Word Embeddings and Topic Modelling

Tim Rocktäschel & Sebastian Riedel COMP0087 Natural Language Processing

NLP in a Nutshell

Classify This!

Machine Sees this

Word Representations

Fixing one hot vectors

NLP in a Nutshell

Wampinuk

Marco saw a hairy little wampinuk crouching behind a tree

You shall know aword by the company it keeps (Firth, J. R. 1957:11)

Word2Vec: Continuous Bag of Words

Word2Vec: Skip Gram

Skip Gram

Skip Gram

Binary Classifier

Binary Classifier

Negative Sampling

Word2vec2D Projections

King - Man + Woman ≈ Queen

Classify This!

Cluster This!

Topic Modelling as Self Supervision

Matrix View

A12, toot ball = W12, Oo, tootball

Matrix View

A12, toot ball =
$$W_{12,\bullet}$$
 $\Theta_{\bullet, t \cdot \bullet t ball}$
Y12, toot ball = $O(A_{12}, t_{\bullet \bullet t ball})$

Term Document Matrix

A12, toot ball =
$$W_{12,\bullet}$$
 $\Theta_{\bullet, t \bullet \cdot t ball}$
Y12, toot ball = $O(A_{12}, t_{\bullet \cdot t ball})$

Binary Matrix Factorization

Matrix Factorization

Nonnegative Matrix Factorization

References

- Word Embeddings
 - J&M Chapter 6
 - Goldberg Chapter 5
 - Efficient Estimation of Word Representations in Vector Space, Mikolov et al, ICLR Workshop 2013
 - GloVe: Global Vectors for Word Representation, Pennington et al., EMNLP 2014
- Topic Models
 - An Introduction to Latent Semantic Analysis, TK Landauer
 - Probabilistic Latent Semantic Analysis, T Hofmann
 - Probabilistic Topic Models, Blei
 - Exploring Topic Coherence over Many Models and Many Topics, K Stevens, EMNLP 2012