CCN: End-To-End Communication: Switching	
Dr. E.SURESH BABU	
Assistant Professor Computer Science and Engineering Department	
National Institute of Technology, Warangal.	
Warangal, TS, India.	
Indian is Tokasi Alaum	
01	
Goals:	
* Why is Switching is Required	
o Circuit Switching	
✓ Public Switched Telephone Networks	
o Message Switching	
o Packet Switching	
✓ Virtual Circuit Packet Switching	
✓ Datagram Packet Switching	
	1
Why is Switching is Required	
why is Switching is Required	

Why is Switching is required	
* When two computers are located close to each other that need to	
communicate,	
✓ it is often easiest just to run a cable between them.	
✓ LANs work this way.	

Limitations With Directly Connected Networks	
❖ Directly connected networks limit the geographical area covered and	
number of hosts	
✓ Enable communication between hosts not directly connected	
Suitable Mechanism	
•	
• When the distances are large or there are many computers	
✓ it is necessary to develop suitable mechanism for communication	
between any two devices	
	-

Switching Mechanism

92	witching Mechanism
*	A Switching techniques is used to perform communication between any
	two devices
	Source Node H G B C D E Destination Node

Switching Process

- In the Switched Network Methodology,
 - ✓ Network consists of a set of interconnected nodes
 - ✓ Information is transmitted from source to destination via different routes, which is controlled by the switching mechanism.

Switche	d	Netw	ork:
Key	Fe	atur	es

Switched Network: Key Features

- Network Topology is not regular.
- ❖ Uses FDM or TDM for node-to-node communication.
- There exist multiple paths between a source-destination pair for better network reliability.
- The switching nodes are not concerned with the contents of data.
- Their purpose is to provide a switching facility that will move data from node to node until they reach the destination.

Taxonomy of Switched Networks

Taxonomy of Switched networks The switching performed by different nodes can be categorized into the following three types: Switched networks Packet-switched networks Datagram networks Virtual-circuit networks

Circuit Switching

Circuit Switching

- A Circuit-switched Network consists of a set of switches connected by physical links.
 - A connection between two stations is a **dedicated path** made of one or more links.
 - ✓ Each connection uses only one dedicated channel on each link.
 - \checkmark Each link is normally divided into n channels by using **FDM or TDM.**

Circuit Switching

- Circuit switching is commonly used technique in Telephony,
 - √ where the caller sends a special message with the address of the called
 (i.e. by dialling a number) to state its destination.

Circuit Switching

- Circuit Switching involved the following three distinct steps
 - o Circuit Establishment
 - o Data transfer
 - o Circuit disconnect

Circuit Switching

* Circuit Establishment:

- \checkmark To establish an end-to-end connection before any transfer of data.
- ✓ Circuit may be a dedicated link/Shared.

Data transfer:

- ✓ Transfer data is from the source to the destination.
- $\checkmark \;$ The data may be analog or digital, depending on the nature of the network.
- $\checkmark~$ The connection is generally full-duplex.

A Circuit disconnect:

✓ Terminate connection at the end of data transfer.

A Circuit-switched Network is made of a set of switches connected by physical links, in which each link is divided into n channels. Telephone switch Telephone switch

Disadvantages	of	Circuit-Switched	Network
Disauvantages	O1	CII CUIT-SWITCHEU	MECMOIV

- A dedicated connection that has no transmission means wasted bandwidth
- A connection is time consuming if short, infrequent, or sporadic communication is to occur

Message Switching

Message Switching

- ❖ Each network node receives and stores the message
- ❖ Determines the next Node of the route
- $\ \ \, \ \ \,$ Queues the message to go out on that link.

Message Switching

- ❖ In Message Switching Method,
 - \checkmark The message is sent to the nearest switching node directly.
 - The nearest node stores the message, checks for errors, selects the best available route and forwards the message to the next intermediate node.

Message Switching

- The Data Link line becomes free again for other messages, while the process is being continued in some other nodes.
- Due to the mode of action, this method is also known as store-and-

forward technology

Message Switching: Disadvantages	
❖ Message of large size dominates the link and storage	-
v incode of large size dominates the min and storage	-
	-
	-
Packet Switching	
•	
Docket Switching	
Packet Switching	
Packet Switching approach was developed for long-distance data	
communication purpose	
✓ To overcome the limitations of message switching	
Packet routing through WAN/Internet	

Why	Pack	tet S	witc	hing
-----	------	-------	------	------

- ❖ The **Directly connected networks** suffer from two limitations
 - ✓ Limits with # of hosts attached.
 - o Ex: An Ethernet can connect up to only 1024 hosts.
 - $\checkmark\,$ Limits the geographic area with a single network
 - \circ Ex: An Ethernet can span only 2500m

Why Packet Switching

- ❖ To build the networks that scales well and covers the globally
 - ✓ we need to enable communication between hosts that are not directly connected.
- A Switch is a multi-input, multi-output device that allows us to interconnect links to form larger networks.
- A switch transfers packets from an input to T3 STS-1 laput one or more outputs

Why Packet Switching

The inputs and outputs of a switch are referred to as Ports

Packet Switching Works	
❖ How does the Packet Switch decide which output port to place	
each packet on?	
Packet Switching Works	
❖ Generally Switch looks at the header of the packet addresses to	
make decisions.	· ·
 There are two common approaches to know the details of how it 	
uses the header of the packet addresses,	
Datagram Or Connectionless Packet Switching Approach	
2. Virtual Circuit Or Connection-oriented Packet Switching Approach.	
Winter of Cinnerit Postant	
Virtual Circuit Packet Switching	
•	

Virtual Circuit Packet Switching

- Virtual Circuit Packet Switching is a widely used technique that uses the concept of a virtual circuit(VC).
- This approach, which is also called connection-oriented model that requires
 - ✓ Virtual Connection Setup between the Source and Destination Host
 - ✓ Data Transfer

❖ A virtual-circuit network is normally implemented in the data link layer End system Switches End system

Virtual Circuit Packet Switching | Legend | Receiver |

V	irtual Circuit Packet Switching
*	The identifier that is actually used for data transfer is called the
	virtual-circuit identifier (VCI).
*	A VCI is used by a frame between two switches.
	✓ When a frame arrives at a switch, it has a VCI; when it leaves, it has
	a different VCI. VCI VCI
	Data 14 → Data 77

Virtual Circuit Packet Switching ♦ The identifier that is actually used for data transfer is called the virtual-circuit identifier (VCI). ♦ A VCI is used by a frame between two switches. ✓ When a frame arrives at a switch, it has a VCI; when it leaves, it has a different VCI.

Phases...

- Virtual-circuit Network will go through three phases between source and destination
 - Setup,
 - * Data Transfer,
 - **❖** Disconnect

Setup Phase: Request ❖ In the setup phase, ✓ A switch creates an entry for a virtual circuit. ✓ Two steps are required: ○ The setup request and ○ The acknowledgment.

Popular VC Networks

Two popular networks are X.25 and Frame Relay, which are commonly used for public data networks (PDN).

Advantages	
❖ Routing is faster	
✓ A route must only be determined once, for the first message	
✓ Once the route has been determined, the path used by the router is	
reused for all messages	
✓ As a result, routing tables are much smaller (and can be searched	
more quickly)	
	1
Advantages	
❖ Messages do not arrive out of order	
✓ As a result, receivers do not need to reorder the cells	
	1
Disadvantages	
❖ Connections take some time to create	
❖ The connection may be lost after a timeout, and will have to be	
recreated again and again	
* Routing tables will be dynamic, and routing algorithms are more	
complex	

Datagran	n Pac	ket S	witc	hing

Datagram Packet Switching

- A switch in a datagram network uses a routing table that is based on the destination address.
- The destination address in the header of a packet in a datagram network remains the same during the entire journey of the packet.
 - ✓ Each packet is routed individually

Datagram Packet Switching A connectionless packet-switched network Sender R4 Dut of order Receiver

Datagram Packet Switching ❖ A switch in this network consults a routing table which is stored inside the switch to decide how to forward a packet. Routing table Destination | Output address | Output address | Destination | Output address | Output addr

Datagram Packet Switching

Datagram Packet Switching

- ❖ No dedicated connection between communicating hosts
- ❖ Packets are sent to the switch at any time
- ❖ Source is not aware of the state of the destination
- Packets may follow independent paths to the destination (out-of-order delivery, larger delays, etc.)
- Less prone to switch failures if alternative paths exist

Destination A B C D	Port 3 0 3 3 2	Host D Switch 1 Host E Host F Host A Host E Host F
F G H	1 0 0	Host G 0 Switch 3 Host B
	le of Switch 2	Hoe H

Advantages	lvantages.		
------------	------------	--	--

- Connections need not be created
- ❖ Infrequent messaging is perfect for connectionless messaging
- Routing each message separately allows for load balancing

Disadvantages.....

- Each message takes a certain amount of time to transmit (including transmission, routing, reception, etc.)
- Messages may arrive out of order

Comp	arison	of Vir	tual-Ci	rcuit
and	Datagr	ram A _l	pproac	hes

Comparison of Virtual-Circuit and Datagram Approaches Issue Datagram subnet Virtual-circuit subnet

Circuit setup	Not needed	Required
Addressing	Each packet contains the full source and destination address	Each packet contains a short VC number
State information	Routers do not hold state information about connections	Each VC requires router table space per connection
Routing	Each packet is routed independently	Route chosen when VC is set up; all packets follow it
Effect of router failures	None, except for packets lost during the crash	All VCs that passed through the failed router are terminated
Quality of service	Difficult	Easy if enough resources can be allocated in advance for each VC
Congestion control	Difficult	Easy if enough resources can be allocated in advance for each VC

Goals:

- * Why is Switching is Required
 - o Circuit Switching
 - \checkmark Public Switched Telephone Networks
 - o Message Switching
 - o Packet Switching
 - √ Virtual Circuit Packet Switching
 - ✓ Datagram Packet Switching

•			
Thank You			
Thank Tou			