# Session 3:

# Experimental design = Erors Avoiding errors

# Understanding errors & Experimental design

- Understanding different sources of errors
- Systematic errors
- Statistical errors
- Type I errors
- ${}^{\raisebox{-.4ex}{$\scriptscriptstyle\bullet$}}$  Type II errors
- Experimental design: avoiding, correcting, quantifying errors
- Independent evidence from alternative methods
- Replication, Replication
- · Randomization, iodmzoanaintR, antRoomdnziia
- · Controls and Initial conditions
- Planning experiments

#### Noise

• Ion channel open (high current) or closed (low current)



Snow on an old TV screen



# The two main types of errors

- Systematic errors
  - Bias in sampling
  - · Bias in measurement method
  - Malfunctioning equipment
  - Wrong equipment settings
- Systematic errors reduce accuracy
- How to deal with:
  - Randomize sampling to avoid bias
- Use controls (with known properties) to detect

- Statistical errors
  - Noise in measurements
  - Random fluctuations
- Variation in sample
- Reduce precision of your method
- Can be quantified if making replicates
- How to deal with:
  - Make more measurements
  - Decrease variation by choosing more uniform sample

# Examples of errors

- Systematic errors
- Bias in sampling: using a phonebook for polling in 1920
- Bias in method: sugar assay detects some sugars with higher sensitivity than others
- Photometer set to wrong wavelength
- pH meter calibrated with spoilt buffers

- Statistical errors
  - Noise, fluctuation, random variation
- Make sample more uniform (reduce variation)
  - Single age group
  - Blocking a field site
  - Grow cells under well controlled and reproducible conditions

72



#### Statistical errors

74

# Two types of statistical errors

- Type I error =  $\alpha$  error = false positive rate
- Reject null hypothesis when it is true
- Type II error =  $\beta$  error = false negative rate
  - Accept null hypothesis when it is false
- Statistical tests involve a trade-off between  $\alpha$  error and  $\beta$  error
- Compromise often used (though arbitrary):  $\alpha$ =0.05,  $\beta$ =0.2

#### Trade-off between Type I and Type II errors

- Consider this scenario
- $^{\circ}$  We don't know the true (population) mean but have taken two small samples (n = 4) from this population with these results
  - Sample A: mean = 20
  - Sample B: mean = 24
- Therefore we hypothesize that the population mean is
  - $H_0$  (null-hypothesis): true mean = 20
  - H<sub>a</sub> (alternative hypothesis): true mean = 24
- $^{\circ}$  Based on a t-test (used to test whether sample means are the same), we can work out the critical t value for rejecting these hypotheses (with n = 4,  $\alpha$  = 5 %) to be t = 3.2

76



# Trade-off between Type I and Type II errors

- From this rather constructed but possible example we see
  - $^{\circ}$  The smaller we make the  $\alpha$  error, the larger the  $\beta$  error gets, the smaller the power of the test
  - $\circ$  Trade-off between  $\alpha$  and  $\beta$
  - Power would increase with
    - larger distance between the two means (larger effect size)
    - smaller variance of the data (sharper peaks)
    - larger sample size (we are less likely to deviate from the true mean)
    - · larger α
    - choosing a test with higher power that can be used if the data fulfil stricter assumptions

78

# Specificity versus Sensitivity

#### 

$$sensitivity = \frac{TP}{all\ P} = \frac{TP}{TP + FN} = \frac{all\ P - FN}{all\ P} = 1 - \beta \qquad specificity = \frac{TN}{all\ N} = \frac{TN}{TN + FP} = \frac{all\ N - FP}{all\ N} = 1 - \alpha = \frac{TN}{all\ N} = \frac{TN}{TN + FP} = \frac{all\ N - FP}{all\ N} = \frac{1 - \alpha + P}{All\ N} = \frac{1 - \alpha +$$

sensitivity = power

80

81

#### Statistical errors

- Example: HIV screening
- o "A large study of HIV testing in 752 U.S. laboratories reported a sensitivity of 99.7% and specificity of 98.5% for enzyme immunoassay" (Chou et al. (2005). Screening for HIV: a review of the evidence for the U.S. preventive services task force. Annals of Internal Medicine (143): 55-73)
- What we know:
  - specificity = 0.985  $\Rightarrow$  false positive rate  $\alpha = 1 0.985 = 0.015$
  - sensitivity =  $0.997 \Rightarrow$  false negative rate  $\beta = 1 0.997 = 0.003$
  - At a false positive rate of 1.5% and a false negative rate of 0.3% this is not a bad test for screening purposes
  - UK population = 61,186,000 (total)
  - HIV positive = 73,000 (condition present: known to be HIV positive)

#### Statistical errors

#### Known condition

|                 |          | HIV <sup>+</sup> = all P = 73,000 | $HIV^{-} = all N = total - all P = 61,113,000$ |
|-----------------|----------|-----------------------------------|------------------------------------------------|
| Test<br>outcome | Positive | TP = all P - FN = 72,781          | $FP = \alpha * all N = 916,695$                |
|                 | Negative | $FN = \beta * all P = 219$        | TN = all N - FP = 60,196,305                   |

- HIV screening of the UK population will give loads of false positives although the specificity of the test is good
- General problem in screening for some rare condition
  - Extreme case: whole population negative (condition absent)
- Opposite if screening for something common
- Extreme case: whole population positive (condition present)

82

#### Exercise

Known condition (as confirmed by endoscopy)

|         |          | Positive | Negative |
|---------|----------|----------|----------|
| Test    | Positive | TP = 2   | FP = 18  |
| outcome | Negative | FN = 1   | TN = 182 |

- The Fecal Occult Blood (FOB) test is used in screening for bowel cancer
- From the above results of a clinical study, calculate the
  - false positive rate
- specificity
- o false negative rate
- sensitivity
- o power
- Is this test satisfactory for screening?

#### Independent Evidence

#### 84

#### The types of errors we make

#### • Check for systematic errors and make enough replicates

- Nevertheless, it is always possible that you fail to detect a
  problem with your instrumentation, that you reject the null
  hypothesis when it is true, or that you accept the null hypothesis
  when it is false
- The best way of making sure your conclusions are correct is by supporting them with independent evidence using alternative methods
- Getting the same results via entirely independent routes is more valuable than getting the same results from two independent measurements using the same protocol
- Stats alone is not enough

#### Independent evidence

- Example 1
- Measure pH with glass electrode AND pH indicators: do both measures agree?
- Exercise: think of further examples...

- 86

# Independent evidence

- The gold standard: a theory that makes many predictions that can be independently tested
- A reliable theory is supported by lots of independent evidence: it can explain a large variety of different phenomena
- ° Newton's laws of mechanics predict
- the swinging of a pendulum
- the acceleration of a falling apple
- the orbits of the planets
- the tides
- how you can turn the front wheel when cycling no hands by leaning to a side
- even postulating the existence of planet Neptune to explain the discrepancies between predicted and observed orbits of Uranus

#### Replication

88

# Replication

- Why Replication?
- Increases reliability
- Quantifies variability
- How much Replication?
- ° Rule of thumb: 30 replicates
- Can we calculate how many we really have to do?

Replication

- We can calculate this!
- Assuming you are going to use a t-test to compare the mean between two samples or treatments, and that the errors are normally distributed etc.
- $\circ$  Let  $\delta$  be the difference between two sample means you want to be able to detect (effect size)

 $\delta$  = *t*-statistic · standard error of the difference of the means (s.e.d.m.)

(eq. 1) 
$$\delta = t \sqrt{\frac{2s^2}{n}}$$

• Solve for number of replicates *n* 

(eq. 2)

90

# Replication

- Example: From a pilot study, we estimate mean = 50 and SD = 20
- Suppose we want to be able to detect a small effect as significant, say a difference of 10% from this mean, i.e.  $\delta = 5$
- Calculate *n* using the R function power.t.test()

# Replication

- Number of replicates n, power (1- $\beta$ ), significance level  $\alpha$ , standard deviation s, and effect size  $\delta$  are all coupled (each variable is a function of the others)
- You can calculate one, if all others are known or given
- Calculate n
- > power.t.test(delta=5,sd=20,sig.level=0.05,
  power=0.8,type='one.sample')
- Calculate δ
  - > power.t.test(n=128,sd=20,sig.level=0.05,
    power=0.8,type='one.sample')
- Calculate power (that's where the name comes from), a.k.a. sensitivity
- > power.t.test(delta=5,n=128,sd=20,sig.level=0.05,
  type='one.sample')

92

#### Exercise: replication

- From previous studies you know that a control group of untreated plants has a yield of 100 ± 10 kg m<sup>-2</sup> (mean ± standard deviation)
- Using the standard significance level of 0.05 and power of 0.80, calculate the sample size required to detect a difference of 10% from the mean of the control group as significant

## What is a sample?

- Note different meanings of 'sample'
  - Statisticians use the word sample for a subset of the whole population
  - e.g. 100 individual diabetes patients are a sample of the UK diabetes population
  - Experimentalists use sample for a single item
    - e.g. a blood sample from one individual patient at one particular time

94

#### What is a replicate?

- Pseudoreplicates
  - Replicates that aren't true, independent replicates
  - Pretend a high *n*
  - Measuring glucose concentration in different aliquots (portions) of the same blood 'sample'
    - this is a technical, but not biological replicate
  - Measuring glucose concentration in different samples from the same patient collected every day at the same time
  - appropriate only if the variation for a single individual is what you want to know
  - Measuring glucose concentration in different individuals
    - this is what you would usually call a biological replicate, encompassing all the biological variation and including technical variation

# Pseudoreplication

- You have to expect temporal or spatial autocorrelation in such data
- That means your data points are not independent and independence of errors is a crucial assumption behind the standard statistical tests
- What you can do (using temporally correlated data as an example)
- Average over all time points and perform analysis on the means: you loose information by averaging
- · Perform separate analysis for each time point: ignores dependencies
- Filter out autocorrelation or correct for autocorrelation
- · Analyse autocorrelated data with proper time series analysis
- For spatial autocorrelation there is geostatistics

96

#### Pseudoreplication retake

- Actually, if it's pseudoreplication or not depends on the question you want to answer, so let's revisit our first example
  - Measuring glucose concentration in several portions of the same blood 'sample'
    - This would be OK (true replicates) iff you want to know how precise your glucose measurements are rather than the variation of glucose levels among patients
  - Measuring glucose concentration in different samples from the same patient collected every day at the same time
    - This would be OK iff you want to know the variation of an individual's glucose concentration over time
  - You might actually want to know the variation on all three levels
    - Within sample ⇒ measurement error
    - Individual patient over time ⇒ temporal variability
    - Between patients ⇒ variability in population

#### Exercise

- To estimate number of bacteria in a sample, you make a dilution series and plate out 3 replicate aliquots of each dilution
- o Correct procedure?

9

#### Randomization

#### Randomization

- We randomize to reduce bias (systematic error)
- Proper randomization is not always easy
- Example: picking trees in a forest at random
- Idea: generate random locations (map coordinates) and then pick the trees closest to the randomly chosen positions (which are unlikely to have hit upon a tree)
- Let's try it out

100

# Randomization Voronoi cells of 20 randomly located trees The neighbourhood of tree A (the set of locations closer to A than any other tree, also known as the Voronoi neighbourhood) is larger than that of tree B so tree A would be selected with higher probability!

#### Randomization

- So that's not proper randomization
- The only way to do it is by actually numbering all the trees in the forest (enjoy) and then randomly picking from the list of tree numbers
- Make a random permutation of the sequence of numbers
- · Like shuffling cards
- In R you can use sample() for shuffling
- > sample(1:number\_of\_trees)
- sample() can do more than shuffling, you can randomly pick n elements from vector x with/without replacement like this:
- sample(vector, num elements, replace = FALSE)

```
> sample(1:10, 4, replace=FALSE)
```

[1] 9 6 4 8

102

#### Exercise: randomization

- The task is to randomly assign 100 patients to 2 groups that will receive different treatments (drug or placebo)
  - ° The patient id's are numbered from 1 to 100 for convenience
  - Make a vector **p** containing all 100 patient id's
  - Make a random permutation of these 100 numbers (that means all patient id's should occur exactly once) and store them in a new variable pr
  - · Assign the first half of **pr** to treatment A and the second to treatment B

#### Controls

- Negative controls
  - · Leave out test substance
- Positive controls
- Include known amounts of known substance = standard
- Internal standard
- External standard
- Good to detect systematic errors
- Calibration curve
- Covers a range of concentrations from 0 to x
- Includes negative and positive controls

104

#### Initial conditions

- Initial conditions in different samples (in the experimental sense) are likely different (whether you have picked the samples randomly, which you should, or not)
- Therefore you have to measure them
- $\circ$  Take aliquots at time 0
- Always take a measurement before starting treatment including control treatment

#### Some practical advice on experiments

- Measuring change over time (e.g. rates of reactions, kinetics)
  - If you don't know how much activity you can expect over a range of treatments, or if you have both very fast and very slow reactions in your assay...
  - ...then use a log scale for your time points such as this
  - 0, 1, 2, 4, 8, 16, 32, 64, 128, ... min
  - of course you must include time zero in your sampling, as initial conditions can be different from tube to tube

106

# Some practical advice on experiments

- Enzyme kinetics
  - $^{\circ}$  If you have a rough idea of  $K_{\rm m}$  and  $V_{\rm max}$  from pilot data...
  - $^{\circ}$  ...then you can calculate the substrate concentration to use to get a good coverage of activities v/ $V_{\rm max}$  (.1 .2 .3 .4 .5 .6 .7 .8 .9 .95)

Michaelis-Menten kinetics

$$v = \frac{V_{\text{max}} s}{K_{\dots} + s}$$

solved for substrate concentration s

$$s = \frac{v/V_{\text{max}} K_m}{1 - v/V_{\text{max}}}$$



# Some practical advice on experiments

• More generally, if your response is not linear, making measurements at equidistant points on the x axis is simple but not smart

| Measurement scales                              |          |                                                          |                                                                                                      |  |  |  |
|-------------------------------------------------|----------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
| Quantitative or continuous                      | Ratio    | Zero value<br>defined so<br>can calculate<br>proportions | Concentrations, energy,<br>lengths, absolute<br>temperature<br>Makes sense to say 'twice as<br>much' |  |  |  |
| variables                                       | Interval | Distances<br>defined so<br>can calculate<br>differences  | Temperature in Celsius, calendar dates                                                               |  |  |  |
| Catagorical                                     | Ordinal  | Rank order defined                                       | Low, medium, high (you can score, rate or rank)                                                      |  |  |  |
| Categorical variables                           | Nominal  | Distinctions defined                                     | Bird, Mammal; Female, Male<br>(you can classify but not<br>rank)                                     |  |  |  |
| Don't calculate sums, differences, means, etc.! |          |                                                          |                                                                                                      |  |  |  |