CS208: Mathematical Foundations of CS

Fall 2018

Lecture 21: September 28

Lecturer: Samar Scribes: Arpit(B17009), Aniket(B17076)

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

21.1 Arithmetic Expressions

This recursive data type is defined as follows:

• Base Case:

$$x \in AEXP$$

$$k \in AEXP, \quad k \in Z$$

• Constructors:

$$e, f \in AEXP$$

$$e + f \in AEXP$$

$$e - f \in AEXP$$

$$e \times f \in AEXP$$

$$-e \in AEXP$$

Exercise: Show that $3x^2 + x + 1$ is an Arithmetic Expression.

21.1.1 Evaluation of Arithmetic Expressions

Evaluation of an arithmetic expression e at a value n is represented as eval(e, n). It is a recursive data type which maps from $AEXP \times Z$ to Z

• Base Case:

$$eval(x, n) = n$$

 $eval(k, n) = k, \quad k \in \mathbb{Z}$

• Constructors:

$$eval(e_1 + e_2, n) = eval(e_1, n) + eval(e_2, n)$$
$$eval(e_1 \times e_2, n) = eval(e_1, n) \times eval(e_2, n)$$
$$eval(-e_1, n) = -eval(e_1, n)$$

Exercise: Find the value of $eval(3 + x^2, 2)$.

21.1.2 Substitution of Arithmetic Expressions

It is represented as subst(f, e). The definition is as follows:

• Base Case:

$$subst(f, x) = f$$

 $subst(f, k) = k$

• Constructors:

$$subst(f, e_1 + e_2) = subst(f, e_1) + subst(f, e_2)$$

 $subst(f, e_1 \times e_2) = subst(f, e_1) \times subst(f, e_2)$
 $subst(f, -e) = -subst(f, e)$

Exercise: Evaluate subst(3x, x(x-1)).

Lemma 1 \forall $e, f \in AEXP$ and $x \in Z$

$$eval(subst(f, e), n) = eval(e, eval(f, n))$$

Proof: This proof is by structural induction.

Base Case: e = x

$$L.H.S. = eval(subst(f, x), n)$$

$$= eval(f, n)$$

$$R.H.S. = eval(e, eval(f, n))$$

$$= eval(x, eval(f, n))$$

$$= eval(f, n)$$

 \Rightarrow Base case is true.

Induction Step: Let's say for $e = e_i$, the given statement holds. Now,

$$\begin{aligned} eval(subst(f,e_1+e_2),n) \\ &= eval(subst(f,e_1) + subst(f,e_2),n) \\ &= eval(subst(f,e_1),n) + eval(subst(f,e_2),n) \\ &= eval(e_1,eval(f,n)) + eval(e_2,eval(f,n)) \\ &= eval(e_1+e_2,eval(f,n)) \end{aligned}$$

 \Rightarrow The lemma is true for first constructor case.

$$eval(subst(f, e_1 \times e_2), n)$$

$$= eval(subst(f, e_1) \times subst(f, e_2), n)$$

$$= eval(subst(f, e_1), n) \times eval(subst(f, e_2), n)$$

$$= eval(e_1, eval(f, n)) \times eval(e_2, eval(f, n))$$

$$= eval(e_1 \times e_2, eval(f, n))$$

 \Rightarrow The lemma is true for second constructor case.

$$\begin{aligned} eval(subst(f,-e),n) \\ &= eval(-subst(f,e),n) \\ &= -eval(subst(f,e),n) \\ &= -eval(e,eval(f,n)) \\ &= eval(-e,eval(f,n)) \end{aligned}$$

- \Rightarrow The lemma is true for last constructor case.
- $\Rightarrow \text{The claim is true} \quad \forall \quad e,f \in AEXP \quad and \quad x \in Z.$

Exercise: Evaluate eval(subst(3x, x(x-1), 2)