

Statistics of Diagnostic Tests

Predictive Values

Niall Anderson

Introduction

The section on basic principles showed that we can begin to evaluate diagnostic tests by calculating sensitivity and specificity.

However, these are defined in terms of probabilities of test results, given disease status. We don't know this in practice:

Wish to go Test Diagnosis...

		Coronary Artery Disease		
		Present (D+)	Absent (D-)	Total
Exercise Tolerance Test	Positive (T+)	815	115	930
	Negative (T-)	208	327	535
	Total	1023	442	1465

Main interest may be in Probabilities "other way round"

Positive Predictive Value P(D+|T+) = 815 / 930 = 0.88

Negative Predictive Value P(D-|T-) = 327 / 535 = 0.61

NB PPV and NPV affected by prevalence

		Coronary Artery Disease		Total	
		Present (D+)	Absent (D-)		
Exercise Tolerance	Positive (T+)	815	115	930	
Test	Negative (T-)	208	327	535	
	Total	1023	442	1465	

		Coronary Artery Disease		Total	
		Present (D+)	Absent (D-)		
Exercise Tolerance Test	Positive (T+)	350	267	617	
	Negative (T-)	90	758	848	
	Total	440	1025	1465	

Sensitivity = 815/1023 = 0.80Specificity =

327/442 = 0.74

Sensitivity =

350/440 = 0.80

Specificity =

758/1025 = 0.74

PPV =

815/930 = 0.88

PPV =

350/617 = 0.57

NPV = 327/535 = 0.61 NPV =

758/848 = 0.89

Since disease *less* prevalent, +ve test less likely to be real disease & -ve test more likely to indicate absence.

Predictive Values

```
PPV = sens × prev

(sens x prev + (1 – spec )(1 – prev))

NPV = spec × (1 – prev)

(spec x (1 – prev) + (1- sens) x prev)

sens - sensitivity; spec - specificity; prev – prevalence
```

Therefore, PPV and NPV can't be compared between populations – apply only to current population/prevalence.

Estimating Precision

Sensitivity & specificity are just proportions

Standard methods allow Confidence Intervals to be calculated.

e.g. CAD example above:

Sensitivity = 0.80 (95% CI: 0.77, 0.82)

Specificity = 0.74 (95% CI: 0.70, 0.78)

Similar considerations for predictive values.

Alternative Approach

Assess test by e.g. comparing probabilities of positive test if disease present to those when disease absent...

Positive Likelihood Ratio =
$$\frac{\Pr(T+|D+)}{\Pr(T+|D-)} = \frac{Sensitivity}{1-Specificity}$$

LR gives information on value of test when a + diagnosis.

If Pre-test odds of disease =
$$\frac{Prevalence}{1-Prevalence}$$
, then post-test odds (+ result) are

Post-test Odds = LR × Pre-test odds

Can also define Negative Likelihood Ratio for T-

Negative Likelihood Ratio =
$$\frac{\Pr(T-|D+)}{\Pr(T-|D-)} = \frac{1-Sensitivity}{Specificity}$$

So can then also evaluate Post-test odds (for a – result), as before

Good tests will tend to have large Positive LR (>>1) and small Negative LR (<< 1)

Example – Screening for Cervical Cancer

- Carrying out testing in large "healthy" population
- Disease is (relatively) rare (i.e. low prevalence)
- Initially, want high sensitivity & NPV mainly wish to avoid false negatives
- False positives can be identified at 2nd stage high specificity & PPV test