Suites géométriques

Terminale STMG2

1 Définition

Définition 1. Soit $a \in \mathbb{R}_+$ et $q \in \mathbb{R}_+^*$. On appelle suite géométrique à termes positifs de premier terme a et de raison q une suite $(u_n)_{n \in \mathbb{N}}$ définie par la relation de récurrence suivante :

$$\begin{cases} u_0 = a \\ u_{n+1} = u_n \times q \end{cases}$$

Remarque.

- De la même manière qu'une suite arithmétique consiste à ajouter la même quantité à chaque étape, une suite géométrique consiste à multiplier par une même quantité à chaque étape.
- *Ici, on impose que la raison soit strictement positive* $(\in \mathbb{R}_+^*)$.

Exemple. Compléter les schémas suivants décrivant des suites géométriques :

a) a = 5 et q = 2

b) a = 64 et q = 0.5

c) $a = 1234 \ et \ q = 0.1$

Définition 2 (Formule explicite). Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $u_0=a$ et de raison $q\in\mathbb{R}_+^*$. Alors, pour tout $n\in\mathbb{N}$, on a

$$u_n = a \times q^n$$

Exemple. Pour chacun des exemples précédents, donner directement u_{10} .

Suites géométriques Terminale STMG2

2 Étude d'une suite géométrique

Proposition 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique à termes positifs de raison q>0.

- Si q < 1, alors $(u_n)_{n \in \mathbb{N}}$ est décroissante.
- $Si \ q > 1$, alors $(u_n)_{n \in \mathbb{N}}$ est croissante.
- Si q = 1, alors $(u_n)_{n \in \mathbb{N}}$ est constante.

Exemple. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $u_0=4$ et de raison q. Donner une valeur q_1 à q pour que $(u_n)_{n\in\mathbb{N}}$ soit croissante, puis une valeur q_2 à q pour que $(u_n)_{n\in\mathbb{N}}$ soit décroissante. Tester vos choix en observant les premiers termes de la suite.

3 Moyenne géométrique

Définition 3. Soit x et y deux nombres positifs. Alors la **moyenne géométrique** de x et y est donnée par

 \sqrt{xy}

Proposition 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique à termes positifs. Alors, pour tout n>1, on a

$$u_n = \sqrt{u_{n-1}u_{n+1}}$$

Exemple. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique à termes positifs, telle que $u_9=5$ et $u_{11}=320$. Calculer u_{10} , puis en déduire la raison de cette suite.

Suites géométriques Terminale STMG2

4 Somme géométrique

Définition 4. Soit un entier naturel n et un réel q. La somme $1 + q + q^2 + \cdots + q^n$ est appelée **somme géométrique** de raison q et est notée

$$\sum_{i=0}^{n} q^{i}$$

Proposition 3. Soit un entier naturel n et un réel q différent de 1. Alors, la somme géométrique de raison q vaut

$$\sum_{i=0}^{n} q^{i} = \frac{q^{n+1} - 1}{q - 1}$$

Remarque. Si q = 1, alors $\sum_{i=0}^{n} q^{i} = n$.

Exemple. Calculer les sommes géométriques suivantes :

a)
$$1+2+2^2+\cdots+2^8=\sum_{i=0}^9 2^i$$

b)
$$1-3+(-3)^2+\cdots+(-3)^12=\sum_{i=0}^12(-3)^i$$

Proposition 4. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison $q\neq 1$, et N un entier naturel. Alors la somme des N premiers termes de $(u_n)_{n\in\mathbb{N}}$ est donnée par :

$$u_0 + u_1 + \dots + u_N = \sum_{i=0}^{N} u_i = u_0 \frac{q^{N+1} - 1}{q - 1}$$