Name:UdayKumar Gadikar PRN: 2019BTECS00090

Name: Koustubh Tatikondawar PRN: 2019BTECS00091

Class: TYCSE Batch: T8

SET Lab Assignment-2

Page No. I

Q. 1. Node

1. Original author: Ryan Dahl

2. Developers: OpenJs Foundation

3. Initial release: 27 May 2009

4. Stable release: 17.4.0

5. Preview release: 16.14.0

- 6. Repository (with cloud support): https://github.com/nodejs/node
- 7. Written in (Languages): C, C++, JavaScript
- **8. Operating System support:** <u>z/OS</u>, Linux, macOS, Microsoft Windows, SmartOS, FreeBSD, OpenBSD, IBM AIX
- **9. Platform, portability:** All Platforms and portable
- **10.** Available in (Total languages): Javascript only
- 11. List of languages supported: Javascript only
- 12. Type (Programming tool, integrated development environment etc.): Javascript runtime environment
- 13. Website: https://nodejs.org/
- 14. Features:
 - A. Cross-platform compatibility.
 - B. The convenience of using one coding language.
 - C. V8 Engine.
 - D. Facilitates quick deployment and microservice development.
 - E. Scalable.
 - F. Commendable data processing ability.
 - G. Active open-source community.

- H. Additional functionality of NPM.
- **15. Size (in MB, GB etc.):** 436MB
- **16. Privacy and Security:** The basis of Node is javascript so it is secure as compared to others but also it is susceptible to security exposures.
- 17. Type of software (Open source/License): Open source
- 18. If License- Provide details:

https://github.com/nodejs/node/blob/master/LICENSE

- **19.** Latest version: 17.5.0
- 20. Cloud support (Yes/No): Yes
- 21. Applicability: Used in designing backend applications
- 22. Drawbacks:
 - I. Reduces performance when handling Heavy Computing Tasks.
 - II. Node.js invites a lot of code changes due to Unstable API.
 - III. Node.js Asynchronous Programming Model makes it difficult to maintain code.
 - IV. Choose Wisely Lack of Library Support can Endanger your Code.

Implement linear regression problem using Google colab (Perform preprocessing, training and testing):

DataSet Used:

https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

Implementation:

[] from google.colab import drive drive.mount('/content/drive')

/ [5] import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split

[3] dataset=pd.read_csv("/content/drive/MyDrive/hour.csv")

dataset.head(10)

₽

	instant	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	cnt
0	1	2011-01-01	1	0	1	0	0	6	0	1	0.24	0.2879	0.81	0.0000	3	13	16
1	2	2011-01-01	1	0	1	1	0	6	0	1	0.22	0.2727	0.80	0.0000	8	32	40
2	3	2011-01-01	1	0	1	2	0	6	0	1	0.22	0.2727	0.80	0.0000	5	27	32
3	4	2011-01-01	1	0	1	3	0	6	0	1	0.24	0.2879	0.75	0.0000	3	10	13
4	5	2011-01-01	1	0	1	4	0	6	0	1	0.24	0.2879	0.75	0.0000	0	1	1
5	6	2011-01-01	1	0	1	5	0	6	0	2	0.24	0.2576	0.75	0.0896	0	1	1
6	7	2011-01-01	1	0	1	6	0	6	0	1	0.22	0.2727	0.80	0.0000	2	0	2
7	8	2011-01-01	1	0	1	7	0	6	0	1	0.20	0.2576	0.86	0.0000	1	2	3
8	9	2011-01-01	1	0	1	8	0	6	0	1	0.24	0.2879	0.75	0.0000	1	7	8

print('Defining Variables')
 X = dataset['atemp']
 y = dataset['registered']

Defining Variables

[8] plt.scatter(X,y,color='green')

```
<matplotlib.collections.PathCollection at 0x7fe74f8e22d0>
```


print('Splitting into hour')
X_hour,X_test,y_hour,y_test=train_test_split(X,y,random_state=0)

Splitting into hour

[10] plt.scatter(X_hour,y_hour,color='green')

```
[16] print('Predicting using trained model X_hour')
y_pred=lr.predict(X_test.values.reshape(-1,1))
print(y_pred)
```

Predicting using trained model X_hour [169.41927848 142.95631446 142.95631446 ... 63.5674224 134.13532646 116.49335044]

```
[17] plt.scatter(X_hour,y_hour,color='green')
    plt.scatter(X_test,y_pred,color='red')
    plt.xticks()
    plt.yticks()
    plt.show()
```



```
[19] print('finding intercept and coeff')
    print('Intercept',lr.intercept_)
    print('Coefficient',lr.coef_)
    print(lr.coef_,'x +',lr.intercept_)
```

finding intercept and coeff Intercept 15.037432279963298 Coefficient [291.12171639] [291.12171639] x + 15.037432279963298