MCMC и коронавирус: модель SIR

Сергей Николенко НИУ ВШЭ — Санкт-Петербург 23 мая 2020 г.

Random facts:

- 23 мая Всемирный день черепахи, учреждённый в 2000 году по инициативе Американского общества спасения черепах
- 23 мая 1430 г. бургундцы при Компьене захватили Жанну д'Арк, а 23 мая 1498 г. во Флоренции сожгли Савонаролу
- 23 мая 1873 г. в Москве состоялась премьера оперы Римского-Корсакова «Снегурочка», а 23 мая 1969 г. The Who выпустили первую в истории рок-оперу Tommy
- 23 мая 1980 г. вышел фильм The Shining, 23 мая 1994 г. Pulp Fiction завоевал «Золотую пальмовую ветвь», а 23 мая 2000 г. Бьорк получила в Каннах звание лучшей актрисы за дебютную роль в Dancer in the Dark
- 23 мая 1988 г. Мишель Платини попрощался с большим футболом
- · 23 мая 1995 г. вышла первая версия языка программирования Java

SIR-модели в эпидемиологии

- Прежде чем двигаться дальше конкретный (и весьма актуальный) пример
- Давайте попробуем применить то, о чём мы говорили, к эпидемиологии
- В модели SIR есть:
 - объекты (люди) $X = \{X_1, \dots, X_N\}$,
 - каждый эволюционирует между тремя состояниями $\mathcal{S} = \{S, I, R\}^N$;
 - *S, I, R* ещё общее число объектов в соответствующих состояниях;
 - входные данные число зарегистрированных случаев заболевания, изменяющееся во времени: $\mathbf{y} = \left(y^{(t)}\right)_{t=1}^{\mathsf{T}}$.

- Введём для каждого объекта траекторию (subject-path) $\mathbf{x}_j = \left(x_j^{(t)}\right)_{t=1}^T, j=1,\dots,N.$
- Тогда и общие статистики изменяются во времени: $S^{(t)}$, $I^{(t)}$, $R^{(t)}$.
- · Неизвестные параметры модели это $oldsymbol{ heta} = \{eta, \mu,
 ho, oldsymbol{\pi}\}$:
 - π начальное распределение заболевших, $x_i^{(1)} \sim \pi$;
 - ρ вероятность обнаружить инфицированного в общей популяции, то есть вероятность того, что человек x_j в момент t, когда $x_j^{(t)} = l$, будет обнаружен тестированием и зачислен в данные $y^{(t)}$; тогда $y_t \mid I^{(t)}, \rho \sim \mathrm{Binom}(I^{(t)}, \rho)$;
 - μ вероятность для заболевшего выздороветь, то есть вероятность перехода из состояния I в состояние R;
 - β самый интересный параметр, вероятность заразиться за один отсчёт времени *от одного инфицированного человека*; будем предполагать самую простую модель, в которой вероятность заразиться от одного инфицированного равна β и все эти события независимы, а значит, вероятность остаться здоровым равна $(1-\beta)^{f(t)}$.

- Обозначим вектор состояний всех людей, кроме x_j , через \mathbf{x}_{-j} (и остальные величины так же).
- Вероятности перехода из $x_j^{(t-1)}$ в $x_j^{(t)}$:

$$p(x_j^{(t)} = S | x_j^{(t-1)} = S, \mathbf{x}_{-j}^{(t-1)}) = (1 - \beta)_{-j}^{l^{(t-1)}},$$
 $p(x_j^{(t)} = I | x_j^{(t-1)} = S, \mathbf{x}_{-j}^{(t-1)}) = 1 - (1 - \beta)_{-j}^{l^{(t-1)}},$
 $p(x_j^{(t)} = R | x_j^{(t-1)} = I, \mathbf{x}_{-j}^{(t-1)}) = \mu,$
 $p(x_j^{(t)} = I | x_j^{(t-1)} = I, \mathbf{x}_{-j}^{(t-1)}) = 1 - \mu,$
 $p(x_j^{(t)} | x_j^{(t-1)}, \mathbf{x}_{-j}^{(t-1)}) = 0$ во всех остальных случаях.

• Скрытые переменные — те же самые траектории ${\bf x}$ (не зря же мы их вводили).

· Тогда полное правдоподобие $\mathcal{L}(\mathsf{X},\mathsf{Y}\mid oldsymbol{ heta})$ получается как

$$\begin{split} \mathcal{L}(X,Y \mid \boldsymbol{\theta}) = & p(Y \mid X,\rho) p(X^{(1)} \mid \pi) p(X \mid X^{(1)},\beta,\mu) \\ = & \left[\prod_{t=1}^{T} \binom{I^{(t)}}{y^{(t)}} \rho^{y^{(t)}} (1-\rho)^{I^{(t)}-y^{(t)}} \right] \times \\ & \times \left[\pi_{S}^{S^{(1)}} \pi_{I}^{I^{(1)}} \pi_{R}^{R^{(1)}} \right] \cdot \left[\prod_{t=2}^{T} \prod_{j=1}^{N} p(x_{j}^{t} \mid \mathbf{x}_{-j}^{t-1}, \boldsymbol{\theta}) \right], \end{split}$$

где $p(x_j^t|\mathbf{X}_{-j}^{t-1}, \boldsymbol{\theta})$ определено матрицей вероятностей переходов.

• Апостериорное распределение, которое нам нужно:

$$p(\theta|Y) \propto p(\theta)p(Y|\theta) = \int \mathcal{L}(Y|X,\theta)p(X|\theta)p(\theta)dX,$$

и этот интеграл, конечно, никак не подсчитать. Что же делать?

- На помощь приходит алгоритм Метрополиса-Гастингса, точнее, сэмплирование по Гиббсу.
- Будем сэмплировать траектории \mathbf{x}_j последовательно, зафиксировав все остальные \mathbf{x}_{-j} , данные \mathbf{y} и параметры модели $\boldsymbol{\theta}$:

$$\mathbf{x}_{j} \sim p(\mathbf{x}_{j}|\mathbf{x}_{-j},\mathbf{y},\boldsymbol{\theta}).$$

- Для этого нужно сначала понять, как выглядит распределение на траектории \mathbf{x}_{j} .
- Очевидно, её элементы $x_j^{(t)}$ нельзя считать независимыми, ведь человек проходит цепочку состояний $S \to I \to R$ только один раз и слева направо (если проходит вовсе). Всё это на первый взгляд опять выглядит сложно...

- ...но здесь получается модель, которая нам уже хорошо знакома: последовательность случайных переменных $x_j^{(t)}$ образует марковскую цепь, а если добавить ещё известные нам данные, то получится скрытая марковская модель.
- Выбросим \mathbf{x}_j из множества траекторий, получив статистики по всей остальной популяции $S_{-j}^{(t)}$, $I_{-j}^{(t)}$ и $R_{-j}^{(t)}$. Тогда параметры скрытой марковской модели таковы:
 - скрытые состояния $x_j^{(t)}$ с множеством возможных значений $\{S,I,R\};$
 - матрица вероятностей перехода $p(x_j^t|\mathbf{x}_{-j}^{t-1}, \boldsymbol{\theta})$, определённая выше;
 - наблюдаемые y, вероятности получить которые зависят от того, заражён ли человек x_i в момент времени t:

$$p(y^{(t)}|x_j^{(t)}) = \operatorname{Binom}\left(I_{-j}^{(t)} + \left[x_j^{(t)} = I\right], \rho\right).$$

- Чтобы сэмплировать одну траекторию x_j при условии фиксированных остальных траекторий x_{_j}, нужно сэмплировать траекторию вдоль скрытых состояний марковской модели.
- Здесь \mathbf{x}_j будет эволюционировать от состояния S к состоянию R последовательно, с вероятностями перехода \mathbf{x}_j на каждом шаге от S к R

$$p(x_j^{(t)} = I | x_j^{(t-1)} = S, \mathbf{x}_{-j}) = 1 - (1 - \beta)^{\binom{t-1}{-j}},$$

а вероятность перехода от I к R фиксирована и равна μ .

- Стохастический алгоритм Витерби: два прохода по НММ слева направо и справа налево.
- На прямом проходе подсчитываем матрицы совместных вероятностей пар последовательных состояний

$$Q_j^{(t)} = \left(q_{j,s',s}^t\right)_{s',s\in\{S,l,R\}},$$
 где

$$q_{j,s',s}^t = p(x_j^{(t)} = s, x_j^{(t-1)} = s'|Y, \mathbf{x}_{-j}, \boldsymbol{\theta}).$$

• Фактически в нашей модели возможных пар таких состояний всего шесть (остальные переходы запрещены), и все матрицы *Q* выглядят как

$$Q_j^{(t)} = \begin{pmatrix} q_{j,S,S}^{(t)} & q_{j,S,I}^{(t)} & 0\\ 0 & q_{j,I,I}^{(t)} & q_{j,I,R}^{(t)}\\ 0 & 0 & q_{j,R,R}^{(t)} \end{pmatrix}.$$

• Чтобы вычислить $q_{j,{
m s}',{
m s}}^{(t)}$, нужно подсчитать

$$\begin{split} q_{j,s',s}^{(t)} &= p(x_j^{(t)} = s, x_j^{(t-1)} = s' | \mathbf{y}, \mathbf{x}_{-j}, \boldsymbol{\theta}) \\ &\propto \quad p(x_j^{(t-1)} = s' | \mathbf{y}, \mathbf{x}_{-j}, \boldsymbol{\theta}) p(x_j^{(t)} = s | x_j^{(t-1)} = \\ &= s', \mathbf{y}, \mathbf{x}_{-j}, \boldsymbol{\theta}) p(y_t | x_j^{(t)} = s, \mathbf{y}, \mathbf{x}_{-j}, \boldsymbol{\theta}) = \\ &= \left[\sum_{s''} q_{j,s'',s'}^{(t-1)} \right] \cdot p(x_j^{(t)} = s | x_j^{(t-1)} = s', \mathbf{x}_{-j}, \boldsymbol{\theta}) \times \\ &\times p_{\mathrm{Binom}} \left(\mathbf{y}^{(t)} \mid I_{-j}^{(t)} + \left[x_j^{(t)} = I \right], \rho \right), \end{split}$$

где $p(x_j^{(t)}=s|x_j^{(t-1)}=s',\mathbf{x}_{-j},\boldsymbol{\theta})$ — это те самые вероятности перехода в нашей модели, подсчитанные по статистикам $S_{-j}^{(t-1)}$, $I_{-j}^{(t-1)}$ и $R_{-j}^{(t-1)}$, а p_{Binom} — вероятность по биномиальному распределению.

• Потом нужно нормировать, учитывая, что $\sum_{s,s'} q_{i,s',s}^{(t)} = 1$.

• Когда все матрицы $Q_j^{(t)}$ подсчитаны, их можно использовать для того, чтобы сэмплировать целые последовательности скрытых состояний. Для этого нужно разложить $p(\mathbf{x}_j \mid \mathbf{x}_{-j}, \mathbf{y}, \boldsymbol{\theta})$ не с начала времён, а с конца:

$$p(\mathbf{x}_{j}|\mathbf{x}_{-j},\mathbf{y},\boldsymbol{\theta}) = p(\mathbf{x}_{j}^{(T)}|\mathbf{x}_{-j},\mathbf{y},\boldsymbol{\theta})p(\mathbf{x}_{j}^{(T-1)}|\mathbf{x}_{j}^{(T)},\mathbf{x}_{-j},\mathbf{y},\boldsymbol{\theta}) \times \dots$$

$$\dots \times p(\mathbf{x}_{j}^{(2)}|\mathbf{x}_{j}^{(3)},\dots,\mathbf{x}_{j}^{(T)},\mathbf{x}_{-j},\mathbf{y},\boldsymbol{\theta})p(\mathbf{x}_{j}^{(1)}|\mathbf{x}_{j}^{(2)},\dots,\mathbf{x}_{j}^{(T)},\mathbf{x}_{-j},\mathbf{y},\boldsymbol{\theta}).$$

• И можно сэмплировать справа налево по матрицам Q.

• Последнее состояние сэмплируется из сумм по строкам последней матрицы $Q_i^{(T)}$:

$$x_j^{(T)} \sim p(x_j^{(T)} = s | \mathbf{x}_{-j}, \mathbf{y}, \boldsymbol{\theta}) = \sum_{s'} p(x_j^{(T)} = s, x_j^{(T-1)} = s' | \mathbf{x}_{-j}, \mathbf{y}, \boldsymbol{\theta}) =$$

$$= \sum_{s'} q_{j,s',s}^{(T)}.$$

• А дальше достаточно, по марковскому свойству последовательности \mathbf{x}_{j} , сэмплировать при условии следующего состояния, то есть использовать распределение

$$x_{j}^{(t)} \sim p(x_{j}^{(t)} = s | x_{j}^{(t+1)}, \mathbf{x}_{-j}, \mathbf{y}, \boldsymbol{\theta}) \propto \\ \propto p(x_{j}^{(t)} = s, x_{j}^{(t+1)} = s' | \mathbf{x}_{-j}, \mathbf{y}, \boldsymbol{\theta}) = q_{j,s,s'}^{(t+1)}.$$

- Так мы получим новую траекторию \mathbf{x}_j , и её можно подставить в X на место старой траектории и продолжать процесс сэмплирования: выбрать новый индекс j и повторить всё заново.
- В какой-то момент надо будет остановиться и обновить значения параметров.
- Теоретически можно даже сделать полноценный байесовский вывод, пересчитав параметры сопряжённых априорных распределений.
- Три основных параметра β , ρ и μ это три монетки, а оставшийся параметр π кубик с тремя гранями. Поэтому сопряжёнными априорными распределениями будут

$$\begin{array}{lcl} p(\beta) & = & \mathrm{Beta}\left(a_{\beta}, b_{\beta}\right), & p(\mu) & = & \mathrm{Beta}\left(a_{\mu}, b_{\mu}\right), \\ p(\rho) & = & \mathrm{Beta}\left(a_{\rho}, b_{\rho}\right), & p(\pi) & = & \mathrm{Dir}\left(\mathbf{a}_{\pi}\right). \end{array}$$

- Чтобы пересчитать их апостериорные значения, нужно аналогично обычным НММ подсчитать «статистику» того, сколько раз соответствующие монетки и кубики «бросали» и чем они «выпадали» в текущем наборе скрытых переменных (траекторий) X:
 - \cdot к параметрам \mathbf{a}_{π} добавляются статистики того, в каких состояниях начинаются траектории:

$$a_{\pi,s} := a_{\pi,s} + \sum_{j=1}^{N} \left[x_j^{(1)} = s \right];$$

- Чтобы пересчитать их апостериорные значения, нужно аналогично обычным НММ подсчитать «статистику» того, сколько раз соответствующие монетки и кубики «бросали» и чем они «выпадали» в текущем наборе скрытых переменных (траекторий) X:
 - параметры a_{μ} и b_{μ} обновляются в зависимости от того, каково было ожидаемое число переходов из состояния I в состояние R (выздоровлений) и сколько всего времени люди провели в состоянии I (проболели):

$$a_{\mu} := a_{\mu} + \sum_{t=1}^{T-1} \sum_{j=1}^{N} \left[x_{j}^{(t)} = I, x_{j}^{(t+1)} = R \right],$$

$$b_{\mu} := b_{\mu} + \sum_{t=1}^{T} I^{(t)} - \sum_{t=1}^{T-1} \sum_{j=1}^{N} \left[x_{j}^{(t)} = I, x_{j}^{(t+1)} = R \right].$$

- Чтобы пересчитать их апостериорные значения, нужно аналогично обычным НММ подсчитать «статистику» того, сколько раз соответствующие монетки и кубики «бросали» и чем они «выпадали» в текущем наборе скрытых переменных (траекторий) *X*:
 - аналогично, параметры a_{ρ} и b_{ρ} получаются из статистики выявленных случаев, попавших в \mathbf{y} , по сравнению со случаями, которые оказались только в $l^{(t)}$:

$$a_{\rho} := a_{\rho} + \sum_{t=1}^{T} y^{(t)}, \quad b_{\rho} := b_{\rho} + \sum_{t=1}^{T} (I^{(t)} - y^{(t)});$$

• Параметры a_{β} и b_{β} самые интересные: нужно подсчитать ожидаемое число «возможностей заразиться», которые реализовались и не реализовались для всех людей в популяции:

$$p(x_j$$
 заразился при одном контакте $|x_j|$ заразился $) = \frac{\beta}{1 - (1 - \beta)^{I^{(t)}}},$

а значит,

$$a_{\beta} := a_{\beta} + \sum_{t,j: \ x_{j}^{(t)} = S, x_{j}^{(t+1)} = I} \frac{\beta I^{(t)}}{1 - (1 - \beta)^{I(t)}},$$

$$b_{\beta} := b_{\beta} + \sum_{t,j: \ x_{j}^{(t)} = S, x_{j}^{(t+1)} = S} I^{(t)} + \sum_{t,j: \ x_{j}^{(t)} = S, x_{j}^{(t+1)} = I} \left(I^{(t)} - \frac{\beta I^{(t)}}{1 - (1 - \beta)^{I(t)}} \right).$$

- Итого получили все компоненты нашей (сильно упрощённой!) SIR-модели: скрытые переменные в виде траекторий элементов популяции, алгоритм для сэмплирования по Гиббсу, который сэмплирует одну траекторию при условии всех остальных, и правила обновления параметров, которыми можно воспользоваться после того, как марковская цепь сэмплирования достаточно долго поработала.
- Давайте теперь посмотрим на практику...

• Пример визуализации статистик заражения при параметрах $N=100,\, T=20,\, \rho=0.1,\, \beta=0.05,\, \mu=0.1$:

• Пример обучения параметров модели SIR:

• И если посэмплировать популяции из полученных параметров и из настоящих, получится совсем одно и то же:

• Какие выводы? Как это использовать на практике?

Спасибо!

Спасибо за внимание!