TRẦN KHÔI NGUYÊN VẬT LÝ LÝ THUYẾT

Ngày 22 tháng 8 năm 2024

Từ Hamiltonian $H_{\mu\mu'}^{jj'}(\mathbf{k})=\sum_{\mathbf{R}}e^{i\mathbf{k}\cdot\mathbf{R}}E_{\mu\mu'}^{jj'}(\mathbf{R})$ trong đó

$$E_{\mu\mu'}^{jj'}(\mathbf{R}) = \langle \phi_{\mu}^{j}(\mathbf{r}) | \hat{H} | \phi_{\mu'}^{j'}(\mathbf{r} - \mathbf{R}) \rangle$$

$$|\phi_1^1\rangle = d_{z^2}, \quad |\phi_1^2\rangle = d_{xy}, \quad |\phi_2^2\rangle = d_{x^2 - y^2}$$

$$H_{\mu\mu'}^{jj'}(\mathbf{k}) = \sum_{\mu\mu'}^{jj'} e^{i\mathbf{k}\cdot\mathbf{R_{1}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{1}}) + \sum_{\mu\mu'}^{jj'} e^{i\mathbf{k}\cdot\mathbf{R_{2}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{2}}) + \sum_{\mu\mu'}^{jj'} e^{i\mathbf{k}\cdot\mathbf{R_{3}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{3}}) + \sum_{\mu\mu'}^{jj'} e^{i\mathbf{k}\cdot\mathbf{R_{4}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{4}}) + \sum_{\mu\mu'}^{jj'} e^{i\mathbf{k}\cdot\mathbf{R_{5}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{5}}) + \sum_{\mu\mu'}^{jj'} e^{i\mathbf{k}\cdot\mathbf{R_{6}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{6}})$$

$$H^{NN} = \begin{bmatrix} h_0 & h_1 & h_2 \\ h_1^* & h_{11} & h_{12} \\ h_2^* & h_{12}^* & h_{22} \end{bmatrix}$$

$$h_{0} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{1}(\mathbf{r}) | H | \phi_{1}^{1}(\mathbf{r} - \mathbf{R}) \rangle; \quad h_{1} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{1}(\mathbf{r}) | H | \phi_{1}^{2}(\mathbf{r} - \mathbf{R}) \rangle$$

$$h_{2} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{1}(\mathbf{r}) | H | \phi_{2}^{2}(\mathbf{r} - \mathbf{R}) \rangle; \quad h_{11} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{2}(\mathbf{r}) | H | \phi_{1}^{2}(\mathbf{r} - \mathbf{R}) \rangle$$

$$h_{12} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{2}(\mathbf{r}) | H | \phi_{2}^{2}(\mathbf{r} - \mathbf{R}) \rangle; \quad h_{22} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{2}^{2}(\mathbf{r}) | H | \phi_{2}^{2}(\mathbf{r} - \mathbf{R}) \rangle$$

$$h_{12} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{2}(\mathbf{r}) | H | \phi_{2}^{2}(\mathbf{r} - \mathbf{R}) \rangle; \quad h_{22} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{2}^{2}(\mathbf{r}) | H | \phi_{2}^{2}(\mathbf{r} - \mathbf{R}) \rangle$$

Lại có $E^{jj'}(\hat{g_n}\mathbf{R}) = D^j(\hat{g_n})E^{jj'}(\mathbf{R}) \left[D^j(\hat{g_n})\right]^{\dagger}$

trong đó $\hat{g_n} = \{E, C_3, C_3^2, \sigma_{\nu}, \sigma'_{\nu}, \sigma''_{\nu}\}$

trong đó $D^1(\hat{g_n}) = 1$

$$D^{2}(E) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$D^{2}(\hat{C}_{3}) = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

$$D^{2}(\hat{C}_{3}^{2}) = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

Để tìm được $D^2(\sigma_{\nu})$ ta cố định \triangle ABC : $A(\frac{1}{2}, \frac{\sqrt{3}}{2}), B(1,0), C(0,0).$

Khi đổi chỗ A \leftrightarrow B, ta được ma trận:

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = D^2(\sigma_{\nu}) \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} \Rightarrow D^2(\sigma_{\nu}) = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

trong đó $D^{2}\left(\sigma_{\nu}'\right)=D^{2}\left(C_{3}\right)D^{2}\left(\sigma_{\nu}\right)\quad;D^{2}\left(\sigma_{\nu}''\right)=D^{2}\left(C_{3}^{2}\right)D^{2}\left(\sigma_{\nu}\right)$

$$D^2\left(\sigma_{\nu}'\right) = \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix}$$

$$D^2\left(\sigma_{\nu}^{\prime\prime}\right) = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

Toán tử C_3 đánh lên \mathbf{R}_1 ta được $\to \mathbf{R}_5$ (dưới dạng ma trận)

Toán tử C_3^2 đánh lên ${\bf R}_1$ ta được $\to {\bf R}_3$ (dưới dạng ma trận)

Toán tử σ_{ν} đánh lên \mathbf{R}_1 ta được $\rightarrow \mathbf{R}_6$ (dưới dạng ma trận)

Toán tử σ'_{ν} đánh lên \mathbf{R}_1 ta được $\to \mathbf{R}_4$ (dưới dạng ma trận)

Toán tử σ''_{ν} đánh lên \mathbf{R}_1 ta được $\rightarrow \mathbf{R}_2$ (dưới dạng ma trận)

Kiểm tra điều trên:

$$D^{2}\left(C_{3}^{2}\right)R_{1} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix} = \mathbf{R}_{3}$$

$$D^{2}\left(\sigma_{\nu}^{"}\right)R_{1} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix} = \mathbf{R}_{2}$$

* h0

$$\begin{split} h_0 &= \sum_{\mathbf{R} \neq 0} e^{i\mathbf{k} \cdot \mathbf{R}} \left< \phi_1^1 \left(\mathbf{r} \right) \right| H \left| \phi_1^1 \left(\mathbf{r} - \mathbf{R} \right) \right> + \left< \phi_1^1 \left(\mathbf{r} \right) \right| H \left| \phi_1^1 \left(\mathbf{r} \right) \right> \\ &= e^{i\mathbf{k} \cdot \mathbf{R}_1} \left< \phi_1^1 \left(\mathbf{r} \right) \right| H \left| \phi_1^1 \left(\mathbf{r} - \mathbf{R}_1 \right) \right> + e^{i\mathbf{k} \cdot \mathbf{R}_4} \left< \phi_1^1 \left(\mathbf{r} \right) \right| H \left| \phi_1^1 \left(\mathbf{r} - \mathbf{R}_4 \right) \right> \\ &+ e^{i\mathbf{k} \cdot \mathbf{R}_2} \left< \phi_1^1 \left(\mathbf{r} \right) \right| H \left| \phi_1^1 \left(\mathbf{r} - \mathbf{R}_2 \right) \right> + e^{i\mathbf{k} \cdot \mathbf{R}_5} \left< \phi_1^1 \left(\mathbf{r} \right) \right| H \left| \phi_1^1 \left(\mathbf{r} - \mathbf{R}_5 \right) \right> \\ &+ e^{i\mathbf{k} \cdot \mathbf{R}_3} \left< \phi_1^1 \left(\mathbf{r} \right) \right| H \left| \phi_1^1 \left(\mathbf{r} - \mathbf{R}_3 \right) \right> + e^{i\mathbf{k} \cdot \mathbf{R}_6} \left< \phi_1^1 \left(\mathbf{r} \right) \right| H \left| \phi_1^1 \left(\mathbf{r} - \mathbf{R}_6 \right) \right> + \epsilon_1 \\ &= e^{ik_x a} E_{11}^{11} \left(\mathbf{R}_1 \right) + e^{-ik_x a} E_{11}^{11} \left(\mathbf{R}_4 \right) + e^{i\left(k_x \frac{a}{2} - k_y \frac{a\sqrt{3}}{2}\right)} E_{11}^{11} \left(\mathbf{R}_2 \right) + e^{-i\left(k_x \frac{a}{2} - k_y \frac{a\sqrt{3}}{2}\right)} E_{11}^{11} \left(\mathbf{R}_5 \right) \\ &+ e^{-i\left(k_x \frac{a}{2} + k_y \frac{a\sqrt{3}}{2}\right)} E_{11}^{11} \left(\mathbf{R}_3 \right) + e^{i\left(k_x \frac{a}{2} + k_y \frac{a\sqrt{3}}{2}\right)} E_{11}^{11} \left(\mathbf{R}_6 \right) + \epsilon_1 \\ &= 2 E_{11}^{11} \left(\mathbf{R}_1 \right) \left(\cos 2\alpha + 2 \cos \alpha \cos \beta \right) + \epsilon_1 \end{split}$$

* h1

$$h_{1} = \sum_{\mathbf{R}\neq0} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{1}(\mathbf{r}) | H | \phi_{1}^{2}(\mathbf{r} - \mathbf{R}) \rangle$$

$$= e^{ik_{x}a} E_{11}^{12}(\mathbf{R}_{1}) + e^{-ik_{x}a} E_{11}^{12}(\mathbf{R}_{4}) + e^{i\left(k_{x}\frac{a}{2} - k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{12}(\mathbf{R}_{2}) + e^{-i\left(k_{x}\frac{a}{2} - k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{12}(\mathbf{R}_{5})$$

$$+ e^{-i\left(k_{x}\frac{a}{2} + k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{12}(\mathbf{R}_{3}) + e^{i\left(k_{x}\frac{a}{2} + k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{12}(\mathbf{R}_{6})$$

trong đó

$$\begin{split} E^{12}(\mathbf{R_2}) &= E^{12}(\sigma''_{\nu}\mathbf{R_1}) = D^1(\sigma''_{\nu})E^{12}(\mathbf{R_1}) \left[D^1(\sigma''_{\nu}) \right]^{\dagger} \\ &= \left[1 \right] \left[E^{12}_{11}(\mathbf{R_1}) \quad E^{12}_{12}(\mathbf{R_1}) \right] \left[\begin{array}{cc} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array} \right] \\ &= \left[\frac{E^{12}_{11}(\mathbf{R_1}) - \sqrt{3}E^{12}_{12}(\mathbf{R_1})}{2} \quad \frac{-E^{12}_{11}(\mathbf{R_1})\sqrt{3} - E^{12}_{12}(\mathbf{R_1})}{2} \right] \\ \Rightarrow E^{12}_{11}(\mathbf{R_2}) &= \frac{E^{12}_{11}(\mathbf{R_1}) - \sqrt{3}E^{12}_{12}(\mathbf{R_1})}{2} \end{split}$$

Tương tự ta có cho:

$$E_{11}^{12}(\mathbf{R_3}) = \frac{-E_{11}^{12}(\mathbf{R_1}) + \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \quad ; E_{11}^{12}(\mathbf{R_4}) = -E_{11}^{12}(\mathbf{R_1})$$

$$E_{11}^{12}(\mathbf{R_5}) = \frac{-E_{11}^{12}(\mathbf{R_1}) - \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \quad ; E_{11}^{12}(\mathbf{R_6}) = \frac{E_{11}^{12}(\mathbf{R_1}) + \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2}$$

$$\begin{split} h_1 &= e^{i2\alpha} E_{11}^{12}(\mathbf{R_1}) - e^{i2\alpha} E_{11}^{12}(\mathbf{R_1}) \\ &+ e^{i(\alpha-\beta)} \frac{E_{11}^{12}(\mathbf{R_1}) - \sqrt{3} E_{12}^{12}(\mathbf{R_1})}{2} + e^{-i(\alpha+\beta)} \frac{-E_{11}^{12}(\mathbf{R_1}) + \sqrt{3} E_{12}^{12}(\mathbf{R_1})}{2} \\ &+ e^{i(-\alpha+\beta)} \frac{-E_{11}^{12}(\mathbf{R_1}) - \sqrt{3} E_{12}^{12}(\mathbf{R_1})}{2} + e^{i(\alpha+\beta)} \frac{E_{11}^{12}(\mathbf{R_1}) + \sqrt{3} E_{12}^{12}(\mathbf{R_1})}{2} \\ &= 2i sin2\alpha E_{11}^{12}(\mathbf{R_1}) + 2i \frac{E_{11}^{12}(\mathbf{R_1})}{2} sin(\alpha-\beta) - 2 \frac{E_{12}^{12}(\mathbf{R_1}\sqrt{3})}{2} cos(\alpha-\beta) \\ &+ 2i \frac{E_{11}^{12}(\mathbf{R_1})}{2} sin(\alpha+\beta) + 2 \frac{E_{12}^{12}(\mathbf{R_1}\sqrt{3})}{2} cos(\alpha-\beta) \\ &= -2\sqrt{3} t_2 sin\alpha \ sin\beta + 2i t_1 (sin2\alpha + sin\alpha \ cos\beta) \end{split}$$

Đặt

$$t_0 = E_{11}^{11}(\mathbf{R}_1); \quad t_1 = E_{11}^{12}(\mathbf{R}_1); \quad t_2 = E_{12}^{12}(\mathbf{R}_1);$$
$$t_{11} = E_{11}^{22}(\mathbf{R}_1); \quad t_{12} = E_{12}^{12}(\mathbf{R}_1); \quad c_{21} = E_{21}^{12}(\mathbf{R}_1); \quad t_{22} = E_{22}^{12}(\mathbf{R}_1);$$

* h22

$$h_{22} = \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} E_{22}^{22}(\mathbf{R})$$

$$= e^{i\mathbf{k}\cdot\mathbf{R}_{1}} E_{22}^{22}(\mathbf{R}_{1}) + e^{i\mathbf{k}\cdot\mathbf{R}_{2}} E_{22}^{22}(\mathbf{R}_{2}) + e^{i\mathbf{k}\cdot\mathbf{R}_{3}} E_{22}^{22}(\mathbf{R}_{3})$$

$$+ e^{i\mathbf{k}\cdot\mathbf{R}_{4}} E_{22}^{22}(\mathbf{R}_{4}) + e^{i\mathbf{k}\cdot\mathbf{R}_{5}} E_{22}^{22}(\mathbf{R}_{5}) + e^{i\mathbf{k}\cdot\mathbf{R}_{6}} E_{22}^{22}(\mathbf{R}_{6}) + E_{22}^{22}(\mathbf{0})$$

$$E^{22}(\mathbf{R}_{2}) = E^{22}(\sigma_{\nu}^{"}\mathbf{R}_{1})$$

$$= D^{2}(\sigma_{\nu}^{"}) E^{22}(\mathbf{R}_{1}) \left[D^{2}(\sigma_{\nu}^{"}) \right]^{\dagger}$$

$$= \left[\frac{1}{2} - \frac{\sqrt{3}}{2} \right] \left[E_{11}^{22}(\mathbf{R}_{1}) \quad E_{12}^{22}(\mathbf{R}_{1}) \right] \left[\frac{1}{2} - \frac{\sqrt{3}}{2} \right]$$

$$= \left[\frac{t_{11} - t_{12}\sqrt{3} - c_{21}\sqrt{3} + 3t_{22}}{4} \quad \frac{-t_{11}\sqrt{3} - t_{12} + 3c_{21} + \sqrt{3}t_{22}}{3t_{11} + t_{12}\sqrt{3} + c\sqrt{3} + t_{22}} \right]$$

$$\Rightarrow E_{22}^{22}(\mathbf{R}_{2}) = \frac{3t_{11} + t_{12}\sqrt{3} + c\sqrt{3} + t_{22}}{4}$$

Tương tự ta có cho:

$$E_{22}^{22}(\mathbf{R}_3) = \frac{3t_{11} - t_{12}\sqrt{3} - c\sqrt{3} + t_{22}}{4}$$

$$E_{22}^{22}(\mathbf{R}_4) = t_{22}$$

$$E_{22}^{22}(\mathbf{R}_5) = \frac{3t_{11} + t_{12}\sqrt{3} + c\sqrt{3} + t_{22}}{4}$$

$$E_{22}^{22}(\mathbf{R}_6) = \frac{3t_{11} - t_{12}\sqrt{3} - c\sqrt{3} + t_{22}}{4}$$

Ta được:

$$h_{22} = e^{i2\alpha}t_{22} + e^{-i2\alpha}t_{22}$$

$$+ e^{i(\alpha-\beta)} \left(\frac{3t_{11} + t_{12}\sqrt{3} + c\sqrt{3} + t_{22}}{4} \right) + e^{-i(\alpha+\beta)} \left(\frac{3t_{11} - t_{12}\sqrt{3} - c\sqrt{3} + t_{22}}{4} \right)$$

$$+ e^{i(-\alpha+\beta)} \left(\frac{3t_{11} + t_{12}\sqrt{3} + c\sqrt{3} + t_{22}}{4} \right) + e^{i(\alpha+\beta)} \left(\frac{3t_{11} - t_{12}\sqrt{3} - c\sqrt{3} + t_{22}}{4} \right)$$

$$= 2cos(2\alpha)t_{22} + \frac{1}{4}3t_{11} \left(e^{i\alpha} + e^{-i\alpha} \right) \left(e^{-i\beta} + e^{i\beta} \right) + \frac{1}{4}t_{22} \left(e^{i\alpha} + e^{-i\alpha} \right) \left(e^{-i\beta} + e^{i\beta} \right)$$

$$+ c\sqrt{3}(e^{i(\alpha-\beta)} - e^{i(-\alpha+\beta)} + e^{i(-\alpha+\beta)} - e^{i(\alpha+\beta)}) + t_{12}\sqrt{3}(e^{i(\alpha-\beta)} - e^{i(-\alpha+\beta)} + e^{i(-\alpha+\beta)} - e^{i(\alpha+\beta)})$$

$$= 2cos(2\alpha)t_{22} + (3t_{11} + t_{22})cos\alpha cos\beta$$

Sử dụng tính Hermite của Hamiltonian h_{22} là số thực, nên $t_{12}=-t_{21}$