

Ex. 09 - DQL

Exercício 01. Planeje um experimento na sua área de atuação no delineamento quadrado latino.

Exercício 02. Obtenha um conjunto de dados da sua área, coletado num experimento instalado no delineamento quadrado latino, faça a análise de variância e interprete os resultados.

EXERCÍCIO 01

Áreas de atuação:

- 1. Genética Quantitativa;
- 2. Melhoramento de Plantas;
- 3. Hortaliças;

• Título do experimento:

o Desempenho produtivo de batatas obtidas por mutagênese via radiação gama.

· Hipóteses testadas:

- o H0: O desempenho produtivo de batatas não é afetado pela mutagênese;
- o Ha: O desempenho produtivo de batatas é afetado, em pelo menos um dos tratamentos com mutagênese;

Objetivos:

o Verificar o potencial uso de mutagênese por radiação gama sobre batatas sementes na obtenção de novas cultivares;

• Fatores e níveis:

- o Intensidade de radiação gama (Gy);
- Níveis do tratamento:
 - a. 0,0 Gy;
 - b. 2,0 Gy;
 - c. 4,0 Gy;
 - d. 6,0 Gy;
 - e. 8,0 Gy;

Variável resposta:

o Peso, em quilogramas, de todos os tubérculos comerciais colhidos em uma parcela composta por 7 plantas;

• Design Experimental:

- o Delineamento em quadrado latino;
- o Justificativa:
 - Declividade e variação da textura do solo no sentido das colunas;
 - Presença de sombra parcial no sentido das linhas;
 - ∴ Foi utilizado o quadrado latino para validar se há efeito da linha e/ou coluna no experimento;
- ∘ O n° de repetições adotado deve ser equivalente ao número de níveis do tratamento (n = 6, ∴ j = 6);

```
# Data Frame único para o agricolae gerar o croqui
Gama <- c("0Gy", "2Gy", "4Gy", "6Gy", "8Gy")

# Gera a matriz com o delineamento
croqui <- design.lsd(Gama, serie = 2, seed = 1704)
print(croqui)

# Armazena apenas a matriz do delineamento na variável plano
plano <- croqui$book</pre>
```

```
# Paleta do RColorBrewer
paleta <- brewer.pal(9, "BrBG")[1:5]</pre>
# Plota o croqui da área
croquiDQL \leftarrow ggplot(plano, aes(x = col, y = row, label = Gama, fill = Gama)) +
  geom_tile(color = "white",lwd = 1) +
 geom_text(aes(label = Gama), color = "black", size = 4) +
 scale_fill_manual(values = paleta) +
 labs(
   x = "Coluna",
   y = "Linha",
   title = "DQL Batata | Croqui",
   fill = "Radiação") +
 theme_light() +
 theme(
   axis.text.x = element_text(angle = 0, vjust = 0.5, hjust = 0.5), # Ajustar a posição dos rótulo
   panel.grid = element_blank(),
   plot.title = element_text(hjust = 0.5)
print(croquiDQL)
```


Observe a distribuição em função do quadrado latino. Em cada linha e coluna há a distribuição de todas as doses exatamente 1 vez. O design final tem tamanho igual ao quadrado do número de tratamentos;

EXERCÍCIO 02

Para esse exercício, será utilizada a variável peso de tubérculos comerciais.

\blacktriangledown Associação do croqui ao conjunto de dados:

```
plano <- plano[order(plano$Gama), ] # Ordena o croqui pela dose, parean
DQLpotato <- cbind(DQLpotato, plano) # Unifica a tabela com posições do
DQLpotato <- subset(DQLpotato, select = -c(plots, Gama)) # Remove colunas não necessárias
```

▼ Análise exploratória:

1. Gráfico de pontos:

```
ggplot(DQLpotato, aes(x = Dose, y = pTub)) +
  geom_point() +
  expand_limits(y = 0) +
  labs(
```

```
x = "Dose de radiação (Gy)",
y = "Peso de tubérculos comerciais (kg)",
title = "DQL Batata | Gráfico de Pontos") +
theme(
plot.title = element_text(hjust = 0.5))
```


Gráfico de pontos para dados de peso de tubérculos comerciais para diferentes doses de radiação.

2. Gráfico BoxPlot:

```
ggplot(DQLpotato, aes(x = Dose, y = pTub)) +
geom_boxplot() +
expand_limits(y = 0) +
labs(
    x = "Dose de radiação (Gy)",
    y = "Peso de tubérculos comerciais (kg)",
    title = "DQL Batata | BoxPlot") +
theme(
    plot.title = element_text(hjust = 0.5))
```


Gráfico de pontos para dados de peso de tubérculos comerciais para diferentes doses de radiação.

3. Gráfico de escala de produção por parcela:

```
ggplot(DQLpotato, aes(x = col, y = row, label = Name, fill = pTub)) +
geom_tile(color = "white",lwd = 1) +
geom_text(aes(label = Name), color = "black", size = 4) +
scale_fill_gradient(low = "#F1E7C3", high = "#7D5119") +
```

```
geom_text() +
labs(
    x = "Linha",
    y = "Coluna",
    title = "DQL Batata | Produção",
    fill = "Produção (Kg)") +
    theme_light() +
    theme(
        axis.text.x = element_text(angle = 0, vjust = 0.5, hjust = 0.5), # Ajustar a posição dos rót
        panel.grid = element_blank(),
        plot.title = element_text(hjust = 0.5)
```


Gráfico do croqui experimental colorido em função da produção total da parcela.

▼ Validação das pressuposições da ANOVA:

Para realizar a validação das pressuposições da ANOVA, primeiro é necessário criar um modelo de ajuste linear para o conjunto de dados e depois prosseguir com os testes de normalidade e homogeneidade.

• Ajuste do modelo linear:

```
mDQL = aov(pTub ~ row+col+Dose, DQLpotato)
resDQL <- residuals(mDQL)  # Residuos
resStudDQL <- rstandard(mDQL)  # Residuos studentizados</pre>
```

• Shapiro-Wilk | Teste de normalidade dos resíduos

```
shapiro.test(resStudDQL)
```

Resultado:

```
data: resStudDQL
W = 0.97415, p-value = 0.7506
```

Portanto → De acordo com o teste de Shapiro-Wilk a 5% de probabilidade de erro, os resíduos podem ser considerados normais.

```
bptest(mDQL)
```

Resultado:

```
data: mDQL
BP = 16.674, df = 12, p-value = 0.1623
```

Portanto → De acordo com o teste de Breusch-Pagan a 5% de probabilidade de erro, as variâncias podem ser consideradas homogêneas.

```
ylab = "Logaritmo da verossimilhança")
title(main = "DQL Batata | Gráfico Box-Cox")
```

DQL Batata | Gráfico Box-Cox

O lambda=1 não pertence ao intervalo de confiança do logaritmo da verossimilhança dos dados. Observa-se lambda = -1.

• Transformação de dados:

Portanto o Com lambda próximo à -1, aplica-se a transformação $y^{'}=\frac{1}{y+0.5}$ para a variável peso total de tubérculos.

```
DQLpotato$pTubT <- 1 / (DQLpotato$pTub + 0.5)
```

• Ajuste do modelo linear para dados transformados:

```
mDQLt = aov(pTubT ~ row+col+Dose, DQLpotato)
resDQLt <- residuals(mDQLt)  # Residuos
resStudDQLt <- rstandard(mDQLt)  # Residuos studentizados</pre>
```

• Shapiro-Wilk | Teste de normalidade dos resíduos para dados transformados

```
shapiro.test(resStudDQLt)
```

Resultado:

```
data: resStudDQLt
W = 0.94373, p-value = 0.1804
```

Portanto → De acordo com o teste de Shapiro-Wilk a 5% de probabilidade de erro, os resíduos podem ser considerados normais.

• Breusch-Pagan | Teste de homogeneidade de variâncias para dados transformados

```
bptest(mDQLt)
```

Resultado:

```
data: mDQLt
BP = 14.664, df = 12, p-value = 0.2603
```

Portanto → De acordo com o teste de Breusch-Pagan a 5% de probabilidade de erro, as variâncias podem ser consideradas homogêneas.

• **Gráfico Box-Cox** | Verifica o lambda para dados transformados

DQL Batata | Gráfico Box-Cox após transformação

O lambda=1 pertence ao intervalo de confiança do logaritmo da verossimilhança dos dados.

Visto que o conjunto de dados atendem as pressuposições da ANOVA, é possível seguir para a Análise de Variância.

▼ ANOVA | Análise de variância

• Uso do ExpDes.pt para realização da análise de variância:

• Resultado:

```
# ANOVA:
Quadro da analise de variancia
                  SQ
                                  Fc
                                       Pr>Fc
          GL
                           QM
Tratamento 4 0.287694 0.071923 81.951 0.00000
           4 0.014470 0.003617 4.122 0.02499
           4 0.002487 0.000622 0.708 0.60157
Coluna
Residuo
          12 0.010532 0.000878
          24 0.315182
Total
CV = 9.47 \%
```

- Interpretações:
 - o Foi observado efeito para a linha a 5% de probabilidade de erro.
 - $\circ~$ Não foi observado efeito para a coluna a 5% de probabilidade de erro.
 - A hipótese nula é rejeitada, aceitando-se a hipótese alternativa de que há diferenças significativas a 5% de probabilidade de erro entre, pelo menos, dois tratamentos.
 - o O coeficiente de variação está dentro do adequado.

▼ Regressão Polinomial

• Para realizar a regressão, os regressores foram estimados por meio da função "dic" presente no pacote já mencionado, o ExpDes.pt:

```
# Code:
DQLpotato$Dose <- as.numeric(as.character(DQLpotato$Dose))</pre>
```

```
with(DQLpotato,
    dql(Dose,
       row,
       col,
       pTubT,
       quali = F,
       sigF = 0.05,
       sigT = 0.05))
Resultado
 [...]
Ajuste de modelos polinomiais de regressao
Modelo Linear
 _____
  Estimativa Erro.padrao tc valor.p
 -----
 b0 0.1765 0.0103 17.1989 0
b1 0.0341 0.0021 16.2552 0
 R2 do modelo linear
 0.806063
 Analise de variancia do modelo linear
 _____
              GL SQ QM Fc valor.p
 -----
Efeito linear 1 0.2319 0.2319 264.23 0
 Desvios de Regressao 3 0.0558 0.0186 21.19 4e-05
          12 0.0105 0.0009
Modelo quadratico
 _____
  Estimativa Erro.padrao tc valor.p
 -----
 b0 0.2310 0.0125 18.5230 0
 b1 -0.0204 0.0074 -2.7628 0.0172
 b2 0.0068 0.0009 7.6894 0.00001
 R2 do modelo quadratico
 0.986437
 -----
Analise de variancia do modelo quadratico
 _____
             GL SQ QM Fc valor.p
 -----
 Efeito linear 1 0.2319 0.2319 264.23 0
 Efeito quadratico 1 0.0519 0.0519 59.13 1e-05
 Desvios de Regressao 2 0.0039 0.0019 2.22 0.15091
           12 0.0105 0.0009
 Modelo cubico
```

```
Estimativa Erro.padrao tc valor.p
b0 0.2385 0.0132 18.1320 0
b1 -0.0474 0.0167 -2.8358 0.0150
b2 0.0162 0.0053 3.0577 0.0099
b3 -0.0008 0.0004 -1.8013 0.0968
R2 do modelo cubico
0.996335
Analise de variancia do modelo cubico
GL SQ QM Fc valor.p
-----
Efeito linear 1 0.2319 0.2319 264.23 0
Efeito quadratico 1 0.0519 0.0519 59.13 1e-05
Efeito cubico 1 0.0029 0.0029 3.24 0.09682
Desvios de Regressao 1 0.0010 0.0010 1.2 0.29455
        12 0.0105 0.0009
```

Com base nos resultados obtidos, é possível concluir que:

- O modelo com melhor ajuste é o cúbico, com R² de 99.63%, no entanto o efeito cúbico não foi significativo. Logo, estuda-se o ajuste de um polinômio de grau menor.
- o O modelo com ajuste de todos os regressores estimados é o quadrático, com R2 de 98.64%;
 - Efeito linear foi significativo;
 - Efeito quadrático foi significativo;
- A equação geral:

$$f(x) = 0.2310 + 0.0204 \times x - 0.0068 \times x^{2}$$

• A equação encontrada reflete a variável resposta transformada. Portanto a equação final encontrada seria:

$$f(x) = rac{1}{(0.2310 + 0.0204 imes x - 0.0068 imes x^2) + 0.5}$$

▼ Representação gráfica dos dados

• Criação da função que armazena a equação encontrada:

```
functionDQL <- function(x){
  (1/(0.2310 - 0.0204*x + 0.0068*x^2) + 0.5)
}</pre>
```

• Gráfico de pontos associado à regressão quadrática:

```
ggplot(DQLpotato, aes(x=Dose, y = pTub)) +
    stat_summary(fun = mean, geom = "point", color = "red3") +
    stat_function(fun = functionDQL, color = "black", size = 0.8) +
    expand_limits(y = 1) +
    scale_x_continuous(breaks = seq(min(DQLpotato$Dose), max(DQLpotato$Dose), by = 2)) +
    labs(
        x = "Dose (Gy)",
        y = "Peso de tubérculos (Kg)",
        title = "DQL Batata | Regressão polinomial (x²)") +
    theme(
        plot.title = element_text(hjust = 0.5)) +
    annotate("text", x = 5, y = 4.6, label = "y = 1/(0.2310 - 0.0204x + 0.0068x²)) - 0.5",
        color = "blue4", size = 3, hjust = 0, vjust = 4)
```


Regressão cúbica aplicada aos dados de altura de plantas de alho, aos 42 DAP, sob diferentes doses de irradiação gama.

III CONCLUSÕES

- Delineamento adotado:
 - $\circ~$ Há efeito da linha nos dados coletados para esse experimento.
 - o Não há efeito da coluna nos dados coletados para esse experimento.
 - .: Não seria "necessário" adotar o delineamento em quadrado latino, pois os efeitos ocorreram em apenas um dos sentidos.
- ANOVA e regressão polinomial:
 - Há diferenças entre, pelo menos duas doses testados para a variável produção de tubérculos com padrão comercial por parcela. Portanto, foi realizada uma regressão a fim de estudar o comportamento das doses sobre a variável resposta.
 - A regressão polinomial foi bem sucedida e conseguiu determinar regressores com bom ajuste ao conjunto de dados.
 - o A mutagênese por meio de radiação grama promove um incremento leve sob doses menores, seguido por uma queda em doses seguintes, efeito conhecido como Hormese. Logo, a dose imediatamente superior a testemunha, de 2,0 *Gy* promoveu ganhos para a variável peso de tubérculos comerciais, no entanto, doses maiores são seguidas por quedas progressivas no vigor das plantas.