Week 8: Flexible Regression

PLSC 40502 - Statistical Models

Review

\$\$ \require{cancel} \DeclareMathOperator*{\argmin}{arg\,min} \$\$

Previously

\$\$ \DeclareMathOperator*[\argmax]{arg\,max} \$\$

- Item response theory
 - Factor model for categorical/nominal outcome variables
 - Model a matrix of **individual** responses across multiple common **questions**
 - Responses are a function of a common indivdual latent parameter
 - o Identification via Bayes (prior on the individual latent parameters defines the scale/location).

This week

Flexible functional forms

- Semi-/Non-parametric approaches to modeling CEFs of \(Y_i\) given a continuous \(X_i\)
- Regression and smoothing splines to allow for flexible relationships between
- Penalty term to avoid "jumpy" regressions
- Generalized Additive Models (GAMs) that combine "parametric" and "semi-/non-parametric" components

- Why regularize?
- \(L_0\), \(L_1\), and \(L_2\) norms
- Value of the lasso (the \(L_1\) norm) "sparse" regressions
- Interpreting regularization in Bayesian terms.

Flexible regression

Flexible regression

- A common task in statistics is estimating the conditional expectation function \(E[Y|X]\).
 - But typical methods for estimating the CEF assume that we know its functional form.
 - For example, we assume linearity -- can be trivially satisfied when $\(X\)$ is discrete, but potentially problematic when $\(X\)$ is continuous. $\$E[Y|X] = f(X) = X \cdot B$
- We want to maintain the utility of a model that is **linear in the parameters** but introduce transformations of \(X\) to capture potentially non-linear relationships between \(Y\) and \(X\).
- Define the linear basis expansion for a set of \(M\) basis functions \(h_m(X)\)

 $f(X) = \sum_{m=1}^M \beta_m h_m(X)$

Example: Modeling Bike Rentals

- **Bikeshare usage** is highly variable from day-to-day and hour-to-hour. Capital Bikeshare in Washington D.C. recorded the hourly count of active users over a two-year period from 2011 to 2012.
 - For more on the dataset, see: Fanaee-T, Hadi, and Gama, Joao, "Event labeling combining ensemble detectors and background knowledge", *Progress in Artificial Intelligence* (2013): pp. 1-15

```
bike <- read_csv("data/bikes_hour.csv")
bike_by_hour <- bike %>% group_by(hr) %>% summarize(cnt = mean(cnt))
```

Example: Modeling Bike Rentals

• From the scatterplot of active usage vs. hour of the day, a simple linear fit (slope + intercept) seems quite poor at capturing the CEF

Polynomial basis

- A common set of basis functions to choose are the **global polynomial** basis
 - You've probably already done this when you've included squared terms in your regressions!
- For example, for a univariate (X), the basis for a global cubic polynomial is:

 $\$ \begin{align*}h_1(X) &= 1\\ h_2(X) &= X\\ h_3(X) &= X^2\\ h_4(X) &= X^3\end{align*}\$\$

- A \(K\)th order polynomial requires \(K+1\) parameters
- However, there are some drawbacks to using a global polynomial namely that each observation influences the **entire** curve.

Polynomial basis

Polynomial basis

Step functions

- Instead of forcing a single **global** polynomial, we might instead want to fit a set of **local** averages to different regions of \(X\)
- We could define a set of basis functions that are indicators which partition \(X\) into \(M+1\) disjoint regions based on cutpoints \(\xi_1, \xi_2, \dotsc, \xi_{M}\)

 $\$ \begin{align*} h_1(X) &= I(X < \xi_1)\\ h_2(X) &= I(\xi_1 \le X < \xi_2)\\ h_3(X) &= I(\xi_2 \le X < \xi_3)\\ &\vdots\\ h_{M+1}(X) &= I(\xi_{M} \le X)\\ \end{align*}\$\$

Step functions

Step functions

Piecewise polynomials

• Rather than just taking the mean within each disjoint region, we could imagine fitting a polynomial to **just** that subset.

- The piecewise polynomials might fit better, but we still have these irritating discontinuities in the CEF.
 - We might want to impose some additional conditions on the function regarding continuity around the cutpoints.
- A \(K-1\)th order **spline** with \(M\) knots \(\xi_1, \xi_2, \dotsc, \xi_{M}\) is a piece-wise polynomial that...
 - ...is a polynomial of degree \(K-1\) on the intervals \((-\infty, \xi_1,], [\xi_1, \xi_2], [\xi_2, \xi_3], \dotsc, [\xi_m, \infty)\)
 - \circ ...has a \(j\)th derivative that is continuous at each of the knots \(\xi_1, \xi_2, \dotsc, \xi_{m}\) for \(j = 0, 1, 2, \dotsc, K-2\)
- Intuitively, if we **also** forced the \(k\)th derivative to be continuous, we'd recover the **global** polynomial.
- Most common spline is the cubic spline \((k = 4\)) (third order polynomial).
 - Splines allow for local flexibility while still retaining continuity across \(X\).

• There are actually multiple ways to define the basis functions for a spline. The most intuitive for understanding how they work is the **truncated power basis**

 $\$ \begin{align*} h_{k}(X) &= x^{k-1} & \ \ & k = 1, \dotsc, K\\ h_{m+K}(X) &= (x - \xi_{m})_+^{K-1} & \ \ & m = 1, \dotsc, M \end{align*}\$\$

where \((\cdot)_+\) denotes a function which returns \(\text{max}(\cdot, o)\)

- Splines have \(M + K\\) "degrees of freedom"
 - "Natural" splines add the constraint that the function is linear beyond the constraints of the data
- When the degree and number of knots are fixed, commonly called **regression splines**
 - Contrast with smoothing splines where number of indirectly controlled via penalization
- Trade-offs
 - Higher \(K\) and higher \(M\) = better in-sample fit but risks overfitting
 - Lower \(K\) and lower \(M\) = poorer in-sample fit (baseline is a global polynomial), but potentially more robust out-of-sample.

```
bike %>% ggplot(aes(x=hr, y=cnt)) + geom_point(alpha=.1) + geom_point(data=bike_by_hour, col="i
xlab("Hour of the day") + ylab("Count of Users") + ggtitle("Cubic spline with 6 degrees of fi
theme_bw() + theme(text = element_text(size = 16))
```


B-splines

- Recall that there are multiple ways of defining the basis functions that construct a spline.
 - Truncated power basis is interpretable but can have poor computational properties
- Alternative: **B-spline** basis
 - Define the spline basis recursively
 - o Advantage: Non-zero over a limited domain
- For a sequence of \(K+M\) knots \(\tau_1, \tau_2, \dotsc, \tau_{M+K}\)

 $\$ \begin{align*} B_{i, 1}(x) &= \begin{cases} 1 & \text{if} & \tau_i \le x < \tau_{i+1}\\ 0 & \text{otherwise} \end{cases}\\ B_{i, m}(x) &= \frac{x - \tau_i}{\tau_{i} + m -1} - \tau_i} B_{i, m-1}(x) + \frac{\tau_{i+m} - x} {\tau_{i} + m} - \tau_{i+1}} B_{i+1, m-1}(x) \end{align*}\$\$

• Intuition: Basis functions for higher-order splines are weighted averages of the "neighboring" lower-order basis functions

B-splines

- R will generate a b-spline basis for you using the bs() function in splines
 - You can treat these like transformations of the regressors

```
bike bs <- bs(bike$hr, df=6) # By default it's a cubic (degree = 3) and the intercept is omitte
head(bike bs)
##
## [1,] 0.000 0.0000 0.000000 0 0 0
## [2,] 0.383 0.0374 0.000772 0 0 0
## [3,] 0.565 0.1327 0.006173 0 0 0
## [4,] 0.594 0.2604 0.020833 0 0 0
## [5,] 0.519 0.3951 0.049383 0 0 0
## [6,] 0.388 0.5112 0.096451 0 0 0
 attributes(bike_bs)$knots
## 25% 50% 75%
    6 12 18
##
```

```
bike %>% ggplot(aes(x=hr, y=cnt)) + geom_point(alpha=.1) + geom_point(data=bike_by_hour, col="ixlab("Hour of the day") + ylab("Count of Users") + ggtitle("Cubic spline with 6 degrees of fixtheme_bw() + theme(text = element_text(size = 16))
```



```
bike %>% ggplot(aes(x=hr, y=cnt)) + geom_point(alpha=.1) + geom_point(data=bike_by_hour, col="ixlab("Hour of the day") + ylab("Count of Users") + ggtitle("First cubic b-spline basis") + geom_bw() + theme(text = element_text(size = 16))
```



```
bike %>% ggplot(aes(x=hr, y=cnt)) + geom_point(alpha=.1) + geom_point(data=bike_by_hour, col="i
xlab("Hour of the day") + ylab("Count of Users") + ggtitle("Fourth cubic b-spline basis") + q
theme_bw() + theme(text = element_text(size = 16))
```


• Splines with many degrees of freedom have potentially weird behavior in areas with little data - "squiggly" interpolations

Smoothing splines

- What if we set the **maximum** possible number of knots
 - ∘ \(N\) total knots -- one for each observation
- Without penalization, we would have \(N+4\) parameters for a cubic spline for \(N\) observations.
 - This is not feasible using conventional least-squares the solution is underdetermined!
- What if we controlled the fit via some **penalty** parameter
 - All-else-equal, we'd prefer a fit where the regression function is not very "jumpy"
 - Formalize this in terms of the second-derivative \(f^{\prime\prime\(x)\)
- Our "smoothing spline" takes the form of a **penalized** optimization problem. We want to find the function (f(x)) that minimizes:

 $\$ \sum_{i=1}^n (Y_i - f(X_i))^2 + \lambda \int f^{\prime\prime}(t)dt\$\$

where \(\lambda\) is a non-negative "tuning" or "penalty" parameter.

Smoothing splines

- It turns out that the function \(f()\) that optimizes the "smoothing spline" objective function has some useful features
 - 1. It's a piecewise cubic polynomial
 - 2. It has knots at the unique values of the data (x_1, x_2, \dots, x_N)
 - 3. It has continuous first and second derivatives at each of the knots.
 - 4. It's linear outside of the knots
- It's a **natural cubic spline**
 - But with **penalized** parameter estimates (shrunken towards zero)
- \(\lambda\) chosen via cross-validation
 - Can conduct leave-one-out cross-validation very easily (formula exists to use the fit for all observations, so no need to re-fit)

- **Generalized Additive Models** (GAMs) allow us to extend the conventional multiple linear regression model to accommodate the non-linear transformations of \(X_i\).
- Instead of our original linear model:

```
$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dotsc + \epsilon_{i}$$
```

• We fit:

```
\$Y_i = \beta_0 + f_1(X_{i1}) + f_2(X_{i2}) + \beta_0 + \phi_1(X_{i1}) + \beta_0
```

- With conventional regression splines for $(f_1(), f_2(), f_3())$, etc..., this just becomes a giant linear regression with the spline bases substituted for the original regressors
- With *smoothing splines*, slightly more complicated can't use OLS, but conventional software (gam() in R) implements the "backfitting" algorithm.
- Can extend to other functions \((f_i()\) such as local regressions or just plain polynomials

• Fitting our smoothing spline using the gam() function in the mgcv library

```
hour fit <- gam(cnt ~ s(hr, bs="cr"), data = bike)
summary(hour fit)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## cnt \sim s(hr, bs = "cr")
##
## Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 189.463 0.992 191 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
        edf Ref.df F p-value
##
## s(hr) 9 9 1785 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.48 Deviance explained = 48\%
## GCV = 17111 Scale est. = 17101 n = 17379
```

• We can combine "parametric" and "non-parametric" terms in the gam() function

```
hour_work_fit <- gam(cnt ~ workingday + s(hr, bs="cr"), data=bike)
summary(hour_work_fit)
##</pre>
```

```
##
## Family: gaussian
## Link function: identity
##
## Formula:
## cnt ~ workingday + s(hr, bs = "cr")
##
## Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 181.73 1.76 103.27 < 2e-16 ***
## workingday 11.33 2.13 5.32 1.1e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
        edf Ref.df F p-value
##
## s(hr) 9 9 1787 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.481 Deviance explained = 48.1%
```

• Smoothing splines are also the default in **geom_smooth()** for large datasets

- The **error** of an estimator is a function of both its **bias** and its **variance**
 - We often talk about unbiased estimation as a goal of statistics?
 - Why? Because we can accurately characterize the remaining error the variance.
- But in other settings, we just want to know whether our point estimate is close to the truth
 - In this setting we might be willing to accept some **bias** in exchange for a reduction in variance.
- We've already done this to some extent:
 - Setting an informative prior in Bayesian regression setting pulls the estimates to our existing beliefs
 - Sharper prior \(\leadsto\\) lower variance posterior distributions
- What sort of bias do we want to induce?
 - In a **regression**: bias the coefficients towards *zero*
 - Intuition: betting on sparsity most regressors are irrelevant and their coefficients should be pulled towards zero.

Mean Squared Error

Recall that the mean squared error of an estimator \(\hat{\theta}\) of some parameter \(\\theta\)
can be decomposed into the (squared) bias and the variance

\$\$E\bigg[(\hat{\theta} - \theta)^2\bigg] = E\bigg[\theta^2\bigg] - 2\theta E\bigg[\hat{\theta}\bigg] + \theta^2\$\$

Add and subtract \(E[\hat{\theta}]^2\)

 $\$E \big(\hat \ E[\hat \]^2 - \Big(\hat \)^2 \Big) = \Big(\hat \)^2 \Big(E[\hat \]^2 - E[\hat$

And factoring to get the bias squared

\$\$\underbrace{E\bigg[(\hat{\theta} - \theta)^2\bigg]}_{\text{MSE}} = \underbrace{\bigg(E[\theta^2]-E[\hat{\theta}]^2\bigg)}_{\text{Variance}} + \underbrace{\bigg(E[\hat{\theta} - \theta]\bigg)^2}_{\text{Squared Bias}}\$\$

Notation notes

- We're going to work with a standard regression setting with outcome \(Y_i\) and covariate matrix \(\mathbf{X}\).
 - We'll assume the covariates are **standardized** to have mean zero and variance 1 (we don't want our regularizer to depend on the scale of the inputs).
- Let \(||\cdot||_p\) denote the \(L_p\) norm.
 - \circ The \(L_2\) norm is the **euclidean norm**: \(|| \beta ||_2 = \sqrt{\sum_{k=1}^K |\beta|^2}\)
 - \circ The \(L_1\) norm is the sum of the absolute values \(\| \beta \|_1 = \sum_{k=1}^K \beta \\)
 - More generally, the (L_p) norm is: $(\| \beta \|_p = \beta)^{\frac{1}{p}}$

- Many predictive involve large numbers of covariates relative to the total number of observations
 - If all of the covariates are in some sense "relevant" then you're probably out of luck.
 - But in most settings, only a handful of the covariates actually matter...the problem is that you don't know which ones ex-ante.
- The UCDP Peace Agreements dataset contains information on peace agreements to armed conflicts from the period 1975-2021
 - We may want to know what factors predict durable peace agreements.

```
pa <- read_csv("data/ucdp-peace-agreements-221.csv")</pre>
```

Some brief pre-processing of the outcome

```
# If agreement remains, then duration = "now"
pa$duration_complete <- pa$duration
pa$duration[is.na(pa$duration)] <- ymd("2021-12-31")
pa$durationDays <- as.numeric(pa$duration - pa$pa_date)
# Fill in missing "ended' data
pa$ended_full <- as.numeric(pa$ended)
pa$ended_full[is.na(pa$ended_full)] <- 0</pre>
```


• Our covariates are a large number of coded features for each agreement

- We have 55 covariates across 374 observations.
 - We can get an OLS estimate, but our sense is that these will be incredibly noisy.

Ridge regression

 Our typical (gaussian) linear regression estimator finds the \(\beta\) that minimizes the residual sum of squares (RSS)

 $\$ \text{RSS} = \sum_{i=1}^N (Y_i - X_i^{\pi})^2\$\$

- For non-gaussian models, replace the residual sum of squares with the log-likelihood (the RSS *is* the negative log-likelihood for a gaussian)
- Ridge regression augments the objective function by adding a penalty term

 $\$ \sum_{i=1}^N (Y_i - X_i^{\phi})^2 + \lambda \sum_{k=1}^K \beta_k^2\$\$ where \(\\\ is a user-specified penalty parameter

Note that we'll typically avoid regularizing the intercept \(\beta_0\).

Bayesian interpretation

- Ridge regression has an interpretation in terms of a **bayesian regression**
- Consider our normal model with:

 $Y_i | X_i, \beta \le x_i | X_i, \beta \le x_i$

• The log-posterior can be written as

 $\$ \log p(\beta | \mathbf{X}, Y) \propto \log p(Y | \mathbf{X}, \beta) + \log p(\beta)\$\$

• In a gaussian model, the first part is just the (negative) residual sum of squares

 $\$ \log p(\beta | \mathbf{X}, Y) \propto - \frac{1}{2\sigma^2}\sum_{i=1}^N (Y_i - X_i^{\pi} \beta)^2 + \log p(\beta)

Bayesian interpretation

Now, suppose we put a conventional normal prior on \(\beta\)

\$\$\beta \sim \text{Normal}(0, \tau^2I)\$\$

• \(\log p(\beta)\) can then be written as:

 $\$ \begin{align*}\log p(\beta) &= -\frac{1}{2\tau^2} \sum_{k=1}^K (\beta_k - 0)^2\\ &= -\frac{1}{2\tau^2} \sum_{k=1}^K \beta_k^2\end{align*}\$

Plugging back in to the log-posterior, we have

 $\$ \log p(\beta | \mathbf{X}, Y) \propto - \frac{1}{2\sigma^2}\sum_{i=1}^N (Y_i - X_i^{\pi})^2 - \frac{1}{2\times^2} \sum_{k=1}^K \beta_k^2

Bayesian interpretation

Rearranging terms and dropping scaling constants, we have

 $\$ \log p(\beta | \mathbf{X}, Y) \propto - \sum_{i=1}^N (Y_i - X_i^{\pie}\beta)^2 - \frac{\sigma^2} {\tau^2} \sum_{k=1}^K \beta_k^2\$

- With \(\lambda = \frac{\sigma^2}{\tau^2}\), this is just the negative of the ridge regression objective function
 - Maximizing the log-posterior (finding the MAP estimate) is equivalent to minimizing a ridge regression objective!

Visualizing the penalty

- Penalized regression can also be interpreted as a **constrained optimization problem**
- Find the \(\beta\) that minimizes:

 $\$ \text{RSS} = \sum_{i=1}^N (Y_i - X_i^{\pi})^2\$\$

Subject to

 $s=1^K \cdot k^2 \le s$

• We prefer the unconstrained formulation with \(\lambda\\) for computation, but the constrained view allows us to get a sense of how the ridge regularizer is operating.

Visualizing the penalty

- The standard library for estimating penalized regressions in R is **glmnet**
 - By default, R will fit the model for a regularization sequence of \(\lambda\)
 - Actually choosing a \(\lambda\\) is done via cross-validation
- Let's fit a gaussian model (we could do poisson as well, but gaussian is easy)

```
# alpha=0 is the ridge penalty
conflict_ridge <- glmnet(x=pa_x, y=log(pa$durationDays), family="gaussian", alpha=0, standardiz"
.</pre>
```

• How is the in-sample fit?

```
plot(x=log(conflict_ridge$lambda), y=1-conflict_ridge$dev.ratio, type='l', xlab="(logged) Lambour
```


Selecting the penalty

• \(\lambda\) is typically selected via cross-validation

```
conflict_ridge_cv <- cv.glmnet(x=pa_x, y=log(pa$durationDays), family="gaussian", alpha=0, star
print(conflict ridge cv)
##
## Call: cv.glmnet(x = pa x, y = log(pa$durationDays), family = "gaussian",
                                                                              alpha = 0, standardize
##
## Measure: Mean-Squared Error
##
##
      Lambda Index Measure
                             SE Nonzero
## min 1.37
                64 3.28 0.182
                                     54
## 1se 8.04 45 3.46 0.203
                                     54
```

- cv.glmnet typically provides two choices of \(\lambda\)
 - The first being the value that minimizes the cross-validation error (min)
 - \circ The second being the largest value of \(\\lambda\\) that is still within 1 standard error from the minimum (1se)

Selecting the penalty

• Cross-validation error is not strictly increasing with \(\\lambda\\) - low penalties can lead to **bad** out-of-sample fit!

```
plot(x=log(conflict_ridge_cv$lambda), y=conflict_ridge_cv$cvm, type='l', xlab="(logged) Lambda'
```


Lasso

- **Ridge regression** regularizes the coefficients towards zero, but it does not guarantee that some coefficients are exactly zeroed out.
 - In other words, it does not do model selection
- We would like to have a penalty term that results in **sparse** solutions ones where many coefficients are explicitly set to \(0\)
 - The \(L_1\) penalty accomplishes this!
 - The **least absolute shrinkage and selection operator** or lasso is the same penalized regression as the ridge regression but with the sum of the **absolute** rather than squared coefficients in the penalty \$\$\sum_{i=1}^N (Y_i X_i^{\pi})^2 + \lambda^2 + \lambda^4 \sum_{i=1}^K |\lambda_i|^3
- The \(L_1\) norm is non-differentiable with respect to the covariates at \(0\), which leads to the lasso acting as a "selection" operator on the elements of \(\beta\)

Visualizing the lasso

- As with ridge, the lasso has an expression in terms of a constrained optimization problem:
- Find the \(\beta\) that minimizes:

```
$\star \text{RSS} = \sum_{i=1}^N (Y_i - X_i^{\pi})^2
```

Subject to

 $\$ \sum_{k=1}^K |\beta_k| \le s\$\$

Visualizing the lasso


```
# alpha=1 is the lasso penalty
conflict_lasso <- glmnet(x=pa_x, y=log(pa$durationDays), family="gaussian", alpha=1)</pre>
```

• We can count the number of coefficients set to \(0\) as \(\lambda\) increases

```
plot(x=log(conflict_lasso$lambda), y=colSums(coef(conflict_lasso) == 0), type='l', xlab="(logget)
```


• In-sample fit improves as we reduce \(\lambda\)

```
plot(x=log(conflict_lasso$lambda), y=1- conflict_lasso$dev.ratio, type='l', xlab="(logged) Lamb
```


• We again choose \(\lambda\) via cross-validation

```
conflict_lasso_cv <- cv.glmnet(x=pa_x, y=log(pa$durationDays), family="gaussian", alpha=1)
print(conflict_lasso_cv)

##
## Call: cv.glmnet(x = pa_x, y = log(pa$durationDays), family = "gaussian", alpha = 1)
##
## Measure: Mean-Squared Error
##
## Lambda Index Measure SE Nonzero
## min 0.0992 18 3.36 0.240 20
## 1se 0.2515 8 3.57 0.264 7</pre>
```

Cross-validation error does not strictly improve with lower \(\lambda\)

```
plot(x=log(conflict_lasso_cv$lambda), y=conflict_lasso_cv$cvm, type='l', xlab="(logged) Lambda'
```


Lasso as variable selection

- Variable selection is a common problem in statistics
 - We assume a world where among our covariates \(X\), some small subset have actual non-zero coefficients (they "matter") but most don't.
 - The problem is that ex-ante, we have no idea what the relevant covariates actually are!
- Classical approaches
 - Forward selection Start with an empty model and add variables one-by-one.
 - **Backward selection** Start with a full model and remove the least correlated variables one-by-one.
- The lasso can be thought of as an alternative to these techniques
 - Advantages in computational time/feasibility as well as potential predictive benefits from shrinkage.

Let's fit the lasso with the "best" cross-validated \(\lambda\)

```
conflict_lasso_best <- glmnet(x=pa_x, y=log(pa$durationDays), family="gaussian", alpha=1, lambout
</pre>
```

Which coefficients are non-zero?

```
coef(conflict_lasso_best)[,1][coef(conflict_lasso_best)[,1] != 0]
```

```
as.factor(region)2
                                                    as.factor(region)4
              (Intercept)
##
##
                  7.72511
                                        -0.27508
                                                               -0.47508
##
                                          intciv
                                                                natalks
                    cease
##
                 -0.20605
                                         0.03974
                                                               -1.14074
##
                      ref
                                                                    pris
                                             amn
##
                 0.64016
                                         0.02579
                                                               -0.05113
##
                                        reaffirm
                  return
                                                                 gender
##
                  0.19774
                                         0.39678
                                                               -0.17827
##
                  co impl
                                         termdur
                                                                     txt
##
                  0.04615
                                         0.00393
                                                                0.27287
  as.factor(inclusive)2
                            as.factor(out iss)1
                                                    as.factor(out iss)3
##
                 -0.18618
                                         0.11482
                                                               -0.61865
##
     as.factor(out iss)4
                            as.factor(out iss)5
                                                   as.factor(frame)2
##
                 -0.00594
                                        -0.76880
                                                                0.08045
```

What if we took the "selected" variables and just ran OLS?

```
pa_x_use <- cbind(1, pa_x[,names(coef(conflict_lasso_best)[,1][coef(conflict_lasso_best)[,1] !=
beta_ols <- as.vector(solve(t(pa_x_use)%*%pa_x_use)%*%t(pa_x_use)%*%log(pa$durationDays))
names(beta_ols) <- names(coef(conflict_lasso_best)[,1][coef(conflict_lasso_best)[,1] != 0])
beta_ols</pre>
```

##	(Intercept)	as.factor(region)2	as.factor(region)4
##	7.65115	-0.89269	-0.69743
##	cease	intciv	natalks
##	-0.36180	0.26985	-1.33445
##	ref	amn	pris
##	0.95699	0.26881	-0.45066
##	return	reaffirm	gender
##	0.44617	0.62609	-0.56304
##	co_impl	termdur	txt
##	0.23087	0.00844	0.64263
##	as.factor(inclusive)2	as.factor(out_iss)1	as.factor(out_iss)3
##	-0.34966	0.17245	-0.98263
##	as.factor(out_iss)4	as.factor(out_iss)5	as.factor(frame)2
##	-0.17640	-1.12314	0.35385

- The OLS coefficients post-selection are larger in magnitude!
 - Why? Lasso induces a **bias** towards zero