Discrete Mathematics: Homework 4

Name ID: Number

2020.3.28

1. Show that a set S is infinite if and only if there is a proper subset $A \subset S$ such that |A| = |S|

Solution:

Prove ONLY IF:

If S is infinite and countable, there exists an infinite subset $\{S_1, S_2, S_3, \dots\} \subset S$

Let
$$A = \{S_{i+1}\}$$
 and $A \subset S$

$$|A| = \infty - 1 = |S| = \infty$$

Prove IF:

Suppose S is finite, $\forall i \in \mathbb{N}^*, A = a_i, S = s_i, a_i = s_i, |S| = |A|$.

Because $A \subset S$, $\exists b \in (S - A) \neq \emptyset$, but b doesn't exist.

So S is not finite. S is infinite.

2. Prove or disprove $|\{(x,y) \in R^2 : x^2 + y^2 = 1\}| = |R|$.

Solution:

 $f: (x,y) \to \mathbb{R}: (x,y) \mapsto \frac{y}{x} \text{ is a bijection.}$

3. Prove or disprove $|\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}| = |R|$.

Solution:

$$f: (x,y) \to \mathbb{R}: (x,y) \mapsto \tan(\frac{1}{2}\pi xy)$$

$$f: \mathbb{R} \to (x,y): (a \in \mathbb{R}, b \in \mathbb{R}) \mapsto (\frac{2\arctan(a)}{\pi}, \frac{2\arctan(b)}{\pi})$$

4. Prove or disprove $|\{X \subseteq \mathbb{Z}^+ : X \text{ is a finite set}\}| = |\mathbb{Z}^+|$

Solution:

$$A = \{X \subseteq \mathbb{Z}^+ : X \text{ is a finite set}\}/= a_i$$

- (a) $f: A \to \mathbb{Z}^+: a_1, a_2, \dots, a_n \mapsto N_i = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$ is an injection.
- (b) \mathbb{Z}^+ is an infinite countable set. so there exists $A = \{z_1, z_2, z_3, \dots\} \in \mathbb{Z}^+$
- 5. Prove or disprove $|\{(a_1, a_2, a_3, \dots) : a_1, a_2, a_3, \dots \in \mathbb{Z}^+\}| = |\mathbb{Z}^+|$

Solution:

Let
$$A = \{(a_1, a_2, a_3, \dots) : a_1, a_2, a_3, \dots \in \mathbb{Z}^+\}$$

$$A \to \mathbb{Z}^+ : a_i \mapsto i$$

$$\mathbb{Z}^+ \to A: i \mapsto a_i$$

So, $A \to \mathbb{Z}^+$ is a bijection.

- 6. Find a countably infinite number of subsets of \mathbb{Z}^+ , say $A_1, A_2, \dots \in \mathbb{Z}^+$, such that the following requirements are simultaneously satisfied:
 - (a) A_i is countably infinite for every i = 1, 2, ...;
 - (b) $A_i \cap A_j = \emptyset$, $\forall i \neq j$;
 - (c) $\bigcup_{i=1}^{\infty} A_i = \mathbb{Z}^+$.

Solution:

Let
$$P = \{x | x | sprime number\}$$

$$A_i = \{y|y = \prod_{j=0}^{j \le \infty} p_j^{e^j}, \sum_{j=0}^{\infty} e^j = i\}$$

e.g.
$$A_1 = \{1, 2, 3, \dots\}, A_2 = \{1 \times 2, 1 \times 3, \dots, 2 \times 2, 2 \times 3, \dots\}$$

- (1) It's obvius that A_i is countably infinite for $i \in \mathbb{N}^*$
- (2) By Fundamental Theorem of Arithmetic, Every integer n > 1 can be uniquely written as $n = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}$, where $p_1 < p_2 < \dots < p_r$ are primes and $e_1, e_2, \dots, e_r \ge 1$. Uniqueness gets (b) and existence gets (c).