DEPARTMENT OF MATHEMATICS, IIT Guwahati

MA101: Mathematics I, July - November 2014 Summary of Lectures (Set - VI)

1 Vector Space

For $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0} \in \mathbb{R}^n$ and $c, d \in \mathbb{R}$, we have

- 1. $\mathbf{u} + \mathbf{v} \in \mathbb{R}^n$;
- 2. u + v = v + u;
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w});$
- 4. u + 0 = u;
- 5. $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$;
- 6. $c.\mathbf{u} \in \mathbb{R}^n$;
- 7. $c.(\mathbf{u} + \mathbf{v}) = c.\mathbf{u} + c.\mathbf{v}$;
- 8. $(c+d).\mathbf{u} = c.\mathbf{u} + d.\mathbf{u}$;
- 9. $c.(d.\mathbf{u}) = (cd).\mathbf{u}$; and
- 10. $1.\mathbf{u} = \mathbf{u}$.

The above properties are sufficient to do vector algebra in \mathbb{R}^n .

- If $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0} \in \mathbb{C}^n$ and $c, d \in \mathbb{R}$, we get all the previous ten properties.
- If $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0} \in \mathbb{C}^n$ and $c, d \in \mathbb{C}$, we get all the previous ten properties.
- If $A, B, C, \mathbf{O} \in M_2(\mathbb{R})$ (set of all 2×2 real matrices) and $c, d \in \mathbb{R}$, we get all the previous ten properties.
- If $p(x), q(x), r(x), \mathbf{0} \in \mathbb{R}_2[x]$ (set of all polynomials of degree at most two with real coefficients) and $c, d \in \mathbb{R}$, we get all the previous ten properties.
- In our discussion, the symbol \mathbb{F} will be used as a representative of \mathbb{R} or \mathbb{C} . That is, $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$.
- The elements of \mathbb{F} will be termed as scalars.

Definition: Let V be a non-empty set. For every $\mathbf{u}, \mathbf{v} \in V$ and $c \in \mathbb{F}$, let the addition $\mathbf{u} + \mathbf{v}$ (called the vector addition) and the multiplication $c.\mathbf{u}$ (called the scalar multiplication) be defined. Then V is called a **vector space** over \mathbb{F} if for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in \mathbb{F}$, the following properties are satisfied:

- 1. $\mathbf{u} + \mathbf{v} \in V$;
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u};$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w});$
- 4. There is an element **0**, called a zero, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$;
- 5. For each $\mathbf{u} \in V$, there is an element $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$;
- 6. $c.\mathbf{u} \in V$;
- 7. $c.(\mathbf{u} + \mathbf{v}) = c.\mathbf{u} + c.\mathbf{v}$;
- 8. $(c+d).\mathbf{u} = c.\mathbf{u} + d.\mathbf{u};$
- 9. $c.(d.\mathbf{u}) = (cd).\mathbf{u}$; and
- 10. $1.\mathbf{u} = \mathbf{u}$.

Example 1.1. For any $n \geq 1$, the set \mathbb{R}^n is a vector space over \mathbb{R} with respect to usual operations of addition and scalar multiplication.

Example 1.2. For any $n \geq 1$, the set \mathbb{C}^n is a vector space over \mathbb{R} with respect to usual operations of addition and scalar multiplication.

Example 1.3. For any $n \geq 1$, the set \mathbb{C}^n is a vector space over \mathbb{C} with respect to usual operations of addition and scalar multiplication.

Example 1.4. The set \mathbb{R}^n is **not** a vector space over \mathbb{C} with respect to usual operations of addition and scalar multiplication.

Example 1.5. The set \mathbb{Z} is **not** a vector space over \mathbb{R} with respect to usual operations of addition and scalar multiplication

Example 1.6. The set $M_2(\mathbb{R})$ of all 2×2 real matrices is a vector space over \mathbb{R} with respect to usual operations of matrix addition and matrix scalar multiplication.

Example 1.7. The set \mathbb{R}^2 is **not** a vector space over \mathbb{R} with respect to usual operations of addition and the following definition of scalar multiplication:

$$c.[x,y]^t = [cx,0]^t$$
 for $[x,y]^t \in \mathbb{R}^2, c \in \mathbb{R}$.

Example 1.8. Let $\mathbb{R}_2[x]$ denote the set of all polynomials of degree at most two with real coefficients. That is,

$$\mathbb{R}_2[x] = \{a + bx + cx^2 : a, b, c \in \mathbb{R}\}.$$

For $p(x) = a_0 + b_0 x + c_0 x^2$, $q(x) = a_1 + b_1 x + c_1 x^2 \in \mathbb{R}_2[x]$ and $k \in \mathbb{R}$, define

$$p(x) + q(x) = (a_0 + a_1) + (b_0 + b_1)x + (c_0 + c_1)x^2$$
 and $k \cdot p(x) = (ka_0) + (kb_0)x + (kc_0)x^2$.

Then $\mathbb{R}_2[x]$ is a vector space over \mathbb{R} .

- If V is a vector space, then the elements of V are called **vectors**.
- If there is no confusion, $c.\mathbf{u}$ is simply written as $c\mathbf{u}$.
- We write $V(\mathbb{F})$ to denote that V is a vector space over \mathbb{F} .
- We call V a real vector space or complex vector space according as $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$.

Result 1.1. Let V be a vector space over \mathbb{F} . Let $\mathbf{u} \in V$ and $c \in \mathbb{F}$. Then

- 1. $0.\mathbf{u} = \mathbf{0}$;
- 2. c.0 = 0;
- 3. $(-1).\mathbf{u} = -\mathbf{u}$; and
- 4. If $c.\mathbf{u} = \mathbf{0}$ then either c = 0 or $\mathbf{u} = \mathbf{0}$.

Subspace: Let V be a vector space and $(\emptyset \neq)W \subseteq V$. Then W is called a **subspace** of V if and only if $a\mathbf{u} + b\mathbf{v} \in W$ for every $\mathbf{u}, \mathbf{v} \in W$ and for every $a, b \in \mathbb{F}$.

- If W is a subspace of a vector space $V(\mathbb{F})$, then $W(\mathbb{F})$ is also a vector space.
- If W is a subspace of a vector space $V(\mathbb{F})$ then $\mathbf{0} \in W$.
- The sets $\{0\}$ and V are always subspaces of any vectors space V. These are called the **trivial** subspaces.

Example 1.9. Let W be the set of all 2×2 real symmetric matrices. Then W is a subspace of $M_2(\mathbb{R})$.

Example 1.10. Let $W = \{[x, y, z]^t \in \mathbb{R}^3 : x + y - z = 0\}$. Then S is a subspace of \mathbb{R}^3 .

Spanning Set: Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a subset of a vector space $V(\mathbb{F})$. Then the set of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is called the **span** of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$, and is denoted by $\operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$ or $\operatorname{span}(S)$. That is,

$$\operatorname{span}(S) = \{ \mathbf{v} \mid \mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k \text{ for some scalars } c_1, c_2, \ldots, c_k \}.$$

Let $S \subseteq V$ (may be infinite!) The span of S is defined by

$$\operatorname{span}(S) := \left\{ \sum_{i=1}^{m} \alpha_i \mathbf{v}_i \mid \mathbf{v}_i \in S, \alpha_i \in \mathbb{F}, m \text{ a nonnegative integer} \right\}.$$

- Convention: $\operatorname{span}(\emptyset) = \{\mathbf{0}\}.$
- If $\operatorname{span}(S) = V$, then S is called a spanning set for V.
- For example, $\mathbb{R}_2[x] = \text{span}(1, x, x^2)$.
- $\mathbb{R}[x] = \text{span}(1, x, x^2, \dots)$ [$\mathbb{R}[x] = \text{set of all polynomials in } x$].

Result 1.2. Let S be a subset of a vector space $V(\mathbb{F})$. Then span(S) is a subspace of V.

Linear Dependence: A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors in a vector space $V(\mathbb{F})$ is said to be **linearly dependent** if there are scalars c_1, c_2, \dots, c_k , at least one of them non-zero, such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0}$.

An **infinite** set $S \subseteq V$ is linearly dependent if there is some **finite** linearly dependent subset of S.

Linear Independence: The set S of vectors in a vector space $V(\mathbb{F})$ is said to be **linearly independent** (LI) if it is **not** linearly dependent. Thus

if $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ then S is linearly independent (LI) if $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = c_2 = \dots = c_k = 0$; if S is infinite then S is linearly independent (LI) if every finite subset of S is linearly independent.

- Set $\{0\}$ is linearly dependent as 1.0 = 0. [A non-trivial linear combination of 0 is 0.]
- If $0 \in S$, then S is always linearly dependent as S contains a linearly dependent set $\{0\}$.

Example 1.11. The set $\{A, B, C\}$ is linearly dependent in $M_2(\mathbb{R})$, where

$$A = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right], B = \left[\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array} \right] \ and \ C = \left[\begin{array}{cc} 2 & 0 \\ 1 & 1 \end{array} \right].$$

Example 1.12. The set $\{1, x, x^2, \dots, x^n\}$ is linearly independent in $\mathbb{R}_n[x]$.

Example 1.13. The set $\{1, x, x^2, \ldots\}$ is linearly independent in $\mathbb{R}[x]$.

Result 1.3. The vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in a vector space V are linearly dependent **iff** either $\mathbf{v}_1 = \mathbf{0}$ or there is an integer r such that \mathbf{v}_r can be expressed as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_{r-1}$.

Basis: A subset B of a vector space V is said to be a **basis** for V if span(B) = V and if B is linearly independent.

Example 1.14. $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is a basis for \mathbb{F}^n . This basis is called the **standard basis** for \mathbb{F}^n .

Example 1.15. $\{1, x, x^2, \dots, x^n\}$ is a basis for $\mathbb{R}_n[x]$, known as the **standard basis** for $\mathbb{R}_n[x]$.

Example 1.16. $\{1, x, x^2, \ldots\}$ is a basis for $\mathbb{R}[x]$, known as the **standard basis** for $\mathbb{R}[x]$.

Example 1.17. $\mathcal{E} = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ is a basis for $M_2(\mathbb{R})$, where

$$E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
 and $E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$

Example 1.18. $B = \{1 + x, x + x^2, 1 + x^2\}$ is a basis for $\mathbb{R}_2[x]$.

Let $a, b, c \in \mathbb{R}$. Then

$$a(1+x) + b(x+x^{2}) + c(1+x^{2}) = 0 \Rightarrow \begin{bmatrix} 1+x & x+x^{2} & 1+x^{2} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 1 & x & x^{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{0}, \text{ as } \{1, x, x^{2}\} \text{ is LI}$$

$$\Rightarrow \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{0}, \text{ as } \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ is invertible}$$

$$\Rightarrow \{1+x, x+x^{2}, 1+x^{2}\} \text{ is LI}.$$

- $\bullet \text{ Note the correspondence } 1+x \longleftrightarrow \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad x+x^2 \longleftrightarrow \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad 1+x^2 \longleftrightarrow \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$
- $\{1+x,x+x^2,1+x^2\}$ is LI **iff** $\{\begin{bmatrix}1\\1\\0\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix},\begin{bmatrix}1\\0\\1\end{bmatrix}\}$ is LI.

Coordinate: Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an ordered basis for a vector space $V(\mathbb{F})$ and let $\mathbf{v} \in V$. Let $\mathbf{v} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n$. Then the scalars c_1, c_2, \dots, c_n are called the **coordinates of v with respect to** B, and the column vector

$$[\mathbf{v}]_B = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

is called the **coordinate vector of v with respect to** B.

 \bigstar Coordinate of a vector is always associated with an **ordered** basis.

Example 1.19. The coordinate vector $[p(x)]_B$ of $p(x) = 1 - 3x + 4x^2$ with respect to basis $B = \{1, x, x^2\}$ of $\mathbb{R}_2[x]$ is $[p(x)]_B = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$.

Result 1.4. Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for a vector space V, let $\mathbf{u}, \mathbf{v} \in V$ and let $c \in \mathbb{F}$. Then

$$[\mathbf{u} + \mathbf{v}]_B = [\mathbf{u}]_B + [\mathbf{v}]_B$$
 and $[c\mathbf{u}]_B = c[\mathbf{u}]_B$.

Result 1.5. Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for a vector space $V(\mathbb{F})$, and let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ be vectors in V. Then $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is linearly independent in V if and only if $\{[\mathbf{u}_1]_B, [\mathbf{u}_2]_B, \dots, [\mathbf{u}_k]_B\}$ is linearly independent in \mathbb{F}^n .

Result 1.6. Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for a vector space V.

- 1. Any set of more than n vectors in V must be linearly dependent.
- 2. Any set of fewer than n vectors in V cannot span V.

Result 1.7 (The Basis Theorem). If a vector space V has a basis with n vectors, then every basis for V has exactly n vectors.

Dimension: Let V be a vector space.

- The dimension of V, denoted dim V, is the number of vectors in a basis for V. We write dim $V = \infty$ if V does not have a finite basis.
- The dimension of the zero space $\{0\}$ is defined to be 0.

Example 1.20. $dim(\mathbb{R}^n) = n$, $dim \ \mathbb{C}(\mathbb{C}) = 1$, $dim \ \mathbb{C}(\mathbb{R}) = 2$, $dim \ M_2(\mathbb{R}) = 4$ and $dim \ \mathbb{R}_n[x] = n + 1$.

Result 1.8. Let V be a vector space with dim V = n.

1. Any linearly independent set in V contains at most n vectors.

- 2. Any spanning set for V contains at least n vectors.
- 3. Any linearly independent set of exactly n vectors in V is a basis for V.
- 4. Any spanning set for V of exactly n vectors is a basis for V.
- 5. Any linearly independent set in V can be extended to a basis for V.
- 6. Any spanning set for V can be reduced to a basis for V.

Change of Basis: Let $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ and $C = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be bases for a vector space V. The $n \times n$ matrix whose columns are the coordinate vectors $[\mathbf{u}_1]_C, [\mathbf{u}_2]_C, \dots, [\mathbf{u}_n]_C$ is denoted by $P_{C \leftarrow B}$, and is called the **change** of basis matrix from B to C. That is,

$$P_{C \leftarrow B} = [[\mathbf{u}_1]_C, [\mathbf{u}_2]_C, \dots, [\mathbf{u}_n]_C].$$

Result 1.9. Let $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ and $C = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be bases for a vector space V and let $P_{C \leftarrow B}$ be the change of basis matrix from B to C. Then

- 1. $P_{C \leftarrow B}[\mathbf{x}]_B = [\mathbf{x}]_C$ for all $\mathbf{x} \in V$;
- 2. $P_{C \leftarrow B}$ is the unique matrix P with the property that $P[\mathbf{x}]_B = [\mathbf{x}]_C$ for all $\mathbf{x} \in V$;
- 3. $P_{C \leftarrow B}$ is invertible and $(P_{C \leftarrow B})^{-1} = P_{B \leftarrow C}$.

Example 1.21. Find the change of basis matrix $P_{C \leftarrow B}$ and $P_{B \leftarrow C}$ for the bases $B = \{1, x, x^2\}$ and $C = \{1 + x, x + x^2, 1 + x^2\}$ of $\mathbb{R}_2[x]$. Then find the coordinate vector of $p(x) = 1 + 2x - x^2$ with respect to C.

2 Linear Transformation

- Suppose $A \in \mathcal{M}_{m \times n}$. Take $\mathbf{v} \in \mathbb{R}^n$. Then $A\mathbf{v} \in \mathbb{R}^m$. Thus, we have a map (function) $F : \mathbb{R}^n \to \mathbb{R}^m$ given by $F(\mathbf{v}) = A\mathbf{v}$.
- Take $F: \mathbb{R}[x] \to \mathbb{R}[x]$ given by F(p(x)) = p'(x).
- Take $F : \mathbb{R}[x] \to \mathbb{R}$ given by F(p(x)) = p(3).

What is common in all of these? Well, they are maps (functions) with domains and codomains as vector space's. We have

$$F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(v), F(\alpha \mathbf{v}) = \alpha F(\mathbf{v}),$$

or, equivalently, $F(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha F(\mathbf{u}) + \beta F(\mathbf{v})$. Such functions are called linear transformations (LT).

Definition 2.1. A linear transformation from a vector space V into a vector space W is a mapping $T:V\to W$ such that for all $\mathbf{u},\mathbf{v}\in V$ and for all $a\in\mathbb{F}$

$$T(a\mathbf{u} + \mathbf{v}) = aT(\mathbf{u}) + T(\mathbf{v}).$$

Example 2.1. Let A be an $m \times n$ matrix. Define $T : \mathbb{R}^n \to \mathbb{R}^m$ such that $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Then T is a linear transformation from \mathbb{R}^n into \mathbb{R}^m .

Example 2.2. The map $T: \mathbb{R} \to \mathbb{R}$, defined by T(x) = x + 1 for all $x \in \mathbb{R}$, is **not** a linear transformation.

Example 2.3. The map $T: \mathbb{R}^2 \to \mathbb{R}^2$, defined by $T([x,y]^t) = [2x, x+y]^t$ for all $[x,y]^t \in \mathbb{R}^2$, is a linear transformation.

Example 2.4. Let V and W be two vector spaces. The map $T_0: V \to W$, defined by $T_0(\mathbf{v}) = \mathbf{0}$ for all $\mathbf{v} \in V$, is a linear transformation. The map T_0 is called the **zero transformation**.

Example 2.5. Let V be a vector space. The map $I: V \to V$, defined by $I(\mathbf{v}) = \mathbf{v}$ for all $\mathbf{v} \in V$, is a linear transformation. The map I is called the **identity transformation**.

Result 2.1. Let $T: V \to W$ be a linear transformation. Then

1.
$$T(\mathbf{0}) = \mathbf{0}$$
;

- 2. $T(-\mathbf{v}) = -T(\mathbf{v})$ for all $\mathbf{v} \in V$; and
- 3. $T(\mathbf{u} \mathbf{v}) = T(\mathbf{u}) T(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in V$.

Example 2.6. Suppose $T : \mathbb{R}^2 \to \mathbb{R}_2[x]$ is a linear transformation such that $T[1,0]^t = 2 - 3x + x^2$ and $T[0,1]^t = 1 - x^2$. Find $T[2,3]^t$ and $T[a,b]^t$.

Composition of Linear Transformation: Let $T: U \to V$ and $S: V \to W$ be two linear transformations. Then the composition of S with T is the mapping $S \circ T: U \to W$ defined by

$$(S \circ T)(\mathbf{u}) = S(T(\mathbf{u}))$$
 for all $\mathbf{u} \in U$.

Result 2.2. Let $T: U \to V$ and $S: V \to W$ be two linear transformations. Then the composition $S \circ T$ is also a linear transformation.

Inverse of a Function: A function $f: X \to Y$ is said to be **invertible** if there is another function $g: Y \to X$ such that

$$g \circ f = I_X$$
 and $f \circ g = I_Y$.

- If f is invertible, the the function g satisfying $g \circ f = I_X$, $f \circ g = I_Y$ is called inverse of f.
- Inverse of a function, if exists, is **unique**.
- The symbol f^{-1} is used to denote the inverse of f.
- Inverse of a linear transformation is linear.

Example 2.7. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$T[x,y]^t = [x-y, -3x+4y]^t$$
 and $S[x,y]^t = [4x+y, 3x+y]^t$ for all $[x,y]^t \in \mathbb{R}^2$.

Then S is the inverse of T.

Kernel and Range: Let $T: V \to W$ be a linear transformation. Then the **kernel** of T (null space of T), denoted $\ker(T)$, and the range of T, denoted $\operatorname{range}(T)$, are defined as

$$\ker(T) = \{ \mathbf{v} \in V : T(\mathbf{v}) = \mathbf{0} \}, \text{ and }$$

$$range(T) = \{ \mathbf{w} \in W : \mathbf{w} = T(\mathbf{v}) \text{ for some } \mathbf{v} \in V \}.$$

Result 2.3. Let $T: V \to W$ be a linear transformation and let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a spanning set for V. Then $T(B) = \{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_k)\}$ spans the range of T.

Example 2.8. Let A be an $m \times n$ matrix. Define $T : \mathbb{R}^n \to \mathbb{R}^m$ such that $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Then ker(T) = null(A) and range(T) = col(A).

Result 2.4. Let $T: V \to W$ be a linear transformation. Then ker(T) is a subspace of V and range(T) is a subspace of W.

Definition 2.2. Let $T: V \to W$ be a linear transformation. Then we define

- $rank(T) = dimension \ of \ range(T); \ and$
- $nullity(T) = dimension \ of \ ker(T)$.

Example 2.9. Let $D: \mathbb{R}_3[x] \to \mathbb{R}_2[x]$ be defined by $D(p(x)) = \frac{d}{dx}p(x)$. Then rank(D) = 3 and nullity(D) = 1.

Result 2.5 (The Rank-Nullity Theorem). Let $T: V \to W$ be a linear transformation from a finite dimensional vector space V into a vector space W. Then

$$rank(T) + nullity(T) = dim(V).$$

Definition 2.3. Let $T: V \to W$ be a linear transformation. Then

- 1. T is called **one-one** if T maps distinct vectors in V into distinct vectors in W.
- 2. T is called **onto** if range(T) = W.

- For all $\mathbf{u}, \mathbf{v} \in V$, if $\mathbf{u} \neq \mathbf{v}$ implies that $T(\mathbf{u}) \neq T(\mathbf{v})$, then T is one-one.
- For all $\mathbf{u}, \mathbf{v} \in V$, if $T(\mathbf{u}) = T(\mathbf{v})$ implies that $\mathbf{u} = \mathbf{v}$, then T is one-one.
- For all $\mathbf{w} \in W$, if there is at least one $\mathbf{v} \in V$ such that $T(\mathbf{v}) = \mathbf{w}$, then T is onto.

Example 2.10. Some examples of one-one and onto linear transformation.

- $T: \mathbb{R} \to \mathbb{R}^2$ defined by $T(x) = [x, 0]^t, x \in \mathbb{R}$ is one-one but not onto.
- $T: \mathbb{R}^2 \to \mathbb{R}$ defined by $T[x,y]^t = x$, for $[x,y]^t \in \mathbb{R}^2$ is onto but not one-one.
- $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T[x,y]^t = [-x,-y]^t$, for $[x,y]^t \in \mathbb{R}^2$ is one-one and onto.

Result 2.6. A linear transformation $T: V \to W$ is one-one iff $ker(T) = \{0\}$.

Result 2.7. Let dim(V) = dim(W). Then a linear transformation $T: V \to W$ is one-one iff T is onto.

Result 2.8. Let $T: V \to W$ be a one-one linear transformation. If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a linearly independent set in V then $T(S) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_k)\}$ is a linearly independent set in W.

Result 2.9. Let dim(V) = dim(W). Then a one-one linear transformation $T: V \to W$ maps a basis for V onto a basis for W.

Isomorphism:

- A linear transformation $T: V \to W$ is called an **isomorphism** if it is one-one and onto.
- If $T:V\to W$ is an isomorphism then we say that V and W are isomorphic, and we write $V\cong W$.

Example 2.11. The vector spaces \mathbb{R}^3 and $\mathbb{R}_2[x]$ are isomorphic.

Result 2.10. Let $V(\mathbb{F})$ and $W(\mathbb{F})$ be two finite dimensional vector spaces. Then $V \cong W$ iff $\dim(V) = \dim(W)$.

Example 2.12. The vector spaces \mathbb{R}^n and $\mathbb{R}_n[x]$ are not isomorphic.

The Matrix of a Linear Transformation:

Result 2.11. Let V and W be two finite-dimensional vector spaces with bases B and C respectively, where $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and dim W = m. If $T: V \to W$ is a linear transformation, then the $m \times n$ matrix A defined by

$$A = [[T(\mathbf{v}_1)]_C, [T(\mathbf{v}_2)]_C, \dots, [T(\mathbf{v}_n)]_C]$$

satisfies

$$A[\mathbf{v}]_B = [T(\mathbf{v})]_C$$
 for all $\mathbf{v} \in V$.

- The above matrix A is called the matrix of T with respect to the bases B and C.
- The matrix A is also written as $[T]_{C \leftarrow B}$.
- If B = C, then $[T]_{C \leftarrow B}$ is written as $[T]_B$.

Remark 2.1. The above result means:

Suppose we know $[T]_{C \leftarrow B}$ with respect to given bases B and C. Then we know T in the following sense:

If
$$\mathbf{v} = \sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{v}_{i}$$
 and $[T]_{C \leftarrow B} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix}$, then $T(\mathbf{v}) = \sum_{j=1}^{m} b_{j} \mathbf{u}_{j}$.

Example 2.13. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation defined by

$$T([x, y, z]^t) = [x - 2y, x + y - 3z]^t$$
 for $[x, y, z]^t \in \mathbb{R}^3$.

Let $B = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ and $C = \{\mathbf{e}_2, \mathbf{e}_1\}$ be bases for \mathbb{R}^3 and \mathbb{R}^2 , respectively. Find $[T]_{C \leftarrow B}$ and verify the previous result for $\mathbf{v} = [1, 3, -2]^t$.

Result 2.12. Let U, V and W be three finite-dimensional vector spaces with bases B, C and D, respectively. Let $T: U \to V$ and $S: V \to W$ be linear transformations. Then

$$[S \circ T]_{D \leftarrow B} = [S]_{D \leftarrow C}[T]_{C \leftarrow B}.$$

Result 2.13. Let $T: V \to W$ be a linear transformation between two n-dimensional vector spaces V and W with bases B and C, respectively. Then T is invertible if and only if the matrix $[T]_{C \leftarrow B}$ is invertible. In this case,

$$([T]_{C \leftarrow B})^{-1} = [T^{-1}]_{B \leftarrow C}.$$

Example 2.14. Let $T: \mathbb{R}^2 \to \mathbb{R}_1[x]$ be defined by $T([a,b]^t) = a + (a+b)x$ for $[a,b]^t \in \mathbb{R}^2$. Show that T is invertible, and hence find T^{-1} .