Untitled

Introdução

Os dados foram obtidos do arquivo moscas.txt, extraído do site http://www.ime.unicamp.br/~cnaber/Moscas.txt. Este se refere à sete variáveis medidas em duas espécies das moscas chamadas bitting fly (Leptoconops carteri e Leptoconops torrens), sendo elas espécie (0 - torrens e 1- carteri), comprimento da asa, largura da asa, comprimento do terceiro palpo, largura do terceiro palpo, comprimento do quarto palpo, comprimento do 12º segmento da antena e comprimento do 13º segmento da antena. Para ser mais eficiente, renomearemos essas variáveis como sendo: Especie, C.Asa, L.Asa, C3p, L3p, C4p, C12a e C13a, respectivamente.

O objetivo do estudo é comparar as duas espécies de moscas com as demais variáveis de interesse para saber se há diferença entre esses dois grupos e, se houver, em que variáveis reside(m) essa(s) diferença(s).

Figure 1: BoxPlots

Figure 2: BoxPlots

Gráfico de Dispersão

	C.Asa	L.Asa	СЗр	L3p	C4p	C12a	C13a
TORRENS							
C.Asa	40,73	0,67	0,17	0,19	0,39	0,32	0,29
L.Asa	11,72	7,49	0,30	$0,\!37$	$0,\!48$	0,13	$0,\!12$
C3p	2,33	1,83	$4,\!83$	-0,19	0,11	-0,18	0,09
L3p	2,20	1,84	-0,78	$3,\!38$	$0,\!37$	0,10	0,00
C4p	$6,\!26$	$3,\!26$	0,61	1,70	$6,\!24$	-0,01	-0,02
C12a	1,88	$0,\!32$	-0,37	$0,\!17$	-0,02	0,84	0,78
C13a	1,66	0,30	$0,\!17$	0,00	-0.05	0,64	0,80
CARTERI							
	C.Asa	L.Asa	СЗр	L3p	C4p	C12a	C13a
C.Asa	31,29	0,61	0,62	0,56	0,50	0,42	0,60
L.Asa	$17,\!47$	25,79	$0,\!26$	$0,\!50$	$0,\!38$	$0,\!28$	$0,\!28$
C3p	$9,\!83$	3,70	8,04	$0,\!46$	$0,\!20$	$0,\!22$	$0,\!38$
L3p	$5,\!15$	4,14	$2,\!17$	2,70	0,41	0,18	$0,\!25$
C4p	12,88	8,94	2,62	$3,\!12$	$21,\!29$	$0,\!20$	$0,\!26$
C12a	2,97	1,79	0,79	$0,\!38$	1,15	1,58	0,87
C13a	3,63	$1,\!57$	$1,\!17$	$0,\!46$	1,32	1,19	1,18

Variável	Especie	Média	DP	Var	CV	Mínimo	Mediana	Máximo	n
C.Asa	Carteri	99,34	5,59	31,29	5,63	82	99,00	112	35
	Torrens	$96,\!46$	$6,\!38$	40,73	6,62	85	95,00	109	35
L.Asa	Carteri	43,74	5,08	25,78	11,61	19	$45,\!00$	50	35
	Torrens	42,91	2,74	7,49	$6,\!38$	38	44,00	49	35
C3p	Carteri	39,31	2,84	8,05	$7,\!21$	33	39,00	44	35
	Torrens	$35,\!37$	2,20	$4,\!83$	$6,\!21$	31	36,00	39	35
L3p	Carteri	14,66	1,64	2,70	$11,\!22$	11	15,00	19	35
	Torrens	$14,\!51$	1,84	$3,\!37$	$12,\!66$	11	14,00	18	35
C4p	Carteri	30,00	4,61	$21,\!29$	$15,\!38$	20	31,00	38	35
	Torrens	$25,\!63$	2,50	$6,\!24$	9,75	21	26,00	31	35
C12a	Carteri	9,66	1,26	1,58	13,04	6	10,00	12	35
	Torrens	$9,\!57$	0,92	0,84	$9,\!58$	8	9,00	13	35
C13a	Carteri	$9,\!37$	1,09	1,18	11,60	7	9,00	11	35
	Torrens	9,71	0,89	0,80	9,20	8	10,00	13	35

A fim de comparar ambas as espécies, foi utilizado a metodologia MANOVA para testar se há diferença entre a média da espécie Torrens e Carteri. Quatro testes multivariados foram utilizados: Wilks, Pillai, Hotelling-Lawley e Roy, nas quais têm aproximação pela distribuição F. Para todos os testes constata-se que não há evidências para afirmar que as médias são iguais e, portanto, há o interesse em analisar cada variável separadamente para identificar onde reside a diferença.

Para tal, foi utilizado o teste do tipo CBU=M. Considerando um nível de significância de 5%, conclui-se que

quatro variáveis possuem as médias estatisticamente iguais em relação as duas espécies, sendo estas a largura da asa, largura do terceiro palpo, comprimento do 12° segmento da antena e comprimento do 13° segmento da antena. Para as demais, tem-se evidência que existe diferença entre as espécies de estudo.

Estatística	Valor	Aprox. Dist. F	P-Valor
Wilks	0,39	13,82	< 0,01
Pillai	0,61	13,82	< 0,01
Hotteling-Lawley	1,56	13,82	< 0,01
Roy	1,56	13,82	< 0,01

Variável	Estatística	p-valor
C.Asa	4,05	0,00
L.Asa	0,72	$0,\!40$
C3p	$42,\!26$	0,00
L3P	0,12	0,73
C4p	24,29	0,00
C12a	0,11	0,75
C13a	2,08	$0,\!15$

QUESTÃO 2

```
## Importance of components:
##
                                       Comp.2
                                                 Comp.3
                                                                       Comp.5
                             Comp.1
                                                            Comp.4
## Standard deviation
                          1.7116366 1.2424549 0.9487536 0.77266752 0.72078630
## Proportion of Variance 0.4185286 0.2205277 0.1285905 0.08528787 0.07421898
## Cumulative Proportion 0.4185286 0.6390563 0.7676468 0.85293466 0.92715364
                             Comp.6
                                        Comp.7
## Standard deviation
                          0.5792105 0.41765975
## Proportion of Variance 0.0479264 0.02491995
## Cumulative Proportion 0.9750800 1.00000000
```

autovalores

Residuos do modelo com a Componente 1

