WARNING: MISBEHAVIOR AT EXAM TIME WILL LEAD TO SERIOUS CONSEQUENCE.

SCUT Final Exam

Probability and Statistics Exam paper A (2021–2022-2)

Notice:

- 1. Make sure that you have filled the form on the left side of seal line.
- 2. Write your answers on the exam answer sheet.
- 3. This is a close-book exam.
- 4. The exam with full score of 100 points lasts 120 minutes.

Question No.	I	II	III	IV	V	VI	VII	VIII	Sum
Score									

I. (15 points) Two events A and B are such that P(A) = 0.5, P(B) = 0.3 and $P(A \cap B) = 0.1$. Calculate

Score

- (a) P(A | B);
- (b) P(B | A); (c) $P(A | A \cup B)$;
- (d) $P(A \mid A \cap B)$; (e) $P(A \cap B \mid A \cup B)$.

Solution.

Venn diagrams are helpful in understanding some of the events that arise below.

- (a) $P(A \mid B) = P(A \cap B)/P(B) = \frac{1}{3}$
- (b) $P(B \mid A) = P(A \cap B)/P(A) = \frac{1}{5}$
- (c) $P(A \cup B) = P(A) + P(B) P(A \cap B) = 0.7$, and the event $A \cap (A \cup B) = A$, so

$$P(A \mid A \cup B) = P(A)/P(A \cup B) = \frac{5}{7}$$

- (d) $P(A \mid A \cap B) = P(A \cap B)/P(A \cap B) = 1$, since $A \cap (A \cap B) = A \cap B$.
- (e) $P(A \cap B \mid A \cup B) = P(A \cap B)/P(A \cup B) = \frac{1}{7}$, since $A \cap B \cap (A \cup B) = A \cap B$.

II. (10 points) A fair coin is tossed repeatedly. Show that, with probability one, a head turns up sooner or later.

Score

Solution.

By the continuity property of P we have that

$$P(\text{ no head ever }) = \lim_{n \to \infty} P(\text{ no head in first } n \text{ tosses }) = \lim_{n \to \infty} 2^{-n} = 0$$

so that P(some head turns up)=1-P(no head ever)=1.(or $P(\text{ no head ever}) = \sum_{n=1}^{\infty} \frac{1}{2^n} = 1.$)

III. (10 points) Of the people passing through an airport metal detector, 0.5% activate it; let X = the number among a randomly selected group of 500 who activate the detector.

Score

- (a) What is the (approximate) pmf of X?
- (b) Compute E(X) and V(X).

Solution.

(a) $X \sim \text{Bin}(n = 500, p = .005)$. Since n is large and p is small, X can be approximated by a Poisson distribution with $\mu = np = 2.5$. The approximate pmf of X is

$$p(x; 2.5) = \frac{e^{-2.5}2.5^x}{x!}.$$

(b)
$$E(X) = V(X) = \mu = 2.5$$
.

IV. (10 point) Let X denote the time to failure (in years) of a certain hydraulic component. Suppose the pdf of X is $f(x) = 2/(x+1)^3$ for x > 0.

Score

- (a) Determine the cdf.
- (b) If the component has a salvage value equal to 100/(1+x) when its time to failure is x, what is the expected salvage value?

Solution.

(a) For $x \le 0$, F(x) = 0; For x > 0,

$$F(x) = \int_{-\infty}^{x} f(y)dy = \int_{0}^{x} \frac{2}{(y+1)^{3}} dy = -\frac{1}{2} \cdot \frac{2}{(y+1)^{2}} \Big|_{0}^{x} = 1 - \frac{1}{(x+1)^{2}}.$$

(b) The expected salvage value is

$$E\left(\frac{100}{X+1}\right) = \int_0^\infty \frac{100}{x+1} \cdot \frac{2}{(x+1)^3} dx = 200 \int_0^\infty \frac{1}{(x+1)^4} dx = \frac{200}{3}.$$

V. (20 points) Let X and Y be two continuous rv's with joint pdf

Score

$$f(x,y) = \begin{cases} \frac{6}{5} (x^2 + y) & 0 \le x \le 1, 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Determine the marginal pdf of X and Y.
- (b) Determine whether X and Y are independent rv's and state the reasons.
- (c) Compute the covariance between X and Y.
- (d) Compute the probability $P(Y \le X^2)$.

Solution.

(a) The marginal pdf of X and Y are

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy = \begin{cases} \frac{6}{5} \int_0^1 (x^2 + y) dy = \frac{6}{5} \left(x^2 + \frac{1}{2}\right), & 0 \le x \le 1; \\ 0, & \text{otherwise} \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x,y) dx = \begin{cases} \frac{6}{5} \int_0^1 (x^2 + y) dx = \frac{6}{5} \left(\frac{1}{3} + y\right), & 0 \le y \le 1; \\ 0, & \text{otherwise} \end{cases}$$

- (b) Clearly $f(x,y) \neq f_x(x) \cdot f_y(y)$, so X and Y are not independent.
- (c) Using the definition,

$$\begin{split} E(XY) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x,y) dx dy = \frac{7}{20}; \\ E(X) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x,y) dx dy = \frac{3}{5}; \\ E(Y) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x,y) dx dy = \frac{3}{5}; \\ \operatorname{Cov}(X,Y) &= E(XY) - E(X)E(Y) = \frac{7}{20} - \frac{9}{25} = -0.01. \end{split}$$

(d) The probability is

$$P(Y \le X^2) = \iint_{y \le x^2} f(x, y) dx dy = \int_0^1 \left[\int_0^{x^2} \frac{6}{5} (x^2 + y) dy \right] dx = \frac{9}{25}.$$

VI. (10 points) Let X_1, X_2, \dots, X_n be a random sample of size n from the pdf

Score

$$f(x;\alpha) = \begin{cases} \frac{1}{2}e^{-\frac{x-\alpha}{2}}, & x \ge \alpha \\ 0, & \text{otherwise} \end{cases}$$

- (a) Use the method of moments to find an estimator for α .
- (b) Find the maximum likelihood estimator for α .

Solution.

(a)
$$E(X) = \int_{-\infty}^{+\infty} x f(x,\alpha) dx = \int_{\alpha}^{+\infty} x \cdot \frac{1}{2} e^{-\frac{x-\alpha}{2}} dx = 2 + \alpha$$
, then $\alpha = E(X) - 2$. So the moment estimator of α is $\hat{\alpha}_M = \overline{X} - 2$.

(b) The likelihood function is $L(\alpha) = L(x_1, \dots, x_n; \alpha) = f(x_1, \alpha) \dots f(x_n, \alpha)$

$$= \begin{cases} \left(\frac{1}{2}\right)^n e^{-\sum_{i=1}^n \frac{x_i - \alpha}{2}}, & x_i \geqslant \alpha \quad (i = 1, \dots, n) \\ 0, & \text{otherwise.} \end{cases}$$

The ln of the likelihood fucntion is

$$\ln L(\alpha) = -n \ln 2 - \sum_{i=1}^{n} \left(\frac{x_i - \alpha}{2} \right) = -n \ln 2 - \frac{1}{2} \sum_{i=1}^{n} x_i + \frac{n}{2} \alpha \quad (x_i \geqslant \alpha, i = 1, \dots, n).$$

We have

$$\frac{d \ln L(x_1, \dots, x_n; \alpha)}{d \alpha} = \frac{n}{2} > 0 \quad (x_i \geqslant \alpha, i = 1, \dots, n)$$

So as long as $\min(x_i) \geqslant \alpha, L(\alpha)$ increase as α increase. However, as soon as $\min(x_i) < \alpha$, the likelihood function drops to 0. Thus, the mle of α is $\hat{\alpha}_L = \min(X_i)$.

VII. (10 points) A sample of 100 pH-values of a chemical compound was detected. Suppose that the population of pH is a random variable with expected value μ and standard deviation 0.1 and that the sample mean pH is 8.55.

Score

(a) Calculate a confidence interval of μ at the 90% confidence level.

(b) What sample size would be required for the width of a 90% confidence interval to be at most 0.02?

(Using the Central Limit Theorem. $z_{0.025} = 1.96$, $z_{0.05} = 1.65$, $z_{0.1} = 1.28$.)

Solution.

According to the CLT, \bar{X} has approximately a normal distribution $N\left(\mu, \frac{0.01}{n}\right)$.

(a) With $n=100, \overline{x}=8.55, \sigma=0.1$ and $z_{\alpha/2}=z_{0.05}=1.65$, the 90% confidence interval for μ is

$$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 8.55 \pm 1.65 \frac{0.1}{10} = 8.55 \pm 0.0165 = (8.5335, 8.5665).$$

(b) The width of 90% CI is $w = 2z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$. So

$$n = \left(\frac{2z_{\alpha/2}\sigma}{w}\right)^2 = \left(\frac{2(1.65)(0.1)}{0.02}\right)^2 = (16.5)^2 = 272.25,$$

So, a sample of size at least 273 is required.

VIII. (15 points) In a test of time perception for n=16 smokers after a 12-hour smoking abstinence, each of them was asked to estimate how much time had elapsed during a 45-second period. The average estimating time is 50 seconds. Suppose the population of estimating times of all smokers is known to be normal with $\sigma=9$ seconds.

Score

- (a) Does this data suggest that the population mean more than 45 seconds? State and test the appropriate hypotheses using $\alpha=0.05$. ($z_{0.025}=1.96,\ z_{0.05}=1.65,\ z_{0.1}=1.28$.)
- (b) If a level 0.05 test is used, what is $\beta(51)$, the probability of making a type II error when $\mu = 51$ seconds? $(\Phi(1.017) = 0.84, \Phi(0.707) = 0.76.)$
 - (c) What value of n is necessary to ensure that $\beta(51) = 0.10$ when $\alpha = 0.05$?

Solution.

 $H_0: \mu = 45 \text{ vs } H_a: \mu > 45.$

The sample mean is $\bar{x} = 50$.

(a)
$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{50 - 45}{9 / \sqrt{16}} = 2.22 \ge z_\alpha = z_{0.05} = 1.65$$
. Reject H_0 .

(b) The probability of making a type II error when $\mu=51$ is

$$\beta(51) = \Phi\left(z_{\alpha} + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}\right) = \Phi\left(1.65 + \frac{45 - 51}{9/\sqrt{16}}\right)$$
$$= \Phi(-1.017) = 1 - 0.84 = 0.16.$$

(c) Since $z_{0.1} = 1.28$, the requirement that the level 0.05 test also have $\beta(51) = 0.1$ necessitates

$$\Phi\left(1.65 + \frac{45 - 51}{9/\sqrt{n}}\right) = 0.1, \quad 1.65 + \frac{45 - 51}{9/\sqrt{n}} = -1.28$$
$$n = \left[\frac{9(1.65 + 1.28)}{45 - 51}\right]^2 = 19.32.$$

So n = 20 should be used.