

UNIVERSIDAD DE CONCEPCIÓN

FACULTAD DE CIENCIAS QUÍMICAS QUÍMICA GENERAL

CERTAMEN 3 PAUTA Química General I 531.140 30 de julio, 1º semestre de 2021

	1																
1															2		
Н			TABLA PERIÓDICA DE LOS ELEMENTOS											He			
3	4											5	6	7	8	9	10
Li	Be	B C N O F							Ne								
11	12	13 14 15 16 17							18								
Na	Mg		Al Si P S CI						Cl	Ar							
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
55	56		72	73	74	75	7	77	78	79	80	81	82	83	84	85	86
Cs	Ва		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn

Datos

$E_c =$	$\frac{1}{2}mv^2$	$E_c = hv - hv_0$	$c = \lambda v$		<i>h</i> = 6.63 x 10 ⁻³⁴ J s	
N _A = 6.022	2 x 10 ²³ mol ⁻¹	c = 3.00 x 10 ⁸ m/s	$\lambda = \frac{h}{m u}$		$R_H = 2.18 \times 10^{-18} J$	
$\Delta E = -R_{I}$	$H\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$	Masa e ⁻ =9.11×10 ⁻³¹ kg		$E = hv = \frac{hc}{\lambda}$		
$1 J = kg m^2/s^2$	Nano (n) =10 ⁻⁹	mili (m) =10 ⁻³		centi (c) =10 ⁻²		
kilo (l	$k) = 10^3$	micro (μ) =10 ⁻⁶		1 Å =1×10 ⁻¹⁰ m		
Carga Fo	Carga Formal= (nº e- de valencia)–(nº e- sin compartir)– (1/2 e- compartidos)					

ESTRUCTURA ATÓMICA Y MOLECULAR

I. EL MODELO ATÓMICO MODERNO

1. Naturaleza ondulatoria de la luz, espectro electromagnético

Una radiación electromagnética tiene una longitud de onda de 150 nm. ¿Cuál es la energía, en J, de un mol de fotones de esta radiación?.

8.01×10⁵ J 1.33×10² J 1.33×10⁻¹⁸ J 1.33×10⁻¹⁷ J

$$\lambda(m) = 150 \ nm \times \frac{1 \times 10^{-9} \ m}{1 \ nm} = 1.50 \times 10^{-7} \ m$$

$$c = \lambda v; \quad E = hv; \quad E = h \frac{c}{\lambda}$$

$$E = 6.63x10^{-34} J.s \times \frac{3.00 \times 10^8 m/s}{1.50 \times 10^{-7} m} = 1.33 \times 10^{-18} J$$

Para un mol de fotones:

$$E = 1.33 \times 10^{-18} \frac{J}{fotón} \times \frac{6.022 \times 10^{23} fotones}{1 \ mol} = \frac{8.01 \times 10^5 \ J}{1 \ mol}$$

Una radiación electromagnética tiene una longitud de onda de 650 mm. ¿Cuál es la energía, en J, de un mol de fotones de esta radiación?.

1.84×10⁻¹ J 1.84×10⁻⁴ J 3.06×10⁻¹⁸ J 3.06×10⁻²⁵ J

$$\lambda(m) = 650 \ mm \times \frac{1 \ m}{1000 \ mm} = 6.50 \times 10^{-1} \ m$$

$$c = \lambda v \ ; \quad E = hv \ ; \quad E = h \frac{c}{\lambda}$$

$$E = 6.63 \times 10^{-34} \ J.s \times \frac{3.00 \times 10^8 \ m/s}{6.50 \times 10^{-1} \ m} = 3.06 \times 10^{-25} \ J$$

Para un mol de fotones:

$$E = 3.06 \times 10^{-19} \frac{J}{fotón} \times \frac{6.022 \times 10^{23} fotones}{1 \ mol} = \frac{1.84 \times 10^{-1} \text{ J}}{1 \ mol}$$

Una radiación electromagnética tiene una longitud de onda de 320 cm. ¿Cuál es la energía, en J, de un mol de fotones de esta radiación?.

3.74×10⁻² J 1.84×10⁻⁴ J 3.06×10⁻¹⁸ J 3.06×10⁻²⁵ J

$$\lambda(m) = 320 \ cm \times \frac{1 \ m}{100 \ cm} = 3.20 \ m$$

$$c = \lambda v; \quad E = hv; \quad E = h\frac{c}{\lambda}$$

$$E = 6.63x10^{-34} \ J.s \times \frac{3.00 \times 10^8 \ m/s}{3.20 \ m} = 6.22 \times 10^{-26} \ J.s$$

Para un mol de fotones:

$$E = 6.22 \times 10^{-26} \frac{J}{fotón} \times \frac{6.022 \times 10^{23} fotones}{1 mol} = 3.74 \times 10^{-2} J$$

Una radiación electromagnética tiene una longitud de onda de 2.42 km. ¿Cuál es la energía, en J, de un mol de fotones de esta radiación?.

4.95×10⁻⁵ J 4.95×10⁻⁸ J 8.22×10⁻¹⁶ J 8.22×10⁻²⁹ J

$$\lambda(m) = 2.42 \ km \times \frac{1 \times 10^3 \ m}{1 \ km} = 2.42 \times 10^3 \ m$$

$$c = \lambda v \; ; \quad E = hv \; ; \quad E = h\frac{c}{\lambda}$$

$$E = 6.63x10^{-34} \ J.s \times \frac{3.00 \times 10^8 \ m/s}{2.42 \times 10^3 \ m} = 8.22 \times 10^{-29} \ J.s$$

Para un mol de fotones:

$$E = 8.22 \times 10^{-29} \frac{J}{fot \acute{o}n} \times \frac{6.022 \times 10^{23} fotones}{1 \ mol} = 4.95 \times 10^{-5} \text{ J}$$

Una radiación electromagnética tiene una longitud de onda de 9.64 Å. ¿Cuál es la energía, en J, de un mol de fotones de esta radiación?.

1.24×10⁸ J

1.24×10⁵ J

2.06×10⁻¹⁶ J

 $2.06 \times 10^{-18} \text{ J}$

$$\lambda(m) = 9.64 \, nm \, \times \frac{1 \times 10^{-10} \, m}{1 \, A} = 9.64 \times 10^{-10} \, m$$

$$c = \lambda v \, ; \quad E = hv \; ; \quad E = h \frac{c}{\lambda}$$

$$E = 6.63x 10^{-34} \, J.s \times \frac{3.00 \times 10^8 \, m/s}{9.64 \times 10^{-10} \, m} = 2.06 \times 10^{-16} \, J$$

Para un mol de fotones:

$$E = 2.06 \times 10^{-16} \frac{J}{fotón} \times \frac{6.022 \times 10^{23} fotones}{1 \ mol} = 1.24 \times 10^{8} \text{ J}$$

2. Efecto fotoeléctrico

Si se irradia una lámina de cobre 2.40×10^{-18} J de energía y la frecuencia umbral del cobre es 1.10×10^{15} Hz. ¿Cuál es la velocidad del electrón que se desprende por el efecto fotoeléctrico? Masa electrón= 9.11×10^{-31} kg

1.91×10⁶ m/s

3.67×10¹² m/s 5.15×10⁵ m/s

3.00×10⁸ m/s

$$E = hv \; ; \quad v = \frac{E}{h} \; ;$$

$$v = \frac{2.40 \times 10^{-18} \, J}{6.63 \times 10^{-34} \, J. \, s} = 3.62 \times 10^{15} \, s^{-1}$$

$$E_c = hv - hv_0$$

$$E_c = h(v - v_0) \Rightarrow E_c = 6.63 \times 10^{-34} \, J. \, s \; (3.62 \times 10^{15} \, s^{-1} - 1.10 \times 10^{15} \, s^{-1}) = 1.67 \times 10^{-18} \, J$$

$$E_c = \frac{1}{2} mv^2 \quad \Rightarrow v = \sqrt[2]{\frac{2 \, E_c}{m}} = \sqrt[2]{\frac{2 \, (1.67 \times 10^{-18} \, J)}{9.11 \times 10^{-31} \, kg}} = \frac{1.91 \times 10^6 \, \text{m/s}}{1.91 \times 10^6 \, \text{m/s}}$$

Si se irradia una lámina de cobre con 3.20×10^{-18} J de energía y la frecuencia umbral del cobre es 1.10×10^{15} Hz. ¿Cuál es la velocidad del electrón que se desprende por el efecto fotoeléctrico? Masa electrón= 9.11×10^{-31} ka

2.33×10⁶ m/s 5.42×10¹² m/s 5.11×10⁵ m/s 3.00×10⁸ m/s

$$E = hv \; ; \quad v = \frac{E}{h} \; ;$$

$$v = \frac{3.20 \times 10^{-18} \, J}{6.63 \times 10^{-34} \, J. \, s} = 4.83 \times 10^{15} \, s^{-1}$$

$$E_c = hv - hv_0$$

$$E_c = h(v - v_0) \Rightarrow E_c = 6.63 \times 10^{-34} \, J. \, s \; (4.83 \times 10^{15} \, s^{-1} - 1.10 \times 10^{15} \, s^{-1}) = 2.47 \times 10^{-18} \, J$$

$$E_c = \frac{1}{2} mv^2 \quad \Rightarrow v = \sqrt[2]{\frac{2 \, E_c}{m}} = \sqrt[2]{\frac{2 \, (2.47 \times 10^{-18} \, J)}{9.11 \times 10^{-31} \, kg}} = \frac{2.33 \times 10^6 \, \text{m/s}}{2.33 \times 10^6 \, \text{m/s}}$$

Si se irradia una lámina de cobre con 8.50×10^{-19} J de energía y la frecuencia umbral del cobre es 1.10×10^{15} Hz. ¿Cuál es la velocidad del electrón que se desprende por el efecto fotoeléctrico? Masa electrón= 9.11×10^{-31} kg

5.11×10⁵ m/s 2.65×10¹¹ m/s 1.92×10⁶ m/s 3.00×10⁸ m/s

$$E = hv \; ; \quad v = \frac{E}{h} \; ;$$

$$v = \frac{8.50 \times 10^{-19} \, J}{6.63 \times 10^{-34} \, J. \, s} = 1.28 \times 10^{15} \, s^{-1}$$

$$E_c = hv - hv_0$$

$$E_c = h(v - v_0) \Rightarrow E_c = 6.63 \times 10^{-34} \, J. \, s \; (1.28 \times 10^{15} \, s^{-1} - 1.10 \times 10^{15} \, s^{-1}) = 1.19 \times 10^{-19} \, J$$

$$E_c = \frac{1}{2} m v^2 \quad \Rightarrow v = \sqrt[2]{\frac{2 \, E_c}{m}} = \sqrt[2]{\frac{2 \, (1.19 \times 10^{-19} \, J)}{9.11 \times 10^{-31} \, kg}} = \frac{5.11 \times 10^5 \, \text{m/s}}{5.11 \times 10^5 \, \text{m/s}}$$

Si se irradia una lámina de cobre con 9.50×10^{-19} J de energía y la frecuencia umbral del cobre es 1.10×10^{15} Hz. ¿Cuál es la velocidad del electrón que se desprende por el efecto fotoeléctrico? Masa electrón= 9.11×10^{-31} kg

6.93×10⁵ m/s 4.85×10¹¹ m/s 1.92×10⁶ m/s 3.00×10⁸ m/s

E =
$$hv$$
; $v = \frac{E}{h}$;

$$v = \frac{9.50 \times 10^{-19} J}{6.63 \times 10^{-34} J. s} = 1.43 \times 10^{15} s^{-1}$$

$$E_c = h\nu - h\nu_0$$

$$E_c = h(\nu - \nu_0) \Rightarrow E_c = 6.63 \times 10^{-34} J. \, s \, (1.43 \times 10^{15} \, s^{-1} - 1.10 \times 10^{15} \, s^{-1}) = 2.19 \times 10^{-19} J.$$

$$E_c = \frac{1}{2} m \nu^2 \quad \Rightarrow \nu = \sqrt[2]{\frac{2 \, E_c}{m}} = \sqrt[2]{\frac{2 \, (2.19 \times 10^{-19} J)}{9.11 \times 10^{-31} kg}} = \frac{6.93 \times 10^5 \, \text{m/s}}{10^{-31} \, \text{m/s}}$$

Si se irradia una lámina de cobre con 5.40×10^{-18} J de energía y la frecuencia umbral del cobre es 1.10×10^{15} Hz. ¿Cuál es la velocidad del electrón que se desprende por el efecto fotoeléctrico? Masa electrón= 9.11×10^{-31} kg

 $3.20 \times 10^{6} \text{ m/s}$

1.03×10¹³ m/s 5.11×10⁵ m/s 3.00×10⁸ m/s

$$E = hv \; ; \quad v = \frac{E}{h} \; ;$$

$$v = \frac{5.40 \times 10^{-18} \, J}{6.63 \times 10^{-34} \, J. \, s} = 8.14 \times 10^{15} \, s^{-1}$$

$$E_c = hv - hv_0$$

$$E_c = h(v - v_0) \Rightarrow E_c = 6.63 \times 10^{-34} \, J. \, s \; (8.14 \times 10^{15} \, s^{-1} - 1.10 \times 10^{15} \, s^{-1}) = 4.67 \times 10^{-18} \, J$$

$$E_c = \frac{1}{2} m v^2 \quad \Rightarrow v = \sqrt[2]{\frac{2 \, E_c}{m}} = \sqrt[2]{\frac{2 \, (4.67 \times 10^{-18} \, J)}{9.11 \times 10^{-31} \, kg}} = \frac{3.20 \times 10^6 \, \text{m/s}}{3.20 \times 10^6 \, \text{m/s}}$$

3. Teoría mecánica cuántica

¿Quién determinó en una sola expresión el comportamiento dual del electrón?

Louis de Broglie

Max Planck

Niels Bohr

Albert Einstein

¿Quién pudo explicar la emisión de electrones por un material al incidir sobre él una radiación electromagnética?

Albert Einstein

Louis de Broglie

Max Planck

Niels Bohr

¿Quién dio a conocer una explicación teórica del espectro de emisión del átomo de hidrógeno?

Niels Bohr

Albert Einstein Louis de Broglie Max Planck

4. De broglie

¿Cuál es la longitud de onda, en m, de un protón que ha sido acelerado hasta el 25.0% de la velocidad de la luz?. Masa protón: 1.673×10^{-27} kg

5.28×10⁻¹⁵ m

1.32×10⁻¹⁵ m

8.81×10⁻¹⁵ m

3.30×10⁻¹⁵ m

$$v = 3.00 \times 10^8 m/s \times \frac{25.0 \%}{100 \%} = 7.50 \times 10^7 m/s$$

$$\lambda = \frac{h}{m v} = \frac{6.63 \times 10^{-34} J.s}{(1.673 \times 10^{-27} kg \times 7.50 \times 10^7 m/s)} = \frac{5.28 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 7.50 \times 10^7 m/s} = \frac{5.28 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 7.50 \times 10^7 m/s} = \frac{5.28 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 7.50 \times 10^7 m/s} = \frac{5.28 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 7.50 \times 10^7 m/s} = \frac{5.28 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 7.50 \times 10^7 m/s} = \frac{5.28 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 7.50 \times 10^7 m/s} = \frac{5.28 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 7.50 \times 10^7 m/s} = \frac{5.28 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 7.50 \times 10^7 m/s} = \frac{5.28 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 7.50 \times 10^7 m/s} = \frac{5.28 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 7.50 \times 10^7 m/s} = \frac{5.28 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 7.50 \times 10^7 m/s} = \frac{5.28 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 7.50 \times 10^7 m/s} = \frac{5.28 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 7.50 \times 10^7 m/s} = \frac{5.28 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 7.50 \times 10^7 m/s} = \frac{5.28 \times 10^{-15} m}{1.673 \times 10^7 m/s} = \frac{5.28 \times 10^7 m}{1.673 \times 10^7 m} = \frac{5.28 \times 10^7 m}{1.673 \times 10^$$

¿Cuál es la longitud de onda, en m, de un protón que ha sido acelerado hasta el 15.0% de la velocidad de la luz?. Masa protón: 1.673×10^{-27} kg

 8.81×10^{-15} m

5.28×10⁻¹⁵ m

1.32×10⁻¹⁵ m

3.30×10⁻¹⁵ m

$$v = 3.00 \times 10^8 m/s \times \frac{15.0 \%}{100 \%} = 4.50 \times 10^7 m/s$$

$$\lambda = \frac{h}{m v} = \frac{6.63 \times 10^{-34} J.s}{(1.673 \times 10^{-27} kg \times 4.50 \times 10^7 m/s)} = \frac{8.81 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 4.50 \times 10^7 m/s}$$

¿Cuál es la longitud de onda, en m, de un protón que ha sido acelerado hasta el 40.0% de la velocidad de la luz?. Masa protón: 1.673×10^{-27} kg

 3.30×10^{-15} m

1.32×10⁻¹⁵ m

8.81×10⁻¹⁵ m

5.28×10⁻¹⁵ m

$$v = 3.00 \times 10^8 m/s \times \frac{40.0 \%}{100 \%} = 1.20 \times 10^8 m/s$$

$$\lambda = \frac{h}{m v} = \frac{6.63 \times 10^{-34} J.s}{(1.673 \times 10^{-27} kg \times 1.20 \times 10^8 m/s)} = \frac{3.30 \times 10^{-15} m}{1.673 \times 10^{-15} m}$$

¿Cuál es la longitud de onda, en m, de un protón que ha sido acelerado hasta el 60.0% de la velocidad de la luz?. Masa protón: 1.673×10^{-27} kg

2.20×10⁻¹⁵ m

1.32×10⁻¹⁵ m

 $8.81 \times 10^{-15} \text{ m}$

3.30×10⁻¹⁵ m

$$v = 3.00 \times 10^8 m/s \times \frac{60.0 \%}{100 \%} = 1.80 \times 10^8 m/s$$

$$\lambda = \frac{h}{m v} = \frac{6.63 \times 10^{-34} J.s}{(1.673 \times 10^{-27} kg \times 1.80 \times 10^8 m/s)} = \frac{2.20 \times 10^{-15} m}{1.673 \times 10^{-27} kg \times 1.80 \times 10^8 m/s}$$

¿Cuál es la longitud de onda, en m, de un protón que ha sido acelerado hasta el 80.0% de la velocidad de la luz?. Masa protón: 1.673×10⁻²⁷ kg

 $1.65 \times 10^{-15} \text{ m}$ 5.28×10⁻¹⁵ m

8.81×10⁻¹⁵ m

 3.30×10^{-15} m

$$v = 3.00 \times 10^8 m/s \times \frac{80.0 \%}{100 \%} = 2.40 \times 10^8 m/s$$

$$\lambda = \frac{h}{m v} = \frac{6.63 \times 10^{-34} J. s}{(1.673 \times 10^{-27} kg \times 2.40 \times 10^8 m/s)} = \frac{1.65 \times 10^{-15} m}{1.65 \times 10^{-15} m}$$

5. Espectro de líneas

Cuando un electrón en el átomo de hidrógeno es excitado desde el estado n=1 al n=3. ¿Cuál de las siguientes afirmaciones es INCORRECTA?

En la transición el átomo emite energía en forma de radiación electromagnética

La energía del electrón en n=1 es menor que en n=3

El electrón se encuentra más lejos del núcleo en n=3 que en n=1

La frecuencia absorbida para pasar de n=1 a n=3 es mayor que de n=2 a n=3

Cuando un electrón en el átomo de hidrógeno es excitado desde el estado n=1 al n=3. ¿Cuál de las siguientes afirmaciones es INCORRECTA?

La energía del electrón en n=1 es mayor que en n=3

En la transición el átomo absorbe energía en forma de radiación electromagnética El electrón se encuentra más lejos del núcleo en n=3 que en n=1

La frecuencia absorbida para pasar de n=1 a n=3 es mayor que de n=2 a n=3

Cuando un electrón en el átomo de hidrógeno es excitado desde el estado n=1 al n=3. ¿Cuál de las siguientes afirmaciones es INCORRECTA?

El electrón se encuentra más cerca del núcleo en n=3 que en n=1

En la transición el átomo absorbe energía en forma de radiación electromagnética La energía del electrón en n=1 es menor que en n=3

La frecuencia absorbida para pasar de n=1 a n=3 es mayor que de n=2 a n=3

Cuando un electrón en el átomo de hidrógeno es excitado desde el estado n=1 al n=3. ¿Cuál de las siguientes afirmaciones es INCORRECTA?

La frecuencia absorbida para pasar de n=1 a n=3 es menor que de n=2 a n=3

En la transición el átomo absorbe energía en forma de radiación electromagnética La energía del electrón en n=1 es menor que en n=3

El electrón se encuentra más lejos del núcleo en n=3 que en n=1

Cuando un electrón en el átomo de hidrógeno es excitado desde el estado n=1 al n=3. ¿Cuál de las siguientes afirmaciones es CORRECTA?

La frecuencia absorbida para pasar de n=1 a n=3 es mayor que de n=2 a n=3

En la transición el átomo emite energía en forma de radiación electromagnética

La energía del electrón en n=1 es mayor que en n=3

El electrón se encuentra más cerca del núcleo en n=3 que en n=1

6. Transición electrones átomo de hidrógeno

¿Qué frecuencia necesitará un fotón para <u>EXCITAR</u> un electrón en el átomo de hidrogeno desde su nivel basal hasta el nivel n=2?

2.47 x 10¹⁵ s⁻¹

 $2.92 \times 10^{15} \, s^{-1}$

 $3.16 \times 10^{15} \, \text{s}^{-1}$

 $3.09 \times 10^{15} \, \text{s}^{-1}$

$$n_i = 1 \qquad n_f = 2$$

$$\Delta E = -R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right) = -2.18 \times 10^{-18} J \times \left(\frac{1}{2^2} - \frac{1}{1^1}\right) = 1.64 \times 10^{-18} J$$

$$E = h\nu \implies \nu = \frac{E}{h} = \frac{1.64 \times 10^{-18} J}{6.63 \times 10^{-34} J.s} = \frac{2.47 \times 10^{15} \text{ s}^{-1}}{10^{-18} J}$$

¿Qué frecuencia necesitará un fotón para <u>EXCITAR</u> un electrón en el átomo de hidrogeno desde su nivel basal hasta el nivel n=3?

 $2.93 \times 10^{15} \,\mathrm{s}^{-1}$

 $3.08 \times 10^{15} \, \text{s}^{-1}$

2.46 x 10¹⁵ s⁻¹

 $3.16 \times 10^{15} \, \text{s}^{-1}$

$$n_i = 1 \qquad n_f = 3$$

$$\Delta E = -R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) = -2.18 \times 10^{-18} J \times \left(\frac{1}{3^2} - \frac{1}{1^1} \right) = 1.94 \times 10^{-18} J$$

$$E = h\nu \Rightarrow \nu = \frac{E}{h} = \frac{1.94 \times 10^{-18} J}{6.63 \times 10^{-34} J.s} = \frac{2.93 \times 10^{15} \text{ s}^{-1}}{10^{-18} J}$$

¿Qué frecuencia necesitará un fotón para <u>EXCITAR</u> un electrón en el átomo de hidrogeno desde su nivel basal hasta el nivel n=4?

 $3.08 \times 10^{15} \,\mathrm{s}^{-1}$

 $2.93 \times 10^{15} \, \text{s}^{-1}$

 $2.46 \times 10^{15} \, \text{s}^{-1}$

 $3.20 \times 10^{15} \, \text{s}^{-1}$

$$n_i = 1 \qquad n_f = 4$$

$$\Delta E = -R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right) = -2.18 \times 10^{-18} J \times \left(\frac{1}{4^2} - \frac{1}{1^1}\right) = 2.04 \times 10^{-18} J$$

$$E = h\nu \implies \nu = \frac{E}{h} = \frac{2.04 \times 10^{-18} J}{6.63 \times 10^{-34} J.s} = \frac{3.08 \times 10^{15} \text{ s}^{-1}}{10^{-18} J}$$

¿Qué frecuencia necesitará un fotón para <u>EXCITAR</u> un electrón en el átomo de hidrogeno desde su nivel basal hasta el nivel n=5?

3.15 x 10¹⁵ s⁻¹ 2.93 x 10¹⁵ s⁻¹ 2.46 x 10¹⁵ s⁻¹ 3.48 x 10¹⁵ s⁻¹

$$n_i = 1 \qquad n_f = 5$$

$$\Delta E = -R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) = -2.18 \times 10^{-18} J \times \left(\frac{1}{5^2} - \frac{1}{1^1} \right) = 2.09 \times 10^{-18} J$$

$$E = h\nu \implies \nu = \frac{E}{h} = \frac{2.09 \times 10^{-18} J}{6.63 \times 10^{-34} J.s} = \frac{3.15 \times 10^{15} \text{ s}^{-1}}{10^{-18} J}$$

¿Qué frecuencia necesitará un fotón para <u>EXCITAR</u> un electrón en el átomo de hidrogeno desde su nivel basal hasta el nivel n=6?

3.20 x 10¹⁵ s⁻¹ 2.93 x 10¹⁵ s⁻¹ 2.46 x 10¹⁵ s⁻¹ 3.08 x 10¹⁵ s⁻¹

$$\begin{split} n_i &= 1 \qquad n_f = 6 \\ \Delta E &= -R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) = -2.18 \times 10^{-18} J \times \left(\frac{1}{6^2} - \frac{1}{1^1} \right) = 2.12 \times 10^{-18} J \\ E &= h \nu \Longrightarrow \nu = \frac{E}{h} = \frac{2.12 \times 10^{-18} J}{6.63 \times 10^{-34} J.s} = \frac{3.20 \times 10^{15} \, \mathrm{s}^{-1}}{1} \end{split}$$

7. Números cuánticos Teoría

¿Con qué nombre se conoce el siguiente enunciado?: "La configuración electrónica más estable en un subnivel es aquella que tiene el mayor número de espines paralelos"

Regla de Hund

Principio de Aufbau Principio de exclusión de Pauli Principio de incertidumbre

El orden del llenado de los orbitales atómicos a medida que se agregan electrones al átomo es conocido como:

El principio de Aufbau

La regla de Hund

El principio de exclusión de Pauli

El principio de incertidumbre

¿Qué alternativa es CORRECTA con respectos a los números cuánticos?

La forma del orbital lo da el número cuántico del momento angular

Un orbital p está permitido en n=1

En el átomo de hidrógeno la energía del orbital 2s es menor que el orbital 2p Los números cuánticos n, ℓ y m $_{\ell}$ vienen de la ecuación de Heisenberg

¿Qué alternativa es INCORRECTA con respectos a los números cuánticos?

Todos los números cuánticos de derivan de la ecuación de Schrodinger

En el átomo de hidrógeno el orbital 2s y 2p tienen la misma energía La forma del orbital está dada por el número cuántico del momento angular Un orbital p está prohibido en n=1

8. Números cuánticos relación

¿Cuántos orbitales se esperaría tener en la capa del nivel n=5?

```
<mark>25</mark>
```

16

8

32

n=5 orbitales n²=25

¿Cuántos electrones pueden estar en el nivel 5?

```
<del>50</del>
```

25

16

32

 N^{o} e- por nivel = $2n^{2}$ = 2 (5)² = 50

¿Cuántas subcapas (subniveles) y orbitales totales se esperaría tener en el nivel cuántico principal

4 subcapas y 16 Orbitales

5 subcapas y 25 Orbitales

3 subcapas y 9 Orbitales

5 subcapas y 16 Orbitales

n=4 subcapas valores de $\ell=0$ (s), 1 (p), 2 (d), 3 (7). Orbitales por subcapas: s=1; p=3; d=5; f=7 total=16

¿Cuál de los siguientes conjuntos de números cuánticos es CORRECTO?

```
n=2; \ell= 1; m_{\ell}= 0; m_{S}= -\frac{1}{2}

n=2; \ell= 1; m_{\ell}= +2; m_{S}= -\frac{1}{2}

n=2; \ell= 0; m_{\ell}= +1; m_{S}= \frac{1}{2}

n=2; \ell= 2; m_{\ell}= 0; m_{S}= \frac{1}{2}
```

¿En qué orbital se encuentra un electrón con números cuánticos n=2 y m_ℓ=+1?

p

d

s

f

9. Configuración electrónica y números cuánticos

¿Cuál de las siguientes especies corresponde el conjunto de número cuánticos para el último electrón: n=3; $\ell=1$; $m_\ell=+1$; $m_s=-1/2$?

11X+

19**X**

13X³⁺

Para n=3 $\ell=1$; tenemos el subnivel 3p Con $m_{\ell}=+1$; $m_s=-1/2$; tenemos:

$\uparrow\downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$				
-1	0	+1				
3р						

Configuración electrónica : $1s^2 2s^2 2p^6 3s^2 3p^6 = 18$ electrones $\Rightarrow \frac{16}{16}$

¿Cuál de las siguientes especies corresponde el conjunto de número cuánticos para el último electrón: n=2; $\ell=1$; $m_\ell=+1$; $m_s=-1/2$?

₁₁X⁺

₁₆X²⁻

19**X**

31X³⁺

Para n=2; $\ell=1$; tenemos el subnivel 2p Con $m_{\ell}=+1$; $m_s=-1/2$; tenemos:

$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow \downarrow$			
-1	0	+1			
2p					

Configuración electrónica : $1s^2 2s^2 2p^6 = 10$ electrones $\Rightarrow 11X^+$

¿Cuál de las siguientes especies corresponde el conjunto de número cuánticos para el último electrón: $n=2; \ell=0; m_\ell=0; m_s=-1/2?$

₇X³

₈X²⁻

9X²⁺

₁₅X³⁺

Para n= 2; ℓ = 0; tenemos el subnivel 2s Con m $_{\ell}$ = 0; m $_{s}$ = -1/2 ; tenemos:

> ↑↓ 0 2s

Configuración electrónica : $1s^2 2s^2 = 4$ electrones $\Rightarrow 7X^{3+}$

¿Cuál de las siguientes especies corresponde el conjunto de número cuánticos para el último electrón: n=3; $\ell=1$; $m_\ell=-1$; $m_s=1/2$?

15X²⁺

11X²⁺

₁₆X²⁻

Para n= 3; ℓ = 1; tenemos el subnivel 3p Con m $_\ell$ = -1; m $_s$ = 1/2; tenemos:

↑						
-1	0	+1				
3p						

Configuración electrónica: $1s^2 2s^2 2p^6 3s^2 3p^1 = 13$ electrones $\Rightarrow 15X^{2+}$

¿Cuál de las siguientes especies corresponde el conjunto de número cuánticos para el último electrón: n=3; $\ell=1$; $m_\ell=0$; $m_s=1/2$?

16X²⁺

₁₂X²⁺

₁₇X³⁻

16X²⁻

Para n=3 $\ell=1$; tenemos el subnivel 3p Con $m_{\ell}=0$; $m_s=1/2$; tenemos:

Configuración electrónica : $1s^2 2s^2 2p^6 3s^2 3p^2 = 14$ electrones $\Rightarrow \frac{16}{16}X^{2+}$

10. Identificar elemento con configuración electrónica

Si los cuatro números cuánticos para el último electrón de un átomo neutro incógnito son: n = 4; $\ell = 1$; $m_{\ell} = -1$; $m_s = -1/2$ ¿Cuál es el átomo incógnito?

Se

Ga

Ge

As

Para n= 4; ℓ = 1; tenemos el subnivel 4p \Rightarrow Periodo 4 Con m $_{\ell}$ = -1; m $_{s}$ = -1/2 tenemos:

$\uparrow \downarrow$	↑	↑			
-1	0	+1			
4p					

```
4p^4; grupo 16 \Rightarrow Se
```

Si los cuatro números cuánticos para el último electrón de un átomo neutro incógnito son: $n=3; \ell=1; m_\ell=0; m_s=1/2$ ¿Cuál es el átomo incógnito?

Si

S

Al Cl

Para n=3; $\ell=1$; tenemos el subnivel $3p \Rightarrow$ Periodo 3 Con $m_{\ell}=0$; $m_s=1/2$ tenemos:

	↑	
-1	0	+1
	3 p	

$$3p^2 = grupo 14 \Rightarrow Si$$

Si los cuatro números cuánticos para el último electrón de un átomo neutro incógnito son: n = 3; $\ell = 0$; $m_{\ell} = 0$; $m_{s} = 1/2$ ¿Cuál es el átomo incógnito?

Na

Mg

Si

S

Para n= 3; ℓ = 0; tenemos el subnivel 3s \Rightarrow Periodo 3 Con m_{ℓ} = 0; m_s = 1/2; tenemos:

$$3s^1 = grupo 1 \Rightarrow Na$$

Si los cuatro números cuánticos para el último electrón de un átomo neutro incógnito son: n = 4; $\ell = 1$; $m_{\ell} = +1$; $m_s = 1/2$ ¿Cuál es el átomo incógnito?

As

Se

Ga

Ge

Para n=4; $\ell=1$; tenemos el subnivel $4p \Rightarrow$ Periodo 4 Con $m_{\ell}=+1$; $m_s=1/2$ tenemos:

↑	↑	↑
-1	0	+1
	4p	

$$4p^3 = \text{grupo } 15 \Rightarrow \text{As}$$

Si los cuatro números cuánticos para el último electrón de un átomo neutro incógnito son:

n = 3; $\ell = 1$; $m_{\ell} = 0$; $m_s = -1/2$ ¿Cuál es el átomo incógnito?

CI

S

Αl

Para n=3; $\ell=1$; tenemos el subnivel $3p \Rightarrow Periodo 3$

Con $m_\ell = 1$; $m_s = -1/2$ tenemos:

$\uparrow \downarrow$	$\uparrow \downarrow$	↑			
-1	0	+1			
4p					

 $3p^5$; grupo $17 \Rightarrow Cl$

11. Configuración electrónica, para y diamagnetismo, isoelectrónico, electrones de valencia

¿Qué alternativa es CORRECTA para el átomo de N (Z=7)?

Pertenece al grupo con terminación ns² np³

Tiene 3 electrones de valencia Es diamagnético Es isoelectrónico con el B3+

¿Qué alternativa es CORRECTA para el átomo de B (Z=5)?

Tiene 3 electrones de valencia

Pertenece al grupo con terminación ns² np³ Es diamagnético Es isoelectrónico con el N3-

¿Qué alternativa es CORRECTA para el átomo de F (Z=9)?

Su anión F- diamagnético

Tiene 5 electrones de valencia Pertenece al grupo con terminación ns² np⁴ Es isoelectrónico con el Na+

¿Qué alternativa es CORRECTA para el átomo de N (Z=7)?

Tiene 5 electrones de valencia

Es diamagnético Pertenece al grupo con terminación ns² np⁴ Es isoelectrónico con el B3+

¿Qué alternativa es CORRECTA para el átomo de F (Z=9)?

Es paramagnético

Tiene 5 electrones de valencia Pertenece al grupo con terminación ns² np⁴ Es isoelectrónico con el Na+

12. Configuración electrónica elementos de transición

¿Cuál de las siguientes alternativas representa la configuración electrónica del Fe³⁺? (Fe; Z=26)

[Ar] 4s⁰ 3d⁵

[Ar] 4s² 3d³

[Ar] 4s1 3d4

[Ar] 4s⁰ 4d⁵

¿Cuál de las siguientes alternativas representa la configuración electrónica del Cu? (Cu; Z=29)

[Ar] 4s¹ 3d¹⁰

[Ar] 4s² 3d⁹

[Ar] 4s² 4d⁹

[Ar] 4s1 4d10

¿Cuál de las siguientes alternativas representa la configuración electrónica del Cu+? (Cu; Z=29)

[Ar] 4s⁰ 3d¹⁰

[Ar] 4s² 3d⁸

[Ar] 4s1 3d9

[Ar] 4s² 4d⁸

¿Cuál de las siguientes alternativas representa la configuración electrónica del Zn²+? (Zn; Z=30)

[Ar] 4s⁰ 3d¹⁰

[Ar] 4s² 3d⁸

[Ar] 4s1 3d9

[Ar] 4s² 4d⁸

¿Cuál de las siguientes alternativas representa la configuración electrónica del Cr?

[Ar] 4s1 3d5

[Ar] 4s² 3d⁴

[Ar] 4s² 4d⁴

[Ar] 4s1 4d5

II. PROPIEDADES PERÓDICAS

13. Periodos grupos y ley periódica

¿Cuál de las siguientes alternativas es <u>INCORRECTA</u> con respecto a las propiedades químicas de los grupos?

Grupo 2 (2A): Forman cationes +1 y +2.

Grupo 1 (1A): Reaccionan violentamente con agua.

Grupo 17 (7A): Pueden formar compuestos moleculares entre ellos.

Grupo 18 (8A): Se encuentran como especies monoatómicas en la naturaleza.

¿Cuál de las siguientes alternativas es <u>INCORRECTA</u> con respecto a las propiedades químicas de los grupos?

Grupo 1 (1A): No Reaccionan con agua.

Grupo 2 (2A): Forman cationes +2.

Grupo 17 (7A): Pueden formar compuestos moleculares entre ellos.

Grupo 18 (8A): Se encuentran como especies monoatómicas en la naturaleza.

¿Cuál de las siguientes alternativas es <u>INCORRECTA</u> con respecto a las propiedades químicas de los grupos?

Grupo 17 (7A): Todos sus elementos son metálicos

Grupo 1 (1A): Reaccionan violentamente con agua.

Grupo 2 (2A): Forman cationes +2.

Grupo 18 (8A): Se encuentran como especies monoatómicas en la naturaleza.

¿Cuál de las siguientes alternativas es <u>INCORRECTA</u> con respecto a las propiedades químicas de los grupos?

Grupo 18 (8A): Se encuentran como especies diatómicas homonucleares en la naturaleza.

Grupo 1 (1A): Reaccionan violentamente con agua.

Grupo 2 (2A): Forman cationes +2.

Grupo 17 (7A): Pueden formar compuestos moleculares entre ellos.

14. Propiedades periódicas I

Considerando el siguiente esquema, identifique cuál de las alternativas describe de forma INCORRECTA las variaciones de las siguientes propiedades periódicas: energía o potencial de ionización (PI), electronegatividad (EN), afinidad electrónica (AE) y radio atómico (RA).

1: corresponde a una disminución del PI

- 2: corresponde a un aumento del RA
- 3: corresponde a un aumento de la EN
- 4: corresponde a una disminución de la AE

Considerando el siguiente esquema, identifique cuál de las alternativas describe de forma CORRECTA las variaciones de las siguientes propiedades periódicas: energía o potencial de ionización (PI), electronegatividad (EN), afinidad electrónica (AE) y radio atómico (RA).

3: corresponde a un aumento de la EN

- 2: corresponde a una disminución del RA
- 1: corresponde a una disminución del PI
- 4: corresponde a un aumento de la AE

Considerando el siguiente esquema, identifique cuál de las alternativas describe de forma INCORRECTA las variaciones de las siguientes propiedades periódicas: energía o potencial de ionización (PI), electronegatividad (EN), afinidad electrónica (AE) y radio atómico (RA).

2: corresponde a una disminución del RA

- 1: corresponde a un aumento del PI
- 3: corresponde a un aumento de la EN
- 4: corresponde a una disminución de la AE

Considerando el siguiente esquema, identifique cuál de las alternativas

describe de forma CORRECTA las variaciones de las siguientes propiedades periódicas: energía o potencial de ionización (PI), electronegatividad (EN), afinidad electrónica (AE) y radio atómico (RA).

1: corresponde a un aumento de la AE

4: corresponde a un aumento de la EN

2: corresponde a una disminución del RA

3: corresponde a una disminución del PI

15. Propiedades periódicas III

Considere las siguientes cinco energías de ionización consecutivas, que pertenecen a un elemento del tercer período en la tabla periódica:

 KJ/mol						
I_1	I_2	I_3	I_4	${ m I}_5$		
578	1 820	2750	11 600	16 100		

La configuración electrónica más adecuada para explicar este comportamiento es:

[Ne] 3s² 3p¹

[Ne] $3s^2 3p^2$

[Ne] 3s1

[Ne] 3s²

Considere las siguientes cinco energías de ionización consecutivas, que pertenecen a un elemento del tercer período en la tabla periódica:

	KJ/i	mol		
I_1	I_2	I_3	I_4	\mathbf{I}_{5}
578	1 820	11 600	16 100	16 100

La configuración electrónica más adecuada para explicar este comportamiento es:

[Ne] 3s²

[Ne] 3s² 3p¹

[Ne] 3s² 3p²

[Ne] 3s1

Considere las siguientes cinco energías de ionización consecutivas, que pertenecen a un elemento del tercer período en la tabla periódica:

kJ/mol						
I_1	I_2	I_3	I_4	${ m I}_5$		
578	11 600	16 100	22 200	27 100		

La configuración electrónica más adecuada para explicar este comportamiento es:

[Ne] 3s¹

[Ne] 3s² 3p¹

[Ne] $3s^2 3p^2$

[Ne] 3s²

Considere las siguientes cinco energías de ionización consecutivas, que pertenecen a un elemento del tercer período en la tabla periódica:

kJ/mol						
I_1	\mathbf{I}_2	I_3	I_4	\mathbf{I}_{5}		
578	1 820	2750	4 360	16 100		

La configuración electrónica más adecuada para explicar este comportamiento es:

[Ne] 3s² 3p²

[Ne] 3s2 3p1

[Ne] 3s1

[Ne] 3s²

III. ENLACE QUÍMICO Y ESTRUCTUR MOLECULAR

16. Enlace químico

¿Cuál de las siguientes especies tiene solo enlaces covalentes?

 N_2O_4

NH₄Cl

NaNO₃

Pb

¿Cuál de las siguientes especies tiene solo enlaces covalentes?

BF₃

NH₄Cl

CsNO₃

Pb

¿Cuál de las siguientes especies tiene solo enlaces covalentes?

HCI

NH₄NO₃

KCIO₃

Pb

¿Cuál de las siguientes sustancias presenta enlace iónico?

NH₄NO₃

Grafito

 H_2O

Αl

¿Cuál de las siguientes sustancias presenta enlace iónico?

NH₄NO₃

Diamante

BF₃

Cu

17. Características enlaces

¿Cuál de las siguientes afirmaciones es CORRECTA respecto a los enlaces químicos?

El enlace covalente corresponde a la unión de elementos no metálicos

Un enlace covalente se forma por transferencia de electrones entre sus átomos En los enlaces iónicos se comparten pares de electrones entre sus átomos Los enlaces iónicos pueden ser simples, dobles o triples

¿Cuál de las siguientes afirmaciones es CORRECTA respecto a los enlaces químicos?

Los enlaces covalentes pueden ser simples, dobles o triples

El enlace covalente corresponde a la unión de elementos metálicos y no metálicos Un enlace covalente se forma por transferencia de electrones entre sus átomos En los enlaces iónicos se comparten pares de electrones entre sus átomos

¿Cuál de las siguientes afirmaciones es CORRECTA respecto a los enlaces químicos?

Un enlace covalente se forma por dos electrones que son compartidos por dos átomos El enlace covalente corresponde a la unión de elementos metálicos y no metálicos Los enlaces iónicos pueden ser simples, dobles o triples En los enlaces iónicos existe una gran movilidad electrónica entre los metales

¿Cuál de las siguientes afirmaciones es CORRECTA respecto a los enlaces químicos?

En los enlaces iónicos se forma por transferencia de electrones entre sus átomos Un enlace covalente se forma por dos protones que son compartidos por dos átomos El enlace covalente corresponde a la unión de elementos metálicos y no metálicos Los enlaces iónicos pueden ser simples, dobles o triples

18. Estructura de Lewis carga formal

DP-HA_Para el ion NO₃⁻ (donde el N es el átomo central). ¿Cuál de las siguientes alternativas es <u>INCORRECTA</u>?:

La carga formal del nitrógeno es cero

Tiene geometría trigonal plana La estructura tiene 24 electrones de valencia Tiene tres estructuras resonantes

Geometria Trigonal Plana (AX₃)

Para el ion NO_3^- (donde el N es el átomo central). ¿Cuál de las siguientes alternativas es INCORRECTA?:

La estructura tiene 23 electrones de valencia

La carga formal del nitrógeno es +1 para la estructura de Lewis más probable Tiene geometría trigonal plana

Tiene tres estructuras resonantes

Geometria Trigonal Plana (AX₃)

Para el ion NO₃⁻ (donde el N es el átomo central). ¿Cuál de las siguientes alternativas es INCORRECTA?:

Tiene geometría trigonal piramidal

La carga formal del nitrógeno es +1 para la estructura de Lewis más probable La estructura tiene 24 electrones de valencia

Tiene tres estructuras resonantes

Geometria Trigonal Plana (AX₃)

Para el ion IO_3^- (donde el I es el átomo central). ¿Cuál de las siguientes alternativas es INCORRECTA?:

La carga formal del yodo es +2 para la estructura de Lewis más probable

Tiene geometría trigonal piramidal

La estructura tiene 26 electrones de valencia

Tiene tres estructuras resonantes

Para el ion IO_3^- (donde el I es el átomo central). ¿Cuál de las siguientes alternativas es INCORRECTA?:

Tiene geometría angular

La carga formal del yodo es cero La estructura tiene 26 electrones de valencia Tiene tres estructuras resonantes

Para el ion NO₃⁻ (donde el N es el átomo central). ¿Cuál de las siguientes alternativas es INCORRECTA?:

Tiene dos estructuras resonantes

Tiene geometría trigonal plana

La carga formal del nitrógeno es +1 para la estructura de Lewis más probable La estructura tiene 24 electrones de valencia

Geometria Trigonal Plana (AX₃)

19. Geometría

Según el modelo de repulsión de pares de electrones (RPECV). ¿Cuál de las siguientes moléculas presenta una geometría piramidal trigonal?

PH₃

 O_3

BF₃

CIF₃

Según el modelo de repulsión de pares de electrones (RPECV). ¿Cuál de las siguientes moléculas presenta una geometría trigonal plana?

<mark>BF</mark>₃

PH₃

SOC_{l2}

BrO₃-

Según el modelo de repulsión de pares de electrones (RPECV). ¿Cuál de las siguientes moléculas presenta una geometría lineal?

I_3^-

O₃

 SO_2

 NO_2^-

Según el modelo de repulsión de pares de electrones (RPECV). ¿Cuál de las siguientes moléculas presenta una geometría angular?

 $\begin{array}{c} BeCl_2 \\ CO_2 \end{array}$

 I_3^-

Según el modelo de repulsión de pares de electrones (RPECV). ¿Cuál de las siguientes moléculas presenta una tetraédrica?

CIO₄-

 SF_4

 XeF_4

 ICl_4^-

Especie	Estructura de Lewis	RPECV	Geometría
PH₃	H H-P-H	AX₃E	piramidal trigonal
NO ₃ -	: O: : O-N=O: : : O-N=O: :	AX ₃	Trigonal Plana
<mark>O</mark> ₃	Ö=O-Ö: 	AX ₂ E	Angular
BF₃	:F: - :F-B-F:	AX ₃	Trigonal Plana
CIF₃	: ∺: : ⊢ − CI − ∺: : ∺ − CI − ::	AX ₃ E ₂	Angular
I ₃ -	I ₃ - [:		Lineal
SO ₂	::-::-:: ::-::::::::::::::::::::::::::	AX ₂ E	Angular
XeF ₄	: F : : F : : : F : : : : : : : : : : :	AX ₄ E ₂	Cuadrada Plana
SOCl ₂	:0: :CI—S-CI:	AX ₃ E	piramidal trigonal
BrO₃ [−]	\[\begin{array}{c} \cdots \cd	AX ₃ E ₂	Forma de T
I ₃ [−]	$\left[: \overset{\dots}{\overset{\dots}{\overset{\dots}{\overset{\dots}{\overset{\dots}{\overset{\dots}{\overset{\dots}{\overset{\dots}$	AX ₂ E ₃	Lineal
NO ₂ -	$NO_2^ \left[\begin{array}{c} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array}\right]^{1-}$		Angular
BeCl ₂	:Cl-Be-Cl:	AX ₂	Lineal
CO ₂	Ö=C=Ö	AX ₂	Lineal

CIO ₄	\[\begin{pmatrix} \cdots \cdo	AX ₄	Tetraédrica
SF ₄	:F: :F-S-F: :F: F:	AX₄E	balancín
XeF ₄	: F: • :F-Xe-F: F: F:	AX ₄ E ₂	Cuadrada plana
ICl ₄ ⁻		AX ₄ E ₂	Cuadrada plana

20. Momento dipolar

¿Cuál de las siguientes moléculas tiene un momento dipolar distinto de cero?

SO₂

CCI₄

BF₃

 SF_6

Especie	RPECV	Geometría	Figura	Polar/no polar
SO ₂	AX₂E	Angular		Polar
CCl ₄	AX ₄	Tetraédrica	-	Apolar
BF₃	AX ₃	Trigonal Plana		Apolar
SF ₆	AX ₆	Octaédrica		Apolar

¿Cuál de las siguientes moléculas tiene un momento dipolar distinto de cero?

SF₄ PCl₅

SiCl₄

 CO_2

Especie	RPECV	Geometría	Figura	Polar/no polar
SF₄	AX ₄ E	Tetraédrica distorsionada o Balancín		Polar
PCl ₅	AX ₅	bipirámide Trigonal		Apolar
SiCl ₄	AX ₄	Tetraédrica		Apolar
CO ₂	AX ₂	Lineal	•	Apolar

¿Cuál de las siguientes moléculas tiene un momento dipolar distinto de cero?

SOCl₂

BeCl₂

 $SiCl_4$

 SF_6

Especie	RPECV	Geometría	Figura	Polar/no polar
SOCI ₂	AX₃E	piramidal trigonal		Polar
BeCl ₂	AX ₂	Lineal	•	Apolar
SiCl ₄	AX4	Tetraédrica		Apolar

SF ₆	AX ₆	Octaédrica		Apolar
-----------------	-----------------	------------	--	--------

¿Cuál de las siguientes moléculas tiene un momento dipolar igual a cero?

SF₆

 SO_2

 CH_2CI_2

 PCl_3

Especie	RPECV	Geometría	Figura	Polar/no polar
SF ₆	AX ₆	Octaédrica		Apolar
SO ₂	AX₂E	Angular		Polar
CH ₂ Cl ₂	AX4	Tetraédrica		Polar
PCl₃	AX₃E	piramidal trigonal		Polar

¿Cuál de las siguientes moléculas tiene un momento dipolar igual a cero?

PCI₅

 SO_2

 SF_4

03

Especie	RPECV	Geometría	Figura	Polar/no polar

PCl ₅	AX ₅	bipirámide Trigonal	Apolar
SO ₂	AX₂E	Angular	Polar
SF ₄	AX₄E	Tetraédrica distorsionada o Balancín	Polar
O ₃	AX₂E	Angular	Polar