Attack-defense semantics of argumentation

Beishui LIAO ^{a,1}, Leendert VAN DER TORRE ^b

^a Zhejiang University

^b University of Luxembourg

Abstract. This is the appendix for all the proofs in the paper "Attack-defense semantics of argumentation".

A. Proofs

Theorem 1. If D is a stable attack-defense extension, then it is complete and preferred, but not necessarily vice versa.

Proof. Since for all $z_y^x \in T \setminus D$, $y \in \mathbf{defendee}(D)$, $D \cup \{z_y^x\}$ is not admissible. So, D is complete. Assume that D is not maximal. Let $D' \subset D$ be a preferred attack-defense extension. For each $z_y^x \in D' \setminus D$, $D \cup \{z_y^x\}$ is not admissible. So, D' is not admissible. Contradiction. For the counter example, consider $T = \{a_a^a\}$. The emptyset is both a preferred attack-defense extension and a complete attack-defense extension, but not a stable attack-defense extension.

Theorem 2. Let D be a set of attack-defenses. If $defendee(D) \cap attacker(D) = \emptyset$, then D is a complete attack-defense extension iff $D = F_T(D)$. The grounded attack-defense extension is the least complete attack-defense extension of F (w.r.t. set inclusion).

Proof. Since **defendee**(D) \cap **attacker**(D) = \emptyset and D = $F_T(D)$, D is admissible. Since no attack-defense in $T \setminus D$ is successful w.r.t. D, D is complete. Since F_T is monotonic, there is a unique least fixed point that is the least complete attack-defense extension of F. \square

Theorem 3. Let $T \subseteq \mathcal{D}^U$ be an attack-defense framework. For all $D \in \Sigma(T)$, $x, u \in \mathbf{argument}(T)$, if z_y^x , $w_v^u \in D$, $z_{y'}^w \in T$, then $z_{y'}^w \in D$.

Proof. We need to verify this property under complete attack-defense semantics. Since $w_v^u \in D$, $w \in \mathbf{defendee}(D)$. Since $z_y^x \in D$, for each $y' \neq y$ that attacks $z, \exists z_{v'}^{x'} \in D$. Thus, $z_{v'}^w$ is successful w.r.t. D. Since D is a complete attack-defense extension, $z_{v'}^{w} \in D$.

Theorem 4. For all $D \in \Sigma(T)$, if $z_y^x \in D$ and $x \neq T$ then there exists $x_{y'}^u \in T$ s.t. $x_{y'}^u \in D$.

Proof. According to Definition 3, since $z_y^x \in D$, it holds that defender $x \in \mathbf{defendee}(D)$. So, there exist $u, y' \in \mathbf{argument}(T)$ such that $x_{y'}^u \in D$.

¹Corresponding Author: Beishui Liao.

Theorem 5. For all z_{ν}^{x} , $v_{\nu}^{u} \in T$, it is not necessary that $v_{\nu}^{x} \in T$.

Proof. By definition, this property obviously holds.

Theorem 7. Defenses $z_y^y, z_z^x \in T$ are unsatisfiable. Furthermore, if $z_y^y \in T$, then u_v^y is unsatisfiable under semantics $\Sigma \in \{CO, PR, GR, ST\}$.

Proof. First, z_y^y means that y self-attacks and it attacks z. If z_y^y is in an admissible set of attack-defenses, then y is a defendee. According to Definition 4, **defendee** $(D) \cap$ **attacker** $(D) \neq \emptyset$. Contradiction. Second, obviously, z_z^x is not satisfiable. Third, assume that u_y^y is in some attack-defense admissible set D. Then, according to Theorm 4, there exists $y_w^x \in T$ such that $y_w^x \in D$. If w = y, then this contradicts **defendee** $(D) \cap$ **attacker** $(D) = \emptyset$. Otherwise, according to the definition of complete attack-defense extension, z_y^y is also in D. This also contradicts **defendee** $(D) \cap$ **attacker** $(D) = \emptyset$.

Theorem 8. If there exist $x_z^y, y_x^z, z_y^x \in T$, then x_z^y, y_x^z and z_y^x are unsatisfiable under semantics $\Sigma \in \{CO, PR, GR, ST\}$.

Proof. Assume that x_z^y is in some admissible set $D \subseteq T$. Then, y_x^z is also in D. As a result, **defendee** $(D) \cap$ **attacker** $(D) \supseteq \{x\}$, contradicting **defendee** $(D) \cap$ **attacker** $(D) = \emptyset$.

Theorem 9. For any attack-defense framework T, and for $\Sigma \in \{CO, PR, GR\}$, $\Sigma(T) = \Sigma(T^-)$.

Proof. Under complete attack-defense semantics, let $D \in CO(T)$. Since for all $z_y^x \in u(T)$, z_y^x is unsatisfiable, $z_y^x \notin D$. According to Definitions 4 and 5, D is a complete attack-defense extension of T^- . On the other hand, let $D \in CO(T^-)$. Since any attack-defense in u(T) is unsatisfiable, adding it to T^- does not affect the evaluation of other attack-defenses. Therefore, D is a complete attack-defense extension of T. Similarly, under preferred and grounded attack-defense semantics, this property also holds.

Theorem 10. For any attack-defense frameworks T and T', for any $B \subseteq \mathbf{argument}(T) \cap \mathbf{argument}(T')$, if $T \equiv_d^{\Sigma} T'$ then $T \equiv_{r,B}^{\Sigma} T'$, but not vice versa.

Proof. Since $T \equiv_d^{\Sigma} T'$, $\Sigma(T) = \Sigma(T')$. For all $D \in \Sigma(T)$, for all $z \in B$, $root_{\Sigma}(z,T) = root_{\Sigma}(z,T')$. As a result, $T \equiv_{r,B}^{\Sigma} T'$.

For the converse direction, consider T_3 and T_3' in Examples 3 and 4. Under preferred attack-defense semantics, $PR(T_3) \neq PR(T_3')$, i.e., it is not the case that $T_3 \equiv_d^{PR} T_3'$. Meanwhile, let $B = \{a, b\}$. As described in Example 4, we have $T_3 \equiv_{RR}^{PR} T_3'$.

Theorem 11. Let $d(\mathscr{F})$ be the attack-defense framework of an AF $\mathscr{F} = (\mathscr{A}, \to)$. For all $z_{v}^{x}, v_{v}^{u} \in d(\mathscr{F})$, it holds that $v_{v}^{x} \in d(\mathscr{F})$.

Proof. Since $z_y^x, v_y^u \in d(\mathscr{F})$, it holds that $x \to y, y \to z, u \to y$ and $y \to v$. Given that $x \to y$ and $y \to v$, we have $v_y^x \in d(\mathscr{F})$.

Theorem 12. For all $D \in \Sigma(d(\mathscr{F}))$, **defendee** $(D) \in \sigma(\mathscr{F})$, where $\Sigma \in \{CO, PR, GR, ST\}$ and $\sigma \in \{co, pr, gr, st\}$.

Proof. Let *D* be a complete attack-defense extension of $d(\mathscr{F})$. According to Definition 4, **defendee**(*D*) \cap **attacker**(*D*) = \emptyset . Hence, **defendee**(*D*) is conflict-free. According to Definition 3, for all $z \in \mathbf{defendee}(D)$, z is an initial argument, or every attacker of z is attacked by an argument in **defendee**(*D*). So, **defendee**(*D*) is an admissible set of arguments. According to Definition 5, each successful attack-defense w.r.t. *D* is in *D*. So, each argument that is defended by **defendee**(*D*) is in **defendee**(*D*). Therefore, **defendee**(*D*) is a complete extension of \mathscr{F} . When *D* is a preferred attack-defense extension, it is easy to see that **defendee**(*D*) is a maximal complete extension (w.r.t. set inclusion) and therefore is a preferred extension of \mathscr{F} . Similarly, this properpy holds under grounded attack-defense semantics. Finally, when *D* is a stable attack-defense extension, for all $z_y^x \in d(\mathscr{F}) \setminus D$, $y \in defendee(D)$. This means that for each argument $z \in \mathscr{A} \setminus defendee(D)$, z is attacked by an argument y in **defendee**(z). Hence, **defendee**(z) is a stable extension of z.

Theorem 13. For all $E \in \sigma(\mathscr{F})$, let $\operatorname{def}(E) = \{z_y^x \mid z_y^x \in \operatorname{d}(\mathscr{F}) : x, z \in E\} \cup \{z_{\perp}^{\top} \mid z_{\perp}^{\top} \in \operatorname{d}(\mathscr{F}) : z \in E\}$. Then, $\operatorname{def}(E) \in \Sigma(\operatorname{d}(\mathscr{F}))$.

Proof. Let E be a complete extension of \mathscr{F} . For each $z_y^x \in \text{def}(E)$, since $x, z \in E$ and E is admissible, z_y^x is successful w.r.t. def(E). **defendee** $(\text{def}(E)) \cap \text{attacker}(\text{def}(E)) = \emptyset$. Otherwise, if there is an attacker in def(E) that is a defendee, then E = defendee(def(E)) is not conflict-free, contradicting the fact that E is conflict-free. As a result, def(E) is admissible. Assume that def(E) is not complete. Then, there exists $z_y^x \in \text{de}(\mathscr{F})$, such that z_y^x is successful w.r.t. def(E), and $z_y^x \notin \text{def}(E)$. Since $z_y^x \notin \text{def}(E)$, $x \notin E$ or $z \notin E$. If $x \notin E$, then $x \notin \text{defendee}(\text{def}(E))$ and therefore z_y^x is not successful w.r.t. def(E). Contradiction. Alternatively, if $z \notin E$, then since E is a complete extension of \mathscr{F} , z is not defended by E. Then, there exists $y' \neq y$, such that y' attacks z and y' is not attacked by any argument in E. It turns out that z_y^x is not successful w.r.t. def(E). Contradiction. Hence, def(E) is a complete attack-defense extension of $\text{def}(\mathscr{F})$.

When E is a preferred extension of \mathscr{F} , E is maximal and therefore def(E) is maximal (w.r.t. set inclusion). Hence, def(E) is a preferred attack-defense extension of $d(\mathscr{F})$. Similarly, this properpy holds under grounded semantics.

Finally, when E is a stable extension of \mathscr{F} , for all $z \in \mathscr{A} \setminus E$, z is attacked by an argument in E. This means that for each defense $z_y^x \in d(\mathscr{F}) \setminus def(E)$, $y \in defendee(def(E))$. Therefore, def(E) is a stable attack-defense extension of $d(\mathscr{F})$.

Theorem 14. Let \mathscr{F} and \mathscr{G} be two AFs. If $d(\mathscr{F}) \equiv_d^{\Sigma} d(\mathscr{G})$, then $\mathscr{F} \equiv^{\sigma} \mathscr{G}$, where $\Sigma \in \{CO, PR, GR, ST\}$, $\sigma \in \{co, pr, gr, st\}$.

Proof. If $d(\mathscr{F}) \equiv_d^{\Sigma} d(\mathscr{G})$, then $\Sigma(d(\mathscr{F})) = \Sigma(d(\mathscr{G}))$. According to Theorem 12, $\sigma(\mathscr{F}) = \mathbf{defendee}(\Sigma(d(\mathscr{F}))) = \mathbf{defendee}(\Sigma(d(\mathscr{G}))) = \sigma(\mathscr{G})$. Since $\sigma(\mathscr{F}) = \sigma(\mathscr{G})$, $\mathscr{F} \equiv^{\sigma} \mathscr{G}$.

Lemma 1. It holds that $CO(d(\mathscr{F})) = CO(d(\mathscr{F}^{ck}))$.

Proof. Since for every attack-defense that is related to a self-attacking argument is unsatsifiable, it is clear that $CO(d(\mathscr{F})) = CO(d(\mathscr{F}^{ck}))$.

Theorem 15. Let \mathscr{F} and \mathscr{G} be two AFs. If $\mathscr{F} \equiv_s^{co} \mathscr{G}$, then $d(\mathscr{F}) \equiv_d^{CO} d(\mathscr{G})$.

Proof. Obvious.

Theorem 16. Let $\mathscr{F} = (\mathscr{A}_1, \to_1)$ and $\mathscr{H} = (\mathscr{A}_2, \to_2)$ be two AFs. If $d(\mathscr{F}) \equiv_r^{\Sigma} d(\mathscr{H})$, then $\mathscr{F} \equiv^{\sigma} \mathscr{H}$, where $\Sigma \in \{\text{CO}, \text{PR}, \text{GR}, \text{ST}\}$ and $\sigma \in \{\text{co}, \text{pr}, \text{gr}, \text{st}\}$.

Proof. According to Definition 14, under complegte semantics, the number of extensions of $co(\mathscr{F})$ is equal to the number of $root_{CO}(z, d(\mathscr{F}))$, where $z \in \mathscr{A}_1$. Since $root_{CO}(z, d(\mathscr{F})) = root_{CO}(z, d(\mathscr{H}))$, $\mathscr{A}_1 = \mathscr{A}_2$.

Let $root_{CO}(z, d(\mathscr{F})) = root_{CO}(z, d(\mathscr{H})) = \{R_1, ..., R_n\}$. Let $co(\mathscr{F}) = \{E_1, ..., E_n\}$ be the set of extensions of \mathscr{F} , where $n \ge 1$.

For all $\alpha \in \mathcal{A}_1$, for all R_i , i = 1, ..., n, we have $\alpha \in E_i$ iff $R_i \neq \{\}$, in that in terms of Definition14, when $R_i \neq \{\}$, there is a reason to accept α .

On the other hand, let $co(\mathscr{H}) = \{S_1, \dots, S_n\}$ be the set of extensions of \mathscr{H} . For all $\alpha \in \mathscr{A}_2 = \mathscr{A}_1$, for all R_i , $i = 1, \dots, n$, for the same reason, we have $\alpha \in S_i$ iff $R_i \neq \{\}$. So, it holds that $E_i = S_i$ for $i = 1, \dots, n$, and hence $co(\mathscr{F}) = co(\mathscr{H})$, i.e., $\mathscr{F} \equiv^{co} \mathscr{H}$.

Simlarly, this property holds under preferred semantics and grounded semantics, respectively.

Finally, under stable semantics, if $ST(d(\mathscr{F})) = ST(d(\mathscr{H})) = \emptyset$, then $st(\mathscr{F}) = st(\mathscr{H}) = \emptyset$. Hence, $\mathscr{F} \equiv^{st} \mathscr{H}$. Otherwise, $st(\mathscr{F}) = st(\mathscr{H}) \neq \emptyset$. In this case, as verified under complete semantics, it holds that $\mathscr{F} \equiv^{st} \mathscr{H}$.