CÁLCULO - PRÁCTICA III - INTEGRACIÓN Y OTRAS COSAS

PEDRO FORTUNY AYUSO

1. Integral definida

Se pueden utilizar tanto las prácticas anteriores como la hoja de consulta rápida como cualquier otro material que se desee, incluyendo la ayuda de Matlab (help y doc, aunque esto último suele ser algo confuso al principio).

Para calcular integrales definidas, es preciso —puesto que es una operación simbólica— declarar previamente una variable simbólica con syms:

> syms x

y realizar la integral con respecto a ella.

1.1. Ejemplos. Calcúlense las siguientes integrales definidas.

1)
$$\int_{-1}^{1} \log(|x|) dx$$
2)
$$\int_{-\pi}^{10} \cos(x) dx$$
3)
$$\int_{1}^{2} e^{x} dx$$
4)
$$\int_{e}^{\pi} \tan(x) dx$$

Se calculan así, respectivamente:

- > syms x; int(log(abs(x)),x,-1,1)
- > syms x; int(cos(x), x, -pi, 10)
- > syms x; int(exp(x),x,1,2)
- > syms x; int(tan(x),x, exp(1), pi)

2. Función primitiva

Para calcular funciones primitivas, por la misma razón, es necesario utilizar syms, pues son cálculos simbólicos. Por ejemplo, para calcular una primitiva de cos(x):

- > syms u
- > int(cos(u),u)

(como se ve, da igual x que u). Se puede también hacer con funciones anónimas; por ejemplo, para calcular una primitiva de $P(t) = \sqrt{1-t^2}$, podrían utilizarse los siguientes comandos:

- > clear u
- $> P = @(x) sqrt(1-x.^2)$
- > syms u; % la hemos 'limpiado' arriba

Fecha: 17 de noviembre de 2014.

> int(P(u),u)

(como limpiamos u arriba, necesitamos volver a declararla como simbólica).

Si quisiéramos utilizar una primitiva como función numérica (para por ejemplo, dibujarla), hemos de hacer algo que desconozco.

3. Integrales impropias

Matlab también realiza integrales impropias; si la integral es divergente, avisa de ello y si no, da el valor de la integral impropia. Si existe, también puede dar el *valor principal de Cauchy*, cuando la integral impropia es divergente pero ese existe.

Por ejemplo, el área bajo la función $1/x^3$ desde x=1 hasta infinito se puede calcular así:

```
> syms t; int(1/t.^3,t,1,inf)
y el área bajo 1/x^{1/2} desde x=0 hasta x=2:
> syms u; int(1/u^(1/2), u, 0, 2)
```

La siguiente integral impropia diverge pero tiene valor principal (según la versión de Matlab, esto funcionará bien o no, no está claro):

4. Ejercicios

1.- Calcúlense las siguientes integrales definidas:

$$\int_{-2}^{3} \operatorname{sen}(u-2) \, du$$

$$\int_{-10}^{-9} \frac{1}{1 + (t-1)^4} \, dt$$

$$\int_{6}^{8} \frac{x^2 + 1}{1 - 2x + 2} \, dx$$

$$\int_{2}^{3} \sqrt{1 - v^2} \, dv$$

2.- Calcúlense primitivas de las siguientes funciones:

$$h(u) = \log^2(u) + e^u$$

$$f(x) = \tan(x)$$

$$g(t) = \frac{t}{t^2 - 1}$$

$$s(x) = \frac{x^3}{x^2 - 2x + 2}$$

- 3.- Representar gráficamente la función $y(x)=x(1+\sin(x))e^{\frac{-x}{10}}$ para x entre 3 y 100 con 1000 puntos. Calcular el área definida por esa función y el eje OX, desde x=1 hasta $x=\infty$, si es que es finita.
- **4.-** Para la función y(x) del ejercicio anterior, calcular una primitiva h(x) y dibujarla entre -5 y 5 usando pasos de 0.01. Comprobar de alguna manera que la función h(x) es realmente una primitiva de y(x).

5.- Calcúlense las siguientes integrales definidas:

$$\int_{-10}^{-9} \frac{1}{1 + (x^2 + 1)^4} dx$$

$$\int_{6}^{8} \frac{x^2 + 1}{1 - 2x + 2} dx$$

$$\int_{2}^{3} \sqrt{1 + y^2} dy$$

$$\int_{-2}^{3} \tan(u - 2) du$$

6.- Calcúlense primitivas de las siguientes funciones:

$$h(u) = (u^2 + u)e^u$$

$$f(x) = x^2 \operatorname{sen}(x)$$

$$g(t) = \frac{1}{t^2 - 1}$$

$$f(x) = \frac{x^3}{x^2 - 2x + 2}$$

- 7.- Representar gráficamente la función $f(x) = x^3 e^{-x}$ para x entre 0 y 3 con 1000 puntos. Repetir para x entre 0 y 1000 con 2000 puntos. Calcular el área definida por esa función desde x=3 hasta $x=\infty$ y el eje OX, si es que es finita.
- 8.- Una partícula se mueve a lo largo del eje OX mediante una fuerza impulsora de $f(x) = x^2/(1+x^2) + 4x$ newtons. Calcular los joules de trabajo realizados por dicha fuerza para trasladar la partícula:
 - Desde x = 0 hasta x = 7 metros.
 - Desde x = 2 hasta x = 7 metros.
- 9.- Se tiene una barra de longitud 3m y de densidad lineal $\rho(x) = 1/\sqrt{x}g/cm$, medida desde uno de los extremos. Calcúlese el centro de masas de dicha barra.