Inégalités et inéquations

Résumé

Ce chapitre est la suite logique du chapitre 2 sur le calcul littéral : après avoir étudié l'égalité, étudions l'inégalité.

1 Propriétés des inégalités

Propriété | Ordre dans R

Si a, b et c sont des réels tels que a < b et b < c alors a < c.

Propriétés | Somme

Soient $a, b, x, y \in \mathbb{R}$.

 \triangleright $a < x \Leftrightarrow a + b < x + b$

- \triangleright $a < x \Leftrightarrow a b < x b$
- ightharpoonup Si a < x et b < y, alors a + b < x + y.

Propriétés | Produit

Soient $a, x \in \mathbb{R}$ et $b \in \mathbb{R}^*$.

- ightharpoonup Si b > 0, alors $a < x \Leftrightarrow ba < bx$
- ▶ Si b < 0, alors $a < x \Leftrightarrow ba > bx$

Remarque On a plusieurs conséquences du résultat précédent.

- $0 < a < b \Leftrightarrow 0 < \frac{1}{L} < \frac{1}{2}$
- ▶ Si $n \in \mathbb{N}^*$ et $a, b \in \mathbb{R}_+$, alors $a \leq b \Leftrightarrow a^n \leq b^n$.

2 Valeur absolue

Définition | Valeur absolue

Soit $x \in \mathbb{R}$. On définit |x| la valeur absolue de x comme suit :

ightharpoonup Si x > 0, alors |x| = x

ightharpoonup Si x < 0, alors |x| = -x

- Exemples \triangleright |5| = 5

| -2.5 | = -(-2.5) = 2.5

▶ Une valeur absolue est toujours positive. Remarques

► Soit $x \in \mathbb{R}$, alors $\sqrt{x^2} = |x|$

Propriété

Soient $a, x \in \mathbb{R}$ et $r \in \mathbb{R}^*_+$.

$$|x-a| \le r \Leftrightarrow a-r \le x \le a+r \Leftrightarrow x \in [a-r,a+r]$$

3 Inéquations

Définition | **Inéquations**

Une **inéquation** d'inconnue x est une inégalité qui peut être vraie pour certaines valeurs de x et fausse pour d'autres.

Résoudre dans \mathbb{R} une inéquation d'inconnue x, c'est trouver l'ensemble de ses solutions, c'est-à-dire l'ensemble des nombres réels pour lesquels l'inégalité est vraie.

Exemples $\Rightarrow 3x + 2 > 7 \Leftrightarrow 3x + 2 - 2 > 7 - 2 \Leftrightarrow 3x > 5 \Leftrightarrow \frac{3x}{3} > \frac{5}{3} \Leftrightarrow x > \frac{5}{3}$

L'ensemble des solutions de 3x + 2 > 7 dans \mathbb{R} est $\mathscr{S} = \left| \frac{5}{3}; +\infty \right|$.

 \blacktriangleright $-x + 9 \ge -2 \Leftrightarrow -x + 9 - 9 \ge -2 - 9 \Leftrightarrow -x \ge -11 \Leftrightarrow (-1) \times (-x) \le (-1) \times (-11)$

Notons bien que l'inégalité **a changé de sens** puisque nous avons multiplié par un nombre **négatif**.

Finalement, $-x + 9 \ge -2 \Leftrightarrow x \le 11$.

L'ensemble des solutions de $-x + 9 \ge -2$ dans \mathbb{R} est $\mathcal{S} =]-\infty;11[$.

4 Encadrements de réels et arrondis

Propriétés

Soient *x* un nombre réel et *n* un nombre entier relatif.

- ► Il existe un unique nombre entier relatif a tel que $\frac{a}{10^n} \le x < \frac{a+1}{10^n}$. Cet encadrement est **l'encadrement décimal de** x à 10^{-n} **près**.
- ► L'arrondi de x à 10^{-n} près est celui des deux nombres $\frac{a}{10^n}$ ou $\frac{a+1}{10^n}$ qui est le plus proche de x.

Exemple On a:

$$\frac{16\,812}{10^3} \le 16,812\,7 < \frac{16\,813}{10^3}$$

donc l'**encadrement** de 16,812 7 à 10^{-3} près est 16,812 \leq 16,812 7 < 16,813 et l'**arrondi** de 16,812 7 à 10^{-3} près est 16,813.