Image properties

Quantitative and Functional Imaging
BME 4420/7450
Fall 2022

How are these images different?

Image information

- An image represents the spatial distribution of physical properties in an object
 - Imperfect representation
- How do images differ from the true distributions they map?
- Let's look at some examples...

What is the difference?

Signal to noise ratio (SNR)

- Measures the relative intensity of
 - Signal
 - Noise
- Independent of intensity scaling
- A standard measure of sensitivity

$$SNR = \frac{mean(Signal)}{std(Noise)}$$

Models of noise

- Poisson noise
 - Counting independent events
 - CT, PET

$$\mathbf{p}_{\lambda}\left(\mathbf{n}\right) = \frac{\lambda^{\mathbf{n}}}{\mathbf{n}!} \mathbf{e}^{-\lambda}$$

 λ = mean count

- Gaussian noise
 - 'Normal' distribution
 - Sum of many independent noise sources
 - MRI

$$\mathbf{p}(\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \mathbf{e}^{-(\mathbf{x}-\mu)^2/2\sigma^2}$$

 μ = mean value σ = std deviation

What's the difference?

Contrast

- Image intensity difference (between regions)
- Allows regions to be distinguished
- Helps determine detection limits

Contrast =
$$\Delta S$$

= $S(\text{lesion}) - S(\text{white matter})$

$$CNR = \frac{\Delta S}{}$$
 Contrast to noise ratio

What is the difference?

Resolution

- Determines the smallest detectable feature in an image
- Not necessarily the pixel size
- May be different in x, y (and z)
- Characterized by the width of the point spread function (PSF)

Images are blurred representations

Ideal image

Blurred image

Convolution and image blurring

 The convolution of two functions, f(x) and h(x), is defined as

$$g(x) = \int_{-\infty}^{\infty} f(x')h(x-x')dx'$$
$$= f(x)*h(x)$$

• Notice that the convolution is *commutative*: making the change of variables x' = x - x'',

$$\int_{-\infty}^{\infty} f(x')h(x-x')dx' = -\int_{\infty}^{-\infty} f(x-x'')h(x'')dx''$$

• Notice that the convolution is commutative: making the change of variables x' = x - x'',

$$\int_{-\infty}^{\infty} f(x')h(x-x')dx' = -\int_{\infty}^{-\infty} f(x-x'')h(x'')dx''$$
$$= \int_{-\infty}^{\infty} h(x'')f(x-x'')dx''$$

SO

$$f(x)*h(x) = h(x)*f(x)$$

and the order doesn't matter.

 In words, the convolution is the sum of many weighted and shifted copies of h(x).

$$f(x)$$

$$h(x)$$

$$\int_{-\infty}^{\infty} f(x')h(x-x')dx'$$

=f(x)*h(x)

Describing a point source

- We can describe an idealized point source using the *Dirac delta* function, δ(x)
- The delta function is defined by

$$\delta(x-a) = \begin{cases} 0, & \text{for } x \neq a \\ \infty, & \text{for } x=a \end{cases}$$

and

$$\int_{-\infty}^{\infty} \delta(x-a)dx = 1$$

so the delta function has infinite height but unit area.

A basic property of the delta function is

$$\int_{-\infty}^{\infty} f(x) \cdot \delta(x-a) dx = \int_{-\infty}^{\infty} f(a) \cdot \delta(x-a) dx$$
$$= f(a) \cdot \int_{-\infty}^{\infty} \delta(x-a) dx$$
$$= f(a)$$

• Convolving a function with $\delta(x)$ gives

$$f(x) * \delta(x) = \int_{-\infty}^{\infty} f(x') \delta(x - x') dx'$$
$$= f(x)$$

 The delta function can be considered the limit of a series of conventional (e.g., gaussian) functions:

$$\delta(x) = \lim_{\alpha \to \infty} \sqrt{\frac{\alpha}{\pi}} \cdot e^{-\alpha x^2}$$

In the limit, this has infinite amplitude (at x=0) and infinitesmal width.

Linear, shift invariant systems

 Imaging systems acquire signals from a spatial distribution of sources (an input) and produce an image (an output)

Let's denote the relation between input and output by the operator \hat{O}

A system is *linear* if and only if

$$\hat{O}\left[\alpha f_1(x,y) + \beta f_2(x,y)\right] =$$

$$\alpha \cdot \hat{O}\left[f_1(x,y)\right] + \beta \cdot \hat{O}\left[f_2(x,y)\right]$$

 Suppose our system is linear and we use it to image an ideal point source

$$f(x,y) = \delta(x,y) = \delta(x) \cdot \delta(y)$$

 The image of a point source is called the point spread function (PSF) The image of a point source is called the point spread function (PSF)

we'll write the PSF as h(x,y).

- Suppose that our system is not only linear, but also shift invariant
 - The only effect of shifting the input is to shift the output by the corresponding amount
 - For a delta function point source,

$$h(x-x_0,y-y_0) = \hat{O}[\delta(x-x_0,y-y_0)]$$

- Suppose that our system is not only linear, but also shift invariant
 - The only effect of shifting the input is to shift the output by the corresponding amount
 - For a delta function point source,

$$h(x-x_0,y-y_0) = \hat{O}[\delta(x-x_0,y-y_0)]$$

 To save writing, we'll use the notation input → output

SO

$$\delta(x-x_0,y-y_0) \rightarrow h(x-x_0,y-y_0)$$

 Given an array of point sources with different magnitudes, linearity and shift invariance imply

$$\sum_{n} f(x_{n}, y_{n}) \cdot \delta(x - x_{n}, y - y_{n}) \rightarrow$$

$$\sum_{n} f(x_{n}, y_{n}) \cdot h(x - x_{n}, y - y_{n})$$

• In the limit that δ function spacing goes to zero, the sums are replaced by integrals:

$$\int f(x',y') \cdot \delta(x-x',y-y') dx' dy' \rightarrow$$

$$\int f(x',y') \cdot h(x-x',y-y') dx' dy'$$

• In the limit that δ function spacing goes to zero, the sums are replaced by integrals:

$$\int f(x',y') \cdot \delta(x-x',y-y') dx' dy' \rightarrow$$

$$\int f(x',y') \cdot h(x-x',y-y') dx' dy'$$

or

$$f(x,y) \rightarrow f(x,y) *h(x,y)$$

The output is equal to the true distribution, convolved (i.e., blurred) by the PSF.

- Equivalent statements:
 - An imaging system is LSI
 - The image is equal to a convolution of the input with a PSF

Which imaging modality made these?

Sureshbabu, J Nuc Med Tech (2005)

Case courtesy of Dr Bruno Di Muzio, Radiopaedia.org

(AAPM)

In-class exercise: Choose an imaging modality—is it LSI?

Sureshbabu, J Nuc Med Tech (2005)

Case courtesy of Dr Bruno Di Muzio, Radiopaedia.org

Kinahan (AAPM)

The PSF determines resolution

 A common definition of resolution is the full width at half maximum (FWHM) of the PSF

The Point Spread Function describes blurring

Effects of the PSF

- PSF width causes blurring in the image
- Oscillation in the PSF causes ringing in the image
 - Edge artifacts that can be mistaken for real structure
 - Most obvious near strong contrast boundaries
- Solutions?

Resolution affects contrast

PSF

Partial volume averaging

- Each volume element (voxel) of the image represents a volume of tissue
 - Voxels are not cubes—they are broadened by the PSF
- Tissue properties may not be uniform in the voxel
- Measurements from the image data usually don't reflect true properties of heterogeneous voxels
- Measurements from the data may not give good estimates of volume-averaged properties

Artifacts

- Image reconstruction errors
 - Missing signal
 - Extra signal
 - Displaced signal
- Violation of assumptions of reconstruction
 - Motion
 - Model relating signal to tissue properties is too simple...
- Artifacts interfere with analysis (usually don't average out)

Artifacts

- Image reconstruction errors
 - Missing signal
 - Extra signal
 - Displaced signal
- Violation of assumptions of reconstruction
 - Motion
 - Model relating signal to tissue properties is too simple...
- Artifacts interfere with analysis (usually don't average out)

How are these images different?

Summary

- Information in an image depends on
 - SNR
 - Contrast
 - Resolution
 - Artifacts
- These are the most important aspects of image quality

References

- Hansen MS, Kellman P. Image reconstruction: An overview for clinicians. Journal of Magnetic Resonance Imaging. 25 JUN 2014 DOI: 10.1002/jmri.24687
- Suetens P. Fundamentals of Medical Imaging (Cambridge, 2002).