4.4. Express v = (1, -2, 5) in \mathbb{R}^3 as a linear combination of the vectors

$$u_1 = (1, 1, 1),$$
 $u_2 = (1, 2, 3),$ $u_3 = (2, -1, 1)$

We seek scalars x, y, z, as yet unknown, such that $v = xu_1 + yu_2 + zu_3$. Thus we require

$$\begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix} = x \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + y \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + z \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$
 or
$$\begin{aligned} x + y + 2z &= 1 \\ x + 2y - z &= -2 \\ x + 3y + z &= 5 \end{aligned}$$

(For notational convenience, we write the vectors in \mathbb{R}^3 as columns, since it is then easier to find the equivalent system of linear equations.) Reducing the system to echelon form yields the triangular system

$$x + y + 2z = 1$$
, $y - 3z = -3$, $5z = 10$

The system is consistent and has a solution. Solving by back-substitution yields the solution x = -6, y = 3, z = 2. Thus $v = -6u_1 + 3u_2 + 2u_3$.

Alternatively, write down the augmented matrix M of the equivalent system of linear equations, where u_1 , u_2 , u_3 are the first three columns of M and v is the last column, and then reduce M to echelon form:

$$M = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & -1 & -2 \\ 1 & 3 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & -3 & -3 \\ 0 & 2 & -1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & -3 & -3 \\ 0 & 0 & 5 & 10 \end{bmatrix}$$

The last matrix corresponds to a triangular system, which has a solution. Solving the triangular system by back-substitution yields the solution x = -6, y = 3, z = 2. Thus $v = -6u_1 + 3u_2 + 2u_3$.

4.5. Express v = (2, -5, 3) in \mathbb{R}^3 as a linear combination of the vectors

$$u_1 = (1, -3, 2), u_2 = (2, -4, -1), u_3 = (1, -5, 7)$$

We seek scalars x, y, z, as yet unknown, such that $v = xu_1 + yu_2 + zu_3$. Thus we require

$$\begin{bmatrix} 2 \\ -5 \\ 3 \end{bmatrix} = x \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} + y \begin{bmatrix} 2 \\ -4 \\ -1 \end{bmatrix} + z \begin{bmatrix} 1 \\ -5 \\ 7 \end{bmatrix}$$
 or
$$\begin{aligned} x + 2y + z &= 2 \\ -3x - 4y - 5z &= -5 \\ 2x - y + 7z &= 3 \end{aligned}$$

Reducing the system to echelon form yields the system

$$x + 2v + z = 2$$
, $2v - 2z = 1$, $0 = 3$

The system is inconsistent and so has no solution. Thus r cannot be written as a linear combination of u_1, u_2, u_3 .

by (a). Finally, if $v \in W$, then $(-1)v = -v \in W$, and v + (-v) = 0. Thus [A₃] holds.

- **4.9.** Let $V = \mathbb{R}^3$. Show that W is not a subspace of V, where:
 - (a) $W = \{(a, b, c) : a \ge 0\}$, (b) $W = \{(a, b, c) : a^2 + b^2 + c^2 \le 1\}$. In each case, show that Theorem 4.2 does not hold.
 - (a) W consists of those vectors whose first entry is nonnegative. Thus v = (1, 2, 3) belongs to W. Let k = -3. Then kv = (-3, -6, -9) does not belong to W, since -3 is negative. Thus W is not a subspace of V.
 - (b) W consists of vectors whose length does not exceed 1. Hence u = (1, 0, 0) and v = (0, 1, 0) belong to W, but u + v = (1, 1, 0) does not belong to W, since $1^2 + 1^2 + 0^2 = 2 > 1$. Thus W is not a subspace of V.
- **4.10.** Let $V = \mathbf{P}(t)$, the vector space of real polynomials. Determine whether or not W is a subspace of V, where:

polynomials in W belong to W.

eter polynomial, and sums and scalar multiples of

- **4.11.** Let V be the vector space of functions $f: \mathbb{R} \to \mathbb{R}$. Show that W is a subspace of V, where:
 - (a) $W = \{f(x) : f(1) = 0\}$, all functions whose value at 1 is 0.
 - (b) $W = \{f(x) : f(3) = f(1)\}$, all functions assigning the same value to 3 and 1.
 - (c) $W = \{f(t): f(-x) = -f(x)\}$, all odd functions.

Let $\hat{0}$ denote the zero polynomial, so $\hat{0}(x) = 0$ for every value of x.

(a) $\hat{0} \in W$, since $\hat{0}(1) = 0$. Suppose $f, g \in W$. Then f(1) = 0 and g(1) = 0. Also, for scalars a and b, we have

$$(af + bg)(1) = af(1) + bg(1) = a0 + b0 = 0$$

Thus $af + bg \in W$, and hence W is a subspace.

(b) $\hat{0} \in W$, since $\hat{0}(3) = 0 = \hat{0}(1)$. Suppose $f, g \in W$. Then f(3) = f(1) and g(3) = g(1). Thus, for any scalars a and b, we have

$$(af + bg)(3) = af(3) + bg(3) = af(1) + bg(1) = (af + bg)(1)$$

Thus $af + bg \in W$, and hence W is a subspace.

(c) $0 \in W$, since $\hat{0}(-x) = 0 = -0 = -\hat{0}(x)$. Suppose $f, g \in W$. Then f(-x) = -f(x) and g(-x) = -g(x).

$$(af + bg)(-x) = af(-x) + bg(-x) = -af(x) - bg(x) = -(af + bg)(x)$$

Thus $ab + gf \in W$, and hence W is a subspace of V.

cuen with a passpace, and the contract

LINEAR SPANS

4.13. Show that the vectors $u_1 = (1, 1, 1)$, $u_2 = (1, 2, 3)$, $u_3 = (1, 5, 8)$ span \mathbb{R}^3 .

We need to show that an arbitrary vector v = (a, b, c) in \mathbb{R}^3 is a linear combination of u_1 , u_2 , u_3 . Set $v = xu_1 + yu_2 + zu_3$, that is, set

$$(a, b, c) = x(1, 1, 1) + y(1, 2, 3) + z(1, 5, 8) = (x + y + z, x + 2y + 5z, x + 3y + 8z)$$

Form the equivalent system and reduce it to echelon form:

$$x + y + z = a$$
 $x + y + z = a$ $x + y + z = a$ $x + 2y + 5z = b$ or $x + 3y + 8z = c$ $x + y + z = a$ or $x + y + z = a$ $y + 4z = b - a$ $y + 4z = b - a$ $-z = c - 2b + a$

The above system is in echelon form and is consistent; in fact,

$$x = -a + 5b - 3c$$
, $y = 3a - 7b + 4c$, $z = a + 2b - c$

is a solution. Thus u_1 , u_2 , u_3 span \mathbb{R}^3

114 Find conditions on a h a so that ... (I ... -)

Example 5.4

(a) Let $F: \mathbb{R}^3 \to \mathbb{R}^3$ be the "projection" mapping into the xy-plane, that is, F is the mapping defined by F(x, y, z) = (x, y, 0). We show that F is linear. Let v = (a, b, c) and w = (a', b', c'). Then

$$F(v + w) = F(a + a', b + b', c + c') = (a + a', b + b', 0)$$

= $(a, b, 0) + (a', b', 0) = F(v) + F(w)$

and, for any scalar k,

$$F(kv) = F(ka, kb, kc) = (ka, kb, 0) = k(a, b, 0) = kF(v)$$

Thus F is linear.

which maps each vector $v \in V$ into its coordinate vector $[v]_S$, is an isomorphism between V and K^n .

5.4 KERNEL AND IMAGE OF A LINEAR MAPPING

We begin by defining two concepts.

Definition: Let $F: V \to U$ be a linear mapping. The *kernel* of F, written Ker F, is the set of elements in V that map into the zero vector 0 in U; that is,

$$Ker F = \{v \in V : F(v) = 0\}$$

The image (or range) of F, written Im F, is the set of image points in U; that is,

Im $F = \{u \in U : \text{ there exists } v \in V \text{ for which } F(v) = u\}$

The following theorem is easily proved (Problem 5.22).

Theorem 5.3: Let $F: V \to U$ be a linear mapping. Then the kernel of F is a subspace of V and the

Thus F is linear.

5.11. Show that the following mappings are not linear:

(a)
$$F: \mathbf{R}^2 \to \mathbf{R}^2$$
 defined by $F(x, y) = (xy, x)$

(b)
$$F: \mathbb{R}^2 \to \mathbb{R}^3$$
 defined by $F(x, y) = (x + 3, 2y, x + y)$

(c)
$$F: \mathbb{R}^3 \to \mathbb{R}^2$$
 defined by $F(x, y, z) = (|x|, y + z)$

(a) Let
$$v = (1, 2)$$
 and $w = (3, 4)$; then $v + w = (4, 6)$. Also,

$$F(v) = (1(2), 1) = (2, 1)$$
 and $F(w) = (3(4), 3) = (12, 3)$

Hence

$$F(v + w) = (4(6), 4) = (24, 6) \neq F(v) + F(w)$$

- (b) Since $F(0, 0) = (3, 0, 0) \neq (0, 0, 0)$, F cannot be linear.
- (c) Let v = (1, 2, 3) and k = -3. Then kv = (-3, -6, -9). We have

$$F(v) = (1, 5)$$
 and $kF(v) = -3(1, 5) = (-3, -15)$.

Thus

$$F(kv) = F(-3, -6, -9) = (3, -15) \neq kF(v)$$

Accordingly, F is not linear.

5.12 Let V be the vector space of n-square real matrices. Let M be an arbitrary but fixed matrix in V.

KERNEL AND IMAGE OF LINEAR MAPPINGS

5.16. Let $F: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear mapping defined by

$$F(x, y, z, t) = (x - y + z + t, x + 2z - t, x + y + 3z - 3t)$$

the dimension of: (a) the dimension of: (b) the dimension of: (c) th

Find a basis and the dimension of: (a) the image of F, (b) the kernel of F.

(a) Find the images of the usual basis of \mathbb{R}^4 :

$$F(1, 0, 0, 0) = (1, 1, 1),$$
 $F(0, 0, 1, 0) = (1, 2, 3)$
 $F(0, 1, 0, 0) = (-1, 0, 1),$ $F(0, 0, 0, 1) = (1, -1, -3)$

By Proposition 5.4, the image vectors span Im F. Hence form the matrix whose rows are these image vectors, and row reduce to echelon form:

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 2 & 3 \\ 1 & -1 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & -2 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus (1, 1, 1) and (0, 1, 2) form a basis for Im F; hence dim(Im F) = 2.

(b) Set F(v) = 0, where v = (x, y, z, t); that is, set

$$F(x, y, z, t) = (x - y + z + t, x + 2z - t, x + y + 3z - 3t) = (0, 0, 0)$$

Set corresponding entries equal to each other to form the following homogeneous system whose solution space is Ker F:

$$x-y+z+t=0$$
 $x-y+z+t=0$ or $x-y+z+t=0$ $x+y+3z-3t=0$ $x-y+z-4t=0$ $x-y+z+t=0$ $y+z-2t=0$

The free variables are z and t. Hence $\dim(\text{Ker } F) = 2$.

- (i) Set z = -1, t = 0 to obtain the solution (2, 1, -1, 0).
- (ii) Set z = 0, t = 1 to obtain the solution (1, 2, 0, 1).

Thus (2, 1, -1, 0) and (1, 2, 0, 1) form a basis of Ker F. [As expected, $\dim(\operatorname{Im} F) + \dim(\operatorname{Ker} F) = 2 + 2 = 4 = \dim \mathbb{R}^4$, the domain of F.]