Introduction to Graph Sunday, 4 July 2021 10:28 AM	GRAPHS	connections	between	cities:
Data Structure Co		A	40	D 2 E
linear (1) Arrays 1. S. (3) Stacks Queues	Centinuous Memory Gettset Rule Gettset	Jo B	Lb	10 3 E
No (i) hees _	Generic Tree Rondom Memory Allocation connected	98	graph there	com be 801 any path from a 800
D.S. Heap HashMa A Dependent		de de la constant de	est. City Min poth ty in te	Jen a sre mo of Min 11 city a Compilation

H

be 801ve voing

- eath from city Ato Grant a src city to toms of dist.
- a sie city to dest.
 Min 9 ntonnedux city ity with dist
- ilation.

2 mp lementation of Graph: -1

- (i) Adjacency Matrix
- 2) Adjacency List

1) Adjacency Mantix -

	Ö	1	2	3	4	Ş	6
						-l	
						1	
2	-1	10	-1	10	7	-1	-1
3	40	4	10	-1	2	-1	-1
4	-1	1	-1	2	-	3	8
ର	-1	+	-1	-1	3	-1	3
						3	7

(Undirected Graph)

10

10

10

10

2

5

3

Drows backs of Adjacemcy

- (i) Memory wastage
- 12) No. of noded com't be handled if it it is more than 10.
- 3 Traversal is difficult

vertex -> {0, 1, 2, 3, 4, 5, 6}

wts -> {10, 40, 2, 3, 8}

Edges -> {0-3, 0-1, 1-2, 2-3, -}

neighbous -> 0 7 3

1 00

Noughbour of O are 1,3 --

Graph

Graph

P Undirected

Graph

Graph

1-2-70 ho. of vertex = h

Array list < Edge > [] graph = novelen new Array list [n]!

Class Edge - [int src int nbr int wt

dst paths src to all frem with cost sum min path 80C=0 max podh bose dst=6 9de4 floor both عل in all path LAG Carges t

poths -38 min cost (40) Hose A 12346 (a) maxicost 80 Floor,

ceil of


```
public static void getConnectedComp(ArrayList<Edge>□ graph, int src,
   boolean[] vis, ArrayList<Integer> comp) {
   vis[src] = true;
   comp.add(src);
   for(Edge e : graph[src]) {
       if(vis[e.nbr] == false) {
           getConnectedComp(graph, e.nbr, vis, comp);
public static ArrayList<ArrayList<Integer>> gcc(ArrayList<Edge>[] graph) {
   int n = graph.length;
   boolean[] vis = new boolean[n];
   ArrayList<ArrayList<Integer>> comps = new ArrayList<>();
   for(int v = 0; v < n; v++) {
       if(vis[v] == false) {
           ArrayList<Integer> comp = new ArrayList<>();
        getConnectedComp(graph, v, vis, comp);
           comps.add(comp);
                    Comps={\{0,1,2,3\},\{4,5,6\},\{7\}}
   return comps;
                             connected component
```

Sunday, 4 July 2021

2:24 PM

