Tarefa 01: Detecção de Placa de Veículos

Alexandre Xavier Falcão

Entrega parcial, 02/10/18, e final, 16/10/18

Resumo

Em sala de aula vimos as operações de normalização divisiva, convolução, ativação, max-pooling, e min-pooling. Vimos que uma sequência dessas operações usando um filtro (kernel) adequado na convolução é capaz de realçar pixels de uma placa de veículo em uma dada imagem. Esta tarefa, portanto, consiste em selecionar um banco de filtros adequados ao problema; projetar um classificador por combinação ponderada de imagens de treinamento filtradas por esses kernels, seguida de limiarização e pós-processamento para segmentação de um componente de placa; e depois avaliar a efetividade da detecção de uma região de interesse em torno do componente de placa selecionado em um conjunto de imagens de teste. A efetividade da operação pode ser medida pelo erro médio e o desvio padrão do número de pixels de placa fora da região de interesse somado ao número de pixels de fundo dentro da região de interesse. Menor o erro, maior a efetividade.

1 Introdução

Para realizar esta tarefa, um banco com 200 imagens cinza contendo placas de veículos e as respectivas máscaras de cada placa foi selecionado e essas imagens foram divididas em 5 pares de conjuntos de treinamento e teste, cada um contendo 50% das imagens do banco, selecionadas de forma aleatória e com intersecção vazia entre o treinamento e o teste em cada par. Sua avaliação, portanto, deve apresentar a efetividade média e o desvio padrão sobre esses conjuntos de dados (i.e., uma validação cruzada 5×2 -fold).

Sejam Z_{tr} e Z_{ts} um par, conjunto de treinamento e conjunto de teste, cada um contendo 100 imagens $\hat{I}_i = (D_I, I_i), i = 1, 2, ..., 100$, e as respectivas máscaras $\hat{M}_i = (D_I, M_i)$ da placa, com $M_i(p) = 255$ para pixels de placa e $M_i(p) = 0$ para pixels de fundo. Inicialmente, selecione um certo número k de kernels \hat{K}_j , j = 1, 2, ..., k, que lhe pareçam adequados ao problema e ajuste os parâmetros da sequência de operações vista em sala para algumas imagens de treinamento. Muito embora esses parâmetros possam ser aprendidos, vamos selecioná-los de forma empírica e mantê-los fixos por simplicidade. Usem primeiro a implementação da sequência de operações, como visto em sala, e depois otimizem o processamento com o uso de multiplicação matricial. Para cada

imagem cinza de treinamento $\hat{I}_i = (D_I, I_i) \in Z_{tr}$, você deve aplicar a sequência de operações dada gerando uma imagem $\hat{J}_{i,j} = (D_I, J_{i,j}), j = 1, 2, ..., k$, (bandas da imagem $\hat{J}_i = (D_I, J_i)$) resultante da sequência de operações aplicada à imagem \hat{I}_i usando cada filtro \hat{K}_j . As bandas $\hat{J}_{i,j}$, j = 1, 2, ..., k, de \hat{J}_i podem ser normalizadas no intervalo [0, 255].

O classificador consistirá de uma limiarização $T\in(0,255)$ aplicada a uma imagem $\hat{C}_i=(D_I,C_i)$ definida por

$$\hat{C}_i = \sum_{j=1}^k w_j \hat{J}_{i,j},\tag{1}$$

onde $0 \le w_j \le 1$ é um peso proporcional a efetividade do filtro \hat{K}_j . A limiarização gera uma imagem binária $\hat{B}_i = (D_I, B_i)$, onde $\forall p \in D_I$, $B_i(p) = 1$ (classificado como placa) se $C_i(p) \ge T$, e $B_i(p) = 0$, no caso contrário. O componente correspondente à placa será então selecionado por algum pós-processamento que iremos identificar com os resultados parciais a serem entregues no dia 02/10/18. A região de interesse em torno da placa poderá então ser definida como uma região retangular em torno do centro do componente selecionado.

2 Treinamento

O treinamento consiste em encontrar os parâmetros w_j , $j=1,2,\ldots,k$, e o limiar T que minimizam o erro médio de classificação de pixels de placa como fundo e de pixels de fundo como placa. Para cada filtro \hat{K}_j , você deve encontrar inicialmente o limiar T_j que minimiza o erro médio de classificação de pixels de placa como fundo e de pixels de fundo como placa quando as imagens $\hat{J}_{i,j}$, $i=1,2,\ldots,100$, são limiarizadas por T_j . Isto é, seja $\hat{B}_{i,j}=(D_I,B_{i,j})$ uma imagem binária definida por $B_{i,j}(p)=1$, se $J_{i,j}(p)\geq T_j$, e $B_{i,j}(p)=0$, no caso contrário. O erro $e_{i,j}(T_j)$ será dado por

$$e_{i,j}(T_j) = \alpha N_{i,j}^{(0)} + \beta N_{i,j}^{(1)},$$
 (2)

onde $N_{i,j}^{(0)}$ é o número de pixels de fundo classificados como placa (i.e., $B_{i,j}(p) = 1$ quando p tem valor $M_i(p) = 0$ em \hat{M}_i), $N_{i,j}^{(1)}$ é o número de pixels de placa classificados como fundo (i.e., $B_{i,j}(p) = 0$ quando p tem valor $M_i(p) = 255$ em \hat{M}_i), e $\alpha \ll \beta$ são constantes que compensam o fato da placa ser bem menor que o fundo. Isto é, o erro $N_{i,j}^{(1)}$ precisa ter peso bem maior do que o erro $N_{i,j}^{(0)}$ (e.g., $\beta = 10\alpha$). O valor ótimo de $T_j \in (0, 255)$ deve ser aquele que minimiza o erro médio e_j ,

$$e_j = \frac{1}{100} \sum_{i=1}^{100} e_{i,j}(T_j).$$
 (3)

Após encontrar T_j ótimo para cada filtro \hat{K}_j , $j=1,2,\ldots,k$, definimos os pesos w_j da seguinte forma.

$$w_j = 1 - \frac{e_j}{\sum_{l=1}^k e_l} \tag{4}$$

Após encontrar os valores ótimos de w_j , $j=1,2,\ldots,k$, o valor ótimo do limiar T poderá ser econtrado da seguinte forma. Calcula-se \hat{C}_i usando a Equação 1 e os pesos w_j encontrados. Para cada valor de $T \in (0,255)$, você deve calcular o erro $e_i(T)$ da limiarização de \hat{C}_i por T. Isto é,

$$e_i(T) = \alpha N_i^{(0)} + \beta N_i^{(1)},$$
 (5)

onde $N_i^{(0)}$ é o número de pixels de fundo classificados como placa (i.e., $B_i(p)=1$ quando p tem valor $M_i(p)=0$ em $\hat{M_i}$), $N_i^{(1)}$ é o número de pixels de placa classificados como fundo (i.e., $B_i(p)=0$ quando p tem valor $M_i(p)=255$ em $\hat{M_i}$), e $\alpha \ll \beta$ são as mesmas constantes acima. Depois, o valor ótimo de T é aquele que minimiza o erro médio e,

$$e = \frac{1}{100} \sum_{i=1}^{100} e_i(T). \tag{6}$$

Os parâmetros aprendidos, w_j , $j=1,2,\ldots,k$, e T devem então ser gravados em um arquivo texto para serem usandos pelo teste.

3 Teste

Para cada imagem $\hat{I}_i \in Z_{ts}$ de teste, $i=1,2,\ldots,100$, você deve executar a sequência de operações acima, seguida da combinação ponderada das imagens das bandas (Equação 1), limiarização T, e pós-processamento (a ser definido) sobre a imagem resultante $\hat{B}_i = (D_I, B_i)$. O erro médio no conjunto de teste deve ser então calculado pela Equação 6 e o mesmo pode ser feito trocando-se Z_{tr} por Z_{ts} , e repetindo o procedimento para cada um dos 5 pares de conjuntos Z_{tr} e Z_{ts} . Ao final, calcula-se o erro médio final dessas 10 execuções do procedimento e o desvio padrão desta medida.

4 Apresentação dos resultados

Os resultados devem ser apresentados em um relatório escrito conforme o seguinte padrão. O relatório pode ter até 20 páginas de texto 11pt, incluindo figuras, tabelas, gráficos, e referências bibliográficas se necessário. Ele deve conter:

• Título da tarefa, código da disciplina, nome do aluno, RA, e data de entrega do relatório.

- Introdução com pesquisa bibliográfica sobre as técnicas estudadas para implementação da tarefa, se for o caso, e resumo do que foi implementado e dos resultados obtidos.
- Descrição teórica das técnicas, discussão sobre as dificuldades práticas encontradas, e explicação sobre como elas foram resolvidas na tarefa.
- Explicação dos experimentos e a apresentação dos resultados.
- Conclusão com uma discussão dos resultados principais.

Este relatório é devido para 16/10/18, mas uma versão parcial deverá ser apresentada para a aula do dia 02/10/18. Nesta aula iremos discutir o andamento da tarefa e decidir o pós-processamento que será adotado para a conclusão da tarefa e do relatório.