Syntactic dependencies correspond to word pairs with high mutual information

Richard Futrell

University of California, Irvine rfutrell@uci.edu
@rljfutrell

Peng Qian

MIT pqian@mit.edu

Evelina Fedorenko

MIT evelina9@mit.edu

Edward Gibson

MIT egibson@mit.edu

Idan Blank

University of California, Los Angeles iblank@psych.ucla.edu

DepLing 2019 2019-08-27

• 1. Formal syntactic structure:

Goal: Define latent structures required to

- Goal: Define latent structures required to
 - Define the well-formedness of sentences (Chomsky, 1957), or

- Goal: Define latent structures required to
 - Define the well-formedness of sentences (Chomsky, 1957), or
 - Compute the interpretation of the sentence (Heim & Kratzer, 1998)

- 1. Formal syntactic structure.
- 2. Statistical structure:

- 1. Formal syntactic structure.
- 2. Statistical structure:

Montemurro & Zanette (2013)

- 1. Formal syntactic structure.
- 2. Statistical structure:

Montemurro & Zanette (2013)

Lin & Tegmark (2017)

- 1. Formal syntactic structure.
- 2. Statistical structure:

 Goal: Characterize natural language text, as observable in corpora, as a stochastic process.

• Philosophical & empirical question: What is the link between syntactic structure and statistical structure?

- Philosophical & empirical question: What is the link between syntactic structure and statistical structure?
 - Generative grammarians (e.g. Chomsky, 1957; Adger, 2018):
 There is no link at all.

- Philosophical & empirical question: What is the link between syntactic structure and statistical structure?
 - Generative grammarians (e.g. Chomsky, 1957; Adger, 2018):
 There is no link at all.
 - Structuralists (e.g. Harris, 1954): Syntactic structure can be defined on top of statistical structure using discovery procedures.

- Philosophical & empirical question: What is the link between syntactic structure and statistical structure?
 - Generative grammarians (e.g. Chomsky, 1957; Adger, 2018):
 There is no link at all.
 - Structuralists (e.g. Harris, 1954): Syntactic structure can be defined on top of statistical structure using discovery procedures.
 - Modern grammar induction (e.g. Klein & Manning, 2004, et seq.):
 Assume syntactic structure is the trace of a generative process that generated the data; try to recover the syntactic structure from statistical structure using Bayesian inference.

 We conjecture a simple information-theoretic link between syntactic and statistical structure: the <u>Head-Dependent</u> <u>Mutual Information (HDMI) Hypothesis.</u>

- We conjecture a simple information-theoretic link between syntactic and statistical structure: the <u>Head-Dependent</u> <u>Mutual Information (HDMI) Hypothesis.</u>
 - Syntactic dependencies correspond to word pairs with high mutual information.

- We conjecture a simple information-theoretic link between syntactic and statistical structure: the <u>Head-Dependent</u> <u>Mutual Information (HDMI) Hypothesis.</u>
 - Syntactic dependencies correspond to word pairs with high mutual information.
 - Explicit or implicit in nearly all previous work on grammar induction (de Paiva Alves, 1996; Yuret, 1998; Klein & Manning, 2004, et seq.), but not yet explicitly tested at scale.

- We conjecture a simple information-theoretic link between syntactic and statistical structure: the <u>Head-Dependent</u> <u>Mutual Information (HDMI) Hypothesis.</u>
 - Syntactic dependencies correspond to word pairs with high mutual information.
 - Explicit or implicit in nearly all previous work on grammar induction (de Paiva Alves, 1996; Yuret, 1998; Klein & Manning, 2004, et seq.), but not yet explicitly tested at scale.
- Our contribution: We give direct empirical evidence based on a large parsed corpus, and a new theoretical justification based on an information-theoretic formalization of basic postulates of dependency grammar.

Head-Dependent MI

- Introduction
- Empirical Estimates of HDMI
- Theoretical Arguments for HDMI
- Conclusion

 Claim: Syntactic dependencies are distinguished as word pairs with high mutual information.

- Claim: Syntactic dependencies are distinguished as word pairs with high mutual information.
- Define head-dependent mutual information for words d and their heads h as:

- Claim: Syntactic dependencies are distinguished as word pairs with high mutual information.
- Define head-dependent mutual information for words d and their heads h as:

$$HDMI = \mathbb{E}\left[\log \frac{p(h,d)}{p(h)p(d)}\right]$$

- Claim: Syntactic dependencies are distinguished as word pairs with high mutual information.
- Define head-dependent mutual information for words d and their heads h as:

$$HDMI = \mathbb{E}\left[\log \frac{p(h,d)}{p(h)p(d)}\right]$$

Interpretation: Amount of information contained in d about h.

- Claim: Syntactic dependencies are distinguished as word pairs with high mutual information.
- Define head-dependent mutual information for words d and their heads h as:

$$HDMI = \mathbb{E}\left[\log \frac{p(h,d)}{p(h)p(d)}\right]$$

- Interpretation: Amount of information contained in d about h.
- Properly, h and d should be word forms.

- Claim: Syntactic dependencies are distinguished as word pairs with high mutual information.
- Define head-dependent mutual information for words d and their heads h as:

$$HDMI = \mathbb{E}\left[\log \frac{p(h,d)}{p(h)p(d)}\right]$$

- Interpretation: Amount of information contained in d about h.
- Properly, h and d should be word forms.
- But in that case the MI may be hard to estimate accurately...

• <u>Demonstration</u>: We simulated a joint distribution of word pairs **known to have exactly 6 bits of MI**.

- <u>Demonstration</u>: We simulated a joint distribution of word pairs known to have exactly 6 bits of MI.
- We tried to estimate the MI using maximum likelihood estimation from a "corpus" drawn from this distribution.

- <u>Demonstration</u>: We simulated a joint distribution of word pairs known to have exactly 6 bits of MI.
- We tried to estimate the MI using maximum likelihood estimation from a "corpus" drawn from this distribution.

- <u>Demonstration</u>: We simulated a joint distribution of word pairs known to have exactly 6 bits of MI.
- We tried to estimate the MI using maximum likelihood estimation from a "corpus" drawn from this distribution.

Estimating MI is Hard

- <u>Demonstration</u>: We simulated a joint distribution of word pairs known to have exactly 6 bits of MI.
- We tried to estimate the MI using maximum likelihood estimation from a "corpus" drawn from this distribution.

• Data: Common Crawl English webtext as parsed by SyntaxNet (Andor et al., 2016).

- Data: Common Crawl English webtext as parsed by SyntaxNet (Andor et al., 2016).
 - We take 10% of Common Crawl, filtered to contain real utterances (i.e., not "All rights reserved")

- Data: Common Crawl English webtext as parsed by SyntaxNet (Andor et al., 2016).
 - We take 10% of Common Crawl, filtered to contain real utterances (i.e., not "All rights reserved")
 - We parse 10% of the filtered data.

- Data: Common Crawl English webtext as parsed by SyntaxNet (Andor et al., 2016).
 - We take 10% of Common Crawl, filtered to contain real utterances (i.e., not "All rights reserved")
 - We parse 10% of the filtered data.
 - Result: 320 million parsed tokens.

- Data: Common Crawl English webtext as parsed by SyntaxNet (Andor et al., 2016).
 - We take 10% of Common Crawl, filtered to contain real utterances (i.e., not "All rights reserved")
 - We parse 10% of the filtered data.
 - Result: 320 million parsed tokens.
- For evidence for the HDMI Hypothesis from POS tags in hand-parsed UD corpora, see Futrell & Levy (2017).

Now we estimate MI between heads and dependents by MLE.

- Now we estimate MI between heads and dependents by MLE.
- We want to show that Head-Dependent MI is higher than MI of just any word pairs (HDMI Hypothesis):

- Now we estimate MI between heads and dependents by MLE.
- We want to show that Head-Dependent MI is higher than MI of just any word pairs (HDMI Hypothesis):
 - So, compare against a baseline: Non-dependent word pairs at the same distance as the head-dependent pairs.

- Now we estimate MI between heads and dependents by MLE.
- We want to show that Head-Dependent MI is higher than MI of just any word pairs (HDMI Hypothesis):
 - So, compare against a baseline: Non-dependent word pairs at the same distance as the head-dependent pairs.

 We also want to make sure the MI estimates have converged.

- We also want to make sure the MI estimates have converged.
- To do so, we compare against another baseline which has analytically 0 MI.

- We also want to make sure the MI estimates have converged.
- To do so, we compare against another baseline which has analytically 0 MI.
 - The **permuted baseline**: formed by shuffling the empirical head-dependent pairs.

- We also want to make sure the MI estimates have converged.
- To do so, we compare against another baseline which has analytically 0 MI.
 - The **permuted baseline**: formed by shuffling the empirical head-dependent pairs.

Head

<u>Dependent</u>

<u>Head</u>

<u>Dependent</u>

cat

meowed

published

angry

. . .

Head <u>Dependent</u> cat meowed published angry

<u>Head</u>	<u>)ependent</u>
cat	the
meowed	cat
published	article
angry	very

<u>Dependent</u> **Head** cat very meowed article published cat the angry

- We also want to make sure the MI estimates have converged.
- To do so, we compare against another baseline which has analytically 0 MI.
 - The **permuted baseline**: formed by shuffling the empirical head-dependent pairs.

- We also want to make sure the MI estimates have converged.
- To do so, we compare against another baseline which has analytically 0 MI.
 - The **permuted baseline**: formed by shuffling the empirical head-dependent pairs.
 - If the permuted baseline shows nonzero MI, it can only be because of estimation error.

- We also want to make sure the MI estimates have converged.
- To do so, we compare against another baseline which has analytically 0 MI.
 - The **permuted baseline**: formed by shuffling the empirical head-dependent pairs.
 - If the permuted baseline shows nonzero MI, it can only be because of estimation error.
 - So we want the MI of the permuted baseline to go to zero.

Data & Baselines Summary

dep(endency)	MI of heads and dependents	
nondep	MI of words not in a dependency relationship, matched for length with dep	
permuted	MI between shuffled heads and dependents (should be zero)	

Convergence of MLE Estimates of MI

Comparison with the permuted baseline suggests
 MI estimates have not not converged at 320 million tokens.

- Comparison with the permuted baseline suggests
 MI estimates have not not converged at 320 million tokens.
- So instead we will measure MI between:

- Comparison with the permuted baseline suggests
 MI estimates have not not converged at 320 million tokens.
- So instead we will measure MI between:
 - POS tags (~ a lower bound on the MI between wordforms)

- Comparison with the permuted baseline suggests
 MI estimates have not not converged at 320 million tokens.
- So instead we will measure MI between:
 - POS tags (~ a lower bound on the MI between wordforms)
 - Lexical clusters derived by a spectral clustering algorithm on GloVe (Pennington et al., 2014) (certainly a lower bound on MI between wordforms).

HDMI between POS tags and Lexical clusters

Empirical Results

Empirical Results

• MI for wordforms **does not yet converge** with 320 million tokens of text.

- MI for wordforms does not yet converge with 320 million tokens of text.
 - Modulo the non-convergence, we have evidence for the HDMI Hypothesis between wordforms.

- MI for wordforms does not yet converge with 320 million tokens of text.
 - Modulo the non-convergence, we have evidence for the HDMI Hypothesis between wordforms.
- MI for POS tags and lexical clusters does converge.

- MI for wordforms does not yet converge with 320 million tokens of text.
 - Modulo the non-convergence, we have evidence for the HDMI Hypothesis between wordforms.
- MI for POS tags and lexical clusters does converge.
- Strong evidence for HDMI Hypothesis for POS tags and lexical clusters.

- MI for wordforms does not yet converge with 320 million tokens of text.
 - Modulo the non-convergence, we have evidence for the HDMI Hypothesis between wordforms.
- MI for POS tags and lexical clusters does converge.
- Strong evidence for HDMI Hypothesis for POS tags and lexical clusters.

Head-Dependent MI

- Introduction
- Empirical Estimates of MI
- Theoretical Arguments for HDMI
- Conclusion

Why should the HDMI Hypothesis hold?

- Why should the HDMI Hypothesis hold?
- Question. When linguists are determining the dependency tree for a sentence, what are they doing?

- Why should the HDMI Hypothesis hold?
- Question. When linguists are determining the dependency tree for a sentence, what are they doing?

 The head "car" explains the distribution (co-occurrence restrictions) of the word "the".

- The head "car" **explains** the distribution (co-occurrence restrictions) of the word "the".
- A simplification: Dependency grammar claims that the distribution of a word in context can be explained mostly in terms of exactly one other word, its head (Hudson, 1984).

- The head "car" **explains** the distribution (co-occurrence restrictions) of the word "the".
- A simplification: Dependency grammar claims that the distribution of a word in context can be explained mostly in terms of exactly one other word, its head (Hudson, 1984).
 - No or little need for higher-order groupings as in phrase structure grammar.

- The head "car" **explains** the distribution (co-occurrence restrictions) of the word "the".
- A simplification: Dependency grammar claims that the distribution of a word in context can be explained mostly in terms of exactly one other word, its head (Hudson, 1984).
 - No or little need for higher-order groupings as in phrase structure grammar.

 Dependency grammar claims that the distribution of a word in context can be explained mostly in terms of exactly one other word, its head (Hudson, 1984, 2010).

- Dependency grammar claims that the distribution of a word in context can be explained mostly in terms of exactly one other word, its head (Hudson, 1984, 2010).
- Translation into the language of statistics: The head of a word is a sufficient statistic for the distribution of that word in context.

- Dependency grammar claims that the distribution of a word in context can be explained mostly in terms of exactly one other word, its head (Hudson, 1984, 2010).
- Translation into the language of statistics: The head of a word is a sufficient statistic for the distribution of that word in context.
- Translation into information theory:

- Dependency grammar claims that the distribution of a word in context can be explained mostly in terms of exactly one other word, its head (Hudson, 1984, 2010).
- Translation into the language of statistics: The head of a word is a sufficient statistic for the distribution of that word in context.
- Translation into information theory:
 - KL-divergence D[word | context || word | head] = ε

- Dependency grammar claims that the distribution of a word in context can be explained mostly in terms of exactly one other word, its head (Hudson, 1984, 2010).
- Translation into the language of statistics: The head of a word is a sufficient statistic for the distribution of that word in context.
- Translation into information theory:
 - KL-divergence D[word | context || word | head] = ε
- ϵ = 0 means "strong endocentricity": the head contains 100% of the information you need to determine the distribution of the word. (Obviously too strong!)

- Dependency grammar claims that the distribution of a word in context can be explained mostly in terms of exactly one other word, its head (Hudson, 1984, 2010).
- Translation into the language of statistics: The head of a word is a sufficient statistic for the distribution of that word in context.
- Translation into information theory:
 - KL-divergence D[word | context || word | head] = ε
- ϵ = 0 means "strong endocentricity": the head contains 100% of the information you need to determine the distribution of the word. (Obviously too strong!)
- $\varepsilon = \text{small is more realistic.}$

• Translation into information theory:

- Translation into information theory:
 - **KL-divergence** D[word | context || word | head] = ε

- Translation into information theory:
 - KL-divergence D[word | context || word | head] = ε
- <u>Proposal</u>: When linguists are choosing heads, they are implicitly minimizing the approximation error above.

- Translation into information theory:
 - KL-divergence D[word | context || word | head] = ε
- Proposal: When linguists are choosing heads, they are implicitly minimizing the approximation error above.
 - Choosing the head that best explains the distribution of each word, such that the heads and dependents form a tree.

- Translation into information theory:
 - KL-divergence D[word | context || word | head] = ε
- Proposal: When linguists are choosing heads, they are implicitly minimizing the approximation error above.
 - Choosing the head that best explains the distribution of each word, such that the heads and dependents form a tree.
- This is also the objective implicitly minimized in grammar induction work based on head-outward generative models (Eisner, 1996; Klein & Manning, 2004, et seq.)

• <u>Proposition</u>. The trees that minimize approximation error are found by choosing heads to maximize HDMI. (cf. Chow & Liu, 1968)

• <u>Proposition</u>. The trees that minimize approximation error are found by choosing heads to maximize HDMI. (cf. Chow & Liu, 1968)

 Proposition. The trees that minimize approximation error are found by choosing heads to maximize HDMI. (cf. Chow & Liu, 1968)

$$D_{KL}(p_L(w_i|\mathbf{w}_{< i})||p_{\mathbf{t}}(w_i|t_i)) = \mathbb{E}\left[\log \frac{p_L(w_i|\mathbf{w}_{< i})}{p_{\mathbf{t}}(w_i|t_i)}\right]$$

$$= \mathbb{E}\left[\log \frac{p(\mathbf{w}_{< i}|w_i)p(w_i)}{p(\mathbf{w}_{< i})p_{\mathbf{t}}(w_i|t_i)}\right]$$

$$\min_{\mathbf{t}} D_{KL}(p_L(w_i|\mathbf{w}_{< i})||p_{\mathbf{t}}(w_i|t_i)) = \min_{\mathbf{t}} - \mathbb{E}\left[\log \frac{p_{\mathbf{t}}(w_i|t_i)}{p(w_i)}\right]$$

$$= \min_{\mathbf{t}} -I[W:T]$$

$$= \max_{\mathbf{t}} I[W:T].$$

 HDMI provides a way to translate between syntactic analysis and information-theoretic statistics.

- HDMI provides a way to translate between syntactic analysis and information-theoretic statistics.
 - HDMI is a real-valued, statistical analogue to the discrete notion of dependency.

- HDMI provides a way to translate between syntactic analysis and information-theoretic statistics.
 - HDMI is a real-valued, statistical analogue to the discrete notion of dependency.
- Could be used to evaluate syntactic formalisms...

- HDMI provides a way to translate between syntactic analysis and information-theoretic statistics.
 - HDMI is a real-valued, statistical analogue to the discrete notion of dependency.
- Could be used to evaluate syntactic formalisms...
 - E.g., content-head vs. function-head dependencies (Osborne & Gerdes, 2019): Which gives the higher HDMI?

- HDMI provides a way to translate between syntactic analysis and information-theoretic statistics.
 - HDMI is a real-valued, statistical analogue to the discrete notion of dependency.
- Could be used to evaluate syntactic formalisms...
 - E.g., content-head vs. function-head dependencies (Osborne & Gerdes, 2019): Which gives the higher HDMI?
- Provides a principled theoretical basis for corpus linguistics.

Head-Dependent MI

- Introduction
- Empirical Estimates of MI
- Theoretical Arguments for HDMI
- Conclusion

 Syntactic dependencies correspond to word pairs with high information.

- Syntactic dependencies correspond to word pairs with high information.
 - Empirically, in a large automatically-parsed corpora.

- Syntactic dependencies correspond to word pairs with high information.
 - Empirically, in a large automatically-parsed corpora.
 - Theoretically, according to a formalization of dependency grammar practice.

- Syntactic dependencies correspond to word pairs with high information.
 - Empirically, in a large automatically-parsed corpora.
 - *Theoretically*, according to a formalization of dependency grammar practice.
- Provides an empirically strong and theoretically wellgrounded link between syntactic structure and statistical structure.

Thanks all!

- All code is available online at https://github.com/pqian11/mi-hdmi
- Thanks to Roger Levy, Tim O'Donnell, Michael Hahn, and Ryan Cotterell for discussions.
- Thanks to the SyntaxFest reviewers for helpful comments, and thanks to the SyntaxFest and DepLing organizers!