Komponenty sieci światłowodowych

Program wykładu

- Wzmacniacze EDFA
- Sprzęgacze światłowodowe
 - kierunkowe
 - **WDM**
- Izolator optyczny, cyrkulator
- Filtry optyczne (cienkowarstwowe, z siatką Bragga)

Rodzaje wzmacniacze optycznych

- półprzewodnikowe (SLA, SOA, LOA)
- •światłowodowe
 - •wykorzystujące nieliniowe efekty we włóknie:
 - •wymuszone rozpraszanie Ramana (SRS)
 - •wymuszone rozpraszanie Brillouina (SBS)
 - •domieszkowane:
 - •EDFA (III okno)
 - •PDFA (II okno)

Do budowy wzmacniacza EDFA potrzeba kilku pasywnych komponentów światłowodowych:

- sprzęgacz kierunkowy (do pomiaru mocy);
- sprzęgacz WDM (pompa + sygnał);
- izolator optyczny.

Poza tymi elementami jest używanych jeszcze wiele innych:

- filtry optyczne;
- siatki Bragga;
- cyrkulatory;
- tłumiki;
- przełączniki optyczne....

Sprzęgacz kierunkowy (directional coupler) $P_{01} \qquad P_{01}/P_{11} = \cos^2(\kappa \cdot 1)$ $P_{02}/P_{11} = \sin^2(\kappa \cdot 1)$ $P_{02}/P_{11} = \sin^2(\kappa \cdot 1)$ $P_{03}/P_{11} = \sin^2(\kappa \cdot 1)$ $P_{04}/P_{11} = \sin^2(\kappa \cdot 1)$ $P_{05}/P_{11} = \sin^2(\kappa \cdot 1)$ P_{05}/P_{11

$$l_L = \frac{1}{4} \frac{\lambda_0}{n_L} \,, \qquad l_H = \frac{1}{4} \frac{\lambda_0}{n_H} \,$$

typowo: $\rm n_G=1,52$, $\rm n_L=1,46~(SiO_2)$, $\rm n_H=2,3~(TiO_2)$

strukturę filtru można zapisać:

GHLHLHLHLHLHG

lub krócej:

G(HL)²HLL(HL)²HG

ogólnie:

 $G(HL)^{N1}HLL(HL)^{N2}HLL(HL)^{N3}HLL(HL)^{N4}\ \dots\ HG$

Analogia: rezonator lasera DFB

Laser DFB z przesunięciem fazy o $\lambda/4$

Parametry multiplekserów/demultiplekserów cienkowarstwowych:

DWDM:

ODLEGŁ. KANAŁÓW 100GHz (ok. 0,8 nm) PASMO PRZENOSZENIA 0,2 nm (-0,5 dB)

TŁUMIENIE WTRĄCONE 3,5 dB dla 8 kan., 5,5 dB dla 16 kan.

SEPARACJA >25 dB dla sąsiedniego kan., >45dB dla pozost.

ODBICIE < - 45 dB

Parametry multiplekserów/demultiplekserów cienkowarstwowych:

DWDM:

ODLEGŁ. KANAŁÓW 100GHz (ok. 0,8 nm) PASMO PRZENOSZENIA 0,2 nm (-0,5 dB)

TŁUMIENIE WTRĄCONE 3,5 dB dla 8 kan., 5,5 dB dla 16 kan.

SEPARACJA >25 dB dla sąsiedniego kan., >45dB dla pozost.

ODBICIE < - 45 dB

CWDM:

ODLEGŁ. KANAŁÓW 20 nm

PASMO PRZENOSZENIA 12 nm (-0,5 dB)

TŁUMIENIE WTRĄCONE 2 dB dla 4 kan., 3,5 dB dla 8 kan.

SEPARACJA >30 dB dla sąsiedniego kan., >50dB dla pozost.

ODBICIE < - 45 dB

