Indecidibilidade

Problemas de Decisão

 Problema de decisão é uma questão sobre um sistema formal com uma resposta do tipo simou-não

Linguagens

Não-Recursivamente Enumeráveis

Recursivamente Enumeráveis

Complemento

- Seja L = L(M) para alguma TM M
 - Definimos L' como o conjunto de palavras não pertencente a L, do mesmo alfabeto
 - Assim, construímos M', tal que L' = L(M')

Complemento

- 4 possibilidades:
 - L e L' são ambas recursivas
 - L é RE mas não Recursiva e L' é não-RE
 - Lé Não-RE então L'é Não-RE
 - L é Não-RE então L' é RE mas não Recursiva

- Problemas frequentemente podem ser transformados (reduzidos) em outros, para os quais uma solução já foi encontrada
 - Um problema de decisão P1 e redutível a P2 se existir uma MT que, a partir de uma entrada que representa uma questão pi1 de P1, produz um problema pi2 de P2 que tem a mesma resposta de pi1.

Exemplo

- Primeira situação:
 - Se um problema P' é decidível e P é redutível a P', então P é também decidível.

- Segunda situação:
 - Se P é não-decidível e P é redutível a P', então P' também é não-decidível.

- Exemplo de problema Não-RE
 - Linguagem de Diagonalização (Ld)
- Exemplo de problema RE mas não Recursivo
 - Linguagem Universal (Lu)

Obs: Ld é o complemento de Lu

- Exemplo: PCP
 - Problema de Correspondência de Post
 - problema introduzido por Emil Post em 1946
- A entrada do problema consiste em:
 - duas listas finitas $\alpha 1$, $\alpha 2$... αn e $\beta 1$, $\beta 2$... βn de palavras sobre algum alfabeto Σ tendo pelo menos 2 símbolos.

- Uma solução para esse problema é uma sequência de índices tal que: $\alpha i1 \alpha i2 \dots \alpha ik = \beta i1 \beta i2 \beta ik$
 - Exemplo:

```
\alpha 1=a, \alpha 2=ab, \alpha 3=bba
\beta 1=baa, \beta 2=aa, \beta 3=bb
```

Uma solução para esse problema seria a sequência (3, 2, 3, 1):

```
\alpha 3 \alpha 2 \alpha 3 \alpha 1 = bbaabbbaa = \beta 3 \beta 2 \beta 3 \beta 1
```

- Teorema (Post, 1946): Não existe algoritmo para se determinar se um dado P.C.P. tem uma solução, ou seja: o PCP é um problema nãodecidível
- Prova: através de redução de problemas

Figura 9.11: Reduções que provam a indecidibilidade do Problema da Correspondência de Post

Exercício

1. Dado o problema X, como provar (via redução de problemas) que ele é decidível?

2. Dado o problema Y, como provar (via redução de problemas) que ele não é decidível?