

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I.

ANNÉE 2019 - 2020

C1 : PERFORMANCES STATIQUES ET CINÉMATIQUES DES SYSTÈMES COMPOSÉS DE CHAINE DE SOLIDES

TD 11 - Modélisation cinématique des liaisons mécaniques (C4-5)

21 Janvier 2020

Compétences

- Modéliser; Proposer un modèle de connaissance et de comportement: Liaisons: géométrie des contacts entre deux solides; définition du contact ponctuel entre deux solides: roulement, pivotement, glissement, condition cinématique de maintien du contact; définition d'une liaison; liaisons normalisées entre solides, caractéristiques géométriques et repères d'expression privilégiés; torseur cinématique des liaisons normalisées; torseur des actions mécaniques transmissibles dans les liaisons normalisées; associations de liaisons en série et parallèle; liaisons cinématiquement équivalentes
- Communiquer; Rechercher et traiter des informations : Informations techniques

Le ROBOTVOLC: un robot mobile pour l'exploration volcanique 1

1 Contexte et présentation du système

a) Contexte

Les éruptions volcaniques peuvent avoir un impact important sur l'activité humaine, provoquant à la fois des déplacements de population, des dégâts matériels, ainsi que des changements de topographie et de climat. On considère qu'actuellement 10% de la population terrestre vit sous la menace des volcans, et 1500 volcans potentiellement en activité sont répertoriés sur la planète. Par conséquent, une compréhension fine des phénomènes volcaniques et une meilleure maîtrise des risques associés constituent un enjeu scientifique majeur.

Les observations scientifiques réalisées pendant les phases éruptives sont aujourd'hui fondamentales pour l'étude des volcans. En effet, les prélèvements des gaz magmatiques et des échantillons rocheux rejetés lors de ces phases constituent des indicateurs fiables de l'activité interne des volcans; ils sont donc une riche source d'informations pour les volcanologues. Cependant, les phases éruptives sont aussi des phases actives très dangereuses et il est primordial de limiter les risques humains lors d'observations et de prélèvements à proximité des cratères en éruption (Figure 1).

Avec ce constat, allié aux avancées technologiques dans le domaine de la robotique, la Communauté Européenne a financé le projet ROBOVOLC dont le but était la réalisation d'un robot mobile pour l'exploration volcanique (figure 2). Ce robot devait être capable de :

- s'approcher d'un cratère actif;
- collecter des échantillons rocheux issus de rejets éruptifs;
- collecter des échantillons gazeux;
- collecter d'autres données physiques et chimiques.

Le sujet propose d'étudier quelques parties structurelles du système ROBOVOLC et de valider plusieurs performances (liées à la mobilité et au prélèvement) de ce système.

^{1.} inspiré du sujet X-ENS 2017

FIGURE 1 - Schématisation d'un volcan en éruption

FIGURE 2 - Robot ROBOVOLC

b) Présentation du système

Le système ROBOVOLC est représenté sur la Figure 3. Il se divise en plusieurs sous-systèmes (liés à la navigation, au prélèvement et à la communication) qui sont détaillés dans les diagrammes SysML fournis dans l'annexe 1.

La partie mécanique de ROBOVOLC est constituée de deux parties : (i) la plateforme (châssis, roues) servant à la locomotion; (ii) l'équipement d'analyse (bras manipulateur, pince, sondes) pour le prélèvement et la mesure.

Une contrainte particulière dans la conception du sys-manipulateur tème ROBOVOLC est qu'il est soumis à des conditions extérieures particulièrement difficiles : terrain volcanique non structuré avec obstacles et fortes pentes, températures très élevées près des zones éruptives (les gaz atteignent $600^{\circ}C$) mais basses ailleurs à cause de l'altitude, présence de poussières de cendre très fines, ambiance corrosive due aux composants acides, etc.

FIGURE 3 - Représentation du système ROBOVOLC

Q 1 : Dans la phase de conception de ROBOVOLC, une alternative à un système de locomotion à roues était un système volant. Donner deux inconvénients d'un tel système remettant en cause son utilisation dans l'environnement volcanique considéré.

ROBOVOLC est piloté à distance depuis un poste de contrôle (Figure 4). La position géographique du robot est obtenue par un système GPS et est envoyée au poste de contrôle par liaison radio. De plus, l'opérateur peut visualiser en permanence les actions du système grâce aux images transmises par une caméra embarquée.

L'énergie électrique nécessaire au système est apportée par une unité de puissance avec quatre batteries couplées pour constituer deux unités de 24 V. La première est utilisée pour la plateforme, l'autre pour l'équipement d'analyse. Ces batteries sont positionnées sur la partie basse du châssis.

Q 2 : Citer un intérêt à mettre les batteries en position basse sur le système.

Un cahier des charges partiel est donné dans le tableau ci-dessous (tableau 1).

Q 3 : Citer une phase de vie du système qui contraint sa taille maximale et son poids maximal.

FIGURE 4 – Illustration du pilotage à distance du système ROBOVOLC

Critère	VALEUR
distance maximale entre ROBOVOLC et le poste de contrôle	2 km
temps de trajet pour une mission de 24 heures	1,5 h
vitesse de déplacement atteignable	0,5 m/s
dimensions du système (longueur/largeur/hauteur)	1900 mm x 1200 mm x 800 mm
masse maximale des composants modulaires	200 kg
charge utile maximale (instruments, etc.)	30 kg
pente maximale du sol	40°
hauteur maximale d'un obstacle	400 mm
diamètre des objets à saisir	entre 40 mm et 300 mm
masse maximale des objets à saisir	2,5 kg

TABLE 1 – Extrait du cahier des charges

2 Étude de la mobilité sur un sol plan

Objectif 1:

L'objectif de cette partie est de valider les performances de mobilité, de manoeuvrabilité et de contrôle du système de locomotion de ROBOVOLC. On cherche notamment à vérifier le critère suivant du cahier des charges :

Critère	VALEUR
vitesse de déplacement atteignable	0,5 <i>m</i> / <i>s</i>

a) Présentation du système de locomotion

Dans cette sous-partie, on présente l'architecture du système de locomotion de ROBOVOLC.

La plateforme de ROBOVOLC est équipée d'un châssis et de six roues motrices indépendantes et non directionnelles réparties symétriquement sur trois essieux (Figure 5).

Chaque roue représente un module autonome (Figure 6) dont la chaîne d'énergie est constituée d'une batterie, d'un variateur de vitesse, d'un moteur électrique à courant continu, d'un réducteur

de vitesse (de rapport de réduction r = 1/236, entouré sur la Figure 6), d'un capteur de vitesse et d'un micro-

FIGURE 5 – schématisation de la plateforme de ROBOVOLC (vue de sance pour chaque roue dessus)

contrôleur.

Les roues sont équipées de pneumatiques spéciaux de diamètre extérieur $D = 300 \, mm$.

 $\frac{v}{\sqrt{g \cdot l_c}}$ qui caractérise la vitesse de déplacement v de On introduit le nombre (adimensionnel) de Froude $F_r = -$ ROBOVOLC relativement à sa taille caractéristique l_c ; g est l'accélération de la pesanteur. Lorsque $F_r > 1$, les effets dynamiques ont une influence importante sur la trajectoire.

Q 4: Montrer que les effets dynamiques peuvent être ici négligés.

Dans la suite de cette partie, on suppose un roulement sans glissement longitudinal au niveau du contact roue-sol. On suppose de plus que le sol est plan et horizontal, que le contact roue-sol est ponctuel, et que le châssis et les roues sont des solides indéformables.

Comportement en ligne droite

Dans cette sous-partie, on détermine la commande permettant d'assurer une vitesse de déplacement en ligne droite donnée.

Une modélisation de la plateforme est donnée sur la Figure 7. On définit un repère local $(O, \vec{x}, \vec{y}, \vec{z})$ lié au châssis, \vec{x} correspondant à l'axe longitudinal du châssis (appelé aussi ligne de foi) illustré sur la Figure 5, et \vec{z} correspondant à l'axe vertical. Le point O est le centre géométrique et de masse de la plateforme dans le plan (O, \vec{x}, \vec{y}) parallèle au

Pour chaque roue notée S_i ($1 \le i \le 6$), on définit :

- e point de contact P_i entre la roue et le sol;
- le point O_i qui est la projection du point P_i sur l'axe de rotation de la roue.

La position de chaque point O_i est définie par $\overrightarrow{OO_i} = a_i \overrightarrow{x} + e_i \overrightarrow{y}$ avec $a_i = \pm a$ et $e_i = \pm e$. Le châssis est noté S_c et le sol est noté S_0 .

FIGURE 7 – Configuration de la plateforme

On donne le torseur cinématique du châssis par rapport au sol, correspondant à une translation rectiligne suivant la direction longitudinale \overrightarrow{x} à la vitesse constante v.

$$\left\{ \mathcal{V}_{(S_c/S_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ v \cdot \overrightarrow{x} \end{array} \right\}$$

Q 5: Donner la condition de roulement sans glissement pour une roue S_i par rapport à S_0 .

Q 6: Exprimer la vitesse de rotation ω_r de chaque roue par rapport au châssis, ainsi que la vitesse de rotation ω_m du moteur correspondant. Faire l'application numérique pour une vitesse $\nu=0,5m/s$.

c) Comportement en virage

Dans cette sous-partie, on analyse les glissements latéraux occasionnés au niveau des roues dans les phases de rotation du châssis.

Pour le système ROBOVOLC, un système à roues non directionnelles a été privilégié. Par conséquent, il n'y a pas de mécanisme de direction des roues et la rotation du châssis est obtenue par le mouvement différentiel des roues (comme sur un système à chenilles). Cette solution technique, même sans glissement longitudinal au contact rouesol, engendre un glissement latéral des roues pendant une phase de virage; c'est une condition nécessaire à la rotation. On ne considère que le glissement la latéral de la roue i au point P_i v_{gi} tel que $\overrightarrow{V}(P_i \in S_i/S_0) = v_{gi} \cdot \overrightarrow{y}$.

Q7: Donner trois avantages et deux inconvénients d'un système à roues non directionnelles.

On définit le torseur cinématique du châssis par rapport au sol pendant une phase de virage :

$$\left\{ \mathscr{V}_{(S_c/S_0)} \right\} = \left\{ \begin{array}{c} \omega_z \cdot \overrightarrow{z} \\ \nu_x \cdot \overrightarrow{x} + \nu_y \cdot \overrightarrow{y} \end{array} \right\}$$

On donne le vecteur de rotation instantané traduisant la rotation d'une roue S_i par rapport au châssis S_c : $\overrightarrow{\Omega}(R_i/S_c) = \omega_{ri} \overrightarrow{y}$

Pour les trois questions suivantes , on utilisera les notations génériques a_i et e_i afin de mener un calcul unique valable pour les 6 roues de la plateforme.

- **Q 8 : Exprimer la vitesse** $\overrightarrow{V}(P_i \in S_c/S_0)$ du point P_i en fonction de ω_z , ν_x , ν_y et des données géométriques.
- Q 9 : Exprimer d'autre part cette même vitesse $\overrightarrow{V}(P_i \in S_c/S_0)$ en fonction de la vitesse de glissement latéral v_{gi} , de la vitesse de rotation ω_{ri} de la roue i et des données géométriques.
- Q 10 : En déduire la vitesse de glissement latéral v_{gi} et la vitesse de rotation ω_{ri} de chaque roue en fonction de ω_z , v_x , v_y et des données géométriques.
 - Q 11 : Pour un mouvement de rotation pure ($\omega_z > 0$) autour du point ${\bf 0}$, indiquer sur le document réponse :
 - le signe de la vitesse de rotation ω_{ri} de chaque roue;
 - le sens de la vitesse de glissement latéral v_{gi}

Faire de même pour un mouvement de rotation pure autour du point O_1 . On précisera le raisonnement et on remplira les cases en utilisant les notations introduites sur le document réponse.

Q 12 : Donner une conséquence du glissement latéral sur les roues et proposer une solution technologique pour prendre en compte cette conséquence.

d) Modélisation cinématique de l'ensemble

On souhaite déterminer la liaison équivalente entre le châssis S_c et le sol S_0 . On se place dans le cas simplifié illustré par la figure 8.

- Chaque roue S_i est en liaison pivot d'axe $(O_i, \overrightarrow{y})$ avec le châssis S_c .
- Le contact entre chaque roue S_i et le sol S_0 est supposé ponctuel et on considère donc que la liaison est de type sphère-plan de normale (P_i, \vec{z}) .
- La position de chaque point O_i est définie par $\overrightarrow{OO_i} = a_i \overrightarrow{x} + e_i \overrightarrow{y}$ avec $a_i = \pm a$ et $e_i = \pm e$.
- La position de chaque point P_i est définie par $\overrightarrow{O_iP_i} = -R\overrightarrow{z}$.
- Q 13 : Dessiner le graphe de liaison permettant de modéliser ce problème.
- **Q 14 : Donner la forme du torseur cinématique de la liaison entre une roue** S_i **et le sol** S_0 ($\left\{ \mathcal{V}_{(S_i/S_0)} \right\}$).
- Q 15 : Donner la forme du torseur cinématique de la liaison entre une roue S_i et le châssis S_c ($\{\mathcal{V}_{(S_i/S_c)}\}$).
- Q 16 : Donner la forme du torseur cinématique équivalent entre S_c et S_0 en passant par une roue S_i que l'on notera $\{V^{eq_i}(S_c/S_0)\}$ (On traduira la chaine $S_c-S_i-S_0$). En déduire le nom de la liaison équivalente associée.
- **Q 17 :** Donner la forme du torseur cinématique équivalent entre S_c et S_0 en considérant toutes les chaines $S_c S_i S_0$ que l'on notera $\{\mathcal{V}^{eq}(S_c/S_0)\}$. En déduire le nom de la liaison équivalente associée.

FIGURE 8 – Modélisation cinématique simplifié du système .

3 Étude du bras manipulateur

Le package scientifique équipant ROBOVOLC est formé d'un bras manipulateur et d'une pince servant d'effecteur pour collecter des échantillons rocheux et poser/prendre des instruments sur le sol. Ces organes sont pilotés par des moteurs à courant continu contrôlés par des modules électroniques. Le système est en outre constitué d'un système d'échantillonnage des gaz (avec sonde) qui ne sera pas étudié ici.

L'objectif de cette partie est de valider les performances de déplacement multidirectionnel du bras manipulateur et de vérifier leur compatibilité avec le critère suivant du cahier des charges :

CRITÈRE	VALEUR
masse maximale des objets à saisir	2,5 kg

a) Modélisation cinématique

Dans cette sous-partie, on établit le lien entre la cinématique des liaisons et la cinématique de la pince située au bout du bras.

Le bras manipulateur est de type SCARA (*Selective Compliance Assembly Robot Arm*); c'est un système mécanique poly-articulé avec trois axes parallèles et une architecture en série (Figure 9). Il présente plusieurs avantages, notamment sa précision, sa rapidité, et sa très grande rigidité verticale.

L'ensemble est constitué de trois pièces assimilées à des solides indéformables :

- le bras 1, de masse m_1 , auquel on associe un repère $(O_1, \vec{x}_1, \vec{y}_1, \vec{z}_1)$;
- le bras 2, de masse m_2 , auquel on associe un repère $(O_2, \vec{x}_2, \vec{y}_2, \vec{z}_2)$;
- la tige 3 au bout de laquelle se situe la pince et éventuellement l'objet saisi. La masse m_3 de ce sous-ensemble est supposée ponctuelle au point P correspondant à la position de la pince.

Dans cette étude, le châssis de ROBOVOLC constitue le bâti 0 auquel on associe un repère (fixe) $(O_0, \vec{x}_0, \vec{y}_0, \vec{z}_0)$. On suppose par la suite que le sol est plan et horizontal; la direction $\vec{z}_0 = \vec{z}_1 = \vec{z}_2$ correspond donc à la verticale. On suppose également que le référentiel lié au bâti est galiléen.

Le positionnement horizontal de la pince dans le plan $(O_0, \vec{x}_0, \vec{y}_0)$ est obtenu par deux rotations indépendantes :

• celle du bras 1 en liaison pivot d'axe (O_1, \vec{z}_0) par rapport au bâti 0, on note $\theta_1 = (\vec{x}_0, \vec{x}_1)$ l'angle correspondant:

• celle du bras 2 en liaison pivot d'axe (O_2, \vec{z}_0) par rapport au bras 1, on note $\theta_2 = (\vec{x}_1, \vec{x}_2)$ l'angle correspondant.

Le positionnement vertical de la pince est quant à lui obtenu par une liaison glissière de direction \vec{z}_0 entre la tige 3 et le bras 2. Toutes les liaisons sont supposées parfaites.

On note: $\overrightarrow{O_0O_1} = d_1 \overrightarrow{z}_0$, $\overrightarrow{O_1O_2} = l_1 \overrightarrow{x}_1 + d_2 \overrightarrow{z}_0$, $\overrightarrow{O_2P} = l_2 \overrightarrow{x}_2 - \lambda_3 \overrightarrow{z}_0$

Les 3 degrés de liberté du bras sont donc θ_1 , θ_2 et λ_3 . Le débattement permis pour les deux liaisons pivot est $\pm 150^\circ$ (limitation par des butées).

Un schéma cinématique du système est proposé sur la Figure 9.

On donne de plus : $d_1 = 500 \, \text{mm}$, $d_2 = 30 \, \text{mm}$, $l_1 = 500 \, \text{mm}$, $l_2 = 500 \, \text{mm}$, $m_1 = 2 \, \text{kg}$, $m_2 = 2 \, \text{kg}$, $m_3 = 6 \, \text{kg}$ (incluant un objet saisi de masse 2,5 kg).

FIGURE 9 - schématisation et paramétrage du système SCARA

Dans un **modèle cinématique direct**, les données d'entrée sont les valeurs des angles de rotation θ_1 et θ_2 (appelés variables articulaires) et de la position verticale λ_3 de la pince. On cherche alors la configuration du système à partir de ces variables.

Q 18 : En représentant sur le document réponse la base du cylindre, montrer que le volume accessible par le point P (enveloppe de travail) est un cylindre à base non-circulaire.

Q 19 : Donner l'expression des coordonnées (x_p, y_p, z_p) et de la vitesse $\overrightarrow{V}(P \in 3/0)$ du point P dans le repère fixe $(O_0, \overrightarrow{x}_0, \overrightarrow{y}_0, \overrightarrow{z}_0)$ en fonction des variables θ_1, θ_2 et λ_3 et des dimensions constantes du problème.

Q 20: Montrer que la vitesse maximale V_{max} (en norme) que peut atteindre le point P dans le plan $(O, \vec{x}_0, \vec{y}_0)$ est obtenue pour $\theta_2 = 0^\circ$. Exprimer V_{max} en fonction de la vitesse de rotation maximale ω_{max} des moteurs et des dimensions constantes.

Dans un **modèle cinématique inverse**, les données d'entrée sont la position (x_p, y_p, z_p) et la vitesse (V_p^x, V_p^y, V_p^z) de la pince située en P dans le repère fixe $(O_0, \overrightarrow{x}_0, \overrightarrow{y}_0, \overrightarrow{z}_0)$. On cherche alors les lois à appliquer au niveau des liaisons (variables θ_1, θ_2 et λ_3) pour obtenir ces données.

Q 21 : Donner l'expression de λ_3 et $\dot{\lambda}_3$ en fonction de z_P , V_P^z et des dimensions constantes.

Q 22 : Pour une même position (x_p, y_p, z_p) du point P, montrer schématiquement qu'il y a deux configurations possibles des angles θ_1 et θ_2 . Par un raisonnement graphique, donner sur le document réponse la configuration complémentaire de celle dessinée correspondant à $\theta_1 = 90^\circ$ et $\theta_2 = -60^\circ$.

Q 23 : Montrer que quelle que soit la configuration, la valeur de l'angle θ_2 est entièrement déterminée par $x_P^2 + y_p^2$, et donner l'expression de θ_2 en fonction de $x_p^2 + y_p^2$ et des dimensions constantes.

4 Annexes

a) Modélisation SysML

FIGURE 10 – Diagramme des cas d'utilisation

FIGURE 11 – Diagramme de définition de blocs