Computational Graphics: Lecture 3

Alberto Paoluzzi

October 10, 2016

Outline: Algebra reminders

- Linear spaces
- 2 Linear combinations
- Subspaces
- Spans
- Bases
- 6 Affine spaces
- Affine combinations
- Convex combinations

Linear spaces

A linear (or vector) space $\mathcal V$ over a field $\mathcal F$ is a set with two composition rules, such that, for each $\mathbf u, \mathbf v, \mathbf w \in \mathcal V$ and for each $\alpha, \beta \in \mathcal F$, the rules $+, \cdot$ satisfy the following axioms:

1
$$v + w = w + v$$
;

(commutativity of addition)

A linear (or vector) space $\mathcal V$ over a field $\mathcal F$ is a set with two composition rules, such that, for each $\mathbf u, \mathbf v, \mathbf w \in \mathcal V$ and for each $\alpha, \beta \in \mathcal F$, the rules $+, \cdot$ satisfy the following axioms:

- **1** v + w = w + v:
- u + (v + w) = (u + v) + w;

(commutativity of addition)

A linear (or vector) space $\mathcal V$ over a field $\mathcal F$ is a set with two composition rules, such that, for each $\mathbf u, \mathbf v, \mathbf w \in \mathcal V$ and for each $\alpha, \beta \in \mathcal F$, the rules $+, \cdot$ satisfy the following axioms:

- **1** v + w = w + v:
- u + (v + w) = (u + v) + w;
- **3** there is a $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$;

(commutativity of addition)

(associativity of addition)

(neutral el. of addition)

A linear (or vector) space $\mathcal V$ over a field $\mathcal F$ is a set with two composition rules, such that, for each $\mathbf u, \mathbf v, \mathbf w \in \mathcal V$ and for each $\alpha, \beta \in \mathcal F$, the rules $+, \cdot$ satisfy the following axioms:

1 v + w = w + v:

(commutativity of addition)

u + (v + w) = (u + v) + w;

(associativity of addition)

3 there is a $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$;

- (neutral el. of addition)
- there is a $-\mathbf{v} \in \mathcal{V}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$;

(inverse of add.)

A linear (or vector) space \mathcal{V} over a field \mathcal{F} is a set with two composition rules, such that, for each $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathcal{V}$ and for each $\alpha, \beta \in \mathcal{F}$, the rules $+, \cdot$ satisfy the following axioms:

1 v + w = w + v:

(commutativity of addition)

2 $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w};$

(associativity of addition)

3 there is a $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$:

- (neutral el. of addition)
- there is a $-\mathbf{v} \in \mathcal{V}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$;
 - (inverse of add.)

- **5** $\alpha \cdot (\mathbf{v} + \mathbf{w}) = \alpha \cdot \mathbf{v} + \alpha \cdot \mathbf{w}$; (distrib. of addition w.r.t. product)

A linear (or vector) space $\mathcal V$ over a field $\mathcal F$ is a set with two composition rules, such that, for each $\mathbf u, \mathbf v, \mathbf w \in \mathcal V$ and for each $\alpha, \beta \in \mathcal F$, the rules $+, \cdot$ satisfy the following axioms:

1 v + w = w + v:

(commutativity of addition)

u + (v + w) = (u + v) + w;

(associativity of addition)

3 there is a $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$:

- (neutral el. of addition)
 (inverse of add.)
- there is a $-\mathbf{v} \in \mathcal{V}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$;
 - (distrib. of addition w.r.t. product)
- (distrib. of product w.r.t. addition)

A linear (or vector) space $\mathcal V$ over a field $\mathcal F$ is a set with two composition rules, such that, for each $\mathbf u, \mathbf v, \mathbf w \in \mathcal V$ and for each $\alpha, \beta \in \mathcal F$, the rules $+, \cdot$ satisfy the following axioms:

- ② $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$; (associativity of addition)
- $lackbox{ }$ there is a $lackbox{0} \in \mathcal{V}$ such that f v + m 0 = m v; (neutral el. of addition)
- there is a $-\mathbf{v} \in \mathcal{V}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$; (inverse of add.)
- **1** $(\alpha + \beta) \cdot \mathbf{v} = \alpha \cdot \mathbf{v} + \alpha \cdot \mathbf{v};$ (distrib. of product w.r.t. addition)

A linear (or vector) space $\mathcal V$ over a field $\mathcal F$ is a set with two composition rules, such that, for each $\mathbf u, \mathbf v, \mathbf w \in \mathcal V$ and for each $\alpha, \beta \in \mathcal F$, the rules $+, \cdot$ satisfy the following axioms:

1 v + w = w + v:

(commutativity of addition)

u + (v + w) = (u + v) + w;

(associativity of addition)

3 there is a $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$;

• there is a $-\mathbf{v} \in \mathcal{V}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$;

(neutral el. of addition)
(inverse of add.)

- (distrib. of addition w.r.t. product)

 $(\alpha + \beta) \cdot \mathbf{v} = \alpha \cdot \mathbf{v} + \alpha \cdot \mathbf{v};$

(distrib. of product w.r.t. addition)

(associativity of product)

(neutral element of product)

Example: vector space of real matrices

Let $\mathcal{M}_n^m(\mathbb{R})$ be the set of $m \times n$ matrices with elements in the field \mathbb{R} . An element A in such a set is denoted as

$$A = (\alpha_{ij})$$

Example: vector space of real matrices

Let $\mathcal{M}_n^m(\mathbb{R})$ be the set of $m \times n$ matrices with elements in the field \mathbb{R} . An element A in such a set is denoted as

$$A = (\alpha_{ij})$$

Addition and multiplication by a scalar are defined component-wise:

$$A + B = (\alpha_{ij}) + (\beta_{ij}) = (\alpha_{ij} + \beta_{ij})$$
$$\gamma A = \gamma(\alpha_{ij}) = (\gamma \alpha_{ij})$$

Linear combinations

Linear combination

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in \mathcal{V}$ and $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathcal{F}$, The vector

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n = \sum_{i=1}^n \alpha_i \mathbf{v}_i \in \mathcal{V}$$

is called a linear combination of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ with scalars $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathcal{F}$

Let $(\mathcal{V}, +, \cdot)$ be a vector space on the field \mathcal{F} .

 $\mathcal{U}\subset\mathcal{V}$ is a subspace of \mathcal{V} if $(\mathcal{U},+,\cdot)$ is a vector space with respect to the same operations.

```
Let (\mathcal{V},+,\cdot) be a vector space on the field \mathcal{F}.
```

 $\mathcal{U}\subset\mathcal{V}$ is a subspace of \mathcal{V} if $(\mathcal{U},+,\cdot)$ is a vector space with respect to the same operations.

 $\mathcal{U} \subset \mathcal{V}$ is a subspace of \mathcal{V} if and only if $\mathcal{U} \neq \emptyset;$ for each $\alpha \in \mathcal{F}$ and $\mathbf{u}_1, \mathbf{u}_2 \in \mathcal{U}$, $\alpha \mathbf{u}_1 + \mathbf{u}_2 \in \mathcal{U}$

```
Let (\mathcal{V},+,\cdot) be a vector space on the field \mathcal{F}.
```

 $\mathcal{U}\subset\mathcal{V}$ is a subspace of \mathcal{V} if $(\mathcal{U},+,\cdot)$ is a vector space with respect to the same operations.

 $\mathcal{U}\subset\mathcal{V}$ is a subspace of \mathcal{V} if and only if $\mathcal{U}\neq\emptyset;$

for each $\alpha \in \mathcal{F}$ and $\mathbf{u_1}, \mathbf{u_2} \in \mathcal{U}$, $\alpha \mathbf{u_1} + \mathbf{u_2} \in \mathcal{U}$

codimension of a subspace $\mathcal{U} \subset \mathcal{V}$ is defined as $\dim \mathcal{V} - \dim \mathcal{U}$

```
Let (\mathcal{V},+,\cdot) be a vector space on the field \mathcal{F}.
```

 $\mathcal{U}\subset\mathcal{V}$ is a subspace of \mathcal{V} if $(\mathcal{U},+,\cdot)$ is a vector space with respect to the same operations.

 $\mathcal{U} \subset \mathcal{V}$ is a subspace of \mathcal{V} if and only if $\mathcal{U} \neq \emptyset$; for each $\alpha \in \mathcal{F}$ and $\mathbf{u}_1, \mathbf{u}_2 \in \mathcal{U}$, $\alpha \mathbf{u}_1 + \mathbf{u}_2 \in \mathcal{U}$

codimension of a subspace $\mathcal{U}\subset\mathcal{V}$

is defined as $\dim \mathcal{V} - \dim \mathcal{U}$

```
Let (\mathcal{V},+,\cdot) be a vector space on the field \mathcal{F}.
```

 $\mathcal{U}\subset\mathcal{V}$ is a subspace of \mathcal{V} if $(\mathcal{U},+,\cdot)$ is a vector space with respect to the same operations.

$$\mathcal{U} \subset \mathcal{V}$$
 is a subspace of \mathcal{V} if and only if $\mathcal{U} \neq \emptyset$; for each $\alpha \in \mathcal{F}$ and $\mathbf{u}_1, \mathbf{u}_2 \in \mathcal{U}$, $\alpha \mathbf{u}_1 + \mathbf{u}_2 \in \mathcal{U}$

codimension of a subspace
$$\mathcal{U} \subset \mathcal{V}$$
 is defined as $\dim \mathcal{V} - \dim \mathcal{U}$

Question

Examples of codimension? in 1D, 2D, 3D

Spans

Span

• The set of all linear combinations of elements of a set $S \subset \mathcal{V}$ is a subspace of \mathcal{V} .

Span

- The set of all linear combinations of elements of a set $S \subset \mathcal{V}$ is a subspace of \mathcal{V} .
- Such a subspace is called the span of S and is denoted as

lin S

Span

- The set of all linear combinations of elements of a set $S \subset \mathcal{V}$ is a subspace of \mathcal{V} .
- Such a subspace is called the span of S and is denoted as

lin S

• If a subspace \mathcal{U} of \mathcal{V} can be generated as the span of a set S of vectors in \mathcal{V} , then S is called a generating set or a spanning set for \mathcal{U} .

Linear independence

• A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is linearly independent if

$$\sum_{i=1}^n \alpha_i \mathbf{v}_i = \mathbf{0}$$

implies that $\alpha_i = 0$ for each i

Linear independence

• A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is linearly independent if

$$\sum_{i=1}^n \alpha_i \mathbf{v}_i = \mathbf{0}$$

implies that $\alpha_i = 0$ for each i

• As a consequence, a set of vectors is linearly independent when none of them belongs to the span of the others.

Bases and coordinates

When working with vector spaces, the concept of basis, a discrete subset of linearly independent elements, is probably the most useful to deal with.

 each element of the space can be represented uniquely as linear combination of basis elements

Bases and coordinates

When working with vector spaces, the concept of basis, a discrete subset of linearly independent elements, is probably the most useful to deal with.

- each element of the space can be represented uniquely as linear combination of basis elements
- this leads to a parametrization of the space, i.e. to represent each element by a sequence of scalars, called its coordinates with respect to the chosen basis.

A set of vectors $\{\mathbf{e}_1,\mathbf{e}_2,\ldots,\mathbf{e}_n\}$ is a basis for the vector space $\mathcal V$ iff

1 the set is linearly independent, and

A set of vectors $\{\mathbf{e}_1,\mathbf{e}_2,\ldots,\mathbf{e}_n\}$ is a basis for the vector space $\mathcal V$ iff

- 1 the set is linearly independent, and
- $2 \mathcal{V} = \lim \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$

ullet Every two bases of ${\mathcal V}$ have the same number of elements, that is called the dimension of ${\mathcal V}$ and is denoted

 $\dim \mathcal{V}$

ullet Every two bases of ${\mathcal V}$ have the same number of elements, that is called the dimension of ${\mathcal V}$ and is denoted

 $\operatorname{\mathsf{dim}} \mathcal{V}$

• Some important properties of the bases of a vector space are:

ullet Every two bases of ${\mathcal V}$ have the same number of elements, that is called the dimension of ${\mathcal V}$ and is denoted

 $\dim \mathcal{V}$

- Some important properties of the bases of a vector space are:
 - lacktriangledown each spanning set for $\mathcal V$ contains a basis;

ullet Every two bases of ${\mathcal V}$ have the same number of elements, that is called the dimension of ${\mathcal V}$ and is denoted

 $\dim \mathcal{V}$

- Some important properties of the bases of a vector space are:
 - lacktriangle each spanning set for $\mathcal V$ contains a basis;
 - each minimal spanning set is a basis;

Bases

ullet Every two bases of ${\mathcal V}$ have the same number of elements, that is called the dimension of ${\mathcal V}$ and is denoted

$\dim \mathcal{V}$

- Some important properties of the bases of a vector space are:
 - lacktriangle each spanning set for \mathcal{V} contains a basis:
 - 2 each minimal spanning set is a basis;
 - each linearly independent set of vectors is contained in a basis;

Bases

ullet Every two bases of ${\mathcal V}$ have the same number of elements, that is called the dimension of ${\mathcal V}$ and is denoted

$\dim \mathcal{V}$

- Some important properties of the bases of a vector space are:
 - lacktriangle each spanning set for $\mathcal V$ contains a basis:
 - 2 each minimal spanning set is a basis;
 - each linearly independent set of vectors is contained in a basis;
 - each maximal set of linearly independent vectors is a basis;

Example: vector space of polynomials of degree $\leq n$

A linear space we make often use of in Computer Graphics and Geometric modeling is the space of dimension n + 1:

$$\mathbb{P}^n(\mathbb{R}) = \{ p : \mathbb{R} \to \mathbb{R} : u \mapsto \sum_{i=0}^n a_i u^i, a_i \in \mathbb{R} \}$$

of univariate polynomials of degree $\leq n$ on the real field (with real coefficients), with $p^i \in P_n$, where

$$P_n = (p^n, p^{n-1}, ..., p^1, p^0)$$
 and $p^i : u \mapsto u^i$

is the power basis.

If $(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$ is an ordered basis for \mathcal{V} , then for each $\mathbf{v} \in \mathcal{V}$ there exists a unique n-tuple of scalars $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathcal{F}$ such that

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{e}_i.$$

The *n*-tuple of scalars (α_i) is called the components of **v** with respect to the ordered basis $(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$.

• If such a *n*-tuple were not unique, then $\mathbf{v} = \sum \alpha_i \mathbf{e}_i = \sum \beta_i \mathbf{e}_i$

The *n*-tuple of scalars (α_i) is called the components of **v** with respect to the ordered basis $(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$.

- If such a *n*-tuple were not unique, then $\mathbf{v} = \sum \alpha_i \mathbf{e}_i = \sum \beta_i \mathbf{e}_i$
- But this one would imply $\sum (\alpha_i \beta_i) \mathbf{e}_i = \mathbf{0}$, hence $(\alpha_i \beta_i) = \mathbf{0}$,

The *n*-tuple of scalars (α_i) is called the components of **v** with respect to the ordered basis $(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$.

- If such a *n*-tuple were not unique, then $\mathbf{v} = \sum \alpha_i \mathbf{e}_i = \sum \beta_i \mathbf{e}_i$
- But this one would imply $\sum (\alpha_i \beta_i) \mathbf{e}_i = \mathbf{0}$, hence $(\alpha_i \beta_i) = \mathbf{0}$,
- i.e. $\alpha_i = \beta_i$, for every *i*.

• Let $B = (\mathbf{e}_1, \dots, \mathbf{e}_n) \subset \mathcal{V}$ be a basis for \mathcal{V} .

- Let $B = (\mathbf{e}_1, \dots, \mathbf{e}_n) \subset \mathcal{V}$ be a basis for \mathcal{V} .
- Of course, the \mathbf{e}_i coordinates are $\begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 & \cdots & 0 \end{pmatrix}$, ..., $\begin{pmatrix} 0 & 0 & \cdots & 1 \end{pmatrix}$, and, in B coordinates, the basis is represented by the matrix

$$[B] = [I]$$

.

- Let $B = (\mathbf{e}_1, \dots, \mathbf{e}_n) \subset \mathcal{V}$ be a basis for \mathcal{V} .
- Of course, the \mathbf{e}_i coordinates are $\begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 & \cdots & 0 \end{pmatrix}$, ..., $\begin{pmatrix} 0 & 0 & \cdots & 1 \end{pmatrix}$, and, in B coordinates, the basis is represented by the matrix

$$[B] = [I]$$

.

• If we take n (linearly independent) vectors $V = (\mathbf{v}_1, \dots, \mathbf{v}_n) \subset \mathcal{V}$, represented in B coordinates as [V], and want to parametrize \mathcal{V} with respect to the new basis, we have, for transformation of coordinates:

$$[I] = [T][V]$$

- Let $B = (\mathbf{e}_1, \dots, \mathbf{e}_n) \subset \mathcal{V}$ be a basis for \mathcal{V} .
- Of course, the \mathbf{e}_i coordinates are $\begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 & \cdots & 0 \end{pmatrix}$, ..., $\begin{pmatrix} 0 & 0 & \cdots & 1 \end{pmatrix}$, and, in B coordinates, the basis is represented by the matrix

$$[B] = [I]$$

.

• If we take n (linearly independent) vectors $V = (\mathbf{v}_1, \dots, \mathbf{v}_n) \subset \mathcal{V}$, represented in B coordinates as [V], and want to parametrize \mathcal{V} with respect to the new basis, we have, for transformation of coordinates:

$$[I] = [T][V]$$

and hence:

$$\lceil T \rceil = \lceil V \rceil^{-1}$$

• Let $P_3 = (u^3, u^2, u, 1)$

- Let $P_3 = (u^3, u^2, u, 1)$
- and $B_3 = ((1-u)^3, 3u(1-u)^2, 3u^2(1-u), u^3)$ be two ordered bases

- Let $P_3 = (u^3, u^2, u, 1)$
- and $B_3 = ((1-u)^3, 3u(1-u)^2, 3u^2(1-u), u^3)$ be two ordered bases
- for the linear space $\mathbb{P}^3(\mathbb{R})$ of polynomials with deg ≤ 3 .

- Let $P_3 = (u^3, u^2, u, 1)$
- and $B_3 = ((1-u)^3, 3u(1-u)^2, 3u^2(1-u), u^3)$ be two ordered bases
- for the linear space $\mathbb{P}^3(\mathbb{R})$ of polynomials with deg ≤ 3 .
- the $[B_3]$ matrix in the P_3 basis is

$$[B_3]_{P_3} = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

- Let $P_3 = (u^3, u^2, u, 1)$
- and $B_3 = ((1-u)^3, 3u(1-u)^2, 3u^2(1-u), u^3)$ be two ordered bases
- for the linear space $\mathbb{P}^3(\mathbb{R})$ of polynomials with deg ≤ 3 .
- the $[B_3]$ matrix in the P_3 basis is

$$[B_3]_{P_3} = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

• the $[P_3]$ matrix in the B_3 basis is

$$[P_3]_{B_3} = [B_3]_{P_3}^{-1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1/3 & 1 \\ 0 & 1/3 & 1/6 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

- Let $P_3 = (u^3, u^2, u, 1)$
- and $B_3 = ((1-u)^3, 3u(1-u)^2, 3u^2(1-u), u^3)$ be two ordered bases
- for the linear space $\mathbb{P}^3(\mathbb{R})$ of polynomials with deg ≤ 3 .
- the $[B_3]$ matrix in the P_3 basis is

$$[B_3]_{P_3} = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

• the $[P_3]$ matrix in the B_3 basis is

$$[P_3]_{B_3} = [B_3]_{P_3}^{-1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1/3 & 1 \\ 0 & 1/3 & 1/6 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

WHY ?

Affine spaces

Affine space

The idea of affine space corresponds to that of a set of points where the displacement from a point \mathbf{x} to another point \mathbf{y} is obtained by summing a vector \mathbf{v} to the \mathbf{x} point.

A set ${\mathcal A}$ of points is called an affine space modeled on the vector space ${\mathcal V}$ if there is a function

$$\mathcal{A} imes \mathcal{V} o \mathcal{A}: (\mathbf{x}, \mathbf{v}) \mapsto \mathbf{x} + \mathbf{v}$$

called affine action, with the properties:

A set ${\mathcal A}$ of points is called an affine space modeled on the vector space ${\mathcal V}$ if there is a function

$$\mathcal{A} imes \mathcal{V} o \mathcal{A} : (\mathbf{x}, \mathbf{v}) \mapsto \mathbf{x} + \mathbf{v}$$

called affine action, with the properties:

A set ${\mathcal A}$ of points is called an affine space modeled on the vector space ${\mathcal V}$ if there is a function

$$\mathcal{A} imes \mathcal{V} o \mathcal{A} : (\mathbf{x}, \mathbf{v}) \mapsto \mathbf{x} + \mathbf{v}$$

called affine action, with the properties:

- **1** $(\mathbf{x} + \mathbf{v}) + \mathbf{w} = \mathbf{x} + (\mathbf{v} + \mathbf{w})$ for each $\mathbf{x} \in \mathcal{A}$ and each $\mathbf{v}, \mathbf{w} \in \mathcal{V}$;
- 2 $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for each $\mathbf{x} \in \mathcal{A}$, where $\mathbf{0} \in \mathcal{V}$ is the null vector;

A set ${\mathcal A}$ of points is called an affine space modeled on the vector space ${\mathcal V}$ if there is a function

$$\mathcal{A} imes \mathcal{V} o \mathcal{A}: (\mathbf{x}, \mathbf{v}) \mapsto \mathbf{x} + \mathbf{v}$$

called affine action, with the properties:

- **1** $(\mathbf{x} + \mathbf{v}) + \mathbf{w} = \mathbf{x} + (\mathbf{v} + \mathbf{w})$ for each $\mathbf{x} \in \mathcal{A}$ and each $\mathbf{v}, \mathbf{w} \in \mathcal{V}$;
- 2 $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for each $\mathbf{x} \in \mathcal{A}$, where $\mathbf{0} \in \mathcal{V}$ is the null vector;
- lacktriangledown for each pair $\mathbf{x},\mathbf{y}\in\mathcal{A}$ there is a unique $(\mathbf{y}-\mathbf{x})\in\mathcal{V}$ such that

$$\mathbf{x} + (\mathbf{y} - \mathbf{x}) = \mathbf{y}.$$

Dimension

The affine space \mathcal{A} is said of dimension n if modeled on a vector space \mathcal{V} of dimension n.

Vector sum vs affine action

Figure 1: (a) Vector sum and difference are given by the parallelogram rule (b) associativity of displacement (point and vector sum) in an affine space

• The addition of vectors is a primitive operation in a vector space.

- The addition of vectors is a primitive operation in a vector space.
- The difference of vectors is defined through the two primitive operations:

$$\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{v}_1 + (-1)\mathbf{v}_2.$$

- The addition of vectors is a primitive operation in a vector space.
- The difference of vectors is defined through the two primitive operations:

$$\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{v}_1 + (-1)\mathbf{v}_2.$$

 Addition and difference of vectors are geometrically produced by the parallelogram rule

- The addition of vectors is a primitive operation in a vector space.
- The difference of vectors is defined through the two primitive operations:

$$\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{v}_1 + (-1)\mathbf{v}_2.$$

- Addition and difference of vectors are geometrically produced by the parallelogram rule
- notice also the associative property of the affine action on a point space.

The sum of a set $\{\mathbf{v}_i\}$ of vectors (i = 1, ..., n) can be geometrically obtained, in an affine space:

• by setting $\mathbf{p}_0 = \mathbf{0}$

The sum of a set $\{\mathbf{v}_i\}$ of vectors (i = 1, ..., n) can be geometrically obtained, in an affine space:

- by setting $\mathbf{p}_0 = \mathbf{0}$
- $\bullet \ \mathbf{p}_i = \mathbf{p}_{i-1} + \mathbf{v}_i,$

The sum of a set $\{\mathbf{v}_i\}$ of vectors (i = 1, ..., n) can be geometrically obtained, in an affine space:

- by setting $\mathbf{p}_0 = \mathbf{0}$
- $\bullet \ \mathbf{p}_i = \mathbf{p}_{i-1} + \mathbf{v}_i,$
- so that

$$\sum_{i} \mathbf{v}_{i} = \mathbf{p}_{n} - \mathbf{p}_{0}$$

The sum of a set $\{\mathbf{v}_i\}$ of vectors (i = 1, ..., n) can be geometrically obtained, in an affine space:

- by setting $\mathbf{p}_0 = \mathbf{0}$
- $\bullet \ \mathbf{p}_i = \mathbf{p}_{i-1} + \mathbf{v}_i,$
- so that

$$\sum_{i} \mathbf{v}_{i} = \mathbf{p}_{n} - \mathbf{p}_{0}$$

Remark: operations on points

1 the addition of points is not defined;

The sum of a set $\{\mathbf{v}_i\}$ of vectors (i = 1, ..., n) can be geometrically obtained, in an affine space:

- by setting $\mathbf{p}_0 = \mathbf{0}$
- $\bullet \ \mathbf{p}_i = \mathbf{p}_{i-1} + \mathbf{v}_i,$
- so that

$$\sum_{i} \mathbf{v}_{i} = \mathbf{p}_{n} - \mathbf{p}_{0}$$

- the addition of points is not defined;
- 2 the difference of two points is a vector;

The sum of a set $\{\mathbf{v}_i\}$ of vectors (i = 1, ..., n) can be geometrically obtained, in an affine space:

- by setting $\mathbf{p}_0 = \mathbf{0}$
- $\mathbf{p}_i = \mathbf{p}_{i-1} + \mathbf{v}_i$
- so that

$$\sum_{i} \mathbf{v}_{i} = \mathbf{p}_{n} - \mathbf{p}_{0}$$

- 1 the addition of points is not defined;
- 2 the difference of two points is a vector;
- 3 the sum of a point and a vector is a point.

Affine combinations

Positive, affine and convex combinations

Three types of combinations of vectors or points can be defined. They lead to the concepts of cones, hyperplanes and convex sets, respectively.

Positive combination

Let $\mathbf{v}_0, \dots, \mathbf{v}_d \in \mathbb{R}^n$ and $\alpha_0, \dots, \alpha_d \in \mathbb{R}^+ \cup \{0\}$. The vector

$$\alpha_0 \mathbf{v}_0 + \dots + \alpha_d \mathbf{v}_d = \sum_{i=0}^d \alpha_i \mathbf{v}_i$$

is called a positive combination of such vectors.

The set of all the positive combinations of $\{\mathbf{v}_0, \dots, \mathbf{v}_d\}$ is called the positive hull of $\{\mathbf{v}_0, \dots, \mathbf{v}_d\}$ and denoted $\operatorname{pos} \{\mathbf{v}_0, \dots, \mathbf{v}_d\}$.

This set is also called the cone generated by the given vectors

Let $\mathbf{p}_0, \dots, \mathbf{p}_d \in \mathbb{E}^n$ and $\alpha_0, \dots, \alpha_d \in \mathbb{R}$, such that $\alpha_0 + \dots + \alpha_d = 1$. The point

$$\sum_{i=0}^d \alpha_i \mathbf{p}_i := \mathbf{p}_0 + \sum_{i=1}^d \alpha_i (\mathbf{p}_i - \mathbf{p}_0)$$

is called an affine combination of the points $\mathbf{p}_0, \dots, \mathbf{p}_d$.

The set of all affine combinations of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$ is an affine subspace, denoted by $\inf \{\mathbf{p}_0, \dots, \mathbf{p}_d\}$ It is easy to verify that:

$$\operatorname{aff} \{ \mathbf{p}_0, \dots, \mathbf{p}_d \} = \mathbf{p}_0 + \operatorname{lin} \{ \mathbf{p}_1 - \mathbf{p}_0, \dots, \mathbf{p}_d - \mathbf{p}_0 \}.$$

The dimension of an affine subspace is the dimension of the corresponding linear vector space.

- The dimension of an affine subspace is the dimension of the corresponding linear vector space.
- ② Affine subspaces of \mathbb{E}^d with dimensions 0, 1, 2 and d-1 are called points, lines, planes and hyperplanes, respectively.

- The dimension of an affine subspace is the dimension of the corresponding linear vector space.
- ② Affine subspaces of \mathbb{E}^d with dimensions 0, 1, 2 and d-1 are called points, lines, planes and hyperplanes, respectively.
- 4 Affine subspaces are also called flats.

- The dimension of an affine subspace is the dimension of the corresponding linear vector space.
- ② Affine subspaces of \mathbb{E}^d with dimensions 0, 1, 2 and d-1 are called points, lines, planes and hyperplanes, respectively.
- 4 Affine subspaces are also called flats.

- The dimension of an affine subspace is the dimension of the corresponding linear vector space.
- ② Affine subspaces of \mathbb{E}^d with dimensions 0, 1, 2 and d-1 are called points, lines, planes and hyperplanes, respectively.
- Affine subspaces are also called flats.

Double description

Every affine subspace can be described either as

• the intersection of affine hyperplanes, or as

- The dimension of an affine subspace is the dimension of the corresponding linear vector space.
- ② Affine subspaces of \mathbb{E}^d with dimensions 0, 1, 2 and d-1 are called points, lines, planes and hyperplanes, respectively.
- Affine subspaces are also called flats.

Double description

Every affine subspace can be described either as

- the intersection of affine hyperplanes, or as
- the affine hull of a finite set of points.

Convex combinations

Convex combination

Let $\mathbf{p}_0, \dots, \mathbf{p}_d \in \mathbb{E}^n$ and $\alpha_0, \dots, \alpha_d \geq 0$, with $\alpha_0 + \dots + \alpha_d = 1$. The point

$$\alpha_0 \mathbf{p}_0 + \dots + \alpha_d \mathbf{p}_d = \sum_{i=0}^d \alpha_i \mathbf{p}_i$$

is called a convex combination of points $\mathbf{p}_0, \dots, \mathbf{p}_d$.

A convex combinations is both positive and affine.

Convex hull

The set of all convex combinations of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$ is a convex set, called convex hull of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$, and is denoted by $\operatorname{conv} \{\mathbf{p}_0, \dots, \mathbf{p}_d\}$.

Convex hull

The set of all convex combinations of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$ is a convex set, called convex hull of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$, and is denoted by $\operatorname{conv} \{\mathbf{p}_0, \dots, \mathbf{p}_d\}$.

Properties

 the convex hull of a set of points is the intersection of all convex sets that contain them

Convex hull

The set of all convex combinations of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$ is a convex set, called convex hull of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$, and is denoted by $\operatorname{conv} \{\mathbf{p}_0, \dots, \mathbf{p}_d\}$.

Properties

- the convex hull of a set of points is the intersection of all convex sets that contain them
- the convex hull of a set of points is the smallest set that contains them

ASSIGNMENT

ullet Produce (and draw) 100 random points within the unit square $[0,1]^2$;

ASSIGNMENT

- Produce (and draw) 100 random points within the unit square [0, 1]²;
- Produce (and draw) 1000 random points within S_1 , the 1D sphere (circle) of unit radius centered at the origin (0,0);

References

Linear Algebra Done Right book NumPy tutorial