## 实验报告

### 【实验内容】

用 J-K 触发器和门电路设计一个特殊的十进制同步计数器, 用示波器数字通道观察并记录连续脉冲和计数器 Q3、Q2、Q1、Q0 的输出波形, 分析并验证电路功能。

### 【实验原理】

时序逻辑电路时任意时刻的输出信号不仅取决于当时的输入信号, 还与电路的历史状态相关。利用 J-K 触发器, 可以设计一个同步计数器。

H





TOGGLE

QO

 $a_0$ 

'LS73A

# 【实验设计】

十进制计数器状态转换图 (第一步)

$$0001 \leftarrow 0010 \leftarrow 0011 \leftarrow 0100 \leftarrow 0101$$
 $\downarrow$ 
 $\uparrow$ 
 $1010 \rightarrow 1001 \rightarrow 1000 \rightarrow 0111 \rightarrow 0110$ 

十进制计数器 Q3Q2Q1Q0 卡诺图(第二步)

| Qn Qn Qo | 00   | 01   | 11   | 10   |
|----------|------|------|------|------|
| 00       | X    | 1010 | 00/0 | 000/ |
| _01      | 00// | 0/00 | 01/0 | 0/0/ |
| 11       | X    | X    | x    | X    |
| 10       | 0/// | 1000 | X    | 1001 |
|          |      |      |      | -    |

合并化简 (第三步)



| Q3" Q2"                                                                       | s) 00 | 0 01 | 1 11 | 10 |  |  |
|-------------------------------------------------------------------------------|-------|------|------|----|--|--|
| 00                                                                            | X     | ID   | T    | 0  |  |  |
| 0/                                                                            | 1     | 0    |      | 0  |  |  |
| 11                                                                            | X     | X    | X    | X  |  |  |
| 10                                                                            |       | 0    | X    | 0  |  |  |
| Qinti = Qi Qo +QiQo + QiQo + QiQo Qi                                          |       |      |      |    |  |  |
| $= (\overline{O}_0 + \overline{O}_3 \overline{O}_2) \overline{O}_1 + Q_0 Q_1$ |       |      |      |    |  |  |

| Q' Q' Q' | 00    | 01   | 111  | 10      |      | 20% |
|----------|-------|------|------|---------|------|-----|
| 00       | X     | 0    | 0    | 0       | X    | 0   |
| 01       | 0     | 1    | TO   | 100     | 00 0 |     |
| 11       | X     | X    | X    | X       | X    |     |
| 10       | 1     | 0    | X    | 0       | 000) | 0   |
| Quit!    | = lQo | +01) | ar t | ( Q, Q. | ) Q2 | 6   |

$$Q_{1}^{n}Q_{3}^{n} = Q_{3}Q_{0} + Q_{3}Q_{1} + Q_{3}Q_{1}$$

$$Q_{3}^{n+1} = Q_{3}Q_{0} + Q_{3}Q_{1} + Q_{3}Q_{1}$$

$$= (Q_{1} + Q_{0}) Q_{3} + (Q_{2}Q_{1}) Q_{3}$$

选择触发器并部署电路 (第四步)

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

$$J_0 = K_0 = 1$$

$$J_1 = \overline{Q}_0 + \overline{Q}_3 \overline{Q}_2 \quad K_1 = \overline{Q}_0$$

$$J_2 = K_2 = \overline{Q}_1 + \overline{Q}_0$$

$$J_3 = \overline{Q}_2 \overline{Q}_1 \quad K_3 = \overline{Q}_1 + \overline{Q}_0$$

### 检查自启动 (第五步)

没有 0000、1011、1100、1101、1110、1111 状态

0000->1111->1110->1101->1100->0011

1011->1000



### 于是可以设计出如下电路:



### 【实验结果与分析】



如逻辑分析仪波形所示,可以观察到波形经历 0111->0110->0101->0100->0011->0010->0010->1010->1000,最后回到 0111。

### 【实验心得】

本次实验我认为相较上一次时序电路的设计更为简单一些。设计一个同步计数器,要经过状态转移图、卡诺图、化简和状态分配、选择触发器并部署电路、检查自启动这样大致五个步骤。电路设计十分有趣,完成时也会有强烈的满足感!