Basic Sanity checks of Data

Pre-reqs

Python

NumPy and PANDAS, SciPy, Visualizations

Elementary stats and maths

Some preprocessing steps – may need ML as well, for advanced topics

Background

Numeric Data: Preprocessing involves handling missing values, scaling to a similar range, and possibly normalizing the distribution.

Text Data: Common preprocessing steps include text cleaning (removing stop words, punctuation, etc.), tokenization, and vectorization (converting text into numerical form, such as TF-IDF or word embeddings).

Image Data: Techniques like resizing, normalization of pixel values, and data augmentation (creating variations of existing images) are often used.

Time Series Data: Dealing with temporal aspects, handling missing values over time, and creating lag features are important steps in preprocessing time series data.

Topics

About Data, feature types, tabular form

General inspection of data quality

Handling duplicates in data

Missing value
analysis
(2 parts)

Handling Outliers <u>Cardinality</u> assessment

Encoding of discrete data

Scaling and Normalization

Handling
Skewed
Distributions

Data Imbalance Handling

Data Splitting

Preprocessing

- General inspection
- Handling duplicates
- Missing data imputation
- Handling outliers/noise/novelty
- Cardinality assessment
- Encoding dummy variables
- Scaling , normalization
- Attribute transformations
- Multi-collinearity assessment
- Feature creation

General inspection of data

conducting a <u>preliminary</u>
assessment of your raw data to
identify any initial issues,
inconsistencies, or patterns that
might affect your analysis.

gain an understanding of the <u>data's</u> <u>quality, distribution, and potential</u> <u>challenges</u> before you proceed with more detailed preprocessing steps.

General inspection serves as a starting point to determine the extent of data cleaning, transformation, and feature engineering required.

Data Overview

Data Size: Determine the number of rows and columns in your dataset.

Data Types: Identify the types of data in each column (numeric, categorical, text, etc.).

Basic Statistics: Calculate basic summary statistics like mean, median, and standard deviation for numerical

Missing Data

Missing Values: Identify columns with missing data and assess the percentage of missing values for each column.

Data Distributions

Histograms: Create histograms to visualize the distribution of numerical variables.

Bar Plots: Plot bar charts to visualize the distribution of categorical variables.

Data Consistency: Look for inconsistent data formats or values that don't make sense.

Unique Values: Identify columns with a high number of unique values, which might indicate data quality issues.

Domain Knowledge

Contextual Understanding: Apply domain knowledge to interpret any unusual patterns or inconsistencies in the data.

Diligence	Comments
nominal or ordinal scale (where there are a fixed number of possible values)	inspect all possible values to uncover mistakes, duplications and inconsistencies.
	variable Company may include a number of different spellings for the same company such as "General Electric Company," "General Elec. Co.," "GE," "Gen. Electric Company," "General electric company," and "G.E. Company."
Numeric variables with inclusion of nonnumeric terms.	a variable generally consisting of numbers may include a value such as "above 50" or "out of range."

Diligence	Comments
Timeliness of data	 how up-to-date the observations are and whether the quality is the same across different sources of data.
Data been collected over time	 changes related to the passing of time may no longer be relevant to the analysis.
	 Cost of production field - collected over many years, the rise in costs attributable to inflation may need to be considered for the analysis.

Duplicate data

• **Duplicate** Records:

- Duplicates can <u>skew</u> statistical analyses and lead to incorrect conclusions.
- They can also result in overestimations or underestimations of certain patterns.

Handling duplicates

Customer Database

contains
 information
 about individuals
 who have made
 purchases. Due
 to errors or
 system glitches,
 some customer
 records are
 duplicated.

Clinical Trial Data

 Data from a clinical trial includes duplicate entries for some patients, possibly due to data entry errors.

Social Media Engagement data

contains
 duplicated
 entries for user
 engagement
 metrics, possibly
 due to tracking
 issues.

Sensor Readings

 includes duplicate readings, possibly due to communication errors.

Best practices on containing duplicates

Identify and Understand the Source of Duplicates

identify why duplicates exist. .. data entry errors, system glitches, or other reasons,

Deduplication During Data Collection

Implement deduplication mechanisms during the data collection phase.

Utilize Advanced Matching Techniques

... such as fuzzy
matching or record
linkage, to identify
duplicates that may
have variations in
spelling or formatting.

Iterate and Refine:

Deduplication is often an iterative process.

Demo using python/sklearn

Simple example on duplicates with Pandas

14

17-08-2024

Thanks!!

