BEST AVAILABLE COPY PCT/JP 2004 / 008964

$\cdot \Box$ JAPAN PATENT OFFICE

15. 7. 2004

REC'D 0 2 SEP 2004

PCT WIPO

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

6月20日 2003年

出 願 番 Application Number:

特願2003-177332

[ST. 10/C]:

1.377

[JP2003-177332]

人 出 Applicant(s):

株式会社ポッカコーポレーション

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

> 8月19日 2004年

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願

【整理番号】 PY20030727

【提出日】 平成15年 6月20日

【あて先】 特許庁長官殿

【国際特許分類】 C07D311/32

CO9K 15/04

A61P 31/00

A61P 35/00

A23L 1/052

【発明者】

【住所又は居所】 静岡県静岡市上足洗2-11-17 教職員住宅A-1

1

【氏名】 熊澤 茂則

【発明者】

【住所又は居所】 静岡県静岡市清水草薙220-2 ラフォーレヒルズ草

薙513

【氏名】 中山 勉

【発明者】

【住所又は居所】 静岡県静岡市田町2-91-11

【氏名】 下位 香代子

【発明者】

【住所又は居所】 愛知県西春日井郡師勝町大字熊之庄字十二社45-2

株式会社 ポッカコーポレーション 基礎技術研究所

内

【氏名】 後藤 崇輝

【発明者】

【住所又は居所】 愛知県西春日井郡師勝町大字熊之庄字十二社45-2

株式会社 ポッカコーポレーション 基礎技術研究所

内

【氏名】 福本 修一

【特許出願人】

【識別番号】 591134199

【氏名又は名称】 株式会社 ポッカコーポレーション

【代理人】

【識別番号】 100068755

【弁理士】

【氏名又は名称】 恩田 博宣

【選任した代理人】

【識別番号】 100105957

【弁理士】

【氏名又は名称】 恩田 誠

【手数料の表示】

【予納台帳番号】 002956

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約曹 1

【包括委任状番号】 0102722

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 フラバノン化合物、抗酸化剤、抗菌剤、抗腫瘍剤及び飲食品

【特許請求の範囲】

【請求項1】 下記化1に示される構造を有するフラバノン化合物。

【化1】

【請求項2】 請求項1に記載のフラバノン化合物を含有する抗酸化剤。

【請求項3】 請求項1に記載のフラバノン化合物を含有する抗菌剤。

【請求項4】 請求項1に記載のフラバノン化合物を含有する抗腫瘍剤。

【請求項5】 請求項1に記載のフラバノン化合物を含有する飲食品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、新規フラバノン化合物、並びに該フラバノン化合物を含有する抗酸化剤、抗菌剤、抗腫瘍剤及び飲食品に関するものである。

[0002]

【従来の技術】

従来より、この種のフラバノン化合物としては、ニムフェオール(nymphaeol)-A, B, Cが知られている(非特許文献1参照)。

[0003]

【非特許文献1】

K. Yakushijin, K. Shibayama, H. Murata and H. Furukawa、ハスノハギリ由来の新規プレニルフラバノン (New prenylflavanones from Hernandia nymphaefolia(presl) Kubitzki)、Heterocycles, 14, 397-402, 1980.

[0004]

【発明が解決しようとする課題】

この発明は、本発明者らの鋭意研究の結果、新規なフラバノン化合物を単離し、かつ有用な生理活性を見出したことによりなされたものである。その目的とするところは、飲食品や医薬品等の様々な用途に利用することが可能な新規フラバノン化合物を提供することにある。別の目的とするところは、高い抗酸化作用を発揮する抗酸化剤、高い抗菌作用を発揮する抗菌剤、及び高い抗腫瘍作用を発揮する抗腫瘍剤を提供することにある。その他の目的とするところは、健康増進効果又は保存性の向上を図るのが容易な飲食品を提供することにある。

[0005]

【課題を解決するための手段】

上記の目的を達成するために、請求項1に記載の発明のフラバノン化合物は、 下記化2に示される構造を有するものである。

[0006]

[11:2]

請求項2に記載の発明の抗酸化剤は、請求項1に記載のフラバノン化合物を含有するものである。請求項3に記載の発明の抗菌剤は、請求項1に記載のフラバノン化合物を含有するものである。請求項4に記載の発明の抗腫瘍剤は、請求項1に記載のフラバノン化合物を含有するものである。請求項5に記載の発明の飲食品は、請求項1に記載のフラバノン化合物を含有するものである。

[0007]

【発明の実施の形態】

以下、この発明を具体化した実施形態を詳細に説明する。

実施形態のフラバノン化合物は、下記化3に示される構造を有する有機化合物である。

[0008]

[化3]

前記化3に示されるフラバノン化合物は、5,7,3',4'-テトラヒドロキシ-5'-C-ゲラニルフラバノン(5,7,3',4'-tetrahydroxy-5'-C-geranylflavanone、isonym phaeol-B)であり、分子式 $C_{25}H_{28}O_6$ 、分子量424、融点(MP) $123\sim126$ である(図1参照)。このフラバノン化合物は、本発明者らによって沖縄産プロポリスから単離された天然物由来の新規化合物であり、エリオディクティオール(Eriodictyol)と類似した構造的特徴を有しているが、5'位にCーゲラニル基を備えていることからエリオディクティオールよりも親油性(膜透過性)が高い。

[0009]

このフラバノン化合物は、エリオディクティオールやαートコフェロール(α -Tocopherol)と同程度の高い抗酸化作用を有している。また、このフラバノン化合物は、乳癌細胞等の癌細胞の増殖を抑制する抗腫瘍作用を有している。さらに、このフラバノン化合物は、生理的な細胞死(アポトーシス;apoptosis)等により、癌化しつつある異常細胞や細胞寿命を迎えつつある老化細胞等の不要細胞を除去する作用を有している。また、このフラバノン化合物は、大腸菌等のグラム陰性菌、黄色ブドウ球菌(メシチリン耐性黄色ブドウ球菌)等のグラム陽性菌、バチルス属菌等の芽胞菌に対する抗菌作用を有している。

[0010]

実施形態の抗酸化剤は、上記フラバノン化合物を有効成分(抗酸化素材)とし

て含有するものである。この抗酸化剤は、油脂の酸化劣化、香料の劣化、色素の分解、色素の退色等の様々な製品の劣化(主に酸化劣化)を効果的に抑えるための劣化防止剤として飲食品中に添加して利用され得る。また、この抗酸化剤は、健康食品等の飲食品中に含有させて利用することにより、経口摂取した生体内で活性酸素を消去して、肝機能の増強作用、アセトアルデヒドの毒性の軽減、低密度コレステロール(LDL)の抗酸化作用、乳癌細胞の増殖抑制作用、免疫機能改善等の健康増進効果を発揮する。また、この抗酸化剤は、化粧品又は医薬部外品中に含有させて利用することも可能であり、皮膚や口腔等の美白効果や老化の防止等に役立つ。

[0011]

実施形態の抗菌剤は、上記フラバノン化合物を有効成分として含有するものである。この抗菌剤は、主として飲食品中に添加して利用され、該飲食品の腐敗を防止する。また、この抗菌剤は、医薬品中に含有させて利用してもよく、或いは感染症治療薬や抗菌性化学療法薬等の医薬品として利用してもよい。また、この抗菌剤は、化粧品又は医薬部外品中に添加して利用することも可能であり、皮膚、口腔、腋下等を清潔に保つのに役立つ。この抗菌剤は、前記有効成分が飲食品、医薬品、化粧品又は医薬部外品中に、好ましくは10ppm以上の濃度、より好ましくは30~1000ppmの濃度、より好ましくは50~1000ppmの濃度で含有されるように添加される。前記有効成分の濃度が10ppm未満の場合には十分な抗菌作用が発揮されず、逆に10000ppmを越える場合には不経済である。

[0012]

実施形態の抗腫瘍剤は、上記フラバノン化合物を有効成分として含有するものであり、主に医薬品として利用される。この抗腫瘍剤は、前記有効成分が癌細胞に対して、好ましくは 0.1μ M ~100 mM、より好ましくは $10\sim100$ 0 μ Mの濃度で晒されるように投与される。前記有効成分の濃度が 0.1μ M未満の場合には治療効果が少なく、逆に100mMを越える場合には不経済である。また、この抗腫瘍剤の投与量としては、成人1日当たり好ましくは前記有効成分を $0.5\sim10$ g、より好ましくは $2\sim5$ g投与するように構成される。この有

効成分の1日当たりの投与量が0.5g未満の場合には抗腫瘍作用を十分に発揮させることができず、逆に10gを越える場合には不経済である。また、小人の場合は、前記成人の場合の半量が目安となる。

[0013]

一方、前記有効成分を飲食品(健康食品)、化粧品又は医薬部外品中に含有させた場合には、癌化しつつある異常細胞等の不要細胞の生理的な除去を促進させて、癌予防効果を発揮する製品として利用することもできる。このとき、前記製品中における有効成分の濃度は、好ましくは前記医薬品の場合の1~50%、より好ましくは10~30%程度が目安となる。

[0014]

実施形態の飲食品は、上記フラバノン化合物を含有するものであり、上記抗酸化剤又は抗菌剤を含有するものであってもよい。この飲食品は、上記フラバノン化合物が有する抗酸化作用を十分に引き出すことにより、生体内で活性酸素を消去して様々な健康増進効果を発揮する健康食品として利用することができる。また、上記フラバノン化合物が有する劣化防止作用を十分に引き出すことにより、飲食品の劣化を防止して保存性を高め、長期間に渡って安定した品質を保持させることが可能となる。或いは、上記フラバノン化合物が有する抗菌作用を十分に引き出すことにより、飲食品の腐敗を防止して保存性を高め、長期間に渡って安定した品質を保持させることが可能となる。同様に、上記フラバノン化合物が有する抗腫瘍作用を十分に引き出すことにより、癌化しつつある異常細胞や細胞寿命を迎えつつある老化細胞等の不要細胞の生理的な除去を促進させて、高い健康増進効果を発揮する健康食品として利用することもできる。

[0015]

この飲食品において、上記フラバノン化合物の1日当たりの摂取量は、成人1日当たり好ましくは0.05~10g、より好ましくは0.2~5gであるとよい。この有効成分の1日当たりの摂取量が0.05g未満の場合には前記有効成分による抗酸化作用を効果的に発揮させることができないおそれがあり、逆に10gを越える場合には不経済である。

[0016]

上記実施形態によって発揮される効果について、以下に記載する。

・ 実施形態のフラバノン化合物は、上記化3に示される5,7,3',4'-テトラヒドロキシ-5'-C-ゲラニルフラバノン(イソニムフェオールーB)である。このフラバノン化合物は、抗酸化作用、抗腫瘍作用、抗菌作用等を有していることから、飲食品や医薬品を始めとする様々な種類の用途に利用することができる。特に、このフラバノン化合物は、単一の化合物でありながら複数種類の多面的な作用を同時に発揮することができることから、プロポリスに代表されるような多機能健康食品素材としての利用が可能である点は注目に値する。また、このフラバノン化合物は、エリオディクティオールと同様な用途に利用できる他、エリオディクティオールよりも親油性が高いことを利用した様々な用途に利用することができる。さらに、このフラバノン化合物は、健康食品素材として利用されているプロポリス中に含有されているものであることから、経口摂取や経皮投与における問題もない。

[0017]

・ 実施形態の抗酸化剤は、高い抗酸化作用を有するフラバノン化合物を有効 成分として含有していることから、飲食品、化粧品又は医薬部外品の劣化を防止 して保存性を高めたり、経口摂取又は経皮投与することにより健康増進効果や老 化防止効果を発揮することができる。実施形態の抗菌剤は、高い抗菌作用を有す るフラバノン化合物を有効成分として含有していることから、飲食品、化粧品又 は医薬部外品の腐敗を防止して保存性を高めたり、化粧品又は医薬部外品として 経皮投与することにより高い衛生効果や消臭効果を発揮したり、医薬品としての 利用も可能である。実施形態の抗腫瘍剤は、高い抗腫瘍作用を有するフラバノン 化合物を有効成分として含有していることから、癌に対する高い治療効果を発揮 することができるうえ予防効果も期待され得る。

[0018]

・ 実施形態の飲食品(飲料品又は食品)は、抗酸化作用、抗腫瘍作用、抗菌 作用等を有するフラバノン化合物を含有していることから、飲食品自体の劣化防 止や腐敗防止、健康増進効果や老化防止効果、新陳代謝増進効果や癌予防効果等 の多面的で有用な効果を同時に発揮させることができる。また、この飲食品は、 フラバノン化合物の含有量を低く設定することにより、劣化防止効果又は腐敗防止効果を利用して保存性のみを高めることも容易である。

[0019]

【実施例】

以下、前記実施形態を具体化した実施例及び比較例について説明する。

<化合物の単離>

沖縄産プロポリス原体50gにエタノール500mlを加え、数分間超音波処理を行い一晩室温で撹拌した後、ろ過を行なって残留物を取り除くことにより、抽出操作を行なった。得られた抽出液を減圧濃縮することによりエタノール抽出物39.73gを得た。次に、前記エタノール抽出物を以下の条件のカラムクロマトグラフィーにて(1)~(11)の11の画分に分画した。

[0020]

カラム管: ガラスカラム 5.0×45cm

充填剤 : シリカゲル 約590 c m³

溶出溶媒: (1) ヘキサン:酢酸エチル=90:10 (350ml)

(2) ヘキサン:酢酸エチル=80:20 (220ml)

(3) ヘキサン:酢酸エチル=70:30 (250ml)

(4) ヘキサン:酢酸エチル=60:40 (1000ml)

(5) ヘキサン:酢酸エチル=50:50 (200ml)

(6) ヘキサン:酢酸エチル=40:60 (100ml)

(7) ヘキサン:酢酸エチル=30:70 (100ml)

(8) ヘキサン:酢酸エチル=20:80 (100ml)

(9) ヘキサン:酢酸エチル=10:90 (100ml)

(10) 酢酸エチル (200ml)

(11) メタノール (700ml)

次に、各画分を下記HPLC条件1で分析したところ、(4)の画分に4つの 主要成分が含まれていることが確認された。

[0021]

HPLC条件1

カラム : YMC-Pack R&D ODS (4.6×250mm)

溶媒 : A:水 (2%酢酸)、B:アセトニトリル (2%酢酸)

溶出条件: 0-60min (グラジエント溶出 ; A:B=80:20 → A:B=20:80)

流速 : lml/min

検出 : UV280nm

次に、画分(4)を用いて下記HPLC条件2にて分取・精製を行なうことにより、化合物1(収量61.1 mg)、化合物2(収量65.7 mg)及び化合物3(収量99.8 mg)を単離した。さらに、画分(4)を用いて下記HPLC条件3にて分取・精製を行なうことにより、化合物4(収量20.0 mg)を単離した。

[0022]

HPLC条件2

カラム: YMC-Pack R&D ODS (20×250mm)

溶媒 : 水 (0.1%TFA) : アセトニトリル (0.1%TFA) =40:60

流速 : 9ml/min

検出 : UV280nm

HPLC条件3

カラム: YMC-Pack R&D ODS (20×250mm)

溶媒 : 水 (0.1%TFA) :アセトニトリル (0.1%TFA) =20:80

流速 : 9 ml/min

検出 : UV280 nm

<各化合物の同定>

ら28個のプロトンが確認され、 13 C-NMRスペクトルでは25本のシグナルが観測された。DEPTスペクトルより3個のメチル、4個のメチレン、8個のメチン、 11 個の4級炭素が確認され、これらの情報から分子式を 11 C 11 C

[0023]

<プロポリス中の含有量の測定>

上記化合物 $1\sim4$ が沖縄産プロポリス中にどれだけ含まれているかを下記 HP L C 条件 4 にて分析し含有量を求めた。その結果、沖縄産プロポリス原体 100 g 中に化合物 1 は 12.7 g、化合物 2 は 10.5 g、化合物 3 は 13.5 g、化合物 4 は 9.1 g含有されていることが確認された。

[0024]

HPLC条件4

カラム : YMC-Pack R&D ODS (4.6×250mm)

溶媒 : A:水 (0.1%TFA) 、B:アセトニトリル (0.1%TFA)

溶出条件: 0-50min (グラジエント溶出 ; A:B=65:35 → A:B=0:100)

流速 : 1ml/min

検出 : UV280nm

<DPPHラジカル捕捉活性試験>

 DPPH (α , α -diphenyl- β -picrylhydradil) は517 n mに極大吸収を持つ紫色の安定ラジカルであり、水素を得ることにより無色のヒドラジンになる。この呈色反応を利用して以下の方法にてラジカル捕捉活性を測定した。即ち、試料としての上記化合物 2 をエタノールに溶解することにより濃度 25 μ Mの試料溶液を 3 m 1 調製した。続いて、各試料溶液に 0. 5 m Mの DPPH 溶液(溶媒はエタノール)を 0. 7 5 m 1 加えて攪拌し、暗所にて 1 時間反応させた後に 5 1 7 n mにおける吸光度を測定した。一方、比較対照としては、前記化合物の代

わりの試料としてBHT (butylated hydroxytoluene) 、 α ートコフェロール又はエリオディクティオールを用い同様に試験を実施した。また、前記試料を加えていないものをコントロールとして用い、同様に試験を実施した。ラジカル捕捉活性 (%) は下記数1にて算出した。結果を下記表1に示す(全ての試験は3回行い、その平均値及び標準偏差を示した)。

[0025]

【数1】

[0026]

【表1】

試料	DPPHラジカル捕捉活性試験 ラジカル捕捉活性(%)	β·カロテン退色試験、 抗酸化活性 (%)
化合物 2	49.86 ±0.96	78.07 ± 1.79
BHT	28.51 ± 7.48	85.02 ± 1.89
α・トコフェロール	58.87 ±1.24	93.00 ± 0.73
エリオテ・イクティオール	68.82 ±1.12	81.47 ±2.48

表1より、上記化合物 2 は比較対照としてのBHTを上回っており、さらに α ートコフェロールとほぼ同程度の高いラジカル捕捉活性を示すことが明らかとなった。

[0027]

<β-カロテン退色試験>

この方法は、リノール酸の自動酸化に伴って生じるリノール酸過酸化物が、 β ーカロテンの二重結合と反応することにより、 β ーカロテンの色が消失する現象を利用したものであり、以下の方法にて抗酸化活性を測定した。即ち、まず、200mg/m1のTween 40クロロホルム溶液2ml、100mg/m1のリノール酸クロロホルム溶液0.4ml、及び0.1mg/m1の β ーカロテンクロロホルム溶液3mlを混合した後、窒素ガスを用いて溶媒を除去した。続いて、蒸留水100mlを加え十分に攪拌することによりエマルジョンを得た。このエ

[0028]

なお、前記試料溶液は、試料としての上記化合物 2 をエタノールに溶解することにより濃度 1. 2 mMとなるように調製したものである。また、前記反応液中の試料濃度は 2 0 μ Mになるように調製した。一方、比較対照としては、前記化合物の代わりの試料としてBHT、 α - トコフェロール又はエリオディクティオールを用いた反応液を調製し同様に試験を実施した。また、前記試料を加えていないコントロール反応液を調製し同様に試験を実施した。抗酸化活性(%)は下記数 2 により求めた。結果を上記表 1 に示す(全ての試験は 3 回行い、その平均値及び標準偏差を示した)。

[0029]

【数2】

但し、上記コントロールの退色速度は、(0分のコントロール反応液の吸光度 /60分のコントロール反応液の吸光度)/60の値の自然対数で表され、上記 試料の退色速度は、(0分の試料反応液の吸光度/60分の試料反応液の吸光度)/60の値の自然対数で表される。その結果、表1より、化合物2は高い抗酸 化活性を示し、その活性はBHT、 α -トコフェロール及びエリオディクティオールとほぼ同等であったことが確認された。

[0030]

<乳癌細胞増殖抑制試験>

乳癌細胞(MCF-7)を培養する際に細胞増殖促進作用のあるエストラジオール (17 β -Estradiol) を添加することにより、短期間で簡易的に乳癌細胞の増殖を

進めることができる。これを利用し上記各化合物が乳癌細胞に及ぼす増殖抑制効果を以下の方法にて測定した。即ち、まず、試料としての上記化合物 2 をジメチルスルフォキシドに希釈し試料溶液を作製した。次に、9 6 ウェルプレートの各ウェルに 2×1 0 3個の乳癌細胞(MCF-7)を播種し、4 時間後にエストラジオール及び試料溶液を添加した。エストラジオールは終濃度で 0. 1 n M、試料溶液は終濃度で 0. 2 μ M、2 μ M又は 2 0 μ Mになるようそれぞれ添加した区分を設けた。所定の培養期間経過した後(3、5days)に培地を交換し、酵素溶液(Ce 11 counting Kit-8: Wako)を培地の 1 0 %量ずつ加えた後、3 7 $\mathbb C$ のインキュベーターにて 2 時間加温し、分光光度計で波長 4 5 0 n m(参照波長630nm)の吸光度を測定し、各区分における生細胞数を定量した。

[0031]

なお、前記培養期間5日の区分は、培養3日目に培地を交換した後、エストラジオール及び試料を添加して5日目まで培養を継続させた。また、0日目の区分は、細胞を播種して4時間後に酵素溶液を添加し、上記方法に従って加温後、吸光度を測定した。比較対照としては、前記化合物の代わりの試料としてエリオディクティオールを用い同様に試験を実施した。また、エストラジオール及び試料を加えていないものをコントロール1として用い、試料を加えていないものをコントロール2として用いて、同様に試験を実施した。一方、前記生細胞数の定量は、コントロール1の0日目の吸光度を1としたときの相対細胞数で表し、各区分とも8ウェルずつ試験を実施し測定値の平均及び標準偏差をデータとした。結果を表2に示す。

[0032]

【表2】

		生	細胞数の相対値	Ĭ
試料		培養0日目	培養3日目	培養 5 日目
コントロール 1		1.00 ± 0.07	2.45 ± 0.12	3.29 ± 0.08
コントロール2 (0.1nM エストラジオール)		0.97 ±0.04	3.12 ± 0.34	7.02 ± 0.99
エリオテ、イクティオール	$0.2\mu\mathrm{M}$	0.96 ± 0.04	2.88 ± 0.22	7.33 ± 0.60
	$\frac{2 \mu M}{}$	0.98 ± 0.07	2.90 ± 0.13	7.16 ± 0.36
	20 μ M	1.01 ± 0.05	2.54 ± 0.30	5.13 ± 0.62
化合物 2	0.2 μ Μ	0.95 ± 0.04	2.97 ± 0.37	6.83 ± 0.58
	$2 \mu M$	0.99 ± 0.04	2.68 ± 0.19	6.59 ± 0.50
	20 μ M	1.00 ± 0.07	2.59 ± 0.21	5.59 ± 1.01

表2より、化合物2は乳癌細胞の増殖を抑制する傾向が認められ、さらには濃 度依存的に乳癌細胞の増殖抑制効果が強まる傾向が認められた。

[0033]

<抗菌活性試験>

抗菌活性を評価するため、グラム陰性菌の指標菌として E.coli (IF03366)、グラム陽性菌の指標菌として Staphylococcus aureus (IF015035)、熱殺菌等の工程にも耐性を有する芽胞菌の指標菌として Bacillus cereus (IF015305T)、及び缶詰における変敗の原因となる菌類の指標菌として変敗缶詰から分離した Bacillus coagulans を用い、上記化合物の抗菌活性を評価した。即ち、まず、上記〈化合物の単離〉におけるエタノール抽出物を 70%エタノールに溶解させた後、該抽出物濃度が 0 p p m、12.5 p p m、25 p p m、50 p p m、100 p p m又は150 p p mになるように調製した標準寒天培地を作製した。続いて、これらの標準寒天培地をオートクレーブ殺菌することにより評価培地を作製し、これらの評価培地に上記各菌を接種してその生育を確認した。その結果、上記全ての指標菌に対し、エタノール抽出物の濃度に依存して抗菌効果が高められていることが確認された。さらに、エタノール抽出物濃度が50 p p m以上で上記全ての指標菌が検出されなくなったことが確認された。なお、前記70%エタノールによる上記各指標菌への影響はほとんど見られなかった。

[0034]

さらに、前記実施形態より把握できる技術的思想について以下に記載する。

[0035]

請求項1に記載のフラバノン化合物を含有する化粧品。このように構成した場合、美白効果、スキンケア効果又は保存性の向上を図るのが容易となる。請求項1に記載のフラバノン化合物を含有する医薬部外品。このように構成した場合、衛生効果、消臭効果又は保存性の向上を図るのが容易となる。請求項1に記載のフラバノン化合物を含有する医薬品。このように構成した場合、抗腫瘍効果や抗菌効果等の有用な薬効を容易に発揮させることができる。

[0036]

【発明の効果】

以上詳述したように、この発明によれば、次のような効果を奏する。

請求項1に記載の発明のフラバノン化合物によれば、飲食品や医薬品等の様々な用途に利用することができる。請求項2に記載の発明の抗酸化剤によれば、高い抗酸化作用を発揮することができる。請求項3に記載の発明の抗菌剤によれば、高い抗菌作用を発揮することができる。請求項4に記載の発明の抗腫瘍剤によれば、高い抗腫瘍作用を発揮することができる。請求項5に記載の発明の飲食品によれば、健康増進効果又は保存性の向上を図るのが容易となる。

【図面の簡単な説明】

- 【図1】 実施例の化合物2の物理化学的特性をまとめた。
- 【図2】 実施例の化合物2のNMRデータを示す。

図面

【図1】

Compound 2 - 物理化学的特性.

Appearance	yellow powder		
Molecular formula	$C_{25}H_{28}O_6$		
ESI-MS (m/z)			
Positive:	425.0 (M+H) ⁺		
Negative:	423.3 (M-H)		
HRFAB-MS (m/z)			
calcd.:	425.1965(M+H) ⁺		
found:	425.1968(M+H) ⁺		
$UV \lambda_{\max}^{MeOH} nm(\varepsilon)$	288.0 (17,935)		
IR (KBr) cm ⁻¹	3360, 2960, 2920, 1680, 1600		
$[\alpha]_{\rm D}^{25}$ (c 0.2, MeOH)	-17.8°		
MP	123~126℃		
CD (MeOH) θ /deg	11444 (332), -30028 (292), 7139 (254)		

NMR $\overrightarrow{\tau}$ -\$ (Compound 2 in acetone-d₆).

Position	. ¹³ C		1 _H	
2	80.13	СН	5.35	(1H, dd), <i>J</i> =2.9, 12.2 Hz
3	43.54	CH ₂	2.74	(1H, dd), J=2.9, 17.1 Hz
			3.12	(1H, dd), J=12.2, 17.1 Hz
4	197.19	С		
5	165.24	С	12.17	(-OH, s)
6	95.81	СН	5.95	(1H, s)
7	167.28	C		
8	96.74	СН	5.95	(1H, s)
9	164.31	С		
10	103.22	С		The second secon
1'	130.58	С		
2'	112.07	CH	6.91	(1H, d), <i>J</i> =2.2 Hz
3'	145.26	C		-
4'	144.30	С		
5'	129.02	C		
6'	119.97	CH	6.81	(1H, d), <i>J</i> =2.2 Hz
1"	28.83	CH ₂	3.38	(2H, d), <i>J</i> =7.3 Hz
2"	123.36	CH	5.38	(1H, m)
3"	136.39	C		
4"	16.21	CH₃	1.73	(3H, s)
5"	40.45	CH ₂	2.06	(2H, t), <i>J</i> =7.5 Hz
6"	27.37	CH ₂	2.12	(2H, td), J =6.8, 7.5 Hz
7"	125.07	CH	5.12	(1H, tq), <i>J</i> =1.5, 6.8 Hz
8"	131.70	C		
9"	25.80	CH₃	1.63	(3H, s)
10"	17.71	CH ₃	1.57	(3H, s)

【書類名】 要約書

【要約】

【課題】 抗酸化作用、抗腫瘍作用、抗菌作用等を有する新規フラバノン化合物、並びに該フラバノン化合物を含有する抗酸化剤、抗菌剤、抗腫瘍剤及び飲食品を提供する。

【解決手段】 フラバノン化合物は、下記化3に示される構造を有する5,7,3',4 '-テトラヒドロキシ-5'-C-ゲラニルフラバノンである。抗酸化剤、抗菌剤及び抗腫瘍剤は、いずれも前記フラバノン化合物を有効成分として含有している。飲食品は、上記フラバノン化合物、抗酸化剤又は抗菌剤を含有するものである。

【化3】

【選択図】

なし

特願2003-177332

出願人履歴情報

識別番号

[591134199]

1. 変更年月日 [変更理由]

1991年 5月24日

史理田」 住 所 新規登録 愛知県名古屋市東区代官町 3 5 番 1 6 号

氏 名 株式会社ポッカコーポレーション

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:				
☐ BLACK BORDERS				
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES				
☐ FADED TEXT OR DRAWING				
M BLURRED OR ILLEGIBLE TEXT OR DRAWING				
☐ SKEWED/SLANTED IMAGES				
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS				
GRAY SCALE DOCUMENTS				
LINES OR MARKS ON ORIGINAL DOCUMENT				
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY				

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.