NORMED SPACES

M. ATIF ZAHEER

1. Basic definitions and examples

A normed space is simply a vector space with the notion of length just as in Euclidean spaces. Precisely speaking, a *norm* on a vector space X is a map $||\cdot||: X \times X \to \mathbb{R}_{\geq 0}$ that satisfies the following properties:

- (1) (positive definiteness) ||x|| = 0 if and only if x = 0.
- (2) (absolute homogeneity) $||\lambda x|| = |\lambda| ||x||$ for every $x \in X$ and $\lambda \in \mathbb{K}$.
- (3) (triangle inequality) $||x+y|| \le ||x|| + ||y||$ for every $x, y \in X$.

In this case the pair $(X, ||\cdot||)$ is called a normed space.

A $||\cdot||$ on a vector space X induces a metric on X defined as

$$d(x,y) = ||x - y||.$$

This metric satisfies the additional properties of translation invariance (d(x+z,y+z) = d(x,y)) and absolute homogeneity $(d(\lambda x,\lambda y) = |\lambda|d(x,y))$. Due to this not every metric on a vector space is induced by a norm. For instance, the discrete metric does not satisfy the absolute homogeneity property and hence is not induced by a norm.

As in the case of Euclidean space open/closed balls are convex in a normed space. In some sense this is the characteristic property of a norm. For instance, one can show that if $||\cdot||: X \times X \to \mathbb{R}_{\geq 0}$ is a map which satisfies positive definiteness and absolute homogeneity, then $||\cdot||$ is a norm if and only if the closed unit ball $\overline{B_1}$ is convex.

Exercise 1.1. Let X be a vector space over \mathbb{K} and let $||\cdot||: X \to \mathbb{R}_{\geq 0}$ be a map that satisfies properties (1) and (2) of norm. Show that $||\cdot||$ is a norm if and only if the closed unit ball is convex. (Hint: The triangle inequality is equivalent to the inequality $||\lambda x + (1 - \lambda)y|| \leq 1$, where x, y are unit vectors and $0 \leq \lambda \leq 1$.)

We now present some examples of normed spaces.

Example 1.1. Let $1 \leq p < \infty$ and let $n \in \mathbb{N}$. Then for $x \in \mathbb{K}^n$ we define the *p-norm* of x as

$$||x||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}.$$
 (1.1)

It is easy to see that $||\cdot||_p$ satisfies positive definiteness and absolute homogeneity. However, the triangle inequality is not obvious except for the case p=1. We have to show that for any $x,y \in \mathbb{K}^n$ we have the inequality

$$||x+y||_n \le ||x||_n + ||y||_n$$
.

This is equivalent to the inequality

$$||\lambda x + (1 - \lambda)y||_p \leqslant 1,$$

where $||x||_p = ||y||_p = 1$ and $0 \le \lambda \le 1$. Because the function $t \mapsto t^p$ is convex (as $\frac{d^2t^p}{dt^2} = p(p-1)t^{p-2} \ge 0$) for $t \in [0, \infty)$, we have the convexity bound

$$(\lambda a + (1 - \lambda)b)^p \leqslant \lambda a^p + (1 - \lambda)b^p$$

for $a,b\geqslant 0$ and $0\leqslant \lambda\leqslant 1$. Applying this we obtain

$$||\lambda x + (1 - \lambda)y||_p^p = \sum_{k=1}^n |\lambda x_k + (1 - \lambda)y_k|^p$$

$$\leq \sum_{k=1}^n (\lambda |x_k| + (1 - \lambda)|y_k|)^p$$

$$\leq \lambda \sum_{k=1}^n |x_k|^p + (1 - \lambda) \sum_{k=1}^n |y_k|^p$$

$$= \lambda + (1 - \lambda) = 1.$$

This shows that $||\cdot||_p$ satisfies the triangle inequality and hence is a norm.

Example 1.2. The ∞ -norm on \mathbb{K}^n is defined as

$$||x||_{\infty} = \max_{1 \le k \le \infty} |x_k|.$$

It is easy to verify that $||\cdot||_{\infty}$ is indeed a norm on \mathbb{K}^n . The triangle inequality is particularly easy to verify. It is easy to see that

$$||x||_{\infty} \leq ||x||_{p} \leq n^{1/p} ||x||_{\infty}$$
.

It follows from this that

$$||x||_{\infty} = \lim_{p \to \infty} ||x||_p.$$

Example 1.3. Let $1 \leq p < \infty$. We define the ℓ^p space as

$$\ell^p = \left\{ \{a_n\}_{n \in \mathbb{N}} \subset \mathbb{K} : \sum_{n=1}^{\infty} |a_n|^p < \infty \right\},$$

i.e., ℓ^p is the collection of all p-summable sequences. It can be easily seen that ℓ^p is a subspace of $\mathbb{K}^{\mathbb{N}}$. To see why it is closed under addition note that

$$(a+b)^p \le (2\max\{a,b\})^p \le 2^p(a^p+b^p)$$

for any nonnegative a, b. We define the p-norm on ℓ^p as

$$||a||_p = \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{1/p},$$

where $a = \{a_n\}_{n \in \mathbb{N}}$. It is easy to see that $||\cdot||_p$ satisfies positive definiteness and absolute homogeneity. Let $a = \{a_n\}_{n \in \mathbb{N}} \in \ell^p$, $b = \{b_n\}_{n \in \mathbb{N}} \in \ell^p$. Then for a fixed $N \in \mathbb{N}$ we have

$$\left(\sum_{n=1}^{N} |a_n + b_n|^p\right)^{1/p} \leqslant \left(\sum_{n=1}^{N} |a_n|^p\right)^{1/p} + \left(\sum_{n=1}^{N} |b_n|^p\right)^{1/p} \leqslant \left||a||_p + \left||b|\right|_p$$

due to the triangle inequality for \mathbb{K}^N . Now taking the limit as $N \to \infty$ we get

$$||a+b||_p = \lim_{N \to \infty} \left(\sum_{n=1}^N |a_n + b_n|^p \right)^{1/p} \le ||a||_p + ||b||_p.$$

Thus $||\cdot||_p$ is a norm on ℓ^p .

Example 1.4. Let ℓ^{∞} denote the space of all bounded sequences, i.e.,

$$\ell^{\infty} = \left\{ \{a_n\}_{n \in \mathbb{N}} \subset \mathbb{K} : \sup_{k \in \mathbb{N}} |a_k| < \infty \right\}$$

Then we define the ∞ -norm on ℓ^{∞} as

$$||a||_{\infty} = \sup_{k \in \mathbb{N}} |a_k|,$$

where $a = \{a_n\}_{n \in \mathbb{N}} \in \ell^{\infty}$. It is easy to verify that $||\cdot||_{\infty}$ is indeed a norm on ℓ^{∞} .

Example 1.5. Let X be a measure space with measure μ and let $1 \leq p < \infty$. The space $L^p(X)$ of all equivalence classes of p-integrable functions (f is equivalent to g if f = g a.e.) is a normed space under the norm

$$||f||_p = \left(\int_X |f|^p \, d\mu\right)^{1/p}$$

Moreover, for a measurable function $f: X \to \overline{\mathbb{R}}$ (or \mathbb{C}) we define $||f||_{\infty}$ to be the essential supremum of |f|, i.e.,

$$||f||_{\infty} = \inf\{\alpha \in [0,\infty]: |f| \leqslant \alpha \text{ a.e.}\}$$

The space $L^{\infty}(X)$ is defined to be the collection of equivalence classes of essentially bounded functions, i.e., $||f||_{\infty} < \infty$. It can be easily seen that $L^{\infty}(X)$ is a normed space.

In fact, the p-norm on \mathbb{K}^n and ℓ^p are particular instances of this example with the measure μ being the counting measure.

Two norms $||\cdot||_1$ and $||\cdot||_2$ on a vector space X are said to be *equivalent* if there are positive constants A and B such that

$$A ||x||_2 \le ||x||_1 \le B ||x||_2$$
.

It can be easily verified that the equivalence of norms in indeed an equivalence relation. Moreover, if $||\cdot||_1$ and $||\cdot||_2$ are equivalent norms on X and $\{x_n\}_{n\in\mathbb{N}}$ is a sequence in X, then $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy with respect to $||\cdot||_1$ if and only if $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy with respect to $||\cdot||_2$. Similarly, $\{x_n\}_{n\in\mathbb{N}}$ converges to x with respect to the norm $||\cdot||_1$ if and only if $\{x_n\}_{n\in\mathbb{N}}$ converges to x with respect to the norm $||\cdot||_2$.

All p-norms on \mathbb{K}^n are equivalent as

$$||x||_{\infty} \le ||x||_{p} \le n^{1/p} ||x||_{\infty}$$

for every $x \in \mathbb{K}^n$ and $1 \leq p < \infty$.

2. Bounded operators

A linear operator $\Lambda: X \to Y$ between two normed spaces is said to be bounded if there is a C>0 such that

$$||\Lambda x|| \leqslant C ||x||$$

for every $x \in X$.

The norm of a linear operator $\Lambda: X \to Y$ between two normed spaces is defined as

$$||\Lambda|| = \sup_{\substack{x \in X \\ ||x|| = 1}} ||\Lambda x||.$$

It can be easily seen that a linear operator $\Lambda: X \to Y$ is bounded if and only if $||\Lambda|| < \infty$.

Exercise 2.1. Show that if X, Y are normed spaces, then a linear operator $\Lambda : X \to Y$ is bounded if and only if it maps bounded sets to bounded sets. Also show that composition of bounded linear operators is also bounded.

Proposition 2.1. Let $\Lambda: X \to Y$ be a linear operator. Then Λ is bounded if and only if it is continuous.

Proof. Note that if a linear operator $\Lambda: X \to Y$ between normed spaces is bounded, then it Lipschitz continuous due to linearity and hence is continuous in particular.

Now suppose that $\Lambda: X \to Y$ is a continuous linear operator. Then there is a $\delta > 0$ such that $||\Lambda(x)||_Y \leqslant 1$ whenever $||x||_X \leqslant \delta$. Now if $||x||_X = 1$, then $||\delta x||_X = \delta$ and so we have

$$||\Lambda(\delta x)||_{Y} \leqslant 1.$$

This implies that

$$||\Lambda(x)||_Y \leqslant \frac{1}{\delta}$$

for every $x \in X$ with $||x||_X = 1$. Hence, we have $||\Lambda|| < \infty$, i.e., Λ is bounded.

Theorem 2.2. Let X be a finite-dimensional normed space over the field \mathbb{K} of real or complex numbers. If $\{v_1, \ldots, v_N\}$ is a basis of X, then the linear operator $\Lambda : \mathbb{K}^N \to X$ defined as

$$\Lambda(\alpha) = \alpha_1 v_1 + \dots + \alpha_N v_N$$

is bounded. Moreover, Λ is a bijection and Λ^{-1} is also bounded,

Proof. First observe that

$$||\Lambda(\alpha)||_X = \left|\left|\sum_{i=1}^n \alpha_i v_i\right|\right|_X \leqslant \sum_{i=1}^n |\alpha_i| ||v_i||_X \leqslant ||\alpha||_1 \sum_{i=1}^n ||v_i||_X.$$

This shows that Λ is bounded and hence continuous.

The boundedness of Λ^{-1} requires a little effort. We suppose for the sake of contradiction that Λ^{-1} is not bounded. Then there is a sequence $\{x_n\}_{n\in\mathbb{N}}\subset X$ such that $||x_n||_X=1$ for every $n\in\mathbb{N}$ and

$$\lim_{n \to \infty} \left| \left| \Lambda^{-1}(x_n) \right| \right|_1 = \infty.$$

Now let

$$\tilde{x}_n = \frac{x_n}{||\Lambda^{-1}(x_n)||_1}$$
 and $\beta_n = \frac{\Lambda^{-1}(x_n)}{||\Lambda^{-1}(x_n)||_1}$

for $n \in \mathbb{N}$. Then we have $\Lambda(\beta_n) = \tilde{x}_n$. Moreover, we have

$$\lim_{n \to \infty} ||\tilde{x}_n||_X = \lim_{n \to \infty} \frac{1}{||\Lambda^{-1}(x_n)||_1} = 0.$$
 (2.1)

Since $\{\beta_n\}_{n\in\mathbb{N}}$ is a bounded sequence (as $||\beta_n||_1=1$), it has a convergent subsequence $\{\beta_{n_k}\}_{k\in\mathbb{N}}$ (as every component sequence is bounded and \mathbb{K} has the Heini-Borel property). Let $\beta=\lim_{k\to\infty}\beta_{n_k}$. Then we have $||\beta||_1=1$ and in particular $\beta\neq 0$. As Λ is continuous, we have

$$\lim_{k \to \infty} \Lambda(\beta_{n_k}) = \Lambda(\beta).$$

But we also have

$$\lim_{k \to \infty} \Lambda(\beta_{n_k}) = \lim_{k \to \infty} \tilde{x}_{n_k} = 0$$

due to (2.1). This shows that $\Lambda(\beta) = 0$ and so $\beta = 0$, a contradiction.

Corollary 2.3. In a finite-dimensional space, all norms are equivalent.

Proof. Let $||\cdot||_{\triangle}$ and $||\cdot||_{\square}$ be norms on X. Suppose dim X=N and let $\Lambda:\mathbb{K}^N\to X$ be the bijective linear operator defined in the Theorem 2.2. Then we know that Λ is a homeomorphism between $(\mathbb{K}^N, ||\cdot||_1)$ and $(X, ||\cdot||_{\triangle})$ and also between $(\mathbb{K}^N, ||\cdot||_1)$ and $(X, ||\cdot||_{\square})$. Because of the boundedness of Λ and Λ^{-1} (both with respect to $||\cdot||_{\triangle}$ and $||\cdot||_{\square}$) there are positive constants A, B, C, D such that

$$A\left|\left|\Lambda^{-1}(x)\right|\right|_{1}\leqslant\left|\left|x\right|\right|_{\triangle}\leqslant B\left|\left|\Lambda^{-1}(x)\right|\right|_{1}\quad\text{and}\quad C\left|\left|\Lambda^{-1}(x)\right|\right|_{1}\leqslant\left|\left|x\right|\right|_{\square}\leqslant D\left|\left|\Lambda^{-1}(x)\right|\right|_{1}.$$

From this we get

$$\frac{A}{D} ||x||_{\square} \leqslant ||x||_{\triangle} \leqslant \frac{B}{C} ||x||_{\square},$$

i.e., $||\cdot||_{\triangle}$ and $||\cdot||_{\square}$ are equivalent.

Corollary 2.4. Every linear operator on a finite-dimensional normed space is bounded.

Proof. Let $\Lambda_0 : \mathbb{K}^N \to X$ be a linear homeomorphism. Then note that $\Lambda = (\Lambda \circ \Lambda_0) \circ \Lambda_0^{-1}$. Because every linear operator on \mathbb{K}^N is bounded it follows that $\Lambda \circ \Lambda_0 : \mathbb{K}^N \to Y$ is bounded. Now since Λ_0^{-1} and $\Lambda \circ \Lambda_0$ are both bounded we conclude that the composition Λ is bounded as well.