Calculus II Homework on Lecture 11

1. Match the graphs of the parametric equations x=f(t), y=g(t) with the graph of the parametric curve $\gamma: \left| \begin{array}{ccc} x & = & f(t) \\ y & = & g(t) \end{array} \right|$

(а) вигмен: ширерия по

answer: matches to la

(c)

(b)

2.

Match the graph of the curve to its graph in polar coordinates and to its polar parametric equations.

(b)

(c)

(d)

(e)

(a)

(i) $r = 1 + \sin(\theta) + \cos(\theta)$

- (ii) $r = \theta, \theta \in [-\pi, \pi]$.
- (iii) $r = \cos(3\theta), \theta \in [0, 2\pi].$
- (iv) $r = \frac{1}{4}\sqrt{\theta}, \theta \in [0, 10\pi].$
- (v) $r = 2 + \sin(5\theta)$.
- (vi) $r = 2 + \cos(3\theta)$.

(b)

answer: matches 2c, 2v

(f) mswer: matches 2a, 2iv

mswer: matches 2d, 2i

3.

(a) Sketch the curve given in polar coordinates by $r = 2 \sin \theta$. What kind of a figure is this curve? Find an equation satisfied by the curve in the (x, y)-coordinates.

(b) Sketch the curve given in polar coordinates by $r = 4\cos\theta$. What kind of a figure is this curve? Find an equation satisfied by the curve in the (x, y)-coordinates.

(c) Sketch the curve given in polar coordinates by $r=2\sec\theta$. What kind of a figure is this curve? Find an equation satisfied by the curve in the (x, y)-coordinates.

(d) Sketch the curve given in polar coordinates by $r=2\csc\theta$. What kind of a figure is this curve? Find an equation satisfied by the curve in the (x, y)-coordinates.

(e) Sketch the curve given in polar coordinates by $r = 2\sec\left(\theta + \frac{\pi}{4}\right)$. What kind of a figure is this curve? Find an equation satisfied by the curve in the (x, y)-coordinates. answer: the curve is the line $y=x=\sqrt{2}$

(f) Sketch the curve given in polar coordinates by $r = 2\csc\left(\theta + \frac{\pi}{6}\right)$. What kind of a figure is this curve? Find an equation satisfied by the curve in the (x, y)-coordinates.

Solution. 3.c. Recall from trigonometry that if we draw a unit circle as shown below, $\sec \theta$ is given by the signed distance as indicated on the figure. Therefore it is clear that the curve given in polar coordinates by $y = \sec \theta$ is the vertical line passing through x=1. Analogous considerations can be made for a circle of radius 2, from where it follows that $y=2\sec\theta$ is the vertical line passing through x = 2.

Alternatively, we can find an equation in the (x, y)-coordinates of the cuve by the direct computation:

$$x = r \cos \theta = 2 \sec \theta \cos \theta = 2$$
.

Solution, 3.e.

Approach I. Adding an angle α to the angle polar coordinate of a point corresponds to rotating that point counterclockwise at an angle α about the origin. Therefore a point P with polar coordinates $P\left(2\sec\left(\theta+\frac{\pi}{4}\right),\theta\right)$ is obtained by rotating at an angle $-\frac{\pi}{4}$ the point Q with polar coordinates $Q\left(2\sec\left(\theta+\frac{\pi}{4}\right),\theta+\frac{\pi}{4}\right)$. The point P lies on the curve with equation $r=2\sec\left(\theta+\frac{\pi}{4}\right)$ and the point Q lies on the curve with equation $r=2\sec\theta$ - the latter curve is the curve from problem 3.c. Thus the curve in the current problem is obtained by rotating the curve from 3.c at an angle of $-\frac{\pi}{4}$. As the curve in Problem 3.c is the vertical line x=2, the curve in the present problem is also a line. Rotation at an angle of $-\frac{\pi}{4}$ of a vertical line yields a line with slope 1. When $\theta=0$, $x=\frac{2}{\sqrt{2}}=2\sqrt{2}$, y=0 and the curve passes through $(2\sqrt{2},0)$. We know the slope of a line and a point through which it passes; therefore the (x,y)-coordinates of our curve satisfy

$$y = x - 2\sqrt{2}$$

Approach II. We compute

$$x = r\cos\theta = \frac{2\cos\theta}{\cos(\theta + \frac{\pi}{4})}$$
 multiply by $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$
$$y = r\sin\theta = \frac{2\sin\theta}{\cos(\theta + \frac{\pi}{4})}$$
 multiply by $-\sin\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$ add the above
$$x\cos\left(\frac{\pi}{4}\right) - y\sin\left(\frac{\pi}{4}\right) = 2\frac{\cos\theta\cos\left(\frac{\pi}{4}\right) - \sin\theta\sin\left(\frac{\pi}{4}\right)}{\cos\left(\theta + \frac{\pi}{4}\right)}$$
 use $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$
$$\frac{\sqrt{2}}{2}(x - y) = 2\frac{\cos\left(\theta + \frac{\pi}{4}\right)}{\cos\left(\theta + \frac{\pi}{4}\right)} = 2$$

$$y = x - 2\sqrt{2},$$

and therefore our curve is the line given by the equation above.