The critical halo mass for Population III stars

Dependence on Lyman-Werner radiation, baryon-dark matter streaming, and redshift

Mihir Kulkarni, Columbia University

SAZERAC 23 October 2020

M_{crit}: Critical halo mass for Population III stars

- Minimum halo mass required to host sufficient cold-dense gas to form stars.
- Expected to be 10⁵-10⁷ M_☉ in ΛCDM.
- Can increase based on the environment and in turn delay Pop III star formation.
- Very important for semi-analytic models to make observational predictions.

Effect of Lyman-Werner radiation

- Molecular hydrogen is necessary for gas cooling in minihalos.
- LW photons (11.2 13.6 eV) can dissociate molecular hydrogen.
- In the presence of LW radiation, molecular hydrogen is destroyed and star formation is suppressed.
- Massive halos can self-shield from LW radiation (Wolcott-Green+19).
- Pop III stars form only in massive halos increasing M_{crit} and delay Pop III star formation.

Effect of baryon-dark matter streaming velocity

- First pointed out by Tseliakhovich & Hirata 2010.
- Prior to recombination, baryons were coupled with radiation whereas DM fluctuations grew, resulting in a net streaming velocity between them.
- Coherent over a scale of 3-5 comoving Mpc.
- Maxwell-Boltzmann distribution with RMS \sim 30 km/s at z = 1100.
- Decreases with time as $V_{hc} \propto (1+z)$.

In the regions with high streaming velocity

- Halos are gas poor with a lower maximum density.
- Halos need to be more massive with deeper potential wells to have high gas densities.
- M_{crit} is increased and Pop III star formation is delayed.

Effect of baryon-dark matter streaming velocity

 3×10^{-24}

ICs using CICASS

Without streaming

 4×10^{-24} 0.4

x (code length)

0.2

0.4

With streaming

Simulations set-up

- Cosmological simulations of comoving box size 0.5 (1) h⁻¹ Mpc using ENZO.
- Primordial chemistry
- Initial conditions using CICASS (McQuinn & O'Leary 2012)
- DM particle mass 100 (800) M_☉
- Spatial resolution ~ 22 comoving pc.
- Cold-dense gas (T < 0.5 T_{vir} , n > 100 cm⁻³).
- $J_{21} = 10^{-21} \text{ erg s}^{-1} \text{ cm}^{-2} \text{Hz}^{-1} \text{Sr}^{-1}$.

	$J_{21} = 0$	$J_{21} = 1$	$J_{21} = 10$	$J_{21} = 30$
$v_{\rm bc} = 0$	✓	✓	✓	✓
$v_{\rm bc} = 1\sigma$	✓	✓	✓	
$v_{\rm bc} = 2\sigma$	✓	✓		

Identifying M_{crit}

- Mass where half of the halos have cold-dense gas.
- Scatter corresponding to the mass range with 25%-75% of halos with cold-dense gas.

Dependence on LW radiation

- For J_{LW}=0, consistent with a fixed virial temperature.
- M_{crit} increases with LW flux.
- Steeper z-dependence with high LW flux.
- Self-shielding of H₂ is important.

Dependence on streaming velocity

- M_{crit} is higher in the high streaming velocity environment.
- z-dependence becomes less steep in presence of streaming velocity.
- Expected as v_{bc} ∝ (1+z).

M_{crit} in presence of J_{LW} and v_{bc}

- Solid lines denote increase in M_{crit} because of LW flux in the absence of streaming.
- Dashed lines denote a similar increase in the presence of streaming.
- Effects are not multiplicative.
- Combination of LW flux and streaming velocity is less effective than the simple multiplicative assumption.

Quantities at the center of the halos

Trends for the warm halos can be used to understand the effects of LW flux and streaming on M_{crit}.

Gas density starts to increase in halos less massive than M_{crit} .

Self-shielding of molecular hydrogen

- Halos less massive than M_{crit} also have significant self-shielding leading to increased gas densities.
- Molecular hydrogen appear to be in equilibrium.
- At high-z: higher gas density
 → better self-shielding →
 higher H₂ fraction → steeper
 z-dependence for M_{crit}.

Summary

- 1. Clear redshift dependence of $M_{crit} \propto (1+z)^{-1.58}$ consistent with a fixed virial temperature in absence of LW radiation and streaming velocity.
- 2. LW background increases M_{crit} and also increases z-dependence slope up to -5.7 for J_{LW} = 30 J_{21} .
- 3. Self-shielding of gas from LW radiation is important and results in M_{crit} significantly smaller than previous works.
- 4. Effects on M_{crit} from LW radiation and streaming velocity are not entirely independent. The combined impact appears to be less than if they were operating independently.
- 5. We provide a fit for $M_{crit}(J_{LW}, v_{bc}, z)$ which can be used by semi-analytic models of early galaxy formation.