ROBOTICA INDUSTRIAL

TEMA 3 MODELADO DINÁMICO

INTRODUCCIÓN

- Dinámica: Estudia la relación entre las fuerzas que se aplican a un cuerpo y el movimiento que estas fuerzas originan
- Modelo dinámico del robot: Estudia la relación entre el movimiento del robot y las fuerzas implicadas en el movimiento
- Modelo dinámico directo: Expresa la evolución temporal de las coordenadas articulares en función de las fuerzas y pares que intervienen
- Modelo dinámico inverso: Expresa las fuerzas y pares que intervienen en función de las coordenadas articulares y sus derivadas
- Parámetros: longitudes, masas e inercias
- Para robots de uno o dos grados de libertad puede hacerse bien de forma analítica para más grados de libertad suele ser necesario el empleo de métodos computacionales para resolverlo.

Modelo dinámico directo e inverso

Fuerzas F_1, F_2, F_3, \dots $\tau_1, \tau_2, \tau_3, \dots$

Modelo directo

Modelo inverso

Coordenadas articulares $q_1, q_2, q_3, ...$ $\dot{q}_1, \dot{q}_2, \dot{q}_3, ...$

Modelo dinámico

Utilidad

- Simulación del movimiento del robot.
- Evaluación del diseño y la estructura del robot.

Robótica Industrial 4º G. Ing Electrónica- Automática

Fuerzas que actúan en el robot

- Todas estas fuerzas y momentos dependen de:
 - Coordenadas, velocidades y aceleraciones articulares
 - Gravedad
 - Masas y dimensiones de articulaciones

Fuerzas que actúan en el robot

- Cada articulación posee:
 - Masa m_i
 - Centro de masas r_i con respecto a la articulación i
 - Una matriz de inercia I_i . Matriz 3x3 simétrica

• Ejemplo articulación 1:

- Masa
$$m_1$$

$$- r_1 = (-a_1, 0, 0)$$

$$- I_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & Iz1 \end{pmatrix}$$

Robótica Industrial

4º G. Ing Electrónica- Automática

Obtención del modelo dinámico

- Formulación del modelo Lagrange-Euler:
 - Se basa en el balance de energía a través del lagrangiano

$$\mathcal{L}(q,\dot{q}) = K(q,\dot{q}) - U(q)$$

- Describe la dinámica del robot teniendo en cuenta la energía cinética y potencial almacenada
- Obtención es simple y sistemática, pero necesita mucho tiempo de cálculo $O(n^4) \rightarrow$ No se suele emplear en tiempo real

Obtención del modelo dinámico

- Formulación del modelo Newton-Euler:
 - Se basa en efectuar un balance de fuerzas y momentos

$$\sum F = ma$$
, $\sum \tau = I\dot{w} + w \times (Iw)$

- Obtención es más difícil si se hace manualmente
- Normalmente se obtienen computacionalmente mediante ecuaciones recursivas
- Menor tiempo de cálculo $O(n) \rightarrow$ Tiempo real

Método de Lagrange-Euler

 Se basa en el balance de energía a través del lagrangiano

$$\mathcal{L}(q,\dot{q}) = K(q,\dot{q}) - U(q)$$

Y la ecuación del movimiento

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{\partial \mathcal{L}}{\partial q} = \tau$$

- q coordenadas generalizadas \rightarrow articulares
- τ vector de fuerzas y pares aplicados

Método de Lagrange-Euler

• Finalmente obtenemos una expresión general similar a: U(q)

Método de Lagrange-Euler

EJEMPLO:

$$\frac{\partial \mathcal{L}}{\partial \theta} = -MgL\cos\theta$$

$$\frac{\partial \mathcal{L}}{\partial \dot{\theta}} = ML^2 \dot{\theta} \Rightarrow \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = ML^2 \ddot{\theta}$$

Energía cinética

$$K(q,\dot{q}) = \frac{1}{2}I\dot{\theta}^2 \qquad I = ML^2$$

Energía potencial

$$U(q) = Mgh = MgL \sin \theta$$

Lagrangiano

$$\mathcal{L}(q,\dot{q}) = \frac{1}{2}ML^2\dot{\theta}^2 - MgL\sin\theta$$

$$\frac{d}{\partial \mathcal{L}}\frac{\partial \mathcal{L}}{\partial \mathcal{L}}$$

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_i} - \frac{\partial \mathcal{L}}{\partial q_i} = \tau$$

$$ML^2\ddot{\theta} + MgL\cos\theta = \tau$$

$$D(q) = ML^2$$

$$D(q) = ML^2$$
 $C(q) = MgL\cos\theta$

Método de Newton-Euler

Algoritmo

Para cada eslabón $i: 1 \dots n$

- 1. Calcula la velocidad angular ${}^{i}w_{i} = f({}^{i-1}w_{i-1}, \dot{q}_{i})$
- 2. Calcula la aceleración angular $\dot{w}_i = f(^{i-1}\dot{w}_{i-1}, \dot{q}_i, \ddot{q}_i)$
- 3. Calcular la aceleración lineal $\dot{v}_i = f(^{i-1}\dot{v}_{i-1}, \dot{w}_i, \dot{w}_i, \dot{q}_i, \ddot{q}_i)$

4. Calcular la aceleración lineal del centro de masas ${}^{i}a_{cm_{i}}=f({}^{i}w_{i},{}^{i}\dot{w}_{i},{}^{i}\dot{v}_{i})$

Para cada eslabón i: n1

- 1. Calcular la fuerza ejercida sobre el eslabón ${}^{i}f_{i} = f({}^{i+1}f_{i+1}, {}^{i}a_{cm_{i}})$
- 2. Calcular el par ejercido sobre el eslabón ${}^in_i = f({}^{i+1}n_{i+1}, {}^{i+1}f_{i+1}, {}^ia_{cm_i}, {}^iw_i, {}^i\dot{w}_i)$
- 3. Obtener fuerza o par aplicado a la articulación ${}^{i}\tau_{i} = f({}^{i}n_{i}, {}^{i}f_{i})$

Finalmente en ${}^{i} au_{i}$ tendremos el **modelo dinámico inverso del robot**

Fuerzas F_1, F_2, F_3, \dots $\tau_1, \tau_2, \tau_3, \dots$

Modelo directo

Coordenadas articulares $q_1, q_2, q_3, ...$ $\dot{q}_1, \dot{q}_2, \dot{q}_3, ...$

Modelo inverso

$$\tau = D(q)\ddot{q} + H(q,\dot{q}) + C(q)$$

 Para obtenerlo partimos de la ecuación del modelo inverso

$$\tau = D(q)\ddot{q} + H(q,\dot{q}) + C(q)$$

• Donde au es el vector de pares y fuerzas efectivo

$$\tau = \tau_{motor} - \tau_{pert} - \tau_{rozVisc} - \tau_{rozSeco}$$

• El vector de estado será $egin{bmatrix} m{q} \\ \dot{m{q}} \end{bmatrix}$ y la entrada $m{ au}$

Agrupamos H y C en el término N

$$\tau = D(q)\ddot{q} + H(q,\dot{q}) + C(q)$$
$$\tau = D(q)\ddot{q} + N(q,\dot{q})$$

• Despejamos \ddot{q}

$$\ddot{q} = D(q)^{-1} \left(\tau - N(q, \dot{q})\right)$$

• Teniendo en cuenta el vector de estado $\begin{bmatrix} q \\ \dot{q} \end{bmatrix}$ y reordenando:

$$\frac{d}{dt} \begin{bmatrix} q \\ \dot{q} \end{bmatrix} = \begin{bmatrix} \dot{q} \\ -D(q)^{-1}N(q,\dot{q}) \end{bmatrix} + \begin{bmatrix} 0 \\ D(q)^{-1} \end{bmatrix} \tau$$

• Declaramos una señal auxiliar \boldsymbol{u} y llevamos toda la parte no lineal

$$u = D(q)^{-1} \left(au - N(q, \dot{q})
ight)$$
 Modelo no lineal

 Entonces obtenemos la expresión de un modelo lineal:

$$rac{d}{dt} igl[egin{array}{c} q \ \dot{q} \end{array} igr] = igl[egin{array}{c} 0 & I \ 0 & 0 \end{array} igr] igl[egin{array}{c} q \ \dot{q} \end{array} igr] + igl[egin{array}{c} 0 \ I \end{array} igr] u \qquad ext{Modelo lineal}$$

 Obtenemos dos modelos en cascada uno no lineal y otro lineal

Bibliografía

- Antonio Barrientos, (2007) Fundamentos de Robótica, 2ª, Mc Graw Hill,
- Anibal Ollero Baturone, (2001) ROBOTICA Manipuladores y Robots Móviles, Marcombo, 84-267-1313-0,
- https://robotacademy.net.au/

