

Definition 6.0.1 — **Tree.** A graph G is called a *tree* if it is connected and has no cycles. That is, a tree is a connected acyclic (circuitless) graph.

Figure 6.1: Examples of trees

Definition 6.0.2 — Tree. An acyclic graph may possibly be a disconnected graph whose components are trees. Such graphs are called **forests**.

6.1 Properties of Trees

Theorem 6.1.1 A graph is a tree if and only if there is exactly one path between every pair of its vertices.

Proof. Let G be a graph and let there be exactly one path between every pair of vertices in G. So G is connected. If G contains a cycle, say between vertices u and v, then there are

56 Chapter 6. Trees

two distinct paths between u and v, which is a contradiction to the hypothesis. Hence, G is connected and is without cycles, therefore it is a tree.

Conversely, let G be a tree. Since G is connected, there is at least one path between every pair of vertices in G. Let there be two distinct paths, say P and P' between two vertices u and v of G. Then, the union of $P \cup P'$ contains a cycle which contradicts the fact that G is a tree. Hence, there is exactly one path between every pair of vertices of a tree.

Then, by Definition 3.1.11, we have the following result:

Theorem 6.1.2 All trees are geodetic graphs.

Theorem 6.1.3 A tree with n vertices has n-1 edges.

Proof. We prove the result by using mathematical induction on n, the number of vertices. The result is obviously true for n = 1, 2, 3. See illustrations in Figure 6.2.

Figure 6.2: Trees with n = 1, 2, 3.

Let the result be true for all trees with fewer than n vertices. Let T be a tree with n vertices and let e be an edge with end vertices u and v. So, the only path between u and v is e. Therefore, deletion of e from T disconnects T.

Now, T - e consists of exactly two components T_1 and T_2 say, and as there were no cycles to begin with, each component is a tree. Let n_1 and n_2 be the number of vertices in T_1 and T_2 respectively. Then, note that $n_1 + n_2 = n$. Also, $n_1 < n$ and $n_2 < n$. Thus, by induction hypothesis, the number of edges in T_1 and T_2 are respectively $n_1 - 1$ and $n_2 - 1$. Hence, the number of edges in T is $n_1 - 1 + n_2 - 1 + 1 = n_1 + n_2 - 1 = n - 1$.

Theorem 6.1.4 Any connected graph with n vertices and n-1 edges is a tree.

Proof. Let G be a connected graph with n vertices and n-1 edges. We show that G contains no cycles. Assume to the contrary that G contains cycles. Remove an edge from a cycle so that the resulting graph is again connected. Continue this process of removing one edge from one cycle at a time till the resulting graph H is a tree. As H has n vertices, so the number of edges in H is n-1. Now, the number of edges in G is greater than the number of edges in H. That is, n-1>n-1, which is not possible. Hence, G has no cycles and therefore is a tree.

Theorem 6.1.5 Every edge of a tree is a cut-edge of G.

Proof. Since a tree T is an acyclic graph, no edge of T is contained in a cycle. Therefore, by Theorem 3.3.1, every edge of T is a cut-edge.

A graph is said to be *minimally connected* if removal of any one edge from it disconnects the graph. Clearly, a minimally connected graph has no cycles.

The following theorem is another characterization of trees.

Theorem 6.1.6 A graph is a tree if and only if it is minimally connected.

Proof. Let the graph G be minimally connected. Then, G has no cycles and therefore is a tree. Conversely, let G be a tree. Then, G contains no cycles and deletion of any edge from G disconnects the graph. Hence, G is minimally connected.

Theorem 6.1.7 A graph G with n vertices, n-1 edges and no cycles is connected.

Proof. Let G be a graph without cycles with n vertices and n-1 edges. We have to prove that G is connected. Assume that G is disconnected. So G consists of two or more components and each component is also without cycles. We assume without loss of generality that G has two components, say G_1 and G_2 . Add an edge e between a vertex e in G_1 and a vertex e in G_2 . Since there is no path between e and e in e0, adding e did not create a cycle. Thus e1 is a connected graph (tree) of e2 vertices, having e3 edges and no cycles. This contradicts the fact that a tree with e3 vertices has e4 edges. Hence, e6 is connected.

Theorem 6.1.8 Any tree with at least two vertices has at least two pendant vertices.

Proof. Let the number of vertices in a given tree T be n, where (n > 1). So the number of edges in T is n - 1. Therefore, the degree sum of the tree is 2(n - 1) (by the first theorem of graph theory). This degree sum is to be divided among the n vertices. Since a tree is connected it cannot have a vertex of zero degree. Each vertex contributes at least 1 to the above sum. Thus, there must be at least two vertices of degree exactly 1. That is, every tree must have at least two pendant vertices.

Theorem 6.1.9 Let G be a graph on n vertices. Then, the following statements are equivalent:

- (i) G is a tree.
- (ii) G is connected and has n-1 edges.
- (iii) G is acyclic (circuitless) and has n-1 edges.
- (iv) There exists exactly one path between every pair of vertices in G.
- (v) G is a minimally connected graph.

58 Chapter 6. Trees

Proof. The equivalence of these conditions can be established using the results $(i) \Longrightarrow (ii), (ii) \Longrightarrow (iii), (iii) \Longrightarrow (iv), (iv) \Longrightarrow (v)$ and $(v) \Longrightarrow (i)$.

Part- $(i) \implies (ii)$: This part states that if G is a tree on n vertices, then G is connected and has n-1 edges. Since G is a tree, clearly, by definition of a tree it is connected. The remaining part follows from the result that every tree on n vertices has n-1 vertices.

Part- $(ii) \implies (ii)$: This part states that if G is connected and has n-1 edges, then G is acyclic and has n-1 edges. Clearly, This result follows from the result that a connected graph on n vertices and n-1 edges is acyclic.

Part- $(iii) \implies (iv)$: This part states that if G is an acyclic graph on n vertices and has n-1 edges, then there exists exactly one path between every pair of vertices in G. By a previous theorem, we have an acyclic graph G on n vertices and n-1 edges is connected. Therefore, G is a tree. Hence, by our first theorem, there exists exactly one path between every pair of vertices in G.

Part- $(iv) \implies (v)$: This part states that if there exists exactly one path between every pair of vertices in G, then G is minimally connected. Assume that every pair of vertices in G is connected by a unique path.

Let u and v be any two vertices in G and P be the unique (u, v)-path in G. Let e be any edge in this path P. If we remove the edge from P, then there will be no (u, v)-path in G - e. That is, G - e is disconnected. Therefore, G is minimally connected.

 $Part-(v) \implies (i)$: This part states that if G is minimally connected, then G is a tree. Clearly, G is connected as it is minimally connected. Since G is minimally connected, removal of any edge makes G disconnected. That is, every edge of G is a cut edge of G. That is, no edge of G is contained in a cycle in G. Therefore, G is acyclic and hence is a tree.

Theorem 6.1.10 A vertex v in a tree is a cut-vertex of T if and only if $d(v) \ge 2$.

Proof. Let v be a cut-vertex of a tree T. Since, no pendant vertex of a graph can be its cut-vertex, clearly we have $d(v) \ge 2$.

Let v be a vertex of a tree T such that $d(v) \ge 2$. Then v is called an *internal vertex* (or *intermediate vertex*) of T. Since $d(v) \ge 2$, there are two at least two neighbours for v in T. Let u and w be two neighbours of v. Then, u-v-w is a (u-w)-path in G. By Theorem-1, we have the path u-v-w is the unique (u-w)-path in G. Therefore, T-v is disconnected and u and w are in different components of T. Therefore, v is a cut-vertex of T. This completes the proof.

6.2 Distances in Trees

Definition 6.2.1 — Metric. A *metric* on a set A is a function $d: A \times A \to [0, \infty)$, where $[0, \infty)$ is the set of non-negative real numbers and for all $x, y, z \in A$, the following conditions are satisfied:

- 1. $d(x,y) \ge 0$ (non-negativity or separation axiom);
- 2. $d(x,y) = 0 \Leftrightarrow x = y$ (identity of indiscernibles);

- 3. d(x,y) = d(y,x) (symmetry); 4. $d(x,z) \le d(x,y) + d(y,z)$ (sub-additivity or triangle inequality).

Conditions 1 and 2, are together called a positive-definite function.

A metric is sometimes called the distance function.

In view of the definition of a metric, we have

Theorem 6.2.1 The distance between vertices of a connected graph is a metric.

Definition 6.2.2 — Center of a graph. A vertex in a graph G with minimum eccentricity is called the *center* of G.

Theorem 6.2.2 Every tree has either one or two centers.

Proof. The maximum distance, $\max d(v, v_i)$ from a given vertex v to any other vertex occurs only when v_i is a pendant vertex. With this observation, let T be a tree having more than two vertices. Tree T has two or more pendant vertices.

Deleting all the pendant vertices from T, the resulting graph T' is again a tree. The removal of all pendant vertices from T uniformly reduces the eccentricities of the remaining vertices (vertices in T') by one. Therefore, the centers of T are also the centers of T'. From T', we remove all pendant vertices and get another tree T''. Continuing this process, we either get a vertex, which is a center of T, or an edge whose end vertices are the two centers of T.

6.4 On Counting Trees

A *labelled graph* is a graph, each of whose vertices (or edges) is assigned a unique name $(v_1, v_2, v_3, ...$ or A, B, C, ...) or labels (1, 2, 3, ...).

The distinct vertex labelled trees on 4 vertices are given in Figure 6.3.

The distinct unlabelled trees on 4 vertices are given in Figure 6.4.

6.5 Spanning Trees

Definition 6.5.1 — **Spanning Tree.** A spanning tree of a connected graph G is a tree containing all the vertices of G. A spanning tree of a graph is a maximal tree subgraph of that graph. A spanning tree of a graph G is sometimes called the skeleton or the scaffold graph.

Theorem 6.5.1 Every connected graph G has a spanning tree.

Proof. Let G be a connected graph on n vertices. Pick an arbitrary edge of G and name it e_1 . If e_1 belongs to a cycle of G, then delete it from G. (Else, leave it unchanged and pick it another one). Let $G_1 = G - e_1$. Now, choose an edge e_2 of G_1 . If e_2 belongs to a cycle of G_1 , then remove e_2 from G_1 . Proceed this step until all cycles in G are removed iteratively. Since G is a finite graph the procedure terminates after a finite number of times. At this stage, we get a subgraph G on G0, none of whose edges belong to cycles. Therefore, G1 is a connected acyclic subgraph of G2 on G3 on G4 vertices and hence is a spanning tree of G4, completing the proof.

Figure 6.3: Distinct labelled trees on 4 vertices

Figure 6.4: Distinct unlabelled trees on 4 vertices