Security Analytics

Rakesh Verma
ReDAS laboratory
Computer Science Department
University of Houston

Lec. 1 contd & Lec. 2

Security Goals and Mechanisms Introduction to Cryptography

How determined are attackers?

- Two case studies ("Ten laws of security"):
 - ➤ Microsoft Xbox hardware attack
 - ➤ RSA spearphishing emails
- Recent examples (1/22/18)
 - Fire and Fury book pdf
 - Hackers steal almost \$400 million from cryptocurrency ICOs (ZDNet)
- Bottom line: Attackers can be extremely determined when the ``prize/thrill'' is huge

Outline

- Overview of Cryptography
- Classical Symmetric Cipher
- Modern Symmetric Ciphers (DES, AES)

(Adapted from slides accompanying book by William Stallings, Some slides are courtesy J. Kurose and K. Ross)

Basic Terminology

- plaintext the original message
- ciphertext the coded message
- cipher algorithm for transforming plaintext to ciphertext
- key info used in cipher known "only" to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- decipher (decrypt) recovering ciphertext from plaintext
- cryptography study of encryption principles/methods
- cryptanalysis (codebreaking) the study of principles/ methods of deciphering ciphertext without knowing key
- cryptology the field of both cryptography and cryptanalysis

Classification of Cryptography

- Number of keys used
 - Hash functions: no key
 - Secret key cryptography: one key
 - Public key cryptography: two keys public, private
- Type of encryption operations used
 - substitution / transposition / product
- Way in which plaintext is processed
 - block / stream

Secret Key vs. Secret Algorithm

- Secret algorithm: additional hurdle
- Hard to keep secret if used widely:
 - Reverse engineering, social engineering
- Commercial: published
 - Wide review, trust
- Military: avoid giving enemy good ideas

Cryptanalysis Scheme

- Ciphertext only:
 - Exhaustive search until "recognizable plaintext"
 - Need enough ciphertext
- Known plaintext:
 - Secret may be revealed (by spy, time), thus <ciphertext, plaintext> pair is obtained
 - Great for monoalphabetic ciphers
- Chosen plaintext:
 - Choose text, get encrypted
 - Useful if limited set of messages

Unconditional vs. Computational Security

Unconditional security

- No matter how much computer power is available, the cipher cannot be broken
- The ciphertext provides insufficient information to uniquely determine the corresponding plaintext
- Only one-time pad scheme qualifies

Computational security

- The cost of breaking the cipher exceeds the value of the encrypted info
- The time required to break the cipher exceeds the useful lifetime of the info

Brute Force Search

- Always possible to simply try every key
- Most basic attack, proportional to key size
- Assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 encryption/μs	Time required at 10 ⁶ encryptions/ <i>µ</i> s
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \text{ minutes}$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55} \mu s = 1142 \text{ years}$	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24} \text{ years}$	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36} \text{ years}$	$5.9 \times 10^{30} \text{ years}$
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu \mathrm{s} = 6.4 \times 10^{12} \mathrm{years}$	6.4×10^6 years

Outline

- Overview of Cryptography
- Classical Symmetric Cipher
 - Substitution Cipher
 - Transposition Cipher
- Modern Symmetric Ciphers (DES, AES)

Symmetric Cipher Model

Requirements

- Two requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver

$$Y = \mathsf{E}_{\kappa}(X)$$
$$X = \mathsf{D}_{\kappa}(Y)$$

$$X = D_{\kappa}(Y)$$

- Assume encryption algorithm is known
- Implies a secure channel to distribute key

Classical Substitution Ciphers

- Letters of plaintext are replaced by other letters or by numbers or symbols
- Plaintext is viewed as a sequence of bits, then substitution replaces plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

- Earliest known substitution cipher
- Replaces each letter by 3rd letter on
- Example:

```
meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB
```

Caesar Cipher

Define transformation as:

```
abcdefghijklmnopqrstuvwxyz
DEFGHIJKLMNOPQRSTUVWXYZABC
```

Mathematically give each letter a number

```
abcdefghijklm
0 1 2 3 4 5 6 7 8 9 10 11 12
n opqrstuvwxyZ
13 14 15 16 17 18 19 20 21 22 23 24 25
```

Then have Caesar cipher as:

$$C = E(p) = (p + k) \mod (26)$$

 $p = D(C) = (C - k) \mod (26)$

Cryptanalysis of Caesar Cipher

- Only have 25 possible ciphers
 - A maps to B,..Z
- Given ciphertext, just try all shifts of letters
- Do need to recognize when have plaintext
- E.g., break ciphertext "GCUA VQ DTGCM"

Monoalphabetic Cipher

- Rather than just shifting the alphabet
- Could shuffle (jumble) the letters arbitrarily
- Each plaintext letter maps to a different random ciphertext letter
- Key is 26 letters long

```
Plain: abcdefghijklmnopqrstuvwxyz
Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN
```

Plaintext: ifwewishtoreplaceletters Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

Monoalphabetic Cipher Security

- Now have a total of $26! = 4 \times 10^{26}$ keys
- Is that secure?
- Problem is language characteristics
 - Human languages are redundant
 - Letters are not equally commonly used

English Letter Frequencies

Example Cryptanalysis

Given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMO

- Count relative letter frequencies (see text)
- Guess P & Z are e and t
- Guess ZW is th and hence ZWP is the
- Proceeding with trial and error finally get:

it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

One-Time Pad

- If a truly random key as long as the message is used, the cipher will be secure - One-Time pad
- E.g., a random sequence of 0's and 1's XORed to plaintext, no repetition of keys
- Unbreakable since ciphertext bears no statistical relationship to the plaintext
- For any plaintext, it needs a random key of the same length
 - Hard to generate large amount of keys
- Have problem of safe distribution of key

One-time Pad Analysis

- Let p(0) = x and p(1) = 1-x in plaintext message m
- Let's compute p(0) and p(1) for the ciphertext.
- We can get 0 in ciphertext if 0 in plaintext and 0 in key bit, or if 1 in plaintext and 1 in key bit
- So p(0) for ciphertext = x/2 + (1-x)/2 (why?) = $\frac{1}{2}$
- Similarly, 1 in ciphertext if 0 in plaintex and 1 in key bit, or if 1 in plaintext and 0 in key bit
- So p(1) for ciphertext = $x/2 + (1-x)/2 = \frac{1}{2}$
- Notice that the probability of a 0 or 1 in the ciphertext are the same. So ciphertext has "lost" the frequency information in the plaintext!

Transposition Ciphers

- Now consider classical transposition or permutation ciphers
- These hide the message by rearranging the letter order, without altering the actual letters used
- Can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- Write message letters out diagonally over a number of rows
- Then read off cipher row by row
- E.g., write message out as:

```
m e m a t r h t g p r y e t e f e t e o a a t
```

Giving ciphertext

MEMATRHTGPRYETEFETEOAAT

Product Ciphers

- Ciphers using substitutions or transpositions are not secure because of language characteristics
- Hence consider using several ciphers in succession to make harder, but:
 - Two substitutions make a more complex substitution
 - Two transpositions make more complex transposition
 - But a substitution followed by a transposition makes a new much harder cipher
- This is bridge from classical to modern ciphers

Outline

- Overview of Cryptography
- Classical Symmetric Cipher
- Modern Symmetric Ciphers (DES, AES)

Block vs Stream Ciphers

- Block ciphers process messages in into blocks, each of which is then en/decrypted
- Like a substitution on very big characters
 - 64-bits or more
- Stream ciphers process messages a bit or byte at a time when en/decrypting
- Many current ciphers are block ciphers, one of the most widely used types of cryptographic algorithms

Block Cipher Principles

- Most symmetric block ciphers are based on a Feistel Cipher Structure
- Block ciphers look like an extremely large substitution
- Would need table of 2⁶⁴ entries for a 64-bit block
- Instead create from smaller building blocks
- Using idea of a product cipher

Substitution-Permutation Ciphers

- Substitution-permutation (S-P) networks [Shannon, 1949]
 - modern substitution-transposition product cipher
- These form the basis of modern block ciphers
- S-P networks are based on the two primitive cryptographic operations
 - substitution (S-box)
 - permutation (P-box)
- provide confusion and diffusion of message

Confusion and Diffusion

- Cipher needs to completely obscure statistical properties of original message
- A one-time pad does this
- More practically Shannon suggested S-P networks to obtain:
- Diffusion dissipates statistical structure of plaintext over bulk of ciphertext
- Confusion makes relationship between ciphertext and key as complex as possible

Feistel Cipher Structure

- Feistel cipher implements Shannon's S-P network concept
 - based on invertible product cipher
- Process through multiple rounds which
 - partitions input block into two halves
 - perform a substitution on left data half
 - based on round function of right half & subkey
 - then have permutation swapping halves

Feistel Cipher Structure

DES (Data Encryption Standard)

- Published in 1977, standardized in 1979.
- Key: 64 bit quantity=8-bit parity+56-bit key
 - Every 8th bit is a parity bit.
- 64 bit input, 64 bit output.

1/25/18

DES Top View

1/25/18

Rakesh Verma

Bit Permutation (1-to-1)

Per-Round Key Generation

A DES Round

1/25/18

Mangler Function

Bits Expansion (1-to-m)

1/25/18 Rakesh Verma 40

S-Box (Substitute and Shrink)

- 48 bits ==> 32 bits. (8*6 ==> 8*4)
- 2 bits used to select amongst 4 substitutions for the rest of the 4-bit quantity

41

S-Box Examples

Each row and column contain different numbers.

	0	1	2	3	4	5	6	7	8	9 15
0	14	4	13	1	2	15	11	8	3	
1	0	15	7	4	14	2	13	1	10	
2	4	1	14	8	13	6	2	11	15	
3	15	12	8	2	4	9	1	7	5	

Example: input: 100110 output: ???

DES Standard

• Cipher Iterative Action : • Key Generation Box :

One round (Total 16 rounds)

DES Box Summary

- Simple, easy to implement:
 - Hardware/gigabits/second, software/megabits/second
- 56-bit key DES may be acceptable for non-critical applications but triple DES (DES3) should be secure for most applications today
- Supports several operation modes (ECB CBC, OFB, CFB) for different applications

Abstract view of block ciphers

 Composition of M functions, which are applied to the plaintext and produce the corresponding ciphertext

$$c = E_k(p) = F_M \circ F_{M-1} \circ \cdots \circ F_2 \circ F_1(p) \ldots (1)$$

- Each function is Boolean, either linear or non-linear
- Every linear function in Equation (1) has the form

$$F_{i}(x_{1}, x_{2}, \dots, x_{l}) = a_{1} \cdot x_{1} \oplus a_{2} \cdot x_{2} \oplus \dots \oplus a_{l} \cdot x_{l}, (2)$$

Every non-linear function in Equation (1) is of the form

$$\mathcal{F}_i(x_1, x_2, \cdots, x_l) = \bigoplus_{j=1}^l a_j \prod_{z \in Z} x_z$$

AES

- DES was not too strong a cipher
- Triple-DES has a small block size so it is slow
- NIST issued a call for ciphers in 1997
- 15 candidates were accepted in 1998
- 5 shortlisted in 1999
- Rijndael selected as AES in 2000
- Issued as FIPS PUB 197 in 2001

Table 1. Block Cipher Specifications

N	No. of rounds in the cipher			
l	Size of round input/output			
m	No. of non-overlapped parts in round input/output			
w	Size of each part			
M	No. of functions invoked during execution			
${\mathcal H}$	Differential Characteristic of the S-boxes			

Table 2. Specifications for some Ciphers

	N	1	m	w	M	\mathcal{H}
AES	10	128	16	8	40	1
CLEFIA	18	128	16	8	74	$2^{1.36}$, $2^{1.02}$
SMS4	32	128	16	8	128	$2^{1.017}$

AES summarized

- Initial key whitening after which each round splits its input into 16 parts of one byte each (w = 8).
- First nine rounds have four operations: AddRoundKey (ARK), SubBytes (SB), ShiftRows (SR), and MixColumns (MC).
- Final round is similar except that it does not have the MixColumns operation.
- ARK, SR, and MC functions are linear, while the SB is a non-linear function.
- A composition of these 4 functions, repeated 10 times, is applied to the plaintext to generate the ciphertext.

AES Details

- Key expanded into array of 32-bit words
 - Each round uses 4 words (round key)
- ARK a form of Vernam cipher
- SB simple substitution of each byte
 - Uses one table of 16 x 16 bytes, permutation of all 256 8-bit values
 - each byte of state is replaced by byte indexed by row (left 4-bits) & column (right 4-bits)
 e.g. byte {95} is replaced by byte in row 9 column 5 which has value {2A}
- MC each column processed separately, each byte replaced by a value dependent on all 4 bytes in column

RSA

- Alice chooses two large primes p and q, computes n = pq
- Chooses e relatively prime to $m = \phi(n) = (p-1)(q-1)$, Euler totient function,
- Publishes (e, n) as public key
- Computes d as inverse of e mod φ(n), (d, m) is the decryption key (Alice keeps it secret)
- Bob does the same
- Bob sends a message m to Alice by using her public key
 - Computes c = m^e mod n (assuming m < n)
 - Alice decrypts by computing c^d mod n