Monotone Sequences and Tails of Sequences

Cliff Sun

April 19, 2024

Definition 0.1. Let (x_n) be a sequence:

- 1. (x_n) is (monotone) increasing if $x_{n+1} \ge x_n$ for all n
- 2. (x_n) is (monotone) decreasing if $x_{n+1} \leq x_n$ for all n
- 3. (x_n) is monotone if (x_n) is either monotone increasing or monotone decreasing

Theorem 0.2. Let (x_n) be a montone sequence.

- 1. (x_n) converges if and only if it is bounded.
- 2. If (x_n) is increasing and bounded, then

$$\lim_{n \to \infty} x_n = \sup\{x_n : n \in \mathbb{N}\}$$
 (1)

3. If (x_n) is decreasing and bounded, then

$$\lim_{n \to \infty} x_n = \inf(x_n : n \in \mathbb{N})$$
 (2)

Note:

- 1. If (x_n) is increasing, then (x_n) is bounded below by x_1 .
- 2. If (x_n) is decreasing, then (x_n) is bounded above x_1
- 3. The only interesting question is if (x_n) is bounded above/below if it's increasing/decreasing.

Corollary 0.3. The comparison test for infinite series says that if Σa_n and Σb_n are infinite series and $a_n, b_n \geq 0$, and $a_n \leq b_n$ for all n. Then if Σb_n converges, then Σa_n converges.

Definition 0.4. The sum of some series a_n is the limit as $n \to \infty$ of the sequence s_n where

$$s_n = a_1 + a_2 + \dots + a_n \tag{3}$$

Proof. We already know the " \Longrightarrow " of (1), we will prove (2). By replacing $x_n = -x_n$, we will prove (3). And combining (2) and (3), we will have proved " \Longleftrightarrow " of (1). So suppose that (x_n) is increasing and bounded above. Since x_n is nonempty and bounded above, we have that it must have a least upper bound, in other words it has a supremum. So we must prove that

For all $\epsilon > 0$, there exists some $M \in \mathbb{N}$ such that for all $n \geq M$, $|x_n - x| < \epsilon$ where $x = \sup(x_n)$.

Recall from homework 11, for any nonempty, bounded above set S, and for any $\epsilon > 0$, there exists an $x \in S$ such that

$$\sup(S) - \epsilon < x \le \sup(S) \tag{4}$$

In particular, given any $\epsilon > 0$, there exists some $M \in \mathbb{N}$ such that $\sup(x_n) - \epsilon < x_M \leq \sup(x_n)$. Choose that M, then we have that

$$x - \epsilon < x_M \le x_n \le x < x + \epsilon \tag{5}$$

But in particular

$$|x_n - x| < \epsilon \tag{6}$$

This concludes the proof.

Tails of a sequence

Definition 0.5. Let (x_n) be a sequence, and let $k \in \mathbb{N}$. Then the k-Tail of (x_n) is the sequence

$$(x_{n+k})_{n=1}^{\infty} = (x_{k+1}, x_{k+2}, \cdots)$$
(7)

In other words, you drop the first k terms.

Theorem 0.6. If (x_n) is any sequence, $x \in \mathbb{R}$, and $k \in \mathbb{N}$, then

$$\lim_{n \to \infty} (x_n) = x \iff \lim_{n \to \infty} (x_{n+k}) = x \tag{8}$$

In particular

- 1. If (x_n) converges to x, then all of its k-tails must also converge to the same number x.
- 2. If (x_n) diverges, then all of its k-tails also diverge.