Propagação e Radiação de Ondas Eletromagnéticas 2023/2024

Condições fronteira, Equações de Maxwell e Propagação em Meio Material

- 1) Considere uma onda plana a 300 MHz a propagar-se em espaço livre no sentido do vetor $\hat{k} = \frac{\sqrt{3}}{2}\hat{y} + \frac{1}{2}\hat{z}$ e com um campo elétrico eficaz de $\vec{E} = 10\hat{x}$ (V/m) medido na origem.
 - a) Verifique que k̂ é um vetor unitário e que o campo elétrico é compatível com a direção de propagação.
 - b) Calcule o vetor campo magnético na origem. $Resp: \vec{H} = \frac{\hat{y} \sqrt{3}\hat{z}}{24\pi} (A/m)$
 - c) Escreva a equação do campo magnético e do campo elétrico em qualquer ponto do espaço. *Resp:* $\hat{E}(x,y,z) = 10\hat{x}e^{-j\pi\left(\sqrt{3}y+1z\right)}\left(\frac{V}{m}\right); \quad \vec{H}(x,y,z) = \frac{\hat{y}-\sqrt{3}\hat{z}}{24\pi}e^{-j\pi\left(\sqrt{3}y+1z\right)}(A/m)$
 - d) Calcule o vetor campo elétrico e campo magnético no ponto $P(10,\sqrt{3},-2)$. Resp: $\vec{E}(P) = -10\hat{x} \left(\frac{V}{m}\right)$; $\vec{H}(P) = -\frac{\hat{y}-\sqrt{3}\hat{z}}{24\pi} \left(A/m\right)$
 - e) Calcule o vetor de Poynting. $Resp: \vec{S}(x, y, z) = \frac{5}{12\pi} (\sqrt{3}\hat{y} + \hat{z}) (W/m^2).$
- 2) O campo elétrico instantâneo no interior dum cabo coaxial, com um dielétrico tendo $\epsilon_r = 2.25$, $\mu_r = 1$, $\sigma = 0$ e com condutor interior de raio a e raio interno do condutor exterior igual a b, é dado por $\vec{E} = \frac{100}{\rho} cos(10^8 t \beta z)\hat{\rho}$ (V/m) onde β (rad/m) é a constante de fase (componente imaginária da constante de propagação) e ρ (m) é a distância radial medida a partir do eixo do cabo.
 - a) Determine usando as equações de Maxwell na forma pontual, o campo magnético instantâneo e a constante de fase. $Resp: \beta = \frac{\omega \sqrt{\varepsilon_r}}{c} (rad/m), \vec{H} = \frac{100\beta}{\mu_0 \rho 10^8} cos(10^8 t \beta z) \hat{\phi} (A/m)$
 - b) Verifique que o campo eletromagnético satisfaz as duas primeiras leis de Maxwell (lei de Gauss).
- 3) Considere uma onda com um campo magnético dado na forma fasorial por $\vec{H}_s = 2e^{j\beta x}\hat{z}$ (A/m) que se propaga no meio livre (sem perdas e $\epsilon_r = 1$, $u_r = 1$) na direção de $-\hat{x}$ com uma frequência de 10^6 (rad/s). Usando as equações de Maxwell na forma fasorial calcule β e deduza as expressões dos campos elétrico e magnético no tempo. Resp: $\beta = \frac{\omega}{c} = 0.0033 \left(\frac{\text{rad}}{\text{m}}\right)$, $\vec{E} = -\frac{2\beta}{\epsilon_0 \omega} \cos\left(10^6 \text{t} + \frac{1}{3} 10^{-2} \text{x}\right) \hat{y}$ (V/m), $\vec{E} = -754 \cos\left(10^6 \text{t} + \frac{1}{3} 10^{-2} \text{x}\right) \hat{y}$ (V/m); $\vec{H} = 2\cos\left(10^6 \text{t} + \frac{1}{3} 10^{-2} \text{x}\right) \hat{z}$ (A/m)
- 4) Considere uma onda com um campo magnético dado em coordenadas cilíndricas na forma fasorial por $\vec{H}_s = \frac{2}{\rho} e^{-\gamma z} \hat{\Phi}$ (A/m) que se propaga no polipropileno (sem perdas e $\epsilon_r = 2.25$) na direção de + \hat{z} com uma frequência angular de $\omega = 10^{10}$ (rad/s) e constante de propagação γ . Determine, usando as eqs de Maxwell na forma fasorial, a expressão do campo elétrico no tempo. $Resp: \beta = \frac{w\sqrt{\epsilon_r}}{c} = 50 \text{ (rad/m)}, \vec{E} = 502.65\cos(10^{10}\text{t} 50\text{z})\hat{\rho}$ (V/m)

Polarização

- 5) Considere o vetor bidimensional do campo elétrico $\vec{E} = E_x(t)\hat{x} + E_y(t)\hat{y}$ com variação harmónica no tempo, ao qual corresponde uma amplitude complexa (fasorial) da forma $\vec{E} = E_x\hat{x} + E_y\hat{y}$. Represente para os casos que se seguem, a evolução de $\vec{E}(t)$ no plano X0Y, durante um período T (ω =2 π /T é a frequência angular) e determine o tipo de polarização sabendo que a onda se propaga no sentido zz⁺.
 - a) $\vec{E} = 1\hat{x} + 1\hat{y}$ (V/m). Resp: Linear a 45°
 - b) $\vec{E} = 1\hat{x} + j\hat{y}$ (V/m). Resp: Circular Esquerda (LHCP)
 - c) $\vec{E} = 0\hat{x} + 1\hat{y}$ (V/m). Resp: Linear vertical
 - d) $\vec{E} = 1\hat{x} + 0.5 e^{-j\frac{\pi}{4}}\hat{y}$ (V/m). Resp: Elíptica Direita (RHEP),
- 6) Calcule as perdas de polarização M_L (dB) de uma antena com a polarização da alínea a) ao receber as ondas com polarização das alíneas b), c) e d). Resp: 3 dB, 3 dB, 6.63 dB.

Ondas em meios com perdas

- 7) Uma onda plana uniforme de frequência 10GHz, propaga-se numa amostra de arsenieto de gálio (GaAs, $\varepsilon_r=12.9, \mu_r=1, tg\delta=0.0005$) que é usado como material substrato para circuitos de estado sólido de alta velocidade. Determine, a constante de atenuação em Np/m, a impedância intrínseca do meio e a velocidade de fase. $Resp: \alpha=0.188 \text{ Np/m}, \ \eta=105 \ (\Omega), \ v=8.353x10^7 \ (m/s)$
- 8) A 600MHz e a 2.4GHz, mediu-se uma permitividade relativa de $\epsilon_r = 23.1 j11.85$ e $\epsilon_r = 12.17 j4.54$ na massa de pão após uma cozedura durante 10 minutos. Determine a profundidade de penetração para ambas as frequências e compare os resultados. $Resp: \delta_{600MHz} = 6.65$ (cm), $\delta_{2.4GHz} = 3.11$ (cm)
- 9) Uma terra húmida à frequência de 1 MHz tem os seguintes parâmetros: $\sigma = 10^{-1}$ (S/m); $\varepsilon_r = 4$; $\mu_r = 1$. Considerando que uma onda plana incidente na terra produz à superfície, mas já dentro da terra, um campo elétrico de $E = 3x10^{-2}$ (V/m), determine:
 - a) A distância que a onda deve percorrer para que o campo passe ser $E=1.104 \ x 10^{-2}$ (V/m). Resp: *Meio bom condutor; d*=1.59 (*m*).
 - b) A atenuação sofrida em dB, na alínea a). Resp: A=8.68 dB
 - c) O comprimento de onda dentro da terra. *Resp:* λ =10 (m)
 - d) A velocidade de fase dentro da terra. Resp: $v=10^7$ (m/s)
 - e) A impedância própria da terra. Resp: η =6.283(1+j) (Ω).

Condições Fronteira e equações de Maxwell

- 10) Responda às seguintes questões.
 - a) Num determinado plano o campo densidade de fluxo magnético é dado por $\vec{B} = (y + 2x)\hat{x} + (y + 2x)\hat{y}$

- $(x + ay)\hat{y}$ (Wb/m^2). Calcule o valor de a para o campo poder ser representado pela equação acima. Resp: a = -2.
- b) Considere uma densidade de corrente dada por $\vec{J}(x) = \frac{1}{1+x^2}\hat{x}(A/m^2)$. Calcule a taxa de variação da densidade volúmica de carga. $Resp: \frac{\partial \rho}{\partial t} = -\frac{2x}{(1+x^2)^2}(C/m^3s^{-1})$
- 11) Considere o plano XoY como a superfície de separação de dois meios. O meio 2 para z > 0 tem uma permitividade relativa de $\epsilon_{r2} = 1$ (ar) e o meio 1 (z < 0) uma permitividade relativa $\epsilon_{r1} = 4$.
 - a) Sabendo que o vetor campo elétrico no meio 1 é dado por $\vec{E}_1 = 2\hat{x} + 1\hat{y} + 2\hat{z}$ (V/m) calcule o campo elétrico no meio 2. $Resp: \vec{E}_2 = 2\hat{x} + 1\hat{y} + 8\hat{z}$ (V/m)
 - b) Suponha agora uma distribuição de carga na superfície de separação dos meios com uma densidade superficial de $\rho_s = \frac{10^{-9}}{12\pi}$ (C/m²). Calcule o campo elétrico no meio 2. Resp: $\vec{E}_2 = 2\hat{x} + 1\hat{y} + 11\hat{z}$ (V/m)
- 12) Considere o plano XoY como a superfície de separação de dois meios. O meio 2, para z > 0, tem uma permitividade relativa de $\mu_{r2} = 1$ (ar) e o meio 1 (z < 0) uma permitividade relativa $\mu_{r1} = 2$.
 - a) Assumindo o vetor campo magnético no meio dado por $\vec{H}_1 = \hat{x} + 2\hat{z}$ (A/m) calcule o campo magnético no meio 2. $Resp: \vec{H}_2 = \hat{x} + 4\hat{z}$ (A/m)
 - b) Calcule o campo densidade de fluxo B no meio 1. Resp: $\vec{B}_1 = \frac{(\hat{x} + 2\hat{z})}{36\pi} 10^{-9} (W/m^2)$
 - c) Suponha que desliza sobre a superfície de separação dos meios uma densidade linear de corrente dada por $\vec{J}=1\vec{y}$ (A/m). Calcule o campo magnético no meio 1. $Resp:\vec{H}_2=2\hat{x}+4\hat{z}$ (A/m)

Reflexão de ondas planas

- 13) Uma onda plana uniforme com $\vec{H}_i = \cos{(\omega t \beta_1 z)}\hat{y}$ (A/m), propaga-se no meio 1, caracterizado por $\epsilon_{r1} = 9$, $\mu_{r1} = 1$, $\sigma_1 = 0$. A onda encontra um outro material, magnético, na região 2, z > 0, caracterizado por $\epsilon_{r2} = 1$, $\mu_{r2} = 9$. Se $\omega = 3x10^9$ (rad/s), determine o campo elétrico transmitido para o meio 2. *Resp:* $\vec{E}_t = 72\pi\cos{(3x10^9 t 30z)}\hat{x}$ (*V/m*)
- 14) Quando uma onda plana se propaga no ar e incide perpendicularmente numa superfície plana sem perdas, mede-se um coeficiente de reflexão de $\Gamma=-0.25$ e verifica-se que a velocidade de fase da onda transmitida é reduzida por um fator de 3. Determine a permitividade e a permeabilidade do material. *Resp:* ϵ_r =5; μ_r =1.8
- 15) Uma onda plana propagando-se no ar incide perpendicularmente numa face plana de um dielétrico com $\varepsilon_r = 4$ e $\mu_r = 1$. O campo elétrico incidente tem uma amplitude de $2x10^{-3}$ V/m e a frequência é 3 GHz. Determine:
 - a) O coeficiente de reflexão. Resp: $\Gamma = -1/3$
 - b) O SWR no ar. Resp: SWR = 2
 - c) As posições, no ar, onde ocorrem os máximos e os mínimos do campo elétrico. $Resp: d_{max}=0.025n$ (m) $com n=1, 3, 5,..; d_{min}=0.025n$ (m) com n=0, 2, 4,...

- d) Os valores máximos e mínimos do campo elétrico no ar. Resp: $E_{Max}=2.67x10^{-3}$ (V/m); $E_{Min}=1.33x10^{-3}$ (V/m)
- 16) Uma onda plana propagando-se num meio dielétrico com $\epsilon_r = 4$; $\mu_r = 1$, incide perpendicularmente no espaço livre ($\epsilon_r = 1$; $\mu_r = 1$). Supondo que o campo elétrico incidente em valor eficaz é dado por: $\vec{E}_i(z) = 2x10^{-3}e^{-j\beta z}\hat{y}$ (V/m), determine:
 - a) O respetivo campo magnético incidente. Resp: $\vec{\mathbf{H}}_{i}(z)=-\frac{1}{30\pi}\mathbf{10^{-3}}e^{-j\beta z}\hat{\mathbf{x}}\left(A/m\right)$
 - b) Os coeficientes de reflexão e transmissão. Resp: $\Gamma = 1/3$; T = 4/3
 - c) Os campos elétricos e magnéticos da onda refletida e da onda transmitida. $Resp: \vec{\mathbf{E}}_{\mathbf{r}}(z) = \frac{2}{3}x10^{-3}e^{+j\beta z}\hat{\mathbf{y}}$ (V/m); $\vec{\mathbf{H}}_{\mathbf{r}}(z) = \frac{1}{90\pi}10^{-3}e^{+j\beta z}\hat{\mathbf{x}}$ (A/m); $\vec{\mathbf{E}}_{\mathbf{t}}(z) = \frac{8}{3}x10^{-3}e^{-j0.5\beta z}\hat{\mathbf{y}}$ (V/m); $\vec{\mathbf{H}}_{\mathbf{t}}(z) = -\frac{1}{45\pi}10^{-3}e^{-j0.5\beta z}\hat{\mathbf{x}}$ (A/m)
 - d) As densidades médias das potências incidente, refletida e transmitida. $Resp: S_i = 21.22 \ (nW/m^2);$ $S_r = 2.36 \ (nW/m^2);$ $S_t = 18.86 \ (nW/m^2).$ *Nota: Repare que:* $S_i S_r = S_t$
- 17) Uma onda plana de polarização circular esquerda (LHCP) incide perpendicularmente num determinado meio. Caracterize a polarização da onda refletida se o meio for um plano condutor perfeito (PEC- Perfect Electrical Conducting).
- 18) Uma onda plana propagando-se no espaço livre incide segundo um ângulo de incidência θ_i =52º num dielétrico sem perdas com ε_r =4.
 - a) Supondo que, relativamente ao plano de incidência, a onda incide na polarização perpendicular, determine as expressões que dão a fração da energia incidente que é refletida e transmitida.
 - b) Repita a alínea a) supondo que a onda tem polarização paralela.
 - c) Calcule a percentagem da energia incidente que é refletida e transmitida em ambos os casos.
- 19) Uma onda com campo elétrico de amplitude 10 (V/m) (eficaz) e λ de 1 m propagando-se no ar (meio 1) incide num meio (meio 2) de vidro ε_{2r} =5 com um ângulo de incidência de 45°. Assumindo a incidência em polarização perpendicular:
 - a) Calcule o ângulo de reflexão. Resp: $\theta_i = \theta_r = 45^{\circ}$
 - b) Calcule o ângulo de transmissão. Resp: θ_t =18.4°
 - c) Calcule as amplitudes (valor eficaz) do campo elétrico da onda refletida e da transmitida. *Resp:* $\Gamma_{\perp} = -0.5, T_{\perp} = 0.5, E_{r0} = -0.5 * 10 (V/m); E_{t0} = 0.5 * 10 (V/m)$
 - d) Calcule o comprimento de onda e a impedância do meio 2. Resp: λ =0.45 m; η_2 =168.6 Ω
 - e) Calcule o módulo do vetor de Poynting de todas as ondas. Resp: $S_t = \text{Real}(E_t x H_t^*) = 0.148 \ (W/m^2)$ $S_i = 0.265 \ (W/m^2)$, $S_r = 0.066 \ (W/m^2)$
 - f) Mostre que a potência que atravessou uma área arbitrária A no plano refletor para o meio 2 é igual à potência incidente menos a potência refletida que atravessa essa mesma área. $Resp: 0.141 \, (W/m^2)$.
 - g) Escreva a equação vetorial de todos os campos.
- 20) Suponha agora a incidência, ainda em polarização perpendicular, do meio mais denso $(\varepsilon_{1r}=5)$ no meio menos denso $(\varepsilon_{2r}=1)$ com $\theta_i=20^\circ$.

- a) Calcule Γ_{\perp} e T_{\perp} . Resp: θ_{t} =49.9°, Γ_{\perp} =0.53, T_{\perp} =1.53
- b) Que acontece, nas condições da alínea anterior, para θ_i =60°? Resp: Reflexão interna total
- c) Qual o valor de Γ_{\perp} ? Resp: $\Gamma_{\perp} = -0.375 + 0.927i$
- 21) Calcule os ângulos de Brewster e críticos para uma onda plana com polarização paralela, quando incide nas seguintes condições:
 - a) Da água (ϵ_r =81) para o ar. $Resp:\theta_{ib}=6.34^{\circ}; \theta_{ic}=6.38^{\circ}$
 - b) Do ar para a água. Resp: $\theta_{ib}=83.66^{0}$ $\theta_{ic}=--^{0}$
 - c) Do vidro (ϵ_r =9) para o ar. Resp: $\theta_{ib} = 18.43^\circ$; $\theta_{ic} = 19.47^\circ$
 - d) Da água para o vidro. Resp: $\theta_{ib} = 18.43^{\circ}$; $\theta_{ic} = 19.47^{\circ}$
- 22) Uma onda com polarização paralela (sistema de eixos dos diapositivos), E=10V/m (eficaz) e λ =1m incide do ar num meio (meio 2) com ε_{2r} =5.
 - a) Calcule o ângulo de Brewster. Resp: θ_{iB} =65.9 o
 - b) Calcule o ângulo de transmissão correspondente a uma incidência segundo o ângulo de Brewster. Resp: θ_{tB} =24.1 $^{\circ}$
 - c) Calcule o ângulo de transmissão e os coeficientes Γ_{II} e T_{II} para um ângulo de incidência de θ_t =45°. Resp: θ_t =18.4°; Γ_{II} =-0.25; T_{II} =0.559
 - d) Calcule os coeficientes Γ_{II} e T_{II} para um ângulo de incidência de $\theta_i = \theta_{iB}$. Resp: $\Gamma_{II} = 0$; $T_{II} = 0$.447.
- 23) Considere uma onda com polarização linear que faz 45° com o plano de incidência, f=3 GHz e $E = 2\sqrt{2}$ (V/m) a incidir do ar ($\varepsilon_{r1} = 1$) em alumina (ε_{r2} =9). Assumindo o sistema de eixos considerado na análise teórica destes problemas:
 - a) Escreva a equação vetorial do campo elétrico incidente nas polarizações ⊥ e □.
 - b) Calcule o ângulo de Brewster e o ângulo de transmissão θ_t correspondente. Resp: θ_{iB} =71.56°, θ_t =18.43°
 - c) Considerando agora a incidência segundo o ângulo de Brewster.
 - Calcule Γ e T para as polarizações \bot e \Box . Resp: \bot (-0.8, 0.2); \Box (0, 0.334)
 - Escreva as equações para o campo elétrico da:
 - Onda refletida para as polarizações ⊥ e □;
 - Onda transmitida para polarizações ⊥ e 📙
 - d) Calcule o vetor de Poynting no meio de alumina ainda para a incidência com o ângulo de Brewster.
- 24) Suponha agora a incidência da alumina (agora ε_{r1} =9) para o ar (ε_{r2} =1)
 - a) Calcule o ângulo crítico para incidência da alumina para o ar. Resp: θ_{ic} =19.47 o
 - b) Assumindo θ_i =45° calcule $sin(\theta_t)$ e $cos(\theta_t)$ (repare que $cos(\theta_t)$ tem duas soluções). Resp: $sin(\theta_t) = 1.5\sqrt{2} e cos(\theta_t) = \pm j \sqrt{3.5}$
 - c) Escreva a equação genérica do campo elétrico transmitido para polarização \bot escolhendo primeiro o valor adequado para $cos(\theta_t)$. Resp: Deve escolher a solução com a parte imaginária negativa pois é a única que dará um campo transmitido atenuando-se para o interior do meio 2.

- d) Calcule Γ_{\perp} e T_{\perp} para as duas polarizações. Resp: Γ_{\perp} = 0.125+j0.992; T_{\perp} =1.125+j0.992
- e) Termine a escrita da equação do campo elétrico transmitido.

Leis de Maxwell, Constantes e Formulário

$\epsilon_0 = \frac{1}{36\pi} 10^{-9} (F/m)$	$\mu_0 = 4\pi 10^{-7} \ (H/m)$
$\vec{B} = \mu \vec{H}$	$ec{D}=\epsilonec{E}$
$\nabla \cdot \vec{B} = 0$	$ abla \cdot \vec{D} = ho$
$ abla imes ec{E} = -rac{\partial ec{B}}{\partial t}$	$ abla imes ec{H} = ec{J}_{\mathrm{T}} + rac{\partial ec{D}}{\partial t}$
$\theta_{iB} = sen^{-1} \sqrt{\frac{\varepsilon_{2r}}{\varepsilon_{1r} + \varepsilon_{2r}}} = arctan \sqrt{\frac{\varepsilon_{2r}}{\varepsilon_{1r}}}$	$sen(\theta_{ic}) = \sqrt{\frac{\varepsilon_{2r}}{\varepsilon_{1r}}}$
$\Gamma_{\!\perp} = \frac{\cos(\theta_i) - \sqrt{\frac{\varepsilon_{2r}}{\varepsilon_{1r}} - sen^2(\theta_i)}}{\cos(\theta_i) + \sqrt{\frac{\varepsilon_{2r}}{\varepsilon_{1r}} - sen^2(\theta_i)}}$	$\varGamma_{ } = \frac{\sqrt{\frac{\varepsilon_{1r}}{\varepsilon_{2r}} \left(1 - \frac{\varepsilon_{1r}}{\varepsilon_{2r}} sen^{2}(\theta_{i})\right)} - cos(\theta_{i})}{\sqrt{\frac{\varepsilon_{1r}}{\varepsilon_{2r}} \left(1 - \frac{\varepsilon_{1r}}{\varepsilon_{2r}} sen^{2}(\theta_{i})\right)} + cos(\theta_{i})}}$
$T_{\perp}=1+\Gamma_{\!\perp}$	$T_{ } = (1 + \Gamma_{ }) \frac{\cos(\theta_i)}{\cos(\theta_t)}$