

SORBONNE UNIVERSITÉ

CRÉATEURS DE FUTURS DEPUIS 1257

Yann DOUZE
Twitter: @yann_douze

Linkedin:

https://www.linkedin.com/in/yanndouze/

The Internet Of Things C8: LoRaWAN Protocol

Introduction to what is the Internet of Things, why does it change the world where we live, what are the technologies behind the scene?

How des it apply to your domain?

The LoRaWAN protocol

- ✓ LoRaWAN ecosystem
 - Specification
 - LoRa vs LoRaWAN
- ✓ LoRaWAN infrastructure
 - Device
 - Gateway
 - LoRaWAN Server
- ✓ LoRaWAN Security

- ✓ Device classes
- ✓ Activation methods: ABP or OTAA
- ✓ How to ...
 - ... prevent replay attack?
 - ... change the communication parameters?
 - ... change Network operator?
- ✓ Optimization of the communication: ADR

LoRa vs LoRaWAN

LoRa vs LoRaWAN

LoRa → Secured and standardized protocol

LoRaWAN protocol versions

LoRaWAN network infrastructure

LoRaWAN network infrastructure

LoRaWAN Network Server and Application Server

Nobody can understand what the end-device says

Nobody can change the transmitted frame

AUTHENCITY

SECURITY

Only allowed end-device can send on the Network Server

LoRaWAN Network Server and Application Server

The LoRaWAN Gateways

LoRa end-device Classes

Packet transmission time

= TIME ON AIR

1% Time duration

= DUTY CYCLE

Downlink?

End-device classes

A or B or C

Class A end-devices

Class B end-devices

Class C end-devices

LoRa end-device Classes

Power Consumption

Downlink capabilities

LoRa end-device Classes

Class A

All devices, Gateways and Network Server support class A

Device, Gateway, and Network Server must support class B

Specific gateway with absolute timestamp

Class C

Device, Gateway, and Network Server must support class C

LoRa classes – Demonstration

WHEN WILL THE DONWLINK FRAME BE SENT?

CLASS A
RX1 or RX2

or

CLASS CWhenever

Activation of LoRa Devices

- ☐ Activation By Personalization (ABP)
- ☐ Over The Air Activation (OTAA)

Activation By Personalization (ABP)

programmed

in the component

Over The Air Activation (OTAA) -

1

Programmed parameters

before the "Join
Request",
in the component

Network Server
Application Server
DevEUI
AppEAL
AppKey

Stored parameters **before** the "Join Request
in the server

Parameters generated **after** the "Join Request", in the

Parameters generated

after the "Join Request", in
the server

Over The Air Activation (OTAA) - 2

- 1. The LoRa Device issues a Join-Request using the **DevEUI**, **AppEUI**, and **AppKey** information it has.
- 2. The Network Server authenticates the Join Request and validates it. It then generates a **NwkSKey**, an **AppSKey**, and a **DevAddr**.
- 3. The Network Server returns the **DevAddr**, along with a series of **parameters**.
- 4. The **parameters** provided during the Join-Accept, associated with **the AppKey**, allow the LoRa Device to generate the same **NwkSKey** and **AppSKey** that were initially generated on the Network Server.

Choice between ABP or OTAA?

- ☐ Frame Counter Management: Protection against replay attacks
- ☐ Change of network and server
- ☐ Modification of LoRa device parameters

The REPLAY attack

The Frame Counter

Valid reception only if $X \ge Y$

- 1. Deactivation of the "Frame Counter Check".
- 2. Use OTAA activation instead of ABP
- 3. Keep the value of the "Frame Counter" in a non volatile memory and retrieve its value at the start of the LoRa Device.

The Frame Counter - Demonstration

Change of network

RX Delay and CFList

The RX Delay

Channels		
868.1 Mhz		
868.3 Mhz		
868.5 Mhz		
867.1 Mhz		
867.3 Mhz		
867.5 Mhz		
867.7 Mhz		
867.9 Mhz		

The CFList

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListType

CFList - Demonstration

ABP - OTAA Choice: Summary

	АВР	ОТАА
Global security	Secure memory storage: NwSkey and AppSKey	Secure memory storage: AppKey
Management of the Frame Counter	Backup in non-volatile memory is mandatory Possibility to disable the counter check by risking replay attacks	Supported by the OTAA
Change of Network	Not possible	Supported by the OTAA
Modification of the RX Delay	Not possible	Supported by the OTAA
Adding channels	Not possible	Supported by the OTAA

Adaptive Data Rate - 1

Parameters to adjust to reduce consumption:

- ✓ The Spreading Factor (SF)
- √ Transmitter power (P_E) of the transceiver (in dBm)

Sensitivity

SNR mini

Adaptive Data Rate - 2

Adaptive Data Rate - Demo 1

Adaptive Data Rate - Demo 2

Channels, Frequency Bands, Data Rate and TX Power

Channels	Spreading Factor	Bandwidth
868.1 Mhz	From SF7 to SF12	125 kHz
868.3 Mhz	From SF7 to SF12	125 kHz
868.3 Mhz	SF7	250 kHz
868.5 Mhz	From SF7 to SF12	125 kHz
867.1 Mhz	From SF7 to SF12	125 kHz
867.3 Mhz	From SF7 to SF12	125 kHz
867.5 Mhz	From SF7 to SF12	125 kHz
867.7 Mhz	From SF7 to SF12	125 kHz
867.9 Mhz	From SF7 to SF12	125 kHz

Data Rate	Spreading Factor	Bandwidth
DR 0	SF12	125 KHz
DR 1	SF11	125 KHz
DR 2	SF10	125 KHz
DR 3	SF9	125 KHz
DR 4	SF8	125 KHz
DR 5	SF7	125 KHz
DR 6	SF7	250 KHz

TX Power Index	Value in dBm
1	14 dBm
2	11 dBm
3	8 dBm
4	5 dBm
5	2 dBm