Programação 2 _ T11

Estruturas de dados (resumo).

Análise de complexidade de algoritmos. Estratégias de concepção de algoritmos.

Rui Camacho (slides por Luís Teixeira)

MIEEC 2020/2021

ESTRUTURAS DE DADOS

- Objetivo: organizar dados de forma a que sejam úteis e acessíveis de forma fácil/rápida
- Exemplos: listas, filas, pilhas, árvores, grafos, heaps, tabelas de dispersão
- Porquê tantas?
 - Estruturas de dados diferentes suportam diferentes tipos de operações (e com diferentes desempenhos)
 - Adequadas para diferentes tarefas
- Como escolher?
 - Quantidade e previsibilidade dos dados
 - Operações pretendidas
 - Limitações (tempo ou espaço)

INSERÇÃO

- Vetor não ordenado: O(1)
- Vetor ordenado: O(N)
- Lista ligada: O(1)
- Lista ligada ordenada: O(N)
- · Árvore binária de pesquisa:
 - O(N) pior caso, O(log N) caso médio
- Árvore binária balanceada: O(log N)
- Tabela de dispersão: O(1)

RESUMO

Esteratura		Complexidade espacial			
Estrutura		/minu\			
	Acesso	Pesquisa	Inserção	Remoção	(pior caso)
Lista ligada	O(n)	O(n)	O(1)	O(1)	O(n)
Pilha	O(1)	-	O(1)	O(1)	O(n)
Fila	O(1)	-	O(1)	O(1)	O(n)
Неар	O(1)	O(log n)	O(log n)	O(log n)	O(n)
Tabela de dispersão	-	O(1) / O(n)	O(1) / O(n)	O(1) / O(n)	O(n)
Árvore binária de pesquisa	O(log n) / O(n)	O(log n) / O(n)	O(log n) / O(n)	O(log n) / O(n)	O(n)
Árvore AVL	O(log n)	O(log n)	O(log n)	O(log n)	O(n)
Árvore Red-Black	O(log n)	O(log n)	O(log n)	O(log n)	O(n)

COMPLEXIDADE DE ALGORITMOS

- Quando criamos um algoritmo, não basta que ele seja conceptualmente apto a resolver a classe do problema.
- Há algoritmos mais eficientes que outros.
- Importante ter métricas que permitam comparar eficiência e avaliar que recursos vai requerer, nomeadamente em termos de:
 - Tempo de execução
 - Espaço em memória
- Em muitos casos, melhorar um algoritmo em termos dum critério significa piorá-lo em termos do outro.

PROBLEMA DE ORDENAÇÃO

- Problema clássico para ensino de algoritmos
- Ordenar um vetor de dimensão N
- Problema que ocorre em muitas situações reais
- Por exemplo um explorador apresenta os ficheiros ordenados por nome (ou data, ou ..)
- Ou, um jogo de vídeo ordena os objetos 3D presentes na cena usando a distância ao jogador para determinar quais são visíveis (Visibility Problem)

ORDENAÇÃO POR SELEÇÃO (EXEMPLO)

Ordenar um vetor com N elementos (crescente)

(índice i varia entre 0 e N-1 e trocamos o elemento na posição i com o menor entre i e N)

índice	0	1	2	3	4	5	6	comentário
	4	3	9	6	1	7	0	inicial
i=0	0	3	9	6	1	7	4	troca 0, 4
i=1	0	1	9	6	3	7	4	troca 1, 3
i=2	0	1	3	6	9	7	4	troca 3, 9
i=3	0	1	3	4	9	7	6	troca 6, 4
i=4	0	1	3	4	6	7	9	troca 9, 6
i=5	0	1	3	4	6	7	9	terminado

DESEMPENHO

- Espaço constante -> importa avaliar tempo
- Contabilizar número de acessos ao vetor
- Selection sort
 - $T(n)=n^2+3n-4 \rightarrow n^2$
- Merge Sort
 - $T_m(n)=8n \log n \rightarrow n \log n$

SELECTION VS. MERGE

2 6 11 20 456 479	
3 14 26 21 500 511	
4 24 44 22 546 544	
5 36 64 23 594 576	
6 50 86 24 644 610	
7 66 108 25 696 643	
8 84 133 26 750 677	
9 104 158 27 806 711	
10 126 184 28 864 746	
11 150 211 29 924 781	
12 176 238 30 986 816	
13 204 266	
14 234 295	
15 266 324	
16 300 354 n T(n)	$T_{m}(n)$
17 336 385	
18 374 416 ₁₀₀ 10,296	3,684
19 414 447 1,000 1,002,996	55,262
20 456 479 10,000 100,029,996	736,827
100,000 10,000,299,996	9,210,340
1,000,000 1,000,002,999,996	110,524,084
10,000,000 100,000,029,999,996	1,289,447,652

- Usual optimizar o algoritmo em termos de tempo de execução, tendo em conta o espaço de memória disponível num sistema computacional alvo.
- Tipicamente, a análise de um algoritmo...
 - Avalia o tempo de execução:
 - No caso médio: T_{avg}(n)
 - No pior caso: T_{worst}(n)
 - Face ao tamanho dos dados de entrada (n)

- Tipicamente, quando n é baixo, os algoritmos requerem poucos recursos.
- Sendo assim, o importante é comparar as funções em termos das suas taxas de crescimento relativas.
 - Perceber o que acontece para valores elevados de n.

- Notação "Big-O"
 - Notação utilizada para classificar e comparar funções em termos das suas taxas de crescimento relativas
 - É usada em análise de complexidade de algoritmos
 - em particular para comparar o tempo de execução

Definição:Diz-se que...

T(n) = O(f(n)) se existirem constantes $c \in n_0$ tais que $T(n) \le c \times f(n)$ quando $n \ge n_0$.

• Nesta figura... g(n) = O(f(n))

TAXAS DE CRESCIMENTO TÍPICAS

Função Nome

(crescem mais lentamente)

C Constante

log n Logarítmica

 Log^2n

n Linear

 $n \log n$

n² Quadrática

n³ Cúbica

2ⁿ Exponencial

(crescem mais rapidamente)

TAXAS DE CRESCIMENTO TÍPICAS

n	O(1)	$O(\log_2 n)$	O(n)	$O(n \log_2 n)$	$O(n^2)$
10^{2}	$1 \mu \text{sec}$	$1 \mu \text{sec}$	$1 \mu \text{sec}$	$1 \mu \text{sec}$	$1 \mu \text{sec}$
10^{3}	$1 \mu \text{sec}$	$1.5 \mu\mathrm{sec}$	$10~\mu { m sec}$	$15~\mu \mathrm{sec}$	$100~\mu \mathrm{sec}$
10^{4}	$1 \mu \text{sec}$	$2 \mu \text{sec}$	$100~\mu \text{sec}$	$200~\mu { m sec}$	10 msec
10^{5}	$1 \mu \text{sec}$	$2.5~\mu { m sec}$	1 msec	2.5 msec	1 sec
10^{6}	$1 \mu \text{sec}$	$3 \mu \text{sec}$	10 msec	30 msec	1.7 min
10^{7}	$1 \mu \text{sec}$	$3.5~\mu \mathrm{sec}$	100 msec	350 msec	2.8 hr
10^{8}	$1 \mu \text{sec}$	$4 \mu \text{sec}$	1 sec	4 sec	11.7 d

n	$O(n^2)$	$O(2^n)$
100	$1 \mu \text{sec}$	$1\mu\mathrm{sec}$
110	$1.2~\mu\mathrm{sec}$	1 msec
120	$1.4~\mu \mathrm{sec}$	1 sec
130	$1.7~\mu \mathrm{sec}$	18 min
140	$2.0~\mu { m sec}$	13 d
150	$2.3~\mu\mathrm{sec}$	37 yr
160	$2.6~\mu { m sec}$	37,000 yr

PROPRIEDADES IMPORTANTES

Se tivermos:

```
-T_1(n) = O(f(n))

-T_2(n) = O(g(n))
```

...então:

```
T_1(n) + T_2(n) = max(O(f(n)), O(g(n)))

T_1(n) * T_2(n) = O(f(n)*g(n))
```

- Para simplificação da análise, considera-se que:
 - As instruções são executadas <u>sequencialmente</u>
 - Qualquer instrução requer 1 unidade de tempo
 - Não existe limite de memória

Não se consideram:

- Coeficientes constantes
- Termos de baixo grau

EXEMPLO: CÁLCULO DE $\sum_{i=1}^{n}$

```
\sum_{i=1}^{n} i^3
```

Sendo o tempo de invocação e retorno da função ignorado:

- o tempo* total é 5n+4
- pelo que a complexidade desta função é O(n)

*em unidades de tempo

SIMPLIFICAÇÃO DA ANÁLISE

- Obviamente, para algoritmos mais complexos, é impraticável fazer análises tão pormenorizadas como a anterior.
- No entanto, uma vez que usamos a notação "Big-O", existem simplificações que não afetam o resultado final.
- Existem, então, 4 regras gerais que se podem utilizar para tornar a análise mais rápida.

Regra 1

Ciclos FOR:

O tempo de execução de um ciclo FOR é, no máximo, o tempo de execução dentro do ciclo (incluindo testes) **vezes** o número de iterações.

Regra 2

Ciclos FOR embutidos:

Devem ser analisados de dentro para fora. O tempo de execução total de uma instrução dentro de um grupo de ciclos embutidos é o da instrução **vezes** o produto dos tamanhos de todos os ciclos que a contêm.

O seguinte exemplo tem tempo de execução $O(n^2)$:

```
for( i=0; i<n; i++ )
  for( j=0; j<n; j++ )
    k++;</pre>
```

Regra 3

• Instruções consecutivas:

Devem simplesmente ser adicionadas, o que significa que basta considerar a de grau maior.

O seguinte exemplo inclui tempo de execução O(n) seguido de $O(n^2)$, pelo que simplifica para $O(n^2)$:

```
for( i=0; i<n; i++)
    a[i] = 0;
for( i=0; i<n; i++ )
    for( j=0; j<n; j++ )
    a[i] += a[j] + i + j;</pre>
```

Regra 4

```
if( cond )
    ... // bloco S1: O(n)
else
    ... // bloco S2: O(n²)
```

Fluxo condicional IF/ELSE:

Deve-se considerar o tempo de execução do teste (cond), mais o tempo de execução do bloco de instruções alternativo com maior tempo de execução (S2).

- Analisar de dentro para fora é a abordagem mais adequada para a grande maioria dos casos.
 - Na presença de invocação de funções, deve-se obviamente analisar estas primeiro.
 - A análise de funções recursivas que "mascaram" simples ciclos FOR são tipicamente triviais.

```
Exemplo O(n):
unsigned int factorial( unsigned int n )
{
   if (n<=1) return 1;
   else return (n * factorial(n-1));
}</pre>
```

ESTRATÉGIAS DE CONCEPÇÃO DE ALGORITMOS

Com base em slides da autoria da Professora Maria Cristina Ribeiro

DIVISÃO E CONQUISTA

• Divisão:

resolver recursivamente problemas mais pequenos (até ao caso base)

- Conquista:
 - solução do problema original é formada com as soluções dos subproblemas
 - Há divisão quando o algoritmo tem pelo menos 2 chamadas recursivas no corpo
 - Subproblemas devem ser disjuntos

DIVISÃO E CONQUISTA

- Exemplos de algoritmos:
 - Travessia de árvores em tempo linear:
 - processar árvore esquerda
 - visitar nó
 - processar árvore direita
 - Aplicação em algoritmos de ordenação:
 - mergesort: ordenar 2 subsequências e juntá-las
 - quicksort: ordenar elementos menores e maiores que pivot, concatenar

DIVISÃO E CONQUISTA: QUICKSORT

A representação gráfica do processo de ordenação do QuickSort revela a sua estratégia de Divisão e Conquista:

DIVISÃO E CONQUISTA: QUICKSORT

```
void quickSortIter(int v[], int left, int right) {
    int i, j, tamanho = right-left+1;
    if(tamanho<2) // com tamanho 0 ou 1 esta ordenado
        return;
   else {
        int pos = rand()%tamanho; // determina pivot
        swap(&v[pos], &v[right]); // coloca pivot no fim
        i = left; j = right-1; // passo de partição
       while(1) {
           while (v[i] < v[right]) i++;
           while (v[right] < v[j]) j--;
            if (i < j) swap(&v[i], &v[j]);
           else break;
        swap(&v[i], &v[right]); // repoe pivot
        quickSortIter(v, left, i-1);
       quickSortIter(v, i+1, right);
```

DIVISÃO E CONQUISTA: QUICKSORT (MELHORADO)

```
void quickSortIter(int v[], int left, int right) {
    int i, j;
    if (right-left+1 <= 20) // se vetor pequeno
       ordenacaoInsercao(v, left, right);
    else {
        int x = median3(v, left, right); // x é o pivot
        i = left; j = right-1; // passo de partição
       while(1) {
           while (v[i] < x) i++;
           while (x < v[j]) j--;
           if (i < j) swap(&v[i], &v[j]);
           else break;
        }
        swap(&v[i], &v[right]); // repoe pivot
       quickSortIter(v, left, i-1);
       quickSortIter(v, i+1, right);
    }
```

```
/* escolha do pivot */
int median3(int v[], int left, int right)
{
   int center = (left+right) /2;
   if (v[center] < v[left])
       swap(&v[left], &v[center]);
   if (v[right] < v[left])
       swap(&v[left], &v[right]);
   if (v[right] < v[center])
       swap(&v[center], &v[right]);
   /* coloca pivot na posicao right */
   swap(&v[center], &v[right]);
   return v[right];
}</pre>
```

DIVISÃO E CONQUISTA VS. PROGRAMAÇÃO DINÂMICA

Divisão e conquista:

- problema é partido em subproblemas que se resolvem separadamente;
- solução obtida por combinação das soluções

Programação dinâmica:

- resolvem-se os problemas de pequena dimensão e guardam-se as soluções;
- solução de um problema é obtida combinando as de problemas de menor dimensão
- Divisão e conquista é top-down
- Programação dinâmica é bottom-up

PROGRAMAÇÃO DINÂMICA

- Abordagem usual em Investigação Operacional
 - "Programação" é aqui usada com o sentido de "formular restrições ao problema que tornam um método aplicável"
- Quando é aplicável a programação dinâmica:
 - Estratégia óptima para resolver um problema continua a ser óptima quando este é subproblema de um problema de maior dimensão

PROGRAMAÇÃO DINÂMICA: FIBONACCI

- Problemas expressos recursivamente
 - (podem sempre ser formulados iterativamente)

Exemplo:

Números de Fibonacci:

Ou seja:

$$F(n) = \begin{cases} 0, & \text{se } n = 0; \\ 1, & \text{se } n = 1; \\ F(n-1) + F(n-2) & \text{outros casos.} \end{cases}$$

PROGRAMAÇÃO DINÂMICA: FIBONACCI

```
/* Fibonacci RECURSIVO */
long int fib(int n) {
  if(n<=1)
    return n;
  else
    return fib(n-1) + fib(n-2);
}</pre>
```

Nota: n <= 92 (limite de representação)

```
/* Fibonacci ITERATIVO */
long int fibonacci(int n) {
   int i;;
   long int nextToLast = 0;
   long int last = 1, answer = 1;
   if(n \le 1)
      return n;
   for(i=2; i<=n; i++) {
      answer = last + nextToLast:
      nextToLast = last;
      last = answer;
   return answer;
```

PROGRAMAÇÃO DINÂMICA: FIBONACCI

Formulação recursiva: algoritmo exponencial

Formulação iterativa: algoritmo linear

Problema na formulação recursiva:

repetição de chamadas iguais

