Marble Rolling

reiya0104

2022年5月3日

- 1 物理
- 1.1 フローチャート

フローチャート

それぞれのオブジェクトを構成する要素

Force 力: Vec3Velocity 速度: Vec3

- Position 位置: Vec3
- 衝突判定
 - 衝突 (Collision) or 接触 (Contact)
- 衝突応答

1.2 ビー玉と天板の衝突後のビー玉の速度を算出する

- 問題 -

速度 v_{marble} で動くビー玉 (marble) と,速度 v_{board} で動く天板 (board) が衝突したとする.衝突後のビー玉の速度 v'_{marble} を求めよ.

ここで、天板の単位法線ベクトル (衝突面を上向きにしたもの) は n、天板とビー玉間のはね返り定数を e とする.

ただし、天板の表面は滑らかであるとし、衝突時に影響を受けないものとする.

結論

$$\mathbf{v}'_{\text{marble}} = \mathbf{v}_{\text{marble}} - (1 + e)((\mathbf{v}_{\text{marble}} - \mathbf{v}_{\text{board}}) \cdot \mathbf{n}) \mathbf{n}$$
 (1)

方針

方針としては,

- (1) 静止している系から考えるのは難しいので、天板から見た系を考える.
- (2) 天板から見た系におけるビー玉の速度を求める.
- (3) 天板から見た系において衝突後のビー玉の速度を求める.
- (4) 静止している系における衝突後のビー玉の速度を求める.

として求める.

解答

便宜上 $v_{\mathrm{m}}\coloneqq v_{\mathrm{marble}},\,v_{\mathrm{b}}\coloneqq v_{\mathrm{board}}$ とおく.

- (1) 天板から見た系を考える.
- (2) 天板から見た系におけるビー玉の速度を $v_{\text{m}\leftarrow \text{b}}$ とする. このとき, $v_{\text{m}\leftarrow \text{b}}$ は天板に対するビー玉の相対 速度であるから,

$$\boldsymbol{v}_{\mathrm{m}\leftarrow\mathrm{b}} = \boldsymbol{v}_{\mathrm{m}} - \boldsymbol{v}_{\mathrm{b}} \tag{2}$$

である.

(3) 天板から見た系において衝突後のビー玉の速度を $v'_{m\leftarrow b}$ とする. $v_{m\leftarrow b}$ を天板の鉛直方向成分 $v_{m\leftarrow b}$ と平行方向成分 $v_{m\leftarrow b}$ に分解すると,

$$egin{aligned} v_{\mathrm{m}\leftarrow\mathrm{b}}{}^{m{n}} &= (v_{\mathrm{m}\leftarrow\mathrm{b}} \cdot m{n}) \, m{n} \ v_{\mathrm{m}\leftarrow\mathrm{b}}{}^{m{n}'} &= v_{\mathrm{m}\leftarrow\mathrm{b}} - v_{\mathrm{m}\leftarrow\mathrm{b}}{}^{m{n}} \ &= v_{\mathrm{m}\leftarrow\mathrm{b}} - (v_{\mathrm{m}\leftarrow\mathrm{b}} \cdot m{n}) \, m{n} \end{aligned}$$

である.

天板との衝突後,ビー玉の速度の鉛直方向の成分を $v_{\text{m}\leftarrow \text{b}}^{\prime n}$ とすると $v_{\text{m}\leftarrow \text{b}}^{\prime n}=-e\,v_{\text{m}\leftarrow \text{b}}^{n}$ である.平 行方向成分は変わらず $v_{\text{m}\leftarrow \text{b}}^{n'}$ であるから,

$$v'_{m \leftarrow b} = v'_{m \leftarrow b}^{n} + v_{m \leftarrow b}^{n'}$$

$$= -e v_{m \leftarrow b}^{n} + v_{m \leftarrow b}^{n'}$$

$$= -e((v_{m \leftarrow b} \cdot n) n) + (v_{m \leftarrow b} - (v_{m \leftarrow b} \cdot n) n)$$

$$= v_{m \leftarrow b} - (1 + e)(v_{m \leftarrow b} \cdot n) n$$
(3)

である.

(4) 静止している系における衝突後のビー玉の速度 v'_{marble} は、 $v'_{\text{m}\leftarrow \text{b}}$ と v_{b} で表すと、 $v'_{\text{marble}} = v'_{\text{m}\leftarrow \text{b}} + v_{\text{b}}$ である.これと式 (2)、(3) を用いると、

$$\begin{aligned} \boldsymbol{v}_{\mathrm{marble}}' &= (\boldsymbol{v}_{\mathrm{m}\leftarrow\mathrm{b}} - (1+e)(\boldsymbol{v}_{\mathrm{m}\leftarrow\mathrm{b}} \cdot \boldsymbol{n})\,\boldsymbol{n}) + \boldsymbol{v}_{\mathrm{b}} \\ &= ((\boldsymbol{v}_{\mathrm{m}} - \boldsymbol{v}_{\mathrm{b}}) - (1+e)((\boldsymbol{v}_{\mathrm{m}} - \boldsymbol{v}_{\mathrm{b}}) \cdot \boldsymbol{n})\,\boldsymbol{n}) + \boldsymbol{v}_{\mathrm{b}} \\ &= \boldsymbol{v}_{\mathrm{m}} - (1+e)((\boldsymbol{v}_{\mathrm{m}} - \boldsymbol{v}_{\mathrm{b}}) \cdot \boldsymbol{n})\,\boldsymbol{n} \end{aligned}$$

である.

したがって,

$$\mathbf{v}'_{\text{marble}} = \mathbf{v}_{\text{marble}} - (1 + e)((\mathbf{v}_{\text{marble}} - \mathbf{v}_{\text{board}}) \cdot \mathbf{n}) \mathbf{n}$$
 (1)

が成り立つ.

1.3 衝突判定

ビー玉の衝突判定の流れ

- 1. ビー玉の位置をタイルの座標系に変換 (1.3.1)
- 2. ビー玉の xyz 軸それぞれの最大最小の座標に基づくタイルの位置を抽出 (1.3.2)
- 3. 抽出された 8 つのタイルの位置とその間のタイルの位置についてタイルが存在するものを取り出す (1.3.3)

- 4. 存在するタイルについてそのタイルとビー玉との距離を計算 (1.3.4)
- 5. 距離がビー玉の半径よりも小さかったら衝突してると判定 (1.3.5)

それぞれについて見ていく.

1.3.1 ビー玉の位置をタイルの座標系に変換

タイルの (直交) 座標系の基本ベクトルを e_x', e_y', e_z' とおく. また、タイルの座標系の原点 O' のワールドの座標系における位置ベクトルを $v_{O'}$ とする.

ここで、ビー玉について、ビー玉のある点を P とし、ワールドの座標系における位置ベクトルを $v_{\rm P}$ 、タイルの座標系における位置ベクトルを $v_{\rm P}'$ とする.

このとき、 $oldsymbol{v}_{
m P}^\prime$ は $oldsymbol{e}_x^\prime, oldsymbol{e}_y^\prime, oldsymbol{e}_z^\prime, oldsymbol{v}_{
m O}^\prime, oldsymbol{v}_{
m P}$ を用いて

$$v_{\rm P}' = (e_x' \quad e_y' \quad e_z')^{-1} (v_{\rm P} - v_{\rm O'})$$
 (4)

と表せる.

- 1.3.2 ビー玉の xyz 軸それぞれの最大最小の座標に基づくタイルの位置を抽出
- 1.3.3 抽出された8つのタイルの位置とその間のタイルの位置についてタイルが存在するものを取り出す
- 1.3.4 存在するタイルについてそのタイルとビー玉との距離を計算
- 1.3.5 距離がビー玉の半径よりも小さかったら衝突してると判定