

App. No. 10/001,521
Amd. dated August 10, 2006
Reply to Final Office Action of February 10, 2006

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

5

Listing of Claims:

- 1 1. (Currently Amended): A method for conducting an exchange of data with a terminal-based application program comprising:
 - 2 (a) mapping a plurality of available states within a terminal data stream of the terminal-based application program to respective discrete state definitions within a finite state machine, including:
 - 3 (1) interpreting any element, terminal command, data item, or sequence of terminal commands and data items within the terminal data stream as a discrete state having a respective one of the state definitions, and
 - 4 (2) using an object model containing a set of interfaces, said interfaces being utilized as a basis for the state definitions;
 - 5 (b) prompting a user for rules criteria and expected outcomes of the respective state definitions;
 - 6 (c) aggregating the plurality of available states within the terminal data stream to eliminate redundant states, including:
 - 7 (1) accessing data in the plurality of available states;
 - 8 (2) unifying and resolving the data in the plurality of available states to eliminate the redundant states; and,
 - 9 (d) defining a plurality of state transition rules which are utilized to manipulate the state definitions within the finite state machine.
- 1 2. (Original): The method of claim 1, wherein the object model contains the set of interfaces and a set of classes.

Appl. No. 10/001,521
Amdt. dated August 10, 2006
Reply to Office action of June 2, 2005

- 1 3. (Original): The method of claim 1, wherein manipulation of the state transition
2 rules allows for two-way communication between a client and the terminal-based
3 application program.

- 1 4. (Original): The method of claim 1, further comprising creating one or more data
2 sets, each comprising a definable set of data elements from within the terminal-based
3 application program.

- 1 5. (Original): The method of claim 1, wherein the object model is a distributed
2 object transaction model, which allows for access to data from the terminal-based
3 application program by any local or remote client service, system, or application.

- 1 6. (Previously Presented): The method of claim 1 further comprising unifying and
2 resolving multiple terminal-based applications through unification and resolution of a
3 plurality of instances of a program that performs steps (a) and (d).

- 1 7. (Previously Presented): The method of claim 6, further comprising creating a
2 plurality of data sets, each data set being formed through a unification of multiple data
3 sets from the plurality of instances of the program that performs steps (a) and (d).

- 1 8. (Original): The method of claim 6, wherein each object model is a distributed
2 object transaction model which allows for access to data from the terminal-based
3 application program by any local or remote client service, system, or application.

- 1 9. (Previously Presented): The method of claim 6, further comprising using an
2 expert system which accesses and resolves data items from the plurality of instances of
3 the program that performs steps (a) and (d) and translates them into cohesive super sets of
4 data.

- 1 10. (Previously Presented): The method of claim 9, further comprising using the
2 object model for creating data resolution and translation rules.

Appl. No. 10/001,521
Amdt. dated August 10, 2006
Reply to Office action of June 2, 2005

- 1 11. (Previously Presented): The method of claim 9 further comprising using the
2 object model for definition of actions to proactively resolve data errors or discrepancies
3 across an underlying plurality of instances of the program that performs steps (a) and (d).
- 1 12. (Previously Presented): The method of claim 1, further comprising altering an
2 interface presented to a user of the terminal-based application program through addition
3 of one of a group consisting of new screens and new data fields within existing screens,
4 wherein the new screens and new data fields are populated with data retrieved from an
5 alternate data source.
- 1 13. (Original): The method of claim 12, further comprising monitoring the terminal
2 data stream.
- 1 14. (Original): The method of claim 13, further comprising:
2 recognizing pre-defined states within the terminal data stream, which define one
3 or more states during a user's interaction with the terminal-based application program;
4 and
5 presenting the new data screens or fields to the user.
- 1 15. (Previously Presented): The method of claim 12, wherein the object model
2 describes interaction between the alternate data source and a program that performs steps
3 (a) and (d).
- 1 16. (Original): The method of claim 12, wherein the object model describes:
2 the addition of new user screens or the addition of new data fields to existing
3 application screens, and
4 interaction between the user and the new screens or fields.

Appl. No. 10/001,521
Amdt. dated August 10, 2006
Reply to Office action of June 2, 2005

1 17. (Original): The method of claim 1 further comprising using software tools to
2 automate creation and maintenance of an integration system based on knowledge of a
3 domain of the terminal-based application program.

1 18. (Previously Presented): A system for conducting an exchange of data with a
2 terminal-based application program comprising:

3 a finite state machine, in which a plurality of available states within a terminal
4 data stream of the terminal-based application program are mapped to respective discrete
5 state definitions, including:

6 means for interpreting any element, terminal command, data item, or
7 sequence of terminal commands and data items within the terminal data stream as
8 a discrete state having a respective one of the state definitions;

9 means for using an object model containing a set of interfaces, said
10 interfaces being utilized as a basis for the state definitions;

11 means for prompting a user for rules criteria and expected outcomes of the
12 respective means for aggregating the plurality of available states within the
13 terminal data stream to eliminate redundant states;

14 and

15 means for defining a plurality of state transition rules which are utilized to
16 manipulate the state definitions within the finite state machine.

1 19. (Original): The system of claim 18, wherein the object model contains the set of
2 interfaces and a set of classes.

1 20. (Canceled)

1 21. (Canceled)

1 22. (Canceled)

Appl. No. 10/001,521
Arndt, dated August 10, 2006
Reply to Office action of June 2, 2005

- 1 23. (Original): The system of claim 18 wherein multiple terminal-based applications
- 2 are unified and resolved through unification and resolution of a plurality of instances of
- 3 the finite state machine.

- 1 24. (Original): The system of claim 23, further comprising a plurality of data sets,
- 2 each data set being formed through a unification of multiple data sets from the plurality
- 3 of instances of the finite state machine.

- 1 25. (Original): The system of claim 23, wherein each object model is a distributed
- 2 object transaction model which allows for access to data from the terminal-based
- 3 application program by any local or remote client service, system, or application.

- 1 26. (Original): The system of claim 23, further comprising an expert system which
- 2 accesses and resolves data items from the plurality of instances of the finite state machine
- 3 and translates them into cohesive super sets of data.

- 1 27. (Previously Presented): The system of claim 26, wherein the object model is used
- 2 for creating data resolution and translation rules.

- 1 28. (Previously Presented): The system of claim 26 wherein the object model is used
- 2 for definition of actions to proactively resolve data errors or discrepancies across an
- 3 underlying plurality of instances of the finite state machine.

- 1 29. (Previously Presented): The system of claim 18, further comprising an interface
- 2 presented to a user of the terminal-based application program, the interface formed
- 3 through addition of one of a group consisting of new screens and new data fields within
- 4 existing screens, wherein the new screens and new data fields are populated with data
- 5 retrieved from an alternate data source.

Appl. No. 10/001,521
Amdt. dated August 10, 2006
Reply to Office action of June 2, 2005

1 30. (Original): The system of claim 29, further comprising means for monitoring the
2 terminal data stream.

1 31. (Original): The system of claim 30, wherein:
2 pre-defined states are recognized within the terminal data stream, which define
3 one or more states during a user's interaction with the terminal-based application
4 program; and
5 the new data screens or fields are presented to the user.

1 32. (Original): The system of claim 29, wherein the object model describes
2 interaction between the alternate data source and the finite state machine.

1 33. (Original): The system of claim 29, wherein the object model describes:
2 the addition of new user screens or the addition of new data fields to existing
3 application screens, and
4 interaction between the user and the new screens or fields.

1 34. (Original): The system of claim 18 further comprising software tools that
2 automate creation and maintenance of an integration system based on knowledge of a
3 domain of the terminal-based application program.

1 35. (Previously Presented): The system of claim 18, further comprising a tool which
2 automates capture of a terminal data stream and the creation of state definitions for a
3 particular terminal-based application.

1 36. (Original): The system of claim 35, wherein the tool allows the user to define the
2 data sets which will be made available.

Appl. No. 10/001,521
Amdt. dated August 10, 2006
Reply to Office action of June 2, 2005

- 1 37. (Original): The system of claim 36, wherein the tool allows the user to define
2 state transition rules to access and manipulate the data sets, to read and write data
3 elements, using a point-and-click flowchart-style interface.
- 1 38. (Original): The system of claim 35, further comprising software tools which
2 automate creation and maintenance of a unification and resolution system based on a
3 knowledge of underlying integration systems being unified.
- 1 39. (Original): The system of claim 35, wherein the tool allows the user to define the
2 data super-sets which will be made available by the system.
- 1 40. (Original): The system of claim 35, wherein the tool allows the user to create and
2 define data unification and resolution rules.
- 1 41. (Previously Presented): The system of claim 35, wherein the tool allows the user
2 to define rules to manage data errors and discrepancies in the terminal data stream.
- 1 42. (Previously Presented): A computer readable medium encoded with computer
2 program code, wherein when the computer program code is executed by a processor, the
3 processor performs a method for conducting an exchange of data with a terminal-based
4 application program comprising:
 - 5 (a) mapping a plurality of available states within a terminal data stream of the
6 terminal-based application program to respective discrete state definitions within a finite
7 state machine, including:
 - 8 (1) interpreting any element, terminal command, data item, or sequence of
9 terminal commands and data items within the terminal data stream as a discrete
10 state having a respective one of the state definitions, and
 - 11 (2) using an object model containing a set of interfaces, said interfaces being
12 utilized as the basis for the state definitions;

Appl. No. 10/001,521
Amdt. dated August 10, 2006
Reply to Office action of June 2, 2005

13 (b) prompting a user for rules criteria and expected outcomes of the respective state
14 definitions;
15 (c) aggregating the plurality of available states within the terminal data stream to
16 eliminate redundant states; and,
17 (d) defining a plurality of state transition rules which are utilized to manipulate the
18 state definitions within the finite state machine.

1 43. (Previously Presented): The computer readable medium of claim 41, wherein the
2 method further comprises unifying and resolving multiple terminal-based applications
3 through unification and resolution of a plurality of instances of a program that performs
4 steps (a) and (d).

1 44. (Previously Presented): The computer readable medium of claim 41, wherein the
2 method further comprises using software tools to automate creation and maintenance of
3 an integration system based on knowledge of a domain of the terminal-based application
4 program.

1 45. (Previously Presented) A method of defining and configuring the exchange of
2 data with a terminal-based application, comprising:
3 (a) accessing a targeted legacy application on at least one legacy application server;
4 (b) evaluating operated information and defined rules on the targeted legacy
5 application;
6 (c) modeling the targeted legacy application with a legacy application profile, screen,
7 and data stream definitions;
8 (d) providing automated and dynamically directed execution and runtime processing
9 environment operating concurrently and coordinated across the at least one legacy
10 application server;
11 (e) providing processed legacy information objects using the objectification
12 definitions in customizable formats and structures for access by multiple requesting
13 applications.

Express Mail Label No. EL554221321US

R0090-00001

1 46. (New) The method of claim 14, wherein the unifying and resolving of the data in
2 the plurality of available states to eliminate the redundant states further comprises:
3 synchronizing the data in the plurality of available states; and
4 correcting spelling errors or data entry errors in the data in the plurality of
5 available states.