

《组网与运维》

线上实验报告

班级:

姓名:

学号:

日期:

虚拟局域网(VLAN)工作原理

一、实验目的

- 1. 理解虚拟局域网 VLAN 的概念。
- 2. 了解 VLAN 技术在交换式以太网中的使用。
- 3. 理解 VLAN 技术在数据链路层隔离广播域的作用。

二、实验步骤

- 1. 任务一:观察未划分 VLAN 前,交换机对广播包的处理。
 - ◆ 步骤 1: 准备工作。打开拓扑图,切换实时模式和模拟模式数次, 直至交换机指示灯为绿色。

◆ 步骤 2: 查看交换机上的 VLAN 信息。选中拓扑工作区工具条中的 Inspect 工具,将鼠标移至拓扑工作区,单击 Switch0,在弹出的 菜单中选择 Port Status Summary Table 选项卡,打开端口状态信息窗口。当前 Switch0 上所有端口均属于 VLAN1(VLAN1 为交换机 默认 VLAN),即未划分 VLAN。用同样的方法查看 Switch1 的 VLAN 信息。

Port	Link	VLAN	IP Address	MAC Address
FastEthernet0/1	Up	1	1 1 - 1 -	0090.0CC8.9A01
FastEthernet0/2	Up	1	1 1	0090.0CC8.9A02
FastEthernet0/3	Up	1		0090.0CC8.9A03
FastEthernet0/4	Up	1	4.50.04	0090.0CC8.9A04
FastEthernet0/5	Down	1	1000	0090.0CC8.9A05
FastEthernet0/6	Down	1		0090.0CC8.9A06
FastEthernet0/7	Down	1	(-2)	0090.0CC8.9A07
FastEthernet0/8	Down	1	7 7	0090.0CC8.9A08
FastEthernet0/9	Down	1	1 1 - 1 - 1	0090.0CC8.9A09
FastEthernet0/10	Down	1	3 	0090.0CC8.9A0A
FastEthernet0/11	Down	1		0090.0CC8.9A0B
FastEthernet0/12	Down	1	4. 5.5. 4	0090.0CC8.9A0C
FastEthernet0/13	Down	1	1000	0090.0CC8.9A0D
FastEthernet0/14	Down	1		0090.0CC8.9A0E
FastEthernet0/15	Down	1		0090.0CC8.9A0F
FastEthernet0/16	Down	1	()	0090.0CC8.9A10
FastEthernet0/17	Down	1	1 1	0090.0CC8.9A11
FastEthernet0/18	Down	1		0090.0CC8.9A12
FastEthernet0/19	Down	1		0090.0CC8.9A13
FastEthernet0/20	Down	1	4. 43	0090.0CC8.9A14
FastEthernet0/21	Down	1	1000	0090.0CC8.9A15
FastEthernet0/22	Down	1	22	0090.0CC8.9A16
FastEthernet0/23	Down	1	6 22 6	0090.0CC8.9A17
FastEthernet0/24	Down	1		0090.0CC8.9A18
Vlanl	Down	1	<not set=""></not>	0000.0C60.006C

Physical Location: Intercity, Home City, Corporate Office, Main Wiring Closet

Port	Link	VLAN	IP Address	MAC Address
FastEthernet0/1	Up	1	2 1	0001.C796.3601
FastEthernet0/2	Up	1	1000 C	0001.C796.3602
FastEthernet0/3	Up	1		0001.C796.3603
FastEthernet0/4	Up	1	122	0001.C796.3604
FastEthernet0/5	Down	1	(<u></u>)	0001.C796.3605
FastEthernet0/6	Down	1		0001.C796.3606
FastEthernet0/7	Down	1		0001.C796.3607
FastEthernet0/8	Down	1		0001.C796.3608
FastEthernet0/9	Down	1		0001.C796.3609
FastEthernet0/10	Down	1		0001.C796.360A
FastEthernet0/11	Down	1		0001.C796.360B
FastEthernet0/12	Down	1	122	0001.C796.360C
FastEthernet0/13	Down	1	3 <u></u> 3	0001.C796.360D
FastEthernet0/14	Down	1		0001.C796.360E
FastEthernet0/15	Down	1		0001.C796.360F
FastEthernet0/16	Down	1		0001.C796.3610
FastEthernet0/17	Down	1		0001.C796.3611
FastEthernet0/18	Down	1		0001.C796.3612
FastEthernet0/19	Down	1		0001.C796.3613
FastEthernet0/20	Down	1	3227	0001.C796.3614
FastEthernet0/21	Down	1		0001.C796.3615
FastEthernet0/22	Down	1		0001.C796.3616
FastEthernet0/23	Down	1		0001.C796.3617
FastEthernet0/24	Down	1		0001.C796.3618
Vlanl	Down	1	<not set=""></not>	0060.5C7A.9E39

Physical Location: Intercity, Home City, Corporate Office, Wiring Closet

◆ 步骤 3: 观察在未划分 VLAN 的情况下,交换机对广播包的转发方法。 进入 Simulation 模式,设置 Event List Filters 只显示 ARP 和 ICMP 事件。

单击 Add Simple PDU 按钮,在拓扑图中添加 PCO 向 PC2 发送的数据包。此时,在 Event List 会出现两个事件,第一个是 ICMP,第二个是 ARP。

双击 ARP 右端的色块,弹出 ARP 包的详细封装信息,会观察到其目标 MAC 地址为 FFFF. FFFF. FFFF, 这是一个广播地址,所以,这个 ARP 包是一个广播包。

单击 Auto Capture/Play 按钮,观察数据发送过程。重点观察交换机向哪些站点发送 ARP 广播包,记录该广播包的传播范围。

Vis.	Time(sec)	Last Devic	At Device	Туре	Info
	0.000	155	PC0	ICMP	
	0.000	122	PC0	ARP	
	0.001	PC0	Switch0	ARP	* 1
	0.002	Switch0	Switch1	ARP	3 3
	0.002	Switch0	PC1	ARP	
	0.002	Switch0	PC2	ARP	
	0.003	Switch1	PC3	ARP	
	0.003	Switch1	PC4	ARP	
	0.003	Switch1	PC5	ARP	5 5
	0.003	PC2	Switch0	ARP	
	0.004	Switch0	PC0	ARP	
	0.004	177	PC0	ICMP	
	0.005	PC0	Switch0	ICMP	
	0.006	Switch0	PC2	ICMP	
	0.007	PC2	Switch0	ICMP	
9	0.008	Switch0	PC0	ICMP	

单击下方的 Delete 按钮,删除所有场景,为下一任务实验做好准备。

- 2. 任务二: 创建两个 VLAN,并将端口划分到不同的 VLAN 内。
 - ◆ 步骤 1: 创建 VLAN。

单击拓扑图中的 SwitchO, 在弹出的窗口中选择 Config 选项卡,单击左端配置列表区中的 SWITCH(交换机)项下的 VLAN Database (VLAN 数据库)按钮,在右端配置区将显示 VLAN Configuration (VLAN 配置)界面。

在 VLAN Number (VLAN 编号) 文本框中输入 VLAN 编号"2"; 在 VLAN Name 文本框中输入 VLAN 名"vlan2"; 单击 Add (添加) 按钮,此时在下方 VLAN 列表区中将会增加 VLAN2 的信息,即表示 VLAN2 创建成功。

若需删除某个 VLAN,则在 VLAN 列表区中选中要删除的 VLAN,然后单击 Remove (移除)按钮即可。

参照上述步骤,在Switch0上创建VLAN3。

单击 Switch1,在其配置窗口中参照上述步骤创建 VLAN2 和 VLAN3。

◆ 步骤 2: 设置 Switch0 和 Switch1 之间的中继连接。

在 Switch0 的配置窗口中选择 Config 选项卡,单击其左端配置列表中的 INTERFACE 项下的 Fa0/1 (Switch0 用来连接 Switch1 的端口),在右端配置区内单击左端的下拉按钮,在下拉菜单中选择 Trunk 选项。该选项表示将端口设置为 Trunk 模式(中继连接模式)。

参照上述操作步骤,将 Switch1 的 Fa0/1 设置为 Trunk 模式。

◆ 步骤 3:将端口划分到不同 VLAN 内。

在 SwitchO 的配置窗口中选择 Config 选项卡,单击其左端配置列表中的 INTERFACE 项下的 FaO/2。保持其端口模式为 Access 不变,

单击右端 VLAN 项对应的下拉按钮,在下拉菜单中勾选对应的 VLAN,对于 Fa0/2 端口,勾选 vlan2。

参照上述步骤,并对照表 2-7 将 Switch0 和 Switch1 上连接了主机的端口划分到不同的 VLAN 内。

表 2-7VLAN 划分

设备名	端口号	连接的 主机	所属 VLAN	主机 IP 地址	子网掩码
	Fa0/2	PC0	2	192. 168. 1. 1	255. 255. 255. 0
Switch0	Fa0/3	PC1	3	192. 168. 2. 1	255. 255. 255. 0
	Fa0/4	PC2	3	192. 168. 2. 2	255. 255. 255. 0
	Fa0/2	PC3	2	192. 168. 1. 2	255. 255. 255. 0
Switch1	Fa0/3	PC4	2	192. 168. 2. 3	255. 255. 255. 0
	Fa0/4	PC5	3	192. 168. 1. 3	255. 255. 255. 0

◆ 步骤 4: 修改 PC IP 地址。步骤 3 中将 PC 划分到不同的 VLAN 内, 因此,需要按照表 2-7 重新规划 PC 的 IP 地址。

单击 PC,选择其配置窗口的 Desktop 选项卡,单击 IP Configuration 工具,在配置窗口中 IP Address 和 Subnet Mask 栏内分别对照表 2-7 列出的 PC 的 IP 地址和子网掩码信息,完成 PC 的 IP 地址的配置。若此时交换机端口指示灯呈橙色,则单击主窗口右下角的 Realtime 和 Simulation 模式切换按钮数次,直至交换机指示灯呈绿色为止。

- 3. 任务三:观察划分 VLAN 后,交换机对广播包的处理。
 - ◆ 步骤 1: 查看交换机上的 VLAN 信息。

在任务二中,已经在两台交换机上创建了两个VLAN: VLAN2和VLAN3,并将 PC 分别划分到两个 VLAN 内,从而得到两个广播域。

选中拓扑工作区工具条中的 Inspect 工具,将鼠标移至拓扑工作区,单击 Switch0,在弹出的菜单中选择 Port Status Summary Table 选项,打开端口状态信息窗口。当前 Switch0 上 Fa0/2 属于 VLAN2,Fa0/3 和 Fa0/4 属于 VLAN3。其他端口未接 PC,仍属于默认的 VLAN1。

Port	Link	VLAN	IP Address	MAC Address
FastEthernet0/1	Up			0090.0CC8.9A01
FastEthernet0/2	Up	2	1 5.5 6	0090.0CC8.9A02
FastEthernet0/3	Up	3	4.7.7.4	0090.0CC8.9A03
FastEthernet0/4	Up	3	1 2 2 2	0090.0CC8.9A04
FastEthernet0/5	Down	1		0090.0CC8.9A05
FastEthernet0/6	Down	1	3-20	0090.0CC8.9A06
FastEthernet0/7	Down	1		0090.0CC8.9A07
FastEthernet0/8	Down	1	1 4 4 1	0090.0CC8.9A08
FastEthernet0/9	Down	1		0090.0CC8.9A09
FastEthernet0/10	Down	1		0090.0CC8.9A0A
FastEthernet0/11	Down	1	A	0090.0CC8.9A0B
FastEthernet0/12	Down	1	100 P	0090.0CC8.9A0C
FastEthernet0/13	Down	1		0090.0CC8.9A0D
FastEthernet0/14	Down	1		0090.0CC8.9A0E
FastEthernet0/15	Down	1	7 12 12 13	0090.0CC8.9A0F
FastEthernet0/16	Down	1	1 7. 1	0090.0CC8.9A10
FastEthernet0/17	Down	1		0090.0CC8.9A11
FastEthernet0/18	Down	1	15.5°	0090.0CC8.9A12
FastEthernet0/19	Down	1	4. 7. 7. 2.	0090.0CC8.9A13
FastEthernet0/20	Down	1	100 100 100 100 100 100 100 100 100 100	0090.0CC8.9A14
FastEthernet0/21	Down	1	22	0090.0CC8.9A15
FastEthernet0/22	Down	1		0090.0CC8.9A16
FastEthernet0/23	Down	1		0090.0CC8.9A17
FastEthernet0/24	Down	1		0090.0CC8.9A18
Vlanl	Down	1	<not set=""></not>	0000.0C60.006C

Physical Location: Intercity, Home City, Corporate Office, Main Wiring Closet

用同样的方法查看 Switch1 的 VLAN 信息。

Port	Link	VLAN	IP Address	MAC Address
FastEthernet0/1	Up			0001.C796.3601
FastEthernet0/2	Up	2		0001.C796.3602
FastEthernet0/3	Up	2		0001.C796.3603
FastEthernet0/4	Up	3	4. 7.7. 4	0001.C796.3604
FastEthernet0/5	Down	1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0001.C796.3605
FastEthernet0/6	Down	1		0001.C796.3606
FastEthernet0/7	Down	1	(22)	0001.C796.3607
FastEthernet0/8	Down	1		0001.C796.3608
FastEthernet0/9	Down	1	5 5	0001.C796.3609
FastEthernet0/10	Down	1		0001.C796.360A
FastEthernet0/11	Down	1		0001.C796.360E
FastEthernet0/12	Down	1		0001.C796.3600
FastEthernet0/13	Down	1		0001.C796.360I
FastEthernet0/14	Down	1	44	0001.C796.360E
FastEthernet0/15	Down	1	422	0001.C796.360E
FastEthernet0/16	Down	1	: :	0001.C796.3610
FastEthernet0/17	Down	1	1 4 -	0001.C796.3611
FastEthernet0/18	Down	1		0001.C796.3612
FastEthernet0/19	Down	1	7.7	0001.C796.3613
FastEthernet0/20	Down	1	A	0001.C796.3614
FastEthernet0/21	Down	1		0001.C796.3615
FastEthernet0/22	Down	1		0001.C796.3616
FastEthernet0/23	Down	1		0001.C796.3617
FastEthernet0/24	Down	1	- -	0001.C796.3618
Vlanl	Down	1	<not set=""></not>	0060.5C7A.9E39

Physical Location: Intercity, Home City, Corporate Office, Wiring Closet

◆ 步骤 2:观察交换机对广播包的处理,理解划分 VLAN 情况下,广播域的范围。

进入 Simulation 模式。设置 Event List Filters 只显示 ARP 和 ICMP 事件。单击 Add Simple PDU 按钮,在拓扑图中添加 PCO 向 PC3 发送的数据包。

双击 ARP 右端的色块,弹出 ARP 包的详细封装信息,观察到其目标 MAC 地址为 FFFF. FFFF. FFFF,是一个广播地址,所以,这个 ARP 包是一个广播包。

单击 Auto Capture/Play 按钮,观察数据发送过程。重点观察两台交换机转发该广播包的范围,即哪些 PC 最终接收到了该广播包,

哪些 PC 最终没有接收到该广播包。结合步骤 1 查看的 VLAN 信息,对结果进行分析。

Vis.	Time(sec)	Last Devic	At Device	Туре	Info
	0.000		PC0	ICMP	
	0.000		PC0	ARP	170
	0.001	PC0	Switch0	ARP	220
	0.002	Switch0	Switch1	ARP	
	0.003	Switch1	PC3	ARP	
	0.003	Switch1	PC4	ARP	
	0.004	PC3	Switch1	ARP	-
	0.005	Switch1	Switch0	ARP	
	0.006	Switch0	PC0	ARP	10
	0.006	m#:	PC0	ICMP	
	0.007	PC0	Switch0	ICMP	
	0.008	Switch0	Switch1	ICMP	4 1
	0.009	Switch1	PC3	ICMP	
	0.010	PC3	Switch1	ICMP	
	0.011	Switch1	Switch0	ICMP	
1	0.012	Switch0	PC0	ICMP	

按照上述步骤,在拓扑图中添加 PC1 向 PC2 发送的数据包,观察其ARP 广播包发送的情况并记录其结果。

- 4. 任务四: 观察 802.1Q 帧封装格式。
 - ◆ 步骤: 在划分 VLAN 情况下,观察跨交换机的帧封装格式单击下方的 Delete 按钮,删除练习文件中的预设场景。

进入 Simulation 模式。设置 Event List Filters 只显示 ICMP 事件。

单击 Add Simple PDU 按钮,在拓扑图中添加 PCO 向 PC3 发送的数据包。单击 Auto Capture/Play 按钮,观察数据发送的过程。当数据包从交换机 Switch0 转发到交换机 Switch1 时,双击 ICMP 右端的色块,弹出 ICMP 包的详细封装信息,会观察到如图所示的 802.1Q帧封装格式。与原来的封装格式相比,多了字段 TPID 和 TCI,即为VLAN 标记,用来指明发送该帧的工作站属于哪一个 VLAN。如果还使用原来的以太网格式,那么就无法划分虚拟局域网。

按照上述步骤,在拓扑图中添加 PC1 向 PC5 发送的数据包,观察其数据包帧的封装格式,并与 PC0 向 PC3 发送的数据包的帧格式进行对比。

三、思考与总结

1. 在任务一,两台交换机分别如何处理广播包?其广播包的传播范围有多大?

交换机向所有端口转发广播包,广播包的传播范围是交换机连接的所有站点。

- 2. 在任务三中,当一台 PC 发送广播包时,与之连接在同一台交换机上的 其它 PC 机是否一定能接收到该广播包?根据实验结果举例说明。 不一定。只有与发送广播包的 PC 划分到同一 VLAN 内的 PC 才能接收到 该广播包。
- 3. 通过分析任务一和任务三的实验结果,说明划分 VLAN 的作用。 划分 VLAN 可以在数据链层隔离广播域。