COMP336 — Big Data

Week 9 Lecture 1: Link Analysis

Diego Mollá

COMP336 2018H1

Abstract

In this lecture we will focus on a particular type of data that is often used in the analysis of webpages and social media: graphs. We will cover approaches that can be used for large graphs such as those encountered on Web applications. Among other methods, you will learn about PageRank as a way to determine the importance of a node in the graph.

Update May 6, 2018

Contents

1	1 PageRank						
	1.1	Definition of PageRank	1				
	1.2	Teleporting	7				
		cient Computation of PageRank	ç				
	Effic	cient Computation of PageRank Efficient Representation of the Transition Matrix	6				

Reading

• Leskovec, Rajaraman, Ullman (2014): Mining of Massive Datasets, Chapter 5. http://www.mmds.org/

1 PageRank

1.1 Definition of PageRank

The Web as a Graph

- You can image the Web as a large directed graph.
- The webpages are the nodes of the graph.
- If there is a hyperlink from page A to page B, then the corresponding graph has a link from node A to node B.

Defining the Importance of a Webpage

The importance of a webpage depends on two factors:

- 1. How many pages are linking to the page; and
- 2. How *important* are the pages that are linking to the page.

Scenario 1

Page X is linked by 10 pages but nobody is linking to any of these pages.

Scenario 2

Page Y is linked by 5 pages but each of them is linked by 10 other pages.

PageRank and Random Surfers

- PageRank computes the importance of a webpage in function of the importance of the pages that link to it.
- PageRank computes the importance *independently* of how relevant the page might be to the user query.
- So, a webpage that is slightly irrelevant to the query might appear in the top list just because it's important.
- The PageRank of a page A models the probability that a random surfer is in page A at a given time.
 - Random surfer: A web surfer that follows hyperlinks randomly.

PageRank Formula (take 1)

The following formula computes the importance of a page based on the importance of the other pages linking to it:

PageRank (take 1)

$$PR(A) = \frac{PR(T_1)}{C(T_1)} + \dots + \frac{PR(T_n)}{C(T_n)}$$

 T_i = page that links to A

 $C(T_i)$ = number of outgoing links from page T_i

Example of Computing PageRank

$$PR(A) = \frac{PR(B)}{2} + \frac{PR(C)}{1}$$

$$PR(B) = \frac{PR(A)}{3} + \frac{PR(D)}{2}$$

$$PR(C) = \frac{PR(A)}{3} + \frac{PR(D)}{2}$$

$$PR(D) = \frac{PR(A)}{3} + \frac{PR(B)}{2}$$

- The idea is that the PageRank of a page (say, B) is spread equally among all the pages that it links to (in our example, A and D).
- In other words, if random surfer starts at page B, then it will next be at page A with probability 0.5, and at page D with probability 0.5.

The Transition Matrix

- We can model a step of the random surfer with the help of a transition matrix.
- The rows and columns of the transition matrix M represent the nodes of the network.
- The cell value at M_{ij} is the probability of the random surfer moving from j to i.

$$M = \left(\begin{array}{cccc} 0 & 1/2 & 1 & 0\\ 1/3 & 0 & 0 & 1/2\\ 1/3 & 0 & 0 & 1/2\\ 1/3 & 1/2 & 0 & 0 \end{array}\right)$$

Using the Transition Matrix

• We can use the transition matrix to compute the probability of being in each node given that we know the random user is in a particular node.

3

• For example, if the user is in node B, we apply the following matrix multiplication:

$$\begin{pmatrix}
0 & 1/2 & 1 & 0 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 1/2 & 0 & 0
\end{pmatrix}
\cdot
\begin{pmatrix}
0 \\
1 \\
0 \\
0
\end{pmatrix}
=
\begin{pmatrix}
0.5 \\
0 \\
0 \\
0.5
\end{pmatrix}$$

Computing PageRank

- To compute PageRank of all nodes, we assume that a surfer begins from any node with equal probability.
- We then apply the transition matrix to determine where the surfer is next.

$$\begin{pmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \end{pmatrix} = \begin{pmatrix} 1/2 \times 0.25 + 1 \times 0.25 \\ 1/3 \times 0.25 + 1/2 \times 0.25 \\ 1/3 \times 0.25 + 1/2 \times 0.25 \\ 1/3 \times 0.25 + 1/2 \times 0.25 \end{pmatrix}$$

- And keep applying the transition matrix until we reach a *stationary state* (when the probabilities do not change).
- It can be shown that we will always reach a stationary state.
 - (This is connected with the concept of matrix eigenvectors)
- In practice, the stationary state is reached after applying the transition matrix a small number of times.

Algorithm

Algorithm

- 1. $PR \leftarrow \text{column vector with values } 1/N$
- 2. WHILE PR changes:
- 3. $PR \leftarrow M \cdot PR$

The Bowtie Picture of the Web

- The Web is not as strongly connected as in our example above.
- It has a large part that is strongly connected but others that are not.

- In-component: Can reach SCC, but not reachable from SCC.
- Out-component: Reachable from SCC but unable to reach SCC.
- Tendrils: One-way connections to either the in-component or the out-component.
- Tubes: From the in-component to the out-component.
- Small isolated components.

The Problem with Dead Ends

- The parts from the network that are not part of the strongly connected component create problems with our first version of PageRank.
- Our first version assumes that transition matrix is *stochastic*:
 - For every column, the sum of values is 1.
- If there is a dead end, the sum of values in some columns is zero: the matrix is *substochastic*.
- In a stochastic matrix, at every iteration of PageRank the sum of PageRank values is 1.
- In a substochastic matrix, the sum of PageRank values will decrease at every iteration.

Dead End: Example

In the following network, node C is a dead end:

$$M = \left(\begin{array}{cccc} 0 & 1/2 & 0 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{array}\right)$$

We can see that the third column of the transition matrix does not sum to 1.

Treating Dead Ends

There are two main ways to tread dead ends:

- 1. Remove nodes that are dead ends and edges leading to them until there are no dead ends, and apply PageRank on the resulting strongly connected graph.
- 2. Apply teleporting (we will cover this later).

Removing Dead Ends: Example

We may need to apply several iterations to remove dead ends, since after removing the dead ends of a network, other dead ends may be created.

Restoring Dead Ends

After computing PageRank on the reduced strongly connected network, we need to restore the dead ends

and compute their PageRank.

$$PR(E) = PR(C)$$

$$PR(C) = PR(A)/3 + PR(D)/2$$

Spider Traps

- Spider traps are regions of the network that are strongly connected but which have no links out.
- Our simple formula for PageRank will place all PageRank scores inside spider traps.
- Below is an example with a one-node spider trap.

1.2 Teleporting

PageRank with Teleporting

- Teleporting (also called *taxation*) solves the problem of spider traps up to some extent.
- It modifies the model of the random surfer.
- When the random surfer is at node A, it has two choices:
 - 1. With probability β , follow one of the links randomly (as in the previous version of PageRank).
 - 2. With probability 1β , teleport to a random page.
- Teleporting solves the problem of spider traps.

 $PageRank\ with\ Teleporting$

$$PR(A) = \beta \left(\frac{PR(T_1)}{C(T_1)} + \dots + \frac{PR(T_n)}{C(T_n)} \right) + (1 - \beta) \frac{1}{N}$$

 $T_i = \text{page that links to A}$

 $C(T_i)$ = number of outgoing links from page T_i

N = total number of nodes in the network.

Computing PageRank with Teleporting

To compute PageRank with teleporting, at each iteration of the computation we need to add a term for teleporting:

$$PR \leftarrow \beta M \cdot PR + (1 - \beta)E\frac{1}{N}$$

Where E is a column vector with all ones.

Algorithm

- 1. $PR \leftarrow \text{column vector with values } 1/N$
- 2. WHILE PR changes:
- 3. $PR \leftarrow \beta M \cdot PR + (1 \beta)E\frac{1}{N}$

Exampe of a Spider Trap with Teleporting

- ullet We can see that teleporting does not solve the problem of spider traps completely, as node C has a much higher PageRank than the others.
- To remove the effect of spider traps is quite complicated.
- Spammers try to create complex spider traps to fool the search engine.

2 Efficient Computation of PageRank

2.1 Efficient Representation of the Transition Matrix

Representing Transition Matrices

- Transition matrices are very sparse.
 - Many of the elements of the transition matrix are zero.
- Also, all non-zero terms in a column are equal and their sum is 1.
- So, we only need to represent, for every column, the list of non-zero rows.

Transition Matrix

$$M = \left(\begin{array}{cccc} 0 & 1/2 & 1 & 0\\ 1/3 & 0 & 0 & 1/2\\ 1/3 & 0 & 0 & 1/2\\ 1/3 & 1/2 & 0 & 0 \end{array}\right)$$

Efficient Representation

Source	Degree	Destination		
A	3	B, C, D		
B	2	A, D		
C	1	A		
D	2	B, C		

PageRank with Efficient Matrix Representation

Algorithm

- 1. $PR^{old} \leftarrow \text{column vector with values } 1/N$
- 2. WHILE PR changes:
- 3. $PR^{new} \leftarrow \text{matrix initialised to } (1-\beta)/N$
- 4. FOR each page $i = 1, 2, \dots, N$:
- 5. Read into memory: $i, d_i, dest_1, \cdots dest_{di}, PR_i^{old}$
- 6. FOR $j = 1, 2, \dots, d_i$:
- 7. $PR_{dest_j}^{new} \leftarrow PR_{dest_j}^{new} + \beta PR_i^{old}/d_i$
- 8. $PR^{old} \leftarrow PR^{new}$

2.2 Using MapReduce

PageRank Iteration Using MapReduce

• We can use MapReduce to implement each iteration of the computation of PageRank:

$$PR \leftarrow \beta M \cdot PR + (1 - \beta)E\frac{1}{N}$$

- \bullet If N is small enough that the PR column vector fits in main memory, the PageRank of each node can be computed with simple MapReduce operations.
- Often N is not large enough and we would have to resort to striping (see textbook, section 2.3.2).

MapReduce Iteration if N is not Too Large

Here we will focus on the matrix-vector computation, since all other parts of the MapReduce computation are straightforward.

$$X_i = \sum_{j=1}^{N} M_{ij} P R_j$$

Map

- The map function is written to apply to one element of M.
- The compute node performing the map task reads PR entirely in memory (if it hasn't done it in a previous map task), to avoid *thrashing*.
- Return the key-value pair $(i, M_{ij}PR_j)$.

Reduce

• The reduce function sums all values associated with a given key i and returns the pair (i, X_i) .

Use of Combiners to Consolidate the Result Vector

- We can process a block of the matrix in one node.
- \bullet This can be more efficient, and allows us to process large PR vectors.
- We partition M into k^2 square blocks, and PR into k stripes.
- We then use k^2 map tasks.

X_1	←	M_{11}	M_{12}	M_{13}	M_{14}	PR_1
X_2		M_{21}	M_{22}	M_{23}	M_{24}	PR_2
X_3		M_{31}	M_{32}	M_{33}	M_{34}	PR_3
X_4		M_{41}	M_{42}	M_{43}	M_{44}	PR_4

MapReduce Tasks Using Combiners

Map

- Read one square block M_{ij} .
- Read PR_j (j is the same as the second index of M_{ij}).
- Return key-value pair $(i, M_{ij} \cdot PR_j)$ (this is a matrix-vector multiplication).

Reduce

- Read all values associated with a given key i and compute the vector sum X_i .
- Return the pair (i, X_i) .

Take-home Messages

- The Web as a graph.
- PageRank to compute the importance of a webpage.
- $\bullet\,$ PageRank and random surfers.
- Implementing PageRank with a transition matrix.
- Dead ends and spider traps.
- Incorporating teleporting.
- Efficient representations of the transition matrix.
- Using MapReduce to compute PageRank.

What's Next

Week 10

• Frequent Itemsets