单选题

- 1. Linux命令traceroute主要利用了IP协议中的TTL协议字段实现。正确。数据包每经过一次路由ICMP报文头部的TTL字段就减少一个值,这个值等于数据包在路由上消耗的时间(以秒为单位),因为一般这个时间小于一秒,所以基本上每一跳TTL减一。当路由设备收到一个TTL值为0的数据包时,就不再转发,丢弃数据包并向源地址返回一个报错ICMP包。traceroute发包时还使用一个非常规的UDP端口,导致即使数据包顺利到达目标主机,目标主机也会返回一个报错的ICMP包。但这个报错包与由于TTL值减为0引起的报错是不同的,traceroute依此判断数据包传输情况。traceroute通过发送TTL值递增的数据包来记录每一跳的路径,直到TTL值使得数据包恰好达到目标主机。traceroute在Windows下命令为tracert。【考察网络相关工具和原理】
- 2. Linux系统下,进程只能通过系统调用由用户态切换到内核态,并且出于安全考虑,内核态有单独的进程栈空间,不复用用户态栈空间。 错误。从用户态到内核态的切换本质上是一个处理中断的过程,表现出来有三种形式: 系统调用,外设终端,异常。Linux的每个进程确实有两个栈,分别用于用户态和内核态的进程执行。参考: https://blog.csdn.net/u014142287/article/details/51934940; 【考察Linux系统基础】
- 3. 在JavaScript中执行 encodeURI("hello world!"); 运行结果是 hello%20world%21 。 错误。! 不会被编码。【考察前端基础】
- 4. 防火墙可以对DDoS攻击提供有效完美的防护过滤。 错误。各种防护方案各有优劣,DDoS还没有完美的应对措施。 【考察DDoS基础】
- 5. 在常见Linux场景中,攻击者可以通过篡改CLASSPATH环境变量的方法,向其他程序劫持注入动态链接库。 错误。应该是 LD_PRELOAD 。 【考察Linux系统基础】

不定项选择题

应用程序开发过程中,下面哪个是好的安全实践
使用srand函数初始化后再使用rand函数生成随机数
使用C标准的系列字符串处理函数strcpy/strcat/sprintf/scanf/gets处理外部输入
使用system函数执行外部输入的命令
使用自定义的私有加密算法而不是标准加密算法来增强安全性

AB

- rand() 采用线性同余法产生周期极长的伪随机数序列,序列完全取决于其种子。在C标准库中,若没有使用 srand() 播种,则默认种子为1,每次生成的是相同的序列,可预测,不安全。
- 安全的加密不应该依赖于算法的保密。

```
以下程序在64位机器下编译、执行后的输出是
#include <iostream>
#include <string>
using namespace std;
int main()
char str[]="This is a string";
char *ptr=str;
cout <<ptr<< "; ";
cout <<*str <<"; ";
cout <<sizeof(str) << " " << sizeof(ptr);
return 0:
  This is a string; This is a string; 16 8
  T; This is a string; 17 17
  ▼ This is a string; T; 17 8
  This is a string; T; 16 4
```

C

• sizeof() 操作符用以查询对象或类型的字节数。

关于New、Malloc、Delete、Free操作描述不正确的是 都是在堆上进行动态内存操作的 Malloc在进行内存分配时需要指定字节数,并会对分配的内存进行初始化 New会自动调用对象的构造函数 free 调用是不会自动调用对象析构函数 ABD • Malloc/Free是标准库函数, New/Delete是C++操作符, 成对使用。 • 用Malloc分配内存是在堆上进行,显式指定分配的长度,返回一个void指针,需显式强制类型转换,无初始 化。 • New分配内存在自由存储区(free store,抽象概念,可能是堆,静态存储区等)进行,分为new和construct 两部分, delete也会进行destruct, free则不会。 http://www.cnblogs.com/QG-whz/p/5140930.html 黑客使用powershell攻击绕过杀毒软件检测,以下说法错误的是 在系统的applocker中禁用脚本可以防御powershell攻击 设置powershell的Execution Policy为Restricted,不允许修改的前提下黑客无法执行powershell代码 Applocker可以防护流行的"挖矿"木马 管理员删除powershell.exe可以防御powershell攻击 AD

• Applocker 不能阻止powershell运行。 http://drops.xmd5.com/static/drops/tips-11804.html

• Applocker对木马有一定防护作用,但也存在很多bypass技术。

• powershell是核心组件,不可移除。

IA64 架构下,哪个寄存器是用作栈顶记录

RBP		
RIP		
RAX		
RSP		

D

- IA64 架构是原生纯64位,不兼容32位,不像x86-64是基于x86的扩展。IA64的ISA是EPIC (**Explicitly Parallel Instruction Computing**,**显式并行指令运算**)。
- http://www.cnblogs.com/bangerlee/archive/2012/05/22/2508772.html

对于有特定用途的几个寄存器,简要介绍如下:

- * ax(accumulator): 可用于存放函数返回值
- * bp(base pointer): 用于存放执行中的函数对应的栈帧的栈底地址
- * sp(stack poinger):用于存放执行中的函数对应的栈帧的栈顶地址
- • ip(instruction pointer): 指向当前执行指令的下一条指令

不同架构的CPU,寄存器名称被添以不同前缀以指示寄存器的大小。例如对于x86架构,字母"e"用作名称前缀,指示各寄存器大小为32位;对于x86_64寄存器,字母"r"用作名称前缀,指示各寄存器大小为64位。

tcp协议状态变迁,在ESTABLISHED状态下主动发送FIN时,进入哪个状态

TIME_WAIT	
FIN_WAIT	
CLOSING	
CLOSE_WAIT	

В

- http://blog.smallmuou.xyz/network/2017/03/24/TCP%E7%8A%B6%E6%80%81%E5%9B%BE.html
- https://coolshell.cn/articles/11564.html
- TCP协议状态机 http://www.tcpipguide.com/free/t TCPOperationalOverviewandtheTCPFiniteStateMachineF-2.htm

近段时间Memcache出现漏洞被利用发起大规模攻击,主要是利用哪个协议进行攻击 ICMP TCP UDP SNMP C 对于C++程序而言,编译成EXE后可以发现,通常局部变量的初始值会存放在____,而全局变量的初始值会存放在____ 堆,栈 栈,text区 堆, code区 栈, 堆 В https://blog.csdn.net/yangquanhui1991/article/details/51786380

在口	Debian中,	想要查看PID为1	000的进程的内	存布局, 请补金	全命令缺失的部	份: cat	/maps
	/etc/	1000					
	/proc	:/pid/1000					
	/proc	:/1000					
	/etc/	pid/1000					
C							
对于	ARM指令N	MOV R1,R0,LSL #2	,已知RO的值为	7, R1的值为5,	R2的值为3。 類	18么这步操作协	行完以后R1的值为?
	ARM指令N 15	//OV R1,R0,LSL #2	,已知RO的值为	7, R1的值为5,	R2的值为3。其	IV公这步操作护	心行完以后R1的值为?
		//OV R1,R0,LSL #2	,已知RO的值为	7, R1的值为5,	R2的值为3。∄	IV公这步操作护	访完以后R1的值为?
		//OV R1,R0,LSL #2	,已知R0的值为	7,R1的值为5,	R2的值为3。∄	III公这步操作的	次完以后R1的值为?
	15	MOV R1,R0,LSL#2	,已知RO的值为	7,R1的值为5,	R2的值为3。其	III公这步操作的	访完以后R1的值为?
	15	MOV R1,R0,LSL #2	,已知RO的值为	7, R1的值为5,	R2的值为3。其	III公这步操作扩	论行完以后R1的值为?
	15 35	MOV R1,R0,LSL #2	,已知R0的值为	7,R1的值为5,	R2的值为3。到	III公这步操作的	的完以后R1的值为?
	15 35	//OV R1,R0,LSL #2	,已知RO的值为	7, R1的值为5,	R2的值为3。其	III公这步操作的	心行完以后R1的值为?

64位程序的char*(字符串类型指针)、函数指针、int32_t*类型分别占用多少个字节的内存
char*类型占用最小
三种类型不同,所以占用内存也不同
■ 函数指针和int32_t*占用内存相同
char*占用8字节
?
全局变量BYTE X = 4,线程A、B、C几乎同时执行的依次执行(1) MOV EAX, X (2) INC EAX (3) MOV X, EAX这三条指令,导致了"条件竞争"的安全问题,请写出三个线程执行完之后,所有可能的值
4, 4, 5
5, 5, 5
4, 5, 6
5, 5, 6

?

下面哪个不属于防御json劫持的办法?

	Cookie鉴权
	Referer校验
	CSRF Token
	以上都不属于
ABC	
json劫持是CSRF的一种。	
http://drops.xmd5.com/s	tatic/drops/papers-42.html
http://www.cnblogs.com/	xusion/articles/3107788.html

http://blog.knownsec.com/2015/03/jsonp_security_technic/

https://shiyousan.com/post/635445288414621221

常用于网页挂马的 HTML 标签不包括下面哪一个?

<pre><iframe></iframe></pre>	
<pre><script></pre></td><td></td></tr><tr><td>_<body></td><td></td></tr><tr><td><pre><select></pre></td><td></td></tr></tbody></table></script></pre>	

domain: .ag	.qq.com, path: /
domain: .qq	.com, path: /
domain: .aq	.qq.com, path: /cn2
domain: .qq	.com, path: /cn2
ath是设置c	ookie的页面的path,默认domain是设置cookie页面的domain及其子域。
	避免程序出现上传文件漏洞,下列哪个是正确的处理办法?
	ASSOCIATION ASSOCIATION OF THE PROPERTY.
	前端限制上传文件后缀
	前端限制上传文件后缀

PHP中,下列哪个函数不可以用来防御针对字符串型参数的SQL注入攻击?

	stripslashes	
	mysql_escape_string	
	mysql_real_escape_string	
A	addcslashes	
	请问下列哪个 URL 与http://aq.qq.com/cn2/index满足浏览器的"同源策略"?	
	https://aq.qq.com/cn2/index	
	http://aq.qq.com:80/cn2/ipwd/my_ipwd	
	http://www.aq.qq.com/cn2/index	
	https://aq.qq.com/cn2/ipwd/my_ipwd	
B https与ht	tp协议不同;C的主机名是www,与题干URL的host不同。	

	可以通过ping 服务器的53端口来判断服务器是否开启DNS服务
	HTTP服务器遭受UDPFLOOD,通常表现CPU 100%
	rst报文不能用于DDoS攻击
	反射攻击主要用于阻塞带宽
BD http://www.	jdfhq.com/Display.aspx?ID=42
以下说	法正确的是?
	CC攻击会造成数据泄露
	公司办公出口IP遭受DNS反射攻击时,可以直接通过封禁UDP源端口53的流量解决
	SNMP反射攻击是TCPFLOOD的一种
	为造源IP无法发起有连接的HTTP GET FLOOD
В	
https://blog	.csdn.net/lanyd/article/details/54976294

以下说法正确的是?

关于反射放大攻击,下列正确的是

	任意协议都可被用作反射放大攻击	
	返回的数据量要大于请求的数据量	
	通常可放大几十倍到上百倍	
	對堵ip的方式可以有效防御反射放大攻击	
ВС		
	TCP协议的数据单元被称为	
	□ 比特	
	<u></u> 帧	
	□ 分段	
	字符	
ABC D		
hit frame nacket segment	data	

bit, frame, packet, segment, data

	一般哪些服务常被用来做反射攻击
	DNS服务
	NTP服务
	Memcached服务
	HTTP服务
ABC	
网络服务器网卡接口充满大量	青求信息,带宽满载,导致系统无法正常服务,这最可能遭受什么攻击?
SQL注入	
DDoS攻击	
APT攻击	
反射放大攻击	
BD	

黑客登录SSH,哪个日志文件会记录?
access.log
secure
boot.log
wtmp
BD https://blog.csdn.net/oxford_d/article/details/51820031
下面哪款工具不能用于反弹shell?
Netcat
Dnscat
meterpreter
maltego
ABC
https://xz.aliyun.com/t/2214

下面哪起事件中恶意代码使用了DNS隧道通信? Xcode Ghost后门事件 XShell后门事件 CCleaner后门事件 Elmedia Player后门事件 В redis无鉴权可能造成getshell, 其默认开放端口是? 1433 53 6379 11211

C

以下哪款工具不具备远程控制功能? 灰鸽子 hydra pupy cobaltstrike ACD 以下哪款工具为系统密码提取工具? nmap hashcat burpsuite mimikatz D

填空题

1. PHP用来过滤命令注入的两个函数是? 和?。

php

Downloads

Documentation

t Involved

ea Hei

safe_mode_exec_dir directive.

Table of Contents

- escapeshellarg Escape a string to be used as a shell argument
- escapeshellcmd Escape shell metacharacters
- exec Execute an external program
- passthru Execute an external program and display raw output
- proc_close Close a process opened by proc_open and return the exit code of that process
- proc_get_status Get information about a process opened by proc_open
- proc_nice Change the priority of the current process
- proc_open Execute a command and open file pointers for input/output
- proc_terminate Kills a process opened by proc_open
- shell_exec Execute command via shell and return the complete output as a string
- system Execute an external program and display the output
- 1. 按照漏洞触发方式的不同,XSS漏洞可分为三类,分别是?、?和?。【反射型XSS、存储型XSS和DOMbase型XSS】
- 2. 填写一下反射攻击报文的源端口: SSDP反射,源端口为1900; Memcache反射,源端口为? 【11211】
- 3. 在进行网络分析时,可使用?命名来测试主机到目标主机之间所经过的所有路由器路径。【traceroute】
- 4. 在常规的Linux场景中,程序员或攻击者可以通过篡改?环境变量的方法,劫持其他程序调用libc函数库。 【LD_PRELOAD】
- 5. 在Linux文件的时间格式中,如果一个文件的属主信息发生变更,则会更新该文件的?时间标志字段。 【mtime】 http://blog.sina.com.cn/s/blog_6e6d706501010r2f.html
- 6. 在Windows的内网入侵渗透过程中,攻击者可以使用Windows自带的?序进行端口转发。【netsh】

附加题

[附加题|10分]

题目描述

你需要黑入一个广泛被采用的智能门禁系统。这个门禁系统搭载Debian操作系统,与它的服务器通过Wiff连接,也通过无线网络与区域内其他智能设备相连。它进行人脸识别及虹膜识别以自动放行。你如何才能使得该系统对不在允许名单中的你进行放行,思路是什么?(社工除外)

① 如需画图或推导,你可以在草稿纸上作答,手机拍照后点此扫码上传

代码语言 > B I U 66 注 注 □ Ⅲ X₂ X² Σ 五

- 1.当门禁处于放行状态时,通过物理手段屏蔽该区域WIFI信号,暂时中断系统和服务器的通信。
- 2.尝试接入门禁系统所用WiFi,嗅探流量以熟悉数据报文格式。伪造相同id的热点迫使设备重连到虚假WiFi,伪造响应报文。
- 3.尝试接入门禁系统所用WiFi,尝试通过arp欺骗实现中间人攻击。
- 4.尝试接入门禁系统所用WiFi,探测操作系统开放端口和服务,探测区域内其他智能设备开放的端口和服务,进一步攻击。

? [附加题|10分]

题目描述

PHP和MySQL环境下,当接收的参数值中单引号、双引号以及小括号都被过滤的情况下,是否可以防御SQL注入拖库?有哪些防御SQL注入拖库的解决方案?请列举三种或以上方案,并简述其实现原理。

① 如需画图或推导,你可以在草稿纸上作答,手机拍照后点此扫码上传

不能彻底防御。如果注入点是数字型注入则不需要引号闭合,因此不能;如果注入点是字符型,也可能存在多点注入,从而根据拼接处上下文,利用注释打通多点注入。

防御方案:

- 1.使用预编译查询语句。通过对将要用到的查询语句进行预编译,使用时以格式化填充参数,达到分离数据和代码的目的。
- 2.过滤用户输入。通过使用有效的waf,过滤敏感字词(单双引号,注释符,分号、空字符等分隔符,select等sql语句关键字),净化用户输入,使得最终执行的查询时无害的。
- 3.安全配置数据库。遵循最小权限原则,使用低权限用户执行数据库操作,禁止查询包含数据库元数据的表,如information_schema等。

[附加题]10分] 题目描述 就最近比较热门的软件供应链安全和区块链安全,应该如何应对?可选一个熟悉的话题,谈谈你的看法。 ① 如需画图或推导,你可以在草稿纸上作答,手机拍照后点此扫码上传

字数: 0

重要提醒:

- ① 本目录页为本场考试的全部题型,你可从任一部分开始作答,进入后需作答完毕,提交该部分答案才可返回目录页,答案提交后无法返回修改。
- ② 答题过程中全程摄像头开启,并会记录你的做题路径。

单选题	5题	满分10分		已提交
不定项选择题	30题	满分75分	少选不得分	已提交
填空题	7题	满分15分		已提交
附加题	3题	满分30分		已提交