S721 HW9

John Koo

To save on typing, I will denote $\frac{\partial^k}{\partial x^k} f(x) = \partial_x^k f(x)$.

6.1

Note that $x^2 = |x|^2$. Therefore, $f(x \mid \sigma^2) = (2\pi\sigma^2)^{-1/2}e^{-t^2/2\sigma^2}$. Then we can let $g(t \mid \sigma^2) = f(x \mid \sigma^2)$ and h(x) = 1.

6.2

$$f(\overrightarrow{x} \mid \theta) = \prod_{i=1}^{n} e^{i\theta - x_i} 1_{(i\theta, \infty)}(x_i) = e^{\theta \sum_{i=1}^{n} e^{-\sum_{i=1}^{n} x_i} \prod_{i=1}^{n} 1_{(i\theta, \infty)}(x_i)}$$

Since one of the $x_i = \min_i x_i$, $e^{\theta \sum_i x_i} \prod_i 1_{(i\theta,\infty)}(x_i)$ is a function of $\min_i x_i/i$. The remaining part does not depend on θ , so we can write it as $h(\overrightarrow{x}) = e^{-\sum_i x_i}$.

6.3

$$f(\overrightarrow{x}\mid\mu,\sigma) = \prod_{i}^{n}\sigma^{-1}e^{-(x-\mu)/\sigma}1_{(\mu,\infty)}(x_{i})$$

$$= (\frac{e^{\mu/\sigma}}{\sigma})^{n}e^{-\sum_{i}x_{i}/\sigma}1_{(\mu,\infty)}(x_{(1)}) \text{ since we only need the smallest value to be greater than the lower bound } \mu.$$
Then letting $t_{1} = \sum_{i}x_{i}$ and $t_{2} = x_{(1)}$, we get $g(t_{1},t_{2}\mid\mu,\sigma) = (\frac{e^{\mu/\sigma}}{\sigma})^{n}e^{-t_{1}/\sigma}1_{(\mu,\infty)}(t_{2})$ and $h(\overrightarrow{x}) = 1$.
Therefore, $\overrightarrow{T} = \begin{bmatrix} \sum_{i}X_{i}\\ X_{(1)} \end{bmatrix}$

6.5

$$f(\overrightarrow{x} \mid \theta) = \prod_{i=1}^{n} \frac{1}{2i\theta} 1_{(-i(\theta-1), i(\theta+1))}(x_i) = (2\theta)^{-n} \prod_{i=1}^{n} i^{-1} 1_{(-i(\theta-1), i(\theta+1))}(x_i)$$

We can see that $\min_i x_i/i \ge -(\theta - 1)$ and $\max_i x_i/i \le \theta + 1$, so this becomes:

$$(2\theta)^{-n}I(\min_i x_i/i \ge -(\theta-1)I(\max_i x_i/i \le \theta+1)\prod_i^n i^{-1}$$

Then letting the first three terms be g and the last therm that doesn't depend on θ be h, we can see that

$$T = \begin{bmatrix} \min_i x_i / i \\ \max_i x_i / i \end{bmatrix}$$

6.6

$$f(\overrightarrow{x}\mid\alpha,\beta) = \prod_{i}^{n} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x_{i}^{\alpha-1} e^{-x_{i}/\beta} = (\Gamma(\alpha)\beta^{\alpha})^{-n} (\prod_{i}^{n} x_{i})^{\alpha-1} e^{-\sum_{i} x_{i}/\beta}$$

Then letting $T = \begin{bmatrix} \prod_i x_i \\ \sum_i x_i \end{bmatrix}$, we get $(\Gamma(\alpha)\beta^{\alpha})^{-n}t_1^{\alpha-1}e^{-t_2/\beta}$, which we can set to g(T), letting $h(\overrightarrow{x}) = 1$.

1

7.6

Part a

$$f(x \mid \theta) = theta^n \prod_{i=1}^n x_i^{-2} 1_{[\theta,\infty)}(x_i)$$

Since we are only bounded to the left, we can pull out the indicator function using $x_{(1)}$, so we get:

 $(\theta^n 1_{[\theta,\infty)}(x_{(1)}))(\prod_i^n x_i^{-2})$ and now we can see that the second part doesn't depend on θ so we can set it to $h(\overrightarrow{x})$. For the first part we can set $T = X_{(1)}$ to get $g(T \mid \theta)$.

7.10

Part a

We are given the distribution, so we need to derivate w.r.t. x to get the density.

$$f(x \mid \alpha, \beta) = \frac{\alpha}{\beta^{\alpha}} x^{\alpha-1}$$
 for $x \in [0, \beta]$ and 0 otherwise.

So the joint density is
$$f(\overrightarrow{x} \mid \alpha, \beta) = (\frac{\alpha}{\beta^{\alpha}})^n \prod_i^n x_i^{\alpha-1} 1_{[0,\beta]}(x_i)$$

Since our support has two bounds, we need to care about both the max and min, so $\prod_{i=1}^{n} 1_{[0,\beta]}(x_i)$ becomes $1_{[0,\infty)}(x_{(1)})1_{(-\infty,\beta]}(x_{(n)})$. So the joint density is:

$$(\frac{\alpha}{\beta^{\alpha}})^n 1_{[0,\infty)}(x_{(1)}) 1_{(-\infty,\beta]}(x_{(n)}) \prod_i^n x_i^{\alpha-1}$$

The first, third, and fourth terms depend on α or β , so those go into our g(T), so $h(\overrightarrow{x}) = 1_{[0,\infty)}(x_{(1)})$. Then we can just let $T = \begin{bmatrix} \prod_{i=1}^{n} X_i \\ X_{(n)} \end{bmatrix}$.

7.19

Part a

$$f(\overrightarrow{y}\mid\overrightarrow{x},\beta,\sigma^2) = \prod_i^n (2\pi\sigma^2)^{-1/2} e^{-(y_i-\beta x_i)^2/2\sigma^2} = (2\pi\sigma^2)^{-n/2} e^{-\sum_i y_i^2/2\sigma^2 + \beta \sum_i x_i y_i/\sigma^2 - \beta^2 \sum_i x_i^2/2\sigma^2}$$

Here we have to set h = 1 since we cannot separate out β or σ^2 .

We can see that the terms that depend on \overrightarrow{y} are $\sum_i y_i^2$ and $\sum_i x_i y_i$. Therefore,

$$T = \begin{bmatrix} \sum_{i} Y_i^2 \\ \sum_{i} x_i Y_i \end{bmatrix}$$

11.6

Part a

We have
$$f_i(\overrightarrow{y}_i) = \prod_j^{n_i} (2\pi\sigma^2)^{-1/2} e^{(y_{ij} - \theta_i)^2/2\sigma^2}$$

The full joint density is then
$$f = \prod_{i=1}^{k} f_i = \prod_{i=1}^{k} \prod_{j=1}^{n_i} (2\pi\sigma^2)^{-1/2} e^{(y_{ij} - \theta_i)^2/2\sigma^2}$$

= $\prod_{i=1}^{k} (2\pi\sigma^2)^{-n_i/2} e^{-\sum_{j=1}^{k} (y_{ij} - \theta_i)^2/2\sigma^2}$

$$= (2\pi\sigma^2)^{-\sum_i n_i/2} e^{-\sum_i \sum_j (y_{ij} - \theta_i)^2/2\sigma^2}$$

$$= (2\pi\sigma^2)^{-\sum_i n_i/2} \exp\left(-\sum_i \sum_j y_{ij}^2 + \sum_i \theta_i \sum_j y_{ij}/\sigma^2 - \sum_i \sum_j \theta^2/2\sigma^2\right)$$

So we have $t_i = \sum_j y_{ij}$ and $t_{k+1} = \sum_i \sum_j y_{ij}^2$.

But there exists a 1-1 mapping between $\sum_{i} Y_{ij}$ and \bar{Y}_{i} as well as between $\sum_{i} \sum_{j} Y_{ij}^{2}$ and S^{2} .

11.35

Part a

We wish to minimize $\sum_i \epsilon_i^2 = \sum_i (y_i - \theta x_i^2)^2$, which can be done by derivating w.r.t. θ and then setting to 0. So we get:

$$\begin{array}{l} 0 = \sum_{i} -2x_{i}^{2}(y_{i} - \theta x_{i}^{2}) \\ \Longrightarrow 0 = \sum_{i} x_{i}^{2}y_{i} - \theta \sum_{i} x_{i}^{4} \\ \Longrightarrow \hat{\theta} = \frac{\sum_{i} x_{i}^{2}Y_{i}}{\sum_{i} x_{i}^{4}} \end{array}$$

Part b

$$Y_i \sim \mathcal{N}(\theta x_i^2, \sigma^2)$$
, so $\mathcal{L}(\theta) = \prod_i^n (2\pi\sigma^2)^{-1/2} e^{(y_i - \theta x_i^2)^2/2\sigma^2}$

Then
$$\ell(\theta) = -\frac{n}{2} \log 2\pi \sigma^2 - \sum_i (y_i - \theta x_i^2)^2 / 2\sigma^2$$

The first term doesn't depend on θ , and the second term is just the same as part (a) except with a constant, so derivating w.r.t. θ and setting to 0 will provide the same solution, $\hat{\theta} = \frac{\sum_{i} x_i^2 Y_i}{\sum_{i} x_i^4}$

Part c

$$g(\theta) = \theta$$
, so $g'(\theta) = 1$ and $(g'(\theta))^2 = 1$.

$$\begin{array}{l} \partial_{\theta}\ell = \sum_{i}(y_{i} - \theta x_{i}^{2})x_{i}^{2}/\sigma, \\ \text{so } \partial_{\theta}^{2}\ell = -\sum_{i}x_{i}^{4}/\sigma^{2}. \end{array}$$

Since this doesn't depend on θ , the negative of its expected value is just $\sum_i x_i^4/\sigma^2$.

Then the CRLB is just $\frac{\sigma^2}{\sum_i x_i^4}$

On the other hand,
$$\begin{split} Var(\frac{\sum_i x_i^2 Y_i}{\sum_i x_i^4}) &= Var(\sum_i \frac{x_i^2 Y_i}{\sum_j x_j^4}) \\ &= \sum_i \frac{1}{(\sum_j x_j^4)^2} x_i^4 Var(Y_i) \\ &= \frac{\sum_i x_i^4}{(\sum_j x_j^4)^2} n\sigma^2 \\ &= \frac{n\sigma^2}{n\sum_i x_i^4} &= \sum_i \frac{\sigma^2}{x_i^4} \end{split}$$
 which is already the CRLB.

Which is just the CRLB.

11.37

Part a

Similar to 11.35b, $\ell = -\frac{n}{2} \log 2\pi \sigma^2 - \sum_i (y_i - \beta x_i)^2 / 2\sigma^2$ So $0 = \sum_i x_i (y_i - \beta x_i) / \sigma^2$ $\implies 0 = \sum_i x_i y_i - \beta \sum_i x_i^2$ $\implies \hat{\beta} = \frac{\sum_i x_i y_i}{\sum_i x_i^2}$

Part b

From part a, $\ell'(\beta) = \sum_i x_i (y_i - \beta x_i)/\sigma^2 = \sum_i x_i y_i/\sigma^2 - \beta \sum_i x_i^2/\sigma^2$ Then $\ell''(\beta) = -\sum_i x_i^2/\sigma^2$, which doesn't depend on β , so the negative of its expected value is just $\sum_i x_i^2/\sigma^2$. Therefore, the CRLB is $\frac{\sigma^2}{\sum_i x_i^2}$

Part c

Similar to 11.35c, $Var(\frac{\sum_i x_i Y_i}{\sum_i x_i^2}) = \frac{\sigma^2}{\sum_i x_i^2}$, which is precisely the CRLB. So the MLE is the best estimator.

11.38

Part c

In HW6, we did parts a and b, so we know that the MLE is $\hat{\theta} = \frac{\sum_{i} Y_{i}}{\sum_{i} x_{i}}$.

We also computed its variance and obtained $Var(\hat{\theta}) = \frac{\theta}{\sum_{i} x_{i}}$.

In addition, we computed the log likelihood and its first derivative: $\ell'(\theta) = -\sum_i x_i + \frac{1}{\theta} \sum_i y_i$

Derivating again w.r.t. θ gives us $-\frac{\sum_i y_i}{\theta^2}.$

$$\begin{array}{l} \text{Then } -E[-\frac{\sum_i Y_i}{\theta^2}] = \frac{1}{\theta^2} \sum_i E[Y_i] \\ = \frac{1}{\theta^2} \sum_i \theta x_i \\ = \frac{\sum_i x_i}{\theta} \end{array}$$

which is just the CRLB.