

Nome: Lucas Begnini - 39473_______ Data: 19 de junho de 2018

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
Operadores		1	2	3	4	5	6	7	8	9
	Medição 1	80.38	80.31	81.25	81.28	81.59	81.71	81.34	81.21	80.68
A	Medição 2	80.17	81.13	80.5	80.95	81.14	81.49	80.71	80.97	81.55
	Medição 3	81.03	80.72	81.33	81.08	81.55	81.17	80.89	80.95	81.16
	Medição 1	81.88	80.76	81.52	80.92	80.83	80.8	80.89	80.9	80.81
В	Medição 2	81.77	81.13	80.78	80.52	81.37	81.2	80.61	81.23	81.38
	Medição 3	81.72	81.04	80.98	80.87	81.08	81.1	81.25	80.99	80.78
С	Medição 1	80.97	80.86	81.42	81.16	80.57	81.09	81.05	80.98	81.46
	Medição 2	80.86	80.78	80.57	81.1	81.61	81.45	81.04	81.36	81.02
	Medição 3	81.14	81.45	81.19	80.72	81.54	81.65	80.98	80.58	80.79

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

Γ	Peso m (gramas)	200	300	400	500	600	700	800	900
Г	Comprimento l (cm)	4.24	4.35	5.16	8.1	8.27	9.14	9.43	10.63

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 26°C e 27°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

N	1	2	3	4	5	6	7	8
$V_a(V)$	8.2	8.67	8.14	10.44	10.94	10.34	11.02	9.88
$I_a (mA)$	82.887	86.566	82.302	103.573	109.995	103.319	110.63	99.683

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza				
20mA	$\pm (0.8\% + 3D)$				
200mA	$\pm (1.2\% + 4D)$				
20A	$\pm (2.0\% + 5D)$				

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.