ECE216: DIGITAL ELECTRONICS LABORATORY

Pankaj Kumar Keshri

Asst. Professor

UID- 16384

Pankaj.16384@lpu.co.in

Lovely Professional University

Practical 1: Analysis and Synthesis of Boolean Expressions using Basic Logic Gates

 Understanding the combinational logic by implementing the boolean function using basic logic gates.

How do we describe the behavior of gates and circuits?

Boolean expressions

Uses Boolean algebra, a logical statement whether it is true or false.

Logic diagrams

A graphical representation of a circuit; each gate has its own symbol.

Truth tables

A table showing all possible input value and the associated output values.

Circuits

Combinational circuit

The input values explicitly determine the output.

Sequential circuit

The output is a function of the input values and the existing state of the circuit.

We describe the circuit operations using

Boolean expressions

Truth tables

Gates

Six types of gates

- NOT 7404
- AND 7408
- OR 7432
- XOR 7486
- NAND 7400
- NOR 7402

MCQ

An OR gate produces 0 if both input values are 0

True or False

T			T
Name	Symbol	Function	Truth Table
AND	^A — х	X = A • B or X = AB	A B X 0 0 0 0 1 0 1 0 0 1 1 1
OR	<u>*</u> — х	X = A + B	A B X 0 0 0 0 1 1 1 0 1 1 1 1
I	А — Х	X = A'	A X 0 1 1 0
Buffer	<u>х</u>	<u>X</u> = A	A X 0 0 1 1
NAND	^ ж В	X = (AB)'	A B X 0 0 1 0 1 1 1 0 1 1 1 0
NOR	<u>в</u> — х	X = (A + B)'	A B X 0 0 1 0 1 0 1 0 0 1 1 0
XOR Exclusive OR	^ ×	X = A ⊕ B or X = A'B + AB'	A B X 0 0 0 0 1 1 1 0 1 1 0 0
XNOR Exclusive NOR or Equivalence	^ ×	X = (A & B)' or X = A'B'+ AB	A B X 0 0 1 0 1 0 1 0 0 1 1 1

MCQ

An XOR gate produces 1 if input values are the same

True or False

Combinational Circuits

Gates are combined into circuits by using the output of one gate as the input for another

MCQ

An AND gate produces 1 if both input values are 1

True or

False

Combinational Circuits

Consider the following Boolean expression A(B+C)

A	В	С	B+C	A(B + C)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Combinational Circuits

Circuit equivalence

Two circuits that produce the same output for identical input

Boolean algebra allows us to apply provable mathematical principles to help design circuits

A(B + C) = AB + BC (distributive law) so circuits must be equivalent

Bread Board Connection

Integrated Circuits

Various logic gate IC's

IC number of OR gate?

- (a) 7400
- (b) 7408
- (c) 7432
- (d) 7486

How many number of pins in logic gate IC?

- (a) 7
- (b) 10
- (c) 14
- (d) 20

Breadboard diagram

Draw Bread Board Connection diagram:

VCC

Outputs

000000

GND

Inputs

Implement the given Boolean equation

$$X = A\overline{B} + B\overline{C}$$