SCHOOL OF MATHEMATICS AND STATISTICS UNSW Sydney

MATH5425 Graph Theory Term 1, 2025

Problem Sheet 5, Connectivity

- 1. Show that the block graph of any connected graph is a tree.
- 2. Without using Menger's Theorem (Theorem 3.3.1/Theorem 3.3.5), show that any two vertices of a 2-connected graph lie on a common cycle.

Hint: use Proposition 3.1.3 and induction.

- 3. Let G be a graph with connectivity $\kappa(G) = k \ge 1$ and let S be a minimal separating set for G. That is, S separates G and |S| = k. Prove that every vertex in S has a neighbour in every component of G S.
- 4. Let G be a 3-edge-connected cubic graph. (Recall that "cubic" means 3-regular.) Prove that G is 3-connected.
- 5. Let G be a k-connected graph, where $k \geq 2$ is an integer. Given a vertex $u \in V(G)$ and $W \subseteq V(G)$, a (u, W)-fan is a set of paths from u to W such that any two of the paths have only u in common. (Note: for each path P in a (u, W)-fan, the only vertex in $P \cap W$ is the endvertex of P.)
 - (a) Explain why $d(u) \ge k$.
 - (b) Suppose that $u \notin W$ and $|W| \ge k$. Prove that G has k paths which form a (u, W)-fan. (*Hint:* Menger's Theorem.)
 - (c) Hence show that if G has at least 2k vertices then G has a cycle of length at least 2k.