

Gameboard

Maths

Calculus Differentiation

Powers Using Chain Rule 1

Powers Using Chain Rule 1

Part A Differentiate $w=(4s+3)^3$

Find
$$\frac{\mathrm{d}w}{\mathrm{d}s}$$
 if $w=(4s+3)^3$.

The following symbols may be useful: s

Part B First derivative of $z=(b-aw)^4$

Find
$$\frac{\mathrm{d}z}{\mathrm{d}w}$$
 when $z=(b-aw)^4$, where a and b are constants.

The following symbols may be useful: a, b, w

Part C Second derivative of $z=(b-aw)^4$

Find
$$\frac{\mathrm{d}^2 z}{\mathrm{d} w^2}$$
 when $z=(b-aw)^4$, where a and b are constants.

The following symbols may be useful: a, b, w

Created for isaacphysics.org by Julia Riley

Home Gameboard

Maths

Calculus Differentiation

Differentiating Exponentials 1

Differentiating Exponentials 1

Part A Differentiate $\beta \mathrm{e}^{-\alpha t}$

Differentiate $\beta e^{-\alpha t}$ with respect to t, where α and β are constants.

The following symbols may be useful: alpha, beta, e, t

Part B Differentiate $C\mathrm{e}^{\beta m}+D$

Differentiate $Ce^{\beta m} + D$ with respect to m, where β , C and D are constants.

The following symbols may be useful: C, D, beta, e, m

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Single Maths 32 - The Chain Rule

Home Gamebo

Gameboard Maths

Calculus

Differentiation

Differentiating Trig Functions 2

Differentiating Trig Functions 2

Part A Differentiate $s = r \sin(\alpha \theta)$

Find
$$rac{\mathrm{d}s}{\mathrm{d} heta}$$
 if $s=r\sin(lpha heta)$ and r and $lpha$ are constants.

The following symbols may be useful: alpha, r, theta

Part B Differentiate $q = l\cos(\alpha - 2eta heta)$

Find
$$\dfrac{\mathrm{d}q}{\mathrm{d}\theta}$$
 if $q=l\cos(lpha-2eta heta)$ and l , $lpha$ and eta are constants.

The following symbols may be useful: alpha, beta, 1, theta

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Single Maths 32 - The Chain Rule

Gameboard

Maths

Calculus

Differentiation

Differentiating Natural Logs

Differentiating Natural Logs

Part A Differentiate $u=\ln{(2v+3)}$

Find
$$rac{\mathrm{d}u}{\mathrm{d}v}$$
 if $u=\ln{(2v+3)}$.

The following symbols may be useful: v

Part B Stationary point of $p=2\ln{(2q)}-3q$

Find the coordinates and nature of the stationary point of the function $p=2\ln{(2q)}-3q$.

Find the q coordinate of the stationary point.

The following symbols may be useful: q

Find the p coordinate of the stationary point.

The following symbols may be useful: p

Determine the nature of the stationary point.

Minimum

() Maximum

Home Gar

Gameboard

Maths

Differentiation: Chain Rule 1ii

Differentiation: Chain Rule 1ii

The volume, $V\,\mathrm{m}^3$, of liquid in a container is given by

$$V=\left(3h^2+4
ight)^{rac{3}{2}}-8$$

where $h \, \mathrm{m}$ is the depth of the liquid.

Part A Rate of Change (a)

Find the value of $rac{\mathrm{d}V}{\mathrm{d}h}$ when h=0.6, giving your answer to four significant figures.

Part B Rate of Change (b)

Liquid is leaking from the container. It is observed that, when the depth of the liquid is $0.6\,\mathrm{m}$, the depth is decreasing at a rate of $0.015\,\mathrm{m}$ per hour. Find the rate at which the volume of liquid in the container is decreasing at the instant when the depth is $0.6\,\mathrm{m}$. Answer to four significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 32 - The Chain Rule

Home Gameboard Maths Differentiation: Chain Rule 2ii

Differentiation: Chain Rule 2ii

Figure 1: The curve with equation $x=\left(37+10y-2y^2\right)^{\frac{1}{2}}$.

Figure 1 shows the curve with equation $x=\left(37+10y-2y^2\right)^{\frac{1}{2}}$.

Part A Differentiate

Find an expression for $\frac{\mathrm{d}x}{\mathrm{d}y}$ in terms of y.

The following symbols may be useful: Derivative(x, y), x, y

Part B Tangent

The following symbols may be useful: x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 32 - The Chain Rule

Gameboard

Maths

Differentiation: Chain Rule 3ii

Differentiation: Chain Rule 3ii

Part A Derivatives

Given that $x=(4t+9)^{\frac{1}{2}}$ and $y=6\mathrm{e}^{\frac{1}{2}x+1}$, find expressions for $\frac{\mathrm{d}x}{\mathrm{d}t}$ and $\frac{\mathrm{d}y}{\mathrm{d}x}$.

Give the expression for $\frac{dx}{dt}$.

The following symbols may be useful: Derivative(x, t), t, x

Give the expression for $\frac{dy}{dx}$.

The following symbols may be useful: Derivative(y, x), e, ln(), log(), x, y

Part B $\frac{\mathrm{d}y}{\mathrm{d}z}$

Hence find the value of $rac{\mathrm{d}y}{\mathrm{d}t}$ when t=4, giving your answer correct to three significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 32 - The Chain Rule

Gameboard

Maths

Calculus Differentiation

Differentiating Exponentials 3

Differentiating Exponentials 3

Part A Tangent to $y = e^{2x} - e^{-2x}$

Find the equation of the tangent to the curve $y = e^{2x} - e^{-2x}$ at the point $x = \frac{1}{2}$.

The following symbols may be useful: e, x, y

Part B Stationary point of $u=2\mathrm{e}^{3v}-3v$

Find the coordinates and nature of the stationary point of the function $u=2\mathrm{e}^{3v}-3v$.

Find the v coordinate of the stationary point.

The following symbols may be useful: v

Find the u coordinate of the stationary point.

The following symbols may be useful: u

Determine the nature of the stationary point.

Maximum

Minimum

Home Gameboard Maths Calculus Differentiation

Chain Rule 2

A Level Further A

Part A Differentiate $E=B\sin^2(\omega t)$.

Find
$$\dfrac{\mathrm{d}E}{\mathrm{d}t}$$
 if $E=B\sin^2(\omega t)$, where B and ω are constants.

The following symbols may be useful: B, E, omega, t

Part B Differentiate $y=\mathrm{e}^{-\frac{x^2}{2\sigma^2}}$

Find
$$rac{\mathrm{d}y}{\mathrm{d}x}$$
 if $y=\mathrm{e}^{-rac{x^2}{2\sigma^2}}$, where σ is a constant.

The following symbols may be useful: e, sigma, x

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Single Maths 32 - The Chain Rule

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise

Chain Rule 2

Home Gameboard Maths Calculus Differentiation Further Derivatives of Exponentials and Logarithms

Further Derivatives of Exponentials and Logarithms

This question uses the chain rule to find the derivatives of several functions involving exponentials and logarithms.

Part A Rewriting a^x

Use the rules for exponentials and logarithms to write $y=a^x$, where a is a positive constant, in the form $y=e^{bx}$, where b is a constant. Enter an expression for b in terms of a.

The following symbols may be useful: a, ln(), log()

Part B Differentiating a^x

Using your answer to part A, use the chain rule to find an expression for $\frac{dy}{dx}$ for the function $y=a^x$. Give your answer in the form $f(a)a^x$, where f(a) is a function of a to be determined.

The following symbols may be useful: a, ln(), log()

Part C Differentiating $\log_a(x)$

Use the chain rule to find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ for the function $y=\log_a(x)$.

The following symbols may be useful: a, ln(), log()

Part D Differentiate e^{e^x}

Use the chain rule to find an expression for $\dfrac{\mathrm{d}y}{\mathrm{d}x}$ for the function $y=\mathrm{e}^{\mathrm{e}^x}$.

The following symbols may be useful: e, x

Part E Differentiate $\ln(\ln(x))$

Use the chain rule to find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ for the function $y=\ln{(\ln{x})}$.

The following symbols may be useful: ln(), log(), x

Created for Isaac Physics by Jonathan Waugh