ANALYSIS QUALIFYING EXAM JANUARY 9, 1991.

Throughout this exam, unless otherwise specified, the terms measurable, a.e., refer to the Lebesgue measure λ (or dx) on the real line \mathbb{R} , and L^p of an interval to L^p of that interval with respect to Lebesgue measure on that interval.

- 1. a. Let μ be a finite Borel measure on \mathbb{R} . Prove that there exists a <u>smallest</u> closed set F, denoted by $supp(\mu)$, such that $\mu(F) = \mu(\mathbb{R})$.
 - b. Let F be a closed subset of \mathbb{R} . Prove that there exists a finite Borel measure μ such that $F = \text{supp}(\mu)$. (Hint: Consider a countable dense subset of F.)
- 2. Let f be a bounded and uniformly continuous function on \mathbb{R} and G a continuous function on \mathbb{R} such that G(0) = 0 and G(x) > 0 if $x \neq 0$. Prove that if

$$\int_{-\infty}^{\infty} G(f(x))dx < \infty,$$

- then $\lim_{x\to\infty} f(x) = 0$.
- 3. Let $f \in L^1(\mathbb{R})$.
 a. Prove that

$$\sum_{n=-\infty}^{\infty} f(\frac{x}{2} + n)$$

- converges absolutely a.e.
- b. Let F(x) denote the sum of this series (where we put F(x) = 0 whenever the series diverges). Prove that $F \in L^1([0,2])$ and that

$$\frac{1}{2}\int_0^2 F(x)dx = \int_{-\infty}^{\infty} f(x)dx.$$

4. Let $E \subset [0,1]$ be a measurable set. Define

$$f_n(x) = n \int_0^{\frac{1}{n}} \chi_E(x+t) dt.$$

- a. Prove that each f_n is absolutely continuous on $\mathbb R$.
- b. Prove that $f_n(x) \to \chi_E(x)$ a.e. as $n \to \infty$.
- c. Prove that

$$\int_{\mathbb{R}} |f_n - \chi_E| dx \to 0$$

- as $n \to \infty$.
- 5. Suppose that $f \in L^p((0,\infty))$, where 1 . Let

$$\phi(y) = \int_0^\infty f(x) \frac{\sin xy}{\sqrt{x}} dx.$$

- a. Prove that $\phi(y)$ is finite everywhere.
- b. Prove that $y^{\frac{1}{2}-\frac{1}{p}}\phi(y)\to 0$ as $y\to 0$. (Hint: Consider the integrals over [0,M] and $[M,\infty]$ separately, where M is appropriately large.)

- 6. Let $f_n \in L^p[0,1]$, where $1 , such that <math>||f_n||_p \le 1$ and $f_n(x) \to 0$ a.e. Prove that $\int f_n(t)g(t)dt \to 0$ for all $g \in L^{p'}[0,1]$, where $\frac{1}{p} + \frac{1}{p'} = 1$.
- 7. Let μ and ν be two finite measures on a measurable space (X, \mathcal{B}) . Prove that there exist a partition (A_1, A_2, A_3) of X and a measurable function f defined on A_3 such that
 - (i) $\mu(A_1) = 0$,
 - (ii) $\nu(A_2) = 0$,
 - (iii) $\mu(E) = \int_E f d\nu$ and $\nu(E) = \int_E \frac{1}{f} d\mu$ for every measurable $E \subset A_3$.
- 8. Let $f \in L^1(\mathbb{R}, \lambda)$ and $g \in L^1(\mathbb{R}, \lambda) \cap L^{\infty}(\mathbb{R}, \lambda)$.

 a. Prove that

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - t)g(t)dt$$

exists for almost all x and that $f * g \in L^1(\mathbb{R})$. (You can assume the measurablity of the integrand as an function of (x,t))

- b. Show that there exists a uniformly continuous function h(x) such that h(x) = f * g(x) a.e.
- c. Deduce that $h(x) \to 0$ as $|x| \to \infty$
- 9. True or False. Prove or give a counterexample
 - a. If f is continuous a.e. on [a,b], then there exists a continuous function g on [a,b] such that f=g a.e.
 - b. If f is absolutely continuous on [a,b] and f'=g a.e, where g is a continuous function on [a,b], then f'=g everywhere on [a,b].
 - (c.) If f' = 0 a.e., then f is of bounded variation.
 - d. If f is continuous on [0,1] and $\int_0^1 t^n f(t) dt = \frac{1}{n+2}$ for all $n \ge 0$, then f(t) = t for all $t \in [0,1]$.
 - e. If $f_n \in L^1[0,1]$ such that $||f_n||_1 \le 1$ and $f_n(x) \to 0$ a.e., then $\int f_n(t)g(t)dt \to 0$ for all $g \in L^{\infty}[0,1]$.