TP4: Processus stationnaires

MAP-STA2 : Séries chronologiques

Yannig Goude - yannig.goude@edf.fr

Exercice 1

soit ε_t un bruit blanc de variance σ^2 , étudier la stationnarité des processus $(X_t)_{t \in \mathbf{Z}}$ suivants:

- $X_t = \varepsilon_t \varepsilon_{t-1}$
- $X_t = a + b\varepsilon_t + c\varepsilon_{t-1} \text{ pour } (a, b, c) \in \mathbf{R}^3$
- $X_t = \varepsilon_t \varepsilon_{t-1}$
- $X_t = X_{t-1} + \varepsilon_t$
- $X_t = \varepsilon_t \cos(\omega t) + \varepsilon_{t-1} \sin(\omega t)$
- la somme de 2 processus stationnaires est elle stationnaire?

Exercice 2

• écrire un programme r permettant de simuler le processus suivant (auto-régressif d'ordre 1):

$$y_t = ay_{t-1} + \varepsilon_t$$

avec ε_t un BB gaussien de moyenne nulle et de variance $1, a \in -]-1, 1]$.

- représenter sur un graphique des trajectoires de ce processus pour a = 0.1, a = 0.7, a = -0.7.
- estimer la fonction d'autocorrélation et d'autocorrélation partielle sur ces trajectoires puis visualiser les corrélogrammes et auto-corrélogrammes. Proposer votre propre implémentation puis utiliser les fonctions acf et pacf de r.
- refaire le même exercice en simulant un processus moyenne mobile:

$$y_t = \varepsilon_t + a_1 \varepsilon_{t-1} + a_2 \varepsilon_{t-2} + \dots + a_q \varepsilon_{t-q}$$

• comparer les résultats obtenus avec ceux vus en cours.

Exercice 3

On considère le processus $X_t = \varepsilon_t - \theta \varepsilon_{t-1}$ où ε_t un bruit blanc de variance σ^2 et $\theta \in]-1,1[$.

- montrer que X est stationnaire et calculer sa fonction d'autocovariance.
- soit $\phi_T, \phi_{T-1}, ..., \phi_1$ les coefficients de la régression linéaire $\widehat{X_{T+1}}$ sur $(X_T, X_{T-1}, ..., X_1)$. Ecrire les conditions d'orthogonalité entre $X_{T+1} \widehat{X_{T+1}}$ et l'espace engendré par $(X_1, ..., X_T)$.
- déterminer la fonction d'auto-correlation partielle de X.