Chapter 13: Multi-Relational Data Mining

Lecturer: Dr. Nguyen Thi Ngoc Anh Email: ngocanhnt@ude.edu.vn

1

What is MRDM?

- Problem: Data in multiple tables
 - Want rules/patterns/etc. across tables
- Solution: Represent as single table
 - Join the data
 - Construct a single view
 - Use standard data mining techniques
- Example: "Customer" and "Married-to"
 - Easy single-table representation
- Bad Example: Ancestor of

Basis of Solutions: Inductive Logic Programming

- ILP Rule:
 - customer(CID,Name,Age,yes) ←
 Age > 30 ∧ purchase(CID,PID,D,Value,PM) ∧
 PM = credit card ∧ Value > 100
- Learning methods:
 - Database represented as clauses (rules)
 - Unification: Given rule (function/clause), discover values for which it holds

Example

- How do we learn the "daughter" relationship?
 - Is this classification? Association?
- Covering Algorithm: "guess" at rule explaining only positive examples
 - · Remove positive examples explained by rule
 - Iterate

Training examples		Background knowledge	
daughter(mary,ann), daughter(eve,tom), daughter(tom,ann), daughter(eve,ann),	0000	parent(ann, mary). parent(ann, tom). parent(tom, eve). parent(tom, ian).	female(ann). female(mary). female(eve).

How to make a good "guess"

- Clause subsumption: Generalize
 - More general clause (daughter(mary,Y) subsumes daughter(mary,ann)
- Start with general hypotheses and move to more specific

Issues

- Search space efficiency
- Noisy data
 - o positive examples labeled as negative
 - Missing data (e.g., a daughter with no parents in the database)
- What else might we want to learn?

WARMR: Multi-relational association rules

Algorithm WARMR(\mathbf{r} , \mathcal{L} , key, minfreq; Q) Input: Database \mathbf{r} ; Declarative language bias \mathcal{L} and key; threshold minfreq. Output: All queries $Q \in \mathcal{L}$ with frequency \geq minfreq

- 1. Initialize level d := 1
- Initialize the set of candidate queries Q₁ := { ?- key}
- 3. Initialize the set of (in)frequent queries $\mathcal{F}:=\emptyset;\,\mathcal{I}:=\emptyset$
- While Q_d not empty
- Find frequency of all queries $Q \in \mathcal{Q}_d$
- Move those with frequency below minfreq to I
- Update $F := F \cup Q_s$
- Compute new candidates: $Q_{d+1} = \text{WARMRgen}(\mathcal{L}; \mathcal{I}; \mathcal{F}; Q_d)$)
- Increment d
- 10. Return F

Function WARMRgen($\mathcal{L}; \mathcal{I}; \mathcal{F}; \mathcal{Q}_d$):

- 1. Initialize $Q_{d+1} := \emptyset$
- For each Q_i ∈ Q_d, and for each refinement Q'_i ∈ L of Q_i: Add Q'_{ij} to Q_{d+1} , unless:
 - (i) Q'_j is more specific than some query $\in \mathcal{I}$, or (ii) Q'_j is equivalent to some query $\in \mathcal{Q}_{\partial \mathcal{H}} \cup \mathcal{F}$
- 3. Return Qui

Multi-Relational Decision Trees procedure DivideAndConquer(TestsOnYesBranchesSofar, DeclarativeBias, Examples) if TERMINATIONCONDITION(Examples) haspart(M, X), worn(X)NewLeaf = CreateNewLeaf(Examples)return NewLeaf A=no_maintenance irreplaceable(X) $Possible Tests Now = Generate Tests (Tests On Yes Branches Sofar,\ Declarative Bias)$ BestTest = FindBestTest(PossibleTestsNow, Examples)A=send_back A=repair_in_house (Split₁, Split₂) = SplitExamples(Examples, TestsOnYesBranchesSofar, BestTest) $LeftSubtree = DivideAndConquer(TestsOnYesBranchesSofar \land BestTest, Split_1)$ $RightSubtree = DivideAndConquer(TestsOnYesBranchesSofar, Split_2)$ ${\tt return} \; [BestTest, LeftSubtree, RightSubtree]$ irreplaceable(X)!, $A = send_back$ $intenance(M, A) \leftarrow haspart(M, X), worn(X)$!,