# Fisher线性判别

## 环境

- pycharm专业版2019.3.3
- python3.7.4
- 外部库: numpy=1.16.5; sklearn=0.21.3; matplotlib=3.3.1; openpyxl=3.0.0

# 原理简介

- 1. 将高纬度问题降维,即假设数据存在于n维空间中,在数学上,通过投影使数据到一条直线上。然后根据投影点在直线上的分布对原始点进行分类。
- 2. 怎么找到合适的直线方向,能使不同类别数据映射到该条直线上易于区分,这就是Fisher线性判别要解决的问题。

## 一些计算公式

### 在n维X空间

• 各类样本均值向量 $\mu_i$ :

$$\mu_i = \frac{1}{N_i} \sum_{x_j \in \Omega_i} x_j, i = 1, 2 \tag{1}$$

• 各类类内离散度矩阵 $S_i$ :

$$S_i = \sum_{x_j \in \Omega_i} (x_j - \mu_i) (x_j - \mu_i)^T, i = 1, 2$$
 (2)

• 总类内离散度矩阵 $S_w$ :

$$S_w = \sum_{x_i \in \Omega_i} S_i, i = 1, 2$$
 (3)

样本类间离散度矩阵S<sub>b</sub>:

$$S_b = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T \tag{4}$$

## 在1维Y空间

各类样本均值μ<sub>i</sub>:

$$\overline{\mu_i} = \frac{1}{N_i} \sum_{y_j \in \psi_i} y_j, i = 1, 2 \tag{5}$$

• 各类内离散度 $\overline{S_i^2}$ :

$$\overline{S_i}^2 = \sum_{y_j \in \psi_i} (y_j - \overline{\mu}_i)^2, i = 1, 2$$
 (6)

最佳投影方向ω\*:

$$\omega^* = S_{\omega}^{-1}(\mu_1 - \mu_2) \tag{7}$$

决策点y<sub>0</sub>:

$$y_0 = \frac{\overline{\mu}_1 + \overline{\mu}_2}{2} \tag{8}$$

### 分类评价指标

• 总体分类精度OA:

• 类别分类精度AA:

• kappa系数:

$$\frac{OA - pe}{1 - pe} \tag{11}$$

• pe:

# 数据标准化

由于两种数据集中特征的量纲都一样,所以为了消除量纲,将每个特征的数值除以该特征中的最大值即可,这样将所有特征数值映射到了区间[0,1]之间

# 划分训练集和测试集

利用sklearn包中的train\_test\_split函数进行训练集和测试集的划分,其中训练集占比40%,测试集占比60%。

其中train test split函数的一般形式如下:

1 X\_train,X\_test, y\_train, y\_test =train\_test\_split(train\_data,train\_target,test\_size=0.4, random\_state=0)

#### 参数解释:

train\_data: 所要划分的样本特征集train\_target: 所要划分的样本结果集

• test\_size: 测试样本占比, 如果是整数的话就是样本的数量

• random state: 是随机数的种子

• 随机种子: 其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数

通过该函数,只要每次传入不同的随机种子,就可以得到不同的训练集、测试集

# 分类策略

1. sonar数据集

sonar数据集为一个二分类问题,只需要计算出最优投影方向,投影后计算出决策点,再进行分类即可

2. iris数据集

iris数据集为一个三分类问题,可以将其转化为三个二分类问题进行分类,具体分类思路如下:



# 分类结果

1. sonar数据集

| 试验次 数 | 整体分类精度<br>OA | kappa系<br>数 | 第一类类别分类精度<br>AA | 第二类类别分类精度<br>AA |
|-------|--------------|-------------|-----------------|-----------------|
| 1     | 0.603        | 0.213       | 0.678           | 0.537           |
| 2     | 0.690        | 0.370       | 0.559           | 0.806           |
| 3     | 0.690        | 0.380       | 0.695           | 0.687           |
| 4     | 0.587        | 0.171       | 0.559           | 0.612           |
| 5     | 0.690        | 0.385       | 0.763           | 0.627           |
| 6     | 0.698        | 0.389       | 0.610           | 0.776           |
| 7     | 0.675        | 0.355       | 0.763           | 0.597           |
| 8     | 0.683        | 0.371       | 0.780           | 0.597           |
| 9     | 0.706        | 0.410       | 0.678           | 0.731           |
| 10    | 0.690        | 0.383       | 0.729           | 0.657           |
| 11    | 0.643        | 0.284       | 0.627           | 0.657           |
| 12    | 0.730        | 0.467       | 0.847           | 0.627           |
| 13    | 0.643        | 0.279       | 0.576           | 0.701           |
| 14    | 0.683        | 0.353       | 0.542           | 0.806           |
| 15    | 0.675        | 0.351       | 0.712           | 0.642           |
| 16    | 0.603        | 0.198       | 0.525           | 0.672           |
| 17    | 0.794        | 0.589       | 0.847           | 0.746           |
| 18    | 0.611        | 0.223       | 0.627           | 0.597           |
| 19    | 0.627        | 0.246       | 0.542           | 0.701           |
| 20    | 0.778        | 0.551       | 0.712           | 0.836           |
| 21    | 0.675        | 0.358       | 0.797           | 0.567           |
| 22    | 0.683        | 0.365       | 0.695           | 0.672           |
| 23    | 0.754        | 0.500       | 0.644           | 0.851           |
| 24    | 0.738        | 0.475       | 0.729           | 0.746           |
| 25    | 0.730        | 0.460       | 0.746           | 0.716           |
| 26    | 0.667        | 0.335       | 0.695           | 0.642           |
| 27    | 0.667        | 0.333       | 0.678           | 0.657           |
| 28    | 0.706        | 0.417       | 0.780           | 0.642           |
| 29    | 0.754        | 0.508       | 0.780           | 0.731           |
| 30    | 0.730        | 0.462       | 0.780           | 0.687           |

| 试验次 | 整体分类精度 | kappa系 | 第一类类别分类精度 | 第二类类别分类精度 |
|-----|--------|--------|-----------|-----------|
| 数   | OA     | 数      | AA        | AA        |
| 平均值 | 0.687  | 0.373  | 0.690     | 0.684     |

2. iris数据集

| 实验次数 | 整体分类精度OA | kappa系数 | 类别分类精度AA(依次为第1,2,3类) |
|------|----------|---------|----------------------|
| 1    | 0.900    | 0.850   | 1.00 0.767 0.933     |
| 2    | 0.911    | 0.867   | 1.00 0.800 0.933     |
| 3    | 0.833    | 0.750   | 1.00 0.800 0.700     |
| 4    | 0.956    | 0.933   | 1.00 0.900 0.967     |
| 5    | 0.922    | 0.883   | 1.00 0.900 0.867     |
| 6    | 0.967    | 0.950   | 1.00 0.900 1.000     |
| 7    | 0.900    | 0.850   | 1.00 0.800 0.900     |
| 8    | 0.944    | 0.917   | 1.00 0.900 0.933     |
| 9    | 0.933    | 0.900   | 1.00 0.967 0.833     |
| 10   | 0.956    | 0.933   | 1.00 0.933 0.933     |
| 11   | 0.900    | 0.850   | 1.00 0.833 0.867     |
| 12   | 0.822    | 0.733   | 1.00 0.667 0.800     |
| 13   | 0.833    | 0.75    | 1.00 0.800 0.700     |
| 14   | 0.967    | 0.950   | 1.00 0.933 0.967     |
| 15   | 0.878    | 0.817   | 1.00 0.633 1.000     |
| 16   | 0.922    | 0.883   | 1.00 0.933 0.833     |
| 17   | 0.644    | 0.467   | 1.00 0.433 0.500     |
| 18   | 0.900    | 0.850   | 1.00 0.833 0.867     |
| 19   | 0.900    | 0.850   | 1.00 0.867 0.833     |
| 20   | 0.889    | 0.833   | 1.00 0.867 0.800     |
| 21   | 0.900    | 0.850   | 1.00 0.900 0.800     |
| 22   | 0.900    | 0.850   | 1.00 0.833 0.867     |
| 23   | 0.911    | 0.867   | 1.00 0.967 0.767     |
| 24   | 0.944    | 0.917   | 1.00 0.833 1.000     |
| 25   | 0.944    | 0.917   | 1.00 0.967 0.867     |
| 26   | 0.922    | 0.883   | 0.97 0.867 0.933     |
| 27   | 0.956    | 0.933   | 1.00 0.900 0.967     |
| 28   | 0.922    | 0.883   | 1.00 0.900 0.867     |
| 29   | 0.956    | 0.933   | 1.00 0.933 0.933     |
| 30   | 0.878    | 0.817   | 1.00 0.767 0.867     |

| 实验次数 | 整体分类精度OA | kappa系数 | 类别分类精度AA(依次为第1, 2, 3类) |
|------|----------|---------|------------------------|
| 平均值  | 0.904    | 0.856   | 0.999 0.844 0.868      |

# 结果分析

#### 1. sonar

从结果可以看出, sonar数据集的分类精度并不理想, 只有68.7%, kappa系数也只有0.373, 这说明分类效果较为一般, 个人认为分类效果一般的原因如下:

sonar数据集的维度较高,足足有60维,而我们直接将其降到了一维,降维的过程中避免不了有效信息的损失,有可能是因为有效信息损失过多,导致分类效果不理想。

可行的改进方法是不降成一维,降成2维或者稍低一点的维度进行分类。

#### 2. iris数据集

从结果可以看出,三分类的准确率达到了90.4%,kappa系数达到了0.856,说明分类效果很好,与实际情况几乎完全一致。

类别分类精度中第一类的精度最高,二三类稍低一点,可以看出:第一类鸢尾花在四个特征上与另外两类有较为明显的差别,很容易跟另外两类区分开来;而第二三类可能是在四个特征上的差别没有特别明显,所以分类精度会有所下降。

# 代码展示

1. 鸢尾花数据集分类 (数据来源于sklearn内部封装的数据集)

```
1 # -*- coding: utf-8 -*-
3
   from sklearn.datasets import load_iris
   from sklearn.model_selection import train_test_split
   import numpy as np
5
   from matplotlib import pyplot as plt
    import random
8
9
10 # 计算并返回均值向量
11
  def junzhi(iris):
12
        a = np.zeros([4, 1])
13
        a[0] = np.mean(iris[:, 0])
14
        a[1] = np.mean(iris[:, 1])
15
       a[2] = np.mean(iris[:, 2])
        a[3] = np.mean(iris[:, 3])
16
17
        return a
18
   # 计算类内离散度矩阵S_i
19
   def S_i(iris):
20
21
        a = junzhi(iris)
22
        b = np.zeros([iris.shape[1], iris.shape[1]])
23
        for i in range(iris.shape[0]):
            b = b + np.matmul((iris[i, :].T - a), (iris[i, :].T - a).T)
24
25
        return b
26
   # 计算类间离散度矩阵S_b
27
28
   def S_b(iris1, iris2):
29
        b_1 = S_i(iris1)
        b_2 = S_i(iris2)
30
```

```
31
       c = b_1 + b_2
32
        return c
33
34
    # 划分训练集、测试集的函数
35
    def train_test(iris, target, num):
        train_iris, test_iris, train_target, test_target =\
36
37
            train_test_split(iris, target, test_size=0.6, random_state=num,
    shuffle=True)
        return {'train_iris': train_iris, 'test_iris': test_iris,
38
    'train_target': train_target, 'test_target': test_target}
39
40
    # 计算出最优的投影方向并计算出决策点
41
    def best_w(iris1, iris2, target1, target2, num):
        train_iris1 = train_test(iris1, target1, num)['train_iris']
42
43
        train_iris2 = train_test(iris2, target2, num)['train_iris']
        s_0 = S_b(train_iris1, train_iris2)
44
45
        best_w = np.matmul(np.linalg.inv(s_0), junzhi(train_iris1) -
    junzhi(train_iris2))
46
        y_0 = 0.5*np.mean(np.matmul(train_iris1, best_w)) +
    0.5*np.mean(np.matmul(train_iris2, best_w))
        # print(best_w)
47
48
        return best_w, y_0
49
    # 对测试样本进行分类并计算相关评价指标
50
51
    def classify(iris1,iris2,iris3,target1,target2,target3,num):
52
        # print(num)
53
        ## 训练集得到的最佳方向和决策点
54
        w_best12,y0_12=best_w(iris1, iris2, target1, target2, num)
55
        w_best13,y0_13=best_w(iris1, iris3, target1, target3, num)
56
        w_best23,y0_23=best_w(iris2, iris3, target2, target3, num)
57
        ## 测试集
58
        test1=train_test(iris1, target1, num)['test_iris']
59
        test2=train_test(iris2, target2, num)['test_iris']
60
        test3=train_test(iris3, target3, num)['test_iris']
61
        test=np.vstack((test1,test2,test3))
62
        ## 当前测试集对应的标签
63
        test_target1=train_test(iris1, target1, num)['test_target']
64
        test_target2=train_test(iris2, target2, num)['test_target']
65
        test_target3=train_test(iris3, target3, num)['test_target']
66
        test_target=np.hstack((test_target1,test_target2,test_target3))
67
        # print(test_target)
68
        ## 存放预测得到的标签
69
        predict_target=np.zeros_like(test_target)
        ## 先通过第一二类决策函数
70
71
        y=np.matmul(test,w_best12)
72
        for i in range(len(test)):
73
            if y[i]>y0_12 or y[i]==y0_12:
74
                predict_target[i]=0
75
            else:
76
                predict_target[i]=1
77
        ## 再通过第一三类决策函数
        y=np.matmul(test,w_best13)
78
79
        for i in range(len(test)):
            if y[i]>y0_13 or y[i]==y0_13:
80
                predict_target[i]=0
81
            else:
82
83
                predict_target[i]=2
84
```

```
## 剩余的通过第二三类决策函数
 85
 86
         y=np.matmul(test,w_best23)
 87
         for i in range(len(test)):
 88
             if predict_target[i]!=0:
 89
                 if y[i]>y0_23 or y[i]==y0_23:
 90
                     predict_target[i]=1
 91
                 else:
 92
                     predict_target[i]=2
 93
         # print(predict_target)
 94
         ## 计算OA、AA、kappa系数
 95
         ### 记录三类样本分类正确的数量
 96
         num_1=0
 97
         num_2=0
 98
         num_3=0
 99
         ### 记录三类样本实际分类的数量
100
         real_num_1=0
         real_num_2=0
101
         real_num_3=0
102
103
         for i in range(len(test_target)):
104
             ## 统计分类正确的数量
105
             if i<len(test_target)/3:
                 if predict_target[i] == test_target[i]:
106
107
                     num_1=num_1+1
108
             elif i<2*(len(test_target))/3:</pre>
109
                 if predict_target[i] == test_target[i]:
110
                     num_2=num_2+1
111
             else:
112
                 if predict_target[i] == test_target[i]:
113
                     num_3=num_3+1
114
             ## 统计实际的分类数量
115
             if predict_target[i]==0:
                 real_num_1=real_num_1+1
116
117
             elif predict_target[i]==1:
118
                 real_num_2 = real_num_2 + 1
119
             else:
120
                 real_num_3 = real_num_3 + 1
121
         # print(num_1)
122
         ### 计算相关指标
123
         OA=(num_1+num_2+num_3)/len(test_target)
124
         AA_1=num_1*3/len(test_target)
125
         AA_2=num_2*3/len(test_target)
126
         AA_3=num_3*3/len(test_target)
127
         pe=(real_num_1*len(test_target1)+real_num_2*len(test_target2)\
128
             +real_num_3*len(test_target3))/np.square(len(test_target))
129
         kappa=(OA-pe)/(1-pe)
130
         return OA, [AA_1,AA_2,AA_3], kappa
131
132
     if __name__ == "__main__":
133
134
         # 导入数据并去量纲
135
         data = load_iris()
         iris1 = data.data[0:50, 0:4]
136
137
         iris2 = data.data[50:100, 0:4]
138
         iris3 = data.data[100:150, 0:4]
139
140
         max_feature=np.array([np.max(data.data[:,0]),np.max(data.data[:,1]),\
141
             np.max(data.data[:,2]),np.max(data.data[:,3])])
142
         iris1=iris1/max_feature
```

```
143
         iris2=iris2/max_feature
144
         iris3=iris3/max_feature
         # 导入标签
145
146
         target1 = data.target[0:50].T
147
         target2 = data.target[50:100].T
148
         target3 = data.target[100:150].T
149
150
         # 存储相关的指标值
151
         OAs=np.zeros([30,1])
152
         AAs=np.zeros([30,3])
153
         kappas=np.zeros([30,1])
154
155
         #随机给出30个随机种子,用于train_test函数
156
         # nums=
     [703,5205,8248,4998,1027,8528,7063,6513,793,2805,1524,8985,3939,9000]
157
     ,3796,3178,628,9359,582,265,5920,8866,7960,5090,5481,4928,526,8763,5333,659
158
         nums=random.sample(range(0,10000),100)
159
         j=0; k=0
         while j<30:
160
161
             try:
162
      OAs[j], AAs[j,], kappas[j]=classify(iris1,iris2,iris3,target1,target2,target
     3, nums[k])
163
                 j=j+1
164
                 k=k+1
165
             except:
166
                 k+=1
167
         # print(OAs)
168
         temp=0
169
         for i in range(len(OAs)):
170
             if OAs[i]!=0:
171
                 temp=temp+1
172
         # print(AAs)
173
         # print(OAs)
174
         # print(kappas)
175
         print("AA值分别为:
     \n{:.3f}\n{:.3f}\n{:.3f}\. format(np.sum(AAs[:,0])/temp,np.sum(AAs[:,1]/temp)
     ),np.sum(AAs[:,2])/temp))
         print("OA值为: \n{:.3f}".format(np.sum(OAs)/temp))
176
177
         print("kappa值为: \n{:.3f}".format(np.sum(kappas)/temp))
```

### 2. sonar数据集分类 (数据来源见附件sonar.xlsx)

```
1 # -*- coding: utf-8 -*-
2
   from sklearn.model_selection import train_test_split
4
   import numpy as np
   from matplotlib import pyplot as plt
5
6
   import random
7
   from openpyxl import load_workbook
 8
9
   # 计算并返回均值向量
10
11
   def junzhi(sonar):
12
        a = np.zeros([60, 1])
```

```
13
        for i in range(60):
14
            a[i]=np.mean(sonar[:,i])
15
        return a
16
17
    # 计算类内离散度矩阵S_i
18
    def S_i(sonar):
19
        a = junzhi(sonar)
20
        b = np.zeros([sonar.shape[1], sonar.shape[1]])
        for i in range(sonar.shape[0]):
21
22
            b = b + np.matmul((sonar[i, :].T - a), (sonar[i, :].T - a).T)
23
        return b
24
25
   # 计算类间离散度矩阵S b
26
   def S_b(sonar1, sonar2):
27
        b_1 = S_i(sonar1)
28
        b_2 = S_i(sonar2)
29
        c = b_1 + b_2
30
        return c
31
32
    # 划分训练集、测试集的函数
33
    def train_test(sonar, target, num):
34
        train_sonar, test_sonar, train_target, test_target =\
35
            train_test_split(sonar, target, test_size=0.6, random_state=num,
    shuffle=True)
36
        return {'train_sonar': train_sonar, 'test_sonar': test_sonar,
    'train_target': train_target, 'test_target': test_target}
37
    # 计算出最优的投影方向并计算出决策点
38
39
    def best_w(sonar1, sonar2, target1, target2, num):
40
        train_sonar1 = train_test(sonar1, target1, num)['train_sonar']
41
        train_sonar2 = train_test(sonar2, target2, num)['train_sonar']
42
        s_0 = S_b(train_sonar1, train_sonar2)
        best_w = np.matmul(np.linalg.inv(s_0), junzhi(train_sonar1) -
43
    junzhi(train_sonar2))
44
        y_0 = (58/124)*np.mean(np.matmul(train_sonar1, best_w)) +
    (66/124)*np.mean(np.matmul(train_sonar2, best_w))
45
        # print(best_w)
46
        return best_w, y_0
47
48
    # 对测试样本进行分类并计算相关评价指标
49
    def classify(sonar1, sonar2, target1, target2, num):
50
        # print(num)
51
        ## 训练集得到的最佳方向和决策点
52
        w_best12,y0_12=best_w(sonar1, sonar2, target1, target2, num)
53
        ## 测试集
        test1=train_test(sonar1, target1, num)['test_sonar']
54
55
        test2=train_test(sonar2, target2, num)['test_sonar']
56
        test=np.vstack((test1,test2))
57
        ## 当前测试集对应的标签
58
        test_target1=train_test(sonar1, target1, num)['test_target']
59
        test_target2=train_test(sonar2, target2, num)['test_target']
        # print(test_target1.shape)
60
61
        # print(test_target2.shape)
62
        test_target=np.vstack((test_target1,test_target2))
63
        # print(test_target.shape)
64
        # print(test_target)
65
        ## 存放预测得到的标签
66
        predict_target=np.zeros_like(test_target)
```

```
## 通过决策函数
 67
 68
         y=np.matmul(test,w_best12)
 69
         for i in range(len(test)):
 70
             if y[i]>y0_12 or y[i]==y0_12:
 71
                 predict_target[i]=0
 72
             else:
 73
                 predict_target[i]=1
 74
         # print(predict_target)
 75
         ## 计算OA、AA、kappa系数
 76
         ### 记录三类样本分类正确的数量
 77
         num_1=0
 78
         num_2=0
 79
         ### 记录三类样本实际分类的数量
         real_num_1=0
 80
 81
         real_num_2=0
         for i in range(len(test_target)):
 82
 83
             ## 统计分类正确的数量
 84
             if i<len(test_target1):</pre>
 85
                 if predict_target[i]==test_target[i]:
 86
                     num_1=num_1+1
 87
             else:
 88
                 if predict_target[i]==test_target[i]:
 89
                     num_2=num_2+1
             ## 统计实际的分类数量
 90
 91
             if predict_target[i]==0:
 92
                 real\_num\_1=real\_num\_1+1
 93
             else:
 94
                 real_num_2 = real_num_2 + 1
         # print(num_1)
 95
 96
         ### 计算相关指标
 97
         OA=(num_1+num_2)/len(test_target)
 98
         AA_1=(num_1)/len(test_target1)
 99
         AA_2=(num_2)/len(test_target2)
100
         pe=(real_num_1*len(test_target1)+real_num_2*\
101
             len(test_target2))/np.square(len(test_target))
102
         kappa=(OA-pe)/(1-pe)
103
         return OA, [AA_1, AA_2], kappa
104
105
106
     if __name__ == "__main__":
107
         # 导入数据
108
         workbook=load_workbook(filename='sonar.xlsx')
109
         # print(workbook.sheetnames)
110
         sheet=workbook['Sheet1']
111
         # 存储样本特征集
112
         sonar=np.zeros([208,60])
113
         # 存储标签
114
         target=np.zeros([208,1])
         for i in range(208):
115
116
             for j in range(60):
                 sonar[i,j]=sheet.cell(row=i+1,column=j+1).value
117
118
         # print(sonar.shape)
         # print(sonar[0,59])
119
120
         for i in range(208):
121
             if sheet.cell(row=i+1,column=61).value=='R':
122
                 target[i]=0
123
             else:
124
                 target[i]=1
```

```
125
         # print(target[97])
126
         sonar1=sonar[0:97,:]
127
         sonar2=sonar[97:208,:]
128
         target1=target[0:97,:]
129
         target2=target[97:208,:]
130
         # 存储相关的指标值
131
         OAs=np.zeros([30,1])
132
         AAs=np.zeros([30,2])
133
         kappas=np.zeros([30,1])
134
         #随机给出30个随机种子,用于train_test函数
135
         # nums=
     [703,5205,8248,4998,1027,8528,7063,6513,793,2805,1524,8985,3939,9000]
136
     ,3796,3178,628,9359,582,265,5920,8866,7960,5090,5481,4928,526,8763,5333,659
137
         nums=random.sample(range(0,10000),100)
         j=0; k=0
138
139
         while j<30:
140
             try:
141
      OAs[j],AAs[j,],kappas[j]=classify(sonar1,sonar2,target1,target2,nums[k])
142
                 j=j+1
143
                 k=k+1
144
             except:
145
                 k+=1
146
147
     OAs[j],AAs[j,],kappas[j]=classify(sonar1,sonar2,target1,target2,nums[k])
148
149
         temp=0
150
         for i in range(len(OAs)):
151
             if OAs[i]!=0:
152
                 temp=temp+1
153
         print(OAs)
154
         print(AAs)
155
         print(kappas)
156
         print("AA值分别为:
     n{:.3f}\n{:.3f}".format(np.sum(AAs[:,0])/temp,np.sum(AAs[:,1]/temp)))
157
         print("OA值为: \n{:.3f}".format(np.sum(OAs)/temp))
158
         print("kappa值为: \n{:.3f}".format(np.sum(kappas)/temp))
```