

Towards Knowledge-based Road Modeling for Automated Vehicles: Analysis and Concept for Incorporating Prior Knowledge

Jenny Fricke¹, Christopher Plachetka¹, Bernd Rech¹

¹Volkswagen AG, Commercial Vehicles, Self-Driving System Development

Representing the stationary environment for automated driving

- Necessary for all subsystems (e.g., scene understanding)
- Onboard perception not sufficient (e.g., sensor limitations)

- Representing the stationary environment for automated driving
 - Necessary for all subsystems (e.g., scene understanding)
 - Onboard perception not sufficient (e.g., sensor limitations)

- Common approach: reliance on High Definition (HD) maps
 - Information about element's positions and connections (e.g., association of signs to lanes)

Representing the stationary environment for automated driving

- Necessary for all subsystems (e.g., scene understanding)
- Onboard perception not sufficient (e.g., sensor limitations)

- Common approach: reliance on High Definition (HD) maps
 - Information about element's positions and connections (e.g., association of signs to lanes)

- Deviations between real world and map data
- > Can cause false predictions, false vehicle behavior

 Objective: concept allowing for a continued operation of the driving function despite map deviations

- Need for system ensuring map dependability:
 - Onboard detection of deviations ahead
 - Onboard corrections of deviations
 - Map updates within short cycles

- Road modeling tasks
 - Evaluation of undetected physical elements
 - Evaluation and establishment of connections and semantical elements
 - Plausibility checks by resolving inconsistencies

- Work on environment modeling with knowledge focuses on offline map generation, hardly on online map validation
- Focus on special areas (e.g., intersections) or features (e.g., geometry or traffic regulations)
- Lack of precise argumentation why specific knowledge is needed in the first place
- > Presented work for road modeling covers
 - Framework proposal to solve road modeling tasks
 - Holistic view (not restricted to subparts or features)
 - **Derivation** of required **knowledge**
 - Description and representation of derived knowledge

- Framework should take conditions into account:
 - Input from two sources
 - * Map deviation detection component (evaluated elements, e.g. as an object list)
 - * HD map (connections)
 - Output for two purposes
 - * Subsystems (alternative map hypothesis)
 - * Updates (deviating elements and connections)

0

0

- Framework should take conditions into account:
 - Input from two sources
 - * Map deviation detection component (evaluated elements, e.g. as an object list)

Findings:

- Framework for knowledge-based road modeling should adress three tasks
 - Stationary environment completion (evaluation of occluded elements)
 - ii. Stationary environment interpretation (composing semantical elements, evaluation of connections)
 - iii. Stationary environment plausibility (resolving inconsistencies)

 Semantical elements are required for the evaluation of physical elements and vice versa

Prior knowledge needed for evaluation

,Presence of right-of-way signs is mandatory for each lane entering an intersection'

 Semantical elements are required for the evaluation of physical elements and vice versa

Findings:

- Processing steps are performed iteratively due to mutually dependence
- Evaluation regarding three states: verified existing, deviating, remaining unknown

➤ Which kind of knowledge is required?

Introduction of layered model for traffic regulations

L3 Restrictions on driving and parking behavior

Regulations to be observed for driving on permitted lanes

L2 Topology of the road network

Permissible lanes, directions, linking of lanes

L1 General topographical information

Description of all drivable lanes

- ➤ Which kind of knowledge is required?
 - Introduction of layered model for traffic regulations

Findings:

- Derived prior knowledge is subsumed under three categories
 - i. Types and meanings of elements
 - e.g., driving direction, speed, right of way
 - ii. Road building regulations
 - e.g., allowed designs (dimensions) and connections
 - iii. Traffic rules
 - e.g., order of priorities

L1 General topographical information

Description of all drivable lanes

- > How to describe the derived knowledge?
- Semantical description of stationary environment information
- Describability of information based on established map frameworks

- ➤ How to describe the derived knowledge?
- Semantical description of stationary environment information
- Describability of information based on established map frameworks

Findings:

- Road model consisting of five primitives
 - i. Road markings
 - ii. Scene objects
 - iii. Geometries
 - iv. Traffic regulations
 - v. Semantical elements

- How to represent the derived prior knowledge?
- Concepts: collections of hierarchical classes representing the stationary environment domain
- Relations: description of properties of concepts itself and between them
- Restrictions: imposing constraints on the validity of relations and concepts
- Rules: specific combinations of concepts and relations to derive new knowledge

Updating

 \mathcal{M}_{t+1}

- Knowledge-based Road Modeling
- Stationary environment completion
 "Traffic sign pedestrian crossing is required
 to be part of a pedestrian crossing to be
 evaluated as valid"
- Stationary environment interpretation
 Distances of markings, grouping of elements
- Stationary environment plausibility
 Conflicting signs and markings

Verified
Falsified
Unknown due to occlusion
Missing in HD map

> Summary

- ✓ Definition of tasks to solve for knowledge-based road modeling
- ✓ Framework proposal
- ✓ Derivation of required prior knowledge categories
- ✓ Formal representation proposal of derived prior knowledge

Next steps

- Knowlegde base will be published in upcoming paper
- Application of framework together with knowledge base on real data containing map deviations

Thank you.

Jenny Fricke, Volkswagen AG, jenny.fricke@volkswagen.de

