### Randomness properties of $\mathbb{Z}_{v}$ ElGamal sequences

Daniel Panario\* Lucas Pandolfo Perin<sup>†</sup> Brett Stevens\*

\*Carleton University — Canada

†Universidade Federal de Santa Catarina — Brazil

†Technical Innovation Institute — United Arab Emirates

2020-08-05

### Outline

Contextualization

Bounds for random v-ary sequences

Bounds for ElGamal *v*-ary sequences

Experimental results

Final Remarks

References

#### Introduction

# Sidon sets and statistics of the ElGamal function boppre2020sidon

- Started in 2016 as a research challenge by Joachim von zur Gathen;
- Boppré and Perin wrote a report with experimental analysis;
- ▶ By 2017, Ana and Joachim wrote the Sidon Set part and submited to arxiv.
- ► In 2020, the paper was published in Cryptologia.

Let 
$$G = \mathbb{Z}_p^{\times} = \{1, \dots, p-1\}$$
 be a cyclic group of order  $p-1$   $p$  prime

Let  $G = \mathbb{Z}_p^{\times} = \{1, \dots, p-1\}$  be a cyclic group of order p-1 p prime

- ► ElGamal signatures uses the fact that  $G = \{g^x : x \in \mathbb{Z}_{p-1}\}$ , where g is a generator of G;
- $g^x$  is a unique representation of x, and thus it spans a permutation of G.

Let  $G = \mathbb{Z}_p^{\times} = \{1, \dots, p-1\}$  be a cyclic group of order p-1 p prime

- ► ElGamal signatures uses the fact that  $G = \{g^x : x \in \mathbb{Z}_{p-1}\}$ , where g is a generator of G;
- $ightharpoonup g^x$  is a unique representation of x, and thus it spans a permutation of G.

We are interested on the randomness properties of the *ElGamal* map from  $\mathbb{Z}_{p-1}$  to G with  $b \to g^b$ 

Lucas: USE BETTER NOTATION FROM PAPER HERE

Example: Let p = 5, then 2 and 3 are generators of  $G = \mathbb{Z}_p^{\times}$ .

| X | $g^x$     | _ | Χ | $g^{x}$   |
|---|-----------|---|---|-----------|
|   | $g^1 = 2$ |   |   | $g^1 = 3$ |
| 2 | $g^2 = 4$ |   |   | $g^2 = 4$ |
| 3 | $g^3 = 3$ |   | 3 | $g^3 = 2$ |
| 4 | $g^4 = 1$ |   | 4 | $g^4 = 1$ |

Table 1:  $g^x$  with x in  $\mathbb{Z}_5^x$  and g = 2

Table 2: 
$$g^{x^*}$$
 with  $x$  in  $\mathbb{Z}_5^{\times}$  and  $g = 3$ 

cycles = 
$$\{\{1,2,4\},\{3\}\}$$

cycles = 
$$\{1,2,3,4\}$$

Example: Let p = 5, then 2 and 3 are generators of  $G = \mathbb{Z}_p^{\times}$ .

| Χ | $g^{x}$   |   | X | $g^{x}$   |
|---|-----------|---|---|-----------|
| 1 | $g^1 = 2$ | _ | 1 | $g^1 = 3$ |
| 2 | $g^2 = 4$ |   |   | $g^2 = 4$ |
| 3 | $g^3 = 3$ |   | 3 | $g^3 = 2$ |
| 4 | $g^4 = 1$ |   | 4 | $g^4 = 1$ |

Table 1:  $g^x$  with x in  $\mathbb{Z}_5^x$  and g = 2

Table 2:  $g^{x^*}$  with x in  $\mathbb{Z}_5^{\times}$  and g = 3

cycles = 
$$\{\{1,2,4\},\{3\}\}\$$
 cycles =  $\{1,2,3,4\}$ 

- ▶ Distinct *g* produce distinct permutations;
- ▶ Distinct *g* affect the cyclic structures.

## Pictorial Representation

# Experimentation

### Results with Sidon Sets

### **ElGamal Sequences**

ightharpoonup Comparing balanced  $\mathbb{Z}_{v}$ -sequences obtained from ElGamal function to random balanced sequences **elgamalsequences** 

# Randomness properties

- ► Balance
- ► Period
- $\lambda(z) = \#\{i \in [0, p-1] : \sigma(i+n\iota) = z(\iota), \ 0 \le \iota < t\}$
- ▶  $\rho(b,t) = \#\{i \in [0,p-1] : \sigma(i-n,1), \sigma(i+n,t) \neq b = \sigma(i+n,\iota), 0 \leq \iota < t\}$



Show experiment with ratio against expected from golomb's postulates

#### Balance

The number of 
$$x \equiv i \mod v$$
 in  $[1, p-1]$  is 
$$\lceil (p-1-((i-1) \mod v))/v \rceil$$

### Proposition

Let  $\pi$  be a permutation in  $\mathbb{Z}_p^*$ , then  $\pi_v$  is a balanced sequence over  $\mathbb{Z}_v$  if and only if  $v \mid p-1$ .

### Period

#### Lemma

If  $p \equiv \alpha \neq 1 \pmod{v}$ , then  $\pi_v$  has period N = p - 1 for any  $\pi : \mathbb{Z}_p^* \to \mathbb{Z}_p^*$ .

#### Proof.

The difference in the number of occurences of any two symbols must be a multiple of (p-1)/N. But

$$|\pi_v|_a = \begin{cases} \lceil (p-1)/v \rceil & 0 \le a < \alpha - 1, \\ \lfloor (p-1)/v \rfloor & \text{otherwise.} \end{cases}$$

### Period

#### Theorem

For every  $\epsilon > 0$  there exists an  $n_{\epsilon}$  so that for all  $p \geq n_{\epsilon}$ , the number T of permutations  $\pi_v$  with period p-1 satisfies

$$(p-1)!(1-\epsilon) \le T \le (p-1)!.$$
 (1)

## Special case

When *q* is prime and p = vq + 1,

$$(p-1)! - T = v!(q!)^{v}$$

This includes the case of Sophie Germain primes.

# de Bruijn graph



#### Transfer Matrix

Transfer matrix is directed adjacency matrix of de Bruijn graph with variables

$$\sum_{\mathbf{k}\in\mathbb{N}^t} a_n(\mathbf{k}) x^{\mathbf{k}} = \sum_{\mathbf{z}',\mathbf{z}''\in\mathbb{Z}^t} C_{\mathbf{z}',\mathbf{z}''} T_{\mathbf{z}',\mathbf{z}''}^n.$$

### References I