Question 1

Rearrange data.

(needed for Q_2 and useful for histogram)

									10
0	1	1	2	2	3	4	4	5	8

- a) n = 10, i.e., 10 numbers.
- b) $\bar{x} = \frac{\sum x_i}{n} = \frac{30}{10} = 3.$
- c) Population mean symbol: μ . Value: unknown.
- d) Position of Q_2 is $\frac{n+1}{2} = \frac{11}{2} = 5.5$. So Q_2 is the average of the numbers in positions 5 and 6. $\Rightarrow Q_2 = \frac{2+3}{2} = \frac{5}{2} = 2.5.$
- e) width = $\frac{\max(x) \min(x)}{\text{# of classes}} = \frac{8 0}{3} = \frac{8}{3} = 2.67$.

Always round up the width \Rightarrow width = 3.

Starting at $0 \Rightarrow 0 - 3, 3 - 6, 6 - 9$.

Classes: 0 - 2.9, 3 - 5.9, 6 - 8.9.

Class	Freq.	R. Freq.
0 - 2.9	5	$\frac{5}{10} = 0.5$
3 - 5.9	4	$\frac{4}{10} = 0.4$
6 - 8.9	1	$\frac{1}{10} = 0.1$
Total:	n = 10	$\frac{10}{10} = 1.0$

Question 2

Rearranged data:

	x_i	x_i^2
1	0.1	0.01
2	0.2	0.04
3	0.2	0.04
4	0.4	0.16
5	0.7	0.49
6	0.7	0.49
7	0.9	0.81
8	1.0	1.00
9	1.0	1.00
10	1.4	1.96
11	1.5	2.25
12	1.6	2.56
13	2.2	4.84
14	2.3	5.29
15	3.0	9.00
16	3.0	9.00
17	3.3	10.89
18	3.4	11.56
19	4.2	17.64
20	5.4	29.16
21	5.6	31.36
22	5.7	32.49
23	6.1	37.21
24	12.9	166.41
25	14.3	204.49
\sum	81.1	580.15

a) $\bar{x} = \frac{\sum x_i}{n} = \frac{81.1}{25}$ = 3.244.

b)
$$s^2 = \frac{\sum x_i^2 - n \bar{x}^2}{n - 1}$$

$$= \frac{580.15 - 25 (3.244^2)}{25 - 1}$$

$$= \frac{580.15 - 25 (10.524)}{24}$$

$$= \frac{317.05}{24} = 13.21 \text{ hours}^2.$$

$$s = \sqrt{13.21} = 3.63$$
 hours.

- c) The population standard deviation is σ . Its value is unknown but we estimate it with s=3.63.
- d) μ is the population mean (unknown).
- e) This is numeric data \Rightarrow no \hat{p} here.

Question 3

Same data as Question 2.

a)
$$n = 25$$
.

c)
$$IQR = Q_3 - Q_1 = 4.8 - 0.8 = 4.$$

d)
$$\bar{x} = 3.244$$
 and $Q_2 = 2.2$.

Since $\bar{x} > Q_2$ the data is skewed to the right.

We saw this from the histogram in Question 5 of Lecture 1 also.

Question 4

a) Type 1: $\bar{x}_1 = \frac{17.1}{11} = 1.55$. Type 2: $\bar{x}_2 = \frac{64}{14} = 4.57$.

b) $n_1 = 11$ and $n_2 = 14$.

c) Type 1

$$\begin{array}{c|c} \textbf{Position} & \textbf{Value} \\ Q_1 & \frac{n+1}{4} = \frac{12}{4} = 3 & \textbf{0.2} \\ Q_2 & \frac{n+1}{4} \times 2 = 3(2) = 6 & \textbf{0.9} \\ Q_3 & \frac{n+1}{4} \times 3 = 3(3) = 9 & \textbf{2.3} \end{array}$$

$$IQR = Q_3 - Q_1 = 2.3 - 0.2 = 2.1.$$

 $LF = Q_1 - 1.5 IQR = 0.2 - 1.5(2.1) = -2.95.$
 $UF = Q_3 + 1.5 IQR = 2.3 + 1.5(2.1) = 5.45.$
 $\Rightarrow 5.6$ is an outlier.

Smallest non-outlier: 0.1.

Largest non-outlier: 4.2.

Type 2

$$\begin{array}{c|cccc} & \textbf{Position} & \textbf{Value} \\ Q_1 & \frac{n+1}{4} = \frac{15}{4} = 3.75 & \frac{1.4+1.6}{2} = \textbf{1.5} \\ Q_2 & \frac{n+1}{4} \times 2 = 3.75(2) = 7.5 & \frac{3.0+3.3}{2} = \textbf{3.15} \\ Q_3 & \frac{n+1}{4} \times 3 = 3.75(3) = 11.25 & \frac{5.7+6.1}{2} = \textbf{5.9} \end{array}$$

$$IQR = Q_3 - Q_1 = 5.9 - 1.5 = 4.4.$$

 $LF = Q_1 - 1.5 IQR = 1.5 - 1.5(4.4) = -5.1.$
 $UF = Q_3 + 1.5 IQR = 5.9 + 1.5(4.4) = 12.5.$
 $\Rightarrow 12.9$ and 14.3 are outliers.

Smallest non-outlier: 0.7. Largest non-outlier: 6.1.

Laptops of Type 2 clearly have a greater battery life.

- d) Group 1 outlier: 5.6. Group 2 outliers: 12.9 and 14.3.
- e) Both are skewed to the right. In both cases $\bar{x} > Q_2$ and also there are outliers in the right tail.