

Disciplina: ARQC							AVALIAÇÃO CONTINUADA – 2020_2												
Observações: atividade individual, sem consulta ao material, a calculadora, aos colegas ou ao professor							Professora: Marise Miranda												
Nome: Felipe Tsibana Higa RA: 01202061																			
	HEXADECIMAL	0		2	3	4	5	9	7		9	А		Ü		0	ш		0,
	OCTAL	0		2	3	4	2	9	7	9	≔	12	13	7.	: :	2	16	ij	8
	2	0	-	0		0		0		0		0	-	0	• •		0		0
8 4 2 1	2	0			_	0	0			0	0	~ −	-	0	. .	0	—		0
4	2	0		0	0	Ţ	_	-		0	0	0	0	-	_		-	-	0
	DECIMAL 23	0 0		2 0	3 0	4 0	5	0 9	7 0	~	9	10	11	1)	+	 23	14	15 1	16 0
Tabela de Conversão de base																			
218	2 ¹⁷		2 ¹⁶	2 ¹⁵	214		2 ¹³	2 ¹²	211	210	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ² 2 ¹	2º
262144	4 1310	072	65536	3276		638 4	8192	4096	2048	1024	512	256	128	64	32	16	8	4 2	1

QUESTÕES:

1) Considere os números binários atribuídos as duas constantes A e B. A constante A recebe o número binário A = 10111 e a constante B = 1100.

O LSB (Less Significant Bit) – bit menos significativo, é o bit na posição mais à direita, a menor casa do sistema de numeração.

O MSB (Most Significant Bit) – bit mais significativo, é o bit na posição mais à esquerda, a maior casa do sistema de numeração utilizada.

Diante disso, analise as afirmativas a seguir.

- I) O número B possui LSB menor do que o do número A.
- II) Ao subtrairmos B de A, temos como resultado a representação binária
- III) A soma dos dois números tem representação binária igual a 100011.

Assinale

- a) Se somente as afirmações I e II forem verdadeiras
- b) Se somente a afirmação II for verdadeira
- c) Se somente a afirmação I for verdadeira
- d) Se somente as afirmações I e III forem verdadeiras X
- e) Se as afirmações I, II, e III forem verdadeiras

A em decimal = 23 B em decimal = 12

i-) Se LSB A =1 e LSB B =0, logo LSB A >LSB B iii-) 23+12=35 / 35 base 10 = 10011 base 2

ii-) 23 -12=11 / 11 base 10 = 1011 base 2

- 2) Considerando o número 33, em base decimal, assinale a alternativa que indica o valor que representa este número nas bases Hexadecimal e Octal, respectivamente.
- a) 32 e 42
- b) 2F e 35
- c) A e 9
- d) 21 e 41 X
- e) 3C e 13

33 base 10 = 100001 base 2

base 8: 100 001 = 41

base 16: 10 0001 = 21

3) Complete as informações dos sistemas de numeração cruzados (semelhante as palavras cruzadas)

Complete os números que faltam nas partes cinzas vazias dos segmentos de I à IV

- I) A _ 01 é o equivalente hexadecimal de 126401 em octal 126401 base 8 = 1010 $\frac{1101}{101}$ 0000 0001 base 2 = AD01 $\frac{1101}{101}$ =D₁₆
- II) 11_{00000} é o equivalente binário de 740 em octal 740 base $8 = 111\ 100\ 000_{2}$

7 4 0

III) 17 _ 1 é o equivalente octal de 1017 em decimal $1017_2 = 1$ 111 111 $001_2 = 1771_8$

IV) 11001 $_$ 01 é o equivalente binário de 19D em hexadecimal 19D base 16 = 0001 1001 1101 $_2$

1 9 D

Selecione a alternativa correta:

- a) I = AD01, II = 111100000, III = 1771, IV = 110011101 X
- b) I = AE01, II = 110100000, III = 1711, IV = 110011001
- c) I = A001, II = 111100000, III = 1771, IV = 110011001
- d) I = AA01, II = 110000000, III = 1711, IV = 110010101
- e) I = A101, II = 111100000, III = 1711, IV = 110010101
 - 4) Converta cada número octal em seu equivalente decimal:

a)	31 <u>25</u>	base 2 = 01	1 001 base 10 = 16+8+1 =25
b)	13 <u>1</u>	base 2 = 00	1 011 base 10= 8+2+1 = 11
c)	167 <u> </u>	9 base 2 = 001	110 111 base 10 = 64+32+16+4+2+1 = 119
d)	113	'5 base 2 = 001	001 011 base 10 =64+8+2+1 = 75

5) Converta cada número para as correspondentes bases indicadas:

	Base 2	Base 10	Base 16	Base 8
A4 ₁₆	1010 0100	164		244
2228	010 010 010	146	92	
15 ₁₀	1111		F	17
110112		27	1B	33

6) O metrô de São Paulo está fazendo testes para implantar a catraca com QRCODE gerado por aplicativo de celular. Os primeiros testes foram feitos com QRCodes gerados a partir de números binários como os apresentados para usuários cadastrados A e B. Os cadastros em binários funcionam como uma chave exclusiva para o usuário devidamente cadastrado, gerando maior segurança.

Mas, por algum motivo os analistas esqueceram de travar o conversor para aceitar somente o sistema de numeração binária. A catraca do metrô foi burlada por um usuário especialista em TI que resolveu usar um código hexadecimal 3A. Os desenvolvedores do metrô, criaram um sistema de segurança para decifrar o código hexadecimal, e o converteram para binário, esse código em binário não estava cadastrado e a entrada do meliante foi impedida.

Usuário A	Usuário B	Não identificado			
cadastrado	cadastrado	Não cadastrado			
111000	111001	3A			

Observação: Os QRCodes gerados representam exatamente seus números

Qual é a alternativa que representa o binário convertido pelo sistema de segurança do código hexadecimal 3 A.

- a) 1111000
- b) 111010 X
- c) 1100110
- d) 110101
- e) 101111

$$3 A_{16} = 0011 \ 1010_2$$