

Referencia

- El Lenguaje Unificado de Modelado. Grady Booch, James Rumbaugh e Ivar Jacobson. Addison Wesley, 1999.
 - □ Capítulos 16 y 17

Referencia requerimientos no funcionales

- Object Oriented Software Engineering.
 Bernd Bruegge y Allen H.Dutoit.
 Prentice Hall, 2000
 - □ Capítulo 4, pág. 100–106, 118-119
- Software Requirements. Karl.
 E.Wiegers. Microsoft Press, 1999.
 - □ Capítulo 9, pág. 153-162
 - □ Capítulo 11

3

Agenda

- Requerimientos funcionales
 - □ Levantamiento de requerimientos
 - □ Casos de Uso (Requerimientos Funcionales)
- Requerimientos no funcionales
 - □ Diferencias requerimientos funcionales, no funcionales y pseudo requerimientos
 - □ Clasificación de los requerimientos no funcionales y pseudo requerimientos

Requerimientos

- Un requerimiento es una característica que el sistema DEBE tener o es una restricción que el sistema DEBE satisfacer para ser aceptada por el cliente.
- Levantamiento de requerimientos es la especificación del sistema en términos que el cliente entienda, de forma que se constituya en el contrato entre el cliente y los desarrolladores.

Requerimientos funcionales

- Describen la interacción entre el sistema y su ambiente independientemente de su implementación.
- El ambiente incluye al usuario y cualquier otro sistema externo que interactúa con el sistema.

Levantamiento de

Requerimientos

- Para el levantamiento se pueden utilizar dos conceptos:
 - □ Escenarios
 - Describen un ejemplo del uso del sistema en términos de una serie de interacciones entre el usuario y el sistema
 - □ Casos de uso
 - Es una abstracción que describe una clase de escenarios.
 - □ Ambos deben ser escritos en lenguaje natural para que sean entendidos por el usuario.

7

Actividades

- Identificación de actores
 - □ Diferentes tipos de usuario (no personas en particular)
- Identificación de escenarios
 - Observar al usuario y desarrollar un conjunto de escenarios detallados para la funcionalidad típica que debe proveer el sistema.
- Identificación de casos de uso
 - ☐ Son abstracciones que describen todos los casos posibles descritos en los escenarios.

Actividades

- Identificación de relaciones entre casos de uso
 - ☐ Eliminar redundancias entre los casos de uso.
 - ☐ Hacer que la especificación del sistema sea consistente.

9

1. Identificación de actores (1)

- Un actor representa un conjunto coherente de roles, que son jugados por una persona, un dispositivo de hardware o incluso otro sistema al interactuar con nuestro sistema.
- Se identifican son roles, es decir usuarios que realizan un conjunto de actividades definidas respecto a la funcionalidad del sistema.

Identificación de actores -Preguntas (2)

- Cuáles usuarios están soportados por el sistema para desarrollar su trabajo?
- Cuáles usuarios ejecutan las funciones principales del sistema?
- Cuáles usuarios desempeñan funciones secundarias, como mantenimiento y administración?
- El sistema interactúa con hardware externo o software?

2. Identificación de escenarios(1)

- Un escenario es una descripción narrativa de cómo las personas hacen las cosas y muestran como tratarían de hacer uso del sistema.
- El escenario es una descripción concreta, enfocada e informalmente descrita de una única característica del sistema desde el punto de vista de un único actor.

Nombre del escenario	Consultar listado de cursos
Instancias de los usuarios participantes	Pepito: Profesor
Flujo de eventos	 Pepito ingresa al sistema indicando sus datos. El sistema indica un menú dando cada una de las posibilidades del sistema. Pepito indica que quiere sacar un listado de un curso. El sistema solicita ingresar la información del código, sección y semetre de la materia. Pepito ingresa 21251, 02, 2001-1. El sitema devuelve la información correspondiente al curso indican el nombre, carnet, carrera y correo electrónico de cada uno de los alumnos.

2. Identificación de escenarios(3)

- Escenarios actuales
- Escenarios visionarios
- Escenario de evaluación
- Escenarios de entrenamiento

15

2. Identificación de escenarios (4)

- Cuáles son las tareas que los actores requieren desempeñar con el sistema?
- Qué información requiere el actor? Quién crea esa información? Puede ser modificada o eliminada? Por quién?
- Qué cambios externos necesita el actor que el sistema debe informar? Qué tan seguido? Cuándo?
- De cuáles eventos necesita el actor ser informado? Con qué periodicidad?

Identificación de casos de uso (1)

- Capturar el comportamiento deseado del sistema en desarrollo, sin tener que especificar cómo se implementa este comportamiento.
- Los casos de uso proporcionan un medio para que los desarrolladores, los usuarios finales del sistema y los expertos del dominio lleguen a una comprensión común del sistema.
- Un escenario es la instancia de un caso de uso.
- Los casos uso no deben ser excesivamente genéricos ni demasiado específicos.
- Requerimiento funcional del sistema

17

3. Identificación de casos de uso (2)

- Es una descripción de un conjunto de secuencias de acciones, incluyendo variantes, que ejecuta un sistema para producir un resultado observable de valor para un actor.
- Se utilizan verbos por lo general en infinitivo que representan las acciones del usuario con el sistema, por lo que siempre debe existir un tipo de usuario(actor) que lo utilice.

3. Identificación de casos de uso (3)

19

3. Identificación de casos de uso (4)

- Relaciones entre actores y casos de uso representan el flujo de la información durante el caso de uso.
- Representa que funcionalidad puede ser realizada por un actor en particular.
- También es un proceso cíclico donde cada vez se busca refinar cada vez más los casos de uso que finalmente responderá a los requerimientos funcionales.

3. Identificación de casos de uso (5)

- El comportamiento de un caso de uso se puede especificar describiendo un flujo de eventos en forma textual.
- Además de incluir cómo y cuándo empieza y acaba el caso de uso.
- Se incluye cuándo interactúa con los actores
- Indicar qué información se intercambian
- Se describe el flujo básico
- Se describe los flujos alternativos.

21

3. Identificación de casos de uso (6)

- Flujo de eventos principal
 - 1. El sistema pide al cliente un número de identificación personal.
 - 2. El cliente introduce su id.
 - 3. El sistema comprueba entonces la id. Para ver si es válido.
 - Si la identificación es válida el sistema acepta la entrada.

3. Identificación de casos de uso (7)

- Flujo de eventos excepcional
 - □ El cliente puede cancelar una transacción en cualquier momento, reiniciando el caso de uso.
 - □ No se efectúa ningún cambio en la cuenta del cliente.
- Flujo de eventos excepcional
 - □ Paso 2: El cliente puede borrar su id en cualquier momento antes de introducirlo.

23

3. Identificación de casos de uso (8)

- Flujo de eventos excepcional
 - □ Paso 4: Si el cliente introduce un id inválido, el caso de uso vuelve a empezar.
 - □ Paso 4: Si el cliente introduce tres veces seguidas un id inválido, el sistema cancela la transacción completa, impidiendo que el Cliente utilice el cajero durante 24 horas.

4. Identificar relaciones entre casos de uso(1)

Extends

- □ Un caso de uso extiende otro caso de uso, si el caso de uso extendido incluye el comportamiento del otro bajo ciertas condiciones.
- ☐ Se utiliza para modelar la parte de un caso de uso que el usuario puede ver como comportamiento opcional del sistema.
- □ Se separa el comportamiento opcional del obligatorio.

25

4. Identificar relaciones entre casos de uso(2)

Extends

4. Identificar relaciones entre casos de uso(3)

Include

- □ Indica que en el flujo de eventos del caso de uso base se incluye el comportamiento del otro caso de uso.
- □ Factorizar comportamiento común (NO hacer descomposición funcional).
- SOLAMENTE se hace cuando la parte común es utilizada por otro caso de uso o cuando es utilizada por otro actor.

27

4. Identificar relaciones entre casos de uso(4)

Include

4. Identificar relaciones entre casos de uso(5)

Generalización

- Cuando algunos casos de uso tienen algo en común y puede ser abstraído a otro, mucho más general.
- □ El caso de uso hijo hereda el comportamiento y el significado del caso de uso padre.
- ☐ El hijo puede añadir o redefinir el comportamiento del padre.
- ☐ El hijo puede ser colocado en cualquier lugar donde aparezca el padre.

29

4. Identificar relaciones entre casos de uso(6)

Generalización

- Comúnmente se utiliza la generalización para actores y no para casos de uso.
 - □ Los superactores y subactores interactúan con el caso de uso.
 - □ Existe una descripción considerable común entre los subactores que de otra manera se duplicaría.

31

4. Identificar relaciones entre casos de uso(7) Consignar Retirar Consultar Saldo Bloquear Cuenta

Documentación del caso de uso

Identificador:	Indispensable/Deseable	Prioridad	
Nombre Caso de Uso:			
Autor:			
Fecha			
Categoría (Visible/No visible):	Actores involucrados:		
Resumen:			
Curso Básico Eventos:			
Caminos Alternativos:			
Caminos de Excepción:			
Puntos de Extensión:			
Pre - Condiciones:			
Post- Condiciones:			
Criterios de Aceptación			
Borrador de Interfaz Gráfica			

33

Documentación del Caso de Uso

- Identificación del caso de uso: Unica
- Indispensable/Desable: Necesidad del requerimiento
- Prioridad: Alta/Media/Baja definida por el usuario
- Nombre de caso de uso: Iniciar con un verbo en infinitivo

Documentación del Caso de Uso

- Autores: Persona(s) que elabora(ron) el formato.
- Fecha
- Descripción: Describe la interacción que ocurre en el caso de uso (contexto)
- Curso básico de eventos: Describe los pasos que los actores y el sistema deben seguir para completar la meta del caso de uso (No ocurre ningún error)

35

Documentación del Caso de Uso

- Caminos alternativos: camino correcto que ocurre como parte integral del caso de uso.
- Caminos de excepción: Muestran procesamiento no común, en especial cuando ocurren errores.
- Puntos de extensión: Cuando se utiliza la relación de extends. Indica en que punto exacto se extiende la funcionalidad bajo ciertas condiciones

Documentación del Caso de Uso

- Precondiciones: Cosas que han debido ocurrir antes de iniciar la interacción.
 Parte del contrato entre el caso de uso y el mundo de afuera.
- Postcondición: Cuando el caso de uso termina exitosamente se debe satisfacer.

37

Documentación del Caso de Uso

- Criterios de aceptación: Condiciones para que el cliente acepte el requerimiento como válido.
- Borrador de interfaz: Prototipo que muestre como se observará el requerimiento

- Describen aspectos del sistema que son visibles por el usuario que no incluyen una relación directa con el comportamiento funcional del sistema.
- Los requerimientos no funcionales incluyen restricciones como el tiempo de respuesta(desempeño), la precisión, recursos consumidos, seguridad, etc.

Pseudo Requerimientos

- Son requerimientos impuestos por el cliente que restringen la implementación del sistema.
- Ejemplos:
 - □ Lenguaje de implementación
 - □ Plataforma en que el sistema debe ser implementado
 - □ Requerimientos del proceso y documentación (utilización de un lenguaje formal)

41

Requerimientos no funcionales

- Requerimientos de Interfaz externa
 - □ Interfaz de usuario
 - Estándar de GUI
 - Distribución de la pantalla
 - Restricciones de resolución
 - Estándares de botones, funciones o enlaces de navegación que aparecen en cada ventana
 - Teclas "shortcut"
 - Estándares de mensajes de error

- Requerimientos de Interfaz externa
 - □ Interfaces de hardware
 - Interfaces entre componentes de hardware y software del sistema
 - Ejemplos
 - □ Periféricos soportados
 - □ Naturaleza de la información
 - □ Protocolos de comunicación a utilizar

43

Requerimientos no funcionales

- Requerimientos de Interfaz externa
 - □ Interfaces de Software
 - Conexiones entre el producto y software externo (identificado por nombre y versión)
 - Ejemplo
 - □ Bases de datos
 - □ Sistemas operativos
 - Legacy
 - Identificar la información que comparten los componentes

- Requerimientos de desempeño
 - □ Describir el desempeño para los escenarios
 - Describir el volumen o tiempo de utilización para saber que tan importante es.
 - □ Especificar el número de usuarios concurrentes
 - Especificar el número de operaciones concurrentes
 - □ Tiempos de respuesta
 - Restricciones de tiempo para sistemas de tiempo real

45

Requerimientos no funcionales

- Requerimientos de tolerancia a fallas (safety)
 - □ Posibles pérdidas de información
 - □ Daño de información
 - ☐ Indicar acciones potencialmente peligrosas que deben ser prevenidas
 - ☐ Identificar políticas de mantenimiento de información
 - □ Identificar regulaciones

- Requerimientos de seguridad
 - □ Protección de la información
 - □ Utilización del producto
 - Definir la autenticación o autorización del ingreso los usuarios

47

Requerimientos no funcionales

- Requerimientos de calidad del software (usuario)
 - □ Disponibilidad
 - □ Eficiencia en el manejo de recursos
 - ☐ Flexibilidad para adicionar requerimientos al producto
 - □ Integridad
 - Protegerse ante el daño de información
 - Protección ante virus
 - Proteger información importante

- Requerimientos de calidad del software(usuario)
 - □ Interoperabilidad
 - □ Confiabilidad
 - □ Robustez
 - □Usabilidad
 - "Amigable al usuario"
 - □ Instalación

4

Requerimientos no funcionales

- Requerimientos de calidad del software (desarrollador)
 - Mantenibilidad
 - Estándares de documentación
 - Indentación
 - Metodología de diseño
 - Estructura de directorios
 - Documentos de diseño

- Requerimientos de calidad del software (desarrollador)
 - □ Portabilidad
 - □ Reusabilidad
 - □ Facilitar pruebas

51

Requerimientos no funcionales

- Requerimientos operación
 - □ No aumentan la capacidad funcional
 - □ Permiten un mejor uso
 - Deshacer, rehacer, copiar, pegar
 - Configuración
 - Barras de herramientas, configurar menús, cambiar font
 - Sistema de ayuda

Requerimientos no funcionales Restricciones de diseño relación con pseudo requerimientos

- □ Estilo de arquitectura
- □ Plataforma de operación
- □ Herramientas
- Restricciones de implementación relacionados con pseudo requerimientos
 - □ Lenguaje
 - □ Librerías
 - □ Plataforma de implementación

53

Documentación del requerimiento no funcional | Nombre | Tipo: Necesario / no necesario | Crítico: Si/No | | Descripción | Criterios de Aceptación | Criterios | C