Tutorial

filtering, morphology and canny edge detection

Ziang Cheng

Outline

- Image filtering
 - Review
 - Boundary handling (padding)
 - Image morphology
- Edge detection algorithm
 - F1 evaluation metric

Spatial image filtering

- 1. Compute the stacked response of F on Ω_e with some element-wise operator *
- 2. Gather the response to a single value through some reduction function $\mathcal{G}(\cdot)$
- 3. Slide the window to next pixel

Cross-correlation/convolution

- * is element-wise multiplication operator
- $\mathcal{G}(\cdot)$ is the summation function
- * is not to be confused with convolution operator *
- Processed image is linear w.r.t. input

Cross-correlation/convolution

$$egin{bmatrix} -1 & -1 & -1 \ -1 & 8 & -1 \ -1 & -1 & -1 \end{bmatrix}$$
 Laplacian

$$\left[egin{array}{ccc} 0 & -1 & 0 \ -1 & 5 & -1 \ 0 & -1 & 0 \ \end{array}
ight]$$
 Sharpen

Mean blur

$$\frac{1}{256} \begin{bmatrix}
1 & 4 & 6 & 4 & 1 \\
4 & 16 & 24 & 16 & 4 \\
6 & 24 & 36 & 24 & 6 \\
4 & 16 & 24 & 16 & 4 \\
1 & 4 & 6 & 4 & 1
\end{bmatrix}$$

Gaussian 5x5

Median filter

- * is the element-wise multiplication
- $\mathcal{G}(\cdot)$ is the median function

$$-F \text{ is } \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Filters with content-aware kernels

Doubly-guided filters [Lu 2017]

Gaussian filter (implementation)

- Separability: Gauss kernels can be factorized $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 \\ 2 \\ 1 \end{vmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 \end{vmatrix}$
 - Since convolution operator * is associative

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
 * Image =
$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 * [1 2 1] * Image =
$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 * ([1 2 1] * Image)

- Complexity of filtering with nxn image and mxm kernel is O(nxnxmxm)
- Complexity of filtering with nxn image and separable mxm kernel is O(2xnxnxm)
- m/2 times faster implementation for Gaussian filtering!
- 3-sigma rule:
 - Pixels more than 3σ away can be ignored
 - No need for kernel size greater than $(6\sigma+1)$

Padding (why padding?)

Padding

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	1	2	3	4	5	0	0
0	0	6	7	8	9	10	0	0
0	0	11	12	13	14	15	0	0
0	0	16	17	18	19	20	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

13	12	11	12	13	14	15	14	13
8	7	6	7	8	9	10	9	8
3	2	1	2	3	4	5	4	3
8	7	6	7	8	9	10	9	8
13	12	11	12	13	14	15	14	13
18	17	16	17	18	19	20	19	18
13	12	11	12	13	14	15	14	13
8	7	6	7	8	9	10	9	8

1	1	1	2	3	4	5	5	5
1	1	1	2	3	4	5	5	5
1	1	1	2	3	4	5	5	5
6	6	6	7	8	9	10	10	10
11	11	11	12	13	14	15	15	15
16	16	16	17	18	19	20	20	20
16	16	16	17	18	19	20	20	20
16	16	16	17	18	19	20	20	20

Constant (zero)

Mirror/Symmetric

Filtered Image with Black Border

Replicate

Filtered Image with Border Replication

Original Image

Morphological filter: Dilation

- Input is a binary image (True=1, False=0), padded with constant 0
- * is the logical and
- $\mathcal{G}(\cdot)$ is the logical or reduction

$$-F \text{ is } \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Morphological filter: Erosion

- Input is a binary image (True=1, False=0), padded with constant 1
- * is the logical and
- $\mathcal{G}(\cdot)$ is the logical and reduction

Q3 Edge detection algorithm (overview)

Key steps:

- 1. Pre-processing: smoothing e.g. Gauss filter (q.3b)
- 2. Compute intensity of gradients: e.g. Sobel filter, etc.
 - a. With appropriate boundary handling (q.3a)
- 3. NMS along gradient direction (q.3c)
- 4. Returns boundary score

How to evaluate the performance?

- We have a test set with ground truth binary labels for each pixel
 - True: is edge pixel
 - False: not edge pixel
- We have a model that outputs a score in [0,1]
 - How to make this model output binary decision? (bin_model = score + threshold)
 - How to select threshold?
- Edges are sparse: very few pixel are actually edge pixels
 - Measuring accuracy may not be the best idea...

Precision, recall and accuracy

- Precision: TP/(TP+FP)
- Recall: TP/(TP+FN)
- Accuracy: (TP+FN)/(TP+FP+TN+FN)

Suppose only 1% of pixels are true edge pixels in test sets, what are the precision, recall and accuracy of a model that randomly predicts edge score with th=0.99?

- Precision: 1%

- Recall : 1%

- Accuracy: 98%

How are precision and recall related?

Generally, by increasing threshold

- Model gets more pessimistic (less likely to say yes)
- Precision likely increase
- Recall likely decrease

How to select the best predictor/threshold for a task?

Whichever maximizes F_B score:

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$$

 β >1 attaches greater importance to recall than to precision.

F₁ Score:

$$F_1 = \left(rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}}
ight) = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$