Math 311: Topics in Applied Math 1 5: Orthogonality

5.3: Least Squares Problems

Summary

- Recall an *overdetermined* system: $\mathbf{A}\mathbf{x} = \mathbf{b}$ where \mathbf{A} is an $m \times n$ matrix with m > n (more equations than unknowns), $\mathbf{x} \in \mathbb{R}^n$ is an unknown vector, and $\mathbf{b} \in \mathbb{R}^m$ is a given vector. Such systems are generally inconsistent. They have no (exact) solution.
- The **residual** is $r(\mathbf{x}) = \mathbf{b} \mathbf{A}\mathbf{x}$. The distance between \mathbf{b} and $\mathbf{A}\mathbf{x}$ is $\|\mathbf{b} \mathbf{A}\mathbf{x}\| = \|r(\mathbf{x})\|$.
- We'd like to find x ∈ Rⁿ for which ||r(x)|| is a minimum or (equivalently) ||r(x)||² is a minimum.
 A vector x̂ that accomplishes this is a least squares solution of the system Ax = b.
- Moreover, $\mathbf{p} = \mathbf{A}\hat{\mathbf{x}}$ is a vector in $R(\mathbf{A})$, the column space of \mathbf{A} , that is closest to \mathbf{b} . The vector \mathbf{p} is the **projection** of \mathbf{b} onto $R(\mathbf{A})$.
- THEOREM: Let *S* be a subspace of \mathbb{R}^m . For each $\mathbf{b} \in \mathbb{R}^m$, there is a unique $\mathbf{p} \in S$ that is closest to \mathbf{b} ; i.e., $\|\mathbf{b} \mathbf{y}\| > \|\mathbf{b} \mathbf{p}\|$ for any $\mathbf{y} \neq \mathbf{p}$ in *S*. Such a $\mathbf{p} \in S$ will be closest to \mathbf{b} if and only if $\mathbf{b} \mathbf{p} \in S^{\perp}$, the orthogonal complement of *S*.
- By this theorem, $\hat{\mathbf{x}}$ is a least squares solution if and only if $\mathbf{b} \mathbf{p} = \mathbf{b} \mathbf{A}\hat{\mathbf{x}} = r(\hat{\mathbf{x}}) \in R(A)^{\perp} = N(\mathbf{A}^{T})$. Equivalently, $\mathbf{0} = \mathbf{A}^{T} r(\hat{\mathbf{x}}) = \mathbf{A}^{T} (\mathbf{b} \mathbf{A}\hat{\mathbf{x}})$, whence we must solve $\mathbf{A}^{T} \mathbf{A} \mathbf{x} = \mathbf{A}^{T} \mathbf{b}$, an $n \times n$ system of linear equations called the **normal equations**.
- THEOREM: If **A** is an $m \times n$ matrix of rank n, then the normal equations $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ have a unique solution $\hat{\mathbf{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$, which is the unique least squares solution of the system $\mathbf{A} \mathbf{x} = \mathbf{b}$.
- The projection vector $\mathbf{p} = \mathbf{A}\hat{\mathbf{x}} = \mathbf{A} \left(\mathbf{A}^T \mathbf{A} \right)^{-1} \mathbf{A}^T \mathbf{b}$ is the vector in $R(\mathbf{A})$ closest to \mathbf{b} in the least squares sense. The matrix $\mathbf{P} = \mathbf{A} \left(\mathbf{A}^T \mathbf{A} \right)^{-1} \mathbf{A}^T$ is called the **projection matrix**.

Examples

243/1c

Find the least squares solution of the system

by identifying the coefficnt matrix $\bf A$ and the right-hand side vector $\bf b$, then applying the second theorem.

Solution

• The coefficient matrix and right-hand side vector are

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 4 \\ 0 \\ 1 \\ 2 \end{bmatrix}.$$

• Via the second theorem, the least squares solution is

$$\hat{\mathbf{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b} = \begin{bmatrix} 8/5 \\ 3/5 \\ 6/5 \end{bmatrix} = \begin{bmatrix} 1.6 \\ 0.6 \\ 1.2 \end{bmatrix},$$

by entering the matrix expression on a calculator once $\bf A$ and $\bf b$ have been assigned. (We can also obtain the solution by obtaining the reduced row echelon form of the augmented system matrix $\left[{\bf A}^T {\bf A} \middle| {\bf A}^T {\bf b} \right]$, which is more efficient and more general. See 243/3b below in this regard.)

243/2c

For the least squares solution in 243/1c,

- (a) determine the projection $\mathbf{p} = \mathbf{A}\hat{\mathbf{x}}$.
- (b) calculate the residual $r(\hat{\mathbf{x}}) = \mathbf{b} \mathbf{A}\hat{\mathbf{x}}$.
- (c) verify that $r(\hat{\mathbf{x}}) \in N(\mathbf{A}^T)$.

Solution

1

Again, use your calculator!

• (a) The projection is

$$\mathbf{p} = \mathbf{A}\hat{\mathbf{x}} = \begin{bmatrix} 17/5 \\ 1/5 \\ 3/5 \\ 14/5 \end{bmatrix} = \begin{bmatrix} 3.4 \\ 0.2 \\ 0.6 \\ 2.8 \end{bmatrix}.$$

• (b) The residual is

$$r(\hat{\mathbf{x}}) = \mathbf{b} - \mathbf{A}\hat{\mathbf{x}} = \mathbf{b} - \mathbf{p} = \begin{bmatrix} 3/5 \\ -1/5 \\ 2/5 \\ -4/5 \end{bmatrix} = \begin{bmatrix} 0.60 \\ -0.20 \\ 0.40 \\ -0.80 \end{bmatrix}.$$

• (c) Finally, we verify that the residual is in the null space of \mathbf{A}^T .

$$\mathbf{A}^T r(\hat{\mathbf{x}}) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

243/3b

For the system Ax = b, find all least squares solutions.

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 3 \\ -1 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -2 \\ 0 \\ 8 \end{bmatrix}$$

Solution

• Let's form the augmented system matrix for the normal equations, $\begin{bmatrix} \mathbf{A}^T \mathbf{A} \middle| \mathbf{A}^T \mathbf{b} \end{bmatrix}$, then obtain its reduced row echelon form \mathbf{U} .

$$\begin{bmatrix} 3 & 0 & 6 & 6 \\ 0 & 14 & 14 & 14 \\ 6 & 14 & 26 & 26 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \mathbf{U}$$

Since U is row equivalent to the augmented system matrix, we conclude that least squares solutions are of the form

$$\hat{\mathbf{x}} = \begin{bmatrix} 2 - 2t \\ 1 - t \\ t \end{bmatrix}, \quad t \in \mathbb{R}.$$

243/4b

For the least squares solution in 243/3b,

- (a) determine the projection $\mathbf{p} = \mathbf{A}\hat{\mathbf{x}}$ of **b** onto $R(\mathbf{A})$.
- (b) calculate the residual $r(\hat{\mathbf{x}}) = \mathbf{b} \mathbf{A}\hat{\mathbf{x}}$.
- (c) verify that $r(\hat{\mathbf{x}}) \in N(\mathbf{A}^T)$; i.e., that $\mathbf{b} \mathbf{p}$ is orthogonal to each of the column vectors of \mathbf{A} .

Solution

• (a) The projection is

$$\mathbf{p} = \mathbf{A}\hat{\mathbf{x}} = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}.$$

• (b) The residual is

$$r(\hat{\mathbf{x}}) = \mathbf{b} - \mathbf{A}\hat{\mathbf{x}} = \mathbf{b} - \mathbf{p} = \begin{bmatrix} -5 \\ -1 \\ 4 \end{bmatrix}.$$

(c) We verify that the residual is in the null space of A^T; i.e., that b – p is orthogonal to each of the column vectors of A.

$$\mathbf{A}^T r(\hat{\mathbf{x}}) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

243/7

Given a collection of points $\{(x_k, y_k)\}_{k=1}^n$, let

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad \bar{x} = \frac{1}{n} \sum_{k=1}^n x_k, \quad \bar{y} = \frac{1}{n} \sum_{k=1}^n y_k$$

and let $y = c_0 + c_1 x$ be the linear function that gives the best least squares fit to the points. If $\bar{x} = 0$, show that

$$c_0 = \bar{\mathbf{y}}, \qquad c_1 = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{x}^T \mathbf{x}}.$$

Solution

For brevity, let Σ signify $\sum_{k=1}^{n}$. The linear system is

$$\mathbf{Ac} = \mathbf{y}$$

$$\begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}.$$

The normal equations are

$$\mathbf{A}^{T}\mathbf{A}\mathbf{c} = \mathbf{A}^{T}\mathbf{y}$$

$$\begin{bmatrix} 1 & \cdots & 1 \\ x_{1} & \cdots & x_{n} \end{bmatrix} \begin{bmatrix} 1 & x_{1} \\ \vdots & \vdots \\ 1 & x_{n} \end{bmatrix} \begin{bmatrix} c_{0} \\ c_{1} \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 1 \\ x_{1} & \cdots & x_{n} \end{bmatrix} \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix}$$

$$\begin{bmatrix} n & \Sigma x_{k} \\ \Sigma x_{k} & \Sigma x_{k}^{2} \end{bmatrix} \begin{bmatrix} c_{0} \\ c_{1} \end{bmatrix} = \begin{bmatrix} \Sigma y_{k} \\ \Sigma x_{k} y_{k} \end{bmatrix}, \text{ whence}$$

$$\begin{bmatrix} 1 & \frac{1}{n}\Sigma x_{k} \\ \frac{1}{n}\Sigma x_{k} & \frac{1}{n}\Sigma x_{k}^{2} \end{bmatrix} \begin{bmatrix} c_{0} \\ c_{1} \end{bmatrix} = \begin{bmatrix} \frac{1}{n}\Sigma y_{k} \\ \frac{1}{n}\Sigma x_{k} y_{k} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{n}\Sigma x_{k}^{2} \end{bmatrix} \begin{bmatrix} c_{0} \\ c_{1} \end{bmatrix} = \begin{bmatrix} \frac{1}{n}\Sigma y_{k} \\ \frac{1}{n}\Sigma x_{k} y_{k} \end{bmatrix},$$

since $\frac{1}{n}\Sigma x_k = \bar{x} = 0$.

Therefore,
$$c_0 = \frac{1}{n} \Sigma y_k = \bar{y}$$
 and $c_1 = \frac{\frac{1}{n} \Sigma x_k y_k}{\frac{1}{n} \Sigma x_k^2} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{x}^T \mathbf{x}}$.