Amendment of the Claims

The following list of claims replaces all previous version(s) of claims.

1. (Currently Amended) A trench-type storage device comprising:

a substrate;

a trench in said substrate:

multiple conductive carbon nanotubes lining said trench; and

a trench conductor, surrounded by <u>and in direct contact with said</u> multiple conductive nanotubes, filling said trench.

wherein said trench conductor and said substrate having a co-planar top surface.

(Currently Amended) A trench-type storage device comprising:

a substrate:

at least one trench in said substrate:

multiple conductive carbon nanotubes lining said at least one trench;

- a trench conductor filling said trench <u>and in direct contact with said multiple</u> conductive carbon nanotubes; and
- a trench dielectric between said multiple carbon nanotubes and sidewalls of said trench and directly underneath and in contact with said multiple carbon nanotubes.
- 3. (Currently Amended) The storage device in claim 1, further comprising a layer of trench dielectric on top of a bottom of said trench and between said <u>multiple conductive</u> carbon nanotubes and sidewalls of said trench, wherein the <u>multiple conductive</u> carbon nanotubes form an open cylinder structure lining said sidewalls of said trench through said layer of trench dielectric.
- 4. (Currently Amended) The storage device in claim 3[[1]], wherein the trench conductor comprises at least one of polysilicon, a metal, and an alloy thereof, contacting said layer of trench dielectric on top of said bottom of said trench.

- (Currently Amended) The storage device in claim 1, characterized in that the <u>multiple</u> conductive carbon nanotubes and the trench conductor are disposed in the trench, and the trench conductor is carbon free.
- (Original) The storage device in claim 1, characterized in that the substrate is free of carbon nanotube catalyst materials.
- (Currently Amended) The storage device in claim 1, characterized in that the <u>multiple conductive</u> carbon nanotubes form a consistent lining along approximately the entire length of sidewalls of said trench.
- 8. (Currently Amended) The storage device in claim 2, characterized in that the trench-type storage device is planarized so that a top surface of the substrate is coplanar with respective top surfaces of the trench dielectric, the <u>multiple</u> conductive carbon panotubes and the trench conductor.
- (Currently Amended) The storage device in claim 1, characterized in that the multiple conductive carbon nanotubes are grown downwards into the trench.
- (Currently Amended) The storage device in claim 1, further comprising a trench dielectric between said <u>multiple conductive</u> carbon nanotubes and sidewalls of said trench.
- (Currently Amended) A trench-type storage device comprising:
 a substrate:

one trench in said substrate;

conductive carbon nanotubes forming an open cylinder in lining said <u>one</u> trench;

a trench conductor filling said open cylinder of said <u>conductive</u> carbon nanotubes and in direct contact with said conductive carbon nanotubes,

wherein said trench conductor and said substrate having a co-planar top surface.

- 12. (Currently Amended) The storage device in claim 11, wherein the trench conductor comprises at least one of polysilicon, a metal, and an alloy thereof, contacting said a layer of trench dielectric on top of said a bottom of said one trench.
- 13. (Previously Presented) The storage device in claim 11, characterized in that the conductive carbon nanotubes and the trench conductor are disposed in the trench, and the trench conductor is carbon free.
- 14. (Previously Presented) The storage device in claim 11, characterized in that the substrate is free of carbon nanotube catalyst materials.
- 15. (Currently Amended) The storage device in claim 11, characterized in that the <u>conductive</u> carbon nanotubes form a consistent lining along approximately the entire length of sidewalls of said trench.
- (Previously Presented) The storage device in claim 11, characterized in that the conductive carbon nanotubes are grown downwards into the trench.
- 17. (Currently Amended) The storage device in claim 11, further comprising a trench dielectric between said <u>conductive</u> carbon nanotubes and sidewalls of said trench.
- 18. (Previously Presented) The trench-type storage device of claim 1, further comprising a trench dielectric layer directly underneath said multiple conductive nanotubes.
- 19. (Previously Presented) The trench-type storage device of claim 18, wherein said trench dielectric layer lining at least a substantial portion of sidewalls of said trench and said multiple conductive nanotubes lining said trench via said trench dielectric layer.

FIS920030339US1 - 5/10 - 10/596.022

20.	(Previously Presented) The trench-type storage device of claim 18, wherein said
trench	dielectric layer having a cylindrical shape, lined by said multiple conductive
nanotu	bes across sidewalls of said cylindrical shape, and filled by said trench conductor.