

COMP250: Artificial Intelligence

1: Introduction to Al

Proposal

- ▶ For next week!
- Prepare a 1-2 page proposal document covering the following:
 - What is the high concept of your computing artefact?
 - What functionality will your component include?
 - How does your component fit into your chosen specialism?
 - Why is this artefact needed?
 - What are the key requirements?
 - Is the scope appropriate for the product development time-frame?
 - How will you address the architect and research requirement?

Al in games

What is AI?

- ► Recall COMP280 session 7
- Performing tasks by machine (or by software) which would ordinarily require human intelligence
- Making decisions to achieve goals
- In games, Al systems break down roughly into two categories:
 - Authored behaviours: Al follows (often sophisticated) rules set out by a designer
 - Computational intelligence: Al behaviour emerges from an algorithmic system

Nimrod (Ferranti, 1951)

Samuel's Checkers program (IBM, 1962)

Galaxian (Namco, 1979)

Pac-Man (Namco, 1980)

Deep Blue (IBM, 1997)

Half-Life (Valve, 1998)

The Sims (Maxis, 2000)

Black & White (Lionhead, 2001)

Façade (Mateas & Stern, 2005)

Chinook (Schaeffer et al, 2007)

Left 4 Dead (Valve, 2008)

Watson (IBM, 2011)

Deep learning for Atari games (DeepMind, 2013)

AlphaGo (Google DeepMind, 2016)

What will we be covering?

- ▶ Finite state machines
- ▶ Behaviour trees
- Game theory
- ▶ Planning
- ▶ Utility-based AI
- ▶ Game tree search
- ► Procedural content generation
- ► Multi-agent systems
- ► Pathfinding and navigation
- ► Evolutionary algorithms
- Artificial neural networks

Remember: proposal due next

week!