Optimization Methods in Machine Learning Lecture 13: Proximal and Optimal Proximal Gradient Methods

Katya Scheinberg

Lehigh University

Spring 2015

Logistic Loss

Recall the logisitic loss with L_2 norm:

$$\min_{w} f(w) = \frac{1}{n} \sum \log(1 + e^{-y_i(w^T x_i)}) + \lambda ||w||_2^2$$

with L_1 norm:

$$\min_{w} f(w) = \frac{1}{n} \sum \log(1 + e^{-y_i(w^T x_i)}) + \lambda ||w||_1$$

Proximal Gradient Method

Use quadratic approximation in each iteration

$$w^k = \arg\min_{w} : f(u^k) + \nabla f(u)^T (w - u^k) + \frac{1}{2\mu_k} ||w - u^k||^2$$

Also let

$$q(w) = \frac{1}{2\mu_k} ||w - u^k||^2$$

Proximal Gradient Method

- Set $u^0 = 0$, $t_1 = 1$.
- $w^{k+1} = w^k \mu_k \nabla f(w^k)$
- ullet Use line search to find $\mu_k \geq \mu_{k+1}$ such that $f(w^{k+1}) \leq q(w^{k+1})$

Convergence rate: $\frac{1}{k}$.

Optimal Proximal Gradient Method

Use quadratic approximation in each iteration

$$w^{k} = \arg\min_{w} : f(u^{k}) + \nabla f(u)^{T} (w - u^{k}) + \frac{1}{2\mu_{k}} ||w - u^{k}||^{2}$$

Also let

$$q(w) = \frac{1}{2\mu_k} ||w - u^k||^2$$

Optimal Proximal Gradient Method

- Set $u^0 = 0$, $t_1 = 1$.
- $w^k = u^k \mu_k \nabla f(u^k)$
- Use line search to find $\mu_k \geq \mu_{k+1}$ such that $f(w^{k+1}) \leq q(w^{k+1})$
- $t_{k+1} = (1 + \sqrt{1 + 4t_k^2})/2$
- $u^{k+1} = w^k + \frac{t_k-1}{t_{k+1}}(w_k w_{k-1})$

Convergence rate: $\frac{1}{k^2}$.

Comparison

Convergence Rate

Proximal Gradient Method: $\frac{1}{k}$ Optimal Proximal Gradient Method: $\frac{1}{k^2}$ Optimal proximal gradient method is faster than proximal gradient method.

• Selection of μ_k

Selection in optimal proximal gradient method is more restrictive than that in proximal gradient method.

Second Order Method

Let

$$\ell(w) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-y_i(w^T x_i)}),$$

SO

$$f(w) = \ell(w) + \lambda ||w||_1.$$

We use the second order term to approximate f,

$$q(w) = \ell(u^k) + \nabla \ell(u^k)^T (w - u^k) + \frac{1}{2} (w - u^k)^T \nabla^2 \ell(u^k) (w - u^k) + \lambda ||w||_1,$$

from where we can use Newton method.

Second Order Method

If the Hessian is expensive to compute, then we can use,

$$q(w) = \ell(u^k) + \nabla \ell(u^k)^T (w - u^k) + \frac{1}{2} (w - u^k)^T \nabla^2 H_k(w - u^k) + \lambda ||w||_1,$$

where H_k is the Hessian approximation in k^{th} iteration. Normally, second order method works better than first order method.

General Form

We want to solve the following problem,

$$\min_{x\in\mathbb{R}^n} f(x) + g(x),$$

where f(x) is convex and smooth, g(x) is convex and simple. If the problem

$$\min \quad \frac{1}{2} \|z - y\|^2 + \lambda g(y)$$

is easy, then we can state that g(y) is simple.

If
$$g(y) = \lambda ||x||_1$$
, then

$$y^* = \begin{cases} z - \lambda, & \text{if } z > \lambda \\ 0, & \text{if } -\lambda \le z \le \lambda \\ z + \lambda, & \text{if } z < -\lambda \end{cases}$$

General Form

Let

$$q(x) = f(x^k) + \nabla f(x^k)^T (y - x^k) + \frac{1}{2\mu_k} ||y - x^k||^2 + g(y)$$

The following two problems are equivalent:

$$\min_{x} q(x)$$
.

$$\min_{x} \|x^k - u_k \nabla f(x^k) - y\|^2 + \mu_k g(y)$$

Extensions

Consider $g(y) = \lambda \sum_{i} ||y^{i}||, \forall i$, then the problem

$$\min_{y} \frac{1}{2} ||z - y||^2 + \lambda \sum_{i} ||y^{i}||$$

is equivalent to solve for each i separately because all variables y_i are independent, so

$$\min_{y_i} \ \frac{1}{2} \|z^i - y^i\|^2 + \lambda \|y^i\|,$$

SO

$$y^{i*} = \frac{r^i}{\|r^i\|} \max(0, \|r^i\| - \lambda)$$

Extensions

Consider one example that we have a group of identical features and want to study the effect,

$$Ax = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0.01 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = b,$$

where x_1, x_2 are identical.

Obviously, both $(1,0,1)^T$ and (0.5,0.5,1.01) are solutions, however, if we solve the following problem,

$$\min_{x} \ \frac{1}{2} \|Ax - b\|^2 + \lambda \|(x_1, x_2)^T\| + \lambda \|x_3\|,$$

we will find the unique optimal solution (0.5, 0.5, 1.01).

