Théorie des groupes

Table des matières

1 Groupe opérant sur un ensemble (action de groupe)

2

1 Groupe opérant sur un ensemble (action de groupe)

Définition 1. Soient G, un groupe et X, un ensemble. On appelle action (ou opération) à gauche de G sur X toute application :

qui satisfait les deux conditions suivantes :

Définition 2. Opération à droite

$$: G \times X \to X$$
$$(g, x) \mapsto g \cdot x$$

avec:

Exemple.

— $\mathbb{Z}/3\mathbb{Z}$ agit par rotation $\sup \mathbb{R}^2 = \mathbb{C}$. $\forall z = re^{i\phi} \in \mathbb{C}, \ \forall \bar{k} \in \mathbb{Z}/3\mathbb{Z}, \ \bar{k} \cdot z = re^{i\phi + \frac{2\pi k}{3}}$

- \mathbb{R} agit par translation sur \mathbb{R}^2
 - $\forall r \in \mathbb{R}, \ \forall (x, y) \in \mathbb{R}^2, \ r \cdot (x, y) = (x + r, y)$
- \mathbb{R}^2 agit par translation sur \mathbb{R}^2
 - $\forall (\alpha, \beta) \in \mathbb{R}^2, \ \forall (x, y) \in \mathbb{R}^2, \ (\alpha, \beta) \cdot (x, y) = (\alpha + x, \beta + y)$
- $Si\ G$ et un groupe et X=G, alors on a l'opération de G sur lui-même :
 - 1. par translation à gauche:

2. par conjugaison:

$$: G \times G \to G$$
$$(g, x) \mapsto g \cdot x \cdot g^{-1}$$

— L'action triviale de G sur X est donnée par : $g \cdot x = x$, $\forall g \in G, \forall x \in X$

Proposition 1. *Soit G, un groupe et X, un ensemble.*

Il y a une correspondance bijective et naturelle entre les actions (à gauche) de G sur X et les morphisme de G vers Bij(X).

Démonstration. — Soit \diamond , une action de G sur X.

 $\forall g \in G$, on considère l'application

$$\sigma_g: X \to X$$
$$x \mapsto g \diamond x$$

Étant donné que:

$$g^{-1} \diamond (g \diamond x) = (g^{-1}g) \diamond x$$

$$= x$$

$$= (gg^{-1}) \diamond x$$

$$= g \diamond (g^{-1} \diamond x)$$

On a:

$$\sigma_{g^{-1}} \circ \sigma_g = Id_X = \sigma_g \circ \sigma_{g^{-1}}$$

Donc $\sigma_g \in Bij(X)$

De plus, étant donné que $g_1 \diamond (g_2 \diamond x) = (g_1 g_2) \diamond x$,

on a
$$\sigma_{g_1} \circ \sigma_{g_2} = \sigma_{g_1g_2}$$

Donc l'application:

$$\sigma_{\diamond} : G \to Bij(X)$$
$$g \mapsto \sigma_g$$

est un morphisme.

— Soit $\Psi: G \to Bij(X)$, un morphisme.

On obtient l'action \diamond_{Ψ} de G sur X pour $g \diamond_{\Psi} x = \Psi(g)(x)$ On vérifie que c'est une action de groupe.

La correspondance bijective vient de $\Psi_{\diamond_{\Psi}} = \Psi$ et $\diamond_{\Psi_{\diamond}} = \diamond$

Définition 3. Soit G opérant sur X et $x \in X$.

L'orbite de x sous G est :

$$Orb(x) = \{g \cdot x \mid g \in G\} \subset X$$

Proposition 2. *Soit G opérant sur X*.

Soit ∼, la relation sur X définie par

$$x \sim y \Leftrightarrow x \in Orb(y)$$

Alors \sim est une relation d'équivalence sur X dont les classes d'équivalences sont les orbites.

Corrolaire 1. Les orbites des éléments de X sous l'action de G forment une partition de X.

On note $G \setminus X$ l'ensemble quotient $X \mid \sim$

Démonstration. On montre que ~ est une relation d'équivalence :

- Réflexivité : $\forall x \in X$, $e \cdot x = x$, par conséquent, $x \in Orb(x)$ et $x \sim x$.
- Symétrie : Supposons $x \sim y$, i.e. $\exists g \in G \mid x = g \cdot y \Leftrightarrow x \in Orb(y)$ Donc $g^{-1} \cdot x = g^{-1} \cdot (g \cdot y)^{-1} = (g^{-1}g) \cdot y = e \cdot y = y$ par conséquent, y = Orb(x)Ainsi $y \sim x$
- transitivité : Supposons $x \sim y$ et $y \sim z$, *i.e.* $\exists g, h \in G \mid x = g \cdot y$ et $y = h \cdot z$ Donc $x = g \cdot y = g \cdot (h \cdot z) = (gh) \cdot z$ par conséquent, $x \in Orb(z)$,

ainsi, $x \sim z$

La classé d'équivalence d'un $z \in X$ est $Or\,b(z)$

Exemple. — Les orbites pour $\mathbb{Z}/3\mathbb{Z}$ opérant sur \mathbb{C} par rotation :

$$Orb(z) = \{z, e^{\frac{2\pi}{3}}z, e^{\frac{4\pi}{3}}z\}$$

Comporte 3 éléments si $z \neq 0$

Sinon (*pour* z = 0), $Orb(0) = \{0\}$

— Pour \mathbb{R} opérant sur \mathbb{R}^2 ,

$$r \cdot (x, y) \rightarrow (x + r, y)$$

$$Orb((x, y)) = \{r \cdot (x, y) \mid r \in \mathbb{R}\} = \{(x + r, y) \mid r \in \mathbb{R}\} = \{(\lambda, y) \mid \lambda \in \mathbb{R}\}$$

Ce qui correspond aux droites horizontales passant par (0, y)

— \mathbb{R}^2 opérant par translation sur \mathbb{R}^2 , i.e. $\exists (\alpha, \beta), (x, y) \in \mathbb{R}^2$

$$Orb(x, y) = \{(\alpha + x, \beta + y) \mid (\alpha, \beta) \in \mathbb{R}^2\} = \{(s, t) \mid (s, t) \in \mathbb{R}^2\} = \mathbb{R}^2$$

On a donc qu'une seule orbite

— G opérant par translation sur G tel que $g \cdot x$

$$Orb(e) = \{g \cdot e \mid g \in G\} = \{g \mid g \in G\} = G$$

Donc, $\forall h \in G$, Orb(h) = Orb(e) = G. Il n'y a donc qu'une seule orbite.

Définition 4. L'action G opérant sur X est transitive s'il existe exactement une orbite dans X.

Définition 5. *Soit G opérant sur X, une action de groupe.*

— <u>Le stabilisateur de $x \in X$ dans G</u> est le sous groupe

$$Stab(x) = \{g \in G \mid g \cdot x = x\} \subset G$$

— Les points fixés par $g \in G$ sont définis par :

$$Fig(g) = \{x \in X \mid g \cdot x = x\}$$

— $x \in X$ est un <u>point fixe</u> sous l'action de G si $\forall g \in G$, $g \cdot x = x \Leftrightarrow Stab(x) = G \Leftrightarrow Orb(x) = \{x\}$)

Proposition 3. *Soit G opérant sur X, une action de groupe.*

 $Si\ x\ et\ y\ sont\ dans\ la\ même\ orbite,\ i.e.\ Or\ b(x)=Or\ b(y),\ alors\ St\ ab(x)\ et\ St\ ab(y)\ sont\ conjugu\'es.$

Démonstration. Supposons $y = g \cdot x$. Alors

$$g^{-1} \cdot y = g^{-1} \cdot (g \cdot x) = (g^{-1}g) \cdot x = e \cdot x = x$$

On va montrer que $gStab(x)g^{-1} = Stab(y)$.

— Soit $h \in Stab(x)$, *i.e.* $ghg^{-1} \in gStab(x)g^{-1}$ On souhaite montrer que $ghg^{-1} \in Stab(y)$

$$(ghg^{-1})\cdot y=g\cdot (h\cdot (g^{-1}\cdot y))=g\cdot (h\cdot x)=g\cdot x=y$$

Donc $ghg^{-1} \in Stab(y)$ et donc $gStab(y)g^{-1} \subseteq Stab(y)$

— L'argument précédent, en échangeant x par y et g par g^{-1} , nous donne :

$$g^{-1}Stab(y)g \subseteq Stab(x)$$

 $Stab(y) \subseteq gStab(x)g^{-1}$

Théorème 1. Soit G opérant sur X une action de groupe.

Soit, de plus, $x \in X$.

Il y a une bijection entre Orb(x) et G/Stab(x) (les classes d'équivalence à gauche de Stab(x)). En particulier, si Orb(x) est fini, alors Stab(x) est d'indice fini dans G et $|Orb(x)| = [G \cdot Stab(x)]$

Démonstration. On veut définir la fonction :

$$f: Orb(x) \rightarrow G/Stab(x) = \{gStab(x) \mid g \in G\}g \cdot x \mapsto gStab(x)$$

— f est en effet une fonction. Soient $g, h \in G$

$$\begin{split} g \cdot x &= h \cdot x \Leftrightarrow h^{-1} \cdot (g \cdot x) = h^{-1} \cdot (h \cdot x) \\ &\Leftrightarrow (h^{-1} \cdot g) \cdot x = (h^{-1} \cdot h) \cdot x \\ &\Leftrightarrow (h^{-1} \cdot g) \cdot x = x \\ &\Leftrightarrow h^{-1} \cdot g \in Stab(x) \\ &\Leftrightarrow \exists s \in Stab(x), \ h^{-1}g = s \ \text{autrement dit } g = hs \\ &\Leftrightarrow gStab(x) = hStab(x) \end{split}$$

- f est injective car $gStab(x) = hStab(x) \Rightarrow gx = hx$
- f est surjective car $\forall gStab(x) \in G/Stab(x)$, $f(g \cdot x) = gStab(x)$

Corrolaire 2. Formule de classes Si G est un groupe fini, alors

$$\forall x \in X, |G| = |Stab(x)| \cdot |Orb(x)|$$

Démonstration. Si G est fini, alors Orb(x) est fini et

$$|orb(x)| = [G:Stab(x)] = \frac{|G|}{|Stab(x)|}$$