Artificial Intelligence

Review 4: Non-neural Classification Algorithms

인공지능학과 Department of Artificial Intelligence

정 우 환 (whjung@hanyang.ac.kr) Fall 2021

Non-neural classification algorithms

- K-nearest neighbor (k-NN) classifier
- Naïve Bayes classifiers
- Decision trees
- Support Vector Machine (SVM)

K-NN classifier

K-NN classifier

- K-nearest neighbor classifier (k-NN)
- A non-parametric classification method
- An intuition of KNN

K-NN classifier

Distance metrics

- ullet A distance function d is **metric** if the following three conditions are satisfied
 - Non-negativity: $d(x, y) \ge 0$
 - Identity: d(x, y) = 0 iff x = y
 - Symmetry: d(x, y) = d(y, x)
- **Example)** L_p distance $\left(\sum_{i=1}^n |x_i-y_i|^p\right)^{1/p}$

Lp-distances

$$\left(\sum_{i=1}^n \left|x_i-y_i\right|^p\right)^{1/p}$$

Manhattan Distance

Euclidean Distance

P=1

P=2

Different K could have different results

Simple, but works well

- Some disadvantages of KNN
 - Accuracy depends on the quality of the data
 - Computationally expensive
 - Sensitive to the scale of the data and irrelevant features

Modified from Prof. Debasis Samanta's slides

Bayesian Classifier

- Principle
 - If it walks like a duck, quacks like a duck, then it is probably a duck

Bayesian Classifier

- A statistical classifier
 - Performs probabilistic prediction, i.e., predicts class membership probabilities
 - Output $p(C_1), p(C_2) \dots p(C_k)$
- Foundation
 - Based on Bayes' Theorem.
- Assumptions
 - 1. The classes are mutually exclusive and exhaustive.
 - 2. The attributes are independent given the class.
- Called "Naïve" classifier because of these assumptions.
 - Empirically proven to be useful.
 - Scales very well.

Example: Bayesian Classification

- **Example 8.2:** Air Traffic Data
 - Let us consider a set observation recorde d in a database
 - Regarding the arrival of airplanes in the rout es from any airport to New Delhi under cert ain conditions.

Air-Traffic Data

Days	Season	Fog	Rain	Class
Weekday	Spring	None	None	On Time
Weekday	Winter	None	Slight	On Time
Weekday	Winter	None	None	On Time
Holiday	Winter	High	Slight	Late
Saturday	Summer	Normal	None	On Time
Weekday	Autumn	Normal	None	Very Late
Holiday	Summer	High	Slight	On Time
Sunday	Summer	Normal	None	On Time
Weekday	Winter	High	Heavy	Very Late
Weekday	Summer	None	Slight	On Time

Cond. to next slide...

Air-Traffic Data

Cond. from previous slide...

Days	Season	Fog	Rain	Class
Saturday	Spring	High	Heavy	Cancelled
Weekday	Summer	High	Slight	On Time
Weekday	Winter	Normal	None	Late
Weekday	Summer	High	None	On Time
Weekday	Winter	Normal	Heavy	Very Late
Saturday	Autumn	High	Slight	On Time
Weekday	Autumn	None	Heavy	On Time
Holiday	Spring	Normal	Slight	On Time
Weekday	Spring	Normal	None	On Time
Weekday	Spring	Normal	Heavy	On Time

Air-Traffic Data

• In this database, there are four attributes

$$A = [Day, Season, Fog, Rain]$$

with 20 tuples.

• The categories of classes are:

Given this is the knowledge of data and classes, we are to find most likely classification for any other unseen instance, for example:

Classification technique eventually to map this tuple into an accurate class.

Bayesian Classifier

- In many applications, the relationship between the attributes set and the class variable is non-deterministic.
 - In other words, a test cannot be classified to a class label with certainty.
 - In such a situation, the classification can be achieved probabilistically.
- The Bayesian classifier is an approach for modelling probabilistic relationships be tween the attribute set and the class variable.
- More precisely, Bayesian classifier use Bayes' Theorem of Probability for classificat ion.
- Before going to discuss the Bayesian classifier, we should have a quick look at the e Bayes' Theorem.

Bayes' Theorem

What you know?

P(E|F)

 $P(Test \ result | Disease)$

P(*Power*|*Fault*)

P(Weather|Delay)

What you want to know?

P(F|E)

P(Disease|Test result)

P(Fault|Power)

P(Delay|Weather)

Bayes Theorem

Want P(F|E), Know P(E|F)

For any events E and F where P(E)>0 and P(F)>0

Posterior
$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

Proof)
$$P(F|E) = \frac{P(EF)}{P(E)}$$
 Conditional probability
$$= \frac{P(E|F)P(F)}{P(E)}$$
 Chain rule

$$X = (x_1, x_2, ..., x_k)$$
 Naïve Bayesian Classifier $y \in \{C_1, C_2, ..., C_m\}$

- Classification is to derive the **maximum posteriori**, i.e., the maximal $P(C_i|X)$
- This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

Since P(X) is constant for all classes, only needs to be maximized

$$P(C_i|\mathbf{X}) \propto P(\mathbf{X}|C_i)P(C_i)$$

• Due to the independent assumption, $P(C_i|\mathbf{X}) \propto P(\mathbf{X}|C_i)P(C_i) = \left(\prod_{j=1}^k P\big(x_j\big|C_i\big)\right)P(C_i)$

- Given X

• Output
$$C_i$$
 which has the maximum $P(X|C_i)P(C_i) = \left(\prod_{j=1}^k P(x_j|C_i)\right)P(C_i)$

• Example) Week Day Winter High Heavy ???

P([WeekDay, Winter, High, Heavy]|On time)

 $= P(WeekDay|On\ time)P(Winter|On\ time)P(High|On\ time)P(On\ time)$

$$P(X|C_i)P(C_i) = \left(\prod_{j=1}^k P(x_j|C_i)\right)P(C_i)$$

Example: With reference to the Air Traffic Dataset mentioned earlier, let us tabulate all the posterior and prior probabilities as shown below.

			Clas	SS	
	Attribute	On Time	Late	Very Late	Cancelled
	Weekday	9/14 = 0.64	$\frac{1}{2} = 0.5$	3/3 = 1	0/1 = 0
Day	Saturday	2/14 = 0.14	$\frac{1}{2} = 0.5$	0/3 = 0	1/1 = 1
Dě	Sunday	1/14 = 0.07	0/2 = 0	0/3 = 0	0/1 = 0
	Holiday	2/14 = 0.14	0/2 = 0	0/3 = 0	0/1 = 0
	Spring	4/14 = 0.29	0/2 = 0	0/3 = 0	0/1 = 0
Season	Summer	6/14 = 0.43	0/2 = 0	0/3 = 0	0/1 = 0
Sea	Autumn	2/14 = 0.14	0/2 = 0	1/3= 0.33	0/1 = 0
a alvatics	Winter	2/14 = 0.14	2/2 = 1	2/3 = 0.67	0/1 = 0

$$P(X|C_i)P(C_i) = \left(\prod_{j=1}^k P(x_j|C_i)\right)P(C_i)$$

			Clas	SS	
	Attribute	On Time	Late	Very Late	Cancelled
	None	5/14 = 0.36	0/2 = 0	0/3 = 0	0/1 = 0
Fog	High	4/14 = 0.29	1/2 = 0.5	1/3 = 0.33	1/1 = 1
	Normal	5/14 = 0.36	1/2 = 0.5	2/3 = 0.67	0/1 = 0
	None	5/14 = 0.36	1/2 = 0.5	1/3 = 0.33	0/1 = 0
Rain	Slight	8/14 = 0.57	0/2 = 0	0/3 = 0	0/1 = 0
	Heavy	1/14 = 0.07	1/2 = 0.5	2/3 = 0.67	1/1 = 1
Pri	or Probability	14/20 = 0.7 0	2/20 = 0.10	3/20 = 0.1 5	1/20 = 0.05

$$P(X|C_i)P(C_i) = \left(\prod_{j=1}^k P(x_j|C_i)\right)P(C_i)$$

Instance:

Week Day Winter High Heavy ???	Week Day
--------------------------------	----------

Case1: Class = On Time : $0.70 \times 0.64 \times 0.14 \times 0.29 \times 0.07 = 0.0013$

Case2: Class = Late : $0.10 \times 0.50 \times 1.0 \times 0.50 \times 0.50 = 0.0125$

Case3: Class = Very Late : $0.15 \times 1.0 \times 0.67 \times 0.33 \times 0.67 = 0.0222$

Case4: Class = Cancelled : $0.05 \times 0.0 \times 0.0 \times 1.0 \times 1.0 = 0.0000$

Case3 is the strongest; Hence correct classification is Very Late

Pros and Cons

- The Naïve Bayes' approach is a very popular one, which often works well.
- However, it has a number of potential problems
 - It relies on all attributes being categorical.
 - If the data is less, then it estimates poorly.

•••

Approach to overcome the limitations in Naïve Bayesian Classification

- Estimating the posterior probabilities for continuous attributes
 - In real life situation, all attributes are not necessarily be categorical, In fact, there is a mix of both categorical and continuous attributes.
 - In the following, we discuss the schemes to deal with continuous attributes in Bay esian classifier.
 - 1. Discretize each continuous attribute and then replace the continuous values with its corresponding discrete intervals.

$$24.3^{\circ}\text{C} \rightarrow [20^{\circ}\text{C}, 25^{\circ}\text{C})$$

2. Assume a certain form of probability distribution for the continuous variable Gaussian distribution is widely used

$$P(x: \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where, μ and σ^2 denote mean and variance, respectively.

$$P(X|C_i)P(C_i) = \left(\prod_{j=1}^k P(x_j|C_i)\right)P(C_i)$$

• For each class C_i and attribute j,

$$P(x_j|C_i) = \frac{1}{\sqrt{2\pi}\sigma_{ij}}e^{-\frac{(x_j-\mu_{ij})^2}{2\sigma_{ij}^2}}$$

- μ_{ij} : Sample mean
- σ_{ij}^2 : Sample variance

Additive Smoothing

Naïve Bayes
$$P(X|C_i)P(C_i) = \left(\prod_{j=1}^k P(x_j|C_i)\right)P(C_i)$$

Approach to overcome the limitations in Naïve Bayesian Classification

$$P(x_j|C_i) = \frac{n_{c_i}}{n}$$

n = total number of instances from class C_i n_{c_i} = number of training examples from class C_i that take the value $x_{j} = a_{j}$

- If the training data size is too small..
 - $P(x_j|C_i) \rightarrow 0$ for some ij
- Additive smoothing

$$P(x_j|C_i) = \frac{n_{c_i} + \alpha}{n + m_j \alpha}$$

 m_i : # of possible values of attribute i