## K-NN and /decision Trees

Distances,  $d(x^{(i)}, x^{(q)}) =$ 

|  | ) —       |           |                                                   |
|--|-----------|-----------|---------------------------------------------------|
|  | Manhattan | L1        | $\sum_{k=1}^{K}  x_k^{(i)} - x_k^{(q)} $          |
|  | Euclidean | L2        | $\sqrt{\sum_{k=1}^{K} (x_k^{(i)} - x_k^{(q)})^2}$ |
|  | Chebyshev | $L\infty$ | $\max_{k=1}^{K}  x_k^{(i)} - x_k^{(q)} $          |

$$\text{Types} = \begin{array}{cc} \text{Inverse} & \frac{1}{d(x^{(i)}, x^{(q)})} \\ \text{Gaussian} & \frac{1}{\sqrt{2\pi}} \exp(-\frac{d(x^{(i)}, x^{(q)})^2}{2}) \end{array}$$

Entropy = 
$$H(X) = -\sum_{k=1}^{K} P(x_k) \log_2(P(x_k)) - \int_{k=1}^{K} f(x) \log_2(f(x))$$

$$\begin{aligned} \text{Information Gain} &= \text{IG}(\text{dataset}, \text{subsets}) \\ &= H(dataset) - \sum_{S \in \text{subsets}} \frac{|S|}{|\text{dataset}|} H(S) \\ &|\text{dataset}| = \sum_{S \in \text{subsets}} |S| \end{aligned}$$

### 2 Evaluation of Machine Learning Systems

Parameter Estimation Case 1: Plenty of data available -Held-out test set

- 1. Train algorithm on training set
- 2. Tune hyperparameters on validation set 60:20:20 or 80:10:10 split
- 3. Estimate generalisation performance using the **test set** Case 2: Limited data available - Cross-validation
  - 1. Separate dataset into k folds
- 2. Use 1 fold for testing and k-1 folds for training+validation
- 3. Repeat k times, using each fold as the **test set**
- 4. Estimate generalisation performance by averaging results across all the test folds

Confusion Matrix

|                   | Class 1<br>Predicted       | Class 2<br>Predicted        |
|-------------------|----------------------------|-----------------------------|
| Class 1<br>Actual | <b>TP</b><br>True Positive | <b>FN</b><br>False Negative |
| Class 2<br>Actual | <b>FP</b> False Positive   | TN True Negative            |

For Classification use: Accuracy =  $\frac{TP+TN}{TP+TN+FP+FN}$ 

Precision =  $\frac{TP}{TP+FP}$ Recall =  $\frac{TP}{TP+FN}$ 

F-measure =  $F_1 = 2 \frac{Precision*Recall}{Precision+Recall}$ For regression use: MSE or RMSE Sample Error:

 $error_s(h) = \frac{1}{N} \sum_{x \in S} \delta(f(x), h(x))$ Confidence interval:

 $error_s(h) \pm Z_N \sqrt{\frac{error_s(h)*(1-error_s(h))}{n}}$ 

#### 3 Neural Networks

Perceptron:

 $\theta_i = \theta_i + \alpha(y - h(x))x_i$ 

Classification:

Binary: Only two possible classes

Multi-class: More than one possible class but each class is

distinct

Multi-label: Each input can belong to more than one class

Activation Functions:

| Activation Functions. |                                                    |                                                        |                                            |  |
|-----------------------|----------------------------------------------------|--------------------------------------------------------|--------------------------------------------|--|
| Function              | g(z)                                               | g'(z)                                                  | use                                        |  |
| Threshold             | 1: $W^T x \ge 0$<br>0 : otherwise                  | N/A                                                    | Perceptron                                 |  |
| Linear                | Duh                                                | Duh                                                    | Regression                                 |  |
| Sigmoid               | $\frac{1}{1+e^{-x}}$                               | g(z)(1-g(z))                                           | binary or<br>multi-label<br>classification |  |
| Tanh                  | $\frac{e^x - e^{-x}}{e^x + e^{-x}}$                | $1 - g(z)^2$                                           | binary or<br>multi-label<br>classification |  |
| ReLU                  | $ 0 \text{ for } x \le 0 \\ x \text{ for } x > 0 $ | $0 \text{ for } x \le 0$ $1 \text{ for } x > 0$        | Used in deep<br>layers and<br>regression   |  |
| Softmax               | $\frac{e^{Z_i}}{\sum_k e^{Z_k}}$                   | $\frac{\delta L}{\delta z} = \frac{1}{N}(\hat{y} - y)$ | multi-class<br>classification              |  |

Derivative of softmax only works for Cross entropy loss and N is the number of datapoints Loss Functions:

| Name                      | Definition                                                                              | Use                                        |
|---------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|
| MSE                       | $\frac{1}{N} \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$                                        | Regression                                 |
| Binary<br>cross-entropy   | $-\sum_{i=i}^{N} (y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}))$ | binary or<br>multi-label<br>classification |
| Categorical cross-entropy | $-\sum_{i=1}^{N} \sum_{c=1}^{C} y_c^{(i)} \log(\hat{y}_c^{(i)})$                        | multi-class<br>classification              |

Back Propagation:

 $\frac{\delta \overset{\delta U}{\text{Loss}}}{\frac{\delta Z}{\delta Z}} = \frac{\delta \overset{\delta U}{\text{Loss}}}{\frac{\delta A}{\delta A}} \circ g'(Z)$  where A = g(Z)

Regularisation

 $L1: J(\theta) = Loss(y, \hat{y}) + \lambda \sum_{w} w^2$  $w \leftarrow w - \alpha(\frac{\delta Loss}{\delta w} + 2\lambda w)$   $L2: J(\theta) = Loss(y, \hat{y}) + \lambda \sum_{w} |w|$  $w \leftarrow w - \alpha \left(\frac{\delta Loss}{\delta w} + 2\sin w\right)$ Dropout: drop 50% of Activation

Data normalisation

Min-Max:  $X' = a + \frac{(X - X_{min})(b - a)}{X_{max} - X_{min}}$ Standardization:  $X' = \frac{X - \mu}{\sigma}$ 

#### Unsupervised Learning 4



GMM-EM



Mixture Models:  $p(x) = \sum_{k=1}^{K} \pi_k p_k(x)$  Gaussian Mixture models:  $p(x|\theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \sum_k)$  Negative Log likelihood  $\mathcal{L} = -\sum_{i=1}^{N} \log P(x^{(i)}|\theta)$  Bayesian Information Criterion (BIC)  $BIC_K = \mathcal{L}(K) + \frac{P_K}{2} \log(N)$ 

| ~ T / T | AF 173 | TA /F | T.7   | _       |
|---------|--------|-------|-------|---------|
| ( ÷  VI | VI-Pi  | IVI T | rs K. | -means: |

| K-means                                                                             | GMM-EM                                                                                          |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Objective function: Minimize<br>average mean squared<br>distance                    | Objective function: Maximize log-likelihood                                                     |
| EM-like algorithm - Assignment: Assign points to cluster - Update: Optimise cluster | EM algorithm - E-step Compute posterior probability of membership - M-step: Optimise parameters |
| Performs hard assignment<br>during Assignment step                                  | Performs soft assignment<br>during E-step                                                       |
| Assume spherical clusters with equal probability for each cluster                   | Can be used for non-spherical clusters Can generate clusters with different probabilities       |

# 5 Evolutionary Algorithms

genotype vs phenotype: gene representation vs what's shown to environment genetic algorithm: intialize( bitmaps for genomes), evaluate, select with selection operator(random roulette biased on fitness, tournament by picking 1 from random 2), crossover using crossover operator(single-point crossover: swap a prefix of parents for children), mutate using mutation operator(random bit flips) elitism (GA): fix the top n% of the population and ensure it survives (the fitness of the best individual cannot decrease) stopping criterion: individual with max fitness or fixed number of epochs or no improvement visible

 $\mu + \lambda$ -ES algorithm: initialize  $\mu + \lambda$  individuals (float array genotype), evaluate, select best  $\mu$ , generate  $\lambda$  offsprings by gaussian perturbations from random parents; usually  $\frac{\lambda}{\mu} \approx 5$  main challenge is fixing  $\sigma 2$  for the gaussian distribution one solution for fixing  $\sigma$  is to add separate  $\sigma$ s for each gene and update them based on  $\sigma$ new =  $\sigma \exp(\tau_0 \mathcal{N}(0,1))$  where  $\tau_0$  is the learning rate (usually  $\tau_0 = \sqrt{n}$  where n is the number of genes)

novelty search: instead of optimizing for fitness optimize for novelty(using novelty archive composed of all genotypes; average distance from kNN in novelty archive) behavioral descriptor(BD): defines the "type of solution" that is generated (not necessarily linked to task); several solutions can have same BD but different fitnesses; evaluation AFTER selection

Quality Diversity optimization: mix of novelty search and ES (interesting and high-performing solutions) - highest performing solutions for each region of novelty archive; general pipeline: select population from collection with selection operator, random mutation, evaluation, tenative addition to the collection MAP-Elites - Multidimensional Archive of Phenotypic Elites: discretize the BD into a grid to try to fill it with best solutions; hyperparameter is the size of cells quantifying performance: the diversity of the container (archive size), the performance of the container (max fitness), the convergence speed of the 2 points, QD score (sum of fitness of all solutions in the archive) selector in MAP-Elites: usually uniform random gradient descent can also be applied here using a critic or gradient estimation

### 6 General

Overfitting

- high dimensionality  $\rightarrow$  overfitting
- Stop for decision trees (Pruning, early stopping (max depth))
- General Solutions (more data, stop earlier and change complexity (use validation set to test))
- Neural networks (dropout/regularisation/normalisation)

| Criteria          | Supervised<br>Learning                       | Unsupervised<br>Learning                                                  | Reinforcement<br>Learning                                                                                   |
|-------------------|----------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Definition        | The machine learns by using labeled data     | The machine is<br>trained on<br>unlabeled data<br>without any<br>guidance | An agent interacts<br>with its environment<br>by performing action<br>and learning for<br>errors or rewards |
| Types of problems | Regression and classification                | Association and clustering                                                | reward based                                                                                                |
| Type of data      | Labeled data                                 | Unlabeled data                                                            | No predefined data                                                                                          |
| Training          | External supervision                         | no supervision                                                            | no supervision                                                                                              |
| Approach          | Maps the labeled inputs to the known outputs | Understand patterns<br>and discovers the<br>outputs                       | Follows the trial and error method                                                                          |