CÓDIGO EQUIPO: CEIOT-PE11-DZS900

MANUAL RÁPIDO DE INSTALACIÓN

RECUERDA:

SEGURIDAD PRIMERO

- Desconecta la energía antes de empezar, verificar energía residual.
- Utilizar Elementos de Protección Personal.

HERRAMIENTAS

- Taladro
- Esmeril
- Cortante
- Aislante
- Destornilladores
 Etc...
- Linterna
- Tester
- Secuencímetro
- Ferrules

CONEXIÓN DE ALIMENTACIÓN

- Alimentar el equipo ClarityEnergy con las fases al automático y el neutro a la bornera
- OJO: Para los equipos de medición (DZS310) las secuencias de fases deben estar alineadas.

CONFIGURACIÓN DE COMUNICACIÓN

- PE11 Ethernet: MAC / IP / DNS / Gateway
- PW21 WiFi:
- 1. para el caso de una conexión WiFi dinámica, basta con conocer el SSID y la contraseña (si cambia, se debe actualizar la PW21 reiniciándola)
- 2. para el caso de una conexión WiFi estática, se debe considerar SSID / contraseña / MAC / IP / DNS / Gateway
- LoRa: Estos equipos funcionan con la lógica maestro-esclavo, lo cual implica que tanto el maestro como todos los esclavos deben tener la misma parametrización.

Pasos a seguir

Según la imagen 1.1, proceda de la siguiente forma:

- Ubicar espacio en algún Riel Din existente o en si en su defecto viene en caja Saime se debe canalizar y alimentar desde un tablero, tomar corriente de derivaciones.
- Conectar el dispositivo a la alimentación (1)
- Conectar DTU a un punto de red habilitado.

• Nota: (los transformadores de corriente deben estar dimensionados para el flujo de corriente a leer)

1	2	3	4	5	6	7	8	9	10	11	12		
In1	lc1	lb1	la1	In2	lc2	lb2	la2	In3	lc3	lb3	la3		
Cu	Current of 1st Circuit				Current of 2 nd Circuit				Current of 3 rd Circuit				

13	14	15	16	17	18	19	20	21	22	23	24
In4	lc4	lb4	la4	NC	NC	In5	lc5	lb5	la5	NC	NC
Cu	Current of 4 th Circuit					Current of 5 th Circuit					

25	26	27	28	29	30	31	32	33	34	
Ua	NC	NC	Ub	NC	NC	υc	NC	NC	Un	
Voltage										

Parte superior DZS900

44	43	42	41	40	39	38	37	36	35	
485B2	485A2	485B1	485A1	NC	NC	N/-	L/+	NC	PG	
2 nd -way	/ RS485	1 st -way			Po	wer				
Commu	ınication	Commu	nication			Sup	ply			

56	55	54	53	52	51	50	49	48	47	46	45
la6	lb6	Ic6	In6	NC	NC	NC	NC	P1+	P1-	P2+	P2-
Cu	Current of 6 th Circuit							1 st -way	/ Pulse		way Ise

68	67	66	65	64	63	62	61	60	59	58	57	
la9	lb9	lc9	ln9	la8	lb8	Ic8	In8	la7	lb7	lc7	In7	
С	Current of 9th Circuit				rrent of	8 th Circ	uit	Current of 7 th Circuit				

Parte inferior DZS900

La lógica de conexionado en un DZS900 es que a cada unidad de medida le corresponde uno slot (ranura de conexión, borneras), los cuales se identifican con las letras Cn (C1, C2, ..., C9). Entonces, nuestro estándar de conexión es que al slot C1 le corresponda la unidad de medida de mayor amperaje (por ejemplo, una subestación o tablero general de 1000 A), mientras que el slot C9 corresponderá a la unidad de medida de menor amperaje (por ejemplo, 50 A). En definitiva, en orden decreciente.

Recomendaciones

- Evitar que su ubicación sea muy cerca de una barra y/o alto voltaje para poder manipular en caso de alguna mantención como reemplazo de cable de red, actualización de FW o reemplazo de equipo y/o modelo.
- Tomar nota de la dirección IP en caso de ser fija.
- Verificar estado de cable ethernet