Random Forest and Generalization

A Probabilistic Analysis of Decision Trees and Bootstrap Methods

Güneş Akbaş

Department of Mathematics Bilkent University

April 9, 2025

Content

1. What is Supervised Learning?

2. Decision Trees

3. Bootstrap Method

Supervised Learning Overview

Training Data:

We assume a training set

$$\mathcal{D} = \{(x_i, y_i) \mid i = 1, 2, \dots, n\},\$$

where:

- $x_i \in \mathcal{X}$ is the feature vector,
- $y_i \in \mathcal{Y}$ is the target value.

Target Function and Noise:

Supervised learning posits an unknown target function

$$f: \mathcal{X} \to \mathcal{Y}$$
,

and we assume the observed target values are generated by

$$y_i = f(x_i) + \varepsilon_i,$$

where ε_i models noise (e.g., measurement error or inherent randomness).

Supervised Learning Overview

Learning Objective:

Our goal is to select a hypothesis f from a family \mathcal{H} (e.g., linear functions, trees, etc.) that approximates f^* well. This is often accomplished by minimizing a loss function. For example, in regression with squared error loss:

$$\min_{\hat{f} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2.$$

Interpretation:

 ε_i represents the *noise* in our target samples, and f is the ideal target function that we wish to approximate through learning.

Schematic Overview: Learning Process

Decision Trees

Definition of a Decision Tree:

Decision Tree

A decision tree is a measurable function

$$T: \mathcal{X} \to \mathcal{Y}$$

constructed by partitioning ${\mathcal X}$ into a finite collection of disjoint measurable subsets (called *leaves*)

$$\{A_1, A_2, \ldots, A_K\},\$$

$$\mathcal{X} = \bigcup_{k=1}^K A_k$$
, with $A_i \cap A_j = \emptyset$ for $i \neq j$.

$$T(x) = \sum_{k=1}^K a_k \mathbf{1}_{A_k}(x),$$

Linear Regression vs. Regression Tree (Step Function)

Bias-Variance Decomposition

• The mean squared error (MSE) at any x is decomposed as:

$$\mathbb{E}[(\hat{f}(x) - f(x))^2] = \underbrace{(\mathbb{E}[\hat{f}(x)] - f(x))^2}_{\text{Bias}^2} + \underbrace{\text{Var}[\hat{f}(x)]}_{\text{Variance}}.$$

• Bias:

- Originates from the hypothesis set/model class.
- A simpler or mis-specified model may not capture the true function f(x), leading to high bias.

Variance:

- Arises from the randomness in the training dataset.
- With fewer data points, $\hat{f}(x)$ may vary significantly from sample to sample.
- Together,

$$MSE = Bias^2 + Variance,$$

highlighting a trade-off: richer hypothesis sets (lower bias) can lead to higher variance unless controlled by more data.

Overfitting in Polynomial Regression

Polynomial touches all blue training data points

New red data points are not touched by the overfitted polynomial

Bootstrap Aggregation for Regression Trees

• Observed Data: We have a dataset

$$S = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}, x_i \in \mathbb{R}^d, y_i \in \mathbb{R}.$$

• **Empirical Distribution:** The empirical distribution of *S* is

$$\hat{P}(x,y) = \frac{1}{n} \sum_{i=1}^{n} \delta_{(x_i,y_i)}(x,y),$$

which places mass 1/n on each data point.

- **Bootstrap Sampling:** For each bootstrap replicate b = 1, ..., B:
 - Draw a sample $S^{*(b)}$ of size n with replacement from S.
 - Note: Some points may be repeated, while about 37% of the original points will be left out (out-of-bag).

Bagging

Training Regression Trees: For each bootstrap sample $S^{*(b)}$, train a regression tree to obtain an estimator

$$\hat{f}^{(b)}(x)$$
.

Aggregation: The bagged (aggregated) estimator is

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{(b)}(x).$$

Benefits:

- Variance Reduction: Averaging reduces the variance of individual trees.
- Out-of-Bag (OOB) Error: OOB samples provide an internal and nearly unbiased estimate of the generalization error.

Bagging: Theoretical Variance Reduction

• Consider B regression trees, with each tree $\hat{f}_b(x)$ having variance

$$Var[\hat{f}_b(x)] = v.$$

- Let $\epsilon_b(x) = \hat{f}_b(x) \mathbb{E}[\hat{f}_b(x)]$ be the error for tree b.
- Assume a constant pairwise correlation ρ between tree errors:

$$Cov(\epsilon_b(x), \epsilon_{b'}(x)) = \rho v, \quad b \neq b'.$$

• The bagged (aggregated) predictor is

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x).$$

• Its variance is computed as

$$\operatorname{Var}\left[\hat{f}_{\mathsf{bag}}(x)\right] = \frac{\mathsf{v}}{\mathsf{B}} + \rho\,\mathsf{v}\left(1 - \frac{1}{\mathsf{B}}\right).$$

• In the limit of large B, this is approximately

$$\operatorname{Var}\left[\hat{f}_{\operatorname{bag}}(x)\right] \approx \rho \, v,$$

Visual Illustration of Bagging Variance Reduction

References

The End