Experiment 3 - Logistic Regression

April 28, 2023

1 Experiment Details

1.1 Submitted By

Desh Iyer, 500081889, Year III, AI/ML(H), B5

```
[]: from sklearn.datasets import load_iris
     from sklearn.linear_model import LogisticRegression
     from sklearn.model_selection import train_test_split
[]: |X, y = load_iris(return_X_y=True)
[ ]: X
[]: array([[5.1, 3.5, 1.4, 0.2],
            [4.9, 3., 1.4, 0.2],
            [4.7, 3.2, 1.3, 0.2],
            [4.6, 3.1, 1.5, 0.2],
            [5., 3.6, 1.4, 0.2],
            [5.4, 3.9, 1.7, 0.4],
            [4.6, 3.4, 1.4, 0.3],
            [5., 3.4, 1.5, 0.2],
            [4.4, 2.9, 1.4, 0.2],
            [4.9, 3.1, 1.5, 0.1],
            [5.4, 3.7, 1.5, 0.2],
            [4.8, 3.4, 1.6, 0.2],
            [4.8, 3., 1.4, 0.1],
            [4.3, 3., 1.1, 0.1],
            [5.8, 4., 1.2, 0.2],
            [5.7, 4.4, 1.5, 0.4],
            [5.4, 3.9, 1.3, 0.4],
            [5.1, 3.5, 1.4, 0.3],
            [5.7, 3.8, 1.7, 0.3],
            [5.1, 3.8, 1.5, 0.3],
            [5.4, 3.4, 1.7, 0.2],
            [5.1, 3.7, 1.5, 0.4],
            [4.6, 3.6, 1., 0.2],
            [5.1, 3.3, 1.7, 0.5],
```

```
[4.8, 3.4, 1.9, 0.2],
[5., 3., 1.6, 0.2],
[5., 3.4, 1.6, 0.4],
[5.2, 3.5, 1.5, 0.2],
[5.2, 3.4, 1.4, 0.2],
[4.7, 3.2, 1.6, 0.2],
[4.8, 3.1, 1.6, 0.2],
[5.4, 3.4, 1.5, 0.4],
[5.2, 4.1, 1.5, 0.1],
[5.5, 4.2, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.2],
[5., 3.2, 1.2, 0.2],
[5.5, 3.5, 1.3, 0.2],
[4.9, 3.6, 1.4, 0.1],
[4.4, 3., 1.3, 0.2],
[5.1, 3.4, 1.5, 0.2],
[5., 3.5, 1.3, 0.3],
[4.5, 2.3, 1.3, 0.3],
[4.4, 3.2, 1.3, 0.2],
[5., 3.5, 1.6, 0.6],
[5.1, 3.8, 1.9, 0.4],
[4.8, 3., 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
[4.6, 3.2, 1.4, 0.2],
[5.3, 3.7, 1.5, 0.2],
[5., 3.3, 1.4, 0.2],
[7., 3.2, 4.7, 1.4],
[6.4, 3.2, 4.5, 1.5],
[6.9, 3.1, 4.9, 1.5],
[5.5, 2.3, 4., 1.3],
[6.5, 2.8, 4.6, 1.5],
[5.7, 2.8, 4.5, 1.3],
[6.3, 3.3, 4.7, 1.6],
[4.9, 2.4, 3.3, 1.],
[6.6, 2.9, 4.6, 1.3],
[5.2, 2.7, 3.9, 1.4],
[5., 2., 3.5, 1.],
[5.9, 3., 4.2, 1.5],
[6., 2.2, 4., 1.],
[6.1, 2.9, 4.7, 1.4],
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3., 4.5, 1.5],
[5.8, 2.7, 4.1, 1.],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
```

```
[6.1, 2.8, 4., 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3., 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3., 5., 1.7],
[6., 2.9, 4.5, 1.5],
[5.7, 2.6, 3.5, 1.],
[5.5, 2.4, 3.8, 1.1],
[5.5, 2.4, 3.7, 1.],
[5.8, 2.7, 3.9, 1.2],
[6., 2.7, 5.1, 1.6],
[5.4, 3., 4.5, 1.5],
[6., 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3., 4.1, 1.3],
[5.5, 2.5, 4., 1.3],
[5.5, 2.6, 4.4, 1.2],
[6.1, 3., 4.6, 1.4],
[5.8, 2.6, 4., 1.2],
[5., 2.3, 3.3, 1.],
[5.6, 2.7, 4.2, 1.3],
[5.7, 3., 4.2, 1.2],
[5.7, 2.9, 4.2, 1.3],
[6.2, 2.9, 4.3, 1.3],
[5.1, 2.5, 3., 1.1],
[5.7, 2.8, 4.1, 1.3],
[6.3, 3.3, 6., 2.5],
[5.8, 2.7, 5.1, 1.9],
[7.1, 3., 5.9, 2.1],
[6.3, 2.9, 5.6, 1.8],
[6.5, 3., 5.8, 2.2],
[7.6, 3., 6.6, 2.1],
[4.9, 2.5, 4.5, 1.7],
[7.3, 2.9, 6.3, 1.8],
[6.7, 2.5, 5.8, 1.8],
[7.2, 3.6, 6.1, 2.5],
[6.5, 3.2, 5.1, 2.],
[6.4, 2.7, 5.3, 1.9],
[6.8, 3., 5.5, 2.1],
[5.7, 2.5, 5., 2.],
[5.8, 2.8, 5.1, 2.4],
[6.4, 3.2, 5.3, 2.3],
[6.5, 3., 5.5, 1.8],
[7.7, 3.8, 6.7, 2.2],
```

```
[7.7, 2.6, 6.9, 2.3],
        [6., 2.2, 5., 1.5],
        [6.9, 3.2, 5.7, 2.3],
        [5.6, 2.8, 4.9, 2.],
        [7.7, 2.8, 6.7, 2.],
        [6.3, 2.7, 4.9, 1.8],
        [6.7, 3.3, 5.7, 2.1],
        [7.2, 3.2, 6., 1.8],
        [6.2, 2.8, 4.8, 1.8],
        [6.1, 3., 4.9, 1.8],
        [6.4, 2.8, 5.6, 2.1],
        [7.2, 3., 5.8, 1.6],
        [7.4, 2.8, 6.1, 1.9],
        [7.9, 3.8, 6.4, 2.],
        [6.4, 2.8, 5.6, 2.2],
        [6.3, 2.8, 5.1, 1.5],
        [6.1, 2.6, 5.6, 1.4],
        [7.7, 3., 6.1, 2.3],
        [6.3, 3.4, 5.6, 2.4],
        [6.4, 3.1, 5.5, 1.8],
        [6., 3., 4.8, 1.8],
        [6.9, 3.1, 5.4, 2.1],
        [6.7, 3.1, 5.6, 2.4],
        [6.9, 3.1, 5.1, 2.3],
        [5.8, 2.7, 5.1, 1.9],
        [6.8, 3.2, 5.9, 2.3],
        [6.7, 3.3, 5.7, 2.5],
        [6.7, 3., 5.2, 2.3],
        [6.3, 2.5, 5., 1.9],
        [6.5, 3., 5.2, 2.],
        [6.2, 3.4, 5.4, 2.3],
        [5.9, 3., 5.1, 1.8]
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        []: X.shape, y.shape
[]: ((150, 4), (150,))
```

[]:|y

```
[]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,_u
      →random_state=20)
[]: X_train.shape
[]: (100, 4)
[]: X_test.shape
[]: (50, 4)
[]: classifier = LogisticRegression(random_state=0).fit(X_train, y_train)
    /home/volt/.local/lib/python3.10/site-
    packages/sklearn/linear_model/_logistic.py:458: ConvergenceWarning: lbfgs failed
    to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-
    regression
      n_iter_i = _check_optimize_result(
[]: y_predicted = classifier.predict(X_test)
     y_predicted, y_predicted.shape
[]: (array([0, 1, 1, 2, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 0, 2, 0, 1, 2, 1, 1, 2,
            2, 0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 2, 1, 2, 0, 1,
            1, 0, 0, 0, 2, 0]),
      (50,))
[]: print('Accuracy: {:.3f}'.format(classifier.score(X_test, y_test)))
```

Accuracy: 0.940