領域1;速度・加速度・変位

1

(1) 自転車の初速度 v_0 = 10 m/s で,時間 t = 5.0 秒後の速度 v = 0.0m/s ある。従って,自転車の平均の加速度 a は次のように求められる。

$$a = \frac{v - v_0}{t} = \frac{0 - 10}{5.0} = -2.0 \text{ m/s}^2$$

$$\rightarrow \boxed{7} - , \boxed{4} 2 , \boxed{7} = 0$$

(2) 鉛直下向きを+y 方向とすると、初速 v_0 =4.0m/s で投げ下ろしたので、投げてからの時間 t=0.06s の落下距離 y は次のように求められる。

$$y = v_0 t + \frac{1}{2} g t^2 = 4.0 \times 0.06 + \frac{1}{2} \times 9.8 \times 0.06^2 = 4.236 = 4.2 \text{ m}$$

$$\rightarrow \quad \cancel{7} \quad 4 \quad , \quad \cancel{x} \quad 2$$

(3) 投げてから時刻tでの水平方向の移動距離x,鉛直下向きの移動距離yは次のように表される。

$$x = v_0 t$$
 ① $y = \frac{1}{2} g t^2$ ②
①式より, $t = \frac{x}{v_0}$ を②式に代入すると, $y = \frac{1}{2} g \left(\frac{x}{v_0}\right)^2 = \frac{9.8}{2 \times 1.4^2} x^2 = 2.5 x^2$ → ④

2 自動車 A $\geq B$ が並んだ時、時刻 t=0 $\geq U$,位置 x=0 $\geq U$ $\geq U$

$$v_{A} = v_{0A} + a_{A}t = 22 - 4t$$
 ① $v_{B} = v_{0B} = 12$ ② $x_{A} = v_{0A}t + a_{A}t^{2}/2 = 22t - 2t^{2}$ ③ $x_{B} = v_{0B}t = 12t$ ④

(1) ③式より、自動車 A の x-t グラフは上に凸の放物線、④式より、自動車 B の x-t グラフは傾きが正で原点を通る直線となる。

正で原点を通る<u>直線</u>となる。
→ 3

(2) 自動車 A と B の速度が同じになる時は、①式=②式 \rightarrow 22 – 4 t = 12 \rightarrow t = 10/4 = 2.5 s 従って、同じ速度になるのは、2.5 秒後となる。

 \rightarrow \nearrow 2 , \nearrow 5

(3) 自動車 B が再び自動車 A に追いつく時、A と B は同じ位置となるので、③式 = ④式 \rightarrow 22t-2 $t^2=12t$ \rightarrow t(10-2t)=0 \rightarrow t=10/2=5.0 s 再び同じ位置になるのは 5.0 秒後である。

領域2; 力のつり合いと運動方程式

1

(1) 3つの力はつりあっているので、力 \vec{F}_3 の大きさ F_3 は次のように求められる。

$$F_3 = \sqrt{F_1^2 + F_2^2} = \sqrt{24^2 + 12^2} = 12\sqrt{2^2 + 1^2} = 12\sqrt{5} = 26.832 \approx 27 \text{ N}$$

(2) また, 角度 θ を用いて, そのタンジェントの値は, $\tan \theta = F_1/F_3 = 12/24 = 0.5$

 \rightarrow ②

7

2

(1) フックの法則(F = kx)より、ばね定数 k = F/x = 3.0/0.06 = 50 N/m

(2) 運動方程式(F=ma)より、加速度の大きさ $a = F/m = 3.0/1.5 = 2.0 \text{ m/s}^2$

3 棒の重心は OB の中点 A にあるので、点 A に重力 W が働いていると考える。

(1) 重力 W, 張力 T, 張力 F の 3 つの力はつり合っているので、張力の大きさ $T=W-F=50-20=30~\mathrm{N}$

(2) 棒は回転しないので、力のモーメントはつり合っている。重力は重心 A(OA=OB=1.5m)に作用しており、点 O を原点にとり、OC=x とすると、力のモーメントの総和は O となる。

力のモーメントの総和=
$$0 = T \times OC - W \times OA = Tx - W \times 1.5$$
 $\rightarrow x = W \times 1.5 / T = 50 \times 1.5 / 30 = 2.5 \text{ m}$

領域3. 力学的エネルギー・衝突

127.97.	The state of the s		
1			
(1) 重力の向きは鉛直下向きなので,重力のした仕事 W は,		
	W=(重力の大きさ)×(鉛直下向きに移動した距離)=mg×(Aの高さ-Gの高さ))	
	$= mg (h_1 - h_2)$		
		\rightarrow	⑤
(2			\rightarrow
	$mgh_1 = mv^2/2$, (床での小球の速さを v とした) $\rightarrow v = \sqrt{2gh_1}$		
		\rightarrow	2
(0			
(3) 問(1)と同様に、重力のした仕事 W は、	`	
	W=(重力の大きさ)×(鉛直下向きに移動した距離)=mg×(A の高さ-G の高さ - G の)	
	$= mg (h_1 - h_2)$		(
		7	(
2			
(1) 質量 m , 速さ v_0 のボールが持つ運動量の大きさ p_0 は,		
(-	$p_0 = mv_0 = 0.14 \times 30 = 4.2 \text{ kg m/s}$		
	→ ア 4 , イ 2 , 「	ウ	6
(2) 力積の大きさは <i>F-t</i> グラフの面積となるので,		
	力積の大きさ= F - t グラフの三角形の面積= $(0.15$ - $0.05)$ × 200 / 2 = 10 Ns		
	→ エ 1 , オ 0 ,	カ	1
(3) 「運動量の変化=力積」(ここで右向きを正とすると、ボールに加えられた力の向き	きはオ	Ë∽
	ルを跳ね返した向きと同じなので負となる)なので, $p\!-\!p_0$ =力積 $ ightarrow$		
	衝突後のボールの運動量 $p=mv=p_0+$ 力積 $=mv_0+$ 力積 $=4.2+(-10)=-5.8~{ m kg}$	m/s,	
	従って、衝突後のボールの速度 v =p/m = -5.8/0.14 = -41.43 ≒ -41 m/s		
	ightarrow $ ightharpoonup$ $ ighthar$	ク	1

領域4;円運動・万有引力・単振動

1		
	(1)	ばねに物体をつけて変位 $-A$ から A まで単振動させた時,変位 $-A$ と A では物体の速さは 0 になる。速度が最大となるのは変位 $x=0$ となる時である。
		\rightarrow $\textcircled{4}$
	(2)	物体は変位 $-A$ となる時、速度が負から正に変わり、加速度が正で最大となる。 \rightarrow ①
	(3)	振動数 f と角振動数 ω の間に、 $\omega = 2\pi f$ の関係が成り立つので、
		振動数 $f=\omega/2\pi=2.0~\mathrm{Hz}$
		$ ightarrow$ $\left[egin{array}{cccccccccccccccccccccccccccccccccccc$
	(4)	時刻 $t=0$ で、物体の変位 $x=-A$ となるので、時刻 t での物体の変位 x は次のように表される。
		$x(t) = -A \cos(\omega t)$ $\to \qquad \boxed{5}$
2		
	(1)	周期 T と角振動数 ω の間に、 $\omega=2\pi/T$ の関係が成り立つので、周期 $T=2\pi/\omega=2\pi/2=\pi$ $= 3.1415$ s.
		従って、3 周する時間は、 $3\pi = 9.425 \ = 9.4 \ s$ \rightarrow \ref{p} 9 , \ref{q} 4
	(2)	糸が切れる時は,糸の張力の大きさ T と遠心力の大きさ $(F = mr\omega^2 = mv^2/r)$ が等しい。
		$T = mv^2/r \rightarrow v^2 = Tr/m \rightarrow v = \sqrt{\frac{Tr}{m}} = \sqrt{\frac{50 \times 1.5}{3}} = \sqrt{25} = 5.0 \text{ m/s}$
		$ ightarrow$ $\dot{\mathcal{D}}$ 5 , \mathbf{x} 0

領域5. 熱

1

(1) 絶対温度 T, 分子の数 N, ボルツマン定数 k とし、分子の 1 個の平均の運動エネルギー $\frac{1}{2}mv^2$ を 用いて、理想気体の内部エネルギーU は次のように与えられる。

$$U = \frac{3}{2} N k T = N \frac{1}{2} m v^2$$

(2) 気体に加える熱量をQ,外部から気体にした仕事をWとすると、気体の内部エネルギーの変化量 ΔU は熱力学第1法則を用いて次のように与えられる。

$$\Delta U = Q + W$$

ここで、熱の出入りがないとしているので、熱量 Q=0 となる。従って、気体にした仕事 Wは、 $W=\Delta U=U-U_0=6.3\times 10^3-4.2\times 10^3=2.1\times 10^3$ J

→ ウ 2 , エ 1

0

6

(3) 始めの温度をT, 圧縮後の温度を T_1 とすると、温度の比は内部エネルギーの比と等しい。

$$\frac{T_1}{T} = \frac{3NkT_1/2}{3NkT/2} = \frac{U_1}{U} = \frac{6.3 \times 10^3}{4.2 \times 10^3} = 1.5 \stackrel{\triangle}{\rightleftharpoons}$$

→ オ 1 , カ 5

2

(1) 鉄の塊の質量を $m_{\text{鉄}}$, 鉄の比熱を $c_{\text{鉄}}$ とし、鉄の始めの温度を $T_{\text{\pounds}}$, 下がって平衡になった温度をTとすると、鉄が失った熱量を $Q_{\text{\pounds}}$ は次のように求められる。

$$Q_{\text{m}} = m_{\text{m}} c_{\text{m}} (T_{\text{m}} - T') = 100 \times 0.44 \times (90 - 31) = 2596 = 2.6 \times 10^{3} \text{ J}$$

→ \boxed{r} 2 , \boxed{r}

(2) 水の質量を m_{x} 、水の比熱を c_{x} 、水の始めの温度を T_{x} 、上がって平衡になった温度を T_{x} とすると、水が得た熱量を $Q_{x} = m_{x} c_{x} (T - T_{x})$ と表される。熱量保存則より、 $Q_{x} = Q_{x}$ が成り立つので、水の質量 $m_{x} = Q_{x}/(c_{x} (T - T_{x})) = 2596/(4.2 \times 11) = 56.19 = 56 g$

→ ウ 5 , エ 6

領域6.波動

1	おんさ A の振動数を f_A , おんさ B の振動数を f_B , 2 つのおんさを鳴らして発生するうなりの
	振動数を f とすると、これらの間の関係は、 $ f_{A}-f_{B} =f$ である。従って、おんさ B の振動数
	は 338 Hz か 442 Hz である。おんさ A に比べておんさ B の振動数は高い(理由は下の注意を
	見よ)。ゆえに,おんさ B の振動数 $f_{\rm B}$ = 442 Hz

→ ア 4 , イ 4 , ウ 2

(注意; 正確ではないが、物体の振動数(ここでは音波が生じる)について次のように考えよう。 質量 m, ばね定数 k, 角振動数 ω の間には $m\omega^2 = k$ の関係が成立する。おんさの材質・形状 はばね定数 k に関係する。ばね定数 k が一定なら、金属片をつけ質量 m を増やすと角振動数 ω , すなわち、振動数 f は減少する。金属片をつけたおんさ B の振動数は 440 Hz なので、金属片をとったおんさ B はこれよりも高い振動数となることが予想される。)

2

(1) 定常波の波長を λ とすると、AB 間の長さは 1.5 λ に相当する。 \rightarrow 1.5 λ = 1.2 m λ = 1.2/1.5 = 0.80 m

→ ア 8 , イ 0

(2) 波の速さ ν , 振動数f, 波長 λ との間の関係より、次のように求められる。

 $v = f\lambda = 1.5 \times 10^2 \times 0.80 = 1.2 \times 10^2 \text{ m/s}$

 \rightarrow $\dot{\mathcal{D}}$ 1 , \mathbf{x} 2

(3) AB 間の長さを ℓ として、定常波の波長 λ と ℓ の間の関係は(整数 n を用いて)、 $n\lambda/2 = \ell$ が成り立つ。これ以外の条件では定常波ができない。

→ (5)

3

(1) 同位相なら AB 間の垂直 2 等分線上の位置では波は**強め合う**。

→ 3

→ 6

領域 7. 電気

1

(1) 電界の大きさEの中に電荷qが置かれた時、この電荷が受ける力の大きさFは、F=qEと与えられる。従って、電界の大きさEは次の式のように求められる。

$$E = F/q = (5.0 \times 10^{-4})/(2.0 \times 10^{8}) = 2.5 \times 10^{4} \text{ N/C}$$
 \rightarrow
 \nearrow
 2 , \checkmark
 5 , \checkmark
 \bigcirc

(2) 点電荷qから距離rだけ離れた位置での電位 φ は次の式のように求められる。

$$\varphi = k_{\rm e} \frac{q}{r} = 9.0 \times 10^9 \times \frac{8.0 \times 10^{-7}}{0.2} = 3.6 \times 10^4 \,\text{V}$$

$$\to \qquad \boxed{\pm} \qquad 3 \qquad , \qquad \boxed{\dagger} \qquad 6$$

(3) 幅 d, 面積 S の 2 枚の平行板でできたコンデンサーの容量 C は次の式で与えられる。 (平行板の間にはさまれた物質の誘電率を ε とする。) この式より、下記のようになる。

(4) 時間 t の間の発熱量 W は,電力量 $P = IV = I^2R$ と時間 t との積なので次のように求められる。

2 つの小球に働く力は下の図のようになる。

(1) AB 間の距離 r_{AB} =2×AC 間の距離 r_{AC} となる。また, r_{AC} = r_{OA} ×sin30° より, r_{AB} =2 r_{OA} ×sin30° = r_{OA} =0.3 m

A に働く静電気量の大きさ
$$F = k_0 \frac{q_A q_B}{(r_{AB})^2} = 9.0 \times 10^9 \times \frac{\left(9.0 \times 10^{-8}\right)^2}{0.3^2} = 8.1 \times 10^{-4} \, \mathrm{N}$$
 \rightarrow ア 8 , イ 1

(2) 図のように、静電気力、重力、張力の 3 つの力はつり合っているので、 $\tan 30^\circ = F/(mg) \to m = F/(g \tan 30^\circ) = 8.1 \times 10^{-4} \times \sqrt{3}/9.8 = 1.43 \times 10^{-4} \, \mathrm{kg}$

→ 4

領域8. 磁気

	1	
	- 1	

(1) 交流電圧の実効値 V_e と電圧の最大値 V_0 の関係より、次のように求められる。

$$V_{\rm e} = V_0 / \sqrt{2} = 100 / \sqrt{2} = 70.72 = 71 \text{ V}$$

 \rightarrow \nearrow 7 , \nearrow

(2) 平均の消費電力 P_e は交流電圧の実効値 V_e と交流電流の実効値 I_e を用いて次のように求められる。

$$P_e = V_e I_e = (V_e)^2 / R = (V_0)^2 / (2R) = 100^2 / (2 \times 200) = 25 \text{ W}$$

 \rightarrow $\begin{picture}(2) \hline \dot{\mathcal{D}} & 2 \\ \hline \end{array}$, $\begin{picture}(2) \hline \mathcal{I} \\ \hline \end{array}$, $\begin{picture}(2) \hline \mathcal{I} \\ \hline \end{array}$

2

(1) 電流がつくる磁界の向きは「右ネジの法則」を適用させる。2つの電流はともに裏から表に流れるので、磁界の向きは電流を囲むようにして「反時計回り」となる。

 \rightarrow (1)

1

(2) 電流Iが作る磁界の大きさHは、電流の中心からの距離rを用いて次のように求められる。

$$H = \frac{I}{2\pi r} = \frac{2.0}{2\pi \times 1.0} = 0.3183 = 0.32 \text{ A/m}$$

→ ア 3 , イ 2

(3) 磁束密度の大きさBの中に置かれた電流Iが受ける単位長さ(1m)あたりに受ける力の大きさfはf=IBとなる。電流が真空中に置かれた場合,真空の透磁率を μ_0 として,磁束密度と磁界の関係は,B= μ_0H なので,長さ 1m あたりの電流が受ける力は次のように求められる。

$$f = IB = \mu_0 HI = 4\pi \times 10^{-7} \times (1.0/\pi) \times 2.0 = 8.0 \times 10^{-7} \text{ N/m}$$

→ ウ 8 , イ 0

3 コイルの自己インダクタンスを L, コイルに流れる電流を I, 発生する誘導起電力を V, 巻き数を n とすると,誘導起電力 V は,次の式で与えられる。また,中空部分に鉄心を入れると,コイル内に発生する磁界が増加する。

$$V = -n L \frac{dI}{dt}$$

→ ア ① , イ ① , ヴ ①