Review Questions

- **7.1.** Discuss the role of a high-level data model in the database design process.
- **7.2.** List the various cases where use of a NULL value would be appropriate.
- **7.3.** Define the following terms: *entity, attribute, attribute value, relationship instance, composite attribute, multivalued attribute, derived attribute, complex attribute, key attribute, and value set (domain).*
- **7.4.** What is an entity type? What is an entity set? Explain the differences among an entity, an entity type, and an entity set.
- **7.5.** Explain the difference between an attribute and a value set.
- **7.6.** What is a relationship type? Explain the differences among a relationship instance, a relationship type, and a relationship set.
- **7.7.** What is a participation role? When is it necessary to use role names in the description of relationship types?
- **7.8.** Describe the two alternatives for specifying structural constraints on relationship types. What are the advantages and disadvantages of each?
- **7.9.** Under what conditions can an attribute of a binary relationship type be migrated to become an attribute of one of the participating entity types?
- **7.10.** When we think of relationships as attributes, what are the value sets of these attributes? What class of data models is based on this concept?
- **7.11.** What is meant by a recursive relationship type? Give some examples of recursive relationship types.
- **7.12.** When is the concept of a weak entity used in data modeling? Define the terms owner entity type, weak entity type, identifying relationship type, and partial key.
- **7.13.** Can an identifying relationship of a weak entity type be of a degree greater than two? Give examples to illustrate your answer.
- **7.14.** Discuss the conventions for displaying an ER schema as an ER diagram.
- **7.15.** Discuss the naming conventions used for ER schema diagrams.

Exercises

- **7.16.** Consider the following set of requirements for a UNIVERSITY database that is used to keep track of students' transcripts. This is similar but not identical to the database shown in Figure 1.2:
 - a. The university keeps track of each student's name, student number, Social Security number, current address and phone number, permanent address and phone number, birth date, sex, class (freshman, sophomore, ..., graduate), major department, minor department (if any), and degree program

- (B.A., B.S., ..., Ph.D.). Some user applications need to refer to the city, state, and ZIP Code of the student's permanent address and to the student's last name. Both Social Security number and student number have unique values for each student.
- b. Each department is described by a name, department code, office number, office phone number, and college. Both name and code have unique values for each department.
- c. Each course has a course name, description, course number, number of semester hours, level, and offering department. The value of the course number is unique for each course.
- d. Each section has an instructor, semester, year, course, and section number. The section number distinguishes sections of the same course that are taught during the same semester/year; its values are 1, 2, 3, ..., up to the number of sections taught during each semester.
- e. A grade report has a student, section, letter grade, and numeric grade (0, 1, 2, 3, or 4).

Design an ER schema for this application, and draw an ER diagram for the schema. Specify key attributes of each entity type, and structural constraints on each relationship type. Note any unspecified requirements, and make appropriate assumptions to make the specification complete.

- **7.17.** Composite and multivalued attributes can be nested to any number of levels. Suppose we want to design an attribute for a STUDENT entity type to keep track of previous college education. Such an attribute will have one entry for each college previously attended, and each such entry will be composed of college name, start and end dates, degree entries (degrees awarded at that college, if any), and transcript entries (courses completed at that college, if any). Each degree entry contains the degree name and the month and year the degree was awarded, and each transcript entry contains a course name, semester, year, and grade. Design an attribute to hold this information. Use the conventions in Figure 7.5.
- **7.18.** Show an alternative design for the attribute described in Exercise 7.17 that uses only entity types (including weak entity types, if needed) and relationship types.
- **7.19.** Consider the ER diagram in Figure 7.20, which shows a simplified schema for an airline reservations system. Extract from the ER diagram the requirements and constraints that produced this schema. Try to be as precise as possible in your requirements and constraints specification.
- **7.20.** In Chapters 1 and 2, we discussed the database environment and database users. We can consider many entity types to describe such an environment, such as DBMS, stored database, DBA, and catalog/data dictionary. Try to specify all the entity types that can fully describe a database system and its environment; then specify the relationship types among them, and draw an ER diagram to describe such a general database environment.

Figure 7.20An ER diagram for an AIRLINE database schema.

7.21. Design an ER schema for keeping track of information about votes taken in the U.S. House of Representatives during the current two-year congressional session. The database needs to keep track of each U.S. STATE's Name (e.g., 'Texas', 'New York', 'California') and include the Region of the state (whose domain is {'Northeast', 'Midwest', 'Southeast', 'Southwest', 'West'}). Each

CONGRESS_PERSON in the House of Representatives is described by his or her Name, plus the District represented, the Start_date when the congressperson was first elected, and the political Party to which he or she belongs (whose domain is {'Republican', 'Democrat', 'Independent', 'Other'}). The database keeps track of each BILL (i.e., proposed law), including the Bill_name, the Date_of_vote on the bill, whether the bill Passed_or_failed (whose domain is {'Yes', 'No'}), and the Sponsor (the congressperson(s) who sponsored—that is, proposed—the bill). The database also keeps track of how each congressperson voted on each bill (domain of Vote attribute is {'Yes', 'No', 'Abstain', 'Absent'}). Draw an ER schema diagram for this application. State clearly any assumptions you make.

- **7.22.** A database is being constructed to keep track of the teams and games of a sports league. A team has a number of players, not all of whom participate in each game. It is desired to keep track of the players participating in each game for each team, the positions they played in that game, and the result of the game. Design an ER schema diagram for this application, stating any assumptions you make. Choose your favorite sport (e.g., soccer, baseball, football).
- **7.23.** Consider the ER diagram shown in Figure 7.21 for part of a BANK database. Each bank can have multiple branches, and each branch can have multiple accounts and loans.
 - a. List the strong (nonweak) entity types in the ER diagram.
 - b. Is there a weak entity type? If so, give its name, partial key, and identifying relationship.
 - c. What constraints do the partial key and the identifying relationship of the weak entity type specify in this diagram?
 - d. List the names of all relationship types, and specify the (min, max) constraint on each participation of an entity type in a relationship type. Justify your choices.
 - e. List concisely the user requirements that led to this ER schema design.
 - f. Suppose that every customer must have at least one account but is restricted to at most two loans at a time, and that a bank branch cannot have more than 1,000 loans. How does this show up on the (min, max) constraints?
- **7.24.** Consider the ER diagram in Figure 7.22. Assume that an employee may work in up to two departments or may not be assigned to any department. Assume that each department must have one and may have up to three phone numbers. Supply (min, max) constraints on this diagram. State clearly any additional assumptions you make. Under what conditions would the relationship HAS_PHONE be redundant in this example?
- **7.25.** Consider the ER diagram in Figure 7.23. Assume that a course may or may not use a textbook, but that a text by definition is a book that is used in some course. A course may not use more than five books. Instructors teach from

Figure 7.22Part of an ER diagram for a COMPANY database.

Figure 7.23Part of an ER diagram for a COURSES database.

two to four courses. Supply (min, max) constraints on this diagram. State clearly any additional assumptions you make. If we add the relationship ADOPTS, to indicate the textbook(s) that an instructor uses for a course, should it be a binary relationship between INSTRUCTOR and TEXT, or a ternary relationship between all three entity types? What (min, max) constraints would you put on it? Why?

- **7.26.** Consider an entity type SECTION in a UNIVERSITY database, which describes the section offerings of courses. The attributes of SECTION are Section_number, Semester, Year, Course_number, Instructor, Room_no (where section is taught), Building (where section is taught), Weekdays (domain is the possible combinations of weekdays in which a section can be offered {'MWF, 'MW, 'TT', and so on}), and Hours (domain is all possible time periods during which sections are offered {'9–9:50 A.M.', '10–10:50 A.M.', ..., '3:30–4:50 P.M.', '5:30–6:20 P.M.', and so on}). Assume that Section_number is unique for each course within a particular semester/year combination (that is, if a course is offered multiple times during a particular semester, its section offerings are numbered 1, 2, 3, and so on). There are several composite keys for section, and some attributes are components of more than one key. Identify three composite keys, and show how they can be represented in an ER schema diagram.
- **7.27.** Cardinality ratios often dictate the detailed design of a database. The cardinality ratio depends on the real-world meaning of the entity types involved and is defined by the specific application. For the following binary relationships, suggest cardinality ratios based on the common-sense meaning of the entity types. Clearly state any assumptions you make.

	Entity 1	Cardinality Ratio	Entity 2
1.	STUDENT		SOCIAL_SECURITY_CARD
2.	STUDENT		TEACHER
3.	CLASSROOM		WALL

4. COUNTRY	 CURRENT_PRESIDENT
5. COURSE	 TEXTBOOK
6. ITEM (that can be found in an	
order)	 ORDER
7. STUDENT	 CLASS
8. CLASS	 INSTRUCTOR
9. INSTRUCTOR	 OFFICE
0. EBAY_AUCTION ITEM	FRAY BID

7.28. Consider the ER schema for the MOVIES database in Figure 7.24.

Assume that MOVIES is a populated database. ACTOR is used as a generic term and includes actresses. Given the constraints shown in the ER schema, respond to the following statements with *True*, *False*, or *Maybe*. Assign a response of *Maybe* to statements that, while not explicitly shown to be *True*, cannot be proven *False* based on the schema as shown. Justify each answer.

- a. There are no actors in this database that have been in no movies.
- b. There are some actors who have acted in more than ten movies.
- c. Some actors have done a lead role in multiple movies.
- d. A movie can have only a maximum of two lead actors.
- e. Every director has been an actor in some movie.
- f. No producer has ever been an actor.
- g. A producer cannot be an actor in some other movie.
- h. There are movies with more than a dozen actors.
- i. Some producers have been a director as well.
- j. Most movies have one director and one producer.
- k. Some movies have one director but several producers.
- I. There are some actors who have done a lead role, directed a movie, and produced some movie.
- m. No movie has a director who also acted in that movie.
- **7.29.** Given the ER schema for the MOVIES database in Figure 7.24, draw an instance diagram using three movies that have been released recently. Draw instances of each entity type: MOVIES, ACTORS, PRODUCERS, DIRECTORS involved; make up instances of the relationships as they exist in reality for those movies.
- **7.30.** Illustrate the UML Diagram for Exercise 7.16. Your UML design should observe the following requirements:
 - a. A student should have the ability to compute his/her GPA and add or drop majors and minors.
 - b. Each department should be to able add or delete courses and hire or terminate faculty.
 - Each instructor should be able to assign or change a student's grade for a course.

Note: Some of these functions may be spread over multiple classes.

Laboratory Exercises

- **7.31.** Consider the UNIVERSITY database described in Exercise 7.16. Build the ER schema for this database using a data modeling tool such as ERwin or Rational Rose.
- **7.32.** Consider a MAIL_ORDER database in which employees take orders for parts from customers. The data requirements are summarized as follows:
 - The mail order company has employees, each identified by a unique employee number, first and last name, and Zip Code.
 - Each customer of the company is identified by a unique customer number, first and last name, and Zip Code.

- Each part sold by the company is identified by a unique part number, a part name, price, and quantity in stock.
- Each order placed by a customer is taken by an employee and is given a unique order number. Each order contains specified quantities of one or more parts. Each order has a date of receipt as well as an expected ship date. The actual ship date is also recorded.

Design an Entity-Relationship diagram for the mail order database and build the design using a data modeling tool such as ERwin or Rational Rose.

- **7.33.** Consider a MOVIE database in which data is recorded about the movie industry. The data requirements are summarized as follows:
 - Each movie is identified by title and year of release. Each movie has a length in minutes. Each has a production company, and each is classified under one or more genres (such as horror, action, drama, and so forth). Each movie has one or more directors and one or more actors appear in it. Each movie also has a plot outline. Finally, each movie has zero or more quotable quotes, each of which is spoken by a particular actor appearing in the movie.
 - Actors are identified by name and date of birth and appear in one or more movies. Each actor has a role in the movie.
 - Directors are also identified by name and date of birth and direct one or more movies. It is possible for a director to act in a movie (including one that he or she may also direct).
 - Production companies are identified by name and each has an address. A production company produces one or more movies.

Design an Entity-Relationship diagram for the movie database and enter the design using a data modeling tool such as ERwin or Rational Rose.

- **7.34.** Consider a CONFERENCE_REVIEW database in which researchers submit their research papers for consideration. Reviews by reviewers are recorded for use in the paper selection process. The database system caters primarily to reviewers who record answers to evaluation questions for each paper they review and make recommendations regarding whether to accept or reject the paper. The data requirements are summarized as follows:
 - Authors of papers are uniquely identified by e-mail id. First and last names are also recorded.
 - Each paper is assigned a unique identifier by the system and is described by a title, abstract, and the name of the electronic file containing the paper.
 - A paper may have multiple authors, but one of the authors is designated as the contact author.
 - Reviewers of papers are uniquely identified by e-mail address. Each reviewer's first name, last name, phone number, affiliation, and topics of interest are also recorded.

- Each paper is assigned between two and four reviewers. A reviewer rates each paper assigned to him or her on a scale of 1 to 10 in four categories: technical merit, readability, originality, and relevance to the conference. Finally, each reviewer provides an overall recommendation regarding each paper.
- Each review contains two types of written comments: one to be seen by the review committee only and the other as feedback to the author(s).

Design an Entity-Relationship diagram for the CONFERENCE_REVIEW database and build the design using a data modeling tool such as ERwin or Rational Rose.

7.35. Consider the ER diagram for the AIRLINE database shown in Figure 7.20. Build this design using a data modeling tool such as ERwin or Rational Rose.

Selected Bibliography

The Entity-Relationship model was introduced by Chen (1976), and related work appears in Schmidt and Swenson (1975), Wiederhold and Elmasri (1979), and Senko (1975). Since then, numerous modifications to the ER model have been suggested. We have incorporated some of these in our presentation. Structural constraints on relationships are discussed in Abrial (1974), Elmasri and Wiederhold (1980), and Lenzerini and Santucci (1983). Multivalued and composite attributes are incorporated in the ER model in Elmasri et al. (1985). Although we did not discuss languages for the ER model and its extensions, there have been several proposals for such languages. Elmasri and Wiederhold (1981) proposed the GORDAS query language for the ER model. Another ER query language was proposed by Markowitz and Raz (1983). Senko (1980) presented a query language for Senko's DIAM model. A formal set of operations called the ER algebra was presented by Parent and Spaccapietra (1985). Gogolla and Hohenstein (1991) presented another formal language for the ER model. Campbell et al. (1985) presented a set of ER operations and showed that they are relationally complete. A conference for the dissemination of research results related to the ER model has been held regularly since 1979. The conference, now known as the International Conference on Conceptual Modeling, has been held in Los Angeles (ER 1979, ER 1983, ER 1997), Washington, D.C. (ER 1981), Chicago (ER 1985), Dijon, France (ER 1986), New York City (ER 1987), Rome (ER 1988), Toronto (ER 1989), Lausanne, Switzerland (ER 1990), San Mateo, California (ER 1991), Karlsruhe, Germany (ER 1992), Arlington, Texas (ER 1993), Manchester, England (ER 1994), Brisbane, Australia (ER 1995), Cottbus, Germany (ER 1996), Singapore (ER 1998), Paris, France (ER 1999), Salt Lake City, Utah (ER 2000), Yokohama, Japan (ER 2001), Tampere, Finland (ER 2002), Chicago, Illinois (ER 2003), Shanghai, China (ER 2004), Klagenfurt, Austria (ER 2005), Tucson, Arizona (ER 2006), Auckland, New Zealand (ER 2007), Barcelona, Catalonia, Spain (ER 2008), and Gramado, RS, Brazil (ER 2009). The 2010 conference is to be held in Vancouver, BC, Canada.