```
In [1]: | # setting working directory
        #importing all libraries for modelling
         import random
         import os
         os.chdir("D:\Anamika\F\Downloads")
         import pandas as pd
         import seaborn as sns
         from sklearn.model selection import train test split
         %matplotlib inline
         from xgboost import plot tree
         from matplotlib.pylab import rcParams
         from sklearn.metrics import roc_curve ,auc,recall_score,precision_score
         from sklearn.metrics import accuracy_score, make_scorer
         from sklearn.model selection import KFold, GridSearchCV
         from numpy import sqrt ,argmax
         import seaborn as sns
         from matplotlib import pyplot
         import matplotlib.pyplot as plt
         import matplotlib.pylab as plt
         %matplotlib inline
         rcParams['figure.figsize']= [10,10]
         #set seed to have consistent values for all iterations
         random.seed(10)
```

```
In [2]: #loading the dataset
    df = pd.read_csv(r"D:\Anamika\F\Semester 7\MDD\parkinsons.csv")
    print(df)
```

			_		
	name	MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter(%)
\					
0	phon_R01_S01_1	119.992	157.302	74.997	0.00784
1	phon_R01_S01_2	122.400	148.650	113.819	0.00968
2	phon_R01_S01_3	116.682	131.111	111.555	0.01050
3	phon_R01_S01_4	116.676	137.871	111.366	0.00997
4	phon_R01_S01_5	116.014	141.781	110.655	0.01284
5	phon_R01_S01_6	120.552	131.162	113.787	0.00968
6	. – – –	120.267			0.00333
	phon_R01_S02_1		137.244	114.820	
7	phon_R01_S02_2	107.332	113.840	104.315	0.00290
8	phon_R01_S02_3	95.730	132.068	91.754	0.00551
9	phon_R01_S02_4	95.056	120.103	91.226	0.00532
10	phon_R01_S02_5	88.333	112.240	84.072	0.00505
11	phon_R01_S02_6	91.904	115.871	86.292	0.00540
12	phon_R01_S04_1	136.926	159.866	131.276	0.00293
13	phon_R01_S04_2	139.173	179.139	76.556	0.00390
14	phon_R01_S04_3	152.845	163.305	75.836	0.00294
15	phon_R01_S04_4	142.167	217.455	83.159	0.00369
16	phon_R01_S04_5	144.188	349.259	82.764	0.00544
	. – – –				
17	phon_R01_S04_6	168.778	232.181	75.603	0.00718
18	phon_R01_S05_1	153.046	175.829	68.623	0.00742
19	phon_R01_S05_2	156.405	189.398	142.822	0.00768
20	phon_R01_S05_3	153.848	165.738	65.782	0.00840
21	phon_R01_S05_4	153.880	172.860	78.128	0.00480
22	phon_R01_S05_5	167.930	193.221	79.068	0.00442
23	phon_R01_S05_6	173.917	192.735	86.180	0.00476
24	phon_R01_S06_1	163.656	200.841	76.779	0.00742
25	phon_R01_S06_2	104.400	206.002	77.968	0.00633
26	phon_R01_S06_3	171.041	208.313	75.501	0.00455
27	phon_R01_S06_4	146.845	208.701	81.737	0.00496
28	phon_R01_S06_5	155.358	227.383	80.055	0.00310
29			198.346	77.630	
29	phon_R01_S06_6	162.568	190.340	77.030	0.00502
165	phon_R01_S42_1	236.200	244.663	102.137	0.00277
	· · .				
166	phon_R01_S42_2	237.323	243.709	229.256	0.00303
167	phon_R01_S42_3	260.105	264.919	237.303	0.00339
168	phon_R01_S42_4	197.569	217.627	90.794	0.00803
169	phon_R01_S42_5	240.301	245.135	219.783	0.00517
170	phon_R01_S42_6	244.990	272.210	239.170	0.00451
171	phon_R01_S43_1	112.547	133.374	105.715	0.00355
172	phon_R01_S43_2	110.739	113.597	100.139	0.00356
173	phon_R01_S43_3	113.715	116.443	96.913	0.00349
174	phon_R01_S43_4	117.004	144.466	99.923	0.00353
175	phon_R01_S43_5	115.380	123.109	108.634	0.00332
176	phon_R01_S43_6	116.388	129.038	108.970	0.00346
177	phon_R01_S44_1	151.737	190.204	129.859	0.00314
	. – – –				
178	phon_R01_S44_2	148.790	158.359	138.990	0.00309
179	phon_R01_S44_3	148.143	155.982	135.041	0.00392
180	phon_R01_S44_4	150.440	163.441	144.736	0.00396
181	phon_R01_S44_5	148.462	161.078	141.998	0.00397
182	phon_R01_S44_6	149.818	163.417	144.786	0.00336
183	phon_R01_S49_1	117.226	123.925	106.656	0.00417
184	phon_R01_S49_2	116.848	217.552	99.503	0.00531
185	phon_R01_S49_3	116.286	177.291	96.983	0.00314
186	phon_R01_S49_4	116.556	592.030	86.228	0.00496
187	phon_R01_S49_5	116.342	581.289	94.246	0.00267
188	phon_R01_S49_6	114.563	119.167	86.647	0.00327
100	huou_war_343_0	114.703	119.10/	00.04/	0.00327

				.,		
189	phon_R01_S50_1	201.774	262	.707	78.228	0.00694
190	phon R01 S50 2	174.188		.978	94.261	0.00459
191	phon_R01_S50_3	209.516		.017	89.488	0.00564
192	phon_R01_S50_4	174.688		.005	74.287	0.01360
	. – – –					
193	phon_R01_S50_5	198.764		.961	74.904	0.00740
194	phon_R01_S50_6	214.289	260	.277	77.973	0.00567
	MDVP:Jitter(Abs)	MDVP:RAP	MDVP:PPQ	Jitter:DDP		\
0	0.00007	0.00370	0.00554	0.01109	0.04374	• • •
1	0.00008	0.00465	0.00696	0.01394	0.06134	• • •
2	0.00009	0.00544	0.00781	0.01633	0.05233	• • •
3	0.00009	0.00502	0.00698	0.01505	0.05492	
4	0.00011	0.00655	0.00908	0.01966		
5	0.00008	0.00463	0.00750	0.01388		• • •
6	0.00003	0.00155	0.00202	0.00466	0.01608	• • •
7	0.00003	0.00133	0.00182	0.00431	0.01567	
8		0.00144				• • •
	0.00006		0.00332	0.00880	0.02093	• • •
9	0.00006	0.00268	0.00332	0.00803	0.02838	• • •
10	0.00006	0.00254	0.00330	0.00763	0.02143	• • •
11	0.00006	0.00281	0.00336	0.00844		• • •
12	0.00002	0.00118	0.00153	0.00355	0.01259	• • •
13	0.00003	0.00165	0.00208	0.00496	0.01642	• • •
14	0.00002	0.00121	0.00149	0.00364	0.01828	• • •
15	0.00003	0.00157	0.00203	0.00471	0.01503	
16	0.00004	0.00211	0.00292	0.00632	0.02047	
17	0.00004	0.00284	0.00387	0.00853	0.03327	• • •
18	0.00005	0.00364	0.00432	0.01092		
19	0.00005	0.00372	0.00399	0.01032	0.03995	• • •
20	0.00005	0.00372	0.00355	0.01110	0.03810	
						• • •
21	0.00003	0.00232	0.00267	0.00696	0.04137	• • •
22	0.00003	0.00220	0.00247	0.00661	0.04351	• • •
23	0.00003	0.00221	0.00258	0.00663	0.04192	• • •
24	0.00005	0.00380	0.00390	0.01140		• • •
25	0.00006	0.00316	0.00375	0.00948	0.03767	• • •
26	0.00003	0.00250	0.00234	0.00750	0.01966	• • •
27	0.00003	0.00250	0.00275	0.00749	0.01919	• • •
28	0.00002	0.00159	0.00176	0.00476	0.01718	• • •
29	0.00003	0.00280	0.00253	0.00841	0.01791	
	•••					
165	0.00001	0.00154	0.00153	0.00462	0.02448	• • •
166	0.00001	0.00173	0.00159	0.00519	0.01242	
167	0.00001	0.00205	0.00186	0.00515	0.02030	•••
168	0.00001	0.00203	0.00100	0.01470	0.02177	• • •
				0.00949	0.02018	
169	0.00002	0.00316	0.00283			• • •
170	0.00002	0.00279	0.00237	0.00837	0.01897	• • •
171	0.00003	0.00166	0.00190	0.00499	0.01358	• • •
172	0.00003	0.00170	0.00200	0.00510	0.01484	• • •
173	0.00003	0.00171	0.00203	0.00514	0.01472	• • •
174	0.00003	0.00176	0.00218	0.00528	0.01657	
175	0.00003	0.00160	0.00199	0.00480	0.01503	
176	0.00003	0.00169	0.00213	0.00507	0.01725	
177	0.00002	0.00135	0.00162	0.00406	0.01469	• • •
178	0.00002	0.00152	0.00186	0.00456	0.01574	
179	0.00003	0.00132	0.00133	0.00430	0.01450	• • •
180	0.00003	0.00204	0.00231	0.00612	0.02551	
						• • •
181	0.00003	0.00202	0.00235	0.00605	0.01831	• • •
182	0.00002	0.00174	0.00198	0.00521	0.02145	• • •

```
0.00558
183
               0.00004
                          0.00186
                                     0.00270
                                                                  0.01909
184
               0.00005
                          0.00260
                                     0.00346
                                                  0.00780
                                                                  0.01795
185
               0.00003
                          0.00134
                                     0.00192
                                                  0.00403
                                                                  0.01564
                                                                            . . .
186
               0.00004
                          0.00254
                                     0.00263
                                                  0.00762
                                                                  0.01660
                                                                            . . .
187
               0.00002
                          0.00115
                                     0.00148
                                                  0.00345
                                                                  0.01300
                                                                            . . .
188
               0.00003
                          0.00146
                                     0.00184
                                                  0.00439
                                                                  0.01185
                                                                            . . .
                                                  0.01235
189
               0.00003
                          0.00412
                                     0.00396
                                                                  0.02574
190
               0.00003
                          0.00263
                                     0.00259
                                                  0.00790
                                                                  0.04087
191
               0.00003
                          0.00331
                                     0.00292
                                                  0.00994
                                                                  0.02751
                                                                            . . .
192
               0.00008
                          0.00624
                                     0.00564
                                                  0.01873
                                                                  0.02308
                                                                            . . .
193
               0.00004
                          0.00370
                                     0.00390
                                                  0.01109
                                                                  0.02296
                                                                            . . .
194
               0.00003
                          0.00295
                                     0.00317
                                                  0.00885
                                                                  0.01884
                                                                            . . .
     Shimmer:DDA
                                                    RPDE
                                                                DFA
                        NHR
                                 HNR
                                      status
                                                                      spread1
0
          0.06545
                   0.02211
                              21.033
                                               0.414783
                                                          0.815285 -4.813031
                                            1
1
         0.09403
                   0.01929
                              19.085
                                            1
                                               0.458359
                                                          0.819521 -4.075192
2
          0.08270
                   0.01309
                             20.651
                                            1
                                               0.429895
                                                          0.825288 -4.443179
3
          0.08771
                   0.01353
                              20.644
                                            1
                                               0.434969
                                                          0.819235 -4.117501
4
          0.10470
                   0.01767
                             19.649
                                            1
                                               0.417356
                                                          0.823484 - 3.747787
5
          0.06985
                   0.01222
                                            1
                                                          0.825069 -4.242867
                              21.378
                                               0.415564
6
          0.02337
                   0.00607
                              24.886
                                            1
                                               0.596040
                                                          0.764112 -5.634322
7
          0.02487
                   0.00344
                              26.892
                                            1
                                               0.637420
                                                          0.763262 -6.167603
8
          0.03218
                                                          0.773587 -5.498678
                   0.01070
                             21.812
                                            1
                                               0.615551
9
          0.04324
                   0.01022
                             21.862
                                            1
                                               0.547037
                                                          0.798463 -5.011879
10
          0.03237
                   0.01166
                             21.118
                                            1
                                               0.611137
                                                          0.776156 -5.249770
11
          0.04272
                   0.01141
                              21.414
                                            1
                                               0.583390
                                                          0.792520 -4.960234
12
          0.01968
                   0.00581
                              25.703
                                            1
                                               0.460600
                                                          0.646846 -6.547148
13
          0.02184
                   0.01041
                              24.889
                                                          0.665833 -5.660217
                                            1
                                               0.430166
14
          0.03191
                   0.00609
                             24.922
                                            1
                                               0.474791
                                                          0.654027 -6.105098
15
          0.02316
                   0.00839
                              25.175
                                               0.565924
                                            1
                                                          0.658245 -5.340115
16
          0.02908
                   0.01859
                              22.333
                                            1
                                               0.567380
                                                          0.644692 -5.440040
17
          0.04322
                   0.02919
                             20.376
                                            1
                                               0.631099
                                                          0.605417 -2.931070
18
          0.07413
                   0.03160
                              17.280
                                            1
                                               0.665318
                                                          0.719467 -3.949079
19
          0.05164
                                            1
                                               0.649554
                   0.03365
                             17.153
                                                          0.686080 -4.554466
20
          0.05000
                   0.03871
                             17.536
                                            1
                                               0.660125
                                                          0.704087 -4.095442
21
                   0.01849
                             19.493
                                            1
                                               0.629017
                                                          0.698951 -5.186960
          0.06062
22
          0.06685
                   0.01280
                             22.468
                                            1
                                               0.619060
                                                          0.679834 -4.330956
                                                          0.686894 -5.248776
23
          0.06562
                   0.01840
                                            1
                                               0.537264
                             20.422
24
          0.02214
                   0.01778
                             23.831
                                            1
                                               0.397937
                                                          0.732479 -5.557447
25
          0.05197
                    0.02887
                              22.066
                                            1
                                               0.522746
                                                          0.737948 -5.571843
26
                   0.01095
                              25.908
                                            1
                                               0.418622
                                                          0.720916 -6.183590
          0.02666
27
          0.02650
                   0.01328
                             25.119
                                            1
                                               0.358773
                                                          0.726652 -6.271690
28
          0.02307
                    0.00677
                              25.970
                                            1
                                               0.470478
                                                          0.676258 -7.120925
29
          0.02380
                    0.01170
                              25.678
                                            1
                                               0.427785
                                                          0.723797 -6.635729
. .
              . . .
                        . . .
                                 . . .
                                                     . . .
                                                                . . .
                                          . . .
          0.04231
                   0.00620
                                               0.469928
                                                          0.628232 -6.816086
165
                              24.078
                                            0
166
          0.02089
                   0.00533
                              24.679
                                            0
                                               0.384868
                                                          0.626710 -7.018057
167
         0.03557
                   0.00910
                                            0
                                               0.440988
                                                          0.628058 -7.517934
                             21.083
168
         0.03836
                   0.01337
                             19.269
                                            0
                                               0.372222
                                                          0.725216 -5.736781
169
         0.03529
                   0.00965
                              21.020
                                            0
                                               0.371837
                                                          0.646167 -7.169701
170
         0.03253
                   0.01049
                              21.528
                                            0
                                               0.522812
                                                          0.646818 -7.304500
171
         0.01992
                   0.00435
                              26.436
                                            0
                                               0.413295
                                                          0.756700 -6.323531
172
         0.02261
                   0.00430
                             26.550
                                            0
                                               0.369090
                                                          0.776158 -6.085567
173
          0.02245
                   0.00478
                              26.547
                                            0
                                               0.380253
                                                          0.766700 -5.943501
                                               0.387482
                                                          0.756482 -6.012559
174
          0.02643
                    0.00590
                             25.445
                                            0
175
          0.02436
                   0.00401
                              26.005
                                            0
                                               0.405991
                                                          0.761255 -5.966779
176
          0.02623
                   0.00415
                              26.143
                                               0.361232
                                                          0.763242 -6.016891
```

```
177
                   0.00570
                                              0.396610
                                                        0.745957 -6.486822
         0.02184
                             24.151
                                           1
178
         0.02518
                   0.00488
                             24.412
                                          1
                                              0.402591
                                                        0.762508 -6.311987
179
         0.02175
                   0.00540
                             23.683
                                          1
                                              0.398499
                                                         0.778349 -5.711205
180
         0.03964
                   0.00611
                             23.133
                                          1
                                              0.352396
                                                        0.759320 -6.261446
181
         0.02849
                   0.00639
                             22.866
                                          1
                                             0.408598
                                                         0.768845 -5.704053
182
         0.03464
                   0.00595
                             23.008
                                           1
                                              0.329577
                                                         0.757180 -6.277170
183
         0.02592
                   0.00955
                             23.079
                                          0
                                              0.603515
                                                         0.669565 -5.619070
                                              0.663842
184
         0.02429
                   0.01179
                             22.085
                                          0
                                                         0.656516 -5.198864
185
         0.02001
                   0.00737
                             24.199
                                           0
                                              0.598515
                                                         0.654331 -5.592584
                                              0.566424
186
         0.02460
                   0.01397
                             23.958
                                          0
                                                         0.667654 -6.431119
187
                                              0.528485
                                                         0.663884 -6.359018
         0.01892
                   0.00680
                             25.023
                                          0
                                              0.555303
188
         0.01672
                   0.00703
                             24.775
                                          0
                                                         0.659132 -6.710219
189
         0.04363
                   0.04441
                             19.368
                                          0
                                             0.508479
                                                         0.683761 -6.934474
190
         0.07008
                                              0.448439
                                                        0.657899 -6.538586
                   0.02764
                             19.517
                                          0
191
         0.04812
                   0.01810
                             19.147
                                          0
                                              0.431674
                                                         0.683244 -6.195325
192
         0.03804
                                                         0.655683 -6.787197
                   0.10715
                             17.883
                                          0
                                              0.407567
193
         0.03794
                   0.07223
                             19.020
                                          0
                                              0.451221
                                                         0.643956 -6.744577
194
         0.03078
                   0.04398
                            21.209
                                              0.462803
                                                         0.664357 -5.724056
                                PPE
      spread2
                      D2
0
     0.266482
               2.301442
                          0.284654
1
     0.335590
                2.486855
                          0.368674
2
     0.311173
                2.342259
                          0.332634
3
     0.334147
                2.405554
                          0.368975
4
     0.234513
                2.332180
                          0.410335
5
     0.299111
                2.187560
                          0.357775
6
     0.257682
                1.854785
                          0.211756
7
     0.183721
                2.064693
                          0.163755
8
     0.327769
                2.322511
                          0.231571
9
     0.325996
                2.432792
                          0.271362
10
     0.391002
                2.407313
                          0.249740
11
     0.363566
                2.642476
                          0.275931
12
     0.152813
                2.041277
                          0.138512
13
     0.254989
                2.519422
                          0.199889
14
                2.125618
     0.203653
                          0.170100
15
                2.205546
     0.210185
                          0.234589
16
     0.239764
                2.264501
                          0.218164
17
     0.434326
                3.007463
                          0.430788
18
     0.357870
                3.109010
                          0.377429
19
     0.340176
                2.856676
                          0.322111
20
     0.262564
                2.739710
                          0.365391
21
     0.237622
                2.557536
                          0.259765
22
     0.262384
                2.916777
                          0.285695
23
     0.210279
                2.547508
                          0.253556
24
     0.220890
                2.692176
                          0.215961
25
     0.236853
                2.846369
                          0.219514
26
     0.226278
                2.589702
                          0.147403
27
     0.196102
                2.314209
                          0.162999
     0.279789
28
                2.241742
                          0.108514
29
     0.209866
                1.957961
                          0.135242
. .
165
     0.172270
                2.235197
                          0.119652
166
     0.176316
                1.852402
                          0.091604
167
     0.160414
                1.881767
                          0.075587
     0.164529
168
                2.882450
                          0.202879
169
     0.073298
                2.266432
                          0.100881
170
     0.171088
                2.095237
                          0.096220
```

171

```
0.218885
                        2.193412
                                   0.160376
         172
              0.192375
                        1.889002
                                   0.174152
         173
              0.192150
                        1.852542
                                   0.179677
         174
                        1.872946
              0.229298
                                   0.163118
         175
              0.197938
                        1.974857
                                   0.184067
         176
              0.109256
                        2.004719
                                   0.174429
         177
              0.197919
                        2.449763
                                   0.132703
         178
              0.182459
                        2.251553
                                   0.160306
         179
              0.240875
                        2.845109
                                   0.192730
         180
                        2.264226
              0.183218
                                   0.144105
         181
              0.216204
                        2.679185
                                   0.197710
                        2.209021
         182
              0.109397
                                   0.156368
         183
              0.191576
                        2.027228
                                   0.215724
         184
              0.206768
                        2.120412
                                   0.252404
         185
              0.133917
                        2.058658
                                   0.214346
         186
              0.153310
                        2.161936
                                   0.120605
         187
              0.116636
                        2.152083
                                   0.138868
         188
             0.149694
                        1.913990
                                   0.121777
         189
              0.159890
                        2.316346
                                   0.112838
         190
              0.121952
                        2.657476
                                   0.133050
         191
              0.129303
                        2.784312
                                   0.168895
         192
              0.158453
                        2.679772
                                   0.131728
         193
              0.207454
                        2.138608
                                   0.123306
         194
              0.190667
                        2.555477
                                   0.148569
         [195 rows x 24 columns]
In [3]:
         df.isnull().sum()
Out[3]: name
                              0
        MDVP:Fo(Hz)
                              0
        MDVP:Fhi(Hz)
                              0
        MDVP:Flo(Hz)
                              0
        MDVP: Jitter(%)
                              0
        MDVP: Jitter(Abs)
                              0
        MDVP: RAP
                              0
        MDVP:PPO
                              0
         Jitter:DDP
                              0
        MDVP:Shimmer
                              0
                              0
        MDVP:Shimmer(dB)
                              0
         Shimmer:APQ3
         Shimmer: APQ5
                              0
        MDVP:APQ
                              0
                              0
         Shimmer:DDA
         NHR
                              0
        HNR
                              0
         status
                              0
         RPDE
                              0
         DFA
                              0
         spread1
                              0
         spread2
                              0
         D2
                              0
         PPE
                              0
```

dtype: int64

Out[4]:

	MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter(%)	MDVP:Jitter(Abs)
MDVP:Fo(Hz)	1	0.400985	0.596546	-0.118003	-0.382027
MDVP:Fhi(Hz)	0.400985	1	0.0849513	0.102086	-0.0291983
MDVP:Flo(Hz)	0.596546	0.0849513	1	-0.139919	-0.277815
MDVP:Jitter(%)	-0.118003	0.102086	-0.139919	1	0.935714
MDVP:Jitter(Abs)	-0.382027	-0.0291983	-0.277815	0.935714	1
MDVP:RAP	-0.0761938	0.0971766	-0.100519	0.990276	0.922911
MDVP:PPQ	-0.112165	0.0911262	-0.0958284	0.974256	0.897778
Jitter:DDP	-0.0762127	0.0971499	-0.100488	0.990276	0.922913
MDVP:Shimmer	-0.0983737	0.00228123	-0.144543	0.769063	0.703322
MDVP:Shimmer(dB)	-0.0737425	0.0434652	-0.119089	0.804289	0.716601
Shimmer:APQ3	-0.0947171	-0.00374325	-0.150747	0.746625	0.697153
Shimmer:APQ5	-0.0706818	-0.00999678	-0.101095	0.725561	0.648961
MDVP:APQ	-0.0777738	0.00493698	-0.107293	0.758255	0.648793
Shimmer:DDA	-0.0947316	-0.00373289	-0.150737	0.746635	0.69717
NHR	-0.0219808	0.163766	-0.10867	0.906959	0.834972
HNR	0.0591444	-0.0248931	0.210851	-0.728165	-0.65681
status	-0.383535	-0.166136	-0.3802	0.27822	0.338653
RPDE	-0.383894	-0.112404	-0.400143	0.360673	0.441839
DFA	-0.446013	-0.343097	-0.0504063	0.0985724	0.175036
spread1	-0.413738	-0.0766578	-0.394857	0.693577	0.735779
spread2	-0.24945	-0.00295361	-0.243829	0.385123	0.388543
D2	0.17798	0.176323	-0.100629	0.433434	0.310694
PPE	-0.372356	-0.069543	-0.340071	0.721543	0.748162
4					

```
In [5]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 195 entries, 0 to 194
        Data columns (total 24 columns):
                             195 non-null object
        name
        MDVP:Fo(Hz)
                             195 non-null float64
        MDVP:Fhi(Hz)
                             195 non-null float64
                             195 non-null float64
        MDVP:Flo(Hz)
        MDVP:Jitter(%)
                             195 non-null float64
        MDVP:Jitter(Abs)
                             195 non-null float64
                             195 non-null float64
        MDVP:RAP
        MDVP:PPO
                             195 non-null float64
        Jitter:DDP
                             195 non-null float64
        MDVP:Shimmer
                             195 non-null float64
                             195 non-null float64
        MDVP:Shimmer(dB)
        Shimmer:APQ3
                             195 non-null float64
        Shimmer:APQ5
                             195 non-null float64
        MDVP:APO
                             195 non-null float64
        Shimmer:DDA
                             195 non-null float64
        NHR
                             195 non-null float64
                             195 non-null float64
        HNR
                             195 non-null int64
        status
        RPDE
                             195 non-null float64
        DFA
                             195 non-null float64
                             195 non-null float64
        spread1
        spread2
                             195 non-null float64
        D2
                             195 non-null float64
        PPE
                             195 non-null float64
        dtypes: float64(22), int64(1), object(1)
        memory usage: 36.6+ KB
In [6]:
        # csv version of correlation
        df.corr(method ='pearson')
        df.to csv('corr.csv')
```

```
localhost:8888/nbconvert/html/new_code (1).ipynb?download=false
```

```
In [7]: # final variables for modelling after removing correlation
        df_1 =df[['MDVP:Fhi(Hz)','MDVP:Flo(Hz)','MDVP:Jitter(%)','NHR','DFA','spread1'
        ,'spread2','D2','PPE','status']]
        df 1.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 195 entries, 0 to 194
        Data columns (total 10 columns):
        MDVP:Fhi(Hz)
                          195 non-null float64
        MDVP:Flo(Hz)
                          195 non-null float64
        MDVP:Jitter(%)
                           195 non-null float64
                           195 non-null float64
        NHR
        DFA
                           195 non-null float64
        spread1
                           195 non-null float64
        spread2
                           195 non-null float64
                           195 non-null float64
        D2
        PPE
                           195 non-null float64
        status
                           195 non-null int64
        dtypes: float64(9), int64(1)
        memory usage: 15.3 KB
        # checking if there is a null value in the dataset
In [8]:
        df 1.isnull().sum()
Out[8]: MDVP:Fhi(Hz)
        MDVP:Flo(Hz)
                           0
        MDVP:Jitter(%)
                           0
        NHR
                           0
        DFA
                           0
        spread1
                           0
        spread2
                           0
        D2
                           0
        PPE
                           0
        status
                           0
        dtype: int64
```

```
In [9]: # print no of 0s and 1s in the dependant variable
    print(df_1[df_1.status==0])
    print(df_1[df_1.status==1])

# to check the unique values in a df
#print(df_1['status'].unique())
```

,	MDVP:Fhi(Hz) MDVP	:Flo(Hz)	MDVP:Jitter(%)	NHR	DFA	spread1
\ 30	206	906	102 055	0.00289	0.00339	0 741267	-7.348300
31	206. 209.		192.055 192.091	0.00241	0.00339		-7.546300
32	215.		193.104	0.00241	0.00107		-7.062387
33	211.		197.079	0.00212	0.00113		-7.695734
34	211.		196.160	0.00138	0.00072		-7.964984
35	210.		195.708	0.00178	0.00135		-7.777685
42	247.		225.227	0.00198	0.00133		-7.310550
43	248.		232.483	0.00281	0.00675		-6.793547
44	250.		232.435	0.00210	0.00454		-7.057869
45	255.		227.911	0.00225	0.00476		-6.995820
46	262.		231.848	0.00235	0.00476		-7.156076
47	261.		182.786	0.00185	0.00432		-7.319510
48	128.		115.765	0.00524	0.00839		-6.439398
49	130.		114.676	0.00428	0.00462		-6.482096
50	135.		117.495	0.00431	0.00479		-6.650471
51	134.		112.773	0.00448	0.00474		-6.689151
52	138.		122.080	0.00436	0.00481		-7.072419
53	139.		118.604	0.00490	0.00484		-6.836811
60	237.		109.379	0.00282	0.00871		-7.040508
61	238.		98.664	0.00264	0.00301	0.686264	-7.293801
62	231.	345	205.495	0.00266	0.00340	0.694399	-6.966321
63	234.	619	223.634	0.00296	0.00351	0.683296	-7.245620
64	252.	221	221.156	0.00205	0.00300	0.673636	-7.496264
65	239.	541	113.201	0.00238	0.00420	0.681811	-7.314237
165	244.	663	102.137	0.00277	0.00620	0.628232	-6.816086
166	243.	709	229.256	0.00303	0.00533	0.626710	-7.018057
167	264.	919	237.303	0.00339	0.00910	0.628058	-7.517934
168	217.	627	90.794	0.00803	0.01337	0.725216	-5.736781
169	245.	135	219.783	0.00517	0.00965	0.646167	-7.169701
170	272.	210	239.170	0.00451	0.01049	0.646818	-7.304500
171	133.	374	105.715	0.00355	0.00435	0.756700	-6.323531
172	113.		100.139	0.00356	0.00430		-6.085567
173	116.	443	96.913	0.00349	0.00478	0.766700	-5.943501
174	144.		99.923	0.00353	0.00590		-6.012559
175	123.		108.634	0.00332	0.00401		-5.966779
176	129.		108.970	0.00346	0.00415		-6.016891
183	123.		106.656	0.00417	0.00955		-5.619070
184	217.		99.503	0.00531	0.01179		-5.198864
185	177.		96.983	0.00314	0.00737		-5.592584
186	592.		86.228	0.00496	0.01397		-6.431119
187	581.		94.246	0.00267	0.00680		-6.359018
188	119.		86.647	0.00327	0.00703		-6.710219
189	262.		78.228	0.00694	0.04441		-6.934474
190	230.978		94.261	0.00459	0.02764		-6.538586
191	253.017		89.488	0.00564	0.01810		-6.195325
192	240.005		74.287	0.01360	0.10715		-6.787197
193	396.		74.904	0.00740	0.07223		-6.744577
194	260.	2//	77.973	0.00567	0.04398	0.664357	-5.724056
	spread2	D2	PPE				
30	0.177551	1.743867	0.085569				
31	0.173319	2.103106	0.068501				
32	0.175181	1.512275	0.096320				
33	0.178540	1.544609	0.056141				
34	0.163519	1.423287	0.044539	0			

```
35
     0.170183
                2.447064
                           0.057610
                                            0
42
     0.098648
                2.416838
                           0.095032
                                            0
43
     0.158266
                2.256699
                           0.117399
                                            0
                                            0
44
     0.091608
                2.330716
                           0.091470
45
     0.102083
                2.365800
                           0.102706
                                            0
46
                2.392122
                                            0
     0.127642
                           0.097336
47
     0.200873
                2.028612
                           0.086398
                                            0
                                            0
48
     0.266392
                2.079922
                           0.133867
49
     0.264967
                2.054419
                           0.128872
                                            0
50
     0.254498
                1.840198
                           0.103561
                                            0
                2.431854
51
     0.291954
                           0.105993
                                            0
52
     0.220434
                1.972297
                           0.119308
                                            0
                2.223719
                           0.147491
53
     0.269866
                                            0
                                            0
60
     0.066994
                2.460791
                           0.101516
61
     0.086372
                2.321560
                           0.098555
                                            0
                                            0
62
     0.095882
                2.278687
                           0.103224
63
     0.018689
                2.498224
                                            0
                           0.093534
64
     0.056844
                                            0
                2.003032
                           0.073581
65
     0.006274
                2.118596
                                            0
                           0.091546
                                            0
165
     0.172270
                2.235197
                           0.119652
166
     0.176316
                1.852402
                           0.091604
                                            0
167
     0.160414
                1.881767
                           0.075587
                                            0
                                            0
168
     0.164529
                2.882450
                           0.202879
169
     0.073298
                2.266432
                                            0
                           0.100881
170
     0.171088
                2.095237
                           0.096220
                                            0
                2.193412
                                            0
171
     0.218885
                           0.160376
172
     0.192375
                1.889002
                           0.174152
                                            0
173
     0.192150
                                            0
                1.852542
                           0.179677
                                            0
174
     0.229298
                1.872946
                           0.163118
175
     0.197938
                                            0
                1.974857
                           0.184067
176
     0.109256
                2.004719
                           0.174429
                                            0
183
     0.191576
                2.027228
                           0.215724
                                            0
184
     0.206768
                2.120412
                           0.252404
                                            0
185
                                            0
     0.133917
                2.058658
                           0.214346
186
                                            0
     0.153310
                2.161936
                           0.120605
187
                                            0
     0.116636
                2.152083
                           0.138868
                                            0
188
     0.149694
                1.913990
                           0.121777
189
     0.159890
                                            0
                2.316346
                           0.112838
190
     0.121952
                2.657476
                           0.133050
                                            0
191
                                            0
     0.129303
                2.784312
                           0.168895
192
                                            0
     0.158453
                2.679772
                           0.131728
193
     0.207454
                2.138608
                           0.123306
                                            0
194
     0.190667
                2.555477
                           0.148569
                                            0
     MDVP:Fhi(Hz)
                    MDVP:Flo(Hz)
                                   MDVP:Jitter(%)
                                                          NHR
                                                                     DFA
                                                                            spread1
\
0
                           74.997
                                            0.00784
                                                     0.02211
                                                               0.815285 -4.813031
           157.302
1
           148.650
                          113.819
                                            0.00968
                                                     0.01929
                                                               0.819521 -4.075192
                          111.555
2
                                                     0.01309
                                                               0.825288 -4.443179
           131.111
                                            0.01050
3
           137.871
                          111.366
                                            0.00997
                                                     0.01353
                                                               0.819235 -4.117501
4
           141.781
                                            0.01284
                                                     0.01767
                                                               0.823484 -3.747787
                          110.655
5
           131.162
                          113.787
                                            0.00968
                                                     0.01222
                                                               0.825069 -4.242867
6
           137.244
                          114.820
                                            0.00333
                                                     0.00607
                                                               0.764112 -5.634322
7
                                                     0.00344
           113.840
                          104.315
                                            0.00290
                                                               0.763262 -6.167603
8
                           91.754
                                            0.00551
                                                     0.01070
                                                               0.773587 -5.498678
           132.068
9
           120.103
                           91.226
                                            0.00532
                                                     0.01022
                                                               0.798463 -5.011879
10
           112.240
                           84.072
                                            0.00505
                                                     0.01166
                                                               0.776156 -5.249770
11
           115.871
                           86.292
                                            0.00540
                                                     0.01141
                                                               0.792520 -4.960234
```

12	159.	966	131.276	0.00293	0.00581	0 616816	-6.547148
13	179.		76.556	0.00390	0.00301		-5.660217
14	163.		75.836	0.00294	0.00609		-6.105098
15	217.		83.159	0.00369	0.00839		-5.340115
16	349.		82.764	0.00544	0.01859		-5.440040
17	232.		75.603	0.00718	0.02919	0.605417	-2.931070
18	175.	829	68.623	0.00742	0.03160	0.719467	-3.949079
19	189.	398	142.822	0.00768	0.03365	0.686080	-4.554466
20	165.	738	65.782	0.00840	0.03871	0.704087	-4.095442
21	172.	860	78.128	0.00480	0.01849	0.698951	-5.186960
22	193.	221	79.068	0.00442	0.01280	0.679834	-4.330956
23	192.		86.180	0.00476	0.01840		-5.248776
24	200.		76.779	0.00742	0.01778		-5.557447
25	206.		77.968	0.00633	0.02887		-5.571843
26	208.		75.501	0.00455	0.01095		-6.183590
27	208.		81.737	0.00496	0.01328		-6.271690
28	227.		80.055	0.00310	0.00677		-7.120925
29	198.	346	77.630	0.00502	0.01170	0./23/9/	-6.635729
111	252	702	01 003	0 00757	0.04220		 F 410226
141	253.		91.802	0.00757	0.04238		-5.410336
142	219.		148.691	0.00376	0.01728		-5.585259
143	231.		86.232	0.00370	0.02010		-5.898673
144	241.		164.168	0.00254	0.01049		-6.132663
145	263.		87.638	0.00352	0.01493	0.574282	-5.456811
146	191.	759	151.451	0.01568	0.07530	0.793509	-3.297668
147	216.	814	161.340	0.01466	0.06057	0.768974	-4.276605
148	216.	302	165.982	0.01719	0.08069	0.764036	-3.377325
149	565.	740	177.258	0.01627	0.07889	0.775708	-4.892495
150	211.	961	149.442	0.01872	0.10952	0.762726	-4.484303
151	224.	429	168.793	0.03107	0.21713	0.768320	-2.434031
152	233.		174.478	0.02714	0.16265		-2.839756
153	139.		98.250	0.00684	0.04179		-4.865194
154	128.		88.833	0.00692	0.04611		-4.239028
155	127.		95.654	0.00647	0.02631		-3.583722
156	142.		94.794	0.00727	0.02031		-5.435100
157	134.		100.757	0.01813	0.10748		-3.444478
158	154.		97.543	0.00975	0.03828		-5.070096
159	138.		112.173	0.00605	0.02663		-5.498456
160	124.		77.022	0.00581	0.02073		-5.185987
161	135.		107.802	0.00619	0.02810		-5.283009
162	126.		91.121	0.00651	0.02707		-5.529833
163	131.	669	97.527	0.00519	0.01435		-5.617124
164	142.	830	85.902	0.00907	0.03882	0.674562	-2.929379
177	190.	204	129.859	0.00314	0.00570	0.745957	-6.486822
178	158.	359	138.990	0.00309	0.00488	0.762508	-6.311987
179	155.	982	135.041	0.00392	0.00540	0.778349	-5.711205
180	163.		144.736	0.00396	0.00611		-6.261446
181	161.078		141.998	0.00397	0.00639		-5.704053
182	163.		144.786	0.00336	0.00595		-6.277170
		,	,	0,0000	0.00555	00.0.20	0,1,1,0
	spread2	D2	PPE	status			
0	0.266482	2.301442	0.284654	1			
1	0.335590	2.486855	0.368674	1			
2	0.311173	2.342259	0.332634	1			
3	0.334147	2.405554	0.368975	1			
4	0.234513	2.332180	0.410335	1			
5	0.299111	2.332180	0.357775	1			
ر	0.233111	2.10/300	0.33///3	1			

0.257682 6 1.854785 0.211756 1 7 0.183721 2.064693 0.163755 1 1 8 0.327769 2.322511 0.231571 1 9 0.325996 2.432792 0.271362 10 0.391002 2.407313 0.249740 1 11 2.642476 0.275931 1 0.363566 0.138512 12 0.152813 2.041277 1 13 0.254989 2.519422 1 0.199889 14 0.203653 2.125618 0.170100 1 15 1 0.210185 2.205546 0.234589 16 0.239764 2.264501 0.218164 1 1 17 0.434326 3.007463 0.430788 18 0.357870 3.109010 0.377429 1 19 1 0.340176 2.856676 0.322111 20 0.262564 2.739710 0.365391 1 21 1 0.237622 2.557536 0.259765 22 0.262384 2.916777 0.285695 1 23 0.210279 2.547508 0.253556 1 24 0.220890 2.692176 0.215961 1 25 1 0.236853 2.846369 0.219514 26 0.226278 2.589702 0.147403 1 27 0.196102 2.314209 0.162999 1 28 0.279789 1 2.241742 0.108514 29 0.209866 1.957961 0.135242 1 . . 141 0.288917 2.665133 0.231723 1 142 0.310746 2.465528 0.209863 1 143 1 0.213353 2.470746 0.189032 144 1 0.220617 2.576563 0.159777 145 1 0.345238 2.840556 0.232861 146 0.414758 3.413649 0.457533 1 147 0.355736 3.142364 0.336085 1 148 0.335357 3.274865 0.418646 1 149 1 0.262281 2.910213 0.270173 150 0.340256 2.958815 1 0.301487 151 0.450493 3.079221 1 0.527367 152 0.356224 3.184027 0.454721 1 153 0.246404 2.013530 1 0.168581 154 0.175691 2.451130 0.247455 1 155 0.207914 2.439597 0.206256 1 156 0.230532 2.699645 1 0.220546 157 0.303214 2.964568 0.261305 1 158 0.280091 2.892300 0.249703 1 159 0.234196 2.103014 0.216638 1 160 0.259229 2.151121 0.244948 1 161 0.226528 2.442906 1 0.238281 162 0.242750 2.408689 0.220520 1 163 0.184896 1.871871 1 0.212386 164 0.396746 2.560422 0.367233 1 177 0.197919 2.449763 0.132703 1 1 178 0.182459 2.251553 0.160306 179 0.240875 2.845109 0.192730 1 180 0.183218 2.264226 1 0.144105 181 0.216204 2.679185 0.197710 1 0.109397 182 2.209021 0.156368 1

[147 rows x 10 columns]

```
In [10]: #splitting training and testing data
    # stratify = y will maintain the ratio of 0s and 1s as population
    y= df_1.status
    x=df_1.drop(['status'],axis=1)
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size =0.3,stratify=y)
    print(x_train.shape)
    print(y_train.shape)
    print(y_train.shape)
    print(y_test.shape)

    (136, 9)
    (136,)
    (59, 9)
    (59,)
```

In [11]: # building the xgboost model with training data and testing it on testing data from xgboost import XGBClassifier model = XGBClassifier() import xgboost as xgb model.fit(x_train, y_train) pred1 = model.predict (x_test) # Model based feature importance plt.show() xgb.plot_importance(model)

[20:14:21] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1. 3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation me tric used with the objective 'binary:logistic' was changed from 'error' to 'l ogloss'. Explicitly set eval_metric if you'd like to restore the old behavio r.

C:\Users\vatsa\Anaconda3\lib\site-packages\xgboost\sklearn.py:888: UserWarnin g: The use of label encoder in XGBClassifier is deprecated and will be remove d in a future release. To remove this warning, do the following: 1) Pass opti on use_label_encoder=False when constructing XGBClassifier object; and 2) Enc ode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

warnings.warn(label_encoder_deprecation_msg, UserWarning)

Out[11]: <matplotlib.axes. subplots.AxesSubplot at 0x1dd6beb15f8>


```
In [12]: # Plotting the Auc curve and best threshold
    yhat = model.predict_proba(x_test)[:,1]
    fpr,tpr,thresholds =roc_curve(y_test,yhat)
    gmeans =sqrt(tpr* (1-fpr))
    ix=argmax(gmeans)
    print('Best threshold=%f ,G-Mean =%.3f' % (thresholds[ix],gmeans[ix]))
    pyplot.plot([0,1],[0,1],linestyle ='--',label ='No Skill')
    pyplot.plot(fpr,tpr,marker='.',label='XgBoost')
    pyplot.scatter(fpr[ix],tpr[ix],marker='o',color='black',label='Best')
    pyplot.xlabel('False Postive Rate')
    pyplot.ylabel('True Positive Rate')
    pyplot.legend()
    pyplot.show()
```

Best threshold=0.521453 ,G-Mean =0.955


```
In [13]: # based on confusion matrix, getting the accuracy, specificity, sensitivity
  #default threshold is 0.5
  from sklearn.metrics import confusion_matrix
  cm1 =confusion_matrix(y_test,pred1)
  print(cm1)
  total =sum(sum(cm1))

accuracy = (cm1[0,0]+cm1[1,1])/total
  print('Accuracy:',accuracy)

specificity = cm1[0,0]/(cm1[0,0]+cm1[0,1])
  print('specificity:',specificity)

sensitivity = cm1[1,1]/(cm1[1,0]+cm1[1,1])
  print('sensitivity:',sensitivity)
```

[[14 1]

```
In [14]: #XGBoost hyper-parameter tuning
         #def hyperParameterTuning(X train, y train):
              param tuning = {
                   'learning rate': [0.01, 0.1],
                   'max_depth': [3, 5, 7, 10],
                   'min_child_weight': [1, 3, 5],
                  'subsample': [0.5, 0.7],
               # 'colsample bytree': [0.5, 0.7],
                # 'n_estimators' : [100, 200, 500],
                 #'objective': ['reg:squarederror']
             #}
             #xgb_model = XGBClassifier()
             #scoring = {'AUC':'roc_auc', 'Accuracy':make_scorer(accuracy_score)}
             #kfold = KFold(n splits=10, random state=42)
             #gsearch = GridSearchCV(estimator = xqb model,
                                      param_grid = param_tuning,
                                      scoring =scoring,
                                      cv = kfold.
                                      refit='AUC',
                                      n_{jobs} = -1,
                                      verbose = 1)
              gsearch.fit(x_train,y_train)
            # return gsearch.best params
         #hyperParameterTuning(x_train, y_train)
```

```
In [15]: from sklearn.svm import SVC
    svclassifier = SVC(kernel='linear',probability=True)
    #linear
    #poly, degree =3
    #rbf
    #linear is performing better, but the specificity is very low. so not choosin
    g this algorithmmmmodel
    model=svclassifier.fit(x_train, y_train)
```

```
In [16]: y_pred = svclassifier.predict(x_test)
```

accuracy macro avg

weighted avg

```
In [17]:
         from sklearn.metrics import classification report, confusion matrix
          print(confusion_matrix(y_test,y_pred))
          print(classification_report(y_test,y_pred))
         [[10 5]
          [ 3 41]]
                                     recall
                        precision
                                             f1-score
                                                         support
                             0.77
                                       0.67
                     0
                                                  0.71
                                                              15
                     1
                             0.89
                                       0.93
                                                  0.91
                                                              44
```

0.80

0.86

0.86

0.81

0.86

59

59

59

```
In [18]: # Plotting the Auc curve and best threshold
   yhat = model.predict_proba(x_test)[:,1]
   fpr,tpr,thresholds =roc_curve(y_test,yhat)
   gmeans =sqrt(tpr* (1-fpr))
   ix=argmax(gmeans)
   print('Best threshold=%f ,G-Mean =%.3f' % (thresholds[ix],gmeans[ix]))
   pyplot.plot([0,1],[0,1],linestyle ='--',label ='No Skill')
   pyplot.plot(fpr,tpr,marker='.',label='XgBoost')
   pyplot.scatter(fpr[ix],tpr[ix],marker='o',color='black',label='Best')
   pyplot.xlabel('False Postive Rate')
   pyplot.ylabel('True Positive Rate')
   pyplot.legend()
   pyplot.show()
```

Best threshold=0.719299 ,G-Mean =0.862

0.83

0.86


```
In [19]: | # based on confusion matrix, getting the accuracy, specificity, sensitivity
         #default threshold is 0.5
         from sklearn.metrics import confusion matrix
         cm1 =confusion matrix(y test,y pred)
         total =sum(sum(cm1))
         accuracy = (cm1[0,0]+cm1[1,1])/total
         print('Accuracy :',accuracy)
         specificity = cm1[0,0]/(cm1[0,0]+cm1[0,1])
         print('specificity :',specificity)
         sensitivity = cm1[1,1]/(cm1[1,0]+cm1[1,1])
         print('sensitivity :',sensitivity)
         Accuracy: 0.864406779661017
         sensitivity: 0.9318181818181818
In [20]:
         from sklearn.ensemble import RandomForestClassifier
         model 2=RandomForestClassifier(n estimators=100)
         model 2.fit(x train,y train)
         pred 2=model 2.predict(x test)
In [21]: from sklearn.metrics import classification report, confusion matrix
         print(confusion_matrix(y_test,pred_2))
         print(classification_report(y_test,pred_2))
         [[13 2]
          [ 2 42]]
                       precision
                                   recall f1-score
                                                      support
                            0.87
                                     0.87
                    0
                                               0.87
                                                           15
                    1
                            0.95
                                     0.95
                                               0.95
                                                           44
                                                           59
             accuracy
                                               0.93
                            0.91
                                     0.91
                                               0.91
                                                           59
            macro avg
                            0.93
                                     0.93
                                               0.93
                                                           59
         weighted avg
```

```
In [22]: # Plotting the Auc curve and best threshold
    yhat = model_2.predict_proba(x_test)[:,1]
    fpr,tpr,thresholds =roc_curve(y_test,yhat)
    gmeans =sqrt(tpr* (1-fpr))
    ix=argmax(gmeans)
    print('Best threshold=%f ,G-Mean =%.3f' % (thresholds[ix],gmeans[ix]))
    pyplot.plot([0,1],[0,1],linestyle ='--',label ='No Skill')
    pyplot.plot(fpr,tpr,marker='.',label='XgBoost')
    pyplot.scatter(fpr[ix],tpr[ix],marker='o',color='black',label='Best')
    pyplot.xlabel('False Postive Rate')
    pyplot.ylabel('True Positive Rate')
    pyplot.legend()
    pyplot.show()
```

Best threshold=0.510000 ,G-Mean =0.910

In [23]: # based on confusion matrix, getting the accuracy, specificity, sensitivity
#default threshold is 0.5
from sklearn.metrics import confusion_matrix
cm1 =confusion_matrix(y_test,pred_2)
total =sum(sum(cm1))

accuracy = (cm1[0,0]+cm1[1,1])/total
print('Accuracy :',accuracy)

specificity = cm1[0,0]/(cm1[0,0]+cm1[0,1])
print('specificity :',specificity)

sensitivity = cm1[1,1]/(cm1[1,0]+cm1[1,1])
print('sensitivity :',sensitivity)

Accuracy: 0.9322033898305084 specificity: 0.866666666666667 sensitivity: 0.9545454545454546

```
In [24]: # Method 1 - Voting
from sklearn.ensemble import VotingClassifier
model = VotingClassifier(estimators=[('xg', model), ('rf', model_2)], voting=
    'hard')
model.fit(x_train,y_train)
model.score(x_test,y_test)
```

Out[24]: 0.9152542372881356