安徽大学 2016—2017 学年第二学期

《高等数学 A (二)、B (二)》考试试卷 (A 卷) (闭卷 时间 120 分钟)

考场登记表序号_____

题 号	 11	Ξ	四	五.	总分
得 分					
阅卷人					

一、填空题(每小题2分,共10分)

得 分

- 1. 过直线 l_1 : $\frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}$ 且平行于直线 $\begin{cases} x = 2t-2 \\ y = t+1 \end{cases}$ 的平面方程是
- 2. 若二元函数 $f(x,y) = \begin{cases} \frac{\sin(x^2 y)}{xy}, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$ 则 $\frac{\partial f}{\partial x}\Big|_{(0,1)} =$ _______
- 3. $\int_{0}^{1} dy \int_{y}^{1} \frac{\tan x}{x} dx = \underline{\qquad}.$
- 4. 平面上曲线积分 $\int_{(0,0)}^{(1,1)} (x^2 + y) dx + (x 2\sin^2 y) dy =$ _______.

二、选择题(每小题2分,共10分)

得 分

)

- 6. 二元极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{3x-y}{x+y}$ (A) 不存在 (B) 等于0
 (C) 等于 $\frac{1}{2}$ (D) 存在,但不等于0也不等于 $\frac{1}{2}$
 - 7. 设函数 z = f(x, y) 的全微分为 dz = xdx + ydy , 则在 (0,0) 处函数)
 - (A) 取得极大值
- (B) 取得极小值
- (C) 不取极值
- (D) 无法确定

- 8. 设 $\Omega = \{(x, y, z) \mid x^2 + y^2 \le z, 1 \le z \le 2\}$, $f \in \Omega$ 上连续,则 $\iint f(z)dv = (x, y, z) \mid x^2 + y^2 \le z, 1 \le z \le 2\}$
- (A) $\pi \int_{1}^{2} z^{2} f(z) dz$

- (C) $2\pi \int_{1}^{2} zf(z)dz$
- (B) $2\pi \int_{1}^{2} f(z)dz$ (D) $\pi \int_{1}^{2} zf(z)dz$
-)

- 9. 设 $\Sigma: x^2 + y^2 + z^2 = a^2 \quad (z \ge 0)$, $\Sigma_1 为 \Sigma$ 在第一卦限的部分,则有 (A) $\iint_{\Sigma} xdS = 4\iint_{\Sigma_1} xdS$ (B) $\iint_{\Sigma} ydS = 4\iint_{\Sigma_1} ydS$ (C) $\iint_{\Sigma} zdS = 4\iint_{\Sigma_1} zdS$ (D) $\iint_{\Sigma} xyzdS = 4\iint_{\Sigma_1} xyzdS$ 10. 若幂级数 $\sum_{n=1}^{\infty} a_n(x+2)^n$ 在 x = 0 处收敛,在 x = -4 处发散,则幂级数 $\sum_{n=1}^{\infty} a_n(x-3)^n$ 在x=5处
 - (A) 发散

(B) 绝对收敛

(C) 条件收敛

- (D) 不能确定
- 三、计算题(每小题9分,共63分)

得 分

11. 设 $f(x, y, z) = e^{x}yz^{2}$, 其中z = z(x, y)是由方程x + y + z + xyz = 0确定的隐函数, 求 $f_{x}'(0,1,-1)$.

12. 在曲面 $z = x^2 + y^2$ 上求一点,使得该点的切平面平行于平面 2x + 4y - z = 0,并求函数 $F(x, y, z) = x^2 + y^2 - z$ 在该点处沿着方向 $\vec{n} = \{2, 4, -1\}$ 的方向导数.

题勿超装订线

袎

13. 求 $\iint_{D} |y-x^{2}| dxdy$, 其中D由 $|x| \le 1$, $0 \le y \le 2$ 所围成.

14. 计算
$$I = \iiint_V z dx dy dz$$
, 其中 V 为 $z = \sqrt{x^2 + y^2}$ 与 $z = \sqrt{2 - x^2 - y^2}$ 所围立体.

15. 计算
$$\int_L \sqrt{x^2 + y^2} ds$$
,其中 $L: x^2 + y^2 = ax$ ($a > 0$).

16. 计算曲面积分
$$\iint_S (x^3+1) dy dz + (y^3+1) dz dx + (z^3+1) dx dy$$
, 其中 S 为上半球面 $z = \sqrt{1-x^2-y^2}$ 的上侧.

卆

纵

得分

四、应用题(每小题6分,共12分)

18. 设空间曲面块 Σ 是球面 $x^2 + y^2 + z^2 = 4$ 被平面z = 1截出的顶部,其面密度分布 为 $\rho(x,y,z) = \frac{1}{z}$, 求该曲面块的质量.

19. 求质点 M(x,y) 受作用力 $\vec{F} = (y+3x)\vec{i} + (2y-x)\vec{j}$ 沿路径 L 顺时针方向运动一周所做的功. 其中 L 为椭圆 $4x^2 + y^2 = 4$.

五、证明题(每小题5分,共5分)

得分

20. 证明: 级数 $\sum_{n=2}^{\infty} (-1)^n \frac{\sqrt{n} + (-1)^n}{n-1}$ 发散.

安徽大学 2016—2017 学年第二学期

《高等数学 A (二)、B (二)》(A 卷)参考答案及评分标准

一、填空题 (每小题 2 分, 共 10 分)

1.
$$x-3y+z+2=0$$
; 2. 1; 3. $-\ln\cos 1$; 4. $\frac{1}{3}+\frac{1}{2}\sin 2$; 5. 1

二、选择题 (每小题 2 分, 共 10 分)

三、计算题 (每小题 9 分, 共 63 分)

11. 解:由
$$f(x, y, z) = e^x yz^2$$
,知 $f'(x, y, z) = e^x yz^2 + e^x y \cdot 2z \cdot z'(x, y)$

由
$$x+y+z+xyz=0$$
, 两边对 x 求导, 得 $1+0+z'_{x}(x,y)+yz+xyz'_{x}(x,y)=0$

12. P:
$$F(x, y, z) = x^2 + y^2 - z$$
, $F'_x = 2x$, $F'_y = 2y$, $F'_z = -1$.

设切点坐标为 $P_0(x_0,y_0,z_0)$,则切平面的法向量为 $\{2x_0,2y_0,-1\}$,

由切平面与已知平面
$$2x + 4y - z = 0$$
 平行,因此有 $\frac{2x_0}{2} = \frac{2y_0}{4} = \frac{-1}{-1}$

解得 $x_0 = 1, y_0 = 2$,相应地有 $z_0 = x_0^2 + y_0^2 = 5$.

$$\vec{n} = \{2, 4, -1\}$$
 的单位向量为 $\{\frac{2}{\sqrt{21}}, \frac{4}{\sqrt{21}}, \frac{-1}{\sqrt{21}}\}$, 故所求的方向导数为

$$\frac{\partial F}{\partial \bar{n}}|_{P_0} = 2 \times \frac{2}{\sqrt{21}} + 4 \times \frac{4}{\sqrt{21}} + (-1) \times \frac{(-1)}{\sqrt{21}} = \sqrt{21}$$
. 9 \(\frac{2}{3}\)

$$\iiint_{D} |y - x^{2}| dxdy = \iint_{D_{1}} (x^{2} - y) dxdy + \iint_{D_{2}} (y - x^{2}) dxdy$$

$$= \int_{1}^{1} dx \int_{0}^{2} (x^{2} - y) dy + \int_{1}^{1} dx \int_{x}^{2} (y - x^{2}) dy = \frac{1}{5} + \frac{43}{15} = \frac{46}{15} \dots 9$$
 9 5

14. 解: 利用柱坐标变换 $\iiint z dx dy dz = \int_0^{2\pi} d\theta \int_0^1 dr \int_0^{\sqrt{2-r^2}} z r dz = \frac{\pi}{2}.$ 9分 15. 解: 依題意, $ds = \sqrt{1 + (\frac{a - 2x}{2y})^2} dx = \frac{a}{2y} dx = \frac{a}{2\sqrt{ax - x^2}} dx$, $0 \le x \le a$ 由对称性知 $\int_{a} \sqrt{x^2 + y^2} ds = 2 \int_{0}^{a} \sqrt{ax} \cdot \frac{a}{2\sqrt{ax - x^2}} dx = a\sqrt{a} \int_{0}^{a} \frac{dx}{\sqrt{a - x}} = 2a^2$. 9分 16. #: $\iint (x^3+1)dydz + (y^3+1)dzdx + (z^3+1)dxdy$ $= \iint_{S+S} (x^3+1) dy dz + (y^3+1) dz dx + (z^3+1) dx dy - \iint_{S} (x^3+1) dy dz + (y^3+1) dz dx + (z^3+1) dx dy$ 其中 S_1 : $x^2 + y^2 \le 1$, 取下侧, 由高斯公式 $\iint_{S+S} (x^3+1) dy dz + (y^3+1) dz dx + (z^3+1) dx dy = 3 \iiint_{U} (x^2+y^2+z^2) dx dy dz = \frac{6}{5}\pi,$ $\iint (x^3+1)dydz + (y^3+1)dzdx + (z^3+1)dxdy = -\iint_{z^3+z^3} dxdy = -\pi,$ 9分 故原式=11 17. 解: 由 [] $\frac{\mathbf{z}_{n+1}(\mathbf{x})}{\mathbf{z}_n(\mathbf{x})}$ |= $\frac{\mathbf{z}_{n+1}}{\mathbf{z}_{n+1}} \frac{2n-1}{x^{2n-1}}$ |= $x^2 < 1$, 得收敛区间 -1 < x < 1. 3分 且当x=土时、级数均收敛、故收敛域为[-1,1]. 和函数 $S(x) = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^{n-2}}{2n-1} = \sum_{n=0}^{\infty} (-1)^{n-1} \int_{0}^{\infty} t^{2n-2} dt = \int_{0}^{\infty} \sum_{n=0}^{\infty} (-t^{2})^{n-1} dt$ 7分 $= \int \frac{1}{1+e^2} dt = \arctan x.$

故 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1} = S(1) = \arctan 1 = \frac{\pi}{4}$.

9分

四、应用题 (每小题 6分,共12分)

18. 解: Σ 的方程为 $z = \sqrt{4 - x^2 - y^2}$, Σ 在 xOy 面上的投影区域为

$$D_{xy} = \{(x,y) \mid x^2 + y^2 \le 3\}. \quad \forall \sqrt{1 + z_x^2 + z_y^2} = 2/\sqrt{4 - x^2 - y^2},$$

故曲面块的质量

$$m = \iint_{\Sigma} \frac{dS}{z} = \iint_{D_{xy}} \frac{2dxdy}{4 - x^2 - y^2} = 2 \int_0^{2\pi} d\theta \int_0^{\sqrt{3}} \frac{rdr}{4 - r^2} = 4\pi \ln 2 \dots 6$$

19. 解:由第二类曲线积分的物理意义及格林公式,

$$W = \oint_L (y+3x)dx + (2y-x)dy = -\iint_D \left[\frac{\partial}{\partial x}(2y-x) - \frac{\partial}{\partial y}(y+3x)\right]dxdy, 其中 D 为 L 所围$$

成的闭区域 $4x^2 + y^2 \le 4$.

故
$$W = 2 \iint_D dx dy = 2 \cdot \pi \cdot 2 = 4\pi$$
. 6分

五、证明题 (每小题 5 分, 共 5 分)

20.
$$\sum_{n=2}^{\infty} (-1)^n \frac{\sqrt{n} + (-1)^n}{n-1} = \sum_{n=2}^{\infty} \left[(-1)^n \frac{\sqrt{n}}{n-1} + \frac{1}{n-1} \right]$$

且
$$\lim_{n\to\infty}\frac{\sqrt{n}}{n-1}=0$$
,故由莱布尼兹判别法,交错级数 $\sum_{n=2}^{\infty}(-1)^n\frac{\sqrt{n}}{n-1}$ 收敛.

而级数
$$\sum_{n=2}^{\infty} \frac{1}{n-1}$$
 发散,由级数的性质知, $\sum_{n=2}^{\infty} (-1)^n \frac{\sqrt{n} + (-1)^n}{n-1}$ 发散.