Analysis Summary Gregory Rozanski

0.1 Folgen und Reihen

1.1 Order Completeness Axiom

Archimedean Property:

- 1. $\forall b > 0 \exists n \in \mathbb{N} : b < n$ "We can always go bigger"
- 2. $\forall \epsilon > 0 \exists n \in \mathbb{N} : \frac{1}{n} < \epsilon$ "We can always go smaller"

 $\underline{\mathbb{Q}}$ is dense in \mathbb{R} : $x,y \in \mathbb{R}, x < y \to \exists q \in \mathbb{Q}$ such that x < q < y 1.2 Supremum and Infimum:

 $S \subseteq \mathbb{R}$ be a set. UB(S) denotes the set of upper bounds for S. bounded: A set S iff UB(S) $\neq \emptyset \quad \forall a \in S \forall b \in UB(S) : a < b$ least upper bound (Supremum): Let S be bounded from above and $s^+ = supS$. It holds that $\forall \epsilon > 0 \exists s \in S : s > s^+ - \epsilon$

Monotonie

- 1. (a_n) ist monoton wachsend falls: $a_n \leq a_{n+1} \quad \forall n \geq 1$
- 2. (a_n) ist monoton fallend falls: $a_{n+1} \leq a_n \quad \forall n \geq 1$

<u>Satz von Weierstrass:</u> Mit jeder beschränkten Folge (a_n) kann man zwei monotone Folgen (b_n) und (c_n) welche dann einen Grenzwert besitzen definieren

- Sei (a_n) monoton wachsend und nach oben beschränkt. Dann konvergiert (a_n) mit Grenzwert $\lim_{n\to\infty} a_n = \sup\{a_n : n \geq 1\}$
- Sei (a_n) monoton fallend und nach unten beschränkt. Dann konvergiert (a_n) mit Grenzwert $\lim_{n\to\infty} a_n = \inf\{a_n : n \ge 1\}$

1.3 How to prove Supremum/Infimum

Algorithm 1 Supremum Proofs 1: Input: A set S 2: if $S \neq \emptyset \land \mathsf{UB}(S) \neq \emptyset$ then Make a "guess" s^+ and claim " $s^+ \in \mathsf{UB}(S)$ " Proof the claim by showing that $\forall s \in S : s^+ \geq s$. // Now we know that $\sup S$ exists. Now we claim " $s^+ = \sup S$ " if $s^+ \in S$ then // Proof by demonstration $\sup S = \max S = s^+$ and we are done! 10: // Proof by contradiction Show that $s \notin S$. // Now we know that $\max S$ does not exist. Perform an ϵ -proof as explained below to show that. Done! 11: 12: 14: else S is either empty or not bounded from above, both implying that 15: $\sup S$ and $\max S$ do not exist. Done! 17: end if

 ϵ -proof: Let $\epsilon > 0$ and a sume by contradiction that $s' := s - \epsilon$ is also an upper bound for S. Find an element $s \in S$ that is strictly greater than s', contradicting the assumption that s' is an upper bound for s. claim 1.1: Let $C = A \cup B$ and $c^+ = max(a^+, b^+)$. Then $supC = c^+$ 2.1 Sequences

Let $(a_n) \subseteq \mathbb{R}$ be a sequence.

 (a_n) converges to the limit $a \iff \lim_{n \to \infty} a_n = a$

 $\iff \forall \epsilon > 0 \ \exists n_0 \forall n \ge n_0 : |a_n - a| < \epsilon$

<u>Calculation Rules:</u> $(a_n), (b_n) \subseteq \mathbb{R}$ convergent sequences with $\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b$:

- (i) $\lim_{n \to \infty} (a_n + b_n) = a + b$
- (ii) $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
- (iii) $\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{a}{b} (b_n, b \neq 0)$

Theorem 2: Monotone Convergence:

 $\overline{(a_n)}$ bounded $\wedge (a_n)$ monotone $\Rightarrow \overline{(a_n)}$ converges

2.2 Inductively defined sequences

Sequences of the form: $a_1 := \widehat{C}(\in \mathbb{R}), \ a_{n+1} := f(a_n) \ \forall n > 1$

There are two methods to prove convergence of such sequences:

- 1. Variant 1:
 - 1 Find a closed form representation of (a_n) : $a_n = \phi(n)$
 - $2\,$ Prove by induction that the closed form indeed equals the inductive form
 - 3 Compute $\lim_{n\to\infty} \phi(n)$ directly (if possible)
- 2. Variant 2
 - 1 Show the sequence is monotonically increasing/decreasing

- 2 Show the sequence is bounded from above/below
- 3 Conclude by Theorem 2 that $\lim_{n\to\infty} a_n = a \in \mathbb{R}$ exists
- 4 Apply "induction trick"

Induction-Trick: Es gilt:

 $\overline{\lim_{n\to\infty} d_n = d} \Rightarrow \text{for every subsequence } l(n) \text{ follows } \lim_{n\to\infty} d_{l(n)} = d$ We choose the subsequence $l(n) := n+1, \text{then: } \lim_{n\to\infty} d_{n+1} = d$ Solve for d and take the valid solution

Satz 2.4.2 (Cauchy Kriterium) Die Folge (a_n) ist genau dann konvergent, falls

$$\forall \epsilon > 0 \quad \exists N \ge 1 \text{ so dass } |a_n - a_m| < \epsilon \quad \forall n, m \ge N$$

<u>Bolzano-Weierstrass</u>: Jede beschränkte Folge besitzt eine konvergente Teilfolge \Rightarrow Sei (a_n) eine beschränkte Folge. Dann gilt für jede konvergente Teilfolge (b_n) :

$$\lim_{n \to \infty} \inf a_n \le \lim_{n \to \infty} b_n \le \lim_{n \to \infty} \sup a_n$$

3.1 Convergence Techniques

Lemma 3.1: Sandwich Lemma:

 $(a_n),(b_n),(c_n)$ sequences such that: $\exists n_0 \forall n \geq n_0: a_n \leq b_n \leq c_n$ Then: $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = b \Rightarrow \lim_{n \to \infty} b_n = b$

3.2 Divergence Proofs

Lemma 3.2 Unbounded Divergence

 $\overline{\lim_{n\to\infty} a_n \text{ and } \lim_{n\to\infty} b_n \text{ sequences such that: } \exists n_0 \forall n \geq n_0 : |b_n| \leq |a_n|}$ Then: $\lim_{n\to\infty} b_n = \infty \Rightarrow \lim_{n\to\infty} a_n = \infty$

Lemma 3.3 Oscillating Divergence:

If there exist two subsequences $\lim_{n\to\infty} a_{l_1(n)} \neq \lim_{n\to\infty} a_{l_2(n)}$ then we conclude that a_n diverges

4.1 Series

Let (a_n) be a sequence we define the n-th partial sum as $S_n := \sum_{k=0}^n a_k$

If the limit exists its written as:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=0}^n a_n = \sum_{n=0}^\infty a_n \in \mathbb{R}$$

<u>Calculation Rules:</u> $\sum_{k=1}^{\infty} a_k, \sum_{j=1}^{\infty} b_j$ konvergent, sowie $\alpha \in \mathbb{C}$

1. Dann ist $\sum_{k=1}^{\infty} (a_k + b_k)$ konvergent und

$$\sum_{k=1}^{\infty} (a_k + b_k) = \left(\sum_{k=1}^{\infty} a_k\right) + \left(\sum_{j=1}^{\infty} b_j\right)$$

2. Dann ist $\sum_{k=1}^{\infty} \alpha \cdot a_k$ konvergent und $\sum_{k=1}^{\infty} \alpha \cdot a_k = \alpha \cdot \sum_{k=1}^{\infty} a_k$

Vergleichssatz: $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ Reihen mit:

$$0 \le a_k \le b_k \quad \forall k \ge K \quad (K \ge 1)$$

dann gilt:

$$\sum_{k=1}^{\infty} b_k \text{ konvergent} \Rightarrow \sum_{k=1}^{\infty} a_k \text{ konvergent}$$

$$\sum_{k=1}^{\infty} a_k \text{ divergent} \Rightarrow \sum_{k=1}^{\infty} b_k \text{ divergent}$$

4.2 Zero Sequence Check/Nullfolgenkriterium

All converging series must satisfy:

$$\sum_{n=0}^{\infty} a_n \text{ converges} \Rightarrow \lim_{n \to \infty} a_n = 0$$

Lemma 4.1 Zero Sequence Check/Nullfolgenkriterium

$$\lim_{n\to\infty} |a_n| \neq 0 \Rightarrow \sum_{n=0}^{\infty} a_n \text{ diverges}$$

Always do zero sequence check before the other convergence criteria

Analysis Summary Gregory Rozanski

4.3 Direct comparison test/Majorantenkriterium

 $\overline{a_n, b_n}$ sequences such that: $\exists n_0 \forall n \geq n_0 : |a_n| \leq b_n$ Then:

$$\sum_{n=0}^{\infty} b_n \text{ converges} \Rightarrow \sum_{n=0}^{\infty} a_n \text{ converges (absolutely)}$$

4.4 Direct comparison test/Minorantenkriterium

 $\overline{a_n, b_n}$ sequences such that: $\exists n_0 \forall n \geq n_0 : 0 \leq b_n \leq a_n$ Then:

$$\sum_{n=0}^{\infty} b_n \text{ diverges} \Rightarrow \sum_{n=0}^{\infty} a_n \text{ diverges}$$

4.5 Leibnizkriterium

 (a_n) a sequence then:

4.6 Quotienten/Wurzel-Kriterium

 $(a_n) \subseteq \mathbb{R}$ a sequence We have:

- Quotientenkriterium: $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = q$
- Wurzelkriterium: $\lim_{n\to\infty} \sqrt[n]{|a_n|} = q$

Then if:
$$\begin{cases} q < 1 \Rightarrow \sum_{n=0}^{\infty} a_n \text{ converges absolutely} \\ q = 1 \Rightarrow \text{ no conclusions} \\ q > 1 \Rightarrow \sum_{n=0}^{\infty} a_n \text{ diverges} \end{cases}$$

5.1 Power Series

$$p(x) := \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$$

radius of convergence: The threshold δ between convergence and divergence. For the power series it is given by:

$$\delta := \sup\{|x|: p(x) \text{ converges}\} = \begin{cases} \lim\limits_{n \to \infty} \left|\frac{a_n}{a_{n+1}}\right|(i) \text{ Quotientenkriterium} \\ \frac{1}{\lim\limits_{n \to \infty} \left|\frac{n}{\sqrt[n]{a_n}}\right|}(ii) \text{ Wurzelkriterium} \end{cases}$$

Limits Examples:

- $\lim_{n \to \infty} n^a q^n = 0$ mit $a \in \mathbb{Z}$ $0 \le q < 1$
- $\lim_{n \to \infty} \sqrt[n]{n} = 1$
- $\lim_{n \to \infty} (1 + \frac{1}{n})^n = e \quad n \ge 1$

Beispiele von Reihen:

- Geometrische Reihe : $\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$ konvergiert für |q| < 1
- Harmonische Reihe : $\sum_{k=1}^{\infty} \frac{1}{k}$ divergiert
- Alternierende Harmonische Reihe: $\sum_{n=1}^{\infty} \frac{1}{n} (-1)^n$ konvergiert aber nicht absolut
- $\sum_{k=1}^{\infty} \frac{1}{k^2}$ konvergiert
- $\zeta(s) = \sum_{k=0}^{\infty} \frac{1}{k^s}$ konvergiert für s > 1
- $\sum_{k=1}^{\infty} \frac{1}{k \cdot (k+1)}$ konvergiert
- $\sum_{i=1}^{\infty} (-1)^{k+1} \frac{1}{k}$ konvergiert, ist aber nicht absolut konvergent
- Exponential
funktion: $\sum_{k=1}^{\infty} \frac{z^k}{k!}$ konvergiert für all $z \in \mathbb{C}$
- Eulersche Zahl: $e = \sum_{k=0}^{\infty} \frac{1}{k!}$

- $\sin(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$ für $z \in \mathbb{C}$ konvergiert absolut
- $\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$ für $z \in \mathbb{C}$ konvergiert absolut

Bekannte Ungleichungen:

- Young'sche Ungleichung: $2|xy| \le \epsilon x^2 + \frac{1}{\epsilon}y^2 \ \epsilon > 0, xy \in \mathbb{R}$
- Cauchy-Schwarz: $|\langle x, y \rangle| \le ||x|| \cdot ||y|| \ \forall x, y \in \mathbb{R}^n$
- Bernoulli Ungleichung: $(1+x)^n \ge 1 + n \cdot x \ \forall n \in \mathbb{N}, x > -1$
- $\frac{x}{y} + \frac{y}{x} \geq 2$
- $e^x > 1 + x$ für jedes x > 0

Stetigkeit 0.2

2.1 Verschiedene Definitionen

<u>Grenzwertdefinition</u> $\Omega \subseteq \mathbb{R}^d, f: \Omega \to \mathbb{R}^n, x \mapsto f(x)$ eine Funktion. f heisst **stetig in** $x_0 \in \Omega$ falls

$$\lim_{x \to x_0} f(x) = f(x_0) \text{ oder etwas formaler:}$$

$$\lim_{x\to x_0} f(x) = f(x_0) \text{ oder etwas formaler:}$$

$$\forall (x_n) \text{ mit } \lim_{n\to\infty} x_n = x_0 \text{ gilt } : \lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n) = f(x_0)$$

Falls f für alle $x_0 \in \Omega$ stetig ist, dann ist f stetig auf Ω $\epsilon - \delta$ Definitionen:

• Punktweise stetig:

$$\forall x_0 \forall \epsilon > 0 \exists \delta > 0 \forall x : ||x - x_0|| < \delta \Rightarrow ||f(x) - f(x_0)|| < \epsilon$$

• Gleichmässig stetig: $\forall \epsilon > 0 \exists \delta > 0 \forall x, x_0 : ||x - x_0|| < \delta \Rightarrow ||f(x) - f(x_0)|| < \epsilon$

Der unterschied der beide definitionen ist, dass in der punktweisen Stetigkeit ist δ von x_0 und ϵ abhängig $(\delta(\epsilon, x_0))$, während in der gleichmässigen Stetigkeit das δ nur von ϵ abhängen darf $(\delta(\epsilon))$

Lipschitz Stetigkeit: f heisst Lipschitz stetig mit Lipschitzkonstante L, falls gilt:

$$\exists L \forall x, x_0 : ||f(x) - f(x_0)|| \le L \cdot ||x - x_0||$$
f Lipschitz stetig \Rightarrow f glm. stetig \Rightarrow f punktweise stetig

Rechnen mit stetige Funktionen: $f,g:\Omega\to\mathbb{R}$ stetige Funktionen, $\alpha \in \mathbb{R}$ dann gilt:

- $f + g : \Omega \to \mathbb{R}, x \mapsto f(x) + g(x)$ ist stetig
- $fg: \Omega \to \mathbb{R}, x \mapsto f(x) \cdot g(x)$ ist stetig
- $\alpha f: \Omega \to \mathbb{R}, x \mapsto \alpha f(x)$ ist stetig

If $g(x) \neq 0$ für alle $x \in \Omega$ dann gilt zusätzlich:

•
$$\frac{f}{g}: \Omega \to \mathbb{R}, x \mapsto \frac{f(x)}{g(x)}$$
 ist stetig

falls $h: \Psi \to \Omega$ stetig ist ,dann:

• $f \circ h : \Psi \to \mathbb{R}, x \mapsto f(h(x))$ ist stetig

2.2 Zwischenwertsatz: Zwischenwertsatz:

sei $f:[a,b]\to\mathbb{R}$ stetig und $f(a)\leq f(b)$ Dann gilt:

$$\forall y \in [f(a), f(b)] \exists x \in [a, b] : f(x) = y$$

Fixpunkte: Ein punkt x_0 einer Funktion f sodass $f(x_0) = x_0$. Wir können den Fixpunkt einer Funktion finden indem wir den funktion g(x) := f(x) - x definieren. Den Fixpunkt von f zu finden ist äquivalent den Wurzel von g zu finden.

$$g(x_0) = 0 \iff f(x_0) - x_0 = 0 \iff f(x_0) = x - 0$$

2.3 Konvergenz von Funktionenfolgen

Sei $\Omega \subseteq \mathbb{R}^d$ und $f_k, f: \Omega \to \mathbb{R}^n, k \in \mathbb{N}$ Die Folge (f_k) :

• konvergiert punktweise gegen f falls gilt:

$$\forall x \in \Omega : \lim_{k \to \infty} f_k(x) = f(x)$$

• konvergiert gleichmässig gegen f, falls gilt:

$$\sup |f_k(x) - f(x)| \xrightarrow{k \to \infty} 0$$

wobei f(x) die grenzfunktion ist. Wir setzen den Supremum nach auflösen der obigen gleichung und zeigen dass es gegen 0 kon-

Seien $f_k: \Omega \to \mathbb{R}^n$ stetig, $k \in \mathbb{N}$ und $f: \Omega \to \mathbb{R}^n$ irgendeine Funktion.

$$f_k \xrightarrow{glm} f, (k \to \infty) \Rightarrow f \text{ stetig}$$

Falls die Zielfunktion f unstetig ist, folgern wir, dass die Funktionenfolge nicht gleichmässig gegen f konvergiert.

2.4 Grenzwerte berechnen: Es gelten die folgenden Regeln:

 \bullet Variablenwechsel: Seien f, g Funktionen wobei f
 stetig in y_0 und g stetig in x_0 , mit $y_0 = \lim_{x \to x_0} g(x)$. Dann gilt

$$\lim_{x \to x_0} f(g(x)) = \lim_{y \to y_0} f(y)$$

• Exponenten
regel: f,g: $D\subseteq\mathbb{R}\to\mathbb{R}$ stetig in $x_0\in D$ mit
 $\lim_{x\to x_0}f(x)=f(x_0)>0 \text{ und }\lim_{x\to x_0}g(x)=g(x_0) \text{ (beide Grenzw-}$ erte existieren i.e sind reelle Zahlen) dann gilt:

$$\lim_{x \to x_0} f(x)^{g(x)} = f(x_0)^{g(x_0)}$$

$$\begin{split} &\Rightarrow f(x)^{g(x)} = e^{g(x)log(f(x))} \\ &\Rightarrow \lim_{x \to x_0} f(x)^{g(x)} = e^{x \to x_0} \frac{g(x)log(f(x))}{g(x)} \text{ (wegen stetigkeit von } e^x \text{)} \end{split}$$

• Bernoulli-de L'Hôspital: Seien:

$$-f,g:[a,b]\to\mathbb{R}$$
 stetig

$$-f,g:(a,c)\cup(c,d)\to\mathbb{R}$$
 differenzierbar (ce(a,b))

Dann gilt:

$$\begin{aligned} &(i)g'(x) \neq 0 (\forall x \in (a,c) \cup (c,b)) \\ &(ii)f(c) = g(c) = 0 \\ &(iii)\lim_{x \to c, x \neq c} \frac{f'(x)}{g'(x)} = A(existiert) \end{aligned} \\ \Rightarrow \begin{cases} &(i)g'(x) \neq 0 (\forall x \in (a,c) \cup (c,b)) \\ &(ii)\lim_{x \to c, x \neq c} \frac{f'(x)}{g'(x)} = A \end{cases} & \text{Dann ist } f: (a,b) \to (c,d) \text{ bijektiv und die Umkehrfunktion} \\ &f^{-1}: (c,d) \to \mathbb{R} \text{ ist diff'bar mit} \end{aligned}$$

2.5 Grenzwerte mit Potenzreihen

Potenzreihen sind stetig auf $(-\rho, \rho)$. Es gilt:

$$\forall x_0 \in (-\rho, \rho) : \lim_{x \to x_0} p(x) = p(\lim_{x \to x_0} x) = \sum_{k=0}^{\infty} \lim_{x \to x_0} a_k x^k = \sum_{k=0}^{\infty} a_k x_0^k$$

0.3 Differentialrechnung

Die Ableitung einer Funktion an einer Stelle x_0 bedeutet die Steigung der Tangente an dieser Stelle.

 ${\bf 3.1~Differential quotient:}~{\rm Der}~{\rm Differential quotient~einer~Funktion}$ $\overline{f:\Omega\to\mathbb{R}}$ an der Stell $x_0\in\Omega$ ist definiert durch:

$$f'(x_0) := \frac{d}{dx}f(x_0) := \lim_{x \to x_0, x \neq x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

- $f: \Omega \to \mathbb{R}$ heisst an der Stelle $x_0 \in \Omega$ differenzierbar, wenn der oben genannte Grenzwert existiert
- $f:\Omega\to\mathbb{R}$ heisst differenzierbar, wenn f an jeder Stell $x\in\Omega$ differenzierbar ist.

Ableitungsregeln:

- Linearität: $\frac{d}{dx}(\alpha f(x) + g(x)) = \alpha f'(x) + g'(x)$
- Produktregel: $\frac{d}{dx}(f(x) \cdot g(x)) = f'(x)g(x) + f(x)g'(x)$
- Quotientenregel: $\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$
- Exponentenegel: $\frac{d}{dx}(c \cdot x^a) = c \cdot a \cdot x^{a-1} \ \forall a, c \in \mathbb{R}$
- Kettenregel: $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$

f(x)	f'(x)	f"(x)
sin(x)	cos(x)	-sin(x)
cos(x)	-sin(x)	-cos(x)
tan(x)	$\frac{1}{\cos^2(x)}$	$\frac{2tan(x)}{cos^2(x)}$
$\frac{1}{tan(x)}$	$-\frac{1}{\sin^2(x)}$	$\frac{2}{\tan(x)\sin^2(x)}$
$\frac{1}{\cos(x)}$	$-\frac{tan(x)}{cos(x)}$	$\frac{tan^2(x)cos^2(x)+1}{cos^3(x)}$
$\frac{1}{\sin(x)}$	$-rac{1}{tan(x)sin(x)}$	$\frac{\sin^2(x) + \tan^2(x)}{\tan^2(x)\sin^3(x)}$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$	$\frac{x}{(1-x^2)^{\frac{3}{2}}}$
arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$	$-\frac{x}{(1-x^2)^{\frac{3}{2}}}$
arctan(x)	$\frac{1}{\sqrt{1+x^2}}$	$-\frac{2x}{(x^2+1)^2}$
$tan^2(x)$	$\frac{2tan(x)}{cos^2(x)}$	$\frac{4tan^2(x)cos^2(x)+2}{cos^4(x)}$
$sin^2(x)$	2sin(x)cos(x)	$ 2(\cos^2(x) - \sin^2(x)) $
$cos^2(x)$	-2sin(x)cos(x)	$ 2(\sin^2(x) - \cos^2(x)) $
log(x)	$\frac{1}{x}$	$-\frac{1}{x^2}$
e^x	e^x	e^x

3.3 Mittelwertsatz und Umkehrsatz:

• Mittelwertsatz: $f:[a,b] \to \mathbb{R}$ stetig und diff'bar in (a,b). Dann existiert ein $x_0 \in (a, b)$ mit

$$f(b) = f(a) + f'(x_0)(b - a) \iff f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

• Umkehrsatz: $f:(a,b)\to\mathbb{R}$ diff'bar mit f'(x)>0 für alle $x \in (a, b)$ und seien

$$-\infty \le c = \inf_{x \in (a,b)} f(x) < \sup_{x \in (a,b)} f(x) = d \le \infty$$

$$(f^{-1})'(f(x)) = (f'(x))^{-1}, \quad \forall x \in (a, b) \text{ bzw.}$$

 $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} \quad \forall y \in (c, d)$

3.4 Taylorreihe

Jede glatte (i.e beliebig oft differenzierbare) Funktion $f \in \mathbb{C}^{\infty}$ kann als Potenzreihe angenähert werden.

Taylor-Polynom

Sei $f: I \to \mathbb{R} \in \mathbb{C}^{\infty}$ das N-te Taylor-Polynom $T_N f(x; a)$ an einer beliebigen Entwicklungsstelle $a \in I$ ist definiert als:

$$T_N f(x;a) = \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!} (x-a)^n =$$

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \dots$$

Das N-te Taylor-Polynom hat Grad \leq N

Taylorreihe

Sei $f \in \mathbb{C}^{\infty}$ dann kann f auch ander dargestellt werden:

$$Tf(x;a) := T_{\infty} = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

Diese Reihe ist die Taylorreihe von f an der Stelle a

Fehlerabschätzung der Taylor-Polynom Für ein $x \ge a$ gilt:

$$f(x) = T_N(x) + R_N f(x; a)$$

Dabei ist $R_N f(x;a)$ der Fehler. Dieser Fehler kann abgeschätzt wer-

$$|R_N f(x;a)| \le \sup_{a < \xi < x} |f^{N+1}(\xi)| \frac{(x-a)^{N+1}}{(N+1)!}$$

 \mathbb{R}_N wird umso grösser, je grösser die Differenz zwischen x und a ist. Gewisse Taylorreihen konvergieren gegen die Funktion f es gilt: $\lim_{N \to \infty} R_N f(x; a) = 0$

Integralrechnung

Das Riemann-Integral: Liefert die Fläche zwischen der X-Achse und den Funktion eingeschlossene Fläche.

<u>Die Riemann-Summe:</u> Gegeben eine stetig Funktion $f(x):[a,b] \rightarrow$ \mathbb{R} , sowie eine Partitionierung P in
n Teile und Stützstellen ξ :

Analysis Summary Gregory Rozanski

$$S(f, P, \xi) := \sum_{i=1}^{n} \underbrace{f(\xi_i)}_{\text{H\"{o}he}} \cdot \underbrace{(x_i - x_{i-1})}_{\text{Breite}}$$

Unter- und Obersumme Gegeben eine Paritionierung P.

• Untersumme $\underline{S}(f,P) := \sum_{i=1}^{n} \inf_{x \in I_i} f(x) \cdot (x_i - x_{i-1})$

• Obersumme
$$\overline{S}(f,P) := \sum_{i=1}^{n} \sup_{x \in I_i} f(x) \cdot (x_i - x_{i-1})$$

Für jede Partitionierung P von [a,b] gilt: $\underline{S}(f,P) \leq \overline{S}(f,P)$

Riemann-Integrierbarkeit Eine Funktion $f(x):[a,b]\to\mathbb{R}$ wenn

$$\sup_{P_1} \underline{S}(f, P_1) = \inf_{P_2} \overline{S}(f, P_2) =: A$$

i.e wenn sich Unter- und Obersumme annähern, je feiner die Partitionierung wird. A heisst Riemann-Integral von f.

$$A := \int_a^b f(x) dx$$

Eine äquivalente Definition, welche für Beweise verwendet werde kann lautet: "f ist genau dann integrierbar, wenn gilt:"

$$\forall \epsilon > 0 \exists P : |\underline{S}(f, P) - \overline{S}(f, P)| < \epsilon$$

immer eine Partitionierung gibt i.e esund Obersumme die Unterbeliebig annähern. sich Zwei Kriterien zur Integrierbarkeit:

- 1. Ist f stetig in einem kompakten Intervall [a,b], so ist f über [a,b] integrierbar
- Ist f monoton in einem kompakten Intervall [a,b], so ist f über [a,b] integrierbar

Sei $f:[a,b]\to\mathbb{R}$ eine integrierbare Funktion und sei $P_{(n)}$ eine Folge von Partitionierungen in
n Teilintervalle, deren Feinheit $(max\{|I_i|\})$ gegen 0 geht $n \to \infty$. dan gilt:

$$\lim_{n \to \infty} S(f, P(n)) = \int_a bf(x) dx$$

4.2 Stammfunktionen

Sei $f(x):[a,b]\to\mathbb{R}$ eine Funktion. F heisst Stammfunktion von f, wenn gilt:

$$F'(x) = f(x) \ \forall x \in [a, b]$$

Wenn f integrierbar ist, heisst das nicht zwingend, dass auch eine Stammfunktion existieren muss Bsp:

$$f(x) = \begin{cases} 0, & \text{falls } x \le 0 \\ 1, & \text{falls } x > 0 \end{cases}$$

Hauptsatz der Differential- und Integralrechnung: Sei f(x): $[a,b] \to \mathbb{R}$ eine Funktion und F(x) ihre Stammfunktion, dann gilt:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Eine äquivalente Darstellung ist die folgende:

Sei $f(x):[a,b]\to\mathbb{R}$ eine Funktikon. Wir definieren F(x) wie folgt:

$$F(x) := \int_{a}^{x} f(t)dt$$

Dann ist F(x) eine Stammfunktion von f

Eigenschaften der Integral:

• Linearität: f,g Funktionen von [a,b] nach \mathbb{R} dann gilt:

$$\int_{a}^{b} (u \cdot f(x) + v \cdot g(x)) dx = u \cdot \int_{a}^{b} f(x) dx + v \cdot \int_{a}^{b} g(x) dx$$

 \bullet Monotonie: f,g Funktionen von [a,b] nach $\mathbb R$ und es gelte $f(x) \le g(x) \forall x$ Dann gilt:

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

Gebietsadditivität: $f:[a,b]\to\mathbb{R}$ eine Funktion und $c\in[a,b]$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} g(x)dx$$

Unbestimmtes Integral: Der Stammfunktion F(x) einer Funktion f. Zu jeder Funktion gibt es beliebig viele Stammfunktionen, welche sich um eine Konstante c unterscheiden:

$$\int f(x)dx = F(x) + c$$

4.3 Berechnung der Integrale:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

• Polynome:

$$\int c \cdot x^n dx = \frac{c \cdot x^{n+1}}{n+1} \quad \forall n \in \mathbb{R} \setminus \{1\}$$

• Partielle Integration:

$$\int f'(x) \cdot g(x) dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) dx$$

- Gundsätzlich leiten wir Polynome ab und sich wiederholende Funktionen integrieren wir
- Manchmal müssen wir künstlich mit 1 multiplizieren
- Substitution: Wir ersetzen g(x) durch u:

$$\int\limits_{a}^{b}f(g(x))dx=\int\limits_{g(a)}^{g(b)}f(u)\frac{du}{g'(x)}$$

Partialbruchzerlegung

 $\begin{array}{l} \textbf{Definition 4.11. } \textit{Partial bruch zerlegung} \\ \textit{Seien } p(x) \textit{ und } q(x) \textit{ zwei Polynome. Wir betrachten das Integral } \int \frac{p(x)}{q(x)} \mathrm{d}x. \textit{ Wir berechnen das Integral} \end{array}$

- 1. Prüfe den Grad von p und q. Falls $\deg(p) \geq \deg(q)$, dann führe eine Polynomdivision durch, so dass wir dann das äquivalente Integral $\int a(x) + \frac{r(x)}{q(x)}$ erhalten. Die Schwierigkeit hat sich jetzt auf den Bruch $\frac{r(x)}{q(x)}$ reduziert. Fahre deshalb damit beim nächsten Schritt weiter.
- Jetzt gilt sicher deg(p) < deg(q). Berechne die Nullstellen von q(x). Dabei handelt es sich oft um kubische Gleichungen. Dann muss eine Nullstelle erraten werden. Die Restlichen können dann mit Polynomdivision herausgefunden werden.
- 3. Für jede Nullstelle erstellen wir einen Partialbruch mit folgendem Ansatz:
 - a) Einfache, reelle Nullstelle

 - b) r-fache, reelle Nullstelle $x_1 \rightarrow \frac{A_1}{x-x_1} + \frac{A_2}{(x-x_1)^2} + \ldots + \frac{A_r}{(x-x_1)^r}$
 - c) Einfache, komplexe Nullstelle $x^2 + px + q \rightarrow \frac{Ax+B}{x^2+px+q}$

 - d) r-fache, komplexe Nullstelle $x^2 + px + q \rightarrow \frac{A_1x + B_1}{x^2 + px + q} + \frac{A_2x + B_2}{(x^2 + px + q)^2} + ... + \frac{A_rx + B_r}{(x^2 + px + q)^2}$

Wir können jetzt alle Partialbrüche aufsummieren und erhalten unseren originalen Bruch

Als letztes m
üssen wir nur noch die Parameter A₁...A_n (bzw. auch B₁...B_n) bestimmen. Dies machen wir mit Hilfe eines Koeffizientenvergleichs. Am besten veranschaulichen wir das anhand

Beispiel. Wir zerlegen den Bruch $\frac{x+1}{x^2-3x+2}$ in die Partialbrüche $\frac{A}{x-1}+\frac{B}{x-2}$ Dazu multiplizieren wir auf beiden Seiten mit dem gesamten Nenner x^2-3x+2 .

$$x + 1 = A(x - 2) + B(x - 1)$$

 $\iff x + 1 = Ax - 2A + Bx - B$
 $\iff x + 1 = x(A + B) - 2A - B$

Daraus folgt, dass A+B=1 und -2A-B=1 sein muss. Wenn wir dieses Gleichungssystem

$$A = -2 \text{ und } B = 3$$

 $\Rightarrow \frac{x+1}{x^2 - 3x + 2} = \frac{-2}{x-1} + \frac{3}{x-2}$

4.4 Uneigentliche Integrale: Ein Integral bei den eine oder beide Grenzen nicht im Definitionsbereich von f liegen. Ein uneigentliches Integral bezeichnet man als konvergent, wenn es existiert. Ansonsten bezeichnet man es als divergent.

Konvergenzkriterien:

•
$$\int_{1}^{\infty} \frac{1}{x^s} dx konvergiert \iff s > 1$$

• Vergleichskriterium: $f, g: (a, b) \to \mathbb{R}$ stetig mit $f(x) \le$ $g(x) \forall x \in (a, b)$ es gilt:

$$\int_{a}^{b} g(x)dx \text{ konvergiert } \Rightarrow \int_{a}^{b} f(x)dx \text{ konvergent}$$

$$\int_{a}^{b} f(x)dx \text{ divergent } \Rightarrow \int_{a}^{b} g(x)dx \text{ divergent}$$

• Leibnitz-Kriterium:

1. Sei f(x) auf $[a,\infty)$ stetig, monoton fallend und sei $\lim_{x\to\infty} f(x)=0$, dann konvergieren die Integrale $\int_a^\infty f(x)\sin(x)\mathrm{d}x$ und $\int_a^\infty f(x)\cos(x)\mathrm{d}x$.

2. Sei f(x) auf (a,b] stetig. Ist die Funktion $f(x)(x-a)^2$ monoton wachsend und gilt

$$\lim_{x \to a} f(x)(x-a)^2 = 0$$

dann konvergieren die Integrale

$$\int_{a}^{b} f(x) \sin(\frac{1}{x-a}) dx$$

und

$$\int_{a}^{b} f(x) \cos(\frac{1}{x-a}) dx$$

 $\int_{0}^{b} f(x)dx \quad \text{konvergiert} \quad \text{absolut},$ Absolute Konvergenz:

 $\int |f(x)| dx$ konvergiert. Aus absoluter Konvergenz folgt normale Konvergenz.

0.5Extras

Trigonometrische Funktionen:

- $e^{iz} = cos(z) + i \cdot sin(z) \quad \forall z \in \mathbb{C}$
- $\cos(z) = \cos(-z)$ und $\sin(-z) = -\sin(z) \ \forall z \in \mathbb{C}$
- $sin(z) = \frac{e^{iz} e^{-iz}}{2i}$, $cos(z) \frac{e^{iz} + e^{-iz}}{2}$
- $\bullet \ \sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$ $\cos(z+w) = \cos(z)\cos(w) - \sin(z)\sin(w)$
- $cos(z)^2 + sin(z)^2 = 1 \forall z \in \mathbb{C}$
- $\sin(2z) = 2\sin(z)\cos(z)$ $\cos(2z) = \cos(z)^2 - \sin(z)^2$
- $sin(x) = -cos(x + \frac{\pi}{2})$
- $cos(x) = sin(x + \frac{\pi}{2})$
- $tan(x) = tan(x + n \cdot \pi)$
- sin(-x) = -sin(x)
- cos(-x) = cos(x)
- tan(-x) = -tan(x)
- $\bullet \ cosh^2(x) sinh^2(x) = 1$
- $cohs^2(x) + sinh^2(x) = cosh(2x)$

Trigonometrische Werte:

0.6 Multiple Choice

Supremum und Infimum auf \mathbb{R} :

- a) inf(a, b) = a für alle a < b in \mathbb{R}
- b) Wenn $A \subset B$ und B ein Maximum besitzt, dann besitzt auch A ein Maximum \rightarrow NEIN
- c) $max\{\frac{1}{k+1}|k \in \mathbb{N}\} = 1(\mathbb{N} = 0, 1, 2, ...) \to JA$
- d) Sei S eine nichtleere, nach unten beschränkte Teilmenge von $\mathbb R$ und sei $a \in \mathbb{R}$ ihr Infimum Dann:
 - für jedes $\epsilon > 0$ existiert eine untere Schranke b von S, so dass $a < b < a + \epsilon$ a ist die Grösste der unteren Schranken für jede untere Schranke b muss immer $a \geq b$ sein.
 - $S \setminus \{a\}$ besitzt ein Minimum z.B $S = (0,1), a = 0, S \setminus \{0\} = S$ besitzt kein Minimum
 - a ist das Supremum der unteren Schranken

Folgenkonvergenz:

- a) Welche Aussagen sind richtig?
 - Eine divergente Folge ist nicht beschränkt z.b $\{(-1)^n\}$ ist beschränkt und divergent
 - Jede beschränkte Folge ist konvergent z.b $\{(-1)^n\}$ ist beschränkt und divergent
 - Jede konvergente Folge ist beschränkt
 - Eine nicht beschränkte Folge divergiert
- b) Seien $(a_n), (b_n)$ und (c_n) Folgen in \mathbb{R} mit $|c_n| = |a_n| + |b_n|$ Dann:
 - falls $\lim_{n \to \infty} c_n$ existiert, existieren $\lim_{n \to \infty} a_n$ und $\lim_{n \to \infty} b_n$ und

$$\left| \lim_{n \to \infty} a_n \right| + \left| \lim_{n \to \infty} b_n \right| = \left| \lim_{n \to \infty} c_n \right|$$

• falls $\lim_{n\to\infty} c_n$ existiert, existieren $\lim_{n\to\infty} a_n$ und $\lim_{n\to\infty} b_n$ und

$$\left|\lim_{n\to\infty} c_n\right| = \left|\lim_{n\to\infty} c_n\right| - \left|\lim_{n\to\infty} b_n\right|$$

- falls (a_n) und (b_n) beschränkt sind, muss (c_n) beschränkt
- \bullet falls (c_n) konvergiert, konvergiert wenigstens eine der Folgen $(a_n)und(b_n)$

α	0/360	15	30	45	60	75	c^{90} Sei $(a_n)^{1}$ Ohe Folge in \mathbb{R} Dann:
x	$0/2\pi$	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{5\pi}{12}$	$\frac{\frac{\pi}{2}}{1} \text{fall}_{\frac{1}{\sqrt{6}+\sqrt{2}}}^{\frac{7\pi}{12}} \text{und } a \in \mathbb{R} \text{ existieren sodass}$
sin(x)	0	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	
cos(x)	1	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$0 -\frac{\sqrt{6}+\sqrt{2}}{4} \qquad a_n - a < \epsilon \forall n \ge 1$
tan(x)	0		$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$		$\pm \infty$ gilt, dann konvergiert (a_n)
α	120	135	150	165	180	195	210 ϕ fall $2(5a_n)$ konvergiert, ist die Folge $b_n = a_{n+1} + a_n$ konver-
x	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	$\frac{11\pi}{12}$	π	$\frac{13\pi}{12}$	$\frac{7\pi}{6}$ gen $\frac{5\pi}{4}$
sin(x)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	0	$-\frac{\sqrt{6}+\sqrt{2}}{4}$	$-\frac{1}{2}$ • falls $\frac{\sqrt{2}}{2}$ Folge $b_n = a_{n+1} - a_n$ nach 0 konvergiert, ist (a_n)
cos(x)	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{-\sqrt{6}-\sqrt{2}}{4}$	-1	$\frac{-\sqrt{6}-\sqrt{2}}{4}$	$-\frac{\sqrt{3}}{2}$ konveggent
tan(x)	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	4	π	1	$\frac{7\pi}{6}$ • fall $\frac{5\pi}{4a}$ \in \mathbb{R} existiert, so dass $a_n \leq a \forall n \geq 1$, und
α	240	255	270	285	300	315	330 a_n 345 a_n $\forall n \geq 1$, dann ist (a_n) konvergent
x	$\frac{4\pi}{3}$	$\frac{17\pi}{12}$	$\frac{3\pi}{2}$	$\frac{19\pi}{12}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$ \overline{\text{Folgenkonve}}_{1}^{11\pi} \xrightarrow{23\pi} 2 $:
sin(x)	$-\frac{\sqrt{3}}{2}$	$\frac{-\sqrt{6}-\sqrt{2}}{4}$	-1	$\frac{-\sqrt{6}-\sqrt{2}}{4}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$\frac{1}{1} \frac{1}{1} \frac{1}{1} = \sqrt{6} + \sqrt{2}$
cos(x)	$-\frac{1}{2}$	$\frac{-\sqrt{6}+\sqrt{2}}{4}$	0	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
tan(x)	$\sqrt{3}$	4	$\pm \infty$	4	$-\sqrt{3}$		$3 + \sqrt{\frac{2k}{3k+1}}$ $n = 3k+1$ fur $k \ge 0$
. ,		1				1	$a_n = \frac{3k^2 + 5}{k^2 + 2}$ $n = 3k + 2$ für $k \ge 0$
Endliche	Reihen	:					$\frac{\frac{\sqrt{3}}{2}}{a_n} = \begin{cases} 3 + \sqrt{\frac{2k}{3k+1}} & n = 3k+1 \text{ für } k \ge 0\\ \frac{3k^2 + 5}{k^2 + 2} & n = 3k+2 \text{ für } k \ge 0\\ \frac{(-1)^k}{k} & n = 3k+3 \text{ für } k \ge 0 \end{cases}$

Endliche Reihen:

- $\bullet \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
- $\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$
- $\sum_{i=1}^{n} i^3 = \frac{1}{4}n^2(n+1)^2$

Welche Aussagen gelten:

• $\lim_{n \to \infty} a_n$ existiert

 (a_{3k+1}) konvergiert gegen $3+\sqrt{\frac{2}{3}},(a_{3k+2})$ gegen 3 und die Teilfolge (a_{3k}) gegen 0. Es folgt (a_n) nicht konvergiert.

 $\lim infa_n$ existiert

Die Folge (a_n) hat untere Schranke -1. Also existiert der Limes inferior von (a_n)

- $\lim_{n\to\infty} supa_n = 3 + \sqrt{\frac{2}{3}}$ $\{3 + \sqrt{\frac{2}{3}}, 3, 0\}$ ist die Menge der Häufungspunkte der Folge (a_n) . Der grösste Häufungspunkt $3 + \sqrt{\frac{2}{3}}$ ist der Limes superior
- b) Welche der folgenden Aussagen sind richtig?
 - Falls $\lim_{n\to\infty} a_{2n} = \alpha \in \mathbb{R}$ und $\lim_{n\to\infty} a_{2n+1} = \alpha$ dann folgt $\lim_{n\to\infty} a_n = \alpha$
 - Sei (a_n) eine konvergente Folge und σ eine Permutation von $\{1,2,3,\ldots\}$ (d.h eine Bijektion der Menge $\{1,2,3,\ldots\}$ auf sich selbst). Dann konvergiert auch die Folge $(b_n),b_n=a_{\sigma(n)}, \forall n\geq 1$

Sei $\alpha \in \mathbb{R}$ der Grenzwert der Folge (a_n) . es gilt:

$$\forall \epsilon > 0 \exists n_{\epsilon} : |\alpha - a_n| \le \epsilon \quad \forall n \ge n_{\epsilon}$$

Wir definieren $m_{\epsilon} = \max\{\{k : \sigma(k) \leq n_{\epsilon}\}\}$. Es ist $m_{\epsilon} < \infty$, weil $n_{\epsilon} < \infty$ und σ eine Bijektion ist. Dann gilt $|\alpha - b_n| = |\alpha - a_{\sigma(n)}| \leq \epsilon \quad \forall n \geq m_{\epsilon}$. somit folgt $\lim_{n \to \infty} b_n = \alpha$

- c) Sei (x_n) eine Cauchy-Folge in \mathbb{R} . Dann
 - konvergiert $\sum_{n=1}^{\infty} x_n$

z.B $x_n = \frac{1}{n}$ ist Cauchy(weil konvergent), aber $\sum_{n=1}^{\infty}$ ist divergent

- konvergiert (x_n) gegen 0 Jede Cauchy-Folge ist konvergent, nicht notwendigerweise mit Grenzwert 0
- ist x_n beschränkt Jede Cauchy-Folge ist konvergent, also beschränkt

Folgenkonvergenz 3:

- a) Sei $\sum_{k=1}^{\infty} a_k$ eine Reihe.
 - Falls $\forall \epsilon > 0, \exists N \geq 1$, so dass $\sum_{k=n}^{n+100} |a_k| < \epsilon \quad \forall n \geq 1$

N dann ist die Reihe $\sum_{k=1}^{\infty} a_k$ konvergent.

- Falls $\sum_{k=1}^{\infty} a_k$ konvergiert, so folgt: $\forall \epsilon > 0 \exists N \geq 1$ so dass $\sum_{k=1}^{n+100} |a_k| < \epsilon \quad \forall n \geq N$
- Falls $\sum_{k=1}^{\infty} sina_k$ absolut konvergiert, so konvergiert $\sum_{k=1}^{\infty} a_k$
- b) Sei $\sum a_k$ eine reelle Reihe mit $\forall k\geq 1: a_k\leq 0$ Die Reihe konvergiert...
 - genau dann, wenn die Folge der Partialsummen nach unten beschränkt, ist
 - $\bullet\,$ genau dann, wenn (a_k) eine monoton wachsende Nullfolge
 - falls $\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall k \geq n_0 : |a_k| < \epsilon$ Hier ist die Folge der Partialsummen monoton fallend. Ist sie zusätzlich noch nach unten beschränkt, dann ist sie konvergent
- c) Sei $\phi: \mathbb{N}^* \to \mathbb{N}^*$ eine Abbildung, $\sum_{n=1}^\infty a_n$ eine Reihe und $b_n = a_{\phi(n)}$
 - $\sum_{n=1}^{\infty} a_n$ konvergent und ϕ surjektiv $\Rightarrow \sum_{n=1}^{\infty} b_n$ konvergent Gegenbeispiel: $\sum_{n=1}^{\infty} a_n = 1 + (-1) + \frac{1}{2} + (-\frac{1}{2}) + \dots$ konver-

gent aber $\sum_{n=1}^{\infty}b_n=1+1+(-1)+\frac{1}{2}+\frac{1}{2}+(-\frac{1}{2})+\dots$ nicht konvergent

- $\sum_{n=1}^{\infty} a_n$ konvergent und ϕ injektiv $\Rightarrow \sum_{n=1}^{\infty} b_n$ konvergent Gegenbeispiel: $\sum_{n=1}^{\infty} a_n = 1 + (-1) + \frac{1}{2} + (-\frac{1}{2}) + \dots$ konvergent gent aber $\sum_{n=1}^{\infty} b_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ nicht konvergent
- $\sum_{n=1}^{\infty} a_n$ konvergent absolut und ϕ surjektiv $\Rightarrow \sum_{n=1}^{\infty} b_n$ konvergent

 Gegenbeispiel: $\sum_{n=1}^{\infty} a_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}$... absolut konvergent aber $\sum_{n=1}^{\infty} b_n = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \dots$ nicht
- $\sum_{n=1}^{\infty} a_n$ konvergent absolut und ϕ injektiv $\Rightarrow \sum_{n=1}^{\infty} b_n$ konvergent gent Eine Teilfolge oder eine Umordnung der absolut konvergent Reihe ist auch absolut konvergent

Folgenkonvergenz:

- a) Wir nehmen an, $\sum_{n=1}^{\infty}c_n$ absolut konvergiert und $\alpha>0$ Definiere: $a_n=c_n\alpha^n,b_n=nc_n\alpha^{n-1}$
 - $\lim_{n \to +\infty} \sup |a_n|^{\frac{1}{n}} > \lim_{n \to +\infty} \sup |b_n|^{\frac{1}{n}}$
 - $\lim_{n \to +\infty} \sup |a_n|^{\frac{1}{n}} < \lim_{n \to +\infty} \sup |b_n|^{\frac{1}{n}}$
 - $\bullet \lim_{n \to +\infty} \sup |a_n|^{\frac{1}{n}} = \lim_{n \to +\infty} \sup |b_n|^{\frac{1}{n}} \\
 \lim_{n \to \infty} \sup |b_n|^{\frac{1}{n}} = \lim_{n \to \infty} \sup \sqrt[n]{n|c_n|} \alpha^{1-\frac{1}{n}} = \\
 \alpha \lim_{n \to \infty} \sup \sqrt[n]{n|c_n|} \alpha^{-\frac{1}{n}} = \alpha \lim_{n \to \infty} \sup \sqrt[n]{|c_n|} = \\
 \lim_{n \to +\infty} \sup |a_n|^{\frac{1}{n}}$
- b) Wir nehmen an, dass $\sum_{k=1}^{\infty} a_k$ absolut konvergiert und dass $\sum_{k=1}^{\infty} b_k$ konvergiert.
 - Die Reihe $\sum_{k=1}^{\infty} |a_k|^2$
 - konvergiert nicht unbedingt
 - konvergiert immer, aber konvergiert nicht umbedingt absolut.
 - konvergiert immer absolut
 - Die Reihe $\sum_{k=1}^{\infty} a_k b_k$
 - konvergiert nicht unbedingt
 - konvergiert immer, aber konvergiert nicht umbedingt absolut.
 - konvergiert immer absolut

 (a_k) und (b_k) sind beschränkt. Dann $\exists C>0, |a_k|+|b_k|< C$ und

$$|a_k|^2 < C|a_k|, |a_k b_k| < C|a_k|$$

- c) $\sum_{k=1}^{\infty}a_k$ divergiert und $\sum_{k=1}^{\infty}b_k$ divergiert Die Reihe $\sum_{k=1}^{\infty}a_kb_k$
 - konvergiert nicht unbedingt

$$-a_k = b_k = 1 \rightarrow \sum_{k=1}^{\infty} a_k b_k$$
 divergiert

$$-a_k = b_k = \frac{1}{n} \rightarrow \sum_{k=1}^{\infty} a_k b_k$$
 konvergiert absolut

$$-a_k = \frac{1}{n}, b_k = (-1)^k \to \sum_{k=1}^{\infty} a_k b_k$$
 konvergiert aber nicht absolut.

- konvergiert immer, aber konvergiert nicht umbedingt abso-
- konvergiert immer absolut

Stetigkeit:

- a) Die Aufrundungsfunktion $\mathbb{R} \to \mathbb{R}, x \mapsto \lceil x \rceil := \min\{n \in \mathbb{Z} | n \geq n\}$ x} ist im Punkt x=2
 - stetig
 - unstetig $\epsilon = \frac{1}{2} \operatorname{Dann} \# \delta > 0 \text{ mit } |\lceil x \rceil - 2| < \frac{1}{2} \forall x \in (2 - \delta, 2 + \delta)$
- b) Sei $f:\mathbb{R}\to\mathbb{R}$ eine Funktion. Welche der folgenden Bedingungen stellt sicher, dass $\lim_{x\to 2} f(x) = \pi$, dass für jede Folge (x_n) , die Grenzwert 2 hat, $\lim_{n\to\infty} \tilde{f}(x_n) = \pi$ gilt
 - $\bullet \lim_{x \to 2} \frac{f(x)}{x} = \frac{\pi}{2}$

Die Funktion $x\mapsto \frac{1}{x}$ ist an der Stelle 2 beschränkt und stetig, also existiert $\lim_{x\to 2} \frac{f(x)}{x}$ genau dann, wenn $\lim_{x\to 2} f(x)$ existiert, und muss

$$\lim_{x \to 2} \frac{f(x)}{x} = \frac{\lim_{x \to 2} f(x)}{2}$$

- Für jedes $\epsilon > 0$ existiert $\overline{n} \in \mathbb{N}$, so dass $|f(2-\frac{1}{n}) \pi| < \epsilon$ für jedes $n \geq \overline{n}$
- $\bullet \lim_{n \to \infty} f(2 \frac{1}{n}) = \pi$ Das meint nur, dass für die Folge $x_n = 2 - \frac{1}{n} \lim_{n \to \infty} f(x_n) =$ π gilt; die Definition von Grenzwert mit Folgen erfordert, dass für jede Folge (x_n) die Grenzwert 2 hat, $\lim_{n\to\infty} f(x_n) =$

Stetigkeit 2:

- a) a,b reelle zahlen mit a < b
 - \bullet Sei f : [a,b] \rightarrow $\mathbb R$ eine stetige Funktion und es gelte f(a) < f(b). Dann liegen alle Funktionswerte zwischen f(a) und f(b)

Gegenbeispiel ist sin auf das Intervall $[0, 3\pi]$

 • Sei $f:[a,b] \to \mathbb{R}$ eine monoton wachsende stetige Funktion mit $f(a) \leq 0 \leq f(b)$. Dann besitzt f in [a,b] genau eine

Gegenbeispiel ist die konstante Funktion $f:[a,b] \to \mathbb{R}, x \mapsto$

 \bullet Sei $f:[a,b] \to \mathbb{R}$ eine streng monoton wachsende stetige Funktion mit f(a) < 0 < f(b). Dann besitzt f in (a,b) genau eine Nullstelle

Der Zwischenwertsatz garantiert die Existenz einer Nullstelle und aufgrund der strengen Monotonie kann es höchstens eine geben.

b) Sei $f:[0,1]\cup[2,3]\to\mathbb{R}$ eine stetig monoton steigende Funktion. Dann nimmt f alle Werte zwischen f(0) und f(3) an.

 $\Rightarrow FALSCH$

- $f: \mathbb{R} \to \mathbb{R}$ gegeben durch f(x) = x. Sie ist stetig und monoton steigend, aber $f([0,1] \cup [2,3])$ nimmt nicht alle Werte zwischen f(0) und f(3) an.
- c) $f: \mathbb{R} \to [0,1]$ eine stetige Funktion. Dann nimmt f Maximum und Minimum an.

 $\Rightarrow FALSCH$

Gegenbeispiel: $tanh(x), x \ge 0$ dann erfüllt tanh(x) die Bedingung, aber der Wert 1 wird nie angenommen

Stetigkeit 3:

- a) f_1, f_2 stetige Funktionen und g_1, g_2 unstetige Funktionen, die auf ganz \mathbb{R} definiert sind:
 - $f_1 + f_2$ ist stetig
 - $f_1 + g_1$ ist stetig Gegenbeispiel: $f_1 = 0 \Rightarrow f_1 + g_1 = g_1$ unstetig

- $g_1 + g_2$ ist unstetig Gegenbeispiel: $g_2 = -g_1 \Rightarrow g_1 + g_2 = 0$ stetig
- $f_2 + g_2$ ist unstetig O.B.d.A sei g_2 and der Stelle x_0 unstetig, d.h $\lim_{x\to x_0} g_2(x) \neq$ $g_2(x_0)$ Dann gilt, dass $\lim_{x\to x_0}(f_2+g_2)(x)=\lim_{x\to x_0}f_2(x)+$ $\lim_{x \to x_0} g_2(x) = f_2(x_0) + \lim_{x \to x_0} g_2(x) \neq f_2(x_0) + g_2(x_0)$ Somit hat die Funktion f_2+g_2 die gleichen Unstetigkeitsstellen wie die Funktion g_2
- $\cfrac{f_1 + f_2 + g_1 + g_2}{\text{Gegenbeispiel:}} \cfrac{f_1 = -f_2, g_1(x) = sgn(x), g_2(x) = sgn(|x|)}{\text{Dann ist } f_1 + f_2 + g_1 + g_2 = sgn(x) + sgn(|x|) =$

$$\begin{cases} 0 & \text{für } x \le 0 \\ 2 & \text{für } x > 0 \end{cases}$$

für x = 0 unstetig

- b) $f_n: \mathbb{R}_{>0} \to \mathbb{R}, x \mapsto (x^{\frac{1}{2}} + n^{-1})^2$
 - $\lim_{n \to \infty} f_n(x) = x$ für alle $x \in \mathbb{R}_{\geq 0}$ Es gilt $\lim (x^{\frac{1}{2}} + n^{-1})^2 = (\lim (x^{\frac{1}{2}}) + n^{-1}))^2 = (x^{\frac{1}{2}})^2 =$
 - Die Funktionenfolge konvergiert gleichmässig Aus $|f_n(x) - x| = \frac{2x^{\frac{1}{2}}}{n} + \frac{1}{n^2}$ folgt, dass für $x > n^2$ auch $|f_n(x) - x| > 2$ ist. Also kann (f_n) nicht gleichmässig kon-
 - Für alle M > 0 gilt, dass die Funktionenfolge $f_n|_{[0,M]}$: $[0, M] \to \mathbb{R}$ gleichmässig konvergiert. Es gilt $|f_n(x)-x|=\frac{2x^{\frac{1}{2}}}{n}+\frac{1}{n^2}\leq \frac{2M^{\frac{1}{2}}}{n}+\frac{1}{n^2}$ für alle $x\in[0,M]$ Es folgt, dass $(f_m|_{[0,M]})$ gleichmässig kon-

Stetig Differenzierbarkeit:

- a) $x > 0, f(x) := \lim_{k \to \infty} \inf(\min\{x, x^{-1}\})^k$
 - f ist stetig und differenzierbar
 - f ist differenzierbar, aber nicht stetig
 - f ist stetig, aber nicht differenzierbar
 - f ist nicht stetig und nicht differenzierbar f(1) = 1 und f(x) = 0, wenn $x \neq 1$, eine nicht stetige funktion ist nicht differenzierbar
- b) Falls f differenzierbar ist, so ist $x \mapsto \frac{f(x)}{1+x^2}$ auch diff'bar $x\mapsto \frac{1}{1+x^2}$ ist diff'bar und die komposition von diff'bare funktionen ist wiederum diff'bar
- c) Sei

$$f(x) = \begin{cases} x\sin(\frac{1}{x}), & x \neq 0 \\ 0 & x = 0 \end{cases}$$

dann ist f im Nullpunkt x

- f ist stetig und differenzierbar
- f ist differenzierbar, aber nicht stetig
- f ist stetig, aber nicht differenzierbar
- f ist nicht stetig und nicht differenzierbar Wir berechnen:

$$\lim_{x \to 0} \inf \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \inf f \sin(\frac{1}{x}) = -1$$
$$\lim_{x \to 0} \sup \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \sup \sin(\frac{1}{x}) = 1$$

und der letzte Grenzwerte existiert nicht da die Funktion oszilliert. Also ist die Funktion im Punkt 0 nicht diff'bar. Nun die Stetigkeit; dafür sei ϵ und $|x-0| < \delta$ wobei wir $\delta = \epsilon$ wählen, dann ist:

$$|xsin(\frac{1}{x})| \le |x| \le \delta = \epsilon$$

also ist die Funktion stetig im Punkt0

<u>Differenzierbarkeit:</u>

a) a < breelle Zahlen, $g: \mathbb{R} \to \mathbb{R}, f: [a,b] \to \mathbb{R}$ beschränkt funktionen mit f(a) < f(b):

• Falls es für jedes $c \in [f(a), f(b)]$, ein $x \in [a, b]$ gibt mit f(x) = c, so folgt dass f stetig ist a = -1, b = 1,

$$f(x) = \begin{cases} x, & x \in [0, 1] \\ -x - 1 & x \in [-1, 0[\end{cases}$$

dann ist f unstetig

- Falls $g \circ f$ und g diff'bar sind, so folgt dass f diff'bar ist $g(x) = 0, x \in [-1, 1]$ Dann $g \circ f$ und g sind diff'bar
- Falls f diff'bar ist, gibt es $x_0 \in [a,b]$ so dass $f'(x_0) = \frac{f(b) f(a)}{b a}$
- b) $a, b \in \mathbb{R}$ mit a < b und $f :]a, b[\to \mathbb{R}$ eine Funktion.
 - (a) Falls für jede in]a,b[konvergierende Folge (x_n) die $(f(x_n))$ konvergiert und $\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n)$ gilt, dann ist f stetig in]a,b[$\Rightarrow WAHR$
 - (b) Falls |f| stetig ist, so ist auch f stetig $\Rightarrow FALSCH$
 - (c) Falls f^2 , f^3 in]a,b[diff'bar sind und $f(x) \neq 0 \forall x \in]a,b[$ so folgt dass f in]a,b[diff'bar ist $\Rightarrow WAHR$ falls $f(x) \neq 0$, so $f^2 > 0$. Dann $f = \frac{f^3}{f^2}$ diff'bar
 - (d) Falls f in]a, b[zweimal diff'bar ist und $f''(x) > 0 \forall x \in]a, b[$ dann ist f streng konvex $\Rightarrow WAHR$
 - (e) Falls f in $x_0 \in]a, b[$ diff'bar und $f'(x_0) = 0$, dann besitzt f ein lokales extremum in x_0 $\Rightarrow FALSCH$

$$f(x) = \begin{cases} x^2 & x \in [0, 1] \\ -x^2 & x \in [-1, 0[\end{cases}$$

dann ist f
 diff'bar, besitzt aber kein lokales Extremum in x_{0}

Integrierbarkeit:

- a) f ist diff'bar \Rightarrow f ist stetig \Rightarrow f ist integrierbar
- b) Welche der Funktionen sind für x > 0 monoton wachsend?
 - $x \mapsto \int_{0}^{x} t \ dt$
 - $x \mapsto \int_{0}^{x} t^2 dt$
 - $x \mapsto \int_{0}^{x} \sin(t) dt$
 - $x \mapsto \int_{0}^{x} \sin^{2}(t) dt$

Nach dem Hauptsatz ist die Ableitung der Funktionen jeweils die Integrandenfunktion. Diese sind bis auf $\sin(t)$ alle ≥ 0 . Ist die Ableitung einer Funktion nicht negativ, ist die Funktion monoton wachsend.

- c) Welche der Implikationsketten für eine Funktion f sind richtig?
 - f ist beschränkt und stetig auf $[0,1] \Rightarrow g(x) := f(x^2)$ ist integrierbar auf [0,1]
 - g ist integrierbar und stetig auf $[0,1] \Rightarrow f(x) := g(\sqrt{x})$ ist integrierbar und stetig auf [0,1]
 - f ist beschränkt und stetig auf $[0,1] \Rightarrow g(x) := exp(f(x))$ ist integrierbar auf [0,1]

Integral Rechnung:

- a) Für $f \in C^0(\mathbb{R})$ und $g \in C^1(\mathbb{R})$ mit $-\infty < a < b + \infty$ lautet die Substitutionsregel:
 - $\bullet \int_{g(a)}^{g(b)} f(g(x))g'(x)dx = \int_{a}^{b} f(t)dt$
 - $\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(t)dt$

$$\bullet \int_{a}^{b} f(\frac{x^{2}}{2})xdx = \int_{\frac{a^{2}}{2}}^{\frac{b^{2}}{2}} f(t)dt$$

Man nimmt $g(x) = \frac{x^2}{2}$ mit g'(x) = x

- $\bullet \int_{a}^{b} f\left(\frac{x^{2}}{2}\right) dx = \int_{a^{2}}^{b^{2}} t f(t) dt$
- b) Die Ableitung nach x von $g(x) = \int_{x^2}^1 sin^2(t)cos^2(t)dt$ ist
 - $g'(x) = \int_{2\pi}^{0} \sin^2(t)\cos^2(t) dt$
 - $g'(x) = -\sin^2(x^2)\cos^2(x^2)$
 - $g'(x) = -2x\sin^2(x^2)\cos^2(x^2)$ F(t) eine Stammfunktikon von $\sin^2(t)\cos^2(t)$ d.h $F'(t) = \sin^2(t)\cos^2(t)$. Nach dem Hauptsatz der Differential- und

Integral rechnung gilt $g(x) = \int\limits_{-2}^{1} sin^2(t)cos^2(t) \ dt = F(1) - F(x^2)$

mit der Kettenregel folgt:

$$g'(x) = -F'(x^2)2x = -2x\sin^2(x^2)\cos^2(x^2)$$

- c) $p,q \ge 0$, $I(p,q) := \int_0^1 x^p (1-x)^q dx I(p,q)$ ist gegeben durch:
 - $\bullet \quad \frac{p!}{(p+q+1)!}$
 - $\frac{p!q!}{(p+q+1)!}$ Partiellen Integration verwenden.
 - $\bullet \frac{p!q!}{(p+q)!}$
 - $\bullet \quad \frac{1}{(p+q+1)}$
 - $\bullet \quad \frac{pq}{p+q+1}$

${\bf Uneigent liche\ Integral:}$

- a) Eine Nullfolge ist eine Folge, die gegen 0 konvergiert. Sei $f:[1,\infty)\to\mathbb{R}_{\geq 0}$, so dass das uneigentliche Integral $\int\limits_1^\infty f(x)\ dx$ existiere:
 - Die Folge $(f(n))_n$ ist eine Nullfolge Gegenbeispiel: es existiert $\int\limits_1^\infty f(x)\ dx$ für f gegeben durch

$$f(x) = \begin{cases} 1 & n \le x \le n + 2^{-n} \text{ für ein } n \in \mathbb{N} \\ 0 \text{ sonst} \end{cases}$$

aber $(f(n) = 1)_n$ ist keine Nullfolge

- \bullet Falls die Folge $(f(n))_n$ monoton fällt, ist sie eine Nullfolge
- Falls die Folge $(f(n))_n$ monoton fällt, konvergiert $\sum_{n=1}^{\infty} f(n)$
- Alles sind falsch