3. Considérese la puerta lógica de la figura en la que los dos niveles lógicos 0 y 1 son implementados por V = 0V y V = 5V. Cualquiera de estos dos voltajes pueden ser introducidos por las entradas V_1 , V_2 . Se pide: a) Determinar la función lógica implementada por la puerta, especificando la salida V_0 alta (1) o baja (0), según las entradas sean altas (5V) o bajas (0V). b) Suponiendo que el voltaje de disparo o umbral de los diodos es de 0.6 V, se pide determinar el voltaje de salida en cada caso.

4. Se tiene un circuito regulador de Zener de la figura, tal que $V_z=7\,$ V y alimentado por una batería de 10 V. Se requiere que $I_L=100\,$ mA y que por el Zener pasen 20 mA. Se pide: a) Determinar el valor de R_s requerido. b) Si accidentalmente se quita la carga R_L , ¿Cuánta corriente pasará por el Zener? c) Dibujar la curva I-V del diodo Zener e indicar en ella los puntos de funcionamiento del Zener en los dos casos anteriores.

5. En el circuito de la figura tenemos V_{CC} = 9 V. Si el transistor posee un factor de ganancia en corriente β = 99, se pide: a) Calcular R_C y R_F de forma que I_C = 5 mA y V_{CE} = 5 V. b) Suponiendo que el valor de β fuera 49 ¿Cuál serían entonces los nucvos valores de I_C y V_{CE} ? (Suponer V_{BE} = 0.7 V).

6. En el transistor MOSFET de la figura con k = 0.8 mA/V², $V_{TR} = 2$ V: a) Determinar las corrientes de drenador (I_D) y fuente (I_S), así como los voltajes V_{DS} , V_{GS} y el de puerta (V_G). b) Representar esquemáticamente I_D en función de V_{DS} para $V_{GS} = 2$, 3, 4 y 5 V. Datos: $R_A = 1$ M Ω , $R_B = 0.5$ M Ω y $R_D = 1.5$ k Ω .

