

Fakultät für Mathematik und Wirtschaftswissenschaften

Institut für Numerische Mathematik

Cache-optimierte QR-Zerlegung

Bachelorarbeit an der Universität Ulm

Vorgelegt von:

Florian Krötz florian.kroetz@uni-ulm.de

Gutachter:

Dr. Michael Lehn Dr. Andreas Borchert

Betreuer:

Dr. Michael Lehn

2018

© 2018 Florian Krötz Satz: PDF-LATEX 2 $_{arepsilon}$

Inhaltsverzeichnis

1	Einl	eitung	1	
	1.1	Intel MKL	1	
		1.1.1 QR Anwendung oder so was	1	
2	QR	factorisation	2	
	2.1	QR-Zerlegung	2	
		Definition	2	
		Motivation	2	
	2.2		3	
		2.2.1 Householder Vector	3	
		2.2.2 Apply vector	4	
	2.3		5	
	2.4		5	
	2.5	QR Blocked	6	
			7	
		2.5.2 Apply H larfb	8	
			8	
		-	8	
3	lmp	lementierung und Benchmarks 1	C	
	3.1	MKL Wraper	C	
	3.2	Benchmarks	C	
A	Que	elltexte 1	1	
Literaturyerzeichnie 1				

1 Einleitung

Für was brauch ich die QR?
Warum muss die schnell sein?
Was soll der Scheiß?

1.1 Intel MKL

Kapitel über die wichtigkeit der Intel MKL.

1.1.1 QR Anwendung oder so was

-LGS -Ausgleichsprobleme -QR-Verfahren

2 QR factorisation

2.1 QR-Zerlegung

Definition

Eine Matrix $A \in \mathbb{R}^{m \times n}$, $m \ge n$ besitzt eine eindeutige QR-Zerlegung.

$$A = QR (2.1)$$

mit einer orthogonalen Matrix $Q\in\mathbb{R}^{m\times m}$ und einer oberen Dreiecksmatrix $R\in\mathbb{R}^{n\times n}$ [2]

Eine QR Zerlegung kann mit einer Householder-Transformation berechnet werden.

Motivation

Lösung eines Minimierungsproblem

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|^2 \tag{2.2}$$

mit Matrix $A \in \mathbb{R}^{m \times n}$ mit rang(A) = n < m für die eine QR Zerlegung existiert. R besitzt die Gestalt

$$R = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \\ \hline & 0 \end{pmatrix} = \begin{pmatrix} \hat{R} \\ \hline & 0 \end{pmatrix}$$

 \hat{R} stellt eine obere Dreiecksmatrix dar. Damit kann man das Minimierungs Problem

wie folgt modifizieren mit A = QR

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|^2 = \min_{x \in \mathbb{R}^n} \|Q^T (Ax - b)\|^2 = \min_{x \in \mathbb{R}^n} \|Rx - Q^T b\|^2$$
 (2.3)

Also löst

$$Rx = Q^T b (2.4)$$

das Minimierungsproblem (2.2). Da R eine Dreiecksmatrix ist lässt sich (2.4) leicht mit Rückwärtseinsetzen lösen.

2.2 Householder-Transformation

Sei $v \in \mathbb{R}^n$ und $\tau \in \mathbb{R}$ dann wir die $n \times n$ Matrix

$$H = I - 2\frac{vv^T}{v^Tv} \tag{2.5}$$

als Householder-Transformation und der Vektor v als Householder-Vektor bezeichnet. Eine Householder-Transformation $H=I-2\frac{vv^T}{v^Tv}$ ist orthogonal und symmetrisch. [2]

Die Householder-Transformation spiegelt den Vektor x auf die Achse x_1 . Dazu multipliziert man H von links auf x.

$$Hx = \alpha e_1 \tag{2.6}$$

mit $\alpha \in \mathbb{R}$ und e_1 erster kanonischer Einheitsvektor. Der Householder-Vektor steht senkrecht auf der Achse an der x gespiegelt wird.

Die Abbildung 2.1 veranschaulicht die Spiegelung der Vektors x and der gestrichelt eingezeichneten Ebene auf die x_1 Achse.

2.2.1 Householder Vector

Wie muss der Vekor *v* aussehen damit (2.6) gilt.

Abbildung 2.1: Beispiel Householder-Transformation mit $x = (-1, 2)^T$

Algorithmus 1 Housholder-Vector

```
\begin{aligned} A &\in \mathbb{R}^{m \times n} \\ & \textbf{for i} = \textbf{0} : \textbf{n do} \\ & [v, \tau] = \textbf{housevector}(A(i:m,i)) \\ & w \leftarrow v^T * A \ (\textbf{dgemv}) \\ & A \leftarrow \tau * v * w + A \ (\textbf{dger}) \\ & \textbf{if i} > \textbf{m then} \\ & A(i+1:m,j) \leftarrow v(2:m-i+1) \\ & \textbf{end if} \\ & \textbf{end for} \end{aligned}
```

2.2.2 Apply vector

$$H = I - \tau v v'$$

$$HA = A - \tau v v' A$$

$$= A - \tau v * (v' * A)$$

Das führt auf den Algorithmus 2.

Algorithmus 2 Ungeblockte Housholder-Transformation

```
\begin{split} A &\in \mathbb{R}^{m \times n} \\ \textbf{for i} &= \textbf{0} : \textbf{n do} \\ &[v, \tau] = \textbf{housevector}(A(i:m, i)) \\ &w \leftarrow v^T * A \ (\textbf{dgemv}) \\ &A \leftarrow \tau * v * w + A \ (\textbf{dger}) \\ &\textbf{if i} > \textbf{m then} \\ &A(i+1:m, j) \leftarrow v(2:m-i+1) \\ &\textbf{end if} \\ &\textbf{end for} \end{split}
```

2.3 LAPACK QR

Der von LAPACK benutzte Algorithmus [3]

$$H = I - \tau \omega \omega^T \tag{2.7}$$

$$\tau = \frac{\alpha - \beta}{\beta} \tag{2.8}$$

$$\alpha = A(i, i) \tag{2.9}$$

$$\beta = \operatorname{sign}(\alpha) \left| \sqrt{\alpha^2 + \|x\|^2} \right| \tag{2.10}$$

$$x = A(i+1:m,i) (2.11)$$

$$\omega = A(i+1:m,i) * \frac{1}{\alpha - \beta}$$
 (2.12)

2.4 NUM1 Urban QR

Algorithmus aus Numerik 1

$$H = I - 2\frac{\omega\omega^T}{\omega^T\omega} \tag{2.13}$$

$$\omega_1 = \frac{x - \alpha e_1}{x_1 - \alpha} \tag{2.14}$$

$$\alpha^2 = ||x||^2 \tag{2.15}$$

Abbildung 2.2: Partitionierung vom A

2.5 QR Blocked

Geblockte Alorighmus

$$H = I - VTV^{T}$$

$$H^{T} = I - VT^{T}V^{T}$$

$$H^{T}A_{bs,bs} = A_{bs,bs} - VT^{T}V^{T}A_{bs,bs}$$

Betrachte A geblockt, mit einer geeigneten Blockgröße bs.

$$A = \left(\frac{A_{0,0} \mid A_{0,\text{bs}}}{A_{\text{bs},0} \mid A_{\text{bs},\text{bs}}}\right) \tag{2.16}$$

Die Abbildung 2.2 zeigt schematisch die Partitionierung von A.

Berechne nun QR Zerlegung für den Block $\left(\frac{A_{0,0}}{A_{\mathrm{bs},0}}\right)$

$$\left(\frac{A_{0,0}}{A_{\mathsf{bs},0}}\right) \leftarrow \left(\frac{Q_{0,0} \backslash R_{0,0}}{Q_{\mathsf{bs},0}}\right) \tag{2.17}$$

Berechne H(0)...H(bs) aus $Q_{0,0}$ und $Q_{bs,0}$ mit $H=I-V*T*V^T$.

Wende H^T auf $A_{0,\text{bs}}$ und $A_{0,\text{bs}}$ an.

$$\left(\frac{A_{0,\text{bs}}}{A_{0,\text{bs}}}\right) \leftarrow H^T \left(\frac{A_{0,\text{bs}}}{A_{0,\text{bs}}}\right) \tag{2.18}$$

Fahre mit $A_{0,bs}$ fort.

2.5.1 Calc Factor T larft

Die Funkton bekommt eine Dreiecksmatrix $V\in\mathbb{R}^{m\times k}$ einen Vektor $\tau\in\mathbb{R}^k$ und eine Matrix $T\in\mathbb{R}^{k\times k}$ übergeben. Die Funktion berechnet eine Dreiecksmatrix T so dass

$$H_1H_2...H_k = I - VTV^T$$
 mit $H_i = I - \tau_i v_i v_i^T$

Warum und wie das Funktoniert wird hier beschreiben [1].

Versuch einer Herleitung

$$H_1 H_2 x = (I - \tau_1 v_1 v_1^T) (I - \tau_2 v_2 v_2^T) x$$

$$= (I - \tau_1 v_1 v_1^T - \tau_2 v_2 v_2^T - \tau_1 v_1 v_2^T \tau_2 v_2 v_2^T) x$$

$$= x - \tau_1 v_1 v_1^T x - \tau_2 v_2 v_2^T x - \tau_1 \tau_2 v_1 (v_1^T v_2) v_2^T x$$

$$= x - \tau_1 v_1 v_1^T x - \tau_2 v_2 v_2^T x - \tau_1 \tau_2 (v_1^T v_2) v_1 v_2^T x$$

$$H_{1,2}x = (I - VTV^{T})x = x - VTV^{T}x$$

$$= x - (v_{1}, v_{2}) \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} v_{1}^{T} \\ v_{2}^{T} \end{pmatrix} x$$

$$= x - (v_{1}, v_{2}) \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} v_{1}^{T}x \\ v_{2}^{T}x \end{pmatrix}$$

$$= x - (v_{1}, v_{2}) \begin{pmatrix} av_{1}^{T}x + bv_{2}^{T}x \\ cv_{2}^{T}x \end{pmatrix}$$

$$= x - v_{1}(av_{1}^{T}x + bv_{2}^{T}x) - v_{2}(cv_{2}^{T}x)$$

$$= x - av_{1}v_{1}^{T}x - bv_{1}v_{2}^{T}x - cv_{2}v_{2}^{T}x$$

2.5.2 Apply H larfb

Die Funktion larfb bekommt eine Dreiecksmatrix $V \in \mathbb{R}^{m \times k}$, eine Dreiecksmatrix $T \in \mathbb{R}^{k \times k}$ und eine Matrix $C \in \mathbb{R}^{m \times n}$ übergeben. Die Funktion wendet eine Block Reflector Matrix $H = C - VTV^T$ von rechts auf die Matrix C an. Mit einem weiteren Übergabeparameter kann angeben werden ob die Block Reflector Matrix noch transponiert werden soll. Die Funktion berechnet also

$$C \leftarrow HC = C - VTV^TC \quad \text{oder} \quad C \leftarrow H^TC = C - VT^TV^TC$$

Die Abbildung 2.3 zeigt die Partitionierung der Matrix A für die Funktion larfb.

Falls m>k werden die Matrizen V und C aufgeteilt in $V=\left(\frac{V_1}{V_2}\right)$ und $C=\left(\frac{C_1}{C_2}\right)$.

Dabei wird V genau so gewählt, dass $V_1 \in \mathbb{R}^{k \times k}$ der Dreiecksteil der Matrix und quadratisch ist und $V_2 \in \mathbb{R}^{m-k \times k}$ der Rest der Matrix. Die Matrix C wird in $C_1 \in \mathbb{R}^{k \times n}$ und $C_2 \in \mathbb{R}^{m-k \times n}$ aufgeteilt.

Die Aufteilung ist Notwendig da die BLAS-Funktion trmm (matrix-matrix product where one input matrix is triangular) nur für Quadratische Dreiecksmatrizen implementiert ist.

Im Fall m = k ist die Aufteilung nicht Notwendig da V quadratisch ist.

$$(C_1^T * V_1 * T * V_1^T)^T \\ V_1 * T^T * V_1^T * C_1$$

Dies führt zu dem Algorithmus 3

2.5.3 Iterativer Algorithmus

2.5.4 Rekursiver Algorithmus

е

Algorithmus 3 Block reflector anwenden

```
\begin{aligned} W &\leftarrow C_1^T \text{ (copy)} \\ W &\leftarrow W*V_1 \text{ (trmm)} \\ \text{if m > k then} \\ W &\leftarrow W + C_2^T*V_2 \text{ (gemm)} \\ \text{end if} \\ W &\leftarrow W*T^T \quad \text{or} \quad W*T \text{ (trmm)} \\ \text{if m > k then} \\ C_2 &\leftarrow C_2 - V_2*W^T \text{ (gemm)} \\ \text{end if} \\ W &\leftarrow W*V_1^T \text{ (trmm)} \\ C_1 &\leftarrow C_1 - W^T \end{aligned}
```


Abbildung 2.3: Partitionierung vom A für larfb

Algorithmus 4 Iterativer Algorithmus

```
for i = 0 : n do
    QR = A;
    if i + ib > n then
        Calc T: H=I-VTV'
        Apply H: A=H'A
    end if
end for
```

3 Implementierung und Benchmarks

Irgend was über die HPC Bibliothek

- 3.1 MKL Wraper
- 3.2 Benchmarks

A Quelltexte

In diesem Anhang sind einige wichtige Quelltexte aufgeführt.

```
#include < stdio.h >
int main(int argc, char ** argv) {
   printf("Hallo HPC \n");
   return 0;
}
```

Literaturverzeichnis

- [1] JOFFRAIN, Thierry; LOW, Tze M.; QUINTANA-ORTÍ, Enrique S.; GEIJN, Robert van d.; ZEE, Field G. V.: Accumulating Householder Transformations, Revisited. In: ACM Trans. Math. Softw. 32 (2006), Juni, Nr. 2, 169–179. http://dx.doi.org/10.1145/1141885.1141886. DOI 10.1145/1141885.1141886. ISSN 0098–3500
- [2] STEFAN A. FUNKEN, Karsten U.: *Einführung in die Numerische Lineare Algebra*. Ulm, Germany, 2016
- [3] TENNESSEE, Univ. of California B. o.; LTD.., NAG: LAPACK unblocked QR. http://www.netlib.org/lapack/explore-3.1.1-html/dgeqr2.f. html, 2006. [Online; zugegriffen 31-01-2018]

Name: Florian Krötz	Matrikelnummer: 884948	
Erklärung		
Ich erkläre, dass ich die Arbeit selbständig verfasst und gegebenen Quellen und Hilfsmittel verwendet habe.	keine anderen als die an-	
Ulm, den		
	Florian Krötz	