

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Programação III AP2 1º semestre de 2015.

Nome -

Assinatura –

Observações:

- 1. Prova sem consulta e sem uso de máquina de calcular.
- 2. Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- 3. Você pode usar lápis para responder as questões.
- 4. Ao final da prova devolva as folhas de questões e as de respostas.
- 5. Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Questão 1) (4.0 pontos)

Considere uma lista duplamente encadeada de valores inteiros. A interface das classes que implementam essa lista é dada por:

```
public class Lista {
    private No primeiro = null;
    private No ultimo = null;
    public void insereOrdenado(int valor) { ... }
    public boolean estaVazia() { ... }
    public void retiraPrimOcorrencia(int valor) { ... }
}
class No {
    int valor;
    No anterior, proximo;
    No(int valor) { ... }
}
```

Nesta questão, você deverá substituir "{ ... }" pela implementação correta dos respectivos métodos. O método insereOrdenado recebe um valor e insere um novo nó na posição que garanta ordenação crescente dos elementos da lista. O método estaVazia retorna se existem valores armazenados na lista. Finalmente, o método

retiraPrimOcorrencia remove o primeiro nó que armazene o valor passado como parâmetro de entrada. Você deve implementar, também, o construtor da classe No. Para a implementação dos métodos da classe Lista, é permitido que a lista seja percorrida no máximo uma vez.

```
RESPOSTA:
class No{
 int valor;
 No anterior, proximo;
 No(int valor){
  this.valor = valor;
  anterior = proximo = null;
 }
 public String toString(){ return valor + " "; } //TESTE
}
class Lista {
 private No primeiro = null;
 private No ultimo = null;
 public void insereOrdenado(int valor){
  No p = primeiro;
  No novo = new No(valor);
  if(p == null){
   primeiro = ultimo = novo;
   return;
  }
  while((p != null) && (p.valor <= valor)) p = p.proximo;
  if(p == null){}
   ultimo.proximo = novo;
   novo.anterior = ultimo;
   ultimo = novo;
   return;
  if(p.anterior == null){
   novo.proximo = primeiro;
   primeiro.anterior = novo;
   primeiro = novo;
```

```
return;
  }
  novo.proximo = p;
  novo.anterior = p.anterior;
  p.anterior.proximo = novo;
  p.anterior = novo;
 }
 public boolean estaVazia(){ return primeiro == null; }
 No busca(int info){
  No p = primeiro;
  while((p != null) && (p.valor != info)) p = p.proximo;
  return p;
 }
 public void retiraPrimOcorrencia(int valor){
  No p = busca(valor);
  if(p == null) return;
  if(p == primeiro) primeiro = primeiro.proximo;
  else p.anterior.proximo = p.proximo;
  if(p.proximo != null) p.proximo.anterior = p.anterior;
  else ultimo = p.anterior;
 }
 public String toString(){ //TESTE
  String resp = "";
  No p = primeiro;
  while(p != null){
   resp += p.toString();
   p = p.proximo;
  }
  return resp + "\n";
 }
}
public class Q1_AP2_2015_1 { //TESTE
 public static void main(String[] args){
  Lista I = new Lista();
  LinsereOrdenado(5);
```

```
LinsereOrdenado(1);
LinsereOrdenado(3);
LinsereOrdenado(7);
LinsereOrdenado(1);
System.out.print(I);
LretiraPrimOcorrencia(1);
System.out.print(I);
LretiraPrimOcorrencia(7);
System.out.print(I);
LretiraPrimOcorrencia(3);
System.out.print(I);
LretiraPrimOcorrencia(3);
System.out.print(I);
}
```

Questão 2) (2.0 pontos)

Escreva um programa que, no método **main**, receba do usuário um arquivo que possui uma sequência de números inteiros maiores ou iguais a zero (um em cada linha), invoque uma rotina que processe o número da vez e, por fim, exiba o resultado retornado pela rotina de processamento. O final do arquivo é marcado pela palavra **"Fim"**.

Ao receber uma informação do arquivo, o programa deve garantir que o texto seja igual a **"Fim"** ou que o texto possa ser convertido para um valor inteiro maior ou igual à zero. Caso contrário, o programa deverá alertar ao usuário que o valor informado é inválido, lançando uma exceção (classe criada por você).

O processamento de um número válido consiste em convertê-lo da base decimal para a base binária. A conversão deve ser implementada por uma função que recebe um único argumento (um número inteiro) e retorne uma instância de String com o resultado da conversão. **Não é permitido o uso de rotinas nativas da Java API para a conversão de base.**

RESPOSTA:

```
name = convertBin(num);
    System.out.println(num + " = " + name);
}
catch (NumberFormatException e) {
    System.out.println("ERRO");
} catch (IOException e) {
}
while (!(name.equals("Fim")));
}

public static String convertBin(int n) {
    int k = 0;
    String c = "";
    k = n % 2;
    if (n/2 > 0) {
        c = convertBin(n/2);
    }
    return c+k;
}

Questão 3) (4.0 pontos)
```

Considere o programa abaixo:

```
interface Figura3D {
   public double getVolume();
   public String toString();
   public boolean equals(Object obj);
class Esfera implements Figura3D {
   private double raio;
    public Esfera(double r) {
        raio = r;
   public double getRadius() {
        return raio;
   }
   public double getVolume() {
        return 4.0 * Math. PI * Math. pow(raio, 3) / 3.0;
    public boolean equals(Object obj) {
        if (obj instanceof Esfera) {
            Esfera other = (Esfera) obj;
            return raio == other.raio;
        }
        else
```

```
return false:
    }
}
public class Principal {
    public static final int MAX = 3;
        public static void main(String[] args) {
        Figura3D[] shapes = new Figura3D[MAX];
        shapes[0] = new Esfera(20);
shapes[1] = new Cubo(10);
        shapes[2] = new Cilindro(10, 20);
        for (int i = 0; i < shapes.length; i++) {</pre>
             switch(i) {
                 case 0:
                      System.out.print("\nEsta é uma esfera. Seu volume é: " +
shapes[0].getVolume());
                     break;
                 case 1:
                      System.out.print("\nEste é um cubo. Seu volume é: " +
shapes[1].getVolume());
                     break;
                 case 2:
                     System. out.print("\nEste é um cilindro. Seu volume é: " +
shapes[2].getVolume());
                     break;
            }
        }
    }
}
```

A interface Figura3D modela objetos em 3 dimensões. Logo abaixo temos a classe Esfera, a qual é um exemplo de figura 3D. Mais abaixo temos uma classe (Principal) que utiliza a classe e interface definidas.

- a) Implemente a classe Cubo utilizada na classe Principal, relembrando que um cubo é uma caixa com lados iguais. O argumento passado na construção do objeto Cubo é o tamanho do lado do cubo.
- b) Ainda na classe Principal, temos a impressão do tipo de cada objeto e o seu volume. Esta impressão utiliza o conceito de polimorfismo (sim ou não)? Se não, o que é necessário fazer para que utilize o conceito. Altere o programa de forma que este uso aconteça.

RESPOSTA:

```
class Esfera implements Figura3D {
    private double raio;
    ...
    public String toString() {
        return "Esta é uma esfera. Seu volume é: " + this.getVolume();
    }
}
```

```
class Cubo implements Figura3D {
       private double lado;
       public Cubo(int 1) {
               this.lado = 1;
       public double getArea() {
               return 6 * lado * lado;
       public double getVolume() {
               return lado * lado * lado;
       public String toString() {
               return "Esta e um cubo. Seu volume e: " + this.getVolume();
       public boolean equals(Object obj) {
               if (obj instanceof Cubo) {
                      Cubo other = (Cubo) obj;
                      return this.lado == other.lado;
               else
                      return false;
       }
}
public class AP2_2015_1_Q3 {
    public static final int MAX = 3;
        public static void main(String[] args) {
        // No lugar do for antigo
        for (Figura3D f : shapes) {
               System.out.println(f);
   }
}
```