Memória Virtual

Prof. Tiago Gonçalves Botelho

- Problemas da gerência de memória:
 - Todo espaço lógico mapeado no espaço físico;
 - O tamanho do programa é limitado pelo tamanho da memória;
 - Desperdício de memória por manter armazenado código não utilizado frequentemente:
 - Ex.: rotinas de tratamento de erro.
- Um programa ocupando apenas um espaço de memória que realmente necessitaria permite uma economia substancial de espaço de memória.

Memória Virtual – Conceito

- É a técnica que permite a execução de um processo sem que ele esteja completamente em memória:
 - Separação de vínculo: endereço lógico e endereço físico.
- Princípios básicos:
 - Carregar uma página/segmento na memória principal apenas quando ela for necessária;
 - Paginação por demanda;
 - Segmentação por demanda.
 - Manter na memória apenas páginas/segmentos necessários.

Memória Virtual - Vantagens

- Aumento do grau de multiprogramação;
- Reduz o número de operações de E/S para carga/swap do programa;
- Capacidade de executar programas maiores que a capacidade disponível de memória.

Memória Virtual – Princípio da Localidade

- Base de funcionamento da memória virtual:
 - Existe a probabilidade que acessos a instruções e a dados sejam limitados a um trecho.
- Em um determinado instante de tempo apenas esses trechos do processo necessitam estar em memória.

Necessidades para implementação de memória virtual

- Hardware deve suportar paginação e/ou segmentação;
- Sistema operacional deve controlar o fluxo de páginas/segmentos entre a memória secundária (disco) e a memória principal.
- Necessidade de gerenciar:
 - Áreas livres e ocupadas;
 - Mapeamento da memória lógica em memória física;
 - Substituição de páginas/segmentos.

Memória Virtual - Paginação

Mapeamento no qual endereços virtuais 4.096 a 8.191 são mapeados para endereços da memória principal 0 a 4.095

- A técnica de sobreposição automática é denominada paginação e os trechos de programa lidos do disco são chamados páginas.
- Uma tabela de páginas especifica o endereço físico correspondente para cada endereço virtual.
- Programas são escritos como se houvesse memória principal suficiente para todo espaço de endereço virtual, ainda que não seja esse o caso.
- Geralmente o programador usa algumas características não existentes sem se preocupar como elas funcionam.

Tabela de páginas

Página	Endereços	Virtuais
--------	-----------	----------

15	61.440 – 65.535	
14	57.344 – 61.439	
13	53.248 – 57.343	
12	49.152 – 53.247	
11	45.056 – 49.151	
10	40.960 – 45.055	
9	36.864 – 40.959	
8	32.768 – 36.863	
7	28.672 – 32.767	
6	24.576 – 28.671	
5	20.480 – 24.575	
4	16.384 – 20.479	
3	12.288 – 16.383	
2	8.192 – 12.287	
1	4.096 – 8.191	
0	0 – 4.095	
(A)		

Quadro de página Memória principal – 32 K Endereços Físicos

7	28.672 – 32.767
6	24.576 – 28.671
5	20.480 – 24.575
4	16.384 – 20.479
3	12.288 – 16.383
2	8.192 – 12.287
1	4.096 – 8.191
0	0 – 4.095

(B)

Implementação de paginação

- 4
- (A) = Os primeiros 64 KB do espaço de endereço virtual divididos em 16 páginas, cada uma com 4 KB.
- (B) = Memória principal de 32 KB dividida em 8 quadros de página de 4KB cada.

Mapeamento virtual para físico

- MMU (Memory Management Unit);
- Geralmente está presente no chip da CPU;
- Verificação realizada examinando o bit presente /ausente na entrada da tabela de páginas.

Mapeamento virtual para físico

Mapeamento virtual para físico

Mapeamento virtual para físico via tabela de páginas

- Bit de residência = 0 indica falta de página;
- Sistema operacional assume o controle, por meio do mecanismo de exceção;
- O sistema operacional precisa:
 - Encontrar a página faltante no nível hierárquico inferior (geralmente, no HD);
 - Decidir em que lugar da memória principal deve ser colocada a página requisitada.
- O endereço virtual, por si só, não informa em que posição do HD está a página que gerou a falta de página.

- As páginas físicas podem ficar totalmente ocupadas a medida que páginas lógicas de processos são carregadas;
- O algoritmo de substituição de páginas é responsável pela escolha de uma página "vítima".

- Bits auxiliares:
- Objetivo: auxiliar a implementação do mecanismo de substituição de páginas;
 - Bit de sujeira (dirty bit): indica se uma página foi alterada durante a execução de um processo.
 - Bit de referência (reference bit): indica se uma página foi acessada dentro de um intervalo de tempo.
 - Bit de tranca (lock bit): Evita que uma página seja selecionada como "vítima".

- Selecionar para substituição uma página que será referenciada dentro do maior intervalo de tempo (algoritmo ótimo).
- Algoritmos de substituição de páginas:
 - First-In, First-Out (FIFO);
 - Last Recently Used (LRU);
 - Baseado em contadores;
 - Algoritmo da segunda chance;

Exemplo: FIFO

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

ı

Substituição de páginas na memória

Aproximação para o LRU:

Histórico dos Bits de Referência após cada amostragem

- Algoritmo de segunda chance (aproximação para o FIFO)
 - Baseado no bit de referência
 - Considera que as páginas lógicas formam uma lista circular:
 - Apontador percorre a lista circular informando qual será a próxima "vítima".
 - Se a página apontada (sentido horário) tem o bit de referência=1, então:
 - * Posiciona o bit de referência em zero e mantém página na memória;
 - * Substitui próxima página que tem bit de referência=0;

- Algoritmo de segunda chance melhorado
 - Considera além do bit de referência um bit de modificação (bit de uso);
 - * bit uso = 0: quando a página é carregada na memória;
 - * bit uso = 1: quando a página é modificada.
 - Durante pesquisa por página a ser substituída modifica bit de referência de 1 para 0 (algoritmo do relógio)
 - * Privilegia a substituição de frames com bit uso=0;
 - * 4 combinações:
 - 00: Não referenciada, não modificada;
 - 01: Não referenciada, porém modificada;
 - 10: Recentemente referenciada, não modificada;
 - 11: Recentemente referenciada e modificada.

- Algoritmo segunda chance para MMU sem bit de referência;
- Baseada em uma lista circular de páginas lógicas e um apontador (algoritmo do relógio) e uma lista de páginas físicas livres;
- Em caso de falta de página:
 - Remove uma página física da lista livres para a qual será lida a página faltosa;
 - Página "vítima" é marcada como inválida e incluída na lista de livres;
 - Se essa página "vítima" for acessada logo em seguida ela simplesmente é retirada da lista de livres e inserida na lista de páginas lógicas válidas.

Segmentação

- A segmentação é uma técnica de gerência de memória, onde os processos são divididos logicamente em sub-rotinas e estruturas de dados, e colocados em blocos de informações na memória.
- Os blocos tem tamanhos diferentes e são chamados de segmentos, cada um com seu próprio espaço de endereçamento.
- A grande diferença entre a paginação e a segmentação é que, enquanto a primeira divide a memória em partes de tamanho fixos, sem qualquer ligação com a estrutura do processo, a segmentação permite uma relação entre a lógica do processo e sua divisão na memória.

Segmentação

- Ex.: Um compilador tem muitas tabelas construídas em tempo de compilação, geralmente inclui:
 - O código fonte;
 - A tabela de símbolos;
 - A tabela com todas as constantes;
 - A árvore sintática;
 - A pilha usada pelas chamadas de rotina.

Consideração	Paginação	Segmentação
O programador precisa estar ciente dela?	Não	Sim
Quantos espaços de endereços lineares há	1	Muitos
O espaço de endereço virtual pode ser maior do que o tamanho da memória?	Sim	Sim
Tabelas de tamanhos variáveis podem ser manipulados com facilidade?	Não	Sim
Por que a técnica foi inventada?	Para simular memórias grandes	Para fornecer vários espaços de endereço

Bibliografia:

- Tanenbaum, A. S. Organização Estruturada de Computadores. 5 ed Editora Pearson, 2007.
- Tanenbaum, A. S. Sistemas Operacionais. 3 ed –
 Editora Pearson, 2010.