Next Token Generation

Nipun Batra

IIT Gandhinagar

August 30, 2025

Inspiration and Relevance

Inspired by the great lecture from Andrej Karpathy

 Search for "Neural Networks: Zero to Hero" to find the original lecture

Inspiration and Relevance

Inspired by the great lecture from Andrej Karpathy

- Search for "Neural Networks: Zero to Hero" to find the original lecture
- · This approach is fundamental to modern language models

Inspiration and Relevance

Inspired by the great lecture from Andrej Karpathy

- Search for "Neural Networks: Zero to Hero" to find the original lecture
- This approach is fundamental to modern language models
- Direct connection to ChatGPT:
 - Same core principle: predict the next token
 - Scaled up from characters to words/subwords
 - Uses transformer architecture instead of MLP

Understanding this simple version helps grasp ChatGPT's foundation!

What is the Next Character?

app

?

What is the next character?

Classification Task

app

?

We can pose this as a classification task

Output: Probability Distribution

Input: app

Char	Prob	Char	Prob
а	0.01	n	0.01
b	0.01	0	0.01
С	0.01	р	0.01
- 1	0.45	Z	0.01
m	0.01	_	0.05

Generate Indian Names

Specific Problem: Generate Indian Names

Dataset:

Abid Abhidha

Adesh

Adesn

Aditya

Agam

. . .

:

Yash

Yogesh

Zara

- · Collection of Indian names
- Each name represents a sequence
- Goal: Learn to generate similar names

Assumptions

We'll make a few assumptions:

1. Character set: Only use 26 lowercase characters (a-z)

Assumptions

We'll make a few assumptions:

- 1. Character set: Only use 26 lowercase characters (a-z)
- 2. **End marker:** A hyphen (-) indicates the end character

Assumptions

We'll make a few assumptions:

- 1. Character set: Only use 26 lowercase characters (a-z)
- 2. **End marker:** A hyphen (-) indicates the end character
- 3. Length constraint: Names are between 4 and 10 characters

Total vocabulary size: 26 + 1 = 27 characters

Generate Training Dataset

Creating Training Data from "abid"

Using history/context of 3 characters:

X (Input)		Y (Target)
[-, -, -]	\rightarrow	a a>-, a
	\rightarrow	b a, b>a, b
	\rightarrow	i a, b, i>a, b, i
	\rightarrow	d b, i, d>b, i, d
	\rightarrow	-

Result: 5 training examples from one name "abid"

Representation Learning

Important Idea: Representation Learning

- Learn a vector representation for each character
- · Hope that similar characters will be closer in vector space

Word2Vec Reference

Classic Word2Vec Relationship

 $\textbf{Relationship:} \ \mathsf{queen} \approx \mathsf{king} \ \mathsf{-man} + \mathsf{woman}$

Analogy with Smileys

Emotional Expression Analogy

Relationship: child crying = child smiling + adult crying - adult smiling

Embedding Matrix/Table

Main Idea: Embedding Matrix/Table

Process: Character \rightarrow Lookup in Embedding Table \rightarrow Dense Vector

27 × K Embedding Matrix

Embedding Table Structure

Char	D1	D2		DK
а	0.2	-0.1		0.8
b	-0.3	0.5		-0.2
С	0.1	0.3		0.4
:	:	:	٠	:
Z	0.7	-0.4		0.1
-	0.0	0.9		-0.5

This overall becomes a 27 × K dimensional matrix

This matrix is learnable!

• Initially: Random values

This matrix is learnable!

• Initially: Random values

• During training: Updated via backpropagation

This matrix is learnable!

- Initially: Random values
- During training: Updated via backpropagation
- After training: Contains meaningful character representations

This matrix is learnable!

- · Initially: Random values
- During training: Updated via backpropagation
- After training: Contains meaningful character representations
- Similar characters: Will have similar embedding vectors

The network learns both the embeddings AND the classification weights!

Overall Architecture (2D Example)

Example with X ="abi" and 2D embeddings

Embedding Matrix
$$(27 \times 2)$$

Input: $X = ["a", "b", "i"]$

Concatenate the Embeddings

Feature Vector Creation for X = "abi"

The feature vector pulls up embeddings and concatenates them

Multi-Layer Perceptron

Neural Architecture

Eventually shows 27-class output vector

Cross-Entropy Loss

Learning Process

• Loss Function: Use cross-entropy loss to learn

Cross-Entropy Loss

Learning Process

- Loss Function: Use cross-entropy loss to learn
- We are learning two things:
 - 1. The embedding matrix (27 \times K parameters)
 - 2. The MLP weights (neural network parameters)

Cross-Entropy Loss

Learning Process

- Loss Function: Use cross-entropy loss to learn
- We are learning two things:
 - 1. The embedding matrix (27 \times K parameters)
 - 2. The MLP weights (neural network parameters)
- Training Process:
 - Forward pass: Input \rightarrow Embeddings \rightarrow Concatenate \rightarrow MLP \rightarrow Probabilities
 - Compute cross-entropy loss against true next character
 - Backward pass: Update both embeddings and MLP weights

Generate/Sample from Learned Model

Test Input: "abi"

Probability vector for next character:

Next Char	Probability	Next Char	Probability
а	0.01	n	0.05
b	0.01	0	0.02
С	0.03	р	0.01
d	0.60		
		Z	0.01

- ABIA would be 1%
- ABIB would be 1%
- ABID would be 60%

Tree Structure

Generation as Tree Structure

Had we chosen A, it starts a new branch. Had we chosen D, it starts a new branch, etc.

Temperature Term

Temperature in Softmax

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (1)

Temperature Term

Temperature in Softmax

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (1)

• Temperature-scaled Softmax:

$$P(y_i) = \frac{e^{z_i/T}}{\sum_{j=1}^{27} e^{z_j/T}}$$
 (2)

Temperature Term

Temperature in Softmax

Standard Softmax:

$$P(y_i) = \frac{e^{z_i}}{\sum_{j=1}^{27} e^{z_j}}$$
 (1)

Temperature-scaled Softmax:

$$P(y_i) = \frac{e^{z_i/T}}{\sum_{j=1}^{27} e^{z_j/T}}$$
 (2)

- Temperature Effects:
 - T = 1: Default/standard probabilities
 - $T \rightarrow 0$: Very low temperature \rightarrow more peaked (deterministic)
 - $T o \infty$: Very high temperature o more uniform (random)

Temperature Variations

How sampling differs across temperatures

Next Char	Default	Low T	High T
	T=1.0	T = 0.5	T=2.0
а	0.01	0.001	0.08
d	0.60	0.95	0.25
S	0.08	0.01	0.12
h	0.03	0.005	0.09
-	0.05	0.02	0.11
others	0.23	0.015	0.35

• Low Temperature: Conservative, predictable generation

• High Temperature: Creative, diverse generation