

ADS AD VIDEO COSOUN

www.aduni.edu.pe

QUÍMICA

ESTADO LÍQUIDO Semana 21

www.aduni.edu.pe

ADUNI

I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

- **1. Explicar** las propiedades físicas generales y específicas de los líquidos, resaltando sus aplicaciones prácticas.
- **2. Relacionar** las propiedades físicas intensivas de los líquidos con las fuerzas intermoleculares y la temperatura.

II. INTRODUCCIÓN

En la vida cotidiana conocemos diversos líquidos, como por ejemplo:

¿El aceite y agua tendrán la misma viscosidad y tensión superficial?

El **aceite** de oliva contribuye a reducir el colesterol malo. ¿Por qué fluye con mayor rapidez al calentar el aceite?

El **agua** es vital para la vida. ¿ Qué forma adopta el agua ? ¿En cualquier lugar hervirá a 100 °C?

III. CONCEPTO

Es uno de los estados de agregación de la materia donde las moléculas que forman un líquido no están confinadas a posiciones fijas, sino que se pueden mover libremente de una posición a otra deslizándose entre sí y están formados comúnmente por átomos o moléculas que interactúan mediante fuerzas intermoleculares.

PROPIEDADES GENERALES DE LOS LÍQUIDOS

- Su volumen está definido pero no tiene forma
- fija (forma variable). No se expande para llenar el recipiente.
- Es incompresible.
- Fluye con facilidad.
- Se considera estado o fase condensada

El estado líquido es un estado intermedio entre el sólido y gas.

ALGUNAS PROPIEDADES GENERALES DE SÓLIDOS, LÍQUIDOS Y GASES				
PROPIEDAD	SÓLIDO LÍQUIDO GAS			
Volumen/forma	Volumen y forma definido	Volumen definido y forma no definido	Volumen y forma no definido	
Fuerzas intermoleculares	$F_{cohesión} > F_{repulsión}$	F _{cohesión} ≈ F _{repulsión}	F _{cohesión} ≪ F _{repulsión}	
Fluidez	No fluyen	Tiene fluidez	Tiene fluidez	
Compresibilidad	Incompresible	Incompresible	Muy compresible	
Mov. de partículas	Vibración	Se deslizan entre si Movimiento		
Densidad	Mayor	Intermedia	Menor	

IV. PROPIEDADES INTENSIVAS DE LOS LÍQUIDOS

A) VISCOSIDAD (η)

La viscosidad es una medida de la **resistencia interna** de los líquidos a fluir (que puede verse como fricción entre las moléculas del líquido). Cuanto mayor es la viscosidad, más lento es el flujo del líquido.

Viscosidad: agua < miel

Fluidez: **agua** > **miel**

Unidad (SI):
$$\frac{N.s}{m^2} = Pa.s = \frac{kg}{m.s}$$

Su intensidad depende de las fuerzas intermoleculares, de la forma y tamaño (masa molar) de las moléculas

FLUJO LAMINAR

Un esfuerzo cortante hace que las capas de un fluido se muevan unas sobre otras en un fluido laminar

En un flujo laminar por un tubo, la rapidez del fluido es menor cerca de las paredes del tubo que cerca del centro, debido a la fricción.

Fluido (temperatura en °C)	Coeficiente de viscosidad, η (Pa·s) [†]
Agua (0°)	1.8×10^{-3}
(20°)	1.0×10^{-3}
(100°)	0.3×10^{-3}
Sangre entera (37°)	$\approx 4 \times 10^{-3}$
Plasma sanguíneo (37°)	$\approx 1.5 \times 10^{-3}$
Alcohol etílico (20°)	1.2×10^{-3}
Aceite para motor (30°) (SAE 10)	200×10^{-3}
Glicerina (20°)	1500×10^{-3}
Aire (20°)	0.018×10^{-3}
Hidrógeno (0°)	0.009×10^{-3}
Vapor de agua (100°)	0.013×10^{-3}
† 1 Pa·s = $10 P = 1000$	cР

Fluido	Viscosidad (Pa·s)
Glicerina (20°C)	1,5
Aceite de motor, SAE 20 (20°C)	0,13
Agua (20°C)	1.0×10^{-3}
Agua (100°C)	2.8×10^{-4}
Etanol (20°C)	1.2×10^{-3}
Sangre (37°C)	1.7×10^{-3}
Mercurio (20°C)	1.6×10^{-3}
Aire (20°C)	1.8×10^{-5}
Aire (100°C)	$2,2 \times 10^{-5}$

Al calentar el aceite disminuye su viscosidad y aumenta su fluidez.

Podemos comparar la viscosidad de un líquido determinando la velocidad con la que cae una bola de acero a través de un líquido.

Hexano (C_6H_{14})

La geometría molecular influye en la viscosidad de un líquido, a mayores fuerzas intermoleculares mayor será la viscosidad.

Viscosidades de una serie de hidrocarburos a 20 °C

Sustancia	Fórmula	Viscosidad (Pa.s)
Hexano Heptano	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	3.26×10^{-4} 4.09×10^{-4}
Octano	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	5.42×10^{-4}
Nonano Decano	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	7.11×10^{-4} 1.42×10^{-3}

B) TENSIÓN SUPERFICIAL (γ)

La tensión superficial es la energía o trabajo necesario para **aumentar** el área de la superficie de un líquido.

Unidades del **SI**:
$$\frac{N}{m} = \frac{J}{m^2}$$

Fuerzas intermoleculares Relación directa

Tensión superficial

Aparato de alambre en forma de U que sostiene una Película de líquido para medir la tensión superficial:

$$\gamma = \frac{F}{2L}$$

Gota de agua

gotas de mercurio

Mayor tensión superficial

La tensión superficial hace que las gotas de los líquidos reduzcan al mínimo su área superficial.

4 EPH

Tensión	superficial	de alguna
cuctanc		de diguila.

Sustancia (temperatura en °C)	Tensión superficial (N/m)
Mercurio (20°)	0.44
Sangre entera (37°)	0.058
Plasma sanguíneo (37°)	0.073
Alcohol etílico (20°)	0.023
Agua (0°)	0.076
(20°)	0.072
(100°)	0.059
Benceno (20°)	0.029
Solución jabonosa (20°)	≈ 0.025
Oxígeno (-193°)	0.016

C) PRESIÓN DE VAPOR (Pv)

Es la presión que ejerce el vapor de un líquido a ciertas condiciones de temperatura. Cuando alcanza un valor máximo se denomina presión de vapor saturado, que es la máxima presión que ejerce el vapor de un líquido a cierta temperatura y se establece cuando se alcanza el equilibrio entre la **evaporación** y la **condensación**.

La presión de vapor de un líquido determinado **depende solo de la temperatura** y no de la cantidad de líquido , por lo que es una propiedad intensiva.

PRESIÓN DE VAPOR SATURADO DEL AGUA A DIVERSAS TEMPERATURAS

Temperatura (°C)	Presión de vapor (Pa)
10.0	1.23×10^{3}
12.0	1.40×10^{3}
14.0	1.60×10^{3}
16.0	1.81×10^{3}
18.0	2.06×10^{3}
20.0	2.34×10^{3}
22.0	2.65×10^{3}
24.0	2.99×10^{3}
26.0	3.36×10^{3}
28.0	3.78×10^{3}
30.0	4.25×10^{3}

VARIACIÓN DE LA PRESIÓN DE VAPOR CON LA TEMPERATURA

Notamos que a una misma temperatura:

- Éter etílico
- Acetona
- Etanol
- agua

Éter etílico

- Fuerzas dipolo-dipolo
- Fuerzas de London

- Enlaces puente de H.
- Fuerzas de London
- Las moléculas del éter se cohesionan con fuerzas débiles, por tanto su volatilidad es alta y su presión de vapor también.
- En cambio en el agua, sus moléculas se unen mediante fuerzas muy intensas, por ello es menos volátil y por ende de menor presión de vapor.

Fuerzas Relación Presión de intermoleculares inversa vapor

D) TEMPERATURA DE EBULLICIÓN (Teb)

- La temperatura de ebullición es la temperatura a la cual la presión de vapor de un líquido se iguala a la presión externa.
- La temperatura de ebullición normal es la temperatura a la cual hierve un líquido cuando la presión externa es normal (1 atm o 760 mm Hg).

La temperatura en la cual la presión de vapor se iguala a la presión atmosférica normal se llama temperatura de ebullición normal.

Altitud sobre el Nivel Del Mar [m]	Presión Atmosférica [kPa]	Punto de ebullición a Presión Atmosférica [°C]
0	101	100
500	95	98
1000	89	96
1500	84	95
2000	79	93
2500	74	92
3000	69	90
3500	65	88
4000	61	86

LUGAR	ALTITUD	$P_{atm} = P_{v}$	Temperatura de ebullición
Callao	0 m	760 mm Hg	100 °C
Huánuco	1220 m	634 mm Hg	96,2 °C
La Paz	3640 m	487 mm Hg	88 °C
Monte Everest	8882 m	344 mm Hg	72 °C

TEMPERATURA DE EBULLICIÓN NORMAL DE CIERTOS LÍQUIDOS			
SUSTANCIA TEMPERATURA DE EBULLICIÓN (°C			
agua (H ₂ O)			
metanol (CH ₃ OH)	64,7		
etanol (CH ₃ CH ₂ OH)	78,4		
éter etílico (CH ₃ CH ₂ OCH ₂ CH ₃)	34,6		
ácido acético (CH ₃ COOH)	118,3		
acetona (CH ₃ COCH ₃)	56,1		
benceno (C ₆ H ₆) 80,2			

TEMPERATURA DE EBULLICIÓN NORMAL PARA DIFERENTES LÍQUIDOS

Como las fuerzas intermoleculares en el agua son mayores que en el etanol, el agua hierve a mayor temperatura.

RESUMEN DE LAS PROPIEDADES INTENSIVAS DE LOS LÍQUIDOS

PRO			ROPIEDAD FÍSICA INTENSIVA	
FACTOR	VISCOSIDAD	TENSIÓN SUPERFICIAL	PRESIÓN DE VAPOR	TEMPERATURA DE EBULLICIÓN
FUERZAS INTERMOLECULRES	AUMENTA	AUMENTA	DISMINUYE	AUMENTA
AUMENTA LA TEMPERATURA	DISMINUYE	DISMINUYE	AUMENTA	ADUNI

V. BIBLIOGRAFÍA

- Química, colección compendios académicos UNI; Lumbreras editores
- Química, fundamentos teóricos y aplicaciones; 2019 Lumbreras editores.
- Química, fundamentos teóricos y aplicaciones.
- Química esencial; Lumbreras editores.
- Fundamentos de química, Ralph A. Burns; 2003; PEARSON
- Química, segunda edición Timberlake; 2008, PEARSON
- Química un proyecto de la ACS; Editorial Reverte; 2005
- Química general, Mc Murry-Fay quinta edición

www.aduni.edu.pe

