FUNDACIÓN PF

Módulo VI - Aprendizaje NO supervisado

Clase 23: Single - Value

Decomposition

¿Ponemos a grabar el taller?

¿QUÉ VAMOS A VER HOY?

Single Value Decomposition

Repasemos

Eligiendo algoritmo

Tarea

Definir de forma clara el objetivo

Información

Con qué datos se cuenta para lograr el objetivo

APRENDIZAJE **SUPERVISADO**

(2

APRENDIZAJE NO SUPERVISADO

Aprendizaje No Supervisado

El algoritmo infiere patrones de un conjunto de datos que, a diferencia del aprendizaje supervisado, no están etiquetados. Puede utilizarse para descubrir la estructura subyacente de los datos

Aprendizaje No Supervisado

- Clustering
- Reducción de la Dimensionalidad

Reducción de la dimensionalidad

Reducción de la dimensionalidad

El objetivo consta de reducir la cantidad de features de un dataset, pero reteniendo la mayor cantidad de información posible.

Reducción de la dimensionalidad

Consiste en reducir la cantidad de features de un dataset, pero reteniendo la mayor cantidad de información posible.

Aplicaciones

- Reducir la complejidad del input en un modelo de regresión o clasificación
- Visualización
- Detectar features relevantes en datasets

Algoritmos

- Principal Component Analysis
- Multidimensional Scaling
- t-SNE: t-distributed StochasticNeighbor Embedding
- LDA: Linear Discriminant Analysis

Principal Component Analysis

Técnica utilizada para describir un conjunto de datos en términos de nuevas variables o componentes no correlacionados.

- El algoritmo encuentra nuevos componentes que describen los datos
- Los componentes se ordenan por la cantidad de varianza original que describen, reduciendo la dimensionalidad del conjunto de datos.
- Utiliza Single Vector Decomposition (SVD)

Single Value Decomposition

Es un **método de álgebra lineal** que nos permite representar cualquier matriz en términos de la multiplicación de otras 3 matrices.

Toda matriz M se puede escribir como: Matriz de Datos (m instancias, n features)

 $m \times n$

Matriz de

vectores

singulares por

izquierda

Matriz de los valores singulares

Matriz de vectores

singulares por

derecha

Matriz Unitaria

Matriz Diagonal Matriz Unitaria

Es parte central de varios algoritmos numéricos y es fundamental para reducir apropiadamente la matriz M: pasar de tener muchos features a tener menos, pero relevantes y explicativos.

El objetivo es construir una nueva matriz B que reemplace a M, que tenga menos features.

Para eso debemos tomar solo los valores principales (elementos en la diagonal de Sigma) de valor más grande y construir una matriz B que sea una **reducción** de X **relevante**.

Matriz completa: es la M original, tiene toda la información.

Matriz truncada: En esta matriz perdemos información. Pero al tomar un valor de r apropiado, la matriz truncada es muy parecida a M. Construimos una matriz B con menos features que M, pero relevante para el problema. Esta matriz es la que se utiliza para trabajar y representar los datos.

- ¿Cómo elegir el valor de r?
- 1) Distancia entre M y M

$$|\operatorname{M}-\widetilde{\operatorname{M}}||_F = \sqrt{\sum_{ij} (\operatorname{M}{ij}-\widetilde{\operatorname{M}}{ij})^2}$$

El método de Single Value Decomposition GARANTIZA que elegimos los mejores r vectores o combinaciones de features para minimizar esta norma.

¿Cómo elegir el valor de r?

2) Criterio sobre el peso relativo de los valores singulares seleccionados respecto a la suma de todos.

Esta técnica es más costosa ya que se deben calcular todos los valores singulares.

Representación Gráfica

- Espacio original: 2 features (2 coordenadas). Esto define la posición de todas las instancias del dataset.
- SVD calcula nuevos vectores, el 1er y 2do vector singular. Utilizando estos valores como coordenadas, se puede definir la posición de cada punto.

Principal Component Analysis

Principal Component Analysis

PCA = Centrar datos + SVD truncado

Principal Component Analysis

El primer componente principal se ubica en la dirección donde los datos presentan varianza máxima.

El segundo componente principal se ubica en la segunda dirección en términos de varianza. Y así sucesivamente.

PCA vs. SVD

PCA	SVD
Número de componentes	Rango r
Componentes principales	Vectores singulares por derecha
Autovalores	Valores singulares
Maximiza Varianza	Minimiza Distancia

Descanso

Nos vemos en 10 minutos

Sección Práctica

TRABAJAMOS EN SALAS

SVD

Trabajaremos con la Notebook 22

En los grupos establecidos, ejercitamos como se implementa el SVD

45 minutos de actividad

Repasamos dudas

Trabajamos con la Notebook 22

Revisamos los conceptos y el código trabajados en la notebook 22

Preparando la cuarta pre-entrega

En la clase 33 deberán realizar la cuarta pre-entrega La misma incluirá los desafíos vistos, en relación a los modelos de aprendizaje no supervisado.

- Deberán desarrollar un modelo de clustering, desde el análisis exploratorio hasta la mejora
- Elegir algún algoritmo y aplicarlo a su proyecto.
- Será importante que hagan una revisión y tomen decisiones, para aplicar lo visto con un criterio que deberán explicitar.

Presentarán lo trabajado entregando el link a su Github en el foro del aula virtual

¿Alguna consulta?

FUNDACIÓN Y PF

¡Muchas gracias!

