Poroelasticity

Poroelasticity Assumptions

- 1. There is an interconnected pore system uniformly saturated with fluid.
- 2. The total volume of the pore system is small compared to the volume of the rock.
- 3. The pore pressure, the total stress acting on the rock externally, and the stresses acting on the grains are statistically defined.

Effective stress

Terzaghi definition

$$\sigma = \mathbf{S} - P_p \mathbf{I}$$

"Exact" effective stress

$$\boldsymbol{\sigma} = \mathbf{S} - \alpha P_p \mathbf{I}$$

 α is called Biot's coefficient

Biot's coefficeint

$$\alpha = 1 - \frac{K_T}{K_S}$$

For sand

$$K_S >> K_T$$
 $\alpha \approx 1$

For rocks

$$\alpha \approx \frac{2}{3}$$

Biot's coefficient (cont.)

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 3.5c, pp. 69)

Poroelasticity = viscoelasticty

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 3.10c,d, pp. 75)

Frequency dependence (load frame - ultrasonic)

Elastic moduli measured from sonic logs will be frequency dependent in poroelastic rocks.

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 3.7a, pp. 71)

Frequency dependence (sonic - ultrasonic)

Elastic moduli measured from sonic logs will be frequency dependent in poroelastic rocks.

SQRT Theory

Transistion from drained to undrained behavior

- Drained limit
 - Slow loading on very permeable media
- Undrained limit
 - Fast loading on impermeable media

Other viscous effects

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 3.10c,d, pp. 75)

Creep

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 3.8, pp. 73a)

Constitutive model for creep

Power law

$$\varepsilon(t) = \varepsilon_0 + ct^n$$

Stress relaxation

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 3.11b, pp. 77)

Thermoporoelasticity

$$\boldsymbol{\sigma} = \mathbf{S} - \alpha P_p \mathbf{I} - K \alpha_T \Delta T \mathbf{I}$$

 α_T is coefficient of thermal expansion/(contraction)

