

Introducción al Cálculo - MAT1107

Rodrigo Vargas

¹ Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile

²LIES Laboratorio Interdisciplinario de Estadística Social, Pontificia Universidad Católica de Chile, Chile

15 de Marzo de 2022

Gráfico de subconjuntos de ${\mathbb R}$

En virtud de la relación menor o igual definida en \mathbb{R} se puede pensar en ordenar esquemáticamente los números reales de menor a mayor. Los números reales se representan sobre una recta horizontal tal que a cada x en \mathbb{R} se le asocia un punto sobre la recta siguiendo las siguientes convenciones:

- Si x < y entonces x está a la izquierda de y.
- ② Si x < y entonces $m = \frac{x + y}{2}$ es punto medio del trazo \overline{xy} .

Gráfico de subconjuntos de ${\mathbb R}$

Definición. (Intervalos)

Sean $a, b \in \mathbb{R}$ tal que $a \leq b$. Los siguientes subconjuntos de \mathbb{R} se llaman intervalos:

Intervalo abierto a coma b:

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}.$$

② Intervalo cerrado a coma b:

$$[a,b] = \{x \in \mathbb{R} : a \leqslant x \leqslant b\}.$$

Intervalo a coma b cerrado por la derecha y abierto por la izquierda:

$$(a,b] = \{x \in \mathbb{R} : a < x \leqslant b\}.$$

Gráfico de subconjuntos de R

Definición. (continuación)

 Intervalo a coma b cerrado por la izquierda y abierto por la derecha:

$$[a,b) = \{x \in \mathbb{R} : a \leqslant x < b\}.$$

Intervalos no acotados:

$$(-\infty, a] = \{x \in \mathbb{R} : x \leq a\},$$

$$(-\infty, a) = \{x \in \mathbb{R} : x < a\},$$

$$[a, +\infty) = \{x \in \mathbb{R} : a \leq x\},$$

$$(a, +\infty) = \{x \in \mathbb{R} : a < x\}.$$

Gráfico de subconjuntos de $\mathbb R$

Observación

- Para denotar un intervalo abierto (a, b) también se puede ocupar los paréntesis]a, b[.
- ② Se puede anotar el conjunto $\mathbb R$ como el intervalo no acotado $(-\infty,\infty)$.
- **3** Si a = b entonces $(a, a) = (a, a) = [a, a) = \emptyset$ y $[a, a] = \{a\}$.

Definición. (Inecuación)

Una **inecuación de una incógnita** es una desigualdad que puede ser verdadera o falsa dependiendo del valor asignado a la incógnita. Resolver una inecuación de una incógnita consiste en determinar todos los números reales para los cuales la inecuación es verdadera.

Enunciaremos un método para resolver algunas inecuaciones del tipo

$$\frac{P(x)}{Q(x)}<0\;,$$

donde el signo < puede ser también > 0, \le o \ge .

Nos concentraremos en el caso en que P(x) y Q(x) son productos de factores lineales de primer orden del tipo (ax + b). Diremos que el x = -b/a es un punto crítico para este factor y corresponde al valor en el cual el factor es cero.

Resolución de Inecuaciones

El método para resolver estas inecuaciones es:

- Determinar todos los puntos críticos de los factores lineales involucrados.
- Ordenar los puntos críticos de menor a mayor y formar los intervalos encerrados entre ellos.
- **1** Mediante una tabla de signos determinar el signo de la expresión $\frac{P(x)}{Q(x)}$ en los intervalos dados por el paso 2.
- Escoger los intervalos para los cuales se satisface la inecuación dada.

EJEMPLO 1 Resuelva las siguientes inecuaciones

$$x^2 + x > 2$$

Solución Notemos que

$$x^2 + x > 2 \iff x^2 + x - 2 > 0 \iff (x + 2)(x - 1) > 0$$
.

Los factores lineales se anulan cuando x=-2 y x=1 y estos son los puntos críticos de la inecuación. Ahora realizamos una tabla de signos con los factores lineales involucrados:

-0	o =: 	2 : 	L ∝
x+2	_	+	+
x-1	_	_	+
	+	_	+

El conjunto solución para la inecuación es

$$S =]-\infty, -2[\cup]1, +\infty[$$
.

$$2x+1 \le 1$$

Solución Notemos que

$$\frac{2x+1}{x+2} \leqslant 1 \iff \frac{2x+1}{x+2} - 1 \leqslant 0$$

$$\iff \frac{2x+1}{x+2} - \frac{x+2}{x+2} \leqslant 0$$

$$\iff \frac{(2x+1) - (x+2)}{x+2} \leqslant 0$$

$$\iff \frac{x-1}{x+2} \leqslant 0.$$

En este caso los puntos críticos son x=1; x=-2. Note que en este caso tenemos que el punto crítico x=-2 es una restricción para la inecuación.

Realizando la tabla de signos

-0		2 :	l 0
x+2	_	+	+
x-1	_	_	+
	+	_	+

En este caso el conjunto solución es S =]-2,1]. Note que el punto $1 \notin S$ ya que es una restricción de la inecuación.

$$3 \frac{x^2 - 8x + 15}{x - 4} < 0$$

Solución Notemos que

$$\frac{x^2 - 8x + 15}{x - 4} < 0 \Longleftrightarrow \frac{(x - 3)(x - 5)}{x - 4} < 0.$$

- Puntos críticos: x = 3, x = 4, x = 5.
- Restricción: $x \neq 4$.

• Tabla de signos

-0	0 ;	3 4	1 ;	§ ×
x-3	_	+	+	+
x-4	ı	_	+	+
x-5	ı	ı	_	+
	_	+	_	+

• Conjunto solución: $S =]-\infty, 3[\cup]4, 5[$.

$$3 + \frac{1}{x-1} > \frac{1}{2x+1}$$

Solución Notemos que tenemos la siguientes equivalencias con la inecuación original

$$\iff 3 + \frac{1}{x - 1} - \frac{1}{2x + 1} > 0$$

$$\iff \frac{3(x - 1)(2x + 1) + (2x + 1) - (x - 1)}{(x - 1)(2x + 1)} > 0$$

$$\iff \frac{6x^2 - 2x - 1}{(x - 1)(2x + 1)} > 0.$$

Las raíces de la ecuación $6x^2-2x-1=0$ son $x_1=\frac{1-\sqrt{7}}{6}=-0,274\ldots$ y $x_2=\frac{1+\sqrt{7}}{6}=0,607\ldots$ por lo que podemos realizar la factorización

$$6x^2 - 2x - 1 = 6(x - x_1)(x - x_2)$$

La inecuación nos queda

$$\frac{6\left(x-\frac{1-\sqrt{7}}{6}\right)\left(x-\frac{1+\sqrt{7}}{6}\right)}{(x-1)(2x+1)} > 0.$$

- Puntos críticos: $x_1 = \frac{1 \sqrt{7}}{6}$, $x_2 = \frac{1 + \sqrt{7}}{6}$, x = 1, $x = -\frac{1}{2}$
- Restricciones: $x \neq 1$ y $x \neq -\frac{1}{2}$.

Tabla de signos

-0	- -	$\frac{1}{2}$ x	: ₁ x	72	1 ∝
$x-x_1$	_	_	+	+	+
$x-x_2$	_	_	_	+	+
x-1		_	_	_	+
2x + 1	_	+	+	+	+
	+	_	+	_	+

Por lo tanto el conjunto solución es

$$S = \left] -\infty, -\frac{1}{2} \right[\cup \left] \frac{1-\sqrt{7}}{6}, \frac{1+\sqrt{7}}{6} \right[\cup]1, +\infty[\ .$$