introdução aos sistemas dinâmicos

edos de primeira ordem separáveis

_ 6

resolva a equação diferencial

$$x'(t) = -4x$$

procurando escrever a constante arbitrária em função do valor $x_0 = x(0)$ que x toma no instante inicial t = 0.

7.

resolva a seguinte equação diferencial, sujeita a uma condição inicial:

$$\begin{cases} x'(t) = 3x^{2} \\ x(0) = -1 \end{cases}$$

e determine o valor que a solução toma no instante t=0.192.

8

resolva a seguinte equação diferencial, sujeita a uma condição inicial:

$$\begin{cases} x'(t) = 4tx^2 \\ x(0) = 2 \end{cases}$$

e determine o valor que a solução toma no instante t=0.268.

_ 9

na figura estão desenhadas algumas soluções de uma equação diferencial ordinária de primeira ordem separável x'(t) = f(t) g(x).

- 9.1 identifique as suas soluções de tipo constante.
- 9.2 identifique o comportamento assimptótico das soluções, para os diferentes valores de $x_0 = x(0)$.

na figura estão desenhadas algumas soluções de uma equação diferencial ordinária de primeira ordem separável x'(t) = f(t) g(x). identifique as suas soluções de tipo constante.

11.

na figura estão desenhadas algumas soluções de uma equação diferencial ordinária da primeira ordem separável $x'(t)=x^2$.

a azul estão desenhadas as soluções correspondentes a escolhas de $x_0 = x(0)$ negativos, sendo visível que estas soluções não têm qualquer problema com o seu domínio (apenas está desenhada a parte para $t \ge 0$)

a roxo estão desenhadas as soluções correspondentes a escolhas de $x_{\rm o}=x(0)$ positivos.

é importante notar dois pormenores importantes: primeiro, que o domínio destas soluções termina em $-x_{\rm o}$ (embora não seja muito visível); o segundo pormenor, é a inexistência de gráficos correspondentes à outra família de soluções, ainda correspondentes a escolhas de $x_{\rm o}=x(0)$ positivos. de facto, esses gráficos não surgem, porque essas soluções não estão definidas no instante inicial t=0 (o seu domínio inicia-se em $-x_{\rm o}$)