Quevenos estruar la complejidad de algunos de los algoritmos que hemos visto.

(1) Pan todo NFA existe un DFA equivalente.

Recordemos la construción: Si

$$M = (Q, Z, \gamma, q_0, F)$$
 es un NFA diferencia principal

 $\gamma: Q \times (Z \cup \{E\}) \longrightarrow Subcanjutus, du Q un este DFA y NFA$
 $(q, a) \longmapsto$

"Estados a los que es posible llegan a partir de q leyendo simbolo a $\in Z \cup \{E\}$.

Ota forma de verlo es pensa que teremos una relación de transición

 $\Delta \subseteq Q \times (Z \cup \{E\}) \times Q$

(q, a, r) transitiones admissibles $[(q, a, r) \in \Delta (=) \text{ } r \in \gamma (q, a)]$ defining un DFA asi: $M' = (Q', \sum_{i} \sum_{j} j'_{i}, F')$

(E(q)) es la davora de q bujo la relación de horris con E's $(p, E, v) \in A$

$$S'(S,a) := \bigcup \{E(p) : p \in Q \ y \ (q,a,p) \in \Delta$$
 $P^{an} algvin \ q \in S \}$

$$:= \bigcup_{q \in S} \left(\bigcup_{p \in Q} E(p) \right)$$

$$= \underbrace{\bigcup_{legs \text{ also, qu. M pele}} \bigcup_{legs \text{ dust algum } q \in S} \bigcup_{legs \text{ dust algu$$

Algoritmo: (1) Pre-compute E(p)'s. as: :
Initianos con $E(p) = \{p\}$ Si para alguín $q \in E(p) \exists r \notin E(p) \text{ con } (q, \zeta, r) \in \Delta$
$E(p) \leftarrow E(p) \cup \{v\}$. $ a + a ^2$
$E(p) \leftarrow E(p) \cup \{v\}$. Af: Esto es $O(Q ^3)$ (Vsalo depth-patrearch $O(V + E)$ praceda q)
(2) Dado $S \in \mathbb{Q}$, as Σ
(2) Dado $S \in \mathbb{Q}$, $a \in \Sigma$ remino, los estados p con $(q, a, p) \in \Delta$ pm $q \in S$
$C/C \setminus \{1\} F(0)$
$S(S,a) = \bigcup_{\substack{q \in S \\ com (q,u,p) \in \Delta}} E(p)$ $= \bigcup_{\substack{q \in S \\ com (q,u,p) \in \Delta}} S \cdot \Delta \cdot Q $ $= \bigcup_{\substack{q \in S \\ chequeos}} S \cdot \Delta \cdot Q $ $= \bigcup_{\substack{q \in S \\ chequeos}} S \cdot \Delta \cdot Q $
$con(q,u,p) \in \Delta$
$O(\Delta \alpha ^2)$
asíque el cálulo de s' require
$\mathcal{O}((2^{ Q }\cdot \Sigma \cdot Q ^2)+ Q ^3)$
(2) Convertir una expresión regular en un automata
(2) Convertir una expresión regular en un automata no determinista equivalente es un poceso
éparente.
-
Lema: Si R es una expresión regular entres
exist in NFA que acepti el lengueje
descito por R con < Z R estados.
Den: Si R=a, a E I
tiere < 2 estados
de acepharon
R=R, o Rz O O O tohlus
No de aceptus is
Nevo autonata free < 2/R1/+2/R2/ estados


```
Si conocemos las clases de equivalición de =
    construes el automata optios de Myhill-Neode as; :
    M'=(Q')\sum_{s}s'q_{s}',F') aut.
    () = {[p] : pe ()}
     S'([P]a) = [S(pa)]
      70'= [70]
       F = {[f]: f ∈ F},
  Obs: [P,]-(P2] => tae I two I" ((P,aw) -(f,E)
                                          (Pzaw) - (f'E)
        comple \{f, f'\} \subseteq F of \{f, f'\} \subseteq Q \setminus F as f \neq e
[S(p, a)] = [S(p_2, a)] \cdot (S'estable def)
  Lema: \forall w, si (q_0, w) \vdash (r_w)
                => ([70] w) [1] ([1] w])
   Dem: Nd er j. Clemcesta la equivalraia
Asíque el pobuna principal es el culculo de
Def: P = q \iff \forall w (|w| \leq n \ y (P,w) \vdash (f, \epsilon) \ y (q,w) \vdash (f', \epsilon) \ y
        entres \{f, f'\} \subseteq F or \{f, f'\} \subseteq Q \setminus F
  (3) = time dos dons, FyQIF
```

Del lema $P \equiv q$ pule calculuse $\leq |Q|$ pasos y cada paro requiere $O(|Z||Q|^2)$ compraisons, así que en $total O(|Z||Q|^3)$,

Par vílimo, la complejidad exponecial del Algoritmo NFA ~> DFA es NECESARIA,

Ejemplo: $\Sigma = \{a_1, ..., a_n\}$ $L = \{w \in \Sigma^* : \exists j \text{ a; no aprece en } w\}$

- (1) Hay in NFA con N+1 estados.
- (2) El autómata de Myhill-Nevode necesita 2º estados Porque pur A E D dejinihos LA = { w que usan todos los símbolos de A } Y Ninguno de DIA

los LA son las clases de equivalencia de 2 que son los estados, del autonata ó ptimo L (en cantidad 2º!!)