

Algorithm Design and Analysis (H) CS216

Instructor: Shan CHEN (陈杉)

chens3@sustech.edu.cn

(slides edited from Prof. Shiqi Yu)

NP and Computational Intractability

Algorithm Design Patterns and Antipatterns

Algorithm design patterns.

- Greedy
- Divide and conquer
- Dynamic programming
- Duality (e.g., network flow)
- Randomization
- Reductions

Algorithm design antipatterns.

- > **NP**-completeness.
- > **PSPACE**-completeness.
- Undecidability.

Polynomial-time algorithm unlikely.

Polynomial-time certification algorithm unlikely.

No algorithm possible.

1. Poly-Time Reductions

Classify Problems by Computational Requirements

- Q. Which problems will we be able to solve in practice?
- A working definition. Those with polynomial-time algorithms.

• Theory. Definition is broad and robust.

Turing machine, word RAM, uniform circuits, ...

Practice. Poly-time algorithms scale to huge problems.

constants tend to be small, e.g., $3n^2$

Classify Problems by Computational Requirements

- Q. Which problems will we be able to solve in practice?
- A working definition. Those with polynomial-time algorithms.

Yes	Probably no
Shortest path	Longest path
Matching	3D-matching
Min cut	Max cut
2-SAT	3-SAT
Planar 4-color	Planar 3-color
Bipartite vertex cover	Vertex cover
Primality testing	Factoring
Linear programming	Integer linear programming

Classify Problems

- Goal. Classify problems according to those that can be solved in polynomial-time and those that cannot.
- Provably requires exponential-time:

input size: c + log k

- Given a Turing machine, does it halt in at most k steps?
- ➤ Given a board position in an *n*-by-*n* generalization of checkers, can black guarantee a win?

• Frustrating news. Huge number of fundamental problems have defied classification for decades.

Polynomial-Time Reductions

- Q. Suppose we could solve problem Y in polynomial-time. What else could we solve in polynomial time?
- Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

 Polynomial number of standard computational steps, plus
 "reduce from"
 - > Polynomial number of calls to oracle that solves problem Y.
 - can be viewed as a magic black box

Polynomial-Time Reductions

- Q. Suppose we could solve problem Y in polynomial-time. What else could we solve in polynomial time?
- Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

 Polynomial number of standard computational steps, plus
 reduce from
 - Polynomial number of calls to oracle that solves problem Y.

can be viewed as a magic black box

Karp reduction allows only one oracle call

- Notation. $X \leq_P Y$.
- Note. We pay for time to write down instances of Y sent to black box ⇒
 instances of Y must be of polynomial size.

Polynomial-Time Reductions

• Design algorithms. If $X \le_P Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.

• Establish intractability. If $X \le_P Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

up to cost of reduction

• Establish equivalence. If both $X \leq_P Y$ and $Y \leq_P X$, we use notation $X \cong_P Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

2. Reduction By Simple Equivalence

Basic reduction strategies:

- Reduction by simple equivalence
- Reduction from special case to general case
- Reduction via "gadgets"

Independent Set

- INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there a subset S of k (or more) vertices such that no two in S are adjacent?
- Ex. Is there an independent set of size ≥ 6? Yes.
- Ex. Is there an independent set of size ≥ 7? No.

Vertex Cover

- **VERTEX-COVER.** Given a graph G = (V, E) and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?
- Ex. Is there a vertex cover of size ≤ 4? Yes.
- Ex. Is there a vertex cover of size ≤ 3? No.

Vertex Cover and Independent Set

- Claim. INDEPENDENT-SET \equiv_{P} VERTEX-COVER.
- Pf. We show S is an independent set iff V S is a vertex cover.

Vertex Cover and Independent Set

- Claim. INDEPENDENT-SET \equiv_{P} VERTEX-COVER.
- Pf. We show S is an independent set iff V − S is a vertex cover.
 - \Rightarrow : Let S be any independent set.
 - \triangleright Consider an arbitrary edge (u, v) \in E.
 - ightharpoonup S independent \Rightarrow u $\not\in$ S or v $\not\in$ S \Rightarrow u \in V S or v \in V S.
 - \triangleright Thus, V S covers (u, v).
 - \Leftarrow : Let V S be any vertex cover.
 - \triangleright Consider an arbitrary edge (u, v) \in E.
 - $ightharpoonup V S \text{ vertex cover} \Rightarrow u \in V S \text{ or } v \in V S \Rightarrow u \notin S \text{ or } v \notin S.$
 - Thus, S is an independent set.

3. Reduction from Special Case to General Case

Basic reduction strategies:

- Reduction by simple equivalence
- Reduction from special case to general case
- Reduction via "gadgets"

Set Cover

- SET-COVER. Given a set U of elements, a collection of subsets of U, and an integer k, are there \leq k of these subsets whose union is equal to U?
- Sample application.
 - m available pieces of software.
 - > Set U consists of n capabilities that we would like our system to have.
 - \triangleright The i-th piece of software provides the subset $S_i \subseteq U$ of capabilities.
 - **Goal:** achieve all n capabilities using fewest pieces of software.
- Ex.

EX.
$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

$$k = 2$$

$$S_1 = \{ 3, 7 \} \qquad S_4 = \{ 2, 4 \}$$

$$S_2 = \{ 3, 4, 5, 6 \} \qquad S_5 = \{ 5 \}$$

$$S_3 = \{ 1 \} \qquad S_6 = \{ 1, 2, 6, 7 \}$$

Vertex Cover Reduces to Set Cover

- Claim. VERTEX-COVER ≤ P SET-COVER.
- Pf. Given a VERTEX-COVER instance G = (V, E) and k, we construct a SET-COVER instance whose size equals the size of the vertex cover instance.
- Construction. Create SET-COVER instance (*U*, *S*, *k*):
 - \triangleright k = k, U = E, S_v = {e \in E : e incident to v}, S = {S_v: v \in V}

Vertex Cover Reduces to Set Cover

- Claim. VERTEX-COVER ≤ p SET-COVER.
- Pf. Given a VERTEX-COVER instance G = (V, E) and k, we construct a SET-COVER instance whose size equals the size of the vertex cover instance.
- Construction. Create SET-COVER instance (*U*, *S*, *k*):
 - \triangleright k = k, U = E, S_v = {e \in E : e incident to v}, S = {S_v: v \in V}
- Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.
- Pf. Let $X \subseteq V$ be a vertex cover of size k; let $Y \subseteq S$ be a set cover of size k.
 - \Rightarrow : $Y = \{ S_v : v \in X \}$ is a set cover of size k.
 - $\succ \Leftarrow: X = \{ v : S_v \in Y \}$ is a vertex cover of size k.

4. Reductions via "Gadgets"

Basic reduction strategies:

- Reduction by simple equivalence
- Reduction from special case to general case
- Reduction via "gadgets"

Satisfiability

• Q. Given a propositional formula Φ , is there a truth assignment to its variables such that $\Phi = 1$, i.e., is there a satisfying truth assignment?

no

• Ex.

			•	
a	b	c	$(a \wedge b) \vee c$	$(a \land \neg a) \lor (c \land \neg c)$
1	1	1	1	0
0	1	1	1	0
0	0	1	1	0
0	1	0	0	0
1	0	1	1	0
1	0	0	0	0
1	0	1	1	0
0	0	0	0	0

yes

Satisfiability

• Literal. A Boolean variable or its negation.

 x_i or $\overline{x_i}$

Clause. A disjunction of literals.

- $C_j = x_1 \nabla \overline{x_2} \nabla x_3$
- Conjunctive normal form (CNF). A propositional formula Φ that is the conjunction of clauses.
- $\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$
- SAT. Given a CNF formula Φ , does it have a satisfying truth assignment?
- 3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

Ex:
$$\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$$

yes instance: x_1 = true, x_2 = true, x_3 = false, x_4 = false.

Satisfiability is Hard

- Hypothesis. There does not exist a poly-time algorithm for 3-SAT.
- P vs. NP. This hypothesis is equivalent to P ≠ NP conjecture.

3-Satisfiability Reduces to Independent Set

clause 中变量的个牧

- Claim. (3)-SAT \leq_{P} INDEPENDENT-SET.
- Pf. Given a 3-SAT instance Φ , construct an INDEPENDENT-SET instance (G, k) that has an independent set of size $k = |\Phi|$ iff Φ is satisfiable.
- Construction.

number of clauses

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

$$k = 3 \qquad \Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$$

3-Satisfiability Reduces to Independent Set

- Lemma. Φ is satisfiable iff G contains independent set of size $k = |\Phi|$.
- Pf.
 - \Rightarrow : Consider any satisfying assignment for Φ .
 - Choose one true literal from each clause/triangle.
 - No two literals chosen in one triangle; complementary literals not both chosen.
 - \triangleright This is an independent set of size $k = |\Phi|$.

3-Satisfiability Reduces to Independent Set

- Lemma. Φ is satisfiable iff G contains independent set of size $k = |\Phi|$.
- Pf.

 \Leftarrow : Let S be an independent set of size $k = |\Phi|$.

- > S must contain exactly one vertex in each triangle.
- Set these literals to true (and remaining literals consistently).
- \triangleright All clauses in Φ are satisfied. •

Summary

- Basic reduction strategies.
 - \triangleright Simple equivalence: INDEPENDENT-SET \equiv_{P} VERTEX-COVER.
 - \triangleright Special case to general case: VERTEX-COVER \leq_{P} SET-COVER.
 - \triangleright Encoding with gadgets: 3-SAT \leq_{P} INDEPENDENT-SET.
- Transitivity. If $X \leq_P Y$ and $Y \leq_P Z$, then $X \leq_P Z$.
- Pf idea. Compose the two algorithms.

• Ex. $3-SAT \le P$ INDEPENDENT-SET $\le P$ VERTEX-COVER $\le P$ SET-COVER.

Summary

Karp's 20 Poly-Time Reductions from SAT

Richard M. Karp 1985 Turing Award

FIGURE 1 - Complete Problems

Exercise: Three Types of Problems

- Decision problem. Does there exist a vertex cover of size $\leq k$?
- Search problem. Find a vertex cover of size $\leq k$.
- Optimization problem. Find a vertex cover of minimum size.

• Goal. Show that all three problems poly-time reduce to one another.

