Билет 29

Автор1, ..., Aвтор<math>N

21 июня 2020 г.

Содержание

0.1	Билет 29 : :	пепрерывныи	оораз	компакта.	теорема	ь бейерштрасса.	пепрерывность	
	обратного	отображения.						1

Билет 29 СОДЕРЖАНИЕ

0.1. Билет 29: ! Непрерывный образ компакта. Теорема Вейерштрасса. Непрерывность обратного отображения.

Теорема 0.1.

Пусть $\langle X, \rho_X \rangle$, $\langle Y, \rho_Y \rangle$ - метрические пространства, $f: X \mapsto Y, f$ непрерывна, $K \subset X$ - компакт.

Тогда f(K) компакт.

Доказательство.

Возьмём открытое покрытие f(K), назовём его U_{α} .

Тогда $V_{\alpha} = f^{-1}(U_{\alpha})$ - открытое покрытие K.

Выберем конечное V_{α_k} .

Тогда $K \subset \bigcup_{k=1}^{n} V_{\alpha_k} \implies f(K) \subset \bigcup_{k=1}^{n} f(V_{\alpha_k}) = \bigcup_{k=1}^{n} U_{\alpha_k}.$

Теорема 0.2 (Вейерштрасса).

Пусть $\langle X, \rho_X \rangle$, $\stackrel{\mathsf{IR}}{\mathsf{IR}}$ - метрические пространства, $f: X \mapsto \stackrel{\mathsf{IR}}{\mathsf{IR}}$, f непрерывна, $K \subset X$ - компакт.

Тогда $\exists u, v \in K \quad \forall x \in K \quad f(u) \leqslant f(x) \leqslant f(v)$.

Доказательство.

f(K) - компакт \implies замкнут и ограничен.

Ограничен \implies inf f и $\sup f$ - конечные.

Предположим что $b := \sup f \notin f(K)$. : , 1/n , ,

Тогда можем взять последовательность $x_n \in f(K), x_n \to b$. Тогда b - предельная точка f(K). $b \in f(K)' \subset \operatorname{Cl} f(K) = f(K)$. Противоречие. Значит $b \in f(K) \implies \exists v \in K \quad f(v) = b$. Аналогично для inf f.

Теорема 0.3.

Пусть $\langle X, \rho_X \rangle, \, \langle Y, \rho_Y \rangle$ - метрические пространства, $f: X \mapsto Y, \, f$ непрерывная биекция, X -компакт.

Тогда f^{-1} непрерывна.

Доказательство.

Пусть $g := f^{-1}$.

Пусть $U\subset X$ - открытое множество.

Заметим, что $f(U) = Y \setminus f(X \setminus U)$ (так-как биекция).

 $X\setminus U$ - замкнутое подмножество компакт \implies компакт $\implies f(X\setminus U)$ замкнуто $\implies Y\setminus f(X\setminus U)$ - открыто.

 $f(U)=g^{-1}(U),$ значит для g прообраз открытого открыт $\implies g$ непрерывно. \square