Rátkai Balázs	1.beadandó	2021.10.10.
ZLBM9Q		
zlbm9q@inf.elte.hu		
5.csoport		

1.beadandó feladat dokumentációja

Feladat leírása

Programozási technológia

Rögzítsen a síkon egy pontot, és töltsön fel egy gyűjteményt különféle szabályos (kör, szabályos háromszög, négyzet, szabályos hatszög) síkidomokkal! Határozza meg a legkisebb téglalapot, amely lefedi az összes síkidomot és oldalai párhuzamosak a tengelyekkel! Minden síkidom reprezentálható a középpontjával és az oldalhosszal, illetve a sugárral, ha feltesszük, hogy a sokszögek esetében az egyik oldal párhuzamos a koordináta rendszer vízszintes tengelyével, és a többi csúcs ezen oldalra fektetett egyenes felett helyezkedik el. A síkidomokat szövegfájlból töltse be! A fájl első sorában szerepeljen a síkidomok száma, majd az egyes síkidomok. Az első jel azonosítja a síkidom fajtáját, amit követnek a középpont koordinátái és a szükséges hosszúság. A feladatokban a beolvasáson kívül a síkidomokat egységesen kezelje, ennek érdekében a síkidomokat leíró osztályokat egy közös ősosztályból származtassa!

Terv

Azt a legkisebb téglalapot keressük amiben benne van az összes síkidom. Ehhez meg kell határozni a síkidomok csúcsainak a koordinátáit majd bele kell rakni a koordinátákat két különböző listába. Az egyik listában az X koordinátákat míg a másikban az Y koordinátákat fogjuk tárolni. Miután feltöltöttük a listákat, minimum ,illetve maximum keresést kell végrehajtani rajtuk. Így megkapjuk a legkisebb téglalap 4 koordinátáját.

UML osztálydiagram

A Planes nevű ősosztályból származnak le a síkidomok osztályai. Mindegyik alosztályban megtalálható egy calculate() metódus ami a különböző síkidomoknak a koordinátáit számolja ki. A Planes ősosztályban csak a setterek/getterek találhatóak meg , illetve itt hozzuk létre a coordinates nevű tömböt , aminek a hossza négy float típusú szám lehet. Ezt a négy koordinátát fogjuk szétválogatni.

A fő metódusok a PlanesMake nevű osztályban vannak.

A read() metódus beolvassa a file-t, a fillLists() listákba rakja a megkapott koordinátákat, míg a makeResult() függvény maximum és minimum keresést hajt végre a megkapott listákon és a minimumokat/maximumokat egy result nevű tömbbe menti mely csak négy értéket tartalmazhat. A tömbben lévő négy számból már könnyedén kiszámolható a legkisebb téglalap koordinátái.

4.

Tesztelések

filenév	bemenet	kimenet
data1.txt	1	koordináták:
Egy darab	S 0 0 10	A: (5.0,5.0)
négyzetet		B: (5.0,-5.0)
tartalmaz.		C: (-5.0,5.0)
Középpontja az		D: (-5.0,-5.0)
origó.		
data2.txt	3	koordináták:
Három	T 2 3 4	A: (10.0,10.0)
síkidomot	S 1 5 10	B: (10.0,-8.66025)
tartalmaz.	H 0 0 10	C: (-10.0,10.0)
1 háromszöget,		D: (-10.0,-8.66025)
1 négyzetet		
1 hatszöget		
data3.txt	10	koordináták:
Tíz síkidomot	S 100 0 4	A: (102.0,11.2789)
tartalmaz,	T 1 -2 23	B: (102.0,-14.0)
amelyeknek a	H 2 0 10	C: (-30.0,11.2789)
középpont	C -3 1 2	D: (-30.0,-14.0)
koordinátái	S -1 -2 -11,6	
lehetnek	H -0,5 2 1,6	
negatív és nem	C 3 -4 10	
egész számok	T 5,2 -5 10	
is.	S -23,14 1 2	
	C -25 2 5	
ures.txt	-üres file-	NoSuchElementException