

Universidade Federal de Pernambuco

Curso: Ciências Atuariais

Disciplina: Matemática Atuarial 1A Professor: Filipe Costa de Souza

2ª Prova

Questão 1 (2 pontos): Com base na tabela abaixo e assumindo uma taxa de juros de 6% a.a., calcule $A_{35:\overline{5}|}^1$. (OBS: use pelo menos 4 casas decimais na sua resposta final).

X	l_x	A_{x}
35	100.000	0,151375
36	99.737,15	0,158245
37	99.455,91	0,165386
38	99.154,72	0,172804
39	98.831,91	0,180505
40	98.485,68	0,188492

Questão 2 (2 pontos): Uma pessoa de 40 anos contrata uma apólice que promete pagar R\$15.000 caso ela alcance com vida os 60 anos. Os prêmios são pagos anualmente e, caso o indivíduo morra antes dos 60 anos, todos os prêmios recebidos pela seguradora são devolvidos (sem juros) para os dependentes do segurado no final do ano da morte do mesmo. Assumindo a tábua de mortalidade em anexo e uma taxa de juros de 6% a.a., calcule o valor dos prêmios periódicos pagos.

Questão 3 (2 pontos): Uma pessoa atualmente com 30 anos contrata uma apólice com a seguinte característica: se ela falecer nos próximos 15 anos, será paga um benefício de R\$ 100.000 no final do ano da morte; caso ele sobreviva ao período anterior, ela receberá rendas anuais de \$10.000,00 de forma vitalícia. Os prêmios serão pagos por 10 anos. Usando a tábua em anexo, com juros de 6% a.a., calcule:

- a. A reserva matemática para t=5, pelo método prospectivo.
- b. A reserva matemática para t=5, pelo método retrospectivo.

Questão 4 (2 pontos): Suponha as seguintes informações retiradas de uma tábua de mortalidade: l_{90} =100; l_{91} =70; l_{92} =40 e l_{93} =10. Você também sabe que o vetor c=(1000, 1300, 1500) e que o vetor b=(1500, 1700). A taxa de juros adotada é de 10% a.a. Encontre:

- a. $\ddot{a}_{90:91}(c)$.
- b. $A_{90:91}(b)$.

Questão 5 (2 pontos): Indique se as alternativas abaixo são verdadeiras (V) ou falsas (F) e justifique sua resposta:

- a. Se m < n, então ${}_{n}p_{x} \ge {}_{m}p_{x}$ e ${}_{n}P_{x} \le {}_{m}P_{x}$.
- b. $A_x = \ddot{a}_x(v-1) + 1$.