HW3_RegressionV2

April 20, 2020

1 Final Results

- Best Model based on CV scores Ensemble: XGBoost
- Best Mean Cross Validation Score is 0.8984774624760332
- Best parameters {'learning_rate': 0.1, 'max_depth': 4, 'min_child_weight': 1, 'n estimators': 192, 'subsample': 0.8}
- Train score is 0.9841860823241139
- Test score is 0.8767229954557099
- Best Model based on Stacking: Voting Top 5
- Best Mean Cross Validation Score is 0.8999858356957512
- Train score is 0.9491284183151113
- Test score is 0.8802582634262037

1.1 Data PreProcessing

```
[1]: from math import sqrt
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import scipy.stats as stats
     from sklearn.metrics import mean_squared_error, r2_score
     from math import sqrt
     from sklearn.model_selection import GridSearchCV
     from sklearn.preprocessing import PolynomialFeatures
     from sklearn.pipeline import make_pipeline
     from sklearn.linear_model import LinearRegression
     from sklearn.pipeline import Pipeline
     from sklearn.preprocessing import MinMaxScaler
     from sklearn.metrics import mean_squared_error, r2_score
     from math import sqrt
     pd.pandas.set_option('display.max_columns', None)
     %matplotlib inline
```

1.1.1 Load Datasets

```
[2]: # load dataset
     # your code here
     data = pd.read_csv(r'C:\Users\nabhs\OneDrive\BUAN - Semester 2\BUAN 6341 -__
      →Applied Machine Learning\Datasets\houseprice.csv')
[3]:
     data.head()
[3]:
            MSSubClass MSZoning LotFrontage
                                                 LotArea Street Alley LotShape
         1
                     60
                               RL
                                           65.0
                                                     8450
                                                            Pave
                                                                    NaN
     0
                                                                              Reg
     1
         2
                     20
                               R.T.
                                           80.0
                                                    9600
                                                            Pave
                                                                    NaN
                                                                             Reg
                                           68.0
     2
         3
                     60
                               RL
                                                    11250
                                                            Pave
                                                                    NaN
                                                                              IR1
     3
         4
                     70
                               RL
                                           60.0
                                                    9550
                                                            Pave
                                                                    NaN
                                                                             IR1
     4
         5
                     60
                               RL
                                           84.0
                                                    14260
                                                                    NaN
                                                                             IR1
                                                            Pave
       LandContour Utilities LotConfig LandSlope Neighborhood Condition1 \
                                  Inside
                                                Gtl
     0
                Lvl
                       AllPub
                                                          CollgCr
                                                                         Norm
                                     FR2
                Lvl
                       AllPub
                                                Gtl
                                                          Veenker
                                                                        Feedr
     1
     2
                Lvl
                       AllPub
                                  Inside
                                                Gtl
                                                          CollgCr
                                                                         Norm
     3
                Lvl
                       AllPub
                                  Corner
                                                Gtl
                                                          Crawfor
                                                                         Norm
     4
                Lvl
                       AllPub
                                     FR2
                                                Gtl
                                                          NoRidge
                                                                         Norm
                                         OverallQual
                                                        OverallCond
                                                                      YearBuilt \
       Condition2 BldgType HouseStyle
     0
             Norm
                       1Fam
                                 2Story
                                                    7
                                                                   5
                                                                           2003
             Norm
                       1Fam
                                                                   8
                                                                           1976
     1
                                 1Story
                                                    6
     2
             Norm
                       1Fam
                                 2Story
                                                    7
                                                                   5
                                                                           2001
     3
             Norm
                       1Fam
                                 2Story
                                                    7
                                                                   5
                                                                           1915
     4
             Norm
                       1Fam
                                 2Story
                                                    8
                                                                           2000
        YearRemodAdd RoofStyle RoofMatl Exterior1st Exterior2nd MasVnrType
                 2003
                           Gable CompShg
                                                                        BrkFace
     0
                                               VinylSd
                                                            VinylSd
     1
                 1976
                           Gable
                                  CompShg
                                               MetalSd
                                                            MetalSd
                                                                           None
     2
                 2002
                           Gable
                                  CompShg
                                               VinylSd
                                                            VinylSd
                                                                        BrkFace
                                               Wd Sdng
     3
                                  CompShg
                 1970
                           Gable
                                                            Wd Shng
                                                                           None
     4
                 2000
                          Gable
                                  CompShg
                                               VinylSd
                                                            VinylSd
                                                                        BrkFace
        MasVnrArea ExterQual ExterCond Foundation BsmtQual BsmtCond BsmtExposure
     0
              196.0
                            Gd
                                      TA
                                               PConc
                                                                      TA
                                                            Gd
                                                                                    No
                            TA
                                      TA
                                                                      TA
     1
                0.0
                                              CBlock
                                                            Gd
                                                                                    Gd
     2
              162.0
                            Gd
                                      TA
                                               PConc
                                                            Gd
                                                                      TA
                                                                                    Mn
     3
                0.0
                            TA
                                      TA
                                              BrkTil
                                                            TA
                                                                      Gd
                                                                                    No
             350.0
                            Gd
                                      TA
                                               PConc
                                                            Gd
                                                                      TA
                                                                                    Αv
                                                              BsmtUnfSF
       BsmtFinType1
                      BsmtFinSF1 BsmtFinType2
                                                 BsmtFinSF2
                                                                          TotalBsmtSF
     0
                 GLQ
                              706
                                            Unf
                                                           0
                                                                     150
                                                                                   856
                 ALQ
                              978
                                            Unf
                                                           0
                                                                     284
     1
                                                                                  1262
```

_		_			_		_		_			
2	GLQ 486			Unf			0					
3	ALQ 216			Unf		0		54		756		
4	GLQ 655		555	U	nf		0	49	00	1145		
	Heating Hea	tingQC Cent	ralAir	Electr	ical	1stFlr	SF	2ndFlrSF	Low	QualFinSF	\	
0	${\tt GasA}$	Ex	Y	S	Brkr	8	356	854	<u>.</u>	0		
1	${\tt GasA}$	Ex	Y	S	Brkr	12	262	()	0		
2	GasA	Ex	Y	S	Brkr	9	20	866	;	0		
3	GasA	Gd	Y		Brkr		61	756	;	0		
4	GasA	Ex	Y		Brkr		45	1053		0		
_			_							_		
	GrLivArea	BsmtFullBa	th Bsm	tHalfB	ath	FullBat	h I	HalfBath	Bedro	oomAbvGr	\	
0	1710		1		0		2	1		3	•	
1	1262		0		1		2	0		3		
2	1786				0		2	1		3		
			1									
3	1717		1		0		1	0		3		
4	2198		1		0		2	1		4		
							_		_		,	
	KitchenAbv	Gr KitchenG		tRmsAb		Functio		-		ireplaceQ		
0		1	Gd		8		Тур		0	Na		
1		1	TA	6		Тур			1		TA	
2		1 Gd		6		Тур			1	T	TA	
3		1 Gd		7			Тур		1	G	d	
4		1 Gd		9			Тур	Тур 1		TA		
	GarageType	GarageYrBl	t Garag	eFinis	h Ga	arageCar	s	GarageAre	a Gara	ageQual	\	
0	Attchd	d 2003.0		RFn			2	54	8	TA		
1	Attchd	1976.	0	RFn			2	46	0	TA		
2	Attchd			RFn			2	60	8	TA		
3	Detchd			Unf			3	64			TA	
4	Attchd 2000.0			RFn			3		836		TA	
-	noodia	2000.	· ·	101			Ü		, 0	111		
	GarageCond	PavedDrive	WoodDe	ckSF	OpenI	PorchSF	En	closedPor	ch 39	SsnPorch	\	
0	TA	Y	woodbo	0	opom	61		0100001 01	0	0	`	
1	TA	Y		298		0			0	0		
	TA	Y				42			0			
2				0						0		
3	TA	Υ		0		35		2	272	0		
4	TA	Y		192		84			0	0		
	_			_		_					,	
	ScreenPorc		-		Misc				loSold	YrSold	\	
0		0 0				NaN		0	2	2008		
1		0 0	NaN	NaN		NaN	Ī	0	5	2007		
2		0 0	NaN	NaN		NaN	Ī	0	9	2008		
3		0 0	NaN	NaN		NaN	Ī	0	2	2006		
4		0 0	NaN	NaN		NaN	Ī	0	12	2008		

SaleType SaleCondition SalePrice

```
0
        WD
                   Normal
                               208500
1
        WD
                   Normal
                               181500
2
        WD
                   Normal
                               223500
3
                  Abnorml
        WD
                               140000
        WD
                   Normal
                               250000
```

1.1.2 Types of variables

```
[4]: # we have an Id variable, that we should not use for predictions:

print('Number of House Id labels: ', len(data.Id.unique()))
print('Number of Houses in the Dataset: ', len(data))
```

Number of House Id labels: 1460 Number of Houses in the Dataset: 1460

Find categorical variables

```
[5]: # find categorical variables- hint data type = '0'
categorical = [var for var in data.columns if data[var].dtype=='0']
print(f'There are {len(categorical)} categorical variables')
categorical
```

There are 43 categorical variables

```
[5]: ['MSZoning',
      'Street',
      'Alley',
      'LotShape',
      'LandContour',
      'Utilities',
      'LotConfig',
      'LandSlope',
      'Neighborhood',
      'Condition1',
      'Condition2',
      'BldgType',
      'HouseStyle',
      'RoofStyle',
      'RoofMatl',
      'Exterior1st',
      'Exterior2nd',
      'MasVnrType',
      'ExterQual',
      'ExterCond',
      'Foundation',
```

```
'BsmtQual',
      'BsmtCond',
      'BsmtExposure',
      'BsmtFinType1',
      'BsmtFinType2',
      'Heating',
      'HeatingQC',
      'CentralAir',
      'Electrical',
      'KitchenQual',
      'Functional',
      'FireplaceQu',
      'GarageType',
      'GarageFinish',
      'GarageQual',
      'GarageCond',
      'PavedDrive',
      'PoolQC',
      'Fence',
      'MiscFeature',
      'SaleType',
      'SaleCondition']
    Find temporal variables
[6]: # make a list of the numerical variables first= Hint data type != 0
     numerical = [var for var in data.columns if data[var].dtype!='0']
     # list of variables that contain year information= Hint variable namme has Yr_
     \hookrightarrow or
     year_vars = [var for var in numerical if 'Yr' in var or 'Year' in var]
     year_vars
[6]: ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt', 'YrSold']
[7]: numerical
[7]: ['Id',
      'MSSubClass',
      'LotFrontage',
      'LotArea',
      'OverallQual',
      'OverallCond',
      'YearBuilt',
      'YearRemodAdd',
      'MasVnrArea',
```

```
'BsmtFinSF1',
'BsmtFinSF2',
'BsmtUnfSF',
'TotalBsmtSF',
'1stFlrSF',
'2ndFlrSF',
'LowQualFinSF',
'GrLivArea',
'BsmtFullBath',
'BsmtHalfBath',
'FullBath',
'HalfBath',
'BedroomAbvGr',
'KitchenAbvGr',
'TotRmsAbvGrd',
'Fireplaces',
'GarageYrBlt',
'GarageCars',
'GarageArea',
'WoodDeckSF',
'OpenPorchSF',
'EnclosedPorch',
'3SsnPorch',
'ScreenPorch',
'PoolArea',
'MiscVal',
'MoSold',
'YrSold',
'SalePrice']
```

Find discrete variables To identify discrete variables- numerical variables with less than 20 unique values

```
[8]: # let's visualise the values of the discrete variables
discrete = [var for var in numerical if len(data[var].unique()) < 20 and var
→not in year_vars]

print(f'There are {len(discrete)} discrete variables')
discrete
```

There are 14 discrete variables

```
'FullBath',
'HalfBath',
'BedroomAbvGr',
'KitchenAbvGrd',
'TotRmsAbvGrd',
'Fireplaces',
'GarageCars',
'PoolArea',
'MoSold']
```

Continuous variables

```
[9]: # find continuous variables- hint numerical variables not in discrete and □

→year_years

# Also remove the Id variable and the target variable SalePrice

# which are both also numerical

continuous = [var for var in numerical if var not in discrete and var not in [
    'Id', 'SalePrice'] and var not in year_vars]

print('There are {} numerical and continuous variables'.format(len(numerical)))
continuous
```

There are 38 numerical and continuous variables

```
[9]: ['LotFrontage',
      'LotArea',
      'MasVnrArea',
      'BsmtFinSF1',
      'BsmtFinSF2',
      'BsmtUnfSF',
      'TotalBsmtSF',
      '1stFlrSF',
      '2ndFlrSF',
      'LowQualFinSF',
      'GrLivArea',
      'GarageArea',
      'WoodDeckSF',
      'OpenPorchSF',
      'EnclosedPorch',
      '3SsnPorch',
      'ScreenPorch',
      'MiscVal']
```

1.1.3 Separate train and test set

[10]: ((1314, 79), (146, 79))

Now we will move on and engineer the features of this dataset. The most important part for this course.

1.1.4 Craete New Variables

Replace 'YearBuilt', 'YearRemodAdd', 'GarageYrBlt with time elapsed since YrSold So YearBuilt = YrSold-YearBuilt.

Similarly transform 'YearRemodAdd', 'GarageYrBlt. After making transformation drop YrSold

.1]: X_tra	in.head()							
.1]:	MSSubClass	MSZoning	LotFrontage	e LotArea	Street	Alley	LotShape	\
930	20	RL	73.0	8925	Pave	NaN	IR1	
656	20	RL	72.0	10007	Pave	NaN	IR1	
45	120	RL	61.0	7658	Pave	NaN	Reg	
1348	20	RL	Nal	N 16196	Pave	NaN	IR3	
55	20	RL	100.0	10175	Pave	NaN	IR1	
	LandContour	Utilities	LotConfig I	LandSlope N	eighbor	hood (Condition1	\
930	HLS	AllPub	Inside	Gtl	Ti	imber	Norm	
656	Lvl	AllPub	Inside	Gtl	N	VAmes	Norm	
45	Lvl	AllPub	Inside	Gtl	Nri	idgHt	Norm	
1348	Low	AllPub	Inside	Gtl	Sav	wyerW	Norm	
55	Lvl	AllPub	Inside	Gtl	Ŋ	 IAmes	Norm	
	Condition2 E	BldgType Ho	ouseStyle (OverallQual	Overa	allCond	d YearBuil	t \
930	Norm	1Fam	1Story	8	}	5	5 200	7
656	Norm	1Fam	1Story	5	,	7	7 195	9
45	Norm	TwnhsE	1Story	9)	5	5 200	5
1348	Norm	1Fam	1Story	7	•	5	5 199	8
55	Norm	1Fam	1Story	6	;	5	5 196	4
	YearRemodAd	ld RoofStyl	e RoofMatl	Exterior1s	t Exter	rior2no	d MasVnrTyp	e \
930	200	7 Gabl	e CompShg	VinylS	ld V	/inylSc	l Non	е

656	2	006 Ga	able Com	pShg	HdBoard	HdBo	ard	BrkFace	
45	2	005	Hip Com	pShg	MetalSd	Meta	1Sd	BrkFace	
1348	1	998 Ga	able Com	pShg	VinylSd	Viny	1Sd	None	
55	1	964 Ga	able Com	pShg	HdBoard	Plyw	ood	BrkFace	
	MasVnrAre								
930	0.		d		PConc	Gd	TA		
656	54.		d.		Block	TA	TA		
45	412.		Σx		PConc	Ex	TA		
1348	0.		d		PConc	Gd	TA		
55	272.	0 1	TA.	TA C	Block	TA	TA		
	BsmtExposu	re BsmtFir	Twne1 R	smtFinSF1	BsmtFinT	Tune2 R	gmtFinS	F2 \	
930	_	Av	GLQ	16		Unf	Smor 1110	0	
656		No	ALQ	806		Unf		0	
45		No	GLQ	456		Unf		0	
1348		Gd	GLQ	1443		Unf		0	
55		No	BLQ	490		Unf		0	
			•						
	${\tt BsmtUnfSF}$	TotalBsm	ntSF Heat	ing Heati	.ngQC Cent	ralAir	Electri	cal \	
930	1450	1	.466 G	asA	Ex	Y	SB	rkr	
656	247	1	.053 G	asA	Ex	Y	SB	rkr	
45	1296	1	.752 G	asA	Ex	Y	SB	rkr	
1348	39	1	.482 G	asA	Ex	Y	SB	rkr	
55	935	1	.425 G	asA	Gd	Y	SB	rkr	
	4 . 53 . 65	0 181 08		D: 0D 0	T . A	D . E 3		D . II 3 CD	
020	1stFlrSF	2ndFlrSF	LowQual	FinSF Gr		BsmtFul	IBath	BSMtHalfBa	
930	1166	0		^					\wedge
	1466	0		0	1466		0		0
656	1053	0		0	1053		0 1		0
656 45	1053 1752	0 0		0 0	1053 1752		0 1 1		0 0
656 45 1348	1053 1752 1494	0 0 0		0 0 0	1053 1752 1494		0 1 1 1		0 0 0
656 45	1053 1752	0 0		0 0	1053 1752		0 1 1		0 0
656 45 1348	1053 1752 1494	0 0 0	Bedroom	0 0 0 0	1053 1752 1494	Fr Kitch	0 1 1 1 0	\	0 0 0
656 45 1348	1053 1752 1494 1425	0 0 0	Bedroom	0 0 0 0	1053 1752 1494 1425	Fr Kitch 1	0 1 1 1 0		0 0 0
656 45 1348 55	1053 1752 1494 1425 FullBath	0 0 0 0 HalfBath	Bedroom	0 0 0 0 AbvGr Ki	1053 1752 1494 1425		0 1 1 1 0		0 0 0
656 45 1348 55	1053 1752 1494 1425 FullBath 2	0 0 0 0 HalfBath 0	Bedroom	0 0 0 0 AbvGr Ki	1053 1752 1494 1425	1	0 1 1 1 0 enQual		0 0 0
656 45 1348 55 930 656	1053 1752 1494 1425 FullBath 2	0 0 0 0 HalfBath 0	Bedroom	0 0 0 0 AbvGr Ki 3 3	1053 1752 1494 1425	1 1	0 1 1 1 0 enQual Gd		0 0 0
656 45 1348 55 930 656 45	1053 1752 1494 1425 FullBath 2 1	0 0 0 0 HalfBath 0 1	Bedroom	0 0 0 0 AbvGr Ki 3 3	1053 1752 1494 1425	1 1 1	0 1 1 0 enQual Gd Gd Ex		0 0 0
656 45 1348 55 930 656 45 1348	1053 1752 1494 1425 FullBath 2 1 2 2 2	0 0 0 0 0 HalfBath 0 1 0 0		0 0 0 0 AbvGr Ki 3 3 2 3	1053 1752 1494 1425 tchenAbv0	1 1 1 1 1	0 1 1 0 enQual Gd Gd Ex Gd TA	\	0 0 0
656 45 1348 55 930 656 45 1348 55	1053 1752 1494 1425 FullBath 2 1 2 2 2	0 0 0 0 HalfBath 0 1 0 0 0	onal Fi.	0 0 0 0 AbvGr Ki 3 3 2 3 3	1053 1752 1494 1425 tchenAbv0	1 1 1 1 1 eQu Gara	0 1 1 0 enQual Gd Gd Ex Gd TA	\ GarageYrl	0 0 0 0
656 45 1348 55 930 656 45 1348 55	1053 1752 1494 1425 FullBath 2 1 2 2 2	0 0 0 0 HalfBath 0 0 0 0 Grd Functi	onal Fi Typ	0 0 0 0 AbvGr Ki 3 3 2 3 3 replaces 0	1053 1752 1494 1425 tchenAbv0	1 1 1 1 1 eQu Gara	0 1 1 0 enQual Gd Gd Ex Gd TA geType Attchd	\ GarageYrF	0 0 0 0
656 45 1348 55 930 656 45 1348 55	1053 1752 1494 1425 FullBath 2 1 2 2 2	0 0 0 0 HalfBath 0 1 0 0 0 Grd Functi 7 5	.onal Fi Typ Typ	0 0 0 0 AbvGr Ki 3 3 2 3 3 replaces 0	1053 1752 1494 1425 tchenAbv0	1 1 1 1 1 eQu Gara Jan	0 1 1 0 enQual Gd Gd Ex Gd TA geType Attchd	\ GarageYrF 2007 1958	0 0 0 0
656 45 1348 55 930 656 45 1348 55	1053 1752 1494 1425 FullBath 2 1 2 2 2	0 0 0 0 HalfBath 0 0 0 0 Grd Functi 7 5 6	onal Fi Typ Typ Typ	0 0 0 0 AbvGr Ki 3 3 2 3 3 replaces 0 0	1053 1752 1494 1425 tchenAbv@	1 1 1 1 1 eQu Gara JaN JaN Gd	0 1 1 0 enQual Gd Gd Ex Gd TA geType Attchd Attchd	GarageYrF 2007 1958 2008	0 0 0 0
656 45 1348 55 930 656 45 1348 55	1053 1752 1494 1425 FullBath 2 1 2 2 2	0 0 0 0 HalfBath 0 1 0 0 0 Grd Functi 7 5	.onal Fi Typ Typ	0 0 0 0 AbvGr Ki 3 3 2 3 3 replaces 0	1053 1752 1494 1425 tchenAbv@	1 1 1 1 1 eQu Gara NaN JaN Gd	0 1 1 0 enQual Gd Gd Ex Gd TA geType Attchd	\ GarageYrF 2007 1958	0 0 0 0 0

```
930
                    Fin
                                             610
                                                          TA
                                                                      TA
                                                                                  Y
      656
                    R.Fn
                                             312
                                                          TA
                                                                      TA
                                   1
                                   2
                                                                      TA
      45
                    RFn
                                             576
                                                          TΑ
                                                                                  Y
      1348
                    RFn
                                   2
                                             514
                                                          TΑ
                                                                      TA
                                                                                  Y
      55
                    RFn
                                   2
                                                                                  Υ
                                             576
                                                          TA
                                                                      TΑ
            WoodDeckSF
                        OpenPorchSF
                                      EnclosedPorch 3SsnPorch ScreenPorch
      930
                    100
                                  18
      656
                     0
                                   0
                                                   0
                                                              0
                                                                            0
                   196
                                  82
                                                                            0
      45
                                                   0
                                                              0
      1348
                   402
                                  25
                                                   0
                                                              0
                                                                            0
      55
                     0
                                   0
                                                            407
            PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType \
      930
                   0
                                                                7
                                                                      2009
                        NaN
                                NaN
                                            NaN
                                                        0
      656
                   0
                                                        0
                        NaN
                             MnPrv
                                            NaN
                                                                8
                                                                      2008
                                                                                 WD
                                                                2
      45
                   0
                        NaN
                                NaN
                                            NaN
                                                        0
                                                                      2010
                                                                                 WD
                                                        0
      1348
                   0
                        NaN
                                NaN
                                            NaN
                                                                      2007
                                                                                 WD
                        NaN
                                                        0
      55
                                NaN
                                            NaN
                                                                      2008
                                                                                 WD
           SaleCondition
      930
                  Normal
      656
                  Normal
                  Normal
      45
                  Normal
      1348
      55
                  Normal
[12]: # function to calculate elapsed time
      def elapsed_years(df, var):
          # capture difference between year variable and
          # year the house was sold
          df[var] = df['YrSold'] - df[var]
          return df
[13]: for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']:
          X_train = elapsed_years(X_train, var)
          X_test = elapsed_years(X_test, var)
[14]: # drop YrSold
      X_train.drop('YrSold', axis=1, inplace=True)
      X_test.drop('YrSold', axis=1, inplace=True)
[15]: year_vars.remove('YrSold')
```

GarageFinish GarageCars

GarageArea GarageQual GarageCond PavedDrive \

```
[16]: # capture the column names for use later in the notebook
      final_columns = X_train.columns
      final_columns
[16]: Index(['MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street', 'Alley',
             'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope',
             'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle',
             'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'RoofStyle',
             'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'MasVnrArea',
             'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond',
             'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1', 'BsmtFinType2',
             'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating', 'HeatingQC',
             'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF',
             'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath',
             'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual', 'TotRmsAbvGrd',
             'Functional', 'Fireplaces', 'FireplaceQu', 'GarageType', 'GarageYrBlt',
             'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual', 'GarageCond',
             'PavedDrive', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch',
             'ScreenPorch', 'PoolArea', 'PoolQC', 'Fence', 'MiscFeature', 'MiscVal',
             'MoSold', 'SaleType', 'SaleCondition'],
            dtype='object')
     1.1.5 Feature Engineering Pipeline
[17]: # I will treat discrete variables as if they were categorical
      # to treat discrete as categorical using Feature-engine
      # we need to re-cast them as object
      X_train[discrete] = X_train[discrete].astype('0')
      X_test[discrete] = X_test[discrete].astype('0')
[18]: # import relevant modules for feature engineering
      from sklearn.pipeline import Pipeline
      from sklearn.preprocessing import StandardScaler
      from feature_engine import missing_data_imputers as mdi
      from feature_engine import categorical_encoders as ce
      from feature_engine.variable_transformers import YeoJohnsonTransformer
      from sklearn.preprocessing import StandardScaler
      from feature_engine.discretisers import DecisionTreeDiscretiser
[19]: house_preprocess = Pipeline([
          # missing data imputation
          ('missing_ind', mdi.AddNaNBinaryImputer(
```

variables=['LotFrontage', 'MasVnrArea', 'GarageYrBlt'])),
('imputer_num', mdi.MeanMedianImputer(imputation_method='mean',

```
variables=['LotFrontage', __
      ('imputer_cat', mdi.CategoricalVariableImputer(variables=categorical)),
         # categorical encoding
          ('rare label enc', ce.RareLabelCategoricalEncoder(
              tol=0.01,n categories=6, variables=categorical+discrete)),
         ('categorical_enc', ce.MeanCategoricalEncoder(variables = categorical +_
      →discrete)),
         # Transforming Numerical Variables
         ('vit', YeoJohnsonTransformer(variables = ['LotFrontage', 'MasVnrArea', |
      # discretisation and encoding
         ('treeDisc', DecisionTreeDiscretiser(cv=2,_
      ⇔scoring='neg_mean_squared_error',
                                       regression=True,
                                        param_grid={'max_depth': [1,2,3,4,5,6]})),
         # feature Scaling
         ('scaler', StandardScaler()),
     ])
[20]: house_preprocess.fit(X_train,y_train)
[20]: Pipeline(memory=None,
              steps=[('missing_ind',
                      AddNaNBinaryImputer(variables=['LotFrontage', 'MasVnrArea',
                                                     'GarageYrBlt'])),
                     ('imputer num',
                      MeanMedianImputer(imputation_method='mean',
                                        variables=['LotFrontage', 'MasVnrArea',
                                                   'GarageYrBlt'])),
                     ('imputer_cat',
                      CategoricalVariableImputer(variables=['MSZoning', 'Street',
                                                           'Alley', 'LotShape',
                                                           'LandContour',
                                                           'Utilities', '...
                                                         'Utilities', 'LotConfig',
                                                         'LandSlope', 'Neighborhood',
                                                         'Condition1', 'Condition2',
                                                         'BldgType', 'HouseStyle',
```

```
'OverallQual',
'OverallCond', 'YearBuilt',
'YearRemodAdd', 'RoofStyle',
'RoofMatl', 'Exterior1st',
'Exterior2nd', 'MasVnrType',
'MasVnrArea', 'ExterQual',
'ExterCond', 'Foundation',
'BsmtQual', ...])),
('scaler',
StandardScaler(copy=True, with_mean=True, with_std=True))],
verbose=False)
```

```
[21]: # Apply Transformations
X_train=house_preprocess.transform(X_train)
X_test=house_preprocess.transform(X_test)
```

1.2 DO NOT CHANGE STEPS BEFORE THIS POINT

1.3 Simple Models

1.3.1 Linear Regression

```
[22]: # Train a linear regression model, report the coefficients and model

→performance

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score

lr = LinearRegression().fit(X_train, y_train)
cv_scores = cross_val_score(lr, X_train, y_train)
```

Results

```
[23]: x_lrtrain= lr.predict(X_train)
    x_lrtest = lr.predict(X_test)

# check model performance:

print('train mse: {}'.format(mean_squared_error(y_train, x_lrtrain)))
    print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_lrtrain))))
    print('train r2: {}'.format(r2_score(y_train, x_lrtrain)))
    print()
    print('test mse: {}'.format(mean_squared_error(y_test, x_lrtest)))
    print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_lrtest))))
    print('test r2: {}'.format(r2_score(y_test, x_lrtest)))

#print("Best parameters: {}".format(lr.best_params_))
    print("Mean Cross-validation scores: {}".format(cv_scores))
```

```
print('Train score: {:.4f}'.format(lr.score(X_train, y_train)))
      print('Test score: {:.4f}'.format(lr.score(X_test, y_test)))
     train mse: 552937051.405446
     train rmse: 23514.61357125492
     train r2: 0.9114426745730106
     test mse: 861097775.8563162
     test rmse: 29344.467551078793
     test r2: 0.8746968378820517
     Mean Cross-validation scores: [ 8.68312903e-01 -6.26561684e+21 8.76203279e-01
     8.98626806e-01
       8.92290590e-011
     Train score: 0.9114
     Test score: 0.8747
     1.3.2 Ridge Regression
[24]: # Train a Ridge regression model, report the coefficients, the best parameters,
      → and model performance
      from sklearn.model_selection import GridSearchCV
      from sklearn.linear_model import Ridge
      ridge = Ridge()
      #define a list of parameters
      #param_ridge = {'alpha':[0.001, 0.01, 0.1, 1, 10, 100] }
      param_ridge = {'alpha':[1, 1e3, 1e4] }
      grid_ridge = GridSearchCV(ridge, param_ridge, cv=10, return_train_score = __
      →True,scoring='r2')
      grid_ridge.fit(X_train, y_train)
[24]: GridSearchCV(cv=10, error score=nan,
                   estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True,
                                   max_iter=None, normalize=False, random_state=None,
                                   solver='auto', tol=0.001),
                   iid='deprecated', n_jobs=None,
                   param_grid={'alpha': [1, 1000.0, 10000.0]},
                   pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
                   scoring='r2', verbose=0)
     Results
[25]: x_gridtrain= grid_ridge.predict(X_train)
      x_gridtest = grid_ridge.predict(X_test)
      # check model performance:
```

```
print('train mse: {}'.format(mean_squared_error(y_train, x_gridtrain)))
print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_gridtrain))))
print('train r2: {}'.format(r2_score(y_train, x_gridtrain)))
print()
print('test mse: {}'.format(mean_squared_error(y_test, x_gridtest)))
print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_gridtest))))
print('test r2: {}'.format(r2_score(y_test, x_gridtest)))
print("Best parameters: {}".format(grid_ridge.best_params_))
print("Cross-validation scores: {}".format(grid_ridge.best_score_))
print('Train score: {:.4f}'.format(grid_ridge.score(X_train, y_train)))
print('Test score: {:.4f}'.format(grid_ridge.score(X_test, y_test)))
```

train mse: 552540520.7585117 train rmse: 23506.1804800038 train r2: 0.911506182152134

test mse: 858035459.791463 test rmse: 29292.242314159957 test r2: 0.8751424526508844 Best parameters: {'alpha': 1}

Cross-validation scores: 0.8843424460850325

Train score: 0.9115 Test score: 0.8751

1.3.3 Lasso

```
[26]: # Train a Lasso regression model, report the coefficients, the best parameters, □ → and model performance

# YOUR CODE HERE

from sklearn.linear_model import Lasso lasso = Lasso(random_state=0)

#define a list of parameters
#param_lasso = {'alpha':[0.001, 0.01, 0.1, 1, 10, 100] }

param_lasso = {'alpha':[1, 1e4, 1e5] }

grid_lasso = GridSearchCV(lasso, param_lasso, cv=10, return_train_score = □ → True, scoring='r2')
grid_lasso.fit(X_train, y_train)
```

```
selection='cyclic', tol=0.0001, warm_start=False),
iid='deprecated', n_jobs=None,
param_grid={'alpha': [1, 10000.0, 100000.0]},
pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
scoring='r2', verbose=0)
```

Results

```
[27]: x_lassotrain= grid_lasso.predict(X_train)
    x_lassotest = grid_lasso.predict(X_test)

# check model performance:

print('train mse: {}'.format(mean_squared_error(y_train, x_lassotrain)))
    print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_lassotrain))))
    print('train r2: {}'.format(r2_score(y_train, x_lassotrain)))
    print()
    print('test mse: {}'.format(mean_squared_error(y_test, x_lassotest)))
    print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_lassotest))))
    print('test r2: {}'.format(r2_score(y_test, x_lassotest)))

    print("Best parameters: {}".format(grid_lasso.best_params_))
    print("Cross-validation scores: {}".format(grid_lasso.best_score_))
    print('Train score: {}:.4f}'.format(grid_lasso.score(X_train, y_train)))
    print('Test score: {}:.4f}'.format(grid_lasso.score(X_test, y_test)))
```

train mse: 552539222.3512008 train rmse: 23506.152861563733 train r2: 0.9115063901025299

test mse: 857849072.1153543 test rmse: 29289.060621934503 test r2: 0.87516957496597 Best parameters: {'alpha': 1}

Cross-validation scores: 0.8843049751400216

Train score: 0.9115 Test score: 0.8752

1.4 Linear Regression with SGD

```
[28]: from sklearn.linear_model import SGDRegressor
```

```
# regression
    ('sgd_reg', SGDRegressor(max_iter=1000, tol = 1e-6))
])
param_sgd = {'sgd_reg__eta0':[0.01, 0.05, 0.1, 0.5],
             'sgd_reg__penalty' :['l1','l2'],#lasso,ridge
             'sgd_reg__alpha' :[0.1,0.01,0.001] }
grid_linearsgd = GridSearchCV(reg_sgd_pipe,
                              param_sgd,cv=5,
                              n jobs=-1,
                              return_train_score = True,
                              scoring='r2')
# let's fit the pipeline
grid_linearsgd.fit(X_train, y_train)
# let's get the predictions
X_train_preds = grid_linearsgd.predict(X_train)
X_test_preds = grid_linearsgd.predict(X_test)
```

1.4.1 Results

```
[30]: # check model performance:
      print('train mse: {}'.format(mean_squared_error(y_train, X_train_preds)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, X_train_preds))))
      print('train r2: {}'.format(r2_score(y_train, X_train_preds)))
      print()
      print('test mse: {}'.format(mean_squared_error(y_test, X_test_preds)))
      print('test rmse: {}'.format(sqrt(mean squared error(y test, X test preds))))
      print('test r2: {}'.format(r2_score(y_test, X_test_preds)))
      print("Best parameters: {}".format(grid_linearsgd.best_params_))
      print('Train score: {:.4f}'.format(grid_linearsgd.score(X_train, y_train)))
      print('Test score: {:.4f}'.format(grid_linearsgd.score(X_test, y_test)))
     train mse: 594505167.346368
     train rmse: 24382.476645049166
     train r2: 0.9047852057681796
     test mse: 957543094.9385668
     test rmse: 30944.19323457257
     test r2: 0.8606625391167776
     Best parameters: {'sgd_reg__alpha': 0.01, 'sgd_reg__eta0': 0.05,
     'sgd_reg__penalty': '11'}
     Train score: 0.9048
```

Test score: 0.8607

1.5 Polynomial Regression

```
[31]: #apply polynomial regression in pipeline
      #pipe_poly = make_pipeline(PolynomialFeatures(),MinMaxScaler(),__
       \hookrightarrow LinearRegression())
      pipe_poly=Pipeline([
          ('polynomialfeatures', PolynomialFeatures()),
          ('scaler', MinMaxScaler()),
          ('norm_reg', LinearRegression())
      1)
      #define a list of parameters
      param_poly = {'polynomialfeatures__degree':range(1,3)}
      grid_poly = GridSearchCV(pipe_poly, param_poly,cv=5, n_jobs=-1,__
       →return_train_score = True,scoring='r2')
      grid_poly.fit(X_train, y_train)
      # let's get the predictions
      X_train_preds = grid_poly.predict(X_train)
      X_test_preds = grid_poly.predict(X_test)
```

1.5.1 Results

```
[32]: x_polytrain= grid_lasso.predict(X_train)
x_polytest = grid_lasso.predict(X_test)

# check model performance:

print('train mse: {}'.format(mean_squared_error(y_train, x_polytrain)))
print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_polytrain))))
print('train r2: {}'.format(r2_score(y_train, x_polytrain)))
print()
print('test mse: {}'.format(mean_squared_error(y_test, x_polytest)))
print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_polytest))))
print('test r2: {}'.format(r2_score(y_test, x_polytest)))

print("Best parameters: {}".format(grid_poly.best_params_))
print("Cross-validation scores: {}".format(grid_poly.best_score_))
print('Train score: {:.4f}'.format(grid_poly.score(X_train, y_train)))
print('Test score: {:.4f}'.format(grid_poly.score(X_test, y_test)))
```

train mse: 552539222.3512008

```
train rmse: 23506.152861563733
     train r2: 0.9115063901025299
     test mse: 857849072.1153543
     test rmse: 29289.060621934503
     test r2: 0.87516957496597
     Best parameters: {'polynomialfeatures degree': 2}
     Cross-validation scores: -9.790048692779738e+22
     Train score: 1.0000
     Test score: -312603571663290826752.0000
[33]: print('train mse: {}'.format(mean_squared_error(y_train, X_train_preds)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, X_train_preds))))
      print('train r2: {}'.format(r2_score(y_train, X_train_preds)))
      print()
      print('test mse: {}'.format(mean_squared_error(y_test, X_test_preds)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, X_test_preds))))
      print('test r2: {}'.format(r2_score(y_test, X_test_preds)))
     train mse: 27597.318873668188
     train rmse: 166.12440782036873
     train r2: 0.9999955800669494
     test mse: 2.1482477834886397e+30
     test rmse: 1465690207202272.2
     test r2: -3.126035716632908e+20
```

1.6 ElasticNet

1.6.1 Results

```
[35]: print('train mse: {}'.format(mean squared error(y train,
      →x_elastictrain_predict)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train,__
      →x_elastictrain_predict))))
      print('train r2: {}'.format(r2_score(y_train, x_elastictrain_predict)))
      print()
      print('test mse: {}'.format(mean_squared_error(y_test, x_elastictest_predict)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test,__
      →x_elastictest_predict))))
      print('test r2: {}'.format(r2_score(y_test, x_elastictest_predict)))
      print()
      print('Best parameters: ', grid_elasticnet.best_params_)
      print('Best cross-validation score:', grid_elasticnet.score(X_test, y_test))
      print("Training set score: {:.2f}".format(grid_elasticnet.score(X_train,_
      →y train)))
      print("Test set score: {:.2f}".format(grid_elasticnet.score(X_test, y_test)))
     train mse: 580812656.1496782
     train rmse: 24100.055106776796
     train r2: 0.9069781717972707
     test mse: 908630644.7418916
     test rmse: 30143.500870699998
     test r2: 0.8677800638026185
     Best parameters: {'alpha': 1, 'l1_ratio': 0.8}
     Best cross-validation score: 0.8677800638026185
     Training set score: 0.91
     Test set score: 0.87
     1.7 Tune Multiple Models with one GridSearch
     1.7.1 Model - Linear Regression with Model Parameter - Ridge *GridSearch
[36]: model_linear = Pipeline([("regressor", LinearRegression())])
[37]: model_parm_gd1 = [{ 'regressor': [Ridge()]}]
[38]: from sklearn import sym
      grid_search_linear = GridSearchCV(svm.SVC(gamma='auto'),{
          'C':[30],
          'kernel':['linear']
```

[39]: grid_search_linear = GridSearchCV(model_linear,model_parm_gd1,scoring='r2')

},cv=5,return_train_score=False,scoring='r2')

```
[40]: grid_search_linear.fit(X_train,y_train)
[40]: GridSearchCV(cv=None, error_score=nan,
                   estimator=Pipeline(memory=None,
                                      steps=[('regressor',
                                              LinearRegression(copy_X=True,
                                                                fit_intercept=True,
                                                                n_jobs=None,
                                                               normalize=False))],
                                      verbose=False),
                   iid='deprecated', n jobs=None,
                   param_grid=[{'regressor': [Ridge(alpha=1.0, copy_X=True,
                                                    fit intercept=True, max iter=None,
                                                    normalize=False,
                                                    random_state=None, solver='auto',
                                                    tol=0.001)]}],
                   pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                   scoring='r2', verbose=0)
     Results
[41]: x_lrtrain= grid_search_linear.predict(X_train)
      x_lrtest = grid_search_linear.predict(X_test)
      # check model performance:
      print('train mse: {}'.format(mean_squared_error(y_train, x_lrtrain)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_lrtrain))))
      print('train r2: {}'.format(r2_score(y_train, x_lrtrain)))
      print()
      print('test mse: {}'.format(mean_squared_error(y_test, x_lrtest)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_lrtest))))
      print('test r2: {}'.format(r2_score(y_test, x_lrtest)))
      print()
      print("Best parameters: {}".format(grid_search_linear.best_params_))
      print("Cross-validation scores: {}".format(grid_search_linear.best_score_))
      print('Train score: {:.4f}'.format(grid_search_linear.score(X_train, y_train)))
      print('Test score: {:.4f}'.format(grid_search_linear.score(X_test, y_test)))
     train mse: 552540520.7585117
     train rmse: 23506.1804800038
     train r2: 0.911506182152134
     test mse: 858035459.791463
     test rmse: 29292.242314159957
     test r2: 0.8751424526508844
```

```
Best parameters: {'regressor': Ridge(alpha=1.0, copy_X=True, fit_intercept=True,
     max_iter=None,
           normalize=False, random_state=None, solver='auto', tol=0.001)}
     Cross-validation scores: 0.8818969790895617
     Train score: 0.9115
     Test score: 0.8751
     1.8 Linear Regression with Model Parameter - Lasso *GridSearchCV
[42]: model_linear2 = Pipeline([("regressor", LinearRegression())])
[43]: model_parm_gd2 = [{ 'regressor': [Lasso(random_state=0)]}]
[44]: grid_search_linear2 = GridSearchCV(svm.SVC(gamma='auto'),{
          'C': [1,10,20,30],
          'kernel':['polynomial']
      },cv=5,return_train_score=False,scoring='r2')
[45]: grid_search_linear2 = GridSearchCV(model_linear2,model_parm_gd2,scoring='r2')
[46]: grid_search_linear2.fit(X_train,y_train)
[46]: GridSearchCV(cv=None, error_score=nan,
                   estimator=Pipeline(memory=None,
                                      steps=[('regressor',
                                              LinearRegression(copy_X=True,
                                                               fit_intercept=True,
                                                               n_jobs=None,
                                                               normalize=False))],
                                      verbose=False),
                   iid='deprecated', n_jobs=None,
                   param_grid=[{'regressor': [Lasso(alpha=1.0, copy_X=True,
                                                    fit intercept=True, max iter=1000,
                                                    normalize=False, positive=False,
                                                    precompute=False, random_state=0,
                                                    selection='cyclic', tol=0.0001,
                                                    warm_start=False)]}],
                   pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                   scoring='r2', verbose=0)
     Results
[47]: x_lrtrain= grid_search_linear2.predict(X_train)
      x_lrtest = grid_search_linear2.predict(X_test)
      # check model performance:
```

```
print('train mse: {}'.format(mean squared error(y train, x lrtrain)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_lrtrain))))
      print('train r2: {}'.format(r2_score(y_train, x_lrtrain)))
      print('test mse: {}'.format(mean_squared_error(y_test, x_lrtest)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_lrtest))))
      print('test r2: {}'.format(r2_score(y_test, x_lrtest)))
      print()
      print("Best parameters: {}".format(grid_search_linear2.best_params_))
      print("Cross-validation scores: {}".format(grid_search_linear2.best_score_))
      print('Train score: {:.4f}'.format(grid search linear2.score(X train, y train)))
      print('Test score: {:.4f}'.format(grid_search_linear2.score(X_test, y_test)))
     train mse: 552539222.3512008
     train rmse: 23506.152861563733
     train r2: 0.9115063901025299
     test mse: 857849072.1153543
     test rmse: 29289.060621934503
     test r2: 0.87516957496597
     Best parameters: {'regressor': Lasso(alpha=1.0, copy_X=True, fit_intercept=True,
     max_iter=1000,
           normalize=False, positive=False, precompute=False, random_state=0,
           selection='cyclic', tol=0.0001, warm_start=False)}
     Cross-validation scores: 0.881849542095595
     Train score: 0.9115
     Test score: 0.8752
          sion *GridSearchCV
[48]: from sklearn.ensemble import RandomForestRegressor
```

1.9 Pipeline - RandomForest Regressor with Model Parameter - Linear Regres-

```
[49]: model_rf = Pipeline([('regressor', RandomForestRegressor(random_state = 42))])
[50]: model_parm_rf = [{ 'regressor': [LinearRegression()]}]
[51]: from sklearn import svm
[52]: grid_rf = GridSearchCV(svm.SVC(gamma='auto'),{
          'C': [30],
          'kernel':['linear']
      },cv=5,return_train_score=False,scoring='r2')
[53]: grid_rf = GridSearchCV(model_rf, model_parm_rf)
```

```
[54]: grid_rf.fit(X_train,y_train)
[54]: GridSearchCV(cv=None, error_score=nan,
                   estimator=Pipeline(memory=None,
                                       steps=[('regressor',
                                               RandomForestRegressor(bootstrap=True,
                                                                     ccp_alpha=0.0,
                                                                      criterion='mse',
                                                                     max_depth=None,
      max_features='auto',
     max leaf nodes=None,
                                                                     max_samples=None,
     min_impurity_decrease=0.0,
     min_impurity_split=None,
     min_samples_leaf=1,
     min_samples_split=2,
     min_weight_fraction_leaf=0.0,
                                                                     n_estimators=100,
                                                                     n_jobs=None,
                                                                      oob_score=False,
                                                                     random_state=42,
                                                                      verbose=0,
      warm_start=False))],
                                      verbose=False),
                   iid='deprecated', n_jobs=None,
                   param grid=[{'regressor': [LinearRegression(copy X=True,
                                                                fit intercept=True,
                                                                n_jobs=None,
                                                                normalize=False)]}],
                   pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                   scoring=None, verbose=0)
```

1.9.1 Results

```
[55]: x_rftrain= grid_rf.predict(X_train)
    x_rftest = grid_rf.predict(X_test)

# check model performance:

print('train mse: {}'.format(mean_squared_error(y_train, x_rftrain)))
    print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_rftrain))))
    print('train r2: {}'.format(r2_score(y_train, x_rftrain)))
    print()
    print('test mse: {}'.format(mean_squared_error(y_test, x_rftest)))
    print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_rftest))))
    print('test r2: {}'.format(r2_score(y_test, x_rftest)))
```

```
print("Best parameters: {}".format(grid_rf.best_params_))
      print("Cross-validation scores: {}".format(grid_rf.best_score_))
      print('Train score: {:.4f}'.format(grid_rf.score(X_train, y_train)))
      print('Test score: {:.4f}'.format(grid_rf.score(X_test, y_test)))
     train mse: 552937051.405446
     train rmse: 23514.61357125492
     train r2: 0.9114426745730106
     test mse: 861097775.8563162
     test rmse: 29344.467551078793
     test r2: 0.8746968378820517
     Best parameters: {'regressor': LinearRegression(copy_X=True, fit_intercept=True,
     n_jobs=None, normalize=False)}
     Cross-validation scores: -1.2531233677405604e+21
     Train score: 0.9114
     Test score: 0.8747
     1.10 KNN Regressor
[56]: from sklearn.neighbors import KNeighborsRegressor
      from sklearn.pipeline import make pipeline
      from sklearn.preprocessing import MinMaxScaler
      knnreg = KNeighborsRegressor().fit(X train, y train)
      print("Training set score: {:.2f}".format(knnreg.score(X_train, y_train)))
      print("Test set score: {:.2f}".format(knnreg.score(X test, y test)))
     Training set score: 0.88
     Test set score: 0.59
[57]: pipe_knn = make_pipeline(MinMaxScaler(), KNeighborsRegressor())
      knnreg = pipe_knn.fit(X_train, y_train)
      print("Training set score: {:.2f}".format(knnreg.score(X_train, y_train)))
      print("Test set score: {:.2f}".format(knnreg.score(X_test, y_test)))
     Training set score: 0.86
     Test set score: 0.71
[58]:
          from sklearn.model_selection import GridSearchCV
          pipe_knn=Pipeline([
              ('scaler', MinMaxScaler()),
              ('knnreg', KNeighborsRegressor())
          1)
          # define a list of parameters
          #param_knn = {'n_neighbors': [5, 10, 15, 20, 25, 30]}
```

```
param_knn = {'knnreg__n_neighbors': range(1,25)}

#apply grid search
grid_knn = GridSearchCV(pipe_knn, param_knn, cv=5,
→return_train_score=True,scoring='r2')
grid_knn.fit(X_train, y_train)
```

```
[58]: GridSearchCV(cv=5, error_score=nan,
                   estimator=Pipeline(memory=None,
                                      steps=[('scaler',
                                              MinMaxScaler(copy=True,
                                                            feature_range=(0, 1))),
                                              ('knnreg',
                                               KNeighborsRegressor(algorithm='auto',
                                                                   leaf_size=30,
                                                                   metric='minkowski',
                                                                   metric_params=None,
                                                                   n_jobs=None,
                                                                   n_neighbors=5, p=2,
      weights='uniform'))],
                                      verbose=False),
                   iid='deprecated', n_jobs=None,
                   param_grid={'knnreg__n_neighbors': range(1, 25)},
                   pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
                   scoring='r2', verbose=0)
```

1.10.1 Results

```
[59]: x_knntrain= grid_knn.predict(X_train)
x_knntest = grid_knn.predict(X_test)

# check model performance:

print('train mse: {}'.format(mean_squared_error(y_train, x_knntrain)))
print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_knntrain))))
print('train r2: {}'.format(r2_score(y_train, x_knntrain)))
print()
print('test mse: {}'.format(mean_squared_error(y_test, x_knntest)))
print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_knntest))))
print('test r2: {}'.format(r2_score(y_test, x_knntest)))
print('train score: ', grid_knn.score(X_train, y_train))
print('test score: ', grid_knn.score(X_test, y_test))

#find best parameters
print('Best parameters: ', grid_knn.best_params_)
print('Best cross-validation score:', grid_knn.best_score_)
```

train mse: 926540858.0310757
train rmse: 30439.13366098115
train r2: 0.8516070137143069

test mse: 1657648286.6700912
test rmse: 40714.227079364915
test r2: 0.7587863099604379

train score: 0.8516070137143069
test score: 0.7587863099604379
Best parameters: {'knnreg__n_neighbors': 6}
Best cross-validation score: 0.78587417331835

1.11 ElasticNet with GridSearch

[60]: elasticnet = ElasticNet()

```
#define a list of parameters
param_elasticnet = {'alpha': [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10],
 \rightarrow '11_ratio' : [0.2,0.4,0.6,0.8]}
grid_elasticnet = GridSearchCV(elasticnet , param_elasticnet, cv=5,_
 →return_train_score = True,scoring='r2')
grid_elasticnet.fit(X_train, y_train)
grid_elasticnet_train_score = grid_elasticnet.score(X_train, y_train)
grid_elasticnet_test_score = grid_elasticnet.score(X_test, y_test)
C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 275261918430.7595, tolerance: 657118734.8147435
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 270472843507.742, tolerance: 655974723.0327224
  positive)
```

positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\linear_model_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 293367949607.249, tolerance: 642749145.1567798
 positive)

packages\sklearn\linear_model_coordinate_descent.py:476: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations.

C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-

Duality gap: 269415475236.1935, tolerance: 635955900.9288123

```
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 299702168310.0032, tolerance: 689033704.679551
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 275132322643.92615, tolerance: 657118734.8147435
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 270265546612.78378, tolerance: 655974723.0327224
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269359988115.02875, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
packages\sklearn\linear model\ coordinate descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 293114639456.2878, tolerance: 642749145.1567798
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 299461621874.3815, tolerance: 689033704.679551
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 274876218400.22867, tolerance: 657118734.8147435
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269853488069.79288, tolerance: 655974723.0327224
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269250900786.1243, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
```

```
Duality gap: 292610782725.36975, tolerance: 642749145.1567798
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 298983659623.677, tolerance: 689033704.679551
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 274113520713.21634, tolerance: 657118734.8147435
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 268620977582.17148, tolerance: 655974723.0327224
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 268927308309.11826, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 291102803101.93744, tolerance: 642749145.1567798
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 297554322499.26166, tolerance: 689033704.679551
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 275285371342.0834, tolerance: 657118734.8147435
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 270500219669.26224, tolerance: 655974723.0327224
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269455263299.4938, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
```

```
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 293390700602.9906, tolerance: 642749145.1567798
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 299724423882.7319, tolerance: 689033704.679551
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 275126170208.67175, tolerance: 657118734.8147435
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 270267583340.30392, tolerance: 655974723.0327224
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269382447458.56412, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 293109101936.22723, tolerance: 642749145.1567798
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 299452447939.0266, tolerance: 689033704.679551
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 274841772404.84204, tolerance: 657118734.8147435
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269830678356.61826, tolerance: 655974723.0327224
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269256329279.5095, tolerance: 635955900.9288123
```

```
positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 292577554374.5457, tolerance: 642749145.1567798
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 298943887810.3167, tolerance: 689033704.679551
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 274051946790.85733, tolerance: 657118734.8147435
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 268573717281.67993, tolerance: 655974723.0327224
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 268915978578.34824, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 291042350452.3709, tolerance: 642749145.1567798
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 297484634292.5844, tolerance: 689033704.679551
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 274840164312.18774, tolerance: 657118734.8147435
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 270621725492.51758, tolerance: 655974723.0327224
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
```

packages\sklearn\linear_model_coordinate_descent.py:476: ConvergenceWarning:

```
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269731153808.08066, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear model\ coordinate descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 293432778873.37506, tolerance: 642749145.1567798
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 299665315171.12964, tolerance: 689033704.679551
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 274320207459.15918, tolerance: 657118734.8147435
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear model\ coordinate descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 270089455409.16162, tolerance: 655974723.0327224
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269461868093.74542, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 292811730158.3288, tolerance: 642749145.1567798
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear model\ coordinate descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 299004317909.24976, tolerance: 689033704.679551
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 273940590197.94852, tolerance: 657118734.8147435
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269428587209.82605, tolerance: 655974723.0327224
 positive)
```

```
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269193156672.4067, tolerance: 635955900.9288123
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 292033002979.416, tolerance: 642749145.1567798
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 298242533193.7177, tolerance: 689033704.679551
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 273151756027.88977, tolerance: 657118734.8147435
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
packages\sklearn\linear model\ coordinate descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 267998525106.42767, tolerance: 655974723.0327224
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 268738473819.79742, tolerance: 635955900.9288123
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 290312550120.06335, tolerance: 642749145.1567798
 positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 296613343354.8944, tolerance: 689033704.679551
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 221086170647.84283, tolerance: 655974723.0327224
  positive)
C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
```

```
Duality gap: 204650042677.63684, tolerance: 635955900.9288123
    positive)

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 232586340970.15808, tolerance: 642749145.1567798
    positive)

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
packages\sklearn\linear_model\_coordinate_descent.py:476: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 186705495812.65787, tolerance: 689033704.679551
    positive)
```

1.11.1 Results

```
[61]: # let's get the predictions
      x_elastictrain= grid_elasticnet.predict(X_train)
      x_elastictest = grid_elasticnet.predict(X_test)
      # check model performance:
      print('train mse: {}'.format(mean_squared_error(y_train, x_elastictrain)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train,_
      →x elastictrain))))
      print('train r2: {}'.format(r2_score(y_train, x_elastictrain)))
      print('test mse: {}'.format(mean_squared_error(y_test, x_elastictest)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_elastictest))))
      print('test r2: {}'.format(r2_score(y_test, x_elastictest)))
      print('Training set score: ', grid_elasticnet_train_score)
      print('Test score: ', grid_elasticnet_test_score)
      #find best parameters
      print('Best parameters: ', grid_elasticnet.best_params_)
      print('Best cross-validation score:', grid_elasticnet.best_score_)
```

train rmse: 23674.04739878294
train r2: 0.9102377304004107

test mse: 872749277.5992303
test rmse: 29542.33026691074
test r2: 0.8730013625797748
Training set score: 0.9102377304004107
Test score: 0.8730013625797748

train mse: 560460520.2398213

Best parameters: {'alpha': 0.1, 'l1_ratio': 0.2}
Best cross-validation score: 0.8840700291378194

1.12 Decision Tree Regression

```
[62]: from sklearn.tree import DecisionTreeRegressor
      from sklearn.model_selection import GridSearchCV
      decisiontree = DecisionTreeRegressor(random_state = 0)
      param_DTree = {"max_depth": range(1,30),
                     "max_leaf_nodes": range(2,20),
                    "min_samples_split":range(2,30)}
      grid_dtree = GridSearchCV(decisiontree,param_DTree,cv=5,scoring='r2')
      grid_dtree.fit(X_train,y_train)
[62]: GridSearchCV(cv=5, error score=nan,
                   estimator=DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse',
                                                   max_depth=None, max_features=None,
                                                   max_leaf_nodes=None,
                                                   min_impurity_decrease=0.0,
                                                   min_impurity_split=None,
                                                   min_samples_leaf=1,
                                                   min_samples_split=2,
                                                   min_weight_fraction_leaf=0.0,
                                                   presort='deprecated',
                                                   random_state=0, splitter='best'),
                   iid='deprecated', n_jobs=None,
                   param_grid={'max_depth': range(1, 30),
                               'max_leaf_nodes': range(2, 20),
                               'min_samples_split': range(2, 30)},
                   pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                   scoring='r2', verbose=0)
```

1.12.1 Results

```
[63]: # let's get the predictions
    x_dtreetrain= grid_dtree.predict(X_train)
    x_dtreetest = grid_dtree.predict(X_test)

print('train mse: {}'.format(mean_squared_error(y_train, x_dtreetrain)))
    print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_dtreetrain))))
    print('train r2: {}'.format(r2_score(y_train, x_dtreetrain)))
    print()
    print('test mse: {}'.format(mean_squared_error(y_test, x_dtreetest)))
    print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_dtreetest))))
    print('test r2: {}'.format(r2_score(y_test, x_dtreetest)))
    print('best parameters: ', grid_dtree.best_params_)
```

```
print("Accuracy on training set: {:.4f}".format(grid_dtree.score(X_train,_
      →y_train)))
      print("Accuracy on test set: {:.3f}".format(grid_dtree.score(X_test, y_test)))
     train mse: 1105977258.816959
     train rmse: 33256.23638984061
     train r2: 0.8228688278802175
     test mse: 1548654925.2624905
     test rmse: 39352.953196202325
     test r2: 0.7746465446714791
     Best parameters: {'max_depth': 6, 'max_leaf_nodes': 19, 'min_samples_split':
     29}
     Accuracy on training set: 0.8229
     Accuracy on test set: 0.775
     1.13 SVM
[64]: from sklearn.svm import SVC
      svc_kernel = SVC()
      #define a list of parameters
      param_svc_kernel = [{'C': [1,10,100,1000,10000],
                          'gamma':['auto'],
                         'kernel':['rbf']},
                         {'C': [1,10,100,1000,10000],
                         'gamma':['auto'],
                         'kernel':['poly']},
                         {'C': [1,10,100,1000,10000],
                          'gamma':['auto'],
                         'kernel':['sigmoid',]}]
      #apply grid search
      grid_svc_kernel = GridSearchCV(svc_kernel, param_svc_kernel, cv=5,_
      grid_svc_kernel.fit(X_train, y_train)
     C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
     packages\sklearn\model_selection\_split.py:667: UserWarning: The least populated
     class in y has only 1 members, which is less than n_splits=5.
       % (min_groups, self.n_splits)), UserWarning)
[64]: GridSearchCV(cv=5, error_score=nan,
                  estimator=SVC(C=1.0, break_ties=False, cache_size=200,
                                class_weight=None, coef0=0.0,
```

1.13.1 Results

```
[65]: # let's get the predictions
    x_svctrain= grid_svc_kernel.predict(X_train)
    x_svctest = grid_svc_kernel.predict(X_test)

print('train mse: {}'.format(mean_squared_error(y_train, x_svctrain)))
    print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_svctrain))))
    print('train r2: {}'.format(r2_score(y_train, x_svctrain)))
    print('test mse: {}'.format(mean_squared_error(y_test, x_svctest)))
    print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_svctest))))
    print('test r2: {}'.format(r2_score(y_test, x_svctest)))
    print('test parameters: ', grid_svc_kernel.best_params_)
    print('train score: ', grid_svc_kernel.score(X_train, y_train))
    print('test score: ', grid_svc_kernel.score(X_train, y_train))
```

train mse: 61834.09436834094 train rmse: 248.66462226931466 train r2: 0.9999900967714073

test mse: 1296973682.7054794 test rmse: 36013.520831841466 test r2: 0.8112700924524573

Best parameters: {'C': 100, 'gamma': 'auto', 'kernel': 'poly'}

train score: 0.9999900967714073 test score: 0.9999900967714073

2 Ensemble

2.1 Bagging

2.1.1 With Descision Tree Regressor

[66]: from sklearn.linear_model import LogisticRegression

```
from sklearn.tree import DecisionTreeRegressor
      from sklearn.ensemble import BaggingRegressor
[67]: bag_dtree1 = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
       ⇒bootstrap=True, random state=0, oob score=True)
      bag_dtree1_param = {
                       'base_estimator__max_depth': range(1,10),
                       'max samples': [0.8,1],
                       'n_estimators': range(1,80,5)}
      bag_dtree1_grid = GridSearchCV(bag_dtree1, bag_dtree1_param,cv=5,_
      →return_train_score=True)
      bag_dtree1_grid.fit(X_train,y_train)
     C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
     packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
     OOB scores. This probably means too few estimators were used to compute any
     reliable oob estimates.
       warn("Some inputs do not have OOB scores. "
     C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
     packages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have
     OOB scores. This probably means too few estimators were used to compute any
     reliable oob estimates.
       warn("Some inputs do not have OOB scores. "
     C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
     packages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have
     OOB scores. This probably means too few estimators were used to compute any
     reliable oob estimates.
       warn("Some inputs do not have OOB scores. "
     C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
     packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
     OOB scores. This probably means too few estimators were used to compute any
     reliable oob estimates.
       warn("Some inputs do not have OOB scores. "
     C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
     packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
     OOB scores. This probably means too few estimators were used to compute any
     reliable oob estimates.
       warn("Some inputs do not have OOB scores. "
     C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
     packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
```

OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

 $\label{lem:c:sum$

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

 ${\tt C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-}$

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any

reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

 ${\tt C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-}$

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

 $\label{lem:c:start} $$C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-$

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have

OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

 $\label{lem:c:sum$

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any

reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

 $\label{lem:c:sum$

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have

OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

 $\label{lem:c:sum$

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

 ${\tt C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-}$

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any

reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

 ${\tt C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-}$

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

 $\label{lem:c:start} $$C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-$

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have

OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

 $\label{lem:c:sum$

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any

reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

```
OOB scores. This probably means too few estimators were used to compute any
     reliable oob estimates.
       warn("Some inputs do not have OOB scores. "
     C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
     packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
     OOB scores. This probably means too few estimators were used to compute any
     reliable oob estimates.
       warn("Some inputs do not have OOB scores. "
[67]: GridSearchCV(cv=5, error_score=nan,
      estimator=BaggingRegressor(base_estimator=DecisionTreeRegressor(ccp_alpha=0.0,
      criterion='mse',
     max_depth=None,
     max features=None,
     max_leaf_nodes=None,
     min_impurity_decrease=0.0,
     min_impurity_split=None,
     min_samples_leaf=1,
     min_samples_split=2,
     min_weight_fraction_leaf=0.0,
     presort='deprecated',
     random_state=None,
      splitter='be...
                                              bootstrap_features=False,
                                              max_features=1.0, max_samples=1.0,
                                              n_estimators=10, n_jobs=None,
                                              oob score=True, random state=0,
                                              verbose=0, warm_start=False),
                   iid='deprecated', n jobs=None,
                   param_grid={'base_estimator__max_depth': range(1, 10),
                               'max_samples': [0.8, 1],
                               'n estimators': range(1, 80, 5)},
                   pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
                   scoring=None, verbose=0)
     Results
[68]: # let's get the predictions
      x_bagtree_train= bag_dtree1_grid.predict(X_train)
      x_bagtree_test = bag_dtree1_grid.predict(X_test)
      # check model performance:
      print('train mse: {}'.format(mean_squared_error(y_train, x_bagtree_train)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train,_
       →x_bagtree_train))))
      print('train r2: {}'.format(r2_score(y_train, x_bagtree_train)))
```

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have

```
print()
print('test mse: {}'.format(mean_squared_error(y_test, x_bagtree_test)))
print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_bagtree_test))))
print('test r2: {}'.format(r2_score(y_test, x_bagtree_test)))
print()
print(f'Best Mean Cross Validation Score is {bag_dtree1_grid.best_score_}')
print(f'Best parameters {bag_dtree1_grid.best_params_}')
print(f'Train score is {bag_dtree1_grid.score(X_train,y_train)}')
print(f'Test score is {bag_dtree1_grid.score(X_test,y_test)}')
```

train mse: 238564809.90829495
train rmse: 15445.543367207738
train r2: 0.9617919228729973

test mse: 982627004.5486312
test rmse: 31346.881895152364
test r2: 0.8570124388836232

Best Mean Cross Validation Score is 0.8701118447613622
Best parameters {'base_estimator__max_depth': 9, 'max_samples': 0.8, 'n_estimators': 61}
Train score is 0.9617919228729972
Test score is 0.8570124388836233

2.1.2 With HW2 Best Model - Lasso

```
[69]: from sklearn.linear_model import LinearRegression from sklearn.linear_model import Lasso
```

```
[70]: bag_lasso = BaggingRegressor(base_estimator=Lasso(), bootstrap=True, □ → random_state=0, oob_score=True)

bag_lasso_param = {'base_estimator__alpha': [1, 1e4, 1e5]}

bag_lasso_grid = GridSearchCV(bag_lasso, bag_lasso_param, cv=5, □ → return_train_score=True)

bag_lasso_grid.fit(X_train,y_train)
```

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have 00B scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\sitepackages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates. warn("Some inputs do not have OOB scores. " C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have

OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

 ${\tt C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-}$

packages\sklearn\ensemble_bagging.py:1056: UserWarning: Some inputs do not have OOB scores. This probably means too few estimators were used to compute any reliable oob estimates.

warn("Some inputs do not have OOB scores. "

[70]: GridSearchCV(cv=5, error_score=nan,

estimator=BaggingRegressor(base_estimator=Lasso(alpha=1.0,

copy_X=True,
fit_intercept=True,
max_iter=1000,
normalize=False,
positive=False,
precompute=False,
random_state=None,
selection='cyclic',
tol=0.0001,
warm_start=False),

bootstrap=True,
bootstrap_features=False,
max_features=1.0, max_samples=1.0,
n_estimators=10, n_jobs=None,
oob_score=True, random_state=0,
verbose=0, warm_start=False),

iid='deprecated', n_jobs=None,
param_grid={'base_estimator__alpha': [1, 10000.0, 100000.0]},
pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
scoring=None, verbose=0)

Results

```
[71]: # let's get the predictions
      x_baglasso_train= bag_lasso_grid.predict(X_train)
      x_baglasso_test = bag_lasso_grid.predict(X_test)
      # check model performance:
      print('train mse: {}'.format(mean_squared_error(y_train, x_baglasso_train)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train,_
       →x_baglasso_train))))
      print('train r2: {}'.format(r2_score(y_train, x_baglasso_train)))
      print('test mse: {}'.format(mean_squared_error(y_test, x_baglasso_test)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_baglasso_test))))
      print('test r2: {}'.format(r2_score(y_test, x_baglasso_test)))
      print()
      print(f'Best Mean Cross Validation Score is {bag_lasso_grid.best_score_}')
      print(f'Best parameters {bag_lasso_grid.best_params_}')
      print(f'Train score is {bag_lasso_grid.score(X_train,y_train)}')
      print(f'Test score is {bag_lasso_grid.score(X_test,y_test)}')
```

train mse: 565445909.6571118 train rmse: 23779.106578194056 train r2: 0.9094392801032474

test mse: 853696103.4052668 test rmse: 29218.07836606074 test r2: 0.8757738967121659

Best Mean Cross Validation Score is 0.8849435910242107
Best parameters {'base_estimator_alpha': 1}
Train score is 0.9094392801032474
Test score is 0.8757738967121659

2.2 Pasting

2.2.1 With Decision Tree Regressor

```
[72]: paste dtree1 = BaggingRegressor(base_estimator=DecisionTreeRegressor(),__
       →bootstrap=False, random_state=0, oob_score=False)
      paste dtree1 param = {
                       'base_estimator__max_depth': range(1,10),
                       'max_samples': [0.8,1],
                       'n_estimators': range(1,80,5)}
      paste_dtree1_grid = GridSearchCV(paste_dtree1, paste_dtree1_param,cv=5,__
       →return_train_score=True)
      paste_dtree1_grid.fit(X_train,y_train)
[72]: GridSearchCV(cv=5, error_score=nan,
      estimator=BaggingRegressor(base_estimator=DecisionTreeRegressor(ccp_alpha=0.0,
      criterion='mse',
      max_depth=None,
     max_features=None,
     max_leaf_nodes=None,
     min_impurity_decrease=0.0,
     min_impurity_split=None,
     min_samples_leaf=1,
     min samples split=2,
     min_weight_fraction_leaf=0.0,
      presort='deprecated',
      random_state=None,
      splitter='be...
                                              bootstrap_features=False,
                                              max_features=1.0, max_samples=1.0,
                                              n_estimators=10, n_jobs=None,
                                              oob_score=False, random_state=0,
                                              verbose=0, warm_start=False),
                   iid='deprecated', n_jobs=None,
                   param_grid={'base_estimator__max_depth': range(1, 10),
                               'max_samples': [0.8, 1],
                               'n estimators': range(1, 80, 5)},
                   pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
                   scoring=None, verbose=0)
     Results
[73]: # let's get the predictions
      x_pastetree_train= paste_dtree1_grid.predict(X_train)
      x_pastetree_test = paste_dtree1_grid.predict(X_test)
      # check model performance:
      print('train mse: {}'.format(mean_squared_error(y_train, x_pastetree_train)))
```

```
print('train rmse: {}'.format(sqrt(mean_squared_error(y_train,_
       →x_pastetree_train))))
      print('train r2: {}'.format(r2_score(y_train, x_pastetree_train)))
      print('test mse: {}'.format(mean_squared_error(y_test, x_pastetree_test)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test,__
      →x_pastetree_test))))
      print('test r2: {}'.format(r2_score(y_test, x_pastetree_test)))
      print()
      print(f'Best Mean Cross Validation Score is {paste_dtree1_grid.best_score_}')
      print(f'Best parameters {paste_dtree1_grid.best_params_}')
      print(f'Train score is {paste dtree1 grid.score(X train, y train)}')
      print(f'Test score is {paste_dtree1_grid.score(X_test,y_test)}')
     train mse: 151317451.74681643
     train rmse: 12301.115874050469
     train r2: 0.9757652904918109
     test mse: 954334002.3152863
     test rmse: 30892.296811912292
     test r2: 0.8611295121650201
     Best Mean Cross Validation Score is 0.8572589293630738
     Best parameters {'base_estimator_max_depth': 9, 'max_samples': 0.8,
     'n estimators': 36}
     Train score is 0.9757652904918109
     Test score is 0.8611295121650201
     2.2.2 With HW 2 Best Model - Lasso
[74]: paste lasso = BaggingRegressor(base_estimator=Lasso(), bootstrap=False,__
       →random_state=0, oob_score=False)
      paste_dtree2_param = {'base_estimator__alpha': [1, 1e4, 1e5]}
      paste_lasso_grid = GridSearchCV(paste_lasso, paste_dtree2_param,cv=5,_
       →return_train_score=True)
      paste_lasso_grid.fit(X_train,y_train)
[74]: GridSearchCV(cv=5, error_score=nan,
                   estimator=BaggingRegressor(base_estimator=Lasso(alpha=1.0,
                                                                   copy_X=True,
                                                                   fit_intercept=True,
```

max_iter=1000,
normalize=False,
positive=False,
precompute=False,

```
random_state=None,
selection='cyclic',
tol=0.0001,
warm_start=False),
bootstrap=False,
bootstrap_features=False,
max_features=1.0, max_samples=1.0,
n_estimators=10, n_jobs=None,
oob_score=False, random_state=0,
verbose=0, warm_start=False),
iid='deprecated', n_jobs=None,
param_grid={'base_estimator_alpha': [1, 10000.0, 100000.0]},
pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
scoring=None, verbose=0)
```

Results

```
[75]: # let's get the predictions
      x_pastelasso_train= paste_lasso_grid.predict(X_train)
      x_pastelasso_test = paste_lasso_grid.predict(X_test)
      # check model performance:
      print('train mse: {}'.format(mean_squared_error(y_train, x_pastelasso_train)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train,_
      →x_pastelasso_train))))
      print('train r2: {}'.format(r2_score(y_train, x_pastelasso_train)))
      print()
      print('test mse: {}'.format(mean_squared_error(y_test, x_pastelasso_test)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test,__
       →x_pastelasso_test))))
      print('test r2: {}'.format(r2_score(y_test, x_pastelasso_test)))
      print()
      print(f'Best Mean Cross Validation Score is {paste_lasso_grid.best_score_}')
      print(f'Best parameters {paste_lasso_grid.best_params_}')
      print(f'Train score is {paste_lasso grid.score(X train, y train)}')
      print(f'Test score is {paste_lasso_grid.score(X_test,y_test)}')
```

train rmse: 23506.15286156373
train r2: 0.9115063901025299

test mse: 857849072.1153542
test rmse: 29289.0606219345
test r2: 0.87516957496597

Best Mean Cross Validation Score is 0.881849542095595
Best parameters {'base_estimator__alpha': 1}

train mse: 552539222.3512007

2.3 Random Forest

```
[76]: from sklearn.ensemble import RandomForestRegressor
[77]: rf =RandomForestRegressor(random_state=42)
      rf param = {
          'n_estimators': range(1,300,10),#[200, 500],
          'max_features': ['auto', 'sqrt', 'log2'],
          'max_depth' : range(1,20,2)#[2,4,5,6,7,8],
      }
      rf_grid = GridSearchCV(rf, rf_param,cv=5, return_train_score=True)
      rf_grid.fit(X_train,y_train)
[77]: GridSearchCV(cv=5, error_score=nan,
                   estimator=RandomForestRegressor(bootstrap=True, ccp_alpha=0.0,
                                                    criterion='mse', max_depth=None,
                                                    max_features='auto',
                                                    max_leaf_nodes=None,
                                                   max_samples=None,
                                                    min_impurity_decrease=0.0,
                                                    min_impurity_split=None,
                                                   min_samples_leaf=1,
                                                    min_samples_split=2,
                                                    min_weight_fraction_leaf=0.0,
                                                    n_estimators=100, n_jobs=None,
                                                    oob score=False, random state=42,
                                                    verbose=0, warm_start=False),
                   iid='deprecated', n_jobs=None,
                   param_grid={'max_depth': range(1, 20, 2),
                                'max_features': ['auto', 'sqrt', 'log2'],
                               'n_estimators': range(1, 300, 10)},
                   pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
                   scoring=None, verbose=0)
     2.3.1 Results
[78]: # let's get the predictions
      x_rfgrid_train= rf_grid.predict(X_train)
      x_rfgrid_test = rf_grid.predict(X_test)
      # check model performance:
      print('train mse: {}'.format(mean_squared_error(y_train, x_rfgrid_train)))
```

```
→x_rfgrid_train))))
      print('train r2: {}'.format(r2_score(y_train, x_rfgrid_train)))
      print('test mse: {}'.format(mean_squared_error(y_test, x_rfgrid_test)))
      print('test rmse: {}'.format(sqrt(mean squared error(y test, x rfgrid test))))
      print('test r2: {}'.format(r2_score(y_test, x_rfgrid_test)))
      print()
      print(f'Best Mean Cross Validation Score is {rf_grid.best_score_}')
      print(f'Best parameters {rf_grid.best_params_}')
      print(f'Train score is {rf_grid.score(X_train,y_train)}')
      print(f'Test score is {rf_grid.score(X_test,y_test)}')
     train mse: 122538951.61327057
     train rmse: 11069.731325252233
     train r2: 0.9803743992414402
     test mse: 932265620.8565763
     test rmse: 30533.025085251156
     test r2: 0.8643408060007887
     Best Mean Cross Validation Score is 0.8767927179403199
     Best parameters {'max_depth': 13, 'max_features': 'sqrt', 'n_estimators': 291}
     Train score is 0.9803743992414402
     Test score is 0.8643408060007887
     2.4 Adaboost Regressor
[79]: from sklearn.ensemble import AdaBoostRegressor
[80]: ada,
       →=AdaBoostRegressor(base estimator=DecisionTreeRegressor(), random state=42, learning rate=1.
      ada_param = {
          'base_estimator__max_depth':range(1,20,2),
          'n estimators': range(1,300,10),
          'loss':['linear', 'square', 'exponential']
      }
      ada_grid = GridSearchCV(ada, ada_param,cv=5, return_train_score=True)
      ada_grid.fit(X_train,y_train)
[80]: GridSearchCV(cv=5, error_score=nan,
      estimator=AdaBoostRegressor(base_estimator=DecisionTreeRegressor(ccp_alpha=0.0,
      criterion='mse',
     max_depth=None,
     max_features=None,
```

print('train rmse: {}'.format(sqrt(mean_squared_error(y_train,_

```
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
presort='deprecated',
random_state=None,
splitter='best'),
                                          learning_rate=1.0, loss='linear',
                                          n_estimators=50, random_state=42),
             iid='deprecated', n_jobs=None,
             param_grid={'base_estimator__max_depth': range(1, 20, 2),
                          'loss': ['linear', 'square', 'exponential'],
                         'n_estimators': range(1, 300, 10)},
             pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
             scoring=None, verbose=0)
```

2.4.1 Results

```
[81]: # let's get the predictions
      x_adagrid_train= ada_grid.predict(X_train)
      x_adagrid_test = ada_grid.predict(X_test)
      # check model performance:
      print('train mse: {}'.format(mean_squared_error(y_train, x_adagrid_train)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train,_
       →x_adagrid_train))))
      print('train r2: {}'.format(r2_score(y_train, x_adagrid_train)))
      print()
      print('test mse: {}'.format(mean_squared_error(y_test, x_adagrid_test)))
      print('test rmse: {}'.format(sqrt(mean squared error(y_test, x_adagrid_test))))
      print('test r2: {}'.format(r2_score(y_test, x_adagrid_test)))
      print()
      print(f'Best Mean Cross Validation Score is {ada grid.best score }')
      print(f'Best parameters {ada_grid.best_params_}')
      print(f'Train score is {ada_grid.score(X_train,y_train)}')
      print(f'Test score is {ada_grid.score(X_test,y_test)}')
```

train mse: 59039229.255843244 train rmse: 7683.698930583059 train r2: 0.9905443915815029

test mse: 888472231.5703418 test rmse: 29807.251325312467 test r2: 0.8707134274513209

```
Best Mean Cross Validation Score is 0.8819499238825339
Best parameters {'base_estimator__max_depth': 17, 'loss': 'square',
'n_estimators': 291}
Train score is 0.9905443915815029
Test score is 0.8707134274513209
```

2.5Gradient Boost Regressor

```
[82]: from sklearn.ensemble import GradientBoostingRegressor
```

```
[83]: gboostparam = {'max_depth':range(1,12),
                    'n_estimators':range(45,60,5),
                    'loss':['ls', 'lad', 'huber', 'quantile'],
                    'max_features':['auto','sqrt','log2']}
      gboost = GridSearchCV(estimator = GradientBoostingRegressor(learning_rate=0.1,
                                                       min_samples_split=2,
                                                       min_samples_leaf=1,
                                                       subsample=1,
      #
                                                         max_features='sqrt',
                                                       random state=10),
                                                       param_grid = gboostparam,
                                                       n_{jobs=-1,cv=5}
      gboost.fit(X_train,y_train)
```

```
[83]: GridSearchCV(cv=5, error_score=nan,
```

```
estimator=GradientBoostingRegressor(alpha=0.9, ccp_alpha=0.0,
                                     criterion='friedman_mse',
                                     init=None, learning_rate=0.1,
                                     loss='ls', max_depth=3,
                                    max_features=None,
                                    max_leaf_nodes=None,
                                    min_impurity_decrease=0.0,
                                    min_impurity_split=None,
                                    min_samples_leaf=1,
                                    min_samples_split=2,
                                    min_weight_fraction_leaf=0.0,
                                    n_estimators=100,
                                    n iter n...
                                    presort='deprecated',
                                    random_state=10, subsample=1,
                                    tol=0.0001,
                                    validation_fraction=0.1,
                                     verbose=0, warm_start=False),
```

2.5.1 Results

```
[84]: # let's get the predictions
      x_gboost_train= gboost.predict(X_train)
      x_gboost_test = gboost.predict(X_test)
      # check model performance:
      print('train mse: {}'.format(mean_squared_error(y_train, x_gboost_train)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train,_
      →x_gboost_train))))
      print('train r2: {}'.format(r2 score(y train, x gboost train)))
      print('test mse: {}'.format(mean_squared_error(y_test, x_gboost_test)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_gboost_test))))
      print('test r2: {}'.format(r2_score(y_test, x_gboost_test)))
      print()
      print(f'Best Mean Cross Validation Score is {gboost.best_score_}')
      print(f'Best parameters {gboost.best_params_}')
      print(f'Train score is {gboost.score(X_train,y_train)}')
      print(f'Test score is {gboost.score(X_test,y_test)}')
```

train mse: 210402353.29194453
train rmse: 14505.252610414771
train r2: 0.9663023672880685

test mse: 1106890497.8616946
test rmse: 33269.96389931457
test r2: 0.8389301617200744

Best Mean Cross Validation Score is 0.8918768459494615
Best parameters {'loss': 'ls', 'max_depth': 5, 'max_features': 'log2', 'n_estimators': 55}
Train score is 0.9663023672880685
Test score is 0.8389301617200744

2.6 Extra Trees

print()

```
[85]: from sklearn.ensemble import ExtraTreesRegressor
[86]: extree= ExtraTreesRegressor(random state=42)
      etr_param = {
          'n estimators': range(2,250,5),
          'max_features': ['auto', 'sqrt', 'log2'],
          'max_depth' : range(2,20,5),
      etr_grid = GridSearchCV(extree,_
       →etr_param,cv=5,n_jobs=-1,return_train_score=True, )
      etr_grid.fit(X_train,y_train)
[86]: GridSearchCV(cv=5, error_score=nan,
                   estimator=ExtraTreesRegressor(bootstrap=False, ccp_alpha=0.0,
                                                 criterion='mse', max_depth=None,
                                                 max_features='auto',
                                                 max_leaf_nodes=None,
                                                 max samples=None,
                                                 min_impurity_decrease=0.0,
                                                 min impurity split=None,
                                                 min_samples_leaf=1,
                                                 min samples split=2,
                                                 min_weight_fraction_leaf=0.0,
                                                 n_estimators=100, n_jobs=None,
                                                 oob_score=False, random_state=42,
                                                 verbose=0, warm_start=False),
                   iid='deprecated', n_jobs=-1,
                   param_grid={'max_depth': range(2, 20, 5),
                                'max_features': ['auto', 'sqrt', 'log2'],
                               'n_estimators': range(2, 250, 5)},
                   pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
                   scoring=None, verbose=0)
     2.6.1 Results
[87]: # let's get the predictions
      x_etr_train= etr_grid.predict(X_train)
      x_etr_test = etr_grid.predict(X_test)
      # check model performance:
      print('train mse: {}'.format(mean_squared_error(y_train, x_etr_train)))
      print('train rmse: {}'.format(sqrt(mean squared error(y train, x etr train))))
      print('train r2: {}'.format(r2_score(y_train, x_etr_train)))
```

```
print(f'Best Mean Cross Validation Score is {etr_grid.best_score_}')
      print(f'Best parameters {etr_grid.best_params_}')
      print(f'Train score is {etr_grid.score(X_train,y_train)}')
      print(f'Test score is {etr_grid.score(X_test,y_test)}')
     train mse: 5741824.059904766
     train rmse: 2396.210353851424
     train r2: 0.9990804005979974
     test mse: 929787656.6985651
     test rmse: 30492.419659623032
     test r2: 0.8647013884495182
     Best Mean Cross Validation Score is 0.8804371492768851
     Best parameters {'max_depth': 17, 'max_features': 'sqrt', 'n_estimators': 162}
     Train score is 0.9990804005979974
     Test score is 0.8647013884495182
     2.7 XGBoost Regressor
[88]: # pip install xgboost
[89]: from xgboost import XGBRegressor
[90]: xgbr= XGBRegressor(random_state=42)
      xgbr param = {
                    'max_depth' : range(2,20,2),
                    'n_estimators' : range(2,200,10),
                    'learning_rate' : [0.1],
                     'min_child_weight' : range(1,8,1),
                      'subsample': [0.6,0.7,0.8,0.9,1]
      xgbr_grid = GridSearchCV(xgbr, xgbr_param,cv=5,n_jobs=-1,__
       →return_train_score=True)
      xgbr_grid.fit(X_train,y_train)
[90]: GridSearchCV(cv=5, error_score=nan,
                   estimator=XGBRegressor(base_score=None, booster=None,
                                          colsample bylevel=None,
                                          colsample_bynode=None,
                                          colsample bytree=None, gamma=None,
```

print('test mse: {}'.format(mean_squared_error(y_test, x_etr_test)))

print('test r2: {}'.format(r2_score(y_test, x_etr_test)))

print('test rmse: {}'.format(sqrt(mean squared error(y test, x etr_test))))

gpu_id=None, importance_type='gain',

interaction_constraints=None,

```
learning_rate=None, max_delta_step=None,
                                          max_depth=None, min_child_weight=None,
                                          missing=nan, monotone_constraints=None,
                                          n_estima...
                                          reg_lambda=None, scale_pos_weight=None,
                                          subsample=None, tree_method=None,
                                          validate_parameters=False, verbosity=None),
                   iid='deprecated', n_jobs=-1,
                   param_grid={'learning_rate': [0.1], 'max_depth': range(2, 20, 2),
                               'min_child_weight': range(1, 8),
                               'n estimators': range(2, 200, 10),
                               'subsample': [0.6, 0.7, 0.8, 0.9, 1]},
                   pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
                   scoring=None, verbose=0)
[91]: # let's get the predictions
      x_xgbr_train= xgbr_grid.predict(X_train)
      x_xgbr_test = xgbr_grid.predict(X_test)
      # check model performance:
      print('train mse: {}'.format(mean_squared_error(y_train, x_xgbr_train)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_xgbr_train))))
      print('train r2: {}'.format(r2_score(y_train, x_xgbr_train)))
      print()
      print('test mse: {}'.format(mean_squared_error(y_test, x_xgbr_test)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_xgbr_test))))
      print('test r2: {}'.format(r2_score(y_test, x_xgbr_test)))
      print()
      print(f'Best Mean Cross Validation Score is {xgbr_grid.best_score_}')
      print(f'Best parameters {xgbr_grid.best_params_}')
      print(f'Train score is {xgbr_grid.score(X_train,y_train)}')
      print(f'Test score is {xgbr_grid.score(X_test,y_test)}')
     train mse: 98739443.27826326
     train rmse: 9936.772276663245
     train r2: 0.9841860823241139
     test mse: 847173787.4212183
     test rmse: 29106.249971805337
     test r2: 0.8767229954557099
     Best Mean Cross Validation Score is 0.8984774624760332
     Best parameters {'learning_rate': 0.1, 'max_depth': 4, 'min_child_weight': 1,
     'n_estimators': 192, 'subsample': 0.8}
     Train score is 0.9841860823241139
     Test score is 0.8767229954557099
```

2.8 Summary

```
[92]: regressors={#'LinearReq':lr,
      'Ridge':grid_ridge,
      'Lasso':grid_lasso,
      'LinearSGD':grid_linearsgd,
      'Polynomial':grid_poly,
      'elasticnet':grid_elasticnet,
      'GridLRRidge':grid_search_linear,
      'GridLRLasso':grid_search_linear2,
      'GridRF':grid_rf,
      # 'KNN':knnreg,
      'GridElastic':grid_elasticnet,
      'GridDecisionTree':grid_dtree,
      'SVC':grid svc kernel,
      'BaggingDTree':bag_dtree1_grid,
      'BaggingLasso':bag_lasso_grid,
      'PastingDTree':paste_dtree1_grid,
      'PastingLasso':paste_lasso_grid,
      'RandomForest':rf_grid,
      'AdaBoost':rf_grid,
      'GradientBoostR':gboost,
      'ExtraTrees':etr_grid,
      'XGBoost':xgbr_grid,
      }
[93]: regressors.keys()
[93]: dict_keys(['Ridge', 'Lasso', 'LinearSGD', 'Polynomial', 'elasticnet',
      'GridLRRidge', 'GridLRLasso', 'GridRF', 'GridElastic', 'GridDecisionTree',
      'SVC', 'BaggingDTree', 'BaggingLasso', 'PastingDTree', 'PastingLasso',
      'RandomForest', 'AdaBoost', 'GradientBoostR', 'ExtraTrees', 'XGBoost'])
[94]: results_mean_std = []
      for key, value in regressors.items():
          mean = value.cv_results_['mean_test_score'][value.best_index_]
          std=value.cv_results_['std_test_score'][value.best_index_]
          results_mean_std.append({
              "model": key,
              "mean": mean,
              "std": std
          })
[95]: # Create a Pandas DataFrame with the mean+std results
      accuracy_df = pd.DataFrame(results_mean_std, columns=['model', 'mean', 'std'])
```

```
[96]: # Show the accuracy dataframe
     accuracy_df.sort_values(by=['mean'], inplace=True,ascending=False)
     accuracy_df
[96]:
                    model
                                   mean
                                                  std
     19
                  XGBoost
                          8.984775e-01
                                        8.966995e-03
     17
           GradientBoostR 8.918768e-01 1.466126e-02
     12
             BaggingLasso 8.849436e-01 1.222205e-02
     0
                    Ridge 8.843424e-01 3.178374e-02
     1
                    Lasso 8.843050e-01 3.179290e-02
     4
                elasticnet 8.840700e-01 1.039538e-02
     8
              GridElastic 8.840700e-01 1.039538e-02
     5
              GridLRRidge 8.818970e-01 1.141903e-02
              GridLRLasso 8.818495e-01 1.142073e-02
             PastingLasso 8.818495e-01 1.142073e-02
     14
     18
               ExtraTrees 8.804371e-01 1.394497e-02
     15
             RandomForest 8.767927e-01 1.611594e-02
     16
                 AdaBoost 8.767927e-01 1.611594e-02
     2
                LinearSGD 8.765910e-01 1.366770e-02
     11
             BaggingDTree 8.701118e-01 1.681030e-02
     13
             PastingDTree 8.572589e-01 1.829952e-02
     9
         GridDecisionTree 7.573303e-01 2.847110e-02
     10
                      SVC 7.104416e-01 2.673301e-02
     7
                   GridRF -1.253123e+21 2.506247e+21
     3
               Polynomial -9.790049e+22 1.950468e+23
[97]: # Create a prediction of all models on the test set
     predictions_all = {}
     for key, value in regressors.items():
          # Get best estimator
         best_model = value.best_estimator_
          # Predict test labels
         predictions = best model.predict(X test)
          # Save predictions to a list
          predictions_all[key] = predictions
[98]: # Creat a DataFrame for the predictions
     pred = pd.DataFrame(predictions_all)
[99]: pred.head()
[99]:
                               Lasso
                                          LinearSGD
                                                       Polynomial
                                                                      elasticnet
                Ridge
     0 259427.918908
                       259358.714345
                                      269968.912408 -2.401626e+15 263655.245673
     1 130977.047829
                       130977.454966 136605.961715 -8.888887e+14 130804.224834
```

```
2 118352.334635
                        118328.412013 120844.488906 2.467426e+14 120690.792966
      3 219592.797874
                        219614.219922
                                       219618.652969 1.198736e+15 217482.466827
          91161.872462
                         91146.795565
                                        93556.522122 2.906841e+14
                                                                    92806.958086
           GridLRRidge
                          GridLRLasso
                                             GridRF
                                                       GridElastic \
        259427.918908
                        259358.714345
                                      258576.640044
                                                     263655.245673
                                                     130804.224834
      1 130977.047829
                        130977.454966
                                      130385.243135
      2 118352.334635
                        118328.412013 117989.111328 120690.792966
      3 219592.797874
                        219614.219922 220890.140789
                                                     217482.466827
          91161.872462
                         91146.795565
                                        91502.241892
                                                      92806.958086
         GridDecisionTree
                              SVC
                                    BaggingDTree
                                                  BaggingLasso
                                                                 PastingDTree \
      0
            286141.333333
                           237000
                                   231628.891408
                                                 253304.203849
                                                                260380.403015
      1
            148118.800000
                           105000 138410.074763
                                                 135019.758648 142482.141309
      2
                           135000 121417.290889
                                                 118712.599413 118725.602426
            118911.000000
      3
            229747.629630
                           178000 234395.674515
                                                 218284.457610 239981.004528
            118911.000000
                           113000
                                    97929.805069
                                                  88489.935148
                                                                 98999.445234
          PastingLasso
                         RandomForest
                                            AdaBoost
                                                     GradientBoostR
                                                                        ExtraTrees \
      0 259358.714345
                        252395.782594
                                       252395.782594
                                                      279172.467178
                                                                     256034.145142
      1 130977.454966
                        140416.801495
                                      140416.801495
                                                      144826.895238
                                                                     136406.530809
      2 118328.412013
                        125970.464256 125970.464256
                                                      126477.951094
                                                                     132510.120732
      3 219614.219922
                        209285.267185
                                      209285.267185
                                                      210454.548365
                                                                     201347.542099
          91146.795565
                        100051.392538 100051.392538
                                                      100665.764154
                                                                      96968.065484
               XGBoost
      0 273605.375000
      1 134782.234375
      2 118255.343750
      3 221607.421875
          93816.242188
[100]: # Plot a heatmap of all correlations for easier visualization
      fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(20,10))
      g = sns.heatmap(pred.corr(), annot=True, cmap='coolwarm', ax=ax)
      g.set_title('Correlation of the test set label prediction between models')
```

[100]: Text(0.5, 1, 'Correlation of the test set label prediction between models')


```
[101]: def get_redundant_pairs(df):
    '''Get diagonal and lower triangular pairs of correlation matrix'''
    pairs_to_drop = set()
    cols = df.columns
    for i in range(0, df.shape[1]):
        for j in range(0, i+1):
            pairs_to_drop.add((cols[i], cols[j]))
    return pairs_to_drop

def get_top_abs_correlations(df, n=5):
    au_corr = df.corr().abs().unstack()
    labels_to_drop = get_redundant_pairs(df)
    au_corr = au_corr.drop(labels=labels_to_drop).sort_values(ascending=True)
    return au_corr[0:n]

[102]: print("Top Least Correlations")
    print(get_top_abs_correlations(pred, 5))
```

```
Top Least Correlations
LinearSGD Polynomial 0.001773
Polynomial GridDecisionTree 0.003570
BaggingLasso 0.015869
GradientBoostR 0.018109
GridRF 0.019594
```

dtype: float64

2.9 Stacking

2.10 Voting top 5

```
[103]: from sklearn.ensemble import VotingRegressor
[104]: vclf1 = VotingRegressor( estimators=
                                     [('XGBoost', xgbr_grid.best_estimator_),
                                      ('GradientBoost', gboost.best_estimator_),
                                      ('BaggingLasso', bag_lasso_grid.best_estimator_),
                                      ('PastingDTree', bag lasso grid.best estimator),
                                      ('Ridge', grid_ridge.best_estimator_)
                                     ])
       vclf1_param = { }
       vclf1_grid = GridSearchCV(vclf1, vclf1_param,cv=5, return_train_score=True)
       vclf1_grid.fit(X_train,y_train)
      C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
      packages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
      packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
      packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
      packages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
      packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
      packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
```

```
packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
      packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
      packages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
      packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341 2020\lib\site-
      packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
      packages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
[104]: GridSearchCV(cv=5, error_score=nan,
                    estimator=VotingRegressor(estimators=[('XGBoost',
                                                           XGBRegressor(base score=0.5,
                                                                         booster=None,
       colsample_bylevel=1,
       colsample_bynode=1,
       colsample_bytree=1,
                                                                         gamma=0,
                                                                         gpu_id=-1,
       importance_type='gain',
       interaction_constraints=None,
       learning_rate=0.1,
      max_delta_step=0,
                                                                         max_depth=4,
      min_child_weight=1,
                                                                         missing=nan,
```

monotone_constraints...

```
n_jobs=None,
       oob_score=True,
       random_state=0,
                                                                             verbose=0,
       warm_start=False)),
                                                           ('Ridge',
                                                           Ridge(alpha=1, copy_X=True,
                                                                 fit_intercept=True,
                                                                 max iter=None,
                                                                 normalize=False,
                                                                 random state=None,
                                                                  solver='auto',
                                                                  tol=0.001))],
                                              n_jobs=None, weights=None),
                    iid='deprecated', n_jobs=None, param_grid={},
                    pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
                    scoring=None, verbose=0)
[105]: # let's get the predictions
       x_vclf1_train= vclf1_grid.predict(X_train)
       x_vclf1_test = vclf1_grid.predict(X_test)
       # check model performance:
       print('train mse: {}'.format(mean squared_error(y_train, x_vclf1_train)))
       print('train rmse: {}'.format(sqrt(mean squared error(y train, x vclf1 train))))
       print('train r2: {}'.format(r2_score(y_train, x_vclf1_train)))
       print()
       print('test mse: {}'.format(mean_squared_error(y_test, x_vclf1_test)))
       print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_vclf1_test))))
       print('test r2: {}'.format(r2_score(y_test, x_vclf1_test)))
       print(f'Best Mean Cross Validation Score is {vclf1 grid.best score }')
       print(f'Best parameters {vclf1_grid.best_params_}')
       print(f'Train score is {vclf1_grid.score(X_train,y_train)}')
       print(f'Test score is {vclf1_grid.score(X_test,y_test)}')
      train mse: 317633603.336003
      train rmse: 17822.2782869083
      train r2: 0.9491284183151113
      test mse: 822879018.3587837
      test rmse: 28685.867920611774
      test r2: 0.8802582634262037
      Best Mean Cross Validation Score is 0.8999858356957512
      Best parameters {}
```

2.11 Voting Least Correlated

```
[106]: vclf3 = VotingRegressor(estimators=
                                    [('LinearSGD', grid_linearsgd.best_estimator_),
                                      ('Polynomial', grid_poly.best_estimator_),
                                      ('GridDecisionTree', grid_dtree.best_estimator_),
                                      ('BaggingLasso', bag_lasso_grid.best_estimator_),
                                      ('GradientBoostR', gboost.best_estimator_)
                                     ] )
       vclf3_param = { }
       vclf3_grid = GridSearchCV(vclf3, vclf3_param,cv=5, return_train_score=True)
       vclf3_grid.fit(X_train,y_train)
      C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
      packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
      packages\sklearn\ensemble\ bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
      packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
      packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
      packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
      C:\Users\nabhs\Anaconda3\envs\buan6341_2020\lib\site-
      packages\sklearn\ensemble\_bagging.py:1056: UserWarning: Some inputs do not have
      OOB scores. This probably means too few estimators were used to compute any
      reliable oob estimates.
        warn("Some inputs do not have OOB scores. "
```

```
[106]: GridSearchCV(cv=5, error_score=nan,
                    estimator=VotingRegressor(estimators=[('LinearSGD',
                                                            Pipeline (memory=None,
                                                                     steps=[('scaler',
      MinMaxScaler(copy=True,
         feature_range=(0,
                        1))),
                                                                             ('sgd_reg',
       SGDRegressor(alpha=0.01,
         average=False,
         early_stopping=False,
         epsilon=0.1,
         eta0=0.05,
         fit_intercept=True,
         11_ratio=0.15,
         learning_rate='invscaling',
         loss='squared_loss',
         max iter=1...
      min_samples_split=2,
      min weight fraction leaf=0.0,
      n_estimators=55,
      n iter no change=None,
      presort='deprecated',
       random_state=10,
       subsample=1,
       tol=0.0001,
       validation_fraction=0.1,
       verbose=0,
       warm_start=False))],
                                              n_jobs=None, weights=None),
                    iid='deprecated', n_jobs=None, param_grid={},
                    pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
                    scoring=None, verbose=0)
[107]: # let's get the predictions
       x_vclf3_train= vclf3_grid.predict(X_train)
       x vclf3 test = vclf3 grid.predict(X test)
       # check model performance:
       print('train mse: {}'.format(mean_squared_error(y_train, x_vclf3_train)))
       print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_vclf3_train))))
       print('train r2: {}'.format(r2_score(y_train, x_vclf3_train)))
       print()
       print('test mse: {}'.format(mean_squared_error(y_test, x_vclf3_test)))
       print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_vclf3_test))))
       print('test r2: {}'.format(r2_score(y_test, x_vclf3_test)))
```

```
print()
print(f'Best Mean Cross Validation Score is {vclf3_grid.best_score_}')
print(f'Best parameters {vclf3_grid.best_params_}')
print(f'Train score is {vclf3_grid.score(X_train,y_train)}')
print(f'Test score is {vclf3_grid.score(X_test,y_test)}')
train mse: 282747004.4125732
```

train rmse: 16815.08264661739
train r2: 0.954715788316905

test mse: 8.592991133805444e+28
test rmse: 293138041437911.0
test r2: -1.2504142866314648e+19

Best Mean Cross Validation Score is -2.7187395878116203e+20
Best parameters {}
Train score is 0.954715788316905
Test score is -1.2504142866314648e+19

2.12 Stacking Top 5

https://towardsdatascience.com/stacking-made-easy-with-sklearn-e27a0793c92b

```
[108]: from sklearn.ensemble import StackingRegressor
[109]: sregf1 = StackingRegressor(estimators=
                                     [ ('GradientBoost', gboost.best_estimator_),
                                      ('BaggingLasso', bag_lasso_grid.best_estimator_),
                                      ('PastingDTree', bag_lasso_grid.best_estimator_),
                                      ('Ridge', grid_ridge.best_estimator_)
                                     ] , final_estimator=XGBRegressor())
       sregf1_param = {
                     'final_estimator__learning_rate' : [0.1],
                     'final_estimator__max_depth':[4],
                     'final_estimator__min_child_weight':[1],
                     'final_estimator__n_estimators':[192],
                     'final_estimator__subsample':[0.8],
                     'n_jobs':[-1]
       sregf1_grid = GridSearchCV(sregf1, sregf1_param,cv=5, return_train_score=True )
       sregf1_grid.fit(X_train,y_train)
[109]: GridSearchCV(cv=5, error_score=nan,
                    estimator=StackingRegressor(cv=None,
```

```
9]: GridSearchCV(cv=5, error_score=nan,
estimator=StackingRegressor(cv=None,
estimators=[('GradientBoost',
GradientBoostingRegressor(alpha=0.9,
ccp_alpha=0.0,
criterion='friedman_mse',
```

```
learning_rate=0.1,
       loss='ls',
      max_depth=5,
      max_features='log2',
      max_leaf_nodes=None,
      min_impurity_decrease=0.0,
      min_impurity_split=None,
      min samples leaf=1,
      min_samples_split...
                                                n jobs=None, passthrough=False,
                                                verbose=0),
                    iid='deprecated', n_jobs=None,
                    param_grid={'final_estimator__learning_rate': [0.1],
                                'final_estimator__max_depth': [4],
                                'final_estimator__min_child_weight': [1],
                                'final_estimator__n_estimators': [192],
                                'final_estimator__subsample': [0.8], 'n_jobs': [-1]},
                    pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
                    scoring=None, verbose=0)
[110]: # let's get the predictions
       x_sregf1_train= sregf1_grid.predict(X_train)
       x_sregf1_test = sregf1_grid.predict(X_test)
       # check model performance:
       print('train mse: {}'.format(mean squared error(y train, x sregf1 train)))
       print('train rmse: {}'.format(sqrt(mean_squared_error(y_train,_
        →x_sregf1_train))))
       print('train r2: {}'.format(r2_score(y_train, x_sregf1_train)))
       print()
       print('test mse: {}'.format(mean_squared_error(y_test, x_sregf1_test)))
       print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_sregf1_test))))
       print('test r2: {}'.format(r2_score(y_test, x_sregf1_test)))
       print()
       print(f'Best Mean Cross Validation Score is {sregf1_grid.best_score_}')
       print(f'Best parameters {sregf1_grid.best_params_}')
       print(f'Train score is {sregf1_grid.score(X_train,y_train)}')
       print(f'Test score is {sregf1_grid.score(X_test,y_test)}')
      train mse: 408279864.3139851
      train rmse: 20205.93636320735
      train r2: 0.9346106890152514
      test mse: 825035315.361602
      test rmse: 28723.427987648025
```

init=None,

```
test r2: 0.8799444885675358
```

```
Best Mean Cross Validation Score is 0.87774060712915
Best parameters {'final_estimator__learning_rate': 0.1,
'final_estimator__max_depth': 4, 'final_estimator__min_child_weight': 1,
'final_estimator__n_estimators': 192, 'final_estimator__subsample': 0.8,
'n_jobs': -1}
Train score is 0.9346106890152514
Test score is 0.8799444885675358
```

2.13 Stacking Least Correlated

11_ratio=0.15,

```
[111]: sregf2 = StackingRegressor(estimators=
                                     [('LinearSGD', grid_linearsgd.best_estimator_),
                                       ('Polynomial', grid_poly.best_estimator_),
                                       ('GridDecisionTree', grid_dtree.best_estimator_),
                                       ('BaggingLasso', bag_lasso_grid.best_estimator_),
                                       ('GradientBoostR', gboost.best_estimator_)
                                     ],
                                  final_estimator=XGBRegressor())
       sregf2_param = {
                         'final_estimator__learning_rate' : [0.1],
                     'final_estimator__max_depth':[4],
                     'final_estimator__min_child_weight':[1],
                     'final_estimator__n_estimators':[192],
                     'final_estimator__subsample':[0.8],
                     'n_jobs':[-1]
       sregf2_grid = GridSearchCV(sregf2, sregf2_param,cv=5, return_train_score=True)
       sregf2_grid.fit(X_train,y_train)
[111]: GridSearchCV(cv=5, error_score=nan,
                    estimator=StackingRegressor(cv=None,
                                                 estimators=[('LinearSGD',
                                                              Pipeline(memory=None,
                                                                       steps=[('scaler',
      MinMaxScaler(copy=True,
           feature_range=(0,
                          1))),
       ('sgd_reg',
       SGDRegressor(alpha=0.01,
           average=False,
           early_stopping=False,
           epsilon=0.1,
           eta0=0.05,
           fit_intercept=True,
```

```
learning_rate='invscaling',
           loss='squared_loss',...
                                                n_jobs=None, passthrough=False,
                                                verbose=0),
                    iid='deprecated', n_jobs=None,
                    param_grid={'final_estimator__learning_rate': [0.1],
                                'final_estimator__max_depth': [4],
                                'final_estimator__min_child_weight': [1],
                                'final estimator n estimators': [192],
                                'final_estimator__subsample': [0.8], 'n_jobs': [-1]},
                    pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
                    scoring=None, verbose=0)
[112]: # let's get the predictions
       x sregf2 train= sregf2 grid.predict(X train)
       x_sregf2_test = sregf2_grid.predict(X_test)
       # check model performance:
       print('train mse: {}'.format(mean_squared_error(y_train, x_sregf2_train)))
       print('train rmse: {}'.format(sqrt(mean_squared_error(y_train,_
       →x_sregf2_train))))
       print('train r2: {}'.format(r2_score(y_train, x_sregf2_train)))
       print('test mse: {}'.format(mean_squared_error(y_test, x_sregf2_test)))
       print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_sregf2_test))))
       print('test r2: {}'.format(r2_score(y_test, x_sregf2_test)))
       print()
       print(f'Best Mean Cross Validation Score is {sregf2_grid.best_score_}')
       print(f'Best parameters {sregf2_grid.best_params }')
       print(f'Train score is {sregf2_grid.score(X_train,y_train)}')
       print(f'Test score is {sregf2_grid.score(X_test,y_test)}')
      train mse: 355270884.9509614
      train rmse: 18848.630850832677
      train r2: 0.9431005043099072
      test mse: 685715224.4673892
      test rmse: 26186.1647529261
      test r2: 0.9002177356076231
      Best Mean Cross Validation Score is 0.8665230017810973
      Best parameters {'final_estimator__learning_rate': 0.1,
      'final_estimator__max_depth': 4, 'final_estimator__min_child_weight': 1,
      'final_estimator__n_estimators': 192, 'final_estimator__subsample': 0.8,
      'n_jobs': -1}
      Train score is 0.9431005043099072
```

Test score is 0.9002177356076231