

Institute of Informatics – Institute of Neuroinformatics

Lecture 10 Multiple View Geometry 4

Davide Scaramuzza

http://rpg.ifi.uzh.ch/

This afternoon: Intermediate VO Integration

19.09.2019	Lecture 01 - Introduction to Computer Vision and Visual Odometry	Davide Scaramuzza
26.09.2019	Lecture 02 - Image Formation 1: perspective projection and camera models Exercise 01 - Augmented reality wireframe cube	Davide Scaramuzza Daniel & Mathias Gehrig
03.10.2019	Lecture 03 - Image Formation 2: camera calibration algorithms Exercise 02 - PnP problem	Davide Scaramuzza Daniel & Mathias Gehrig
10.10.2019	Lecture 04 - Filtering & Edge detection	Davide Scaramuzza
17.10.2019	Lecture 05 - Point Feature Detectors, Part 1 Exercise 03 - Harris detector + descriptor + matching	Davide Scaramuzza Daniel & Mathias Gehrig
24.10.2019	Lecture 06 - Point Feature Detectors, Part 2 Exercise 04 - SIFT detector + descriptor + matching	Davide Scaramuzza Daniel & Mathias Gehrig
31.10.2019	Lecture 07 - Multiple-view geometry	Davide Scaramuzza

07.11.2019	, , ,	Antonio Loquercio Daniel & Mathias Gehrig
14.11.2019	Lecture 09 - Multiple-view geometry 3 (Part 1)	Davide Scaramuzza
21 11 2019	Lecture 10 - Multiple-view geometry 3 (Part 2)	Davide Scaramuzza

Daniel & Mathias Gehrig

71 11 <i>1</i> 1114	, , , ,	Davide Scaramuzza Daniel & Mathias Gehrig
7X 11 7019	,	Davide Scaramuzza Daniel & Mathias Gehrig

28.11.2019	Lecture 11 - Optical Flow and Tracking (Lucas-Kanade)	Davide Scaramuzza
	Exercise 08 - Lucas-Kanade tracker	Daniel & Mathias Gehrig
05.12.2019	Lecture 12 - Place recognition and 3D Reconstruction	Davide Scaramuzza
	Exercise session: Deep Learning Tutorial	Daniel & Mathias Gehrig
	Lecture 13 - Visual inertial fusion	Davide Scaramuzza

Exercise 05 - Stereo vision: rectification, epipolar matching, disparity, triangulation

12.12.2019 **Exercise 09 - Bundle Adjustment** Daniel & Mathias Gehrig Davide Scaramuzza Lecture 14 - Event based vision

Daniel & Mathias Gehrig 19.12.2019 After the lecture, we will Scaramuzza's lab. Departure from lecture room at 12:00 via tram 10.

Exercise session: Final VO Integration

How can we evaluate VO/SLAM algorithms?

This problem is known as "Benchmarking"

Popular Datasets for VO/SLAM Benchmarking

Devon Island [Furgale'11]

Stereo + D-GPS + inclinometer + sun sensor

Blackbird [Antonini'18]

MAV indoor aggressive flight with rendered images and real dynamics + IMU

KITTI [Geiger'12]

Automobile, Laser + stereo + GPS, multiple tasks

MVSEC [Zhu'18]

Events, frames, lidar, GPS, IMU from cars, drones, and motorcycles

EuRoC [Burri'16]

MAV with synchronized IMU and stereo

<u>UZH Drone Racing</u> [Delmerico'19]

MAV aggressive flight, standard + event cameras, IMU, indoors and outdoors

(d) Indoor sequence

(e) Events

(f) Optical flow

What metrics should be used?

Evaluation is a non-trivial task...

Maybe align the first poses and measure the end-pose error?

- How many poses should be used for the alignment?
- Not robust:
 - Most VIOs are non-deterministic (e.g., RANSAC, multithreading) →
 every time you run your VIO on the same dataset, you get different
 results
 - Not meaningful:
 - too sensitive to the trajectory shape
 - does not capture the error statistics

Metric 1: Absolute Trajectory Error (ATE)

Absolute Trajectory Error

RMSE of the aligned estimate and the groundtruth.

- ✓ Single number metric
- Many parameters to specify

Step 1: Align the trajectory

Step 2: Root mean squared errors between the aligned estimate and the groundtruth.

$$\sqrt{\frac{\sum_{i=1}^{N} ||\hat{t}_{i} - sRt_{i} - T||^{2}}{N}}$$

- Sturm et al., "A benchmark for the evaluation of RGB-D SLAM systems." IROS 2012.
- Zhang et al., "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." IROS'18. PDF

Relative Error (Odometry Error)
Statistics of sub-trajectories of specified lengths.

- ✓ Informative statistics
- Complicated to compute and rank
- Geiger et al. "Are we ready for autonomous driving? the KITTI vision benchmark suite." CVPR 2012.
- Zhang et al., "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." IROS'18. PDF

Relative Error (Odometry Error)
Statistics of sub-trajectories of specified lengths.

- ✓ Informative statistics
- Complicated to compute and rank
- Geiger et al. "Are we ready for autonomous driving? the KITTI vision benchmark suite." CVPR 2012.
- Zhang et al., "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." IROS'18. PDF

Relative Error (Odometry Error)
Statistics of sub-trajectories of specified lengths.

- ✓ Informative statistics
- Complicated to compute and rank
- Geiger et al. "Are we ready for autonomous driving? the KITTI vision benchmark suite." CVPR 2012.
- Zhang et al., "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." IROS'18. PDF

Relative Error (Odometry Error)
Statistics of sub-trajectories of specified lengths.

- ✓ Informative statistics
- Complicated to compute and rank

- Geiger et al. "Are we ready for autonomous driving? the KITTI vision benchmark suite." CVPR 2012.
- Zhang et al., "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." IROS'18. PDF

Trajectory Accuracy: Error Metrics

- Both ATE and RTE are widely used in practice, but:
 - Many details need to be specified which are often omitted in papers
 - Number of poses used for the alignment (also, frames or keyframes?)
 - **Type of transformation used** for the alignment:
 - SE(3) for stereo VO
 - Sim(3) for monocular VO
 - 4DOF for VIO
 - Sub-trajectory lengths in RTE

- White: **Normal frames** (used for **real time pose update**)
- Green: Keyframes (usually updated after BA)
- Results are not directly comparable with different settings
 - Report the evaluation settings in detail.
 - Is there a publicly available evaluation tool to facilitate reproducible evaluation? Yes: Trajectory Evaluation Toolbox

Trajectory Evaluation Toolbox

- Designed to make trajectory evaluation easy!
 - Implements different alignment methods depending on the sensing modalities:
 SE(3) for stereo, sim(3) for monocular, 4DOF for VIO.
 - Implements Absolute Trajectory Error and Relative Error.
 - Automated evaluation of different algorithms on multiple datasets (for N runs).
- Code: https://github.com/uzh-rpg/rpg trajectory evaluation [Zhang, IROS'18]

Zhang et al., "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." IROS'18. PDF

What metrics should be used?

Benchmarking Efficiency

- Different computational resources
 - Memory
 - CPU load
 - Processing time

Depends not only on algorithm design, but also implementation, platforms, etc.

There are different definitions of processing time in SLAM systems.

- White: Normal frames (used for real time pose update)
- Green: Keyframes (usually updated after BA)

Processing time for real-time pose:

 $t_{pose\ output} - t_{image\ arrival}$

 Processing time for asynchronously executed threads (e.g., bundle adjustment)

•

Case study: VIO for Flying Robots [ICRA'18]

- Algorithms: MSCKF, OKVIS, ROVIO, VINS-Mono, SVO+MSF, SVO+GTSAM, VINS-Mono w/ and w/o loop closure
- Hardware: consider the limitation of flying robots

- Evaluation
 - Absolute Trajectory Error (ATE)— RMSE after sim(3) trajectory alignment (7DoF)
 - Relative Trajectory Error (RTE)— Error distribution of the subtrajectories
 - CPU usage total load of CPU
 - Memory usage total percentage of available RAM
 - **Time per frame** from input until pose is updated

Delmerico, Scaramuzza, A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots, ICRA'18. PDF. Video.

Case study: VIO for Flying Robots [ICRA'18]

No free lunch: more computation → better accuracy

Delmerico, Scaramuzza, A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots, ICRA'18. PDF. Video

What metrics should be used?

Robustness is the greatest challenge for SLAM today!

How to cope & quantify robustness to:

- Low texture
- High Dynamic Range (HDR) scenes
- Motion blur
- Dynamically changing environments
- Algorithmic randomness

How can we quantify the robustness of algorithms to such situations?

High Dynamic Range

Motion blur

Cadena, Carlone, Carrillo, Latif, Scaramuzza, Neira, Reid, Leonard, Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age, IEEE Transactions on Robotics, 2016. PDF

UZH-FPV Drone Racing Dataset

Contains data recorded by a drone flying up to over 20m/s indoors and outdoors frown by a professional pilot. Contains frames, events, IMU, and Ground Truth from a Robotic Total Station: http://rpg.ifi.uzh.ch/uzh-fpv.html

Delmerico et al. "Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset" ICRA'19 PDF. Video. Datasets.

UZH-FPV Drone Racing Dataset

- Recorded with a drone flown by a professional pilot up to over 20m/s
- Contains images, events, IMU, and ground truth from a robotic total station:
 http://rpg.ifi.uzh.ch/uzh-fpv.html

Delmerico et al. "Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset" ICRA'19 PDF. Video. Datasets.

Robustness to high speed motion

Can be quantified in terms of "optical flow" (see Lecture 10 for def. of optical flow)

Dataset Bias

Typical workflow of developing VO/VIO/SLAM algorithms:

As a community, we are overfitting the public dataset.

Potential problems:

- ➤ **Generalizability:** Performance on one does not guarantee to generalize to others
 - E.g., KITTI → low frame rate, not friendly for direct methods
- Old datasets (e.g., KITTI) are already saturated:
 - It becomes more and more difficult to tell whether we are making real progress or just overfitting the datasets.
 - E.g., does 1 or 2 cm improvement in RMSE over a 100 meter trajectory really mean something?

Dataset Bias

We need more datasets to evaluate the performance of SLAM algorithms along different axes

Robustness

(HDR, motion blur, low texture)

- BlackBird [Antonini'18]
- UZH-FPV dataset [Delmerico'18]
- Event Camera [Mueggler'17]
- MVSEC [Zhu'18]
- ...

Realistic simulators:

- AirSim
- FlightGoggles [Guerra'19]
- ESIM [Rebecq'18]
-

Overview of the last 30 years of Visual Inertial Odometry & SLAM

Open Research Opportunities

Actively Control Camera Exposure Time to achieve Robustness to High Dynamic Range (HDR) scenes

ORB-SLAM with Standard Built-in Auto-Exposure

ORB-SLAM with
Our Active Exposure Control

Zhang, et al., Active Exposure Control for Robust Visual Odometry in HDR Environments, ICRA'17. PDF. Video

"UltimateSLAM": Frames + Events + IMU (Lecture 14)

85% accuracy gain over standard visual-inertial SLAM in HDR and high speed scenes

Standard camera

Event camera

Understanding Check

Are you able to answer the following questions:

- How do we benchmark VO/SLAM algorithms?
- ➤ Along which axes can we evaluate them?
- Benchmarking accuracy: Can we use the end pose error? What are ATE and RTE?
- ➤ How can we quantify Efficiency? And Robustness?
- What are open research opportunities?