VITMO

Оценка скорости по данным с энкодеров

Медведев Александр Сергеевич, 286511

Цели и задачи

Цели проекта:

- Реализовать алгоритмы расчета скорости при помощи энкодера
- Провести сравнительный анализ полученных алгоритмов

Задачи:

- 1. Написать иммитационную модель электродвигателя с энкодером
- 2. Синтезировать алгоритмы для расчета скорости при помощи энкодера:
 - 1. С использованием модели двигателя (Model-aware)
 - 2. Без использования модели двигателя (Model-free)
- 3. Провести моделирование каждого из алгоритмов в различных условиях
- 4. Численно оценить эффективность каждого из алгоритмов (RMSE)

Описание решения

Используемые библиотеки и фреймворки:

Python3: numpy, matplotlib

Система контроля версий:

• git: https://github.com/oaleksander/rp2025_project

Методология написания ПО:

- Исходный код разделен на модули и классы
- Написана сопровождающая документация
- Реализованы юнит-тесты с автоматическим запуском на CI GitHub

Реализованные алгоритмы:

- Программный модуль для цифрового квадратурного энкодера
- Имитационная модель двигателя на основании дискретного пространства состояния
- Алгоритмы оценки скорости:
 - 1. Численное дифференцирование
 - 2. Производная с фильтром
 - 3. Следящий алгоритм
 - 4. Фильтр Калмана
 - 5. Фильтр Калмана с расширенным состоянием

Моделирование алгоритмов

1. Проведено моделирование работы двигателя с энкодером

- 2. Положение двигателя $\theta(t)$ подавалось на вход фильтра с различным шагом дискретизации $T_{\scriptscriptstyle S}$
- 3. Оценка скорости двигателя $\widehat{\omega}(t)$ сравнивалась с истинной $\omega(t)$

Результат

/ <u></u>			130
Шаг дискретизации [с]	0.0033	0.01	0.03
Алгоритм	Среднеквадратичная ошибка		
Производная	136.56	45.08	15.37
Производная + ФНЧ	32.77	9.97	4.72
Производная + Медиана	66.79	18.59	7.15
Следящий фильтр	3.96	4.66	81.95
Фильтр Калмана	1.21	0.69	0.34
Фильтр Калмана с расширенным состоянием	4.81	4.61	5.10

Выводы

Каждый из полученных алгоритмов успешно справился с расчетом скорости с определенной точностью:

- 1. Если шаг дискретизации Ts большой и модель неизвестна, рекомендуется производная с фильтром
- Если шаг дискретизации Ts маленький и модель неизвестна, рекомендуется следящий фильтр
- Если модель системы известна, а управляющий сигнал нет, рекомендуется фильтр Калмана с расширенным состоянием
- 4. Если модель системы и управляющий сигнал известны, рекомендуется **фильтр Калмана**

Среди всех экспериментов лучше всего продемонстрировал себя фильтр Калмана.

Спасибо за внимание!

ITSIMOre than a UNIVERSITY

Медведев Александр Сергеевич, 286511