

Solution

 $\sum_{n=0}^{\infty} \left(\frac{\sqrt{x}}{6} - 1 \right)^n$: Interval of convergence is 0 < x < 144

Steps

$$\sum_{n=0}^{\infty} \left(\frac{\sqrt{x}}{6} - 1 \right)^n$$

Use the Root Test to compute the convergence interval

Hide Steps

$$\sum_{n=0}^{\infty} \left(\frac{\sqrt{x}}{6} - 1 \right)^n$$

Series Root Test:

If $\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = L$, and:

If L < 1, then $\sum a_n$ converges

If L > 1, then $\sum a_n$ diverges

If L=1, then the test is inconclusive

$$\left| a_n^{\frac{1}{n}} \right| = \left| \left(\frac{\sqrt{x}}{6} - 1 \right)^{n \frac{1}{n}} \right|$$

Compute $L = \lim_{n \to \infty} \left(\left| \left(\frac{\sqrt{x}}{6} - 1 \right)^{n \frac{1}{n}} \right| \right)$

Hide Steps

$$L = \lim_{n \to \infty} \left(\left| \left(\left(\frac{\sqrt{x}}{6} - 1 \right)^n \right)^{\frac{1}{n}} \right| \right)$$

Simplify $\left(\left(\frac{\sqrt{x}}{6}-1\right)^n\right)^{\frac{1}{n}}$: $\frac{\sqrt{x}}{6}-1$

Hide Steps

$$\left(\left(\frac{\sqrt{x}}{6}-1\right)^n\right)^{\frac{1}{n}}$$

Use the following exponent property: $\binom{a^n}{a^m} = a^{n \cdot m}$

$$\left(\left(\frac{\sqrt{x}}{6}-1\right)^n\right)^{\frac{1}{n}} = \left(\frac{\sqrt{x}}{6}-1\right)^{n\frac{1}{n}}$$

$$=\left(\frac{\sqrt{x}}{6}-1\right)^{n\frac{1}{n}}$$

Multiply $n\frac{1}{n}: 1$

Hide Steps

Multiply fractions: $a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$

$$=\frac{1\cdot n}{n}$$

Cancel the common factor: n

$$=\left(\frac{\sqrt{x}}{6}-1\right)^1$$

Apply rule $a^1 = a$

$$=\frac{\sqrt{x}}{6}-1$$

$$L = \lim_{n \to \infty} \left(\left| \frac{\sqrt{x}}{6} - 1 \right| \right)$$

$$L = \left| \frac{\sqrt{x}}{6} - 1 \right| \cdot \lim_{n \to \infty} (1)$$

 $\lim_{n\to\infty} (1) = 1$

Hide Steps

 $\lim_{n\to\infty} (1)$

$$\lim_{x \to a} c = c$$

$$L = \left| \frac{\sqrt{x}}{6} - 1 \right| \cdot 1$$

Simplify

$$L = \left| \frac{\sqrt{x}}{6} - 1 \right|$$

$$L = \left| \frac{\sqrt{x}}{6} - 1 \right|$$

The power series converges for L < 1

$$\left| \frac{\sqrt{x}}{6} - 1 \right| < 1$$

Find the interval of convergence

Hide Steps

To find the interval of convergence of a power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ solve for x

$$\left| \frac{\sqrt{x}}{6} - 1 \right| < 1 : 0 < x < 144$$

Hide Steps

$<\frac{\sqrt{x}}{6} - 1 < 1$	
$\frac{\overline{x}}{x} - 1 > -1$ and $\frac{\sqrt{x}}{6} - 1 < 1$	Hide
$\frac{\sqrt{x}}{6} - 1 > -1$ and $\frac{\sqrt{x}}{6} - 1 < 1$	
$\frac{\sqrt{x}}{6} - 1 > -1 : x > 0$	Hide Si
$\frac{\sqrt{x}}{6} - 1 > -1$	
Add 1 to both sides	
$\frac{\sqrt{x}}{6} - 1 + 1 > -1 + 1$	
Simplify	
$\frac{\sqrt{x}}{6} > 0$	
Multiply both sides by 6	
$\frac{6\sqrt{x}}{6} > 0 \cdot 6$	
Simplify	
$\sqrt{x} > 0$	
Square both sides	
$(\sqrt{x})^2 > 0^2$	
Simplify	
<i>x</i> > 0	
Find singularity points	
Find non – negative values for radicals: $x \ge 0$	Hide Ste

Combine the intervals x > 0 and $x \ge 0$

 $x \ge 0$

Combine the intervals

x < 144 and x > 0

Merge Overlapping Intervals

Hide Steps 🖨

The intersection of two intervals is the set of numbers which are in both intervals $x < 144 \quad {\rm and} \quad x > 0$

 $0 \le x < 144$

 $0 \le x < 144$

Combine the intervals

 $x \! > \! 0 \quad \text{and} \quad 0 \leq x \! < \! 144$

x > 0 and $0 \le x < 144$

0 < x < 144

0 < x < 144

Check the interval end points: x = 0:diverges, x = 144:diverges

Hide Steps

Hide Steps

For x = 0, $\sum_{n=0}^{\infty} \left(\frac{\sqrt{0}}{6} - 1 \right)^n$: diverges

$$\sum_{n=0}^{\infty} \left(\frac{\sqrt{0}}{6} - 1 \right)^n$$

Refine

$$=\sum_{n=0}^{\infty}(-1)^n$$

Apply Series Geometric Test: diverges

 $\sum_{n=0}^{\infty} (-1)^n$

Geometric Series:

If the series is of the form $\sum_{n=0}^{\infty} r^n$

If |r| < 1, then the geometric series converges to $\frac{1}{1-r}$

If $|r| \geq 1$, then the geometric series diverges

$$r=\ -1,\, |r|=1\geq 1,$$
 by the geometric test criteria

= diverges

= diverges

For
$$x = 144$$
, $\sum_{n=0}^{\infty} \left(\frac{\sqrt{144}}{6} - 1 \right)^n$: diverges

Hide Steps 🖨

$$\sum_{n=0}^{\infty} \left(\frac{\sqrt{144}}{6} - 1 \right)^n$$

Refine

$$=\sum_{n=0}^{\infty}1$$

Every infinite sum of a non – zero constant diverges

= diverges

x = 0:diverges, x = 144:diverges

Therefore

Interval of convergence is 0 < x < 144

Interval of convergence is 0 < x < 144

Interval of convergence is 0 < x < 144