

INT404 ARTIFICIAL INTELLIGENCE

Lecture 3

Artificial intelligence techniques can be divided into **two** types:

- 1) Symbolic computation (including sub-symbolic)
- 2) Non-symbolic computation

Example:- When a child is born, he possess only basic knowledge of how to survive in the brain, gradually he will learn the rest of the knowledge through learning by experiences.

Symbolic Computation has two branches

- Heuristic search Adjoining, Segment 1 of the World view.
 Heuristic A guide, an approximation, a thumb rule. Basically helps in pruning(Weed out unwanted or unnecessary things) the search tree.
- 2. Knowledge-based systems In the world view, **between** heuristic search and sub-symbolic computation (neural networks).

Knowledge Based Systems:

Core Areas of Knowledge Based systems

- 1. Knowledge Base Representation
- 2. Inference Engine
- 3. User interface
- 4. Knowledge acquisition module

Knowledge Based Systems:

Representation techniques are primarily:

 production rules – sets of if-then rules, similar to production rules used to specify a grammar.

Example: If the car does not start check the battery, by pressing the horn.

Knowledge Based Systems:

Representation techniques are primarily:

2. Semantic Networks – Set of Nodes and Links between them. The links represent Relationships between the nodes

Example: Nodes – Man, Hands, Legs, Walk

Relationships – Has (between Man and hands and between Man and Legs) and Can (between Man and Walk).

A type of Semantic networks is Frames (Slot-filler notation). These encode default (commonly occurring) values (filler) for the attributes in a relation (slot).

Knowledge Based Systems:

Inference Engine - Search on the knowledge base leads to Inferences.

Knowledge Acquisition module - The knowledge being incomplete will be dynamic. Provision to acquire knowledge is provided by using machine learning strategies.

Knowledge Based Systems:

Machine Learning Strategies:

- 1. Rote learning The system is told the actual knowledge. The system's work is to map the knowledge into its internal representation.
- 2. Learning by being told The system is given paragraphs that convey the knowledge. The system has to **glean** the knowledge and then store it.
- 3. Learning by being told and asking questions In addition to strategy 2, the system analyses the knowledge, finds discrepancies and asks questions to sort out the conflicts.
- 4. Learning by induction from positive examples The system is given examples of the concept. It generalizes the examples to arrive at the knowledge

Knowledge Based Systems:

Machine Learning Strategies:

- 5. Learning by Induction from Positive examples and Negative examples

 To avoid over generalization, negative examples are given, which are used to specialize the knowledge.
- 6. Learning by Induction through experimentation The system generates examples itself by designing experiments on the environment.
- 7. Learning by Analogy The system maps the knowledge it has to the new problem, using analogy.
- 8. Learning by Abduction The system creates new hypotheses and designs experiments to ratify them.

Knowledge Based Systems:

Genetic Programming:

Figure 2: Basic structure of Genetic Algorithm

Knowledge Based Systems:

Genetic Programming:

This field lies at the extreme of Knowledge Based Systems (adjoining subsymbolic computation in the World view)— They model Human evolution methods.

Approach:

- 1. Create an initial population of entities
- 2. Each entity's characteristics are represented
- A fitness function evaluates the entities.
- 4. The best two of the population are chosen
- 5. These two are used to generate 'offspring's' -> new population. Process repeats.

Knowledge Based Systems:

Genetic Programming:

Offspring generation operators:

- Reproduction All characteristics of both parents are reproduced in the offspring.
- 2. Crossover A subset of characteristics of one parent are linked with the subset of characteristics of the other parent.
- 3. Mutation The characteristics of one parent are changed randomly to create the offspring. Handles the Local Maxima problem

Sub Symbolic Computation (Neuro-computing)

- Adjoins Segment 3 of the world view.
- Deals with signal level computation required because a number of problems do not have explicit knowledge associated with them.
 Example – recognizing people or recognizing handwriting.
- This area deals with patterns that are more complex than the ones dealt with by symbolic computation.

Sub Symbolic Computation (Neuro-computing):

Core areas of Sub-symbolic computation are:

- 1. Architecture
- 2. Learning mechanism

In sub-symbolic computation all the knowledge is learnt by the system.

Neuro-computing attempts to mimic the structure of the human intelligence system, with its neurons and synapses.

Neuron – receives input from many other neurons. Each input is magnified by a multiplication factor. (This multiplication factor represents the degree of interest, effect that the particular input has on the neuron.)

P

Brains

 10^{11} neurons of $\,>20$ types, 10^{14} synapses, 1ms–10ms cycle time Signals are noisy "spike trains" of electrical potential

Sub Symbolic Computation (Neuro-computing):

- All the multiplied values are summed up and compared to a 'threshold value'. If the threshold value is less then the neuron fires an output.
- Knowledge is acquired by learning the correct multiplication values.

Learning is done in one of two ways:

1. Supervised learning - Here the desired output for a given input is known. A simple method is Back Propagation network. Here the output is compared with the desired output. Differences are propagated backwards, to make changes to the multiplication factors.

Sub Symbolic Computation (Neuro-computing):

- 2. Unsupervised learning Here the desired output is not given to the system. The system uses Clustering to club similar input together. Example Kohonen
- 3. A third learning technique is Self-Supervised Learning Here the results of a previous iteration are used to bias the clustering results in the current iteration. Example – Adaptive Resonance Technique.