		Geometry:		Physics:	
Run title> hybrid	scenario example	R_0	= 9.69 m	I_{p}	= 16.66 MA
PROCESS Version> 1.0.17		a	= 3.126 m	Vacuum B_T at R_0	= 5.909 T
Date:> 18/03/2	2020	Α	= 3.1	q 95	= 4.5
Time:> 10:34		K ₉₅	= 1.65	$oldsymbol{eta}_{N}$, thermal	$= 2.184 \% \text{ m T MA}^{-1}$
User:> apearce	e	δ_{95}	= 0.3333	$oldsymbol{eta}_{N}$, total	$= 2.768 \% \text{ m T MA}^{-1}$
Optimising:> Plasma	major radius	Surface area	$= 1667 \text{ m}^2$	$oldsymbol{eta_P}$, thermal	= 1.268
Plasma composition:		Plasma volume	$= 3142 \text{ m}^3$	$oldsymbol{eta_P}$, total	= 1.608
Number densities relative to electron density:		No. of TF coils	= 16	< t _e >	= 13.76 keV
D + T	= 0.8391	inboard blanket+shield	= 1.055 m	< n _e >	$= 5.881e + 19 \text{ m}^{-3}$
Не	= 0.06629	ouboard blanket+shield	= 1.782 m	$< n_{\rm e, line} > /n_{\rm G}$	= 1.2
Xe	= 0.0005139	Fusion power	= 1910 MW	$T_{e0}/ < T_{e} >$	= 2.314
W	= 5e-05			$n_{\rm e0}/< n_{\rm e,vol}>$	= 1.315
				$Z_{ m eff}$	= 2.529
Colour Legend: ITR				$n_Z/ < n_{\rm e, vol} >$	= 0.0005639
OP				$ au_e$	= 3.619 s
				H-factor	= 1.2
				Scaling law	= IPB98(y,2)
Coil currents etc:		Power flows:		Neutral Beam Current Drive:	
DE 1	77 74 844		0.0426.000		120.0 MM
PF 1	= 11.14 MA	Nominal neutron wall load	= 0.8426 MW m ⁻²	Steady state auxiliary power	= 120.8 MW
PF 3	= -8.235 MA	Nominal neutron wall load Normalised radius of 'core' regi	on= 0.75	Steady state auxiliary power Power for heating only	= 50 MW
PF 3 PF 5	= -8.235 MA = -5.393 MA	Nominal neutron wall load Normalised radius of 'core' regi Electron density at pedestal	on= 0.75 = $4.613e+19 \text{ m}^{-3}$	Steady state auxiliary power Power for heating only Bootstrap fraction	= 50 MW = 0.434
PF 3 PF 5 Startup flux swing	= -8.235 MA = -5.393 MA = 372.4 Wb	Nominal neutron wall load Normalised radius of 'core' regi Electron density at pedestal r/a at density pedestal	on= 0.75 = 4.613e+19 m ⁻³ = 0.94	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction	= 50 MW = 0.434 = 0.226
PF 3 PF 5 Startup flux swing Available flux swing	= -8.235 MA = -5.393 MA = 372.4 Wb = -524.9 Wb	Nominal neutron wall load Normalised radius of 'core' regi Electron density at pedestal r/a at density pedestal Helium fraction	on= 0.75 = 4.613e+19 m ⁻³ = 0.94 = 0.06629	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction	= 50 MW = 0.434 = 0.226 = 0.34
PF 3 PF 5 Startup flux swing	= -8.235 MA = -5.393 MA = 372.4 Wb	Nominal neutron wall load Normalised radius of 'core' regi Electron density at pedestal r/a at density pedestal Helium fraction Core radiation	on= 0.75 = 4.613e+19 m ⁻³ = 0.94 = 0.06629 = 123.1 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction NB gamma	= 50 MW = 0.434 = 0.226 = 0.34 = 0.3024 10 ²⁰ A W ⁻¹ m ⁻²
PF 3 PF 5 Startup flux swing Available flux swing	= -8.235 MA = -5.393 MA = 372.4 Wb = -524.9 Wb	Nominal neutron wall load Normalised radius of 'core' regi Electron density at pedestal r/a at density pedestal Helium fraction Core radiation Total radiation	on= 0.75 = 4.613e+19 m ⁻³ = 0.94 = 0.06629 = 123.1 MW = 274.6 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction NB gamma NB energy	= 50 MW = 0.434 = 0.226 = 0.34 = 0.3024 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV
PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn	= -8.235 MA = -5.393 MA = 372.4 Wb = -524.9 Wb = 2 hrs	Nominal neutron wall load Normalised radius of 'core' regi Electron density at pedestal r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket	on= 0.75 = 4.613e+19 m ⁻³ = 0.94 = 0.06629 = 123.1 MW = 274.6 MW = 1459 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor	= 50 MW = 0.434 = 0.226 = 0.34 = 0.3024 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 362 MW
PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip.	= -8.235 MA = -5.393 MA = 372.4 Wb = -524.9 Wb = 2 hrs	Nominal neutron wall load Normalised radius of 'core' regi Electron density at pedestal r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield	on= 0.75 = 4.613e+19 m ⁻³ = 0.94 = 0.06629 = 123.1 MW = 274.6 MW = 1459 MW = 1.526 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor Pdiv Pdiv Pdiv	= 50 MW = 0.434 = 0.226 = 0.34 = 0.3024 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 362 MW = 21.72 MW m ⁻¹
PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip. I/I _{crit}	= -8.235 MA = -5.393 MA = 372.4 Wb = -524.9 Wb = 2 hrs) = 13.12 T = 0.5986	Nominal neutron wall load Normalised radius of 'core' regi Electron density at pedestal r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor	on= 0.75 = 4.613e+19 m ⁻³ = 0.94 = 0.06629 = 123.1 MW = 274.6 MW = 1459 MW = 1.526 MW = 210.4 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor $\frac{P_{\text{div}}}{R_0}$ $\frac{P_{\text{div}}}{\langle n \rangle R_0}$	= 50 MW = 0.434 = 0.226 = 0.34 = 0.3024 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 362 MW = 21.72 MW m ⁻¹ = 36.93 ×10 ⁻²⁰ MW m ²
PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip. I/I _{crit} TF Temperature margin	= -8.235 MA = -5.393 MA = 372.4 Wb = -524.9 Wb = 2 hrs) = 13.12 T = 0.5986 =ERROR! Var missing	Nominal neutron wall load Normalised radius of 'core' regi Electron density at pedestal r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold	on= 0.75 = 4.613e+19 m ⁻³ = 0.94 = 0.06629 = 123.1 MW = 274.6 MW = 1459 MW = 1.526 MW = 210.4 MW = 119.6 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor $\frac{P_{\text{div}}}{R_0}$ $\frac{P_{\text{div}}}{R_0}$ $\frac{P_{\text{div}}}{P_{\text{LH}}}$	= 50 MW = 0.434 = 0.226 = 0.34 = 0.3024 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 362 MW = 21.72 MW m ⁻¹ = 36.93 ×10 ⁻²⁰ MW m ² = 1.76
PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip. I/I _{crit} TF Temperature margin CS Temperature margin	= -8.235 MA = -5.393 MA = 372.4 Wb = -524.9 Wb = 2 hrs) = 13.12 T = 0.5986 =ERROR! Var missing = 6.196 K	Nominal neutron wall load Normalised radius of 'core' regi Electron density at pedestal r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life	on= 0.75 = 4.613e+19 m ⁻³ = 0.94 = 0.06629 = 123.1 MW = 274.6 MW = 1459 MW = 1.526 MW = 210.4 MW = 119.6 MW = 3.039 years	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor $\frac{P_{\text{div}}}{R_0}$ $\frac{P_{\text{div}}}{\langle n \rangle R_0}$	= 50 MW = 0.434 = 0.226 = 0.34 = 0.3024 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 362 MW = 21.72 MW m ⁻¹ = 36.93 ×10 ⁻²⁰ MW m ²
PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip. I/I _{crit} TF Temperature margin CS Temperature margin Conduit Von Mises stress	= -8.235 MA = -5.393 MA = 372.4 Wb = -524.9 Wb = 2 hrs) = 13.12 T = 0.5986 =ERROR! Var missing = 6.196 K =ERROR! Var missing	Nominal neutron wall load Normalised radius of 'core' regi Electron density at pedestal r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life Primary (high grade) heat	on= 0.75 = 4.613e+19 m ⁻³ = 0.94 = 0.06629 = 123.1 MW = 274.6 MW = 1459 MW = 1.526 MW = 210.4 MW = 119.6 MW = 3.039 years = 2591 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor $\frac{P_{\text{div}}}{R_0}$ $\frac{P_{\text{div}}}{R_0}$ $\frac{P_{\text{div}}}{P_{\text{LH}}}$	= 50 MW = 0.434 = 0.226 = 0.34 = 0.3024 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 362 MW = 21.72 MW m ⁻¹ = 36.93 ×10 ⁻²⁰ MW m ² = 1.76
PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip. I/I _{crit} TF Temperature margin CS Temperature margin Conduit Von Mises stress Case Von Mises stress	= -8.235 MA = -5.393 MA = 372.4 Wb = -524.9 Wb = 2 hrs) = 13.12 T = 0.5986 =ERROR! Var missing = 6.196 K =ERROR! Var missing =ERROR! Var missing	Nominal neutron wall load Normalised radius of 'core' regi Electron density at pedestal r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life Primary (high grade) heat Gross cycle efficiency	on= 0.75 = 4.613e+19 m ⁻³ = 0.94 = 0.06629 = 123.1 MW = 274.6 MW = 1459 MW = 1.526 MW = 210.4 MW = 119.6 MW = 3.039 years = 2591 MW = 37.5 %	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor Poliv R0 Poliv R1 PLH H* (non-rad. corr.) Costs	= 50 MW = 0.434 = 0.226 = 0.34 = 0.3024 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 362 MW = 21.72 MW m ⁻¹ = 36.93 ×10 ⁻²⁰ MW m ² = 1.76 = 1.066
PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip. I/I _{crit} TF Temperature margin CS Temperature margin Conduit Von Mises stress Case Von Mises stress Allowable stress	= -8.235 MA = -5.393 MA = 372.4 Wb = -524.9 Wb = 2 hrs) = 13.12 T = 0.5986 =ERROR! Var missing = 6.196 K =ERROR! Var missing =ERROR! Var missing = 5.8e+08 Pa	Nominal neutron wall load Normalised radius of 'core' regi Electron density at pedestal r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life Primary (high grade) heat Gross cycle efficiency Net cycle efficiency	on= 0.75 = 4.613e+19 m ⁻³ = 0.94 = 0.06629 = 123.1 MW = 274.6 MW = 1459 MW = 1.526 MW = 210.4 MW = 119.6 MW = 3.039 years = 2591 MW = 37.5 % = 31.54 %	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor Podiv Ro Ro Podiv Ro Ro Podiv Ro Podiv Ro Podiv Ro Podiv Ro Ro Podiv Ro Podiv Ro Podiv Ro Pod	= 50 MW = 0.434 = 0.226 = 0.34 = 0.3024 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 362 MW = 21.72 MW m ⁻¹ = 36.93 ×10 ⁻²⁰ MW m ² = 1.76
PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip. I/I _{crit} TF Temperature margin CS Temperature margin Conduit Von Mises stress Case Von Mises stress	= -8.235 MA = -5.393 MA = 372.4 Wb = -524.9 Wb = 2 hrs) = 13.12 T = 0.5986 =ERROR! Var missing = 6.196 K =ERROR! Var missing =ERROR! Var missing	Nominal neutron wall load Normalised radius of 'core' regi Electron density at pedestal r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life Primary (high grade) heat Gross cycle efficiency Net cycle efficiency Gross electric power	on= 0.75 = 4.613e+19 m ⁻³ = 0.94 = 0.06629 = 123.1 MW = 274.6 MW = 1459 MW = 1.526 MW = 210.4 MW = 119.6 MW = 3.039 years = 2591 MW = 37.5 % = 31.54 % = 971.6 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor Poliv R0 Poliv R1 PLH H* (non-rad. corr.) Costs	= 50 MW = 0.434 = 0.226 = 0.34 = 0.3024 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 362 MW = 21.72 MW m ⁻¹ = 36.93 ×10 ⁻²⁰ MW m ² = 1.76 = 1.066
PF 3 PF 5 Startup flux swing Available flux swing Burn time TF coil type is WST Nb3Sn Peak field at conductor (w. rip. I/I _{crit} TF Temperature margin CS Temperature margin Conduit Von Mises stress Case Von Mises stress Allowable stress	= -8.235 MA = -5.393 MA = 372.4 Wb = -524.9 Wb = 2 hrs) = 13.12 T = 0.5986 =ERROR! Var missing = 6.196 K =ERROR! Var missing =ERROR! Var missing = 5.8e+08 Pa	Nominal neutron wall load Normalised radius of 'core' regi Electron density at pedestal r/a at density pedestal Helium fraction Core radiation Total radiation Nuclear heating in blanket Nuclear heating in shield Power to divertor H-mode threshold Divertor life Primary (high grade) heat Gross cycle efficiency Net cycle efficiency	on= 0.75 = 4.613e+19 m ⁻³ = 0.94 = 0.06629 = 123.1 MW = 274.6 MW = 1459 MW = 1.526 MW = 210.4 MW = 119.6 MW = 3.039 years = 2591 MW = 37.5 % = 31.54 % = 971.6 MW = 200 MW	Steady state auxiliary power Power for heating only Bootstrap fraction Auxiliary fraction Inductive fraction NB gamma NB energy Plasma heating used for H factor Poliv R0 Poliv R1 PLH H* (non-rad. corr.) Costs	= 50 MW = 0.434 = 0.226 = 0.34 = 0.3024 10 ²⁰ A W ⁻¹ m ⁻² = 1000 keV or = 362 MW = 21.72 MW m ⁻¹ = 36.93 ×10 ⁻²⁰ MW m ² = 1.76 = 1.066

