CV 510½ Modeling, Uncertainty, and Data for Engineers

(July - Nov 2025)

Dr. Prakash S Badal

1

Flow (so far and week ahead)

- · So far:
 - · Probability axioms, rules, PMF/PDF/CDF
 - Variance, covariance, correlation
 - · Distributions: uniform, Gaussian, exponential, Gumbel, lognormal
 - Standard normal; reading z-table
 - Uncertainty propagation: linear, nonlinear function (FO and SO approximation)
 - Fitting a distribution Linear regression (estimation): least-square method
- This week:
 - Estimation: Method of moments (MoM), Maximum likelihood estimation (MLE)
 - Inference: Confidence interval (CI)
 - Inference: Hypothesis testing (HT)
 - Goodness of fit (GoF): χ², KS
- Check-in with teachbook
 - MLE: Q1C3.6 and Q1C5.4.2
 - CI: Q1C3.5HT: Q1C3.9GoF: Q1C5.4

.

3

Parameter estimation: method of moments

- Obtain the moments (e.g., mean, variance) from two sources:
 - Observations: _ _ _ _ _

$$E[X] = \mu_X = \int_{-\infty}^{+\infty} x f_X(x) dx$$

$$Var[X] = \sigma_X^2 = E[(X - \mu_X)^2] = E[X^2] - \mu_X^2$$

Parameters:

Depends on the distribution type _ _ _ _

• Equate them to solve for the parameters

4

Distributions	hac	narameters
DISHIBULIONS	anu	Darameters

Dist.	PDF	CDF	Mean & Variance		
Normal/ Gaussian	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$	$F(x) = \Phi(x)$ Use z-table	$E[X] = \mu$ $Var[X] = \sigma^2$		
Uniform	$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$	$F(x) = \begin{cases} x - a & \text{for } x < a \\ \frac{b - a}{b - a} & \text{for } x \in [a, b] \\ 1 & \text{otherwise} \end{cases}$	$E[X] = \frac{1}{2}(a+b)$ $Var[X] = \frac{1}{12}(b-a)^{2}$		
Exponential	$f(x) = \lambda \exp(-\lambda x)$	$F(x) = 1 - \exp(-\lambda x)$	$E[X] = \frac{1}{\lambda}$ $Var[X] = \frac{1}{\lambda^2}$		
Gumbel	$f(x) = \frac{1}{\beta} \exp[-z + \exp(-z)],$ where $z = \frac{x - \alpha}{\beta}$	$F(x) = \exp[-\exp(-z)]$	$E[X] = \alpha + \beta \gamma$ $Var[X] = \frac{\pi^2}{6} \beta^2$ $\gamma = 0.577$		
Lognormal	$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\ln x - \mu}{\sigma}\right)^2\right]$	$F(x) = \Phi\left(\frac{\ln x - \mu}{\sigma}\right)$ Use z-table	$E[X] = \exp\left(\mu + \frac{\sigma^2}{2}\right)$ $Var[X] = [\exp(\sigma^2) - 1] \exp(2\mu + \sigma^2)$		

5

Example

 Assume that Earthquakes in Rome expressed as MCS index follow Gumbel type-I distribution. Earthquake intensity and number of earthquakes between 1000 CE – 1980 CE are:

MSC intensity, x_i	2	3	4	5	6	7	$\sum x = \sum x_i f_i$	$\sum x^2 = \sum x_i^2 f_i$	$\sum f_i$
Number, f_i	113	132	56	22	4	2	994	3328	329

Find the parameters of the distribution.

• Observations:

$$E[X] = \mu_X = 994/329 = 3.02$$

 $Var[X] = E[X^2] - \mu_X^2 = 10.12 - 3.02^2 \approx 0.99$
 $E[X^2] = 3328/329 \approx 10.12$

• Parameters for Gumbel type-I: $E[X] = \alpha + \beta \gamma$

$$Var[X] = \frac{\pi^2}{6}\beta^2$$

• Equate them to solve for the parameters

Solve to find,
$$\alpha \approx 2.57$$
, $\beta \approx 0.77$

$$\mathcal{L}(\mu, \sigma | \mathbf{x}) = \prod_{i}^{n} f(x_{i} | \mu, \sigma)$$

 $\hat{\mu}, \hat{\sigma} = \underset{\mu, \sigma}{\operatorname{arg}} \max_{\mu, \sigma} \mathcal{L}(\mu, \sigma | \mathbf{x})$

 $\hat{\mu}, \hat{\sigma} = \arg\max_{\mu, \sigma} \ln[\mathcal{L}(\mu, \sigma | \mathbf{x})]$

Excel Demo!

9

Questions, comments, or concerns?