Minimización de autómatas y operaciones sobre los lenguajes regulares

Minimización de autómatas y operaciones sobre los lenguajes regulares

U.D. Computación

DSIC - UPV

2017-18

Indice

Minimización de autómatas y operaciones sobre los lenguajes regulares

Operaciones de cierre

Minimización de AFDs

Operaciones de cierre

Minimización de autómatas y operaciones sobre los lenguajes regulares

U.D. Computació

Operaciones de cierre

Unión
Complementació
y Diferencia
Reverso
Concatenación
Clausura
Homomorfismo

Clausura
Homomorfismo
Inverso
Cociente de un
lenguaje por un

viinimizacio le AFDs Algoritmo Ejemplo 1

- Un conjunto C es cerrado bajo una operación · si y solamente si para cualquier elementos $x, y \in C$, $x \cdot y \in C$.
- Ejemplos
 - Sea $C = \{L \subseteq \Sigma^* \mid L \text{ es finito }\}$ entonces la unión y la intersección son operaciones de cierre para C, mientra que la operación complementario no lo es.

Operaciones de cierre

Minimización de autómatas y operaciones sobre los lenguajes regulares

Operaciones

Para estudiar las operaciones de cierre, haremos operaciones sobre los siguientes autómatas.

AFD A_1 no completo. $L(A_1) = \{(ab)^n \mid n \geq 0\}.$

Operaciones de cierre

Minimización de autómatas y operaciones sobre los lenguajes regulares

Computació

Operaciones

de cierre Intersección

Unión

Complementac

Reverso

Concatenacio

Homomorfism

Inverso

Cociente de un lenguaje por un cadena

VIInimizacion de AFDs Algoritmo

Algoritmo Ejemplo 1 AFD A_2 completo. $L(A_2) = \{(ab)^n \mid n \geq 0\}.$

AFD A_3 completo. $L(A_3) = \{x \in \{a, b\}^* \mid |x|_a > 0\}.$

Intersección

Minimización de autómatas y operaciones sobre los lenguajes regulares

> U.D. Computació

Operacione de cierre

Intersección

Complementació y Diferencia

Concatenación Clausura

Inverso
Cociente de u

Minimización de AFDs

Algoritmo Ejemplo 1 Los lenguajes regulares son cerrados con respecto a la intersección.

Sean $L_1,L_2\in\mathcal{L}_3$, entonces existen dos AFDs A_1,A_2 tales que $L_1=L(A_1),L_2=L(A_2)$, donde $A_i=(Q_i,\Sigma,\delta_i,q_i,F_i),i=1,2$ Construimos $A'=(Q,\Sigma,\delta,q_0,F)$ donde:

- $Q = Q_1 \times Q_2$
- $q_0 = [q_1, q_2]$
- $\blacksquare F = F_1 \times F_2$
- $\delta([p_1, p_2], a) = [\delta_1(p_1, a), \delta_2(p_2, a)],$ $p_1 \in Q_1, p_2 \in Q_2, a \in \Sigma$

$$L(A') = L_1 \cap L_2$$

Intersección

Minimización de autómatas y operaciones sobre los lenguajes regulares

AFD para $L(A_1) \cap L(A_3)$.

Los lenguajes regulares son cerrados con respecto a la unión.

Sean $L_1, L_2 \in \mathcal{L}_3$, entonces existen dos AFDs completos A_1, A_2 tales que $L_1 = L(A_1), L_2 = L(A_2),$ donde $A_i = (Q_i, \Sigma, \delta_i, q_i, F_i), i = 1, 2$

Construimos $A' = (Q, \Sigma, \delta, q_0, F)$ donde:

- $Q = Q_1 \times Q_2$
- $q_0 = [q_1, q_2]$
- $F = F_1 \times Q_2 \cup Q_1 \times F_2$
- $\delta([p_1, p_2], a) = [\delta_1(p_1, a), \delta_2(p_2, a)],$ $p_1 \in Q_1, p_2 \in Q_2, a \in \Sigma$

$$L(A')=L_1\cup L_2$$

Unión

Minimización de autómatas y operaciones sobre los lenguajes regulares

AFD para $L(A_2) \cup L(A_3)$.

Complementación y Diferencia

Minimización de autómatas y operaciones sobre los lenguajes regulares

> U.D. Computació

Operaciones de cierre

Unión
Complementaci
y Diferencia
Reverso

Concatenació Clausura Homomorfism

Cociente de un lenguaje por un cadena

Minimizacion de AFDs Algoritmo Los lenguajes regulares son cerrados con respecto a la Complementación.

Sea $L \in \mathcal{L}_3$, entonces existe un AFD completo A tal que L = L(A) donde $A = (Q, \Sigma, \delta, q_0, F)$. Definimos el autómata $A' = (Q, \Sigma, \delta, q_0, Q - F)$.

$$L(A') = \overline{L}$$

Los lenguajes regulares son cerrados con respecto a la Diferencia.

Sean $L_1, L_2 \in \mathcal{L}_3$. Nótese que L_1 - $L_2 = L_1 \cap \overline{L_2}$.

Complementación

Minimización de autómatas y operaciones sobre los lenguajes regulares

AFD para $\overline{L(A_2)}$.

Minimizad de AFDs

Algoritmo Ejemplo 1

Los lenguajes regulares son cerrados con respecto al Reverso.

Sea $L \in \mathcal{L}_3$, entonces existe un autómata

$$A = (Q, \Sigma, \delta, q_0, \{q_f\})$$
 tal que $L(A) = L$.

Si |F| > 1 puede modificarse el autómata para que posea un único estado final.

Construimos $A' = (Q, \Sigma, \delta', q_f, \{q_0\})$ donde:

$$q \in \delta(p, a) \leftrightarrow p \in \delta'(q, a)$$
 para $a \in \Sigma \cup \{\lambda\}$.

$$L(A') = L^r$$

Reverso

Minimización de autómatas y operaciones sobre los lenguajes regulares

Autómata para $(\overline{L(A_2)})^r$.

Concatenación

Minimización de autómatas y operaciones sobre los lenguajes regulares

> U.D. Omputació

Operacione

de cierre Intersección

Unión Complementac

y Diferencia Reverso

Concatenació

Homomorfismo Inverso Cociente de ur

Cociente de un lenguaje por un cadena

de AFDs Algoritmo Ejemplo 1 Los lenguajes regulares son cerrados con respecto a la Concatenación.

Sean $L_1,L_2\in\mathcal{L}_3$, entonces existen dos autómatas A_1,A_2 tales que $L_1=L(A_1),L_2=L(A_2)$ donde $A_i=(Q_i,\Sigma,\delta_i,q_i,F_i), (i=1,2)$ y tales que $Q_1\cap Q_2=\emptyset$

Construimos $A' = (Q, \Sigma, \delta', q_1, F_2)$ donde:

$$Q = Q_1 \cup Q_2$$

$$\bullet$$
 $\delta' = \delta_1 \cup \delta_2 \cup \delta''$ donde $q_2 \in \delta''(p, \lambda)$, $\forall p \in F_1$

$$L(A')=L_1\cdot L_2$$

Concatenación

Minimización de autómatas y operaciones sobre los lenguajes regulares

Autómata para $L(A_1) \cdot L(A_3)$.

Clausura

Minimización de autómatas y operaciones sobre los lenguajes regulares

U.D. Computació

Operacione

de cierre

Unión Complementa

y Diferencia Reverso

Clausura

Inverso
Cociente de un
lenguaje por ur

Minimización de AFDs

Algoritmo Ejemplo 1

Los lenguajes regulares son cerrados con respecto a la Clausura.

Sea $L \in \mathcal{L}_3$, entonces existe un autómata A tal que L = L(A) donde $A = (Q, \Sigma, \delta, q_0, F)$ Construimos $A' = (Q', \Sigma, \delta', q_n, F')$ donde:

$$Q' = Q \cup \{q_n\}, \ q_n \notin Q$$

$$F' = F \cup \{q_n\}$$

$$lacksquare \delta'(p,a) = \delta(p,a)$$
, para todo $p \in Q$ y para todo $a \in \Sigma$

$$q_n \in \delta'(p,\lambda)$$
, para todo $p \in F$

$$\delta'(q_n,\lambda) = \{q_0\}$$

$$L(A')=L^*$$

Clausura

Minimización de autómatas y operaciones sobre los lenguajes regulares

Autómata para $(\overline{L(A_2)})^*$.

Homomorfismo Inverso

Minimización de autómatas y operaciones sobre los lenguajes regulares

Los lenguajes regulares son cerrados con respecto a Homomorfismo Inverso.

Sea $h: \Sigma \to \Delta^*$ un homomorfismo y $L \subseteq \Delta^*, L \in \mathcal{L}_3$. Existe un AFD A tal que L = L(A), $A = (Q, \Delta, \delta, q_0, F)$. Construimos $A' = (Q, \Sigma, \delta', q_0, F)$ donde:

$$\delta'(p, a) = \delta(p, h(a)), \ \forall p \in Q, \ \forall a \in \Sigma$$

$$L(A') = h^{-1}(L)$$

Homomorfismo Inverso

Minimización de autómatas y operaciones sobre los lenguajes regulares

U.D. Computació:

Operaciones

de cierre

Unión Complementaci

y Diferencia Reverso

Clausura

Homomorfism Inverso

Inverso Cociente de ui

Minimización

le AFDs Algoritmo Ejemplo 1 Sea $h: \{0,1\} \to \{a,b\}^*$ un homomorfismo tal que $h(0) = ab, \ h(1) = ba.$ El autómata para $h^{-1}(\overline{L(A_2)})$ es:

Cociente (per la derecha) de un lenguaje por una cadena

Minimización de autómatas y operaciones sobre los lenguajes regulares

> U.D. Computació

Operacione

de cierre

Unión

y Diferencia

Reverso

Concatenació Clausura

Homomorfism Inverso

Cociente de un lenguaje por un

Minimizació de AFDs

goritmo emplo 1 Los lenguajes regulares son cerrados respecto del cociente por una cadena.

Sea $u \in \Sigma^*$ i $L \in \mathcal{L}_3$, entonces existe un AFD completo A tal que L = L(A) y donde $A = (Q, \Sigma, \delta, q_0, F)$. Construimos $A' = (Q, \Sigma, \delta, \delta(q_0, u), F)$ donde:

$$L(A') = u^{-1}L$$

Cociente (per la derecha) de un lenguaje por una cadena

Minimización de autómatas y operaciones sobre los lenguajes regulares

 $\Sigma = \{a, b\}, u = aba$. Autómata para $u^{-1}L(A_2)$.

Minimización de autómatas y operaciones sobre los lenguajes regulares

> U.D. Computació

Operacione de cierre

Intersección

Unión Complementa

y Diterencia Reverso Concatenaciór

Clausura Homomorfism

Inverso
Cociente de u
lenguaje por u

de AFDs Algoritmo Ejemplo 1 Un AFD $A = (Q, \Sigma, \delta, q_0, F)$ es accesible si para todo $q \in Q$ existe una palabra $x \in \Sigma^*$ tal que $\delta(q_0, x) = q$

Relación de indistinguibilidad en Q

Sea $A = (Q, \Sigma, \delta, q_0, F)$ un AFD completo y accesible. Definimos la relación de indistiguibilidad \sim en Q como:

$$\forall q, q' \in Q : (q \sim q' \leftrightarrow \forall x \in \Sigma^* \ (\delta(q, x) \in F \leftrightarrow \delta(q', x) \in F))$$

Minimización de autómatas y operaciones sobre los lenguajes regulares

> o.D. Computació

Operacione de cierre

de cierre Intersección

Union Complementac y Diferencia

Reverso Concatenación Clausura Homomorfismo Inverso

Inverso
Cociente de un
lenguaje por un
cadena

Minimizaci de AFDs **Algoritmo** Ejemplo 1 Ejemplo 2

Autómata cociente

Sea $A = (Q, \Sigma, \delta, q_0, F)$ un AFD completo y accesible y sea la relación de indistiguibilidad \sim .

Se define el autómata cociente $A/\sim=(Q,\Sigma,\delta',q_0,F)$ como:

$$Q = \{ [q]_{\sim} \mid q \in Q \}$$

$$\blacksquare q_0 = [q_0]_{\sim}$$

■
$$F = \{[q] \mid q \in F\}$$

$$\delta'([q]_{\sim},a)=[\delta(q,a)]_{\sim}$$

Sea $A = (Q, \Sigma, \delta, q_0, F)$ un AFD completo y accesible y sea la relación de indistiguibilidad \sim .

El automata A/\sim es el AFD mínimo que acepta L(A).

Minimización de autómatas y operaciones sobre los lenguajes regulares

U.D. Computació

Operacione de cierre

Unión Complementacio y Diferencia Reverso

Clausura Homomorfism Inverso

Homomorfismo Inverso Cociente de ur lenguaje por u cadena

le AFDs Algoritmo Ejemplo 1 Sea $A=(Q,\Sigma,\delta,q_0,F)$ un AFD completo y accesible y sea un entero $k\geq 0$. Se define la relación de k-indistinguibilidad \sim_k como:

$$\forall q, q' \in Q : (q \sim_k q' \leftrightarrow \forall x \in \Sigma^*, |x| \le k, (\delta(q, x) \in F \leftrightarrow \delta(q', x) \in F))$$

Se cumple que:

- \blacksquare para cualquier $k \geq 0, p \sim_{k+1} q \rightarrow p \sim_k q$
- lacksquare para cualquier $k \geq 0, p \sim q \rightarrow p \sim_k q$
- para cualquier $k \ge 0$, $p \sim_{k+1} q \leftrightarrow p \sim_k q$ y para cualquier $a \in \Sigma$, $\delta(p, a) \sim_k \delta(q, a)$

Minimización de autómatas y operaciones sobre los lenguajes regulares

omputació

Operacione

de Cierre

Unión

y Diferencia

Concatenació

Clausura Homomorfism

Inverso

Cociente de ur
lenguaje por u

de AFDs

Algoritmo

Algoritmo
Ejemplo 1
Fiemplo 2

Algoritmo de minimización de AFD:

■ 1.
$$\pi_0 = \{Q - F, F\}$$

- 2. Obtener π_{k+1} a partir de π_k $B(p, \pi_{k+1}) == B(q, \pi_{k+1})$ si y solo si
 - $\blacksquare B(p,\pi_k) == B(q,\pi_k)$
 - lacksquare y para todo $a\in \Sigma, B(\delta(p,a),\pi_k)==B(\delta(q,a),\pi_k)$
- 3. Si π_{k+1} es distinta a π_k ir a 2

Minimización de autómatas y operaciones sobre los lenguajes regulares

Computació

Operaciones

de cierre Intersección Unión

y Diferencia Reverso

Clausura

Inverso Cociente de u

Minimización de AFDs

> lgoritmo jemplo 1

Ejemplo de minimización 1.

π	0	:	

			a	b
	B_0	q_0	B_0	B_1
		q_1	B_0	B_0
π_0 :		q 3	B_1	B_0
		q_5	B_1	B_0
	B_1	q_2	B_0	B_1
		q_4	B_0	B_0

			а	Ь
	B_0	q_0	B_1	B ₃
	<i>B</i> 1	q_1	B_0	B_2
π_1 :	B2	q_3	B_3	B ₂ B ₁
		q_5	B_4	B_1
	B_3	q_2	B_2	B_4
	B_4	q_4	B_2	B_0

			а	b
	B_0	q_0	B_1	B_4
	<i>B</i> 1	q_1	B_0	B_2
π_2 :	B2	q_3	B_4	B ₃
	В3	q_5	B_5	B_1
	B_4	q_2	B_2	B_5
	B_5	q_4	B_3	B_0

Minimización de autómatas y operaciones sobre los lenguajes regulares

 $\pi_3 = \pi_2$

Minimización de autómatas y operaciones sobre los lenguajes regulares

Computació

Operaciones

de cierre Intersección Unión

y Diferencia Reverso

Clausura

Homomorfism Inverso Cociente de u

Minimización de AFDs

Algoritmo
Ejemplo 1

Ejemplo de minimización 2.

			a	Ь
•	B_0	q_1	B_1	B_0
		q_3	B_1	B_0
π_0 :		q_5	B_1	B_0
•	B_1	q_0	B_0	B_1
		q_2	B_0	B_1
		q_4	B_0	B_1

Minimización de autómatas y operaciones sobre los lenguajes regulares

 $\pi_1 = \pi_0$