CS118: Computer Network Fundamentals

Lecture-1: introduction

CS118: explains how the Internet works

- Internet: a huge, complex system
- Divide-and-conquer
 - Figure out how many major parts, then learn one part at a time
- Your job:
 - Read textbook, think, collect a list of questions
 - Ask questions in class/office hours/via Canvas
 - Practice what you learn through homework and projects

Course workload and grading

- Bi-weekly homework assignments
- 2 programming projects, plus a warmup exercise
 - 0. Install VM, learn GIT (individual)
 - 1. Simple web server (individual)
 - 2. IP router (team of 2-3 people)
- In-class quizzes (3 total, online)
- Midterm and final exams (cheat sheets allowed)
- Strict Grading Policy
 - Homework: do it your self; no credit for late submission
 - Project: 20% credit reduction per late day
 - No make-up exam

Homework	20%
Programming Projects	25% (0/ 10/ 15)
In-class quiz	15%
Midterm	15%
Final exam	25%

We strongly encourage class participation

- Join class discussions on Piazza, ask question and help address issues raised by others
- Actively participate in recitation sessions
- Other means to improve the learning experience for all

Course assignment and due schedule

Midterm	In-class, Thursday May 4 (Location TBD)
Final	11:30AM-2:30PM Saturday June 10 (Location TBD)
Homework	Release: on Thursday of Week 1, 3, 5, 7; Due: 11:59pm Monday of week 3, 5, 7, 9.
Quizzes	In-class, at end of Thursday lecture of week 2, 4, 7.
Project 0	Release: Monday Apr 3, 2023 (Week 1) Due: 11:59pm Monday, Apr 10, 2023 (Week 2)
Project 1	Release: Monday Apr 10, 2023 (Week 2) Due: 11:59pm Friday, Apr 28, 2023 (Week 4) Grading: auto-grading script (sample tests will be provided to let everyone test their code before submission)
Project 2	Release: Monday, May 8, 2023 (Week 5) Due: 11:59pm Monday, Jun 5, 2023 (Week 10) Grading: auto-grading script (sample tests will be provided to let everyone test their code before submission)

FOR ALL OTHER COURSE INFO, PLEASE SEE HTTPS://BRUINLEARN.UCLA.EDU/

Class Policy

The following actions are strictly prohibited

- Posting/sharing/selling class material, with or without answers, to anyone outside this class, during or after this quarter.
- Use of old homework/midterm/finals in doing homework or exams, except those provided by instructor/TAs
- Making your project code publicly available during or after this quarter
 - you must use private repository on either GitHub or GitLab

Hints for Getting Good Grade

- Read textbook before coming to each lecture
- Ask questions
 - One may earn extra credit for in-class participation
 - come to me after class, so that I record your name
- Get your work done early
 - Lecture slides uploaded to Canvas by Sunday each week
 - Get HWs and projects done before the deadline

In addition, if anyone needs a recommendation letter later: make sure that I get some chance to know you

Let's get started

Today we cover the basic concepts in Chapter 1 of the textbook

What is a Computer Network

CS118 - Spiriteg 2020

What is a Computer Network

Terminology

 millions of connected computing devices:

- hosts = end systems
- running network apps
- Apps send/receive data packets

 Routers = packet switches inside network

wired links

- communication links
 - fiber, copper, radio, satellite
 - transmission rate = bandwidth (BW)

Recent years witnessed rapid growth of giant cloud service providers

"Nuts and Bolts"

- Internet: "network of networks"
 - Interconnected ISPs, enterprise networks, now also cloud service providers
- Protocols: define how to send, receive packets
 - e.g., HTTP, TCP, IP, 802.11
- Internet protocol standards
 - RFCs: "Request for Comments"
 - https://www.rfc-editor.org/rfc-index.html
 - Developed by Internet Engineering Task Force (IETF)
 - IEEE Standards
 - W3C (World Wide Web Consortium), and others

What is a protocol?

Traffic light protocol

- Green: go
- Red: stop
- Yellow: slow down stop

... specific messages sent

... specific actions taken when the messages received

human protocols:

computer protocols:

Internet protocols

computer protocols:

<file>

- Communication between machines rather than humans
- all communication activity governed by protocols

protocols define format, order of packets sent and received among network entities, and actions taken on packet transmission, receipt

Delivering data over the global Internet is a complicated process, involving many many steps

How to get the work done: divide and conquer

Group functions to a few modules

Internet protocol stack

- Application layer protocols
 - Support data exchange between application processes
 - Example: smtp, http, DNS
 (Simple Mail Transfer Protocol)
- Transport layer protocols
 - handling delivery reliability, multiplex within a host
 - Example: TCP, UDP
- Network layer protocols
 - forward packets from source to destination
 - Example: IP
- Link layer protocols
 - transfer data between directly connected network elements
 - Example: Ethernet protocol, WiFi
- Physical layer: bits "on the wire"

application transport network link

physical

Application View

apps

trans

net

Application protocols

- Assume network can send data to any hosts on the Internet
- Don't know/care how data is sent, and assume all data delivered reliably

They talk to each other using application protocols (web protocol: HTTP)

Runs on top of a transport protocol

Transport View

- A transport protocol's job: delivering data between the two communicating ends
 - Don't know or care about which paths data may traverse through the network
- Multiple transport protocols exist, each offers somewhat different functions (e.g. reliability, congestion control)

Actually, transport protocols don't do delivery → network protocol's job

CS118 - Spring 2023 18

trans

apps

net

Network Layer View

apps

trans

- network protocol's job: forward packets from source to destination host
- A really hard problem: the Internet is large, run by many different parties
 - connection from laptop to CNN.com:

WiFi → campus backbone → local ISP → other ISP → CNN website

Link Layer View

apps

- Link layer's job: Get a packet transmitted across some communication medium to next hop
- ◆ Different medium → different link layer protocol

CS118 - Spring 2023 20

net

What protocol "layer" really means

application transport network

link

physical

Link layer

protocol

protocol

Network | Transport | Application | Application protocol

data

(Tentative) Schedule of the Quarter

We	ek: 1	2	3	4	5
Tue	4/4 Course intro BW& delay	4/11 HTTP	4/18 DNS	4/25 TCP	5/2 QUIC
Thu	4/6 Socket programming, Web & HTTP	4/13 DNS	4/20 Transport protocols	4/27 Congestion Control	5/4 Midterm
	_				
	6	7	8	9	10
Tue	6 5/9 Internet Protocol (IP)	7 5/16 Routing algorithms & protocols	5/23 Routing in the Internet	9 5/30 Wireless and mobility	6/6

• The big yellow numbers indicate the chapter numbers in the textbook.

Packet Switching: Statistical Multiplexing

- Each node sends packets as soon as link available
- Receiver gets a full packet first, then forwards it towards the destination

- Packet switch can temporarily buffer up packets
 - Introduce delay
 - Packets get dropped when the queue is full

Network Performance

- 3 basic measurements
 - Throughput (bits/sec, Kbps=1000 bits/sec, Mbps)
 - Loss rate (% of packets lost)
 - Delay (sec, msec)

This is how <u>network</u> people measure performance.

How do you (user) judge?

Throughput

over a single link: point-to-point

- Pumping data into the pipe: throughput = link bandwidth
- Multi-access:
 a lot more difficult to measure, Why?

Packet Losses

- Wired links
 - Loss due to transmission errors
 - Loss due to congestion
- wireless links
 - Limited transmission rate
 - Higher (than wire) bit error rate
 - Host mobility: high variance in the number of hosts sharing the same wireless channel

Do users know there are packet losses?
Do users' performance get affected by losses?

Delay in packet-switched networks

4 sources of delay at each hop

- node processing:
 - check bit errors
 - determine output link
- Queuing = #packets in queue X transmission time of each packet

Transmission = Length / rate

R = link bandwidth (bps)

L = packet length (bits)

Propagation = distance/sec

d = length of physical link

s = propagation speed in medium (~2x10⁸ m/sec)

Example: calculating one hop delay

total delay $(A \rightarrow B) = ?$

- Queuing delay = ?
- transmission delay = ?
- Propagation delay = ?

link length = 100 km
Bandwidth= 1 Mbps
packet size= 1000 bits
(all pkts equal length)

(2.0x10⁸ meters/sec in a fiber)

Example: calculating one hop delay

total delay (A—B) =
$$1ms \times 2 + 1ms + 0.5ms = 3.5ms$$

- Queuing delay = Waiting time for 2 pkts
- * transmission delay = $\frac{1000bits}{1000000bits/sec}$ = 1 msec
- * Propagation delay = $\frac{100,000m}{2 \times 10^8 m/\text{sec}} = 0.5 \text{ msec}$

link length = 100 km
Bandwidth= 1 Mbps
packet size= 1000 bits
(all pkts equal length)

(2.0x10⁸ meters/sec in a fiber)

What we covered today

- Internet: made of a huge number of hosts, routers, wired and wireless links
- Hosts: run application protocols to exchange data packets with each other
- Routers: run bunch of protocols to move all packets towards their destinations
- Why protocols are layered
- How to calculate packet delays as they move across a packet-switched network

66

Education is not the filling of a pail, but the lighting of the fire.

"

William Butler Yeats