Prime no. $s \rightarrow 0$ nly 2 factors (1 s itself) $\xi_{j} - 2, 3, 5, 7, 11, 13, \dots$ $\xi_{j} - 2, 3, 5, 7, 11, \dots$ $\xi_{j} - 2, 3, 5, 7, \dots$ $\xi_{j} - 2, 3, 5, \dots$ $\xi_{j} - 2, 3, \dots$ $\xi_{j} - 2, 3, \dots$ $\xi_{j} - 2, \dots$ $\xi_{j} -$

How to write is-prime function?

I terate till sqrt(N)s get count of factors

TC: O(N)

Of Given N, find all primes from 1 to N N=10 → £ 2 3 5 7 11 13 17 19 3 Brute force: Iterate on 1 to N & check if prime or not

for (i=1; i \N; i++)

if (is-prine (i)) \(\)

print (i)

y

TC: O(NJN) SC: O(1)

Given N= 30, find all primes

× 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Prime =>

Seive of Elastosthenes

23 46 69 92 2×23 3×23 4×23

 $N \Rightarrow N-1$ $N+1 \Rightarrow N$

Code bool p[N+i] = C Trwey p[o] = p[i] = falsefor $(i=2); i \le n; i+t) \land$ $if Lp[i] == trwe) \land$ $for Cj=2i; j \le n; j+=i) \land$ p[j] = false y Tc: Sc: O(n)

Now wherever p[i] = Hue,
i is prime

TC:

i

n/2

n/3

n/3

n/5

i

N

N/2 + N/3 + N/5 + N/2 + - - - -Total=

= N[2+ 3+ + + + - - -] 5 log (log(n))

TC: O(N log(log(N))) SC: O(N)TC:

02	Give	en N,	fin	d s	mal	lest	psi	me f	actor	
	_	all					•			
8	9	10	-)	2			Spf		
		15	-)		3					
		17	\rightarrow		17					
		35	\rightarrow		5					
N =	10									
	2	3	4	٤	6	7	8	9	10	
	2	3	2	5	2	7	2	3	2	
N= 3	0									
X									9 10	
	2	3	/	42	5	62	7	82.	93 12	-
									19 20	
11	12	13	1	7 1	53 J	1/2 1	12 /	182 10	7 20	
									9 30	
2/3 3	2	23	24	25	20	8 2	7 2	\$ 29	30	
	-					3		-		
		are (n+1)				0	12	3	4-1 2	2

Code

int
$$Spf(N+IJ)$$
;
for $(i=0)$; $i \leq N$; $i \leftrightarrow e$)
 $Spf(i) = i$

for
$$(i=2)$$
 $i \le n$ j $i + j$ k
 $i \le 1$ $i = -2$ $i \le n$ $i \le n$

Tc: Sc:

Same

$$360 = 8 \times 9 \times 5$$

$$= 2^{3} \times 3^{2} \times 5'$$

Eg 2
$$600 \Rightarrow 2^3 \times 3' \times 5^2$$

ans = $(3+()(1+()(2+()) = 24)$

Generalization $N = p_1^{2} p_2^{2} p_3^{2} \cdots p_k^{2k}$

p., p2, --- pe are primes

Factors = (x,+1) (xx+1) (x3+1) -..... (xx+1)

N=360
$$spf=2$$
 factor=1

keep dividing by spf untill Cannot

Continue

 $360 \rightarrow 180 \rightarrow 90 \rightarrow 45$

power of $2=3$ factors=4

 spf of $4s=3$
 $power=2$ factors=12

 $5 \rightarrow 1$
 $power=1$
 $2^3 3^2 5^7$
 $135 \rightarrow 15 \rightarrow 5 \rightarrow 5$
 $135 \rightarrow 15 \rightarrow 5 \rightarrow 5$

 $S \rightarrow I$

pouer=1

Code 1 Te: Create Spf array N log(logN)) int get-number of-factors (int N) { factors = 1 while LN!=1) d b= sbf [N] power = 0 while (N//p ==0 N= N/b power ++ log(h) factors = factors * (power+1) return factors

 $nloglogn + logn \Rightarrow O(nloglogn)$

04 Given N, for all I-N, find no of factors 2 3 4 5 6 7 8 9 1 2 2 3 2 4 2 3 3 4 Use get_no_of_factors function Code 1) Create spf array 2) Cnt [N+1] for (i=1;i=N;i++)~ cut [i] = get_no_of_factors (i) TC: Nloglogn + SC: (n) Nlogn => O(NlogN)

1 2 3 45 6 2 left child = par sight child = ~par inj parof (i-1, j/2) if j7.2 = 0 else left child -light child 2 x+1 2+2 --- 2c+ R

2 + (n+1) + x+2 ---- (n+k) = A

 $\frac{(k+1)2x}{x} + \frac{k(k+1)}{x} = 2A$

(k+1)[2n+k] = 2A

24

R+(= i R = i-1

= 22e+R