Chapitre 7 Fonctions trigonométriques

Table 7.1 – Objectifs. À fin de ce chapitre 7...

	Pour m'entraîner <u>é</u>						
Je dois connaître/savoir faire	6	•	Ö				
Enroulement de la droite des réels sur le cercle trigonométrique							
équation du cercle unité et utilisation	7.1	7.2, 7.3					
réel t et coordonnées du point correspondant du cercle unité		7.4, 7.6, 7.5					
valeur principale		7.6					
Angles orientés et mesure en radians							
problèmes de conversion et calcul d'aire et de longueur d'arcs	7.7	7.8, 7.9	7.10, 7.11				
mesure principale d'angles orientés		7.12, 7.13					
Définitions des fonctions cos et sin sur $\mathbb R$							
propriétés des fonctions trigonométries (identité de Pythagore, périodicité, parité)	7.14, 7.15, 7.16	7.17, 7.8, 7.18					
valeurs particulières et résolution d'équations simples.		7.19 7.20					
fonctions trigonométriques :parité et période		7.21 7.22					

7.1 Le cercle unité

Dans ce chapitre, le plan est muni d'un repère orthonormé.

- (a) Le cercle trigonométrique (ou cercle unité) est le cercle de rayon 1, centré à l'origine, orienté dans le sens direct (antihoraire) et d'équation \mathscr{C} : $x^2+y^2=1$.
- Quadrant II Quadrant I Quadrant III Quadrant IV
- (b) Les portions du plan délimitées par les axes du repères s'appellent quadrants et sont numérotés de I à IV

- Exemple 7.1 exploiter l'équation du cercle unité.
- 1. Montrer que point $P(\frac{\sqrt{3}}{3}; \frac{\sqrt{6}}{3}) \in \mathscr{C}$.
- 2. Déterminer y sachant que le point $P\left(\frac{\sqrt{3}}{2}; y\right)$ appartient au cercle unité et au quadrant IV.

solution.

1.
$$x_P^2 + y_P^2 = \left(\frac{\sqrt{3}}{3}\right)^2 + \left(\frac{\sqrt{6}}{3}\right)^2 = \frac{3}{9} + \frac{6}{9} = 1$$
, $\therefore P \in \mathscr{C}$.

1.
$$x_P^2 + y_P^2 = \left(\frac{\sqrt{3}}{3}\right)^2 + \left(\frac{\sqrt{6}}{3}\right)^2 = \frac{3}{9} + \frac{6}{9} = 1$$
, $\therefore P \in \mathscr{C}$.
2. $P \in \mathscr{C}$, donc y vérifie $\left(\frac{\sqrt{3}}{2}\right)^2 + y^2 = 1 \iff y^2 = 1 - \frac{3}{4} = \frac{1}{4} \iff y = \pm \frac{1}{2}$.

 $y \leqslant 0 \text{ car } P \in \text{quadrant IV.} : y = -\frac{1}{2}.$

Définition 7.1 — L'enroulement de la droite des réels sur le cercle unité.

À tout $t \in \mathbb{R}$ on associe le point P du cercle unité à la distance |t| le long du cercle \mathscr{C} , en partant de I(1 ; 0) et en se déplaçant dans le sens positif si t>0, et négatif si t<0. t est la mesure de l'arc orienté \widehat{IP} .

(b) Si t < 0, déplacement de |t| dans le sens *négatif*

7.1 Le cercle unité 3

Figure 7.3 – Points associés aux réels $t=\frac{\pi}{2}=\frac{2\pi}{4}$ quart de tour, $\pi=\frac{2\pi}{2}$ demi tour, $\frac{3\pi}{2}$ (3 quarts de tour) et 2π (tour complet).

Figure 7.4 – Les points correspondant aux réels $t=3\pi$, $-\pi$ et $-\frac{\pi}{2}$.

R Le périmètre du cercle unité étant égale à 2π , les réels $t=0,\,2\pi,\,4\pi,\,8\pi\ldots$ mais encore $-2\pi,\,-4\pi\ldots$ correspondent tous avec le point $P(1\,\,;\,\,0)$.

■ Exemple 7.2 Donner les coordonnées du point associé à $t = \frac{\pi}{4}$.

solution.

P(x ; y) est sur la droite d'équation y = x.

$$x$$
 vérifie $x^2 + x^2 = 1$

$$2x^2 = 1$$

$$x = \pm \frac{\sqrt{2}}{2}$$

P est dans le quadrant I, x et y sont positifs et $x=y=\frac{\sqrt{2}}{2}$. +

Table 7.2 – Coordonnées de points du cercle unité à retenir 🤎

t	$0+2k\pi$	$\frac{\pi}{6} + 2k\pi$	$\frac{\pi}{4} + 2k\pi$	$\frac{\pi}{3} + 2k\pi$	$\frac{\pi}{2} + 2k\pi$
P(t)	(1; 0)	$\left(\frac{\sqrt{3}}{2}\;;\;\frac{1}{2}\right)$	$\left(\frac{\sqrt{2}}{2}\;;\;\frac{\sqrt{2}}{2}\right)$	$\left(\frac{1}{2}\;;\;\frac{\sqrt{3}}{2}\right)$	(0; 1)

7.2 Mesure d'angles en radians, angles orientés

Définition 7.2 L'angle \overline{AOB} est une partie du plan délimité par deux deux demi-droites [OA) et [OB).

On trace un cercle de rayon 1 et de centre O.

La mesure en rad de l'angle \widehat{AOB} est égale à longueur de l'arc intercepté.

Figure 7.5 – Un angle plat correspond à 180° et intercepte un demi-cercle. Sa mersure en radian est π .

(b) 2 rad $\approx 114,592^{\circ}$

(d) $180^{\circ} = \pi \text{ rad}$

Exemple 7.3 — conversion rad \leftrightarrow degrés. Par simple proportionnalité avec :

$$180^\circ = \pi \text{ rad}$$

$$1^{\circ} = \frac{\pi}{180} \text{ rad} \approx 0.017 \ 45 \text{ rad}$$

$$180^{\circ} = \pi \text{ rad}$$
 $1^{\circ} = \frac{\pi}{180} \text{ rad} \approx 0.017 \ 45 \text{ rad}$ $1 \text{ rad} = \left(\frac{180}{\pi}\right)^{\circ} \approx 57.296^{\circ}$

Les mesures en rad suivantes sont à mémoriser :

mesure en degrés°	360	180	90	60	45	
mesure en rad	2π	π	$\frac{\pi}{2}$			$\frac{\pi}{6}$

Propriété 7.1 — longueur d'un arc.

Soit un cercle de rayon r.

Soit un arc sur le cercle d'angle au centre θ (en rad).

La longueur s de cet arc vaut $s = r\theta$.

Démonstration.
$$s=\frac{\theta}{2\pi} \times \text{périmètre} = \frac{\theta}{2\pi} \times 2\pi r = r\theta$$
.

- Exemple 7.4 longueur d'un arc \leftrightarrow angle au centre.
- 1. Déterminer la longueur de l'arc d'un cercle de rayon 10 m d'angle au centre 30°.
- 2. Déterminer l'angle au centre d'un arc de longueur 6 m sur un cercle de rayon 4 m.

solution.

- 1. D'après l'exemple 7.3 : $30^{\circ} = \frac{\pi}{6}$ rad d'où $s = r\theta = 10 \times \frac{\pi}{6} = \frac{5\pi}{3}$ m.
- 2. $\theta = \frac{s}{r} = \frac{6}{4} = \frac{3}{2} \text{ rad} = \frac{3}{2} \times \frac{180}{\pi} \approx 86^{\circ}$.

Définition 7.3 — angles orientés. L'angle orienté noté $(\overrightarrow{OA}\;;\;\overrightarrow{OB})$ est défini par un sommet O, une demi-

droite [OA) initiale, et une demi-droite finale [OB).

L'angle en rad d'une rotation qui transforme [OA) en [OB) est une mesure de $(\overrightarrow{OA}; \overrightarrow{OB})$:

- Si cette rotation se fait dans le sens positif, cette mesure de l'angle est positive.
- Si cette rotation se fait dans le sens négatif, cette mesure de l'angle est négative.

Figure 7.6 – L'angle orienté $(\overrightarrow{OA}; \overrightarrow{OB})$ a une infinité de mesures, positives et négatives.

Figure 7.7 – Dans un plan repéré et orienté, il est usuel de représenter un angle orienté en prenant comme demi-droite initiale l'axe [Ox) des abscisses.

Définition 7.4 — mesure principale en radian d'un angle $(\overrightarrow{OA}; \overrightarrow{OB})$.

On trace le cercle de centre \mathcal{O} et de rayon 1.

La mesure principale θ de l'angle $(\overrightarrow{OA}\;;\;\overrightarrow{OB})$ est la longueur du plus court arc de cercle orienté intercepté.

La mesure principale vérifie $-\pi < \theta \leqslant \pi$.

L'angle $(\overrightarrow{OA}\;;\;\overrightarrow{OB})$ a une infinité de mesures de la forme $\theta+2k\pi$ ($k\in\mathbb{Z}$). k est le nombre de tours effectués en plus de l'angle θ dans le sens direct si k>0, ou indirect si k<0.

Figure 7.8 – $(\overrightarrow{OA}; \overrightarrow{OB})$ a pour mesure principale $-\frac{5\pi}{6}$. D'où $(\overrightarrow{OA}; \overrightarrow{OB}) = -\frac{5\pi}{6} + 2k\pi$

7.3 Fonctions trigonométriques

Définition 7.5

Soit $t \in \mathbb{R}$ et P le point du cercle unité correspondant à t.

Les coordonnées de P définissent les valeurs des rapports trigonométriques :

- L'abscisse de P est le cosinus de t, noté $\cos t$.
- L'ordonnée de P est le sinus de t, noté $\sin t$.

Les fonctions sin et cos sont définies sur $\mathbb R$ et à valeurs dans [-1;1].

Figure 7.9 − ♥ Coordonnées des points du cercle unité et valeurs particulières de cos et sin

Propriétés 7.2

- 1. Pour tout $t \in \mathbb{R}$ on a $-1 \leqslant \cos t \leqslant 1$ et $-1 \leqslant \sin t \leqslant 1$.
- 2. Identité trigonométrique de Pythagore

pour tout
$$t \in \mathbb{R}$$
 $\cos^2(t) + \sin^2(t) = 1$

3. (périodicité) Les fonctions cos et sin sont périodiques de période 2π :

pour tout
$$t \in \mathbb{R}$$
 et $k \in \mathbb{Z}$

$$\cos(t + 2k\pi) = \cos(t)$$

$$\sin(t + 2k\pi) = \sin(t)$$

4. *(parité)* pour tout $t \in \mathbb{R}$

$$\cos(-t) = \cos(t)$$

la fonction cos est paire

$$\sin(-t) = -\sin(t)$$

la fonction sin est impaire

5. pour tout $t \in \mathbb{R}$

$$\cos(\pi + t) = -\cos(t)$$

$$\cos(\pi - t) = -\cos(t)$$

$$\sin(\pi + t) = -\sin(t)$$

$$\sin(\pi - t) = \sin(t)$$

Propriété 7.3 — Équation $\cos t = \cos a$ et $\sin t = \sin a$. Soit t et $a \in \mathbb{R}$: $\cos(t) = \cos(a) \qquad \qquad \sin(t) = \sin(a)$ $\Leftrightarrow \begin{cases} t = a + 2k\pi \\ \text{ou} \quad t = -a + 2kpi \end{cases}, \quad k \in \mathbb{Z}$ $\Leftrightarrow \begin{cases} t = a + 2k\pi \\ \text{ou} \quad t = \pi - a + 2k\pi \end{cases}$ $\Leftrightarrow \begin{cases} 0 \quad \text{ou} \quad t = \pi - a + 2k\pi \\ \text{ou} \quad t = \pi - a + 2k\pi \end{cases}$

■ Exemple 7.5 Résoudre dans $\mathbb R$ l'équation $\sin(x) = -\frac{\sqrt{3}}{2}$

solution.
$$\sin(x) = -\frac{\sqrt{3}}{2}$$

$$\iff \sin(x) = \sin\left(-\frac{\pi}{3}\right)$$
 on note que $\sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$
$$\iff x = -\frac{\pi}{3} + 2k\pi \quad \text{ou} \quad x = \pi - \frac{-\pi}{3} + 2k'\pi$$

Figure 7.10 – Représentations graphiques des fonctions cos et sin. $k \in [-1;1]$ a une infinité d'antécédents par cos ou sin. $\arccos(k)$ est l'antécédent de k par cos sur $[0;\pi]$. $\arcsin(k)$ est l'antécédent de k par sin sur $[-\frac{\pi}{2};\frac{\pi}{2}]$.

7.4 Exercices 9

7.4 Exercices

7.4.1 Exercices cercle trigonométrique

Exercice 7.1 — concepts. Complétez

Le cercle trigonométrique est un cercle de centre et de rayon

Dans un repère orthonormé, l'équation du cercle trigonométrique est

Les points $A(1; \ldots)$, $B(-1; \ldots)$, $C(\ldots; 1)$ et $D(\ldots; -1)$ sont sur \mathscr{C} .

Les points correspondants aux réels $\frac{\pi}{2}$; π ; $-\frac{\pi}{2}$ et 2π ont respectivement pour coordonnées .,

.....et

Exercice 7.2

Montrer que le point donné est sur le cercle unité.

1)
$$A\left(\frac{3}{5}; -\frac{4}{5}\right)$$

2)
$$B\left(\frac{-24}{25}; -\frac{7}{25}\right)$$

3)
$$C\left(\frac{3}{4}\; ;\; -\frac{\sqrt{7}}{4}\right)$$

1)
$$A\left(\frac{3}{5}; -\frac{4}{5}\right)$$
 2) $B\left(\frac{-24}{25}; -\frac{7}{25}\right)$ 3) $C\left(\frac{3}{4}; -\frac{\sqrt{7}}{4}\right)$ 4) $D\left(-\frac{5}{7}; -\frac{2\sqrt{6}}{7}\right)$

Exercice 7.3

Déterminer la coordonnée manquante sachant que $P \in \mathscr{C}$ et le quadrant indiqué.

1) $P(-\frac{3}{5}; \ldots) \in \text{Quadrant III} \mid 2$) $P(\ldots; -\frac{7}{25}) \in \text{Quadrant IV} \mid 3$) $P(\ldots; \frac{1}{3}) \in \text{Quadrant II}$

Exercice 7.4

Les cercles trigonométriques sont marqués avec t augmentant par incréments de $\frac{\pi}{4}$ et $\frac{\pi}{6}$ respectivement. Complétez les coordonnées des points indqués.

■ Exemple 7.6

Compléter pour déterminer les coordonnées des points correspondants aux réels.

1.
$$t = -\frac{\pi}{4}$$

2.
$$t = \frac{3\pi}{4}$$

3.
$$t = -\frac{5\pi}{6}$$

solution. Complétez :

a) P le point correspondant à $-\frac{\pi}{4}$, et Q le point correspondant à $\frac{\pi}{4}$. (placer P et Q sur le cercle trigonométrique)

Comme $Q\left(\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$, on a donc P......

Comme Q (;), on a donc P.....

Exercice 7.5

Pour chaque $t \in \mathbb{R}$, tracer un cercle trigonométrique à main levée et retrouver les coordonnées du point associé:

1)
$$t = 4\pi$$

3)
$$t = \frac{3\pi}{2}$$

5)
$$t = \frac{4\pi}{3}$$

7)
$$t = \frac{5\pi}{4}$$

1)
$$t = 4\pi$$
 | 3) $t = \frac{3\pi}{2}$ | 5) $t = \frac{4\pi}{3}$ | 7) $t = \frac{5\pi}{4}$ | 9) $t = \frac{11\pi}{6}$ | 2) $t = -\frac{\pi}{6}$ | 6) $t = \frac{5\pi}{2}$ | 8) $t = -\frac{7\pi}{4}$ | 10) $t = \frac{5\pi}{3}$

2)
$$t = -\frac{\pi}{6}$$

4)
$$t = -3\pi$$

6)
$$t = \frac{5\pi}{2}$$

8)
$$t = -\frac{7\pi}{4}$$

10)
$$t = \frac{5\pi}{3}$$

■ Exemple 7.7

Pour chaque t, retrouver $-\pi < t' \leqslant \pi$ tel que $t = t' + 2k\pi$ ou $k \in \mathbb{Z}$. En déduire les coordonnées du point associé à t.

solution. Point de reflexion : pouquoi avoir entouré 4π et -10π ?

$$t = \frac{19\pi}{6}$$

$$3\pi < \frac{19\pi}{6} \leqslant \boxed{4\pi}$$

$$-\pi < \frac{19\pi}{6} - 4\pi \leqslant 0$$

$$-\pi < \frac{-5\pi}{6} \leqslant 0$$

Le point associé à
$$\frac{19\pi}{6}$$
 est $P(-\frac{\sqrt{3}}{2}; -\frac{1}{2})$. Le point associé à $\frac{4\pi}{4}$ est $P(\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2})$.

Exercice 7.6 — à vous.

Déterminer les coordonnés du point du cercle unité associé à t:

1.
$$t = \frac{13\pi}{6}$$

2.
$$t = \frac{41\pi}{6}$$

3.
$$t = -\frac{117}{2}$$

4.
$$t = \frac{31\pi}{6}$$

1.
$$t = \frac{13\pi}{6}$$
 | 2. $t = \frac{41\pi}{6}$ | 3. $t = -\frac{11\pi}{3}$ | 4. $t = \frac{31\pi}{6}$ | 5. $t = -\frac{41\pi}{4}$

7.4.2 Exercices angles et radians

Exercice 7.7 — concepts. Complétez

- par l'angle sur un cercle de rayon
- 2. Pour convertir en radians il faut multiplier les mesures données en degrés par
- 3. Sur un cercle de rayon r, si l'angle au centre est θ alors la longueur de l'arc intercepté est
- 4. La mesure principale d'un angle orienté est toujours comprise entre
- 5. $(\overrightarrow{OI}\;;\;\overrightarrow{OP})=\theta+2k\pi.$ Si $\theta\in [\frac{\pi}{2};\pi]$ alors $P\in \text{Quadrant}$

Exercice 7.8

Convertir en degrés les mesures données en rad

$$\theta_1 = \frac{5\pi}{3} \operatorname{rad}$$

$$\theta_2 = \frac{3\pi}{4} \operatorname{rad}$$

$$\theta_1=rac{5\pi}{3} \ {
m rad} \qquad \qquad \Big| \ heta_2=rac{3\pi}{4} \ {
m rad} \qquad \qquad \Big| \ heta_3=rac{5\pi}{6} \ {
m rad} \qquad \qquad \Big| \ heta_4=\ 3 \ {
m rad} \qquad \qquad \Big| \ heta_5=\ 2 \ {
m rad}$$

$$\theta_4 = 3 \text{ rad}$$

$$\theta_5 = 2 \text{ rad}$$

Exercice 7.9

Convertir en rad les mesures données en degrés

$$\theta_1=~15^{\circ}$$

$$\theta_2 = 36^{\circ}$$

$$\theta_3 = 54^{\circ}$$

$$\theta_4 = 75^{\circ}$$

$$\mid \theta_2 = 36^{\circ} \qquad \qquad \mid \theta_3 = 54^{\circ} \qquad \qquad \mid \theta_4 = 75^{\circ} \qquad \qquad \mid \theta_5 = 3600^{\circ}$$

16

Exercice 7.10

1. Dans chaque cas déterminer la longueur $s \mid 2$. Déterminer la mesure de θ en rad puis en de l'arc

Exercice 7.11

 \mathscr{C} est le cercle unité dans le repère (O; I, J) Placer les points P_i sur \mathscr{C} sachant que :

$$(\overrightarrow{OI} \; ; \; \overrightarrow{OP_1}) = -\frac{5\pi}{6}$$

$$\overrightarrow{OA} \cdot \overrightarrow{OP} = \pi - 6\pi$$

$$(\overrightarrow{OI} \; ; \; \overrightarrow{OP_3}) = \pi - (\overrightarrow{OI} \; ; \; \overrightarrow{OA}) \qquad (\overrightarrow{OA} \; ; \; \overrightarrow{OP_7}) = -\frac{3\pi}{2} + 5\pi$$

$$(\overrightarrow{OI}; \overrightarrow{OP_4}) = \pi + (\overrightarrow{OI}; \overrightarrow{OA})$$
 $(\overrightarrow{OI}; \overrightarrow{OP_8}) = -\frac{5\pi}{4} + 7\pi$

$$(\overrightarrow{OJ}\;;\;\overrightarrow{OP_5}) = \frac{7\pi}{4} + 10\pi$$

$$(\overrightarrow{OA} \; ; \; \overrightarrow{OP_2}) = \frac{\pi}{2} - 6\pi \qquad (\overrightarrow{OA} \; ; \; \overrightarrow{OP_6}) = 2023\pi$$

$$(\overrightarrow{OA}\;;\;\overrightarrow{OP_7}) = -\frac{3\pi}{2} + 5\pi$$

$$(\overrightarrow{OI} \; ; \; \overrightarrow{OP_8}) = -\frac{5\pi}{4} + 7\pi$$

Déterminer la mesure principale des angles orientés donnés en rad.

$$\theta_1 = 173\pi$$

$$\theta_2 = -250\pi \qquad \theta_3 = \frac{7\pi}{3} \qquad \theta_4 = -\frac{17\pi}{6} \qquad \theta_5 = \frac{53\pi}{2}$$

$$\theta_3 = \frac{7\pi}{3}$$

$$\theta_4 = -\frac{17\pi}{6}$$

$$\theta_5 = \frac{53\pi}{2}$$

Exercice 7.13

Exercice 7.12

P est un point du plan repéré. Déterminez à quel quadrant il appartient.

1)
$$(\overrightarrow{OI} ; \overrightarrow{OP}) = \frac{21\pi}{4}$$

2)
$$(\overrightarrow{OI} \; ; \; \overrightarrow{OP}) = \frac{14\pi}{3}$$

3)
$$(\overrightarrow{OI} ; \overrightarrow{OP}) = \frac{-13\pi}{4}$$

1)
$$(\overrightarrow{OI}; \overrightarrow{OP}) = \frac{21\pi}{4}$$
 | 2) $(\overrightarrow{OI}; \overrightarrow{OP}) = \frac{14\pi}{3}$ | 3) $(\overrightarrow{OI}; \overrightarrow{OP}) = \frac{-13\pi}{4}$ | 4) $(\overrightarrow{OI}; \overrightarrow{OP}) = \frac{5\pi}{3} - 2\pi$

7.4.3 Exercices fonctions trigonométriques

Dans les exercices suivants, le plan est muni d'un repère orthonormé (O; I, J) et du cercle unité orienté \mathscr{C} .

Exercice 7.14 — concepts.

Complétez

- 1. Pour $P(x \; ; \; y)$ un point du cercle, et si $(\overrightarrow{OI} \; ; \; \overrightarrow{OP}) = t + 2k\pi$ alors $\sin t = \dots$ et $\cos t = \dots$
- 2. Si $P(x; y) \in \mathscr{C}$ alors $x^2 + y^2 = \dots$ Donc $\cos^2 t + \sin^2 t = \dots$

7.4 Exercices 13

3. Si $\sin(t) = 0.6$, alors $\cos^2(t) = \dots$ Donc $\cos(t) = \dots$ ou $\cos(t) = \dots$

4. Si $P \in \text{Quadrant I et } (\overrightarrow{OI}; \overrightarrow{OP}) = t + 2k\pi, \text{ alors } \cos t \dots 0 \text{ et } \sin t \dots 0.$ Si $P \in \text{Quadrant IV et } (\overrightarrow{OI} \; ; \; \overrightarrow{OP}) = t + 2k\pi, \text{ alors } \cos t \dots 0 \text{ et } \sin t \dots 0.$

7. $\sin(\pi) = \dots = \sin \frac{\pi}{4} = \dots = \sin \frac{\pi}{3} = \dots = \cos(0) = \dots = \cos(-\frac{\pi}{4}) = \dots = \cos \frac{\pi}{3} = \dots$

Si $\sin(t) = \frac{1}{2}$, alors la mesure principale de t estouou

Exercice 7.15

Complétez:

1. Si $\sin(t) = 0.2$ alors $\sin(-t) = \dots$ | 5. Si $\cos(t) = -0.8$ alors $\cos(\pi - t) = \dots$

2. Si $\sin(t) = 0.35$ alors $\sin(\pi - t) = \dots$ 6. Si $\cos(t) = 0.1$ alors $\cos(3\pi + t) = \dots$

3. Si $\sin(t) = -0.6$ alors $\sin(\pi + t) = \dots$ 7. Si $\cos(t - 4\pi) = 0.3$ alors $\cos(t) = \dots$

4. Si $\cos(t) = 0.8$ alors $\cos(-t) = \dots$ 8. Si $\sin(\pi - t) = 0.4$ alors $\sin(t) = \dots$

Exercice 7.16

Complétez afin de déterminer

1. $\sin\left(\frac{8\pi}{3}\right) = \sin\left(\dots + 2\pi\right) = \sin\left(\dots + 2\pi\right) = \sin\left(\pi - \dots\right) = \dots + \sin\left(\frac{\pi}{3}\right) = \dots$

2. $\cos\left(\frac{7\pi}{6}\right) = \cos\left(\ldots\ldots + \pi\right) = \ldots\cos\left(\ldots\ldots\right) = \ldots$

3. $\sin\left(\frac{19\pi}{4}\right) = \dots \sin\left(\frac{3\pi}{4} + \dots\right) = \dots \sin\left(\frac{3\pi}{4}\right) = \sin\left(\pi - \dots \right) = \dots \sin\left(\dots \right) = \dots$

4. $\cos\left(\frac{17\pi}{6}\right) = \cos\left(-\frac{\pi}{6} + \ldots\right) = \ldots$

Exercice 7.17 \longrightarrow \blacksquare .

Déterminer les images suivantes en détaillant les étapes.

1. $\sin \frac{5\pi}{3}$

3. $\sin \frac{11\pi}{4}$ | 5. $\cos(-250\pi)$ | 7. $\cos(-\frac{7\pi}{6})$ | 9. $\sin(-\frac{3\pi}{4})$ | 4. $\sin(25\pi)$ | 6. $\cos(-\frac{\pi}{3})$ | 8. $\sin(-\frac{2\pi}{3})$ | 10. $\cos(-\frac{11\pi}{3})$ 2. $\cos \frac{11\pi}{3}$

■ Exemple 7.8 — **1**.

t est situé dans le Quadrant IV. Déterminer $\sin(t)$ sachant que $\cos(t) = \frac{3}{5}$.

Démonstration. $\cos^2(t) + \sin^2(t) = 1$ donc $\sin^2(t) = 1 - \cos^2(t) = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}$, $\sin(t) = \pm \frac{4}{5}$.

t est dans le Quadrant IV, $\sin(t) < 0$ et on a $\sin(t) = -\frac{4}{5}$.

Exercice 7.18 - \blacksquare .

Dans chaque cas, déterminer l'image demandée :

- 1. $\sin(t) = -\frac{4}{5}$, déterminer $\cos(t)$ sachant que t est dans le Quadrant IV.
- 2. $\cos(t) = -\frac{7}{25}$, déterminer $\sin(t)$ sachant que t est dans le Quadrant III.
- 3. $sin(t) = -\frac{1}{4}$, déterminer cos(t) sachant que cos(t) < 0.
- 4. $cos(t) = -\frac{1}{3}$, déterminer sin(t) sachant que t est dans le Quadrant IV.
- 5. $\sin(t) = 0.8$, déterminer $\cos(t)$ sachant que $t \in [\frac{\pi}{2}; \pi]$.

Exercice 7.19 \longrightarrow \blacksquare

Trouver dans chaque cas le réel x demandé.

- **2.** $\cos(x) = -\frac{1}{2}$ et $x \in [\pi; 2\pi]$ **4.** $2\sin(x) = 1$ et $x \in [\frac{\pi}{2}; \pi]$ **6.** $2\cos(x) = \sqrt{2}$ et $x \in [-\frac{\pi}{2}; 0]$
- **Exemple 7.9** Analyser les résolutions dans \mathbb{R} des équations d'inconnue x suivantes :

Exercice 7.20 - \blacksquare .

Résoudre dans \mathbb{R} les équations suivantes :

$$(E_1) \cos(x) = -\frac{1}{2}$$
 $| (E_2) \cos(x) = -1$ $| (E_3) \sin(x) = \frac{\sqrt{3}}{2}$ $| (E_4) 2\sin(x) + \sqrt{3} = 0$

Exercice 7.21 — parité.

Pour chaque fonction définie sur \mathbb{R} , simplifier l'expression f(-x) et en déduire la parité de la fonction f.

$$f(x) = x^2 \sin(x) \qquad \qquad \left| \begin{array}{l} f(x) = x^3 + \cos(x). \\ f(x) = \sin(x) \cos(x) \end{array} \right| \begin{array}{l} f(x) = x^3 + \cos(x). \\ f(x) = x^2 \cos(2x) \end{array} \qquad \left| \begin{array}{l} f(x) = \sin(x) + \cos(x) \\ f(x) = x \sin^3(x) \end{array} \right| \begin{array}{l} f(x) = \cos(\sin x) \\ f(x) = \frac{|\sin(x)|}{x^2} \end{array}$$

Les fonctions du type $t\mapsto A\sin(\omega t+\varphi)$ on une période $T=\frac{2\pi}{\omega}$ c.f. lien

Exercice 7.22

Pour chaque fonction définie sur \mathbb{R} , comparer les expressions de f(x+T) avec f(x). En déduire si T est une période.

$$f(x) = \sin(x)\cos(x)$$
 avec $T = \pi \mid f(x) = \cos(5x + 3)$ avec $T = \frac{2\pi}{5} \mid f(x) = 2\sin(3x - 1)$ avec $T = \frac{2\pi}{3}$