Particle spectrograph

Wave operator and propagator

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_0^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$	1
$\tau_0^{\#1} - 2 i k \sigma_0^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	8
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	٣
$\tau_{1}^{\#1}\alpha\beta - 2ik \sigma_{1}^{\#1}\alpha\beta == 0$	$\tau_{1}^{\#1}{}^{\alpha\beta} - 2ik \sigma_{1}^{\#1}{}^{\alpha\beta} = 0 \left \partial_{\chi} \partial^{\alpha} t^{\beta\chi} + \partial_{\chi} \partial^{\beta} t^{\chi\alpha} + \partial_{\chi} \partial^{\chi} t^{\alpha\beta} + \right $	м
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$2 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha}$	
$2 \ \sigma_1^{\#1} \alpha \beta + \ \sigma_1^{\#2} \alpha \beta == 0$	$\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\chi}\sigma^{\beta\chi\alpha} == \partial_{\chi}\sigma^{\alpha\chi\beta}$	8
$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2\bar{i}k \ \sigma_{2+}^{\#1}\alpha\beta == 0 \ -\bar{i} (4 \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}t^{\chi\delta} + 2 \partial_{\delta}\partial^{\delta}\partial^{\beta}\tau^{\chi} -$	5
	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4\ i \ k^{\chi} \ \partial_{\epsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\deltaarepsilon}_{\ \delta}$ -	
	6 i k^{χ} $\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{eta\delta\epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	6 i k^{χ} $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{eta\deltalpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta \epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	de generators:	19

Quadratic (free) action $S == \iiint (\frac{1}{3} (3t_1 \mathcal{A}^{\alpha\prime}_{\alpha} \mathcal{A}^{\theta}_{i} + 3f^{\alpha\beta} \tau_{\alpha\beta} + 3\mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} -$	$6t_1 {\mathscr A}_{\alpha \theta}^{ \theta} \partial_{\scriptscriptstyle j} f^{\alpha\prime} + 6t_1 {\mathscr A}_{\prime \theta}^{ \theta} \partial^{\prime} f^{\alpha}_{ \alpha} - 3t_1 \partial_{\scriptscriptstyle i} f^{ \theta}_{ \theta} \partial^{\prime} f^{\alpha}_{ \alpha} -$	$6r_1\partial_\beta \mathcal{A}_I^{\ \theta}\partial^\prime \mathcal{A}^{\alpha\beta}_{\ \alpha} + 6r_1\partial_\prime \mathcal{A}_\beta^{\ \theta}\partial^\prime \mathcal{A}^{\alpha\beta}_{\ \alpha} -$	$3t_1\partial_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	$12r_1\partial'\mathcal{A}^{lphaeta}_{}\partial_{artheta}\mathcal{A}^{}_{}{}_{}^{}-6r_1\partial_{lpha}\mathcal{A}^{lphaeta_1}\partial_{artheta}\mathcal{A}^{}_{}+$	$12r_1\partial'\mathcal{A}^{\alpha\beta}_{\alpha}\partial_\theta\mathcal{A}'_{\beta}^{}+2t_1\mathcal{A}_{\prime\theta\alpha}\partial^\theta f^{\alpha\prime}-2t_1\partial_\alpha f_{\beta}\partial^\theta f^{\alpha\prime}-$	$2t_1\partial_\alpha f_{\theta_{\prime}}\partial^\theta f^{\alpha\prime} + t_1\partial_{,} f_{\alpha\theta}\partial^\theta f^{\alpha\prime} + 2t_1\partial_\theta f_{\alpha\prime}\partial^\theta f^{\alpha\prime} +$	$t_1 \partial_{ heta} f_{\prime \alpha} \partial^{ heta} f^{lpha\prime} + t_1 \mathcal{A}_{lpha\prime heta} \left(\mathcal{A}^{lpha\prime heta} + 2 \partial^{ heta} f^{lpha\prime} ight) +$	$t_1 \mathcal{A}_{lpha heta_{\prime}} (\mathcal{A}^{lpha \prime heta} + 4 \partial^{ heta}_{f} f^{lpha \prime})$ - $4 r_1 \partial_{eta} \mathcal{A}_{lpha \iota heta} \partial^{ heta} \mathcal{A}^{lpha eta_{\prime}} +$	$4r_2\partial_eta \mathcal{R}_{lpha\prime heta}\partial^ heta \mathcal{R}^{lphaeta\prime} + 2r_1\partial_eta \mathcal{R}_{lpha heta\prime}\partial^ heta \mathcal{R}^{lphaeta\prime}$ -	$2r_2\partial_eta \mathcal{R}_{lpha heta_l}\partial^ heta \mathcal{R}^{lphaeta_l}$ - $8r_1\partial_eta \mathcal{R}_{\prime hetalpha}\partial^ heta \mathcal{R}^{lphaeta_l}$ +	$2r_2\partial_{eta}\mathcal{F}_{Ietalpha}\partial^{artheta}\mathcal{F}^{lphaeta_I}$ - $2r_1\partial_{artheta}\mathcal{F}_{lphaetaeta}\partial^{artheta}\mathcal{F}^{lphaeta_I}$ -	$r_2\partial_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{2}}}}}}}}$	$r_2\partial_ heta \mathcal{R}_{lphaeta_l}\partial^ heta \mathcal{R}^{lphaeta_l} + 2r_1\partial_ heta \mathcal{R}_{lpha_leta}\partial^ heta \mathcal{R}^{lphaeta_l}$ -	$2r_2\partial_ heta \mathcal{R}_{lphaetaeta}$ $\partial^ heta \mathcal{R}^{lphaeta\prime}))[t, lpha, eta, z]d\!zd\!yd\!xd\!t$
---	---	--	---	--	--	---	--	---	---	---	---	--	--	---

0

0

0

0

 $\sigma_1^{\#2} + ^{\alpha\beta}$

0

0

0

0

0

0

0

 $\sigma_{1}^{\#_{1}} \dagger^{\alpha}$

 $\sigma_{2^{+}\alpha\beta}^{\#1}$

 $\frac{2}{(1+2k^2)^2t_1}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

0

 $f_2^{\#1} + \alpha^{\beta}$

 $\mathcal{A}_{0}^{\#1}$

 $-t_1$

 $-i \sqrt{2} kt_1$

 $\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$

 $\mathcal{A}_{2}^{\#1}$

 $\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $-\frac{2k^2}{(1+2k^2)^2t_1}$

 $i k t_1$

 $k^2 r_1 -$

0

0

0

 $\mathcal{A}_{1^{\bar{-}}}^{\#_1} \! \uparrow^{\alpha}$

 $f_1^{\#_1^1} \dagger^{\alpha\beta}$

0

0

0

0

0

0

 $\mathcal{A}_{1}^{\#2} +^{\alpha}$

0 0

0 0

0

0 0

0 0

 $f_{1}^{\#1} +^{\alpha}$ $f_{1}^{\#2} +^{\alpha}$

 $\frac{1}{(1+2k^2)^2t_1}$

 $\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 $\sigma_{1}^{\#2} +^{\alpha}$

 $\tau_{2}^{\#1}{}_{lphaeta}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\frac{4k^2}{(1+2k^2)^2t_1}$

 $\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$

 $\frac{2}{2 k^2 r_1 + t_1}$

 $f_0^{\#2} \mathcal{A}_0^{\#1}$

 $f_{0^{+}}^{\#1}$

 $i\sqrt{2} kt_1$

 $-2k^{2}t_{1}$

0

0

0

0

	Source	SO(3) ir	$\tau_{0}^{\#2} == 0$	$\tau_{0}^{\#1} - 2 \bar{l} k$	$\tau_1^{\#2\alpha} + 2$	$\tau_{1}^{\#1\alpha} ==$	$\tau_1^{\#1}\alpha\beta$ - 2			
M	ass	siv	e a	nd ı	mas	ssle	ess	spe	ectr	a-

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$