TARGET CASE STUDY

To gain valuable insights into Target's operations in Brazil by analyzing various aspects of the business, such as order processing, pricing strategies, payment and shipping efficiency, customer demographics, product characteristics, and customer satisfaction levels.

Question 1

Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

- 1. Data type of all columns in the "customers" table.
- 2. Get the time range between which the orders were placed.
- 3. Count the number of Cities and States in our dataset.

Answer

The time range between which orders are placed is between September 2016 and October 2018.

Question 2

In-depth Exploration:

- 1. Is there a growing trend in the no. of orders placed over the past years?
- 2. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?
- 3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs : Dawn
 7-12 hrs : Mornings
 13-18 hrs : Afternoon
 19-23 hrs : Night

Answer 2

```
1 select
2
3 EXTRACT(MONTH FROM order_purchase_timestamp) as month,
4 EXTRACT(YEAR FROM order_purchase_timestamp) as year,
5
6 count(order_id) as number_of_orders_placed
7 from 'target-business-case-390405.target.orders'
8 group by month, year
9 order by year ,month
10
```

mber_of_orders_	year w no	month +	Row
4	2016		1
324	2016	10	2
1	2016	12	2
500	2017	1	4
1790	2017	2	5
2692	2017	3	
2404	2017	4	7
2700	2017	5	
2205	2017		
4026	2017	7	10
4331	2017		11
4295	2017	9	12
8691	2017	10	12
7564	2017	11	14
5672	2017	12	15
7269	2018	1	16
6728	2018	2	17
7211	2018	3	18
6939	2018	4	19
6673	2018	5	20
6167	2018		21
6292	2018	7	22
6512	2018		22
16	2018	9	24
4	2016	10	25

The number of orders placed increases from 2016 to the end of 2017 and then remains constant till august 2018

2.

```
1 select
2
3 EXTRACT(MONTH FROM order_purchase_timestamp) as month,
4 count(order_id) as number_of_orders_placed
5 from <u>`target-business-case-390405.target.orders`</u>
6 group by month
7 order by month
```

	Quei	ry results		
	JOB II	NFORMATION	RESULTS JS	ON
	Row	month ▼	number_of_orders_p	
	4	4	9343	
	5	5	10573	
	6	6	9412	
	7	7	10318	
	8	8	10943	
	9	9	4305	
	10	10	4959	
ŧ	11	11	7544	
	12	12	5674	

The no. of orders placed are high during winter season and decreases during summers.

```
1 select
 2 order_t,
 3 count(order_id) as count_order
 4 FROM
5 (SELECT *,
6 CASE
 7 WHEN EXTRACT (HOUR from order_purchase_timestamp) >= 0 and EXTRACT (HOUR from order_purchase_timestamp) <= 6
 9 WHEN EXTRACT (HOUR from order_purchase_timestamp) <= 7 AND EXTRACT (HOUR from order_purchase_timestamp) <= 12
10 THEN 'Mornings
11 WHEN EXTRACT (HOUR from order_purchase_timestamp)>=13 AND EXTRACT (HOUR from order_purchase_timestamp)<=18
12 THEN 'Afternoon
13 WHEN EXTRACT (HOUR from order_purchase_timestamp)<=19 AND EXTRACT (HOUR from order_purchase_timestamp)<=23
14 THEN 'Night'
15 END as order_t
16 from target.orders
17 order by order_purchase_timestamp)
18 group by order_t
```

Row	order_t ▼	count_order ▼
1	Mornings	27733
2	Dawn	5242
3	Afternoon	38135
4	Night	28331

The orders placed are highest during afternoon and lowest during dawn.

Question 3

Evolution of E-commerce orders in the Brazil region:

- 1. Get the month on month no. of orders placed in each state.
- 2. How are the customers distributed across all the states?

Answer 3

```
1 select
2 e.customer_state,
3 EXTRACT(MONTH FROM o.order_purchase_timestamp) as month,
4 count(o.order_id) as number_of_orders
5 from target.customers as e
6 join target.orders as o
7 on e.customer_id = o.customer_id
8 group by month , e.customer_state
9 order by e.customer_state , month
10
```

JOB II	NFORMATION RESUL	TS JSON EXECU	TION DETAILS
Row	customer_state ▼	month ▼ nu	ımber_of_orders
1	AC	1	8
2	AC	2	6
3	AC	3	4
4	AC	4	9
5	AC	5	10
6	AC	6	7
7	AC	7	9
8	AC	8	7
9	AC	9	5
10	AC	10	6
11	AC	11	5
12	AC	12	5
13	AL	1	39

```
1  select
2  customer_state,
3  count(customer_id) as number_of_customers
4  from target.customers
5  group by customer_state
6  order by customer_state
```

JOB II	NFORMATION	RESULTS	JSON	EXE
Row	customer_state	•	number_of_cu	stome
3	AM			148
4	AP			68
5	BA			3380
6	CE			1336
7	DF		2	2140
8	ES		2	2033
9	GO		2	2020
10	MA			747
11	MG		11	1635

Question 4

Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

1. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

- 2. Calculate the Total & Average value of order price for each state.
- 3. Calculate the Total & Average value of order freight for each state.

```
1  select
2  year,
3  round(sum(payment_value),1) as cost_of_orders ,
4  ((round(sum(payment_value),1) - lag(round(sum(payment_value),1))over(order by year))/round(sum(payment_value),1))*100 as percentage_increase
5  from(
6  select
7  p.payment_value,
8  EXTRACT(year from o.order_purchase_timestamp) as year,
9  EXTRACT(month from o.order_purchase_timestamp) as month
10  from target.orders as o
11  join target.payments as p
12  on o.order_id = p.order_id
13  where EXTRACT(month from o.order_purchase_timestamp) between 1 and 8)
14  GROUP BY year
15  order by year
```

Row	year ▼	cost_of_orders •	percentage_increase
1	20	17 3669022.	1 nuli
2	20	18 8694733.	8 57.80178917035

The cost of orders increase by more than 50 % in 2018 from 2017.

2.

```
1 SELECT
2 s.seller_state,
3 round(sum(o.price),1) as total,
4 round(avg(o.price),1) as average
5 FROM target.order_items as o
6 join target.sellers as s
7 on o.seller_id = s.seller_id
8 group by s.seller_state
9 order by total desc
```

	Row	seller_state ▼	total ▼	average ▼	
	1	SP	8753396.2	109.0	
ı	2	PR	1261887.2	145.5	
l	3	MG	1011564.7	114.6	
	4	RJ	843984.2	175.2	
	5	SC	632426.1	155.2	
	6	RS	378559.5	172.2	
	7	BA	285561.6	444.1	
	8	DF	97749.5	108.7	
	9	PE	91493.8	204.2	
	10	GO	66399.2	127.7	
	11	ES	47689.6	128.2	

The data shows that as cost of orders decreases, the numbers of orders placed increases

```
1 SELECT
2 s.seller_state,
3 round(sum(o.freight_value),1) as total_fright_val,
4 round(avg(o.freight_value),1) as avg_freight_val
5 FROM target.order_items as o
6 join target.sellers as s
7 on o.seller_id = s.seller_id
8 group by s.seller_state
9 order by total_fright_val desc
```

Row	seller_state ▼	total_fright_val 🔻	avg_freight_val ▼
1	SP	1482487.7	18.5
2	MG	212595.1	24.1
3	PR	197013.5	22.7
4	SC	106547.1	26.1
5	RJ	93829.9	19.5
6	RS	57243.1	26.0
7	BA	19700.7	30.6
8	DF	18494.1	20.6
9	GO	12565.5	24.2
10	PE	12392.5	27.7
11	ES	12171.1	32.7
12	MA	12141.3	30.0
40	MT	4601.7	21.0

The above data shows high no. of orders placed where avg freight value is low.

Question 5

Analysis based on sales, freight and delivery time.

1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- o **time_to_deliver** = order_delivered_customer_date order_purchase_timestamp
- diff_estimated_delivery = order_estimated_delivery_date order_delivered_customer_date
- 2. Find out the top 5 states with the highest & lowest average freight value.
- 3. Find out the top 5 states with the highest & lowest average delivery time.
- 4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

Answer 5

1.

```
1  select
2  order_id,
3  order_purchase_timestamp,
4  order_estimated_delivery_date,
5  order_delivered_customer_date,
6  DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp,DAY) AS time_to_deliver,
7  DATE_DIFF(order_estimated_delivery_date,order_delivered_customer_date,DAY) AS diff_estimated_delivery
8  from target.orders
9  where order_status = 'delivered'
```

wo	order_id ▼	order_purchase_timestamp ▼	order_estimated_delivery_date •	order_delivered_customer_date •	time_to_deliver ▼	diff_estimated_deliv
1	635c894d068ac37e6e03dc54e	2017-04-15 15:37:38 UTC	2017-05-18 00:00:00 UTC	2017-05-16 14:49:55 UTC	30	1
2	3b97562c3aee8bdedcb5c2e45	2017-04-14 22:21:54 UTC	2017-05-18 00:00:00 UTC	2017-05-17 10:52:15 UTC	32	0
3	68f47f50f04c4cb6774570cfde	2017-04-16 14:56:13 UTC	2017-05-18 00:00:00 UTC	2017-05-16 09:07:47 UTC	29	1
4	276e9ec344d3bf029ff83a161c	2017-04-08 21:20:24 UTC	2017-05-18 00:00:00 UTC	2017-05-22 14:11:31 UTC	43	-4
5	54e1a3c2b97fb0809da548a59	2017-04-11 19:49:45 UTC	2017-05-18 00:00:00 UTC	2017-05-22 16:18:42 UTC	40	-4
6	fd04fa4105ee8045f6a0139ca5	2017-04-12 12:17:08 UTC	2017-05-18 00:00:00 UTC	2017-05-19 13:44:52 UTC	37	-1
7	302bb8109d097a9fc6e9cefc5	2017-04-19 22:52:59 UTC	2017-05-18 00:00:00 UTC	2017-05-23 14:19:48 UTC	33	-5
8	66057d37308e787052a32828	2017-04-15 19:22:06 UTC	2017-05-18 00:00:00 UTC	2017-05-24 09:11:57 UTC	38	-6
9	19135c945c554eebfd7576c73	2017-07-11 14:09:37 UTC	2017-08-14 00:00:00 UTC	2017-08-16 20:19:32 UTC	36	-2
10	4493e45e7ca1084efcd38ddeb	2017-07-11 20:56:34 UTC	2017-08-14 00:00:00 UTC	2017-08-14 21:37:08 UTC	34	0
11	70c77e51e0f179d75a64a6141	2017-07-13 21:03:44 UTC	2017-08-14 00:00:00 UTC	2017-08-25 19:41:53 UTC	42	-11
12	d7918e406132d7c81f1b84527	2017-07-13 17:54:53 UTC	2017-08-14 00:00:00 UTC	2017-08-17 18:35:38 UTC	35	-3
13	43f6604e77ce6433e7d68dd86	2018-05-11 18:25:34 UTC	2018-06-06 00:00:00 UTC	2018-06-13 14:28:34 UTC	32	-7
14	37073d851c3f30deebe598e5a	2018-05-14 21:17:34 UTC	2018-06-06 00:00:00 UTC	2018-06-15 16:42:30 UTC	31	-9
15	d064d4d070d914984df257750	2018-05-08 21:46:45 UTC	2018-06-06 00:00:00 UTC	2018-06-06 22:04:34 UTC	29	0
16	61d430273ff1e88f2944acb53e	2018-05-06 09:48:42 UTC	2018-06-06 00:00:00 UTC	2018-06-05 12:09:51 UTC	30	0
17	d2f8ef9dd1714fcac7de9f0aef	2018-05-15 12:29:55 UTC	2018-06-06 00:00:00 UTC	2018-06-14 23:42:24 UTC	30	-в

The negative difference shows the no. of days order delayed from delivery time.

```
2 seller_state,
3 average,
4 row_number()over(order by average desc) as avg_freight_values_rank
5 from (SELECT
6 s.seller_state,
7 round(avg(o.freight_value),1) as average
8 FROM target.order_items as o
9 join target.sellers as s
10 on o.seller_id = s.seller_id
11 group by s.seller_state
12 )
13 limit 5
```

JOB II	NFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	customer_state	•	top_5_averag	e ▼
1	RR			29.0
2	AP			26.7
3	AM			26.0
4	AL			24.0
5	PA			23.3

Highest avg freight value is in RR i.e. 29

```
2 seller_state,
3 average,
4 row_number()over(order by average asc) as avg_freight_values_rank
5 from (SELECT
6 s.seller_state,
7 round(avg(o.freight_value),1) as average
8 FROM target.order_items as o
9 join target.sellers as s
10 on o.seller_id = s.seller_id
11 group by s.seller_state
12 )
13 limit 5
```

Row	seller_state ▼	average ▼	avg_freight_values_r
1	SP	18.5	1
2	PA	19.4	2
3	RJ	19.5	3
4	DF	20.6	4
5	PR	22.7	5

Lowest avg freight value is in SP i.e. 18.5

3

```
1 select
 2 customer_state,
 3 round(avg(delivery_time),1) as top_5_average
 5 from(
 6
 7 select
 8 c.customer_state,
9 o.order_purchase_timestamp,
10 o.order_delivered_customer_date,
11 DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp,DAY) AS delivery_time
12 from target.orders as o
13 join target.customers as c
14 on o.customer_id = c.customer_id
15 where o.order_status = 'delivered')
16 group by customer_state
17 order by top_5_average desc
18
```

JOB II	NFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	customer_state	•	top_5_averag	e ▼
1	RR			29.0
2	AP			26.7
3	AM			26.0
4	AL			24.0
5	PA			23.3

Highest avg delivery time is in RR i.e. 29.

```
1 select
  2 customer_state,
  3 round(avg(delivery_time),1) as top_5_lowest_average
  4
  5 from(
  6
  7 select
  8 c.customer_state,
  9 o.order_purchase_timestamp,
  10 o.order_delivered_customer_date,
  11 DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp,DAY) AS delivery_time
  12 from target.orders as o
  13 join target.customers as c
  14 on o.customer_id = c.customer_id
 15 where o.order_status = 'delivered')
 16 group by customer_state
 17 order by top_5_lowest_average asc
18
```

JOB II	NFORMATION	RESULTS	JSON	EXECUTION DETA
Row	customer_state	•	top_5_lowest	_averag
1	SP			8.3
2	MG			11.5
3	PR			11.5
4	DF			12.5
5	SC			14.5

Lowest avg delivery time is in SP i.e. 8.3

4.

```
1  select
2  customer_state,
3  round(avg(delivery_time),1) as top_5_lowest_average
4  from
5  (select
6  c.customer_state,
7  o.order_estimated_delivery_date,
8  o.order_delivered_customer_date,
9  DATE_DIFF(order_delivered_customer_date,o.order_estimated_delivery_date,DAY) AS delivery_time
10
11  from target.orders as o
12  join target.customers as c
13  on o.customer_id = c.customer_id
14  where o.order_status = 'delivered')
15  group by customer_state
16  order by top_5_lowest_average asc
17
```

Row	customer_state ▼	top_5_lowest_averag
1	AC	-19.8
2	RO	-19.1
3	AP	-18.7
4	AM	-18.6
5	RR	-16.4
6	MT	-13.4

Question 6.

Analysis based on the payments:

- 1. Find the month on month no. of orders placed using different payment types.
- 2. Find the no. of orders placed on the basis of the payment installments that have been paid.

Answer 6.

1.

```
1 select:
2 EXTRACT(YEAR FROM o.order_purchase_timestamp ) as year,
3 EXTRACT(MONTH FROM o.order_purchase_timestamp ) as month,
4 p.payment_type
5 from target.orders as o
6 join target.payments as p
7 ON o.order_id = p.order_id
8 group by year,month,p.payment_type
9 order by year,month
```

Row	year ▼	month ▼	payment_type ▼
1	2016	9	credit_card
2	2016	10	credit_card
3	2016	10	UPI
4	2016	10	voucher
5	2016	10	debit_card
6	2016	12	credit_card
7	2017	1	credit_card
8	2017	1	UPI
9	2017	1	voucher
10	2017	1	debit_card
11	2017	2	credit_card
12	2017	2	UPI
13	2017	2	woucher

```
1  select
2  payment_installments,
3  count(order_id) as number_of_orders
4  from target.payments
5  group by payment_installments
```

Row	payment_installment	number_of_orders
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644
11	10	5328
12	11	23
	22	7.1.2

Recommendation

The cost of order has increased from 2017 to 2018 by more than 50%, but still the number of orders placed is high in areas with low freight value and less orders are placed in areas of high freight values and delivery values, so the company can reduce the price of order in areas with high delivery value and increase the marketing strategies for summer because the no. of orders placed in summer is quite low as compared to winters.