2020 级 11 系 3 班

姓名 黄瑞轩

日期 2021年4月17日

№ PB20111686

LED 光电特性及加法混色实验

实验目的: 1、 在 I < 100 mA 范围内分别测量红、绿、蓝 LED 的正向电压 U 与电流 I 的关系,并由此绘制 其各自的伏安特性曲线。

- 2、基于伏安特性曲线,计算红、绿、蓝 LED 的发光中心波长。
- 3、在 I < 100 mA 内测量绿色 LED 的相对光强 L 与电流 I 的关系,绘制其 L I 特性曲线,并求近似函数关系。
- 4、 将红、绿、蓝 LED 光源作为三基色,用相加混合法配出黄、紫、青色,并研究所配基色光 强之间的规律。

实验器材: 实验原理:

- 3V 直流电源、三色 LED、毫安表、数字万用表、硅光电池、电阻箱、开关、导线、分压盒、白屏
- 1、按图 1 方式接线,通过调整分压盒上电位器 R₀ 的电阻可以得到不同的 *U-I* 数据点,在 *I* < 100 mA 范围内测量 20 组数据,再用曲线拟合即可得到 LED 的伏安特性曲线。更换接入三色 LED 盒的接口可以切换不同颜色的 LED,本实验分别测量红、绿、蓝三种颜色 LED 的伏安特性曲线。
- 2、基于实验 1,得到三种 LED 的伏安特性曲线。在伏安特性曲线的线性区域进行线性拟合,得到拟合直线,这一拟合直线与横轴的交点即为导通阈值电压 U_D ,它与禁带宽度 E_e 满足关系

$$U_D \approx \frac{E_g}{\rho}$$
 (1)

其中e为元电荷量。所求的峰值波长 λ 与禁带宽度 E_g 满足关系

$$\lambda \approx \frac{1240}{E_g} (\text{nm}) \tag{2}$$

其中 E_g 的单位为eV。根据上述原理即可得出各LED的发光波长。

- 3、相对光强 L 定义为 LED 到光电池距离约为 $20\,cm$ 时,光电池输出电压值。按图 $2\,$ 方式接线,通过调整分压盒上电位器 R_0 的电阻可以得到不同的 U-I 数据点,根据相对光强的定义,可以得到不同的 L-I 数据点。在 I< $100\,mA$ 范围内测量 $20\,$ 组数据,再用 Origin 作拟合即可得到绿色 LED 的发光强度与电流的关系图,进一步计算即可得到近似的函数关系。
- 4、按图 3 方式接线。先关闭所有光源,记录此时电压表的示数作为背景光强。再在 LED 光口正对面放置一个白屏,调整白屏与 LED 的距离,直到多个光斑重合。通过调整分压盒上对应电位器的阻值来改变对应基色 LED 的发光强度,并将合光斑颜色与指定色卡颜色进行比较,直到颜色合适。通过改变接入 LED 盒的接线可以改变各 LED 的开关状态。先打开两个基色 LED 进行配色,配色满意后记录此时电压表的示数,以此示数作为所配色光的相对光强。再分别拔下其中一个基色 LED 的连接线,分别记录单个基色 LED 开启时电压表的示数,以此示数作为基色 LED 的相对光强。计算可得所配色光所要求的基色比例。

图1 LED 伏安特性测量电路图

图 2 LED 发光强度与电流的关系测量

图 3 RGB 配色相对光强测量

实验数据处理

1、LED的伏安特性测量

原始数据:

I/mA	0	0	0	0	0.5	2	4	6	8	14.1
U/V	0.535	1.0461	1.4035	1.5594	1.6265	1.693	1.7246	1.7434	1.7552	1.7805
I/mA	22.5	27.5	33.7	42.8	49.5	53.2	66.0	75.0	81.1	96.9
U/V	1.8079	1.82	1.8337	1.8525	1.8657	1.8719	1.8937	1.9077	1.9167	1.9387
表 1 红色 LED 的测量原始数据										
I/mA	0	0	0	1	0.5	3	5	9	14.5	17
U/V	1.51	1.638	2.199	2.462	2.438	2.51	2.53	2.554	2.578	2.586
I/mA	24.0	31.2	39.2	59.8	78.0	89.1	93.2	98.5	41.2	63.5
U/V	2.608	2.627	2.644	2.686	2.721	2.74	2.746	2.754	2.646	2.693
表 2 蓝色 LED 的测量原始数据										
I/mA	0	0	0	0	1.5	4.5	7.8	10.2	17.1	21.2
U/V	1.515	1.665	1.736	2.045	2.15	2.217	2.25	2.27	2.313	2.335
I/mA	26.1	35.5	44.2	52.5	65.2	69.5	77.5	86.1	93.5	96.9
U/V	2.357	2.396	2.427	2.456	2.495	2.506	2.528	2.552	2.57	2.578

表 3 绿色 LED 的测量原始数据

处理数据:

2、LED 的发光波长测量

原始数据: 表 1、表 2、表 3。

处理数据: 根据图 4、图 5、图 6,用 Origin 可分别得到线性区域的拟合直线方程如下,方程中y表示电流,单位为 mA; x表示电压,单位为 V。再令 y=0,所求得的x 值即为相应的导通阈值电压 U_D ,再根据实验原理计算波长值。各计算量在下表中给出。

LED 颜色	红色	蓝色	绿色	
线性区域拟合直线方程	y = 643x - 1151	y = 527x - 1355	y = 378x - 878	
导通阈值电压 UD	1.79 V	2.57 V	2.32 V	
禁带宽度 Eg	1.79 eV	2.57 eV	2.32 eV	
峰值波长 λ	692.74 nm	482.49 nm	534.48 nm	
	700 nm	435.8 nm	546.1 nm	

表 4 各 LED 的发光峰值波长计算量表

3、LED 的光强与电流的关系

原始数据:

I/mA	3.0	5.0	10.0	15.1	20.1	25.0	30.0	34.9	41.0	45.1
U/V	0.0011	0.0023	0.0054	0.0085	0.0117	0.0143	0.017	0.0197	0.0232	0.0254
相对光强 L	0.0011	0.0023	0.0054	0.0085	0.0117	0.0143	0.017	0.0197	0.0232	0.0254
I/mA	50.0	55.1	60.2	64.5	71.0	76.0	80.0	86.1	91.0	99.5
U/V	0.0279	0.0304	0.0329	0.0348	0.038	0.0404	0.0422	0.0453	0.0474	0.0511
相对光强 L	0.0279	0.0304	0.0329	0.0348	0.038	0.0404	0.0422	0.0453	0.0474	0.0511

表 5 原始数据表

处理数据: 经 Origin 拟合得到绿色 LED 的 L-I 特性曲线如图 7。

图 7 绿色 LED 发光强度与电流的关系

图 8 修正截距后的绿色 LED 发光强度与电流的关系

经 Origin 计算得函数关系 (I单位为 A、L 无单位) 为

$$L = 0.519I + 0.00954^* \tag{3}$$

由于光强为0时电流应当为0,因此标*号的截距应当修正为0,修正后的绿色LED的L-I特性曲线如图8;修正的函数关系为

$$L = 0.534I \tag{4}$$

误差分析: 对式(3)的修正前提是实验中未受到任何误差干扰,事实上在做修正时应考虑到背景光强的影响,但由实验 4 测得的背景光强,这一误差实际上很小,可以忽略不计,因此对式(3)做出这样的修正是合理的。

4、加法混色实验

原始数据及数据处理:

所配颜色		黄色	紫色	青色	白色
	红	0.0843 V	0.0412 V		0.0481 V
所用基色光强	绿	0.0705 V		0.0300 V	0.0477 V
	蓝		0.0894 V	0.0272 V	0.0491 V
背景光强		0 V	0 V	0 V	0 V
所配色光光强		0.1512 V	0.1284 V	0.0568 V	$0.1486 \mathrm{V}$
基色比		R:G=1.20:1	R : B = 0.46 : 1	G: B = 1.10:1	R: G: B = 0.98: 0.97: 1

表 6 原始数据及计算得到的基色比数值表

误差分析: 实验在黑暗环境中进行,由于只有目标颜色的光源,因此对人眼对色卡的感知有一定的偏差。

思考题

1、LED 的发光原理是什么? LED 发光强度及颜色与哪些因素有关?

LED 是用III-V族化合物半导体材料制成的, 其核心是 P-N 结。具有正向导通, 反向截止和击穿等特性。 若给 LED 加一正向电压, 电子将由 N 区注入 P 区, 空穴将由 P 区注入 N 区, 这些注入的电子与空穴在 P-N 结区域发生复合, 从而发射出光子。

LED 的发光强度与加在其两端的电压值有关。当 LED 两端电压大于导通阈值电压时,两端电压越大, LED 的发光强度就越大。

制作 LED 的半导体材料不同决定了 LED 发光的颜色不同。掺入砷化镓使 LED 发出红光,掺入磷化镓 使 LED 发出绿光等等。

2、 甲光 R:G:B 为 1:2:3; 乙光 R:G:B 为 2:4:6, 甲光和乙光有何异同?

三基色之间的比例,直接决定混合色的色调。因此混合比例相同时,色调是相同的。甲光和乙光的 RGB 混合比例相同,因而它们的色调相同。

根据颜色方程

$$F_C(C) \equiv F_R(R) + F_G(G) + F_B(B)$$

上式中,各单位以1流明表示。若用色度学单位来表示,则方程为

$$C(C) \equiv R(R) + G(G) + B(B)$$

这表示乙光的光强 (上式中以刺激值表示) 大于甲光的光强, 即它们的亮度是不一样的。

3、 色光混合及色料混合的基本规律? 色料三原色的补色分别是什么颜色?

色光混合规律:由实验 4 的结果,可以得出这样的规律:由两种或两种以上的色光混合在一起而呈现 另一种色光的效果,遵守光照强度(辐射能量)的线性叠加规则。

R+G=Y(黄色)

G+B=C(青色)

B+R=M(品红色)

R+G+B=W(白色)

色料混合规律: 色料混合也遵守线性叠加规则。

C+Y=G

M+Y=R

 $M\!+\!C\!=\!B$

C+M+Y=K(黑色)

色料三原色的补色:一种原色的补色即为除此原色外另外两种原色的和色,色料三原色为品红、黄、青。由上述混合规律,品红色的补色为绿色、黄色的补色为蓝色、青色的补色为红色。