# Lab 1 — Decision Trees

Tianxiao Zhao Feiyang Liu

### The lab is about...

- Entropy and information gain
- Build up decision trees
- Reduced error pruning

Datasets: MONK 1-3, MONKTEST 1-3

Attributes: a1-a6

• Hardest: Monk 2

| MONK-1 | $(a_1 = a_2) \lor (a_5 = 1)$                                 |
|--------|--------------------------------------------------------------|
| MONK-2 | $a_i = 1$ for exactly two $i \in \{1, 2, \dots, 6\}$         |
| MONK-3 | $(a_5 = 1 \land a_4 = 1) \lor (a_5 \neq 4 \land a_2 \neq 3)$ |

#### Monk 1

•  $a_3$ ,  $a_4$ ,  $a_6$  don't have influence on the decision. Starting from  $a_5$ , the tree only needs a depth of three to decide all the outcomes.

#### Monk 2

All attributes are independent. Therefore a depth of six is needed.

#### • Monk 3

Easiest but noise make it hard also. Still it needs a depth of three.

$$Entropy(S) = -p_0 \log_2 p_0 - (1 - p_0) \log_2 (1 - p_0)$$

### **Entropies** of 3 datasets

|         | Monk1 | Monk2    | Monk3    |
|---------|-------|----------|----------|
| Entropy | 1.0   | 0.957117 | 0.999806 |

- Uniform distribution: high entropy
- Non-uniform distribution: low entropy



Example: rolling a dice(uniform) and a fake dice(non-uniform)

$$Entropy(S) = -\sum_{i} p_{i} \log_{2} p_{i}$$

As for normal dice Entropy1 = 2.58; fake dice Entropy2 = 2.16

$$Gain(S,A) = Entropy(S) - \sum_{k \propto values(A)} \frac{S_K}{S} Entropy(S_K)$$

### **Information gains** of 6 attributes in 3 datasets

| Dataset | a1     | a2     | a3     | a4     | a5     | а6     |
|---------|--------|--------|--------|--------|--------|--------|
| Monk 1  | 0.0753 | 0.0058 | 0.0047 | 0.0263 | 0.2870 | 0.0007 |
| Monk 2  | 0.0038 | 0.0025 | 0.0010 | 0.0156 | 0.0173 | 0.0062 |
| Monk 3  | 0.0071 | 0.2937 | 0.0008 | 0.0029 | 0.2560 | 0.0071 |

**Bolds** are used for splitting the examples at the root node

• Entropy of subset  $S_k$ : take monk 1 for example

| k       | 1     | 2     | 3     | 4     |
|---------|-------|-------|-------|-------|
| Entropy | 0.000 | 0.938 | 0.948 | 0.908 |

- Information gain increases <---> entropy decreases
- Smaller entropy <---> non-uniform distribution <---> dataset more concentrated
  <---> more certain about the classification
- Maximum information gain -> largest entropy reduction -> minimum weighted sum of entropies -> more certain about the classification

• Monk 1, 2, 3 - first two levels







• Errors - full trees

|        | $E_{train}$ | $E_{test}$ |
|--------|-------------|------------|
| MONK-1 | 0.0         | 0.1713     |
| MONK-2 | 0.0         | 0.3079     |
| MONK-3 | 0.0         | 0.0556     |

### Assignment 6 & 7

#### • Error / variance vs. fraction



|          | Mean   | Error  | Variance |         |  |
|----------|--------|--------|----------|---------|--|
| fraction | Monk1  | Monk3  | Monk1    | Monk3   |  |
| 0.3      | 0.2378 | 0.0987 | 0.00190  | 0.00348 |  |
| 0.4      | 0.2135 | 0.0741 | 0.00165  | 0.00189 |  |
| 0.5      | 0.1891 | 0.0618 | 0.00177  | 0.00143 |  |
| 0.6      | 0.1678 | 0.0536 | 0.00188  | 0.00114 |  |
| 0.7      | 0.1569 | 0.0504 | 0.00165  | 0.00089 |  |
| 0.8      | 0.1488 | 0.0505 | 0.00163  | 0.00090 |  |

#### • Conclusion:

- Pruning -> less complex model (compare to original tree) -> larger bias and fewer variance
- Larger fraction -> more training data -> more precise model -> fewer bias
- Fraction does not directly influence model complexity