

Demo Z-Analysis

C. Campagnari, A. George, F. Golf, J. Gran, D. Kovalskyi, V. Krutelyov, R. Magana-Villalba (UCSB)

G. Cerati, D. Evans, **R. Kelley**, I. MacNeill, D. Olivito, S. Padhi, M. Rosaria, Y. Tu, C. Wilke, F. Würthwein, A. Yagil, J. Yoo (UCSD)

L. Bauerdick, K. Burkett, I. Fisk, Y. Gao, O. Gutsche, B. Hooberman, S. Jindariani, J. Linacre, V. Martinez
Outschoorn (FNAL)

March 6, 2014

Intro

- This is a simple MC level study to touch some of the aspects of CMSSW
- Look at Z → II events
 - I refers to either e or μ , τ 's are excluded
- The tasks were:
 - Using an EDProducer, create a simple tree containing relevant information on the z-boson and its decay products
 - Using an EDFilter, remove $Z \rightarrow \tau \tau$ events
 - Using an EDAnalyzer, book and fill relevant histograms
 - Using ROOT code, create formatted plots and overlays
 - Write a short set of slides to summarize

Quick Study

- I'd like to see the following plots at least:
 - mass of the Z
 - Compare the dilepton invariant mass at gen level and recolevel
 - for ee, μμ and both together
 - Compare p_{τ} and η of the leptons (gen and reco level)
 - Resolution of the Z mass vs Z mass
 - Resolution of the lepton p_T vs p_T (e and μ separately)
 - Efficiency of reconstructing the lepton vs p_T (e and μ separately)

Setup

- MC dataset on the uaf
 - /nfs-7/userdata/edm/53X/DYJetsToLL_M-50_TuneZ2Star_8TeV-madgraph-tarball_AODSIM_PU_S10_START53_V7A-v1.root
- Use CMSSW_5_2_3_patch4
- Created Simple TTree with
 - Generated Z boson p4
 - $Z \rightarrow$ ee and $\mu\mu$ only
 - Generated Z boson's daughter leptons (I1 and I2, sorted by p_T)
 - p4, charge, pdg ID, reco match boolean
 - Daughter's matched reco object
 - Simple ΔR matching \rightarrow found the reco e/ μ with smallest ΔR (reco lep, gen lep).
 - ΔR < 0.2 (same as CMS2)
 - p4, charge, ∆R

Lepton η Acceptance

- Generator Leptons may not fall within detector acceptance
 - lose \sim 25 % at $|\eta| > 2.5$

Lepton p_T Acceptance

- Can reconstruct down to ~300 MeV
- ~100 % acceptance

Matched Reco

60 70

p_ (GeV)

- leptons are ΔR matched to gen level
- slight bias towards higher p_T for leptons

Lepton p_T Acceptance

• To be fair, require |n| < 2.5

$$\epsilon = \frac{\Delta R \text{ matched generator lepton } p_T \text{ with } |\eta| < 2.4}{\text{generator lepton } p_T \text{ with } |\eta| < 2.4}$$

electron efficiency vs p₊

muon efficiency vs p_T

Lepton Resolution

- Fit the 2D residual vs p_T and plot the sigma of the fit in each p_T "slice"
- $\lesssim 2(1)$ GeV electron(muon) resolution after $p_T \gtrsim 20$ GeV
- Stats too low at lower pT \rightarrow need a better sample to measure low p_T resolution

$$residual = True - Measured$$

Invariant Mass

Normalized to unit area

$$m_Z^2 = p_Z^2 = (p_{\ell_1} + p_{\ell_2})^2$$
 Dilepton Invariant Mass

Dimuon Invariant Mass

Dielectron Invariant Mass

Invariant Mass Resolution

- Fit the 2D residual vs p_T and plot the sigma of the fit in each p_T "slice"
- Poor stats and mass far from 91 GeV
- near 90 GeV, see about 2 -3 GeV resolution

Invariant Mass Resolution

