

Chapter 9 Multiple regression

Kolbjørn Engeland koe@nve.no

The regression equation

•
$$Y = a + b_1X1 + b_2X2 + \cdots + b_kXk + e$$

- Standard assumption: $e \sim N(0, \sigma^2)$
- X is called «indenpent variable», «explanatory variable», «regressor», «covariates», «predictor»
- Y is called «dependent variable», «response», «predictant»
- No interaction term in this model!

Why multiple regression?

- Analyze
 - Understand hydrology
 - Linear trends
 - Catchment properties controlling hydrology
 - NB: Correlation does not imply causality
- Predict
 - In time
 - In space

Matrix formulation

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
 for $i = 1, \ldots, n$

for
$$i=1,\ldots,n$$

$$egin{aligned} y_1 &= eta_0 + eta_1 x_1 + \epsilon_1 \ y_2 &= eta_0 + eta_1 x_2 + \epsilon_2 \ &dots \ y_n &= eta_0 + eta_1 x_n + \epsilon_n \end{aligned}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

$$Y = X\beta + \varepsilon$$

Alternative formulation

The residual is then

$$\epsilon = y - X\beta$$

And the squared residual is:

$$\epsilon' \epsilon = (X\beta - y)'(y - X\beta)$$

The derivative is:

$$-2X'(y - X\beta) = 0$$

$$X'X\widehat{\beta} = X'y$$

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

Standard error of parameters:

We still use t-test for individual regression coefficients

$$\Sigma_{\widehat{\beta}} = \hat{s}^2 (X'X)^{-1}$$

Standard errors of regression and predictions:

Variance for the regression line

$$Var(\widehat{\mathbf{y}}) = \hat{s}^2 \mathbf{X}'_* (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'_*$$

Variance for the prediction:

$$Var(\hat{y}) = \hat{s}^2 \left[1 + X'_* (X'X)^{-1} X'_* \right]$$

Categorical variables

- Independent variables might be categorical
 - Equivalent to ANOVA

- Then we transfer it into a binary variable
 - 0 or 1

If we have many categories: many 0 – 1 dummy variables.

Assumptions

- Linearity
- Normality
- Homoscedadisity
- Independence of residuals

Challenge: linearity

- Transform variables
- Box_Cox is flexible and helps in addition for heteroscedadisity
- Use non-linear transformations. (this is non-linear regression)

Challenge: optimal selection of independent variables

- Pool of independent variables
- Could use all, but this might leed to non-robust predictions.
 - Especially for mall data sets and many independent variables
- We need a strategy to select the optimal number of independent variables!

Measuring fit - punishing for freedom

Adjusted R2

$$R_{adjusted}^2 = 1 - (1 - R^2) \left(\frac{n-1}{n-k-1} \right)$$

•
$$AIC = n * log(RSS/n) + 2k$$

• BIC = n * log(RSS/n) + k * ln(n)

Measuring fit - punishing for freedom

- R2_cv
- As R2, but we use leave-one-out cross-validation to calculate R2 for predicted values.

Strategy for selecting independent variables

- Forward selection
- **Backward elemination**
- Stepwise
- Brute force

Forward selection

- You select a group of independent variables to be examined.
- Evaluate the fir the first covariate, one by one using a criterion
- Add the covariate giving the best performance.
- Evaluate the second covariate among the remaining
- Add only if the performance increase

Backward elemination

- You start with all covariates in the model
- Eliminate the covariate leading to an increase in performance, one by one.
- Stops when the performance it at the maximum

Stepwise regression

- This works like forward regression
- But evaluate at each stage, the possibility that a variable entered at a previous stage might now be eliminated because of additional variables now in the model that were not in the model when this variable was selected.

What if assumtions fails?

Somewhat biased estimates

- Statistical inference and hypothesis testing fails
 - Might be to confident in the results
- Unreliable predictions.
 - The predictions is the most sensitive to model assumptions.

How to evaluate assumtions?

- Linearity: scatter plot
- Normality: Histogram, qq-plot, KS test
- Independence: auto-correlation
- Homoscedadisity. Scatter plot of residuals

Regression – decomposition and modelling of residual variance

WLS and GLS Regression

Observation errors: Σ_{ε}

Model errors: $\Sigma_{\delta} = \delta^2 I$

Total error: $\Sigma_{\epsilon} = \Sigma_{\delta} + \Sigma_{\epsilon} = \delta^{2}I + \Sigma_{\epsilon}$

Regression coefficients: $\widehat{\beta} = (X'\Sigma_{\epsilon}^{-1}X)^{-1}X'\Sigma_{\epsilon}^{-1}y$

Prediction variance: $Var(\widehat{y}) = \delta^2 + X'_*(X'\Sigma_{\epsilon}^{-1}X)^{-1}X_*$

Regression – decomposition and modelling of residual variance

WLS and GLS Regression

Challenge: estimate δ^2

Sollution: iterative approach

1: Estimate
$$\widehat{\boldsymbol{\beta}}$$

$$\widehat{\boldsymbol{\beta}} = (X' \Sigma_{\epsilon}^{-1} X)^{-1} X' \Sigma_{\epsilon}^{-1} y$$

2: Estimate
$$\delta^2$$

2: Estimate
$$\delta^2$$
 $(y - \widehat{\beta}X)'(\delta^2 I + \Sigma_{\varepsilon})^{-1}(y - \widehat{\beta}X) = n - k - 1$

Regression – decomposition and modelling of residual variance

WLS: Σ_{ε} is diagonal

GLS: Σ_{ε} include covariances

Challenge: co-linearity

- Are the independent variables correlated?
- Exact co-linearity: no unique sollution
- High correlation: unstable sollutions
- Select independent variables that have a minimum correlation!
- Use Lasso, ridge or elastic net

Alternative regression approaches

Lasso Regression (Hastie et al, 2009)

- Standardize the independent variables
- Penalty for high values for the regression coeficients
 - The sum of absolute values of the regression coefficients
- Effect: sparse models with fewer coefficients, as some coefficients may become zero and eliminated from the model
- Predictions: smaller estimation variance but a larger bias as compared to OLS

Hastie, T., Tibshirani, R. and Friedman, J.: The elements of statistical learning: prediction, inference and data mining, Springer-Verlag, New York, 2009.

Alternative regression approaches

Ridge Regression (Hoerl and Kennard, 1970, Draper and Smith, 1998)

- Standardize the independent variables
- Penalty is the sum of squared regression coefficients.
- Effect: does not result in an elimination of coefficients, but enables reliable estimates of all parameters.
- It has strong similarities to regression on the principal component of the catchment characteristics.

Hoerl, A. E. and Kennard, R. W.: Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 12(1), 55–67, 1970.

Draper, N. R. and Smith, H.: Applied regression analysis, John Wiley & Sons., 1998.

Alternative regression approaches

Elastic net regression (Zou and Hastie, 2005)

- Elimination of predictors in Lasso regression is sensitive to the underlying data
- Combines lasso and ridge regression

Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net J. R. Statist. Soc. B (2005) 67, Part 2, pp. 301–320

Variations over linear regression

- Bayesian regression: introduce priors
- Assume other distributions than Normal distribution.

Regression and machine learning

Support vector regression

Regression tree

Random Forest Regression

Machine learning library in Python: sklearn

Case study

Predict mean annual flow in ungauged basins

Predictors

Regression approach

- Log-transform the mean annual flood
- Several transformations for the predictors were tested.
- Flexible approach for assessing required penalty for model complexity
- Dataset divided into three parts
- First set used for selecting predictors and estimating parameters using different penalties
- Second set used for selecting the model (and assosiated penalty) with the smallest RMSE
- Third set used as independent for cross-validation
- Final model: Use the identified predictors and estimate the model once more using all data

Final model

$$q_{ind} = \exp \begin{bmatrix} 4.196 + 0.473 * \sqrt[3]{Q_N} - 0.0632 * \sqrt[2]{E_L} - 0.0520 * A_{SE} \\ -0.00751 * T_{Feb}^2 - 0.000942 * T_{Mar}^3 + 0.0376 * \sqrt{W_{Mai}} \end{bmatrix}$$

Test sett RMSE var 0.276 (full: 0.262). Dette betyr at med 95% sannsynlighet vil faktisk indeksflom for et felt være innenfor indeksflomestimat*/1.72.

Lokal medianflom (l/s/km2)

Excample 1: post-processing

Fig. 1. Map of Langvatn catchment.

1 day forecast

Fig. 2. Observed and 1-day ahead forecasted inflow at Langvatn standardized by the average observed inflow.

Challenges – independence and distribution

Challenges – constant variance

Challenge: constant variance

Challenge – constant variance

Building model

- Information used:
- Observed precipitation at forecast time.
- Observed temperature at forecast time.
- Forecasted inflow 1-day ahead of forecast time.
- The forecast errors from the previous forecast.
- The season/day of the year.

Building model

Transformation:

$$q(Q, \lambda) = \begin{cases} \frac{Q^{\lambda}-1}{\lambda} & \lambda \neq 0 \\ \ln(Q) & \lambda = 0 \end{cases}$$

Forecast errors δ for transformed values is then:

$$\delta_t = q_{t,obs} - q_{t,pred}$$

$$\delta_t - (b_{k(t)}) = (a_{k(t)})(\delta_{t-1} - (b_{k(t-1)})) + \varepsilon_t, \varepsilon_t \sim N(0, s_{k(t)})$$

Table 1
Weather classes used in the models for the forecast errors.

Weather class	Temperature (°C)	Precipitation (mm)	Season
1	10,0-20,0	>2.0	Autumn
2	10,0-20,0	>2.0	Spring
3	10,0-20,0	≤2.0	Autumn
4	10,0-20,0	≤2.0	Spring
5	5,0-10,0	>2.0	Autumn
6	5.0-10.0	>2.0	Spring
7	5.0-10.0	≤2.0	Autumn
8	5.0-10.0	≤2.0	Spring
9	-2.5 to 5.0	>2.0	Autumn
10	-2.5 to 5.0	>2.0	Spring
11	-2.5 to 5.0	≤2.0	Autumn
12	-2.5 to 5.0	≤2.0	Spring
13	-10.0 to -2.5	>2.0	All year
14	-10.0 to -2.5	<2.0	All year
15	−30.0 to −10.0	≥ 0,0	All year

Table 4
Link between weather classes and the parameters listed in Table 3.

Weather class	Model 1			Model 2		
	b	5	а	b	5	а
1	b_1	51	a ₁	b1	51	a
2	b ₂	51	a ₂	b ₁	51	02
3	b_3	52	a_{i}	b_2	52	a ₂
4	b ₁	52	a_1	b ₃	53	a2
5	b4	53	3	b_4	54	a,
6	b4	53	a_2	b ₄	55	a;
7	b_3	52	a_2	b_2	52	01
8	b_1	51	a_2	b_2	51	a ₂
9	b4	S4	a_1	b ₄	51	02
10	b_1	54	a_2	b4	51	a ₂
11	b_2	51	a_2	b_1	53	a2
12	b_3	52	a_2	b_1	55	a,
13	b_2	55	a ₃	b_1	52	a,
14	b_3	56	a_3	b_1	52	01
15	b_5	Se	a_3	b_1	53	a,

Table 2
AIC for different versions of Models 1 and 2,

Model version	Model 1		Model 2	
	n	AIC	21	AIC
No weather dependent parameters	3	6974	3	880
b depends on climate	17	7297	17	794
s depends on climate	17	6593	17	627
a depends on climate	17	6953	17	864
b and s depend on climate	31	6524	31	554
b and a depend on climate	31	6865	31	783
s and a depend on climate	31	6566	31	602
All depend on climate	45	6505	45	539
Merged climate classes	14	6451	13	504

Table 3
Estimated parameters for Models 1 and 2. Table 4 shows how parameters and weather classes are linked.

Model 1			Model 2			
Parameter	Estimate	SE	Parameter	Estimate	SE	
b1	0.0879	0.0223	b ₁	-0.0018	0.0189	
b ₂	0.0600	0.0194	bz	-0.108	0.0226	
b ₃	-0.0311	0.0190	b ₃	-0.0632	0.0293	
b ₄	0.129	0.0223	b ₄	0.0622	0.0218	
b ₅	0.0279	0.0186	S1	0.313	0.00745	
51	0.273	0.00881	52	0.213	0.00467	
52	0.225	0.00564	53	0.252	0.00563	
S ₃	0.376	0.0175	\$4	0.379	0.0229	
54	0.313	0.00895	Ss	0.444	0.0324	
S	0.196	0.00755	a ₁	0.780	0.0167	
5 ₅ 5 ₆	0.172	0.00458	02	0.728	0.0155	
a ₁	0.616	0.0297	166	25/00/2007		
a ₂	0.738	0.0186				
a ₃	0.833	0.0150				

Evaluation

ig. 8. Auto-correlation for p-values for Model 1 (a), Model 2 (b) and Model 3 (c).

Results

