数据挖掘作业三报告

分类与聚类

姓名: 赵赫 学号: 2120171103

一、问题描述

本次作业中,我选择将对 Titanic 数据集(https://www.kaggle.com/c/titanic/data) 进行分类与聚类。

本次分类与聚类任务包含以下四个子任务:

- 使用分类模型(至少2个)对数据集进行挖掘;
- 对挖掘结果进行可视化,并解释其意义;
- 使用聚类方法(至少2种)对数据集进行分析;
- 对挖掘结果进行可视化,并解释其意义。

二、数据描述

● 数据集: Titanic

该数据集共包含 10 个属性特征,均为泰坦尼克号上乘客的相关信息,训练集包括 X 个乘客,测试集包括 X 个乘客。本任务需要通过训练集的乘客信息以及是否幸存的标签,预测测试集中乘客是否幸存。

三、分类与聚类过程

3.1 数据预处理

为构造分类模型,首先通过分析训练数据集中的特征属性,我选择了7个特征,其中包括Pclass、Sex、Age、Fare、Embarked、SibSp、Parch。此外,由于训练集和测试集中都存在缺失数据,因此需要对缺失数据进行填补,针对于数值属性,我们选择用中位数进行填补,针对于非数值属性,我们选择用频数最高值进行填补。填补所调用函数如图所示:

在经过填补的数据基础上,再进行了特征工程,利用已有特征构造两个新特

征: Family 和 IsAlone。其中 Family 值为 SibSp 与 Parch 的加和,代表家人总数; 而 IsAlone 值与 Family 值相关联,若 Family 为 0,则 IsAlone 为 1,否则 IsAlone 为 0,代表此乘客是否为独自一人乘船。对数据预处理的代码片段如下:

3.2 分类过程

在经过预处理的数据集的基础上,分别采用 Xgboost、DecisionTree(决策树)、SVM(支持向量机)三种方法进行分类,并使用训练好的模型对测试集进行预测。构建分类器的代码片段如下:

```
def classifier_xgboost(train_X, train_Y, test_X):
    gbm = xgb.XGBClassifier(max_depth=3, n_estimators=300, learning_rate=0.05)
    gbm.fit(train_X, train_Y)
    predictions = gbm.predict(test_X)
    return predictions

def classifier_dicisionTree(train_X, train_Y, test_X):
    dtc = DecisionTreeClassifier(random_state=0, criterion='gini', max_leaf_nodes=10)
    dtc.fit(train_X, train_Y)
    predictions = dtc.predict(test_X)
    return predictions

def classifier_SVM(train_X, train_Y, test_X):
    svc = svm.SVC()
    svc.fit(train_X, train_Y)
    predictions = svc.predict(test_X)
    return predictions
```

全部分类器模型的构建与预测位于"./src/classifiers"。

3.3 分类可视化结果

在进行可视化之前,为了将可视化高维特征数据的分布和分类结果,我们将多维的特征向量利用 PCA 降至 2 维。因此示意图上的 x 轴、y 轴分别表示降维后的两维数值,而红色点代表分类标签为 0(No-Survived),蓝色点代表分类标签为 1(Survived)。

首先,我们可以看到在训练集上的数据分布如图所示:

使用 Xgboost 分类器在测试集上的分类结果如图所示:

使用 DecisionTree 分类器在测试集上的分类结果如图所示:

使用 SVM 分类器在测试集上的分类结果如图所示:

通过观察可视化结果我们可以发现,由于分类器都是根据数据特征向量与分类标签之间的关系进行建模,进行有监督的学习,三种分类器对数据的划分结果较为相似,且分布情况与训练集非常相似。且 DecisionTree 在此问题上对数据的划分能力优于 SVM 分类器,而 Xgboost 分类器同样作为一种基于树的方法,其对数据的区分结果与 DecisionTree 相似,但从图中可以看出其区分能力略优于 DecisionTree。

通过将对测试集的结果提交至 Kaggle 平台进行打分,我们获得三种分类器的分类性能如下:

从得分情况可以看出,三种分类器的分类结果为 DecisionTree > Xgboost > SVM,与我们观察分析的结果基本一致。而 Xgboost 虽然对数据的区分度优于 DecisionTree,也有可能因此而产生更多的误分类情况,因此在结果上稍逊于 DecisionTree。

3.4 聚类过程

在经过预处理的数据集的基础上,分别采用 KMeans、Hierachical(层次聚类)、Spectral(谱聚类)三种方法进行聚类,由于本任务数据标签为二值标签,因此我们将数据聚为 2 类(n_clusters = 2),训练聚类模型的过程中不需要训练集的数据标签。最终我们使用训练好的模型对测试集进行预测。构建聚类模型的代码片段如下:

```
def cluster_KMeans(train_X, test_X):
    clf = KMeans(n_clusters=2)
    clf.fit(train_X)
    predictions = clf.predict(test_X)
    return predictions

def cluster_Hierarchical(test_X):
    clf = AgglomerativeClustering(n_clusters=2)
    predictions = clf.fit_predict(test_X)
    return predictions

def cluster_Spectral(test_X):
    clf = SpectralClustering(n_clusters=2)
    predictions = clf.fit_predict(test_X)
    return predictions
```

全部聚类模型的训练与预测位于"./src/clusters"。

3.5 聚类可视化结果

使用 KMeans 聚类模型在测试集上的聚类结果如图所示:

使用 Hierachical 聚类模型在测试集上的聚类结果如图所示:

使用 Spectral 聚类模型在测试集上的聚类结果如图所示:

通过观察可视化结果我们可以发现,KMeans 方法和 Hierachical 更接近于寻找到了两个簇中间的界限,对数据点的划分是比较明显的线性的划分;而 Spectral 方法由于是基于图的方法,因此其划分的数据点之间没有明显的区分界限。此外,由于 KMeans 方法是先在训练集上训练得到两个簇,再将测试集上的数据划分至两个簇中,因此其准确率可能会优于其他两个聚类方法。

通过将对测试集的结果提交至 Kaggle 平台进行打分,我们获得三种聚类模型的聚类结果如下:

Submission and Description	Public Score	Use for Final Score
Spectral.csv 13 minutes ago by Helaine	0.53110	
Spectral		
Hierachical.csv 22 minutes ago by Helaine	0.65071	
Hierachical		
KMeans.csv 23 minutes ago by Helaine	0.66028	0
Kmeans		

我们可以看到结果为: KMeans > Hierachical > Spectral。且聚类模型的效果低于分类模型。因此我们验证了,在对于分类问题上,往往有监督的方法比无监督的方法能得到更好的效果。