

SEQUENCE LISTING

7
<110> Aventis Pharma, S.A.

<120> Polyopeptide (MBP1) Capable of Interacting With Oncogenic Mutants Of The P53 Protein

<130> ST98033

<140> 09/829,936

<141> 2001-04-11

<150> FR9812754

<151> 1998-10-12

<160> 33

<170> PatentIn version 3.1

<210> 1

<211> 23

<212> DNA

<213> Artificial Sequence: oligonucleotide

<400> 1

agatctgtat ggaggagccg cag

23

<210> 2

<211> 29

<212> DNA

<213> Artificial Sequence: oligonucleotide 3' -393 (p53)

<400> 2

agatctcatc agtctgagtc aggcccttc

29

<210> 3

<211> 15
<212> DNA
<213> Artificial sequence: oligonucleotide H175 3'

<400> 3
ggggcagtgc ctcac

15

<210> 4
<211> 15
<212> DNA
<213> Artificial sequence: oligonucleotide w248 3'

<400> 4
gggcctccag ttcat

15

<210> 5
<211> 15
<212> DNA
<213> Artificial sequence: oligonucleotide H273 3'

<400> 5
acaaacatgc acctc

15

<210> 6
<211> 15
<212> DNA
<213> Artificial sequence: oligonucleotide G281 3'

<400> 6
gcgccggcct ctccc

15

<210> 7
<211> 23
<212> DNA
<213> Artificial sequence: oligonucleotide 5' -73

<400> 7
agatctgtgt ggcccccgtca cca 23

<210> 8

<211> 1021

<212> DNA

<213> Artificial Sequence: Fragment C-term MBP1 murine: CDS
(1)..(885)

<400> 8
tgcacctgcc ctgatggta ccgaaaaatt ggacccgaat gtgtggacat agatgagtgt 60
cgttaccgct attgccagca tcgatgtgtg aacctgccgg gctccttcg atgccagtgt 120
gagccaggct tccagttggg acctaacaac cgctttgtg tggatgtgaa tgagtgtgac 180
atgggagccc catgtgagca gcgctgcttc aactcctatg ggaccccttgcgtgt 240
aaccagggct atgagctgca ccggatggc ttctcctgca gcgatatcga tgagtgcggc 300
tactccagtt acctctgcca gtaccgctgt gtcaacgagc caggccgatt ctccctgtcac 360
tgcccacaag gctaccagct gctggctaca aggctctgcc aagatattga cgagtgtgaa 420
acaggtgcac accaatgttc tgaggcccaa acctgtgtca acttccatgg gggttaccgc 480
tgtgtggaca ccaaccgttg tgtggagccc tatgtccaag tgtcagacaa ccgctgcctc 540
tgccctgcct ccaatccccct ttgtcgagag cagccttcat ccattgtgca ccgctacatg 600
agcatcacct cagagcgaag tgtgcctgct gacgtgttgc agatccaggc aacctctgtc 660
taccctggtg cctacaatgc ctttcagatc cggtctggaa acacacaggg ggacttctac 720
attaggcaaa tcaacaatgt cagcgccatg ctggccctcg ccaggccagt gacgggaccc 780
cgggagtacg tgctggacct ggagatggtc accatgaatt cccttatgag ctaccgggccc 840
agctctgtac tgagactcac ggtctttgtg ggagccataa ccttctgaag accctcaggg 900
aagggccatg tgggggcccc ttccccctcc catagcttaa gcagccccgg gggcctaggg 960
atgaccgttc tgcttaaagg aactatgatg tgaaggacaa taaagggaga aagaaggaaa 1020
a 1021

<210> 9

<211> 295

<212> PRT

<213> Artificial Sequence: Fragment C-term MBP1 murine

<400> 9

Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro Glu Cys Val Asp
1 5 10 15

Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg Cys Val Asn Leu
20 25 30

Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe Gln Leu Gly Pro
35 40 45

Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp Met Gly Ala Pro
50 55 60

Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe Leu Cys Arg Cys
65 70 75 80

Asn Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser Cys Ser Asp Ile
85 90 95

Asp Glu Cys Gly Tyr Ser Ser Tyr Leu Cys Gln Tyr Arg Cys Val Asn
100 105 110

Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu
115 120 125

Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Thr Gly Ala His
130 135 140

Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly Gly Tyr Arg
145 150 155 160

Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Val Gln Val Ser Asp
165 170 175

Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro
180 185 190

Ser Ser Ile Val His Arg Tyr Met Ser Ile Thr Ser Glu Arg Ser Val
195 200 205

Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val Tyr Pro Gly Ala
210 215 220

Tyr Asn Ala Phe Gln Ile Arg Ser Gly Asn Thr Gln Gly Asp Phe Tyr
225 230 235 240

Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro
245 250 255

Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met Val Thr Met
260 265 270

Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Arg Leu Thr Val
275 280 285

Phe Val Gly Ala Tyr Thr Phe
290 295

<210> 10

<211> 39

<212> DNA

<213> Artificial Sequence: oligonucleotide c-myc 5'

<400> 10 gatccatgga gcagaagctg atctccgagg aggacctga 39

<210> 11

<211> 39

<212> DNA

<213> Artificial Sequence: oligonucleotide c-myc 3'

<400> 11 gatctcaggt ctcctcgga gatcagcttc tgctccatg 39

<210> 12

<211> 45

<212> DNA

<213> Artificial Sequence: MCS 5'

<400> 12 gatctcggtc gacctgcatg caattccgg gtgcggccgc gagct 45

<210> 13

<211> 37

<212> DNA

<213> Artificial Sequence: MCS 3'

<400> 13
cgcggccgca cccgggaatt gcatgcaggt cgaccga 37

<210> 14

<211> 22

<212> DNA

<213> Artificial Sequence: Oligonucleotide 3' mMMP1

<400> 14
cggtactggc agaggtaact gg 22

<210> 15

<211> 1513

<212> DNA

<213> Artificial Sequence: MBP1 murine (complete sequence): CDS (49)..(1377)

<400> 15
gctgtggcag aaacccctga cttctgccc a ccacccccc gcctcaggat gctcccttt 60
gcctccctgcc tccccgggtc tttgctgctc tgggcgttcc tgctgttgct cttgggagca 120
gcgtccccac aggatcccgaa ggagccggac agtacacagg aatgcacaga tggctatgag 180
tggatgcag acagccagca ctgcccggat gtcaacgagt gcctgaccat cccggaggct 240
tgcaagggtg agatgaaatg catcaaccac tacgggggtt atttgtgtct gcctcgctct 300
gctgccgtca tcagtgatct ccatggtgaa ggacctccac cgccagcggc ccatgctcaa 360
caaccaaacc cttgcccgc a gggctacgag cctgatgaac aggagagctg tgtggatgtg 420
gacgagtgtc cccaggctt gcatgactgt cgccctagtc aggactgcca taacccctt 480
ggctccctacc agtgcacctg ccctgatggt taccgaaaa ttggacccga atgtgtggac 540
atagatgagt gtcgttaccg ctattgccag catcgatgtg tgaacctgccc gggctcttt 600
cgatgccagt gtgagccagg cttccagttt ggacctaaca accgctctt g tgtggatgtg 660
aatgagtgtc acatgggagc cccatgttag cagcgctgtc tcaactccta tgggaccttc 720
ctgtgtcgct gtaaccagg ctatgagctg caccggatg gcttccttg cagcgatatc 780
gatgagtgtc gctactccag ttacctctgc cagtaccgt gtgtcaacga gccaggccga 840
ttctccctgtc actgcccaca aggctaccag ctgctggcta caaggctctg ccaagatatt 900
gacgagtgtc aaacaggtgc acaccaatgt tctgaggccc aaacctgtgt caacttccat 960
gggggttacc gctgtgtgca caccacgt ttttgtggac cctatgtcca agtgtcagac 1020

aaccgctgcc tctgcccgc ctccaaatccc ctttgtcgag agcagccttc atccattgtg 1080
caccgctaca tgagcatcac ctcagagcga agtgtgcctg ctgacgtgtt tcagatccag 1140
gcaacctctg tctaccctgg tgcctacaat gccttcaga tccgttctgg aaacacacag 1200
ggggacttct acattaggca aatcaacaat gtcagcgcca tgctggcct cgccaggcca 1260
gtgacgggac cccgggagta cgtgctggac ctggagatgg tcaccatgaa ttcccttatg 1320
agctaccggg ccagctctgt actgagactc acggtcttg tgggagccta taccttctga 1380
agaccctcag ggaagggcca tgtggggcc ccttccccct cccatagctt aagcagcccc 1440
gggggcctag gnatgaccgt tctgctaaa ggaactatga tgtgaaggac aataaaggga 1500
gaaagaagga aaa 1513

<210> 16

<211> 442

<212> PRT

<213> Artificial Sequence: MBP1 murine (complete sequence)

<400> 16

Met Leu Pro Phe Ala Ser Cys Leu Pro Gly Ser Leu Leu Leu Trp Ala
1 5 10 15

Phe Leu Leu Leu Leu Gly Ala Ala Ser Pro Gln Asp Pro Glu Glu
20 25 30

Pro Asp Ser Tyr Thr Glu Cys Thr Asp Gly Tyr Glu Trp Asp Ala Asp
35 40 45

Ser Gln His Cys Arg Asp Tyr Asn Glu Cys Leu Thr Ile Pro Glu Ala
50 55 60

Cys Lys Gly Glu Met Lys Cys Ile Asn His Tyr Gly Gly Tyr Leu Cys
65 70 75 80

Leu Pro Arg Ser Ala Ala Val Ile Ser Asp Leu His Gly Glu Gly Pro
85 90 95

Pro Pro Pro Ala Ala His Ala Gln Gln Pro Asn Pro Cys Pro Gln Gly
100 105 110

Tyr Glu Pro Asp Glu Gln Glu Ser Cys Val Asp Val Asp Glu Cys Thr
115 120 125

Gln Ala Leu His Asp Cys Arg Pro Ser Gln Asp Cys His Asn Leu Pro
130 135 140

Gly Ser Tyr Gln Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro
145 150 155 160

Glu Cys Val Asp Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg
165 170 175

Cys Val Asn Leu Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe
180 185 190

Gln Leu Gly Pro Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp
195 200 205

Met Gly Ala Pro Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe
210 215 220

Leu Cys Arg Cys Asn Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser
225 230 235 240

Cys Ser Asp Asp Glu Cys Gly Tyr Ser Ser Tyr Leu Cys Gln Tyr Arg
245 250 255

Cys Val Asn Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr
260 265 270

Gln Leu Leu Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Thr
275 280 285

Gly Ala His Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly
290 295 300

Gly Tyr Arg Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Val Gln
305 310 315 320

Val Ser Asp Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg
325 330 335

Glu Gln Pro Ser Ser Ile Val His Arg Tyr Met Ser Ile Thr Ser Glu
340 345 350

Arg Ser Val Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val Tyr
355 360 365

Pro Gly Ala Tyr Asn Ala Phe Gln Ile Arg Ser Gly Asn Thr Gln Gly
370 375 380

Asp Phe Tyr Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu
385 390 395 400

Ala Arg Pro Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met
405 410 415

Val Thr Met Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Arg
420 425 430

Leu Thr Val Phe Val Gly Ala Tyr Thr Phe
435 440

<210> 17

<211> 21

<212> DNA

<213> Artificial Sequence: oligonucleotide 3' hMBP1

<400> 17
ctccgctccg aggtgatggc c 21

<210> 18

<211> 21

<212> DNA

<213> Artificial Sequence: oligonucleotide 5' hMBP1

<400> 18
tgttagctact ccagctacct c 21

<210> 19

<211> 1122

<212> DNA

<213> Artificial Sequence: Human cDNA MBP1

<400> 19
aagccagccg agccgccaga gccgcgggccc gcgggggtgt cgcgccccca accccaggat 60
gctccctgc gcctcctgcc taccgggtc tctactgctc tggcgctgc tactgttgct 120
cttggatca gtttccttc aggattctga agagccgac agtacacgg aatgcacaga 180
tggctatgag tgggacccag acagccagca ctgccggat gtcaacgagt gtctgaccat 240
ccctgaggcc tgcaaggggg aaatgaagtg catcaaccac tacggggct acttgtgcct 300

gccccgctcc	gctgccgtca	tcaacgacct	acacggcgag	ggaccccccgc	caccagtgcc	360
tcccgctcaa	caccccaacc	cctgcccacc	aggctatgag	cccgacgatc	aggacagctg	420
tgtggatgtg	gacgagtgtg	cccaggccct	gcacgactgt	cgccccagcc	aggactgcca	480
taactgcct	ggctcctatac	agtgcacctg	ccctgatggt	taccgcaaga	tcgggcccga	540
gtgtgtggac	atagacgagt	gccgctaccg	ctactgccag	caccgctgcf	tgaacctgcc	600
tggctccttc	cgctgccagt	gcgagccggg	cttccagctg	gggcctaaca	accgctcctg	660
tgttgatgtg	aacgagtgtg	acatgggggc	cccatgcgag	cagcgctgct	tcaactccta	720
tgggaccttc	ctgtgtcgct	gccaccaggg	ctatgagctg	catcggatg	gcttctcctg	780
cagtatatt	gatgagtgt	gctactccag	ctacctctgt	cagtaccgct	gcgtcaacga	840
gccaggccgt	ttctcctgcc	actgcccaca	gggttaccag	ctgctggcca	cacgcctctg	900
ccaagacatt	gatgagtgt	agtctggtgc	gcaccagtgc	tccgaggccc	aaacctgtgt	960
caactccat	gggggctacc	gctgcgtgga	caccaaccgc	tgcgtggagc	cctacatcca	1020
ggtctctgag	aaccgctgtc	tctgcccggc	ctccaaccct	ctatgtcgag	agcagccttc	1080
atccattgtg	caccgctaca	tgaccatcac	ctcggagcgg	ag		1122

<210> 20

<211> 684

<212> DNA

<213> Artificial Sequence: Human cDNA MBP1 (partial sequence)

<400> 20	tgttagctact	ccagctacct	ctgtcagtac	cgctgcgtca	acgagccagg	ccgtttctcc	60
tgccactgcc	cacagggtta	ccagctgctg	gccacacgcc	tctgccaaga	cattgtatgag		120
tgtgagtctg	gtgcgcacca	gtgctccgag	gcccaaacct	gtgtcaactt	ccatggggc		180
taccgctgctg	tggacaccaa	ccgctgcgtg	gagccctaca	tccaggtctc	tgagaaccgc		240
tgtctctgcc	cggcctccaa	ccctctatgt	cgagagcagc	cttcatccat	tgtgcaccgc		300
tacatgacca	tcacctcgga	gcggagcgtg	cccgctgacg	tgttccagat	ccaggcgacc		360
tccgtctacc	ccgggtgccta	aatgccttt	cagatccgtg	ctggaaactc	gcagggggac		420
ttttacatta	ggcaaataaa	caacgtcagc	gccatgctgg	tcctcgcccg	gccgggtgacg		480
ggccccccggg	agtacgtgct	ggacactggag	atggtcacca	tgaattccct	catgagactac		540
cggggccagct	ctgtactgag	gctcaccgtc	tttgttaggg	cctacacctt	ctgaggagca		600
ggagggagcc	accctccctg	cagctaccct	agctgaggag	cctgttgtga	ggggcagaat		660
gagaaaaggca	ataaaggag	aaag					684

<210> 21
<211> 1422
<212> DNA
<213> Artificial Sequence: Human MBP1 (complete sequence): CDS (59)..(1387)

<400> 21
atgctccctt ggcgcctcctg cctacccggg tctctactgc tctggcgct gctactgttg 60
ctcttggat cagttctcc tcaggattct gaagagcccg acagctacac ggaatgcaca 120
gatggctatg agtgggaccc agacagccag cactgcccggg atgtcaacga gtgtctgacc 180
atccctgagg cctgcaaggg ggaaatgaag tgcatcaacc actacggggg ctacttgtgc 240
ctgccccgct ccgctgccgt catcaacgac ctacacggcg aggacccccc gccaccagtg 300
cctcccgctc aacaccccaa cccctgcccc caaggctatg agccgcacga tcaggacagc 360
tgtgtggatg tggacgagtg tgccctaggcc ctgcacgact gtcgccccag ccaggactgc 420
cataacttgc ctggctccta tcagtgcacc tgccctgatg gttaccgcaa gatcggggccc 480
gagtgtgtgg acatagacga gtgcccgtac cgctactgcc agcaccgctg cgtgaacctg 540
cctggctcct tccgctgcca gtgcgagccg ggcttccagc tggggcctaa caaccgctcc 600
tgtgttcatg tgaacgagtg tgacatgggg gccccatgcg agcagcgctg cttcaactcc 660
tatgggacct tcctgtgtcg ctgcccaccag ggctatgagc tgcatcggt tggcttctcc 720
tgcagtgata ttgatgagtg tagctactcc agctacctct gtcagtaccg ctgcgtcaac 780
gagccaggcc gtttctcctg ccactgcccc cagggttacc agctgctggc cacacgcctc 840
tgccaagaca ttgatgagtg tgagtctggt ggcgcaccagt gctccgaggc ccaaacctgt 900
gtcaacttcc atgggggcta ccgctgcgtg gacaccaacc gctgcgtgg gccctacatc 960
caggctctg agaaccgctg tctctgccc gcctccaacc ctctatgtcg agagcagcct 1020
tcatccattg tgcaccgcta catgaccatc acctcgagc ggagcgtgcc cgctgacgtg 1080
ttccagatcc aggcgcaccc cgtctacccc ggtgcctaca atgccttca gatccgtgct 1140
ggaaaactcgc agggggactt ttacattagg caaatcaaca acgtcagcgc catgctggtc 1200
ctcgccccgc cggtgacggg ccccccggag tacgtgctgg acctggagat ggtcaccatg 1260
aattccctca tgagctaccg ggccagctct gtactgaggg tcaccgtctt tgttagggcc 1320
tacacccctt gaggagcagg agggagccac cctccctgca gctaccctag ctgaggagcc 1380
tgggtgtgagg ggcagaatga gaaaggcaat aaaggagaa ag 1422

<210> 22

<211> 443

<212> PRT

<213> Artificial Sequence: Human MBP1 (complete sequence)

<400> 22

Met Leu Pro Cys Ala Ser Cys Leu Pro Gly Ser Leu Leu Leu Trp Ala
1 5 10 15

Leu Leu Leu Leu Leu Leu Gly Ser Ala Ser Pro Gln Asp Ser Glu Glu
20 25 30

Pro Asp Ser Tyr Thr Glu Cys Thr Asp Gly Tyr Glu Trp Asp Pro Asp
35 40 45

Ser Gln His Cys Arg Asp Val Asn Glu Cys Leu Thr Ile Pro Glu Ala
50 55 60

Cys Lys Gly Glu Met Lys Cys Ile Asn His Tyr Gly Gly Tyr Leu Cys
65 70 75 80

Leu Pro Arg Ser Ala Ala Val Ile Asn Asp Leu His Gly Glu Gly Pro
85 90 95

Pro Pro Pro Val Pro Pro Ala Gln His Pro Asn Pro Cys Pro Pro Gly
100 105 110

Tyr Glu Pro Asp Asp Gln Asp Ser Cys Val Asp Val Asp Glu Cys Ala
115 120 125

Gln Ala Leu His Asp Cys Arg Pro Ser Gln Asp Cys His Asn Leu Pro
130 135 140

Gly Ser Tyr Gln Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro
145 150 155 160

Glu Cys Val Asp Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg
165 170 175

Cys Val Asn Leu Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe
180 185 190

Gln Leu Gly Pro Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp
195 200 205

Met Gly Ala Pro Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe

210

215

220

Leu Cys Arg Cys His Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser
225 230 235 240

Cys Ser Asp Ile Asp Glu Cys Ser Tyr Ser Ser Tyr Leu Cys Gln Tyr
245 250 255

Arg Cys Val Asn Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly
260 265 270

Tyr Gln Leu Leu Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu
275 280 285

Ser Gly Ala His Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His
290 295 300

Gly Gly Tyr Arg Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Ile
305 310 315 320

Gln Val Ser Glu Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys
325 330 335

Arg Glu Gln Pro Ser Ser Ile Val His Arg Tyr Met Thr Ile Thr Ser
340 345 350

Glu Arg Ser Val Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val
355 360 365

Tyr Pro Gly Ala Tyr Asn Ala Phe Gln Ile Arg Ala Gly Asn Ser Gln
370 375 380

Gly Asp Phe Tyr Ile Arg Gln Ile Asn Asn Val Phe Ala Met Leu Val
385 390 395 400

Leu Ala Arg Pro Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu
405 410 415

Met Val Thr Met Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu
420 425 430

Arg Leu Thr Val Phe Val Gly Ala Tyr Thr Phe
435 440

<210> 23

<211> 817

<212> DNA

<213> Artificial sequence: CDNA MBP1 murine (partial sequence)

<400> 23
gctgtggcag aaacccctga cttctgccc ccaccccca gcctcaggat gctcccttt 60
gcctcctgcc tccccgggtc tttgctgctc tggcgtttc tgctgttgct cttggagca 120
gcgtccccac aggatcccga ggagccggac agtacacagg aatgcacaga tggctatgag 180
tggatgcag acagccagca ctgcccggat gtcaacgagt gcctgaccat cccggaggct 240
tgcaagggtg agatgaaatg catcaaccac tacggggtt atttgtgtct gcctcgctct 300
gctgccgtca tcagtgatct ccatggtgaa ggacctccac cgccagcggc ccatgctcaa 360
caaccaaacc cttgcccga gggctacgag cctgatgaac aggagagctg tgtggatgtg 420
gacgagtgtc cccaggctt gcatgactgt cgccctagtc aggactgcca taaccttcct 480
ggctcctacc agtgcacctg ccctgatggt taccgaaaaa ttggacccga atgtgtggac 540
atagatgagt gtcgttaccg ctattgccag catcgatgtg tgaacctgcc gggcttttt 600
cgatgccagt gtgagccagg cttccagttg ggacctaaca accgctcttg tgtggatgtg 660
aatgagtgtc acatgggagc cccatgtgag cagcgctgct tcaactccta tgggacccctc 720
ctgtgtcgct gtaaccaggg ctatgagctg caccggatg gcttctctg cagcgatatc 780
gatgagtgtc gctactccag ttacctctgc cagtacc 817

<210> 24

<211> 24

<212> DNA

<213> Artificial Sequence: oligonucleotide sens-GAPDH

<400> 24
cggaggtaaac ggatttggtc gtat 24

<210> 25

<211> 24

<212> DNA

<213> Artificial Sequence: Oligonucleotide antisens-GAPDH

<400> 25
agcctctcc atggtggta agac 24

<210> 26

<211> 25
<212> DNA
<213> Artificial sequence: oligonucleotide

<400> 26
cggttggcct tggggttcag ggggg 25

<210> 27
<211> 21
<212> DNA
<213> Artificial Sequence: Oligonucleotide sens MBP1

<400> 27
gccctgatgg ttaccgcaag a 21

<210> 28
<211> 21
<212> DNA
<213> Artificial Sequence: Oligonucleotide antisens MBP1

<400> 28
agcccccatg gaagttgaca c 21

<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence: Oligonucleotide sens actine

<400> 29
gtggggcgcc ccaggcacca 20

<210> 30
<211> 1358
<212> DNA
<213> Artificial Sequence: Human fragment C-term MBP1: CDS (1)..(885)

<400> 30
 tgcacctgcc ctgatggta ccgcaagatc gggcccgagt gtgtggacat agacgagtgc 60
 cgctaccgct actgccagca ccgctgcgtg aacctgcctg gctccttccg ctgccagtgc 120
 gagccgggct tccagctgg gcctaacaac cgctcgtg ttgatgtgaa cgagtgtgac 180
 atgggggccc catgcgagca ggcgtgcttc aactcctatg ggaccttcct gtgtcgtgc 240
 caccaggct atgagctgca tcggatggc ttctcctgca gtgatattga tgagtgttagc 300
 tactccagct acctctgtca gtaccgctgc gtcaacgagc caggccgtt ctcctgccac 360
 tgcccacagg gttaccagct gctggccaca cgcctctgcc aagacattga tgagtgtgag 420
 tctggtgcgc accagtgctc cgaggccaa acctgtgtca acttccatgg gggctaccgc 480
 tgcgtggaca ccaaccgctg cgtggagccc tacatccagg tctctgagaa cgcgtgtctc 540
 tgcccggcct ccaaccctct atgtcgagag cagccttcat ccatttgca ccgctacatg 600
 accatcacct cggagcggag cgtccccgt gacgtgttcc agatccaggc gacctccgtc 660
 taccgggtg cctacaatgc cttcagatc cgtgctggaa actcgcaggg ggactttac 720
 attaggcaaa tcaacaacgt cagcgcctg ctggcctcg cccggccgg gacggggccc 780
 cgggagtacg tgctggacct ggagatggtc accatgaatt ccctcatgag ctaccgggccc 840
 agctctgtac tgaggctcac cgtcttgta ggggcctaca cttctgagg agcaggagg 900
 agccaccctc cctgcagcta ccctagctga ggagcctgtt gtgagggca gaatgagaaa 960
 ggcaataaaag ggagaaagaa agtcctggtg gctgaggtgg gcgggtcaca ctgcaggaag 1020
 cctcaggctg gggcagggtg gcacttgggg gggcaggcca agttcaccta aatgggggtc 1080
 tctatatgtt caggcccagg ggccccatt gacaggagct gggagctctg caccacgagc 1140
 ttcagtcacc ccgagaggag aggaggtaac gaggagggcg gactccaggc cccggccctag 1200
 agatttggac ttggctggct tgcaggggtc ctaagaaact ccactctgga cagcgcctagg 1260
 aggccctggg ttccattcct aactctgcct caaactgtac atttggataa gccctagtag 1320
 ttccctgggc ctgttttct ataaaacgag gcaactgg 1358

<210> 31

<211> 295

<212> PRT

<213> Artificial Sequence: Human fragment C-term MBP1

<400> 31

Cys	Thr	Cys	Pro	Asp	Gly	Tyr	Arg	Lys	Ile	Gly	Pro	Gl <u>u</u>	Cys	Val	Asp
1				5					10				15		

Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg Cys Val Asn Leu
20 25 30

Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe Gln Leu Gly Pro
35 40 45

Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp Met Gly Ala Pro
50 55 60

Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe Leu Cys Arg Cys
65 70 75 80

His Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser Cys Ser Asp Ile
85 90 95

Asp Glu Cys Ser Tyr Ser Tyr Leu Cys Gln Tyr Arg Cys Val Asn
100 105 110

Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu
115 120 125

Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Ser Gly Ala His
130 135 140

Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly Gly Tyr Arg
145 150 155 160

Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Ile Gln Val Ser Glu
165 170 175

Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro
180 185 190

Ser Ser Ile Val His Arg Tyr Met Thr Ile Thr Ser Glu Arg Ser Val
195 200 205

Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val Tyr Pro Gly Ala
210 215 220

Tyr Asn Ala Phe Gln Ile Arg Ala Gly Asn Ser Gln Gly Asp Phe Tyr
225 230 235 240

Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro
245 250 255

Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met Val Thr Met
260 265 270

Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Arg Leu Thr Val
275 280 285

Phe Val Gly Ala Tyr Thr Phe
290 295

<210> 32

<211> 1663

<212> DNA

<213> Artificial Sequence: Fragment c-term fibulin 2 murine: CDS
(1)..(999)

<400> 32
gagggctctg aatgtgtgga tgtgaatgag tgtgagacag gtgtgcacg ctgtggcag 60
ggccaaactgt gctataacct ccctggatcc taccgctgtg actgcaagcc cggttccag 120
agggatgcat tcggcaggac ttgcattgtat gtgaacgaat gctgggtctc gccgggccgc 180
ctgtgccagc acacatgtga gaacacaccg ggctcctacc gctgctcctg cgctgctggc 240
ttcctttgg ccgcagatgg caaacattgtt gaagatgtga acgagtgcga gactcggcgc 300
tgcagccagg aatgtgcca catctatggc tcctatcagt gctactgccc tcagggctac 360
cagctggcag aggatggca tacctgcaca gacatcgatg agtgcaca gggcgcggc 420
attctctgtt cttccgctg tgtcaacgtg cctggagct accagtgtgc atgcccagag 480
caagggtata caatgtatggc caacgggagg tcctgcaagg acctggatga gtgtgcactg 540
ggcacccaca actgctctga ggctgagacc tgccacaata tccagggag tttccgctgc 600
ctgcgtttt attgtccacc caactatgtc cgtgtctcac aaacgaagtg cgagcgcacc 660
acatgccagg atatcacgga atgtcaaacc tcaccagtc gcatcagcga ctaccagctc 720
aatttccaga caggcctact ggtacctgca catatcttcc gcatcggccc tgctccgccc 780
tttgctgggg acaccatctc cctgaccatc acgaaggca atgaggaggg ctacttcgtc 840
acacgcagac tcaatgccta cactgggtgtg gtatccctgc agcggctgt tctggagccg 900
cgggactttt ccctagatgt ggagatgaag ctttggcgcc agggctctgt cactaccttc 960
ctggccaaga tgtacatctt cttcaccact tttgccccat gaggtgacat gtcaggcaat 1020
ccctccaggt gatgcctggg cggggcag ctgcgcact cctaagtggc tttttgtgt 1080
gactctgtaa cttaacttaa tcatgctgag ctgggtggc ttgagtctt accctagagg 1140
gagggagatg caccccagca ggcactgagt acaggccagg gtcacccgag gctagatgg 1200
gacctgcaaa ctggaaacag ccataggggg cttctgaact ccactcctca actatggcta 1260

cagctgacat tccattcctt catccactgt gttcctcaat taaaaaaaaa aatcagctgt 1320
gcatggtagc acagaccttt aatcctagca ctggggaggc agaggttagt agatctctga 1380
gttccaggcc agcctggtct acactggag ttctaaccag ccagagctac atagagagac 1440
cctatctcaa caaggaaaaa acgaaagaaa tctctgtgag ttccaggcca gcctggtcta 1500
cgctggagt tctaaccagc cagagctaca tagagagatc ctatctcaac aaggaaaaat 1560
gaaagaatac attttaaaag gtttttttt ttgctgttgt tgttaatga taagagtagc 1620
acatatacat tattaaaaat gatcaaatac cacagaaagg tta 1663

<210> 33

<211> 333

<212> PRT

<213> Artificial Sequence: Fragment c-term fibulin 2 murine

<400> 33

Glu Gly Ser Glu Cys Val Asp Val Asn Glu Cys Glu Thr Gly Val His
1 5 10 15

Arg Cys Gly Glu Gly Gln Leu Cys Tyr Asn Leu Pro Gly Ser Tyr Arg
20 25 30

Cys Asp Cys Lys Pro Gly Phe Gln Arg Asp Ala Phe Gly Arg Thr Cys
35 40 45

Ile Asp Val Asn Glu Cys Trp Val Ser Pro Gly Arg Leu Cys Gln His
50 55 60

Thr Cys Glu Asn Thr Pro Gly Ser Tyr Arg Cys Ser Cys Ala Ala Gly
65 70 75 80

Phe Leu Leu Ala Ala Asp Gly Lys His Cys Glu Asp Val Asn Glu Cys
85 90 95

Glu Thr Arg Arg Cys Ser Gln Glu Cys Ala Asn Ile Tyr Gly Ser Tyr
100 105 110

Gln Cys Tyr Cys Arg Gln Gly Tyr Gln Leu Ala Glu Asp Gly His Thr
115 120 125

Cys Thr Asp Ile Asp Glu Cys Ala Gln Gly Ala Gly Ile Leu Cys Thr
130 135 140

Phe Arg Cys Val Asn Val Pro Gly Ser Tyr Gln Cys Ala Cys Pro Glu
Page 19

145 150 155 160
Gln Gly Tyr Thr Met Met Ala Asn Gly Arg Ser Cys Lys Asp Leu Asp
165 170 175

Glu Cys Ala Leu Gly Thr His Asn Cys Ser Glu Ala Glu Thr Cys His
180 185 190

Asn Ile Gln Gly Ser Phe Arg Cys Leu Arg Phe Asp Cys Pro Pro Asn
195 200 205

Tyr Val Arg Val Ser Gln Thr Lys Cys Glu Arg Thr Thr Cys Gln Asp
210 215 220

Ile Thr Glu Cys Gln Thr Ser Pro Ala Arg Ile Thr His Tyr Gln Leu
225 230 235 240

Asn Phe Gln Thr Gly Leu Leu Val Pro Ala His Ile Phe Arg Ile Gly
245 250 255

Pro Ala Pro Ala Phe Ala Gly Asp Thr Ile Ser Leu Thr Ile Thr Lys
260 265 270

Gly Asn Glu Glu Gly Tyr Phe Val Thr Arg Arg Leu Asn Ala Tyr Thr
275 280 285

Gly Val Val Ser Leu Gln Arg Ser Val Leu Glu Pro Arg Asp Phe Ala
290 295 300

Leu Asp Val Glu Met Lys Leu Trp Arg Gln Gly Ser Val Thr Thr Phe
305 310 315 320

Leu Ala Lys Met Tyr Ile Phe Phe Thr Thr Phe Ala Pro
325 330