Polinómio interpolador de Newton

1. Dada a seguinte tabela,

selecione os pontos para construir um polinómio interpolador de grau três de forma a aproximar

- (a) f(3);
- (b) f(0.5);
- (c) f(13);
- (d) f(9).

2. Dada a tabela de valores de uma função f(x)

Pretende-se aproximar f(0.6) usando um polinómio de grau 3. Use a fórmula interpoladora de Newton baseada em diferenças divididas e estime o erro de truncatura cometido.

3. Os registos efetuados numa linha de montagem são os seguintes:

Tendo sido recebidos pedidos para a montagem de 8 unidades, use interpolação cúbica para estimar o tempo (em horas) necessário para satisfazer o pedido e calcule uma estimativa do erro de truncatura cometido.

4. Considere a seguinte tabela de uma função polinomial

Sem recorrer à expressão analítica de p(x) mostre que p(x) é um polinómio interpolador de grau dois e determine p(10).

5. Considere a seguinte tabela da função f(x).

1

Determine $a \in \mathbb{R}$ de modo a que f(x) seja um polinómio de grau três.

6. [MATLAB] Dada a tabela de valores de uma função f(x),

x_i	5.0	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6.0
f_i	0.0639	0.0800	0.0988	0.1203	0.1442	0.1714	0.2010	0.2330	0.2673	0.3036	0.3414

- (a) Aproxime f(5.44) através de um polinómio interpolador de grau dois e apresente também o polinómio.
- (b) Repita para um polinómio interpolador de grau cinco.
- (c) Represente graficamente os pontos dados na tabela e os dois polinómios obtidos.
- 7. [MATLAB] Considere a tabela seguinte de 12 valores de f(x).

x_i	0.00	0.30	0.50	0.70	0.90	1.00	1.20	1.50	1.60	1.75	2.00	2.10
f_i	0.0000	0.2955	0.4794	0.6442	0.7833	0.8415	0.9320	0.9975	0.9996	0.9840	0.9093	0.8632

- (a) Apresente a melhor aproximação a f(1.57) usando um polinómio interpolador com quatro pontos.
- (b) Repita usando seis pontos.
- (c) Repita ainda novamente usando todos os pontos da tabela.
- 8. [MATLAB] A velocidade de ascensão de um foguetão, v(t), é conhecida para diferentes tempos conforme a seguinte tabela. Esta velocidade pode ser estimada a partir de um polinómio interpolador de grau três.

Calcule o polinómio e estime a velocidade do foguetão para $t=8~\mathrm{s}$ e represente graficamente os pontos e o polinómio calculado.

9. [MATLAB] Considere um reservatório de água com 2.1 m de altura. No início, o reservatório está cheio de água. Num certo instante, abre-se a a válvula e o reservatório começa a ser esvaziado. A altura (em metros) de água do reservatório, t horas depois de este ter começado a ser esvaziado, é dada por h(t), de acordo com a tabela

Pretende estimar-se a altura de água no reservatório ao fim de 5 h.

- (a) Apresente o polinómio interpolador de grau um e estime f(5) com base nesse polinómio.
- (b) Repita para um polinómio interpolador de grau cinco.