

QUICKSORT

Algorithm Idea:

- 1. Choose a "pivot" element $\boldsymbol{\mathcal{X}}$ at random.
- 2. Compare all elements tatheriginate Project Exam Help
- 3. Partition all elements into two sets:
 - https://tutorcs.com
 - S (elements smaller than x)
 - L (elements larger than WeChat: cstutorcs
- 4. Arrange the elements so that all elements in S come before x and all elements in L come after x.
- 5. Recursively sort S and L. Let |S| = k.

QUICKSORT – RUNTIME

If we always get a bad partition (i.e. in the worst-case),

- The partition does not split array at all.
- At every step, k = 1 or k = n 1Assignment Project Exam Help Then $T(n) = T(1) + T(n-1) + n = O(n^2)$, similar to insertion sort.

If we always get a good partition: https://tutorcs.com

- The partition splits array events at a very step $(k_1 n/2)$
- Then $T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + O(n) = O(n \log n)$, similar to merge sort.

Instead of analyzing either extreme, we analyze the expected time.

ANALYZING A RANDOMIZED ALGORITHM

- Remember that the algorithm's behavior is random.
- For each input, the number of steps it takes is a random variable.
- Our goal: bound the expertation of this random bound the expertation of this random beautiful to the expertation of the experiment of the expertation of the expert
- This is the expected worst-case behavior of the algorithm. https://tutorcs.com
- What is the philosophy? The input is not in the algorithm's control, but we expect to not be too unlucky with our coin tosses.
 WeChat: cstutorcs

QUICKSORT – RUNTIME IN EXPECTATION

Key observations:

- Any two elements are never compared more than once.
- If p is the pivot, x < p, and y ignimited projection the projection of the

https://tutorcs.com

WeChat: cstutorcs

QUICKSORT – RUNTIME IN EXPECTATION

Analyze with random variables:

- ullet Denote the $k^{\scriptscriptstyle ext{th}}$ smallest element in the array as e_k
- X= total number of comparisons Assignment Project Exam Help $X_{ij}=$ indicator random variable for the event " e_i and e_j are compared"
- Then $X = \sum_{1 \le i < j \le n} X_{ij}$ https://tutorcs.com
- Linearity of expectation: WeChat: cstutorcs_n

$$E[X] = \sum_{1 \le i < j \le n} E[X_{ij}] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} Pr[X_{ij} = 1]$$

To finish, we need to find $Pr[X_{ij} = 1]$

QUICKSORT – $Pr[X_{ij} = 1]$

Assignment Project Exam Help

- e_i and e_j will "go separate way e_i " e_i e_j e_j
- If p is strictly between i and j, then $X_{ij} = 0$.

 We Chat: cstutorcs
- If $p=e_i$ or $p=e_j$, then $X_{ij}=1$.
- Since pivots are chosen uniformly at random, $\Pr[X_{ij}=1]=2\cdot \frac{1}{j-i+1}$

QUICKSORT – $Pr[X_{ij} = 1]$

(A bit more detail for the previous slide)

- Which pivots must be chosen for e_i and e_j to be compared?
 - Either e_i or e_j (2 tassignment Project Exam Help
- Which pivots must be chosen for the sign of the compared?
 - $e_{i+1}, e_{i+2}, \dots, e_{j-1}$ ($j \overline{W}_{e}^{i} \overline{C}_{hat}^{1}$ total)
- Elements are chosen as pivots randomly, so...

•
$$E[X_{ij}] = 2 \cdot \frac{1}{(j-i-1)+2} = 2 \cdot \frac{1}{j-i+1}$$

QUICKSORT – RUNTIME

$$E[X] = \sum_{1 \le i < j \le n} E[X_{ij}] = \sum_{1 \le i < j \le n} \Pr[X_{ij} = 1] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

- How to compute the sum? Group terms by value of j = i.
- How many terms with j-i=
- Each such term contributes $\frac{2}{d+1}$ WeChat: cstutorcs
- So total is

$$\sum_{d=1}^{n-1} \frac{2(n-d)}{d+1} = 2n \sum_{d=1}^{n-1} \frac{1}{d+1} - \sum_{d=1}^{n-1} \frac{2d}{d+1}$$

QUICKSORT – RUNTIME

$$\sum_{d=1}^{n-1} \frac{2(n-d)}{d+1} = 2n \sum_{d=1}^{n-1} \frac{1}{d+1} - \sum_{d=1}^{n-1} \frac{2d}{d+1}$$

- Observe that the first sum is a Harmonic Series, which is $O(\log n)$.
- $\frac{https://tutorcs.com}{\text{Every term in the second sum is at least 1, so the second sum is at least } \mathbf{n}.$
- Thus,

WeChat: cstutorcs

$$E[X] = O(n \log n)$$