洲沙人学实验报告

专业:_自动化(控制)

姓名: 李丰克 __

学号: 3230105182

日期: 2024.9.26

地点: 东三 206

一、实验目的和要求

- 1.熟悉电路元件的特性曲线;
- 2.学习非线性电阻元件特性曲线的伏安测量方法;
- 3.掌握伏安测量法中测量样点的选择和绘制曲线的方法;
- 4.学习非线性电阻元件特性曲线的示波器观测方法。

二、实验内容和原理

(1) 实验内容:

- 1.测定并绘制整流二极管的伏安特性曲线;
- 2.测定并绘制稳压二极管的伏安特性曲线;
- 3.用示波器观测二极管的伏安特性曲线。
- (2) 实验原理:

整流二极管伏安特性曲线如图

稳压二极管伏安特性曲线如图:

稳压二极管伏安特性曲线

三、主要仪器设备

快恢复整流二极管 FR307, 稳压二极管 1N5342B, 信号源, 示波器, 100Ω电阻, 1KΩ电阻, 直流电压表, 直流电流表, 可调直流电流源, 多通道隔离放大器。

四、实验任务,线路图

(1)通过如图电路,通过读直流电压表和直流电流表的值得出一组数据,通过改变直流电流源的大小获得多组数据,将数据拟合成曲线,得到整流二极管和稳压二极管的伏安特性曲线。

测反向电压时将二极管反向接入即可,测稳压二极管时将其替换整流二极管即可。由于测量过程中电流表量程会发生变化,电流表内阻也会变化,对不同阶段二极管伏安特性曲线影响不同,故会在一定情况下选择电流表外接。

(2) 将示波器,二极管按照如图两种接好,使信号源输出频率 1kHZ 正弦波,示波器开启 xy 模式,调整信号源 Vpp 使能看到完整图像,如果不能正常看到图像,则采用隔离通道法。

A 电路

CH1红

TH2红

CH2红

B电路

五、实验数据记录处理和实验结果分析

(1) ①测整流二极管

正向电压: 电流表内接 量程 20mA

U/V	0.438	0.445	0.451	0.467	0.479
I/mA	0.32	0.43	0.52	0.72	1.03
U/V	0.500	0.511	0.520	0.534	0.554
I/mA	1.62	2.00	2.36	3.01	4.01

电流表外接 量程 20mA

U/V	0.560	0.576	0.594	0.610	0.649
I/mA	4.44	5.44	6.63	7.93	11.27

电流表外接 量程 200mA

U/V	0.663	0.699	0.727	0.755	0.785	0.798	0.801
I/mA	32.5	52.3	73.6	102.2	144.9	168.2	177.5

反向电压:

U/V	-0.820	-0.971	-1.202	-1.998	-3.27	-5.09
I/mA	0	0	0	0	-0.002	-0.003
U/V	-6.63	-9.27	-11.22	-14.03	-15.15	
I/mA	-0.005	-0.007	-0.009	-0.012	-0.015	

将所有数据拟合成曲线,即为整流二极管伏安特性曲线

②测稳压二极管:

正向电压: 电流表内接 量程 20mA

TT-1-1-1	EPT-BE: BUILTING ER ZOMET								
U/V	0.512	0.605	0.628	0.640	0.649	0.659	0.665		
I/mA	0	0.33	0.73	1.04	1.35	1.78	2.04		
U/V	0.676	0.689	0.699	0.708	0.717	0.749			
I/mA	2.62	3.57	4.41	5.21	6.04	9.66			

电流表内接 量程 200mA

U/V	0.786	0.810	0.822	0.846	0.864	0.879	0.891
I/mA	24.1	82.4	95.5	123.5	145.5	164.2	180.0

反向电压: 电流表内接 量程 20mA

U/V	-2.23	-3.94	-6.24	-6.87	-6.89	-6.90	-6.91	-6.92
I/mA	0	0	0	0	-0.24	-0.53	-0.84	-1.26
U/V	-6.93	-6.94	-6.95	-6.96	-6.97	-6.98	-7.00	-7.08
I/mA	-1.65	-2.16	-3.09	-3.55	-4.74	-5.66	-6.63	-15.09

电流表内接 量程 200mA

U/V	-7.13	-7.21	-7.27	-7.34	-7.40	-7.43
I/mA	-44.9	-75.8	-102.4	-135.1	-162.1	-178.7

将所有数据拟合成曲线,即为稳压二极管伏安特性曲线

(2) 示波器观测结果:

①使用 A 电路:

观察整流二极管

观察稳压二极管

②使用 B 电路

观察整流二极管

观察稳压二极管

发现均不能得到正常波形图,于是采用隔离通道法 此时观测到的波形

观察整流二极管

观察稳压二极管

六,实验心得及体会

测量伏安特性的时候电流表量程突变时内阻影响极大,故在突变点(20mA)附近的数据使用不同量程测得的数据差别极大,此时使用电流表外接可以减轻内阻的影响,但是二极管正向导通的伏安特性是电阻先极大再极小,极大时电压表内阻影响大,极小时电流表内阻影响大,故内外接应灵活考虑。

信号源的 Vpp 应设置的尽量大,否则图像会不完整。