Wasserstein Generative Adversarial Networks

Summary Notes by Max Guo

July 7, 2022

- (?) denotes a lack of familiarity or understanding of a particular concept at time of reading
- (?) denotes a confusion as to why the authors included this

1 Information

• Year: 2017

• Conference: ICML

• Authors:

Name	Institute
Martin Arjovsky	Courant Institute of Mathematics
Soumith Chintala	Facebook AI Research
Leon Bottou	Courant Institute of Mathematics, Facebook AI Research

2 Research Problem

How do we learn a probability distribution and improve upon the shortcomings of regular GANs?

3 Existing Approaches and Shortcomings

Existing approaches to learning a probability distribution:

- Learning a Probability Density:
 - Define a parametric family of densities $(P_{\theta})_{\theta \in \mathbb{R}^d}$, and find the θ that maximizes the likelihood of the data. Equivalent to minimizing the KL divergence $KL(P_r||P_{\theta})$, where P_r is the real data distribution.
 - * **Problem**: P_{θ} might be 0 in some places where $P_r > 0$, so KL is not defined.
 - * Remedy: Add a noise term to the model distribution
 - * Problem with Remedy: Noise degrades quality of samples; need a high amount of noise.
 - Define a random variable Z with fixed distribution p(z) and obtain P_{θ} via passing z through $g_{\theta}: \mathcal{Z} \to \mathcal{X}$. Can vary θ to obtain distribution close to the real data distribution P_r .
 - * Benefits:
 - · Enables representations of distributions on low-dimensional manifolds
 - · Generating samples is better than knowing density value (generally, sampling from arbitrary high-dimensional density is hard)
 - * Examples: VAEs (Kingma and Welling, 2013) and GANs (Goodfellow et al., 2014)
 - · VAEs need to fiddle with additional noise terms (approximate likelihood of examples)
 - · Training GANs is "delicate and unstable"

4 High Level Contribution

The paper analyzes how the **Earth Mover (Wasserstein-1) distance** compares theoretically to other popular probability distances and defines the **Wasserstein-GAN** to minimize an approximation of the EM distance. They show that the Wasserstein-GAN **remedies some GAN training problems**, including: mode dropping, balancing training of generator and discriminator, and requiring careful design of network architecture.

5 Technical Contributions

5.1 Distances between Probability Distributions

• Total Variation distance:

$$\delta(\mathbb{P}_r, \mathbb{P}_g) = \sup_{A \in \Sigma} |\mathbb{P}_r(A) - \mathbb{P}_g(A)| \tag{1}$$

• Kullback-Leibler divergence:

$$KL(\mathbb{P}_r||\mathbb{P}_g) = \int P_r(x) \log\left(\frac{P_r(x)}{P_g(x)}\right) d\mu(x)$$
 (2)

• Jensen-Shannon divergence:

$$JS(\mathbb{P}_r, \mathbb{P}_q) = KL(\mathbb{P}_r||\mathbb{P}_m) + KL(\mathbb{P}_q||\mathbb{P}_m)$$
(3)

where $\mathbb{P}_m = (\mathbb{P}_r + \mathbb{P}_q)/2$.

• Earth-Mover (Wasserstein-1) distance:

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y)}[||x - y||] \tag{4}$$

 $\Pi(\mathbb{P}_r,\mathbb{P}_q)$ is the set of joint distributions whose marginals are \mathbb{P}_r and \mathbb{P}_q .

5.2 Theoretical Results

• Theorem 1:

Let \mathbb{P}_r be a fixed distribution over set \mathcal{X} . Let Z be a random variable over another space \mathcal{Z} . Let \mathbb{P}_{θ} denote the distribution of $g_{\theta}(Z)$, $g:(z,\theta)\in\mathcal{Z}\times\mathbb{R}^d\mapsto g_{\theta}(z)\in\mathcal{X}$. Then:

- 1. If q is continuous in θ , $W(\mathbb{P}_r, \mathbb{P}_{\theta})$ is continuous in θ .
- 2. If g is locally Lipschitz and satisfies regularity conditions, then $W(\mathbb{P}_r, \mathbb{P}_{\theta})$ is continuous everywhere and differentiable almost everywhere.
- 3. The above are false for JS divergence and forward or reverse KL.
- As a corollary, if g is a feedforward NN, then $W(\mathbb{P}_r, \mathbb{P}_g)$ is continuous everywhere and differentiable almost everywhere.
- Theorem 2 demonstrates that the order of strength of the distances and divergences is KL, JS and TV, and EM is the weakest.
 - For example, if a sequence of probabilities and another fixed probability distribution are measured by KL to have divergence going to 0, JS and TV, and EM will also have the same result.
 - However, there exists (simple) examples where EM goes to 0 but the others don't.
 - $-\implies$ when learning distribution on low dimensional manifolds, shouldn't use KL, JS, or TV.

5.3 More on Wasserstein Distance

• Calculating the Wasserstein Distance via the definition above is intractable, so instead use:

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup_{\|f\|_{L} \le 1} \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)]$$
 (5)

• Another theorem showing that here is a solution to this equation, and that:

$$\nabla_{\theta} W(\mathbb{P}_r, \mathbb{P}_{\theta}) = -\mathbb{E}_{z \sim p(z)} [\nabla_{\theta} f(g_{\theta}(z))] \tag{6}$$

6 Wasserstein GAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values $\alpha = 0.00005$, $c = 0.01, m = 64, n_{\text{critic}} = 5.$

Require: : α , the learning rate. c, the clipping parameter. m, the batch size. $n_{\rm critic}$, the number of iterations of the critic per generator iteration.

Require: : w_0 , initial critic parameters. θ_0 , initial generator's parameters.

```
1: while \theta has not converged do
2:
           for t = 0, ..., n_{\text{critic}} do
               Sample \{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r a batch from the real data. Sample \{z^{(i)}\}_{i=1}^m \sim p(z) a batch of priors. g_w \leftarrow \nabla_w [\frac{1}{m} \sum_{i=1}^m f_w(x^{(i)})
3:
4:
5:
               w \leftarrow w + lpha \cdot \operatorname{RMSProp}(w, g_w)
6:
```

- 7: $w \leftarrow \text{clip}(w, -c, c)$
- 8: end for
- Sample $\{z^{(i)}\}_{i=1}^m \sim p(z)$ a batch of prior samples. $g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^m f_w(g_{\theta}(z^{(i)}))$ $\theta \leftarrow \theta \alpha \cdot \text{RMSProp}(\theta, g_{\theta})$ 9:
- 10:
- 11:
- 12: end while

Notes:

- Train critic (discriminator) n_{critic} times, train generator once
- In order to have parameters w lie in a compact space (for the Lipschitz condition), clamp weights to a fixed box $(W = [-0.01, 0.01]^l)$.
- Because EM distance is continuous and differentiable, should train the critic to optimality.
- JS (normal GAN) results in vanishing gradients and mode collapse
- EM results in clean gradients everywhere and no mode collapse.

7 Empirical Results

• Datasets

- Mixture of Gaussians
- Image generation (LSUN-Bedrooms dataset)

• Baselines

 DCGAN (GAN with convolutional architecture) (Radford et al., 2015) trained with standard GAN procedure

• Benefits

- Meaningful loss metric (estimate of the EM distance) that correlates with the generated sample quality. Estimate goes down with higher sample quality.
 - * This is not empirically true for JS, the baseline.
- Improved stability more robust to the architecture of the generator.

• Observations

- WGAN is unstable with Adam or momentum, so used RMSProp.

8 My Questions and Thoughts

- This paper is quite mathematical in the theory portions, and I would probably need to take deeper mathematical or statistical courses to fully understand the supplementary proofs.
- A YouTube video tutorial on WGANs was very helpful for my understanding of this paper. There was also an implementation of WGANs using PyTorch on the video.
- The clipping of the weights was mentioned in the video as a crude way of enforcing the Lipschitz condition, and there are other papers describing how to do this in more principled ways.