1 Study the convergence of the series

$$(1)\sum_{n\geq 2}\frac{1}{\left[n+(-1)^n\right]^2} \qquad (2)\sum_{n\geq 1}(\sqrt{n+1}-\sqrt{n}) \qquad (3)\sum_{n\geq 1}\frac{n!}{n^n}.$$

Solution (1) Note that

$$0 < \frac{1}{[n + (-1)^n]^2} \le \frac{1}{(n-1)^2}$$

Since $\sum \frac{1}{(n-1)^2}$ converges, then by comparison, the series $\sum \frac{1}{[n+(-1)^n]^2}$ also converges.

(2) The sum telescopes, so the partial sum is given by

$$s_n = (\sqrt{2} - \sqrt{1}) + (\sqrt{3} - \sqrt{2}) + \dots + (\sqrt{n} - \sqrt{n-1}) + (\sqrt{n+1} - \sqrt{n})$$

= $-\sqrt{1} + \sqrt{n+1}$

Then $\lim_{n\to\infty} s_n = \infty$, so by definition, $\sum (\sqrt{n+1} - \sqrt{n})$ diverges.

(3) We will apply the ratio test.

$$\lim_{n \to \infty} \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \lim_{n \to \infty} \frac{(n+1)}{(n+1)} \cdot \left(\frac{n}{n+1}\right)^n$$

$$= \lim_{n \to \infty} \left[\left(1 + \frac{1}{n}\right)^n\right]^{-1}$$

$$= \frac{1}{e} < 1$$

Thus, by the ratio test, the series converges.

2 Study the convergence of the series

$$(1) \sum_{n \ge 2} \frac{n^{\ln n}}{(\ln n)^n} \qquad (2) \sum_{n \ge 2} \frac{1}{(\ln n)^{\ln n}} \qquad (3) \sum_{n \ge 1} \frac{(-1)^n n!}{2^n}.$$

Solution (1) We start by proving a relevant limit:

$$\lim_{n \to \infty} n^{\frac{\ln n}{n}} = \lim_{n \to \infty} e^{\frac{(\ln n)^2}{n}}$$

$$= \lim_{n \to \infty} e^{\left(\frac{\frac{1}{2} \ln \sqrt{n}}{n}\right)^2}$$

$$= \lim_{n \to \infty} e^{\frac{1}{4} (\ln \sqrt{n}^{\frac{1}{\sqrt{n}}})^2}$$

$$= e^{\frac{1}{4} (\ln 1)^2}$$

$$= 1$$

Then

$$\lim_{n\to\infty} \left(\frac{n^{\ln n}}{\left(\ln n\right)^n}\right)^{\frac{1}{n}} = \lim_{n\to\infty} \frac{n^{\frac{\ln n}{n}}}{\ln n} = 1\cdot 0 = 0 < 1$$

Thus, by the root test, the series converges.

(2) As $\ln n$ increases for all n, $\frac{1}{(\ln n)^{\ln n}}$ is clearly decreasing. Hence, we can apply the dyadic test. The series $\sum \frac{1}{(\ln n)^{\ln n}}$ converges iff $\sum \frac{2^n}{(n \ln 2)^{n \ln 2}}$ converges. We apply the ratio test on the second series:

$$\lim_{n \to \infty} \frac{2^{n+1}}{\left[(n+1)^{n+1} (\ln 2)^{n+1} \right]^{\ln 2}} \cdot \frac{\left[n^n (\ln 2)^n \right]^{\ln 2}}{2^n} = \lim_{n \to \infty} 2 \left[\frac{1}{n+1} \left(\frac{n}{n+1} \right)^n \frac{1}{\ln 2} \right]^{\ln 2}$$
$$= 2 \left[0 \cdot \frac{1}{e} \cdot \frac{1}{\ln 2} \right]^{\ln 2}$$
$$= 0 < 1$$

Thus, by the root test, $\sum \frac{2^n}{(n \ln 2)^{n \ln 2}}$, so $\sum \frac{1}{(\ln n)^{\ln n}}$ converges also.

(3)
$$\lim_{n \to \infty} \left| (-1)^{n+1} \frac{(n+1)!}{2^{n+1}} \cdot (-1)^n \frac{2^n}{n!} \right| = \lim_{n \to \infty} \frac{n+1}{2} = \infty > 1$$

By the ratio test, the series diverges.

- **3** a. Given an example of a divergent series $\sum a_n$ for which $\sum a_n^2$ converges.
 - b. Show that if $\sum a_n$ is absolutely convergent, then the series $\sum a_n^2$ also converges.
 - c. Given an example of a convergent series $\sum a_n$, for which $\sum a_n^2$ diverges.
- **Solution** a. $\sum \frac{1}{n}$ diverges, but $\sum \frac{1}{n^2}$ converges.
 - b. If $\sum a_n$ is absolutely convergent, then $\sum |a_n|$ converges, and $\lim_{n\to\infty} |a_n| = 0$. Thus, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have

$$|a_n| < 1 \implies 0 \le a_n^2 < |a_n|$$

By comparison, the sum $\sum_{n\geq N} a_n^2$ converges as $\sum |a_n|$ converges. As $\sum_{1\leq n< N} a_n^2$ is a finite sum, it follows that $\sum_{n\geq 1} a_n^2$ converges.

- c. By the Leibniz criterion, $\sum \frac{(-1)^n}{\sqrt{n}}$ converges, but $\sum \frac{1}{n}$ diverges.
- 4 Prove that

$$\sum_{n>1} \frac{1}{n(n+1)} = 1.$$

Solution Note that $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$. Then the partial sum of the series is

$$s_n = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$
$$= 1 - \frac{1}{n+1}$$

Thus,

$$\sum_{n>1} \frac{1}{n(n+1)} = \lim_{n \to \infty} s_n = 1.$$

5 a. Prove that

$$\sum_{n>1} \frac{n-1}{2^{n+1}} = \frac{1}{2}.$$

b. Use part (1) to calculate

$$\sum_{n\geq 1} \frac{n}{2^n}.$$

Hint: Note that $\frac{n-1}{2^{n+1}} = \frac{n}{2^n} - \frac{n+1}{2^{n+1}}$.

Solution a. The partial sum of the series is

$$s_n = \left(\frac{1}{2} - \frac{2}{2^2}\right) + \left(\frac{2}{2^2} - \frac{3}{2^3}\right) + \dots + \left(\frac{n-1}{2^{n-1}} - \frac{n}{2^n}\right) + \left(\frac{n}{2^n} - \frac{n+1}{2^{n+1}}\right)$$
$$= \frac{1}{2} - \frac{n+1}{2^{n+1}}$$

Thus,

$$\sum_{n>1} \frac{n-1}{2^{n+1}} = \lim_{n \to \infty} s_n = \frac{1}{2}.$$

b. We can write the original series as $\frac{1}{2}\sum(\frac{n}{2^n}-\frac{1}{2^n})$. As both $\sum\frac{n}{2^n}$ and $\sum\frac{1}{2^n}$ are convergent,

$$\frac{1}{2} \sum_{n \ge 1} \left(\frac{n}{2^n} - \frac{1}{2^n} \right) = \frac{1}{2} \left(\sum_{n \ge 1} \frac{n}{2^n} - \sum_{n \ge 1} \frac{1}{2^n} \right)$$
$$= \frac{1}{2} \left(\sum_{n \ge 1} \frac{n}{2^n} - 1 \right) = \frac{1}{2}$$
$$\implies \sum_{n \ge 1} \frac{n}{2^n} = 2$$

6 Let $\{a_n\}_{n\geq 1}$ be a sequence of non-negative numbers such that $\sum_{n\geq 1} a_n$ diverges. For $n\geq 1$, let $s_n=a_1+\cdots+a_n$.

a. Prove that the series

$$\sum_{n>1} \frac{a_n}{a_n+1}$$

diverges.

b. Prove that for all $N \ge 1$ and all $n \ge 1$,

$$\sum_{k=1}^{n} \frac{a_{N+k}}{s_{N+k}} \ge 1 - \frac{s_N}{s_{N+n}}.$$

Deduce that the series $\sum \frac{a_n}{s_n}$ diverges.

c. Prove that for all $n \geq 2$,

$$\frac{a_n}{s_n^2} \le \frac{1}{s_{n-1}} - \frac{1}{s_n}.$$

Deduce that the series $\sum \frac{a_n}{s_n^2}$ converges.

Solution a. As $\sum a_n$ diverges, we have three cases: $\lim_{n\to\infty} a_n = 0$, $\lim_{n\to\infty} a_n > 0$, or the limit does not exist. In the last two cases, the series must diverge. So, we need to handle the first case.

As $\lim_{n\to\infty} a_n = 0$, then there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have $|a_n| = a_n < 1$. Then

$$0 < a_n + 1 < 2 \implies 0 < \frac{1}{2} < \frac{1}{a_n + 1} \implies 0 < \frac{a_n}{2} < \frac{a_n}{a_n + 1}$$

Since $\sum a_n$ diverges, $\sum \frac{a_n}{2}$ diverges also, so by comparison, $\sum \frac{a_n}{a_n+1}$ diverges.

b. Note that s_n is monotonically increasing as $a_n \geq 0$.

$$\begin{split} 1 - \frac{s_N}{s_{N+n}} &= \frac{s_{N+n} - s_N}{s_{N+n}} \\ &= \frac{a_{N+1} + a_{N+2} + \dots + a_{N+n}}{s_{N+n}} \\ &\leq \frac{a_{N+1}}{s_{N+n}} + \frac{a_{N+2}}{s_{N+n}} + \dots + \frac{a_{N+n-1}}{s_{N+n}} + \frac{a_{N+n}}{s_{N+n}} \\ &\leq \frac{a_{N+1}}{s_{N+1}} + \frac{a_{N+2}}{s_{N+2}} + \dots + \frac{a_{N+n-1}}{s_{N+n-1}} + \frac{a_{N+n}}{s_{N+n}} = \sum_{k=1}^{n} \frac{a_{N+k}}{s_{N+k}} \end{split}$$

The series diverges by the Cauchy criterion for series, as

$$\left| \sum_{n=N}^{N+k} \frac{a_n}{s_n} \right| = \sum_{n=N}^{N+k} \frac{a_n}{s_n} \ge 1 - \frac{s_N}{s_{N+k}}$$

for every N and k in \mathbb{N} .

c. As s_n is monotonically increasing, $s_{n-1} \leq s_n \implies s_n s_{n-1} \leq s_n^2$. Thus,

$$0 \le \frac{a_n}{s_n^2} \le \frac{a_n}{s_n s_{n-1}} = \frac{s_n - s_{n-1}}{s_n s_{n-1}} = \frac{1}{s_{n-1}} - \frac{1}{s_n}$$

The partial sum of $\sum \left(\frac{1}{s_{n-1}} - \frac{1}{s_n}\right)$ is given by

$$\frac{1}{s_1} - \frac{1}{s_n} < \frac{1}{s_1}$$

Thus, the partial sums are increasing and bounded above, so the sequence of partial sums must converge, which means that $\sum \frac{a_n}{s_n^2}$ must converge also by comparison.

7 Let $\{a_n\}_{n\geq 1}$ be a decreasing sequence of non-negative numbers such that $\sum_{n\geq 1}a_n<\infty$. Show that

$$\lim_{n \to \infty} n a_n = 0.$$

Solution Let s_n be the partial sums of the series. Then

$$\lim_{n \to \infty} s_{2n-1} - s_{n-1} = \lim_{n \to \infty} a_n + \dots + a_{2n-1} = \lim_{n \to \infty} n a_{2n-1} = 0 \implies \lim_{n \to \infty} (2n-1)a_{2n-1} = 0$$

$$\lim_{n \to \infty} s_{2n} - s_n = \lim_{n \to \infty} a_{n+1} + \dots + a_{2n} = \lim_{n \to \infty} n a_{2n} = 0 \implies \lim_{n \to \infty} 2n a_{2n} = 0$$

Let $\epsilon > 0$. Then as the above limits exist, there exists $N \in \mathbb{N}$ such that for all $k \geq \frac{N+1}{2}$, we have

$$|(2k-1)a_{2k-1}| < \epsilon$$

$$|2ka_{2k}| < \epsilon$$

Thus, as any $n \in \mathbb{N}$ can be written as 2k-1 or 2k for $k \in \mathbb{N}$, we have that for all $n \geq N$,

$$|na_n| < \epsilon$$

so by definition, $\lim_{n\to\infty} na_n = 0$.