Redes Neurais Artificiais com Aprendizado Profundo - Prof.Dr. Anderson Ferrugem - Computação/CDTec/UFPel

Primeiro projeto prático

Exercicio retirado do livro REDES NEURAIS ARTIFICIAIS PARA ENGENHARIA E CIÊNCIAS APLICADAS

Pela análise de um processo de destilação fracionada de petróleo, observou-se que determinado óleo poderia ser classificado em duas classes de pureza {P1, P2} a partir da medição de três grandezas {x1, x2, x3}, que representam algumas de suas propriedades físico-químicas. A equipe de engenheiros e cientistas pretende usar uma rede Perceptron para executar a classificação automática dessas duas classes.

Assim, com base nas informações coletadas do processo, formou-se o conjunto de treinamento apresentado no apêndice I, tomando por convenção o valor -1 para óleo pertencente à classe P1 e o valor 1 para óleo pertencente à classe P2. Para tanto, o neurônio constituinte do Perceptron terá então três entradas e uma saída, conforme ilustrado na figura abaixo.

Implemente esse Perceptron em um Jupiter Notebook no Google Colab, usando a biblioteca tensorflow>=2.x e Keras.

Utilizando o algoritmo supervisionado de Hebb (regra de Hebb) para classificação de padrões, e assumindo uma taxa de aprendizagem de 0,01, realize as seguintes atividades:

- 1. Execute cinco treinamentos para a rede Perceptron, iniciando o vetor de pesos {w} em cada treinamento com valores aleatórios entre zero e um. Se necessário, reinicie o gerador de números aleatórios em cada treinamento de tal forma que os elementos do vetor de pesos iniciais não sejam os mesmos. O conjunto de treinamento encontra-se no apêndice I.
- 2. Registre os resultados dos cinco treinamentos em uma tabela conforme apresentada a seguir.

Redes Neurais Artificiais com Aprendizado Profundo - Prof.Dr. Anderson Ferrugem - Computação/CDTec/UFPel

Treinamento	Vetor de pesos iniciais				Vetor de pesos finais				Número de épocas	
	W _o	W ₁	W ₂	W ₃	W ₀	W,	W ₂	W ₃		
1°(T1)										
2°(T2)										
3°(T3)										
4°(T4)		1								
5°(T5)										

3. Após o treinamento do Perceptron, coloque o mesmo em operação, aplicando-o na classificação automática das amostras de oleo da tabela de amostras a seguir, indicando ainda nesta tabela aqueles resultados das saídas (Classes) referentes aos cinco processos de treinamento realizados no item 1.

Amostra	X ₁	X ₂	x ₃	у (Т1)	у (Т2)	<i>у</i> (Т3)	у (Т4)	<i>y</i> (T5)
1	-0,3665	0,0620	5,9891					
2	-0,7842	1,1267	5,5912					
3	0,3012	0,5611	5,8234					
4	0,7757	1,0648	8,0677					
5	0,1570	0,8028	6,3040					
6	-0,7014	1,0316	3,6005					
7	0,3748	0,1536	6,1537					
8	-0,6920	0,9404	4,4058					
9	-1,3970	0,7141	4,9263					
10	-1,8842	-0,2805	1,2548					

- 4. Explique por que o número de épocas de treinamento, em relação a está aplicação, varia a cada vez que executamos o treinamento do Perceptron.
- 5. Para a aplicação em questão, discorta se é possivel afirmar se as suas classes sao linearmente separaveis.

BOM TRABALHO!