Homework 1 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

February 28, 2024

- 1. (a) For any x > 0, and for any $\varepsilon > 0$, we can find a $N \in \mathbb{N}$ s.t. $\varepsilon x > \frac{1}{N}$. Also, we can get $x > \frac{1}{\varepsilon N} > \frac{1}{N}$. Thus, $|g_k(x) 0| = \frac{1}{kx} < \varepsilon$ for all k > N. And for x = 0, whatever k we take, $g_k(0) = n \cdot 0 = 0$. Therefore, for any x > 0, $\lim_{n \to \infty} g_n(x) = 0$.
 - (b) Assume for any $0 < \varepsilon < 1$, exists $N \in \mathbb{N}$, we have $|g_k(x) 0| < \varepsilon$ for all $x \ge 0$ with any $k \ge N$. Then, for g_N , we can find $x = \frac{1}{N}$ s.t. $g_N(x) = Nx = 1 > \varepsilon$ (contradiction). Thus, $g_n(x)$ is not uniform convergence on $x \ge 0$.

For $x \ge c > 0$ and any $\varepsilon > 0$, there exists $N_c \in \mathbb{N}$ s.t. $N_c \cdot c > \frac{1}{\varepsilon}$. Therefore, $|g_n(x) - 0| = \frac{1}{nx} < \frac{1}{nc} < \varepsilon$ for all $n > N_c$. Thus, $g_n(x)$ is uniform convergence on $x \ge c > 0$.

- 2. (a)
 - (\Longrightarrow) Since $f_k \to f$ uniformly on E, for any $\varepsilon > 0$, exsits $N \in \mathbb{N}$ s.t. $d(f_k(x), f(x)) < \varepsilon$ for all $x \in E$ and k > N. Thus, we can get for all $\varepsilon > 0$, exists $N \in \mathbb{N}$ s.t. $\sup\{d(f_k(x), f(x)) \mid x \in E\} < \varepsilon$ for k > N. That means $\sup\{d(f_k(x), f(x)) \mid x \in E\} \to 0$ as $k \to \infty$.
 - (\iff) Since $\sup\{d(f_k(x),f(x))\mid x\in E\}\to 0$ as $k\to\infty$, for any $\varepsilon>0$, exists $N\in\mathbb{N}$ s.t. $\sup\{d(f_k(x),f(x))\mid x\in E\}<\varepsilon \text{ for } k>N. \text{ That means } d(f_k(x),f(x))<\varepsilon \text{ for all } x\text{ and } k>N.$ Therefore, $f_k\to f$ uniformly.

(b)

- (\Longrightarrow) First, for any $\varepsilon > 0$ and a $x_0 \in E$, we take $x_k \in \{x \mid f_k(x) f(x) > \varepsilon \text{ if exsits, or } x = x_0\}$ for any k. Since $f_k \nrightarrow f$ uniformly, we can find some k > N for any $N \in \mathbb{N}$ s.t. $f_k(x) f(x) > \varepsilon$. Thus, the sequence $\{x_k\}$ satisfies that $\limsup_{k \to \infty} d(f_k(x_k), f(x_k)) \ge \varepsilon > 0$.
- (\iff) Since there exists a sequence $\{x_k\}$ in E s.t. $\limsup_{k\to\infty}d(f_k(x_k),f(x_k))=\varepsilon>0,$ $\sup\{d(f_k(x),f(x))\mid x\in E\} \to 0 \text{ as } k\to\infty.$ Thus, by (a), we can get $f_k\to f$.
- (c) Let $f_k(x) = \frac{1}{k}e^{-k^2x^2}$ and f(x) = 0. First, we get $f_k'(x) = -2kxe^{-k^2x^2}$ and f(x) > 0 for all x. And it is positive for x < 0 and is negative for x > 0. Thus, the maximum of f_k occurs at x = 0. Then, for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ s.t. $N > \frac{1}{\varepsilon}$. Therefore, $|f_k(x) f(x)| < \frac{1}{k} < \frac{1}{N} < \varepsilon$ for all k > N and all $x \in \mathbb{N}$. Thus, $f_k \to f$ uniformly on $x \in \mathbb{R}$.

For any $x \in \mathbb{R}$, and for any $\varepsilon > 0$, exists $N \in \mathbb{N}$ s.t. $2Nxe^{-N^2x^2} < \varepsilon$ since

$$\lim_{n \to \infty} n e^{-n^2 x^2} = \lim_{n \to \infty} \frac{n}{e^{n^2 x^2}} \stackrel{\text{L'H}}{=} \lim_{n \to \infty} \frac{1}{2n x^2 e^{n^2 x^2}} = 0.$$

Thus, $|f'_k(x) - f'(x)| = |2kxe^{-k^2x^2} - 0| < |2Nxe^{-N^2x^2}| < \varepsilon$ for all k > N. Therefore, $f'_k \to f'$ pointwisely.

But for any interval contains 0, we can find $N \in \mathbb{N}$ s.t. $(\frac{-1}{N},0]$ or $[0,\frac{1}{N})$ lies in the interval. Suppose $[0,\frac{1}{N})$ lies in the interval. Then, let $f_k''(x) = 2ke^{-2k^2x^2}(2k^2x^2-1) = 0$, we can get $x = \frac{1}{\sqrt{2}k}$. Then, for $\varepsilon = \frac{1}{2}$, we can find $x = \frac{1}{\sqrt{2}k} \in (\frac{-1}{N},\frac{1}{N})$ for all $k > \sqrt{2}N$. Thus, $|f_k'(x)| = 2\frac{1}{\sqrt{2}}e^{-\frac{1}{2}} = \sqrt{\frac{2}{e}} > \frac{1}{2}$.

For the other case, we take $x = \frac{-1}{\sqrt{2}k}$ and the argument also right. Therefore, $f'_k(x) \nrightarrow f$ uniformly on any interval contains 0.