Context free grammar G= (N, E, P, S)

Porse tree is afree satisfying the following

- 1. Each interior node is labelled with an element
- 2. Each leaf node is labelled with £ or €.
- 3. if an interior node is labelled A and its Children are labelled Bi, -- Bk.

Then $A \rightarrow B$, B_2 , ... $B_k \in P$.

575+5 | 5x5 | (s) | I

I > a | b

String at axb

5-> S+5-> S+ 5*5-> a+a*6.

G: S→ACIAB, A→a, B→b, C→SB.

CNF for Zanbnin≥13

Consider the derivation of a4 b4.

Observation. For a grammar in Chomsky normal form, any parse tree for a long string should have a long path.

Any long path should have at least two occurrences of some nonterminal symbol.

For a grammar in CNF-tte number of

Symbols can atmost double going down a level in the parse tree - RHS of each production Contains atmost 2 Symbols.

We have 1 symbol at level 0
atmost 2 symbols at level 1.

2 symbols at level i.

To have 2 symbols at the bottom level, the tree must be of depth at least n. Thus the parse tree has at least n+1 levels.

* Depth - number of edges in the longest path from the root to a leaf node. Pumping Lemma for CFLS.

if $A \subseteq \mathbb{Z}^*$ is a CFL Iten there exist $k \ge 0$ Such that for every $Z \in A$ of length at least kCan be split into five substrings $Z = \mathcal{U} \mathcal{V} \mathcal{U} \supset \mathcal{C} \mathcal{Y}$ Such that $\mathcal{V} \times \mathcal{V} \in \mathcal{J} = \mathcal{V} \mathcal{U} \times \mathcal{V} = \mathcal{V} \mathcal{U} \times \mathcal{V} = \mathcal{U} \mathcal{V} \times \mathcal{V} \times \mathcal{V} \times \mathcal{V} = \mathcal{U} \mathcal{V} \times \mathcal{V} \times \mathcal{V} \times \mathcal{V} = \mathcal{U} \mathcal{V} \times \mathcal{V} \times \mathcal{V} \times \mathcal{V} \times \mathcal{V} \times \mathcal{V} \times \mathcal{V} = \mathcal{U} \mathcal{V} \times \mathcal{V$

Proof.
Let G be a grammar for A in CNF.

Take $k=2^{n+1}$, where n is the number of nonterminous of G_1 .

Suppose $Z \in A$ and $|Z| \ge k$.

Any parse tree in G for 2 must be of depth at least n+1 (i.e. there are n+2 levels).

Consider the longest path in the tree (it is of length of least n+1).

The longest path contains at least n+1 occurrence of non terminals.

This implies: Some nonterminal occurs more than once.

Take the first pair of occurences of the some nonterminal along the path-traversing bottom to top.

Suppose X is the non-terminal with two occurrences. Split Z = uvwxy such that.

W-String (of terminals) generated by lower occurrence of X UWX-String generated by the upper occurrence of X

Let T-Subtree rooted at upper occurrence of X. t-Subtree rooted at the lower occurrence of X

We conreplace t with asmony copies of Ttoget a porse tree for upiwoiy for all i=1.

We can cut I and replace it with thoget a parse tree for upwxy = uwy.

Note.

- 1. PX = E. Vand or are not both E.
- 2. 14 worl & R Since we chose the first repeated occurrence of a nonterminal from the bottom.

 Depth of the subtree under the upper occurrence of the repeated nonterminal X is atmost n+1

 it can have atmost 2 = k terminals

To show that a set is not a CFL- use pumping lemma in the contrapositive form.

For all $k \ge 0$, $\exists z \in A$ s.t $|z| \ge k$ and for all split of z into substrings z = uvwxy with $yx \ne \epsilon$ and $|vwx| \le k$, there exists an $i \ge 0$ s.t $uv^i w x^i y \notin A$

 $A = \{a^n b^n a^n | n \ge 0\}$ is not context free. Proof. Given k, let $z = a^k b^k a^k$. We have $z \in A$, |z| = 3k

Now Consider any split Z= UV wxy with vx + E and IV wx | = k. Let i=2. Consider He string uv2 wx2y.

Case 1. Yorx contains at least one "a" and at least one "b".

Hen uv² w x²y is not of the form a* b* a*

Case 2. V and x Contains only a's.

Then uv^2wx^2y has more a's than b's.

Cose 3. V and & contains only b's. Then the number of b's is greater than the number of a's.

Cose 4. One of I or x contains only as and the other only bis. Then up2wx2y is not of the form ambmam.

Thus in all cases, He resulting string UV wxzy & A. By pumping lemma, A is not a CFL.