2012 Putnam A5

Tristan Shin

11 Aug 2019

Let \mathbb{F}_p denote the field of integers modulo a prime p, and let n be a positive integer. Let v be a fixed vector in \mathbb{F}_p^n , let M be an $n \times n$ matrix with entries of \mathbb{F}_p , and define $G: \mathbb{F}_p^n \to \mathbb{F}_p^n$ by G(x) = v + Mx. Let $G^{(k)}$ denote the k-fold composition of G with itself, that is, $G^{(1)}(x) = G(x)$ and $G^{(k+1)}(x) = G(G^{(k)}(x))$. Determine all pairs p, n for which there exist v and M such that the p^n vectors $G^{(k)}(0)$, $k = 1, 2, \ldots, p^n$ are distinct.

The answers are (p,1) or (2,2) for any prime p. The former works with $(\mathbf{v},M)=\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}1\\0\end{bmatrix}\right)$ while the latter works with $(\mathbf{v},M)=\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0&1\\1&0\end{bmatrix}\right)$.

We work in \mathbb{F}_p . First, note by induction that $G^{(k)}(\mathbf{0}) = S_k \mathbf{v}$, where we define $S_k = I + M + M^2 + \ldots + M^{k-1}$ for $k = 1, \ldots, p^n$. Now suppose $G^{(k)}(\mathbf{0})$ are distinct.

Define a function $\ell: \mathbb{F}_p^n \to \{1, \dots, p^n\}$ such that $G^{(\ell(\mathbf{u}))}(\mathbf{0}) = \mathbf{u}$ for any $\mathbf{u} \in \mathbb{F}_p^n$. Suppose that $\ell(\mathbf{0}) \neq p^n$. Then

$$G^{(\ell(\mathbf{0})+1)}(\mathbf{0}) = G(\mathbf{0}) = G^{(1)}(\mathbf{0})$$

contradiction. Thus $\ell(\mathbf{0}) = p^n$.

Now observe that for any $\mathbf{u} \in \mathbb{F}_p^n$,

$$S_{p^n}\mathbf{u} = S_{p^n}G^{(\ell(\mathbf{u}))}(\mathbf{0})$$

$$= S_{p^n}S_{\ell(\mathbf{u})}\mathbf{v}$$

$$= S_{\ell(\mathbf{u})}S_{p^n}\mathbf{v}$$

$$= S_{\ell(\mathbf{u})}G^{(p^n)}(\mathbf{0})$$

$$= \mathbf{0}$$

so $S_{p^n}=0$. Thus the minimal polynomial of M divides $1+x+x^2+\ldots+x^{p^n-1}=(x-1)^{p^n-1}$. But note that $S_{p^{n-1}}\neq 0$ so the minimal polynomial does not divide $1+x+x^2+\ldots+x^{p^{n-1}-1}=(x-1)^{p^{n-1}-1}$ so it is $(x-1)^d$ for some $p^{n-1}\leq d\leq p^n-1$. But also the minimal polynomial of M divides its characteristic polynomial by Cayley-Hamilton, and the characteristic polynomial has degree n, so $d\leq n$. Thus $p^{n-1}\leq n$. This easily implies n=1 or (p,n)=(2,2) as desired.