Mathematical models of action potentials

Part 5

Outline: Part 5

Theme: Phenomenology versus Mechanism

Is the Hodgkin-Huxley model mechanistic or phenomenological?

Some aspects are clearly mechanistic

Other aspects may appear phenomenological

When mechanism is known, can a phenomenological model be useful?

The Fitzhugh-Nagumo model

Phenomenology versus Mechanism

Is the Hodgkin-Huxley model mechanistic or phenomenological?

Answer: both

Mechanism: Separation of I_{ion} into I_{Na} and I_K

Phenomenology: Functions describing $\alpha(V)$, $\beta(V)$

$$\beta_m(V) = 4.0e^{\frac{-(V+60)}{20}}$$

No physical basis for exponential function Numbers 4, 60, 20, chosen simply to fit the data

Phenomenology begets mechanism: $I_K = G_K n^4 (V - E_K)$ Four particle model based on curve fitting Tetrameric ion channel structure is now a rigorous physical basis

Phenomenology begets Mechanism

Hodgkin-Huxley model

Tetrameric ion channel structure

Nature Reviews | Drug Discovery

Novak & Tyson model

IE = intermediate enzyme

This is now known to correspond to Fizzy/cdc20

Phenomenology versus Mechanism

An extreme case: the Fitzhugh-Nagumo model

time

Fitzhugh (1961), *Biophys. J.* 1:445-466.

Dr. Richard Fitzhugh

$$dV/dt = V - V^3 - W - I$$

 $dW/dt = 0.08*(V + 0.7-0.8W)$

V: voltage-like variable

W: recovery variable

An abstract and clearly phenomenological model

$$dV/dt = V - V^3 - W - I$$

 $dW/dt = 0.08*(V + 0.7-0.8W)$

Only 2 variables

No explicit ionic currents included

Recovery variable W not related to any specific biological process

This model was published 9 years after Hodgkin-Huxley.

Can it have any value?

Why would anyone care about a two-variable phenomenological model when a "better" more mechanistic, four-variable model already exists?

One reason: In the pre-digital era, this model was much easier to implement

Dr. Jin-Ichi Nagumo

Electronic circuit built using tunnel diodes

Nagumo et al., (1962) Proc. IRE. 50:2061-2070

Benefits of a generic two-variable model

V nullcline:

$$W = V - V^3 - I$$

W nullcline:

$$W = (V + 0.7)/0.8$$

Electrical stimulus: an instantaneous increase in V

Constant current injection (negative I) will shift V nullcline up

Repetitive action potentials with constant current = conversion from stable fixed point to stable limit cycle

Summary

The Hodgkin-Huxley model, like most mathematical models, contains a mixture of mechanistic and phenomenological elements.

When a phenomenological representation is later found to have a mechanistic basis, this is usually a modeling success.

When mechanism is known, phenomenological representations can nonetheless be very useful for the general insight they provide A prominent example: the Fitzhugh-Nagumo model

Simulating a propagating action potential

Electrical propagation involves spatial voltage gradients

Imagine a long, one-dimensional axon

(1) Starts at rest, then locally stimulated

(2) Depolarized on left, resting on right

(3) Electrical current will flow both inside and outside

Electrical propagation results from spatial voltage gradients Imagine a long, one-dimensional axon

(4) More tissue will become depolarized

(5) Etc.

This is the basic mechanism by which action potentials propagate
But now voltage depends on both <u>time</u> and <u>location</u>
We need to solve a system of Partial Differential Equations (PDEs)

A propagated action potential

V, m, h, n, now functions of both time and location The relevant equation for voltage is:

$$C_{m} \frac{\partial V}{\partial t} = \frac{a}{2\rho_{i}} \frac{\partial^{2} V}{\partial x^{2}} - I_{ion}$$

a "partial" rather than an "ordinary" differential equation Pertinent questions:

1) Where does this equation come from?

(provided in supplementary slides)

2) How do we solve this in practice?

Notes on the 1-D cable equation

$$C_{m} \frac{\partial V}{\partial t} = \frac{a}{2\rho_{i}} \frac{\partial^{2} V}{\partial x^{2}} - I_{ion}$$

1) This is a reaction-diffusion equation.

These equations appear in other contexts, e.g. sub-cellular diffusion of Ca²⁺ and other second messengers.

2) This is a partial differential equation (PDE).

To obtain a numerical solution, must convert to discrete form in both space and time.

$$\left. \frac{\partial V}{\partial t} \right|_{j}^{t} \approx \frac{V_{j}^{t+\Delta t} - V_{j}^{t}}{\Delta t} \qquad \left. \frac{\partial^{2} V}{\partial x^{2}} \right|_{j}^{t} \approx \frac{V_{j+1}^{t} - 2V_{j}^{t} + V_{j-1}^{t}}{\Delta x^{2}}$$

PDE solvers, like ODE solvers, are based on such discrete approximations.

Explicit versus Implicit Solutions

$$C_{m} \frac{\partial V}{\partial t} = \frac{a}{2\rho_{i}} \frac{\partial^{2} V}{\partial x^{2}} - I_{ion}$$

Explicit solutions

Solve for each future value of V based on current values of V

$$C_{m} \frac{V_{j}^{t+\Delta t} - V_{j}^{t}}{\Delta t} = \frac{a}{2\rho_{i}} \frac{V_{j+1}^{t} - 2V_{j}^{t} + V_{j-1}^{t}}{\Delta x^{2}} - I_{ion}^{t}$$

Implicit solutions

Solve for future values of V based on future values of V

$$C_{m} \frac{V_{j}^{t+\Delta t} - V_{j}^{t}}{\Delta t} = \frac{a}{2\rho_{i}} \frac{V_{j+1}^{t+\Delta t} - 2V_{j}^{t+\Delta t} + V_{j-1}^{t+\Delta t}}{\Delta x^{2}} - I_{ion}^{t+\Delta t}$$

Explicit versus Implicit Solutions

Explicit solutions are simple to implement

Rearrange so that future is on LHS, present on RHS

$$V_{j}^{t+\Delta t} = V_{j}^{t} + \Delta t \frac{a}{2\rho_{i}C_{m}} \left[\frac{V_{j+1}^{t} - 2V_{j}^{t} + V_{j-1}^{t}}{\Delta x^{2}} - I_{ion}^{t} \right]$$

plus similar equations for $V_{i+1}^{t+\Delta t}$ $V_{i-q}^{t+\Delta t}$.

$$V_{j+1}^{t+\Delta t}$$
 $V_{j-qtc}^{t+\Delta t}$

This just converts the PDE into large system of ODEs

Advantage: simple

Disadvantage: for stability $\Delta t \sim \Delta x^2$, must be very small

Explicit solutions of PDEs can take a very long time to run.

Explicit versus Implicit Solutions

Implicit solutions are conceptually more difficult

$$C_{m} \frac{V_{j}^{t+\Delta t} - V_{j}^{t}}{\Delta t} = \frac{a}{2\rho_{i}} \frac{V_{j+1}^{t+\Delta t} - 2V_{j}^{t+\Delta t} + V_{j-1}^{t+\Delta t}}{\Delta x^{2}} - I_{ion}^{t+\Delta t}$$

Computing $I_{ion}^{t+\Delta t}$ requires knowing m^{t+ Δt}, h^{t+ Δt}, n^{t+ Δt}.

In practice, reaction treated explicitly, diffusion implicitly.

$$C_{m} \frac{V_{j}^{t+\Delta t} - V_{j}^{t}}{\Delta t} = \frac{a}{2\rho_{i}} \frac{V_{j+1}^{t+\Delta t} - 2V_{j}^{t+\Delta t} + V_{j-1}^{t+\Delta t}}{\Delta x^{2}} - I_{ion}^{t}$$

Even with this simplification, the equation still has 3 unknowns!

$$-\frac{a}{2\rho_{i}\Delta x^{2}}V_{j+1}^{t+\Delta t} + \left[\frac{a}{\rho_{i}\Delta x^{2}} + \frac{C_{m}}{\Delta t}\right]V_{j}^{t+\Delta t} - \frac{a}{2\rho_{i}\Delta x^{2}}V_{j-1}^{t+\Delta t} = \frac{C_{m}}{\Delta t}V_{j}^{t} - I_{ion}^{t}$$

Must solve for the three unknowns simultaneously.

This requires inverting a matrix.

Implicit Solution of HH Equations

$$\begin{bmatrix} \ddots & \ddots & \ddots & \\ \frac{-a}{2\rho_{i}\Delta x^{2}} & (\frac{a}{\rho_{i}\Delta x^{2}} + \frac{C_{m}}{\Delta t}) & \frac{-a}{2\rho_{i}\Delta x^{2}} & \\ & \frac{-a}{2\rho_{i}\Delta x^{2}} & (\frac{a}{\rho_{i}\Delta x^{2}} + \frac{C_{m}}{\Delta t}) & \frac{-a}{2\rho_{i}\Delta x^{2}} & \\ & \frac{-a}{2\rho_{i}\Delta x^{2}} & (\frac{a}{\rho_{i}\Delta x^{2}} + \frac{C_{m}}{\Delta t}) & \frac{-a}{2\rho_{i}\Delta x^{2}} \end{bmatrix} \cdot \begin{bmatrix} \vdots \\ V_{j-1}^{t + \Delta t} \\ V_{j-1}^{t + \Delta t} \\ V_{j+1}^{t + \Delta t} \\ \vdots \end{bmatrix} = \frac{C_{m}}{\Delta t} \begin{bmatrix} \vdots \\ V_{j-1}^{t} \\ V_{j+1}^{t} \\ \vdots \end{bmatrix} - \begin{bmatrix} \vdots \\ I_{ion j-1}^{t} \\ I_{ion j+1}^{t} \\ \vdots \end{bmatrix}$$

This is a matrix equation Ax = b

$$x = A^{-1}b$$

Thus, implicit solutions involve inverting a matrix at each time step

Supplementary Slides

One dimensional electrical propagation

AP propagating down a uniform cable

Analyze the cable as coupled equivalent circuits

Analyze cable as coupled equivalent circuits

 R_i =intracellular resistance V^i =voltage at the jth element of the cable

For simplicity, assume that R_e =0 so that all extracellular voltages are grounded. Then intracellular potential = transmembrane potential at all elements.

A reasonable assumption for an isolated fiber in a bath.

What equations describe the jth element of the cable?

$$I^{j-1 o j} = (V^{j-1} - V^{j}) / R_{i}$$
 $I^{j o j+1} = (V^{j} - V^{j+1}) / R_{i}$
 $I^{j-1 o j} = I^{j o j+1} + AI_{m}^{j}$

Ohm's law

Kirchoff's current law

where A is the surface area of the jth element

$$I_m^j = C_m \frac{dV^j}{dt} + I_{ion}^j$$
 Membrane currents are normalized per unit area.

Putting the equations together:

$$(V^{j-1} - V^{j})/R_{i} = (V^{j} - V^{j+1})/R_{i} + A C_{m} \frac{dV^{j}}{dt} + I_{ion}^{j}$$

Rearranging yields:

$$C_{m} \frac{dV^{j}}{dt} = \frac{(V^{j-1} - 2V^{j} + V^{j+1})}{AR_{i}} - I_{ion}^{j}$$

How can we relate R_i to cable geometry?

Substituting yields:

$$C_{m} \frac{dV^{j}}{dt} = \frac{a}{2\rho_{i}} \frac{(V^{j-1} - 2V^{j} + V^{j-1})}{\Delta x^{2}} - I_{ion}^{j}$$

As $\Delta x \rightarrow 0$, this becomes:

$$C_{m} \frac{\partial V}{\partial t} = \frac{a}{2\rho_{i}} \frac{\partial^{2}V}{\partial x^{2}} - I_{ion}$$
 Dropped the j superscript. This applies for all j

This is the nonlinear cable equation

Consider example of HCO₃ in proximal tubule

How do we describe diffusion of HCO₃⁻ from apex to base?

Represent cell as a series of discrete segments

 $[HCO_3]_i$ = concentration in sub-cube i D_{HCO3} = intracellular diffusion constant Δx = distance between adjacent sub-cubes

What are the equations that describe diffusion from apex to base?

First consider diffusion within three sub-cubes

$$J_{i-1\to i} = D_{HCO_3} \frac{([HCO_3]_{i-1} - [HCO_3]_i)}{\Delta x}$$

$$J_{i \to i+1} = D_{HCO_3} \frac{([HCO_3]_i - [HCO_3]_{i+1})}{\Delta x}$$

Fick's first law of diffusion

How to relate to changes in [HCO₃-]_i?

Intuitively, d[HCO₃]_i/dt depends on inflow vs. outflow, $J_{i-1 \rightarrow i} - J_{i \rightarrow i+1}$ Need to consider units to express this precisely

Δx: cm

 $[HCO_3]: mM;$

equivalent to µmol/cm³

D_{HCO3}: cm²/s

$$J_{i-1 \to i} = D_{HCO_3} \frac{([HCO_3]_{i-1} - [HCO_3]_i)}{\Delta x}$$

 $J_{i\rightarrow i+1}$: μ mol/(cm² s)

Therefore we must convert from µmol/(cm² s) to µmol/(cm³ s)

Need to convert from µmol/(cm² s) to µmol/(cm³ s)

Multiply by inter-cube surface area A, then divide by volume (V_i)

$$\frac{d[HCO_3]_i}{dt} = \frac{A(J_{i-1\to i} - J_{i\to i+1})}{V_i}$$

But
$$V_i = A\Delta x$$

So
$$\frac{d[HCO_3]_i}{dt} = \frac{(J_{i-1\to i} - J_{i\to i+1})}{\Delta x}$$

Thus:

$$\frac{d[HCO_{3}]_{i}}{dt} = D_{HCO_{3}} \frac{\left[\frac{([HCO_{3}]_{i-1} - [HCO_{3}]_{i})}{\Delta x} - \frac{([HCO_{3}]_{i} - [HCO_{3}]_{i+1})}{\Delta x}\right]}{\Delta x}$$

What is the limit as $\Delta x \rightarrow 0$?

$$\lim_{\Delta x \to 0} \frac{([HCO_3]_{i-1} - [HCO_3]_i)}{\Delta x} = \frac{d[HCO_3]}{dx}$$

$$\lim_{\Delta x \to 0} \frac{\left[\frac{([HCO_3]_{i-1} - [HCO_3]_i)}{\Delta x} - \frac{([HCO_3]_i - [HCO_3]_{i+1})}{\Delta x}\right]}{\Delta x} = \frac{d^2[HCO_3]}{dx^2}$$

So, in the limit of small Δx , our equation becomes

$$\frac{\partial [HCO_3]_i}{\partial t} = D_{HCO_3} \frac{\partial^2 [HCO_3]}{\partial x^2}$$

This is a one-dimensional diffusion equation

What if some first order intracellular process is also consuming HCO₃?

Then,

$$\frac{d[HCO_3]_i}{dt} = \frac{J_{i-1\to i}}{\Delta x} - \frac{J_{i\to i+1}}{\Delta x} - k[HCO_3]_i$$

In the continuum limit:

$$\frac{\partial [HCO_3]_i}{\partial t} = D_{HCO_3} \frac{\partial^2 [HCO_3]}{\partial x^2} - k[HCO_3]$$

This is a reaction-diffusion equation. Where have we seen this before?