Aと点人。 PEKING UNIVERSITY

芯片设计自动化与智能优化 2020-2021年春季学期

题目:第二次作业: Physical Design授课教师:林亦波姓名:麦景学号:1700012751

第二次作业: Physical Design

1 Problem #1

1.1 (a)

以下通过表格的方式列出每次step交换俩俩点的gain. 由于对称性,这里只列出表格的上半部分. 并且注意到如果当前两个点已经在同一个partition内,那么交换两个点是没有意义的,这里直接不考虑这种情况,初始cut size为 $\frac{7}{3}$

Step 1:

 $P_1 = \{a, b, c, d | e, f, g, h\}$

	a	b	с	d	e	f	g	h
а	-	-	-	-	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$
b	-	-	-	-	$-\frac{1}{2}$	$-\frac{3}{2}$	$\frac{1}{2}$	$-\frac{3}{2}$
С			-	-	0	$-\frac{3}{2}$	$\frac{1}{2}$	-1
d				-	0	$\frac{1}{2}$	$\frac{3}{2}$	-1
e					-	-	-	-
f						-	-	-
g							-	-
h								-

所以在step 1中调换点d和点g, 获得增益 $\frac{3}{2}$, 且在接下来的步骤中固定点d和点g, 此时的cut size为 $\frac{7}{3}-\frac{3}{2}=\frac{5}{6}$.

Step 2:

 $P_2 = \{a, b, c, g | d, e, f, h\}$

	a	b	c	d	e	f	g	h
а	-	-	-	-	-1	-1	-	-2
b	-	-	-	-	0	-1	-	$-\frac{5}{3}$
С			-	-	-1	$-\frac{3}{2}$	-	-2
d				-	-	-	-	-
e					-	-	-	-
f						-	-	-
g							-	-
h								-

此时不存在正增益, 该pass结束, 此时的cut size为 $\frac{5}{6}$.

1.2 (b)

在该无权图中, 初始的cut size为4.

Step 1:

 $P_1 = \{a, b, c, d | e, f, g, h\}$

此时移动cell的gain为:

故在step 1中移动点d,移动后cut size为3,在接下来的步骤中固定d.

Step 2:

注意到由于partition大小限制, 此时点a,b,c不能被移动. 此时移动cell的gain为:

故在step 2中移动点g, 移动后cut size为2, 在接下来的步骤中固定点g.

Step 3:

此时移动cell的gain为:

此时不存在正增益,该pass结束,此时cut size为2.

1.3 (c)

Edge Coarsening(EC)算法过程如下:

- (1) visit a: a的邻居包括b, c, g, 连接权重分别为 $\frac{1}{2}$, $\frac{1}{2}$ 和1, 故合并a和g, 得到聚类 $C_1 = \{a,g\}$, 并标记a和g.
- (2) visit b: a的未标记邻居包括c, d, e和f, 连接权重分别为 $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{3}$ 和 $\frac{1}{3}$, 按照字典序应合并b和c, 得到聚类 $C_2=\{b,c\}$, 并标记b和c.
- (3) visit c: c已被标记, 跳过.
- (4) visit d: d的未标记邻居包括e, f和h, 连接权重分别为 $\frac{5}{6}$, $\frac{1}{3}$ 和 $\frac{1}{2}$, 故合并d和e, 得到聚类 $C_3 = \{d,e\}$, 并标记d和e.
- (5) visit e: e已经被标记, 跳过.
- (6) visit f: f的未标记邻居只有h, 故合并f和h, 得到聚类 $C_4 = \{f, h\}$.

故最终聚类结果为 $C_1 = \{a, g\}, C_2 = \{b, c\}, C_3 = \{d, e\}$ 和 $C_4 = \{f, h\}$.

Modified Hyperedge Coarsening(MHC)算法过程如下:

根据权重排序后网表的顺序为 n_6 , n_4 , n_1 , n_3 , n_5 和 n_2 .

- (1) visit n_6 : 合并f和h, 得到聚类 $C_1 = \{f, h\}$ 并标记f和h.
- (2) visit n_4 : 合并a和g, 得到聚类 $C_2 = \{a, g\}$ 并标记点a和g.
- (3) visit $n_1 = \{a, b, c\}$: 由于 α 已经被标记,合并b和c,得到聚类 $C_3 = \{b, c\}$ 并标记点b和c.
- (4) visit $n_3 = \{c, f, g\}$: c,f,g都已经被标记.
- (5) visit $n_5 = \{d, e, h\}$: 由于h已经被标记,合并d和e,得到聚类 $C_4 = \{d, e\}$,并标记点d和e.
- (6) 此时所有点都已合并, 算法提前结束.

故最终聚类结果为 $C_1 = \{f, h\}, C_2 = \{a, g\}, C_3 = \{b, c\}$ 和 $C_4 = \{d, e\}$.

2 Problem #4

2.1 (a)

不妨仅考虑x轴方向,设网表e所连接的所有pin的横坐标为 x_1, x_2, \ldots, x_n .那么有:

$$HPWL^{x}(e) = \max_{1 \le i \le n} x_i - \min_{1 \le i \le n} x_i \tag{1}$$

显然 $\max x_i$ 和 $-\min x_i$ 都是凸函数,故 $HPWL^x(e)$ 是凸函数.

2.2 (b)

$$f(\mathbf{x}, \mathbf{y}) = \sum_{i \neq j} (x_i - x_j)^2 + (y_i - y_j)^2$$
 (2)

对于其中任意一个二次项 $(x_i - x_j)^2$ 或 $(y_i - y_j)^2$,其都是凸函数,故凸函数的和仍是凸函数.

2.3 (c)

log-sum-exp函数为: $f(x) = \log \sum_{k=1}^{n} \exp x_k$, 其二阶导为:

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{diag}(z) - \frac{1}{\left(\mathbf{1}^T z\right)^2} z z^T$$
(3)

为了证明 $\nabla^2 f(x) \succeq 0$, 仅需证明对于所有的v, 有 $v^T \nabla^2 f(x) v \ge 0$:

$$v^{T} \nabla^{2} f(x) v = \frac{\left(\sum_{k} z_{k} v_{k}^{2}\right) \left(\sum_{k} z_{k}\right) - \left(\sum_{k} v_{k} z_{k}\right)^{2}}{\left(\sum_{k} z_{k}\right)^{2}} \ge 0 \tag{4}$$

利用Cauchy-Schwarz Inequality容易证明上式不等号成立.