Physics 2: Recitations

Aakash Jog

2014-15

Contents

1	Instructor Information	3
Ι	Electrostatics	4
1	Gravitation and Electromagnetism	4
2	Coulomb's Law	4
	Recitation 1 – Exercise 1	. 4
	Recitation 1 – Solution 1	. 4
	Recitation 1 – Exercise 2	. 5
	Recitation 1 – Solution 2	. 5
	Recitation 1 – Exercise 3	. 6
	Recitation 1 – Solution 3	. 6
	Recitation 1 – Exercise 4	. 6
	Recitation 1 – Solution 4	. 6
	Recitation 1 – Exercise 5	. 6
	Recitation 1 – Solution 5	. 7

© (§ (9)

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

3	Gauss' Law	9
	Recitation 2 – Exercise 2	9
	Recitation 2 – Solution 2	10
	Recitation 2 – Exercise 3	11
	Recitation 2 – Solution 3	11
	Recitation 2 – Exercise 4	12
	Recitation 2 – Solution 4	12
	Recitation 3 – Exercise 2	12
	Recitation 3 – Solution 2	13
	Recitation 3 – Exercise 3	14
	Recitation 3 – Solution 3	14
	Recitation 3 – Exercise 4	15
	Recitation 3 – Solution 4	15

1 Instructor Information

Dr. Richard Spitzberg

Office: Ma Aabadot 119 E-mail: rms9999@gmail.com

Part I

Electrostatics

1 Gravitation and Electromagnetism

$$\begin{array}{ll} {\rm Gravitation} & {\rm Electromagnetism} \\ F_G = G \frac{m_1 m_2}{r^2} & F_E = k \frac{q_1 q_2}{r^2} \\ G = 6.7 \times 10^{11} {\rm N} \, {\rm m}^2 \, {\rm kg}^{-2} & 8.99 \times 10^9 {\rm N} \, {\rm m}^2 \, {\rm C}^{-2} \\ \end{array}$$

2 Coulomb's Law

Recitation 1 – Exercise 1.

Four identical charges q are placed in the corners of a square of length a. A fifth charge Q is free to move along the straight line perpendicular to the square plane and passing through its centre. When the charge Q is in the same plane as the other charges, all the forces in the system cancel out.

- 1. Calculate Q for a given q and a.
- 2. Find the force $\overrightarrow{F(z)}$ acting on the charge Q when it is at height z above the square.

Recitation 1 – Solution 1.

Consider q on the top right corner of the square. The total force acting on it is 0. Therefore

$$0 = \frac{kq^2}{a^2} \cos \frac{\pi}{4} + \frac{kq^2}{a^2} \cos \frac{\pi}{4} + \frac{kq^2}{2a^2} + \frac{2kQq}{a^2}$$
$$\therefore Q = -\frac{1+2\sqrt{2}}{4}q$$

If Q is at a height z from the plane, the distance between each q and Q is

$$r = \sqrt{z^2 + \left(\frac{a}{\sqrt{2}}\right)^2}$$

Therefore the force of each q on Q is $\frac{kQq}{r^2}$.

Due to symmetry, the components of the forces in the z direction will add up, and all other components will cancel out.

Let the angle between the z direction and the line joining q and Q be φ . Therefore, the net force is

$$F = 4\frac{kQq}{r^2}\cos\varphi$$

$$= 4\frac{kQq}{r^2}\frac{z}{r}$$

$$= 4\frac{kQq}{z^2\left(1 + \frac{a^2}{2z^2}\right)^{3/2}}$$

Recitation 1 – Exercise 2.

1. A wire of length 3 metre is charged with 2 C m⁻¹. What is the wire's total charge?

Recitation 1 – Solution 2.

$$\lambda = \frac{Q}{L}$$

$$\therefore Q = L\lambda$$

$$= 6C$$

Recitation 1 – Exercise 3.

A wire of length L has the following charge distribution: $\lambda = \lambda_0 \cos \frac{\pi x}{L}$, where x is the distance from the wire's edge. What is the wire's total charge?

Recitation 1 – Solution 3.

$$\lambda = \frac{dq}{dx}$$

$$\therefore \frac{dq}{dx} = \lambda_0 \cos \frac{\pi x}{L}$$

$$\therefore q = \int_0^L \lambda_0 \cos \frac{\pi x}{L} dx$$

$$= 0$$

Recitation 1 – Exercise 4.

A hollow sphere of radius R is uniformly charged with a charge Q. Calculate the charge distribution on the surface of the sphere.

Recitation 1 – Solution 4.

$$\sigma = \frac{Q}{A}$$
$$= \frac{Q}{4\pi R^2}$$

Recitation 1 – Exercise 5.

A straight thin wire is uniformly charged with distribution λ . A charge q is positioned at distance y_1 beneath the wire and r away form it.

- 1. Find the force acting on the charge q.
- 2. Show that when the charge is positioned in front of the centre of the wire the \hat{y} component of the force is cancelled.
- 3. Calculate the force an infinite straight wire will exert on the charge q.

Recitation 1 – Solution 5.

Consider an elemental charge dQ of length dy, at distance y as shown. Let the angle between the line joining dQ and q and the y direction be θ .

$$F_y = F \cos \theta$$

$$F_z = F\sin\theta$$

Let

$$a = L + y_1$$

$$\therefore R = \sqrt{r^2 + (a - y)^2}$$

Therefore,

$$\cos \theta = \frac{a - y}{R}$$
$$\sin \theta = \frac{r}{R}$$

$$F_{y} = kq \int_{0}^{L} \frac{\lambda \, dy}{R^{2}} \frac{(a-y)}{R}$$

$$= kq \lambda \int_{0}^{L} \frac{dy(a-y)}{((a-y)^{2} + r^{2})^{3/2}}$$

$$= kq \lambda \left(\frac{1}{\sqrt{y_{1}^{2} + r^{2}}} - \frac{1}{\sqrt{a^{2} + r^{2}}}\right)$$

$$F_z = kq \int_0^L \frac{\lambda \, dy}{R^2} \frac{r}{R}$$

$$= kq \lambda \int_0^L \frac{r \, dy}{\left((a-y)^2 + r^2 \right)^{3/2}}$$

$$= \frac{kq \lambda}{r} \left(\frac{a}{\sqrt{r^2 + a^2}} - \frac{y_1}{\sqrt{r^2 + y_1^2}} \right)$$

When the charge is positioned above the centre of the wire,

$$y_1 = -\frac{L}{2}$$
$$\therefore a = \frac{L}{2}$$

$$F_{y} = kq\lambda \left(\frac{1}{\sqrt{y_{1}^{2} + r^{2}}} - \frac{1}{\sqrt{a^{2} + r^{2}}} \right)$$

$$= kq\lambda \left(\frac{1}{\sqrt{-\frac{L^{2}}{2} + r^{2}}} - \frac{1}{\sqrt{\frac{L^{2}}{2} + r^{2}}} \right)$$

$$= 0$$

$$F_z = \frac{kq\lambda}{r} \left(\frac{a}{\sqrt{r^2 + a^2}} - \frac{y_1}{\sqrt{r^2 + y_1^2}} \right)$$

$$= \frac{kq\lambda}{r} \left(\frac{\frac{L}{2}}{\sqrt{r^2 + \frac{L^2}{2}}} - \frac{-\frac{L}{2}}{\sqrt{r^2 + -\frac{L^2}{2}}} \right)$$

$$= \frac{kq\lambda}{r} \left(\frac{L}{\sqrt{r^2 + \frac{L^2}{2}}} \right)$$

$$= \frac{kq\lambda}{r} \left(\frac{1}{\sqrt{\frac{1}{4} + \left(\frac{r}{L}\right)^2}} \right)$$

If the line is infinite, $L \to \infty$. Therefore

$$F_z = \frac{kq\lambda}{r} \left(\frac{1}{\sqrt{\frac{1}{4} + \left(\frac{r}{L}\right)^2}} \right)$$
$$= \frac{2kq\lambda}{r}$$

3 Gauss' Law

Recitation 2 – Exercise 2.

A ball of radius a is charged with distribution $\rho = \rho_0 \frac{r}{a}$. Find the electric field everywhere.

Recitation 2 – Solution 2.

Consider a spherical Gaussian surface of radius r.

If $r \leq a$, the charge in the interior of the Gaussian surface is

$$q(r) = \int_{0}^{r} \frac{\rho_0 r}{a} \cdot 4\pi r^2 dr$$
$$= \frac{\rho_0}{a} \pi r^4$$

Therefore, by Gauss' Law,

$$E \cdot 4\pi r^2 = \frac{q(r)}{\varepsilon_0}$$

$$\therefore E = \frac{\rho_0 \pi r^4}{4\pi a r^2}$$

$$= \frac{\rho_0 r^2}{4a\varepsilon_0}$$

If $r \geq a$, the entire ball of charge is in the interior of the Gaussian surface. Therefore,

$$Q = q(a)$$

$$= \frac{\rho_0}{a} \cdot \pi a^4$$

$$= \rho_0 \pi a^3$$

Therefore, by Gauss' Law,

$$E \cdot 4\pi r^2 = \frac{Q}{\varepsilon_0}$$

$$\therefore E = \frac{Q}{4\pi r^2 \varepsilon_0}$$

$$= \frac{\rho_0 a^3}{4r^2 \varepsilon_0}$$

$$E = \begin{cases} \frac{\rho_0 r^2}{4a\varepsilon_0} & ; \quad r \le a \\ \frac{\rho_0 a^3}{4r^2\varepsilon} & ; \quad r \ge a \end{cases}$$

Recitation 2 – Exercise 3.

An infinitely long cylinder of radius a is charged with distribution $\rho = \rho_0 \frac{r}{a}$. Find the electric field everywhere.

Recitation 2 – Solution 3.

Consider a infinite cylindrical Gaussian surface with radius r. If $r \leq a$, the charge in the interior of the Gaussian surface is

$$q(r) = \int_{0}^{r} \frac{\rho_0 r}{a} \pi r^2 dr$$
$$= \frac{2\pi \rho_0 L r^3}{3a}$$

Therefore, by Gauss' Law,

$$E \cdot 2\pi r L = \frac{2\pi \rho_0 L r^3}{3a\varepsilon_0}$$
$$\therefore E = \frac{\rho_0 r^2}{3a\varepsilon_0}$$

If $r \geq a$, the entire cylinder of charge is in the interior of the Gaussian surface. Therefore,

$$Q = q(a)$$

$$= \frac{2\pi\rho_0 L a^3}{3a}$$

$$= \frac{2\pi\rho_0 L a^2}{3}$$

Therefore, by Gauss' Law,

$$E \cdot 2\pi r L = \frac{2\pi \rho_0 L a^2}{3\varepsilon_0}$$
$$\therefore E = \frac{\rho_0 a^2}{3\varepsilon_0 r}$$

$$E = \begin{cases} \frac{\rho_0 r^2}{3a\varepsilon_0} & ; \quad r \le a \\ \frac{\rho_0 a^2}{3\varepsilon_0 r} & ; \quad r \ge a \end{cases}$$

Recitation 2 – Exercise 4.

Find the electric field due to a thin infinite plane of uniform charge distribution σ .

Recitation 2 – Solution 4.

Consider a cylindrical Gaussian surface, with ends of area A, as shown.

The charge in the interior of the surface is

$$dq = A\sigma$$

Therefore, by Gauss' Law,

$$E_1 \cdot A_1 + E_2 \cdot A_2 = \frac{A\sigma}{\varepsilon_0}$$
$$\therefore 2EA = \frac{A\sigma}{\varepsilon_0}$$
$$\therefore E = \frac{\sigma}{2\varepsilon_0}$$

Recitation 3 – Exercise 2.

A system of four charges is constructed as shown.

- a) Calculate the work needed to build this system.
- b) What is the potential in the centre of the system?
- c) Calculate the potential in each of the corners (calculate as if there is no charge in the corner you are calculating for).

Recitation 3 – Solution 2.

a) Let the positions of the charges be A, B, C, D.

The work done to bring the first charge from infinity to A is

$$W_{\rm A} = 0$$

The work done to bring the first charge from infinity to B is

$$W_{\rm B} = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{a\sqrt{2}}$$

Similarly for the other two charges. Therefore,

$$W = 0 + \frac{q^2}{4\sqrt{2}\pi\varepsilon_0} + \frac{-2q^2}{4\pi\varepsilon_0 a} + \left(\frac{-2q^2}{4\pi\varepsilon_0 a} + \frac{q^2}{4\sqrt{2}\pi\varepsilon_0}\right)$$
$$= \frac{q^2}{2\sqrt{2}\pi\varepsilon_0} - \frac{q^2}{\pi\varepsilon_0 a}$$

$$\begin{split} V_{\text{centre}} &= V_q + V_q + V_{-q} + V_{-q} \\ &= \frac{q}{4\pi\varepsilon_0 \left(\frac{a}{\sqrt{2}}\right)} + \frac{q}{4\pi\varepsilon_0 \left(\frac{a}{\sqrt{2}}\right)} - \frac{q}{4\pi\varepsilon_0 \left(\frac{a}{\sqrt{2}}\right)} - \frac{q}{4\pi\varepsilon_0 \left(\frac{a}{\sqrt{2}}\right)} \\ &= 0 \end{split}$$

$$\begin{split} V_{\mathrm{A}} &= \frac{1}{4\pi\varepsilon_0} \frac{-q}{a} + \frac{1}{4\pi\varepsilon_0} \frac{-q}{a} + \frac{1}{4\pi\varepsilon_0} \frac{q}{\sqrt{2}a} \\ V_{\mathrm{B}} &= \frac{1}{4\pi\varepsilon_0} \frac{-q}{a} + \frac{1}{4\pi\varepsilon_0} \frac{-q}{a} + \frac{1}{4\pi\varepsilon_0} \frac{q}{\sqrt{2}a} \\ V_{\mathrm{C}} &= \frac{1}{4\pi\varepsilon_0} \frac{q}{a} + \frac{1}{4\pi\varepsilon_0} \frac{q}{a} + \frac{1}{4\pi\varepsilon_0} \frac{-q}{\sqrt{2}a} \\ V_{\mathrm{D}} &= \frac{1}{4\pi\varepsilon_0} \frac{q}{a} + \frac{1}{4\pi\varepsilon_0} \frac{q}{a} + \frac{1}{4\pi\varepsilon_0} \frac{-q}{\sqrt{2}a} \end{split}$$

Recitation 3 – Exercise 3.

A ring of radius R is charged with total charge Q.

- a) Calculate the electric field in the centre of the ring.
- b) Calculate the potential in the centre of the ring by integrating the contributions of the infinitesimal charge elements of the ring.

Recitation 3 – Solution 3.

a) Due to the symmetry of the ring, the field due to every elemental charge dq will be cancelled out by the field due to a elemental charge diametrically opposite to dq.

Therefore,

 $\overrightarrow{E} = 0$

$$dV = \frac{dq}{4\pi\varepsilon_0 R}$$
$$\therefore V = \frac{Q}{4\pi\varepsilon_0 R}$$

Recitation 3 – Exercise 4.

Calculate the potential resulting from a ball charged with constant volume distribution ρ . Use the expression

$$\varphi(r_2) - \varphi(r_1) = -\int_{r_1}^{r_2} E(r) \, \mathrm{d}r$$

Repeat the calculation twice:

a) Set
$$\varphi(r=R)=0$$

b) Set
$$\varphi(r=\infty)=0$$

Recitation 3 – Solution 4.

a) Let
$$\varphi(r=\infty)=0$$
.

If r > R,

$$E = -\frac{\mathrm{d}\varphi}{\mathrm{d}r}$$

$$\therefore -\frac{\mathrm{d}\varphi}{\mathrm{d}r} = \frac{Q}{4\pi\varepsilon_0 r^2}$$

$$\therefore \int \mathrm{d}\varphi = \int_{-\infty}^{r} \frac{Q}{4\pi\varepsilon_0 r^2} \, \mathrm{d}r$$

$$\therefore \varphi(r) - \varphi(\infty) = \frac{Q}{4\pi\varepsilon_0 r} - 0$$

$$\therefore \varphi(r) = \frac{Q}{4\pi\varepsilon_0 r}$$

If r < R,

$$E = \frac{q(r)}{4\pi\varepsilon_0 r^2}$$
$$= \frac{\rho \cdot \frac{4}{3}\pi r^3}{4\pi\varepsilon_0 r^2}$$
$$= \frac{\rho r}{3\varepsilon_0}$$

$$E = -\frac{\mathrm{d}\varphi}{\mathrm{d}r}$$

$$\therefore \int \mathrm{d}\varphi = \int_{r}^{R} \frac{\rho}{3\varepsilon_{0}} r \, \mathrm{d}r$$

$$\therefore \varphi(R) - \varphi(r) = \frac{\rho}{6\varepsilon_{0}} \left(r^{2} - R^{2}\right)$$

$$\therefore \varphi(r) = \frac{Q}{4\pi\varepsilon_{0}R} + \frac{\rho\left(R^{2} - r^{2}\right)}{6\varepsilon_{0}}$$

$$= \frac{Q}{8\pi\varepsilon_{0}R} \left(3 - \frac{r^{2}}{R^{2}}\right)$$

b) Let
$$\varphi(r=R)=0$$
.

$$\therefore \varphi(R) - \varphi(r) = \frac{\rho}{6\varepsilon_0} \left(r^2 - R^2 \right)$$
$$\therefore \varphi(r) = \frac{\rho}{6\varepsilon_0} \left(R^2 - r^2 \right)$$
$$= \frac{Q}{8\pi R\varepsilon_0} \left(1 - \frac{r^2}{R^2} \right)$$