

planetmath.org

Math for the people, by the people.

Riemann-Stieltjes integral

 ${\bf Canonical\ name} \quad {\bf Riemann Stieltjes Integral}$

Date of creation 2013-03-22 12:51:13

Last modified on 2013-03-22 12:51:13

Owner Mathprof (13753)

Last modified by Mathprof (13753)

Numerical id 11

Author Mathprof (13753)

Entry type Definition
Classification msc 26A42
Related topic RiemannSum
Related topic IntegralSign

Defines Riemann-Stieltjes sum

Defines integrator

Let f and α be bounded, real-valued functions defined upon a closed finite interval I = [a, b] of $\mathbb{R}(a \neq b)$, $P = \{x_0, ..., x_n\}$ a partition of I, and t_i a point of the subinterval $[x_{i-1}, x_i]$. A sum of the form

$$S(P, f, \alpha) = \sum_{i=1}^{n} f(t_i)(\alpha(x_i) - \alpha(x_{i-1}))$$

is called a **Riemann-Stieltjes sum** of f with respect to α . f is said to be **Riemann Stieltjes integrable with respect to** α on I if there exists $A \in \mathbb{R}$ such that given any $\epsilon > 0$ there exists a partition P_{ϵ} of I for which, for all P finer than P_{ϵ} and for every choice of points t_i , we have

$$|S(P, f, \alpha) - A| < \epsilon$$

If such an A exists, then it is unique and is known as the **Riemann-Stieltjes integral of** f with respect to α . f is known as the integrand and α the integrator. The integral is denoted by

$$\int_a^b f d\alpha$$
 or $\int_a^b f(x) d\alpha(x)$