KMK (Set 1)

NO	ANSWER SCHEME	MARKS
1	$[G] = \frac{[F_g][r^2]}{[m_1][m_2]}$	
	$=\frac{(MLT^{-2})(L^2)}{M(M)}$	GI
	$=L^3T^{-2}M^{-1}$	Л

NO	SCHEME	MARK(S)
2(a)	i) Acceleration = gradient of the graph = $20-0$	KI
	$= 1.0 \text{ ms}^{-2}$	JUI
	ii) The car first come to stop when $t = 30$ s Distance = area under the graph = $\frac{1}{2}(30)(20)$ = 300 m Distance travelled = Area under graph V against t Distance = $\frac{1}{2}(20 \times 20) + \frac{1}{2}(20)(10)$ Distance = $200 + 100 = 300$ m	KI GI JUI
2(b)	$u_x = u \cos \theta = 30 \cos 37^\circ = 24.0 \text{ m s}^{-1}$ $u_y = u \sin \theta = 30 \sin 37^\circ = 18.1 \text{ m s}^{-1}$	
	i) At the maximum height, $v_y = 0$ and $s_y = H$ thus. $v_y^2 = u_y^2 - 2gs_y$	Κl
	$0 = (18.1)^2 - (2)(9.81)H$ H = 16.7 m	GJU1
	ii) When the ball return to the ground level, $s_y = 0$ thus the time of flight, t is $s_y = u_y t - \frac{1}{2} g t^2$	Κl
	$0 = (18.1)t - \frac{1}{2}(9.81)t^2$	
	t = 3.69	GJU1

7

271	iii) $R = u_x t$ = $(24)(3.69)$ = 88.6 m	GJU1
	TOTAL	10

NO	ANSWER SCHEME	MARKS
3a (i)	J = Ft = (20)(15) = 300Ns	GJU1
(ii)	$J = \Delta p = 300 \text{Ns}$	JU1
(iii)	$J = p_f - p_i$ $300 = p_f - (-30)$ $p_f = 270 \text{ kgms}^{-1}$	G1 JU1
(iv)	$p_f = m v$ 270 = (8)v $v = 33.75 \text{ms}^{-1}$	וטנ
		5M
3b (i)	All correct – 3M 3 Corrrect -2M	All correct 3M 3 Corrrect -2M
(ii)	$\Sigma F_{\mathbf{x}} = 0$ $T_{\mathbf{x}} = 0 \text{Wain } \theta = 0$	К1
	$T - f_s - W \sin \theta = 0$ $T = mg \sin 15^0 + \mu_s N$	G1
	$T = 80(9.81)\sin 15^{0} + 0.2(80)(9.81)\cos 15^{0}$ $T = 354.73N$	JUI
	$\Sigma F_y = 0$	K1
	W - T = 0 $T = mg$ $m = 36.16kg$	JUI
-		8M
	TOTAL	13 marks

NO	ANSWER SCHEME	MARK(S)
4	$W = F_{net}.s$	
	$W = (5x10^6 \cos 30 + 5x10^6 \cos 30)(0.75x10^3)$	Gl
	$W = (5.77 \times 10^9 \text{ J})^{-1}$	JU1
	,	
	b) W = great under the great	
	W = area under the graph	
	$712.5 = \left(\frac{1}{2}(40 + 50)(Y - 5.0)\right) + \left(\frac{1}{2}(40)(25.0 - Y)\right)$	G1
	Y = 17.5 m	JU1
	E = K + U	
	1	
	$E = \left(\frac{1}{2}(70)(4.5)^2\right) + ((70)(9.81)(2000\sin 25^\circ))$	G1
	$E = 5.81 \times 10^5 J$	JU1
	d)	
	$W = \Delta K$	
	$E = \left(\frac{1}{2}(0.118)(150)^2\right) - 0$	
	$E = 1.33x10^6 J$	GJU1
	L = 1.33x10 j	GJUI
	e)	
	P = T.v	
	68 = T(0.25)	CTI
	T = 272 N	GJU1
	TOTAL	8 marks

NO	ANSWE	R SCHEME	MARKS
5	m = 22 + 6 = 28 kg	r = 2 m $T = 100 N$	
ī	a) $\sum F_x = F_c = T = \frac{mv^2}{r}$		K1
	$100 = \frac{(28)v^2}{2}$		G1
	$v = 2.67 m s^{-2}$		JU1
	b) $\omega = \frac{v}{r} = \frac{2.67}{2} = 1.335$	$rad s^{-1}$	GJ1
	$\omega = \frac{1.335 rad}{1 s} \times \frac{1 re}{2 \pi re}$	$\frac{v}{ad} \times \frac{60 \text{ s}}{1 \text{ minute}}$	
	$\omega = 12.74 rpm$		GJU1
		TOTAL	5 marks

NO	ANSWE	R SCHEME	MARKS
6 (a)	m = 175 g = 0.175 kg $k = 8 N m^{-1}$		
	x = A = 10 cm = 0.1 m	amplitude = Edecorre = Teoritoria	
	(i) m	m 2002 =	
	$T=2\pi\sqrt{\frac{m}{k}}$		
	$=2\pi\sqrt{\frac{0.175}{8}}$	- 1 k	G1
	$0 = 0.93 \mathrm{s}$	$\frac{x \pm 1}{1 \pm 0} =$	JU1
	(ii) _ 1	n + 05 =	
	$E = \frac{1}{2}kA^2$	A ₀	
	$=\frac{1}{2}(8)(0.1)^2$		G1
	= 0.04 J	* D101 **:	JUI
i	(iii)	zH u5	
11	$U = \frac{1}{2}ky^2$: 12 = 20)(50) 1000 cms	

		TRAILE DE MERTA	G1
, day	NAT /	$=\frac{1}{2}(8)(0.05)^2$	JU1
		= 0.01 J	10
1	d	$K = E - U = 0.04 - 0.01 = 0.03 \mathrm{J}$	JUI
	(iv)	Shape – 2 Label - 1	
	ə	K/U @ E (J)	(d
	(,v)	K 1914 1	D3
	Par St. A.	- 0.1 0.1	
6 (b)	LAM	$y = 3\cos(0.1\pi x)\sin(100\pi t)$ $y = 2A\cos kx\sin \omega t$	1 - m = 0 m
	(i)	$amplitude = 2A \cos kx$ $= 3 \cos(0.1\pi)(2)$ $= 2.43 \text{ cm}$	K1 GJU1
	(ii)	1/ 2 - 4	
	Э	$\lambda = \frac{2\pi}{k}$	
1	JL	$=\frac{2\pi}{0.1\pi}$	G1
		= 20 cm	JU1
	(iii)	1	
	Ð	$f = \frac{\omega}{2\pi}$	
ing .	UI.	$=\frac{100\pi}{2\pi}$	G1
-		= 50 Hz	JU1
	(iv)	$v = f\lambda$	3
		$= (20)(50) = 1000 \text{ cm s}^{-1}$	GJU1

(c)	l = 0.92 m	211291
	$f_o = \frac{nv}{4l} = \frac{(1)(330)}{(4)(0.92)}$	GI
	$f_o = 89.67 \mathrm{Hz}$	лuı
	$f_{2 \text{ overtone}} = f_5 = 5f_0$	K1
	= (5)(89.67) $= 448.35 Hz$	JUI
(d)	$v_s = 55 \text{ m s}^{-1}$ f = 1125 Hz $v = 330 \text{ m s}^{-1}$	1.4
	$f_a = \left(\frac{v}{v - v_s}\right) f$ $= \left(\frac{330}{330 - 55}\right) (1125)$	
	$ = \frac{(330 - 55)^{(1125)}}{= 1350 \text{ Hz}} $	G1 JU1

NO	ANSWER SCHEME	MARK(S)
7(a)	$Y = \frac{Fl_o}{Ae}$	
	$Y = \frac{(mg)l_o}{Ae}$	
	$200 \times 10^9 = \frac{(10 \times 9.81)(1.8)}{A(0.6 \times 10^{-3})}$	G1
	$A = 1.47 \times 10^{-6} m^2$	
1	UI CARCA A JU	
	$Y = \frac{Fl_o}{Ae}$	
	$200 \times 10^9 = \frac{(2 \times 9.81)(1.8006)}{(1.47 \times 10^{-6})e}$	Gl
	$e = 1.2 \times 10^{-4} m$	GJU1
7(b)	$\left(\frac{dQ}{dt}\right)_{brick} = \left(\frac{dQ}{dt}\right)_{concrete}$	K1
	$\left(\frac{dQ}{dt}\right)_{brick} = \left(\frac{dQ}{dt}\right)_{concrete}$ $\left(-kA\frac{dT}{dx}\right)_{brick} = \left(-kA\frac{dT}{dx}\right)_{concrete}$	

	$(T_s - 40)$ (20 - T_s)	GI
	$(0.6)(55)\frac{(T_s - 40)}{0.12} = (0.8)(55)\frac{(20 - T_s)}{0.24}$ $T_s = 32^{\circ}C$	JUI
	$T_s = 32^{\circ}C$	
7(c)	$\Delta V_{additional} = \Delta V_{glycerin} - \Delta V_{steel}$ $= \gamma_{glycerin} V_o \Delta T - \gamma_{steel} V_o \Delta T$	
	$= [(4.8 \times 10^{-4})(3)(18 - 32)] - [3(1.1 \times 10^{-5})(3)(18 - 32)]$	G1
	$=-0.0188m^3$	JUΙ
	0.0188 m ³ additional volume can be filled into the tank.	
	TOTAL	8 marks

NO	ANSWER SCHEME	MARKS
8 (a)	Density: $\rho = \frac{m}{V} = \frac{345 \times 10^{-3}}{0.55} = 0.627 kgm^{-3}$	Gl
	Pressure : $P = \frac{1}{3}\rho\langle v^2 \rangle$ $\langle v^2 \rangle = \frac{3P}{\rho}$ $\langle v^2 \rangle = \frac{3(1.7x10^5)}{0.627}$	
	$\langle v^2 \rangle = \frac{5(1.7 \times 10^{-7})}{0.627}$	Gl
	$\langle v^2 \rangle = 8.13x10^5 m^2 s^{-2}$	Jl
	$v_{rms} = \sqrt{\langle v^2 \rangle}$ $v_{rms} = \sqrt{\langle 8.13x10^5 \rangle}$ $v_{rms} = 901.67 \text{ ms}^{-1}$	JUI
	υ	
8 (b)		
		. (

		1	
		L	
		l	
ı			
			1

	Shape B-C = 1M shape A-B = 1M label axes = 1M	Ј3
	Pressure, isoba A isother Volume, V	
	ii. Work done:	
	Work done for isothermal process:	
	$W = nRT ln \frac{V_2}{V_1}$ $W = (32)(8.31)(273.15 + 30)(ln \frac{0.5V_0}{V_0})$ $W = -5.58 \times 10^4 J$	GJU1
	Work done for isobaric expansion:	
	$W = p\Delta V$ $W = (4 \times 1.01 \times 10^5)(0.4 - (0.5 \times 0.4))$ $W = 8.08 \times 10^4 J$	GJU1
	Total work done:	Κl
	$W_T = W_{isotherma} + W_{isobaric}$ $W_T = (-5.58 \times 10^4) + (8.08 \times 10^4)$ $W_T = 2.5 \times 10^4 J$	GJU1
THE RESERVE	TOTAL	11 Marks