PURDUE UNIVERSITY GRADUATE SCHOOL Thesis Acceptance

This is to certify that the thesis prepared TIMOTHEE LOUIS POURPOINT Entitled HYPERGOLIC IGNITION OF A CATALYTICALLY PROMOTED FUEL WITH ROCKET GRADE HYDROGEN PEROXIDE Complies with University regulations and meets the standards of the Graduate School for originality and quality DOCTOR OF PHILOSOPHY For the degree of _ Signed by the final examining committee: This thesis is not to be regarded as confidential. Format Approved by: Chair, Final Examining Committee Department Thesis Format Advisor

HYPERGOLIC IGNITION OF A CATALYTICALLY PROMOTED FUEL WITH ROCKET GRADE HYDROGEN PEROXIDE

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Timothée Louis Pourpoint

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2005

Purdue University

West Lafayette, Indiana

UMI Number: 3210769

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI Microform 3210769

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346

ACKNOWLEDGMENTS

First, I would like to express my gratitude to my advisor, Dr. William Anderson, whose expertise, understanding, and patience, added considerably to my graduate experience. He was always eager to entertain my ideas and help me solve conceptual difficulties. I would also like to thank the other members of my committee, Dr. Stephen Heister, Dr. William Crossley, and Dr. John Rusek for the assistance they provided at all levels of my research project.

I recognize that this research would not have been possible without the financial assistance of the School of Aeronautics and Astronautics. My advisor should again be acknowledged for making this support possible. The optical grade windows loaned by Dr. Paul Sojka, professor at Purdue University, greatly simplified the conception of my experiment. The technical assistance of Don Bower of Swift Enterprises Ltd. further facilitated the timely completion of a critical part of my research. I also thank my fellow students Yen Yu and Reuben Schuff for assisting me in performing the experiments.

I wish to thank Scott Meyer and B.J. Austin, their insights and comments were invaluable over the years, and I look forward to a continuing collaboration with them in the future.

Very special thanks go out to Amy Austin and Lyle Jalbert. I doubt that I will ever be able to convey my appreciation fully, but I owe them my eternal gratitude for helping me in difficult times and for instilling in me the confidence I needed. The encouragements of my friends overseas and in the United States were essential in helping believe in a bright future. Where ever they are, what ever they are doing, they should know that I will always be grateful for their support. I am confident we will always find a way to stay in touch and help each other.

And last but not least, I am very grateful to my family for giving the opportunity to pursue an advanced education and for encouraging me in all my endeavors.

TABLE OF CONTENTS

	Page
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF SYMBOLS	
ABSTRACT	
CHAPTER 1. INTRODUCTION	
1.1. Objectives and Desired Outcomes	
1.2. Approach	5
CHAPTER 2. BACKGROUND	
2.1. Liquid Propellants	8
2.2. History of Hydrogen Peroxide and Hypergolic Liquid Fuels	11
2.2.1. History of Hydrogen Peroxide	11
2.2.2. History of Hypergolic Liquid Fuels	13
2.3. Properties of Hydrogen Peroxide	16
2.3.1. RGHP Decomposition	18
2.3.2. Manufacturing and Cost of Rocket Grade Hydrogen Peroxide	21
2.4. Properties of Catalytically Promoted and Reactive Fuels	22
2.4.1. Catalytically Promoted Fuels	22
2.4.1.1. Nature of Catalytic Reactions	23
2.4.1.2. Catalytic Hypergols	24
2.4.2. Reactive Hypergols	27
CHAPTER 3. IGNITION DELAYS OF HYPERGOLIC LIQUID PROPELLANTS 3.1. Definition of Ignition Delay	
3.2. Measurement Techniques	32
3.2.1. Drop Tests	33
3.2.2. Impinging Jets Devices	38

Page
3.3. Physical and Chemical Processes in Hypergolic Liquid Propellants Ignition44
3.3.1. Main Factors in Hypergolic Liquid Propellants Ignition
3.3.1.1. Mixing Energy
3.3.1.2. Initial Ambient Pressure
3.3.1.3. Initial Propellant Temperature
3.3.1.4. Oxidizer Concentration
3.3.1.5. Inert Gases
3.3.1.6. Propellant Vapor Pressures
3.3.2. Miscellaneous Factors
3.3.2.1. Valve timing
3.3.2.2. Mixing Patterns in Drop Test Devices
3.3.2.3. Mixture Ratio
3.3.3. Conclusions
CHAPTER 4. VAPORIZATION AND IGNITION THEORIES
4.2. Effect of Droplet Vaporization
4.2.1. Pressure Drop and Initial Ambient Conditions Effect on Initial Droplet Size7.
4.2.1.1. Effect of Injection Pressure Drop on Droplet Diameter73
4.2.1.2. Effect of Initial Ambient Conditions on Droplet Diameter74
4.2.2. Transient Heat-Up Time and Steady-State Evaporation77
4.2.3. Application to Vaporization in Hydrogen Peroxide Decomposition Products8
4.2.3.1. Effect of Hydrogen Peroxide Concentration and Initial Ambient
Pressure84
4.2.3.2. Effect of Ambient Gases on Droplet Vaporization87
4.2.3.3. Conclusions
4.3. Effect of Chemical Reaction92
4.3.1. Arrhenius' Law of Reaction Rate Constant94
4.3.2. Semenov's Theory of Thermal Ignition95
4.3.2.1. Assumptions in Semenov's Theory

Page r Pressure	4.3.2.2. Applicability to Catalytically Loaded Fuels and Low Vapor
	Propellants
	4.3.2.3. Semenov's Equation
	4.3.2.4. Critical Conditions for Ignition
	4.3.2.5. Application of Semenov's Theory to Predict Ignition Delay
	4.4. Effect of Ambient Inert Gases on Reaction Rates
	4.4.1. Effect of Thermal Properties on Reaction Zone Temperature
	4.4.2. Effect of Mass Transfer Properties on Reaction Rate
	4.4.3. Conclusions
ions111	4.5. Hydrogen Peroxide Concentration and Initial Ambient Pressure Interaction
115	CHAPTER 5. EXPERIMENTAL APPROACH 5.1. Test Facility Overview
	5.2. High Speed Video Cameras
	5.2.1. Motion Meter Camera
117	5.2.2. Phantom v7.1 Camera
119	5.3. Drop Test Apparatus
119	5.3.1. Apparatus Description
120	5.3.2. Test Plan
121	5.4. Impinging Test Apparatus
122	5.4.1. Design Selection
124	5.4.2. Test Article Design
129	5.4.3. Injector Design
129	5.4.3.1. Design Requirements
131	5.4.3.2. Orifice Size Determination
136	5.4.3.3. Field of View and Injector Positioning
137	5.4.3.4. Injector Design Comparison
140	5.4.3.5. Final Injector Assembly
143	5.4.4. Conclusions
	CHAPTER 6. EXPERIMENTAL RESULTS ANALYSIS

6.1.1. Uncertainty in Measured Variables	Page
6.1.2. Uncertainty in Calculated Variables	
•	
6.2. Drop Test Data Analysis	
6.2.1. Effect of Initial Ambient Pressure	
6.2.2. Effect of Hydrogen Peroxide Concentration	155
6.2.3. Effect of Initial Ambient Gas	157
6.3. Impinging Test Data Analysis	158
6.3.1. Data Summary	158
6.3.2. Effects of Initial Ambient Pressure and Oxidizer Concentration	169
6.3.3. Effect of Ambient Gases on Ignition Delay	179
6.3.4. Combined Effects of Hydrogen Peroxide Concentration, Initia	ıl Ambient
Pressure and Ambient Gases on Ignition Delay	181
6.3.5. Flame Front Velocity Data	196
6.4. Conclusions of Data Analysis	200
6.5. Recommendations for Future Tests	200
CHAPTER 7. SUMMARY AND CONCLUSIONSLIST OF REFERENCES	
APPENDICES	
Appendix A. Notice of Publication of Application - Hypergolic Fuel	Analytical
Device	220
Appendix B. Injector Drawings	221
Appendix C. Equation Set for Uncertainty Analysis	234
Appendix D. Impinging Jets Test Results	238
Appendix E. MATLAB Data Reduction Codes	248
Appendix F. SAS Data Reduction Codes	262
X JTD A	260

LIST OF TABLES

Table Page
Table 2.1 Hypergolic Oxidizer Properties
Table 2.2 Physical Properties of Hydrogen Peroxide17
Table 2.3 Rate of Decomposition of 90% Hydrogen Peroxide at Various Temperatures.18
Table 3.1 Ignition Delays of UDMH with Fuming Nitric Acids65
Table 4.1 Time Sequence and Processes for Ignition of a Catalytically Promoted Fuel
with Rocket Grade Hydrogen Peroxide69
Table 4.2 Correlations for Sauter Mean Diameter for a Spray Formed by Water jets
Impinging at an Included Angle of 110°76
Table 4.3 Gas Properties Used for Drop Evaporation Calculations87
Table 4.4 Drop Lifetime and Heat-up Period for Various Ambient Gases with Pure Gas
Properties
Table 4.5 Gas Mixture Thermal Conductivity Calculations
Table 4.6 Gas Mixture Specific Heat Calculations90
Table 4.7 Drop Lifetime and Heat-up Period for Various Ambient Gases with Properties
Averaged with that of Oxygen90
Table 4.8 Gas Mixture Properties
Table 4.9 Convective Heat Transfer Coefficients with Various Gas Mixtures106
Table 4.10 Species Properties for Calculation of Binary Diffusion Coefficients109
Table 4.11 Binary Diffusion Coefficient Calculation for Air/Oxygen at 1 atm, 700 K110
Table 4.12 Binary Diffusion Coefficient Calculation for Helium/Oxygen at 1 atm, 700 K110
Table 4.13 Binary Diffusion Coefficient Calculation for Argon/Oxygen at 1 atm, 700 K110
Table 5.1 Phantom Camera Recording Capabilities
Table 5.2 Injector Design Requirements

Table	Page
Table 5.3 Valve Sequence for Test Series #1	131
Table 5.4 Injector Characteristics for Test Series #1 and #2	134
Table 5.5 Injector Design Comparison	138
Table 6.1 Accuracy and Locations of Pressure Transducers	146
Table 6.2 Estimated Random Errors for all Measured Variables	147
Table 6.3 Uncertainties of Calculated Variables for Impinging Jets Tests	149
Table 6.4 Effect of Hydrogen Peroxide Concentration on Drop Tests Ignition	Delay
Values	155
Table 6.5 Effect of Ambient Gas on Drop Tests Ignition Delay Values	158
Table 6.6 Tests Conditions for Second Test Series with Impinging Jets	159
Table 6.7 Ignition Delay Tests Statistics - Test Series #1	170
Table 6.8 Ignition Delay Empirical Correlations for 99% H ₂ O ₂ – Test Series #1	174
Table 6.9 Ignition Delay Empirical Correlations	174
Table 6.10 Ignition Delay Test Results with Four Ambient Gases – Test Series #1	180
Table 6.11 Ignition Delay Test Results at 14.7 psia – Test Series #2	182
Table 6.12 Ignition Delay Test Results at 45 psia – Test Series #2	183
Table 6.13 ANOVA Table for Test Series #2	186
Table D.1 Test Results of First Test Series	238
Table D 2 Test Results of Second Test Series	245

LIST OF FIGURES

Figure
Figure 2.1 Chinese Fire-arrows Against Mongol Invasion in 1232 - Courtesy of TRW
Inc. and Western Reserve Historical Society, Cleveland, Ohio
Figure 2.2 Robert H. Goddard and his 1926 Liquid-fueled Rocket
Figure 2.3 Volume Expansion Ratios of Hydrogen Peroxide Solutions19
Figure 2.4 Adiabatic Decomposition Temperature for Aqueous H ₂ O ₂ Solutions at 1-atm
Pressure20
Figure 2.5 Catalysis Energy Profile
Figure 2.6 Theoretical Vacuum Specific Impulse and Experimental Ignition Delay vs
Catalyst Concentration in Methanol25
Figure 3.1 Temperature Evolution during Ignition Delay Period32
Figure 3.2 Open Cup Test Apparatus
Figure 3.3 Hypertester with Protective Shield
Figure 3.4 Test Apparatus by M. A. PINO ⁵ 36
Figure 3.5 Ignition Delays Obtained with Microrockets and PINO Device ⁵ 36
Figure 3.6 Modified Open-cup Ignition Delay Apparatus ¹⁶ 38
Figure 3.7 Two-jet Apparatus by Spengler et al. ⁵⁴
Figure 3.8 Injector for Two-jet Apparatus by Spengler et al. ⁵⁴ 40
Figure 3.9 Metered Ignition Sequence Tester4
Figure 3.10 Ignition Test with the Metered Ignition Sequence Tester42
Figure 3.11 Small-scale Rocket Engine Apparatus ¹⁶ 43
Figure 3.12 Ignition Delays as a Function of Injection Velocity ⁵⁴ 45
Figure 3.13 Bomb Calorimeter for Hypergolic Propellants ⁶³
Figure 3.14 Delays as a Function of Initial Ambient Pressure ⁵⁴

Figure								P	Page
Figure	3.15	Comparison	of	Experimental	and	Theoretical	Ignition	Delays	for
-	NTO/N	и МН ⁵⁸	•••••		•••••	•••••	•••••	••••••	52
Figure 3	3.16 Ig	nition Delays	as a	Function of Ini	tial Fı	iel Temperati	ıre	•••••	54
Figure 3	3.17 Ig	nition Delays	as a	Function of Ini	tial Fu	ıel Temperatı	ıre ^{15,54}	•••••	55
Figure 3	3.18 T	win-jet Appara	atus	Used by Broatc	h ⁷⁰			•••••	57
Figure 3	3.19 V	ariation of Ign	ition	Delay with Te	mpera	iture	•••••	•••••	58
Figure 3	3.20 V	ariation of Ign	ition	Delay with Hy	/droge	en Peroxide C	oncentrati	on	59
Figure 3	3.21 In	fluence of Vap	or I	Pressure on Ign	ition I	Delay	••••••	•••••	63
Figure 3	3.22 E	ffect of Injection	on L	ead Time on Ig	nition	Delay ⁵¹		•••••	64
Figure 3	3.23 V	ariation of Ign	ition	Delay with Fu	el/Ox	idant Ratio	••••••	•••••	66
Figure 4	4.1 Dr	op Surface Ter	nper	rature and Trans	sfer N	umbers vs. T	ime	•••••	85
Figure 4	4.2 Dr	op Diameter ar	nd D	rop Diameter S	quare	vs. Time		•••••	85
Figure	4.3 Ev	vaporation Tir	ne v	s. Pressure an	d H ₂ C	O ₂ Concentra	tion of ar	80 mic	rons
	Drople	et of Methanol	•••••				••••••	•••••	86
Figure	4.4 E	vaporation Ti	me	vs. Pressure a	nd H ₂	O ₂ Concentr	ration of	a Drople	t of
	Metha	nol of Variable	e Di	ameter Depend	ing up	on Initial Am	ibient Pres	sure	86
Figure 4	4.5 Dr	oplet Lifetime	for	Various Gases	for an	80 microns	Droplet of	f Methano	ol at
	1 atmo	sphere			•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	91
Figure 4	4.6 Re	action System	Ten	perature Profil	e in S	emenov's The	eory	•••••	96
Figure 4	4.7 He	at Fluxes again	ıst T	emperature for	Vario	ous Heat Tran	sfer Coeff	icients	99
Figure 4	4.8 He	at Flux vs. Ter	npei	rature for Vario	us He	at Transfer C	oefficients	·	.100
Figure 4	4.9 He	at Fluxes agair	nst T	emperature for	Simu	lated Experin	nental Gas	Mixtures	s107
Figure 4	4.10 D	ecomposition	Prod	lucts of Hydrog	en Pe	roxide at 14.7	psia	•••••	.112
Figure 4	4.11 In	verse of OH R	Radio	cal Concentration	n ver	sus Pressure	••••••	•••••	.113
Figure :	5.1 Mc	otionMeter Car	nera	97 	••••••			•••••	.117
Figure :	5.2 Ph	antom v7.1 Ca	mera	a		•••••		•••••	.118
Figure :	5.3 Dr	op-Test Setup	Use	d to Measure Ig	nition	Delays of H	ypergolic l	Fuels	.119
Figure :	5.4 Im	pinging Test A	ppa	ratus of Zung a	nd Wł	nite ⁹⁹	••••••	••••••	.123
Figure :	5.5 Scl	nematic of Imr	ingi	ng Jets Experin	nental	Setup			.125

Figure
Figure 5.6 Impinging Jets Setup Used to Measure Ignition Delays of Hypergolic Fuels128
Figure 5.7 Parameters in Field of View Determination
Figure 5.8 Three Dimensional Rendering of 60° Impinging Jets Injector – Test Series #1138
Figure 5.9 Cross Section of 60° Impinging Jets Injector – Test Series #2
Figure 5.10 Cross Section of 60° Impinging Jets Injector – Test Series #2140
Figure 5.11 Three-dimensional Rendering of Final Injector Assembly – Test Series #1141
Figure 5.12 Three-dimensional Rendering of Final Injector Assembly – Test Series #2142
Figure 5.13 Three-dimensional Rendering of the Chamber Interior with 60° Impingement
Angle Injector142
Figure 6.1 Ignition Delay vs. Initial Ambient Pressure for Dataset with Outliers151
Figure 6.2 Residuals vs. Initial Ambient Pressure for Dataset with Outliers152
Figure 6.3 Minimum Ignition Delays of Hypergolic Fuels vs. Hydrogen Peroxide
Concentration with Drop Test Device
Figure 6.4 Average Ignition Delays of Hypergolic Fuels vs. Hydrogen Peroxide
Concentration with Drop Test Device
Figure 6.5 Ignition Sequence with 99% H ₂ O ₂ at 1 atm – Test Series #1161
Figure 6.6 Hydrogen Peroxide Concentrations vs. Test Sequence for Test Series #1 (a)
and Test Series #2 (b)
Figure 6.7 Initial Chamber Pressure vs. Test Sequence for Test Series #1 (a) and Test
Series #2 (b)
Figure 6.8 Ambient Gas vs. Test Sequence – Test Series #2
Figure 6.9 Initial Chamber Temperature vs. Test Sequence for Test Series #1 (a) and Test
Series #2 (b)
Figure 6.10 Ignition Delay vs. Initial Ambient Temperature for Test Series #1 (a) and
Test Series #2 (b)
Figure 6.11 Oxidizer to Fuel Ratio vs. Test Sequence for Test Series #1 (a) and Test
Series #2 (b)166
Figure 6.12 Ignition Delay vs. Oxidizer to Fuel Ratio for Test Series #1 (a) and Test
Series #2 (b)167

Figure Pag
Figure 6.13 Flame Shapes 2 ms after Ignition for Air at 1 atm with 94% H_2O_2 – Teaching
Series #216
Figure 6.14 Ignition Delay vs. Initial Ambient Pressure – Test Series #117
Figure 6.15 Ignition Delay vs. Initial Ambient Pressure – Test Series #117
Figure 6.16 Ignition Delay vs. Initial Ambient Pressure for (a) 94, (b) 96.4, and (c) 999
H_2O_2 – Test Series #1
Figure 6.17 Ignition Delay vs. Initial Ambient Pressure – Test Series #117
Figure 6.18 Flame Shapes 2 ms after Ignition for Argon Tests at 14.7 psia with 92, 94
and 98% H ₂ O ₂ – Test Series #2
Figure 6.19 Chamber Pressures (a) and Light Signals (b) for Argon Tests at 1 atm with
92, 94, and 98% H ₂ O ₂ – Test Series #217
Figure 6.20 Chamber Pressures and Light Signals for Argon Tests at 1 atm with 92, 94
and 98% H_2O_2 – Test Series #2
Figure 6.21 Thermocouple Location (a) and Chamber Temperatures (b) for Argon Tes
at 1 atm with 92, 94, and 98% H_2O_2 – Test Series #2
Figure 6.22 Temperature Profiles of Minimum Ignition Delays Tests in Various
Atmospheres – Test Series #1
Figure 6.23 Mean Ignition Delay Values with 95% Confidence Intervals for 14.7 and 4
atm, Air, Helium, and Argon Tests and 92, 94, 97.9% $\mathrm{H_2O_2}$ – Test Series #218
Figure 6.24 Mean Ignition Delay Values with 95% Confidence Intervals for 14.7 and 4
atm, Air, Helium, and Argon Tests and 94, 97.9% H_2O_2 – Test Series #218
Figure 6.25 Temperature vs. Time at 14.7 and 45 psia for Air, Helium, and Argon Tests
Test Series #2
Figure 6.26 Flame Shapes at Selected Times after Ignition for Helium Test at 45 ps
with $98\% H_2O_2$ – Test Series #2
Figure 6.27 Pressure and Light Emission Traces for Helium Tests at 45 psia with 92, 94
and 98% H ₂ O ₂ – Test Series #219
Figure 6.28 Flame Shapes 2 ms after Ignition for Air, Helium, and Argon Tests at 14.
psia with 94% H ₂ O ₂ – Test Series #2

Figure
Figure 6.29 Flame Shapes 2 ms after Ignition for Air, Helium, and Argon Tests at 45 psia
with 94% H ₂ O ₂ – Test Series #2194
Figure 6.30 Flame Shapes 2 ms after Ignition for Air, Helium, and Argon Tests at 14.7
psia with 98% H ₂ O ₂ – Test Series #2195
Figure 6.31 Flame Shapes 2 ms after Ignition for Air, Helium, and Argon Tests at 45 psia
with 98% H ₂ O ₂ – Test Series #2195
Figure 6.32 Flame Shapes for Argon Test at 45 psia with 94% H_2O_2 – Test Series #2197
Figure 6.33 Flame Shapes for Argon Test at 45 psia with $98\%~H_2O_2$ – Test Series #2197
Figure 6.34 Distance from Ignition Site vs. Time – Test Series #2198
Figure 6.35 Flame Front Velocities for Seven Tests – Test Series #2199
Figure B.1 First Injector Design Assembly
Figure B.2 First Injector Design Base Plate
Figure B.3 First Injector Design Transition Plate
Figure B.4 First Injector Design Interface Plate
Figure B.5 First Injector Design Holding Plate
Figure B.6 First Injector Design Spacer
Figure B.7 First Injector Design Top Plate
Figure B.8 Second Injector Design Assembly
Figure B.9 Second Injector Design Spacer
Figure B.10 Second Injector Design Union
Figure B.11 Second Injector Design Injector Plate231
Figure B.12 Second Injector Design Injector Details
Figure B.13 Second Injector Design O-ring Grooves

LIST OF SYMBOLS

a	Speed of Sound	m/s
A	Pre-exponential Factor for Second Order Reaction	m ³ /mole-sec
A_{inj}	Injector Area	m^2
Aij	Wassiljewa Function	-
B	Transfer Number	-
B_M	Mass Transfer Number	-
B_T	Thermal Transfer Number	-
C	Concentration	mol/m ³
C_D	Injector Discharge Coefficient	-
Cex	Coefficient of Thermal Expansion	-
Ср	Specific Heat Capacity at Constant Pressure	J/kg-K
$\bar{C}p$	Molar Specific Heat Capacity at Constant Pressure	J/kg-K
Cv	Specific Heat Capacity at Constant Volume	J/kg-K
$\overline{C}v$	Molar Specific Heat Capacity at Constant Volume	J/kg-K
D	Drop Diameter	micron
$ar{D}$	Average Drop Diameter	micron
D	Binary Diffusion Coefficient	m^2/s
Dc	Characteristic Diameter	m
D_{inj}	Injector Diameter	m
D_{FL}	Distance Field of View to Lens	m
ΔН	Heat of Reaction	J/mol
ΔP	Pressure Drop	Pa
Δt	Time Increment	S
E	Activation Energy	J/gmol

ε	Force Constant	m^2-K^5/W
f	Focal Length	m
g	Gravitational Constant, = 32.174	lb_m -ft/ lb_f -s ²
Isp	Specific Impulse	S
φ	Mass Fraction	-
\boldsymbol{k}	Thermal Conductivity	W/m-K
<i>k</i> '	Reaction Rate Constant for Second Order Reaction	m ³ /gmol-s
k_B	Stefan-Boltzmann Constant = 5.6705119E-8	W/m^2-K^4
L	Latent Heat of Vaporization	J/kg
λ	Evaporation Constant	m ² /s
Le	Lewis Number	
γ	Specific Heat Ratio	-//
h	Heat Transfer Coefficient	W/m ² -K
h_F	Horizontal Component of Sensor Size	m
H_F	Horizontal Component of Field of View	m
h_{liq}	Liquid Phase Enthalpy	J/kg
h_{vap}	Vapor Phase Enthalpy	J/kg
${\dot q}_{\scriptscriptstyle gen}$	Heat Generation Rate	W
${\dot q}_{loss}$	Heat Loss Rate	W
m	Mass	kg
ṁ	Mass Flow Rate	kg/s
MW	Molecular Weight	g/gmol
μ	Dynamic Viscosity	Pa.s
N	number of moles	moles
\mathbb{N}	Molar Flux	mole/m ² -s
Nu	Nusselt Number	
O/F	Oxidizer to Fuel Ratio	-
$arOldsymbol{\Omega}_{\!D}$	Collision Integral	-
P	Pressure	Pa

p	Partial Pressure	Pa
Pr	Prandtl Number	-
θ	Dimensionless Temperature	-
ho	Density	kg/m ³
r	Radius	m
Re	Reynolds Number	-
σ	Surface Tension	lb _f /ft
σ_{x}	Hard-sphere Collision Diameter of Species x	Å
SMD	Sauter Mean Diameter	m
t	Time	S
T^*	Dimensionless Temperature	•
τ	Ignition Delay	S
U	Uncertainty	\ -
U_R	Relative Velocity	m/s
V_{inj}	Injection Velocity	m/s
V	Volume	m^3
v_F	Vertical Component of Sensor Size	m
V_F	Vertical Component of Field of View	m
χ	Mole Fraction	-
Y_F	Fuel Vapor Mass Fraction	-
We	Weber Number	_

Subscripts

gas	Ambient Gas
amb,∞	Ambient Conditions
S	Surface
vap	Vapor
OR	Gas Reference
FR	Fuel Reference
ox	Oxidizer

fuel Fuel

BN Normal Boiling Point

R Reference

CR Critical

mix Mixture

tr Transient

c combustion, critical

Acronyms

ANOVA Analysis of Variance

APCL Advanced Propellants and Combustion Lab

ATO Assisted Take-Off

EDM Electric Discharge Machining

FNA Fuming Nitric Acid

HTP High Test Peroxide

LSD Least Significance Difference

MAT Manganese Acetate Tetrahydrate

MIST Metered Ignition Sequence Tester

MMH Monomethyl Hydrazine

MSDS Material Safety Data Sheet

MSE Mean Square Error

NAWC-WD Naval Air Warfare Center Weapons Division

NHMF Nontoxic Hypergolic Miscible Fuel

NTO Nitrogen Tetroxide

OMS Orbital Maneuvering Subsystem

RCS Reaction Control System

RFNA Red Fuming Nitric Acid

RGHP Rocket Grade Hydrogen Peroxide

SCFH Standard Cubic Feet per Hour

SNA Strong Nitric Acid

TTL Transistor-Transistor Logic

UDMH Unsymmetrical Dimethylhydrazine

UTC University Technology Center

WFNA White Fuming Nitric Acid

ABSTRACT

Pourpoint, Timothée Louis, Ph.D., Purdue University, December 2005. Hypergolic Ignition of a Catalytically Promoted Fuel with Rocket Grade Hydrogen Peroxide. Major Professor: William E. Anderson.

The ignition delay for the incipient sustained reaction of hypergolic propellants is of crucial importance. Too short of a delay can lead to injector damage while too long of a delay can lead to very large pressure spikes and engine failure. The coupling of the physical and chemical processes controlling the ignition delays of hypergolic propellants renders the direct analysis of the transient ignition process very difficult. Well defined test conditions must, therefore, be specified to properly study the factors influencing the ignition delays of hypergolic propellants.

Theories regarding the thermal ignition of conventional hypergolic propellants, such as nitrogen tetroxide and hydrazine-based fuels, have been established. The goals of the present research are to investigate the applicability of thermal ignition theories to the ignition processes occurring between a catalytically promoted fuel and hydrogen peroxide and to develop a model of the incipient reactions. The hypergolic fuel considered in the study is a methanol-based mixture containing a soluble metal catalyst. First, physical and chemical factors influencing an ignition event between liquid hypergolic propellants are discussed. Whenever possible, emphasis is placed on data obtained with fuels that are hypergolic with rocket grade hydrogen peroxide. Following this review, the applicability of traditional vaporization and ignition theories to the ignition of a catalytically promoted fuel with rocket grade hydrogen peroxide are

discussed. An experimental program aimed at determining the effects of initial ambient

pressure, initial ambient gas properties, and hydrogen peroxide concentration on ignition delay is presented.

Results show that ignition delay can be reduced by increasing the hydrogen peroxide concentration or the initial ambient pressure. The combined effects of large thermal conductivity and large mass diffusion coefficient of helium rich environments are postulated to be responsible for the significant increase in ignition delay observed with the lowest hydrogen peroxide concentrations. The precise assessment of the relative contribution of heat generation and heat loss due to transport of the ambient gas were difficult to determine in the present experiment. The agreement between the trends and predictions partially substantiate a phenomenological model of hypergolic ignition of a catalytically promoted fuel with rocket grade hydrogen peroxide.

This page deliberately left blank.

