Automated Tracking for Alignment of Electron Microscope Images

Fernando Amat¹, Farshid Moussavi¹, Luis R. Comolli³, Gal Elidan², Kenneth H. Downing³, Mark Horowitz¹

SIAM Annual Meeting 07/11/2008

- 1-Department of Electrical Engineering, Stanford University
- 2-Department of Computer Science, Stanford University
- 3-Life Sciences Division, Lawrence Berkeley National Laboratories

Motivation

One image is worth a thousand words...

Outline

- Correspondence between two images
- Global correspondence
- Results
- Future work
- Conclusions

Previous work

Pre-align images

Seed model

Build projection model sequentially

Find new candidates

Previous work

<u>Advantages</u>

- Runs very fast
- Works for high SNR

<u>Disadvantages</u>

- Depends on projection model
- Fails at low SNR
- Requires manual intervention to fix errors

Outline

- Correspondence between two images
- Global correspondence
- Results
- Future work
- Conclusions

Key building block

Image A

Image B Images by Luis R. Comolli

Find point candidates in each image

Image A

Image B Images by Luis R. Comolli

Find correspondence between points

Probabilistic framework

- Random variables a₁,..., a_N
- Possible assignments a_i={b₁,..., b_K}
- Find joint distribution p(a₁,..., a_N)
- Exponential complexity K^N is intractable

Exploit conditional independence

$$p(a_1,\ldots,a_n) \propto \prod_{i=1}^n \varphi_i(a_i) \prod_{i,j \in E} \varphi_{ij}(a_i,a_j)$$

 φ_i : singleton factors

 φ_{ii} : pairwise factors

Solve combinatorial optimization problem

- Complexity reduces to O(K²)
- Spatial proximity determines the graph
- Image similarity determines singleton factors

$$\varphi_i(a_i = b_r) = NCC(patch(a_i), patch(b_r))$$

Geometric similarity determines pairwise factors

$$\varphi_{ij}(a_i=b_r,a_j=b_s)=\exp\left(\frac{-\|vec(a_ia_j)-vec(b_rb_s)\|_2^2}{\sigma^2}\right)$$

Message passing

Build table with initial beliefs

a _i a _j	b_1	b ₂	• • •	b _K
b_1	0	0.8		0.2
b ₂	0.3	0		0.1
			0	0.4
b _K	0.1	0.7	0.2	0

Calculate marginal distribution efficiently

$$p(a_k) \propto \sum_{i,j \neq k} \prod_{i=1}^n \varphi_i(a_i) \prod_{i,j \in E} \varphi_{ij}(a_i,a_j)$$

- Basic Idea
 - Calculate local marginals (beliefs) from "root"
 - Propagate up through graph
- Markov Chain example

 $P(A) = \sum P(A|B)P(B|C)P(C|D)P(D)$

- Basic Idea
 - Calculate local marginals (beliefs) from "root"
 - Propagate up through graph
- Markov Chain example

$$P(A) = \sum P(A|B) \sum P(B|C) \sum P(C|D)P(D)$$

- Basic Idea
 - Calculate local marginals (beliefs) from "root"
 - Propagate up through graph
- Markov Chain example

$$P(A) = \sum P(A|B) \sum P(B|C) \Psi(C)$$

- Basic Idea
 - Calculate local marginals (beliefs) from "root"
 - Propagate up through graph
- Markov Chain example

$$P(A) = \sum P(A|B) \sum P(B|C) \Psi(C)$$

- Basic Idea
 - Calculate local marginals (beliefs) from "root"
 - Propagate up through graph
- Markov Chain example

$$P(A) = \sum P(A|B) \Psi(B)$$

Outline

- Previous work
- Correspondence between two images
- Global correspondence
- Results
- Future work
- Conclusions

Global correspondence

Combine pairwise correspondence

Robust matrix decomposition to find outliers¹

[1] Q. Ke and T. Kanade. Robust L1 Norm Factorization in the Presence of Outliers and Missing Data by Alternative Convex Programming. CVPR, 2005.

Summary

Local/global trade-off approach

Based on small angle change between images

Independent of projection model

Robust against errors

Outline

- Correspondence between two images
- Global correspondence
- Results
- Future work
- Conclusions

Results: tracked trajectories

Amat, F. et al., Markov random field based automatic image alignment for electron tomography, J. Struct. Biol. (2007)

Results: 3-D resolution

Frequency(1/Å)

0.9 0.8 0.7 0.6 0.50.4 0.30.20.10 0.0050.01 0.015 0.020.025 0 0.03 Frequency(1/Å)

Amat, F. et al. Markov random field based automatic image alignment for electron tomography. J. Struct. Biol. (2007)

Cardone, G. et al. A resolution criteria for electron tomography based on cross-validation. J. Struct. Biol. 2005.

Automated Tracking for Alignment of Electron Microscope Images

Fernando Amat et alt.

Outline

- Correspondence between two images
- Global correspondence
- Results
- Future work
- Conclusions

Future Work

- Track multiple axis tomography
- Track images with hundreds of markers

- Improve local to global correspondence
- Parallelization

Outline

- Correspondence between two images
- Global correspondence
- Results
- Future work
- Conclusions

Conclusions

- Graphical models: local/global compromise
- Probabilistic framework robust against noise
- Algorithms help high throughput data analysis

Software available at <a href="http://www-

vlsi.stanford.edu/TEM/software.htm

THANKS!

Message passing

- Efficient algorithm to calculate marginals
- (a_i, a_i) share an edge in the graph

$$\psi_{ij}(a_i, N(i)_j) = \prod_{k \in N(i)_j} \varphi_{ik}(a_i, a_k) \delta(a_k \rightarrow a_i)$$

$$\vdots$$

$$\delta(a_i \rightarrow a_j) = \varphi_i(a_i) \sum_{N(i)_j} \psi_{ij}(a_i, N(i)_j)$$

Message passing

