Практика.

Потенциальные векторные поля

Определение (потенциального поля)

Векторное поле $\overline{a}(M)$ для любой точки $M \in A \subset R^3$ называется *потенциальным*, если его можно представить следующим образом:

$$\bar{a}(M) = \operatorname{grad} f(M) \ \forall (\cdot) \ M \in A,$$

где f(M)- скалярное поле, называемое **потенциалом** потенциального поля.

Критерий потенциальности векторного поля

Пусть векторное поле $\overline{a}(M)$ имеет координаты $\{P(M), Q(M), R(M)\}$ Для того, чтобы векторное поле $\overline{a}(M)$ было потенциальным, необходимо и достаточно, чтобы ротор этого поля был равен $\overline{0}$, т.е.

$$\overline{a}(M) = \operatorname{grad} f(M) \ \forall (\cdot)M \in A \iff \operatorname{rot} \overline{a}(M) = \overline{0} \ \forall (\cdot)M \in A$$

Свойства потенциальных полей

1. Пусть $\bar{a}(M)$ - потенциальное поле для любой точки $M \in A \subset R^3$

$$\Rightarrow circul_{\Gamma} \bar{a}(M) = 0$$
,

где Γ — любой замкнутый контур и Γ \subset A.

2. Пусть $\overline{a}(M)$ - потенциальное поле для любой точки $M \in A \subset \mathbb{R}^3$.

Тогда линейный интеграл не зависит от пути интегрирования $\Gamma_{AB} \subset A$, т.е.

$$\int_{\Gamma_{AB}}^{\overline{a}} (M) \cdot d\overline{r} = \int_{\Gamma_{AB}} P(M) dx + Q(M) dy + R(M) dz = \int_{\Gamma_{AB}} df(M) = f(B) - f(A),$$

f(M) — потенциал векторного поля $\bar{a}(M)$.

Замечание

Из определения потенциального поля $(\overline{a}(M) = \operatorname{grad} f(M) \ \forall (\cdot) \ M \in A)$ следует, что потенциальное векторное $\overline{a}(M)$ определяется заданием его потенциала.

Вычисление потенциала потенциального векторного поля Первый способ

Пусть
$$\bar{a}(M) = \{P(M); Q(M); R(M)\}.$$

Тогда потенциал векторного поля может быть найден по формуле:

$$f(x,y,z) = \int_{x_0}^x P(x,y_0,z_0)dx + \int_{y_0}^y Q(x,y,z_0)dy + \int_{z_0}^z R(x,y,z)dz,$$

где (x_0, y_0, z_0) - произвольная точка из области определения функций P, QuR.

Второй способ

Второй способ аналогичен нахождению полного дифференциала при решении дифференциальных уравнений 1 порядка в полных дифференциалах (самостоятельно).

Соленоидальные поля

Определение

Векторное поле $\bar{a}(M) \forall M \in A \subset \mathbb{R}^3$, называется соленоидальным, если

$$\overrightarrow{a}(M) = 0 \ \forall (\cdot) M \in A$$

Свойства соленоидальных полей

- 1) $div \ \bar{a}(M)=0 \Rightarrow$ поток векторного поля через замкнутую поверхность равен нулю, т.е. $\Pi_{\sigma} \ \bar{a}(M)=0$;
- 2) $div \bar{a}(M)=0 \Rightarrow$ существует некоторое поле $\bar{b}(M)$, такое что

$$\overline{a}(M) = rot \, \overline{b}(M) \, \forall (\cdot) \, M \in A$$
.

Тогда вектор \bar{b} называется векторным потенциалом поля $\bar{a}(M)$.

Замечания:

- 1) Векторный потенциал определяется неоднозначно (это следует из свойства 2);
- 2) Векторное поле $rot \, \overline{a} \, (M)$ это соленоидальное поле, то есть $div \, rot \, \overline{a} \, (M) = 0$.

Гармонические векторные поля

Определение (гармонического поля)

Векторное поле $\bar{a}(M)$ для любой точки $M \in A \subset R^3$, называется *гармоническим*, если оно одновременно является и потенциальным, и соленоидальным.

$$\begin{cases} \bar{a}(M) = gradf(M) \\ div\bar{a}(M) = 0 \end{cases}, \quad \forall \ M \in A.$$

Замечание:

Для гармонического поля справедливо равенство:

$$divgradf(M) = 0$$

или

$$\frac{\partial^2 f(M)}{\partial x^2} + \frac{\partial^2 f(M)}{\partial y^2} + \frac{\partial^2 f(M)}{\partial z^2} = 0.$$

Разложение произвольного векторного поля на сумму потенциального и соленоидального полей.

Теорема.

Пусть $\bar{a}(M) = \{P(M); Q(M); R(M)\}$ — произвольное векторное поле для любой точки $M \in A \subset R^3$.

Пусть функции P(M); Q(M); R(M) — имеют непрерывные частные производные $\forall \ M \in A$.

Тогда векторное поле $\bar{a}(M)$ можно разложить на сумму двух полей

$$\overline{a}(M) = \overline{a_1}(M) + \overline{a_2}(M),$$
 (**)

где $\overline{a_1}(M)$ — потенциальное поле, $\overline{a_2}(M)$ — соленоидальное поле $\forall M \in A$.

Замечание:

Представление векторного поля $\bar{a}(M)$ в виде (**) не единственно.

Дифферененциальные операции 1 и 2 порядков

Основные формулы

Дифферененциальные операции 1 порядка

Оператор Гамильтона (набла):

$$\nabla = \left(\frac{\partial}{\partial x} \cdot \bar{i} + \frac{\partial}{\partial y} \cdot \bar{j} + \frac{\partial}{\partial z} \cdot \bar{k}\right)$$

Тогда:

$$\nabla f(M) = \operatorname{grad} f(M)$$
 - для скалярного поля

$$\nabla a(M) = div a(M)$$
 - для векторного поля

$$\nabla \times \overline{a}(M) = rot \overline{a(M)}$$
 - для векторного поля

Свойства оператора Гамильтона

1)
$$\nabla c = \overline{0}$$
, где c – const

$$2)\nabla \bar{c} = 0$$
, где \bar{c} - постоянный вектор

3)
$$\nabla \times \bar{c} = \bar{0}$$
, где \bar{c} - постоянный вектор

4)
$$\nabla(\lambda_1 \bar{a} \pm \lambda_2 \bar{b}) = \lambda_1 \nabla \bar{a} \pm \lambda_2 \nabla \bar{b}$$

5)
$$\nabla \times (\lambda_1 \bar{a} \pm \lambda_2 \bar{b}) = \lambda_1 \nabla \times \bar{a} \pm \lambda_2 \nabla \times \bar{b}$$

Дифференциальные операции 2 порядка:

$$div \ grad \ f(M) = \nabla (\nabla \ f(M))$$

$$rot \ grad \ f(M) = \nabla \times \nabla \ f(M)$$

$$grad \ div \ a(M) = \nabla \left(\nabla \ a(M)\right)$$

$$div \ rot \ \overline{a}(M) = \nabla (\nabla \times \overline{a}(M))$$

rot rot
$$\bar{a}(M) = \nabla \times (\nabla \times \bar{a}(M))$$

Дифференциальные операции 2 порядка, можно представить

в виде таблицы:

$grad \ grad \ f(M)$	grad div a(M)	grad rot a(M)
$div\ grad\ f(M)$	div div a(M)	$\overline{div rot a(M)}$
$rot \ grad \ f(M)$	rot div a(M)	$rot \ rot \ \overline{a}(M)$

Оператор Лапласа

$$\Delta = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)$$

1) f(M) - скалярное поле:

$$\Delta f(M) = \nabla \nabla f(M) = div \ grad \ f(M)$$

или в координатной форме

$$\Delta f(M) = \frac{\partial^2 f(M)}{\partial x^2} + \frac{\partial^2 f(M)}{\partial y^2} + \frac{\partial^2 f(M)}{\partial z^2}.$$

Замечание:

Если для скалярного поля f(M) выполняется условие $\Delta f(M) = 0$, то такое поле называтся π *Лапласовым (или гармоническим)*.

2)
$$\bar{a}(M) = \{P(M); Q(M); R(M)\} -$$
векторное поле:

$$\overline{\Delta a}(M) = \Delta P(M)\overline{\iota} + \Delta Q(M)\overline{\iota} + \Delta R(M)\overline{k}$$

или в координатной форме

$$\overline{\Delta a}(M) = \left(\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} + \frac{\partial^2 P}{\partial z^2}\right) \bar{\iota} + \left(\frac{\partial^2 Q}{\partial x^2} + \frac{\partial^2 Q}{\partial y^2} + \frac{\partial^2 Q}{\partial z^2}\right) \bar{J} + \left(\frac{\partial^2 R}{\partial x^2} + \frac{\partial^2 R}{\partial y^2} + \frac{\partial^2 R}{\partial z^2}\right) \bar{k}$$

Свойства оператора Лапласа.

1) $\Delta \overline{c} = 0$, где $\overline{c} -$ постоянный вектор.

2)
$$\Delta(\bar{c} f(M)) = \bar{c} \Delta f(M)$$
, где \bar{c} — постоянный вектор.

$$3)\Delta(C\bar{a}(M)) = C\Delta\bar{a}(M), C = const.$$

$$4)\Delta(\bar{a}_1(M) + \bar{a}_2(M)) = \Delta \bar{a}_1(M) + \Delta \bar{a}_2(M).$$

5)
$$\Delta \cdot (\nabla f(M)) = \nabla(\Delta f(M))$$
,

6)
$$\Delta(\operatorname{div}\bar{a}(M)) = \operatorname{div}(\Delta\bar{a}(M)),$$

7)
$$\Delta(rot\bar{a}(M)) = rot(\Delta\bar{a}(M))$$

Свойства 3) и 4) означают, что оператор Лапласа - это линейный оператор, преобразующий одну векторную величину в другую векторную величину.

Свойства 5) - 7) означают, что оператор Лапласа перестановочен с градиентом, дивергенцией и ротором.

Формулы для дифференциальных операций второго порядка:

1) $rotgradf(M) = \overline{0}$

или

$$\nabla\times(\nabla f(M)=\bar{0}.$$

2) $\nabla(\nabla \bar{a}(M)) = graddiv\bar{a}(M)$

ИЛИ

$$\nabla \left(\nabla \bar{a}(M)\right) = \left(\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 Q}{\partial x \partial y} + \frac{\partial^2 R}{\partial z \partial x}\right) \bar{\iota} + \left(\frac{\partial^2 P}{\partial x \partial y} + \frac{\partial^2 Q}{\partial y^2} + \frac{\partial^2 R}{\partial z \partial y}\right) \bar{J} + \left(\frac{\partial^2 P}{\partial x \partial z} + \frac{\partial^2 Q}{\partial z \partial y} + \frac{\partial^2 R}{\partial z^2}\right) \bar{k} .$$

3)
$$divrot\bar{a}(M) = \nabla(\nabla \times \bar{a}(M)) = 0$$
.

4)
$$rotrot\bar{a}(M) = graddiv\bar{a}(M) - \Delta\bar{a}(M)$$

ИЛИ

$$\nabla \times (\nabla \times \bar{a}(M) = graddiv\bar{a}(M) - \Delta \bar{a}(M).$$

Таблица для дифференциальных операций 2 порядка

	$\bar{a}(M)$	f(M)	
	grad f(M)	$div \overline{a}(M)$	$rot \overline{a}(M)$
grad f(M)		$\operatorname{grad}\operatorname{div} \overset{-}{a}(M) = \nabla \left(\nabla \overset{-}{a}(M)\right)$	
div a (M)	$div \ grad \ f(M) = \\ \nabla (\nabla \ f(M)) = \Delta f(M)$		$div rot \overset{-}{a}(M) = \\ \nabla \left(\nabla \times \overset{-}{a}(M) \right) = 0$
rot a (M)	$rot \ grad \ f(M) = \\ \nabla \times \nabla \ f(M) = \bar{0}$		$rot \ rot \ \overline{a}(M) = \nabla \times (\nabla \times \overline{a}(M)) =$ $grad \ div \ \overline{a}(M) - \Delta \overline{a}(M) =$ $\nabla \nabla \overline{a}(M) - \Delta \overline{a}(M)$