Distribution properties of some combinatorial polynomials

Lily Li Liu

School of Mathematical Sciences Qufu Normal University

liulily@qfnu.edu.cn

9 Oct. 2020

Contents

Definitions

Eulerian polynomials

Eulerian statistic for involutions

Derangement polynomials

Outline

Definitions

Eulerian polynomials

Eulerian statistic for involutions

Derangement polynomials

Unimodality, symmetry and log-concavity

Definition

Let (a_0, a_1, \ldots, a_n) be a sequence of positive numbers.

- It is unimodal (UM) if $a_0 \le \cdots \le a_{m-1} \le a_m \ge \cdots \ge a_n$. (*m* is called a mode of the sequence.)
- ▶ It is symmetric (SYM) if $a_k = a_{n-k}$ for all $0 \le k \le n$.
- ▶ It is log-concave (LC) if $a_{k-1}a_{k+1} \le a_k^2$ for all 1 < k < n.
- ▶ It is spiral (SP) if $a_n \leq a_1 \leq a_{n-1} \leq a_2 \leq a_{n-2} \leq \cdots \leq a_{\lfloor \frac{n-3}{2} \rfloor} \leq a_{\lceil \frac{n+3}{2} \rceil} \leq a_{\lfloor \frac{n-1}{2} \rfloor} \leq a_{\lceil \frac{n+1}{2} \rceil}$, and $a_{\frac{n}{2}+1} \leq a_{\frac{n}{2}}$ if n is even.
- Clearly, LC $\iff \frac{a_{k+1}}{a_k} \leq \frac{a_k}{a_{k-1}} \Longrightarrow \mathsf{UM}$, and $\mathsf{SP} \Longrightarrow \mathsf{UM}$.

Combinatorialists love to prove counting sequences are unimodal.

— Zeilberger

Pascal triangle

• Each row in the Pascal triangle is UM, SYM and LC.

Generating functions

Definition

We say that a polynomial $f(x) = \sum_{i=0}^{n} a_i x^i$ is UM (SYM, LC, SP) if the coefficients sequence a_0, a_1, \ldots, a_n has such a property.

Newton inequality

If $f(t) = \sum_{i=0}^{n} a_i t^i$ is real-rooted, then

$$a_i^2 \ge a_{i-1}a_{i+1}\frac{(i+1)(n-i+1)}{i(n-i)}.$$

 $\Longrightarrow (a_0, a_1, \dots, a_n)$ is LC and UM with at two modes.

Generating functions are a bridge between discrete mathematics and continuous analysis. — Wilf

γ -positivity

Definition

A symmetric polynomial $f(t) = \sum_{i=0}^{n} a_i t^i$ is called γ -positivity if

$$f(t) = \sum_{k=0}^{\lfloor n/2\rfloor} \gamma_k t^k (1+t)^{n-2k},$$

and $\gamma_k \geq 0$ for each k.

- Clearly, γ -positivity \Longrightarrow UM and SYM.

D. Foata, M.-P. Schützenberger, Théorie géométrique des polynômes eulériens, Lecture Notes in Math., vol. 138, Springer-Verlag, Berlin, 1970.

Eulerian polynomials $A_n(t)$

Eulerian polynomials $A_n(t)$

Relations

Proposition

If both f(t) and g(t) are γ -positive, then so is f(t)g(t).

• RZ and SYM $\Longrightarrow \gamma$ -positivity. In fact, suppose that f(t) has nonnegative and symmetric coefficients, and all its zeros are real. Then its zeros apart 0 and -1 come in reciprocal pairs a,1/a, i.e.

$$f(t) = t^{p}(1+t)^{q} \prod_{i\geq 1} (t-a_{i})(t-1/a_{i})$$
$$= t^{p}(1+t)^{q} \prod_{i\geq 1} ((1+t)^{2} - (2+a_{i}+1/a_{i}))$$

Note that, since $a_i < 0$,

$$2+a_i+1/a_i=\frac{(a_i+1)^2}{a_i}<0.$$

References

- Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Jinan, 1986.
- Brenti, Unimodal, log-concave, and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc., 1989.
- Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, 1994.
- Brändén, Unimodality, log-concavity, real-rootedness and beyond, 2015. (♦ Ann. of Math.; ♦ Invent. Math.; ♦ J. Amer. Math. Soc., 2009)

Background

Recently, γ -positivity attracted attention after the work of

- ▶ Bränden (EJC, JAC, 2004) on *P*-Eulerian polynomials;
- ► Gal (DCG, 2005) on flag triangulations of spheres.

Background

Recently, γ -positivity attracted attention after the work of

- ▶ Bränden (EJC, JAC, 2004) on *P*-Eulerian polynomials;
- ► Gal (DCG, 2005) on flag triangulations of spheres.

 $\gamma\text{-positivity}$ polynomials arise often in enumerative, algebraic and geometric contexts. Refer to

- Athanasiadis, Gamma-positivity in combinatorics and geometry, Sem. Lothar. Combin. 77 (2018) 64pp.
- Petersen, Eulerian Numbers, Birkhaüser, 2015.

Outline

Definitions

Eulerian polynomials

Eulerian statistic for involutions

Derangement polynomials

Eulerian polynomials

Let S_n be the group of permutations of $[n] = \{1, 2, ..., n\}$.

For $\pi = \pi_1 \pi_2 \dots \pi_n \in S_n$, let

- $ightharpoonup \operatorname{des}(\pi) := |\{i \in [n-1] : \pi_i > \pi_{i+1}\}|$
- $ightharpoonup \exp(\pi) := |\{i \in [n-1] : \pi_i > i\}|$

be the number of descents and excedances of π , respectively.

Eulerian polynomial

$$A_n(t) = \sum_{\pi \in S_n} t^{\operatorname{des}(\pi)} = \sum_{\pi \in S_n} t^{\operatorname{exc}(\pi)}.$$

Properties of Eulerian polynomials

Theorem

Eulerian polynomial $A_n(t)$

- (Kurtz, JCTA 1972; Gasharov, JCTA 1998) is symmetric and unimodal,
- ► (Comtet, 1974; L.-Wang, AAM 2007) has only real zeros.

L., Wang, A unified approach to polynomial sequences with only real zeros, Adv. in Appl. Math. 39 (2007) 542–560.

Properties of Eulerian polynomials

Theorem (Foata-Strehl, 1976)

Eulerian polynomial $A_n(t)$ can be written as

$$A_n(t) = \sum_{k=0}^{\lfloor n/2 \rfloor} \gamma_{n,k} t^k (1+t)^{n-1-2k},$$

where $\gamma_{n,k}$ is the number of $\pi \in S_n$ with $\operatorname{des}(\pi) = k$ for which

- ▶ there is no $i \in \{2, ..., n-1\}$ such that $\pi(i-1) > \pi(i) > \pi(i+1)$, $\pi(n-1) < \pi(n)$.

Foata, Strehl, Euler numbers and variations of permutations. Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973), Tomo I, 119–131. Atti dei Convegni Lincei, No. 17, Accad. Naz. Lincei, Rome, 1976.

Eulerian polynomials of type B

- ▶ Denote B_n by the hyperoctahedral group on [n].
- An element $\pi \in B_n$ is $\pi_1 \pi_2 \dots \pi_n$, with $|\pi| = |\pi_1||\pi_2|\dots|\pi_n| \in S_n$ and $\pi(-i) = -\pi_i$.
- The total order

$$-1 <_r -2 <_r -3 <_r \cdots <_r 0 <_r 1 <_r 2 <_r 3 <_r \cdots$$

▶ $des_B(\pi)$: # of $i \in \{0, 1, ..., n-1\}$ s.t. $\pi_i >_r \pi_{i+1}$, with $\pi_0 = 0$.

Eulerian polynomial of type B

$$B_n(t) = \sum_{\pi \in B_n} t^{\operatorname{des}_B(\pi)}.$$

Properties of Eulerian polynomials

Theorem

Eulerian polynomial $B_n(t)$

- ► (Brenti, EurJC 1994) is symmetric and unimodal,
- ► (Brenti, EurJC 1994; L.-Wang, AAM 2007) has only real zeros.
- ▶ (Peterson, AM 2007) Eulerian polynomia of type $B B_n(t)$ can be written as

$$B_n(t) = \sum_{k=0}^{\lfloor n/2 \rfloor} \gamma_{n,k} t^k (1+t)^{n-1-2k},$$

where $\gamma_{n,k}$ is the number of $\pi \in B_n$ with $\operatorname{des}_B(\pi) = k$ such that

 $|\pi| \in S_n$ has k descenting runs of size at least two.

Outline

Definitions

Eulerian polynomials

Eulerian statistic for involutions

Derangement polynomials

Involution

An involution is a permutation $\pi \in S_n$ such that $\pi^{-1} = \pi$.

Let I_n be the set of all involutions in S_n and let

$$I_n(t) = \sum_{\pi \in I_n} t^{\operatorname{des}(\pi)}.$$

Theorem

The polynomial $I_n(t)$ is

- ▶ symmetric (conjectured Dumout; proved Strehl, SLC 1980)
- ▶ unimodal (partially Dukes, 2007; fully Guo-Zeng, JCTA 2006)
- $ightharpoonup \gamma$ -positive (Wang, JCTA 2019)
- $ightharpoonup I_n(t)$ is not LC (Marilena-Flavio-Matteo, EurJC 2009).

Involution of hyperoctahedral group

- ▶ Denote B_n by the hyperoctahedral group on [n].
- ▶ Let I_n^B be the set of all involutions in B_n .
- $ightharpoonup B_n$ -analogue of $I_n(t)$ is

$$I_n^B(t) = \sum_{\pi \in I_n^B} t^{\operatorname{des}_B(\pi)}.$$

Initial values

$$I_n^B(t) = \begin{cases} 1+t, & \text{if } n=1, \\ 1+4t+t^2, & \text{if } n=2, \\ 1+9t+9t^2+t^3, & \text{if } n=3, \\ 1+17t+40t^2+17t^3+t^4, & \text{if } n=4, \\ 1+28t+127t^2+127t^3+28t^4+t^5, & \text{if } n=5, \\ 1+43t+331t^2+634t^3+331t^4+43t^5+t^6, & \text{if } n=6. \end{cases}$$

Theorem (Moustakas, GC 2019)

 $I_n^B(t)$ is symmetric and unimodal for $n \ge 1$.

 $ightharpoonup I_n^B(t)$ is not LC (Moustakas, GC 2019).

Initial values

$$I_n^B(t) = \begin{cases} 1+t, & \text{if } n=1, \\ (1+t)^2+2t, & \text{if } n=2, \\ (1+t)^3+6t(1+t), & \text{if } n=3, \\ (1+t)^4+13t(1+t)^2+8t^2, & \text{if } n=4, \\ (1+t)^5+23t(1+t)^3+48t^2(1+t), & \text{if } n=5, \\ (1+t)^6+37t(1+t)^4+168t^2(1+t)^2+56t^3, & \text{if } n=6. \end{cases}$$

Theorem (Conjectured by Moustakas, GC 2019; Cao-L., 2020⁺)

The polynomial $I_n^B(t)$ is γ -positive for $n \geq 1$.

Proof

Let the expansion of $I_n^B(t)$ be

$$I_n^B(t) = \sum_{i=0}^n I_{n,i}^B t^i,$$
 (1)

where $I_{n,i}^{B}$ is the number of involutions having i descents of B_{n} . Since the symmetry

$$I_{n,i}^B = I_{n,n-i}^B,$$

we rewrite $I_n^B(t)$ as follows

$$I_n^B(t) = \begin{cases} \sum_{i=0}^{(n-1)/2} I_{n,i}^B t^i (1+t^{n-2i}), & \text{if n is odd,} \\ I_{n,n/2}^B t^{n/2} + \sum_{i=0}^{n/2-1} I_{n,i}^B t^i (1+t^{n-2i}), & \text{if n is even.} \end{cases}$$

Proof

Applying the well-known formula

$$x^{n} + y^{n} = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^{j} \frac{n}{n-j} {n-j \choose j} (xy)^{j} (x+y)^{n-2j},$$

the polynomial $I_n^B(x)$ has the γ -expansion

$$I_n^B(t) = \sum_{k=0}^{\lfloor n/2 \rfloor} C_{n,k} t^k (1+t)^{n-2k},$$

where

$$C_{n,k} = \begin{cases} \sum_{i=0}^{k} (-1)^{k-i} \frac{n-2i}{n-k-i} \binom{n-k-i}{k-i} I_{n,i}^{B}, & \text{if } n > 2k, \\ I_{n,k}^{B} + \sum_{i=0}^{k-1} (-1)^{k-i} \frac{n-2i}{n-k-i} \binom{n-k-i}{k-i} I_{n,i}^{B}, & \text{if } n = 2k. \end{cases}$$

Proof

Set
$$x = x(t) = t/(1+t)^2$$
 and
$$I_n^B(t) = (1+t)^n P_n(x).$$

Then

$$P_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} C_{n,k} x^k.$$

Theorem

For $n \ge 3$ and $k \ge 0$, the numbers $C_{n,k}$ satisfy

$$nC_{n,k} = (2k+1)C_{n-1,k} + 4(n-2k+1)C_{n-1,k-1}$$

$$+(2k^2+2k+n-1)C_{n-2,k}$$

$$+4(2k(n-2k)+k-n+1)C_{n-2,k-1}$$

$$+8(n-2k+1)(n-2k+2)C_{n-2,k-2},$$

where $C_{n,k} = 0$ if k < 0 or k > n/2.

THREPTER E 990

Problems

Problem (Moustakas, GC 2019)

Find the explicit combinatorial interpretations of the γ -coefficients of $I_n(t)$ and $I_n^B(t)$.

Fixed-point free involution

Let J_n be the set of all fixed-point free involutions in S_n . Define

$$J_n(t) = \sum_{\pi \in J_n} t^{\operatorname{des}(\pi)}.$$

Theorem (Conjectured by Guo-Zeng, JCTA 2006; Proved by Wang, JCTA 2019)

The polynomial $J_{2n}(t)$ is γ -positive.

Fixed-point free involution in B_n

Let J_n^B be the set of all fixed-point free involutions in B_n . Define

$$J_n^B(t) = \sum_{\pi \in J_n^B} t^{\operatorname{des}_B(\pi)}.$$

$$J_n^B(t) = \begin{cases} t(1+t), & \text{if } n = 2, \\ t(1+t)^3 + 2t^2(1+t), & \text{if } n = 4, \\ t(1+t)^5 + 8t^2(1+t)^3 + 12t^3(1+t), & \text{if } n = 6, \\ t(1+t)^7 + 19t^2(1+t)^5 + 100t^3(1+t)^3 \\ + 72t^4(1+t), & \text{if } n = 8. \end{cases}$$

Problems

Problem (Cao-L., 2020⁺)

lf

$$J_{2n}^B(t) = \sum D_{2n,k}^B t^k (1+t)^{2n+1-2k},$$

then $D_{2n,k}^B \geq 0$ for $n \geq 1$.

► Main problem:

$$\sum_{n>0} J_n^B(t) \frac{x^n}{(1-t)^{n+1}} = \sum_{m>0} \frac{t^m}{(1-x^2)^{m^2}}.$$

Outline

Definitions

Eulerian polynomials

Eulerian statistic for involutions

Derangement polynomials

Derangement polynomials

- A permutation $\pi \in S_n$ is called a derangement if $\pi_i \neq i$ for all $i \in [n]$.
- Let D_n denote the set of all derangements of S_n .
- Derangement polynomials is

$$d_n(t) = \sum_{\pi \in D_n} t^{\operatorname{exc}(\pi)} = \sum_{k=0}^n d_{n,k} t^k,$$

for $n \geqslant 1$ and $d_0(t) = 1$.

Theorem (Brenti, PAMS 1990)

The derangement polynomial $d_n(t)$ is symmetric and unimodal.

γ -positivity of $d_n(t)$

Theorem (Athanasiadis-Savvidou, SLC 2012)

The derangement polynomial $d_n(t)$ can be written as

$$d_n(t) = \sum_{k=0}^{\lfloor n/2 \rfloor} \xi_{n,k} t^k (1+t)^{n-2k},$$

where $\xi_{n,k}$ is the number of $\pi \in S_n$ with $\operatorname{des}(\pi) = k - 1$ for which

- ▶ there is no $i \in \{2, ..., n-1\}$ s.t. $\pi_{i-1} > \pi_i > \pi_{i+1}$,
- ▶ $\pi_1 < \pi_2$ and $\pi_{n-1} < \pi_n$.

Derangement polynomials of type B

Let D_n^B denote the set of all derangements of B_n .

Definition (Brenti, EurJC 1994)

We say that $i \in [n]$ is a type B excedance of $\pi \in B_n$ if $\pi_i = -i$ or $\pi_{|\pi_i|} > \pi_i$.

We denote $exc_B(\pi)$ by the number of type B excedances of π .

Definition (Chen-Tang-Zhao, EJC 2009)

B analogue of the derangement polynomial is defined by

$$d_n^B(t) = \sum_{\pi \in D_n^B} t^{\text{exc}_B(\pi)} = \sum_{k=0}^n d_{n,k}^B t^k$$

for $n \ge 1$, where $d_{n,k}$ is the number of signed derangements in D_n^B with exactly k excedances of type B. Set $d_0^B(x) = 1$.

Properties of $d_n^B(t)$

Theorem (Chen-Tang-Zhao, EJC 2009)

The derangement polynomial $d_n^B(t)$ has

- the reality of zeros;
- the unimodality;
- the asymptotic normality;
- the spiral property.

Wreath product

- ► The wreath product $C_r \wr S_n$ is the usual action of a cyclic group $C_r = \{0, 1, \dots, r-1\}$ by a permutation of S_n .
- ▶ Elements in $C_r \wr S_n$ are called *r*-colored permutations, and represented by

$$\pi^{\xi} = (\pi_1^{\xi_1}, \pi_2^{\xi_2}, \dots, \pi_n^{\xi_n}),$$

where $\pi = \pi_1 \pi_2 \dots \pi_n \in S_n$ and $\xi = (\xi_1, \xi_2, \dots, \xi_n) \in \mathcal{C}_r^n$.

lacktriangle The descent set and the excedance set of π^ξ are defined by

Des
$$(\pi^{\xi})$$
 = $\{i \in [n] \mid \xi_i > \xi_{i+1} \text{ or } \xi_i = \xi_{i+1} \text{ and } \pi_i > \pi_{i+1}\}$
Exc (π^{ξ}) = $\{i \in [n] \mid \pi_i > i \text{ or } \pi_i = i \text{ and } \xi_i > 0\},$

with $\pi_{n+1} = n + 1$ and $\xi_{n+1} = 0$.

Let $des(\pi^{\xi}) = |Des(\pi^{\xi})|$ and $exc(\pi^{\xi}) = |Exc(\pi^{\xi})|$.

Example

If $\pi^{\xi} = (4^3, 2^0, 6^3, 1^3, 5^1, 3^2) \in \mathcal{C}_4 \wr S_6$, then π^{ξ} has descents at 1, 3, 4, 6 and excedences at 1, 3, 5. So $\operatorname{des}(\pi^{\xi}) = 4$, $\operatorname{exc}(\pi^{\xi}) = 3$.

Cyclic derangement polynomial

- ▶ A fixed point of $\pi^{\xi} \in C_r \setminus S_n$ is an integer $i \in [n]$ such that $\pi_i = i$ and $\xi_i = 0$.
- ▶ A permutation $\pi^{\xi} \in \mathcal{C}_r \wr S_n$ is called a cyclic derangement if it has no fixed points.
- Let $D_n^{(r)}$ denote the set of all cyclic derangements of $C_r \wr S_n$ and denote $d_n^{(r)} = |D_n^{(r)}|$.

Definition (Chow, JCTA 2009)

The cyclic derangement polynomial is defined by

$$d_n^{(r)}(x) = \sum_{\pi^{\xi} \in D_n^{(r)}} x^{\operatorname{exc}(\pi^{\xi})} = \sum_{k=0}^n d_{n,k}^{(r)} x^k$$

for $n \ge 1$, where $d_{n,k}^{(r)}$ is the number of cyclic derangements in $C_r \wr S_n$ with exactly k excedances.

Initial values

$$d_n^{(r)}(t) = \begin{cases} (r-1)t, & \text{if } n = 1, \\ r^2t + (r-1)^2t^2, & \text{if } n = 2, \\ r^3t + r^2(4r-3)t^2 + (r-1)^3t^3, & \text{if } n = 3, \\ r^4t + r^3(11r-4)t^2 + r^2(11r^2 - 16r + 6)t^3 + (r-1)^4t^4, & \text{if } n = 4, \\ r^5t + r^4(26r - 9t^2 + r^3(66r^2 - 55r + 10)t^3 + r^2(26r^3 - 55r^2 + 40r + 10)t^4 + (r-1)^5t^5, & \text{if } n = 5. \end{cases}$$

In particular,

- $d_n^{(1)}(x) = d_n(x)$ the derangement polynomials.
- $d_n^{(2)}(x) = d_n^B(x)$ the derangement polynomials of type B.

Unimodality

Theorem (Steingrímsson, MIT 1992; Chow-Mansour, IJM 2010)

For $n \ge 2$, the cyclic derangement polynomial $d_n^{(r)}(x)$ has only real zeros and zeros of $d_n^{(r)}(x)$ are separated by zeros of $d_{n-1}^{(r)}(x)$.

Corollary

The cyclic derangement polynomials $d_n^{(r)}(x)$ is unimodal for $r \ge 1$.

Spiral property

Theorem (L.-Dong, DM 2020)

The cyclic derangement polynomials $d_n^{(r)}(x)$ possess the spiral property for $r \geq 2$. Precisely speaking, for $n, r \geq 2$, coefficients of $d_n^{(r)}(x)$ satisfy

$$d_{n,n}^{(r)} < d_{n,1}^{(r)} < d_{n,n-1}^{(r)} < \cdots < d_{n,\lceil \frac{n+3}{2} \rceil}^{(r)} < d_{n,\lfloor \frac{n-1}{2} \rfloor}^{(r)} < d_{n,\lceil \frac{n+1}{2} \rceil}^{(r)},$$

and

$$d_{n,\frac{n}{2}+1}^{(r)} < d_{n,\frac{n}{2}}^{(r)}$$

if n is even.

L., Dong, Cyclic derangement polynomials of the wreath product $C_r \wr S_n$, Discrete Math. 343 (2020) 112109.

Thank you for your attention!