$$\phi:G_1 o G_2$$
 называется изоморфизмом, если $egin{cases} \phi(gh)=\phi(g)\phi(h) \\ \phi ext{-}$ биекция

Teopeма 1 $\exists G = \langle x \rangle$,

-Если $|G| = \infty \to G \cong \mathbb{Z}, + (\mathbb{Z} = <1>)(G_1 \cong G_2),$ то группы называются изоморфными.

-
$$E$$
сли $|G| = n < \infty \to G \cong \mathbb{Z}_n$, +

Повторение подстановок.

Теорема 2
$$|G| = HOK(k_1, k_2, \dots, k_m)$$

Инверсия ij-если i > j, но i левее j

Подстановка $G = \begin{pmatrix} l_1 & l_2 & \dots & l_n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}$ называется четной, если сумма инверсий в верхней и нижней строках четная. Иначе- нечетная.

Знак подстановки $sgnG = (-1)^{[l_1 l_2 ... l_n] + [k_1 k_2 ... k_n]}$

G-четная, еслиsgnG = 1

-нечетная, еслиsgnG = -1

$$|\alpha| = k \to sgn\alpha = (-1)^{k-1} \quad (= (-1)^{k+1})$$

 $\alpha = (ij) = \begin{pmatrix} 1 & 2 & \dots & i & \dots & j & \dots & n \\ 1 & 2 & \dots & j & \dots & i & \dots & n \end{pmatrix}$ -нечет

Теорема 3 $G = \alpha_1 \alpha_2 \cdot \dots \cdot \alpha_n$ -произведение независимых циклов. $sgnG = (-1)^{n-m} \quad (= (-1)^{n+m})$

Возвращение к классам смежности.

$$H < G$$
 $x \sim y$ $x^{-1}y \in H \leftrightarrow y \in xH$ (Левый смежный класс)

$$yx^{-1} \in H \leftrightarrow y \in Hx(\Pi$$
равый смежный класс)

Если G-коммутативна, то xH=Hx

Множество левых смежных классов обозначается $_{G}/^{H}$

Множество правых смежных классов обозначается ${}_{H}\diagdown{}^{G}$

12 октября

$$|G/H| = |H/G|$$
 =индекс подгруппы

Теорема 4 *T.* Лагранжа $|G| = |H| \cdot |_G /^H|$ Группа G-конечная группа

Следствие из Т4 1 |H| |G|

Следствие из Т4 2 $x \in G \rightarrow |x| \mid |G|$

Следствие из Т4 3 |G|=p-простое число $\to G$ циклическая группа, причем еслид \neq $e \to G = < g >$

Следствие из T4 4 |G|=n $g\in G o g^n=e$

Следствие из Т4 5 (Малая теорема Ферма) $a^p \equiv a \pmod{p}$

Следствие из Т4 6 (Функция Эйлера $(\phi(n))$) Функция Эйлера-функция, равная количеству натуральных чисел, меньших и взаимно простых с ним.

Теорема 5 (Теорема Эйлера) $a^{\phi(n)} \equiv 1 \pmod{n}$

Свойство $\phi(n)$ **1** $\phi(p) = p - 1, p - npocmoe$

Свойство $\phi(n)$ 2 $\phi(p^n) = p^n - p^{n-1}, p - npocmoe$

Свойство $\phi(n)$ 3 $\phi(mn) = \phi(m)\phi(n)$, (m,n) = 1

Следствие из Т4 7 (Т. Вильсона) $(p-1)! + 1 : p \leftrightarrow p - npocmoe$

19 октября

- 1. Если G- коммутативная группа, то xH = Hx, то $G/H = H\backslash G$. Можем ввести операцию в G/H (xH)(yH) = (xy)H
- 2. Пусть H < G, где $G \forall$

Пытаемся ввести операцию (xH)(yH) = (xy)H. Когда она корректна?

На?
$$\begin{cases} x \sim x' \\ y \sim y' \end{cases} \rightarrow xy \sim x'y' \ xy \sim x'y' = xh_1yh_2 \end{cases}$$
 $xy = xh_1yh_2h_3 \qquad \Big| \cdot x^{-1}$ $y = h_1yh_4$ $e = y^{-1}h_1yh_4$ $y^{-1}h_1y = h_5 \rightarrow \boxed{y^{-1}Hy \leq H \quad \forall y \in G(1)}$ Из $(1) \rightarrow H \leq yHy^1 \quad \forall y \rightarrow H \leq y^{-1}Hy \leftrightarrow \boxed{y^{-1}Hy = H \quad \forall y \in G(2)} \leftrightarrow \boxed{Hy = yH \quad \forall y \in G(3)}$

Определение 1 H < G называется нормальной, если выполнено любое из $\red{3}$ равносильных условий.

B этом случае $numym\ H \lhd G$

Теорема 6 $\exists H \lhd \to G/H$ -группа относительно (xH)(yH) = xyH

Группа G/H называется фактор-группой группы G по нормальной подгруппе H.

Гомоморфизм $\phi: G_1 \to G_2$ -если $\phi(xy) = \phi(x)\phi(y)$

Мономорфизм = инъективный гоморфизм

Эпиморфизм = сюръективный гомомрфизм.

Эндоморфизм - если $G_1 = G_2$

Автоморфизм - изоморфизм+эндоморфизм

$$Ker\phi=\{x\in G_1:\phi(x)=e_2\}$$
 $(=\phi^{-1}(e_2))$ -Ядро гомоморфизма $Im\phi=\{z\in G_2;\exists x\in G_1:\phi(x)=z\}=\{\phi(x),x\in G_1\}=\phi(G_1)$ -Образ гоморфизма

Теорема 7 1. $\phi(e_1) = e_2$

2.
$$\phi(x^{-1}) = (\phi(x))^{-1}$$

3.
$$|\phi(x)| |x|$$

4.
$$\phi$$
-изоморфизм, то $|\phi(x)| = |x|$

26.10

Свойства гомоморфизма:

1.
$$\phi(e_1)=e_2$$
 или $e_G o e_H$

2.
$$\phi(x^{-1})=(\phi(x))^{-1}$$
 или $x\to y$ то $x^{-1}\to y^{-1}$

3.
$$|\phi(x)| |x|$$

4.
$$Im\phi < H$$
 $Im\phi = {\phi(x), x \in G}$

5.
$$Ker\phi < G$$
 $Ker\phi = \{\phi^{-1}(e_H)\}\$

6.
$$Ker\phi \triangleleft G$$

7.
$$\phi(x_1) = \phi(x_2) \leftrightarrow x_1 \equiv x_2 \pmod{\ker \phi}$$

- 8. ϕ мономорфизм $\leftrightarrow Ker\phi = \{e\}$
- 9. $\phi: G \to H, \psi: H \to K$ гоморфизм $\to \psi \cdot \phi: G \to K$ гоморфизм
- 10. $\phi: G \to H$ изомрфизм $\to \phi^{-1}$ изомрфизм
- 11. ϕ -изоморфизм, то $|\phi(x)| = |x|$

Док-во 6-го св-ва: $x_1, x_2 \in Ker \phi \rightarrow x_1 x_2 \in Ker \phi$

$$\phi(x_1) = e$$

$$\phi(x_2) = e$$

$$\phi(x_1x_2) = \phi(x_1)\phi(x_2) = e \cdot e = e$$

Док-во ?-го св-ва: $\phi(e_G) = e_H \rightarrow e_G \in Ker\phi$

$$\exists x \in Ker\phi \to x^{-1} \in Ker\phi$$

$$\phi(x) = e$$

$$\phi(x^{-1}) = \phi(x)^{-1} = e^{-1} = e \to Ker\phi < G$$

$$k \in Ker\phi \rightarrow \phi(x^{-1}kx) = \phi(x^{-1})\phi(k)\phi(x) = \phi(x)^{-1}e\phi(x) = e \rightarrow x^{-1}kx \in Ker\phi$$

Определение 2 Прямое произведение групп

$$G_1, G_2, \ldots, G_n - \operatorname{spynnu}(\cdot)$$
 $G = G_1 \times G_2 \times \cdots \times G_n = \{(g_1, g_2, \ldots, g_n) : g_i \in G_i, i = 1, \ldots, n\}$

Введем операцию
$$(g_1, g_2, \dots, g_n) \cdot (g_1', g_2', \dots, g_n') = (g_1 g_1', g_2, g_2', \dots, g_n g_n')$$

Теорема 8 (G-группа)

Св-ва прямого произведения:

- 1. $\tilde{G}_1 = \{(g_1, e_2, e_3, \dots, e_n)\}$ —подгруппа, причем $\tilde{G}_1 \equiv G_1$ ТО ВЕ CONTUNIED Аналогично $G\tilde{G}_2 = \{(e_1, g_2, e_3, \dots, e_n)\} \equiv G_2, \dots, \tilde{G}_2 \equiv G_n$
- 2. $|G| = m_1, \dots |G_n| = m_n \to |G| = m_1 \cdot m_2 \cdot \dots \cdot m_n$
- 3. $\tilde{G}_i \triangleleft G$ $(g_1, g_2, \dots, g_n)^{-1}(e_1, e_2, \dots, e_{i-1}, g'_i, e_{i+1}, \dots, e_n)(g_1, g_2, \dots, g_n) =$ $(g_1^{-1}e_1g_1, g_2^{-1}e_2g_2, \dots, g_{i-1}^{-1}e_{i-1}g_{i-1}, g_i^{-1}e_ig_i, g_{i+1}^{-1}e_{i+1}g_{i+1}, \dots, g_n^{-1}e_n, g_n)$ $\in \tilde{G}_1 \rightarrow \tilde{G}_i \triangleleft G$
- 4. $|g| = k_i \rightarrow |(g_1, g_2, \dots, g_n)| = HOK(|g_1|, |g_2|, \dots, |g_n)$
- 5. Если $|g_1|, |g_2|, \ldots, |g_n|$ —нет общих делителей, то $|(g_1g_2\ldots g_n)| = |g_1||g_2|\ldots |g_n|$

6. $G_i = \langle g \rangle_{k_i}$ и у $|g_1|, \dots, |g_n|$ нет общих делителей $G_i = \langle g_1, g_2, \dots, g_n \rangle$

2.11 Внешнее прямое произведение

Внешнее прямое произведение: $G=G_1\times G_2\times\dots$ (·) $G=G_1\oplus G_2\oplus G_3\oplus\dots\oplus G_n$ (+) Св-ва:

1. G-группа

2.
$$\tilde{G}_i = \{(e_1, e_2, \dots, e_{i-1}, g_i, g_{i+1}, \dots, e_n) < G\}$$
 $= \{e_1\} \times \{e_2\} \times \dots \times \{e_{i-1}\} \times G_i \times \{e_{i+1}\} \dots \{e_n\}$

- 3. $\tilde{G}_1\cong G_i \quad (\phi_i:G_i\to \tilde{G}_i \ \phi_i(g_i))=(e_1,e_2,\dots,e_{i-1},g_i,e_{i+1},\dots e_n)$ Изоморфизм
- 4. $\tilde{G}_i \triangleleft G$

5.
$$\forall g \in G \,\exists \tilde{g_1} \in \tilde{G_1}, \ldots, \, \tilde{g_n} \in \tilde{G_n} : g = \tilde{g_1} \tilde{g_2} \tilde{g_3} \ldots \tilde{g_n}$$

6.
$$\forall g \in G \exists ! \tilde{g}_1 \in \tilde{G}_1, \dots, \tilde{g}_n \in \tilde{G}_n : g = \tilde{g}_1 \tilde{g}_2 \tilde{g}_3 \dots \tilde{g}_n$$

7.
$$\tilde{G}_i \cap \tilde{G}_j = \{e\} \quad (i \neq j)$$

8.
$$\tilde{g_1} \in \tilde{G}_i, \tilde{g_j} \in \tilde{G}_j \to \tilde{g_i}\tilde{g_j} \to \tilde{g_j}\tilde{g_i}$$
 $\lhd \tilde{g_i}\tilde{g_j} = (e_1, \dots, g_i, \dots, e_n)(e_1, \dots, g_j)$ оно было

9.
$$|G| = |G_1||G_2| \dots |G_n|$$

10.
$$|(g_1, g_2, \dots, g_n)| = HOK(|g_1|, |g_2|, \dots, |g_n|)$$

11. $\ \ |G_1| = \langle g_1| >_{k_1}, \dots, G_n| = \langle g_n| >_{k_n}$ G-циклическая группа \leftrightarrow у k_1, \dots, k_n нет общих делителей $\ \ \, \triangleleft$ на дом $\ \ \, \square$ Пример: $C_2 \times C_3 \cong C_6 \, (\cdot)$ $\mathbb{Z}_2 \oplus \mathbb{Z}_3 \cong \mathbb{Z}_6 \, (+)$

Теорема 9 $G, G_1, G_2, \ldots, G_n < G$

1.
$$(6 \to 5)$$

2.
$$6 \to 7$$
, то если $\forall g \in G \exists ! g_1 \in G_1, \dots, g_n \in G_n : g = g_1 g_2 \dots g_n \to G_i \cap G_j = \{e\} \quad (i \neq j)$ \lhd От противного. Пусть $g \in G_i \cap G_j \to g = ee \dots g \dots e \dots e = ee \dots e \dots g \dots e \to g = e \to G_i \cap G_j = \{e\} \triangleright$

3.
$${4 \choose 7} \to 8$$
 т.е. если $G_i \lhd G_j$ $G_j \lhd G_i, G_i \cap G_j = \{e\} \to g_i g_j = g_j g_i (\leftrightarrow g_i g_j g_i^{-1} g_j^{-1} = e)$

Определение 3 Внутренне прямое произведение

$$G, G_i, \ldots, G_n < G$$

G- внутренне прямое произведение этих подгрупп

1.
$$\forall g \in G \exists ! g_1, \dots, g_n : g = g_1 g_2 \dots g_n$$

2.
$$G_i \triangleleft G_i$$
; $i = 1, \ldots n$

Теорема 10 G изоморфно $G_1 \times G_2 \times \cdots \times G_n (m.e.$ внутренне прямое произведние изоморфно в

$$\lhd\phi:G_1 imes\cdots imes G_n o G$$
 $\phi((g_1,g_2,\ldots,g_n))=g_1g_2\ldots g_n$ ϕ -гомоморфизм $?\phi((g_1\ldots,g_n)(h_1,\ldots,h_n)=\phi(g_1h_1,g_2h_2,\ldots,g_nh_n)=g_1h_1g_2h_2\ldots g_nh_n$ $\phi\phi((g_1\ldots,g_n)(h_1,\ldots,h_n)=g_1g_2\ldots g_nh_1h_2\ldots h_n$ Сие выражение выходит из предыдущей строки благодаря свойству 8 ϕ -эпиморфизм. ПУсть $g\in G o \exists g_1,\ldots g_n:g=g_1\ldots g_n o \phi((g_1,\ldots,g_n))=g_1\ldots g_n=g$ ϕ -мономорфизм $Ker\phi=\{((g_1,\ldots,g_n):g_1g_2\ldots g_n=e)\} o g_1=g_2=\cdots=g_n=e$

9.10 Продолжение прямого произведения групп

 $G = G_1 \times G_2 \times \cdots \times G_n$ -внешнее прямое произведение групп

- 1. G это группа
- 2. $\tilde{G}_i \triangleleft G$
- 3. $\tilde{g}_i \tilde{g}_j = \tilde{g}_j \tilde{g}_i$
- 4. $\forall g = \tilde{g_1}\tilde{g_2}\dots\tilde{g_n}$
- 5. $\forall g! = \tilde{g}_1 \tilde{g}_2 \dots \tilde{g}_n$
- 6. $\tilde{G}_i \cap \tilde{G}_i = \{e\} \quad (i \neq j)$
- 7. $|G| < \infty \to |G| = |G_1||G_2|\dots|G_n|$

Внутреннее прямое произведение $G, G_1, \dots, G_n < G$

Теорема 11 **
$$\begin{cases} \forall g! = g_1 \dots g_n & (1) \\ g_i g_j = g_j g_i & (2) \end{cases} \leftrightarrow * \begin{cases} \forall g! = g_1 \dots g_n & (1) \\ G_i \triangleleft G & (2) \end{cases}$$
 гдея_i-элемент i-ой группы, ад_i-элемент j-ой группы

G-внутреннее прямое произведение, если выполнена (*) (\leftrightarrow Выполнена (**)) Примеры:

- 1. $G = \mathbb{Z}, +$ не раскладывается в внутренние прямые суммы $G_n = n\mathbb{Z}$ -других подгупп нет На дом: продумать и записать доказательство. $nm \in n\mathbb{Z} \cap m\mathbb{Z} \to n\mathbb{Z} \cap m\mathbb{Z} \neq \{0\}$
- 2. $G = \mathbb{C}^*, \cdot$ $G_1 = \mathbb{R}_{>0} = \{x > 0, x \in R\}$ $G_2 = U = \mathbb{T} = \{z : |z| = 1\} = \{z = e^{i\phi}\}$ $G = G_1 \times G_2? \quad G\text{-коммутативна}$ $z \in G \to z = |z|e^{i\phi} \qquad (|z| > 0 \quad e^{i\phi \in U})$ $|z = x_1u_1 = x_2u_2 \to ?\begin{cases} x_1 = x_2 \\ u_2 = u_2 \end{cases} \qquad x_1x_2^{-1} = u_1^{-1}u_2 \to \begin{cases} x_1x_2^{-1} = 1 \\ u_1^{-1}u_2 = 1 \end{cases} \to$ $\begin{cases} x_1 = x_2 \\ u_2 = u_2 \end{cases}$

Теорема 12 $(G_1 \times G_2)/G_1 \cong G_2$

$$\forall \phi: G_1 \times G_2 \to G_2$$
 $\phi((g_1g_2)) = g_2$ ϕ -гомоморфизм ? $\phi((g_1,g_2)(g_1',g_2')) = \phi((g_1g_1',g_2g_2')) = g_2g_2'$ $\phi((g_1,g_2)) \cdot \phi((g_1',g_2')) = g_2g_2' \to \phi((g_1,g_2)(g_1',g_2')$ $Ker\phi = \{(g_1,g_2): \phi(g_1,g_2) = e\} \to Ker\phi = \{(g_1,e)\} = G_1$

$$Im\phi = \{\phi((g_1,g_2))\} = \{g_2\} = G_2 \rightarrow G_1 \times G_2/G_1 \cong G_2$$
 Следствия. Если $G_1 \lhd G, G/G_1 \not\cong G_2 \rightarrow G \not\cong G_1 \times G_2$ ACHTUNG $G/G_1 \cong G_2 \not\rightarrow G = G_1 \times G_2$ Пример $C_4 = \{e,a,a^2,a^3\}$ $C_2 = \{e,a^2\} \lhd C_4$ $C_4/C_2 = C_2$, но $C_4 \neq C_2 \times C_2$

Теорема 13 (т. Кэлли) \forall конечная группа G, |G| = n изоморфна подгруппе S_n