Solutions to Chapter 3 Exercises

Cangyuan Li

June 13, 2021

3.05 Let $\hat{\mathbf{e}}$ be the OLS residual from a regression of \mathbf{Y} on \mathbf{X} . Find the OLS coefficient from a regression of $\hat{\mathbf{e}}$ on \mathbf{X} .

Answer:

Step 1: Here, \hat{e} takes the place of Y in the formula for $\hat{\beta}$.

$$\widetilde{\beta} = (X'X)^{-1}X'\widehat{e}$$

$$= (X'X)^{-1} \left[X'Y - X'X\widehat{\beta} \right]$$

$$= (X'X)^{-1} \left[X'Y - X'X(X'X)^{-1}X'Y \right]$$

$$= (X'X)^{-1} \left[X'Y - X'Y \right]$$

$$= 0$$

3.06 Let $\widehat{\mathbf{Y}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$. Find the OLS coefficient from a regression of $\widehat{\mathbf{Y}}$ on \mathbf{X} .

Answer:

Step 1: Plug into regression formula and expand.

$$\widetilde{\beta} = (X'X)^{-1}X'\widehat{Y}$$

$$= \left[(X'X)^{-1}X'X \right] (X'X)^{-1}X'Y$$

$$= I(X'X)^{-1}X'Y$$

$$= \widehat{\beta}$$

3.11 Show that when **X** contains a constant, $n^{-1} \sum_{i=1}^{n} \widehat{Y}_i = \overline{Y}$.

Answer:

Step 1: Note that $Y_i = \widehat{Y}_i + \widehat{e}_i$. Also, $\overline{Y} := n^{-1} \sum_{i=1}^n Y_i$.

$$\sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \widehat{Y}_i + \sum_{i=1}^{n} \widehat{e}_i$$

$$\Leftrightarrow \qquad n^{-1} \sum_{i=1}^{n} Y_i = n^{-1} \sum_{i=1}^{n} \widehat{Y}_i + n^{-1} \sum_{i=1}^{n} \widehat{e}_i$$

$$\Leftrightarrow \qquad \overline{Y} = n^{-1} \sum_{i=1}^{n} \widehat{Y}_i + n^{-1} \sum_{i=1}^{n} \widehat{e}_i$$

Step 2: The equation specified in the problem is then only true if $\sum_{i=1}^{n} \widehat{e}_i = 0$. X is a matrix of the form:

$$\begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1,k-1} & 1 \\ x_{21} & x_{22} & \cdots & x_{2,k-1} & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{n,k-1} & 1 \end{bmatrix}$$

Partition X into $\begin{bmatrix} X^* & O \end{bmatrix}$ such that X^* is a $n \times k - 1$ matrix of the x observations and O is a $n \times 1$ vector of ones. We want the sum of the residuals to be zero, and recall that we showed (in matrix form) in Exercise 3.05 that $X'\widehat{e} = 0$. Also note that the transpose of a partitioned matrix is like the transpose of a regular matrix except the elements are also transposed. So,

$$X'\widehat{e} = \begin{bmatrix} X^{*'} \\ O' \end{bmatrix} \widehat{e}$$
$$= \begin{bmatrix} X^{*'}\widehat{e} \\ O'\widehat{e} \end{bmatrix}$$
$$= 0$$

Then
$$O'\widehat{e} = \sum_{i=1}^{n} \widehat{e}_i = 0.$$

3.14 Let $\widehat{\beta}_n = (\mathbf{X}'_n \mathbf{X}_n)^{-1} \mathbf{X}'_n \mathbf{Y}_n$ denote the OLS estimate where \mathbf{Y}_n is $n \times 1$ and \mathbf{X}_n is $n \times k$. Prove that the OLS estimate computed using an additional observation (Y_{n+1}, X_{n+1}) is

$$\widehat{\beta}_{n+1} = \widehat{\beta}_n + \frac{1}{1 + X'_{n+1}(X'_n X_n)^{-1} X_{n+1}} (X'_n X_n)^{-1} X_{n+1} (Y_{n+1} - X'_{n+1} \widehat{\beta}_n)$$

Answer:

Step 1: Apply the Woodbury Matrix Identity. Let

$$A = X'_n X_n$$
$$B = X_{n+1}$$
$$D = X'_{n+1}$$

The choice of D is a bit arbitrary. I think setting the last term equal to C would work, but this way the '1' is already present and the equation is a bit easier to manipulate. Then, since C = I = 1 because a single observation is 1 by 1.

$$(A + BCD)^{-1} = A^{-1} - A^{-1}BC (C + CDA^{-1}BC)^{-1}CDA^{-1}$$
$$= A^{-1} - A^{-1}B(1 + DA^{-1}B)DA^{-1}$$

Step 2: Simplify. The terms of the expanded equation are:

$$Term1 = A^{-1}X'_nY_n$$

$$= (X'_nX_n)^{-1}X'_nY_n$$

$$= \widehat{\beta}_n$$

$$Term2 = A^{-1}X_{n+1}Y_{n+1}$$
$$= (X'_nX_n)^{-1}(X_{n+1}Y_{n+1})$$

$$Term3 = (X'_{n}X_{n})^{-1}X_{n+1} \left[1 + X'_{n+1}(X'_{n}X_{n})^{-1}X_{n+1} \right]^{-1} X'_{n+1}(X'_{n}X_{n})^{-1}X'_{n}Y_{n}$$
$$= (X'_{n}X_{n})^{-1}X_{n+1} \left[1 + X'_{n+1}(X'_{n}X_{n})^{-1}X_{n+1} \right]^{-1} X'_{n}\widehat{\beta}_{n}$$

$$Term4 = (X'_{n}X_{n})^{-1}X_{n+1} \left[1 + X'_{n+1}(X'_{n}X_{n})^{-1}X_{n+1} \right] X'_{n+1}(X'_{n}X_{n})^{-1}X_{n+1}Y_{n+1}$$

Step 3: Combine terms. Note that the term starting with '1 + ...' is a scalar, call it L. Call the term $Z := (X'_n X_n)^{-1} X_{n+1}$. Note also that $L = 1 + X'_{n+1} Z$. The observations are also scalars and may be rearranged. So:

$$\begin{split} \widehat{\beta}_{n+1} &= Term1 + Term2 - Term3 - Term4 \\ &= \widehat{\beta}_n + ZY_{n+1} - \frac{1}{L}ZX'_{n+1}\widehat{\beta}_n - \frac{1}{L}ZX'_{n+1}ZY_{n+1} \\ &= \widehat{\beta}_n + ZY_{n+1}\frac{L}{L} - \frac{1}{L}ZZX'_{n+1}Y_{n+1} - -\frac{1}{L}ZX'_{n+1}\widehat{\beta}_n \\ &= \widehat{\beta}_n + \frac{1}{L}(ZY_{n+1} + ZZX'_{n+1}Y_{n+1} - ZZX'_{n+1}Y_{n+1} - ZX'_{n+1}\widehat{\beta}_n) \\ &= \widehat{\beta}_n + \frac{1}{L}Z(Y_{n+1} - X'_{n+1}\widehat{\beta}_n) \end{split}$$

3.19 For the intercept-only model $Y_i = \beta + e_i$, show that the leave-one-out prediction error is

$$\widetilde{e} = \left(\frac{n}{n-1}\right)\left(Y_i - \overline{Y}\right)$$