Arquitectura de Sistemas Informáticos Memorias: Registros, SRAM, ROM, FLASH

Departamento de Electrónica I.E.S. Albert Einstein

Memorias, usos y tipos

Usos:

Mantener una cantidad importantes de 'estados' registrados.

- Almacenamiento de datos y programas
- Registos de propósito general
- Buffers
- Tablas de datos
- Memoria sistemas informáticos
- Etc.

Tipos:

- RAM Random Access memory
- ROM Read Only Memory
- EPROM, FLASH Electrically
 Programmable Read Only Memory

 Ejemplo RAM: Registros de un microprocesador

regid = identificador registro (dirección dato en memoria) tamaño(regid) = log2(nº de reg) WE = write enable (permitir escritura)

p.ej: 256 posiciones requieren 8 lineas de direcciones

Definiciones

Interfaz de memoria para Acceso a Datos

Asíncorono (sin reloj):

Un cambió en la dirección produce que aparezcan los datos en el bus

Síncrono (con reloj):

Un cambio de dirección, seguido del flanco/nivel del reloj (CLK) produce la aparición del dato o provoca una operación de escritura.

A veces se puede combinar operaciones de escritura síncronas y de lectura asíncronas.

Volátil:

Se pierden los datos/estados si se desconecta la energía eléctrica.

No volátil:

Retiene los datos/estados a pesar de retirar la alimentación eléctrica.

Memoria: Grupo de células básicas

FF

Para operaciones de lectura, sel_regolos los registros son equivalentes a un array 2-D de flip-flops con salidas tristate en cada sel_regologo

Se agrupan por 'palabras'.

Se activa una linea (palabra).

 Unidad con lógica de escritura añadida (si se puede escribir):

10-9-2007

FF

FF

FF

FF

FF

Memoria: Grupo de células básicas

K 'casillas', N bits por 'casilla' (posición)

El **bus de direcciones** tiene $log_2(K)$ lineas, el **bus de datos** tiene N lineas.

Memoria $n \times m$ (n posiciones – m bits) $log_2 n$ – lineas direcciones "address lines" m – lineas entrada/salidas "data lines"

Esto es común para todos los tipos de memorias existentes:

-ROM, RAM, EEPROM, FLASH, etc.

Decodificador de direcciones (address)

- La función del decodificador de direcciones es generar la selección para una dirección única de registro interno de la memoria.
 - Binario -> una dirección un dato (palabra)
 - Simplificado (demultiplexor)
- La salida se usa para selecciónar la fila.
- Existen diferentes circuitos para esta función.
- Estos circuitos están dentro de la memoria.

Memorias: Lineas de control

Chip Select – Debe ser activado para que la memoria responda a las operaciones, sean de lectura o de escritura. Si está negado, el bus de datos está en estado de 'alta impedancia'.

OE – (Output Enable) Activa para operaciones de lectura. Si se niega, el bus de datos está en 'alta impedancia'.

W – Activa para operaciones de escritura, las lineas de datos se convierten en entradas de la memoria.

Lineas de Control de Chip Memoria

Chip select CS	Read/Write R/W	Operación Memoria				
0	×	Ninguna				
1	0	Escribir a la posición seleccionada				
1	1	Leer de la posición seleccionada				

Memoria: Operación de lectura

Lectura asíncrona

- Selección de chip (CE)
- Establecimiento de dirección (Addr).
- Al activar la salida, datos en salida de forma inmediata.
- Independiente del reloj.

Memoria: Operación de escritura

Escritura síncrona

- Se establece la dirección de escritura en el bus de direcciones.
- Se pone el dato a grabar.
- Se activa la orden 'escritura' y en el siguiente ciclo de reloj se produce la escritura.

Tipos de memoria

Volátil:

- Random Access Memory (RAM), escritura y lectura:
 - » SRAM "estática", no necesita 'refrescar' valores.
 - » DRAM "dinámica", necesita operaciones de 'refresco'.

La información se pierde al desconectar la alimentación.

No-volátil:

- Read Only Memory (ROM), solo lectura:
 - » Máscara ROM "mask programmable"
 - » EPROM "electrically programmable"
 - » EEPROM "erasable electrically programmable"
 - » FLASH memory similar a EEPROM con programador integrado en el chip. * Permite escrituras de memoria.

La información no se pierde al desconectar la alimentación.

Célula de RAM estática

Célula SRAM Selector de fila bit bit

Lectura:

- 1. Seleccionar fila
- 2. La célula de memoria pone una linea a 'low' y la otra a 'high'
- 3. Salida sobre bit y bit
- Escritura:
 - 1. Ajustar lineas bit (p.e. bit=1, bit=0)
 - 2. Seleccionar fila
- ¿Como funciona?
 - Cuando una linea de bit es 'low', fuerza la salida a 'high'; esta operación cambiará el estado al seleccionar columna, si el nuevo estado es diferente, sino, quedaría igual.

Ejemplo de SRAM: 16-'palabras' x 4-bits

Ejemplo: ST microelectronics M68AW256M

FEATURES SUMMARY

- SUPPLY VOLTAGE: 2.7 to 3.6V
- 256K x 16 bits SRAM with OUTPUT ENABLE
- EQUAL CYCLE and ACCESS TIME: 55ns, 70ns
- SINGLE BYTE READ/WRITE
- LOW STANDBY CURRENT
- LOW V_{CC} DATA RETENTION: 1.5V
- TRI-STATE COMMON I/O
- AUTOMATIC POWER DOWN
- TSOP44, and TFBGA48 PACKAGES
 - Compliant with Lead-Free Soldering Processes
 - Standard or Lead-Free Option

Table 1. Signal Names A0-A17 Address Inputs DQ0-DQ15 Data Input/Output Ē Chip Enable G Output Enable $\overline{\mathsf{W}}$ Write Enable UB Upper Byte Enable Input LB Lower Byte Enable Input Vcc Supply Voltage V_{SS} Ground NC Not Connected Internally DU Don't Use as Internally Connected

MEMORY

DO CIRCUITS

COLUMN

ROW DECODER

TSOP44 Type II (ND)

http://www.st.com/stonline/products/literature/ds/7996/m68aw256m.pdf

TFBGA48 (ZH) 6 x 8mm

TFBGA48 (ZB) 7 x 8mm

ŪB ·

DRAM Memoria RAM dinámica

- SRAM Sistemas de almacenamiento tipo 'básculas'
 - ¿Más rápidas? Si, acceso a dato más rápido.
 - Más caras por unidad de información (al ser más complejas)
 - Capacidades de almacenamiento menores
- DRAM Guarda el dato en forma de 'carga' de un condensador
 - La información desaparece tras un periódo de tiempo.
 - Debe ser 'refrescada', o lo que es lo mismo, reescrita / recargada
 - Condensador que retiene carga
 - Un transistor actua como 'puerta'
 - Sin carga, almacena un '0', con carga '1'
 - Se lee cerrando la 'puerta'
 - La lectura es 'destructiva'
 - » Cuando una célula se lee, pierde carga
 - » Debe ser restaurada después de una lectura
 - Refresco
 - » También hay pérdidas de carga por fugas
 - » La carga debe ser restaurada periódicamente

Tamaño muy pequeño de célula o unidad de memoria

DRAM Memoria RAM dinámica

DRAM – Ventaja principal

- Al ocupar una célula muy poco sitio, las más altas densidades de memoria de consiguen con DRAM, ejemplo memorias de ordenador.
- Mejor relación capacidad / precio mejor.

DRAM – Inconveniente

Requiren operaciones de refresco periódicas.

10-9-2007

15

Read Only Memory (ROM)

Forma simplificada de memoria. No se puede escribir.

- Se programan en fabricación según petición a fabricante.
- Otras son OTP (One Time Programming), solo se pueden programar una vez y se hace 'destruyendo' electricamente las uniones a '1' o '0' y de esta forma se establece el dato fijo.

Memoria no volátil

Se usa para guardar datos y código 'fijo' (p.e. BIOS), tablas de datos (p.e nuevos estados en salidas de FSM), valores que no sufren muchos cambios y deseamos que permanezcan después de 'apagados' (flash, eeprom.)

ROM de máscara

- Datos, programas, tablas, etc, fijas y permanentes.
- Se fabrica grabada por encargo o se escribe una vez.

EPROM, EEPROM (erasable programmable) y FLASH

- Requiere procesos especiales para escritura
- Número limitado de grabaciones, entre 10.000 y 100.000
- La escritura es mucho más lenta que la RAM.
- Las EPROM usan sistemas de programación especiales (tensión, tiempos).
- La lectura si es un proceso rápido.
- La reescritura en caso de Flash puede requerir procesos especiales y claves que hacen más complicadas estas tareas.
 - » Las EPROM requieren borrado mediante luz ultravioleta (sustituidas por EEPROM y Flash).
 - » Las EEPROM de borran con tensiones especiales.

Memoria no volátil

Ejemplo de programación mediante uniones o fusibles en una PROM, una vez que se 'graba', no se puede borrar la información. Las 'x' corresponden a fusibles intactos (continuidad - 1) y los cruces no tienen continuidad (0), al seleccionar la fila.

		Inputs			Outputs							
I ₄	l ₃	l ₂	I ₁	I _o	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	0	1	0	1
0	0	0	1	1	1	0	1	1	0	0	1	0
1	1	1	0	0	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	1	0	0	0	1	0
1	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	0	0	1	1	0	0	1	1

Memorias: Uso e incorporación a circuitos

- Las memorias tienen **lineas de direcciones** para indicarnos la '**posición**' del dato a leer o a escribir. La **capacidad** de la memoria en 'posiciones' es **2**ⁿ. Por ejemplo, si una memoria tiene 16 lines de direcciones tendría 2¹⁶ posiciones, o sea 65536. Son **unidireccionales**.
- Las **lineas de datos** nos ofrecen los **datos leidos** o en ellas ponemos los **datos a grabar**, siempre respecto a una 'posición'. El número de lineas nos indica la **cantidad de bits** que podemos almacenar por 'posición'. Por ejemplo, 8 lineas de datos (D₀-D₇) nos indicaría que en cada posición puedo almacenar 8 bits. Son **bidireccionales**.
- El **resto de las lineas, son de control**, pueden variar, pero casi siempre existe **CS** (chip select) para activar el chip. Si se puede escribir (RAM), existirá también una linea para indicar cuando la operación que queremos realizar es de lectura o de escritura (R/#W).
- En cualquier caso se consultará el 'datasheet' del chip para ver toda su funcionallidad.

¿ Que ocurre si necesitamos un ancho de datos mayor ?

- Si necesitamos 16 bits de ancho en lugar de 8 bits de un chip determinado, podemos agrupar varios chips como uno más ancho.
- Las direcciones y lineas de control son comunes a los dos chips.

Memoria 64K x 16

- 2 Chips 64K x 8
- Direcciones:
- A₀ A₁₅ comunes
- Datos:
 - -Chip 1 -> D_0 ...D7
 - -Chip 2 -> D8...D15
- -Líneas de control:
 - Chip select
 - Read / #Write

Comunes a todos los chips

Chips en PARALELO

¿ Que ocurre si necesitamos mayor cantidad de datos?

- Si necesitamos más cantidad de datos, sin modificar el ancho de palabra (bits datos), podemos agrupar varios chips para ocupar más 'posiciones de memoria'.
- Las lineas de datos son comunes, las de direcciones suelen serlo y las de control determinan el 'mapa' de memoria final.

Ejemplo aumento de 'memoria' de almacenamiento (almacenes)

Almacén 1000 x 4

- 4 Almacenes 1000 pos.
- Direcciones:
- N₀,N₁N₂ comunes
- Salidas: Comunes
- -Líneas de control:
 - N3 (dígito miles)
- Selecc Almacén:
- Determina almacén activado
- En el ejemplo, los tres dígitos de menor valor (527) establecen la posición que vamos a ver en el almacén, pero solo el dígito de mayor valor determina de que almacén cogeremos el dato (2).

MAPA DE ALMACÉN

0-999 -> Almacén '0'

1.000 a 1.999 -> Almacén '1'

2.000 a 2.999 -> Almacén '2'

3.000 a 3.999 -> Almacén '3'

Memoria 256K x 8

- 4 Chips 64K x 8

- Direcciones: A₀ A₁₅ comunes

- Datos: Comunes

- Líneas control: R/#W (común)

- Chip Select:

- Determina que chip se activa

- Un decodifiacor extrae de las lineas A₁₆ y A₁₇ la información de que chip tenemos que activar, es como las unidades de millar del ejemplo anterior, en este caso son las 'unidades' o grupos de 64K es decir, 2¹⁶ por A₀ a A₁₅.

MAPA DE MEMORIA

00000 a 0FFFF -> CS-'0'

10000 a 1FFFF -> CS-'1'

20000 a 2FFFF -> CS-'2'

30000 a 3FFFF -> CS-'3'

Circuito Equivalente

Memoria 256K x 8

Agrupando memorias

- -El grupo debe comportarse como una memoria única.
- -Las direcciones llegan a todos los chips.
- -Las señales R/W van a todos los chips.
- -Existe un sistema combinacional que determina, según el mapa de memoria a implantar, que chip debe seleccionar.
- Solo se puede activar un chip cada vez.
- -Cada CS tiene una 'fórmula' lógica.
- -Suele ser conveniente agrupar las memorias de forma contínua, sin dejar huecos.
- Se pueden agrupar RAM, ROM, EPROM, siempre que se respete la funcionalidad.
- Por ejemplo, se puede montar una ROM de 16 K y 3 chips de 16K de RAM, cubriendo un mapa de memoria de 64K.

Ejercicio memorias

- Dibujar esquema del circuito con el siguiente mapa de memoria usando las memorias 2716 y 6116.
- El ancho del bus de datos deseado es de 8 bits.

MAPA DE MEMORIA

Resolución del problema

- Determinar características (datasheet) de los chips.
- Ver pines a conectar en cada chip.
- Determinar el número de chips a colocar.
- Realizar tabla verdad de CS por chip.
- Determinar esquema de selección de chips.

Es conveniente realizar otros ejercicios con diferentes mapas de memoria y diferentes chips.

¿Qué pasa cuando nº posiciones es muy grande?

- Decodificador de registro grande y lento
- Lineas de bit largas
 - Carga RC alta, implica menos velocidad de transición en datos.
- La lógica y geometría es muy estrecha y muy larga, por ejemplo 8 x 8.388.608
 - ¡ Hay que hacerlas más anchas y 'cortas'!
- Para conseguirlo se implementan arrays de células de memoria 2D.

- Geometría mejorada.
- Acceso más rápido.
- Menos RC parásitas.
- 'Pistas' más cortas.
- Velocodad superior.
- Diseño más racional.

Ejemplo: Memoria 2M x 8

¿ y cuando es mucho más grande?

RAS = Row Adress Strobe, CAS = Column Adress Strobe Con RAS se indica que la primera mitad de la dirección (Row=Fila) está disponible y es correcta, entonces se lee la fila y mientras llega la segunda mitad de la dirección (Column=columna) y cuando está cargada se activa el CAS y se selecciona la columna.

Lectura memoria usando CAS y RAS

Direccionamiento mediante RAS y CAS

- Direccionamiento en dos ciclos o fases:
 - Direccionamiento de fila (Row Address)
 - Direccionamiento de columna (Column Address)

Ciclo de Lectura

Memorias FLASH

- · Son memorias de 'solo lectura' reescribibles.
- · Gran implantación en la actualidad.
- Pen-drives, reproductores MP3, MP4, tarjetas memoria, etc.
- · Borrable eléctricamente y programable en sistema (ISP)
- Circuitería en el chip que controlan las tensiones necesarias para borrar y programar los datos
- Los borrados se realizan por sectores (16K 64K Bytes)
- · Las tarjetas SD, Compact flash, ets. Se basan en estas memorias
- La escritura no se realiza igual que la RAM, requiere codificaciones especiales.
- · El número de escrituras posibles no es ilimitado y no se garantiza a partir de un número especificado por el fabricante.

Memorias: Características a tener en cuenta

· Latencia (tiempo de acceso)

- El intervalo de tiempo entre el instante en que se solicita la lectura (READ) o se solicite una escritura (WRITE) y el instante en el que la lectura se entrega o se completa la grabación.

Tiempo de ciclo

- El tiempo transcurrido entre el instante en que se accede a la memoria y el instante en el que se puede acceder de nuevo a la memoria.
- Ancho de banda (throughput)
 - Cantidad de datos que pueden ser leidos o escritos en la unidad de tiempo.
 - Inversamente proporcional al tiempo de ciclo

Como mejorar estas características

- · La latencia puede ser reducida:
 - Seleccionando chips con memores tiempos de acceso
 - Usando memoria caché (se verá en temas posteriores A.S.I.)
- · El Ancho de Banda puede ser incrementado:
 - Bus de datos más ancho (más chips en paralelo)
 - Más pines de datos por chip seleccionado (memorias con bus datos más ancho)
 - Seleccionando chips más rápidos.

Memoria que es capaz de direccionar un dispositivo que usa memoria microprocesador, microcontrolador, etc.

- ♦ Distribución de la misma, es decir qué direcciones ocupan los diferentes dispositivos destinados a funciones determinadas con respecto al dispositivo.
- ◆Nota: A veces los mapas de memoria incluyen hardware como si fuese una memoria de lectura / escritura.

La especificación del mapa de memoria se puede realizar cómo:

Funcional: ubicación (direcciones) de los elementos (hardware o software) del sistema digital, atendiendo a la función de los mismos. Así se describirán la ubicación de: sectores de programa, posición de datos generales y tablas, registros de interfaz, etc.

Físico: correspondencia entre las direcciones del mapa y los dispositivos físicos en el que se plasman. De acuerdo a él se realizará la conexión entre los diferentes dispositivos, teniendo en cuenta la estructura del bus de direcciones y del bus de datos. la forma de selección de dispositivos, etc.

Mapa de Memoria					
Funcional	Físico	Direccione s			
Programa y tablas de datos fijos.	Pastilla ROM de 8Kbytes. Circuito Integrado tipo	0x0000 0x1FFF			
Zona vacía (Ningún chip acupa estas posiciones)		0x2000 0x3FFF			
Dispositivos de Entrada/Salida	Registros varios: Circuitos Integrados(registros) Display LCD, de 64 caracteres	0x4000 0x403F			
Zona vacia		0x4400 0x8FFF			
Teclado hexadecimal y registros auxiliares.	Teclado de membrana: modelo	0x9000 0x9003			
Zona vacia		0x9004 0xBFFF			
Variables y tablas temporales(4Kbytes)	Pastilla RAM de 8Kbytes	0xC000 0xCFFF			
Zona de datos transferencia serie (4Kbytes).	C.I. tipo	0xD000 0xDFFF			

DIRECCIÓN BASE

Tareas fundamentales:

- Diseño del mapa funcional, donde se decide en que direcciones del mapa se van a colocar las diferentes zonas de memoria y variables del sistema. Puede venir dado por las características del dispositivo.
- Diseño del mapa lógico donde se seleccionan los dispositivos más adecuados para cumplir el mapa de memoria.
- Diseño de la lógica de selección para acceder a la celda o posición de memoria deseada y no a otras. Activar los elementos que intervienen en la operación y seleccionar (CS) el dispositivo adecuado.
 - A partir de una dirección que aparece en el bus, activa la línea de selección del chip al que corresponde dicha dirección.
 - Puede diseñarse empleando puertas lógicas, decodificadores, etc, o empleando dispositivos programables como PLD, PAL, etc.

Proceso

Tener en cuenta la dirección base

Reconocer la función de los diferentes bits de direcciones.

P.e. para el elemento (pastilla RAM de 8 Kbytes) las líneas A[12..0] se necesitan para seleccionar la posición deseada dentro del chip, y por tanto pueden presentar cualquier código, lo que se representa como "XX...X".

El resto de las líneas A[15..13], para que la dirección presente en el bus se corresponda a este chip, deben presentar el código "1 1 0 ", C000 h a DFFF h

Decodificación completa:

Se emplea este término cuando el acceso a una posición concreta de memoria se puede realizar sólo para una única combinación de los bits del bus de direcciones; esto es: *{una posición física = una dirección lógica}.*

Decodificación incompleta:

Se corresponde a aquella situación en la que el acceso a una posición concreta de memoria se puede producir con varias combinaciones diferentes de los bits del bus de direcciones: *{una posición física = varias direcciones lógicas}.*

