Regularization methods in multiple regression

March 21, 2024

High dimensional regression

$$Y_{n \times 1} = X_{n \times p} \beta_{p \times 1} + z_{n \times 1}, \ z \sim N(0, \sigma^2 I)$$

High dimensional regression

$$Y_{n \times 1} = X_{n \times p} \beta_{p \times 1} + z_{n \times 1}, \ z \sim N(0, \sigma^2 I)$$

 $Y = (Y_1, \dots, Y_n)^T$ - wektor of trait values for n individuals

High dimensional regression

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + z_{n\times 1}, \quad z \sim N(0, \sigma^2 I)$$

$$Y = (Y_1, \dots, Y_n)^T \text{ - wektor of trait values for } n \text{ individuals}$$

$$X_{n\times p} \text{ - matrix of regressors}$$

When n > p but p is large (say n/2) the variance of LS estimates may be very large

When n > p but p is large (say n/2) the variance of LS estimates may be very large

When p > n the matrix X'X is singular and the LS estimate of β is not unique

When n > p but p is large (say n/2) the variance of LS estimates may be very large

When p>n the matrix X'X is singular and the LS estimate of β is not unique

Ridge regression:

$$\hat{\beta} = argmin_{\beta \in R^p} L(b)$$
 , where $L(b) = ||Y - Xb||^2 + \gamma ||b||^2$

When n > p but p is large (say n/2) the variance of LS estimates may be very large

When p > n the matrix X'X is singular and the LS estimate of β is not unique

Ridge regression:

$$\hat{\beta} = argmin_{\beta \in R^p} L(b)$$
 , where $L(b) = ||Y - Xb||^2 + \gamma ||b||^2$

$$\frac{\partial L(b)}{\partial b} = -2X'(Y - Xb) + 2\gamma b = 0$$

When n > p but p is large (say n/2) the variance of LS estimates may be very large

When p > n the matrix X'X is singular and the LS estimate of β is not unique

Ridge regression:

$$\hat{eta} = argmin_{eta \in R^p} L(b)$$
 , where $L(b) = ||Y - Xb||^2 + \gamma ||b||^2$
$$\frac{\partial L(b)}{\partial b} = -2X'(Y - Xb) + 2\gamma b = 0$$

$$-X'Y + (X'X + \gamma I)b = 0 \quad \Leftrightarrow \quad b = (X'X + \gamma I)^{-1}X'Y$$

$$\hat{\beta} = (X'X + \gamma I)^{-1}X'Y$$
, where $\gamma > 0$

$$\hat{\beta} = (X'X + \gamma I)^{-1}X'Y$$
, where $\gamma > 0$

$$\hat{Y} = X\hat{\beta} = MY$$
, with $M = X(X'X + \gamma I)^{-1}X'$

$$\hat{\beta} = (X'X + \gamma I)^{-1}X'Y$$
, where $\gamma > 0$

$$\hat{Y} = X\hat{\beta} = MY$$
, with $M = X(X'X + \gamma I)^{-1}X'$

$$Tr[M] = Tr[(X'X + \gamma I)^{-1}X'X]$$

$$\hat{\beta} = (X'X + \gamma I)^{-1}X'Y$$
, where $\gamma > 0$

$$\hat{Y} = X\hat{\beta} = MY$$
, with $M = X(X'X + \gamma I)^{-1}X'$

$$Tr[M] = Tr[(X'X + \gamma I)^{-1}X'X]$$

$$Tr[M] = \sum_{i=1}^{n} \lambda_i(M)$$
, where $\lambda_1(M), \ldots, \lambda_n(M)$ are eigenvalues of M

$$X'Xu = \lambda u$$

$$X'Xu = \lambda u$$

$$(X'X + \gamma I)u = (\lambda + \gamma)u, \quad (X'X + \gamma I)^{-1}u = \frac{1}{\lambda + \gamma}u$$

$$X'Xu = \lambda u$$

$$(X'X + \gamma I)u = (\lambda + \gamma)u, \ (X'X + \gamma I)^{-1}u = \frac{1}{\lambda + \gamma}u$$

$$(X'X + \gamma I)^{-1}X'Xu = \frac{\lambda}{\lambda + \gamma}u, \quad Tr(M) = \sum_{i=1}^{n} \frac{\lambda_i(X'X)}{\lambda_i(X'X) + \gamma}$$

$$X'Xu = \lambda u$$

$$(X'X + \gamma I)u = (\lambda + \gamma)u, \ (X'X + \gamma I)^{-1}u = \frac{1}{\lambda + \gamma}u$$

$$(X'X + \gamma I)^{-1}X'Xu = \frac{\lambda}{\lambda + \gamma}u, \quad Tr(M) = \sum_{i=1}^{n} \frac{\lambda_i(X'X)}{\lambda_i(X'X) + \gamma}$$

$$X'Xu = \lambda u$$

$$(X'X + \gamma I)u = (\lambda + \gamma)u, \ (X'X + \gamma I)^{-1}u = \frac{1}{\lambda + \gamma}u$$

$$(X'X + \gamma I)^{-1}X'Xu = \frac{\lambda}{\lambda + \gamma}u, \quad Tr(M) = \sum_{i=1}^{n} \frac{\lambda_i(X'X)}{\lambda_i(X'X) + \gamma}$$

$$X'Xu = \lambda u$$

$$(X'X + \gamma I)u = (\lambda + \gamma)u, \quad (X'X + \gamma I)^{-1}u = \frac{1}{\lambda + \gamma}u$$

$$(X'X + \gamma I)^{-1}X'Xu = \frac{\lambda}{\lambda + \gamma}u, \quad Tr(M) = \sum_{i=1}^{n} \frac{\lambda_i(X'X)}{\lambda_i(X'X) + \gamma}$$

$$\hat{P}E = RSS + 2\sigma^2 \sum_{i=1}^{n} \frac{\lambda_i(X'X)}{\lambda_i(X'X) + \gamma}$$

$$X'X = I$$
, $\hat{\beta} = \frac{1}{1+\gamma}X'Y = \frac{1}{1+\gamma}(\beta + X'\epsilon)$

$$X'X = I$$
, $\hat{\beta} = \frac{1}{1+\gamma}X'Y = \frac{1}{1+\gamma}(\beta + X'\epsilon)$

 $Z = X' \epsilon \sim N(0, \sigma^2 I)$

$$X'X = I$$
, $\hat{\beta} = \frac{1}{1+\gamma}X'Y = \frac{1}{1+\gamma}(\beta + X'\epsilon)$

$$Z = X' \epsilon \sim N(0, \sigma^2 I)$$

$$E(\hat{\beta}_i - \beta_i)^2 = E\left(\frac{1}{1+\gamma}\beta_i - \beta_i + \frac{1}{1+\gamma}Z_i\right)^2$$

$$X'X = I$$
, $\hat{\beta} = \frac{1}{1+\gamma}X'Y = \frac{1}{1+\gamma}(\beta + X'\epsilon)$

$$Z = X'\epsilon \sim N(0, \sigma^2 I)$$

$$E(\hat{\beta}_i - \beta_i)^2 = E\left(\frac{1}{1+\gamma}\beta_i - \beta_i + \frac{1}{1+\gamma}Z_i\right)^2$$
$$= \frac{\gamma^2}{(1+\gamma)^2}\beta_i^2 + \frac{\sigma^2}{(1+\gamma)^2}$$

$$X'X = I, \quad \hat{\beta} = \frac{1}{1+\gamma}X'Y = \frac{1}{1+\gamma}(\beta + X'\epsilon)$$

$$Z = X'\epsilon \sim N(0, \sigma^2 I)$$

$$E(\hat{\beta}_i - \beta_i)^2 = E\left(\frac{1}{1+\gamma}\beta_i - \beta_i + \frac{1}{1+\gamma}Z_i\right)^2$$
$$= \frac{\gamma^2}{(1+\gamma)^2}\beta_i^2 + \frac{\sigma^2}{(1+\gamma)^2}$$

$$E||\hat{\beta} - \beta||^2 = \frac{\gamma^2}{(1+\gamma)^2}||\beta||^2 + \frac{p\sigma^2}{(1+\gamma)^2}$$

When ridge is better than LS ?

When ridge is better than LS?

$$\frac{\gamma^2||\beta||^2 + p\sigma^2}{(1+\gamma)^2} < p\sigma^2$$

When ridge is better than LS?

$$\frac{\gamma^2||\beta||^2 + p\sigma^2}{(1+\gamma)^2} < p\sigma^2$$

Ridge is always better than LS when $||\beta||^2 < p\sigma^2$

When ridge is better than LS?

$$\frac{\gamma^2||\beta||^2 + p\sigma^2}{(1+\gamma)^2} < p\sigma^2$$

Ridge is always better than LS when $||\beta||^2 < p\sigma^2$ Otherwise, when

$$||\beta||^2 < \frac{\gamma+2}{\gamma}p\sigma^2$$

When ridge is better than LS?

$$\frac{\gamma^2||\beta||^2 + p\sigma^2}{(1+\gamma)^2} < p\sigma^2$$

Ridge is always better than LS when $||\beta||^2 < p\sigma^2$ Otherwise, when

$$||\beta||^2 < \frac{\gamma+2}{\gamma}p\sigma^2$$

$$\gamma < \frac{2p\sigma^2}{||\beta||^2 - p\sigma^2}$$

$$Y = X\beta$$

$$Y = X\beta$$

Basis Pursuit (Chen and Donoho, 1994): when p > n recover β by minimizing $||b||_1 = \sum_{i=1}^n |b_i|$ subject to Y = Xb.

$$Y = X\beta$$

Basis Pursuit (Chen and Donoho, 1994): when p > n recover β by minimizing $||b||_1 = \sum_{i=1}^n |b_i|$ subject to Y = Xb.

BP can recover β if it is *identifiable* with respect to L_1 norm, i.e.

If
$$X\gamma = X\beta$$
 and $\gamma \neq \beta$ then $\|\gamma\|_1 > \|\beta\|_1$.

$$Y = X\beta$$

Basis Pursuit (Chen and Donoho, 1994): when p > n recover β by minimizing $||b||_1 = \sum_{i=1}^n |b_i|$ subject to Y = Xb.

BP can recover β if it is *identifiable* with respect to L_1 norm, i.e.

If
$$X\gamma = X\beta$$
 and $\gamma \neq \beta$ then $\|\gamma\|_1 > \|\beta\|_1$.

$$k = ||\beta||_0 = \#\{i : \beta_i \neq 0\}$$

$$Y = X\beta$$

Basis Pursuit (Chen and Donoho, 1994): when p > n recover β by minimizing $||b||_1 = \sum_{i=1}^n |b_i|$ subject to Y = Xb.

BP can recover β if it is *identifiable* with respect to L_1 norm, i.e.

If
$$X\gamma = X\beta$$
 and $\gamma \neq \beta$ then $\|\gamma\|_1 > \|\beta\|_1$.

$$k = ||\beta||_0 = \#\{i : \beta_i \neq 0\}$$

Basis Pursuit can recover β if k is small enough.

Transition curve (Donoho and Tanner, 2005)

Let's assume than $p \to \infty$, $n/p \to \delta$ and $k/n \to \epsilon$.

If X_{ij} are iid $N(0, \tau^2)$ then the probability that BP recovers β converges to 1 if $\epsilon < \rho(\delta)$ and to 0 if $\epsilon > \rho(\delta)$, where $\rho(\delta)$ is the transition curve.

Transition curve (2)

Phase Transition: (l_1, l_0) equivalence

Victoria Stodden

Department of Statistics, Stanford University

Noisy case - multiple regression

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + z_{n\times 1}, \ z \sim N(0, \sigma I)$$

Noisy case - multiple regression

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + z_{n\times 1}, \ z \sim N(0, \sigma I)$$

Convex program: Minimize $||b||_1$ subject to $||Y - Xb||_2^2 \le \epsilon$

Or alternatively: $\min_{b \in R^p} \frac{1}{2} ||y - Xb||_2^2 + \lambda ||b||_1$

Noisy case - multiple regression

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + z_{n\times 1}, \ z \sim N(0, \sigma I)$$

Convex program: Minimize $||b||_1$ subject to $||Y - Xb||_2^2 \le \epsilon$

Or alternatively: $\min_{b \in R^p} \frac{1}{2} ||y - Xb||_2^2 + \lambda ||b||_1$

BPDN (Chen and Donoho, 1994) or LASSO (Tibshirani, 1996)

Solution to orthogonal design, ridge

• The Solution for ridge is given by

$$\hat{eta}_i^{
m ridge} = rac{y_i}{1+\lambda} = rac{\hat{eta}_i^{
m LS}}{1+\lambda}.$$

 \bullet Leads to a shrinkage by a factor $\frac{1}{1+\lambda}$ of the coefficients.

Solution to orthogonal design, lasso

• The Solution for lasso is given by

$$\hat{\beta_i}^{\textit{lasso}} = \textit{sign}(y_i) \left(|y_i| - \lambda \right)_+ = \textit{sign}(\hat{\beta}_i^{\textit{LS}}) \left(|\hat{\beta}_i^{\textit{LS}}| - \lambda \right)_+$$

- Set small values to exactly zero (sparse solution)
- ullet Fixed shrinkage of λ for non-zero coefficients.

Solution to orthogonal design, joint

• Common representation: Plot relation between $\hat{\beta}^{LS}$ and $\hat{\beta}^{ridge}/\hat{\beta}^{lasso}$

Selection of the tuning parameter for LASSO

- General rule: the reduction of λ_L results in identification of more elements from the true support (true discoveries) but at the same time it produces more falsely identified variables (false discoveries)
- ullet The choice of λ_L is challenging- e.g. crossvalidation typically leads to many false discoveries
- When $X^TX = I$ Lasso selects X_j iff $|\hat{\beta}_j^{LS}| > \lambda$
- Selection $\lambda = \sigma \Phi^{-1}(1 \alpha/(2p)) \approx \sigma \sqrt{2 \log p}$ corresponds to Bonferroni correction and controls FWER.

Application

• One of the main advantages of Lasso and ridge is that they can be use when p > n.

Application

- One of the main advantages of Lasso and ridge is that they can be use when p > n.
- A typical application is genetics. Here
 - X_i— samples were scanned with a microarray, that measures the expression of 10000s of genes simultaneously.
 - y_i time for severe breast cancer to metastasize.
 - The goal is to identify patients with poor prognosis in order to administer more aggressive follow-up treatment for them.

Application

- One of the main advantages of Lasso and ridge is that they can be use when p > n.
- A typical application is genetics. Here
 - X_i— samples were scanned with a microarray, that measures the expression of 10000s of genes simultaneously.
 - y_i time for severe breast cancer to metastasize.
 - The goal is to identify patients with poor prognosis in order to administer more aggressive follow-up treatment for them.
- Two typical genetic "models"
 - quantitative trait loci (QTL) a single or few important gene.
 - Polygene: many genes with small individual effect.

Which model is lasso which model is ridge?

p >> n

Choosing the regularization parameter

- Cross-validation for choosing λ .
- Often the cross validated error is often flat
- Prediction favours more parameters

Choosing the regularization parameter II

- A solution is instead choose a more regularized solution that have similar error.
- "similar" = within one S.E.

Choosing the regularization parameter (R)

- Go to package in R glmnet for both lasso and ridge.
- Need to find λ , use k-fold cross-validation.

[] library(glmnet) cvfit <- cv.glmnet(X, y, alpha=1, nfolds = 10, intercept = T, standardize = T) plot(cvfit)

fit λ II (lasso)

fit λ III (lasso)

Under the hood

- For each cross validation sample on solves an entire path $\lambda \in \{100, 10, 1, 0.1..., \}$
- Recall that p=24189, thus for each $\lambda \in \{100, 10, 1, 0.1..., \}$ and each cross-validation set we need to estimate 24189 parameters to optimum.

Under the hood

- For each cross validation sample on solves an entire path $\lambda \in \{100, 10, 1, 0.1..., \}$
- Recall that p=24189, thus for each $\lambda \in \{100, 10, 1, 0.1..., \}$ and each cross-validation set we need to estimate 24189 parameters to optimum.

ridge

• Then ridge ($\alpha = 0$), fitting λ the same way

[] cvfit <- cv.glmnet(X, y, alpha=0, nfolds = 10, intercept = T, standardize = T) <math>plot(cvfit)

ridge II

ridge III

The sign vector of β is defined as $S(\beta) = (S(\beta_1), \dots, S(\beta_p)) \in \{-1, 0, 1\}^p$, where for $x \in \mathbb{R}$, $S(x) = 1_{x>0} - 1_{x<0}$

The sign vector of β is defined as $S(\beta) = (S(\beta_1), \dots, S(\beta_p)) \in \{-1, 0, 1\}^p$, where for $x \in \mathbb{R}$, $S(x) = 1_{x>0} - 1_{x<0}$ Let $I := \{i \in \{1, \dots, p\} \mid \beta_i \neq 0\}$, and let $X_I, X_{\overline{I}}$ be matrices whose columns are respectively $(X_i)_{i \in I}$ and $(X_i)_{i \notin I}$.

The sign vector of β is defined as $S(\beta) = (S(\beta_1), \dots, S(\beta_p)) \in \{-1, 0, 1\}^p$, where for $x \in \mathbb{R}$, $S(x) = 1_{x>0} - 1_{x<0}$ Let $I := \{i \in \{1, \dots, p\} \mid \beta_i \neq 0\}$, and let $X_I, X_{\overline{I}}$ be matrices whose columns are respectively $(X_i)_{i \in I}$ and $(X_i)_{i \notin I}$.

Irrepresentable condition:

$$\|X_{\overline{I}}'X_I(X_I'X_I)^{-1}S(\beta_I)\|_{\infty} \leq 1$$

The sign vector of β is defined as

$$S(\beta) = (S(\beta_1), \dots, S(\beta_p)) \in \{-1, 0, 1\}^p$$
, where for $x \in \mathbb{R}$, $S(x) = 1_{x>0} - 1_{x<0}$

Let $I := \{i \in \{1, \dots, p\} \mid \beta_i \neq 0\}$, and let $X_I, X_{\overline{I}}$ be matrices whose columns are respectively $(X_i)_{i \in I}$ and $(X_i)_{i \notin I}$.

Irrepresentable condition:

$$||X_{\overline{I}}'X_I(X_I'X_I)^{-1}S(\beta_I)||_{\infty} \leq 1$$

When

$$||X_{\bar{I}}'X_{I}(X_{I}'X_{I})^{-1}S(\beta_{I})||_{\infty} > 1$$

then probability of the support recovery by LASSO is smaller than 0.5 (Wainwright, 2009).

Separation of true and false predictors

Theorem (Tardivel, Bogdan, 2019)

For any $\lambda > 0$ LASSO can separate well the causal and null features if and only if vector β is identifiable with respect to l_1 norm and $\min_{i \in I} |\beta_i|$ is sufficiently large.

Irrepresentability and identifiability curves

n=100, p=300, elements of X were generated as iid N(0,1)

Modifications of LASSO

Corollary

Appropriately thresholded LASSO can properly identify the sign of sufficiently large β if and only if β is identifiable with respect to l_1 norm.

Conjecture

Adaptive (reweighted) LASSO can properly identify the sign of sufficiently large β if and only if β is identifiable with respect to l_1 norm.

Adaptive LASSO

Adaptive LASSO [Zou, *JASA* 2006], [Candès, Wakin and Boyd, *J. Fourier Anal. Appl.* 2008]

$$\beta_{aL} = argmin_b \left\{ \frac{1}{2} ||y - Xb||_2^2 + \lambda \sum_{i=1}^p w_i |b|_i \right\},$$
(1)

where $w_i = \frac{1}{\hat{\beta}_i}$, and $\hat{\beta}_i$ is some consistent estimator of β_i .

Adaptive LASSO

Adaptive LASSO [Zou, *JASA* 2006], [Candès, Wakin and Boyd, *J. Fourier Anal. Appl.* 2008]

$$\beta_{aL} = argmin_b \left\{ \frac{1}{2} ||y - Xb||_2^2 + \lambda \sum_{i=1}^p w_i |b|_i \right\},$$
(1)

where $w_i = \frac{1}{\hat{\beta}_i}$, and $\hat{\beta}_i$ is some consistent estimator of β_i . Reduces bias and improves model selection properties

1. λ for LASSO selected as to control FWER at the level 0.05 for k=5 (theoretical result in (Tardivel and Bogdan, 2019))

- 1. λ for LASSO selected as to control FWER at the level 0.05 for k=5 (theoretical result in (Tardivel and Bogdan, 2019))
- 2. λ for thresholded LASSO and independent gaussian design selected according to AMP theory for LASSO (see e.g. (Wang, Weng, Maleki, 2018))

- 1. λ for LASSO selected as to control FWER at the level 0.05 for k=5 (theoretical result in (Tardivel and Bogdan, 2019))
- 2. λ for thresholded LASSO and independent gaussian design selected according to AMP theory for LASSO (see e.g. (Wang, Weng, Maleki, 2018))
- 3. For correlated design (off diagonal covariance 0.9) we used 0.5 λ_{AMP}

- 1. λ for LASSO selected as to control FWER at the level 0.05 for k=5 (theoretical result in (Tardivel and Bogdan, 2019))
- 2. λ for thresholded LASSO and independent gaussian design selected according to AMP theory for LASSO (see e.g. (Wang, Weng, Maleki, 2018))
- 3. For correlated design (off diagonal covariance 0.9) we used 0.5 λ_{AMP}
- 4. For adaptive LASSO weights based on LASSO estimator with λ as in 2 and 3, selection based on LASSO with λ as in 1

- 1. λ for LASSO selected as to control FWER at the level 0.05 for k=5 (theoretical result in (Tardivel and Bogdan, 2019))
- 2. λ for thresholded LASSO and independent gaussian design selected according to AMP theory for LASSO (see e.g. (Wang, Weng, Maleki, 2018))
- 3. For correlated design (off diagonal covariance 0.9) we used 0.5 λ_{AMP}
- 4. For adaptive LASSO weights based on LASSO estimator with λ as in 2 and 3, selection based on LASSO with λ as in 1
- 5. Threshold selected by using knockoff control variables (Foygel-Barber and Candès, 2015; Candès, Fan, Janson, Lv, 2016)

Probability of the sign recovery

Family Wise Error Rate

Thresholded LASSO (1)

Foygel-Barber and Candés (Ann. Stat. 2015), Candès, Fan, Janson and Lv (JRSSB, 2017) - augment X with the matrix \tilde{X} of specifically constructed control variables

Foygel-Barber and Candés (Ann. Stat. 2015), Candès, Fan, Janson and Lv (JRSSB, 2017) - augment X with the matrix \tilde{X} of specifically constructed control variables

Necessary requirement:

$$\Sigma_X = \Sigma_{\tilde{X}}$$
 and for $i \neq j$ $Cov(X_i, \tilde{X}_j) = Cov(X_i, X_j)$.

When X_{ij} are iid N(0, 1/n) then \tilde{X}_{ij} are also iid N(0, 1/n).

Foygel-Barber and Candés (Ann. Stat. 2015), Candès, Fan, Janson and Lv (JRSSB, 2017) - augment X with the matrix \tilde{X} of specifically constructed control variables

Necessary requirement:

$$\Sigma_X = \Sigma_{\tilde{X}}$$
 and for $i \neq j$ $Cov(X_i, \tilde{X}_j) = Cov(X_i, X_j)$.

When X_{ij} are iid N(0, 1/n) then \tilde{X}_{ij} are also iid N(0, 1/n).

 $\hat{\beta}(\lambda)$ - vector of 2p estimates of regression coefficients by LASSO applied on the augmented design matrix $X_{aug} = [X, \tilde{X}]$

Foygel-Barber and Candés (Ann. Stat. 2015), Candès, Fan, Janson and Lv (JRSSB, 2017) - augment X with the matrix \tilde{X} of specifically constructed control variables

Necessary requirement:

 $\Sigma_X = \Sigma_{\tilde{X}}$ and for $i \neq j$ $Cov(X_i, \tilde{X}_j) = Cov(X_i, X_j)$.

When X_{ij} are iid N(0,1/n) then \tilde{X}_{ij} are also iid N(0,1/n).

 $\hat{eta}(\lambda)$ - vector of 2p estimates of regression coefficients by LASSO applied on the augmented design matrix $X_{aug}=[X,\tilde{X}]$

$$W_j = |\widehat{\beta}_j| - |\widehat{\beta}_{p+j}|$$

Knockoff filter

Define a random threshold as

$$\hat{t}(\lambda) = \min \left\{ t > 0 : \frac{1 + \#\{j : W_j(\lambda) \le -t\}}{\#\{j : W_j(\lambda) \ge t\}} \le q \right\}$$

and select

$$\widehat{\mathcal{S}(\lambda)} = \{j : W_j(\lambda) \geq \hat{t}(\lambda)\},\$$

Knockoff filter

Define a random threshold as

$$\hat{t}(\lambda) = \min \left\{ t > 0 : \frac{1 + \#\{j : W_j(\lambda) \le -t\}}{\#\{j : W_j(\lambda) \ge t\}} \le q \right\}$$

and select

$$\widehat{\mathcal{S}(\lambda)} = \{j : W_j(\lambda) \geq \hat{t}(\lambda)\},\$$

Foygel-Barber and Candès (2015), Candès, Fan, Janson and Lv (2017) - The above knockoff procedure $KN(\lambda, q)$ controls FDR at the level q.

Gain in power over LSM

Gain in power over LSM

Theoretical results using the mean field asymptotics

Su, Bogdan, Candès, Ann. Stat. 2017 - FDR-Power Tradeoff Diagram for LASSO

Theoretical results using the mean field asymptotics

Su, Bogdan, Candès, Ann. Stat. 2017 - FDR-Power Tradeoff Diagram for LASSO

Weinstein, Su, Bogdan, Barber, Candés, Ann. Stat. 2023 - Breaking the tradoff diagram with thresholded LASSO

M.B., E.van den Berg, C.Sabatti, W.Su, E.J.Candès, AOAS 2015

$$\hat{\beta} = argmin_{b \in \mathbb{R}^p} \frac{1}{2} ||y - Xb||_{\ell_2}^2 + \sum_{i=1}^p \lambda_i |b|_{(i)}.$$

where $|b|_{(1)} \ge ... \ge |b|_{(p)}$ are ordered magnitudes of coefficients of b and $\lambda_1 \ge ... \ge \lambda_p \ge 0$ is the sequence of tuning parameters.

$$\hat{\beta} = \operatorname{argmin}_{b \in \mathbb{R}^p} \frac{1}{2} \|y - Xb\|_{\ell_2}^2 + \sum_{i=1}^p \lambda_i |b|_{(i)}.$$

where $|b|_{(1)} \ge ... \ge |b|_{(p)}$ are ordered magnitudes of coefficients of b and $\lambda_1 \ge ... \ge \lambda_p \ge 0$ is the sequence of tuning parameters.

The above optimization problem is convex and can be efficiently solved even for large design matrices.

$$\hat{\beta} = \operatorname{argmin}_{b \in \mathbb{R}^p} \frac{1}{2} \|y - Xb\|_{\ell_2}^2 + \sum_{i=1}^p \lambda_i |b|_{(i)}.$$

where $|b|_{(1)} \ge \ldots \ge |b|_{(p)}$ are ordered magnitudes of coefficients of b and $\lambda_1 \ge \ldots \ge \lambda_p \ge 0$ is the sequence of tuning parameters.

The above optimization problem is convex and can be efficiently solved even for large design matrices.

Sorted L-One Norm: $J_{\lambda}(b) = \sum_{i=1}^{p} \lambda_{i} |b|_{(i)}$ reduces to $||b||_{1}$ if $\lambda_{1} = \ldots = \lambda_{p}$ and to $||b||_{\infty}$ if $\lambda_{1} > \lambda_{2} = \ldots = \lambda_{p} = 0$.

Unit balls for different SLOPE sequences by D.Brzyski

FDR control with SLOPE

Theorem (B,van den Berg, Sabatti, Su and Candès (2015))

When $X^TX = I$ SLOPE with

$$\lambda_i := \sigma \Phi^{-1} \Big(1 - i \cdot \frac{q}{2p} \Big)$$

controls FDR at the level $q\frac{p_0}{p}$.

Orthogonal design, n = p = 5000

Let $k=||\beta||_0$ and consider the setup where $k/p\to 0$ and $\frac{k\log p}{n}\to 0$.

X is standardized so that each column has a unit L_2 norm.

Let $k=||\beta||_0$ and consider the setup where $k/p\to 0$ and $\frac{k\log p}{n}\to 0$.

X is standardized so that each column has a unit L_2 norm.

Su and Candès (Annals of Statistics, 2016),

Bellec, Lecué, Tsybakov (2018, AOS):

SLOPE with the BH related sequence of tuning parameters attains minimax rate for the estimation error $||\hat{\beta} - \beta||^2$.

Let $k=||\beta||_0$ and consider the setup where $k/p\to 0$ and $\frac{k\log p}{n}\to 0$.

X is standardized so that each column has a unit L_2 norm.

Su and Candès (Annals of Statistics, 2016),

Bellec, Lecué, Tsybakov (2018, AOS):

SLOPE with the BH related sequence of tuning parameters attains minimax rate for the estimation error $||\hat{\beta} - \beta||^2$.

SLOPE rate of the estimation error - $k \log(p/k)$

LASSO rate of the estimation error - $k \log p$

Let $k=||\beta||_0$ and consider the setup where $k/p\to 0$ and $\frac{k\log p}{n}\to 0$.

X is standardized so that each column has a unit L_2 norm.

Su and Candès (Annals of Statistics, 2016),

Bellec, Lecué, Tsybakov (2018, AOS):

SLOPE with the BH related sequence of tuning parameters attains minimax rate for the estimation error $||\hat{\beta} - \beta||^2$.

SLOPE rate of the estimation error - $k \log(p/k)$

LASSO rate of the estimation error - $k \log p$

Extension to logistic regression by Abramovich and Grinshtein (2018, IEEE Trans. Inf. Theory)

SLOPE vs LASSO

n=k=500, p=1000, block diagonal

Portfolio Optimization, (P. Kremmer, S. Lee, M. Bogdan, S. Paterlini, JBF 2020)

 $R_{t \times k} = (R_1, \dots, R_k)$ - asset returns, Σ - the covariance matrix of R

$$\min_{w \in \mathbb{R}^k} \frac{\phi}{2} w' \Sigma w + J_{\lambda}(w) \tag{2}$$

s.t.
$$\sum_{i=1}^{k} w_i = 1$$
 (3)

Evolution of Portfolio

Extensions

Elastic net

$$_{\beta}||y-X\beta||_{2}^{2}+\lambda\left(lpha|eta|_{1}+\left(1-lpha
ight)||eta||_{2}^{2}
ight)$$

where $w_j = rac{1}{\hat{eta}^{LS}}$

• Adaptive lasso:

$$_{\beta}||y-X\beta||_{2}^{2}+\lambda\sum_{j=1}^{p}w_{j}|\beta_{j}|$$

where
$$w_j = rac{1}{|\hat{eta}^{LS}|^{\gamma}}$$
 or $w_j = rac{1}{|\hat{eta}^{ridge}|^{\gamma}}$

- Sparser then lasso,
- less regularization on parameters.
- Group lasso:

$$_{\beta}||y - X\beta||_{2}^{2} + \lambda \sum_{j=1}^{J} ||\beta_{j}||_{2}$$

• The respective versions of SLOPE

The Bayesian connection I:ridge

• Ridge regression solution:

$$\hat{\beta}^{ridge} = argmin_{\beta} \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \frac{1}{2} \lambda \sum_{j=1}^{p} \beta_j^2 \quad (3.41)$$

The Bayesian connection I:ridge

Ridge regression solution:

$$\hat{\beta}^{ridge} = argmin_{\beta} \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \frac{1}{2} \lambda \sum_{j=1}^{p} \beta_j^2 \quad (3.41)$$

A Probabilistic interpretation of the regularization is

$$\frac{\lambda}{2} \sum_{j=1}^{p} \beta_j^2 = \frac{\lambda}{2} \beta^T \beta = \frac{\lambda}{2} (\beta - 0)^T (\beta - 0).$$

Thus the ridge penalty can be considered a prior

$$\beta \sim \mathcal{N}\left(\beta; 0, \frac{1}{\lambda}I\right)$$

The Bayesian connection I:ridge

Ridge regression solution:

$$\hat{\beta}^{ridge} = argmin_{\beta} \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \frac{1}{2} \lambda \sum_{j=1}^{p} \beta_j^2 \quad (3.41)$$

A Probabilistic interpretation of the regularization is

$$\frac{\lambda}{2} \sum_{j=1}^{p} \beta_j^2 = \frac{\lambda}{2} \beta^T \beta = \frac{\lambda}{2} (\beta - 0)^T (\beta - 0).$$

Thus the ridge penalty can be considered a prior

$$\beta \sim \mathcal{N}\left(\beta; 0, \frac{1}{\lambda}I\right)$$

 And the ridge solution is thus the MAP (maximum a posteriori) estimate of:

$$\pi(\beta|y,\lambda) \propto \mathcal{N}(y;X\beta,I)\mathcal{N}\left(\beta;0,\frac{1}{\lambda}I\right)$$

The Bayesian connection II:lasso

Lasso:

$$\hat{\beta}^{lasso} = argmin_{\beta} \sum_{i=1}^{N} \frac{1}{2} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \quad (3.52)$$

The Bayesian connection II:lasso

Lasso:

$$\hat{\beta}^{lasso} = argmin_{\beta} \sum_{i=1}^{N} \frac{1}{2} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \quad (3.52)$$

A Probabilistic interpretation of the regularization

$$\lambda \sum_{j=1}^{p} |\beta_j|$$

is that is \log density of p independent variables with Laplace distributions

$$\beta \sim \prod_{i=1}^{p} Laplace\left(0, \frac{1}{\lambda}\right)$$

The Bayesian connection II:lasso

Lasso:

$$\hat{\beta}^{lasso} = argmin_{\beta} \sum_{i=1}^{N} \frac{1}{2} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \quad (3.52)$$

A Probabilistic interpretation of the regularization

$$\lambda \sum_{j=1}^{p} |\beta_j|$$

is that is \log density of p independent variables with Laplace distributions

$$eta \sim \prod_{i=1}^p \textit{Laplace}\left(0, rac{1}{\lambda}
ight)$$

• And the lasso is thus the MAP estimate of:

$$\pi(eta|y,\lambda) \propto \mathcal{N}\left(y; Xeta, I\right) \prod_{i=1}^p \textit{Laplace}\left(0, rac{1}{\lambda}
ight)$$