R10946013 劉馨瑄

Homework assignments Week 11 (Students should submit their homework before 10 a.m. on December 8, 2021.)

1. Computing the least squares estimate via SVD (2%)

Consider the least squares estimate

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}, \tag{1}$$

where **X** is an $n \times p$ matrix with $n \ge p$ and **y** is an n-dimensional vector. Below we provide a way of using the singular value decomposition to compute (1). First note that if **X** has the singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^T$, where **U** is an $n \times n$ matrix, $\mathbf{\Lambda}$ is an $n \times p$ matrix, and **V** is a $p \times p$ matrix. Then which of the following statements are true?

• My Answer: (b).

<u>b.</u> \mathbf{VDV}^T is the eigenvalue decomposition of $(\mathbf{X}^T\mathbf{X})^{-1}$, where $\mathbf{D} = (\mathbf{\Lambda}^T\mathbf{\Lambda})^{-1}$ is a $p \times p$ diagonal matrix.

Programming work

2. The ridge regression estimation (6%)

Now consider the following estimate:

$$\widehat{\boldsymbol{\beta}}^{\text{ridge}} = \arg\min_{\boldsymbol{\beta}} \bigg\{ \frac{1}{2} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||_2^2 + \frac{\lambda}{2} ||\mathbf{W}\boldsymbol{\beta}||_2^2 \bigg\},$$

where \mathbf{y} is an n-dimensional vector, \mathbf{X} is an $n \times p$ matrix, $\boldsymbol{\beta}$ is a p-dimensional vector, $\lambda \geq 0$ is a scalar, and \mathbf{W} is a $p \times p$ matrix. Here $\widehat{\boldsymbol{\beta}}^{\text{ridge}}$ is called the ridge estimate of regression coefficients $\boldsymbol{\beta}$. Our goal is to evaluate performance of (a) the Cholesky forward backward substitution, (b) QR decomposition-based algorithm and (c) SVD-based algorithm (see **Problem 2.** for details) for computing the ridge estimate $\widehat{\boldsymbol{\beta}}^{\text{ridge}}$.

We evaluate performances of the three algorithms by conducting simulation experiments.

The experiment steps are given as follows:

1. Let $(\boldsymbol{\beta}^{\text{true}})_j = 1$ for $j = 1, 2, \dots, p$. Generate data by first drawing $(\mathbf{X})_{ij} = x_{ij}$ from Normal(0, 1) for $i = 1, 2, \dots, n$ and $j = 1, 2, \dots, p$ and then computing response vector \mathbf{y} by

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta}^{\text{true}} + \boldsymbol{\epsilon},$$

where $(\epsilon)_i \sim \text{Normal}(0, 1)$ for $i = 1, 2 \cdots, n$.

Reformulate as a least squares estimation problem: Let

$$\mathbf{z} = \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix}$$
 and $\mathbf{U} = \begin{bmatrix} \mathbf{X} \\ -\sqrt{\lambda} \mathbf{W} \end{bmatrix}$

where z is an (n + p)-dimensional vector and U is an $(n + p) \times p$ matrix. Then the ridge estimator can be expressed as:

$$\widehat{\boldsymbol{eta}}^{ ext{ridge}} = \arg\min_{oldsymbol{eta}} \left\{ rac{1}{2} ||\mathbf{z} - \mathbf{U} oldsymbol{eta}||_2^2
ight\}$$

e.g. For my experiment, while n=1100, p=10, W is zero metrix:

```
z:
[1.71509052 0.38259422 5.91640191 ... 0. 0. 0. ]
```

```
[[-1.74976547
        0.3426804
               1.1530358 ... -1.07004333 -0.18949583
 0.25500144]
-1.11831825]
0.05567601]
[ 0.
       0.
              0.
                              0.
              0.
[ 0.
 0.
      ]
                    ... 0.
[ 0.
       0.
              0.
                              0.
 0.
      ]]
```

- 2. Run the following three algorithms for computing $\widehat{\boldsymbol{\beta}}^{\text{ridge}}$:
 - (a) The Cholesky forward backward substitution (Cholesky-FBS);
 - (b) The QR decomposition-based algorithm (QR);
 - (c) The SVD-based algorithm (SVD-based; See Problem 1. for details).

```
(a)
   #cholesky factorization
   L = linalg.cholesky(S, lower=True)
   \#check LL.T = S
   np.dot(L, L.T)
   # solve for the coefficents
   theta = linalg.solve_triangular(L, np.dot(X.T, y), lower=True)
   beta_chol = linalg.solve_triangular(L.T, theta, lower=False)
   beta_chol : [1.03277018 1.03027686 0.98263862 1.01411532 1.04074975 0.97569903
    0.98130359 1.0094818 0.99676169 1.03289357]
(b)
   Q, R = linalg.qr(X, mode = 'economic')
   beta_qr = np.linalg.inv(R).dot(Q.T).dot(y)
   beta_qr : [1.03277018 1.03027686 0.98263862 1.01411532 1.04074975 0.97569903
    0.98130359 1.0094818 0.99676169 1.03289357]
(c)
   U, Sig, Vt = linalg.svd(X, full_matrices=False)
   z = (1 / Sig) * U.T.dot(y)
   beta_svd = Vt.T.dot(z)
   beta_svd : [1.03277018 1.03027686 0.98263862 1.01411532 1.04074975 0.97569903
    0.98130359 1.0094818 0.99676169 1.03289357]
```

- Record the runtime of the above three algorithms.
- The runtime of the three algorithms are Reported in "seconds" for experiments:

(n, p, W, λ)	Cholesky-FBS	QR-based	SVD-based
$(1100, 10, 0_{p \times p}, 0.1)$	0.0007998943328857422	0.0009379386901855469	0.03258180618286133
$(1100, 1000, 0_{p \times p}, 0.1)$	0.14247989654541016	0.451016902923584	1.0703041553497314
$(1100, 10, I_{p \times p}, 0.1)$	0.0010671615600585938	0.0013148784637451172	0.04789113998413086
$(1100, 1000, I_{p \times p}, 0.1)$	0.13515210151672363	0.4830000400543213	1.1729578971862793