

UNIVERSIDADE FEDERAL DE VICOSA DEPARTAMENTO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE ENGENHARIA ELÉTRICA ELT 310 - ELETRÔNICA I PROFESSORA KÉTIA SOARES MOREIRA

Turma:__ Nome: Matrícula:_

Aula

ROTEIRO DE AULA PRÁTICA 7 O TRANSISTOR BIPOLAR DE JUNÇÃO (TBJ) COM POLARIZAÇÃO POR DIVISÃO DE TENSÃO

OBJETIVOS: Conhecer o transistor bipolar e ser capaz de identificar seus terminais e o seu tipo (npn ou pnp) com um multímetro.

Verificar a polarização por divisor de tensão para transistores de junção bipolar pnp, e estabelecer uma analogia de funcionamento entre transistores npn.

MATERIAL UTILIZADO:

- 01 resistor de 1K2 Ω 01 resistor de 10 K Ω
- 01 resistor de 2K2 Ω 01 resistor de 4K7 Ω
- 01 transistor BD140 01 transistor BC 549B

PARTE TEORICA:

- a) Defina algebricamente as equações IB_Q, IC_Q e VCE_Q.
- b) Para utilizar a análise aproximada, o que deve ser satisfeito no circuito?
- c) Considerando o circuito para projeto ou análise de defeito, qual deve ser o valor de VRE e VCE?
- d) Estabeleça uma analogia utilizando um transistor NPN.
- e) Redesenhe o circuito utilizando um transistor NPN. Conclua.

REVISÃO PRÁTICA:

Verifique o terminal base e o tipo:

Alto R

Ohmimetro – Baixo R para ambos.

Teste de continuidade (simbolo do diodo) -0.7V para ambos.

Para o transistor PNP inverta + com o -.

Outro teste de funcionamento, para o NPN, com o Ohmímetro verifique:

Para o transistor PNP inverta + com o -.

O beta (β) dos transistores TAMBÉM PODEM SER MEDIDOS com o multímetro digital.

PARTE PRÁTICA:

A) Montar o circuito da figura 1 como o transistor PNP e completar a tabela para os valores medidos.

AS CORRENTES DEVEM SER CALCULADAS UTILIZANDO AS TENSÕES NOS RESISTORES.

TBJ:	V_{B}	Vc	VE	Vce	Iв	Ic	ΙE
Valores							
calculados							
Valores SIMULADOS							
TBJ:	VR1	VR2	VCB				
Valores							
calculados							
Valores SIMULADOS							

- B) Calcule o valor de β, utilizando o IC e IB obtido na SIMULAÇÃO.
- C) Com o valor obtido na letra B, calcule os valores de V_B , V_{R1} , V_{R2} , V_C , V_{CE} , V_{CB} , V_E , I_B , I_C , e I_E . Preencha o quadro.
- f) Compare os valores medidos e calculados e conclua.
- g) O circuito está em um ponto de polarização bom? Por quê?
- h) Você poderia utilizar a análise aproximada? Por quê?
- i) Coloque os resultados da simulação:

Esquema elétrico.

Diagramas nos principais pontos. Explique detalhadamente os resultados da simulação e seus valores.

j) Conclua seus resultados e observações.