2-3 Search Tree

2-3 Search Trees

- Each node can contain 1 or 2 keys.
- Each node has 2 or 3 children, hence 2-3 trees.

2-3 Search Trees

- Each node can contain 1 or 2 keys.
- Each node has 2 or 3 children, hence 2-3 trees.
- The keys in the nodes are ordered from small to large.

$$K_1 < K_2$$

2-3 Search Trees

- Each node can contain 1 or 2 keys.
- Each node has 2 or 3 children, hence 2-3 trees.
- The keys in the nodes are ordered from small to large.
- All leaves are at the same (bottom most) level, meaning we always add at the bottom.

2-node

$$K_1 < K_2$$

2-3 Search Tree Node

```
struct Node23{
  Node23 *left, *middle, *right;
  Key key1, key2;
};
```


2-node (showing empty)

3-node

$$K_1 < K_2$$

Example

- Splitting this way is called bottom-up balancing
 - Insert the node at the bottom-most level at correct location.
 - If the node is a 3-node, split it and pass the middle key to the parent.
 - If the parent is also a 3-node, split the parent and pass the middle key up
 - Etc...
 - Eventually, the root will also be a 3-node and splitting it will grow the tree one level.

 If the node you insert is a 2-node, simply grow the node to a 3-node

Inserting 'A'

• If the node you insert is a 3-node, we cannot grow the node more

Insertion - Cases

Insert in a 2-node:

Insert in a 3-node (2 node parent):

Example: Insert D

Insert O

BST with 50, 70, 20, 60, 40, 10

2-3 Tree with 50, 70, 20, 60, 40, 10

Properties of 2-3 Search Trees

• 2-3 search trees guarantee to be balanced at all times.

Searches are O(log N) in worst case.

- Balance is maintained during insertion
 - Splitting nodes, worst case O(log N), average case
 O(1)

Deletion

- 1. Find the key (X) that needs to be deleted
- If X is in a non-leaf node
 - 2.1 Replace X with its predecessor
 - 2.2 If no predecessor replace with successor
- 3. If X is in leaf node
 - 3.1 if left/right sibling has enough keys (ie more than 1)
 - 3.1.1 donate by rotating with parent (may need to take over sibling's child)
 - 3.2 else
 - 3.2.1 Merge down (pull the parent down)

 If parent is underful repeat Step 3 recursively

Example 1

Example 2

Summary

- 2-3 Trees are always balanced.
- Nodes are ALWAYS inserted at the bottom-most level.
- Balance is maintained by splitting full nodes and passing up the middle node.
- This makes the tree's height increase by one, only when the root is split.

2-3-4 Search Tree

Basic Properties

- Similar to 2-3 trees
- Nodes can contain 1, 2, or 3 keys.
- Nodes can has 2, 3, 4 children, hence 2-3-4 tree.
 - Each can have <u>at most</u> 4 children.
- Similarly to 2-3 trees, 2-3-4 trees are guaranteed to be always balanced.
- Balancing algorithm also relies on Splitting nodes
- Number of splits in the worst-case is O(log N)
 - When is the worst-case?
- Average number of splits is very few.

2-3-4 Node

```
struct Node234
{
  Node23 *left, *midleft, *midright, *right;
  Key key1, key2, key3;
};
```


2-node

3-node

4-node
$$K_1 < K_2 < K_3$$

Balancing Algorithm

- Balancing also occurs on insertion.
- Modifying the algorithms for balancing can produce better efficiency.
- Previously, with 2-3 Trees, we have seen bottom-up balancing. O(log N) splits in worst case where splitting propagates up to the root
- We will see top-down balancing
 - As you go down the tree to insert a node, <u>split any full node</u>.
 - A full node is a 4-node (3 keys/4 child node).

How to split a 2-3-4 node?

- Insert at leaf position
- While going down the tree, if encounter a 4 node
 - Split it, push the middle element to the parent
 - If it's the root, split and create a new root

Advantage of Splitting 2-3-4 Trees

- Splitting a node is cleaner.
- Splitting a 4-node into two 2-nodes preserves the number of child links.
- Changes do not have to be propagated. Change remains local to split.

Top-Down Balancing

- Split nodes on the way down.
 - Guarantees that each node we pass through is not a 4-node.
 - When we reach the bottom, we will not be on a 4-node (think about it)
- This way, we only traverse the tree once, when inserting/balancing.
- After each insertion, check if the root is a 4-node
 - If it is, split it directly. This will avoid to do it at next insertion.
 - Splitting the root is the only way to grow the tree.

2-3-4 tree with 6,3,9,4,5,8,11,2,1,7

Deletion

Find the key (X) that needs to be deleted

- 1. if (X is in a leaf node with atleast 2 keys)
 - 1.1 remove (X)
- 2. else if (X is in a non-leaf node)
 - 2.1 if (left_child of the node >= 2 keys)
 - 2.1.1 replace (X,predecessor)
 - 2.1.2 remove (predecessor)
 - 2.2 else if (right_child of the node >= 2 keys)
 - 2.2.1 replace (X, successor)
 - 2.2.2 remove (successor)
 - 2.3 else // both children have only 1 key each
 - 2.2.1 merge(left_child,X,right_child)
 - 2.2.2 remove (X)
- 3. else // ch is the node_visited_so_far
 - 3.1 if (ch has only 1 child)
 - 3.1.1 if (ch's sibling >= 2 keys)

rotate a key into ch

3.1.2 else if (ch's sibling has 1 key)

merge(ch,parent,sibling)

delete(15)

2.1

7 9 20 7 9 20

remove(9)

Delete N,H,R,C,E,P,V

Delete R,C,E,P,V

Delete P,V

