ENG 275 Fenômenos de transporte

Prof. Natalia dos Santos Renato Departamento de Engenharia Agrícola

Cap. 1- Introdução

Prof. Natalia dos Santos Renato Departamento de Engenharia Agrícola

Parte do Material cedido pelo professor Roberto Precci

O que é um fluido?

Substância que de deforma continuamente sob a aplicação de uma tensão de cisalhamento, por menor que seja.

Pode-se dizer também que um fluido é uma substância incapaz de suportar uma tensão de cisalhamento quando em repouso.

Fig 1 – comportamento de um sólido e de um fluido sob ação de uma força cisalhante constante

O que podemos dizer com relação a velocidade de uma partícula de fluido junto as fronteiras sólidas?

O fluido em contato direto com a fronteira sólida tem a mesma velocidade dessa fronteira: NÃO HÁ DESLIZAMENTO NA FRONTEIRA.

Equações básicas

As leis básicas aplicadas no estudos dos fluidos são:

- 1. Conservação da massa
- 2. Segunda lei do movimento de Newton
- 3. Princípio da quantidade de movimento angular
- 4. Primeira lei da termodinâmica
- 5. Segunda lei da termodinâmica

Sistema

Refere-se a uma quantidade de massa fixa e identificável, delimitada por uma fronteira fixa ou móvel. Calor e trabalho podem atravessar a fronteira dos sistema.

Fig 2 – Sistema constituído por um gás dentro de um cilindro

Volume de controle (sistema aberto)

Volume arbitrário no espaço através do qual ocorre fluxo de massa. O volume de controle é delimitado por sua superfície (superfície de controle). Calor e trabalho podem atravessar a superfície de controle.

Fig 3 – Volume de controle delimitado por superfície de controle real e imaginária

Volume de controle (sistema aberto)

Volume arbitrário no espaço através do qual ocorre fluxo de massa. O volume de controle é delimitado por sua superfície (superfície de controle). Calor e trabalho podem atravessar a superfície de controle.

Fig 3 – Volume de controle delimitado por superfície de controle real e imaginária

Vazão

Vazão pode ser definida como sendo a quantidade volumétrica ou mássica de um fluido que escoa através de uma seção de uma tubulação ou canal por unidade de tempo.

Vazão Volumétrica – É definida como sendo a quantidade em volume que escoa através de certa secção em um intervalo de tempo considerado. As unidades volumétricas mais comuns são: m³/s, m³/h, l/h, l/min, GPM (galões por minuto), entre outras.

Vazão mássica – É definida como sendo a quantidade em massa de um fluido que escoa através de certa secção em um intervalo de tempo considerado. As unidades de vazão mássica mais utilizadas são: kg/s, kg/h, t/h, lb/h.

Exemplo 1.2

Um trecho de redução em tubo de água tem um diâmetro de entrada de 5 cm e um diâmetro de saída de 3 cm. Se a velocidade na entrada (medida através da área de entrada) é de 2,5 m/s, encontre a velocidade de saída.

Formulação Diferencial x Formulação Integral

Sistemas e volumes de controle infinitesimais

Utiliza-se de equações diferenciais para determinar o comportamento detalhado do escoamento. Por exemplo quando estamos interessados em estudar a distribuição de pressão sobre a superfície de uma hélice de um motor eólico, ou na parede de um tubulação.

Sistemas e volumes de controle finitos (formulação integral)

Utiliza-se das equações na sua forma geral (aplicada).

Quando interessa apenas o efeito ou o comportamento global de um fluido sobre um dispositivo. Por exemplo: a força resultante atuando sobre uma comporta ou sobre uma torre.

Métodos de Descrição

Método Lagrangiano

Quando se deseja estudar o comportamento de um elemento de massa identificável (uma partícula de fluido) ou de um sistema (seu centro de massa), utiliza-se o **MÉTODO DE DESCRIÇÃO LAGRANGIANO**.

Exemplo: aplicação da segunda lei de Newton a um sistema de massa m.

$$\sum \vec{F} = \vec{m} \vec{a} = \vec{m} \frac{\vec{dV}}{\vec{dt}} = \vec{m} \frac{\vec{d^2 r}}{\vec{dt^2}}$$

Método Euleriano

Parte da hipótese que o fluido possa ser tratado como um meio continuo.

Devido a dificuldade de acompanhar uma partícula, utiliza-se o MÉTODO DE DESCRIÇÃO EULERIANO, que *enfoca as propriedades de um escoamento num determinado ponto no espaço como uma função do tempo.* As propriedades do campo de escoamento são descritas como funções das coordenadas espaciais e do tempo. Procura responder: Quais as propriedades das partículas como um todo naquela posição e naquele instante?

DIMENSÕES E UNIDADES

Dimensões: são nossos conceitos básicos de medida, quantidades físicas como comprimento, massa, tempo, temperatura, força.

Unidade de medida: são os nomes dados às dimensões: m, kg, s, K, N.

Unidades fundamentais

Grandezas Fundamentais	Símbolo	Unidade	Abreviatura de Unidade
Comprimento	L	Metro	m
Massa	М	Quilograma	kg
Tempo	Т	Segundo	S
Intensidade da Corrente Elétrica	- 1	Ampére	Α
Temperatura	θ	Kelvin	K
Quantidade de matéria	η	Mole	mol
Intensidade Luminosa	I	Candela	cd

Unidades

Grandeza	cgs	SI (MKS)	Inglês (FPS)
Comprimento	<u>C</u> entímetro (cm)	<u>M</u> etro (m)	<u>F</u> oot [pé] (ft)
Massa	<u>G</u> rama (g)	<u>K</u> ilograma (kg)	P ound [Libra] (lb)
Tempo	<u>S</u> egundo (s)	<u>S</u> egundo (s)	<u>S</u> egundo (s)
Temperatura	Kelvin (K) Celsius (°C)	Kelvin (K) Celsius (°C)	Rankine (°R) Fahrenheit (°F)

Unidades

Unidades Fundamentais do Sistema Absoluto.

	Dimensão	SI (MKS)	Sistema Inglês (FPS)	c.g.s (CGS)
Massa	M	kg	lb (pound ou libra)	g
Tempo	T	S	S	S
Comprimento	L	m	ft	cm
Temperatura	θ	K (°C)	R (°F)	K (°C)

Unidades Derivadas do Sistema Absoluto.

	Dimensão	SI (MKS)	Sistema Inglês (FPS)	c.g.s (CGS)
Força $\left(\sum \vec{F} = m \cdot \vec{a}\right)$	MLT ⁻²	kg·m/s² (N)	lb·ft/s² (pdl)	g·cm/s² (dina)
Pressão $\left(p = \lim_{\Delta A \to 0} \frac{\Delta F_n}{\Delta A}\right)$	ML ⁻¹ T ⁻²	kg/m·s² (N/m²) (Pa)	lb/ft⋅s²	g/cm·s² (dyn/cm²) (baria)
Energia	ML ² T ⁻²	$kg \cdot m^2/s^2 (N \cdot m)$ (J)	lb·ft²/s² (pdl·ft) (-)	g·cm²/s² (dina·cm) (erg)
Potência	ML^2T^{-3}	$kg \cdot m^2/s^3 (J/s) (W)$	lb⋅ft²/s³	g·cm ² /s ³ (erg/s)

Conversão de unidades

$$1 \text{ in} = 2,54 \text{ cm}$$

$$1 \text{ slug} = 1 \text{ lbf} \cdot \text{s}^2/\text{ft}$$

$$1 lbm = 0,454 kg$$

$$1 \text{ cP} = 10^{-3} \text{ kg m}^{-1} \text{ s}^{-1}$$

$$1 \text{ ft} = 12 \text{ in}$$

$$1 lbf \cdot s^2/ft = 32,2 lbm$$

1 gal=
$$7,48 \text{ ft}^3$$

$$1 N = 1 kg.m.s^{-2}$$

$$1 lbf = 1 lbm . 32,2 ft.s^{-2}$$

$$1 lbm = 0,454 kg$$

$$1 \text{ Hp} = 550 \text{ lbf.ft.s}^{-1}$$

$$1 \text{ cal} = 4,186 \text{ J}$$

Problema Equivalente

7 edição	6 edição
1.8	1.22
1.9	1.23
1.10	1.24
1.12	1.26
1.17	1.28
1.18	1.29
1.19	1.30
1.20	1.31
1.21	-
1.22	-
1.23	-
1.25	1.32
1.26	1.33
1.27	1.34
1.31	-
1.32	-
1.35	
1.36	1.37

Capítulo 1 – Exercícios propostos

Sétima Edição

8, 9, 10, 12, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 31, 32, 35 e 36

Itens excluídos: 1.7

