Теортест-1 (Вариант 93)

Тема – определенный интеграл

Задача 1

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(x)dx = \int f(1/t)\frac{dt}{t^2};$
- 2. $\int f(1/x)dx = -\int \frac{f(t)dt}{t^2}$;
- 3. $\int f(x)d(2x) = \int \frac{f(\sqrt{t})}{\sqrt{t}}dt;$
- 4. $\int f(x)dx = \int f(\ln t)tdt$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Выберите все верные утверждения:

- 1. Любая кривая имеет бесконечно много различных параметризаций;
- 2. Гладкая кривая это кривая, все параметризации которой гладкие;
- 3. Длина любого пути не меньше длины вписанной в его носитель ломаной;
- 4. Спрямляемы только кусочно-гладкие кривые;
- 5. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. v = u':
- 2. v = u' + C;
- 3. v' = u + C;
- 4. udt = dv;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 4

Выберите все верные утверждения (тела А и В имеют объем):

- 1. объем любого сечения тела A равен нулю;
- 2. при движении объем не меняется;
- 3. $V(A) = V(A \cap B) + V(A \setminus B)$;
- 4. если $A \subset B$, то объем A меньше объема B;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть функции $f, g: [a, b] \to \mathbb{R}$. Выберите все верные утверждения:

- 1. Если $c \in [a, b]$ и f интегрируема на [a, c] и на (c, b], то f интегрируема и на [a, b];
- 2. Если f и g интегрируемы на [a,b], то $f \cdot g$ тоже интегрируема на [a,b];
- 3. Если $[c,d] \subset [a,b]$ и f интегрируема на [a,b], то f интегрируема и на [c,d];
- 4. Если $[c,d] \subset [a,b]$ и f интегрируема на [c,d], то f интегрируема и на [a,b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^2 x f(x) dx$:

- 1. [-2, 10];
- 2. [-10, 20];
- 3. [-1, 20];
- 4. [-2, 20];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 7

Выберите все верные утверждения:

1. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;

- 2. первообразная дробно-рациональной функции является дробно-рациональной функцией;
- 3. первообразная дробно-рациональной функции выражается через элементарные функции;
- 4. если первообразная дробно-рациональной функции f(x) является дробнорациональной, то все корни знаменателя f(x) кратные;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ – интегральная сумма для f, построенная по разбиению τ с оснащением $\xi; s_{\tau}, S_{\tau}$ – нижняя и верхняя суммы Дарбу. Выберите все утверждения, равносильные интегрируемости функции f на отрезке [a,b]:

- 1. $\exists E \in \mathbb{R}: \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall \tau: |\tau| < \delta \ \exists \xi: \ -\varepsilon < \sigma_{\tau}(\xi) E < \varepsilon;$
- 2. $\forall \tau, \exists \xi : s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 3. $\exists E \in \mathbb{R}: \forall \varepsilon > 0 \ \exists \delta > 0: \forall \tau: |\tau| < \delta, \ \forall \xi: \ -\varepsilon < \sigma_{\tau}(\xi) E < \varepsilon;$
- 4. $\forall \tau, \forall \xi : s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна на [a, b] и f(a + b) = 1;
- 2. f(a) > 0, f(b) > 0;
- 3. f(a) = f(b) = 1;
- 4. f непрерывна на [a,b] и f((a+b)/2)=1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 10

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. Если f кусочно-непрерывна на [a,b], то F обобщенная первообразная для f на [a,b];
- 2. $\int_a^b f(x)dx = F(b) F(a);$

- 3. F ограничена на [a,b];
- 4. Если f непрерывна на [a,b], то F первообразная для f на [a,b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)