Germanium

Space group: Fd-3m, 227

Lattice vectors: $R_1 = (-a/2, 0, a/2)$; $R_2 = (0, a/2, a/2)$; $R_3 = (-a/2, a/2, 0)$

Atom positions: $Ge_1 = (0, 0, 0)$; $Ge_2 = (a/4, a/4, a/4)$

Isotopes: 20.38% ⁷⁰Ge (69.924 amu); 27.31% ⁷²Ge (71.922 amu); 7.76% ⁷³Ge (72.923 amu);

36.72% ⁷⁴Ge (73.921 amu); 7.83% ⁷⁶Ge (75.921 amu)

DFT: Use VASP, QE, or both. PBEsol PAW, no d states in valence

(QE: Ge.pbesol-n-kjpaw psl.1.0.0.UPF; VASP: standard version with sol flag)

Warning: DFT may give metallic. May need to check convergence with electronic smearing.

Checklist (all data should be reported for the 2-atom primitive cell)

• Please provide all computational costs in cores*hours

Structure

- Converged relaxed 'temperature (T)=0' lattice constant a (target accuracy < 0.005 Å)
 - Single value with 4 significant figures: X.XXX
- Methods / convergence criteria
 - Energy/force thresholds
 - Thresholds/ Integration mesh / grid shifting
 - Fermi band shift
 - Smearing
- Other notes / cpu hours (e.g., multiple relaxations, compilers, hardware)
- All input files to run fully converged calculations (e.g., qe.sc.in, POSCAR)
- Other notes / cpu hours
- All input files to run fully converged calculations

Harmonic

- Converged dispersion (target accuracy < 0.1 THz for $\Gamma/X/L$ frequencies)
 - Numerical data: normalized wavevectors (q) and frequencies (f) for 6 polarizations (j) (excel or text file)
 - q in units of $2\pi/a$ and f in THz (f= $\omega/2\pi$)
 - 3 segments: Γ→X, Γ→K→X, and Γ→L evenly divided with ~100 q points per segment
 - 3 files, one for each segment. For each scaled q from 0 to 1 list (~100 rows): q, f₁, f₂, f₃, f₄, f₅, f₆
 - Converged phonon density of states (method, width, grid density sampled)
- Converged harmonic interatomic force constants (IFCs)
 - Supercell perturbations or DFPT (provide relevant details)
 - Standard format for code used (*e.g.*, QE, Phonopy)
 - Will be supplied as supplemental material upon publication
- Methods / convergence criteria
 - Thresholds
 - Supercell size / integration mesh

- Symmetries / irreducibility / number of calculations (*linked to cpu hours below*)
- Post-processing (e.g., enforce invariance constraints)
- Evidence of converged dispersion
 - Dispersions with varying supercell sizes and integration meshes
- Other notes / cpu hours (e.g., accuracy vs cpu cost, shifted meshes)
- All input files to run fully converged calculations

Anharmonic thermal transport

- Converged thermal conductivities (k) (target accuracy <2% difference between successive grids please contact us if a problem) for T=20 K and T=300K: knat,full, knat,RTA, kpure,full, kpure,RTA. If only RTA available, then only knat,RTA and kpure,RTA
- Four converged (300K) T-dependent thermal conductivities (k) (target accuracy <2% difference between successive grids please contact us if a problem): natural isotopes with full BTE solution ($k_{nat,full}$), natural isotopes with the relaxation time approximation (RTA) ($k_{nat,RTA}$), isotopically pure (100% 70 Ge (69.924 amu)) with full BTE solution ($k_{pure,full}$), and isotopically pure with RTA ($k_{pure,RTA}$). If only RTA available, then only $k_{nat,RTA}$ and $k_{pure,RTA}$
 - Do not include boundary scattering, even at low T. We want to see how the codes behave at low T without this extrinsic scattering.
 - Numerical data: T (K) and k (W/m/K) in range 20K < T < 1000K (excel or text file)
 - For 20K ≤ T ≤ 50K increments of 10K (4 data points); for 50K < T ≤ 300K increments of 25K (10 data points); for 300K < T ≤ 1000K increments of 100K (7 data points).</p>
 - 1 file with T from 20K to 1000K list (21 rows): T, $k_{nat,full}$, $k_{nat,RTA}$, $k_{pure,full}$, $k_{pure,RTA}$
- Accumulated T=20K and T=300K k_{acc} vs frequency and k_{acc} vs mean free path (mfp) for converged $k_{nat,RTA}$ and $k_{pure,RTA}$ values
 - Numerical data for each mode (q, j) sampled in the Brillouin zone integration: f (THz), mfp=|sqrt($v_x^2+v_y^2+v_z^2$)×lifetime| (nm), mode contribution to k (W/m/K) for $k_{nat,RTA}$ and $k_{pure,RTA}$
 - 1 file (excel or text) with row for each mode (q, j): f, mfp, mode contribution to k
- RTA T=20K and T=300K three-phonon scattering rates $(1/\tau_{3ph})$ and phonon-isotope scattering rates for natural abundance $(1/\tau_{iso})$
 - Numerical data: f (THz), $1/\tau_{3ph}$ (THz=1/ps), and $1/\tau_{iso}$ (THz)
 - 1 file (excel or text) with row for each mode (q, j): f, $1/\tau_{3ph}$, $1/\tau_{iso}$
- Converged third-order anharmonic IFCs
 - Standard format for code used
 - Will be supplied as supplemental material upon publication
- Methods / convergence criteria: thermal conductivity
 - Delta function representation (with details; e.g., adaptive smearing, cutoff)
 - Integration grid
 - Symmetries used
- Methods / convergence criteria: anharmonic IFCs
 - Cutoff radius, supercell size, integration mesh, thresholds, displacement parameter for supercell derivatives

- Post-processing
 Evidence of converged k at T=20K and T=300K
 Varying integration meshes
 Target accuracy <2% difference between successive grids
- Other notes / cpu hours
- All input files to run fully converged calculations