Previously.

- Mappings between groups

- Homomorphisms

- Isomorphisms

- Image

- Kernel

- Automorphisms

This Section.

- Cosets

- Lagrange's Theorem

- Corollaries to Lagrange!

Goal. Prove that if $H \leq G$ and $|G| < \infty$, then

|H| divides |G|.

Definition. Let $H \leq G$ and let $a \in G$. Define the two sets

1. $H*a=\{h*a|h\in H\}$ called the right coset of H by a.

2. $a*H=\{a*h|h\in H\}$ called the left coset of H by a.

Note. We often write Ha and aH if the group operation is unknown/unspecified.

Example. If $G = \mathbb{Z}$ the right cosets of $H = \langle 4 \rangle$ are

$$H + 0 = 4\mathbb{Z}$$

$$H + 1 = 4\mathbb{Z} + 1$$

$$H + 2 = 4\mathbb{Z} + 2$$

$$H + 3 = 4\mathbb{Z} + 3$$

What are the left cosets?

Example. For $G = (\mathbb{R}, +), H = (\mathbb{Z}, +)$ is a subgroup.

The right coset $\mathbb{Z} + \frac{1}{2}$ is the set of all points if we shift all integers one $\frac{1}{2}$ unit to the right. That is

$$\mathbb{Z} + \frac{1}{2} = \{\dots, -\frac{5}{2}, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots\}.$$

Exercise 1. Let $G = \mathbb{Z}_{12}$ and $H = \langle \bar{3} \rangle = \{\bar{0}, \bar{3}, \bar{6}, \bar{9}\}.$

What are the right cosets of H?

Exercise 2. Let $G = S_3$ and $H = \langle (1\ 2) \rangle = \{ \varepsilon, (1\ 2) \}$. Compute the right cosets

- (a) $H\varepsilon =$
- (b) $H(1\ 2\ 3) =$
- (c) $H(1\ 3\ 2) =$
- (d) $H(1\ 2) =$
- (e) $H(1\ 3) =$
- (f) $H(2\ 3) =$

Any additional observations?

Exercise 3. Let $G = S_3$ and $H = \langle (1\ 2) \rangle = \{ \varepsilon, (1\ 2) \}$. Compute the left cosets

- (a) $\varepsilon H =$
- (b) $(1\ 2\ 3)H =$
- (c) $(1\ 3\ 2)H =$
- (d) $(1\ 2)H =$
- (e) $(1\ 3)H =$
- (f) $(2\ 3)H =$

What do you notice about the left vs right cosets in the case with $G = S_3$ and $H = \{\varepsilon, (1\ 2)\}$?

Section 2.6: Cosets and Lagrange's Theorems Last Updated: March 25, 2024

Theorem 2.6.1. Let H be a subgroup of a group G and let $a, b \in G$.

- 1. $H = He_G$.
- **2.** Ha = H if and only if $a \in H$.
- **3.** Ha = Hb if and only if $ab^{-1} \in H$.
- **4.** If $a \in Hb$, then Ha = Hb.
- **5.** Either Ha = Hb or $Ha \cap Hb = \emptyset$.
- **6.** The distinct right cosets of H partition G.

Note. Here's a recommendation. Go back to the previous 4 examples and verify these facts.

Corollary. Corresponding statements hold for left cosets. In particular, part (3) becomes

$$aH = bH \Leftrightarrow a^{-1}b \in H \Leftrightarrow b^{-1}a \in H.$$

Lemma. There is a 1-1 correspondence (aka bijection) between the elements in any two right cosets of H in G.

Lemma. If H is a finite subgroup of the group G and $a, b \in G$, then |Ha| = |Hb|.

Math 425: Abstract Algebra I

Mckenzie West

Section 2.6: Cosets and Lagrange's Theorems

Last Updated: March 25, 2024

Note. "The single most important result about finite groups!" - W. Keith Nicholson (textbook author)

Lagrange's Theorem (Theorem 2.6.2). Let G be a finite group. Then if H is a subgroup of G, we have |H| divides |G|.

Example. Recall the previous exercises

(a)
$$G = \mathbb{Z}_{12}$$
, $H = \langle \overline{3} \rangle = \{ \overline{0}, \overline{3}, \overline{6}, \overline{9} \}$

(b)
$$G = S_3 = \{\varepsilon, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}, \quad H = \langle (1\ 2) \rangle = \{\varepsilon, (1\ 2)\}$$

Corollary 1. If G is a finite group and $g \in G$, then |g| divides |G|.

Warning. Corollary 1 does **not** say that G has a subgroup of order d for every divisor d of |G|.

Example. Consider the alternating group A_4 ,

$$A_4 = \{ \varepsilon, (1\ 2\ 3), (1\ 3\ 2), (1\ 2\ 4), (1\ 4\ 2), (1\ 3\ 4), (1\ 4\ 3), (2\ 3\ 4), (2\ 4\ 3), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3) \}$$

Satisfies $|A_4| = 12$ but A_4 has no subgroup of order 6.

Corollary 2. If G is a group and |G| = n, then $g^n = e$ for all $g \in G$.

Proof. Let G be a group with |G| = n. Let $g \in G$. If |g| = m then m divides n why? So n = mk for some $k \in \mathbb{Z}$. Thus

$$g^n = g^{mk} = (g^m)^k = e^k = e.$$

Corollary 3. If p is a prime, then every group of order p is cyclic. In fact, $G = \langle g \rangle$ for every non-identity element g in G, so the only subgroups of G are $\{e\}$ and G itself.

Exercise 4. Complete the proof.

Corollary 4. Let H and K be finite subgroups of a group G. If |H| and |K| are relatively prime, then $H \cap K = \{e\}$.

Exercise 5. Prove Corollary 4.

Definition. The index of H in G, denoted |G:H|, is defined to the number of distinct right (or left if you prefer) cosets of H in G.

Exercise 6. Compute each of the following indexes.

- **1.** $|\mathbb{Z}_{12}: \langle \overline{4} \rangle|$
- **2.** $|\mathbb{Z} : 2\mathbb{Z}|$
- **3.** $|S_3: \{\varepsilon, (1\ 2)\}|$

Corollary 5. If H is a subgroup of a finite group G, then

$$|G:H| = \frac{|G|}{|H|}.$$