Name: Rochita Das

Registration No: A01-2112-0735-11

Roll No: 91/5T5/141003

Time series and Regression analysis of Yahoo share price of Japan and USA

Objectives:

- 1. Firstly, time series analysis, separately on both yahoo share price data of USA and Japan.
- II. Secondly, regression analysis, considering some relevant exogenous variables and also considering mutual interaction between the two share prices.

Key words: ARIMA, GARCH, VAR, Causality, 25L5

Data collection:

Data are collected on the following variables:

```
    Yahoo share price of USA
    Yahoo share price of Japan
    Yahoo share price of Japan
    NASDAQ (an American stock exchange index)
    NIKKEI (Tokyo stock exchange index)
    Yen - Dollar exchange ratio
    Yahoo share price of USA
    Yendogenous variable
    X1 (exogenous variable)
    X2 (exogenous variable)
    X3 (exogenous variable)
```

For variables Y_1, Y_2, X_1, X_2 the market closing values are considered.

- Y_1 , Y_2 are considered as endogenous variables as they affect each other.
- X_1 , X_2 , X_3 are considered as exogenous variable. For this reason their values are considered at one lag before than endogenous variables.
- \checkmark Data on Y_1, Y_2 are collected from 20/01/2010 to 26/01/2016.
- ✓ Data on X_1, X_2, X_3 are collected from 19/01/2010 to 25/01/2016.
- ✓ For prediction purpose, data on each variable are collected for 10 days after the last time point.

Data are collected from the following sites:

finance.yahoo.com

https://research.stlouisfed.org/fred2/series/EXJPUS

A snapshot of data set is,

Date	usa	japan	Date_1	nasdaq	nikkei	exc ratio	time
10-02-15	43.07	7.12	09-02-15	4726.01	17335.85	118.84	1274
11-02-15	42.96	7.13	10-02-15	4787.64	17678.74	118.68	1275
12-02-15	43.93	7.15	11-02-15	4801.18	17504.62	118.88	1276
13-02-15	44.42	7.27	12-02-15	4857.61	17648.5	119.13	1277
17-02-15	43.53	7.27	13-02-15	4893.84	17711.93	118.88	1278
18-02-15	43.65	7.37	17-02-15	4899.27	17652.68	119.36	1279
19-02-15	44.37	7.35	18-02-15	4906.36	17652.68	119.72	1280
20-02-15	44.11	7.27	19-02-15	4924.7	17979.72	120.06	1281
23-02-15	43.53	7.26	20-02-15	4955.97	17913.36	119.47	1282
24-02-15	43.38	7.55	23-02-15	4960.97	18004.77	119.76	1283
25-02-15	44.43	7.73	24-02-15	4968.12	17987.09	120.22	1284
26-02-15	44.45	8	25-02-15	4967.14	18199.17	120.93	1285
27-02-15	44.28	8.04	26-02-15	4987.89	18264.79	121.17	1286
02-03-15	44.11	8.01	27-02-15	4963.53	18332.3	121.2	1287
03-03-15	42.62	7.92	02-03-15	5008.1	18466.92	121.5	1288
04-03-15	43.99	7.86	03-03-15	4979.9	18603.48	121.28	1289
05-03-15	44.16	8.1	04-03-15	4967.14	18585.2	121.17	1290
06-03-15	43.44	7.7	05-03-15	4982.81	18785.79	121.3	1291

(I). Time Series Analysis

General approach:

Additive model on log transformed data

Mean stationary

Variance stationary

Confidence interval

Forecast

Different statistical tests, which are used in this analysis:

1. Mann-Kendall Test for Monotonic Trend

 H_0 : No monotonic trend vs H_1 : Monotonic trend is present

2. Kruskal-Wallis test by ranks

(non-parametric One-way ANOVA on ranks)

 H_0 : medians of all groups are identical (seasonality is absent)

vs H_1 : at least one population median of one group is different from the population median of at least one other group.

3. <u>Ljung-Box test</u>

 H_0 : Data are independently distributed (autocorrelation in population is 0) H_1 : Data are not independently distributed; they exhibit serial correlation.

4. <u>Lagrange multiplier test</u>

 H_0 : No heteroscedasticity is present vs H_1 : Heteroscedasticity is present

5. Anscombe test on kurtosis

 H_0 : Kurtosis = 3 vs H_1 : Kurtosis > 3

6. Granger causality test

 H_{0A} : one time series is **not** causal in forecasting another time series. vs H_{1A} : one time series is causal in forecasting another time series.

 H_{0B} : two time series are **not** instantaneous causal to each other. vs H_{1B} : two time series are instantaneous causal to each other.

(A). Time Series Analysis of Yahoo Share price of USA

✓ plot shows a very prominent increasing trend.

ACF, PACF plots of log transformed data are,

- ✓ The Mann kendal test: pvalue = < 2.22e-16
 - presence of significant trend

 1^{st} order difference plot is as follow,

- ✓ The plot shows a random fluctuation about The line Y=0
- ✓ Mann kendal test on 1^{st} order difference gives *p-value =0.83552* confirming absence of significant trend

* Absence of weekly seasonality,

Week wise plot of detrend data

* Absence of monthly seasonality

✓ Kruskal-Wallis test , p-value = 0.2003 also supports it.

Hence the detrended data is considered as stationary data.

The ACF, PACF plots of stationary data are as follows

ACF of stationary data

PACF of stationary data

- \square ACF tails off and PACF shows few significant spikes, hence AR(p) model with a large p value is appropriate.
- \square To keep the model parsimonious we opt for ARMA (p,q)model.

The model ARIMA(1,1,3) is chosen by minimum AIC criterion.

Yahoo share price of USA Y_{1t} at t^{th} time point,

$$\begin{split} Y_{1t} - Y_{1\overline{t-1}} &= 0.6422 * (Y_{1\overline{t-1}} - Y_{1\overline{t-2}}) + \varepsilon_t - 0.6426 * \varepsilon_{t-1} \\ &- 0.0041 * \varepsilon_{t-2} - 0.0562 * \varepsilon_{t-3} \end{split}$$

With aic = -7633.88

Ljung-Box test on residuals of ARIMA(1,1,3) is as follow,

Lags	Statistic	df	p-value
5	0.3959217	5	0.9990010
10	5.4452888	10	0.8611389
15	11.1606360	15	0.7422577

The test says ARIMA residuals are purely random. Hence a good fit.

The following plot shows fitted value with original value.

Observed data & fitted ARIMA(1,1,3)

The Residual plot is as follows,

- ✓ Large fluctuations followed by small fluctuations and again followed by large and this continues
- ✓ The Lagrange multiplier test for ARCH(1) gives p-value = 7.818e-05,
 which confirms at least ARCH(1) is required to model the volatility present
 in the ARIMA residual.

ACF, PACF plots of residual are as follow,

ACF of residual of ARIMA(1,1,3)

PACF of residual of ARIMA(1,1,3)

by minimum AIC criterion GARCH(1,1) is chosen and it is,

ARIMA residual,
$$r_t = 7.213*10^{-4} + \varepsilon_t*\sqrt{\widehat{h_t}}$$
 Where $\widehat{h_t} = 1.426*10^{-5} + 0.05264*r_{t-1}^2 + 0.91*h_{t-1}$

✓ **Ljung-Box Test** on GARCH(1,1) residual gives p-value = 0.9164 which says the model to be adaequate to capture volatility. The test result.

The plot of conditional variance i.e., $\widehat{h_t}$ is as follow,

Conditional variance fitted by by GARCH(1,1)

Now to find the C.I. $dist^n$ of ARIMA residual is found first. Kurtosis $(r_t) = 5.867355$ (>3)

- ✓ Anscombe test gives p-value < 2.2e-16 which says kurtosis significantly differ from 3.
 </p>
- ✓ The QQ-plot also supports the fact obtained above

ARIMA(1,1,3) Residuals

- Having large frequency on tail observations, we fit 't(v)' distribution.
- v is estimated from ARIMA residual as , v = 5.

Now the original log transformed data with confidence interval is plotted as follow,

Forecast:

Time point	Observed value	Predicted value	95 % lower conf limit	95 % upper conf limit
27-01-16	29.69	29.96680	28.60014	31.39876
28-01-16	28.75	29.95979	28.60064	31.38352
29-01-16	29.51	29.94493	28.59342	31.36032
01-02-16	29.57	29.93538	28.59103	31.34293
02-02-16	29.06	29.92924	28.59169	31.32937
03-02-16	27.68	29.92532	28.59425	31.31835
04-02-16	29.15	29.92278	28.59792	31.30901
05-02-16	27.97	29.92116	28.60228	31.30086
08-02-16	27.05	29.92012	28.60698	31.29352
09-02-16	26.82	29.91946	28.61187	31.28680

(B). Time Series Analysis of Yahoo Share price of Japan

Log Yahoo Closing share price in Japan

✓ The plot shows prominent decreasing trend with two sharp jumps.

About the sharp jumps:

- The plot shows prominent decreasing trend with two sharp jumps at time points t=389 and t=937, i.e., at 03/08/2011 and 08/10/2013 respectively.
- The first sharp jump can be assumed to be caused by the **effect of** earthquake and tsunami that hit Japan in 2011.

ACF, PACF plots of log transformed data are,

PACF of log yahoo share price

- ✓ Mann kendal test 2-sided p-value = < 2.22e-16</p>
 - presence of significant trend.

The plot of $\mathbf{1}^{st}$ order difference is as follow,

1st order difference data

plot shows presence of two very big outliers, hence the method is discarded.

piece wise linear and quadratic splines are fitted. They are as follows,

Time point	intercept	time	time^2	
1:389	4.83345	-0.0001942		
390:937	3.154	-3.337* 10 ⁻³	$3.372*10^{-6}$	
938:1515	6.744	-7.028* 10 ⁻³	$2.630 * 10^{-6}$	

Plot of fitted trend with original log transformed data is,

Observed value with fitted piece-wise trend

The plot of detrended data is shown below.

Detrend through piece-wise regression

- ✓ The plot shows more or less a random fluctuation about The line Y=0,
- ✓ Mann kendal test on detrended data, 2-sided p-value =0.92061 confirms absence of significant trend.

* Absence of weekly seasonality,

Week wise plot of detrended data

* Removal of monthly seasonality,

Month wise boxplot on detrend data

- ✓ Month wise boxplots reveals presence of monthly seasonality
- ✓ Kruskal-Wallis test: p-value < 2.2e-16 i.e, significant monthly seasonality is present.
 </p>

[Note: this test is performed assuming month-wise variance not to differ significantly]

By method of average monthly seasonality is removed. The seasonal indices are,

Month	Seasonal indices	Month	Seasonal indices
January	-0.024448540	July	0.032761126
February	0.028520220	August	0.008119021
March	0.061377242	September	-0.023294866
April	0.025797036	October	-0.024831424
May	-0.002915900	November	-0.066095090
June	0.005856755	December	-0.020845580

Detrended data is deseasonalised by subtracting corresponding seasonal indices.

- \checkmark Kruskal-Wallis test: p-value = 0.9879 which says monthly seasonality is absent
- ✓ Following boxplot also supports it.

Boxplot on detrended & deseasonalised data

Hence we can consider this detrended and deseasonalised data as stationary data.

The ACF, PACF plots of stationary data are as follows,

ACF of stationary data

PACF of stationary data

- \checkmark PACF tails off and ACF shows few significant spikes ,hence MA(q) model is appropriate.
- \checkmark To keep the model parsimonious we opt for ARMA (p,q)model.

By min^m AIC criterion, the model is ARMA(2,2) [on stationary data] as follow, detrended and deseasonalised Yahoo share price of Japan Z_{2t} at t^{th} time point,

$$Z_{1t} = -0.0005 - 0.0356 * Z_{1\overline{t-1}} + 0.9437 * Z_{1\overline{t-2}} + \varepsilon_t + 0.9809 * \varepsilon_{t-1} - 0.0191 * \varepsilon_{t-2}$$

With aic = -7458.5

Ljung-Box test on ARMA residuals is as follow,

Lags	Statistic	df	p-value	
5	5.552310	5	0.3246753	
10	7.725947	10	0.6573427	
15	15.566587	15	0.4175824	

Test tells ARMA residuals are purely random. Hence a good fit.

The following plot shows fitted value with stationary value,

Stationary & fitted ARMA(2,2)

Residual plot is,

✓ Large fluctuations followed by small fluctuations and again followed by large and this continues

ACF, PACF plot of residuals are,

ACF of residual of ARMA(2,2)

PACF of residual of ARMA(2,2)

✓ The Lagrange multiplier test for ARCH(1) gives p-value = 0.04468, which
confirms at least ARCH(1) is required to model the volatility present in the
ARIMA residual.

By min^m AIC criterion the model is GARCH(1,1)

ARMA residual,
$$r_t = -2.835*10^{-6} + \varepsilon_t*\sqrt{\widehat{h_t}}$$
 Where $\widehat{h_t} = 1.755*10^{-5} + 0.01459*r_{t-1}^2 + 0.9435*h_{t-1}$

 \triangleright Ljung-Box Test on GARCH(1,1) residual: p-value = 0.7111 which says the model to be adaequate to capture volatility.

The plot of conditional variance, i.e., $\widehat{h_t}$ is as follow,

Conditional variance fitted by by GARCH(1,1)

To find the C.I. $dist^n$ of ARIMA residual is found first Kurtosis $(r_t) = 4.35881 (>3)$

- \checkmark Anscombe test gives p-value = 4.768e-12 which says kurtosis significantly differ from 3.
- ✓ The QQ-plot also supports the fact obtained above

ARMA(2,2) Residuals

- For having large frequency on tail observations, we fit 't(v)' distribution.
- v is estimated from ARIMA residual as , v = 5 .

The original log transformed data with confidence interval is as follow,

Log yahoo stationary with C.I.

Now adding the fitted trend and corresponding seasonal indices with conf. limits we get conf. limits for original log transformed data.

Log yahoo with C.I.

Forecast:

Time point	Observed value	Predicted value	95 % lower conf limit	95 % upper conf limit
27-01-16	7.44	7.462995	7.156204	7.782939
28-01-16	7.47	7.483270	7.175869	7.803841
29-01-16	7.58	7.544727	7.235017	7.867696
01-02-16	7.59	7.973986	7.646873	8.315092
02-02-16	7.74	8.035886	7.706445	8.379410
03-02-16	7.92	8.052431	7.722515	8.396442
04-02-16	7.74	8.111622	7.779476	8.457948
05-02-16	7.62	8.126072	7.793523	8.472811
08-02-16	7.78	8.182732	7.848046	8.531692
09-02-16	7.48	8.195284	7.860259	8.544589

(II). REGRESSION ANALYSIS

 \Leftrightarrow NASDAQ (Nasdaq) is an American stock exchange, (X_1)

* Nikkei Stock Average is a stock market index for the Tokyo Stock Exchange, (X_2)

- * Yen-dollar exchange ratio gives the amount of Yen which is equal to one dollar, (X_3)
- □ some observations were **missing** in this variable, they have been estimated through **MICE** algorithm.

VAR model:

- . Log transformation of all the variables have been considered, as
- √ it stabilizes data
- ✓ it converts the multiplicative model into simpler additive model.

On basis of minimum AIC, (considering trend) the fitted VAR(1) model is,

$$\begin{bmatrix} Y_{1t} \\ Y_{2t} \end{bmatrix} = \begin{bmatrix} 0.28 \\ -0.24 \end{bmatrix} + \begin{bmatrix} 0.17 * 10^{-4} \\ -4.83 * 10^{-5} \end{bmatrix} * t + \begin{bmatrix} 1.01 \\ 4.6 * 10^{-3} \end{bmatrix} \begin{bmatrix} -0.7 * 10^{-3} \\ 0.98 \end{bmatrix} \begin{bmatrix} Y_{1\overline{t-1}} \\ Y_{2\overline{t-1}} \end{bmatrix}$$

$$+ \begin{bmatrix} -0.04 & 0.35 * 10^{-2} \\ 2.52 * 10^{-2} & -6.49 * 10^{-2} \end{bmatrix} \begin{bmatrix} X_{1t} \\ X_{2t} \\ X_{3t} \end{bmatrix} + \begin{bmatrix} e_{1t} \\ e_{2t} \end{bmatrix}$$

With Correlation matrix of residuals:

$$Y_1$$
 Y_2 Y_1 Y_2 Y_1 Y_2 Y_2 Y_3 Y_4 Y_5 Y_5 Y_6 Y_7 Y_8 Y_9 Y_9

Granger causality test is performed on fitted var(1)

- ✓ H0: Y_2 (yahoo japan) do not Granger-cause Y_1 (yahoo usa): p-value = 0.5524
- ✓ H0: Y_1 (yahoo usa) do not Granger-cause Y_2 (yahoo japan): **p-value** = 0.7458
- ✓ H0: No instantaneous causality between: Y_1 and Y_2 : **p-value** = **4.076e-09**

Conclusion:

- none of Y_1 and Y_2 are granger cause to each other.
- but there is a significant instantaneous causality between Y_1 and Y_2 .

Hence we can opt for Simultaneous Equations Model (SEM).

Simultaneous Equations Model (SEM):

reduced form on log transformed data by applying 2SLS method is as follow,

$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} -9.669 \\ 20.989 \end{bmatrix} + \begin{bmatrix} 0.862 & 0.290 & 0.677 \\ -6.612 & 4.066 & -0.574 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

 X_2 , X_1 are instrumented respectively to estimate Y_1 , Y_2

By reverse exponential transformation the plots of predicted values of Y_1 and Y_2 through 2SLS are as follow,

Observed and Predicted Yahoo share in USA

Observed and Predicted Yahoo share in JAPAN

Forecast:

Time point	Predicted Y ₁	Observed Y ₁	Predicted Y ₂	Observed Y ₂
27-01-16	38.354600	29.69	6.921515	7.44
28-01-16	37.609248	28.75	7.671636	7.47
29-01-16	37.86620	29.51	7.36738	7.58
01-02-16	39.639950	29.57	7.341739	7.59
02-02-16	39.836134	29.06	7.658916	7.74
03-02-16	38.92950	27.68	9.04666	7.92
04-02-16	38.251513	29.15	9.093485	7.74
05-02-16	37.948725	27.97	8.798173	7.62
08-02-16	36.84478	27.05	10.56277	7.78
09-02-16	36.12601	26.82	12.63097	7.48

□ <u>Remark</u>:

The main reason of predicted values to differ is insufficient covariates. Share price actually depends on so many factors and their mutual interactions. Consideration of more covariates should improve the predictions.

References:

- 1. Introduction to Modern Time Series Analysis Kirchgassner, Wolters, Hassler.
- 2. Applied Econometric Time Series Walter Enders.
- 3. Econometric methods Johnston, Dinardo.
- 4. wikipedia

Acknowledgements:

I am highly indebted to Prof. Sugata Sen Roy, Prof. Manisha Pal and Prof. Uttam Bandyaopadhyay for their guidance, support and constant supervision in completion of the project.

I want to offer my sincere gratitude to our department, **Department of Statistics, University of Calcutta** for giving me the opportunity to do this project.

I would also like to thank my parents and friends who helped me a lot in finalizing this project within the limited time frame.

THANK YOU