Object Detection on GPU

Pavel Macenauer

xmacen02@stud.fit.vutbr.cz

Faculty of Information Technology Brno University of Technology

January 19, 2015

Goals and contributions of the thesis

- CUDA implementation of an object detector (waldboost+lbp) working real-time on videos (25fps 1080p)
- Comparative measurements of GPU and CPU versions, GPU optimization research, measurements and discussion

NVIDIA CUDA

- GPGPU (General-purpose computing on graphics processor units) technology
- similar to: OpenCL, C++ AMP, OpenGL compute shaders, DirectCompute
- extension to C/C++ (CUDA C) uses its own compiler NVCC
- massive parallelism
- scientific calculations (chemistry, bioinformatics, ...), computer vision & imaging, medical imaging, weather, numerical analytics

Object detection

- detecting specific objects of a certain class in digital images or videos
- WaldBoost meta-algorithm, which sequentially processes a sample and discards when accumulated response reaches certain threshold
- LBP (Local Binary Pattern) feature to describe properties of an image

9	1	10
2	5	6
12	4	4

1	0	1
0		1
1	0	0

1	2	4
128		8
64	32	16

LBP(x) = 1 + 4 + 8 + 64 = 77

Implementation

- GPU and CPU implementation
- GPU version
 (NVIDIA Quadro K1000M):
 25 ms (pyramidal image)
 60-100 ms (detection)
 10 FPS (HD video)

https://github.com/mmaci/vutbr-fit-object-detection

Optimizations

- Bilinear interpolation using texture memory used for pyramidal image
- LBP features are 2x1, 1x2 and 2x2 pyramidal image stored in texture memory and LBP computed using bilinear interpolation

Future work

- thread rearrangement
- Lanczos interpolation
- pyramidal build optimization + mipmaps
- CPU and GPU measurements

Thank you for attention.