Calculos de las funciones de distribución para líquidos motoánomicos clásicos: r, g(r), P y E

Brayan Iván de la Cruz Martínez,¹ Ruben Dario Navarro López,¹

¹ Universidad Autónoma de Nuevo León , FCFM, México, Monterrey N.L Matrículas en orden de aparición: 1904210, 1904527, Grupo: 021

Jueves 17 de Noviembre del 2022

Key words: Energía – Presión – Partículas

1 INTRODUCCIÓN

La función de distribución radial mide el numero de partículas que se encuentran a una distancia (r,r+dr) de cada partícula, esto nos permite obtener información termodinámica, como energía y presión a partir de magnitudes microscópicas, dándonos así una idea del estado del sistema.

En este proyecto hacemos uso de un programa realizado en Fortran el cual calcula r (posición) y g(r) (función de distribución radial) para cada una de las ρ (densidad de partículas) de interés, para posteriormente calcular su energía y presión.

Luego de obtener los datos requeridos realizamos gráficas para ver el comportamiento de la función de distribución radial respecto a la posición para distintas densidades de partículas, así como gráficas de Densidad vs Energía y Densidad vs Presión.

Las gráficas mostradas en el reporte se hicieron con ayuda del Software especializado en graficación llamado GnuPlot.

1.1 Objetivos

- Optimizar el programa para obtener los datos requeridos.
- Graficar los datos para ver su comportamiento.

2 Marco teórico

2.1 Función de distribución radial

Consideremos un sistema con N partículas en un volumen V a una temperatura T, la energía potencial debido a la interacción de las partículas es $U_N(r_1,...,r_N)$ donde las coordenadas de las partículas son r_i con i=1,...,N. La probabilidad de que una partícula i este en un intervalo dr_i viene dada por

$$P^{N}(r_{1},...,r_{N})dr_{1},...,dr_{N} = \frac{e^{-\beta U_{N}}}{Z_{N}}dr_{1},...,dr_{N}$$

donde ${\cal Z}_N$ es la función de partición canónica

Dado que el numero de partículas es muy grande nos conviene obtener la probabilidad de un sistema reducido, donde las posiciones de las primeras n partículas están fijas en las posiciones $r_1,...,r_n$, por lo que integrando la ecuación anterior sobre las coordenadas no fijas obtenemos que

$$P^{n}(r_{1},...,r_{n}) = \frac{1}{Z_{N}} \int e^{-\beta U_{N}} dr_{n+1},...,dr_{N}$$

Ahora considerando que las partículas son idénticas es más conveniente preguntarse sobre la probabilidad de que cualquier partícula ocupe la posición $r_1,...,r_n$, es decir, considerar cualquier permutación de la probabilidad, para esto definimos la densidad de partículas como

$$\rho^{(n)}(r_1,...,r_n) = \frac{N!}{(N-n)!} P^n(r_1,...,r_n)$$

Viendo que para n=1 es igual a la densidad total del sistema $\label{eq:parabolic} % \begin{array}{l} n=1 & \text{on } n \leq n \\ n=1 & \text{on } n \leq n \\$

$$\rho^{(1)}(r_1) = \rho = \frac{N}{V}$$

Así es como introducimos la función de correlación, dado que si los átomos fueran independientes $\rho^{(n)}$ seria igual a ρ^n

$$\rho^{(n)}(r_1, ..., r_n) = \rho^n g^{(n)}(r_1, ..., r_n)$$

donde la función de correlación se define como

$$g^{(n)}(r_1,...,r_n) = \frac{V^n}{N^n} \frac{N!}{(N-n)!} P^n(r_1,...,r_n)$$

Para el caso n=2 la función de correlación describe la correlación espacial entre dos partículas, mediante un sistema de coordenadas esfericamente simétrico podemos

$$g^{(2)}(r_1, r_2) = g(r_{12}) = g(r)$$

donde g(r) es la función de distribución radial la cual solo depende de la distancia entre las partículas.

2.2 Cálculo de la energía

Con la ecuación

$$E = \frac{3}{2}NkT + kT^2 \left(\frac{\partial \ln Z_n}{\partial T}\right)_{N.V}$$

Podemos obtener

$$\frac{E}{NkT} = \frac{3}{2} + \frac{\rho}{2kT} \int_0^\infty u(r)g(r,\rho,T) 4\pi r^2 dr$$
 (1)

2.3 Cálculo de la presión

Recordando que la presión está dada por:

$$p = kT \left(\frac{\partial \ln Q}{\partial V} \right)_{N,T} = kT \left(\frac{\partial \ln Z_n}{\partial V} \right)_{N,T}$$

Obtenemos entonces que:

$$\frac{p}{kT} = \rho - \frac{\rho^2}{6kT} \int_0^\infty ru'(r)g(r)4\pi r^2 dr \tag{2}$$

Las ecuaciones anteriores ${\bf 1}$ y ${\bf 2}$ son las usadas en el programa donde hemos hecho N=k=1 debido a la normalización con la que se ha corrido el programa.

2.4 Potencial Lennard-Jones

Los átomos o moléculas que se encuentran neutros son influenciados por dos fuerzas, una que se debe a la separación que existe entre ellas (fuerza atractiva) y una que se presenta cuando la separación es muy corta (resultado de la sobre-posición de los orbitales electrónicos ¹).

El potencial de Lennard-Jones es un modelo matemático sencillo para representar dicho comportamiento físico.

$$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Donde cada una de las constantes representa:

- $1:\epsilon$ es la profundidad del potencial.
- 2 : σ es la distancia (finita) en la que el potencial entre partículas es cero.
- 3:r es la distancia entre partículas.

El primer término corresponde al de la fuerza de repulsión y el segundo al de atracción.

Para los cálculos usados en nuestra simulación se hizo $\epsilon=\sigma=1$ gracias a que los potenciales están normalizados, resultando en la ecuación:

$$V(r) = 4\left[\frac{1}{r^{12}} - \frac{1}{r^6}\right]$$

Para el programa también se necesitó de su derivada la cual corresponde a:

$$V(r) = 4 \left[-\frac{1}{r^{13}} + \frac{1}{r^7} \right]$$

3 PROCEDIMIENTOS

3.1 Funcionamiento del Programa

Para hacer los cálculos de cada una de las variables se modificó un programa que se tenía en Fortran el cual calculaba la r y g(r). Se modifico el número de partículas de 256 a 768 (variable n) y también el número de pasos de 4,000 a 10,000 (variable npasos) , en las líneas de código 12 y 25 que se muestran a continuación.

Figure 1: Modificación del número de partículas y el número de pasos.

Luego de esto corrimos el programa para cada una de las ρ de nuestro interés, en nuestro caso en el dominio [0.01,0.99]. Para hacer tal función el programa se modificó de tal forma que permitiera hacer los cálculos sin necesidad de cambiar la ρ manualmente, esto se logró con un do while, así por ejemplo el programa luego de hacer los cálculos para una ρ determinada crea un archivo llamado 0.01.dat el cual contiene los valores de r y g(r) para $\rho=0.01$ se sigue este mismo proceso para $\rho=0.02$, y así sucesivamente hasta llegar a $\rho=0.99$ Figura 2.

Nombre	Fecha de modificación	Tipo	Tamaño
3 0.01	13/11/2022 13:54	Archivo DAT	5 KB
0.02	13/11/2022 13:59	Archivo DAT	5 KB
0.03	13/11/2022 14:04	Archivo DAT	5 KB
0.04	13/11/2022 14:09	Archivo DAT	5 KB
0.05	13/11/2022 14:15	Archivo DAT	5 KB
0.06	13/11/2022 14:19	Archivo DAT	5 KB
0.07	13/11/2022 14:23	Archivo DAT	5 KB
a 0.08	13/11/2022 14:27	Archivo DAT	5 KB
0.09	13/11/2022 14:32	Archivo DAT	5 KB
0.10	13/11/2022 14:36	Archivo DAT	5 KB
0.11	13/11/2022 14:40	Archivo DAT	5 KB
0.12	13/11/2022 14:44	Archivo DAT	5 KB
0.13	13/11/2022 14:49	Archivo DAT	5 KB
0.14	13/11/2022 14:53	Archivo DAT	5 KB
0.15	13/11/2022 14:57	Archivo DAT	5 KB
0.16	13/11/2022 15:01	Archivo DAT	5 KB

Figure 2: Archivos r vs g(r) para una ρ respectiva.

Al termino de esto el programa crea un archivo llamado "rho vs P.dat" y "rho vs E.dat", los cuales contendrán los valores calculados de energía y presión para cada una de las ρ anteriormente usadas Figura 3.

¹ Conocida también como repulsión de Pauli

- 4	0.86	13/11/2022 0:58	Archivo DAT	5 KB
- 4	0.87	13/11/2022 1:02	Archivo DAT	5 KB
- 4	0.88	13/11/2022 1:06	Archivo DAT	5 KB
4	0.89	13/11/2022 1:11	Archivo DAT	5 KB
- 4	0.90	13/11/2022 1:15	Archivo DAT	5 KB
- 4	0 .91	13/11/2022 1:20	Archivo DAT	5 KB
- 4	0.92	13/11/2022 1:25	Archivo DAT	5 KB
4	0.93	13/11/2022 1:30	Archivo DAT	5 KB
- 4	0.94	13/11/2022 1:34	Archivo DAT	5 KB
- 4	0.95	13/11/2022 1:38	Archivo DAT	5 KB
- 4	0.96	13/11/2022 1:42	Archivo DAT	5 KB
- 4	0.97	13/11/2022 1:46	Archivo DAT	5 KB
- 4	0.98	13/11/2022 1:50	Archivo DAT	5 KB
- 4	0.99	13/11/2022 1:54	Archivo DAT	5 KB
ě	→ DM_3	13/11/2022 13:48	Force 2.0 Source Fi	7 KB
	graficar	13/11/2022 17:07	Documento de tex	1 KB
4	nho vs E	13/11/2022 16:39	Archivo DAT	5 KB
- 4	nho vs P	13/11/2022 16:41	Archivo DAT	5 KB

Figure 3: Archivos de E y P para las ρ usadas.

Para los cálculos de energía y presión se realizo una suma sobre los valores de r y g(r) de tal forma que cumpliera la formula de su ecuación respectiva. Las líneas de código que hacen eso se muestran a continuación:

Figure 4: Cálculo de P y E.

Donde en las 170-174, se muestran los cálculos del potenciales de Lennard-Jones y de su derivada.

Otra de las funciones del programa es que nos dice cuando se termino el proceso para una ρ determinada, mostrando en la terminal de Windows "Se ha completado para rho = #", Figura 5

```
Se completo para rho=
0.02
Se completo para rho=
0.03
Se completo para rho=
0.04
Se completo para rho=
0.05
Se completo para rho=
0.05
Se completo para rho=
0.06
Se completo para rho=
0.06
Se completo para rho=
0.07
Se completo para rho=
0.08
```

Figure 5: Terminal de Windows

4 RESULTADOS

Luego de obtener los datos con el programa se procedió a graficarlos, a continuación se muestran algunas gráficas de r vs g(r) para diversas ρ .

Figure 6: Gráfica r vs g(r) .

Figure 7: Gráfica r vs g(r) .

Figure 8: Gráfica r vs g(r).

También se hizo lo mismo para los datos obtenido para la presión y la energía.

Figure 9: ρ vs E

4 F. Author et al.

Figure 10: ρ vs P

Debido a la gran cantidad de datos obtenidos se optó por no colocarlos dentro del reporte, sin embargo se pueden encontrar, junto con el código del programa y las gráficas mostradas, en GitHub en el siguiente url: https://github.com/runnnie/Calculos-de-r-g-r-E-y-P-con-Fortran.

5 CONCLUSIÓN

Con lo anterior expuesto usamos los conceptos e ideas aprendidas durante el curso, el como la distribución radial mide el número de partículas que se encuentran entre una distancia de r y r+dr y como con ella podemos calcular variables físicas de un líquido en cuestión, con las gráficas hechas logramos apreciar como es que al variar ρ se aprecia una variación en la g(r) obtenida, esto se puede apreciar claramente al comparar las Figuras 6 y 8, se aprecia una mayor variación en g(r) en esta última.

6 REFERENCIAS BIBLIOGRÁFICAS

Lennard-Jones, J. E. Cohesion. Proceedings of the Physical Society 1931, 43, 461-482.

McQuarrie, D. A. (1972). STATISTICAL MECHANICS (1.a ed., Vol. 1) [Electrónico]. Stuart A. Rice.