NAME:

SECTION:

- 1. Consider a pendulum composed of a massless string of length l with a mass m attached to the end. Let the angular displacement from the vertical be denoted by θ .
- i) Draw a free body diagram of the pendulum. What is the net force on the mass as a function of θ ?

ii) Using the small angle approximation $\sin(\theta) \approx \theta$, write the force above as a restoring force of the form F = -ks where $s = l\theta$ is the arc length of the pendulum swing.

iii) Noting that $w = \sqrt{\frac{k}{m}}$, what is w in terms of g and l? What is the force in terms of w, m, and l?

iv) What are the frequency f and period T of the pendulum? Is the period independent of the mass? Why or why not?

- **2.** Consider a particle of mass m constrained to move on a circle of radius A having coordinates $x = A\cos(wt)$, $y = A\sin(wt)$.
- i) What is the exact position of the particle (x,y) at times $t=0,\ t=\frac{T}{4},\ t=\frac{T}{2},$ and t=T, where $T=2\pi/w$?

ii) What is the maximum magnitude of the velocity v_{max} of the particle? What are the velocities v_x and v_y along each direction as a function of time? What are their values at each of the times above?

iii) What is the maximum magnitude of the acceleration a_{max} of the particle? What are the accelerations a_x and a_y along each direction as a function of time? What are their values at each of the times above?

iv) What are the forces F_x and F_y on the particle?