Solution Manual to *Linear Algebra Done Right*, 4th Edition by Sheldon Axler

Chenyu Tang

CONTENTS

Contents		3	
1	Vec	tor Spaces	5
	1	\mathbb{R}^n and \mathbb{C}^n	5
	2	Difinition of Vector Space	5
	3	Subspaces	7

4 CONTENTS

CHAPTER 1

VECTOR SPACES

1 \mathbb{R}^n and \mathbb{C}^n

We skip this section.

2 Difinition of Vector Space

Exercise 2.1: (1B-1)

Prove that -(-v) = v for every $v \in V$.

Solution:

For $v \in V$, we have

$$-(-v) = -(-v) + (-v) + v = v. (1.1)$$

Thus we know the additive inverse of the additive inverse of v is itself.

Exercise 2.2: (1B-2)

Suppose $a \in \mathbf{F}$, $v \in V$, and av = 0. Prove that a = 0 or v = 0.

Solution:

If a = 0, then we are done.

If $a \neq 0$, then

$$v = (\frac{1}{a} \cdot a)v = \frac{1}{a}(av) = 0.$$
 (1.2)

Exercise 2.3: (1B-3)

Suppose $v, w \in V$. Explain why there exists a unique $x \in V$ such that v + 3x = w.

6 Vector Spaces

Solution:

Let
$$x = \frac{w-v}{3}$$
, then
$$v + 3x = w. \tag{1.3}$$

This show existence. Now we show the uniqueness. Suppose there is an x' that satisfies v + 3x' = w, then

$$3(x - x') = 3x - 3x' = (w - v) - (w - v) = 0.$$
(1.4)

By Exercise 2.2, we must have x - x' = 0, thus x = x'.

Exercise 2.4: (1B-4)

The empty set is not a vector space. The empty set fails to satisfy only one of the requirements listed in the definition of a vector space (1.20). Which one?

Solution:

Additive identity. In an empty set \emptyset , there does not exist an element 0 that v + 0 = v for all $v \in \emptyset$.

Exercise 2.4 shows that the additive identity condition can be replaced with the condition that the set is not empty(because then taking $u \in U$ and multiplying it by 0 would imply that $0 \in U$).

Exercise 2.5: (1B-6)

Let ∞ and $-\infty$ denote two distinct objects, neither of which is in **R**. Define an addition and scalar multiplication on $\mathbf{R} \cup \{\infty, -\infty\}$ as you could guess from the notation. Specifically, the sum and product of two real numbers is as usual, and for $t \in \mathbf{R}$ define

$$t\infty = \begin{cases} -\infty & ift < 0, \\ 0 & ift = 0, t(-\infty) = \begin{cases} \infty & ift < 0, \\ 0 & ift = 0, \\ -\infty & ift > 0, \end{cases}$$

and

$$t + \infty = \infty + t = \infty + \infty = \infty,$$

$$t + (-\infty) = (-\infty) + t = (-\infty) + (-\infty) = -\infty,$$

$$\infty + (-\infty) = (-\infty) + \infty = 0.$$

With these operations of addition and scalar multiplication, is $\mathbf{R} \cup \{\infty, -\infty\}$ a vector space over \mathbf{R} ? Explain.

Solution:

We can notice that

$$\infty = (2 + (-1))\infty = 2\infty + (-1)\infty = \infty + (-\infty) = 0.$$
 (1.5)

For $\infty \neq 0$, the set doesn't follow the distributive property. Thus $\mathbf{R} \cup \{\infty, -\infty\}$ is not a vector space.

Exercise 2.6: (1B-8)

Suppose V is a real vector space.

- The complexification of V, denoted by $V_{\mathbf{C}}$, equals $V \times V$. An element of $V_{\mathbf{C}}$ is an ordered pair (u, v), where $u, v \in V$, but we write this as u + iv.
- Addition on VC is defined by

$$(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2)$$

for all $u_1, v_1, u_2, v_2 \in V$.

• Complex scalar multiplication on $V_{\mathbf{C}}$ is defined by

$$(a+bi)(u+iv) = (au-bv) + i(av+bu)$$

for all $a, b \in \mathbf{R}$ and all $u, v \in V$.

Prove that with the definitions of addition and scalar multiplication as above, $V_{\mathbf{C}}$ is a complex vector space.

Solution:

Just verify the six properties of vector spaces. For example:

commutativity

$$(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2)$$

$$= (u_2 + u_1) + i(v_2 + v_1)$$

$$= (u_2 + iv_2) + (u_1 + iv_1)$$
(1.6)

for all $u_1, u_2, v_1, v_2 \in V$. The remaining five properties are the same. Thus we have the complex vector space $V_{\mathbf{C}}$.

3 Subspaces

Exercise 3.1: (1C-5)

Is \mathbb{R}^2 a subspace of the complex vector space \mathbb{C}^2 ?

8 Vector Spaces

Solution:

Notice that subspaces of \mathbb{C}^2 are closed under scalar multiplication in \mathbb{C} , then

$$i(1,1) = (i,i) \notin \mathbf{R}^2.$$

Thus \mathbb{R}^2 is not a subspace of \mathbb{C}^2 .