TUTORIAL 4

FINITE AUTOMATA

DUE DATE: 19th DECEMBER 2019

- 1. Construct a state transition diagram of a DFA that accepts all strings over $\{a, b, c\}$ that begin with a, contain exactly two b's, and end with c.
- 2. Construct a state transition diagram of a DFA that accepts the given set of strings over {0, 1}:
 - a) contain the substring 00 or 11.
 - b) begin AND end with 00.
 - c) begin OR end with 00.
- 3. Construct a state transition diagram of a FSM that accepts the given set of strings over $\{a, b\}$:
 - a) contain exactly two b's.
 - b) at least one b.
 - c) odd number of a's
- 4. Suppose that a language, L, is a C programing language style comment such that $L = \{ w \mid w \text{ is a C-style comment} \}$ with input alphabet, $\Sigma = \{ a, b, c, ..., z, *, / \}$. Examples of accepted and rejected strings are shown in Table 1:

Table 1

Accepted Strings	Rejected Strings
/*abcz*/	/**
/**/	/**/bca/*aaz*/
/***/	aab/**/
/*abc*xyz*/	/*/
/*a/b*/	/ab*/

Design a DFA that accepts language, L.

5. A description of an automatic telephone answering machine is shown in Table 2. When a call arrives, the phone rings. If the phone is not picked up, then on the third ring, the machine answers. It plays a pre-recorded greeting requesting that the caller leave a message, then records the caller's message, and then automatically hangs up. If the phone is answered before the third ring, the machine does nothing.

Table 2

	States	Input		Output		
q_0	idle (nothing is	iı	incoming ringing	0	default output when there is	
	happening)		signal		nothing interesting to say	
q_1	one ring has arrived	i2	a telephone is picked	1	answer the phone and start the	
			up		greeting message	
q_2	two rings have	13	greeting message is	2	start recording the incoming	
	arrived		finish playing		message	
q ₃	playing the greeting	i4	end of message	3	recorded an incoming message	
	message		detected			
q_4	recording the	i5	no input of interest			
	message					

a) Construct a state transition table by completing table below.

	f_s					f_o				
	i_1	i_2	i_3	i_4	i_5	i_1	i_2	i_3	i_4	i_5
q_0										
q_1										
q_2										
q_3										
q_4										

b) Based on answer in (a), construct a state transition diagram for the telephone answering machine.