Name: Solutions

Solve **one** of the following two questions:

1. Suppose $T \in \mathcal{L}(V, W)$ and v_1, v_2, \ldots, v_m are vectors in V such that the vectors Tv_1, Tv_2, \ldots, Tv_m are linearly independent in W. Prove that the vectors v_1, \ldots, v_m are linearly independent in V.

Solution: Suppose that the vectors Tv_1, \ldots, Tv_m are linearly independent. We want to show that the vectors v_1, \ldots, v_m are linearly independent. Thus, we suppose that

$$c_1v_1 + c_2v_2 + \dots + c_mv_m = 0$$

for some scalars $c_1, c_2, \ldots, c_m \in \mathbb{F}$. We need to show that we're forced to take each of these scalars equal to zero. Since T is a linear transformation, we know that T(0) = 0. Therefore, we have

$$0 = T(0)$$

$$= T(c_1v_1 + c_2v_2 + \dots + c_mv_m)$$
 (since $c_1v_1 + c_2v_2 + \dots + c_mv_m = 0$)
$$= c_1Tv_1 + c_2Tv_2 + \dots + c_mTv_m$$
 (since T is a linear map)

But this means we have a linear combination of the vectors Tv_1, \ldots, Tv_m equal to zero, and these vectors were assumed to be linearly independent. Thus, the only possibility is that each of the scalars is zero: $c_1 = 0, c_2 = 0, \ldots, c_m = 0$. But this is what we needed to show. Therefore, the vectors v_1, \ldots, v_m are linearly independent.

2. Suppose that the vectors v_1, \ldots, v_m span the vector space V, and that $T: V \to W$ is a linear transformation. Prove that the vectors Tv_1, \ldots, Tv_m span range T.

Solution: Suppose that $V = \text{span}\{v_1, \ldots, v_m\}$, and that $w \in \text{range } T$. By definition, if $w \in \text{range } T$, then there is some $v \in V$ such that Tv = w. Since we know that $V = \text{span}\{v_1, \ldots, v_m\}$ and $v \in V$, it follows that there exist scalars $c_1, \ldots, c_m \in \mathbb{F}$ such that

$$v = c_1 v_1 + c_2 v_2 + \dots + c_m v_m.$$

Using the linearity of T, this implies that

$$w = Tv$$

= $T(c_1v_1 + c_2v_2 + \dots + c_mv_m)$
= $c_1Tv_1 + c_2Tv_2 + \dots + c_mTv_m$.

But this means that any $w \in \text{range } T$ can be written as a linear combination of the vectors Tv_1, Tv_2, \ldots, Tv_m , which is exactly the definition of what it means to say that the vectors Tv_1, Tv_2, \ldots, Tv_m span the range of T, so we're done.