

### Second Semester 2020-2021 AUGS Division Course Handout (Part II)

Date: 15/01/2020

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : PHY F341

Course Title : Solid State Physics

Instructor In-charge : Subhashis Gangopadhyay

**Instructor(s)**:

#### 1. Course Description

The course covers the physical aspects of the matter in condensed state from an atomistic view point. It is an introduction to the solid state physics, begins with the basic concepts of crystallography along with lattice vibrations and related thermal properties, energy states and electronic band theory, free electron models and related electrical properties and magnetism. This course also dealt with various important class of materials such as semiconductors, insulators and superconductors. Thus overall topics covered here includes the structural, thermal and electrical properties of matter.

#### 2. Scope and Objectives

- To provide physical as well as mathematical understanding of various phenomena in solid state physics associated mainly with crystalline solids
- Lay the foundation for a working and understanding of solids through fundamental theoretical concepts.

#### 3. Prescribed Text Book

• T1: Introduction to Solid State Physics, C. Kittel, 8<sup>th</sup> ed., Wiley (2005)

#### 4. Reference Book

- R1: Solid State Physics, N W Ashcroft and N D Mermin, 1st ed., Thomson (1976) (for theoretical understanding)
- R2: Elementary Solid State Physics: Principles and Applications by M Ali Omar Pearson Publications (for materials aspect and theory)
- R3: Materials Science and Engineering: An introduction by W D Callister (Materials aspect)
- R4: Solid State Electronic Devices Ben G Streetman Pearson seventh edition (Device aspect of SSP)







# BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

#### 5. Course Plan

| Module<br>Number                               | Lecture session/Tutorial session                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reference                                                      | <b>Learning Outcome</b>                                                                                                                                                                            |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Crystal<br>Structure                        | <ul> <li>L1.1-2. Concept of lattice, Periodic array of atoms, fundamental types of crystal structures.</li> <li>L 1.3-4. Planes and Directions in crystals, Miller indices, Planar and linear densities, family of planes and directions</li> <li>L1.5 Primitive cells, unit cell, Wigner-Seitz cell and translation operations, crystal symmetry</li> <li>L1. 6-7 Some ceramic structures NaCl, CsCl, ZnS, Carbon based materials etc, their planar, linear densities, packing fraction</li> <li>T. Exercise problems</li> </ul> | T 1: Kittel<br>Chapter 1<br>and R1, R4<br>Based on<br>T1, R1-4 | To understand the basic crystallography and atomic arrangement in solids, extending this knowledge to the structures in semiconductor technology (silicon) and crystalline solids in other fields. |
| 2. Wave diffraction and the reciprocal lattice | <ul> <li>L2.1 Bragg Diffraction, Structural factor calculation</li> <li>L2.2 Reciprocal space, reciprocal lattice, examples (BCC, FCC), Brillouin Zones</li> <li>L2.3 Zone plane and zone axis</li> </ul>                                                                                                                                                                                                                                                                                                                         | T 1: Kittel<br>Chapter 2<br>and R1                             | Understanding of reciprocal lattice, Bragg diffraction applicable in electron, neutron and X-ray diffraction.                                                                                      |
| 3. Crystal binding                             | <ul> <li>L3.1 Crystals of inert gases, Van der Waals interaction, repulsive interaction, cohesive energy</li> <li>L3.2. Ionic crystals, covalent crystals and metals, hydrogen bonds. Chapter excludes elastic constants.</li> <li>T: On problems from chapter 3</li> </ul>                                                                                                                                                                                                                                                       | T1: Kittel chapter 3, R3                                       | To understand the crystal bonds in various types of solids, which will further help to know the advanced materials for technology.                                                                 |
| 4. Crystal<br>Vibrations:<br>Phonons I         | <ul> <li>4.1 Monatomic Crystals, wave propagation and dispersion relation</li> <li>4.2 Diatomic Crystals wave propagation and dispersion relation</li> <li>T: Problems of Chapter 4</li> </ul>                                                                                                                                                                                                                                                                                                                                    | T1: Kittel<br>Chapter 4                                        | Basics understanding of lattice vibrations                                                                                                                                                         |
| 5. Crystal<br>Vibrations:<br>Phonons II        | <ul> <li>L5.1: Thermal properties, Einstein and Debye Models of Heat Capacity-I thermal expansion, thermal conductivity</li> <li>L5.2: Thermal properties Einstein and Debye Models, T³ law of Heat Capacity-II</li> <li>L5.3: Thermal expansion, thermal conductivity, thermal resistivity of phonon gas</li> <li>T. Problems on Chapter 5</li> </ul>                                                                                                                                                                            | T1: Kittel<br>Chapter 5                                        | Lattice vibrations and their effect on thermal properties                                                                                                                                          |
| 6.Free<br>electron<br>Fermi Gas                | <ul> <li>L6.1: Drude's model, electrical and thermal conductivity of metals</li> <li>L6.1: Somerfield's model, Fermi Dirac Distribution, Free electron gas in 3D, Fermi energy</li> </ul>                                                                                                                                                                                                                                                                                                                                         | T1: Kittel<br>Chapter 6<br>and R1                              | In depth understanding of<br>electrical transport in<br>metals. Identification of<br>charge carriers, sign and<br>concentration using Hall                                                         |







# BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani

## Pilani Campus

| कान प्रमं बल                                               |                                                                                                                                                                                                                                                                                          |                                 | T                                                                                                                                                               |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            | L6.3: Density of States in 1, 2 and 3 c<br>L6.4-5 Hall Effect, Heat capacity                                                                                                                                                                                                             | limensions                      | effect. Vast applications in semiconductors industry.                                                                                                           |
|                                                            | T Problems on chapter 6                                                                                                                                                                                                                                                                  |                                 |                                                                                                                                                                 |
| 7. Energy<br>Bands and<br>Nearly free<br>electron<br>model | <ul> <li>L7.1 Energy Bands, Bloch Function Penney Model-I</li> <li>L7.2 Energy Bands, Bloch Function Penney Model-II</li> <li>L7.3 Energy Bands, Bloch Function Penney Model-III</li> <li>L7.4 Energy Bands, Bloch Function Penney Model-IV</li> <li>T Problems on chapter 7</li> </ul>  | Chapter 7, R4 Chap. 3           | Clear understanding of the energy band formation in solids. Behavior of materials in low dimensions, mesoscopic systems                                         |
| 8.<br>Semiconduct<br>or crystals                           | <ul> <li>L8.1 Intrinsic Carrier Concentration</li> <li>Donor and Acceptor States</li> <li>L8.2 p-n junctions and bands</li> <li>L8.3: Electrical conductivity in semice</li> <li>T Problems on chapter 8</li> </ul>                                                                      | Chapter 8,<br>R4 Chap. 3        | Bands in semiconductors,<br>p-n Junctions, formation<br>and bands, charge carrier<br>concentration and electrical<br>transport and doping in<br>semiconductors. |
| 9.<br>Fundamentals<br>of<br>Superconduct<br>ivity          | <ul> <li>L9.1 Occurrence of superconductive destruction by magnetic fields.</li> <li>L9.2.Meissner Effect, Type I superconductors</li> <li>L9.3. Elementary BCS theory, cooper</li> <li>L9.4 High Tc superconductors and proper T Problems on Chapter 10</li> </ul>                      | and II pairs operties           | To get an idea of superconductivity and some theories that can explain this phenomenon. Also to know some interesting properties of Superconductors.            |
| 10. Diamagnetis m and Paramagnetis m                       | <ul> <li>L10.1 Langevin diamagnetism paramagnetism, and quantum theories</li> <li>L10.2 Langevin diamagnetism to same. equation, paramagnetism, an theories – II</li> <li>L10.3-5 Langevin diamagnetism paramagnetism, and quantum theories</li> <li>T problems on chapter 11</li> </ul> | explain the d quantum equation, | To understand magnetic nature of materials and theories to explain the same.                                                                                    |







#### **6**. Evaluation Scheme:

| Evaluation        | Weightage (%) | Date & Time          | Remarks     |
|-------------------|---------------|----------------------|-------------|
| Components        |               |                      |             |
| Mid-semester test | 30            |                      | Online mode |
| Comprehensive     | 40            | 15/05/2021 (FN)      | Online mode |
| Tutorials and     | 30            | TBA in lecture class | Online mode |
| assignments       |               |                      |             |

After completing this course the students will be able to

- 1) Understand basics of the crystallography.
- 2) Understand the lattice vibrations and their consequences on electrical and structural properties
- 3) Energy Band formation in solids, basic theories
- 4) Compare the electrical properties of metals, semiconductors, insulators and superconductors.

**Open Book Exam:** Use of the textbook (T1) and reference book (R1) will be allowed. Photocopy of these books will also be allowed. Besides, only **hand-written class notes** are permitted. Use of calculators will be allowed in all exams. No exchange of any material will be allowed during exams.

#### Note:

Class will be conducted in online mode through Google meet link. All study related materials will be uploaded and the exams will be conducted through a specified Google class room. It shall be the responsibility of the individual student to be regular in maintaining the self study schedule as given in the course handout, attend lectures. Mid Semester Test and Comprehensive Examination are according to the Evaluation Scheme given in the respective Course Handout. If the student is unable to appear for the Regular Test/Examination due to genuine exigencies, the student must refer to the procedure for applying for Make-up Test/Examination. No make up for the tutorials or assignments.

(Subhashis Gangopadhyay) Instructor In charge PHY F341.



