Homework 9, Section 9.4 Solutions

1
Let N be a normal subgroup of G , let $a \in G$, and let C be the conjugacy class of a in G .
a)
Claim: $a \in N$ if and only if $C \subseteq N$.
Proof. Suppose $a \in N$. Since N is normal, for any $h = g^{-1}ag$ for $g \in G$, $h \in N$, so all conjugates of a are in N . Conversely, suppose $C \subseteq N$. Then there is some $h \in N$ where $h = g^{-1}ag$. Again, since N is normal, for any $x \in G$, $xNx^{-1} = N$, so $xhx^{-1} = xx^{-1}axx^{-1} = a \in N$.
b)
Claim: If C_i is any conjugacy class in G , prove that $C_i \subseteq N$ or $C_i \cap N = \emptyset$.
<i>Proof.</i> Assume there is some non-identity $h \in N$ and $h \in C_i$. Now assume for the purpose of contradiction that $C_i \nsubseteq N$. Then there is some $x \in G$ such that for any $y \in C_i$, $g^{-1}hg = y$ for $g \in G$. Since $g^{-1}Ng = N$, $g^{-1}hg \in N$ which implies that $y \in N$. So all elements in C_i are in N , and we have a contradiction. \square
c)
The class equation shows that for a group G , $ G = C_1 + C_2 + \cdots + C_i $. We've shown that each class equation belongs to one and only one normal subgroup of G , so it follows that $ N = C_1 + C_2 + \cdots + C_i $ where C_1, C_2, \cdots, C_i are the conjugacy classes contained in N .
2

Proof. By the First Sylow Theorem, G is a Sylow p-group, so its subgroups are p-subgroups and thus have non-trivial centers. Consider a normal subgroup M of one of these p-subgroups P; the conjugation of M by

Claim: If $N \neq < e >$ is a normal subgroup of G and $|G| = p^n$, $N \cap Z(G) \neq < e >$.

 $g \in G$ then maps $a \in Z(P)$ to itself, and a is in M so the intersection is non-trivial.

3

Claim: If K is a Sylow p-subgroup of G and H is a subgroup that contains the normalizer N(K), then $[G:H] \equiv 1 \mod p$.

Proof. By Theorem 9.25, the number of distinct H-conjugates of K is $[H:H\cap N(K)]$. Since H contains N(K), $H\cap N(K)=N(K)$. The index [G:N(K)] is equal to 1 mod p, and [H:N(K)]=1 mod p, so $[G:N(K)]=[G:H][H:N(K)]=[G:H]\cdot 1$ mod p=1 mod p.

4

Claim: If K is a Sylow p-subgroup of a group G, then its N(N(K)) = N(K) where N() is a normalizer.

Proof. Since K is a Sylow p-subgroup of both N(K) and N(N(K)), then for some $g \in N(N(K))$, $g^{-1}Kg$ is a subgroup of $g^{-1}N(K)g$. N(K) is normal, so $g^{-1}N(K)g = N(K)$. By the conjugation property of Sylow p-groups, there is some $h \in N(K)$ where $g^{-1}Kg = h^{-1}Kh$. Since h is in the normalizer of K, its conjugation of K remains in K, or $g^{-1}Kg = h^{-1}Kh = K$. It follows that g is also in N(K).