This key should allow you to understand why you choose the option you did (beyond just getting a question right or wrong). More instructions on how to use this key can be found here.

If you have a suggestion to make the keys better, please fill out the short survey here.

Note: This key is auto-generated and may contain issues and/or errors. The keys are reviewed after each exam to ensure grading is done accurately. If there are issues (like duplicate options), they are noted in the offline gradebook. The keys are a work-in-progress to give students as many resources to improve as possible.

1. Is the graph below a linear function?

The solution is yes, the graph is linear., which is option A.

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was 1(x + 2)-2. A linear function has a constant rate of growth. This means that as x increases or decreases, y increase or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x = 1 to x = 2, the y increases by 3. From x = 2 to x = 3, the y increases by 5. From x = 3 to x = 4, the y increases by 7. A linear function would have the same change in y for any change in x.

2. Is the following relation a function?

X	у	
1	4.0	-
2	8.0	-
3	16.0	The solution is Yes, which is option A
4	32.0	The solution is Tes, which is option A
5	64.0	-
6	128.0	_
7	256.0	

A. Yes

* Correct! Every x-value has exactly one output.

B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

3. Is the equation below a linear function?

$$f(x) = -2(x+5) + 2$$

The solution is yes, the graph is linear., which is option A.

A. Yes, the equation is linear

* Correct! The equation is a degree-1 polynomial and is thus a linear function.

B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was -2(x+5)+2. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

4. Is the following relation a linear function?

X	у			
1	-3			
2	-6			
3	-9 Th	o colution	ia No which	n is option B.
4	9	ie solution i	is ivo, which	i is option D.
3	3			
2	6			
1	9			

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

5. Is the graph below a linear function?

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was -5(x-4)-2. A linear function has a constant rate of growth. This means that as x increases or decreases, y increase or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

6. Is the following relation a function?

$$(-3, 135), (-2, 40), (-1, 5), (0, 0), (1, -5), (2, -40), (3, -135)$$

The solution is Yes, which is option A.

- A. Yes
 - * Correct! Every x-value has exactly one output.
- B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

7. Is the equation below a linear function?

$$f(x) = 4\sqrt{3x - 7} + 7$$

The solution is no, the equation is not linear, which is option B.

A. Yes, the equation is linear

A linear equation is a degree-1 polynomial. $4\sqrt{3x-7}+7 is a square root function No, the equation is not linear.$

* Correct! $4\sqrt{3x-7} + 7isnotadegree - 1polynomial$.

General Comment: The equation graphed was $4\sqrt{3x-7}+7$. Alinear function is a degree -1 polynomial. Polynomial equation $=3x^2-2x+4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

B. Is the following relation a linear function?

X	У	
1	-3	-
2	-12	-
3	-27	-The solution is No, which is option B.
4	-48	-The solution is No, which is option D.
5	48	-
4	3	-
3	12	-

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

9. Is the graph below a linear function?

The solution is yes, the graph is linear., which is option A.

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was 3(x + 2)-4. A linear function has a constant rate of growth. This means that as x increases or decreases, y increase or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x = 1 to x = 2, the y increases by 3. From x = 2 to x = 3, the y increases by 5. From x = 3 to x = 4, the y increases by 7. A linear function would have the same change in y for any change in x.

10. Is the following relation a function?

\mathbf{X}	У	
-1	1	-
0	0	-
1	-1	-The solution is Yes, which is option A.
2	-8	The solution is Tes, which is option A.
3	-27	-
4	-64	-
5	-125	-

A. Yes

* Correct! Every x-value has exactly one output.

B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

11. Is the equation below a linear function?

$$f(x) = 4(2)^{x+5} - 3$$

The solution is no, the equation is not linear, which is option B.

A. Yes, the equation is linear

 $\label{eq:alpha} \mbox{A linear equation is a degree-1 polynomial. } 4~(2)^{x+5} - 3 is abase - 2 exponential function No, the equation is not linear. \\$

* Correct! $4(2)^{x+5} - 3isnotadegree - 1polynomial$.

General Comment: The equation graphed was $4(2)^{x+5}-3$. Alinear function is a degree -1 polynomial. Polynomial equation $= 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

12. Is the following relation a linear function?

X	У	
3	-3.46	•
4	-4.0	•
5	-4.0	The solution is No, which is option B
4	3.46	The solution is two, which is option b
3	4.0	•
2	4.47	•
1	4.9	•

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

13. Is the graph below a linear function?

The solution is yes, the graph is linear., which is option A.

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was 3(x + 2)-1. A linear function has a constant rate of growth. This means that as x increases or decreases, y increase or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x = 1 to x = 2, the y increases by 3. From x = 2 to x = 3, the y increases by 5. From x = 3 to x = 4, the y increases by 7. A linear function would have the same change in y for any change in x.

14. Is the following relation a function?

$$(3, 0.12), (4, 0.06), (5, 0.03), (6, 0.02), (7, 0.01), (8, 0.0), (9, 0.0)$$

The solution is Yes, which is option A.

- A. Yes
 - * Correct! Every x-value has exactly one output.
- B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

15. Is the equation below a linear function?

$$f(x) = -2(x-2) + 2$$

The solution is yes, the graph is linear., which is option A.

- A. Yes, the equation is linear
 - * Correct! The equation is a degree-1 polynomial and is thus a linear function.
- B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was -2(x-2)+2. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

16. Is the following relation a linear function?

X	У	
3	8.66	
4	10.0	
5	11.18	The solution is No, which is option B
6	-11.18	The solution is No, which is option b
5	-8.66	•
4	-10.0	•
3	-11.18	•

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

- B. No
 - * Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

17. Is the graph below a linear function?

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was -2(x+5)+3. A linear function has a constant rate of growth. This means that as x increases or decreases, y increase or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

18. Is the following relation a function?

X	У	
3	-3	
4	-4	
5	The solution is No, which is on	otion B
6	-5 The solution is No, which is of	JUDII D.
5	3	
4	4	
3	5	

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function.

General Comment: For a relation to be a function, every x-value needs exactly one output.

19. Is the equation below a linear function?

$$f(x) = 2\left(\frac{1}{2}\right)^{x-2} + 1$$

The solution is no, the equation is not linear, which is option B.

A. Yes, the equation is linear

 $\label{eq:alpha} \mbox{A linear equation is a degree-1 polynomial. } 2 \left(\frac{1}{2}\right)^{x-2} + 1 is abase - 0.5 exponential function No, the equation is not linear equation of the equation of$

* Correct!
$$2\left(\frac{1}{2}\right)^{x-2} + 1 isnotade gree - 1 polynomial.$$

General Comment: The equation graphed was $2\left(\frac{1}{2}\right)^{x-2} + 1$. Alinear function is a degree -1 polynomial. Polynomial $= 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

28. Is the following relation a linear function?

X	У	
2	-7.07	
3	-8.66	
4	-8.66	The solution is No, which is option B.
3	7.07	The solution is No, which is option D.
2	8.66	
1	10.0	-
0	11.18	

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

21. Is the graph below a linear function?

1542-4749

A. Yes, the graph is linear

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does not have a constant rate of change.

B. No, the graph is not linear.

* Correct! The graph does not have a constant rate of change and thus is not a linear function.

General Comment: The equation graphed was 2-x+4-3. A linear function has a constant rate of growth. This means that as x increases or decreases, y increase or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

22. Is the following relation a function?

\mathbf{x}	У	
2	-20	•
3	-45	•
4	-80	The solution is No, which is option B.
5	-125	The solution is No, which is option b.
6	125	•
5	20	•
4	45	•

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function.

General Comment: For a relation to be a function, every x-value needs exactly one output.

23. Is the equation below a linear function?

$$f(x) = -2|x - 1| + 2$$

The solution is no, the equation is not linear, which is option B.

A. Yes, the equation is linear

A linear equation is a degree-1 polynomial. -2—x -1—+2 is a absolute value function

B. No, the equation is not linear.

General Comment: The equation graphed was -2—x -1—+2. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

24. Is the following relation a linear function?

X	У	
2	-8	-
3	-12	
4	-16	The solution is No, which is option B.
5	16	The solution is ivo, which is option B.
4	8	-
3	12	-
2	16	-

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

25. Is the graph below a linear function?

^{*} Correct! -2—x -1—+2 is not a degree-1 polynomial.

A. Yes, the graph is linear

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does not have a constant rate of change.

B. No, the graph is not linear.

* Correct! The graph does not have a constant rate of change and thus is not a linear function.

General Comment: The equation graphed was -4-x-1-4. A linear function has a constant rate of growth. This means that as x increases or decreases, y increases or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

26. Is the following relation a function?

$$(4,6.0), (5,6.71), (6,7.35), (7,7.94), (8,-7.94), (7,-6.0), (6,-6.71)$$

The solution is No, which is option B.

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function.

General Comment: For a relation to be a function, every x-value needs exactly one output.

27. Is the equation below a linear function?

$$f(x) = -3\sqrt{4x+5} + 6$$

The solution is no, the equation is not linear, which is option B.

A. Yes, the equation is linear

A linear equation is a degree-1 polynomial. $-3\sqrt{4x+5} + 6 is a square root function No, the equation is not linear.$

* Correct! $-3\sqrt{4x+5} + 6isnotadegree - 1polynomial$.

General Comment: The equation graphed was $-3\sqrt{4x+5}+6$. Alinear function is a degree -1 polynomial. Polynomial $=3x^2-2x+4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

28. Is the following relation a linear function?

X	У	
-2	-5	-
-1	-2	
0	1	- -The solution is Yes, which is option A.
1	4	-The solution is Tes, which is option A.
2	7	
3	10	_
4	13	_

A. Yes

* Correct! As x increases/decreases, y increases/decreases at the same rate.

B. No

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

29. Is the graph below a linear function?

The solution is yes, the graph is linear, which is option A.

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was -1(x+1)-2. A linear function has a constant rate of growth. This means that as x increases or decreases, y increases or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

30. Is the following relation a function?

X	У			
1	-5	•		
2	-10	•		
3	-15	The solution is No	which is	option B
4	-20	The solution is ive	, which is	option D.
5	20			
4	5	•		
3	10	-		

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function.

General Comment: For a relation to be a function, every x-value needs exactly one output.

31. Is the equation below a linear function?

$$f(x) = -2|x - 3| + 2$$

The solution is no, the equation is not linear, which is option B.

A. Yes, the equation is linear

A linear equation is a degree-1 polynomial. -2—x -3—+2 is a absolute value function

B. No, the equation is not linear.

* Correct! -2—x -3—+2 is not a degree-1 polynomial.

General Comment: The equation graphed was -2—x -3—+2. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

32. Is the following relation a linear function?

\mathbf{x}	У	
-3	-14	
-2	-7	
-1	0	The solution is Yes, which is option A.
0	7	The solution is Tes, which is option A.
1	14	-
2	21	-
3	28	-

A. Yes

* Correct! As x increases/decreases, y increases/decreases at the same rate.

B. No

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

33. Is the graph below a linear function?

The solution is yes, the graph is linear., which is option A.

A. Yes, the graph is linear

* Correct! The graph has a constant rate of change and is thus a linear function.

B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was 3(x-3)+5. A linear function has a constant rate of growth. This means that as x increases or decreases, y increases or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

34. Is the following relation a function?

	1	
X	У	
2	1.41	
3	1.73	The solution is No, which is option B.
4	2.0	
5	-2.0	
4	-1.41	
3	-1.73	
2	-2.0	

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function.

General Comment: For a relation to be a function, every x-value needs exactly one output.

35. Is the equation below a linear function?

$$f(x) = 5(x - 1) - 5$$

The solution is yes, the graph is linear., which is option A.

- A. Yes, the equation is linear
 - * Correct! The equation is a degree-1 polynomial and is thus a linear function.
- B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was 5(x-1)-5. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

36. Is the following relation a linear function?

\mathbf{x}	У	
3	-9	
4	-16	
5	The solution is No, which is	ontion B
6	-25 The solution is No, which is	օրսու ը.
5	9	
4	16	
3	25	

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

37. Is the graph below a linear function?

The solution is no, the graph is not linear, which is option B.

A. Yes, the graph is linear

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does not have a constant rate of change.

B. No, the graph is not linear.

* Correct! The graph does not have a constant rate of change and thus is not a linear function.

General Comment: The equation graphed was $4\left(\frac{1}{2}\right)^{x--5}$ -4. Alinear function has a constant rate of growth. This means is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

38. Is the following relation a function?

X	У	
2	8	
3	12	
4	16	The solution is No, which is option B.
5	16	The solution is No, which is option D.
4	-8	
3	-12	
2	-16	

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function.

General Comment: For a relation to be a function, every x-value needs exactly one output.

39. Is the equation below a linear function?

$$f(x) = 2(x - 3) - 1$$

The solution is yes, the graph is linear., which is option A.

- A. Yes, the equation is linear
 - * Correct! The equation is a degree-1 polynomial and is thus a linear function.
- B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was 2(x-3)-1. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

40. Is the following relation a linear function?

X	У	
1	-3.0	-
2	-4.24	-
3	4.24	- The solution is No, which is option B.
2	3.0	-The solution is No, which is option D.
1	4.24	-
0	5.2	-
-1	6.0	-

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

- B. No
 - * Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

41. Is the graph below a linear function?

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was 1(x + 4)+4. A linear function has a constant rate of growth. This means that as x increases or decreases, y increase or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x = 1 to x = 2, the y increases by 3. From x = 2 to x = 3, the y increases by 5. From x = 3 to x = 4, the y increases by 7. A linear function would have the same change in y for any change in x.

42. Is the following relation a function?

$$(1, -4.0), (2, -5.66), (3, -6.93), (4, -8.0), (5, -8.94), (6, -9.8), (7, -10.58)$$

The solution is Yes, which is option A.

- A. Yes
 - * Correct! Every x-value has exactly one output.
- B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

43. Is the equation below a linear function?

$$f(x) = 5(x+5) - 3$$

The solution is yes, the graph is linear., which is option A.

- A. Yes, the equation is linear
 - * Correct! The equation is a degree-1 polynomial and is thus a linear function.

B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was 5(x + 5)-3. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

44. Is the following relation a linear function?

X	У	
1	4.0	•
2	5.66	The solution is No, which is option B.
3	6.93	
4	8.0	
5	8.94	•
6	9.8	•
7	10.58	-

A. Yes

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The table in this example does have a constant rate of change.

B. No

* Correct! The table in this example does not have a constant rate of change. This relation is a float function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

45. Is the graph below a linear function?

The solution is yes, the graph is linear., which is option A.

A. Yes, the graph is linear

^{*} Correct! The graph has a constant rate of change and is thus a linear function.

B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was -1(x-1)+1. A linear function has a constant rate of growth. This means that as x increases or decreases, y increase or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

46. Is the following relation a function?

X	У	
2	-16	
3	-54	
4	-128	The solution is Yes, which is option A.
5	-250	The solution is fes, which is option A
6	-432	
7	-686	
8	-1024	

A. Yes

* Correct! Every x-value has exactly one output.

B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

47. Is the equation below a linear function?

$$f(x) = 3(x+5) - 5$$

The solution is yes, the graph is linear, which is option A.

- A. Yes, the equation is linear
 - * Correct! The equation is a degree-1 polynomial and is thus a linear function.
- B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was 3(x + 5)-5. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

48. Is the following relation a linear function?

X	У	
1	2.0	
2	2.83	
3	3.46	The solution is No, which is option E
4	4.0	
5	4.47	
6	4.9	
7	5.29	

A. Yes

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The table in this example does have a constant rate of change.

B. No

* Correct! The table in this example does not have a constant rate of change. This relation is a float function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

49. Is the graph below a linear function?

The solution is yes, the graph is linear., which is option A.

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was -2(x-2)-4. A linear function has a constant rate of growth. This means that as x increases or decreases, y increases or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

50. Is the following relation a function?

X	у	
4	-64	-
5	-125	-
6	-216	-The solution is Yes, which is option A.
7	-343	The solution is Tes, which is option A.
8	-512	-
9	-729	-
10	-1000	-

A. Yes

* Correct! Every x-value has exactly one output.

B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

51. Is the equation below a linear function?

$$f(x) = -3\sqrt[3]{-6x+7} + 4$$

The solution is no, the equation is not linear, which is option B.

A. Yes, the equation is linear

A linear equation is a degree-1 polynomial. $-3\sqrt[3]{-6x+7}+4isacuberoot function No, the equation is not linear.$

* Correct! $-3\sqrt[3]{-6x+7} + 4isnotadegree - 1polynomial$.

General Comment: The equation graphed was $-3\sqrt[3]{-6x+7}+4$. Alinear function is a degree -1 polynomial. Polynomial $=3x^2-2x+4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

52. Is the following relation a linear function?

X	У	
1	1.0	
2	1.41	•
3	1.73	The solution is No, which is option B.
4	-1.73	The solution is No, which is option b
3	-1.0	•
2	-1.41	
1	-1.73	

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

53. Is the graph below a linear function?

The solution is yes, the graph is linear., which is option A.

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was 2(x-5)-4. A linear function has a constant rate of growth. This means that as x increases or decreases, y increases or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

54. Is the following relation a function?

1	5.0	-
2	7.07	-
3	8.66	-The solution is No, which is option B.
4	10.0	The solution is No, which is option b
5	-10.0	-
4	-5.0	-
3	-7.07	-

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B No

^{*} Correct! An x-value has two separate outputs and thus this relation is not a function.

General Comment: For a relation to be a function, every x-value needs exactly one output.

55. Is the equation below a linear function?

$$f(x) = 4(x+4) + 1$$

The solution is yes, the graph is linear., which is option A.

- A. Yes, the equation is linear
 - * Correct! The equation is a degree-1 polynomial and is thus a linear function.
- B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was 4(x + 4)+1. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

56. Is the following relation a linear function?

X	У	
4	10.0	_
5	11.18	The solution is No, which is option B
6	12.25	
7	-12.25	
6	-10.0	
5	-11.18	-
4	-12.25	-

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

- B. No
 - * Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

57. Is the graph below a linear function?

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was 2(x-3)-3. A linear function has a constant rate of growth. This means that as x increases or decreases, y increase or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

58. Is the following relation a function?

X	У	
1	10	-
2	14	_
3	18	- -The solution is Yes, which is option A
4	22	-The solution is Tes, which is option A
5	26	
6	30	
7	34	_

- A. Yes
 - * Correct! Every x-value has exactly one output.
- B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

59. Is the equation below a linear function?

$$f(x) = 3(x - 5) - 4$$

- A. Yes, the equation is linear
 - * Correct! The equation is a degree-1 polynomial and is thus a linear function.
- B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was 3(x-5)-4. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

60. Is the following relation a linear function?

X	У	
1	-5	
2	-20	
3	-45	The solution is No, which is option B
4	-80	The solution is No, which is option D
5	-80	
4	5	
3	20	

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

61. Is the graph below a linear function?

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was -4(x-3)-5. A linear function has a constant rate of growth. This means that as x increases or decreases, y increases or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

62. Is the following relation a function?

X	У	
3	-3.46	
4	-4.0	
5	-4.47	The solution is Vos. which is option A
6	-4.9	The solution is Yes, which is option A
7	-5.29	
8	-5.66	
9	-6.0	

- A. Yes
 - * Correct! Every x-value has exactly one output.
- B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

63. Is the equation below a linear function?

$$f(x) = -5(x-1) - 2$$

The solution is yes, the graph is linear., which is option A.

- A. Yes, the equation is linear
 - * Correct! The equation is a degree-1 polynomial and is thus a linear function.
- B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was -5(x-1)-2. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

64. Is the following relation a linear function?

x	У	
3	-18	_
4	-32	_
5	-50	- -The solution is No, which is option B.
6	-72	-The solution is No, which is option D.
7	-72	-
6	18	-
5	32	-

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

65. Is the graph below a linear function?

The solution is no, the graph is not linear, which is option B.

A. Yes, the graph is linear

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does not have a constant rate of change.

B. No, the graph is not linear.

* Correct! The graph does not have a constant rate of change and thus is not a linear function.

General Comment: The equation graphed was 1-x+5-2. A linear function has a constant rate of growth. This means that as x increases or decreases, y increases or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

66. Is the following relation a function?

X	У	
2	1.26	-
3	1.44	-
4	1.59	-The solution is Yes, which is option A.
5	1.71	The solution is res, which is option A
6	1.82	-
7	1.91	-
8	2.0	-

A. Yes

* Correct! Every x-value has exactly one output.

B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

67. Is the equation below a linear function?

$$f(x) = -3(x+3)^4 + 1$$

The solution is no, the equation is not linear, which is option B.

A. Yes, the equation is linear

A linear equation is a degree-1 polynomial. $-3(x+3)^4+1$ is a degree-4 polynomial No, the equation is not linear.

* Correct! $-3(x + 3)^4 + 1$ isnotadegree -1polynomial.

General Comment: The equation graphed was $-3(x + 3)^4 + 1$. Alinear function is a degree -1 polynomial. Polynomial $= 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

68. Is the following relation a linear function?

X	У	
2	-4.24	
3	-5.2	
4	-6.0	The galution is No which is ention I
5	-6.71	The solution is No, which is option B.
6	-6.71	
5	4.24	
4	5.2	

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

69. Is the graph below a linear function?

The solution is no, the graph is not linear, which is option B.

A. Yes, the graph is linear

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does not have a constant rate of change.

B. No, the graph is not linear.

* Correct! The graph does not have a constant rate of change and thus is not a linear function.

General Comment: The equation graphed was $4\left(\frac{1}{2}\right)^{x-5}$ -1. Alinear function has a constant rate of growth. This mean is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

70. Is the following relation a function?

$$(1,4), (2,16), (3,36), (4,64), (5,64), (4,-4), (3,-16)$$

The solution is No, which is option B.

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function.

General Comment: For a relation to be a function, every x-value needs exactly one output.

71. Is the equation below a linear function?

$$f(x) = -5(x+1) + 3$$

The solution is yes, the graph is linear., which is option A.

- A. Yes, the equation is linear
 - * Correct! The equation is a degree-1 polynomial and is thus a linear function.
- B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was -5(x + 1) + 3. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

72. Is the following relation a linear function?

X	37	
	у	_
-1	-5	
0	1	_
1	7	- The solution is Yes, which is option A.
2	13	-The solution is Tes, which is option A.
3	19	_
4	25	_
5	31	_

A. Yes

* Correct! As x increases/decreases, y increases/decreases at the same rate.

B. No

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

73. Is the graph below a linear function?

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was 3(x-3)-1. A linear function has a constant rate of growth. This means that as x increases or decreases, y increase or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

74. Is the following relation a function?

\mathbf{x}	У	
1	-1	_
2	-4	_
3	-9	-The solution is No, which is option B.
4	-16	-The solution is No, which is option b.
5	16	-
4	1	-
3	4	-

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

- B. No
 - * Correct! An x-value has two separate outputs and thus this relation is not a function.

General Comment: For a relation to be a function, every x-value needs exactly one output.

75. Is the equation below a linear function?

$$f(x) = 2(x-2) + 2$$

- A. Yes, the equation is linear
 - * Correct! The equation is a degree-1 polynomial and is thus a linear function.
- B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was 2(x-2)+2. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

76. Is the following relation a linear function?

X	У	
-2	-7	
-1	-1	
0	5	-The solution is Yes, which is option A
1	11	-The solution is Tes, which is option A
2	17	_
3	23	_
4	29	-

A. Yes

* Correct! As x increases/decreases, y increases/decreases at the same rate.

B. No

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

77. Is the graph below a linear function?

The solution is no, the graph is not linear., which is option B.

A. Yes, the graph is linear

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does not have a constant rate of change.

B. No, the graph is not linear.

* Correct! The graph does not have a constant rate of change and thus is not a linear function.

General Comment: The equation graphed was $5\left(\frac{1}{2}\right)^{x--2}$ -1. Alinear function has a constant rate of growth. This means is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

78. Is the following relation a function?

	I	
X	У	
1	4.0	
2	8.0	
3	16.0	The solution is Yes, which is option A.
4	32.0	The solution is Tes, which is option A.
5	64.0	
6	128.0	
7	256.0	

A. Yes

B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

79. Is the equation below a linear function?

$$f(x) = -4\sqrt[3]{7x+6} - 3$$

The solution is no, the equation is not linear, which is option B.

A. Yes, the equation is linear

A linear equation is a degree-1 polynomial. $-4\sqrt[3]{7x+6}-3isacuberoot function No, the equation is not linear.$

* Correct! $-4\sqrt[3]{7x+6} - 3isnotadegree - 1polynomial$.

General Comment: The equation graphed was $-4\sqrt[3]{7x+6}-3$. Alinear function is a degree -1 polynomial. Polynomial $=3x^2-2x+4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

8D. Is the following relation a linear function?

^{*} Correct! Every x-value has exactly one output.

	i e	
\mathbf{X}	У	
1	2.0	
2	2.83	
3	-2.83	The solution is No, which is option B.
2	-2.0	The solution is no, which is option B.
1	-2.83	
0	-3.46	
-1	-4.0	

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

81. Is the graph below a linear function?

The solution is no, the graph is not linear., which is option B.

A. Yes, the graph is linear

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does not have a constant rate of change.

B. No, the graph is not linear.

* Correct! The graph does not have a constant rate of change and thus is not a linear function.

General Comment: The equation graphed was $3(x+5)^4-2$. Alinear function has a constant rate of growth. This means is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

82. Is the following relation a function?

$$(3, -27), (4, -48), (5, -75), (6, 75), (5, 27), (4, 48), (3, 75)$$

The solution is No, which is option B.

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function.

General Comment: For a relation to be a function, every x-value needs exactly one output.

83. Is the equation below a linear function?

$$f(x) = 2(x+4) + 1$$

The solution is yes, the graph is linear., which is option A.

A. Yes, the equation is linear

* Correct! The equation is a degree-1 polynomial and is thus a linear function.

B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was 2(x + 4)+1. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

84. Is the following relation a linear function?

X	У	
3	15	_
4	20	_
5	20	- -The solution is No, which is option B.
4	-15	-The solution is No, which is option B.
3	-20	_
2	-25	_
1	-30	_

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

85. Is the graph below a linear function?

The solution is yes, the graph is linear., which is option A.

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was 1(x + 4)+4. A linear function has a constant rate of growth. This means that as x increases or decreases, y increase or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x = 1 to x = 2, the y increases by 3. From x = 2 to x = 3, the y increases by 5. From x = 3 to x = 4, the y increases by 7. A linear function would have the same change in y for any change in x.

86. Is the following relation a function?

X	У	
4	-7.94	
5	-8.55	
6	-9.09	The solution is Yes, which is option A.
7	-9.56	The solution is Tes, which is option A.
8	-10.0	•
9	-10.4	•
10	-10.77	•

A. Yes

* Correct! Every x-value has exactly one output.

B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

87. Is the equation below a linear function?

$$f(x) = 5(x - 5) - 3$$

The solution is yes, the graph is linear., which is option A.

- A. Yes, the equation is linear
 - * Correct! The equation is a degree-1 polynomial and is thus a linear function.
- B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was 5(x-5)-3. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

88. Is the following relation a linear function?

X	У	_
3	-45	
4	-80	
5	80	The solution is No, which is option B.
4	45	The solution is No, which is option D.
3	80	
2	125	•
1	180	•
	4 5 4 3	3 -45 4 -80 5 80 4 45 3 80

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

89. Is the graph below a linear function?

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was 4(x + 3)+4. A linear function has a constant rate of growth. This means that as x increases or decreases, y increase or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x = 1 to x = 2, the y increases by 3. From x = 2 to x = 3, the y increases by 5. From x = 3 to x = 4, the y increases by 7. A linear function would have the same change in y for any change in x.

90. Is the following relation a function?

X	У	
3	-27	_
4	-48	•
5	-75	The solution is Yes, which is option A
6	-108	The solution is fes, which is option
7	-147	-
8	-192	-
9	-243	-

- A. Yes
 - * Correct! Every x-value has exactly one output.
- B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

91. Is the equation below a linear function?

$$f(x) = -5(x+5)^4 + 2$$

The solution is no, the equation is not linear., which is option B.

A. Yes, the equation is linear

A linear equation is a degree-1 polynomial. $-5(x+5)^4+2isadegree-4polynomial No, the equation is not linear.$

* Correct! $-5(x + 5)^4 + 2isnotadegree - 1polynomial$.

General Comment: The equation graphed was $-5(x+5)^4+2$. Alinear function is a degree -1 polynomial. Polynomial $= 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

B. Is the following relation a linear function?

X	У	
2	6.3	•
3	7.21	•
4	7.94	The solution is No, which is option B
5	8.55	The solution is No, which is option D
6	9.09	
7	9.56	
8	10.0	•

A. Yes

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The table in this example does have a constant rate of change.

B. No

* Correct! The table in this example does not have a constant rate of change. This relation is a float function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

93. Is the graph below a linear function?

The solution is yes, the graph is linear., which is option A.

A. Yes, the graph is linear

- * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was 2(x + 2)+2. A linear function has a constant rate of growth. This means that as x increases or decreases, y increase or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x = 1 to x = 2, the y increases by 3. From x = 2 to x = 3, the y increases by 5. From x = 3 to x = 4, the y increases by 7. A linear function would have the same change in y for any change in x.

94. Is the following relation a function?

$$(-4, -48), (-3, -27), (-2, -12), (-1, -3), (0, 0), (1, -3), (2, -12)$$

The solution is Yes, which is option A.

- A. Yes
 - * Correct! Every x-value has exactly one output.
- B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

95. Is the equation below a linear function?

$$f(x) = 5(x-5) + 2$$

The solution is yes, the graph is linear, which is option A.

- A. Yes, the equation is linear
 - * Correct! The equation is a degree-1 polynomial and is thus a linear function.
- B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was 5(x-5)+2. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2-2x+4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

96. Is the following relation a linear function?

X	У				
1	-2	- - - -The solution is No, which is opt - -		tion B.	
2	-4				
3	-4		is ontion		
2	2		is option		
1	4				
0	6				
-1	8				

1542-4749

A. Yes

Notice how one x-value has two separate outputs? For a relation to be a function, every x-value needs exactly one output.

B. No

* Correct! An x-value has two separate outputs and thus this relation is not a function, let alone a linear function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).

97. Is the graph below a linear function?

The solution is yes, the graph is linear, which is option A.

- A. Yes, the graph is linear
 - * Correct! The graph has a constant rate of change and is thus a linear function.
- B. No, the graph is not linear.

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The graph in this example does have a constant rate of change.

General Comment: The equation graphed was 4(x-2)+5. A linear function has a constant rate of growth. This means that as x increases or decreases, y increase or decreases at the same rate. For example, x^2 is NOT a linear function. As x increases, the y increases faster and faster. From x=1 to x=2, the y increases by 3. From x=2 to x=3, the y increases by 5. From x=3 to x=4, the y increases by 7. A linear function would have the same change in y for any change in x.

98. Is the following relation a function?

$$(4,0.12), (5,0.06), (6,0.03), (7,0.02), (8,0.01), (9,0.0), (10,0.0)$$

The solution is Yes, which is option A.

A Yes

^{*} Correct! Every x-value has exactly one output.

B. No

For a relation to be a function, every x-value needs exactly one output. That means for a relation to NOT be a function, we would need one x-value that has two or more different outputs.

General Comment: For a relation to be a function, every x-value needs exactly one output.

99. Is the equation below a linear function?

$$f(x) = 4(x+5) - 1$$

The solution is yes, the graph is linear, which is option A.

A. Yes, the equation is linear

* Correct! The equation is a degree-1 polynomial and is thus a linear function.

B. No, the equation is not linear.

A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents.

General Comment: The equation graphed was 4(x + 5)-1. A linear function is a degree-1 polynomial. Polynomial equations have all variables with positive integer exponents, like $f(x) = 3x^2 - 2x + 4$. Square root and cube root functions have rational exponents (1/2 and 1/3).

100. Is the following relation a linear function?

	1	
X	У	
2	-0.25	
3	-0.12	
4	-0.06	The solution is No, which is option B
5	-0.03	The solution is No, which is option D
6	-0.02	-
7	-0.01	-
8	-0.0	-

A. Yes

A linear function has a constant rate of growth. As x increases/decreases, y increases/decreases at the same rate. The table in this example does have a constant rate of change.

B. No

* Correct! The table in this example does not have a constant rate of change. This relation is a float function.

General Comment: For a relation to be a linear function, every x-value needs exactly one output AND there needs to be a constant rate of growth (as x increases/decreases, y increases/decreases at the same rate).