代数系と符号理論 (ICT.C209) 授業 関連情報

担当教員 笠井 健太 (所属: Science Tokyo 工学院 情報通信系、南 3 号館 4 階 418 号室)

教員の Email: kenta@ict.e.titech.ac.jp

配布資料 http://bit.ly/2sr2e0m, T2SCHOLA

配付資料に誤りがあった場合に更新されるので、最新版をチェックしてください。 1

成績評価 中間試験と期末試験の結果が成績の大部分を支配します。

参考書:代数系と符号理論、植松、オーム社

参考書:符号理論、平澤, https://bit.ly/3YxGsYt

参考書:符号理論入門、平澤,西島、培風館

参考書:代数系と符号理論入門、坂庭好一、渋谷智治、コロナ

社

参考書:符号理論, 今井, コロナ社

集合と写像の基本概念と記法は、必要になったときに説明 していきます。必要に応じて下記を利用してください。

¹授業で講義資料を参照するまでは、各節には去年の講義のものがそのまま掲載されています。今年度の資料は、昨年度のものを修正して、その授業の開始までに掲載されます。

参考書:情報基礎数学,佐藤泰介ら著,オーム社,2014, ISBN 978-4-274-21610-7

参考科目:XCO.B101 情報理工学基礎 1(Science Tokyo 情報 理工学院の科目です)

演習問題と試験の予想問題

注意:T2SCHOLA に掲載しています。

過去の講義の動画を下記のリンクから見ることができます。

https://bit.ly/48yFSN2

または

01+02 https://bit.ly/2V9Ibm7

03+04 https://bit.ly/2poir80

05+06 https://bit.ly/2ITLaZ8

07+08 https://bit.ly/2RFnsnT

09+10 https://bit.ly/3cmnDMX

11+12 https://bit.ly/2yZ3zBH

この資料の中の@マークは、全12回講義の各回の区切りの目安を表しています。

- **定義 0.1.** 文脈から誤解が生じない場合には、以下のように表記を乱用することがある。
 - 1. 変数 x の範囲を限定せずに命題 P(x) を参照する場合には、命題 P(x) が文脈上意味のある範囲で x の範囲が限定されているものとする。
 - 2. 設定が不明な場合には、文脈上もっとも尤もらしい解釈で理解すること。
 - 3. 設定に不備や矛盾がある場合には、文脈上もっとも尤もらしい修正を施して理解すること。
 - 4. #A により集合 A の要素数 |A| を表す。誤って $\sharp A$ と書くこともある。
 - 5. 集合 A, B に対して、 $A \neq B, A \subset B$ であるとき、B A で B から A に含まれる要素を除いた集合を表す。
 - 6. 確率 $\Pr(X=x|Y=y)$ を $P_{X|Y}(x|y)$ などと書く。さら に文脈から確率変数が明らかな場合には、p(x|y) などと書く。
 - 7. $x_1, ..., x_n$ を x_1^n または x^n と書くことがある。
 - 8. "y := x" は "x を y と書くこととする" を意味する。
 - 9. 読点 "、" とコンマ ", " を混在して使用する。

- 10. 句点 "。" とピリオド "." を混在して使用する。
- 11. y が x から決定されることを強調するときには、y(x) と書く。
- 12. 数ベクトル $\mathbf{x} = \vec{x} = (x_1, \dots, x_n)$ がベクトルであること を強調したくないときには、単に $x = (x_1, \dots, x_n)$ と書くことがある。
- 13. 数ベクトル $\vec{x} = (x_1, \dots, x_n)$ を、 $x_1 \dots x_n$ と書くことがある。例:(0,0,0)=000
- 14. 証明において、"A を仮定する"と述べた場合には、背理 法の使用とその仮定 A を宣言している。
- 15. "任意の"を省略することがある。例:(任意の) $x \in \mathbb{R}$ に対して $e^{\sqrt{-1}x} = \cos x + \sqrt{-1}\sin x$ が成り立つ。
- 16. "*A*, *B*" で "*A* と *B*" または "*A* および *B*" を表す。"*A*, *B*" で "*A* または *B*" を表すことはない。
- 17. 文脈から明らかな場合には、写像の表記に現れる \mapsto と \rightarrow を区別しないで使用する。例: $f: x \to f(x)$
- 18. 文脈から明らかな場合には、 $A \subset B$ を $A \leq B$ と書くことがある。,
- 19. 自然数の集合 № := {1,2,3,...}

- 20. 整数の集合 $\mathbb{Z} := \{0, \pm 1, \pm 2, \dots\}$
- 21. 実数の集合を \mathbb{R} 、有理数の集合を \mathbb{Q} 、複素数の集合を \mathbb{C} と書く。
- 22. 数列: $n \in \mathbb{N}$ に対して $x_n \in X$ となる $(x_1, x_2, ...,)$ を X 上の点列または X 点列といい、 $(x_n)_{n=1}^{\infty}$ または $\{x_n\}_{n=1}^{\infty}$ または $\{x_n\}$ と書く。
- 23. 命題 A が真であるとき 1、偽であるとき 0 となる関数を $\mathbb{1}[A]$ と書く。

定義 0.2 (符号理論の扱う技術). 符号理論は以下のようなシナリオで現れる技術問題を扱います。

- コンピュータが扱うデジタルデータは0と1からなっているが、デジタルデータはノイズによって0が1となってしまうことがある。
- データに冗長性を付加することにより、データの一部が ノイズによって誤っても誤りの存在に気づいたり、誤り を復元することができる。
- 冗長性の例:日付に曜日の情報を付加することで、日付 を間違って伝えられた場合に誤りに気づくことができる。
- 例. 電波の弱い講義室でも、授業中にゲームができる。

- 例. 傷だらけの光ディスクでも再生できる.
- 例. QR コードは、一部を削ったり黒く塗りつぶしても 内容を読み出せる
- 例. ノイズだらけで使い物にならない量子ビットを使って、量子コンピュータを構築することができる(期待)。

関連講義との関連

- 講義「通信理論」で学習したこと:通信路容量、通信路 符号化定理、ランダム符号化
- 本講義で勉強すること:現実的な符号化法(通信路容量 には達成しません)
- 大学院の講義「情報通信理論」で勉強すること:現実的 な符号化法で通信路容量を達成する方法

1 線形とは限らない2元符号 ◎01

定義 1.1 (符号理論の扱う問題の設定). 符号理論では以下の問題の設定を扱う

1. 送信者は受信者にメッセージ $m \in \mathcal{M} = \{0, ..., M-1\}$ を誤り無く伝えたい。 $M = 2^k$ の場合、メッセージは長さkのベクトルで 2 表わされる。

²ベクトル空間の元をベクトルと呼ぶので、一般に、 $x \in X$ をベクトルと呼ぶ場合には X がベクトル空間であることが想定されている。後で分かることだが実際、 $\{0,1\}^n$ はベクトル空間をなす。

例: $M=2^3=8$,

$$m = 0 = (000),$$

 $m = 1 = (001),$
 $m = 2 = (010),$
 \vdots
 $m = 7 = (111)$

メッセージmは、文脈によって、情報ベクトルまた単に情報、またはユーザデータと呼ばれることがある。

2. 送信者は、k ビットのメッセージ $m \in M$ を符号語とよばれる長さ n の 2 元ベクトル

$$c = c(m) = (c_1, \dots, c_n) \in \{0, 1\}^n =: \mathbb{F}_2^n$$

にある決められた方法で写像する。この写像 $m \mapsto c$ を符号化といい、符号化が実装された装置を符号器という。 2 元ベクトル c を符号語といい、符号語を集めたもの、つまり符号化の像

$$C(\mathcal{M}) := \{ c(m) \mid m \in \mathcal{M} \}$$

を符号空間または単に符号という。符号語の長さnを符号長といい、n(C)と書く。符号長は通信路の使用回数に一致する。

例:1 ビットの情報ビット m を 3 回繰り返したものを符号語 c(m) とする。

$$c(0) = 000, c(1) = 111$$

例:3 ビットの情報ビット系列 m に1 の数が偶数個になるように1 ビットを付け加えて符号語 c とする。

$$c(000) = 0000, c(001) = 0011, c(010) = 0101,$$

 $c(011) = 0110, c(100) = 1001, c(101) = 1010,$
 $c(110) = \boxed{1100}, c(111) = \boxed{1111},$

3. 通信路は、符号語 $x=(x_1,\ldots,x_n)\in\{0,1\}^n$ を入力されると出力

$$y = (y_1, \dots, y_n) \in \{0, 1\}^n$$

をランダムに出力する。ランダムネスは一般に条件付き確率 $P_{Y|X}(y|x)$ によって記述される。符号語は、送信語とも呼ばれる。出力 y は受信語とも呼ばれる。通信路は、入出力の遷移確率 $P_{Y|X}(y|x)$ によって規定されるので、 $P_{Y|X}(y|x)$ を通信路と呼ぶことがある。

例:符号語 x = 000 が入力されると、通信路で 1 ビット以下の誤りが一様ランダムに発生して、出力

$$y = \boxed{000}, \boxed{100}, \boxed{010}, 001$$

が出力される。

例:符号長 n=3 として、符号語 $\vec{c}=101$ が入力されると、各ビット確率 p=0.01 で独立に反転した出力 \vec{y} が出力される。最も高い確率 0.99^3 で出力されるのは、

$$\vec{y} = \boxed{101}$$

である。2番目に高い確率 0.01×0.99^2 で出力されるのは、以下の三つで、

$$\vec{y} = \boxed{001}, \boxed{111}, 100$$

最も低い確率 0.01^3 で出力されるのは、

$$\vec{y} = \boxed{010}$$

である。

4. 受信者は、受信語 y から、推定符号語 $\hat{c} = (\hat{c}_1, \dots, \hat{c}_n) \in C$ を推定する。この写像 $y \mapsto \hat{c}$ を復号化といい、復号化が実装された装置を復号器という。正しく復号できないことを、復号誤りという。

この設定において、次の条件をできるだけ満たして、

- 1. できるだけ少ない通信路の使用回数nで
- 2. できるだけ大きなサイズ M のメッセージを

- 3. できるだけ少ない復号誤り確率 $\Pr(c \neq \hat{c}(y))$ で
- 送信者がメッセージを受信者に伝えることができる、
 - 1. 符号空間 C
 - 2. 符号器 $c: m \mapsto c(m)$
 - 3. 復号器 $\hat{c}: y \mapsto \hat{c}(y)$

を設計することが符号理論の目的である。

定義 1.2 (符号化率). 与えられた符号長n の符号空間C に対して、上の望みを測る指標を導入する。多くの情報を扱いたいので、情報ビット系列のビット数 $k = \log_2 |C|$ は大きい方が望ましい。一方、コストがかかるので通信路の使用回数n は小さい方が望ましい。この要求に対する尺度を、以下で定義する。

$$R = \frac{1}{n} \log_2 |C|$$

この尺度は、符号化率と呼ばれ、大きいほど望ましい。

例 1.3. C を以下の行列の行ベクトル $\vec{c_i}$ を符号語として有する符号空間とする。

符号長は
$$n(C)=20$$
、符号語数は $M=8$ 、符号化率は $R(C)=\boxed{\frac{1}{20}\log_2(8)}=\boxed{3/20}$ となる.

2 線形とは限らない2元符号のための復号法

この節では、2 元符号 C に対して、いくつかの復号法を定義する。復号誤りの確率を最小にする**最適な復号法に興味がある**。導入した復号法が最適な復号法になるための条件を考察する。最適な復号法が困難な場合に、利用される準最適な復号法を紹介する。そのために必要な2 元ベクトル間の距離を導入する。

定義 2.1 (ハミング距離、最小距離). $\mathbb{F}_2 := \{0,1\}$ とする。ベクトル x,y に対して異なる成分の数を d(x,y) とする。正確に

書くと、

$$d(x,y) = \#\{1 \le i \le n \mid x_i \ne y_i\}$$

$$x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{F}_2^n$$

である。距離関数 $d(\cdot,\cdot)$ によって (\mathbb{F}_2^n,d) は<u>距離空間となる</u>(あとで証明します)。 d(x,y) を x,y の間のハミング距離または単に距離という。

例:d((101111), (111011)) = 2

 $\overline{f L}$ 明. (\mathbb{F}_2^n,d) が距離空間となるための条件のうち、

非負値性: $d(x,y) \ge 0$,

非退化性: $x = y \Leftrightarrow d(x, y) = 0$,

対称性: d(x,y) = d(y,x)

は自明なので、残りの三角不等式

$$d(x,y) + d(y,z) \ge d(x,z)$$

だけを証明する。 \vec{x} , \vec{y} , $\vec{z} \in \mathbb{F}^n$ を長さ n のベクトルとする。集合 $D(\vec{x}, \vec{y})$ を以下のように定義することで、以下が成り立つ。

$$D(\vec{x}, \vec{y}) = \{1 \le i \le n \mid x_i \ne y_i\}$$
$$d(\vec{x}, \vec{y}) = |D(\vec{x}, \vec{y})|$$

 $d(\vec{x}, \vec{z}) = |D(\vec{x}, \vec{z})|$ $< |D(\vec{x}, \vec{y}) \cup D(\vec{y}, \vec{z})|$ $< |D(\vec{x}, \vec{y})| + |D(\vec{y}, \vec{z})|$

これより、以下が成り立つ。

$$D(\vec{x}, \vec{z}) \subseteq D(\vec{x}, \vec{y}) \cup D(\vec{y}, \vec{z})$$

 $=d(\vec{x},\vec{y})+d(\vec{y},\vec{z})$

(2.2)

(2.3)

(2.4)

より明らかであるが、これは、

(2.2) k

 $[x_i \neq z_i$ ならば $(x_i \neq y_i$ または $y_i \neq z_i)]$

と書き換えられる。これが成り立つのは、(2.4)の対偶

 $\left|\left[(x_i=y_i$ かつ $y_i=z_i)$ ならば $x_i=z_i
ight]
ight|$

を考えれば明らか。(2.3) では、一般に集合 D_1, D_2 に対して成

を使用した。

り立つユニオン限界3

 $|D_1 \cup D_2| < |D_1| + |D_2|$

 $|A \cup B| = |A| + |B| - |A \cap B| \le |A| + |B|$

14

符号空間 C に対して、C に属する異なる符号語 \vec{c}_1 , \vec{c}_2 のハミング距離の最小値を最小ハミング距離とまたは単に最小距離と呼び $d_{\min}(C)$ または単に d(C) と書く。正確に書くと、符号 C の最小ハミング距離 $d_{\min}(C)$ は

$$d_{\min}(C) = \min_{\vec{c}_1, \vec{c}_2 \in C: \vec{c}_1 \neq \vec{c}_2} d(\vec{c}_1, \vec{c}_2)$$

となる。

21149_25Sep17

例 2.5. C を以下の行列の行ベクトル $\vec{c_i}$ を符号語として有する符号空間とする。

以下の表はハミング距離 $d(\vec{c_i}, \vec{c_j})$ を (i, j) 成分に配置している。*=5 なので、この表から C の最小距離 $d_{\min}(C)=5$ で有ることが分かる。

```
0 9 7 10 6 7 11 7
9 0 12 13 11 14 8 8
7 12 0 11 7 6 10 10
10 13 11 0 10 7 9 13
6 11 7 10 0 7 9 *
7 14 6 7 7 0 6 8
11 8 10 9 9 6 0 8
```

例 2.6 (符号語数と最小距離のトレードオフ). 一般に、符号空間の最小距離 d_{\min} と、符号語数 M はトレードオフの関係にある。C を以下のベクトル $\vec{c_i}(i=1,\ldots,M)$ を符号語として有する符号空間 C は、符号語数 M=16、最小距離 $d_{\min}=3$ を有する。符号語数 M を増やそうと考えて C に新たに符号語 1011000 を追加しても 1110000 との距離が 3 より小さくなってしまい、最小距離は $d_{\min}=3$ より小さくなってしまう。

2.19 で説明することから、最小距離が大きいとより多くの誤りを訂正することができる。できるだけ良い符号語数と最小 距離に関するトレードオフを与える符号空間を構成したい。□ 定義 2.7 (事後確率、尤度、事前確率). 推定に関わる一般的な設定において、推定の対象 θ と独立とは限らない観測値 x に対して、 $P_{X|\Theta}(x|\theta)$ を尤度、 $P_{\Theta}(\theta)$ を事前確率、 $P_{\Theta|X}(\theta|x)$ を事後確率という。符号理論の設定では、推定の対象 θ は符号語 c、観測値 x は受信語 y に対応する。

変数と対応する確率変数が文脈から明らかな場合には $\Pr_{\vec{C}|\vec{R}}(\vec{c}\mid\vec{r})$ を $p(\vec{c}\mid\vec{r})$ と書く。

定義 2.8 (最大事後確率復号法、最尤復号). 受信語 \vec{r} に対して、実際の送信語が \vec{c} である確率 $p(\vec{c} \mid \vec{r})$ (\vec{c} の事後確率)を最大にする符号語 $\hat{c}^{(\text{MAP})}(\vec{r})$ を復号の結果とする復号法を最大事後確率復号法と呼ぶ。正確に書くと

$$\hat{\vec{c}}^{(\text{MAP})}(\vec{r}) = \operatorname*{argmax}_{\vec{c} \in C} p(\vec{c} \mid \vec{r})$$

である。

送信語 \vec{c} が送られた条件で受信語が \vec{r} である確率 $p(\vec{r}\mid\vec{c})$ (\vec{c} の尤度)を最大にする符号語 \vec{c} を復号の結果とする復号法を最尤復号法と呼ぶ。正確に書くと

$$\hat{\vec{c}}^{(\text{ML})}(\vec{r}) = \operatorname*{argmax}_{\vec{c} \in C} p(\vec{r} \mid \vec{c})$$

である。

命題 2.9 (最大事後確率復号の**最適性**). 一般に、有限値確率変数のペア $(X,Y), X \in \mathcal{X}, Y \in \mathcal{Y}$ に関して、Y = y を観測したもとで、X の推定値 $\hat{x}(y)$ を推定することを考える。このと

き、誤り確率 $\Pr(X \neq \hat{x}(Y))$ を最小にする推定 $\hat{x}: y \mapsto \hat{x}(y)$ は以下で与えられる。

$$\hat{x}(y) = \operatorname*{argmax}_{x} \Pr(X = x | Y = y)$$

これを、符号理論の設定に適用すると以下を得る。**最大事後確率復号はあらゆる復号法の中で最小の復号誤り確率を与える**ことが分かる。

証明. $\Pr(X \neq \hat{x}(Y)) = 1 - \Pr(X = \hat{x}(Y))$ なので、 $\Pr(X = \hat{x}(Y))$ を最大にする $\hat{x}: y \mapsto \hat{x}(y)$ を考える。任意の推定 \hat{x} に関して、以下が成り立つ。

$$Pr(X = \hat{x}(Y))$$

$$= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mathbb{1}[\hat{x}(y) = x] Pr(X = x, Y = y)$$

ただし、 $\mathbbm{1}[A]$ は命題 A が真であるとき 1、偽であるとき 0 となる関数である。さらに、

$$\Pr(X = \hat{x}(Y))$$

$$= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}: \hat{x}(y) = x} \Pr(X = x, Y = y)$$

$$= \sum_{y \in \mathcal{Y}} \Pr(X = \hat{x}(y), Y = y)$$

$$\leq \sum_{y \in \mathcal{Y}} \max_{x \in \mathcal{X}} \Pr(X = x, Y = y)$$

を得る。ここで、

$$\hat{x}(y) = \operatorname*{argmax}_{x \in \mathcal{X}} \Pr(X = x, Y = y)$$

とすると、上の不等号を等号で満たすことが分かる。さらに 以下のように変形して、証明が完成する。

$$\hat{x}(y) = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \Pr(X = x, Y = y)$$

$$= \underset{x \in \mathcal{X}}{\operatorname{argmax}} \Pr(X = x | Y = y) \Pr(Y = y)$$

$$= \underset{x \in \mathcal{X}}{\operatorname{argmax}} \Pr(X = x | Y = y)$$

最後の等号では argmax の結果に $P_Y(y)$ が影響しないことを用いた。

@02

命題 2.10 (最尤復号が最適になる十分条件). 事前確率が一様である、言い換えると送信語が符号の中から一様な確率で選ばれる場合には、最大事後確率復号と最尤復号は同じ復号結果を与える。

ユーザーデータは情報源符号化によって一様分布になるように圧縮することができるので、事前確率が一様分布であることを仮定することは妥当である。

証明. 任意の事前分布 $P_X(x)$ に対して、以下が成り立つ。

$$\hat{x}^{(\text{MAP})}(y) = \underset{x \in C}{\operatorname{argmax}} P_{X|Y}(x|y)$$

$$= \underset{x \in C}{\operatorname{argmax}} P_{Y|X}(y|x) P_X(x) / P_Y(y)$$

$$= \underset{x \in C}{\operatorname{argmax}} P_{Y|X}(y|x) P_X(x)$$

第 2 等号では条件付き確率の定義を、第 3 等号では argmax の 結果に $P_Y(y)$ が影響しないことを用いた。ここで、一様な事前確率 $P_X(x)=1/|C|$ を代入すると、

$$\hat{x}^{(\text{MAP})}(y) = \underset{x \in C}{\operatorname{argmax}} P_{Y|X}(y|x) / |C|$$
$$= \underset{x \in C}{\operatorname{argmax}} P_{Y|X}(y|x)$$
$$= \hat{x}^{(\text{ML})}(y)$$

となり、証明が完成する。

次にハミング距離を用いた復号法を定義する。これが最尤 復号法と一致することを 2.14 で示す。

定義 2.11 (最小距離復号、minimum distance decoding). 受信語 \vec{r} とのハミング距離が最小になる⁴符号語 \vec{c} を復号結果と

 $^{^4}$ 受信語 \vec{r} とのハミング距離が最小になる符号語が複数ある場合にはその中の一つをランダムに選ぶ

する復号法を最小距離復号法と呼びその復号結果を $\hat{c}^{(\mathrm{MD})}(\vec{r})$ と書く。正確に書くと、

$$\hat{\vec{c}}^{(\mathrm{MD})}(\vec{r}) = \operatorname*{argmin}_{\vec{c} \in C} d(\vec{c}, \vec{r})$$

である。他の教科書では復号半径 $\left\lfloor \frac{d(C)-1}{2} \right\rfloor$ の限界距離復号 (参照 2.17) を最小距離復号と呼ぶことがあるが、これは上の定義とは異なるので注意しよう。

定義 2.12 (無記憶通信路、2 元対称通信路). 送信語 $\vec{c}=(c_1,\ldots,c_n)$, 受信語 $\vec{r}=(r_1,\ldots,r_n)$ とする。このとき、各入力と出力の尤度の積に分解できる、すなわち

$$p(\vec{r} \mid \vec{c}) = p(r_1 \mid c_1) \cdots p(r_n \mid c_n)$$

であるとき、その通信路 $p(\vec{r} \mid \vec{c})$ は無記憶通信路であるという。i 番目の送受信関係が過去の送受信に依存しないことから無記憶と呼ばれる.これ以降、断らなければ通信路は無記憶であるとする。

 $r_i, c_i \in \mathbb{F}_2$ に対して、以下の遷移確率によって定義される無記憶通信路を2元対称通信路と言い、pを反転確率またはクロスオーバー確率という。

$$p(r_i|c_i) = \begin{cases} p, & (r_i \neq c_i) \\ 1 - p, & (r_i = c_i) \end{cases}$$

例 2.13. 反転確率 p の 2 元対称通信路に X=111100 を入力して Y=000000 が出力される確率は、

$$p(Y = 000000|X = 111100) = p^{4}(1-p)^{2}$$

となる。

34115_40ct23

定理 2.14. 反転誤り確率 p < 1/2 の 2 元対称通信路で通信を行うことを考える。このとき、最小距離復号は最尤復号と等しいこと、つまり、以下が成り立つ。

$$\hat{\vec{c}}^{(\mathrm{MD})}(\vec{r}) = \hat{\vec{c}}^{(\mathrm{ML})}(\vec{r})$$

これにより、2元対称通信路で通信を行う場合に、最尤復号を 実現するには最小距離復号をすれば十分であることが分かる。

証明. まず、符号長nの符号Cを反転確率p < 1/2の2元対 称通信路で用いたときの符号語 \vec{c} を送信して \vec{r} を受信する尤度は、

$$p(\vec{r} \mid \vec{c}) = p^{d(\vec{c}, \vec{r})} (1 - p)^{n - d(\vec{c}, \vec{r})}$$
$$= \left(\frac{p}{1 - p}\right)^{d(\vec{c}, \vec{r})} (1 - p)^{n}$$
(2.15)

である。従って受信語 \vec{r} を最尤復号した結果は、C の中で \vec{r} と異なるビット数が最小の符号語 \vec{c} となる。p<1/2より p/(1-p)<1なので、(2.15) の左辺を最大にする \vec{c} は $d(\vec{c},\vec{r})$ を最小にする。

教員用メモ:次の定理は言及するだけ。詳細は説明しない。

定理 2.16 (通信路符号化定理). 最大事後確率復号の復号誤り率を以下で定義する。

$$P_e^{(\text{MAP})}(C_n) = \Pr(X \neq \hat{x}^{(\text{MAP})}(Y))$$

 $R < \max_{P_X} I(X;Y)$ に対して、

$$\lim_{n \to \infty} P_e^{(MAP)}(C_n) = 0$$
$$R(C_n) = R$$

となる符号列 $\{C_n\}$ が存在する。

$$R > \max_{P_X} I(X; Y)$$
 に対して、

$$\lim_{n \to \infty} P_e^{(MAP)}(C_n) = 0$$
$$R(C_n) = R$$

となる符号列 $\{C_n\}$ は存在しない。

すなわち、 $\max_{P_X} I(X;Y)$ は誤り確率を0 にできる符号化率の最大値である。 $\max_{P_X} I(X;Y)$ は通信路容量 5 と呼ばれる。

証明.通信理論の授業で証明しているはずなので、それを参照してください。

 $^{^5}I(X;Y)$ は P_X に関して上に凸な関数になるので、安全に \max を使用できる。

定義 2.17 (限界距離復号法). 最小距離復号は一般に実装が困難である。以下で定義される限界距離復号法は、実装が比較的容易である。符号 C を用いて通信を行い受信語 \vec{r} を受信した。 \vec{r} から距離 t の範囲に符号語が唯一存在すれば、言い換えると $d(\vec{c},\vec{r}) \leq t$ となる符号語 \vec{c} は複数存在しないならば、それを復号語 $\hat{c}_t^{\text{(BD)}}(\vec{r})$ とし、見つからなければ復号誤りであるerror を宣言して復号を中止する。正確に述べると、

である。この復号法を復号半径 t の限界距離復号法という。 \square

補題 2.18. 非負整数 $d \geq 1, t \geq 0$ に対して、以下は同値である。

- 1. $t \leq \lfloor \frac{d-1}{2} \rfloor$
- 2. t < d/2
- 3. $2t + 1 \le d$

 $\overline{f L}$ 明. dを偶奇で場合分けすると、以下を得ることから明らか。

$$\left\lfloor \frac{d-1}{2} \right\rfloor = \begin{cases} d_o & (d=2d_o+1) \\ d_e & (d=2d_e+2) \end{cases}$$
$$d/2 = \begin{cases} d_o+1/2 & (d=2d_o+1) \\ d_e+1 & (d=2d_e+2) \end{cases}$$

76232929Sep27

命題 2.19 (誤り訂正能力). 最小距離 d の符号 C と非負整数 t を考える。以下が成り立つ。

- 1. $t \leq \lfloor \frac{d-1}{2} \rfloor$ ならば、半径 t の限界距離復号は、任意の符号語 $c \in C$ を送信した場合に、t 個以下の任意の誤りを訂正することができる。
- 2. $t \ge \lfloor \frac{d-1}{2} \rfloor + 1$ ならば、半径 t の限界距離復号は、ある符号語 $c \in C$ を送信した場合に、ある t 個以下の誤りを訂正することができない。

以上により、 $\lfloor \frac{d-1}{2} \rfloor$ は符号 C に対する限界距離復号法の**誤り 訂正能力の指標を与えている**ことが分かる。 $\lfloor \frac{d-1}{2} \rfloor$ は C の誤り訂正能力と呼ばれ t(C) と書く。さらに、訂正能力は最小距離 d に応じて大きくなるので、**訂正能力を大きくするためには最小距離を大きくすることが十分であることが分かる。** \square

証明. まず、 $\lfloor \frac{d-1}{2} \rfloor$ 個以下の誤りを訂正できるを示そう。2.18 より、 $t \leq \lfloor \frac{d-1}{2} \rfloor$ は t < d/2 と同値である。直感的に説明する と、各符号語から d/2 より小さい半径にある受信語の集合に 交わりはないので、d/2 より少ない数の誤りは訂正できると言うことができる。これは、教室内の人が少なくとも 1 m以上離れて着席していたら、教室内の任意の点から描いた半径 50 cm 未満の円に 2 人以上の人は入れないことに対応している。厳密に証明しよう。異なる 2 つの符号語 \vec{c}_1, \vec{c}_2 の d/2 より小さい半径に共通して含まれる受信語 \vec{r} が存在したと仮定すると、

でd < dとなり矛盾が導ける。

次に、半径 t の限界距離復号は、

$$t \ge \left\lfloor \frac{d-1}{2} \right\rfloor + 1$$

に対して、 $\lfloor \frac{d-1}{2} \rfloor$ 個より多い誤りを訂正できないことがあることを示す。最小距離 d を与える符号語ペアを $\vec{c_1}$ と $\vec{c_2}$ と書く。言い換えると、

$$d(\vec{c}_1, \vec{c}_2) = d$$

である。符号語 $\vec{c_1}$ を送信し、 $\vec{c_1}$ の中で $\vec{c_2}$ と異なる d 個の要素 のうち t 個が $\vec{c_2}$ の要素に変わった受信語 \vec{r} を受信したとする。

 $d(\vec{r}, \vec{c}_1) = t, \, d(\vec{r}, \vec{c}_2) = d - t$ である。例えば、以下のような状況である。

$$\vec{c}_1 = (00000\ 0000\ 0000000)$$

$$\vec{c}_2 = (11111\ 1111\ 00000000)$$

$$\vec{r} = (11111\ 0000\ 0000000)$$

このとき $\lfloor (d-1)/2 \rfloor \geq (d-2)/2$ なので、

$$d(\vec{r}, \vec{c}_1) = t \ge \lfloor \frac{d-1}{2} \rfloor + 1 \ge \frac{d-2}{2} + 1 \ge \frac{d}{2}$$

つまり、 $t \geq \frac{d}{2}$ となる。これを使って、

$$t = d(\vec{r}, \vec{c}_1) \stackrel{(2t \ge d)}{\ge} d - t = d(\vec{r}, \vec{c}_2)$$

をえる。これは、 \vec{r} から半径 t 以内にすくなくとも 2 つの符号語 \vec{c}_1, \vec{c}_2 が存在することを意味するので、復号エラーとなる。 \square

例 2.20. 2.5 の符号 C の最小距離は $d_{\min}(C)=5$ であったから、限界距離復号により、2 個以下の任意の誤りは訂正することができる。例えば、受信語 $\vec{r}=01000110101101001010$ に対して、復号半径 t=2 とすれば、

$$\hat{c}_t^{(\mathrm{BD})}(\vec{r}) = \boxed{11001110101101001010}$$

となる。一方、3 個以上の誤りを訂正しようと考えて復号半径 t=3 としても、最小距離 $d_{\min}(C)=5$ を与える符号語ペア \vec{c}_1,\vec{c}_2 を選ぶ。

$$ec{c}_1 = \boxed{11001110101101001010}$$
 $ec{c}_2 = \boxed{11000110100101010000}$

 \vec{c}_1 を送ったときに 3 個の誤りが生じて

$$\vec{r} = \boxed{11000110101101010010}$$

 $B(\vec{r},3)$ の中に \vec{c}_1,\vec{c}_2 が存在するので、復号半径 t=3 の限界距離復号器では、復号エラーとなってしまう。

を受信したとき、 \vec{r} を中心とする半径 t=3 のハミング球

例 2.21 (最小距離復号と限界距離復号). 次の長さ 12 o 4 o の行ベクトルからなる符号 C を考えよう。

010100001010 111001111000 110001110111

111011111110

各符号語ペアのハミング距離は次のようになるので、 $d_{\min}(C)=3, t(C)=1$ である。

0 8 3 4 8 0 7 8 3 7 0 5 4 8 5 0

受信語 $\vec{r} = 0101011111101$ を受信した。このとき、

$$\begin{split} \hat{c}_1^{(\mathrm{BD})}(\vec{r}) &= \boxed{\mathrm{error}} \\ \hat{c}^{(\mathrm{MD})}(\vec{r}) &= \boxed{110001110111} \end{split}$$

となる。この例は、t=1の限界距離復号では復号誤りとなるが、最小距離復号では正しく復号できる例となっている。 \square

3 線形とは限らない符号に関する最小距離に 関する限界式

定義 3.1 (限界式). 一般に、興味あるパラメータ群に関する不等式を限界式という。 \square

定義 3.2. 符号 C は、以下の条件を満たすとき、(n, M, d) 符号であるという。

- 1. 符号長がnである。
- 2. 符号語数が M である。
- 3. 最小距離がdである。

与えられた符号長に対して、できるだけ大きな符号語数 M と、できるだけ大きな最小距離 d を有する、(n,M,d) 符号を構成することに興味がある。

定義 3.3 (ハミング球). ベクトル $\vec{c} \in \mathbb{F}_2^n$ まわりのハミング距離 d 以内のビット系列の集合を \vec{c} を中心とする半径 d のハミング球と言い、 $B(\vec{c},d)$ と書く。正確に書くと、以下の通りである。

$$B(\vec{c}, d) = {\vec{x} \in \mathbb{F}_2^n \mid d(\vec{x}, \vec{c}) < d}$$

このとき、 $|B(\vec{c},d)|$ は中心 \vec{c} によらず決定され、以下が成り

立つ。

$$V(n,d) := |B(\vec{c},d)| = \sum_{i=0}^{d} \binom{n}{i}$$
 (3.4)

特に、半径が 0 と n の場合には、それぞれ V(n,0)= $\boxed{1}, V(n,n)=\boxed{2^n}$ となる。

証明. \vec{c} からハミング距離 i だけ離れているベクトルの集合を $S_i(\vec{c})$ と書く。 $S_i(\vec{c})$ の各要素は \vec{c} の n 成分のうち i 個を反転 することによって生成され、トータルで $\binom{n}{i}$ 個存在する。よって、 $|S_i(\vec{c})| = \binom{n}{i}$ となる。各 $i = 0, \ldots, d$ に対して $S_i(\vec{c})$ は交わりをもたないことと、合併が $B(\vec{c},d)$ をなすので、(3.4) を得る。

次の性質は、ハミング球の要素数とエントロピー関数を結びつける面白い性質である。本講義ではこれ以降使わないので紹介するだけでとどめる。

命題 3.5. $0 \le \lambda \le \frac{1}{2}$ に対して、以下が成り立つ。

$$\lim_{n \to \infty} \frac{1}{n} \log_2 V(n, \lfloor \lambda n \rfloor) = H_2(\lambda)$$

 H_2 はエントロピー関数である。

証明. 本題からそれるので、証明は割愛します。例えば、J. H. Van Lint, Introduction to Coding Theory, p.21 を参照してください。 □

 $\boxtimes 3.8$: $\mathbb{F}_2^3 \succeq \mathbb{F}_2^4$

64708_29Sep17

定義 3.6. 符号長n と最小距離d を有する符号のうちで最も符号語数の大きな符号に興味がある。この様な符号は最大であるといい $C^*(n,d)$ と書く。さらにその符号語数をA(n,d) または $A_2(n,d)$ と書く。

例 3.7. 3.8 に、 \mathbb{F}_2^3 と \mathbb{F}_2^4 の各点に関して、ハミング距離が 1 の点と隣接するようにグラフを描いた。最小距離が 2 となるできるだけ符号語数が多くなるように符号語を選択して符号を構成してみよう。

$$A_2(n=3, d=2) \ge \boxed{4}, A_2(n=4, d=2) \ge \boxed{8}$$

thm: ハミング限界

定理 3.9 (球充填限界、ハミング限界、完全符号). ハミング限界は、線形とは限らない (n, M, d) 符号が存在するための変数組 (n, M, d) に関する必要条件を与える。 (n, M, d) 符号 C に

対して、以下が成り立つ。

$$M \le \frac{2^n}{V_2(n,t)} \tag{3.10}$$

ただし、 $t = \left\lfloor \frac{d-1}{2} \right\rfloor$ である。最大な符号 $C^*(n,d)$ に関しても、ハミング限界は成立するので、以下が成り立つ。

$$A_2(n,d) \le \frac{2^n}{V_2(n,t)}, t = \left\lfloor \frac{d-1}{2} \right\rfloor$$

(3.10) を等号で満たす (n, M, d) 符号は完全であると言う。 \square **証明**. C の各符号語からハミング距離 t 以下のベクトル全体は、互いに交わりがない。実際、交わりがあると仮定すると、2.19 より最小距離が d であることに矛盾する。したがって、ユ

$$# \bigcup_{\vec{c} \in C} B(\vec{c}, t) = \sum_{\vec{c} \in C} #B(\vec{c}, t)$$
$$= |C|V_2(n, t)$$

がなりたつ。左辺の集合は \mathbb{F}_2^n に含まれるまたは \mathbb{F}_2^2 と等しいので、

$$2^n \ge |C|V_2(n,t)$$

となり、(3.10) を得る。

ニオン限界6を等式で満たし、

$$\frac{1}{6} \# \bigcup_{\vec{c} \in C} B(\vec{c}, t) \leq \sum_{\vec{c} \in C} \# B(\vec{c}, t)$$

補題 3.11 (球被覆限界). (n, M, d) 符号 C が最大であるとする。このとき、以下が成り立つ。

$$M \ge \frac{2^n}{V_2(n, d-1)} \tag{3.12}$$

<mark>証明. C の各符号語を中心とする半径 d-1 のハミング球の合併は \mathbb{F}_2^n 全体を被覆するはずである、つまり</mark>

$$\bigcup_{\vec{c} \in C} B(\vec{c}, d-1) = \mathbb{F}_2^n$$

となるはずである.実際、そうでないと仮定すると,被覆されていない部分が \mathbb{F}_2^n に存在するはずである。その部分に含まれるベクトル \vec{c} を符号語として C に加えた符号を $C':=C\cup\{\vec{c'}\}$ とする。 $\vec{c'}$ はどの $\vec{c}\in C$ とも $d(\vec{c'},\vec{c})\geq d$ となっているので C' の最小距離は d である。C' の符号語数は |C'|=|C|+1 となり,C の最大性に矛盾する.したがって、

$$2^{n} = \# \bigcup_{\vec{c} \in C} B(\vec{c}, d - 1)$$

$$\leq \sum_{\vec{c} \in C} \# B(\vec{c}, d - 1)$$

$$= |C|V_{2}(n, d - 1)$$
(3.13)

となり,(3.12) を得る.ここで、不等式 (3.13) はユニオン限界

$$|A \cup B| = |A| + |B| - |A \cap B| \le |A| + |B|$$

より得られる。

定理 3.14 (VG 限界). 以下の条件が成り立つとき、(n, M, d)符号が存在する。

$$M \le \frac{2^n}{V_2(n, d-1)} \tag{3.15}$$

(n, M, d) 符号が存在するための、変数組 (n, M, d) に関する十分条件を与えていることに注意しよう。

証明. (3.15) を言い換えると

$$M - 1 < \frac{2^n}{V_2(n, d - 1)}$$

である。これが成り立つ (n, M-1, d) 符号に対して、3.11 より (n, M-1, d) 符号 C は最大ではない。したがって、C に最小距離を d に保ったまま符号語を一つ増やすことができる。すなわち、(n, M, d) 符号が存在する。

60922_29Sep17

例 3.16. 例をあげると、

$$A_2(n=3, d=2) \ge \frac{8}{\binom{3}{0} + \binom{3}{1}} = \frac{8}{1+3} = 2$$
$$A_2(n=4, d=2) \ge \frac{16}{\binom{4}{0} + \binom{4}{1}} = \frac{16}{1+4} = 3.2$$

となる。3.7で $A_2(n=3,d=2) \ge 4$, $A_2(n=4,d=2) \ge 8$ となることがわかっているので、(3.15) が与えた限界式は緊密で無いことが分かる。

4 線形符号:有限体をスカラーとする有限次 元部分空間 ^{@03}

定義 4.1 (代数系). 整数の集合 \mathbb{Z} に関して、 $a,b \in \mathbb{Z}$ に対して a+b と言う演算 "+" が定義されている。このように、一般に 集合 X とその集合上で定義された演算 "。" または演算の集合に対して、 $a,b \in X$ に対して $a \circ b \in X$ となる (閉性が成り立つ) とき組 (X,\circ) を代数系という。

例: $(\mathbb{R}, \{+, -\})$ は代数系である。

例: $(\mathbb{N},\{+,-\})$ は減算に関して閉じてないので、代数系ではない。

定義 4.2 (有限とは限らない体). 四則演算 (加減乗除算) がきちんと 7 定義されている代数系を体という。減算、除算は加算、乗算の逆演算として定義されるので、演算子群から省略されることがある。

例 4.3. 体に関する例と反例を挙げる。

- $1. (\mathbb{R}, \{+, \times\})$ は体で $boldsymbol{\delta}$ 。
- 2. (N, {+, ×}) は体で<mark>ない</mark>。
- $3. (\mathbb{Z},\{+,\times\})$ は体でない。
- 4. (Q, {+,×}) は体で <mark>ある</mark>。

 $^{^7}$ 閉性やゼロ以外による除算可能性や分配則などの性質が成り立つことを意味する。厳密な定義 (https://bit.ly/4hajyh9) はあとで行う。

- 5. (C, {+,×}) は体で<mark>ある</mark>。
- 6. (実有理関数全体からなる集合, {+,×}) は体で ある。
- 7. $(2\times 2$ の実行列の集合, $\{+,\times\}$) は体でない。

223554 17Nov23

定義 4.4 (有限体、要素数が素数の有限体のつくりかた). 有限な体を有限体という。要素数がqである有限体を \mathbb{F}_q と書く。有限体のサイズに興味が無い場合には、 \mathbb{F}_q を単に \mathbb{F} と書く。ここでは $\mathbb{F}_p:=\{0,1,\ldots,p-1\}$ 上で定義される四則演算の定義を述べる。以下の定義は任意の素数pに対して有効であるが、この後p=2の場合に興味が集中するので、p=2に限定してよい。

p を素数として、要素数が p の有限体を $\mathbb{F}_p:=\{0,\dots,p-1\}$ で表記する。その四則演算は以下のように定義すると \mathbb{F}_p は体になる。証明は 25.3 で与える。添字 \mathbb{Z} で整数の四則演算を表し、添字 p で \mathbb{F}_p の四則演算を表す。整数 m,n について $m \bmod n$ を $\lceil m$ を n で割った余り」と定義する。 $x,y \in \mathbb{F}_p$ とする。

まず $+_p$ と \times_p を定義しよう。

$$x +_p y = (x +_{\mathbb{Z}} y) \mod p,$$

 $x \times_p y = (x \times_{\mathbb{Z}} y) \mod p$

次に、 $+_p$ と \times_p の逆演算となる $-_p$ と $/_p$ を定義しよう。

$$-_p y = (a +_{\mathbb{Z}} y) \mod p = 0$$
 となる $a \in \mathbb{F}_p$, $x -_p y = x +_p (-_p y)$, $1 /_p y = (a \times_{\mathbb{Z}} y) \mod p = 1$ となる $a \in \mathbb{F}_p$, $x /_p y = x \times_p (1/_p y)$

これより,文脈上明らかな場合には演算子の添字 $_p$ を省略する。

111648_27Sep17

+	0	1
0	0	1
1	1	0

表
$$4.11$$
: \mathbb{F}_2 $\frac{- 0 1}{0 0 1}$ $\frac{- 0 1}{1 1 0}$

上の演算表				
×	0	1		
0	0	0		
1	0	1		

例 4.12. \mathbb{F}_2 における演算の例を与える。

1.
$$1+1=\boxed{0}$$

2.
$$0-1=\boxed{1}$$

$$3. 1/0 =$$
 定義されていない。

 \mathbb{F}_5 の加減乗除表を https://bit.ly/3XYIqiL で見つけることができます。

定義 4.13 (線形空間). 体 \mathbb{F} と加群 V^8 に関して次を満たす写像 $\mathbb{F} \times V \ni (a,x) \mapsto a\vec{x} \in V$ が存在するとき V は \mathbb{F} 上のベクトル空間または線形空間であると言う。 $a,b \in \mathbb{F}, \vec{x}, \vec{y} \in V$ に対して、以下が成り立つ。

$$a(b\vec{x}) = (ab)\vec{x}$$

$$1\vec{x} = \vec{x}$$

$$a(\vec{x} + \vec{y}) = a\vec{x} + a\vec{y}$$

$$(a+b)\vec{x} = a\vec{x} + b\vec{x}$$

 \mathbb{F} の元をスカラー、V の元をベクトルと言う。 \square **定義 4.14** (有限体をスカラーとする線形空間). \mathbb{F} 上の n 次元

姓義 4.14 (有限体をスカラーとする緑ル空間)・『 工の n 次九数ベクトル空間 \mathbb{F}^n にベクトルに関する和とスカラー倍を自然に定義する。 $(x_1,\ldots,x_n),(y_1,\ldots,y_n)\in\mathbb{F}^n, a\in\mathbb{F}$ に対して、以下のように定義する。

$$a(x_1, \dots, x_n) = (ax_1, \dots, ax_n)$$

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$

例 4.15. $\mathbb{F}_2^n = \{0,1\}^n = \{(0\cdots 0), \dots, (1\cdots 1)\}$ は要素数が 2^n である次元 n の \mathbb{F}_2 上の線形空間をなす。 これによって、 \mathbb{F}_3^n の要素をベクトルと呼ぶことができる。

例 4.16. \mathbb{F}_2 上の n(n=4) 次元ベクトル空間 \mathbb{F}_2^n に対して、以下が成り立つ。

1.
$$(0110) + (0101) = (0011)$$

$$2. \ 1(0110) = \boxed{(0110)}$$

$$3. \ 0(0110) = \boxed{(0000)}$$

 $m{\mathsf{M}}$ **4.17** (有限体をスカラーとする線形方程式). 次を満たす $x_1,\ldots,x_4\in\mathbb{F}_2$ を求めよ。

$$\begin{pmatrix} 1000 \\ 1011 \\ 1111 \\ 0001 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

いくつかの基本行変形9により、

$$\begin{pmatrix} 1000|1\\1011|0\\1111|1\\0001|0 \end{pmatrix}$$
 前進消去
$$\begin{pmatrix} 1000|1\\0111|0\\0011|1\\00001|0 \end{pmatrix}$$
 後退代入
$$\begin{pmatrix} 1000|1\\0100|1\\0010|1\\00001|0 \end{pmatrix}$$
 .

⁹https://ja.wikipedia.org/wiki/行列の基本変形

となる。よって、 $(x_1,...,x_4) = (1110)$ である。 \Box **定義 4.18** (線形結合). ベクトルの集合 $A := \{\vec{v}_1,...,\vec{v}_n\}$ と

定義 4.18 (緑形結合). ベクトルの集合 $A:=\{v_1,\ldots,v_n\}$ と $a_1,\ldots,a_n\in\mathbb{F}$ に対して、

$$a_1\vec{v}_1 + \dots + a_n\vec{v}_n$$

を a_1, \ldots, a_n を係数とする A の線形結合と言う。 **定義 4.19** (有限ベクトル系に対する一次独立). \mathbb{F} 上の線形空間 V と $\vec{v}_1, \ldots, \vec{v}_n \in V$ に対して、以下が成り立つとき、 $\vec{v}_1, \ldots, \vec{v}_n$ は一次独立または線形独立であるといい、そうでないとき一

次従属または線形従属であると言う。

for all
$$a_1, \dots, a_n \in \mathbb{F}$$
,
 $(a_1 \vec{v}_1 + \dots + a_n \vec{v}_n = 0 \implies a_1 = \dots = a_n = 0)$

定義 4.20 (次元). \mathbb{F} 上の線形空間 V の一次独立となるベクトルの個数の最大値が存在するとき、これを V の次元といい、 $\dim V$ と記す。

定義 4.21 (生成系、完全). 線形空間 V のベクトルの集合

$$G = \{\vec{g}_1, \dots, \vec{g}_n\} \subset V$$

に関して、任意の $v \in V$ が G の線形結合で表すことができるとき、正確に述べると以下が成り立つとき、G は V の**生成**

系 または 完全系 であると言う。	任意の $v \in$	V に対して係数
$a_1,\ldots,a_n\in\mathbb{F}$ が存在して以下な	が成り立つ。	

$$v = a_1 \vec{g}_1 + \dots + a_n \vec{g}_n \tag{4.22}$$

 $v \in V$ に対して、(4.22) のように表すことを v の G による展開という。

定義 4.23 (基底). 線形空間 V に対して、部分集合 $B \subset V$ が V の生成系かつ一次独立ならば、B は V の基底であるという。 線形空間 V に対して、V の基底は一意とは限らない。

154846_10ct17

命題 4.24. 有限体 \mathbb{F} 上の線形空間 V に対して、以下が成り立つ。

- 1. サイズ $\dim V$ の一次独立な任意のベクトルの集合は V の基底となる。
- 2. V の任意の基底 B に対して、 $|B|=\dim(V)$ である。
- $3. \ v \in V$ の基底 B による展開は、一意である。
- 4.~V は $\mathbb{F}^{|B|}$ と同型である。つまり、V と $\mathbb{F}^{|B|}$ の間に線形な全単射が存在する。

証明. 一般の線形空間に対しても成り立ち、線形代数の授業で学習しているはずです。線形代数の教科書を参照してください。

5 線形符号

これ以降、線形性を符号に課すことで得られる線形符号に 関する工学的に有用な機能と性質を明らかにしていく。

定義 5.1 (線形符号、[n,k] 符号). 符号長n の符号 $C \subset \mathbb{F}^n$ に対して、C が \mathbb{F} 上の線形空間になっているとき、C を \mathbb{F} 上の線形符号という。符号長n、次元k の線形符号を[n,k] 符号と呼ぶ。符号長n、次元k、最小距離d の線形符号を[n,k,d] 符号と呼ぶ。(n,M,d) とは異なるので注意しよう。

例: $C = \{000, 111\}$ は [3, 1] 線形符号である。

例: $C = \{011,111\}$ は線形符号ではない。なぜなら $011+111 = 100 \notin C$ が符号からハミ出しているからである。

定義 5.2 (符号化率). \mathbb{F} 上の [n,k] 線形符号 C の符号化率は、以下で定義される。

$$R(C) \stackrel{\text{def}}{=} \frac{1}{n} \log_{|\mathbb{F}|} |C| \tag{5.3}$$

 \mathbb{F} 上の [n,k] 線形符号 C の符号化率 R(C) に関して以下が成り立つ。

$$R(C) = \frac{k}{n}$$

証明. $k = \dim C$ であり、C は \mathbb{F}^k と同型であるから、 $|C| = |\mathbb{F}|^k$ となる。これを (5.3) に代入して、証明が完成する。

定義 5.4 (繰り返し符号). 以下で定義される基底 B を有する符号を、長さn の繰り返し符号という。

$$B = \{(\overbrace{1\cdots 1}^n)\}$$

長さnの繰り返し符号は[n,k=1,d=n]符号である。例:長さ4の2元繰り返し符号は $\{ \begin{subarray}{c} (0000) \\ \end{subarray}, \begin{subarray}{c} (1111) \\ \end{subarray} \}$ である。

定義 5.5 (単一パリティ検査符号). 以下で定義される、長さn の符号Cを単一パリティ検査符号という。

$$C = \{x = (x_1, \dots, x_n) \in \mathbb{F}^n \mid \sum_{i=1}^n x_i = 0\}$$

長さnの単一パリティ検査符号は、[n,k=n-1,d=2]符号である。

例:長さ n=4 の単一パリティ検査符号 C の符号語をすべて書き下すと、次の通りである。

$$C = \{0000, 0011, 0101, 0110, 1001, \boxed{1010}, 1100, \boxed{1111}\}$$

6 内積、双対符号,生成行列,パリティ検査 行列

定義 6.1 (内積、直交). ベクトル $x, y \in \mathbb{F}^n$ に対して、以下で定義されるものを、用語を乱用して x, y の内積という。

$$\langle \vec{x}, \vec{y} \rangle := x_1 y_1 + \dots + x_n y_n \in \mathbb{F}$$

さらに、 $\langle \vec{x}, \vec{y} \rangle = 0$ となる \vec{x}, \vec{y} は直交するという。

例:x = (10101), y = (11101) に対して、 $\langle x, y \rangle = \boxed{1} + \boxed{0} + \boxed{1} + \boxed{0} + \boxed{1} = \boxed{1}$ となり、x, y は直交 しない。

上の定義は、よく使われる内積の定義 (https://bit.ly/3U0Z0T4) には当てはまらないので、用語の乱用をしていることに注意しよう。実際、よく使われる内積の定義では $\langle x,x\rangle=0$ ならば x=0 となる、つまり $x\neq0$ ならば $\langle x,x\rangle\neq0$ であるはずだが、 $x=\boxed{(1111)}$ とすると $\langle x,x\rangle=0$ となる。 口定義 6.2 (双対符号). 線形符号 $C\subset\mathbb{F}^n$ に対して、以下で表さ

れる C のすべての符号語と直交するベクトルの集合を C の直交補空間 (用語の乱用をしている) または C の双対符号 10 と言い、 C^{\perp} 書く。

$$C^{\perp} := \{ \vec{x} \in \mathbb{F}^n \mid \langle \vec{x}, \vec{y} \rangle = 0 \text{ for all } \vec{y} \in C \}$$

このとき次が成り立つ.

 $^{^{-10}}$ ベクトル空間 V に対する双対空間 V^* (参照 6.2) とは異なる概念なので注意すること。

例 6.3. 長さn の繰り返し符号C と単一パリティ検査符号D は互いに双対な符号である。

証明.まず、 $C^\perp \subset D$ を示す。任意の $c = (c_1, \dots, c_n) \in C$ に対して、C が繰り返し符号であることから、

$$c=(c_1,\ldots,c_1)$$

と表せる。 これを用いると、 $x=(x_1,\ldots,x_n)\in C^\perp$ は、

$$\langle c, x \rangle = \sum_{i=1}^{n} c_i x_i = c_1 (x_1 + \dots + x_n) = 0$$
, for all $c_1 \in \mathbb{F}$

と等価であることが分かる。 $c_1 = 1$ を代入すれば、

$$x_1 + \dots + x_n = 0$$

となることつまり、 $x \in D$ と等価である。よって、 $C^{\perp} = D$ となる。

次に、 $D\subset C^\perp$ を示そう。これは今の議論の逆をたどれば明らか。冗長だが、実際にやってみよう。任意の $d=(d_1,\ldots,d_n)\in D$ に対して、 $d_1+\cdots+d_n=0$ が成り立つ。この d が任意の $c=(c_1,\ldots,c_n)\in C$ に対して、直交するこ

 $(a_1,\ldots,a_n)\in D$ に対して、 $a_1+\cdots+a_n=0$ が成り立つ。 この d が任意の $c=(c_1,\ldots,c_n)\in C$ に対して、直交すること $(\langle d,c\rangle=0)$ を示せば $d\in C^\perp$ が示せる。C が繰り返し符号であることから、 $c=(c_1,\ldots,c_1)$ with $c_1\in \mathbb{F}$ と表せる。 $\langle d,c\rangle=\sum_{i=1}^n d_i c_i=(d_1+\cdots+d_n)c_1=0$,for all $c_1\in \mathbb{F}$ となり、証明が完了する。

命題 6.4 (双対符号の性質). 以下が成り立つ。

- 1. \mathbb{F} 上の線形符号 C に対して、 C^{\perp} は \mathbb{F} 上の線形符号である
- 2. $C \cap C^{\perp} = \{\vec{0}\}$ とは限らない。実際、 $C = \{00, 11\} \subset \mathbb{F}^n$ に対して $C^{\perp} = \{00, 11\}$ なので、 $C \cap C^{\perp} = C$ である。 $C = C^{\perp}$ であるとき、C は自己双対であるという。
- 3. $\dim C + \dim C^{\perp} = n$ である:次元定理
- $4. (C^{\perp})^{\perp} = C \ \mathcal{C} \ \mathcal{S} \ \mathcal{S}$

証明. 証明は,実線形空間 V の直交補空間 V^{\perp} に対する証明 と同じ様にしてできる。

20355 6Nov24

定義 6.5 (生成行列、パリティ検査行列). 線形符号 C の基底 のひとつを $\{\vec{g}_1, \ldots, \vec{g}_k\}$ とする。

$$G = \left(\begin{array}{c} \vec{g}_1 \\ \vdots \\ \vec{g}_k \end{array}\right)$$

を線形符号 C の生成行列と言う。双対符号 C^{\perp} の基底のひと つを $\{\vec{h}_1,\ldots,\vec{h}_{n-k}\}$ とする。

$$H = \left(\begin{array}{c} \vec{h}_1 \\ \vdots \\ \vec{h}_{n-k} \end{array} \right)$$

つまり、 C^{\perp} の生成行列を線形符号 C のパリティ検査行列と言う。 \vec{g}_i と \vec{h}_j は直交することから、 $GH^{\mathsf{T}}=0$ が成り立つ。 \square

文脈から誤解の無いときには、行列 G と基底 $\{\vec{g}_1, \ldots, \vec{g}_k\}$ を同一視する。同様に、行列 H と基底 $\{\vec{h}_1, \ldots, \vec{h}_{n-k}\}$ を同一視する。文脈から誤解を生じない場合には、列ベクトル $(x_1, \ldots, x_n)^T$ を行ベクトル (x_1, \ldots, x_n) として、またその逆として書くことがある。

- 6.4 から双対符号の双対符号は主符号である: $C=(C^\perp)^\perp$ から、次の双対的な性質が成り立つ。
 - 1. C の生成行列 G は C の基底ベクトルを行ベクトルとする行列なので、 C^{\perp} のパリティ検査行列 ($C=(C^{\perp})^{\perp}$ の基底ベクトルを行ベクトルとする行列) となる。
 - 2. C のパリティ検査行列 H は C^{\perp} の基底ベクトルを行べ クトルとする行列なので、 C^{\perp} の生成行列となる。
 - 3. C^{\perp} の生成行列 G^{\perp} は C^{\perp} の基底ベクトルを行ベクトル とする行列なので、C のパリティ検査行列となる。

4. C^{\perp} のパリティ検査行列 H^{\perp} は $(C^{\perp})^{\perp}=C$ の基底ベクトルを行ベクトルとする行列なので、C の生成行列となる。

例 6.6. 符号長 n=7 の符号 C が次の通り与えられている。

$$C = \{0000000, 0111010, 1100110, 1011100, \\ 1001011, 1110001, 0101101, 0010111\}$$

C に含まれる3つのベクトル

$$B = \{1001011, 1100110, 0111010\}$$

は、線形独立であり、C を張る (線形結合が C の任意の要素を B の線形結合で表せる) ので、B は C の基底の一つである。 したがって、

$$G = \left(\begin{array}{c} 1001011\\1100110\\0111010 \end{array}\right)$$

はCの生成行列である。

次の性質により、与えられたベクトルxが符号Cおよび C^{\perp} の要素であるかどうかを、行列とベクトル計算によって知ることができる。

命題 6.7. [n,k] 線形符号 C、双対符号 C^{\perp} 、C の生成行列 G、C のパリティ検査行列 H に対して、以下が成り立つ。

 $x \in C^{\perp} \iff Gx = 0$

$$x \in C \Longleftrightarrow Hx = 0 \tag{6.9}$$

(6.8)

これより,G は C^\perp のパリティ検査行列であることと,H は C^\perp の生成行列であることが分かる.

ができる。 まず、 $x \in C^{\perp} \Longrightarrow Gx = 0$ を示そう。G の行ベクトル集合を $\{g_1,\ldots,g_k\}$ と書く。 $g_i \in C, x \in C^{\perp}$ なので、これらは直交

し $\langle q_i, x \rangle = 0$ for i = 1, ..., k となる。これを行列とベクトル

証明. ここでは (6.8) を示す。(6.9) に関しても同様に示すこと

で表すと、Gx=0となる。 次に、 $x\in C^\perp \longleftarrow Gx=0$ を示そう。Gx=0であれば、 $\langle g_i,x\rangle=0$ for $i=1,\ldots,k$ となる。 $\{g_1,\ldots,g_k\}$ は C の基底であることから、任意の $y\in C$ に対して、 $y=\sum_{i=1}^k b_i g_i$ と

展開できる。ただし、
$$b_1,\dots,b_k$$
 はスカラー $\mathbb F$ の元である。 $\langle y,x\rangle=\langle \sum_{i=1}^k b_j g_j,x\rangle=\sum_{i=1}^k b_j \langle g_j,x\rangle=\sum_{i=1}^k b_j 0=0$

定義 6.10 (線形とは限らない符号の符号化にかかる計算量)。 線形とは限らない符号 $C = \{\vec{c}_0, \dots, \vec{c}_{M-1}\} \subset \mathbb{F}^n$ に対して、 メッセージ $m \in \{0,1,\ldots,M-1\}$ から符号語 $\vec{c} \in C$ への写像は M が大きいときには装置化するのが困難である。実際、k=1024 ビットの情報を送りたいときは、 $M=2^k$ となるが、これを変換表 $m \to \vec{c}_m$ で実現するには、 $M \times n$ の表が必要になる。これは、宇宙の全原子に 1 ビットずつに情報を書き込めたとしても足りない 11 。

変換表を用いずに、生成行列とベクトルの積によって、符 号化を実現することができる。

定義 6.11 (生成行列、生成行列を用いた符号化). [n,k] 線形符号 $C \subset \mathbb{F}^n$ の基底を $\{\vec{g}_1,\ldots,\vec{g}_k\}$ 、生成行列を G とする。このとき情報ベクトル $u=(u_1,\ldots,u_k)\in \mathbb{F}^k$ を

$$uG = (u_1, \dots, u_k) \begin{pmatrix} g_1 \\ \vdots \\ g_k \end{pmatrix}$$

 $= u_1 g_1 + \dots + u_k g_k \in C$

に対応付ける写像は、 \mathbb{F}^k から C への一対一である線形写像である。これよ、情報ベクトル u と生成行列 G の積によって、符号化が実現できることが分かる。

¹¹https://bit.ly/47Yx576

例 6.12. [n=7, k=3] 符号の生成行列を

$$G = \begin{pmatrix} 1001011 \\ 1100110 \\ 0111010 \end{pmatrix}$$

とする。情報ベクトル u=000 は符号語 $c=\boxed{0000000}$ に符号化される。情報ベクトル u=111 は符号語 $c=\boxed{0010111}$ に符号化される。

命題 6.13. 次が成り立つ。

- 1. [n,k] 符号 C のパリティ検査行列 H に対して、フルランクである $k \times n$ 行列 G が $G^\mathsf{T}H = 0$ を満たすとき、G はC の生成行列である。
- 2. [n,k] 符号 C の生成行列 G に対して、フルランクである $n-k\times n$ 行列 H が $G^\mathsf{T}H=0$ を満たすとき、H は C の パリティ検査行列である。

証明. 1 を示す。2 は同様に示せる。G の行ベクトルの集合を $\{g_i\}_{i=1}^k$ が C の基底となること、すなわち $\{g_i\}$ が独立で、C を張ることを示せば良い。G はフルランクであるので、 $\{g_i\}$ は線型独立となる。さらに、 $\{g_i\}$ が張る空間の次元は k となる。C の次元は k である。GH=0 より g_i は C の符号語となる。

したがって、 $\{g_i\}$ が張る空間はC に含まれる。これらのことより、G はC の生成行列となることがわかる。

基底の冗長性から、生成行列が冗長性を有するのは明らか だが、行列の形で表すと次のようになる。

命題 6.14 (生成行列の冗長性). $k \times n$ 行列 G が符号 C の生成行列であるとする。G とは異なる $k \times n$ 行列 G' が符号 C の生成行列となることがある。 $k \times k$ の正則行列 A に対して、AG は C の生成行列となる。

証明. A は正則なので、AG の階数は G の階数と等しく k である。 AG はフルランクである。 (AG)H=0 であるから、6.13 より、AG も C 生成行列となる。

7 ハミング重み ^{@04}

定義 7.1 (ハミング重み、最小ハミング重み). ベクトルxの 要素のうち、非零の要素の数をxのハミング重みまたは重み といいw(x)と書く。零ベクトルとの距離が重みを与える。す なわち、以下が成り立つ。

$$w(x) = d(x,0)$$

例:w(1010) = d(1010,0000) = 2

線形符号 C に対して、C の非零符号語の最小の重み、つまり以下を C の最小ハミング重みまたは単に最小重みといい、 $w_{\min}(C)$ または w(C) と書く。

$$w_{\min}(C) := \min_{c \in C: c \neq 0} w(c)$$

54754 200ct24

命題 7.2 (最小距離と最小重みの関係). 線形符号 C の最小距離は C の最小重みに等しい。正確に書くと次の通りである。

$$\min_{x,y \in C: x \neq y} d(x,y) = \min_{c \in C: c \neq 0} w(c)$$

証明. 以下より導ける。

$$\min_{x,y \in C: x \neq y} d(x,y) = \min_{x,y \in C: x \neq y} d(x-y,0)$$

$$= \min_{x,y \in C: x \neq y} w(x-y)$$

$$= \min_{x-y \in C: x-y \neq 0} w(x-y)$$

$$= \min_{c \in C: c \neq 0} w(c)$$

例 7.3 (線形符号の最小距離は、最小重みに一致する). C を 以下の行ベクトル \vec{c}_i を符号語として有する符号空間 C は、符号語数 M=16、最小距離 $d_{\min}=3$ を有する。線形とは限らない符号では、最小距離は異なる符号語のペアの距離を測ることが必要である。線形符号ならば、非零符号語の最小重み3を求めることで、最小距離を得ることができる。

0000000 1000110 0100011 1100101 0010101 1010011 0110110 1110000 0001111 1001001 0101100 1101010 0011010 1011100 0111001 1111111

8 コセットとシンドローム復号

定義 8.1 (誤りベクトル). 送信語 $\vec{x} \in \mathbb{F}^n$ と受信語 $\vec{y} \in \mathbb{F}^n$ に対して、

$$\vec{e} := \vec{y} - \vec{x}$$

を誤りベクトルという。

これは、送信語 $\vec{x} \in \mathbb{F}^n$ と誤りベクトル $\vec{e} \in \mathbb{F}^n$ に対して、受信語 $\vec{y} \in \mathbb{F}^n$ が以下のように与えられることを意味している。

$$\vec{y} = \vec{x} + \vec{e}$$

例: 送信語 $\vec{x} = 01010$ に誤りベクトル 01001 が加えられ受信語 $\vec{y} = 00011$ を受信した。

定義 8.2 (シンドローム). \mathbb{F} 上の [n,k] 線形符号 C とそのパリティ検査行列 H に対して、以下を定義する。ベクトル $\vec{y} \in \mathbb{F}^n$ に対して、 $\vec{s} = H\vec{y} \in \mathbb{F}^{n-k}$ を \vec{y} のシンドロームという。

定義 8.3 (転置記号の省略). 文脈から誤解を生じない場合には、列ベクトル $(x_1, \ldots, x_n)^T$ を行ベクトル (x_1, \ldots, x_n) として、またその逆として書くことがある。

例 8.4 (シンドロームの計算). パリティ検査行列 H を有する [7,4] 符号 C に関して、 $y=(1110111)^T$ のシンドロームは

s = Hy = (011 $)^T$ で与えられる。

$$H = \begin{pmatrix} 1110100 \\ 1011010 \\ 1101001 \end{pmatrix}$$

.21047_50ct17

命題 8.5 (誤りベクトルと受信語は同一のシンドロームを有する。). 符号語 $\vec{x} \in C$ を送信し、誤りベクトル \vec{e} が加えられ受信語 $\vec{y} = \vec{x} + \vec{e}$ が受信された。誤りベクトル \vec{e} と受信語 \vec{y} は同一のシンドロームを有する。実際、以下が成り立つ。

$$H\vec{y} = H(\vec{x} + \vec{e}) = H\vec{x} + H\vec{e} = 0 + H\vec{e}$$

同值関係 (equivalent relation)

定義 8.6 (同値関係 (equivalent relation)). X 上の関係 $R \subset X$ は反射律、推移律、対称律 12 を満たすとき、R は同値関係であるという。

例:親戚であるという人間集合上の関係は、同値関係である。例: $x,y\in\mathbb{Z}$ に対して、x-y は 3 の倍数である関係 $R_{3\mathbb{Z}}$ は、同値関係である。

定義 8.7 (同値類、代表元、商集合). 集合 S の上に同値関係 R が定義されているときには、S の各元 a に対して a に同値である元を全て集めた集合を考えることができる。この S の部分集

¹²http://bit.ly/2AdsqQB

合を、a を代表元 (representative) とする同値類 (equivalence class) といい、[a] と書く。

$$[a] := \{ x \in S \mid a \sim x \}.$$

集合 S の同値関係 R に関する同値類全体のなす集合を、S を同値関係 R で割った集合、あるいは S の R による商集合と呼び、

$$S/R := \{ [x] \mid x \in S \}$$

と表す。商集合は S の分割を与える。言い換えると、 $S/R=\{S_1,\ldots,S_n\}$ ならば $S=S_1\cup\cdots\cup S_n,S_i\cap S_j=\phi$ for $i\neq j$ となる。

例: $\mathbb{Z}/R_{3\mathbb{Z}} = \{[0], [1], [2]\} = \{0+3\mathbb{Z}, 1+3\mathbb{Z}, 2+3\mathbb{Z}\}$ である。ここで、[i] は 3 で割った余りが i である整数の集合と一致する。

例:このクラスの参加者集合をXとする。親戚関係にある人がいなければ、

$$X/$$
親戚関係 = $\{\{x\}|x\in X\}$

となる。

定義 8.8 (剰余類、コセット). 符号長
$$n$$
 の \mathbb{F} 上の線形符号 $C\subset \mathbb{F}^n$ に関して、商線形空間 13 、つまり $x-y\in C$ なる同値関係

による分類 (商集合) に自然に線形演算を定義したもの

$$\mathbb{F}^n/C = \{x + C \mid x \in \mathbb{F}^n\}$$

¹³https://bit.ly/3TY61iB

の元 $x+C:=\{x+c\mid c\in C\}$ をコセットまたは同値類、剰余類という。

例: $\mathbb{R}^2/\{(x,0)|x\in\mathbb{R}\} = \{(0,y) + \{(x,0)|x\in\mathbb{R}\} \mid y\in\mathbb{R}\} = \{(x,y)|x\in\mathbb{R}\} \mid y\in\mathbb{R}\}$

例: $\{00,10,01,11\}/\{00,11\}=\{$ $\{00,11\},\{10,01\}$ $\}$ \Box **命題 8.9** (コセットとシンドロームを同一視する)**.** 二つのベクトル x,y が同じコセットに含まれることと、x,y が同じシンドロームを有することは同値である。この対応によりシンド

例: $\{00, 10, 01, 11\}/\{00, 10\} = \{\{00, 10\}, \{01, 11\}\}$

ロームとコセットは1対1に対応する。

クトルとする復号が、シンドローム復号である。

この対応と 8.5 から、シンドローム $H\vec{y}$ に対応するコセット $\{x\in\mathbb{F}^n\mid Hx=Hy\}$ はエラーベクトルを e を含むことが分かる。この中から重みが最小のエラーベクトルを推定エラーベ

証明. 二つのベクトルx,yが同じコセットに含まれること $x-y \in C$ と、それらのベクトルが同じシンドロームを有すること Hx = Hy は同値であることを示す。

$$x - y \in C \stackrel{(6.9)}{\Leftrightarrow} H(x - y) = 0$$

 $\Leftrightarrow Hx = Hy$

定義 8.10 (シンドローム復号法). \mathbb{F} 上の [n,k] 線形符号のパリティ検査行列を H とする。次の復号法をシンドローム復号法という。シンドローム s:=Hy に対応するコセットのうちでハミング重みが最小のものを推定誤りベクトル $\hat{e}(s)$ とする。この $\hat{e}(s)$ をコセット代表元という。推定送信語を $\hat{x}=y-\hat{e}$ として出力する。正確に書くと以下の通りである。

$$\hat{x}^{(SR)}(y) := y - \hat{e}(s)$$

$$= y - \operatorname*{argmin}_{e:s=He} w(e)$$

シンドロームは $|\mathbb{F}|^{n-k}$ 通りあるので、シンドロームsからコ

セット代表元 $\hat{e}(s)$ への写像を、サイズ $|\mathbb{F}|^{n-k}$ の表を用意することにより実現できる。これは、n-k が小さい、つまり符号化率 $R=\frac{k}{n}$ が大きいときには現実的な方法である。例:n=1023, n-k=10。シンドローム復号の御利益が実感できる例は、この演習と情報通信実験第 2 で扱う予定です。

定理 8.11 (シンドローム復号は最小距離復号と一致する). シンドローム復号は最小距離復号と一致する。形式的に書くと、受信語 y に対して以下が成り立つ。

$$\hat{x}^{(\text{MD})}(y) = \hat{x}^{(\text{SR})}(y)$$

証明.

$$\hat{x}^{(\text{MD})}(y) = \underset{x \in C}{\operatorname{argmin}} d(x, y)$$

$$\stackrel{(6.9)}{=} \underset{x:Hx=0}{\operatorname{argmin}} w(y - x)$$

$$\stackrel{(y=x+e)}{=} \underset{y-e:H(y-e)=0}{\operatorname{argmin}} w(e)$$

$$= y - \underset{e:Hy=He}{\operatorname{argmin}} w(e)$$

$$= y - \underset{e:Hy=He}{\operatorname{argmin}} w(e)$$

$$= \hat{x}^{(\text{SR})}(y)$$

命題 8.12. 重みが t 以下の全てのベクトルがコセット代表元になることと、シンドローム復号法により重み t 以下の誤りを訂正できることは同値である。

証明. ある誤りベクトル e に対して、e が訂正できることと e がコセット代表元であることは同値なので、明らか。

9 標準型生成行列、標準型パリティ検査行列、 組織符号

定義 9.1 (標準型生成行列、組織符号). [n,k] 線形符号の生成行列をGとする。 $k \times n$ 生成行列 Gが、サイズ k の単位行列 I_k と $k \times n - k$ 行列 P を用いて $G = [I_k \quad P]$ と書けるとき、G は標準形であるという。適当に与えられた生成行列 G は行の基本変形と列の入れ替えを施すと必ず標準形にできる。標準形生成行列による符号化は組織的 14 であると言う。

例 9.2. 例:
$$G' = \begin{pmatrix} 1001011 \\ 1100110 \\ 0111010 \end{pmatrix}$$
 は標準形でない。

例:
$$G = \begin{pmatrix} 100 & 1011 \\ 010 & 1101 \\ 001 & 0111 \end{pmatrix}$$
 は標準形である。

GはG'に適当な行基本変形を施したものである。

議論 9.3. 生成行列 G を持つ \mathbb{F} 上の [n,k] 線形符号 C を考える。情報 $u=(u_1,\ldots,u_k)\in\mathbb{F}^k$ に対して符号語は $\vec{c}=uG$ になる。受信器は推定符号語 \vec{c} から情報ベクトル u を戻す操作

¹⁴多くの教科書では、標準型生成行列が存在する線形符号を組織的と言う。しかし、組織的でない線形符号は存在しないので、この定義では名付けることに意味が無い。Science Tokyo 生が人間であるとき人間的 Science Tokyo 生というようなものである。

が必要になる。生成行列 G が標準型の場合、

$$c = uG = u(I_k \quad P) = (u \quad uP)$$

という形に符号語がなるから、符号語から情報ベクトルuを復元するために符号語の左側kシンボルを取り出すだけで済むようになる。

例 9.4. 9.2 と同じ設定で、 $c(u) = (111\ 0001)$ となる u は $c = uG = (u\ uP)$ より u = (111) であることがすぐ分かる。 \Box 命題 9.5 (符号空間は生成行列の行基本変形に対して不変). 生成行列 G に行基本変形を施すと、情報ベクトル u と符号語 c(u) = uG の対応関係は変わる。符号空間 $C(G) = \{c(u) : u \in \mathbb{F}^k\}$ は変わらない。したがって、最小距離 d(C) および訂正能力 t(C) も変わらない。

証明. G の行ベクトル集合は C の基底である。G に行基本変形をしてもランクは変化しないので、C の基底であることに変わりは無い。

例 9.6. 9.2 と同じ設定で、(111)*G'* = (001 0111), (111)*G* = (111 0001) となる。 □ **命題 9.7** (標準形になっている生成行列に対応するパリティ検

命題 9.7 (標準形になっている生成行列に対応するパリティ検査行列). 生成行列

$$G = \begin{bmatrix} I_k & P \end{bmatrix}$$

$$H = \begin{bmatrix} -P^T & I_{n-k} \end{bmatrix}$$

で与えられる。この形のパリティ検査行列は標準型であると言う。上記のように作ったHがパリティ検査行列ならHとGの各行の積が0ベクトルになるはずであるが、確かに

$$GH^{T} = \begin{bmatrix} I_{k} & P \end{bmatrix} \begin{bmatrix} -P^{T} & I_{n-k} \end{bmatrix}^{T}$$
$$= \begin{bmatrix} I_{k} & P \end{bmatrix} \begin{bmatrix} -P \\ I_{n-k} \end{bmatrix}$$
$$= -I_{k}P + PI_{n-k} = -P + P = 0$$

となっている.

$$G = \begin{pmatrix} 100 & 1011 \\ 010 & 1101 \\ 001 & 0111 \end{pmatrix}, H = \begin{bmatrix} \begin{pmatrix} 110 & 1000 \\ 011 & 0100 \\ 101 & 0010 \\ 111 & 0001 \end{pmatrix}$$

10 線形符号のパリティ検査行列による最小距離の計算

議論 10.1 (一般に最小距離を計算することは困難である). 線形とは限らない符号空間 C に対して、C の最小距離

$$d(C) = \min_{x,y \in C, x \neq y} d(x,y)$$

を計算したい。原理的には、すべての異なる符号語ペア $x,y \in C, x \neq y$ に対して、距離を比較すれば最小距離を得られる。しかし、これには約 $|C|^2/2$ 回の比較が必要になる。線形符号に対しては、以下の 10.2 と 10.3 によって、比較的効率的に最小距離を計算することができる。

101737_50ct17

定理 10.2 (パリティ検査行列と最小距離). [n,k] 線形符号 C の $n-k\times n$ パリティ検査行列 H に対して、以下が成り立つ。任意の $d'\leq d-1$ に対して、H のどの d' 列を選んでも線形独立ならば、C の最小距離 d(C) は d 以上である。

証明. パリティ検査行列 H の第 i 列を \vec{h}_i とおく。

$$H = [\vec{h}_1 \quad \vec{h}_2 \quad \cdots \quad \vec{h}_n]$$

である。最小距離が d-1 以下であると仮定する。つまり、非ゼロ符号語 $\vec{c}=(c_1,\ldots,c_n)$ でハミング重みが $d'\leq d-1$ のものが存在すると仮定する。 \vec{c} の非ゼロ要素を $c_{i_1},\ldots,c_{i_{d'}}$ とす

る。このとき

$$\vec{0} = H\vec{c}$$

$$= c_{i_1}\vec{h}_{i_1} + c_{i_2}\vec{h}_{i_2} + \dots + c_{i_{d'}}\vec{h}_{i_{d'}}$$

となる。このことは $\vec{h}_{i_1}, \ldots, \vec{h}_{i_{d'}}$ が線形従属であることを意味するが、これは H のどの d-1 列も線形独立であることに矛盾する。

定理 10.3. [n,k] 線形符号 C の $n-k\times n$ パリティ検査行列 H に対して以下が成り立つ。H のなかに線形従属になる d 列の組み合わせが一つでも有れば、C の最小距離 d(C) は d 以下である。

証明. 重みdの符号語が存在することを示せば十分である。パリティ検査行列Hの第i列を \vec{h}_i とおく。

$$H = [\vec{h}_1 \quad \vec{h}_2 \quad \cdots \quad \vec{h}_n]$$

である。条件より、ある d 列は線形従属である。この線形従属な d 列に名前をつける。 $\vec{h}_{i_1},\ldots,\vec{h}_{i_d}$ これらは、線形従属なので、係数 c_{i_1},\ldots,c_{i_d} が存在して

$$c_{i_1}\vec{h}_{i_1} + c_{i_2}\vec{h}_{i_2} + \dots + c_{i_d}\vec{h}_{i_d} = \vec{0}$$

が成り立つ。ベクトル \vec{c} を、添字 i_1,\ldots,i_d の部分を c_{i_1},\ldots,c_{i_d} と等しくしそれ以外の部分を 0 にすると \vec{c} のハミング重み

はdであり、

$$H\vec{c} = c_{i_1}\vec{h}_{i_1} + \dots + c_{i_d}\vec{h}_{i_d}$$
$$= \vec{0}$$

であるから、 \vec{c} は重みdの符号語である。

例 10.4. パリティ検査行列 H によって定義される [7,4] 符号 を C とする。

$$H = \left(\begin{array}{c} 1011100\\1101010\\0111001 \end{array}\right)$$

第2, 6, 7 列を取り出すと線形従属である。したがって、

$$\vec{c} = \boxed{(0100011)}$$

はCの符号語となる。このことは10.3から最小距離が3以下であることを意味する。

11 ハミング符号 @05

定義 11.1 (ハミング符号). 符号長 7 のハミング符号は以下のパリティ検査行列で定義される二元線形符号である。

$$H = \begin{pmatrix} 1011 & 100 \\ 1101 & 010 \\ 0111 & 001 \end{pmatrix}$$

これは標準形なので、対応する標準型生成行列は

$$G = \begin{pmatrix} 1000 & 110 \\ 0100 & 011 \\ 0010 & 101 \\ 0001 & 111 \end{pmatrix}$$

となる。このハミング符号の最小距離は3である。

証明. パリティ検査行列 H の、どの 2 列を取り出しても異なるから、どの 2 列も線形独立である。したがって、10.2 より最小距離は 3 以上である。パリティ検査行列 H の第 1,2,3 列を足すと $(000)^T$ になるので、これらは線形従属である。したがって、10.3 より最小距離は 3 以下である。こうして、最小距離は 3 であることが示された。

定義 11.2 (ハミング符号の復号法). ハミング符号の符号語を送って受信語 $r \in \mathbb{F}_2^7$ を受信したとする。以下の手続きで復号を行う。

- 1. シンドロームs := Hrを計算する
- 2. シンドローム s と同じ H の中の列ベクトルを探す。それを i 列目とする
- 3. i 番目の要素が 1 で他がすべて 0 のベクトルを推定誤り ベクトル \hat{e} とする。
- $4. r \hat{e}$ を推定符号語 \hat{c} とする。

上記の通り選ばれた推定誤りベクトル \hat{e} はシンドロームに対応するコセットに含まれる誤りベクトルe、正確に書くとHe=sとなるeのなかで重みが最小な \hat{e} と一致する。したがって、この復号法はシンドローム復号すなわち最小距離復号となっている。

例 11.3 (ハミング符号の復号法の例). r = (1001110) を受信したとする。

$$s := Hr = \begin{pmatrix} 1011 & 100 \\ 1101 & 010 \\ 0111 & 001 \end{pmatrix} (1001110)^T = \boxed{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}}$$

次に、s が H の第 i=4 列と等しいことを知る.最後に、推定誤りベクトルを $\hat{e}=(0001000)$ とし、推定送信語 $\hat{c}=r-\hat{e}=(1000110)$ を得る。

定義 11.4. 符号長 7 のハミング符号と同様に、m を 2 以上の整数として $[2^m-1, 2^m-1-m, 3]$ ハミング符号を構成でき

る。長さがm の非ゼロの二元ベクトルは 2^m-1 種類あるが、それらを列ベクトルとして並べた $m\times(2^m-1)$ のパリティ検査行列によって定義される二元線形符号が、符号長 2^m-1 のハミング符号である。符号長7 のハミング符号の復号手続きと同じものを使えば、1 つまでの誤りを訂正できる。m=2 のとき、[3,1,3] ハミング符号は長さ3 の繰り返し符

m=2 のとき、[3,1,3] ハミング符号は長さ 3 の繰り返し符号 $\{000,111\}$ と一致する。 \Box **命題 11.5** (ハミング符号は完全符号である). 長さ $n=2^m-1$

のハミング符号 C は、完全である。言い換えると、ハミング符号 C の各符号語を中心とする半径 t(C)=1 のハミング球は

 \mathbb{F}_2^n を余すところなく完全に充填する。 \square 証明. C は $(n=2^m-1,M:=|C|=2^{2^m-1-m},d=3)$ 符号である。さらに、d(C)=3 より、 $t(C)=1,V_2(n,t)=n+1$ となる。これは ないない

なる。これらは、ハミング限界 3.9 を等式で満たし、C は完全となる。 $\hfill \Box$

12 線形符号の最小距離に関する限界式

この節では $\mathbb{F} = \mathbb{F}_2$ と限定する。

thm: シングルトン限界

定理 12.1 (シングルトン限界). [n, k, d] 符号 C に対して、以下が成り立つ。

$d \le n - k + 1$

シングルトン限界は、[n,k,d] 線形符号が存在するための必要条件を与える。シングルトン限界を等式で満たす [n,k,d=n-k+1] 線形符号は最大距離分離符号 (MDS 符号) と呼ばれる。

証明. [n,k,d] 線形符号のパリティ検査行列のサイズは $(n-k) \times n$ だが n-k 行しかないから線形独立になれる列の組は 高々n-k 列までである。このことは、10.3 により最小ハミング距離は最大でも n-k+1 であることを意味する。

定義 12.2 (構成的証明). 存在に関する命題「 $x \in X$ が存在して命題 P(x) が成り立つ。」を証明するときに、P(x) = trueとなる $x \in X$ を明示する証明を構成的証明という。逆に、存在を明示的に示さず、存在しないと仮定して矛盾を導く証明を非構成的証明と言う。大きな有限集合からの最適な要素の選択を含む証明や、ランダムに選択したときに確率が0でないことによる証明も非構成的証明と呼ばれる。工学の分野では、興味のある条件を満たす装置の存在証明をしたいときに、

構成的証明のほうが望ましい。なぜなら、構成的証明はその 実現法も教えてくれるからである。 □

定理 12.3 (非構成的 VG 限界). 線形とは限らない符号空間に対して示した VG 限界 3.14 と同様の定理が線形符号に対しても成り立つ。以下が成り立つとき、[n,k,d] 符号は存在する。

$$2^{k-1} < \frac{2^n}{V_2(n, d-1)} \tag{12.4}$$

証明. 球被覆限界 3.11 より、[n,k-1,d] 符号 C_{k-1} に対して、(12.4) ならば、 C_{k-1} は最大ではないので、 C_{k-1} のどの符号語とも距離が d 以上離れている $x \in \mathbb{F}^n, x \notin C_{k-1}$ が存在する。 C_k を $C_{k-1} \cup \{x\}$ によって張られる線形符号とする。 C_k の最小距離が d 以上になることを示そう。 C_{k-1} から C_k に新たに加えられた符号語は

$$z = ax + y (a \in \mathbb{F}, a \neq 0, y \in C_{k-1})$$

と表すことができる。

$$w(z) = w(a^{-1}z) = w(x + a^{-1}y) = d(x, \underbrace{-a^{-1}y}_{\in C_{k-1}}) \ge d$$

となる。最後の不等号はx の選び方より分かる。新たに追加された符号語z のハミング重みはd 以上になる事がわかった。7.2 より、 C_k は [n,k,d] 符号である。

定理 12.5 (構成的線形 VG 限界). VG 限界 3.14 および 12.3 の証明は、x の存在に関して構成的で無かったことに注意しよう。以下の条件が成り立つとき、以下の手順で [n,k,d] 符号を構成することができる。

$$2^{n-k} > \sum_{j=1}^{d-2} \binom{n-1}{j} \tag{12.6}$$

等価的に以下のように表せる。

$$2^k < \frac{2^n}{\sum_{j=1}^{d-2} \binom{n-1}{j}}$$

以下の手順で列ベクトル $h_1,\ldots,h_n\in\mathbb{F}^{n-k}$ を選択し、 $(n-k)\times n$ パリティ検査行列 $H^{(n)}=(h_1,\ldots,h_n)$ を作ると、任意の d-1 以下の列が線形独立となる。

- 1. i:=1 とする。任意の非零ベクトル $h_1 \in \mathbb{F}^{n-k}$ を選択する。 $H^{(1)}=(h_1)$ とする。
- 2. $h_{i+1} \in \mathbb{F}^{n-k}$ を $H^{(i)}$ に加えた $H^{(i+1)} := (H^{(i)}|h_i)$ の任意の d-1 個以下の列が線形独立になるようにしたい。 $H^{(i)}$ の任意の d-1 個以下の列は線形独立であるから、 h_{i+1} が H_i の d-2 本以下の列ベクトルの線形結合で表せないようになっていれば良い。

 $H^{(i)}$ の列 h_1,\ldots,h_i から選ばれた任意の異なる j 列 $\tilde{h}_1,\ldots,\tilde{h}_j$ の非零係数 $a_i\neq 0$ for all $i=1,\ldots,j$ によ

る線形結合

$$x_j := a_1 \tilde{h}_1 + \dots + a_j \tilde{h}_j \tag{12.7}$$

で表せるベクトル x_j の集合を $S_j^{(i)}$ と書く $(0 \le j \le d-2)$ 。 このように表せないベクトル h_{i+1} をパリティ検査行列に加えればよい。集合

$$\mathbb{F}^{n-k} - \bigcup_{i=0}^{d-2} S_j^{(i)} \tag{12.8}$$

が空でなければ、この集合に含まれるベクトルを h_{i+1} とすれば良い。

3. i = n - 1 ならば終了する。i < n - 1 ならば、i := i + 1 として、2 に戻る。

証明. $1 \le i \le n-1$ に対して、ステップ 2 における (12.8) が空集合でなければ、定理は成り立つ。(12.7) の選択は、i 個のベクトルから j 個を選択してそれぞれ $|\mathbb{F}|-1$ 通りの非零係数を決定する操作によってなされるので、

$$|S_j^{(i)}| = \binom{i-1}{j} (|\mathbb{F}| - 1)^j \stackrel{(\mathbb{F} = \mathbb{F}_2)}{=} \binom{i}{j}$$

となる。次が成り立つ。

$$|\mathbb{F}^{n-k}| = 2^{n-k} \stackrel{(12.6)}{>} \sum_{j=1}^{d-2} \binom{n-1}{j}$$

$$\stackrel{(i \leq n-1)}{\geq} \sum_{j=1}^{d-2} \binom{i}{j} = \sum_{j=0}^{d-2} |S_j^{(i)}| \stackrel{(ユニオン限界)}{\geq} \# \bigcup_{j=0}^{d-2} S_j^{(i)}$$

したがって、(12.8) が空集合でないことがわかる。

13 重み分布と検出誤り

定義 13.1 (重み分布と重み母関数). 符号長n の線形符号C に対して、ハミング重みw の符号語の数を A_w と書く。

$$A_w = \#\{c \in C \mid w_H(c) = w\}$$

 $(A_w)_{w=0}^n$ を符号 C の重み分布といい、以下の 2 つの多項式を C の重み分布多項式という。

$$A(X) := \sum_{w=0}^{n} A_w X^w = \sum_{c \in C} X^{w_H(c)}$$

$$A(X,Y) := \sum_{w=0}^{n} A_w X^{n-w} Y^w = \sum_{c \in C} X^{n-w_H(c)} Y^{w_H(c)}$$

上の対応により、重み分布と重み母関数を同一視する。線形符号に対して、 $A_w \neq 0$ なる最小の w>0が、最小重み $w_{\min}(C)$

等価的に最小距離 $d_{\min}(C)$ を与える。線形符号に対して、零符号語は唯一存在するので、 $A_0=1$ である。

例 13.2. 長さ n=3 の繰り返し符号 $\{000,111\}$ の重み分布 A は以下の通りである。

$$A_0 = \boxed{1}, A_1 = \boxed{0}, A_2 = \boxed{0}, A_3 = \boxed{1},$$

 $A(X) = \boxed{1 + X^3}, A(X, Y) = \boxed{X^3 + Y^3}$ (13.3)

長さ n=3 の単一パリティ検査符号 $\{000,110,011,101\}$ の重み分布 B は以下の通りである。

$$B_0 = \boxed{1}, B_1 = \boxed{0}, B_2 = \boxed{3}, B_3 = \boxed{0},$$

 $B(X) = \boxed{1 + 3X^2}, B(X, Y) = \boxed{X^3 + 3XY^2}$ (13.4)

定義 13.5 (誤り検出、検出誤り、誤り見逃し確率). 線形とは限らない符号 C を用いて、反転確率 p の 2 元対称通信路 BSC(p) で通信を行う。送信語 x に対して、受信語を y とする。受信機は誤り訂正はせずに、通信路で誤りが生じたときには送信者に再送を要求する。このとき、受信語が符号語でない $y \notin C$ ならば、通信路で誤りが生じたと判断する。このとき誤りを検出したという。通信路で誤りが生じているにもかかわらず、誤りを検出できないことを、検出誤りまたは見逃し誤りと言う。検出誤り確率を以下によって定義する。

$$P_u := \Pr(Y \in C, Y \neq X)$$

ここで、送信確率 Pr(X = x) を陽に使うと、

$$P_u = \sum_{x \in C} \Pr(Y \in C, Y \neq X \mid X = x) \Pr(X = x)$$

となる。 $\fill \Box$ **命題 13.6** (検出誤り確率の重み分布による表現). 反転確率 p

の 2 元対象通信路で線形符号 C で符号化された通信を行うことを考える。重み分布 $A(z)=\sum_{w=0}^n A_w z^w$ を有する符号長 n の線形符号 C に対して、誤り見逃し確率は以下で与えられる。

$$P_u = A(p, 1 - p) - (1 - p)^n$$

$$= (1 - p)^n \left(A\left(\frac{p}{1 - p}\right) - 1 \right)$$
(13.7)
$$(13.8)$$

証明.

$$P_{u} = \Pr(Y \in C, Y \neq X)$$

$$= \sum_{x,y \in \mathbb{F}^{n}} \Pr(X = x, Y = y) \mathbb{1}[y \in C, x \neq y]$$

$$= \sum_{x,y \in \mathbb{F}^{n}} \Pr(Y = y | X = x) \Pr(X = x) \mathbb{1}[y \in C, x \neq y]$$

ここで、誤りベクトルZ := Y - Xとすると、以下を得る。

$$= \sum_{x,y \in \mathbb{F}^n} \Pr(Z = y - x) \Pr(X = x) \mathbb{1}[y \in C, y - x \neq 0]$$

 $= \sum_{z,x \in \mathbb{F}^n} \Pr(Z=z) \Pr(X=x) \mathbb{1}[x+z \in C, z \neq 0]$

この式に貢献する x、言い換えると $P(X = x) \neq 0$ となる xは $x \in C$ であるから次の等号を得る。

$$\stackrel{\text{(a)}}{=} \sum_{z,x \in \mathbb{F}^n} \Pr(Z=z) \Pr(X=x) \mathbb{1}[z \in C, z \neq 0]$$

$$= \sum_{z,x \in \mathbb{F}^n} \Pr(Z=z) \Pr(X=x) \mathbb{1}[z \in C, z \neq 0]$$

$$\stackrel{\text{(b)}}{=} \sum_{1 \leq w \leq n} \sum_{z \in \mathbb{F}^n: w_H(z) = w} \sum_{x \in C}$$

$$\Pr(Z=z)\Pr(X=x)\mathbb{1}[z\in C]$$

$$\stackrel{\text{(c)}}{=} \sum_{1 \le w \le n} \sum_{x \in C} A_w p^w (1-p)^{n-w} \Pr(X=x)$$

$$\stackrel{\text{(d)}}{=} \sum_{1 < w < n} A_w p^w (1 - p)^{n - w}$$

$$\stackrel{(A_0=1)}{=} \sum_{0 \le n \le n} A_w p^w (1-p)^{n-w} - (1-p)^n$$

$$= A(1-p,p) - (1-p)^n$$

となり、(13.7)を得る。(a)ではCの線形性を使った。(b)ではzの総和を重みがwであるものに分割した。(b)では $w_H(z)>0$ である z に対して $\sum_{z\in \mathbb{F}^n:w_H(z)=w}\mathbb{1}[z\in C]=A_w$ であることと、(d) では、 $\sum_{x\in C}\Pr(X=x)=1$ であることを使った。 $\Pr(Z=z)=p^w(1-p)^{n-w}$ であることを使った。さらに、

$$P_{u} = \sum_{1 \le w \le n} A_{w} p^{w} (1-p)^{n-w}$$

$$= (1-p)^{n} \sum_{w=1}^{n} A_{w} \left(\frac{p}{1-p}\right)^{w}$$

$$\stackrel{(A_{0}=1)}{=} (1-p)^{n} \left(\sum_{w=0}^{n} A_{w} \left(\frac{p}{1-p}\right)^{w} - 1\right)$$

より、(13.8) を得る。

14 重み分布に関する双対定理

091454_130ct17

補題 14.1 (アダマール変換). 写像 $f: \mathbb{F}_2^n \to G$ から、写像 $\hat{f}: \mathbb{F}_2^n \to G$ への変換を以下により定義する。 \hat{f} を f のアダマール変換という。ここで、G は単位的可換環(加減算と乗算が定義された代数系: 例えば整数集合や多項式集合)である。

$$\hat{f}(u) \stackrel{\text{def}}{=} \sum_{v \in \mathbb{F}_2^n} (-1)^{\langle u, v \rangle} f(v) \text{ for } u \in \mathbb{F}_2^n$$

$$\langle u, v \rangle = u_1 v_1 + \dots + u_n v_n \in \mathbb{F}_2$$

$$(14.2)$$

このとき、[n,k]線形符号Cに対して以下が成り立つ。

$$\sum_{u \in C} \hat{f}(u) = |C| \sum_{v \in C^{\perp}} f(v)$$
 (14.3)

証明.

$$\sum_{u \in C} \hat{f}(u) \stackrel{(14.2)}{=} \sum_{u \in C} \sum_{v \in \mathbb{F}_2^n} (-1)^{\langle u, v \rangle} f(v)$$

$$= \sum_{v \in \mathbb{F}_2^n} f(v) \sum_{u \in C} (-1)^{\langle u, v \rangle}$$

$$\stackrel{(a)}{=} \sum_{v \in C^{\perp}} f(v) \sum_{u \in C} (-1)^{\langle u, v \rangle} + \sum_{v \notin C^{\perp}} f(v) \sum_{u \in C} (-1)^{\langle u, v \rangle}$$

$$\stackrel{(b)}{=} \sum_{v \in C^{\perp}} f(v)|C| + 0$$

(a) では $\mathbb{F}_2^n=C^\perp+(C^\perp)^c$ を利用した。ただし、 $(C^\perp)^c:=\mathbb{F}_2^n-C^\perp$ である。(b) の第1項は、 $v\in C^\perp$ に対して、 $\langle u,v\rangle=0$ であることによる。第2項が0 になることを説明する。

$$\sum_{u \in C} (-1)^{\langle u, v \rangle} = \sum_{u \in C: \langle u, v \rangle = 0} (-1)^{\langle u, v \rangle} + \sum_{u \in C: \langle u, v \rangle = 1} (-1)^{\langle u, v \rangle}$$
$$= \sum_{u \in C: \langle u, v \rangle = 0} 1 + \sum_{u \in C: \langle u, v \rangle = 1} (-1)$$
$$= \frac{\#C}{2} - \frac{\#C}{2} = 0$$

となること (最後の等式) を主張する。まず、 $\langle u,v \rangle = 0$ となる $u \in C$ となる $u \in C$ の数 $\sum_{u \in C: \langle u,v \rangle = 0} 1$ を数えよう。 $v \notin C^\perp$ に対して、v は C のパリティ検査行列の行ベクトルの線形結合 で表すことはできない。できたと仮定すると、パリティ検査行列の行ベクトルは C^\perp に含まれるのでそれらの線形結合 v は $v \in C^\perp$ となってしまうからである。したがって、 $\mathrm{rank}\binom{H}{v} = \mathrm{rank}(H) + 1$ となる。よって、 $u \in C$ となるための制約条件 (H の各行と u の内積が 0 となる)に $\langle u,v \rangle = 0$ を加えると、C の次元が一つ下がって、

$$\#\{u \in C \mid \langle u, v \rangle = 0\} = 2^{\dim C - 1} = \frac{\#C}{2}$$

となる。 $\langle u,v \rangle = 1$ となる $u \in C$ の数は残りの数 $\frac{\#C}{2}$ だけある。こうして、

$$\sum_{u \in C} (-1)^{\langle u, v \rangle} = \frac{\#C}{2} - \frac{\#C}{2} = 0$$

となることが分かる。

m·MacWilliams の何等式

定理 14.4 (重み分布に関する双対定理、MacWilliams の恒等式). MacWilliams の恒等式は、[n,k] 主符号 C と [n,n-k] 双対符号 C^{\perp} の重み分布の関係を与える。C の重み分布を A(X,Y)、 C^{\perp} の重み分布を B(X,Y) と書く。このとき、以下が成り立つ。

$$B(X,Y) = \frac{1}{|C|}A(X+Y,X-Y)$$
 (14.5)

例:(13.4) と (13.3) の例に対して、(14.5) が確かに成り立つことが確かめられる。

証明. 14.1 における G を整数係数の 2 変数多項式の集合 $\mathbb{Z}[X,Y]$ とし、

$$f(u) := X^{n-w(u)}Y^{w(u)}$$
 (14.6)

とする。このとき、(14.3) の左辺は以下より、B(X,Y) となる。

$$\sum_{u \in C^{\perp}} f(u) = \sum_{u \in C^{\perp}} X^{n - w(u)} Y^{w(u)} = B(X, Y)$$

14.1の(14.3)より次が成り立つ。

$$\sum_{u \in C^{\perp}} f(u) = \frac{1}{|C|} \sum_{u \in C} \hat{f}(u)$$
$$\hat{f}(u) \stackrel{\text{def}}{=} \sum_{v \in C} (-1)^{\langle u, v \rangle} f(v) \text{ for } u \in \mathbb{F}_2^n$$

この右辺に登場する $\hat{f}(u)$ は、(14.6) に対して、次のようにシンプルな多項式で表せる。

$$\hat{f}(u) = \sum_{v \in \mathbb{F}_2^n} (-1)^{\langle u, v \rangle} X^{n-w(v)} Y^{w(v)}
= \sum_{v \in \mathbb{F}_2^n} (-1)^{u_1 v_1 + \dots + u_n v_n} X^{(1-v_1) + \dots + (1-v_n)} Y^{v_1 + \dots + v_n}
\stackrel{(a)}{=} \prod_{i=1}^n (X + (-1)^{u_i} Y)
= \prod_{i=1}^n \begin{cases} X + Y, & u_i = 0 \\ X - Y, & u_i = 1 \end{cases}
= (X + Y)^{n-w(u)} (X - Y)^{w(u)}$$

(a) は、右辺を $n=2,3,\ldots$ の場合に展開すると正しいことが分かる。(14.3) の右辺は以下を満たすことが分かる。

$$\sum_{u \in C} \hat{f}(u) = \sum_{u \in C} (X + Y)^{n - w(u)} (X - Y)^{w(u)}$$
$$= A(X + Y, X - Y)$$

こうして、証明が完成する。

次の定理は、Hartman-Rudolph 復号アルゴリズムの導出の ためにここに記したが、授業では扱わない。将来、演習で扱 うかもしれません。

定理 14.7 (拡張 MacWilliams 恒等式).

$$X := (X_1, \dots, X_n)$$

$$Y := (Y_1, \dots, Y_n)$$

$$P_C(X; Y) := \sum_{c \in C} \prod_{j \in [n]} X_j^{1 - c_j} Y_j^{c_j}$$

$$P_{C^{\perp}}(X; Y) := \sum_{c \in C^{\perp}} \prod_{j \in [n]} X_j^{1 - c_j} Y_j^{c_j}$$

とする。次が成り立つ。

$$P_C(X;Y) = \frac{1}{|C|} P_{C^{\perp}}(X+Y;X-Y)$$

 $X := \underline{1}, Y := X$ とすることで、次を得る。

$$P_C(X) := \sum_{c \in C} \prod_{i \in [n]} X_j^{c_j}$$

$$P_C(X) = \frac{1}{|C|} P_{C^{\perp}} \left(\prod_{j=1}^n \frac{1 + X_j}{1 - X_j} \right) \prod_{j=1}^n (1 - X_j)$$

115652_25Ju120

証明. 14.1 における G を整数係数の 2 変数多項式の集合 $\mathbb{Z}[X,Y]$ とし、

$$f(u) = \prod_{j=1}^{n} X_j^{1-u_j} Y^{u_j}$$

とする。このとき、次が成り立つ。

$$\sum_{u \in C^{\perp}} f(u) = \mathcal{P}_{C^{\perp}}(X;Y)$$

$$\hat{f}(u) = \sum_{v \in \mathbb{F}_2^n} (-1)^{\langle u, v \rangle} \prod_{j=1}^n X^{1-v_j} Y^{v_j}$$

$$= \sum_{v \in \mathbb{F}_2^n} (-1)^{u_1 v_1 + \dots + u_n v_n} X_1^{1-v_1} \cdots X_n^{1-v_n} Y_1^{v_1} \cdots Y_n^{v_n}$$

$$\stackrel{(a)}{=} \prod_{j=1}^n (X_j + (-1)^{u_i} Y_j)$$

$$= \prod_{j=1}^n (X_j + Y_j)^{1-u_j} (X_j - Y_j)^{u_j}$$

(a) では、因数分解をした。例として、n=2 のとき、(a) は次となる。

$$\begin{split} &(X_1 + (-1)^{u_1}Y_1)(X_2 + (-1)^{u_2}Y_2) \\ &= X_1X_2 + (-1)^{u_2}X_1Y_2 + (-1)^{u_1}Y_1X_2 + (-1)^{u_1+u_2}Y_1Y_2 \\ &= (-1)^{u_1v_1 + u_2v_2}X_1^{(1-v_1)}X_2^{(1-v_2)}Y_1^{v_1}Y_2^{v_2}\Big|_{(v_1,v_2) = (0,0)} \\ &+ (-1)^{u_1v_1 + u_2v_2}X_1^{(1-v_1)}X_2^{(1-v_2)}Y_1^{v_1}Y_2^{v_2}\Big|_{(v_1,v_2) = (0,1)} \\ &+ (-1)^{u_1v_1 + u_2v_2}X_1^{(1-v_1)}X_2^{(1-v_2)}Y_1^{v_1}Y_2^{v_2}\Big|_{(v_1,v_2) = (1,0)} \\ &+ (-1)^{u_1v_1 + u_2v_2}X_1^{(1-v_1)}X_2^{(1-v_2)}Y_1^{v_1}Y_2^{v_2}\Big|_{(v_1,v_2) = (1,0)} \end{split}$$

これより、次が成り立つ。

$$\sum_{u \in C} \hat{f}(u) = P_C(X + Y, X - Y)$$

14 と 14 を (14.3) に代入して、証明が完成する。

162005 20ct:24

定義 **15.1** (代数系). 整数の集合 \mathbb{Z} に関して、 $a,b \in \mathbb{Z}$ に対して a+b と言う演算+が定義されている。このように、一般に集合 A とその集合上で定義された演算。に対して、以下が成り立つ組 (A, \circ) を代数系という。

(**閉性**) $\forall a_1, a_2 \in A$ に対して、

$$a_1 \circ a_2 \in A$$

例: $(\mathbb{R},\{+,-\})$ は代数系である。

例: $(\mathbb{N},\{+,-\})$ は減算に関して閉じてないので、代数系ではない。

定義 15.2 (半群、群、可換群). 整数集合 \mathbb{Z} と \mathbb{Z} 上で定義された演算 + からなる代数系 $(A:=\mathbb{Z},\circ:=+)$ は、以下の性質を満たす。

(結合性) 演算結果が実行する順序によらない。正確に述べる と $\forall a_1, a_2, a_3 \in A$ に対して以下が成り立つ。

$$a_1 \circ (a_2 \circ a_3) = (a_1 \circ a_2) \circ a_3$$

(単位元の存在) $e \in A$ が存在して、

$$e \circ a = a \circ e = a$$

(逆元の存在) 任意の $a \in A$ に対して、 $a' \in A$ が存在して、

$$a' \circ a = a \circ a' = e$$

(可換性) 任意の $a_1, a_2 \in A$ に対して

$$a_1 \circ a_2 = a_2 \circ a_1$$

逆に、与えられた代数系 (A,\circ) に対して、次の名前を与える。

- 1. 単位元の存在・逆元の存在・結合性が成り立つ代数系 (A, \circ) を、群という。
- 2. 可換性が成り立つ群 (A, \circ) を可換群という。
- 3. 結合性が成り立つ代数系 (A, \circ) を、半群という。
- 4. 結合性と単位元の存在が成り立つ代数系 (A, \circ) を、モノイドという。
- **例 15.3.** 群に関する例と反例を挙げる。
 - 1. 整数、有理数、実数、複素数の集合を、それぞれ G と書く。 (G,+) は可換群を成す。単位元は $\boxed{0} \in G$ であり、 $a \in G$ の逆元は $\boxed{-a} \in G$ である。
 - 2. 0 を除いた有理数、実数、複素数の集合を、それぞれ G と書く。 (G, \times) は可換群を成す.単位元は $\boxed{1} \in G$ であり、 $a \in G$ の逆元は $\boxed{1/a} \in G$ である。

3. 0 を除いた整数の集合 $(G := \mathbb{Z} \setminus \{0\}, \times)$ は、乗法に関して群とならない。実際、 $\boxed{1} \in G$ が単位元となるが、 $2 \in G$ の逆元、言い換えると

$$2 \times a = a \times 2 = 1$$
 となる $a \in G$

が存在しない。

- 4. 整数 n > 0 に対して、n の倍数からなるを集合 $n\mathbb{Z}$ と書く。 $(n\mathbb{Z}, +)$ は可換群となる。
- 5. 整数 n > 0 に対して、

$$\mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z} := \{0, 1, \dots, n-1\}$$

と書く。なぜこのように書くかは、後で分かる。 $a,b \in \mathbb{Z}_n$ に対して、

$$a+b \stackrel{\text{def}}{=} a+b \mod n$$

と定義する。ただし、左辺の + は \mathbb{Z}_n における加算を、右辺の + は \mathbb{Z} における加算を表し、 $a+b \mod n$ はa+b を n で割った余りを表している。 $(\mathbb{Z}_n,+)$ は可換群となる。群 \mathbb{Z} と群 $n\mathbb{Z}$ から新たな群 $\mathbb{Z}/n\mathbb{Z}$ を構成したとみなせる。このような群を商群というのだが、今回の講義では商群の作り方を学ぶ。

n=3 とすると、

$$\begin{array}{c|cccc} + & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & \hline 0 \\ 2 & 2 & \hline 0 & \hline 1 \\ \end{array}$$

- 6. サイズn の複素正則行列の集合は、乗法に関して群をなす。これを、複素一般線形群といい GL_n と書く。単位元はサイズn の単位行列 I_n であり、行列 $A \in \operatorname{GL}_n$ の逆元は逆行列 A^{-1} である。正則行列は言い換えると逆元が存在する行列なので、群となることは当然である。
- 7. サイズn の複素正方行列の集合を M_n と書く。 M_n は乗法に関して群をなさない。以下でこれを説明する。単位元はサイズn の単位行列 I_n である。 $\boxed{非正則}$ な行列 $A \in M_n$ に対して、逆元つまり

$$AA' = A'A = I_n$$

となる逆行列 $A' \in M_n$ は存在しない。

8. 複素一般線形群 GL_n の元のうち、行列式が 1 である行列の集合は、乗法に関して群をなす。これを、複素特殊線形群と言い、 SL_n と書く。以下では、閉性 $A_1,A_2\in\operatorname{SL}_n\Rightarrow A_1A_2\in\operatorname{SL}_n$ を示す。 $\det A_1=\det A_1=1$ で

ある。

$$\det A_1 A_2 = \det A_1 \det A_1 = 1$$

となるので、 $A_1A_2 \in SL_n$ が示せた。

- 9. サイズnのユニタリ行列の集合は、乗法に関して群をなす。これを、ユニタリ群といい U_n と書く。
- 10. 代数系 $(\mathbb{Z}, -)$ では、結合律の成り立たない。実際、

$$(5-3)-2 \neq 5-(3-2)$$

となる。

定義 15.4 (演算子に関する慣習). 群 (G, \circ) に関して、以下の慣習が広く使われている。

- - 1. G は可換であることが想定される。可換な加法群 E を E を E が想定言う。
 - 2. 単位元を 0 と書く。
 - 3. a の逆元を -a と書く。
 - 4. b + (-a) を b a と書く。
- 演算が乗算×である乗法群(G,×)に対して、

- 1. 単位元を1と書く。
- 2. 自然数 n > 0 に対して、 $\overbrace{a \times \cdots \times a}$ を a^n と書く。

n times

n times

- $3. a^0$ を 1 と定める。
- 4. a の逆元を a^{-1} と書く。
- 5. 自然数 n > 0 に対して、 $a^{-1} \times \cdots \times a^{-1}$ を a^{-n} と 書く。
- 6. $b \times (a^{-1})$ を b/a と書く。
- 7. × は省略されることがある。

本講義では、群Gの演算子がなんであるかに興味が無い場合には、 (G, \circ) を用いるか、表記を簡潔にするためにGを乗法群として扱う。

定義 15.5 (位数). 群 G の要素数を G の位数といい、 $\operatorname{ord}(G)$ と書く。群 G の元 $g \in G$ に対して、

$$g^1, g^2, \ldots,$$

と並べたときに初めて単位元 1 になる $g^k=1$ に対して、k を元 $g\in G$ の位数といい、 $\operatorname{ord}(g)$ と書く。

命題 15.6 (単位元は一意である). 群 (G, \times) に関して、単位元は唯一である。 □

$\overline{\mathbf{u}}$ 明. e,e' を単位元とする。 e,e' が単位元であることから、
(15.2)(単位元の存在) より、
ee'=e',
ee' = e

$$ee'=e$$
を得る。よって、結局 $e'=e$ である。

命題 15.7 (逆元は一意である). 群 (G, \times) に関して、 $a \in G$ の 逆元は一意に存在する。

$$a'a = e$$

 $(LHS) \times a'' = (a'a)a'' = a'(aa'') = a'e = a'$

を得る。両辺 LHS, RHS に右から a'' をかけるとそれぞれ

$$(RHS) \times a'' = ea'' = a''$$

となり、結局 a' = a'' である。

命題 15.8 (逆元の逆元は元に戻る). 群
$$(G, \times)$$
 の元 $a \in G$ に対して、以下が成り立つ。

$$(a^{-1})^{-1} = a$$

証明. $(a^{-1})^{-1} =: a'$ と書く。a'は a^{-1} の逆元なので、(15.2)(単 位元の存在)より、 $a'a^{-1} = 1$ となる。この両辺 LHS, RHS に、右から a を乗ずると $(LHS)a = (a'a^{-1})a = a'(a^{-1}a) = a'1 = a'$

(RHS)a = 1a = aとなり、a'=aを得る。

M 15.9. 可換とは限らない加法群 (G, +) に対して、以下が成

り立つ。

-(-a) = a

命題 15.10. 群 (G, \times) の要素 $x, y \in G$ について,

 $(xy)^{-1} = y^{-1}x^{-1}$

が成り立つ。

つまり

 $\overline{\mathbf{L}}$ 明. 単位元を e と書く。 xy の逆元が $y^{-1}x^{-1}$ であること、 (15.11)

 $(xy)(y^{-1}x^{-1}) = e$ $(y^{-1}x^{-1})(xy) = e$ (15.12)

(ma)

を示せば良い。

$$(xy)(y^{-1}x^{-1}) \stackrel{\text{(i)}}{=} x(y(y^{-1}x^{-1}))$$

$$\stackrel{\text{(ii)}}{=} x((yy^{-1})x^{-1}))$$

$$\stackrel{\text{(iii)}}{=} x(ex^{-1})$$

$$\stackrel{\text{(iv)}}{=} x(x^{-1})$$

$$\stackrel{\text{(v)}}{=} e$$

となる。第1, 2等号には結合律を,第3、5等号には逆元の性質を,第4等号には単位元の性質を使った。こうして (15.11) は示された。 (15.12) も同様に示せる。

例 15.13. 可換とは限らない加法群 (G, +) に対して、以下が成り立つ。 $x, y \in G$ に対して x + y の逆元は (-y) + (-x) である。正確に書くと、

$$-(x+y) = (-y) + (-x)$$

である。実際、

$$(x + y) + (-y) + (-x) = x + (y + (-y)) + (-x)$$
$$= x + 0 + (-x)$$
$$= x + (-x)$$
$$= 0$$

により確かめられる。

16 部分群、剰余類群、正規部分群

定義 16.1 (部分群). 群 (G, \times) の部分集合 $H \subset G$ に対して、 (H, \times) が群であるとき、H は G の部分群であると言う。

例 16.2. 整数 m > 0 に対して、 $m\mathbb{Z}$ は m の倍数の集合とする。

$$m\mathbb{Z} := \{ mx \mid x \in Z \}$$

$$(m\mathbb{Z},+)$$
 は $(\mathbb{Z},+)$ の部分群である。
定義 **16.3.** 群 G とその部分集合 $S \subset G$ に対して、

$$Sg := \{ sg \mid s \in S \} \text{ for } g \in G$$

と書く。群の演算が加算で定義されている場合にはS+g,g+Sを同様に定義する。

 $qS := \{qs \mid s \in S\} \text{ for } q \in G$

$$S + g := \{s + g \mid s \in S\}$$

 $g + S := \{g + s \mid s \in S\}$

定義 **16.4** (正規部分群、 normal subgroup). 群 G とその部分 群 $N \subset G$ に対して、

$$\forall g \in G, gN = Ng$$
 (16.5) が成り立つとき、 N は正規であるといい、 $N \triangleleft G$ と書く。 \square

<mark>命題 16.6.</mark> 可換群 G の任意の部分群 N は正規である。

証明. 以下のように示すことができる。

$$Ng = \{ng \mid n \in N\} = \{gn \mid n \in N\} = gN$$

例 16.7. 整数 m>0 に対して、 $m\mathbb{Z}$ は \mathbb{Z} の正規部分群である。 16.6 より明らかだが、定義通りに確かめると、任意の $i\in\mathbb{Z}$ に対して、

$$i + m\mathbb{Z} = \{i + mx \mid x \in \mathbb{Z}\}$$
$$= \{mx + i \mid x \in \mathbb{Z}\}$$
$$= m\mathbb{Z} + i$$

となることから分かる。 $m\mathbb{Z}$ が (16.5) の N に相当することに注意しよう。

- <mark>命題 16.8</mark> (正規部分群、 normal subgroup). 次は同値である。
 - 1. $N \triangleleft G$ である。
 - 2. $\forall g \in G$ に対して、

$$gNg^{-1} = N$$

3. $\forall n \in \mathbb{N}, \forall g \in G$ に対して、

$$gng^{-1} \in N \tag{16.9}$$

15

証明. 演習問題として出す。

定義 16.10 (部分群を法とする左合同関係、左剰余類 (left coset)). 群 (G, \times) とその部分群 $H \subset G$ に対して、ある $h \in H$ が存在して

$$g_1h = g_2$$

言い換えると、

$$g_1^{-1}g_2 \in H \text{ or } g_2^{-1}g_1 \in H$$

となるとき $g_1, g_2 \in G$ は H を法として左合同であるといい、

$$g_1 \equiv g_2 \pmod{H}$$

 $^{^{15}}$ 部分群 $H\subset G$ と $g\in G$ に対して、 gHg^{-1} は、G の部分群になり、H の共役部分群であるという。 $g,g'\in G$ は、 $g'=gxg^{-1}$ for some $x\in G$ であるとき、共役であるという。共役関係は同値関係である。この同値関係による G の分類を共役類という。

と書く。この関係 $g_1\sim g_2$ は同値関係である。g を代表元とする同値類 $[g]:=\{g'\in G\mid g\sim g'\}$ を左剰余類という。これに対して、

$$[g] = gH \tag{16.11}$$

が成り立つ。この同値関係による商集合を

$$G/H := G/ \sim = \{[g] \mid g \in G\} = \{gH \mid g \in G\}$$

と書く。

演算が可換とは限らない加算で定義されている群 (G, +) の場合には、 $g_1 \sim g_2$ を $\exists h \in H, g_1 + h = g_2$ いいかえると $-g_1 + g_2 \in H$ または $-g_2 + g_1 \in H$ によって定義し、左剰余

類は [g] = g + H となる。この場合も、商集合はG/H と書く。 左を右に置き換えたもので、右剰余類を定義する。H が正 規部分群であれば、gH = Hg となり左右剰余類の区別は無く なる。

証明. 群 (G, \times) 上の左合同関係 \sim が同値関係であることを示す。 $g \times 1 = g$ なので、 $g \sim g$ となるので、反射律が成り立つ。 $g_1h = g_2$ ならば両辺に<mark>右から h^{-1} をかけて $g_2h^{-1} = g_1$ となるので、対称律も成り立つ。 $g_1h = g_2, g_2h' = g_3$ ならば $g_1hh' = g_3$ なので、推移律も成り立つ。</mark>

(16.11)は、以下より明らか。

$$[g] = \{g' \mid g \sim g'\}$$

$$= \{g' \mid \exists h \in H, gh = g'\}$$

$$= \{gh \mid h \in H\}$$

$$= gH$$

例 16.12. 整数の加算に関する群 $(\mathbb{Z},+)$ の部分群 $(m\mathbb{Z},+)$ に対して、商集合 $\mathbb{Z}/m\mathbb{Z}$ は以下を満たす。

- 1. $i, j \in \mathbb{Z}$ に対して、 $i \sim j \Leftrightarrow -i + j \in m\mathbb{Z}$ である。
- $2. i \in \mathbb{Z}$ に対して、 $[i] = i + m\mathbb{Z}$ である。
- $3. [i] \in \mathbb{Z}/m\mathbb{Z}$ に対して、以下が成り立つ。

$$[i] := \{ j \in \mathbb{Z} \mid i \sim j \}$$
$$= \{ j \in \mathbb{Z} \mid -i + j \in m\mathbb{Z} \}$$
$$= \{ j \in \mathbb{Z} \mid i \equiv j \mod m\mathbb{Z} \}$$

4. $[i] \in \mathbb{Z}/m\mathbb{Z}$ は、m シフトに対して不変である。正確に述べると以下が成り立つ。

$$[i] = [m+i]$$

 $5. \ \mathbb{Z}/m\mathbb{Z} = \{[0], [1], \dots, [m-1]\}$ と書ける。

124952_160ct17

補題 16.13. 16 モノイド(単位元 $1 \in S$ を有し結合性を満たす代数系) (S, \times) 上の同値関係 \sim によって定義される同値類 $[x] := \{x' \in S \mid x \sim x'\}$ が以下を満たすとする。

1. $\forall x, x', y, y' \in S$ に対して、

$$[x] = [x'], [y] = [y'] \Rightarrow [x \times y] = [x' \times y']$$
(16.14)

2. $\forall x \in S$ に対して、 $\exists x' \in S$ が存在して、

$$[x \times x'] = [1]$$
 (16.15)

となる。

このとき、 $x,y \in S$ に対して

$$[x] \times [y] \stackrel{\mathrm{def}}{=} [x \times y]$$

と定義することにより、商集合 $(S/\sim, \times)$ は群となる。

証明. 演算の結果が代表元の取り方によらないことは、(16.14) によって保証される。結合則

$$\forall [x], [y], [z] \in S/\sim, \quad \Big([x] \times [y]\Big) \times [z] = [x] \times \Big([y] \times [z]\Big)$$

 $^{^{16}}$ モノイドから始めるからこんな抽象化した議論にしなければいけないのであって,群から初めてシンプルに教えたほうがいいのでは?

が満たされることは、モノイドSの結合則に帰着させて

$$([x][y])[z] = [xy][z] = [(xy)z] = [x(yz)] = [x][yz] = [x]([y][z])$$
 (16.16)

と示される。 $[1] \in S/\sim$ が単位元となることも同様に示せる。

$$[1][x] = \boxed{[1x]} = [x]$$
$$[x][1] = \boxed{[x1]} = [x]$$

(16.15) によって

$$[x][x'] = [xx'] = [1]$$

となる $[x'] \in S/\sim$ が存在する。これは、 $[x] \in S/\sim$ の逆元 $[x'] \in S/\sim$ が存在することを意味する。こうして、商集合 $(S/\sim,\times)$ は群となることが分かった。

定義 16.17 (剰余類群、商群). 群G の部分群N が正規部分群であるとする。 $(G/N,\times)$ は以下で定義される演算により群となる。 $(G/N,\times)$ は N を法とする商群または剰余類群または単に剰余群と呼ばれる。

$$[g_1] \times [g_2] \stackrel{\text{def}}{=} [g_1 \times g_2] \text{ for } [g_1], [g_2] \in G/N$$

def

$$(g_1N) \times (g_2N) \stackrel{\text{def}}{=} (g_1 \times g_2)N \text{ for } g_1N, g_2N \in G/N$$

である。

書き換えると、

証明. 16.13 を使用する。S := G とし、さらに N を法とする合同関係を同値関係 \sim とする。(16.14) と (16.15) が成り立つことを示す。

(16.15) は $x'=x^{-1}$ と選べば明らかである。(16.14) が満たされること、つまり $\forall x,x',y,y'\in G$ に対して、

$$[x]=[x'],[y]=[y']\Rightarrow [xy]=[x'y']$$

を示せば十分である。[x] = [x'], [y] = [y']言い換えると

$$x^{-1}x'\in N, y^{-1}y'\in N$$

より、[xy] = [x'y'] を示す。 $x^{-1}x' \in N$ と $y \in G$ と N の正規性 (16.9) から

$$y^{-1}(x^{-1}x')y \in N$$

となる。これと、次より [xy] = [x'y'] となることが分かる。

$$(xy)^{-1}(x'y') \stackrel{\text{(15.13)}}{=} (y^{-1}x^{-1})(x'y')$$

$$= y^{-1}(x^{-1}(x'y'))$$

$$= y^{-1}(x^{-1}x')y'$$

$$= y^{-1}(x^{-1}x')ey'$$

$$= y^{-1}(x^{-1}x')yy^{-1}y'$$

$$= \underbrace{y^{-1}(x^{-1}x')y}_{\in N}\underbrace{y^{-1}y'}_{\in N} \in N$$

例 16.18. 可換群 $(\mathbb{Z},+)$ の部分群 $(m\mathbb{Z},+)$ に対して、商群 $(\mathbb{Z}/m\mathbb{Z},+)$ は以下を満たす。

- 1. $\mathbb{Z}/m\mathbb{Z} = \{[0], [1], \dots, [m-1]\}$ と書ける。
- 2. $(\mathbb{Z}/m\mathbb{Z}, +)$ は以下で定義される演算+によって、群となる。

$$[i] + [j] \stackrel{\text{def}}{=} [i+j] \text{ for } [i], [j] \in \mathbb{Z}/m\mathbb{Z}$$

 $3. i, j \in \mathbb{Z}$ に対して、

$$[i] + [j] = \lceil \overline{i+j} \mod \lceil \overline{m} \rceil$$

と書ける。

- 4. 単位元は、[0] である。
- 5. $[i] \in \mathbb{Z}/m\mathbb{Z}$ の逆元 -[i] について、以下が成り立つ。

$$-[i] = [m-i]$$

実際、 [i] + [m-i] = [i+m-i] = [m] = [0] となる。

6. m = 3 のとき、

定義 17.1 (環、単位的可換環). 加算 + と乗算 \times が定義されている代数系 $(R, \{+, \times\})$ は、以下を満たすとき、環であると言う。

- 1. 代数系 (R,+) は可換群、すなわち加群である。
- 2. 代数系 (R, \times) は半群である。
- 3. 代数系 $(R, \{+, \times\})$ は、以下の分配律と呼ばれる性質を満たす。任意の $a_1, a_2, a_3 \in R$ に対して、以下を満たす。

$$a_1(a_2 + a_3) = a_1a_2 + a_1a_3$$

 $(a_1 + a_2)a_3 = a_1a_3 + a_2a_3$

定義 17.2 (単位的環、単位的可換環). 乗法に関して可換である環を、可換環という。乗法に関して単位元の存在を満たす環を、単位的環という。 □

例 17.3. 環に関する例と反例を与える。

- 1. 整数・有理数・複素数・実数の集合は、単位的可換環である。
- 2. 自然数の集合は、環ではない。

- 3. サイズmの正方複素行列の集合 M_m は単位的非可換環である。
- 4. X を変数とする実数係数一変数多項式の集合 $\mathbb{R}[X]$ に対して、代数系 ($\mathbb{R}[X]$, $\{+,\times\}$) は単位的可換環となる。加法の単位元は零多項式 f(X)=0、乗法の単位元は定数多項式 f(X)=1 になる。
- 5. mを 2以上の整数として $\mathbb{Z}/m\mathbb{Z} = \{[0], [1], \ldots, [m-1]\}$ とし、 $(\mathbb{Z}/m\mathbb{Z}, \{+, \times\})$ は単位的可換環となる。加法の単位元は [0]、乗法の単位元は [1] である。

$$[i] + [j] \stackrel{\text{def}}{=} [i + j \mod m]$$

 $[i] \times [j] \stackrel{\text{def}}{=} [i \times j \mod m]$

 $m=3 \mathcal{O} \mathcal{E}$ き、

6. 二つの環 R, S の直積 $R \times S$ とする。 $(r_1, s_1), (r_2, s_2) \in R \times S$ についてそれら和と積を

$$(r_1, s_1) + (r_2, s_2) \stackrel{\text{def}}{=} (r_1 + r_2, s_1 + s_2)$$

 $(r_1, s_1) \times (r_2, s_2) \stackrel{\text{def}}{=} (r_1 \times r_2, s_1 \times s_2)$

で定義した代数系 $(R \times S, \{+, \times\})$ は環になる。これを R, S の直積環と呼び、加法の単位元は $(0_R, 0_S)$ 、乗法の単位元は $(1_R, 1_S)$ になる。

18 体

51828_20ct24

定義 18.1 (体). 代数系 (\mathbb{F} , {+,×}) は以下を満たすとき、体であるという。有限なサイズの体を有限体という。

- 1. (𝔽, +) は可換群である:
- $2. (\mathbb{F}, \times)$ はモノイド(単位元を有する半群)である。
- 3. $(\mathbb{F} \setminus \{0\}, \times)$ は可換群である。
- 4. 分配則:任意の $a,b,c\in\mathbb{F}$ に対して、以下が成り立つ。

$$a(b+c) = ab + ac,$$

$$(a+b)c = ac + bc$$

- **命題 18.2.** 体 \mathbb{F} と $x,y\in\mathbb{F}$ に対して、以下が成り立つ。
 - 1. -(-x) = x
 - 2. $x \times 0 = 0 \times x = 0$

- 3. $(-x) \times y = x \times (-y) = -(x \times y)$ である。系として $(-1) \times 1 = -1$ を得る。
- 4. $(-x) \times (-y) = x \times y$ である。系として $(-1) \times (-1) = 1$ を得る。
- 5. $\mathbb{F} \neq \{0\}$ ならば $0 \neq 1$ である。
- 6. xy = 0 ならば x = 0 or y = 0 である。

証明、演習問題や試験問題で出す。

19 体を係数とする多項式環

定義 19.1 (多項式環). 体 \mathbb{F} の元を係数に持つ有限の次数を有する多項式全体を $\mathbb{F}[X]$ と書く。正確には、体 \mathbb{F} に対して、以下を定義する。

$$\mathbb{F}[X] = \left\{ \sum_{i=0}^{d} a_i X^i \mid d \ge 0, a_i \in \mathbb{F} \right\}$$

 $(\mathbb{F}[X],\{+,\times\})$ は自然な加算と乗算によって単位的可換環となり、 \mathbb{F} 上の多項式環と呼ばれる。乗法単位元は f(X)=1 であり、加法単位元は f(X)=0 である。 f(X)=0 は零多項式と呼ばれる。

2つの多項式

$$f(X) = \sum_{i=0}^{d} f_i X^i, g(X) = \sum_{i=0}^{e} g_i X^i$$

に対して、

集合

$$d = e, f_i = g_i \text{ for } (i = 0, 1, \dots, d)$$

のとき f と g は等しいといい、f(X) = g(X) と書く。 \Box 定義 19.2 (モニック多項式). 多項式 $f(X) = \sum_{i=0}^d f_i X^i \in$

定義 19.2 (セーック多頃式)・多頃式 $f(X) = \sum_{i=0}^{n} f_i X^i \in \mathbb{F}[X]$ に対して、最大次数の係数 f_d が $1 \in \mathbb{F}$ である多項式はモニックであると言う。

 $1+X+X^2\in\mathbb{F}_2[X]$ はモニック多項式で<mark>ある</mark>。 $1+X+2X^2\in\mathbb{F}_3[X]$ はモニック多項式でない。

命題 19.3 (多項式線形空間). 自然にスカラー倍と和を定義することで、
$$\mathbb{F}[X]$$
 は \mathbb{F} 上の線形空間となる。モニック単項式の

$$\{1, X, X^2, \dots\}$$

は $\mathbb{F}[X]$ の基底となる。

議論 19.4. 以下のような次数が有限でないものは一般に多項式ではない。これらは、形式的べき級数と呼ばれる。

$$\sum_{i=0}^{\infty} a_i X^i$$

形式的べき級数は、一般に $\mathbb{F}[X]$ に含まれていないことに注意しよう。

定義 19.5 (次数). 多項式 $a(X) = \sum_{i=0}^{d} a_i X^i$ に対して、d を a(X) の次数といい、 $\deg a(X) = d$ と書く。a(X) = 0 に対して、 $\deg a(X) \stackrel{\text{def}}{=} -\infty$ と定める。 $\deg f(X) \leq 0$ であるとき、

て、 $\deg a(X) \cong -\infty$ と定める。 $\deg f(X) \leq 0$ であるとき、f(X) は定数多項式であると言う。 \Box **例 19.6.** 多項式環 $\mathbb{F}_2[X]$ の元に関する計算の例を挙げる。

$$(X + X2) + (1 + X + X3)$$

$$= 1 + (1 + 1)X + X2 + X3$$

$$= 1 + X2 + X3$$

$$= (1+X) \times (1+X)$$

$$= 1+X+X+X^{2}$$

$$= 1+(1+1)X+X^{2}=1+X^{2}$$

 $(1+X)^2$

$$(1+X)^{3}$$

$$= (1+X) \times (1+X) \times (1+X)$$

$$= 1 + (1+1+1)X + (1+1+1)X^{2} + X^{3}$$

$$= 1 + X + X^{2} + X^{3}$$

定義 19.7 (ベクトル表現、 $\mathbb{F}[X;d]$). 次数 d 未満の多項式

$$f(X) = \sum_{i=0}^{d-1} f_i X^i \in \mathbb{F}[X]$$

全体からなる集合を $\mathbb{F}[X;d]$ と書く。 f(X) に対して、長さ d の系列

$$(f_0, f_1, \dots, f_{d-1}) \in \mathbb{F}^{\deg f}$$

をf(X)のベクトル表現という。これ以降、

$$f(X) \succeq (f_0, f_1, \dots, f_{d-1})$$

を同一視して扱う。

例 19.8.
$$\mathbb{F}[X;d]$$
 が体になるように、 $+, \times$ をうまく定義したい。($\mathbb{F}[X], \{+, \times\}$) の拡張として($\mathbb{F}[X;d], +$) は加群になるが、($\mathbb{F}[X;d], \times$) は群にならない。例えば、 $\mathbb{F}:=\mathbb{F}_2, d=3$ として、

$$(011) + (110) = \boxed{(101)} \in \mathbb{F}[X; d]$$

となるが、

$$(011)\times(110)=(0110)+(0011)=(0101)\notin\mathbb{F}[X;d]$$

となって、 $\mathbb{F}[X;d]$ からはみ出してしまう。19.9 のように演算を定義すると、($\mathbb{F}[X;d]$, $\{+,\times\}$) は体になる。このような体の作り方を学んでいく。

```
[000] [100] [010] [110] [001] [101] [011] [111]
     [000] [100] [010] [110] [001] [101] [011] [111]
[000]
[100] | [100] [000]
                    Γ1107
                         [010] [101] [001]
                                            [111] [011]
[010] | [010] [110]
                    [000]
                         [100] [011] [111]
                                            Γ0017
                                                  Γ1017
[110] | [110] [010]
                   [100]
                         [000] [111] [011] [101]
                                                  [001]
[001] | [001] [101]
                    Γ0117
                         [111] [000] [100]
                                                  Γ1107
                                            Γ0107
[101]
     [101]
              [001]
                    [111]
                         [011] [100]
                                      [000]
                                            [110]
                                                  Γ0107
[011]
     [011] [111]
                    [001]
                         [101] [010] [110]
                                            [000]
                                                  Γ1007
[111]
     | [111] [011] [101]
                         [001] [110] [010] [100] [000]
```

```
| [000] [100] [010] [110] [001] [101] [011]
                                                  [1111]
х
                    [000] [000] [000]
[000] | [000]
              [000]
                                             [000]
                                                   [000]
Γ1007
        [000]
                    [010]
                          [110] [001]
                                       [101]
                                             Γ0117
                                                   Γ1117
              [100]
[010] | [000] [010]
                    [001]
                          [011] [110] [100] [111]
                                                   [101]
[110] | [000] [110]
                    [011]
                          [101] [111] [001] [100] [010]
[001] | [000] [001]
                    Γ1107
                          [111] [011] [010]
                                             Γ1017
                                                   Γ1007
[101] | [000] [101] [100]
                          [001] [010] [111] [110]
                                                   [011]
[011] | [000] [011] [111] [100] [101] [110] [010] [001]
[111] | [000] [111] [101] [010] [100] [011] [001] [110]
```

図 19.9: 既約多項式 $1+X+X^3$ で生成された有限体 \mathbb{F}_{23} 11.1

20 イデアル

103034_180ct1

定義 20.1 (左イデアル). 整数 n > 0 に対して、 $n\mathbb{Z}$ は n の倍数となる整数の集合である。n の倍数どうしを足しても n の倍数になるので、 $n\mathbb{Z}$ は加算に関して閉じている。n の倍数は任意の整数倍しても n の倍数である。この構造を抽象化したものがイデアルである。

環 $(R, \{+, \times\})$ の部分集合 $I \subset R$ が、加法群としての部分群であり、R のどの元を左からかけても、また I に含まるれとき、 $(I, \{+, \times\})$ を左イデアルという。正確に述べると、部分集合 I で、

- 1. (I,+) は加群である。 204921_190ct17
- 2. 積に関する閉性: $RI\subset I$ である。正確に述べると、以下が成り立つ。

 $rx \in I$, for all $r \in R, x \in I$ (20.2)

が成立するときに I を R の左イデアルと呼ぶ。同様に、(20.2) の RI を IR に置き換える、または rx を xr に置き換えること で右イデアルを定義する。

定義 20.3 (両側イデアル). 環 $(R, \{+, \times\})$ の左イデアルかつ 右イデアルであるものを、両側イデアルまたは単にイデアル という。可換環 R の部分集合 I が R の左イデアルまたは右イデアルならば、IR = RI なので I は両側イデアルである。 \square

- **例 20.4.** 両側イデアルの例を与える。
 - 1. 20.1 の前半に書かれていることにより、単位的可換環 $(\mathbb{Z}, \{+, \times\})$ に対して、 $(m\mathbb{Z}, \{+, \times\})$ は両側イデアルであることが分かる。
 - 2. 単位的可換環である \mathbb{F} 係数多項式環 ($\mathbb{F}[X]$, $\{+, \times\}$) と、非零多項式 $m(X) \in \mathbb{F}[X]$ に対して、以下が成り立つ。

m(X) 倍多項式集合を以下で定義する。

$$\langle m(X)\rangle := \{f(X)m(X) \mid f(X) \in \mathbb{F}[X]\}$$

このとき、 $(\langle m(X) \rangle, \{+, \times\})$ は両側イデアルである。実際、m(X) 倍多項式どうしを足しても m(X) 倍多項式であるし、m(X) 倍多項式に任意の多項式倍しても m(X) 倍多項式である。

21 イデアルの生成系

定義 21.1 (イデアルの生成系、単項イデアル). 17 環 R の部分集合 $X \subset R$ に対して、R を係数とする有限個の X の R 係数の線形結合からなる集合

$$\langle X \rangle = \{ r_1 x_1 + \dots + r_n x_n \mid n \in \mathbb{N}, r_i \in R, x_i \in X \}$$

は R の<u>左イデアルとなり</u> X によって生成されたイデアルと呼ばれ $\langle X \rangle$ と書く。環 R の単一の元 a により生成された R の イデアル $\{ra \mid r \in R\}$ は、単項イデアルといい、 $\langle a \rangle$ と書く。

 $^{^{17}}$ 教員用メモ:左右イデアルは扱わないから,両側イデアルだけでいいのでは?

証明. $\langle X \rangle$ が R の左イデアルであることは、 $\langle X \rangle$ の任意の元 (それぞれ n,m 個の X の R 係数の線形結合)

$$r_1x_1 + \dots + r_nx_n \in \langle X \rangle$$

 $r'_1x'_1 + \dots + r'_nx'_m \in \langle X \rangle$

に対して、和

$$r_1x_1 + \dots + r_nx_n + r_1'x_1' + \dots + r_n'x_m'$$

が $\langle X \rangle$ に含まれている (n+m 個の X の R 係数の線形結合からなる集合) こと、 $r \in R$ 倍が

$$r(r_1x_1 + \dots + r_nx_n) = rr_1x_1 + \dots + rr_nx_n \in \langle X \rangle$$

となることによって、確認できる。

例 21.2. 以下が成り立つ

- 1. 整数環 \mathbb{Z} の整数 $m(>0) \in \mathbb{Z}$ に対して、 $m\mathbb{Z}$ はmによって生成される単項両側イデアルである。 $m\mathbb{Z} = \langle m \rangle$
- 2. 多項式環 $\mathbb{F}[X]$ の多項式 $m(X)(\neq 0) \in \mathbb{F}[X]$ に対して、 $\langle m(X) \rangle$ は m(X) によって生成される単項両側イデアル である。

22 剰余類環

群の正規部分群から商群を構成したように、環の両側イデアルから商環と呼ばれる新たな環を構成することができる。

定義 22.1 (イデアルを法として合同、商環、剰余類環 (residue class ring modulo)). 環 $(R, \{+, \times\})$ の両側イデアル I に対して,以下を定義する。I は加群 (R, +) の部分群である。(R, +) は 17.1 より可換群であったことを思い出そう。部分群 I は、可換群であり、16.6 より正規部分群であることが分かる。同値関係「正規部分群 I を法として合同」による同値類 R/I に対して、16.17 より (R/I, +) は可換群となることが分かる。

両側イデアル I によって定まる商集合 $R/I = \{[r] \mid r \in R\}$ に自然に拡張された加法と乗法

$$[r_1] + [r_2] \stackrel{\text{def}}{=} [r_1 + r_2]$$

 $[r_1] \times [r_2] \stackrel{\text{def}}{=} [r_1 \times r_2]$

からなる代数系 $(R/I, \{+, \times\})$ は環をなす。この環を I を法とする商環または剰余類環または単に剰余環という。

証明. まず、演算が矛盾無く定義 (well-defined) されていることを示す。つまり、代表元の取り方に演算がよらないこと

$$\forall r, r', s, s' \in R,$$

$$[r] = [r'], [s] = [s'] \Longrightarrow [r+s] = [r'+s'] \qquad (22.2)$$

$$[r] = [r'], [s] = [s'] \Longrightarrow [rs] = [r's']$$
 (22.3)

を示す。(R,+) は可換群なので 16.6 から I は R の正規部分群となることがわかる。R,I を 16.17 における G,N とみなすと、(22.2) が成り立つことが分かる。

 $I, -s + s' = y \in I$ となる $x, y \in I$ が存在するとして、[rs] = [r's'] を示す。I の左イデアル性から $ry \in I$ 、右イデアル性から $xs \in I$ 、左または右イデアル性から $xy \in I$ が分かる。した

(22.3) を示す。[r] = [r'], [s] = [s'] すなわち $-r + r' = x \in$

$$-(rs) + (r's') = -(rs) + (r+x)(s+y)$$
$$= -(rs) + rs + ry + xs + xy$$
$$= ry + xs + xy \in I$$

これは、[rs] = [r's'] を意味している。

がって以下が成り立つ。

次に、(16.16) と同様に R の乗算の結合則に帰着させて、 $(R/I, \times)$ の結合則は確認できる。分配則も R の分配則に帰着して以下のように示せる。

$$[a]([r] + [s]) = [a]([r+s]) = [a(r+s)]$$

= $[ar + as] = [ar] + [as] = [a][r] + [a][s]$

例 22.4. 単位的可換環 $(\mathbb{Z}, \{+, \times\})$ の両側イデアル $m\mathbb{Z}$ に対して、商環 $(\mathbb{Z}/m\mathbb{Z}, \{+, \times\})$ は以下を満たす。

1. $\mathbb{Z}/m\mathbb{Z} = \{[0], [1], \dots, [m-1]\}$ と書ける。

2. $(\mathbb{Z}/m\mathbb{Z},\{+,\times\})$ は以下で定義される演算によって、環となる。

$$[i] + [j] \stackrel{\text{def}}{=} [i+j] \text{ for } [i], [j] \in \mathbb{Z}/m\mathbb{Z}$$

 $[i] \times [j] \stackrel{\text{def}}{=} [i \times j] \text{ for } [i], [j] \in \mathbb{Z}/m\mathbb{Z}$

 $3. i, j \in \mathbb{Z}$ に対して、

$$[i] + [j] = (i + m\mathbb{Z}) + (j + m\mathbb{Z}) = \begin{bmatrix} i + j \\ m \end{bmatrix} \mod m$$
$$[i] \times [j] = (i + m\mathbb{Z}) \times (j + m\mathbb{Z}) = \begin{bmatrix} i \times j \\ m \end{bmatrix} \mod m$$

と書ける。

- 4. 加法単位元は [0]、乗法単位元は [1] である。
- 5. m = 3 のとき、以下が成り立つ。

例 22.5. 単位的可換環 ($\mathbb{F}[X]$, $\{+, \times\}$) の両側イデアル $\langle m(X) \rangle$ に対して、商環 ($\mathbb{F}[X]/\langle m(X) \rangle$, $\{+, \times\}$) は以下を満たす。

1. $f(X) \in \mathbb{F}[X]$ に対して、以下が成り立つ。

$$\begin{split} &[f(X)] \\ &= \{g(X) \in \mathbb{F}[X] \mid -g(X) + f(X) \in \langle m(X) \rangle \} \\ &= \{g(X) \in \mathbb{F}[X] \mid g(X) \equiv f(X) \bmod \langle m(X) \rangle \} \\ &= [f(X) \bmod m(X)] \end{split}$$

2. 商環 $\mathbb{F}[X]/\langle m(X)\rangle$ は集合として次にようにかける。

$$\mathbb{F}[X]/\langle m(X)\rangle = \left\{ [f(X)] \middle| f(X) = \sum_{i=0}^{\deg m-1} f_i X^i, f_i \in \mathbb{F} \right\}$$

3.
$$(\mathbb{F}[X]/\langle m(X)\rangle, \{+, \times\})$$
 は以下で定義される演算によって、環となる。 $[a(X)], [b(X)] \in \mathbb{F}[X]/\langle m(X)\rangle$ に対して、

$$[a(X)] + [b(X)] \stackrel{\text{def}}{=} [a(X) + b(X)]$$
$$[a(X)] \times [b(X)] \stackrel{\text{def}}{=} [a(X) \times b(X)]$$

と定義する。

4.
$$a(X), b(X) \in \mathbb{F}[X]$$
 に対して、
$$[a(X)] + [b(X)]$$
$$= (a(X) + b(X)) + \langle m(X) \rangle$$
$$= [a(X) + b(X)] \mod m(X)$$
$$[a(X)] \times [b(X)]$$
$$= (a(X) \times b(X)) + \langle m(X) \rangle$$
$$= [a(X) \times b(X)] \mod m(X)$$

と書ける。

- 5. 加法単位元は [0]、乗法単位元は [1] である。
- 6. $\mathbb{F} = \mathbb{F}_2, m(X) = 1 + X + X^2$ のとき、以下が成り立つ。

+	[0]	[1]	[X]	[1+X]
[0]	[0]	[1]	[X]	$\boxed{[1+X]}$
[1]	[1]	[0]	[1+X]	[X]
[X]	[X]	[1+X]	[0]	[1]
[1+X]	1 + X	[X]	[1]	[0]
×	[0] [1]	[X]	[1+X]
[0]	[0] [0]	[0]	[0]
[1]	[0] $[1]$	[X]	[1+X]
[X]	$[\mathbf{v}]$	[1	\mathbf{v}	[1]
$[\Lambda]$	[0] $[X]$	[1 -	+X]	[1]

$$[1+X] imes [1+X] = [X]$$
 であることは以下から分かる。
$$(1+X)(1+X) = 1+X+X+X^2$$

$$= 1+(1+1)X+X^2 = 1+X^2$$

$$(1+X^2)/(1+X+X^2) = 商 1、剰余 X$$

ベクトル表現すると、以下の通りとなる。

 $[1 + X^2] = [X]$

+	[00]	[10]	[01]	[11]
[00]	[00]	[10]	[01]	[11]
[10]	[10]	[00]	[11]	[01]
[01]	[01]	[11]	[00]	[10]
[11]	[11]	[01]	[10]	[00]
×	[00]	[10]	[01]	[11]
× [00]	[00]	[10] [00]	[01]	[11] [00]
[00]	[00]	[00]	[00]	[00]

23 多項式環に関する性質

152629 11Nov23

命題 23.1 (剰余定理). 任意の被除多項式 $n(X) \in \mathbb{F}[X]$ と非零な除多項式 $d(X) \in \mathbb{F}[X]$ に対して、

$$n(X) = q(X)d(X) + r(X),$$
 (23.2)

$$\deg r(X) < \deg d(X)$$

となる $q(X) \in \mathbb{F}[X]$ と $r(X) \in \mathbb{F}[X]$ が一意に存在する。このとき、 $q(X) \in \mathbb{F}[X]$ を商 (quotient) 、 $r(X) \in \mathbb{F}[X]$ を剰余 (remainder) といい、

と書く。

証明. (存在性) 実数係数多項式 $\mathbb{R}[X]$ において、n(X), d(X) から q(X), r(X) を求める筆算を思い出してみよう。

$$n(X) = X^3 - 2X^2 + 0X - 4$$
$$d(X) = X - 3$$

とする。

各ステップ $i=1,2,\ldots$ で単項式 $q^{(i)}(X)$ と d(X) の積を $n^{(i)}$ から引いていると見なせるので、

$$n^{(0)}(X) := n(X)$$

$$n^{(1)}(X) := n^{(0)}(X) - q^{(1)}(X)d(X)$$

$$n^{(2)}(X) := n^{(1)}(X) - q^{(2)}(X)d(X)$$

$$\vdots$$

$$n^{(i)}(X) = n^{(i-1)}(X) - q^{(i)}(X)d(X)$$

(23.3)

と書ける。上の例だと、

$$q^{(1)}(X) = X^2, q^{(2)}(X) = X, q^{(3)}(X) = 3$$

 $n^{(1)}(X) = X^2 + 0X, n^{(2)}(X) = 3X - 4, n^{(3)} = 5$

となる。そして、ステップ k で、d(X) の次数を下回ったら、 すなわち

$$\deg n^{(k+1)}(X) < \deg d(X)$$

となったら、

$$q(X) := \sum_{i=1}^{k+1} q^{(i)}(X),$$
$$r(X) := n^{(k+1)}(X)$$

= q(X)d(X) + r(X)

を出力する。次数が単調に減っていくので、多くても

$$\deg n(X) - \deg d(X)$$

ステップ以内にこの操作は終了する。この操作で得られた (q(X), r(X)) が (23.2) を満たすことは、(23.3) を次のように代入していくことにより確かめられる。

$$\begin{split} n(X) &= n^{(0)}(X) \\ &= q^{(1)}(X)d(X) + n^{(1)}(X) \\ &= q^{(1)}(X)d(X) + q^{(2)}(X)d(X) + n^{(2)}(X) \\ &\vdots \\ &= q^{(1)}(X)d(X) + \dots + q^{(k+1)}(X)d(X) + n^{(k+1)}(X) \\ &= \left(q^{(1)}(X) + \dots + q^{(k+1)}(X)\right)d(X) + n^{(k+1)}(X) \end{split}$$

(一意性)一致するとは限らない商と剰余の組を2つ (q(X), r(X)), (q'(X), r'(X)) を考える。つまり、

$$n(X) = q(X)d(X) + r(X), \qquad \deg r(X) < \deg d(X),$$

$$n(X) = q'(X)d(X) + r'(X), \qquad \deg r'(X) < \deg d(X)$$

である。この式より、

より r(X) = r'(X) も分かる。

$$(q(X) - q'(X))d(X) = r(X) - r'(X)$$
 (23.4)

を得る。 $g(X) \neq g'(X)$ と仮定すると、左辺の次数が $\deg d(X)$ 以上になるが、右辺の次数は $\deg d(X)$ 未満とならなければな らないから矛盾するので、q(X) = q'(X)である。これと (23.4)

整数環における素数に対応するものである、多項式環にお

ける既約多項式を定義する。 定義 23.5 (既約多項式、可約多項式). 非定数多項式 $f(X) \in$

$$\mathbb{F}[X]$$
 に対して、どんな非定数多項式 $a(X), b(X)$ を用いても $f(X) = a(X)b(X)$

と書けないとき、f(X) は既約であるという。定数多項式 $f(X) \in \mathbb{F}[X]$ に対して、f(X) は既約であるという。既約で

ない多項式 $f(X) \in \mathbb{F}[X]$ は可約であると言う。 **例 23.6.** 体 \mathbb{F} によって $f(X) \in \mathbb{F}[X]$ が既約か可約かは変わる。

$$f(X) = X^2 + 1$$

は、

- 1. $\mathbb{F}=\mathbb{R}$ の場合、任意の $x\in\mathbb{R}$ に対して、 $f(x)\geq 1$ なので、 <mark>既</mark> 約である。
- 2. $\mathbb{F}=\mathbb{C}$ の場合、 $f(X)=\boxed{(X+\sqrt{-1})(X-\sqrt{-1})}$ なので、 可 約である。
- 3. $\mathbb{F} = \mathbb{F}_2$ の場合、 $f(X) = \boxed{(X+1)(X+1)}$ なので、 可 約である。

定義 23.7 (約数、約多項式). 非定数多項式 $f(X) \in \mathbb{F}[X]$ に対して、多項式 $a(X), b(X) \in \mathbb{F}[X]$ を用いて

$$f(X) = a(X)b(X)$$

と書けるとき、f(X) はa(X) で割り切れるといい、またはa(X) は f(X) の約数または約多項式であると言い、a(X)|f(X) と書く。

定義 23.8 (最大公約多項式). $a(X), b(X) \in \mathbb{F}[X]$ に対して、a(X), b(X) の約多項式の中で次数が最大のモニック多項式を、a(X), b(X) の最大公約多項式と言い、 $\gcd(a(X), b(X))$ と書く。 $a(X) \neq 0$ に対して $\gcd(a(X), 0) = a(X)$ をモニック化した多項式、 $\gcd(0,0) = 0$ と定義する。

2つの整数 a,b の最大公約数を求めるアルゴリズムであるユークリッドの互除法 http://bit.ly/3Qu7t9Z は高校生のときに学んだと思います。

99221 と 97343 の最大公約数を g とする。拡張ユークリッドの互除法を用いて、g=99221x+97343y となる整数 x,y を求めてみよう。

```
99221=1*97343+1878

97343=51*1878+1565

1878=1*1565+313

1565=5*313+0

g=313=52*99221+(-53*97343)

x=52

y=-53
```

この節では、2つの多項式 $a(X), b(X) \in \mathbb{F}[X]$ の最大公約 多項式を求めるアルゴリズムに拡張することができることを 学びましょう。整数に関するユークリッド互除法が有限の計算で終了することを保証する証明の要点は、整数 a と $b \neq 0$ に対して、 $a = bq + r, 0 \leq r < |b|$ となる q, r が一意に定まることと、 $|a| \leq |b|$ という性質を使っていることであった。この性質より、各割り算の商の絶対値は単調減少 $|r_0| \geq |r_1| > \cdots > |r_{m-1}| > |r_m|$ なので、ある m で $r_{m+1} = 0$ となりアル

ゴリズムは終了する。このような代数系をユークリッド整域 https://bit.ly/3snTFWi と言う。体 \mathbb{F} を係数とする多項式 の集合 $\mathbb{F}[X]$ の要素の f(X) に対しても、絶対値の代わりに次数 $\deg(f)$ を考えれば、ユークリッド整域になる。この拡張に よって、多項式 f(X) と g(X) の最大公約多項式がユークリッドの互除法によって計算できる。

定義 24.1 (多項式に対するユークリッドの互除法). $r_1(X) \neq 0$ である 2 つの多項式 $r_0(X), r_1(X) \in \mathbb{F}[X]$ を入力とし、出力 $r_m(X)$ を出力する以下のアルゴリズムをユークリッドの互除 法という。多項式 f(X) を f と書く。以下の割り算を $i \geq 0$ に対して計算する。

$$r_i(X)/r_{i+1}(X) = \hat{\mathbf{m}} \ q_{i+1}(X) \ \mathfrak{M} \ \hat{\mathbf{x}} \ r_{i+2}(X)$$

剰余定理 23.1 から $\deg r_{i+1} > \deg r_{i+2}$ となる。したがって、有限ステップで $\deg(r_{m+1}) = -\infty$ つまり $r_{m+1}(X) = 0$ とな

るはずである。割り切れるまで次の割り算を繰り返す。

$$r_{0}(X) = q_{1}(X)r_{1}(X) + r_{2}(X),$$

$$r_{1}(X) = q_{2}(X)r_{2}(X) + r_{3}(X),$$

$$\vdots$$

$$r_{i}(X) = q_{i+1}(X)r_{i+1}(X) + r_{i+2}(X)$$

$$\vdots$$

$$r_{m-2}(X) = q_{m-1}(X)r_{m-1}(X) + r_{m}(X)$$

$$(24.2)$$

$$\Box$$
命題 24.3. ユークリッドの互除法の出力 $r_m(X)$ は、 $\mathbb F$ 値倍を

除いて最大公約数多項式 $gcd(r_0(X), r_1(X))$ に等しい。

 $r_{m-1}(X) = q_m(X)r_m(X) + \overbrace{r_{m+1}(X)}^{=0}$

証明. $r_m(X)$ をモニック化した多項式は $\gcd(r_m(X),0)$ に等しいので、各第 i ステップ

$$r_i(X) := q_{i+1}(X)r_{i+1}(X) + r_{i+2}(X)$$

で、 $r_i(X)$ と $r_{i+1}(X)$ の公約多項式全体の集合 C_i は $r_{i+1}(X)$ と $r_{i+2}(X)$ の公約多項式全体 C_{i+1} の集合に等しいことを示せば十分である。 $c(X) \in C_{i+1}$ ならば、 $c(X) \mid r_{i+1}(X), c(X) \mid r_{i+2}(X)$ であ

るから¹⁸、

$$c(X) \mid q_{i+1}(X)r_{i+1}(X) + r_{i+2}(X) = r_i(X)$$

となり、 $c(X) \in C_i$ が分かる。 逆に、 $c(X) \in C_i$ ならば、 $c(X) \mid r_i(X), c(X) \mid r_{i+1}(X)$ であるから、

$$c(X) \mid r_i(X) - q_{i+1}(X)r_{i+1}(X) = r_{i+2}(X)$$

となり、 $c(X) \in C_{i+1}$ が分かる。

211329_6Nov24

(--) (--) ---

$$r_0(X), r_1(X) \in \mathbb{F}[X]$$

命題 24.4 (拡張ユークリッドの互除法). 2つの多項式

に対して、最大公約多項式 $\gcd(r_0(X),r_1(X))$ の $r_0(X)$ と $r_1(X)$ による線形和表現

$$r_0(X)n_0(X) + r_1(X)n_1(X) = \gcd(r_0(X), r_1(X))$$

を与える $n_0(X), n_1(X) \in \mathbb{F}[X]$ が存在する。

 $^{^{18}}d|n$ は d は n を割り切るを意味します。

証明. ユークリッド互除法 (24.2) を行列とベクトルによって 表現し直すと、次のように書ける。

$$ec{r}_0 = Q_1 ec{r}_1$$
 $ec{r}_1 = Q_2 ec{r}_2$ $dots$

 $Q_i := \begin{pmatrix} q_i(X) & 1 \\ 1 & 0 \end{pmatrix}, \vec{r_i} := \begin{pmatrix} r_i(X) \\ r_{i+1}(X) \end{pmatrix}$

$$\vec{r}_{m-1} = Q_m \vec{r}_m$$

$$ec{r}_0 = Q_1 \cdots Q_m ec{r}_m$$

となる。
$$Q_i':=\begin{pmatrix}0&1\\1-q_i(X)\end{pmatrix}$$
とすれば、 $Q_i'Q_i=I_2$ であるので、両辺に左から $Q_m'\cdots Q_1'$ をかけることにより次を得る。

$$Q_m' \cdots Q_1' \vec{r_0} = \vec{r_m} \tag{24.5}$$

が成り立つ。 $\binom{n_0(X)}{n_2(X)} \binom{n_1(X)}{n_3(X)} := Q'_m \cdots Q'_1$ とすれば、(24.5) の第 1 成分は

$$r_m(X) = \gcd(r_0, r_1) = n_0(X)r_0(X) + n_1(X)r_1(X)$$

という r_0 と r_1 の線形和の形で表現できる。ここで、第 1 等号は \mathbb{F} 値定数倍を除いて等しいという意味である。

例 24.6. ユークリッドアルゴリズムと拡張ユークリッドアル ゴリズムの例を与える. $r_0(X) = X^3 + X^2 + X + 1, r_1(X) =$ $3X^2 + 2 \in \mathbb{F}_5[X]$ に対して、

 $X^3 + X^2 + X + 1 = (3X^2 + 2)(2X + 2) + (2X + 2)$

となるので、
$$\gcd\left(X^3+X^2+X+1,\quad 3X^2+2\right)=X+1$$
 であり、 $X+1$ を $a(X),b(X)$ の線形和で表すと、
$$3\left(X^3+X^2+X+1\right)+(4X+4)\left(3X^2+2\right)=X+1$$

となる.

 $3X^2 + 2 = (2X + 2)(4X + 1) + (0)$

有限体の構成 25

定理 25.1. 体 \mathbb{F} を係数とする次数 m > 1 のモニックな既約多 項式 $p(X) \in \mathbb{F}[X]$ に対して、イデアル $\langle p(X) \rangle$ を法とする剰余 類環

$$\left(\mathbb{F}[X]/\langle p(X)\rangle, \{+, \times\}\right)$$

はサイズが $|\mathbb{F}|^{\deg p}$ の体となる。

証明. 22.5 より
$$(\mathbb{F}[X]/\langle p(X)\rangle,\{+,\times\})$$
 は単位的可換環になるので、非索元

ので、非零元

 $[a(X)](\neq [0]) \in \mathbb{F}[X]/\langle p(X)\rangle$

に対して逆元が存在することを示せば十分である。p(X) は既約なので、最大公約数 $\gcd(a(X),p(X))=1$ である。したがって、24.4 より, $y(X),z(X)\in\mathbb{F}[X]$ が存在して、

$$a(X)y(X) + p(X)z(X) = 1$$

となる。両辺 $\operatorname{mod} p(X)$ すると

$$a(X)y(X) \bmod p(X) = 1 \bmod p(X)$$

となるから、

$$[a(X)y(X)] = [a(X)][y(X)] = [1]$$

となり、この $[y(X)] \in \mathbb{F}[X]/\langle p(X) \rangle$ が [a(X)] の逆元となる。

例 25.2. 既約多項式 $p(X):=1+X+X^3\in\mathbb{F}_2[X]$ で生成された有限体 $\mathbb{F}_8:=\left(\mathbb{F}_2[X]/\langle p(X)\rangle,\{+,\times\}\right)$ の演算表を示す。

```
| [000] [100] [010] [110] [001] [101] [011] [111]
                    [010]
                          [110] [001] [101] [011] [111]
[000] | [000] [100]
[100] | [100]
              [000]
                    [110]
                          [010] [101]
                                       [001]
                                             [111]
                                                   [011]
[010] | [010] [110]
                    [000]
                          [100] [011] [111]
                                             [001]
                                                   Γ1017
[110] | [110] [010]
                    Γ1007
                          [000] [111] [011]
                                             [101]
                                                   [001]
[001] | [001] [101]
                    [011]
                          [111] [000] [100]
                                             [010]
                                                   [110]
[101] | [101] [001]
                    [111]
                          [011] [100] [000] [110]
                                                   [010]
[011] | [011] [111] [001]
                          [101] [010] [110] [000] [100]
[111] | [111] [011] [101]
                          [001] [110] [010]
                                             [100]
                                                   [000]
```

```
| [000] [100] [010] [110] [001] [101] [011] [111]
[000] [000] [000] [000] [000] [000] [000] [000]
[100] | [000]
              Γ1007
                     Γ0107
                          [110] [001] [101]
                                              Γ011]
                                                    Γ1117
[010] | [000]
                     Γ0017
                           [011] [110] [100]
                                                     Γ1017
              [010]
                                              [111]
[110] | [000]
              Γ1107
                     [011]
                           [101] [111] [001]
                                              Γ1007
                                                     [010]
[0001] [ [000]
                     Γ1107
                           [111] [011]
                                        Γ0107
                                              Γ1017
                                                     Γ1007
              Γ0017
Γ1017
      [0001 I
              Γ1017
                     Γ1007
                           Γ0017
                                 Γ0107
                                        Γ1117
                                              Γ1107
                                                     [011]
[011]
      [000]
              Γ0117
                     Γ1111
                           [100] [101]
                                        Γ1107
                                              [010]
                                                     Γ0017
      [0001 I
                     Γ1017
[1111]
              Γ1111
                           [010]
                                 Γ1007
                                        [011]
                                              [001]
                                                    Γ1107
```

非ゼロ元 $x \in \mathbb{F}_8$ に対して,かけると単位元 [100] になる,逆元 $x^{-1} \in \mathbb{F}_8$ が唯一存在することが分かる.以下は,前回の授業でやったことと同じなので,説明しない.ここで、 $[f_0f_1f_2]$ は $[f_0+f_1X+f_2X^2]$ を表していることに注意しよう。例: $[011]=[0+X+X^2]$ である。 $[011]\times[111]=[001]$ であることは以下より確かめることができる。

$$[011] \times [111] = [X + X^{2}] \times [1 + X + X^{2}]$$

$$= [(X + X^{2}) \times (1 + X + X^{2})]$$

$$= [(X + X^{2}) + (X^{2} + X^{3}) + (X^{3} + X^{4})]$$

$$= [X + (1 + 1)X^{2} + (1 + 1)X^{3} + X^{4}]$$

$$= [X + X^{4} \mod p(X)]$$

$$= [X^{2}]$$

$$= [001]$$

37.5 で証明を与えるが、有限体のサイズ q は素数のベキに限る。すでに 4.4 で天下り的に定義したが、素数サイズの有限

例 **25.3.** \mathbb{Z} の上の素数 p に対して、イデアル $p\mathbb{Z}$ を法とする剰余類環

$$\left(\mathbb{Z}/p\mathbb{Z}, \{+, \times\}\right)$$

はサイズpの有限体をなす。例として $\mathbb{F}_{11} := \mathbb{Z}/11\mathbb{Z}$ の演算表を示す。

```
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
                [2]
                     [3]
                         [4]
                               [5]
                                    [6]
                                              [8]
[0]
       [0]
            [1]
                                         [7]
                                                  [9]
                [3]
                          [5]
                              [6]
                                    [7]
Γ17
      [1]
            [2]
                     [4]
                                         [8]
                                              [9] [10][0]
       [2]
                Γ41
                     Γ51
                          [6]
                               [7]
                                    [8]
                                         [9]
                                              [10] [0]
[2]
            [3]
[3]
       [3]
            [4]
                [5]
                     [6]
                          [7]
                               [8]
                                    [9]
                                         [10][0]
                                                  [1]
                                                       [2]
[4]
      [4]
            [5]
                [6]
                     [7]
                          [8]
                               [9] [10][0]
                                              [1]
                                                  [2]
                                                       [3]
[5]
      [5]
            [6]
                [7]
                     [8]
                          [9]
                               [10][0]
                                         [1]
                                              [2]
                                                  [3]
                                                       Γ41
[6]
      [6]
            [7]
                [8]
                     [9]
                         [10][0] [1]
                                         [2]
                                              [3]
                                                  [4]
                                                       [5]
                [9]
                     [10][0]
                              [1]
[7]
      [7]
            [8]
                                    [2]
                                         [3]
                                              [4]
                                                  [5]
                                                       [6]
[8]
      [8]
            [9] [10][0]
                         [1]
                               [2]
                                    [3]
                                         [4]
                                              [5]
                                                  [6]
                                                       [7]
      [9]
            [10][0] [1]
                          [2]
                               [3]
                                    [4]
                                         [5]
                                              [6]
                                                  [7]
                                                       [8]
[9]
[10] I
       [10][0] [1]
                     [2]
                          [3]
                               Γ41
                                    [5]
                                         [6]
                                              [7]
                                                  [8]
                                                       [9]
```

 $\overline{\mathbf{L}}$ 明. $\mathbb{Z}/\langle p \rangle$ は単位的可換環になるので、非零元

$$[a] \in \mathbb{Z}/\langle p \rangle$$

に対して逆元が存在することを示せば十分である。p は素数なので、最大公約数 $\gcd(a,p)=1$ である。したがって、 $y,z\in\mathbb{Z}$ が存在して、

$$ay + pz = 1$$

となる。これより、

$$[a][y] = [1]$$

となり、この $[y] \in \mathbb{Z}/\langle p \rangle$ が [a] の逆元となる。

26 因数定理と代数の基本定理

次の定理は、次の節のRS符号の性質の証明で繰り返し使用される。証明は、高校で勉強した実係数多項式のものと同じなので、説明しない.

13113 6Nov24

補題 26.1 (因数定理と代数の基本定理). 多項式 $f(X) \in \mathbb{F}[X]$ に対して f(a) = 0 であるとき、 $a \in \mathbb{F}$ は f(X) の根であると言う。因数定理: 多項式 (X - a)|f(X) となることと f(a) = 0 となることは同値である.代数の基本定理:体 \mathbb{F} の上のn 次 多項式は \mathbb{F} の上で高々n 個の相違なる根を有する。

証明. $a \in \mathbb{F}$ を多項式 $f(X) \in \mathbb{F}[X]$ の根とする。このとき、d(X) := X - a として剰余定理 23.1 を使用すると、

f(X) = q(X)(X - a) + r(X),

$$\deg r(X) < \deg d(X) = 1 \tag{26.2}$$
 となる、 $q(X), r(X) \in \mathbb{F}[X]$ が唯一存在することが分かる。

(26.2) より r は定数多項式 $r(X)=r_0$ となる。 $a\in\mathbb{F}$ は f(X) の根: f(a)=0 であるから、 $f(a)=r_0$ となる。こうして、因数定理

$$f(a) = 0 \Rightarrow f(X) = q(X)(X - a), \deg q(X) = n - 1$$

を得る。逆は明らか、q(X) の次数は f(X) の次数より 1 だけ小さい、q(X) について同様の議論をしていくと、いつか根を持たないようになる。根 1 つにつき次数を少なくとも 1 つ消費する必要があるので、体 $\mathbb F$ の上の n 次多項式は $\mathbb F$ の上で高々n 個の相違なる根を有する。

27 リード・ソロモン符号、RS 符号

定義 27.1 (RS 符号、リード・ソロモン符号). α_1,\ldots,α_n を互いに異なる \mathbb{F}_q の元とする.このため、 $n\leq q$ となる。 $\mathbb{F}_q[X;k]$ は \mathbb{F}_q を係数とする次数が k 未満の多項式

$$f(X) = \sum_{i=0}^{k-1} f_i X^i, \quad f_i \in \mathbb{F}_q$$

の集合である。情報多項式 $f(X) \in \mathbb{F}_q[X;k]$ に対して、

$$\vec{c}(f) := (f(\alpha_1), f(\alpha_2), \dots, f(\alpha_n)) \in \mathbb{F}_q^n$$

を符号語とする符号空間を、 \mathbb{F}_q 上の [n,k]RS 符号という。正確に書くと、

$$\left\{ \vec{c}(f) \in \mathbb{F}_q^n \mid f(X) \in \mathbb{F}_q[X;k] \right\}^{\text{pairs}}$$

として定義される。

定義 27.3 (RS 符号を使った通信システム). RS 符号を使った 通信システムは以下の構成要素からなる。

- 送信器
 - 1. 情報ベクトル $\vec{f} := (f_0, \dots, f_{k-1}) \in \mathbb{F}_q^k$ から、
 - 2. 情報多項式 $f(X) \in \mathbb{F}_q[X;k]$ を求める。
 - 3. 情報多項式 \vec{f} に対応する符号語 $\vec{c}(\vec{f}) \in \mathbb{F}_q^n$ を計算して、通信路に入力する。
- 通信路:通信路は入力 \vec{c} にエラーベクトル $\vec{e} \in \mathbb{F}_q^n$ を加えた出力 $\vec{r} = \vec{c} + \vec{e}$ を出力する。
- 受信器
 - 1. 通信路出力である受信語 $r \in \mathbb{F}_q^n$ から推定送信語 $\hat{c}(\vec{r}) \in \mathbb{F}_q^n$ を推定する。

2. $\hat{c}(\vec{r})$ に対応する f、正確に述べると $\hat{c}(r) = c(\hat{f})$ となる推定情報多項式 $\hat{f}(X)$ または等価的に推定情報ベクトル \hat{f} を求める。

051657_11Nov18

定理 27.4 (RS 符号の基底). $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{F}_q$ によって定義される \mathbb{F}_q 上の [n, k]RS 符号 C に対して、以下が成り立つ。

- 1. C は \mathbb{F}_q 上の [n,k] 線形符号になる。
- 2. 以下の符号語の集合は、*C* の基底となる.

$$\left\{ \vec{c}(f) \in \mathbb{F}_q^n \mid f(X) \in \{1, X, X^2, \dots, X^{k-1}\} \right\} \subset C$$
$$\vec{c}(f) := \left(f(\alpha_1), \dots, f(\alpha_n) \right) \in \mathbb{F}_q^n$$

この基底の符号語を具体的に並べると、

$$\{(1, 1, \dots, 1), \\ (\alpha_1, \alpha_2, \dots, \alpha_n), \\ (\alpha_1^2, \alpha_2^2, \dots, \alpha_n^2), \\ \vdots \\ (\alpha_1^{k-1}, \alpha_2^{k-1}, \dots, \alpha_n^{k-1})\}$$
 (27.5)

となる。

015006_25Nov23

3. C の生成行列は C の基底ベクトルを行ベクトルとして 並べた行列なので、以下の行列は C の生成行列となる。

$$G = \begin{bmatrix} \alpha_1^0 & \alpha_2^0 & \dots & \alpha_n^0 \\ \alpha_1^1 & \alpha_2^1 & \dots & \alpha_n^1 \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \vdots & \ddots & \ddots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \dots & \alpha_n^{k-1} \end{bmatrix}$$

ただし、 $0^0=1$ とする。この生成行列 G を使って情報 ベクトル \vec{f} から符号語 $\vec{c}(\vec{f})=\vec{f}G$ に直接、符号化する ことができる。

証明. 1.
$$\mathbb{F}_q[X;k]$$
 は \mathbb{F}_q 上の k 次元線形空間であったことを思い出そう。 $\mathbb{F}_q[X;k]$ からの写像

$$\phi: \mathbb{F}_q[X;k] \ni f(X) \mapsto (f(\alpha_1), \dots, f(\alpha_n)) \in \mathbb{F}_q^n$$

を定義する 19 。 $\phi(\mathbb{F}_q[X;k])=C$ である。したがって、 ϕ が線形全単射であることを示せば十分である。

 $^{^{19}}$ これは上で符号語 c(f) と書いていたものを多項式からベクトルへの写像であることを強調して $\phi(f)$ と書いただけである.

線形性:

$$\phi(af) = (af(X)|_{X=\alpha_1}, \dots, af(X)|_{X=\alpha_n})$$

$$= ((af)(\alpha_1), \dots, (af)(\alpha_n))$$

$$= (af(\alpha_1), \dots, af(\alpha_n))$$

$$= a(f(\alpha_1), \dots, f(\alpha_n))$$

$$= a\phi(f)$$

$$\phi(f_1 + f_2)$$

$$\phi(f_1 + f_2)
= ((f_1 + f_2)(\alpha_1), \dots, (f_1 + f_2)(\alpha_n))
= (f_1(\alpha_1) + f_2(\alpha_1), \dots, f_1(\alpha_n) + f_2(\alpha_n))
= \phi(f_1) + \phi(f_2)$$

全単射性: $\phi(f_1(X)) = \phi(f_2(X))$ ならば $f_1(X) = f_2(X)$ を示せば良い.

$$(f_1(\alpha_1), \dots, f_1(\alpha_n)) = (f_2(\alpha_1), \dots, f_2(\alpha_n))$$

$$\Rightarrow ((f_1 - f_2)(\alpha_1), \dots, (f_1 - f_2)(\alpha_n)) = (0, \dots, 0)$$

$$\stackrel{\text{(a)}}{\Rightarrow} (f_1 - f_2)(X) = 0$$

$$\Rightarrow f_1(X) = f_2(X)$$

(a) では、 $(f_1 - f_2) \in \mathbb{F}_q[X;k]$ と代数の基本定理 (次数 k 未満の非零多項式の根の数は k 未満である) を次のように使った. $(f_1 - f_2)$ は k 次未満の多項式である. (a) の直

前の式より、 (f_1-f_2) は $n(\geq k)$ 個の根を持っているので、非ゼロ多項式ではありえない.したがって、 (f_1-f_2) は零多項式である: $(f_1-f_2)(X)=0$ 。

2. $\mathbb{F}_q[X;k]$ の単項式からなる集合

$$B := \{1, X, X^2, \dots, X^{k-1}\}$$

は $\mathbb{F}_q[X;k]$ の基底である。一般に、ある線形空間 V の基底を線形全単射で別の線形空間 W に移したベクトルの集合は W の基底になる。ここでは、

$$\{\phi(f)\mid f(X)\in B\}$$

がCの基底になることになるが、これは(27.5)と一致する。

3. 生成行列の作り方 6.5 と前項より明らか。

例 27.6 (RS 符号). $\mathbb{F}_{11} := \mathbb{Z}/11\mathbb{Z} = \{[0], [1], \dots, [10]\}$ 上の [n=8, k=4] RS 符号の生成行列 G は以下で与えられる。ただし、

$$\alpha_1 = [0], \alpha_2 = [1], \dots, \alpha_8 = [7]$$

と選んだ。

$$G = \begin{pmatrix} [1][1][1][1][1][1][1][1]\\ [0][1][2][3][4][5][6][7]\\ [0][1][4][9][5][3][3][5]\\ [0][1][8][5][9][4][7][2] \end{pmatrix}$$

例 27.7 (RS 符号). 既約多項式 $p(X) = 1 + X^2 + X^3 \in \mathbb{F}_2[X]$ によって定義される

$$\mathbb{F}_8 := \mathbb{F}_2[X]/\langle p(X)\rangle = \{[000], [100], \dots, [111]\}$$

上の [n=8,k=4] RS 符号の生成行列 G は以下で与えられる。ただし、

$$\alpha_1 = [000], \alpha_2 = [100], \dots, \alpha_8 = [111]$$

と選んだ。

定理 27.8 (RS 符号の最小距離). [n,k]RS 符号 C の任意の非ゼロ符号語 $\vec{x} (\neq \vec{0}) \in C$ のハミング重み $w(\vec{x})$ に関して以下が成り立つ。

$$w(\vec{x}) \ge n - k + 1$$

したがって、

$$w_{\min}(C) = d_{\min}(C) \ge n - k + 1$$

となる。シングルトン限界 12.1 $d_{\min}(C) \leq n-k+1$ より、結局

$$d_{\min}(C) = n - k + 1$$

となる。つまり、RS 符号は最大距離分離符号 (MDS 符号) となる。 □

証明. f(X) から $(f(\alpha_1), \ldots, f(\alpha_n))$ に移す写像 ϕ は線形全単射であった (27.4 の証明参照) から,C の非ゼロ符号語は、

$$\vec{x}(f) = (f(\alpha_1), \dots, f(\alpha_n)) \neq (0, \dots, 0)$$

with $f(X)(\neq 0) \in \mathbb{F}_q[X; k]$

と書ける。この非零符号語の重み、言い換えると $f(\alpha_i) \neq 0$ となる i $(1 \leq i \leq n)$ の個数を調べよう。まず次の事実を確認しよう。

• 零多項式は零符号語となる。いいかえると、

$$\phi(0) =: \mathbb{F}_q[X; k] \ni 0 \mapsto (0, \dots, 0) \in \mathbb{F}_q^n$$

である。しかるに対偶を考えれば、非零符号語は非零多 項式から生成されることが分かる。

- 次数 k 未満の非ゼロ多項式 f(X) の根の個数は k 未満である
- $\alpha_1, \ldots, \alpha_n$ は全て異なる

これらのことから、非ゼロ符号語 $\vec{x}(f)$ の第 i 成分がゼロとなる、すなわち $f(\alpha_i)=0$ となる i $(1\leq i\leq n)$ の個数は k 未満であることが分かる.言い換えると, $f(\alpha_i)\neq 0$ となる i $(1\leq i\leq n)$ の個数は n-k+1 以上である.こうして, $w(\vec{x})\geq n-k+1$ が示せた.

補題 27.9 (RS 符号に対する限界距離復号アルゴリズム). n この異なる $\alpha_1, \ldots, \alpha_n$ によって定義された \mathbb{F} 上の [n,k]RS 符号 C に対して、訂正能力は

$$t(C) = \left\lfloor \frac{d(C) - 1}{2} \right\rfloor = \left\lfloor \frac{n - k}{2} \right\rfloor$$

である。情報多項式 $f(X) \in \mathbb{F}[X;k]$ が符号化された送信語 $\vec{c} = (f(\alpha_1), \ldots, f(\alpha_n)) \in C$ が送られて、誤りベクトル \vec{e} が加えられた受信語 $\vec{r} = \vec{c} + \vec{e} \in \mathbb{F}^n$ を受信した通信シナリオを考えよう。以下のアルゴリズムは、受信語 $(r_1, \ldots, r_n) \in \mathbb{F}$ を入

力とし、推定符号語 \hat{c} または等価的に $\hat{c} = (\hat{f}(\alpha_1), \dots, \hat{f}(\alpha_n))$ となる推定情報多項式 $\hat{f} \in \mathbb{F}[X;k]$ を出力するアルゴリズムである。誤りの重みがt以下の場合、このアルゴリズムは正しく復号結果を出力する: $\hat{f}(X) = f(X)$ 。

1. まず、

$$Q(\alpha_i, r_i) = 0$$
, for $i = 1, ..., n$ (27.10)
 $\deg Q_0 < \frac{n-t}{2}$ (27.11)

(27.12)

$$\deg Q_1 < t+1$$

を満たす \mathbb{F}_q を係数とする非ゼロ二変数多項式

$$Q(X,Y) = Q_0(X) + Q_1(X)Y \in \mathbb{F}[X,Y] (27.13)$$

が<u>存在する</u>ので、このような Q(X,Y) を一つ求める。 Q(X,Y) は補完多項式と呼ばれる。補完多項式 Q(X,Y) の存在と求め方は、証明で述べる。

2. 次に、推定情報多項式を

$$\hat{f}(X) := -Q_0(X)/Q_1(X)$$

によって計算し (この割り算が割り切れることは証明します)、送信された符号語を

$$\hat{\vec{c}} := (\hat{f}(\alpha_1), \dots, \hat{f}(\alpha_n))$$

と推定する。

証明. 【補間多項式の存在】 $Q_1(X)$ と $Q_0(X)$ の係数を次のように名前をつける。

$$Q_0(X) = \sum_{i \ge 0} q_{0,i} X^i \in \mathbb{F}[X; n - t]$$
$$Q_1(X) = \sum_{i \ge 0} q_{1,i} X^i \in \mathbb{F}[X; t + 1]$$

(27.10) は、多項式 $Q_1(X)$, $Q_0(X)$ のそれぞれの係数ベクトル \vec{q}_0 , \vec{q}_1 を変数とみなした連立数 n、変数が n+1 個の以下の同 次線形方程式である.

$$A\vec{q} = \vec{0} \ \sharp \ \hbar l \ A_0 \vec{q}_0 + A_1 \vec{q}_1 = \vec{0}$$
 (27.14)

ただし、

$$A := (A_0 \ A_1) \in \mathbb{F}^{n \times n + 1}, \vec{q} := (\vec{q}_0 \ \vec{q}_1)$$
$$\vec{q}_0 := (q_{0,0}, \dots, q_{0,t}) \in \mathbb{F}^{n - t}$$
$$\vec{q}_1 := (q_{1,0}, \dots, q_{1,n - t - 1}) \in \mathbb{F}^{t + 1}$$

である。Aのランクがn以下であることと次元定理から、この線形方程式の解空間の次元は1以上となるので、非零解を

 $[\]hat{e}:=\hat{r}-\hat{c}$ の重みが t を超えていたら、復号結果をエラーとすることでこの復号法は復号半径 t(C) の限界距離復号と一致する。

含むはずである。

$$A_{0} := \begin{pmatrix} \alpha_{1}^{0} & \alpha_{1}^{1} & \alpha_{1}^{2} & \cdots & \alpha_{1}^{n-t-1} \\ \alpha_{2}^{0} & \alpha_{2}^{1} & \alpha_{2}^{2} & \cdots & \alpha_{2}^{n-t-1} \\ \vdots & \vdots & \vdots & & \vdots \\ \alpha_{n}^{0} & \alpha_{n}^{1} & \alpha_{n}^{2} & \cdots & \alpha_{n}^{n-t-1} \end{pmatrix} \in \mathbb{F}^{n \times n - t}$$

$$A_{1} := \begin{pmatrix} r_{1} & r_{1}\alpha_{1} & r_{1}\alpha_{1}^{2} & \cdots & r_{1}\alpha_{1}^{t} \\ r_{2} & r_{2}\alpha_{2} & r_{2}\alpha_{2}^{2} & \cdots & r_{2}\alpha_{2}^{t} \\ \vdots & \vdots & & \vdots & & \vdots \\ r_{n} & r_{n}\alpha_{n} & r_{n}\alpha_{n}^{2} & \cdots & r_{n}\alpha_{n}^{t} \end{pmatrix} \in \mathbb{F}^{n \times t + 1}$$

A を復号行列と呼ぶ。この線形方程式 (27.14) を解いて、非ゼロ解 $\vec{q}=(\vec{q_0},\vec{q_1})$ を一つ求めて、(27.13) に代入して補完多項式 Q(X,Y) を得る。

【推定符号語が正しいこと: $f(X) = \hat{f}(X)$ 】 誤りの数を $w := w(\vec{e}) \leq t$ と書く。受信語 (r_1, \ldots, r_n) の n-w 個の要素は 誤っていないので,n-w 個の $i \in \{1, \ldots, n\}$ について第 i 受信シンボル r_i と第 i 送信シンボル c_i が一致する、すなわち $r_i = c_i = f(\alpha_i)$ である。従って (27.10) より, $n-w(\geq n-t)$ 個の添字 i について $Q(\alpha_i, f(\alpha_i)) = 0$ である。これより,以下 が成り立つことが分かる。

$$Q(X, f(X))$$
 は $n-t$ 個以上の異なる根を持つ (27.15)

 $Q_1(X)$ と $Q_0(X)$ の次数に関する制限 (27.12) と (27.11) より, $\deg Q(X,f(X))$ は n-t 未満である。代数の基本定理よ

り、次数がn-t未満の非ゼロ多項式の解の数はn-t未満でなければならない。一方、(27.15)も成り立つので、Q(X,f(X))はゼロ多項式でなければならない.言い換えると,

$$0 = Q(X, f(X)) = Q_0(X) + f(X)Q_1(X)$$

となり、 $Q_0(X)/Q_1(X)$ は割りきれるはずである。これより、 $f(X) = -Q_0(X)/Q_1(X) = \hat{f}(X)$ を得る.

議論 27.16 (RS 符号の復号手続きは効率的である). 変数の数は高々符号長nの 2 倍であり、変数がm 個の線形連立方程式は約 m^3 の手間 (有限体の四則演算) で解けるから、符号語をしらみ潰しに調べる安直な方法に比べて、上記の手順は遥かに効率が良い。しかし、実際の製品では更に高速な手順が通常用いられる。

例 27.17 (RS 符号の復号). $\mathbb{F}_{11} := \mathbb{Z}/11\mathbb{Z} = \{[0], [1], \dots, [10]\}$ 上の [n=8, k=4] RS 符号に対して d=n-k+1=5, t=2 である. 生成行列 G は以下で与えられる。ただし、

$$\alpha_1 = [0], \alpha_2 = [1], \dots, \alpha_8 = [7]$$

と選んだ。

$$G = \begin{pmatrix} [1][1][1][1][1][1][1][1]\\ [0][1][2][3][4][5][6][7]\\ [0][1][4][9][5][3][3][5]\\ [0][1][8][5][9][4][7][2] \end{pmatrix}$$

情報ベクトル f=[5][6][9][6] 符号語 c=[5][4][2][2][7][9][0][5] 誤りベクトル e=[7][0][0][5][0][0][0][0] 受信語 r=[1][4][2][7][7][9][0][5]

とすると、復号行列 A は以下の通りとなる。

$$A = \begin{pmatrix} [1] & [0] & [0] & [0] & [0] & [1] & [0] & [0] \\ [1] & [1] & [1] & [1] & [1] & [1] & [4] & [4] & [4] \\ [1] & [2] & [4] & [8] & [5] & [10] & [2] & [4] & [8] \\ [1] & [3] & [9] & [5] & [4] & [1] & [7] & [10] & [8] \\ [1] & [4] & [5] & [9] & [3] & [1] & [7] & [6] & [2] \\ [1] & [5] & [3] & [4] & [9] & [1] & [9] & [1] & [5] \\ [1] & [6] & [3] & [7] & [9] & [10] & [0] & [0] \\ [1] & [7] & [5] & [2] & [3] & [10] & [5] & [2] & [3] \end{pmatrix}$$

 $A\vec{q} = \vec{0}$ の非零解を一つ選んで、

$$\vec{q}_0 = [0][4][2][10][9][5]$$

 $\vec{q}_1 = [0][8][1]$

とする。これらより、補完多項式 Q(X,Y) を求めて、以下の割り算を実行する。

こうして、推定情報ベクトル

$$\hat{f} = [5][6][9][6]$$

を得る。

例 27.18 (RS 符号). 既約多項式
$$p(X) = 1 + X^2 + X^3 \in \mathbb{F}_2[X]$$
 によって定義される

$$\mathbb{F}_8 := \mathbb{F}_2[X]/\langle p(X)\rangle = \{[000], [100], \dots, [111]\}$$

上の [n=8,k=4] RS 符号の生成行列 G は以下で与えられる。ただし、

$$\alpha_1 = [000], \alpha_2 = [100], \dots, \alpha_8 = [111]$$

と選んだ。

$$\begin{split} f &= [111][101][000][110] \\ c &= [111][100][010][110][110][000][111][110] \\ e &= [000][000][000][000][000][000][000][101][110] \\ r &= [111][100][010][110][110][000][010][000] \end{split}$$

$$A = \begin{pmatrix} [100] \ [000] \ [000] \ [000] \ [000] \ [000] \ [111] \ [000] \ [000] \\ [100] \ [100] \ [100] \ [100] \ [100] \ [100] \ [100] \ [100] \ [100] \ [100] \ [100] \ [101] \\ [100] \ [010] \ [001] \ [011] \ [011] \ [011] \ [111] \ [110] \ [101] \ [001] \\ [100] \ [001] \ [111] \ [011] \ [010] \ [101] \ [100] \ [000] \ [000] \\ [100] \ [011] \ [110] \ [111] \ [101] \ [001] \ [010] \ [010] \ [010] \ [000] \\ [100] \ [111] \ [010] \ [111] \ [001] \ [001] \ [011] \ [000] \ [000] \\ \end{pmatrix}$$

 $[100] \ [000] \ [000] \ [000] \ [000] \ [000] \ [111] \ [000] \ [000]$ $[000] \ [100] \ [100] \ [100] \ [100] \ [100] \ [011] \ [100] \ [100]$ 行基本変形 [000] [100] [100] [100] [100] [101] [101] [100] [110] [100] [100] [000] [000] [000] [100] [000] [111] [110] [000] [100] [000] [000] [000] [100] [001] [000] [110] [100] [000] [000] [000] [000] [000] [000] [000] [000] [000] [100] [000] [100] [000] [110] [000]

 $[100]\ [000]\ [000]\ [000]\ [000]\ [000]\ [000]\ [000]\ [000]$ 行基本変形
[100] [000] [000] [000] [000] [000] [000] [000] [100]
[000] [000] [100] [000] [000] [000] [000] [010]
[000] [000] [000] [100] [000] [000] [000] [000] [010]
[000] [000] [000] [100] [000] [000] [000] [000] [111]
[000] [000] [000] [000] [100] [000] [000] [000] [110]
[000] [000] [000] [000] [000] [100] [000] [100] [101]
[000] [000] [000] [000] [000] [000] [000] [100] [100]

> $\vec{q}_0 = [100][100][010][111][110][110]$ $\vec{q}_1 = [101][100][100]$

$$-Q_0(X)/Q_1(X)$$

= 商 [111] + [101]X + [000]X² + [110]X³ 剰余 0

$$\hat{f} = [111][101][000][110]$$

234936 17Nov18

定義 $\mathbf{28.1}$ (巡回シフト). 長さ n のベクトル $c=(c_0,\ldots,c_{n-1})\in\mathbb{F}^n$ に対して、

$$(c_{n-1}, c_0, \dots, c_{n-2}) =: Sc$$

をcの右巡回シフトといい、Scと書く。

$$(c_{n-i},\ldots,c_{n-1},c_0,\ldots,c_{n-i-1})$$

をcのi回右巡回シフトといい、 S^ic と書く。

例:S(010) = (001)

例:S(1010) = |0101|

例: $S^2(10101) = \boxed{(01101)}$

同様にして、左巡回シフトを定義できるが、n-1回右巡回シフト S^{n-1} で表すことができるので、あえて定義しない。右巡回シフトを単に巡回シフトという。

命題 28.2 (巡回シフトは線形写像である). $S^i: \mathbb{F}^n \to \mathbb{F}^n$ は線形全単射写像である。 $c \mapsto S^i c$ ベクトル行列表現は、例えばn=4, i=1 では、

$$Sc = \begin{pmatrix} 0001\\ 1000\\ 0100\\ 0010 \end{pmatrix} \vec{c}^{\mathsf{T}}$$

によって与えられる。

証明.

$$S^{i}(\vec{c} + \vec{d})$$

$$= S^{i}(c_{0} + d_{0}, \dots, c_{n-1} + d_{n-1})$$

$$= (c_{n-i} + d_{n-i}, \dots, c_{n-1} + d_{n-1}, c_{0} + d_{0}, \dots, c_{n-i-1} + d_{n-i-1})$$

$$= S^{i}\vec{c} + S^{i}\vec{d}$$

 $S^i(a\vec{c}) = aS^i(\vec{c})$ も同様にして示せる。全単射であることは以下より分かる。

$$S^i\vec{c} = S^i\vec{d} \Rightarrow S^i(\vec{c} - \vec{d}) = \vec{0} \Rightarrow \vec{c} - \vec{d} = \vec{0} \Rightarrow \vec{c} = \vec{d}$$

ここで零ベクトルに巡回シフトされるのは零ベクトルに限る ことを用いた。 □

定義 28.3 (巡回符号). 巡回シフトに関して閉じている、正確 に書くと

$$\forall c \in C, Sc \in C$$

を満たす、 \mathbb{F}_q 上の線形符号 C を \mathbb{F}_q 上の線形巡回符号または単に巡回符号という。線形でない巡回符号は非線形巡回符号と呼ばれる。

例:単一パリティ検査符号5.5は巡回符号である。例えば符号

 $C = \{(0000),$ (1001), (0011), (0110), (1100), (1010), (0101), $(1111)\}$ は巡回符号である。

長n=4の単一パリティ検査符号

$$C = \{(0000),$$

$$(1000), (0100), (0010), (0001)\}$$

は 非線形巡回 符号である。なぜなら、巡回性は満たされるが、

$$(1000) + (0100) = (1100) \notin C$$

であるからである。 \Box **定義 28.4** (符号語多項式). ベクトル $\vec{c} = (c_0, \dots, c_{n-1}) \in \mathbb{F}^n$

$$c(X) = c_0 + c_1 X + \dots + c_{n-1} X^{n-1} \in \mathbb{F}[X; n]$$

を \vec{c} の符号語多項式という。符号語多項式と符号語を同一視する。

例:
$$(101) = 1 + X^2$$
,

例: $(110) = S(101) = S(1+X^2) = 1+X$

例 29.1 (巡回 RS 符号). \mathbb{F}_q の非ゼロ要素 β が n > 0 乗して始めて 1 に等しくなるとする。ただし、 $\beta = 1$ のときは n = 1 と定義する。n は q - 1 を割り切る。 $\beta^0, \ldots, \beta^{n-1}$ によって定義された \mathbb{F}_q 上の [n,k]RS 符号

$$C = \left\{ \vec{c}(f) \mid f(X) \in \mathbb{F}_q[X; k] \right\}$$
$$\vec{c}(f) := \left(f(\beta^0), f(\beta^1), \dots, f(\beta^{n-1}) \right)$$

は巡回符号となる。

証明. $[n \mid q-1]$ であること】後に 35.10 で示すが、任意の非零元 $\alpha \in \mathbb{F}_q$ に対して、 $\alpha^{q-1} = 1$ が成り立つ α^{21} 。 $\alpha^{q-1} = 1$ を $\alpha^{q-1} = 1$ が成り立つ α^{21} 。 $\alpha^{q-1} = 1$ を $\alpha^{$

【巡回符号であること】C は RS 符号であることと 27.4 より線形符号である。C の巡回性を示せば十分である。情報多項式 $f(X) \in \mathbb{F}_q[X;k]$ に対して、 $S\vec{c}(f) = \vec{c}(g)$ となる情報多項式 $g(X) \in \mathbb{F}_q[X;k]$ の存在を示せば十分である。情報多項式

 $^{^{21}}q$ が素数 p の場合にはフェルマーの小定理 $a^{p-1}\equiv 1\pmod{p}$ http://bit.ly/2Rm56Ww として知られている。

g(X) を以下のように選ぶ。

$$g(X) \stackrel{\text{def}}{=} f(\beta^{-1}X) = f(\beta^{n-1}X) \in \mathbb{F}_q[X;k]$$

すると、

$$S\vec{c}(f)$$

$$= S(f(\beta^0), f(\beta^1), \dots, f(\beta^{n-1}))$$

$$= (f(\beta^{n-1}), f(\beta^0), \dots, f(\beta^{n-3}), f(\beta^{n-2}))$$

$$\stackrel{\text{(a)}}{=} (g(\beta^0), g(\beta^1), \dots, g(\beta^{n-1}))$$

$$= \vec{c}(g)$$

となる。(a) では、 $g(X) = f(\beta^{n-1}X)$ を使った。C は右巡回

eta によって定義される \mathbb{F}_4 上の [3,2,2]RS 符号を考える。 $C := \{(f(eta^0),f(eta^1),f(eta^2)\mid f(X)\in\mathbb{F}_4[X;2]\}$

$$= \{(f([10]),f([01]),f([11]))\mid f(X)\in\mathbb{F}_4[X;2]\}$$
 通りの情報名頂式 $f(Y)\in\mathbb{F}[Y;2]$ だけて、 答号名頂式

16 通りの情報多項式 $f(X) \in \mathbb{F}_4[X;2]$ に対して、符号多項式 c(X) は以下の通り与えられる。

```
f=([00][00]),c=([00][00]]0])
f=([10][00]),c=([10][10][10])
f=([01][00]),c=([01][01][01])
```

```
f=([11][00]),c=([11][11][11])
f=([00][10]),c=([10][01][11])
f=([10][10]),c=([00][11][01])
f=([01][10]),c=([11][00][10])
f=([11][10]),c=([01][10][00])
f=([00][01]),c=([01][11][10])
f=([10][01]),c=([11][01][00])
f=([01][01]),c=([00][10][11])
f = ([11][01]), c = ([10][00][01])
f=([00][11]),c=([11][10][01])
f=([10][11]),c=([01][00][11])
f=([01][11]),c=([10][11][00])
f=([11][11]),c=([00][01][10])
巡回性を有する符号多項式毎に分類されるように並び替える
と以下のようになる。確かに巡回性が満たされている。
f=([00][00]),c=([00][00][00])
f = ([10][00]), c = ([10][10][10])
f=([01][00]),c=([01][01][01])
f=([11][00]),c=([11][11][11])
f=([11][10]),c=([01][10][00])
f=([11][01]),c=([10][00][01])
f=([11][11]),c=([00][01][10])
f=([00][10]),c=([10][01][11])
f = ([00][01]), c = ([01][11][10])
f=([00][11]),c=([11][10][01])
f=([10][11]),c=([01][00][11])
f=([10][10]),c=([00][11][01])
f=([10][01]),c=([11][01][00])
```

f=([01][01]),c=([00][10][11]) f=([01][11]),c=([10][11][00]) f=([01][10]),c=([11][00][10]) eta = [01] を 3 乗するとはじめて [10] になる。情報多項式 f(X) = X に対応する符号語は

([10], [01], [11])

([11], [10], [01])

であるが、これの右巡回シフトは

である。

(29.3)

(29.4)

応する符号語を考えると、 $(g([01]^0),g([01]^1),g([01]^2))$

= (g([10]), g([01]), g([11]))= ([11][10], [11][01], [11][11])

ここで $g(X) = [01]^{-1}X = [11]X$ を考え、この多項式に対

=([11],[10],[01]) となり f(X) に対応する符号語 (29.3) を右巡回シフトしたベクトル (29.4) に等しくなっている。

30 巡回符号は剰余類環 $\mathbb{F}[X]/\langle X^n-1 angle$ のイデアルである

 \mathbb{F} をスカラーとする符号長n の線形符号は、 \mathbb{F}^n の部分線形空間として代数的な特徴付けをすることができる.この節で

は、 \mathbb{F} をスカラーとする長さn の巡回符号が、多項式剰余類環 $\mathbb{F}[X]/\langle X^n-1\rangle$ のイデアルとして特徴付けられること 30.8 を 導くことにより、巡回符号の代数的な構造を明らかにする.

定義 30.1 (剰余類環 $\mathbb{F}[X]/\langle X^n-1\rangle$ と多項式空間 $\mathbb{F}[X;n]$ を同型な線形空間である). n 次未満の多項式環 $\mathbb{F}[X;n]$ と多項式 剰余類環 $\mathbb{F}[X]/\langle X^n-1\rangle$ は,22.5 より n 次未満の多項式から なるので,ともに要素数は同じ $|\mathbb{F}|^n$ 個である.また, $\mathbb{F}[X;n]$ と $\mathbb{F}[X]/\langle X^n-1\rangle$ にそれぞれ自然に定義された和とスカラー 倍によって, \mathbb{F} 上の $\frac{8}{1}$ 終形空間となる。さらに,全単射である線形写像

$$f(X) \in \mathbb{F}[X; n] \mapsto [f(X)] \in \mathbb{F}[X]/\langle X^n - 1 \rangle$$

により、 \mathbb{F} 上の線形空間として、 $\mathbb{F}[X;n]$ と $\mathbb{F}[X]/\langle X^n-1\rangle$ は同型になる。この対応を用いて、 $f(X)\in \mathbb{F}[X;n]$ と $[f(X)]\in \mathbb{F}[X]/\langle X^n-1\rangle$ を同一視して、文脈に応じて解釈することとする。

証明. $\mathbb{F}[X;n]$ は, $\mathbb{F}[X;n]$ 上の和と定数多項式倍をスカラー倍として定義すれば, \mathbb{F} 上の線形空間になる. $\mathbb{F}[X]/\langle X^n-1\rangle$ が \mathbb{F} 上の線形空間になるのは,和はすでに定義されているので, $a\in \mathbb{F}, [f(X)]\in \mathbb{F}[X]/\langle X^n-1\rangle$ に対してスカラー倍を

$$a[f(X)] \stackrel{\text{def}}{=} [af(X)] \in \mathbb{F}[X]/\langle X^n - 1 \rangle \tag{30.2}$$

と定義すればよい.

命題 30.3. 多項式 $c(X) \in \mathbb{F}[X;n]$ と多項式剰余類環 $\mathbb{F}[X]\langle X^n-1\rangle$ の剰余類 [.] に対して次が成り立つ.

$$S^{i}c(X) = [X^{i}c(X)] \tag{30.4}$$

この等式は 30.1 の対応により $S^ic(X)\in \mathbb{F}[X;n]$ と $[X^ic(X)]\in \mathbb{F}[X]/\langle X^n-1\rangle$ が一致することを表している.言い換えると,c(X) を i 回右巡回シフトした多項式は $X^ic(X)$ を X^n-1 で 割った剰余多項式と一致する

$$S^i c(X) = X^i c(X) \bmod X^n - 1$$

ことを表している.

証明. 初めに、モニック単項式

$$c(X) = X^j \in \mathbb{F}[X; n]$$

に対して (30.4) が成り立つこと、正確に書くと

$$S^{i}X^{j} = X^{i}c(X) \mod X^{n} - 1$$

$$= X^{i+j} \mod X^{n} - 1$$

$$= [X^{i+j}]$$
(30.5)

が成り立つことを示す。(30.5) の左辺は、右にi 回巡回シフトするので、

$$S^iX^j = S^i\vec{e}_j = \vec{e}_{i+j \bmod n} = X^{i+j \bmod n}$$

である。ここで、 $\vec{e_j}$ は 第 j 成分 $(j=0,1,\ldots,n-1)$ だけ 1 で それ以外は 0 であるベクトルである。一方、(30.5) の右辺は

$$X^{i} \times X^{j} \div X^{n} - 1$$

$$= \begin{cases}
\text{商 } 0 \text{ 剰余 } X^{i+j} & (0 \le i+j < n) \\
\text{商 } X^{i+j-n} \text{ 剰余 } X^{i+j-n} & (n \le i+j < 2n)
\end{cases}$$

であるから、どちらにしても

$$X^i \times X^j \mod X^n - 1 = X^{i+j \mod n}$$

となる。こうして、(30.5) が成り立つことが分かる。 次に、モニック単項式とは限らない一般の $\mathbb{F}[X;n]$ の元

$$c(X) = \sum_{j=0}^{n-1} c_j X^j \in \mathbb{F}[X; n]$$
 (30.6)

に対して証明する。以下が成り立つ。 $S^ic(X) \overset{(30.6)}{=} S^i \sum^{n-1} c_j X^j$

$$\stackrel{(a)}{=} \sum_{j=0}^{n-1} c_j S^i X^j$$

$$\stackrel{(30.5)}{=} \sum_{j=0}^{n-1} c_j [X^{i+j}]$$

$$\stackrel{(30.2)}{=} \sum_{j=0}^{n-1} [c_j X^{i+j}]$$

$$\stackrel{(22.1)}{=} [\sum_{j=0}^{n-1} c_j X^{i+j}]$$

$$\stackrel{(30.6)}{=} [X^i c(X)]$$

$$\stackrel{(30.6)}{=} [X^i c(X)]$$

$$(a) では、28.2 の $S^i : \mathbb{F}[X;n] \to \mathbb{F}[X;n]$ は線形写像であるこ$$

とを使った。これより、主張は示された。 \square **例 30.7.** $(1101) = 1 + X + X^3 \in \mathbb{F}_2[X;4]$ を 1 回右巡回シフトすると $(1110) = 1 + X + X^2$ になる。

$$X(1 + X + X^{3}) = X + X^{2} + X^{4}$$

$$\equiv 1 + X + X^{2} \pmod{X^{4} - 1}$$

$$= (1110)$$

 $(1234)=1+2X+3X^2+4X^3\in\mathbb{F}_5[X;4]$ を1回右巡回シフトすると $(4123)=4+X+2X^2+3X^3$ になる。

$$X(1 + 2X + 3X^{2} + 4X^{3})$$

$$= X + 2X^{2} + 3X^{3} + 4X^{4}$$

$$= 4(X^{4} - 1) + 4 + X + 2X^{2} + 3X^{3}$$

$$\equiv 4 + X + 2X^{2} + 3X^{3} \pmod{X^{4} - 1}$$

$$= (4123)$$

次の定理により巡回符号 $C\subset \mathbb{F}[X;n]$ は $C\subset \mathbb{F}[X]/\langle X^n-1\rangle$ のイデアルとみなせることが分かる.

定理 30.8. 以下は同値である。

- 1. $C \subset \mathbb{F}[X;n]$ は符号長nの \mathbb{F} 上の巡回符号である
- 2. $C \subset \mathbb{F}[X]/\langle X^n-1 \rangle$ は剰余類環 $\mathbb{F}[X]/\langle X^n-1 \rangle$ のイデアルである

証明. 【 $2 \Rightarrow 1$ 】 イデアルの元 $[c(X)] \in C$ に対して、C のイデアル性により任意の整数 i に対して、C の巡回性:

$$S^i c(X) \stackrel{30.1}{=} [S^i c(X)] \stackrel{30.4}{=} [X^i c(X)] \stackrel{\text{(a)}}{=} [X^i] [c(X)] \stackrel{\text{(b)}}{\in} C$$

が成り立つ。(a) では剰余類環演算の定義 22.1、(b) ではイデアルの性質 (20.2) を使った。同じ理由から、任意のスカラー $a\in\mathbb{F}$ と符号語 $c(X),c'(X)\in C$ に対して、

$$ac(X) \stackrel{30.1}{=} [ac(X)] \stackrel{\text{(a)}}{=} [a][c(X)] \stackrel{\text{(b)}}{\in} C$$

$$c(X) + c'(X) \stackrel{30.1}{=} [c(X) + c'(X)] \stackrel{\text{(a)}}{=} [c(X)] + [c'(X)] \stackrel{\text{(b)}}{\in} C$$

である。C の線形性が示せた。これより、C が巡回符号であることが分かる。

【 $1\Rightarrow 2$ 】 $[c(x)]\in C$ と $[u(X):=\sum_{i\geq 0}^{n-1}u_iX^i]\in \mathbb{F}[X]/\langle X^n-1\rangle$ は対して

$$[u(X)][c(X)] = \left[\sum_{i\geq 0}^{n-1} u_i X^i\right][c(X)]$$

$$\stackrel{\text{(a)}}{=} \sum_{i=0}^{n-1} [u_i X^i][c(X)]$$

$$\stackrel{\text{(30.2)}}{=} \sum_{i=0}^{n-1} u_i [X^i][c(X)]$$

$$\stackrel{\text{(a)}}{=} \sum_{i=0}^{n-1} u_i [X^i c(X)]$$

$$\stackrel{\text{(a)}}{=} \sum_{i=0}^{n-1} u_i \underbrace{S^i c(X)}_{\in C} \stackrel{\text{(c)}}{\in} C$$

となりイデアルの積に関する閉性 (20.2) が満たされる。(c) では、符号 C の線形性を用いた。さらに、 $[c(X)],[c'(X)]\in C$ に

対して、

$$[c(X)] + [c'(X)] \stackrel{\text{(a)}}{=} [c(X) + c'(X)]$$

$$\stackrel{30.1}{=} c(X) + c'(X) \stackrel{\text{(c)}}{\in} C$$

となるので、C は加群である。したがって、C が剰余類環 $\mathbb{F}[X]/(X^n-1)$ のイデアル 20.3 であることが分かる。

31 巡回符号の生成多項式

この節では、巡回符号のいくつかの性質を導き、符号化に 有用な生成多項式を学ぶ。

定理 31.1. 多項式剰余類環 $\mathbb{F}_q[X]/\langle X^n-1\rangle$ のイデアル I(巡回符号である) に対して、I に属する非ゼロ多項式で最小の次数を持つものを [g(X)] とする。以下が成り立つ。

- 1. I の生成元 [g(X)] の $g(X) \in \mathbb{F}[X;n]$ は X^n-1 を割り切る。 $\mathbf{I}^{\text{190219_4Nov18}}$
- 2. Iは一つの生成元 $[g(X)] \in I$ で生成される。 $I = \langle [g(X)] \rangle$

証明. 1. イデアルI の生成元g(X) は X^n-1 を割り切ることを主張する。割り切れないと仮定すると

$$(X^n-1) \div g(X) =$$
商 $q(X)$ あまり $r(X) \neq 0$

言い換えると、

$$(X^{n} - 1) = g(X) \times q(X) + r(X)$$
$$\deg r(X) < \deg g(X)$$

となる。これより

$$r(X) = -g(X) \times q(X) \mod X^n - 1$$
$$= g(X) \times (-q(X)) \mod X^n - 1$$

対応する剰余類で表すと、

$$[r(X)] = [g(X)] \times [-q(X)] \in I$$

となる。[r(X)] はイデアル I の要素であり、r(X) は非ゼロで g(X) より小さい次数を持ち g(X) の選び方に矛盾する。従って X^n-1 は g(X) の多項式倍である。

2. 剰余類環 $\mathbb{F}_q[X]/\langle X^n-1\rangle$ のイデアル I が与えられたとする。自明な I、言い換えると $I=\{[0]\}$ の場合と $I=\mathbb{F}_q[X]/\langle X^n-1\rangle$ の場合を考えよう。このとき、I が一つの要素、それぞれ [0] と [1] で生成されることは明らかである。

$$\{[0]\} = \langle [0] \rangle, \mathbb{F}_q[X] / \langle X^n - 1 \rangle = \langle [1] \rangle$$

非自明なイデアルIに対して証明を与える 22 。任意の $[f(X)] \in I$ に対して[f(X)] = [a(X)][g(X)]となる

²²教員用メモ:非自明であることは使っていないのでは?

 $[a(X)]\in\mathbb{F}[X]/\langle X^n-1\rangle$ が存在することを示せば良い. まず, $[f(X)]\in I$ となる $f(X)\in\mathbb{F}[X;n]$ は g(X) によって割り切れることを主張する.割り切れないと仮定して矛盾を導く.1 より $g(X)|X^n-1$ であるから, $\deg g(X)\leq n$ である.

$$f(X) \div g(X) =$$
 商 $q(X)$ あまり $\underbrace{r(X)}_{\neq 0}$

とする. 言い換えると、

$$f(X) = q(X) \times g(X) + r(X)$$
$$\deg r(X) < \deg g(X)$$

となる。これらを $\mathbb{F}[X]/\langle X^n-1 \rangle$ の剰余類で表した

$$[r(X)] = \underbrace{[f(X)]}_{\in I} - \underbrace{[g(X)] \times [q(X)]}_{\in I}$$

はイデアルの加群性から I の要素であり、r(X) は非ゼロで g(X) より小さい次数を持ち g(X) の選び方に矛盾するので、r(X)=0 となる,つまり任意の $[f(X)]\in I$ に対して $[q(X)]\in \mathbb{F}[X]/\langle X^n-1\rangle$ が存在して [f(X)]=[q(X)][g(X)] となることが示された.これより,[g(X)] はイデアル I の生成元であることがわかる。

定義 31.2 (生成多項式). 巡回符号 C に含まれる、次数最小のモニックな非零符号語 g(X) を C の生成多項式という。ただし、C の次元が 0 である、すなわち $C=\{0\}$ である場合には、 $g(X)=X^n-1$ と定める。生成多項式の一意性は 31.4 で示す。

<mark>例 31.3.</mark> 29.2 の例で扱った巡回 RS 符号 *C* の符号語をリスト すると

となる。これより、 Сの生成多項式は、

$$g(X) = \boxed{[01] + [10]X}$$

である。他の符号語で生成多項式となるものはないので、生成多項式は唯一である。

定理 31.4. \mathbb{F} 上の [n,k] 巡回符号 C と生成多項式 g(X) に対して次が成り立つ。

014533 14Nov24

1. g(X) は $C(\mathbb{F}[X]/\langle X^n-1\rangle$ のイデアルとみなした) の生成元である.

証明. 31.1 の [g(X)] の定義より明らか.

004500 470 0

2. g(X) は $X^n - 1$ を割り切る。

証明. 31.1 の 1 より明らか.

3. g(X)はCの非零符号語である。

証明. 生成多項式の定義より明らか。

4. C に対して g(X) は一意に決まる。

証明. 生成多項式が一意でないと仮定する。すなわち $g(X) \neq g'(X)$ なる生成多項式 g(X), g'(X) が存在する。 C が線形符号であることから $g(X) - g'(X) \neq 0$ は符号語であり、生成多項式のモニック性から g(X) - g'(X) の次数は g(X), g'(X) より次数が少なくなる。さらに、 g(X) - g'(X) を適当に非零定数倍するとモニックになる。これは、生成多項式の次数の最小性に矛盾する。 \square

91718 13Nov24

5. 任意の符号語 $c(X) \in C$ は g(X) で割り切れる²³。

証明. ある符号語 c(X) が g(X) で割り切れないと仮定する。すると、

$$c(X) = q(X)g(X) + r(X),$$

$$\deg r(X) < \deg g(X)$$
(31.5)

²³教員用メモ:これも多項式剰余類環のイデアルの性質だけで示したい.

となる、商と余り $q(X), r(X) (\neq 0) \in \mathbb{F}[X]$ が存在する。 $\deg c(X) < n$ であるから、 $\deg(q(X)g(X)) < n$ となる。 したがって、

$$\begin{split} q(X)g(X) &= q(X)g(X) \bmod X^n - 1 \\ &\stackrel{22.5}{=} [q(X)g(X)] \stackrel{22.1}{=} [q(X)][g(X)] {\in} C \end{split}$$

となる。ここで,[g(X)] が C の生成元であることを使った. したがって、

$$r(X) = c(X) - q(X)g(X) \in C$$

となり、 $0 \neq r(X) \in C$ を得るが、(31.5) は g(X) の次数 の最小性に矛盾する。

200205_17Nov24

6. C は以下のように表せる。

$$C = \{u(X)g(X) \mid u(X) \in \mathbb{F}[X; n - \deg g(X)]\}$$

これにより、C の符号語多項式は g(X) に $n-\deg g(X)$ 次未満の情報多項式を乗じることで生成されることがわかる。これが g(X) が生成多項式と呼ばれる理由である。

証明. 5 より、符号語 $c(X) \in C$ に対して、c(X) = u(X)g(X) となる $u(X) \in \mathbb{F}[X; n - \deg g(X)]$ が存在

する。逆に、 $u(X) \in \mathbb{F}[X; n - \deg g(X)]$ に対して、u(X)g(X) の次数は n 次未満なので、

$$u(X)g(X) = u(X)g(X) \mod X^n - 1$$
$$= [u(X)g(X)]$$
$$= [u(X)][g(X)] \stackrel{\text{(a)}}{\in} C$$

となる。(a) では 1:[g(X)] がイデアル C の生成元であることを使った.

200721_17Nov24

7. $k = n - \deg g(X)$ である.

証明. 異なる $u(X), u'(X) \in \mathbb{F}[X; n - \deg g(X)]$ に対して、c(X) = u(X)g(X)、c'(X) = u'(X)g(X) とすると、 $c(X) \neq c'(X)$ となるはずである.なぜなら、c(X) = c'(X) と仮定すると、(u(X) - u'(X))d(X) = 0 となり $d(X) \neq 0$ に矛盾する.したがって、このような u(X) をすべて動かすことで、C の符号語をすべて生成することができる: $|C| = |\mathbb{F}|^{n-\deg g(X)}$ となる.一方、C は \mathbb{F} をスカラとする k 次元線形符号であるから、 $|C| = |\mathbb{F}|^k$ となる.これらより、 $k = n - \deg g(X)$ を得る.

この定理 31.4 は、巡回符号の生成多項式が満たすべき性質を与えてくれた、次の 31.6 は逆にこの性質を備えた多項式か

ら生成される多項式集合は巡回符号になることを主張している.

命題 31.6. $g(X) \mid X^n - 1, \deg g(X) = n - k$ を満たすモニックな非零多項式 $g(X) \in \mathbb{F}[X]$ を用いて定義される

$$C = \{u(X)g(X) \mid u(X) \in \mathbb{F}[X;k]\} \subset \mathbb{F}[X;n]$$

は、 \mathbb{F} 上の [n,k] 巡回符号となる。

証明. 演習問題で証明する。

命題 31.7 (巡回符号は割り算を用いて簡単に組織的に符号化できる). C を \mathbb{F} 上の [n,k] 巡回符号とする。 C の生成多項式を $g(X) \in \mathbb{F}[X,n-k]$ とする。下記のアルゴリズムは、情報多項式 $u(X) \in \mathbb{F}[X;k]$ を入力とし、1 対 1 に対応する符号語 c(X) を出力する線形な符号化アルゴリズムであり、組織的な符号化になっている。ここで言う組織的符号化とは、対応する符号語ベクトル \vec{c} に、情報ベクトル \vec{u} が部分ベクトルとして現れることを意味している。

1. $u(X)X^{n-k}$ を g(X) で割った商と剰余をそれぞれ g(X), r(X) と書く。

$$u(X)X^{n-k} = q(X)g(X) + r(X),$$

 $\deg r(X) < \deg g(X) = n - k$ (31.8)

が成り立つ。

2. これを移項して、

$$u(X)X^{n-k} - r(X) = q(X)g(X) =: c(X)$$
 (31.9)

を符号語として出力する。

証明. (31.9) の右辺は g(X) の倍多項式になっているので、左辺は C の符号語となっていることが分かる。

$$u(X)X^{n-k} - r(X) \in C \text{ with } r(X) \in \mathbb{F}[X; n-k]$$

 $u(X)\mapsto u(X)X^{n-k}$ は、右に n-k 回シフトする操作なので、28.2 より線形写像である。31.10 から $u(X)\mapsto r(X)$ も線形写像であることがわかる。さらに、(31.8) より、r(X) と $u(X)X^{n-k}$ の共通する次数に非ゼロ係数を持たないので、対応する符号語ベクトルは $\vec{c}=(-\vec{r}|\vec{u})$ となる。これより、 \vec{c} は \vec{u} を一部に含んでおり組織的であることと、 $u(X)\mapsto c(X)$ は一対一であることが分かる。

24

23837 290ct17

補題 31.10 (剰余の線形性). $n \ge m$ とする. $m = \deg g(X)$ なる非零多項式 $d(X) \in \mathbb{F}[X;n]$ に対して、以下で定義される写像 $\phi: \mathbb{F}[X;n] \ni f(X) \mapsto \phi(f) \in \mathbb{F}[X;m]$ は線形写像である。

$$\phi(f) := f(X) \bmod d(X)$$

²⁴教員用メモ: ここに符号化の例を与えたい.

ただし、 $f(X) \bmod d(X)$ は f(X) を d(X) で割った剰余多項式である。

証明. 表記を簡単にするために、多項式 f(X) を f と書く。 $\phi(f+q) = \phi(f) + \phi(q),$

$$\phi(cf)=c\phi(f)$$
 名質式 f こと対して、 f/J こ/Jの意と剰合い

を示せばよい。多項式 f,g に対して、f/d,g/d の商と剰余が 剰余定理 23.1 よりそれぞれ以下の通り与えられるとする。

$$f = q_f d + r_f, \deg r_f < \deg d$$
$$g = q_g d + r_g, \deg r_g < \deg d$$

このとき、

$$f + g = (q_f + q_g)d + (r_f + r_g),$$
$$\deg(r_f + r_g) < \deg d$$

となる。したがって、

張が導けた。

$$\phi(f+g) = r_f + r_g = \phi(f) + \phi(g)$$

となる。スカラー $c \in \mathbb{F}$ に対して、

$$cf = cq_f d + cr_f$$
, $\deg cr_f < \deg d$

となるので、剰余定理 23.1 より $\phi(cf)=c\phi(f)$ も言えて、主

32 ^{@10} 巡回符号の生成行列とパリティ検査行

列

この節では、巡回符号の生成行列、パリティ検査行列を与える. また、符号語多項式とかけると零多項式になるパリティ検査多項式を与える.

命題 32.1 (巡回符号の生成行列). \mathbb{F}_q 上の [n,k] 巡回符号 C の生成多項式が g(X) で与えられるとする。31.4 の 7 より, $\deg g(X) = n - k$ である。つまり、

$$g(X) = g_0 + g_1 X + \dots + g_{n-k-1} X^{n-k-1} + \underbrace{g_{n-k}}_{=1} X^{n-k}$$

と書ける.ここで g(X) を,それぞれ $0,1,\ldots,k-1$ 回,右シフトした $g(X),\,Xg(X),\,\ldots,\,X^{k-1}g(X)$ に対応する k 個の符号語は

$$g(X) \leftrightarrow (g_0, g_1, \dots, g_{n-k-1}, g_{n-k}, 0, \dots, 0)$$

$$Xg(X) \leftrightarrow (0, g_0, g_1, \dots, g_{n-k-1}, g_{n-k}, 0, \dots, 0)$$

$$\vdots$$

:

$$X^{k-2}g(X) \leftrightarrow (0, \dots, 0, g_0, g_1, \dots, g_{n-k-1}, g_{n-k}, 0)$$

 $X^{k-1}g(X) \leftrightarrow (0, \dots, \dots, 0, g_0, g_1, \dots, g_{n-k-1}, g_{n-k})$

となる.これらは一番右にある非ゼロ成分 $g_{n-k}=1$ の位置が すべて異なるから線形独立である。または、 $g_0 \neq 0$ であるこ

と(証明は演習で行う)からも分かる。またベクトルの数kはCの次元kに等しいからこれらのベクトルは基底を構成している。従ってこれらのベクトルを縦に並べた \mathbb{F}_a 値 $k \times n$ 行列

$$G = \begin{pmatrix} g_0 & g_1 & \dots & g_{n-k-1} & g_{n-k} & 0 & \dots & \dots & 0 \\ 0 & g_0 & g_1 & \dots & g_{n-k-1} & g_{n-k} & 0 & \dots & 0 \\ & \ddots \\ 0 & \dots & 0 & g_0 & g_1 & \dots & g_{n-k-1} & g_{n-k} & 0 \\ 0 & \dots & \dots & 0 & g_0 & g_1 & \dots & g_{n-k-1} & g_{n-k} \end{pmatrix}$$

がCの生成行列になる。

定義 32.2 (パリティ検査多項式). 符号長n の巡回符号C の生成多項式g(X) に対して、

$$h(X) := (X^n - 1)/g(X)$$
 (32.3)

を C のパリティ検査多項式という。(32.3) の割り算が割り切れることは、31.4 の 2 で示した。

6.7 を思い出そう.パリティ検査行列は符号語と掛けるとゼロベクトルとなる行列であった.パリティ検査多項式は,符号語多項式に掛けるて X^n-1 で割ったあまりが零多項式になる多項式である.

命題 32.4 (巡回符号のパリティ検査行列). 符号長nの \mathbb{F} 上の巡回符号Cのパリティ検査多項式を $h(X) = \sum_{i=0}^k h_k X^k$ とする。以下が成り立つ。

1. $\deg h(X) = k, h_k = 1$ である。

2.
$$c(X) \in \mathbb{F}[X;n]$$
 に対して、 $c(X) \in C$ であることと、 $c(X)h(X) \equiv 0 \pmod{X^n-1}$ であることは同値である。

3. 以下の H は C のパリティ検査行列である。

より明らか。

$$H = \begin{pmatrix} h_k h_{k-1} & \dots & h_1 & h_0 & 0 & \dots & \dots & 0 \\ 0 & h_k & h_{k-1} & \dots & h_1 & h_0 & 0 & \dots & 0 \\ & \ddots & \dots \\ 0 & \dots & 0 & h_k h_{k-1} & \dots & h_1 & h_0 & 0 \\ 0 & \dots & \dots & 0 & h_k & h_{k-1} & \dots & h_1 & h_0 \end{pmatrix} 32.5$$

1. $\deg g(X) = n - k, g_{n-k} = 1$ であったから、(32.3)

2. c(X) が C の符号語であるとすると、31.4 の 6 より生成多項式 a(X) と情報多項式 $u(X) \in \mathbb{F}[X:k]$ を用いて、

多項式 g(X) と情報多項式 $u(X) \in \mathbb{F}[X;k]$ を用いて、c(X) = u(X)g(X) と書ける。これより、次が成り立つ.

$$c(X) = u(X)g(X)$$
 と音の る。これより、次が成り並う。
$$c(X)h(X) = u(X)g(X)h(X)$$
$$\stackrel{(32.5)}{=} u(X)(X^n - 1)$$
$$\equiv 0 \pmod{X^n - 1}$$
 (32.6)

逆に $c(X) \in \mathbb{F}[X; n]$ に対して $c(X)h(X) \equiv 0$ とすると、

$$c(X)h(X) = u(X)(X^{n} - 1) = u(X)g(X)h(X)$$

なる多項式 $u(X) \in \mathbb{F}[X;k]$ が存在する。これより

$$(c(X) - g(X)u(X))h(X) = 0$$

となるが、非ゼロ多項式どうしの積はゼロにはならないのと第 2 因子 h(X) は非ゼロなので、第一因子がゼロ、すなわち c(X)=u(X)g(X) となるはずである。これより、c(X) が C の符号語であることがわかる。

3. 6.7 を考えると、H がパリティ検査行列であることを示すには、(32.6) が $H\vec{c}=\vec{0}$ と同値であることを示せば十分である。(32.6) の右辺 $u(X)X^n-u(X)$ の第 1 項はj 次 $(n \leq j < n+k)$ 以外の係数はゼロであり第 2 項はj 次 $(0 \leq j < k)$ 以外の係数はゼロである。よって、 $u(X)X^n-u(X)$ の j $(k \leq j \leq n-1)$ 次の係数は 0 である。したがって、(32.6) の左辺を展開した多項式

$$c(X)h(X) = \sum_{i>0} (\sum_{i=0}^{j} c_i h_{j-i}) X^j$$

の $j(k \le j \le n-1)$ 次の係数も0となる。

$$\sum_{i=0}^{j} c_i h_{j-i} = 0 \text{ for } j = k, k+1, \dots, n-1$$

これを行列で表すと $H\vec{c}=\vec{0}$ である。対角成分に $h_k=1$ が並んでいることからフルランク: $\mathrm{rank}H=n-k$ となる。したがって、H は C のパリティ検査行列となる。

となる。これより、Cの生成多項式は、

$$g(X) = \left| [01] + [10]X \right|$$

であった。パリティ検査多項式は、

$$h(X) = (X^{n} - 1) / ([01] + [10]X) = [11] + [01]X + X^{2}$$

となる。 $\mathsf{TODO}: h(X)c(X) \equiv 0$ となる例を与える。

議論 32.8. 主符号のパリティ検査行列は双対符号の生成行列となり、主符号の生成行列は双対符号のパリティ検査行列となる。このような、2つの裏表にある関係の2つの数学的対象に対して、対象性のある関係を双対性という。しかし、巡回符号 C に対して、双対符号 C^{\perp} のパリティ検査多項式と生成多項式にはこのような双対性はない。

33 巡回符号の双対符号

この節では、巡回符号の双対符号がまた巡回符号になることを学び、双対巡回符号の生成多項式を明らかにする.

定理 33.1 (巡回符号の双対符号は巡回符号). 非自明な体 $\mathbb{F} \neq \{0\}$ 上の [n,k] 巡回符号 C は,生成多項式 $g(X) = \sum_{i=0}^{n-k} g_i X^i$ とパリティ検査多項式 $h(X) = \sum_{i=0}^k h_i X^i$ を有しているとする.k 次の多項式 $g^{\perp}(X) \in \mathbb{F}[X;k]$ を定義する.

$$g^{\perp}(X) \stackrel{\text{def}}{=} h_0^{-1} X^k h(1/X)$$

= $h_0^{-1} (h_k + h_{k-1} X + \dots + h_1 X^{k-1} + h_0 X^k)$

 $g^{\perp}(X)$ は、h(X) の係数 h_0, \ldots, h_k を逆順に並べた k 次多項式をモニック化したものである.このとき、以下が成り立つ。

- 1. $h_0 \neq 0$
- 2. $g^{\perp}(X) \mid X^n 1$ である. これと 31.6 により, $g^{\perp}(X)$ は ある巡回符号 C' の生成多項式となることが分かる._
- 3. $C' = C^{\perp}$ である. したがって、双対符号 C^{\perp} は巡回符号 である. $g^{\perp}(X)$ は双対符号 C^{\perp} の生成多項式である.

C の双対符号 C^\perp は巡回符号であり、 $g^\perp(X)$ は C^\perp の生成多項式である.

証明. 1. まず、 $h_0 \neq 0$ であることを示す。 $h_0 = 0$ と仮定すると h(0) = 0 となる。一方、 $X^n - 1 = g(X)h(X)$ である。これから、左辺 $|_{X=0} = -1$ で 右辺 $|_{X=0} = 0$ となることになるが、 $-1 \neq 0$ なので 25 、矛盾する。

 $[\]overline{\ \ \ \ }^{25}0=1$ だと仮定すると $x=x\cdot 1=x\cdot 0=0$ for $x\in\mathbb{F}$ となり自明な体 $\mathbb{F}=\{0\}$ となる。

2. 次に、 $g^{\perp}(X) \mid X^n - 1$ を示す。h(X) はパリティ検査多項式であったから、 $g(X)h(X) = X^n - 1$ が成り立つ。X を1/X に置き換えることで、多項式でなくなるが形式的に

$$g(1/X)h(1/X) = (1/X)^n - 1$$

が成り立つ。 $\deg g(X) = n - k, \deg h(X) = k$ であった。これらが多項式になるように、両辺に X^n を乗じて、多項式の等式

$$\underbrace{X^{n-k}g(1/X)}_{\in \mathbb{F}[X]} \underbrace{X^kh(1/X)}_{=h_0g(X)^{\perp} \in \mathbb{F}[X]} = 1 - X^n$$

を得る。これは、 $g^{\perp}(X):=h_0^{-1}X^kh(1/X)$ が X^n-1 を割り 切ることを意味している。

3. 32.1 と 32.4 から,C の生成行列 G とパリティ検査行列 H はそれぞれ g(X),h(X) を用いて,

$$G = \begin{pmatrix} g_0 & g_1 & \dots & g_{n-k-1} & g_{n-k} & 0 & \dots & \dots & 0 \\ 0 & g_0 & g_1 & \dots & g_{n-k-1} & g_{n-k} & 0 & \dots & 0 \\ & \ddots \\ 0 & \dots & 0 & g_0 & g_1 & \dots & g_{n-k-1} & g_{n-k} & 0 \\ 0 & \dots & 0 & g_0 & g_1 & \dots & g_{n-k-1} & g_{n-k} & 0 \\ 0 & \dots & 0 & g_0 & g_1 & \dots & g_{n-k-1} & g_{n-k} \end{pmatrix}$$

$$H = \begin{pmatrix} h_k & h_{k-1} & \dots & h_1 & h_0 & 0 & \dots & \dots & 0 \\ 0 & h_k & h_{k-1} & \dots & h_1 & h_0 & 0 & \dots & 0 \\ & \ddots \\ 0 & \dots & 0 & h_k & h_{k-1} & \dots & h_1 & h_0 & 0 \\ 0 & \dots & \dots & 0 & h_k & h_{k-1} & \dots & h_1 & h_0 \end{pmatrix}$$

と構成できた。 $g^{\perp}(X)$ を生成多項式とする巡回符号 C' の生成行列は $\frac{1}{h_0}H$ で与えられることが分かる.一方,6.7 から,C の

パリティ検査行列 $\frac{1}{h_0}H$ は双対符号 C^{\perp} の生成行列になる。したがって, $g^{\perp}(X)$ を生成多項式とする巡回符号 C' は C^{\perp} であることがわかった.

34 体の元の位数に関する性質

次の節で学習する有限体の便利な性質「原始元が存在する」 ことの証明に使用するいくつかの補題を導く.

定義 34.1 (位数). 体 \mathbb{F} の非零元 $\alpha \in \mathbb{F}$ に対して、

$$\alpha^1, \alpha^2, \ldots,$$

と並べたときに初めて単位元 1 になる $\alpha^i=1$ に対して、i を α の位数といい、 $\operatorname{ord}(\alpha)$ と書く。 $\operatorname{ord}(1)=1$ である。

0605_210ct1

補題 34.2 (34.5, 34.6 で使用する). 有限体の非零の元 α に対して、 $i := \operatorname{ord}(\alpha)$ とする。このとき、以下が成り立つ。

$$\alpha^j = 1 \Leftrightarrow i \mid j$$

証明. $(\Leftarrow の証明)i \mid j$ ならば j = ih となる整数 h が存在する。 $\alpha^j = \alpha^{ih} = (\alpha^i)^h = 1^h = 1$ となる。 $(\Rightarrow の証明)$

とする。 $0 \le r < i$ である。 $\alpha^j = 1$ ならば、

$$1 = \alpha^j = \alpha^{iq+r} = (\alpha^i)^q \alpha^r \stackrel{[i = \operatorname{ord}(\alpha)]}{=} \alpha^r$$

となる。 $r \neq 0$ つまり r > 0 を仮定すると、位数 $i := \operatorname{ord}(\alpha)$ の定義の最小性に矛盾する。したがって、r = 0 となる。これを (34.3) に代入して $i \mid j$ を得る。

定義 34.4. 自然数 n の素因数の重複を許した集合を (n) と書く。例えば、 $(72) = \{2,2,2,3,3\}$ である。この表記を用いいると次が成り立つ。

となる。

補題 34.5 (ベキの位数の評価、35.4 と 38.5 で使用する). 有限体の非零の元 α に対して、以下が成り立つ。

$$\operatorname{ord}(\alpha^j) = \operatorname{ord}(\alpha)/\gcd(\operatorname{ord}(\alpha), j)$$

証明. $k:=\mathrm{ord}(\alpha^j), i:=\mathrm{ord}(\alpha), m:=\mathrm{gcd}(\mathrm{ord}(\alpha), j)$ として、 k=i/m を示す。

【 $i/m \mid k$ を示す】 $k = \operatorname{ord}(\alpha^j)$ より、 $1 = (\alpha^j)^k = \alpha^{jk}$ となる。34.2 より $i \mid jk$ を得る。これと $\gcd(i,j) = m$ から $i/m \mid k$ を得る。実際、 $(i) \subset (j) \cup (k)$ と $(i) \cap (j) = (m)$ より、 $(i) \setminus (m) \subset (k)$ はベン図を書けば明らかに成り立つ。

【 $k\mid i/m$ を示す】 $i=\mathrm{ord}(\alpha)$ より、 $(\alpha^j)^{i/m}=(\alpha^i)^{j/m}=1$ である。34.2 より、 $k\mid i/m$ を得る。

124926 22Nct17

補題 34.6 (互いに素な位数を有する 2 つ元の積の位 数は、それらの位数の積になる.35.4 で使用する).有限体 \mathbb{F} の非零の元 $\alpha,\beta\in\mathbb{F}$ に対して、 $i:=\operatorname{ord}(\alpha),j:=\operatorname{ord}(\beta)$ とする。以下が成り立つ。

$$\gcd(i,j) = 1 \Rightarrow \operatorname{ord}(\alpha\beta) = ij$$

証明.

$$(\alpha \beta)^{ij} = \alpha^{ij} \beta^{ij} = (\alpha^i)^j (\beta^j)^i = 1 \times 1 = 1$$

となる。34.2 より、

 $\operatorname{ord}(\alpha\beta) \mid ij$

を得る。これと $\gcd(i,j)=1$ から、 $i'\mid i,j'\mid j$ となる整数 i',j' が存在して、

 $\operatorname{ord}(\alpha\beta) = i'j'$

となることを意味する。あとは、
$$\gcd(i,j)=1\Rightarrow i=i',j=j'$$
を示せば十分である。 (34.7) より、 $(\alpha\beta)^{i'j'}=1$ である。

(34.7)

$$1 = ((\alpha \beta)^{i'j'})^{i/i'} = \alpha^{ij'} \beta^{ij'} = 1 \times \beta^{ij'} = \beta^{ij'}$$
$$1 = ((\alpha \beta)^{i'j'})^{j/j'} = \alpha^{i'j} \beta^{i'j} = \alpha^{i'j} \times 1 = \alpha^{i'j}$$

となる。これらと 34.2 より、それぞれ $j\mid ij', i\mid i'j$ を得る。これらと $i'\mid i, j'\mid j$ と $\gcd(i,j)=1$ から、 j=j', i=i' を得る。

35 体の原始元

この節では、有限体の元を表現するのにとても便利な原始元を学ぶ.

定義 35.1 (原始元). サイズ q の有限体 \mathbb{F}_q の元 $\alpha \in \mathbb{F}_q$ の位数 が q-1、言い換えると

$$q - 1 = \operatorname{ord}(\alpha)$$

であるとき、 α は \mathbb{F}_q の原始元であるという。原始元 $\alpha \in \mathbb{F}_q$ を用いて、 \mathbb{F}_q を、 α のべきの形で網羅的に列挙したものにゼロ

を付け加えた集合

$$\mathbb{F}_q = \{0, \alpha^0 = \alpha^{q-1} = 1, \alpha^1, \dots, \alpha^{q-2}\}\$$

と表すことができる。原始元が存在することは、定理 35.4 で 証明する。

例 35.2. 既約多項式 $1+X+X^2$ によって構成された $\mathbb{F}_4:=\mathbb{F}_2[X]/\langle 1+X+X^2\rangle=\{[00],[10],[01],[11]\}$ に対して、位数を計算して原始元を見つよう。

[10] = 1 $\text{tord}([10]) = \boxed{1}$, [01]² = [11], [01]³ = [11] \times [01] = [10] $\text{tord}([01]) = \boxed{3}$,

$$[11]^2 = [01], [11]^3 = [01] \times [11] = [10]$$
 なので ord([11]) = $\boxed{3}$

例 35.3.
$$\mathbb{F}_{11} := \mathbb{Z}/11\mathbb{Z}$$
 の演算表を示す。

となり、[01], [11] のふたつは F4 の原始元である。

x | [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] I Г17 [2] [3] [4] [5] [6] Γ71 [8] Γ17 [9] Γ107 [8] [2] ΓοΊ [2] Γ41 [6] [10][1] [3] [5] [7] [9] [10][2] [5] [3] [0] I [3] [6] [9] [1] [4] [7] [8] [5] [9] [2] [4] | [0] ۲4٦ [8] [1] [6] [10] [3] [7] [9] [5] I Γ01 Γ51 [10][4] [3] [8] **[2]** [7] [1] [6] [6] | [6] [6] [1] [7] [2] [8] [3] [9] Γ41 [10] [5] [3] [7] I [0] [7] [10][6] [2] [9] **Γ51** Г17 [8] **[41** [8] [5] [8] [0] [2] [10] [7] [4] [1] [9] [6] [3] [5] [3] [1] [10][8] [9] ГоТ [9] [7] [6] Γ41 [2] [10] | [0] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1]

$$[2]^0 = [1], [2]^1 = [2], [2]^2 = [4], [2]^3 = [8],$$

 $[2]^4 = [5], [2]^5 = [10], [2]^6 = [9], [2]^7 = [7],$
 $[2]^8 = [3], [2]^9 = [6], [2]^{10} = [1]$

となり、 $[2] \in \mathbb{F}_{11}$ は \mathbb{F}_{11} の原始元であることが分かる。 \Box **定理 35.4** (原始元の存在). サイズ q の有限体 \mathbb{F}_q には原始元が存在する。 \mathbb{F}_q に存在する原始元の数はオイラー関数 $\phi(q-1)$ で与えられることは、演習で扱う。

証明. 位数が最大となる \mathbb{F}_q の非零元を $\alpha \neq 0$ と書く。 $i:= \operatorname{ord}(\alpha)$ とする。最大位数元 α が定義できるためには、すべての非零元の位数が有限でなければならない。これは演習で証明する。この最大位数元 α が原始元であることを主張する。i=q-1 であることを示せば十分である。

【 $i \leq q-1$ であること】 $lpha^1,lpha^2,\ldots,lpha^i=1\in\mathbb{F}_q\setminus\{0\}$ はすべ

て異なることを主張する。すべて異なるわけではない、つまり

$$\alpha^{i_1} = \alpha^{i_2} \text{ with } 0 \le i_1 < i_2 \le i$$

と仮定すると、 $\alpha^{i_2-i_1}=1$ with $0< i_2-i_1< i$ となり、 $i= \operatorname{ord}(\alpha)$ であることに矛盾する。これより、 $\alpha^1,\alpha^2,\dots,\alpha^i=1\in \mathbb{F}_q$ は全て異なっていることがわかる。非ゼロ元のべきは非ゼロになることと、 \mathbb{F}_q の非ゼロ元はq-1 個あることから、 $i\leq q-1$ が導ける。

【 $i \geq q-1$ であること】非零元 $\beta(\neq 0) \in \mathbb{F}_q$ に対して、 $j:=\mathrm{ord}(\beta)$ とする。

$$j \mid i$$
 (35.5)
であることを主張する $i \mid i$ でないと仮定する すると (i) ϕ

であることを主張する。 $j\mid i$ でないと仮定する。すると、 $(j)\not\subset (i)$ であるから、(j) はある素因子 $p\in (j)$ を (i) より多く含んでいるはずである。この数をそれぞれ k,l とすると、

。この数をそれぞれ
$$k,l$$
とすると、 $i=p^ki', j=p^lj',$

with
$$l > k$$
, $gcd(p, i') = 1$

(35.6)

(35.7)

(35.8)

と書けるはずである。34.5 より、以下が成り立つ。 $\operatorname{ord}(\alpha^{p^k}) \stackrel{34.5}{=} i/\gcd(i,p^k) = p^k i'/p^k = i'$

$$\operatorname{ord}(\alpha^{p^k}) \stackrel{34.5}{=} i/\gcd(i, p^k) = p^k i'/p^k = i'$$
$$\operatorname{ord}(\beta^{j'}) \stackrel{34.5}{=} j/\gcd(j, j') = p^l j'/j' = p^l$$

gcd(p, j') = 1

(35.7) と (35.8) より、これらの位数は互いに素: $\gcd(i',p^l)=1$ となる。これと 34.6[互いに素な位数を有する 2 つ元の積の位数は、それらの位数の積になる] より、

$$\operatorname{ord}(\alpha^{p^k} \times \beta^{j'}) \stackrel{34.6}{=} \operatorname{ord}(\alpha^{p^k}) \operatorname{ord}(\beta^{j'}) = p^l i' \stackrel{(35.6)}{>} p^k i' = i$$

となる。i より大きな位数の元 $\alpha^{p^k} \times \beta^{j'} \in \mathbb{F}$ が存在することになり α が最大位数元であることに矛盾するので、結局 $j \mid i$ となる。これを用いて、

$$\beta^i = \beta^{ji/j} = (\beta^j)^{i/j} = 1$$

となる。非ゼロ要素 $\beta\in\mathbb{F}_q$ は任意に選ばれたことを思い出す と、 \mathbb{F}_q の q-1 個の非零元 β はすべて $-1+X^i$ の根である、正確に述べると

$$\beta \in \mathbb{F}_q, \beta \neq 0 \Longrightarrow -1 + \beta^i = 0$$
 (35.9)

であることが分かる。代数の基本定理により、次数i の多項式は高々i 個の根しかもたないので、 $-1+X^i$ の根の個数 = $q-1 \le i$ となる。

【まとめ】まとめると、最大位数元 $\alpha \in \mathbb{F}_q$ の位数 i は q-1 に一致し、 α は原始元になることが分かる。

013856 8Nov18

定理 35.10 (一般化されたフェルマーの小定理). サイズ q の有限体の任意の元 α は、 $f(X) := X^q - X$ に対して $f(\alpha) = 0$

を満たす。 26 これより、 $\alpha^q=\alpha$ となることが分かる。さらに、

$$\left. \prod_{\alpha \in \mathbb{F}_q} (X - \alpha) = X^q - X, \\
\prod_{\alpha \in \mathbb{F}_q^{\times}} (X - \alpha) = X^{q-1} - 1 \right\}$$
(35.11)

が成り立つ.

証明. $\alpha = 0$ に対しては、明らか。(35.9) より、非零元 $\alpha \in \mathbb{F}_q, \alpha \neq 0$ に対しても $f(\alpha) = 0$ は成り立つ。 $X^q - X$ は \mathbb{F}_q の元をすべて根に持つ。代数の基本定理から $X^q - X$ は高々q-1 個の異なる元を有するので、これ以外の根は持たいない。これより、(35.11) が分かる.

035600_11Nov:

 \mathbf{x} 35.12. 有限体 \mathbb{F}_q の非零元の位数は q-1 を割り切る。

証明. (35.5) より分かる。

 $g \in$

定義 35.13 (巡回群 (cyclic group)). ある群 G が一つの元 $g \in G$ を用いて、

$$G = \{ g^n \mid n \in \mathbb{Z}, n \ge 0 \}$$

と書けるとき、G は g によって生成される巡回群であるといい、 $G = \langle g \rangle$ と書く。G のサイズを G の位数という。

 $^{2^{6}}q$ が素数 p の場合にはフェルマーの小定理 $a^{p-1} \equiv 1 \pmod{p}$ http://bit.ly/2Rm56Ww として知られている。

命題 35.14 (有限体の乗法群は巡回群になる). 有限体 \mathbb{F}_q の非零の元の集合 \mathbb{F}_q^* は乗法に関して位数 q-1 巡回群をなす。□

証明. 非零の元の集合は、原始元 α によって、

$$\mathbb{F}_q^{\times} = \{\alpha^1, \dots, \alpha^{q-1} (=1)\}$$

と書けた。任意の $n \in \mathbb{Z}$ に対して、

$$\alpha^n = \alpha^{n \bmod q - 1} \in \mathbb{F}_q^{\times}$$

である。これから、主張が正しいことが分かる。

命題 35.15 (有限体上のべき乗計算の効率的な方法). 非零元 $\beta \in \mathbb{F}_q$ に対して、べき乗 β^n を大きな $n \gg 1$ でも高速に計算したい。以下のようにして原始元 $\alpha \in \mathbb{F}_q$ を用いて効率的に計算することができる。

- $1. \ 1, lpha, lpha^2, \ldots, lpha^{q-2}$ の順で $\mathbb{F}_q^{ imes}$ の要素を列挙する。
- 2. $\alpha^k = \beta$ となる $k \in \{0, 1, \dots, q-2\}$ を求める。
- $3. j := kn \mod q 1$ を求める。
- 4. $\beta^n = \alpha^j$ として、出力する。

証明. kn/(q-1)= 商 a 余り j とすると、 $\beta^n=(\alpha^k)^n=\alpha^{kn}=\alpha^{a(q-1)+j}=\alpha^{a(q-1)}\alpha^j=(\alpha^{(q-1)})^a\alpha^j=\alpha^j$ となる。

022849_19Nov23

例 36.1. 既約多項式 $f(X)=1+X+X^6\in\mathbb{F}_2[X]$ で定義される $\mathbb{F}_{64}=\mathbb{F}_2[X]/\langle f(X)\rangle$ に対して、 $\alpha:=[X]$ は原始元である。 $[1+X+X^6]=[0]$ なので、

$$1 + \alpha + \alpha^6 = 0 \tag{36.2}$$

となる。これを利用して、べき表現と 6 次未満の α の多項式表現またはそれと等価な長さ 6 のベクトル表現を 36.3 のように得ることができる。例えば、

$$\alpha^{1} = [010000] \quad \alpha^{2} = [001000] \quad \alpha^{3} = [000100]$$

$$\alpha^{4} = [000010] \quad \alpha^{5} = [000001]$$

$$\alpha^{6} \stackrel{(36.2)}{=} 1 + \alpha = [110000]$$

$$\alpha^{7} = \alpha \times \alpha^{6} = \alpha(1 + \alpha) = \alpha + \alpha^{2} = [0110000]$$

$$\alpha^{8} = \alpha \times \alpha^{7} = \alpha(\alpha + \alpha^{2}) = \alpha^{2} + \alpha^{3} = [0011000]$$

$$\vdots$$

$$\alpha^{54} = \alpha \times \alpha^{53} = \alpha \times (\alpha + \alpha^{3} + \alpha^{5}) = \alpha^{2} + \alpha^{4} + \alpha^{6}$$

$$\stackrel{(36.2)}{=} 1 + \alpha + \alpha^{2} + \alpha^{4} = 111010$$

である。この表を用いて、乗算はべき表現によって、加算はベクトル表現によって、簡単に行うことができる。上記の議論は、原始多項式の定義をしたあとで一般的に 38.7 でもう一度議論する。

注意:任意の既約多項式 f(X) に対して、[X] \in $\mathbb{F}_{n}[X]/\langle f(X) \rangle$ が原始元になるとは限らないので注意し

よう。例えば、 $1+X+X^2+X^3+X^4 \in \mathbb{F}_2[X]$ は既約多項 式だが $[X] \in \mathbb{F}_2[X]/\langle 1 + X + X^2 + X^3 + X^4 \rangle$ は下記の計

算により $[X]^5 = 1$ となり、15 乗する前に1 になってしまう ので、原始元ではない。 $[X]^4 = 1 + X + X^2 + X^3, [X]^5 =$

 $XX^4 = X(1 + X + X^2 + X^3) = X((1 + X + X^2) + X^3) =$ $(X+X^2+X^3)+X^4=(X+X^2+X^3)+1+X+X^2+X^3=1$

```
\alpha^{22} = [101011]
                                               \alpha^{43} = [111011]
 \alpha^1 = [010000]
 \alpha^2 = [001000]
                   \alpha^{23} = [100101]
                                                       \alpha^{44} = [101101]
                                                       \alpha^{45} = [100110]
                   \alpha^{24} = [100010]
 \alpha^3 = [000100]
                                                       \alpha^{46} = [010011]
                   \alpha^{25} = [010001]
 \alpha^4 = [000010]
                   \alpha^{26} = [111000]
                                                       \alpha^{47} = [111001]
 \alpha^5 = [000001]
 \alpha^6 = [110000]
                   \alpha^{27} = [011100]
                                                       \alpha^{48} = [101100]
                   \alpha^{28} = [001110]
                                                       \alpha^{49} = [010110]
 \alpha^7 = [011000]
                                                       \alpha^{50} = [001011]
 \alpha^8 = [001100]
                   \alpha^{29} = [000111]
                                                       \alpha^{51} = [110101]
 \alpha^9 = [000110]
                   \alpha^{30} = [110011]
                                                       \alpha^{52} = [101010]
\alpha^{10} = [000011]
                   \alpha^{31} = [101001]
                                                       \alpha^{53} = [010101]
\alpha^{11} = [110001]
                   \alpha^{32} = [100100]
\alpha^{12} = [101000]
                   \alpha^{33} = [010010]
                                                 \alpha^{54} = \boxed{111010}
                   \alpha^{34} = [001001]
\alpha^{13} = [010100]
                                                       \alpha^{55} = [011101]
\alpha^{14} = [001010]
                   \alpha^{35} = [110100]
                                                \alpha^{56} = [1111110]
                   \alpha^{36} = [011010]
\alpha^{15} = [000101]
                                                       \alpha^{57} = [011111]
\alpha^{16} = [110010]
                    \alpha^{37} = [001101]
                                                 \alpha^{58} = [1111111]
\alpha^{17} = [011001]
                   \alpha^{38} = [110110]
                                                       \alpha^{59} = [101111]
\alpha^{18} = [111100]
                   \alpha^{39} = [011011]
                                                \alpha^{60} = [100111]
\alpha^{19} = [011110]
                   \alpha^{40} = [111101]
                                                \alpha^{61} = [100011]
                   \alpha^{41} = [101110] \qquad \qquad \alpha^{62} = [100001]
\alpha^{20} = [001111]
\alpha^{21} = [110111] \alpha^{42} = [010111] \alpha^{63} = [100000]
```

図 36.3: F₆₄ の原始元のべき表現とベクトル表現。37_7Nov17</sub>

37 標数と有限体の要素数

これまでに、素数のべきのサイズで表される有限体を構成する方法を学んだ。この節では、この方法で与えられたとは限らない任意の有限体のサイズは、素数のべきで与えられること 37.5 を学ぶ。

定義 37.1 (標数 (characteristic)). 体 \mathbb{F} において乗法単位元1 をm 回足したものを

$$m_{\mathbb{F}} := \underbrace{1 + \cdots + 1}^{m \, \square}$$

と書く。 $m_{\mathbb{F}}=0$ となる最小の m>0 を \mathbb{F} の標数という。 \mathbb{F} の標数が存在しない場合には、 \mathbb{F} の標数は 0 と定義される。 $0_{\mathbb{F}}=0,1_{\mathbb{F}}=1$ である。

 $\overline{\mathbf{III}}$, $\mathbb F$ の標数 m が合成数であると仮定する。

命題 37.2. 有限体 ℙ の標数は素数である。

$$m = i \times j, \text{ with } 1 < i, j < m \tag{37.3}$$

m が標数であることから,

$$0_{\mathbb{F}} = m_{\mathbb{F}} = (i \times j)_{\mathbb{F}} = i_{\mathbb{F}} \times j_{\mathbb{F}}$$

が成り立つ。これより、 $i_{\mathbb{F}}=0$ or $j_{\mathbb{F}}=0$ であるが、(37.3) から標数 m の最小性に矛盾する。

命題 37.4. 標数 p の有限体 \mathbb{F} に対して、

$$\mathbb{F}^{(p)} := \{0_{\mathbb{F}}, 1_{\mathbb{F}}, \dots, (p-1)_{\mathbb{F}}\}\$$

は \mathbb{F} と同じ演算によって位数pの体となる。

証明. ここで、要素数 p の有限体

$$\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z} = \{[0], [1], \dots, [p-1]\}$$

に対して、全単射

$$\phi: i_{\mathbb{F}} \in \mathbb{F}^{(p)} \mapsto [i] \in \mathbb{F}_p$$

を考える。この対応によって、演算結果も対応する(同型と なる)。

$$i_{\mathbb{F}} + j_{\mathbb{F}} \mapsto [i+j] = [i] + [j]$$

 $i_{\mathbb{F}} \times j_{\mathbb{F}} \mapsto [i \times j] = [i] \times [j]$

したがって、 $\mathbb{F}^{(p)} \subset \mathbb{F}$ は体となることが分かる。

定理 37.5. 要素数 q で標数 p の有限体 \mathbb{F} に対して、要素数 q は 票数pのべき乗で表される。正確に述べると、ある整数 $u \ge 1$ が存在して、以下が成り立つ。

$$q = p^u$$

証明. まず、有限体 \mathbb{F} を $\mathbb{F}^{(p)}$ 上の線形空間とみなすことができることを示す。 \mathbb{F} の要素 x,y は

$$\begin{array}{rcl} x+y & \in & \mathbb{F}, \\ \\ i_{\mathbb{F}}(x+y) & = & i_{\mathbb{F}}x+i_{\mathbb{F}}y \in \mathbb{F} \end{array}$$

を満たすから、 \mathbb{F} は体 $\mathbb{F}^{(p)}$ 上の線形空間となる。この線形空間の次元を u とする。もし u が無限ならば \mathbb{F} が無限集合になってしまうから、u は有限でなければならない。 $\mathbb{F}^{(p)}$ 上の u 次元線形空間はサイズ u の基底によって張られるので、 \mathbb{F} の要素

この節の残りでは、次の節で必要ないくつかの補題を与える。

命題 37.6 (Frobenius Identity). 標数 p の体 $\mathbb F$ の要素 α,β と n>0 に対して、

$$(\alpha + \beta)^{p^n} = \alpha^{p^n} + \beta^{p^n} \tag{37.7}$$

証明. まず、n=1 の場合の以下を示す。

数は $|\mathbb{F}^{(p)}|^u = p^u$ となる。

が成立する²⁷。

$$(\alpha + \beta)^p = \alpha^p + \beta^p \tag{37.8}$$

²⁷教員用メモ:n=1 だけで十分なのでは?

2項展開すると

$$(\alpha + \beta)^{p} = \sum_{k=0}^{p} \overbrace{\alpha^{p-k}\beta^{k} + \dots + \alpha^{p-k}\beta^{k}}^{(p)}$$

$$= \sum_{k=0}^{p} \overbrace{1_{\mathbb{F}}\alpha^{p-k}\beta^{k} + \dots + 1_{\mathbb{F}}\alpha^{p-k}\beta^{k}}^{(p)}$$

$$= \sum_{k=0}^{p} \overbrace{1_{\mathbb{F}} + \dots + 1_{\mathbb{F}}}^{(p)} \alpha^{p-k}\beta^{k}$$

$$= \sum_{k=0}^{p} \binom{p}{k}_{\mathbb{F}} \alpha^{p-k}\beta^{k}$$

$$= \binom{p}{0}_{\mathbb{F}} \alpha^{p}\beta^{0} + \sum_{k=1}^{p-1} \binom{p}{k}_{\mathbb{F}} \alpha^{p-k}\beta^{k} + \binom{p}{p}_{\mathbb{F}} \alpha^{0}\beta^{p}$$

$$\stackrel{\text{(a)}}{=} \binom{p}{0}_{\mathbb{F}} \alpha^{p}\beta^{0} + \sum_{k=1}^{p-1} \binom{p}{k}_{\mathbb{F}} 0 \times \alpha^{p-k}\beta^{k} + \binom{p}{p}_{\mathbb{F}} \alpha^{0}\beta^{p}$$

$$\stackrel{\text{(a)}}{=} \binom{p}{0}_{\mathbb{F}} \alpha^{p}\beta^{0} + \sum_{k=1}^{p-1} \binom{p}{k}_{\mathbb{F}} 0 \times \alpha^{p-k}\beta^{k} + \binom{p}{p}_{\mathbb{F}} \alpha^{0}\beta^{p}$$

$$=\alpha^p+\beta^p$$

である。(a) が成り立つことは $\binom{p}{k}$ は p で割り切れると $\binom{p}{0} = \binom{p}{p} = 1$ であることを利用している。実際、0 < k < p に対

して、

$$\binom{p}{k} = \frac{p \times (p-1) \times \dots \times (p-k+1)}{k \times (k-1) \times \dots \times 2 \times 1}$$

となるが、分子には因子 p を含むが因子が分母には含まないので、 $p|\binom{p}{k}$ となる。従って、 $\binom{p}{k}_{\mathbb{F}}=0$ となる。

次に帰納的に、(37.7)が成り立っているときにn+1は、

$$(\alpha + \beta)^{p^{n+1}} = ((\alpha + \beta)^{p^n})^p$$
$$= (\alpha^{p^n} + \beta^{p^n})^p$$
$$\stackrel{(37.8)}{=} (\alpha^{p^{n+1}} + \beta^{p^{n+1}})$$

となる。第2等号では、帰納法の仮定を使った。これより、証

明が完成する。

0622_8Nov18

補題 37.9 (37.12 で使う). 標数 p の有限体 \mathbb{F}_q と次数 d の \mathbb{F}_q 係数多項式

$$f(X) = \sum_{j=0}^{d} f_j X^j \in \mathbb{F}_q[X]$$

に対して以下が成り立つ。

$$(f(X))^p = \sum_{j=0}^d f_j^p X^{jp}$$
 (37.10)

特に、q=p の場合には、35.10 より $f_j^p=f_j$ が成り立つので、 $\begin{pmatrix} a(x) \end{pmatrix}^p = \begin{pmatrix} a & y \\ y \end{pmatrix}^p = \begin{pmatrix} a(y) \\ y \end{pmatrix}^p$

$$(f(X))^p = \sum_{j=0}^a f_j X^{jp} = f(X^p)$$
 (37.11)

が成り立つ。

<mark>証明</mark>. ²⁸最大次数とそれ以外の項に分けて、2項展開すると、

$$(f(X))^{p} = \left(f_{d}X^{d} + \sum_{j=0}^{d-1} f_{j}X^{j}\right)^{p}$$

$$= \sum_{i=0}^{p} {p \choose i}_{\mathbb{F}_{p}} (f_{d}X^{d})^{i} \left(\sum_{j=0}^{d-1} f_{j}X^{j}\right)^{p-i}$$

$$= (f_{d}X^{d})^{p} + \left(\sum_{j=0}^{d-1} f_{j}X^{j}\right)^{p}$$

$$= f_{d}^{p}X^{dp} + \left(\sum_{j=0}^{d-1} f_{j}X^{j}\right)^{p}$$

となる。第2等号では、フロベニウスの恒等式 37.6 の証明 で示したことと同じであるが 0 < i < p なる i に対して $\binom{p}{i}_{\mathbb{F}_p} = 0$ となることを使った。同様にして、 $\left(\sum_{j=0}^{d-1} f_j X^j\right)^p = f_{d-1}^p X^{(d-1)p} + \left(\sum_{j=0}^{d-2} f_j X^j\right)^p$ を得る。これを繰り返して、(37.10) を得る。

21715 5Nov17

補題 37.12 (38.3 で使う). 標数が p である有限体 \mathbb{F}_q において、 $\beta \in \mathbb{F}_q$ と $f(X) \in \mathbb{F}_p[X]$ に対して以下が成り立つ。

$$f(\beta) = 0 \Longrightarrow f(\beta^p) = 0$$

言い換えると、根は標数乗してもまた根になる。

証明. (37.11) より、 $(f(X))^p = f(X^p)$ である。これに $X = \beta$ を代入すれば明らか。

38 最小多項式、原始多項式

次の節で学習する予定のBCH符号の性質を知るために必要な最小多項式と原始多項式を学ぶ。

定義 38.1 (部分体、拡大体). $\mathbb{F} \subset \mathbb{E}$ に関して、 \mathbb{F}, \mathbb{E} が同じ演算で体となるとき \mathbb{F} を \mathbb{E} の部分体、 \mathbb{E} を \mathbb{F} の拡大体という。 \square

定義 38.2 (最小多項式、原始多項式). 素数 p と m 次の既約多項式 $f(X) \in \mathbb{F}_p[X]$ によって定義される有限体 $\mathbb{F}_q = \mathbb{F}_p[X]/\langle f(X) \rangle$ を考えよう。 $q=p^m$ である。以下を定義する。

 $\beta\in\mathbb{F}_q$ を根として有する $(M_{\beta}(\beta)=0)$ である次数が \mathbb{F}_p 係数の最小のモニック多項式を、 $\beta\in\mathbb{F}_q$ の \mathbb{F}_p 上の最小多項式であるといい、 $M_{\beta}(X)$ と書く。

原始元 $\beta \in \mathbb{F}_q$ の \mathbb{F}_p 上の最小多項式は β の原始多項式と呼ばれる。

定理 38.3 (最小多項式の求め方、共役根). 38.2 と同じ設定において、 ℓ を $\beta^{p^\ell}=\beta$ を満たす最小の正数とする。次が成り立つ。

$$M_{\beta}(X) = \prod_{i=0}^{\ell-1} (X - \beta^{p^i})$$

定義から $M_{\beta}(X) \in \mathbb{F}_p[X]$ である。この定理は、右辺も \mathbb{F}_p 係数の多項式となることを主張していることに注意しよう。

このとき、 β , β^p , β^{p^2} , ..., $\beta^{p^{\ell-1}}$ を最小多項式 M(X) の共役根であるという。特に β が原始元ならば $\ell=m$ である。

証明. 右辺を $M(X):=\prod_{i=0}^{\ell-1}(X-\beta^{p^i})\in\mathbb{F}_q[X]$ と書く。 $M(X)=M_{\beta}(X)$ であること、つまり M(X) が次の2つを満たすことを示す。

010258 21Nov24

- 1. β を根に持つ次数最小のモニック多項式であること
- 2. \mathbb{F}_p 係数多項式であること: $M(X) \in \mathbb{F}_p[X]$
- 【1. の証明】eta の \mathbb{F}_p 上の最小多項式 $M_eta(X)$ は、37.12 よりそ

の根のp乗をまた根に持つので、

$$\beta,$$

$$\beta^{p},$$

$$\beta^{p^{2}} = (\beta^{p})^{p},$$

$$\vdots$$

$$\beta^{p^{\ell-1}} = (\cdots (\beta^{p})^{p} \cdots)^{p}$$

を根として有するはずである。M(X) はこれらを根に持つので、 β を根に持つ次数が最小のモニック多項式であることがわかった。

【2. の証明】まず $(M(X))^p = M(X^p)$ を 29 示す。

$$(M(X))^{p} = \prod_{i=0}^{\ell-1} (X - \beta^{p^{i}})^{p}$$
$$= \prod_{i=0}^{\ell-1} (X^{p} + (-\beta^{p^{i}})^{p})$$
(38.4)

第2等号ではフロベニウスの恒等式37.6または37.9の証明と

 $(-\beta^{p^i})^p = ((-1) \times \beta^{p^i})^p$

同じ議論を使った。ここで、

$$(-\beta^{p^{i}})^{p} = ((-1) \times \beta^{p^{i}})^{p}$$

$$= (-1)^{p} \times (\beta^{p^{i}})^{p}$$

$$= (-1)^{p} \times \beta^{p^{i+1}}$$

$$= \begin{cases} \beta^{p^{i+1}} = -\beta^{p^{i+1}} & (p \text{ は偶素数} : p = 2) \\ -\beta^{p^{i+1}} & (p \text{ は奇素数}) \end{cases}$$

となり、どちらの場合でも $(-\beta^{p^i})^p = -\beta^{p^{i+1}}$ である。これを (38.4) に代入して、

$$(M(X))^{p}$$

$$= \prod_{i=0}^{\ell-1} (X^{p} - \beta^{p^{i+1}})$$

$$= (X^{p} - \beta^{p^{1}})(X^{p} - \beta^{p^{2}}) \cdots (X^{p} - \beta^{p^{\ell-1}})(X^{p} - \beta^{p^{\ell}})$$

$$\stackrel{\text{(a)}}{=} (X^{p} - \beta^{p^{0}})(X^{p} - \beta^{p^{1}}) \cdots (X^{p} - \beta^{p^{\ell-2}})(X^{p} - \beta^{p^{\ell-1}})$$

$$= \prod_{i=0}^{\ell-1} (X^{p} - \beta^{p^{i}})$$

$$= M(X^{p})$$

を得る。(a) では定理の前提 $\beta^{p^\ell}=\beta$ を用いた。 次に、 $M(X)=:\sum_{j=0}^d f_j X^j\in \mathbb{F}_q[X]$ と係数に名前をつけ る。次が成り立つ。

$$(M(X))^{p} \stackrel{(37.10)}{=} \sum_{j=0}^{d} (f_{i}X^{i})^{p} = \sum_{j=0}^{d} f_{i}^{p}X^{ip}$$
$$M(X^{p}) = \sum_{j=0}^{d} f_{i}X^{pi}$$

上で導出した $M(X) = M(X^p)$ からこれらの係数は一致するはずなので、

$$f_i = f_i^p$$
 for $i = 0, \dots, d$

が成り立つ。これは、35.10 の証明の議論と同じことだが、以下に示す理由により $f_i \in \mathbb{F}_p$ を意味し、 $M(X) \in \mathbb{F}_p[X]$ となり証明が完了する。

 $f_i \in \mathbb{F}_p$ を示す。フェルマーの小定理 35.10 より \mathbb{F}_p の p 個の元は $X^p - X = 0$ の根である。 $f_i \in \mathbb{F}_p$ でないとして矛盾を導こう。代数の基本定理より $X^p - X = 0$ の根は高々p 個のはずである。 \mathbb{F}_p に含まれない f_i が $f_i = f_i^p$ となったと仮定すると、上記の p 個の元に加えて f_i が根になるので、根が p 個より多く存在してしまうので矛盾となる。

定理 38.5 (原始多項式の根はすべて原始元になる). $q=p^m$ として、原始元 $\alpha \in \mathbb{F}_q$ の \mathbb{F}_p 上の最小多項式 (つまり原始多項式) を $M_{\alpha}(X)$ とする。原始多項式 $M_{\alpha}(X)$ の任意の根 $\beta \in \mathbb{F}_q$ は、 \mathbb{F}_q の原始元となる。

証明. 原始元 α の定義 35.1 より、m は $\alpha^{p^m} = \alpha$ を満たす最小 の正数である。原始多項式 (原始元 α の最小多項式) $M_{\alpha}(X) \in$ $\mathbb{F}_n[X]$ の根は、38.3 から α^{p^i} with $0 \leq i < m$ の形をしている ことが分かる。

$$\operatorname{ord}(\alpha^{p^i}) = q - 1 \tag{38.6}$$

であることを示せば十分である。34.5 と原始元の定義 $\operatorname{ord}(\alpha) =$

$$\operatorname{ord}(\alpha^{p^i}) \stackrel{34.5}{=} \operatorname{ord}(\alpha) / \operatorname{gcd}(\operatorname{ord}(\alpha), p^i)$$
$$= (p^m - 1) / \operatorname{gcd}(p^m - 1, p^i)$$

である。 $gcd(p^m-1, p^i) = 1$ であることは、下記のユークリッ ドの互除法24による計算で分かるので(38.6)が示された。

$$(p^m - 1) \div p^i =$$
商 p^{m-i} あまり $p^i - 1$
 $p^i \div (p^i - 1) =$ 商 1 あまり 1
 $(p^i - 1) \div 1 =$ 商 $(p^i - 1)$ あまり 0

議論 38.7. 素数 p に対して $q := p^m$ とする。これまでの議論 では、有限体を既約多項式 $M_{\alpha}(X) \in \mathbb{F}_{n}[X]$ を用いて剰余類環 $\mathbb{F}_p[X]/\langle M_{\alpha}(X)\rangle$ として代数的に構成してきた。この議論をせ ずに、36.1 で見たように、原始元 α と原始多項式 $M_{\alpha}(X)$ が 満たす式 $M_{\alpha}(X)|_{X=\alpha}=0$ を用いて、有限体を \mathbb{F}_q の計算法と構成を定めることができる。

 $\mathbb{F}_p[X]/\langle M_{\alpha}(X) \rangle$ を考えよう。原始元 α は、 $\alpha^1, \alpha^2, \ldots, \alpha^{q-1}$ と計算したときに $\alpha^{q-1}=1$ ではじめて 1 となる。 $M_{\alpha}(\alpha)=0$ であるのと対応して $[X]\in \mathbb{F}_p[X]/\langle M_{\alpha}(X) \rangle$ は $M_{\alpha}([X])=0$ を満たす非ゼロ元であるから、 $[X]\in \mathbb{F}_p[X]/\langle M_{\alpha}(X) \rangle$ は、 $[X]^{q-1}=1$ ではじめて 1 となる。つまり [X] は $\mathbb{F}_p[X]/\langle M_{\alpha}(X) \rangle$ の原始元である。

35.1 では、 α のべきと 0 によって \mathbb{F}_q が構成されることを学んだ。

$$\mathbb{F}_q = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{q-2}\}\$$

これは乗算と除算を行うときに便利な表現となっている。さらに、 $M_{\alpha}(\alpha)=0$ の関係を使って、 α の m 次未満の多項式表現によって表すことができる。

$$\mathbb{F}_q = \{ f_0 + f_1 \alpha + f_2 \alpha^2 + \dots + f_{m-1} \alpha^{m-1} \mid f_i \in \mathbb{F}_p \}$$

これは加算と減算を行うときに便利な表現となっている。

163729_24Nov2

例 38.8 (最小多項式の計算の仕方). 原始多項式 $1+X+X^6 \in \mathbb{F}_2[X]$ の根 α を用いて定義される \mathbb{F}_{64} に対して、標数は p=2 である。38.3 にしたがって $\beta=\alpha^3 \in \mathbb{F}_{64}$ の最小多項式 $M_{\beta}(X) \in \mathbb{F}_2[X]$ を求めてみよう。 β の位数は 21 である: $\beta^{21}=(\alpha^3)^{21}=(\alpha^3)^{21}$

 $\beta^{2^5} = \beta^{32} = \beta^{11}$

$$=\beta$$

 $M_{\beta}(X) = \prod^{i-1} (X - \beta^{p^i})$

 $\alpha^{63} = 1$ であった。これをつかって、

から $\ell=6$ がわかる。これらより、 β の最小多項式 $M_{\alpha}(X)$ \in

から
$$\ell=6$$
がわかる。これらより、 β $\mathbb{F}_{2}[X]$ は以下で与えられる。small

ら
$$\ell=6$$
がわかる。これらより、 eta の $[X]$ は以下で与えられる。 small

 $= (X - \beta)(X - \beta^2)(X - \beta^{2^2})(X - \beta^{2^3})(X - \beta^{2^4})(X - \beta^{2^5})$

 $\beta^{2^6} = \beta^{64} = \beta$

$$=\beta$$

$$\beta$$

$$= (X - \beta)(X - \beta^2)(X - \beta^4)(X - \beta^8)(X - \beta^{16})(X - \beta^{32})$$

$$-\beta (A - \beta)(A - \beta)(A - \beta)(A - \beta)$$

 $= (X - \alpha^3)(X - \alpha^6)(X - \alpha^{12})(X - \alpha^{24})(X - \alpha^{48})(X - \alpha^{96})$

$$(X - \alpha^{2})(X - \alpha^{2})(X - \alpha^{2})(X - \alpha^{2})$$

 $= (X - \alpha^3)(X - \alpha^6)(X - \alpha^{12})(X - \alpha^{24})$ $\times (X - \alpha^{48})(X - \alpha^{33 = 96 \mod 63})$

これより、
$$M_{eta}(X)=M_{lpha^i}(X)$$
 for $i=3,6,12,24,48,33$ であることも分かる。 $1+lpha+lpha^6=0$ となることを利用すると、

 $M_{\beta}(X) = 1 + X + X^2 + X^4 + X^6$

を得る。例えば、0次の係数が1となることは、

$$\alpha^{3} \times \alpha^{6} \times \alpha^{12} \times \alpha^{24} \times \alpha^{48} \times \alpha^{33}$$
$$= \alpha^{45+81} = \alpha^{126 \mod 63} = \alpha^{0} = 1$$

と確かめられる。5次の係数が0となることは、

$$\alpha^{3} + \alpha^{6} + \alpha^{12} + \alpha^{24} + \alpha^{48} + \alpha^{33}$$

$$= + [000100]$$

$$+ [110000]$$

$$+ [101000]$$

$$+ [101100]$$

$$+ [010010]$$

$$+ [010000] = 0$$

から分かる。

定理 38.9 (最小多項式の性質). 素数 p に対して $q = p^m$ とする。原始元とは限らない $\alpha \in \mathbb{F}_q$ の \mathbb{F}_p 上の最小多項式 $M_{\alpha}(X)$ に対して、次が成り立つ。

1. モニック既約多項式 $f(X) \in \mathbb{F}_p[X]$ に対して、 $\alpha \in \mathbb{F}_q$ が f(X) の根ならば、f(X) は α の \mathbb{F}_p 上の最小多項式であることを示せ。

証明.演習で扱います。

2. $M_{\alpha}(X)$ は唯一存在する。 $M_{\alpha}(X)$ は既約である。

証明. (存在性:)38.3 より明らかあるが、簡単に次のようにも示せる。 $f(\alpha)=0$ となるモニック多項式 $f(X)\in\mathbb{F}_p[X]$ がひとつでもあれば、そのうち次数が最小のものは存在するはずなので、あるモニック多項式 $f(X)\in\mathbb{F}_p[X]$ に対して $f(\alpha)=0$ が満たされることを示せば十分である。 $f(X)=X^q-X\in\mathbb{F}_p[X]$ と選べばフェルマーの小定理 35.10 より $f(\alpha)=0$ が満たされる。

(既約性:) 既約でないと仮定する。即ち、

$$M_{\alpha}(X) = f(X)g(X),$$

 $\deg f(X) < \deg M_{\alpha}(X),$
 $\deg g(X) < \deg M_{\alpha}(X)$

が成り立つ。 $M_{\alpha}(\alpha)=f(\alpha)g(\alpha)=0$ となり $f(\alpha)=0$ or $g(\alpha)=0$ となるが³⁰、これは $M_{\alpha}(X)$ の次数が最小であることに矛盾する。

(唯一性:) 唯一でないと仮定する。異なる 2 つの最小多項式を $M_{\alpha}(X) \neq M'_{\alpha}(X)$ と書く。次数の最小性から、項式は次数が同じはずである。

$$f(X) := M_{\alpha}(X) - M'_{\alpha}(X) \in \mathbb{F}[X]$$

 $^{^{30}}$ 対偶:非零元 $x,y\in\mathbb{F}$ に対して $xy\neq0$ である。実際、xy=0 だと仮定すると、右から y^{-1} を書けて x=0 となり矛盾する。

は非零多項式になり、

$$f(\alpha) = 0$$

 $\deg f(X) < \deg M_{\alpha}(X) = \deg M'_{\alpha}(X)$

が成り立つ。f(X) は定数倍することでモニックにすることができるので、最小多項式の次数最小性に矛盾する。 \Box

3. α を根として有する多項式は α の最小多項式の約多項式である。正確に述べると、 $f(X) \in \mathbb{F}_p[X]$ に対して、 $f(\alpha) = 0$ ならば $M_{\alpha}(X)|f(X)$ である。

証明. f(X) を $M_{\alpha}(X)$ で割って、

$$f(X) = M_{\alpha}(X)q(X) + r(X), \qquad (38.10)$$

$$\deg r(X) < \deg M_{\alpha}(X)$$

だとする。割り切れないと仮定すると、 $r(X) \neq 0$ であるが、(38.10) の X に α を代入して、 $0 = r(\alpha)$ となる。r(X) を定数倍してモニックにできるので、 $M_{\alpha}(X)$ の次数の最小性に矛盾する。

151408_23Nov23

4. $M_{\alpha}(X) \mid X^q - X$

証明. フェルマーの小定理 35.10 より $\alpha^q - \alpha = 0$ であるから、 α は $X^q - X$ の根である。3 より、 $M_{\alpha}(X) \mid X^q - X$ が成り立つ。

5. 非ゼロ元 $\beta \in \mathbb{F}_q$ に対して、最小多項式 $M_{\beta}(X) \in \mathbb{F}_p[X]$ の集合を \mathcal{M} と書く。 $M_{\beta}(X) \in \mathcal{M}$ に対して、 $M_{\beta}(X)$ の 根の集合を $[\beta]$ と書く。次が成り立つ。

223046_23Nov24

(a) 異なる $[\beta]$, $[\beta']$ は互いに素である。

223057_23Nov24

(b) $\bigcup_{\beta \in \mathbb{F}_q^{\times}} [\beta] = \mathbb{F}_q^{\times}$

223148_23Nov24

(c) $\prod_{M(X) \in \mathcal{M}} M(X) = X^{q-1} - 1$

具体例を 39.4 で与える。

証明. 非ゼロ元集合 \mathbb{F}_q^{\times} の上で、 $\beta,\beta'\in\mathbb{F}_q$ が非負整数 i を用いて $\beta^{p^i}=\beta'$ と書ける関係 $\beta\sim\beta'$ は同値関係 になる δ^{31} 。この同値関係は \mathbb{F}_q^{\times} 上で商集合 $\mathbb{F}_q^{\times}/\sim$ を与る。 δ^{31} 。この同値関係は δ^{31} 0。一方、 δ^{31} 0。一方、 δ^{31} 0。 この同値関係は δ^{31} 0。 この目標 δ^{31} 0。 この記述 $\delta^{$

6. $\deg M_{\alpha}(X) \leq m$

 $[\]overline{}^{31}\mathbb{F}_q^{\times}$ が位数が p^m-1 の巡回群になることと、フェルマーの小定理と、 $\overline{}$ https://bit.ly/49iuHsv から分かる。

証明. 36.1 でみたように、 \mathbb{F}_q は \mathbb{F}_p 上の m 次元線形空間 と見なせた。m+1 個の元 $1,\alpha,\alpha^2,\ldots,\alpha^m$ は線形従属 となる。言い換えると $(0,\ldots,0)\neq (f_0,\ldots,f_m)\in \mathbb{F}_p^{m+1}$ が存在して

$$\sum_{i=0}^{m} f_i \alpha^i = 0$$

となる。即ち、多項式

$$f(X) := \sum_{i=0}^{m} f_i X^i \in \mathbb{F}_p[X]$$

は次数が m 以下で、 α を根として有する。したがって、3 から $M_{\alpha}(X)|f(X)$ となり、これは $\deg M_{\alpha}(X) \leq \deg f(X) \leq m$ を意味する。

7. 原始元 $\alpha \in \mathbb{F}_q$ の原始多項式 $M_{\alpha}(X)$ に対して、 $\deg M_{\alpha}(X) \geq m$ である。前項と併せて、 $\deg M_{\alpha}(X) = m$ を得る。

証明. $\deg M_{\alpha}(X) =: d$ とする。 \mathbb{F}_{p^d} を既約多項式 $M_{\alpha}(X)$ によって生成される位数 p^d の有限体とする。 \mathbb{F}_{p^d} は $\alpha = [X]$ を含み、したがって $\mathbb{F}_q = \{0,\alpha^0,\alpha^1,\ldots,\alpha^{q-2}\}$ の元をすべて含む。言い換えると $\mathbb{F}_{p^d} \supset \mathbb{F}_{q=p^m}$ である。これより、 $d \geq m$ が分かる。

8. 最小多項式 $M_{\alpha}(X)$ の根は全て同じ位数を有する。

063941_11Nov18

証明. 証明は演習問題で扱う。

39 BCH 符号 ^{@12}

$$V(x_1, \dots, x_n) := \begin{pmatrix} x_1^0 & x_1^1 & x_1^2 & \cdots & x_1^{n-1} \\ x_2^0 & x_2^1 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n^0 & x_n^1 & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix}$$

を x_1, \ldots, x_n で定義されるヴァンデルモンド行列という。ただし、 $0^0 = 1$ とする。

223654_8Nov23

補題 39.2 (ヴァンデルモンド行列の行列式). x_1, \ldots, x_n で定義されるヴァンデルモンド行列 $V(x_1, \ldots, x_n)$ の行列式は次で

与えられる。

$$\det V(x_1, \dots, x_n) = \prod_{1 \le i < j \le n} (x_j - x_i)$$
$$= (-1)^{n(n-1)/2} \prod_{1 \le i < j \le n} (x_i - x_j)$$

特に、 x_1, \ldots, x_n が互いに異なっていれば、行列式 https://bit.ly/47NaM38 は非零となる。

<mark>証明</mark>. 線形代数の授業で学習しているはず。証明は、http://bit.ly/2AY0jU1 で見つけることができる。 □

定義 39.3 (BCH 符号). $n:=q-1:=p^m-1$ とする。 $\alpha\in\mathbb{F}_q$ を原始元とする。 $\alpha^{q-1}=1$ となる。 $\hat{d}\leq q-1$ なる \hat{d} に対して、

$$\alpha, \alpha^2, \dots, \alpha^{\hat{d}-1} \in \mathbb{F}^q$$

を根とする、 \mathbb{F}_p 上の次数が最小のモニック多項式を g(X) と書く。g(X) は X^n-1 を割り切る。証明は、演習問題で扱う。これより、g(X) は長さ n の \mathbb{F}_p 上の巡回符号 C の生成多項式となる。 $g(X) \in \mathbb{F}_p[X]$ を生成多項式とする \mathbb{F}_p 上の符号長 n の巡回符号を、設計距離 \hat{d} の BCH 符号という \hat{d} 32 に \hat{d} 32 に \hat{d} 33 に \hat{d} 34 に \hat{d} 35 に \hat{d} 36 に \hat{d} 37 に \hat{d} 36 に \hat{d} 36

例 39.4. 原始多項式 $1+X+X^4\in\mathbb{F}_{p=2}[X]$ によって定義される \mathbb{F}_{16} の原始元を α とする。各非零元 $\alpha^i\in\mathbb{F}_{16}$ の \mathbb{F}_2 上の最小多項 式を $m_i(X)$ と書く。38.2 の表記を用いると、 $m_i(X)=M_{\alpha^i}(X)$

³²設計距離が最小距離の下界になっていることを39.7で示します。

である。 $\beta=\alpha^i$ に対して、 $M_{\alpha^i=\beta}(X)=(X-\beta^{p^0})(X-\beta^{p^1})\cdots(X-\beta^{p^{\ell-1}})=(X-\alpha^{ip^0})(X-\alpha^{ip^1})\cdots(X-\alpha^{ip^{\ell-1}})$ とかける。38.8 と同様の方法で $m_i(X)\in\mathbb{F}_2[X]$ を計算したものが以下の通りである。

 $\frac{m_i(X)}{1+X}$

 $1 + X + X^4$

 $1 + X + X^2$

 $1 + X^3 + X^4$

 $1 + X + X^2 + X^3 + X^4$

 α^i

 $\alpha, \alpha^2, \alpha^4, \alpha^8$

 $\alpha^5, \alpha^{5 \times 2 = 10}$

 $\alpha^3, \alpha^{3 \times 2 = 6}, \alpha^{6 \times 2 = 12}, \alpha^{12 \times 2 = 24 = 9}$

 $\alpha^7, \alpha^{7 \times 2 = 14}, \alpha^{14 \times 2 = 13}, \alpha^{13 \times 2 = 26 = 11}$

$$38.9$$
 の 5 によると、 $m_i(X)$, $m_j(X)$ for $i \neq j$ は一致するか、そうでなければ共通の根をもたない。さらに、これら 5 つの最小多項式をすべてかけると $X^{15}-1$ となる。 $t=2$ ビットまでの誤りを訂正可能な設計距離 $2t+1=5=:\hat{d}$ の BCH 符号の生成多項式 $q(X)$ を構成してみよう。 $q(X)$ は

 $lpha^1,lpha^2,lpha^3,lpha^{4=\hat{d}-1}$ を根に含む次数が最小のモニック多項式である。 $lpha,lpha^2,lpha^4$ の

を根に含む次数が最小のモニック多項式である。 α,α^2,α^4 の最小多項式はすべて $1+X+X^4$ で、 α^3 の最小多項式は $1+X+X^2+X^3+X^4$ である。したがって、

$$q(X) = \overbrace{(1+X+X^4)}^{\alpha,\alpha^2,\alpha^4}$$
 $\overbrace{(1+X+X^2+X^3+X^4)}^{\alpha^3}$

となる。

同様にして、t=3 ビットまでの誤りを訂正可能な設計距離 $2t+1=7=:\hat{d}$ の BCH 符号の生成多項式 g(X) を求めよう。 g(X) は

$$\alpha^1, \alpha^2, \alpha^3, \dots, \alpha^{6=\hat{d}-1}$$

を根に含む次数最小のモニック多項式である。

$$g(X) = \overbrace{(1+X+X^2+X^3+X^4)}^{lpha^3,lpha^6$$
の最小多項式 $\alpha,lpha^2,lpha^4$ の最小多項式 $\alpha,lpha^5$ の。 $\alpha,lpha^5$ の最小多項式 $\alpha,lpha^5$ の。 $\alpha,lpha^5$ α,lp

となることが分かる。

定理 39.5 (BCH 符号の生成多項式). \mathbb{F}_p 上の符号長 $n := q - 1 := p^m - 1$ の設計距離 \hat{d} の BCH 符号の生成多項式 $g(X) \in \mathbb{F}_p[X]$ は次で与えられる。

$$g(X) = \text{lcm}(m_1(X), m_2(X), \dots, m_{\hat{d}-1}(X))$$
 (39.6)

ここで、 $m_i(X)$ は α^i の \mathbb{F}_p 上の最小多項式、 lcm は最小公倍 多項式を表す。

145542_11Nov18 TUP (20.6)のセンフェー()とおきよう 見より位々電子)よ々々

証明. (39.6) の右辺 $lcm(\cdot)$ を考えよう。最小公倍多項式は各多項式 $m_i(X)$ の約多項式の和集合に含まれる多項式の積である。各 $m_i(X)$ は $\mathbb{F}_2[X]$ 上で既約 [38.9 の 2] なので、 $m_i(X)$ の約多

項式は $m_i(X)$ だけである。したがって、(39.6) の右辺 $\operatorname{lcm}(\cdot)$ は、異なる $m_i(X)$ の積である 33 。

一方、(39.6) の左辺である生成多項式 g(X) は $\alpha^1,\alpha^2,\dots,\alpha^{\hat{d}-1}$ を根に含む次数最小のモニック多項式である。 $m_i(X)$ は α^i を根に含む既約多項式であったことを思い出そう。38.9 の 5 より、 $m_i(X),m_j(X)$ for $i\neq j$ は一致するか、そうでなければ共通の根をもたない。これらのことより、g(X) は異なる $m_i(X)$ for $i=1,\dots,\hat{d}-1$ の積である。こうして証明は完成する。

定理 39.7 (BCH 限界). \mathbb{F}_p 上の符号長 $n = p^m - 1$ 、設計距離 \hat{d} の BCH 符号 C に対して、以下が成り立つ。

$$d_{\min}(C) \ge \hat{d}$$

これより、符号 C の訂正能力は $t := \lfloor (\hat{d}-1)/2 \rfloor$ 以上となり、 半径 t の限界距離復号によって t 個以下の誤りを訂正できることが分かる。

証明. 重みが \hat{d} より小さい非ゼロ符号語はないことを示したい。c(X) を符号語多項式としよう。c(X) のハミング重みを w と書く。w < \hat{d} であるなら c(X) = 0 であることを示せば十

 $^{^{33}}$ 最小公倍多項式は整数環における最小公倍数に対応するものである。各素数 p_i の最小公倍数 $\mathrm{lcm}(p_1,\ldots,p_k)$ が異なる p_i の積で表せるのと対応して、各既約多項式 $m_i(X)$ の最小公倍多項式 $\mathrm{lcm}(m_1(X),\ldots,p_k(X))$ は異なる $m_i(X)$ の積で表せる。

分である。非零係数重みの次数を $k_1 < \cdots < k_w$ とする。つまり、

$$c(X) = c_{k_1} X^{k_1} + \dots + c_{k_w} X^{k_w}$$

である。このとき、w=0 つまり c(X)=0 を示す。BCH 符号の定義 39.3 から $\alpha,\alpha^2,\ldots,\alpha^w$ は生成多項式 g(X) の根である。31.4 から符号語多項式 c(X) は生成多項式 g(X) の倍多項式 o(X) の根は o(X) の根でもある。これは、以下の方程式を満たすことを意味する。

$$c(\alpha^{i}) = c_{k_1} \alpha^{ik_1} + c_{k_2} \alpha^{ik_2} + \dots + c_{k_w} \alpha^{ik_w}$$

= 0 for $i = 1, \dots, w$

これを、行列とベクトルで表すと

$$\begin{bmatrix} \alpha^{1k_1} & \alpha^{1k_2} & \cdots & \alpha^{1k_w} \\ \alpha^{2k_1} & \alpha^{2k_2} & \cdots & \alpha^{2k_w} \\ \vdots & \vdots & & \vdots \\ \alpha^{wk_1} & \alpha^{wk_2} & \cdots & \alpha^{wk_w} \end{bmatrix} \begin{bmatrix} c_{k_1} \\ c_{k_2} \\ \vdots \\ c_{k_w} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}. \quad (39.8)$$

となる。行列式は転置しても値を変えないこと、ある列また は行を定数倍すると行列式もその定数倍になることを使って、 左辺の係数行列の行列式を評価すると以下の通りとなる。

V はヴァンデルモンド行列 39.1 である。ここで、ヴァンデル モンド行列の性質 39.2 を使うと以下を得る。

$$\det(V) = \prod_{1 \le i \le j \le w} (\alpha^{k_j} - \alpha^{k_i}) \tag{39.9}$$

 α が原始元で、 $k_i \neq k_j$ for $i \neq j$ であることから、 $\alpha^{k_i} \neq \alpha^{k_j}$ for $i \neq j$ となり、(39.9) は非零となる。したがって、線型方程式 (39.8) の解は $(c_{k_1}, \ldots, c_{k_w}) = (0, \ldots, 0)$ のみとなり、結局 c(X) = 0 となる。

40 BCH 符号と巡回 RS 符号の関係、BCH 符号の復号

本節では、巡回 RS 符号と BCH 符号の関係を明らかにし、 RS 符号の復号が BCH 符号の復号に使えることを述べる。 **補題 40.1** (巡回 RS 符号の生成多項式). 29.1 で定義した [n,k] 巡回 RS 符号 C は次であった。

$$C = \left\{ \vec{c}(f) \mid f(X) \in \mathbb{F}_q[X; k] \right\}$$
$$\vec{c}(f) := \left(f(\beta^0), f(\beta^1), \dots, f(\beta^{n-1}) \right)$$

ただし、非ゼロ要素 $\beta \in \mathbb{F}_q$ は n 乗して始めて 1 に等しくなる。 このとき、次が成り立つ。

1. C の生成行列の一つ G は次で与えられる。

$$G = (\beta^{i \times j})_{0 \le i \le k-1, 0 \le j \le n-1}$$

$$= \begin{bmatrix} \beta^{0 \times 0} & \beta^{0 \times 1} & \dots & \beta^{0 \times (n-1)} \\ \beta^{1 \times 0} & \beta^{1 \times 1} & \dots & \beta^{1 \times (n-1)} \\ \vdots & \ddots & \ddots & \vdots \\ \beta^{(k-1) \times 0} & \beta^{(k-1) \times 1} & \dots & \beta^{(k-1) \times (n-1)} \end{bmatrix}$$

0/3508 11Nov19

証明. 27.4 の 3 より G は生成行列となる。

2. C のパリティ検査行列の一つ H は次で与えられる。

$$H = (\beta^{(i+1)\times j})_{0 \le i \le k-1, 0 \le j \le n-1}$$

$$= \begin{bmatrix} \beta^{1\times 0} & \beta^{1\times 1} & \dots & \beta^{1\times (n-1)} \\ \beta^{2\times 0} & \beta^{2\times 1} & \dots & \beta^{2\times (n-1)} \\ \vdots & \ddots & \ddots & \vdots \\ \beta^{(n-k)\times 0} & \beta^{(n-k)\times 1} & \dots & \beta^{(n-k)\times (n-1)} \end{bmatrix}$$

証明. H の任意の $(n-k) \times (n-k)$ 部分行列は異なる n-k 個の元で定義されるヴァンデルモンド行列となっているので、フルランクである。6.13 から、 $GH^\mathsf{T}=0$ を示せば良いことがわかる。 GH^T の第 (i,j) 成分 $(0 \le i \le n-k-1, 0 \le j \le n-1)$ は

$$\sum_{k=0}^{n-1} G_{i,k} H_{j,k} = \sum_{k=0}^{n-1} \beta^{ik} \beta^{(j+1)k}$$

$$= \sum_{k=0}^{n-1} \beta^{(i+j+1)k}$$

$$= \sum_{k=0}^{n-1} (\beta^{i+j+1})^k$$

$$\stackrel{\text{(a)}}{=} \left(1 - (\beta^{i+j+1})^n\right) (1 - \beta^{i+j+1})^{-1}$$

$$\stackrel{\text{(b)}}{=} 0$$

となる。ここで (a) では等比数列の和を求める方法 34 を適用した。 $1-\beta^{i+j+1}$ の逆元が存在することを確かめないといけないが、 $0 \le i \le k-1, 0 \le j \le n-k-1$ より $1 \le i+j+1 \le n-1$ となることと、 β はn 乗してはじめて1 になるので、 $\beta^{i+j+1} \ne 1$ となることから、確かに逆元が存在する。(b) では、 β の位数がn であることを用いた。

³⁴http://bit.ly/2AYg676

3. C の生成多項式 g(X) は次で与えられる。

$$g(X) = (X - \beta)(X - \beta^2) \cdots (X - \beta^{n-k})$$

証明. 31.4 の 5 から符号語多項式は生成多項式の倍多項式である。[n,k] 符号の生成多項式の次数は n-k であるから、任意の符号語 c(X) が $\beta,\beta^2,\ldots,\beta^{n-k}$ を根に持つことを示せば十分である。 $c=(c_0,\ldots,c_{n-1})$ に対して、 $Hc^{\mathsf{T}}=0$ は

$$\sum_{j=0}^{n-1} \underbrace{H_{i,j}}_{=\beta^{(i+1)j}} c_j = 0 \text{ for } i = 0, \dots, n-k-1$$

と等価でこれを多項式表現すると

$$0 = \sum_{i=0}^{n-1} c_j(\beta^{i+1})^j = c(\beta^{i+1}) \text{ for } i = 0, \dots, n-k-1$$

 $\beta^1, \beta^2, \dots, \beta^{n-k}$ が c(X) の根となることを意味する。 \Box

55215 11Nov18

定理 40.2 (BCH 符号と巡回 RS 符号の関係). $n:=q-1:=p^m-1$ とする。 \mathbb{F}_q の原始元 α を用いて $\beta:=\alpha$ で定義される \mathbb{F}_q 上の [n,k] 巡回 RS 符号

$$C_q = \left\{ \vec{c}(f) \mid f(X) \in \mathbb{F}_q[X; k] \right\}$$

$$\vec{c}(f) := \left(f(\alpha^0), f(\alpha^1), \dots, f(\alpha^{n-1}) \right)$$

に対して、 C_q の符号語のうち全ての成分が \mathbb{F}_p の元である符号語を集めた符号空間

$$C_p := C_q \cap \mathbb{F}_p^n$$

は設計距離 $\hat{d}:=n-k+1$ の \mathbb{F}_p 上の BCH 符号となる。

- $1. C_p$ が巡回符号になること
- 2. C_p の生成多項式 $g_p(X)$ が $\alpha^1, \alpha^2, \dots, \alpha^{n-k}$ を根に持つ 次数が最小のモニック多項式になること
- 1. $C_p \subset C_q$ である。 C_p が \mathbb{F}_p 上の巡回符号になることは、 C_q の線形性と巡回性から明らか。
- 2. 40.1 の 3 で示したことから、 C_q の生成多項式は

$$g_q(X) = (X - \alpha)(X - \alpha^2) \cdots (X - \alpha^{n-k})$$
 (40.3)

で与えられる。31.2 より巡回符号 C_p の生成多項式 $g_p(X)$ \in $\mathbb{F}_p[X]$ は、 C_p の非零符号多項式 $c_p(X)$ のうち次数が最小のモニック多項式である。 $c_p(X) \in C_p$ は C_q の符号語でもある。したがって、31.4 の 5 から $c_p(X)$ は $g_q(X)$ の倍多項式となっているので、(40.3) より $c_p(X)$ は、 $\alpha^1, \alpha^2, \ldots, \alpha^{n-k}$ を根にもつ。このような $c_p(X)$ のうち次数最小のモニック多項式が C_p の生成多項式 $g_p(X)$ となる。BCH 符号の定義 39.3 より、これは C_p が設計距離 $\hat{d}:=n-k+1$ の \mathbb{F}_p 上の BCH 符号となることを意味する。

議論 40.4. 40.2 より、 C_p は BCH 符号であることがわかる。逆に、符号長 n で設計距離 \hat{d} の BCH 符号は $[n=:p^m-1=:q-1,k=n-\hat{d}+1]$ 巡回 RS 符号 C_q から作られる C_p である。言い換えると C_q のうち全ての成分が \mathbb{F}_p の元である符号語を集めた符号空間 C_p となっている。このことから次の 2 つが分かる。

1. BCH 符号 C_p の最小距離は巡回 RS 符号 C_q の最小距離を下回らない。

$$d(C_n) \ge d(C_a) \stackrel{27.8}{=} n - k + 1 = \hat{d}$$

これは、BCH 符号の最小距離が \hat{d} 以上となることの別証明を与えている。

- 2. BCH 符号を RS 符号とみなして、RS 符号の半径 t の限 界距離復号を BCH 符号に適用する。これは、BCH 符号 に対する半径 t の限界距離復号となっている。
 - -代数系と符号理論の講義に関する内容はここまで-

41 LDPC符号

Low-Density Parity-Check (LDPC) 符号 [1] は、疎なパリティ検査行列によって定義される誤り訂正符号であり、通信路容量に迫る復号性能を有することが知られている。本稿では、復号の動作原理、パリティ検査行列の構成法に関して述べる。

リード・ソロモン符号などの代数的符号と呼ばれる符号は、符号語間の距離を大きくするように符号空間を構成することと、符号空間の代数構造を利用し限界距離復号を発見することで、誤り訂正を実現している。限界距離復号では、通信路容量を達成できないことが知られている。

Low-Density Parity-Check (LDPC) 符号 [1] は、疎なパリティ検査行列によって定義される誤り訂正符号であり、Sum-Product 復号法によって通信路容量を達成することが知られている [2, Example 1.18]. 本稿では、復号問題に対象を限定しない一般の Sum-Product アルゴリズム [3] を紹介し、復号問題にどのように適用され Sum-Product 復号法が導出されるのかを述べる。さらに通信路容量を達成する LDPC 符号のパリティ検査行列の構成法に関して述べる。

42 Sum-Product アルゴリズム

この節では、LDPC 符号の復号に用いられる Sum-Proudct アルゴリズムの原理を解説する.復号法を原理から理解することにより、有記憶通信路や他の符号の復号法が必要になった

ときに拡張することができる.一般に Sum-Product アルゴリズムは,有限集合 \mathcal{X}^n 上で定義された関数 f を入力とし,周辺化

$$\sum_{\sim x_j} f(x_1, \dots, x_n)$$

を各 $j=1,\ldots,n$ に対して効率的かつ厳密に計算し出力するアルゴリズムである。ここで、 $\sum_{\sim x_j}$ は式に現れる変数から x_j を除外した変数に関する総和を意味している。ただし、入力である関数 f は次の条件を満たしていなければならない。

actorization

条件 42.1. 関数 f は少数変数の因子に分解されていて、各変数は少数の因子にしか関与しない。すなわち、次のように表せる。

$$f(x_1, \dots, x_n) = \prod_{i=1}^m f_i(X_{f_i})$$
$$X_{f_i} \subset \{x_1, \dots, x_n\},$$
$$\#X_{f_i} \ll n \ (i = 1, \dots, m)$$
$$\#F_{x_i} \ll n \ (j = 1, \dots, n)$$

ここで、 X_{f_i} は因子 f_i に関与している変数の集合、 F_{x_j} は辺数 x_j が関与している因子の集合を表している。

定義 **42.2.** 条件 42.1 を満たす関数 f に対して、 G_f を変数ノード x_1, \ldots, x_n とファクタノード f_1, \ldots, f_m からなる次の 2 部

グラフ35として定義する。

$$G_f = (V \cup F, E),$$

 $V = \{x_1, \dots, x_n\},$
 $F = \{f_1, \dots, f_m\},$
 $E = \{(x_j, f_i) \mid x_j \in X_{f_i}\},$

 G_f が与えられ対応する関数 f を求めたいときには、 G_f に含まれるファクタをすべて乗ずれば良い。

例 42.3. 関数

$$f(x_1, \dots, x_7) = f_1(x_1, x_2) f_2(x_1, x_3, x_4) f_3(x_1)$$

$$\times f_4(x_2, x_5) f_5(x_2) f_6(x_4, x_6, x_7)$$

に対して、ファクタグラフ G_f は次で与えられる。

$$G_f = \{V \cup F, E\},\$$

$$V = \{x_1, \dots, x_7\},\$$

$$F = \{f_1, \dots, f_6\},\$$

$$E = \{(x_1, f_1), (x_2, f_1), (x_1, f_2), (x_3, f_2),\$$

$$\dots, (x_2, f_5), (x_4, f_6), (x_6, f_6), (x_7, f_6)\},\$$

$$|E| = 12$$

 $^{^{35}2}$ 部グラフとは 2 種類のノードからなって同種のノード間に辺が存在しないグラフである。

条件 42.4. f の因子分解のファクタグラフ G_f が木である.

周辺化計算の効率性と厳密性はそれぞれ条件1と2によって担保されていて,因子あたりの変数の数が多くなるほど効率性を損ない,ファクタグラフ中に多くのループがあるほど厳密性を損なう.

Sum-Product アルゴリズムを記述する。隣接するノード間 (x_j,f_i) で、 \mathcal{X} 上の関数 $\mu_{x_j\to f_i}(x_j)$ と $\mu_{f_i\to x_j}(x_j)$ を次のアルゴリズムによって逐次的に計算していく。これらの関数はメッセージと呼ばれる。 ∂x_j と ∂f_i はそれぞれ x_j と f_i の隣接ノード集合を表すこととする。

1.1 葉変数ノード処理

$$\mu_{x_i \to f_i}(x_j) := 1$$

1.2 葉ファクタノード処理

$$\mu_{f_i \to x_j}(x_j) := f_i(x_j)$$

2.1 中間変数ノード処理

$$\mu_{x_j \to f_i}(x_j) := \prod_{f_{i'} \in \partial x_j \setminus \{f_i\}} \mu_{f_{i'} \to x_j}(x_j) \quad (42.5)$$

2.2 中間ファクタノード処理

$$\mu_{f_i \to x_j}(x_j) := \sum_{\sim x_j} f_i(X_{f_i}) \prod_{x_{j'} \in \partial f_i \setminus \{x_j\}} \mu_{x_{j'} \to f_i}(x_{j'})$$

3 周辺化処理

$$\overline{\mu}_{x_j}(x_j) := \prod_{f_{i'} \in \partial x_j} \mu_{f_{i'} \to x_j}(x_j)$$

このアルゴリズムは入力駆動型で、たとえば (42.5) は入力メッセージ

$$\{\mu_{f_{i'}\to x_j}(x_j)\}_{f_{i'}\in\partial x_j\setminus\{f_i\}}$$

がすべて計算された後に計算される。したがって、アルゴリズムの初めに計算されるのは、入力メッセージを必要としない次数1のすなわち隣接するノードが一つであるノードから送られるメッセージである。次数が1であるノードについて

は乗算の結果が 1 となることから、 $\partial x_j = \{f_i\}$ である (x_j, f_i) に対して、 $\mu_{x_j \to f_i}(x_j) = 1$ となる。 $\partial f_i = \{x_j\}$ である (x_j, f_i) に対して $\mu_{f_i \to x_j}(x_j) = f_i(x_j)$ となることに注意しよう.この アルゴリズムはファクタグラフ G_f が木であることから,必ず 終了する.

このアルゴリズムの結果が周辺化を与える.

定理 42.6. 条件1のもとで、次が成立する。

$$\sum_{n < x_j} f(x_1, \dots, x_n) = \overline{\mu}_{x_j}(x_j)$$

例 42.7. 42.3 と同じ設定で、 $\mathcal{X} = \{0,1\}$ とし、各因子を次の通り定める。

 $f_1(x_1,x_2)=x_1+x_2$

$$f_2(x_1, x_3, x_4) = x_1 + x_3 + x_4$$

$$f_3(x_1) = x_1$$

$$f_4(x_2, x_5) = x_2 + x_5$$

$$f_5(x_2) = x_2$$

$$f_6(x_4, x_6, x_7) = x_4 + x_6 + x_7$$

このとき、

$$\sum_{x_1} f(x_1, \dots, x_n) = \sum_{x_2, \dots, x_7 \in \mathcal{X}} f(x_1, \dots, x_n) \quad (42.9)$$

図 42.8: $f(x_1,...,x_6)$ のプロトグラフ

を Sum-Product アルゴリズムを使って計算してみよう。 $\mu_{x_j \to f_i}(0) = a, \mu_{x_j \to f_i}(1) = b$ であるとき、 $\mu_{x_j \to f_i} = (a,b)$ と書く。各メッセージを計算すると次のとおりとなる。

$$\mu_{x_7 \to f_6} = (1, 1) \qquad \mu_{f_6 \to x_7} = (108, 204)$$

$$\mu_{x_6 \to f_6} = (1, 1) \qquad \mu_{f_6 \to x_6} = (108, 204)$$

$$\mu_{f_6 \to x_4} = (4, 8) \qquad \mu_{x_4 \to f_6} = (18, 30)$$

$$\mu_{x_4 \to f_2} = (4, 8) \qquad \mu_{f_2 \to x_4} = (18, 30)$$

$$\mu_{x_3 \to f_2} = (1, 1) \qquad \mu_{f_2 \to x_3} = (120, 192)$$

$$\mu_{f_2 \to x_1} = (28, 52) \qquad \mu_{x_1 \to f_2} = (0, 6)$$

$$\mu_{f_3 \to x_1} = (0,1) \qquad \mu_{x_1 \to f_3} = (84,312)$$

$$\mu_{x_5 \to f_4} = (1,1) \qquad \mu_{f_4 \to x_5} = (104,208)$$

$$\mu_{f_4 \to x_2} = (1,3) \qquad \mu_{x_2 \to f_4} = (0,104)$$

$$\mu_{f_5 \to x_2} = (0,1) \qquad \mu_{x_2 \to f_5} = (52,312)$$

$$\mu_{x_2 \to f_1} = (0,3) \qquad \mu_{f_1 \to x_2} = (52,104)$$

$$\mu_{f_1 \to x_1} = (3,6) \qquad \mu_{x_1 \to f_1} = (0,52)$$

値が (1,1) であるメッセージは、葉ノードからの送られた初期 メッセージである。 $\mu_{f_2\to x_1}=(28,52)$ であることを詳しく見 てみよう。 $f_2(x_1,x_3,x_4)=x_1+x_3+x_4$ であることを思い出 して、次のように計算できる。

$$\mu_{f_2 \to x_1}(x_1) = \sum_{\sim x_1} f_2(X_{f_2}) \prod_{x_{j'} \in \partial f_2 \setminus \{x_1\}} \mu_{x_{j'} \to f_2}(x_{j'})$$

$$= \sum_{x_3, x_4 \in \{0,1\}} (x_1 + x_3 + x_4) \prod_{x_{j'} \in \{x_3, x_4\}} \mu_{x_{j'} \to f_2}(x_{j'})$$

$$= \sum_{x_3, x_4 \in \{0,1\}} (x_1 + x_3 + x_4) \mu_{x_3 \to f_2}(x_3) \mu_{x_4 \to f_2}(x_4)$$

$$\mu_{f_2 \to x_1}(x_1 = 0) = 0 * 4 + 1 * 4 + 1 * 8 + 2 * 8 = 28$$

$$\mu_{f_2 \to x_1}(x_1 = 1) = 1 * 4 + 2 * 4 + 2 * 8 + 3 * 8 = 52$$

これから、(42.9) を $S_j(x_j)$ と書くと、例として

$$S_1(x_1) = \mu_{f_1 \to x_1}(x_1)\mu_{f_2 \to x_1}(x_1)\mu_{f_3 \to x_1}(x_1)$$

$$= \begin{cases} 3 \times 28 \times 0 = 0 & (x_1 = 0) \\ 6 \times 52 \times 1 = 312 & (x_1 = 1) \end{cases}$$

 $S_1 = (0, 312)$

と計算される。

36

$$S_2 = (0, 312)$$

$$S_3 = (120, 192)$$

$$S_4 = (72, 240)$$

$$S_5 = (104, 208)$$

$$S_6 = (108, 204)$$

$$S_7 = (108, 204)$$

42.1 Sum-Product アルゴリズムの導出 (変数ノード まわり)

周辺化関数を $\sum_{\sim z} f(z, x_1, \ldots, x_n)$ と書き直す。これによって主張の一般性は損なわれない。変数ノードzの次数をKと

³⁶著者用メモ factor_graph_example.cc を参照

し、z に隣接するファクターノードを f_1, \ldots, f_K と書く。z を根とする木を考える。この木から z を除くと f_1, \ldots, f_K をそれぞれ根とする K 個の排反な部分木に分解することができる。この部分木 T_k に現れるファクタの積を $[F_{f_k \to z}(z, X_k)]$ と書く。このとき、f を次のように書くことができる.

$$f(z, x_1, \dots, x_n) = \prod_{k=1}^{K} [F_{f_k \to z}(z, X_k)]$$

ただし、 X_1, \ldots, X_k は $\{x_1, \ldots, x_n\}$ の分割を与える。言い換えると、次が成り立つ。

$$\bigcup_{k=1}^{K} X_k = \{x_1, \dots, x_n\},\$$

$$X_i \cap X_j = \phi \text{ for } i \neq j$$

ここで, $[F_{f_k \to z}(z, X_k)]$ は素因子または素因子の積である.葉 であるファクタノード f_k に対しては, $[F_{f_k \to z}(z, X_k)] = f_k(z)$

となる.

$$\sum_{z} f(z, x_1, \dots, x_n)$$

$$= \sum_{z} \prod_{k=1}^{K} [F_{f_k \to z}(z, X_k)]$$

$$= \sum_{X_1, \dots, X_K} \prod_{k=1}^{K} [F_{f_k \to z}(z, X_k)]$$

$$= \prod_{k=1}^{K} \sum_{X_k} [F_{f_k \to z}(z, X_k)]$$
(42.10)

最後の等号の例を与える。K=2、 $F_{f_1\to z}(z,X_1)\in\{a_1,a_2\},F_{f_2\to z}(z,X_2\in\{b_1,b_2\}$ とする。分配則を用いて、以下が成り立つ。

$$\begin{split} & \sum_{X_1} \sum_{X_2} F_{f_1 \to z}(z, X_1) F_{f_2 \to z}(z, X_2) \\ &= a_1 b_1 + a_2 b_1 + a_1 b_2 + a_2 b_2 \\ &= (a_1 + a_2)(b_1 + b_2) \\ &= \Big(\sum_{X} F_{f_1 \to z}(z, X_1) \Big) \Big(\sum_{X} F_{f_2 \to z}(z, X_2) \Big) \end{split}$$

 X_1, X_2 に交わりがあると、 X_1, X_2 独立に動かないので、このように因数分解ができない。

42.2 SP アルゴリズムの導出 (ファクタノードまわり)

 f_k の次数を J+1 とし、 f_k に隣接する変数ノードを z, z_1, \ldots, z_J と書く。 f_k を根とする木 T_k から f_k を除くと z_1, \ldots, z_J をそれぞれ根とする J 個の排反な部分木に分解 することができる。この部分木 U_k に現れるファクタの積を $[F_{z_i \to f_k}(z_i, X_j^i)]$ と書く。

$$[F_{f_k \to z}(z, X_k)] = f_k(z, z_1,, z_J) \prod_{j=1}^J [F_{z_j \to f_k}(z_j, X_k^j)],$$

 $z_1,....,z_J\in X_k$

ただし、 $X_k^1, \dots, X_k^J, \{z_j\}$ は X_k の分割を与える。 ここで, $[F_{z_i \to f_k}(z_i, X_k^j)]$ は素因子または素因子の積である.

葉である変数ノード z_j に対しては, $[F_{z_j o f_k}(z_j, X_k^j)] = 1$ となる.

$$\begin{split} &\sum_{X_k} [F_{f_k \to z}(z, X_k)] \\ &= \sum_{X_k} f_k(z, z_1, ..., x_J) \prod_{j=1}^J [F_{z_j \to f_k}(z_j, X_k^j)] \\ &= \sum_{z_1, ..., z_J} \sum_{X_k^1, ..., X_k^J} f_k(z, z_1, ..., z_J) \prod_{j=1}^J [F_{z_j \to f_k}(z_j, X_k^j)] \\ &= \sum_{z_1, ..., z_J} f_k(z, z_1, ..., z_J) \sum_{X_k^1, ..., X_k^J} \prod_{j=1}^J [F_{z_j \to f_k}(z_j, X_k^j)] \\ &= \sum_{z_1, ..., z_J} f_k(z, z_1, ..., z_J) \prod_{j=1}^J \sum_{X_k^j} [F_{z_j \to f_k}(z_j, X_k^j)] \\ &= \sum_{z_1, ..., z_J} f_k(z, z_1, ..., z_J) \prod_{j=1}^J \sum_{\sim z_j} [F_{z_j \to f_k}(z_j, X_k^j)] \end{split}$$
 (42.11)

グラフの隣接関係で表すと (42.10) を次のように書き直せる。

$$\sum_{z} f(z, x_1, \dots, x_n)$$

$$= \prod_{k=1}^{K} \sum_{X_k} [F_{f_k \to z}(z, X_k)]$$

$$= \prod_{f_k \in \partial z} \sum_{z \to z} [F_{f_k \to z}(z, X_k)]$$

(42.11) を次のように書き直せる。

$$\begin{split} & \sum_{\sim z} [F_{f_k \to z}(z, X_k)] \\ &= \sum_{z_1, \dots, z_J} f_k(z, z_1, \dots, z_J) \prod_{j=1}^J \sum_{\sim z_j} [F_{z_j \to f_k}(z_j, X_k^j)] \\ &= \sum_{z_1, \dots, z_J} f_k(z, z_1, \dots, z_J) \prod_{z_j \in \partial f_k \backslash \{z\}} \sum_{\sim z_j} [F_{z_j \to f_k}(z_j, X_k^j)] \end{split}$$

変数ノード周りの展開に関する議論を繰り返すことにより次 を得る。

$$\begin{split} & \sum_{\sim z_j} [F_{z_j \to f_k}(z_j, X_k^j)] \\ &= \prod_{f_{k'} \in \partial z_j \backslash \{f_k\}} \sum_{\sim z_j} [F_{f_{k'} \to z}(z, X_{k'})] \end{split}$$

次の式の置き換えを行うことにより SP アルゴリズムが導出される。

$$\sum_{\sim z} [F_{f_{k'} \to z}(z, X_{k'})] =: \mu_{f_{k'} \to z}(z)$$

$$\sum_{\sim z} [F_{z_j \to f_{k'}}(z_j, X_{k'})] =: \mu_{f_{k'} \to z_j}(z_j)$$

42.3 計算量

Sum-Product アルゴリズムを実行するための計算量を評価してみよう。Sum-Product アルゴリズムは与えられた関数 f の因子分解に対して、その周辺化

$$\sum_{n \in \mathcal{X}_n} f(x_1, \dots, x_n) \tag{42.12}$$

を計算する。Sum-Product アルゴリズムを用いずに、(42.12)を素朴に計算すると $|\mathcal{X}|^n$ の計算量が必要である。

関数 f は少数の変数の因子に分解されている。すなわち、次のように表せることを思い出そう。

$$f(x_1, ..., x_n) = \prod_{i=1}^m f_i(X_{f_i})$$
$$X_{f_i} \subset \{x_1, ..., x_n\}, \ \#X_{f_i} \ll n \ (i = 1, ..., m)$$

漸近的な議論を簡単にするために、

$$\partial f_i = \# X_{f_i} = O_n(1),$$
 (42.13)

$$\partial x_j = \#F_{x_j} = O_n(1),$$
 (42.14)

と仮定しよう。(42.13) と (42.14) はファクターノード f_i と変数ノード x_j それぞれに対して、接続する辺の数が n に対して定数であることを意味している。これより、総辺数は $O_n(n)$ であり、辺数ノード処理とチェックノード処理において各辺に対

して必要な計算量は $O_n(1)$ となる。結果としてSum-Product アルゴリズムの実行に必要な計算量は $O_n(n)$ となることがわかる。

43 最適な推定

一般に独立とは限らない同時確率 $p_{X,Y}(x,y)$ が既知である離散確率変数ペア (X,Y) に対して, $y \in \mathcal{Y}$ を観測したときに $x \in \mathcal{X}$ を推定する写像 $\phi: \mathcal{Y} \to \mathcal{X}$ を考える.

$$p(X = \phi(Y)) = \mathbb{E}\mathbb{1}[X = \phi(Y)] \tag{43.1}$$

を最大にする ϕ を $\phi_{\rm opt}$ と書く.ここで, $\mathbb{1}[\cdot]$ は引数の命題が真である場合に1 を、偽である場合には 0 を返す関数である. $\phi_{\rm opt}$ は最大事後確率推定で実現される.

$$\phi_{\text{opt}}(y) = \operatorname*{argmax}_{x \in \mathcal{X}} p(x|y)$$

これは次の議論から分る. 写像 $\phi: \mathcal{Y} \to \mathcal{X}$ に対して,

$$p(X = \phi(Y))$$

$$= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p_{X,Y}(x, y) \mathbb{1}[x = \phi(y)]$$

$$= \sum_{y \in \mathcal{Y}} p_{Y}(y) \sum_{x \in \mathcal{X}} p_{X|Y}(x|y) \mathbb{1}[x = \phi(y)]$$

$$= \sum_{y \in \mathcal{Y}} p_{Y}(y) p_{X|Y}(\phi(y)|y)$$

となる. したがって,

$$\phi(y) = \operatorname*{argmax}_{x \in \mathcal{X}} p_{X|Y}(x|y)$$

と選べばこの ϕ は(43.1)を最大にすることがわかる.

44 復号問題への応用

パリティ検査行列 $H \in \mathcal{X}^{m \times n}$ によって定義される符号空間 $C = \{\underline{x} | H\underline{x} = \underline{0}\}$ から一様ランダムに選ばれた符号語 $\underline{x} = (x_1, \ldots, x_n) \in \mathcal{X}^n$, $(\mathcal{X} = \{0, 1\})$ が送信され,通信路出力として $\underline{y} = (y_1, \ldots, y_n) \in \mathcal{Y}^n$ を得た.このとき Sum-Proudet アルゴリズムを用いてビット毎の最大事後確率復号問題を解くことを考えよう.

$$\underset{x_j \in \{0,1\}}{\operatorname{argmax}} p_{X_j | \underline{Y}}(x_j | \underline{y}) \text{ for } j = 1, \dots, n$$
 (44.1)

この復号法はビット誤り率に関して最適であることは前節の結果からわかる.

事後確率の計算は、次のように変形することにより、 $\mathcal{X}^n =$

 $\{0,1\}^n$ 上の関数の周辺化の問題とみなすことができる.

$$p_{X_{j}|\underline{Y}}(x_{j}|\underline{y}) = \sum_{\sim x_{j}} p_{\underline{X}|\underline{Y}}(\underline{x}|\underline{y})$$

$$\stackrel{\text{(Bayes)}}{=} \sum_{\sim x_{j}} p_{\underline{Y}|\underline{X}}(\underline{y}|\underline{x}) p_{\underline{X}}(\underline{x}) / p_{\underline{Y}}(\underline{y})$$

$$\propto \sum_{\sim x_{j}} p_{\underline{y}|\underline{x}}(\underline{y}|\underline{x}) \mathbb{1}[H\underline{x} = \underline{0}]$$

$$(44.2)$$

この $p_{y|x}(\underline{y}|\underline{x})$ $\mathbb{1}[H\underline{x}=\underline{0}]$ が少数引数の因子に因子分解できれば,(44.2) の周辺化を Sum-Product アルゴリズムによって計算することにより (44.1) を効率的に求めることができる.さらに,ファクタグラフに含まれるループが少なければ高い精度の近似計算が可能である.

まず (44.2) の $\mathbb{1}[H\underline{x}=\underline{0}]$ の因子分解を考えてみよう. 行列 H とベクトル \underline{x} の積が $\underline{0}$ であることは行ベクトル $(h_{i,1},\ldots,h_{i,n})(i=1,\ldots,m)$ と \underline{x} の積が 0 であることと同値なので,次のように因子分解することができる.

$$\mathbb{1}[H\underline{x} = \underline{0}] = \prod_{i=1}^{m} \mathbb{1}\left[\sum_{j=1}^{n} h_{i,j} x_j = 0\right]$$
$$= \prod_{i=1}^{m} \mathbb{1}\left[\sum_{j \in J(i)} x_j = 0\right]$$
(44.3)

ここで, $J(i)=\{j|h_{i,j}\neq 0\}$ である.この因子分解 (44.3) のファクタグラフはタナーグラフと呼ばれている.J(i) のサイ

ズが小さければ、すなわち H が疎であれば、 $\mathbb{1}[H\underline{x}=\underline{0}]$ は少数引数の因子に因子分解されることがわかる。

例 44.4. パリティ検査行列

$$H = \begin{pmatrix} 1011100 \\ 1101010 \\ 0111001 \end{pmatrix}$$

に対して、(44.3) は次で与えられる。

$$1[H\underline{x} = \underline{0}] = 1[x_1 + x_3 + x_4 + x_5 = 0]$$

$$\times 1[x_1 + x_2 + x_4 + x_6 = 0]$$

$$\times 1[x_2 + x_3 + x_4 + x_7 = 0]$$

次に、通信路として無記憶を仮定すると

$$p_{\underline{Y}|\underline{X}}(\underline{y}|\underline{x}) = \prod_{j=1}^{n} p_{Y_j|X_j}(y_j|x_j)$$

と因子分解される.有限状態 $s_0, s_1, \ldots, s_n \in S$ を有する 1 次マルコフ通信路を考えよう。

$$p_{\underline{Y}|\underline{X}}(\underline{y}|\underline{x}) = \sum_{\underline{s} \in \mathcal{S}^{n+1}} p_{\underline{Y},\underline{S}|\underline{X}}(\underline{y},\underline{s}|\underline{x})$$

$$p_{\underline{Y},\underline{S}|\underline{X}}(\underline{y},\underline{s}|\underline{x})$$

$$= \prod_{i=1}^{n} p_{Y_{j},S_{j}|S_{j-1},X_{j}}(y_{j},s_{j}|s_{j-1},x_{j})p_{S_{0}}(s_{0})$$

と通信路状態 s_0, s_1, \ldots, s_n を周辺化のための変数に加える事で因子分解される.

45 BSC におけるシンドローム復号

パリティ検査行列 $H \in \mathcal{X}^{m \times n}$ によって定義される符号空間 $C = \{\underline{x} | H\underline{x} = \underline{0}\}$ から一様ランダムに選ばれた符号語 $\underline{x} = (x_1, \dots, x_n) \in \mathcal{X}^n$, $(\mathcal{X} = \{0, 1\})$ が送信され,反転確率 ϵ の BSC 通信路出力 $\underline{x} + \underline{z} = \underline{y} = (y_1, \dots, y_n) \in \{0, 1\}^n$ に対して、シンドローム $\underline{s} = H\underline{y}$ を観測できる状況で、ノイズベクトル \underline{z} を推定する問題を考える。このとき Sum-Proudet アルゴリズムを用いてビット毎の最大事後確率復号問題を解くことを考えよう.

$$\hat{z}_j = \underset{z_j \in \{0,1\}}{\operatorname{argmax}} p_{Z_j | \underline{S}}(z_j | \underline{s}) \text{ for } j = 1, \dots, n$$

事後確率の計算は,次のように変形することにより, $\mathcal{X}^n=\{0,1\}^n$ 上の関数の周辺化の問題とみなすことができる.

$$\begin{split} p_{Z_j|\underline{S}}(z_j|\underline{s}) &= \sum_{\sim z_j} p_{\underline{Z}|\underline{S}}(\underline{z}|\underline{s}) \\ &\stackrel{(\text{Bases})}{=} \sum_{\sim z_j} p_{\underline{S}|\underline{Z}}(\underline{s}|\underline{z}) p_{\underline{Z}}(\underline{z}) / p_{\underline{S}}(\underline{s}) \\ &\propto \sum_{\sim z_j} p_{\underline{S}|\underline{Z}}(\underline{s}|\underline{z}) p_{\underline{Z}}(\underline{z}) \end{split}$$

$$\begin{split} &p_{\underline{S}|\underline{Z}}(\underline{s}|\underline{z}) = \mathbbm{1}[H\underline{z} = \underline{s}] \\ &p_{\underline{Z}}(\underline{z}) = \prod_{j=1}^n p_{Z_j}(z_j) \\ &p_{Z_j}(z_j) = \begin{cases} \epsilon & (z_j = 1) \\ 1 - \epsilon & (z_j = 0) \end{cases} \end{split}$$

46 木とは限らないタナーグラフを有するパ リティ検査行列に対する復号(確率領域)

パリティ検査行列 H に対して,そのタナーグラフは一般にサイクルを有するので,Sum-Product アルゴリズムを適用しても,すべての辺に対してメッセージを計算することができない.そこで,変数ノード x_j からファクタノード $\mathbb{1}\left[\sum_{j=1}^n h_{i,j}x_j=0\right]$ へのメッセージを値が 1 である定数関数により初期化し,メッセージを 1 回だけでなく反復して更新を行う.この修正によりアルゴリズムはからなずしも終了しなくなってしまうので,更新回数に上限を設けなければならない.

 $\mathcal{X} = \{0,1\}$ であるから変数 x_j とファクタノード f_i の間の メッセージは長さ 2 の確率ベクトル

$$(\mu_{x_j \to f_i}(0), \mu_{x_j \to f_i}(1)),$$

 $(\mu_{f_i \to x_j}(0), \mu_{f_i \to x_j}(1))$

として表すことができる. H のタナーグラフが木でない場合、次のように復号アルゴリズムを修正する。 パリティ検査行列 $H=(h_{ij})$ に対して、

$$J(i) := \{j | h_{i,j} \neq 0\},\$$

$$I(j) := \{i | h_{i,j} \neq 0\}$$

とする。 $\mu_{x_j \to f_i}(x_j)$ と $\mu_{f_i \to x_j}(x_j)$ をそれぞれ $\mu_{ji}(x_j)$ と $\mu_{ij}(x_i)$ と書く。

1. 初期化

$$\mu_j^{(0)}(0) := p_{Y_j|X_j}(y_j|0)$$

$$\mu_j^{(0)}(1) := p_{Y_j|X_j}(y_j|1)$$

$$\mu_{ij}^{(0)}(0) := 1$$

$$\mu_{ij}^{(0)}(1) := 1$$

2. 変数ノード処理^{214714_24Dec18t}

$$\mu_{ji}^{(t)}(0) := \mu_{j}^{(0)}(0) \prod_{i' \in I(j) \setminus \{i\}} \mu_{i'j}^{(t)}(0)$$

$$\mu_{ji}^{(t)}(1) := \mu_{j}^{(0)}(1) \prod_{i' \in I(j) \setminus \{i\}} \mu_{i'j}^{(t)}(1)$$

3. 符号ビット推定

$$\begin{split} \overline{\mu}_{j}^{(t)}(0) &:= \mu_{j}^{(0)}(0) \prod_{i' \in I(j)} \mu_{i'j}^{(t)}(0) \\ \overline{\mu}_{j}^{(t)}(1) &:= \mu_{j}^{(0)}(1) \prod_{i' \in I(j)} \mu_{i'j}^{(t)}(1) \\ \hat{x}_{j}^{(t)} &:= \begin{cases} 0 & (\overline{\mu}_{j}^{(t)}(0) > \overline{\mu}_{j}^{(t)}(1)) \\ ? & (\overline{\mu}_{j}^{(t)}(0) = \overline{\mu}_{j}^{(t)}(1)) \\ 1 & (\overline{\mu}_{j}^{(t)}(0) < \overline{\mu}_{j}^{(t)}(1)) \end{cases} \end{split}$$

4. チェックノード処理

$$\begin{split} & \mu_{ij}^{(t+1)}(0) := \\ & \sum_{x_{J(i)\backslash j}} \mathbbm{1} \big[\sum_{j' \in J(i)\backslash j} x_{j'} = 0 \big] \prod_{j' \in J(i)\backslash \{j\}} \mu_{j'i}^{(t)}(x_{j'}) \\ & \mu_{ij}^{(t+1)}(1) := \\ & \sum_{x_{J(i)\backslash j}} \mathbbm{1} \big[\sum_{j' \in J(i)\backslash j} x_{j'} = 1 \big] \prod_{j' \in J(i)\backslash \{j\}} \mu_{j'i}^{(t)}(x_{j'}) \end{split}$$

5. 符号語推定 $H\hat{\underline{x}}^{(t)} = \underline{0}$ ならば $\hat{\underline{x}}^{(t)}$ を推定符号語として出力する。そうでなければ、2 から繰り返す。

47 木とは限らないタナーグラフを有するパ リティ検査行列に対する復号 (対数領域)

導出は [2, p.58] を見てください。確率領域メッセージの表現方法では、数値安定性 (http://bit.ly/2GQgFoD) が低く、安定した計算を行うためには多くの桁数を必要とする。次で定義される確率領域メッセージ μ から対数領域メッセージ l への変換を考える。

$$\left(\mu(0), \mu(1)\right) \longleftrightarrow l \stackrel{\text{def}}{=} \ln \frac{\mu(0)}{\mu(1)}$$

これらの対数比に変換した対数領域メッセージが使われる。 高い安定性で計算することができる [2, (2.17)].

1. 初期化

$$l_j^{(0)} := \ln \frac{p_{Y_j|X_j}(y_j|0)}{p_{Y_j|X_j}(y_j|1)}$$
$$l_{ij}^{(0)} := 0$$

2. 変数ノード処理[214714_24Dec18

$$l_{ji}^{(t)} := l_j^{(0)} + \sum_{i' \in I(j) \setminus i} l_{ij}^{(t)}$$

3. 符号ビット推定

$$\bar{l}_{j}^{(t)} := l_{j}^{(0)} + \sum_{i' \in I(j)} l_{ij}^{(t)}$$

$$\hat{x}_{j}^{(t)} := \begin{cases} 0 & (\bar{l}_{j}^{(t)} > 0) \\ ? & (\bar{l}_{j}^{(t)} = 0) \\ 1 & (\bar{l}_{j}^{(t)} < 0) \end{cases}$$

4. チェックノード処理

$$l_{ij}^{(t+1)} := 2 \tanh^{-1} \left(\prod_{j' \in J(i) \setminus \{j\}} \tanh(l_{j'i}^{(t)}/2) \right) (47.1)$$

5. 符号語推定 $H\hat{\underline{x}}^{(t)} = \underline{0}$ ならば $\hat{\underline{x}}^{(t)}$ を推定符号語として出力する。そうでなければ、2 から繰り返す。

48 低計算量の復号法

対数領域メッセージlに対して次の変換を考えよう。

$$l \longleftrightarrow (\alpha, \beta)$$
$$\alpha := \operatorname{sgn}(l)$$
$$\beta := |l|$$

(47.1) は、次のように書ける。 $lpha_{ij}^{(t+1)}:= \prod$

$$\alpha_{ij}^{(t+1)} := \prod_{j' \in J(i) \setminus \{j\}} \alpha_{j'i}^{(t)}$$
$$\beta_{ij}^{(t)} := \phi^{-1} \left(\sum_{j' \in J(i) \setminus \{j\}} \phi(\beta_{j'i}^{(t)}) \right)$$

ここで、 $\phi(x)$ は x>0 に対して定義される関数である。

$$\phi(x) := -\ln(\tanh(x/2))$$

(48.1)

 ϕ の逆関数は ϕ となる。

$$\phi^{-1}(x) = \phi(x)$$

$$y = \phi(x)$$

$$y = 2e^{-x}$$

$$y = -\ln(x/2)$$

$$y = x$$

$$y = x$$

[4, 5.5] に下のものを含む近似復号法が掲載されている。

1. (48.1) を下で置き換えた復号法を min-sum 復号法という。

$$\beta_{ij}^{(t)}:=\min_{j'\in J(i)\backslash\{j\}}\beta_{j'i}^{(t)}$$

- 2. (48.1) の入力と出力を量子化して LUT を用いる方法
- 3. 次の近似を用いた方法

$$\phi(x) \simeq \begin{cases} 2e^{-x} & (x < \ln 2) \\ -\ln(x/2) & (x > \ln 2) \end{cases}$$

49 疎なパリティ検査行列の構成法

ノイズに対して耐性を持たせるために情報ビット系列は冗長なパリティビットを有する符号語に符号化される.符号語 $x=(x_1,\ldots,x_n)$ は,パリティ検査行列と呼ばれる $m\times n$ の2元行列 $H=(h_{i,j}), i=1,\ldots,m, j=1\ldots,m$ との積が0になるように符号化される.疎なパリティ検査行列によって定義される誤り訂正符号を LDPC 符号という.

列重みが d_c で行重みが d_r のパリティ検査行列によって定義される LDPC 符号は (d_c, d_r) 正則符号と呼ばれる.

49.1 プロトグラフ符号

 $d_r \times d_c$ の成分がすべて 1 であるベース行列を用意して,1 をサイズ P のランダムな置換行列に置き換えることで,符号 長 $n=Pd_c$ の (d_c,d_r) 正則符号を構成することができる.ベース行列の対応するタナーグラフは、プロトグラフと呼ばれる。例. $d_c=3,d_r=6$ とするとベース行列 B は

となる。P=4として得られるパリティ検査行列 $H_{3,6}^{P=4}$ は

図 49.1: ベース行列 $B_{3,6}$ に対応するプロトグラフ

(49.2) となる. ただし、0 の表記を省略している.

符号空間 $C=\{x\in\{0,1\}^n|Hx=0\}$ の次元は次元定理から $n-\mathrm{rank}(H)$ となる。この構成法によって作られたサイズ $d_rP\times d_cP$ パリティ検査行列 H のランクはフルランク d_rP から少なくとも d_r-1 だけ減ってしまうので、符号化の際に注意が必要である。

50 空間結合符号

空間結合符号は,下のような帯状のベース行列によって構成される LDPC 符号であり,無記憶とは限らない広範囲の通信路の通信路容量を達成する復号性能を有する [5] ことが知ら

れている.

このベース行列 B から生成されたパリティ検査行列 H を考えてみよう。すべての列で列重みは、一定 (この場合には 3) である。一方、行重みに関しては、中央の重みが 6 であるのに対して、上と下の行では 6 より小さい重みになっている。このことから、上と下の行においては、SPA の行処理において正しく推定されやすくなり、反復復号が進むにつれてその効果が中央に浸透していくこととなる。

図 50.1: ベース行列 B_{SC} に対応するプロトグラフ

51 正則LDPC符号、非正則LDPC符号

列重みと行重みがそれぞれ一定の d_c と d_r であるパリティ検査行列によって定義される LDPC 符号を (d_c,d_r) -正則 LDPC 符号という。列重みと行重みが一定とは限らないパリティ検査行列によって定義される LDPC 符号は、非正則 LDPC 符号と呼ばれる。非正則 LDPC 符号の性能は、次数分布によって特徴づけられる $[2, \S 3.4]$ 。次数分布から、逆に非正則 LDPC 符号を構成する方法は [2, p. 78, Def. 3.15] に載っている。

52 多元 LDPC 符号

- Invented [1].
- Rediscovered [6].

定義 **52.1** (\mathbb{F}_q 上の符号). $q=p^d$ 、 \mathbb{F}_q をサイズ q の有限体とする。サイズ $m\times n$ のパリティ検査行列 $H=(h_{i,j})\in\mathbb{F}_q^{m\times n}$ によって定義される \mathbb{F}_q 上の線形符号は、下記の通り定義される符号語 $\underline{x}:=(x_1,\ldots,x_n)\in\mathbb{F}_q^n$ の集合である。

$$\left\{\underline{x} \in \mathbb{F}_q^n \mid \sum_{i=1}^n h_{i,j} x_j = 0, \text{ for } i = 1, \dots, m\right\} \subset \mathbb{F}_q^n$$

さらにこの第 2 因子を、(44.2) と同様に考えて、受信後 \underline{Y} を観測したもとでの X_j に関する事後確率を次にように表せる。 $p_{X_j|\underline{Y}}(x_j|\underline{y}) = \sum p_{\underline{X}|\underline{Y}}(\underline{x}|\underline{y})$

$$\overset{(\text{Bayes})}{=} \sum_{\sim x_j} p_{\underline{Y}|\underline{X}}(\underline{y}|\underline{x}) p_{\underline{X}}(\underline{x}) / p_{\underline{Y}}(\underline{y})$$

$$\propto \sum_{\sim x_j} p_{\underline{y}|\underline{x}}(\underline{y}|\underline{x}) \mathbb{1}[H\underline{x} = \underline{0}]$$

(44.3) と同様に考えて、次のように因子分解することができる.

$$\mathbb{1}[H\underline{x} = \underline{0}] = \prod_{i=1}^{m} \mathbb{1}\left[\sum_{j=1}^{n} h_{i,j} x_j = 0\right]$$
$$= \prod_{i=1}^{m} \mathbb{1}\left[\sum_{j \in J(i)} x_j = 0\right]$$

i=1 \Box 定義 $\mathbf{52.2}\;(\mathrm{GL}_n(\mathbb{F}_n)\;$ を使った多元 LDPC 符号). $\mathbb{F}_n\;$ 上のサイ

定義 **52.2** (
$$\operatorname{GL}_n(\mathbb{F}_p)$$
 を使った多元 LDPC 符号). \mathbb{F}_p 上のサイズ d の正則行列のなす一般線形群を $\operatorname{GL}_d(\mathbb{F}_p)$ と書く。 $h_{i,j} \in \operatorname{GL}_d(\mathbb{F}_p)$ for $i=1,\ldots,m,j=1,\ldots,n$ に対して、

 $\left\{(x_1,\ldots,x_n)\in (\mathbb{F}_p^d)^n\mid \sum_{j=1}^n h_{i,j}x_j=0, \text{ for } i=1,\ldots,m\right\}\subset (\mathbb{F}_p^d)^n$ を GL 符号という。52.3 の表現により、GL 符号は \mathbb{F}_q 上の線

262

形符号と見なすことができる。

命題 52.3 (Representation of the Field by Matrices, [7, Ch. 4, §3]). The companion matrix of the polynomial $a(x) = a_0 +$

 $a_1x + \cdots + a_{r-1}x^{r-1} + x^r$ is defined to be the $r \times r$ matrix

$$\boldsymbol{M} = \begin{bmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{r-1} \end{bmatrix}$$

For example, take $\pi(x) = x^3 + x + 1$ over GF(2). The elements of GF(2³) can then be represented as:

$\begin{pmatrix} 0 \\ 000 \\ 000 \\ 000 \end{pmatrix}$	$ \begin{pmatrix} M \\ 001 \\ 101 \\ 010 \end{pmatrix} $	$\begin{pmatrix} \mathbf{M}^2 \\ 010 \\ 011 \\ 101 \end{pmatrix}$ α^2	$ \begin{pmatrix} \mathbf{M}^3 \\ 101 \\ 111 \\ 011 \end{pmatrix} $ $ \alpha^3$	$ \begin{pmatrix} \mathbf{M}^4 \\ \begin{pmatrix} 011 \\ 110 \\ 111 \end{pmatrix} $ $ \alpha^4 $	$ \begin{pmatrix} \mathbf{M}^5 \\ \begin{pmatrix} 111 \\ 100 \\ 110 \end{pmatrix} $ $ \alpha^5 $	$ \begin{pmatrix} \mathbf{M}^6 \\ 110 \\ 001 \\ 100 \end{pmatrix} $ $ \alpha^6 $	$ \begin{array}{c} M^7 \\ \begin{pmatrix} 100 \\ 010 \\ 001 \end{pmatrix} \\ \alpha^7 = 1 \end{array} $
$(000)^{T}$	$(010)^{T}$	$(001)^{T}$	$(110)^{T}$	$(011)^{T}$	α° $(111)^{T}$	$(101)^{T}$	$\alpha' = 1$ $(100)^{7}$

where addition and multiplication in the field correspond to addition and multiplication of these matrices.

This is a very laborious way of describing the field. It is less trouble to write the first row of each matrix as a polynomial in α , i.e., $M \leftrightarrow \alpha$, $M^2 \leftrightarrow \alpha^2$, $M^3 \leftrightarrow 1 + \alpha$ etc., and perform multiplication modulo $\alpha^3 + \alpha + 1$. Of course this gives the same representation of the field.

定義 52.4 (畳み込み). $\mu_1, \mu_2: \mathbb{F}_q \to \mathbb{R}$ に対して、畳み込み $[\mu_1 \otimes \mu_2](x) = \sum \qquad \mu_1(x_1)\mu_2(x_2)$

$$x_1,x_2 \in \mathbb{F}_q : x = x_1 + x_2$$
を定義する。

定義 $\mathbf{52.5.}\;\mu:\mathbb{F}_q o\mathbb{R}$ に対して、フーリエ変換を定義する。

$$M(y) = \sum_{x \in \mathbb{F}_q} (-1)^{x \cdot y} \mu(x)$$
$$x \cdot y = \sum_{i=1}^p x_i y_i$$

命題 52.6. $\mu, \mu_1, \mu_2 : \mathbb{F}_q \to \mathbb{R}$ に対して、次は同値である。

$$\mu(x) = [\mu_1 \otimes \mu_2](x)$$
$$M(y) = M_1(y)M_2(y)$$

参考文献

[1] R. G. Gallager, <u>Low-Density Parity-Check Codes</u>. Cambridge, MA, USA: The M.I.T. Press, 1963.

graphs and the sum-product algorithm," <u>IEEE Trans. Inf.</u>
<u>Theory</u>, vol. 47, no. 2, pp. 498–519, Feb. 2001.

[4] W. Ryan and S. Lin, <u>Channel Codes: Classical and Modern</u>. Cambridge University Press, 2009.

[5] S. Kudekar, T. Richardson, and R. L. Urbanke, "Spa-

no. 12, pp. 7761–7813, Dec 2013.

2008.

[2] T. Richardson and R. Urbanke, <u>Modern Coding Theory</u>. New York, NY, USA: Cambridge University Press, Mar.

[3] F. Kschischang, B. Frey, and H.-A. Loeliger, "Factor

codes over GF(q)," in <u>Information Theory Workshop</u>, 1998, Jun. 1998, pp. 70–71.

tially coupled ensembles universally achieve capacity under belief propagation," IEEE Trans. Inf. Theory, vol. 59,

M. Davey and D. MacKay, "Low density parity check

[7] F. J. MacWilliams and N. J. A. Sloane, <u>The Theory of Error-Correcting Codes</u>. Amsterdam: Elsevier, 1977.