Assignment#3

181220076 周韧哲

Q1

1. The class expression is in NNF, so we can directly write:

$$S_0 = \{x : \exists R. \exists E. \neg C \cap \forall R. C\}$$

The application of \rightarrow_{\sqcap} gives:

$$S_1 = S_0 \cup \{x : \exists R. \exists E. \neg C, x : \forall R. C\}$$

The application of \rightarrow_\exists gives:

$$S_2 = S_1 \cup \{(x,y) : R, y : \exists E. \neg C\}$$

The application of \rightarrow_\exists gives:

$$S_3 = S_2 \cup \{(y, z) : E, z : \neg C\}$$

The application of \rightarrow_\forall gives:

$$S_4 = S_3 \cup \{y : C\}$$

No rule is applicable to S_4 and S_4 contains no clash. Thus, the concept is satisfiable. A model \mathcal{I} of this concept is given by:

$$\Delta^{\mathcal{I}} = \{x, y, z\}, \quad C^{\mathcal{I}} = \{y\}, \quad R^{\mathcal{I}} = \{(x, y)\}, \quad E^{\mathcal{I}} = \{(y, z)\}$$

2. From TBox $A \sqsubseteq B$ we can know there $\exists A'$ s.t. $A = A' \sqcap B$.

And then we can convert (R some A) and (R only (not B)) into

$$\exists R. (A' \sqcap B) \sqcap \forall R. \neg B$$

It is NNF, the initial constraint is:

$$S_0 = \{x : \exists R. (A' \sqcap B) \sqcap \forall R. \neg B\}$$

The application of \rightarrow_{\sqcap} gives:

$$S_1 = S_0 \cup \{x : \exists R. (A' \sqcap B), x : \forall R. \neg B\}$$

The application of \rightarrow_\exists gives:

$$S_2 = S_1 \cup \{(x,y) : R,y : A' \cap B\}$$

The application of \rightarrow_\forall gives:

$$S_3 = S_2 \cup \{y : \neg B\}$$

The application of \rightarrow_{\sqcap} gives:

$$S_4 = S_3 \cup \{y : B, y : A'\}$$

 S_4 contains clush: $\{y: B, y: \neg B\}$.

No rule is applicable to S_4 , and it contains clushes. So the class expression (R some A) and (R only (not B)) is unsatisfiable w.r.t A SubClassOf B.

3. To proof $(\exists R.\ A \sqcap \exists R.\ B) \sqsubseteq (\exists R.\ (A \sqcap B))$, is to proof $\neg((\exists R.\ A \sqcap \exists R.\ B) \sqsubseteq (\exists R.\ (A \sqcap B)))$ is unsatisfiable. Convert it into NNF:

$$\exists R. A \sqcap \exists R. B \sqcap \forall R. (\neg A \sqcup \neg B)$$

and then we get:

$$S_0 = \{x : \exists R. A \cap \exists R. B \cap \forall R. (\neg A \sqcup \neg B)\}\$$

The application of \rightarrow_{\sqcap} gives:

$$S_1 = S_0 \cup \{x : \exists R. A, x : \exists R. B, x : \forall R. (\neg A \sqcup \neg B)\}$$

The application of \rightarrow_\exists gives:

$$S_2 = S_1 \cup \{(x,y): R,y: A\}$$

The application of \rightarrow_\exists gives:

$$S_3 = S_2 \cup \{(x, z) : R, z : B\}$$

The application of \rightarrow_\forall gives:

$$S_4 = S_3 \cup \{y : \neg A \sqcup \neg B, z : \neg A \sqcup \neg B\}$$

The application of \rightarrow_{\sqcup} gives:

$$S_5 = S_4 \cup \{y : \neg A\}$$

 S_5 contains clush: $\{y:A,y:\neg A\}$.

So we get another branch:

$$S_5^* = S_4 \cup \{y: \neg B\}$$

The application of \rightarrow_{\sqcup} gives:

$$S_6 = S_5^* \cup \{z: \neg B\}$$

 S_6 contains clush: $\{z: B, z: \neg B\}$.

So we get another branch:

$$S_6^* = S_5^* \cup \{z : \neg A\}$$

No rule is applicable to S_6^* and S_6^* contains no clash. Thus, the concept is satisfiable. Therefore, (R some A) and (R some B) is not subsumed by R some (A and B) .

Q2

Please see the source code A#3-181220076.java.