Model Question Paper with effect from 2023-24 (CBCS Scheme)

USN					

Fourth Semester B.E. Degree Examination

Analysis and Designs of Algorithms

TIME: 03 Hours Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

				Modu	ıle -1				BL	Marks
Q.01	a	Define algorithm. Explain asymptotic notations Big Oh, Big Omega and Big Theta notations					d Big Theta	L2	08	
	b	Explain the ger a recursive alg						orithm. Suggest	L2	08
	с							$O(\max\{g1(n),$	L2	04
	-	<i>U</i> \ ///		0	R					
Q.02	a	With neat diag	ram explaii	n different st	teps in desi	gning and a	nalyzing a	n algorithm	L2	08
	b Explain the general plan for analyzing the efficiency of a non-recursive algorithm. Suggest a non-recursive algorithm to find maximum element in the list of n number Derive its efficiency						L2	08		
	c With the algorithm derive the worst case efficiency for Bubble sort							L2	04	
				Mod	ule-2					
Q. 03	a	Explain the conderive its time			quer. Desig	gn an algori	thm for me	erge sort and	L2	10
	b	Design an inse on these eleme			d obtain its	time compl	exity. App	ly insertion sort	L3	10
				0	R					
Q.04	a	Explain Strasso	en's matrix	multiplicati	on and deri	ve its time	complexity	/	L2	10
	b	Design an algo 25,75,40,10,20		uick sort alg	gorithm. Ap	ply quick s	ort on these	e elements.	L3	10
				Mod						
Q. 05	a	Define AVL T	rees. Expla	in its four ro	otation type	S			L2	10
	b	Construct bottom up heap for the list 2,9,7,6,5,8. Obtain its time complexity						L3	10	
				0						
Q. 06	a							L2	10	
	b							L3	10	
				Mod	ule-4					
Q. 07	a Construct minimum cost spanning tree using Kruskals algorithm for the following graph.						e following	L3	10	
		3 b 1 c 6								
Ì		6 e 8								
	b	What are Huffman Trees? Construct the Huffman tree for the following data.								10
		Character								
		Probability	0.5	0.35	0.5	0.1	0.4	0.2		
i i		Encode DAD-								

		OR		
Q. 08	a	Apply Dijkstra's algorithm to find single source shortest path for the given graph by considering S as the source vertex.	L3	10
	b	Define transitive closure of a graph. Apply Warshalls algorithm to compute transitive closure of a directed graph	L3	10
		Module-5		
Q. 09	a	Explain the following with examples i) P problem ii) NP Problem iii) NP- Complete problem iv) NP – Hard Problems	L2	10
	b	What is backtracking? Apply backtracking to solve the below instance of sum of subset problem S={5,10,12,13,15,18} d=30	L3	10
Q. 10	a	Illustrate N queen's problem using backtracking to solve 4-Queens problem	L2	10
	b	Using Branch and Bound technique solve the below instance of knapsack problem. Item Weight Value 1 2 12 2 1 10 3 3 20 4 2 5 Capacity 5	L3	10

Page 01 of 02