From Agents to Swarms, from Model-Checking to Proof

Michael Fisher

Department of Computer Science and Centre for Autonomous Systems Technology University of Liverpool, UK

Northern Concurrency Workshop, January 2017

Overview

• Agents and Swarms

 $\begin{array}{c} \mathsf{Autonomy} \longrightarrow \mathsf{Agent} \longrightarrow \mathsf{Rational} \ \mathsf{Agent} \\ \mathsf{Agents} \longrightarrow \mathsf{Swarm} \end{array}$

• Specifying Agents

Agent \longrightarrow Temporal Logic Rational Agent \longrightarrow Temporal & Multi-Modal Logic

- Verification Model-Checking
 Rational Agent → Program Model-Checking
 Swarm → Model-checking multiple probabilistic processes
- Verification Proof
 First-Order Temporal Logic
 Finite Failures
- Current Work

What is Autonomy?

the ability of a system to make its own decisions and to act on its own, and to do both without direct human intervention.

rtc.nagoya.riken.jp/RI-MAN

www.volvo.com

Agents

An *agent* captures the core concept of autonomy, in that it is *able* to make its own decisions without human intervention.

But: in many cases this isn't enough, as we need to know why!

We need the concept of a "rational agent":

a rational agent must have explicit *reasons* for making the choices it does, and should be able to explain these if needed

Aside: Autonomous Systems Architectures

Requirement for *reasoned* decisions and explanations has led on to *hybrid agent architectures* combining:

- 1. rational agent for high-level autonomous decisions, and
- 2. traditional control systems for lower-level activities,

These have been shown to be easier to *understand*, *program*, *maintain* and, often, much more *flexible*.

Example: from Pilot to Rational Agent

Autopilot can essentially fly an aircraft

- keeping on a particular path,
- keeping flight level/steady under environmental conditions,
- planning routes around obstacles, etc.

Human pilot makes high-level decisions, such as

- where to go to,
- when to change route,
- what to do in an emergency, etc.

Rational Agent now makes the decisions the pilot used to make.

Example: Aerospace

In remote or dangerous environments it is impractical or costly to have direct human control, so *autonomy* is increasingly being built into the controlling software.

For example, *autonomous choices* are an important element in many *aerospace* applications, such as cooperative

formation flying satellites or unmanned air vehicles

Example: Automotive

Road train ('convoy') system has control of speed, direction, etc.

Driver can, in principle, take control back.

Example: Robotic Assistants

Robotic Assistants are now being designed to help the elderly or incapacitated.

← Here is Care-O-bot

And here ↓ is Care-O-bot deployed in a house

Example: Robot Swarms

Utilize *many* small, identical robots, each with quite limited communication.

Then: get them to undertake one or more simple tasks.

Such large collections/swarms

- can be resilient and fault-tolerant,
- can cooperate at a basic level, and
- can exhibit non-trivial emergent behaviours.

A Simple Picture

A Little Temporal Logic

Temporal Logic (TL) extends classical logic with, eg:

- (in the next moment)
- ♦ (at some future moment)
- ☐ (in all future moments)

TL widely used in specification and verification.

Simple Agents and Temporal Logic

Simple finite state automata can often be concisely described using propositional temporal logic.

So, we can use a propositional temporal formula to represent a single, simple agent, e.g:

Automaton for Simple (Swarm) Agent

Describing Rational Agents

Logical theories for rational agents typically consist of

Dynamism: temporal or dynamic logic;

Information: modal/probabilistic logics of belief/knowledge;

Motivation: modal logics of goals, intentions, desires.

This requires *combinations* of logics.

For example, the well known BDI approach comprises

- a (branching) temporal/dynamic logic,
- a KD45 modal logic of belief,
- a KD modal logic of desire, and
- a KD modal logic of intention.

Complexity — Gets Worse

• Uncertainty of real world	probabilistic
Location and tracking	spatial, dynamic
Importance of messages	priority
Roles and responsibilities	modal attitudes
Privacy and security	knowledge/belief
• Timed systems	real-time
Multi-agent	. cooperation/coalition
• Autonomy	intentions/motivations

 \Rightarrow In realistic scenarios, we will need to $\emph{combine}$ several logics.

Sample Logical Requirement: Robot Assistant

"If a patient is in danger, then the patient believes that there is a probability of 95% that, within 2 minutes, a helper robot will want to assist the patient."

$$in_danger(patient) \Rightarrow B_{patient}^{\geq 0.95} \lozenge^{\leq 2} G_{helper} assist(patient)$$

Requirements: Robot Swarms

Verify behaviour of *large* collections/swarms.

- ⇒ Will the swarm cooperate?
- ⇒ Will the swarm collectively discover the target?
- ⇒ If one robot *fails*, will the swarm still function?
- ⇒ What if several robots *fail*? What is the probability that the whole swarm will still be effective?

Model-Checking a Simple Agent

Verification is typically probabilisitic model-checking, e.g. PRISM.

Model-Checking Swarms

Verification again by probabilisitic model-checking.

Complexity.....

Verifying (Rational) Agents

We have many options of how to carry out formal verification.

We often use Program Model-Checking whereby logical specification is checked against the *actual* agent code.

Combines (backtracking) symbolic execution and a monitoring automaton.

Swarms, and back to Temporal Logic

Temporal Logic (TL) extends classical logic with, eg:

- (in the next moment)
- ♦ (at some future moment)
- ☐ (in all future moments)

Propositional TL used in specification and verification.

First-order TL in general, is *not* recursively enumerable.

But, monodic FOTL has 'good' properties: axiomatisability and, sometimes, decidability.

$$\forall X, Y. \ p(X, Y) \Rightarrow \bigcirc \exists Z. \ q(Z, Y)$$
$$\forall X, Y. \ p(X, Y) \Rightarrow \bigcirc q(X, Y)$$

monodic

not monodic

Finite-State Processes and Temporal Logic

Recall that simple finite state automata can often be concisely described using propositional temporal logic.

So, we can use a propositional temporal formula to represent a single agent, e.g:

Swarms and First-Order TL

Automated Verification

We can specify correctness conditions in FOTL, eg:

$$\exists X. \, \Diamond In_{S4}(X)$$
 $\forall Y. \, \Diamond \Box In_{S2}(Y)$

Failing Robots

What if some robots fail?

With a finite number of robots, and a fixed number of failures, then verification is still feasible.

But what if we don't have a *fixed* number of failures?

How about a *finite*, but *unknown*, number of failures?

Finite Failures

Provide FOTL axiomatisation of the finiteness we desire, then add this to the FOTL specification of the system.

For example, consider:

$$\forall X. \ failed(X) \Rightarrow \Box failed(X)$$

Now if Y ranges over finite set of failing processes, then add

$$\forall Y. \Diamond failed(Y) \Rightarrow \Diamond(\forall Y. failed(Y))$$

Intuitively:

since we have a finite number of failures, there will be a future moment when all will have occurred.

Current Work: Representation Issues

- In Social Robotics, trust is key
- Disobeying orders will erode trust!
- Privacy violations will erode trust!!
- What if person orders robot to do something robot thinks is detrimental to person?
 Or orders robot not to tell anyone?

Trustworthiness

versus human dignity/privacy
versus direct human orders
versus robot confidence in diagnosis
versus legality
etc

Current Work: Complexity Issues

We have been developing a *temporal logic* with improved complexity properties.

- Essentially this combines classical XOR restrictions with standard temporal logic.
 - The outcome is a temporal logic with (if we are careful!) a polynomial decision procedure.
- Extended to first-order temporal logic, giving FOTLX.

How far can we push this in large-scale swarm verification? Spatial aspects still a problem!

Current Work: Applications

- Verifying Autonomous Systems.
- Certification Evidence for Autonomous Unmanned Aircraft.
- Trustworthy Human-Robot Interactions.
- Formal Verification of Ethical Choices in Autonomous Systems.
- BSI Standard **BS 8611**: Guide to the Ethical Design and Application of Robots and Robotic Systems.
- Analysis of Social Networks and Digital Crowds.

Sample Relevant Publications

- Dennis, Fisher, Lincoln, Lisitsa, Veres. Practical Verification of Decision-Making in Agent-Based Autonomous Systems. *Journal of Automated Software Engineering* 23(3):305-359, 2016.
- Dennis, Fisher, Slavkovik, Webster. Formal Verification of Ethical Choices in Autonomous Systems. Robotics & Autonomous Systems 77:1-14, 2016.
- Dennis, Fisher, Webster. Verifying Autonomous Systems.
 Communications of the ACM 56(9):84–93, 2013
- Dixon, Konev, Fisher, Nietiadi. Deductive Temporal Reasoning with Constraints. *Journal of Applied Logic* 11(1):30-51, 2013.
- Konur, Dixon, Fisher. Analysing Robot Swarm Behaviour via Probabilistic Model Checking. Robotics & Autonomous Systems 60(2):199-213, 2012.
- Slavkovik, Dennis, Fisher. An Abstract Formal Basis for Digital Crowds. *Distributed and Parallel Databases 33(1):3-31*, 2015.
- Webster, Cameron, Fisher, Jump. Generating Certification Evidence for Autonomous Unmanned Aircraft Using Model Checking and Simulation. Journal of Aerospace Information Systems 11(5):258–279, 2014.
- Webster, Dixon, Fisher, Salem, Saunders, Koay, Dautenhahn, Saez-Pons. Toward Reliable Autonomous Robotic Assistants Through Formal Verification: A Case Study. IEEE Trans. Human-Machine Systems 46(2):186-196, 2016.

Verification & Validation of Autonomous Systems Network

EPSRC funded Academic Network http://www.vavas.org

Start of funding: 1st Sept 2015, for 3 years.

Aims: to stimulate, coordinate, promote, and disseminate academic research on the verification and validation of autonomous systems

Activities so far:

Sep 2015: Agent Verification Workshop, Liverpool

Dec 2015: Winter School on Verification of Mobile and

Autonomous Robots, York

Feb 2016: Workshop on Autonomous Systems:

Legal/Regulatory Aspects and V&V, London

Jul 2016: Workshop on Industrial Perspectives on the V&V of

Autonomous Systems, Sheffield

Nov 2016: Workshop on V&V for Autonomous Road Vehicles, London