A Proximal-ADMM-incorporated Nonnegative Latent-Factorization-of-Tensors Model for Representing Dynamic Cryptocurrency Transaction Network Supplementary File

Xin Liao, Hao Wu, Member, IEEE, Tiantian He, Member, IEEE, and Xin Luo, Fellow, IEEE

I. INTRODUCTION

This is the supplementary file for paper entitled *A Proximal-ADMM-incorporated Nonnegative Latent-Factorization-of-Tensors for Dynamic Cryptocurrency Transaction Network Embedding*. The convergence proof of PNL, supplementary procedure, and experimental results are put into this file.

II. CONVERGENCE PROOF OF PNL

Given $i \in I$, $j \in J$, and $k \in K$, the PNL model's convergence proof is presented as follows:

(a) Proof of Step 1: Note that we present the proof procedure for variable \hat{u}_{ir} , u_{ir} , and d_{ir} , and the similar variables also applies to the same conclusion.

Lemma 1. With (11), $(d_{ir}^{t+1} - d_{ir}^t)^2$, $(h_{ir}^{t+1} - h_{ir}^t)^2$, and $(l_{kr}^{t+1} - l_{kr}^t)^2$ are bounded as:

$$\left(d_{ir}^{t+1} - d_{ir}^{t}\right)^{2} \leq 8\left(\left(\eta - 1\right)^{2} \alpha_{i}^{2} + \rho^{2}\right) \left(\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t}\right)^{2} + 8\alpha_{i}^{2} \left(\left(\eta - 1\right)^{2} + 1\right) \left(s_{ir}^{t+1} - s_{ir}^{t}\right)^{2}$$

$$+ 8\rho^{2} \left(\hat{u}_{ir}^{t} - \hat{u}_{ir}^{t-1}\right)^{2} + 8\alpha_{i}^{2} \left(u_{ir}^{t} - u_{ir}^{t-1}\right)^{2} + 4\left(\Delta_{ir}^{t+1} - \Delta_{ir}^{t}\right)^{2} = \varphi_{d}$$

$$(S1)$$

Where $\Delta_{i_r}^{t+1}$ is defined as:

$$\Delta_{ir}^{t+1} = \sum_{y_{ijk} \in \mathcal{A}} \left(y_{ijk} - \left(\sum_{f_1=1}^{r-1} \hat{u}_{if_1}^{t+1} \hat{v}_{if_1}^{t+1} \hat{w}_{if_1}^{t+1} + \hat{u}_{ir}^{t+1} \hat{v}_{jr}^{t} \hat{w}_{kr}^{t} + \sum_{f_2=r+1}^{R} \hat{u}_{if_2}^{t} \hat{v}_{jf_2}^{t} \hat{w}_{if_2}^{t} + \hat{a}_i^{t} + \hat{c}_j^{t} + \hat{e}_k^{t} \right) \right) \left(-\hat{v}_{jr}^{t} \hat{w}_{kr}^{t} \right). \tag{S2}$$

Proof 1. Note that (7) is non-convex and its zero-gradient points, such as local/global optimum and saddle point, should be regarded as a feasible solution. Therefore, assuming that \hat{u}_{ir}^{t+1} is the solution to \hat{u}_{ir} by (11), the following condition is fulfilled:

$$\Delta_{ir}^{t+1} + \alpha_i \left(\hat{u}_{ir}^{t+1} - u_{ir}^t + \frac{d_{ir}^t}{\alpha_i} \right) + \rho \left(\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^t \right) = 0.$$
 (S3)

By substituting the update rule in (11) and (15) into (S3), the following equation is achieved:

$$d_{ir}^{t+1} = (\eta - 1)\alpha_i (\hat{u}_{ir}^{t+1} - u_{ir}^{t+1}) - \alpha_i (u_{ir}^{t+1} - u_{ir}^{t}) - \rho (\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t}) - \Delta_{ir}^{t+1}.$$
(S4)

Further, the difference between d_{ir}^{t+1} and d_{ir}^{t} is given as:

$$\left(d_{ir}^{t+1} - d_{ir}^{t} \right)^{2} = \left(\left(\eta - 1 \right) \alpha_{i} \left(\left(\hat{u}_{ir}^{t+1} - u_{ir}^{t+1} \right) - \left(\hat{u}_{ir}^{t} - u_{ir}^{t} \right) \right) - \alpha_{i} \left(\left(u_{ir}^{t+1} - u_{ir}^{t} \right) - \left(u_{ir}^{t} - u_{ir}^{t-1} \right) \right)$$

$$- \rho \left(\left(\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t} \right) - \left(\hat{u}_{ir}^{t} - \hat{u}_{ir}^{t-1} \right) \right) - \left(\Delta_{ir}^{t+1} - \Delta_{ir}^{t} \right) \right)^{2}.$$
(S5)

With the inequality $(a-b-c-d)^2 \le 4(a^2+b^2+c^2+d^2)$, we have:

$$\left(d_{ir}^{t+1} - d_{ir}^{t}\right)^{2} \leq 4(\eta - 1)^{2} \alpha_{i}^{2} \left(\left(\hat{u}_{ir}^{t+1} - u_{ir}^{t+1}\right) - \left(\hat{u}_{ir}^{t} - u_{ir}^{t}\right)\right)^{2} + 4\alpha_{i}^{2} \left(\left(u_{ir}^{t+1} - u_{ir}^{t}\right) - \left(u_{ir}^{t} - u_{ir}^{t-1}\right)\right)^{2} + 4\rho^{2} \left(\left(\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t}\right) - \left(\hat{u}_{ir}^{t} - \hat{u}_{ir}^{t-1}\right)\right)^{2} + 4\left(\Delta_{ir}^{t+1} - \Delta_{ir}^{t}\right)^{2}.$$
(S6)

With (S6), we implement (S1) by using the inequality $(a-b)^2 \le 2(a^2+b^2)$. Note that applying the same principle, we can get $(h_{lr}^{t+1} - h_{lr}^t)^2 \le \varphi_h$ and $(l_{lr}^{t+1} - l_{lr}^t)^2 \le \varphi_l$. Hence, **Lemma 1** stands.

(b) Proof of Step 2: *Lemma* 1 has been proved, then we perform Step 2. For simplicity, we first introduce seven functions and intermediate variables to express similar structures as follows:

$$F_{1}(\hat{u}_{ir}, u_{ir}, \alpha_{i}) = \left(\frac{8((\eta - 1)^{2}\alpha_{i}^{2} + \rho^{2})}{\eta\alpha_{i}} - \frac{1}{2}\left(\sum_{i \in \Lambda(i)} (\hat{v}_{jr}^{t}\hat{w}_{kr}^{t})^{2} + \alpha_{i} + \rho\right)\right) (\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t})^{2} + \left(\frac{8\rho^{2}}{\eta\alpha_{i}}\right) (\hat{u}_{ir}^{t} - \hat{u}_{ir}^{t-1})^{2} = F_{1}^{I}. \tag{S7}$$

With (S7), we define a function expression for $\{\hat{u}_{ir}, u_{ir}, \alpha_i\}$. Note that the above three variables are related to the *I*-dimension of the tensor, and we can get F_1^J and F_1^K for $\{\hat{v}_{jr}, v_{jr}, \beta_j\}$ in *J*-dimension and $\{\hat{w}_{kr}, w_{kr}, \delta_k\}$ in *K*-dimension by adopting the

similar expression. Note that for the term $\sum_{i \in \Lambda(i)} (\hat{v}_{jr}^t \hat{w}_{kr}^t)^2$ in *I*-dimension, its expression for the *J*-dimension and *K*-dimension are $\sum_{j \in \Lambda(j)} (\hat{u}_{ir}^t \hat{w}_{kr}^j)^2$ and $\sum_{k \in \Lambda(k)} (\hat{u}_{ir}^t \hat{v}_{jr}^t)^2$, respectively. Hence, we define the first intermediate variable $A_l = F_l^I + F_l^J + F_l^K$.

Next the second function expression is as follows:

$$F_{2}(\hat{u}_{ir}, u_{ir}, \alpha_{i}, \Delta_{ir}) = \left[\left(\frac{\alpha_{i}}{2} - \frac{8\alpha_{i}((\eta - 1)^{2} + 1)}{\eta} \right) \left(\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t} \right)^{2} - \frac{8\alpha_{i}(\hat{u}_{ir}^{t} - \hat{u}_{ir}^{t-1})^{2}}{\eta} - \frac{4\left(\Delta_{ir}^{t+1} - \Delta_{ir}^{t}\right)^{2}}{\eta\alpha_{i}} \right] = F_{2}^{I}.$$
 (S8)

Similarly, with (S8), we get F_2^I, F_2^J, F_2^K and thus the second intermediate variable $A_2 = F_2^I + F_2^J + F_2^K$

The third function expression is given as follows:

$$F_{3}(\hat{u}_{ir}, u_{ir}, \alpha_{i}) = \sum_{i \in I} \alpha_{i} \left(\sum_{f_{i}=1}^{r-1} (\hat{u}_{if_{1}}^{t+1} - u_{if_{1}}^{t+1})^{2} + \sum_{f_{2}=r}^{R} (\hat{u}_{if_{2}}^{t} - u_{if_{2}}^{t})^{2} \right) = F_{3}^{I}.$$
 (S9)

With (S9), the third intermediate variable is defined as $A_3 = F_3^I + F_3^J + F_3^K$. Similarly, the fourth function expression is:

$$F_{4}(\hat{u}_{ir}) = \frac{\rho}{2} \left(\sum_{i \in I} \left(\sum_{f_{i}=1}^{r-1} \left(\hat{u}_{if_{1}}^{t+1} - \hat{u}_{if_{1}}^{t} \right)^{2} + \sum_{f_{2}=r}^{R} \left(\hat{u}_{if_{2}}^{t} - \hat{u}_{if_{2}}^{t-1} \right)^{2} \right) \right) = F_{4}^{I}.$$
(S10)

Correspondingly, the fourth intermediate variable is $A_4 = F_4^I + F_4^J + F_4^K$. The next fifth function expression is given as follows:

$$F_{s}(\hat{u}_{ir}, u_{ir}, \alpha_{i}, \Delta_{ir}) = \sum_{i \in I} \left(\sum_{f_{1}=2}^{r-1} \left(\alpha_{i} \left(u_{if_{1}}^{t+1} - u_{if_{1}}^{t} \right) + \Delta_{if_{1}}^{t+1} + \rho \left(\hat{u}_{if_{1}}^{t+1} - \hat{u}_{if_{1}}^{t} \right) \right) \left(u_{if_{1}}^{t+1} - \hat{u}_{if_{1}}^{t+1} \right) \right) + \sum_{i \in I} \left(\sum_{f_{2}=r}^{R} \left(\alpha_{i} \left(u_{if_{2}}^{t} - u_{if_{2}}^{t-1} \right) + \Delta_{if_{2}}^{t} + \rho \left(\hat{u}_{if_{2}}^{t} - \hat{u}_{if_{2}}^{t-1} \right) \right) \left(u_{if_{2}}^{t} - u_{if_{2}}^{t} \right) \right) = F_{s}^{I}.$$
(S11)

With (S11), the fifth intermediate variable is $A_5 = F_5^I + F_5^J + F_5^K$.

A functional expression is given as:

$$F_{6}(\hat{u}_{ir}, u_{ir}, d_{ir}) = \sum_{i \in I} \left(\sum_{f_{i}=1}^{r-1} d_{if_{i}}^{t+1} \left(\hat{u}_{if_{i}}^{t+1} - u_{if_{i}}^{t+1} \right) + \sum_{f_{2}=r}^{R} d_{if_{2}}^{t} \left(\hat{u}_{if_{2}}^{t} - u_{if_{2}}^{t} \right) \right) = F_{6}^{I}.$$
(S12)

With (S12), we can get the *J*-dimension and *K*-dimension versions, F_6^J and F_6^K . Hence, the sixth intermediate variable is $A_6 = F_6^I + F_6^J + F_6^K$. Finally, a functional expression for the bias is given as:

$$F_{6}(\hat{u}_{ir}, u_{ir}, d_{ir}) = \sum_{i \in I} \left(\sum_{f_{i}=1}^{r-1} d_{if_{i}}^{t+1} \left(\hat{u}_{if_{i}}^{t+1} - u_{if_{i}}^{t+1} \right) + \sum_{f_{i}=r}^{R} d_{if_{2}}^{t} \left(\hat{u}_{if_{2}}^{t} - u_{if_{2}}^{t} \right) \right) = F_{6}^{I}.$$
(S13)

With (S13), it defines a function expression for $\{\hat{a}_i, a_i, \sigma_i, o_i\}$ and is related to the *I*- dimension. We can obtain expressions about the *J*-dimension and *K*-dimension by similar expressions for $\{\hat{c}_j, c_j, \phi_j, s_j\}$ and $\{\hat{e}_k, e_k, \psi_k, z_k\}$, i.e., F_7^J and F_7^K . Therefore, we get the last intermediate variable as $A_7 = F_7^J + F_7^J + F_7^K$.

Lemma 2. If the following inequality is satisfied:

$$A_1 \le A_2. \tag{S14}$$

Then the following inequalities holds:

$$L_{p}\left(\mathcal{D}_{1}^{t+1} \cup \mathcal{D}_{2}^{t+1} \cup \mathcal{D}_{3}^{t+1}\right) - L_{p}\left(\mathcal{D}_{1}^{t} \cup \mathcal{D}_{2}^{t} \cup \mathcal{D}_{3}^{t}\right) \leq 0. \tag{S15}$$

Note that we have:

$$L_{p}\left(\mathcal{D}_{1}^{t}\cup\mathcal{D}_{2}^{t}\cup\mathcal{D}_{3}^{t}\right)\geq0. \tag{S16}$$

With the following condition:

$$\eta \ge \frac{1}{2} - \frac{A_4 + A_5 + A_7}{A_3}.\tag{S17}$$

Proof 2. By expanding the second-order Taylor expansion of L_p at the point $\mathcal{D}_1^{t+1} \cup \mathcal{D}_2^t \cup \mathcal{D}_3^t$, we can get the following equality:

$$L_{p}\left(D_{1}^{t+1} \cup D_{2}^{t} \cup D_{3}^{t}\right) - L_{p}\left(D_{1}^{t} \cup D_{2}^{t} \cup D_{3}^{t}\right) = -\frac{1}{2} \left(\sum_{y_{jk} \in \Lambda(i)} \left(\hat{v}_{jr}^{t} \hat{w}_{kr}^{t}\right)^{2} + \alpha_{i} + \rho\right) \left(\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t}\right)^{2} - \frac{1}{2} \left(\sum_{y_{jk} \in \Lambda(k)} \left(\hat{u}_{ir}^{t} \hat{v}_{jr}^{t}\right)^{2} + \delta_{k} + \rho\right) \left(\hat{w}_{kr}^{t+1} - \hat{w}_{kr}^{t}\right)^{2} - \frac{1}{2} \left(\sum_{y_{jk} \in \Lambda(k)} \left(\hat{u}_{ir}^{t} \hat{v}_{jr}^{t}\right)^{2} + \delta_{k} + \rho\right) \left(\hat{w}_{kr}^{t+1} - \hat{w}_{kr}^{t}\right)^{2}.$$
(S18)

Note that the equality (S18) holds when the first-order terms in (9) are equal zero. Therefore, the difference between $L_n(\mathcal{D}_1^{t+1} \cup \mathcal{D}_2^{t+1} \cup \mathcal{D}_3^t)$ and $L_n(\mathcal{D}_1^{t+1} \cup \mathcal{D}_3^t \cup \mathcal{D}_3^t)$ is given as:

$$L_{p}\left(D_{1}^{t+1} \cup D_{2}^{t+1} \cup D_{3}^{t}\right) - L_{p}\left(D_{1}^{t+1} \cup D_{2}^{t} \cup D_{3}^{t}\right) \stackrel{(9)}{\leq} -\frac{\alpha_{i}}{2}\left(u_{ir}^{t} - u_{ir}^{t+1}\right)^{2} - \frac{\beta_{j}}{2}\left(v_{jr}^{t} - v_{jr}^{t+1}\right)^{2} - \frac{\delta_{k}}{2}\left(w_{kr}^{t} - w_{kr}^{t+1}\right)^{2}. \tag{S19}$$

Note that the inequality (S19) considers the optimal condition of (11) and the projection rule of (14), the first-order terms equal to or less than zero are omitted. Therefore, the difference between $L_p(\mathcal{D}_1^{t+1} \cup \mathcal{D}_2^{t+1} \cup \mathcal{D}_3^{t+1})$ and $L_p(\mathcal{D}_1^{t+1} \cup \mathcal{D}_2^{t+1} \cup \mathcal{D}_3^t)$ is:

$$L_{p}\left(D_{1}^{t+1} \cup D_{2}^{t+1} \cup D_{3}^{t+1}\right) - L_{p}\left(D_{1}^{t+1} \cup D_{2}^{t+1} \cup D_{3}^{t}\right) \stackrel{\text{(11),(14)}}{=} \frac{\left(d_{ir}^{t+1} - d_{ir}^{t}\right)^{2}}{\eta \alpha_{i}} + \frac{\left(h_{jr}^{t+1} - h_{jr}^{t}\right)^{2}}{\eta \beta_{j}} + \frac{\left(l_{kr}^{t+1} - l_{kr}^{t}\right)^{2}}{\eta \delta_{k}}$$

$$\stackrel{\text{(S20)}}{\leq \frac{\varphi_{d}}{\eta \alpha_{i}} + \frac{\varphi_{h}}{\eta \beta_{j}} + \frac{\varphi_{l}}{\eta \delta_{k}},$$

where the equality depends on (11) and (15), and the inequality follows *Lemma* 1. With (S18)-(S20), we have:

$$L_{p}\left(D_{1}^{t+1} \cup D_{2}^{t+1} \cup D_{3}^{t+1}\right) - L_{p}\left(D_{1}^{t} \cup D_{2}^{t} \cup D_{3}^{t}\right) \le A_{1} - A_{2}. \tag{S21}$$

Therefore, with (S14), the following inequality evidently holds

$$L_{p}\left(D_{1}^{t+1} \cup D_{2}^{t+1} \cup D_{3}^{t+1}\right) - L_{p}\left(D_{1}^{t} \cup D_{2}^{t} \cup D_{3}^{t}\right) \le 0. \tag{S22}$$

Hence, the proximal-incorporated augmented Lagrangian of (7) is non-increasing. Moreover, after the t-th iteration, (7) is formulated as:

$$L_{p}\left(D_{1}^{t} \cup D_{2}^{t} \cup D_{3}^{t}\right) = \frac{1}{2} \sum_{y_{ijk} \in \mathcal{N}} \left(y_{ijk} - \sum_{f_{1}=1}^{r-1} \hat{u}_{if_{1}}^{t+1} \hat{v}_{jf_{1}}^{t+1} \hat{w}_{kf_{1}}^{t+1} - \sum_{f_{2}=r}^{R} \hat{u}_{if_{2}}^{t} \hat{v}_{jf_{2}}^{t} \hat{w}_{kf_{2}}^{t} - \hat{a}_{i}^{t} - \hat{c}_{j}^{t} - \hat{e}_{k}^{t}\right)^{2} + \frac{A_{3}}{2} + A_{4} + A_{6} + A_{7}. \tag{S23}$$

By substituting (S4) into (S23), the following deduction is achieved:

$$L_{p}\left(D_{1}^{t} \cup D_{2}^{t} \cup D_{3}^{t}\right) = \frac{1}{2} \sum_{y_{ijk} \in \Lambda} \left(y_{ijk} - \sum_{f_{1}=1}^{r-1} \hat{u}_{if_{1}}^{t+1} \hat{v}_{jf_{1}}^{t+1} \hat{w}_{kf_{1}}^{t+1} - \sum_{f_{2}=r}^{R} \hat{u}_{if_{2}}^{t} \hat{v}_{jf_{2}}^{t} \hat{w}_{kf_{2}}^{t} - \hat{a}_{i}^{t} - \hat{c}_{j}^{t} - \hat{e}_{k}^{t}\right)^{2} + \frac{(2\eta - 1)A_{3}}{2} + A_{4} + A_{5} + A_{7}. \tag{S24}$$

With (S17) and (S24), (S16) is fulfilled, i.e., (7) is lower-bounded. Therefore, *Lemma* 2 holds.

(c) Proof of Step 3: Considering $U \ge 0$, $V \ge 0$, and $W \ge 0$, the proximal augmented Lagrangian of (7) is extended as:

$$L_{p}^{\#} = L_{p} - tr(GU) - tr(MV) - tr(PW) = L_{p} - \sum_{i \in I} \sum_{r=1}^{R} g_{ir} u_{ir} - \sum_{i \in J} \sum_{r=1}^{R} m_{jr} v_{jr} - \sum_{k \in K} \sum_{r=1}^{R} p_{kr} w_{kr},$$
 (S25)

where $tr(\cdot)$ calculates the trace of an involved matrix. G, M, and P denote Lagrangian multiplier for PNL's nonnegative constraint. Then, **Theorem 1** is presented:

Theorem 1. If the following conditions hold:

$$\begin{cases}
\frac{8((\eta - 1)^{2}(\alpha_{i})^{2} + \rho^{2})}{\eta \alpha_{i}} \neq -\frac{1}{2} \left(\sum_{y_{ijk} \in \Lambda(i)} (\hat{v}_{jr}^{t} \hat{w}_{kr}^{t})^{2} + \alpha_{i} + \rho \right) \\
\frac{8((\eta - 1)^{2}(\beta_{j})^{2} + \rho^{2})}{\eta \beta_{j}} \neq -\frac{1}{2} \left(\sum_{y_{ijk} \in \Lambda(j)} (\hat{u}_{ir}^{t} \hat{w}_{kr}^{t})^{2} + \beta_{j} + \rho \right) \\
\frac{8((\eta - 1)^{2}(\delta_{k})^{2} + \rho^{2})}{\eta \delta_{k}} \neq -\frac{1}{2} \left(\sum_{y_{ijk} \in \Lambda(k)} (\hat{u}_{ir}^{t} \hat{v}_{jr}^{t})^{2} + \delta_{k} + \rho \right) \\
\frac{\alpha_{i}}{2} \neq \frac{8\alpha_{i}((\eta - 1)^{2} + 1)}{\eta}, \frac{\beta_{j}}{2} \neq \frac{8\beta_{j}((\eta - 1)^{2} + 1)}{\eta}, \frac{\delta_{k}}{2} \neq \frac{8\delta_{k}((\eta - 1)^{2} + 1)}{\eta} \\
\rho \neq 0, \eta \neq 0, \alpha_{i} \neq 0, \beta_{j} \neq 0, \delta_{k} \neq 0.
\end{cases} (S26)$$

With (11), the equilibrium point $\mathcal{D}_1^* \cup \mathcal{D}_2^* \cup \mathcal{D}_3^*$ of $\mathcal{D}_1 \cup \mathcal{D}_2 \cup \mathcal{D}_3$ is a KKT stationary point, and the following KKT conditions holds:

$$\hat{u}_{ir}^* - u_{ir}^* = 0, \hat{v}_{ir}^* - v_{ir}^* = 0, \hat{w}_{kr}^* - w_{kr}^* = 0,$$
(S27a)

$$\frac{\partial L_{p}^{\#}}{\partial \hat{u}_{ir}}\Big|_{\hat{u}_{ir} = \hat{u}_{ir}^{*}} = \Delta_{ir}^{*} + d_{ir}^{*} = 0; \frac{\partial L_{p}^{\#}}{\partial \hat{v}_{jr}}\Big|_{\hat{v}_{jr} = \hat{v}_{jr}^{*}} = \Delta_{jr}^{*} + h_{jr}^{*} = 0; \frac{\partial L_{p}^{\#}}{\partial \hat{w}_{kr}}\Big|_{\hat{w}_{kr} = \hat{w}_{kr}^{*}} = \Delta_{kr}^{*} + l_{kr}^{*} = 0,$$
(S27b)

$$\frac{\partial L_{p}^{\#}}{\partial u_{ir}}\Big|_{u_{r}=u_{ir}^{*}} = -\alpha_{i} \left(\hat{u}_{ir}^{*} - u_{ir}^{*} + \frac{d_{ir}^{*}}{\alpha_{i}} \right) - g_{ir}^{*} = 0; \frac{\partial L_{p}^{\#}}{\partial v_{jr}}\Big|_{v_{r}=v_{r}^{*}} = -\beta_{j} \left(\hat{v}_{jr}^{*} - v_{jr}^{*} + \frac{h_{jr}^{*}}{\beta_{j}} \right) - m_{jr}^{*} = 0; \frac{\partial L_{p}^{\#}}{\partial w_{kr}}\Big|_{w_{r}=v_{ir}^{*}} = -\delta_{k} \left(\hat{w}_{kr}^{*} - w_{kr}^{*} + \frac{I_{kr}^{*}}{\delta_{k}} \right) - p_{kr}^{*} = 0, \quad (S27c)$$

$$g_{ir}^* u_{ir}^* = 0, m_{ir}^* v_{ir}^* = 0, p_{kr}^* w_{kr}^* = 0,$$
 (S27d)

$$u_{ir}^* \ge 0, v_{ir}^* \ge 0, w_{kr}^* \ge 0,$$
 (S27e)

$$g_{ir}^* \ge 0, m_{ir}^* \ge 0, p_{kr}^* \ge 0.$$
 (S27f)

Proof 3. With **Lemma 2**, the following inequality holds since $t \to \infty$:

$$L_{p}\left(\mathcal{D}_{1}^{t+1} \cup \mathcal{D}_{2}^{t+1} \cup \mathcal{D}_{3}^{t+1}\right) - L_{p}\left(\mathcal{D}_{1}^{t} \cup \mathcal{D}_{2}^{t} \cup \mathcal{D}_{3}^{t}\right) \leq A_{1} - A_{2} \to 0. \tag{S28}$$

Based on (S24) and (S28), we can get:

$$\begin{cases} \lim_{t \to \infty} \left(\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t} \right) \to 0, \lim_{t \to \infty} \left(u_{ir}^{t+1} - u_{ir}^{t} \right) \to 0, \lim_{t \to \infty} \left(\Delta_{ir}^{t+1} - \Delta_{ir}^{t} \right) \to 0 \\ \lim_{t \to \infty} \left(\hat{v}_{jr}^{t+1} - \hat{v}_{jr}^{t} \right) \to 0, \lim_{t \to \infty} \left(v_{jr}^{t+1} - v_{jr}^{t} \right) \to 0, \lim_{t \to \infty} \left(\Delta_{jr}^{t+1} - \Delta_{jr}^{t} \right) \to 0 \\ \lim_{t \to \infty} \left(\hat{w}_{kr}^{t+1} - \hat{w}_{kr}^{t} \right) \to 0, \lim_{t \to \infty} \left(w_{kr}^{t+1} - w_{kr}^{t} \right) \to 0, \lim_{t \to \infty} \left(\Delta_{kr}^{t+1} - \Delta_{kr}^{t} \right) \to 0. \end{cases}$$
(S29)

With (S1), we infer that:

$$\lim_{t \to \infty} \left(d_{ir}^{t+1} - d_{ir}^{t} \right) \to 0; \lim_{t \to \infty} \left(h_{jr}^{t+1} - h_{jr}^{t} \right) \to 0; \lim_{t \to \infty} \left(l_{kr}^{t+1} - l_{kr}^{t} \right) \to 0.$$
 (S30)

According to (15) and (S30), (S27a) holds. (11) can be reconstructed as

$$\begin{cases}
\left(\hat{u}_{ir}^{t} - \hat{u}_{ir}^{t+1}\right) \left(\sum_{y_{jk} \in \Lambda(i)} \hat{v}_{jr}^{t} \hat{w}_{kr}^{t} + \alpha_{i} + \rho\right) = \Delta_{ir}^{t+1} + \alpha_{i} \left(\hat{u}_{ir}^{t} - u_{ir}^{t}\right) + d_{ir}^{t} \\
\left(\hat{v}_{jr}^{t} - \hat{v}_{jr}^{t+1}\right) \left(\sum_{y_{jk} \in \Lambda(j)} \hat{u}_{ir}^{t} \hat{w}_{kr}^{t} + \beta_{j} + \rho\right) = \Delta_{jr}^{t+1} + \beta_{j} \left(\hat{v}_{jr}^{t} - v_{jr}^{t}\right) + h_{jr}^{t} \\
\left(\hat{w}_{kr}^{t} - \hat{w}_{kr}^{t+1}\right) \left(\sum_{y_{jk} \in \Lambda(k)} \hat{u}_{ir}^{t} \tilde{v}_{jr}^{t} + \delta_{k} + \rho\right) = \Delta_{kr}^{t+1} + \delta_{k} \left(\hat{w}_{kr}^{t} - w_{kr}^{t}\right) + l_{kr}^{t}.
\end{cases} \tag{S31}$$

Note that (S27b) holds via (S27a), (S29), and (S31). Further, the following inference holds by applying the partial derivation of $L_p^{\#}$ to u_{ir} , v_{jr} , and w_{kr} :

$$\begin{cases} \frac{\partial L_{p}^{\#}}{\partial u_{ir}} = -\alpha_{i} \left(\hat{u}_{ir} - u_{ir} + \frac{d_{ir}}{\alpha_{i}} \right) - g_{ir} = 0 \\ \frac{\partial L_{p}^{\#}}{\partial v_{jr}} = -\beta_{j} \left(\hat{v}_{jr} - v_{jr} + \frac{h_{jr}}{\beta_{j}} \right) - m_{jr} = 0 \Rightarrow \begin{cases} g_{ir} = -\alpha_{i} \left(\hat{u}_{ir} - u_{ir} + \frac{d_{ir}}{\alpha_{i}} \right) \\ m_{jr} = -\beta_{j} \left(\hat{v}_{jr} - v_{jr} + \frac{h_{jr}}{\beta_{j}} \right) \\ \frac{\partial L_{p}^{\#}}{\partial w_{kr}} = -\delta_{k} \left(\hat{t}_{kr} - w_{kr} + \frac{l_{kr}}{\delta_{k}} \right) - p_{kr} = 0 \end{cases}$$

$$(S32)$$

With (S32), g_{ir} , m_{jr} , and p_{kr} are implicitly updated and generate their limits g_{ir}^* , m_{jr}^* , p_{kr}^* . Considering (S26)'s KKT conditions that $\forall g_{ir}, u_{ir}: g_{ir}u_{ir} = 0$, $\forall m_{jr}, v_{jr}: m_{jr}v_{jr} = 0$, and $\forall p_{kr}, w_{kr}: p_{kr}w_{kr} = 0$, we have:

$$\begin{cases}
-\alpha_{i}u_{ir}\left(\hat{u}_{ir} - u_{ir} + \frac{d_{ir}}{\alpha_{i}}\right) = 0 \\
-\beta_{j}v_{jr}\left(\hat{v}_{jr} - v_{jr} + \frac{h_{jr}}{\beta_{j}}\right) = 0 \Rightarrow \begin{cases}
u_{ir} = \hat{u}_{ir} + \frac{d_{ir}}{\alpha_{i}} \\
v_{jr} = \hat{v}_{jr} + \frac{h_{jr}}{\beta_{j}} \\
-\delta_{k}w_{kr}\left(\hat{w}_{kr} - w_{kr} + \frac{l_{kr}}{\delta_{k}}\right) = 0
\end{cases}$$
(S33)

Hence, we can update u_{ir} , v_{jr} , and w_{kr} by (S33). Additionally, the nonnegative truncation is applied to u_{ir} , v_{jr} , and w_{kr} to ensure its nonnegativity and (S26)'s KKT conditions, it's given as:

$$u_{ir} = \max\left(0, \hat{u}_{ir} + \frac{d_{ir}}{\alpha_i}\right); v_{jr} = \max\left(0, \hat{v}_{jr} + \frac{h_{jr}}{\beta_j}\right); w_{kr} = \max\left(0, \hat{w}_{kr} + \frac{l_{kr}}{\delta_k}\right).$$
 (S34)

Note that the update rules of (14) and (S34) are equivalent. When $t \to \infty$, (S27c)-(S27e) are hold via (14) and (S32)-(S34).

Hence, considering (S27e)'s conditions that $g_{ir}^* \ge 0$, $m_{ir}^* \ge 0$, and $p_{kr}^* \ge 0$, there are two cases as:

• If $u_{ir}^* = 0$, $v_{jr}^* = 0$, and $w_{kr}^* = 0$, the following inequality holds according to (14):

$$\hat{u}_{ir}^* + \frac{d_{ir}^*}{\alpha_i} \le 0; \hat{v}_{jr}^* + \frac{h_{jr}^*}{\beta_i} \le 0; \hat{w}_{kr}^* + \frac{l_{kr}^*}{\delta_k} \le 0, \tag{S35}$$

which indicates that $g_{ir}^* \ge 0$, $m_{jr}^* \ge 0$, and $p_{kr}^* \ge 0$ by collectively analyzing (S32);

• If $u_{ir}^* > 0$, $v_{ir}^* > 0$, and $w_{kr}^* > 0$, the following equality is inferred according to (14):

$$u_{ir}^* = \hat{u}_{ir}^* + \frac{d_{ir}^*}{\alpha_i}; v_{jr}^* = \hat{v}_{jr}^* + \frac{h_{jr}^*}{\beta_j}; w_{kr}^* = \hat{w}_{kr}^* + \frac{l_{kr}^*}{\delta_k}.$$
 (S36)

With (S32) and (S36), $g_{ir}^* = 0$, $m_{jr}^* = 0$, and $p_{kr}^* = 0$. Therefore, (S27f) holds and **Theorem 1** holds. Based on the above inferences, the implemented steps 1-3 demonstrate that the PNL's convergence is theoretically guaranteed.

III. ADDITIONAL PROCEDURES

Procedure: Parallel_update_Ŵ						
Input: $\hat{\boldsymbol{u}}_r, \hat{\boldsymbol{v}}$	Input: $\hat{\boldsymbol{u}}_r, \hat{\boldsymbol{v}}_r, \hat{\boldsymbol{w}}_r, \boldsymbol{u}_r, \boldsymbol{d}_r, \boldsymbol{\tau}_{(p)}, \Lambda, K, Q$					
Output: Up	Output: Updated Ŵ, W, L					
Operation		Cost				
1. Init W_U	1. Init $W_{-}U^{ K \times R}, W_{-}D^{ K \times R} = 0$					
2. for each q	2. for each $q \in Q$ *Parallelization*					
3. for ea	3. for each $r=1$ to R do					
4. f	For each $y_{ijk} \in \Lambda_q$	$\times \Lambda_q $				
5.	$err = y_{ijk} - \tilde{y}_{ijk}$	$\Theta(1)$				
6.	$\mathbf{W}_{-}\mathbf{U}_{kr}+=\hat{u}_{ir}\hat{v}_{jr}(err+\hat{u}_{ir}\hat{v}_{jr}\hat{w}_{kr})$	$\Theta(1)$				
7.	7. $W_D_{kr} + = (\hat{u}_{ir}\hat{v}_{jr})^2$					
8. f	For each $k \in K_q$	$ imes K_q $				
9.	$\hat{w}_{kr} = \frac{\mathbf{W}_{-}\mathbf{U}_{kr} + \lambda_{(p)} \Lambda_{(k)} w_{kr} - l_{kr} + \rho_{(p)} \hat{w}_{kr}^{t}}{\mathbf{W}_{-}\mathbf{D}_{kr} + \lambda_{(p)} \Lambda_{(k)} + \rho_{(p)}}$	Θ(1)				
10.	$w_{kr} = \max\left(0, \hat{w}_{kr} + \frac{l_{kr}}{\lambda_{(p)} \mid \Lambda_{(k)} \mid}\right)$	Θ(1)				
11.	$l_{kr} += \eta_{(p)} \lambda_{(p)} \mid \Lambda_{(k)} \mid (\hat{w}_{kr} - w_{kr})$	Θ(1)				

Procedure: Parallel_update_ê				
Input: ê	Input: $\hat{e}, e, z, \tau_{(p)}, \Lambda, K, Q$			
Output: Updated ê, e, z				
Operatio	Cost			
1. Init E	$\Theta(N)$			
2. for eac	$\times Q$			
3. fc	or each $y_{ijk} \in \Lambda_q$	$\times \Lambda_q $		
4.	$err = y_{ijk} - \tilde{y}_{ijk}$	$\Theta(1)$		
5.	$\mathbf{E}_{\mathbf{U}_{k}} + = err + \hat{e}_{k}$	$\Theta(1)$		
6. fo	$\times K_q $			
7.	$\hat{e}_{k} = \frac{E - U_{k} + \lambda_{(p)} \Lambda_{(k)} e_{k} - z_{k} + \rho_{(p)} \hat{e}_{k}^{t}}{ \Lambda_{(k)} + \lambda_{(p)} \Lambda_{(k)} + \rho_{(p)}}$	Θ(1)		
9.	$e_k = \max(0, \hat{e}_k + rac{z_k}{\lambda_{(p)} \mid \Lambda_{(k)} \mid})$	Θ(1)		
10.	$z_k += \eta_{(p)} \lambda_{(p)} \mid \Lambda_{(k)} \mid (\hat{e}_k - e_k)$	Θ(1)		

IV. EXPERIMENTAL RESULTS

 $TABLE \ S1 \\ P^2SO \ PARAMETERS \ SETTINGS$

Parameters	Settings			
P	5			
ω	0.724			
c_1	2			
c_2	2			
r_1	random number $\in [0, 1]$			
r_2	random number $\in [0, 1]$			
μ	1			
$[\widecheck{ ho}, \widehat{ ho}]$	[10, 100]			
$[\widecheck{\lambda}, \widehat{\lambda}]$	[0.1, 1]			
$[\widecheck{\eta}, \widehat{\eta}]$	[0.1, 1]			
$[\widecheck{\mathcal{O}}_{ ho}, \widehat{\mathcal{O}}_{ ho}]$	$[-0.2\times(\widehat{\rho}-\widecheck{\rho}),0.2\times(\widehat{\rho}-\widecheck{\rho})]$			
$[\widecheck{ u}_{\!\scriptscriptstyle \lambda}, \widehat{ u}_{\!\scriptscriptstyle \lambda}]$	$[-0.2\times(\widehat{\lambda}-\widecheck{\lambda}),0.2\times(\widehat{\lambda}-\widecheck{\lambda})]$			
$[\widecheck{ u}_{\!\eta}, \widehat{\!\upsilon}_{\!\eta}]$	$[-0.2\times \left(\widehat{\eta}-\widecheck{\eta}\right),0.2\times \left(\widehat{\eta}-\widecheck{\eta}\right)]$			

TABLE S2
THE OPTIMAL HYPER-PARAMETERS BY MANUAL TUNING

Datasets -	Optima	al Hyper-param	neters
Datasets	ho	λ	η
D1	90	0.3	0.2
D2	100	0.3	0.1
D3	90	0.9	0.1
D4	100	0.1	0.3
D5	80	1.0	0.1
D6	100	0.1	0.3
D7	80	0.4	0.2
D8	90	0.2	0.3

TABLE S3
HYPER-PARAMETERS SETTING OF M1-8

				TITTEK-TA	KAMETEKS	SETTING OF MIT-0		
Datasets	M1	M2	M3	M4	M5	M6	M7	M8
D1	P ² SO	$\eta = 5 \times 10^{-2}$	$\eta = 10^{-5}$	$\lambda = 10^{-2}$	$\eta = 5 \times 10^{-3}$	$\alpha = 5 \times 10^{-3}, \beta_1 = 0.7$	$\eta = 10^{-2}$	$K=3, \eta=1, \lambda=0.5$
DI	Q = 16	$\lambda = 10^{-2}$	$\gamma=40$	$\lambda_b = 10^{-2}$	$\lambda = 5 \times 10^{-3}$	$\beta_2 = 0.999$	$\lambda = 10^{-2}$	mini-batch size=2048
D2	P^2SO	$\eta = 5 \times 10^{-2}$	$\eta = 10^{-6}$	$\lambda = 10^{-2}$	$\eta = 5 \times 10^{-3}$	$\alpha = 5 \times 10^{-3} \beta_1 = 0.7$	$\eta = 10^{-1}$	$K=3, \eta=1, \lambda=1$
DZ	Q = 16	$\lambda = 10^{-2}$	$\gamma=80$	$\lambda_b = 10^{-2}$	$\lambda = 5 \times 10^{-3}$	$\beta_2 = 0.999$	$\lambda = 10^{-1}$	mini-batch size=2048
D3	P^2SO	$\eta = 10^{-2}$	$\eta = 10^{-6}$	$\lambda = 0.5$	$\eta = 5 \times 10^{-3}$	$\alpha = 5 \times 10^{-3}, \beta_1 = 0.7$	$\eta = 10^{-1}$	$K=3, \eta=1, \lambda=10^{-1}$
D3	Q = 16	$\lambda = 10^{-1}$	$\gamma=80$	$\lambda_b = 10^{-1}$	$\lambda = 10^{-2}$	$\beta_2 = 0.999$	$\lambda = 10^{-1}$	mini-batch size=2048
D4	P^2SO	$\eta = 10^{-2}$	$\eta = 10^{-5}$	$\lambda = 0.5$	$\eta = 5 \times 10^{-3}$	$\alpha = 5 \times 10^{-2}, \beta_1 = 0.7$	$\eta = 10^{-1}$	$K=3, \eta=1, \lambda=1$
D4	Q = 16	$\lambda = 10^{-1}$	$\gamma=20$	$\lambda_b = 10^{-1}$	$\lambda = 10^{-2}$	$\beta_2 = 0.999$	$\lambda = 5 \times 10^{-2}$	mini-batch size=2048
D5	P^2SO	$\eta = 10^{-2}$	$\eta = 10^{-5}$	$\lambda = 0.5$	$\eta = 5 \times 10^{-3}$	$\alpha = 5 \times 10^{-2}, \beta_1 = 0.5$	$\eta = 10^{-1}$	$K=3, \eta=5\times10^{-2}, \lambda=5\times10^{-2}$
DS	Q = 16	$\lambda = 10^{-1}$	$\gamma=40$	$\lambda_b = 10^{-1}$	$\lambda = 5 \times 10^{-3}$	$\beta_2 = 0.999$	$\lambda = 5 \times 10^{-2}$	mini-batch size=2048
D 6	P^2SO	$\eta = 10^{-2}$	$\eta = 10^{-5}$	$\lambda = 0.5$	$\eta = 5 \times 10^{-3}$	$\alpha = 5 \times 10^{-2}, \beta_1 = 0.5$	$\eta = 10^{-1}$	$K=3, \eta=1, \lambda=1$
Do	Q = 16	$\lambda = 0.5$	$\gamma=40$	$\lambda_b = 10^{-1}$	$\lambda = 5 \times 10^{-3}$	$\beta_2 = 0.999$	$\lambda = 5 \times 10^{-3}$	mini-batch size=2048
D7	P^2SO	$\eta = 10^{-2}$	$\eta = 10^{-5}$	$\lambda = 10^{-1}$	$\eta = 10^{-3}$	$\alpha = 5 \times 10^{-3}, \beta_1 = 0.7$	$\eta = 10^{-1}$	$K=3, \eta=10^{-1}, \lambda=10^{-1}$
	Q = 16	$\lambda = 10^{-1}$	$\gamma=40$	$\lambda_b = 5 \times 10^{-2}$	$\lambda = 10^{-3}$	$\beta_2 = 0.999$	$\lambda = 5 \times 10^{-3}$	mini-batch size=2048
D8	P^2SO	$\eta = 5 \times 10^{-3}$	$\eta = 10^{-5}$	$\lambda = 0.5$	$\eta = 10^{-3}$	$\alpha = 5 \times 10^{-3}, \beta_1 = 0.9$	$\eta = 10^{-1}$	$K=3, \eta=10^{-1}, \lambda=10^{-1}$
	Q = 16	$\lambda = 10^{-3}$	$\gamma=40$	$\lambda_b=0.5$	$\lambda = 10^{-3}$	$\beta_2 = 0.999$	$\lambda = 5 \times 10^{-3}$	mini-batch size=2048

Fig. S1. Performance comparison of M1-8 on D1-8.

Fig. S2. Training curves of M1-7 in RMSE and MAE on D1-8.