Serial No. 10/689,818

LISTING OF CLAIMS:

- 1. (Cancelled)
- 2. (Cancelled)
- 3. (Cancelled)
- 4. (Currently Amended) A base-station transceiver system (BTS) operative in a cellular telephone network, comprising:

a main up-link port and a diversity up-link port adapted to operate cooperatively to receive up-link signals over-the-air from cellular telephones such that both of the ports receive the up-link signals from each of the cellular telephones, the main up-link port and the diversity up-link port being coupled to receive signals from wired telephones, such that the main up-link port receives signals only from a first group of the wired telephones and the diversity up-link port receives signals only from a second group of the wired telephones, the wired telephones being connected by wire to a cable television (CATV) network wherein the signals from the first and the second group of wired telephones are conveved to the main up-link port and the diversity up-link port via the CATV network;

signal processing circuitry adapted to receive the signals from the up-link ports and convey the signals over the network.

The BTS according to claim 2, and comprising:

- a first duplexer which is adapted to receive the signals from the first group of wired telephones and to convey the signals to the main up-link port;
- a second duplexer which is adapted to receive the signals from the second group of wired telephones and to convey the signals to the diversity up-link port; and a down-link port which is adapted to convey down-link signals via the first duplexer and the CATV network to the first group of wired telephones and via the second duplexer and the CATV network to the second group of wired telephones.
- 5. (Currently Amended) A base-station transceiver system (BTS) operative in a cellular telephone network, comprising:

Serial No. 10/689,818

a main up-link port and a diversity up-link port adapted to operate cooperatively to receive up-link signals over-the-air from cellular telephones such that both of the ports receive the up-link signals from each of the cellular telephones, the main up-link port and the diversity up-link port being coupled to receive signals from wired telephones such that the main up-link port receives signals only from a first group of the wired telephones and the diversity up-link port receives signals only from a second group of the wired telephones, the wired telephones being connected by wire to a cable television (CATV) network wherein the signals from the first and the second group of wired telephones are conveyed to the main up-link port and the diversity up-link port via the CATV network; signal processing circuitry adapted to receive the signals from the up-link ports and convey the signals over the network.

The BTS according to claim 2, and comprising

- a first down-link port which is adapted to transmit first down-link signals to the cellular telephones;
- a further main up-link port and a further diversity up-link port which are adapted to operate cooperatively to receive up-link signals over-the-air from cellular telephones such that both of the ports receive the up-link signals from each of the cellular telephones, the further main up-link port and further diversity up-link port being and which are coupled to receive signals from the wired telephones, such that the further main up-link port receives signals only from a third group of the wired telephones and the further diversity up-link port receives signals only from a fourth group of the wired telephones;
- a second down-link port which is adapted to transmit second down-link signals to the cellular telephones; and
- a four-way splitter, which is adapted to receive the first and the second down-link signals and is coupled to distribute the first and the second down-link signals to the first, second, third, and fourth group of the wired telephones.
- 6. (Original) The BTS according to claim 5, wherein the four-way splitter comprises an existing four-way splitter operative in the CATV network to convey CATV signals to a first, a second, a third, and a fourth group of CATV receiver locations, and

Serial No. 10/689,818

wherein locations of the first, second, third, and fourth group of the wired telephones respectively correspond to the first, second, third, and fourth group of CATV receiver locations.

- 7. (Original) The BTS according to claim 6, and comprising first, second, third, and fourth return path receivers (RPRs) which are respectively coupled to the first, second, third, and fourth group of the wired telephones so as to convey cellular up-link signals therefrom respectively to the main up-link port, the diversity up-link port, the further main up-link port, and the further diversity up-link port.
- 8. (Original) The BTS according to claim 7, wherein the RPRs are adapted to convey up-link CATV signals to the CATV network.
- 9. (Cancelled)
- 10. (Cancelled)
- 11. (Currently Amended) A base-station transceiver system (BTS) operative in a cellular telephone network, comprising:

a main up-link port and a diversity up-link port adapted to operate cooperatively to receive up-link radio frequency (RF) signals over-the-air from cellular telephones such that both of the ports receive the up-link signals from each of the cellular telephones, the main up-link port and the diversity up-link port being coupled to receive radio frequency (RF) signals from wired telephones such that the main up-link port receives signals only from a first group of the wired telephones and the diversity up-link port receives signals only from a second group of the wired telephones; and signal processing circuitry which is adapted to receive the signals from the up-link ports and convey the signals over the network, said BTS comprising a BTS converter (BTSC) which is adapted to convert intermediate frequency (IF) signals received from the wired telephones to the RF signals

The BTS according to claim 10, wherein the IF signals are transmitted within an overall IF bandwidth, and wherein the first group of telephones comprises a first telephone which transmits within a first IF bandwidth narrower than the overall IF bandwidth and a second telephone which transmits within a second IF bandwidth narrower than the overall IF bandwidth.

Serial No. 10/689,818

- 12. (Original) The BTS according to claim 11, wherein the first IF bandwidth is approximately the same as the second IF bandwidth.
- 13. (Original) The BTS according to claim 11, wherein the first IF bandwidth and the second IF bandwidth comprise different frequencies.
- 14. (Original) The BTS according to claim 1, wherein at least one of the wired telephones comprises a baseband-telephone which receives and transmits baseband signals, and a telephone adapter which is connected to the baseband-telephone and which is adapted to convert between the baseband signals and the signals received by the main up-link port and the diversity up-link port.
- 15. (Cancelled)
- 16. (Cancelled)
- 17. (Cancelled)
- 18. (Currently Amended) A method for conveying signals in a cellular telephone network, comprising:

coupling a main up-link port and a diversity up-link port of a base-station transceiver system (BTS) to receive up-link signals from wired telephones so that the main up-link port receives signals only from a first group of the wired telephones operative in a cellular telephone network and the diversity up-link port receives signals only from a second group of the wired telephones operative in the cellular telephone network, the main up-link port and the diversity up-link port being adapted to operate cooperatively to receive up-link signals over-the-air from cellular telephones such that both of the ports receive the up-link signals from each of the cellular telephones;

receiving the signals from the up-link ports and conveying the signals to the network, the wired telephones being connected by wire to a cable television (CATV) network, the signals from the first and the second group of wired telephones being conveyed to the main up-link port and the diversity up-link port via the CATV network;

The method according to claim 16, and comprising:

receiving the signals from the first group of wired telephones in a first duplexer and conveying the signals to the main up-link port;

receiving the signals from the second group of wired telephones in a second duplexer and conveying the signals to the diversity up-link port; and conveying down-link signals via the first duplexer and the CATV network to the first group of wired telephones and via the second duplexer and the CATV network to the second group of wired telephones.

19. (Currently Amended) A method for conveying signals in a cellular telephone network, comprising:

coupling a main up-link port and a diversity up-link port of a base-station transceiver system (BTS) to receive up-link signals from wired telephones so that the main up-link port receives signals only from a first group of the wired telephones operative in a second group of the wired telephones operative in the cellular telephone network, the main up-link port and the diversity up-link port being adapted to operate cooperatively to receive up-link signals over-the-air from cellular telephones such that both of the ports receive the up-link signals from each of the cellular telephones; receive the up-link signals from the up-link ports and conveying the signals to the network, the wired telephones being connected by wire to a cable television (CATV) network, the signals from the first and the second group of wired telephones being conveyed to the main up-link port and the diversity up-link port via the CATV network;

The method according to claim 16, and comprising

transmitting first down-link signals from a down-link port to the cellular telephones; coupling a further main up-link port and a further diversity up-link port of the BTS to receive up-link signals from wired telephones so that the further main up-link port receives signals only from a third group of the wired telephones operative in the cellular telephone network and the diversity up-link port receives signals only from a fourth group of the wired telephones operative in the cellular telephone network, the further main up-link port and the further diversity up-link port being adapted to operate cooperatively to receive up-link signals over-the-air from cellular telephones such that both of the ports receive the up-link signals from each of the cellular telephones; and

receiving the first and the second down-link signals in a four-way splitter which is coupled to distribute the first and the second down-link signals to the first, second, third, and fourth group of the wired telephones.

- 20. (Original) The method according to claim 19, wherein the four-way splitter comprises an existing four-way splitter operative in the CATV network to convey CATV signals to a first, a second, a third, and a fourth group of CATV receiver locations, and wherein locations of the first, second, third, and fourth group of the wired telephones respectively correspond to the first, second, third, and fourth group of CATV receiver locations.
- 21. (Original) The method according to claim 20, and comprising coupling first, second, third, and fourth return path receivers (RPRs) respectively to the first, second, third, and fourth group of the wired telephones so as to convey cellular up-link signals therefrom respectively to the main up-link port, the diversity up-link port, the further main up-link port, and the further diversity up-link port.
- 22. (Original) The method according to claim 21, wherein the RPRs are adapted to convey up-link CATV signals to the CATV network.
- 23. (Cancelled)
- (Cancelled)
- 25. (Currently Amended) <u>A method for conveying signals in a cellular telephone</u> network, comprising:

coupling a main up-link port and a diversity up-link port of a base-station transceiver system (BTS) to receive up-link radio frequency (RF) signals from wired telephones so that the main up-link port receives radio frequency (RF) signals only from a first group of the wired telephones operative in a cellular telephone network and the diversity up-link port receives radio frequency (RF) signals only from a second group of the wired telephones operative in the cellular telephone network, the main up-link port and the diversity up-link port being adapted to operate cooperatively to receive radio frequency (RF) up-link signals over-the-air from cellular telephones such that both of the ports receive the up-link signals from each of the cellular telephones; and receiving the signals from the up-link ports and conveying the signals to the network;

converting intermediate frequency (IF) signals received from the wired telephones to the RF signals

The method according to claim 24, wherein the IF signals are being transmitted within an overall IF bandwidth, and wherein the first group of telephones comprises a first telephone which transmits within a first IF bandwidth narrower than the overall IF bandwidth and a second telephone which transmits within a second IF bandwidth narrower than the overall IF bandwidth, wherein the IF signals are transmitted via a CATV network, and wherein a level of the IF signals is less than or equal to a threshold level of signals in the CATV network.

- 26. (Original) The method according to claim 25, wherein the first IF bandwidth is approximately the same as the second IF bandwidth.
- 27. (Original) The method according to claim 25, wherein the first IF bandwidth and the second IF bandwidth comprise different frequencies.
- 28. (Cancelled)
- 29. (Cancelled)
- 30. (Cancelled)