

Named Entity Recognition with Bidirectional Recursive Neural Networks

Peng-Hsuan Li National Taiwan University Ruo-Ping Dong

National Tsing Hua University

Yu-Siang Wang National Taiwan University Ju-Chieh Chou

Wei-Yun Ma

National Taiwan University

Academia Sinica

 $|H_{bottom,\emptyset}| |H_{top,\emptyset}|$

Right Sibling: Ø

Binarize Senator Edward Kennedy BRNN NER Senator Edward Kennedy **PERSON** Classify **PERSON** Argmax Affine

 $H_{bottom,5}$ $H_{top,5}$

Self: 5

 $|H_{bottom,2}| |H_{top,2}|$

Left Sibling: 2

Introduction

To leverage linguistic structures for Named Entity Recognition, we propose an end-to-end model that uses readily available constituency parse trees for NER. Because constituents correspond to tree nodes, their dependent hidden states can be computed by our Bidirectional Recursive Neural Networks (BRNN).

Model $H_{bot,i} = ReLU\left(\left(I_i \parallel \sum_{c \in C} H_{bot,c}\right) W_{bot} + b_{bot}\right)$ $H_{top,i} = ReLU((I_i \parallel H_{top,p})W_{top} + b_{top})$

$$H_{x} = H_{bot,x} + H_{top,x}, x \in \{i, l, r\}$$

$$O_i = (H_i \| H_l \| H_r) W_{out} + b_{out}$$

i: self node, I_i : raw features, C: child nodes, p: parent node, l: left sibling, and r: right sibling.

Experiments on OntoNotes 5.0

Split	Tokens	NEs	Constituent NEs
Train	1,088,503	81,828	93.3% o 97.3%
Validate	147,724	11,066	$92.8\% \rightarrow 97.0\%$
Test	152,728	11,257	92.9% o 97.2%

	Model	Parser	Precision	Recall	F1
	BRNN-CNN	gold	88.9	88.9	88.92
	BRNN	gold	89.5	88.3	88.91
	BRNN-CNN	auto	88.0	86.5	87.21
	BRNN	auto	88.0	86.2	87.10
Ī	Bidirectional Tree-LSTM	auto	87.3	86.2	86.74
	Sequential Recurrent NN	-	84.5	84.4	84.40
	Finkel and Manning (2009)	gold	84.04	80.86	82.42
	Durrett and Klein (2014)	_	85.22	82.89	84.04
	Chiu and Nichols (2016)	_	_	-	86.41