

Procedure-

Given-

- Starting coordinates = (X₀, Y₀)
- Ending coordinates = (X_n, Y_n)

The points generation using Bresenham Line Drawing Algorithm involves the following steps-

Step-01:

Calculate ΔX and ΔY from the given input.

These parameters are calculated as-

- $\Delta X = X_n X_0$
- ∆Y =Y_n Y₀

Step-02:

Calculate the decision parameter Pk.

It is calculated as-

Step-03:

Suppose the current point is (X_k, Y_k) and the next point is (X_{k+1}, Y_{k+1}) .

Find the next point depending on the value of decision parameter Pk.

Follow the below two cases-

Step-04:

Keep repeating Step-03 until the end point is reached or number of iterations equals to (ΔX -1) times.

PRACTICE PROBLEMS BASED ON BRESENHAM LINE DRAWING ALGORITHM-

Problem-01:

Calculate the points between the starting coordinates (9, 18) and ending coordinates (14, 22).

Solution-

Given-

- Starting coordinates = (X₀, Y₀) = (9, 18)
- Ending coordinates = (X_n, Y_n) = (14, 22)

Step-01:

Calculate ΔX and ΔY from the given input.

- $\Delta X = X_n X_0 = 14 9 = 5$
- $\Delta Y = Y_n Y_0 = 22 18 = 4$

Step-02:

Calculate the decision parameter.

 P_k

$$= 2\Delta Y - \Delta X$$

$$= 2 \times 4 - 5$$

= 3

So, decision parameter $P_k = 3$

Step-03:

As $P_k \ge 0$, so case-02 is satisfied.

Thus,

•
$$P_{k+1} = P_k + 2\Delta Y - 2\Delta X = 3 + (2 \times 4) - (2 \times 5) = 1$$

•
$$X_{k+1} = X_k + 1 = 9 + 1 = 10$$

•
$$Y_{k+1} = Y_k + 1 = 18 + 1 = 19$$

Similarly, Step-03 is executed until the end point is reached or number of iterations equals to 4 times.

(Number of iterations = $\Delta X - 1 = 5 - 1 = 4$)

Pk	P _{k+1}	X_{k+1}	Y _{k+1}
		9	18
3	1	10	19
1	-1	11	20
-1	7	12	20
7	5	13	21
5	3	14	22

Problem-02:

Calculate the points between the starting coordinates (20, 10) and ending coordinates (30, 18).

Solution-

Given-

- Starting coordinates = (X₀, Y₀) = (20, 10)
- Ending coordinates = (X_n, Y_n) = (30, 18)

Step-01:

Calculate ΔX and ΔY from the given input.

•
$$\Delta X = X_n - X_0 = 30 - 20 = 10$$

•
$$\Delta Y = Y_n - Y_0 = 18 - 10 = 8$$

Step-02:

Calculate the decision parameter.

 P_k

$$= 2\Delta Y - \Delta X$$

$$= 2 \times 8 - 10$$

= 6

So, decision parameter $P_k = 6$

Step-03:

As $P_k >= 0$, so case-02 is satisfied.

Thus,

•
$$P_{k+1} = P_k + 2\Delta Y - 2\Delta X = 6 + (2 \times 8) - (2 \times 10) = 2$$

•
$$X_{k+1} = X_k + 1 = 20 + 1 = 21$$

•
$$Y_{k+1} = Y_k + 1 = 10 + 1 = 11$$

Similarly, Step-03 is executed until the end point is reached or number of iterations equals to 9 times.

(Number of iterations = $\Delta X - 1 = 10 - 1 = 9$)

Pk	P _{k+1}	X _{k+1}	Y _{k+1}
		20	10
6	2	21	11
2	-2	22	12
-2	14	23	12
14	10	24	13
10	6	25	14
6	2	26	15
2	-2	27	16
-2	14	28	16
14	10	29	17
10	6	30	18

Advantages of Bresenham Line Drawing Algorithm-

The advantages of Bresenham Line Drawing Algorithm are-

- It is easy to implement.
- It is fast and incremental.
- · It executes fast but less faster than DDA Algorithm.
- The points generated by this algorithm are more accurate than DDA Algorithm.
- · It uses fixed points only.

Disadvantages of Bresenham Line Drawing Algorithm-

The disadvantages of Bresenham Line Drawing Algorithm are- Though it improves the accuracy of generated points but still the resulted line is not smooth.
This algorithm is for the basic line drawing.
It can not handle diminishing jaggies.
To gain better understanding about Bresenham Line Drawing Algorithm,