Statistics

Week 10: Regression (Chapter 10 & 11)

ESD, SUTD

Term 5, 2017

Established in collaboration with MIT

Information

Homework assignment 3 will be available on Tuesday. You can submit a hardcopy into the homework box near the entrance of the ESD offices, or submit a softcopy online.

This and next Tuesday second half: guest lectures.

This Thursday: normal and project recitations.

- Multiple regression
 - Dummy variables
- 2 Confidence intervals
- 3 Analysis of variance

Exercise

In the spreadsheet regression 2 - companies, use the Data Analysis package to fit a linear model for y in terms of x_1 and x_2 .

The regression model can be represented by a plane.

Sometimes the data contains *categorical* variables, such as gender or seasons. We can encode them using 0's and 1's.

There are different methods of encoding. We demonstrate one method here, using the *Excel* data for triple jump distance vs year and gender.

We set gender = 0 for male and 1 for female, and use the model

distance =
$$(\beta_0 + \beta_1 \text{ gender}) + (\beta_2 + \beta_3 \text{ gender})$$
 year
= $\beta_0 + \beta_1 \text{ gender} + \beta_2 \text{ year} + \beta_3 \text{ year} \times \text{gender}$.

One advantage of this method is that, when specializing gender to 0 or 1, we recover the least square lines for the male- or female-only data.

Dummy variables, continued

As another example, for the four seasons, we need to introduce three dummy variables x_1, x_2, x_3 , where:

- $(x_1, x_2, x_3) = (0, 0, 0)$ for spring (chosen as the baseline),
- $(x_1, x_2, x_3) = (1, 0, 0)$ for summer,
- $(x_1, x_2, x_3) = (0, 1, 0)$ for autumn,
- $(x_1, x_2, x_3) = (0, 0, 1)$ for winter.

We do not just use indicator variables here, to avoid multicollinearity.

Again, if 'interaction' terms (in Excel sheet sales1: quarter \times season) are included, then specializing the dummy variables gives the individual least square lines. This is a consequence of the underlying matrix algebra.

Outline

- Multiple regressionDummy variables
- 2 Confidence intervals
- 3 Analysis of variance

Set up

In simple linear regression, we can give confidence intervals for β_1 and β_0 . Recall the set up

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

where ϵ_i are iid normal. We treat the x_i 's as fixed, then the Y_i 's are normal.

 \hat{eta}_0 and \hat{eta}_1 are estimators for eta_0 and eta_1 ; in fact they are unbiased.

 $\hat{eta}_1 = rac{s_{xy}}{s_x^2}$, so as a random variable, it has distribution

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(Y_i - \bar{Y})}{(n-1) s_x^2} = \frac{1}{(n-1) s_x^2} \sum_{i=1}^n (x_i - \bar{x}) Y_i,$$

which is a linear combination of normals, and is hence normal.

Calculations

It follows that $\mathsf{E}(\hat{\beta}_1) =$

$$\frac{1}{(n-1) s_x^2} \sum_{i=1}^n (x_i - \bar{x}) \mathsf{E}(Y_i) = \frac{1}{(n-1) s_x^2} \sum_{i=1}^n (x_i - \bar{x}) (\beta_0 + \beta_1 x_i)$$
$$= \frac{1}{(n-1) s_x^2} \sum_{i=1}^n (x_i - \bar{x}) \beta_1 x_i = \frac{\beta_1}{(n-1) s_x^2} \sum_{i=1}^n (x_i - \bar{x})^2,$$

so $E(\hat{\beta}_1) = \beta_1$. Likewise,

$$\operatorname{Var}(\hat{\beta}_1) = \frac{1}{(n-1)^2 s_x^4} \sum_{i=1}^n (x_i - \bar{x})^2 \operatorname{Var}(Y_i) = \frac{\sigma^2}{(n-1) s_x^2}.$$

Similarly tedious computations show that $\hat{\beta_0}$ is normal, with mean β_0 and variance $\frac{\sigma^2}{s_x^2}\Big(\frac{s_x^2}{n}+\frac{\bar{x}^2}{n-1}\Big)$.

Confidence intervals

We estimate σ^2 by $s^2 = {\rm SSE}/(n-2)$, which means we will need the t-distribution.

 $(1-\alpha)$ -level confidence intervals for β_1 and β_0 are, respectively:

$$\begin{split} \hat{\beta}_1 &\pm t_{n-2,\,1-\alpha/2} \, \frac{s}{s_x} \frac{1}{\sqrt{n-1}}, \\ \hat{\beta}_0 &\pm t_{n-2,\,1-\alpha/2} \, \frac{s}{s_x} \, \sqrt{\frac{s_x^2}{n} + \frac{\bar{x}^2}{n-1}}. \end{split}$$

These CI's can also be obtained in *Excel*'s Data Analysis \rightarrow Regression (check the 'confidence level' box). We will check it for the triple jump example.

Note: confidence intervals for β_i in multiple regression can be similarly derived, but involve the diagonal entries of $(\mathbf{X}^T\mathbf{X})^{-1}$ (not in the course; see textbook Section 11.4).

Correlation coefficient

Let ρ denote the true *correlation coefficient* of the random variables X and Y (from which we get the observations (x_i,y_i)). Note that r is just an estimate of ρ . We are interested in testing $H_0: \rho = 0$ vs $H_1: \rho \neq 0$.

If H_0 is true, then $\rho=0=\beta_1$, and one can check that

$$\frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{\hat{\beta}_1 - \beta_1}{s/(s_x\sqrt{n-1})},$$

which follows a t-distribution of (n-2) degrees of freedom.

Therefore, we can reject H_0 if

$$\frac{|r|\sqrt{n-2}}{\sqrt{1-r^2}} > t_{n-2,\,1-\alpha/2}.$$

Exercise: is r = 0.5 always insignificant (with $\alpha = 0.05$)?

Prediction

Suppose we wish to predict the value y^* corresponding to a point x^* . Let $\hat{y}^* = \hat{\beta}_0 + \hat{\beta}_1 x^*$.

Then, it can be shown that the $(1-\alpha)$ -level two-sided confidence interval for y^* is

$$\hat{y}^* \pm t_{n-2, 1-\alpha/2} \frac{s}{s_x} \sqrt{\frac{s_x^2}{n} + \frac{(x^* - \bar{x})^2}{n-1}}.$$

- Multiple regressionDummy variables
- 2 Confidence intervals
- 3 Analysis of variance

Predictor variables and r^2

In multiple regression, increasing the number of predictor variables will increase r^2 , even if random numbers are used.

This is because each extra predictor variable allows us to decrease the error (in the worst case, just set the new $\hat{\beta}$ to 0 to get the same error, but we are very likely to do better).

As an extreme example, a polynomial regression of degree (n-1) achieves $r^2=1$.

This phenomenon of over-fitting makes r^2 no longer a good measure of how well the model fits the data.

So, how do we pick *useful* predictor variables x_i in our model, and ensure that they have an effect on y?

We first answer a weaker question: how do we know if any of the variables affect y?

Analysis of variance (ANOVA)

This question can be answered by ANOVA, the first step of which decomposes the total variability in y into separate components.

We have already done this for multiple (including simple) linear regression: SST = SSE + SSR.

Their degrees of freedom are respectively (n-1), (n-k-1), and k, where k is the number of predictor variables.

Explanation for the df's: n terms with 1 constraint; n terms with (k+1) parameters estimated; k predictors.

Define $\mathbf{MSE} = \mathsf{SSE}/(n-k-1) = s^2$, and $\mathbf{MSR} = \mathsf{SSR}/k$ (mean squared regression).

Finally, define F = MSR/MSE.

Hypothesis testing using F

(Intuition for SSR having 1 degree of freedom in simple linear regression: note that $\hat{y}_i - \bar{y} = \hat{\beta}_1(x_i - \bar{x})$.)

In multiple linear regression, it can be shown that under

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0,$$

 ${\rm SSR}/\sigma^2$ and ${\rm SSE}/\sigma^2$ are both χ^2 random variables.

Therefore, if H_0 is true, then $F = \mathsf{MSR}/\mathsf{MSE}$ satisfies an $F_{k,\,n-k-1}$ distribution.

If $F > f_{k,n-k-1,1-\alpha}$, then we can reject H_0 , and accept H_1 : at least one of the $\beta_i \neq 0$.

Excel can organize all this information in an ANOVA table.