MATTINGLY, STANGER, MALUR & BRUNDIDGE, P.C.

ATTORNEYS AT LAW

1800 DIAGONAL ROAD, SUITE 370 ALEXANDRIA, VIRGINIA 22314

PATENT, TRADEMARK AND COPYRIGHT LAW

CARL I. BRUNDIDGE* COUND, BARNITZ

JOHN R. MATTINGLY"

DANIEL J. STANSER SHRINATH MALUR

GENE W. STOCKMAN OF COUNSEL

JEFFREY M. KETCHUM Registered Patent Agent

Bor Membership Other Than Virginia

(703) 684-1120

FACSMULE: (703) 584-1157

RECEIVED CENTRAL FAX CENTER

FEB 0 8 2008

Date: February 8, 2006

FACSIMILE COVER LETTER

Facsimile Number: 571-273-8300

To:

Examiner Christopher GREY

Group Art Unit 2667, USPTO

From:

Mr. Daniel J. Stanger

MATTINGLY, STANGER, MALUR & BRUNDIDGE, P.C.

Re:

USSN 09/930,827

Mis-Mailed Office Action

CERTIFICATION OF FACSIMILE TRANSMISSION

I hereby certify that the following listed documents are being facsimile transmitted to the U.S. Patent and Trademark Office on the date shown below:

LETTER; AND

anger

COPY OF OFFICE ACTION MAILED JANUARY 30, 2006.

Dániel J

February 8, 2006

Date

32,846

Total Number of Pages (including cover sheet):

If the facsimile you receive is incomplete or illegible, please CALL (703) 684-1120. Thank you.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

RECEIVED **CENTRAL FAX CENTER**

In re Patent Application of

FEB 0 8 2006

DOMINIK J. SCHMIDT

Serial No. 09/930,827

Group Art Unit: 2667

Filed: August 15, 2001

Examiner: Christopher GREY

For: RF SNIFFER

LETTER

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

February 8, 2006

Sir:

The Applicant's representative received the enclosed Office Action in error. Apparently, the U.S. Patent and Trademark Office erroneously signed the Applicant's representative's customer number to the application, although there is no representative relationship between the undersigned and the Applicant. Accordingly, the Office Action is being returned.

Please correct immediately the customer number assigned to the application by removing the undersigned's customer number. It is hoped that the removal of the incorrect correct customer number will prevent future mis-mailings.

Respectfully submitted,

Stanger

Registrátion No. 32,846

MATTINGLY, STANGER & MALUR, P.C. 1850 Diagonal Road, Suite 370 Alexandria, Virginia 22314

(703) 684-1120

Date: February 8, 2006

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandra, Virginia 22313-1450 www.uxpta.gov

APPLICATION NO.	FILING DATE		FIRST NAMEO INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/930,827		08/15/2001	Dominik J. Schmidt		1388
,	7590 01/30/2006 LY, STANGER, MALUR & BRUNDIDGE, P.C.			EXAMINER GREY, CHRISTOPHER P	
24956 MATTING			JR & BRUNDIDGE, P.C.		
1800 DIAGONAL ROAD				1551425	DADED NUMBER

MATTINGLY, STANGER, MALUR & BRUNDIDGE, P.C 1800 DIAGONAL ROAD SUITE 370 ALEXANDRIA, VA 22314

2667
DATE MAILED: 01/30/2006

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

Art Unit: 2667

Page 2

DETAILED ACTION

Response to Amendment

- Responsive to the amendments filed on August 5, 2005; 1.
- Correction made to the specification have been entered as requested. (a)
- Amendments to the Claims 1, 2, 5, 6, 7, 9, 15 and 16-20 have been (b) entered as requested.
- The claims 8 and 10-14 have been canceled as requested. (c)
- New claims 21-27 have been entered as requested. (d)
- Amendments to the drawings have been entered as requested. (e)

Art Unit: 2667

U5:45PM

Page 3

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

- (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- Claims 1, 2, 4-20 are rejected under 35 U.S.C. 103(a) as being 2. unpatentable over Chikkaswanny et al. (US 5625889) in view of Gustafsson et al (US 6597672)
- Chikkaswanny et al. (Chikkaswanny 'hereinafter') discloses an RF Claim 1 signal detection circuit that detects available frequency channels (Col 1 line 64-Col 2 line 7) and an RF sniffer module (Col 2 lines 35-49).

Chikkaswanny also discloses utilizing idle (available) channels based on the detection that they are available (Col 1 lines 32-39).

Chikkaswanny discloses communication from a subscriber unit to a base station (Col 2 lines 8-35). However Chikkaswanny does not specifically disclose requesting an allocation of preferably adjacent cellular frequency channels from a mobile station to a base station.

Gustafsson et al. (Gustafsson 'hereinafter') discloses allocating adjacent channels in response to a request for a connection (Col 5 lines 23-37). Gustafsson also discloses the BSC performing allocation of radio channels (Col 4 lines 60-64).

Art Unit: 2667

05:45PM

It would have been obvious to one of the ordinary skill in the art at the time of the invention to combine the sniffer detection circuit as disclosed by Chikkaswanny, with the function of requesting adjacent channels as disclosed by Gustaffson. The motivation for this combination is to optimize the utilization of the capacity within the network (Col 2 lines 43-54).

Claim 2 Chikkaswanny discloses communicating over a voice channel (Col 2 lines 36-49), where it would have been obvious to one of the ordinary skill in the art at the time of the invention that a voice channel may be interpreted as a short range radio channel.

Claim 4 Chikkaswanny discloses detecting the presence of radio signals occurring in a channel, indicating whether the channel is available or active (Col 1 line 64- Col 2 line 7).

Claim 5 Chikkaswanny discloses a signal strength circuit for determining if a cellular channel becomes unavailable (Col 3 lines 22-42). However Chikkaswanny does not specifically disclose substituting the cellular channel with the short-range channel if the cellular channel becomes unavailable.

Gustafsson discloses moving (substituting) a connection when the signal on a channel is below a certain threshold, where it would have been obvious to one of the ordinary skill in the art at the time of the invention that a connection may be long range or short range. It would have been obvious to one of the ordinary skill in the art at the time of the invention to combine the RF sniffer disclosed by Chikkaswanny with the function of moving/changing a connection in

Art Unit: 2667

Page 5

the event of breeching a threshold. The motivation for this combination is to maintain a signal above a certain threshold.

Chikkaswanny discloses a signal strength circuit for determining if a Claim 6 cellular channel becomes unavailable (Col 3 lines 22-42). However Chikkanswanny does not disclose substituting the short-range channel with the cellular channel if the short-range channel becomes unavailable.

Gustafsson discloses moving (substituting) a connection when the signal on a channel is below a certain threshold, where it would have been obvious to one of the ordinary skill in the art at the time of the invention that a connection may be long range or short range.

It would have been obvious to one of the ordinary skill in the art at the time of the invention to combine the RF sniffer disclosed by Chikkaswanny with the function of moving/changing a connection in the event of breeching a threshold. The motivation for this combination is to maintain a signal above a certain threshold.

Chikkaswanny discloses an RF sniffer module containing a voice Claim 7 signal detection circuit and diagnostic signal detection circuit (Col 2 lines 35-49) connected in parallel (see fig 4).

Chikkaswanny does not disclose sending a digital signal to a Claim 8 software controlled baseband circuit to select a wireless protocol. However Gustafsson discloses a BSC or equivalent unit (software baseband controller) that bases its operation from algorithms (such as that seen in Fig 6). Gustafsson

Application/Control Number: 09/930,827

Art Unit: 2667

also discloses the BSC or equivalent unit determining (selecting) what connections are to be moved and to what terminals.

Therefore it would have been obvious to one of the ordinary skill in the art at the time of the invention to combine the teachings of Chikkaswanny as previously discussed, with the functions of the BSC or equivalent unit as disclosed by Gustafsson. The motivation for this combination is to optimize the allocation of resources.

Claim 9 Chikkaswanny discloses detecting available channels. However Chikkaswanny does not disclose bonding the short-range channel with the cellular channel to increase bandwidth.

Gustafsson discloses after detecting idle channels, selecting preferably adjacent channels (Col 5 lines 23-37) for which there is an increase in bandwidth (Col 6 lines 30-35), where it would have been obvious to one of the ordinary skill in the art at the time of the invention that the channels selected could be cellular or short range channels.

It would have been obvious to one of the ordinary skill in the art at the time of the invention to combine the function of detecting available channels as disclosed by Chikkaswanny with the functions of selecting (bonding) channels as disclosed by Gustaffson in order to increase the bandwidth.

Claim 10 Chikkaswanny discloses the RF sniffer being tested under a number of different conditions/parameters where there is a range of different frequencies (Col 5 lines 4-27).

+ 703 684 1157

Page 7

Art Unit: 2667

'05:46PM

It would have been obvious to one of the ordinary skill in the art at the time of the invention for the cellular channel to comprise an uplink band around 890-915 MHz and downlink band around 935-960 MHz, since discovering the optimum or workable ranges involves only routine skill in the art.

Chikkaswanny does not disclose bonding over two adjacent Claim_11 channels.

Gustafsson discloses after detecting idle channels, selecting preferably adjacent channels (Col 5 lines 23-37) for which there is an increase in bandwidth (Col 6 lines 30-35).

It would have been obvious to one of the ordinary skill in the art at the time of the invention to combine the function of detecting available channels as disclosed by Chikkaswanny with the functions of selecting (bonding) channels as disclosed by Gustaffson in order to increase the bandwidth.

Chikkaswanny does not disclose each band being divided into 124 Claim 12 pairs of frequency duplex channels with 200 kHz carrier spacing using Frequency Division Multiple Access.

Gustafsson discloses dividing each band into a number of frequency duplex channels (Col 4 lines 13-28).

It would have been obvious to one of the ordinary skill in the art at the time of the invention to divide each band into 124 pairs of frequency duplex channels with 200 kHz carrier spacing using Frequency Division Multiple Access, since it would have been held that discovering an optimum value of a result effective variable only involves routine skill in the art.

T-882 P.010/018 F-678

Application/Control Number: 09/930,827

Art Unit: 2667

Chikkaswanniy discloses the RF sniffer being operable in a TDMA Claim 13 environment (Col 5 line 66- Col 6 line 3). However Chikaswanny does not disclose splitting the 200 kHz radio channel using time division multiple access, bonding the time slots and transmitting and receiving data in the bonded time slots.

Gustafsson discloses in a TDMA system splitting each carrier frequency into a number of time slots (Col 5 lines 6-13).

Gustafsson discloses making a multi frame (bonded time slots) consisting of a number of different time slots (Col 5 lines 6-13).

Gustafsson discloses channels carrying (transmitting and receiving) data (Col 5 lines 14-21).

It would have been obvious to one of the ordinary skill in the art at the time of the invention to combine the sniffer as disclosed by Chikkaswanny with the function of splitting a carrier frequency in a TDMA environment. The motivation for this combination is to achieve multislot connections having a desired bandwidth (Col 2 lines 42-44).

Chikkaswanny discloses the RF sniffer being operable in a TDMA Claim 14 environment (Col 5 line 66- Col 6 line 3). However Chikkaswanny does not disclose splitting the 200 kHz radio channel using time division multiple access.

Gustafsson discloses in a TDMA system splitting each carrier frequency into a number of time slots (Col 5 lines 6-13).

It would have been obvious to one of the ordinary skill in the art at the time of the invention to combine the sniffer as disclosed by Chikkaswanny with the

Art Unit: 2667

function of splitting a carrier frequency in a TDMA environment. The motivation for this combination is to achieve multislot connections having a desired bandwidth (Col 2 lines 42-44).

Chikkaswanny discloses transmitting cellular packet data Claim 15 conforming to a cellular digital packet data protocol (Col 1 lines 5-22 and Col 1 line64-Col 2 line 7).

Chikkaswanny discloses an RF signal detection circuit (processing Claim 16 unit) that detects available frequency channels (Col 1 line 64- Col 2 line 7) and an RF sniffer module (Col 2 lines 35-49).

Chikkaswanny discloses transmitting a burst of cellular data over a frequency channel. Chikkaswanny does not specifically disclose a long range and short-range transceiver coupled to the processing unit for doing so.

Gustafsson discloses a BSC performing a number of functions including allocating radio frequency channels (Col 4 lines 60-67) and a control unit (processor) for selecting channels (Col 3 lines 30-34), where it would have been obvious to one of the ordinary skill in the art at the time of the invention that the channels allocated could be long range or short range.

It would have been obvious to one of the ordinary skill in the art at the time of the invention to combine the detection means and sniffer module as disclosed by Chikkaswanny with the BSC and control unit disclosed by Gustafsson. The motivation for this combination is to optimize the utilization of the capacity within the network (Col 2 lines 43-54).

·05:46PM

Claim 17

Application/Control Number: 09/930,827

Art Unit: 2667

Chikkaswanny discloses a number of different processors (filters, amplifiers, mixers and D/A converters) that operate on a digital signal (see fig 4).

Chikkaswanny does not specifically disclose an RISC, however it Claim 18 would have been obvious to one of the ordinary skill in the art at the time of the invention to implement an RISC in a computer environment as disclosed by Chikkaswanny to increase the speed of processing.

Chikkaswanny discloses an MSC (router) coupled to several base Claim 19 stations within which the processors are contained (see Fig 1).

Chikkaswanny discloses detecting available channels. However Claim 20 Chikkaswanny does not disclose bonding the short-range channel with the cellular channel to increase bandwidth.

Gustafsson discloses after detecting idle channels, selecting preferably adjacent channels (Col 5 lines 23-37) for which there is an increase in bandwidth (Col 6 lines 30-35), where it would have been obvious to one of the ordinary skill in the art at the time of the invention that the channels selected could be cellular or short range channels.

It would have been obvious to one of the ordinary skill in the art at the time of the invention to combine the function of detecting available channels as disclosed by Chikkaswanny with the functions of selecting (bonding) channels as disclosed by Gustaffson in order to increase the bandwidth.

Application/Control Number: 09/930,827

Art Unit: 2667

FEB-08-06

Claim 3 is rejected under 35 U.S.C. 103(a) as being unpatentable over 3. Chikkaswanny et al. (US 5625889) in view of Gustafsson et al. (US 6597672) in further view of Cannon et al. (US 6650871)

The combined teachings of Chikkaswanny and Gustafsson do not Claim 3 specifically teach the short range channel being Bluetooth or WLAN, however Cannon et al. (Cannon 'hereinafter') discloses communication between a cordless telephone and a base unit over a Pico network (Bluetooth) channel (Col 3 lines 19-31).

It would have been obvious to one of the ordinary skill in the art at the time of the invention to modify the combined inventions of Chikkaswanny and Gustafsson with the communication in a Bluetooth environment as disclosed by Cannon. The motivation for this modification is to supply a short-range radio link and support point-to-point communications (Col 1 lines 26-32).

Art Unit: 2667

Response to Arguments

- Applicant's arguments filed August 5, 2005 have been fully considered but 4. they are not persuasive.
- The applicant argued that the cited art does not disclose the applicants (a) claimed, "sniffing for available cellular frequency channels via a mobile station".

The examiner maintains that the same limitation in its broadest term has already been discussed in the rejection of claim 1, wherein Chikkaswanny discloses detecting for available frequency channels using an RF sniffer within an overlay system, where an overlay system may be in the form of components within a cellular system (Col 2 lines 8-35). It would have been obvious to one of the ordinary skill in the art at the time of the invention that any component within a cellular system may implement the sniffer detection.

The applicant argued that the cited art does not disclose the applicants (b) claimed, "short range radio channel".

The examiner maintains that the same limitation in its broadest term has already been discussed in the rejection of claim 1, wherein Chikkaswanny discloses sniffer detection within a cellular network. It would have been obvious to one of the ordinary skill in the art at the time of the invention that if detecting available frequency channels can be performed on long range channels within a cellular network, sniffer detection may also be used to detect available channels in short range channels in a short range environment.

Application/Control Number: 09/930,827
Art Unit: 2667

(c) The applicant argued that the cited art does not disclose the applicants claimed, "substituting at least one allocated cellular channel with a short range

radion channel of the cellular channel becomes unavailable".

The examiner maintains that the same limitation in its broadest term has already been discussed in the rejection of claim 1, wherein Chikkaswanny discloses detecting a signal strength, and determining from the result of detection whether or not a channel is available. Furthermore, Gustafsson discloses a control unit (Col 4 lines 30-34) for moving a connection from one channel to another in the event that it is determined necessary (Col 5 lines 23-37).

It would have been obvious to one of the ordinary skill in the art at the time of the invention to combine the result of an unavailable channel as disclosed by Chikkaswanny, to the control unit as disclosed by Gustafsson, for triggering moving a connection to an available channel, where an available channel may be that of short range or long range.

(d) The applicant argued that the cited art does not disclose the applicants claimed, "bonding a short-range channel and allocated cellular frequency channel".

The examiner maintains that the same limitation in its broadest term has already been discussed in the rejection of claim 1, wherein Gustafsson discloses a control unit (Col 4 lines 30-34) for moving a connection from one channel to another in the event that it is determined necessary (Col 5 lines 23-37). It is noted that the examiner interprets a short range channel in its broadest term to

Application/Control Number: 09/930,827

Art Unit: 2667

mean a short range cellular channel, capable of short range communication,

where almost any channel may constitute a short range channel.

The applicant argued that the cited art does not disclose the applicants (e) claimed, "a reconfigurable processor core including both a long range transceiver and a short range transceiver and a radio frequency sniffer.

The examiner maintains that the same limitation in its broadest term has already been discussed in the rejection of claim 1, wherein Gustafsson discloses allocating radio frequency channels (Col 4 lines 60-67) and a control unit (processor) for selecting channels (Col 3 lines 30-34), where it would have been obvious to one of the ordinary skill in the art at the time of the invention that the channels allocated could be long range or short range.

Art Unit: 2667

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of 5. time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Page 15

Art Unit: 2667

Application/Control Number: 09/930,827

Page 16

Any inquiry concerning this communication or earlier communications from 6. the examiner should be directed to Christopher P. Grey whose telephone number is (571)272-3160. The examiner can normally be reached on 6:30-3:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Chi Pham can be reached on (571)272-3179. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pairdirect uspto gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (tollfree).

Christopher Grey

Examiner

Art Unit 2667

20,200