Mattias Villani

► Probability in data mining

Order statistics

Dept. of Computer and Information Science Division of Statistics Linköping University

MATTIAS VILLANI (STATISTICS, LIU)

► Finding the distribution of extremes:

ORDER STATISTICS

PROBABILITY THEORY - L4

MATTIAS VILLANI (STATISTICS, LIU) 1 / 8

PROBABILITY THEORY - L4

2 / 8

DISTRIBUTION OF THE MAXIMUM

 $\Gamma_{
m H}$ The distribution of the maximum $X_{(n)}$

$$F_{X_{(n)}}(x) = P(X_1 \le x, X_2 \le x, ..., X_n \le x)$$

= $\prod_{i=1}^{n} P(X_i \le x) = [F(x)]^n$.

The density of the maximum $X_{(n)}$

$$f_{X_{(n)}}(x) = n [F(x)]^{n-1} f(x)$$

Let
$$X_1, ..., X_n \sim L(a)$$
. Find $F_{X_{(n)}}(x)$. Solution: If $X \sim L(a)$ then
$$F(x) = \begin{cases} \frac{1}{2} \exp\left(\frac{x}{b}\right) & \text{if } x < 0\\ 1 - \frac{1}{2} \exp\left(-\frac{x}{b}\right) & \text{if } x \geq 0 \end{cases}$$

so
$$F_{X_{(n)}}(x) = [F(x)]^n = \begin{cases} \frac{1}{2^n} \exp\left(\frac{nx}{b}\right) & \text{if } x < 0\\ \left[1 - \frac{1}{2} \exp\left(-\frac{x}{b}\right)\right]^n & \text{if } x \ge 0 \end{cases}$$

Even if the original sample $X_1, X_2, ..., X_n$ are independent, their order

statistics $X_{(1)}, X_{(2)}, ..., X_{(n)}$ are not clearly not.

DEF The order statistics: $X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)}.$

 $X_{(k)}=$ the kth smallest of $X_1,X_2,...,X_n$

• Range: $R = \max(X_1, X_2, ..., X_n) - \min(X_1, X_2, ..., X_n)$.

DEF The kth order variable

▶ Median: $Pr(X \le m) = 1/2$.

• $min(X_1, X_2, ..., X_n)$ • $max(X_1, X_2, ..., X_n)$.

PROBABILITY THEORY - L4

MATTIAS VILLANI (STATISTICS, LIU)

MATTIAS VILLANI (STATISTICS, LIU)

 ${\rm TH}~{\rm The~distribution~of~the~minimum~}\chi_{(1)}$

$$F_{X_{(1)}}(x) = 1 - P\left(X_{(1)} > x\right)$$

= 1 - P(X₁ > x, X₂ > x, ..., X_n > x)
= 1 - \prod_{i=1}^{n} P(X_i > x) = 1 - [1 - F(x)]^n.

The density of the minimum $X_{(n)}$

$$f_{X_{(1)}}(x) = n [1 - F(x)]^{n-1} f(x)$$

lacksquare Let $X_1,...,X_n\sim Exp(a)$. What is $f_{X_{(1)}}(x)$ and $E(X_{(1)})$? Solution: We have

$$F(x) = 1 - e^{-ax}$$

S

$$f_{X_{(1)}}(x) = n \left[e^{-ax} \right]^{n-1} a e^{-ax} = a n e^{-anx}$$

 $\sup_{\text{MATTIAS VILLAN!}} \langle X_{11} \rangle \sim Exp(an) \text{ and } E(X_{(1)}) = \frac{1}{3n}. \text{ [Serial electric circuits]}$

 $F_{Y_i}(y) = [F(y)]^3 = \left(\frac{y-a}{b-a}\right)^3$ $F_{X_{(k)}}(x) = F_{\beta(k,n+1-k)}[F(x)]$ three jumps for the *i*th athlete, for i = 1, ..., n: Then derive $Y_{(n-1)}$

JOINT DISTRIBUTION OF THE EXTREMES AND RANGE

► So far: only marginal distributions of order statistics.

TH The joint density of $X_{(1)}$ and $X_{(n)}$

$$f_{X_{(1)},X_{(n)}}(x,y) = \begin{cases} n(n-1) \left(F(y) - F(x) \right)^{n-2} f(y) f(x) & \text{if } x < y \\ 0 & \text{otherwise} \end{cases}$$

From $f_{X_{(1)},X_{(n)}}(x,y)$ we can derive the distribution of the Range $R_n=X_{(n)}-X_{(1)}$ by the transformation theorem.

TH The distribution of the Range $R_n = X_{(n)} - X_{(1)}$ is

$$f_{R_n}(r) = n(n-1) \int_{-\infty}^{\infty} \left(F(u+r) - F(u) \right)^{n-2} f(u+r) f(u) du$$

Marginal distribution of $X_{(k)}$

TH The distribution of the kth order variable $X_{(k)}$ from a random sample

where $F_{eta(k,n+1-k)}(\cdot)$ is the cdf of a Beta(k,n+1-k) variable.

Solution: First, calculate the distribution of Y_i = longest jump out of \bigcirc Let the individual jumps of n athletes in a long jump tournament be independently U(a,b) distributed. What is the probability that the recorded score of the silver medalist is longer than c meters?

$$F_{Y_{(n-1)}}(y) = F_{\beta(n-1,2)}\left(\left(rac{y-a}{b-a}
ight)^3
ight)$$

MATTIAS VILLANI (STATISTICS, LIU)

5 / 8

8/9

JOINT DISTRIBUTION OF ORDER STATISTICS

TH The joint density of the order statistics is

$$f_{X_{(1)},\dots,X_{(n)}}(y_1,\dots,y_n) = \begin{cases} n! \prod_{k=1}^n f(y_k) & \text{if } y_1 < y_2 < \dots < y_n \\ 0 & \text{otherwise} \end{cases}$$

► The marginal densities of any order variable can be derived by integrating $f_{X_{(1)},\dots,X_{(n)}}(y_1,\dots,y_n)$ in the usual fashion.