STAT 620: Asymptotic Statistics

Spring 2022

Lecture: Jan 20

Lecturer: Xianyang Zhang

1 Tightness

A random vector X is tight if for every $\epsilon > 0$ there exists M > 0 such that $P(||X|| > M) < \epsilon$. A set of random vectors $\{X_a : a \in A\}$ is called uniformly tight if for every $\epsilon > 0$ there exists M > 0 such that

$$\sup_{a \in A} P(\|X_a\| > M) < \epsilon.$$

We often use the notation $X_n = O_p(1)$ to denote that $\{X_n : n \in \mathbb{N}\}$ is uniformly tight.

2 Helly's Lemma

Each given sequence F_n of cumulative distribution functions on \mathbb{R}^k has a subsequence F_{n_j} with the property that $F_{n_j}(x) \to F(x)$ at each continuity point x of a possibly defective distribution function F (i.e., F has all the properties of a cumulative distribution function with the exception that it may not satisfy $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to -\infty} F(x) = 0$.

3 Prohorov's Theorem

Let $\{X_n : n \in \mathbb{N}\}$ be a sequence of random vectors in \mathbb{R}^k .

- 1. If $X_n \stackrel{d}{\to} X$ for some X, then $\{X_n : n \in \mathbb{N}\}$ is uniformly tight.
- 2. If $\{X_n : n \in \mathbb{N}\}$ is uniformly tight, then there exists a subsequence with $X_{n_j} \stackrel{d}{\to} X$ as $j \to \infty$ for some random vector X.

3.1 Sketch of the proof

- As $X_n \stackrel{d}{\to} X$, by the continuous mapping theorem, we have $||X_n|| \stackrel{d}{\to} ||X||$. Fix $\epsilon > 0$. Then there exists M > 0 such that $P(||X|| > M) < \epsilon$. Choose M to be a continuity point of the distribution function of ||X||. Then there exists $N \in \mathbb{N}$ such that $P(||X_n|| > M) < 2\epsilon$ for all $n \geq N$. As each of the finitely many random variables $||X_n||$ with n < N are tight, the value of M can be suitably increased such that $P(||X_n|| > M) < 2\epsilon$ for all $n \in \mathbb{N}$.
- By Helly's Lemma, there exists a subsequence F_{n_j} of the sequence of cdf's F_n that converges pointwise to a possibly defective distribution function F at all its continuity points. It suffices to show that F is a valid probability distribution function. Towards that end, note that for any fixed $\epsilon > 0$, there exists M > 0 such that $1 \ge F_n(M) > 1 \epsilon$ for all $n \in \mathbb{N}$ (M can be chosen to be a continuity point of F). Then clearly $1 \ge F(M) = \lim_{j \to \infty} F_{n_j}(M) \ge 1 \epsilon$ and the rest of the proof follows.

Stochastic o and O symbols

- 1. Write $X_n = o_p(1)$ if $X_n \stackrel{P}{\to} 0$. Write $X_n = O_p(1)$ if $\{X_n : n \in \mathbb{N}\}$ is uniformly tight. 2. $X_n = o_p(R_n)$ means $X_n = R_n o_p(1)$. Likewise $X_n = O_p(R_n)$ means $X_n = R_n O_p(1)$.
- 3. Some facts:

$$\begin{split} o_p(1) + o_p(1) &= o_p(1) \\ o_p(1) + O_p(1) &= O_p(1) \\ o_p(1) O_p(1) &= o_p(1) \\ (1 + o_p(1))^{-1} &= O_p(1) \\ o_p(O_p(R_n)) &= R_n \, o_p(1) \, . \end{split}$$

Lemma 5

Let R be a function defined on $\mathcal{U} \subset \mathbb{R}^k$ such that R(0) = 0. Let X_n be a sequence of random vectors taking values in \mathcal{U} and $X_n = o_p(1)$. Then for every p > 0,

- 1. if $R(h) = o(||h||^p)$ as $h \to 0$, then $R(X_n) = o_p(||X_n||^p)$;
- 2. if $R(h) = O(\|h\|^p)$ as $h \to 0$, then $R(X_n) = O_p(\|X_n\|^p)$

5.1 Sketch of the proof of Statment 1

Define $g(h) = R(h)/\|h\|^p$ for $h \neq 0$ and g(0) = 0. Clearly g is continuous at 0. By the continuous mapping theorem, $g(X_n) \stackrel{P}{\to} g(0) = 0$. The other proof can be derived similarly.

6 Distance between probability measures

1. For two probability measures defined on some measurable space (Ω, \mathcal{B}) , the Total Variation Distance between P and Q is defined as

$$||P - Q||_{TV} = \sup_{A \in \mathcal{B}} |P(A) - Q(A)|.$$

If P and Q admit densities p and q respectively, then

$$||P - Q||_{TV} = \frac{1}{2} \int |p(x) - q(x)| dx.$$

2. Hellinger Distance between P and Q is defined as

$$H^{2}(P,Q) = \frac{1}{2} \int (\sqrt{p(x)} - \sqrt{q(x)})^{2} dx = 1 - \int \sqrt{p(x)q(x)} dx.$$

3. Kullback Leibler Divergence between P and Q is defined as

$$D_{KL}(P||Q) = \int p(x) \log \frac{p(x)}{q(x)} dx.$$