Types and categories I

George McNinch

2022-09-28

Types and categories

- goal of these talks: use simple ("algebraic") type theory to motivate & explain idea behind something called *categorical semantics*
- we follow (Crole 1993)

Overview - "simple" or "algebraic" type theory

- A (simple, algebraic) type theory encompasses types, terms and equalities.
- for example, you might have a type for $rational\ nubmers$, a type for $real\ numbers$, a type for $complex\ numbers$, a type $Fun_{_}$ for complex valued functions on , and a type $Fun_{_}$ for real valued functions on .
- terms have types: a: or z: or f:Fun_
- and you can formulate rules for equality e.g. of terms a: and b: .
- now, the basic idea behind the formal notion of a theory is this:
 - there are basic assumptions "axioms"
 - together with rules for deducing "theorems" from the axioms
- we aim to give a "theory" in "algebraic type theory"
- begin with a given collection of types, terms, equalities
- we view the given equalities as the axioms of a theory
- the theorems of the theory are the equalities that can be deduced using the rules of our algebraic type theory.
- these rules amount to: manipulation of equations using the properties of reflexivity, transitivity, symmetry.

Algebraic Type Theories: syntax overview

- we introduce the notion of algebraic signature for algebraic type theory
- I believe the term is supposed to recollect the notion of *type signature* from programming languages. E.g.

```
addPossibility :: forall a. List a -> Maybe a -> List a
addPossibility current (Just x) = x:current
addPossibility current Nothing = current
(the type signature here is the "first line")
```

• of course, this example involves *type constructors* and *type variables*; the algebraic type theory we are going to describe is simpler than that.

Algebraic type theories: signature

- for us, a signature Sg will be the following data:
 - a collection of types
 - a collection of $function\ symbols$, each with a given arity a thus a 0
 - a *sorting* for each function symbols i.e. a list of a+1 types $[\alpha_1, \dots, \alpha_a, \alpha]$.

We notate this sorting in symbols as follows:

$$f:\alpha_1\times\alpha_2\times\cdots\times\alpha_a\to\alpha$$

- if a function symbol k has arity 0, we write $k : \alpha$ and refer to k as a constant function symbol.
- we assume given a countable collection of variables $Var = \{x,y,...\}$
- the *raw terms* of the type theory are then defined by the following BNF grammar

$$M ::= x | k | f(M, M)$$

where x is a variable, k a constant, f a function symbol of arity a (and there are exactly a listed arguments of f)

- notice that the notion of raw term ignores the given sortings.
- raw terms = possibly not well-typed expressions.

Example

- let's consider the types mentioned earlier: , , , $Fun_{\underline{}}$ and $Fun_{\underline{}}$
- consider an "inclusion function" i: \rightarrow and an "inclusion function" j: \rightarrow (so i and j both have arity 1 and their respective sortings are [,] and [,]
- a product function $p_{\mathbb{C}}$: \times \rightarrow with arity 2 and sorting $[\,,\,]$.
- an evaluation function ev: $Fun_ \times \rightarrow$.
- if x, y, z are variables, an example of a (well-typed) raw term is

$$p_{\mathbb{C}}(j(i(x)),y)$$

• and another (not-well-typed) raw term is

Substitution of raw terms for free variables

- roughly, the free variables of a raw term M are the variables which "appear in" M
- more formally, the collection of free variables $\mathrm{fv}(M)$ of a raw term M is defined by structural induction:
 - fv(x) = x when x is a variable,
 - fv $(k) = \emptyset$ when k is a constant function symbol, and
 - $\text{fv}(f(M_1,M_2,\cdots,M_a))=\text{fv}(M_1)\cup\text{fv}(M_2)\cup\cdots\cup\text{fv}(M_a)$ when f is a function symbol with positive arity a
- now define the substitution M[x/N].
 - -M is a raw term,
 - -x is a variable, and
 - -N is a second raw term.
 - -M[x/N] is to be "the substitution of N for x in M"
- we define the new raw term M[x/N] by induction on the structure of M
 - -x[N/x] = N,
 - -y[N/x] = y when y is a variable distinct from x,
 - -k[N/x] = k when k is a constant function symbol,
 - $-f(M_1,M_2,\cdots,M_a)[N/x]=f(M_1[N/x],M_2[N/x],\cdots,M_a[N/x])$ when f is a function symbol of arity a

• Similarly, given $\vec{x} = [x_1, \dots, x_n]$ a finite list of n distinct variables and $\vec{N} = [N_1, \dots, N_n]$ a list of n raw terms, can define the simultaneous substitution

$$M[\vec{N}/\vec{x}]$$
 or $M[N_1/x_1, \cdots, N_n/x_n]$

in a similar manner.

• danger: in general,

M[N/x, N'/y] is not syntactically identical to M[N/x][N'/y]

• but:

$$M[N/x,N'/y] \quad \text{is identical to} \quad M[N[z/y]/x][N'/y][y/z]$$
 provided that $z \notin \text{fv}(M) \cup \text{fv}(N) \cup \text{fv}(N').$

type assignment: contexts

• our next goal is to define a type assignment system which generates well-typed raw terms.

we first introduce some new notions:

• a context is a finite list of (variable, type) pairs

$$\Gamma = [\quad x_1:\alpha_1 \quad , \quad x_2:\alpha_2 \quad , \quad \cdots \quad , \quad x_n:\alpha_n \quad]$$

where the variables x_i are required to be distinct

• we denote *concatenation* of contexts using commas, e.g.

$$\Gamma_1, x:\alpha, \Gamma_2$$

• a syntactic expression ("judgment") of the form

$$\Gamma \vdash M : \alpha$$

is called a term-in-context

here Γ is a context, M a raw term, and α a type

• informally $\Gamma \vdash M : \alpha$ means that M is a program whose result has type α and that Γ is an environment for M

• We are going to define a class of judgments for our signature **Sg** which we call *proved terms*; they are indicated by the notation

$$\mathbf{Sg} \rhd \Gamma \vdash M : \alpha$$

- there are three families of rules defining proved terms. The first two concern function symbols:
 - if $k:\alpha$ is a constant function symbol (i.e. the sorting of k is $[\alpha]$) then

$$\mathbf{Sg} \triangleright \Gamma \vdash k : \alpha$$

is a proved term.

We denote this symbolically as follows

$$\overline{\mathbf{Sg} \triangleright \Gamma \vdash k : \alpha} \quad (k : \alpha)$$

- we just give the second rule symbolically

$$\frac{\operatorname{\mathbf{Sg}}\rhd\Gamma\vdash M_1:\alpha_1\quad\cdots\quad\operatorname{\mathbf{Sg}}\rhd\Gamma\vdash M_n:\alpha_n}{\operatorname{\mathbf{Sg}}\rhd\Gamma\vdash f(M_1,\cdots,M_n):\alpha}\quad(f:\alpha_1,\cdots,\alpha_n\to\alpha)$$

- and the third rule concerns variables:

$$\overline{\mathbf{Sg}\triangleright\Gamma,x:\alpha,\Gamma'\vdash x:\alpha}$$

• Proposition: Suppose that Γ is a context and M is a raw term. If both

$$\mathbf{Sg} \triangleright \Gamma \vdash M : \alpha \text{ and } \mathbf{Sg} \triangleright \Gamma \vdash M : \alpha'$$

are proved terms, then the types of α and α' are identical.

- **Proof/sketch:** induction on the terms of the derivation of $\operatorname{\mathbf{Sg}} \triangleright \Gamma \vdash M : \alpha$
- in the setting of the Proposition, we informally refer to α as the *type* of the raw term M.

Equations in context and algebraic theories

• given two proved terms $\operatorname{\mathbf{Sg}} \triangleright \Gamma \vdash M : \alpha$ and $\operatorname{\mathbf{Sg}} \triangleright \Gamma \vdash M' : \alpha$ (note that the context Γ and the type—are the same in these terms!) an equation in context has the form

$$\Gamma \vdash M = M' : \alpha$$

- by an algebraic theory Th we mean a pair $(\mathbf{Sg}, \mathbf{Ax})$ where \mathbf{Sg} is a *signature* as before, and \mathbf{Ax} is a collection of equations in context formed using \mathbf{Sg} .
- the equations $\mathbf{A}\mathbf{x}$ are the *axioms* of the theory.
- the *theorems* of the theory *Th* are the collection of statements ("judgments") generated by rules we record on the next slide.

Generating Theorems

• Axioms

$$\frac{\mathbf{A}\mathbf{x} \triangleright \Gamma \vdash M = M' : \alpha}{\mathbf{T}\mathbf{h} \triangleright \Gamma \vdash M = M' : \alpha}$$

• Equational reasoning

$$\frac{\operatorname{\mathbf{Sg}}\triangleright\Gamma\vdash M:\alpha}{\operatorname{\mathbf{Th}}\triangleright\Gamma\vdash M=M:\alpha} \qquad \frac{\operatorname{\mathbf{Th}}\triangleright\Gamma\vdash M=M':\alpha}{\operatorname{\mathbf{Th}}\triangleright\Gamma\vdash M'=M:\alpha}$$

$$\frac{\mathbf{Th}\triangleright\Gamma\vdash M=M':\alpha\quad\mathbf{Th}\triangleright\Gamma\vdash M'=M'':\alpha}{\mathbf{Th}\triangleright\Gamma\vdash M=M'':\alpha}$$

• Permutation

$$\frac{\mathbf{Th} \triangleright \Gamma \vdash M = M' : \alpha}{\mathbf{Th} \triangleright \pi\Gamma \vdash M = M' : \alpha} \quad \text{where} \quad \text{is a permutation}$$

Generating Theorems, contd

• Weakening

$$\frac{\mathbf{Th}\triangleright\Gamma\vdash M=M':\alpha}{\mathbf{Th}\triangleright\Gamma'\vdash M=M':\alpha}\quad\text{where }\Gamma\subseteq\Gamma'$$

• Substitution

$$\frac{\mathbf{Th}\triangleright\Gamma,x:\alpha\vdash N=N':\beta\quad\mathbf{Th}\triangleright\Gamma\vdash M=M':\alpha}{\mathbf{Th}\triangleright\Gamma\vdash N[M/x]=N'[M'/x]:\beta}$$

Example

Let's describe the algebraic signature of the theory of semi-groups.

- recall that a semigroup is a set equipped with an associated binary operation.
- so, there is a type, S; terms represent "elements" of the semigroup
- there is a function symbol $\mu: S \times S \to S$
- ullet the associativity axiom is given by the equation-in-context

$$x: S, y: S, z: S \vdash \mu(\mu(x, y), z) = \mu(x, \mu(y, z)) : S$$

semantics, initially

- consider an algebraic theory $(\mathbf{Sg}, \mathbf{Ax})$ as before.
- a first version of "modeling" our theory is this:
- a proved term (*) $x_1:\alpha_1,\cdots,x_n:\alpha_n\vdash M:\beta$ may be modelled by a function

$$f: A_1 \times \cdots \times A_n \to B$$

where we think of the n input variables of M as modelled by an element of the cartesian product $A_1 \times \cdots \times A_n$.

- the next step is rather than consider sets, consider instead a category $\mathcal C$ which has $finite\ products$
- now we can model (*) using objects of the category: A_i for the type α_i and B for the type β . And we want to represent the proved term (*) be a *morphism* in the category.
- crucially, our proved terms are built using substitution. e.g. f(M) is precisely f(x)[M/x].
- consider proved terms (*) $x: \alpha \vdash M: \beta$ and (**) $y: \beta \vdash N: \gamma$
- there is a "derived" proved term $x: \alpha \vdash N[M/y]: \gamma$. How should it be modelled?

Should depend (only) on how (*) and (**) were modelled.

• we introduce some notation to summarize this:

$$\frac{[[x:\alpha \vdash M:\beta]] = m:A \to B \quad [[y:\beta \vdash N:\gamma]] = n:B \to C}{[[x:\alpha \vdash N[M/y]:\gamma]] = \square_{m,n}:A \to C}$$

where $\square_{m,n}$ is some relation ("morphism") depending on n and m.

- we must model $x: \alpha \vdash x: \alpha$ as some morphism $*_A: A \to A$.
- and one then argues that for morphisms $e:E\to A$ and $m:A\to N$ we have $\square_{*_A,e}=e$ and $\square(m,*_A)=m.$
- in a similar way, one finds the associativity of $\square_{*,*}$.
- basic idea is to interpret substitution by composition

$$[[x:\gamma \vdash M[M'/x]:\beta]] = [[x:\alpha \vdash M:\beta]] \circ [[x:\gamma \vdash M':\alpha]]$$

Categorical semantics, more precisely

- let $\mathcal C$ be a category with finite products and let $\mathbf S \mathbf g$ be an algebraic signature.
- a structure \mathbf{M} in \mathcal{C} for \mathbf{Sg} is specified by giving
 - for each type α of **Sg** an object $[\alpha]$ of \mathcal{C} .
 - for each constant function symbol $k:\alpha$ a morphism $[[k]]:1_{\mathcal{C}}\to [[\alpha]].$
 - for each function symbol $f:\alpha_1,\cdots,\alpha_n\to\beta$ of \mathbf{Sg} a morphism

$$[[f]]:[[\alpha_1]]\times\cdots\times[[\alpha_n]]\to[[\beta]].$$

• given a context $\Gamma = [x_1 : \alpha_1, \dots, x_n : \alpha_n]$ we set

$$[[\Gamma]] = [[\alpha_1]] \times \cdots \times [[\alpha_n]].$$

• for every proved term $\Gamma: M: \alpha$ we specify a morphism

$$[[\Gamma \vdash M : \alpha]] : [[\Gamma]] \rightarrow [[\alpha]]$$

• we need certain properties to hold:

$$\begin{split} \overline{[[\Gamma,x:\alpha,\Gamma'\vdash x:\alpha]]} &= \pi_2:[[\Gamma]]\times[[\alpha]]\times[[\Gamma']] \to [[\alpha]] \\ \\ \overline{[[\Gamma\vdash k:\alpha]] = [[k]] \circ !:[[\Gamma]] \to 1_{\mathcal{C}} \to [[\alpha]]} \end{split}$$

$$\frac{[[\Gamma \vdash M_1:\alpha_1]] = m_1:[[\Gamma]] \rightarrow [[\alpha_1]] \quad \cdots \quad [[\Gamma \vdash M_a:\alpha_a]] = m_a:[[\Gamma]] \rightarrow [[\alpha_a]]}{[[\Gamma \vdash f(M_1,\cdots,M_a)]] = [[f]] \circ \langle m_1,\cdots,m_a \rangle : [[\Gamma]] \rightarrow (\prod_1^a [[\alpha_i]]) \rightarrow [[\alpha]]}$$

Categorical models

- Let ${\bf M}$ be a structure for an algebraic signature ${\bf Sg}$ in a category ${\mathcal C}$ with finite products.
- we say that \mathbf{M} satisfies an equation in context $\Gamma \vdash M = M' : \alpha$ provided that $[[\Gamma \vdash M : \alpha]]$ and $[[\Gamma : M' : \alpha]]$ are equal morphisms in \mathcal{C} .
- and we say that \mathbf{M} is a *model* of the algebraic theory $\mathbf{Th} = (\mathbf{Sg}, \mathbf{Ax})$ if it satisfies all the equations in context found in \mathbf{Ax} .

Alternative lingo: the structure M satisfies the axioms of Th.

Soundness Theorem

Theorem: (Soundness theorem) Let M be a model of Th in C. Then M satisfies any theorem of Th.

Bibliography

Crole, Roy L. 1993. *Categories for Types*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge.