Suites - la suite

Rappels:

<u>Formule explicite</u>: formule donnant directement u_n en fonction de n.

<u>Relation de récurrence</u>: relation exprimant u_{n+1} en fonction de u_n , sans oublier la donnée du premier terme.

Suite arithmétique : $u_{n+1}=u_n+r$ et $u_n=u_0+n\times r$. r est la raison de la suite arithmétique.

Suite géométrique : $v_{n+1} = q \times v_n$ et $v_n = v_0 \times q^n$. q est la raison de la suite géométrique.

Sens de variation d'une suite

Une suite (u_n) est

- **croissante** si et seulement si, pour tout entier naturel n, $u_{n+1} \ge u_n$,
- **décroissante** si et seulement si, pour tout entier naturel n, $u_{n+1} \le u_n$,
- **constante** si et seulement si, pour tout entier naturel n, $u_{n+1}=u_n$.

Une suite est dite monotone si et seulement si elle est croissante ou décroissante.

Remarques:

- On peut obtenir des définitions de stricte monotonie en remplaçant les inégalités larges par des inégalités strictes.
- On peut aussi regarder les variations à partir d'un certain rang p en regardant la même chose mais pour $n \ge p$.
- Une suite est dite **stationnaire** si et seulement si elle est constante à partir d'un certain rang.

Étude de la différence entre deux termes consécutifs

Propriété:

Pour étudier les variations d'une suite, il suffit de comparer la différence de deux termes consécutifs à 0.

- Si $u_{n+1} u_n \ge 0$, alors la suite (u_n) est croissante.
- Si $u_{n+1}-u_n \le 0$, alors la suite (u_n) est décroissante.

Corollaire:

Soit (u_n) une suite **arithmétique** de raison r.

- Si r>0, alors la suite (u_n) est strictement croissante.
- Si r < 0, alors la suite (u_n) est strictement décroissante.
- Si r=0, alors la suite (u_n) est constante.

Étude du quotient entre deux termes consécutifs

Propriété:

Pour étudier les variations d'une suite <u>dont les termes sont non-nuls</u>, on peut aussi comparer le quotient de deux termes consécutifs à 1.

- Si $\frac{u_{n+1}}{u_n} \ge 1$, alors la suite (u_n) est croissante.
- Si $\frac{u_{n+1}}{u_n} \le 1$, alors la suite (u_n) est **décroissante**.

Corollaire:

Soit (v_n) une suite **géométrique** de raison q et dont le premier terme v_0 est non-nul.

- Si q>1, alors la suite (v_n) est
 - \circ strictement croissante si $v_0 > 0$ et strictement décroissante si $v_0 < 0$.
- Si 0 < q < 1, alors la suite (v_n) est
 - strictement décroissante si $v_0 > 0$ et strictement croissante si $v_0 < 0$.
- Si q=1 (ou q=0), alors la suite (v_n) est constante (ou stationnaire).
- Si q < 0, alors la suite (v_n) n'est pas monotone (elle change de signe à chaque terme).

Notion de limite

Le but dans ce paragraphe est d'étudier le comportement d'une suite (u_n) pour de très grandes valeurs de n. On dit que n tend vers l'infini, ce que l'on donne $n \to +\infty$.

Définition:

Soit (u_n) une suite de réels et $L \in \mathbb{R}$. On dit que la suite (u_n) converge vers L lorsque les termes de la suite se rapprochent indéfiniment de L pour de grandes valeurs de n.

L est appelée la **limite** de la suite (u_n) et on note $\lim_{n \to +\infty} u_n = L$.

Lorsque la suite (u_n) ne **converge** pas, on dit qu'elle **diverge**. Il y a alors plusieurs cas possibles :

- Si les termes de la suite deviennent arbitrairement grands lorsque n augmente, on dit que la suite (u_n) diverge vers $+\infty$ ou que la suite tend vers $+\infty$ lorsque n tend vers $+\infty$. On note $\lim_{n\to\infty} u_n = +\infty$.
- Si les termes de la suite deviennent arbitrairement petits lorsque n augmente, on dit que la suite (u_n) diverge vers $-\infty$ ou que la suite tend vers $-\infty$ lorsque n tend vers $+\infty$. On note $\lim_{n \to +\infty} u_n = -\infty$.
- Dans les autres cas, la suite (u_n) n'admet pas de limites.

Je vous laisse observer des exemples graphiques dans votre manuel aux pages 54 et 55 et dans l'Activité 8 page 47.