

Intro to Python

Benjamin Rudski

PhD Student

Quantitative Life Sciences, McGill University

"Python" and the Python logos are trademarks or registered trademarks of the Python Software Foundation

<u>Mission</u>: aims to deliver inter-disciplinary research programs and empower the use of data in health research and health care delivery

https://www.mcgill.ca/micm

About me

- BSc from McGill in Hon. CS/Bio, Minor Math
- Almost third-year PhD student in Quantitative Life Sciences (QLS)
- Research on trabecular bone structure in the Reznikov Lab, McGill Bioengineering
 - Using 3D image processing and analysis
 - Programming is an almost-daily task in my life.

https://github.com/bzrudski

Outline: (times are very approximate)

1. Module 1 – Introduction to Programming (30 minutes)

- 1. Basic Concepts and Definitions
- 2. Welcome to Python

2. Module 2 – Python Basics (1 hour)

- 1. Foundations of Python
- 2. Numbers and Comparisons
- 3. Intro to Control Flow and Loops
- 4. Exercise: Numbers and Loops

3. Module 3 – Strings (40 minutes)

- 1. String slicing
- 2. String Operations and Methods
- 3. Iteration and the for loop
- 4. Exercise: DNA transcription and mRNA processing

Outline (continued):

- 4. Module 4 Collection Types (45 minutes)
 - 1. Tuples
 - 2. Lists
 - 3. Dictionaries
 - 4. Exercise: Translation from mRNA to protein

5. Module 5 – Functions (35 minutes)

- 1. Intro to Functions
- 2. Exercise: Write a function to perform transcription and translation
- Sneak Peek: Object-Oriented Programming

6. Module 6 – Modules and Packages

- 1. Using modules
- 2. Package management

7. Where to go from here (10 minutes)

- 1. Where to go for help
- 2. Closing remarks

Module 1 Introduction to Programming

What is a computer?

Hard drive

CPU

RAM

Motherboard Graphics Card

Power Supply

- What is a computer?
 - RAM: memory store data
 - CPU: processor perform operations on data
- How do we tell it what operations to do on what data?...
- Programming!
- Program is a text file that contains instructions:
 - What operations to do
 - On what data

- What is a program? Instructions
- How do we write a program?
 - Using a programming language
- Poll: Who does the programming language help?
 - (a) The computer
 - (b) The programmer
 - (c) Nobody... it's a useless waste of time!
- Let's see why...

DNA | MRNA | Protein

Program (text file)

Executable (binary instructions)

Compilation or Interpretation

Welcome to the Python Programming Language!

- For more history:
 https://en.wikipedia.org/wiki/History_of_Py
 thon
- Introduced in 1991 by Guido van Rossum
- Features:
 - Free and Open Source
 - Interpreted
 - Object-Oriented
- https://python.org

Welcome to the Python Programming Language!

- Free and Open Source
 - Anyone can download, use, modify and distribute the Python programming language.
- Interpreted
 - Python scripts are run line-by-line
 - Can easily launch it from the command line and have access to interactive shell
- Object-Oriented
 - "Objects" collections of data and manipulations that make it easier to represent the real world

Interactive Workshop!

 That's pretty much all that will be in the slides... For the rest, we'll go to a Jupyter Notebook:

Go to Jupyter Notebook

Acknowledgements

- Thank you to MiCM for giving me this opportunity and for helping me along the way.
- Thank you to the professors from the McGill School of Computer Science for helping me along my programming journey and for inspiring me to share my programming experience with others.
- Thank you to Professor Mathieu Blanchette, whose COMP 204 course helped to introduce me to Python (back in Fall 2018).