NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Ho Chin Fung

MA4235 Graph Theory AY 2008/2009 Sem 2

Question 1

(i) Observe that $S = \{v_1, v_3, v_6, v_7\}$, $S = \{v_2, v_3, v_5, v_6\}$, $S = \{v_3, v_5, v_6, v_7\}$, $S = \{v_3, v_5, v_7, v_8\}$ and $S = \{v_4, v_5, v_6, v_7\}$ are examples of cuts of G such that |S| = 4. Thus, we have $\kappa(G) \leq 4$. By exhausting all possibilities, we find that there does not exist a cut S of G such that |S| = 3. Thus, we have $\kappa(G) > 3$.

Hence, we have $\kappa(G) = 4$.

Now, any of the above S is a cut of G such that $|S| = \kappa(G)$.

(ii) Observe that $F = \{v_1v_2, v_1v_3, v_1v_5, v_1v_6\}$, $F = \{v_1v_2, v_2v_3, v_2v_6, v_2v_7\}$ and $F = \{v_4v_8, v_5v_8, v_6v_8, v_7v_8\}$ are examples of edge-cuts of G such that |F| = 4. Thus, we have $\kappa'(G) \leq 4$. By exhausting all possibilities, we find that there does not exist a edge-cut F of G such that |F| = 3. Thus, we have $\kappa'(G) > 3$. Hence, we have $\kappa'(G) = 4$.

Now, any of the above F is a edge-cut of G such that $|F| = \kappa'(G)$.

(iii) We know that $\kappa(G) = 4$. Recall that for any graph G, $\kappa(G) \leq \delta(G)$. Note that removal of any three edges from G will result in a G' with e(G') = 15. Thus, G' will be a graph with 8 vertices and a total degree of 30. By pigeonhole principle, we have $3 \geq \delta(G') \geq \kappa(G')$. G' will no longer be 4-connected. Therefore the maximum number of edges that can be removed is at most 2.

Observe that the removal of $\{v_3v_5, v_6v_7\}$ or $\{v_3v_7, v_5v_6\}$ results in a G' that is still 4-connected. Therefore, the maximum number of edges that can be removed is 2.

(iv) Note that $d(v_1) = d(v_2) = d(v_4) = d(v_8) = 4 = \delta(G)$. By adding only one edge to G, we can increase the degree of at most two of these four vertices. We still have $4 = \delta(G^*) \ge \kappa(G^*)$. G^* cannot be 5-connected. Therefore the number of new edges to be added is at least 2. Observe that the addition of $\{v_1v_4, v_2v_8\}$ or $\{v_1v_8, v_2v_4\}$ results in a 5-connected G^* . Therefore, the least number of new edges to be added is 2.

One such G^* is shown below with new edges bolded in blue:

(i) Let $S = \{v_1, v_3, v_5, v_7, v_9, v_{11}, v_{16}\}.$

Now, S is a cut of G with |S| = 7 < 9 = o(G - S). Therefore, G does not contain a perfect matching.

Alternatively, also let $Y = \{v_2, v_4, v_6, v_8, v_{10}, v_{12}, v_{13}, v_{14}, v_{15}\}$. Then G is a bipartite graph with bipartite set S and Y, where $|S| = 7 \neq 9 = |Y|$. Therefore G does not contain a perfect matching.

(ii) Let $M = \{v_1v_2, v_3v_4, v_5v_6, v_7v_8, v_9v_{10}, v_{11}v_{12}, v_{13}v_{16}\}$, shown below as blue bold edges:

Now, M is a complete matching of S into Y. Therefore, M is a maximum matching in G. [There can be other possible answers to this question.]

(iii) Let $M' = \{v_1v_2, v_3v_4, v_5v_6, v_7v_{14}, v_9v_{15}, v_{11}v_{13}\}$, shown below as blue bold edges:

Now, M' is a maximal matching of G. Also, |M'| = 6 < 7 = |M|. Therefore, M' is a maximal matching of G which is not maximum. [There can be other possible answers to this question.]

(iv) From results of 2(ii), we have $\alpha'(G) = |M| = 7$. Using Gallai identities, we have $\beta'(G) = v(G) - \alpha'(G) = 16 - 7 = 9$. Since G is bipartite, we have $\alpha(G) = \beta'(G) = 9$. Using Gallai identities again, we have $\beta(G) = v(G) - \alpha(G) = 16 - 9 = 7$.

Page: 2 of 9

Observe that G contains a subgraph isomorphic to a subdivision of $K_{3,3}$, as shown below:

Therefore, G is not planar.

There exists a planar representation of graph H, as shown below:

Page: 3 of 9

Therefore, H is planar.

There exist planar representations of $\overline{C_n}$ for n=3,4,5 and 6, as shown below:

Hence, $\overline{C_3}$, $\overline{C_4}$, $\overline{C_5}$ and $\overline{C_6}$ are planar.

Observe that $\overline{C_7}$ contains a subgraph isomorphic to a subdivision of $K_{3,3}$, as shown below:

Hence, $\overline{C_7}$ is not planar.

Observe that for $n \geq 8$, the subgraph of $\overline{C_n}$ induced by $\{v_1, v_2, v_3, v_5, v_6, v_7\}$ is isomorphic to $K_{3,3}$. Hence, $\overline{C_n}$ is not planar for $n \geq 8$.

Therefore, 3, 4, 5 and 6 are the only values of n such that $\overline{C_n}$ is planar.

(a) (i) Observe that $\langle \{v_1, v_3, v_4, v_5, v_6, v_8\} \rangle$ is isomorphic to W_6 . Thus, $\chi(G) \geq 4$. A 4-colouring of G exists, as shown below:

Therefore, we have $\chi(G) = 4$.

(ii) Let $H = G - v_1 v_2$ be a subgraph of G. Then, we have $\chi(H) \leq \chi(G) = 4$. Observe that H also contains a subgraph isomorphic to W_6 . Thus, $\chi(H) \geq 4$. Hence, $\chi(H) = 4$. Then, there exists a subgraph H of G such that $\chi(H) \nleq \chi(G)$. Therefore, G is not critical.

(b) (i) Observe that $e(G) = 40 < 45 = e(K_{10})$. Thus, G is a proper subgraph of K_{10} . Hence, $\max(\chi(G)) < 10$. Also observe that $e(G) = 40 \ge 36 = e(K_9)$. Thus, it is possible for G to contain a clique of order 9. Hence, $\max(\chi(G)) \ge 9$. Therefore, we have $\max(\chi(G)) = 9$.

(ii) We claim that there does not exist a 4-colourable G.

Suppose not. Let V_1, V_2, V_3, V_4 be the four colour classes of G.

Next, suppose one of the colour classes has 4 or more vertices. WLOG, say $v(V_1) \ge 4$. Then, $e(\overline{V_1}) \ge e(K_4) = 6$. This contradicts to $e(\overline{V_1}) \le e(\overline{G}) = 45 - 40 = 5$, since $\overline{V_1}$ is a subgraph of \overline{G} and \overline{G} has only 5 edges. Thus, we deduce that if there exists a 4-colourable G, then each colour class can have at most 3 vertices.

Since v(G) = 10 and each colour class can have at most 3 vertices, by pigeonhole principle, there are at least two colour classes with 3 vertices. WLOG, say $v(V_1) = v(V_2) = 3$. Then $e(\overline{V_1}) + e(\overline{V_2}) = e(K_3) + e(K_3) = 3 + 3 = 6$. This is also a contradiction since \overline{G} has only 5 edges. Thus, we can conclude that a 4-colouring of G does not exist. Hence, $\chi(G) \geq 5$.

A 5-colourable G exists, as shown below: $(\overline{G} \text{ is also shown below for easier visualisation})$

Therefore, we have $\min(\chi(G)) = 5$.

(a) Define the following graphs as such:

Observe that G is a K_3 -gluing of two G_1 's. So we have

$$P(G,\lambda) = P(G_1\langle 3\rangle G_1, \lambda)$$

$$= \frac{P(G_1,\lambda)P(G_1,\lambda)}{P(K_3,\lambda)}$$

$$= \frac{P(G_1,\lambda)^2}{(\lambda)(\lambda-1)(\lambda-2)}.$$

Consider the edge e_1 of G_1 . We have

$$P(G_1, \lambda) = P(G_1 - e_1, \lambda) - P(G_1 \bullet e_1, \lambda)$$

= $P(G_2, \lambda) - P(G_3, \lambda)$.

Observe that G_2 is an edge-gluing of G_4 and a C_3 . So we have

$$P(G_2, \lambda) = P(G_4\langle 2 \rangle C_3, \lambda)$$

$$= \frac{P(G_4, \lambda)P(C_3, \lambda)}{P(K_2, \lambda)}$$

$$= \frac{P(G_4, \lambda)(\lambda)(\lambda - 1)(\lambda - 2)}{(\lambda)(\lambda - 1)}$$

$$= (\lambda - 2)P(G_4, \lambda).$$

Observe that G_4 is an edge-gluing of a C_3 and a C_4 . So we have

$$P(G_4, \lambda) = P(C_3\langle 2 \rangle C_4, \lambda)$$

$$= \frac{P(C_3, \lambda)P(C_4, \lambda)}{P(K_2, \lambda)}$$

$$= \frac{\left((\lambda)(\lambda - 1)(\lambda - 2)\right)\left((\lambda)(\lambda - 1)(\lambda^2 - 3\lambda + 3)\right)}{(\lambda)(\lambda - 1)}$$

$$= (\lambda)(\lambda - 1)(\lambda - 2)(\lambda^2 - 3\lambda + 3).$$

Consider the edge e_2 of G_3 . We have

$$P(G_3, \lambda) = P(G_3 - e_2, \lambda) - P(G_3 \bullet e_2, \lambda)$$

$$= P(G_5, \lambda) - P(K_4, \lambda)$$

$$= (\lambda)(\lambda - 1)(\lambda - 2)^3 - (\lambda)(\lambda - 1)(\lambda - 2)(\lambda - 3)$$

$$= (\lambda)(\lambda - 1)(\lambda - 2)(\lambda^2 - 5\lambda + 7).$$

Therefore, we have

$$P(G,\lambda) = \frac{P(G_1,\lambda)^2}{(\lambda)(\lambda-1)(\lambda-2)} = \frac{(P(G_2,\lambda) - P(G_3,\lambda))^2}{(\lambda)(\lambda-1)(\lambda-2)}$$

$$= \frac{((\lambda-2)P(G_4,\lambda) - (\lambda)(\lambda-1)(\lambda-2)(\lambda^2 - 5\lambda + 7))^2}{(\lambda)(\lambda-1)(\lambda-2)}$$

$$= \frac{((\lambda-2)(\lambda)(\lambda-1)(\lambda-2)(\lambda^2 - 3\lambda + 3) - (\lambda)(\lambda-1)(\lambda-2)(\lambda^2 - 5\lambda + 7))^2}{(\lambda)(\lambda-1)(\lambda-2)}$$

$$= ((\lambda-2)(\lambda^2 - 3\lambda + 3) - (\lambda^2 - 5\lambda + 7))^2(\lambda)(\lambda-1)(\lambda-2)$$

$$= (\lambda^3 - 6\lambda^2 + 14\lambda - 13)^2(\lambda)(\lambda-1)(\lambda-2).$$

The equation $P(G, \lambda) = 0$ has roots 0, 1, and 2. (Since λ is a positive integer by the definition of chromatic polynomial, we shall omit the non-integer roots.)

(b) Let H^* be a graph which is χ -equivalent to H. Then we have

$$v(H^*) = v(H) = 6.$$

 $e(H^*) = e(H) = 7.$
 $\#_{H^*}(C_3) = \#_H(C_3) = 2.$

Firstly, H is a possible H^* since H is clearly χ -equivalent to itself.

Next, to avoid omitting or overcounting, we shall list all other possible H^* by cases.

Case 1: The two C_3 's of H^* share a common edge:

Case 2: The two C_3 's of H^* share a common vertex:

Case 3: The two C_3 's of H^* neither share common edges nor vertices:

The above 3 cases cover all possible arrangements of the two C_3 of H^* . It can be checked that each of the above listed graphs has the same chromatic polynomial as H, that is $P(H,\lambda) = \lambda(\lambda-1)^3(\lambda-2)^2$. Thus, we have listed all graphs which are χ -equivalent to H.

- (i) Suppose that there exists a vertex $w \in V(T)$ such that w is an exact-1-king. Observe that w is a source and hence the only source. Thus, $k_1^*(T) \leq 1$. Therefore, it is impossible to construct a T such that $k_1^*(T) \geq 2$.
- (ii) Since $k_1^*(T) = 1$, then there exists a vertex $w \in V(T)$ such that w is an exact-1-king. Observe that w is a source and thus not reachable from any other vertices. Hence, all other vertices are not kings. Therefore, $k_r^*(T) = 0$ for each $r \geq 2$.
- (iii) Since $k_1^*(T) = 0$, T does not contain a source. Let w_1 be a vertex of maximum score in T. Then w_1 is an exact-2-king of T. Next, consider the inset and outset of w_1 . Let w_2 be a vertex of maximum score in $[I(w_1)]$. Then w_2 is a 2-king of $[I(w_1)]$. Observe that w_2 can reach any vertex in $O(w_1)$ via $w_2 \to w_1 \to O(w_1)$. Hence, w_2 is a exact-2-king of T.

Using similar argument, there exists another exact-2-king $w_3 \in I(w_2)$. Hence, $k_2^*(T) \geq 3$. For each $n \geq 3$, there exists a tournament T_n with three exact-2-kings, as illustrated below:

Here, w_1 , w_2 and w_3 form a directed C_3 . Each x_i is dominated by all three w_i 's. The subgraph induced by $\{x_1, x_2, \ldots, x_{n-3}\}$ can be any tournament. It can be checked that each w_i is an exact-2-king. Also, observe that the w_i 's are not reachable from any of the x_i 's. Thus, the x_i 's cannot be kings. Hence, w_1 , w_2 and w_3 are the only exact-2-kings.

Since such a construction exists, we can conclude that the minimum value of $k_2^*(T)$ is 3.

- (iv) Let T be a tournament such that $k_1^*(T) = 0$, $k_2^*(T) = 3$ and $k_3^*(T) = 0$. We shall show that $k_4^*(T) = 0$ and hence $k_4^*(T) \ngeq 1$. Since $k_1^*(T) = 0$, T does not contain a source. Next, since the inset of each exact-2-king contains an exact-2-king and since $k_2^*(T) = 3$, then $\langle K_2(T) \rangle$ forms a directed C_3 . Suppose there exists an arc xw such that $x \in V(T) \setminus K_2(T)$ and $w \in K_2(T)$. Then x will
 - Suppose there exists an arc xw such that $x \in V(T) \setminus K_2(T)$ and $w \in K_2(T)$. Then x will become an exact-3-king, which leads to $k_3^*(T) \geq 1$, a contradiction to $k_3^*(T) = 0$. Hence, no such arc xw exists. Therefore, vertices in $K_2(T)$ is not reachable from any vertices in $V(T) \setminus K_2(T)$. Thus, $V(T) \setminus K_2(T)$ does not contain any kings, in particular, exact-4-kings. Hence, $k_4^*(T) = 0$ and $k_4^*(T) \ngeq 1$.

Therefore, it is not possible to construct T.

(v) Since $k_{n-1}^*(T) = 1$, there exists vertices w and x such that d(w, x) = (n-1). We shall label the shortest w - x path as P. Note that P is of length (n-1) and it contains all the n vertices of T. Next, we shall re-label the vertices of T such that the path P can be represented as:

We claim that for each k, v_k is dominated by all v_i 's for $(k+2) \le i \le n$.

Otherwise, there will exist a v_i such that $v_1 \to \cdots \to v_k \to v_i \to \cdots \to v_n$ is a $v_1 - v_n$ path of length less than (n-1), contrary to that P is the shortest $v_1 - v_n$ path.

With this claim, we can now deduce the general structure of T as follow:

For each (i, j)-pair s.t. i < j, $\begin{cases} v_i \to v_j & \text{, if } j = i+1, \\ v_j \leftarrow v_i & \text{, otherwise.} \end{cases}$

Observe that T does not contain a source. Hence, $k_1^*(T) = 0$.

Now consider the vertex v_n . We have $d(v_n, v_1) = d(v_n, v_2) = \cdots = d(v_n, v_{n-2}) = 1$. The shortest $v_n - v_{n-1}$ path is $v_n \to v_{n-2} \to v_{n-1}$, so $d(v_n, v_{n-1}) = 2$. Thus, v_n is an exact-2-king. Similar argument shows that v_{n-1} and v_{n-2} are also exact-2-kings.

Now consider the vertex v_{n-3} . To reach v_n , the shortest path is $v_{n-3} \to v_{n-2} \to v_{n-1} \to v_n$, so $d(v_{n-3}, v_n) = 3$. By inspection, any other vertex is reachable from v_{n-3} on a path of length 3 or less. Thus, v_{n-3} is an exact-3-king.

Similar argument shows that each of the remaining v_{n-r} is an exact-r-kings.

Therefore, we have $k_1^*(T) = 0$, $k_2^*(T) = 3$, and $k_3^*(T) = k_4^*(T) = \cdots = k_{n-2}^*(T) = 1$.

(vi) Suppose such a T exists. Let w^* be the transmitter(source) in T^* and let w be the corresponding vertex in $T[K_2(T)]$. Since $k_2(T) = v(T[K_2(T)]) = v(T^*) = m \ge 2$, by result of 7(ii), T does not contain a transmitter. Hence, I(w) is not empty.

Since $w \in K_2(T)$, w is a 2-king of T. Using arguments similar to that in 7(iii), there exists a 2-king in I(w). Let this 2-king be u. Then $u \in K_2(T)$ and hence, there exists a corresponding vertex $u^* \in T^*$ such that u^* dominates w^* in T^* .

This contradicts to that w^* is a transmitter.

Therefore, it is not possible to construct T.