Suite et séries de fonctions Chapitre 1: Suites de fonctions

Table des matières

1.	Introduction.	1
2.	Convergence simple.	1
	Convergence uniforme	2
4.	Intégration sur un segment et convergence uniforme.	5
5.	Dérivation et convergence uniforme.	6
6.	Modes de convergence d'une série de fonctions.	9
	Intégration sur un segment d'une série de fonctions	14 15
8.	Généralités sur les séries entières.	17

1. Introduction.

On considère un ensemble X non vide (en général $X \subset \mathbb{R}$ ou \mathbb{C}).

Définition 1.1 (suite de fonctions): On appelle suite de fonctions $(f_n)_{n\in\mathbb{N}}$ sur X la suite définie pour tout $n\in\mathbb{N}$ par la fonction $f_n:X\to\mathbb{R};x\mapsto f_n(x)$.

Exemple:
$$X = \mathbb{R}$$

 $\forall n \in \mathbb{N}, f_n(x) = \ln(1 + nx^2).$

2. Convergence simple.

Définition 2.1 (convergence simple): Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions sur X. On dit que $(f_n)_{n\in\mathbb{N}}$ converge simplement sur X, si pour tout $x\in X$, la suite numérique $(f_n(x))_{n\in\mathbb{N}}$ est convergente. Dans ce cas on note $f(x)=\lim_{n\to+\infty}f_n(x)$ la limite et on dit que $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f sur X. i.e :

$$f_n \overset{\mathsf{CS}}{\longrightarrow} f \text{ sur } X \Leftrightarrow \forall x \in X, \forall \varepsilon > 0, \exists N \in \mathbb{N}, n \geq N \Rightarrow |f_n(x) - f(x)| \leq \varepsilon$$

Remarque: La convergence simple est une propriété locale.

Exemples:

- 1. On considère $(f_n)_{n\in\mathbb{N}\setminus 0}$ sur $I=]0,+\infty[$ définie par $f_n:I\to\mathbb{R};x\mapsto \frac{1}{x+\frac{1}{n}}$ Soit x>0 fixé, on a $f_n(x)\underset{n\to+\infty}{\longrightarrow}\frac{1}{x}.$ On pose $f:I\to\mathbb{R};x\to \frac{1}{x}$ et on a $f_n\xrightarrow{\mathrm{CS}}f$ sur X.
- 2. Même suite mais sur $I=[0;+\infty[$. Pour x=0, $f_n(0)=n\underset{n\to+\infty}{\longrightarrow}+\infty$ donc $(f_n)_{n\in\mathbb{N}\setminus 0}$ ne converge pas simplement sur I.
- 3. On considère $(f_n)_{n\in\mathbb{N}\setminus 0}$ sur $I=[0,+\infty[$ où $f_n:I\to\mathbb{R};x\mapsto \left(1+\frac{x}{n}\right)^n$ * pour x=0 fixé, $f_n(0)=1\underset{n\to+\infty}{\longrightarrow}1.$

$$* \text{ pour } x > 0 \text{ fix\'e}, f_{n(x)} = e^{n \ln(1 + \frac{x}{n})} = e^{n(\frac{x}{n} + o(\frac{1}{n}))} = e^{x + o(1)} \underset{n \to +\infty}{\longrightarrow} e^x$$
 On pose $f: I \to \mathbb{R}; x \to e^x$, on a $f_n \overset{\operatorname{CS}}{\longrightarrow} f \text{ sur } I.$

4. Soit $\left(f_n\right)_{n\in\mathbb{N}}$ sur I=[0,1] définie par $f_n(x)=x^n$. * Si $x\in[0,1[$ fixé, $f_n(x)\underset{n\to+\infty}{\longrightarrow}0$

* Si
$$x=1,\,f_n(1)\underset{n\to+\infty}{\longrightarrow}1.$$
 On pose $f:I\to\mathbb{R};x\mapsto\begin{cases}1\text{ si }x=1\\0\text{ sinon}\end{cases}$. On a $f_n\underset{n\to+\infty}{\longrightarrow}f.$

3. Convergence uniforme.

Définition 3.1 (Convergence uniforme): Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonction sur X. Soit f une fonction sur X. On dit que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur X si:

$$\forall \varepsilon>0, \exists N\in\mathbb{N}, n\geq N \Rightarrow \forall x\in X, |f_n(x)-f(x)|\leq \varepsilon.$$

On note $f_n \stackrel{\text{CU}}{\longrightarrow} f \text{ sur } X$.

Remarque: La convergence uniforme est une propriété globale.

Définition 3.2: Soit $f: X \to \mathbb{R}$ une fonction. On appelle **norme sup** ou **norme infinie** sur X la valeur :

$$||f||_{+\infty,X} = \sup\{|f(x)|, x \in X\} \in \mathbb{R}_+ \cup \{+\infty\}.$$

Exemples:

1. $f: \mathbb{R} \to \mathbb{R}; x \mapsto \frac{1}{1+x^2}$ On a $\forall x \in \mathbb{R}, 0 \le f(x) \le 1$ et f(0) = 1 donc $||f||_{+\infty,\mathbb{R}} = 1$.

2. $f: I = [0,1[\to \mathbb{R}; x \mapsto x^2]$ On a $f'(x) = 2x \ge 0$ Donc f(x) est croissante sur I et $f(x) \xrightarrow[x \to 1]{} 1$. D'où $\{f(x), x \in I\} = [0,1[$ donc $\|f\|_{+\infty,I} = 1$.

3. $f: \mathbb{R} \to \mathbb{R}; x \mapsto x$, $||f||_{+\infty,\mathbb{R}} = +\infty$.

3.1. Propriétés de la $\|\cdot\|_{+\infty}$

Proposition 3.1.1: Soient $f, g: X \to \mathbb{R}$ deux fonctions.

- 1. S'il existe $M \in \mathbb{R}_+$ tel que $\forall x \in X, |f(x)| \leq M$ alors $\|f\|_{+\infty,X} \leq M$.
- 2. $\forall \alpha \in \mathbb{R}, \|\alpha f\|_{+\infty,X} = |\alpha| \|f\|_{+\infty,X}.$
- 3. $||f + g||_{+\infty,X} \le ||f||_{+\infty,X} + ||g||_{+\infty,X}$.
- 4. $||fg||_{+\infty,X} \le ||f||_{+\infty,X} ||g||_{+\infty,X}$.

Démonstration:

- 1. exercice
- 2. exercice
- 3. $|f+g| \le |f| + |g| \le ||f||_{+\infty,X} + |g| \le ||f||_{+\infty,X} + ||g||_{+\infty,X}$ d'où d'après 1),

$$||f + g||_{+\infty,X} \le ||f||_{+\infty,X} + ||g||_{+\infty,X}.$$

Proposition 3.1.2 (Convergence uniforme avec la norme infinie): Soit $(f_n)_{n\in\mathbb{N}\setminus 0}$ une suite de fonctions sur X et f une fonction sur X. Alors

$$f_n \xrightarrow{\mathrm{CU}} f \Leftrightarrow \|f_n - f\|_{+\infty, \mathbf{X}} \xrightarrow[n \to +\infty]{} 0.$$

 $\begin{array}{l} \textit{D\'{e}monstration:} \\ \Rightarrow \text{Si } f_n \overset{\text{CU}}{\longrightarrow} f \text{ sur } X, \, \forall \varepsilon > 0, \\ \exists N \in \mathbb{N} \text{ tq } n \geq N \Rightarrow \forall x \in X, |f_n - f| \leq \varepsilon \text{ donc } \|f_n - f\|_{+\infty, \mathbf{X}} \leq \varepsilon. \end{array}$ $\begin{array}{l} \text{D'où } \left\| f_n - f \right\|_{+\infty, \mathbf{X}} \underset{n \to +\infty}{\longrightarrow} 0. \\ \Leftarrow \text{Si } \left\| f_n - f \right\|_{+\infty, \mathbf{X}} \underset{n \to +\infty}{\longrightarrow} 0 \text{ Alors} \end{array}$

$$\Leftarrow \operatorname{Si} \|f_n - f\|_{+\infty, X} \xrightarrow[n \to +\infty]{} 0 \operatorname{Alors}$$

$$\forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}, n \geq N \Rightarrow \forall x \in X, |f_n(x) - f(x)| \leq \|f_n(x) - f(x)\|_{+\infty, X} \leq \varepsilon.$$

Donc
$$f_n \stackrel{\text{CU}}{\longrightarrow} f \text{ sur } X$$
.

Théorème 3.1.1: Soit $(f_n)_{n\in\mathbb{N}\setminus 0}$ une suite de fonctions et soit f une fonction sur X. On a

$$f_n \xrightarrow{\mathrm{CU}} f \, \mathrm{sur} \, X \Rightarrow f_n \xrightarrow{\mathrm{CS}} f \, \mathrm{sur} \, X.$$

Démonstration: Immédiat.

Exemples:

1. $(f_n)_{n\in\mathbb{N}\setminus 0}$ définie par $f_n:I=[1,+\infty[\to\mathbb{R};x\mapsto \frac{1}{x+\frac{1}{n}}]$. On a vu que $f_n\stackrel{\mathrm{CS}}{\longrightarrow} f$ sur I où $f:I\to\mathbb{R};x\mapsto \frac{1}{x}$. On pose:

$$g_n = f_n - f = \frac{1}{x} - \frac{1}{x + \frac{1}{n}} = \frac{\frac{1}{n}}{x(x + \frac{1}{n})} = \frac{1}{nx^2 + x}.$$

 1^{ere} méthode: Majoration de $|g_n|$ par une expression qui ne dépend pas de x et qui tend vers 0 quand $n \to +\infty$.

Lorsque $x\geq 1;$ $nx^2+x\geq nx^2+1\geq n+1$ Donc $\forall x\in I, 0\leq g_n(x)\leq \frac{1}{n+1}$ Donc

$$\|f_n - f\|_{+\infty, I} \le \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$$

. D'où $f_n \stackrel{\mathrm{CU}}{\longrightarrow} f$ sur I.

 2^e méthode: (en général plus couteuse): On étudie g_n . On a ${g_n}'(x) = -\frac{2nx+1}{(nx^2+x)^2} \leq 0$ donc g_n est

décroissante sur I et $\|f\|_{+\infty,I}=\frac{1}{n+1}\underset{n\to+\infty}{\longrightarrow}0$. D'où $f_n\overset{\mathrm{CU}}{\longrightarrow}f$ sur I.

2. $(f_n)_{n\in\mathbb{N}\setminus 0}$ définie par $f_n:I=[0,1]\to\mathbb{R};x\mapsto x^n$. On a vu $\overset{\mathrm{CS}}{\longrightarrow}f$ sur I où $f:I\to\mathbb{R};x\mapsto \begin{cases}0&\text{si }x\in[0,1[\\1&\text{si }x=1\end{cases}$

 1^{ere} méthode: On veut minorer $|f_n(x)-f(x)|$. Pour cela, on utilise une suite de $(x_n)_{n\in\mathbb{N}}$ où $\forall n, x_n \in I, x_n = 1 - \frac{1}{n}$. Ainsi, on a bien $|f_n(x_n) - f(x_n)| \underset{n \in +\infty}{\longrightarrow} 0$.

$$|f_n(x_n) - f(x_n)| = f_n(x_n) = \left(1 - \frac{1}{n}\right)^n = e^{n\ln(1 - \frac{1}{n})} = e^{n\left(-\frac{1}{n} + o\left(\frac{1}{n}\right)\right)} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o(1)} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n\ln(1 - \frac{1}{n})}} = e^{-1 + o$$

On a $\|f_n-f\|_{+\infty,I} \geq |f_n(x_n)-f(x_n)|$ $\nearrow +_\infty 0$. d'où $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément $\operatorname{sur} I$.

 $2^e \text{ m\'ethode: } g_n(x) = f_n(x) - f(x) = \begin{cases} f_n(x) = x^n \text{ si } x \neq 1 \\ 1 \text{ sinon} \end{cases} \text{donc } \left\|g_n\right\|_{+\infty,I} = 1 \xrightarrow[]{} 0. \text{ Donc } \left(f_n\right)_{n \in \mathbb{N}} = 1$ ne converge pas uniformément sur I.

Théorème 3.1.2 (convergence uniforme + continuite): Soit $I \subset \mathbb{R}$ un intervalle et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions définies sur I. Soit $f:I\to\mathbb{R}$ une fonction. Soit $x_0\in I$. On suppose

1. $\forall n \in \mathbb{N}, f_n \text{ est continue en } x_0 \text{ (} f_n \in C^{\text{o}}(I,\mathbb{R}) \text{)}.$

 $2. \ f_n \xrightarrow{\mathrm{CU}} f \ \mathrm{sur} \ I.$

Alors f est continue en x_0 .

Démonstration: Soit $\varepsilon > 0$.

On a $f_n \overset{\text{CU}}{\longrightarrow} f$ sur I donc $\exists N \in \mathbb{N}, n \geq N \Rightarrow \forall x \in I, \left| f_{n(x)} - f(x) \right| \leq \frac{\varepsilon}{3}.$ De plus, f_n est continue en x_0 donc $\exists \eta > 0, |x - x_0| \leq \eta \Rightarrow |f_n(x) - f_n(x_0)| \leq \frac{\varepsilon}{3}.$ Soit $n \ge N$ et $x \in I$ tq $|x - x_0| \le \eta$.

$$\begin{split} |f(x)-f(x_0)| &= |f(x)-f_N(x_0)+f_N(x_0)-f_N(x)+f_N(x)-f(x_0)| \\ &\leq |f(x)-f_N(x)|+|f_N(x)-f_N(x_0)|+|f_N(x_0)-f(x_0)| \leq \varepsilon. \end{split}$$

Ainsi, f est continue en x_0 .

Remarques:

- 1. Le théorème nous donne un critère supplémentaire pour justifier la non-convergence uniforme.
- 2. On remarque que l'on a pas besoin de la continuité uniforme sur I en entier, c'est suffisant de l'avoir sur un voisinage de x_0 (ou un intervalle fermé et borné contenant x_0).

Proposition 3.1.3 (Continuité uniforme sur tout segment + continuité): Soit $I \subset \mathbb{R}$ un intervalle. Soient $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions sur I et f une fonction définie sur I. On suppose :

- $\begin{array}{l} \text{1. } \forall n \in \mathbb{N}, f_n \text{ est continue en } x_0. \\ \text{2. } f_n \overset{\text{CU}}{\longrightarrow} f \text{ sur } I. \setminus \text{sur tout segment } K = [a,b] \subset I. \end{array}$

Alors f est continue sur I.

Démonstration: Soit $x_0 \in I, \exists K = [a,b]$ avec $a \neq b \neq x_0$ tel que $x_0 \in [a,b]$ On applique le théorème sur K donc f est continue en x_0 . D'où f continue sur I.

 $\textit{Exemple} \colon \mathsf{Consid\acute{e}rons} \ \mathsf{pour} \ n \in \mathbb{N} \setminus 0, f_n : \mathbb{R} \to \mathbb{R}; x \mapsto \left\{ \begin{smallmatrix} x^2 \sin\left(\frac{1}{nx}\right) & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{smallmatrix} \right\} \mathsf{Comme}$

$$\left| x^2 \sin\left(\frac{1}{nx}\right) \right| \le x^2 \underset{x \to 0}{\longrightarrow} 0,$$

 f_n est continue en 0.

Convergence simple: Si $x=0, f_n(0)=0 \underset{n \to +\infty}{\longrightarrow} 0$. Si $x \in \mathbb{R} \setminus 0, f_n(x) \underset{n \to +\infty}{\sim} x^2 \frac{1}{nx} = \frac{x}{n} \underset{n \to +\infty}{\longrightarrow} 0$. **Convergence uniforme** sur tout gement $K = [-\alpha, \alpha] \forall \alpha \in \mathbb{R}_+ \setminus 0$:

$$g(x) = \sin x - x \quad \text{et} \quad g'(x) = \cos(x) - 1 \leq 0. \quad \text{De} \quad \text{plus,} \quad \forall x \in K, \\ g(x) \leq 0 \quad \text{donc} \quad |\sin(x)| \leq |x|.$$

Donc $\forall x \in \mathbb{R}, |f_n(x)| \leq x^2 \left(\frac{1}{nx}\right) \leq \frac{|x|}{n}$.

D'où:
$$\forall x \in [-\alpha, \alpha] = K, |f_n(x)| \leq \frac{\alpha}{n} \text{ donc } ||f_n - f||_{+\infty, K} = 0 \text{ et } f_n \xrightarrow{\text{CU}} f \text{ sur } K.$$

Ainsi, il y a convergence uniforme sur tout segment.

Montrons qu'il n'y a **pas** de convergence uniforme sur \mathbb{R} :

On prend $x_n = n$ et $f_n(x_n) = n^2 \sin\left(\frac{1}{n^2}\right) \sim n^2 \frac{1}{n^2} = 1$ On a

$$|f_n(x_n) - f(x_n)| = 1 \le \|f_n - f\|_{+\infty, \mathbb{R}} \underset{n \to +\infty}{\longrightarrow} 0$$

Remarque: La convergence uniforme ne se conserve pas lors d'une réunion infinie. Mais se conserve si elle l'est.

4. Intégration sur un segment et convergence uniforme.

On veut étudier une suite d'intégrales par exemple, on veut chercher la limite quand $n \to +\infty$ de la suite $(I_n)_{n \in \mathbb{N}}$ définie par $I_n = \int_0^1 \frac{n^4 + x^4}{(n+x)^4} \, \mathrm{d}x$. La tentation serait de dire qu'à x fixé, $\frac{n^4 + x^4}{(n+x)^4} \underset{n \to +\infty}{\longrightarrow} 1$ et donc $I_n \underset{n \to +\infty}{\longrightarrow} \int_0^1 1 \, \mathrm{d}x = 1$. En faisant cela, on dit que

$$\lim_{n\to +\infty} \int_0^1 f_n(x) \,\mathrm{d}x = \int_0^1 \lim_{n\to +\infty} f_n(x) \,\mathrm{d}x$$

ce qui est généralement faux.

Théorème 4.1 (Convergence uniforme + intégration sur un segment): Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions sur un **segment** I = [a, b]. On suppose que:

 $\begin{array}{l} \text{1. } \forall n \in \mathbb{N}, f_n \text{ est continue sur } I. \\ \text{2. } f_n \xrightarrow{\text{CU}} f \text{ sur } I. \end{array}$

Alors f est continue sur I et

$$\lim_{n\to +\infty} \int_a^b f_n(x) \,\mathrm{d}x = \int_a^b \lim_{n\to +\infty} f_n(x) \,\mathrm{d}x = \int_a^b f(x) \,\mathrm{d}x.$$

 $\begin{array}{lll} \textit{D\'{e}monstration:} & f & \text{est} & \text{continue} & \text{sur} & I & \text{par} & \text{le} & \text{th\'{e}or\`{e}me} & \text{de} & \text{CU+continuit\'{e}} \\ \forall n \in \mathbb{N}, \left| \int_a^b f_n(x) \, \mathrm{d}x - \int_a^b f(x) \, \mathrm{d}x \right| = \left| \int_a^b f_n(x) - f(x) \, \mathrm{d}x \right| \end{array}$

$$\leq \textstyle \int_a^b \lvert f_n(x) - f(x) \rvert \, \mathrm{d} x$$

$$\leq \int_a^b \|f_n - f\|_{+\infty,I} \, \mathrm{d}x = \|f_n - f\|_{+\infty,I} (b - a) \underset{n \to +\infty}{\longrightarrow} 0$$

Remarque: Le théorème peut être utilisé pour montrer la non convergence uniforme.

Exemple: Soit $f_n:[0,1]\to\mathbb{R}; x\mapsto n\ln(1+\frac{x}{n})$. On montre que $f_n\stackrel{\mathrm{CU}}{\longrightarrow} f$ sur [0,1] où f(x)=x (en exercice) et donc on a

$$\lim_{n \to +\infty} \int_0^1 f_n(x) \, \mathrm{d}x = \int_0^1 x \, \mathrm{d}x = \frac{1}{2}.$$

5. Dérivation et convergence uniforme.

Théorème 5.1 (Convergence uniforme + primitive): Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions sur un

Démonstration:

$$\begin{split} \forall x \in I, n \in \mathbb{N}, |F_n(x) - F(x)| &= \left| \int_a^x f_n(t) \, \mathrm{d}t - f(t) \, \mathrm{d}t \right| \\ &= \int_a^x |f_n(t) - f(t)| \, \mathrm{d}t \\ &\leq \int_a^b |f_n(t) - f(t)| \, \mathrm{d}t \\ &\leq \left\| f_n - f \right\|_{+\infty,I} (b-a) \underset{n \to +\infty}{\longrightarrow} 0 \text{ voir thm précedent.} \end{split}$$

Donc $F_n \stackrel{\text{CU}}{\longrightarrow} F$.

Théorème 5.2 (Convergence uniforme + dérivation): Soit $(f_n)_{n\in\mathbb{N}}$ définie sur un **intervalle** I. On suppose:

- 1. $\forall n \in \mathbb{N}, f_n \text{ est } C^1 \text{ sur } I.$
- 2. $\exists \alpha \in I$ tel que $f_n(\alpha)$ converge. 3. $\exists g$ définie sur I telle que $f'_n \overset{\mathrm{CU}}{\longrightarrow} g$ sur tout segment $K \subset I$.

Alors:

- 1. La suite $f_n \stackrel{\mathrm{CU}}{\longrightarrow} f$ sur tout segment $K \subset I$.
- 2. f' = g

 $\begin{array}{l} \textit{D\'{e}monstration} \colon \text{On note } l = \lim_{n \to +\infty} f_n(x). \text{ Par 3. on d\'{e}duit que } g \text{ est } C^0 \text{ sur tout segment } K \subset I \\ \text{donc } C^0 \text{ sur } I. \text{ On pose } G_n : I \to \mathbb{R}; x \mapsto \int_a^x f_n'(t) \, \mathrm{d}t. \end{array}$

Remarquons que $\forall x \in I, G_{n(x)} = f_n(x) - f_n(a)$. Par 3. + le thm de convergence uniforme+primitive $A_n \stackrel{\text{CU}}{\longrightarrow} G$ où

Corollaire 5.1 (Convergence uniforme + dérivation): Soit $(f_n)_{n\in\mathbb{N}}$ définie sur un intervalle I. On suppose:

- 1. $\forall n \in \mathbb{N}, f_n \text{ est } C^1 \text{ sur } I.$
- 2. $\exists f$ définie sur I telle que $\xrightarrow{\text{CS}} f$ sur I.
- 3. La suite de fonctions $(f'_n)_{n\in\mathbb{N}}$ converge uniformément vers une fonction $g:I\to\mathbb{R}$.

- 1. La suite $f_n \stackrel{\mathrm{CU}}{\longrightarrow} f$ sur tout segment $K \subset I$.
- 2. La fonction f est C^1 sur I.
- 3. f' = g

Théorème 5.3: Soit $k>1, I\subset\mathbb{R}$ un intervalle, et $(f_n)_{n\in\mathbb{N}}:I\to\mathbb{R}$ une suite de fonctions. On suppose:

- 1. $\forall n \in \mathbb{N}, f_n \text{ est } C^k \text{ sur } I.$
- 2. $\forall i \in \{0, -, k-1\}$ la suite $(f_n^{(i)})$ converge simplement sur I.
- 3. La suite des dérivées k-ième converge uniformément sur I (ou sur tout segment $K\subset I$) vers une fonction $g: I \to \mathbb{R}$.

Alors il existe une fonction f, C^k sur I telle que :

- 1. $f^{(k)} = g$
- 2. $\forall i \in \{0, -, k\}, f_n^{(i)} \xrightarrow{\text{CU}} f^{(i)}.$

Démonstration: par récurrence.

Remarque: Si $f_n \stackrel{\text{CU}}{\longrightarrow} f$ sur I et $\forall n \in \mathbb{N}, f_n$ est C^1 sur I alors f n'est pas forcément C^1 sur I.

Théorème 5.4 (double limite): Soit $a \in \mathbb{R} \cup \{\pm \infty\}$ une borne d'un intervalle I, $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions définies sur I, et $f:I\to\mathbb{R}$ une fonction. On suppose :

- $\begin{array}{l} \text{1. } \forall n \in \mathbb{N}, f_n(x) \underset{x \to a}{\longrightarrow} l_n \in \mathbb{R}. \\ \text{2. } f_n \overset{\text{CU}}{\longrightarrow} f \text{ sur } I. \end{array}$

Alors:

- 1. La suite numérique $(l_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{R}$.
- 2. $f(x) \xrightarrow[x \to a]{} l$.

On a donc

$$\lim_{x\to a}\Bigl(\lim_{n\to +\infty}f_n(x)_{=f(x)}\Bigr)=\lim_{n\to +\infty}\Bigl(\lim_{x\to a}f_n(x)_{=l_n}\Bigr)=l$$

Démonstration:

1. Montrons que la suite (l_n) converge, donc est de Cauchy. Soit $\varepsilon > 0$ Par 2.,

$$\exists N \text{ tel que } \forall n \geq N, \text{on a } \left\| f_n - f \right\|_{+\infty,I} \leq \frac{\varepsilon}{2}.$$

Soit $n \geq N$ et $p \in \mathbb{N}$.

$$\begin{split} \left| f_n(x) - f_{n+p}(x) \right| &= \left| f_n(x) - f(x) + f(x) - f_{n+p}(x) \right| \\ &\leq \left| f_n(x) - f(x) \right| + \left| f_{n+p}(x) - f(x) \right| \leq \varepsilon. \end{split}$$

On passe à la limite quand $x \longrightarrow a$ et $l_n - l_{n+p} \le \varepsilon$. donc (l_n) est de Cauchy donc converge.

2. Montrons $f(x) \xrightarrow[x \to a]{} l$.

$$\text{Comme } f_n \overset{\text{CU}}{\longrightarrow} f \text{ sur } I, \exists N_1 \in \mathbb{N} \text{ tel que } n \geq N_1 \Rightarrow \|f_n - f\|_{+\infty, I} \leq \frac{\varepsilon}{3}.$$

Comme $l_n \underset{n \to +\infty}{\longrightarrow} l, \exists N_2 \in \mathbb{N}, \text{tel que } n \geq N_2 \Rightarrow |l_n - l| \leq \frac{\varepsilon}{3}.$

Posons $N = \max\{N_1, N_2\}$. Puisque $f_n(x) \underset{x \to a}{\longrightarrow} l_n$,

$$\exists \alpha > 0 \text{ tel que } \forall x \in I, |x-a| \leq \alpha \Rightarrow |f_n(x) - l_n| \leq \frac{\varepsilon}{3}$$

Soit $x \in I$ tel que $|x - a| \le \alpha$ et soit $n \ge N$. On a :

$$\begin{split} |f(x) - l| &= |f(x) - f_n(x) + f_n(x) - l_n + l_n - l| \\ &= |f(x) - f_n(x)| + |f_n(x) - l_n| + |l_n - l| \leq \varepsilon. \end{split}$$

 $DOnc \ f(x) \xrightarrow[x \to a]{} l.$

Remarque: La conclusion du théorème est vraie même si $l_n = +\infty$.

Exemple (Pour montrer la non convergence uniforme): On considère $f_n: I \to \mathbb{R}_+; x \mapsto \frac{x}{n+x}, n \geq 1$.

 $1. \ \forall n \in \mathbb{N}, f_{n(x)} \underset{x \to +\infty}{\longrightarrow} 1 = l_n \ \mathrm{donc} \ l_n \underset{n \to +\infty}{\longrightarrow} 1 = l.$

2. CS de
$$(f_n)$$
: pour $x=0$ $f_n(0) \underset{n \to +\infty}{\longrightarrow} 0$. pour $x>0$ fixé, $f_{n(x)}=\frac{x}{n+x} \underset{n \to +\infty}{\longrightarrow} 0$ donc $f_n \overset{\mathrm{CS}}{\longrightarrow} 0$.

Or

$$\lim_{x\to a}\Bigl(\lim_{n\to +\infty}f(x)\Bigr)=0=\lim_{n\to +\infty}\Bigl(\lim_{x\to a}l_n\Bigr))=1.$$

Faux donc 2. n'est pas vrai et il n'y a pas convergence uniforme.

Chapitre 2: Séries de fonctions.

6. Modes de convergence d'une série de fonctions.

Remarque: On considèrera un intervalle $I \subset \mathbb{R}$ et des fonctions $f: I \to \mathbb{R}$ mais il est possible de généraliser aux fonctions $f: I \to \mathbb{C}$ en remplacnt la valeur absolue par le module.

Définition 6.1: Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions sur I. On appelle série de fonctions de terme général f_n la suite de fonctions

$$\left(S_n\right)_{n\in\mathbb{N}}\coloneqq S_n:I\to\mathbb{R};x\mapsto\sum_{k=0}^nf_k(x).$$

On note $\sum f_n$ une telle série de fonctions. La fonction S_n s'appelle la n-ième somme partielle de $\sum f_n$.

Définition 6.2 (Convergence simple): On dit qu'une série de fonctions $\sum f_n$ converge simplement sur I si pour tout $x \in I$, la série numérique $\sum f_n(x)$ converge. Si $\sum f_n$ converge simplement sur I, on définit la fonction limite

$$S:I\to\mathbb{R};x\mapsto\sum_{n=0}^{+\infty}f_n(x)$$

La fonction S est appelée la fonction somme de $\sum f_n$ et est notée $S = \sum_{n=0}^{+\infty} f_n$.

Définition 6.3 (Reste): La fonction $S-S_n$ notée R_n s'appelle la fonction reste d'ordre n de $\sum f_n$, on note $R_n = \sum_{k=n+1}^{+\infty} f_k$. On a $R_n \stackrel{\text{CS}}{\longrightarrow} 0$ sur I.

Remarques:

- 1. Montrer que $\sum f_n$ converge simplement sur I c'est montrer que $S_n \stackrel{\text{CS}}{\longrightarrow} S$. 2. Si $\sum f_n$ converge simplement sur I, alors $S = \sum_{n=0}^{+\infty} f_n$ est définie sur I.
- 3. En général, il n'est pas posssible de calculer explicitement S.

Exemple: Soit $f_n:\mathbb{R}\to\mathbb{R}; x\mapsto x^n$. Pour $x\in\mathbb{R}$, tel que $|x|\geq 1, \sum f_n(x)$ diverge grossièrement car

 $f_n(x) \xrightarrow[n \to +\infty]{} 0.$ Si $x \in]-1,1[$, $S_n(x) = \sum_{k=0}^n x^k = \frac{1-x^{n+1}}{1-x} \xrightarrow[n \to +\infty]{} S(x) = \frac{1}{1-x} \operatorname{donc} \sum f_n \text{ converge simplement sur }]-1,1[$. La fonction somme de $\sum f_n$ est seulement définie sur]-1,1[.

$$S:]\text{--}1,1 \to \mathbb{R}; x \mapsto \frac{1}{1-x}, \text{ et } R_n:]\text{--}1,1 \to \mathbb{R}; x \mapsto S(x) - S_{n(x)} = \frac{x^{n+1}}{1-x}.$$

Définition 6.4 (convergence absolue): On dit qu'une série de fonctions $\sum f_n$ converge absolument, noté CA sur I si $\forall x \in I$, la série numérique $\sum |f_n(x)|$ converge.

Proposition 6.1 (Convergence absolue => convergence simple): Si $\sum f_n$ converge absolument sur I alors $\sum f_n$ converge simplement sur I.

Démonstration: Voir cours séries numériques.

Exemples:

1. On considère la série de fonctions $\sum_{n\geq 1} f_n$ où $f_n:\mathbb{R}\to\mathbb{R}; x\mapsto \frac{(-1)^n}{x^2+n^2}$. Soit $x\in\mathbb{R}$,

$$|f_n(x)| = \frac{1}{x^2 + n^2} = \frac{1}{n^2 \left(\frac{x^2}{n^2} + 1\right)} \underset{+\infty}{\sim} \frac{1}{n^2}.$$

Par Riemann, et par équivalence, $\sum f_n$ converge absolument sur $\mathbb R$ donc converge.

2. On considère $\sum_{n\geq 1} f_n$ où $f_n:\mathbb{R} \to \mathbb{R}; x \mapsto \frac{(-1)^n}{\sqrt{(x^2+n^2)}}$.

Soit $x \in \mathbb{R}$

$$|f_n(x)| = \frac{1}{\sqrt{x^2 + n^2}} = \frac{1}{n\sqrt{\frac{x^2}{n^2} + 1}} \underset{+\infty}{\sim} \frac{1}{n}.$$

Donc f_n ne converge pas absolument sur \mathbb{R} .

Soit $x\in\mathbb{R}$. On pose $u_n(x)=\frac{1}{\sqrt{x^2+n^2}}\underset{n\to+\infty}{\longrightarrow}0.$ On a $(n+1)^2\geq n^2$ donc $x^2+(n+1)^2\geq x^2+n^2$ donc

$$\sqrt{x^2+(n+1)^2} \geq \sqrt{x^2+n^2} > 0 \text{ (par croissance de } \sqrt{\bigodot)}$$

$$u_{n+1}(x) \leq u_n(x).$$

Donc $(u_n(x))_{n\in\mathbb{N}\setminus 0}$ est décroissante. Par le critère special des séries alternées, $\sum f_n(x)$ converge et donc $\sum f_n$ converge simplement sur \mathbb{R} .

Définition 6.5 (convergence uniforme): On dit qu'une série de fonctions $\sum f_n$ converge uniformément sur I si la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ des sommes partielles converge uniformément sur I.

 $\it Remarque$: Cette définition est en général inutilisable car on ne connait pas une forme simple de S_n et S non plus.

Proposition 6.2: Si la série de fonctions $\sum f_n$ converge uniformément sur I alors $\sum f_n$ converge simplement sur I.

Démonstration: Cours sur les suites de fonctions

Proposition 6.3: Si une série de fonctions $\sum f_n$ converge uniformément sur I alors la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur I vers la fonction nulle.

Démonstration: Supposons $\sum f_n$ converge uniformément sur I. Pour tout $n \geq 1$, pour tout $x \in I$,

$$\begin{split} |f_n(x)| &= |S_n(x) - S_{n-1}(x)| = |S_n(x) - S(x) + S(x) - S_{n-1}(x)|) \\ &\leq |S_n(x) - S(x) + S(x)| + |S(x) - S_{n-1}x| \\ &\leq \|S_n - S\|_{+\infty,I} + \|S_{n-1} - S\|_{+\infty,I} \end{split}$$

$$\operatorname{Donc} \left\| f_n - 0 \right\|_{+\infty,I} \leq \left\| S_n - S \right\|_{+\infty,I} + \left\| S_{n-1} - S \right\|_{+\infty,I} \underset{n \to +\infty}{\longrightarrow} 0 \text{ donc } f_n \overset{\operatorname{CU}}{\longrightarrow} \text{ fct nulle sur } I.$$

Remarque: On se sert de ce résultat pour démontrer dans certains cas la non convergence uniforme.

Exemple:

On considère $\sum f_n$ où $f_n: \mathbb{R}_+ \setminus 0 \to \mathbb{R}; x \mapsto \frac{1}{1+n^2x}$.

Soit $x \in I$. On a $\frac{1}{1+n^2x} \underset{+\infty}{\sim} \frac{1}{n^2x}$. Par Riemann et par équivalence, $\sum_{CS} f_n(x)$ converge donc $\sum f_n$ converge simplement et converge absolument sur I. On a $f_n \xrightarrow{CS}$ fct nulle sur I. On va voir qu'elle n'est pas uniforme. Soit $x_n = \frac{1}{n^2}, n \ge 1$. $f_{n(x_n)} = \frac{1}{2}$ donc $\|f_n - 0\|_{+\infty, X} \ge \frac{1}{2}$ donc $\|f_n - 0\|_{+\infty, X} \xrightarrow{n \to +\infty} 0$. D'où la non convegrence uniforme.

Remarque: Cet exemple montre CA ≠ CU.

Proposition 6.4 (caractérisation de la convegrence uniforme avec les restes): Soit $\sum f_n$ une série de fonctions. $\sum f_n$ converge uniformément sur I si et seulement si

- 1. $\sum f_n$ converge simplement sur I.
- 2. La suite de fonctions $(R_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction nulle sur I.

Démonstration:

On suppose $\sum f_n$ converge uniformément sur I donc S est bien définie sur I et on a H_1 . $\sum f_n$ converge uniformément sur $I \Leftrightarrow S_n \stackrel{\mathrm{CU}}{\longrightarrow} S$ sur $I \Leftrightarrow S_n - S \stackrel{\mathrm{CU}}{\longrightarrow} 0$. D'où H_2 .

Remarque: Ce résultat est en général inexploitable car on en connait pas R_n .

Définition 6.6 (convergence normale): On dit qu'une série de fonctions $\sum f_n$ converge normalement sur I si la série numérique $\sum \|f_n\|_{+\infty,I}$ est convergente.

Proposition 6.5: Soit $\sum f_n$ une série de fonctions. $\sum f_n$ converge normalement sur I si et seulement si il existe une suite numérique $(a_n)_{n\in\mathbb{N}}$ convergente telle que $\|f_n\|_{+\infty,I}\leq a_n$. La série numérique $\sum a_n$ est appelée une série majorante de $\sum f_n$.

Démonstration:

 \Rightarrow Si $\sum f_n$ converge normalement sur I, on pose $a_n = \|f_n\|_{+\infty,I}$ et $\sum a_n$ est une série majorante. \Leftarrow Si $\sum a_n$ est une série majorante, par le théorème de comparaison, $\sum \|f_n\|_{+\infty,I}$ converge. \square

Théorème 6.1 (Comparaison des modes de convergence): Soit $\sum f_n$ une série de fonctions sur I. On a

convergence normale \Rightarrow convergence absolue \Rightarrow convergence simple

et

convergence normale \Rightarrow convergence uniforme \Rightarrow convergence simple

 $\textit{D\'{e}monstration}\colon$ On suppose que $\sum f_n$ converge normalement sur I. Il existe une série majorante $\sum a_n$ pour $\sum f_n$.

- 1. Comme $\forall n \in \mathbb{N}, \left\|f_n\right\|_{+\infty,I} \leq a_n$, on a $\forall x \in I, 0 \leq |f_n(x)| \leq \left\|f_n\right\|_{+\infty,I} \leq a_n$. Par le théorème de comparaison, $\sum |f_n(x)|$ converge pour tout $x \in I$, donc $\sum f_n$ converge absolument sur I.
- 2. Comme converge normale \Rightarrow convergence absolue \Rightarrow convergence simple, $\sum f_n$ converge simplement sur I. Donc $\forall x \in I, R_n(x) = \sum_{k=n+1}^{+\infty} f_k(x)$ est bien défini, et $\sum |f_n(x)|$ converge simplement sur I donc ses restes associés que l'on appelera R'_n sont bien définis.. Comme $\sum a_n$ converge, les restes d'ordre n, r_n sont bien définis.

$$\forall x \in I, |R_n(x)| = \left| \sum_{k=n+1}^{+\infty} f_n \right| \le \sum_{k=n+1}^{+\infty} |f_n| \le r_n = \sum_{k=n+1}^{+\infty} a_n \in \mathbb{R}.$$

Ainsi, $\|R_n - 0\|_{+\infty,I} \le r_n \underset{n \to +\infty}{\longrightarrow} 0$. D'où $R_n \overset{\text{CU}}{\longrightarrow}$ fct nulle sur I. Donc $\sum f_n$ converge uniformément sur I.

Exemple:

1. $\sum_{n\geq 1} f_n$ où $f_n(x) = \frac{(-1)^n}{x^2 + n^{\frac{3}{2}}}$

2. Etudions les convergences sur $I =]0, +\infty[$ de $\sum f_n$ où $f_n(x) = nx^2 e^{-x\sqrt{n}}$.

* Convergence normale:

$$f_n'(x) = 2nxe^{-x\sqrt{n}} - n^{\frac{3}{2}}x^2e^{-x\sqrt{n}} = nxe^{-x\sqrt{n}}\big(2 - \sqrt{n}x\big)$$

par etude de tableau de variation on obtient que $\|f_n\|_{+\infty,I} = f_n\left(\frac{2}{\sqrt{n}}\right) = \frac{4}{e^2}$ Donc $\sum \|f_n\|_{+\infty,I}$ diverge grossièrement, ainsi, il n'y a pas de convergence normale.

 $* \underline{\text{Convergence absolue}:} \\ \text{Soit } x \in]0, +\infty[. \\ \text{On a } n^2f_n(x) = n^3x^2e^{-x\sqrt{n}} \\ \text{Donc par la règle de } n^\alpha u_n,$ $\sum |f_n(x)|$ converge. Donc converge absolument sur I. (et converge simplement sur I). * Comme $\|f_n\|_{+\infty,I}$ $\to 0$, donc (f_n) ne converge pas uniformément vers la fonction nulle donc $\sum f_n$ ne converge pas uniformément sur I.

Remarque: La convergence absolue et la convergence simple sont locales tandis que la convergence normale et uniforme sont globales.

Théorème 6.2 (double limite): Soit $\sum f_n$ une série de fonctions sur I un intervalle, a une borne de cet intervalle. On suppose :

 $\begin{array}{ll} \text{1.} & \forall n \in \mathbb{N}, f_n(x) \underset{x \to a}{\longrightarrow} l_n \in \mathbb{R}. \\ \text{2.} & \sum f_n \text{ converge uniformément sur } I. \end{array}$

Alors en notant S la fonction somme de la série $\sum f_n$ sur I,

1. La série des l_n converge. 2. $S(x) \underset{x \to a}{\longrightarrow} \sum_{n=0}^{+\infty} l_n$

C'est-à-dire:

$$\lim_{x\to a} \left(\lim_{n\to +\infty} \sum_{k=0}^n f_k(x) \right) = \lim_{n\to +\infty} \left(\lim_{x\to a} \sum_{k=0}^n f_k(x) \right)$$

 $extit{D\'emonstration}$: On considère $S_n(x) = \sum_{k=0}^n f_{k(x)}$ et on applique le théorème de la double limite à la suite de fonctions $(S_n)_{n\in\mathbb{N}}$.

Remarques:

1. Sous l'hypothèse de convergence uniforme, on peut intervertir limite en x et signe somme à l'infiini en n. On a :

$$\lim_{x \to a} \sum_{k=0}^{+\infty} f_k(x) = \sum_{k=0}^{+\infty} \lim_{x \to a} f_k(x)$$

2. On peut se servir de ce théorème pour montrer qu'une série de fonctions ne converge pas uniformement.

Exemple:

On considère $\sum f_n$ où $f_n(x) = \frac{x^n}{1+nx^n}$ sur [0,1[. $\underline{\text{Convergence simple:}}$ On a $f_n(x) \underset{+\infty}{\sim} x^n$ donc par équivalence (car $f_n \geq 0$), $\sum f_n$ converge et, $\forall x \in [0,1[,f_n(x) \underset{n \to +\infty}{\longrightarrow} 0$. Donc $\sum f_n$ converge absolument et simplement sur [0,1[.

théroème d'équivalence, $\sum \|f_n\|_{+\infty}$ diverge. Il n'y a donc pas convergence normale.

Convergence uniforme: Si $\sum f_n$ converge sur I, alors le théorème de la double limite s'applique $\overline{\mathrm{donc\ lim}_{x o 1}\, f_n(x) = \frac{1}{1+n}} = l_n$ et donc $\sum l_n$ converge. Contradiction donc $\sum f_n$ ne converge pas

 ${\it Remarque}\colon {\it Pour montrer}$ la non convergence uniforme on peut montrer que les f_n ne convergent pas uniformément vers la fonction nulle.

Théorème 6.3 (Continuité uniforme et continuité): Soit I un intervalle, $\sum f_n$ une série de fonctions sur I, $a \in I$. On suppose :

- 1. $\forall n, f_n$ est continue en a.
- 2. $\sum f_n$ converge uniformément sur I.

Alors la fonction somme $S = \sum_{n=0}^{+\infty} f_n$ de $\sum f_n$ est continue en a.

Démonstration: On applique le théorème de continuité uniforme+continuité à la suite de fonctions $(S_n)_{n\in\mathbb{N}}$

Théorème 6.4: Soit $\sum f_n$ une série de fonctions sur I. On suppose

- 1. $\forall n \in \mathbb{N}, f_n \text{ est continue sur } I.$
- 2. $\sum f_n$ converge uniformément sur tout segment $K \subset I$.

Alors la fonction somme est continue sur I.

Exemple:

- 1. Déterminer l'ensemble de définition I de $S:?? \to \mathbb{R}; x \mapsto \sum_{n=1}^{+\infty} n^x e^{-nx}$.
- 2. Montrer que S est continue sur I.
- 3. Déterminer $\lim_{x\to+\infty} S$.

7. Intégration sur un segment d'une série de fonctions.

Théorème 7.1 (Convergence uniforme et intégration termes à termes): Soit $\sum f_n$ une série de fonctions définies sur $I = [a, b] \subset \mathbb{R}$. On suppose :

- 1. $\forall n \in \mathbb{N}, f_n \text{ est continue sur } I.$
- 2. $\sum f_n$ converge uniformément sur I.

Alors

- 1. La fonction somme $S=\sum_{n=0}^{+\infty}f_n$ est continue sur I. 2. La série numérique $\sum \int_a^b f_n(x)\,\mathrm{d}x$ converge. 3. On peut intervertir la somme et l'intégrale, i.e $\int_a^b \sum f_n(x)\,\mathrm{d}x = \sum \int_a^b f_n(x)\,\mathrm{d}x$.

Démonstration: On applique le théorème de convergence uniforme + intégration sur un segment à la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ où $S_n=\sum_{k=0}^n f_k$.

Exemple: Série « Mina-bili » de Johan Bernouilli 1697.

On veut montrer que

$$\int_0^1 x^x \, \mathrm{d}x = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^n}.$$

On admet $\forall y \in \mathbb{R}, e^y = \sum_{n \in \mathbb{N}} \frac{y^n}{n!}$. Pout x > 0,

$$x^x = e^{x \ln(x)} = \sum \frac{x^n \ln(x)^n}{n!}$$

 $\text{Posons } f_0 = 1, f_n: [0,1] \to \mathbb{R}; x \mapsto \begin{cases} \frac{x^n \ln(x)^n}{n!} & \text{si } x \in]0,1[\text{ et posons par } g: [0,1] \to \mathbb{R}; x \mapsto x \ln x. \text{ Par \'etude de fonctions, on trouve } \|g\|_{+\infty,[0,1]} = \frac{1}{e} \text{ donc } \|f_n\|_{+\infty,[0,1]} = \frac{1}{e^n n!}. \text{ Par d'Alembert, } \frac{u_{n+1}}{u_n} = \frac{1}{e^{n+1}} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n+1}} = \frac{1}{e^{n+1}} = \frac{1}{e^{n+1}} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n+1}} = \frac{1}{e^{n+1}} \underset{n \to +\infty}{\longrightarrow} \frac{1}{e^{n+1}} = \frac$ 0 donc $\sum u_n$ converge. Ainsi, $\sum f_n$ converge normalement sur [0,1] donc converge uniformément sur [0,1]. De plus, $\forall n \in \mathbb{N}, f_n$ est C^0 sur [0,1]. Par le théorème de convergence uniforme + intégration pour les séries de fonctions,

$$\int_0^1 x^x \, \mathrm{d}x = \int_0^1 \sum_{n=0}^{+\infty} f_n(x) \, \mathrm{d}x \underset{\text{thm}}{=} \sum_{n=0}^{+\infty} \int_0^1 f_n(x) \, \mathrm{d}x = \sum_{n=0}^{+\infty} = \sum_{n=0}^{+\infty} \int_0^1 \frac{x^n \ln(x)^n}{n!} \, \mathrm{d}x.$$

On psoe $J_{n,p} = \int_0^1 x^n \ln(x)^p dx$. Par changement de variables,

$$J_{n,p} = \left[\ln(x)^p \frac{x^{n+1}}{n+1}\right]_0^1 - \int_0^1 \frac{p}{n+1} x^n \ln(x)^{p-1} dx = -\frac{p}{n+1} J_{n,p-1}.$$

$$= (-1)^p \frac{p!}{(n+1)^p} J_{n,0} = (-1)^p \frac{p!}{(n+1)^{p+1}}$$

7.1. Dérivation d'une série de fonctions.

Théorème 7.1.1 (Convergence uniforme de la série des primitives.): Soit $\sum f_n$ une série de fonctions **continues** sur un **segment** I = [a,b]. Pour tout $n \in \mathbb{N}$, on considère par le théorème fondamental de l'analyse $F_n : [a,b] \to \mathbb{R}; x \mapsto \int_a^x f_n(t) \, \mathrm{d}t$. Alors, si la série de fonctions $\sum f_n$ converge uniformément sur I vers la fonction somme S, la série des primitives $\sum F_n$ converge uniformément sur I vers la fonction (somme) $T : [a,b] \to \mathbb{R}; x \mapsto \int_a^x S(t) \, \mathrm{d}t$.

Démonstration: On applique le théorème de convrgence uniforme de la suite des primitives à la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ où $S_n=\sum_{k=0}^n f_k$

Théorème 7.1.2 (Dérivation, C¹ et CU, dérivation terme à terme): Soit $I \subset \mathbb{R}$ un intervalle et soit $\sum f_n$ une série de fonctions où $F_n: I \to \mathbb{R}$. On suppose :

- 1. $\forall n \in \mathbb{N}, f_n \text{ est } C^1 \text{ sur } I.$
- 2. $\sum f_n$ converge simplement sur I.
- 3. $\sum f'_n$ converge uniformément sur I.

Alors:

- 1. $\sum f_n$ converge uniformément sur tout segment $K \subset I$.
- 2. $\overline{S} = \sum f_n \operatorname{est} C^1 \operatorname{sur} I$.
- 3. On peut permuter sommes et dérivées. $S' = \sum f'_n$

Remarque: On peut remplacer H2. par $\exists a \in I$ tel que $\sum f_n(a)$ converge. H3. par $\sum f'_n$ converge uniformément sur tout segment $K \subset I$.

Théorème 7.1.3: Soit $I \subset \mathbb{R}$ un intervalle et $\sum f_n$ une série de fonctions où $f_n : I \to \mathbb{R}$, et $k \geq 1$

- 1. On suppose:
- 1. $\forall n \in \mathbb{N}, f_n \text{ est } C^k \text{ sur } I.$
- 2. $\forall i \in \{0, -, k-1\}, \sum f_n^{(i)}$ converge simplement sur I.
- 3. $\sum f_n^{(k)}$ converge uniformément sur tout segment $K \subset I$.

Alors:

- 1. $\forall i \in \{0, -, k-1\}, \sum f_n^{(i)}$ CU sur tout segment $K \subset I$
- 2. la fonction somme est C^k sur I.
- 3. $S^{(i)} = \sum f_n^{(i)}$.

Exemple: On pose $f(x) = \sum_{n=1}^{+\infty} u_n$ avec $u_n = \frac{(-1)^n e^{-nx}}{n}$.

- 1. Donner le domaine de définition I de f.
- 2. Montrer que f est C^0 sur I.
- 3. Montrer que f est C^1 sur I et calculer f'.
- 4. Calculer $f \, \text{sur } I$.

.

- 1. Si x<0, u_n ne tend pas vers 0 donc $\sum u_n(x)$ diverge grossièrement. Si $x\geq 0$, On obtient une série alternée avec $\frac{e^{-nx}}{n}\underset{n\to+\infty}{\longrightarrow}0$ et $u_{n+1}\leq u_n$ donc par le critère spécial des séries alternées, $\sum u_n$ converge donc $I=\mathbb{R}_+$.
- 2. Pour x=0, $\left|u_{n(0)}=\frac{1}{n}\right|$ donc $\left|u_{n}(0)\right|$ diverge. Il n'y a pas de convergence absolue donc pas de convergence normale sur I. Etudions directement la convere uniforme.

$$|R_n(x)| = \left|\sum_{k=n+1}^{+\infty} u_k(x)\right| \underset{\mathrm{CSSA}}{\leq} \left|u_{n+1}(x)\right| = \frac{e^{-(n+1)x}}{n+1} \leq \frac{1}{n+1}$$

Donc $\sum u_n$ converge uniformément sur $I\Leftrightarrow R_n$ converge uniformément vers la fonction nulle sur I. Ainsi, $\|R_n\|_{+\infty,I}\leq \frac{1}{n+1}\underset{n\to +\infty}{\longrightarrow} 0$ donc $\sum u_n$ converge uniformément sur I. Enfin, par le théorème de convergence uniforme+continuité, f est C^0 sur I car $\forall n\in\mathbb{N}, u_n$ est $C^{+\infty}$ sur I.

3. On a $\forall n \in \mathbb{N}, u_n$ est C^1 sur I. $\sum u_n$ converge simplement sur I. De plus, $u_n'(x) = (-1)^{n+1}e^{-nx} = -(-e^{-x})^n$. Pour x>0, c'est le terme général d'une série géomètrique convergente.

On regarde des intervalles de la forme $[a, +\infty[$, a>0. On a $\|u_n'\|_{+\infty, [a,b[}=e^{-an}$ qui est un terme d'une série géometrique qui converge.

Donc $\sum u_n'$ converge normalement sur $[a,+\infty[$. On applique le théorème de convergence uniforme + dérivation et donc f est C^1 sur $[a,+\infty[$ et $\forall x\in [a,+\infty[,f'(x)=-\sum -e^{(-x)^n}$ donc f est c^1 sur $\bigcup_{a>0}[a,+\infty[=]0,+\infty[$. Enfin,

$$\forall x \in]0, +\infty[, f'(x) = -\sum_{n=1}^{+\infty} (-e^{-x})^n = -\frac{-e^{-x}}{1 + e^{-x}} = \frac{e^{-x}}{1 + e^{-x}} \xrightarrow[x \to 0]{} \frac{1}{2}$$

On en déduit que f est C^1 sur I et $f'(0) = \frac{1}{2}$.

4.
$$\forall x \in I, \int_0^1 f'(t) \, \mathrm{d}t = \int_0^x \frac{e^{-t}}{1 + e^{-t}} \, \mathrm{d}t = \left[-\ln(1 + e^{-t}) \right]_0^x = -\ln(1 + e^{-x}) + \ln 2$$

Donc
$$f(x) = -\ln(1 + e^{-x}) + \ln(2) + f(0)_{\sum \frac{(-1)^n}{x}}$$

VOIR TEL!!

Donc
$$f(x) = -\ln(1 + e^{-x})$$

Chapitre 3: Séries entières.

8. Généralités sur les séries entières.

Définition 8.1: On appelle séries entières de coefficients $(a_n)_{n\in\mathbb{N}}$ la série de fonctions de la forme $\sum f_n$ où $f_n:\mathbb{C}\to\mathbb{C};z\mapsto a_nz^n$. On notera une telle série sous la forme $\sum a_nz^n$.

Définition 8.2: L'ensemble D des $z \in \mathbb{C}$ tels que la série numérique $\sum a_n z^n$ converge est apppelé domaine de convergence de la série entière.

Définition 8.3: Soit $\sum a_n z^n$ une série entière, D le domaine de convergence de la série. On appelle la somme de la série entière la fonction

$$S\coloneqq:D\to C; z\mapsto \sum_{n=0}^{+\infty}a_nz^n$$

Exemples:

1. $\sum z^n$

Si |z| < 1, la série géométrique converge absolument donc simplement.

Si $|z| \ge 1$, $z^n \longrightarrow 0$ donc la série diverge grossièrement. donc D = B(0,1).

2. $\sum_{n\geq 1}u_n \text{ avec } u_n=\frac{z^n}{n^2}.$ Si $|z|\leq 1,\frac{|z^n|}{n^2}\leq \frac{1}{n^2}$ donc $\sum u_n$ converge absolument.

Si |z| > 1, on utilise la règle de d'Alembert. on a

$$\left|\frac{u_{n+1}}{u_n}\right| = \frac{|z|^{n+1}}{|z|^n} * \frac{n^2}{(n+1)^2} \underset{n \to +\infty}{\longrightarrow} |z| > 1$$

Donc $\sum u_n$ diverge grossièrement. Ici le domaine de convergence est donc $D=\overline{B}(0,1)$

3. $\sum_{n>1} u_n \text{ avec } u_n = \frac{z^n}{2^n n}$.

$$\left|\frac{u_{n+1}}{u_n}\right| = |z| \frac{2^n n}{2^{n+1} n + 1} \underset{n \to +\infty}{\longrightarrow} \frac{|z|}{2}.$$

Donc $\sum u_n$ converge absolument lorsque $\frac{|z|}{2} < 1 <=> |z| < 2$ et pour $|z| > 2, \sum u_n$ diverge par d'Alembert.

Si z=2, la série devient $\sum \frac{1}{n}$ qui diverge par Riemann.

Si z=-2, la série devient $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$ qui converge par le critère spécial des séries alternées.

Ainsi, $B(0,2) \leq D \leq \overline{B}(0,2)$.

Proposition 8.1: Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes, et $z_0\in\mathbb{C}$ tel que la suite $(a_n z_0^n)_{n \in \mathbb{N}}$ soit bornée. Alors

$$\forall z \in \mathbb{C}, |z| < |z_0| \Rightarrow \sum a_n z^n$$
 converge absolument.

17

Démonstration: Soit $z_0 \in \mathbb{C}$ On suppose $z_0 \neq 0$ car sinon il n'y a rien à faire. On suppose $(a_nz^n)_{n\in\mathbb{N}}$ bornée. Il existe M>0 tel que $\forall n\in\mathbb{N}, |a_nz_0^n|\leq M\Leftrightarrow |a_n|\leq \frac{M}{|z_0|}$. Soit $z \in \mathbb{C}$, $|z| < |z_0|$.

$$\forall n \in \mathbb{N}, |a_n||z^n| \leq M \frac{|z^n|}{z_0}.$$

On a majoré la série par un terme d'une série géométrique convergente. Ainsi, par comparaison, $\sum a_n z^n$ converge absolument.

Définition 8.4: On appelle rayon de convergence de la série entière $\sum a_n z^n$ le nombre

$$R \coloneqq \sup\{r \in \mathbb{R}_+ \mid \exists M \in \mathbb{R}, \forall n \in \mathbb{N}, (a_n r^n) < M\} \in \mathbb{R}_+ \cup \{+\infty\}$$

Exemples:

1. Le rayon de convergence de $\sum z^n$ est R=1.

Proposition 8.2: oit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes. Le rayon de convergence de la série entière $\sum a_n z^n$ vaut

$$R\coloneqq \sup\Bigl\{r\geq 0|a_n|r^n\underset{n\to+\infty}{\longrightarrow}0\Bigr\}$$

 $\begin{array}{l} \textit{D\'{e}monstration} \colon \text{On note } I = \big\{ r \in \mathbb{R}_+ \mid \exists M \in \mathbb{R}, \forall n \in \mathbb{N}, (a_n r^n) < M \big\}, \\ J = \sup \Big\{ r \geq 0 |a_n| r^n \underset{n \to +\infty}{\longrightarrow} 0 \Big\}. \text{ Par d\'{e}finition, } R = \sup I. \text{ On veut montrer que } R = \sup J \text{ On a } J \subset I \text{ donc } \sup J \leq R. \end{array}$

 $SI = \{0\}, I = J \text{ donc sup } I = \sup J$

Si I!= $\{0\}$, on peut poser $r \neq 0$. Soit $s \in [0, r]$,

$$|a_n s^n| = |a_n r^n| \left| \frac{s}{r} \right|^n \leq M \left| \frac{s}{r} \right|^n$$

Donc $\sum |a_n s^n|$ converge par comparaison donc $|a_n s^n| \underset{n \to +\infty}{\longrightarrow} 0$ or $s \in J$ donc $[0, r] \in J$ donc $\sup \{[0, r]\} = r \le \sup J$ donc par ordre total, $\sup J = \sup J = R$.

Remarques: Avec les notations de la preuve,

- 1. $0 \in I, 0 \in J$
- 2. $[0, R] \subset J \subset I \subset [0, R]$

Proposition 8.3 (Caractérisation du rayon de convergence): Soit $\sum a_n z^n$ une série entière et soit $R \in \mathbb{R}_+ \cup \{+\infty\}$. On a une équivalence entre les propriétés suivantes:

- 1. R est la rayon de convergence de $\sum a_n z^n$.
- 2. $\forall z \in \mathbb{C}, |z| < R \Rightarrow \sum |a_n z^n|$ converge, $|z| > R \Rightarrow \sum a_n z^n$ diverge grossièrement.

Remarque:

- 1. Si R=0, les points 1. et 2. se réduisent à $\forall z\in\mathbb{C}\setminus 0, \sum a_nz^n$ diverge grossièrement.
- 2. Si $R=+\infty$ les points 1. et 2. se réduisent à $\forall z\in\mathbb{C}, \sum a_nz^n$ converge absolument.