Teaching Ratings

Joel Alejandro Zavala Prieto

Contents

Informacion de contacto	2
Descripción	3
Modelo	3
Visualización de los datos	4
Modelo ajustado	4
Resumen general	6
Distribucion de los residuales	7

Informacion de contacto

Mail: alejandro.zavala 1001@gmail.com

 ${\it Facebook:}\ https://www.facebook.com/AlejandroZavala 1001$

 $Git:\ https://github.com/AlejandroZavala 98$

Descripción

La siguiente tabla contiene información que viene del archivo Teaching contiene datos sobre las evaluaciones de la asignatura, caracteristicas de la asignatura y del profesopara 463 cursos de la Universidad de Texas en Austin.

Modelo

Se propone el modelo

course_eval_i =
$$\beta_0 + \beta_1 beauty_i + u_i$$

 $i = 1, 2, ..., 463$

El nombre de columnas de la base de datos se mustra a continuación

```
## [1] "minority" "age" "female" "onecredit" "beauty"
## [6] "course_eval" "intro" "nnenglish"
```

Mostrando las primeras observaciones de la tabla para las variables requeridas

minority	age	female	onecredit	beauty	course_eval	intro	nnenglish
1	36	1	0	0.2899157	4.3	0	0
0	59	0	0	-0.7377322	4.5	0	0
0	51	0	0	-0.5719836	3.7	0	0
0	40	1	0	-0.6779634	4.3	0	0
0	31	1	0	1.5097940	4.4	0	0
0	62	0	0	0.5885687	4.2	0	0
0	33	1	0	-0.1260010	4.0	0	0
0	51	1	0	-0.2581899	3.4	0	0
0	33	1	0	0.1496926	4.5	0	0
0	47	0	0	0.5409170	3.9	0	0

El modelo ajustado es

course_eval_i =
$$\hat{\beta}_0 + \hat{\beta}_1 beauty_i$$

 $i = 1, 2, ..., 463$

Visualización de los datos

Una visualizacion previa de los datos

Teaching Ratings

La regresion del modelo es

```
##
## Call:
## lm(formula = course_eval ~ beauty, data = TeachingRatings)
##
## Coefficients:
## (Intercept) beauty
## 3.998 0.133
```

Modelo ajustado

El modelo ajustado es

$$\begin{split} \text{course} _\text{eval}_i &= 3.998 + 0.133 beauty_i \\ i &= 1, 2, ..., 463 \end{split}$$

De tal forma

Teaching Ratings

Notemos que la media muestral de la variable \mathbf{course} _eval es la misma que la del estimador independiente esto se debe a que la media muestral de la variable \mathbf{beauty} es casi 0

Es decir para el termino de

mean(TeachingRatings\$beauty)

[1] 6.263499e-08

mean(TeachingRatings\$course_eval)

[1] 3.998272

Resumen general

Course_eval	Course_eval.A	justados	Residuales
4.3		4.036831	0.2631687
4.5		3.900153	0.5998473
3.7	;	3.922197	-0.2221975
4.3		3.908102	0.3918980
4.4		4.199077	0.2009231
4.2		4.076553	0.1234474
4.0		3.981514	0.0184862
3.4		3.963932	-0.5639325
4.5		4.018181	0.4818185
3.9		4.070215	-0.1702149
3.1		4.029077	-0.9290770
4.0		3.989404	0.0105956
3.8		4.027119	-0.2271191
3.4		3.963865	-0.5638652
2.9		4.071461	-1.1714612
4.5		3.990021	0.5099787
4.0		3.867614	0.1323865
3.8	,	3.991044	-0.1910443
4.3		3.989226	0.3107739
3.4		4.002184	-0.6021842

Distribucion de los residuales

Observando la distribucion de los errores para estos datos

Distribucion de residuos del modelo lineal

