# Identification and tagging of double b-hadron jets from gluon splitting with the ATLAS Detector

Lic. María Laura González Silva

Tesis Doctoral en Ciencias Físicas Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Noviembre 2012



#### UNIVERSIDAD DE BUENOS AIRES

Facultad de Ciencias Exactas y Naturales

Departamento de Física

## Identification and tagging of double b-hadron jets from gluon splitting with the ATLAS Detector

Trabajo de Tesis para optar por el título de Doctor de la Universidad de Buenos Aires en el área Ciencias Físicas

por María Laura González Silva

Director de Tesis: Dr. Ricardo Piegaia

Consejero de estudios: Dr. Daniel Deflorian

Lugar de Trabajo: Departamento de Física (CONICET-UBA)

Buenos Aires, 2012

#### **AGRADECIMIENTOS**

Quiero agradecer a mi director, Ricardo Piegaia, y a todos aquellos que trabajaron junto conmigo en el experimento ATLAS, Gastón Romeo, Gustavo Otero y Garzón, Hernán Reisin y Sabrina Sacerdotti. Un especial agradecimiento a Ariel Schwartzman y su equipo.

Quiero agradecer también a mis compañeros de grupo y oficina, Javier Tiffenberg, Yann Guardincerri, Pablo Pieroni y Orel Gueta.

Quiero agradecer al Experimento ATLAS, al programa HELEN y al programa e-Planet. Quiero agradecer al CONICET y a la Fundación Exactas por hacer posible la realización de esta tesis.

Quiero agradecer el apoyo de mis compañeros de la carrera, especialmente a mis amigos Cecilia Bejarano y Tomas Teitelbaum.

Quiero agradecer a los amigos que hice a lo largo de estos años en mis visitas al Laboratorio CERN, y a mis colegas y amigos de la Universidad de la Plata. Un especial agradecimiento a Fernando Monticelli.

Quiero agradecer a mis amigos de la vida por continuar a mi lado a pesar de las ausencias.

Finalmente, quiero agradecer a mi familia por su apoyo y comprensión, especialmente a Cristina Silva, Lorena González y Juan Martín Alba.

#### Abstract

Esta tesis describe un método que permite la identificación de jets que contienen dos hadrones b, que se originan en la división de un gluon en un par  $b\bar{b}$ . La técnica desarrollada explota las diferencias cinemáticas entre los llamados jets "merged" y los genuinos jets b, usando variables que describen la estructura interna y la forma de los jets, construidas a partir de las trazas asociadas a los mismos. Las variables con mayor poder discriminador son combinadas en un análisis de multivariable. Poder identificar y remover jets b que provienen de la división de un gluon es importante para la estimación y la redución del fondo a señales de física dentro del Modelo Estándar y en nueva física. El algoritmo diseñado rechaza, en eventos simulados, el 95% (50%) de los jets "merged", mientras que retiene el 50% (90%) de los jets b genuinos.

Palabras clave: Experimento ATLAS, Jets, Subestructura de Jets, Etiquetado de Jets b, Gluon Splitting.

#### Abstract

This thesis describes a method that allows the identification of double B-hadron jets originating from gluon-splitting. The technique exploits the kinematic differences between the so called "merged" jets and single B-hadron jets using track-based jet shape and jet substructure variables combined in a multivariate likelihood analysis. The ability to reject b-jets from gluon splitting is important to reduce and to improve the estimation of the b-tag background in Standard Model analyses and in new physics searches involving b-jets in the final state. In the simulation, the algorithm rejects 95% (50%) of merged B-hadron jets while retaining 50% (90%) of the tagged b-jets, although the exact values depend on the jet  $p_T$ .

**Keywords:** ATLAS Experiment, Jets, Jet Substructure, b-tagging, Gluon Splitting.

## Contents

1 Conclusions 2

## Chapter 1

### Conclusions

In the course of the present thesis a new method allowing the identification of b-jets containing two B-hadrons was developed and implemented in the ATLAS reconstruction software. In QCD, these jets are expected to arise when a gluon splits into a close-by  $b\bar{b}$ -pair.

The method exploits the expected kinematic differences between double b-hadron or "merged" jets and single b-jets: merged jets tend to have higher multiplicity and larger width. These differences originate in the two-subjet structure of merged jets. Several jet shape and substructure variables were investigated in order to obtain the best single/merged discrimination. Due to the noisy environment of the hadron collisions at the LHC track-based variables were preferred over calorimeter variables. A good agreement with a data sample of 4.7 fb<sup>-1</sup> recorded by the ATLAS during 2011 is observed for all the variables explored.

In order to improve the separation obtained individually with each variable a multivariate classifier was trained using simulated QCD events. Based on discrimination power, correlation and pile-up dependence three input variables were selected for the tagger training: the jet track multiplicity, the

track-jet width and the  $\Delta R$  between the axes of two  $k_t$  subjets in the jet. The performance of the tagger in Monte Carlo events was studied in bins of the calorimeter jet  $p_T$ , achieving a rejection of merged jets of over 95% (90%) for a 50% single b-jet efficiency for jets with  $p_T > 150$  GeV ( $p_T > 60$  GeV).

This tool provides a handle to investigate QCD  $b\bar{b}$  production and to reduce backgrounds in physics channels involving b-quarks in the final state. Future improvements comprise the study of further discrimant variables, the extension to non-isolated jets using the concept of ghost-particle matching and active area of a jet [1] for track-to-jet association and labeling, the calibration of the tagger with data, and its application to measure the fraction of gluon-splitting jets in QCD b-jet production.

## Bibliography

[1] G.P. Salam M. Cacciari and Gregory Soyez. The Catchment Area of Jets.  $\it JHEP,~0804:42,~2008.$