

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
BIOLOGY			0610/43
Paper 4 Theor	ry (Extended)	October/No	vember 2016
		1 hou	ur 15 minutes
Candidates an	swer on the Question Paper.		
No Additional I	Materials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 17 printed pages and 3 blank pages.

1 An in vitro fertilisation (IVF) procedure is outlined in Fig. 1.1.

Fig. 1.1

(a)	(1)	Name structures A, B and D.	
		A	
		В	
		D	
	(ii)	State the purpose of syringe C .	[3]
(b)	(i)	Name a hormone that would be injected to stimulate egg cell development.	F.4.7
	(ii)	State when, during the menstrual cycle, this hormone should be injected.	
((iii)	Draw an X on Fig. 1.1 at the position where the embryos should be placed.	[1][

(c)	Discuss the social implications of IVF.
	[4]
	[Total: 11]

BLANK PAGE

2

Ped	Pectinase is an enzyme used in the production of fruit juice.						
(a)	Describe in detail how enzymes function, using pectinase as an example.						
		[6					

(b) An experiment to test the effect of the size of apple pieces on the activity of pectinase was performed by a group of students. Some of their apparatus is shown in Fig. 2.1.

Fig. 2.1

measuren	nents	of vo	lume.		measuring	•		

(c)	The	students	added 1.5 cm ³ of pectinase solution to pieces of apple in a beaker.				
	The	y then po	oured the mixture into the funnel.				
	The	y found t	hat it took 10 minutes to collect 19 cm ³ of juice.				
	(i)	Calculat	te the rate of the enzyme reaction.				
		Show yo	our working.				
		Write yo	our answer to the nearest whole number.				
			cm ³ per min [2]				
	(ii)	The stu	dents performed four experiments using different ways to prepare the apples.				
		The same total mass and type of apple was used each time.					
		A	0.5 cm ³ apple cubes				
		В	1.0 cm ³ apple cubes				
		С	whole peeled small apples				
		D	whole unpeeled small apples				
		Predict reaction	and explain which experiment (A, B, C or D) would result in the fastest rate of				
			[2]				
			[Total: 12]				

3 The length of the small intestine was measured in four types of mammal. The results are shown in Table 3.1.

Table 3.1

mammal	length of small intestine/cm	length of small intestine relative to body mass/cm per g		
insect-eating bat	19	2.30		
domestic cat	104	0.05		
rat	98	0.34		
human	552	0.01		

a)	mammals.	TOU
		ſΩ

(b) Fig. 3.1 is a diagram showing a short length of the small intestine of a mammal.

Fig. 3.1

A function of the small intestine is absorption.

blood.					all intesti	
						[3]

(c) Measurements were taken of the inner and outer surface area of two parts of the small intestine for the four mammals in Table 3.1. The results are shown in Table 3.2.

Table 3.2

mammal	ratio of inner surface area to outer surface area			
mammai	duodenum	ileum		
insect-eating bat	283:1	54:1		
domestic cat	15:1	12:1		
rat	6:1	4:1		
human	7:1	3:1		

	(i)	Suggest which mammal has the most villi per centimetre of small intestine.
		[1]
	(ii)	The duodenum is more effective than the ileum at absorption. Use the information in Table 3.2 to explain why.
		[3]
(d)	Bile	is released into the small intestine from the gall bladder.
	Out	line the roles of bile.
		[4]

[Total: 14]

Tob	pacco smoke is made up of over 7000 chemicals.	
Nic	otine is a component of tobacco smoke.	
(a)	Explain why nicotine is a drug.	
		[2]
(b)	Describe the effect on the gas exchange system of the following components of toba smoke:	acco
	carbon monoxide	
	tar	
		[4 ⁻
		LT.

(c) A study compared the percentages of men and women aged between 35 and 54 years who smoked cigarettes. The annual death rate caused by lung cancer was also recorded.

The results are shown in the two graphs in Fig. 4.1.

Fig. 4.1

smoked cigarettes between 1950 and 1998 .
[4]

	(ii)	Use the information from both graphs in Fig. 4.1 to discuss the link between smoking and lung cancer.						
			[4]					
(d)	Ехр	plain why it is recommended that pregnant women do not smoke.						
			[3]					
			[Total: 17]					

BLANK PAGE

5	(a)	(i)	Describe the structure of a DNA molecule.
			[3]
		(ii)	State the function of a gene.
			[1]
	(b)	Mol	ecular biologists identified a gene found in all species of bacteria and in mitochondria.
		Stat	e the function of mitochondria.
			To a second seco
	(c)	Son	ne scientists think that mitochondria evolved from bacteria because they are similar in and structure. Bacteria belong to the Prokaryote kingdom.
		Give	e two features of all prokaryotes.
		1	
		2	[2]
			[2

DNA can be used to distinguish between different species of bacteria.

Molecular biologists compared the DNA sequences of the gene in mitochondria and six species of bacteria. They counted the number of differences.

Table 5.1 shows the number of differences between the DNA sequences.

Table 5.1

	mitochondria A	species B	species C	species D	species E	species F	species G
mitochondria A		29	26	34	25	3	23
species B			18	12	17	26	24
species C				19	10	19	14
species D					28	29	30
species E						19	6
species F							16
species G							

The most closely related species have:

- the least number of differences between their DNA sequences
- the shortest distance from a branching point on a classification tree.

(d) Use the information in Table 5.1 to complete the classification tree in Fig. 5.1. Place the letter for each species or the mitochondria in the box next to the correct branch of the classification tree. Two have been done for you.

Fig. 5.1

[3]

(e)	Suggest why using DNA sequences is a useful method for identifying species of bacteria.
	[1

[Total: 12]

i	(a)	Name one feature of dicotyledonous leaves that distinguishes them from monocotyledonous leaves.		
		[1]		
	(b)	Explain why a leaf is an organ.		
		[1]		
	(c)	Photosynthesis occurs in leaves.		
		State the balanced chemical equation for photosynthesis.		
		[3]		

(d) Fig. 6.1 is an image of a section through a dicotyledonous leaf from a scanning electron microscope.

Fig. 6.1

Identify the layers labelled in Fig. 6.1 and explain how their adaptations allow photosynthesis to occur in the leaf.

	(i)	layer J	
		adaptation for photosynthesis	
			 2]
	(ii)	layer K	-
	(,	adaptation for photosynthesis	
		[:	2]
	(iii)	layer L	
		adaptation for photosynthesis	
		Į.	2]
(e)	Plar	nts need nitrate ions for growth.	
	Ехр	lain why.	
		[i	3]

[Total: 14]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.