Laboratorio di Architetture degli Elaboratori I Corso di Laurea in Informatica, A.A. 2022-2023 Università degli Studi di Milano

Introduzione alla rappresentazione dei numeri

Turno A: Gabriella Trucco, Cognomi A-FIN, gabriella.trucco@unimi.it

Turno B: Massimo W. Rivolta, Cognomi FIO-PAL, massimo.rivolta@unimi.it

Turno C: Matteo Re, Cognomi PAM-Z, matteo.re@unimi.it

Riferirsi al sito Ariel del docente di teoria per i dettagli organizzativi

Informazioni

Sito web del corso:

https://nbasilicoae1.ariel.ctu.unimi.it/v5/home/Default.aspxhttps://aborgheseae1.ariel.ctu.unimi.it/v5/home/Default.aspx

• Esame: prova in laboratorio

Rappresentazione dei numeri: notazione posizionale

- Base B: numero di simboli usati per rappresentare i numeri nel sistema posizionale.
 - B = 10, simboli {0, 1, ..., 9}
 - B = 16, simboli {0, 1, ..., 9, A, B, C, D, E, F}
- Notazione posizionale:
 - ogni simbolo ha una posizione, descritta con un intero i
 - ad ogni posizione i si associa un peso pi
 - al simbolo in posizione i viene associato il valore dato da:

VALORE DEL SIMBOLO IN POSIZIONE
$$i \times p_i$$

- di solito p_i = Bⁱ
- più è alto il peso associato a un simbolo, più significativo è quel simbolo

Rappresentazione dei numeri: notazione posizionale

Esempio: $(147)_{10}$

cifre 1 4 7
posizioni
$$i$$
 2 1 0
pesi p_i 10^2 10^1 10^0

$$(147)_{10} = 1 \cdot 10^2 + 4 \cdot 10^1 + 7 \cdot 10^0$$

In generale, dato un N intero non negativo scritto con n cifre come $(c_{n-1}c_{n-2}\ldots c_0)_B$, il valore rappresentato è:

$$\sum_{i=0}^{n-1} c_i \cdot B^i = c_0 \cdot B^0 + c_1 \cdot B^1 + \ldots + c_{n-2} \cdot B^{n-2} + c_{n-1} \cdot B^{n-1}$$

Da base B a base decimale

- PROBLEMA: Scrivere in base B=10 un numero dato in base $B \neq 10$ (B=2 o B=16)
- SOLUZIONE: applicare il metodo polinomiale

Esempio 1:

$$(1010)_2 = (10)_{10}$$

Esempio 2:

$$(3AC)_{16} = (940)_{10}$$

Da base decimale a base B

- PROBLEMA: Scrivere in base $B \neq 10$ (B = 2 o B = 16) un numero dato in base B = 10
- SOLUZIONE: applicare il metodo iterativo (divisioni)

Procedimento

Abbiamo un numero $(N)_{10}$ da convertire nella base B:

- dividere N per B (con una divisione intera);
- il resto della divisione diventa la prima cifra meno significativa che resta da calcolare del numero in base B;
- se il quoziente è 0 abbiamo finito;
- se il quoziente è diverso da zero si torna al passo 1 considerando il quoziente come dividendo;

Da base decimale a base B

```
Esempio 1: (13)_{10} = (?)_2
13: 2 = 6 \quad \text{resto} = 1 \quad \text{LSD}
6: 2 = 3 \quad \text{resto} = 0
3: 2 = 1 \quad \text{resto} = 1
1: 2 = 0 \quad \text{resto} = 1 \quad \text{MSD}
(13)_{10} = (1101)_2
```

Esempio 2: $(4021)_{10} = (?)_{16}$

Da base B = 2 a base B = 16 e vice versa

- PROBLEMA: Scrivere in base B=2 (B=16) un numero dato in base B=16 (B=2)
- SOLUZIONE: raggruppamento dei simboli e lookup table

Esempio 1: $(111001)_2 = (?)_{16}$ $16 = 2^4$, raggruppo i bit partendo da destra a gruppi di 4:

Con 4 bit ho 2^4 valori, uno per ogni simbolo della base B=16.

0	0000	4	0100	8	1000	C	1100
1	0001	5	0101	9	1001	D	1101
2	0010	6	0110	Α	1010	E	1110
3	0011	7	0111	В	1011	F	1111

Ispezionando la tabella:

$$(0011 \mid 1001)_2 = (39)_{16}$$

Da base B = 2 a base B = 16 e vice versa

Esempio 2: $(EA0)_{16} = (?)_2$

$$E \mid A \mid 0$$

0	0000	4	0100	8	1000	C	1100
1	0001	5	0101	9	1001	D	1101
2	0010	6	0110	Α	1010	E	1110
3	0011	7	0111	В	1011	F	1111

$$(E \mid A \mid 0)_{16} = (1110 \ 1010 \ 0000)_2$$

Somma di interi non negativi

Come la somma in decimale, ricordare che quando sommiamo singole cifre binarie:

$$0+0=0 \qquad \text{riporto} = 0 \\ 0+1=1 \qquad \text{riporto} = 0 \\ 1+0=1 \qquad \text{riporto} = 0 \\ 1+1=0 \qquad \text{riporto} = 1 \\ 1+1+1=1 \qquad \text{riporto} = 1$$

Esempio 1: $(1101)_2 + (111)_2$

Esempio 2: $(111010)_2 + (1101110010)_2$

Interi con numero finito di bit

- Le architetture degli elaboratori lavorano con un numero finito di bit
- Dati n bit:
 - Ci sono 2ⁿ simboli
 - I numeri positivi rappresentabili risiedono nell'intervallo [0, 2ⁿ-1]

- Rappresentazione in complemento a 2 (C2)
 - Dati n bit, un numero positivo N è rappresentato in modo standard (come abbiamo visto per i non negativi)
 - -N, invece si rappresenta come $2^n N$
- Metodo operativo per rappresentare -N:
 - Rappresentare il modulo N in modo standard
 - Complementare a 1 tutti i bit (1 ← 0, 0 ← 1)
 - Sommare 1

- In complemento a 2, con n bit, possiamo rappresentare gli interi nell'intervallo: $[-2^{n-1}; 2^{n-1} 1]$
- Esempio: con 3 bit rappresentiamo i numeri in ... [−4; 3]

$N_{(10)}$	$N_{(C2)}$	$N_{(10)}$	$N_{(C2)}$
-4	100	0	000
-3	101	+1	001
-2	110	+2	010
-1	111	+3	011

- Il primo bit indica ancora il segno
- Lo zero ha una sola codifica

```
Esempio 1: (-18)_{10} = (?)_{C2}
```

Esempio 2: $(9)_{10} = (?)_{C2}$

Esempio 3: $(-6)_{10} = (?)_{C2}$

Somma di interi

- Rappresentare i numeri in C2
- Effettuare la somma in modo standard
- Non considerare l'eventuale riporto oltre il bit di segno

Esempio 1:
$$(60)_{10} - (54)_{10} = (60)_{10} + (-54)_{10}$$

Somma di interi: overflow

- Sommiamo due interi in C2 rappresentati con n bit, quindi appartenenti a [-2ⁿ⁻¹; 2ⁿ⁻¹ - 1]
- Può succedere che il risultato cada al di fuori dell'intervallo
- Overflow: n bit in C2 bastano per rappresentare gli operandi,
 ma non per rappresentare il risultato
- Come riconoscerlo?
 - può succedere solo quando si sommano due operandi dello stesso segno: se il segno del risultato è diverso da quello degli operandi è avvenuto un overflow
 - gli ultimi due riporti sono diversi tra loro (01 o 10)

Somma di interi: esempio di overflow

Esempio: $(100)_{C2} + (101)_{C2}$

 Sto sommando su 3 bit −4 e −3, il risultato sarebbe: −7 < −2^{3−1}, non rappresentabile in C2 su 3 bit.

Somma di interi: esempi

```
Esempio 1: -(1101)_2 - (111)_2
Esempio 2: -(1101)_2 - (111)_2 Stesso esempio di prima, ma con l'aggiunta di un bit: anziché lavorare su 5 bit, ne considero 6. Come cambia il risultato?
```

Come passare da C2 a base 10?

- Procedimento inverso:
 - Sottrarre 1
 - Complementare a 1
 - Convertire da binario a decimale e aggiungere il segno
- Metodo facilitato di verifica:
 - convertire in decimale con l'algoritmo standard assegnando al bit più significativo peso negativo
 - Esempio: $(10100)_{C2} = -1 \times 2^4 + 1 \times 2^2 = (-12)_{10}$

Esercizi

- Convertire da base 10 a base 8: 112; 23; 89; 254
- Convertire da base 10 a base 2: 45; 64; 321; 76
- Convertire da base 2 a base 10: 101100; 11101
- Determinare la base per cui è esatta la seguente operazione: sqrt(232)=14
- Eseguire in ca2: 44+12; 36-11; 48+59; 16-9