UNIVERSIDADE FEDERAL DE MINAS GERAIS UFMG – CAMPUS PAMPULHA

Disciplina: Laboratório de Sistemas Digitais

Professor: Ricardo de Oliveira Duarte

Estudantes: Igor Braga de Lima, Matheus Vinícius Freitas Oliveira dos Santos

e Stéphanie Pereira Barbosa

Turma: PN5 Guia de aula: 04

ATIVIDADE TEÓRICA

1) Como podemos identificar que uma *architectur*e em VHDL foi descrita usando o modelo *data-flow*?

Uma architecture que usa o modelo data-flow pode ser identificada por sua composição: somente declarações concurrent, conditional e selected signal, ausência do process.

2) Qual situação na qual devemos adotar o modelo de representação de architecture data-flow?

Em circuitos simples e/ou pequenos.

- 3) Qual a vantagem de se descrever um circuito VHDL usando data-flow? Obter maior entendimento sobre o caminho que os dados/entradas percorrem, e maior noção do circuito final a ser produzido.
- 4) Qual a desvantagem de se descrever um circuito VHDL usando dataflow?

Em sistemas mais complexos, o *data-flow* perde interpretabilidade, dificultando o entendimento do sistema.

5) Como podemos identificar que uma architecture em VHDL foi descrita usando o modelo behavioral?

Diferente do *data-flow*, em uma *architecture* que utiliza o modelo *behavioral* é fundamentada o uso do *process statment*, logo, basta identificar essas declarações.

6) Qual situação na qual devemos adota o modelo de representação de architecture behavioral?

Quando queremos descrever circuitos mais complexos.

7) Qual a vantagem de se descrever um circuito VHDL usando *behavioral*? É mais prático para descrever circuitos complexos, pois não precisa se

preocupar com o comportamento de cada elemento que integra o sistema.

8) Qual a desvantagem de se descrever um circuito VHDL usando behavioral?

Não é possível obter detalhes de como o circuito será implementado apenas analisando o código VHDL.

9) Como declarar um process em VHDL?

10) Qual característica das declarações contidas dentro do corpo de um process em VHDL?

São declarações que são executadas de forma sequencial.

- 11) O que dispara a execução do conteúdo de um *process* em VHDL? Quando há alteração nos sinais contidos na lista de sensibilidade.
- 12) Quais as regras para se definir o que deve ser incluído na lista de sensibilidade de um *process*?

Todos os sinais que são de entradas e que serão utilizados dentro do process.

13) Quais as declarações sequenciais em VHDL que você estudou nesse capítulo?

As declarações if, case e a de atribuição de sinal.

14) Quando é que uma declaração de atribuição de sinais pode ser considerada uma declaração sequencial?

Quando ela estiver dentro de uma declaração process.

15) Qual a diferença da declaração sequencial *case* para a declaração sequencial *if*?

A diferença é que a declaração *case* depende de uma expressão de controle.

16) Qual a principal lição que você pode obter da seção 5.5 do livro?

Ao utilizar o *process*, embora se esteja descrevendo o comportamento de um circuito digital de forma algorítmica, deve-se ter em mente de que se está descrevendo o comportamento de um hardware e não um software.

ATIVIDADE PRÁTICA

1) Escolha uma das funções do exercício 1 da pág. 68 da referência principal do curso e implemente-o em VHDL.

A função escolhida foi: e) $F(A, B, C, D) = \sum (1,2)$ CASE:

```
1 -- Solução do exercício 1e usando case
    library ieee;
     use ieee.std logic 1164.all;
     entity exercicio 1 is
     port(A, B, C, D : in std_logic;
    F : out std_logic);
     end exercicio_1;
    architecture funcao1E of exercicio 1 is
    signal ABCD : std_logic_vector(3 downto 0);
       ABCD <= A & B & C & D;
       my_proc : process(ABCD)
          case(ABCD) is
            when "0001" => F <= '1';
            when "0010" => F <= '1';
        end process my_proc;
24 end funcao1E;
```

IF:

```
1 -- Solução do exercício 1e usando if
    library ieee;
    use ieee.std_logic_1164.all;
    entity exercicio_1 is
     port(A, B, C, D : in std logic;
     F : out std logic);
    end exercicio 1;
     architecture funcao1E of exercicio_1 is
     signal ABCD : std_logic_vector(3 downto 0);
       ABCD <= A & B & C & D;
        my_proc : process(ABCD)
         if (ABCD = "0001") then F <= '1';
         elsif (ABCD = "0010") then F <= '1';
          else F <= '0';
         end if;
       end process my_proc;
```

2) Escreva um testbench para a função em VHDL que você implementou. CASE:

IF:

3) Compile e simule.

CASE:

IF:

4) Faça o exercício 7 da pág. 69 da referência principal do curso e implemente-o em VHDL.

CASE:

```
-- Solução do exercício 7 usando case
     -- decodificador 3x8
     library ieee;
     use ieee.std_logic_1164.all;
     entity exercicio_7 is
       port(SEL : in std logic vector(2 downto 0);
            D : out std_logic_vector(7 downto 0));
     end exercicio_7;
11
12
     architecture funcao of exercicio 7 is
       begin
         my_proc : process(SEL)
         begin
           case(SEL) is
             when "000" => D <= "11111110";
17
             when "001" => D <= "11111101";
             when "010" => D <= "11111011";
             when "011" => D <= "11110111";
             when "100" => D <= "11101111";
21
             when "101" => D <= "11011111";
             when "110" => D <= "10111111";
             when "111" => D <= "01111111";
             when others => D <= "11111111";
           end case;
         end process my_proc;
     end funcao;
```

```
-- Solução do exercício 7 usando if
     -- decodificador 3x8
     library ieee;
     use ieee.std logic 1164.all;
     entity exercicio_7 is
       port(SEL : in std logic vector(2 downto 0);
            D : out std_logic_vector(7 downto 0));
     end exercicio_7;
11
12
     architecture funcao of exercicio_7 is
13
       begin
14
         my proc : process(SEL)
         begin
           if(SEL = "000") then D <= "11111110";
17
           elsif(SEL = "001") then D <= "11111101";
           elsif(SEL = "010") then D <= "11111011";
           elsif(SEL = "011") then D <= "11110111";
           elsif(SEL = "100") then D <= "11101111";
           elsif(SEL = "101") then D <= "11011111";
21
           elsif(SEL = "110") then D <= "10111111";
           elsif(SEL = "111") then D <= "01111111";
           else D <= "111111111";
           end if;
         end process my proc;
26
     end funcao;
```

5) Escreva um testbench para a função em VHDL que você implementou. CASE:

IF:

6) Compile e simule.

CASE:

IF:

