K. Nearest Neighbour (nahliegende Nachbarn)

Wis bezwecken neve Daten in bereits bestchenden Klassen (Kategorian) [diese Normenvon K. Means Clustering]

vorteile 1) schrischnell 2) schribust

NACHTEILE 1) vorher mussen die Unterponen behannt
sein.

N. Means chief.

				Memoris (mx+
PROBI	EMSTELL	NNG:		
	ending	Gewich (kg)V	olumeum	Kategorie Normal (N)
	A	10	0'02	Normal (N)
	В	5 ₀	o ^l 15	Schwer (s)
	C	3.	0110	N
	\mathcal{D}	60	0120	5
	E	20	005	N
	X	40	012	?
	, <u>,</u>			

Zu welcher Hasse gehört X?

KNN agiert durch einen .. Lazy. Algorythmus : das Hyprythmus lernt nicht. Agiert aus einer datenbasierten Mehrheitsentscheidung.

1. SCHRITT. Normieren. Min-Max Scaler. *xi-xmin

Xmax*min

	1.		
Sendung	Gewich *	Volumen	Klasse
A	$\frac{10-10}{60-10}=0$	0'02-0'02=0	N
В	50-10 _ 0'8	015-002	0'72 9
V	60-10	015-002=	
C	30-10 = 0'4	0'1-0'02=	.0'44 N
N	60-10 - 1	02-002	- 1 S
U	60-10	02-002	= 1
E	$\frac{20-10}{60-10}=0$	2 005-00	2 = 0/67 N
. T	•.		
*	40-10-0	05-00	$\frac{2}{2} = 0.55$
V *		P	
1/	K=3		C=4
08			
0,9	Kal .	[01 = 1 55	
0,4	The last	[0,6,0,5]	
0'2			/ K=5
A	112 14	0/4 0/0 1	→ G*
	02 01	06 08 1	

2. SCHRITT. Abstande vom neven Punkt zu Allen anderen.

$$A_{AX} = \sqrt{(0-0)6^2+(0-0)55^2} = 0^8 8139$$
 N

$$d_{BX} = \sqrt{0^{1}8 - 0^{1}6} + \sqrt{0^{1}72 - 0^{1}55}^{2} = 0^{1}262 = 0$$

$$d_{CX} = \sqrt{0^{1}4 - 0^{1}6} + \sqrt{0^{1}44 - 0^{1}55}^{2} = 0^{1}228 = 0$$

$$d_{DX} = \sqrt{1 - 0^{1}6} + \sqrt{1 - 0^{1}55}^{2} = 0^{1}6 = 0$$

$$d_{EX} = \sqrt{0^{1}2 - 0^{1}6} + \sqrt{0^{1}67 - 0^{1}55}^{2} = 0^{1}55 = 0$$

3. SCHRITT. Abstand onfsteigend Ordnen.

dcx < dbx < dex < dox < dax

$$K = 1 : p(X \in N) = \frac{1}{1} = 1 : p(X \in S) = \frac{0}{1} = 0$$

$$k=2$$
: $p(X \in N) = \frac{1}{2} = 0.5$; $p(X \in S) = \frac{1}{2} = 0.5$

$$K=3: p(X \in N) = \frac{2}{3} = 066; p(X \notin S) = \frac{1}{3} = 035$$

$$k=4: p(xfn) = \frac{2}{4} = 0'5; p(xes) = \frac{2}{4} = 0'5$$

$$K=5: p(X+N) = \frac{3}{5} = 0.6; p(X+S) = \frac{2}{5} = 0.4$$

· Das Minimum der Kurve liegt bei K=3. · Somit beschreibt K=3 om besten die Trennung der Klassen [Shannon Informationstheorie] und liefert die Entscheidung -> X gehört zur Klasse N

Ubung. (Profungsahnlich). OHNE LOSUNG.

Gegeben sind die Positionen von 6 Werken mit [XIY] Koordinaten. 1) Bitte ermitteln Sie mit K. Means Westering die 2 relevanten Gruppen um 2 Lager zu positionieren. Forngen sie mit Auster G[W1,W2] G2[W3,W4,W5,W6].

2) Mit Hilfe von KNN entscheiden Sie zur welchen Grupze Werk & gehört. • W1[0,0] W2[0,2] W3[1,1] W4[3,2] W5[4,1] W6[4,3]

· Wx 2,5