Sequence Detector & Generator

by

Prof. Sujata Wakchaure

Sequence Detector

- In digital electronics a movement of data is commonly called as a "Bit Stream"
- Any one bit in a bit stream looks identical to many other bits
- It is imp for receiver to identify beginning & ending of a message
- This is a job of special bit sequence called **Flags**
- A flag is simply a bit sequence that serves as a marker in the bit stream
- To detect a flag in a bit stream a Sequence Detector is used

 The stream of bit has been feed as I/P, when clock is high & particular Pattern / Sequence is detected

 As soon as a sequence is detected, the O/P becomes high & then again becomes low

- Lets X = 0110010100...
- In this I/P Bit stream I want to detect 010
- We have 2 possibilities here
 - 1. When we consider overlapping
 - 2. When we do not consider the overlapping

Now there is overlapping

Final Output Y = 00000010010....

0110010100

- **Step 1:** Obtain the state diagram (Consider Mealy m/c)
 - Starting state of detection = S0
 - When pointer is at $S0 = \text{The } 1^{\text{st}} \text{ bit is } 0$
 - When there is 0 = pointer will point to next state

$$S0=$$
 Reset $S1=0$

$$S2 = 01$$

0110010100

- Now Pointer is on S0 =>
 - If I/P = 1, O/P = 0 (Reset State)
- Now if Pointer is on S1=>
 - If Next Bit or I/P = 0, O/P = 0 (Reset State)
 - If I/P = 1 then, got to next State =S2, O/P = 0
- Now if Pointer is on S2=>
 - If Next Bit or I/P = 0, then go to S1, O/P = 1 (Reset State)
 - Because sequence 010 is detected here

0110 010 100

- Currently pointer is at S1 with O/P = 1
- Next bit is 1, then again pointer will go to S2
- And the next bit is **0**
- Then again O/P = 1 (010)

Sequence Detector Example

• Design a sequence detector to detect 3 or more consecutive 1s in a string of bits coming through an I/P line

```
• If X= 00111011110....

Y= 00001000110 → (Overlapping)

Y= 00001000100 → (Non - Overlapping)
```

• Step 1: State Diagram

S0=Reset

S1 = 1

States	Has	Awaits
S0= Reset		111
S1=1	1	11
S2=11	11	1
S3=111	111	/0

• Step 1: State Diagram

• Step 2: State Assignment

$$S0 = 00$$

$$S1 = 01$$

$$S2 = 10$$

$$S3 = 11$$

• Step 3: State Table

Present State		Input	Next State		Output	
QA	QB	X	QA+	QB+	Y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	1	
1	1	0	0	0	0	
1	1	1	1	1	1	

DA = QA + DB = QB +

• Step 4: Minimized Expression

$$DA = QA + = (QA + QB)X$$

$$DB = QB + = (QB + QA)X$$

$$Y = QAX$$

• Step 5: Implement Circuit

Sequence Generator

- It is a digital logic circuit whose purpose is to produce a prescribed sequence of output
- The sequence may be of indefinite length or a predetermined fixed length
- A Binary Counter is a special type of Sequence Generator
- Sequence Generators are useful in a wide variety of coding & control applications

- If you have **0101101**
- This is the sequence that you want to generate
- Then your O/P of sequence generator would be, it is going to continuously give out, 0101101 0101101 0101101....

So you have to decide the no. of Flip Flops

- **Step 1:** Number of Flip-Flops
 - J = No. of Zeros in sequence
 - K = No. of Ones in sequence

$$N = Max(J,K)$$

No. of FF (n) =
$$N \le 2^{n-1}$$

• Now I/P sequence is **0101101**

$$N = Max(J, K)$$

$$N = Max (3, 4)$$

$$N = 4$$

$$n = 4 \le 2^{3-1}$$
 => if n=3

• Step 2: State Table

С	В	A	State
0	0	0	0
1	0	1	5
0	1	0	2
1	1	1	7
1	0	0	4
0	0	1	1
1	1	0	6

Not Used Case = 3

So N.S. of 3 = X

• Step 3: Sate Diagram

• Step 4: Write Excitation table of JK FF

Present State	Next State	Flip – Flop Outputs				
Qn	Qn+1	J	K			
0	0	0	X			
0	1	1	X			
1	0	X	1			
1	1	X	0			

• Step 5: Circuit Excitation table of JK FF

P.S.			N. S.			FF I/P					
C	В	A	C+	B +	A +	Jc	Kc	JB	KB	JA	KA
0	0	0	1	0	1	1	X	0	X	1	X
0	0	1	1	1	0	1	X	1	X	X	1
0	1	0	1	1	1	1	X	X	0	1	X
0	1	1	X	X	X	X	X	X	X	X	X
1	0	0	0	0	1	X	1	0	X	1	X
1	0	1	0	1	0	X	1	1	X	X	1
1	1	0	0	0	0	X	1	X	1	0	X
1	1	1	1	0	0	X	0	X	1	X	1

• Step 6: Derive Expression

$$JC = \overline{C}$$

$$KC = \overline{A} + \overline{B}$$

$$JB = A$$
$$KB = C$$

$$JA = \overline{C} + \overline{B}$$

$$KA = A$$

