A. Population Prediction:

A1. Prediction Methods: Dropdown: *Time series-based analysis, Machine learning based methods, Scenario-based modelling, Cohort Component Method*

If 'Time series-based analysis', method is selected:

A1. a.i. Inputs:

- (a) Level- Dropdown: District, Sub-district/Tehsil, Ward, Village
- (b) **Name of Region:** (Automatically fill by typing the initial spell of the location, which is already saved), and one 'Other' option is provided.

Other: Name will be entered, which location will be searched on Google Earth, or any other portal to search the coordinates of this location, and automatically found the 'Region' of its closest proximity, which 'Demographic Attributes' will be automatically selected for writing under the third variable, in the backend.

- (c) **Base Year:** Dropdown: (Years)
- (d) **Demographic Attributes:** Autofill but editable: (i) Annual Birth Rate, (ii) Annual Death Rate, (iii) Annual Emigration, (iv) Annual Immigration
- (e) **Demographic Attributes:** Autofill but editable (*Base Year Population*)
- (f) **Target Year / Range of Years:** Manual Entry
- (g) **Method for Projection-** Dropdown: Arithmetic Increase Method, Geometric Increase Method, Logistic growth method, Exponential Growth Method

A1.a. ii. Processing:

(a) If under the 'Method for Projection', 'Arithmetic Increase Method' is selected:

Step 1 (a): Compute the Effective Growth Factor (G_e) :

Number of years from the base year to last available data year (n): Year of the last available data – Base Year.

Birth Rate from the Base Year to last available data year: BR_{b} , BR_{b+1} , BR_{b+2} ,, BR_{n}

Death Rate from the Base Year to last available data year: $DR_{b,}$ $DR_{b+1,}$ DR_{b+2} ,, DR_n

Emigration Rate from the Base Year to last available data year: ER_{b} , ER_{b+1} , ER_{b+2} ,....., ER_{n}

Immigration Rate from the Base Year to last available data year: IR_{b} , IR_{b+1} , IR_{b+2} ,...., IR_{n}

Effective Birth Rate (BR_e):
$$\frac{(BR_b + BR_{b+1} + BR_{b+2} + BR_n)}{n}$$

Effective Death Rate (DR_e):
$$\frac{(DR_b + DR_{b+1} + DR_{b+2} + DR_n)}{n}$$

Effective Emigration Rate (ER_e):
$$\frac{(ER_b + ER_{b+1} + ER_{b+2} + ER_n)}{n}$$

Effective Immigration Rate (IR_e):
$$\frac{(IR_b + IR_{b+1} + IR_{b+2} + IR_n)}{n}$$

Effective Growth Rate
$$(G_e) = (BR_e + IR_e) - (DR_e + ER_e)$$

Step 1 (b): Compute the Effective Growth Factor (G_e) :

Number of years from the base year to last available data year (n): Year of the last available data – Base Year.

Annual Growth Rate from base year to next subsequent year and upto last available data year: $G_1,\,G_2,\,G_3,\,\ldots,G_n$

Here,
$$G_1 = Population_{(Base\ Year\ +1)} - Population_{(Base\ Year)}$$

$$G_2 = Population_{(Base\ Year\ +2)} - Population_{(Base\ Year\ +1)}$$

 G_n = Population of the last available data – Population of the previous year to last available data

Effective Growth Factor,
$$G_e = \frac{G_1 + G_2 + G_3 + \dots + G_n}{n}$$

Step 2: Target Year Population (P):

$$P_T = P_L + N.G_e$$
;

where, P_L is the population of last available data year (Will be provided in the Data), N is number of year (N = Target Year – Year of the last available data)

If only one year is selected, then compute only for the target year.

Else in the case of range of years (eg. $Year_i - Year_f$) iterate the process for all the years in between $Year_i - Year_f$. Year_i is the initial year (ith Year) and $Year_f$ is the final year (fth Year).

 $P_i = P_L + (Year_i - Year of the last available data). G_e$

 $P_{(i+1)} = P_L + (Year_{(i+1)} - Year of the last available data). G_e$

.....

.....

 $P_f = P_L + (Year_f - Year of the last available data). G_e$

(b) If under the 'Method for Projection', 'Geometric Increase Method' is selected:

Step 1 (a): Compute the Effective Growth Factor (G_e) :

Years from the base year to last available data year (n): Year of the last available data –Base Year.

Birth Rate from the Base Year to last available data year: $BR_{b,} \ BR_{b+1,} \ BR_{b+2,} \ \ldots, \ BR_n$

Death Rate from the Base Year to last available data year: DR_{b} , DR_{b+1} , DR_{b+2} ,, DR_{n}

Emigration Rate from the Base Year to last available data year: ER_{b} , ER_{b+1} , ER_{b+2} ,..... ER_{n}

Immigration Rate from the Base Year to last available data year: IR_{b} , IR_{b+1} , IR_{b+2} ,...., IR_{n}

Effective Birth Rate (BR_e): $(BR_b \times BR_{b+1} \times BR_{b+2} \dots \times BR_n)^{\frac{1}{n}}$

Effective Death Rate (DR_e): $(DR_b \times DR_{b+1} \times DR_{b+2} \dots \times DR_n)^{\frac{1}{n}}$

Effective Emigration Rate (ER_e): $(ER_b \times ER_{b+1} \times ER_{b+2} \dots \times ER_n)^{\frac{1}{n}}$

Effective Immigration Rate (IR_e): $(IR_b \times IR_{b+1} \times IR_{b+2} \dots \times IR_n)^{\frac{1}{n}}$

Effective Growth Rate $(G_e) = (BR_e + IR_e) - (DR_e + ER_e)$

Step 1 (b): Compute the Effective Growth Factor (G_e) :

Number of years from the base year to last available data year (n): Year of the last available data – Base Year.

Annual Growth Rate from base year to next subsequent year and upto last available data year: $G_1, G_2, G_3, \ldots G_n$

Here, $G_1 = Population_{(Base\ Year+1)} - Population_{(Base\ Year)}$

 $G_2 = Population_{(Base\ Year\ +2)} - Population_{(Base\ Year\ +1)}$

.....

 G_n = Population of the last available data – Population of the previous year to last available data

Effective Growth Factor, $G_e = \sqrt[n]{G_1. G_2. G_3...G_n}$

Step 2: Target Year Population (P):

$$P_T = P_L \times (1 + G_e)^N$$
;

where, P_L is the population of last available data year (Will be provided in the Data), N is number of year (N = Target Year – Year of the last available data)

If only one year is selected, then compute only for the target year.

Else in the case of range of years (eg. Year_i – Year_f) iterate the process for all the years in between Year_i – Year_f. Year_i is the initial year (ith Year) and Year_f is the final year (fth Year).

$$P_i = P_L \times (1 + G_e)^{(Year_i - Year of the last available data)}$$

$$P_{(i+1)} = P_L \times (1 + G_e)^{(Year_{(i+1)} - Year of the last available data)}$$

.....

.....

$$P_f = P_L imes (1 + G_e)^{\left(Year_f - Year \text{ of the last available data} \right)}$$

- (c) If under the 'Method for Projection', 'Logistic growth method' is selected:
 - Step 1: Detect the base year (t_o) population and save it as P_o
 - **Step 2:** Detect the population for next decade ($t_1 = 10$ years after base year) and save it as P_1 (In case of unavailability of the data, compute it based on the geometric increase method)
 - **Step 3:** Detect the population for next-to-next decade ($t_2 = 20$ years after base year) and save it as P_2 (*In case of unavailability of the data, compute it based on the geometric increase method*)
 - **Step 4:** Compute the Saturated Population (P_s):

$$P_{S} = \frac{2P_{o}.P_{1}.P_{2} - P_{1}^{2}.(P_{o} + P_{2})}{P_{o}.P_{2} - P_{1}^{2}}$$

Step 5: Computation of the constant 'm':

$$m = \frac{P_s - P_o}{P_o}$$

Step 6: Computation of the constant 'n':

$$n = \frac{2.3}{t_1} \log_e \left\{ \frac{P_o.(P_s - P_1)}{P_1.(P_s - P_o)} \right\}$$

Step 7 (a): If population of only one target is required:

Computation of the target year population (P_T):

Year Gap (t) = Target Year – Base Year

$$P_T = \frac{P_s}{1 + m \cdot \log_e^{-1}(n \cdot t)}$$

Step 7 (b): If population for the ranges of years (Year_i– Year_f):

Year Gap (t_i) = Initial Year_i – Base Year

Year Gap (t_{i+1}) = Initial Year_{i+1} – Base Year

Year Gap (t_{i+2}) = Initial Year $_{i+2}$ – Base Year

.....

Year Gap (t_f) = Final Year_f – Base Year

Population for the initial year $Year_i(P_i)$:

$$P_{i} = \frac{P_{s}}{1 + m. \log_{e}^{-1}(n. t_{i})}$$

Population for the initial year $Year_{i+1}(P_{i+1})$:

$$P_{(i+1)} = \frac{P_s}{1 + m. \log_e^{-1}(n. t_{i+1})}$$

Similarly, Population for the final year $Year_f(P_f)$:

$$P_f = \frac{P_s}{1 + m. \log_e^{-1}(n. t_f)}$$

(d) If under the 'Method for Projection', 'Exponential Growth Method' is selected:

Step 1: Save the base year population as P_o

Step 2 (a): Time (t) = Target Year – Base Year (In case of single target year)

Step 2 (b): $t_i = Year_i$ - Base Year; $t_{(i+1)} = Year_{(i+1)}$ - Base Year; $t_f = Year_f$ - Base Year

Step 3: Computation of the growth rate (r) = $\frac{n \cdot \sum xy - \sum x \cdot \sum y}{n \cdot \sum x^2 - (\sum x)^2}$

Table: Sample Table for the computation of growth rate (r),

SN	Year _i	Population	X	у	x.y	x^2
		(P _i)	$(t = Year_i - Base Year)$	(Log P _i)		
1.	1981	1000000	0	13.81551	0	0
2.	1991	1200000	10	13.99783	139.9783	100
3.	2001	1500000	20	14.22098	284.4195	400
4.	2011	1800000	30	14.4033	432.0989	900
n =			$\sum x = 60$	$\sum y$	$\sum xy$	$\sum x^2$
4	-	Fotal -		-	05640	1400
				= 56.43	= 856.49	= 1400

(If base year is 1981, and last available data year is 2011)

So, in the above case, growth rate (r) will be calculated by putting all the values generated from the table in the equation under *Step 3*.

Step 4(a): If population of only one target is required:

Target Year Population $(P_t) = P_o.e^{r.t}$

Step 4(b):If population for the ranges of years (Year_i– Year_f):

A1.a.iii. Output:

If only one target year is selected:

Print: "Projected Population for the Year ('Target Year') is: P_T"

If range of the years are selected ($Year_i - Year_t$):

Print: "Projected Population for the Period $Year_i - Year_f$ is:

Year	Population
Year _i	P_i
$Year_{(i+1)}$	$P_{(i+1)}$
	•••••
Year _f	P_f

If 'Machine learning based methods', method is selected:

A1. b.i. Inputs:

- (a) Level- Dropdown: District, Sub-district/Tehsil, Ward, Village
- **(b) Name of Region:** (Automatically fill by typing the initial spell of the location, which is already saved), and one *'Other'* option is provided.

Other: Name will be entered, which location will be searched on Google Earth, or any other portal to search the coordinates of this location, and automatically found the 'Region' of its closest proximity, which 'Demographic Attributes' will be automatically selected for writing under the third variable, in the backend.

(c) Target Year / Range of Years: Manual Entry

A1.b. ii. Processing:

- Split the whole population data into 70:30 for the training and testing.
- Train the model (ANN) using 70% of training data.
- Test the model using 30% of the testing data.
- Predict the Population for the target year (P_T) or range of the years $(P_i P_f)$.

A1.b.iii. Output:

If only one target year is selected:

Print: "Projected Population for the Year ('Target Year') is: P_T"

If range of the years are selected ($Year_i - Year_f$):

Print: "Projected Population for the Period $Year_i - Year_f$ is:

Year	Population
Year _i	P_i
$Year_{(i+1)}$	$P_{(i+1)}$
Year _f	\mathbf{P}_{f}

If 'Scenario-based modelling', method is selected:

A1. c.i. Inputs:

- (a) Level- Dropdown: District, Sub-district/Tehsil, Ward, Village
- **(b)** Name of Region: (Automatically fill by typing the initial spell of the location, which is already saved), and one 'Other' option is provided.

Other: Name will be entered, which location will be searched on Google Earth, or any other portal to search the coordinates of this location, and automatically found the 'Region' of its closest proximity, which 'Demographic Attributes' will be automatically selected for writing under the third variable, in the backend.

- (c) Base Years: Dropdown: (Years)
- (d) Target Year / Range of Years: Manual Entry
- (e) User Defined Scenario:
 - a. Annual Birth Rate Change (%):.....(Manual Entry)
 - b. Annual Death Rate Change (%)......(Manual Entry)

- c. Annual Emigration Rate Change (%)......(Manual Entry)
- d. Annual Immigration Rate Change (%)(Manual Entry)

A1. c.ii. Processing:

Step 1: Compute the Effective Growth Factor (G_e) :

Years from the base year to last available data year (n): Year of the last available data – Base Year.

Birth Rate from the Base Year to last available data year: BR_{b} , BR_{b+1} , BR_{b+2} ,, BR_{n}

Death Rate from the Base Year to last available data year: DR_{b} , DR_{b+1} , DR_{b+2} ,, DR_{n}

Emigration Rate from the Base Year to last available data year: ER_{b} , ER_{b+1} , ER_{b+2} ,....., ER_{n}

Immigration Rate from the Base Year to last available data year: IR_{b} , IR_{b+1} , IR_{b+2} ,...., IR_{n}

Effective Birth Rate (BR_e): $(BR_b \times BR_{b+1} \times BR_{b+2} \dots \times BR_n)^{\frac{1}{n}}$

Effective Death Rate (DR_e): $(DR_b \times DR_{b+1} \times DR_{b+2} \dots \times DR_n)^{\frac{1}{n}}$

Effective Emigration Rate (ER_e): $(ER_b \times ER_{b+1} \times ER_{b+2} \dots \times ER_n)^{\frac{1}{n}}$

Effective Immigration Rate (IR_e): $(IR_b \times IR_{b+1} \times IR_{b+2} \dots \times IR_n)^{\frac{1}{n}}$

Scenario based Birth Rate (BR_{scen}) = Effective Birth Rate (BR_e) + (Effective Birth Rate (BR_e) X Annual Birth Rate Change %)

Scenario based Death Rate (DR_{scen}) = Effective Death Rate (DR_e) + (Effective Death Rate (DR_e) X Annual Death Rate Change %)

Scenario based Emigration Rate (ER_{scen}) = Effective Emigration Rate (ER_e) + $(Effective Emigration Rate (ER_e))$ X Annual Emigration Rate Change %)

Scenario based Immigration Rate (IR_{scen}) = Effective Immigration Rate (IR_e) + (Effective Immigration Rate (IR_e) X Annual Immigration Rate Change %)

Scenario based Growth Rate $(G_{scen}) = (BR_{scen} + IR_{scen}) - (DR_{scen} + ER_{scen})$

Step 2: Target Year Population (P):

$$P_T = P_L \times (1 + G_{scen})^N;$$

where, P_L is the population of last available data year (Will be provided in the Data), N is number of year (N = Target Year – Year of the last available data)

If only one year is selected, then compute only for the target year.

Else in the case of range of years (eg. Year_i – Year_f) iterate the process for all the years in between Year_i – Year_f. Year_i is the initial year (ith Year) and Year_f is the final year (fth Year).

A1.c.iii. Output:

If only one target year is selected:

Print: "Projected Population for the Year ('Target Year') is: P_T "

If range of the years are selected ($Year_i - Year_f$):

Print: "Projected Population for the Period $Year_i - Year_f$ is:

Year	Population
Year _i	P_i
$Year_{(i+1)}$	$P_{(i+1)}$
•••••	
•••••	•••••
Year _f	\mathbf{P}_f

If 'Cohort Component Method' is selected:

A1. d.i. Inputs:

- (a) Level- Dropdown: District, Sub-district/Tehsil, Ward, Village
- **(b)** Name of Region: (Automatically fill by typing the initial spell of the location, which is already saved), and one 'Other' option is provided.

Other: Name will be entered, which location will be searched on Google Earth, or any other portal to search the coordinates of this location, and automatically found the 'Region' of its closest proximity, which 'Demographic Attributes' will be automatically selected for writing under the third variable, in the backend.

- (c) Base Years: Dropdown: (Years)
- (d) Target Year / Range of Years: Manual Entry
- (e) Demographic Rates:
 - a. Age-Specific Fertility Rates (ASFR): Auto Upload / Manual Entry
 - b. Age-Specific Mortality Rates (ASMR): Auto Upload / Manual Entry
 - c. Age-Specific Migration Rates (ASMR): Auto Upload / Manual Entry
 - d. Sex Ratio in %: Auto Upload / Manual Entry

A1. d.ii. Processing:

- (a) Age Groups: Divide the base year population into 5-year age cohorts (e.g., 0-4, 5-9, ..., 80+).
- (b) Sex Segregation: Separate each age cohort by sex.
- (c) Calculate age specific survival rate for both male and female:

Age and Gender Specific Survival Rate

 $= (1 - Annual Per Capita Mortality Rate)^n$

Here 'n' is the interval of the age group (eg. 5 years, if 0-4, 5-9...., 85+)

(d) Birth Estimation in the next projected year (Suppose base year is 2011, then it will be for 2016):

Numbers of Births during the fertile ages =

Numbers of females during each fertile age group (Ex. 15-19, 20-24, 25-29,45-49 years) \times Annual fertility rate in that age group \times Year Interval (Ex. Suppose base year is 2011, and next projected year is 2016, then it will be 5 for 2011-2016)

Total Births (**TB**) = $\sum_{i=15-19}^{45-49}$ Numbers of Births during the each fertile age group **Sex Ratio** = **x%** (**Given**)

It means x% of the total are females, and (100-x)% are males.

Number of Males in the first cohort (0-4) in the next projected year (Ex. 2016):

$$= \text{TB} \times \frac{(100 - X)}{100}$$

Number of Females in the first cohort (0-4) in the next projected year (Ex. 2016):

$$= TB \times \frac{(X)}{100}$$

Number of Males in the second cohort (5-9) in the next projected year (Ex. 2016):

= Number of Males in the first cohort (0-4) in the base year $(Ex. 2011) \times Survival$ Rate of the males of the first cohort (0-4) in the base year (Ex. 2011)

Number of Females in the second cohort (5-9) in the next projected year (Ex. 2016):

= Number of females in the first cohort (0-4) in the base year $(Ex. 2011) \times Survival$ Rate of the females of the first cohort (0-4) in the base year (Ex. 2011)

••••••••••••••••••••••••••••••••••••

Number of Males in the last cohort (Ex. 85+) in the next projected year (Ex. 2016):

= (Number of Males in the second last cohort (80-84) in the base year (Ex. 2011) \times Survival Rate of the males of the second last cohort (80-84) in the base year (Ex. 2011)) + (Number of Males in the last cohort (85+) in the base year (Ex. 2011) \times Survival Rate of the males of the last cohort (85+) in the base year (Ex. 2011))

Number of Females in the last cohort (Ex. 85+) in the next projected year (Ex. 2016):

= (Number of females in the second last cohort (80-84) in the base year (Ex. 2011) \times Survival Rate of the females of the second last cohort (80-84) in the base year (Ex. 2011)) + (Number of females in the last cohort (85+) in the base year (Ex. 2011) \times Survival Rate of the females of the last cohort (85+) in the base year (Ex. 2011))

(e) Computation of the migration-adjusted population:

Number of the projected population in each cohort (section (e)) + Age-Specific Migration Rates (ASMR)

(f) Iterate the same process if range of years is provided (eg. 2016, 2021, 2026, 2031 etc.)

A1. d.iii. Output:

If Single Target Year: Display the projected population for the specified target year, broken down by age and sex cohorts like:

Projected Population for the Year "Target Year":

- Age Group 0-4: Males:; Females:
- Age Group 5-9: Males:; Females:
- •
- Age Group 80+: Males:; Females:

If range of year is selected: Present a table showing projected populations for each year within the range, detailed by age and sex cohorts.

Age Group	Year _i		Year _{i+5}		••••		Year _f	
(Years)	Males	Females	Males	Females	Males	Females	Males	Females
0-4	•••	•••	•••	• • •	•••	•••		•••
5-9	•••	•••	•••	•••	•••	•••	•••	•••
		•••	•••		•••	•••		•••

•••	•••	•••	•••	•••	•••	•••	•••	•••
80+	•••	•••	•••	•••	•••	•••	•••	

B. Water Demand Estimation and Prediction:

B1. Water Demand Estimation Types- *Dropdown: Domestic Demand, Floating Population Demand, Institutional Demand, Fire Fighting Demand, Total Water Demand*If 'Domestic Demand', method is selected:

B1. a.i. Inputs:

- (a) Level- Dropdown: District, Sub-district/Tehsil, Ward, Village
- (b) **Name of Region:** (Automatically fill by typing the initial spell of the location, which is already saved), and one 'Other' option is provided.

Other: Name will be entered, which location will be searched on Google Earth, or any other portal to search the coordinates of this location, and automatically found the 'Region' of its closest proximity, which 'Population' will be automatically selected for writing under the third variable, in the back end.

- (c) **Year:** Dropdown: Years
- (d) **Population:** Autofill the population of the selected year based on the saved data (but editable)

B1. a.ii. Processing:

Table 2.4: Recommended per capita water supply levels for designing schemes

S. No.	Classification of towns/cities	Recommended Maximum Water Supply Levels (LPCD)
1	Cities/ towns with a population of less than 10 lakhs (0.1 million)	135
2	Metro and Mega cities having a population of 10 lakh (1 million) or more	150

Source: CPHEEO Manual, 2024

If **Population** is $\ge 1,000,000$: Then, Water Demand = (Population $\times 150$)

If **Population** is < 1,000,000: Then, Water Demand = (Population $\times 135$)

B1. a.iii. Output:

Pop-up: Total Water Demand by the "Name of Region" is "Water Demand" LD.

If 'Floating Population Demand', method is selected:

B1. b.i. Inputs

- (a) Level- Dropdown: District, Sub-district/Tehsil, Ward, Village
- (b) **Name of Region:** (Automatically fill by typing the initial spell of the location, which is already saved), and one 'Other' option is provided.

Other: Name will be entered, which location will be searched on Google Earth, or any other portal to search the coordinates of this location, and automatically found the 'Region' of its closest proximity, which 'Floating Population' will be automatically

- (c) **Floating Population:** Fill Automatically (But Editable)
- (d) Facility- Check anyone: Bathing facilities provided, Bathing facilities not provided, Floating population using only public facilities

B1. b.ii. Processing:

Table 2.5: Rate of supply for floating population

S. No.	Facility	Litres per capita per day (LPCD)
1	Bathing facilities provided	45
2	Bathing facilities not provided	25
3	Floating population using only public facilities (such as market traders, hawkers, non-residential tourists, picnickers, religious tourists, etc.)	15

Source: CPHEEO Manual, 2024

a) If "Bathing facilities provided" is checked:

Floating Population Water Demand: "Floating Population" × 45

b) If "Bathing facilities not provided" is checked:

c) If "Floating population using only public facilities" is checked:

Floating Population Water Demand: "Floating Population" × 15

B1. b.iii. Output:

Pop-up: Total Water Demand by the Floating Population in the "Name of Region" is "Floating Population Water Demand" LD.

If 'Institutional Demand', method is selected:

B1. c.i. Inputs:

- (a) Level- Dropdown: District, Sub-district/Tehsil, Ward, Village
- (b) **Name of Region:** (Automatically fill by typing the initial spell of the location, which is already saved), and one 'Other' option is provided.

Other: Name will be manually entered

- i. Number of Hospitals (including laundry):
 - a. Hospitals with more than or equal to 100 Beds:.....
 - (a) Number of Beds:.....
 - b. Hospitals with less than 100 Beds:.....
 - (a) Number of Beds:.....
- ii. Number of Hotels:.....
 - (a) Number of Beds:.....
- iii. Number of Hostels:.....
 - (a) Number of Residents:.....
- iv. Number of Nurses' homes and medical quarters:.....
 - (a) Number of Residents:.....
- v. Number of Boarding schools / colleges:......
 - (a) Number of Students:.....
- vi. Number of Restaurants:.....

	(a) Number of Seats:
vii.	Number of Airports and seaports:
	(a) Population Load:
viii.	Number of Junction Stations and intermediate stations where mail or
	express stoppage (both railways and bus stations) is presided:
	(a) Population Load:
ix.	Number of Terminal stations:
	(a) Population Load:
х.	Number of Intermediate stations (excluding mail and express stops):
	a. With bathing facility:(a) Population Load:
	•
	b. Without bathing facility:
	(a) Population Load:
xi.	Number of Day schools / colleges:
	(a) Number of Students:
xii.	Number of Offices:
	(a) Number of Employees:
xiii.	Number of Factories:
	a. With bathroom facility:
	(a) Number of Employees:
	b. Without bathroom facility:
	(a) Number of Employees:
xiv.	Number of Cinema, concert halls, and theatre:
	(a) Population Load:

B1. c.ii. Processing and ouput:

Table 2.6: Requirement of water for institutions

SI. No.	Institutions	Litres per head per day
	Hospital (including laundry)	
1	(a) No. of beds exceeding 100	450 (per bed)
	(b) No. of beds not exceeding 100	340 (per bed)
2	Hotels	180 (per bed)
3	Hostels	135
4	Nurses' homes and medical quarters	135
5	Boarding schools / colleges	135
6	Restaurants	70 (per seat)
7	Airports and seaports	70
	Junction Stations and intermediate stations	
8	where mail or express stoppage (both railways	70
	and bus stations) is presided	
9	Terminal stations	45
10	Intermediate stations (excluding mail and	45 (could be reduced to 25 where
10	express stops)	bathing facilities are not provided)
11	Day schools / colleges	45
12	Offices	45
13	Factories	45 (could be reduced to 30 where
13	i actories	no bathrooms are provided)
14	Cinema, concert halls, and theatre	15

Source: CPHEEO Manual, 2024

Print: Institutional water demand for the "Name of Region" is:

SN	Institute	Water Demand (in LD)
1.	Number of Hospitals (including laundry):	
	a. Hospitals with more than or equal	Number of Units × Number of Beds ×
	to 100 Beds:	450
	b. Hospitals with less than 100 Beds:	Number of Units × Number of Beds ×
		340
2.	Hotels	Number of Units × Number of Beds ×
		180
3.	Hostels	Number of Units × Number of
		Residents × 135
4.	Nurses' homes and medical quarters	Number of Units × Number of
		Residents × 135
5.	Boarding schools / colleges	Number of Units ×Number of Students
		× 135
6.	Restaurants	Number of Units × Number of Seats ×
		70
7.	Airports and seaports	Number of Units × Population Load

		× 70			
8.	Junction Stations and intermediate				
	stations where mail or express stoppage	Number of Units × Population Load			
	(both railways and bus stations) is	× 70			
	presided				
9.	Terminal stations	Number of Units × Population Load			
		× 45			
10.	Intermediate stations (excluding mail and				
	express stops)				
	a. With bathing facility:	Number of Units × Population Load			
		× 45			
	b. Without bathing facility:	Number of Units × Population Load			
		× 25			
11.	Day schools / colleges	Number of Units ×Number of Students			
		× 45			
12.	Offices	Number of Units ×Number of			
		Employees × 45			
13.	Factories				
	a. With bathroom facility:	Number of Units ×Number of			
		Employees × 45			
	b. Without bathroom facility:	Number of Units ×Number of			
		Employees × 30			
14.	Cinema, concert halls, and theatre	Number of Units × Population Load			
		× 15			
	I	1 (a) + 1 (b) + 2 + 3 + 4 + 5 + 6 + 7 + 8			
	Total Institutional Demand	+ 9 + 10 (a) + 10 (b) +11 + 12 + 13 (a)			
		+ 13 (b) + 14			

If 'Fire Fighting Demand', method is selected:

B1. d.i. Inputs:

(a) Level- Dropdown: District, Sub-district/Tehsil, Ward, Village

(b) Name of Region: (Automatically fill by typing the initial spell of the location, which is already saved), and one *'Other'* option is provided.

Other: Name will be entered, which location will be searched on Google Earth, or any other portal to search the coordinates of this location, and automatically found the 'Region' of its closest proximity, which 'Population' will be automatically selected for writing under the variable 'Population of the Region'.

- (c) Intermediate Stage: Fill Automatically '15' Years (But Editable)
- (d) Population of the Region at Intermediate Stage: Fill Automatically(But Editable)
- (e) Name of the Operational Zone: "Enter Name"
- (f) Population of the Operational Zone at Intermediate Stage: "Enter Manually"

B1. d.ii. Processing:

(a) Population of the Region at Intermediate Stage (P_{is}) =

Population of the last available year data× $[1 + \{(Annual\ Birth\ Rate\ of\ the\ Last\ Year\ + Annual\ Immigration\ Rate\ of\ the\ Last\ Year) - \\ (Annual\ Death\ Rate\ of\ the\ Last\ Year\ + Annual\ Emigration\ Rate\ of\ the\ Last\ Year)\}]^N$

Here, N = 15, or data provided under the 'Intermediate Stage' section

OR

Number of years from the firstavailable year data to the last available data year (n): Year_{last} – Year_{first}.

Annual Growth Rate from first year to each next subsequent year and upto last year: $G_1, G_2, G_3, \ldots G_n$

Here,
$$G_1 = Population_{(First Year + 1)} - Population_{(First Year)}$$

$$G_2 = Population_{(First\ Year\ +2)} - Population_{(First\ Year\ +1)}$$

.....

$$G_n = Population_{(last year)} - Population_{(last year - 1)}$$

Effective Growth Factor,
$$G_e = \sqrt[n]{G_1. G_2. G_3...G_n}$$

Hence, P_{is} = Population of the last available year data $\times (1 + G_e)^n$

(b) Water Requirements for the Fire in the Entire Region (W_r) =

$$\frac{100,000}{\sqrt{\frac{P_{is}}{1000}}}$$

(c) Water Requirements for the Fire in the Operational Zone, $OZ(W_{oz}) =$

$$\frac{\text{Population of the Operational Zone at Intermediate Stage}}{P_{is}} \times W_r$$

B1. d.iii. Output:

Pop-up: Fire Fighting Water Demand for the Whole Region "Name of the Region" is " W_r "

Fire Fighting Water Demand for the Operational Zone "Name of the Operational Zone" in the Region "Name of the Region" is " W_{oz} " LCD.

If 'Total Demand', method is selected:

B1. e.i. Inputs:

- (a) Level- Dropdown: District, Sub-district/Tehsil, Ward, Village
- **(b) Name of Region:** (Automatically fill by typing the initial spell of the location, which is already saved), and one 'Other' option is provided.

Other: Name will be manually entered

- (c) Enter Domestic Demand (in LD): Enter Manually / Calculate by previous method
- (d) Enter Floating Population Demand (in LD): Enter Manually / Calculate by previous method

- (e) Enter Institutional Demand (in LD): Enter Manually / Calculate by previous method
- **(f) Enter Fire Fighting Demand (in LD):** Enter Manually / Calculate by previous method

B1. e.ii. Processing:

Gross Demand (W_{gross}) = Domestic Demand + Floating Population Demand +

Institutional Demand + Fire Fighting Demand

Total Water Demand (W_T) =
$$\frac{W_{gross} \times \left(1 + \frac{15}{100}\right)}{1000000}$$

B1. e.iii. Output:

Pop-up: Total Water Demand in the Region "Name of Region" is "W_T" MLD.

C. Sewage Load Estimation and Prediction:

C1.Methods: Dropdown: Sector-based Estimation Method, Water Supply-based Method

If 'Sector-based Estimation Method', method is selected:

C1a.i. Inputs:

- (a) Level- Dropdown: District, Sub-district/Tehsil, Ward, Village
- **(b)** Name of Region: (Automatically fill by typing the initial spell of the location, which is already saved), and one 'Other' option is provided.

Other: Name will be entered, manually.

- (c) Sectors- Dropdown: Domestic Sewage Load, Floating Population Sewage Load, Institutional Sewage Load, Fire Fighting Sewage Load, Total Sewage Load
- (d) Water Demand: *Dropdown: Modeled, Manual*If 'Modeled' is selected: Refer to Section Bfor the calculation of modeled water demand, and write it in MLD.

If 'Manual'is selected: Enter the value manually (in MLD)

C1 a.ii. Processing:

Waste Water (WW) = Water Demand
$$\times \frac{80}{100}$$

C1 a.iii. Output:

Total Generated Waste Water by the "Sectors" in the "Name of the Region" is: 'WW' MLD

If 'Water Supply-based Method', method is selected:

C1 b.i. Inputs:

- (a) Level- Dropdown: District, Sub-district/Tehsil, Ward, Village
- **(b) Name of Region:** (Automatically fill by typing the initial spell of the location, which is already saved), and one 'Other' option is provided.

Other: Name will be entered, manually.

(c) Total Water Supply (In MLD):(Numerical value will be manually entered)

C1 b.ii. Processing:

Total Waste Water = Total Water Supply
$$\times \frac{80}{100}$$

C1 b.iii. Output:

Total Generated Waste Water in the "Name of the Region" is: 'WW' MLD.

D. STP SitePriority and Suitability

D1. STP Site Priority:

D1. a Inputs:

(i) Selection of the Target Districts: Show all Districts under dropdown option with search option at its top, and one 'Other' option should also provide. While clicking on the 'Other' option, manual entries should be done.

	_
Search	Other
✓ Varanasi	
Prayagraj	
✓ Jaunpur	
Chandauli	

Selected districts for prioritization are: Varanasi, Jaunpur

(ii) Selection of the prioritization factors:

Tick based interface:

☑ Sewage Gap	☑ Mean Temperature	☑ Mean Rainfall
☑ Number of Tourists	Number of ASI Sites	GD DP at Current Price
☑ater Quality Index	K	

(iii) Values of the prioritization factors:

Autofill values of the selected parameters for the selected districts in the tabular format with editing option enabled, (Note: All entries will be done manually for the 'Other' districts):

District	Sewag	Mean	Mean	Number	Water	Number	GDDP
S	e Gap	Temperature	Rainfall	of	Quality	of ASI	at
				Tourists	Index	Sites	Current
							Prices
Varanas							
i							
Jaunpur							

(iv) Method for prioritization: Dropdown: AHP, TOPSIS

D1. b Processing:

If 'AHP' method is selected under the 'method for prioritization':

If 'TOPSIS' method is selected under the 'method for prioritization':

D1. c Output:

Show the prioritization ranks for the selected districts in the tabular format like this:

Districts	Priority Rank
Varanasi	1
Jaunpur	2

D2. STP Site Suitability:

-	

D2. a I	nputs:						
(i)	i) Select the region:						
	Level- Dropdown: District, Sub-district/Tehsil, Ward, Village						
	Name of Reg	gion	: (Autom	natica	ally fill	by typing the initial spell	of the
	location, which is already saved), and one 'Other' option is provided.						
	Other: Name will be entered, manually.,						
	If 'other' option is selected:						
	Upload the Shape File:Upload the shape file from the local directory.						
(ii)	(ii) Selection of the Desired Conditioning Factors:						
Tic	ck based interfa	ce:					
			☑			\square	
	☑ Lithology ☑		Geomorphology			Soil Texture	
	Soil Type		Distance from bu	ilt-u _l	p land	Distance from road	
	☑JLC		Elevation		Slope	□ Population Density	
	☑:eracy						

(iii) Selection of the Constra	ints Fa	ectors:		
Tick based interface:				
(a) Natural Factors:				
☑ Water Body Slope	Ø	Soil Texture	V	
☑ Flood Prone Area	Giroun	dwater Depth	We ⊞ u	nd
☑ rest		Seismic Zones		
(b) Anthropogenic Factors:				
☑ Road Railway	V	Airport	V	
☑ Built-up area		ASI Sites		Defense Area
☑:isting STPs		Proposed STPs		
(iv) Methods for the STP Si	te Suita	<i>ability:</i> Dropdown [.] AH	P. Fuzz	v-AHP. DEMATLE
ANP, GRA		Diopuo viii IIII	.,	.,, <i>Denille</i>