Računarske mreže 1 7. deo: Mrežni sloj

Predavač:

Prof. dr Slavko Gajin, slavko.gajin@rcub.bg.ac.rs

Asistenti:

Stefan Tubić, stefan.tubic@etf.bg.ac.rs Marko Mićović, micko@etf.bg.ac.rs Kristijan Žiza, ziza@etf.bg.ac.rs

http://elearning.rcub.bg.ac.rs

Šta je odredišna MAC adresa pri slanju okvira od PC-1 do PC-2?

Prenos okvira u LAN mrežama

- Svičevi Layer 2 uređaji
 - Gledaju okvire na L2 nivou, ali ih ne menjaju
 - Portovi sviča imaju MAC adrese, ali se one ne koriste u zaglavlju okvira
 - Okvir je nepromenljiv unutar LAN mreže
 - LAN 1: A => D

Prenos okvira između LAN mreža

- Ruteri Layer 3 uređaji
 - Povezuju LAN mreže (predstavljaju granicu LAN mreža)
 - Portovi rutera imaju MAC adrese koriste se u zaglavlju okvira
 - Gledaju okvire na L3 nivou, ali menjaju adrese na L2 nivou
 - LAN 1: A => D
 - LAN 2: **E** => **H** (novi okvir)

Prenos paketa na većim rastojanjima

- Komunikacija između proizvoljnog broja rutera
- Između rutera
 - Različite L2 tehnologije i uređaji
 - Različiti fizički medijumi optika, UTP, wireless...

Mrežni sloj (L3)

- Proizvoljna topologija mreže povezanih rutera
- Adresiranje jedinstveno na celoj mreži (globalno)
- Rutiranje prosleđivanje poruka od izvorišta do odredišta
- Različite vrste protokola mrežnog sloja: IPX, AppleTalk...
- ... ali danas se po pravilu koristi samo Internet protokol IP!

Internet Protocol - IP

- RFC 791 INTERNET PROTOCOL, 1981
- Karaketeristike:
 - Connectionless
 - Nema uspostavljanja veze sa kraja na kraj
 - Pošiljalac ne zna:
 - Da li je primalac povezan mrežu, da li postoji
 - Da li je paket stigao do primaoca
 - Da li je paket oštećen, da li primalac može da ga pročita
 - Primalac ne zna:
 - Kada će paket da pristigne

Internet Protocol - IP

Karaketeristike:

- Media Independent
 - Ne zavisi od fizičkog medija i protokola na prvom i drugom nivou
 - IP se enkapsulira u pojedinačne protokole L2 nivoa:
 - Ethernet, Wireless, PPP, HDLC, Frame Relay...

Internet Protocol - IP

Karaketeristike:

- Best Effort (Unreliable)
 - Nema garancije da će paketi biti uspešno poslati
 - Neki paketi mogu da se izgube (npr. odbace od strane rutera)

Dozvoljava se proizvoljna topologija povezivanja

- Redundantne veze, višestruke putanje
- Balansiranje saobraćaja (Load Balancing)
- Ne garantuje se redosled isporuke paketa
 - Problem moguća promena redosleda paketa (reordering)
- Asimetrično rutiranje različite putanje u odlaznom i dolaznom smeru

IP paket

Enkapsulira poruke L4 nivoa – TCP,UDP

• IP zaglavlje (header)

1. b	ajt	2. bajt	3. k	oajt	4. bajt	
VERS	HLEN	Type of Service	Total Length			
	Identif	ication	Flags	Fra	gment Offset	
Time t	o Live	Protocol		Header C	Checksum	
		Source IF	P Address			
		Destination	IP Addre	ess		
		Options			Padding	
		Da	ıta			

IP zaglavlje

- VERS Verzija
 - IPv4 osnovna verzija, još uvek dominantna na Internetu
 - IPv6 "nova" verzija, nekompatibilna sa IPv4
- HLEN (Header Lenght) dužina zaglavlja
 - u "rečima" od po 4 bajta
- Total Lenght veličina paketa
 - ukupna veličina IP paketa u bajtovima, uključujući i zaglavlje
- Header Checksum kontrola grešaka u zaglavlju
 - "Prvi komplement sume reči od 16 bita celog zaglavlja"
- Protocol identifikacija protokola 4. nivoa
 - 1 ICMP
 - 6 TCP
 - 17 UDP
 - 89 OSPF

IP zaglavlje

TOS with

TOS with

DSCP

- Type of Service (ToS) tip servisa
 - Definisanje prioriteta paketa u odnosu na klasu saobraćaja kome pripadaju
 - Inicijalno "IP Precendece"
 - Prva 3 bita za prioritet paketa, ostali biti za način tretiranja,
 - Nije u potpunosti zaživelo
 - Modifikovano u "DSCP" (DiffServ Code Point)
 - 6 bita koja označavaju klasu saobraćaja i prioritete paketa

Options

 Za potrebe testiranja i budućeg unapređenja

Padding

 Proširivanje do pune reči od 32 bita

TTL - Time to Live

- Na mrežnom nivou su dozvoljene petlje u fizičkoj topologiji
 - Potencijalna opasnost od "logičkih" petlji po kojima bi paketi kružili
- TTL polje u zaglavlju
 - Dužine od 1 bajta
 - Smanjuje se za 1 u svakom ruteru na putu kroz mrežu
 - Ako TTL dostigne nulu, paket se odbacuje
- Ograničava se broj koraka paketa
 - Sprečava se eventualno beskonačno kruženje, koje može nastati usled grešaka u konfiguraciji

1. bajt		2. bajt	3. l	oajt	4. bajt
VERS	HLEN	Type of Service		Total I	Length
	Identif	ication	Flags	Fra	gment Offset
Time t	o Live	Protocol		Header C	Checksum
		Source IF	P Address		
		Destination	IP Addre	SS	
		Options			Padding
		Da	ita		

Fragmentacija IP paketa

- MTU (Maximum Transmition Unit) na L2 nivou
 - Ograničena veličinu L2 okvira
 - Šta kada je IP paket veći od MTU i ne može da stane u okvir?
 - Fragmentacija podela jednog IP paketa na više manjih IP paketa (fragmenata)

Identification

- Svaki IP paket ima jedinstveni ID od 16 bita
- Svi fragmenti imaju isti ID pripadaju istom originalnom IP paketu
- Flags (Control Bits)
 - Flag MF More Fragment
 - 1 nije poslednji fragment originalnog paketa
 - 0 poslednji fragment originalnog paketa
 - Flag DF Don't Fragment
 - 1 zabranjuje se fragmentacija
 - 0 dozvoljava se fragmentacija

Fragment Offset

- Relativna pozicija podataka u odnosu na podatke iz originalnog IP paketa
- U jedinicama od 8 bajta

1. b	ajt	2. bajt	3. l	oajt	4. bajt
VERS	HLEN	Type of Service		Total I	_ength
	Identif	ication	Flags	Fra	gment Offset
Time t	o Live	Protocol		Header C	Checksum
		Source IF	P Address		
		Destination	IP Addre	SS	
		Options			Padding
		Da	ita		
		·			

Fragmentacija IP paketa

- Proces fragmentacije
 - Ako je veličine IP paketa veća od MTU na L2 nivou
 - Niz bajtova podataka deli se na više delova koji su zajedno sa IP zaglavljem manji od MTU
 - Dužina svakog dela mora biti umnožak od 8 bajtova, osim poslednjeg koji sadrži ostatak

Offset = 187

MF = 1

1496 B

 H_3

MF = 0

Offset: 374

1008 B

- Svaki deo originalnih podataka se enkapsulira u posebne IP pakete
- Fragment Offset se postavlja na relativni pomeraj od početka originalnog niza podataka u jedinicama od 8 bajtova

H₁

MF = 1

Offset = 0

1496 B

- Setuje se MF bit za sve fragmente, osim za poslednji
- Header Length (HLEN), Packet Length i Checksum se preračunavaju
- Ostala polja se kopiraju iz originalnog zaglavlja, uključujući i ID
- Fregmentirani IP paket se može ponovo fragmentirati

Fragmentacija IP paketa

Reasembling

- Objedinjavanje podataka svih fragmenata u originalni niz podataka iz prvobitnog IP paketa
- Sprovodi se u odredištu kada pristigne IP paket koji predstavlja fragment

Proces reasemblinga

- Alocira se bafer određene veličine
- Startuje se tajmer maksimalno vreme čekanja da pristignu svi fragmenti
 - Vreme može biti predefinisano, u zavisnosti od implementacije (npr. 60 sek)
 - Vreme se može prenositi u opcionim poljima IP zaglavlja
- Prikupljaju se svi IP fragmenti sa istim ID poljem i izdvajaju se pripadajući podaci
- Na osnovu polja Fragment Offset rekonstruiše se originalni niz podataka
- Poslednji fragment se prepoznaje po resetovanom MF flegu
- U slučaju da ne stignu svi fragmenti tokom trajanja tajmera, ili je oštećen bar jedan fragment, integralni podaci iz originalnog IP paketa se ne mogu rekonstruisati i odbacuju se u celini

Kako se prepoznaje da je IP paket fragmentiran?

Fragment offset je razliČit od nule

Don't Fragment fleg je razli**Č**it od nule

More Fragment fleg je različit od nule

Fragment offset i More Fragment fleg su razli**Č**iti od nule

Fragment offset,Don't Fragment fleg i More Fragment fleg su razli**č**iti od nule

IP adrese

- IP adrese identifikuju uređaje
- U zaglavlju paketa
 - Izvorišna i odredišna IP adresa
- Dužina IP adrese 4 bajta (32 bita)
 - Moguće adresiranje 232 ~ 4.3 milijarde uređaja

1. b	ajt	2. bajt	3. l	oajt	4. bajt	
VERS	HLEN	Type of Service		Total	Length	
	Identif	ication	Flags	Fra	gment Offset	
Time t	o Live	Protocol		Header (Checksum	
		Source IF	Address	3		
		Destination	IP Addre	ess		
		Options			Padding	
		Da	ıta			

IP adrese

- Označavanje
 - "Dotted Decimal" notacija dekadni brojevi razdvojeni tačkom
 - Primeri: 147.91.11.21, 192.168.0.11...
- IP adrese uređaja na istoj LAN mreži su grupisane u zajedničku mrežnu IP adresu
 - LAN mreža na L2 nivou se mapira u IP mrežu na L3 nivou

IP adrese

 Svi uređaji u jednoj mreži imaju isti "prefiks" koji označava mrežu

20

- IP adresa se sastoji iz dva dela:
 - Adrese mrežne "levi deo adrese", "mrežni deo"
 - Adresa uređaja u mreži "desni deo adrese", "host deo"
- Adresa mreže bitske nule u host delu
- Brodkast adresa bitske jedinice u host delu
- Adresa uređaja proizvoljne preostale vrednosti
 - Ukupno host adresa u mreži: 2ⁿ-2 (n broj bita u host delu)
 - Jedna adresa za interfejs rutera, koji takođe pripada toj mreži

IP adresni prostor

- Adrese podeljene u klase: A, B, C, D i E
- Klase su određene početnim bitima:
 - Klase A, B i C se dodeljuju korisnicima
 - Klasa D rezervisana za multikast
 - Klasa E rezervisana za eksperimentalne potrebe

1. bajt 2. bajt 3. bajt 4. bajt

Klasa A Network Host

Klasa B Network Host

Klasa C Network Host

- Classful adresiranje
 - mrežni deo je određen prema klasi kojoj pripada

Α	start	0	0	0	0	00000000	00000000	00000000	00000000
	end	127	255	255	255	0 1111111	11111111	11111111	11111111
В	start	128	0	0	0	10000000	00000000	00000000	00000000
	end	191	255	255	255	10 111111	11111111	11111111	11111111
С	start	192	0	0	0	11000000	00000000	00000000	00000000
	end	223	255	255	255	110 11111	11111111	11111111	11111111
D	start	224	0	0	0	11100000	00000000	00000000	00000000
	end	239	255	255	255	1110 1111	11111111	11111111	11111111
Е	start	240	0	0	0	11110000	00000000	00000000	00000000
	end	255	255	255	255	11111111	11111111	11111111	11111111

0	128	192	224	240	256
Α	В	С	D	Е	

Dodeljivanje adresa

- InterNIC Internet Network Information Center
 - Organizacija koja je prvobitno dodeljivala adrese
 - · Više ne postoji
- IANA Internet Assigned Numbers Authority
 - Nasledila InterNIC
 - Dodeljuje delove IP adresnog prostora prema regionima (kontinentima) za koje su zaduženi tzv. Regionalni Internet Registri (RIR)
- RIR registri su:
 - RIPE Réseaux IP Européens (Evropa)
 - ARIN American Registry for Internet Numbers (Severna Amerika)
 - APNIC Asia Pacific Network Informations Centre (Azija i Pacifik)
 - LACNIC Latin American and Caribbean IP Address Registry (Južna Amerika)
 - AfriNIC African RIR (Afrika)

Privatne adrese

- Klase A, B i C namenjene su za korisnike na Internetu
- Pojedini mrežni opsezi su rezervisani za posebnu namenu
- Privatne adrese izolovano korišćenje nezavisno od Interneta
 - 1 A klasa opseg **10.0.0.0 10.255.255.255**
 - 16 B klasa opseg **172.16.0.0 172.31.255.255**
 - 256 C klasa opseg **192.168.0.0 192.168.255.255**
- Privatne adrese ne smeju da budu vidljive na Internetu
 - Nisu jedinstvene
- Ostale rezervisane adrese
 - 1 A klasa opseg **0.0.0.0 0.255.255.255**
 - default ruta 0.0.0.0
 - 1 A klasa opseg **127.0.0.0 127.255.255.255**
 - Loopback adresa 127.0.0.1 lokalna predefinisana adresa na svakom uređaju

Subneting - Classless

- Classfull nesrazmerni adresni prostor za mreže i hostove
 - npr. u klasi A u host delu postoji preko 16 miliona adresa
- Subneting sabnetovanje
 - Deljenje na manje delove podmreže
 - Za identifikaciju podmreže koristi se deo bita za adresiranje hostova
 - Unosi se dodatni hijerarhijski nivo
- Host deo
 - Minimalni broj hostova u mreži je 2
 - Minimalni broj bita za hostove je 2 (2ⁿ-2, n=2)
 - 00 za adresiranje IP mreže
 - 11 za broadcast adresu u mreži
 - 01 i 10 za dva hosta
- Izjednačava se pojam "podmreža" i "mreža"
 - Nezavisno od klase Classless
 - Kako označiti granicu između mrežnog dela i host dela?

Maska

- Maska
 - Deli adresu na mrežni deo i host deo
 - 32 bita (4 bajta) sa vodećim jedinicama
- Notacija u dva oblika:
 - Dotted Decimal notacija
 - U formi IP adrese, npr. "255.255.255.0"
 - Prefix notacija
 - "/n" n je broj jedinica u masci, npr. "/24"
- IP adresa hosta bez maske
 - Jedinstvena IP adresa hosta
- IP adresa hosta sa maskom
 - Jedinstvena IP adresa hosta sa informacijom o mreži kojoj pripada
- Adresa mreže se dobija bitskom operacijom AND primenjenom na IP adresu i masku

Maska u Dotted Decimal notaciji

Konverzija između *Prefix* i *Dotted decima* notacije:

- Podeliti masku u oktete (bajtove)
- Subnet's Interesting Octet bajt od interesa
 - Poslednji bajt maske koji sadrži jedinice
- Konverzija poslednjeg bajta od interesa:
 - Binarno-decimalna konverzija
 - Vodeće jedinice se pretvaraju u eksponente dvojke
 - Nepraktično...
 - Magic Number razlika do 256
 - n broj pratećih nula
 - 2ⁿ veličina podmreže
 - 256- 2ⁿ dekadna vrednost bajta
- Primer: maska dužine 29 bita ("/29")
 - 8+8+5 jedinica i 3+8 preostalih nule
 - $11111000 = 2^7 + 2^6 + 2^5 + 2^4 + 2^3 = 248$
 - 3 nule magic number. 2³=8
 - 256-8=248
 - maska: 255.255.248.0

Dec	Binarno	Razlika do 256
0	00000000	-
128	10000000	128
192	11000000	64
224	11100000	32
240	11110000	16
248	11111000	8
252	11111100	4
254	11111110	2
255	11111111	-

Primer: maska na granici bajtova (8, 16, 24)

adresa i maska: 147.91.9.121/ 24

host adresa: 147.91.9.121

• maska: 255.255.25.0

adresa podmreže: 147.91.9.0

• opseg podmreže: 147.91.9.0 - 147.91.9.255

brodkast adresa: 147.91.9.255

prva host adresa: 147.91.9.1

poslednja host adresa: 147.91.9.254

Host	147	91	9	121	10010011	01011011	00001001	01111001
Mask	255	255	255	0	11111111	11111111	11111111	00000000
Subnet	147	91	9	0	10010011	01011011	00001001	00000000
first address	147	91	9	1	10010011	01011011	00001001	00000001
last address	147	91	9	254	10010011	01011011	00001001	11111110
broacast	147	91	9	255	10010011	01011011	00001001	11111111

Primer: maska unutar 4. bajta

adresa i maska: 147.91.11.178/ 25

host adresa: 147.91.11.178

• maska: 255.255.255.128

adresa podmreže: 147.91.11.128

• opseg podmreže: 147.91.11.128 - 147.91.11.255

brodkast adresa: 147.91.11.255

prva host adresa: 147.91.11.129

poslednja host adresa: 147.91.9.254

Host	147	91	11	178	10010011	01011011	00001011	1	0110010
Mask	255	255	255	128	11111111	11111111	11111111	1	0000000
Subnet	147	91	11	128	10010011	01011011	00001011	1	0000000
first address	147	91	11	129	10010011	01011011	00001011	1	0000001
last address	147	91	11	254	10010011	01011011	00001011	1	1111110
broacast	147	91	11	255	10010011	01011011	00001011	1	1111111

Primer: maska unutar 3. bajta

adresa i maska: 130.4.102.1/22

host adresa: 130.4.102.1

• maska: 255.255.252.0

adresa podmreže: 130.4.100.0

opseg podmreže: 130.4.100.0 - 130.4.103.254

brodkast adresa: 130.4.103.255

prva host adresa: 130.4.100.1

poslednja host adresa: 130.4.103.254

Host	130	4	102	1	10000010	00000100	011001 <mark>10</mark>	00000001
Mask	255	255	252	0	11111111	11111111	111111 <mark>00</mark>	00000000
Subnet	130	4	100	0	10000010	00000100	01100100	00000000
first address	130	4	100	1	10000010	00000100	011001 <mark>0</mark> 0	00000001
last address	130	4	103	254	10000010	00000100	011001 <mark>1</mark> 1	11111110
broacast	130	4	103	255	10000010	00000100	011001 <mark>1</mark> 1	11111111

- Alternativa bitskom računanju sagledavanje adresnog opsega
- Primer: adresa 130.4.102.1/22
 - Granica maske u 3. bajtu
 - Magic number: 4
 - Deo adresnog prostora sa maskom "/22" u trećem bajtu (multiplikatori magic number-a):
 - 0, 4, 8, 12, ... 96, **100**, 104, 108, ..., 248, 252
 - Host adresa pripada opsegu od 100 do 104 mreža 130.4.100.0/22
 - Prva raspoloživa host adresa:
 - 130.4.100.1
 - Brodkast adresa sve jedinice u host delu, poslednja adresa u mreži, za jedan manja od naredne mrežne adrese (130.4.104.0/22):
 - 130.4.103.255
 - Poslednja raspoloživa host adresa: za 1 manja od brodkast adrese

130.4.103.254

VLSM

- VLSM Variable Length Subnet Mask
 - Korišćenje maski različitih dužina u jednoj mreži
- Prednosti:
 - Efikasnije korišćenje adresnog prostora
 - Fleksibilnija preraspodela adresa
 - Skalabilan rast mreže i dodavanje novih adresa

Jedan segment – Jedna IP mreža

- Segment jedna IP mreža
 - LAN, VLAN, point-to-point linkovi...
 - Jedan brodkast domen
- Dodela mrežnih adresa prema potrebi sa različitim maskama

Hijerarhija adresnog prostora

- AMRES –
 Akademska mreža Srbije
 - Univerzitet u Beogradu 147.91.0.0/16
 - Elektrotehnički fakultet 147.91.8.0/21

Adresni prostor AMRES-a

- AMRES Akademske Mreža Srbije
 - 147.91.0.0/16,91.187.128.0/19
 - 160.99.0.0/16 (Univerzitet u Nišu)

147.91.230.64/26	BFBOT - Botanička bašta
147.91.230.112/28	BFBOT-PMF - Botanička bašta (zgrada PMF-a)
147.91.231.0/24	DIF - Fakultet za fizičku kulturu
147.91.232.0/23	SF - Saobraćajni fakultet

147.91.246.0/24	NBS - Narodna biblioteka Srbije
147.91.248.0/24	UNLIB - Univerzitetska biblioteka "Svetozar Marković"
147.91.250.0/24	VET - Fakultet veterinarske medicine

Agregacija mreža

 Supernetting – agregacija (spajanje) više susednih podmreža u jednu veću podmrežu

Primer:

8 mreža: od 172.24.0.0/16 do 172.31.0.0 /16

zajednički biti: 8 bita u prvom oktetu i 5 bita u drugom

supernet 172.24.0.0 /13

adresa: 10101100.00011000.0000000.00000000

maska: 11111111.11111000.00000000.00000000

	Mreža	1. bajt	2. bajt		
1	172.24.0.0/16	10101100	00011000		
2	172.25.0.0/16	10101100	000 <mark>11001</mark>		
3	172.26.0.0/16	10101100	000 <mark>11010</mark>		
4	172.27.0.0/16	10101100	000 <mark>11011</mark>		
5	172.28.0.0/16	10101100	000 <mark>11100</mark>		
6	172.29.0.0/16	10101100	000 <mark>11101</mark>		
7	172.30.0.0/16	10101100	000 <mark>11110</mark>		
8	172.31.0.0/16	10101100	00011111		

172.24.0.0/ <mark>13</mark>	10101100	0001100	0

Agregacija mreža

- Agregacija (sumarizacija) adresa mreža u ruterima (rute)
 - Manje IP mreže se u ostatku mreže vide sa agregiranom mrežnom adresom

Agregacija mreža

- Eksponencijalni rast broja hostova na Interntu
- Bez agregacije, Internet ruteri bi odavno bili prezasićeni
 - Classfull: A = 126 mreža, B ≈ 16.000 mreža, C ≈ 2.000.000 mreža
 - Classless: Broj svih podmreža neuporedivo veći
- Da bi se mreže agregirale, moraju da budu susedne i da se uklapaju u isti adresni blok koji se može opisati jedinstvenom adresom i maskom
- Adresiranje u mreži vezano i za topologiju povezivanja
 - Mrežne adrese koje mogu da se agregiraju, treba koristiti u bliskim delovima mrežne infrastrukture
 - Primer:
 - Hijerarhijski podeljena mreža na regione, gradove i lokacija
 - Viši hijerarhijski nivo agregira podmreže na nižem nivou
- Internetu preko 800.000 agregiranih mreža

Adresni prostor AMRES-a

- Vinča dva susedna bloka od po 4 "C klase"
 - 147.91.28.0/22
 - 147.91.32.0/22
- Da li se može agregirati u jednu podmrežu?
 - Maska bi bila /21
 - 147.91.28.0/21 ?
 - Dobija se 147.91.24.0/21
 što daje opseg od 147.91.24.0 do 147.91.31.255

Host	147	91	28	0	10010011	01011011	000111 <mark>00</mark>	00000000
Mask	255	255	252	0	11111111	11111111	111111 <mark>00</mark>	00000000
Host	147	91	32	0	10010011	01011011	001000 <mark>00</mark>	00000000
Mask	255	255	252	0	11111111	11111111	111111 <mark>00</mark>	00000000

Host	147	91	28	0	10010011	01011011	0001	1)0	00000000
Mask	255	255	248	0	11111111	11111111	11111	000	00000000

Literatura

 Wendell Odom "CCNA - Cisco official exam certification guide" Cisco Press

- James Kurose, Keith Ross
 "Computer Network A Top-Down Approach"
- James Kurose, Keith Ross "Umrežavanje računara: Od vrha ka dnu" prevod 7. izdanja CET

