Topological Spaces and Continuous Functions

Hu Zheng Department of Mathematics, Zhejiang University

April 21, 2015

1 Basis for a Topology

2 The Subspace Topology

Problem 2.1. A map $f: X \to Y$ is said to be an **open map** if for every open set U of X, the set f(U) is open in Y. Show that $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to X$ are open maps.

Solution:

Problem 2.2. Show that the dictionary order topology on the set $\mathbb{R} \times \mathbb{R}$ is the same as the product topology $\mathbb{R}_d \times \mathbb{R}$, where \mathbb{R}_d denotes \mathbb{R} in the discrete topology. Compare this topology with the standard topology on \mathbb{R}^2 .