Lecture 1 - Ionic structures

Course Summary

This course aims to introduce you to the importance of ionic materials in many applications.

What do I want you to do?

- Revise basic crystallography and ionic solids
- Try to understand examples, don't memorise them
- If in doubt ask questions!

Lecture Notes

- Interactive HTML notes
 - Detailed instructions on overview page
 - Explore the jmol structures!
 - We'll have live quizzes during lectures please engage
- PDF notes also on Learn if needed

Test poll!

Results

Join at menti.com | use code 1350194

Let's get you thinking in 3D!

Picture a cube. Imagine touching one corner, and then also touch every corner that is two edges away from it.

Mentin	neter		
you join those corners by new edges, what shape do you get?			
Hexagon			
Tetrahedron			
Square			
Triangle			

Results

Join at menti.com | use code 4909 7536

Lecture 1 Summary

- Types and applications of ionic materials
- Crystallography recap
- Lattice energy and ionic bonding
- Close-packing and ionic structure types

- Many inorganic solids
 - \circ e.g. $\mathrm{Na}^{+}\mathrm{Cl}^{-}$ and $\mathrm{Mg}^{2+}\mathrm{SO}_{4}^{2-}$

- Many inorganic solids
 - \circ e.g. $\mathrm{Na^{+}Cl^{-}}$ and $\mathrm{Mg^{2+}SO_{4}^{2-}}$
- Organic salts
 - ∘ ammonium acetate NH₄⁺CH₃COO[−]
 - o chlorphenirammonium maleate (active part of Piriton®)

Chlorphenirammonium maleate

- Many inorganic solids
 - \circ e.g. $\mathrm{Na^{+}Cl^{-}}$ and $\mathrm{Mg^{2+}SO_{4}^{2-}}$
- Organic salts
 - o ammonium acetate NH₄⁺CH₃COO[−]
 - <u>chlorphenirammonium maleate</u> (active part of Piriton®)
- (in)organic salts
 - $\circ\,$ Mono-/Di-/Tri-Sodium citrate $\mathrm{Na_{x}C_{6}H_{8\,-x}O_{7}}$
 - collectively used as E331 in food
 - x can be varied from 1–3

Chlorphenirammonium maleate

Trisodium Citrate (*x*=3)

- Many inorganic solids
 - \circ e.g. $\mathrm{Na^{+}Cl^{-}}$ and $\mathrm{Mg^{2+}SO_{4}^{2-}}$
- Organic salts
 - ∘ ammonium acetate NH₄⁺CH₃COO[−]
 - <u>chlorphenirammonium maleate</u> (active part of Piriton®)
- (in)organic salts
 - $\circ\,$ Mono-/Di-/Tri-Sodium citrate $\mathrm{Na_{x}C_{6}H_{8\,-x}O_{7}}$
 - collectively used as E331 in food
 - x can be varied from 1–3
- Ionic liquids
 - Either organic or inorganic, liquid below 100 °C

Chlorphenirammonium maleate

Trisodium Citrate (*x*=3)

- Large range of practical applications
 - important for energy storage, but lots of other applications!
 - o ionic liquids are gaining attention for many applications

- Large range of practical applications
 - important for energy storage, but lots of other applications!
 - ionic liquids are gaining attention for many applications
- High melting points due to Coloumbic energy (see <u>later</u>)

- Large range of practical applications
 - important for energy storage, but lots of other applications!
 - ionic liquids are gaining attention for many applications
- High melting points due to Coloumbic energy (see <u>later</u>)
- Electrically insulating
 - Electronegativity differences promote localised electrons

- Large range of practical applications
 - important for energy storage, but lots of other applications!
 - ionic liquids are gaining attention for many applications
- High melting points due to Coloumbic energy (see <u>later</u>)
- Electrically insulating
 - Electronegativity differences promote localised electrons
- Usually hard, and often robust to harsh conditions
 - ∘ e.g. Synroc* is used to encapsulate nuclear waste

We can divide solids into two categories:

Molecular (e.g. paracetamol)

- Strong intramolecular bonds
- Weaker intermolecular interactions

We'll concentrate on infinite materials.

Infinite (e.g. NaCl)

- Strong bonds between all atoms
- No discrete molecules

Recap on crystal structure

Periodic solids can be described by a unit cell

- Defined by lengths (a, b, c) and angles (α, β, γ)
 - 'Lattice parameters'

Recap on crystal structure

Periodic solids can be described by a unit cell

- Defined by lengths (a, b, c) and angles (α, β, γ)
 - 'Lattice parameters'
- Possesses 'space group' symmetry (an extension of point groups)

Recap on crystal structure

Periodic solids can be described by a unit cell

- Defined by lengths (a, b, c) and angles (α, β, γ)
 - 'Lattice parameters'
- Possesses 'space group' symmetry (an extension of point groups)
- Atom positions defined by fractional position along lattice directions

Example: Sodium chloride

Cubic structure	$a=b=c=5.62$ Å, $lpha=eta=\gamma=90^\circ$				
Spacegroup	$\mathrm{Fm}\bar{3}\mathrm{n}$	n (#225, p	oint group	$o = O_h$)	
Na atoms at:	(0 0 0)	(1/2 1/2 0)	(1/2 0 1/2)	(0 ½ ½)	(all symmetry-related)
Cl atoms at:	(1/2 0 0)	(0 ½ 0)	(0 0 ½)	(1/2 1/2 1/2)	(all symmetry-related)

Because of symmetry, we only need to define one Na and one CI position.

Ionic Bonding

• Ionic compounds stay together because of electrostatic interactions (strong)

Ionic Bonding

- Ionic compounds stay together because of electrostatic interactions (strong)
- Total electrostatic energy is the (infinite) sum over all ion pairs,

$$E_{ ext{Madelung}} = \sum_{i
eq j} rac{q_i q_j}{4 \pi \epsilon_0 r}$$

q is the charge on ions i, j and r is the distance between them

Ionic Bonding

- Ionic compounds stay together because of electrostatic interactions (strong)
- Total electrostatic energy is the (infinite) sum over all ion pairs,

$$E_{ ext{Madelung}} = \sum_{i
eq j} rac{q_i q_j}{4 \pi \epsilon_0 r}$$

q is the charge on ions i, j and r is the distance between them

• $\frac{1}{r}$ dependence makes long-range interactions important

Infinite summations

- For infinite solids, periodicity usually means the sum converges
 - \circ As r increases, the contribution becomes smaller.

Infinite summations

- For infinite solids, periodicity usually means the sum converges
 - \circ As r increases, the contribution becomes smaller.
- An infinite sum can therefore be replaced by the Madelung constant
 - depends on the structure type

Infinite summations

- For infinite solids, periodicity usually means the sum converges
 - As *r* increases, the contribution becomes smaller.
- An infinite sum can therefore be replaced by the Madelung constant
 - depends on the structure type

For example NaCl:

$$egin{align} E_{ ext{Madelung}} &= \sum_{i
eq j} rac{q_i q_j}{4\pi\epsilon_0 r} \ &= rac{ ext{N}_{ ext{A}} q_i q_j}{4\pi\epsilon_0 r} igg(6 - rac{12}{\sqrt{2}} + rac{8}{\sqrt{3}} - rac{6}{2} + rac{24}{\sqrt{5}} - \dots igg) \ &\simeq rac{ ext{N}_{ ext{A}} q_i q_j}{4\pi\epsilon_0 r} imes 1.74756 \ \end{aligned}$$

Ionic Structures

Generally, structures **maximise cation-anion** interactions (-ve energy) while **minimising like-charge** interactions (+ve energy)

- Maximise cation-anion coordination number
 - Ideally, ions should be densely packed

In many materials, the optimum is found when the largest ion (often oxide) is **close- packed**

Close packing

Close packing

Face-centered cubic (FCC) ... ABCABC ...

Hexagonal close-packed (HCP) ... ABABAB ...

Holes

CP arrangements of large (an)ions [X] leave 'holes' within the structure, which can be occupied by smaller (cat)ions [M]

How are you getting on? Vote

20

How are you getting on? Results

Join at menti.com | use code 8544 0162

Octahedral holes

One hole per cp ion - both are 6-coordinate

Rock salt (NaCl) structure

Nickel Arsenide structure (e.g. FeS)

Rutile

Although not strictly close-packed, rutile (${
m TiO_2}$) is distorted HCP with ${
m Ti}^{4+}$ filling half the octahedral holes CN = 6 / 3

Tetrahedral holes

Two holes per cp ion

Holes filled	FCC Type	CN(A/X)	HCP Type	CN(A/X)
All	Fluorite (CaF ₂)	4/8	(not possible)	-
Half	Zinc-blende (ZnS)	4/4	Wurtzite (ZnS)	4/4

Which structure type?

Generally, the structure formed depends on the ratio of ionic radii

• Smaller cations will prefer lower coordination numbers

$rac{r^+}{r^-}$	Cation C.N.	MX Structure	MX ₂ Structure
0.7 - 1.0	8	CsCl	CaF_2
0.4 - 0.7	6	NaCl	${ m TiO}_2$
0.2 - 0.4	4	ZnS (Wurtzite/Zinc-blende)	Anti-fluorite (e.g. Li_2S)

These are only approximate 'rules', and other binary structures exist (e.g. CdI_2 , CdCl_2 , PbO , etc...)

Very difficult to predict!

Beyond binary compounds

With 3 or more elements, structures become much more complicated! An important one is perovskite, ABX_3

• $r(A) \simeq r(X)$, so can be considered as FCC AX_3 layer with B filling 25% of octahedral holes:

Lecture recap

- Variety of ionic materials with a range of applications
- Revision of basic crystallography
 - Unit cells, symmetry
- Electrostatic interaction hold ionic crystals together
 - Long-ranged
 - Aim to maximise cation-anion interactions
- Close-packing of anions often most stable
 - Ratio of ionic radii suggests which structure is adopted
 - Beyond binary compounds, predicting structures is hard!

Feedback

What did you like or dislike about this lecture?

Short answers are recommended. You have 200 characters left.

200

You can submit multiple responses

Submit

Return to course contents 28