HLS 软件的使用

一、 基本使用步骤

- 1. 新建工程: 选择路径和工程名,需要有2层文件夹:选择板子型号;
- 2. 编写代码: 需要有顶层模块和测试模块 (main 函数);
- 3. C **仿真**: 测试功能:
- 4. C 综合: c++代码转 verilog 代码,需要进行时序、资源优化;
- **5. C/RTL 联合测试:** C 测试应该可以过,主要看 RTL 测试能否通过,以及所 耗时间,代码不合理可能 RTL 测试需要花费很长时间!!!;
- **6.** 导出 **IP**: 生成 **IP** 核,可以在 vivado 中使用。

二、 时序优化

- **1. 流水线:** 流水线是减小耗时最有效的方法,主要用于循环里(最内层的循环,用于非最内层循环会将内层循环展开),流水线的 II(Initiation Interval)可以先设为 1,根据综合的结果再调整:
- **2. 数据流(Dataflow):** 主要用于函数之间,如果有使用 stream 类型的变量,一定要使用数据流,否则会报错:
- 3. 循环展开:用资源换时间,用于小循环;
- **4. 循环扁平化(默认执行):** 将嵌套循环合并成一个循环,可以减去循环的初始 化时间:
- 5. 数组拆分:减少数组读写时间,用于小数组:
- 6. 内联函数 (默认执行): 减去模块调用的初始化时间,用于小函数;
- 7. 少用浮点数: 浮点数的乘除、加减运算都比较费时,在不影响精度的情况下可以用整型数或定点小数代替,整型数和定点小数的运算耗时是一样的;
- **8. 使用缓存:** RAM 最多有 2 个口进行读(写),如果需要同时读取很多数据,可以使用缓存。

三、 资源优化

- 1. 小数组拆分: 用寄存器代替 RAM,减少 RAM 使用;
- 2. 数组合并: 2个或多个相关的数组合并成 1 个,可以减小 RAM 数量。例如 1 个 4k的 sin 数组和 1 个 4k的 cos 数组,单独实现时需要 2 个 BRAM_18k模块,利用率只有 4/18,如果合并成一个 2 维或 1 维数组,则尺寸变为 8k,实现时需要 1 个 BRAM 18k 模块,利用率为 8/18;
- 3. 抑制循环展开: 如果循环内有复杂运算,可以抑制循环展开以节约资源:
- 4. 使用引用:对于结构体和类使用引用,不额外消耗资源:
- 5. 数据位宽优化: 合理减小数据位宽,可以减少资源消耗。

四、 端口设置

1. 输入输出参数设置(数据接口)

- a. 方向设置: C++代码输出参数用引用或数组实现,输入参数和普通参数一样,不需要使用指令;
- b. 类型设置:

可选类型:

普通信号: 用于参数配置(在硬件中配置); axis (AXI 流): 用于图像或视频信号; m_axi (AXI 主机): 用于内存(BRAM 等)读写; s_axilite (AXI 从机): 用于参数配置(在软核中配置)。

2. 返回值设置(控制接口)

可选类型:

ap_ctrl_hs: 默认类型

ap_start: 用于控制模块执行,为 1 时模块开始运行,必须在 ap_ready 置为 1 之前保持高电平:

ap_idle: 用于指示模块正在运行或空闲;

ap_ready: 用于指示输入已全部读完,模块已经准备好接收新数据,若此时 ap_start 为高,则会继续读入新数据,若设计不是流水线任务,则此时要把 ap_start 拉低, 待下一次任务时拉高 ap_start 启动新任务并读入新数据;

ap done: 用于指示模块运行结束;

ap_ctrl_chain:和 ap_ctrl_hs 类似,多了一根信号;

ap ctrl none: 无控制信号,只有特定情况可以使用:

s_axilite: 使用软核控制,其实是在软核中控制 ap_ctrl_hs 包含的信号的值。

常用 ap_ctrl_none 和 s_axilite 两种类型。

五、 常见问题

1. 设置的时钟不满足要求

解决方法:

- a. 降低时序优化程度,例如去掉流水线优化;
- b. 降低设置的时钟频率。
- 2. C 仿真报错,不给出原因,但 C 综合不报错 可能原因:
 - a. 数组越界: 检测代码,找到可能发生数组越界的地方,改正代码;
 - b. 数组太大(超过 100000): 目前只能通过减小数组尺寸解决!!!。
- 3. C/RTL 联合测试时报出大量警告,导致测试很慢

可能原因:使用了浮点运算,综合成 verilog 代码时使用了 DSP48 模块;解决方法:可以使用定点小数代替浮点数,需要注意定点小数的位宽分配,

以减小误差。

4. 类或结构体类型的参数传递需要使用引用,否则会进行拷贝,额外消耗时间和资源。

六、 数学运算

1. 加法

数据类型	M18K	DSP	FF	LUT	Latency	备注	优先使用
int	0	0	0	39	0		$\sqrt{}$
ap_fixed	0	0	0	39	0		$\sqrt{}$
float	0	2	231	245	3		

注: ap_fixed 表示 ap_fixed<32,16>

2. 乘法

数据类型	M18K	DSP	FF	LUT	Latency	备注	优先使用
int	0	3	0	21	0		$\sqrt{}$
ap_fixed	0	3	0	21	0		$\sqrt{}$
float	0	3	130	152	1		

3. 除法

数据类型	M18K	DSP	FF	LUT	Latency	备注	优先使用
int	0	0	430	403	35		
ap_fixed	0	0	639	583	51	使用了IP核	
float	0	0	318	832	6		$\sqrt{}$

4. sin, cos

数据类型	M18K	DSP	FF	LUT	Latency	备注	优先使用
ap_fixed	4	23	383	1428	42	需要使用 ROM 查表	
float	0	37	1527	4502	21~22		$\sqrt{}$

5. **log**

数据类型	M18K	DSP	FF	LUT	Latency	备注	优先使用
ap_fixed	1	6	380	1332	3	需要使用 ROM 查表	$\sqrt{}$
float	0	13	373	610	5		

6. log2

a. float 类型

方法	M18K	DSP	FF	LUT	Latency	备注	优先使
							用
log2(x)	8	23	1314	3286	9	需要使用 ROM 查	
						表	
log(x)/log(2)	0	13	723	1422	12		√

b. ap_fixed<32,16>类型

方法	M18K	DSP	FF	LUT	Latency	备注	优先使用
$\log(x)/\log(2)$	0	10	414	1535	4		√

7. pow

数据类型	M18K	DSP	FF	LUT	Latency	备注	优先使用
ap_fixed	5	25	1335	1121	10~46	需要使用 ROM 查表	
float	1	10	1275	3780	11		V

8. exp

数据类型	M18K	DSP	FF	LUT	Latency	备注	优先使用
ap_fixed	5	12	597	667	4	需要使用 ROM 查表	
float	0	7	700	2408	10		$\sqrt{}$

9. sqrt

数据类型	M18K	DSP	FF	LUT	Latency	备注	优先使用
ap_fixed	0	0	1086	4763	9		
float	0	0	734	2038	12		$\sqrt{}$

七、 取整和取余运算

1. round 四舍五入

a. x 为 float 类型

方法	M18K	DSP	FF	LUT	Latency	备注	优先使用
round(x)	0	0	116	672	2		√
x+0.5	0	2	264	703	4	需要使用浮点加法运算	

b. x 为 ap fixed<32.16>类型

<u>υ. Α / 5 αρ_11.</u>	Aca \ 32,	10/ /	土.				
方法	M18K	DSP	FF	LUT	Latency	备注	优先使
							用
round(float(x))	0	0	401	1295	5	需要使用定点转浮	
						点IP核	
x+(ap)0.5	0	0	0	111	0		√

2. floor 向负无穷取整

a. x 为 float 类型

方法	M18K	DSP	FF	LUT	Latency	备注	优先使用
floor(x)	0	0	121	762	2		
(int)x	0	0	0	452	0		√

b x 为 ap fixed<32.16>类型

8. x / 5 up_11xcu < 32;10 / 人主										
方法	M18K	DSP	FF	LUT	Latency	备注	优先使用			
floor(x)	0	0	0	113	0					
(int)x	0	0	0	68	0		√			

3. ceil 向正无穷取整

a. x为 float 类型

方法	M18K	DSP	FF	LUT	Latency	备注	优先使用
ceil(x)	0	0	121	762	2		√

b. x 为 ap_fixed<32,16>类型

方法	M18K	DSP	FF	LUT	Latency	备注	优先使用
ceil(x)	0	0	0	152	0		√

4. 取余

a. x为float类型

方法	M18	DSP	FF	LUT	Latency	备注	优先使
	K						用
fmod(x,y)	0	4	250	1551	2~19	结果范围	
						(abs(y),abs(y))	
x=(x>=y)?	0	2	297	381	3	需要使用浮点加法运	√
(x-y):y						算	
x=(x>=y)?	0	2	366	511	4		√
(x-y):((x<0)?							
(x+y):y)							

b. x为int类型

方法	M18	DSP	FF	LUT	Latency	备注	优先使
	K						用
x%y	0	0	430	403	35	结果范围	
						(abs(y),abs(y))	
						需要使用整数除法	
x=(x>=y)?	0	0	0	89	0		\checkmark
x=(x>=y)? $(x-y):y$							