1

Esercitazione in Matlab

I. OBIETTIVO

- Imparare a utilizzare il metodo Monte Carlo
- Verificare le proprietà statistiche della media aritmetica

II. LA STIMA DELLO SCARTO TIPO DELLA MEDIA

Si vuole verificare la formula dello scarto tipo della media aritmetica mediante il metodo Monte Carlo.

```
clear all
close all
randn('state',0)
R=100;
N=4;
sigma=0.1;
mu=1;
Y=mu+sigma*randn(R,N);
mean=mean(Y)
std(Y)
```

- Il valore ottenuto per la stima della deviazione standard della media aritmetica è compatibile con quanto noto dalla teoria?
- Il valore ottenuto coincide con quello teorico? Se no, perché?
- Cosa succede se R aumenta o diminuisce?

III. UNA VERIFICA PIÙ APPROFONDITA

Con l'obiettivo di analizzare in modo più approfondito le proprietà dello stimatore basato sulla media aritmetica, si consideri la funzione

$$\hat{\theta}_k = \frac{1}{k} \sum_{n=0}^{k-1} x[n], \quad k = 2, \dots, 100$$
 (1)

con $x[\cdot]$ variabili aleatorie Gaussiane di media 1 e varianza σ^2 . Si scriva un programma come segue:

- si scelga un valore per σ
- modificando il programma già scritto, si scriva un programma che grafichi l'andamento delle stime della media e della varianza di $\hat{\theta}_k$ al variare di k fra 2 e 100
- a entrambi i grafici si sovrapponga l'andamento atteso e si commentino i risultati

Domande

- cosa succede se R aumenta o diminuisce?
- nel caso del grafico della varianza, conviene usare gli assi logaritmici, quando si usa la funzione plot()?

IV. LA STIMA DEL MOMENTO DEL QUARTO ORDINE

Si voglia ora stimare il momento del quarto ordine di $x[\cdot]$, variabili aleatorie Gaussiane di media 1 e varianza σ^2 , con lo stimatore

$$\hat{\theta}_4 = \frac{1}{R} \sum_{n=1}^{R} x^4[n],$$

- $\bullet\,$ si scelga un valore per il numero di record R e $\sigma\,$
- ullet modificando il programma già scritto, si scriva un programma che calcoli la media e la varianza di $\hat{ heta}_4$
- si confronti il risultato con l'andamento teorico del valore atteso e si commenti quanto ottenuto

Domande

- cosa succede se R aumenta o diminuisce?
- lo stimatore è corretto?
- cosa cambia se si usa lo stimatore

$$\check{\theta}_4 = \left(\hat{\theta}_k\right)^4 = \left(\frac{1}{R}\sum_{n=1}^R x[n]\right)^4 \tag{2}$$