Basic Algebraic Topology

Based on Kosniowski; Matveev

1. Picking up where we left off

1.1. Compactness

Last time, we finished by giving some basic definitions of comapctness, and whatnot. We'll begin with a small exercise to shake some of the cobwebs loose.

- (a) Suppose that X has the finite complement topology. Show that X is compact. Show that each subset of X is compact.
- (b) Prove that a topological space is compact if and only if whenever $\{C_j \mid j \in J\}$ is a collection of closed sets with $\bigcap_{j \in J} C_j = \emptyset$ then there is a finite subcollection $\{C_k \mid k \in K\}$ such that $\bigcap_{k \in K} C_k = \emptyset$.
- (c) Let \mathcal{F} be the topology on \mathbb{R} defined by $U \in \mathcal{F}$ iff $\forall s \in U, \exists t > s \text{ s.t. } [s,t) \subseteq U$. Prove that the subset [0,1] of \mathcal{F} is not compact.

Now

- (a) Let $U = \{U_i \mid i \in I\}$ be an open cover of X. Let $U_i \in U$. Then $X U_i$ is finite. For every $x_j \in X U_i$, $\exists U_j \in U$ s.t. $x \in U_j$ (because U is a cover). Then the set consisting of U_i and the U_j is a finite subcover, thus X is compact. Let $Y \subseteq X$. Then let $V = \{V_k \mid k \in K\}$ be an open cover of Y. Proceed an analogous argument to the above to obtain Y compact.
- (b) Let X be a topological space, and suppose X is compact. Let $C = \{C_j \mid j \in J, C_j = \overline{C_j}\}$ (i.e., the C_j are closed), and suppose

$$\bigcap_{j\in J} C_j = \varnothing.$$

By De Morgan's laws,

$$\bigcup_{j \in J} X - C_j = X$$

since C_j are all closed, then $X - C_j$ are open, hence this is an open cover of X, and there exists a finite subcover. Apply De Morgan's laws again to yield the desired result.

(c) Let $\varepsilon > 0$ be given. Let U be given by the open cover

$$U = \left\{ \left[1 - \frac{1}{2^i}, 1 - \frac{1}{2^{i+1}} \right) \mid i = 0, 1, \dots \right\} \cup \{ [1, 1 + \varepsilon) \}$$

and note that all the sets in U are disjoint, and that they cover [0,1]. From disjointness, it follows there is no finite subcover.

1.2. A Brief review of projections

On our first pass through, we didn't treat projection maps in a lot of depth, so we'll very briefly revisit them here.

Definition 1.1: Projection Maps

Let X,Y be topological spaces. Then define $\pi_X:X\times Y\to X,\,\pi_Y:X\times Y\to Y$ by

$$\pi_X(x,y) = x$$
 $\pi_Y(x,y) = y$

 π_X and π_Y are referred to as the product projections. Note that both are continuous.

2. Compactness, Continued

Theorem 2.1. Let (X,τ) be a topological space, and let $S \subseteq X$. Then S is compact in (X,τ) iff S is compact under the induced topology.

Proof. Forwards direction is trivial. For the backwards direction, suppose S is compact in the induced topology. Let $U = \{U_i \mid i \in I\}$ be an open cover of S in (X,τ) . Then $V = \{V_i = U_i \cap S \mid i \in I\}$ is an open cover of S in the induced topology, and hence by compactness there exists a finite subcover $V' = \{V_{i_k} \mid i_k \in I, k = 1, \ldots, n\}$. Now, take $U' = \{U_{i_k} \mid i_k \in I, k = 1, \ldots, n\}$. Then U' is a finite subcover of U. Since U was taken to be arbitrary, this implies S is comapct.

In the metrizable topologies we encountered in Real Analysis, we proved that continuous functions preserve compactness. However, we will now show that the same result holds in a general topological space.

Theorem 2.2 (Continuity and Compactness). Let $f:(X,\tau)\to (Y,\upsilon)$ be a continuous map. Let $S\subseteq X$ be a compact subspace. Then f(S) is compact in Y.

Proof. Let $V = \{V_i \mid i \in I\} \subseteq v$ be an open cover of f(S). Because f is continuous, $U = \{f^{-1}(V_i) \mid i \in I\}$ is a collection of open sets covering $f^{-1}(f(S)) \supseteq S$. Since S is compact, there exists a finite subcover $U' = \{f^{-1}(V_{i_k}) \mid i_k \in I, k = 1, \ldots, n\}$ covering $f^{-1}(f(S))$. Then $V' = \{V_{i_k} \mid i_k \in I, k = 1, \ldots, n\}$ is a finite subcover of V. Thus f(S) is compact in Y.

By virtue of the properties of continuous functions that we proved last time, some nice results follow immediately:

Corollary 2.1.

- (a) Any closed interval in \mathbb{R} is compact.
- (b) If X and Y are homeomorphic, then X is compact iff Y is.
- (c) If X is compact, and Y is any set, then Y with the quotient topology induced by $f: X \to Y$ is compact.

For completeness, we list some closure properties of compact subspaces:

Theorem 2.3. Let (X, τ) be a topological space. Let $S = \{S_i \mid i \in I\} \subseteq$ be the collection of compact subspaces of X. Then

- (a) If $S_1, S_2 \in S$, then $S_1 \cup S_2 \in S$ (union of two compact subspaces is compact). It follows by induction that any finite union of compact subspaces is compact.
- (b) It is not the case that in an arbitrary topological space, an arbitrary intersection of compact spaces is compact (we need Hausdorffness). But for finite intersections, things work out.

Theorem 2.4. Let (X,τ) be a compact topological space, and let $S\subseteq X$ be closed. Then S is

Proof. Let $U = \{U_i \mid i \in I\}$ be an open cover of S. Let $U_0 = X - S$. Then U_0 is open, and $U \cup \{U_0\}$ covers X. Then since X is compact, there exists a finite subcover $U' = \{U_i \mid i \in I \cup \{0\}\}$. Take $U'' = U' - \{U_0\}$ to obtain a finite subcover of U.

I'm proud to have written this proof without looking at the one in the book at all, only to find later that they're basically identical.

Theorem 2.5. Let X, Y be topological spaces. Then X, Y are compact iff $X \times Y$ is compact.

Proof.

- (\Rightarrow) : Suppose X, Y are compact. WTS $X \times Y$ is compact as well. Let $W = \{W_i \mid i \in I\}$ be an open cover of $X \times Y$. Note that $\forall y \in Y, X \times \{y\}$ is homeomorphic to X.
- (\Leftarrow) : Suppose $X \times Y$ is compact. Let $U = \{U_i \mid i \in I\}$ be an open cover of X, and $V = \{V_i \mid j \in J\}$ be an open cover of Y. Then W given by

$$W = \left\{ \bigcup_{k \in K} W_k \mid W_k \in U \times V \right\}$$

is an open cover of $X \times Y$, and thus admits a finite subcover:

$$W' = \{W_{\ell} \mid \ell \in L; \ |L| < \infty\} \subseteq W$$

Apply a similar trick something something boom

Hausdorff Spaces 3.

Hausdorffness is an important property in Topology that essentially allows us to separate things from each other (our space is not "infinitely bunched-up" somewhere).

Definition 3.1

Let (X,τ) be a topological space. Then call X Hausdorff iff for all $x,y\in X$ such that $x \neq y$, there exist open sets U_x, U_y with $x \in U_x, y \in U_y$, and $U_x \cap U_y = \emptyset$.

Note that by a simple $\varepsilon/2$ argument, it follows that all metrizable spaces are Hausdorff.

Definition 3.2: T_k spaces

For k = 0, 1, 2, 3, 4, call X a T_k space if it satisfies the k-th condition below (indexing starts at 0):

 T_0 : For all $x,y \in X$ $(x \neq y)$, there is an open set U containing one but not the other (i.e., $x \in U$ and $y \notin U$, or $y \in U$ and $x \notin U$).

 T_1 : For all $x,y\in X$ $(x\neq y)$, there are open sets U,V such that $x\in U,$ $y\in V,$ and $x\not\in V,$ $y\not\in U.$

 T_2 : For all x, y in X $(x \neq y)$, there are open sets U, V such that $x \in U, y \in V$, and

 $U \cap V = \emptyset$ (there are disjoint neighborhoods about x and y).

- T_3 : X is T_1 , and for all closed subsets F and points $x \notin F$, there exist open sets U, V such that $F \subseteq U$, $x \in V$, and $U \cap V = \emptyset$.
- T_4 : X is T_1 , and for all pairs of disjoint closed subsetes F_1 , F_2 , there exist open sets U, V such that $F_1 \subseteq U$, $F_2 \subseteq V$

Naturally, if X and Y are homeomorphic topological spaces, and X is T_k , then Y is T_k as well. As an exercise, we construct spaces that are T_j (for j = 0, ..., 4) that are not $T_{i>j}$.

- (X_0) : Let $X_0 = (\mathbb{R}^{\geq 0}, \tau)$, where $\tau = \{[0, t) \mid t \in \mathbb{R}^{\geq 0}\}$. Note that τ is indeed a topology on $\mathbb{R}^{\geq 0}$. Note X_0 is not T_1 .
- (X_1) : Let $X_1 = (X, \tau)$ where

Theorem 3.1. A space X is T_1 iff every point of X is closed.

Proof. Suppose (X, τ) is T_1 . Let $x \in X$ be arbitrary, and let $y \in X - \{x\}$. Then $\exists U_y \in \tau$ with $y \in U_y$, but $x \notin U_y$. Hence

$$\bigcup_{y \in X - \{x\}} U_y = X - \{x\}$$

is open, and so $\{x\}$ is closed.

Now suppose $\{x\}$ is closed. Then T_1 follows immediately.

An important theorem:

Theorem 3.2. Let A be a compact subset of a Hausdorff space X. Then A is closed.

Proof. We define the following (bizarre) open cover. For all $a \in A$, for all $x \in X - A$, there exist disjoint open sets U_a , V_a such that $a \in U_a$, and $x \in V_a$. Then $U = \{U_a\}$ is an open cover of A, and thus contains a finite subcover $U' = \{U_{a'} \mid a' \in A \subseteq A, |A| < \infty\}$, and corresponding V'. Then note that

$$V_x = \bigcap_{a' \in A} V_{a'}$$

is an open set (closure under finite intersections) such that $V_x \cap A = \emptyset$. Hence

$$X - A = \bigcup_{x \in X} V_x$$

and so X - A is open. Then A is closed.

Now, it is time for another Very Important TheoremTM.

Theorem 3.3. Let (X,τ) , (Y,υ) be topological spaces, with X compact and Y Hausdorff. Let $f:X\to Y$ be continuous. Then f is a homeomorphism iff f is a bijection.

Proof.

- (⇒): Suppose f is a bijection. Then f^{-1} exists, and $ff^{-1} = \mathrm{id}_Y$, $f^{-1}f = \mathrm{id}_X$. WTS f^{-1} is continuous. Let $S \subseteq X$ be closed. Then S is compact, hence $(f^{-1})^{-1}(S) = f(S)$ is compact in Y. Thus f(S) is closed as well, hence f^{-1} is continuous. Thus f is a homeomorphism.
- (\Leftarrow) : Suppose f is a homeomorphism. Then f is a bijection.