

Chapter 11 – Mass-Storage Structure Spring 2023

Overview

- Overview
- HDDs and NVMs
- HDD and NVM Scheduling
- Error Detection and Correction
- Storage Device Management
- Swap-Space Management
- Storage Attachment
- RAID Structure

Overview

- Modern computers must
 - Store large amounts of data
 - Store this data beyond the lifetime of any processes (even if powered off)
 - Multiple processes must be able to use the data concurrently

Overview

- Secondary storage for modern computers uses either
 - hard disk drives (HDD) or
 - nonvolatile memory (NVM)
 - Most common version of NVM is solid state drives (SSD) and USB drives
- Some systems can use part of the volatile memory as if it were secondary storage. This
 is known as a RAM drive
 - This is typically used to hold temporary data, data in transit between disk and memory, or swap space
- Magnetic tape is used for inexpensive, long-lasting backup and archive

- HDDs spin platters of magnetically-coated material under moving read-write heads
 - The read-write head is separated from the platter using a very thin cushion of air or gas (e.g. helium)
 - Each platter is divided into **cylinders** divided into **tracks** divided into **sectors**
- Drives rotate at 60 to 250 times per second (rotations per minute – RPM)
 - 5,400 or 7,200 or 10,000 or 15,000 RPMs are common
- CDs, DVDs, and Blu-Ray discs are removable

- Platters, Cylinders, Tracks, and Sectors
 - Sectors were typically 512 bytes each until about 2010
 - Sectors are now 4KB each
 - Each track used to hold the same number of sectors. Data on outer tracks were less dense with lots of inaccessible space
 - Variable number sectors allow more sectors on outer tracks. This increases data density and therefore capacity

- Performance
 - Transfer rate is rate at which data flow between drive and computer
 - Positioning time (random-access time) affects the actual transfer rate
 - Seek time is time to move disk arm to desired cylinder (this is usually the longest wait time)
 - Rotation latency time for desired sector to rotate under the disk head
 - Head crash can occur if the disk head contacts the disk surface
 - Physical damage cannot be repaired and is usually unrecoverable unless using backups or RAID protection

- NVM
 - No moving parts and therefore no seek time or rotational latency
 - More reliable but may have a shorter life-span than HDDs
 - More expensive and less capacity than HDDs
 - Some busses may be slower than connecting directly to the system bus (e.g. USB bus)
 - Better suited for mobile devices than HDDs (laptops, phones, etc.)

- Data is read and written in "pages" (similar to the sector idea)
- NVM is the most efficient storage medium for reads
- Writing pages requires the existing data to be erased first
 - Erasing and writing new data slowly degrades the memory cell
 - Algorithms keep track of all pages to find free pages and evenly distribute writes

- Disk drives are addressed as one-dimensional arrays of logical blocks. Each block is mapped to a sector.
 - HDDs
 - Sector 0 is the first sector on the first track on the first outermost cylinder
 - Then mapping proceeds through each track in the same cylinder
 - Continue from the outermost cylinder to the innermost
 - NVM
 - Simply address through each chip, block, and page

- The operating system should leverage disks efficiently. Knowing the underlying structure helps decrease access time and increase disk bandwidth
- There are many sources of disk I/O (OS, system processes, user processes)
 - Processes waiting for I/O move to a waiting queue
 - Disk requests are held in a queue and sent to the disk
 - Modern disks have their own queue instead of just the OS
- Each request contains a number of factors (e.g. read or write, disk address, memory address, number of sectors, etc.)
- Managing the queue of requests intelligently can make disk I/O more efficient

First come first served scheduling

SCAN scheduling (elevator scheduling)

C-SCAN scheduling

- Shortest seek time first Select the address closest to the head's current position
 - Queue = 176, 79, 34, 60, 92, 11, 41, 114
 - Head starts at 50
 - Starvation can occur

- Other scheduling algorithms
 - Random
 - Last in first out
 - Priority
 - Treat reads and writes with different priority
 - Etc.
- Scheduling selection depends on the anticipated workload
- Most operating systems use a combination of algorithms

- NVM scheduling
 - There are no disk heads or rotational latencies
 - Random is the best approach
 - Optimizing for reads is ideal because
 - Reads are much faster than writes
 - Read times are uniform, write times are variable

Error Detection and Correction

- Detection and correction is fundamental to memory, network, storage and others
- Bits can change spontaneously while stored on disk
- Reserve one bit in a byte as a parity bit
 - Set to 1 if the number of bits set to 1 is even
 - Set to 0 if the number of bits set to 1 is odd
- If an error occurs, the parity does not match so the user can be informed
- Error-correction code (ECC) can be used to detect and sometimes correct multiple bytes
 - A soft error can be automatically corrected. Too many errors is a hard error

Storage Device Management

- Low-level formatting (physical formatting) Divide a disk into sectors
 - Each sector holds both data and metadata (eg. Size, ECC, etc.)
- The operating system will then record its own data structures on the disk
 - Partition the disk into one or more groups of cylinders, each treated as a logical disk (eg. C drive, D drive, /boot, /usr, /home, etc.)
 - Each partition is **logically formatted** to a file system type (eg. NTFS, ext4, zfs, etc.)
 - File-systems keep data and their metadata in similar sectors to reduce seek time
 - Partitions contain metadata including whether or not it is bootable

Storage Device Management

- A computer has a bootstrap program built into the firmware
- The last thing this program does is read the first block in the first partition on secondary storage to find the OS bootloader. This is the master boot record
- The boot loader passes control to a bootstrap program on the first sector on a bootable partition. This program loads the rest of the OS

Swap-Space Management

- We know that entire processes are no longer swapped out to disk
- However, individual pages may be swapped to disk
 - Swapping and paging are interchangeable terms
- Swapping may be sent to a (raw) partition or a file(s) on a partition
 - If a raw partition is used, algorithms that optimize for speed over storage efficiency might be used
 - Files can be added and removed as desired but are subject to the underlying filesystem's storage structure

- Host-attached storage
 - Disks are attached to the computer over a set of wires known as the I/O bus
 - Data is transferred on either end of the I/O bus by controllers
 - Host controller is the controller on the motherboard
 - **Data controller** is built into the disk
 - Serial Advanced Technology Attachment (SATA) is the most common I/O bus type
 - Other common technologies include USB FireWire and Thunderbolt
 - High-end workstations and storage arrays may use optical based Fiber Channel

- Network-attached storage (NAS)
 - Storage made available across a network (Typically the Local Area Network)
 - Common protocols include NFS and CIFS (UDP/TCP layer)
 - iSCSI presents the SCSI protocol remotely (IP layer)

- Cloud storage
 - Similar to NAS except provided over the Internet or a WAN rather than LAN
 - Due to higher latency and packet loss across the WAN, commonly presented via APIs at the application layer
 - Common examples include Amazon S3, Dropbox, Microsoft OneDrive, Apple iCloud

- Storage Area Network (SAN) and storage arrays
 - Storage arrays
 - custom built storage servers that manage multiple storage types, networking, permissions, etc.
 - Disks can be added and replaced transparently
 - Redundancy built in
 - Added features such as snapshots, clones, thin provisioning, deduplication, etc.

- Storage Area Network (SAN) and storage arrays
 - SANs are a private network connecting multiple hosts to multiple storage units
 - Typically used over short distances

- All disks are prone to error and failure
- Losing data could be catastrophic
- Copies of the data should be made for redundancy
- Redundant Array of Inexpensive Disks (RAID) Use multiple disks
 - To provide reliability and redundancy
 - Spreading data across multiple disks can also create parallelism which can improve speed
- (Disks these days are high speed and highly reliable and therefore no longer "inexpensive", so some use "independent" instead for the "I")

- RAID logic is implemented at
 - Hardware level (a chip dedicated to managing RAID)
 - Expensive. Best suited for servers and super computers
 - Software level (ie. By the operating system)
 - Inexpensive. The boot process takes some care. Best suited for desktops
 - Firmware level (Low-level support in the BIOS with driver support for the OS)
 - Depends on OS and driver support.
 - Also known as "Fake RAID" or "Hybrid"

- There are (generally) 6 different RAID types
 - RAID 0 Spread data out across two disks instead of one. This is known as **striping**. Double the read and write speed but no redundancy.
 - Suitable for systems where speed is important, but reliability is not (E.g. Gaming)

- There are (generally) 6 different RAID types
 - RAID 1 Write all data to two disks (**mirroring**). One disk perfectly mirrors the other. Reads may be improved but write performance suffers. Disk errors or failures can be tolerated and corrected.
 - Suitable for systems where reliability is important (eg. Mission-critical)

- There are (generally) 6 different RAID types
 - Raid 0+1 or RAID 01 Mirror two striped disks to two other disks
 - Raid 1+0 or RAID 10 Stripe two mirrored disks to two other disks
 - Brings the best of both striping and mirroring
 - Requires 4 disks at minimum

- There are (generally) 6 different RAID types
 - RAID 5 Stripe data across disks. Also stripe 1 parity block across disks.
 - The loss of one disk can be tolerated. The missing block can be rebuilt from the parity block
 - RAID 5 and RAID 10 are the most common implementations. They provide efficient striping and mirroring
 - In the event of disk failure in RAID 5, all disks are involved in a rebuild. In RAID 10, not all disks need to be involved.

- There are (generally) 6 different RAID types
 - RAID 6 Stripe data across disks. Also stripe 2 parity blocks across disks.
 - The loss of two disks can be tolerated. The missing blocks can be rebuilt from the parity blocks

- There are (generally) 6 different RAID types
 - There are many other variants such as RAID 2, RAID 3, RAID 4, RAID 50, RAID 60, RAID 100, JBOD, etc.
- RAID cannot protect you from user error. Backups are still needed
- RAID disks need to be the same size (or purposely hold as much as the smallest disk). It is difficult to add or shrink space
- Multiple disks are more expensive
- Hot spares can be used to provide immediate rebuilds in the case of disk failure
 - Rebuilds take time and temporarily affect performance

