528 / 21 CIRCUMSTELLAR AND INTERSTELLAR MATERIAL

Table 21.6. (Continued.)

λ (μm)	$R_V = 3.1$	5	λ (μm)	$R_V = 3.1$	5	λ (μm)	$R_V = 3.1$	5
35	3.7(-3)	4.2(-3)	1.65 (H)	0.176	0.204	0.18	2.52	1.52
25	0.014	0.016	1.25(J)	0.282	0.327	0.15	2.66	1.49
20	0.021	0.025	$0.9(\hat{I})$	0.479	0.556	0.13	3.12	1.60
18	0.023	0.027	0.7(R)	0.749	0.794	0.12	3.58	1.74
15	0.015	0.017	0.55(V)	1.00	1.00	0.091 ^c	4.85	
12	0.028	0.032	0.44 (B)	1.31	1.20	0.073	5.38	
10	0.054	0.063	$0.365(\hat{U})$	1.56	1.33	0.041	2.58	
9.7	0.059	0.068	0.33	1.65	1.35	0.023	2.06	
9.0	0.042	0.051	0.28	1.94	1.42	0.004	0.96	
7.0	0.020	0.023	0.26	2.15	1.50	0.002	0.38	

Notes

^aExcept as noted below, entries are from [1]. Values of $A(\lambda)/A(V)$ for other values of R_V can be determined from that paper.

^bFor $\lambda > 250 \,\mu\text{m}$, multiply entry for 250 μm by $(250 \,\mu\text{m}/\lambda)^2$.

^cFor $\lambda < 0.1~\mu m$, entries are from [2], increased by 1.15 for continuity at 0.12 μm .

References

1. Cardelli, J.A., Clayton, G.C., & Mathis, J.S. 1989, ApJ, 345, 245

 Martin, P.G., & Rouleau, F. 1990, in Extreme Ultraviolet Astronomy, edited by R.F. Malina and S. Bowyer (Pergamon, Oxford), p. 341

21.2.2 Opacity in X-Ray Region of Spectrum [15]

The cross section per H atom is given by $\sigma = (c_1 + c_2 E + c_3 E^2) E^{-3} \times 10^{-24} \text{ cm}^2 \text{ (H atom)}^{-1}$. There are breaks in σ at various energies as detailed in Table 21.7.

Table 21.7. X-ray opacity of interstellar gas and dust.

E range (keV)	Edge ^a	c_1	c_2	<i>c</i> ₃
0.0300.100		17.3	608.1	-2150
0.100-0.284	C	34.6	267.9	-476.1
0.284-0.400	N	78.1	18.8	4.3
0.400-0.532	0	71.4	66.8	-51.4
0.532-0.707	Fe-L	95.5	145.8	-61.1
0.707-0.867	Ne	308.9	-380.6	294.0
0.867-1.303	Mg	120.6	169.3	-47.7
1.303-1.840	Si	141.3	146.8	-31.5
1.840-2.471	S	202.7	104.7	-17.0
2.471-3.210	Ar	342.7	18.7	0.0
3.210-4.038	Ca	352.2	18.7	0.0
4.038-7.111	Fe	433.9	2.4	0.75
7.111-8.331	Ni	629.0	30.9	0.0
8.331-10.00		701.2	25.2	0.0

Note

 a The element whose absorption produces a discontinuity at the upper energy of the range.