Modellierung des Schneewasseräquivalents am Messstandort Obergurgl mit dem ESCIMO-Modell

VU Gebirgsforschung SS2019

Messstandort: Obergurgl

Klimaverhältnisse

- Stauniederschläge
- Südföhn
- Temperaturminimum: Jänner
- Temperaturmaximum: Juli
- in allen Sommermonaten mit Schneedecke zu rechnen
- Schneeschmelze im Mai

Quelle: Fischer A. (2010)

Modellinput

Parameter	Einheit
Temperatur	[K]
Niederschlag	[mm]
Globalstrahlung	[W/m ²]
relative Feuchte	[%]
Windgeschwindigkeit	[m/s]
langwellige eintreffende Strahlung	[W/m ²]
SWE	[mm]

Berechnung des "gemessenen" Schneewasseräquivalents

$$\rho b = a * HS_{obs.} + b$$

$$SWE_{mod.} = HS_{obs.} + \rho b_{mod.}$$

Quelle: Jonas et al. 2009

Höhenstufe: 1400 bis 2000 m						
Monat	b	а				
Oktober	183	35				
November	183	35				
Dezember	190	47				
Januar	208	47				
Februar	218	52				
März	281	31				
April	354	15				
Mai	409	29				
Juni	409	29				
Juli	409	29				
August	183	35				
September	183	35				

Modellsetup

- Minimum Albedo: 0.5
- Additive Albedo: 0.45
- Feuchttemperatur: 273.16 K
- Liquid water holding capacity: 0.1

Modellergebnisse

Modellergebnisse

- Modell bildet Verlauf des SWE gut ab
- standortspezifische Verhältnisse wie Stauniederschläge oder Schneeschmelze im April/ Mai werden vom Modell beschrieben
- weniger SWE modelliert als "gemessen"
- "gemessener" Peak im Frühjahr: hohe "Messergebnisse" durch hohe Schneedichte des frisch gefallenen Schnees im Modell von Jonas et al. (2009)

Idee: Schneedichte nach Jonas für frisch gefallenen Schnee modifizieren

Validierung der Modellergebnisse

Gütekriterium	Wert
Nash-Sutcliffe Model Efficiency (NSME)	0.47
Coefficient of Determination (R²)	0.87
Index of Agreement (IA)	0.84

- NSME überschätzt hohes "gemessenes" SWE im Frühjahr bei der Bewertung
- R² beschreibt Modelldynamik → Modelldynamik vom Modell gut getroffen

Quelle: Krause et al. 2005

Anteil der Energiequellen an der Scheeschmelze

- Energiebilanz, Schmelze > 0
- Summe der an der Energiebilanz beteiligten Teilenergien berechnen und anschließend Bildung von Anteilen an der gesamten Energiebilanz
- Bildung von Beträgen

Shortwave rad. balance	Longwave rad. balance	Sensible heat flux	Latent heat flux	Advektive flux rain	Advektive flux snow	Soil Heat Flux
1.058087365	-0.492703123	0.424184632	-0.022036827	0.003360662	-0.000659225	0.029766517

Anteil der Energiequellen an der Scheeschmelze

Sensitivitätsanalyse

Bei Albedo: Erhöhung der Minimum und Sensitive Albedo um gleichen Prozentsatz

Sensitivitäten für Mittelwert und Varianz (nach Lenhart et al. 2002) (1. höchste Sensitivität, 4. geringste Sensitivität)

- 1. Phasenübergangstemperatur ± 1 % und ±0.5 %
- 2. Albedo ± 10% und ±20 %
- 3. Flüssigwasserspeicherkapazität ±20 % und ±10 %
- 4. signifikanter Schneefall ±10 % und ±20 %
- (→ Gütekriterien bei Albedo +20% am höchsten)

Literaturverzeichnis

FISCHER A. (2010): Klima und Gletscher in Obergurgl. In: Koch E. M., Erschbaumer B. (Hrsg.) (2010): Glaziale und periglaziale Lebensräume im Raum Obergurgl.

JONAS T., MARTY C. und MAGNUSSON J. (2009): Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. In: Journal of Hydrology, 378, 161-167.

KRAUSE P., BOYLE D. P. und BÄSE F. (2005): Comparison of different efficiency criteria for hydrological model assessment. In: Advances in Geosciences, 5, 89-97.

LENHART T., ECKHARDT K., FOHRER N. und FREDE H.G. (2002): Comparison of two different approaches of sensitivity analysis. In: Physics and Chemistry of the Earth, 27(9),645-654, 2002.