Numerical Analysis homework # 3

Chen Shuo 12231064 *

(Electronic Science and Technology), Zhejiang University

Submitted time: November 10, 2024

Ι

According to the problem, $s \in C^k[0,2]$, i.e. $s(1^-) = s(1^+), s'(1^-) = s'(1^+)$ and $s''(1^-) = s''(1^+)$. Assume that $p(x) = ax^3 + bx^2 + cx + d$, with s(0) = p(0) = 0, then:

$$d = 0$$

$$a+b+c+d=1$$

$$3a+2b+c=-3$$

$$6a+2b=6$$

Solve the equations above and get a = 7, b = -18, c = 12, d = 0, then $p(x) = 7x^3 - 18x^2 + 12x$. s''(0) = p''(0) = -36 and s(x) is not a natural cubic spline.

II

II-a

 x_1, x_2, \dots, x_n divide [a,b] into n-1 parts, each part $[x_i, x_{i+1}]$ with a polynomial $s_i, n-1$ polynomials in total. Due to $s \in \mathbb{S}^1_2$, which means $s_i \in \mathbb{P}_2$ and their derivates should be continuous.

To determine a quadratic polynomial, we need 3 independent equations, so there would be 3(n-1) independent equations needed in total. Now consider what we have: Firstly for each interval $[x_i, x_{i+1}]$, function values of two endpoints are known, so we get 2(n-1) equations. In addition, to be 1-order continuous on [a, b], derivates should be continuous at x_2, \dots, x_{n-1} , therefore another n-2 equations.

In total we get 2(n-1) + n - 2 = 3n - 4 equations, so an additional condition is still needed in order to determine s uniquely.

II-b

 $p_i \in \mathbb{P}_2$, assume that $p_i = ax^2 + bx + c$. According to the problem, $p(x_i) = s(x_i) = f_i$, $p(x_{i+1}) = s(x_{i+1}) = f_{i+1}$, $p'(x_i) = s'(x_i) = m_i$, then:

$$ax_{i}^{2} + bx_{i} + c = f_{i}$$

$$ax_{i+1}^{2} + bx_{i+1} + c = f_{i+1}$$

$$2ax_{i} + b = m_{i}$$

Solve the equations above and get:

$$\begin{split} a &= \frac{f_{i+1} - f_i}{(x_{i+1} - x_i)^2} - \frac{m_i}{x_{i+1} - x_i} \\ b &= \frac{x_{i+1} + x_i}{x_{i+1} - x_i} m_i - \frac{2x_i(f_{i+1} - f_i)}{(x_{i+1} - x_i)^2} \\ c &= f_i + \frac{x_i^2(f_{i+1} - f_i)}{(x_{i+1} - x_i)^2} - \frac{m_i x_i x_{i+1}}{x_{i+1} - x_i} \end{split}$$

^{*}Email address: shuo_chen@zju.edu.cn

Therefore,
$$p_i(x) = (\frac{f_{i+1} - f_i}{(x_{i+1} - x_i)^2} - \frac{m_i}{x_{i+1} - x_i})x^2 + (\frac{x_{i+1} + x_i}{x_{i+1} - x_i}m_i - \frac{2x_i(f_{i+1} - f_i)}{(x_{i+1} - x_i)^2})x + f_i + \frac{x_i^2(f_{i+1} - f_i)}{(x_{i+1} - x_i)^2} - \frac{m_i x_i x_{i+1}}{x_{i+1} - x_i}$$

II-c

According to II-b, we can get $p_1(x)$ with m_1 , f_1 and f_2 . Then we can calculate $m_2 = s'(x_2) = p_1'(x_2)$. By using m_2 , f_2 and f_3 we can get $p_2(x)$ then calculate m_3 .

Repeat this process n-2 times and we get m_2, m_3, \dots, m_{n-1} .

III

s(x) is a natural cubic spline so $s(x) \in \mathbb{S}_{3}^{2}$, which means $s_{1}(0) = s_{2}(0)$, $s_{1}^{'}(0) = s_{2}^{'}(0)$ and $s_{1}^{''}(0) = s_{2}^{''}(0)$. Assume that $s_{2}(x) = a_{3}x^{3} + a_{2}x^{2} + a_{1}x + a_{0}$:

$$a_0 = 1 + c$$

$$a_1 = 3c$$

$$2a_2 = 6c$$

In addition, $s_{2}^{"}(1) = 0$ because s(x) is a natural cubic spline, i.e. $6a_{3} + 2a_{2} = 0$.

Therefore, $s_2(x) = -cx^3 + 3cx^2 + 3cx + c + 1$.

If one wants s(1) = 6c + 1 = -1, then $c = -\frac{1}{3}$.

IV

IV-a

Denote the spline as s(x):

$$s(x) = \begin{cases} s_1(x), x \in [-1, 0] \\ s_2(x), x \in [0, 1] \end{cases}$$

Assume that $s_1(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ and $s_2(x) = b_3x^3 + b_2x^2 + b_1x + b_0$. $s(x) \in \mathbb{S}_3^2$, and s(x) is a natural cubic spline, then:

$$s_{1}(-1) = f(-1)$$

$$s_{1}(0) = f(0)$$

$$s'_{1}(0) = s'_{2}(0)$$

$$s''_{1}(0) = s''_{2}(0)$$

$$s_{2}(0) = f(0)$$

$$s_{2}(1) = f(1)$$

$$s''_{1}(-1) = 0$$

$$s''_{2}(1) = 0$$

Solve the equations above and get $s_1(x) = -\frac{1}{2}x^3 - \frac{3}{2}x^2 + 1$, $s_2(x) = \frac{1}{2}x^3 - \frac{3}{2}x^2 + 1$.

IV-b

 $f(x) = cos(\frac{\pi}{2}x)$, then f(-1) = 0, f(0) = 1, f(1) = 0. g(x) is a quadratic polynomial and assume that $g(x) = ax^2 + bx + c$. With the function value at -1, 0, 1 we can get $g(x) = -x^2 + 1$. Now calculate bending energy of three

functions:

$$\int_{-1}^{1} [g''(x)]^2 dx = \int_{-1}^{1} (-2)^2 dx$$

$$= 8$$

$$\int_{-1}^{1} [f''(x)]^2 dx = \int_{-1}^{1} [-\frac{\pi^2}{4} \cos(\frac{\pi}{2}x)]^2 dx$$

$$= \frac{\pi^4}{16}$$

$$\int_{-1}^{1} [s''(x)]^2 dx = \int_{-1}^{0} [s_1''(x)]^2 dx + \int_{0}^{1} [s_2''(x)]^2 dx$$

$$= \int_{-1}^{0} [-3x - 3]^2 dx + \int_{0}^{1} [3x - 3]^2 dx$$

$$= 6$$

Therefore, s(x) has the minimum bending energy of three functions.

 \mathbf{V}

V-a

According to the book:

$$B_i^1(x) = \begin{cases} \frac{x - t_{i-1}}{t_i - t_{i-1}}, x \in (t_{i-1}, t_i] \\ \frac{t_{i+1} - x}{t_{i+1} - t_i}, x \in (t_i, t_{i+1}] \\ 0, otherwise \end{cases}$$

$$B_i^2(x) = \frac{x - t_{i-1}}{t_{i+1} - t_{i-1}} B_i^1(x) + \frac{t_{i+2} - x}{t_{i+2} - t_i} B_{i+1}^1(x), \text{ then:}$$

$$B_{i}^{2}(x) = \begin{cases} \frac{(x - t_{i-1})^{2}}{(t_{i} - t_{i-1})(t_{i+1} - t_{i-1})}, x \in (t_{i-1}, t_{i}] \\ \frac{(x - t_{i-1})(t_{i+1} - x)}{(t_{i+1} - t_{i})(t_{i+1} - t_{i-1})} + \frac{(x - t_{i})(t_{i+2} - x)}{(t_{i+1} - t_{i})(t_{i+2} - t_{i})}, x \in (t_{i}, t_{i+1}] \\ \frac{(t_{i+2} - x)^{2}}{(t_{i+2} - t_{i+1})(t_{i+2} - t_{i})}, x \in (t_{i+1}, t_{i+2}] \\ 0, otherwise \end{cases}$$

V-b

$$\frac{d}{dx}B_{i}^{2}(x_{i}^{-}) = \frac{2(x - t_{i-1})}{(t_{i} - t_{i-1})(t_{i+1} - t_{i-1})} \bigg|_{x=t_{i}} = \frac{2}{t_{i+1} - t_{i-1}}$$

$$\frac{d}{dx}B_{i}^{2}(x_{i}^{+}) = \left[\frac{-2x + t_{i-1} + t_{i+1}}{(t_{i+1} - t_{i})(t_{i+1} - t_{i-1})} + \frac{-2x + t_{i} + t_{i+2}}{(t_{i+1} - t_{i})(t_{i+2} - t_{i})}\right]\bigg|_{x=t_{i}} = \frac{2}{t_{i+1} - t_{i-1}}$$

$$\frac{d}{dx}B_{i}^{2}(x_{i+1}^{-}) = \left[\frac{-2x + t_{i-1} + t_{i+1}}{(t_{i+1} - t_{i})(t_{i+1} - t_{i-1})} + \frac{-2x + t_{i} + t_{i+2}}{(t_{i+1} - t_{i})(t_{i+2} - t_{i})}\right]\bigg|_{x=t_{i+1}} = -\frac{2}{t_{i+2} - t_{i}}$$

$$\frac{d}{dx}B_{i}^{2}(x_{i+1}^{+}) = \frac{2(x - t_{i+2})}{(t_{i+2} - t_{i+1})(t_{i+2} - t_{i})}\bigg|_{x=t_{i+1}} = -\frac{2}{t_{i+2} - t_{i}}$$

Therefore, $\frac{d}{dx}B_i^2(x)$ is continuous at t_i and t_{i+1} .

V-c

According to V-b, $\frac{d}{dx}B_i^2(x) > 0$ if $x \in (t_{i-1},t_i]$, $\frac{d}{dx}B_i^2(x) < 0$ if $x \in (t_{i+1},t_{i+2})$. In addition, $\frac{d}{dx}B_i^2(t_i) > 0$, $\frac{d}{dx}B_i^2(t_{i+1}) < 0$, $\frac{d}{dx}B_i^2(x)$ decreases monotonocally on (t_i,t_{i+1}) and it is continuous on (t_i,t_{i+1}) , so there is only one $x^* \in (t_i,t_{i+1})$ which satisfies $\frac{d}{dx}B_i^2(x^*) = 0$.

Let $\frac{d}{dx}B_i^2(x^*) = 0$ and use the formula in V-b, we can get $x^* = \frac{t_{i+2}t_{i+1} - t_it_{i-1}}{t_{i+2} + t_{i+1} - t_i - t_{i-1}}$.

V-d

According to V-c, $\frac{d}{dx}B_i^2(x)$ increases monotonocally on (t_{i-1}, x^*) and decreases monotonocally on (x^*, t_{i+2}) .

$$B_i^2(t_{i-1}) = 0$$

$$B_i^2(t_{i+2}) = 0$$

$$B_i^2(x^*) = \frac{(t_{i+2} - t_{i-1})(t_{i+1} - t_{i-1})}{(t_{i+2} + t_{i+1} - t_i - t_{i-1})^2} + \frac{(t_{i+2} - t_i)(t_{i+2} - t_{i-1})}{(t_{i+2} + t_{i+1} - t_i - t_{i-1})^2} = \frac{t_{i+2} - t_{i-1}}{t_{i+2} + t_{i+1} - t_i - t_{i-1}} < 1$$

Therefore, $B_i^2(x) \in (0,1]$

V-e

Figure 1: ProblemV-e

VI

$$(t_{i+2} - t_{i-1})[t_{i-1}, t_i, t_{i+1}, t_{i+2}](t-x)_+^2$$

$$= \frac{1}{t_{i+2} - t_i} \left(\frac{(t_{i+2} - x)_+^2 - (t_{i+1} - x)_+^2}{t_{i+2} - t_{i+1}} - \frac{(t_{i+1} - x)_+^2 - (t_i - x)_+^2}{t_{i+1} - t_i} \right)$$

$$- \frac{1}{t_{i+1} - t_{i-1}} \left(\frac{(t_{i+1} - x)_+^2 - (t_i - x)_+^2}{t_{i+1} - t_i} - \frac{(t_{i-1} - x)_+^2 - (t_{i-1} - x)_+^2}{t_i - t_{i-1}} \right)$$
Let $\alpha(x) = \frac{1}{t_{i+2} - t_i} \left(\frac{(t_{i+2} - x)_+^2 - (t_{i+1} - x)_+^2}{t_{i+2} - t_{i+1}} - \frac{(t_{i+1} - x)_+^2 - (t_i - x)_+^2}{t_{i+1} - t_i} \right)$ and $\beta(x) = \frac{1}{t_{i+1} - t_{i-1}} \left(\frac{(t_{i+1} - x)_+^2 - (t_i - x)_+^2}{t_{i+1} - t_i} - \frac{(t_{i+1} - x)_+^2 - (t_i - x)_+^2}{t_{i+1} - t_i} \right)$.

$$\alpha(x) = \begin{cases} 1, x \in (-\infty, t_i] \\ \frac{1}{t_{i+2} - t_i} (t_{i+2} + t_{i+1} - 2x - \frac{(t_{i+1} - x)^2}{t_{i+1} - t_i}), x \in (t_i, t_{i+1}] \\ \frac{1}{t_{i+2} - t_i} \cdot \frac{(t_{i+2} - x)^2}{t_{i+2} - t_{i+1}}, x \in (t_{i+1}, t_{i+2}] \\ 0, x \in (t_{i+2}, +\infty) \end{cases}$$

$$\beta(x) = \begin{cases} 1, x \in (-\infty, t_{i-1}] \\ \frac{1}{t_{i+1} - t_{i-1}} (t_{i+1} + t_i - 2x - \frac{(t_i - x)^2}{t_i - t_{i-1}}), x \in (t_{i-1}, t_i] \\ \frac{1}{t_{i+1} - t_{i-1}} \cdot \frac{(t_{i+1} - x)^2}{t_{i+1} - t_i}, x \in (t_i, t_{i+1}] \\ 0, x \in (t_{i+1}, +\infty) \end{cases}$$

Therefore, it can be divided into several cases:

•
$$x \in (-\infty, t_{i-1}], \alpha(x) - \beta(x) = 1 - 1 = 0.$$

•
$$x \in (t_{i-1}, t_i], \ \alpha(x) - \beta(x) = 1 - \frac{1}{t_{i+1} - t_{i-1}} (t_{i+1} + t_i - 2x - \frac{(t_i - x)^2}{t_i - t_{i-1}}) = \frac{(x - t_{i-1})^2}{(t_i - t_{i-1})(t_{i+1} - t_{i-1})}.$$

•
$$x \in (t_i, t_{i+1}], \alpha(x) - \beta(x) = \frac{1}{t_{i+2} - t_i} (t_{i+2} + t_{i+1} - 2x - \frac{(t_{i+1} - x)^2}{t_{i+1} - t_i}) - \frac{1}{t_{i+1} - t_{i-1}} \cdot \frac{(t_{i+1} - x)^2}{t_{i+1} - t_i} = \frac{(x - t_{i-1})(t_{i+1} - x)}{(t_{i+1} - t_i)(t_{i+1} - t_{i-1})} + \frac{(x - t_i)(t_{i+2} - x)}{(t_{i+1} - t_i)(t_{i+2} - t_i)}$$

•
$$x \in (t_{i+1}, t_{i+2}], \ \alpha(x) - \beta(x) = \frac{(t_{i+2} - x)^2}{(t_{i+2} - t_{i+1})(t_{i+2} - t_i)}$$

•
$$x \in (t_{i+2}, +\infty), \ \alpha(x) - \beta(x) = 0.$$

Therefore,

$$\alpha(x) - \beta(x) = \begin{cases} 0, x \in (-\infty, t_{i-1}] \\ \frac{(x - t_{i-1})^2}{(t_i - t_{i-1})(t_{i+1} - t_{i-1})}, x \in (t_{i-1}, t_i] \\ \frac{(x - t_{i-1})(t_{i+1} - t_{i-1})}{(t_{i+1} - t_i)(t_{i+1} - t_{i-1})} + \frac{(x - t_i)(t_{i+2} - x)}{(t_{i+1} - t_i)(t_{i+2} - t_i)}, x \in (t_i, t_{i+1}] \\ \frac{(t_{i+2} - x)^2}{(t_{i+2} - t_{i+1})(t_{i+2} - t_i)}, x \in (t_{i+1}, t_{i+2}] \\ 0, x \in (t_{i+2}, +\infty) \end{cases}$$

Compared to the formula in V-a, and get the conclusion that $B_i^2(x) = (t_{i+2} - t_{i-1})[t_{i-1}, t_i, t_{i+1}, t_{i+2}](t-x)_+^2$.

VII

By Theorem 3.34 we know $\frac{d}{dx}B_i^n(x) = \frac{nB_i^{n-1}(x)}{t_{i+n-1} - t_{i-1}} - \frac{nB_{i+1}^{n-1}(x)}{t_{i+n} - t_i}$. Take the integral of two sides from t_{i-1} to t_{i+n} :

$$\int_{t_{i-1}}^{t_{i+n}} \frac{d}{dx} B_i^n(x) dx = B_i^n(x) \bigg|_{t_{i-1}}^{t_{i+n}} = 0$$

$$\int_{t_{i-1}}^{t_{i+n}} (\frac{nB_i^{n-1}(x)}{t_{i+n-1} - t_{i-1}} - \frac{nB_{i+1}^{n-1}(x)}{t_{i+n} - t_i}) dx = \frac{n}{t_{i+n-1} - t_{i-1}} \int_{t_{i-1}}^{t_{i+n-1}} B_i^{n-1}(x) dx - \frac{n}{t_{i+n} - t_i} \int_{t_i}^{t_{i+n}} B_{i+1}^{n-1}(x) dx$$
Hence
$$\frac{n}{t_{i+n-1} - t_{i-1}} \int_{t_{i-1}}^{t_{i+n-1}} B_i^{n-1}(x) - \frac{n}{t_{i+n} - t_i} \int_{t_i}^{t_{i+n}} B_{i+1}^{n-1}(x) = 0$$
i.e.:
$$\frac{1}{t_{i+n-1} - t_{i-1}} \int_{t_{i-1}}^{t_{i+n-1}} B_i^{n-1}(x) = \frac{1}{t_{i+n} - t_i} \int_{t_i}^{t_{i+n}} B_{i+1}^{n-1}(x)$$

Therefore, the scaled integral of $B^n(x)$ over its support is independent of its index

VIII

VIII-a

Calculate $[x_i, x_{i+1}, x_{i+2}]x^4$ with the table of divided difference:

According to the definition of complete symmetric polynomials:

$$\tau_2(x_i, x_{i+1}, x_{i+2}) = \sum_{i \le i_1 \le i_2 \le i+2} x_{i_1} x_{i_2}$$

$$= x_i^2 + x_i x_{i+1} + x_i x_{i+2} + x_{i+1}^2 + x_{i+1} x_{i+2} + x_{i+2}^2$$

Compare two results and they are same.

VIII-b

Recursive relations of complete symmetric polynomials says that:

$$\tau_{k+1}(x_1,\dots,x_n,x_{n+1}) = \tau_{k+1}(x_1,\dots,x_n) + x_{n+1}\tau_k(x_1,\dots,x_n,x_{n+1})$$

Then we have:

$$\begin{split} (x_{n+1}-x_1)\tau_k(x_1,\dots,x_n,x_{n+1}) &= \tau_{k+1}(x_1,\dots,x_n,x_{n+1}) - \tau_{k+1}(x_1,\dots,x_n) \\ &\quad - x_1\tau_k(x_1,\dots,x_n,x_{n+1}) \\ &= \tau_{k+1}(x_2,\dots,x_n,x_{n+1}) + x_1\tau_k(x_1,\dots,x_n,x_{n+1}) \\ &\quad - \tau_{k+1}(x_1,\dots,x_n) - x_1\tau_k(x_1,\dots,x_n,x_{n+1}) \\ &= \tau_{k+1}(x_2,\dots,x_n,x_{n+1}) - \tau_{k+1}(x_1,\dots,x_n). \end{split}$$

For n = 0, $\tau_m(x_i) = x_i^m = [x_i]x^m$.

Suppose that $\forall m \in \mathbb{N}^+, \forall i \in \mathbb{N}, \forall n = 0, 1, \dots, m, \tau_{m-n}(x_i, \dots, x_{i+n}) = [x_i, \dots, x_{i+n}]x^m$ holds for a non-negative integer n < m, then:

$$\tau_{m-n-1}(x_i, \dots, x_{i+n+1}) = \frac{\tau_{m-n}(x_{i+1}, \dots, x_{i+n+1}) - \tau_{m-n}(x_i, \dots, x_{i+n})}{x_{i+n+1} - x_i}$$

$$= \frac{[x_{i+1}, \dots, x_{i+n+1}]x^m - [x_i, \dots, x_{i+n}]x^m}{x_{i+n+1} - x_i}$$

$$= [x_i, \dots, x_{i+n+1}]x^m.$$

Therefore it holds for the case n+1, by induction this proof is done.