- Докажите, что в равных треугольниках соответствующие медианы равны.
 Периметр прямоугольника равен 42, а площадь 98. Найдите большую сторону прямоугольника.
 Угол треугольника равен сумме двух других его углов. Докажите, что треугольник прямоугольный.
- 4 Внешние углы треугольника ABC при вершинах A и C равны 115° и 140° . Прямая, параллельная прямой AC, пересекает стороны AB и BC в точках M и N. Найдите углы треугольника BMN.
- **5** Через вершину B треугольника ABC проведена прямая, параллельная прямой AC. Образовавшиеся при этом три угла с вершиной B относятся как 3:10:5. Найдите углы треугольника ABC.
- **6** Прямая, проходящая через вершину A треугольника ABC, пересекает сторону BC в точке M. При этом BM = AB, $\angle BAM = 35^{\circ}$, $\angle CAM = 15^{\circ}$. Найдите углы треугольника ABC.
- **7** Дан треугольник с периметром, равным 24. Найдите периметр треугольника с вершинами в серединах сторон данного.
- 8 Острые углы прямоугольного треугольника равны 81° и 9°. Найдите угол между биссектрисой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.
- 9 В прямоугольном треугольнике ABC на гипотенузе AB взяты точки K и M, причем AK = AC и BM = BC. Найдите $\angle MCK$.
- **10** Через вершины A и C треугольника ABC проведены прямые, перпендикулярные биссектрисе угла ABC, пересекающие прямые CB и BA в точках K и M соответственно. Найдите AB, если BM=8, KC=1.

1 Найти значение выражения:

$$61a - 11b + 50$$
, если $\frac{2a - 7b + 5}{7a - 2b + 5} = 9$.

- **2** Докажите, что если медиана равна половине стороны, к которой она проведена, то треугольник прямоугольный.
- **3** Докажите, что медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы.
- **4** Докажите, что если треугольник вписан в окружность и одна из его сторон является диаметром этой окружности, то такой треугольник является прямоугольным.
- **5** Докажите обратное, что если треугольник прямоугольный и вписан в окружность, то гипотенуза будет являться диаметром окружности.
- **6** Докажите, что окружность, построенная на стороне равностороннего треугольника как на диаметре, проходит через середины двух других сторон треугольника.
- 7 Острый угол прямоугольного треугольника равен 30°. Докажите, что высота и медиана, проведенные из вершины прямого угла, делят прямой угол на три равные части.
- 8 На катетах AC и BC прямоугольного треугольника ABC вне его построены квадраты ACDE и CBFK (вершины обоих квадратов перечислены против часовой стрелки), P середина KD. Докажите, что $CP \perp AB$.

Домашняя работа ⊠1

1 Упростить выражение:

$$\left(\frac{1}{x+2} + \frac{5}{x^2 - x - 6} + \frac{2x}{x-3}\right) \cdot \frac{x}{2x+1} - \frac{x-9}{2(3-x)}$$

2 Найти значение выражения:

$$\frac{a}{b}$$
, если $\frac{2a+5b}{5a+2b} = 1$.

3 Упростить выражение:

$$(2\sqrt{5} - \sqrt{15})(\sqrt{15} + 2\sqrt{5}) - (\sqrt{10} - 5\sqrt{2})^2$$

- 4 Острый угол прямоугольного треугольника равен 30°, а гипотенуза равна 8. Найдите отрезки, на которые делит гипотенузу высота, проведенная из вершины прямого угла.
- **5** Докажите, что высота равнобедренного прямоугольного треугольника, проведенная из вершины прямого угла, вдвое меньше гипотенузы.
- **6** Биссектрисы двух углов треугольника пересекаются под углом 110°. Найдите третий угол треугольника.

Занятие 🛚 3

- 1 Докажите следующие свойства окружности:
 - 1) диаметр, перпендикулярный хорде, делит ее пополам;
 - 2) диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде;
 - 3) хорды, удаленные от центра окружности на равные расстояния, равны.
- Через точку A окружности с центром O проведены диаметр AB и хорда AC. Докажите, что угол BAC вдвое меньше угла BOC (без использования свойств центральных и вписанных углов).
- **3** Найдите угол между радиусами OA и OB, если расстояние от центра O окружности до хорды AB вдвое меньше AB.
- **4** Даны две концентрические окружности и пересекающая их прямая. Докажите, что отрезки этой прямой, заключенные между окружностями, равны.
- **5** Прямая, проходящая через общую точку A двух окружностей, пересекает вторично эти окружности в точках B и C соответственно. Расстояние между проекциями центров окружностей на эту прямую равно 12. Найдите BC, если известно, что точка A лежит на отрезке BC.
- **6** Две хорды окружности взаимно перпендикулярны. Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.
- 7 Докажите, что если треугольник вписан в окружность и одна из его сторон является диаметром этой окружности, то такой треугольник является прямоугольным.
- 8 Центр окружности, описанной около треугольника, симметричен центру окружности, вписанной в этот треугольник, относительно одной из сторон. Найдите углы треугольника.
- 9 Через точку A проведена прямая, пересекающая окружность с диаметром AB в точке K, отличной от A, а окружность с центром B в точках M и N. Докажите, что MK = KN.

- **1** Внутренние углы треугольника ABC относятся как 10:5:3. Найдите внутренние и внешние углы треугольника ABC и вычислите разницу самого наибольшего и наименьшего внешних углов.
- **2** В треугольнике ABC углы B и C равны 30 и 40 соответственно. Сторону AB продлили за вершину A и из это вершины провели высоту и биссектрису внешнего угла. Найдите угол между высотой и биссектрисой.
- 3 Две параллельные прямые пересечены третьей. Найдите угол между биссектрисами внутренних односторонних углов.
- 4 Угол между радиусами OA и OB окружности равен 60°. Найдите хорду AB, если радиус окружности равен 12.
- **5** Дана окружность с центром O. На продолжении хорды AB за точку B отложен отрезок BC, равный радиусу. Через точки C и O проведена секущая CD (D точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что $\angle AOD = 3 \angle ACD$.
- **6** В треугольнике ABC медиана AM продолжена за точку M на расстояние, равное AM. Найдите расстояние от полученной точки до вершин B и C, если AB = 7, AC = 11.
- 7 Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной 10, проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырехугольника.
- 8 Решить уравнение:

1)
$$2x^4 + 3x^3 + 16x = -24$$

2)
$$(x+3)^3 = 100(x+3)$$

Домашняя работа ⊠2

1 Упростить выражение:

$$1: \left(\frac{a}{a-b} + \frac{4a^2b - ab^2}{b^3 - a^3} + \frac{b^2}{a^2 + ab + b^2}\right) - \frac{-3ab}{(a-b)^2}$$

2 Упростить и найти значение выражения:

$$\left(\frac{x+1}{x-1} - \frac{x-1}{x+1} + 4x\right) \cdot \left(x - \frac{1}{x}\right)$$
, если $x = 5\frac{1}{3}$

- **3** Через точку на окружности проведены диаметр и хорда, равная радиусу. Найдите угол между ними.
- 4 Найдите угол между радиусами OA и OB, если расстояние от центра O окружности до хорды AB вдвое меньше OA.
- Б На катете AC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке K. Найдите CK, если AC = 2 и $\angle A = 30^{\circ}$.
- 6 Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный.
- **7** Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P. Докажите, что треугольники APD и BPC равнобедренные.

- **1** Докажите, что касательные к окружности, проведенные через концы диаметра, параллельны.
- **2** Через точку M проведены две касательные MA и MB к окружности (A и B точки касания). Докажите, что MA = MB.
- **3** Расстояние от точки M до центра O окружности равно диаметру. Через точку M проведены две прямые, касающиеся окружности в точках A и B. Найдите углы треугольника AOB.
- 4 В прямой угол вписана окружность радиуса 12, касающаяся сторон угла в точках A и B. Через некоторую точку на меньшей дуге AB окружности проведена касательная, отсекающая от данного угла треугольник. Найдите его периметр.
- **5** Прямая касается окружности с центром O в точке A. Точка C на этой прямой и точка D на окружности расположены по одну сторону от прямой OA. Докажите, что угол CAD вдвое меньше угла AOD.
- В острый угол, равный 60° , вписаны две окружности, касающиеся друг друга внешним образом. Радиус меньшей окружности равен r. Найдите радиус большей окружности.
- 7 Вычислить:

$$\frac{6 \cdot 2^8 - 9 \cdot 2^{10} + 3 \cdot 2^{12}}{4 \cdot 2^{10} + 4 \cdot 2^{12} - 8 \cdot 2^{11}}$$

$$\frac{2x-1}{x+1} = \frac{4x+2}{3x-2}$$

- **1** Докажите, что центр окружности, вписанной в угол, расположен на его биссектрисе.
- **2** Точка D лежит на стороне BC треугольника ABC. В треугольник ABD и ACD вписаны окружности с центрами O_1 и O_2 . Докажите, что отрезок O_1O_2 виден из точки D под прямым углом.
- 3 К окружности, вписанной в равносторонний треугольник со стороной, равной 8, проведена касательная, пересекающая две его стороны. Найдите периметр отсеченного треугольника.
- **4** Прямая, параллельная хорде AB, касается окружности в точке C. Докажите, что треугольник ABC равнобедренный.
- **5** Две прямые, пересекающиеся в точке C, касаются окружности в точках A и B. Известно, что $\angle ACB = 120^{\circ}$. Докажите, что сумма отрезков AC и BC равна отрезку OC.
- **6** Пусть r радиус окружности, вписанной в прямоугольный треугольник с катетами a и b и гипотенузой c. Докажите, что $r=\frac{1}{2}(a+b-c)$.
- **7** В треугольник ABC вписана окружность, касающаяся стороны AB в точке M. Пусть AM = x, BC = a, полупериметр треугольника равен p. Докажите, что x = p a.
- 8 В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная так, что она пересекает две большие стороны. Найдите периметр отсечённого треугольника.
- 9 Найти значение выражения:

$$\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right)\cdot\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right),\quad \text{при } x=7,2$$

Домашняя работа ⊠3

- 1 Хорда большей из двух концентрических окружностей касается меньшей. Докажите, что точка касания делит эту хорду пополам.
- **2** Точки A и B лежат на окружности. Касательные к окружности, проведенные через эти точки, пересекаются в точке C. Найдите углы треугольника ABC, если AB = AC.
- **3** Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если $\angle ABO = 40^{\circ}$.
- **4** К окружности, вписанной в квадрат со стороной, равной 4, проведена касательная, пересекающая две его стороны. Найдите периметр отсеченного треугольника.
- **5** В треугольник ABC вписана окружность, касающаяся стороны AB в точке M. Пусть AM = x, BC = a, полупериметр треугольника равен p. Докажите, что x = p a.
- **6** Окружность касается двух параллельных прямых и их секущей. Докажите, что отрезок секущей, заключенный между параллельными прямыми, виден из центра окружности под прямым углом.
- **7** CH высота прямоугольного треугольника ABC, проведенная из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH, BCH и ABC, равна CH.

Подготовка к проверочной работе

- Чему равен угол между биссектрисами двух смежных углов?
 Чему равен угол между биссектрисами двух внутренних односторонних углов при параллельных прямых? Докажите это.
 Сформулируйте и докажите теорему о внешнем угле треугольника.
- 4 Чему равна сумма всех внешних углов треугольника?
- **5** Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника, параллельна основанию.
- **6** Докажите, что если в треугольнике один угол равен сумме двух других, то такое треугольник прямоугольный.
- **7** Докажите, что если медиана равна половине стороны, к которой она проведена, то такой треугольник прямоугольный.
- 8 Докажите, что если треугольник вписан в окружность и одна из его сторон является диаметром этой окружности, то такой треугольник прямоугольный.
- **9** Сформулируйте теорему об угле в 30° в прямоугольном треугольнике. Сформулируйте обратную теорему.
- 10 Сформулируйте теорему о диаметре, перпендикулярном хорде.
- 11 Сформулируйте теорему о диаметре, проходящем через середину хорды.
- **12** Где лежит центр вписанной в треугольник окружности? Где лежит центр описанной окружности?
- 13 Сформулируйте теорему о двух касательных, проведенных из одной точки к окружности.
- **14** Докажите, что касательные к окружности, проведенные через концы диаметра, параллельны.
- 15 Угол между биссектрисами двух углов треугольника равен 120°. Чему равен третий угол треугольника?
- **16** Угол треугольника равен 50°. Найдите угол между высотами, проведенными из двух других углов.
- **17** В треугольнике ABC угол $\angle B = 60^\circ$. Найдите угол между биссектрисами двух других внешних углов.
- **18** Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.
- **19** Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P. Докажите, что треугольники APD и BPC равнобедренные.
- **20** Хорда большей из двух концентрических окружностей касается меньшей. Докажите, что точка касания делит эту хорду пополам.

- **21** Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если $\angle ABO = 40^{\circ}$.
- **22** К окружности, вписанной в квадрат со стороной, равной 4, проведена касательная, пересекающая две его стороны. Найдите периметр отсеченного треугольника.
- **23** Окружность касается двух параллельных прямых и их секущей. Докажите, что отрезок секущей, заключенный между параллельными прямыми, виден из центра окружности под прямым углом.
- Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.
- **25** В треугольнике ABC медиана AM продолжена за точку M на расстояние, равное AM. Найдите расстояние от полученной точки до вершин B и C, если AB = 5, AC = 12.
- **26** Дана окружность с центром O. На продолжении хорды AB за точку B отложен отрезок BC, равный радиусу. Через точки C и O проведена секущая CD (D точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что $\angle AOD = 3 \angle ACD$.
- 27 Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной 10, проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырехугольника.
- [28] На сторонах выпуклого четырехугольника как на диаметрах построены четыре окружности. Докажите, что общая хорда окружностей, построенных на двух соседних сторонах, параллельна общей хорде двух других окружностей.

Проверочная работа

Вариант 1

- 1 1) Чему равен угол между биссектрисами двух смежных углов?
 - 2) Сформулируйте и докажите теорему о внешнем угле треугольника.
 - 3) Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника, параллельна основанию.
 - 4) Докажите, что если медиана равна половине стороны, к которой она проведена, то такой треугольник прямоугольный.
 - 5) Докажите, что если треугольник вписан в окружность и одна из его сторон является диаметром этой окружности, то такой треугольник прямоугольный.
 - 6) Сформулируйте теорему об угле в 30° в прямоугольном треугольнике. Сформулируйте обратную теорему.
 - 7) Сформулируйте теорему о диаметре, проходящем через середину хорды.
 - 8) Где лежит центр вписанной в треугольник окружности?
- **2** В треугольнике ABC обе стороны AB и BC равны 15. Чему равна сторона AC, если $\angle BAC = 60^{\circ}$?
- **3** Угол между биссектрисами двух углов треугольника равен 100°. Чему равен третий угол треугольника?
- 4 Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.
- **5** Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если $\angle ABO = 40^{\circ}$.
- **6** К окружности, вписанной в квадрат со стороной, равной 4, проведена касательная, пересекающая две его стороны. Найдите периметр отсеченного треугольника.
- **7** В треугольнике ABC медиана AM продолжена за точку M на расстояние, равное AM. Найдите расстояние от полученной точки до вершин B и C, если AB = 5, AC = 12.
- 8 Дана окружность с центром O. На продолжении хорды AB за точку B отложен отрезок BC, равный радиусу. Через точки C и O проведена секущая CD (D точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что $\angle AOD = 3 \angle ACD$.
- 9 Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной 10, проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырехугольника.
- 10 Найти значение выражения:

$$61a - 11b + 50$$
, если $\frac{2a - 7b + 5}{7a - 2b + 5} = 9$.

$$\frac{2x-1}{x+1} = \frac{4x+2}{3x-2}$$

Проверочная работа

Вариант 2

- 1) Чему равен угол между биссектрисами двух внутренних односторонних углов при параллельных прямых?
 - 2) Сформулируйте и докажите теорему о внешнем угле треугольника.
 - 3) Докажите, что если в треугольнике один угол равен сумме двух других, то такое треугольник прямоугольный.
 - 4) Докажите, что если треугольник вписан в окружность и одна из его сторон является диаметром этой окружности, то такой треугольник прямоугольный.
 - 5) Сформулируйте теорему об угле в 30° в прямоугольном треугольнике. Сформулируйте обратную теорему.
 - 6) Сформулируйте теорему о диаметре, перпендикулярном хорде.
 - 7) Сформулируйте теорему о двух касательных, проведенных из одной точки к окружности.
- **2** В треугольнике ABC обе стороны AB и BC равны 30. Чему равна сторона AC, если $\angle BAC = 60^{\circ}$?
- 3 Угол треугольника равен 80°. Найдите угол между высотами, проведенными из двух других углов.
- 4 Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.
- **5** Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если $\angle ABO = 40^{\circ}$.
- 6 К окружности, вписанной в квадрат со стороной, равной 4, проведена касательная, пересекающая две его стороны. Найдите периметр отсеченного треугольника.
- 7 Дана окружность с центром O. На продолжении хорды AB за точку B отложен отрезок BC, равный радиусу. Через точки C и O проведена секущая CD (D точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что $\angle AOD = 3 \angle ACD$.
- 8 В треугольнике ABC медиана AM продолжена за точку M на расстояние, равное AM. Найдите расстояние от полученной точки до вершин B и C, если AB = 6, AC = 17.
- 9 Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной 10, проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырехугольника.
- 10 Найти значение выражения:

$$61a - 11b + 50$$
, если $\frac{2a - 7b + 5}{7a - 2b + 5} = 9$.

$$\frac{2x-1}{x+1} = \frac{4x+2}{3x-2}$$

Математическая индукция — метод математического доказательства, который применяется, чтобы доказать истинность некого утверждения для всех натуральных чисел. Некоторое утверждение будет справедливым для натурального значения n тогда, и только тогда, когда:

- 1) Оно будет верно при n=1 (база индукции)
- 2) Предположительно справедливо для произвольного натурального n=k (предположение индукции)
- 3) И окажется верным при n = k + 1 (шаг индукции)
- 1 Докажите методом математической индукции:

1)
$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

3)
$$2+4+6+\cdots+2n=n(n+1)$$

2)
$$1+3+5+\cdots+(2n-1)=n^2$$

4)
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

- **2** В треугольнике ABC сторона $AB=12,\ BC=4$ и $\angle CBA=45^{\circ}$. Найдите площадь треугольника.
- **3** Радиус описанной вокруг равностороннего треугольника ABC окружности равен 9. Найдите площадь сторону и площадь треугольника ABC.

1)
$$(2x^2 + 3x - 1)^2 - 10x^2 - 15x + 9 = 0$$

2)
$$3(6x^2 - 13x + 6)^2 - 10(6x^2 - 13) = 53$$

3)
$$x^4 + 2x^3 - x - 2 = 0$$

4)
$$(x^2 - x)^2 - 18(x^2 - x - 2) + 36 = 0$$

5)
$$3(6x^2 - 13x + 6)^2 - 10(6x^2 - 13) = 53$$

6)
$$\left(x + \frac{2}{x}\right)^2 + 2\left(x + \frac{2}{x}\right) - 3 = 0$$

7)
$$\frac{1}{x-3+\frac{8}{x}} - \frac{1}{x+2+\frac{8}{x}} = \frac{5}{24}$$

1 Найдите область определения функции:

1)
$$y = \frac{x - 7}{x^2 - 6x + 8}$$

3)
$$y = \sqrt{\frac{x+11}{x^2+14x+33}}$$

$$2) \quad y = \sqrt{x^2 + 6x - 16}$$

4)
$$y = \frac{1 - \sqrt{-x^2 - 7x + 8}}{1 + \sqrt{x + 9}}$$

2 Найдите область значений функции:

1)
$$y = 2x - 1$$

4)
$$y = 1 - \frac{3}{x}$$

2)
$$y = 2x^2 - 3$$

5)
$$y = \frac{x-1}{x+1}$$

3)
$$y = -3x^2 - 12x + 1, x \in [-6; 1)$$

3 Найдите промежутки монотонности:

1)
$$y = x^2 - 9x + 20$$

2)
$$y = (x+3)^2 - 12$$

4 Пусть функция y = f(x) определена и возрастает на R. Решите уравнение:

$$f\left(\frac{24}{x}\right) = f\left(1 + \frac{17 - x}{x - 1}\right)$$

5 Найдите область определения функции и исследуйте ее на четность и нечетность:

$$y = \frac{x^2}{1+x} + \frac{x^2}{1-x}$$

6 Являются ли функции y = f(x) и y = g(x) взаимно обратными, если f(x) = 3x + 5 и $g(x) = \frac{1}{3}x - \frac{5}{3}$?

7 Найдите функцию, обратную $y = \frac{x+7}{2x-5}$.

1 Решить уравнение:

1)
$$(2x-3)(x^2+3x+2)=0$$

3)
$$(x^2 + 6x)^2 + 2(x+3)^2 = 81$$

2)
$$\frac{(x+2)(x-5)}{3} - \frac{11x+12}{10} = 2 - \frac{x-2}{3}$$
 4) $x^4 - 7x^3 + 14x^2 - 7x + 1 = 0$

4)
$$x^4 - 7x^3 + 14x^2 - 7x + 1 = 0$$

Сколько пятизначных чисел можно получить из цифр 1; 3; 5; 7; 9? $\mathbf{2}$

Сколько трехзначных чисел можно получить из цифр 1; 3; 5; 7; 9? 3

4 Сколько есть способов поставить в ряд (последовательность не важна) 3 человек из 8?

Упростить выражение: 5

$$\left(\frac{2}{2+m} - \frac{m}{m-2} - \frac{4}{4-m^2}\right) : \left(\frac{2}{2+m} + \frac{4}{m^2-4} + \frac{m}{2-m}\right)$$

6 Решить неравенство:

1)
$$(x-1)(x+5) \ge 0$$

3)
$$(3x^2 - 8x + 4)(5x^2 - 8x - 4) \le 0$$

2)
$$x^2 - 6x + 5 \ge 0$$

1 Решить уравнение:

$$(x^2 - x)^2 - 8(x^2 - x) + 12 = 0$$

2 Решить уравнение:

$$\sqrt{4+2x-x^2} = x-2$$

3 Решить уравнение:

$$\sqrt{3x^2 + 6x + 1} + x^2 + 2x = 13.$$

4 Решить неравенство:

$$(x^2 - 4x + 4)(3x^2 - 2x - 1) \le 0$$

$$\frac{5-x}{\left|x^2 - 7x + 10\right|} = 2$$

- 6 Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что AM = AN.
- **7** Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.