Problen:

1 A Taxonomy of Solutions to (P)

Will use "solution" and "minimizer" interchangeably.

Definition 1. We say that $x^* \in \mathcal{X} \subseteq \text{dom}(f)$ is

- 1. a *local minimizer/solution* of (P) if there exists a neighborhood \mathcal{N}_{x^*} of x^* such that for all $x \in \mathcal{N}_{x^*} \cap \mathcal{X}$ we have $f(x) \geq f(x^*)$;
- 2. a global minimizer of (P) if $\forall x \in \mathcal{X}$: $f(x) \geq f(x^*)$
- 3. a *strict local minimizer* of (P) if there exists a neighborhood \mathcal{N}_{x^*} of x^* such that for all $x \in \mathcal{N}_{x^*} \cap \mathcal{X}$ and $x \neq x^*$ we have $f(x) > f(x^*)$; (i.e., satisfies part 1 with a strict inequality)
- 4. an *isolated local minimizer* of (P) if there exists a neighborhood \mathcal{N}_{x^*} such that $\forall x \in \mathcal{N}_{x^*} \cap \mathcal{X}$: $f(x) \geq f(x^*)$ and \mathcal{N}_{x^*} does not contain any other local minimizer.
- 5. a unique minimizer if it is the only global minimizer.

Ex. prove isolated ball min is strict.

If: Suppose for water, strict inequality along not hold, Than $\exists x^{*} \neq x^{*}$ $s.t. f(x^{*}) = f(x^{*})$. And $x^{*} \in N_{A^{*}} \cap X$. This waterarists with x^{*} is an isolated min.

Strict min * isolated.

Example 3. A strict minimizer that is not isolated:

- (not continuous) $f_1(x) = \begin{cases} 1 & x \neq 0 \\ 0 & x = 0 \end{cases}$ and $x^* = 0$.
- (continuous) $f_2(x) = \begin{cases} x^2 \left(1 + \sin^2(\frac{1}{x})\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$ and $x^* = 0$.

Illustration: Left f_1 . Right: f_2 .

Theorem 1 (Taylor's Theorem; Thm 2.1 in Wright-Recht). Let $f : \mathbb{R}^d \to \mathbb{R}$ be a continuously differentiable function. Then, for all $x, y \in \text{dom}(f)$ such that $\{(1 - \alpha)x + \alpha y : \alpha \in (0, 1)\} \subseteq \text{dom}(f)$, we have

1.
$$f(y) = f(x) + \int_0^1 \langle \nabla f(x + t(y - x)), y - x \rangle dt$$

2.
$$f(y) = f(x) + \langle \nabla f(x + \gamma(y - x)), y - x \rangle$$
 for some $\gamma \in (0, 1)$ (a.k.a. Mean Value Thm).

If f is twice continuously differentiable:

3.
$$\nabla f(y) = \nabla f(x) + \int_0^1 \nabla^2 f(x + t(y - x)) (y - x) dt$$
. Here

$$\nabla^2 f(x) = \begin{bmatrix} & \dots \\ \vdots & \frac{\partial^2 f}{\partial x_i \partial x_j}(x) & \vdots \\ & \dots & \end{bmatrix} \in \mathbb{R}^{d \times d}$$

denotes the Hessian matrix ("second-order derivative") of f at x.

4. $\exists \gamma \in (0,1)$:

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^2 f(x + \gamma(y - x)) (y - x), y - x \rangle$$

= $f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} (y - x)^{\top} \nabla^2 f(x + \gamma(y - x)) (y - x).$

Remark 1. A common mistake is to write down the following "Mean-Value Thm" for the gradient:

$$\exists \gamma \in (0,1): \nabla f(y) = \nabla f(x) + \nabla^2 f(x + \gamma(y - x))(y - x)? \longleftarrow$$
 This is wrong!

4. Illustrate:

Start from
$$\geq$$
 not Taylor expansion:
$$f(y) = f(x) + \langle \nabla f(x), y \times \rangle + \int_{a}^{b} (1-t) \langle \nabla^{2} f(x+t(y+x)) (y+x), y-x \rangle dt$$

$$\text{Intergral MVT:} \qquad \int_{a}^{b} f(x)g(x)dx = f(c) \int_{a}^{b} f(x)dx \qquad (g(x)=1 \Rightarrow s+d \text{ MVT})$$

$$\exists \mathcal{V} \in (0,1) = f(x) + \langle \nabla^{2} f(x), y \times \rangle + \langle \nabla^{2} f(x+\mathcal{V}(y+x)) (y+x), y \times \rangle \int_{a}^{b} \frac{(1-t)}{t} dt$$

$$= f(x) + \langle \nabla^{2} f(x), y \times \rangle + \leq \lfloor y \times \rfloor^{T} \nabla^{2} f(x+\mathcal{V}(y+x)) (y+x).$$

For
$$f$$
 continuously differentiable at x , we have $f(x+p) = f(x) + \nabla f(x) + \nabla f(x) + \nabla f(x) = \int_{-\infty}^{\infty} f(x) + \nabla f(x) + \nabla f(x) + \nabla f(x) = \int_{-\infty}^{\infty} f(x) + \nabla f(x) + \nabla f(x) + \nabla f(x) = \int_{-\infty}^{\infty} f(x) + \nabla f(x) + \nabla f(x) = \int_{-\infty}^{\infty} f(x) + \nabla f(x) + \nabla f(x) = \int_{-\infty}^{\infty} f(x) + \nabla f(x) + \nabla f(x) = \int_{-\infty}^{\infty} f(x) + \nabla f(x) + \nabla f(x) = \int_{-\infty}^{\infty} f(x) + \nabla f(x) + \nabla f(x) = \int_{-\infty}^{\infty} f(x) + \nabla f(x) + \nabla f(x) = \int_{-\infty}^{\infty} f(x) + \nabla f(x$

or equivalently, $\lim_{\|P\| \to 0} \frac{|f(x+p) - f(x) - \sqrt{f(x)}P|}{\|P\|} = 0.$ Pf: By part \geq of Taylor Then above, $f(x+p) \stackrel{\exists \mathcal{V} \in \{0,1\}}{=} f(x) + \langle \nabla f(x+2p), P \rangle$ $= f(x) + \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x) \rangle + \langle \nabla f(x+2p) - \langle \nabla f(x+2$