Attribute Information:

- Income --> customer's yearly household income
- Kidhome --> number of small children in customer's househokl
- Teenhome --> number of teenagers in customer's household
- Recency --> number of days since the last purchase
- MntWines --> amount spent on wines in the last 2 years
- MntFruits --> amount spent on fruits in the last 2 years
- MntMeatProducts --> amount spent on meat products in the last 2 years
- MntFishProducts --> amount spent on fish products in the last 2 years
- MntSweatProducts --> amount spent on sweat products in the last 2 years
- MntGoldProds --> amount spent on gold products in the last 2 years
- NumDealsPruchases --> number of purchases made with discount
- NumWebPurchases --> number of purchases made through company's web site
- NumCatalogPurchases --> number of purchases made using catalogue
- NumStorePurchases --> number of purchases made directly in stores
- NumWebVsitsMonth --> number of visits to company's web site in the last month
- AcceptedCm3 --> 1 if customer accepted the offer in the 3nd campaign, 0 otherwise
- AcceptedCm4--> 1 if customer accepted the offer in the 5th campaign, 0 otherwise
- AcceptedCm5--> 1 if customer accepted the offer in the 3nd campaign, 0 otherwise
- AcceptedCm1 --> 1 if customer accepted the offer in the 1st campaign, 0 otherwise
- AcceptedCm2 --> 1 if customer accepted the offer in the 2nd campaign, 0 otherwise
- Complain --> 1 if customer complained in the last 2 years
- Z CostContact
- Z Revenue
- Response(target) --> 1 if costumer accepted the offer in the last campaign, 0 otherwise
- Age
- Customer Days
- marital Divorced
- marital Married
- marital Single
- marital_Together
- marital Widow
- education 2n Cycle
- education Basic
- education Graduation
- education_Master
- education PhD
- MntTotal
- MntRegularProds
- AcceptedCmpOverall

Import Libraries

In [2]:

```
# Import necessary libraries for data analysis and visualization
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Read data

In [3]:

```
# Read in data from a CSV file and store it in a pandas DataFrame
data = pd.read_csv(r"C:\Users\Anups\Desktop\python project\marketing_data.csv")
```

In [4]:

```
# Retrieve the column names of the pandas DataFrame
data.columns
```

Out[4]:

In [5]:

Display the first 5 rows of the pandas DataFrame to preview the data
data.head()

Out[5]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishProdu
0	58138.0	0	0	58	635	88	546	
1	46344.0	1	1	38	11	1	6	
2	71613.0	0	0	26	426	49	127	
3	26646.0	1	0	26	11	4	20	
4	58293.0	1	0	94	173	43	118	

5 rows × 39 columns

Display the last 5 rows of the pandas DataFrame to preview the data
data.tail()

Out[6]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
2200	61223.0	0	1	46	709	43	182	
2201	64014.0	2	1	56	406	0	30	
2202	56981.0	0	0	91	908	48	217	
2203	69245.0	0	1	8	428	30	214	
2204	52869.0	1	1	40	84	3	61	

5 rows × 39 columns

some information about data data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2205 entries, 0 to 2204
Data columns (total 39 columns):

#	Column (total 39 col	Non-Null Count	
0	Income	2205 non-null	float64
1	Kidhome	2205 non-null	int64
2	Teenhome	2205 non-null	int64
3	Recency	2205 non-null	int64
4	MntWines	2205 non-null	int64
5	MntFruits	2205 non-null	int64
6	MntMeatProducts	2205 non-null	int64
7	MntFishProducts	2205 non-null	int64
8	MntSweetProducts	2205 non-null	int64
9	MntGoldProds	2205 non-null	int64
10	NumDealsPurchases	2205 non-null	int64
11	NumWebPurchases	2205 non-null	int64
12	NumCatalogPurchases	2205 non-null	int64
13	NumStorePurchases	2205 non-null	int64
14	NumWebVisitsMonth	2205 non-null	int64
15	AcceptedCmp3	2205 non-null	int64
16	AcceptedCmp4	2205 non-null	int64
17	AcceptedCmp5	2205 non-null	int64
18	AcceptedCmp1	2205 non-null	int64
19	AcceptedCmp2	2205 non-null	int64
20	Complain	2205 non-null	int64
21	<pre>Z_CostContact</pre>	2205 non-null	int64
22	Z_Revenue	2205 non-null	int64
23	Response	2205 non-null	int64
24	Age	2205 non-null	int64
25	Customer_Days	2205 non-null	int64
26	marital_Divorced	2205 non-null	int64
27	marital_Married	2205 non-null	int64
28	marital_Single	2205 non-null	int64
29	marital_Together	2205 non-null	int64
30	marital_Widow	2205 non-null	int64
31	education_2n Cycle	2205 non-null	int64
32	education_Basic	2205 non-null	int64
33	education_Graduation	2205 non-null	int64
34	education_Master	2205 non-null	int64
35	education_PhD	2205 non-null	int64
36	MntTotal	2205 non-null	int64
37	MntRegularProds	2205 non-null	int64
38	AcceptedCmpOverall	2205 non-null	int64
4+	£1+C4/1\ :-+C4/	201	

dtypes: float64(1), int64(38)

memory usage: 672.0 KB

In [8]:

some statistical information about data
data.describe()

Out[8]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeat
count	2205.000000	2205.000000	2205.000000	2205.000000	2205.000000	2205.000000	220
mean	51622.094785	0.442177	0.506576	49.009070	306.164626	26.403175	16
std	20713.063826	0.537132	0.544380	28.932111	337.493839	39.784484	21
min	1730.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	35196.000000	0.000000	0.000000	24.000000	24.000000	2.000000	1
50%	51287.000000	0.000000	0.000000	49.000000	178.000000	8.000000	6
75%	68281.000000	1.000000	1.000000	74.000000	507.000000	33.000000	23
max	113734.000000	2.000000	2.000000	99.000000	1493.000000	199.000000	172

8 rows × 39 columns

In [9]:

```
# Create a box plot of the "Income" column using seaborn
sns.boxplot(x=data["Income"])
```

Out[9]:

<Axes: xlabel='Income'>

In [10]:

```
# Calculate the third and first quartiles of the "Income" column using numpy
q3, q1 = np.percentile(data['Income'], [75, 25])
```

In [11]:

```
# 75% from data
q3
```

Out[11]:

68281.0

In [12]:

```
# 25% from data
q1
```

Out[12]:

35196.0

```
In [13]:
```

```
# Calculate the interquartile range (IQR) of the "Income" column
iqr = q3 - q1
iqr
Out[13]:
33085.0
first range from 1730 to 35196
second range from 35196 to 68281
third range from 68281 to 113734
In [14]:
# Create a numpy array of the values in the "Income" column of the pandas DataFrame
Income array = data['Income'].values
In [15]:
# display the array
Income_array
Out[15]:
array([58138., 46344., 71613., ..., 56981., 69245., 52869.])
In [16]:
counter low = 0
for i_low in Income_array:
    if (i_low >=1730) & (i_low < 35196):</pre>
        counter_low +=1
    else:
        continue
```

In [17]:

```
# number of customers whose income is low (between 1730 and 35196)
counter_low
```

Out[17]:

551

```
In [18]:
```

```
# Count the number of values in the "Income" column that fall within a certain range from
35196 and 68280
counter_average = 0
for i_average in Income_array:
    if (i_average >= 35196) & (i_average < 68281):
        counter_average +=1
    else:
        continue</pre>
```

In [19]:

```
# number of customers whose income is average (between 35196 and 68281)
counter_average
```

Out[19]:

1102

In [20]:

```
# Count the number of values in the "Income" column that fall within a certain range from
68281 and 113734
counter_high = 0
for i_high in Income_array:
    if (i_high >= 68281) & (i_high <= 113734):
        counter_high +=1
    else:
        continue</pre>
```

In [21]:

```
# number of customers whose income is high (between 68281 and 113734)
counter_high
```

Out[21]:

552

Plot for customers income

In [22]:

```
# Create a bar chart of customers' income levels
customers_Income = [551, 1102, 552]
# Define the values to be plotted
labels = ["Low Income", "Average Income", "High Income"]
# Define the x-axis labels
plt.xticks(range(len(customers_Income)), labels)
# Set the x-tick labels
plt.xlabel('labels')
# Set the x-axis label
plt.ylabel('values')
# Set the y-axis label
plt.title('Customers Income')
# Set the title of the plot
plt.bar(range(len(customers_Income)), customers_Income, color="#FF6969")
```

Out[22]:

<BarContainer object of 3 artists>

In [23]:

Create a new column in the pandas DataFrame based on a condition
The condition checks whether the value in the "Income" column is between 1730 and 35196
(indicating a low income customer), and if so, assigns the value from the "Kidhome" column
to the new column. If the value in the "Income" column does not meet the condition, the ne
w column is assigned a value of 3.
data['kids for low income customer'] = np.where((data['Income'] >= 1730) & (data['Income']
< 35196) , data['Kidhome'] , 3)</pre>

In [24]:

Create a numpy array of the values in a column of the pandas DataFrame
array1 = data['kids for low income customer'].values

In [25]:

dataframe for customers whose income is low and don't have kids
df_low_zero = (data['kids for low income customer'] == 0)
data[df_low_zero]

Out[25]:

	Income	Kidhome	leenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
10	7500.0	0	0	59	6	16	11	
13	17323.0	0	0	38	3	14	17	
24	18589.0	0	0	89	6	4	25	
28	10979.0	0	0	34	8	4	10	
40	21994.0	0	1	4	9	0	6	
2159	27469.0	0	0	2	9	1	2	
2171	18929.0	0	0	15	32	0	8	
2175	14918.0	0	1	52	3	3	3	
2181	5305.0	0	1	12	12	4	7	
2198	26816.0	0	0	50	5	1	6	

134 rows × 40 columns

In [26]:

groups the pandas DataFrame object named "data" by the "kids for low income customer" co lumn, and calculates the sum of the "AcceptedCmp1" through "AcceptedCmp5" columns for each group. The resulting output is a new pandas DataFrame named "totalkidsAcceptedCmp". totalkidsAcceptedCmp = data.groupby("kids for low income customer")[['AcceptedCmp1', 'AcceptedCmp2', 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5']].sum()

Number of customers who accept the offer in each campaign and their income is low

In [27]:

Display the pandas DataFrame showing the total accepted campaigns for each group of low income customers
totalkidsAcceptedCmp

Out[27]:

	AcceptedCmp1	AcceptedCmp2	AcceptedCmp3	AcceptedCmp4	AcceptedCmp5
kids for low income customer					
0	0	0	6	0	0
1	0	0	37	1	0
2	0	0	0	0	0
3	142	30	120	163	161

How many customers with low income who don\'t have kids and accepted the offer in each campaign?

The number of low-income customers who don't have kids and accepted the offer in the first campaign is zero

The number of low-income customers who don't have kids and accepted the offer in the second campaign is zero

The number of low-income customers who don't have kids and accepted the offer in the third campaign is 6

The number of low-income customers who don't have kids and accepted the offer in the fourth campaign is zero

The number of low-income customers who don't have kids and accepted the offer in the Fifth campaign is zero

In [28]:

```
# Create a bar chart showing the number of low income customers who accepted each campaign
low_income_customers_campaigns = [0, 0, 6, 0, 0]
# Define the values to be plotted
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Define the x-axis labels
plt.xticks(range(len(low_income_customers_campaigns)), labels)
# Set the x-tick labels
plt.xlabel('labels')
# Set the y-axis label
plt.ylabel('values')
# Set the title of the plot
plt.title('How many customers with low income who don\'t have kids and accepted the offer
in each campaign ?')
# Plot the bar chart
plt.bar(range(len(low_income_customers_campaigns)), low_income_customers_campaigns, color
="#FF6969")
```

Out[28]:

<BarContainer object of 5 artists>

How many customers with low income who don't have kids and accepted the offer in each campaign?

In [29]:

```
# checks whether the value in the "kids for low income customer" column of the pandas Data
Frame named "data" is equal to 1. The code then filters the DataFrame to show only the row
s where the condition is true
df_low_one = (data['kids for low income customer'] == 1)
data[df_low_one]
```

Out[29]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro	
3	26646.0	1	0	26	11	4	20		
7	33454.0	1	0	32	76	10	56		
8	30351.0	1	0	19	14	0	24		
9	5648.0	1	1	68	28	0	6		
18	33812.0	1	0	86	4	17	19		
2185	22775.0	1	0	40	5	1	8		
2189	7500.0	1	0	7	2	8	11		
2190	33562.0	1	2	33	21	12	12		
2196	11012.0	1	0	82	24	3	26		
2199	34421.0	1	0	81	3	3	7		
398 rows × 40 columns									

How many customers with low income who have one kid and accepted the offer in each campaign?

The number of low-income customers who have one kid and accepted the offer in the first campaign is zero. The number of low-income customers who have one kid and accepted the offer in the second campaign is zero. The number of low-income customers who have one kid and accepted the offer in the third campaign is 37. The number of low-income customers who have one kid and accepted the offer in the fourth campaign is 1. The number of low-income customers who have one kid and accepted the offer in the fifth campaign is zero.

In [30]:

```
# Create a bar chart showing the number of low income customers with one kid who accepted
each campaign offer
low_income_customers_campaigns_one_kid = [0, 0, 37, 1, 0]
# Define the values to be plotted
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Define the x-axis labels
plt.xticks(range(len(low_income_customers_campaigns_one_kid)), labels)
# Set the x-axis label
plt.xlabel('labels')
# Set the y-axis label
plt.ylabel('values')
# Set the title of the plot
plt.title('How many customers with low income who have one kid and accepted the offer in e
ach campaign ?')
# Plot the bar chart
plt.bar(range(len(low_income_customers_campaigns_one_kid)), low_income_customers_campaigns
_one_kid, color="#FF6969")
```

Out[30]:

<BarContainer object of 5 artists>

How many customers with low income who have one kid and accepted the offer in each campaign?

In [31]:

Checks whether the value in the "kids for low income customer" column of the pandas Data
Frame named "data" is equal to 2. The code then filters the DataFrame to show only the row
s where the condition is true
df_low_two = (data['kids for low income customer'] == 2)
data[df_low_two]

Out[31]:

19 rows × 40 columns

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
442	10510.0	2	0	63	9	0	7	
	19510.0							
126	33762.0	2	1	61	53	1	34	
149	30523.0	2	1	0	5	0	3	
279	16626.0	2	0	76	8	3	22	
297	22574.0	2	1	28	25	0	8	
345	28442.0	2	0	53	19	3	10	
363	33581.0	2	0	38	11	0	5	
590	26150.0	2	1	61	5	1	13	
596	22574.0	2	1	28	25	0	8	
656	26751.0	2	0	26	1	1	5	
829	15072.0	2	0	96	8	2	15	
847	19485.0	2	0	80	6	0	4	
1395	34578.0	2	1	1	7	0	1	
1533	27215.0	2	1	50	30	5	22	
1555	34633.0	2	1	31	8	1	5	
1635	34916.0	2	0	89	51	23	82	
1907	29543.0	2	0	47	17	3	18	
2097	33590.0	2	1	65	4	0	2	
2195	24434.0	2	0	9	3	2	8	

How many customers with low income who have two kids and accepted the offer in each campaign?

The number of low-income customers who have two kids and accepted the offer in the first campaign is zero. The number of low-income customers who have two kids and accepted the offer in the second campaign is zero. The number of low-income customers who have two kids and accepted the offer in the third campaign is zero. The number of low-income customers who have two kids and accepted the offer in the fourth campaign is zero. The number of low-income customers who have two kids and accepted the offer in the fifth campaign is zero.

In [32]:

```
# Create a bar chart showing the number of low income customers with two kids who accepted
each campaign offe
low income customers campaigns two kids = [0, 0, 0, 0, 0]
# Define the values to be plotted
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the x-tick labels
plt.xticks(range(len(low income customers campaigns two kids)), labels)
# Set the x-axis label
plt.xlabel('labels')
# Set the y-axis label
plt.ylabel('values')
# Set the title of the plot
plt.title('How many customers with low income who have two kids and accepted the offer in
each campaign ?')
# Plot the bar chart
plt.bar(range(len(low_income_customers_campaigns_two_kids)), low_income_customers_campaign
s two kids, color="#FF6969")
```

Out[32]:

<BarContainer object of 5 artists>

How many customers with low income who have two kids and accepted the offer in each campaign?

In [33]:

```
# Count the number of low income customers with zero kids
low_ZeroKids = 0
for count_low0 in array1:
    if count_low0 == 0:
        low_ZeroKids+=1
    else:
        continue
```

In [34]:

```
# display number of customer's low income with 0 kids
print(low_ZeroKids)
```

134

In [35]:

```
# Count the number of low income customers with one kid
low_oneKid = 0
for count_low1 in array1:
    if count_low1 == 1:
        low_oneKid+=1
    else:
        continue
```

In [36]:

```
# display number of customer's low income with 1 kids
print(low_oneKid)
```

398

In [37]:

```
# Count the number of low income customers with two kids
low_twoKids = 0
for count_low2 in array1:
    if count_low2 == 2:
        low_twoKids+=1
    else:
        continue
```

In [38]:

```
# display number of customer's low income with 2 kids
print(low_twoKids)
```

```
In [39]:
```

data.shape

Out[39]:

(2205, 40)

Number of kids for each customer based on their low income

24% from Customers whose income is low do not have kids in their home

72% from Customers whose income is low have one kid in their home

3% from Customers whose income is low have two kids in their home

In [40]:

Out[40]:

<matplotlib.legend.Legend at 0x780006c390f0>

In [41]:

checks whether the value in the "Income" column is greater than or equal to 35196 and le
ss than 68281. If the condition is true, the value in the "Kidhome" column is used for the
new column. Otherwise, the value 3 is used for the new column.
data['kids for average income customer'] = np.where((data['Income'] >= 35196) & (data['Inc
ome'] < 68281) , data['Kidhome'] , 3)</pre>

In [42]:

Convert a pandas DataFrame column to a numpy array
array2 = data['kids for average income customer'].values

In [43]:

checks whether the value in the "kids for average income customer" column of the pandas
DataFrame named "data" is equal to 0.
df_average_zero = (data['kids for average income customer'] == 0)
data[df_average_zero]

Out[43]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
0	58138.0	0	0	58	635	88	546	
5	62513.0	0	1	16	520	42	98	
6	55635.0	0	1	34	235	65	164	
11	63033.0	0	0	82	194	61	480	
16	37760.0	0	0	20	84	5	38	
2191	57642.0	0	1	24	580	6	58	
2194	57967.0	0	1	39	229	7	137	
2197	44802.0	0	0	71	853	10	143	
2200	61223.0	0	1	46	709	43	182	
2202	56981.0	0	0	91	908	48	217	

630 rows × 41 columns

In [44]:

groups the pandas DataFrame object named "data" by the "kids for average income custome r" column, and calculates the sum of the "AcceptedCmp1" through "AcceptedCmp5" columns for each group. The resulting output is a new pandas DataFrame named "averageIncome_totalKidsA cceptedCmp"

averageIncome_totalKidsAcceptedCmp = data.groupby("kids for average income customer")[['AcceptedCmp1', 'AcceptedCmp2', 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5']].sum()

Number of customers who accept the offer in each campaign and their income is average based on number of kids

In [45]:

Display a pandas DataFrame object showing the total number of accepted campaigns for each category of a categorical variable averageIncome_totalKidsAcceptedCmp

Out[45]:

	AcceptedCmp1	AcceptedCmp2	AcceptedCmp3	AcceptedCmp4	AcceptedCmp5
kids for average income customer					
0	17	12	41	72	9
1	2	2	35	14	0
2	2	0	1	0	0
3	121	16	86	78	152

How many customers with average income who don't have kids and accepted the offer in each campaign?

The number of average-income customers who don't have kids and accepted the offer in the first campaign is 17

The number of average-income customers who don't have kids and accepted the offer in the second campaign is 12

The number of average-income customers who don't have kids and accepted the offer in the third campaign is 41

The number of average-income customers who don't have kids and accepted the offer in the fourth campaign is 72

The number of average-income customers who don't have kids and accepted the offer in the fifth campaign is 9

In [46]:

```
# Create a bar chart showing the number of average income customers with no kids who accep
ted each campaign offe
average_income_customers_campaigns_zero_kid = [17, 12, 42, 72, 9]
# Define the x-axis labels
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the x-tick labels
plt.xticks(range(len(average_income_customers_campaigns_zero_kid)), labels)
# Set the x-axis label
plt.xlabel('labels')
# Set the y-axis label
plt.ylabel('values')
# Set the title of the plot
plt.title('How many customers with average income who don\'t have kids and accepted the of
fer in each campaign ?')
# Plot the bar chart
plt.bar(range(len(average_income_customers_campaigns_zero_kid)), average_income_customers_
campaigns zero kid, color="#FF6969")
```

Out[46]:

<BarContainer object of 5 artists>

How many customers with average income who don't have kids and accepted the offer in each campaign?

In [47]:

```
# checks whether the value in the "kids for average income customer" column of the pandas
DataFrame named "data" is equal to 1.
df_average_one = (data['kids for average income customer'] == 1)
data[df_average_one]
```

Out[47]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro		
1	46344.0	1	1	38	11	1	6			
4	58293.0	1	0	94	173	43	118			
12	59354.0	1	1	53	233	2	53			
15	41850.0	1	1	51	53	5	19			
25	53359.0	1	1	4	173	4	30			
2182	36807.0	1	1	88	4	2	5			
2186	40101.0	1	0	73	171	3	129			
2192	58554.0	1	1	55	368	24	68			
2193	63777.0	1	1	87	457	5	106			
2204	52869.0	1	1	40	84	3	61			
446 rows × 41 columns										
4										

How many customers with average income who have one kid and accepted the offer in each campaign?

The number of average-income customers who have one kid and accepted the offer in the first campaign is 2

The number of average-income customers who have one kid and accepted the offer in the second campaign is 2

The number of average-income customers who have one kid and accepted the offer in the third campaign is 35

The number of average-income customers who have one kid and accepted the offer in the fourth campaign is 14

The number of average-income customers who have one kid and accepted the offer in the fifth campaign is zero

In [48]:

```
# Create a bar chart showing the number of average income customers with one kid who accep
ted each campaign offer
average_income_customers_campaigns_one_kid = [2, 2, 35, 14, 0]
# Define the values to be plotted
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the x-tick labels
plt.xticks(range(len(average_income_customers_campaigns_one_kid)), labels)
# Set the x-axis label
plt.xlabel('labels')
# Set the y-axis label
plt.ylabel('values')
# Set the title of the plot
plt.title('How many customers with average income who have one kid and accepted the offer
in each campaign ?')
# Plot the bar chart
plt.bar(range(len(average_income_customers_campaigns_one_kid)), average_income_customers_c
ampaigns one kid, color="#FF6969")
```

Out[48]:

<BarContainer object of 5 artists>

How many customers with average income who have one kid and accepted the offer in each campaign?

In [49]:

checks whether the value in the "kids for average income customer" column of the pandas
DataFrame named "data" is equal to 2
df_average_two = (data['kids for average income customer'] == 2)
data[df_average_two]

Out[49]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
137	35688.0	2	1	94	73	3	90	
153	43482.0	2	1	83	18	1	32	
160	50447.0	2	0	4	85	7	24	
166	38285.0	2	1	96	2	0	5	
203	52195.0	2	1	2	12	0	4	
245	40737.0	2	1	24	11	0	4	
312	54432.0	2	1	37	33	0	5	
366	35688.0	2	1	94	73	3	90	
599	35791.0	2	1	94	27	0	5	
617	46102.0	2	1	3	14	0	1	
708	56962.0	2	1	60	292	3	77	
837	55357.0	2	0	66	374	64	116	
862	36627.0	2	0	78	9	1	5	
866	46231.0	2	1	87	189	2	55	
933	42767.0	2	0	53	20	6	43	
951	40706.0	2	1	37	59	0	11	
957	56962.0	2	1	60	292	3	77	
1107	46931.0	2	1	94	41	0	17	
1221	59062.0	2	1	74	46	1	12	
1302	37774.0	2	0	28	173	8	107	
1351	35791.0	2	1	94	27	0	5	
1393	36026.0	2	1	34	20	4	10	
1462	64014.0	2	1	56	406	0	30	
1551	45203.0	2	0	4	35	3	67	
1830	58217.0	2	1	84	68	1	13	
2201	64014.0	2	1	56	406	0	30	

26 rows × 41 columns

How many customers with average income who have two kids and accepted the offer in each campaign?

The number of average-income customers who have two kids and accepted the offer in the first campaign is 2

The number of average-income customers who have two kids and accepted the offer in the second campaign is zero

The number of average-income customers who have two kids and accepted the offer in the third campaign is 1

The number of average-income customers who have two kids and accepted the offer in the fourth campaign is zero

The number of average-income customers who have two kids and accepted the offer in the fifth campaign is zero

In [50]:

```
# Create a bar chart showing the number of average income customers with two kids who acce
pted each campaign offer
average_income_customers_campaigns_two_kids = [2, 0, 1, 0, 0]
# Define the x-axis labels
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the x-tick labels
plt.xticks(range(len(average_income_customers_campaigns_two_kids)), labels)
# Set the x-axis label
plt.xlabel('labels')
# Set the y-axis label
plt.ylabel('values')
# Set the title of the plot
plt.title('How many customers with average income who have two kids and accepted the offer
in each campaign ?')
# Plot the bar chart
plt.bar(range(len(average_income_customers_campaigns_two_kids)), average_income_customers_
campaigns_two_kids, color="#FF6969")
```

Out[50]:

<BarContainer object of 5 artists>

How many customers with average income who have two kids and accepted the offer in each campaign?

In [51]:

```
# Count the number of average income customers with zero kids
average_ZeroKids = 0
for count_average0 in array2:
    if count_average0 == 0:
        average_ZeroKids+=1
    else:
        continue
```

```
In [52]:
```

```
# display number of customer's average income with 0 kids
print(average_ZeroKids)
```

630

In [53]:

```
# Count the number of average income customers with one kid
average_oneKid = 0
for count_average1 in array2:
    if count_average1 == 1:
        average_oneKid+=1
    else:
        continue
```

In [54]:

```
# display number of customer's average income with 1 kid
print(average_oneKid)
```

446

In [55]:

```
# Count the number of average income customers with two kids
average_twoKids = 0
for count_average2 in array2:
    if count_average2 == 2:
        average_twoKids+=1
    else:
        continue
```

In [56]:

```
# display number of customer's average income with 2 kids
print(average_twoKids)
```

26

Number of kids for each customer based on their average income

57% from Customers whose income is average do not have kids in their home

40% from Customers whose income is average have one kid in their home

2% from Customers whose income is average have two kids in their home

In [57]:

Out[57]:

<matplotlib.legend.Legend at 0x78000687ff40>

In [58]:

checks whether the value in the "Income" column is greater than or equal to 68281 and le
ss than or equal to 113734. If the condition is true, the value in the "Kidhome" column is
used for the new column. Otherwise, the value 3 is used for the new column.
data['kids for high income customer'] = np.where((data['Income'] >= 68281) & (data['Income'] <= 113734) , data['Kidhome'] , 3)</pre>

In [59]:

Convert a pandas DataFrame column to a numpy array
array3 = data['kids for high income customer'].values

In [60]:

checks whether the value in the "kids for high income customer" column of the pandas Dat
aFrame named "data" is equal to 0.
df_high_zero = (data['kids for high income customer'] == 0)
data[df_high_zero]

Out[60]:

		Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
_	2	71613.0	0	0	26	426	49	127	
	14	82800.0	0	0	23	1006	22	115	
	17	76995.0	0	1	91	1012	80	498	
	27	84618.0	0	0	96	684	100	801	
	32	68657.0	0	0	4	482	34	471	
2	2178	88325.0	0	0	42	519	71	860	
2	2180	80617.0	0	0	42	594	51	631	
2	2184	82032.0	0	0	54	332	194	377	
2	2188	75777.0	0	0	12	712	26	538	
2	2203	69245.0	0	1	8	428	30	214	

512 rows × 42 columns

groups the pandas DataFrame named "data" by the categorical variable "kids for high inco me customer" using the "groupby" method.

highIncome_totalKidsAcceptedCmp = data.groupby("kids for high income customer")[['Accepted
Cmp1', 'AcceptedCmp2', 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5']].sum()

Number of customers who accept the offer in each campaign and their income is high based on the number of kids

In [62]:

Display a pandas DataFrame object showing the total number of accepted campaigns for each category of a categorical variable highIncome totalKidsAcceptedCmp

Out[62]:

	AcceptedCmp1	AcceptedCmp2	AcceptedCmp3	AcceptedCmp4	AcceptedCmp5
kids for high income customer					
0	115	16	40	70	144
1	6	0	3	7	8
2	0	0	0	0	0
3	21	14	120	87	9

How many customers with high income who don't have kids and accepted the offer in each campaign?

The number of high-income customers who don't have kids and accepted the offer in the first campaign is 115

The number of high-income customers who don't have kids and accepted the offer in the second campaign is 16

The number of high-income customers who don't have kids and accepted the offer in the third campaign is 40

The number of high-income customers who don't have kids and accepted the offer in the fourth campaign is 70

The number of high-income customers who don't have kids and accepted the offer in the fifth campaign is 144

In [63]:

```
# Create a bar chart showing the number of high income customers with zero kids who accept
ed each campaign offer
high_income_customers_campaigns_zero_kids = [115, 16, 40, 70, 114]
# Define the x-axis labels
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the x-tick labels
plt.xticks(range(len(high_income_customers_campaigns_zero_kids)), labels)
# Set the x-axis label
plt.xlabel('labels')
# Set the y-axis label
plt.ylabel('values')
# Set the title of the plot
plt.title('How many customers with high income who don\'t have kids and accepted the offer
in each campaign ?')
# Plot the bar chart
plt.bar(range(len(high_income_customers_campaigns_zero_kids)), high_income_customers_campa
igns zero kids, color="#FF6969")
```

Out[63]:

<BarContainer object of 5 artists>

How many customers with high income who don't have kids and accepted the offer in each campaign?

In [64]:

```
# checks whether the value in the "kids for high income customer" column of the pandas Dat
aFrame named "data" is equal to 1.
df_high_one = (data['kids for high income customer'] == 1)
data[df_high_one]
```

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
45	72550.0	1	1	39	826	50	317	
64	74854.0	1	2	90	856	59	487	
119	77376.0	1	1	72	492	19	110	
206	69508.0	1	0	48	824	32	162	
232	80134.0	1	0	40	1218	16	272	
240	75702.0	1	1	77	650	28	353	
334	71952.0	1	0	93	656	80	455	
372	83664.0	1	1	57	866	21	151	
410	75433.0	1	0	28	800	0	297	
436	70829.0	1	1	87	141	70	106	
612	69084.0	1	0	43	1181	107	199	
685	71952.0	1	0	93	656	80	455	
714	89694.0	1	1	22	1126	28	211	
741	79146.0	1	1	33	245	16	223	
806	93404.0	1	2	97	1279	15	287	
904	83033.0	1	0	82	812	99	431	
1106	86358.0	1	1	78	957	47	494	
1177	70091.0	1	0	11	964	34	137	
1313	88097.0	1	0	24	163	0	480	
1386	80134.0	1	0	40	1218	16	272	
1409	70844.0	1	1	16	129	26	67	
1516	74881.0	1	1	48	505	72	270	
1544	75283.0	1	2	26	733	9	180	
1573	76445.0	1	0	2	739	107	309	
1619	75774.0	1	0	27	340	21	134	
1642	69084.0	1	0	43	1181	107	199	
1702	74881.0	1	1	48	505	72	270	
1710	79146.0	1	1	33	245	16	223	
1733	77981.0	1	0	78	138	120	204	
1773	75774.0	1	0	27	340	21	134	
1837	70886.0	1	0	65	407	70	239	
1853	70300.0	1	0	89	1045	61	338	
1862	76532.0	1	1	38	355	30	177	

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
1898	80982.0	1	1	48	505	137	401	
2010	75330.0	1	1	94	555	82	257	
2015	83273.0	1	2	98	433	89	650	
2022	76467.0	1	0	44	676	161	426	
2030	71128.0	1	0	80	958	159	447	
2066	81929.0	1	0	60	1486	55	278	

39 rows × 42 columns

How many customers with high income who have one kid and accepted the offer in each campaign?

The number of high-income customers who have one kid and accepted the offer in the first campaign is 6

The number of high-income customers who have one kid and accepted the offer in the second campaign is 0

The number of high-income customers who have one kid and accepted the offer in the third campaign is 3

The number of high-income customers who have one kid and accepted the offer in the fourth campaign is 7

The number of high-income customers who have one kid and accepted the offer in the fifth campaign is 8

In [65]:

```
# Create a bar chart showing the number of high income customers with one kid who accepted
each campaign offer
high_income_customers_campaigns_one_kid = [6, 0, 3, 7, 8]
# Define the x-axis labels
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the x-tick labels
plt.xticks(range(len(high_income_customers_campaigns_one_kid)), labels)
# Set the x-axis label
plt.xlabel('labels')
# Set the y-axis label
plt.ylabel('values')
# Set the title of the plot
plt.title('How many customers with high income who have one kid and accepted the offer in
each campaign ?')
# Plot the bar chart
plt.bar(range(len(high_income_customers_campaigns_one_kid)), high_income_customers_campaig
ns one kid, color="#FF6969")
```

Out[65]:

<BarContainer object of 5 artists>

How many customers with high income who have one kid and accepted the offer in each campaign?

In [66]:

```
# checks whether the value in the "kids for high income customer" column of the pandas Dat
aFrame named "data" is equal to 2.
df_high_two = (data['kids for high income customer'] == 2)
data[df_high_two]
```

Out[66]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
681	71427.0	2	0	26	212	123	177	
1 rov	vs × 42 co	olumns						
4 0								

How many customers with high income who have two kids and accepted the offer in each campaign?

The number of high-income customers who have two kids and accepted the offer in the first campaign is zero. The number of high-income customers who have two kids and accepted the offer in the second campaign is zero. The number of high-income customers who have two kids and accepted the offer in the third campaign is zero. The number of high-income customers who have two kids and accepted the offer in the fourth campaign is zero. The number of high-income customers who have two kids and accepted the offer in the fifth campaign is zero.

In [67]:

```
# Create a bar chart showing the number of high income customers with two kids who accepte
d each campaign offer
high_income_customers_campaigns_two_kids = [0, 0, 0, 0, 0]
# Define the x-axis labels
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the x-tick labels
plt.xticks(range(len(high_income_customers_campaigns_two_kids)), labels)
# Set the x-axis label
plt.xlabel('labels')
# Set the y-axis label
plt.ylabel('values')
# Set the title of the plot
plt.title('How many customers with high income who have two kids and accepted the offer in
each campaign ?')
# Plot the bar chart
plt.bar(range(len(high_income_customers_campaigns_two_kids)), high_income_customers_campai
gns two kids, color="#FF6969")
```

Out[67]:

<BarContainer object of 5 artists>

How many customers with high income who have two kids and accepted the offer in each campaign?

In [68]:

```
# Count the number of high income customers with zero kids
high_ZeroKids = 0
for count_high0 in array3:
    if count_high0 == 0:
        high_ZeroKids+=1
    else:
        continue
```

```
In [69]:
```

```
# display number of customer's high income with 0 kids
print(high_ZeroKids)
```

512

In [70]:

```
# Count the number of high income customers with one kid
high_oneKid = 0
for count_high1 in array3:
    if count_high1 == 1:
        high_oneKid+=1
    else:
        continue
```

In [71]:

```
# display number of customer's high income with 1 kid print(high_oneKid)
```

39

In [72]:

```
# Count the number of high income customers with two kids
high_twoKids = 0
for count_high2 in array3:
    if count_high2 == 2:
        high_twoKids+=1
    else:
        continue
```

In [73]:

```
# display number of customer's high income with 2 kids
print(high_twoKids)
```

1

Number of kids for each customer based on their high income

93% from Customers whose income is high do not have kids in their home

7% from Customers whose income is high have one kid in their home

0% from Customers whose income is high have two kids in their home

In [74]:

Out[74]:

<matplotlib.legend.Legend at 0x7800068577f0>

In [75]:

```
# checks whether the value in the "Income" column is greater than or equal to 1730 and les
s than 35196. If the condition is true, the value in the "Teenhome" column is used for the
new column. Otherwise, the value 3 is used for the new column.
data['teens for low income customer'] = np.where((data['Income'] >= 1730) & (data['Income'] < 35196) , data['Teenhome'] , 3)</pre>
```

In [76]:

```
# Convert a pandas DataFrame column to a numpy array
array_teens1 = data['teens for low income customer'].values
```

In [77]:

```
# checks whether the value in the "teens for low income customer" column of the pandas Dat
aFrame object named "data" is equal to 0.
df_low_zero_teen = (data['teens for low income customer'] == 0)
data[df_low_zero_teen]
```

Out[77]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
3	26646.0	1	0	26	11	4	20	
7	33454.0	1	0	32	76	10	56	
8	30351.0	1	0	19	14	0	24	
10	7500.0	0	0	59	6	16	11	
13	17323.0	0	0	38	3	14	17	
2189	7500.0	1	0	7	2	8	11	
2195	24434.0	2	0	9	3	2	8	
2196	11012.0	1	0	82	24	3	26	
2198	26816.0	0	0	50	5	1	6	
2199	34421.0	1	0	81	3	3	7	

417 rows × 43 columns

groups the pandas DataFrame named "data" by the categorical variable "teens for low inco
me customer" using the "groupby" method.
lowIncome_totalTeensAcceptedCmp = data.groupby("teens for low income customer")[['Accepted
Cmp1', 'AcceptedCmp2', 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5']].sum()

Number of customers who accept the offer in each campaign and their income is low based on the number of teens

In [79]:

Display a pandas DataFrame object showing the total number of accepted campaigns for each category of a categorical variable lowIncome totalTeensAcceptedCmp

Out[79]:

	AcceptedCmp1	AcceptedCmp2	AcceptedCmp3	AcceptedCmp4	AcceptedCmp5
teens for low income customer					
0	0	0	36	0	0
1	0	0	7	1	0
2	0	0	0	0	0
3	142	30	120	163	161

How many customers with low income who don't have teens and accepted the offer in each campaign?

The number of low-income customers who don't have teens and accepted the offer in the first campaign is zero

The number of low-income customers who don't have teens and accepted the offer in the second campaign is zero

The number of low-income customers who don't have teens and accepted the offer in the third campaign is 36

The number of low-income customers who don't have teens and accepted the offer in the fourth campaign is zero

The number of low-income customers who don't have teens and accepted the offer in the fifth campaign is zero

In [80]:

```
# Visualize the number of accepted campaigns for low income customers with zero teens
# Define the values for the bar chart
low_income_customers_campaigns_zero_teens = [0, 0, 36, 0, 0]
# Define the labels for the x-axis
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the positions and labels of the x-ticks
plt.xticks(range(len(low_income_customers_campaigns_zero_teens)), labels)
# Add a label for the x-axis
plt.xlabel('labels')
# Add a label for the y-axis
plt.ylabel('values')
# Add a title to the plot
plt.title('How many customers with low income who don\'t have teens and accepted the offer
in each campaign ?')
# Create a bar chart with the specified values
plt.bar(range(len(low_income_customers_campaigns_zero_teens)), low_income_customers_campai
gns zero teens, color="#FF6969")
```

Out[80]:

<BarContainer object of 5 artists>

How many customers with low income who don't have teens and accepted the offer in each campaign?

In [81]:

```
# checks whether the value in the "teens for low income customer" column of the pandas Dat
aFrame object named "data" is equal to 1.
df_low_one_teen = (data['teens for low income customer'] == 1)
data[df_low_one_teen]
```

Out[81]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
	5040.0							
9	5648.0	1	1	68	28	0	6	
40	21994.0	0	1	4	9	0	6	
61	32474.0	1	1	0	10	0	1	
79	29440.0	1	1	95	17	8	14	
92	34554.0	0	1	43	41	1	6	
2124	34176.0	0	1	9	11	2	7	
2162	8820.0	1	1	52	12	0	13	
2174	32144.0	1	1	76	41	0	10	
2175	14918.0	0	1	52	3	3	3	
2181	5305.0	0	1	12	12	4	7	
131 rc	ws × 43	columns						
4 6								

How many customers with low income who have one teen and accepted the offer in each campaign?

The number of low-income customers who have one teen and accepted the offer in the first campaign is zero.

The number of low-income customers who have one teen and accepted the offer in the second campaign is zero.

The number of low-income customers who have one teen and accepted the offer in the third campaign is 7.

The number of low-income customers who have one teen and accepted the offer in the fourth campaign is 1.

The number of low-income customers who have one teen and accepted the offer in the fifth campaign is zero.

In [82]:

```
# Visualize the number of accepted campaigns for low income customers with one teen
# Define the values for the bar chart
low_income_customers_campaigns_one_teen = [0, 0, 7, 1, 0]
# Define the labels for the x-axis
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the positions and labels of the x-ticks
plt.xticks(range(len(low_income_customers_campaigns_one_teen)), labels)
# Add a label for the x-axis
plt.xlabel('labels')
# Add a label for the y-axis
plt.ylabel('values')
# Add a title to the plot
plt.title('How many customers with low income who have one teen and accepted the offer in
each campaign ?')
# Create a bar chart with the specified values
plt.bar(range(len(low_income_customers_campaigns_one_teen)), low_income_customers_campaign
s one teen, color="#FF6969")
```

Out[82]:

<BarContainer object of 5 artists>

How many customers with low income who have one teen and accepted the offer in each campaign?

In [83]:

```
# checks whether the value in the "teens for low income customer" column of the pandas Dat
aFrame object named "data" is equal to 2.
df_low_two_teen = (data['teens for low income customer'] == 2)
data[df_low_two_teen]
```

Out[83]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
-								
1780	7144.0	0	2	92	81	4	33	
1993	30261.0	1	2	75	8	0	5	
2190	33562.0	1	2	33	21	12	12	
3 rows	s × 43 col	lumns						
4								•

How many customers with low income who have two teens and accepted the offer in each campaign?

The number of low-income customers who have two teens and accepted the offer in the first campaign is zero

The number of low-income customers who have two teens and accepted the offer in the second campaign is zero

The number of low-income customers who have two teens and accepted the offer in the third campaign is zero

The number of low-income customers who have two teens and accepted the offer in the fourth campaign is zero

The number of low-income customers who have two teens and accepted the offer in the fifth campaign is zero

In [84]:

```
# Visualize the number of accepted campaigns for low income customers with two teens
# Define the values for the bar chart
low_income_customers_campaigns_two_teens = [0, 0, 0, 0, 0]
# Define the labels for the x-axis
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the positions and labels of the x-ticks
plt.xticks(range(len(low_income_customers_campaigns_two_teens)), labels)
# Add a label for the x-axis
plt.xlabel('labels')
# Add a label for the y-axis
plt.ylabel('values')
# Add a title to the plot
plt.title('How many customers with low income who have two teens and accepted the offer in
each campaign ?')
# Create a bar chart with the specified values
plt.bar(range(len(low_income_customers_campaigns_two_teens)), low_income_customers_campaig
ns two teens, color="#FF6969")
```

Out[84]:

<BarContainer object of 5 artists>

How many customers with low income who have two teens and accepted the offer in each campaign?

In [85]:

```
# Count the number of low income customers with zero teens
low_ZeroTeens = 0
for count_low0teens in array_teens1:
    if count_low0teens == 0:
        low_ZeroTeens+=1
    else:
        continue
```

```
In [86]:
```

```
# Print the number of low income customers with zero teens
print(low_ZeroTeens)
```

417

```
In [87]:
```

```
# Count the number of low income customers with one teen
low_oneTeen = 0
for count_low1teens in array_teens1:
    if count_low1teens == 1:
        low_oneTeen+=1
    else:
        continue
```

In [88]:

```
# Print the number of low income customers with one teen
print(low_oneTeen)
```

131

In [89]:

```
# Count the number of low income customers with two teens
low_twoTeen = 0
for count_low2teens in array_teens1:
    if count_low2teens == 2:
        low_twoTeen+=1
    else:
        continue
```

In [90]:

```
# Print the number of low income customers with one teen
print(low_twoTeen)
```

3

Number of teens for each customer based on their low income

76% from Customers whose income is low do not have teens in their home

24% from Customers whose income is low have one teen in their home

1% from Customers whose income is low have two teens in their home

In [91]:

Out[91]:

<matplotlib.legend.Legend at 0x78000661f760>

In [92]:

```
# checks whether the value in the "Income" column is greater than or equal to 35196 and le
ss than 68281. If the condition is true, the value in the "Teenhome" column is used for th
e new column. Otherwise, the value 3 is used for the new column.
data['teens for average income customer'] = np.where((data['Income'] >= 35196) & (data['In
come'] < 68281) , data['Teenhome'] , 3)</pre>
```

In [93]:

```
# Convert a pandas DataFrame column to a numpy array
array_teens2 = data['teens for average income customer'].values
```

In [94]:

```
# checks whether the value in the "teens for average income customer" column of the pandas DataFrame named "data" is equal to 0.

df_average_zero_teen = (data['teens for average income customer'] == 0)

data[df_average_zero_teen]
```

Out[94]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
0	58138.0	0	0	58	635	88	546	
4	58293.0	1	0	94	173	43	118	
11	63033.0	0	0	82	194	61	480	
16	37760.0	0	0	20	84	5	38	
19	37040.0	0	0	41	86	2	73	
2155	65487.0	0	0	48	240	67	500	
2163	43322.0	0	0	25	56	7	48	
2186	40101.0	1	0	73	171	3	129	
2197	44802.0	0	0	71	853	10	143	
2202	56981.0	0	0	91	908	48	217	

317 rows × 44 columns

groups the pandas DataFrame named "data" by the categorical variable "teens for average
income customer" using the "groupby" method.
averageIncome_totalTeensAcceptedCmp = data.groupby("teens for average income customer")
[['AcceptedCmp1', 'AcceptedCmp2', 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5']].sum()

Number of customers who accept the offer in each campaign and their income is average based on the number of teens

In [96]:

Display a pandas DataFrame object showing the total number of accepted campaigns for each category of a categorical variable averageIncome_totalTeensAcceptedCmp

Out[96]:

	AcceptedCmp1	AcceptedCmp2	AcceptedCmp3	AcceptedCmp4	AcceptedCmp5
teens for average income customer					
0	5	5	29	16	5
1	15	8	44	67	3
2	1	1	4	3	1
3	121	16	86	78	152

How many customers with average income who don't have teens and accepted the offer in each campaign?

The number of average-income customers who don't have teens and accepted the offer in the first campaign is 5

The number of average-income customers who don't have teens and accepted the offer in the second campaign is 5

The number of average-income customers who don't have teens and accepted the offer in the third campaign is 29

The number of average-income customers who don't have teens and accepted the offer in the fourth campaign is 16

The number of average-income customers who don't have teens and accepted the offer in the fifth campaign is 5

In [97]:

```
# Visualize the number of accepted campaigns for average income customers with zero teens
# Define the values for the bar chart
average_income_customers_campaigns_zero_teens = [5, 5, 29, 16, 5]
# Define the labels for the x-axis
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the positions and labels of the x-ticks
plt.xticks(range(len(average_income_customers_campaigns_zero_teens)), labels)
# Add a label for the x-axis
plt.xlabel('labels')
# Add a label for the y-axis
plt.ylabel('values')
# Add a title to the plot
plt.title('How many customers with average income who don\'t have teens and accepted the o
ffer in each campaign ?')
# Create a bar chart with the specified values
plt.bar(range(len(average_income_customers_campaigns_zero_teens)), average_income_customer
s campaigns zero teens, color="#FF6969")
```

Out[97]:

<BarContainer object of 5 artists>

How many customers with average income who don't have teens and accepted the offer in each campaign?

In [98]:

```
# checks whether the value in the "teens for average income customer" column of the pandas
DataFrame named "data" is equal to 1.

df_average_one_teen = (data['teens for average income customer'] == 1)
data[df_average_one_teen]
```

Out[98]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro	
1	46344.0	1	1	38	11	1	6		
5	62513.0	0	1	16	520	42	98		
6	55635.0	0	1	34	235	65	164		
12	59354.0	1	1	53	233	2	53		
15	41850.0	1	1	51	53	5	19		
2193	63777.0	1	1	87	457	5	106		
2194	57967.0	0	1	39	229	7	137		
2200	61223.0	0	1	46	709	43	182		
2201	64014.0	2	1	56	406	0	30		
2204	52869.0	1	1	40	84	3	61		
745 rc	745 rows × 44 columns								
4									

How many customers with average income who have one teen and accepted the offer in each campaign?

The number of average-income customers who have one teen and accepted the offer in the first campaign is 15

The number of average-income customers who have one teen and accepted the offer in the second campaign is 8

The number of average-income customers who have one teen and accepted the offer in the third campaign is 44

The number of average-income customers who have one teen and accepted the offer in the fourth campaign is 67

The number of average-income customers who have one teen and accepted the offer in the fifth campaign is 3

In [99]:

```
# Visualize the number of accepted campaigns for average income customers with one teen
# Define the values for the bar chart
average_income_customers_campaigns_one_teen = [15, 8, 44, 67, 3]
# Define the labels for the x-axis
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the positions and labels of the x-ticks
plt.xticks(range(len(average_income_customers_campaigns_one_teen)), labels)
# Add a label for the x-axis
plt.xlabel('labels')
# Add a label for the y-axis
plt.ylabel('values')
# Add a title to the plot
plt.title('How many customers with average income who have one teen and accepted the offer
in each campaign ?')
# Create a bar chart with the specified values
plt.bar(range(len(average_income_customers_campaigns_one_teen)), average_income_customers_
campaigns one teen, color="#FF6969")
```

Out[99]:

<BarContainer object of 5 artists>

How many customers with average income who have one teen and accepted the offer in each campaign?

In [100]:

```
# checks whether the value in the "teens for average income customer" column of the pandas
DataFrame named "data" is equal to 2.

df_average_two_teen = (data['teens for average income customer'] == 2)
data[df_average_two_teen]
```

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
31	46610.0	0	2	8	96	12	96	
98	52413.0	0	2	56	295	106	271	
134	59809.0	0	2	36	598	16	141	
139	59354.0	0	2	59	295	21	78	
146	60199.0	1	2	49	8	1	7	
319	62204.0	0	2	38	317	46	247	
342	46681.0	0	2	52	269	15	69	
387	55521.0	1	2	11	416	0	26	
392	50437.0	0	2	28	370	9	92	
408	48686.0	1	2	8	10	0	7	
438	38988.0	1	2	90	164	24	103	
451	53790.0	0	2	86	335	42	127	
495	48920.0	0	2	93	238	17	68	
586	61467.0	0	2	69	410	16	114	
640	46734.0	1	2	86	100	1	39	
652	59247.0	0	2	87	327	9	122	
675	61923.0	0	2	94	92	4	18	
713	45072.0	1	2	74	144	2	99	
722	48767.0	1	2	79	28	1	21	
785	49681.0	0	2	66	411	0	26	
807	37859.0	1	2	75	22	1	8	
812	56575.0	0	2	42	421	5	90	
884	58917.0	1	2	10	151	7	89	
1002	64504.0	1	2	81	986	36	168	
1041	65196.0	0	2	34	743	19	181	
1147	35322.0	1	2	34	28	9	37	
1169	45894.0	0	2	15	27	2	7	
1188	40451.0	0	2	54	35	0	4	
1231	67433.0	0	2	51	615	28	259	
1257	40800.0	1	2	77	24	0	27	
1355	56243.0	1	2	26	347	0	35	
1370	63915.0	0	2	2	622	7	115	
1518	51411.0	1	2	81	14	0	3	

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
1536	49681.0	0	2	66	411	0	26	
1609	46681.0	0	2	52	269	15	69	
1616	64140.0	0	2	71	1459	0	61	
1640	63246.0	0	2	60	593	30	91	
1772	63404.0	0	2	97	734	26	70	
1792	50387.0	0	2	91	369	9	87	
2114	41275.0	1	2	33	24	4	22	

40 rows × 44 columns

How many customers with average income who have two teens and accepted the offer in each campaign?

The number of average-income customers who have two teens and accepted the offer in the first campaign is 1

The number of average-income customers who have two teens and accepted the offer in the second campaign is 1

The number of average-income customers who have two teens and accepted the offer in the third campaign is 4

The number of average-income customers who have two teens and accepted the offer in the fourth campaign is

The number of average-income customers who have two teens and accepted the offer in the fifth campaign is 1

In [101]:

```
# Visualize the number of accepted campaigns for low income customers with two teens
# Define the values for the bar chart
average_income_customers_campaigns_two_teens = [15, 8, 44, 67, 3]
# Define the labels for the x-axis
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the positions and labels of the x-ticks
plt.xticks(range(len(average_income_customers_campaigns_two_teens)), labels)
# Add a label for the x-axis
plt.xlabel('labels')
# Add a label for the y-axis
plt.ylabel('values')
# Add a title to the plot
plt.title('How many customers with average income who have two teens and accepted the offe
r in each campaign ?')
# Create a bar chart with the specified values
plt.bar(range(len(average_income_customers_campaigns_two_teens)), average_income_customers
_campaigns_two_teens, color="#FF6969")
```

Out[101]:

<BarContainer object of 5 artists>

How many customers with average income who have two teens and accepted the offer in each campaign?

In [102]:

```
# Count the number of average income customers with zero teens
average_ZeroTeens = 0
for count_average0teens in array_teens2:
    if count_average0teens == 0:
        average_ZeroTeens+=1
    else:
        continue
```

```
In [103]:
```

```
# display number of average income customers with zero teens
print(average_ZeroTeens)
```

317

In [104]:

```
# Count the number of average income customers with one teen
average_oneTeens = 0
for count_average1teens in array_teens2:
    if count_average1teens == 1:
        average_oneTeens+=1
    else:
        continue
```

In [105]:

```
# display number of average income customers with one teen
print(average_oneTeens)
```

745

In [106]:

```
# Count the number of average income customers with two teens
average_twoTeens = 0
for count_average2teens in array_teens2:
    if count_average2teens == 2:
        average_twoTeens+=1
    else:
        continue
```

In [107]:

```
# display number of average income customers with two teens
print(average_twoTeens)
```

40

Number of teens for each customer based on their average income

29% from Customers whose income is average do not have teens in their home

68% from Customers whose income is average have one teen in their home

3% from Customers whose income is average have two teens in their home

In [108]:

Out[108]:

<matplotlib.legend.Legend at 0x7800063bbdc0>

In [109]:

```
# checks whether the value in the "Income" column is greater than or equal to 68281 and le
ss than or equal to 113734. If the condition is true, the value in the "Teenhome" column i
s used for the new column. Otherwise, the value 3 is used for the new column.
data['teens for high income customer'] = np.where((data['Income'] >= 68281) & (data['Income'] <= 113734) , data['Teenhome'] , 3)</pre>
```

In [110]:

```
# Convert a pandas DataFrame column to a numpy array
array_teen3 = data['teens for high income customer'].values
```

In [111]:

```
# checks whether the value in the "teens for high income customer" column of the pandas Da taFrame named "data" is equal to 0.

df_high_zero_teen = (data['teens for high income customer'] == 0)

data[df_high_zero_teen]
```

Out[111]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
2	71613.0	0	0	26	426	49	127	
14	82800.0	0	0	23	1006	22	115	
27	84618.0	0	0	96	684	100	801	
32	68657.0	0	0	4	482	34	471	
42	79941.0	0	0	72	123	164	266	
2160	82347.0	0	0	38	556	54	845	
2178	88325.0	0	0	42	519	71	860	
2180	80617.0	0	0	42	594	51	631	
2184	82032.0	0	0	54	332	194	377	
2188	75777.0	0	0	12	712	26	538	

405 rows × 45 columns

groups the pandas DataFrame named "data" by the categorical variable "teens for high inc
ome customer" using the "groupby" method.
highIncome_totalTeensAcceptedCmp = data.groupby("teens for high income customer")[['Accept
edCmp1', 'AcceptedCmp2', 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5']].sum()

Number of customers who accept the offer in each campaign and their income is high based on the number of teens

In [113]:

Display a pandas DataFrame object showing the total number of accepted campaigns for each category of a categorical variable highIncome totalTeensAcceptedCmp

Out[113]:

	AcceptedCmp1	AcceptedCmp2	AcceptedCmp3	AcceptedCmp4	AcceptedCmp5
teens for high income customer					
0	109	13	33	58	137
1	12	3	10	17	13
2	0	0	0	2	2
3	21	14	120	87	9

How many customers with high income who don't have teens and accepted the offer in each campaign?

The number of high-income customers who don't have teens and accepted the offer in the first campaign is 109

The number of high-income customers who don't have teens and accepted the offer in the second campaign is 13

The number of high-income customers who don't have teens and accepted the offer in the third campaign is 33

The number of high-income customers who don't have teens and accepted the offer in the fourth campaign is 58

The number of high-income customers who don't have teens and accepted the offer in the fifth campaign is 137

In [114]:

```
# Visualize the number of accepted campaigns for high income customers with zero teens
# Define the values for the bar chart
high_income_customers_campaigns_zero_teens = [109, 13, 33, 58, 137]
# Define the labels for the x-axis
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the positions and labels of the x-ticks
plt.xticks(range(len(high_income_customers_campaigns_zero_teens)), labels)
# Add a label for the x-axis
plt.xlabel('labels')
# Add a label for the y-axis
plt.ylabel('values')
# Add a title to the plot
plt.title('How many customers with high income who don\'t have teens and accepted the offe
r in each campaign ?')
# Create a bar chart with the specified values
plt.bar(range(len(high_income_customers_campaigns_zero_teens)), high_income_customers_camp
aigns zero teens, color="#FF6969")
```

Out[114]:

<BarContainer object of 5 artists>

How many customers with high income who don't have teens and accepted the offer in each campaign?

In [115]:

```
# checks whether the value in the "teens for high income customer" column of the pandas Da
taFrame named "data" is equal to 1.
df_high_one_teen = (data['teens for high income customer'] == 1)
data[df_high_one_teen]
```

Out[115]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro	
17	76995.0	0	1	91	1012	80	498		
38	80011.0	0	1	3	421	76	536		
45	72550.0	1	1	39	826	50	317		
62	88194.0	0	1	19	688	14	309		
63	69096.0	0	1	4	247	49	159		
2140	71965.0	0	1	21	572	19	286		
2153	76234.0	0	1	21	519	50	167		
2161	73803.0	0	1	61	833	80	363		
2170	73807.0	0	1	88	366	124	156		
2203	69245.0	0	1	8	428	30	214		
139 rows × 45 columns									
4 6									

How many customers with high income who have one teen and accepted the offer in each campaign?

The number of high-income customers who have one teen and accepted the offer in the first campaign is 12. The number of high-income customers who have one teen and accepted the offer in the second campaign is 3. The number of high-income customers who have one teen and accepted the offer in the third campaign is 10. The number of high-income customers who have one teen and accepted the offer in the fourth campaign is 17. The number of high-income customers who have one teen and accepted the offer in the fifth campaign is 13.

In [116]:

```
# Visualize the number of accepted campaigns for high income customers with one teen
# Define the values for the bar chart
high_income_customers_campaigns_one_teen = [12, 3, 10, 17, 13]
# Define the labels for the x-axis
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the positions and labels of the x-ticks
plt.xticks(range(len(high_income_customers_campaigns_one_teen)), labels)
# Add a label for the x-axis
plt.xlabel('labels')
# Add a label for the y-axis
plt.ylabel('values')
# Add a title to the plot
plt.title('How many customers with high income who have one teen and accepted the offer in
each campaign ?')
# Create a bar chart with the specified values
plt.bar(range(len(high_income_customers_campaigns_one_teen)), high_income_customers_campai
gns one teen, color="#FF6969")
```

Out[116]:

<BarContainer object of 5 artists>

How many customers with high income who have one teen and accepted the offer in each campaign?

In [117]:

```
# checks whether the value in the "teens for high income customer" column of the pandas Da
taFrame named "data" is equal to 2.
df_high_two_teen = (data['teens for high income customer'] == 2)
data[df_high_two_teen]
```

Out[117]:

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishPro
64	74854.0	1	2	90	856	59	487	
209	77622.0	0	2	3	520	7	154	
247	69674.0	0	2	46	554	41	215	
806	93404.0	1	2	97	1279	15	287	
1448	94871.0	0	2	99	169	24	553	
1544	75283.0	1	2	26	733	9	180	
1673	73705.0	0	2	86	612	91	520	
2015	83273.0	1	2	98	433	89	650	
8 rows	s × 45 col	umns						
4	_	_						

How many customers with high income who have two teens and accepted the offer in each campaign?

The number of high-income customers who have two teens and accepted the offer in the first campaign is zero

The number of high-income customers who have two teens and accepted the offer in the second campaign is zero

The number of high-income customers who have two teens and accepted the offer in the third campaign is zero

The number of high-income customers who have two teens and accepted the offer in the fourth campaign is 2

The number of high-income customers who have two teens and accepted the offer in the fifth campaign is 2

In [118]:

```
# Visualize the number of accepted campaigns for high income customers with two teens
# Define the values for the bar chart
high_income_customers_campaigns_two_teens = [0, 0, 0, 2, 2]
# Define the labels for the x-axis
labels = ["campaign1", "campaign2", "campaign3", "campaign4", "campaign5"]
# Set the positions and labels of the x-ticks
plt.xticks(range(len(high_income_customers_campaigns_two_teens)), labels)
# Add a label for the x-axis
plt.xlabel('labels')
# Add a label for the y-axis
plt.ylabel('values')
# Add a title to the plot
plt.title('How many customers with high income who have two teens and accepted the offer i
n each campaign ?')
# Create a bar chart with the specified values
plt.bar(range(len(high_income_customers_campaigns_two_teens)), high_income_customers_campa
igns two teens, color="#FF6969")
```

Out[118]:

<BarContainer object of 5 artists>

How many customers with high income who have two teens and accepted the offer in each campaign?

In [119]:

```
# Count the number of high income customers with zero teens
high_ZeroTeens = 0
for count_high0teens in array_teen3:
    if count_high0teens == 0:
        high_ZeroTeens+=1
    else:
        continue
```

```
In [120]:
```

```
# display the number of high income customers with zero teens
print(high_ZeroTeens)
```

405

In [121]:

```
# Count the number of high income customers with one teen
high_oneTeens = 0
for count_high1teens in array_teen3:
    if count_high1teens == 1:
        high_oneTeens+=1
    else:
        continue
```

In [122]:

```
# display the number of high income customers with one teen
print(high_oneTeens)
```

139

In [123]:

```
# Count the number of high income customers with two teens
high_twoTeens = 0
for count_high2teens in array_teen3:
    if count_high2teens == 2:
        high_twoTeens+=1
    else:
        continue
```

In [124]:

```
# display the number of high income customers with two teens
print(high_twoTeens)
```

8

Number of teens for each customer based on their high income

73% from Customers whose income is high do not have teens in their home

25% from Customers whose income is high have one teen in their home

2% from Customers whose income is high have two teens in their home

In [125]:

Out[125]:

<matplotlib.legend.Legend at 0x7800061bce20>

In [126]:

```
# calculates the sum of the values in the "MntFishProducts" column
data['MntFishProducts'].sum()
```

Out[126]:

```
In [127]:
```

calculates the sum of the values in the "MntFishProducts" column of the pandas DataFrame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 1730 and less than 3519 6.

fishProduct_lowIncome = data.loc[(data['Income'] >= 1730) & (data['Income'] < 35196), 'Mnt
FishProducts'].sum()</pre>

In [128]:

fishProduct lowIncome

Out[128]:

4713

In [129]:

calculates the sum of the values in the "MntFishProducts" column of the pandas DataFrame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 35196 and less than 635196.

fishProduct_averageIncome = data.loc[(data['Income'] >= 35196) & (data['Income'] < 63519
6), 'MntFishProducts'].sum()</pre>

In [130]:

fishProduct_averageIncome

Out[130]:

78540

In [131]:

calculates the sum of the values in the "MntFishProducts" column of the pandas DataFrame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 635196 and less than 113735.

fishProduct_highIncome = data.loc[(data['Income'] >= 635196) & (data['Income'] <= 113734),
'MntFishProducts'].sum()</pre>

In [132]:

fishProduct highIncome

Out[132]:

0

In [133]:

amount spent on fish products in the last 2 years for customers 4713/83253

Out[133]:

0.056610572591978665

In [134]:

78540/83253

Out[134]:

0.9433894274080213

Plot for company\'s income comes from fish products based on customers-income

6% from the company's income comes from fish products by low-income customers

94% from the company's income comes from fish products by average-income customers

0% from the company's income comes from fish products by high-income customers

In [135]:

Out[135]:

<matplotlib.legend.Legend at 0x780006437070>

Company's income comes from fish products based on customers-income

In [136]:

```
# calculates the sum of the values in the "MntMeatProducts" column
data['MntMeatProducts'].sum()
```

Out[136]:

In [137]:

calculates the sum of the values in the "MntMeatProducts" column of the pandas DataFrame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 1730 and less than 3519 6.

meatProduct_lowIncome = data.loc[(data['Income'] >= 1730) & (data['Income'] < 35196), 'Mnt
MeatProducts'].sum()</pre>

In [138]:

meatProduct lowIncome

Out[138]:

12263

In [139]:

calculates the sum of the values in the "MntMeatProducts" column of the pandas DataFrame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 35196 and less than 635196.

meatProduct_averageIncome = data.loc[(data['Income'] >= 35196) & (data['Income'] < 63519
6), 'MntMeatProducts'].sum()</pre>

In [140]:

meatProduct_averageIncome

Out[140]:

352250

In [141]:

calculates the sum of the values in the "MntFishProducts" column of the pandas DataFrame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 635196 and less than 113735.

MeatProduct_highIncome = data.loc[(data['Income'] >= 635196) & (data['Income'] <= 113734),
'MntMeatProducts'].sum()</pre>

In [142]:

MeatProduct highIncome

Out[142]:

0

```
In [143]:

12263/364513

Out[143]:

0.0336421471936529

In [144]:

352250/364513

Out[144]:
```

Plot for company\'s income comes from meat products based on customers-income

In [145]:

Out[145]:

<matplotlib.legend.Legend at 0x780006097fd0>

Company's income comes from meat products based on customers-income

In [146]:

```
# calculates the sum of the values in the "MntFruits" column
data['MntFruits'].sum()
```

Out[146]:

In [147]:

calculates the sum of the values in the "MntMeatProducts" column of the pandas DataFrame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 1730 and less than 3519 6.

fruitProduct_lowIncome = data.loc[(data['Income'] >= 1730) & (data['Income'] < 35196), 'Mn
tFruits'].sum()</pre>

In [148]:

fruitProduct lowIncome

Out[148]:

3264

In [149]:

calculates the sum of the values in the "MntMeatProducts" column of the pandas DataFrame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 35196 and less than 635196.

fruitProduct_averageIncome = data.loc[(data['Income'] >= 35196) & (data['Income'] < 63519
6), 'MntFruits'].sum()</pre>

In [150]:

fruitProduct_averageIncome

Out[150]:

54955

In [151]:

calculates the sum of the values in the "MntFishProducts" column of the pandas DataFrame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 635196 and less than 113735.

fruitProduct_highIncome = data.loc[(data['Income'] >= 635196) & (data['Income'] <= 11373
4), 'MntFruits'].sum()</pre>

In [152]:

fruitProduct highIncome

Out[152]:

0

```
In [153]:

3264/58219

Out[153]:

0.05606417149040691

In [154]:

54955/58219

Out[154]:
```

Plot for company\'s income comes from fruit products based on customers-income

In [155]:

Out[155]:

<matplotlib.legend.Legend at 0x780006203370>

Company's income comes from fruit products based on customers-income

In [156]:

```
# calculates the sum of the values in the "MntSweetProducts" column
data['MntSweetProducts'].sum()
```

Out[156]:

In [157]:

calculates the sum of the values in the "MntMeatProducts" column of the pandas DataFrame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 1730 and less than 3519 6.

sweatProduct_lowIncome = data.loc[(data['Income'] >= 1730) & (data['Income'] < 35196), 'Mn
tSweetProducts'].sum()</pre>

In [158]:

sweatProduct lowIncome

Out[158]:

3202

In [159]:

calculates the sum of the values in the "MntMeatProducts" column of the pandas DataFrame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 35196 and less than 635196.

sweatProduct_averageIncome = data.loc[(data['Income'] >= 35196) & (data['Income'] < 63519
6), 'MntSweetProducts'].sum()</pre>

In [160]:

sweatProduct_averageIncome

Out[160]:

56616

In [161]:

calculates the sum of the values in the "MntFishProducts" column of the pandas DataFrame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 635196 and less than 113735.

sweatProduct_highIncome = data.loc[(data['Income'] >= 635196) & (data['Income'] <= 11373
4), 'MntSweetProducts'].sum()</pre>

In [162]:

sweatProduct_highIncome

Out[162]:

0

```
In [163]:
3202/59818
Out[163]:
0.05352903808218262
In [164]:
56616/59818
Out[164]:
```

Plot for company\'s income comes from sweat products based on customers-income

In [165]:

Out[165]:

<matplotlib.legend.Legend at 0x78000614a5f0>

Company's income comes from sweat products based on customers-income

In [166]:

```
# calculates the sum of the values in the "MntWines" column
data['MntWines'].sum()
```

Out[166]:

675093

```
In [167]:
```

calculates the sum of the values in the "MntWines" column of the pandas DataFrame object
named "data" for a specific subset of data. The subset is defined by the condition that th
e value in the "Income" column is greater than or equal to 1730 and less than 35196.
winesProduct_lowIncome = data.loc[(data['Income'] >= 1730) & (data['Income'] < 35196), 'Mn
tWines'].sum()</pre>

In [168]:

winesProduct lowIncome

Out[168]:

11753

In [169]:

calculates the sum of the values in the "MntWines" column of the pandas DataFrame object
named "data" for a specific subset of data. The subset is defined by the condition that th
e value in the "Income" column is greater than or equal to 35196 and less than 635196
winesProduct_averageIncome = data.loc[(data['Income'] >= 35196) & (data['Income'] < 63519
6), 'MntWines'].sum()</pre>

In [170]:

winesProduct_averageIncome

Out[170]:

663340

In [171]:

calculates the sum of the values in the "MntWines" column of the pandas DataFrame object
named "data" for a specific subset of data. The subset is defined by the condition that th
e value in the "Income" column is greater than or equal to 635196 and less than 113735.
winesProduct_highIncome = data.loc[(data['Income'] >= 635196) & (data['Income'] <= 11373
4), 'MntWines'].sum()</pre>

In [172]:

winesProduct_highIncome

Out[172]:

0

In [173]:

11753/675093

Out[173]:

In [174]:

663340/675093

Out[174]:

0.9825905467839245

Plot for company\'s income comes from wines products based on customers-income

In [175]:

Out[175]:

<matplotlib.legend.Legend at 0x780005fabd30>

Company's income comes from wines products based on customers-income

In [176]:

```
# calculates the sum of the values in the "MntGoldProds" column
data['MntGoldProds'].sum()
```

Out[176]:

```
In [177]:
```

calculates the sum of the values in the "MntGoldProds" column of the pandas DataFrame ob
ject named "data" for a specific subset of data. The subset is defined by the condition th
at the value in the "Income" column is greater than or equal to 1730 and less than 35196.
goldProduct_lowIncome = data.loc[(data['Income'] >= 1730) & (data['Income'] < 35196), 'Mnt
GoldProds'].sum()</pre>

In [178]:

goldProduct_lowIncome

Out[178]:

8951

In [179]:

calculates the sum of the values in the "MntGoldProds" column of the pandas DataFrame ob ject named "data" for a specific subset of data. The subset is defined by the condition th at the value in the "Income" column is greater than or equal to 35196 and less than 635196 goldProduct_averageIncome = data.loc[(data['Income'] >= 35196) & (data['Income'] < 63519 6), 'MntGoldProds'].sum()

In [180]:

goldProduct_averageIncome

Out[180]:

88195

In [181]:

calculates the sum of the values in the "MntGoldProds" column of the pandas DataFrame ob ject named "data" for a specific subset of data. The subset is defined by the condition th at the value in the "Income" column is greater than or equal to 635196 and less than 11373 5.

goldProduct_highIncome = data.loc[(data['Income'] >= 635196) & (data['Income'] <= 113734),
'MntGoldProds'].sum()</pre>

In [182]:

goldProduct_highIncome

Out[182]:

0

In [183]:

8951/97146

Out[183]:

In [184]:

88195/97146

Out[184]:

0.9078603339303728

Plot for company\'s income comes from gold products based on customers-income

In [185]:

Out[185]:

<matplotlib.legend.Legend at 0x78000600ba60>

No Products from customers with high-income

```
In [186]:
```

calculates the sum of the values in the "NumStorePurchases" column
data["NumStorePurchases"].sum()

Out[186]:

12841

In [187]:

calculates the sum of the values in the "NumStorePurchases" column of the pandas DataFra me object named "data" for a specific subset of data. The subset is defined by the conditi on that the value in the "Income" column is greater than or equal to 1730 and less than 35 196.

StorePurchases_lowIncome = data.loc[(data['Income'] >= 1730) & (data['Income'] < 35196),
'NumStorePurchases'].sum()</pre>

In [188]:

StorePurchases_lowIncome

Out[188]:

1627

In [189]:

calculates the sum of the values in the "NumStorePurchases" column of the pandas DataFra me object named "data" for a specific subset of data. The subset is defined by the conditi on that the value in the "Income" column is greater than or equal to 35196 and less than 6 35196

StorePurchases_averageIncome = data.loc[(data['Income'] >= 35196) & (data['Income'] < 6351
96), 'NumStorePurchases'].sum()</pre>

In [190]:

StorePurchases averageIncome

Out[190]:

11214

In [191]:

calculates the sum of the values in the "NumStorePurchases" column of the pandas DataFra me object named "data" for a specific subset of data. The subset is defined by the conditi on that the value in the "Income" column is greater than or equal to 635196 and less than 113735.

StorePurchases_highIncome = data.loc[(data['Income'] >= 635196) & (data['Income'] <= 11373
4), 'NumStorePurchases'].sum()</pre>

```
In [192]:
StorePurchases_highIncome
Out[192]:
0
In [193]:
1627/12841
Out[193]:
0.1267035277626353
In [194]:
11214/12841
Out[194]:
0.8732964722373647
```

Plot for number of purchases made using store based on customers-income

In [195]:

Out[195]:

<matplotlib.legend.Legend at 0x780005e76440>


```
In [196]:
```

calculates the sum of the values in the "NumCatalogPurchases" column
data["NumCatalogPurchases"].sum()

Out[196]:

5833

In [197]:

calculates the sum of the values in the "NumCatalogPurchases" column of the pandas DataF rame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 1730 and less than 35196.

catalogPurchases_lowIncome = data.loc[(data['Income'] >= 1730) & (data['Income'] < 35196),
'NumCatalogPurchases'].sum()</pre>

In [198]:

catalogPurchases_lowIncome

Out[198]:

261

In [199]:

calculates the sum of the values in the "NumCatalogPurchases" column of the pandas DataF rame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 35196 and less than 635196

catalogPurchases_averageIncome = data.loc[(data['Income'] >= 35196) & (data['Income'] < 63
5196), 'NumCatalogPurchases'].sum()</pre>

In [200]:

catalogPurchases averageIncome

Out[200]:

5572

In [201]:

261/5833

Out[201]:

0.044745414023658496

In [202]:

5572/5833

Out[202]:

Plot for number of purchases made using catalog based on customers-income

In [203]:

Out[203]:

<matplotlib.legend.Legend at 0x780005ee39a0>

Number of purchases made using catalog based on customers-income


```
In [204]:
```

```
# calculates the sum of the values in the "NumWebPurchases" column
data["NumWebPurchases"].sum()
```

Out[204]:

9042

In [205]:

calculates the sum of the values in the "NumWebPurchases" column of the pandas DataFrame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 1730 and less than 3519 6.

webPurchases_lowIncome = data.loc[(data['Income'] >= 1730) & (data['Income'] < 35196), 'Nu
mWebPurchases'].sum()</pre>

In [206]:

webPurchases_lowIncome

Out[206]:

1100

In [207]:

calculates the sum of the values in the "NumWebPurchases" column of the pandas DataFrame object named "data" for a specific subset of data. The subset is defined by the condition that the value in the "Income" column is greater than or equal to 35196 and less than 635196

webPurchases_averageIncome = data.loc[(data['Income'] >= 35196) & (data['Income'] < 63519
6), 'NumWebPurchases'].sum()</pre>

In [208]:

webPurchases averageIncome

Out[208]:

7942

In [209]:

1100/9042

Out[209]:

0.12165450121654502

In [210]:

7942/9042

Out[210]:

Plot for number of purchases made using web based on customers-income

In [211]:

Out[211]:

<matplotlib.legend.Legend at 0x780005d7fb80>

The relationship between number of kids in home and the number of days since the last purchases

In [212]:

```
# Create a line plot using seaborn to visualize the relationship between "Kidhome" and "Re
cency"
sns.relplot(data=data, x="Kidhome", y="Recency", kind="line")
```

Out[212]:

<seaborn.axisgrid.FacetGrid at 0x780005eb0520>

Insight: When there was no kids in the home, the number of days since the last purchase was approximately equal to the number of days when the number of kids was 1

When the number of kids in the home increased to 2, the number of days since the last purchase increased

In [213]:

```
# Create a line plot using seaborn to visualize the relationship between "Teenhome" and "R
ecency"
sns.relplot(data=data, x="Teenhome", y="Recency", kind="line")
```

Out[213]:

<seaborn.axisgrid.FacetGrid at 0x780005f46dd0>

Insight: When the number of teens in home was 1, the number of days since the last purchase was less than the number of days since the last purchase when there were no teens in the home

When the number of teens in the home increased to 2, the number of days since the last purchase increased

In [214]:

Create a box plot using seaborn to visualize the distribution of Age in dataframe
sns.boxplot(x=data["Age"])

Out[214]:

<Axes: xlabel='Age'>

In [215]:

Calculate the third and first quartiles of a single variable
q3, q1 = np.percentile(data['Age'], [75, 25])

```
In [216]:
# 25% from data
q1
Out[216]:
43.0
In [217]:
# 75% from data
q3
Out[217]:
61.0
In [218]:
# the maximum value in Age column
data["Age"].max()
Out[218]:
80
In [219]:
# the minimum value in Age column
data["Age"].min()
Out[219]:
24
first range of ages from 24 to 43
second range of ages from 44 to 61
third range of ages from 62 to 80
In [220]:
# Convert a pandas DataFrame column to a numpy array
Age_array = data['Age'].values
In [221]:
# counts the number of values in a numpy array "Age_array" that fall within a specified ra
nge (between 24 and 44, inclusive).
counter_low_age = 0
for i_low_age in Age_array:
    if (i_low_age >=24) & (i_low_age < 44):</pre>
        counter_low_age +=1
    else:
        continue
```

```
In [222]:
# number of customers whose ages between 24 and 43
counter_low_age
Out[222]:
597
In [223]:
# counts the number of values in a numpy array "Age_array" that fall within a specified ra
nge (between 44 and 62, inclusive).
counter_average_age = 0
for i average age in Age array:
    if (i_average_age >=44) & (i_average_age < 62):</pre>
        counter_average_age +=1
    else:
        continue
In [224]:
# number of customers whose ages between 44 and 61
counter_average_age
Out[224]:
1100
In [225]:
# counts the number of values in a numpy array "Age array" that fall within a specified ra
nge (between 62 and 81, inclusive).
counter_high_age = 0
for i high age in Age array:
    if (i_high_age >=62) & (i_high_age < 81):</pre>
        counter_high_age +=1
    else:
        continue
In [226]:
# number of customers whose ages between 62 and 80
```

```
counter_high_age
```

Out[226]:

508

Plot the customers ages

In [227]:

```
# Define the values for the bar chart
customers_Age = [597, 1100, 508]
# Define the LabeLs for the x-axis categories
labels = ["Low Age", "Average Age", "High Age"]
# Set the x-tick labeLs to the specified categories
plt.xticks(range(len(customers_Age)), labels)
# Add a LabeL to the x-axis
plt.xlabel('labels')
# Add a LabeL to the y-axis
plt.ylabel('values')
# Add a title to the plot
plt.title('Customers Ages')
# Create a bar chart with the specified values
plt.bar(range(len(customers_Age)), customers_Age, color="#FF6969")
```

Out[227]:

<BarContainer object of 3 artists>

In [228]:

```
# Calculate the sum of a numeric column in a pandas DataFrame
data['NumWebVisitsMonth'].sum()
```

Out[228]:

```
In [229]:
# The number of visits to the site in the last month for customers whose ages range from 2
4 to 43 years
web_visits_lowAge = data.loc[(data['Age'] >= 24) & (data['Age'] < 44), 'NumWebVisitsMont
h'].sum()

In [230]:
web_visits_lowAge
Out[230]:
3290</pre>
```

In [231]:

The number of visits to the site in the last month for customers whose ages range from 4
4 to 61 years
web_visits_averageAge = data.loc[(data['Age'] >= 44) & (data['Age'] < 62), 'NumWebVisitsMo
nth'].sum()</pre>

In [232]:

web_visits_averageAge

Out[232]:

6050

In [233]:

The number of visits to the site in the last month for customers whose ages range from 6
2 to 80 years
web_visits_highAge = data.loc[(data['Age'] >= 62) & (data['Age'] < 81), 'NumWebVisitsMont
h'].sum()</pre>

In [234]:

web_visits_highAge

Out[234]:

2428

In [235]:

3290/11768

Out[235]:

```
In [236]:

6050/11768

Out[236]:

0.5141060503059144

In [237]:

2428/11768

Out[237]:
```

The number of visits to the website in the last month based on the age of customers

In [238]:

Out[238]:

<matplotlib.legend.Legend at 0x780005bb7340>

Most of the customers who visited the site in the last month are those whose ages range from 44 to 61 years

The number of purchases made through the catalog based on the ages of customers

```
In [239]:
# Calculate the sum of a "NumCatalogPurchases" column in a DataFrame
data['NumCatalogPurchases'].sum()
Out[239]:
5833
In [240]:
# The number of purchases made with catalog from customers whose ages range from 24 to 43
vears
catalog purchases lowAges = data.loc[(data['Age'] >= 24) & (data['Age'] < 44), 'NumCatalog
Purchases'].sum()
In [241]:
catalog_purchases_lowAges
Out[241]:
1365
In [242]:
# The number of purchases made with catalog from customers whose ages range from 44 to 61
vears
catalog_purchases_averageAges = data.loc[(data['Age'] >= 44) & (data['Age'] < 62), 'NumCat</pre>
alogPurchases'].sum()
In [243]:
catalog_purchases_averageAges
Out[243]:
2765
In [244]:
# The number of purchases made with catalog from customers whose ages range from 62 to 80
years
catalog_purchases_highAges = data.loc[(data['Age'] >= 62) & (data['Age'] < 81), 'NumCatalo</pre>
gPurchases'].sum()
```

```
In [245]:
catalog_purchases_highAges
Out[245]:
1703
In [246]:
1365/5833
Out[246]:
0.23401337219269672
In [247]:
2765/5833
Out[247]:
0.4740270872621293
In [248]:
1703/5833
Out[248]:
0.29195954054517403
```

The number of purchases made through the catalog based on the ages of customers

23% of customers who make purchases through the catalog are between the ages of 24 and 43 years 47% of customers who make purchases through the catalog are between the ages of 44 and 61 years 29% of customers who make purchases through the catalog are between the ages of 62 and 80 years

In [249]:

Out[249]:

<matplotlib.legend.Legend at 0x780005be8190>

In [250]:

```
# Calculate the sum of a "NumStorePurchases" column in a DataFrame
data['NumStorePurchases'].sum()
```

Out[250]:

12841

```
In [251]:
```

```
# The number of purchases made with store from customers whose ages range from 24 to 43 ye
ars
store_purchases_lowAges = data.loc[(data['Age'] >= 24) & (data['Age'] < 44), 'NumStorePurc
hases'].sum()</pre>
```

In [252]:

```
store_purchases_lowAges
```

Out[252]:

3187

In [253]:

```
# The number of purchases made with store from customers whose ages range from 44 to 61 ye
ars
store_purchases_averageAges = data.loc[(data['Age'] >= 44) & (data['Age'] < 62), 'NumStore
Purchases'].sum()</pre>
```

In [254]:

```
store_purchases_averageAges
```

Out[254]:

6360

In [255]:

```
# The number of purchases made with store from customers whose ages range from 62 to 80 ye
ars
store_purchases_highAges = data.loc[(data['Age'] >= 62) & (data['Age'] < 81), 'NumStorePur
chases'].sum()</pre>
```

In [256]:

```
store_purchases_highAges
```

Out[256]:

3294

In [257]:

3187/12841

Out[257]:

In [258]: 6360/12841 Out[258]:

0.49528852893076863

In [259]:

3294/12841

Out[259]:

0.25652207771980373

The number of purchases made through the store based on the ages of customer

24% of customers who make purchases through the store are between the ages of 24 and 43 years 50% of customers who make purchases through the store are between the ages of 44 and 61 years 26% of customers who make purchases through the store are between the ages of 62 and 80 years

In [260]:

Out[260]:

<matplotlib.legend.Legend at 0x780005ac7af0>

The relationship between the age of customers and the number of days since the last purchase (Recency)

In [261]:

```
# Create a line plot using seaborn to visualize the relationship between "Age" and "Recency" sns.lineplot(x='Age', y='Recency',color='#FF6969', data=data)
```

Out[261]:

<Axes: xlabel='Age', ylabel='Recency'>

The relationship between the Married customers and the Married-status

In [262]:

```
# Create a line plot using seaborn to visualize the relationship between "Age" and "marita
L_Married"
sns.lineplot(x='Age', y='marital_Married',color='#FF6969', data=data)
```

Out[262]:

<Axes: xlabel='Age', ylabel='marital_Married'>

The relationship between the Single customers and the Single-status

In [263]:

```
# Create a line plot using seaborn to visualize the relationship between "Age" and "marita l\_Single" sns.lineplot(x='Age', y='marital_Single',color='#FF6969', data=data)
```

Out[263]:

<Axes: xlabel='Age', ylabel='marital_Single'>

The relationship between the Divorced customers and the Together-status

In [264]:

```
# Create a line plot using seaborn to visualize the relationship between "Age" and "marita
L_Together"
sns.lineplot(x='Age', y='marital_Together',color='#FF6969', data=data)
```

Out[264]:

<Axes: xlabel='Age', ylabel='marital_Together'>

The relationship between the Divorced customers and the Widow-status

In [265]:

```
# Create a line plot using seaborn to visualize the relationship between "Age" and "marita l\_Widow" sns.lineplot(x='Age', y='marital\_Widow',color='#FF6969', data=data)
```

Out[265]:

<Axes: xlabel='Age', ylabel='marital_Widow'>

How many customer complaints in the last year?

```
In [266]:
data["Complain"].sum()
Out[266]:
20
```

Number of customers who filed a complaint in the last year is 20

```
# Number of marital_Discovered Customers
data["marital_Divorced"].sum()
Out[267]:
230
In [268]:
# Number of marital_Single Customers
data["marital_Single"].sum()
Out[268]:
477
In [269]:
# Number of marital Widow Customers
data["marital_Widow"].sum()
Out[269]:
76
In [270]:
# Number of marital_Together Customers
data["marital_Together"].sum()
Out[270]:
568
In [271]:
# Number of marital_Married Customers
data["marital_Married"].sum()
Out[271]:
854
In [272]:
230/2205
Out[272]:
0.10430839002267574
```

In [267]:

```
In [273]:
477/2205
Out[273]:
0.2163265306122449
In [274]:
76/2205
Out[274]:
0.034467120181405894
In [275]:
568/2205
Out[275]:
0.2575963718820862
In [276]:
854/2205
Out[276]:
0.3873015873015873
```

The status of the company customers

10% from the company customers are Marital Divorced

22% from the company customers are Singles

3% from the company customers are Widows

26% from the company customers are Marital Together

39% from the company customers are Married

In [277]:

Out[277]:

<matplotlib.legend.Legend at 0x7800059187c0>

The relationship between Marital-Divorced status and the number of days since the last purchase

In [278]:

```
# Create a 2D kernel density plot using seaborn to visualize the relationship between "mar
ital_Divorced" and "Recency"
sns.kdeplot(data=data, x='marital_Divorced', y='Recency',shade=True)
```

```
/tmp/ipykernel_20/1022136289.py:2: FutureWarning:
    `shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.
    sns.kdeplot(data=data, x='marital_Divorced', y='Recency',shade=True)
Out[278]:
```

<Axes: xlabel='marital_Divorced', ylabel='Recency'>

The relationship between Marital-Single status and the number of days since the last purchase

In [279]:

```
# Create a 2D kernel density plot using seaborn to visualize the relationship between "mar
ital_Single" and "Recency"
sns.kdeplot(data=data, x='marital_Single', y='Recency',shade=True)
```

```
/tmp/ipykernel_20/1889469451.py:2: FutureWarning:
```

`shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.

sns.kdeplot(data=data, x='marital_Single', y='Recency',shade=True)

Out[279]:

<Axes: xlabel='marital_Single', ylabel='Recency'>

The relationship between Marital-Widow status and the number of days since the last purchase

In [280]:

```
# Create a 2D kernel density plot using seaborn to visualize the relationship between "mar
ital_Widow" and "Recency"
sns.kdeplot(data=data, x='marital_Widow', y='Recency',shade=True)
```

```
/tmp/ipykernel_20/3125291054.py:2: FutureWarning:
```

`shade` is now deprecated in favor of `fill`; setting `fill=True`. This will become an error in seaborn v0.14.0; please update your code.

sns.kdeplot(data=data, x='marital_Widow', y='Recency',shade=True)

Out[280]:

<Axes: xlabel='marital_Widow', ylabel='Recency'>

The relationship between Marital-Married status and the number of days since the last purchase

In [281]:

```
# Create a 2D kernel density plot using seaborn to visualize the relationship between "mar
ital_Married" and "Recency"
sns.kdeplot(data=data, x='marital_Married', y='Recency',shade=True)
```

```
/tmp/ipykernel_20/341482823.py:2: FutureWarning:
```

`shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.

sns.kdeplot(data=data, x='marital_Married', y='Recency',shade=True)

Out[281]:

<Axes: xlabel='marital_Married', ylabel='Recency'>

The relationship between Marital-Together status and the number of days since the last purchase

In [282]:

```
# Create a 2D kernel density plot using seaborn to visualize the relationship between "mar
ital_Together" and "Recency"
sns.kdeplot(data=data, x='marital_Together', y='Recency',shade=True)
```

/tmp/ipykernel_20/3097359276.py:2: FutureWarning:

`shade` is now deprecated in favor of `fill`; setting `fill=True`. This will become an error in seaborn v0.14.0; please update your code.

sns.kdeplot(data=data, x='marital_Together', y='Recency',shade=True)

Out[282]:

<Axes: xlabel='marital_Together', ylabel='Recency'>

What is the average purchase of Single from company through the website, store or catalog?

In [283]:

```
# Create a bar plot using seaborn to visualize the relationship between "marital_Single" a
nd "NumCatalogPurchases"
color =["#A6D0DD","#FF6969"]
sns.barplot(x="marital_Single", y="NumCatalogPurchases", data=data, palette=color)
```

Out[283]:

<Axes: xlabel='marital_Single', ylabel='NumCatalogPurchases'>

In [284]:

```
# Create a bar plot using seaborn to visualize the relationship between "marital_Single" a
nd "NumStorePurchases"
color =["#A6D0DD","#FF6969"]
sns.barplot(x="marital_Single", y="NumStorePurchases", data=data, palette=color)
```

Out[284]:

<Axes: xlabel='marital_Single', ylabel='NumStorePurchases'>

In [285]:

```
# Create a bar plot using seaborn to visualize the relationship between "marital_Single" a
nd "NumWebPurchases"
color =["#A6D0DD","#FF6969"]
sns.barplot(x="marital_Single", y="NumWebPurchases", data=data, palette=color)
```

Out[285]:

<Axes: xlabel='marital_Single', ylabel='NumWebPurchases'>

What is the average purchase of Married from company through the website, store or catalog?

In [286]:

```
# Create a bar plot using seaborn to visualize the relationship between "marital_Married"
and "NumCatalogPurchases"
color =["#A6D0DD","#FF6969"]
sns.barplot(x="marital_Married", y="NumCatalogPurchases", data=data, palette=color)
```

Out[286]:

<Axes: xlabel='marital_Married', ylabel='NumCatalogPurchases'>

In [287]:

```
# Create a bar plot using seaborn to visualize the relationship between "marital_Married"
and "NumStorePurchases"
color =["#A6D0DD","#FF6969"]
sns.barplot(x="marital_Married", y="NumStorePurchases", data=data, palette=color)
```

Out[287]:

<Axes: xlabel='marital_Married', ylabel='NumStorePurchases'>

In [288]:

```
# Create a bar plot using seaborn to visualize the relationship between "marital_Married"
and "NumWebPurchases"
color =["#A6D0DD","#FF6969"]
sns.barplot(x="marital_Married", y="NumWebPurchases", data=data, palette=color)
```

Out[288]:

<Axes: xlabel='marital_Married', ylabel='NumWebPurchases'>

What is the average purchase of Divorced from company through the website, store or catalog?

In [289]:

```
# Create a bar plot using seaborn to visualize the relationship between "marital_Divorced"
and "NumCatalogPurchases"
color =["#A6D0DD","#FF6969"]
sns.barplot(x="marital_Divorced", y="NumCatalogPurchases", data=data, palette=color)
```

Out[289]:

<Axes: xlabel='marital_Divorced', ylabel='NumCatalogPurchases'>

In [290]:

```
# Create a bar plot using seaborn to visualize the relationship between "marital_Divorced"
and "NumStorePurchases"
color =["#A6D0DD","#FF6969"]
sns.barplot(x="marital_Divorced", y="NumStorePurchases", data=data, palette=color)
```

Out[290]:

<Axes: xlabel='marital_Divorced', ylabel='NumStorePurchases'>

In [291]:

```
# Create a bar plot using seaborn to visualize the relationship between "marital_Divorced"
and "NumWebPurchases"
color =["#A6D0DD","#FF6969"]
sns.barplot(x="marital_Divorced", y="NumWebPurchases", data=data, palette=color)
```

Out[291]:

<Axes: xlabel='marital_Divorced', ylabel='NumWebPurchases'>

What is the average purchase of marital_Together from company through the website, store or catalog?

In [292]:

```
# Create a bar plot using seaborn to visualize the relationship between "marital_Together"
and "NumCatalogPurchases"
color =["#A6D0DD","#FF6969"]
sns.barplot(x="marital_Together", y="NumCatalogPurchases", data=data, palette=color)
```

Out[292]:

<Axes: xlabel='marital_Together', ylabel='NumCatalogPurchases'>

In [293]:

```
# Create a bar plot using seaborn to visualize the relationship between "marital_Together"
and "NumStorePurchases"
color =["#A6D0DD","#FF6969"]
sns.barplot(x="marital_Together", y="NumStorePurchases", data=data, palette=color)
```

Out[293]:

<Axes: xlabel='marital_Together', ylabel='NumStorePurchases'>

In [294]:

```
# Create a bar plot using seaborn to visualize the relationship between "marital_Together"
and "NumWebPurchases"
color =["#A6D0DD","#FF6969"]
sns.barplot(x="marital_Together", y="NumWebPurchases", data=data, palette=color)
```

Out[294]:

<Axes: xlabel='marital_Together', ylabel='NumWebPurchases'>

What is the average purchase of Widow from company through the website, store or catalog?

In [295]:

```
# Create a bar plot using seaborn to visualize the relationship between "marital_Widow" an
d "NumCatalogPurchases"
color =["#A6D0DD","#FF6969"]
sns.barplot(x="marital_Widow", y="NumCatalogPurchases", data=data, palette=color)
```

Out[295]:

<Axes: xlabel='marital_Widow', ylabel='NumCatalogPurchases'>

In [296]:

```
# Create a bar plot using seaborn to visualize the relationship between "marital_Widow" an
d "NumStorePurchases"
color =["#A6D0DD","#FF6969"]
sns.barplot(x="marital_Widow", y="NumStorePurchases", data=data, palette=color)
```

Out[296]:

<Axes: xlabel='marital_Widow', ylabel='NumStorePurchases'>

In [297]:

```
# Create a bar plot using seaborn to visualize the relationship between "marital_Widow" an
d "NumWebPurchases"
color =["#A6D0DD","#FF6969"]
sns.barplot(x="marital_Widow", y="NumWebPurchases", data=data, palette=color)
```

Out[297]:

<Axes: xlabel='marital_Widow', ylabel='NumWebPurchases'>

In []:			
In []:			
In []:			