BRAC University

Semester: Summer 25, 2025 CSE 251(Section:10)

Assignment: 2	Deadline: 25th july, 2pm	Marks: 100
Q1-Q5: CO2		

Q1. Diode logic gates.

[20]

- a) Design a logic circuit using ideal diodes to implement the logic function f(A,B,C,D). The function gives a logical high if all of the A,B,C inputs are simultaneously high or D is high.
- b) Design an ideal diode based ckt. to get the **largest voltage output** from 3 voltages.
- c) i)Deduce the logic function for the given circuit below.
 ii)what will be the output voltage if Vx=7V, Vy= 4V, Vz= 2V assuming both ideal model and CVD(0.7V) model.

Q2-Q5 (Diode ckt solve using method of assumed states)

Q2. Analyze the following circuit to **find the values of I_{D1}, I_{D2}, v_x, and v_y.** Here, use the Method of Assumed State using the CVD model of diode with $V_{D0} = 0.7V$. [20]

Q3) Solve the diode network ckt to find the V_a , V_b and diode currents.

[20]

(Solve using method of assumed states using the CVD model of diode with $V_{D0} = 0.8V$)

Q4) Solve the circuit for the diode currents and voltages at all nodes. Use the Method of Assumed State using the CVD model of diode with $V_{D0} = 0.6V$ [20]

Q5)

Analyze the following circuit. **Calculate** the values of V_A , V_0 , I_{D1} , and I_{D2} . You must validate your assumptions. Use the Constant-Voltage Drop model with a cut in voltage of 0.6V $[V_{D0} = 0.6 \text{ V}]$. [Hints: You may start with calculating the voltage values first]