

$$L(x) = \frac{1}{4}(x-4)+2$$
 $L(x) = \frac{1}{4}x+1$ 

$$\sqrt{4.05} \approx L(4.05) = \frac{1}{4}(4+0.05)+1 =$$

$$= 1 + \frac{8}{4.100} + 1 = 2 + \frac{1}{80}$$

$$\frac{dy}{dx} = y'(x) = y'^{2}$$

$$\frac{d}{dx}\left(x^{2}y+\cos(y)\right)=2x\cdot y+y'\cdot x^{2}+$$

$$+\left(-\sin(y)\cdot y'\right)$$

$$\frac{d}{dx}\left(e^{xy}\right)=e^{xy}\cdot\left(y+y'\cdot x\right)$$

2xy+y1.x2-Sin(y).y1=exy(y+y1x)

 $y'(x^2 - \sin y - e^{xy} \cdot x) = e^{xy} \cdot y - 2xy$ 

y1 = exy-y-2xy X2-Sin(y) - exy.x 1. Use the linear approximation of  $f(x) = \sqrt{x}$  at x = 4 to approxmiate  $\sqrt{4.1}$  and compare your result to its approximation computed by your calculator.

$$L(x) = f'(a)(x-a) + f(a)$$

$$f'(x) = 1$$

$$f'(a) = f'(a) = 1$$

$$f'(a) = f'(a) = 1$$

$$f(a) = f'(a) = 1$$

$$f'(a) = f'(a) = 1$$

$$a=4$$
 $\sqrt{4.1} \approx L(4.1) = f(4.1-4)+2$ 
 $= 2.025$ 
By calculator:
 $\sqrt{4.5} \approx 2.02484$ 
error is 0.00016

2. Use the linear approximation to approximate the cosine of  $29^{\circ} = \frac{29}{30} \frac{\pi}{6}$  radians.

$$f(x) = cos(x)$$
  
 $cos(200) \approx ?$   
 $L(x) = -\frac{1}{2}(x - \frac{\pi}{6}) + \frac{\sqrt{3}}{2}$ 

$$L(x) = f'(a)(x-a) + f(a)$$

$$a = 30^{\circ} = \frac{T}{6}$$

$$f(a) = \cos(\frac{T}{6}) = \frac{\sqrt{3}}{2}$$

$$f'(x) = (\cos(x)) = -\sin(x)$$

$$f'(a) = -\sin(\frac{T}{6}) = -\frac{1}{2}$$

etror is

3. Find the linear approximation of 
$$f(x) = \ln(x)$$
 at  $a = 1$  and use it to approximate  $\ln(0.5)$  and  $\ln(0.9)$ . Compare your approximation with your calculator's. Sketch both the curve  $y = \ln(x)$  and

 $\ln(0.9)$ . Compare your approximation with your calculator's. Sketch both the curve  $y = \ln(x)$  and y = L(x) and label the points  $A = (0.5, \ln(0.5))$  and B = (0.5, L(0.5))

$$L(x) = f'(1)(x-1) + f(1)$$

$$f'(x) = x$$

$$f'(1) = 0$$

$$L(x) = 1 \cdot (x-1) = x-1$$

$$\ln(0.5) \approx L(0.5) = -0.5$$
  
 $\ln(0.9) \approx L(0.9) = -0.1$   
By calculator:  
 $\ln(0.5) \approx -0.6931$   
 $\ln(0.9) \approx -0.105$ 

We see that at x=0.5 we have not such a good appr. UAF Calculus I 💸 🔌 x=0,9.

error, = 0,1931



4. A tree is growing and the radius of its trunk in centimeters is  $r(t) = 2\sqrt{t}$  where t is measured in years. Use the differential to estimate the change in radius of the tree from 4 years to 4 years and



5. A coat of paint of thickness 0.05cm is being added to a nemispherical dome of radius 25m. Estanate the volume of paint needed to accomplish this task. [Challenge: will this be an underestimate or an overestimate? Thinking geometrically or thinking algebraically will both give you the same answer.]

$$Y(4) = 2.\sqrt{4} = 4$$
 cen.

6. The radius of a disc is 24cm with an error of  $\pm 0.5$ cm. Estimate the error in the area of the disc as an absolute and as a relative error.

$$- + 0.5 \text{ cm}$$

$$- - 0.5 \text{ cm}$$

$$A = T r^2$$

$$\Delta r = \pm 0.5 \text{ cm}$$

$$r = 24 \text{ cm}$$

$$\Delta A \approx \frac{dA}{dr}$$

$$\Delta A \approx \frac{dA}{dr}$$

$$\Delta A = 48\pi \cdot (\pm 0.5) \approx \pm 24\pi \text{ (cm}^2)$$

absolute error

$$\frac{\Delta A}{1} = \pm \frac{24\pi}{4} = \pm \frac{1}{24} = \pm 0.0416$$

$$\approx \pm 4\%$$

relative orror

$$A = \pi r^2$$

$$A = \pi \cdot 24^2$$