### A Rigorous Unified Field Theory on Biquaternionic Manifold $\mathbb{B}^4$ : Consciousness, Quantum Fields, and Emergent Space-Time

David Jaroš

2025

#### Abstract

We present a novel and rigorous unified field theory constructed on a four-dimensional biquaternionic manifold  $\mathbb{B}^4$ , which incorporates complexified spacetime and internal phase dimensions naturally into its geometric structure. The core field  $\Theta(q)$  is a tensor-spinor-gauge-valued section over  $\mathbb{B}^4$ , encoding all known fundamental interactions, emergent quantum behavior, and phenomenology of consciousness. The theory eliminates the need for external projections ...

We develop a rigorous unified field theory on a four-dimensional biquaternionic manifold  $\mathbb{B}^4 = (\mathbb{C} \otimes \mathbb{H})^4$ , where each coordinate is a biquaternion representing complexified internal and external degrees of freedom. The primary field  $\Theta(q)$  is a tensor-spinor-valued section over  $\mathbb{B}^4$ , encoding gravitational, gauge, quantum, and cognitive structure. We formulate the covariant dynamics, metric geometry, low-energy quantum limits, emergent conscious par...

#### 1 Biquaternionic Manifold and Field Definition

We define the manifold  $\mathcal{M} = \mathbb{B}^4$ , where each point is a 4-tuple of biquaternions:

$$q^{\mu} = x^{\mu} + iy^{\mu} + \mathbf{j}z^{\mu} + i\mathbf{j}w^{\mu}, \quad \mu = 0, 1, 2, 3,$$

with components  $x^{\mu}, y^{\mu}, z^{\mu}, w^{\mu} \in \mathbb{R}$ . The basis elements  $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$  satisfy the quaternionic algebra.

The unified field is defined as:

$$\Theta(q) \in \Gamma\left(T^{(1,1)}(\mathbb{B}^4) \otimes \mathbb{S} \otimes \mathbb{G}\right),$$

where  $T^{(1,1)}$  denotes the (1,1) tensor bundle over  $\mathbb{B}^4$ ,  $\mathbb{S}$  is a spinor bundle, and  $\mathbb{G}$  is an internal gauge fiber.

Note on Notation and Dimensional Structure. Throughout this work, we use the notation  $\mathbb{B}^4$  to denote the four-dimensional biquaternionic manifold, which represents the maximal algebraic structure of our unified theory. Each biquaternion coordinate  $q^{\mu}$  has four real components  $(x^{\mu}, y^{\mu}, z^{\mu}, w^{\mu})$ , providing a rich internal structure. In some speculative extensions and alternative formulations, the theory may also be expressed using a five-dimensional complex manifold  $\mathbb{C}^5$  with explicit coordinates  $(x^{\mu}, \psi)$ , where  $\psi$  represents the imaginary time or phase coordinate. The  $\mathbb{B}^4$  formulation is used for the core theoretical development, as it naturally encodes both the geometric and internal gauge structures, while the  $\mathbb{C}^5$  notation appears in discussions of consciousness, complex time evolution, and certain p-adic extensions. These are complementary perspectives on the same underlying structure, with  $\mathbb{B}^4$  emphasizing the algebraic richness and  $\mathbb{C}^5$  making the phase-space structure more explicit.

#### 2 Metric Geometry and Covariant Derivatives

We define a complexified metric tensor on  $\mathbb{B}^4$ :

$$G_{\mu\nu}(q) = \langle dq^{\mu}, dq^{\nu} \rangle,$$

where  $\langle \cdot, \cdot \rangle$  is a biquaternionic inner product. The affine and spin connections  $\Gamma^{\rho}_{\mu\nu}$ ,  $\Omega_{\mu}$  are derived accordingly.

Covariant derivative:

$$\mathcal{D}_{\mu}\Theta = \partial_{\mu}\Theta + \Omega_{\mu} \cdot \Theta + igA_{\mu}^{a}T^{a}\Theta,$$

with gauge coupling and spin connection terms included.

#### 3 Dimensional Reduction and Effective 4D Physics

While the fundamental theory is formulated on the biquaternionic manifold  $\mathbb{B}^4$  with its rich internal structure, observable physics occurs in an effective four-dimensional Lorentzian spacetime  $\mathbb{R}^{1,3}$ . This dimensional reduction arises through two complementary mechanisms:

**Projection Mechanism.** The physical observables are obtained by taking the real part of scalar and tensor projections of the biquaternionic field  $\Theta(q)$ . Specifically, measurable quantities correspond to:

Observable 
$$\sim \Re[\langle \Theta, \mathcal{O}\Theta \rangle],$$

where  $\mathcal{O}$  is an appropriate operator and the inner product is defined on  $\mathbb{B}^4$ . This projection naturally selects the real spacetime coordinates  $x^{\mu}$  from the full biquaternionic structure, while the internal components  $(y^{\mu}, z^{\mu}, w^{\mu})$  manifest as gauge degrees of freedom, internal symmetries, or phase-space structure.

**Dynamical Compactification.** The internal directions can be viewed as compactified or integrated out at low energies. The effective action in  $\mathbb{R}^{1,3}$  is obtained by integrating over the internal coordinates:

$$S_{\text{eff}}[g_{\mu\nu}, A_{\mu}, \psi] = \int_{\mathbb{R}^{1,3}} d^4x \int_{\text{internal}} dy \, dz \, dw \, \mathcal{L}[g, A, \Theta(x, y, z, w)].$$

At energies much below the compactification scale, the internal modes decouple, leaving only the standard 4D field content. However, the internal structure is not lost—it manifests as:

- Internal gauge symmetries  $(SU(3) \times SU(2) \times U(1))$
- Flavor and generational structure of fermions
- Topological quantum numbers (winding modes, knotted configurations)
- Phase-space structure relevant for quantum mechanics and consciousness models

This approach resolves the apparent tension between the maximal algebraic structure  $\mathbb{B}^4$  and the observed 4D spacetime, while preserving the predictive power and unifying features of the full theory.

#### 4 General Relativity and Emergent Geometry

The metric tensor  $G_{\mu\nu}(q)$  defined over  $\mathbb{B}^4$  generalizes the Lorentzian metric of General Relativity to a biquaternionic setting. The curvature tensors are constructed from the complexified affine connection:

$$R^{\rho}_{\sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}_{\nu\sigma} - \partial_{\nu}\Gamma^{\rho}_{\mu\sigma} + \Gamma^{\rho}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma}.$$

The Einstein field equations emerge as a projection of the variation of the geometric Lagrangian:

$$\delta \mathcal{L}_{\text{geom}} = \frac{1}{2\kappa} \left( R_{\mu\nu} - \frac{1}{2} G_{\mu\nu} R \right) \delta G^{\mu\nu}.$$

This shows that classical spacetime curvature is a low-energy limit of the intrinsic geometry of the biquaternionic manifold. The extended degrees of freedom in  $y^{\mu}$ ,  $z^{\mu}$  give rise to higher-order corrections and dynamical compactification in early-universe cosmology.

#### 5 Lagrangian and Field Equations

Total action on  $\mathbb{B}^4$  reads:

$$S = \int_{\mathbb{B}^4} d^4 q \sqrt{|\det G|} \left( \mathcal{L}_{\Theta} + \mathcal{L}_{geom} + \mathcal{L}_{gauge} \right),$$

where:

$$\mathcal{L}_{\Theta} = \Re \left[ \bar{\Theta} \left( i \Gamma^{\mu} \mathcal{D}_{\mu} - M(q) \right) \Theta \right],$$

with M(q) potentially depending on internal phase coordinates  $y^{\mu}, z^{\mu}$ , representing cognitive or entropic symmetry breaking.

#### 6 Tensor Decomposition of $\Theta$

The field can be locally decomposed as:

$$\Theta(q) = \phi(q) + i\psi^{\mu}(q)\gamma_{\mu} + \eta(q)\mathbb{I} + i\chi(q)\mathbb{J},$$

where  $\chi(q)$  represents internal oscillations related to consciousness and subjective time.

#### 7 Quantum Limits and Classical Reductions

In the real spacetime limit  $y^{\mu}, z^{\mu}, w^{\mu} \to 0$ , the action reduces to:

• Dirac equation for spinor sector:

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0,$$

• Schrödinger equation in nonrelativistic limit:

$$i\hbar\partial_t\psi = \left(-\frac{\hbar^2}{2m}\nabla^2 + V\right)\psi,$$

• Effective quantum field theory in flat  $\mathbb{R}^4 \subset \mathbb{B}^4$ .

#### 8 Gauge Theory and Standard Model Embedding

The internal gauge structure of  $\Theta$  accommodates:

$$\mathbb{G} \cong SU(3) \times SU(2) \times U(1),$$

and the covariant derivative generalizes to the Yang-Mills form. Higgs-like mass terms can arise via internal symmetry oscillations in the  $z^{\mu}$ ,  $w^{\mu}$  directions.

### 9 Gauge Symmetries: QED, QCD and the Standard Model Embedding

We extend the field  $\Theta(q)$  to carry internal gauge indices under the symmetry group  $\mathcal{G} = U(1) \times SU(2) \times SU(3)$ , corresponding to the Standard Model gauge groups for electromagnetism, weak, and strong interactions.

Let  $A_{\mu} = A_{\mu}^{a} T^{a}$  denote the full gauge connection, with generators  $T^{a}$  acting on  $\Theta(q)$  in the appropriate internal representation.

The full covariant derivative becomes:

$$\mathcal{D}_{\mu}\Theta = \partial_{\mu}\Theta + \Omega_{\mu} \cdot \Theta + ig_1 B_{\mu} Y \Theta + ig_2 W_{\mu}^i \tau^i \Theta + ig_3 G_{\mu}^a \lambda^a \Theta,$$

where: -  $B_{\mu}$  is the  $U(1)_{Y}$  hypercharge field, -  $W_{\mu}^{i}$  are the weak  $SU(2)_{L}$  fields, -  $G_{\mu}^{a}$  are the gluon fields of  $SU(3)_{C}$ , - Y,  $\tau^{i}$ , and  $\lambda^{a}$  are the corresponding generators.

The gauge-invariant kinetic Lagrangian reads:

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} \sum_{a} F^{a}_{\mu\nu} F^{a\,\mu\nu},$$

with:

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu,$$

where g is the gauge coupling constant and  $f^{abc}$  are the structure constants of the respective Lie algebras.

The interaction term in the unified Lagrangian:

$$\mathcal{L}_{\Theta, int} = \Re \left[ \bar{\Theta} i \Gamma^{\mu} \mathcal{D}_{\mu} \Theta \right],$$

ensures that the dynamics of  $\Theta$  is fully coupled to the standard model gauge fields.

#### 10 Low-Energy Limits: Dirac and Schrödinger Equations

To demonstrate compatibility with established quantum mechanics, we derive the Dirac and Schrödinger equations as limiting cases of the unified biquaternionic field equation for  $\Theta(q)$ . Starting from the unified covariant derivative:

$$\mathcal{D}_A\Theta = \partial_A\Theta + \Omega_A \cdot \Theta + igA_A^a T^a\Theta,$$

we consider the case where curvature effects are small, gauge fields are static or slowly varying, and the manifold  $\mathbb{B}^4$  can be approximated by a local inertial frame. In this approximation, the equation of motion simplifies to:

$$\Gamma^A \partial_A \Theta = m \Theta,$$

which reduces to the \*\*Dirac equation\*\* in the limit where only 4 spacetime dimensions are active and  $\Gamma^A$  matrices correspond to standard Dirac matrices  $\gamma^{\mu}$ . This confirms that the spinor nature of  $\Theta$  is consistent with relativistic quantum field theory.

In the non-relativistic limit ( $v \ll c$ ), a standard Foldy–Wouthuysen decomposition leads to the Schrödinger equation:

$$i\hbar \frac{\partial \psi}{\partial t} = \left(-\frac{\hbar^2}{2m}\nabla^2 + V\right)\psi,$$

where  $\psi$  is a projection of  $\Theta$  onto low-energy modes.

Thus, our unified theory contains both quantum mechanics and relativistic field theory as natural limits, while offering a richer structure due to its biquaternionic and spin-tensor form defined on  $\mathbb{B}^4$ .

#### 11 Conscious Oscillations and Emergent Mind

Internal modes  $\chi(q) \sim \sin(\omega \cdot y^{\mu})$  describe periodic subjective phase. Collapse of these oscillations projects classical reality. We interpret eigenmodes:

$$\Theta_n(q) \sim e^{in\psi} \Psi_n(x),$$

as discrete conscious quanta (psychons), with transitions corresponding to awareness or memory shifts.

#### 12 Free Energy Principle and Fokker–Planck Flow

We apply the FEP:

$$\frac{\partial P}{\partial \psi} = -\nabla_q \cdot (\mu P) + \frac{1}{2} \nabla_q^2 (DP),$$

modeling informational entropy flow across  $\mathbb{B}^4$ . The drift term  $\mu$  represents prediction error; diffusion coefficient D encodes uncertainty and updating.

#### 13 Cosmological Aspects

The internal phase coordinate plays a role similar to an inflation or entropy-gradient field. Toroidal compactification of internal directions leads to inflationary and cyclic cosmological models.

#### 14 Conclusion

We have proposed a unified framework on  $\mathbb{B}^4$  where geometry, gauge theory, quantum physics, and subjective consciousness are aspects of a single field  $\Theta(q)$ . This approach explains both standard physics and phenomenological features of cognition, predicting new psychon-like excitations and quantum collapse via internal oscillations.

# 15 Quantum Electrodynamics and Quantum Chromodynamics

The field  $\Theta(q)$  contains internal symmetry structures corresponding to the gauge groups of the Standard Model. In particular, the internal gauge fiber  $\mathbb{G}$  carries representations of:

$$\mathbb{G} \cong SU(3)_{\text{color}} \times SU(2)_L \times U(1)_Y,$$

embedded within the matrix structure of  $\Theta$ .

#### 15.1 QED Sector

The Abelian part of the gauge group U(1) governs the electromagnetic interaction. The corresponding gauge field  $A_{\mu}$  enters the covariant derivative as:

$$\mathcal{D}_{\mu}\Theta = \partial_{\mu}\Theta + \Omega_{\mu} \cdot \Theta + ieA_{\mu}\Theta,$$

with Maxwell-type field strength:

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}.$$

#### 15.2 QCD Sector

The non-Abelian color interaction is embedded via the gluon fields  $G^a_{\mu}$ ,  $a=1,\ldots,8$ , and SU(3) generators  $T^a$ :

$$\mathcal{D}_{\mu}\Theta = \cdots + ig_sG_{\mu}^aT^a\Theta.$$

The gluonic field strength is:

$$G_{\mu\nu}^a = \partial_\mu G_\nu^a - \partial_\nu G_\mu^a + g_s f^{abc} G_\mu^b G_\nu^c.$$

#### 15.3 Symmetry Breaking and Higgs-Like Mechanism

The internal phase coordinates  $y^{\mu}$ ,  $z^{\mu}$  provide a natural mechanism for spontaneous symmetry breaking:

$$\langle \chi(q) \rangle \neq 0 \quad \Rightarrow \quad m \neq 0,$$

where  $\chi$  acts as a Higgs-like internal mode within  $\Theta$ . Mass hierarchies emerge from oscillatory patterns in the biquaternionic manifold.

#### 16 Discussion of Particle Spectrum

Excitations of the field  $\Theta$  include not only standard fermions and bosons but also additional modes due to its internal spinor-gauge structure. We predict:

- Standard particle spectrum (quarks, leptons, gauge bosons) as tensor-spinor projections,
- Scalar internal oscillations as Higgs-like or axion-like particles,
- Psychon modes coherent phase oscillations corresponding to discrete conscious states,
- Potential graviton-like curvature modes in the geometric component.

#### 17 Summary and Outlook

This framework combines geometry, quantum field theory, and information dynamics in a single elegant model defined on  $\mathbb{B}^4$ . It naturally unifies:

- General relativity as geometric dynamics of  $G_{\mu\nu}(q)$ ,
- Quantum field theory via tensor-spinor structure of  $\Theta(q)$ ,
- Gauge interactions through internal fiber G,
- Consciousness as internal oscillations and collapse of  $\chi(q)$ .

Future work will explore quantization in curved biquaternionic space, phenomenology of psychon transitions, and links to holographic principles and modular topologies.

#### 18 Limit: General Relativity

In the classical limit where oscillatory and imaginary components vanish, the biquaternionic metric  $G_{\mu\nu}(q)$  reduces to a standard pseudo-Riemannian real-valued tensor on a 4D Lorentzian manifold.

Let  $\Re(G_{\mu\nu}) \to g_{\mu\nu}(x)$ , where  $x^{\mu} \in \mathbb{R}^4$  are spacetime coordinates. The resulting Levi-Civita connection  $\Gamma^{\lambda}_{\mu\nu}$ , Ricci tensor  $R_{\mu\nu}$ , and scalar curvature R are defined in the usual way via the metric compatibility and torsion-free condition.

From the action:

$$S_{\text{geom}} = \int d^4x \sqrt{-g} \, \frac{1}{2\kappa} R,$$

we obtain Einstein's equations:

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 8\pi G T_{\mu\nu},$$

as the low-energy limit of the unified biquaternionic dynamics. Thus, general relativity is fully embedded in the geometric projection of our theory.

## 19 Free Energy Principle, Drift, and Metacognitive Field

The internal dynamics of  $\chi(q)$ , representing subjective or conscious phase, follow a stochastic evolution modulated by environmental prediction.

We introduce a Fokker–Planck-like evolution equation:

$$\frac{\partial \rho(\chi, t)}{\partial t} = -\nabla \cdot (\mu \rho) + D\nabla^2 \rho,$$

where  $\rho$  is the probability distribution over conscious phase modes,  $\mu$  is the drift induced by minimization of variational free energy F[q], and D is the diffusion tensor.

The \*\*metakas\*\* is then defined as the evolving state of this internal probability structure over  $\mathbb{B}^4$ , including memory, attention, and perception gradients.

The drift term reflects predictive coding:

$$\mu = -\nabla \log P_{\text{sensory}} + \nabla \log \rho,$$

corresponding to active inference. Cognitive dynamics are thus described by stochastic partial differential equations over the internal degrees of freedom of  $\Theta$ , with attractor-like behavior for stable conscious trajectories.

#### License

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).