Algoritmos e Programação 1per

Ciência da Computação

Universidade do Vale do Itajaí – UNIVALI Unidade Kobrasol

Profa Fernanda Cunha - fernanda.cunha@univali.br

1

Escola do Mar, Ciência e Tecnologia

NIVALI

Livros Biblioteca Digital (Intranet)

Algoritmo e Programação (cap.1 a 6)

Morais, Izabelly Soares de; Leon, Jeferson Faleiro; Saraiva, Maurício de Oliveira; Vettorazzo, Adriana de Souza; Córdova, Ramiro Sebastião Junior

Algoritmos e Programação (cap.1 a 3, 5 a 8) Santos, Marcela Gonçalves dos

Algoritmos e Programação com Exemplos em Pascal e C [Série Livros didáticos informática UFRGS] (cap.1 a 7, 10) Edelweiss, Nina; Livi, Maria Aparecida Castro

Conceitos de Computação com o Essencial de C++ (cap.1, 2, 4, 7, 9)
Horstmann, Cay

3

Ambientes para desenvolvimento

Algoritmos: VISUALG https://visualg3.com.br/

Programação: Code::Blocks https://www.codeblocks.org

Δ

1.1 NOÇÕES DE LÓGICA

- [AURÉLIO]: LÓGICA: coerência de raciocínio, de ideia; sequência coerente, regular e necessária de acontecimentos, de coisas.
- [FORBELLONE, 1993] LÓGICA: trata da correção do pensamento; ensina a colocar ordem no pensamento.
 - **EX. 1:** A gaveta está fechada. O livro está na gaveta. Preciso primeiro abrir a gaveta, para depois pegar o livro.
 - **EX. 2:** João é mais velho que Pedro. Pedro é mais velho que José. Logo, João é mais velho que José.

5

1 CONCEITOS PRELIMINARES

1.2 RESOLUÇÃO DE PROBLEMAS

[SILVEIRA, 2006] O matemático George Polya dividiu este processo em 4 etapas:

- 1. Compreenda o Problema.
- O que pede o problema?
- Quais são as condições do problema?
- Quais são as variáveis e informações que temos que descobrir ou calcular?
- Quais são as informações relevantes?

1.2 RESOLUÇÃO DE PROBLEMAS

Etapas do Polya (cont.)

- 2. Elabore uma estratégia de resolução.
- Você está levando em conta todos os dados? E todas as condições?
- Você consegue enunciar o problema de uma outra maneira?
- Você conhece teoremas ou fórmulas que possam ajudar?
- Você conhece algum problema similar? Você conhece solução similar para este problema? É possível aproveitar esta solução ou seu método?

7

1 CONCEITOS PRELIMINARES

1.2 RESOLUÇÃO DE PROBLEMAS

Etapas do Polya (cont.)

3. Execute a estratégia.

Ao executar a estratégia verifique cada passo. Você consegue mostrar claramente que cada um deles está correto?

4. Revise a estratégia.

Examine a solução obtida observando: o resultado obtido; pode obter a solução de um outro modo; a essência do problema e do método de resolução empregado.

ደ

1.3 CONCEITO DE ALGORITMO

- 1. [FORBELLONE, 1999]: ALGORITMO é uma **sequência finita de passos que visam atingir um objetivo** bem definido (sequência de acontecimentos lógica).
- 3. [MICROSOFT PRESS] ALGORITMO, no sentido mais geral, é qualquer conjunto finito de instruções que possa ser seguido para a realização de uma tarefa específica ou resolução de um determinado problema.

"ALGORITMO, na informática, é definido como uma sequência ordenada e finita de passos, independente da linguagem de programação a ser utilizada para codificá-lo, que leva à solução de um dado problema."

9

1 CONCEITOS PRELIMINARES

1.3 CONCEITO DE ALGORITMO

Knuth (1968, 1973) (apud PIVA JR., 2012), autor dos mais respeitados em Computação, indicou uma lista de cinco propriedades amplamente aceitas como requisitos para um algoritmo:

Finitude: "Um algoritmo deve sempre terminar após um número finito de etapas".

Definição: "Cada passo de um algoritmo deve ser definido com precisão; as ações a serem executadas deverão ser especificadas rigorosamente e sem ambiguidades para cada caso".

1.3 CONCEITO DE ALGORITMO

... requisitos para um algoritmo:

Entrada: "Valores que são dados ao algoritmo antes que ele inicie. Estas entradas são tomadas a partir de conjuntos de objetos especificados".

Saída: "...os valores resultantes das ações do algoritmo relacionadas com as entradas especificadas".

Eficácia: "...todas as operações a serem realizadas no algoritmo devem ser suficientemente básicas que podem, em princípio, ser feitas com precisão e em um período de tempo finito por um homem usando papel e lápis".

11

1 CONCEITOS PRELIMINARES 1.3 CONCEITO DE ALGORITMO Formatos: PORTUGOL FLUXOGRAMA LINGUAGEM C++ algoritmo exemplo2 inteiro a, b, c, soma void main () { int a, b, c, soma; declaracces inicio cout << "Digite 3 valores"; inteiro a, b, c, soma cin >> a; cin >> b; "Digite 3 valores" inicio cin >> c; soma = a + b + c; escreva ("Digite 3 valores") cout << soma; a, b, c leia(a, b, c) soma $\leftarrow a + b + c$ soma ← a + b + c escreva (scma) Fonte: Raabe, 2007 - Apostila Algoritmos UNIVALI

1.3 CONCEITO DE ALGORITMO

Exemplo de um algoritmo para o cálculo da área de um retângulo (fórmula: área = base x altura)

ALGORITMO

INICIO

saber o valor da base
saber o valor da altura
multiplicar a base pela altura
o valor obtido é o resultado esperado

FIM

=> Se o problema fosse calcular da área de um triângulo, cuja fórmula é área = (base x altura)/2, daria para usar o algoritmo anterior como base????

13

1 CONCEITOS PRELIMINARES

1.3 CONCEITO DE ALGORITMO

A resposta para a pergunta anterior é SIM!!!!

Os algoritmos podem ser usados tanto como solução específica quanto como ponto de partida para experiências.

A construção de um algoritmo consiste em entender claramente o enunciado do problema para que seja possível definir a solução e o que deve ser feito (processamento).

15

2 REPRESENTAÇÃO DE DADOS

Nome de pessoa, número de páginas de livro, altura, peso, distância, ... são algumas informações usadas em sistemas. Os computadores podem lidar com tipos diferentes de dados: dados numéricos e dados não numéricos (texto, imagem, som,...).

2.1 TIPOS primitivos de DADOS

 INTEIRO: números inteiros relativos (negativo, nulo ou positivo).

EX.: 12 anos; -15 graus; ano de 1996

 REAL: números reais, escritos com o ponto decimal (no lugar da vírgula).

EX.: 12.41 reais; 2.5 km de distância; 1.25 m de altura; 2.6e4 = 2.6*104; 0.371e-2 = 0.371*10-2

2 REPRESENTAÇÃO DE DADOS

2.1 TIPOS primitivos de DADOS

 LÓGICO: toda e qualquer informação que pode assumir apenas dois valores.

EX.: aberto/fechado, ligado/desligado, verdadeiro/falso

 CARACTER: valores não-numéricos que são escritos com apenas um símbolo conhecido do computador (Tabela ASCII).

EX.: 'A', 'a', '.', '2', '+', ' ' (espaço em branco)

 STRING OU CADEIA: valores não-numéricos que são constituídos por um ou mais caracteres.

EX.: 'Ah!', 'Ana', 'rua Tenente Silveira', '1996'

OBS: caracteres e strings podem ser representados com aspas ("A", "Ana"), e no VisuAlg o tipo é CARACTERE.

17

2 REPRESENTAÇÃO DE DADOS

2.2 VARIÁVEIS e CONSTANTES

Para armazenar uma informação em um algoritmo/programa, é preciso DECLARAR uma variável considerando que:

- uma variável deve ter um determinado tipo
- uma variável deve ter um nome significativo, indicativo da informação armazenada

Uma variável pode receber muitos valores diferentes ao longo da execução de algoritmo/programa, MAS **em um dado instante só pode armazenar um único valor**.

Uma constante é declarada quando se tem uma informação que **não será alterada** em nenhum momento do algoritmo/ programa.

2 REPRESENTAÇÃO DE DADOS

2.2 VARIÁVEIS e CONSTANTES

Como se formata o nome de variável/constante?

Deve-se usar a norma lowerCamelCase*
 EX.: nomeAluno, salarioBruto, temperaturaMedia

Como se utiliza uma variável?

- pode-se atribuir um valor à uma variável (comando de atribuição);
- pode-se fornecer um valor à uma variável através de uma operação de leitura de dados (comando de entrada);
- pode-se escrever o valor armazenado através de uma operação de saída de dados (comando de saída).

(*) https://pt.wikipedia.org/wiki/CamelCase

19

2 REPRESENTAÇÃO DE DADOS

2.3 OPERADORES: aritméticos, lógicos e relacionais OPERADORES ARITMÉTICOS

```
+ adição | - subtração | * multiplicação | / divisão real | ** potenciação | // radiciação | DIV divisão inteira (só aplicada a operandos inteiros) | MOD resto da divisão inteira (idem)
```

HIERARQUIA DOS OPERADORES ARITMÉTICOS

```
* / DIV MOD (o que vier 1º da esquerda p/ direita)
+ - (o que vier 1º da esquerda p/ direita)
```

"O resultado de qualquer operação tem o mesmo tipo de seus dois operandos."

2 REPRESENTAÇÃO DE DADOS

2.3 OPERADORES: aritméticos, lógicos e relacionais OPERADORES RELACIONAIS

igual a

< menor que

<> diferente de

>= maior ou igual a

> maior que

<= menor ou igual a

OPERADORES LÓGICOS

NÃO **negação**

E conjunção

OU disjunção

HIERARQUIA DOS OPERADORES: operações aritméticas, operações relacionais, $N\tilde{A}O$, E, OU.

TABELA VERDADE:

P ₁	não P ₁
V	F
F	V

P_1	P_2	P1 e P2
V	V	V
V	F	F
F	V	F
E	E	E

P ₁	P ₂	P ₁ ou P ₂
V	V	V
V	F	V
F	V	V
F	F	F

