Automata and Grammars (BIE-AAG) 10. Type 1 and 0 languages. Turing machine.

Jan Holub

Department of Theoretical Computer Science Faculty of Information Technology Czech Technical University in Prague

© Jan Holub, 2020

Definition

Deterministic Turing machine is a 7-tuple $R = (Q, \Sigma, G, \delta, q_0, B, F)$, where:

- lacksquare Q is a finite set of states,
- lacksquare Σ is a finite input alphabet,
- lacksquare G is a finite work alphabet $(\Sigma \subset G)$, Δ Moves left, right or stays in the same position of the tape
- lacksquare is a mapping from $(Q\setminus F) imes G$ into $Q imes G imes \{-1,0,1\}$,
- \blacksquare $q_0 \in Q$ is the initial state,
- lacksquare B is a blank symbol $(B \in G \setminus \Sigma)$,
- lacksquare $F \subseteq Q$ is a set of final states.

TM can write on the input tape and can move on it freely.

http://aturingmachine.com

Infinite tape?

No problem.

Vodorovná délka:	1366,30 m
Převýšení:	416,05 m
Průměrný sklon:	30,45 %
Max. sklon lana:	58,38 %
Šikmá délka:	1432,79 m
Délka nekonečného lana:	2892,27 m

Configuration of TM R: $(\alpha, q, \beta) \in G^* \times Q \times G^*$, where

- \blacksquare q is the machine's current state,
- lacktriangle head R reads position $|\alpha|$ on the input tape,
- i-th letter of string $\alpha\beta$ is on the input tape when $i \leq |\alpha\beta|$, or B is on the input tape if $i > |\alpha\beta|$.

TM makes transition $(\alpha, q, \beta) \vdash (\gamma, r, \pi)$ if:

- $\blacksquare \quad \alpha = \gamma a, c\beta = \pi, \delta(q, a) = (r, c, -1), \ a, c \in G,$
- $lack lpha = lpha' a, \gamma = lpha' c, eta = \pi, \delta(q,a) = (r,c,0), \ a,c \in G,$
- $\blacksquare \quad \alpha = \alpha' a, \gamma = \alpha' c d, \beta = d\pi, \delta(q, a) = (r, c, 1), \ a, c, d \in G.$

Definition

Turing machine $R=(Q,\Sigma,G,\delta,q_0,B,F)$ accepts a word $a\alpha\in\Sigma^+$ if $\exists q\in F$, $(a,q_0,\alpha)\vdash^* (B,q,\varepsilon)$.

TM R accepts ε if $\exists q \in F$, $(B, q_0, \varepsilon) \vdash^* (B, q, \varepsilon)$.

L(R) is a language of words accepted by TM R.

Definition

Language L is recursively enumerable if it is accepted by some TM R (L = L(R)).

Theorem

Every language accepted by k-tape TM, $k \ge 1$, is recursively enumerable.

Nondeterministic Turing machine

Definition

Nondeterministic TM is a seven-tuple $R = (Q, \Sigma, G, \delta, q_0, B, F)$, where:

- \blacksquare Q is a finite set of states,
- lacksquare Σ is a finite input alphabet,
- lacksquare is a finite work alphabet $(\Sigma \subset G)$,
- lacksquare δ is a mapping from $(Q \setminus F) \times G$ into $\mathcal{P}(Q \times G \times \{-1,0,1\})$,
- lacksquare $q_0 \in Q$ is the initial state,
- lacksquare B is the blank symbol $(B \in G \setminus \Sigma)$,
- lacksquare $F \subseteq Q$ is a set of final states.

NTM accepts a word $a\alpha$ if there exists $q \in F$ so that $(a, q_0, \alpha) \vdash^* (B, q, \varepsilon)$. NTM accepts word ε if there exists $q \in F$ so that $(B, q_0, \varepsilon) \vdash^* (B, q, \varepsilon)$.

Nondeterministic Turing machine

Theorem

If M_N is a nondeterministic TM, then there is a deterministic TM M_D such that $L(M_N) = L(M_D)$.

Corollary

Nondeterministic Turing machines accept exactly recursively enumerable languages.

Linear bounded automaton (LBA)

Linear bounded automaton = Linear bounded Turing machine

Definition

TM is a *linear bounded automaton* if the length of its tape is restricted to a k-multiple of length of the input word for some fixed $k \ge 1$.

Theorem

For every noncontracting grammar G there exists an equivalent context-sensitive grammar.

Theorem

For any grammar G there exists a TM R such that L(G) = L(R). For any noncontracting grammar G there exists a LBA R such that L(G) = L(R).

Linear bounded automaton (LBA)

Corollary

Grammars generate exactly recursively enumerable languages. Context-sensitive languages are accepted exactly by LBAs.

Theorem

Recursively enumerable languages are closed under operations of union, concatenation, and Kleene star.

Theorem

Context-sensitive languages are closed under operations of union, concatenation, Kleene star, and complement.

Algorithm

Definition

Turing machine R decides language L over alphabet Σ if its computation halts for every word and L(R)=L.

Language L is recursive if there exists a TM that decides it.

Theorem

L is recursive if and only if L and \overline{L} are recursively enumerable.

Theorem

Every context-sensitive language is recursive.

Church-Turing thesis

Every language that can be described in some manner by a finite expression is recursively enumerable.

There is an equivalent Turing machine to every algorithm.

Universal Turing machine

Definition

Turing machine is *universal* if and only if it accepts all pairs $(\textit{codeof}(R); \alpha)$ such that TM R accepts word α .

Undecidable problems

Halting Problem for TM:

Given a Turing machine T and an input w, does T halt on w? It is a language of pairs (R,w), where R is a TM and $w \in \Sigma^*$ such that R halts having w as input.

Theorem

The Halting Problem is not recursive.

Proof

By contradiction. Suppose function *Halts*():

$$\textit{Halts}(P; \alpha) = \left\{ egin{array}{ll} \textit{yes}, & \text{if P halts for input α,} \\ \textit{no}, & \text{if P does not halt for input α.} \end{array} \right.$$

Construct program P for UTM:

$$P$$
: L: if $Halts(P; P)$ then goto L else halt

Undecidable problems

Post Correspondence Problem:

Given two sequences $U=(u_1,u_2,\ldots,u_m)$ and $V=(v_1,v_2,\ldots,v_m)$ of strings $u_i,v_i\in\Sigma^*, |\Sigma|\geq 2$. Find whether there is a finite sequence $(i_1,i_2,\ldots,i_p),\ i_j\in\{1,\ldots,m\}$ so that $u_{i_1}u_{i_2}\ldots u_{i_p}=v_{i_1}v_{i_2}\ldots v_{i_p}$.

Example

U = (abab, aaabbb, aab, ba, ab, aa)V = (ababaaa, bb, baab, baa, ba, a)

There is a solution for this instance of the problem:

1234556

 $abab \ aaabbb \ aab \ ba \ ab \ aa = ababaaa \ bb \ baab \ baa \ ba \ a$.

Classes P and NP

Problems

- decision (yes/no)
- optimization (the best solution)

Definition

Class NP (non-deterministic polynomial-time) is a class of problems that can be solved in polynomial time on a non-deterministic Turing machine.

Definition

Class P (polynomial-time) is the class of problems that can be solved in polynomial time using a deterministic Turing machine.

Definition (Polynomial-time reduction)

We say that a language $A\subseteq\{0,1\}^*$ is polynomial-time (Karp) reducible to a language $B\subseteq\{0,1\}^*$ denoted by $A\leq_p B$ if there is a polynomial-time computable function $f:\{0,1\}^*\to\{0,1\}^*$ such that for every $x\in\{0,1\}^*$, $x\in A$ if and only if $f(x)\in B$.

Example (CNF-SAT \leq_p Clique)

Problem CNF-SAT:

Given Boolean expression φ in a conjunctive normal form (CNF). Does there exist a satisfiable assignment?

$$(x \lor y \lor z) \land (\neg x \lor z \lor w) \land (\neg x \lor \neg w) \land (\neg w \lor x)$$

assignment: x, y any value, z = true, w = false

Example (CNF-SAT \leq_p Clique (cont.))

Problem Clique:

Given is a graph G=(V,E) and number k. Does there exist a clique of size k, i.e. a subset of vertices S of size k such that for every $u,v\in S$, $(u,v)\in E$?

Example (CNF-SAT \leq_p Clique (cont.))

Reduction:

V= a set of all literals of expression φ . We connect by edges all literals of different clauses that are not negations each other.

$$(x \lor y \lor \neg w) \land (\neg x \lor z) \land (y \lor w)$$

Expression φ is satisfiable. \Leftrightarrow There exists a clique of size k= number of clauses.

BIE-AAG (2020/2021) – J. Holub: 10. Type 1 and 0 languages. Turing machine. – 19 / 22

NP-hard problem

Definition (NP-hard)

We say that B is NP-hard if $A \leq_p B$ for every $A \in NP$.

NP-hard problems are such problems that any problem in NP can be polynomial-time reduced to them. (They are at least as hard as the hardest problems in NP.)

NP-complete problem

Definition (NP-complete)

We say that B is NP-complete if B is NP-hard and $B \in NP$.

NP-complete (NPC) problems are all non-deterministic polynomial-time problems such that every problem in NP can be polynomial-time reduced to them in polynomial time. (NP-complete = the "hardest" problems in NP)

NP-complete problems

Cook' Theorem The CNF-SAT language is NP-complete.

■ Graph coloring, Clique, Tiling, Subset sum, Knapsack problem

I ...