Simulation Excercise: Exponential Distribution

Andrés Hidalgo Vargas

14/7/2020

Overview

Simulations

First we set a seed so we can have a constant generation of pseudorandom numbers, making the plots replicable.

```
set.seed(3081997)
```

After the seed is set, we define our variables. The exponential distribution depends on the rate lambda, the sample size will be set to 40.

```
\begin{array}{l} lambda <- \ 0.2 \\ n <- \ 40 \\ means = NULL \end{array}
```

The simulation is run to generate 1000 runs of 40 random exponential numbers with lambda 0.2. The mean is taken from each run and stored.

```
for (i in 1:1000){
  means = c(means, mean(rexp(n,lambda)))
}
```

A one sample with 1000 observations is generated to later illustrate the distribution behaviour.

```
set.seed(3081997)
onesample <- rexp(1000,0.2)</pre>
```

Sample vs theoretical mean

The theoretical mean is defined by 1/lambda. Therefore, the theoretical mean for the simulated data is

```
1/lambda
```

```
## [1] 5
```

The sample mean is

```
mean(means)
## [1] 4.998339
```

4.99 is very close to 5.

Sample vs theoretical variance

The theoretical variance is defined by (1/lambda^2)/n. Therefore, the theoretical variance for the simulated data is

```
(1/lambda^2)/n

## [1] 0.625

The sample variance is

var(means)
```

[1] 0.6704198

0.67 is close to the theoretical variance 0.625

Distribution

To explain how the distibution appears normal, first we need to see how does the original exponential distribution looks like

Exponential distribution of 1000 observations lambda = 0.2

This distribution looks similar to the probability density function graph

Now, the distribution of the averages of 40 random exponentials and 1000 simulations will be plotted.

Distribution of the average of 40 random exponentials (1000 simulations) Normal Distribution (mean = 5, sd = 0.819)

As the CLT says, with sufficient random samples, the distribution of the sample means will be approximately normally distributed.