

Universidad Nacional Autónoma de México Facultad de Ciencias

Cálculo II

Decima extra Elías López Rivera

elias.lopezr@ciencias.unam.mx Fecha: 04/04/2025

Problema

Demuestre que si $\{k, n\} \subset \mathbb{N}$, con $k \leq n$, entonces:

$$\binom{n}{k} = \left[(n+1) \int_0^1 x^k (1-x)^{n-k} \, dx \right]^{-1}$$

Demostración.

Procedemos por inducción sobre n:

I) Caso base

Sea n=1, el único natural menor igual a 1 es el mismo, por tanto:

$$\binom{1}{1} = 1 = 2\left(\frac{1^2}{2} - 0\right) = \left[(2) \int_0^1 x (1 - x)^0 dx \right]^{-1}$$

II) Hipótesis de Inducción

Existe $n \in \mathbb{N}$ tal que para todo $k \in \mathbb{N}$ con $k \leq n$, se cumple que:

$$\binom{n}{k} = \left[(n+1) \int_0^1 x^k (1-x)^{n-k} \, dx \right]^{-1}$$

III) Paso inductivo

Demostremos que el caso n implica el n + 1:

Sea $k \le n < n + 1$:

$$I = \int_0^1 x^k (1 - x)^{n - k + 1} dx$$

Aplicando integración por partes:

$$\int_0^1 x^k (1-x)^{n-k+1} dx = \frac{x^{k+1} (1-x)^{n-k+1}}{k+1} \Big|_0^1 + \frac{n-k+1}{k+1} \int_0^1 x^{k+1} (1-x)^{n-k} dx$$
$$= \frac{n-k+1}{k+1} \int_0^1 x^{k+1} (1-x)^{n-k} dx$$

Por tanto tenemos que:

$$-(k+1)\int_0^1 x^k (1-x)^{n-k+1} dx = (n-k+1)\int_0^1 -x^{k+1} (1-x)^{n-k} dx$$

$$-(k+1)\int_0^1 x^k (1-x)^{n-k+1} + (n-k+1)\int_0^1 x^k (1-x)^{n-k} dx = (n-k+1)\int_0^1 x^k (1-x)^{n-k} (1-x) dx$$

$$(n-k+1)\int_0^1 x^k (1-x)^{n-k} dx = (n+2)\int_0^1 x^k (1-x)^{n-k+1} dx$$

Por tanto tenemos que:

$$\left[(n+2) \int_0^1 x^k (1-x)^{n-k+1} dx \right]^{-1} = \frac{1}{(n-k+1)} \left[\int_0^1 x^k (1-x)^{n-k} dx \right]^{-1}$$

Y por hipótesis de inducción:

$$\left[(n+2) \int_0^1 x^k (1-x)^{n-k+1} dx \right]^{-1} = \frac{(n+1)}{(n-k+1)} \binom{n}{k} = \binom{n+1}{k}$$

Luego para el caso k = n + 1, se sigue naturalmente que:

$$\binom{n+1}{n+1} = 1 = \frac{1}{n+2} \left[\frac{x^{n+2}}{n+2} \Big|_0^1 \right]^{-1} = \left[(n+2) \int_0^1 x^{n+1} (1-x)^{n+1-(n+1)} \right]^{-1}$$