

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
10. April 2003 (10.04.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 03/029213 A1

- (51) Internationale Patentklassifikation⁷: C07D 209/54, 307/94, 333/50, 491/10, 493/10, A01N 43/16, 43/12, 43/38
- (21) Internationales Aktenzeichen: PCT/EP02/10158
- (22) Internationales Anmeldedatum:
11. September 2002 (11.09.2002)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:
101 46 910.1 24. September 2001 (24.09.2001) DE
- (71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): BAYER CROPSCIENCE AG [DE/DE]; Alfred-Nobel-Strasse 50, 40789 Monheim (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (*nur für US*): FISCHER, Reiner [DE/DE]; Nelly-Sachs-Str. 23, 40789 Monheim (DE). ULLMANN, Astrid [DE/DE]; Merowingerstr. 31, 50677 Köln (DE). BRETSCHNEIDER, Thomas [DE/DE]; Talstr. 29b, 53797 Lohmar (DE). DREWES, Mark, Wilhelm [DE/DE]; Goethestr. 38, 40764 Langenfeld (DE). ERDELEN, Christoph [DE/DE]; Unterbüschhof 15, 42799 Leichlingen (DE). FEUCHT, Dieter [DE/DE]; Ackerweg 9, 40789 Monheim (DE). RECKMANN, Udo [DE/DE]; Röntgenstr. 18, 50823 Köln (DE).
- (74) Gemeinsamer Vertreter: BAYER CROPSCIENCE AG; Legal and Patents, Patents and Licensing, 51368 Leverkusen (DE).

(81) Bestimmungsstaaten (*national*): AB, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Erklärung gemäß Regel 4.17:

— *hinsichtlich der Berechtigung des Anmelders, ein Patent zu beantragen und zu erhalten (Regel 4.17 Ziffer ii) für die folgenden Bestimmungsstaaten AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)*

[Fortsetzung auf der nächsten Seite]

(54) Title: SPIROCYCLIC 3-PHENYL-3-SUBSTITUTED 4-KETOLACTAMS AND 4-KETOLACTONES

(54) Bezeichnung: SPIROCYKLISCHE 3-PHENYL-3-SUBSTITUIERTE-4-KETOLAKTAME UND -LAKTONE

WO 03/029213 A1

(57) Abstract: The invention relates to novel phenyl-substituted 4-ketolactams and 4-ketolactones of formula (I), wherein A, B, Q, G, W, X, Y, Z and R³ have the designation cited in the claims. The invention also relates to a method and to intermediate products for the production of said substances, and to the use of said substances as pesticides, microbicides and herbicides.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft neue phenylsubstituierte 4-Ketolaktame und -laktone der Formel (I), in welcher A, B, Q, G, W, X, Y, Z und R³ die in den Ansprüchen angegebene Bedeutung haben, Verfahren und Zwischenprodukte zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel, Mikrobizide und Herbizide.

WO 03/029213 A1

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("*Guidance Notes on Codes and Abbreviations*") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Spirocyclische 3-Phenyl-3-substituierte-4-ketolaktame und -laktone

Die Erfindung betrifft neue phenylsubstituierte 4-Ketolaktame und -laktone, Verfahren
5 und Zwischenprodukte zu ihrer Herstellung und ihre Verwendung als Schädlingsbe-
kämpfungsmittel, Mikrobizide und Herbizide.

Es ist bereits bekannt geworden, dass bestimmte 3-Phenyl-3-substituierte-4-keto-
laktame und -laktone als Insektizide, Akarizide und/oder Herbizide wirksam sind (JP-
10 A-10-258 555).

Die herbizide, akarizide und insektizide Wirksamkeit und/oder Wirkungsbreite, und die
Pflanzenverträglichkeit dieser Verbindungen, insbesondere gegenüber Kulturpflanzen,
ist jedoch nicht immer ausreichend.

15

Es wurden nun neue Verbindungen der Formel (I)

gefunden,

20

in welcher

W für Cyano, Halogen, Alkyl, Alkenyl, Alkinyl, Alkoxy, Halogenalkyl oder
Halogenalkoxy steht,

25

X für Wasserstoff, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder
Cyano steht,

Y für Wasserstoff, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Cyano steht,

Z für Wasserstoff, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Cyano steht,
5

-A-B- für die Gruppen

10

G für Halogen oder Nitro steht,

R¹ für C₁-C₆-Alkyl steht,

15 R³ für Wasserstoff oder C₁-C₄-Alkyl steht,

und

Q mit NH für den Cyclus (1), mit Sauerstoff für den Cyclus (2) und Schwefel
20 für den Cyclus (3) steht,

außerdem wurden neue Verbindungen der Formel (I) gefunden, in welcher

-A-B- für die Gruppe

25

steht, und

W für Halogen oder Alkyl steht,

- X für Wasserstoff, Halogen oder Alkyl steht,
Y für Wasserstoff, Halogen oder Alkyl steht,
Z für Wasserstoff, Halogen oder Alkyl steht,
- 5 wobei mindestens einer der Reste W, X und Y für Alkyl und mindestens einer der Reste W, X und Y für Halogen stehen muss,
- G für Halogen oder Nitro steht,
- 10 R² und R³ unabhängig voneinander für Wasserstoff oder C₁-C₄-Alkyl stehen und Q mit NH für den Cyclus (1) mit Sauerstoff für den Cyclus (2) und Schwefel für den Cyclus (3) steht.
- 15 Die Verbindungen der Formel (I) können, auch in Abhängigkeit von der Art der Substituenten, als geometrische und/oder optische Isomere oder Isomerengemische, in unterschiedlicher Zusammensetzung vorliegen, die gegebenenfalls in üblicher Art und Weise getrennt werden können. Sowohl die reinen Isomeren als auch die Isomerengemische, deren Herstellung und Verwendung sowie diese enthaltende Mittel sind 20 Gegenstand der vorliegenden Erfindung. Im Folgenden wird der Einfachheit halber jedoch stets von Verbindungen der Formel (I) gesprochen, obwohl sowohl die reinen Verbindungen als gegebenenfalls auch Gemische mit unterschiedlichen Anteilen an isomeren Verbindungen gemeint sind.
- 25 Die Verbindungen der Formel (I) können sowohl als Gemische als auch in Form ihrer reinen Isomeren vorliegen. Gemische der Verbindungen der Formel (I) lassen sich gegebenenfalls in an sich bekannter Weise durch physikalische Methoden trennen, beispielsweise durch chromatographische Methoden.

Unter Einbeziehung der Bedeutungen für Q und der damit verbundenen Cyclen (1) bis (3) ergeben sich folgende hauptsächliche Strukturen (I-1) bis (I-3):

5 worin

A, B, G, W, X, Y, Z und R³ die oben angegebene Bedeutung haben.

Unter Einbeziehung der verschiedenen Bedeutungen von -A-B- ergeben sich folgende
10 hauptsächliche Strukturen (I-1-a) bis (I-1-c), wenn Q für den Cyclus (1) steht:

worin

G, W, X, Y, Z, R¹, R² und R³ die oben angegebenen Bedeutungen haben.

- 5 Unter Einbeziehung der verschiedenen Bedeutungen von -A-B- ergeben sich folgende hauptsächliche Strukturen (I-2-a) bis (I-2-c), wenn Q für den Cyclus (2) steht:

worin

10

G, W, X, Y, Z, R¹, R² und R³ die oben angegebenen Bedeutungen haben.

- Unter Einbeziehung der verschiedenen Bedeutungen von -A-B- ergeben sich folgende hauptsächliche Strukturen (I-3-a) bis (I-3-c), wenn Q für den Cyclus (3) steht:

worin

G, W, X, Y, Z, R¹, R² und R³ die oben angegebenen Bedeutungen haben.

5

Weiterhin wurde gefunden,

A) dass man Verbindungen der Formel (I-1) bis (I-3) erhält,

10

in welcher A, B, Q, W, X, Y, Z und R³ die oben angegebene Bedeutung haben

und

15

G für Halogen, bevorzugt für Chlor und Brom, steht,

wenn man Verbindungen der Formel (II-1) bis (II-3)

5 in welcher

A, B, Q, W, X, Y, Z und R³ die oben angegebene Bedeutung haben,

10 mit Halogenierungsmitteln in Gegenwart eines Lösungsmittels und gegebenenfalls in Gegenwart eines Radikalstarters umgesetzt.

B) Weiterhin erhält man Verbindungen der Formel (I-1) bis (I-3)

15 in welcher

A, B, Q, W, X, Y, Z und R³ die oben angegebene Bedeutung haben,

und

20

G für Nitro steht,

wenn man Verbindungen der Formel (II-1) bis (II-3),

in welcher

A, B, Q, W, X, Y, Z und R³ die oben angegebene Bedeutung haben,

5

mit Nitrierungsreagenzien wie z.B. rauchende Salpetersäure in Gegenwart eines Lösungsmittels umsetzt.

Die für die Verfahren A und B benötigten Verbindungen der Formel (II-1) bis (II-3)

10

in welcher

A, B, Q, W, X, Y, Z und R³ die oben angegebene Bedeutung haben,

15

sind teilweise bekannte Verbindungen (EP-A-596 298, WO 95/01358, WO 95/20572, EP-A-668 267, WO 95/26954, WO 96/25395, WO 96/35664, WO 97/02243, WO 97/01535, WO 97/36868, WO 98/05638, WO 98/25928, WO 99/24437, WO 01/74 770, EP-A-528 156, EP-A-647 637, WO 96/20196, WO 95/26345) oder lassen sich nach den dort beschriebenen Verfahren synthetisieren.

20

Als Halogenierungsmittel kommen für das Verfahren A beispielsweise Sulfurylchlorid, Sulfurylbromid, Thionylchlorid, Thionylbromid, Imide, wie z.B. N-Bromsuccin-

imid oder N-Chlorsuccinimid, Chlorsulfonsäure, aber auch Hypochlorite, wie z.B. tert.-Butylhypochlorid in Frage.

5 Als Nitrierungsreagenzien kommen für das Verfahren B rauchende Salpetersäure, aber auch "Nitriersäuremischungen" in Frage.

Weiterhin wurde gefunden, dass die neuen Verbindungen der Formel (I) eine sehr gute Wirksamkeit als Schädlingsbekämpfungsmittel, vorzugsweise als Insektizide, Akarizide und/oder Fungizide und/oder Herbizide aufweisen und teilweise darüber hinaus 10 sehr gut pflanzenverträglich, insbesondere gegenüber Kulturpflanzen, sind.

Die erfindungsgemäßen Verbindungen sind durch die Formel (I) allgemein definiert. Bevorzugte Substituenten bzw. Bereiche der in der oben und nachstehend erwähnten Formeln aufgeführten Reste werden im Folgenden erläutert:

15 Bevorzugt sind Verbindungen der Gruppe (I-a), in welcher A-B für die Gruppe

20 W bevorzugt für Halogen, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,

X bevorzugt für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,

25 Y bevorzugt für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,

Z bevorzugt für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,

G bevorzugt für Halogen oder Nitro steht,

R¹ bevorzugt für C₁-C₆-Alkyl steht,

5 R³ bevorzugt für Wasserstoff steht,

Q bevorzugt mit NH für den Cyclus (1), mit Sauerstoff für den Cyclus (2) und Schwefel für den Cyclus (3) steht.

10 In den als bevorzugt genannten Restedefinitionen steht Halogen, auch als Substituent, wie z.B. in Halogenalkyl, für Fluor, Chlor, Brom und Jod, insbesondere für Fluor und Chlor.

15 Besonders bevorzugt sind Verbindungen der Gruppe (I-a), in welcher A-B für die Gruppe

20 W besonders bevorzugt für Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Cyano steht,

X besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy steht,

25 Y besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Cyano steht,

Z besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Cyano steht,

G besonders bevorzugt für Chlor, Brom oder Nitro steht,

R¹ besonders bevorzugt für C₁-C₄-Alkyl steht,

5 R³ besonders bevorzugt für Wasserstoff steht,

Q besonders bevorzugt mit NH für den Cyclus (1), mit Sauerstoff für den Cyclus (2) und Schwefel für den Cyclus (3) steht.

10 In den als besonders bevorzugt genannten Restedefinitionen steht Halogen, auch als Substituent, wie z.B. in Halogenalkyl für Fluor und Chlor, insbesondere für Fluor.

Ganz besonders bevorzugt sind Verbindungen der Gruppe (I-a), in welcher A-B für die Gruppe

15

W ganz besonders bevorzugt für Chlor, Brom, Methyl, Ethyl, Propyl, Methoxy, Ethoxy, Trifluormethyl, Difluormethoxy, Trifluormethoxy oder Cyano steht,

20

X ganz besonders bevorzugt für Wasserstoff, Chlor, Brom, Methyl, Ethyl, Propyl, Methoxy oder Ethoxy steht,

25

Y ganz besonders bevorzugt für Wasserstoff, Chlor, Brom, Methyl, Ethyl, Propyl, Trifluormethyl, Trifluormethoxy, Difluormethoxy oder Cyano steht,

Z ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Difluormethoxy oder Cyano steht,

- G ganz besonders bevorzugt für Chlor, Brom oder Nitro steht,
- R¹ ganz besonders bevorzugt für Methyl, Ethyl, Propyl, Isopropyl, Butyl oder Isobutyl steht,
- 5 R³ ganz besonders bevorzugt für Wasserstoff steht,
- Q ganz besonders bevorzugt mit NH für den Cyclus (1) und Sauerstoff für den Cyclus (2) steht.
- 10 Insbesondere bevorzugt sind Verbindungen der Formel (I-a), in welcher A-B für die Gruppe
- a) $\text{---CH}_2\text{---CH---}$ steht, wobei
OR¹
- 15 W insbesondere bevorzugt für Methyl, Ethyl, Chlor, Brom, Methoxy, Trifluormethyl oder Trifluormethoxy steht,
- X insbesondere bevorzugt für Wasserstoff, Chlor, Methyl oder Ethyl steht,
- 20 Y insbesondere bevorzugt für Wasserstoff, Chlor, Brom, Methyl, t-Butyl, Trifluormethoxy, Trifluormethyl oder Cyano steht,
- Z insbesondere bevorzugt für Wasserstoff, Chlor, Brom, Methyl, Ethyl, Methoxy oder Trifluormethyl steht,
- 25 G insbesondere bevorzugt für Chlor oder Nitro (hervorgehoben für Chlor) steht,
- R¹ insbesondere bevorzugt für Methyl oder Ethyl steht,

R³ insbesondere bevorzugt für Wasserstoff steht,

Q insbesondere bevorzugt mit NH für den Cyclus (1) steht.

5 Bevorzugt sind Verbindungen der Formel (I-b), in welcher A-B für die Gruppe

b) -O-CH₂- steht, wobei

W bevorzugt für Halogen, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,

10 X bevorzugt für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,

15 Y bevorzugt für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,

Z bevorzugt für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,

20 G bevorzugt für Halogen oder Nitro steht,
R³ bevorzugt für Wasserstoff steht,

25 Q bevorzugt mit NH für den Cyclus (1), mit Sauerstoff für den Cyclus (2) und Schwefel für den Cyclus (3) steht.

In den als bevorzugt genannte Restedefinitionen steht Halogen, auch als Substituent, wie z.B. in Halogenalkyl, für Fluor, Chlor, Brom und Jod, insbesondere für Fluor und Chlor.

Besonders bevorzugt sind Verbindungen der Formel (I-b), in welcher A-B für die Gruppe

b) -O-CH₂- steht, wobei

5

W besonders bevorzugt für Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Cyano steht,

10 X besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy steht,

Y besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Cyano steht,

15 Z besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Cyano steht,

G besonders bevorzugt für Chlor, Brom oder Nitro steht,

20 R³ besonders bevorzugt für Wasserstoff steht,

Q besonders bevorzugt mit NH für den Cyclus (1), mit Sauerstoff für den Cyclus (2) und Schwefel für den Cyclus (3) steht.

25 In den als besonders bevorzugt genannten Restdefinitionen steht Halogen, auch als Substituent, wie z.B. in Halogenalkyl für Fluor und Chlor, insbesondere für Fluor.

Ganz besonders bevorzugt sind Verbindungen der Formel (I-b), in welcher A-B für die Gruppe

30

b) -O-CH₂- steht, wobei

- W ganz besonders bevorzugt für Chlor, Brom, Methyl, Ethyl, Propyl, Methoxy, Ethoxy, Trifluormethyl, Difluormethoxy, Trifluormethoxy oder Cyano steht,
- 5 X ganz besonders bevorzugt für Wasserstoff, Chlor, Brom, Methyl, Ethyl, Propyl, Methoxy oder Ethoxy steht,
- Y ganz besonders bevorzugt für Wasserstoff, Chlor, Brom, Methyl, Ethyl, Propyl, Trifluormethyl, Trifluormethoxy, Difluormethoxy oder Cyano steht,
- 10 Z ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Difluormethoxy oder Cyano steht,
- G ganz besonders bevorzugt für Chlor, Brom oder Nitro steht,
- 15 R³ ganz besonders bevorzugt für Wasserstoff steht,
- Q ganz besonders bevorzugt mit NH für den Cyclus (1) und Sauerstoff für den Cyclus (2) steht.
- 20 Insbesondere bevorzugt sind Verbindungen der Formel (I-b), in welcher A-B für die Gruppe
- b) -O-CH₂- steht, wobei
- 25 W insbesondere bevorzugt für Chlor, Brom, Methyl oder Ethyl steht,
- X insbesondere bevorzugt für Wasserstoff, Chlor, Methyl oder Ethyl steht,
- 30 Y insbesondere bevorzugt für Wasserstoff, Chlor, Brom, Methyl oder Ethyl steht,

Z insbesondere bevorzugt für Wasserstoff, Chlor oder Methyl steht,

G insbesondere bevorzugt für Chlor steht,

5 R³ insbesondere bevorzugt für Wasserstoff steht,

Q insbesondere bevorzugt mit NH für den Cyclus (1) steht.

Bevorzugt sind Verbindungen der Formel (I-c), in welcher A-B für die Gruppe

10

W bevorzugt für Chlor, Brom, Methyl oder Ethyl steht,

15

X bevorzugt für Chlor, Methyl oder Ethyl steht,

Y bevorzugt für Chlor oder Brom steht,

Z bevorzugt für Wasserstoff oder Chlor steht,

20

G bevorzugt für Halogen oder Nitro steht,

R² bevorzugt für Wasserstoff oder C₁-C₄-Alkyl steht,

25

R³ bevorzugt für Wasserstoff und C₁-C₂-Alkyl steht,

Q bevorzugt mit NH für den Cyclus (1), mit Sauerstoff für den Cyclus (2) und Schwefel für den Cyclus (3) steht.

Besonders bevorzugt sind Verbindungen der Formel (I-c), in welcher A-B für die Gruppe

5

W besonders bevorzugt für Chlor oder Methyl steht,

X besonders bevorzugt für Chlor, Methyl oder Ethyl steht,

10 Y besonders bevorzugt für Chlor oder Brom steht,

Z besonders bevorzugt für Wasserstoff oder Chlor steht,

G besonders bevorzugt für Chlor, Brom oder Nitro steht,

15

R² besonders bevorzugt für Wasserstoff, Methyl oder Ethyl steht,

R³ besonders bevorzugt für Wasserstoff steht,

20 Q besonders bevorzugt mit NH für den Cyclus (1), mit Sauerstoff für den Cyclus (2) und Schwefel für den Cyclus (3) steht.

Ganz besonders bevorzugt sind Verbindungen der Formel (I-c), in welcher A-B für die Gruppe

25

- W ganz besonders bevorzugt für Chlor oder Methyl steht,
- X ganz besonders bevorzugt für Chlor, Methyl oder Ethyl steht,
- 5 Y ganz besonders bevorzugt für Chlor oder Brom steht,
- Z ganz besonders bevorzugt für Wasserstoff oder Chlor steht,
- G ganz besonders bevorzugt für Chlor, Brom oder Nitro steht,
- 10 R² ganz besonders bevorzugt für Wasserstoff oder Methyl steht,
- R³ ganz besonders bevorzugt für Wasserstoff steht,
- 15 Q ganz besonders bevorzugt mit NH für den Cyclus (1) und Sauerstoff für den Cyclus (2) steht.

Insbesondere bevorzugt sind Verbindungen der Formel (I-c), in welcher A-B für die Gruppe

- W insbesondere bevorzugt für Chlor oder Methyl steht,
- 25 X insbesondere bevorzugt für Chlor, Methyl oder Ethyl steht,
- Y ganz besonders bevorzugt für Chlor oder Brom steht,
- Z ganz besonders bevorzugt für Wasserstoff oder Chlor steht,

G insbesondere bevorzugt für Chlor steht,

R² insbesondere bevorzugt für Wasserstoff steht,

5

R³ insbesondere bevorzugt für Wasserstoff oder Methyl steht,

Q insbesondere bevorzugt mit NH für den Cyclus (1) steht.

10 Hervorgehoben sind Verbindungen der Formel (I-2-a), in welcher A-B für die Gruppe

W hervorgehoben für Methyl steht,

15

X hervorgehoben für Wasserstoff, Methyl oder Chlor (insbesondere hervorgehoben für Wasserstoff) steht,

20

Y hervorgehoben für Wasserstoff, Methyl, Chlor oder Brom (insbesondere hervorgehoben für Methyl) steht,

Z hervorgehoben für Wasserstoff, Methyl oder Chlor (insbesondere hervorgehoben für Methyl) steht,

25

G hervorgehoben für Chlor oder Nitro steht,

R¹ hervorgehoben für Methyl oder Ethyl steht,

R³ hervorgehoben für Wasserstoff steht.

Hervorgehoben sind außerdem Verbindungen der Formel (I-2-b), in welcher A-B für die Gruppe

- 5 b) -O-CH₂- steht, wobei
- W hervorgehoben für Methyl steht,
- 10 X hervorgehoben für Wasserstoff, Methyl oder Chlor (insbesondere hervorgehoben für Wasserstoff) steht,
- Y hervorgehoben für Wasserstoff, Methyl, Chlor oder Brom (insbesondere hervorgehoben für Methyl) steht,
- 15 Z hervorgehoben für Wasserstoff, Methyl oder Chlor (insbesondere hervorgehoben für Methyl) steht,
- G hervorgehoben für Chlor oder Nitro (insbesondere hervorgehoben für Chlor) steht,
- 20 R³ hervorgehoben für Wasserstoff steht.

Insbesondere bevorzugt sind Verbindungen der Formel (I-2-c), in welcher A-B für die Gruppe

- 25 c) $\begin{array}{c} \text{---CH---O---} \\ | \\ \text{R}^2 \end{array}$ steht, wobei

W hervorgehoben für Methyl steht,

X hervorgehoben für Wasserstoff steht,

Y hervorgehoben für Methyl steht,

5 Z hervorgehoben für Methyl steht,

G hervorgehoben für Chlor steht,

R² hervorgehoben für Wasserstoff steht,

10 R³ hervorgehoben für Wasserstoff steht.

Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen können untereinander, also auch zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend.

15 Erfnungsgemäß bevorzugt werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als bevorzugt (vorzugsweise) aufgeführten Bedeutungen vorliegt.

20 Erfnungsgemäß besonders bevorzugt werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt.

25 Erfnungsgemäß ganz besonders bevorzugt werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen vorliegt.

Erfindungsgemäß insbesondere bevorzugt werden Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als insbesondere bevorzugt aufgeführten Bedeutungen vorliegt.

- 5 Erfindungsgemäß hervorgehoben werden Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als hervorgehoben aufgeführten Bedeutungen vorliegt.

Gesättigte oder ungesättigte Kohlenwasserstoffreste wie Alkyl oder Alkenyl können, 10 auch in Verbindung mit Heteroatomen, wie z.B. in Alkoxy, soweit möglich, jeweils geradkettig oder verzweigt sein.

Verwendet man beispielsweise gemäß Verfahren (A) 3-(3,4-Dichlor-2,6-dimethyl)-15 phenyl-5,5-(3-methoxy)-pentamethylen-pyrrolidin-2,4-dion oder dessen Enol als Ausgangsstoff, so kann der Verlauf des erfundungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

- 20 Verwendet man beispielsweise gemäß Verfahren (B) 3-(2,5-Dichlor-6-methyl)-phenyl-5,5-(3-methoxy)-pentamethylen-furan-2,4-dion oder dessen Enol, so kann der Verlauf des erfundungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Das Verfahren (A) ist dadurch gekennzeichnet, dass man Verbindungen der Formel (II), in welcher A, B, Q, W, X, Y, Z und R³ die oben angegebenen Bedeutungen 5 haben, in Gegenwart eines Verdünnungsmittel und eines Halogenierungsmittels und gegebenenfalls eines Radikalstarters umsetzt. Als Radikalstarter können beispielsweise Benzoylperoxid oder Azobisisobutyronitril verwendet werden.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (A) alle gegenüber den Halogenierungsreagenzien inerten organischen Solventien eingesetzt 10 werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe wie Benzol, Toluol und Xylool, ferner Ether, wie Methyl-tert.-butyl-ether, Dibutylether, Tetrahydrofuran, Dioxan, Glykoldimethylether und Diglykoldimethylether, außerdem halogenierte Kohlenwasserstoffe, wie Dichlormethan, Chloroform, Tetrachlorkohlenstoff, Di- 15 chlorethan, Chlorbenzol, Dichlorbenzol, aber auch Ester wie Ethylacetat.

Als Halogenierungsmittel kommen für das Verfahren A beispielsweise Sulfurylchlorid, Sulfurylbromid, Thionylchlorid, Thionylbromid, Imide wie z.B. N-Bromsuccinimid, N-Chlorsuccinimid, weiterhin Chlorsulfinsäure, aber auch Hypochlorite wie 20 z.B. tert.-Butylhypochlorit in Frage.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (A) innerhalb eines größeren Bereiches variiert werden. Im Allgemeinen

arbeitet man bei Temperaturen zwischen -40°C und 150°C, vorzugsweise zwischen 0°C und 100°C.

Das erfindungsgemäße Verfahren (A) wird im Allgemeinen unter Normaldruck
5 durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (A) setzt man die Reaktionskomponenten der Formel (II) und die Halogenierungsmittel im Allgemeinen in etwa äquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere
10 Komponente in einem größeren Überschuss (bis zu 3 Mol) zu verwenden.

Die Reinigung erfolgt in der Regel nach wässriger Aufarbeitung, durch Kristallisation oder durch chromatographische Reinigung an Kieselgel.

15 Das Verfahren (B) ist dadurch gekennzeichnet, dass Verbindungen der Formel (II), in welcher A, B, Q, W, X, Y, Z und R³ die oben angegebenen Bedeutungen haben, in Gegenwart eines Verdünnungsmittels und in Gegenwart eines Nitrierungsmittels umsetzt.

20 Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (B) alle inneren organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind halogenierte Kohlenwasserstoff wie Methylenchlorid, Chloroform, Dichlorbenzol, Dichlorethan.

25 Als Nitrierungsmittel kommen Nitriersäuren bevorzugt rauchende Salpetersäure in Frage.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (B) innerhalb eines größeren Bereiches variiert werden. Im Allgemeinen
30 arbeitet man bei Temperaturen zwischen -50°C und 150°C, vorzugsweise zwischen 0°C und 80°C.

Das erfindungsgemäße Verfahren (B) wird im Allgemeinen unter Normaldruck durchgeführt.

5 Bei der Durchführung des erfindungsgemäßen Verfahrens (B) setzt man die Reaktionskomponenten der Formel (II) und das Nitrierungsreagenz im Allgemeinen in etwa äquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponenten in einem größeren Überschuss (bis zu 5 Mol) zu verwenden.

10 Die Reinigung erfolgt nach üblichen Aufarbeitung durch Kristallisation oder chromatografische Reinigung an Kieselgel.

Die Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit und günstiger Warmblütotoxicität zur Bekämpfung von tierischen Schädlingen, insbesondere 15 Insekten, Spinnentieren und Nematoden, die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

20 Aus der Ordnung der Isopoda z.B. *Oniscus asellus*, *Armadillidium vulgare*, *Porcellio scaber*.

Aus der Ordnung der Diplopoda z.B. *Blaniulus guttulatus*.

25 Aus der Ordnung der Chilopoda z.B. *Geophilus carpophagus*, *Scutigera spp.*.

Aus der Ordnung der Symphyla z.B. *Scutigerella immaculata*.

30 Aus der Ordnung der Thysanura z.B. *Lepisma saccharina*.

Aus der Ordnung der Collembola z.B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z.B. Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus spp., Schistocerca gregaria.

5

Aus der Ordnung der Blattaria z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica.

Aus der Ordnung der Dermaptera z.B. Forficula auricularia.

10

Aus der Ordnung der Isoptera z.B. Reticulitermes spp..

Aus der Ordnung der Phthiraptera z.B. Pediculus humanus corporis, Haematopinus spp., Linognathus spp., Trichodectes spp., Damalinia spp..

15

Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci, Thrips palmi, Frankliniella accidentalis.

Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius,

20

Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis,

25

Phylloxera vastatrix, Pemphigus spp., Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephrotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidotus hederae, Pseudococcus spp., Psylla spp.

30

Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella

- xylostella, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella, Phylloconistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Mamestra brassicae, Panolis flammea, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana, Cnaphalocerus spp., Oulema oryzae.
- 10 Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atornaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus,
- 15 Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica, Lissorhoptrus oryzophilus.
- 20 Aus der Ordnung der Hymenóptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.
- Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp.,
- 25 Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hypnobosca spp., Stomoxyx spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phobia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa, Hylemyia spp., Liriomyza spp..
- 30 Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp..

- Aus der Klasse der Arachnida z.B. *Scorpio maurus*, *Latrodectus mactans*, *Acarus siro*, *Argas spp.*, *Ornithodoros spp.*, *Dermanyssus gallinae*, *Eriophyes ribis*, *Phyllocoptrus oleivora*, *Boophilus spp.*, *Rhipicephalus spp.*, *Amblyomma spp.*,
- 5 *Hyalomma spp.*, *Ixodes spp.*, *Psoroptes spp.*, *Chorioptes spp.*, *Sarcoptes spp.*, *Tarsonemus spp.*, *Bryobia praetiosa*, *Panonychus spp.*, *Tetranychus spp.*, *Hemitarsonemus spp.*, *Brevipalpus spp..*
- Zu den pflanzenparasitären Nematoden gehören z.B. *Pratylenchus spp.*, *Radopholus similis*, *Ditylenchus dipsaci*, *Tylenchulus semipenetrans*, *Heterodera spp.*, *Globodera spp.*, *Meloidogyne spp.*, *Aphelenchoïdes spp.*, *Longidorus spp.*, *Xiphinema spp.*, *Trichodorus spp.*, *Bursaphelenchus spp..*
- Die erfindungsgemäßen Verbindungen können gegebenenfalls in bestimmten Konzentrationen bzw. Aufwandmengen auch als Herbizide und Mikrobizide, beispielsweise als Fungizide, Antimykotika und Bakterizide verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- oder Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.
- 15
- 20 Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Sproß, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stengel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den
- 25
- 30

Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

- 5 Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges
10 Umhüllen.

Die Wirkstoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.
15

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, 20 also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.

Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylen oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, 25 Ketone wie Aceton, Methylethyleketon, Methylisobutylketon oder Cyclohexanon,
30

stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.

Als feste Trägerstoffe kommen in Frage:

5

z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnusschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Einweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

10

15

20

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvri ge, körnige oder latexförmige Polymere verwendet werden, wie Gummi arabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

25

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spuren nährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

30

Die Formulierungen enthalten im Allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern
5 oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.

Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage:

10

Fungizide:

Aldimorph, Ampropylfos, Ampropylfos-Kalium, Andoprim, Anilazin, Azaconazol,
Azoxystrobin,

15

Benalaxyl, Benodanil, Benomyl, Benzamacril, Benzamacryl-isobutyl, Bialaphos,
Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazol, Bupirimat, Buthiobat,

20

Calciumpolysulfid, Capsimycin, Captafol, Captan, Carbendazim, Carboxin, Carvon,
Chinomethionat (Quinomethionat), Chlobenthiazon, Chlorfenazol, Chloroneb, Chloropicrin,
Chlorothalonil, Chlozolinat, Clozylacon, Cufraneb, Cymoxanil, Cyproconazol,
Cyprodinil, Cyprofuram,

25

Debacarb, Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran,
Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol,
Diniconazol-M, Dinocap, Diphenylamin, Dipyridithione, Ditalimfos, Dithianon,
Dodemorph, Dodine, Drazoxolon,

30

Ediphenphos, Epoxiconazol, Etaconazol, Ethirimol, Etridiazol,

- Famoxadon, Fenapanil, Fenarimol, Fenbuconazol, Fenfuram, Fenitropan, Fenpiclonil,
Fenpropidin, Fenpropimorph, Fentinacetat, Fenthydroxyd, Ferbam, Ferimzon,
Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Flurprimidol, Flusilazol,
Flusulfamid, Flutolanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl-Natrium,
5 Fthalid, Fuberidazol, Furalaxyl, Furametpyr, Furcarbonil, Furconazol, Furconazol-cis,
Furmecyclox,
- Guazatin,
- 10 Hexachlorobenzol, Hexaconazol, Hymexazol,
Imazalil, Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadinetriacetat,
Iodocarb, Ipconazol, Iprobenfos (IBP), Iprodione, Irumamycin, Isoprothiolan,
Isovalledione,
- 15 Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie: Kupferhydroxid,
Kupfernaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und
Bordeaux-Mischung,
- 20 Mancopper, Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyd,
Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax,
Mildiomycin, Myclobutanil, Myclozolin,
- Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol,
- 25 Ofurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,
Paclbutrazol, Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Picoxystrobin,
Pimaricin, Piperalin, Polyoxin, Polyoxorim, Probenazol, Prochloraz, Procymidon,
30 Propamocarb, Propanosine-Natrium, Propiconazol, Propineb, Pyraclostrobin,
Pyrazophos, Pyrifenoxy, Pyrimethanil, Pyroquilon, Pyroxyfur,

Quinconazol, Quintozan (PCNB),

Schwefel und Schwefel-Zubereitungen,

5

Tebuconazol, Tecloftalam, Tecnazen, Tetcyclacis, Tetraconazol, Thiabendazol, Thicyofen, Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolyfluonid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Trifloxystrobin, Triflumizol, Triforin, Triticonazol,

10

Uniconazol,

Validamycin A, Vinclozolin, Viniconazol,

15

Zarilamid, Zineb, Ziram sowie

Dagger G,

OK-8705,

20

OK-8801,

α -(1,1-Dimethylethyl)- β -(2-phenoxyethyl)-1H-1,2,4-triazol-1-ethanol,

α -(2,4-Dichlorphenyl)- β -fluor- β -propyl-1H-1,2,4-triazol-1-ethanol,

25

α -(2,4-Dichlorphenyl)- β -methoxy- α -methyl-1H-1,2,4-triazol-1-ethanol,

α -(5-Methyl-1,3-dioxan-5-yl)- β -[[4-(trifluormethyl)-phenyl]-methylen]-1H-1,2,4-triazol-1-ethanol,

30

(5RS,6RS)-6-Hydroxy-2,2,7,7-tetramethyl-5-(1H-1,2,4-triazol-1-yl)-3-octanon,

(E)- α -(Methoxyimino)-N-methyl-2-phenoxy-phenylacetamid,

{2-Methyl-1-[[[1-(4-methylphenyl)-ethyl]-amino]-carbonyl]-propyl}-carbaminsäure-1-isopropylester

- 5 1-(2,4-Dichlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-ethanon-O-(phenylmethyl)-oxim,
 1-(2-Methyl-1-naphthalenyl)-1H-pyrrol-2,5-dion,
 1-(3,5-Dichlorphenyl)-3-(2-propenyl)-2,5-pyrrolidindion,
 1-[(Diiodmethyl)-sulfonyl]-4-methyl-benzol,
 1-[[2-(2,4-Dichlorphenyl)-1,3-dioxolan-2-yl]-methyl]-1H-imidazol,
10 1-[[2-(4-Chlorphenyl)-3-phenyloxiranyl]-methyl]-1H-1,2,4-triazol,
 1-[1-[2-[(2,4-Dichlorphenyl)-methoxy]-phenyl]-ethenyl]-1H-imidazol,
 1-Methyl-5-nonyl-2-(phenylmethyl)-3-pyrrolidinol,
 2',6'-Dibrom-2-methyl-4'-trifluormethoxy-4'-trifluor-methyl-1,3-thiazol-5-carboxanilid,
 2,2-Dichlor-N-[1-(4-chlorphenyl)-ethyl]-1-ethyl-3-methyl-cyclopropancarboxamid,
15 2,6-Dichlor-5-(methylthio)-4-pyrimidinyl-thiocyanat,
 2,6-Dichlor-N-(4-trifluormethylbenzyl)-benzamid,
 2,6-Dichlor-N-[[4-(trifluormethyl)-phenyl]-methyl]-benzamid,
 2-(2,3,3-Triiod-2-propenyl)-2H-tetrazol,
 2-[(1-Methylethyl)-sulfonyl]-5-(trichlormethyl)-1,3,4-thiadiazol,
20 2-[[6-Deoxy-4-O-(4-O-methyl- β -D-glycopyranosyl)-a-D-glucopyranosyl]-amino]-4-methoxy-1H-pyrrolo[2,3-d]pyrimidin-5-carbonitril,
 2-Aminobutan,
 2-Brom-2-(brommethyl)-pentandinitril,
 2-Chlor-N-(2,3-dihydro-1,1,3-trimethyl-1H-inden-4-yl)-3-pyridincarboxamid,
25 2-Chlor-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acetamid,
 2-Phenylphenol(OPP),
 3,4-Dichlor-1-[4-(difluormethoxy)-phenyl]-1H-pyrrol-2,5-dion,
 3,5-Dichlor-N-[cyan[(1-methyl-2-propynyl)-oxy]-methyl]-benzamid,
 3-(1,1-Dimethylpropyl-1-oxo-1H-inden-2-carbonitril,
30 3-[2-(4-Chlorphenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin,
 4-Chlor-2-cyan-N,N-dimethyl-5-(4-methylphenyl)-1H-imidazol-1-sulfonamid,

- 4-Methyl-tetrazolo[1,5-a]quinazolin-5(4H)-on,
8-(1,1-Dimethylethyl)-N-ethyl-N-propyl-1,4-dioxaspiro[4.5]decan-2-methanamin,
8-Hydroxychinolinsulfat,
9H-Xanthen-9-carbonsäure-2-[(phenylamino)-carbonyl]-hydrazid,
5 bis-(1-Methylethyl)-3-methyl-4-[(3-methylbenzoyl)-oxy]-2,5-thiophendicarboxylat,
cis-1-(4-Chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol,
cis-4-[3-[4-(1,1-Dimethylpropyl)-phenyl-2-methylpropyl]-2,6-dimethyl-morpholin-
hydrochlorid,
Ethyl-[(4-chlorophenyl)-azo]-cyanoacetat,
10 Kaliumhydrogencarbonat,
Methantetrathiol-Natriumsalz,
Methyl-1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazol-5-carboxylat,
Methyl-N-(2,6-dimethylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninat,
Methyl-N-(chloracetyl)-N-(2,6-dimethylphenyl)-DL-alaninat,
15 N-(2,3-Dichlor-4-hydroxyphenyl)-1-methyl-cyclohexancarboxamid.
N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-furanyl)-acetamid,
N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-thienyl)-acetamid,
N-(2-Chlor-4-nitrophenyl)-4-methyl-3-nitro-benzolsulfonamid,
N-(4-Cyclohexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,
20 N-(4-Hexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,
N-(5-Chlor-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidinyl)-acetamid,
N-(6-Methoxy)-3-pyridinyl)-cyclopropancarboxamid,
N-[2,2,2-Trichlor-1-[(chloracetyl)-amino]-ethyl]-benzamid,
N-[3-Chlor-4,5-bis-(2-propinyloxy)-phenyl]-N'-methoxy-methanimidamid,
25 N-Formyl-N-hydroxy-DL-alanin -Natriumsalz,
O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat,
O-Methyl-S-phenyl-phenylpropylphosphoramidothioat,
S-Methyl-1,2,3-benzothiadiazol-7-carbothioat,
spiro[2H]-1-Benzopyran-2,1'(3'H)-isobenzofuran]-3'-on,
30 4-[3,4-Dimethoxyphenyl]-3-(4-fluorophenyl)-acryloyl]-morpholin

Bakterizide:

Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin,
Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam,
5 Kupfersulfat und andere Kupfer-Zubereitungen.

Insektizide / Akarizide / Nematizide:

Abamectin, Acephate, Acetamiprid, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb,
10 Alpha-cypermethrin, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin,
Azamethiphos, Azinphos A, Azinphos M, Azocyclotin,

Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis,
Baculoviren, Beauveria bassiana, Beauveria tenella, Bendiocarb, Benfuracarb,
15 Bensultap, Benzoximate, Betacyfluthrin, Bifenazate, Bifenthrin, Bioethanomethrin,
Biopermethrin, Bistrifluron, BPMC, Bromophos A, Bufencarb, Buprofezin,
Butathiofos, Butocarboxim, Butylpyridaben,

Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap,
20 Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron,
Chlormephos, Chlorpyrifos, Chlorpyrifos M, Chlovaporthrin, Chromafenozide, Cis-
Resmethrin, Cispermethrin, Clopythrin, Cloethocarb, Clofentezine, Clothianidine,
Cyanophos, Cyclopene, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin,
Cypermethrin, Cyromazine,

25 Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon,
Dichlorvos, Dicofol, Diflubenzuron, Dimethoat, Dimethylvinphos, Diofenolan,
Disulfoton, Docusat-sodium, Dofenapyn,

30 Eflusilanate, Emamectin, Empenthrin, Endosulfan, Entomopthora spp.,
Esfenvalerate, Ethiofencarb, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimfos,

5 Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenitrothion, Fenothiocarb, Fenoxacrim,
Fenoxy carb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fenvale rate,
Fipronil, Fluazinam, Fluazuron, Flubrocythrin ate, Flucycloxuron, Flucythrinate,
Flufenoxuron, Flumethrin, Flutenzine, Fluvalinate, Fonophos, Fosmethilan,
Fosthiazate, Fubfenprox, Furathiocarb,

Granuloseviren

10 Halofenozide, HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene,

Imidaclorpid, Indoxacarb, Isazofos, Isofenphos, Isoxathion, Ivermectin,

Kempolyederviren

15

Lambda-cyhalothrin, Lufenuron

20 Malathion, Mecarbam, Metaldehyd, Methamidophos, Metharhizium anisopliae,
Metharhizium flavoviride, Methidathion, Methiocarb, Methoprene, Methomyl,
Methoxyfenozide, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin,
Milbemycin, Monocrotophos,

Naled, Nitenpyram, Nithiazine, Novaluron

25 Omethoat, Oxamyl, Oxydemethon M

30 Paecilomyces fumosoroseus, Parathion A, Parathion M, Permethrin, Phenthro at,
Phorat, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A,
Pirimiphos M, Profenofos, Promecarb, Propargite, Propoxur, Prothiofos, Prothoat,
Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridathion,
Pyrimidifen, Pyriproxyfen,

Quinalphos,

Ribavirin

5

Salithion, Sebufos, Silafluofen, Spinosad, Spirodiclofen, Sulfotep, Sulprofos,

Tau-fluvalinate, Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron,
Tefluthrin, Temephos, Temivinphos, Terbufos, Tetrachlorvinphos, Tetradifon Theta-
cypermethrin, Thiacloprid, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam
hydrogen oxalate, Thiodicarb, Thiofanox, Thuringiensin, Tralocythrin, Tralomethrin,
Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon,
Triflumuron, Trimethacarb,

15

Vamidothion, Vaniliprole, Verticillium lecanii

YI 5302

Zeta-cypermethrin, Zolaprofos

20

(1R-cis)-[5-(Phenylmethyl)-3-furanyl]-methyl-3-[(dihydro-2-oxo-3(2H)-
furanylidene)-methyl]-2,2-dimethylcyclopropancarboxylat

(3-Phenoxyphenyl)-methyl-2,2,3,3-tetramethylcyclopropanecarboxylat

25

1-[(2-Chlor-5-thiazolyl)methyl]tetrahydro-3,5-dimethyl-N-nitro-1,3,5-triazin-2(1H)-
imin

2-(2-Chlor-6-fluorophenyl)-4-[4-(1,1-dimethylethyl)phenyl]-4,5-dihydro-oxazol

30

2-(Acetlyoxy)-3-dodecyl-1,4-naphthalindion

2-Chlor-N-[[[4-(1-phenylethoxy)-phenyl]-amino]-carbonyl]-benzamid

- 2-Chlor-N-[[[4-(2,2-dichlor-1,1-difluorethoxy)-phenyl]-amino]-carbonyl]-benzamid
3-Methylphenyl-propylcarbamat
4-[4-(4-Ethoxyphenyl)-4-methylpentyl]-1-fluor-2-phenoxy-benzol
4-Chlor-2-(1,1-dimethylethyl)-5-[[2-(2,6-dimethyl-4-phenoxyphenoxy)ethyl]thio]-
5 3(2H)-pyridazinon
4-Chlor-2-(2-chlor-2-methylpropyl)-5-[(6-iod-3-pyridinyl)methoxy]-3(2H)-
pyridazinon
4-Chlor-5-[(6-chlor-3-pyridinyl)methoxy]-2-(3,4-dichlorphenyl)-3(2H)-pyridazinon
Bacillus thuringiensis strain EG-2348
10 Benzoesäure [2-benzoyl-1-(1,1-dimethylethyl)-hydrazid
Butansäure 2,2-dimethyl-3-(2,4-dichlorphenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl-
ester
[3-[(6-Chlor-3-pyridinyl)methyl]-2-thiazolidinyliden]-cyanamid
Dihydro-2-(nitromethylen)-2H-1,3-thiazine-3(4H)-carboxaldehyd
15 Ethyl-[2-[[1,6-dihydro-6-oxo-1-(phenylmethyl)-4-pyridazinyl]oxy]ethyl]-carbamat
N-(3,4,4-Trifluor-1-oxo-3-butenyl)-glycin
N-(4-Chlorphenyl)-3-[4-(difluormethoxy)phenyl]-4,5-dihydro-4-phenyl-1H-pyrazol-
1-carboxamid
N-[(2-Chlor-5-thiazolyl)methyl]-N'-methyl-N''-nitro-guanidin
20 N-Methyl-N'-(1-methyl-2-propenyl)-1,2-hydrazindicarbothioamid
N-Methyl-N'-2-propenyl-1,2-hydrazindicarbothioamid
O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat
N-Cyanomethyl-4-trifluormethyl-nicotinamid
3,5-Dichlor-1-(3,3-dichlor-2-propenyloxy)-4-[3-(5-trifluormethylpyridin-2-yloxy)-
25 propoxy]-benzol

Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.

- 30 Die erfindungsgemäßen Wirkstoffe können ferner beim Einsatz als Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen

bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne dass der zugesetzte Synergist selbst aktiv wirksam sein muß.

- 5 Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.
- 10 Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

- 15 Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnet sich der Wirkstoff durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekälkten Unterlagen aus.

- 20 Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetic Modified Organisms) und deren Teile behandelt. Der Begriff "Teile" bzw. "Teile von Pflanzen" oder "Pflanzenteile" wurde oben erläutert.
- 25

- 30 Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften ("Traits"), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Bio- und Genotypen sein.

Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfundungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernterträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.

Zu den bevorzugten erfundungsgemäß zu behandelnden transgenen (genetisch technologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernterträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle und Raps besonders

hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus *Bacillus Thuringiensis* (z.B. durch die Gene CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CryIF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im Folgenden "Bt Pflanzen"). Als Eigenschaften ("Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharnstoffen, Glyphosat oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucotn® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosat z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").

Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel I bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen.

- 5 Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.

Die erfindungsgemäßen Wirkstoffe wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen 10 tierische Parasiten (Ektoparasiten) wie Schildzecken, Lederzecken, Räudemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge und Flöhe. Zu diesen Parasiten gehören:

Aus der Ordnung der Anoplurida z.B. Haematopinus spp., Linognathus spp.,
15 Pediculus spp., Phtirus spp., Solenopotes spp..

Aus der Ordnung der Mallophagida und den Unterordnungen Amblycerina sowie Ischnocerina z.B. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp..
20

Aus der Ordnung Diptera und den Unterordnungen Nematocerina sowie Brachycerina z.B. Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp.,
25 Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp., Melophagus spp..

30 Aus der Ordnung der Siphonapterida z.B. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp..

Aus der Ordnung der Heteroptera z.B. Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp..

5 Aus der Ordnung der Blattaria z.B. Blatta orientalis, Periplaneta americana, Blattela germanica, Supella spp..

Aus der Unterklasse der Acaria (Acarida) und den Ordnungen der Meta- sowie Mesostigmata z.B. Argas spp., Ornithodoros spp., Otobius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp.,
10 Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp., Varroa spp..

Aus der Ordnung der Actinedida (Prostigmata) und Acaridida (Astigmata) z.B. Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp..

20 Die erfindungsgemäßen Wirkstoffe der Formel (I) eignen sich auch zur Bekämpfung von Arthropoden, die landwirtschaftliche Nutztiere, wie z.B. Rinder, Schafe, Ziegen, Pferde, Schweine, Esel, Kamele, Büffel, Kaninchen, Hühner, Puten, Enten, Gänse, Bienen, sonstige Haustiere wie z.B. Hunde, Katzen, Stubenvögel, Aquarienfische sowie sogenannte Versuchstiere, wie z.B. Hamster, Meerschweinchen, Ratten und
25 Mäuse befallen. Durch die Bekämpfung dieser Arthropoden sollen Todesfälle und Leistungsminderungen (bei Fleisch, Milch, Wolle, Häuten, Eiern, Honig usw.) vermindert werden, so dass durch den Einsatz der erfindungsgemäßen Wirkstoffe eine wirtschaftlichere und einfachere Tierhaltung möglich ist.

30 Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht im Veterinärsektor in bekannter Weise durch enterale Verabreichung in Form von beispielsweise Tabletten,

- Kapseln, Tränken, Drenchen, Granulaten, Pasten, Boli, des feed-through-Verfahrens, von Zäpfchen, durch parenterale Verabreichung, wie zum Beispiel durch Injektionen (intramuskulär, subcutan, intravenös, intraperitoneal u.a.), Implantate, durch nasale Applikation, durch dermale Anwendung in Form beispielsweise des Tauchens oder
- 5 Badens (Dippen), Sprühens (Spray), Aufgießens (Pour-on und Spot-on), des Waschens, des Einpuderns sowie mit Hilfe von wirkstoffhaltigen Formkörpern, wie Halsbändern, Ohrmarken, Schwanzmarken, Gliedmaßenbändern, Halftern, Markierungsvorrichtungen usw.
- 10 Bei der Anwendung für Vieh, Geflügel, Haustiere etc. kann man die Wirkstoffe der Formel (I) als Formulierungen (beispielsweise Pulver, Emulsionen, fließfähige Mittel), die die Wirkstoffe in einer Menge von 1 bis 80 Gew.-% enthalten, direkt oder nach 100 bis 10 000-facher Verdünnung anwenden oder sie als chemisches Bad verwenden.
- 15 Außerdem wurde gefunden, dass die erfindungsgemäßen Verbindungen eine hohe insektizide Wirkung gegen Insekten zeigen, die technische Materialien zerstören.
- Beispielhaft und vorzugsweise - ohne jedoch zu limitieren - seien die folgenden
- 20 Insekten genannt:
- Käfer wie
- Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinus pecticornis, Dendrobum pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthes rugicollis, Xyleborus spec. Tryptodendron spec. Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec. Dinoderus minutus.
- Hautflügler wie
- 30 Sirex juvencus, Urocerus gigas, Urocerus gigas taignus, Urocerus augur.
- Termiten wie

Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.
Borstenschwänze wie Lepisma saccharina.

5

Unter technischen Materialien sind im vorliegenden Zusammenhang nicht-lebende Materialien zu verstehen, wie vorzugsweise Kunststoffe, Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Holzverarbeitungsprodukte und Anstrichmittel.

10 Ganz besonders bevorzugt handelt es sich bei dem vor Insektenbefall zu schützenden Material um Holz und Holzverarbeitungsprodukte.

15 Unter Holz und Holzverarbeitungsprodukten, welche durch das erfindungsgemäße Mittel bzw. dieses enthaltende Mischungen geschützt werden kann, ist beispielhaft zu verstehen:

20 Bauholz, Holzbalken, Eisenbahnschwellen, Brückenteile, Bootsstege, Holzfahrzeuge, Kisten, Paletten, Container, Telefonmasten, Holzverkleidungen, Holzfenster und -türen, Sperrholz, Spanplatten, Tischlerarbeiten oder Holzprodukte, die ganz allgemein beim Hausbau oder in der Bautischlerei Verwendung finden.

25 Die Wirkstoffe können als solche, in Form von Konzentraten oder allgemein üblichen Formulierungen wie Pulver, Granulate, Lösungen, Suspensionen, Emulsionen oder Pasten angewendet werden.

25

Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem Lösungs- bzw. Verdünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Wasser-Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten sowie weiteren Verarbeitungshilfsmitteln.

Die zum Schutz von Holz und Holzwerkstoffen verwendeten insektiziden Mittel oder Konzentrate enthalten den erfindungsgemäßen Wirkstoff in einer Konzentration von 0,0001 bis 95 Gew.-%, insbesondere 0,001 bis 60 Gew.-%.

5 Die Menge der eingesetzten Mittel bzw. Konzentrate ist von der Art und dem Vorkommen der Insekten und von dem Medium abhängig. Die optimale Einsatzmenge kann bei der Anwendung jeweils durch Testreihen ermittelt werden. Im Allgemeinen ist es jedoch ausreichend 0,0001 bis 20 Gew.-%, vorzugsweise 0,001 bis 10 Gew.-%, des Wirkstoffs, bezogen auf das zu schützende Material, einzusetzen.

10 Als Lösungs- und/oder Verdünnungsmittel dient ein organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein öliges oder ölartiges schwer flüchtiges organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder Wasser und gegebenenfalls einen Emulgator und/oder Netzmittel.

15 Als organisch-chemische Lösungsmittel werden vorzugsweise ölige oder ölartige Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, eingesetzt. Als derartige schwerflüchtige, wasserunlösliche, ölige und ölartige Lösungsmittel werden entsprechende Mineralöle oder deren Aromatenfraktionen oder mineralölhaltige Lösungsmittelgemische, vorzugsweise Testbenzin, Petroleum und/oder Alkylbenzol verwendet.

20 Vorteilhaft gelangen Mineralöle mit einem Siedebereich von 170 bis 220°C, Testbenzin mit einem Siedebereich von 170 bis 220°C, Spindelöl mit einem Siedebereich von 250 bis 350°C, Petroleum bzw. Aromaten vom Siedebereich von 160 bis 280°C, Terpentinöl und dgl. zum Einsatz.

25 In einer bevorzugten Ausführungsform werden flüssige aliphatische Kohlenwasserstoffe mit einem Siedebereich von 180 bis 210°C oder hochsiedende Gemische von

aromatischen und aliphatischen Kohlenwasserstoffen mit einem Siedebereich von 180 bis 220°C und/oder Spindeöl und/oder Monochlornaphthalin, vorzugsweise α-Monochlornaphthalin, verwendet.

- 5 Die organischen schwerflüchtigen ölichen oder ölartigen Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, können teilweise durch leicht oder mittelflüchtige organisch-chemische Lösungsmittel ersetzt werden, mit der Maßgabe, dass das Lösungsmittelgemisch ebenfalls eine Verdunstungszahl über 35 und einen Flammpunkt oberhalb 10 30°C, vorzugsweise oberhalb 45°C, aufweist und dass das Insektizid-Fungizid-Gemisch in diesem Lösungsmittelgemisch löslich oder emulgierbar ist.

- Nach einer bevorzugten Ausführungsform wird ein Teil des organisch-chemischen Lösungsmittel oder Lösungsmittelgemisches oder ein aliphatisches polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch ersetzt. Vorzugsweise gelangen Hydroxyl- und/oder Ester- und/oder Ethergruppen enthaltende aliphatische organisch-chemische Lösungsmittel wie beispielsweise Glycolether, Ester oder dgl. zur Anwendung.
- 20 Als organisch-chemische Bindemittel werden im Rahmen der vorliegenden Erfindung die an sich bekannten wasserverdünnbaren und/oder in den eingesetzten organisch-chemischen Lösungsmitteln löslichen oder dispergier- bzw. emulgierbaren Kunstharze und/oder bindende trocknende Öle, insbesondere Bindemittel bestehend aus oder enthaltend ein Acrylatharz, ein Vinylharz, z.B. Polyvinylacetat, Polyesterharz, Polykondensations- oder Polyadditionsharz, Polyurethanharz, Alkydharz bzw. modifiziertes Alkydharz, Phenolharz, Kohlenwasserstoffharz wie Inden-Cumaronharz, Siliconharz, trocknende pflanzliche und/oder trocknende Öle und/oder physikalisch trocknende Bindemittel auf der Basis eines Natur- und/oder Kunstharzes verwendet.

Das als Bindemittel verwendete Kunsthars kann in Form einer Emulsion, Dispersion oder Lösung, eingesetzt werden. Als Bindemittel können auch Bitumen oder bituminöse Substanzen bis zu 10 Gew.-%, verwendet werden. Zusätzlich können an sich bekannte Farbstoffe, Pigmente, wasserabweisende Mittel, Geruchskorrigentien und
5 Inhibitoren bzw. Korrosionsschutzmittel und dgl. eingesetzt werden.

Bevorzugt ist gemäß der Erfindung als organisch-chemische Bindemittel mindestens ein Alkydharz bzw. modifiziertes Alkydharz und/oder ein trocknendes pflanzliches Öl im Mittel oder im Konzentrat enthalten. Bevorzugt werden gemäß der Erfindung
10 Alkydharze mit einem Ölgelhalt von mehr als 45 Gew.-%, vorzugsweise 50 bis 68 Gew.-%, verwendet.

Das erwähnte Bindemittel kann ganz oder teilweise durch ein Fixierungs-
mittel(gemisch) oder ein Weichmacher(gemisch) ersetzt werden. Diese Zusätze sollen einer Verflüchtigung der Wirkstoffe sowie einer Kristallisation bzw. Ausfällen vorbeugen. Vorzugsweise ersetzen sie 0,01 bis 30 % des Bindemittels (bezogen auf
15 100 % des eingesetzten Bindemittels).

Die Weichmacher stammen aus den chemischen Klassen der Phthalsäureester wie
20 Dibutyl-, Dioctyl- oder Benzylbutylphthalat, Phosphorsäureester wie Tributyl- phosphat, Adipinsäureester wie Di-(2-ethylhexyl)-adipat, Stearate wie Butylstearat oder Amylstearat, Oleate wie Butyloleat, Glycerinether oder höhermolekulare Gly- kolether, Glycerinester sowie p-Toluolsulfonsäureester.

25 Fixierungsmittel basieren chemisch auf Polyvinylalkylethern wie z.B. Polyvinyl- methylether oder Ketonen wie Benzophenon, Ethylenbenzophenon.

Als Lösungs- bzw. Verdünnungsmittel kommt insbesondere auch Wasser in Frage, gegebenenfalls in Mischung mit einem oder mehreren der oben genannten organisch- chemischen Lösungs- bzw. Verdünnungsmittel, Emulgatoren und Dispergatoren.
30

Ein besonders effektiver Holzschutz wird durch großtechnische Imprägnierverfahren, z.B. Vakuum, Doppelvakuum oder Druckverfahren, erzielt.

Die anwendungsfertigen Mittel können gegebenenfalls noch weitere Insektizide und
5 gegebenenfalls noch ein oder mehrere Fungizide enthalten.

Als zusätzliche Zumischpartner kommen vorzugsweise die in der WO 94/29 268 genannten Insektizide und Fungizide in Frage. Die in diesem Dokument genannten Verbindungen sind ausdrücklicher Bestandteil der vorliegenden Anmeldung.

10

Als ganz besonders bevorzugte Zumischpartner können Insektizide, wie Chlorpyriphos, Phoxim, Silafluofin, Alphamethrin, Cyfluthrin, Cypermethrin, Deltamethrin, Permethrin, Imidacloprid, NI-25, Flufenoxuron, Hexaflumuron, Transfluthrin, Thiaclorpid, Methoxyphenoxid und Triflumuron,

15

sowie Fungizide wie Epoxyconazole, Hexaconazole, Azaconazole, Propiconazole, Tebuconazole, Cyproconazole, Metconazole, Imazalil, Dichlorfluanid, Tolyfluanid, 3-Iod-2-propinyl-butylcarbamat, N-Octyl-isothiazolin-3-on und 4,5-Dichlor-N-octylisothiazolin-3-on, sein.

20

Zugleich können die erfindungsgemäßen Verbindungen zum Schutz vor Bewuchs von Gegenständen, insbesondere von Schiffskörpern, Sieben, Netzen, Bauwerken, Kaianlagen und Signalanlagen, welche mit See- oder Brackwasser in Verbindung kommen, eingesetzt werden.

25

Bewuchs durch sessile Oligochaeten, wie Kalkröhrenwürmer sowie durch Muscheln und Arten der Gruppe Ledamorpha (Entenmuscheln), wie verschiedene Lepas- und Scalpellum-Arten, oder durch Arten der Gruppe Balanomorpha (Seepocken), wie Balanus- oder Pollicipes-Species, erhöht den Reibungswiderstand von Schiffen und führt in der Folge durch erhöhten Energieverbrauch und darüber hinaus durch häufige Trockendockaufenthalte zu einer deutlichen Steigerung der Betriebskosten.
30

Neben dem Bewuchs durch Algen, beispielsweise *Ectocarpus* sp. und *Ceramium* sp., kommt insbesondere dem Bewuchs durch sessile Entomostraken-Gruppen, welche unter dem Namen Cirripedia (Rankenflußkrebse) zusammengefaßt werden, besondere Bedeutung zu.

Es wurde nun überraschenderweise gefunden, dass die erfindungsgemäßen Verbindungen allein oder in Kombination mit anderen Wirkstoffen, eine hervorragende Antifouling (Antibewuchs)-Wirkung aufweisen.

Durch Einsatz von erfindungsgemäßen Verbindungen allein oder in Kombination mit anderen Wirkstoffen, kann auf den Einsatz von Schwermetallen wie z.B. in Bis-(trialkylzinn)-sulfiden, Tri-*n*-butylzinnlaurat, Tri-*n*-butylzinnchlorid, Kupfer(I)-oxid, Triethylzinnchlorid, Tri-*n*-butyl(2-phenyl-4-chlorphenoxy)-zinn, Tributylzinnoxid, Molybdändisulfid, Antimonoxid, polymerem Butyltitannat, Phenyl-(bispyridin)-wismutchlorid, Tri-*n*-butylzinnfluorid, Manganethylenbisthiocarbamat, Zinkdimethyldithiocarbamat, Zinkethylenbisthiocarbamat, Zink- und Kupfersalze von 2-Pyridinthiol-1-oxid, Bisdimethyldithiocarbamoylzinkethylenbisthiocarbamat, Zink-oxid, Kupfer(I)-ethylen-bisdithiocarbamat, Kupferthiocyanat, Kupfernaphthenat und Tributylzinnhalogeniden verzichtet werden oder die Konzentration dieser Verbindungen entscheidend reduziert werden.

Die anwendungsfertigen Antifoulingfarben können gegebenenfalls noch andere Wirkstoffe, vorzugsweise Algizide, Fungizide, Herbizide, Molluskizide bzw. andere Antifouling-Wirkstoffe enthalten.

Als Kombinationspartner für die erfindungsgemäßen Antifouling-Mittel eignen sich vorzugsweise:

30 Algizide wie

2-*tert.*-Butylamino-4-cyclopropylamino-6-methylthio-1,3,5-triazin, Dichlorophen, Diuron, Endothal, Fentinacetat, Isoproturon, Methabenzthiazuron, Oxyfluorfen, Quinoclamine und Terbutryn;

5 Fungizide wie

Benzo[*b*]thiophencarbonsäurecyclohexylamid-S,S-dioxid, Dichlofuanid, Fluorfolpet, 3-Iod-2-propinyl-butylcarbamat, Tolyfluanid und Azole wie

10 Azaconazole, Cyproconazole, Epoxyconazole, Hexaconazole, Metconazole, Propiconazole und Tebuconazole;

Molluskizide wie

15 Fentinacetat, Metaldehyd, Methiocarb, Niclosamid, Thiodicarb und Trimethacarb; oder herkömmliche Antifouling-Wirkstoffe wie

20 4,5-Dichlor-2-octyl-4-isothiazolin-3-on, Diiodmethylparatrylsulfon, 2-(N,N-Dimethylthiocarbamoylthio)-5-nitrothiazyl, Kalium-, Kupfer-, Natrium- und Zinksalze von 2-Pyridinthiol-1-oxid, Pyridin-triphenylboran, Tetrabutyldistannoxyan, 2,3,5,6-Tetrachlor-4-(methylsulfonyl)-pyridin, 2,4,5,6-Tetrachloroisophthalonitril, Tetramethylthiuramdisulfid und 2,4,6-Trichlorphenylmaleinimid.

25 Die verwendeten Antifouling-Mittel enthalten die erfundungsgemäßen Wirkstoff der erfundungsgemäßen Verbindungen in einer Konzentration von 0,001 bis 50 Gew.-%, insbesondere von 0,01 bis 20 Gew.-%.

30 Die erfundungsgemäßen Antifouling-Mittel enthalten desweiteren die üblichen Bestandteile wie z.B. in Ungerer, *Chem. Ind.* 1985, 37, 730-732 und Williams, *Antifouling Marine Coatings*, Noyes, Park Ridge, 1973 beschrieben.

Antifouling-Anstrichmittel enthalten neben den algiziden, fungiziden, molluskiziden und erfundungsgemäßen insektiziden Wirkstoffen insbesondere Bindemittel.

Beispiele für anerkannte Bindemittel sind Polyvinylchlorid in einem Lösungsmittel-
5 system, chlorierter Kautschuk in einem Lösungsmittelsystem, Acrylharze in einem Lösungsmittelsystem insbesondere in einem wässrigen System, Vinylchlorid/Vinyl-acetat-Copolymersysteme in Form wässriger Dispersionen oder in Form von organischen Lösungsmittelsystemen, Butadien/Styrol/Acrylnitril-Kautschuke, trocknende Öle, wie Leinsamenöl, Harzester oder modifizierte Hartharze in Kombination
10 mit Teer oder Bitumina, Asphalt sowie Epoxyverbindungen, geringe Mengen Chlor-kautschuk, chloriertes Polypropylen und Vinylharze.

Gegebenenfalls enthalten Anstrichmittel auch anorganische Pigmente, organische Pigmente oder Farbstoffe, welche vorzugsweise in Seewasser unlöslich sind. Ferner können Anstrichmittel Materialien, wie Kolophonium enthalten, um eine gesteuerte Freisetzung der Wirkstoffe zu ermöglichen. Die Anstriche können ferner Weichmacher, die rheologischen Eigenschaften beeinflussende Modifizierungsmittel sowie andere herkömmliche Bestandteile enthalten. Auch in Self-Polishing-Antifouling-Systemen können die erfundungsgemäßen Verbindungen oder die oben genannten
15 Mischungen eingearbeitet werden.
20

Die Wirkstoffe eignen sich auch zur Bekämpfung von tierischen Schädlingen, insbesondere von Insekten, Spinnentieren und Milben, die in geschlossenen Räumen, wie beispielsweise Wohnungen, Fabrikhallen, Büros, Fahrzeugkabinen u.ä. vorkommen.
25 Sie können zur Bekämpfung dieser Schädlinge allein oder in Kombination mit anderen Wirk- und Hilfsstoffen in Haushaltsinsektizid-Produkten verwendet werden. Sie sind gegen sensible und resistente Arten sowie gegen alle Entwicklungsstadien wirksam. Zu diesen Schädlingen gehören:

30 Aus der Ordnung der Scorpionidea z.B. *Buthus occitanus*.

Aus der Ordnung der Acarina z.B. Argas persicus, Argas reflexus, Bryobia ssp., Dermanyssus gallinae, Glyciphagus domesticus, Ornithodoros moubat, Rhipicephalus sanguineus, Trombicula alfreddugesi, Neutrombicula autumnalis, Dermatophagoides pteronissimus, Dermatophagoides farinae.

5

Aus der Ordnung der Araneae z.B. Aviculariidae, Araneidae.

Aus der Ordnung der Opiliones z.B. Pseudoscorpiones chelifer, Pseudoscorpiones cheiridium, Opiliones phalangium.

10

Aus der Ordnung der Isopoda z.B. Oniscus asellus, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus, Polydesmus spp..

15

Aus der Ordnung der Chilopoda z.B. Geophilus spp..

Aus der Ordnung der Zygentoma z.B. Ctenolepisma spp., Lepisma saccharina, Lepismodes inquilinus.

20

Aus der Ordnung der Blattaria z.B. Blatta orientalis, Blattella germanica, Blattella asahinai, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta australasiae, Periplaneta americana, Periplaneta brunnea, Periplaneta fuliginosa, Supella longipalpa.

25

Aus der Ordnung der Saltatoria z.B. Acheta domesticus.

Aus der Ordnung der Dermaptera z.B. Forficula auricularia.

Aus der Ordnung der Isoptera z.B. Kalotermes spp., Reticulitermes spp.

30

Aus der Ordnung der Psocoptera z.B. Lepinatus spp., Liposcelis spp.

Aus der Ordnung der Coleoptera z.B. *Anthrenus spp.*, *Attagenus spp.*, *Dermestes spp.*, *Latheticus oryzae*, *Necrobia spp.*, *Ptinus spp.*, *Rhizopertha dominica*, *Sitophilus granarius*, *Sitophilus oryzae*, *Sitophilus zeamais*, *Stegobium paniceum*.

5

Aus der Ordnung der Diptera z.B. *Aedes aegypti*, *Aedes albopictus*, *Aedes taeniorhynchus*, *Anopheles spp.*, *Calliphora erythrocephala*, *Chrysozona pluvialis*, *Culex quinquefasciatus*, *Culex pipiens*, *Culex tarsalis*, *Drosophila spp.*, *Fannia canicularis*, *Musca domestica*, *Phlebotomus spp.*, *Sarcophaga carnaria*, *Simulium spp.*, *Stomoxys calcitrans*, *Tipula paludosa*.

10

Aus der Ordnung der Lepidoptera z.B. *Achroia grisella*, *Galleria mellonella*, *Plodia interpunctella*, *Tinea cloacella*, *Tinea pellionella*, *Tineola bisselliella*.

15

Aus der Ordnung der Siphonaptera z.B. *Ctenocephalides canis*, *Ctenocephalides felis*, *Pulex irritans*, *Tunga penetrans*, *Xenopsylla cheopis*.

20

Aus der Ordnung der Hymenoptera z.B. *Camponotus herculeanus*, *Lasius fuliginosus*, *Lasius niger*, *Lasius umbratus*, *Monomorium pharaonis*, *Paravespula spp.*, *Tetramorium caespitum*.

Aus der Ordnung der Anoplura z.B. *Pediculus humanus capitis*, *Pediculus humanus corporis*, *Phthirus pubis*.

25

Aus der Ordnung der Heteroptera z.B. *Cimex hemipterus*, *Cimex lectularius*, *Rhodinus prolixus*, *Triatoma infestans*.

30

Die Anwendung im Bereich der Haushaltsinsektizide erfolgt allein oder in Kombination mit anderen geeigneten Wirkstoffen wie Phosphorsäureestern, Carbamaten, Pyrethroiden, Wachstumsregulatoren oder Wirkstoffen aus anderen bekannten Insektizidklassen.

- Die Anwendung erfolgt in Aerosolen, drucklosen Sprühmitteln, z.B. Pump- und Zerstäubersprays, Nebelautomaten, Foggern, Schäumen, Gelen, Verdampferprodukten mit Verdampferplättchen aus Cellulose oder Kunststoff, Flüssigverdampfern, 5 Gel- und Membranverdampfern, propellergetriebenen Verdampfern, energielosen bzw. passiven Verdampfungssystemen, Mottenpapieren, Mottensäckchen und Mottengelen, als Granulate oder Stäube, in Streuködern oder Köderstationen.
- Die erfindungsgemäßen Wirkstoffe können auch als Defoliants, Desiccants, Krautabtötungsmittel und insbesondere als Unkrautvernichtungsmittel verwendet werden. 10 Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbizide wirken, hängt im wesentlichen von der angewendeten Menge ab.
- 15 Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden:
- Dikotyle Unkräuter der Gattungen: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, 20 Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, 25 Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium.

Dikotyle Kulturen der Gattungen: Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Nicotiana, Phaseolus, Pisum, Solanum, Vicia.

Monokotyle Unkräuter der Gattungen: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, 5 Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum.

Monokotyle Kulturen der Gattungen: Allium, Ananas, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Secale, Sorghum, Triticale, Triticum, Zea.

10

Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.

15

Die erfindungsgemäßen Wirkstoffe eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung, z.B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können die erfindungsgemäßen Wirkstoffe zur Unkrautbekämpfung in Dauerkulturen, z.B. Forst, Ziergehölz-, Obst-, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölpalm-, 20 Kakao-, Beerenfrucht- und Hopfenanlagen, auf Zier- und Sportrasen und Weideflächen sowie zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.

25

Die erfindungsgemäßen Verbindungen der Formel (I) zeigen starke herbizide Wirksamkeit und ein breites Wirkungsspektrum bei Anwendung auf dem Boden und auf oberirdische Pflanzenteile. Sie eignen sich in gewissem Umfang auch zur selektiven Bekämpfung von monokotylen und dikotylen Unkräutern in monokotylen und dikotylen Kulturen, sowohl im Vorauflauf- als auch im Nachauflauf-Verfahren.

30

Die erfindungsgemäßen Wirkstoffe können in bestimmten Konzentrationen bzw. Aufwandmengen auch zur Bekämpfung von tierischen Schädlingen und pilzlichen

oder bakteriellen Pflanzenkrankheiten verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- oder Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.

5 Die Wirkstoffe können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-im-prägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.

10 Diese Formulierungen werden in bekannter Weise hergestellt, z. B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.

15 Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkyl-naphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylen oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.

20 Als feste Trägerstoffe kommen in Frage: z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit,

- Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnusschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylarylpolyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.
- Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
- Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurenährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
- Die Formulierungen enthalten im Allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.
- Die erfundungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Herbiziden und/oder mit Stoffen, welche die Kulturpflanzen-Verträglichkeit verbessern („Safenern“) zur Unkrautbekämpfung verwendet werden, wobei Fertigformulierungen oder Tankmischungen möglich sind. Es sind also auch Mischungen mit Unkrautbekämpfungsmitteln möglich, welche ein oder mehrere bekannte Herbicide und einen Safener enthalten.
- Für die Mischungen kommen bekannte Herbicide infrage, beispielsweise

Acetochlor, Acifluorfen (-sodium), Aclonifen, Alachlor, Alloxydim (-sodium), Ametryne, Amicarbazone, Amidochlor, Amidosulfuron, Anilofos, Asulam, Atrazine, Azafenidin, Azimsulfuron, Beflubutamid, Benazolin (-ethyl), Benfuresate, Bensulfuron (-methyl), Bentazon, Benzfendizone, Benzobicyclon, Benzofenap, Benzoylprop (-ethyl), Bialaphos, Bifenox, Bispyribac (-sodium), Bromobutide, Bromofenoxim, Bromoxynil, Butachlor, Butafenacil (-allyl), Butoxydim, Butylate, Cafenstrole, Caloxydim, Carbetamide, Carfentrazone (-ethyl), Chlomethoxyfen, Chloraben, Chloridazon, Chlorimuron (-ethyl), Chlornitrofen, Chlorsulfuron, Chlortoluron, Cindodon (-ethyl), Cinmethylin, Cinosulfuron, Clefoxydim, Clethodim, Clodinafop (-propargyl), Clomazone, Clomeprop, Clopyralid, Clopyrasulfuron (-methyl), Clornsulam (-methyl), Cumyluron, Cyanazine, Cybutryne, Cycloate, Cyclosulfamuron, Cycloxydim, Cyhalofop (-butyl), 2,4-D, 2,4-DB, Desmedipham, Diallate, Dicamba, Dichlorprop (-P), Diclofop (-methyl), Diclosulam, Diethylatyl (-ethyl), Difenoquat, Disulfenican, Diflufenican, Diflufenzopyr, Dimefuron, Dimepiperate, Dimethachlor, Dimethametryn, Dimethenamid, Dimexyflam, Dinitramine, Diphenamid, Diquat, Dithiopyr, Diuron, Dymron, Epropodan, EPTC, Esprocarb, Ethalfluralin, Ethametsulfuron (-methyl), Ethofumesate, Ethoxyfen, Ethoxysulfuron, Etobenzanid, Fenoxaprop (-P-ethyl), Fentrazamide, Flamprop (-isopropyl, -isopropyl-L, -methyl), Flazasulfuron, Florasulam, Fluazifop (-P-butyl), Fluazolate, Flucarbazone (-sodium), Flufenacet, Flumetsulam, Flumiclorac (-pentyl), Flumioxazin, Flumipropyn, Flumetsulam, Fluometuron, Fluorochloridone, Fluoroglycofen (-ethyl), Flupoxam, Flupropacil, Flurpyrsulfuron (-methyl, -sodium), Flurenol (-butyl), Fluridone, Fluroxypyr (-butoxy-propyl, -meptyl), Flurprimidol, Flurtamone, Fluthiacet (-methyl), Fluthiamide, Fomesafen, Foramsulfuron, Glufosinate (-ammonium), Glyphosate (-isopropyl-ammonium), Halosafen, Haloxyfop (-ethoxyethyl, -P-methyl), Hexazinone, Imazamethabenz (-methyl), Imazamethapyr, Imazamox, Imazapic, Imazapyr, Imazaquin, Imazethapyr, Imazosulfuron, Iodosulfuron (-methyl, -sodium), Ioxynil, Isopropalin, Isoproturon, Isouron, Isoxaben, Isoxachlortole, Isoxaflutole, Isoxapryifop, Lactofen, Lenacil, Linuron, MCPA, Mecoprop, Mefenacet, Mesotrione, Metamitron, Metazachlor, Methabenzthiazuron, Metobenzuron, Metobromuron, (alpha-) Metolachlor,

Metosulam, Metoxuron, Metribuzin, Metsulfuron (-methyl), Molinate, Monolinuron, Naproanilide, Napropamide, Neburon, Nicosulfuron, Norflurazon, Orbencarb, Oryzalin, Oxadiargyl, Oxadiazon, Oxasulfuron, Oxaziclomefone, Oxyfluorfen, Paraquat, Pelargonsäure, Pendimethalin, Pendralin, Pentozazone, Phenmedipham, Picolinafen, Piperophos, Pretilachlor, Primisulfuron (-methyl), Profluazol, Prometryn, Propachlor, Propanil, Propaquizafop, Propisochlor, Propoxycarbazone (-sodium), Propyzamide, Prosulfocarb, Prosulfuron, Pyraflufen (-ethyl), Pyrazogyl, Pyrazolate, Pyrazosulfuron (-ethyl), Pyrazoxyfen, Pyribenzoxim, Pyributicarb, Pyridate, Pyridatol, Pyriftalid, Pyriminobac (-methyl), Pyrithiobac (-sodium), Quinchlorac, Quinmerac, Quinoclamine, Quizalofop (-P-ethyl, -P-tefuryl), Rimsulfuron, Sethoxydim, Simazine, Simetryn, Sulcotrione, Sulfentrazone, Sulfometuron (-methyl), Sulfosate, Sulfosulfuron, Tebutam, Tebuthiuron, Tepraloxydim, Terbutylazine, Terbutryn, Thenylchlor, Thiafluamide, Thiazopyr, Thidiazimin, Thifensulfuron (-methyl), Thio-bencarb, Tiocarbazil, Tralkoxydim, Triallate, Triasulfuron, Tribenuron (-methyl), Triclopyr, Tridiphane, Trifluralin, Trifloxysulfuron, Triflusulfuron (-methyl), Tritosulfuron.

Für die Mischungen kommen weiterhin bekannte Safener in Frage, beispielsweise:
AD-67, BAS-145138, Benoxacor, Cloquintocet (-mexyl), Cyometrinil, 2,4-D, DKA-
24, Dichlormid, Dymron, Fenclorim, Fenchlorazol (-ethyl), Flurazole, Fluxofenim,
Furilazole, Isoxadifen (-ethyl), MCPA, Mecoprop (-P), Mefenpyr (-diethyl), MG-
191, Oxabetrinil, PPG-1292, R-29148.

Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Fungiziden,
Insektiziden, Akariziden, Nematiziden, Schutzstoffen gegen Vogelfraß, Pflanzen-
nährstoffen und Bodenstrukturverbesserungsmitteln ist möglich.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus
durch weiteres Verdünnen bereiteten Anwendungsformen, wie gebrauchsfertige
Lösungen, Suspensionen, Emulsionen, Pulver, Pasten und Granulate angewandt

werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Spritzen, Sprühen, Streuen.

Die erfindungsgemäßen Wirkstoffe können sowohl vor als auch nach dem Auflaufen
5 der Pflanzen appliziert werden. Sie können auch vor der Saat in den Boden einge-
arbeitet werden.

Die angewandte Wirkstoffmenge kann in einem größeren Bereich schwanken. Sie
hängt im wesentlichen von der Art des gewünschten Effektes ab. Im Allgemeinen
10 liegen die Aufwandmengen zwischen 1 g und 10 kg Wirkstoff pro Hektar Boden-
fläche, vorzugsweise zwischen 5 g und 5 kg pro ha.

Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und
können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und
15 Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.

Fungizide lassen sich im Pflanzenschutz zur Bekämpfung von Plasmodiophoro-
mycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes
und Deuteromycetes einsetzen.
20

Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae,
Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae ein-
setzen.

25 Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen
Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:

Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae;

30 Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans;

Erwinia-Arten, wie beispielsweise *Erwinia amylovora*;

Pythium-Arten, wie beispielsweise *Pythium ultimum*;

5 Phytophthora-Arten, wie beispielsweise *Phytophthora infestans*;

Pseudoperonospora-Arten, wie beispielsweise *Pseudoperonospora humuli* oder

Pseudoperonospora cubensis;

10 Plasmopara-Arten, wie beispielsweise *Plasmopara viticola*;

Bremia-Arten, wie beispielsweise *Bremia lactucae*;

15 Peronospora-Arten, wie beispielsweise *Peronospora pisi* oder *P. brassicae*;

Erysiphe-Arten, wie beispielsweise *Erysiphe graminis*;

Sphaerotheca-Arten, wie beispielsweise *Sphaerotheca fuliginea*;

20 Podosphaera-Arten, wie beispielsweise *Podosphaera leucotricha*;

Venturia-Arten, wie beispielsweise *Venturia inaequalis*;

25 Pyrenophora-Arten, wie beispielsweise *Pyrenophora teres* oder *P. graminea*

(Konidienform: Drechslera, Syn: *Helminthosporium*);

Cochliobolus-Arten, wie beispielsweise *Cochliobolus sativus*

30 (Konidienform: Drechslera, Syn: *Helminthosporium*);

- Uromyces-Arten, wie beispielsweise *Uromyces appendiculatus*;
- Puccinia-Arten, wie beispielsweise *Puccinia recondita*;
- 5 Sclerotinia-Arten, wie beispielsweise *Sclerotinia sclerotiorum*;
- Tilletia-Arten, wie beispielsweise *Tilletia caries*;
- 10 Ustilago-Arten, wie beispielsweise *Ustilago nuda* oder *Ustilago avenae*;
- Pellicularia-Arten, wie beispielsweise *Pellicularia sasakii*;
- Pyricularia-Arten, wie beispielsweise *Pyricularia oryzae*;
- 15 Fusarium-Arten, wie beispielsweise *Fusarium culmorum*;
- Botrytis-Arten, wie beispielsweise *Botrytis cinerea*;
- 20 Septoria-Arten, wie beispielsweise *Septoria nodorum*;
- Leptosphaeria-Arten, wie beispielsweise *Leptosphaeria nodorum*;
- Cercospora-Arten, wie beispielsweise *Cercospora canescens*;
- 25 Alternaria-Arten, wie beispielsweise *Alternaria brassicae*;
- Pseudocercosporella-Arten, wie beispielsweise *Pseudocercosporella herpotrichoides*.

Die erfindungsgemäßen Wirkstoffe weisen auch eine starke stärkende Wirkung in Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen.

5 Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang solche Substanzen zu verstehen, die in der Lage sind, das Abwehrsystem von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nachfolgender Inokulation mit unerwünschten Mikroorganismen weitgehende Resistenz gegen diese Mirkroorganismen entfalten.

10 Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der 15 Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im Allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen.

20 Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.

25 Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.

30 Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzentrationen und Aufwandmengen auch als Herbizide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- und Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.

Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.

- 5 Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als 10 technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten 15 genannt, besonders bevorzugt Holz.

Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe 20 gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.

- 25 Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:
Alternaria, wie Alternaria tenuis,

Aspergillus, wie Aspergillus niger,

- 30 Chaetomium, wie Chaetomium globosum,

- Coniophora, wie Coniophora puetana,
- Lentinus, wie Lentinus tigrinus,
- 5 Penicillium, wie Penicillium glaucum,
- Polyporus, wie Polyporus versicolor,
- Aureobasidium, wie Aureobasidium pullulans,
- 10 Sclerophoma, wie Sclerophoma pityophila,
- Trichoderma, wie Trichoderma viride,
- 15 Escherichia, wie Escherichia coli,
- Pseudomonas, wie Pseudomonas aeruginosa,
- Staphylococcus, wie Staphylococcus aureus.
- 20 Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie
25 ULV-Kalt- und Warmnebel-Formulierungen.
- Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung
30 von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streck-

mittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylool, Toluol oder Alkynaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylmethyleketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnusschalen, Maiskolben und Tabakstengel. Als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

5

Die Formulierungen enthalten im Allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen 10 auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.

15

Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage:

Fungizide:

20 Aldimorph, Ampropylfos, Ampropylfos-Kalium, Andoprim, Anilazin, Azaconazol, Azoxystrobin,

Benalaxyl, Benodanil, Benomyl, Benzamacril, Benzamacryl-isobutyl, Bialaphos, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazol, Bupirimat, Buthiobat,

25

Calciumpolysulfid, Capsimycin, Captafol, Captan, Carbendazim, Carboxin, Carvon, Chinomethionat (Quinomethionat), Chlobenthiazon, Chlorfenazol, Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Clozylacon, Cufraneb, Cymoxanil, Cyproconazol, Cyprodinil, Cyprofuram,

30

Debacarb, Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Diniconazol-M, Dinocap, Diphenylamin, Dipyrithione, Ditalimfos, Dithianon, Dodemorph, Dodine, Drazoxolon,

5

Ediphenphos, Epoxiconazol, Etaconazol, Ethirimol, Etridiazol,

10 Famoxadon, Fenapanil, Fenarimol, Fenbuconazol, Fenfuram, Fenitropan, Fenpiclonil,
Fenpropidin, Fenpropimorph, Fentinacetat, Fenthydroxyd, Ferbam, Ferimzon,
Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Flurprimidol, Flusilazol,
Flusulfamid, Flutolanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl-Natrium,
Fthalid, Fuberidazol, Furalaxy, Furametpyr, Furcarbonil, Furconazol, Furconazol-cis,
Furmecyclo,

15 Guazatin,

Hexachlorobenzol, Hexaconazol, Hymexazol,

Imazalil, Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadintriacetat,
Iodocarb, Ipconazol, Iprobenfos (IBP), Iprodione, Irumamycin, Isoprothiolan,
Isovaledione,

Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und
25 Bordeaux-Mischung,

Mancopper, Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyll, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax, Mildiomycin, Myclobutanil, Myclozolin.

30

Nickel-dimethyldithiocarbamat. Nitrothal-isopropyl, Nuarimol,

- Ofurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,
5 Paclbutrazol, Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Picoxystrobin,
Pimaricin, Piperalin, Polyoxin, Polyoxorim, Probenazol, Prochloraz, Procymidon,
Propamocarb, Propanosine-Natrium, Propiconazol, Propineb, Pyraclostrobin,
Pyrazophos, Pyrifenoxy, Pyrimethanil, Pyroquilon, Pyroxyfur,
10 Quinconazol, Quintozon (PCNB),
Schwefel und Schwefel-Zubereitungen,
15 Tebuconazol, Tecloftalam, Tecnazen, Tetcyclacis, Tetraconazol, Thiabendazol,
Thicyofen, Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl,
Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol,
Tridemorph, Trifloxystrobin, Triflumizol, Triforin, Triticonazol,
Uniconazol,
20 Validamycin A, Vinclozolin, Viniconazol,
Zarilamid, Zineb, Ziram sowie
Dagger G,
25 OK-8705,
OK-8801,
 α -(1,1-Dimethylethyl)- β -(2-phenoxyethyl)-1H-1,2,4-triazol-1-ethanol,
 α -(2,4-Dichlorphenyl)- β -fluor- β -propyl-1H-1,2,4-triazol-1-ethanol,
30 α -(2,4-Dichlorphenyl)- β -methoxy- α -methyl-1H-1,2,4-triazol-1-ethanol,

- α -(5-Methyl-1,3-dioxan-5-yl)- β -[[4-(trifluormethyl)-phenyl]-methylen]-1H-1,2,4-triazol-1-ethanol,
- (5RS,6RS)-6-Hydroxy-2,2,7,7-tetramethyl-5-(1H-1,2,4-triazol-1-yl)-3-octanon,
5 (E)-a-(Methoxyimino)-N-methyl-2-phenoxy-phenylacetamid,
- {2-Methyl-1-[[[1-(4-methylphenyl)-ethyl]-amino]-carbonyl]-propyl}-carbaminsäure-1-isopropylester
- 10 1-(2,4-Dichlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-ethanon-O-(phenylmethyl)-oxim,
1-(2-Methyl-1-naphthalenyl)-1H-pyrrol-2,5-dion,
- 1-(3,5-Dichlorphenyl)-3-(2-propenyl)-2,5-pyrrolidindion,
1-[(Diiodmethyl)-sulfonyl]-4-methyl-benzol,
15 1-[[2-(2,4-Dichlorphenyl)-1,3-dioxolan-2-yl]-methyl]-1H-imidazol,
1-[[2-(4-Chlorphenyl)-3-phenyloxiranyl]-methyl]-1H-1,2,4-triazol,
1-[1-[2-(2,4-Dichlorphenyl)-methoxy]-phenyl]-ethenyl]-1H-imidazol,
1-Methyl-5-nonyl-2-(phenylmethyl)-3-pyrrolidinol,
- 20 2',6'-Dibrom-2-methyl-4'-trifluormethoxy-4'-trifluor-methyl-1,3-thiazol-5-carboxanilid,
2,2-Dichlor-N-[1-(4-chlorphenyl)-ethyl]-1-ethyl-3-methyl-cyclopropancarboxamid,
2,6-Dichlor-5-(methylthio)-4-pyrimidinyl-thiocyanat,
2,6-Dichlor-N-(4-trifluormethylbenzyl)-benzamid,
2,6-Dichlor-N-[[4-(trifluormethyl)-phenyl]-methyl]-benzamid,
25 2-(2,3,3-Triiod-2-propenyl)-2H-tetrazol,
2-[(1-Methylethyl)-sulfonyl]-5-(trichlormethyl)-1,3,4-thiadiazol,
2-[[6-Deoxy-4-O-(4-O-methyl- β -D-glycopyranosyl)-a-D-glucopyranosyl]-amino]-4-methoxy-1H-pyrrolo[2,3-d]pyrimidin-5-carbonitril,
2-Aminobutan,
30 2-Brom-2-(brommethyl)-pentandinitril,

- 2-Chlor-N-(2,3-dihydro-1,1,3-trimethyl-1H-inden-4-yl)-3-pyridincarboxamid,
2-Chlor-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acetamid,
2-Phenylphenol(OPP),
- 5 3,4-Dichlor-1-[4-(difluormethoxy)-phenyl]-1H-pyrrol-2,5-dion,
3,5-Dichlor-N-[cyan[(1-methyl-2-propynyl)-oxy]-methyl]-benzamid,
3-(1,1-Dimethylpropyl-1-oxo-1H-inden-2-carbonitril,
3-[2-(4-Chlorophenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin,
- 10 4-Chlor-2-cyan-N,N-dimethyl-5-(4-methylphenyl)-1H-imidazol-1-sulfonamid,
4-Methyl-tetrazolo[1,5-a]quinazolin-5(4H)-on,
- 8-(1,1-Dimethylethyl)-N-ethyl-N-propyl-1,4-dioxaspiro[4.5]decan-2-methanamin,
8-Hydroxychinolinsulfat,
- 15 9H-Xanthen-9-carbonsäure-2-[(phenylamino)-carbonyl]-hydrazid,
- bis-(1-Methylethyl)-3-methyl-4-[(3-methylbenzoyl)-oxy]-2,5-thiophendicarboxylat,
cis-1-(4-Chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol,
- 20 cis-4-[3-[4-(1,1-Dimethylpropyl)-phenyl-2-methylpropyl]-2,6-dimethyl-morpholin-hydrochlorid,
- Ethyl-[(4-chlorophenyl)-azo]-cyanoacetat,
- 25 Kaliumhydrogencarbonat,
- Methantetrathiol-Natriumsalz,
Methyl-1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazol-5-carboxylat,
Methyl-N-(2,6-dimethylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninat,
- 30 Methyl-N-(chloracetyl)-N-(2,6-dimethylphenyl)-DL-alaninat,
N-(2,3-Dichlor-4-hydroxyphenyl)-1-methyl-cyclohexancarboxamid.

N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-furanyl)-acetamid,
N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-thienyl)-acetamid,
N-(2-Chlor-4-nitrophenyl)-4-methyl-3-nitro-benzolsulfonamid,
N-(4-Cyclohexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,
5 N-(4-Hexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,
N-(5-Chlor-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidinyl)-acetamid,
N-(6-Methoxy)-3-pyridinyl)-cyclopropancarboxamid,
N-[2,2,2-Trichlor-1-[(chloracetyl)-amino]-ethyl]-benzamid,
N-[3-Chlor-4,5-bis-(2-propinloyx)-phenyl]-N'-methoxy-methanimidamid,
10 N-Formyl-N-hydroxy-DL-alanin -Natriumsalz,

O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat,
O-Methyl-S-phenyl-phenylpropylphosphoramidothioate,
15 S-Methyl-1,2,3-benzothiadiazol-7-carbothioat,
spiro[2H]-1-Benzopyran-2,1'(3'H)-isobenzofuran]-3'-on,
4-[3,4-Dimethoxyphenyl)-3-(4-fluorophenyl)-acryloyl]-morpholin

Bakterizide:

20 Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin,
Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam,
Kupfersulfat und andere Kupfer-Zubereitungen.

Insektizide / Akarizide / Nematizide:

Abamectin, Acephate, Acetamiprid, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb,
Alpha-cypermethrin, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin,
Azamethiphos, Azinphos A, Azinphos M, Azocyclotin,

Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis,
Baculoviren, Beauveria bassiana, Beauveria tenella, Bendiocarb, Benfuracarb,
Bensultap, Benzoximate, Betacyfluthrin, Bifenazate, Bifenthrin, Bioethanomethrin,
Biopermethrin, Bistrifluron, BPMC, Bromophos A, Bufencarb, Buprofezin,
5 Butathiofos, Butocarboxim, Butylpyridaben,

Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap,
Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron,
Chlormephos, Chlorpyrifos, Chlorpyrifos M, Chlovaporthrin, Chromafenozide, Cis-
10 Resmethrin, Cispermethrin, Clopythrin, Cloethocarb, Clofentezine, Clothianidine,
Cyanophos, Cyclopene, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin,
Cypermethrin, Cyromazine,

Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon,
15 Dichlorvos, Dicofol, Diflubenzuron, Dimethoat, Dimethylvinphos, Diofenolan,
Disulfoton, Docusat-sodium, Dofenapyn,

Eflusilanate, Emamectin, Empenthrin, Endosulfan, Entomopthora spp.,
Esfenvalerate, Ethiofencarb, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimfos,
20 Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenitrothion, Fenothiocarb, Fenoxacrim,
Fenoxy carb, Fenpropothrin, Fenpyrad, Fenpyriithrin, Fenpyroximate, Fenvalerate,
Fipronil, Fluazinam, Fluazuron, Flubrocyclotriinate, Flucycloxuron, Flucythrinate,
Flufenoxuron, Flumethrin, Flutenzine, Fluvalinate, Fonophos, Fosmethilan,
25 Fosthiazate, Fubfenprox, Furathiocarb,

Granuloseviren

Halofenozide, HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene,
30 Imidacloprid, Indoxacarb, Isazofos, Isofenphos, Isoxathion, Ivermectin,

Kernpolyederviren**Lambda-cyhalothrin, Lufenuron**

5

Malathion, Mecarbam, Metaldehyd, Methamidophos, Metharhizium anisopliae, Metharhizium flavoviride, Methidathion, Methiocarb, Methoprene, Methomyl, Methoxyfenozide, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Milbemycin, Monocrotophos,

10

Naled, Nitenpyram, Nithiazine, Novaluron

Omethoat, Oxamyl, Oxydemethon M

15

Paecilomyces fumosoroseus, Parathion A, Parathion M, Permethrin, Phenthroate, Phorat, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A, Pirimiphos M, Profenofos, Promecarb, Propargite, Propoxur, Prothifos, Prothoat, Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridathion, Pyrimidifen, Pyriproxyfen,

20

Quinalphos,

Ribavirin

25

Salithion, Sebufos, Silafluofen, Spinosad, Spirodiclofen, Sulfotep, Sulprofos,

Tau-fluvalinate, Tebufenozone, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbufos, Tetrachlorvinphos, Tetradifon Theta-cypermethrin, Thiacloprid, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen oxalate, Thiodicarb, Thiofanox, Thuringiensin, Tralocythrin, Tralomethrin,

30

Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon,
Triflumuron, Trimethacarb,

Vamidothion, Vaniliprole, Verticillium lecanii

5

YI 5302

Zeta-cypermethrin, Zolaprofos

10 (1R-cis)-[5-(Phenylmethyl)-3-furanyl]-methyl-3-[(dihydro-2-oxo-3(2H)-
furanylidene)methyl]-2,2-dimethylcyclopropancarboxylat

(3-Phenoxyphenyl)-methyl-2,2,3,3-tetramethylcyclopropanecarboxylat

15 1-[(2-Chlor-5-thiazolyl)methyl]tetrahydro-3,5-dimethyl-N-nitro-1,3,5-triazin-2(1H)-
imin

2-((2-Chlor-6-fluorophenyl)-4-[4-(1,1-dimethylethyl)phenyl]-4,5-dihydro-oxazol
2-(Acetlyoxy)-3-dodecyl-1,4-naphthalindion

20 2-Chlor-N-[[[4-(1-phenylethoxy)-phenyl]-amino]-carbonyl]-benzamid
2-Chlor-N-[[[4-(2,2-dichlor-1,1-difluorethoxy)-phenyl]-amino]-carbonyl]-benzamid
3-Methylphenyl-propylcarbamat

4-[4-(4-Ethoxyphenyl)-4-methylpentyl]-1-fluor-2-phenoxy-benzol
4-Chlor-2-(1,1-dimethylethyl)-5-[[2-(2,6-dimethyl-4-phenoxyphenoxy)ethyl]thio]-

25 3(2H)-pyridazinon
4-Chlor-2-(2-chlor-2-methylpropyl)-5-[(6-iod-3-pyridinyl)methoxy]-3(2H)-
pyridazinon

4-Chlor-5-[(6-chlor-3-pyridinyl)methoxy]-2-(3,4-dichlorphenyl)-3(2H)-pyridazinon
Bacillus thuringiensis strain EG-2348

30 Benzoesäure [2-benzoyl-1-(1,1-dimethylethyl)-hydrazid]

- Butansäure 2,2-dimethyl-3-(2,4-dichlorphenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl-ester
[3-[(6-Chlor-3-pyridinyl)methyl]-2-thiazolidinyliden]-cyanamid
Dihydro-2-(nitromethylen)-2H-1,3-thiazine-3(4H)-carboxaldehyd
5 Ethyl-[2-[[1,6-dihydro-6-oxo-1-(phenylmethyl)-4-pyridazinyl]oxy]ethyl]-carbamat
N-(3,4,4-Trifluor-1-oxo-3-butenyl)-glycin
N-(4-Chlorphenyl)-3-[4-(difluormethoxy)phenyl]-4,5-dihydro-4-phenyl-1H-pyrazol-1-carboxamid
N-[(2-Chlor-5-thiazolyl)methyl]-N'-methyl-N"-nitro-guanidin
10 N-Methyl-N'-(1-methyl-2-propenyl)-1,2-hydrazindicarbothioamid
N-Methyl-N'-2-propenyl-1,2-hydrazindicarbothioamid
O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat
N-Cyanomethyl-4-trifluormethyl-nicotinamid
3,5-Dichlor-1-(3,3-dichlor-2-propenyloxy)-4-[3-(5-trifluormethylpyridin-2-yloxy)-
15 propoxy]-benzol

Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.

- 20 Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sproßpilze, Schimmel und diphasische Pilze (z.B. gegen Candida-Spezies wie Candida albicans, Candida glabrata) sowie Epidermophyton floccosum, Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophyton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfaßbaren mykotischen Spektrums dar, sondern hat nur erläuternden Charakter.
25
30 Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritz-

pulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.

Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden.

Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im Allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 g/ha.

Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im Allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im Allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.

Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den nachfolgenden Beispielen hervor.

HerstellungsbeispieleBeispiel I-1-a-1

5

0,96 g der Tetramssäure gemäß Beispiel I-1-a-16 (WO 98/05638) wird in 10 ml wasserfreiem Chloroform vorgelegt und auf 0°C gekühlt. Es wird 0,265 ml (1.1 eq., 3.3 mmol) Sulfurylchlorid zugegeben und bei 0°C 30 Min. weiter gerührt.

10

Man gibt 5 ml gesättigte NaHCO₃-Lösung zu, trennt die organische Phase ab, trocknet und rotiert i.Vak. ein.

Ausbeute: 0,513 g (48 % d. Theorie), Fp. 225°C.

15

Beispiel Nr. I-1-a-66

5 Zu 1,2 g der Verbindung gemäß Herstellungsbeispiel I-1-a-4 aus EP-A-915 846 in 60 ml wasserfreiem Chloroform tropft man bei Raumtemperatur 0,44 g (7 mmol) rauchende Salpetersäure und röhrt weitere 30 Minuten bei Raumtemperatur.

10 Die Reaktionslösung wird in 50 ml Eiswasser gegossen, die organische Phase abgetrennt und mit Dichlormethan extrahiert, dann wird getrocknet und das Lösungsmittel abdestilliert.

Es erfolgt säulenchromatographische Reinigung (Kieselgel, Dichlormethan/Essigsäureethylester 3:1).

15 Ausbeute: 0,9 g (64 % der Theorie), Fp. 150°C.

In Analogie zu Beispiel (I-1-a-1) und (I-1-a-66) und gemäß den allgemeinen Angaben zur Herstellung erhält man folgende Beispiele der Formeln (I-1-a) bis (I-1-c).

Tabelle 1

Bsp.-Nr.	W	X	Y	Z	G	R ¹	Fp °C
I-1-a-2	CH ₃	H	H	5-CH ₃	Cl	CH ₃	153
I-1-a-3	Cl	H	CH ₃	H	Cl	CH ₃	207
I-1-a-4	CH ₃	CH ₃	CH ₃	H	Cl	C ₂ H ₅	122
I-1-a-5	OCH ₃	Cl	CF ₃	H	Cl	CH ₃	212
I-1-a-6	Cl	Cl	CH ₃	H	Cl	CH ₃	216
I-1-a-7	CH ₃	H	CH ₃	5-CH ₃	Cl	CH ₃	275
I-1-a-8	Cl	CH ₃	CH ₃	H	Cl	CH ₃	171
I-1-a-9	CH ₃	CH ₃	Br	H	Cl	CH ₃	181
I-1-a-10	Cl	CH ₃	Br	H	Cl	CH ₃	272
I-1-a-11	Cl	CH ₃	H	H	Cl	CH ₃	187
I-1-a-12	Br	H	CH ₃	5-CH ₃	Cl	CH ₃	228
I-1-a-13	CH ₃	H	Cl	5-CH ₃	Cl	CH ₃	194
I-1-a-14	CH ₃	H	Br	5-CH ₃	Cl	CH ₃	202
I-1-a-16	CF ₃	H	CH ₃	H	Cl	CH ₃	212
I-1-a-17	CF ₃	H	Cl	H	Cl	CH ₃	224
I-1-a-18	Cl	H	Br	5-CH ₃	Cl	CH ₃	221
I-1-a-19	CH ₃	CH ₃	CN	H	Cl	CH ₃	334
I-1-a-20	CF ₃	CH ₃	CH ₃	H	Cl	CH ₃	179
I-1-a-21	CH ₃	CH ₃	H	3-Br	Cl	CH ₃	179
I-1-a-22	CH ₃	H	OCF ₃	H	Cl	CH ₃	136
I-1-a-23	CH ₃	H	Br	5-CH ₃	Cl	C ₂ H ₅	187
I-1-a-24	Cl	H	Cl	5-CH ₃	Cl	CH ₃	219
I-1-a-25	Cl	Cl	H	3-Br	Cl	CH ₃	211
I-1-a-26	C ₂ H ₅	CH ₃	Br	H	Cl	CH ₃	150
I-1-a-27	Cl	Cl	Cl	3-CH ₃	Cl	CH ₃	191
I-1-a-28	Br	H	H	5-CH ₃	Cl	CH ₃	188

Tabelle 1 (Fortsetzung)

Bsp.-Nr.	W	X	Y	Z	G	R ¹	Fp °C
I-1-a-29	Br	CH ₃	Br	3-CH ₃	Cl	CH ₃	203
I-1-a-30	CH ₃	CH ₃	CF ₃	H	Cl	CH ₃	173
I-1-a-31	Cl	H	H	5-Cl	Cl	CH ₃	254
I-1-a-32	Cl	H	CH ₃	5-Cl	Cl	CH ₃	240
I-1-a-33	Cl	Cl	H	3-CH ₃	Cl	CH ₃	205
I-1-a-34	Cl	H	H	5-CF ₃	Cl	CH ₃	237
I-1-a-35	OCF ₃	H	H	5-OCH ₃	Cl	CH ₃	188
I-1-a-36	Cl	H	CH ₃	5-Cl	Cl	C ₂ H ₅	217
I-1-a-37	Br	H	CH ₃	5-CH ₃	Cl	C ₂ H ₅	234
I-1-a-38	CH ₃	H	Br	5-Cl	Cl	C ₂ H ₅	285
I-1-a-39	Br	H	CH ₃	5-Br	Cl	C ₂ H ₅	219
I-1-a-40	Br	H	H	5-Br	Cl	C ₂ H ₅	236
I-1-a-41	Br	H	H	5-CH ₃	Cl	C ₂ H ₅	221
I-1-a-42	Cl	Cl	Cl	H	Cl	CH ₃	224
I-1-a-43	C ₂ H ₅	C ₂ H ₅	Cl	H	Cl	CH ₃	180
I-1-a-44	Cl	C ₂ H ₅	Br	H	Cl	CH ₃	174
I-1-a-45	Br	H	H	5-C ₂ H ₅	Cl	CH ₃	210
I-1-a-46	Cl	C ₂ H ₅	Cl	H	Cl	CH ₃	158
I-1-a-47	Cl	H	CH ₃	5-CH ₃	Cl	CH ₃	235
I-1-a-48	Cl	H	CH ₃	5-CH ₃	Cl	C ₂ H ₅	240
I-1-a-49	CH ₃	CH ₃	CH ₃	3-CH ₃	Cl	CH ₃	270
I-1-a-50	Cl	H	Cl	H	Cl	CH ₃	242
I-1-a-51	CH ₃	H	t-C ₄ H ₉	H	Cl	CH ₃	171
I-1-a-52	CH ₃	H	CH ₃	H	Cl	C ₂ H ₅	159
I-1-a-53	Br	H	Cl	H	Cl	CH ₃	233
I-1-a-54	Cl	H	Br	H	Cl	CH ₃	243

Tabelle 1 (Fortsetzung)

Bsp.-Nr.	W	X	Y	Z	G	R ¹	Fp °C
I-1-a-55	Br	C ₂ H ₅	Cl	H	Cl	CH ₃	166
I-1-a-56	CH ₃	H	H	5-CH ₃	Cl	C ₂ H ₅	143
I-1-a-57	Cl	H	Br	5-CH ₃	Cl	C ₂ H ₅	232
I-1-a-58	Cl	H	H	5-Br	Cl	C ₂ H ₅	252
I-1-a-59	Cl	H	H	5-CF ₃	Cl	C ₂ H ₅	200
I-1-a-60	C ₂ H ₅	CH ₃	Br	H	Cl	C ₂ H ₅	148
I-1-a-61	C ₂ H ₅	CH ₃	Cl	H	Cl	CH ₃	131
I-1-a-62	CH ₃	H	Br	5-Cl	Cl	CH ₃	210
I-1-a-63	CH ₃	H	CH ₃	5-CH ₃	Cl	C ₂ H ₅	171
I-1-a-64	C ₂ H ₅	C ₂ H ₅	Br	H	Cl	CH ₃	286
I-1-a-65	CH ₃	H	Cl	5-CH ₃	Cl	C ₂ H ₅	181
I-1-a-66	CH ₃	H	H	5-CH ₃	NO ₂	CH ₃	150
I-1-a-67	CH ₃	CH ₃	Br	H	Cl	C ₂ H ₅	264
I-1-a-68	CH ₃	CH ₃	CH ₃	5-Cl	Cl	CH ₃	175

Tabelle 2

Bsp.-Nr.	W	X	Y	Z	G	Fp °C
I-1-b-1	CH ₃	CH ₃	Br	H	Cl	310
I-1-b-2	Cl	H	Cl	H	Cl	223
I-1-b-3	CH ₃	H	Br	5-CH ₃	Cl	218
I-1-b-4	Cl	CH ₃	Cl	H	Cl	196
I-1-b-5	Br	Cl	C ₂ H ₅	H	Cl	298
I-1-b-6	Cl	H	CH ₃	5-Cl	Cl	239
I-1-b-7	C ₂ H ₅	C ₂ H ₅	Br	H	Cl	193
I-1-b-8	Cl	CH ₃	Br	H	Cl	276
I-1-b-9	Br	CH ₃	Cl	H	Cl	275
I-1-b-10	Cl	Cl	H	3-CH ₃	Cl	223
I-1-b-11	CH ₃	H	Cl	H	Cl	175
I-1-b-12	C ₂ H ₅	CH ₃	Br	H	Cl	198
I-1-b-13	CH ₃	H	H	5-Cl	Cl	217
I-1-b-14	Cl	H	Cl	5-CH ₃	Cl	249

Tabelle 3

5

Bsp.-Nr.	W	X	Y	Z	G	R ³	Fp °C
I-1-c-1	Cl	CH ₃	Cl	H	Cl	CH ₃	336
I-1-c-2	Cl	CH ₃	Br	H	Cl	H	217
I-1-c-3	CH ₃	CH ₃	Br	H	Cl	H	219
I-1-c-4	CH ₃	H	Cl	H	Cl	H	204
I-1-c-5	Cl	CH ₃	H	H	Cl	H	167
I-1-c-6	CH ₃	CH ₃	H	3-Cl	Cl	H	202
I-1-c-7	Cl	C ₂ H ₅	Cl	H	Cl	H	242
I-1-c-8	Cl	Cl	Cl	H	Cl	H	235
I-1-c-9	Cl	Cl	CF ₃	H	Cl	H	226
I-1-c-11	CH ₃	CH ₃	Cl	H	Cl	H	213
I-1-c-12	OCH ₃	H	H	3-OCH ₃	Cl	H	197
I-1-c-13	Cl	CH ₃	CH ₃	H	Cl	H	206

Beispiel I-2-a-1

- 5 Zu einer Lösung der Verbindung gemäß Beispiel I-2-a-3 (WO 97/01535) (0,95 g) in 20 ml wasserfreiem Chloroform tropft man unter Eiskühlung eine Lösung von Sulfurylchlorid (0,81 g) in 10 ml wasserfreiem Chloroform und röhrt bei Raumtemperatur 10 Stunden.
- 10 Dann wird das Reaktionsgemisch mit Wasser, gesättigter Natriumbicarbonatlösung und gesättigter Kochsalzlösung gewaschen und getrocknet.

Ausbeute: 1,16 g (99,2 % d. Theorie), log P (pH 2,3) 4,07

Beispiel I-2-a-2

- 5 Zu 0,633 g (2 mmol) der Verbindung gemäß Herstellungsbeispiel I-2-a-3 aus WO 97/01535 in 10 ml wasserfreiem Chloroform tropft man bei Raumtemperatur 0,252 g (4 mmol) rauchende Salpetersäure und röhrt weitere 30 Minuten bei Raumtemperatur.
- 10 Die Reaktionslösung wird mit Wasser gewaschen, die organische Phase abgetrennt, getrocknet und das Lösungsmittel abdestilliert. Nach Kartuschenchromatographie an Kieselgel mit Methylenechlorid/Aceton 19:1 erhält man 0,4 g (51 % d. Theorie) eines Isomerengemisches log P 4,17; 4,42.
- 15 In Analogie zu Beispiel (I-2-a-1) und (I-2-a-2) und gemäß den allgemeinen Angaben zur Herstellung erhält man folgende Beispiele der Formeln (I-2-a) bis (I-2-c).

Tabelle 4

20

Bsp.-Nr.	W	X	Y	Z	G	R ¹	logP (2.3)
I-2-a-1	CH ₃	H	CH ₃	5-CH ₃	Cl	CH ₃	4,07
I-2-a-2	CH ₃	H	CH ₃	5-CH ₃	NO ₂	CH ₃	4,17; 4,42

Tabelle 5

5

Bsp.-Nr.	W	X	Y	Z	G	Fp. °C
I-2-b-1	CH ₃	H	CH ₃	5-CH ₃	Cl	128-132

Tabelle 6

10

Bsp.-Nr.	W	X	Y	Z	G	R ³	Fp. °C
I-2-c-1	CH ₃	H	CH ₃	5-CH ₃	Cl	H	133-135

Beispiel A**Aphis gossypii-Test**

5 Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge-
wichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und
10 verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.

Baumwollblätter (*Gossypium hirsutum*), die stark von der Baumwollblattlaus (*Aphis
gossypii*) befallen sind, werden durch Tauchen in die Wirkstoffzubereitung der
15 gewünschten Konzentration behandelt.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %,
dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet
wurden.

20 Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele
gute Wirksamkeit:

Tabelle A**pflanzenschädigende Insekten****Aphis gossipii-Test**

Wirkstoffe	Wirkstoffkon- zentration in ppm	Abtötungsgrad in % nach 6 ^d
Bsp. I-1-c-1	500	90
Bsp. I-1-a-28	500	90
Bsp. I-1-a-2	500	95
Bsp. I-1-c-3	500	90

Beispiel B**Meloidogyne-Test**

5 Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether

10 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Gefäße werden mit Sand, Wirkstofflösung, Meloidogyne incognita-Ei-Larven-Suspension und Salatsamen gefüllt. Die Salatsamen keimen und die Pflänzchen entwickeln sich. An den Wurzeln entwickeln sich die Gallen.

15 Nach der gewünschten Zeit wird die nematizide Wirkung an Hand der Gallenbildung in % bestimmt. Dabei bedeutet 100 %, dass keine Gallen gefunden wurden; 0 % bedeutet, dass die Zahl der Gallen an den behandelten Pflanzen der der unbehandelten Kontrolle entspricht.

20 Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele gute Wirksamkeit:

Tabelle B
pflanzenschädigende Nematoden
Meloidogyne-Test

Wirkstoffe	Wirkstoffkon- zentration in ppm	Abtötungsgrad in % nach 14 ^d
Bsp. I-1-a-2	20	90
Bsp. I-1-a-27	20	100
Bsp. I-1-a-33	20	98
Bsp. I-1-a-42	20	90
Bsp. I-1-a-43	20	95

Beispiel C**Myzus-Test**

5 Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

10 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

15 Kohlblätter (*Brassica oleracea*), die stark von der Pfirsichblattlaus (*Myzus persicae*) befallen sind, werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.

20 Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele gute Wirksamkeit:

Tabelle C
 pflanzenschädigende Insekten
 Myzus-Test

5

Wirkstoffe	Wirkstoffkonzentration in ppm	Abtötungsgrad in % nach 6 ^d
Bsp. I-1-c-4	500	95
Bsp. I-1-a-10	500	99
Bsp. I-1-a-12	500	98
Bsp. I-1-a-14	500	90
Bsp. I-1-a-27	500	90
Bsp. I-1-a-29	500	100
Bsp. I-1-a-32	500	90
Bsp. I-1-a-37	500	95
Bsp. I-1-a-42	500	95
Bsp. I-1-a-43	500	90
Bsp. I-1-a-44	500	98
Bsp. I-1-a-46	500	98

Beispiel D**Phaedon-Larven-Test**

- 5 Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge-
wichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und
10 verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.

Kohlblätter (*Brassica oleracea*) werden durch Tauchen in die Wirkstoffzubereitung
der gewünschten Konzentration behandelt und mit Larven des Meerrettichblattkäfers
15 (*Phaedon cochleariae*) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %,
dass alle Käferlarven abgetötet wurden; 0 % bedeutet, dass keine Käferlarven
abgetötet wurden.

20 Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele
gute Wirksamkeit:

Tabelle D
pflanzenschädigende Insekten
Phaedon-Larven-Test

Wirkstoffe	Wirkstoffkonzentration in ppm	Abtötungsgrad in % nach 7d
Bsp. I-1-a-28	500	100
Bsp. I-1-a-6	500	100
Bsp. I-1-a-9	500	90
Bsp. I-1-a-26	500	100
Bsp. I-1-a-1	500	100
Bsp. I-1-a-41	500	100
Bsp. I-1-b-8	500	100
Bsp. I-1-b-9	500	100

Beispiel E**Plutella-Test**

5 Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1
Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator
10 und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.

Kohlblätter (*Brassica oleracea*) werden durch Tauchen in die Wirkstoffzubereitung
der gewünschten Konzentration behandelt und mit Raupen der Kohlschabe (*Plutella*
15 *xylostella*) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %,
dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet
wurden.

20 Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele
gute Wirksamkeit:

Tabelle E
pflanzenschädigende Insekten
Plutella-Test

Wirkstoffe	Wirkstoffkon- zentration in ppm	Abtötungsgrad in % nach 7 ^d
Bsp. I-1-a-28	500	100
Bsp. I-1-c-2	500	100
Bsp. I-1-c-3	500	100

Beispiel F**Spodoptera frugiperda-Test**

- 5 Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und
10 verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

Kohlblätter (*Brassica oleracea*) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen des Heerwurms
15 (*Spodoptera frugiperda*) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.

20 Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele gute Wirksamkeit:

Tabelle F
pflanzenschädigende Insekten
Spodoptera frugiperda -Test

Wirkstoffe	Wirkstoffkon- zentration in ppm	Abtötungsgrad in % nach 7d
Bsp. I-1-a-3	500	100
Bsp. I-1-a-7	500	100
Bsp. I-1-a-8	500	100
Bsp. I-1-a-23	500	100
Bsp. I-1-a-47	500	100
Bsp. I-1-a-48	500	100

Beispiel G**Tetranychus-Test (OP-resistant/Tauchbehandlung)**

5 Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge-
wichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und
10 verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte
Konzentration.

Bohnenpflanzen (*Phaseolus vulgaris*), die stark von allen Stadien der Gemeinen
Spinnmilbe (*Tetranychus urticae*) befallen sind, werden in eine Wirkstoffzubereitung
15 der gewünschten Konzentration getaucht.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %,
dass alle Spinnmilben abgetötet wurden; 0 % bedeutet, dass keine Spinnmilben
abgetötet wurden.

20 Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele
gute Wirksamkeit:

Tabelle G
pflanzenschädigende Milben
Tetranychus-Test (OP-resistant/Tauchbehandlung)

Wirkstoffe	Wirkstoffkon- zentration in ppm	Abtötungsgrad in % nach 7 ^d
Bsp. I-1-a-2	100	98
Bsp. I-1-a-5	100	95
Bsp. I-1-a-8	100	100
Bsp. I-1-a-16	100	100
Bsp. I-1-a-22	100	100
Bsp. I-1-a-24	100	100
Bsp. I-1-b-1	100	95
Bsp. I-1-b-5	100	90
Bsp. I-1-a-41	100	95

Beispiel H**Wirkungsdauertest: Aphis gossypii (wurzelsystemische Wirkung)**

- 5 Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglkolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator
10 und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Die Wirkstoffzubereitung wird innig mit dem Boden vermischt. Die angegebene Konzentration bezieht sich auf Wirkstoffmenge pro Volumeneinheit Boden (mg/l). Man füllt den behandelten Boden in Töpfe und bepflanzt diese mit Baumwolle im Keimblattstadium. Der Wirkstoff kann so von den Pflanzenwurzeln aus dem Boden aufgenommen und in die Blätter transportiert werden. Nach den angegebenen Tagen werden Baumwollblattläuse (*Aphis gossypii*) in Infektionskammern an die Blätter gesetzt.
15

20 Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.

Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele
25 gute Wirksamkeit:

Tabelle H
pflanzenschädigende Insekten
Wirkungsdauertest: Aphis gossypii (wurzelsystemische Wirkung)

Wirkstoffe	Wirkstoffkon- zentration in ppm	Abtötungsgrad in % nach 7 ^d	7 ^d	21 ^d	35 ^d
Bsp. I-1-c-1	Infektion nach: 4 ppm	7 ^d	99	99	98
Bsp. I-1-c-2	Infektion nach: 4 ppm	7 ^d	100	98	98
Bsp. I-1-c-3	Infektion nach: 4 ppm	7 ^d	100	98	98

Beispiel I**Wirkungsdauertest: *Myzus persicae* (wurzelsystemische Wirkung)**

5 Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglkolether

10 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

15 Die Wirkstoffzubereitung wird innig mit dem Boden vermischt. Die angegebene Konzentration bezieht sich auf Wirkstoffmenge pro Volumeneinheit Boden (mg/l).
Man füllt den behandelten Boden in Töpfe und bepflanzt diese mit vorgekeimten Ackerbohnen. Der Wirkstoff kann so von den Pflanzenwurzeln aus dem Boden aufgenommen und in die Blätter transportiert werden. Nach den angegebenen Tagen werden Pfirsichblattläuse (*Myzus persicae*) in Infektionskammern an die Blätter gesetzt.

20 Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.

25 Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele gute Wirksamkeit:

Tabelle I
pflanzenschädigende Insekten
Wirkungsdauertest: Myzus persicae (wurzelsystemische Wirkung)

Wirkstoffe	Wirkstoffkon- zentration in ppm	Infektion nach:	7d	21d	35d
Bsp. I-2-a-1	4 ppm	Infektion nach:	100	95	0
Bsp. I-1-c-1	4 ppm	Infektion nach:	100	100	100
Bsp. I-1-c-2	4 ppm	Infektion nach:	100	100	99
Bsp. I-1-c-3	4 ppm	Infektion nach:	99	100	99

Beispiel J

Post-emergence-Test

- 5 Lösungsmittel: 5 Gewichtsteile Aceton
 Emulgator: 1 Gewichtsteil Alkyarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Mit der Wirkstoffzubereitung spritzt man Testpflanzen, welche eine Höhe von 5 bis 15 cm haben, so dass die jeweils gewünschten Wirkstoffmengen pro Flächen-einheit ausgebracht werden. Die Konzentration der Spritzbrühe wird so gewählt, dass in 1000 l Wasser/ha die jeweils gewünschten Wirkstoffmengen ausgebracht werden. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle.

- 20 Es bedeuten:
- | | | |
|-------|---|--|
| 0 % | = | keine Wirkung (wie unbehandelte Kontrolle) |
| 100 % | = | totale Vernichtung |

Beispiel K**Pre-emergence-Test**

- 5 Lösungsmittel: 5 Gewichtsteile Aceton
 Emulgator: 1 Gewichtsteil Alkyarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene 10 Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Samen der Testpflanzen werden in normalen Boden ausgesät. Nach ca. 24 Stunden wird der Boden mit der Wirkstoffzubereitung bespritzt, so dass die jeweils gewünschten Wirkstoffmengen pro Flächeneinheit ausgebracht werden. Die Konzentration der Spritzbrühe wird so gewählt, dass in 1000 l Wasser/ha die jeweils gewünschten Wirkstoffmengen ausgebracht werden.
15

Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung 20 im Vergleich zur Entwicklung der unbehandelten Kontrolle.

Es bedeuten:

- 0 % = keine Wirkung (wie unbehandelte Kontrolle)
100 % = totale Vernichtung

pre-emergence/ Gewächshaus	g ai/ha	Alopecurus	Avena fatua	Echinochloa	Setaria	Amaranthus	Sinapis
Bsp. I-1-a-4	250	100	90	100	100	100	95
Bsp. I-1-a-6	250	100	95	95	100	100	90
Bsp. I-1-a-8	250	100	100	100	100	100	100
Bsp. I-1-a-9	250	100	80	100	100	-	90
Bsp. I-1-a-10	250	100	90	100	100	80	90

pre-emergence/ Gewächshaus	g ai/ha	Zuckerrüben	Alopecurus	Avena fatua	Echinochloa	Setaria	Sinapis
Bsp. I-1-a-43	250	0	95	100	100	100	-
Bsp. I-1-a-44	250	0	100	100	100	100	80
Bsp. I-1-b-12	250	0	95	100	100	100	-
Bsp. I-1-a-46	250	0	95	100	100	100	-

post-emergence/ Gewächshaus	g ai/ha	Alopecurus	Avena fatua	Echinochloa	Setaria	Amaranthus	Sinapis
Bsp. I-1-a-4	250	95	95	100	100	90	95
Bsp. I-1-a-6	250	95	95	100	100	90	80
Bsp. I-1-a-8	250	100	90	100	100	90	80
Bsp. I-1-a-9	250	95	90	100	100	-	80
Bsp. I-1-a-10	250	90	90	100	100	80	80
Bsp. I-1-a-46	250	100	100	100	100	-	70

post-emergence/ Gewächshaus	g ai/ha	Zuckerrüben	Alopecurus	Avena fatua	Echinochloa	Setaria	Sinapis
--------------------------------	---------	-------------	------------	-------------	-------------	---------	---------

Bsp. I-1-a-26	250	0	100	100	100	100	80
Bsp. I-1-a-43	250	0	90	100	100	100	70
Bsp. I-1-a-44	250	0	95	100	100	100	70
Bsp. I-1-b-12	250	0	90	100	100	100	-

Beispiel L**Grenzkonzentrations-Test / Bodeninsekten – Behandlung transgener Pflanzen**

5 Testinsekt: Diabrotica balteata – Larven im Boden

Lösungsmittel: 7 Gewichtsteile Aceton

Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

10 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

15 Die Wirkstoffzubereitung wird auf den Boden gegossen. Dabei spielt die Konzentration des Wirkstoffs in der Zubereitung praktisch keine Rolle, entscheidend ist allein die Wirkstoffgewichtsmenge pro Volumeneinheit Boden, welche in ppm (mg/l) angegeben wird. Man füllt den Boden in 0,25 l Töpfe und lässt diese bei 20°C stehen.

20 Sofort nach dem Ansatz werden je Topf 5 vorgekeimte Maiskörner der Sorte YIELD GUARD (Warenzeichen von Monsanto Comp., USA) gelegt. Nach 2 Tagen werden in den behandelten Boden die entsprechenden Testinsekten gesetzt. Nach weiteren 7 Tagen wird der Wirkungsgrad des Wirkstoffs durch Auszählen der aufgelaufenen Maispflanzen bestimmt (1 Pflanze = 20 % Wirkung).

25

Beispiel M

Heliothis virescens – Test – Behandlung transgener Pflanzen

- 5 Lösungsmittel: 7 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

10 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

15 Sojatriebe (Glycine max) der Sorte Roundup Ready (Warenzeichen der Monsanto Comp. USA) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit der Tabakknospenraupe Heliothis virescens besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung der Insekten bestimmt.

Patentansprüche

1. Verbindungen der Formel (I)

5

in welcher

W für Cyano, Halogen, Alkyl, Alkenyl, Alkinyl, Alkoxy, Halogenalkyl oder Halogenalkoxy steht,

10

X für Wasserstoff, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Cyano steht,

15

Y für Wasserstoff, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Cyano steht,

Z für Wasserstoff, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Cyano steht,

20

-A-B- für die Gruppen

a) $-\text{CH}_2-\underset{\text{OR}^1}{\text{CH}}-$ oder b) $-\text{O}-\text{CH}_2-$ steht,

G für Halogen oder Nitro steht,

25

R¹ für C₁-C₆-Alkyl steht,

R³ für Wasserstoff oder C₁-C₄-Alkyl steht,

und

5 Q mit NH für den Cyclus (1), mit Sauerstoff für den Cyclus (2) und Schwefel für den Cyclus (3) steht.

2. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die Gruppe

10

W für Halogen oder Alkyl steht,

15

X für Wasserstoff, Halogen oder Alkyl steht,

Y für Wasserstoff, Halogen oder Alkyl steht,

Z für Wasserstoff, Halogen oder Alkyl steht,

20

wobei mindestens einer der Reste W, X und Y für Alkyl und mindestens einer der Reste W, X und Y für Halogen stehen muss,

G für Halogen oder Nitro steht,

25

R² und R³ unabhängig voneinander für Wasserstoff oder C₁-C₄-Alkyl stehen und

30

Q mit NH für den Cyclus (1), mit Sauerstoff für den Cyclus (2) und Schwefel für den Cyclus (3) steht.

3. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die Gruppe

5

W für Halogen, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,

10

X für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,

Y für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,

15

Z für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,

G für Halogen oder Nitro steht,

20

R¹ für C₁-C₆-Alkyl steht,

R³ für Wasserstoff steht,

25

Q mit NH für den Cyclus (1), mit Sauerstoff für den Cyclus (2) und Schwefel für den Cyclus (3) steht.

4. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die Gruppe

W für Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Cyano steht,

5

X für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy steht,

10

Y für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Cyano steht,

Z für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Cyano steht,

15

G für Chlor, Brom oder Nitro steht,

R¹ für C₁-C₄-Alkyl steht,

R³ für Wasserstoff steht,

20

Q mit NH für den Cyclus (1), mit Sauerstoff für den Cyclus (2) und Schwefel für den Cyclus (3) steht.

25

5. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die Gruppe

- W für Chlor, Brom, Methyl, Ethyl, Propyl, Methoxy, Ethoxy, Trifluor-methyl, Difluormethoxy, Trifluormethoxy oder Cyano steht,
 5 X für Wasserstoff, Chlor, Brom, Methyl, Ethyl, Propyl, Methoxy oder Ethoxy steht,
 Y für Wasserstoff, Chlor, Brom, Methyl, Ethyl, Propyl, Trifluormethyl, Trifluormethoxy, Difluormethoxy oder Cyano steht,
 10 Z Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Difluormethoxy oder Cyano steht,
 G für Chlor, Brom oder Nitro steht,
 15 R¹ für Methyl, Ethyl, Propyl, Isopropyl, Butyl oder Isobutyl steht,
 R³ für Wasserstoff steht,
 20 Q mit NH für den Cyclus (1) und Sauerstoff für den Cyclus (2) steht.
 6. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die Gruppe
 25 a) $\text{---CH}_2\text{---CH---}$ steht, wobei
 W für Methyl, Ethyl, Chlor, Brom, Methoxy, Trifluormethyl oder Trifluormethoxy steht,

- X für Wasserstoff, Chlor, Methyl oder Ethyl steht,
- Y für Wasserstoff, Chlor, Brom, Methyl, t-Butyl, Trifluormethoxy, Trifluormethyl oder Cyano steht,
- 5 Z für Wasserstoff, Chlor, Brom, Methyl, Ethyl, Methoxy oder Trifluor-methyl steht,
- G für Chlor oder Nitro steht,
- 10 R¹ für Methyl oder Ethyl steht,
- R³ für Wasserstoff steht,
- 15 Q mit NH für den Cyclus (1) steht.
7. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die Gruppe
- 20 b) -O-CH₂- steht, wobei
- W für Halogen, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,
- 25 X für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogen-alkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,
- Y für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogen-alkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,
- 30

Z für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Cyano steht,

G für Halogen oder Nitro steht,

5

R³ für Wasserstoff steht,

Q mit NH für den Cyclus (1), mit Sauerstoff für den Cyclus (2) und Schwefel für den Cyclus (3) steht.

10

8. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die Gruppe

b) -O-CH₂- steht, wobei

15

W für Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Cyano steht,

20

X für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy steht,

Y für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Cyano steht,

25

Z für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Cyano steht,

G für Chlor, Brom oder Nitro steht,

30

R³ für Wasserstoff steht,

Q mit NH für den Cyclus (1), mit Sauerstoff für den Cyclus (2) und Schwefel für den Cyclus (3) steht.

9. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die
5 Gruppe

b) $-\text{O}-\text{CH}_2-$ steht, wobei

W für Chlor, Brom, Methyl, Ethyl, Propyl, Methoxy, Ethoxy, Tri-
10 fluormethyl, Difluormethoxy, Trifluormethoxy oder Cyano steht,

X für Wasserstoff, Chlor, Brom, Methyl, Ethyl, Propyl, Methoxy oder
Ethoxy steht,

15 Y für Wasserstoff, Chlor, Brom, Methyl, Ethyl, Propyl, Trifluormethyl,
Trifluormethoxy, Difluormethoxy oder Cyano steht,

Z für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, Methoxy,
Ethoxy, Trifluormethyl, Trifluormethoxy, Difluormethoxy oder Cyano
20 steht,

G für Chlor, Brom oder Nitro steht,

R³ für Wasserstoff steht,

25 Q mit NH für den Cyclus (1) und Sauerstoff für den Cyclus (2) steht.

10. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die
Gruppe

30 b) $-\text{O}-\text{CH}_2-$ steht, wobei

- W für Chlor, Brom, Methyl oder Ethyl steht,
X für Wasserstoff, Chlor, Methyl oder Ethyl steht,
5 Y für Wasserstoff, Chlor, Brom, Methyl oder Ethyl steht,
Z für Wasserstoff, Chlor oder Methyl steht,
10 G für Chlor steht,
R³ für Wasserstoff steht,
Q mit NH für den Cyclus (1) steht.
15
11. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die Gruppe
c) $\begin{array}{c} \text{---CH---O---} \\ | \\ \text{R}^2 \end{array}$ steht, wobei
20 W für Chlor, Brom, Methyl oder Ethyl steht,
X für Chlor, Methyl oder Ethyl steht,
25 Y für Chlor oder Brom steht,
Z für Wasserstoff oder Chlor steht,
G für Halogen oder Nitro steht,

R² für Wasserstoff oder C₁-C₄-Alkyl steht,

R³ für Wasserstoff oder C₁-C₂-Alkyl steht,

5

Q mit NH für den Cyclus (1), mit Sauerstoff für den Cyclus (2) und Schwefel für den Cyclus (3) steht.

12. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die
10 Gruppe

W für Chlor oder Methyl steht,

15

X für Chlor, Methyl oder Ethyl steht,

Y für Chlor oder Brom steht,

20

Z für Wasserstoff oder Chlor steht,

G für Chlor, Brom oder Nitro steht,

R² für Wasserstoff, Methyl oder Ethyl steht,

25

R³ für Wasserstoff steht,

Q mit NH für den Cyclus (1), mit Sauerstoff für den Cyclus (2) und Schwefel für den Cyclus (3) steht.

13. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die Gruppe

5

W für Chlor oder Methyl steht,

X für Chlor, Methyl oder Ethyl steht,

10 Y für Chlor oder Brom steht,

Z für Wasserstoff oder Chlor steht,

G für Chlor, Brom oder Nitro steht,

15 R² für Wasserstoff oder Methyl steht,

R³ für Wasserstoff steht,

20 Q mit NH für den Cyclus (1) und Sauerstoff für den Cyclus (2) steht.

14. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die Gruppe

wobei

W für Chlor oder Methyl steht,

- X für Chlor, Methyl oder Ethyl steht,
- Y für Chlor oder Brom steht,
- 5 Z für Wasserstoff oder Chlor steht,
- G für Chlor steht,
- R² für Wasserstoff steht,
- 10 R³ für Wasserstoff oder Methyl steht,
- Q mit NH für den Cyclus (1) steht.
- 15 15. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die Gruppe
- a) $\begin{array}{c} \text{---CH---O---} \\ | \\ \text{R}^1 \end{array}$ steht, wobei
- 20 W für Methyl steht,
- X für Wasserstoff, Methyl oder Chlor steht,
- Y für Wasserstoff, Methyl, Chlor oder Brom steht,
- 25 Z für Wasserstoff, Methyl oder Chlor steht,
- G für Chlor oder Nitro steht,

R¹ für Methyl oder Ethyl steht,

R³ für Wasserstoff steht,

5 Q mit Sauerstoff für den Cyclus (2) steht.

16. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die Gruppe

10 b) -O-CH₂- steht, wobei

W für Methyl steht,

X für Wasserstoff, Methyl oder Chlor steht,

15 Y für Wasserstoff, Methyl, Chlor oder Brom steht,

Z für Wasserstoff, Methyl oder Chlor steht,

20 G für Chlor oder Nitro steht,

R³ für Wasserstoff steht,

Q mit Sauerstoff für den Cyclus (2) steht.

25 17. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher A-B für die Gruppe

c) $\begin{array}{c} \text{---CH---O---} \\ | \\ \text{R}^2 \end{array}$ steht, wobei

W für Methyl steht,

X für Wasserstoff steht,

5 Y für Methyl steht,

Z für Methyl steht,

G für Chlor steht,

10 R² für Wasserstoff steht,

R³ für Wasserstoff steht,

15 Q mit Sauerstoff für den Cyclus (2) steht.

18. Verfahren zur Herstellung von Verbindungen der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, dass man zum Erhalt von

20 A) Verbindungen der Formel (I-1) bis (I-3)

in welcher

25

A, B, Q, W, X, Y, Z und R³ die oben angegebene Bedeutung haben

und

G für Halogen steht,

5 Verbindungen der Formel (II-1) bis (II-3)

in welcher

10 A, B, Q, W, X, Y, Z und R³ die oben angegebene Bedeutung haben,

mit Halogenierungsmitteln in Gegenwart eines Lösungsmittels und gegebenenfalls in Gegenwart eines Radikalstarters umsetzt;

15 B) Verbindungen der Formel (I-1) bis (I-3)

in welcher

20 A, B, Q, W, X, Y, Z und R³ die oben angegebene Bedeutung haben,

und

G für Nitro steht,

Verbindungen der Formel (II-1) bis (II-3),

5

in welcher

A, B, Q, W, X, Y, Z und R³ die oben angegebene Bedeutung haben,

10 mit Nitrierungsreagenzien wie z.B. rauchende Salpetersäure in Gegenwart eines Lösungsmittels umgesetzt.

19. Verwendung von Verbindungen der Formel (II)

15

in welcher

20 A, B, Q, W, X, Y, Z und R³ die oben angegebene Bedeutung haben zur Herstellung von Verbindungen der Formel (I) gemäß Anspruch 1.

20. Schädlingsbekämpfungsmittel, Herbizide und Fungizide, gekennzeichnet durch einen Gehalt an mindestens einer Verbindung der Formel (I) gemäß Anspruch 1.
- 5 21. Verfahren zur Bekämpfung von tierischen Schädlingen, unerwünschten Pflanzenbewuchs und Pilzen, dadurch gekennzeichnet, dass man Verbindungen der Formel (I) gemäß Anspruch 1 auf Schädlinge und/oder ihren Lebensraum einwirken lässt.
- 10 22. Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 zur Bekämpfung von tierischen Schädlingen, unerwünschtem Pflanzenbewuchs und Pilzen.
- 15 23. Verfahren zur Herstellung von Schädlingsbekämpfungsmitteln, Herbiziden und Fungiziden, dadurch gekennzeichnet, dass man Verbindungen der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.
- 20 24. Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 zur Herstellung von Schädlingsbekämpfungsmitteln, Herbiziden und Fungiziden.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 02/10158

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 7	C07D209/54	C07D307/94	C07D333/50	C07D491/10	C07D493/10
	A01N43/16	A01N43/12	A01N43/38		

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X,Y	PATENT ABSTRACTS OF JAPAN vol. 2000, no. 06, 22 September 2000 (2000-09-22) & JP 2000 086628 A (OTSUKA CHEM CO LTD), 28 March 2000 (2000-03-28) cited in the application abstract paragraphs '0008!, '0023!, '0024! examples 5,12-23,37-46,48-50,53-56 --- WO 98 05638 A (ERDELEN CHRISTOPH ;LIEB FOLKER (DE); SCHNEIDER UDO (DE); BAYER AG) 12 February 1998 (1998-02-12) cited in the application claims page 90 -page 91; table page 101 -page 102; table ---	1-24
Y	---	1-6, 11-15, 17-24
	-/-	

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search

22 November 2002

Date of mailing of the International search report

06/12/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Kollmannsberger, M

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 02/10158

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	<p>WO 97 01535 A (BAYER AG ;LIEB FOLKER (DE); HAGEMANN HERMANN (DE); WIDDIG ARNO (DE) 16 January 1997 (1997-01-16) cited in the application claims page 103; table 1 page 113; table 5 ----</p>	1-6, 11-15, 17-24
Y	<p>WO 98 25928 A (ERDELEN CHRISTOPH ;BAYER AG (DE); DAHMEN PETER (DE); FISCHER REINE) 18 June 1998 (1998-06-18) cited in the application claims page 32 -page 35; tables 1-3 ----</p>	1,7-10, 16,18-24

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 02/10158

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
JP 2000086628	A	28-03-2000	NONE		
WO 9805638	A	12-02-1998	DE AU AU BR CN WO EP JP NZ PL TR US US US ZA HU	19716591 A1 726090 B2 3770697 A 9711024 A 1232450 A 9805638 A2 0915846 A2 2000516918 T 334028 A 331585 A1 9900239 T2 6114374 A 6255342 B1 2002010204 A1 9706915 A 0001833 A2	05-03-1998 02-11-2000 25-02-1998 17-08-1999 20-10-1999 12-02-1998 19-05-1999 19-12-2000 24-11-2000 19-07-1999 22-03-1999 05-09-2000 03-07-2001 24-01-2002 10-02-1998 28-08-2000
WO 9701535	A	16-01-1997	DE AU AU BR CN DE WO EP HU JP TR TW US ZA	19602524 A1 709848 B2 6304296 A 9609250 A 1198154 A 59609697 D1 9701535 A1 0837847 A1 9802866 A2 11508880 T 9701708 T1 476754 B 6110872 A 9605465 A	02-01-1997 09-09-1999 30-01-1997 18-05-1999 04-11-1998 24-10-2002 16-01-1997 29-04-1998 29-03-1999 03-08-1999 21-04-1998 21-02-2002 29-08-2000 24-01-1997
WO 9825928	A	18-06-1998	DE AU BR WO EP JP US US US US	19651686 A1 5559598 A 9714470 A 9825928 A1 0944633 A1 2001505892 T 2002161034 A1 6288102 B1 6391912 B1 2002072617 A1	18-06-1998 03-07-1998 16-05-2000 18-06-1998 29-09-1999 08-05-2001 31-10-2002 11-09-2001 21-05-2002 13-06-2002

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 02/10158

A. KLASSEFIZIERUNG DES ANMELDUNGSGEGENSTANDES					
IPK 7	C07D209/54	C07D307/94	C07D333/50	C07D491/10	C07D493/10.
	A01N43/16	A01N43/12	A01N43/38		

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBiete

Recherchierte Mindestprästoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C07D A01N

Recherchierte aber nicht zum Mindestprästoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X, Y	PATENT ABSTRACTS OF JAPAN vol. 2000, no. 06, 22. September 2000 (2000-09-22) & JP 2000 086628 A (OTSUKA CHEM CO LTD), 28. März 2000 (2000-03-28) in der Anmeldung erwähnt Zusammenfassung Absätze '0008!, '0023!, '0024! Beispiele 5,12-23,37-46,48-50,53-56	1-24
Y	WO 98 05638 A (ERDELEN CHRISTOPH ; LIEB FOLKER (DE); SCHNEIDER UDO (DE); BAYER AG) 12. Februar 1998 (1998-02-12) in der Anmeldung erwähnt Ansprüche Seite 90 -Seite 91; Tabelle Seite 101 -Seite 102; Tabelle	1-6, 11-15, 17-24
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
 - "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 - "E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
 - "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 - "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 - "P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *' T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzipia oder der ihr zugrundeliegenden Theorie angegeben ist
- *' X" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *' Y" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
---	---

22. November 2002

06/12/2002

Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter
---	-------------------------------

Kollmannsberger, M

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP 02/10158

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	WO 97 01535 A (BAYER AG ;LIEB FOLKER (DE); HAGEMANN HERMANN (DE); WIDDIG ARNO (DE) 16. Januar 1997 (1997-01-16) in der Anmeldung erwähnt Ansprüche Seite 103; Tabelle 1 Seite 113; Tabelle 5 ----	1-6, 11-15, 17-24
Y	WO 98 25928 A (ERDELEN CHRISTOPH ;BAYER AG (DE); DAHMEN PETER (DE); FISCHER REINE) 18. Juni 1998 (1998-06-18) in der Anmeldung erwähnt Ansprüche Seite 32 -Seite 35; Tabellen 1-3 ----	1,7-10, 16,18-24

INTERNATIONALER RECHERCHENBERICHT

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)

Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1. Ansprüche Nr.
weil sie sich auf Gegenstände beziehen, zu denen Recherche die Behörde nicht verpflichtet ist, nämlich

2. Ansprüche Nr.
weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich

3. Ansprüche Nr.
weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

siehe Zusatzblatt

1. Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.

2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.

3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.

4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:

Bemerkungen hinsichtlich eines Widerspruchs

- Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
 Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere (Gruppen von) Erfindungen enthält, nämlich:

1. Ansprüche: 1(teilweise), 3-10, 15, 16; 18-24 (teilweise)

Verbindungen der Formel (I), in denen A-B die Bedeutung a) oder b) hat; Verfahren zu deren Herstellung und Verwendung derselben

2. Ansprüche: 2, 11-14, 17; 18-24 (teilweise)

Verbindungen der Formel (I), in denen A-B die Bedeutung c) hat; Verfahren zu deren Herstellung und Verwendung derselben

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 02/10158

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
JP 2000086628	A	28-03-2000		KEINE		
WO 9805638	A	12-02-1998		DE 19716591 A1 AU 726090 B2 AU 3770697 A BR 9711024 A CN 1232450 A WO 9805638 A2 EP 0915846 A2 JP 2000516918 T NZ 334028 A PL 331585 A1 TR 9900239 T2 US 6114374 A US 6255342 B1 US 2002010204 A1 ZA 9706915 A HU 0001833 A2		05-03-1998 02-11-2000 25-02-1998 17-08-1999 20-10-1999 12-02-1998 19-05-1999 19-12-2000 24-11-2000 19-07-1999 22-03-1999 05-09-2000 03-07-2001 24-01-2002 10-02-1998 28-08-2000
WO 9701535	A	16-01-1997		DE 19602524 A1 AU 709848 B2 AU 6304296 A BR 9609250 A CN 1198154 A DE 59609697 D1 WO 9701535 A1 EP 0837847 A1 HU 9802866 A2 JP 11508880 T TR 9701708 T1 TW 476754 B US 6110872 A ZA 9605465 A		02-01-1997 09-09-1999 30-01-1997 18-05-1999 04-11-1998 24-10-2002 16-01-1997 29-04-1998 29-03-1999 03-08-1999 21-04-1998 21-02-2002 29-08-2000 24-01-1997
WO 9825928	A	18-06-1998		DE 19651686 A1 AU 5559598 A BR 9714470 A WO 9825928 A1 EP 0944633 A1 JP 2001505892 T US 2002161034 A1 US 6288102 B1 US 6391912 B1 US 2002072617 A1		18-06-1998 03-07-1998 16-05-2000 18-06-1998 29-09-1999 08-05-2001 31-10-2002 11-09-2001 21-05-2002 13-06-2002