Subjectul 1

Se dă un graf neorientat conex G cu n>3 vârfuri, m muchii, m>n. Să se determine doi arbori parțiali T și T' ai lui G cu proprietățile:

- T este arbore de distante față de vârful 1: $d_T(1,v) = d_G(1,v)$ pentru orice vârf v din G
- În T' există cel puțin un vârf v cu $d_{T'}(1, v) \neq d_G(1, v)$.

Se vor afișa muchiile celor doi arbori parțiali determinați și, în plus, se vor afișa toate vârfurile v pentru care $d_{T}(1,v) \neq d_G(1,v)$. Complexitate O(m)

Informațiile despre graf se citesc din fișierul graf.in cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt câte 2 numere naturale reprezentând extremitățile unei muchii

 $(d_G(x,y) = distanța de la x la y în G)$

graf.in	lesire pe ecran (solutia nu este unica)
5 7	T:
12	12
13	13
2 3	2 4
2 4	35
3 4	T':
35	12
45	2 4
	45
	3 4
	v: 3 5

Subjectul 2

Se citesc informații despre un graf **orientat** ponderat G din fișierul graf.in. Fișierul are următoarea structură:

- pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de arce m ale grafului, **m>n**
- pe următoarele m linii sunt câte 3 numere întregi **pozitive** reprezentând extremitatea inițială, extremitatea finală și costul unui arc din graf
- pe următoarea linie (a (m+2)-a linie) din fișier este un număr natural k (0<k<n) reprezentând numărul de vârfuri sursă; vârfurile sursă din G vor fi 1, 2, ..., k
- pe ultima linie a fișierului sunt două vârfuri t₁ și t₂, reprezentând vârfurile destinație ale grafului.

Notăm cu $S = \{1,...,k\}$ mulțimea vârfurilor sursă din G și cu $T = \{t_1,t_2\}$ mulțimea vârfurilor destinație din G. Spunem că un vârf y este accesibil din G acă există un drum de la G y. Presupunem că există cel puțin un vârf destinație care este accesibil dintr-un vârf sursă.

Să se determine distanța între cele două mulțimi:

$$d(S, T) = min \{d(x, y) | x \in S, y \in T\}$$

Să se determine în plus și o pereche de vârfuri (s,t) cu $s \in S$ și $t \in T$ cu

$$d(s,t) = d(S,T) = \min \{d(x, y) \mid x \in S, y \in T\}$$

și să se afișeze (pe ecran) un drum minim de la s la t. Complexitate O(mlog(n))

Exemplu

graf.in	Iesire pe ecran
6 8	distanta intre multimi = 2
1 2 3	s=2 t=3
1 6 10	drum minim 2 4 3
6 2 2	
2 4 1	
4 3 1	
5 3 4	
1 5 5	
3 2 7	
2	
3 6	

Explicații

$$k=2 \Rightarrow S = \{1, 2\}$$

 $T = \{3, 6\}$
 $d(1,3)=5, d(2,3)=2$
 $d(1,6)=10, d(2,6)=\infty$
Cea mai mică este $d(2,3)$
Un drum minim de la 2 la 3 este 2 4 3

Subjectul 3

Se dau n fabrici de monitoare numerotate 1...n și m depozite numerotate n+1,...,n+m. Pentru fiecare fabrica i se cunoaște c(i) = câte monitoare au fost produse la momentul curent, iar pentru fiecare depozit j se cunoaște c(j) = numărul de monitoare pe care le poate depozita la momentul curent. Fiecare fabrică are contracte cu anumite depozite. În contractul dintre fabrica i și depozitul j este trecută cantitatea maximă de monitoare care poate fi trimisă spre depozitare de la fabrica i la depozitul j, notată w(i,j). Datele se vor citi din fișierul fabrici.in cu următoarea structură:

- pe prima linie sunt numerele naturale n și m
- pe a doua linie este un șir de n numere naturale reprezentând cantitatea de monitoare existente în fiecare dintre cele n fabrici
- pe a treia linie este un șir de m numere naturale reprezentând numărul de monitoare pe care le poate depozita fiecare dintre cele m depozite
- pe a patra linie este un număr k reprezentând numărul de contracte dintre fabrici și depozite
- pe următoarele k linii sunt triplete de numere naturale i j w (separate prin spatiu) cu semnificația: de la fabrica i la depozitul j se pot trimite maxim w monitoare.

Să se determine, dacă există, o modalitate de a depozita toate monitoarele existente în fabrici la momentul curent în depozite respectând condițiile din contracte și capacitatea de depozitare a fiecărui depozit. Complexitate $O((n+m)k^2)$

Rezultatul se va afișa sub forma prezentată în exemplul de mai jos.

Observație: Putem modela problema cu un graf bipartit fabrici-depozite (cu vârfuri corespunzătoare fabricilor și depozitelor și muchii reprezentând existența unui contract între fabrică și depozit). Dacă c(i) = 1 pentru fiecare fabrică i, c(j)=1 pentru fiecare depozit și w(i, j)=1 pentru orice contract, atunci problema se reduce la a determina un cuplaj de cardinal maxim în graful bipartit fabrici-depozite și a verifica dacă orice vârf fabrică este saturat. Se acorda 1p daca se rezolva doar problema pentru c(i) = 1 pentru fiecare fabrică i, c(j)=1

pentru fiecare depozit și w(i, j)=1 pentru orice contract

fabrici.in	lesire pe ecran (solutia nu este unica)
3 3	143
654	153
754	2 4 2
7	252
147	261
155	3 4 2
2 4 3	362
252	
263	
3 4 5	
362	

