EMERGING METHODS FOR EARLY DETECTION OF

FOREST FIRES

CODE LAYOUT, READABILITY, REUSABILITY

Date	17 November 2022
Team ID	PNT2022TMID03761
Project Name	Emerging Methods for Early Detection of Forest
	Fires

ENTIRE CODE:

```
#Importing Keras libraries
```

import keras

#Importing ImageDataGenerator from Keras

from matplotlib import pyplot as plt

from keras.preprocessing.image import ImageDataGenerator

#Defining the Parameters

train_datagen=ImageDataGenerator(rescale=1./255, shear_range=0.2, rota
tion_range=180, zoom_range=0.2, horizontal_flip=True)

test_datagen=ImageDataGenerator(rescale=1./255, shear_range=0.2, rotat ion range=180, zoom range=0.2, horizontal flip=True)

#Applying ImageDataGenerator functionality to train dataset

x_train=train_datagen.flow_from_directory('/content/drive/MyDrive/tr ain_set',target_size=(64,64),batch_size=32,class_mode='binary')

Found 442 images belonging to 2 classes.

from google.colab import drive

drive.mount('/content/drive')

Mounted at /content/drive

#Applying ImageDataGenerator functionality to test dataset

x_test=test_datagen.flow_from_directory('/content/drive/MyDrive/test
 set',target size=(64,64),batch size=32,class mode='binary')

Found 121 images belonging to 2 classes.

#to define the linear Initialisation import sequential

from keras.models import Sequential

#to add layers import Dense

from keras.layers import Dense

#to create Convolutional kernel import convolution2D

from keras.layers import Convolution2D

#import Maxpooling layer

from keras.layers import MaxPooling2D

```
#import flatten layer
from keras.layers import Flatten
import warnings
warnings.filterwarnings('ignore')
#Initializing the model
model = Sequential()
#Adding CNN Layers
model.add(Convolution2D(32,(3,3),input shape=(64,64,3),activation='r
#add maxpooling layers
model.add(MaxPooling2D(pool size=(2,2)))
#add faltten layer
model.add(Flatten())
#Add Dense layers
#add hidden layers
model.add(Dense(150,activation='relu'))
#add output layer
model.add(Dense(1,activation='sigmoid'))
#configuring the learning process
model.compile(loss='binary_crossentropy',optimizer="adam",metrics=["
accuracy"])
#Training the model
model.fit generator(x train, steps per epoch=14, epochs=10, validation
data=x test, validation steps=4)
Epoch 1/10
5 - accuracy: 0.6516 - val loss: 0.3531 - val accuracy: 0.8430
Epoch 2/10
- accuracy: 0.8846 - val loss: 0.1287 - val accuracy: 0.9752
Epoch 3/10
14/14 [============== ] - 20s 1s/step - loss: 0.2019
- accuracy: 0.9163 - val loss: 0.1078 - val accuracy: 0.9669
Epoch 4/10
14/14 [============== ] - 20s 1s/step - loss: 0.2020
- accuracy: 0.9118 - val loss: 0.0813 - val accuracy: 0.9917
Epoch 5/10
- accuracy: 0.9050 - val loss: 0.0940 - val accuracy: 0.9752
Epoch 6/10
- accuracy: 0.9253 - val loss: 0.0769 - val accuracy: 0.9835
Epoch 7/10
- accuracy: 0.9299 - val loss: 0.0751 - val accuracy: 0.9917
Epoch 8/10
- accuracy: 0.9253 - val loss: 0.0609 - val accuracy: 0.9917
Epoch 9/10
```

```
- accuracy: 0.9253 - val loss: 0.0851 - val accuracy: 0.9587
Epoch 10/10
14/14 [============== ] - 20s 1s/step - loss: 0.1671
- accuracy: 0.9231 - val loss: 0.0849 - val accuracy: 0.9752
#Save the model
model.save("/content/drive/MyDrive/forest1.h5")
#Predictions
#import load model from keras.model
from keras.models import load model
#import image from keras
from tensorflow.keras.preprocessing import image
import numpy as np
#import cv2
import cv2
#load the saved model
model=load model("/content/drive/MyDrive/forest1.h5")
img=image.load img('/content/drive/MyDrive/test set/with
fire/Forest fire MNRF esize IMG 6743.jpg')
x=image.img to array(img)
res=cv2.resize(x,dsize=(64,64),interpolation=cv2.INTER CUBIC)
#expand the image shape
x=np.expand dims(res,axis=0)
pred=model.predict(x)
pred = int(pred[0][0])
pred
int(pred)
1/1 [======= ] - 0s 102ms/step
pip install twilio
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.d
ev/colab-wheels/public/simple/
Collecting twilio
 Downloading twilio-7.15.3-py2.py3-none-any.whl (1.4 MB)
                                   | 1.4 MB 5.1 MB/s
Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist
-packages (from twilio) (2022.6)
Collecting PyJWT<3.0.0,>=2.0.0
  Downloading PyJWT-2.6.0-py3-none-any.whl (20 kB)
Requirement already satisfied: requests>=2.0.0 in /usr/local/lib/pyt
hon3.7/dist-packages (from twilio) (2.23.0)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/p
ython3.7/dist-packages (from requests>=2.0.0->twilio) (3.0.4)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21
.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->
twilio) (1.24.3)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/
python3.7/dist-packages (from requests>=2.0.0->twilio) (2022.9.24)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python
3.7/dist-packages (from requests>=2.0.0->twilio) (2.10)
Installing collected packages: PyJWT, twilio
Successfully installed PyJWT-2.6.0 twilio-7.15.3
from twilio.rest import Client
if pred==0:
```

```
print('Forest fire')
  account sid='AC4c9a105651d0150d1b85af1bd4cf090c'
  auth token='d18b90389f18b6069775b89c5c10ca1f'
  client=Client(account sid, auth token)
 message=client.messages \
  .create(
      body='forest fire is detected, stay alert',
      #use twilio free number
      from ='+15134660214',
      #to number
      to='+919361632961')
  print (message.sid)
 print("Fire detected")
 print("SMS Sent!")
elif pred==1:
 print('No Fire')
No Fire
#Open cv for video processing
pip install twilio
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.d
ev/colab-wheels/public/simple/
Requirement already satisfied: twilio in /usr/local/lib/python3.7/di
st-packages (7.15.3)
Requirement already satisfied: requests>=2.0.0 in /usr/local/lib/pyt
hon3.7/dist-packages (from twilio) (2.23.0)
Requirement already satisfied: PyJWT<3.0.0,>=2.0.0 in /usr/local/lib
/python3.7/dist-packages (from twilio) (2.6.0)
Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist
-packages (from twilio) (2022.6)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/p
ython3.7/dist-packages (from requests>=2.0.0->twilio) (3.0.4)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python
3.7/dist-packages (from requests>=2.0.0->twilio) (2.10)
Requirement already satisfied: urllib3!=1.25.0, !=1.25.1, <1.26, >=1.21
.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->
twilio) (1.24.3)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/
python3.7/dist-packages (from requests>=2.0.0->twilio) (2022.9.24)
#Creating An Account in Twilio Service
#Sending Alert Message
from logging import WARNING
#import opency library
import cv2
#import numpy
import numpy as np
#import image function from keras
from keras.preprocessing import image
#import load model from keras
from keras.models import load model
#import client from twilio API
from twilio.rest import Client
#import playsound package
import cv2
import numpy as np
```

```
from google.colab.patches import cv2 imshow
from matplotlib import pyplot as plt
import librosa
from tensorflow.keras.preprocessing import image
from keras.models import load model
# Create a VideoCapture object and read from input file
# If the input is the camera, pass 0 instead of the video file name
cap = cv2.VideoCapture('/FOREST FIRE.mp4')
# Check if camera opened successfully
if (cap.isOpened() == False):
 print("Error opening video stream or file")
# Read until video is completed
while(cap.isOpened()):
  # Capture frame-by-frame
  ret, frame = cap.read()
  if ret == True:
    cv2 imshow(frame)
    x=image.img to array(frame)
    res=cv2.resize(x,dsize=(64,64),interpolation=cv2.INTER CUBIC)
    #expand the image shape
    x=np.expand dims(res,axis=0)
    model=load model("/content/drive/MyDrive/forest1.h5")
    pred=model.predict(x)
   pred = int(pred[0][0])
   pred
    int(pred)
    if pred==0:
      print('Forest fire')
     break
    else:
      print("no danger")
     break
# When everything done, release the video capture object
cap.release()
# Closes all the frames
cv2.destroyAllWindows()
```



```
1/1 [=======] - 0s 67ms/step
Forest fire
from twilio.rest import Client
if pred==0:
  print('Forest fire')
  from twilio.rest import Client
  account sid='AC4c9a105651d0150d1b85af1bd4cf090c'
  auth_token='d18b90389f18b6069775b89c5c10ca1f'
  client=Client(account sid, auth token)
 message=client.messages \
  .create(
     body='forest fire is detected, stay alert',
      #use twilio free number
     from='+15134660214',
      #to number
     to='+919361632961')
 print (message.sid)
 print("Fire detected")
 print("SMS Sent!")
elif pred==1:
 print('No Fire')
Forest fire
SM6b18a2fbdd0752525173e0c318202c27
Fire detected
SMS Sent!
```

OUTPUT:

