁴, -NHR³, or hydrogen, or X is -SR⁴, halogen, -OR⁴, -NHR³, or hydrogen, and Y is -D-E-F;

25

30

35

40

-34-

provided that when E is -S- or -S-, D is not

R¹ is hydrogen, halogen, or C₁-C₆ alkyl;
 R², R³, and R⁴ are independently hydrogen, C₁-C₆ alkyl,
 - (CH₂)_n-N-piperidinyl, - (CH₂)_n-N-piperazinyl,
 20 - (CH₂)_n-N₁-piperazinyl [N₄-(C₁-C₆)alkyl],
 - (CH₂)_n-N-pyrrolidyl, - (CH₂)_n-pyridinyl,
 - (CH₂)_n-N-imidazoyl, - (CH₂)_n-imidazoyl,
 - (CH₂)_n-N-morpholino, - (CH₂)_n-N-thiomorpholino,
 25 - (CH₂)_n-N-hexahydroazepine or substituted C₁-C₆
 alkyl, wherein the substituents are selected from

A

-OH, -NH₂, or -N-B, A and B are independently hydrogen, C₁-C₆ alkyl, -(CH₂)_nOH,
 30 -(CH₂)_n-N-piperidinyl, -(CH₂)_n-N-piperazinyl,
 -(CH₂)_n-N₁-piperazinyl[N₄-(C₁-C₆ alkyl)].
 -(CH₂)_n-N-pyrrolidyl, -(CH₂)_n-N-pyridyl.
 -(CH₂)_n-imidazoyl, or -(CH₂)_n-N-imidazoyl;
 z¹, z², or z³ are independently hydrogen, halogen,
 35 C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ alkoxy, C₃-C₈ cycloalkoxy, nitro, C₁-C₆ perfluoroalkyl, hydroxy, C₁-C₆ acyloxy, -NH₂, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)₂, -NH(C₃-C₈ cycloalkyl), -N(C₃-C₈ cycloalkyl)₂, hydroxymethyl, C₁-C₆ acyl, cyano,
 40 azido, C₁-C₆ thioalkyl, C₁-C₆ sulfinylalkyl, C₁-C₆ sulfonylalkyl, C₃-C₈ thiocycloalkyl,

-35-

C_3-C_8 sulfinylcycloalkyl, C_3-C_8 sulfonylcycloalkyl, mercapto, C_1-C_6 alkoxy carbonyl, C_3-C_8 cycloalkoxycarbonyl, C_2-C_4 alkenyl, C_4-C_8 cycloalkenyl, or C_2-C_4 alkynyl;

- 5 R^5 is hydrogen, halogen, C_1-C_6 -perfluoroalkyl, 1,1-difluoro(C_1-C_6)alkyl, C_1-C_6 alkyl, $-(CH_2)_n$ -N-piperidinyl, $-(CH_2)_n$ -piperazinyl, $-(CH_2)_n$ -piperazinyl[N₄-(C_1-C_6)alkyl], $-(CH_2)_n$ -N-pyrrolidyl, $-(CH_2)_n$ -pyridinyl, 10 $-(CH_2)_n$ -N-imidazoyl, $-(CH_2)_n$ -N-morpholino, $-(CH_2)_n$ -N-thiomorpholino, $-C=CH_2$,
 $\begin{array}{c} | \\ H \end{array}$
 $-CH=CH-(C_1-C_6)$ alkyl, $-(CH_2)_n$ -N-hexahydroazepine, 15 $-(CH_2)_nNH_2$, $-(CH_2)_nNH(C_1-C_6)$ alkyl, $-(CH_2)_nN(C_1-C_6)$ alkyl₂, 1-oxo(C_1-C_6)alkyl, carboxy, (C_1-C_6)alkyloxycarbonyl, N-(C_1-C_6)alkylcarbamoyl, phenyl or substituted phenyl, wherein the substituted phenyl can have 20 from one to three substituents independently selected from Z^1 , Z^2 , Z^3 or a monocyclic heteroaryl group, and each C_1-C_6 alkyl group can be substituted with -OH, -NH₂ or -NAB, where A and B are as defined above, R^6 is hydrogen or 25 C_1-C_6 alkyl; R^{13} is hydrogen or halogen; and n is 1 to 4, p is 0 or 1, and the pharmaceutically acceptable salts, esters, amides and prodrugs thereof.
- In another embodiment, present invention also 30 provides compounds having the Formula II

-36-

wherein Q is

p is 0 or 1;
 X is -D-E-F and Y is -SR⁴, -OR⁴, -NHR³ or
 15 hydrogen, or X is -SR⁴, -OR⁴, -NHR³ or hydrogen,
 and Y is -D-E-F;

20 D is -N-, -O-, -C-, -N—N-, -N—O-, -C—N-, -C—O-,

25 -C—C-, -N—C-, -O—C-, -S—C-, or absent;

30 E is -C-, -S-, -P-, or -S-;

35 F is -C=R⁵, -C≡C-R⁵, or -C=C=C;

40

-37-

provided that when E is -S- or -S-, D is not

5

10

R^1 is hydrogen, halogen, or $\text{C}_1\text{-C}_6$ alkyl;
 R^2 , R^3 , and R^4 are independently hydrogen, $\text{C}_1\text{-C}_6$ alkyl,
 $-(\text{CH}_2)_n\text{-N-piperidinyl}$, $-(\text{CH}_2)_n\text{-N-piperazinyl}$,
 $-(\text{CH}_2)_n\text{-N}_1\text{-piperazinyl}[\text{N}_4\text{-(C}_1\text{-C}_6\text{)alkyl}]$,
15 $-(\text{CH}_2)_n\text{-N-pyrrolidyl}$, $-(\text{CH}_2)_n\text{-pyridinyl}$,
 $-(\text{CH}_2)_n\text{-N-imidazoyl}$, $-(\text{CH}_2)_n\text{-imidazoyl}$,
 $-(\text{CH}_2)_n\text{-N-morpholino}$, $-(\text{CH}_2)_n\text{-N-thiomorpholino}$,
 $-(\text{CH}_2)_n\text{-N-hexahydroazepine}$ or substituted $\text{C}_1\text{-C}_6$
alkyl, wherein the substituents are selected from

20

25

$-(\text{CH}_2)_n\text{-N}_1\text{-piperazinyl}[\text{N}_4\text{-(C}_1\text{-C}_6\text{)alkyl}]$,
 $-(\text{CH}_2)_n\text{-N-pyrrolidyl}$, $-(\text{CH}_2)_n\text{-N-pyridyl}$,
 $-(\text{CH}_2)_n\text{-imidazoyl}$, or $-(\text{CH}_2)_n\text{-N-imidazoyl}$;

30

E^1 , E^2 , and E^3 are independently halogen, $\text{C}_1\text{-C}_6$ alkyl,
 $\text{C}_3\text{-C}_8$ cycloalkyl, $\text{C}_1\text{-C}_6$ alkoxy, $\text{C}_3\text{-C}_8$ cycloalkoxy,
nitro, $\text{C}_1\text{-C}_6$ perfluoroalkyl, hydroxy, $\text{C}_1\text{-C}_6$
acyloxy, $-\text{NH}_2$, $-\text{NH}(\text{C}_1\text{-C}_6 \text{ alkyl})$, $-\text{N}(\text{C}_1\text{-C}_6 \text{ alkyl})_2$,
 $-\text{NH}(\text{C}_3\text{-C}_8 \text{ cycloalkyl})$, $-\text{N}(\text{C}_3\text{-C}_8 \text{ cycloalkyl})_2$,
hydroxymethyl, $\text{C}_1\text{-C}_6$ acyl, cyano, azido, $\text{C}_1\text{-C}_6$
thioalkyl, $\text{C}_1\text{-C}_6$ sulfinylalkyl, $\text{C}_1\text{-C}_6$

35

sulfonylalkyl, $\text{C}_3\text{-C}_8$ thiocycloalkyl, $\text{C}_3\text{-C}_8$
sulfinylcycloalkyl, $\text{C}_3\text{-C}_8$ sulfonylcycloalkyl,
mercapto, $\text{C}_1\text{-C}_6$ alkoxy carbonyl, $\text{C}_3\text{-C}_8$
cycloalkoxycarbonyl, $\text{C}_2\text{-C}_4$ alkenyl, $\text{C}_4\text{-C}_8$
cycloalkenyl, or $\text{C}_2\text{-C}_4$ alkynyl;

-38-

- R⁵ is hydrogen, halogen, C₁-C₆-perfluoroalkyl,
 1,1-difluoro(C₁-C₆)alkyl, C₁-C₆ alkyl,
 -(CH₂)_n-N-piperidinyl, -(CH₂)_n-piperazinyl,
 -(CH₂)_n-piperazinyl[N₄-(C₁-C₆)alkyl],
 5 -(CH₂)_n-N-pyrrolidyl, -(CH₂)_n-pyridinyl,
 -(CH₂)_n-N-imidazoyl, -(CH₂)_n-N-morpholino,
 -(CH₂)_n-N-thiomorpholino, -C=CH₂,
 H
 10 -CH=CH-(C₁-C₆)alkyl, -(CH₂)_n-N-hexahydroazepine,
 -(CH₂)_nNH₂, -(CH₂)_nNH(C₁-C₆)alkyl,
 -(CH₂)_nN(C₁-C₆)alkyl₂, -1-oxo(C₁-C₆)alkyl,
 carboxy, (C₁-C₆)alkyloxycarbonyl,
 N-(C₁-C₆)alkylcarbamoyl, phenyl or substituted
 15 phenyl, wherein the substituted phenyl can have
 from one to three substituents independently
 selected from Z¹, Z², Z³ or a monocyclic
 heteroaryl group, and each C₁-C₆ alkyl group can
 be substituted with -OH, -NH₂ or -NAB, where A
 20 and B are as defined above, R⁶ is hydrogen or
 C₁-C₆ alkyl; and
 n is 1 to 4, p is 0 or 1, and the pharmaceutically
 acceptable salts, esters, amides, and prodrugs
 thereof.
 25 In another embodiment, the present invention
 provides compounds having the Formula III

-39-

wherein Q is

5

10

p is 0 or 1;

15 X is -D-E-F, and Y is -SR⁴, -OR⁴, -NHR³ or hydrogen, or
X is -SR⁴, -OR⁴, -NHR³ or hydrogen, and Y is
-D-E-F;

20

25

30

35

40

-40-

provided that when E is -S- or -S-, D is not

5

10

R^1 is hydrogen, halogen, or $\text{C}_1\text{-}\text{C}_6$ alkyl;
 R^2 , R^3 , and R^4 are independently hydrogen, $\text{C}_1\text{-}\text{C}_6$ alkyl,
 $-(\text{CH}_2)_n\text{-N-piperidinyl}$, $-(\text{CH}_2)_n\text{-N-piperazinyl}$,
 $-(\text{CH}_2)_n\text{-N}_1\text{-piperazinyl}[\text{N}_4\text{-(C}_1\text{-C}_6\text{)alkyl}]$,
15 $-(\text{CH}_2)_n\text{-N-pyrrolidyl}$, $-(\text{CH}_2)_n\text{-pyridinyl}$,
 $-(\text{CH}_2)_n\text{-N-imidazoyl}$, $-(\text{CH}_2)_n\text{-imidazoyl}$,
 $-(\text{CH}_2)_n\text{-N-morpholino}$, $-(\text{CH}_2)_n\text{-N-thiomorpholino}$,
 $-(\text{CH}_2)_n\text{-N-hexahydroazepine}$ or substituted $\text{C}_1\text{-}\text{C}_6$
alkyl, wherein the substituents are selected from

20

A

$-\text{OH}$, $-\text{NH}_2$, or $-\text{N-B}$, A and B are independently
hydrogen, $\text{C}_1\text{-}\text{C}_6$ alkyl, $-(\text{CH}_2)_n\text{OH}$,

25 $-(\text{CH}_2)_n\text{-N-piperidinyl}$, $-(\text{CH}_2)_n\text{-N-piperazinyl}$,
 $-(\text{CH}_2)_n\text{-N}_1\text{-piperazinyl}[\text{N}_4\text{-(C}_1\text{-C}_6\text{)alkyl}]$,
 $-(\text{CH}_2)_n\text{-N-pyrrolidyl}$, $-(\text{CH}_2)_n\text{-N-pyridyl}$,
 $-(\text{CH}_2)_n\text{-imidazoyl}$, or $-(\text{CH}_2)_n\text{-N-imidazoyl}$;

30 E^1 , E^2 , and E^3 are independently halogen, $\text{C}_1\text{-}\text{C}_6$ alkyl,
 $\text{C}_3\text{-}\text{C}_8$ cycloalkyl, $\text{C}_1\text{-}\text{C}_6$ alkoxy, $\text{C}_3\text{-}\text{C}_8$ cycloalkoxy,
nitro, $\text{C}_1\text{-}\text{C}_6$ perfluoroalkyl, hydroxy, $\text{C}_1\text{-}\text{C}_6$
acyloxy, $-\text{NH}_2$, $-\text{NH}(\text{C}_1\text{-}\text{C}_6\text{)alkyl}$, $-\text{N}(\text{C}_1\text{-}\text{C}_6\text{)alkyl})_2$,
 $-\text{NH}(\text{C}_3\text{-}\text{C}_8\text{)cycloalkyl}$, $-\text{N}(\text{C}_3\text{-}\text{C}_8\text{)cycloalkyl})_2$,
hydroxymethyl, $\text{C}_1\text{-}\text{C}_6$ acyl, cyano, azido, $\text{C}_1\text{-}\text{C}_6$
thioalkyl, $\text{C}_1\text{-}\text{C}_6$ sulfinylalkyl, $\text{C}_1\text{-}\text{C}_6$

35 sulfonylalkyl, $\text{C}_3\text{-}\text{C}_8$ thiocycloalkyl, $\text{C}_3\text{-}\text{C}_8$
sulfinylcycloalkyl, $\text{C}_3\text{-}\text{C}_8$ sulfonylcycloalkyl,
mercapto, $\text{C}_1\text{-}\text{C}_6$ alkoxy carbonyl, $\text{C}_3\text{-}\text{C}_8$
cycloalkoxycarbonyl, $\text{C}_2\text{-}\text{C}_4$ alkenyl, $\text{C}_4\text{-}\text{C}_8$
cycloalkenyl, or $\text{C}_2\text{-}\text{C}_4$ alkynyl;

-41-

- R^5 is hydrogen, halogen, C_1-C_6 -perfluoroalkyl,
 1,1-difluoro(C_1-C_6)alkyl, C_1-C_6 alkyl,
 $-(CH_2)_n-N$ -piperidinyl, $-(CH_2)_n$ -piperazinyl,
 $-(CH_2)_n$ -piperazinyl[$N_4-(C_1-C_6)$ alkyl],
 5 $-(CH_2)_n-N$ -pyrrolidyl, $-(CH_2)_n$ -pyridinyl,
 $-(CH_2)_n-N$ -imidazoyl, $-(CH_2)_n-N$ -morpholino,
 $-(CH_2)_n-N$ -thiomorpholino, $-C=CH_2$,
 $\begin{array}{c} | \\ H \end{array}$
- 10 $-CH=CH-(C_1-C_6)$ alkyl, $-(CH_2)_n-N$ -hexahydroazepine,
 $-(CH_2)_nNH_2$, $-(CH_2)_nNH(C_1-C_6)$ alkyl),
 $-(CH_2)_nN(C_1-C_6)$ alkyl)₂, -1-oxo(C_1-C_6)alkyl,
 carboxy, (C_1-C_6)alkyloxycarbonyl,
 $N-(C_1-C_6)$ alkylcarbamoyl, phenyl or substituted
 15 phenyl, wherein the substituted phenyl can have
 from one to three substituents independently
 selected from Z^1 , Z^2 , Z^3 or a monocyclic
 heteroaryl group, and each C_1-C_6 alkyl group can
 be substituted with -OH, -NH₂ or -NAB, where A
 20 and B are as defined above, R^6 is hydrogen or
 C_1-C_6 alkyl; and
 n is 1 to 4, and the pharmaceutically acceptable salts,
 esters, amides, and prodrugs thereof.
- The term "alkyl" means a straight or branched
 25 chain hydrocarbon. Representative examples of alkyl
 groups are methyl, ethyl, propyl, isopropyl, isobutyl,
 butyl, tert-butyl, sec-butyl, pentyl, and hexyl.
- The term "alkoxy" means an alkyl group attached to
 an oxygen atom. Representative examples of alkoxy
 30 groups include methoxy, ethoxy, tert-butoxy, propoxy,
 and isobutoxy.
- The term "halogen" includes chlorine, fluorine,
 bromine, and iodine.
- The term "alkenyl" means a branched or straight
 35 chain hydrocarbon having one or more carbon-carbon
 double bond.

-42-

The term "cycloalkyl" means a cyclic hydrocarbon. Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.

5 The term "cycloalkoxy" means a cycloalkyl group attached to an oxygen atom.

The term "perfluoroalkyl" means an alkyl group in which all the hydrogen atoms have been replaced by fluorine atoms.

10 The term "acyl" means a group derived from an organic acid by removal of the hydroxy group (-OH).

The term "acyloxy" means an acyl group attached to an oxygen atom.

The term "thioalkyl" means an alkyl group attached to a sulfur atom.

15 The term "sulfinylalkyl" means a sulfinyl group attached to an alkyl group.

The term "sulfonylalkyl" means a sulfonyl group attached to an alkyl group.

20 The term "thiocycloalkyl" means a cycloalkyl group attached to a sulfur atom.

The term "sulfinylcycloalkyl" means a sulfinyl group attached to a cycloalkyl group.

The term "sulfonylcycloalkyl" means a sulfonyl group attached to a cycloalkyl group.

25 The term "mercapto" means a -SH group.

The term "alkoxycarbonyl" means an alkoxy group attached to a carbonyl group.

The term "cycloalkoxycarbonyl" means a cycloalkyloxy group attached to a carbonyl group.

30 The term "cycloalkenyl" means a cyclic hydrocarbon containing one or more carbon-carbon double bond.

The term "alkynyl" means a hydrocarbon having one or more carbon-carbon triple bond.

35 The term "monocyclic heteroaryl" mean a heterocyclic aryl compound having only one ring structure. The cyclic compound is aromatic and

-43-

contains one or more heteroatom. Examples of heteroatoms include, but are not limited to, nitrogen, oxygen, sulfur, and phosphorus. Examples of monocyclic heteroaryl groups include, but are not limited to, 5 pyridyl, thieryl, and imidazoyl.

The symbol "--" represents a covalent bond.

The compounds of Formulas I, II, and III are irreversible inhibitors of tyrosine kinases, particularly EGF tyrosine kinase. A therapeutically effective amount of the compounds of Formula I, II, or III can be administered to a patient having cancer or a patient having restenosis or at risk of having restenosis or a patient having psoriasis, atherosclerosis, or endometriosis. Those skilled in the art are readily able to identify patients having cancer, restenosis, psoriasis, atherosclerosis, or endometriosis, and patients who are at risk of developing restenosis. The term "patient" means animals such as dogs, cats, cows, sheep, and also includes humans.

The compounds of the present invention can be administered to humans and animals either orally, rectally, parenterally (intravenously, intramuscularly or subcutaneously), intracisternally, intravaginally, 25 intraperitoneally, intravesically, locally (powders, ointments, or drops), or as a buccal or nasal spray. The compounds can be administered alone or as part of a pharmaceutically acceptable composition that includes pharmaceutically acceptable excipients. It is noted that more than one compound of Formula I, II, III can 30 be administered either concurrently or sequentially.

Compositions suitable for parenteral injection may comprise physiologically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, and sterile powders for reconstitution into 35 sterile injectable solutions or dispersions. Examples

-44-

of suitable aqueous and nonaqueous carriers, diluents, solvents, or vehicles include water, ethanol, polyols (propyleneglycol, polyethyleneglycol, glycerol, and the like), suitable mixtures thereof, vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants.

These compositions may also contain adjuvants such as preserving, wetting, emulsifying, and dispensing agents. Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, for example sugars, sodium chloride, and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.

Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is admixed with at least one inert customary excipient (or carrier) such as sodium citrate or dicalcium phosphate or (a) fillers or extenders, as for example, starches, lactose, sucrose, glucose, mannitol, and silicic acid; (b) binders, as for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, and acacia; (c) humectants, as for example, glycerol; (d) disintegrating agents, as for example, agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain complex silicates, and sodium carbonate; (e) solution retarders, as for example paraffin; (f) absorption accelerators, as for example, quaternary ammonium compounds; (g) wetting agents, as for example,

-45-

cetyl alcohol and glycerol monostearate;
(h) adsorbents, as for example, kaolin and bentonite;
and (i) lubricants, as for example, talc, calcium
stearate, magnesium stearate, solid polyethylene
5 glyccols, sodium lauryl sulfate, or mixtures thereof.
In the case of capsules, tablets, and pills, the dosage
forms may also comprise buffering agents.

Solid compositions of a similar type may also be
employed as fillers in soft- and hard-filled gelatin
10 capsules using such excipients as lactose or milk
sugar, as well as high molecular weight polyethylene-
glycols, and the like.

Solid dosage forms such as tablets, dragees,
capsules, pills, and granules can be prepared with
15 coatings and shells, such as enteric coatings and
others well-known in the art. They may contain
opacifying agents, and can also be of such composition
that they release the active compound or compounds in a
certain part of the intestinal tract in a delayed
20 manner. Examples of embedding compositions which can
be used are polymeric substances and waxes. The active
compounds can also be in micro-encapsulated form, if
appropriate, with one or more of the above-mentioned
excipients.

25 Liquid dosage forms for oral administration
include pharmaceutically acceptable emulsions,
solutions, suspensions, syrups, and elixirs. In
addition to the active compounds, the liquid dosage
forms may contain inert diluents commonly used in the
30 art, such as water or other solvents, solubilizing
agents and emulsifiers, as for example, ethyl alcohol,
isopropyl alcohol, ethyl carbonate, ethyl acetate,
benzyl alcohol, benzyl benzoate, propyleneglycol,
1,3-butyleneglycol, dimethylformamide, oils, in
35 particular, cottonseed oil, groundnut oil, corn germ
oil, olive oil, castor oil and sesame oil, glycerol,

-46-

tetrahydrofurfuryl alcohol, polyethyleneglycols and fatty acid esters of sorbitan or mixtures of these substances, and the like.

5 Besides such inert diluents, the composition can also include adjuvants, such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.

10 Suspensions, in addition to the active compounds, may contain suspending agents, as for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, or mixtures of these substances, and the like.

15 Compositions for rectal administrations are preferably suppositories which can be prepared by mixing the compounds of the present invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethyleneglycol or a suppository wax, which are solid at ordinary temperatures but liquid at body temperature and therefore, melt in the rectum or vaginal cavity and release the active component.

20 Dosage forms for topical administration of a compound of this invention include ointments, powders, sprays, and inhalants. The active component is admixed under sterile conditions with a physiologically acceptable carrier and any preservatives, buffers, or propellants as may be required. Ophthalmic formulations, eye ointments, powders, and solutions are 25 also contemplated as being within the scope of this invention.

30 The term "pharmaceutically acceptable salts, esters, amides, and prodrugs" as used herein refers to those carboxylate salts, amino acid addition salts, esters, amides, and prodrugs of the compounds of the 35 present invention which are, within the scope of sound

-47-

medical judgement, suitable for use in contact with the tissues of patients without undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the invention. The term "salts" refers to the relatively non-toxic, inorganic and organic acid addition salts of compounds of the present invention. These salts can be prepared in situ during the final isolation and purification of the compounds or by separately reacting the purified compound in its free base form with a suitable organic or inorganic acid and isolating the salt thus formed. Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, nitrate, acetate, oxalate, valerate, oleate, palmitate, stearate, laurate, borate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate and laurylsulphonate salts, and the like. These may include cations based on the alkali and alkaline earth metals, such as sodium, lithium, potassium, calcium, magnesium, and the like, as well as non-toxic ammonium, quaternary ammonium, and amine cations including, but not limited to ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine and the like (see, for example, S.M. Berge, et al., "Pharmaceutical Salts," *J Pharm Sci.*, 1977;66:1-19 which is incorporated herein by reference).

Examples of pharmaceutically acceptable, non-toxic esters of the compounds of this invention include C₁-C₆ alkyl esters wherein the alkyl group is a straight or branched chain. Acceptable esters also include C₅-C₇ cycloalkyl esters as well as arylalkyl esters such as,

-48-

but not limited to benzyl. C₁-C₄ alkyl esters are preferred. Esters of the compounds of the present invention may be prepared according to conventional methods.

5 Examples of pharmaceutically acceptable, non-toxic amides of the compounds of this invention include amides derived from ammonia, primary C₁-C₆ alkyl amines and secondary C₁-C₆ dialkyl amines wherein the alkyl groups are straight or branched chain. In the case of
10 secondary amines, the amine may also be in the form of a 5- or 6-membered heterocycle containing one nitrogen atom. Amides derived from ammonia, C₁-C₃ alkyl primary amines and C₁-C₂ dialkyl secondary amines are preferred. Amides of the compounds of the invention
15 may be prepared according to conventional methods.

The term "prodrug" refers to compounds that are rapidly transformed in vivo to yield the parent compound of the above formulas, for example, by hydrolysis in blood. A thorough discussion is provided
20 in T. Higuchi and V. Stella, "Pro-drugs as Novel Delivery Systems," Vol. 14 of the A.C.S. Symposium Series, and in *Bioreversible Carriers in Drug Design*, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987, both of which are
25 incorporated herein by reference.

The compounds of the present invention can be administered to a patient at dosage levels in the range of about 0.1 to about 1,000 mg per day. For a normal human adult having a body weight of about 70 kg, a
30 dosage in the range of about 0.01 to about 100 mg per kilogram of body weight per day is sufficient. The specific dosage used, however, can vary. For example, the dosage can depend on a number of factors including the requirements of the patient, the severity of the
35 condition being treated, and the pharmacological activity of the compound being used. The determination

-49-

of optimum dosages for a particular patient is well-known to those skilled in the art.

The compounds of the present invention can exist in different stereoisometric forms by virtue of the presence of asymmetric centers in the compounds. It is contemplated that all stereoisometric forms of the compounds as well as mixtures thereof, including racemic mixtures, form part of this invention.

In addition, the compounds of the present invention can exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like. In general, the solvated forms are considered equivalent to the unsolvated forms for the purposes of the present invention.

It is intended that the compounds of Formula I, II, or III be either synthetically produced or biologically produced.

The following examples illustrate particular embodiments of the invention and are not intended to limit the specification, including the claims, in any manner.

GENERAL SYNTHETIC SCHEMES

Amine-Linked Alkylating Michael Acceptor Sidechains

The amine is acylated either by an acid in the presence of a coupling agent such as EDAC, or by an acid chloride. The amine in turn can be made by reduction of the corresponding nitro compound, displacement of a halogen by an amine or ammonia equivalent, or in the case of pyrido[4,3-d]pyrimidines by direct incorporation during the synthesis.

2-Haloalkylsulfonyl halides form vinyl sulfonamides when treated with the aryl amine and excess tertiary amine base.

-50-

C/N means either a carbon or nitrogen atom is present
 20 at that location.
 --- means a bond or no bond.

Oxygen-Linked Alkylation Michael Acceptor Sidechains

The hydroxyl group is acylated either by an acid
 25 in the presence of a coupling agent such as EDAC, or by
 an acid chloride. The hydroxyl compound can in turn
 can be made by cleavage of the corresponding methyl
 ether. 3-Methylthioalkanoic acid or their acid
 chlorides can be used to acylate the oxygen followed by
 30 S-alkylation or oxidation and basic or thermal
 elimination.

-51-

5

10 Ar and R denote an aryl group and R denotes an organic group as exemplified herein.

Carbon-Linked Alkylating Michaelis-Acceptor Sidechains

15 A Stille or Suzuki coupling can be used to couple the sidechain to an appropriately substituted quinazoline/pyridopyrimidine/pyrimidinopyrimidine/tricycle. These in turn can be made as aryl halides by methods known in the art, or as aryl triflates by triflation of the hydroxyl compounds described above,

20 as aryl stannanes by reaction of the abovementioned triflates with hexamethyl distannane, or as arylboronic acids by conversion of aryl iodides to arylorgano-metallics, followed by treatment with borate esters and hydrolysis. Alternatively, aryl iodides can be

25 converted to the arylzinc species and coupled with activated halides.

-52-

20 Sulfur-Linked Alkylation Michael Acceptor Sidechains

Activated halides in pyridopyrimidines and pyrimidinopyrimidines can be displaced by suitable 2-hydroxythiolates, and these in turn can be oxidized to sulfones, and then water eliminated by treatment with mesyl chloride and several equivalents of a base. For quinazolines, and claimed tricycles, either an activated halogen especially fluorine can be used in the sequence just described for pyridopyrimidines, or an aryl iodide precursor can be metalated, quenched with sulfur or a suitable sulfur electrophilic progenitor and then the resultant aryl thiol used to open a terminal epoxide, giving a 2-hydroxy thioether which can be converted onto a vinyl sulfone by oxidation and water elimination as described above.

-53-

Hydrazino-Linked Alkylation Michael Acceptor Sidechains

Activated halides in pyridopyrimidines and pyrimidinopyrimidines and appropriately substituted quinazolines can be displaced by a (N-alkyl) hydrazine. Alternatively, an amino-derivative of the desired ring nucleus can be diazotized, and then reduced to the hydrazine. The distal nitrogen of the hydrazine can then be acylated, sulfonylated or phosphorylated, by methods well-known to one skilled in the art.

-54-

Hydroxylamino-O-Linked Alkylation Michael Acceptor Sidechains

Activated halides in pyridopyrimidines and pyrimidinopyrimidines and appropriately substituted quinazolines can be displaced by a suitably O-protected (N-alkyl) hydroxylamine. Alternatively, a nitro-derivative of the desired ring nucleus can be synthesized, and then reduced to the hydroxylamine under appropriate mildly reducing conditions. The oxygen of the hydroxylamine can then be acylated, sulfonated or phosphorylated, by methods well-known to one skilled in the art.

Methyleneamino-N-Linked Alkylation Michael Acceptor Sidechains

Activated halides in pyridopyrimidines and pyrimidinopyrimidines and appropriately substituted

-55-

quinazolines can be displaced by cyanide, preferably in the presence of copper or nickel salt catalysis.

Alternatively, an amino-derivative of the desired ring nucleus can be diazotized, and then converted to the nitrile as described above. In some cases, the nitrile functionality can be incorporated into the heterocycle earlier in the synthesis, either as itself, or via a carboxylic acid or aldehyde, both of which can readily be turned into nitrile compounds by one skilled in the art. Reduction of the nitrile to a methyleneamine is followed by nitrogen acylation, sulfonylation or phosphorylation, by methods well-known to one skilled in the art.

Methyleneoxy-O-Linked Alkyminating Michael Acceptor

Sidechains

Hydroxymethyl compounds can be incorporated into appropriate heterocycles in many ways obvious to one skilled in the art. For example, iodoquinazolines may be carbonylated in a Heck reaction, and then reduced with NaBH₄ to the desired precursor. Aminopyridopyrimidines may be diazotized, converted to the nitrile, partially reduced to an imine, hydrolysed, and the resultant aldehyde reduced to hydroxymethyl. The oxygen of the hydroxymethyl can then be acylated, sulfonylated or phosphorylated, by methods well-known to one skilled in the art.

-56-

Ethano-Linked Alkylating Michael Acceptor Sidechains

15 Michael addition of a cuprate, derived via an organozincate from an iodoquinazoline, to a divinylketone, or appropriately mono-masked derivative, followed by unmasking of the second unsaturated functionality, if required, will give compounds of the desired type. Aldehydes derived from pyridopyrimidines or pyrimidopyrimidines as described above can be homologated to the desired compounds by a wide variety of techniques such as the one illustrated, by one skilled in the art.

35

-57-

Aminomethyl-C-Linked Alkylation Michael Acceptor Sidechains

Amino-heterocycles of the type described throughout this application can be alkylated by various double bond-masked equivalents of 1-bromobut-3-en-2-one, followed by unmasking of the unsaturation by methods known to one skilled in the art.

Hydroxymethyl-C-Linked Alkylation Michael Acceptor Sidechains

20

Hydroxy-heterocycles made as described previously from methoxy-heterocycles can be alkylated by various double bond-masked equivalents of 1-bromobut-3-en-2-one, followed by unmasking of the unsaturation by methods known to one skilled in the art.

25

Alternatively, alkylation of the phenol can be accomplished with chloroacetic acid, followed by conversion to an acyl chloride and Stille coupling of that acyl halide with an appropriate alkenyl stannane.

-58-

Thiomethyl-C-Linked Alkyminating Michael Acceptor Sidechains

Appropriate mercapto-heterocycles, made by displacement of activated halides on the heteroaromatic ring, can be alkylated by various double bond-masked equivalents of 1-bromobut-3-en-2-one, followed by unmasking of the unsaturation by methods known to one skilled in the art. Alternatively, alkylation of the thiol can be accomplished with chloroacetic acid, followed by conversion to an acyl chloride and Stille coupling of that acyl halide with an appropriate alkenyl stannane.

25

EXAMPLE 1

N-[4-(3-Bromo-phenylamino)-pyrido[4,3-d]pyrimidin-7-yl]-N-(3-morpholin-4-yl-propyl)-acrylamide

GENERAL METHOD A:

30 N-[4-(3-Bromo-phenylamino)-pyrido[4,3-d]pyrimidin-7-yl]-N-(3-morpholin-4-yl-propyl)-acrylamide can be made by acylation of 7-amino-4-[(3-bromophenyl)amino]-pyrido[4,3-d]pyrimidine [J Med Chem, 1995:3780] by methods familiar to one skilled in the art. For example, acylation with acrylic acid can be achieved through the use of a standard condensing agent such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide HCl

35

-59-

(EDAC) or through the use of acryloyl chloride and a tertiary base such as diisopropyl ethylamine as an acid scavenger.

5 N-alkylation of the acrylamides can then be achieved by methods familiar to one skilled in the art. For example, conversion of the amide to its monoanion by treatment with standard reagents such as sodium hydride followed by displacement on an appropriate halide such as N-(3-chloropropyl)morpholine or N-(4-
10 chlorobutyl)morpholine affords the desired alkylated amide.

GENERAL METHOD B:

15 Alternatively, N-[4-(3-bromo-phenylamino)-pyrido[4,3-d]pyrimidin-7-yl]-N-(3-morpholin-4-yl-propyl)-acrylamide can be made by treating 7-fluoro-4-[(3-bromophenyl)amino]pyrido-[4,3-d]pyrimidine with N-(3-aminopropyl)morpholine in dimethylsulfoxide followed by acylation with acrylic acid and a coupling
20 reagent such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide HCl (EDAC) or acryloyl chloride and a tertiary base such as diisopropyl ethylamine according to methods familiar to those skilled in the art. See, for example, WO 9519774 A1.

25

EXAMPLE 2

N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-N-(3-morpholin-4-yl-propyl)-acrylamide

To a stirred solution of 4-[(3-bromophenyl)amino]-6-[(3-morpholinopropyl)amino]pyrido[3,4-d]pyrimidine (400 mg, 0.90 mmol), (prepared from 4-[(3-bromophenyl)amino]-6-fluoropyrido[3,4-d]pyrimidine and 3-morpholinoprop-1-ylamine) DMAP (40 mg) and Et₃N (excess, 2.0 mL) at 0°C under N₂ was added acryloyl chloride (1.2 mol eq., 1.08 mmol, 89μL). After 1 hour stirring, a further two portions of acid chloride

-60-

(89 μ L each) were added over the next 2 hours, and the reaction was then stirred at 20°C for 1 hour, diluted with water and extracted with EtOAc. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure before being chromatographed on silica gel eluting with MeOH/EtOAc (1:9) to MeOH/EtOAc (1:5) to give N-[4-[(3-bromophenyl)amino]pyrido[3,4-d]pyrimidin-6-yl]-N-[3-morpholinopropyl]acrylamide (142 mg, 32%) as a cream powder, mp (CH₂Cl₂/hexane) 178-180°C.

10 ¹H NMR [(CD₃)₂SO]: δ 10.15 (s, 1H, NH), 9.15 (s, 1H, aromatic), 8.80 (s, 1H, aromatic), 8.47 (s, 1H, aromatic), 8.21 (br s, 1H, H-2'), 7.92 (br d, J = 7.6 Hz, 1H, H-6'), 7.41 (t, J = 8.0 Hz, 1H, H-5'), 7.37 (dt, J = 8.1 Hz, J = 1.6 Hz, J = 1.6 Hz, 1H, H-4'), 6.25 (m, 2H, CH₂CHCO, CH₂CHCO), 5.66 (m, 1H, CH₂CHCO), 3.98 (t, J = 7.5 Hz, 2H, CH₂NRCO), 3.46 (t, J = 4.5 Hz, 4H, morpholino methylene), 2.29 (t, J = 7.1 Hz, 2H, CH₂CH₂CH₂NRCO), 2.24 (br s, 4H, morpholino methylene), 1.73 (quintet, J = 7.2 Hz, 2H, CH₂CH₂CH₂).

15 ¹³C NMR: δ 164.84, 156.69, 155.80, 151.83, 150.05, 143.01, 140.02, 130.51, 129.27, 127.88, 126.76, 124.32, 121.19, 120.82, 113.02, 66.02 (\times 2), 55.05, 53.02 (\times 2), 45.85, 24.63.

20 Analysis calculated for C₂₃H₂₅BrN₆O₂·H₂O requires:
C, 53.6; H, 5.3; N, 16.3%.

25 Found: C, 53.8; H, 5.0; N, 16.3%.

30

EXAMPLE 3

N-[4-(3-Bromo-phenylamino)-quinazolin-7-yl]acrylamide

To an ice-cold solution of 0.158 g (0.5 mM) of 7-amino-4-(3-bromoanilino)-quinazoline [J Med Chem, 1995:3482] and 0.108 g of acrylic acid in 5.0 mL of dry dimethylformamide (DMF) was added 0.288 g of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide HCl (EDAC).

-61-

After stirring for 5 minutes, the mixture became a solution, and the ice bath was removed. The reaction continued to stir at room temperature for 3 hours. The reaction was then poured into a mixture of ice and water and made basic with the addition of a saturated solution of sodium bicarbonate. This aqueous mixture was extracted three times with ethyl acetate, and the pooled extracts were dried over magnesium sulfate. The solution was filtered and concentrated in vacuo to afford a light yellow solid. The solid was dissolved in 100 mL of methanol, filtered, and concentrated in vacuo to approximately 10 mL. The solid which precipitated from solution was collected and dried in vacuo at 80°C to give 50 mg of N-[4-(3-bromo-phenylamino)-quinazolin-7-yl]acrylamide, mp >265°C.

Chemical ionization mass spectra: m/e 369.

¹H NMR (D₆-dimethyl sulfoxide): δ 5.86 (dd, 1H, J = 10.1, J = 1.9), 6.36 (dd, 1H, J = 17.0, J = 1.9), 6.51 (dd, 1H, J = 16.9, J = 10.1), 7.30 (m, 1H), 7.36 (t, 1H, J = 8.1), 7.82 (dd, 1H, J = 9.2, J = 2.2), 7.9 (d, 1H, J = 8.0), 8.25 (dd, 1H, J = 3.6, J = 1.9), 8.50 (d, 1H, J = 8.9), 8.61 (s, 1H), 9.79 (s, 1H, -NH), 10.61 (s, 1H, -NH).

Analysis calculated for C₁₇H₁₃BrN₄O:

C, 55.30; H, 3.55; N, 15.17.

Found: C, 55.49; H, 3.63; N, 15.26.

EXAMPLE 4

N-[4-[(3-Bromophenyl)aminolquinazolin-7-yl]-N-[3-morpholinopropyl]acrylamide

To a solution of 4-[(3-bromophenyl)amino]-7-fluoroquinazoline (0.60 g, 1.89 mmol) in Dimethylsulfoxide (DMSO) (10 mL) was added 4-(3-aminopropyl)morpholine (7.54 mmol, 1.10 mL). The reaction mixture was heated at 110°C for 26 hours and then diluted with water, basified by the addition of

-62-

saturated NaHCO₃ and then extracted with EtOAc. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. Column chromatography on Grade III alumina with gradient elution from EtOAc to EtOAc/MeOH (98:2) followed by recrystallization from EtOAc/hexane gave 4-[(3-bromophenyl)amino]-7-[(3-morpholinopropyl)amino]-quinazoline (0.65 g, 78%) as cream crystals, mp 162-162.5°C.

5 ¹H NMR [(CD₃)₂SO, 200 MHz]: δ 9.41 (s, 1H, NH), 8.43 (s, 1H, H-2), 8.24 (br s, 1H, H-2'), 8.18 (d, J = 9.2 Hz, 1H, H-5), 7.87 (br d, J = 8.1 Hz, 1H, H-6'), 7.35-7.18 (m, 2H, H-4', 5'), 6.88 (dd, J = 1.9 Hz, J = 9.1 Hz, 1H, H-6'), 6.65 (t, J = 5.3 Hz, 1H, CH₂NH), 6.62 (br s, 1H, H-8), 3.60 (t, J = 4.6 Hz, 4H, morpholino methylene), 3.19 (dt, J = 6.4 Hz, J = 6.4 Hz, J = 5.8 Hz, 1H, CH₂CH₂NH), 2.43-2.33 (m, 6H, morpholino methylene, CH₂CH₂CH₂NH), 1.75 (quintet, J = 6.8 Hz, 1H, CH₂CH₂CH₂).

10 ¹³C NMR: δ 156.56, 154.27, 152.41, 152.32, 141.60, 130.15, 124.90, 123.41, 123.31, 121.06, 119.87, 116.51, 105.68, 102.21, 66.13 (x2), 55.81, 53.31 (x2), 40.46, 25.14.

15 To a solution of the above 4-[(3-bromophenyl)-amino]-7-[(3-morpholinopropyl)amino]quinazoline (0.10 g, 0.230 mmol) in dry DMF (5.0 mL) under N₂ was added acrylic acid (0.565 mmol, 39 μL), Et₃N (100 μL), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI·HCl) (0.565 mmol, 108 mg), the reaction mixture was stirred at room temperature for 4 days with additional acrylic acid (40 μL), triethylamine Et₃N (100 μL), and EDCI·HCl (100 mg) being added each day. The DMF was then removed in vacuo and the resulting residue diluted with saturated NaHCO₃ and extracted with EtOAc. The combined organic extracts were washed with brine, dried

20

25

30

35

-63-

over anhydrous Na_2SO_4 , and concentrated at reduced pressure. Column chromatography on silica gel with gradient elution from $\text{MeOH}/\text{EtOAc}/\text{CH}_2\text{Cl}_2$ (1:4:5) to $\text{MeOH}/\text{EtOAc}/\text{CH}_2\text{Cl}_2$ (2:4:4) gave at higher R_f ; N-[4-[(3-bromophenyl)amino]quinazolin-7-yl]-N-[3-morpholinopropyl]acrylamide (39 mg, 35%) as a white powder, mp (EtOAc/hexane) 86-88°C (decomp).
1H NMR [(CD₃)₂SO, 200 MHz]: δ 9.96 (s, 1H, NH), 8.68 (s, 1H, H-2), 8.63 (d, J = 8.7 Hz, 1H, H-5), 8.23 (br s, 1H, H-2'), 7.91 (dt, J = 7.3 Hz, J = 2.0 Hz, J = 2.0 Hz, 1H, H-6'), 7.68-7.58 (m, 2H, aromatic), 7.42-7.31 (m, 2H, aromatic), 6.18 (m, 2H, CH_2CHCO , CH_2CHCO), 5.63 (dd, J = 2.0 Hz, J = 10.0 Hz, 1H, CH_2CHCO), 3.90 (t, J = 7.1 Hz, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{NCO}$), 3.51 (t, J = 4.3 Hz, 4H, morpholino methylene), 2.50 (br s, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{NCO}$), 2.28 (br s, 4H, morpholino methylene), 1.67 (quintet, J = 6.5 Hz, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2$). At lower R_f ; recovered starting material, 4-[(3-bromophenyl)amino]-7-[(3-morpholinopropyl)amino]-quinazoline (34%) identical with an authentic sample.

EXAMPLE 5

3-[4-(3-Bromo-phenylamino)-quinazolin-7-ylcarbamoyl]-acrylic acid
25 To a 5°C solution of 0.158 g of 7-amino-4-(3-bromoanilino)-quinazoline (*J Med Chem*, 1995:3482) in 10 mL of tetrahydrofuran was added 0.059 g of maleic anhydride. The cold solution stirred for 15 minutes, and then the ice bath was removed. The reaction warmed 30 to room temperature where it continued stirring for 15 hours. The suspension was heated under reflux for 30 minutes and then stirred at room temperature another 15 hours. Another 0.059 g of maleic anhydride and 20 mL of tetrahydrofuran were added, and the reaction 35 was refluxed for an additional 2 hours. After another 15 hours at room temperature, the reaction was refluxed

-64-

for 15 hours. The reaction was filtered, and the light tan solid was recrystallized first from dimethylformamide and then a second time from methanol to afford 0.036 g of the desired product.

5 ^1H NMR [(CD_3)₂SO]: δ 12.95 (br s, 1H, exchanges with D_2O), 11.04 (br s, 1H, exchanges with D_2O), 9.81 (br s, 1H, exchanges with D_2O), 8.62 (s, 1H), 8.49 (d, J = 9.2 Hz, 1H), 8.24 (s, 1H), 8.17 (d, J = 1.7 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 9.2 Hz, 1H), 7.36 (t, J = 8.1 Hz, 1H), 7.30 (dd, J = 1 Hz, 9 Hz, 1H), 6.50 (d, J = 12.1 Hz, 1H), 6.37 (d, J = 11.8 Hz, 1H);
10 CIMS m/z (relative %): 411.3 (95), 412.3 (23), 413.3 (100), 414.3 (21).
15 Analysis calculated for $\text{C}_{18}\text{H}_{13}\text{BrN}_4\text{O}_3$:
 C, 52.32; H, 3.17; N, 13.56.
 Found: C, 52.57; H, 3.51; N, 13.16.

EXAMPLE 6

20 3-[4-(3-Bromo-phenylamino)-quinazolin-7-ylcarbamoyl]-acrylic acid ethyl ester
To an ice cold solution of 0.158 g of 7-amino-4-(3-bromoanilino)-quinazoline and 0.216 g of monoethyl fumarate in 3 mL of dry dimethylformamide was added 25 0.288 g of 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide HCl (EDAC). 7-Amino-4-(3-bromoanilino)-quinazoline can be made by methods well-known to those skilled in the art. See, for example, *J Med Chem.*, 1995:3482, which is hereby incorporated by reference.
30 After stirring at 5°C for 5 minutes, the ice bath was removed, and the reaction was permitted to warm to room temperature where it stirred for 15 hours. The reaction was poured into cold water, and the suspension was made basic with the addition of a saturated sodium bicarbonate solution. The resulting solid was
35 collected by filtration, washed with water, and then

-65-

recrystallized from 50 mL of ethanol to afford 0.052 g of the desired product, mp >260°C.

¹H NMR [(CD₃)₂SO]: δ 10.99 (br s, 1H, exchanges with D₂O), 9.82 (br s, 1H, exchanges with D₂O), 8.62 (s, 1H), 8.52 (d, J = 8.9 Hz, 1H), 8.24 (s, 2H), 7.90 (d, J = 8.2 Hz, 1H), 7.81 (dd, J = 1.7 Hz, 8.9 Hz, 1H), 7.34 (m, 2H), 7.26 (d, J = 15.7 Hz, 1H), 6.79 (d, J = 15.4 Hz, 1H), 3.33 (q, J = 7.0 Hz, 14.2 Hz, 2H), 1.28 (t, J = 7.0 Hz, 3H);

CIMS m/z (relative %): 440 (19%), 441 (100), 442 (37), 443 (78).

Elemental analysis calculated for C₂₀H₁₇BrN₄O₃:

C, 54.44; H, 3.88; N, 12.70; Br, 18.11.

Found: C, 54.32; H, 3.85; N, 12.76; Br, 17.89.

15

EXAMPLE 7

N-(3-Bromo-phenyl)-quinazolin-4-yl-amine

N-(3-Bromo-phenyl)-quinazolin-4-yl-amine was prepared according to methods well-known in the art. See, for example, *J Med Chem*, 1995;38(18):3482-3487.

EXAMPLE 8

4-(3-Bromo-phenylamino)-6,7-dimethoxyquinazoline

4-(3-Bromo-phenylamino)-6,7-dimethoxyquinazoline is synthesized according to methods well-known in the art. See, for example, European Patent Application Number 566 226 A1.

EXAMPLE 9

But-2-enoic acid [4-(3-bromo-phenylamino)-quinazolin-7-yl]-amide

To an ice cold solution of 0.158 g of 7-amino-4-(3-bromoanilino)-quinazoline (*J Med Chem*, 1985:3482) in 5 mL of tetrahydrofuran was added dropwise a solution of 0.105 g of crotonic acid chloride in 5 mL of tetrahydrofuran. When the addition was complete, the

30

25

35

-66-

ice bath was removed and the reaction stirred at room temperature for 15 hours. The reaction was filtered to remove the yellow solid which was washed with tetrahydrofuran and recrystallized from 20 mL of boiling methanol to afford 0.060 g of the desired product, mp >250°C.

5 ¹H NMR [(CD₃)₂SO]: δ 11.44 (br s, 1H, exchanges with D₂O), 11.04 (s, 1H, exchanges with D₂O), 8.92 (s, 1H), 8.78 (d, J = 9.2 Hz, 1H), 8.52 (d, J = 1.9 Hz, 1H), 10 8.05 (t, J = 1.8 Hz, 1H), 7.91 (dd, J = 2.1 Hz, 9.3 Hz, 1H), 7.76 (m, 1H), 7.52 (m, 1H), 7.45 (t, J = 8.0 Hz, 1H), 6.70 (m, 1H), 6.28 (dd, J = 1.7 Hz, 15.1 Hz, 1H), 1.92 (dd, J = 1.6 Hz, 6.9 Hz, 3H); CIMS: 382 (21), 383 (100), 384 (34), 385 (64).

15 Analysis calculated for C₁₈H₁₅BrN₄O·1 HCl·0.5 H₂O:
C, 50.43; H, 4.00; N, 13.07; Br, 18.64;
Cl, 8.27.

Found: C, 50.71; H, 4.00; N, 12.98; Br, 18.93;
Cl, 7.51.

20

EXAMPLE 10

N-[4-(3-Bromo-phenylamino)-6-(3-morpholin-4-yl-propylamino)-quinazolin-7-yl]-acrylamide

Treatment of 6-chloro-7-nitroquinazolin-4-one (Aust J Chem, 1995;48:227-232) with thionyl chloride or POCl₃ affords the 4,6-dichloro-7-nitroquinazoline. Reaction with 3-bromoaniline affords a mixture of 4-(3-bromophenylamino)-6-chloro-7-nitroquinazoline and 4-chloro-6-(3-bromophenylamino)-7-nitroquinazoline which are separated by column chromatography. Treatment of the desired 4-(3-bromophenylamino)-6-chloro-7-nitroquinazoline with N-(3-aminopropyl)-morpholine and subsequent reduction of the nitro functionality with, for example, iron in acetic acid affords 7-amino-4-(3-bromo-phenylamino)-6-(3-morpholin-4-yl-propylamino)-quinazoline. Acylation to afford the

-67-

acrylamide is accomplished according to method of Example 3.

EXAMPLE 11

5 N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]acrylamide

To a solution of 6-amino-4-[(3-bromophenyl)amino]-quinazoline (2.0 g, 6.35 mmol) in dry DMF (20 mL) under N₂ was added acrylic acid (12.7 mmol, 0.87 mL). The resulting solution was cooled to 0°C and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI·HCl) (7.62 mmol, 1.46 g) was added. The reaction was stirred at 0°C for 15 minutes and then allowed to warm to room temperature and stirred for a further 2 hours, after which additional acrylic acid (0.30 mL) and EDCI·HCl (0.30 g) were added. After a further 2 hours, the reaction was complete by tlc, solvent was removed under reduced pressure, and the resulting residue diluted with saturated NaHCO₃ and repeatedly extracted with EtOAc. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. Column chromatography on grade III alumina eluting with EtOAc/MeOH (95:5) followed by recrystallization from EtOAc/hexane gave a spongy white solid, which upon several hours under high vacuum gave N-[4-[(3-bromophenyl)amino]quinazolin-6-yl]acrylamide (1.06 g, 45%) as a cream powder, mp 258-261°C.

1^H NMR [(CD₃)₂SO, 200 MHz]: δ 10.51 (s, 1H, CONH), 9.93 (s, 1H, NH), 8.83 (br s, 1H, H-5), 8.59 (s, 1H, H-2), 8.18 (br s, 1H, H-2'), 7.94-7.78 (m, 3H, H-6', 8, 5'), 7.40-7.27 (m, 2H, H-7, 4'), 6.54 (dd, J = 9.8 Hz, J = 17.0 Hz, 1H, CH₂CHCO), 6.36 (dd, J = 2.1 Hz, J = 16.9 Hz, 1H, CH₂CHCO), 5.85 (dd, J = 2.0 Hz, J = 9.7 Hz, 1H, CH₂CHCO).

35 Mass spectrum (CI): 371 (95, ⁸¹BrMH⁺), 370 (53, ⁸¹BrM⁺), 369 (100, ⁷⁹BrMH⁺), 368 (33, ⁷⁹BrM⁺).

-68-

Analysis calculated for C₁₇H₁₃BrN₄O requires:

C, 55.30; H, 3.55; N, 15.17%.

Found: C, 55.19; H, 3.34; N, 14.88%.

5

EXAMPLE 12

N-[4-(N,N-Dimethylamino)-quinazolin-6-yl]acrylamide

A suspension of 6-nitroquinazolone (3.50 g, 18.5 mmol) in neat SOCl₂ (30 mL) containing two drops of DMF was refluxed for 3 hours until it became clear.

10 The excess SOCl₂ was removed under reduced pressure, and dry benzene was added and then evaporated under reduced pressure to remove all traces of SOCl₂. The resulting crude 4-chloro-6-nitroquinazoline was dissolved in dry CH₂Cl₂ (50 mL) and washed with

15 saturated Na₂CO₃ (x2), and this solution was then added to a solution of 4-amino-2-bromo-N,N-dimethylbenzylamine (20.3 mmol, 4.64 g) in i-ProOH (60 mL) containing Et₃N (excess, 7.0 mL). The resulting reaction mixture was heated at reflux for

20 3 hours and then concentrated under reduced pressure, diluted with water, and extracted with EtOAc. The combined organic extracts were dried over anhydrous Na₂SO₄, concentrated under reduced pressure, and chromatographed on silica gel eluting with CH₂Cl₂/EtOAc (1:1) to MeOH/CH₂Cl₂/EtOAc (2:9:9) to give 4-N,N-dimethylamino-6-nitroquinazoline (2.56 g, 64%), as yellow crystals, mp (CH₂Cl₂) 131-133°C.

25 ¹H NMR [(CD₃)₂SO], (400 MHz): δ 9.02 (d, J = 2.4 Hz, 1H, H-5), 8.59 (s, 1H, H-2), 8.47 (dd, J = 2.5 Hz, J = 9.2 Hz, 1H, H-7), 7.85 (d, J = 9.2 Hz, 1H, H-8), 3.46 (s, 6H, N(CH₃)₂).

30 Further elution gave 2-bromo-N,N-dimethyl-4-(6-nitroquinazolin-4-yl)benzylamine (0.62 g, 8%), as a yellow powder, mp (CH₂Cl₂) 198-200°C.

35 ¹H NMR [(CD₃)₂SO], (400 MHz): δ 10.47 (br s, 1H, NH), 9.66 (d, J = 2.4 Hz, 1H, H-5), 8.77 (s, 1H, H-2), 8.57

-69-

(dd, $J = 9.2$ Hz, $J = 2.5$ Hz, 1H, H-7), 8.21 (d, $J = 2.0$ Hz, 1H, H-2'), 7.95 (d, $J = 9.1$ Hz, 1H, H-8), 7.91 (dd, $J = 8.4$ Hz, 1H, H-6'), 7.49 (d, $J = 8.5$ Hz, 1H, H-5'), 3.46 (s, 2H, $\text{CH}_2\text{N}(\text{CH}_3)_2$), 2.22 (s, 6H, 5 $\text{N}(\text{CH}_3)_2$).

Analysis calculated for $\text{C}_{17}\text{H}_{16}\text{BrN}_5\text{O}_2 \cdot 1.5\text{H}_2\text{O}$ requires:
C, 47.6; H, 4.5; N, 16.3%.

Found: C, 47.7; H, 4.2; N, 15.7%.

To a refluxing solution of the above 4-*N,N*-dimethylamino-6-nitroquinazoline amine (1.20 g, 5.50 mmol) in EtOH/ H_2O (2:1, 90 mL) containing glacial acetic acid (4.0 mL) was added freshly washed (1N HCl then distilled H_2O) iron powder (4 mol eq., 1.24 g) in portions. Identical reaction procedure and workup as above gave, after chromatography on silica gel eluting with $\text{CH}_2\text{Cl}_2/\text{EtOAc}$ (1:1) to MeOH/ $\text{CH}_2\text{Cl}_2/\text{EtOAc}$ (1:4:5), 4-*N,N*-dimethylamino-6-aminoquinazoline (0.87 g, 84%), as a pale brown powder, mp (dihydrochloride salt from MeOH/Et₂O) 258-261°C.

20 ¹H NMR (dihydrochloride salt), [(CD₃)₂SO], (400 MHz): δ 14.8 (br s, 1H, NH⁺), 8.65 (s, 1H, H-2), 7.79 (m, 2H, H-5, H-8), 7.57 (dd, $J = 2.1$ Hz, $J = 8.9$ Hz, 1H, H-7), 5.70 (br s, 3H, NH₃⁺), 3.55 (s, 6H, N(CH₃)₂).

To a stirred solution containing the above 4-*N,N*-dimethylamino-6-aminoquinazoline (0.65 g, 3.45 mmol), acrylic acid (4 mol eq., 13.8 mmol, 0.95 mL), and pyridine (excess, 1.3 mL) in DMA (20 mL) under N₂ was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI·HCl) (2 mol eq., 6.90 mmol, 1.32 g). The standard procedure above was followed to give after chromatography on silica gel eluting with EtOAc/ CH_2Cl_2 (1:1) to MeOH/ $\text{CH}_2\text{Cl}_2/\text{EtOAc}$ (1:4:5), [4-(*N,N*-dimethylamino)quinazolin-6-yl]acrylamide (350 mg, 42%) as a cream powder, mp ($\text{CH}_2\text{Cl}_2/\text{hexane}$) 35 204-206°C.

-70-

¹H NMR [(CD₃)₂SO], (400 MHz): δ 10.49 (s, 1H, CONH), 8.80 (d, J = 2.2 Hz, 1H, H-5), 8.46 (s, 1H, H-2), 7.88 (dd, J = 2.4 Hz, J = 9.1 Hz, 1H, H-7), 7.73 (d, J = 9.0 Hz, 1H, H-8), 6.47 (dd, J = 17.0 Hz, J = 10.1 Hz, 1H, CH₂CHCO), 6.34 (dd, J = 17.0 Hz, J = 2.0 Hz, 1H, CH₂CHCO), 5.83 (dd, J = 10.1 Hz, J = 2.0 Hz, 1H, CH₂CHCO), 3.32 (s, 6H, N(CH₃)₂).

EXAMPLE 13

10 N-[4-(3-Methyl-phenylamino)-quinazolin-7-yl]acrylamide

To a stirred solution of 7-amino-4-[(3-methylphenyl)amino]quinazoline (123 mg, 0.49 mmol), acrylic acid (0.04 mL, 0.58 mmol), triethylamine (0.15 mL, 1.1 mmol) in DMF (1.5 mL) at 0°C was added 15 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (123 mg, 0.64 mmol). The resulting light yellow mixture was stirred at 25°C for 20 hours and quenched with water. The solid was collected and purified by sonication with a mixture of 20 CH₂Cl₂/EtOAc/MeOH to give the desired product as a yellow solid (75 mg, 49%), mp 269.7-270°C.

1¹H NMR [(CD₃)₂SO]: δ 10.63 (s, 1H, NH), 9.68 (s, 1H, NH), 8.58 (s, 1H, H2), 8.54 (d, J = 9.3 Hz, 1H, H6), 8.25 (d, J = 2.2 Hz, 1H, H8), 7.83 (dd, J = 9.0, 1.9 Hz, 1H, H5), 7.71 (m, 2H, H2', H6'), 7.32 (t, J = 8.3 Hz, 1H, H5'), 6.99 (d, J = 7.1 Hz, 1H, H4'), 25 6.56 (dd, J = 16.8, 10.0 Hz, 1H, CH=CH₂), 6.40 (dd, J = 17.1, 5.0 Hz, 1H, CH=CH₂), 5.9 (dd, J = 10.3, 2.0 Hz, 1H, CH=CH₂), 2.39 (s, 3H, CH₃).

30 Mass Spectrum (CI): 305 (100, MH⁺), 304 (31.84, M⁺). Calculated for C₁₈H₁₆N₄O·0.4H₂O:
C, 69.39; H, 5.44; N, 17.94%.
Found: C, 69.19; H, 5.19; N, 17.67%.

-71-

EXAMPLE 14

N-[4-(3-Chloro-phenylamino)-quinazolin-7-yl]acrylamide

1-(3-dimethylaminopropyl)-3-ethylcarbodiimide

hydrochloride (288 mg, 1.5 mmol) was added to a

5 solution of 6-amino-4[(3-chlorophenyl)amino]quinazoline (136 mg, 0.5 mmol) and acrylic acid (108 mg, 1.5 mmol) in dimethylformamide (DMF) (5 mL), stirred under nitrogen at 0°C. After 15 minutes the reaction mixture was stirred at 25°C for 18 hours, and then poured onto ice-water (50 mL) and after 1 hour the precipitate was collected by Buchner filtration. The residue was rinsed, air dried, dissolved in the minimum of 10 25°C methanol (MeOH) (60 mL), concentrated at 25°C under reduced pressure to below 10 mL, and recrystallized at 0°C to give N-[4-(3-chlorophenyl)-15 amino]quinazolin-7-yl]acrylamide (33 mg, 20%) as a light orange solid, mp 296.5-298.5°C.

Calculated for C₁₇H₁₃ClN₄O·0.08 CH₃OH·0.25 H₂O:

C, 61.82; H, 4.20; N, 116.89%.

20 Found: C, 61.92, H, 4.23; N, 116.72%.

¹H NMR [(CD₃)₂SO]: δ 10.61 (brs, 1H, NH), 9.80 (s, 1H, NH), 8.62 (s, 1H, H₂), 8.50 (d, J = 9.0 Hz, H₅), 8.25 (d, J = 2.0 Hz, 1H, H₈), 8.13 (t, J = 2.0 Hz, 1H, H_{2'}), 7.87-7.78 (m, 2H, H₆ & H_{6'}), 7.42 (t, J = 8.2 Hz, 1H, H_{5'}), 7.16 (dd, J = 2.2, 7.9 Hz, 1H, H_{4'}), 6.51 (dd, J = 10.0, 17.1 Hz, 1H, CH=CH₂), 6.35 (dd, J = 1.8, 17.1 Hz, 1H, CH=CH₂), 5.86 (dd, J = 1.8, 10.1 Hz, 1H, CH=CH₂).

25 Mass Spectrum (CI) 327 (32, ³⁷ClMH⁺), 326 (25, ³⁷ClM⁺, ¹³C ³⁵ClMH⁺), 325 (100, ³⁵ClMH⁺), 322 (22, ³⁵ClMH⁺).

EXAMPLE 15

N-[4-(3-Bromo-phenylamino)-quinazolin-7-yl]-methacrylamide

35 To a stirred solution of 7-amino-4-{(3-bromo-phenyl)amino}quinazoline (J Med Chem, 1995;38:3482)

-72-

(150 mg, 0.48 mmol) in dry DMF (20 mL) was added methacrylic acid (200 mg) and 1-(3-dimethylamino-propyl)-3-ethylcarbodiimide hydrochloride (EDCI·HCl) (2.5 mol, 228 mg), the reaction mixture was stirred
5 overnight then further amounts of EDCI·HCl (230 mg) and methacrylic acid (200 mg) were added. After a further 2 days stirring the solvent was removed under vacuum and the residue diluted with saturated NaHCO₃, extracted with ethyl acetate (EtOAc) and then the
10 combined organic extracts were dried over anhydrous Na₂SO₄, concentrated under reduced pressure and chromatographed on silica gel eluting with MeOH/CH₂Cl₂/EtOAc (5:45:50) to MeOH/CH₂Cl₂/EtOAc (10:40:50) to give N-[4-[(3-bromophenyl)amino]-
15 quinazolin-7-yl]-2-methyl-acrylamide (43 mg, 24%) as a pale brown solid, mp (CH₂Cl₂/hexane) 255-259°C.
¹H NMR [(CD₃)₂SO], (400 MHz) δ 10.22 (s, 1H, CONH), 9.76 (s, 1H, NH), 8.61 (s, 1H, H-2), 8.48 (d, J = 9.2 Hz, 1H, H-5), 8.26 (m, 2H, H-2', 8), 7.92 (m, 2H, H-6', 6), 7.36 (t, J = 8.0 Hz, 1H, H-5'), 7.30 (br d, J = 8.3 Hz, 1H, H-4'), 5.92 (s, 1H, CH₂C(CH₃)CO), 5.63 (s, 1H, CH₂C(CH₃)CO), 2.00 (s, 3H, CH₂C(CH₃)CO).
Analysis calculated for C₁₈H₁₅BrN₄O requires:
25 C, 56.4; H, 4.0; N, 14.6%.
Found: C, 56.1; H, 4.0; N, 14.1%.

EXAMPLE 16

N-[4-(3-Bromo-phenylamino)-quinazolin-7-yl]ethenyl-sulfonamide
30 A solution of 7-amino-4-[(3-bromophenyl)-amino]quinazoline (*J Med Chem*, 1995;38:3482) (500 mg, 1.59 mmol), triethylamine (Et₃N) (0.60 mL) and dimethylamine pyridine (DMAP) (catalytic) in
35 tetrahydrofuran (THF) (30 mL) was reacted with chloroethanesulfonyl chloride (1.6 mol eq., 2.54 mmol,

-73-

265 μ L) at 25°C for 1 hour, stirred under N₂. The reaction mixture was diluted with saturated NaHCO₃ and extracted with EtOAc. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, concentrated under reduced pressure, and chromatographed on silica gel eluting with MeOH/CH₂Cl₂/EtOAc (3:47:50). Crystallization from CH₂Cl₂/hexane, gave N-[4-[(3-bromophenyl)amino]-quinazolin-7-yl]vinylsulfonamide (80 mg, 12%) as a cream powder, mp 218°C decomposes (dec).

10 ¹H NMR [(CD₃)₂SO], (400 MHz) δ 10.73 (s, 1H, SO₂NH), 9.80 (s, 1H, NH), 8.59 (s, 1H, H-2), 8.47 (d, J = 9.1 Hz, 1H, H-5), 8.21 (br s, 1H, H-2'), 7.87 (br d, J = 8.0 Hz, 1H, H-6'), 7.47 (d, J = 2.1 Hz, 1H, H-8), 7.40 (dd, J = 9.0 Hz, J = 2.2 Hz, 1H, H-6), 7.36 (t, J = 8.0 Hz, 1H, H-5'), 7.30 (br d, J = 8.0 Hz, 1H, H-4'), 6.93 (dd, J = 16.4 Hz, J = 9.9 Hz, 1H, CH₂CHSO₂), 6.28 (d, J = 16.4 Hz, 1H, CH₂CHSO₂), 6.15 (d, J = 9.9 Hz, 1H, CH₂CHSO₂).

15 Analysis calculated for C₁₆H₁₃BrN₄O₂S requires:

C, 47.4; H, 3.2%.

20 Found: C, 47.3; H, 3.5%.

EXAMPLE 17

25 N-[4-(3-Bromo-phenylamino)-quinazolin-7-yl]propanamide

To a solution of 7-amino-4-[(3-bromophenyl)amino]-quinazoline (163 mg, 0.52 mmol) in dry THF (3 mL) stirred under N₂ at 25°C was added dropwise propionyl chloride (0.05 mL, 0.58 mmol). A yellow solid formed at once. After 1 hour the solid was collected by Buchner filtration and washed with ether then dried. Recrystallized from wet methanol afforded the desired product as bright yellow solid (81 mg, 38%), mp 282-283°C.

30 35 ¹H NMR [(CD₃)₂SO]: δ 11.4 (brs, 1H, NH), 10.76 (s, 1H, NH), 8.90 (s, 1H, H8), 8.64 (d, J = 9.0 Hz, 1H, H6),

-74-

8.42 (s, 1H, H2), 8.06 (s, 1H, H2'), 7.80 (dd, J = 9.2, 1.9 Hz, 1H, H5), 7.74 (d, J = 7.8 Hz, 1H, H4'), 7.50 (d, J = 8.0 Hz, 1H, H6'), 7.45 (t, J = 8.0 Hz, 1H, H5'), 2.48 (q, J = 7.6 Hz, 2H, CH₂), 1.13 (t, J = 7.5 Hz, 3H, CH₃).
5 Mass Spectrum (APCI): 373 (100, ⁸¹BrMH⁺), 372 (21, ⁸¹BrM⁺), 371 (96, ⁷⁹BrMH⁺).
Calculated for C₁₇H₁₅N₄BrO·HCl·0.2H₂O:
C, 49.64; H, 4.02; N, 13.63%
10 Found: C, 49.48; H, 3.91; N, 13.57%.

EXAMPLE 18

N-[4-[(3-Chlorophenyl)amino]quinazolin-6-yl]acrylamide
1-3-dimethylaminopropyl)-3-ethylcarbodiimide
15 hydrochloride (1902 mg, 1 mmol) was added to a solution of 6-amino-4[(3-chlorophenyl)amino]quinazoline (136 mg, 0.5 mmol) acrylic acid (74 mg, 1.0 mmol) and pyridine (201 mg, 2.5 mmol) in THF/DMF (4:1, 2.5 mL), stirred under nitrogen at 0°C. After 20 minutes the reaction
20 mixture was stirred at 25°C for 3 hours, and then poured onto water (12.5 mL), and extracted with EtOAc (2 × 10 mL). The combined extracts were treated with dilute hydrochloric acid (0.5 M, 10 mL), and the precipitate was collected by Buchner filtration, rinsed
25 with water (10 mL), ether (2 × 10 mL), and air dried to give N-[4-[(3-chlorophenyl)amino]quinazolin-6-yl]acrylamide hydrochloride (93 mg, 48%) as a dull yellow solid, mp 223-227°C.

Calculated for C₁₈H₁₃ClN₄O·HCl·1.5 H₂O:
30 C, 52.59; H, 4.41; N, 14.43%.
Found: C, 52.43, H, 4.37; N, 14.27%.
¹H NMR[(CD₃)₂SO]: δ 11.46 (brs, 1H, NH), 11.05 (s, 1H, NH), 9.13 (d, J = 2.0 Hz, 1H, H5), 8.90 (s, 1H, H2), 8.12 (dd, J = 2.0, 9.0 Hz, 1H, H7), 7.99 (d, J = 9.0 Hz, 1H, H8), 7.88 (t, J = 2.0 Hz, 1H, H2'), 7.68 (dd, J = 6.1, 1.0 Hz, 1H, H6'), 7.51 (t,

-75-

J = 8.0 Hz, 1H, H5'), 7.37 (dd, J = 8.1, 1.2 Hz, 1H, H-4'), 6.63 (dd, J = 10.3, 17.1 Hz, 1H, CH=CH₂), 6.37 (dd, J = 1.6, 17.1 Hz, 1H, CH=CH₂), 5.87 (dd, J = 1.7, 10. Hz, 1H, CH=CH₂).

5 Mass Spectrum, Chemical Ionization (CI): 327 (8, ³⁷ClMH⁺), 325 (37, ³⁵ClMH⁺), 135 (100).

EXAMPLE 19

N-[4-[(3-methylphenyl)aminolquinazolin-6-yl]acrylamide

10 Isobutyl chloroformate (20.35 g, 0.15 mol) was added dropwise over 20 minutes to a solution of acrylic acid (10.82 g, 0.15 mol) and triethylamine (30.19 g, 0.30 mol) in THF (400 mL), stirred under nitrogen at 0°C. The slurry was stirred at that temperature for 15 30 minutes, and then 6-amino-4[(3-methylphenyl)amino]-quiazoline (27.71 g, 107 mmol) in DMF (80 mL) was added dropwise over 45 minutes. After a further 4 hours, further mixed anhydride (from acrylic acid (3.61 g, 50 mmol), isobutyl chloroformate (6.80 g, 50 mmol) and triethylamine (10.1 g, 100 mmol) in THF (100 mL) at 0°C) was added in one portion. After a further 15 minutes, the reaction mixture was stirred at 25°C for 30 minutes, and then poured onto ice-water (1 L). Ether (200 mL) was added and the phases were separated. The aqueous phase was extracted with EtOAc (500 mL), and the combined organic phases were washed with water (500 mL), and saturated brine (250 mL). The solution was stirred with anhydrous MgSO₄ for 2 minutes, filtered, and silica gel (150 g) was added. The mixture was stripped to dryness, and used as the origin of a flash silica chromatography column (700 g), eluting with acetone/dichloromethane (25% 4 L, 35% 8 L, 40% 4 L). The solvent was stripped from the appropriate fractions and the residue was suspended in 30 EtOAc (200 mL) refluxed for 5 minutes and sonicated at 40% 4 L. The solvent was stripped from the appropriate fractions and the residue was suspended in EtOAc (200 mL) refluxed for 5 minutes and sonicated at 60°C for 20 minutes, then collected by Buchner

-76-

filtration, rinsed with EtOAc (3 x 25 mL), and dried in a vacuum oven at 75°C for 16 hours, to give N-[4-[(3-methyl-phenyl)amino]quinazolin-6-yl]acrylamide (11.38 g, 35%) as a light yellow solid, mp 247-8°C.

5 Calculated for C₁₈H₁₆N₄O·0.1 H₂O:

C, 70.61; H, 5.33; N, 18.30%.

Found: C, 70.33; H, 5.19; N, 18.17%.

10 ¹H NMR [(CD₃)₂SO]: δ 10.49 (brs, 1H, NH), 9.76 (brs, 1H, NH), 8.75 (d, J = 2.5 Hz, 1H, H5), 8.52 (s, 1H, H2), 7.89 (dd, J = 2.0, 9.2 Hz, 1H, H7), 7.77 (d, J = 8.9 Hz, 1H, H8), 7.64-7.60 (m, 2H, H6' & H2'), 7.26 (dt, J_d = 1.4 Hz, J_t = 7.5 Hz, 1H, H5'), 6.94 (d, J = 7.2 Hz, 1H, H4'), 6.53 (dd, J = 10.1, 16.9 Hz, 1H, CH=CH₂), 6.34 (dd, J = 1.9, 16.9 Hz, 1H, CH=CH₂), 5.84 (dd, J = 1.9, 10.1 Hz, 1H, CH=CH₂) 2.34 (s, 3H, Me).
15 Mass Spectrum (CI) 305 (100, MH⁺), 304 (49, M⁺).

EXAMPLE 20

N-[4-[(3-(Trifluoromethyl) phenyl)amino]quinazolin-6-yl]acrylamide

20 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (212 mg, 1.1 mmol) was added to a solution of 6-amino-4-[(3-(trifluoromethyl)phenyl)-amino]quinazoline (153 mg, 0.5 mmol) acrylic acid (73 mg, 1.0 mmol) and pyridine (206 mg, 2.5 mmol) in THF/DMF (4:1, 2.5 mL), stirred under nitrogen at 0°C. After 15 minutes the reaction mixture was stirred at 25°C for 1 hour, and then recooled to 0°C. Dilute hydrochloric acid (0.5 M, 10 mL) was added, and after 15 minutes the precipitate was collected by Buchner filtration. The residue was rinsed with water (5 mL) and ether (2 x 5 mL) and dried in a vacuum oven at 75°C overnight to give N-[4-[(3-(trifluoromethyl) phenyl)amino]quinazolin-6-yl]acrylamide hydrochloride

-77-

(87 mg, 45%) as a light greenish solid, mp 195-199°C.

Calculated for $C_{18}H_{13}F_3N_4O \cdot HCl \cdot 0.5 H_2O$:

C, 53.54; H, 3.74; N, 13.88%.

Found: C, 53.70; H, 3.72; N, 13.73%.

5 1H NMR [(CD₃)₂SO]: δ 11.59 (brs, 1H, NH), 10.99 (s, 1H, NH), 9.17 (d, J = 2.0 Hz, H5), 8.92 (s, 1H, H2), 8.12 (s, 1H, H2'), 8.10 (dd, J = 2.0, 9.2 Hz, 1H, H7), 8.04 (d, J = 8.0 Hz, 1H, H6'), 7.98 (d, J = 9.0 Hz, 1H, H8), 7.74 (t, J = 7.9 Hz, 1H, H5'), 7.68 (d, J = 7.8 Hz, 1H, H4'), 6.60 (dd, J = 10.1, 16.9 Hz, 1H, CH=CH₂), 6.38 (dd, J = 1.6, 16.9 Hz, 1H, CH=CH₂), 5.89 (dd, J = 1.6, 10.1 Hz, 1H, CH=CH₂).

Mass Spectrum (CI) 359 (45, M⁺), 134 (100).

15

EXAMPLE 21

N-[4-[(3-Bromophenyl)amino]-7-[3-(4-morpholino)propoxyl quinazolin-6-yl]acrylamide

Sodium metal (27.6 mmol, 0.63 g) was added to a solution of 3-morpholinopropan-1-ol (22.0 mmol, 3.20 g)

20 in THF (60 mL) under N₂. The resulting suspension was stirred at 20°C for 2 hours and then cannulated into a solution of 4-[(3-bromophenyl)amino]-7-fluoro-6-nitro-quinazoline, *J Med Chem*, 1996(39):918) (2.0 g, 5.51 mmol) in THF (50 mL) under N₂. The solution was 25 then heated at reflux for 24 hours before being diluted with water and extracted with EtOAc. The combined organic extracts were dried over anhydrous Na₂SO₄, concentrated under reduced pressure and chromatographed on alumina eluting with EtOAc/hexane (1:1) to MeOH/ 30 CH₂Cl₂/EtOAc (2:3:5) to give 4-[(3-bromophenyl)amino]-7-[(3-morpholino)propyloxy]-6-nitroquinazoline (1.75 g, 65%) as a yellow powder, mp (MeOH) 216-220°C.

35 1H NMR [(CD₃)₂SO]: δ 10.12 (s, 1H, NH), 9.24 (s, 1H, aromatic), 8.69 (s, 1H, aromatic), 8.19 (t, J = 1.8 Hz,

H-2'), 7.88 (dt, J_d = 7.8 Hz, J_t = 1.4 Hz, 1H, H-6'), 7.49 (s, 1H, aromatic), 7.38 (t, J = 8.0 Hz, 1H,

-78-

H-5'), 7.34 (dt, $J_d = 8.1$ Hz, $J_t = 1.4$ Hz, 1H, H-4'), 4.35 (t, $J = 6.2$ Hz, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{O}$), 3.58 (t, $J = 4.6$ Hz, 4H, morpholino methylene), 2.45 (t, $J = 7.0$ Hz, 2H, $\text{NCH}_2\text{CH}_2\text{CH}_2$), 2.37 (br s, 4H, morpholino methylene), 1.94 (quintet, $J = 6.6$ Hz, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2$).
5 ^{13}C NMR: δ 157.76, 157.26, 153.76, 153.21, 140.32, 138.86, 130.37, 126.38, 124.26, 121.70, 121.13, 120.72, 110.11, 107.88, 67.87, 66.13 ($\times 2$), 54.42, 53.28 ($\times 2$), 25.30.

10 Analysis calculated for $\text{C}_{21}\text{H}_{22}\text{BrN}_5\text{O}_4 \cdot 0.75 \text{ H}_2\text{O}$ requires:
C, 50.3; H, 4.7; N, 14.0%.

Found: C, 50.3; H, 4.4; N, 13.8%.

Freshly washed (1N HCl then distilled H_2O) iron powder (12 mmol, 0.686 g) was added in portions to a refluxing solution of the above nitroquinazoline (1.50 g, 3.07 mmol) in EtOH/ H_2O (2:1, 80 mL) containing glacial acetic acid (2.0 mL). The resulting suspension was heated at reflux with vigorous stirring for 20 minutes then cooled, basified by the addition of concentrated NH_3 and filtered through a pad of celite. The celite pad was washed with EtOH before the filtrate was concentrated under reduced pressure, diluted with water, and extracted with EtOAc. The combined organic extracts were dried over anhydrous Na_2SO_4 , concentrated under reduced pressure, and chromatographed on Grade III alumina eluting with $\text{CH}_2\text{Cl}_2/\text{EtOAc}$ (1:1) to MeOH/EtOAc (2:98) to give 6-amino-4-[(3-bromophenyl)-amino]-7-[(3-morpholino)propyloxy]quinazoline (1.08 g, 77%) as a pale brown powder, mp (EtOAc/hexane)
20 158-160°C.

30 ^1H NMR [(CD_3)₂SO], (400 MHz): δ 9.37 (s, 1H, NH), 8.40 (s, 1H, aromatic), 8.24 (t, $J = 1.9$ Hz, 1H, H-2'), 7.86 (ddd, $J = 8.2, 0.8, 1.8$ Hz, 1H, H-6'), 7.42 (s, 1H, aromatic), 7.30 (t, $J = 8.1$ Hz, 1H, H-5'), 7.21 (ddd, $J = 8.2, 1.0, 1.9$ Hz, 1H, H-4'), 7.09 (s, 1H, aromatic), 5.36 (s, 2H, NH_2), 4.20 (t, $J = 6.2$ Hz, 2H,

-79-

CH₂CH₂CH₂O), 3.59 (t, J = 4.6 Hz, 4H, morpholino methylene), 2.50 (t, J = 7.3 Hz, 2H, NCH₂CH₂CH₂), 2.39 (br s, 4H, morpholino methylene), 1.99 (quintet, J = 6.7 Hz, 2H, CH₂CH₂CH₂).

5 ¹³C NMR: δ 154.88, 151.94, 150.19, 144.84, 141.94, 138.50, 130.16, 124.66, 123.02, 121.09, 119.65, 110.42, 106.37, 100.81, 66.45, 66.14 (x2), 54.77, 53.29 (x2), 25.50.

10 Analysis calculated for C₂₁H₂₄BrN₅O₂ · 0.25 H₂O requires:
C, 54.5; H, 5.3; N, 15.1%.

15 Found: C, 54.6; H, 5.5; N, 15.0%.

To a stirred solution of the above 6-amino-quinazoline (0.50 g, 1.09 mmol), acrylic acid (6 mol, 6.54 mmol, 449 μL), and Et₃N (excess, 2.0 mL) in DMF-15 (20 mL) under N₂ was added 1-(3-dimethyl-aminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI·HCl) (3 mol, 3.27 mmol, 627 mg). The reaction was stirred at 0°C for 15 minutes and then allowed to warm to room temperature and stirred for a further 2 hours. The solvent was removed under reduced pressure, and the resulting residue was diluted with saturated NaHCO₃ and repeatedly extracted with EtOAc. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure.

20 Chromatography on Grade III alumina eluting with EtOAc/hexane (9:1) to MeOH/EtOAc (2:98), N-[4-[(3-bromophenyl)amino]-7-[(3-morpholino)propyloxy]-quinazolin-6-yl]acrylamide (329 mg, 59%) as a cream powder, mp (EtOAc/Et₂O/hexane) 170-172°C.

25 ¹H NMR [(CD₃)₂SO]: δ 9.78 (s, 1H, CONH), 9.62 (s, 1H, NH), 8.89 (s, 1H, aromatic), 8.56 (s, 1H, aromatic), 8.18 (t, J = 1.9 Hz, 1H, H-2'), 7.88 (br d, J = 8.2 Hz, 1H, H-6'), 7.34 (t, J = 8.1 Hz, 1H, H-5'), 7.30 (s, 1H, aromatic), 7.27 (ddd, J = 7.9, 1.4, 0.8 Hz, 1H, H-4'), 30 6.72 (dd, J = 17.0, 10.2 Hz, 1H, CH₂CHCO), 6.33 (dd, J = 17.0, 1.9 Hz, 1H, CH₂CHCO), 5.83 (dd, J = 10.2,

-80-

1.9 Hz, 1H, CH_2CHCO), 4.27 (t, $J = 6.3$ Hz, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2\text{O}$), 3.58 (t, $J = 4.6$ Hz, 4H, morpholino methylene), 2.48 (t, $J = 7.1$ Hz, 2H, $\text{NCH}_2\text{CH}_2\text{CH}_2$), 2.38 (br s, 4H, morpholino methylene), 1.99 (quintet, 5 $J = 6.7$ Hz, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2$).
 ^{13}C NMR: δ 163.49, 156.68, 154.96, 153.92, 149.19, 141.20, 131.58, 130.19, 127.16, 126.95, 125.52, 123.97, 121.03, 120.52, 116.78, 108.80, 107.28, 66.96, 66.14 (x2), 54.54, 53.28 (x2), 25.31.
10 Analysis calculated for $\text{C}_{24}\text{H}_{26}\text{BrN}_5\text{O}_3 \cdot 0.5 \text{ H}_2\text{O}$ requires:
C, 55.3; H, 5.2; N, 13.4%.
Found: C, 55.3; H, 4.9; N, 13.3%.

EXAMPLE 22

15 N-[4-[(3-Methylphenyl)aminol-7-[3-(4-morpholino)-propoxylquinazolin-6-yl]acrylamide

A suspension of 7-fluoro-6-nitroquinazolone (2.40 g, 11.48 mmol) in neat SOCl_2 (25 mL) containing 2 drops of DMF was refluxed for 3 hours until it became clear. The excess SOCl_2 was then removed in vacuo and dry benzene was added to the residue and then distilled under reduced pressure to remove all traces of SOCl_2 giving crude 4-chloro-7-fluoro-6-nitroquinazoline, which was dissolved in dry CH_2Cl_2 (50 mL) and added to 20 a stirred solution of *m*-toluidine in isopropanol (i-PrOH) (30 mL). The reaction mixture was stirred at 25 20°C for 30 minutes and then hexane (200 mL) was added to precipitate the product as the HCl salt. The precipitate was filtered, washed with hexane, and then 30 dissolved in MeOH/ H_2O (4:1, 150 mL) with gentle warming. Excess Et_3N was then added to the solution followed by water (400 mL) to precipitate the product as the free base which was then filtered, washed with water and dried under reduced pressure to give 35 7-fluoro-4-[(3-methylphenyl)-amino]-6-nitroquinazoline

-81-

(3.01 g, 88%) as a yellow powder, mp (CH₂Cl₂/hexane) 191-192°C.

¹H NMR [(CD₃)₂SO]: δ 10.38 (s, 1H, NH), 9.62 (d, J = 8.1 Hz, 1H, H-5), 8.67 (s, 1H, H-2), 7.80 (d, J = 12.6 Hz, 1H, H-8), 7.63 (br d, J = 8.2 Hz, 1H, H-6'), 7.60 (br s, 1H, H-2'), 7.31 (t, J = 7.8 Hz, 1H, H-5'), 7.03 (br d, J = 7.5 Hz, 1H, H-4'), 2.35 (s, 3H, ArCH₃).

Analysis calculated for C₁₅H₁₁FN₄O₂ requires:

C, 60.4; H, 3.7; N, 18.8%.

Found: C, 60.6; H, 3.6; N, 19.0%.

To a solution of 3-morpholinopropan-1-ol (8.40 mmol, 1.22 g) in THF (40 mL) under N₂ was added sodium metal (11.8 mmol, 0.27 g). The resulting suspension was stirred at 20°C for 2 hours and then cannulated into a solution of 7-fluoro-4-[(3-methylphenyl)amino]-6-nitroquinazoline (0.70 g, 2.35 mmol) in THF (30 mL) under N₂. The reaction procedure and workup above were followed to give after chromatography on silica gel eluting with MeOH/CH₂Cl₂/EtOAc (5:45:50) to MeOH/CH₂CO·50/EtOAc (3:7:10) 4-[(3-methylphenyl)amino]-7-[(3-morpholino)propyloxy]-6-nitroquinazoline (0.87 g, 88%) as a yellow powder, mp (CH₂Cl₂/hexane) 169-170°C.

¹H NMR [(CD₃)₂SO]: δ 10.00 (s, 1H, NH), 9.26 (s, 1H, aromatic), 8.62 (s, 1H, aromatic), 7.64 (br d, J = 8.1 Hz, 1H, H-6'), 7.62 (br s, 1H, H-2'), 7.45 (s, 1H, aromatic), 7.29 (t, J = 7.8 Hz, 1H, H-5'), 6.99 (br d, J = 7.5 Hz, 1H, H-4'), 4.34 (t, J = 6.1 Hz, 2H, CH₂CH₂CH₂O), 3.58 (t, J = 4.6 Hz, 4H, morpholino methylene), 2.46 (t, J = 7.0 Hz, 2H, NCH₂CH₂CH₂), 2.38 (br s, 4H, morpholino methylene), 2.35 (s, 3H, CH₃Ar), 1.94 (quintet, J = 6.6 Hz, 2H, CH₂CH₂CH₂).

Analysis calculated for C₂₂H₂₅N₅O₄ requires:

C, 62.4; H, 6.0; N, 16.5%.

Found: C, 62.2; H, 6.1; N, 16.5%.

-82-

A solution of the above nitroquinazoline (0.71 g, 1.68 mmol) in MeOH/EtOAc (2:1, 60 mL) was hydrogenated (60 psi) over Pd-C for 6 hours and then filtered through celite. The filtrate was then concentrated under reduced pressure to give 6-amino-4-[(3-methyl-phenyl)amino]-7-[(3-morpholino)propyloxy]quinazoline which was used without further characterization. To a stirred solution of this (0.7 g, 1.8 mmol), acrylic acid (6 mol, 10.8 mmol, 776 μ L), and Et₃N (excess, 4.0 mL) in DMF (20 mL) under N₂ was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI·HCl) (3 mol, 5.38 mmol, 1.03 g). The standard procedure above was followed to give after chromatography on silica gel eluting with CH₂Cl₂/EtOAc (1:1) to MeOH/CH₂Cl₂/EtOAc (3:7:10), N-[4-[(3-methyl-phenyl)amino]-7-[(3-morpholino)propyloxy]quinazolin-6-yl]acrylamide (175 mg, 22%) as a cream powder, mp (EtOAc/Et₂O) 69-72°C.

¹H NMR [(CD₃)₂SO], (400 MHz): δ 9.60 (s, 1H, exchangeable), 9.59 (s, 1H, NH), 8.86 (s, 1H, H5), 8.48 (s, 1H, H2), 7.62 (br d, J = 8.0 Hz, 1H, H-6'), 7.61 (br s, 1H, H-2'), 7.26 (s, 1H, H8), 7.25 (t, J = 7.8 Hz, 1H, H-5'), 6.92 (br d, J = 7.4 Hz, 1H, H-4'), 6.70 (dd, J = 16.9, 10.2 Hz, 1H, CH₂CHCO), 6.32 (dd, J = 16.9, 1.9 Hz, 1H, CH₂CHCO), 5.82 (dd, J = 10.2, 1.9 Hz, 1H, CH₂CHCO), 4.26 (t, J = 6.3 Hz, 2H, CH₂CH₂CH₂O), 3.58 (t, J = 4.6 Hz, 4H, morpholino methylene), 2.48 (t, J = 7.1 Hz, 2H, NCH₂CH₂CH₂), 2.38 (br s, 4H, morpholino methylene), 2.33 (s, 3H, CH₃Ar). 1.99 (quintet, J = 6.7 Hz, 2H, CH₂CH₂CH₂).

Analysis calculated for C₂₅H₂₉N₅O₃·0.25 H₂O requires:

C, 66.4; H, 6.6; N, 15.5%.

Found: C, 66.3; H, 6.9; N, 15.9%.

-83-

EXAMPLE 23

N-[4-[(3-Methylphenyl)amino]-7-[3-(4-N-methyl-1-N-piperazino)propoxy]quinazolin-6-yl]acrylamide

Sodium metal (10.1 mmol, 0.23 g) was added to a
5 solution of 3-N-(4-methylpiperazinyl)propan-1-ol
(6.71 mmol, 1.06 g) in THF (15 mL) under N₂. The
resulting suspension was stirred at 20°C for 2 hours
and then cannulated into a solution of 7-fluoro-4-[(3-
methylphenyl)amino]-6-nitroquinazoline (0.50 g,
10 1.68 mmol) in THF (20 mL) under N₂. The dark red
solution was then heated at reflux for 24 hours before
being diluted with water and extracted with EtOAc. The
combined organic extracts were dried over anhydrous
Na₂SO₄, concentrated under reduced pressure and
15 chromatographed on alumina eluting with EtOAc/hexane
(1:1) to EtOAc (2:3:5), to give 4-[(3-methylphenyl)-
amino]-7-[3-N-(4-methylpiperazinyl)propyloxy]-6-nitro-
quinazoline (0.67 g, 91%) as a yellow powder,
mp (Et₂O/hexane) 155-156°C.
20 ¹H NMR [(CD₃)₂SO]: δ 10.00 (s, 1H, NH), 9.26 (s, 1H,
H5, H₂H5), 8.61 (s, 1H, H2), 7.64 (br d, J = 8.4 Hz,
1H, H-6'), 7.62 (br s, 1H, H-2'), 7.43 (s, 1H, H8),
7.29 (t, J = 7.8 Hz, 1H, H-5'), 6.99 (br d, J = 7.4 Hz,
1H, H-4'), 4.32 (t, J = 6.0 Hz, 2H, CH₂CH₂CH₂O), 2.44
25 (t, J = 7.0 Hz, 2H, NCH₂CH₂CH₂), 2.39-2.28 (br s, 8H,
piperazinyl methylene), 2.34 (s, 3H, CH₃Ar), 2.14 (s,
3H, CH₃N), 1.92 (quintet, J = 6.6 Hz, 2H, CH₂CH₂CH₂).
Analysis calculated for CH₂₈N₆O₃ requires:
C, 63.3; H, 6.5; N, 19.3%.
30 Found: C, 63.4; H, 6.8; N, 19.6%.
A solution of the above nitroquinazoline (0.61 g,
1.40 mmol) in MeOH/EtOAc (2:1, 50 mL) was hydrogenated
(60 psi) over Pd-C for 5 hours and then filtered
through celite. The filtrate was then concentrated
35 under reduced pressure and chromatographed on Grade III

-84-

alumina eluting with MeOH/EtOAc (5:95) to give 6-amino-4-[¹(3-methylphenyl)amino]-7-[3-N-(4-methylpiperazinyl)propyloxy]quinazoline (361 mg) which appeared to rapidly discolor and was used without further characterization. To a stirred solution of this (0.36 g, 0.89 mmol), acrylic acid (6 mol, 5.53 mmol, 366 μ L), and Et₃N (excess, 2.0 mL) in DMF (20 mL) under N₂ was added 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride (EDCI·HCl) (3 mol, 2.66 mmol, 511 mg). The standard procedure above was followed to give, after chromatography on Grade III alumina eluting with EtOAc to MeOH/EtOAc (2:98), N-[4-[¹(3-methylphenyl)amino]-7-[3-N-(4-methylpiperazinyl)propyloxy]quinazolin-6-yl]acrylamide (65 mg, 16%) as a colorless glass, mp (Et₂O/hexane) 60-66°C.
¹H NMR [(CD₃)₂SO]: δ 9.60 (s, 1H, NH), 9.59 (s, 1H, NH), 8.86 (s, 1H, H5), 8.48 (s, 1H, H2), 7.62 (br d, J = 8.0 Hz, 1H, H-6'), 7.62 (br s, 1H, H-2'), 7.25 (t, J = 8.1 Hz, 1H, H-5'), 7.25 (s, 1H, H8), 6.92 (br d, J = 7.5 Hz, 1H, H-4'), 6.70 (dd, J = 17.0 Hz, J = 10.2 Hz, 1H, CH₂CHCO), 6.31 (dd, J = 16.9, 1.8 Hz, 1H, CH₂CHCO), 5.83 (dd, J = 10.2, 1.8 Hz, 1H, CH₂CHCO), 4.24 (t, J = 6.3 Hz, 2H, CH₂CH₂CH₂O), 2.47 (t, J = 7.1 Hz, 2H, NCH₂CH₂CH₂), 2.41-2.28 (br s, 8H, piperazinyl methylene), 2.33 (s, 3H, CH₃Ar), 2.15 (s, 3H, CH₃N), 1.97 (quintet, J = 6.8 Hz, 2H, CH₂CH₂CH₂).
EI HRMS (M⁺) C₂₆H₃₂N₆O₂ requires 460.2587.
Found: 460.2576.

30

EXAMPLE 24

N-[4-[¹(3-Bromophenyl)amino]-7-[3-(4,N-methyl-1,N-piperazino)propoxy]quinazolin-6-yl]acrylamide

To a solution of 3-N-(4-methylpiperazinyl)propan-1-ol (8.81 mmol, 1.39 g) in THF (40 mL) under N₂ was added sodium metal (13.2 mmol, 0.30 g). The resulting suspension was stirred at 20°C for 2 hours and then

-85-

cannulated into a solution of 4-[(3-bromophenyl)amino]-7-fluoro-6-nitroquinazoline [J Med Chem, 1996(39):918] (0.80 g, 2.20 mmol) in THF (30 mL) under N₂. Identical reaction procedure and workup as in the previous example gave, after chromatography on silica gel eluting with MeOH/CH₂Cl₂/EtOAc (1:9:10) to MeOH/CH₂Cl₂/EtOAc (2:3:5), 4-[(3-bromophenyl)amino]-7-[3-N-(4-methylpiperazinyl)propyloxy]-6-nitroquinazoline (0.36 g, 33%) as a yellow powder, mp (trihydrochloride salt) (MeOH/Et₂O) 233°C (dec).
¹H NMR (free base, (CD₃)₂SO): δ 10.12 (s, 1H, NH), 9.24 (s, 1H, H5), 8.69 (s, 1H, H2), 8.19 (br s, 1H, H-2'), 7.88 (br d, J = 7.8 Hz, 1H, H-6'), 7.47 (s, 1H, H8), 7.38 (t, J = 7.8 Hz, 1H, H-5'), 7.34 (dt, J_d = 8.0, J_t = 1.3 Hz, 1H, H-4'), 4.33 (t, J = 6.1 Hz, 2H, CH₂CH₂CH₂O), 2.45 (t, J = 7.0 Hz, 2H, NCH₂CH₂CH₂), 2.42-2.29 (br s, 8H, piperazinyl methylene), 2.15 (s, 3H, CH₃N), 1.92 (quintet, J = 6.7 Hz, 2H, CH₂CH₂CH₂). Analysis calculated for C₂₂H₂₅BrN₆O₃·3HCl·H₂O requires: C, 42.0; H, 4.8; N, 13.4; Cl, 16.9%.
Found: C, 42.1; H, 4.5; N, 13.3; Cl, 16.9%.

Freshly washed (1N HCl then distilled H₂O) iron powder (4 mol eq., 0.138 g) was added in portions to a refluxing solution of the above nitroquinazoline (0.31 g, 0.62 mmol) in EtOH/H₂O (2:1, 50 mL) containing glacial acetic acid (1.0 mL). The resulting suspension was heated at reflux with vigorous stirring for 20 minutes then cooled, basified by the addition of concentrated NH₃, and filtered through a pad of celite. The celite pad was washed with EtOH before the filtrate was concentrated under reduced pressure, diluted with water, and extracted with EtOAc. The combined organic extracts were dried over anhydrous Na₂SO₄, concentrated under reduced pressure and chromatographed on Grade III alumina, eluting with MeOH/EtOAc (5:95), to give 6-amino-4-[(3-bromophenyl)amino]-7-[3-N-(4-methyl-

-86-

piperazinyl)propyloxy]quinazoline (238 mg, 82%) as a cream powder, mp (CH₂Cl₂) 171-172°C.

¹H NMR [(CD₃)₂SO]: δ 9.36 (s, 1H, NH), 8.38 (s, 1H, H2), 8.22 (t, J = 1.9 Hz, 1H, H-2'), 7.86 (ddd, 5 J = 8.2, 0.8, 1.9 Hz, 1H, H-6'), 7.40 (s, 1H, H5), 7.30 (t, J = 8.0 Hz, 1H, H-5'), 7.20 (ddd, J = 8.3, 1.0, 1.9 Hz, 1H, H-4'), 7.09 (s, 1H, H8), 5.34 (s, 2H, NH₂), 4.19 (t, J = 6.2 Hz, 2H, CH₂CH₂CH₂O), 2.49 (obscured t, J = 7 Hz, 2H, NCH₂CH₂CH₂), 2.43-2.29 (br s, 8H, 10 piperazinyl methylene), 2.16 (s, 3H, CH₃N), 1.97 (quintet, J = 6.8 Hz, 2H, CH₂CH₂CH₂).

Analysis calculated for C₂₂H₂₇BrN₆O·1.25H₂O requires:

C, 53.5; H, 6.0; N, 17.0%.

Found: C, 53.5; H, 5.7; N, 17.0%.

15

Acrylic acid (6 mol, 2.84 mmol, 195 μL) and Et₃N (excess, 1.0 mL) in DMA (20 mL) under N₂ was added to a stirred solution of the above aminoquinazoline (223 mg, 0.47 mmol), and 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride (EDCI·HCl) (3 mol, 1.42 mmol, 273 mg). The standard procedure above was followed to give after chromatography on Grade III alumina eluting with EtOAc/hexane (1:1) to MeOH/EtOAc (2:98), N-[4-[(3-bromophenyl)amino]-7-[3-N-(4-methyl-piperazinyl)propyloxy]quinazolin-6-yl]acrylamide (145 mg, 58%) as a cream powder, mp (CH₂Cl₂/Et₂O/hexane) 105-107°C.

¹H NMR [(CD₃)₂SO]: δ 9.78 (s, 1H, CONH), 9.61 (s, 1H, NH), 8.89 (s, 1H, H5), 8.56 (s, 1H, H2), 8.17 (t, J = 1.9 Hz, 1H, H-2'), 7.87 (br d, J = 8.5 Hz, 1H, H-6'), 7.34 (t, J = 8.1 Hz, 1H, H-5'), 7.28 (s, 1H, H8), 7.27 (br dt, J_d = 8 Hz, J_t = 1 Hz, 1H, H-4'), 6.72 (dd, J = 17.0, 10.3 Hz, 1H, CH₂CHCO), 6.32 (dd, J = 17.0, 1.9 Hz, 1H, CH₂CHCO), 5.83 (dd, J = 10.2, 1.9 Hz, 1H, CH₂CHCO), 4.26 (t, J = 6.3 Hz, 2H, CH₂CH₂CH₂O), 2.47 (t, J = 7.1 Hz, 2H, NCH₂CH₂CH₂).

-87-

2.42-2.27 (br s, 8H, piperazinyl methylene), 2.15 (s, 3H, CH₃N), 1.98 (quintet, J = 6.7 Hz, 2H, CH₂CH₂CH₂). Analysis calculated for C₂₅H₂₉BrN₆O₂·0.5H₂O requires:

C, 56.2; H, 5.7; N, 15.7%.

5 Found: C, 56.3; H, 5.6; N, 15.5%.

EXAMPLE 25

N-[4-[(3-Bromophenyl)amino]-7-[3-(1,N-imidazyl)propoxyl quinazolin-6-yl]acrylamide

10 To a suspension of hexane-prewashed sodium hydride (5.50 mmol, 220 mg of a 60% dispersion in mineral oil) in THF (20 mL) was cannulated a solution of 3-N-(imidazoyl)propan-1-ol (4.84 mmol, 0.61 g) in THF (30 mL). The resulting suspension was stirred at 20°C under N₂ for 2 hours during which time the required sodium alkoxide partially precipitated from solution. Solid 4-[(3-bromophenyl)amino]-7-fluoro-6-nitro-quinazoline [J Med Chem, 1996(39):918] (0.80 g, 2.20 mmol) was then added to this suspension to give a dark red solution which was heated at reflux for 24 hours before being diluted with water and extracted with EtOAc. The combined organic extracts were dried over anhydrous Na₂SO₄, concentrated under reduced pressure and chromatographed on silica gel eluting with CH₂Cl₂/EtOAc (1:1) to MeOH/CH₂Cl₂/EtOAc (3:7:10), 4-[(3-bromophenyl)amino]-7-[3-N-(imidazoyl)propyloxy]-6-nitroquinazoline (524 mg, 51%) as a yellow powder, mp (CH₂Cl₂/hexane) 212-215°C.

15 ¹H NMR [(CD₃)₂SO]: δ 10.16 (s, 1H, NH), 9.30 (s, 1H, H5), 8.70 (s, 1H, H2), 8.19 (t, J = 1.6 Hz, 1H, H-2'), 7.88 (dt, J_d = 7.8 Hz, J_t = 1.5 Hz, 1H, H-6'), 7.63 (s, 1H, imidazoyl methine), 7.48 (s, 1H, H8), 7.39 (t, J = 7.9 Hz, 1H, H-5'), 7.35 (dt, J_d = 8.0 Hz, J_t = 1.6 Hz, 1H, H-4'), 7.21 (s, 1H, imidazoyl methine), 6.90 (s, 1H, imidazoyl methine), 4.22 (t, J = 6.0 Hz, 2H, CH₂CH₂CH₂), 4.18 (t, J = 6.8 Hz, 2H,

-88-

$\text{CH}_2\text{CH}_2\text{CH}_2$), 2.26 (quintet, $J = 6.4$ Hz, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2$). Analysis calculated for $\text{C}_{20}\text{H}_{17}\text{BrN}_6\text{O}_3$ requires:

C, 51.2; H, 3.6; N, 17.9%.

Found: C, 51.0; H, 3.6; N, 17.6%.

5 Freshly washed (1N HCl then distilled H_2O) iron powder (4 mol, 0.241 g) was added in portions to a refluxing solution of the above 6-nitroquinazoline (0.51 g, 1.08 mmol) in $\text{EtOH}/\text{H}_2\text{O}$ (2:1, 60 mL) containing glacial acetic acid (0.7 mL). Identical reaction

10 procedure and workup as in the previous example gave, after chromatography on Grade III alumina eluting with MeOH/EtOAc (5:95), 6-amino-4-[(3-bromophenyl)-amino]-7-[3-N-(imidazoyl)propyloxy]quinazoline (389 mg, 82%) as a off-white powder, mp ($\text{CH}_2\text{Cl}_2/\text{Et}_2\text{O}$) 178-180°C.

15 ^1H NMR [$(\text{CD}_3)_2\text{SO}$]: δ 9.37 (s, 1H, NH), 8.38 (s, 1H, H2), 8.22 (t, $J = 1.8$ Hz, 1H, H-2'), 7.86 (br d, $J = 8.1$ Hz, 1H, H-6'), 7.66 (s, 1H, imidazoyl methine), 7.40 (s, 1H, H5), 7.30 (t, $J = 8.1$ Hz, 1H, H-5'), 7.23 (s, 1H, imidazoyl methine), 7.21 (br d, $J = 7.7$ Hz, 1H, H-4'), 7.06 (s, 1H, H8), 6.90 (s, 1H, imidazoyl methine), 5.45 (s, 2H, NH₂), 4.28 (t, $J = 7.1$ Hz, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 4.10 (t, $J = 5.8$ Hz, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 2.27 (quintet, $J = 6.5$ Hz, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2$).

20 Analysis calculated for $\text{C}_{20}\text{H}_{19}\text{BrN}_6\text{O} \cdot 0.5\text{H}_2\text{O}$ requires:

25 C, 53.6; H, 4.5; N, 18.7%.

Found: C, 53.6; H, 4.5; N, 18.6%.

To a stirred solution of 6-amino-4-[(3-bromo-phenyl)amino]-7-[3-N-(imidazoyl)propyloxy]quinazoline (383 mg, 0.87 mmol), acrylic acid (6 mol, 5.23 mmol, 30 359 μL), and pyridine (excess, 1.0 mL) in DMA (20 mL) under N_2 was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI·HCl) (5 mol, 4.36 mmol, 838 mg). The standard procedure above was followed to give after chromatography on Grade III alumina eluting with $\text{EtOAc}/\text{hexane}$ (1:1) to MeOH/EtOAc (5:95), N-[4-[(3-bromophenyl)amino]-7-[3-N-(imidazoyl)-

-89-

propyloxy]quinazolin-6-yl]acrylamide (9 mg, 2%) as a cream powder, mp ($\text{CH}_2\text{Cl}_2/\text{Et}_2\text{O}/\text{hexane}$) 235-237°C.

^1H NMR [$(\text{CD}_3)_2\text{SO}$]: δ 9.79 (s, 1H, CONH), 9.60 (s, 1H,

NH), 8.88 (s, 1H, H5), 8.55 (s, 1H, H2), 8.18 (t,

5 J = 1.9 Hz, 1H, H-2'), 7.87 (ddd, J = 8.2, 1.8, 1.0 Hz,

1H, H-6'), 7.64 (s, 1H, imidazoyl methine), 7.34 (t,

J = 8.0 Hz, 1H, H-5'), 7.28 (br dt, J_d = 8.0 Hz,

J_t = 1.2 Hz, 1H, H-4'), 7.27 (s, 1H, H8), 7.21 (t,

J = 1.3 Hz, 1H, imidazoyl methine), 6.89 (br s, 1H,

10 imidazoyl methine), 6.73 (dd, J = 17.0, 10.2 Hz, 1H,

CH_2CHCO), 6.34 (dd, J = 17.0, 1.8 Hz, 1H, CH_2CHCO),

5.85 (dd, J = 10.2, 1.8 Hz, 1H, CH_2CHCO), 4.22 (t,

J = 6.9 Hz, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2$), 4.14 (t, J = 6.0 Hz, 2H,

$\text{CH}_2\text{CH}_2\text{CH}_2$), 2.27 (quintet, J = 6.4 Hz, 2H, $\text{CH}_2\text{CH}_2\text{CH}_2$).

15 Analysis calculated for $\text{CH}_{23}\text{H}_{21}\text{BrN}_6\text{O}_2 \cdot 0.75\text{H}_2\text{O}$ requires:

C, 54.5; H, 4.5; N, 16.6%.

Found: C, 54.5; H, 4.4; N, 16.2%.

EXAMPLE 26

20 $\text{N}-[4-[(3-\text{Bromophenyl})\text{aminol}-7-[4-(\text{N},\text{N}-\text{dimethyl}-$

amino)butoxyl quinazolin-6-yl]acrylamide

To a suspension of hexane prewashed sodium hydride (11.0 mmol, 440 mg of a 60% dispersion in mineral oil) in THF (20 mL) was cannulated a solution of 4-(N,N-

25 dimethylamino)butan-1-ol (8.80 mmol, 1.03 g) in THF (30 mL). The resulting suspension was stirred at 20°C

under N_2 for 2 hours and then cannulated into a solution of 4-[(3-bromophenyl)amino]-7-fluoro-6-

nitroquinazoline (*J Med Chem*, 1996;39:918-928) (0.80 g,

30 2.20 mmol) in THF (30 mL) under N_2 . The dark red

solution was then heated at reflux overnight.

Identical workup as above gave, after chromatography on grade III alumina eluting with EtOAc to MeOH/EtOAc

(5:95) to give 6-amino-4-[(3-bromophenyl)amino]-7-[4-

35 (N,N-dimethylamino)butoxy]quinazoline (310 mg, 33%) as a pale brown powder, mp ($\text{CH}_2\text{Cl}_2/\text{hexane}$) 155-156°C.

-90-

¹H NMR [(CD₃)₂SO], (400 MHz): δ 9.36 (s, 1H, NH),
 8.39 (s, 1H, aromatic), 8.23 (t, J = 2.0 Hz, 1H, H-2'),
 7.86 (br d, J = 8.0 Hz, 1H, H-6'), 7.41 (s, 1H,
 aromatic), 7.30 (t, J = 8.1 Hz, 1H, H-5'), 7.20 (ddd,
 5 J = 8.2 Hz, J = 0.8 Hz, J = 1.8 Hz, 1H, H-4'), 7.09 (s,
 1H, aromatic), 5.32 (s, 2H, NH₂), 4.17 (t, J = 6.2 Hz,
 2H, CH₂CH₂CH₂CH₂O), 2.47 (t, J = 7.3 Hz, 2H,
 NCH₂CH₂CH₂CH₂), 2.15 (s, 6H, N(CH₃)₂), 1.84 (quintet,
 J = 6.4 Hz, 2H, CH₂CH₂CH₂CH₂), 1.62 (quintet,
 10 J = 6.9 Hz, 2H, CH₂CH₂CH₂CH₂).

Analytical calculated for C₂₀H₂₄BrN₅O·½ H₂O requires:

C, 54.7; H, 5.7; N, 15.9%.

Found: C, 54.3; H, 5.8; N, 15.8%.

To a stirred solution of the above

15 6-aminoquinazoline (276 mg, 0.64 mmol), acrylic acid
 (6 mol eq., 3.85 mmol, 264 mL), and Et₃N (excess,
 1.0 mL) in DMA (10 mL) under N₂ was added 1-(3-
 dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
 (EDCI·HCl) (3 mol eq., 1.92 mmol, 369 mg). The
 20 standard procedure above was followed to give after
 chromatography on grade III alumina eluting with
 EtOAc/hexane (1:1) to MeOH/EtOAc (3:97), N-[4-[(3-
 bromophenyl)amino]-7-[4-(N,N-dimethylamino)butyloxy]-
 quinazolin-6-yl]acrylamide (98 mg, 32%) as a cream
 25 powder, mp (CH₂Cl₂/Et₂O) 112-115°C.

¹H NMR [(CD₃)₂SO], (400 MHz): δ 9.77 (s, 1H, CONH),
 9.62 (s, 1H, NH), 8.88 (s, 1H, aromatic), 8.56 (s, 1H,
 aromatic), 8.17 (t, J = 1.9 Hz, 1H, H-2'), 7.87 (ddd,
 J = 8.2 Hz, J = 1.8 Hz, J = 1.0 Hz, 1H, H-6'), 7.34 (t,
 30 J = 8.0 Hz, 1H, H-5'), 7.29 (s, 1H, aromatic), 7.27
 (ddd, J = 8.2 Hz, J = 1.8 Hz, J = 1.0 Hz, 1H, H-4'),
 6.71 (dd, J = 17.1 Hz, J = 10.2 Hz, 1H, CH₂CHCO), 6.32
 (dd, J = 17.0 Hz, J = 1.9 Hz, 1H, CH₂CHCO), 5.82 (dd,
 J = 10.2 Hz, J = 1.9 Hz, 1H, CH₂CHCO), 4.24 (t, J =
 35 6.6 Hz, 2H, CH₂CH₂CH₂CH₂O), 2.27 (t, J = 7.2 Hz, 2H,
 NCH₂CH₂CH₂CH₂), 2.12 (s, 6H, N(CH₃)₂), 1.85 (quintet,

-91-

J = 6.9 Hz, 2H, CH₂CH₂CH₂CH₂), 1.60 (quintet, *J* = 7.4 Hz, 2H, CH₂CH₂CH₂CH₂).

Analysis calculated for C₂₃H₂₆BrN₅O₂ · 1.25 H₂O requires:
C, 54.5; H, 5.7; N, 13.8%.

5 Found: C, 54.5; H, 5.3; N, 13.7%.

EXAMPLE 27

N-[4-[(3-Bromophenyl)aminolquinazolin-6-yl]-N-[3-morpholinopropyl]acrylamide

10 A stirred solution of N-[4-[(3-bromophenyl)amino]-quinazolin-6-yl]acrylamide (1.78 g, 4.82 mmol), morpholine (excess, 4.0 mL) and *p*-toluenesulfonic acid (catalytic) in THF (50 mL) was heated at 50°C for 4 hours before being concentrated under reduced pressure, diluted with water and extracted with EtOAc. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, concentrated under reduced pressure, and chromatographed on silica gel eluting with MeOH/CH₂Cl₂/EtOAc (15:40:45) to give N-[4-[(3-bromophenyl)amino]quinazolin-6-yl]-3-morpholino-propylamide (1.86 g, 78%) as a cream powder, mp (EtOAc) 184-186°C.

15 ¹H NMR [(CD₃)₂SO]: δ 10.37 (s, 1H, CONH), 9.91 (s, 1H, NH), 8.72 (d, *J* = 1.9 Hz, 1H, H-5), 8.58 (s, 1H, H-2), 8.17 (t, *J* = 2.1 Hz, 1H, H-2'), 7.86 (m, 2H, H-7, 6'), 7.78 (d, *J* = 8.9 Hz, 1H, H-8), 7.35 (t, *J* = 8.0 Hz, 1H, H-5'), 7.29 (dt, *J_t* = 1.2 Hz, *J_d* = 8.0 Hz, 1H, H-4'), 3.40 (t, *J* = 4.6 Hz, 4H, morpholino methylene), 2.69 (t, *J* = 6.6 Hz, 2H, NCH₂CH₂CONH), 2.58 (t, *J* = 6.6 Hz, 2H, NCH₂CH₂CONH), 2.44 (br s, 4H, morpholino methylene).

20 ¹³C NMR: δ 170.24, 157.18, 152.86, 146.48, 141.13, 136.87, 130.21, 128.39, 127.01, 125.74, 124.21, 121.03, 120.79, 115.40, 111.46, 66.09 (x2), 54.04, 53.00 (x2), 33.66.

-92-

Analysis calculated for C₂₁H₂₂BrN₅O₂ requires:

C, 55.3; H, 4.9; N, 15.3%.

Found: C, 55.1; H, 5.2; N, 15.2%.

- To a stirred solution of the above amide (0.85 g,
5 1.86 mmol) in THF (30 mL) under N₂ at 0°C was added
BH₃·DMS (2 mol eq., 372 μL of a 10 M solution)
dropwise. The resulting solution was allowed to warm
to 25°C and was stirred for 2 hours before being
quenched by the cautious addition of 1N HCl (40 mL).
10 The reaction mixture was then stirred at 50°C for
2 hours, basified by the addition of saturated Na₂CO₃,
and extracted with EtOAc. The combined organic
extracts were washed with brine, dried over anhydrous
Na₂SO₄, concentrated under reduced pressure, and
15 chromatographed on silica gel eluting with
MeOH/CH₂Cl₂/EtOAc (3:8:8) to give 4-[(3-bromophenyl)-
amino]-6-[(3-morpholinopropyl)amino]quinazoline
(130 mg, 16%) as a yellow glass (ca. 90% pure by NMR).
This was used without further purification.
20 ¹H NMR [(CD₃)₂SO]: δ 9.40 (s, 1H, NHAr), 8.37 (s, 1H,
H-2), 8.17 (t, J = 1.9 Hz, 1H, H-2'), 7.91 (br d,
J = 8.2 Hz, 1H, H-6'), 7.54 (d, J = 9.0 Hz, 1H, H-8),
7.34 (t, J = 8.0 Hz, 1H, H-5'), 7.27 (m, 2H, H-4', 7),
7.16 (d, J = 2.2 Hz, 1H, H-5), 6.25 (t, J = 5.1 Hz, 1H,
25 CH₂NH), 3.59 (t, J = 4.5 Hz, 4H, morpholino methylene),
3.22 (q, J = 6.0 Hz, 1H, CH₂NH), 2.45 (t, J = 6.9 Hz,
2H, CH₂CH₂CH₂NH), 2.39 (br s, 4H, morpholino
methylenes), 1.82 (quintet, J = 7.0 Hz, 2H, CH₂CH₂CH₂).
To a stirred solution of the above amine (133 mg,
30 0.30 mmol), acrylic acid (4 mol eq., 1.20 mmol, 83 μL),
and Et₃N (excess, 0.5 mL) in DMF (5.0 mL) under N₂ was
added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide
hydrochloride (EDCI·HCl) (2.0 mol, 0.60 mmol, 115 mg).
The standard procedure above was followed to give,
35 after chromatography on silica gel eluting with
EtOAc:CH₂Cl₂ (1:1) to MeOH/CH₂Cl₂/EtOAc (3:7:10).

-93-

N-[4-[(3-bromophenyl)amino]quinazolin-6-yl]-N-[3-morpholinopropyl]acrylamide (39 mg, 26%) as a cream powder, mp (CH₂Cl₂/hexane) 171-175°C.

¹H NMR [(CD₃)₂SO]: δ 9.86 (s, 1H, NH), 8.70 (s, 1H, H-2), 8.52 (d, J = 2.0 Hz, 1H, H-5), 8.20 (t, J = 1.9 Hz, 1H, H-2'), 7.91 (br d, J = 8.6 Hz, 1H, H-6'), 7.89 (d, J = 8.9 Hz, 1H, H-8), 7.79 (dd, J = 8.8 Hz, J = 2.1 Hz, 1H, H-7), 7.38 (t, J = 7.9 Hz, 1H, H-5'), 7.33 (dt, J_d = 8.4 Hz, J_t = 1.7 Hz, 1H, H-4'), 6.22 (dd, J = 16.7, 2.3 Hz, 1H, CH₂CHCO), 6.05 (br s, 1H, CH₂CHCO), 5.61 (br d, J = 8.8 Hz, 1H, CH₂CHCO), 3.87 (t, J = 7.4 Hz, 2H, CH₂NRCO), 3.49 (t, J = 4.5 Hz, 4H, morpholino methylene), 2.28 (t, J = 7.1 Hz, 2H, CH₂CH₂CH₂NRCO), 2.27 (br s, 4H, morpholino methylene), 1.69 (quintet, J = 7.3 Hz, 2H, CH₂CH₂CH₂).

Calculated for C₂₄H₂₆Br⁸¹N₅O₂: 497.1249

Found: 497.1250.

20

EXAMPLE 28

N-[4-(3-Bromo-phenylamino)-quinazolin-6-yl]propanamide

To a solution of 6-amino-4-[(3-bromophenyl)amino]quinazoline (157 mg, 0.5 mmol) in dry THF (3 mL) stirred under N₂ at 25°C was added dropwise propionyl chloride (0.05 mL, 0.58 mmol). A yellow solid formed at once. After 45 minutes the solid was collected by filtration and washed with ether and dried.

Recrystallized from wet methanol afforded the desired product (97 mg, 47%), mp 265-266°C.

¹H NMR [(CD₃)₂SO]: δ 11.3 (brs, 1H, NH), 10.53 (s, 1H, NH), 9.02 (s, 1H, H5), 8.88 (s, 1H, H2), 8.00-7.97 (m, 2H, H7, H2'), 7.89 (d, J = 9.1 Hz, 1H, H8), 7.71(d, J = 7.8 Hz, 1H, H6'), 7.50 (d, J = 8.3 Hz, 1H, H4'), 7.45 (t, J = 8.1 Hz, 1H, H5'), 2.45 (q, J = 7.3 Hz, 2H, CH₂), 1.15 (t, J = 7.5 Hz, 3H, CH₃).

25

30

35

-94-

Mass Spectrum (CI): 373 (84, $^{81}\text{BrMH}^+$), 372 (43, $^{81}\text{BrM}^+$), 371 (100, $^{79}\text{BrMH}^+$), 370 (28, $^{79}\text{BrM}^+$).

Calculated for $\text{C}_{17}\text{H}_{15}\text{N}_4\text{BrO}\cdot\text{HCl}\cdot 0.5\text{H}_2\text{O}$:

C, 49.00; H, 4.11; N, 13.45%.

5 Found: C, 48.89; H, 3.97; N, 13.36%.

EXAMPLE 29

N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]-methacrylamide

10 To a stirred solution of 6-amino-4-[(3-bromophenyl)amino]quinazoline (*J Med Chem*, 1995;38:3482) (0.50 g, 1.59 mmol) in THF (20 mL) under nitrogen was added Et_3N (excess, 1.0 mL), a catalytic amount of DMAP and methacryloyl chloride (1.1 mol eq., 1.75 mmol, 171 μL) dropwise. The reaction was stirred at 25°C for 1.5 hours over which time two further amounts (50 μL) of methacryloyl chloride were added. The reaction was then diluted with saturated NaHCO_3 and extracted with EtOAc. The combined organic extracts were dried over anhydrous Na_2SO_4 , concentrated under reduced pressure and chromatographed on silica gel eluting with $\text{CH}_2\text{Cl}_2/\text{EtOAc}$ (1:1) to $\text{MeOH}/\text{CH}_2\text{Cl}_2/\text{EtOAc}$ (5:45:50). Recrystallization from EtOAc gave N-[4-[(3-bromophenyl)amino]quinazolin-6-yl]-2-methylacrylamide (195 mg, 32%) as a cream powder, mp 244-245°C.
1^H NMR [(CD₃)₂SO]: δ 10.15 (s, 1H, CONH), 9.90 (s, 1H, NH), 8.80 (br s, 1H, H-5), 8.60 (s, 1H, H-2), 8.20 (br s, 1H, H-2'), 7.97 (br d, J = 8.6 Hz, 1H, H-7), 7.89 (br d, J = 7.7 Hz, 1H, H-6'), 7.80 (d, J = 8.9 Hz, 1H, H-8), 7.35 (t, J = 8.0 Hz, 1H, H-5'), 7.30 (br d, J = 7.5 Hz, 1H, H-4'), 5.94 (s, 1H, $\text{CH}_2\text{C}(\text{CH}_3)\text{CO}$), 5.62 (s, 1H, $\text{CH}_2\text{C}(\text{CH}_3)\text{CO}$), 2.02 (s, 3H, $\text{CH}_2\text{C}(\text{CH}_3)\text{CO}$).
13^C NMR: δ 166.71, 157.17, 153.07, 146.69, 141.09, 139.93, 136.62, 130.23, 128.24, 128.11, 125.73, 124.11, 121.04, 120.66, 120.51, 115.19, 113.28, 18.60.

-95-

Analysis calculated for C₁₈H₁₅BrN₄O requires:

C, 56.4; H, 4.0; N, 14.6%.

Found: C, 56.1; H, 3.9; N, 14.5%.

5

EXAMPLE 30

N-[4-(3-Bromo-phenylamino)-quinazolin-6-yl]ethenyl-sulfonamide

To a stirred solution of 6-amino-4-[(3-bromophenyl)amino]quinazoline (*J Med Chem*, 1995;38:3482) (0.30 g, 0.95 mmol) in THF (20 mL) under nitrogen was added Et₃N (3.5 mol eq., 3.33 mmol, 245 µL), a catalytic amount of DMAP and chloroethanesulfonyl chloride (1.2 mol eq., 1.14 mmol, 119 µL) dropwise. The reaction was stirred at 25°C for 1 hour and then diluted with saturated NaHCO₃ and extracted with EtOAc. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, concentrated under reduced pressure, and chromatographed on silica gel eluting with MeOH/CH₂Cl₂/EtOAc (3:47:50). Crystallization from CH₂Cl₂/hexane gave N-[4-[(3-bromophenyl)amino]-quinazolin-6-yl]vinylsulfonamide (210 mg, 54%) as a cream powder, mp 217°C (dec).

¹H NMR [(CD₃)₂SO]: δ 10.31 (s, 1H, SO₂NH), 9.96 (s, 1H, NH), 8.60 (s, 1H, H-2), 8.20 (d, *J* = 2.0 Hz, 1H, H-5), 8.14 (br s, 1H, H-2'), 7.85 (br d, *J* = 7.9 Hz, 1H, H-6'), 7.81 (d, *J* = 8.9 Hz, 1H, H-8), 7.67 (dd, *J* = 8.9, 2.1 Hz, 1H, H-7), 7.37 (t, *J* = 8.0 Hz, 1H, H-5'), 7.32 (br d, *J* = 8.1 Hz, 1H, H-4'), 6.90 (dd, *J* = 16.4, 9.8 Hz, 1H, CH₂CHSO₂), 6.17 (d, *J* = 16.4 Hz, 1H, CH₂CHSO₂), 6.06 (d, *J* = 9.8 Hz, 1H, CH₂CHSO₂).

¹³C NMR: δ 157.18, 153.47, 147.17, 140.83, 136.02, 135.48, 130.25, 129.03, 128.44, 127.77, 126.08, 124.60, 121.18, 121.03, 115.43, 114.01.

-96-

Analysis calculated for $C_{16}H_{13}BrN_4O_2S$ requires:

C, 47.4; H, 3.2; N, 13.8%.

Found: C, 47.7; H, 3.1; N, 13.8%.

5

EXAMPLE 31

N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]-E-but-2-enamide

To a solution of 6-amino-4-[(3-bromophenyl)amino]quinazoline (316 mg, 1.0 mmol) in THF (6 mL) stirred under N_2 at 0°C was added trans-crotonyl chloride. A yellow solid formed upon addition. The solid was collected by Buchner filtration after 2.5 hours and sonicated with EtOAc to give the title compound (216 mg, 52%), mp 279-281°C.

15 1H NMR [(CD₃)₂SO]: δ 11.55 (brs, 1H, NH), 10.78 (s, 1H, NH), 9.17 (d, J = 1.9 Hz, 1H, H5), 8.97 (s, 1H, H2), 8.12 (dd, J = 9.1, 2.0 Hz, 1H, H7), 8.05 (t, J = 1.9 Hz, 1H, H2'), 7.99 (d, J = 9.0 Hz, 1H, H8), 7.76 (dd, J = 8.1, 2.0 Hz, 1H, H6'), 7.58 (dd, J = 8.6, 1.7 Hz, 1H, H4'), 7.52 (t, J = 8.1 Hz, 1H, H5'), 7.03-6.94 (m, 1H, [(CO)CH=]), 6.34 (dd, J = 15.1, 1.7 Hz, 1H, CH=CHCH₃), 1.98 (dd, J = 6.8, 1.4 Hz, 3H, CH₃). Mass Spectrum (CI): 385 (89, ⁸¹BrMH⁺), 384 (51, ⁸¹BrM⁺), 383 (100, ⁷⁹BrMH⁺), 382 (37, ⁷⁹BrM⁺).

20 Calculated for $C_{18}H_{15}N_4BrO\cdot HCl$:

C, 51.51; H, 3.84; N, 13.35%.

Found: C, 51.29; H, 3.52; N, 13.13%.

EXAMPLE 32

30 N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]-4,4,4-trifluoro-E-but-2-enamide

1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (192 mg, 1.0 mmol) was added to a solution of 6-amino-4-[(3-bromophenyl)amino]quinazoline (158 mg, 0.5 mmol) and 4,4,4,-trifluorobut-2-enoic acid (153 mg, 1.1 mmol) in THF/DMF (4:1, 2.5 mL), stirred

-97-

under nitrogen at 0°C. After 1 hour water (10 mL) was added and after 15 minutes the precipitate was collected by Buchner filtration. The residue was rinsed with water (2 × 5 mL) and ether (10 mL) and air dried. The solid was suspended in EtOAc, (10 mL) refluxed briefly, and sonicated for 10 minutes, and the solid was collected by Buchner filtration, rinsed with EtOAc (5 mL) and dried in a vacuum oven at 75°C for 1.5 hours to give N-[4-[(3-bromophenyl)amino]-
5 quinazolin-6-yl]4,4,4-trifluorobut-2-enamide
10 0.4 hydrochloride (76 mg, 33%) as a light yellow solid, mp 273-278°C.

Calculated for C₁₈H₁₃BrF₃N₄O·0.4 HCl:

C, 47.85; H, 2.77; N, 12.40%.

15 Found: C, 47.89, H, 2.66; N, 12.27%.

¹H NMR [(CD₃)₂SO]: δ 11.09 (brs, 1H, NH), 10.43 (s, 1H, NH), 8.90 (s, 1H, H₂), 8.70 (s, 1H, H₅), 8.11 (s, 1H, H_{2'}), 7.97 (dd, J = 2.5, 9.2 Hz, 1H, H₇), 7.87 (d, J = 9.0 Hz, 1H, H₈), 7.81 (d, J = 6.9 Hz, 1H, H_{6'}), 7.41-7.33 (m, 2H, H_{5'} & H_{4'}), 7.11 (d, J = 16.4 Hz, 1H, CH=CHCF₃), 7.03 (dq, J_d = 16.4 Hz, J_q = 6.4 Hz, 1H, CH=CHCF₃).

Mass Spectrum (CI) 439 (78 ⁸¹BrM⁺), 437 (100 ⁷⁹BrM⁺).

25

EXAMPLE 33

N-[4-[(3-Bromophenyl)aminolquinazolin-6-yl]-propynamide

1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (200 mg, 1.04 mmol) was added to a solution of 6-amino-4-[(3-bromophenyl)-amino] 30 quinazoline (158 mg, 0.5 mmol) and propionic acid (0.08 mL, 1.1 mmol) in DMF (1.5 mL) stirred under N₂ at 0°C. The resulting solution was stirred at 0°C for 30 minutes and quenched with water. The formed fine solid was collected by Buchner filtration then 35 dissolved in methanol and purified by preparative tlc on silica, eluting with 10% MeOH/CHCl₃. The title

-98-

compound was isolated as a yellow solid (21 mg, 12%),
mp >310°C.

5 ¹H NMR [(CD₃)₂SO]: δ 11.18 (brs, 1H, NH), 9.94 (s, 1H,
NH), 8.75 (s, 1H, H5), 8.59 (s, 1H, H2), 8.15 (s, 1H,
H2'), 7.85-7.79 (m, 3H, H7, H8, H6'), 7.37-7.28 (m, 2H,
H5', H4').

Mass Spectrum (CI): 369 (47, ⁸¹BrMH⁺), 368 (24,
⁸¹BrM⁺), 367 (50, ⁷⁹BrMH⁺), 366 (13, ⁷⁹BrM⁺), 91 (100).

10 Calculated for C₁₇H₁₁N₄BrO:
C, 55.61; H, 3.02; N, 15.26%.

Found: C, 55.40; H, 2.84; N, 15.18%.

EXAMPLE 34

N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]but-2- 15 ynamide

To a solution of 2-butynoic acid (196 mg,
2.3 mmol) and 1-(3-dimethylaminopropyl)-
3-ethylcarbodiimide hydrochloride (385 mg, 2.0 mmol) in
DMF (5 mL) stirring at 25°C for 20 minutes was added
20 6-amino-4-[(3-bromophenyl)amino]quinazoline (316 mg,
1.0 mmol). The resulting solution was stirred under N₂
at 25°C for 14 hours further 1-(3-dimethylaminopropyl)-
3-ethylcarbodiimide hydrochloride (206 mg, 1.0 mmol)
and 2-butynic acid (82 mg, 1.0 mmol) were. After
25 another 8 hours further, 1-(3-dimethylaminopropyl)-3-
ethylcarbodiimide hydrochloride (197 mg, 1.0 mmol) and
the acid (93 mg, 1.0 mmol) were added to the reaction.
After stirring at 25°C a further 12 hours, the reaction
was quenched with water. The yellow precipitate was
30 collected, sonicated with acetone, treated with
triethyl amine and purified by preparative tlc on
silica, eluting with 1:1 EtOAc/acetone. The desired
product was isolated as a yellow solid (20 mg, 4.7%),
mp 281- 283°C.

35 ¹H NMR [(CD₃)₂SO]: δ 10.97 (brs, 1H, NH), 9.93 (s, 1H,
NH), 8.76 (s, 1H, H5), 8.57 (s, 1H, H2), 8.14 (s, 1H,

-99-

H_{2'}), 7.84-7.76 (m, 3H, H7, H8, H4'), 7.34 (t, J = 8.1 Hz, 1H, H5'), 7.29 (d, J = 7.8 Hz, 1H, H6'), 2.09 (s, 3H, CH₃).

Mass Spectrum (APCI): 383 (100, ⁸¹BrMH⁺), 382 (23, ⁸¹BrM⁺), 381 (95, ⁷⁹BrMH⁺).

Calculated for C₁₈H₁₃N₄BrO·0.3HCl·0.6C₃H₆O:

C, 55.69; H, 3.99; N, 13.12%.

Found: C, 55.67; H, 3.96; N, 12.93%.

10

EXAMPLE 35

N-[4-(3-Bromo-phenylamino)-pyrido[4,3-d]pyrimidin-7-yl]-acrylamide

To a stirred solution of 7-amino-4-[(3-bromophenyl)amino]pyrido[4,3-d]pyrimidine (*J Med Chem*, 1995;38:3780) (140 mg, 0.46 mmol), DMAP (14 mg) and Et₃N (excess, 2.0 mL) at 0°C under N₂ was added acryloyl chloride (4.8 mol eq., 182 μL) dropwise over 4 hours. The reaction was then stirred at 20°C diluted with water and extracted with EtOAc. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure before being chromatographed on silica gel eluting with MeOH/CH₂Cl₂/EtOAc (5:45:50), to give N-[4-[(3-bromophenyl)amino]pyrido[4,3-d]pyrimidin-7-yl]-acrylamide (12 mg, 7%) as a cream powder,

mp (CH₂Cl₂/hexane) 215-220°C (dec).

¹H NMR [(CD₃)₂SO]: δ 11.15 (s, 1H, CONH), 10.25 (s, 1H, NH), 9.67 (s, 1H, H5), 8.71 (s, 1H, H2), 8.40 (s, 1H, H8), 8.21 (t, J = 1.9 Hz, 1H, H-2'), 7.88 (dt,

30 J_d = 7.6 Hz, J_t = 1.5 Hz, 1H, H-6'), 7.38 (t, J = 7.7 Hz, 1H, H-5'), 7.36 (dt, J_d = 7.7 Hz, J_t = 1.5 Hz, 1H, H-4'), 6.68 (dd, J = 17.1, 10.2 Hz, 1H, CH₂CHCO), 6.39 (dd, J = 17.0, 1.8 Hz, 1H, CH₂CHCO), 5.86 (dd, J = 10.1, 1.8 Hz, 1H, CH₂CHCO).

-100-

EXAMPLE 36

N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-acrylamide

A suspension of 6-fluoropyrido[3,4-d]pyrimidine-4(3H)-one (U.S. Patent Application 08/358,352, 1994) (1.65 g) in 50 mL thionyl chloride and several drops of dimethyl formamide was heated under reflux until a clear solution was obtained (20 minutes), and then for a further 30 minutes. The volatiles were removed under reduced pressure, and the residue was dissolved in dichloromethane and washed with aqueous Na_2CO_3 . The solvent was dried and removed to give crude 4-chloro-6-fluoropyrido[3,4-d]pyrimidine which was dissolved in 2-propanol (50 mL) containing 3-bromoaniline (2.1 g). The mixture was heated under reflux for 15 minutes to give a precipitate, which was redissolved by the addition of triethylamine. After the addition of water, the solution was concentrated and cooled to give 4-[(3-bromophenyl)amino]-6-fluoropyrido[3,4-d]-pyrimidine, (2.29 g), mp (MeOH) 219.5-221°C.

A mixture of 4-[(3-bromophenyl)amino]-6-fluoro-pyrido[3,4-d]pyrimidine (0.48 g) and 4-methoxybenzylamine (10.3 g) in ethanol (50 mL) was heated to 100°C for 5 days. The resulting product was chromatographed on silica gel, eluting with $\text{CH}_2\text{Cl}_2:\text{EtOAc}$ (3:1), to give 4-[(3-bromophenyl)amino]-6-[(4-methoxyphenyl)methylamino]pyrido[3,4-d]pyrimidine (0.18 g.) mp (aqueous methanol), 178-179.5°C. A 0.10 g portion of this was dissolved in 5 mL trifluoroacetic acid and heated under reflux for 1 hour, and the mixture was evaporated to dryness. The residue was partitioned between EtOAc and aqueous ammonia, and the crude product was chromatographed on alumina, eluting with $\text{CH}_2\text{Cl}_2:\text{MeOH}$ (97:3) to give 6-amino-4-[(3-bromophenyl)amino]pyrido[3,4-d]pyrimidine (0.040 g.), mp (CH_2Cl_2) 241.5-242°C.

-101-

To a solution of 6-amino-4-[(3-bromophenyl)amino]-pyrido[3,4-d]pyrimidine (*J Med Chem*, 1996;39:1823) (455 mg, 1.50 mmol) in dry THF (50 mL) at 0°C under N₂ was added Et₃N (22.5 mmol, 1.61 mL), a catalytic amount of DMAP (45 mg) and acryloyl chloride (4.50 mmol, 366 µL). The reaction mixture was stirred for 1 hour and then additional acryloyl chloride (100 µL) was added and the reaction was allowed to warm to room temperature and stirred for another hour before being worked up as in the previous example, to give after column chromatography on silica gel eluting with MeOH/EtOAc (5:95), N-[4-[(3-bromophenyl)amino]pyrido[3,4-d]pyrimidin-6-yl]acrylamide (20 mg, 37%) as a cream powder, mp (EtOAc/MeOH) 238-245°C (dec.).

15 ¹H NMR [(CD₃)₂SO]: δ 11.07 (s, 1H, CONH), 10.33 (s, 1H, NH), 9.05 (s, 1H, H5 or H2), 9.03 (s, 1H, H2 or H5), 8.66 (s, 1H, H8), 8.18 (br s, 1H, H-2'), 7.89 (br d, J = 7.6 Hz, 1H, H-6'). 7.40-7.33 (m, 2H, H-4', 5'), 6.70 (dd, J = 17.0, 10.2 Hz, 1H, CH₂CHCO), 6.41 (dd, J = 1.2, 16.9 Hz, 1H, CH₂CHCO), 5.87 (dd, J = 1.2, 10.1 Hz, 1H, CH₂CHCO).

20 ¹³C NMR: δ 163.35, 156.82, 154.13, 150.87, 147.92, 141.64, 140.40, 131.25, 130.26, 127.86, 126.49, 124.76, 121.30, 121.02, 120.97, 103.43.

25 Analysis calculated C₁₆H₁₂BrN₅O·1.25 H₂O requires: C, 51.3; H, 3.4; N, 18.7%.

Found: C, 51.1; H, 3.1; N, 18.4%.

EXAMPLE 37

30 N-[4-(3-Methyl-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]acrylamide

To a stirred solution of 6-amino-4-[(3-methylphenyl)amino]pyrido[3,4-d]pyrimidine, made from m-toluidine and 4-chloro-6-fluoropyrido[3,4-d]pyrimidine, followed by p-methoxybenzylamine and trifluoroacetic acid, as described in the previous

-102-

example (140 mg, 0.56 mmol), DMAP (14 mg) and Et₃N (excess, 0.5 mL) at 0°C under N₂ was added acryloyl chloride (2.7 mol eq., 123 µL) dropwise over 3 hours. The reaction was then stirred at 20°C for 1 hour, 5 diluted with water and extracted with EtOAc. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure before being chromatographed on silica gel eluting with CH₂Cl₂/EtOAc (1:1) to MeOH/CH₂Cl₂/EtOAc (2:48:50), to give N-[4-[(3-methylphenyl)amino]pyrido[3,4-d]pyrimidin-6-yl]acrylamide (41 mg, 24%) as a cream powder, mp (EtOAc/hexane) 221-223°C (decomp). ¹H NMR [(CD₃)₂SO]: δ 11.03 (s, 1H, CONH), 10.18 (s, 1H, NH), 9.02 (s, 1H, H5 or H2), 9.01 (s, 1H, H2 or 10 H5), 8.59 (s, 1H, H8), 7.63 (m, 2H, H-2', 6'), 7.29 (m, 1H, H-5'), 6.89 (br d, J = 7.5 Hz, 1H, H-4'), 6.69 (dd, J = 17.0, 10.2 Hz, 1H, CH₂CHCO), 6.37 (dd, J = 17.0, 1.9 Hz, 1H, CH₂CHCO), 5.85 (dd, J = 10.2, 1.9 Hz, 1H, CH₂CHCO), 2.35 (s, 3H, CH₃Ar). 15 Analysis calculated for C₁₇H₁₅N₅O requires: C, 66.9; H, 5.0; N, 22.9%. Found: C, 67.3; H, 5.2; N, 22.9%.

EXAMPLE 38

25 N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-N-methyl acrylamide

1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (294 mg, 1.5 mmol) was added in one portion to a solution of 4-[3-bromophenyl]amino-30 6-methylaminopyrido[3,4-d]pyrimidine (100 mg, 0.3 mmol), redistilled acrylic acid (75 µL, 1.05 mmol), pyridine, (0.3 mL) in 3:2 THF:DMA (1.8 mL) stirred under N₂ at 0°C. After 30 minutes the reaction was warmed to 25°C, and after 3.75 hours, further acrylic acid (25 µL) was added, and the solution was stirred for an additional 3 hours. The solution was quenched

-103-

with water, and the solids were collected and air dried. The solids were triturated in hot dichloromethane:ethyl acetate and collected to leave the product (67 mg, 56%), mp 215-223°C (dec).

5 ¹H NMR [(CD₃)₂SO]: δ 10.11 (s, 1H, exchanges D₂O), 9.14 (s, 1H), 8.80 (s, 1H), 8.45 (s, 1H), 8.22 (s, 1H), 7.91 (br d, J = 7.7 Hz, 1H), 7.43-7.36 (m, 2H), 6.36-6.23 (m, 2H), 5.66 (dd, J = 9.5, 3.0 Hz, 1H), 3.44 (s, 3H).

10 CIMS m/z (relative %) 383 (23), 384 (100), 385 (40), 386 (99), 387 (20).

Analysis calculated for C₁₇H₁₄N₅OB_r 0.4 H₂O:

C, 52.16; H, 3.81; N, 17.89.

Found: C, 52.25; H, 3.51; N, 17.76.

15

EXAMPLE 39

N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-methacrylamide

To a solution of 6-amino-4-[(3-bromophenyl)-
20 amino]pyrido[3,4-d]pyrimidine (*J Med Chem*, 1996;39:1823) (250 mg, 0.82 mmol), Et₃N (excess, 2.0 mL) and DMAP (catalytic) in THF (30 mL) under nitrogen was added methacryloyl chloride (3 × 1.1 mol eq., total of 264 μL), the reaction conditions and work
25 up were followed as above to give after column and preparative layer chromatography on silica gel eluting with EtOAc/CH₂Cl₂ (1:1), N-[4-[(3-bromophenyl)amino]-pyrido-[3,4-d]pyrimidin-6-yl]-2-methylacrylamide (18 mg, 6%) as a cream powder, mp (CH₂Cl₂/hexane)

30 177-178°C.

35 ¹H NMR [(CD₃)₂SO]: δ 10.61 (s, 1H, CONH), 10.29 (s, 1H, NH), 9.06 (s, 1H, H5), 8.93 (s, 1H, H2), 8.67 (s, 1H, H8), 8.19 (t, J = 1.6 Hz, 1H, H-2'), 7.91 (dt, J_d = 7.6 Hz, J_t = 1.6 Hz, 1H, H-6'), 7.38 (t, J = 7.9 Hz, 1H, H-5'), 7.34 (dt, J_d = 8.1 Hz, J_t =

-104-

1.4 Hz, 1H, H-4'), 6.04 (s, 1H, CH₂C(CH₃)CO), 5.64 (s, 1H, CH₂C(CH₃)CO), 2.03 (s, 1H, CH₂C(CH₃)CO).
EI HRMS (M+) C₁₇H₁₄Br⁸¹N₅O requires 385.0361.
Found 385.0360.

5

EXAMPLE 40

N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-ethenylsulfonamide

A solution of 6-amino-4-[(3-bromophenyl)amino]-
10 pyrido[3,4-d]pyrimidine (*J Med Chem*, 1996;39:1823) (250 mg, 0.82 mmol), Et₃N (0.23 mL) and DMAP (catalytic) in THF (20 mL) was reacted with chloro-ethanesulfonyl chloride (1.4 mol eq., 1.15 mmol, 120 µL) as above to give after chromatography on silica gel eluting with MeOH/CH₂Cl₂/EtOAc (2:48:50) and crystallization from CH₂Cl₂/hexane, N-[4-(3-bromophenyl)amino]pyrido[3,4-d]pyrimidin-6-yl-vinylsulfonamide (53 mg, 16%) as a cream powder, mp 261-265°C.

¹H NMR [(CD₃)₂SO]: δ 11.02 (s, 1H, SO₂NH), 10.25 (s, 1H, NH), 9.02 (s, 1H, H5), 8.67 (s, 1H, H2), 8.15 (br s, 1H, H-2'), 8.00 (s, 1H, H8), 7.87 (dt, J_d = 7.2 Hz, J_t = 1.9 Hz, 1H, H-6'), 7.40 (br t, J = 7.9 Hz, 1H, H-5'), 7.37 (br dt, J_d = 7.8 Hz, J_t = 1.9 Hz, 1H, H-4'), 7.07 (dd, J = 16.5, 9.9 Hz, 1H, CH₂CHSO₂), 6.30 (d, J = 16.5 Hz, 1H, CH₂CHSO₂), 6.09 (d, J = 9.9 Hz, 1H, CH₂CHSO₂).

¹³C NMR: δ 156.59, 154.34, 151.23, 147.43, 141.54, 140.18, 137.02, 130.36, 127.06, 126.73, 124.88, 121.43, 121.24, 121.07, 103.57.

30 Analysis calculated for C₁₅H₁₂BrN₅O₂S·0.25 H₂O requires:

C, 43.9; H, 3.1; N, 17.0%.

Found: C, 44.2; H, 3.0; N, 16.5%.

-105-

EXAMPLE 41

N-[4-(3-Bromo-phenylamino)-pyrido[3,2-d]pyrimidin-6-yl]-acrylamide

To a stirred solution of 6-amino-4-[(3-bromo-phenyl)amino]pyrido[3,2-d]pyrimidine (*J. Med. Chem.*, 1996;39:1823) (46 mg, 0.15 mmol) and acrylic acid (6 mol eq., 0.91 mmol, 62 μ L) in DMA (5.0 mL) under N₂ was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI·HCl) (4.0 mol eq., 0.61 mmol, 116 mg). The reaction mixture was stirred for 48 hours with additional amounts of acrylic acid and EDCI·HCl (62 μ L/116 mg) being added every 12 hours it was then worked up as above to give after chromatography on silica gel eluting with EtOAc:CH₂Cl₂ (1:1) to MeOH/CH₂Cl₂/EtOAc (2:48:50), N-[4-[(3-bromophenyl)amino]pyrido[3,2-d]pyrimidin-6-yl]acrylamide (14 mg, 26%) as a cream powder, mp (CH₂Cl₂/hexane) 226-228°C. ¹H NMR [(CD₃)₂SO]: δ 11.13 (s, 1H, CONH), 9.57 (s, 1H, NH), 8.72 (s, 1H, H2), 8.69 (d, *J* = 9.1 Hz, 1H, H8), 8.43 (t, *J* = 1.9 Hz, 1H, H-2'), 8.30 (d, *J* = 9.1 Hz, 1H, H7), 7.87 (br d, *J* = 6.9 Hz, 1H, H-6'), 7.39 (t, *J* = 8.1 Hz, 1H, H-5'), 7.33 (dt, *J*_d = 8.2 Hz, *J*_t = 1.3 Hz, 1H, H-4'), 6.68 (dd, *J* = 17.0, 10.2 Hz, 1H, CH₂CHCO), 6.43 (dd, *J* = 17.0, 1.8 Hz, 1H, CH₂CHCO), 5.91 (dd, *J* = 10.2, 1.8 Hz, 1H, CH₂CHCO). Analysis calculated for C₁₆H₁₂BrN₅O requires: C, 51.9; H, 3.3; N, 18.9%. Found: C, 51.7; H, 3.3; N, 18.8%.

EXAMPLE 42

N-[4-(3-Bromo-phenylamino)-benzo[b]thieno[3,2-d]pyrimidin-8-yl]acrylamide

To a solution of 8-amino-4-[(3-bromophenyl)amino]benzothieno-pyrimidine [see Patent Application WO 95/19970 1995] (100 mg, 0.26 mmol), acrylic acid (0.04 mL, 0.58 mmol), and triethylamine (0.07 mL,

-106-

0.5 mmol) in DMF (1.5 mL) stirred under N₂ at 25°C was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (127 mg, 0.66 mmol). After 24 hours the reaction mixture was quenched with water and the light tan precipitate was collected by Buchner filtration and purified by preparative tlc on silica, eluting with 10% MeOH/CHCl₃ to give the desired product (25 mg, 23%) as a tan solid, mp 249.0-250.5°C.

10 ¹H NMR [(CD₃)₂SO]: δ 10.50 (s, 1H, NH), 9.86 (s, 1H, NH), 8.86 (d, J = 2.0 Hz, 1H, H9), 8.79 (s, 1H, H2), 8.19 (s, 1H, H2'), 8.17 (dd, J = 8.0, 1.9 Hz, 1H, H7), 7.91 (dd, J = 8.8, 2.2 Hz, 1H, H6), 7.84 (d, J = 8.1 Hz, 1H, H6'), 7.35 (t, J = 8.1 Hz, 1H, H5'), 7.29 (d, J = 8.0 Hz, 1H, H4'), 6.50 (dd, J = 16.9, 10 Hz, 1H, =CH), 6.33 (dd, J = 16.8, 2.1 Hz, 1H, =CH2), 5.82 (dd, J = 10, 1.9 Hz, 1H, =CH2).

15 Mass Spectrum (APCI): 427 (100, ⁸¹BrMH⁺), 426 (21, ⁸¹BrM⁺), 425 (93, ⁷⁹BrMH⁺).

20 Calculated for C₁₉H₁₃N₄BrOS·0.3HCl·0.25C₃H₆O:

C, 52.49; H, 3.18; N, 12.19%.

Found: C, 52.62; H, 3.31; N, 12.40%.

EXAMPLE 43

N-[4-(3-Bromo-phenylamino)-benzo[b]thieno[3,2-d]-pyrimidin-6-yl]acrylamide

6-Amino-4-(3-bromoaniline)benzothieno[3,2-d]pyrimidine

2-Chloro-3-nitrobenzamide: DMF (3 drops) was added to a mixture of 2-chloro-3-nitrobenzoic acid (0.99 g, 4.9 mmol), oxalyl chloride (0.47 mL, 5.4 mmol) in CH₂Cl₂ (20 mL) at 25°C stirring under N₂. After gas formation ceased, all the solid went into solution. After 3 hours the solvent was removed under reduced pressure to leave a light yellow solid which was treated with cold NH₄OH (20 mL). 2-Chloro-3-nitrobenzamide was collected as an off-white solid (1.02 g, 100%).

-107-

¹H NMR [(CD₃)₂SO]: δ 8.12 (brs, 1H, NH₂), 8.06 (dd, J = 8.0, 1.7 Hz, 1H, H4), 7.87 (brs, 1H, NH₂), 7.73 (dd, J = 7.8, 1.7 Hz, 1H, H6), 7.63 (t, J = 8.1 Hz, 1H, H5).

5 2-Chloro-3-nitrobenzonitrile: A solution of 2-chloro-3-nitrobenzamide (1.02 g, 4.9 mmol) in P₂O₅/(TMS)₂O/1,2-dichloroethane (30 mL) was heated at 85°C for 18 hours. After it was cooled to 25°C, the solution was filtered through a plug of silica gel (60 mL), eluting with 5% methanol/CHCl₃ (400 mL). The combined washes were concentrated under reduced pressure to give 2-chloro-3-nitrobenzonitrile as an off-white solid (0.66 g, 74%).

10 ¹H NMR [(CD₃)₂SO]: δ 8.42 (dd, J = 8.1, 1.5 Hz, 1H, H4), 8.33 (dd, J = 8.1, 1.7 Hz, 1H, H6), 7.81 (t, J = 8.3 Hz, 1H, H5).

15 3-Amino-2-methylcarboxylate-7-nitrobenzothiophene: NEt₃ (0.16 mL, 1.15 mmol) was added dropwise to a solution of 2-chloro-3-nitrobenzonitrile (191 mg, 1.05 mmol), and methyl thioacetate (0.1 mL, 1.1 mmol) in DMSO (3 mL) at 25°C stirring under N₂. The color of the solution turned dark orange. Thirty minutes later the reaction was quenched with ice water. The formed solid was collected by Buchner filtration and air dried to give methyl 3-amino-7-nitrobenzothiophene-2-carboxylate as a red-orange solid (244 mg, 92%).

20 ¹H NMR [(CD₃)₂SO]: δ 8.67 (dd, J = 8.1, 1.0 Hz, 1H, H6), 8.58 (dd, J = 7.8, 0.8 Hz, 1H, H4), 7.72 (t, J = 7.8 Hz, 1H, H5), 7.37 (brs, 2H, NH₂).

25 6-Nitrobenzothieno[3,2-d]pyrimidone: A mixture of methyl 3-amino-7-nitrobenzothiophene-2-carboxylate (242 mg, 0.96 mmol) and formamidine acetate (0.51 g, 4.9 mmol) was heated up to 185°C when 1.5 mL formamide was added to the reaction. After 1 hour at 185°C, the reaction was cooled to 25°C. The solid was collected and washed with water then dried. 6-Nitrobenzothieno

-108-

[3,2-d]pyrimidone was isolated as a yellow solid (161.5 mg, 68%).

¹H NMR [(CD₃)₂SO]: δ 8.72 (d, J = 8.1 Hz, 2H, H7, H9), 8.45 (s, 1H, H2), 7.91 (t, J = 7.8 Hz, H8).

5 4-Chloro-6-nitrobenzothieno[3,2-d]pyrimidine:

Dry DMF (5 drops) was added to a mixture of 6-nitrobenzothieno[3,2-d]pyrimidone (161 mg, 0.65 mmol) and oxalyl chloride (0.28 mL, 3.2 mmol) in 1,2-dichloroethane (5 mL). The reaction was heated at 10 85°C for 7.5 hours then cooled to 25°C. The solid was Buchner filtered and washed with CH₂Cl₂ and air dried. 4-Chloro-6-nitrobenzothieno[3,2-d]pyrimidine was obtained as a gray solid (166 mg, 96% crude).

15 ¹H NMR [(CD₃)₂SO]: δ 9.33 (s, 1H, H2), 8.99 (dd, J = 7.9, 1.3 Hz, 1H, H7), 8.87 (dd, J = 8.1, 1.0 Hz, 1H, H9), 8.03 (t, J = 7.8 Hz, 1H, H8).

20 4-([3-Bromophenyl]amino)-6-nitrobenzothieno[3,2-d]pyrimidine: A mixture of 4-chloro-6-nitrobenzothienopyrimidine (166 mg, 0.62 mmol), m-bromoaniline (0.08 mL, 0.73 mmol) and m-bromoaniline hydrochloride (144 mg, 0.69 mmol) in isopropanol (4.5 mL) was heated at 85°C stirring under N₂ for 7.5 hours. The dark brown solid was collected by Buchner filtration and washed with isopropanol and air dried to give 4-([3-bromophenyl]amino)-6-nitrobenzothieno[3,2-d]pyrimidine (145 mg, 67%), mp 247.0-248.1°C.

25 ¹H NMR [(CD₃)₂SO]: δ 10.21 (s, 1H, NH), 8.89 (s, 1H, H2), 8.84 (dd, J = 7.6, 1.1 Hz, 1H, H7), 8.75 (dd, J = 8.0, 0.9 Hz, 1H, H9), 8.25 (s, 1H, H2'), 7.92 (t, J = 7.8 Hz, 1H, H8), 7.89 (d, J = 6.6 Hz, 1H, H4'), 7.39-7.31 (m, 2H, H5', H6').

30 MS (APCI): 403 (100, ⁸¹Br, MH⁺), 402 (17.45, ⁸¹Br, M⁺), 401 (93.01, ⁷⁹Br, MH⁺).

-109-

Calculated for $C_{16}H_9BrN_4O_2S \cdot HCl$:

C, 43.90; H, 2.30; N, 12.80%.

Found: C, 44.00; H, 2.43; N, 12.48%.

6-Amino-4-([3-bromophenyl]amino)benzothieno

5 [3,2-d]pyrimidine: A solution of 4-([3-bromophenyl]amino)-6-nitrobenzothieno[3,2-d]pyrimidine (160 mg, 0.4 mmol) in methanol (10 mL) was subjected to hydrogenation with Raney Nickel (0.07 g) at 25°C for 30 hours. After the reaction was done, the solvent was removed under reduced pressure to leave a dark brown solid. Recrystallization from wet methanol afforded 6-amino-4-([3-bromophenyl]amino)benzothieno[3,2-d]pyrimidine as a brown solid (70 mg, 43%), mp 217.6-218.8°C.

15 1H NMR [(CD₃)₂SO]: δ 9.89 (s, 1H, NH), 8.77 (s, 1H, H2), 8.19 (t, J = 1.9 Hz, H2'), 7.85 (ddd, J = 8.1, 2.9, 1.2 Hz, 1H, H4'), 7.64 (dd, J = 7.9, 1.0 Hz, 1H, H9), 7.34 (t, J = 7.6 Hz, 2H, H8, H5'), 7.28 (td, J = 8.1, 1.5 Hz, 1H, H6'), 6.95 (dd, J = 7.4, 1.0 Hz, 1H, H7), 5.71 (brs, 2H, NH₂).

20 MS (APCI): 373 (100, ⁸¹Br, MH⁺), 372 (19.5, ⁸¹Br, M⁺), 371 (96.87, ⁷⁹Br, MH⁺).

Calculated for $C_{16}H_{11}BrN_4S \cdot 0.3HCl \cdot 0.7 CH_3OH$:

C, 49.57; H, 3.51; N, 13.85%.

25 Found: C, 49.47; H, 3.56; N, 13.84%.

To a solution of 6-amino-4-([3-bromophenyl]amino)-benzothieno-quinazoline (130 mg, 0.35 mmol), acrylic acid (0.05 mL, 0.73 mmol), and triethylamine (0.1 mL, 0.72 mmol) in DMF (3 mL) stirred under N₂ at 0°C was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (144 mg, 0.75 mmol). The reaction gradually warmed up to 25°C and was quenched with water after 20 hours. The formed yellow solid was collected and purified by sonication with acetone to give the 35 desired product (40 mg, 27%), mp 216.4-217.2°C.

-110-

¹H NMR [(CD₃)₂SO]: δ 10.64 (s, 1H, NH), 9.84 (s, 1H, NH), 8.77 (s, 1H, H2), 8.73 (d, J = 1.5 Hz, 1H, H6), 8.31 (d, 1H, J = 8.8 Hz, H8), 8.20 (s, 1H, H2'), 7.84 (d, J = 8.3 Hz, 1H, H6'), 7.67 (dd, J = 8.6, 1.7 Hz, 1H, H9), 7.34 (t, J = 7.8 Hz, 1H, H5'), 7.28 (d, J = 8.1 Hz, 1H, H4'), 6.50 (dd, J = 16.9, 10.0 Hz, 1H, =CH), 6.34 (dd, J = 17.1, 1.7 Hz, 1H, =CH₂), 5.83 (dd, J = 10, 1.7 Hz, 1H =CH₂).
 Mass Spectrum (APCI): 426.7 (100, ⁸¹BrMH⁺), 425.7 (26.28, ⁸¹BrM⁺), 424.7 (92, ⁷⁹BrMH⁺).
 Calculated for C₁₉H₁₃N₄BrOS·0.3HCl·0.8H₂O:
 C, 52.28; H, 3.62; N, 12.26%.
 Found: C, 52.42; H, 3.49; N, 12.41%.

15

EXAMPLE 44

N-[4-(3-Bromo-phenylamino)-benzo[b]thieno[3,2-d]pyrimidin-7-yl]acrylamide

7-Nitrobenzo[b]thieno[3,2-d]-3H-pyrimid-4-one

2-Fluoro-4-nitrobenzoic acid: [25] To a solution
 20 of sodium dichromate (3.87 g, 13 mmol) in acetic acid
 (20 mL) was added 2-fluoro-4-nitrotoluene (1.55 g,
 10 mmol) in portions, followed by dropwise addition of
 concentrated sulfuric acid (10 g). A strong exotherm
 was observed (100°C) and the color changed from orange
 25 to green. The reaction was heated at 90°C for 1 hour
 and cooled to 25°C. The reaction mixture was dissolved
 in water (30 mL) and white crystals formed upon cooling
 at 0°C. The white solid was collected by filtration
 washed with cold water and dried to give 2-fluoro-
 30 4-nitrobenzoic acid (0.99 g, 53%).
¹H NMR (DMSO-d₆, δ: 8.16 (dd, J = 10.0, 2.0 Hz, 1H),
 8.10-8.03 (m, 2H).

2-Fluoro-4-nitrobenzamide: To a mixture of
 2-fluoro-4-nitrobenzoic acid (0.98 g, 5.3 mmol) and
 35 oxalyl chloride (0.48 mL, 5.5 mmol) in dichloromethane
 (25 mL), stirred under nitrogen at 25°C, was added

-111-

3 drops of dimethyl formamide. Gas evolution! The solid slowly dissolved up and after 4 hours the volatiles were removed under reduced pressure.

Saturated aqueous ammonia (5 mL) was added to the residue and the mixture was stirred for 10 minutes.

The solid was extracted with chloroform (3 x 20 mL). The combined organic layer was washed with water,

saturated brine, and dried (magnesium sulfate). The solvent was removed under reduced pressure to give

2-fluoro-4-nitrobenzamide (0.83 g, 85%) as a light yellow solid.

^1H NMR (DMSO-d₆): δ 8.15 (dd, J = 10.0, 2.2 Hz, 1H), 8.06 (dd, J = 8.5, 2.2 Hz, 1H), 8.02 (brs, 1H), 7.88 (brs, 1H), 7.81 (dd, J = 8.3, 7.0 Hz, 1H).

2-Fluoro-4-nitrobenzonitrile: A mixture of 2-fluoro-4-nitrobenzamide (0.83 g, 4.6 mmol) and phosphorus pentoxide/hexamethyl disiloxane in 1,2-dichloroethane (20 mL) was heated under nitrogen at 100°C for 4 hours. Upon cooling, the solution was

poured onto a plug of silica gel and washed with hexane (200 mL) followed by 5% methanol/chloroform (400 mL).

The methanol/chloroform washes were collected and concentrated under reduced pressure to give 2-fluoro-4-nitrobenzonitrile (0.71 g, 95%) as a beige solid.

^1H NMR (DMSO-d₆): δ 8.46 (dd, J = 9.5, 2.0 Hz, 1H), 8.37-8.22 (m, 2H).

Methyl 3-amino-6-nitrobenzothiophene-2-carboxylate: Methyl thioglycollate (0.08 mL, 0.85 mmol) was added to a solution of 2-fluoro-4-nitrobenzonitrile (145 mg, 0.87 mmol), and triethylamine (0.14 mL, 1.0 mmol) in acetonitrile (20 mL) stirred under nitrogen at 25°C. After 3 hours further triethylamine (0.28 mL, 2.0 mmol) was added to the solution, which was stirred at 25°C for a further 16 hours. The solvent was removed under reduced pressure to give a brown residue, which upon

-112-

trituration with chloroform precipitated methyl
3-amino-6-nitrobenzothiophene-2-carboxylate (103 mg,
54%) as a red brown solid, mp 228.5-229.5°C.

5 ^1H NMR (DMSO-d₆): δ 8.87 (d, J = 2.0 Hz, 1H), 8.32 (d,
(brs, 2H), 3.77 (s, 3H).

Mass Spectrum (CI): 253 (100, M $^+$), 252 (52, M $^+$).

7-Nitrobenzo[b]thieno[3,2-d]-3H-pyrimid-4-one: A
mixture of methyl 3-amino-6-nitrobenzothiophene-
10 2-carboxylate (20 mg, 0.08 mmol) and formamidine
acetate (59 mg, 0.57 mmol) was heated at 190°C for
5 hours and cooled to 25°C. The reaction residue was
triturated with water, and 7-nitrobenzo[b]thieno[3,2-d]
-3H-pyrimid-4-one (7 mg, 36%) was obtained by Buchner
15 filtration as a dark brown solid, mp >320°C.

16 ^1H NMR (DMSO-d₆): δ 9.21 (d, J = 1.7 Hz, 1H), 8.39 (d,
J = 8.5 Hz, 1H), 8.38 (s, 1H), 8.32 (dd, J = 8.8,
2.0 Hz, 1H).

Mass Spectrum (CI): 248 (100, M $^+$), 247 (30, M $^+$).

20 Analysis calculated for C₁₀H₅N₃O₃S:

C, 48.58; H, 2.04; N, 17.00%.

Found: C, 48.19; H, 2.09; N, 16.77%.

To a solution of 7-amino-4-[(3-bromophenyl)amino]
benzothieno-pyrimidine (88 mg, 0.24 mmol), acrylic acid
25 (0.03 mL, 0.44 mmol), and triethylamine (0.09 mL,
0.64 mmol) in DMF (3 mL), stirred under nitrogen at
0°C, was added 1-(3-dimethylaminopropyl)-3-
ethylcarbodiimide hydrochloride (84 mg, 0.44 mmol).
The reaction gradually warmed up to 25°C and was
30 quenched with water after 24 hours. The light brown
precipitate was collected and purified by sonication
with acetone. The desired product was isolated as a
beige solid (59 mg, 37%), mp 251.0-252.4°C.

35 ^1H NMR [(CD₃)₂SO]: δ 10.58 (s, 1H, NH), 9.92 (s, 1H,
NH), 8.84 (s, 1H, H2), 8.28-8.24 (m, 2H, H6, H6'), 7.88
(d, 1H, J = 6.8 Hz, H6'), 7.70 (dd, J = 7.6, 1.2 Hz,

-113-

1H, H8), 7.65 (t, J = 7.6 Hz, 1H, H9), 7.33 (t, J = 8.0 Hz, 1H, H5'), 7.28 (dd, J = 6.9, 1.8 Hz, 1H, H4'), 6.60 (dd, J = 16.8, 10.0 Hz, 1H, =CH), 6.36 (dd, J = 17.1, 1.9 Hz, 1H, =CH₂), 5.88 (dd, J = 10.3, 1.7 Hz, 1H, =CH₂).

Mass Spectrum (APCI): 426.7 (100, MH⁺), 425.7 (18.68, M⁺).

Calculated for C₁₉H₁₃N₄BrOS·H₂O:

C, 51.47; H, 3.41; N, 12.64%.

Found: C, 51.42; H, 3.39; N, 12.40%.

EXAMPLE 45

N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]buta-2,3-dienamide

15 To a solution of 6-amino-4-[(3-bromophenyl)amino]quinazoline (316 mg, 1.0 mmol), and 3-butynoic acid (173 mg, 2.06 mmol) in DMF (5 mL) stirred under nitrogen at 0°C was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (384 mg, 2.0 mmol).

20 After 1.5 hours the reaction was quenched with 0.1 M HCl solution (10 mL). The yellow precipitate was collected by Buchner filtration and washed with water followed by acetone. The solid was taken up into acetone with the addition of triethylamine. The formed 25 solution was filtered through a 2-inch silica gel eluting with 50% acetone/CH₂Cl₂. The filtrate was collected and concentrated under reduced pressure to give the title compound as a yellow solid (247 mg, 56%), mp 268-270°C.

30 ¹H NMR [(CD₃)₂SO]: δ 10.39 (s, 1H, NH), 9.93 (s, 1H, NH), 8.76 (d, J = 2.2 Hz, 1H, H5), 8.58 (s, 1H, H2), 8.18 (s, 1H, H2'), 7.87 (dt, J = 9.0, 1.9 Hz, 2H, H7, H8), 7.79 (d, J = 8.8 Hz, 1H, H6'), 7.34 (t, J = 7.9 Hz, 1H, H5'), 7.29 (d, J = 8.3 Hz, 1H, H4'), 35 6.07 (t, J = 6.5 Hz, 1H, CH=C=CH₂), 5.49 (d, J = 6.6 Hz, 2H, =C=CH₂).

-114-

Mass Spectrum (APCI): 382.8 (88, $^{81}\text{BrMH}^+$), 381.8 (19, $^{81}\text{BrM}^+$), 380.7 (100, $^{79}\text{BrMH}^+$).

Calculated for $\text{C}_{18}\text{H}_{13}\text{N}_4\text{BrO} \cdot 0.8\text{H}_2\text{O} \cdot 0.8\text{C}_3\text{H}_6\text{O}$:
C, 55.42; H, 4.42; N, 12.68%.

5 Found: C, 55.13; H, 4.17; N, 12.87%.

EXAMPLE 46

N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]-E,4-oxopent-2-enamide

10 6-Amino-4-[(3-bromophenyl)amino]quinazoline (0.23 g, 0.75 mmol) and N-ethyl diisopropylamine (0.26 mL, 1.5 mmol) were added to a solution of E,4-oxopent-2-enoic acid (171 mg, 1.5 mmol) and EDAC.HCl (288 mg, 1.5 mmol) in THF/DMF (3:1, 4 mL)

15 stirred under N_2 at 25°C. The ice bath was removed, and the reaction mixture was stirred at 25°C for 4 hours, when further N-ethyl diisopropylamine (0.13 mL, 0.75 mmol), E,4-oxopent-2-enoic acid (86 mg, 0.75 mmol) and EDAC.HCl (144 mg, 0.75 mmol) were added.

20 After stirring a further 14 hours at 25°C, the reaction mixture was added dropwise to stirred cold water (100 mL). The solid was collected, dissolved in MeOH (50 mL) and dried onto silica gel (3 g). This was used as the origin in a silica gel flash column (80 g)

25 eluting with 10% MeOH/CH₂Cl₂. Concentration of pure fractions under reduced pressure gave N-[4-[(3-bromophenyl)amino]quinazolin-6-yl]-E,4-oxopent-2-enamide (0.14 g, 45%) as a yellow solid, mp 230°C (decomp.).

30 ¹H NMR [(CD₃)₂SO]: δ 10.91 (s, 1H, NH), 9.99 (s, 1H, NH), 8.87 (d, J = 1.9 Hz, 1H, H5), 8.60 (s, 1H, H2), 8.17 (t, J = 1.9 Hz, 1H, H2'), 7.85 (m, 3H, H7, H8, H6'), 7.37 (m, 2H, H5', H4'), 7.15 (d, J = 15.7 Hz, 1H, H3-pentenyl), 6.99 (d, J = 15.7 Hz, 1H, H2-pentenyl),

35 2.40 (s, 3H, Me).

-115-

Mass Spectrum (APCI): 412.7 (100, $^{81}\text{BrMH}^+$), 410.8 (98, $^{79}\text{BrMH}^+$).

Calculated for $\text{C}_{19}\text{H}_{15}\text{BrN}_4\text{O}_2$:

C, 55.49; H, 3.68; N, 13.62%.

5 Found: C, 55.21; H, 3.72; N, 13.35%.

EXAMPLE 47

N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]-E,4-ethoxy-4-oxobut-2-enamide

10 6-Amino-4-[(3-bromophenyl)amino]quinazoline (0.23 g, 0.75 mmol) and N-ethyl diisopropylamine (0.26 mL, 1.5 mmol) were added to a solution of E,4-ethoxy-4-oxobut-2-enoic acid (216 mg, 1.5 mmol) and EDAC.HCl (288 mg, 1.5 mmol) in THF/DMF (3:1, 4 mL) 15 stirred under N_2 at 25°C. The ice bath was removed, and the reaction mixture was stirred at 25°C for 4 hours, when further N-ethyl diisopropylamine (0.13 mL, 0.75 mmol), E,4-ethoxy-4-oxobut-2-enoic acid (108 mg, 0.75 mmol), and EDAC.HCl (144 mg, 0.75 mmol) 20 were added. After stirring a further 14 hours at 25°C, the reaction mixture was added dropwise to stirred cold water (100 mL). The solid was collected, dissolved in MeOH (50 mL), and dried onto silica gel (3 g). This was used as the origin in a silica gel flash column (80 g) eluting with 10% MeOH/CH₂Cl₂. Concentration of 25 pure fractions under reduced pressure gave N-[4-[(3-bromophenyl)amino]quinazolin-6-yl]-E,4-ethoxy-4-oxobut-2-enamide (0.19 g, 58%) as a yellow solid, mp >255°C. ¹H NMR [(CD₃)₂SO]: δ 10.93 (s, 1H, NH), 9.99 (s, 1H, NH), 8.89 (d, J = 1.9 Hz, 1H, H5), 8.60 (s, 1H, H2), 8.16 (t, J = 1.9 Hz, 1H, H2'), 7.85 (m, 3H, H7, H8, H6'), 7.33 (m, 3H, H5', H4', H3-pentenyl), 6.79 (d, J = 15.4 Hz, 1H, H2-pentenyl), 4.24 (q, J = 7.1 Hz, CH₂), 1.29 (t, J = 7.1 Hz, 3H, Me). 30 Mass Spectrum (APCI): 442.8 (99, $^{81}\text{BrMH}^+$), 440.8 (100, $^{79}\text{BrMH}^+$). 35

-116-

Calculated for C₂₀H₁₇BrN₄O₃:

C, 54.44; H, 3.88; N, 12.70%.

Found: C, 54.59; H, 3.83; N, 12.67%.

5

EXAMPLE 48

N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]penta-2,4-dienamide

To a 0-5°C solution of 6-amino-4-[(3-bromophenyl)amino]pyrido[3,4-d]pyrimidine (160 mg, 0.5 mmol), 80% trans-2,4-pentadienoic acid (245 mg, 2 mmol), and pyridine, (0.5 mL) in 2:1 THF:DMA (3 mL) stirred under N₂ was added in one portion 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (490 mg, 2.5 mmol). Cooling was removed, and the viscous mixture was stirred at 25°C. After 23 hours, the mixture was charged with additional trans-2,4-pentadienoic acid (125 mg), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (240 mg), and 2:1 THF:DMA (2 mL). After stirring for another 19 hours, the mixture was diluted with water and ethyl acetate. The biphasic mixture was warmed, then filtered through celite with the filter pad washed well with water and hot ethyl acetate. The filtrate was extracted with ethyl acetate (3x), and the combined organic phases were washed with brine, dried (MgSO₄), and concentrated to a solid. The solid was dissolved in hot ethyl acetate and the solution purified by column chromatography over flash SiO₂ eluting with ethyl acetate. Product fractions were pooled and concentrated to a solid that was triturated in warm ethyl acetate. After cooling, the solids were collected and dried to leave the product (27 mg, 13%), mp 210-215°C.

¹H NMR [(CD₃)₂SO]: δ 11.04 (s, 1H, exchanges D₂O), 10.34 (s, 1H, exchanges D₂O), 9.04 (s, 1H), 9.02 (s, 1H), 8.66 (s, 1H), 8.17 (t, J = 1.9 Hz, 1H), 7.89 (dt, J = 7.7, 1.7 Hz, 1H), 7.40-7.27 (m, 3H), 6.60 (dt,

-117-

J = 16.9, 10.6 Hz, 1H), 6.53 (d, *J* = 15.2 Hz, 1H), 5.75 (d, *J* = 16.9 Hz, 1H), 5.56 (d, *J* = 11.1 Hz, 1H).

Mass Spectrum (APCI) *m/z* (relative %): 395.9 (89), 396.9 (20), 397.9 (100), 398.9 (20).

5 Analysis calculated for C₁₈H₁₄N₅OBr·0.3 H₂O·0.2 C₄H₈O₂: C, 53.86; H, 3.89; N, 16.70.

Found: C, 54.02; H, 3.77; N, 16.33.

EXAMPLE 49

10 N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-N-(2-(N,N-dimethylamino)ethyl) acrylamide

To a 0-5°C solution of 4-[3-bromophenyl]amino]-6-(2-dimethylaminoethyl)aminopyrido[3,4-d]pyrimidine (387 mg, 1 mmol) and redistilled acrylic acid (0.25 mL, 3.6 mmol) in pyridine (5 mL) stirred under N₂ was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (980 mg, 5 mmol). After 30 minutes, cooling was removed, and the solution was stirred for an additional 45 minutes. The solution was diluted with 1% aqueous sodium bicarbonate and extracted with ethyl acetate (4x). The combined extracts were washed with brine, dried (MgSO₄), and concentrated to leave an oil that was crystallized from ethyl acetate at 5°C overnight to leave product (122 mg, 28%), mp >160°C (dec).

¹H NMR [(CD₃)₂SO]: δ 10.16 (s, 1H, exchanges D₂O), 9.15 (s, 1H), 8.80 (s, 1H), 8.43 (s, 1H), 8.22 (s, 1H), 7.93 (d, *J*=7.7 Hz, 1H), 7.42-7.35 (m, 2H), 6.29-6.22 (m, 2H), 5.66 (dd, *J* = 9.0, 3.5 Hz, 1 H), 4.05 (t, J = 7.1 Hz, 2H) 2.42 (t, J = 7.1 Hz, 2H), 2.11 (s, 6H).

30 Mass Spectrum (APCI) *m/z* (relative %): 440.9 (99), 441.8 (23), 442.8 (100), 443.9 (24).

Analysis calculated for C₂₀H₂₁N₆OBr: C, 54.43; H, 4.80; N, 19.04.

35 Found: C, 54.15; H, 4.65; N, 18.76.

-118-

EXAMPLE 50

N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-vyl]E-but-2-enamide

To a 0-5°C solution of 6-amino-4-[(3-bromophenyl)amino]pyrido[3,4-d]pyrimidine (32 mg, 0.1 mmol), trans-crotonic acid (35 mg, 0.4 mmol), in pyridine (0.4 mL) stirred under N₂ was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (98 mg, 0.5 mmol). Cooling was removed and the mixture was stirred at 10 25°C. After 2 hours, the solution was diluted with water, and the suspension was stirred for 15 minutes. The solids were collected, then dissolved in ethyl acetate. The solution was washed with 5% aqueous sodium bicarbonate, dried (MgSO₄), and filtered through 15 flash SiO₂. The filtrate was concentrated to a solid that was triturated in hot ethyl acetate. The solids were collected to leave product, (11 mg, 28%) mp >260°C (dec).

20 ¹H NMR [(CD₃)₂SO]: δ 10.87 (s, 1H, exchanges D₂O), 10.31 (s, 1H, exchanges D₂O), 9.03 (s, 1H), 9.00 (s, 1H), 8.65 (s, 1H), 8.17 (s, 1H), 7.89 (d, J = 7.5 Hz, 1H), 7.39-7.33 (m, 2H), 6.99-6.90 (m, 1H), 6.39 (dd, J = 15.4, 1.7 Hz, 1H), 1.91 (dd, J = 7.0, 1.4 Hz, 3H). Mass Spectrum (APCI) m/z (relative %): 381.8 (74), 382.8 (27), 383.8 (100), 384.8 (30), 385.9 (10).

25 Analysis calculated for C₁₇H₁₄N₅OBr·0.3 H₂O:
C, 52.40; H, 3.78; N, 17.97.

Found: C, 52.37; H, 3.65; N, 17.70.

30

EXAMPLE 51

N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-vyl]cinnamide

To a 0-5°C solution of 6-amino-4-[(3-bromophenyl)amino]pyrido[3,4-d]pyrimidine (32 mg, 0.1 mmol), trans-cinnamic acid (60 mg, 0.4 mmol), in pyridine (0.4 mL) stirred under N₂ was added 1-(3-dimethylaminopropyl)-

-119-

3-ethylcarbodiimide hydrochloride (98 mg, 0.5 mmol).

Cooling was removed, and the mixture was stirred at 25°C. After 2 hours, the solution was diluted with water, and the suspension was stirred for 15 minutes.

5 The solids were collected, then dissolved in ethyl acetate. The solution was washed with 5% aqueous sodium bicarbonate, dried ($MgSO_4$), and filtered through flash SiO_2 . The filtrate was concentrated to a solid that was triturated in hot ethyl acetate. The solids 10 were collected to leave product, (23 mg, 51%) mp 253-256°C.

15 1H NMR [$(CD_3)_2SO$]: δ 11.07 (s, 1H, exchanges D_2O), 10.36 (s, 1H, exchanges D_2O), 9.06 (s, 2H; with D_2O wash, collapses to 9.06 [s, 1H] and 9.02 [s, 1H]), 8.67 (s, 1H), 8.19 (s, 1H), 7.90 (d, $J = 7.7$ Hz, 1H), 7.72-7.65 (m, 3H), 7.51-7.34 (m, 5H), 7.14 (d, $J = 15.7$, 1H).

Mass Spectrum (APCI) m/z (relative %): 445.9 (97), 446.9 (24), 447.9 (100), 448.9 (26).

20 Analysis calculated for $C_{22}H_{16}N_5OBr \cdot 0.2 H_2O$: C, 58.73; H, 3.67; N, 15.57.

Found: C, 58.79; H, 3.66; N, 15.37.

EXAMPLE 52

25 N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-E,3-chloroacrylamide

To a -20°C solution of 6-amino-4-[(3-bromophenyl)amino]pyrido[3,4-d]pyrimidine (128 mg, 0.4 mmol), and cis-3-chloroacrylic acid (172 mg, 1.6 mmol) in 30 pyridine (2 mL) stirred under N_2 was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (392 mg, 1.5 mmol). After 4.5 hours, additional cis-3-chloroacrylic acid (57 mg) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide 35 hydrochloride (130 mg) were added and the temperature was brought to -10°C. After a total reaction time of

-120-

7 hours, the viscous, dark mixture was diluted with DMF and the resultant solution was poured into 1:1 ethyl acetate:water. The resultant mixture was shaken vigorously and the phases separated. The aqueous phase
5 was further extracted (2x), then the combined organic phases were washed with brine (2x), dried ($MgSO_4$), and filtered through flash SiO_2 . The filtrate was concentrated to a solid that was dissolved in warm ethyl acetate. The solution was purified by column chromatography over flash SiO_2 eluting with ethyl acetate. The product fractions were pooled and concentrated to solid that was triturated in 1:1 ethyl acetate:tert-butyl methyl ether. The solids were collected and dried at 0.1 mm/25°C to leave product
10 (30 mg, 18%) of product, mp 165-175°C (dec) following crystallization from ethyl acetate.

15 1H NMR [(CD_3)₂SO]: δ 11.09 (s, 1H, exchanges D_2O), 10.38 (s, 1H, exchanges D_2O), 9.04 (s, 1H), 9.00 (s, 1H), 8.66 (s, 1H), 8.16 (t, J = 1.9 Hz, 1H), 7.88 (dt, J = 7.7, 1.7 Hz, 1H), 7.40-7.33 (m, 2H), 7.07 (d, J = 8.0 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H).

20 Mass Spectrum (APCI) m/z (relative %): 365.8 (29), 366.8 (36), 367.8 (35), 368.8 (35), 401.8 (82), 402.8 (18), 403.8 (100), 404.8 (20), 405.8 (29).

25 Analysis calculated for $C_{16}H_{11}N_5OBrCl \cdot 0.2 H_2O \cdot 0.2 C_4H_8O_2$:

C, 47.38; H, 3.08; N, 16.44.

Found: C, 47.53; H, 3.15; N, 16.25.

30

EXAMPLE 53

N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-propynamide

To a -20°C solution of 6-amino-4-[(3-bromophenyl)amino]pyrido[3,4-d]pyrimidine (94 mg, 0.3 mmol), and propionic acid (66 μ L, 1.05 mmol) in pyridine (1.2 mL)
35 stirred under N_2 was added 1-(3-dimethylaminopropyl)-

-121-

3-ethylcarbodiimide hydrochloride (294 mg, 1.5 mmol).

After 2.25 hours, additional propionic acid (33 μ L) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (147 mg) were added to the cold solution.

5 After a total reaction time of 7.5 hours, the viscous, dark mixture was diluted with DMF, and the resultant solution was poured into 1:1 ethyl acetate:water. The resultant mixture was shaken vigorously and the phases separated. The aqueous phase was further extracted

10 (2 \times), then the combined organic phases were washed with brine (2 \times), dried ($MgSO_4$), and filtered through flash SiO_2 . The filtrate was concentrated to a solid that was dissolved in warm ethyl acetate. The solution was purified by column chromatography over flash SiO_2

15 eluting with ethyl acetate. The product fractions were pooled and concentrated to solid that was triturated in 1:1 ethyl acetate:tert-butyl methyl ether. The solids were collected and dried at 0.1 mm/25°C to leave product (16 mg, 14%), mp >150°C (dec).

20 1H NMR [(CD₃)₂SO]: δ 11.69 (s, 1H, exchanges D₂O), 10.31 (s, 1H, exchanges D₂O), 9.05 (s, 1H), 8.83 (s, 1H), 8.68 (s, 1H), 8.15 (s, 1H), 7.87 (d, J = 7.2 Hz, 1H), 7.40-7.33 (m, 2H), 4.54 (s, 1H).

25 Mass Spectrum (APCI) m/z (relative %): 365.8 (69), 366.8 (28), 367.8 (100), 368.9 (50), 369.9 (14).

Analysis calculated for C₁₆H₁₀N₅OBr·0.1 H₂O·0.1 C₄H₈O₂: C, 52.00; H, 2.93; N, 18.49.

Found: C, 51.89; H, 2.78; N, 18.50.

30

EXAMPLE 54

N-[4-[(3-Bromophenyl)aminolquinazolin-6-yl]-E,4-(3-(N,N-dimethylamino)propoxy-4-oxobut-2-enamide tris trifluoroacetate

35 A solution of 6-amino-4-[(3-bromophenyl)amino] quinazoline (158 mg, 0.5 mmol) in THF (10 mL) was added dropwise over 15 minutes to a solution of fumaroyl

-122-

chloride (382 mg, 2.5 mmol) in THF (10 mL) stirred under N₂ at 0°C. After 1 hour at 0°C, the suspension was allowed to settle, and the supernatant was decanted. Fresh THF (5 mL) was added, and the 5 suspension was stirred at 0°C whilst a solution of 3-(N,N-dimethylamino)propan-1-ol (1.18 mL, 10 mmol) in THF (5 mL) was added dropwise. The suspension was stirred at 25°C for 1 hour, the solvent was stripped under reduced pressure, and the residue was treated 10 with cold water. The solid was collected by Buchner filtration, dissolved in a minimum DMF, and absorbed onto silica gel (2 g) and dried. The solid was used as the origin in silica gel flash chromatography (50 g) eluting with CH₂Cl₂/MeOH (2:1). The best fractions 15 were pooled, and stripped, dissolved in acetic acid/water (3:2, 2.5 mL), passed through a 0.45 μ filter, and purified by HPLC on a Vidac C18 218TP1022 reverse phase HPLC column, eluting with a 10% to 50% gradient of 0.1% TFA in water/0.1% TFA in CH₃CN over 20 60 minutes. The pure fractions were pooled and lyophilized to give N-[4-[(3-bromophenyl)amino]- quinazolin-6-yl]-E,4-(3-(N,N-dimethylamino)propoxy- 4-oxobut-2-enamide tris trifluoroacetate (51 mg, 12%) as a yellow solid, mp 60°C.

25 ¹H NMR [(CD₃)₂SO]: δ 11.14 (s, 1H, NH), 10.85 (br s, 1H, NH), 9.57 (br s, 1H, NH), 9.01 (d, J = 1.7 Hz, 1H, H5), 8.79 (s, 1H, H2), 8.07 (s, 1H, H2'), 8.02 (dd, J = 2.1, 9.0 Hz, 1H, H7), 7.89 (d, J = 8.9 Hz, 1H, H8), 7.78 (d, J = 6.5 Hz, H6'), 7.43 (m, 2H, H4' & H5'), 7.34 (d, J = 15.4 Hz, 1H, H3-but enyl), 6.84 (d, J = 15.4 Hz, 1H, H2-but enyl), 4.26 (t, J = 6.2 Hz, 2H, OCH₂), 3.19 (m, 2H, CH₂N), 2.81 (d, J = 4.6 Hz, 6H, Me), 2.05 (m, 2H, CH₂).

30 Mass Spectrum (APCI): 499.8 (100, ⁸¹BrMH⁺), 497.9 (97, ⁷⁹BrMH⁺).

-123-

Calculated for $C_{23}H_{24}BrN_5O_3 \cdot 3CF_3COOH$:

C, 40.15; H, 3.49; N, 8.07%.

Found: C, 40.06; H, 3.36; N, 8.25%.

5

EXAMPLE 55

3-[4-(3-Bromo-phenylamino)-quinazolin-6-ylcarbamoyl]-acrylic acid (Z)

To a solution of 6-amino-4-[(3-bromophenyl)amino]-quinazoline (0.78 g, 2.5 mmol) in 8 mL of DMF was added maleic anhydride (0.266 g, 2.7 mmol), and the mixture was heated with stirring in a 70°C oil bath for 2.5 hours. The resulting suspension was cooled to room temperature and then diluted with water. The solid was collected, washed sequentially with a mixture of toluene/DMF (1:1), water, and IPA. The solid was dried in vacuo at 60°C for 16 hours to afford 3-[4-(3-bromo-phenylamino)-quinazolin-6-ylcarbamoyl]-acrylic acid (Z) (0.87 g, 86%) as a pale yellow powder, mp 224-225°C (decomposition with gas evolution).

20 1H NMR [(CD₃)₂SO]: δ 13.00 (br s, 1H, COOH), 10.85 (br s, 1H, NH), 9.96 (br s, 1H, NH), 8.73 (d, J = 1.8 Hz, 1H, H5), 8.54 (s, 1H, H2), 8.11 (br s, 1H, Me₂NCHO), 7.91-7.75 (m, 4H), 7.32-7.24 (m, 2H), 6.46 (d, J = 12.0 Hz, 1H, CH=CH), 6.35 (d, J = 12.0 Hz, 1H, CH=CH), 2.84 (s, 3H, Me₂NCHO), 2.68 (s, 3H, Me₂NCHO). Mass Spectrum (APCI): 412.8 (100, ⁸¹BrM⁺), 410.8 (96, ⁷⁹BrM⁺); 413.8 (26, ⁸¹BrMH⁺), 411.8 (24, ⁷⁹BrMH⁺).

Calculated for $C_{18}H_{13}BrN_4O_3 \cdot 0.81$ DMF:

C, 51.94; H, 3.98; N, 14.26%.

30 Found: C, 51.97; H, 3.98; N, 14.40%.

EXAMPLE 56

N-[4-[(3-Bromophenyl)aminolquinazolin-6-yl]-E,4-(3-(N,N-dimethylamino)propylamino-4-oxobut-2-enamide

35 A solution of 6-amino-4-[(3-bromophenyl)amino]-quinazoline (158 mg, 0.5 mmol) in THF (10 mL) was added

-124-

dropwise over 15 minutes to a solution of fumaroyl chloride (382 mg, 2.5 mmol) in THF (10 mL) stirred under N₂ at 0°C. After 1 hour at 0°C, the suspension was allowed to settle, and the supernatant was decanted. Fresh THF (5 mL) was added and the suspension was stirred at 0°C whilst a solution of 3-(N,N-dimethylamino)prop-1-ylamine (1.26 mL, 10 mmol) in THF (5 mL) was added dropwise. The suspension was stirred at 25°C for 1 hour, the solvent was stripped under reduced pressure, and the residue was treated with cold water. The solid was collected by Buchner filtration, dissolved in boiling MeOH (25 mL), filtered, and the solvent was removed under reduced pressure. The residue was dissolved in acetic acid/water (3:2, 2.5 mL), and purified by HPLC on a Vidac C18 218TP1022 reverse phase HPLC column, eluting with a 10% to 50% gradient of 0.1% TFA in water/0.1% TFA in CH₃CN over 60 minutes. The pure fractions were pooled and lyophilized to give N-[4-[(3-bromophenyl)-amino]quinazolin-6-yl]-E,4-(3-(N,N-dimethylamino)prop-1-ylamino-4-oxobut-2-enamide tris trifluoroacetate (154 mg, 37%) as a yellow solid, mp 40°C.

¹H NMR [(CD₃)₂SO]: δ 11.02 (s, 1H, NH), 9.50 (br s, 1H, NH), 9.02 (d, J = 1.7 Hz, 1H, H5), 8.82 (s, 1H, H2), 8.74 (t, J = 5.7 Hz, 1H, NH), 8.05 (s, 1H, H2'), 8.02 (dd, J = 2.1, 9.0 Hz, 1H, H7), 7.89 (d, J = 8.9 Hz, 1H, H8), 7.76 (d, J = 7.2 Hz, H6'), 7.45 (m, 2H, H4' & H5'), 7.17 (d, J = 14.9 Hz, 1H, H3-but enyl), 7.05 (d, J = 15.2 Hz, 1H, H2-but enyl), 3.26 (m, 2H, NCH₂), 3.08 (m, 2H, CH₂N), 2.79 (d, J = 4.8 Hz, 6H, Me), 1.83 (m, 2H, CH₂).

Mass Spectrum (APCI): 498.8 (100, ⁸¹BrMH⁺), 496.9 (97, ⁷⁹BrMH⁺).

Calculated for C₂₃H₂₅BrN₆O₂·3CF₃COOH:

35 C, 41.49; H, 3.36; N, 10.01%.

Found: C, 41.44; H, 3.60; N, 10.33%.

-125-

EXAMPLE 57

4-[1-(3-Bromo-phenyl)aminol-6-(ethenesulfonyl)pyrido-[3,4-d]pyrimidine;

5 2-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-ylsulfanyl]-ethanol

A nitrogen purged solution of 2-mercaptoethanol (1.75 mL, 25 mmol), and 4-[3-bromophenyl]amino)-6-fluoropyrido[3,4-d]pyrimidine (1.6 g, 5 mmol), in DMSO (10 mL) was treated with anhydrous cesium carbonate (3.26 g, 10 mmol). The stirred solution was heated at 50°C for 2 hours, then poured into 2% aqueous hydrochloric acid (180 mL). After stirring the suspension for 15 minutes, the solids were collected, washed well with water, and dissolved in DMF. The solution was poured into 1:1 water:ethyl acetate and the resultant mixture was extracted with ethyl acetate (3x). The combined extracts were washed with brine, dried (MgSO_4), and filtered through flash SiO_2 . The filtrate was concentrated to a solid that was triturated in ethyl acetate. The solids were collected to give 1.24 g (66%) the product, mp 182-185°C in two crops, and 98 mg (5%) of a third crop, mp 179-183°C.

25 ^1H NMR [$(\text{CD}_3)_2\text{SO}$]: δ 10.03 (s, 1H, exchanges D_2O), 9.10 (s, 1H), 8.69 (s, 1H), 8.35 (s, 1H), 8.22 (t, $J = 1.9$ Hz, 1H), 7.91 (dt, $J = 7.7, 1.9$ Hz, 1H), 7.42-7.34 (m, 2H), 5.04 (t, $J = 5.5$ Hz, exchanges D_2O , 1H), 3.68 (dd, $J = 6.8, 5.7$ Hz, 2H), 3.36 (t, $J = 6.8$ Hz, 2H).

30 Mass Spectrum (APCI) m/z (relative %): 374.8 (49), 375.8 (10), 376.9 (100), 377.8 (23), 378.9 (63), 379.8 (14).

Analysis calculated for $\text{C}_{15}\text{H}_{13}\text{N}_4\text{OSBr}$:

35 C, 47.76; H, 3.47; N, 14.85.

Found: C, 47.65; H, 3.38; N, 14.55.

-126-

2-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidine-6-sulfonyl]-ethanol

A 0-5°C stirred suspension of 2-[4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-ylsulfanyl]-ethanol (755 mg, 2 mmol) in chloroform (30 mL) was treated with meta-chloroperbenzoic acid (1.27 g, 57-86%). The suspension was slowly warmed to 25°C over a 4 hour period. After 14.5 and 17.5 hours, respectively, the suspension was treated with an additional charge of the oxidant (720 mg, 720 mg). After 19.5 hours total reaction time, the thin suspension was cooled to 0-5°C, and treated with DMSO (2 mL). Cooling was removed, and the solution was stirred for 30 minutes. The mixture was then distributed between ethyl acetate and 5% aqueous sodium bicarbonate. The organic phase was washed with brine, dried (MgSO_4), and concentrated to a reduced volume that was purified by flash SiO_2 column chromatography eluting with ethyl acetate. The product fractions were combined and concentrated to a solid that was crystallized from ethyl acetate to give the product (460 mg, 56%), mp 210-212°C. The filtrate was further processed to afford 84 mg (10%) of a second crop, mp 208-209°C.

^1H NMR ($\text{CF}_3\text{CO}_2\text{H}$): δ 10.96 (s, 1H), 10.90 (s, 1H), 10.42 (s, 1H), 9.47 (s, 1H), 9.16 (d, $J = 8.2$ Hz, 1H), 9.05 (d, $J = 8.2$ Hz, 1H), 8.83 (t, $J = 8.0$, 1H), 5.81 (t, $J = 5.2$ Hz, 2 H), 5.43 (t, $J = 5.2$ Hz, 2 H).

Mass Spectrum (APCI) m/z (relative %): 378.7 (39), 380.7 (45), 408.7 (100), 409.7 (15), 410.7 (97), 411.7 (17).

Analysis calculated for $\text{C}_{15}\text{H}_{13}\text{N}_4\text{O}_3\text{SBr}$:

C, 44.02; H, 3.20; N, 13.69.

Found: C, 44.09; H, 3.14; N, 13.44.

-127-

4-[(3-Bromo-phenyl)amino]-6-(ethenesulfonyl)pyrido-[3,4-d]pyrimidine

To a 0-5°C stirred suspension of 2-[4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidine-6-sulfonyl]-ethanol (41 mg, 0.1 mmol), and triethylamine (31 µL, 0.22 mmol) in dichloromethane (0.5 mL) under N₂ was added dropwise methanesulfonyl chloride (9.3 µL, 0.12 mmol). Additional charges of methanesulfonyl chloride (9.3 µL, 9.3 µL) were added after 45 minutes, and 1.5 hours, the latter with additional triethylamine (50 µL). After reaction for a total of 2.5 hours, the cold solution was quenched with 5% aqueous sodium bicarbonate, then extracted with ethyl acetate (2x). The combined organic extracts were dried (MgSO₄) then filtered through a pad of flash SiO₂. The filtrate was concentrated to a solid that was crystallized from ethyl acetate to leave the product (17 mg, 44%), mp 214-217°C.

¹H NMR [(CD₃)₂SO]: δ 10.64 (s, 1H, exchanges D₂O), 9.30 (s, 1H), 9.25 (s, 1H), 8.87 (s, 1H), 8.16 (s, 1H), 7.89-7.85 (m, 1H), 7.39-7.33 (m, 2H), 7.17 (dd, J = 10.0, 16.5 Hz, 1H), 6.46 (d, J = 16.4 Hz, 1H), 6.37 (d, J = 10.0 Hz, 1H).

25

EXAMPLE 58

N-(3-Bromo-phenyl)-N-[6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-quinazolin-4-yl]-acetamide

Sodium acetate (0.10 g, 1.2 mmol) was added to a suspension of 3-[4-(3-bromo-phenylamino)-quinazolin-6-ylcarbamoyl]-acrylic acid (Z) (0.25 g, 0.61 mmol) in 5 mL of acetic anhydride, and the mixture was heated under reflux for 30 minutes. After cooling to room temperature, the reaction was filtered and the filtrate concentrated to dryness in vacuo. The residue was taken up in EtOAc and washed sequentially with saturated sodium bicarbonate, water, and brine. The

-128-

EtOAc portion was dried over magnesium sulfate, filtered and concentrated to afford a faintly pink solid. The solid was recrystallized twice from EtOAc to afford N-(3-bromo-phenyl)-N-[6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-quinazolin-4-yl]-acetamide (0.104 g, 39%) as an off-white powder, mp 174-175°C.

5 ^1H NMR [CDCl₃]: δ 9.24 (s, 1H, H2), 8.16 (d, J = 9 Hz, 1H, H8), 8.10 (d, J = 2 Hz, 1H, H5), 8.03 (dd, J = 9 Hz, J = 2 Hz, 1H, H7), 7.59 (t, 1H, J = 2 Hz, H2'), 7.45 (m, 1H, H4'), 7.38 (m, 1H, H6'), 7.27 (d, 1H, J = 7 Hz, H5'), 6.91 (s, 2H, CH=CH), 2.15 (s, 3H, CH₃). Mass Spectrum (APCI): 438.7 (89, ⁸¹BrMH⁺), 436.7 (79, ⁷⁹BrMH⁺); 439.7 (17, ⁸¹BrM⁺), 437.7 (19, ⁷⁹BrM⁺); 470.7 (100, ⁸¹BrM⁺MeOH), 468.8 (95, ⁷⁹BrM⁺MeOH).

10 Calculated for C₂₀H₁₃BrN₄O₃:

15 C, 54.94; H, 3.00; N, 12.81%.

Found: C, 54.90; H, 2.97; N, 12.61%.

The following compounds can be made using the schemes and examples provided above:

20 1-[4-(3-Bromo-phenylamino)-quinazolin-6-yl]-pyrrole-2,5-dione;

25 1-[4-(3-Bromo-phenylamino)-quinazolin-6-yl]-prop-2-en-1-one;

30 Acrylic acid 4-(3-bromo-phenylamino)-quinazolin-6-yl ester;

35 Methyl N-[4-[(3-bromophenyl)amino]-P-ethenyl-pyrido[3,4-d]pyrimidin-6-yl]phosphonamate;

 Acrylic acid 4-(3-bromo-phenylamino)-quinazolin-7-yl ester;

 1-[4-(3-Bromo-phenylamino)-quinazolin-6-yl]-but-3-en-2-one;

 Acrylic acid 4-(3-chloro-4-fluoro-phenylamino)-7-methoxy-quinazolin-6-yl ester;

 N-[4-(3-Bromo-phenylamino)-7-(3-morpholin-4-yl-propoxy)-pyrido[3,2-d]pyrimidin-6-yl]-acryl amide;

-129-

- penta-2,3-dienoic acid [4-(3-bromo-phenylamino)-
quinazolin-6-yl]-amide;
Propa-1,2-diene-1-sulfonic acid [4-(3-bromo-
phenylamino)-quinazolin-6-yl]-amide;
5 Methyl N-[4-[(3-bromophenyl)amino]-6-
quinazolinyl]-P-(1,2-propadienyl)phosphonamate;
N-[1-(3-Bromo-phenylamino)-9H-2,4,9-triaza-
fluoren-7-yl]-acrylamide;
N-[4-(3-Bromo-phenylamino)-9H-1,3,9-triaza-
10 fluoren-6-yl]-acrylamide;
N-[4-(3-Chloro-4-fluoro-phenylamino)-quinazolin-6-
yl]-acrylamide;
N-(4-Phenylmethylamino-quinazolin-6-yl)-
acrylamide;
15 (S)-N-[4-(1-Phenyl-ethylamino)-quinazolin-6-yl]-
acrylamide;
 (R)-N-[4-(1-Phenyl-ethylamino)-quinazolin-6-yl]-
acrylamide;
But-2-enedioic acid [4-(3-chloro-4-fluoro-
20 phenylamino)-quinazolin-6-yl]-amide (3-dimethylamino-
propyl)-amide;
N-[4-(3-Chloro-4-fluoro-phenylamino)-
pyrido[3,4-d]pyrimidin-6-yl]-acrylamide;
N-[4-(3-Chloro-4-fluoro-phenylamino)-
25 pyrido[3,4-d]pyrimidin-6-yl]-N-methyl-acrylamide;
But-2-enedioic acid [4-(3-chloro-4-fluoro-
phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide
(3-dimethylamino-propyl)-amide;
But-2-enedioic acid [4-(3-chloro-4-fluoro-
30 phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide
(3-imidazol-1-yl-propyl)-amide;
4,4-Difluoro-8-morpholin-4-yl-oct-2-enoic acid
[4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-yl]-amide;

-130-

- 8-Dimethylamino-4,4-difluoro-oct-2-enoic acid
[4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-yl]-amide;
- 7-Dimethylamino-4,4-difluoro-hept-2-enoic acid
5 [4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-yl]-amide;
- 4,4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid
[4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-yl]-amide;
- 10 6-Dimethylamino-hex-2-yneic acid [4-(3-chloro-4-
fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
6-Morpholin-4-yl-hex-2-yneic acid [4-(3-chloro-4-
fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 15 7-Dimethylamino-hept-2-yneic acid [4-(3-chloro-4-
fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
7-Morpholin-4-yl-hept-2-yneic acid [4-(3-chloro-4-
fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 20 5-Dimethylamino-pent-2-yneic acid [4-(3-chloro-4-
fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
5-Morpholin-4-yl-pent-2-yneic acid [4-(3-chloro-4-
fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 25 5-Imidazol-1-yl-pent-2-yneic acid [4-(3-chloro-4-
fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
5-(4-Methyl-piperazin-1-yl-pent-2-yneic acid
[4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-yl]-amide;
- 30 4-[4-(3-Chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-ylcarbamoyl]-but-3-enoic acid 2-(4-methyl-
piperazin-1-yl)-ethyl ester;
- 35 4-[4-(3-Chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-ylcarbamoyl]-but-3-enoic acid 2-(imidazol-
1-yl)-ethyl ester;
- Pent-2-enedioic acid 1-[(4-(3-chloro-4-fluoro-
phenylamino)-pyrido[3,4-d]pyrimidin-6-yl)-amide] 5-[(3-
morpholin-4-yl-propyl)-amide];

-131-

- Pent-2-enedioic acid 1-{[4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide} 5-{(3-diethylamino-propyl)-amide};
4-[4-(3-Chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-ylcarbamoyl]-but-3-enoic acid 2-morpholin-4-yl-ethyl ester;
Pent-2-enedioic acid 1-{[4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide} 5-{(3-4-methyl-piperazin-1-yl)-propyl)-amide};
(3-Chloro-4-fluoro-phenyl)-(6-[2-(3-dimethylamino-propoxy)-ethenesulfonyl]-pyrido[3,4-d]pyrimidin-4-yl)-amine;
(3-Chloro-4-fluoro-phenyl)-(6-{2-[4-(4-methyl-piperazin-1-yl)-butylamino]-ethenesulfonyl}-pyrido[3,4-d]pyrimidin-4-yl)-amine;
(3-Chloro-4-fluoro-phenyl)-(6-(5-morpholin-4-yl-pent-1-ene-1-sulfonyl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
(3-Chloro-4-fluoro-phenyl)-(6-ethenesulfinyl-pyrido[3,4-d]pyrimidin-4-yl)-amine;
3-[4-(1-Phenyl-ethylamino)-quinazolin-6-ylcarbamoyl]-acrylic acid 2-morpholin-4-yl-ethyl ester;
But-2-enedioic acid (4-imidazol-1-yl-butyl)-amide
[4-(1-phenyl-ethylamino)-quinazolin-6-yl]-amide;
4-[4-(1-Phenyl-ethylamino)-quinazolin-6-ylcarbamoyl]-but-3-enoic acid 3-diethylamino-propyl ester;
Pent-2-enedioic acid 5-{[2-(4-methyl-piperazin-1-yl)-ethyl]-amide} 1-{[4-(1-phenyl-ethylamino)-quinazolin-6-yl]-amide};
4,4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid [4-(1-phenyl-ethylamino)-quinazolin-6-yl]-amide;
7-Dimethylamino-4,4-difluoro-hept-2-enoic acid [4-(1-phenyl-ethylamino)-quinazolin-6-yl]-amide;
7-Imidazol-1-yl-hept-2-ynoic acid [4-(1-phenyl-ethylamino)-quinazolin-6-yl]-amide;

-132-

- 6-Dimethylamino-hex-2-yneic acid [4-(1-phenyl-ethylamino)-quinazolin-6-yl]-amide;
- But-2-enedioic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide (3-dimethylamino-propyl)-amide;
- 5 But-2-enedioic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide (3-imidazol-1-yl-propyl)-amide;
- 10 4,4-Difluoro-8-morpholin-4-yl-oct-2-enoic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 15 8-Dimethylamino-4,4-difluoro-oct-2-enoic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 20 4,4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 25 6-Dimethylamino-hex-2-yneic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 6-Morpholin-4-yl-hex-2-yneic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 7-Dimethylamino-hept-2-yneic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 25 7-Morpholin-4-yl-hept-2-yneic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 30 5-Dimethylamino-pent-2-yneic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 5-Morpholin-4-yl-pent-2-yneic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 5-Imidazol-1-yl-pent-2-yneic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;

-133-

- 5-(4-Methyl-piperazin-1-yl)-pent-2-ynoic acid
[4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-
amide;
- 5 4-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-
6-ylcarbamoyl]-but-3-enoic acid 2-(4-methyl-piperazin-
1-yl)-ethyl ester;
- 10 4-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-
6-ylcarbamoyl]-but-3-enoic acid 2-imidazol-1-yl-ethyl
ester;
- 15 Pent-2-enedioic acid 1-{[4-(3-bromo-phenylamino)-
pyrido[3,4-d]pyrimidin-6-yl]-amide} 5-{(3-morpholin-
4-yl-propyl)-amide};
- 15 Pent-2-enedioic acid 1-{[4-(3-bromo-phenylamino)-
pyrido[3,4-d]pyrimidin-6-yl]-amide} 5-{(3-diethylamino-
propyl)-amide};
- 20 4-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-
6-ylcarbamoyl]-but-3-enoic acid 2-morpholin-4-yl-ethyl
ester;
- 20 Pent-2-enedioic acid 1-{[4-(3-bromo-phenylamino)-
pyrido[3,4-d]pyrimidin-6-yl]-amide} 5-{[3-(4-methyl-
piperazin-1-yl)-propyl]-amide};
- 25 (3-Bromo-phenyl)-{6-[2-(3-dimethylamino-propoxy)-
ethenesulfonyl]-pyrido[3,4-d]pyrimidin-4-yl}-amine;
- 25 (3-Bromo-phenyl)-(6-{2-[4-(4-methyl-piperazin-1-
yl)-butylamino]-ethenesulfonyl}-pyrido[3,4-d]pyrimidin-
4-yl)-amine;
- 30 (3-Bromo-phenyl)-{6-(5-morpholin-4-yl-pent-1-ene-
1-sulfonyl)-pyrido[3,4-d]pyrimidin-4-yl}-amine;
- 30 (3-Bromo-phenyl)-(6-ethenesulfinyl-pyrido[3,4-d]
pyrimidin-4-yl)-amine;
- 35 But-2-enedioic acid [4-(3-chloro-4-fluoro-
phenylamino)-quinazolin-6-yl]-amide (3-dimethylamino-
propyl)-amide;
- 35 But-2-enedioic acid [4-(3-chloro-4-fluoro-
phenylamino)-quinazolin-6-yl]-amide (3-imidazol-1-yl-
propyl)-amide;

-134-

- 4, 4-Difluoro-8-morpholin-4-yl-oct-2-enoic acid
[4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-
amide;
- 8-Dimethylamino-4, 4-difluoro-oct-2-enoic acid
5 [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-
amide;
- 7-Dimethylamino-4, 4-difluoro-hept-2-enoic acid
[4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-
amide;
- 10 4, 4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid
[4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-
amide;
- 6-Dimethylamino-hex-2-yneic acid [4-(3-chloro-4-
fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 15 6-Morpholin-4-yl-hex-2-yneic acid [4-(3-chloro-4-
fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 7-Dimethylamino-hept-2-yneic acid [4-(3-chloro-4-
fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 20 7-Morpholin-4-yl-hept-2-yneic acid [4-(3-chloro-4-
fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 5-Dimethylamino-pent-2-yneic acid [4-(3-chloro-4-
fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 25 5-Morpholin-4-yl-pent-2-yneic acid [4-(3-chloro-4-
fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 5-Imidazol-1-yl-pent-2-yneic acid [4-(3-chloro-4-
fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 5-(4-Methyl-piperazin-1-yl)-pent-2-yneic acid
[4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-
amide;
- 30 Pent-2-enedioic acid 1-{{4-(3-chloro-4-fluoro-
phenylamino)-quinazolin-6-yl}-amide} 5-[(3-morpholin-
4-yl-propyl)-amide];
- Pent-2-enedioic acid 1-{{4-(3-chloro-4-fluoro-
phenylamino)-quinazolin-6-yl}-amide} 5-[(3-
35 diethylamino-propyl)-amide];

-135-

4-[4-(3-Chloro-4-fluoro-phenylamino)-quinazolin-6-ylcarbamoyl]-but-3-enoic acid 2-morpholin-4-yl-ethyl ester;

- 5 Pent-2-enedioic acid 1-({4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide} 5-({3-(4-methyl-piperazin-1-yl)-propyl]-amide};
(3-Chloro-4-fluoro-phenyl)-(6-[2-(3-dimethylamino-propoxy)-ethenesulfonyl]-quinazolin-4-yl)-amine;
(3-Chloro-4-fluoro-phenyl)-(6-{2-[4-(4-methyl-piperazin-1-yl)-butylamino]-ethenesulfonyl}-quinazolin-4-yl)-amine;
10 But-2-enedioic acid {4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide (3-dimethylamino-propyl)-amide;
But-2-enedioic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide (3-imidazol-1-yl-propyl)-amide;
15 4,4-Difluoro-8-morpholin-4-yl-oct-2-enoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
8-Dimethylamino-4,4-difluoro-oct-2-enoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
20 7-Dimethylamino-4,4-difluoro-hept-2-enoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
4,4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
25 6-Dimethylamino-hex-2-yneic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
6-Morpholin-4-yl-hex-2-yneic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
7-Dimethylamino-hept-2-yneic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
30 7-Morpholin-4-yl-hept-2-yneic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
5-Dimethylamino-pent-2-yneic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
35 5-Morpholin-4-yl-pent-2-yneic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;

-136-

- 5-Imidazol-1-yl-pent-2-ynoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 5-(4-Methyl-piperazin-1-yl)-pent-2-ynoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 5 4-[4-(3-Bromo-phenylamino)-quinazolin-6-ylcarbamoyl]-but-3-enoic acid 2-(4-methyl-piperazin-1-yl)-ethyl ester;
- 10 4-[4-(3-Bromo-phenylamino)-quinazolin-6-ylcarbamoyl]-but-3-enoic acid 2-imidazol-1-yl-ethyl ester;
- Pent-2-enedioic acid 1-[(4-(3-bromo-phenylamino)-quinazolin-6-yl)-amide] 5-[(3-morpholin-4-yl-propyl)-amide];
- 15 Pent-2-enedioic acid 1-[(4-(3-bromo-phenylamino)-quinazolin-6-yl)-amide] 5-[(3-diethylamino-propyl)-amide];
- 4-[4-(3-Bromo-phenylamino)-quinazolin-6-ylcarbamoyl]-but-3-enoic acid 2-morpholin-4-yl-ethyl ester;
- 20 Pent-2-enedioic acid 1-[(4-(3-bromo-phenylamino)-quinazolin-6-yl)-amide] 5-[(3-(4-methyl-piperazin-1-yl)-propyl)-amide];
- 3-[(4-(1-Phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-ylcarbamoyl)-acrylic acid 2-morpholin-4-yl-ethyl ester;
- 25 But-2-enedioic acid (4-imidazol-1-yl-butyl)-amide [4-(1-phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 4-[4-(1-Phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-ylcarbamoyl]-but-3-enoic acid 3-diethylamino-propyl ester;
- 30 Pent-2-enedioic acid 5-[(2-(4-methyl-piperazin-1-yl)-ethyl)-amide] 1-[(4-(1-phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-yl)-amide];

-137-

- 4, 4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid
[4-(1-phenyl-ethylamino)-pyrido[3, 4-d]pyrimidin-6-yl]-
amide;
- 7-Dimethylamino-4, 4-difluoro-hept-2-enoic acid
5 [4-(1-phenyl-ethylamino)-pyrido[3, 4-d]pyrimidin-6-yl]-
amide;
- 7-Imidazol-1-yl-hept-2-yneic acid [4-(1-phenyl-
ethylamino)-pyrido[3, 4-d]pyrimidin-6-yl]-amide;
- 6-Dimethylamino-hex-2-yneic acid [4-(1-phenyl-
10 ethylamino)-pyrido[3, 4-d]pyrimidin-6-yl]-amide;
- But-2-endioic acid [4-(3-chloro-4-
fluorophenylamino)-7-fluoroquinazolin-6-yl]amide
(3-dimethylaminopropyl)amide;
- But-2-endioic acid [7-chloro-4-(3-chloro-4-
15 fluorophenylamino)quinazolin-6-yl]amide
(3-dimethylaminopropyl)amide;
- N-[4-[3-(Bromophenyl)amino]-5-fluoro-7-[3-(4-
morpholino)propoxy]quinazolin-6-yl]acrylamide; and
- N-[4-[(3-(Chloro-4-fluorophenyl)amino)-5-fluoro-7-
20 (1, N-imidazoyl)propoxy]quinazolin-6-yl]acrylamide.

BIOLOGICAL METHODS

Tissue Culture

- 25 A431 human epidermoid carcinoma cells were obtained from the American Type Culture Collection, Rockville, MD and maintained as monolayers in dMEM (Dulbecco's modified eagle medium)/F12, 50:50 (Gibco/BRL) containing 10% fetal bovine serum. For growth inhibition assays, dilutions of the designated compound in 10 µL were placed in 24-well Linbro plates (1.7 × 1.6 cm, flat bottom) followed by the addition of cells (2×10^4) in 2 mL of media. The plates were incubated for 72 hours at 37°C in a humidified atmosphere containing 5% CO₂ in air. Cell growth was determined by cell count with a Coulter Model AM

-138-

electronic cell counter (Coulter Electronics, Inc., Hialeah, FL).

Purification of Epidermal Growth Factor Receptor Tyrosine Kinase

Human EGF receptor tyrosine kinase was isolated from A431 human epidermoid carcinoma cells by the following method. Cells were grown in roller bottles in dMEM/F12 media (Gibco/BRL) containing 10% fetal calf serum. Approximately 10^9 cells were lysed in 2 volumes of buffer containing 20 mM N-[2-hydroxyethyl]-piperazine-N'-(2-ethane sulfonic acid) (Hepes), pH 7.4, 5 mM ethylene glycol-bis(β-aminoethyl ether) N, N, N', N'-tetraacetic acid (EGTA), 1% Triton X-100, 10% glycerol, 0.1 mM sodium orthovanadate, 5 mM sodium fluoride, 4 mM pyrophosphate, 4 mM benzamide, 1 mM dithiothreitol (DTT), 80 µg/mL aprotinin, 40 µg/mL leupeptin, and 1 mM phenylmethyl sulfonyl fluoride (PMSF). After centrifugation at 25,000 × g for 10 minutes, the supernatant was applied to a fast Q sepharose column (Pharmacia Biotech., Inc., Piscataway, NJ) and eluted with a linear gradient from 0.1 M NaCl to 0.4 M NaCl in 50 mM Hepes, 10% glycerol, pH 7.4. Enzyme active fractions were pooled, divided into aliquots, and stored at -100°C. Fibroblast growth factor receptor (FGFR), platelet-derived growth factor (PDGF), insulin, and c-src tyrosine kinases were obtained by methods well-known in the art. For example, see Fry, et al., "Strategies For The Discovery Of Novel Tyrosine Kinase Inhibitors With Anticancer Activity, Anticancer Drug Design, 1994;9:331-351.

Tyrosine Kinase Assays

Enzyme assays for IC₅₀ determinations were performed in 96 well filter plates (Millipore MADVN6550, Millipore, Bedford; MA). The total volume

-139-

was 0.1 mL containing 20 mM Hepes, pH 7.4, 50 μ M sodium vanadate, 40 mM magnesium chloride, 10 μ M adenosine triphosphate (ATP) containing 0.5 μ Ci of [32 P]ATP, 20 μ g of poly Glutamic acid/tyrosine (Sigma Chemical Co., St. Louis, MO), 10 ng of EGF receptor tyrosine kinase and appropriate dilutions of inhibitor. All components except the ATP are added to the well and the plate incubated with shaking for 10 minutes at 25°C. The reaction is started by adding [32 P]ATP, and the plate is incubated at 25°C for 10 minutes. The reaction is terminated by addition of 0.1 mL of 20% trichloroacetic acid (TCA). The plate is kept at 4°C for at least 15 minutes to allow the substrate to precipitate. The wells are then washed 5 times with 0.2 mL of 10% TCA and 32 P incorporation determined with a Wallac beta plate counter (Wallac, Inc., Gaithersburg, PA). Assays using intracellular kinase domains of PDGF, FGF, and insulin receptors, as well as those for c-src, were performed as described for the EGF receptor except that 10 mM Manganese chloride was included in the reaction.

Western Blotting Procedure

Extracts were made by lysing the monolayers in 0.2 mL of boiling Laemlli buffer (2% sodium dodecyl sulfate, 5% beta-mercaptoethanol, 10% glycerol and 50 mM tris[hydroxymethyl]aminomethane (Tris), pH 6.8), and the lysates were heated to 100°C for 5 minutes. Proteins in the lysate were separated by polyacrylamide gel electrophoresis and electrophoretically transferred to nitrocellulose. The membrane was washed once in 10 mM Tris, pH 7.2, 150 mM NaCl, 0.01% Azide (TNA), and blocked overnight in TNA containing 5% bovine serum albumin and 1% ovalbumin. The membrane was blotted for 2 hours with antiphosphotyrosine antibody (UBI, 1 μ g/mL in blocking buffer) and then washed twice in TNA, once

-140-

in TNA containing 0.05% Tween-20 detergent and 0.05% nonidet P-40 detergent and twice in TNA. The membranes were then incubated for 2 hours in blocking buffer containing 0.1 μ Ci/mL of [125 I]protein A and then 5 washed again as above. After the blots were dry, they were loaded into a film cassette and exposed to X-AR X-ray film (Eastman Kodak Co., Rochester, NY) for 1 to 7 days. Band intensities were determined with a Molecular Dynamics laser densitometer.

10

Autophosphorylation Assay

A431 human epidermoid carcinoma cells were grown in 6-well plates to about 80% confluence and then 15 incubated in serum-free media for 18 hours. Duplicate sets of cells were treated with a range of concentrations of the designated compound to be tested as an inhibitor for 15 minutes. The cells were then stimulated with 100 ng/mL of EGF for 5 minutes and extracts made as described under the Western Blotting 20 Procedure.

Irreversibility Test Protocol

A431 human epidermoid carcinoma cells were grown in 6-well plates to about 80% confluence and then 25 incubated in serum-free media for 18 hours. Duplicate sets of cells were treated with 2 μ M of designated compound to be tested as an irreversible inhibitor for either 1 or 2 hours. One set of cells was then stimulated with 100 ng/mL of EGF for 5 minutes and 30 extracts made as described under the western blotting procedure. The other set of cells were washed free of the compound with warmed serum-free media, incubated for 2 hours, washed again, incubated another 2 hours, washed again, and then incubated a further 4 hours. 35 This set of cells was then stimulated with EGF and extracts made similar to the first set of cells.

-141-

Results

Table 1 shows the IC₅₀ values of various compounds for inhibition of the isolated EGF receptor tyrosine kinase in the first column, and for inhibition of EGF-stimulated autophosphorylation of the EGF-receptor in A431 cells in the second column. Most compounds of the current invention inhibited the isolated enzyme with low nanomolar or subnanomolar potency and the majority had low nanomolar potency when inhibiting cellular autophosphorylation. Table 2 indicates the ability of A431 cells to recover EGF receptor autophosphorylation activity after complete suppression of the enzyme by these compounds followed by their removal from the medium. The first set of cell extracts (2nd column) shows that many of the compounds tested completely suppressed EGF receptor autophosphorylation after the initial 2 hour incubation. The third column in Table 2 shows the percent return of EGF receptor autophosphorylation activity after the washes and incubation in compound-free medium as described in the methods. At least 30 of the compounds retained 50% or greater inhibition of kinase activity after this treatment with at least 23 of the compounds showing 90%-100% inhibition of the original enzyme activity. Cells treated with all other compounds tested were able to recover 86% to 100% of their EGF-dependent autophosphorylation activity. Reversibility studies where the incubation time was carried out further indicate that the time required for return of 50% of the activity was 21 hours (Table 3). A specific sidechain requirement for irreversible interaction is illustrated by the fact that Compound 9, a very close analog of Compound 3 with equally potent inhibitory activity against the enzyme, was completely reversible. Furthermore the requirement for a conjugated alkene in the sidechain is demonstrated by comparing Compounds 3

-142-

and 11 with their saturated analogues 17 and 28. In these cases the compounds all show similar potency against the isolated enzyme and are not well differentiated in the autophosphorylation assay, but
5 Compounds 17 and 28 have no inhibitory effect at the end of 8 hours washoff, whereas the irreversible inhibitors Compounds 3 and 11 have 89% and 100% inhibition of the enzyme at that time.

Table 4 illustrates that Compound 3 retains very
10 high specificity for the EGF receptor tyrosine kinase as opposed to other tyrosine kinase enzymes and indicates that the active sidechain in Example 3 does not indiscriminately interact with other enzymes.

Finally, Compound 3 was tested for its ability to
15 inhibit proliferation in A431 human epidermoid carcinoma cells. An IC₅₀ of 0.30 ± 0.09 micromolar was obtained indicating its ability to stop tumor growth.

The properties of an irreversible inhibitor are attractive because it would help circumvent or solve
20 the potential problems of a short plasma half-life and/or a requirement for prolonged suppression of its target. One bolus injection at an appropriate dose of an irreversible inhibitor would in effect be enough to abolish the existing target activity, and the return of
25 that activity would be dependent on the rate of resynthesis of the target. Since it is known that the half-life for turnover of the EGF receptor is 20 hours in A431 cells, an inhibitor could keep the receptor suppressed with administration once or twice a day.
30 This eliminates the need for multiple injections, or the use of infusion or osmotic pumps. Alternatively, it can allow for lower doses to be used in multiple or continuous dosing regimens to achieve results with an irreversible inhibitor, as the receptor activity is no
35 longer being repressed under equilibrium binding conditions.

-143-

TABLE 1
 IC_{50} S OF EXAMPLES AGAINST ISOLATED EGFR
 KINASE ACTIVITY AND EGFR
 AUTOPHOSPHORYLATION IN A431 CELLS

	Example	EGFR Tyrosine Kinase IC_{50} (nM)	Autophos- phorylation IC_{50} (nM)
5	2	2.7	156
	3	0.36	14
	4	89	2090
	5	11	
10	6	104	
	7	27	130
	8	0.029	13
	9	0.46	20
	11	0.84	2.7
15	12	910	>10000
	13	1.6	90
	14	0.25	53
	15	1.2	16
	16	3.7	2450
20	17	1.9	60
	18	1.6	2.3
	19	0.42	4.7
	20	0.91	4.5
	21	3.6	5.3
25	22	1.5	27
	23	2	18
	24	4	7.9
	25	3	21
	26	1.7	3
30	27	3.3	194
	28	0.52	15
	29	1.2	28
	30	1.4	2.7
	31	0.55	8.7
35	32	1.75	35
	33	0.89	10
	34	0.47	5.5
	35	0.54	108
	36	0.91	3.4
40	37	0.48	8.3
	38	0.17	13
	39	1.6	44

-144-

TABLE 1 (cont'd)
 IC_{50} S OF EXAMPLES AGAINST ISOLATED EGFR
 KINASE ACTIVITY AND EGFR
 AUTOPHOSPHORYLATION IN A431 CELLS

	Example	EGFR	Tyrosine	Autophos-
			Kinase IC_{50} (nM)	phorylation IC_{50} (nM)
5	40		0.76	2.4
	41		1.1	5.6
	42		23	173
	43		1.4	24
	44		21	327
	45		1.6	1039
	46		1.2	120
	47		2.7	67
10	48		1.1	27
	49		4.2	2280
	50		0.5	7.7
	51		9.1	77
15	52		0.69	20
	53		0.81	52
	54		2.4	108
	55		0.37	>500
	56		0.44	59
	57		0.43	>500
20	58		124	>500

25

-145-

TABLE 2
RECOVERY OF EGF RECEPTOR AUTOPHOSPHORYLATION ACTIVITY
IN A431 CELLS AFTER EXPOSURE TO 2 μ M INHIBITOR

Example No.	% Control After 2-Hour Incubation		% Control After 8 Hours in Drug-Free Media	Irreversible
			Incubation	
5	2	0	92	N
	3	1	13	Y
	4	55	98	N
	5			N
10	6			N
	7			N
	8	0	95	N
	9	0	99	N
15	11	0	0	Y
	12	85	100	N
	13	1	90	N
	14	0	50	Y
	15	0	85	N
20	16	30	85	N
	17	0	100	N
	18	0	0	Y
	19	0	0	Y
	20	0	0	Y
25	21	0	0	Y
	22	0	0	Y
	23	0	0	Y
	24	0	0	Y
	25	0	0	Y
30	26	0	0	Y
	27	0	96	N
	28	0	100	N
	29	0	100	N
	30	0	0	Y
35	31	0	35	Y
	32	0	0	Y
	33	0	0	Y
	34	0	0	Y
	35	0	20	Y
40	36	0	0	Y
	37	0	0	Y
	38	0	0	Y
	39	0	80	N
	40	0	0	Y
	41	0	0	Y

-146-

TABLE 2 (cont'd)
RECOVERY OF EGF RECEPTOR AUTOPHOSPHORYLATION ACTIVITY
IN A431 CELLS AFTER EXPOSURE TO 2 μ M INHIBITOR

	Example No.	% Control After 2-Hour Incubation	% Control After 8 Hours in Drug-Free Media	Irreversible
		Incubation	Incubation	
5	42	12	50	Y
	43	0	0	Y
	44	13	42	Y
	45	0	21	Y
	46	19	59	Y
	47	0	26	Y
	48	0	53	Y
	49	50	75	N
10	50	0	32	Y
	51	12	32	Y
	52	0	0	Y
	53	0	0	Y
15	54	0	3	Y
	55	32	32	Y
	56	0	0	Y
	57	43	39	Y
20	58	81	95	N

25

TABLE 3
REVERSIBILITY OF EGF RECEPTOR AUTOPHOSPHORYLATION
INHIBITOR IN A431 CELLS TREATED FOR 2 HOURS WITH
2 μ M OF COMPOUND 3 OR COMPOUND 9 INHIBITOR

	Hours in Drug-Free Media	Compound 3	Compound 9
		% of Control Autophos- phorylation	% of Control Autophos- phorylation
	0	0	4
	4	12	24
35	8	23	100
	23	54	100

-147-

TABLE 4
EFFECT OF EXAMPLE 3 ON INHIBITION OF DIFFERENT
TYROSINE KINASES IC₅₀ (nM)

5	EGFR	C-SRC	Insulin	PDGF	FGF1
	0.36	>2,500	>50,000	>50,000	>50,000

In Vivo Data

10 Female nude mice (NCr nu/nu, Taconic Farms) 18-20 g were implanted SC with tumor fragments (approximately 30 mg) in the region of the right axilla on Day 0. The tumor used in this study was an NIH 3T3 fibroblast transfected with the h-EGF receptor (Decker, et al., J Biol Chem, 1990;265:7009-7015). This model is very tumorigenic, producing a 100% take rate, and doubles in volume in less than 2 days. The compound of Example 3 was administered intraperitoneally every 12 hours on Days 3 through 7 for a total of 20 10 injections (5 mice per group). The vehicle was 6% dimethyl acetamide in 50 mM lactate buffer, pH 4.0. Tumor volumes were recorded three times per week by measuring the length and width of the individual tumors and calculating the mass in milligrams according to the formula $(a \times b^2)/2$, where a and b are the length and width of the tumor. Percent T/C (treated/control) was calculated based on the ratio of the median tumor volume of the treated tumors compared with the median tumor volume of the control tumors on specified 25 measurement days.

30 Treatment at both 100 and 30 mg/kg/injection inhibited tumor growth by 40% to 50% as assessed on Days 7, 10, and 12 of the experiment. No activity was observed at 10 or 3 mg/kg/injection. No weight loss, 35 lethality, or clinical signs of toxicity were observed at any dose level.

-148-

% T/C

Group	Day		
	7	10	12
Control	100	100	100
Example No. 3 @ 100 (mg/kg/injection)	57	70	57
Example No. 3 @ 30 (mg/kg/injection)	48	66	53
Example No. 3 @ 3 (mg/kg/injection)	115	138	113

10 Additional In Vivo Testing

Using a similar protocol to that described above, with the exception that six mice per group are used, and the dosing schedules are as described, several compounds have been tested against a variety of tumor xenografts. These include the h-EGF receptor transfected NIH 3T3-transfected fibroblast model described above; the A431 human epidermoid carcinoma, which heavily overexpresses the EGF receptor; the MCF7 human breast carcinoma, which is sensitive to EGF receptor inhibitors and known to express the EGF receptor and erbB-2 and erbB-3; the SK-OV-3 human ovarian carcinoma, which greatly overexpresses erbB-2; the AH-125 small cell lung cancer which overexpresses the EGF receptor; and the murine 16/c mammary adenocarcinoma.

Example 3

EGFR Tumor

IP dosing bid Days 3 through 7:

30 @100 mg/kg produced 4 day growth delay.
 @30 mg/kg produced 2.5 day growth delay.

IP dosing bid Days 1 through 13:

 @300 mg/kg no activity.
 @190 and 120 mg/kg 1 day growth delay.
 @75 mg/kg 5 day growth delay.

-149-

Example 11

MCF-7 Tumor

IP dosing bid Days 1-5, 8-12, 15-19:

@47 mg/kg 17.4 day growth delay.

5 @28 mg/kg 22.9 day growth delay.

Murine 16/c Mammary Adenocarcinoma

Inactive at doses of up to 120 mg/kg bid.

10 EGFR Tumor

IP dosing bid for 14 days:

@75 mg/kg produced 8.7 day growth delay.

@47 mg/kg 6.6 day growth delay.

@29 mg/kg 2.3 day growth delay.

15 @18 mg/kg 1.8 day growth delay.

@150 mg/kg toxic.

@75 mg/kg toxic.

IP dosing bid Days 3-7, 10-14, 17-21, 24-28:

@75 mg/kg 19.9 day growth delay.

20 @150 mg/kg toxic.

IP dosing once daily Days 3-17:

@75 mg/kg 11.7 day growth delay.

IP dosing once daily Days 3-7, 10-14, 17-21:

@75 mg/kg 5.3 day growth delay.

25 @150 mg/kg toxic.

A431 Tumor

IP dosing bid Days 7-11, 4-18, 21-25:

@28 mg/kg produced a 28.2 day growth delay.

30 PO dosing once daily Days 7-21:

@200 mg/kg produced a 3.5 day growth delay.

@100 mg/kg a 2 day growth delay.

SK-OV-3 Tumor

35 ID dosing bid Days 10-14, 17-21, 24-28:

@30 mg/kg produced 1.2 day growth delay.

-150-

Example 19

EGFR Tumor

IP dosing bid for 14 days:

- 5 @124 mg/kg produced 11.8 day growth delay.
 @77 mg/kg 7.9 day growth delay.
 @48 mg/kg 6.4 day growth delay.
 @200 mg/kg toxic.

SK-OV-3 Tumor

10 ID dosing bid Days 10-14, 17-21, 24-28:

 @30 mg/kg produced 1.3 day growth delay.

A431 Tumor

SC-Infusion (Alzet) Days 9-23:

- 15 @24 mg/kg/day produced a 14 day growth delay.
 @12 mg/kg/day produced a 15 day growth delay.

Example 21

IP dosing bid:

- 20 @48 mg/kg toxic.

EGFR Tumor

IP dosing bid for 14 days:

- 25 @12.5 mg/kg produced 16.8 day growth delay.
 @6.25 mg/kg 9.3 day growth delay.
 @25 mg/kg toxic.

SC-Infusion (Alzet):

- 30 @200, 124, 77, and 48 mg/kg/day toxic.

AH-125 Tumor

SC-Infusion (Alzet) Days 19-33:

- 35 @20.6 mg/kg/day produced a 10.0 day growth delay.
 @10.4 mg/kg/day produced a 9.5 day growth delay.
 @5.5 mg/kg/day produced a 9.5 day growth delay.

-151-

A431 Tumor

SC-Infusion (Alzet) Days 9-23, 42-56:

@48 mg/kg/day produced a 55 day growth delay.

@24 mg/kg/day produced a 60 day growth delay.

5 @12 mg/kg/day produced a 51 day growth delay.

Example 36

EGFR Tumor

IP dosing bid for 7 days:

10 @48 mg/kg produced 10.3 day growth delay.

IP dosing bid for 14 days:

@25 mg/kg produced 8.7 day growth delay.

@12.5 mg/kg 3.5 growth delay.

@50 mg/kg toxic.

15

SC-Infusion (Alzet):

@200, 124, 77 mg/kg/day toxic.

Example 40

20 IP dosing bid:

@48 and 20 mg/kg toxic.

EGFR Tumor

Inefficacious @10 and 5 mg/kg bid for 14 days.

25

SC-Infusion (Alzet):

@200, 124, 77, and 48 mg/kg/day toxic.

-152-

CLAIMS

What is claimed is:

1. A compound having the Formula I

wherein X is -D-E-F and Y is -SR⁴, -OR⁴, -NHR³, or
hydrogen, or X is -SR⁴, -OR⁴, -NHR³, or
15 hydrogen, and Y is -D-E-F;

20 D is $\begin{array}{c} \text{R}^2 \\ | \\ -\text{N}-, -\text{O}-, -\text{C}-, -\text{N}-\text{N}-, -\text{N}-\text{O}-, -\text{C}-\text{N}-, \\ | \qquad | \qquad | \qquad | \qquad | \\ \text{H} \qquad \text{H} \qquad \text{H} \qquad \text{H} \qquad \text{H} \end{array}$

25 $\begin{array}{c} \text{R}^2 \\ | \\ -\text{C}-\text{O}-, -\text{C}-\text{C}-, -\text{N}-\text{C}-, -\text{O}-\text{C}-, -\text{S}-\text{C}-, \\ | \qquad | \qquad | \qquad | \qquad | \\ \text{H} \qquad \text{H} \qquad \text{H} \qquad \text{H} \qquad \text{H} \end{array}$

or absent;

30 E is $\begin{array}{c} \text{O} \\ || \\ -\text{C}-, -\text{S}-, -\text{P}-, \text{or } -\text{S}-; \\ | \\ \text{O} \qquad \text{OR}^2 \end{array}$

-153-

35

40

provided that when E is $-\text{S}-$ or $-\text{S}-$, D is not

45

50

R^1 is hydrogen, halogen, or $\text{C}_1\text{-C}_6$ alkyl;
 R^2 , R^3 , and R^4 are independently hydrogen, $\text{C}_1\text{-C}_6$ alkyl, $-(\text{CH}_2)_n\text{-N-piperidinyl}$,

$-(\text{CH}_2)_n\text{-N-piperazinyl}$,

$-(\text{CH}_2)_n\text{-N}_1\text{-piperazinyl}[\text{N}_4\text{-(C}_1\text{-C}_6\text{)alkyl}]$,

$-(\text{CH}_2)_n\text{-N-pyrrolidyl}$, $-(\text{CH}_2)_n\text{-pyridinyl}$,

$-(\text{CH}_2)_n\text{-N-imidazoyl}$, $-(\text{CH}_2)_n\text{-imidazoyl}$,

$-(\text{CH}_2)_n\text{-N-morpholino}$,

$-(\text{CH}_2)_n\text{-N-thiomorpholino}$,

60

$-(\text{CH}_2)_n\text{-N-hexahydroazepine}$ or substituted $\text{C}_1\text{-C}_6$ alkyl, wherein the substituents are

A

65

selected from $-\text{OH}$, $-\text{NH}_2$, or $-\text{N-B}$, A and B are independently hydrogen, $\text{C}_1\text{-C}_6$ alkyl,

$-(\text{CH}_2)_n\text{OH}$, $-(\text{CH}_2)_n\text{-N-piperidinyl}$,

$-(\text{CH}_2)_n\text{-N-piperazinyl}$,

$-(\text{CH}_2)_n\text{-N}_1\text{-piperazinyl}[\text{N}_4\text{-(C}_1\text{-C}_6\text{)alkyl}]$,

$-(\text{CH}_2)_n\text{-N-pyrrolidyl}$, $-(\text{CH}_2)_n\text{-N-pyridyl}$,

70

$-(\text{CH}_2)_n\text{-imidazoyl}$ or $-(\text{CH}_2)_n\text{-N-imidazoyl}$;

z^1 , z^2 , or z^3 are independently hydrogen, halogen, $\text{C}_1\text{-C}_6$ alkyl, $\text{C}_3\text{-C}_8$ cycloalkyl, $\text{C}_1\text{-C}_6$ alkoxy, $\text{C}_3\text{-C}_8$ cycloalkoxy, nitro, $\text{C}_1\text{-C}_6$ perfluoroalkyl, hydroxy, $\text{C}_1\text{-C}_6$ acyloxy, $-\text{NH}_2$, $-\text{NH}(\text{C}_1\text{-C}_6\text{ alkyl})$, $-\text{N}(\text{C}_1\text{-C}_6\text{ alkyl})_2$,

75

-154-

2. A compound of Claim 1 wherein z^1 and z^2 are hydrogen, and z^3 is a halogen.

-155-

3. A compound of Claim 2 wherein z^3 is bromine.
4. A compound of Claim 3 wherein the bromine is located at the 3 or meta position of the phenyl ring.
5. A compound of Claim 1 wherein z^1 is hydrogen, z^2 is fluorine, and z^3 is chlorine.
6. A compound of Claim 5 wherein the fluorine is located at the 4 position and the chlorine is located at the 3 position of the phenyl ring.
7. A compound of Claim 1 wherein

$$\begin{array}{c} R^2 O \quad C H R^5 \\ | \quad \quad | \\ X \text{ is } -N-C-C-R^1, \text{ and } Y \text{ is hydrogen, or} \\ | \quad \quad | \\ X \text{ is hydrogen, and } Y \text{ is } -N-C-C-R^1. \end{array}$$
8. A compound of Claim 1 wherein Y is -D-E-F and -D-E-F is

$$\begin{array}{c} R^2 O \quad R^1 \quad R^5 \\ | \quad \quad | \quad | \\ -N-C-C=CH \\ 5 \end{array}$$
10.
$$\begin{array}{c} R^2 O \quad R^1 \quad R^5 \\ | \quad \quad | \quad | \\ -N-S-C=CH \\ || \\ O \end{array}, \text{ or}$$
15.
$$\begin{array}{c} R^2 O \quad R^1 \quad R^5 \\ | \quad \quad | \quad | \\ -N-P-C=CH \\ | \\ OR^2 \end{array}$$
20. 9. A compound of Claim 1 wherein X is -D-E-F and -D-E-F is

-156-

10. A compound of Claim 8 wherein R² is hydrogen.
 11. A compound of Claim 9 wherein R² is hydrogen.
 12. A compound of Claim 8 wherein R² is -(CH₂)_n-morpholino.
 13. A compound of Claim 9 wherein R² is -(CH₂)_n-morpholino.
 14. A compound of Claim 8 wherein R⁵ is carboxy, (C₁-C₆)alkyloxycarbonyl or C₁-C₆ alkyl.
 15. A compound of Claim 1 wherein Y is -D-E-F and X is -O-(CH₂)_nmorpholino.
 16. A compound of Claim 1 wherein Y is -D-E-F and X is -O-(CH₂)_n-N₁-piperazinyl[N₄-(C₁-C₆)alkyl].
 17. A compound of Claim 1 wherein Y is -D-E-F and X is -O-(CH₂)_n-imidazoyl.

-157-

18. A compound having the Formula II

5

II

wherein Q is

10

15

20

X is -D-E-F and Y is -SR⁴, -OR⁴, -NHR³ or hydrogen, or X is -SR⁴, -OR⁴, -NHR³ or hydrogen, and Y is -D-E-F;

25

30

35

-158-

50 provided that when E is $\begin{array}{c} \text{O} \\ | \\ -\text{S}- \\ | \\ \text{O} \end{array}$ or $\begin{array}{c} \text{O} \\ | \\ -\text{S}- \\ | \\ \text{O} \end{array}$, D is not

60 R¹ is hydrogen, halogen, or C₁-C₆ alkyl;
 R², R³, and R⁴ are independently hydrogen, C₁-C₆ alkyl, -(CH₂)_n-N-piperidinyl,

-(CH₂)_n-N-piperazinyl,

-(CH₂)_n-N₁-piperazinyl[N₄-(C₁-C₆)alkyl],

-(CH₂)_n-N-pyrrolidyl, -(CH₂)_n-pyridinyl,

-(CH₂)_n-N-imidazoyl, -(CH₂)_n-imidazoyl,

-(CH₂)_n-N-morpholino,

-(CH₂)_n-N-thiomorpholino,

-(CH₂)_n-N-hexahydroazepine or substituted C₁-C₆ alkyl, wherein the substituents are

A
↑

selected from -OH, -NH₂, or -N-B, A and B are independently hydrogen, C₁-C₆ alkyl,

-(CH₂)_nOH, -(CH₂)_n-N-piperidinyl,

-(CH₂)_n-N-piperazinyl,

-(CH₂)_n-N₁-piperazinyl[N₄-(C₁-C₆)alkyl],

-(CH₂)_n-N-pyrrolidyl, -(CH₂)_n-N-pyridyl,

-(CH₂)_n-imidazoyl or -(CH₂)_n-N-imidazoyl;

-159-

-160-

n is 1 to 4, p is 0 or 1, and the pharmaceutically acceptable salts, esters, amides, and prodrugs thereof.

19. A compound of Claim 18 wherein E¹ and E² are hydrogen, and E³ is a halogen.

20. A compound of Claim 19 wherein the halogen is bromine.

21. A compound of Claim 20 wherein the bromine is located at the 3 or meta position of the phenyl ring.

22. A compound of Claim 18 wherein Q is

5

23. A compound of Claim 18 wherein Q is

24. A compound of Claim 18 wherein Q is

-161-

25. A compound of Claim 18 wherein Q is

26. A compound of Claim 23 wherein X is

27. A compound of Claim 24 wherein X is

28. A compound of Claim 24 wherein X is

29. A compound of Claim 22 wherein X is

and Y is hydrogen.

-162-

30. A compound having the Formula III

5

III

10

wherein Q is

15

20

25

X is -D-E-F, and Y is -OR⁴, -NHR³ or
hydrogen, or X is -OR⁴, -NHR³ or hydrogen,
and Y is -D-E-F;

30

35

or absent;

-163-

50 provided that when E is $-S-$ or $-S-$, D is not $\overset{O}{\underset{O}{\underset{|}{|}}}$

60 R¹ is hydrogen, halogen, or C₁-C₆ alkyl;
 R², R³, and R⁴ are independently hydrogen, C₁-C₆ alkyl, -(CH₂)_n-N-piperidinyl,
 -(CH₂)_n-N-piperazinyl,
 -(CH₂)_n-N₁-piperazinyl[N₄-(C₁-C₆)alkyl],
 -(CH₂)_n-N-pyrrolidyl, -(CH₂)_n-pyridinyl,
 65 -(CH₂)_n-N-imidazoyl, -(CH₂)_n-imidazoyl,
 -(CH₂)_n-N-morpholino,
 -(CH₂)_n-N-thiomorpholino,
 -(CH₂)_n-N-hexahydroazepine or substituted
 C₁-C₆ alkyl, wherein the substituents are
 selected from

70 A
 ↑
 -OH, -NH₂, or -N-B, A and B are independently
 hydrogen, C₁-C₆ alkyl, -(CH₂)_nOH,
 75 -(CH₂)_n-N-piperidinyl, -(CH₂)_n-N-piperazinyl,
 -(CH₂)_n-N₁-piperazinyl[N₄-(C₁-C₆)alkyl],
 -(CH₂)_n-N-pyrrolidyl, -(CH₂)_n-N-pyridyl,
 -(CH₂)_n-imidazoyl, or -(CH₂)_n-N-imidazoyl;

-164-

80 E^1 , E^2 , and E^3 are independently halogen, C_1-C_6 alkyl, C_3-C_8 cycloalkyl, C_1-C_6 alkoxy, C_3-C_8 cycloalkoxy, nitro, C_1-C_6 perfluoroalkyl, hydroxy, C_1-C_6 acyloxy, $-NH_2$, $-NH(C_1-C_6)$ alkyl, $-N(C_1-C_6)$ alkyl $_2$, $-NH(C_3-C_8)$ cycloalkyl, $-N(C_3-C_8)$ cycloalkyl $_2$, hydroxymethyl, C_1-C_6 acyl, cyano, azido, C_1-C_6 thioalkyl, C_1-C_6 sulfinylalkyl, C_1-C_6 sulfonylalkyl, C_3-C_8 thiocycloalkyl, C_3-C_8 sulfinylcycloalkyl, C_3-C_8 sulfonylcycloalkyl, mercapto, C_1-C_6 alkoxy carbonyl, C_3-C_8 cycloalkoxy carbonyl, C_2-C_4 alkenyl, C_4-C_8 cycloalkenyl, or C_2-C_4 alkynyl;

85 R^5 is hydrogen, halogen, C_1-C_6 -perfluoroalkyl, 1,1-difluoro(C_1-C_6)alkyl, C_1-C_6 alkyl, $-(CH_2)_n-N$ -piperidinyl, $-(CH_2)_n$ -piperazinyl, $-(CH_2)_n$ -piperazinyl[N $_4$ -(C_1-C_6)alkyl], $-(CH_2)_n-N$ -pyrrolidyl, $-(CH_2)_n$ -pyridinyl, $-(CH_2)_n-N$ -imidazoyl, $-(CH_2)_n-N$ -morpholino, $-(CH_2)_n-N$ -thiomorpholino, $-C=CH_2$,

90 $\begin{array}{c} | \\ H \end{array}$

95 $-CH=CH-(C_1-C_6)$ alkyl, $-(CH_2)_n-N$ -hexahydroazepine, $-(CH_2)_nNH_2$, $-(CH_2)_nNH(C_1-C_6)$ alkyl, $-(CH_2)_nN(C_1-C_6)$ alkyl $_2$, 1-oxo(C_1-C_6)alkyl, carboxy, (C_1-C_6)alkyloxycarbonyl, N-(C_1-C_6)alkylcarbamoyl, phenyl or substituted phenyl, wherein the substituted phenyl can have from one to three substituents independently selected from Z^1 , Z^2 , Z^3 or a monocyclic heteroaryl group, and each C_1-C_6 alkyl group can be substituted with $-OH$, $-NH_2$ or $-NAB$, where A and B are as defined above, R^6 is hydrogen or C_1-C_6 alkyl;

100 and

105

110

-165-

- 115 n is 1 to 4, p is 0 or 1, and the pharmaceutically acceptable salts, esters, amides, and prodrugs thereof.

31. A compound of Claim 30 wherein Q is

5

32. A compound of Claim 30 wherein Q is

5

33. A compound of Claim 31 wherein X is

34. A compound of Claim 30 wherein E¹ and E² are hydrogen and E³ is bromine.

35. A compound of Claim 32 wherein X is

36. A pharmaceutically acceptable composition that comprises a compound of Claim 1.

-166-

37. A pharmaceutically acceptable composition that comprises a compound of Claim 18.
38. A pharmaceutically acceptable composition that comprises a compound of Claim 30.
39. A method of treating cancer, the method comprising administering to a patient having cancer a therapeutically effective amount of a compound of Claim 1.
40. A method of treating or preventing restenosis, the method comprising administering to a patient having restenosis or at risk of having restenosis a therapeutically effective amount of a compound of Claim 1.
5
41. A method of treating cancer, the method comprising administering to a patient having cancer a therapeutically effective amount of a compound of Claim 18.
5
42. A method of treating or preventing restenosis, the method comprising administering to a patient having restenosis or at risk of having restenosis a therapeutically effective amount of a compound of Claim 18.
5
43. A method of treating cancer, the method comprising administering to a patient having cancer a therapeutically effective amount of a compound of Claim 30.
44. A method of treating or preventing restenosis, the method comprising administering to a patient having restenosis or at risk of having restenosis,

-167-

a therapeutically effective amount of a compound
5 of Claim 30.

45. A method of irreversibly inhibiting tyrosine kinases, the method comprising administering to a patient a tyrosine kinase inhibition a tyrosine kinase inhibiting amount of a compound of Claim 1.

46. A method of irreversibly inhibiting tyrosine kinases, the method comprising administering to a patient in need of tyrosine kinase inhibition a amount of tyrosine kinase inhibiting amount of a compound of Claim 18.
5

47. A method of irreversibly inhibiting tyrosine kinases, the method comprising administering to a patient in need of tyrosine kinase inhibition a tyrosine kinase inhibiting amount of a compound of
5 Claim 30.

48. The compounds:

N-[4-(3-Bromo-phenylamino)-quinazolin-7-yl]acrylamide;

3-[4-(3-Bromo-phenylamino)-quinazolin-7-yl-carbamoyl]-acrylic acid;

3-[4-(3-Bromo-phenylamino)-quinazolin-7-yl-carbamoyl]-acrylic acid ethyl ester;

But-2-enoic acid [4-(3-bromo-phenylamino)-quinazolin-7-yl]-amide;

10 N-[4-(3-Bromophenyl)amino]quinazolin-6-yl]acrylamide;

N-[4-(3-Methyl-phenylamino)-quinazolin-7-yl]acrylamide;

15 N-[4-(3-Chloro-phenylamino)-quinazolin-7-yl]acrylamide;

-168-

- N-[4-(3-Bromo-phenylamino)-quinazolin-7-yl]methacrylamide;
N-[4-(3-Bromo-phenylamino)-quinazolin-7-yl]ethenylsulfonamide;
20 N-[4-[(3-Chlorophenyl)amino]quinazolin-6-yl]acrylamide;
N-[4-[(3-Methylphenyl)amino]quinazolin-6-yl]acrylamide;
25 N-[4-[(3-(Trifluoromethyl)phenyl)amino]-quinazolin-6-yl]acrylamide;
N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]methacrylamide;
N-[4-(3-Bromo-phenylamino)-quinazolin-7-yl]ethenylsulfonamide;
30 N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]-E-but-2-enamide;
N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]-4,4,4-trifluoro-E-but-2-enamide;
N-[4-[(3-Bromophenyl)amino]quinazolin-6-
35 yl]propynamide;
N-[4-[(3-Bromophenyl)amino]quinazolin-6-yl]but-2-ynameide;
N-[4-(3-Bromo-phenylamino)-pyrido[4,3-d]-pyrimidin-7-yl]-acrylamide;
40 N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]-pyrimidin-6-yl]-acrylamide;
N-[4-(3-Methyl-phenylamino)-pyrido[3,4-d]-pyrimidin-6-yl]-acrylamide;
N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]-pyrimidin-6-yl]-N-methylacrylamide;
45 N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]-pyrimidin-6-yl]-methacrylamide;
N-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]-pyrimidin-6-yl]-ethenylsulfonamide;

-169-

- N- [4 - (3-Bromo-phenylamino) -benzo [b] thieno [3,2-d] pyrimidin-8-yl] acrylamide;
- 55 N- [4 - (3-Bromo-phenylamino) -benzo [b] thieno [3,2-d] pyrimidin-6-yl] acrylamide;
- N- [4 - (3-Bromo-phenylamino) -benzo [b] thieno [3,2-d] pyrimidin-7-yl] acrylamide;
- 60 N- [4 - [(3-Bromophenyl) amino] quinazolin-6-yl] buta-2,3-dienamide;
- N- [4 - [(3-Bromophenyl) amino] quinazolin-6-yl] -E,4-oxpent-2-enamide;
- N- [4 - [(3-Bromophenyl) amino] quinazolin-6-yl] -E,4-ethoxy-4-oxobut-2-enamide;
- 65 N- [4 - (3-Bromo-phenylamino) -pyrido [3,4-d] pyrimidin-6-yl] penta-2,4-dienamide;
- N- [4 - (3-Bromo-phenylamino) -pyrido [3,4-d] pyrimidin-6-yl] E-but-2-enamide;
- N- [4 - (3-Bromo-phenylamino) -pyrido [3,4-d] pyrimidin-6-yl] cinnamide;
- 70 N- [4 - (3-Bromo-phenylamino) -pyrido [3,4-d] pyrimidin-6-yl] -E,3-chloroacrylamide;
- N- [4 - (3-Bromo-phenylamino) -pyrido [3,4-d] pyrimidin-6-yl] -propynamide;
- 75 3 - [4 - (3-Bromo-phenylamino) -quinazolin-6-ylcarbamoyl] -acrylic acid (Z); and
4 - [(3-Bromo-phenyl) amino] -6 - (ethenesulfonyl) -pyrido [3,4-d] pyrimidine.

49. A method of treating psoriasis, the method comprising administering to a patient having psoriasis a therapeutically effective amount of a compound of Claim 1.
50. A method of treating psoriasis, the method comprising administering to a patient having psoriasis a therapeutically effective amount of a compound of Claim 18.

-170-

51. A method of treating psoriasis, the method comprising administering to a patient having psoriasis a therapeutically effective amount of a compound of Claim 30.
52. A method of treating atherosclerosis, the method comprising administering to a patient having atherosclerosis a therapeutically effective amount of a compound of Claim 1.
53. A method of treating atherosclerosis, the method comprising administering to a patient having atherosclerosis a therapeutically effective amount of a compound of Claim 18.
54. A method of treating atherosclerosis, the method comprising administering to a patient having atherosclerosis a therapeutically effective amount of a compound of Claim 30.
55. A method of treating endometriosis, the method comprising administering to a patient having endometriosis a therapeutically effective amount of a compound of Claim 1.
56. A method of treating endometriosis, the method comprising administering to a patient having endometriosis a therapeutically effective amount of a compound of Claim 18.
57. A method of treating endometriosis, the method comprising administering to a patient having endometriosis a therapeutically effective amount of a compound of Claim 30.

-171-

58. The compounds:

- 1- [4- (3-Bromo-phenylamino) -quinazolin-6-yl] -
pyrrole-2,5-dione;
- 5 1- [4- (3-Bromo-phenylamino) -quinazolin-6-yl] -
prop-2-en-1-one;
- Acrylic acid 4- (3-bromo-phenylamino) -
quinazolin-6-yl ester;
- Methyl N-[4- [(3-bromophenyl)amino]-P-ethenyl-
pyrido[3,4-d]pyrimidin-6-yl]phosphonamide;
- 10 Acrylic acid 4- (3-bromo-phenylamino) -
quinazolin-7-yl ester;
- 1- [4- (3-Bromo-phenylamino) -quinazolin-6-yl] -
but-3-en-2-one;
- 15 Acrylic acid 4- (3-chloro-4-fluoro-
phenylamino) -7-methoxy-quinazolin-6-yl ester;
- Penta-2,3-dienoic acid [4- (3-bromo-
phenylamino) -quinazolin-6-yl] -amide;
- Propa-1,2-diene-1-sulfonic acid [4- (3-bromo-
phenylamino) -quinazolin-6-yl] -amide;
- 20 Methyl N-[4- [(3-bromophenyl)amino]-6-
quinazolinyl] -P- (1,2-propadienyl)phosphonamide;
- N- [1- (3-Bromo-phenylamino) -9H-2,4,9-triaza-
fluoren-7-yl] -acrylamide;
- 25 N- [4- (3-Bromo-phenylamino) -9H-1,3,9-triaza-
fluoren-6-yl] -acrylamide;
- N- [4- (3-Chloro-4-fluoro-phenylamino) -
quinazolin-6-yl] -acrylamide;
- N- (4-Phenylmethylamino-quinazolin-6-yl) -
acrylamide;
- 30 (S)-N- [4- (1-Phenyl-ethylamino) -quinazolin-6-
yl] -acrylamide;
- (R)-N- [4- (1-Phenyl-ethylamino) -quinazolin-6-
yl] -acrylamide;
- N- [4- (3-Chloro-4-fluoro-phenylamino) -
pyrido[3,4-d]pyrimidin-6-yl] -acrylamide;

-172-

N- [4 - (3-Chloro-4-fluoro-phenylamino) -
pyrido[3,4-d]pyrimidin-6-yl] -N-methyl-acrylamide;
(3-Chloro-4-fluoro-phenyl) - (6-ethenesulfinyl-
pyrido[3,4-d]pyrimidin-4-yl) -amine; and
40 (3-Bromo-phenyl) - (6-ethenesulfinyl-
pyrido[3,4-d]pyrimidin-4-yl) -amine.

59. A compound of Claim 18 wherein E¹ is hydrogen, E² is fluorine, and E³ is chlorine.
60. A compound of Claim 59 wherein the fluorine is located at the 4 position and the chlorine is located at the 3 position of the phenyl ring.
61. A compound of Claim 30 wherein E¹ is hydrogen, E² is fluorine, and E₃ is chlorine.
62. A compound of Claim 61 wherein the fluorine is located at the 4 position and the chlorine is located at the 3 position of the phenyl ring.
63. The compounds:
N- [4 - (3-Bromo-phenylamino) -pyrido[4,3-d] -
pyrimidin-7-yl] -N- (3-morpholin-4-yl-propyl) -
acrylamide;
5 N- [4 - (3-Bromo-phenylamino) -pyrido[3,4-d] -
pyrimidin-6-yl] -N- (3-morpholin-4-yl-propyl) -
acrylamide;
N- [4 - [(3-Bromophenyl) amino] quinazolin-7-
y1] -N- [3-morpholinopropyl] acrylamide;
10 N- [4 - (3-Bromo-phenylamino) -6 - (3-morpholin-4-
yl-propylamino) -quinazolin-7-yl] -acrylamide;
N- [4 - [(3-Bromophenyl) amino] -7 - [3 - (4 -
morpholino) propoxy] quinazolin-6-yl] acrylamide;
N- [4 - [(3-Methylphenyl) amino] -7 - [3 - (4 -
morpholino) propoxy] quinazolin-6-yl] acrylamide;

-173-

- N- [4- [(3-Methylphenyl)amino]-7- [3- (4 , N-methyl-
methyl-1,N-piperazino)propoxy]quinazolin-6-
yl]acrylamide;
- N- [4- [(3-Bromophenyl)amino]-7- [3- (4 , N-methyl-
1,N-piperazino)propoxy]quinazolin-6-yl]acrylamide;
- N- [4- [(3-Bromophenyl)amino]-7- [3- (1,N-imidazyl)propoxy]quinazolin-6-yl]acrylamide;
- N- [4- [(3-Bromophenyl)amino]-7- [4- (N,N-dimethyl-amino)butoxy]quinazolin-6-yl]acrylamide;
- N- [4- [(3-Bromophenyl)amino]quinazolin-6-yl]-
N- [3-morpholinopropyl]acrylamide;
- N- [4- (3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-N- (2- (N,N-dimethylamino)ethyl)
acrylamide;
- N- [4- [(3-Bromophenyl)amino]quinazolin-6-yl]-
E,4- (3- (N,N-dimethylamino)propoxy-4-oxobut-2-enamide tris trifluoroacetate; and
- N- [4- [(3-Bromophenyl)amino]quinazolin-6-yl]-
E,4- (3- (N,N-dimethylamino)propylamino-4-oxobut-2-enamide.

64. The compounds:

- N- [4- (3-Bromo-phenylamino)-7- (3-morpholin-4-yl-propoxy)-pyrido[3,2-d]pyrimidin-6-yl]-acryl amide;
- But-2-enedioic acid [4- (3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide
(3-dimethylamino-propyl)-amide;
- But-2-enedioic acid [4- (3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide
(3-dimethylamino-propyl)-amide;
- But-2-enedioic acid [4- (3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide
(3-imidazol-1-yl-propyl)-amide;

-174-

- 15 4,4-Difluoro-8-morpholin-4-yl-oct-2-
enoic acid [4-(3-chloro-4-fluoro-phenylamino)-
pyrido[3,4-d]pyrimidin-6-yl]-amide;
 8-Dimethylamino-4,4-difluoro-oct-2-enoic acid
[4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-yl]-amide;
- 20 7-Dimethylamino-4,4-difluoro-hept-2-
enoic acid [4-(3-chloro-4-fluoro-phenylamino)-
pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 25 4,4-Difluoro-7-morpholin-4-yl-hept-2-
enoic acid [4-(3-chloro-4-fluoro-phenylamino)-
pyrido[3,4-d]pyrimidin-6-yl]-amide;
 6-Dimethylamino-hex-2-yneic acid [4-(3-
chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-yl]-amide;
- 30 6-Morpholin-4-yl-hex-2-yneic acid [4-(3-
chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-yl]-amide;
- 35 7-Dimethylamino-hept-2-yneic acid [4-(3-
chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-yl]-amide;
- 40 7-Morpholin-4-yl-hept-2-yneic acid [4-(3-
chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-yl]-amide;
- 45 5-Dimethylamino-pent-2-yneic acid [4-(3-
chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-yl]-amide;
- 5-Morpholin-4-yl-pent-2-yneic acid [4-(3-
chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-yl]-amide;
- 5-Imidazol-1-yl-pent-2-yneic acid [4-(3-
chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-yl]-amide;
- 5-(4-Methyl-piperazin-1-yl-pent-2-yneic acid
[4-(3-chloro-4-fluoro-phenylamino)-pyrido[3,4-d]
pyrimidin-6-yl]-amide;

-175-

- 50 4 - [4 - (3-Chloro-4-fluoro-phenylamino) -
 pyrido[3,4-d]pyrimidin-6-ylcarbamoyl] -but-3-enoic
 acid 2-(4-methyl-piperazin-1-yl)-ethyl ester;
 4 - [4 - (3-Chloro-4-fluoro-phenylamino) -
 pyrido[3,4-d]pyrimidin-6-ylcarbamoyl] -but-3-enoic
55 acid 2-(imidazol-1-yl)-ethyl ester;
 Pent-2-enedioic acid 1-{ [4 - (3-chloro-4 -
 fluoro-phenylamino) -pyrido[3,4-d]pyrimidin-6-yl] -
 amide} 5-[(3-morpholin-4-yl-propyl)-amide];
 Pent-2-enedioic acid 1-{ [4 - (3-chloro-4 -
60 fluoro-phenylamino) -pyrido[3,4-d]pyrimidin-6-yl] -
 amide} 5-[(3-diethylamino-propyl)-amide];
 4 - [4 - (3-Chloro-4-fluoro-phenylamino) -
 pyrido[3,4-d]pyrimidin-6-ylcarbamoyl] -but-3-enoic
 acid 2-morpholin-4-yl-ethyl ester;
65 Pent-2-enedioic acid 1-{ [4 - (3-chloro-4 -
 fluoro-phenylamino) -pyrido[3,4-d]pyrimidin-6-yl] -
 amide} 5-{ [3-4-methyl-piperazin-1-yl]-propyl}-
 amide};
 (3-Chloro-4-fluoro-phenyl)-{6-[2-(3-
70 dimethylamino-propoxy)-ethenesulfonyl]-pyrido
 [3,4-d]pyrimidin-4-yl}-amine;
 (3-Chloro-4-fluoro-phenyl)-(6-[2-[4-
 (4-methyl-piperazin-1-yl)-butylamino]-
 ethenesulfonyl]-pyrido[3,4-d]pyrimidin-4-yl)-
75 amine;
 3 - [4 - (1-Phenyl-ethylamino) -quinazolin-6 -
 ylcarbamoyl] -acrylic acid 2-morpholin-4-yl-ethyl
 ester;
 But-2-enedioic acid (4-imidazol-1-yl-butyl)-
80 amide [4 - (1-phenyl-ethylamino) -quinazolin-6-yl]-
 amide;
 4 - [4 - (1-Phenyl-ethylamino) -quinazolin-6 -
 ylcarbamoyl] -but-3-enoic acid 3-diethylamino-
 propyl ester;

-176-

- 85 Pent-2-enedioic acid 5-[(2-(4-methyl-piperazin-1-yl)-ethyl)-amide] 1-[(4-(1-phenyl-thylamino)-quinazolin-6-yl)-amide];
90 4,4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid [4-(1-phenyl-ethylamino)-quinazolin-6-yl]-amide;
95 7-Dimethylamino-4,4-difluoro-hept-2-enoic acid [4-(1-phenyl-ethylamino)-quinazolin-6-yl]-amide;
100 7-Imidazol-1-yl-hept-2-ynoic acid [4-(1-phenyl-ethylamino)-quinazolin-6-yl]-amide;
105 6-Dimethylamino-hex-2-ynoic acid [4-(1-phenyl-ethylamino)-quinazolin-6-yl]-amide;
110 But-2-enedioic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide
 (3-dimethylamino-propyl)-amide;
115 But-2-enedioic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide (3-imidazol-1-yl-propyl)-amide;
120 4,4-Difluoro-8-morpholin-4-yl-oct-2-enoic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 110 7-Dimethylamino-4,4-difluoro-hept-2-enoic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 115 4,4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 120 6-Dimethylamino-hex-2-ynoic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 120 6-Morpholin-4-yl-hex-2-ynoic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;

-177-

- 7-Dimethylamino-hept-2-yneic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 7-Morpholin-4-yl-hept-2-yneic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 5-Dimethylamino-pent-2-yneic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 5-Morpholin-4-yl-pent-2-yneic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 5-Imidazol-1-yl-pent-2-yneic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 5-(4-Methyl-piperazin-1-yl)-pent-2-yneic acid [4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
- 4-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-ylcarbamoyl]-but-3-enoic acid
2-(4-methyl-piperazin-1-yl)-ethyl ester;
- 4-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-ylcarbamoyl]-but-3-enoic acid
2-imidazol-1-yl-ethyl ester;
- Pent-2-enedioic acid 1-[4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide)
5-[(3-morpholin-4-yl-propyl)-amide];
- Pent-2-enedioic acid 1-[4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide}
5-[(3-diethylamino-propyl)-amide];
- 4-[4-(3-Bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-ylcarbamoyl]-but-3-enoic acid
2-morpholin-4-yl-ethyl ester;
- Pent-2-enedioic acid 1-[4-(3-bromo-phenylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide}
5-[(3-(4-methyl-piperazin-1-yl)-propyl)-amide];

-178-

- (3-Bromo-phenyl)-{6-[2-(3-dimethylamino-propoxy)-ethenesulfonyl]-pyrido[3,4-d]pyrimidin-4-yl}-amine;
- 160 (3-Bromo-phenyl)-(6-{2-[4-(4-methyl-piperazin-1-yl)-butylamino]-ethenesulfonyl}-pyrido[3,4-d]pyrimidin-4-yl)-amine;
- (3-Bromo-phenyl)-[6-(5-morpholin-4-yl-pent-1-ene-1-sulfonyl)-pyrido[3,4-d]pyrimidin-4-yl]-amine;
- 165 But-2-enedioic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide
(3-dimethylamino-propyl)-amide;
- 170 But-2-enedioic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide (3-imidazol-1-yl-propyl)-amide;
- 4,4-Difluoro-8-morpholin-4-yl-oct-2-enoic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 175 8-Dimethylamino-4,4-difluoro-oct-2-enoic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 7-Dimethylamino-4,4-difluoro-hept-2-enoic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 180 4,4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 6-Dimethylamino-hex-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 185 6-Morpholin-4-yl-hex-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 7-Dimethylamino-hept-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 190

-179-

- 195 7-Morpholin-4-yl-hept-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 200 5-Dimethylamino-pent-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 205 5-Morpholin-4-yl-pent-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 210 5-Imidazol-1-yl-pent-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 215 5-(4-Methyl-piperazin-1-yl)-pent-2-yneic acid [4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide;
- 220 Pent-2-enedioic acid 1-[4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide}
- 225 5-[(3-morpholin-4-yl-propyl)-amide];
- Pent-2-enedioic acid 1-[4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide}
- 5-[(3-diethylamino-propyl)-amide];
- 4-[4-(3-Chloro-4-fluoro-phenylamino)-quinazolin-6-ylcarbamoyl]-but-3-enoic acid
- 2-morpholin-4-yl-ethyl ester;
- Pent-2-enedioic acid 1-[4-(3-chloro-4-fluoro-phenylamino)-quinazolin-6-yl]-amide}
- 5-[(3-(4-methyl-piperazin-1-yl)-propyl)-amide];
- (3-Chloro-4-fluoro-phenyl)-(6-[2-(3-dimethylamino-propoxy)-ethenesulfonyl]-quinazolin-4-yl)-amine;
- (3-Chloro-4-fluoro-phenyl)-(6-{2-[4-(4-methyl-piperazin-1-yl)-butylamino]-ethenesulfonyl}-quinazolin-4-yl)-amine;
- But-2-enedioic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide (3-dimethylamino-propyl)-amide;

-180-

- 230 But-2-enedioic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide (3-imidazol-1-yl-propyl)-amide;
- 4,4-Difluoro-8-morpholin-4-yl-oct-2-enoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 235 8-Dimethylamino-4,4-difluoro-oct-2-enoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 7-Dimethylamino-4,4-difluoro-hept-2-enoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 240 4,4-Difluoro-7-morpholin-4-yl-hept-2-enoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 6-Dimethylamino-hex-2-yonoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 245 6-Morpholin-4-yl-hex-2-yonoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 7-Dimethylamino-hept-2-yonoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 7-Morpholin-4-yl-hept-2-yonoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 250 5-Dimethylamino-pent-2-yonoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 5-Morpholin-4-yl-pent-2-yonoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 255 5-Imidazol-1-yl-pent-2-yonoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 5-(4-Methyl-piperazin-1-yl)-pent-2-yonoic acid [4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide;
- 4-[4-(3-Bromo-phenylamino)-quinazolin-6-ylcarbamoyl]-but-3-enoic acid 2-(4-methyl-piperazin-1-yl)-ethyl ester;
- 260 4-[4-(3-Bromo-phenylamino)-quinazolin-6-ylcarbamoyl]-but-3-enoic acid 2-imidazol-1-yl-ethyl ester;

-181-

- 265 Pent-2-enedioic acid 1-[{4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide} 5-[(3-morpholin-4-yl-propyl)-amide];
 Pent-2-enedioic acid 1-[{4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide}
270 5-[(3-diethylamino-propyl)-amide];
 4-[4-(3-Bromo-phenylamino)-quinazolin-6-ylcarbamoyl]-but-3-enoic acid 2-morpholin-4-yl-ethyl ester;
 Pent-2-enedioic acid 1-[{4-(3-bromo-phenylamino)-quinazolin-6-yl]-amide} 5-{[3-(4-methyl-piperazin-1-yl)-propyl]-amide};
 3-[4-(1-Phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-ylcarbamoyl]-acrylic acid
 2-morpholin-4-yl-ethyl ester;
280 But-2-enedioic acid (4-imidazol-1-yl-butyl)-amide [4-(1-phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
 4-[4-(1-Phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-ylcarbamoyl]-but-3-enoic acid
285 3-diethylamino-propyl ester;
 Pent-2-enedioic acid 5-{[2-(4-methyl-piperazin-1-yl)-ethyl]-amide} 1-[{4-(1-phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide};
 4,4-Difluoro-7-morpholin-4-yl-hept-2-enoic
290 acid [4-(1-phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
 7-Dimethylamino-4,4-difluoro-hept-2-enoic
 acid [4-(1-phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
295 7-Imidazol-1-yl-hept-2-yoic acid [4-(1-phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide;
 (3-Chloro-4-fluoro-phenyl)-[6-(5-morpholin-4-yl-pent-1-ene-1-sulfonyl)-pyrido[3,4-d]pyrimidin-4-yl]-amine; and

-182-

300 6-Dimethylamino-hex-2-yneoic acid [4-(1-phenyl-ethylamino)-pyrido[3,4-d]pyrimidin-6-yl]-amide.

65. A compound according to Claim 1 wherein
X is -D-E-F and F is

10 and R⁵ is
 1,1-difluoro(C₁-C₆)alkyl, C₁-C₆alkyl,
 -(CH₂)_n-N-piperidinyl, -(CH₂)_n-piperazinyl,
 -(CH₂)_n-piperazinyl[N₄-(C₁-C₆)alkyl],
 -(CH₂)_n-N-pyrrolidyl, -(CH₂)_n-pyridinyl,
 15 -(CH₂)_n-N-imidazoyl, -(CH₂)_n-N-morpholino,
 -(CH₂)_n-N-thiomorpholino,
 -CH=CH-(C₁-C₆)alkyl,
 -(CH₂)_n-N-hexahydroazepine,
 -(CH₂)_nNH₂, -(CH₂)_nNH(C₁-C₆ alkyl),
 20 -(CH₂)_nN(C₁-C₆ alkyl)₂, -1-oxo(C₁-C₆)alkyl,
 carboxy, (C₁-C₆)alkyloxycarbonyl,
 N-(C₁-C₆)alkylcarbamoyl, and each C₁-C₆ alkyl
 group of 1,1-difluoro(C₁-C₆)alkyl, C₁-C₆
 alkyl, -CH=CH-(C₁-C₆)alkyl,
 25 -1-oxo(C₁-C₆)alkyl, (C₁-C₆)alkyloxycarbonyl,
 or -N-(C₁-C₆)alkylcarbamoyl is substituted
 with -OH, -NH₂, or -NAB, where A and B are as
 defined above; or

Y is -D-E-F and F is

-183-

and R⁵ is

- 1,1-difluoro(C₁-C₆)alkyl, C₁-C₆alkyl,
- (CH₂)_n-N-piperidinyl, -(CH₂)_n-piperazinyl,
- (CH₂)_n-piperazinyl[N₄-(C₁-C₆)alkyl],
- 40 - (CH₂)_n-N-pyrrolidyl, -(CH₂)_n-pyridinyl,
- (CH₂)_n-N-imidazoyl, -(CH₂)_n-N-morpholino,
- (CH₂)_n-N-thiomorpholino,
- CH=CH-(C₁-C₆)alkyl,
- (CH₂)_n-N-hexahydroazepine,
- 45 - (CH₂)_nNH₂, -(CH₂)_nNH(C₁-C₆ alkyl),
- (CH₂)_nN(C₁-C₆ alkyl)₂, -1-oxo(C₁-C₆)alkyl,
- carboxy, (C₁-C₆)alkyloxycarbonyl,
- N-(C₁-C₆)alkylcarbamoyl, and each C₁-C₆ alkyl
- group of 1,1-difluoro(C₁-C₆)alkyl, C₁-C₆
- 50 alkyl, -CH=CH-(C₁-C₆)alkyl,
- 1-oxo(C₁-C₆)alkyl, (C₁-C₆)alkyloxycarbonyl,
- or -N-(C₁-C₆)alkylcarbamoyl is substituted
- with -OH, -NH₂, or -NAB, where A and B are as
- defined above.

66. A compound according to Claim 18 wherein
X is -D-E-F and F is

- 10 and R⁵ is
- 1,1-difluoro(C₁-C₆)alkyl, C₁-C₆alkyl,
 - (CH₂)_n-N-piperidinyl, -(CH₂)_n-piperazinyl,
 - (CH₂)_n-piperazinyl[N₄-(C₁-C₆)alkyl],
 - (CH₂)_n-N-pyrrolidyl, -(CH₂)_n-pyridinyl,
 - 15 - (CH₂)_n-N-imidazoyl, -(CH₂)_n-N-morpholino,
 - (CH₂)_n-N-thiomorpholino,
 - CH=CH-(C₁-C₆)alkyl,
 - (CH₂)_n-N-hexahydroazepine,

-184-

- 20 - $(CH_2)_nNH_2$, - $(CH_2)_nNH(C_1-C_6$ alkyl),
 - $(CH_2)_nN(C_1-C_6$ alkyl) $_2$, -1-oxo(C_1-C_6)alkyl,
 carboxy, (C_1-C_6)alkyloxycarbonyl,
 N-(C_1-C_6)alkylcarbamoyl, and each C_1-C_6 alkyl
 group of 1,1-difluoro(C_1-C_6)alkyl, C_1-C_6
 alkyl, - $CH=CH-(C_1-C_6)$ alkyl,

25 -1-oxo(C_1-C_6)alkyl, (C_1-C_6)alkyloxycarbonyl,
 or -N-(C_1-C_6)alkylcarbamoyl is substituted
 with -OH, - NH_2 , or -NAB, where A and B are as
 defined above; or

Y is -D-E-F and F is

- 30
- 35
$$\begin{array}{c} R^1 R^5 \\ | \quad | \\ -C=C-, \quad -C\equiv C-R^5 \text{ or } -C=C=C; \\ | \quad | \\ H \qquad H \end{array}$$
- and R^5 is
- 40
- 45
- 50
- 1,1-difluoro(C_1-C_6)alkyl, C_1-C_6 alkyl,
 - $(CH_2)_n-N$ -piperidinyl, - $(CH_2)_n$ -piperazinyl,
 - $(CH_2)_n$ -piperazinyl[N₄-(C_1-C_6)alkyl],
 - $(CH_2)_n-N$ -pyrrolidyl, - $(CH_2)_n$ -pyridinyl,
 - $(CH_2)_n-N$ -imidazoyl, - $(CH_2)_n-N$ -morpholino,
 - $(CH_2)_n-N$ -thiomorpholino,
 - $CH=CH-(C_1-C_6)$ alkyl,
 - $(CH_2)_n-N$ -hexahydroazepine,
 - $(CH_2)_nNH_2$, - $(CH_2)_nNH(C_1-C_6$ alkyl),
 - $(CH_2)_nN(C_1-C_6$ alkyl) $_2$, -1-oxo(C_1-C_6)alkyl,
 carboxy, (C_1-C_6)alkyloxycarbonyl,
 N-(C_1-C_6)alkylcarbamoyl, and each C_1-C_6 alkyl
 group of 1,1-difluoro(C_1-C_6)alkyl, C_1-C_6
 alkyl, - $CH=CH-(C_1-C_6)$ alkyl,
 -1-oxo(C_1-C_6)alkyl, (C_1-C_6)alkyloxycarbonyl,
 or -N-(C_1-C_6)alkylcarbamoyl is substituted
 with -OH, - NH_2 , or -NAB, where A and B are as
 defined above.

-185-

67. A compound according to Claim 30 wherein
X is -D-E-F and F is

5

10

and R⁵ is

1,1-difluoro(C₁-C₆)alkyl, C₁-C₆alkyl,
-(CH₂)_n-N-piperidinyl, -(CH₂)_n-piperazinyl,
-(CH₂)_n-piperazinyl[N₄-(C₁-C₆)alkyl],
-(CH₂)_n-N-pyrrolidyl, -(CH₂)_n-pyridinyl,
15 -(CH₂)_n-N-imidazoyl, -(CH₂)_n-N-morpholino,
-(CH₂)_n-N-thiomorpholino,
-CH=CH-(C₁-C₆)alkyl,
-(CH₂)_n-N-hexahydroazepine,
-(CH₂)_nNH₂, -(CH₂)_nNH(C₁-C₆ alkyl),
20 -(CH₂)_nN(C₁-C₆ alkyl)₂, -1-oxo(C₁-C₆)alkyl,
carboxy, (C₁-C₆)alkyloxycarbonyl,
N-(C₁-C₆)alkylcarbamoyl, and each C₁-C₆ alkyl
group of 1,1-difluoro(C₁-C₆)alkyl, C₁-C₆
alkyl, -CH=CH-(C₁-C₆)alkyl,
25 -1-oxo(C₁-C₆)alkyl, (C₁-C₆)alkyloxycarbonyl,
or -N-(C₁-C₆)alkylcarbamoyl is substituted
with -OH, -NH₂, or -NAB, where A and B are as
defined above; or

Y is -D-E-F and F is

30

35

and R⁵ is

1,1-difluoro(C₁-C₆)alkyl, C₁-C₆alkyl,
-(CH₂)_n-N-piperidinyl, -(CH₂)_n-piperazinyl,
-(CH₂)_n-piperazinyl[N₄-(C₁-C₆)alkyl].

-186-

- 40 $-(\text{CH}_2)_n\text{-N-pyrrolidyl}$, $-(\text{CH}_2)_n\text{-pyridinyl}$,
 $-(\text{CH}_2)_n\text{-N-imidazoyl}$, $-(\text{CH}_2)_n\text{-N-morpholino}$,
 $-(\text{CH}_2)_n\text{-N-thiomorpholino}$,
 $-\text{CH}=\text{CH-}(\text{C}_1\text{-C}_6)\text{alkyl}$,
 $-(\text{CH}_2)_n\text{-N-hexahydroazepine}$,
- 45 $-(\text{CH}_2)_n\text{NH}_2$, $-(\text{CH}_2)_n\text{NH}(\text{C}_1\text{-C}_6\text{ alkyl})$,
 $-(\text{CH}_2)_n\text{N}(\text{C}_1\text{-C}_6\text{ alkyl})_2$, $-1\text{-oxo}(\text{C}_1\text{-C}_6)\text{alkyl}$,
 carboxy, $(\text{C}_1\text{-C}_6)\text{alkyloxycarbonyl}$,
 $\text{N-}(\text{C}_1\text{-C}_6)\text{alkylcarbamoyl}$, and each $\text{C}_1\text{-C}_6$ alkyl
 group of $1,1\text{-difluoro}(\text{C}_1\text{-C}_6)\text{alkyl}$, $\text{C}_1\text{-C}_6$

50 alkyl, $-\text{CH}=\text{CH-}(\text{C}_1\text{-C}_6)\text{alkyl}$,
 $-1\text{-oxo}(\text{C}_1\text{-C}_6)\text{alkyl}$, $(\text{C}_1\text{-C}_6)\text{alkyloxycarbonyl}$,
 or $-\text{N-}(\text{C}_1\text{-C}_6)\text{alkylcarbamoyl}$ is substituted
 with $-\text{OH}$, $-\text{NH}_2$, or $-\text{NAB}$, where A and B are as
 defined above.

68. A compound according to Claim 1 wherein

- X is $-\text{D-E-F}$;
- Y is $-\text{SR}^4$, $-\text{OR}^4$, or $-\text{NHR}^3$;
- and R^3 and R^4 are $-(\text{CH}_2)_n\text{-N-piperidinyl}$,
- 5 $-(\text{CH}_2)_n\text{-N-piperazinyl}$,
 $-(\text{CH}_2)_n\text{-N}_1\text{-piperazinyl}[\text{N}_4\text{-}(\text{C}_1\text{-C}_6)\text{alkyl}]$,
 $-(\text{CH}_2)_n\text{-N-pyrrolidyl}$, $-(\text{CH}_2)_n\text{-pyridinyl}$,
 $-(\text{CH}_2)_n\text{-N-imidazoyl}$, $-(\text{CH}_2)_n\text{-imidazoyl}$,
 $-(\text{CH}_2)_n\text{-N-morpholino}$,
- 10 $-(\text{CH}_2)_n\text{-N-thiomorpholino}$,
 $-(\text{CH}_2)_n\text{-N-hexahydroazepine}$ or substituted
 $\text{C}_1\text{-C}_6$ alkyl, wherein the substituents are
- A
↑
- 15 selected from $-\text{OH}$, $-\text{NH}_2$, or $-\text{N-B}$, A and B are
 independently hydrogen, $\text{C}_1\text{-C}_6$ alkyl,
 $-(\text{CH}_2)_n\text{OH}$, $-(\text{CH}_2)_n\text{-N-piperidinyl}$,
 $-(\text{CH}_2)_n\text{-N-piperazinyl}$,
 $-(\text{CH}_2)_n\text{-N}_1\text{-piperazinyl}[\text{N}_4\text{-}(\text{C}_1\text{-C}_6)\text{alkyl}]$,

20 $-(\text{CH}_2)_n\text{-N-pyrrolidyl}$, $-(\text{CH}_2)_n\text{-N-pyridyl}$,
 $-(\text{CH}_2)_n\text{-imidazoyl}$ or $-(\text{CH}_2)_n\text{-N-imidazoyl}$; or

-187-

Y is -D-E-F;
 X is -SR⁴, -OR⁴, or -NHR³;
 and R³ and R⁴ are -(CH₂)_n-N-piperidinyl,

- 25 -(CH₂)_n-N-piperazinyl,
 -(CH₂)_n-N₁-piperazinyl[N₄-(C₁-C₆)alkyl],
 -(CH₂)_n-N-pyrrolidyl, -(CH₂)_n-pyridinyl,
 -(CH₂)_n-N-imidazoyl, -(CH₂)_n-imidazoyl,
 -(CH₂)_n-N-morpholino,
 30 -(CH₂)_n-N-thiomorpholino,
 -(CH₂)_n-N-hexahydroazepine or substituted
 C₁-C₆ alkyl, wherein the substituents are

- 35 selected from -OH, -NH₂, or -N-B, A and B are
 independently hydrogen, C₁-C₆ alkyl,
 -(CH₂)_nOH, -(CH₂)_n-N-piperidinyl,
 -(CH₂)_n-N-piperazinyl,
 -(CH₂)_n-N₁-piperazinyl[N₄-(C₁-C₆)alkyl],
 40 -(CH₂)_n-N-pyrrolidyl, -(CH₂)_n-N-pyridyl,
 -(CH₂)_n-imidazoyl, or -(CH₂)_n-N-imidazoyl.

69. A compound according to Claim 18 wherein

X is -D-E-F;
 Y is -SR⁴, -OR⁴, or -NHR³;
 and R³ and R⁴ are -(CH₂)_n-N-piperidinyl,

- 5 -(CH₂)_n-N-piperazinyl,
 -(CH₂)_n-N₁-piperazinyl[N₄-(C₁-C₆)alkyl],
 -(CH₂)_n-N-pyrrolidyl, -(CH₂)_n-pyridinyl,
 -(CH₂)_n-N-imidazoyl, -(CH₂)_n-imidazoyl,
 -(CH₂)_n-N-morpholino,
 10 -(CH₂)_n-N-thiomorpholino,
 -(CH₂)_n-N-hexahydroazepine or substituted
 C₁-C₆ alkyl, wherein the substituents are

- 15 selected from -OH, -NH₂, or -N-B, A and B are
 independently hydrogen, C₁-C₆ alkyl,
 -(CH₂)_nOH, -(CH₂)_n-N-piperidinyl.

-188-

- $(\text{CH}_2)_n$ -N-piperazinyl,
- $(\text{CH}_2)_n$ -N₁-piperazinyl[N₄-(C₁-C₆)alkyl],
- 20 - $(\text{CH}_2)_n$ -N-pyrrolidyl, - $(\text{CH}_2)_n$ -N-pyridyl,
- $(\text{CH}_2)_n$ -imidazoyl or - $(\text{CH}_2)_n$ -N-imidazoyl; or
Y is -D-E-F;
- X is -SR⁴, -OR⁴, or -NHR³;
- and R³ and R⁴ are - $(\text{CH}_2)_n$ -N-piperidinyl,
- 25 - $(\text{CH}_2)_n$ -N-piperazinyl,
- $(\text{CH}_2)_n$ -N₁-piperazinyl[N₄-(C₁-C₆)alkyl],
- $(\text{CH}_2)_n$ -N-pyrrolidyl, - $(\text{CH}_2)_n$ -pyridinyl,
- $(\text{CH}_2)_n$ -N-imidazoyl, - $(\text{CH}_2)_n$ -imidazoyl,
- $(\text{CH}_2)_n$ -N-morpholino,
- 30 - $(\text{CH}_2)_n$ -N-thiomorpholino,
- $(\text{CH}_2)_n$ -N-hexahydroazepine or substituted
C₁-C₆ alkyl, wherein the substituents are

A
↓
- 35 selected from -OH, -NH₂, or -N-B, A and B are
independently hydrogen, C₁-C₆ alkyl,
- $(\text{CH}_2)_n$ OH, - $(\text{CH}_2)_n$ -N-piperidinyl,
- $(\text{CH}_2)_n$ -N-piperazinyl,
- $(\text{CH}_2)_n$ -N₁-piperazinyl[N₄-(C₁-C₆)alkyl].
- 40 - $(\text{CH}_2)_n$ -N-pyrrolidyl, - $(\text{CH}_2)_n$ -N-pyridyl,
- $(\text{CH}_2)_n$ -imidazoyl, or - $(\text{CH}_2)_n$ -N-imidazoyl.

70. A compound according to Claim 30 wherein
- X is -D-E-F;
 - Y is -SR⁴, -OR⁴, or -NHR³;
 - and R³ and R⁴ are - $(\text{CH}_2)_n$ -N-piperidinyl,
 - 5 - $(\text{CH}_2)_n$ -N-piperazinyl,
 - $(\text{CH}_2)_n$ -N₁-piperazinyl[N₄-(C₁-C₆)alkyl].
 - $(\text{CH}_2)_n$ -N-pyrrolidyl, - $(\text{CH}_2)_n$ -pyridinyl,
 - $(\text{CH}_2)_n$ -N-imidazoyl, - $(\text{CH}_2)_n$ -imidazoyl,
 - $(\text{CH}_2)_n$ -N-morpholino,
 - 10 - $(\text{CH}_2)_n$ -N-thiomorpholino,
 - $(\text{CH}_2)_n$ -N-hexahydroazepine or substituted
C₁-C₆ alkyl, wherein the substituents are

-189-

- A
↑
- 15 selected from -OH, -NH₂, or -N-B, A and B are independently hydrogen, C₁-C₆ alkyl,
-(CH₂)_nOH, -(CH₂)_n-N-piperidinyl,
-(CH₂)_n-N-piperazinyl,
-(CH₂)_n-N₁-piperazinyl[N₄-(C₁-C₆)alkyl].
- 20 -(CH₂)_n-N-pyrrolidyl, -(CH₂)_n-N-pyridyl,
-(CH₂)_n-imidazoyl or -(CH₂)_n-N-imidazoyl; or
Y is -D-E-F;
X is -SR⁴, -OR⁴, or -NHR³;
and R³ and R⁴ are -(CH₂)_n-N-piperidinyl.
- 25 -(CH₂)_n-N-piperazinyl,
-(CH₂)_n-N₁-piperazinyl[N₄-(C₁-C₆)alkyl],
-(CH₂)_n-N-pyrrolidyl, -(CH₂)_n-pyridinyl,
-(CH₂)_n-N-imidazoyl, -(CH₂)_n-imidazoyl,
-(CH₂)_n-N-morpholino,
- 30 -(CH₂)_n-N-thiomorpholino,
-(CH₂)_n-N-hexahydroazepine or substituted
C₁-C₆ alkyl, wherein the substituents are
- A
↑
- 35 selected from -OH, -NH₂, or -N-B, A and B are independently hydrogen, C₁-C₆ alkyl,
-(CH₂)_nOH, -(CH₂)_n-N-piperidinyl,
-(CH₂)_n-N-piperazinyl,
-(CH₂)_n-N₁-piperazinyl[N₄-(C₁-C₆)alkyl].
- 40 -(CH₂)_n-N-pyrrolidyl, -(CH₂)_n-N-pyridyl,
-(CH₂)_n-imidazoyl, or -(CH₂)_n-N-imidazoyl.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 97/05778

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 C07D239/94 C07D487/04 C07D471/04 C07D495/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 6 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 95 19774 A (WARNER-LAMBERT.) 27 July 1995 see claims ---	1,18, 22-25, 37,45,46
A	US 3 755 583 A (G.G.DE ANGELIS) 28 August 1973 see claims; example XVIII -----	1,31,37

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
5 August 1997	11.08.97

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
 Fax (+ 31-70) 340-3016

Authorized officer

Francois, J

INTERNATIONAL SEARCH REPORT

In. national application No.

PCT/US 97/05778

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
**Remark: Although claim(s) 39-44, 49-57
is(are) directed to a method of treatment of the human/animal
body, the search has been carried out and based on the alleged
effects of the compound/composition.**
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remarks on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 97/05778

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9519774 A	27-07-95	AU 1731495 A AU 1833495 A BG 100614 A BG 100615 A CA 2177372 A CA 2177392 A CN 1139383 A CN 1139430 A EP 0742717 A EP 0741711 A FI 962855 A FI 962856 A HU 74598 A HU 74589 A NO 963093 A NO 963094 A PL 315632 A PL 315633 A WO 9519970 A ZA 9500441 A ZA 9500440 A	08-08-95 08-08-95 31-03-97 28-02-97 27-07-95 27-07-95 01-01-97 01-01-97 20-11-96 13-11-96 13-09-96 25-09-96 28-01-97 28-01-97 24-07-96 24-07-96 25-11-96 25-11-96 27-07-95 10-10-95 10-10-95
US 3755583 A	28-08-73	GB 1315901 A US 3706747 A	09-05-73 19-12-72