Do the following tasks in your group

Try to do the following questions individually with help from the group if needed.

Q1. Logistic Regression

Instance	X	Υ
1	2.4	1
2	124.2	1
3	-23.9	0
4	-401.5	0
5	53.7	0

If m is 5, b is 1 and alpha is 0.01, please compute

- 1. The Log loss
- 2. The new value of m
- 3. The new value of b

Solution

1. Given the values: m = 5, b = 1, alpha = 0.01

Log loss is defined by below equation: Log Loss = -[Y * log(P(Y=1|X)) + (1 - Y) * log(1 - P(Y=1|X))] $P(Y=1|X) = 1 / (1 + e^{-(-(m*X + b))})$ OR

$$-log[L(heta)] = -\sum_{1}^{n} y*log[\sigma(heta^Tx^i)] + (1-y)*log(1-\sigma(heta^Tx^i))$$

$$y(2.4) = 1 / (1 + e^{-(5 * 2.4 + 1)}) = 0.9896$$

 $log loss = -(1/5) * [1 * log(0.9896) + (1 - 1) * log(1 - 0.9896)] = 0.0102$

For X=124.2, Y=1:

$$y(124.2) = 1 / (1 + e^{-(5 * 124.2 + 1)}) = 1.0$$

 $log loss = -(1/5) * [1 * log(1.0) + (1 - 1) * log(1 - 1.0)] = 0.0$

For X=-23.9, Y=0:

$$y(-23.9) = 1 / (1 + e^{-(5 * -23.9 + 1)}) = 0.0$$

 $log loss = -(1/5) * [0 * log(0.0) + (1 - 0) * log(1 - 0.0)] = 0.0$

For X=-401.5, Y=0:

$$y(-401.5) = 1 / (1 + e^{-(5 * -401.5 + 1)}) = 0.0$$

 $log loss = -(1/5) * [0 * log(0.0) + (1 - 0) * log(1 - 0.0)] = 0.0$

For X=53.7, Y=0:

$$y(53.7) = 1 / (1 + e^{-(5 * 53.7 + 1)}) = 1.0$$

Log Loss = $-(1/5) * [0 * log(1.0) + (1 - 0) * log(1 - 1.0)] = 0.0$

2. The new value of m:

$$m_{new} = m_{old}$$
 - alpha*gradient
OR
 $m_{new} = m_{old}$ - alpha * (sigmoid (mx) - y)*xj

Given the values: m = 5, b = 1, alpha = 0.01

For X=2.4, Y=1:

For X=124.2, Y=1:

Gradient2:
$$(1.0 - 1) * 124.2 = 0.0$$

For X=-23.9, Y=0:

Gradient3:
$$(0.0 - 0) * (-23.9) = 0.0$$

```
For X=-401.5, Y=0:
            Gradient4: (0.0 - 0) * (-401.5) = 0.0
    For X=53.7, Y=0:
            Gradient5: (0.0 - 0) * 53.7 = 0.0
    Sum of above 5 gradient terms = -0.0224 + 0.0 + 0.0 + 0.0 + 0.0 = -0.0224
    m_{new} = m_{old} - alpha * (1/n) * Sum of gradient terms
    m_{new} = 5 - 0.01 * (1/5) * (-0.0224) = 4.983
3. New Value of 'b':
    b_{new} = b - alpha * (1/n) * \Sigma[P(Y=1|X_i) - Y_i]
    For X=2.4, Y=1:
            b1: 0.9896 - 1 = -0.0104
    For X=124.2, Y=1:
            b2: 1.0 - 1 = 0.0
    For X=-23.9, Y=0:
            b3: 0.0 - 0 = 0.0
    For X=-401.5, Y=0:
            b4: 0.0 - 0 = 0.0
    For X=53.7, Y=0:
            b5: 1.0 - 0 = 1.0
    Sum of update terms = -0.0104 + 0.0 + 0.0 + 0.0 + 1.0 = 0.9896
    b_{new} = 1 - 0.01 * (1/5) * 0.9896 = 1.001
```

Q2. For the below data, compute

- 1. The odds of scoring more than 2 goals
- 2. The log odds of scoring less than 0 goals
- 3. The log odds of scoring 3 goals
- 4. The odds of scoring exactly 4 goals

Goals	Matches
0	272

1	84
2	57
3	33
4	18

Solution

1. Odds of scoring more than 2 goals:

Odds = (Number of goals > 2) / (Total Matches)

Calculate the odds for this case:

Odds = (57 + 33 + 18) / (272 + 84 + 57 + 33 + 18)

Odds = 108 / 464 = 0.2328

2. Log Odds of scoring less than 0 goals:

The logarithm of zero or a negative number is not defined.

3. Log Odds of scoring 3 goals:

Odds = (Number of goals) / (Total Matches)

Odds = 33 / 464 = 0.0716

Calculate the log odds for scoring 3 goals:

Log Odds = In(0.0716) = -2.6336

4. Odds of scoring exactly 4 goals:

Odds = (Number of goals = 4) / (Total Matches)

Odds = 18 / 464 = 0.0388

Q3 Goodness of Fit

- A. For each of the below confusion matrices compute below details
 - a. Accuracy
 - b. Precision
 - c. Recall
 - d. Sensitivity
 - e. Specificity
 - f. F1 score

- g. F2 score
- h. F0.5 score
- i. Null error rate
- j. Balanced accuracy
- k. Positive prevalence
- I. Negative predictive value
- less commonly used
 - m. Miss rate
 - n. Fall out
 - o. False discovery rate
 - p. False omission rate
 - q. Positive likelihood ratio
 - r. Type I error rate
 - s. Type II error rate
 - t. Diagnostic odds ratio

1.

		Observed	
		+ve	-ve
Predicted	-ve	750	2000
	+ve	250	100

Solution

1. Accuracy:

```
Accuracy = (TP + TN) / (TP + TN + FP + FN)
Accuracy = (250 + 2000) / (250 + 2000 + 100 + 750) = 2250 / 3100 = 0.7258
```

2. Precision:

```
Precision = TP / (TP + FP)
Precision = 250 / (250 + 100) = 250 / 350 = 0.7143
```

3. Recall (Sensitivity):

```
Recall = TP / (TP + FN)
Recall = 250 / (250 + 750) = 250 / 1000 = 0.25
```

4. Specificity:

```
Specificity = TN / (TN + FP)
Specificity = 2000 / (2000 + 100) = 2000 / 2100 = 0.9524
```

```
5. F1 Score:
```

6. F2 Score:

7. F0.5 Score:

8. Null Error Rate:

Null Error Rate =
$$(TN + FP) / (TP + TN + FP + FN)$$

Null Error Rate = $(2000 + 100) / (250 + 2000 + 100 + 750) = 2100 / 3100 = 0.6774$

9. Balanced Accuracy:

10. Positive Prevalence:

11. Negative Predictive Value:

Negative Predictive Value =
$$TN / (TN + FN)$$

Negative Predictive Value = $2000 / (2000 + 750) = 2000 / 2750 = 0.7273$

12. Miss Rate:

Miss Rate =
$$FN / (TP + FN)$$

Miss Rate = $750 / (250 + 750) = 750 / 1000 = 0.75$

13. Fall Out:

Fall Out =
$$1 - \text{Specificity}$$

Fall Out = $1 - 0.9524 = 0.047$

14. False Discovery Rate:

```
False Discovery Rate = FP / (TP + FP)
False Discovery Rate = 100 / (250 + 100) = 100 / 350 = 0.2857
```

15. False Omission Rate:

16. Positive Likelihood Ratio:

```
Positive Likelihood Ratio = Sensitivity / (1 - Specificity)
Positive Likelihood Ratio = 0.25 / (1 - 0.9524) = 5.2632
```

17. Type I Error Rate:

```
Type I Error Rate = 1 – Specificity

Type I Error Rate = 1 - 0.9524 = 0.0476
```

18. Type II Error Rate:

```
Type II Error Rate = 1 - \text{Sensitivity}
Type II Error Rate = 1 - 0.25 = 0.75
```

19. Diagnostic Odds Ratio:

```
Diagnostic Odds Ratio = (Sensitivity * Specificity) / (FN / TN)
Diagnostic Odds Ratio = (0.25 * 0.9524) / (750 / 2000) = 0.2393
```

2. While predicting Benign tumors

		Predicted	
		Malignant Tumors	Benign Tumors
Observed	Malignant Tumors	100	200
	Benign Tumors	50	5000

Solution:

1. Accuracy:

Accuracy =
$$(TP + TN) / (TP + TN + FP + FN)$$

Accuracy = $(50 + 5000) / (50 + 5000 + 200 + 100) = 5050 / 5250 = 0.9619$

2. Precision:

```
Precision = TP / (TP + FP)
Precision = 50 / (50 + 200) = 50 / 250 = 0.2
```

3. Recall (Sensitivity):

```
Recall = TP / (TP + FN)
Recall = 50 / (50 + 100) = 50 / 150 = 0.3333
```

4. Specificity:

```
Specificity = TN / (TN + FP)
Specificity = 5000 / (5000 + 200) = 5000 / 5200 = 0.9615
```

```
5. F1 Score:
```

6. F2 Score:

7. F0.5 Score:

8. Null Error Rate:

Null Error Rate =
$$(TN + FP) / (TP + TN + FP + FN)$$

Null Error Rate = $(5000 + 200) / (50 + 5000 + 200 + 100) = 5200 / 5350 = 0.9710$

9. Balanced Accuracy:

10. Positive Prevalence:

11. Negative Predictive Value:

Negative Predictive Value =
$$TN / (TN + FN)$$

Negative Predictive Value = $5000 / (5000 + 100) = 5000 / 5100 = 0.9804$

12. Miss Rate:

Miss Rate =
$$FN / (TP + FN)$$

Miss Rate = $100 / (50 + 100) = 100 / 150 = 0.6667$

13. Fall Out:

14. False Discovery Rate:

15. False Omission Rate:

```
False Omission Rate = FN / (TN + FN)
```

False Omission Rate = 100 / (5000 + 100) = 100 / 5100 = 0.0196

16. Positive Likelihood Ratio:

Positive Likelihood Ratio = Sensitivity / (1 - Specificity)
Positive Likelihood Ratio = 0.3333 / (1 - 0.9615) = 8.9999

17. Type I Error Rate:

Type I Error Rate = 1 – Specificity

Type I Error Rate = 1 - 0.9615 = 0.0385

18. Type II Error Rate:

Type II Error Rate = 1 – Sensitivity

Type II Error Rate = 1 - 0.3333 = 0.6667

19. Diagnostic Odds Ratio:

Diagnostic Odds Ratio = (Sensitivity * Specificity) / (FN / TN) Diagnostic Odds Ratio = (0.3333 * 0.9615) / (100 / 5000) = 32.04

3. While detecting Negative Sentiment

		Observed	
		Negative	Non-negative
Predicted	Negative	626	574
	Non-negative	274	326

B. For the below data compute the SSR, MSR, RMSE and MAE for the given model M0

Model M0 has the hypothesis function y' = 2.7x1 - 1.6x2 + 0.87

x1	x2	y'	у
53.7	18		59
28.5	17		56
21.5	12		41

-12	-4	-7
0.25	-1.5	0.5
	-12	-31
10.5		26
8.7	287	17

C. For the below data trying to identify Fraud, determine

- a. TP
- b. FP
- c. TN
- d. FN
- e. Negative Prevalence

<u> </u>		
	Actual	Predicted
	Fraud	Fraud
	Non-fraud	Non-Fraud
	Non-Fraud	Non-Fraud
	Fraud	Non-Fraud
	Non-Fraud	Non-Fraud
	Non-Fraud	Non-Fraud
	Non-Fraud	Non-Fraud
	Fraud	Non-Fraud
	Non-Fraud	Non-Fraud

D. For the below model perf determine the area under the RoC curve