Eigenvalues and Eigenvectors

Michael Brodskiy

Professor: Lynn Knight

May 5, 2021

- Eigenvalues are denoted by the Greek letter lambda (λ)
- Let **A** be an $n \times n$ matrix. The scalar λ is called an eigenvalue of **A** when $\in \overrightarrow{x} \neq 0$ such that $\overrightarrow{\mathbf{A}} \overrightarrow{x} = \lambda \overrightarrow{x}$
- Let **A** be $n \times n$
 - 1. An eigenvalue of ${\bf A}$ is a scalar λ such that $|\lambda {\bf I} {\bf A}| = 0$
 - 2. Eigenvectors of **A** corresponding to λ are non-zero solutions of $(\lambda \mathbf{I} \mathbf{A})\overrightarrow{x} = \overrightarrow{0}$
 - 3. $p(\lambda) = |\lambda \mathbf{I} \mathbf{A}| = 0$ is the characteristic equation