Міністерство освіти і науки України Центральноукраїнський національний технічний університет Механіко-технологічний факультет

ЗВІТ ПРО ВИКОНАННЯ ЛАБОРАТОРНОЇ РОБОТИ № 8 з навчальної дисципліни "Базові методології та технології програмування"

РЕАЛІЗАЦІЯ СТАТИЧНИХ БІБЛІОТЕК МОДУЛІВ ЛІНІЙНИХ ОБЧИСЛЮВАЛЬНИХ ПРОЦЕСІВ

ЗАВДАННЯ ВИДАВ доцент кафедри кібербезпеки та програмного забезпечення Доренський О. П. https://github.com/odorenskyi/

ВИКОНАВ

студент академічної групи КБ-23 Чернолєє К.С.

ПЕРЕВІРИВ

ст. викладач кафедри кібербезпеки та програмного забезпечення Дрєєва Г.М.

Кропивницький -2024

Лабораторна робота №8

Тема: реалізація статичних бібліотек модулів лінійних обчислювальних процесів

Мета роботи: полягає у набутті грунтовних вмінь і практичних навичок застосування теоретичних положень методології модульного програмування, реалізації метода функціональної декомпозиції задач, метода модульного (блочного) тестування, представлення мовою програмування С++ даних скалярних типів, арифметичних і логічних операцій, потокового введення й виведення інформації, розроблення програмних модулів та засобів у кросплатформовому середовищі Code::Blocks (GNU GCC Compiler).

Завдання:

- 1. Реалізувати статичну бібліотеку модулів libModulesПрізвище C/C++, яка містить функцію розв'язування задачі 8.1.
- 2. Реалізувати програмне забезпечення розв'язування задачі 8.2 консольний застосунок.

Варіант 2

1.

BAPIAHT 2

За значеннями x, y, z обчислюється S:

$$S = \frac{\sqrt{1+x} - 3\cos x}{\ln x^2 + 3\sin \pi x} + \left(\sqrt{z^3} + 2\right)^2.$$

Малюнок 1 – Умова задачі 8.1

Строга постановка задачі:

Вхідні дані: x, z - дійсні числа: Вихідні дані: S - дійсне число.

Проектування програмного модуля:

Mодуль ModulesChernoles складається із заголовкового файлу, що містить оголошення прототипу функцій, та файлу вихідного коду, в якому зберігається реалізація функції s calculation.

Функція s_calculation приймає три аргументи в якості вхідних даних та повертає результат виразу, зазначеного в умові.

Тестовий драйвер TestDriver – функція, призначена для тестування функції. Вона містить:

- масив з вхідними даними;
- масив з очікуваними результатами;

- цикл для перебору наборів значень та виводу результату тестування певного набору.

Тест-сьют модульного тестування статичної бібліотеки ModulesChernoles.a наведений у додатку А.

Лістинги вихідного коду проектів ModulesChernoles та TestDriver містяться в Додатку Б та Додатку В відповідно.

Результати тестування s_calculation зі статичної бібліотеки libModulesKichura.a тествоим драйвером:

2.

За послідовними запитами вводяться числа x, y, z та символи a і b. В и в е с т и (включити у потік STL — cout)*:

- 8.2.1. Прізвище та ім'я розробника програми зі знаком охорони авторського права «С» (від англ. copyright);
- 8.2.2. Результат логічного виразу в числовому вигляді (1/0):

$$a + 7 < |b - 5|$$
?

8.2.3. Значення x, y, z в десятковій і шістнадцятковій системах числення; S, що обчислюється функцією s_calculation() заголовкового файлу Modules Прізвище. h.

*Підзадачі 8.2.1—8.2.3 варто реалізувати у вигляді функцій, результат виконання яких включається у вихідний потік cout за допомогою оператора вставки << (наприклад, "cout << YourFunc(a,b);").

Малюнок 2 – Умова задачі 8.2

Строга постановка задачі:

Вхідні дані: х, z – цілі числа,

а, b – символьні літерали;

Вихідні дані: прізвище та ім'я розробника з символом «©», результат логічного виразу, значення х, z в десятковій та шістнадцятковій системах числення.

S, що обчислюється функцією s_calculation() заголовкового файлу ModulesChernoles.h;

Проектування програмного модуля:

Модуль ModulesChernoles використати з попередньої задачі. На початку програма окремо запитує у користувача 2 числа, які записуються у змінні а, b. та 2 числа, які записуються в змінні х, z.

Перелічені функції викликаються у функції main, до того ж до потоку включається функція s_calculation() з модуля ModulesChernoles, яка приймає в якості аргументів змінні x, z та повертає результат виразу.

Результати системного тестування Π 3 Chernoles_task.exe зазначені у додатку Γ .

Висновок: дана лабораторна робота була націлена на набуття навичок у використанні теоретичних положень модульної парадигми програмування, реалізації метода функціональної декомпозиції задач, метода модульного тестування, а також у представленні мовою програмування С++ даних скалярних типів, арифметичних і логічних операцій, потокового введення та виведення інформації, розробленні програмних модулів та засобів у кросплатформовом середовищі Code::Blocks (GNU GCC Compiler). Також важливою частиною лабораторної роботи було набуття навичок з використання системи контролю версій файлів та спільної роботи Git.

На відміну від процедурної парадигми, де всі методи реалізовані в одному файлі вихідного коду, що викликає незручності в достатньо маштабних проектах, модульна парадигма базується на понятті «модуль», яке можна пояснити як самостійну програмну одиницю, що служить для виконяння певної функції програми та для зв'язку з іншою частиною програми. В даній лабораторній роботі створений модуль було представлено у вигляді статичної бібліотеки (файл з розширенням .a), яка була підключена до проектів за допомогою лінкера та до файлу вихідного коду за допомогою новоствореного заголовкового файлу (файл з розширенням .h), що містить прототипи функцій, що містяться в статичній бібліотеці.

Статична бібліотека була створена шляхом відповідного проекту в застосунку Code::Blocks. Далі для подальшого інтегрування бібліотеки у проекти, написані мовою C++, файл main.c було замінено на main.cpp, після чого потребувалося додати новостворений файл у проект. У даному файлі було реалізовано функцію для вирахування виразу, заданого в умові завдання, що повертала значення результату. Після компіляції проекту статичної бібліотеки в теці \obj було створено файл з розширенням .a, що і представляє з себе файл статичної бібліотеки.

Наступним кроком було сторення заголовкового файлу, який містив прототип функції, реалізованої в статичній бібліотеці.

Далі було створено проект консольного додатка C++ під назвою TestDriver, Метою створення цього додатка була реалізація концепції модульного тестування. Модульне тестування, відоме як Unit-тестування, використовується для автоматизованого тестування модулів шляхом порівняння значення, що повертається функцією з модуля, яка приймає набір еталонних вхідних даних (аргументів), з еталонним результатом для відповідного набору. Важливою ідеєю юніт-тестування є така: якщо хочаб один з тестів провалився, після відлагодження модуля потрібно проводити повторне проведення тестів, що йшли перед провальним тестом, до моменту, коли усі тести проходять успішно.

Після цього було створено ПЗ з реалізацією функцій з наступного завдання. Важливою умовою було проектування функцій з інтерфейсом, який підходить для виводу у вихідний поток (cout). Для коректого виводу знаку © довелось намагатись писати через команди string, cout, authorCopyright() та просто вставляти знак копірайту але через недостані навички та можливу помилку в программі мені не вдалось зробити знак копірайту тож я вирішив просто зробити так (C).

Важливою частиною лабораторної роботи було використання системи контролю версій файлів та спільнох роботи Git. Ідея системи контролю версій полягає у зручному зберіганні різних версій проекту в одному місці. Замість зберігання копій одного й того ж проекту, реєструються зміни в проекті, що дозволяє за потреби відкатити проект до потрібної версії (в даному контексті "версія" описує стан проект після певної послідовності змін). У випадку цієї лабораторної роботи проект зберігається на сайті Github. Для відсилання змін у проекті на сайт подрібно за допомогою застосунку git-scm клонувати репозиторій проекту на свій пристрій, зробити потрібні зміни. Далі додати потрібні файли в список для додання до комміту (структурна одиниця в архітектурі git), після чого потрібно сформувати комміт з коментарем до нього. Останнім кроком ϵ пуш(відсилання) комміту на сервер. Для сайту Github у застосунку git-scm потрібно попередньо авторизувати свй акаунт, який повинен мати доступ для змін до потрібного репозиторію. Історія змін складається з коммітів, кожен з яких має свій ідентифікатор, назву (коментар), дату додання та посилання на акаунт, від імені которого відбувся пуш. Система git дозволяє дізнаватись про те, які саме зміни були внесені, ким і коли, що значно спрощує командну розробку проектів.

додаток а

Назва тестового набору Test Suite Description	TS_lab8_1
Назва проекта / Модуля Name of Project / Unit	ModulesKichura.a
Рівень тестування Level of Testing	модульний / Unit Testing
Автор тест-сьюта Test Suite Author	Кічура Максим
Виконавець Implementer	Кічура Максим

Iд-р тест- кейса / Test Case ID	Вхідні дані / Input values	Очікуваний результат / Expected Result	Результат тестування / Test Result
TC_01	x = 0 $z = 0$	4	
TC_02	x = 1 z = 0	-39.2598	
TC_03	x = 0 z = 60	217863	
TC_04	x = 0 z = 1	9	
TC_05	x = 5 z = 0	4.49294	
TC_06	x = 9 z = 11	1482.26	
TC_07	x = 0 z = 2	23.3137	
TC_08	x = 450 z = 0	6.28607	
TC_09	x = 22 z = 64	264197	
TC_10	x = 11 z = 9	841.712	

додаток б

Лістинг вихідного коду проекту ModulesKichura:

```
#include "main.h"  
#include <cmath>  
double s_calculation(double x,double z)  
{ double S=(sqrt(1+x) - 3 * cos(x))/(log(pow(x,2)) + 3 * sin(3.14 * x)) + (pow((sqrt(pow(z,3)) + 2),2));  
return S; }
```

ДОДАТОК Б

Лістинг вихідного коду проекту TestDriver:

```
#include <iostream>
#include <main.h>
using namespace std;

int main()
{ setlocale(LC_ALL, "ukr");
    cout << "Кічура Максим (С) | Академ-група:КН-22 | ЦНТУ " << endl;
    int x,z;
    cout << "Введіть значення х та z" << endl;
    cin>> x;
    cin>> z;
    cout << s_calculation(x, z) << endl;
    return 0;
}
```

додаток г

Назва тестового набору Test Suite Description	TS_lab8_2
Назва проекта / ПЗ Name of Project / Software	Kichura_task.exe
Рівень тестування Level of Testing	системний / System Testing
Автор тест-сьюта Test Suite Author	Кічура Максим
Виконавець Implementer	Кічура Максим

Iд-р тест- кейса / Test Case ID	Дії (кроки) / Action (Test Steps)	Очікуваний результат / Expected Result	Результат тестування / Test Result
TC_01	 Ввести "0 0" Натиснути Enter Ввести "6 300" Натиснути Enter 	Кічура Максим (с) Академ-група:КН-22 ЦНТУ Введіть значення а та b 0 Введіть значення х та z В десятковій системі числення х та z відповідно: 6 300 В шістнадцятковій системі числення х та z відповідно: 6 12c Результат виразу у функції s_calculation(): 27020788.543652	passed
TC_02	 Ввести "16 92" Натиснути Enter Ввести "72 15" Натиснути Enter 	Кічура Максим (с) Академ-група:КН-22 ЦНТУ Введіть значення а та b 1 Введіть значення х та z В десятковій системі числення х та z відповідно: 72 15 В шістнадцятковій системі числення х та z відповідно: 48 f Результат виразу у функції s_calculation(): 3612.773112	passed
TC_03	 Ввести "-83 79" Натиснути Enter Ввести "0 1204" Натиснути Enter 	Кічура Максим (с) Академ-група:КН-22 ЦНТУ Введіть значення а та b 1 Введіть значення х та z В десятковій системі числення х та z відповідно: 0 1204 В шістнадцятковій системі числення х та z відповідно: 0 4b4 Результат виразу у функції s_calculation(): 1745504776.954350	passed
TC_04	 Ввести "-43 -5" Натиснути Enter Ввести "456 122" Натиснути Enter 	Кічура Максим (с) Академ-група:КН-22 ЦНТУ Введіть значення а та b 1 Введіть значення х та z В десятковій системі числення х та z відповідно: 456 122 В шістнадцятковій системі числення х та z відповідно: 1с8 7а Результат виразу у функції s_calculation(): 1821244.482228	passed

TC_05	 Ввести "-567 123" Натиснути Enter Ввести "22 67890" Натиснути Enter 	Кічура Максим (с) Академ-група:КН-22 ЦНТУ Введіть значення а та b 1 Введіть значення х та z В десятковій системі числення х та z відповідно: 22 67890 В шістнадцятковій системі числення х та z відповідно: 16 10932 Результат виразу у функції s_calculation(): 312908617825890.125000	passed
-------	--	---	--------