Proyecto 1.

Cristian David Gutiérrez

1 Ecuación de Schrödinger en una dimensión.

La evolución temporal de un ket de estado $|\psi(x)\rangle$ está gobernado por la ecuación de Schrödinger en una dimensión:

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(x)\rangle = \hat{H}(t) |\psi(x)\rangle$$

Donde $\hat{H}(t)$ es un operador asociado al observable de energía del sistema, llamado hamiltoniano. Clásicamente, el hamiltoniano de una partícula de masa m, con momentum lineal p y sujeta a un potencial V escalar que únicamente depende de la posición x de la partícula, es:

$$\mathcal{H} = \frac{p^2}{2m} + V(x)$$

Puede mostrarse que para la descripción cuántica basta con promover las cantidades p y x a operadores \hat{p} y \hat{x} , y por tanto el hamiltoniano está dado por

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x})$$

Si escogemos la representación de posición donde el estado es representado mediante la función de onda $\Psi(x,t)$, $\hat{p}=i\hbar \,\partial/\partial x\,$ y $\hat{x}=x$, la ecuación de Schrödinger es

$$i\hbar\frac{\partial}{\partial t}\Psi(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi(x,t) + V(x)\Psi(x,t) \tag{1}$$

Una forma de resolver esta ecuación diferencial es mediante el método de separación de variables, si la función $\Psi(x,t)$ se puede separar como un producto de la forma $\Psi(x,t) = \psi(x)\phi(t)$, la ecuación anterior queda de la siguiente forma

$$\begin{split} i\hbar\psi(x)\frac{\mathrm{d}}{\mathrm{d}t}\phi(t) &= \phi(t)\bigg[-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) + V(x)\psi(x)\bigg]\\ \frac{i\hbar}{\phi(t)}\frac{\mathrm{d}}{\mathrm{d}t}\phi(t) &= \frac{1}{\psi(x)}\bigg[-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) + V(x)\psi(x)\bigg]\\ F(t) &= G(x) \end{split}$$

Se ha llegado a una igualdad entre dos funciones de variables diferentes e independientes, lo que es verdad siempre que F(t) = E = G(x), con E una constante; de manera que la ecuación se ha separado en dos:

$$G(x) = E \longrightarrow -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} \psi(x) + V(x)\psi(x) = E\psi(x)$$
 (2)

$$F(t) = E \longrightarrow \frac{\mathrm{d}}{\mathrm{d}t}\phi(t) = -\frac{iE}{\hbar}\phi(t)$$
 (3)

La ecuación (2) se puede resumir en la expresión $H(p,x)\psi(x)=E\psi(x)$, conocido como el problema de autovalores del operador diferencial H(p,x), en el que las soluciones o autofunciones son indexadas por el autovalor $E=E_n$, tal que $H(p,x)\psi_n(x)=E_n\psi_n(x)$. Lo que hace que la solución a la ecuación (3) sean

de la forma $\phi_n(t) = \exp\left\{-\frac{iE_n}{\hbar}t\right\}$, que debido al caracter lineal de la ecuación original, hace que la solución general sea

$$\Psi(x,t) = \sum_{n=0}^{\infty} c_n \phi_n(t) \psi_n(x) = \sum_{n=0}^{\infty} c_n \exp\left\{-\frac{i}{\hbar} E_n t\right\} \psi_n(x)$$
(4)

Bajo la condición de normalización $\int dx \Psi^*(x,t)\Psi(x,t)=1$ se sigue que los coeficientes son tales que

$$\sum_{n} |c_n|^2 = 1$$

Si en particular se restringen a valores reales:

$$\sum_{n} c_n^2 = 1 \tag{5}$$

2 Algoritmo para la solución.

A continuación se desarrolla un algoritmo para hallar las autofunciones en el problema de autovalores antes presentado:

$$\left[-\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x) \right] \psi(x) = E_n \psi(x)$$

Si el potencial es una constante , V_0 , fuera de la región $-a/2 \le x \le a/2$; al multiplicar por m/\hbar^2 y haciendo adimensional el argumento de las funciones:

$$\left[-\frac{1}{2} \frac{\mathrm{d}^2}{\mathrm{d}\eta^2} + \frac{ma^2}{\hbar^2} V(\eta) \right] \psi(\eta) = \frac{Ema^2}{\hbar^2} \psi(\eta), \qquad \eta \equiv \frac{x}{a}$$
 (6)

El algoritmo se trata de convertir este problema de autovalores para un operador diferencial en un problema de autovalores matricial; para ello recurrimos al método de diferencias finitas, la variable η está definida en $-1 \le \eta \le 1$ y definimos $\Delta \eta = 2/N$, de manera que el intervalo se ha discretizado en N puntos η_j . Con esto se hacen las siguientes conversiones:

$$\psi(\eta) \longrightarrow \psi(\eta_{j}) \equiv \psi_{j}
V(\eta) \longrightarrow V(\eta_{j}) \equiv V_{j}
\frac{d^{2}\psi(\eta)}{d\eta^{2}} \longrightarrow \frac{\psi(\eta_{j+1}) - 2\psi(\eta_{j}) + \psi(\eta_{j-1})}{\Delta\eta^{2}} \equiv \frac{\psi_{j+1} - 2\psi_{j} + \psi_{j-1}}{\Delta\eta^{2}}$$
(7)

Reemplazando en (5)

$$-\frac{1}{2\Delta\eta^{2}}\psi_{j+1} + \left[\frac{1}{\Delta\eta^{2}} + \frac{ma^{2}}{\hbar^{2}}V_{j}\right]\psi_{j} - \frac{1}{2\Delta\eta^{2}}\psi_{j-1} = \frac{Ema^{2}}{\hbar^{2}}\psi_{j}$$

Esta expresión se puede escribir en forma matricial

$$\begin{pmatrix} \frac{1}{\Delta\eta^{2}} + \frac{ma^{2}}{\hbar^{2}} V_{1} & -\frac{1}{2\Delta\eta^{2}} & 0 & \dots & 0 \\ -\frac{1}{2\Delta\eta^{2}} & \frac{1}{\Delta\eta^{2}} + \frac{ma^{2}}{\hbar^{2}} V_{2} & -\frac{1}{2\Delta\eta^{2}} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & -\frac{1}{2\Delta\eta^{2}} & \frac{1}{\Delta\eta^{2}} + \frac{ma^{2}}{\hbar^{2}} V_{N-1} \end{pmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \vdots \\ \psi_{N-1} \end{pmatrix} = \frac{Ema^{2}}{\hbar^{2}} \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \vdots \\ \psi_{N-1} \end{pmatrix}$$
(8)

Un problema de autovalores de la forma $A\vec{\mathbf{X}} = \lambda \vec{\mathbf{X}}$ que es fácilmente soluble computacionalmente. Hay que agregar las condiciones sobre la frontera del intervalo, $\psi_0 = A_0$ y $\psi_N = A_N$, siendo estas constantes A_0, A_N determinadas a través de las soluciones fuera del potencial, donde es una constante.

2.1 Soluciones fuera del potencial.

Si fuera del intervalo [-1,1] el potencial es constate e igual a V_0 , entonces la ecuación de Schrödinger adimensional es

$$\frac{d^{2}\psi(\eta)}{d\eta^{2}} + \frac{2ma^{2}}{\hbar^{2}}(E - V_{0})\psi(\eta) = 0$$

Cuya solución es

$$\psi(\eta) = A \exp\left\{-\frac{2ma^2}{\hbar^2}(E - V_0)|\eta|\right\} \qquad |\eta| > 1$$
(9)

Con las condiciones de frontera

$$\psi(\eta_0) = \psi_0 = A \exp\left\{-\frac{2ma^2}{\hbar^2}(E - V_0)\right\} = \psi_N = \psi(\eta_N)$$

3 Soluciones halladas.

3.1 Pozo Finito.

Según el potencial entregado, las autofunciones y los autovalores devueltos por el algoritmo son

Figure 1: Autofunciones del pozo finito en la variable adimensional y=x/L

Figure 2: Autovalores del pozo finito en unidades mL^2E_n/\hbar^2

Se sabe que la densidad de probabilidad es proporcional al módulo cuadrado de la función de onda $|\psi_n(y)|^2$, la gráfica a continuación presenta esta densidad de probabilidad.

Figure 3: Densidades de probabilidad para el pozo de potencial finito.

La solución dependiente del tiempo se construye a partir de los autoestados del hamiltoniano $\psi_n(y)$, como la combinación

$$\Psi(y,t) = \sum_{n=1}^{4} c_n e^{-iE_n t/\hbar} \psi_n(y)$$
(10)

Donde los coeficientes c_n se escogen según la normalización (5) y aleatoriamente.

<matplotlib.legend.Legend at 0x8aac292c>

Figure 4: Densidades de probabilidad para el pozo de potencial finito.

Por las condiciones sobre los parámetros como la masa y la constante de Planck reducida \hbar , las escalas de tiempo deben ser muy grandes para notar cambios en la densidad de probabilidad.

3.2 Pozo Infinito.

Haciendo que la altura del pozo finito sea mucho mayor que su ancho $h \gg l$, se puede obtener una aproximación para el pozo infinito, a continuación se muestran sus autofunciones

Figure 5: Autofunciones del pozo infinito en la variable adimensional y=x/L

Y los autovalores respectivos.

Figure 6: Autovalores del pozo infinito en unidades mL^2E_n/\hbar^2

Además de las densidades de probabilidad.

Figure 7: Densidades de probabilidad para el pozo de potencial infinito.

Al igual que para el potencial finito, los coeficientes para la solución dependiente del tiempo se escogieron aleatoriamente y satisfaciendo la condición de normalización (5).

<matplotlib.legend.Legend at 0x9840d16c>

Figure 8: Autovalores del pozo infinito en unidades mL^2E_n/\hbar^2

Debido a que el potencial para ambos pozos vale 0 dentro de las paredes, las autofunciones y los autovalores son iguales; debido a la forma en que se programó el algoritmo, las condiciones iniciales para cada potencial son fijas $\psi(-a/2) = \psi(a/2) = 0$, lo que da lugar a la igualdad de las autofunciones y autovalores. Además, el algoritmo no puede distinguir entre autofunciones acotadas y por ello los autovalores para el pozo finito pueden corresponder a funciones no ligadas. Es por esto que el algoritmo programado no puede resolver el problema del pozo finito.

3.3 Potencial Cuadrático.

Cambiando el potencial a la forma $V(y) = y^2$, las autofunciones del potencial halladas se muestran en la figura

Figure 9: Autofunciones del potencial cuadrático en la variable adimensional y=x/L

Y los autovalores asociados a dichas autofunciones:

Figure 10: Autovalores del potencial cuadrático en unidades mL^2E_n/\hbar^2

Obteniendo el módulo cuadrado de las autofunciones, las densidades de probabilidad son

Figure 11: Autovalores del potencial cuadrático en unidades mL^2E_n/\hbar^2