TERMODINÂMICA ESTATÍSTICA

CONCEITOS BÁSICOS

Permitir fazer predições de propriedades de sistemas MACROSCÓPICOS usando apenas informações de sistemas MICROSCÓPICOS

Ex:

- Calor específico;
- Constantes de equilíbrio;
- Equações de estado;
- etc...

Pressão de um gás em um reservatório:

- Resultado das colisões das moléculas com a parede;
- O somatório de muitas dessas colisões resulta em uma força (ou pressão) finita;
- Média de muitos eventos moleculares ao longo do tempo.

Utiliza-se um esquema baseado na trajetória das moléculas (velocidade e posição):

- A cada colisão, nova trajetória é calculada;
- Colisões ocorrem a cada 10⁻¹¹ s;
- Propriedades macro são obtidas com as médias (t → ∞) de propriedades micro.

- O cálculo de TODAS as médias para um número grande de moléculas (10²⁴, correspondente a 1L de gás) tornase algo inviável;
- Utiliza-se a distribuição de velocidades das moléculas;
- Determinar <u>distribuições de probabilidade</u> e valores médios das propriedades considerando todos os <u>possíveis estados</u>.

de moléculas

A

B

velocidad

- Ao conjunto dos possíveis estados é dado o nome de <u>ENSEMBLE DE ESTADO</u>
- CANÔNICO: número de moléculas, volume e temperatura fixos (NVT);
- MICRO CANÔNICO: número de moléculas, volume e energia fixos (NVE);
- **GRAND CANÔNICO**: potencial químico, volume e temperatura fixos (μ VT).

2. MICRO E MACRO ESTADOS

- **Estado macroscópico**: definido por um pequeno conjunto de parâmetros, tais como:
 - temperatura (ou energia);
 - volume;
 - numero de moléculas.
- Estado microscópico:
 - Descrito pelos vetores <u>posição</u> e <u>velocidade</u> de cada molécula:

$$(\underline{r}_1, \underline{v}_1, \underline{r}_2, \underline{v}_2, \dots, \underline{r}_n, \underline{v}_n)$$

2. MICRO E MACRO ESTADOS

Para que um micro estado seja consistente com o macro estado observado:

- Número de moléculas do micro estado deve ser o mesmo do macro estado;
- Todos os vetores posição <u>r</u>_i devem estar contidos no volume V;
- A energia calculada a partir do conceito de estados microscópicos deve ser igual àquela observada no estado macroscópico.

3. POSTULADOS DA MECÂNICA ESTATÍSTICA

Primeiro postulado:

"Todos os microestados de um sistema de volume V que tenham a <u>mesma energia</u> e <u>mesmo número de partículas</u> são igualmente prováveis"

• Segundo postulado:

"A média temporal de qualquer propriedade em um sistema macroscópico real é igual ao valor médio dessa propriedade sobre todos os microestados desse sistema, sendo cada estado ponderado com sua probabilidade de ocorrência"

4. DISTRIBUIÇÃO DE ENERGIA DE BOLTZMANN

4. DISTRIBUIÇÃO DE ENERGIA DE BOLTZMANN

(dedução no quadro)

4. DISTRIBUIÇÃO DE ENERGIA DE BOLTZMANN

$$p_i(E_{\alpha}) = \frac{e^{-\beta E_{\alpha}}}{\sum_j e^{-\beta E_j}}$$

$$Q(N, V, \beta) = \sum_{\substack{estados \\ j}} e^{-\beta E_j}$$

$$p_i(E_{\alpha}) = \frac{e^{-\beta E_{\alpha}}}{Q(N, V, \beta)}$$

onde $Q(N, V, \beta)$ é chamada de **função de partição canônica**.

5. RELAÇÃO COM PROPRIEDADES TERMODINÂMICAS

$$\overline{E} = U = \frac{\sum_{j} E_{j} e^{-\beta E_{j}}}{Q(N, V, \beta)} = \sum_{\substack{estados \\ j}} E_{j} p_{i}(E_{j})$$

$$\beta = \frac{1}{kT}$$

 $k = constante de Boltzmann (1,38064852.10^{-23} J/K);$

T = temperatura absoluta.