BAREM DE CORECTARE SERIA 13- Grupa 133&Grupa 134 3.02.2022 NR. 1

OFICIU: 1 punct

SUBIECTUL 1: 2 puncte

- calculul limitei $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=2a$: 0,75 puncte discutia în cazurile $a>\frac{1}{2}$ si $a<\frac{1}{2}$: 0,25 puncte
- calculul limitei $\lim_{n\to\infty} n\left(\frac{x_n}{x_{n+1}}-1\right)=+\infty$ în cazul $a=\frac{1}{2}$ si justificarea afirmatiei că seria este convergentă: 1 punct

SUBIECTUL 2: 2 puncte

- justiificarea afirmatiei ca $f\,$ este functie de clasă $C^2\colon\,0{,}20$ puncte
- identificarea corectă a punctului critic (0,0) al functiei f:0,60 puncte
- descrierea hessianei functiei în punctul critic (0,0), calculul minorilor Δ_1 , Δ_2 si punerea în evidentă a faptului că nu ne putem pronunta cu ajutorul criteriului lui Sylvester: 0,40 puncte
- justificarea, folosind definitia, că (0,0) nu este punct de extrem local al functiei f: 0,80 puncte

SUBIECTUL 3: 2 puncte

- identificarea subsirurilor $(x_{2k})_{k\in\mathbb{N}}$, $(x_{4k+1})_{k\in\mathbb{N}}$, $(x_{4k+3})_{k\in\mathbb{N}}$ ale sirului $(x_n)_{n\in\mathbb{N}}$: 0,75 puncte
- determinarea multimii punctelor limită $\mathcal{L} = \left\{ \frac{\ln 2}{2}, -\frac{\ln 2}{2} + 1, -\frac{\ln 2}{2} 1 \right\}$ ale sirului $(x_n)_{n\in\mathbb{N}}: 0.75$ puncte
 - $\liminf x_n = -\frac{\ln 2}{2} 1$, $\limsup x_n = -\frac{\ln 2}{2} + 1$: 0,50 puncte

SUBIECTUL 4: 3 puncte

- a) descrierea multimii sub forma $D = \{(x,y) \in \mathbb{R}^2 | x \in [-1,2], x^2 \le y \le x+2 \}$ sau sub forma $D = \{(x,y) \in \mathbb{R}^2 | y \in [0,1], -\sqrt{y} \le x \le \sqrt{y} \} \cup \{(x,y) \in \mathbb{R}^2 | y \in [1,4], y-2 \le x \le \sqrt{y} \}$: 0,50 puncte
 - reprezentarea integralei duble sub forma $\iint\limits_{D}xe^{2y}dxdy=\int\limits_{-1}^{2}\left(\int\limits_{x^{2}}^{x+2}xe^{2y}dy\right)dx$

sau sub forma
$$\iint\limits_{D} xe^{2y} dxdy = \int\limits_{0}^{1} \left(\int\limits_{-\sqrt{y}}^{\sqrt{y}} xe^{2y} dx \right) dy + \int\limits_{1}^{4} \left(\int\limits_{y-2}^{\sqrt{y}} xe^{2y} dx \right) dy$$
puncte

- finalizarea calculului: 1 punct
- b) justificarea, folosind metoda reducerii la absurd, a afirmatiei că f este functie constantă: 1 punct

BAREM DE CORECTARE SERIA 13- Grupa 133&Grupa 134 3.02.2022 NR. 2

OFICIU: 1 punct

SUBIECTUL 1: 2 puncte

- calculul limitei $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=\frac{a}{3}\colon 0.75$ puncte discutia în cazurile a>3 si $a<3\colon 0.25$ puncte
- calculul limitei $\lim_{n\to\infty} n\left(\frac{x_n}{x_{n+1}}-1\right)=-\infty$ în cazul a=3 si justificarea afirmatiei că seria este divergentă: 1 punct

SUBIECTUL 2: 2 puncte

- justiificarea afirmatiei ca f este functie de clasă C^2 : 0,20 puncte
- identificarea corectă a punctului critic (0,0) al functiei f:0,60 puncte
- descrierea hessianei functiei în punctul critic (0,0), calculul minorilor Δ_1 , Δ_2 si punerea în evidentă a faptului că nu ne putem pronunta cu ajutorul criteriului lui Sylvester: 0,40 puncte
- justificarea, folosind definitia, că (0,0) nu este punct de extrem local al functiei f: 0,80 puncte

SUBIECTUL 3: 2 puncte

- identificarea subsirurilor $(x_{2k+1})_{k\in\mathbb{N}}$, $(x_{4k})_{k\in\mathbb{N}}$, $(x_{4k+2})_{k\in\mathbb{N}}$ ale sirului $(x_n)_{n\in\mathbb{N}}$: 0,75 puncte
- determinarea multimii punctelor limită $\mathcal{L} = \left\{ \frac{\ln 4}{3}, -\frac{\ln 4}{3} + 1, -\frac{\ln 4}{3} 1 \right\}$ ale sirului $(x_n)_{n\in\mathbb{N}}: 0.75$ puncte
 - $\liminf x_n = -\frac{\ln 4}{3} 1$, $\limsup x_n = -\frac{\ln 4}{3} + 1$: 0,50 puncte

SUBIECTUL 4: 3 puncte

- a) descrierea multimii sub forma $D = \{(x, y) \in \mathbb{R}^2 | y \in [-1, 2], y^2 \le x \le y + 2\}$ sau sub forma $D = \{(x, y) \in \mathbb{R}^2 \mid x \in [0, 1], -\sqrt{x} \le y \le \sqrt{x}\} \cup \{(x, y) \in \mathbb{R}^2 \mid x \in [1, 4], x - 2 \le y \le \sqrt{x}\}$: 0,50 puncte
 - reprezentarea integralei duble sub forma $\iint\limits_D y e^{2x} dx dy = \int\limits_{-1}^2 \left(\int\limits_{v^2}^{y+2} y e^{2x} dx\right) dy$

sau sub forma
$$\iint\limits_{D} ye^{2x} dx dy = \int\limits_{0}^{1} \left(\int\limits_{-\sqrt{x}}^{\sqrt{x}} ye^{2x} dy \right) dx + \int\limits_{1}^{4} \left(\int\limits_{x-2}^{\sqrt{x}} ye^{2x} dy \right) dx : 0,50$$
 puncte

- finalizarea calculului: 1 punct
- b) justificarea, folosind metoda reducerii la absurd, a afirmatiei că nu există functii f cu proprietătile din enuntul exercitiului: 1 punct