Since 1 and 3 are the root of the equation

$$x^4 + 2x^3 - 13x^2 - 14x + 24 = 0$$

Then by synthetic division, we get

The depressed equation is

$$x^{2} + x - 2 = 0$$

$$x^{2} - 2x + x - 2 = 0$$

$$x(x-2) + 1(x-2) = 0$$

$$(x+1)(x-2) = 0$$

$$x + 1 = 0 or x - 2 = 0$$

Either x + 1 = 0 or x - 2 = 0x = -1 x = 2

Thus, -4, -1, 2 and 3 are the roots of given equation.

Simultaneous equations:

A system of equations having a common solution is called a system of simultaneous equations.

The set of all the ordered pairs (x, y), which satisfies the system of equations is called the solution set of the system.

SOLVED EXERCISE 2.7

Solve the following simultaneous equations.

1.
$$x + y = 5$$
 ; $x^2 - 2y - 14 = 0$

$$x + y = 5$$
 (i)
 $x^2 - 2y - 14 = 0$ (ii)
From (i), we have
 $y = 5 - x$ (iii)
Put value of y in eq. (ii), we get
 $x^2 - 2(5 - x) - 14 = 0$
 $x^2 - 10 + 2x - 14 = 0$
 $x^2 + 2x - 24 = 0$
 $x^2 + 6x - 4x - 24 = 0$
 $x(x + 6) - 4(x + 6) = 0$
 $(x - 4)(x + 6) = 0$

Either
$$x - 4 = 0$$
 or $x + 6 = 0$

$$x = 4$$
 $x = -6$
Put $x = 4$ in eq. (iii), we get $x = -6$ in eq (iii), we get

$$y = 5 - 4$$
$$= 1$$

$$y = 5 - (-6)$$

= 5 + 6

The ordered pairs are (4, 1) are (-6, 11). Thus, solution set = $\{(4, 1), (-6, 11)\}$

2.
$$3x - 2y = 1$$

$$x^2 + xy - y^2 = 1$$

Solution:

$$3x - 2y = 1$$
 (i)
 $x^2 + xy - y^2 = 1$ (ii)
From (i), we hae
 $2y = 3x - 1$
 $y = \frac{1}{2}(3x - 1)$

$$y = \frac{3}{2}x - \frac{1}{2}$$
 (iii)

Put value of y in eq. (ii), we get

$$x^{2} + x \left(\frac{3}{2}x - \frac{1}{2}\right) - \left(\frac{3}{2}x - \frac{1}{2}\right)^{2} = 1$$

$$x^{2} + \frac{3}{2}x^{2} - \frac{1}{2}x - \frac{9}{4}x^{2} + \frac{3}{2}x - \frac{1}{4} = 1$$

Multiplying both sides by '4', we get

$$4x^2 + 6x^2 - 2x - 9x^2 + 6x - 1 = 4$$

$$4x^2 + 6x^2 - 9x^2 - 2x + 6x - 1 - 4 = 0$$

$$x^2 + 4x - 5 = 0$$

$$x^2 + 5x - x - 5 = 0$$

$$x(x+5)-1(x+5)=0$$

$$(x-1)(x+5)=0$$

Either
$$x - 1 = 0$$
 or $x + 5 = 0$
 $x = 1$ $x = -5$

Put x = 1 in eq. (iii), we get

Put x = -5 in eq (iii), we get

$$y = \frac{3}{2}(1) - \frac{1}{2}$$

$$= \frac{3}{2} - \frac{1}{2}$$

$$= \frac{2}{2}$$

$$= 1$$

$$y = \frac{3}{2}(-5) - \frac{1}{2}$$

$$= -\frac{15}{2} - \frac{1}{2}$$

$$= -\frac{16}{2}$$

$$= -8$$

The ordered pairs are (1, 1) are (-5, -8).

Thus, solution set = $\{(1, 1), (-5, -8)\}$

3.
$$x-y=7$$
; $\frac{2}{x}-\frac{5}{y}=$

Solution:

$$x-y=7$$

$$\frac{2}{x} - \frac{5}{y} = 2$$

$$\frac{2y-5x}{xy} = 2$$

$$2y - 5x = 2xy \qquad (ii)$$

From (i), we hae

$$y = x - 7$$

__ (iii)

Put value of y in eq. (ii), we get

$$2(x-7)-5x=2x(x-7)$$

$$2x - 14 - 5x = 2x^2 - 14x$$

$$-3x - 14 = 2x^2 - 14x$$

or
$$2x^2 - 14x + 3x + 14 = 0$$

$$2x^2 - 11x + 14 = 0$$

$$2x^2 - 7x - 4x + 14 = 0$$

$$x(2x-7)-2(2x-7)=0$$

$$(x-2)(2x-7)=0$$

Either $x-2=0$

$$x-2=0$$
$$x=2$$

$$2x - 7 = 0$$
$$2x = 7$$

$$x = \frac{7}{2}$$

Put x = 2 in eq. (iii), we get

Put
$$x = \frac{7}{2}$$
 in eq (iii), we get•

$$y = 2 - 7$$

$$y = \frac{7}{2} - 7$$

$$y = -\frac{7}{2}$$

The ordered pairs are (2,-5), $(\frac{7}{2},-\frac{7}{2})$

Thus, solution set =
$$\{(2,-5), (\frac{7}{2},-\frac{7}{2})\}$$

$$4. \quad x+y=a-b$$

$$; \qquad \frac{a}{x} - \frac{b}{v} = 2$$

$$x + y = a - b$$
 _____(i)

$$\frac{a}{x} - \frac{b}{y} = 2$$

$$\frac{ay - bx}{xy} = 2$$
From eq. (i), we have
$$y = a - b - x$$
Put value of y in eq. (ii), we get
$$a (a - b - x) - bx - 2x (a - b - x)$$

$$2x^2 - 2ax - ax + 2bx - bx - a^2 - ab = 0$$

$$2x^2 - 3ax + bx + a^2 - ab = 0$$

$$2x^2 - (3a - b)x + (a^2 - ab) = 0$$
Using quadratic formula
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-\left[-(3a - b) \pm \sqrt{\left[-(3a - b)\right]^2 - 4(2)(a^2 - ab)}\right]}{4(2)}$$

$$= \frac{(3a - b) \pm \sqrt{9a^2 - 6ab + b^2 - 8a^2 + 8ab}}{4}$$

$$= \frac{(3a - b) \pm \sqrt{(a + b)^2}}{4} = \frac{(3a - b) \pm (a + b)}{4}$$
Either
$$x = \frac{(3a - b) \pm (a + b)}{4} \quad \text{or} \quad x = \frac{(3a - b) \pm (a + b)}{4}$$

$$= \frac{3a - b + a + b}{4} = \frac{a}{4} = \frac{2a - 2b}{4}$$

$$= a$$
Put $x = a$ in eq. (iii), we get
$$y = a - b - a$$

$$= -b$$

$$y = (a - b) - \frac{a - b}{2}$$

$$= \frac{2a - 2b - a + b}{2}$$

 $=\frac{a-b}{2}$

.. The ordered pairs are
$$(a, -b)$$
, $\left(\frac{a-b}{2}, \frac{a-b}{2}\right)$
Thus, solution set = $\left\{(a, -b), \left(\frac{a-b}{2}, \frac{a-b}{2}\right)\right\}$

5.
$$x^2 + (y-1)^2 = 10$$
 ; $x^2 + y^2 + 4x = 1$

Solution:

: ع

$$x^{2} + (y - 1)^{2} = 10$$

 $x^{2} + y^{2} - 2y + 1 = 10$
 $x^{2} + y^{2} - 2y = 10 - 1$
 $x^{2} + y^{2} - 2y = 9$ (i) (ii)
Subtract eq. (ii) from eq. (i), we have
 $x^{2} + y^{2} - 2y = 9$

$$\frac{\pm x^2 \pm y^2 \pm 4x = \pm 1}{-4x - 2y = 8}$$

$$-2(2x+y)=8$$

$$\Rightarrow 2x + y = -4$$

$$y = -2x - 4$$
 (iii)

Put the value of y in eq. (ii). We have

$$x^{2} + (-2x - 4)^{2} + 4x = 1$$

$$x^{2} + \{-(2x + 4)^{2} + 4x = 1$$

$$x^{2} + 4x^{2} + 16x + 16 + 4x - 1 = 0$$

$$5x^{2} + 20x + 15 = 0$$

$$5x^2 + 20x + 15 = 0$$

 $5(x^2 + 4x + 3) = 0$

$$x^{2} + 4x + 3 = 0$$

$$x^{2} + 3x + x + 3 = 0$$

$$x(x+3)+1(x+3)=0$$

 $(x+1)(x+3)=0$

Either x + 3 = 0

$$3 = 0$$
 or $x + 1 = 0$
 $x = -3$ $x = -1$

Put
$$x = -3$$
 in eq (iii) we get, Put $x = -1$ in eq (ii) $y = -2(-3) - 4$ $y = -2(-1) - 4$

$$y = -2(-3) - 4$$
 $y = -2(-1) - 4$
= $-6 - 4$ = $-2 - 4$
= -10 = -6

 \therefore The ordered pairs are (-3, -10), (-1, -6)

Thus, solution set = $\{(-3, -10), (-1, -6)\}$

6.
$$(x+1)^2 + (y+1)^2 = 5$$
; $(x+2)^2 + y^2 = 5$

$$(x + 1)^2 + (y + 1)^2 = 5$$

$$x^{2} + 2x + 1 + y^{2} + 2y + 1 = 5$$

$$x^{2} + y^{2} + 2x + 2y = 5 - 1 - 1$$

$$x^{2} + y^{2} + 2x + 2y = 3$$

$$(x + 2)^{2} + y^{2} = 5$$

$$x^{2} + 4x + 4 + y^{2} = 5$$

$$x^{2} + 4y^{2} + 4x = 5 - 4$$

$$x^{2} + y^{2} + 4x = 1$$
Subtract eq. (ii) from eq. (i), we have
$$x^{2} + y^{2} + 2x + 2y = 3$$

$$\pm x^{2} \pm y^{2} \pm 4 = \pm 1$$

$$-2x + 2y = 2$$

$$2(-x + y) = 2$$

$$\Rightarrow -x + y = 1$$

$$y = x + 1$$

$$x^{2} + x^{2} + 2x + 1 + 4x = 1$$

$$2x^{2} + 6x + 1 - 1 = 0$$

$$2x^{2} + 6x + 0 = 0$$

$$2x^{2} + 6x = 0$$

$$2x(x + 3) = 0$$
Either
$$2x = 0$$
 or
$$x + 3 = 0$$
Put
$$x = 0$$
 in eq. (iii), we get
$$y = 0 + 1$$

$$= 0$$

$$\therefore$$
 The ordered pairs are $(0, 1)$, $(-3, -2)$
Thus, solution set = $\{(0, 1), (-3, -2)\}$
7.
$$x^{2} + 2y^{2} = 22$$

$$5x^{2} + y^{2} = 29$$
Multiply eq. (iii) by '2' then subtract eq. (ii) from eq. (i) we get
$$\frac{\pm 10x^{2} \pm 2y^{2} = \pm 58}{-9x^{2} = -36}$$

$$\Rightarrow x^{2} = 4$$
Put the value of $x^{2} = 4$ in eq. (i), we get

 $4 + 2y^2 = 22$

$$2y^2 = 22 - 4$$

$$2y^2 = 18$$

$$\Rightarrow$$
 $y^2 = 9$

$$y = \pm 3$$

Thus, solution set = $\{(\pm 2, \pm 3)\}$

8.
$$4x^2 - 5y^2 = 6$$

$$3x^2 + y^2 = 14$$

Solution:

$$4x^2 - 5y^2 = 6$$
 (i)
 $3x^2 + y^2 = 14$ (ii)

Multiply eq. (ii) by 5 then add eq. (i) and (ii) we get.

$$3x^2 - 5y^2 = 6$$

$$\frac{15x^2 + 5y^2 = 70}{19x^2 = 76}$$

$$x^2 = 4$$

$$\Rightarrow$$

Put the value of $x^2 = 4$ in eq. (ii), we get

$$3(4) + y^2 = 14$$

$$12 + y^2 = 14$$

$$y2 = 14 - 12$$

$$v2 = 2$$

$$y = \pm \sqrt{2}$$

Thus, solution set = $\{(\pm 2, \pm \sqrt{2})\}$

9. Solution:

 \Rightarrow

$$7x^2 - 3y^2 = 4$$
 ; $2x^2 + 5y^2 = 7$

$$7x^2 - 3y^2 = 4$$
 (i)
 $2x^2 + 5y^2 = 7$ (ii)

Multiply eq. (i) by '5' and eq. (ii) by add eq. (i) and (ii), we get

$$35x^2 - 15y^2 = 20$$

$$6x^2 + 15y = 21$$

$$41x^2 = 41$$
$$x^2 = 1$$

$$x = \pm 1$$

Put the value of $x^2 = 1$ in eq. (ii), we get

$$2(1) + 5y^2 = 7$$

$$2 + 5y^2 = 7$$

$$5y^2 = 7 - 2$$

c. 2 -

$$\Rightarrow y^2 = 1$$

$$y = \pm 1$$
Thus, solution set = $\{(\pm 1, \pm 1)\}$

10.
$$x^2 + 2y^2 = 3$$
 ; $x^2 + 4xy - 5y^2 = 0$

Solution:

$$x^{2} + 2y^{2} = 3$$

$$x^{2} + 4xy - 5y^{2} = 0$$

$$x^{2} + 5xy - xy - 5y^{2} = 0$$

$$x(x + 5y) - y(x + 5y) = 0$$

$$(x - y)(x + 5y) = 0$$

$$x - y = 0 or x + 5y = 0$$
or $y = x$

$$x = -5y$$

or y = xPut y = x in eq. (i), we get

$$x^{2} + 2x^{2} = 3$$

$$3x^{2} = 3$$

$$x^{2} = 1$$

$$x = \pm 1$$

Put x = -5y in eq. (i), we get

$$(-5y)^{2} + 2y^{2} = 3$$

$$25y^{2} + 2y^{2} = 3$$

$$27y^{2} = 3$$

$$\Rightarrow y^2 = \frac{1}{9}$$

$$y = \pm \frac{1}{2}$$

Put
$$x = \pm 1$$
 in $y = x$, we get

Put $y = \pm \frac{1}{3}$ in x = -5y, we get

$$x = -5\left(\pm\frac{i}{3}\right)$$
$$x = \mp\frac{5}{3}$$

... The ordered pairs are (1, 1), (-1, 1) ... The ordered pairs are $\left(\frac{5}{3}, -\frac{1}{3}\right)$, $\left(-\frac{5}{3}, \frac{1}{3}\right)$

Thus, solution set = $\left\{ (-1, 1), (-1, 1), \left(\frac{5}{3}, -\frac{1}{3} \right), \left(-\frac{5}{3}, \frac{1}{3} \right) \right\}$

11.
$$3x^2 - y^2 = 26$$
 ; $3x^2 - 5xy - 2y^2 = 0$

$$3x^{2} - y^{2} = 26$$

$$3x^{2} - 5xy - 2y^{2} = 0$$
(i)

$$3x^{2}-9xy-4xy-12y^{2}=0$$

$$3x(x-3y)+4y(x-3y)=0$$

$$(3x+4y)(x-3y)=0$$
Either $3x+4y=0$ or

3x = -4y 4

$$x = -\frac{4}{3}y$$

Put $x = -\frac{4}{3}y$ in eq. (i), we get

Put x = 3y in eq. (i), we get

$$3(3y)^2 - y^2 = 26$$

 $3(9x)^2 - y^2 = 26$
 $27y2 - y^2 = 26$
 $26y^2 = 26$
 $y^2 = 1$
 $y = \pm 1$

x - 3y = 0

Put $y = \pm 1$ in x = 2y, we get

$$x = 3 (\pm 1)$$
$$x = \pm 3$$

 \therefore The ordered pairs are (3, 1), (-3, 1)

$$3\left(-\frac{4}{3}y\right)^{2} - y^{2} = 26$$

$$3\left(\frac{16}{9}y^{2}\right) - y^{2} = 26$$

$$\frac{16}{9}y^{2} - y^{2} = 26$$

$$\frac{16y^{2} - 3y^{2}}{2} = 26$$

$$\frac{3}{3} = 26$$

$$13y^2 = \frac{26 \times 3}{13}$$

$$y^2 = 6$$

$$y = \pm \sqrt{6}$$

Put $y = \pm \sqrt{6}$ in $x = -\frac{4}{3}y$, we get

$$x = -\frac{4}{3} \left(\pm \sqrt{6} \right)$$

$$x = \frac{4\sqrt{3}}{3}$$

$$\therefore$$
 The ordered pairs are $\left(\frac{-4\sqrt{3}}{3}, \sqrt{6}\right), \left(\frac{4\sqrt{3}}{3}, -\sqrt{6}\right)$

Thus, solution set =

12.
$$x^2 + xy = 5$$
; $y^2 + xy = 3$

Solution:

$$x^{2} + xy = 5$$
 (i)
 $y^{2} + xy = 3$ (ii)

Multiply eq. (i) by '3' and eq. (ii) by '5' then subtract eq. (ii) from eq. (i), we get.

$$3x^2 + 3xy = 15$$

$$\frac{\pm 5y^2 \pm 5xy = \pm 15}{3x^2 - 2xy - 5y^2 = 0}$$

$$3x^2 - 5xy + 3xy - 5y^2 = 0$$

$$x(3x-5y)+y(3x-5y)=0$$

$$(x+y)(3x-5y)=0$$

Either
$$x + y = 0$$

 $y = -x$

Or

$$3x - 5y = 0$$
$$3x = 5y$$

$$x = \frac{5}{3}y$$

Put x = -x in eq. (i), we get

Put $x = \frac{5}{2}y$ in eq. (i), we get

$$x^2 + x(-x) = 5$$

$$x^2 - x^2 = 5$$

$$\left(\frac{5}{3}y\right)^2 + \left(\frac{5}{3}y\right)y = 5$$

$$\frac{25}{9}y^2 + \frac{5}{3}y^2 = 5$$

$$\frac{25y^2 + 15y^2 = 5}{9}$$

which is not possible

$$\frac{40y^2}{9} = 5$$

$$40y^2 = 45$$

$$y^2 = \frac{45}{40}$$

$$y^2 = \frac{9}{8}$$

$$y = \pm \frac{3}{2\sqrt{2}}$$

Put
$$y = \pm \frac{3}{2\sqrt{2}}$$
 in $x = \frac{5}{3}y$, we get
$$x = \frac{5}{3} \left(\pm \frac{3}{2\sqrt{2}} \right)$$

$$x \pm \frac{5}{2\sqrt{2}}$$

$$\therefore \text{ The ordered pairs are } \left(\frac{5}{2\sqrt{2}}, -\frac{3}{2\sqrt{2}}\right), \left(-\frac{5}{2\sqrt{2}}, -\frac{3}{2\sqrt{2}}\right)$$

Thus, solution set = $\left\{ \left(\frac{5}{2\sqrt{2}}, -\frac{3}{2\sqrt{2}} \right), \left(-\frac{5}{2\sqrt{2}}, -\frac{3}{2\sqrt{2}} \right) \right\}$

13.
$$x^2 - 2xy = 7$$
 ; $xy + 3y^2 = 2$

Solution:

$$x^{2}-2xy = 7$$
 (i)
 $xy + 3y^{2} = 2$ (ii)

Multiply eq (i) by '2' and eq. (ii) by '7' then subtract eq. (ii) from eq (i), we get $2x^2 - 4xy = 14$

$$\frac{\pm 21y^2 \pm 7xy = \pm 14}{2x^2 - 11xy - 21y^2 = 0}$$

$$2x^2 - 14xy + 3xy - 21y^2 = 0$$

$$2x(x-7y)+3y(x-7y)=0$$

$$(2x+3y)(x-7y)=0$$

Either 2x + 3y = 0

or
$$x - 7y = 0$$

$$2x = -3y$$

$$x = 71$$

Put $x = -\frac{3}{2}y$ in eq. (ii), we get

Put
$$x = 7y$$
 in eq. (ii), we get

$$x = -\frac{3}{2} \left(\pm \frac{2}{\sqrt{3}} \right)$$

$$=\pm\frac{7}{\sqrt{5}}$$

$$= \sqrt{3}$$

$$\therefore$$
 The ordered pairs are $\left(-\sqrt{3}, \frac{2}{\sqrt{3}}\right), \left(\sqrt{3}, -\frac{2}{\sqrt{3}}\right)$

$$\therefore \text{ The ordered pairs are } \left(\frac{7}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right), \left(\frac{7}{\sqrt{5}}, -\frac{1}{\sqrt{5}}\right)$$

Thus, solution set =
$$\left\{ \left(\frac{7}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right), \left(\frac{7}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right), \left(-\sqrt{3} \frac{2}{\sqrt{3}} \right), \left(\sqrt{3} - \frac{2}{\sqrt{3}} \right) \right\}$$