Найти координаты центра тяжести однородных пластинок, ограниченных следующими кривыми:

4052.
$$ay = x^2$$
, $x + y = 2a$ $(a > 0)$.

4053.
$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$
, $x = 0$, $y = 0$.
4054. $x^{2/3} + y^{2/3} = a^{2/3} (x > 0, y > 0)$.

4054.
$$x^{2/3} + y^{2/3} = a^{2/3} (x > 0, y > 0).$$

4055.
$$\left(\frac{x}{a} + \frac{y}{b}\right)^3 = \frac{xy}{c^2}$$
 (петля).

4056.
$$(x^2 + y^2)^2 = 2a^2xy$$
 $(x > 0, y > 0)$.

4057.
$$r = a (1 + \cos \varphi), \ \varphi = 0.$$

4058.
$$x = a(t - \sin t), y = a(1 - \cos t) (0 \le t \le 2\pi), y = 0.$$

4059. Найти координаты центра тяжести круглой пластинки $x^2 + y^2 \leqslant a^2$, если плотность ее в точке М (х, у) пропорциональна расстоянию точки М от точки A (a, 0).

4060. Определить кривую, описываемую центром тяжести переменной площади, ограниченной кривыми:

$$y = \sqrt{2px}$$
, $y = 0$, $x = X$.

Найти моменты инерции I_x и I_u относительно осей координат Ox и Oy площадей ($\rho=1$), ограниченных следующими кривыми:

4061.
$$\frac{x}{b_1} + \frac{y}{h} = 1$$
, $\frac{x}{b_2} + \frac{y}{h} = 1$, $y = 0$ $(b_1 > 0)$, $b_2 > 0$, $h > 0$).

4062.
$$(x-a)^2 + (y-a)^2 = a^2$$
, $x = 0$, $y = 0$ $(0 \le x \le a)$.

4063.
$$r = a (1 + \cos \varphi)$$
.

4064.
$$x^4 + y^3 = a^2(x^2 + y^2)$$
.

4064.
$$x^4 + y^4 = a^2(x^2 + y^2)$$
.
4065. $xy = a^2$, $xy = 2a^2$, $x = 2y$, $2x = y$ ($x > 0$, $y > 0$).

4066. Найти полярный момент

$$I_0 = \iint\limits_{S} (x^2 + y^2) \, dx \, dy$$

площади S, ограниченной кривой

$$(x^2 + y^2)^2 = a^2 (x^2 - y^2).$$

4066.1. Найти центробежный момент инерции / " однородной фигуры, ограниченной кривыми

$$ay = x^2$$
, $ax = y^2$ $(a > 0)$.

4067. Доказать формулу $I_l = I_l + Sd^2$, где I_l , I_{t} — моменты инерции фигуры S относительно двух