

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

Offenlegungsschrift

DE 199 58 604 A 1

⑮ Int. Cl. 7:
B 01 J 3/02
C 08 F 2/00

DE 199 58 604 A 1

⑯ Aktenzeichen: 199 58 604.7
⑯ Anmeldetag: 15. 12. 1999
⑯ Offenlegungstag: 21. 6. 2001

⑰ Anmelder:
Targor GmbH, 55116 Mainz, DE

⑰ Erfinder:
Bidell, Wolfgang, Dr., 67112 Mutterstadt, DE;
Langhauser, Franz, Dr., 67152 Ruppertsberg, DE;
Oelze, Jürgen, 67071 Ludwigshafen, DE;
Hingmann, Roland, Dr., Sant Just Desvern, ES

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

⑯ Verfahren und Dosievorrichtung zum regelbaren Einbringen von Stoffen in Druckräume

⑯ Dosievorrichtung zum regelbaren Einbringen von Feststoffen, insbesondere Katalysatoren aus einem Vorratsbehälter (11), in Druckräume, mit einem in einem druckdichten Gehäuse (1) drehbaren Körper (2), dadurch gekennzeichnet, daß der drehbare Körper (2) innerhalb seiner begrenzenden Kontur mindestens zwei Kammern (3) bzw. (4) aufweist, welche durch eine Kammer (5) mit einem bezogen auf (3) und (4) größeren Querschnitt von einander getrennt sind, sich im wesentlichen in der Kammer (5) ein hierin frei beweglicher Körper (6) mit einem bezogen auf (3) und (4) größeren Querschnitt befindet, der die mindestens zwei Kammern (3) und (4) dicht voneinander trennt, der drehbare Körper (2) ein Kegelstumpf mit einer Steigung von 0,5 bis 10% ist, in dessen Mantelfläche ein oder mehrere, auf gleicher Umfangslinie liegende zylindrische Vertiefungen eingearbeitet sind, die bei jeder vollständigen Drehung nacheinander am Zuführungskanal (7) des Gehäuses (1) für den zu dosierenden Stoff, am Ausgang (8) in den Druckraum bzw. Reaktor (9) und vor Beendigung der vollständigen Drehung an einem aus dem Gehäuse herausführenden Entspannungskanal (10) vorbeiführbar sind.

DE 199 58 604 A 1

Beschreibung

Die Erfindung betrifft ein Verfahren und eine Dosievorrichtung zum regelbaren Einbringen von rieselfähigen bis pulverförmigen Feststoffen, insbesondere von Katalysatoren, in Druckräume, z. B. in Druckreaktoren. Die Erfindung betrifft insbesondere ein solches Verfahren und eine solche Dosievorrichtung, die für die Katalysatordosierung bei der Polymerisation von Olefinen geeignet sind.

Es sind aus DE-PS 11 75 653 und DE-AS 20 62 513 Dosievorrichtungen für pulverförmige Stoffe bekannt, mit denen gemessene Stoffmengen, insbesondere Katalysatoren, in unter Drucken zwischen etwa 5 bis 50 bar gehaltene Reaktionsräume mit Hilfe von Kolbenschiebern eingebracht werden können. Die Mengenberechnung erfolgt hierbei entweder durch in die Kolbenschieber senkrecht zu ihrer Hauptachse eingebrachte zylindrische Bohrungen oder durch Einführen des zu dosierenden Stoffes vor die Kolbenstirnfläche bei bemessenem Kolbenschieberhub während des Ausschiebens in den Druckraum.

Dosievorrichtungen der bekannten Kolbenschieberbauweise bestehen aus mehreren relativ zueinander bewegten Einzelteilen und einer Vielzahl von Dichtungsringen bzw. -manschetten dafür. Für die mit pneumatisch hin- und hergesteuerten Kolbenschiebern ausgeführte Dosievorrichtung nach DE-AS 20 62 513 sind zusätzlich fünf bis sechs in bestimmter Reihenfolge zu steuernde Ventile erforderlich. Daraus ergibt sich zwangsläufig ein hoher Wartungsaufwand und für den Einsatz in Verbindung mit kontinuierlich betriebenen Reaktoren eine erhöhte Wahrscheinlichkeit für mögliche Störungen.

Bei der Zudosierung von Katalysatoren für die Olefinpolymerisation ergibt sich das Problem, daß diese Katalysatoren bereits beim ersten Kontakt mit den zu polymerisierenden Monomeren eine Polymerisationsreaktion auslösen. Hieraus resultieren Polymerbeläge im Katalysatorvorratsgefäß und in den Dosiereinrichtungen, wobei es in extremen Fällen auch zu Verstopfungen kommen kann. Eine stabile Reaktorführung ist dann nicht mehr gewährleistet.

Aus der EP-A-0 025 137 ist eine Dosievorrichtung zum regelbaren Einbringen von rieselfähigen bis pulverförmigen Feststoffen, insbesondere Katalysatoren, in Druckräume, z. B. in Druckreaktoren, mit einem in einem Gehäuse drehbaren Körper, der innerhalb seiner begrenzenden Kontur ein oder mehrere bemessene Kammern bzw. Kavaturen zur zeitweiligen Aufnahme von Teilmengen des zu dosierenden Stoffes aufweist, bekannt. Hierbei ist der in einem druckdichten Gehäuse drehbare Körper ein Kegelstumpf mit einer Steigung von 1 bis 10%, in dessen Mantelfläche ein oder mehrere, sphärisch gerundete, auf gleicher Umfangslinie liegende Vertiefungen eingearbeitet sind, die bei jeder vollständigen Drehung nacheinander am Zuführungskanal des Gehäuses für den zu dosierenden Stoff, – am Ausschleuskanal in den Druckraum bzw. Reaktor und vor Beendigung der vollständigen Drehung an einem aus dem Gehäuse herausführenden Entspannungskanal bzw. einer Entspannungsoffnung vorbeiführbar sind.

Mit dieser Vorrichtung können aber jeweils nur geringe Feststoffmengen zudosiert werden.

In der WO 97/46599 wird die Herstellung von stereoregulären Polymeren in der Gasphase mittels ungeträgerter Metallocenkatalysatoren beschrieben. Die Katalysatoren werden hierbei in eine an Partikeln reduzierte Zone des Polymerisationsreaktors gegeben.

In der EP-A-0 596 111 wird ein Verfahren zur Dosierung eines Katalysators in ein Fluidized Bed für die Gasphasenpolymerisation von Olefinen beschrieben. Der Querschnitt des Rohres für die Katalysatorzulleitung ist in der Mitte reduziert, um eine kontinuierliche Zuführung mit Katalysator zu erreichen und Klumpenbildung zu verhindern.

Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren und eine Dosievorrichtung zum regelbaren Einbringen von Feststoffen in Druckräume bereitzustellen, welche die Dosierung von reaktiven Feststoffen ermöglicht und die Nachteile des Standes der Technik nicht aufweist.

Gegenstand der Erfindung ist somit eine Dosievorrichtung zum regelbaren Einbringen von rieselfähigen bis pulverförmigen Feststoffen, insbesondere Katalysatoren aus einem Vorratsbehälter (11), in Druckräume, mit einem in einem druckdichten Gehäuse (1) drehbaren Körper (2), wobei der drehbare Körper (2) innerhalb seiner begrenzenden Kontur mindestens zwei Kammern (3) bzw. (4) aufweist, welche durch eine Kammer (5) mit einem bezogen auf (3) und (4) größeren Querschnitt voneinander getrennt sind, sich im wesentlichen in der Kammer (5) ein hierin frei beweglicher Körper (6) mit einem bezogen auf (3) und (4) größeren Querschnitt befindet, der die mindestens zwei Kammern (3) und (4) dicht voneinander trennt, der drehbare Körper (2) ein Kegelstumpf mit einer Steigung von 0,5 bis 10% ist, in dessen Mantelfläche ein oder mehrere, auf gleicher Umfangslinie liegende zylindrische Vertiefungen eingearbeitet sind, die bei jeder vollständigen Drehung nacheinander am Zuführungskanal (7) des Gehäuses (1) für den zu dosierenden Stoff, am Ausgang (8) in den Druckraum bzw. Reaktor (9) und vor Beendigung der vollständigen Drehung an einem aus dem Gehäuse herausführenden Entspannungskanal (10) vorbeiführbar sind.

Gegenstand der Erfindung ist außerdem ein Verfahren zum Einbringen von rieselfähigen bis pulverförmigen Feststoffen, insbesondere Katalysatoren, in Druckräume von Polymerisationsreaktoren, wobei das Einbringen mittels einer Dosievorrichtung geschieht, welche einen in einem druckdichten Gehäuse (1) drehbaren Körper (2) aufweist, wobei der drehbare Körper (2) innerhalb seiner begrenzenden Kontur mindestens zwei Kammern (3) bzw. (4) aufweist, welche durch eine Kammer (5) mit einem bezogen auf (3) und (4) größeren Querschnitt voneinander getrennt sind, sich im wesentlichen in der Kammer (5) ein hierin frei beweglicher Körper (6) mit einem bezogen auf (3) und (4) größeren Querschnitt befindet, der die mindestens zwei Kammern (3) und (4) dicht voneinander trennt, der drehbare Körper (2) ein Kegelstumpf mit einer Steigung von 0,5 bis 10% ist, in dessen Mantelfläche ein oder mehrere, auf gleicher Umfangslinie liegende zylindrische Vertiefungen eingearbeitet sind, die bei jeder vollständigen Drehung nacheinander am Zuführungskanal (7) des Gehäuses (1) für den zu dosierenden Stoff, am Ausgang (8) in den Druckraum bzw. Reaktor (9) und vor Beendigung der vollständigen Drehung an einem aus dem Gehäuse herausführenden Entspannungskanal (10) vorbeiführbar sind, wobei infolge des kontinuierlichen oder diskontinuierlichen Drehens des drehbaren Körpers (2) in einem Füllschritt die Kammer (3) aus dem Vorratsbehälter (11) mit Feststoff gefüllt wird, der frei bewegliche Körper (6) sich im wesentlichen aufgrund des Füllschrittes in der Kammer (5) in Richtung des Druckraumes (9) bewegt und in einem Entleerungsschritt der in der Kammer (4) befindliche Feststoff in den Druckraum (9) überführt wird, und die Kammer (4) in einem Spülsschritt am Entspannungskanal (10) vorbeigeführt und dadurch von Monomerresten (im allgemeinen Alkenresten)

befreit wird.

Gegenstand der Erfindung ist außerdem die Verwendung dieser Dosiervorrichtung für die Dosierung von Metallocen-Katalysatoren bei der Olefinpolymerisation.

Bei der erfindungsgemäßen Dosiervorrichtung wird von einem in einem Gehäuse in stets gleichem Drehsinn bewegten Rotationskörper ausgängen, der innerhalb seiner begrenzenden Kontur zwei oder mehrere bemessene Kammern zur zeitweiligen Aufnahme von Teilmengen des zu dosierenden Stoffes aufweist.

Im einzelnen zeichnet sich die Erfindung dadurch aus, daß der in einem druckdichten Gehäuse drehbare Körper ein Kegelstumpf mit einer Steigung von 1 bis 10% ist, in dessen Mantelfläche ein oder mehrere, auf gleicher Umfangslinie liegende zylindrische Vertiefungen eingearbeitet sind, die bei jeder vollständigen Drehung nacheinander am Zuführungs-kanal des Gehäuses für den zu dosierenden Stoff, am Ausgangskanal in den Druckraum bzw. Reaktor und vor Beendigung der vollständigen Drehung an einem aus dem Gehäuse herausführenden Entspannungskanal, bzw. einer Entspannungsöffnung vorbeiführbar sind.

Im Rahmen der Erfindung ist es möglich, zum Dosieren des Feststoffes den kegelstumpfförmigen, gleichsinnig drehbaren Körper mittels eines regelbaren Antriebes entweder eine kontinuierliche Bewegung oder eine schrittweise Bewe-gung ausführen zu lassen.

Anhand der Zeichnung, die stark vereinfacht einen Querschnitt durch das mit mehreren Anschlüssen versehene Ge-häuse, den drehbaren Körper und die Dichtung wiedergibt, ist die erfindungsgemäße Dosiervorrichtung nachfolgend näher beschrieben.

Das geschlossene Gehäuse (1) der Dosiervorrichtung verbindet den im allgemeinen unter Druck gehaltenen oberen Vorratsbehälter (11) mittels des Zuführungskanals (7) für den zu dosierenden Stoff und den unteren Ausgang (8) zum Druckraum bzw. Reaktor (9) hin. Das Gehäuse (1) ist entweder konisch ausgebildet oder im Innern konisch gebohrt und nimmt einen mit entsprechender Steigung konisch ausgeführten drehbaren Körper (2) ähnlich wie ein konisches Hahn-küken in sich auf. Die Steigung des drehbaren Körpers (2) kann 0,5 bis 10% betragen. Zur Abdichtung des Gehäuses (1) gegenüber dem darin drehbaren Körper (2) sowie zur Verminderung der Reibung an den Mantelflächen ist vorzugsweise eine Auskleidung des Gehäuses mit einem nichtmetallischen Werkstoff vorgesehen, der sich gegenüber dem zu dosieren-den Stoff inert verhält. Zur druckdichten Anpressung der Mantelflächen ist der Körper (2) gegenüber dem Gehäuse (1) in Achsrichtung im allgemeinen nachspannbar.

Zur Bemessung des aus dem Vorratsbehälter (11) in den Druckraum (9) bei jeder vollständigen Drehung des Körpers (2) zu überführenden Feststoffs sind in die Mantelfläche des Körpers (2) zylindrische Vertiefungen eingearbeitet, deren flächenhafte Ausdehnung im allgemeinen etwa dem Querschnitt des als Rohrstützen ausgeführten Zuführungskanals (7) und des gegenüberliegenden Ausgangs (8) entspricht, wobei das vorbestimmte Volumen jeder zylindrischen Vertiefung durch das vorbestimmte Tiefmaß und das Volumen der Kammer (5) erhalten wird.

Zum quasikontinuierlichen regelbaren Einführen von Feststoffmengen in einen Druckraum ist der drehbare Körper (2) im allgemeinen an einer Stirnseite mit einer druckfest verpackten Antriebswelle versehen, an die ein in der Zeichnung nicht dargestellter motorischer Antrieb gekuppelt ist. Die Regelung erfolgt dann durch Ändern der Drehzahl dieses An-triebes. Die Dosierung von vorbestimmten Feststoffmengen durch Überführen aus dem Vorratsbehälter (11) in den Druckraum (9) kann sowohl durch eine kontinuierliche Bewegung des drehbaren Körpers (2) erfolgen, als auch durch schrittweises Drehen mit zwischengeschalteten kurzzeitigen Ruhelagen in den Füll- und Entleerungspositionen der zy-lindrischen Vertiefungen nach Maßgabe der gegenseitigen Winkellagen von Zuführungskanal (7), Ausgang (8) und Ent-spannungskanal (10).

Für einen Einsatz der erfindungsgemäßen Dosiervorrichtung zum geregelten Einbringen eines pulvelförmigen Kata-lysators in einen Druckreaktor, z. B. in einen solchen für die Gasphasenpolymerisation von Olefinen, sind gegebenenfalls weitere bauliche Mittel bzw. verfahrenstechnische Maßnahmen erforderlich. Der Vorratsbehälter (11) wird dann gegebenenfalls geschlossen ausgeführt und der Katalysator zusammen mit einem Inertgas eingebracht. Der Aufbau eines zu großen Druckes im Vorratsbehälter (11) ist jedoch zu vermeiden, da nur geringe Mengen von Inertgasen in den Reaktor gelangen dürfen. Andererseits darf der Katalysatorvorrat auch nicht mit dem zu polymerisierenden Alken in Berührung kommen. Die Vertiefungen im drehbaren Körper (2) sind in diesem Fall mit verhältnismäßig kleinem Volumen zu be-messen, da der Katalysator in möglichst kleinen Portionen in den unter einem Druck von vorzugsweise zwischen 5 und 50 bar gehaltenen Reaktor eingetragen werden soll. Sofern gemäß der schematischen Zeichnung der drehbare Körper (2) im Uhrzeigersinn bewegt wird, ist eine zwischen der Ausschleußposition und der Füllposition des Katalysators angeord-nete Entspannungsöffnung bzw. ein Entspannungskanal (10) zwingend erforderlich, da andernfalls Alken aus dem Re-aktor in geringen Mengen bis in den Katalysator-Vorratsraum geschleppt wird. Falls erforderlich, kann jede zylindrische Vertiefung durch die Entspannungsöffnung (10) hindurch mit einem Spülgas aus der Leitung (14), beispielsweise Stick-stoff, ausgespült werden. Die Entfernung von Monomeren und ggf. Spülgas erfolgt dann durch den Abluft-Kanal (15). In den Ausgangskanal (8) kann ferner von der Seite her eine Spülleitung (13) eingefügt sein, deren inneres freies Ende ge-gen jede zylindrische Kammer (3) bzw. (4) gerichtet ist, die kontinuierlich oder schrittweise am Ausgangskanal vorbei-geföhrt wird. Der gerichtete Strahl des eingesetzten Spülmittels, z. B. Stickstoff, gasförmiges Ethylen, oder Propylen, be-wirkt dann sowohl die vollständige Entleerung jeder Kammer (3) bis (4) als auch eine kontinuierliche Spülung des Aus-gangskanals (8) mit dem zu polymerisierenden Einsatzstoff. Die Spülleitung (13) kann mit einem Doppelmantel für Kühlung bzw. Heizung, im allgemeinen für Temperaturen von -40 bis +40°C, versehen sein.

Im erfindungsgemäßen Verfahren kann der drehbare Körper (2) kontinuierlich oder diskontinuierlich gedreht werden. Vorzugsweise wird der drehbare Körper (2) diskontinuierlich mit Haltezeiten nach $n \cdot 90^\circ$ gedreht, wobei n 1, 2 oder 3, vorzugsweise 1 ist. Die Haltezeit beträgt im allgemeinen 0,1 bis 100 Sekunden, vorzugsweise 0,1 bis 20 und besonders bevorzugt 0,5 bis 5 Sekunden. In einer besonders bevorzugten Ausführungsform der Erfindung ist die Haltezeit in der Dosierstellung, t_{dos} , kürzer als die Haltezeit in der Ausspülstellung, t_{rin} . Der drehbare Körper wird im allgemeinen mit einer Geschwindigkeit von 2 bis 500 Umdrehungen/h gedreht. Je größer das zu dosierende Volumen ist, desto langsamer wird im allgemeinen die Vorrichtung gedreht.

Erfindungsgemäß einzusetzende Feststoffe sind rieselfähige bis pulvelförmige Feststoffe, in Reinform oder Suspen-

DE 199 58 604 A 1

sion und sowohl mit oder ohne Zusatzstoffe.

Die zu dosierenden Volumina betragen im allgemeinen zwischen 0,1 bis 500 ml, vorzugsweise von 0,1 bis 10 ml.

Im erfindungsgemäßen Verfahren ist der Druck P1 im Vorratsgefäß (11) für den zu dosierenden Feststoff im allgemeinen größer als der Druck P2 im Druckbehälter (9). Der Druckunterschied zwischen dem Vorratsbehälter (11) und dem Druckraum (9) beträgt vorzugsweise 0,1 bis 10 bar.

Die Kammer (5) weist einen bezogen auf die Kammern (3) und (4) größeren Querschnitt auf. Dies bedeutet, daß der Querschnitt der Kammern (3) und (4) sich mit zunehmender Entfernung von der Kammer (5) zumindest auf einem Teilstück derart verringert, daß er kleiner als der größte Querschnitt des frei beweglichen Körpers (6) ist. Der frei bewegliche Körper (6) befindet sich im wesentlichen in Kammer (5). Dies bedeutet, daß ein Teil des im allgemeinen abgerundeten beweglichen Körpers (6) in die Kammer (3) bzw. (4) hineinragen kann.

Der frei bewegliche Körper (6) hat vorzugsweise die Form einer Kugel oder die eines Zylinders, dessen beiden Enden in Kegelstümpfe auslaufen. Die Größe des frei beweglichen Körpers (6) kann in weiten Grenzen variieren. Im allgemeinen wird eine Kugel mit einem Durchmesser im Bereich von 0,1 bis 10 cm, vorzugsweise im Bereich von 0,2 bis 5 cm verwendet.

In einer bevorzugten Ausführungsform befinden sich Zuführungskanal (7) und Ausgang (8) auf entgegengesetzten Seiten des drehbaren Körpers (2).

Bevorzugt befindet sich der Entspannungskanal (10) um 90° versetzt zum Zuführungskanal (7) und Ausgang (8).

Mittels der erfindungsgemäßen Vorrichtung bzw. im erfindungsgemäßen Verfahren dosierbare Stoffe sind beispielsweise Katalysatoren, Antistatika, Silane, Diether, Metallalkyle (z. B. Trialkylaluminium). Besonders vorteilhaft werden reaktive, insbesondere polymerisationsaktive Stoffe wie Katalysatoren eingesetzt, obwohl auch unreaktive Stoffe vorteilhaft zudosiert werden können. Katalysatoren im Sinne der Erfindung sind multi-site und single-site Katalysatorsysteme, insbesondere Ziegler-Natta und Metallocen-Katalysatoren. Vorzugsweise werden Katalysatoren und besonders bevorzugt Metallocenkatalysatoren eingesetzt. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden daher Metallocenkatalysatoren der Formel (I) eingesetzt,

in der die Substituenten und Indizes folgende Bedeutung haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal oder Chrom sowie Elemente der III. Nebengruppe des Periodensystems und der Lanthanoiden,

X Fluor, Chlor, Brom, Iod, Wasserstoff, C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, -OR⁶ oder -NR⁶R⁷, n 1, 2 oder 3, wobei n der Wertigkeit von M minus der Zahl 2 entspricht, wobei

R⁶ und R⁷ C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest bedeuten und

die Reste X gleich oder verschieden sind, R¹ bis R⁵ Wasserstoff, C₁-C₁₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits durch C₁-C₁₀-Alkyl substituiert sein kann, C₆-C₁₅-Aryl oder Arylalkyl, wobei auch zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende gesättigte oder ungesättigte cyclische Gruppen stehen können, oder Si(R⁸)₃ mit

R⁸ C₁-C₁₀-Alkyl, C₃-C₁₀-Cycloalkyl oder C₆-C₁₅-Aryl sein kann und

Z für X oder

steht,

wobei die Reste

R⁹ bis R¹³ Wasserstoff, C₁-C₁₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits durch C₁-C₁₀-Alkyl substituiert sein kann, C₆-C₁₅-Aryl oder Arylalkyl bedeuten und wobei auch zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende gesättigte oder ungesättigte cyclische Gruppen stehen können, oder Si(R¹⁴)₃ mit

R¹⁴ C₁-C₁₀-Alkyl, C₃-C₁₀-Cycloalkyl oder C₆-C₁₅-Aryl bedeuten,

oder wobei die Reste R⁴ und Z gemeinsam eine Gruppierung -R¹⁵-A-bilden, in der R¹⁵

5

10

15

=BR¹⁶, =AlR¹⁶, -Ge-, -Sn-, -O-, -S-, =NR¹⁶, =CO, =PR¹⁶ oder =P(O)R¹⁶ ist,
wobei

R¹⁶, R¹⁷ und R¹⁸ gleich oder verschieden sind und jeweils ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Alkylgruppe, eine C₁-C₁₀-Fluoralkylgruppe, eine C₆-C₁₀-Fluorarylgruppe, eine C₆-C₁₀-Arylgruppe, eine C₁-C₁₀-Alkoxygruppe, eine C₂-C₁₀-Alkenylgruppe, eine C₇-C₄₀-Arylalkylgruppe, eine C₈-C₄₀-Arylalkenylgruppe oder eine C₇-C₄₀-Alkylarylgruppe bedeuten oder wobei zwei benachbarte Reste jeweils mit den sie verbindenden Atomen einen 4 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden, und

20

M¹ Silicium, Germanium oder Zinn ist,
A -O-, -S-, > NR¹⁹ oder > PR¹⁹ bedeuten,
mit

25

R¹⁹ C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, C₃-C₁₀-Cycloalkyl, C₇-C₁₈-Alkylaryl oder Si(R²⁰)₃,

R²⁰ Wasserstoff, C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, das seinerseits mit C₁-C₄-Alkylgruppen substituiert sein kann oder C₃-C₁₀-Cycloalkyl

30

oder wobei die Reste R⁴ und R¹² gemeinsam eine Gruppierung -R¹⁵-bilden.

Bevorzugt sind die Reste X in der allgemeinen Formel (I) gleich.

Von den Metallocenkomplexen der allgemeinen Formel (I) sind

35

40

45

50

55

60

65

bevorzugt.

Von den Verbindungen der Formel (Ia) sind insbesondere diejenigen bevorzugt, in denen M Titan, Zirkonium oder Hafnium,

60 X Chlor, C₁-C₄-Alkyl oder Phenyl,

n die Zahl 2 und

R¹ bis R⁵ Wasserstoff oder C₁-C₄-Alkyl bedeuten.

Von den Verbindungen der Formel (Ib) sind als bevorzugt diejenigen zu nennen, bei denen

M für Titan, Zirkonium oder Hafnium steht,

65 X Chlor, C₁-Alkyl oder Phenyl,

n die Zahl 2,

R¹ bis R⁵ Wasserstoff, C₁-C₄-Alkyl oder Si(R⁸)₃ und

R⁹ bis R¹³ Wasserstoff, C₁-C₄-Alkyl oder Si(R¹⁴)₃ bedeuten.

DE 199 58 604 A 1

Insbesondere sind die Verbindungen der Formel (Ib) geeignet, in denen die Cyclopentadienylreste gleich sind.

Beispiele für besonders geeignete Verbindungen sind u. a.:

Bis(cyclopentadienyl)zirkoniumdichlorid,
 Bis(pentamethylcyclopentadienyl)zirkoniumdichlorid,
 Bis(methylcyclopentadienyl)zirkoniumdichlorid,
 Bis(ethylcyclopentadienyl)zirkoniumdichlorid,
 Bis(n-butylcyclopentadienyl)zirkoniumdichlorid und
 Bis(trimethylsilylcyclopentadienyl)zirkoniumdichlorid
 sowie die entsprechenden Dimethylzirkoniumverbindungen.

5

Von den Verbindungen der Formel (Ic) sind diejenigen besonders geeignet, in denen

10

R^1 und R^9 gleich sind und für Wasserstoff oder C_1 - C_{10} -Alkylgruppen stehen,
 R^5 und R^{13} gleich sind und für Wasserstoff, eine Methyl-, Ethyl-, iso-Propyl- oder tert.-Butylgruppe stehen,
 R^3 und R^{11} C_1 - C_4 -Alkyl und
 R^2 und R^{10} Wasserstoff bedeuten

15

oder
 zwei benachbarte Reste R^2 und R^3 sowie R^{10} und R^{11} gemeinsam für 4 bis 12 C-Atome aufweisende gesättigte oder ungesättigte cyclische Gruppen stehen,
 R^{15} für

20

25

steht,

M für Titan, Zirkonium oder Hafnium und

30

X für Chlor, C_1 - C_4 -Alkyl oder Phenyl stehen.

Beispiele für besonders geeignete Komplexverbindungen sind u. a.

Dimethylsilandiylbis(cyclopentadienyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(indenyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(tetrahydroindenyl)zirkoniumdichlorid,
 Ethylenbis(cyclopentadienyl)zirkoniumdichlorid,
 Ethylenbis(indenyl)zirkoniumdichlorid,
 Ethylenbis(tetrahydroindenyl)zirkoniumdichlorid,
 Tetramethylethylen-9-fluorenylcyclopentadienylzirkoniumdichlorid,
 Dimethylsilandiylbis(3-tert.butyl-5-methylcyclopentadienyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(3-tert.butyl-5-ethylcyclopentadienyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(2-methylindenyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(2-isopropylindenyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(2-tert.butylindenyl)zirkoniumdichlorid,
 Diethylsilandiylbis(2-methylindenyl)zirkoniumdibromid,
 Dimethylsilandiylbis(3-methyl-5-methylcyclopentadienyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(3-ethyl-5-isopropylcyclopentadienyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(2-ethylindenyl)zirkoniumdichlorid,
 Dimethylsilandiylbis[3,3'-(2-methylbenzindeny)]zirkoniumdichlorid,
 Dimethylsilandiylbis[3,3'-(2-ethylbenzindeny)]zirkoniumdichlorid,
 Methylphenylsilandiylbis[3,3'-(2-ethylbenzindeny)]zirkoniumdichlorid,
 Methylphenylsilandiylbis[3,3'-(2-methylbenzindeny)]zirkoniumdichlorid,
 Diphenylsilandiylbis[3,3'-(2-ethylbenzindeny)]zirkoniumdichlorid,
 Diphenylsilandiylbis[3,3'-(2-methylbenzindeny)]zirkoniumdichlorid, und
 Diphenylsilandiylbis(2-methylindenyl)hafniumdichlorid
 sowie die entsprechenden Dimethylzirkoniumverbindungen.

40

45

50

55

Weitere Beispiele für geeignete Komplexverbindungen sind u. a.

Dimethylsilandiylbis(2-methyl-4-phenylindenyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(2-methyl-4-(p-tert.butylphenyl)indenyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(2-methyl-4-naphthylindenyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(2-methyl-4-isopropylindenyl)zirkoniumdichlorid und
 Dimethylsilandiylbis(2-methyl-4,6-diisopropylindenyl)zirkoniumdichlorid sowie die entsprechenden Dimethylzirkoni-
 umverbindungen.

60

65

Bei den Verbindungen der allgemeinen Formel (Id) sind besonders geeignet diejenigen, in denen

M für Titan oder Zirkonium,

X für Chlor, C_1 - C_4 -Alkyl oder Phenyl stehen.

R^{15} für

10 steht,
A für -O-, -S-, > NR¹⁹
und
R¹ bis R³ und R⁵ für Wasserstoff, C₁-C₁₀-Alkyl, C₃-C₁₀-Cycloalkyl, C₆-C₁₅-Aryl oder Si(R⁸)₃ stehen, oder wobei zwei benachbarte Reste für 4 bis 12 C-Atome aufweisende cyclische Gruppen stehen.

15 Die Synthese derartiger Komplexverbindungen kann nach an sich bekannten Methoden erfolgen, wobei die Umsetzung der entsprechend substituierten, cyclischen Kohlenwasserstoffanionen mit Halogeniden von Titan, Zirkonium, Hafnium, Vanadium, Niob oder Tantal, bevorzugt ist.

Beispiele für entsprechende Herstellungsverfahren sind u. a. im Journal of Organometallic Chemistry, 369 (1989), 359-370 beschrieben.

20 Erfindungsgemäß können auch Mischungen verschiedener Metallocenkomplexe eingesetzt werden.

Die erfindungsgemäß einzuschätzenden Katalysatoren können in Form geträgerter Übergangsmetallkatalysatoren eingesetzt werden. Als Trägermaterial für solche Übergangsmetallkatalysatoren werden üblicherweise vernetzte Polymere oder anorganische Trägermaterialien, wie beispielsweise Kieselgel eingesetzt. Solche geträgerten Katalysatoren werden beispielsweise in WO 94/28034, in EP-A 295 312 sowie in WO 98/01481 beschrieben.

25 Außerdem können die erfindungsgemäß eingesetzten Trägerkatalysatoren zur Olefinpolymerisation mindestens eine metalloceniumionenbildende Verbindung enthalten. Geeignete metalloceniumionenbildende Verbindungen sind beispielsweise starke, neutrale Lewissäuren, ionische Verbindungen mit lewissauren Kationen oder ionische Verbindungen mit Brönsted-Säuren als Kationen.

Als starke, neutrale Lewissäuren sind Verbindungen der allgemeinen Formel (II)

30 M²X¹X²X³ (II)

bevorzugt, in der

M² ein Element der III. Hauptgruppe des Periodensystems bedeutet, insbesondere B, Al oder Ga, vorzugsweise B, X¹, X² und X³ für Wasserstoff, C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, Alkylaryl, Arylalkyl, Halogenalkyl oder Halogenaryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atome im Arylrest oder Fluor, Chlor, Brom oder Jod stehen, insbesondere für Halogenaryle, vorzugsweise für Pentafluorphenyl.

Besonders bevorzugt sind Verbindungen der allgemeinen Formel (II), in der X¹, X² und X³ gleich sind, vorzugsweise Tris(pentafluorphenyl)boran.

40 Als ionische Verbindungen mit lewissauren Kationen sind Verbindungen der allgemeinen Formel (III)

[(Y^{a+})Q₁Q₂. . . Q_z]^{d+} (III)

geeignet, in denen

45 Y ein Element der I. bis VI. Hauptgruppe oder der I. bis VIII. Nebengruppe des Periodensystems bedeutet, Q₁ bis Q_z für einfach negativ geladene Reste wie C₁-C₂₈-Alkyl, C₆-C₁₅-Aryl, Alkylaryl, Arylalkyl, Halogenalkyl, Halogenaryl mit jeweils 6 bis 20 C-Atomen im Aryl- und 1 bis 28 C-Atome im Alkylrest, C₃-C₁₀-Cycloalkyl, welches gegebenenfalls mit C₁-C₁₀-Alkylgruppen substituiert sein kann, Halogen, C₁-C₂₈-Alkoxy, C₆-C₁₅-Aryloxy, Silyl- oder Mercaptylgruppen

50 a für ganze Zahlen von 1 bis 6 und

z für ganze Zahlen von 0 bis 5 steht,

d der Differenz a - z entspricht, wobei d jedoch größer oder gleich 1 ist.

Besonders geeignet sind Carboniumkationen, Oxoniumkationen und Sulfoniumkationen sowie kationische Übergangsmetallkomplexe. Insbesondere sind das Triphenylmethylkation, das Silberkation und das 1,1'-Dimethylferrocenylkation zu nennen. Bevorzugt besitzen sie nicht koordinierende Gegenionen, insbesondere Borverbindungen, wie sie auch in der WO 91/09882 genannt werden, bevorzugt Tetrakis(pentafluorphenyl)borat.

Ionische Verbindungen mit Brönsted-Säuren als Kationen und vorzugsweise ebenfalls nicht koordinierende Gegenionen sind in der WO 91/09882 genannt, bevorzugtes Kation ist das N,N-Dimethylanilinium-Kation.

Die Menge an starken, neutralen Lewissäuren, ionischen Verbindungen mit lewissauren Kationen oder ionischen Verbindungen mit Brönsted-Säuren als Kationen beträgt bevorzugt 0,1 bis 10 Äquivalente, bezogen auf den Metallocenkomplex.

Besonders geeignet als metalloceniumionenbildende Verbindung sind offenkettige oder cyclische Alumoxanverbindungen der allgemeinen Formeln (IV) oder (V)

wobei R^{20} eine C_1-C_{10} -Alkylgruppe bedeutet, bevorzugt eine Methyl- oder Ethylgruppe, und m für eine ganze Zahl von 5 bis 30, bevorzugt 10 bis 25 steht.

Die Herstellung dieser oligomeren Alumoxanverbindungen erfolgt üblicherweise durch Umsetzung einer Lösung von Trialkylaluminium mit Wasser und ist u. a. in der EP-A 284 708 und der US-A 4 794 096 beschrieben.

In der Regel liegen die dabei erhaltenen oligomeren Alumoxanverbindungen als Gemische unterschiedlich langer, sowohl linearer als auch cyclischer Kettenmoleküle vor, so daß m als Mittelwert anzusehen ist. Die Alumoxanverbindungen können auch im Gemisch mit anderen Metallalkylen, bevorzugt mit Aluminiumalkylen vorliegen.

Weiterhin können anstelle der Alumoxanverbindungen der allgemeinen Formeln (IV) oder (V) Aryloxyalumoxane, wie in der US-A 5 391 793 beschrieben, Aminoaluminoxane, wie in der US-A 5 371 260 beschrieben, Aminoaluminoxanhydrochloride, wie in der EP-A 633 264 beschrieben, Siloxyaluminoxane, wie in der EP-A 621 279 beschrieben, oder Mischungen daraus eingesetzt werden.

Die erfundungsgemäßen Trägerkatalysatoren zur Olefinpolymerisation können als weitere Komponente zusätzlich noch eine oder mehrere Metallverbindungen der allgemeinen Formel (VI)

in der

M^3 ein Alkali-, ein Erdalkalimetall oder ein Metall der III. Hauptgruppe des Periodensystems, d. h. Bor, Aluminium, Gallium, Indium oder Thallium bedeutet,

R^{21} Wasserstoff, C_1-C_{10} -Alkyl, C_6-C_{15} -Aryl, Alkylaryl oder Arylalkyl mit jeweils 1 bis 10 C-Atom im Alkylrest und 6 bis 20 C-Atomen im Arylrest,

R^{22} und R^{23} Wasserstoff, Halogen, C_1-C_{10} -Alkyl, C_6-C_{15} -Aryl, Alkylaryl, Arylalkyl oder Alkoxy mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest,

r eine ganze Zahl von 1 bis 3

und

s und t ganze Zahlen von 0 bis 2 bedeuten, wobei die Summe $r + s + t$ der Wertigkeit von M^3 entspricht, enthalten.

Von den Metallverbindungen der allgemeinen Formel (X) sind diejenigen bevorzugt, in denen

M^3 Lithium, Magnesium oder Aluminium bedeutet und

R^{22} und R^{23} für C_1-C_{10} -Alkyl stehen.

Besonders bevorzugte Metallverbindungen der Formel (VI) sind n-Butyl-Lithium, n-Butyl-n-octyl-Magnesium, n-Butyl-n-heptyl-Magnesium, Tri-n-hexyl-aluminium, Tri-iso-butyl-aluminium, Triethylaluminium und Trimethylaluminium. Wenn eine solche Metallverbindung eingesetzt wird, ist sie bevorzugt in einer solchen Menge im Katalysatorsystem enthalten, daß das molare Verhältnis von M^3 aus Formel (VI) zu Übergangsmetall M aus Formel (I) von 800 : 1 bis 1 : 1, insbesondere 500 : 1 bis 50 : 1, beträgt.

Im erfundungsgemäßen Verfahren kann ein Antistatikum zudosiert werden. Generell können alle Antistatika, die für Polymerisationen geeignet sind, eingesetzt werden. Beispielsweise seien Salzgemische aus Calciumsalzen der Mediansäure und Chromsalzen der N-Stearylantranilsäure genannt, wie in DE-A 35 43 360 beschrieben. Geeignete Antistatika sind auch C_{12} -bis C_{22} -Fettsäureseifen von Alkali- oder Erdalkalimetallen, Salze von Sulfonsäureestern mit der allgemeinen Formel $(RR')-CHOSO_3Mc$, Ester von Polyethylenglykolen mit Fettsäuren, Polyoxyethylenalkylether usw. Eine Übersicht über Antistatika ist auch in der EP-A 107 127 gegeben.

Weiterhin kann als Antistatikum eine Mischung aus einem Metallsalz der Mediansäure, einem Metallsalz der Anthranilsäure und einem Polyamin eingesetzt werden, wie in der EP-A 636 636 beschrieben.

Kommerziell erhältliche Produkte wie Stadis® 450 der Fa. Du Pont, eine Mischung aus Toluol, Isopropanol, Dodecylbenzolsulfosäure, einem Polyamin, einem Copolymer aus Dcc-1-en und SO_2 sowie Dcc-1-en oder ASA-3 der Fa. Shell können ebenfalls verwendet werden.

Vorzugsweise wird das Antistatikum in großtechnischen Verfahren als Feststoff oder ansonsten als Lösung oder Suspension eingesetzt. Im besonders bevorzugten Fall von Stadis® 450 werden bevorzugt 1 bis 90 Gew.-% dieser Lösung, vorzugsweise 5 bis 50 Gew.-%, bezogen auf die Masse des eingesetzten Trägerkatalysators (Träger, Metallocenkomplex und metalloceniumionenbildende Verbindung) verwendet. Die benötigten Mengen an Antistatikum können jedoch, je nach Art des eingesetzten Antistatikums, in weiten Bereichen schwanken.

Im erfundungsgemäßen Verfahren können dem für die Spülung verwendeten Gas oder Flüssigkeit in kleinen Mengen Katalysatorgifte beigefügt sein, um die Reaktivität der Katalysatoren gezielt zu reduzieren. Dies ist insbesondere bei sehr reaktiven Metallocenkatalysatoren vorteilhaft der Fall. In einer bevorzugten Ausführungsform des erfundungsgemäßen Verfahrens wird der Katalysator als Feststoff oder in Suspension mit oder ohne Zusatzstoffe aus dem Vorratsgefäß mit

DE 199 58 604 A 1

Hilfe der erfundungsgemäßen Dosiereinrichtung von einem kontinuierlich fließenden Monomerstrom, der kleine Mengen Katalysatorgifte enthält, in den Reaktor eingespült. In Ergänzung oder alternativ hierzu kann der zur Spülung verwendete Monomerstrom gekühlt werden.

- Geeignete, vorzugsweise gemäß der EP-A-0 560 035 selektiv kleinere Katalysatorpartikel deaktivierende chemische Verbindungen sind Polyalkohole mit Ketten mit mindestens vier C-Atomen, Hydroxyester mit mindestens zwei freien Hydroxylgruppen, N-Alkyldiethanolamine und Polyepoxidat-Öle.
- Damit sich der die mindestens zwei Kammer abtrennende bewegliche Körper (6) unbehindert bewegen kann, ist es zweckmäßig, daß der Körper (6) und druckdichtes Gehäuse (1) mit einer Dichtung aus metallischen, keramischen oder polymeren Werkstoffen (z. B. Teflon® der Firma Dupont) versehen sind.
- Die erfundungsgemäße Dosierzvorrichtung eignet sich insbesondere zur Einführung von Katalysatoren zur Polymerisation von Olefinen und insbesondere zur Polymerisation von α -Olefinen, d. h. Kohlenwasserstoffen mit endständigen Doppelbindungen. Geeignete Monomere können funktionalisierte olefinisch ungesättigte Verbindungen wie Ester- oder Amidderivate der Acryl- oder Methacrylsäure, beispielsweise Acrylate, Methacrylate oder Acrylnitril sein. Bevorzugt sind unpolare olefinische Verbindungen, worunter auch arylsubstituierte α -Olefine fallen. Besonders bevorzugte α -Olefine sind lineare oder verzweigte C₂-C₁₂-Alk-1-ene, insbesondere lineare C₂-C₁₀-Alk-1-ene wie Ethylen, Propylen, But-1-en, Pent-1-en, Hex-1-en, Hept-1-en, Oct-1-en, Non-1-en, Dec-1-en oder 4-Methyl-pent-1-en oder unsubstituierte oder substituierte vinylaromatische Verbindungen der allgemeinen Formel (VII)

in der die Substituenten folgende Bedeutung haben:

- R²⁴ Wasserstoff oder C₁- bis C₄-Alkyl, vorzugsweise Wasserstoff;
- R²⁵ bis R²⁹ unabhängig voneinander Wasserstoff, C₁-C₁₂-Alkyl, C₆-C₁₈-Aryl oder Halogen oder wobei zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende Gruppen stehen; vorzugsweise Wasserstoff, C₁- bis C₄-Alkyl, Chlor, Phenyl, Biphenyl, Naphthalin oder Anthracen oder wobei zwei benachbarte Reste gemeinsam für 4 bis 12 C-Atome aufweisende Gruppen stehen.
- Beispiele für bevorzugte vinylaromatische Monomere sind Styrol, p-Methylstyrol, p-Chlorstyrol, 2,4-Dimethylstyrol, 4-Vinylbiphenyl, Vinylnaphthalin oder Vinylanthracen.
- Es können auch Gemische aus verschiedenen α -Olefinen polymerisiert werden.
- Die Polymerisationsverfahren werden im allgemeinen bei Temperaturen im Bereich von -50 bis 300°C, vorzugsweise im Bereich von 0 bis 150°C und bei Drücken im Bereich von 0,5 bis 3000 bar, vorzugsweise im Bereich von 1 bis 80 bar, durchgeführt.
- Die Polymerisation erfolgt nach einem Gasphasenverfahren, vorzugsweise in gerührter Gasphase oder in einer Gasphasenwirbelschicht.
- Die Erfindung eignet sich insbesondere für die Verwendung in der Gasphasenpolymerisation von Olefinen, insbesondere von Propylen und/oder Ethylen.
- Für das wirtschaftliche Betreiben von Anlagen zur Herstellung von Polyolefinen, d. h. mit maximalem Polymerausstoß bei gegebener Kühlkapazität, ist die Katalysatordosierung von grundlegender Bedeutung. Erfundungsgemäße Vorrichtung und erfundungsgemäßes Verfahren haben nun den Vorteil, daß die Herstellung von Polyolefinen bei stabiler Reaktorführung mit hoher Produkthomogenität erfolgt. Die Erfindung ist insbesondere für große Produktionsanlagen geeignet. Beispielsweise können mittels der erfundungsgemäßen Vorrichtung Katalysatoren in relativ großen Mengen zudosiert werden, wobei Katalysatorreste besser ausgespült werden können. Durch die Verwendung des frei beweglichen Körpers (6) muß lediglich ein verringerter Restvolumen ausgespült werden.

Beispiele

Beispiel 1

Herstellung des Katalysators

0,98 kg (1,7 mol) rac. Dimethylsilylenbis(2-methylbenz[c]indenyl)zirkondichlorid wurden in einem 300 l Rührbehälter unter Stickstoff vorgelegt und bei Raumtemperatur unter Röhren in 124 kg 1,53 molarer (bezogen auf Al) MAO-Lösung (Fa. Witco; 10 Gew.-% Methylaluminoxan in Toluol) gelöst. Zwei Drittel der auf diese Weise erhaltenen Lösung wurden auf das im Prozeßfilter mit möglichst ebener Oberfläche vorgelegte, chemisch getrocknete Kieselgel innerhalb von 3 h aufgesprührt, wobei der Ablauf des Prozeßfilters geöffnet blieb. Das letzte Drittel der Lösung wurde nicht mehr aufgesprührt, sondern direkt von oben zu der überstehenden Lösung dosiert, ohne den vorgelegten Träger aufzuwirbeln. Nach vollständiger Zugabe der Lösung wurde der Ablauf geschlossen. Am nächsten Tag wurde der Ablauf wieder geöffnet und die restliche Lösung zunächst drucklos, gegen Ende dann unter leichtem Stickstoffüberdruck, abfiltriert. Der zurückgebliebene Feststoff wurde nach Aufsprühen von 60 l Pentan 1 h gerührt. Nach dem Abfiltrieren wurde noch zweimal mit je 60 l Pentan gewaschen und der zurückgebliebene Trägerkatalysator dann im Stickstoffstrom getrocknet (2 h bei 35-40°C Innentemperatur und sehr langsamem Röhren). Die Ausbeute betrug 34,8 kg Metallocen-Trägerkatalysator.

DE 199 58 604 A 1

In einem Autoklaventest ergab sich in flüssigem Propylen ohne weitere Zusätze bei Raumtemperatur eine Polymerausbeute von 52 g/g Kat innerhalb von 20 min.

Polymerisation

Der wie oben hergestellte Metallocen-Trägerkatalysator wurde für die kontinuierliche Propen-Homopolymerisation in einem vertikal durchmischten 800 l Gasphasenreaktor eingesetzt.

Der Metallocen-Trägerkatalysator wurde in iso-Dodecan suspendiert und in ein Vorratsgefäß mit Rührer überführt. Von dort erfolgte die Katalysatordosierung mit Hilfe eines taktweise arbeitenden Double-Check-Feeders (Umdrehungsgeschwindigkeit 1 U/min, Haltezeit: 2 sec) mit seitlicher Entspannung und gleichzeitiger Ausblasung mit Stickstoff (vgl. Zeichnung). Mit Hilfe des Dosierküken (Volumen: 1,2) wurde durch kontinuierliches Drehen und kurzzeitiges Anhalten in der Entleerungs- bzw. Entspannungsposition der Inhalt der Küken von einem kontinuierlich fließenden Propylenstrom bei 0°C in den Reaktor entspannt. Der Gasphasenreaktor wurde bei einem Druck von 24 bar und einer Temperatur von 64°C betrieben. Der Reaktor enthielt ein Bett aus feinteiligem Polymerisat und wurde bei einem konstanten Ausstoß von 150 kg/h Polymerisat betrieben. Hierbei wurde durch kurzzeitiges Entspannen des Reaktors über ein Tauchrohr sukzessive Polymer aus dem Reaktor entfernt. Es wurden 300 ml Triisobutylaluminium pro Stunde zugefahren (1 M Lösung). Nach 100 Stunden stabiler Laufzeit wurde die Reaktion kontrolliert abgestellt.

Es wurde ein Polymergries mit einer Schüttdichte von 455 g/l, einer mittleren Partikelgröße von $d_{avg} = 1,3$ mm und 0,3% Partikel mit einem Durchmesser $d > 2$ mm erhalten. Die Inneninspektion des Reaktors ergab weder Brocken noch Wandbeläge. Aussieben des Reaktorinhaltcs (240 kg Polymergries) ergab 0,1 Gew.-% Partikel mit einem Durchmesser $d > 5$ mm aber kleiner 10 mm.

Polymerdaten; $T_m = 143,9^\circ\text{C}$, $[\eta] = 1,99 \text{ dl/g}$, $MFI = 7,1 \text{ g/10'}$, $X_L = 0,3 \text{ w\%}$.

Die Katalysatorproduktivität betrug 5,2 kg PP/g Katalysator.

Beispiel 2

5

10

15

20

25

Polymerisation

Der in Beispiel 1 beschriebene Katalysator wurde zur Polymerisation in einem vertikal durchmischten 12,5 m³ Gasphasenreaktor eingesetzt.

30

Der Metallocen-Trägerkatalysator wurde in Heptan suspendiert und in ein Vorratsgefäß mit Rührer (30 U/min) eingefüllt. Die Dosierung erfolgte über einen taktweise betriebenen Double-Check-Feeder (DCF) mit einem Füllvolumen von 7,5 ml (Taktzeit 80 sec., Haltezeit 3 sec.) mit seitlicher Entspannung und Ausblasevorrichtung mit Stickstoff (800 Nl/h). Die Arbeitsweise des DCF entsprach der in Beispiel 1 beschriebenen. Der Katalysator wird mittels eines kontinuierlichen Propylen Spülstroms (580 l/h, -5°C) in den Reaktor transportiert. Die Polymerisation erfolgte bei 23 bar/68°C unter Zugabe von 400 g Triisobutylaluminium, bezogen auf eine Tonne Propylen und einem durchschnittlichen Ausstoß von 1,8 t/h. Der Austrag erfolgte durch kurzzeitiges Entspannen über ein Tauchrohr. Diese Einstellung wurde über insgesamt 12 Tage gefahren und anschließend kontrolliert abgestellt.

35

Der erhaltene Polymergrieß hatte eine Schüttdichte von 448 g/l, einen mittleren Teilchendurchmesser von 1,35 mm ohne Partikel mit $d > 5$ mm. Polymerdaten: $T_m = 144,1^\circ\text{C}$, $MFI = 0,2 \text{ g/10'}$, $X_L = 0,5 \text{ w\%}$. Die Produktivität des Katalysators betrug 6,4 kg pp/g Kat.

40

Vergleichsbeispiel 1

45

Polymerisation

Die Polymerisation im kontinuierlichen 800 l Gasphasenreaktor wurde analog Beispiel mit demselben Metallocen-Trägerkatalysator durchgeführt. Abweichend zum Beispiel wurde als Dosiereinrichtung ein taktweise arbeitender Double-Check-Feeder ohne die seitliche Entspannung (Entspannungskanal (10)) verwendet. Hauptsächlich im unteren, verjüngten Bereich des Vorratsgefäßes bildeten sich größere Agglomerate, die letztendlich zu Verstopfungen des Dosierkügens führten. Im Gegensatz zum Beispiel mußte mindestens stündlich die Dosiereinrichtung ausgetauscht werden. Nach insgesamt 16 Stunden mußte der Gasphasenreaktor aufgrund von Klopfgeräuschen abgestellt werden.

50

Es wurde ein Polymergries mit einer Schüttdichte von 425 g/l, einer mittleren Partikelgröße von $d_{avg} = 1,7$ mm und 15% Partikel mit einem Durchmesser $d > 2$ mm erhalten. Die Inneninspektion des Reaktors ergab Brocken und Wandbeläge. Aussieben des Reaktorinhaltcs (255 kg) ergab 8 Gew.-% Partikel mit einem Durchmesser $d > 5$ mm aber kleiner 10 mm, 2 Gew.-% zusammengesinterte Brocken und insgesamt 0,9 Gew.-% Wandbeläge.

55

Polymerdaten: $T_m = 143,2^\circ\text{C}$, $[\eta] = 1,93 \text{ dl/g}$, $MFI = 9,1/10'$, $X_L = 0,5 \text{ w\%}$.

Die Katalysatorproduktivität betrug 2,5 kg PP/g Katalysator.

Vergleichsbeispiel 2

60

Es wurde wie unter Beispiel 2 verfahren mit dem Unterschied, daß der Double check feeder ohne seitliche Entspannung betrieben wurde. Bereits nach 15 min war der feeder vollständig mit Polymerisat/Katalysator-Gemisch verstopft. Eine stabile Fahrweise war nicht zu erzielen.

65

Patentansprüche

- Dosievorrichtung zum regelbaren Einbringen von Feststoffen, insbesondere Katalysatoren aus einem Vorrats-

DE 199 58 604 A 1

- behälter (11), in Druckräume, mit einem in einem druckdichten Gehäuse (1) drehbaren Körper (2), dadurch gekennzeichnet, daß der drehbare Körper (2) innerhalb seiner begrenzenden Kontur mindestens zwei Kammern (3) bzw. (4) aufweist, welche durch eine Kammer (5) mit einem bezogen auf (3) und (4) größeren Querschnitt voneinander getrennt sind, sich im wesentlichen in der Kammer (5) ein hierin frei beweglicher Körper (6) mit einem bezogen auf (3) und (4) größeren Querschnitt befindet, der die mindestens zwei Kammern (3) und (4) dicht voneinander trennt, der drehbare Körper (2) ein Kegelstumpf mit einer Steigung von 0,5 bis 10% ist, in dessen Mantelfläche ein oder mehrere, auf gleicher Umfangslinie liegende zylindrische Vertiefungen eingearbeitet sind, die bei jeder vollständigen Drehung nacheinander am Zuführungskanal (7) des Gehäuses (1) für den zu dosierenden Stoff, am Ausgang (8) in den Druckraum bzw. Reaktor (9) und vor Beendigung der vollständigen Drehung an einem aus dem Gehäuse herausführenden Entspannungskanal (10) vorbeiführbar sind.
- 5 2. Dosievorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der frei bewegliche Körper (6) die Form einer Kugel oder die eines Zylinders hat, dessen beiden Enden in Kegelstümpfe auslaufen.
- 10 3. Dosievorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sich Zuführungskanal (7) und Ausgang (8) auf entgegengesetzten Seiten des drehbaren Körpers (2) befinden.
- 15 4. Dosievorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß sich der Entspannungskanal (10) 90° versetzt zum Zuführungskanal (7) und Ausgang (8) befindet.
- 20 5. Verfahren zum Einbringen von rieselfähigen bis pulverförmigen Feststoffen, insbesondere Katalysatoren, in Druckräume, wobei das Einbringen mittels einer Dosievorrichtung geschieht, welche einen in einem druckdichten Gehäuse (1) drehbaren Körper (2) aufweist, dadurch gekennzeichnet, daß der drehbare Körper (2) innerhalb seiner begrenzenden Kontur mindestens zwei Kammern (3) bzw. (4) aufweist, welche durch eine Kammer (5) mit einem bezogen auf (3) und (4) größeren Querschnitt voneinander getrennt sind, sich im wesentlichen in der Kammer (5) ein hierin frei beweglicher Körper (6) mit einem bezogen auf (3) und (4) größeren Querschnitt befindet, der die mindestens zwei Kammern (3) und (4) dicht voneinander trennt, der drehbare Körper (2) ein Kegelstumpf mit einer Steigung von 0,5 bis 10% ist, in dessen Mantelfläche ein oder mehrere, auf gleicher Umfangslinie liegende zylindrische Vertiefungen eingearbeitet sind, die bei jeder vollständigen Drehung nacheinander am Zuführungskanal (7) des Gehäuses (1) für den zu dosierenden Stoff, am Ausgang (8) in den Druckraum bzw. Reaktor (9) und vor Beendigung der vollständigen Drehung an einem aus dem Gehäuse herausführenden Entspannungskanal (10) bzw. Entspannungsöffnung vorbeiführbar sind, wobei infolge des kontinuierlichen oder diskontinuierlichen Drehens des drehbaren Körpers (2) in einem Füllschritt die Kammer (3) aus dem Vorratsbehälter (11) mit Feststoff gefüllt wird, der frei bewegliche Körper (6) sich im wesentlichen aufgrund des Füllschrittes in der Kammer 5 in Richtung des Druckraumes (9) bewegt und in einem Entleerungsschritt der in der Kammer (4) befindliche Feststoff in den Druckraum (9) überführt wird, und die Kammer (4) in einem Spülsschritt am Entspannungskanal (10) vorbeigeführt und dadurch von Alkenresten befreit wird.
- 25 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Druckunterschied zwischen dem Vorratsbehälter (11) und dem Druckraum (9) 0,1 bis 10 bar beträgt.
- 30 7. Verwendung der Dosievorrichtung gemäß einem der Ansprüche 1 bis 4 für die Dosierung von Metallocen-Katalysatoren bei der Olefinpolymerisation.
- 35

Hierzu 1 Seite(n) Zeichnungen

40

45

50

55

60

65

- Leerseite -

X

