Contrôle TD 2

Nom: ANTON LUDWIG

Prénom : Adrien

Classe:

Questions de cours

- 1. Soient E un \mathbb{R} -ev de dimension $n \in \mathbb{N}^*$, $L = (e_1, \dots, e_p)$ une famille libre de E et $G = (f_1, \dots, f_q)$ une famille génératrice de E. Compléter les « . . . » par les symboles « \leq », « = » ou « \geq » : $p \leq n$ et $q \geq n$.
- 2. Soient \mathscr{B} , \mathscr{B}' deux bases d'un \mathbb{R} -ev E de dimension finie, $x \in E$ de coordonnées X dans \mathscr{B} et X' dans \mathscr{B}' . Rappeler la relation entre X et X'.

et X'= PBB'X X = P X1 PB,B' la moltrice de passage de avec

Exercice 1

Soient E, F deux \mathbb{R} -ev, $L = (e_1, \ldots, e_n)$ une famille libre de vecteurs de E et $f \in \mathcal{L}(E, F)$ injective. Montrer que $f(L) = (f(e_1), \ldots, f(e_n))$ est une famille libre de F.

$$\sum_{i=0}^{n} \sum_{i=0}^{n} \forall i [a, n], \lambda_{i} = 0 \quad (1)$$

$$\sum_{i=0}^{n} \lambda_{i} \int_{0}^{n} (e_{i}) = \sum_{i=0}^{n} \int_{0}^{n} (\lambda_{i}e_{i}) can \int_{0}^{n} (\xi_{i}) \int_{0}^{n} (\xi_{i}) donc \int_{0}^{n} \lambda_{i}^{n} e_{i} = 0$$

$$\sum_{i=0}^{n} \lambda_{i} \int_{0}^{n} (e_{i}) = 0 \quad \exists i \quad 0$$

$$\sum_{i=0}^{n} \lambda_{i} \int_{0}^{n} (e_{i}) = 0 \quad \exists i \quad 0$$

$$\sum_{i=0}^{n} \lambda_{i}^{n} e_{i} = 0 \quad \exists i \quad 0$$

$$\sum_{i=0}^{n} \lambda_{i}^{n} e_{i} = 0 \quad \exists i \quad 0$$

$$\sum_{i=0}^{n} \lambda_{i}^{n} e_{i} = 0 \quad \exists i \quad 0$$

$$\sum_{i=0}^{n} \lambda_{i}^{n} e_{i} = 0 \quad \exists i \quad 0$$

$$\sum_{i=0}^{n} \lambda_{i}^{n} e_{i} = 0 \quad \exists i \quad 0$$

$$\sum_{i=0}^{n} \lambda_{i}^{n} e_{i} = 0 \quad \exists i \quad 0 \quad \exists$$

Exercice 2

Soit $f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow \mathbb{R}^3 \\ (x,y,z) & \longmapsto (x,2x-y+z,2x-2y+2z) \end{array} \right.$ Ainsi $\left\{ (\mathsf{L}) \text{ est une famille libre} \right.$

1. Déterminer une base de Ker(f). En déduire la dimension de Im(f).

6n cherche
$$(x,y,z) \in \mathbb{R}^3$$
 telsque $f(x,y,z) = 0$?

 $(x,y,z) = 0$
 $(x,y,z) \in \mathbb{R}^3$ telsque $f(x,y,z) = 0$?

 $(x,y,z) = 0$
 $(x,y,z) \in \mathbb{R}^3$ telsque $f(x,y,z) = 0$?

 $(x,y,z) = 0$
 $(x,y,z) \in \mathbb{R}^3$ telsque $f(x,y,z) = 0$?

 $(x,y,z) = 0$
 $(x,y,$

2. Soit $(u, v) \in \mathbb{R}^3 \times \mathbb{R}^3$. Montrer que Vect(u, -v, v) = Vect(u, v)

• Vect
$$(u, v)$$
 C V ect $(u, -v, v)$ can V ect $(u, -v, v) = V$ ect $(u, v) + V$ ect $(v) + V$ e

3. En déduire une base de Im(f).

da matrice associée à
$$f$$
 avec B la base canonique de \mathbb{R}^3 est :

that $(f)_{B,B} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 1 \\ 2 & -2 & 2 \end{pmatrix}$

on note C_1 , C_2 , C_3 les colonnes de la matrice.

6 n a, $Tm(f) = Vect(C_1, C_2, C_3)$ or $C_2 = -C_3$

$$= Vect(C_1, C_3, C_3)$$
 D'après la question précidente
$$= Vect(C_1, C_3)$$
 Car dim $Im(f) = 2$

Soit $f: \left\{ \begin{array}{c} \mathbb{R}_2[X] & \to \mathbb{R}^2 \\ P & \mapsto \left(\int_0^1 P(x) \, \mathrm{d}x \, , P'(0) \right) \end{array} \right.$ Déterminer la matrice de f relativement aux bases canoniques.

 $B \in \mathcal{L}(\mathbb{R}_{2}[X], \mathbb{R}^{2})$ on note $B = (1, X, X^{2})$ la base cononique de $\mathbb{R}_{2}[X]$, et $B' = (\binom{1}{0}, \binom{1}{2})$ celle de \mathbb{R}^{2} , on a : con $\int_{\mathbb{R}^{2}} (1) = (\int_{0}^{1} x dx, 1) = [\frac{1}{2}, 1)$ $f(X) = (\int_{0}^{1} x dx, 1) = [\frac{1}{2}, 1)$ Mat $(f)_{B,B'} = (1, X, X^{2})$ la base cononique de $\mathbb{R}_{2}[X]$, $f(X) = (\int_{0}^{1} x dx, 1) = [\frac{1}{2}, 1)$ Mat $(f)_{B,B'} = (1, X, X^{2})$ la base cononique de $\mathbb{R}_{2}[X]$, $f(X) = (\int_{0}^{1} x dx, 1) = [\frac{1}{2}, 1)$