BEVERAGE PRICE PREDICTION

Instantly estimate beverage prices for any customer

Problem Statement

- Accurately pricing beverages is crucial for maximizing revenue and market penetration, yet it remains a challenge due to varying consumer demographics, preferences, and buying behavior.
- Conventional pricing methods often overlook these nuances, leading to suboptimal pricing decisions and missed opportunities.
- There is a clear need for a data-driven approach that empowers businesses to predict
 optimal price ranges based on customer profiles—enabling smarter, personalized, and more
 competitive pricing strategies.

Project Objectives

- Develop a machine learning model to predict optimal price ranges for beverages based on customer demographics and behavioral inputs.
- Integrate the pipeline with MLflow for robust experiment tracking, model management, and reproducibility.
- Develop an intuitive Streamlit-based user interface to facilitate quick and accurate price predictions for stakeholders.
- Deploy the model on the cloud to enable access from any location.

Dataset Overview

1. Dataset Summary

- Total Records: 30010 respondents.
- Target Variable: price_range (Categorical price buckets).
- Goal: Predict price range based on customer profile and preferences.

2. Key Feature Categories

- **Demographics:** respondent_id, age, gender, zone, occupation, income_levels
- Consumption Behavior: consume_frequency(weekly), preferable_consumption_size, typical_consumption_situations
- Brand Awareness & Loyalty: current_brand, awareness_of_other_brands, reasons_for_choosing_brands
- **Product Preferences:** flavor_preference, packaging_preference, health_concerns
- Buying Behavior: purchase_channel
- Target: price_range

Data cleaning

1. Removing Duplicates

- To ensure data quality and avoid biased learning, duplicate entries were identified using the respondent_id and other key feature combinations.
- All exact duplicates were removed to maintain the integrity of individual responses.

2. Outlier Detection

• Outliers were examined in the age column using a box plot visualization.

• Entries with ages above 100 were removed to maintain realistic consumer data.

3. Handling Missing Data

• Initial null value check revealed missing entries across multiple columns.

respondent_id	0
age	0
gender	0
zone	0
occupation	0
income_levels	8062
consume_frequency(weekly)	8
current_brand	0
preferable_consumption_size	0
awareness_of_other_brands	0
reasons_for_choosing_brands	0
flavor_preference	0
purchase_channel	10
packaging_preference	0
health_concerns	0
typical_consumption_situations	0
price_range	0
dtype: int64	

- **income_levels:** Missing values were replaced with "Not Reported" to retain entries without introducing bias.
- consume_frequency(weekly) and purchase_channel: Missing values filled using the mode (most frequent value) after analysis.

4. Correcting spelling mistakes in categorical data

- Checked unique values in each categorical column.
- Cleaned and standardized inconsistent values in zone and current_brand columns to maintain uniform labeling across records.

Feature engineering

1. Categorizing Age into Groups

- Created a new column age_group by binning the existing age column into defined age brackets.
- Ensured each entry was mapped to the appropriate group.
- Dropped the original age column post-transformation to eliminate redundancy.

2. Creating cf_ab_score (Consumption & Awareness Score)

- Introduced a new feature cf_ab_score to combine consume_frequency(weekly) and awareness_of_other_brands into a single score.
- Assigned numeric values to both inputs based on predefined categories.
- Calculated a combined score and rounded it to two decimal places for consistency.

3. Creating zas_score (Zone Affluence Score)

- Developed a new metric **zas_score** to reflect consumer affluence by combining geographic and income data.
- Assigned weighted scores to both zone and income_levels based on their economic indicators.
- Calculated a composite score to represent purchasing power and regional influence.

4. Creating bsi (Brand Switching Indicator)

- Introduced a binary indicator **bsi** to flag respondents likely to switch brands.
- Marked as 1 if the current_brand is not Established and purchase_reasons include Price or Quality.
- Helps identify price- or quality-sensitive consumers for targeted strategies.

5. Removing Logical Outliers

• Used a pivot table to examine relationships between occupation and age_group.

occupation	Entrepreneur	Retired	Student	Working Professional
age_group				
18-25	535	0	7328	2605
26-35	1826	0	697	6570
36-45	1619	0	0	4353
46-55	799	0	0	2167
56-70	221	1130	35	106

- Detected anomalies such as students in the 56–70 age group, which are unlikely in real-world scenarios.
- Removed such records to maintain data quality and analytical accuracy.

Model training

1. Preparing Features and Target Variables

- Defined feature matrix X and target variable y.
- Excluded identifier respondent_id and the target price_range from the feature set.

2. Data Splitting

• Split the dataset into 75% training and 25% testing using train_test_split to evaluate generalization performance.

3. Feature Encoding

- Applied Label Encoding to selected ordinal features: age_group, income_levels, health_concerns, consume_frequency(weekly), prefer able_consumption_size and awareness_of_other_brands.
- Used One-Hot Encoding for all other categorical features.
- Label encoded the target column price_range.

4. Model Benchmarking

 Tested multiple classification algorithms on the processed dataset to identify the best performer: Gaussian Naive Bayes, Logistic Regression, Support Vector Machine (SVM), Random Forest, XGBoost and Light Gradient Boosting Machine (LightGBM).

5. Performance Evaluation

• Evaluated models using accuracy and classification report.

6. Final Model Selection

- Based on performance metrics, XGBoost was selected as the final model.
- It provided the best balance of accuracy and generalization on the test set.

- Further **hyperparameter tuning using Optuna** improved the model's performance, leading to optimal parameter settings.
- The tuned XGBoost model provided the best balance between accuracy and generalization on the test set.

Best accuracy: 0.9257577780745093
Best params: {'booster': 'gbtree', 'lambda': 0.34140224118899204, 'alpha': 0.3533784335530234, 'colsample_bytree': 0.7363130649148815, 'subsample': 0.8
071117485423065, 'learning_rate': 0.15964322063178146, 'n_estimators': 498, 'max_depth': 6, 'min_child_weight': 4, 'gamma': 0.35515405907448655}

MLflow Deployment and Tracking

- To streamline model experimentation and enable reproducible results, MLflow was
 integrated into the pipeline. Each classification model was logged using MLflow to capture
 their parameters, evaluation metrics, and artifacts.
- The tracked models were then published to DagsHub, providing a centralized platform for versioning and sharing. This setup allows easy comparison of model performance through a visual MLflow dashboard.

MLflow Dashboard: <a href="https://dagshub.com/rakeshkapilavayi978/mlflow-dagshub-demo.mlflow/#/experiments/3?searchFilter=&orderByKey=attributes.start_time&orderByAsc=false&startTime=ALL&lifecycleFilter=Active&modelVersionFilter=All+Runs&datasetsFilter=W10%3D

Streamlit App Integration

- Developed an interactive web application using **Streamlit**.
- Integrated the trained model to enable real-time beverage price prediction based on user inputs.
- Handled data preprocessing within the app to ensure accurate and consistent predictions.
- Implemented logic to dynamically predict beverage price ranges (₹50–100, ₹100–150, ₹150–200, ₹200–250) based on engineered features.
- Deployed the app on **Streamlit** Cloud for easy public access.
- The app allows users to input details such as age group, income level, and consumption habits to instantly receive a personalized price range.

User Interface Preview

RAKESH KAPILAVAYI