Biology ES131

Module 2

Chemistry in Biology (Part 2)

Chemical Evolution, Metabolism, Synthetic Biology

chemical evolution

biological evolution

Molecular Evolution

Stellar Nucleosynthesis

- Why some elements and their isotopes are much abundant than others?
- Proposed that stars obtained their energy from nuclear fusion of hydrogen to form helium and raised the possibility that the heavier elements are produced in stars

Arthur Edington

Stellar Nucleosynthesis

Abiogenesis / Origin of Life

- The transition from non-living to living entities was not a single event, but a gradual process of increasing complexity
- It involved molecular self-replication, self-assembly, autocatal ysis and cell membranes.
- Multiple models, no single explanation

Origin of Organic Molecules

Terrestrial

Impact Shocks

Other Energy Sources

Extra-terre strial

Formation in interstellar dust clouds

Rain down on planet

Origin of Organic Molecules

Phylogenetic Tree of Life

Origin of Organic Molecules

- 1. Chemical Synthesis
 - Self Replication
 - Self Assembly
- 2. Autocatalysis
- 3. Homochirality

Miller-Urey Experiment 1953

The RNA World Hypothesis

Step 2: Step 1: Step 3: RNA self-replicates (via RNA forms from RNA catalyses protein ribozymes) inorganic sources synthesis Step 4: Membrane formation changes internal chemistry, allowing new functionality

DNA becomes master template

Step 5: RNA codes both DNA and protein

Proteins catalyse cellular activities

The Great Oxygenation Event

Origin of Metabolic Pathways

- Iron-Sulfur World
- Zn-world Hypothesis
- Deep Sea Vent / Alkaline Hydrothermal Vent Hypothesis
- Thermosynthesis

Evolution of Metals in Biology

Magnesium Center in Cyanobacterial photosystem II

Evolution of Metals in Biology

Pyrococcus furiosus – Hyperthermophillic archaea contains Tungesten (high M.P.)

Metabolism

- Metabolism is the totality of an organism's chemical reactions
- Metabolism is an emergent property of life that arises from interactions between molecules within the cell
- An organism's metabolism transforms matter and energy, subject to the laws of thermodynamics

Metabolism

- A metabolic pathway begins with a specific molecule and ends with a product
- Each step is catalyzed by a specific enzyme

Catabolism and Anabolism

CELL Energy Cellular Anabolic building Catabolic pathways blocks pathways Macromolecules Heat

Metabolism in Action

Regulation of Metabolism

- Rate Limiting Step: Slowest step; beginning of the pathway
- Covalent and Non-covalent modifications
- Metabolic flux is regulated by the Stoichiometric Reaction Model*, the utilization rate of metabolites, and the translocation pace of molecules across the lipid bilayer

^{*}Law of conservation of mass = Matter is not created or destroyed in a chemical reaction

Regulation of Metabolism

Metabolic Network Modeling

Metabolic Network Modeling

Metabolic Engineering

Synthetic Biology

- First to synthesis an oligonucleotide
- Genetic code behind Amino Acids
- Two repeating units (UCUCUCU → UCU CUC UCU) produce two alternating AAs
- Three repeating units (UACUACUA

 → UAC UAC UAC, or ACU ACU ACU,
 or CUA CUA CUA) produce three
 different strings of AAs

Hargobind Khorana

Synthetic Cell

