

MUSIC GENRE CLASSIFICATION USING 1D AND 2D CNN MODELS

Liviu-Ștefan Neacșu-Miclea ICA 246/2

SUMMARY

- Music Genre Classification
- Literature Review
- MagnaTagATune Dataset
- Data Analysis
- Proposed Method
- Experimental Results
- Conclusions and Future work

MUSIC GENRE CLASSIFICATION

- Auto music tagging
 - Help search engines keep up with the explosion of media content
- Audio data expressed as

• Question: Which one can be used to better extract audio features?

LITERATURE REVIEW

- Traditional ML methods
 - K-NN
 - Random Forest
 - SVM
 - Logistic regression
- Deep learning techniques
 - ANN
 - CNN (1D/2D): Musicnn, Harmonic CNN, FCN, CRNN
 - Self-attention

Method	MTA	MTAT		
	ROC-AUC	PR-AUC		
FCN (Choi et al.)	0.9005	0.4295		
FCN (w/ 128 Mel bins)	0.8994	0.4236		
Musicnn (Pons et al.)	0.9106	0.4493		
Musicnn (w/ 128 Mel bins)	0.9092	0.4546		
Sample-level (Lee et al.)	0.9058	0.4422		
Sample-level+SE (Kim et al.)	0.9103	0.4520		
CRNN (Choi et al.)	0.8722	0.3625		
CRNN (w/ 128 Mel bins)	0.8703	0.3601		
Self-attention (Won et al.)	0.9077	0.4445		
Harmonic CNN (Won et al.)	0.9127	0.4611		
Short-chunk CNN	0.9126	0.4590		
Short-chunk CNN + Res	0.9129	0.4614		

State of the art in genre classification (Won et al.)

MAGNATAGATUNE DATASET

- 25863 audio clips
 - 30 seconds long, 16kHz 32kbps MP3
 - 188 tags
- Songs were labeled by users of the two-player online game platform TagATune
 - A tag was considered valid for a song if more than three users connected that tag to the song.

DATA ANALYSIS (1)

4000 - 3000 - 2000 - 1000 - 5 10 15 20 25

Fig.3.1.1. MTAT labels distributions

Fig.3.1.2. MTAT instances count per number of tags

- •We are facing a multi-class multi-label classification.
- •Most literature works perform the top-50 genres classification.

DATA ANALYSIS (2) — TOP50

 Top-50 tags may contain redundancies (pairs of tags that have roughly the same meaning and higher correlation)

Fig.3.1.3. MTAT top-50 genre correlation matrix

Table 3.1.1. Top highly correlated tags

DATA ANALYSIS (3) — TOP10

Fig.3.1.4. MTAT top-10 genre correlation

Instances count	Genre
4852	guitar
4274	classical
3547	slow
2954	techno
2729	strings
2598	drums
2519	electronic
2371	rock
2306	fast
2056	piano

Table 3.1.2. MTAT top-10

- We therefore shift to top-10 classification
 - At least 2000 samples per label
 - Removed redundancies
 - Less computationally intense
 - Meaningful correlations (classicalstrings, techno-electronic)

DATA ANALYSIS (4) — WAVEFORM SAMPLES

- The variance of sample densities creates a gap between two types of tags:
 - Low variance: guitar, classical, slow, strings, piano
 - High variance: techno, drums, electronic, rock, fast

Fig.3.1.6. Sample variance per genre

DATA ANALYSIS (4) — SPECTROGRAMS

- Synthesized music has more dominant higher frequencies
- Sudden drops in frequency distribution
- Highly paced music or artificial control of the waveform
- Slow and natural music have a much uniform transition

Fig.3.1.7. Spectrogram examples of various genres

Fig.3.1.8. Time-average frequency distribution per genre

DATA ANALYSIS (4) — DIMENSIONALITY REDUCTION

- Unable to create meaningful DR projections from wave samples
 - Samples are deeply interconnected when related to genre

- Some DR projections (MDS, PCA) of spectrograms reveal the same dichotomy as previous analysis
 - No new enlightments
 - No helpful cluster structure

Fig.3.1.10. Spectrogram projections

DATA ANALYSIS (5) — PRE-EXTRACTED FEATURES?

- Music software (like Echo Nest API 1.0) can extract audio features, they come along with MTAT dataset:
- Loudness, tempo, pitch and timbre vectors
- Linear regression feature importance reveals the timbre does not matter at all when deciding the 10 tags.
- Some pitch vectors look more important than others for some tag, but the relations are not crystal clear.

PROPOSED METHOD — EXPERIMENT WORKFLOW

Fig.3.2.1. Experiment workflow

PROPOSED METHOD — CNN ARCHITECTURES

- The usual CNN + Max Pooling [+ BatchNorm] + Dropout stacking
- CNN is connected to Sigmoid activated dense layers
- •Model a: 1D CNN (on 1D samples)
- •Model b: 1D CNN + RNN/LSTM/GRU (on 1D samples)
- Model c: Chunk based 1D CNN (on 1D samples)
- (Processes small potions of sound and combines the activations together with a Global Pooling layer)
- •Model d: 2D CNN + RNN/LSTM/GRU (on 1D samples)
- Training setup:
 - 10 epochs, batch size 16, optimizer Adam, Ir 0.001
 - Binary Crossentropy loss, Binary Accuracy metric
 - 9:1 train/val ratio
- •Evaluation:
- Accuracy, Precision, Recall, AUC-ROC, AUC-PR

EXPERIMENTAL RESULTS — TRAINING (1)

EXPERIMENTAL RESULTS — TRAINING (2)

Model	Train loss	Val loss	Train Acc.	Val acc.
(a)	0.3315	0.3888	0.8514	0.8126
(b-RNN)	0.3978	0.3507	0.8262	0.8365
(b-LSTM)	0.4728	0.4226	0.8175	0.8063
(b-GRU)	0.2867	0.2590	0.8705	0.8821
(c)	0.3311	0.2991	0.8528	0.8584
(d-RNN)	0.3638	0.3227	0.8350	0.8478
(d-LSTM)	0.3062	0.2772	0.8602	0.8708
(d-GRU)	0.2649	0.2729	0.8813	0.8728

Table 4.1. Train and validation metrics for each model at the end of last epoch

EXPERIMENTAL RESULTS — AREA UNDER CURVES

EXPERIMENTAL RESULTS — METRICS

Avg. Metric	a	b-RNN	b-LSTM	b-GRU	С	d-RNN	d-LSTM	d-GRU
Accuracy	0.8125	0.8364	0.8062	0.8820	0.8583	0.8477	0.8707	0.8727
Precision	0.8658	0.8551	0.8062	0.9057	0.8906	0.8489	0.8888	0.8963
Recall	0.9019	0.9307	1.0000	0.9176	0.8855	0.9376	0.9192	0.9176
AUC-ROC	0.8399	0.7222	0.3855	0.9032	0.8572	0.8244	0.8735	0.9016
AUC-PR	0.5271	0.3456	0.3079	0.6253	0.5755	0.4990	0.5745	0.6508

[•]The failed b-LSTM (CNN 1D) produces only 0 labels.

[•]Overall, the models have similar performances, leaded by GRU-based CRNNs.

CONCLUSIONS AND FUTURE WORK

- Performance is comparable to SOTA
- Spectrogram-based models tend to perform better, but fairly close to waveform-based models
- Further improvements:
 - 1D CNN over the spectrogram sequence, not just the waveform samples
 - Use Mel spectrograms instead of FFT ones
 - It's said that Mel spectrograms provide a features representation close to what human ear's excitations.

Spectrogram with consecutive Fourier Transforms

THANK YOU FOR YOUR ATTENTION!

BIBLIOGRAPHY

- S. Allamy and A. L. Koerich. "1D CNN Architectures for Music Genre Classification". In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI) (2021), pp. 01–07. url: https://api.semanticscholar.org/CorpusID:234742681.
- K. Choi et al. "Transfer learning for music classification and regression tasks". In: 18th International Society for Music Information Retrieval Conference, ISMIR 2017. International Society for Music Information Retrieval. 2017, pp. 141–149
- A. Défossez et al. "High Fidelity Neural Audio Compression". In: Transactions on Machine Learning Research (2022).
- P. Ghosh et al. "A Study on Music Genre Classification using Machine Learning". In: International Journal of Engineering Business and Social Science 1.04 (2023), pp. 308–320.
- D. Kostrzewa, P. Kaminski, and R. Brzeski. "Music genre classification: looking for the perfect network". In: International Conference on Computational Science. Springer. 2021, pp. 55–67.
- E. Law et al. "Evaluation of algorithms using games: The case of music tagging." In: ISMIR. Citeseer. 2009, pp. 387–392.
- M. Matocha and S. Zieliński. "Music genre recognition using convolutional neural networks". In: Advances in Computer Science Research (2018).
- A. V. Oppenheim and R. W. Schafer. Discrete-time signal processing. Pearson, 2010.
- J. Stastny, V. Skorpil, and J. Fejfar. "Audio data classification by means of new algorithms". In: 2013 36th International Conference on Telecommunications and Signal Processing (TSP). 2013, pp. 507–511. doi: 10.1109/TSP.2013.6613984.
- M. Won et al. "Evaluation of CNN-based Automatic Music Tagging Models". In: SMC (2020).