Data Analytics Week 9 Assignment

202011431 산업공학과 차승현

Latent Semantic Analysis

Analysis Procedure

1) 필요한 모듈 pandas, numpy, csv를 import하고, 제시된 csv파일을 불러 온다.

constraints 1) Term-document matrix를 TF-IDF matrix로 변환한 후 LSA를 수행할 것

2) row와 column의 name을 제외한 정수 value의 값들을 행렬의 형태로 변형해준다.

```
In [6]: | f = open('data_week9.csv', encoding='utf-8')
            reader = csv.reader(f)
            tf_lst = []
            for line in reader:
                  print(line)
                  tf_lst.append(line[1:])
            f.close()
             ['', 'D1', 'D2', 'D3', 'D4', 'D5', 'D6', 'D7',
                                                                                    'D8', 'D9', 'D10']
            ['database', '11', '21', '12', '0', '37', '2', '0', '3', '1', '6']
['SQL', '21', '10', '0', '7', '31', '0', '0', '21', '5', '0']
['index', '9', '0', '5', '2', '20', '0', '1', '0', '11', '0']
['regression', '3', '5', '2', '2', '0', '18', '32', '11', '21', '8']
['likelihood', '0', '3', '0', '0', '3', '7', '12', '4', '27', '4']
['linear', '3', '0', '0', '4', '0', '16', '21', '2', '16', '15']
      In [10]: tf_lst_1 = tf_lst[1:]
                    A = np.array(tf_lst_1).astype(np.float64)
      Out[10]: array([[11., 21., 12., 0., 37., 2., 0., 3., 1.,
                                                       7., 31., 0., 0., 21., 5., 2., 20., 0., 1., 0., 11.,
                               [21., 10., 0.,
                               [ 9., 0., 5.,
                                                                                                      0.],
                                         5., 2.,
                                                        2., 0., 18., 32., 11., 21., 8.],
                                         3., 0.,
                                                         0., 3., 7., 12., 4., 27., 4.],
                               [ 0.,
                                         0., 0., 4., 0., 16., 21., 2., 16., 15.]])
                               [ 3.,
```

3) 각 term이 몇 개의 documnet에서 빈도를 나타내는지 count라는 리스트에 저장하고, idf matrix를 구한다.

```
In [36]: count = []
          for i in range(len(tf_lst_1)):
             counts = 0
              for j in range(10):
                  if A[i][j] > 0:
                      counts += 1
              count.append(counts)
In [37]: count
Out [37]: [8, 6, 6, 9, 7, 7]
In [39]: idf = list(map(lambda i : np.log(1+(10/i)), count))
          idf
Out [39]: [0.8109302162163288,
          0.9808292530117263.
          0.9808292530117263,
           0.7472144018302211,
           0.8873031950009029,
           0.8873031950009029]
```

4) tf와 idf를 곱하여 TF-IDF matrix를 구한다.

```
In [57]: B = A.copy()
In [58]: for i in range(len(idf)):
              B[i] = B[i] * idf[i]
In [59]: B
Out [59]: array([[ 8.92023238, 17.02953454,
                                              9.73116259,
                                                                        30.004418
                   1.62186043, 0.
                                              2.43279065,
                                                           0.81093022,
                                                                         4.8655813],
                                9.80829253,
                                                           6.86580477, 30.40570684,
                 [20.59741431]
                                              0.
                   0.
                                0.
                                             20.59741431,
                                                           4.90414627,
                                                                        0.
                                                                                   ],
                                                           1.96165851, 19.61658506.
                 [ 8.82746328,
                                0.
                                              4.90414627,
                                                                         0.
                   0.
                                0.98082925,
                                              0.
                                                          10.78912178,
                 [ 2.24164321,
                                3.73607201,
                                              1.4944288 .
                                                           1.4944288 ,
                                                                         0.
                  13.44985923, 23.91086086,
                                              8.21935842, 15.69150244,
                                                                         5.97771521],
                 [ 0.
                                2.66190959,
                                              0.
                                                           0.
                                                                         2.66190959,
                   6.21112237, 10.64763834,
                                              3.54921278, 23.95718627,
                                                                         3.54921278],
                 [ 2.66190959, 0.
                                              0.
                                                           3.54921278,
                                                                        0.
                  14.19685112, 18.6333671 ,
                                             1.77460639, 14.19685112, 13.30954793]])
```

5) TF-IDF Matrix에서 numpy.linalg.svd 모듈을 사용하여 U, S, V^T 행렬을

구해준다.

```
In [60]: U, s, VT = np.linalg.svd(B, full_matrices = True)
```

```
In [61]: print('U: ', U)
         print('s: ', s)
         print('VT: ', VT)
         U: [[-0.50349475 -0.32826357 0.68444393 0.31275271 -0.25236036 0.09366201]
          [-0.63170778 -0.34257728 -0.67503801 0.06155391 0.00897494 0.15504947]
          [-0.34386524 -0.09961085 0.21847092 -0.57492684 0.52054032 -0.47180689]
          [-0.30910561 0.56140574 -0.1163579
                                               0.31240244 -0.27710086 -0.6335282 1
          [-0.26287821 0.40689774 0.06217033 -0.62813665 -0.47525904 0.37554937]
          [-0.25405469 0.53312226 0.10356804 0.27514552 0.60217558 0.44965547]]
         s: [61.76133769 47.43465416 18.28024796 16.03116557 9.66589321
                                                                          6.15247347]
             [[-3.54711714e-01 -2.69178994e-01 -1.14114934e-01 -1.03225726e-01
           -6.76148052e-01 -1.65371588e-01 -2.47099258e-01 -2.94050493e-01
           -3.55743924e-01 -1.39438426e-01]
          [-1.72576570e-01 -1.21634631e-01 -5.99542991e-02 3.87214945e-03
           -4.45593242e-01 3.60799078e-01 5.81691941e-01 -1.79227360e-02
            4.87093680e-01 2.17109487e-01]
          [-3.20304126e-01 2.60694574e-01 4.13449528e-01 -2.19494695e-01
            2.44114794e-01 7.66708777e-02 1.30487783e-03 -6.99709761e-01
            4.02399525e-02 2.31603132e-01]
          [ 2.59020490e-02 3.38396290e-01 4.30901566e-02 4.60490656e-02
           -1.05706027e-01 2.94038285e-01
                                           3.33389468e-01 1.78112142e-01
           -7.41529911e-01 3.00779652e-01]
          [ 3.63191861e-01 -6.73493471e-01 -3.28020704e-02 2.90287118e-01
            1.70402316e-01 1.51133906e-01 4.65692682e-03 -3.43976647e-01
           -1.78924003e-01 3.56260864e-01]
          [-5.83431953e-02 2.84204790e-01 -3.81819207e-01 1.28107101e-01
           -1.18797556e-01 5.64515277e-02 -5.25586535e-01 5.60992153e-02
            1.92726614e-01 6.47915783e-01]
          [-2.08707834e-01 1.81539436e-02 -7.88079085e-01 -1.72513354e-01
            3.48345743e-01 -1.24675717e-01 3.12942962e-01 -2.32499863e-01
           -1.01460471e-01 -7.81631029e-02]
          [-5.91915275e-02 -3.43505060e-01 4.79448752e-02 -8.09734833e-01
            1.27064323e-01 1.93736248e-01 -1.35338499e-01 3.15787195e-01
           -4.48617211e-02 2.16337039e-01]
          [ 7.44240319e-01 2.64442554e-01 -1.07035109e-01 -3.90574890e-01
           -3.03780880e-01 -1.36947350e-01 6.80566425e-02 -3.05079070e-01
            5.68839460e-02 -1.38958856e-02]
          [-6.97335840e-02 -8.74814313e-02 1.70000698e-01 -1.93100067e-02
           -2.41235828e-02 -8.07637759e-01 3.03779191e-01 1.53549227e-01
           -4.62614245e-04 4.35305686e-01]]
```

6) 대각 행렬의 크기인 6 x 10의 임의의 행렬을 생성한 후, 특이값을 대각행렬에 삽입한다.

```
In [62]: # 대각 행렬의 크기인 6 x 10의 임의의 행렬 생성
        S = np.zeros((6, 10))
        # 특이값을 대각행렬에 삽입
        S[:6, :6] = np.diag(s)
        print('대각 행렬 S :')
        print(S)
        대각 행렬 S :
         [[61.76133769 0.
                                  0.
                                             0.
                                                         0.
                                                                    0.
           0.
                      0.
                                  0.
                                             0.
          [ 0.
                      47.43465416 0.
                                             0.
                                                         0.
                                                                    0.
           0.
                      0.
                                  0.
                                             0.
          [ 0.
                      0.
                                 18.28024796 0.
                                                         0.
                                                                    0.
           0.
                       0.
                                  0.
                                             0.
                                             16.03116557 0.
          [ 0.
                       0.
                                  0.
                                                                    0.
           0.
                       0.
                                  0.
                                             0.
          [ 0.
                      0.
                                             0.
                                                         9.66589321
                                                                    0.
                                  0.
           0.
                       0.
                                  0.
                                             0.
                                                       ]
                                                                    6.15247347
          [ 0.
                       0.
                                  0.
                                             0.
                                                         0.
           0.
                       0.
                                  0.
                                             0.
                                                       ]]
```

constraints 2) 2개의 Singular values를 활용

7) S벡터, U벡터, V transpose 벡터에서 상위 2개의 singular values를 추출한다.

```
In [64]: # 특이값 상위 2개만 보존
        S = S[:2,:2]
        print('대각 행렬 S :')
        print(S.round(2))
        대각 행렬 S :
         [[61.76 0. ]
         [ 0. 47.43]]
In [65]: U = U[:,:2]
        print('행렬 U:')
        print(U.round(2))
         행렬 U :
         [[-0.5 -0.33]
         [-0.63 -0.34]
         [-0.34 -0.1]
         [-0.31 0.56]
[-0.26 0.41]
         [-0.25 0.53]]
In [66]: VT = VT[:2,:]
        print('직교행렬 VI :')
        print(VI.round(2))
         직교행렬 VT :
        [[-0.35 -0.27 -0.11 -0.1 -0.68 -0.17 -0.25 -0.29 -0.36 -0.14]
         [-0.17 -0.12 -0.06 0. -0.45 0.36 0.58 -0.02 0.49 0.22]]
```

```
In [68]: A = B
In [69]: A_prime = np.dot(np.dot(U,S), VI)
         print(A)
        print(A_prime.round(2))
         [[ 8.92023238 17.02953454
                                   9.73116259
                                               Π.
                                                          30.004418
                                                                      1.62186043
                       2.43279065
                                   0.81093022
                                              4.8655813 ]
           0.
          [20.59741431 9.80829253
                                               6.86580477 30.40570684
                                                                      0.
                                   0.
                      20.59741431
                                   4.90414627
                                                       ]
           0.
          [ 8.82746328 0.
                                   4.90414627
                                               1.96165851 19.61658506 0.
            0.98082925 0.
                                  10.78912178 0.
                                                        1
          [ 2.24164321
                       3.73607201 1.4944288
                                               1.4944288
                                                          0.
                                                                     13.44985923
          23.91086086
                      8.21935842 15.69150244
                                               5.97771521]
          [ 0.
                       2.66190959 0.
                                               0.
                                                          2.66190959 6.21112237
                       3,54921278 23,95718627
                                               3.54921278]
          10.64763834
          [ 2.66190959
                                   0.
                                               3.54921278 0.
                                                                     14.19685112
                       0.
          18.6333671
                       1.77460639 14.19685112 13.30954793]]
         [[13.72 10.26
                      4.48 3.15 27.96 -0.48 -1.37 9.42 3.48 0.96]
          [16.64 12.48
                       5.43 3.96 33.62 0.59 0.19 11.76 5.96
                                                                1.91]
          [8.35 6.29
                       2.71
                             2.17 16.47 1.81
                                               2.5
                                                     6.33 5.25
                                                                1.94]
                       0.58 2.07 1.04 12.77 20.21
          [ 2.18 1.9
                                                     5.14 19.76
                                                                8.44]
          [ 2.43 2.02 0.7
                             1.75 2.38 9.65 15.24 4.43 15.18
                                                                6, 45]
                 1.15 0.27 1.72 -0.66 11.72 18.59 4.16 17.9
          [ 1.2
                                                                7.68]]
```

8) Latent semantic of terms는 U벡터와 S벡터의 곱으로 표현할 수 있고, Latent semantic of documents는 S벡터와 V transpose벡터의 곱으로 표현할 수 있다.

```
In [70]: cal_term = np.dot(U, S)
         cal_doc = np.dot(S,VT)
         print('term: ', cal_term)
         print('documents: ', cal_doc)
         term: [[-31.09650907 -15.57106884]
          [-39.01511766 -16.25003458]
          [-21.23757706 -4.72500638]
          [-19.09077616 26.63008721]
          [-16.23570969 19.30105351]
          [-15.6907574]
                         25.2884699 ]]
         documents: [[-21.90746992 -16.62485475 -7.047891
                                                               -6.37535895 -41.75980818
           -10.21357049 -15.26118074 -18.16095182 -21.97122062 -8.61190369]
          [ -8.18610992 -5.76969664 -2.84391144
                                                  0.18367407 -21.13656132
            17.11437947 27.59235603 -0.85015879 23.10512026 10.29851345]]
```

9) Latent semantic of terms 및 documents를 데이터프레임의 형태로 변환

하여, term_lsm, doc_lsm라는 변수에 저장한다.

```
In [86]: term_Ism = pd.DataFrame(cal_term, index=df['Unnamed: 0'])
          term_lsm.index.names = ['']
          term_lsm
Out [86]:
            database -31.096509 -15.571069
                SQL -39.015118 -16.250035
               index -21.237577 -4.725006
           regression -19.090776 26.630087
           likelihood -16.235710 19.301054
               linear -15.690757 25.288470
In [91]: | doc_lsm = pd.DataFrame(cal_doc, columns=df.columns[1:])
          doc_lsm
Out [91]:
                   D1
                              D2
                                        D3
                                                  D4
                                                             D5
                                                                        D6
                                                                                                        D9
                                                                                                                  D10
          0 -21.90747 -16.624855 -7.047891 -6.375359 -41.759808 -10.213570 -15.261181 -18.160952 -21.971221 -8.611904
              -8.18611 -5.769697 -2.843911 0.183674 -21.136561 17.114379 27.592356
                                                                                       -0.850159 23.105120 10.298513
```

요구사항 1) 단어 'database'와 가장 유사한 단어 탐색

10) 코사인 유사도를 구해서 database와 가장 유사한 단어를 데이터프레임 화하고, sort_values를 사용하여 similarity가 높은 순부터 나열한다.

```
In [127]: cos_sim_term_df = pd.DataFrame(cos_sim_term_lst, index=df['Unnamed: 0'])
    cos_sim_term_df.index.names = ['']
    cos_sim_term_df = cos_sim_term_df.rename(columns={0 : 'cosine similarity'})
    cos_sim_term_df.sort_values('cosine similarity', ascending=False)
```

Out [127]:

cosine similarity

database	1.000000
SQL	0.997580
index	0.970060
likelihood	0.232958
regression	0.157083
linear	0.090975

Conclusion: 'database' 단어와 가장 유사도가 높은 단어는 'SQL'이다. 코사인 유사도를 기준으로 유사성을 측정해보면, 0.997580의 유사도가 산출된다.

요구사항 2) 문서 'D6'와 가장 유사한 문서 탐색

11) 코사인 유사도를 구해서 Document 6과 가장 유사한 문서를 데이터프레 임화하고, sort_values를 사용하여 similarity가 높은 순부터 나열한다.

```
In [149]: for i in range(len(doc_lsm.columns)):
             print(i+1, "번째 doc과 doc D6의 cosin similarity: ",
                   cos_sim(doc_lsm.iloc[:, i],doc_lsm.iloc[:, 5]))
          1 번째 doc과 doc D6의 cosin similarity: 0.1794710410884455
          2 번째 doc과 doc D6의 cosin similarity: -
                                                0.20259206878901942
          3 번째 doc과 doc D6의 cosin similarity: -
                                                0.15390588728186597
          4 번째 doc과 doc D6의 cosin similarity:
                                                0.5369796834566384
          5 번째 doc과 doc D6의 cosin similarity: 0.0694424192215988
          6 번째 doc과 doc D6의 cosin similarity: 1,0000000000000000
          7 번째 doc과 doc D6의 cosin similarity:
                                                0.9994609877171637
          8 번째 doc과 doc D6의 cosin similarity:
                                                0.4717481732489627
          9 번째 doc과 doc D6의 cosin similarity: 0.9754154939824525
          10 번째 doc과 doc D6의 cosin similarity: 0.987481971384068
In [150]: cos_sim_doc_lst = []
          for i in range(len(doc_lsm.columns)):
             cos_sim_doc_lst.append(cos_sim(doc_lsm.iloc[:, i],doc_lsm.iloc[:, 5]))
```

```
In [152]: cos_sim_doc_df = pd.DataFrame(cos_sim_doc_lst, index=df.columns[1:] )
    cos_sim_doc_df = cos_sim_doc_df.rename(columns={0 : 'cosine similarity'})
    cos_sim_doc_df.sort_values('cosine similarity', ascending=False)
```

Out [152]:

cosine similarity	
D6	1.000000
D7	0.999461
D10	0.987482
D9	0.975415
D4	0.536980
D8	0.471748
D2	0.202592
D1	0.179471
D3	0.153906
D5	0.069442

Conclusion: 문서 D6과 가장 유사도가 높은 단어는 'D7'이다. 코사인 유사도를 기준으로 유사성을 측정해보면, 0.999461의 유사도가 산출된다.