1.
$$f(t) = (t, t^2)$$
, $t \in \mathbb{R}$

a)
$$\vec{f}(0) = (0,0)$$

 $\vec{f}(1) = (1,1)$

b)
$$f(t) = (f_1(t), f_2(t))$$
 and $f_1: R \rightarrow R$
 $f_2: R \rightarrow R$
 $f_3: R \rightarrow R$
 $f_4: R \rightarrow R$

2.
$$\vec{f}(t) = (eost, sent), tein$$

a)
$$\vec{f}(0) = (\cos 0, \sin 0) = (1,0)$$

 $\vec{f}(\pi) = (\cos \pi, \sin \pi) = (-1,0)$

(b)
$$f'(t) = (f_1(t), f_2(t))$$
 and $f_1: R \rightarrow IR$ two ost

3.
$$\vec{t}(t) = \left(\frac{1}{t}, ln t\right)$$

a)
$$f(1) = (1, \ln 1) = (1, 0)$$

 $f(2) = (\frac{1}{2}, \ln 2)$

b)
$$\vec{q}(t) = (\vec{q}_1(t), \vec{q}_2(t))$$
 onde $\vec{q}_1: \mathbb{R} \longrightarrow \mathbb{R}$

$$P = J_{t_1} \cap D_{t_2} =$$

$$= \mathbb{R} \setminus \{0\} \cap J_{0, +\infty} [$$

$$= J_{0, +\infty} [= \mathbb{R}_+$$

5. a)
$$\vec{R}(t) = \left(\frac{1}{t+1}, \cos t, t^3\right)$$

$$\vec{R}'(t) = \left(\frac{1}{t+1}\right)', (cost)', (t^3)'$$

6.
$$\int_{0}^{1} F(t)dt = \int_{0}^{1} (t^{2}, e^{2t}) dt = (\int_{0}^{1} t^{2} dt, \int_{0}^{1} e^{2t} dt)$$

$$=\left(\begin{bmatrix} \frac{1}{3} \end{bmatrix}_0^1, \begin{bmatrix} \frac{24}{2} \end{bmatrix}_0^1\right) = \left(\frac{1}{3}, \frac{2}{2} - \frac{2}{2}\right) = \left(\frac{1}{3}, \frac{2}{2} - \frac{1}{2}\right).$$

$$\overrightarrow{R}\left(\overline{T}_{k}\right) = \left(8en \,\overline{T}_{k} \cos \overline{T}_{k}\right) = \left(\sqrt{2}, \sqrt{2}\right)$$

lun
$$\overrightarrow{R}(t) = \lim_{t \to \overrightarrow{\Pi}} (\operatorname{sent}, \cos t) = (\operatorname{xn}\overrightarrow{\Pi}, \cos \overrightarrow{\Pi}) = (\overline{R}, \frac{1}{2})$$

Corrolling $\overrightarrow{R}(t) = \overrightarrow{R}(t) = \overrightarrow{R}(t)$, entro $\overrightarrow{R}(t) = \operatorname{contino}$

8. $\overrightarrow{R}(t) = \int_{-\infty}^{\infty} (1_10,1) \times t = 0$

(sent, 1-ost, t+1) se t to

Recais $\overrightarrow{R}(t) = \operatorname{xnt}$, $\overrightarrow{R}(t) = \operatorname{xnt}$, $\overrightarrow{R}(t) = t+1$

see anknows one $\overrightarrow{R}(t) = \operatorname{xnt}$, $\overrightarrow{R}(t) = t+1$

even $\overrightarrow{R}(t) = \operatorname{xnt}$ (excepts) de $\overrightarrow{R}(t) = \operatorname{xnt}$

function $\overrightarrow{R}(t) = \operatorname{xnt}$
 $\overrightarrow{R}(t) = \operatorname{$

= (1,0,1).

a)
$$\hat{f}(\pi) = \left(\frac{\cos \pi}{\pi}, \ln \pi, \sqrt{\pi + 1}\right) = \left(\frac{1}{\pi}, \ln \pi, \sqrt{\pi + 1}\right)$$

$$=(+\infty,-\infty,1)$$
.

d) à écontinue en Jo, + no [pais es funços Componentes sée continues vesse esquirte.

10.
$$\vec{R}(t) = \vec{u} + \vec{v} \cdot \cot + \vec{w} \cdot \cot$$

 $\vec{x} = 2\vec{e}_1 + \vec{e}_2$ $\vec{v} = 4\vec{e}_2 - \vec{e}_3$ $\vec{w} = \vec{e}_2 + \vec{e}_3$

$$\vec{R}(t) = 2\vec{e}_1 + \vec{e}_2 + (\vec{e}_2 - \vec{e}_3) \cdot \cos t + (\vec{e}_2 + \vec{e}_3) \cdot \sin t =$$

$$= 2\vec{e}_1 + (1 + \cos t + \sin t) \cdot \vec{e}_2 + (-\cos t + \sin t) \cdot \vec{e}_3$$

11.
$$\vec{R}(0) = \vec{e_3}$$
 $\vec{R}(0) = \vec{e_1} + \vec{e_2}$ $\vec{R}''(t) = -\vec{e_3}$

$$\vec{R}^{(1)}(t) = -\vec{e}_3 = (o, o, -1)$$

$$\vec{R}'(t) = (e_1, e_2, -t + e_3)$$
 $\vec{R}'(0) = \vec{k_1} + \vec{k_2} = (1,1,0)$

$$e^{(1)}(0) = (e_1, e_2, e_3) = (1, 1, 0)$$

Loso
$$\hat{R}'(t) = (1, 1, -t)$$
E

$$\vec{R}(t) = (t+D_{1}, t+D_{2}, -\frac{t^{2}}{2} + D_{3}) \quad \vec{R}(0) = (0,0,1)$$

$$\vec{R}(0) = (D_{1}, D_{2}, D_{3}) \quad (0,0,1)$$

$$\vec{R}(0) = (D_1, D_2, D_3) = (0, 0, 1)$$
 Dai

$$D_1 = D_2 = 0$$
, $D_3 = 1$

$$\vec{R}(t) = (t, t, -\frac{t^2}{2} + 1)$$

Determinar to, tel que R (to) é vector directer do plano XOY. Nesse cose, 2 (ta) terre que ten a 3º componente

$$-\frac{t^{2}}{2}+1=0$$
 (=) $-t^{3}=-2$ (=) $-\frac{t^{2}}{2}=-\frac{$

a)
$$R(t) = (a,b,e) + t(l,ee,n) = R(t) = (a + t l, b + t m, e + t n).$$

13. a)
$$\int_{9=-1+2t}^{2} \int_{9=-1+2t}^{2} \int_{9=$$

$$t = 0 \implies \begin{cases} x = 1 \\ 1 = -1 \end{cases}$$

$$t=1 \Rightarrow \int_{y=-1+2}^{x=2} \int_{1}^{0} (2,1)$$

$$\begin{cases} x=1+t & |t=x-1| \\ y=-1+zt & |zt=y+1| \end{cases} = \begin{cases} x=1-\frac{y+1}{2} \\ z & > \text{ Recke.} \end{cases}$$

$$\chi-1=\frac{\gamma+1}{2}$$
, $t\in[0,1]$ -> sequente de recte entre $(1,-1)$ e $(2,1)$.

$$| y = z + cost$$

$$| y = z + cost |^2 + (z + cost)^2 = 4(cost + sent) = 4$$

e)
$$\vec{F}(t) = (z \cos t, 3 \sin t)$$
 $t \in [0, 2\pi]$
 $|x = z \cos t|$
 $|y = 3 \sin t|$
 $|y = 4 \sin t|$
 $|y =$

$$14. \vec{R}(\theta) = \begin{cases} x = \cos(2\theta) \\ y = \cos \theta \end{cases}, e \in [0, 2\pi]$$

$$\overrightarrow{R}\left(\overline{1}\right) = \left(\cos \overline{1}, \cos \overline{1}\right) = \left(-1, 0\right) \rightarrow B$$

$$\vec{R}(\pi) = (\cos 2\pi, \cos \pi) = (1, -1) - 0 C$$

b)
$$e_{3}(2e) = 2e_{3}^{2}e - 1 = x = 2y^{2} - 1 = poétobe.$$

(e)
$$\frac{31+1}{2} = y^2 \rightarrow \text{parabolo}$$
 co largo do eixo 0×1

15. a)
$$\vec{R}(t) = (6t, -t^3, 3t^2)$$
 $\vec{V}(t) = \frac{d\vec{R}(t)}{dt} = (6, -3t^2, 6t)$

5) $\vec{Z}(t) = (\frac{1}{t}, e^{t^2}, 2n(2t))$, to

 $\vec{V}(t) = \frac{d\vec{R}(t)}{dt} = (-\frac{1}{t^2}, 2te^{t^2}, \frac{1}{t})$, to

16a) $\vec{R}(t) = (\cos t, -e^2, \frac{1}{t+1})$

Weeker terporte $\vec{R}(t) = (-\sin t, c_1, -\frac{1}{(t+1)^2})$

17. $\vec{e}'(t) = (\frac{1}{t}, t^2, e^t)$

Weeker terporte \vec{c} cenuce \vec{c} to be existed to the experte \vec{c} (1, 2t, et)

Weeker terporte \vec{c} cenuce \vec{c} to be expected to the experte \vec{c} (1, 2t, et)

18. \vec{C} : $\vec{e}'(t) = (\cos t, \sin t, t)$
 $\vec{R}'(t) = (-\sin t, \cos t, 1)$
 $\vec{R}'(t) = (-\sin t,$

19.
$$\vec{z}(t) = (2t, 8-3t^2, 3t+4)$$
 $\vec{v}(t) = \vec{z}'(t) = (2, -6t, 3)$
 $\vec{a}(t) = \vec{z}''(t) = (0, -6, 0)$

20. $\vec{z}(t) = (2t - 2 \sin t, 2 - 2 \cos t)$

Posição $\vec{z}(0) = (0, 2 - 2) = (0, 0)$

Velocidade $\vec{v}(t) = \vec{z}'(t) = (2 \cos t, +2 \sin t)$
 $\vec{z}'(0) = (0, 0)$

Acclaração $\vec{z}(t) = \vec{z}''(t) = (2 \cot t, 2 \cot t)$
 $\vec{z}'(0) = (0, 2)$

Quando $t = 3\pi$
 $\vec{z}(0) = (0, 2)$

Quando $t = 3\pi$
 $\vec{z}(0) = (0, 2)$
 $\vec{z}(0) = (0, 2)$

(714,2) = (311+2+2t,2-2t).

21.
$$12 = t^2 = 1$$

9) Recta tengente à cenue à houzontel se a

2º componente composito de vector director é rule.
O vector director de terruiro-se polo deruddo de r2(t)

nector director de terruito-se pelo derivado de r(t) $r'(t) = (2t, 3t^2-1)$

A 25 comparate neels $3t^2-1=0$ (s) $t^2=\frac{1}{3}$ (s) $t=\pm\sqrt{3}$ $1 \times = \frac{1}{3} - 1$ ($\frac{2}{3}, \frac{2\sqrt{3}}{9}$) e $1 \times = \frac{1}{3} - 1$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3} - \frac{13}{3}$ ($-\frac{2}{3}, \frac{2\sqrt{3}}{9}$) $1 \times = \frac{13}{3}$

R'(4)=(24,22-1) 2t=0(=)+=0.

y=0 (-1,0) > parte onde a recte tengente y=0

22. ||R(H)|=k (=) R(H). R(H) = k2 (20 R(H) Demondo, R'(H). R(H) + R(H). R'(H) = 0 (=) R(H). R'(H) = 0.

significa que quardo a norma do meder posição e constante, 4+61R enter o meder tangente é perpendicular à cumo determinada per 26t).

23. t=0 $\Rightarrow \vec{R}(0) = (3,6,5)$ $\vec{V}(0) = (1,-1,0)$

Reete 5: (7,14,2) = (3,6,5) + t(1,-1,0), tein = (3+t,6-t,5).

24.
$$\vec{a}'(t) = (a^{t}, a^{t}, a_{t})$$
 $\vec{R}'(t) = (a^{t}, a^{t}, -sent)$

Weak director do nock trigente o como quardo $t = 1$.

 $\vec{R}'(1) = (a, -a^{t}, -sent)$

Reck director do nock trigente o como quardo $t = 1$.

 $\vec{R}'(1) = (a, -a^{t}, -sent)$

Reck trigente o como :

 $(n_{1}y_{1}z) = (a, a^{t}, cos 1) + t(a, -a^{t}, -sent)$, $t \in \mathbb{R}$
 $(n_{1}y_{1}z) = (a, a^{t}, cos 1) + t(a, -a^{t}, -sent)$, $t \in \mathbb{R}$
 $(n_{1}y_{1}z) = (a + 3a, a^{t} - 3a^{t}, cos 1 - tsen 1)$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) + cos 1 - tsen 1$
 $(a + ta, a^{t} - a^{t}) +$

$$\vec{R}(t) = \left(\frac{t^3}{6} + \frac{5}{2}t - \frac{8}{3}, \frac{t^4}{12} + \frac{11t}{3} - \frac{15}{4}, e^t\right)$$

$$\vec{R}(0) = \left(-\frac{8}{3}, -\frac{15}{4}, \frac{1}{3}\right).$$