Lecture 11: 08/24122 Sketch of proof of Lemma 11.2: (S_- Ke-r(T+)+(ii)) < C_{e}(K,T) < S_{e} "covered call" (i) C_e(K,T) ≥ S_e: "short" "Long" arbitrage: sell mite call buy stock invest remaining money @ + (ii) C_E(K,T) = S_E - Ke^{-+(T-E)}: "long" "Short" arbitrage: buy call short sell stock invest remaining money @ r More precisely: † STZK STEK (ony call +C+(K,T) ST-K Short Stock - St - S_T - 5₇ (S_E - C_t(K,T))e invest $S_{\xi} - C_{\xi}(K,T) = (S_{\xi} - C_{\xi}(K,T))e^{\gamma(T-\xi)}$ $(S_{\varepsilon} - C_{\varepsilon}(K,T))e^{\gamma(T-\varepsilon)} - S_{\varepsilon} - C_{\varepsilon}(K,T))e^{\gamma(T-\varepsilon)} - K$ 0 net value > (St - Ct(K,T))e - K > 0 blc of (*)

> 0 blc of (*)

=) arbitrage opportunity

(Ke-r(T-4) - 5+)+ (P(K,T) (Ke-r(T-4) Sketch of proof of Leunna 11.3: (i) P₄(T,K) ≥ Ke-+(T-4): "short" "cong" arbitrage: sell/write put invest premium @ r (ii) P. (T.K) & Ke-r(T-4) S. : "Long" "short" arbitrage: buy put buy share borrow money needed @r

Sketch of proof:

(i)
$$C_{\epsilon}(T,K) + K e^{-r(T-\epsilon)} < S_{\epsilon} + P_{\epsilon}(T,K)$$
:

portfolio A portfolio B

arbitrage: short sell portfolio B

=> short sell stock, write/sell put

buy portfolio A

=> buy call, invest Ke-r(1-4) @r

invest difference between A and B @r

portfolio A portfolio B

arbitrage: short sell portfolio A

=> write/sell call, borrow Ke-r(T-4)@r

buy portfolio B

=) buy stock buy put

invest difference between A and B @r