# Algorithms and Data Structures 2 Recap Lectures 13-14

**Dr Michele Sevegnani** 

School of Computing Science University of Glasgow

michele.sevegnani@glasgow.ac.uk

# Topics we covered so far

- **Binary trees**
- Rooted trees with unbounded branching
- \*Binary search trees (BSTs)
- **'Querying a tree**
- Computation of tree parameters
- **Operations** 
  - Insertion
  - Deletion
- •Randomly build BSTs
- **BSTs** with equal keys

Show that perfectly balanced trees of height 2 and 3 contain 7 and 15 nodes respectively

 State, with a brief reason, how many nodes are in a perfectly balanced binary tree with height h

3

$$-1+2+2^2+...+2^k=2^{k+1}-1$$

What extra property turns a binary tree into a binary search tree?

Perfectly balanced trees of depths 2 and 3 have the following structures



height 2 7 nodes height 3 15 nodes

# Question 1: solution (cont.)

- Consider a perfectly balanced binary tree of height h
  - At height 0 there is 1 node
  - At height 1 there are 2 nodes
  - At height 2 there are 4 nodes
  - **—** ...
  - **–** ...
  - At height h there are 2<sup>h</sup> nodes

• In total there are  $2^0 + 2^1 + 2^2 + ... + 2^h = 2^{h+1} - 1$  nodes

# Question 1: solution (cont.)

• The extra property is that the inorder traversal is in sorted order

 Draw one example each of a balanced binary tree and an extremely unbalanced binary tree

Find the inorder, preorder and postorder traversal of the binary tree

below



Example balanced binary tree



• Example extremely unbalanced binary tree



# Question 2: solution (cont.)

- Inorder traversal (1) left subtree, (2)
   root, and (3) right subtree
  - -2,1,4,3,6,8,7,0,5,9
- Preorder traversal (1) root subtree,
  (2) left, and (3) right subtree
  - -6,4,1,2,3,5,7,8,0,9
- Postorder traversal (1) left subtree,
   (2) right, and (3) root subtree
  - -2,1,3,4,8,0,7,9,5,6



 Explain why an algorithm for finding a node in a binary search tree that contains the maximum number, n, of nodes for its height, has logarithmic complexity

 What is the complexity for a search of a binary search tree that contains no right subtrees?

 A BST containing the maximum number n of nodes for its depth is perfectly balanced

• As in Question 1,  $n = 2^{h+1} - 1$  where h is the height of tree

- Search in BST has complexity O(h)
  - $-\log n \approx h + 1$
  - O(h) is O(log n)

• If a tree has no right subtrees, it is a linked list and h = n. Hence complexity is O(n)

• Build a binary search tree by adding the following nodes in the given order: 5,1,18,9,7,6,15

Build a binary search tree by adding the following nodes in the given order: 5,1,18,9,7,6,15



Build a binary search tree by adding the following nodes in the given order: 5,1,18,9,7,6,15



Build a binary search tree by adding the following nodes in the given order: 5,1,18,9,7,6,15



Build a binary search tree by adding the following nodes in the given order: 5,1,18,9,7,6,15



Build a binary search tree by adding the following nodes in the given order: 5,1,18,9,7,6,15



Build a binary search tree by adding the following nodes in the given order: 5,1,18,9,7,6,15



Build a binary search tree by adding the following nodes in the given order: 5,1,18,9,7,6,15

