CS 260: Assignment #4 String Prefix

Due on Tuesday, November 24, 2015 $Prof.\ Hardekopf$

Chad Spensky

1 Abstraction Domain Lattice

Let our original lattice $L = (\mathbb{P}(S), \leq)$ and our abstract-domain lattice $L^{\#} = (S \cup \mathbb{P}(S+*) \cup \{\top, \bot\}, \sqsubseteq)$ where S is the set of all strings (including the empty string) where $\top = * = S$ and \bot is undefined. Let $\bot \sqsubseteq s \sqsubseteq s' \sqsubseteq \top, \forall s \in S$ where s' = x* and $\mathbf{isPrefix}(x,s)$. For example $\bot \sqsubseteq abc \sqsubseteq abc* \sqsubseteq ab* \sqsubseteq a* \sqsubseteq \top$. For connivence let x* denote the set of all strings where x is a prefix, and s denote the singleton set $\{s\}$, thus $\sqsubseteq = \subseteq$ in our lattice.

$$\alpha(x):L\to L^\#=\begin{cases} \bot & \text{if }x\text{ is }\{\}\\ \{s\} & \text{if }x\text{ is }\{\mathbf{s}\}\\ p* & \text{where }p\text{ is }\mathbf{commonPrefix}(x) \end{cases}$$

Meet $(x \in L^{\#})$

- $\bullet \perp \sqcap x = \perp, \forall x$
- $\bullet \ \ \top \sqcap x = x, \forall x$
- $x \sqcap y = x, x \cap y$

Join $(x \in L^{\#})$

- $\bullet \perp \sqcup x = x, \forall x$
- $\bullet \ \top \sqcup x = \top, \forall x$
- $x \sqcup y = \mathbf{commonPrefix}(\{x,y\}), \forall x,y \in S, x \neq y$

The lattice is infinite, but of of finite height since all strings are of finite length, therefore it **is noetherian**.

1.1 Monotone Operators

Concatenation (+) For + to be monotone the following must hold: $x + y \le x' + y' \Rightarrow \alpha(x) + \alpha(y) \sqsubseteq \alpha(x') + \alpha(y')$, where $x, y, x', y' \in \mathbb{P}(S)$ and $a \le b \Rightarrow \mathbf{isPrefix}(a, b)$ for $a, b \in S$ and $x + y \Rightarrow \{x_i y_i\} \forall x_i \in x, y_i \in y$. Similarly $x \le y \Rightarrow \mathbf{isPrefix}(x_i, y_i) \forall x_i \in x, y_i \in y$. In all cases |x| = |y| and |x'| = |y'|.

- For case where x = y =", this holds trivially.
- For |x| = |y| = 1, this holds trivially since the definitions are the same, i.e. straightforward concatenation.
- For $|x| = |y| \ge 1$ and $|x'| = |y'| \ge 1$, $\alpha(x) + \alpha(y) = \alpha(x)$, thus we need only show that $\alpha(x) \sqsubseteq \alpha(x')$. If $\alpha(x') = \top$, this is trivial. Otherwise it must be the case the $\alpha(x)$ and $\alpha(x')$ since $x + y \le x' + y'$.

(a) Concatenation (+)

Figure 1: Arithmetic Tables

Comparison (\leq) The same logic follows for \leq . For \leq to be monotone the following must hold: $x \leq u \Rightarrow \alpha(x) \vdash \alpha(u)$ where $x \neq u \in \mathbb{P}(S)$ and $x \leq u \Rightarrow \alpha(x) \vdash \alpha(u)$

following must hold: $x \leq y \Rightarrow \alpha(x) \sqsubseteq \alpha(y)$, where $x, y \in \mathbb{P}(S)$ and $x \leq y \Rightarrow$ substring $(x_i, y_i) \forall x_i \in x, y_i \in y$.

- For case where $x = y = \{\}$, this holds trivially.
- Similarly for |x| = |y| = 1, then the definitions are identical.
- For $|x| = |y| \ge 1$, If $\alpha(y) = \top$, this is trivial. Otherwise it must be the case the $\alpha(x)$ and $\alpha(x')$ since $x \le y'$.

1.2 Galois Connection

$$\gamma(\hat{x}): L^{\#} \to L = \begin{cases} \{\} & \text{if } \hat{x} \text{ is } \bot \\ s & \text{if } \hat{x} \text{ is s} \\ s* & \text{if } \hat{x} \text{ is s}^* \\ S & \text{if } \hat{x} \text{ is } \top \end{cases}$$

We must show that $\alpha(x) \sqsubseteq \hat{x} \iff x \subseteq \gamma(\hat{x})$.

$$\alpha(x) \sqsubseteq \hat{x} \Rightarrow x \subseteq \gamma(\hat{x})$$
:

- If $x = \{\}$, this holds trivially.
- If |x|=1, then either $\hat{x}\in S$, which holds trivially, or $\hat{x}=y*$, **isPrefix**(y,x), which by our definition $x\in y*\Rightarrow x\subseteq y*$
- Since $\gamma(\hat{x}) = \hat{x}$ and $x \subseteq \alpha(x)$, this must hold.

$$x \subseteq \gamma(\hat{x}) \Rightarrow \alpha(x) \sqsubseteq \hat{x}$$
:

- If $x = \{\}$, this holds trivially.
- If |x| = 1, $\alpha(x) = x$, $\gamma(\hat{x}) = \hat{x} \Rightarrow \alpha(x) \sqsubseteq \hat{x}$
- For $|x| \ge 1$, $\hat{x} = \top$ must hold. Otherwise x must be of the form y* and $x \subseteq \gamma(y*) \Rightarrow x \subseteq y* \Rightarrow \mathbf{commonPrefix}(x) = y \in \hat{x} \Rightarrow \alpha(x) \subseteq \hat{x}$

1.3 Soundness

Because a Galois connection exists, our approximation is both sound and precise.