Name:

Section (time):

Math 340 Quiz 1

1.)
$$G = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
.

2.) Write the following system of equations in the form Ax = b

$$10x_1 + 9x_2 + x_3 - 9 = 0$$

$$9x_2 + x_3 + 1 = 0$$

$$10x_1 - x_3 = 8$$

Math $340 \ 9/14$

Let B = 2A and C = AB and $D = C^T$.

Find d_{81} .

ii.)
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

Find AB. Find C = BA. Find C^2 .

- iii.) Suppose AB=0 and C=BA. What can you say about C^2 ? Support your claim.
- iv.) The following is an example of a *shift matrix*,

$$S = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right].$$

Why is it called that? Try computing SA and AS for

$$A = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right].$$

Try also

$$B = \left[\begin{array}{cc} r & s \\ t & u \\ v & w \end{array} \right].$$

Math 340 9/14 Solutions

i.) $d_{81} = 0$. That is, entry (8,1) of D is zero.

We know that matrix D is the transposition of matrix C.

Therefore, we are trying to compute $c_{18} = d_{81}$.

We are given $C = AB = A2A = 2A^2$.

Therefore, $c_{18} = 2a_{18}^2$.

Recall the entry (i,j) from a matrix that is the product of two matrices will be equal to the $i^{\rm th}$ row of the first matrix dot producted with the $j^{\rm th}$ column of the second matrix. So, we take the first row of A and dot that with the last column. Note the last column is all zeros. Therefore the dot product will be zero, and $a_{18}^2=0$.

Now,
$$d_{81} = c_{18} = 2a_{18}^2 = 2 \times 0 = 0$$
.

- ii.) C^2 is a 2×2 matrix of all zeros.
- iii.) This is an exercise in squaring matrices and using associativity of matrix multiplication.

We are given C = BA and asked to compute C^2 .

$$C^2 = BABA$$
, note that $C^2 \neq B^2A^2$.

Using associativity, $C^2 = B(AB)A = B0A = 0$.

iv.)

$$SA = \left[\begin{array}{ccc} d & e & f \\ g & h & i \\ 0 & 0 & 0 \end{array} \right]$$

$$AS = \left[\begin{array}{ccc} 0 & a & b \\ 0 & d & e \\ 0 & g & h \end{array} \right]$$

$$SB = \left[\begin{array}{cc} t & u \\ v & w \\ 0 & 0 \end{array} \right]$$

Please note BS is not computable. B is of dimension 3×2 and S is of dimension 3×3 . The first matrix in a product must have the same number of columns and the second matrix has rows. This ensures that the dot products featured in matrix multiplication will be defined.