Universidade Federal de Minas Gerais

Aluno: Giovanni Martins de Sá Júnior

Matrícula: 2017001850

Exercício 12: Redes Neurais Artificiais

Neste último exercício da disciplina de Redes Neurais, será tratado do uso de Séries Temporais em MLPs. Para isso, será escolhido um conjunto de dados com variáveis exógenas que são capazes de realizar a previsão. Com isso, será aplicado a MLP identificando os lags de tempo que serão considerados.

A partir disso, foi montada uma base de dados buscada na FGV Dados, buscando quatro índices de referência a respeito da taxa de câmbio do Real frente a quatro diferentes moedas, sendo elas: Dólar, Euro, Iene e Libra. Assim, o dataset foi montado com dados iniciando-se em 1999 até o ano de 2023.

Abaixo, é visto uma prévia do dataset original:

Data	Ind Taxa de Cambio Real - (Real / Dolar)	Ind Taxa de Cambio Real - (Real / Iene)	Ind Taxa de Cambio Real - (Real / Euro)	Ind Taxa de Cambio Real - (Real / Libra)
01/1999	100,000	100,000	100,000	100,000
02/1999	119,951	116,956	115,692	118,814
03/1999	114,411	109,283	106,877	113,282
04/1999	101,876	96,831	93,163	100,056
05/1999	102,108	94,934	92,415	100,463
06/1999	106,805	100,335	94,355	103,753
07/1999	107,015	101,529	94,625	102,339
08/1999	110,010	109,581	99,059	106,635
09/1999	109,493	114,255	97,200	106,760
10/1999	110,761	116,654	100,700	110,334
11/1999	105,502	112,340	92,492	102,244
12/1999	98,408	106,733	84,629	94,865
01/2000	95,096	99,350	84,143	93,172
02/2000	94,179	93,689	79,856	89,240

Figura 1: Prévia Dataset

Neste dataset, foram feitas alterações que pudessem viabilizar a aplicação neste exemplo. Dentre as mudanças, podem ser listas a remoção de linhas com dados incompletos (presentes apenas no final do dataset) e a troca de vírgula por ponto (ao utilizar a função as.numeric() do R, a conversão não era feita) para converter os dados para numéricos. Além disso, a coluna de Data, foi substituída por um número inteiro, por exemplo:

$$01/1999 \rightarrow 0$$

 $02/1999 \rightarrow 1$
...
 $01/2022 \rightarrow 280$

O motivo para realizar este tratamento se deve ao fato de facilitar a plotagem dos dados iniciais como vai ser mostrado mais abaixo. A seguir, é apresentado a implementação do código feita para a preparação do conjunto de dados e do gráfico dos dados apresentados no dataset. Na figura 3, o eixo X representado por tempo, está numerado seguindo o padrão mencionado anteriormente. Perceba que foi introduzido também um lag para cada parâmetro analisado

```
# Tratando os dados
dataset <- read.csv("C:/Projetos/Trabalhos-Faculdade/Redes Neurais Artificiais/Teste/testeConsulta.csv")
dataset$Data <- as.numeric(dataset$Data)</pre>
dataset$Ind_Real_Dolar <- as.numeric(dataset$Ind_Real_Dolar)
dataset$Ind_Real_Iene <- as.numeric(dataset$Ind_Real_Iene)
dataset$Ind_Real_Euro <- as.numeric(dataset$Ind_Real_Euro)</pre>
dataset$Ind_Real_Libra <- as.numeric(dataset$Ind_Real_Libra)
dataset[,2:5] <- dataset[,2:5] / 1000 # pivindo por mil, ponto perdido na conversao para numerico (linha 13)
dataset$Ind_Real_Dolar_Lag1 <- lag(dataset$Ind_Real_Dolar, 1)
dataset$Ind_Real_Dolar_Lag2 <- lag(dataset$Ind_Real_Dolar, 2)
dataset$Ind_Real_Iene_Lag1 <- lag(dataset$Ind_Real_Iene, 1)</pre>
dataset$Ind_Real_Iene_Lag2 <-
dataset$Ind_Real_Euro_Lag1 <-</pre>
                                   lag(dataset$Ind_Real_Iene, 2)
lag(dataset$Ind_Real_Euro, 1)
dataset$Ind_Real_Euro_Lag2 <- lag(dataset$Ind_Real_Euro,
dataset$Ind_Real_Libra_Lag1 <- lag(dataset$Ind_Real_Libra, 1)
dataset$Ind_Real_Libra_Lag2 <- lag(dataset$Ind_Real_Libra, 2)
dataset <- dataset[complete.cases(dataset),]</pre>
# Plotagem dados dataset
plot(dataset[,1], dataset[,2],lwd= 2, type = 'l', xlab = "Tempo", ylab="Indice Taxa de Cambio", ylim=c(0, 145), col = 'red')
plot(dataset[,1], dataset[,3], lwd= 2, type = 'l', xlab = "Tempo", ylab="Indice Taxa de Cambio", ylim=C(0, 145), col = 'blue')
plot(dataset[,1], dataset[,4], lwd= 2, type = 'l', xlab = "Tempo", ylab="Indice Taxa de Cambio", ylim=c(0, 145),col = 'green')
plot(dataset[,1], dataset[,5], lwd= 2, type = 'l', xlab = "Tempo", ylab="Indice Taxa de Cambio",ylim=c(0, 145), col = 'black')
legend(x = "topright",legend=c("Real-Dolar", "Real-Iene", "Real-Euro", "Real-Libra"), fill=c("<mark>red</mark>", "<mark>blue</mark>","<mark>green</mark>", "<mark>black</mark>"))
```

Figura 2: Tratamento de Dados do Dataset

Figura 3: Série Temporal do Índice de Taxa de Câmbio do Real frente ao Dólar, lene, Euro e Libra respectivamente

A seguir, é mostrada a implementação final, apesar de não ter sido possível concluir a atividade a tempo:

```
# Implementacao da MLP

library(RSNNS)

library(ggplot2)

# Dividir os dados em treinamento e teste

Tamanho_treinamento <- floor(0.7 * nrow(dataset))

Dados_treinamento <- dataset[1:Tamanho_treinamento,]

Dados_teste <- dataset[(Tamanho_treinamento + 1):nrow(dataset),]

# Normalizacao

max_valores <- apply(Dados_treinamento[,2:5], 2, max)

min_valores <- apply(Dados_treinamento[,2:5], 2, min)

Dados_teste(.2:5] <- scale(Dados_testeinamento[,2:10], center = min_valores, scale = max_valores - min_valores)

Dados_teste[,2:5] <- scale(Dados_teste[,2:10], center = min_valores, scale = max_valores - min_valores)

# Configurar a arquitetura da MLP

# Configurar a arquitetura da MLP

mlp_modelo <- mlp(Dados_treinamento[,2:10]), 5, 3, 1)

# Treinar a MLP

mlp_modelo <- mlp(Dados_treinamento[,2:10], Dados_treinamento$Ind_Real_Dolar, size = arq, learnFuncParams = c(0.1), maxit = 1000)

# Fazer previsões usando a MLP treinada

mlp_previsoes <- predict(mlp_modelo, Dados_teste[,2:10])

# Reverter a normalização das previsões

mlp_previsoes <- men(Dados_teste$Ind_Real_Dolar - mlp_previsoes)/2)

cat("MSE:", mse)

ma <- mean(dos(Dados_teste$Ind_Real_Dolar - mlp_previsoes))

cat("MAE:", mae)
```