

Global Energy Forecasting Competition Past, Present and Future

Tao Hong, PhD

Graduate Program Director and EPIC Assistant Professor
Systems Engineering and Engineering Management
University of North Carolina at Charlotte
June 30, 2014

UNC Charlotte

Energy Production & Infrastructure Center

- The largest energy research center in the nation
- Sponsored by Duke Energy, Siemens, State of North Carolina, etc.
- Energy concentration in all engineering degrees and MBA

Systems Engineering & Engineering Management

- Online option for all graduate-level courses
- MS in Engineering Management w/ energy concentration
- Graduate certification program on energy

Global Energy Forecasting Competitions

- Motivation
- Organization
- Winning methods
- GEFCom2014
- Further readings

Motivation

Issues in energy forecasting

- Impractical research
- Lack of benchmarking data and process
- Hard-to-reproduce
- Limited educational programs and courses

Motivation

Why GEFCom?

- Improve forecasting practices of the utility industry
- Bring together the state-of-the-art techniques
- Bridge the gap between academic research and industry practice
- Promote analytics in power & energy education
- Overcome quantitative challenges brought by smart grid

Timeline

http://www.ieee-pes.org/ieee-pes-announces-the-eight-winning-teams-for-gefcom2012

Media Coverage

CNBC

Yahoo Finance

Broadway World

Business Wire

Participants

- 2000+ entries
- 200+ teams
- 30+ countries

Sponsors

- IEEE Power & Energy Society
- IEEE Power System Planning & Implementation Committee
- IEEE Power and Energy Education Committee
- IEEE Working Group on Energy Forecasting
- Kaggle
- International Journal of Forecasting
- IEEE Transactions on Smart Grid
- An anonymous Utility

Individuals

- General Chair Dr. Tao Hong
- Vice Chair (load forecasting) Dr. Shu Fan
- Vice Chair (wind forecasting) Dr. Pierre Pinson
- Award Committee
 - Dr. Shu Fan, David Hamilton, Dr. Tao Hong, Dr. Pierre Pinson, Eric Wang, Dr. Hamidreza Zareipour
- Advisory Committee
 - Drs. ML Chan, Rob J Hyndman, Wei-Jen Lee, Fran Li, Shanshan Liu, Anil Pahwa, Mohammad Shahidehpour, Kumar Venayagamoorthy

The Two Tracks

Hierarchical Load Forecasting

- 20 delivery points
- 4.5 years of hourly history
- Backcast eight individual weeks
- Forecast one week ahead
- WRMSE

GEFCom2012

Load Forecasting

The Two Tracks

Wind Power Forecasting

- 7 wind farms
- 3 years of hourly history
- Wind forecasts issued twice a day
- 48 hours ahead forecasting
- RMSE

GEFCom2012 Wind Forecasting

The Two Tracks

Six challenges

- Data cleansing
- Hierarchical forecasting
- Special days forecasting
- Temperature forecasting
- Ensemble forecasting
- Integration

GEFCom2012 Winning Teams

8 teams from 8 countries

Hierarchical Load Forecasting Track:

- #1. Colin Singleton and Nathaniel Charlton from Counting Lab (UK);
- #2. James Robert Lloyd from University of Cambridge (UK);
- #3. Raphael Nedellec from EDF R&D (France), Jairo Cugliari from INRIA (France) and Yannig Goude from EDF R&D (France);
- #4. Souhaib Ben Taieb from Université Libre de Bruxelles (Belgium) and Rob J Hyndman from Monash University (Australia).

Wind Power Forecasting Track:

- #1. Lucas Eustáquio Gomes da Silva from DTI Sistemas (Brazil);
- #2. Ekaterina Mangalova from Siberian State Aerospace University (Russia) and Evgeny Agafonov from Siberian Federal University (Russia);
- #3. Gabor I. Nagy from Budapset University of Technology and Economics (Hungary);
- #4. Duehee Lee from University of Texas at Austin (USA).

Hierarchical Load Forecasting

- No ARIMA
- No Artificial Neural Networks
- Top 2 entries combined forecasts
- No. 1, 3, and 4 modeled holidays
- No. 1 and 4 performed data cleansing

To be improved

- Using the hierarchy
- Integration

GEFCom2012

Load Forecasting

Techniques

GEFCom2012 Load Forecasting

- 1. Multiple linear regression, SVD
- Multiple linear regression, gradient boosting, Gaussian process regression
- 3. Semi-parametric regression, splines
- 4. Non-parametric additive models, gradient boosting

REGRESSION is still an effective method for STLF.

Results

GEFCom2012

Load Forecasting

Kaggle ID	Backcast	1 day ahead	1 week ahead	Validation	Test	All	Submissions
CountingLab	61890	72504	73900	70700	67 215	68 160	33
James Lloyd	58 406	59273	82 346	71 164	71467	71387	52
Tololo (EDF)	46 756	52 136	82776	52 669	71780	67 223	39
TinTin	50 926	1 12 4 10	86590	64 352	73 307	71033	42
Quadrivio	71663	63 186	81645	72 825	78 196	76816	29
Chaotic Experiments	78 238	50967	89783	93 045	80763	84209	19
Andrew L	68 638	133005	106272	101069	84 850	89 456	3
NHH	65 360	121818	109850	93 641	89 174	90 385	18
TheJellyTeam	72 197	120752	101066	83 916	89 202	87 826	12
Tao's Vanilla Benchmark	69 557	148352	123758	1 12 547	95 588	100385	1

Over 30% error reduction!

Wind Power Forecasting

- No ARIMA
- No. 1 and 4 combined forecasts
- No. 2 and 3 performed data cleansing
- No. 1 and 2 smoothed the raw forecasts

GEFCom2012 Wind Forecasting

Techniques

- 1. Gradient boosting, regression
- 2. K-Nearest Neighborhood, regression
- 3. Gradient boosting, regression
- 4. Neural networks, Gaussian process

GEFCom2012 Wind Forecasting

The magic of "Gradient Boosting + REGRESSION"

Results

GEFCom2012 Wind Forecasting

Kaggle ID	WF1	WF2	WF3	WF4	WF5	WF6	WF7	Validation	Test	All	Submissions
Leustagos	0.145	0.138	0.168	0.144	0.158	0.133	0.140	0.146	0.146	0.146	37
DuckTile	0.143	0.145	0.172	0.145	0.165	0.137	0.146	0.149	0.147	0.148	82
MZ	0.141	0.151	0.174	0.145	0.167	0.141	0.145	0.148	0.149	0.149	19
Propeller	0.144	0.153	0.177	0.147	0.175	0.141	0.147	0.148	0.153	0.152	64
Duehee Lee	0.157	0.144	0.176	0.160	0.169	0.154	0.148	0.155	0.155	0.155	10
MTU EE5260 forecast team	0.161	0.172	0.193	0.162	0.192	0.156	0.160	0.166	0.169	0.168	20
SunWind	0.174	0.177	0.193	0.176	0.179	0.157	0.162	0.173	0.171	0.172	26
ymzsmsd	0.163	0.186	0.200	0.164	0.192	0.162	0.167	0.173	0.174	0.174	24
4138 Kalchas	0.180	0.179	0.197	0.175	0.200	0.160	0.165	0.179	0.176	0.177	3
Benchmark	0.302	0.338	0.373	0.364	0.388	0.341	0.361	0.361	0.353	0.355	1

Over 60% error reduction!

Remarks

- The results may or may not be applicable to YOUR data
- There is not a technique dominantly better than the others
- Now you have more ideas to try
- Always try to improve your models

All forecasts are wrong. All forecasts can be improved.

GEFCom2014

Four tracks

WWW.GEFCOM.ORG

- Load Forecasting Dr. Shu Fan, Australia
- Wind Forecasting Dr. Pierre Pinson, Denmark
- Solar Forecasting Dr. Alberto Troccoli, Australia
- Price Forecasting Dr. Hamidreza Zareipour, Canada

Probabilistic forecasting

Pinball function scoring

Rolling forecasting

Prizes for students teams and for winning methods Winning methods to be published in IJF

Further Readings

Blog posts

http://blog.drhongtao.com/search/label/GEFCOM http://robjhyndman.com/hyndsight/gefcom2014/

Paper

Tao Hong, Pierre Pinson and Shu Fan, "Global Energy Forecasting Competition 2012", International Journal of Forecasting (2014)

"GEFCom2012 is the largest known energy forecasting competition to date. Not only does it bring together many new ideas to the energy-forecasting field from data scientists in many different industries but the competition data has already been used by scholars for benchmarking purposes."

-- IEEE Power and Energy Society, 9/30/2013

Questions?

For more information, please contact **Dr. Tao Hong**

hong@uncc.edu www.drhongtao.com blog.drhongtao.com

