Student-T Process Instead of Gaussian Process for Empirical Kernel

資工21 周聖諺

Empirical Kernel & SGD

According to the paper "Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel" (presented by 袁哥), chaotic sensitivity of basin fate to SGD choices early in training.

Why not just add some random noise to the NTK?

With inverse Wishart distribution $\Sigma \sim \mathcal{IW}(\nu,K)$ where the degree of freedom $\nu>2$ and K is positive definite, we can generate a random matrix Σ with expectation $\mathbb{E}[\Sigma]=\frac{K}{\nu-2}.$

Normal-Wishart Distribution

Consider the **randomness of the kernel matrix**, with Bayesian rule, we can model the kernel matrix with **Inverse Wishart distribution**.

$$p(y|\phi,
u,K) = \int p(y|\phi,\Sigma)p(\Sigma|
u,K)d\Sigma = \mathcal{TP}(\phi,K,
u)$$

Denote Inverse Wishart distribution as $\Sigma|
u,K\sim\mathcal{IW}(
u,K)=p(\Sigma|
u,K)$ and the Gaussian process as $y|\phi,\Sigma\sim\mathcal{GP}(\phi,\Sigma)=p(y|\phi,\Sigma)$. Note that the random matrix $\Sigma\in\mathbb{R}^{N\times N}$ is generated by Inverse Wishart. The hyperparameters are $K\in\mathbb{R}^{N\times N}$, $\nu\in\mathbb{R}$, $\phi\in\mathbb{R}^N$.

Finally, $\mathcal{TP}(\phi,K,
u)$ is the **Student-T process**.

Student-T Process

The Student-T process can be written as

$$y \sim \mathcal{TP}(\phi, K,
u)$$

The hyperparameter ν is called **degrees of freedom**, it can control the covariance of the output $cov(y)=\frac{\nu}{\nu-2}K$. Thus, the relation between \mathcal{TP} and \mathcal{GP} is

$$\mathcal{GP}(\phi,K) = \lim_{
u o \infty} \mathcal{TP}(\phi,K,
u)$$

Student-T Process

Figure 2: Uncorrelated bivariate samples from a Student-t copula with $\nu = 3$ (left), a Student-t copula with $\nu = 10$ (centre) and a Gaussian copula (right). All marginal distributions are N(0, 1) distributed.

Degrees of freedom is the number of values in the final calculation of a statistic that are free to vary.

Student-T Process Posterior

Given a training dataset $\{X_1,Y_1\}$ with n_1 samples and a testing dataset $\{X_2,Y_2\}$ with n_2 samples where $X_1\in\mathbb{R}^{n_1 imes d}$, $Y_1\in\mathbb{R}^{n_1}$, and $X_2\in\mathbb{R}^{n_2 imes d}$, $Y_2\in\mathbb{R}^{n_2}$.

Denote the mean function as z and the kernel function as k. Thus, $\phi_i=z(X_i)$ and $K_{ij}=k(X_i,X_j)$

$$egin{pmatrix} egin{pmatrix} Y_1 \ Y_2 \end{pmatrix} \sim \mathcal{TP}(egin{pmatrix} \phi_1 \ \phi_2 \end{pmatrix}, egin{pmatrix} K_{11} & K_{12} \ K_{21} & K_{22} \end{pmatrix})$$

Student-T Process Posterior

The posterior is

$$y_2|y_1 \sim \mathcal{TP}(\hat{\phi}, rac{
u + eta + -2}{
u + n_1 - 2} \hat{K}_{22},
u + n_1)$$

Where

$$egin{aligned} \hat{\phi} &= K_{21} K_{11}^{-1} (Y_1 - \phi_1) + \phi_2 \ eta &= (Y_1 - \phi_1)^ op K_{11}^{-1} (Y_1 - \phi_1) \ \hat{K}_{22} &= K_{22} - K_{21} K_{11}^{-1} K_{12} \end{aligned}$$

Experiment

We've already known, if $\nu=\infty$, the student-T process will converge to Gaussian process. In the above figure, we compare the result of fitting a $\sin()$ function with \mathcal{TP} and \mathcal{GP} respectively. The left part of above figure shows the training/testing progress of fitting. The right part is the value of ν during training progress.

As the blue line shows above(left part), as the training progress goes, the ν gets lower. It shows that we can control ν of \mathcal{TP} to achieve a better fitting.

Conclusion

- During training progress, the ν gets lower.
- By controlling the value of ν of \mathcal{TP} we can get a better prediction on the training loss rather than \mathcal{GP}
- If the NTK follows the \mathcal{TP} , the bigger training dataset, the larger degree of freedom of the posterior.