Chapitre: Eléments d'analyse vectorielle

I Vecteur surface

A) Définition

1) Surface élémentaire

On considère une surface élémentaire dS:

Le vecteur surface élémentaire de dS est un vecteur $d\vec{S}$, orthogonal à dS, de norme $\|d\vec{S}\| = dS$ (l'orientation n'est pas déterminée)

2) Surface finie

Le vecteur surface de cette surface est alors $\vec{S} = \iint d\vec{S}$ (On oriente les $d\vec{S}$ dans le même sens, deux " $d\vec{S}$ " côte à côte sont dans le même sens)

Attention, on n'a pas ici pour autant $\|\vec{S}\| = S$

(Par exemple, pour une surface fermée, $\vec{S} = \vec{0}$)

B) Projection du vecteur surface

Alors la projection du vecteur surface sur Δ correspond au vecteur surface de la projection orthogonale de la surface sur $\Pi \perp \Delta$

Attention : on compte la projection algébriquement, c'est-à-dire que deux éléments de surface dont la droite qui passe par ces deux points est parallèle à Δ , et dont la projection des vecteurs surface sur Δ ont des sens opposés "s'annulent" :

Ainsi, les deux éléments de la surface (en forme de chaussette) qu'intercepte le tube (de section infinitésimale) ont la même projection sur le plan Π (à savoir la section du tube), mais les projections des vecteurs surface sont de sens opposé, donc les deux surfaces s'annulent. Ainsi, sur le dessin, la projection de la chaussette sur Π est réduite au disque délimité par l'ouverture.

Démonstration:

On prend un carré élémentaire de coté *a* :

En coupe :

Ainsi, $d\vec{\sigma} = dS \cos \theta \cdot \vec{u} = a \times a \cos \theta \cdot \vec{u}$

Donc $d\vec{\sigma}$ est bien le vecteur surface de la projection du carré sur un plan perpendiculaire à Δ .

Pour une surface finie ouverte, il suffit d'intégrer :

$$\vec{\sigma} = \iint a \times a \cos \theta . \vec{u} = \left(\iint a \times a \cos \theta \right) \vec{u}$$

Application:

• Demi–sphère :

Comme la demi-sphère est invariante par rotation autour de l'axe représenté, \vec{S} sera aussi invariant par une telle rotation, et sera donc sur l'axe.

De plus, une projection sur un plan orthogonal à l'axe donnera l'aire hachurée (un disque), donc $\vec{S} = \pi R^2 \vec{u}$ (où R est le rayon de la demi-sphère et \vec{u} un vecteur unitaire de l'axe)

Une surface ouverte plus complexe avec comme contour le même cercle donnera aussi le même résultat (comme la chaussette précédente)

• Surface fermée :

On "coupe" la surface fermée en deux surfaces ouvertes par un plan, on note \vec{S}_1 et \vec{S}_2 les deux vecteurs surface correspondant (qui sont alors orthogonaux au plan). On a alors $\vec{S}_1 = -\vec{S}_2$ (puisque ce sont les vecteurs surface de la même surface mais chacun dans un sens)

II Orientation de l'espace

A) Convention d'orientation

1) Convention 1 (du trièdre direct)

• Rotation autour d'un axe :

On définit (arbitrairement) le sens positif de rotation autour d'un axe Δ dirigé par \vec{u} :

• Trièdre $(\vec{a}, \vec{b}, \vec{c})$ direct :

(c'est-à-dire que \vec{c} est dans le sens de $\vec{a} \wedge \vec{b}$)

• Surface limitée par un contour :

Pour un disque :

On dit alors que la surface et le contour sont orientés compatiblement (choix toujours arbitraire)

Pour une surface quelconque:

Correspond à une transformation continue du disque

• Orientation du plan :

 $(\vec{u} \text{ oriente la normale au plan})$

2) Convention 2

• Orientation d'une surface fermée :

Par convention, les $d\vec{S}$ sont "vers l'extérieur".

• Attention:

Si on sépare la surface fermée en deux et qu'on oriente le contour, \vec{S}_2 sera vers l'extérieur, mais \vec{S}_1 sera vers l'intérieur. Les $d\vec{S}_1$ ne sont donc pas orienté dans le même sens que les $d\vec{S}$.

B) Vecteurs vrais, pseudo-vecteurs

1) Vecteurs vrais (polaires)

C'est un vecteur qui ne dépend pas de l'orientation de l'espace choisie (convention 1)

Exemples : les vecteurs vitesse, accélération.

2) Pseudo-vecteurs (axiaux)

Ces vecteurs dépendent de l'orientation de l'espace.

Exemples:

Vecteur rotation:

Dans l'autre orientation, $\vec{\Omega}$ serait vers le bas.

Champ magnétique :

Particularité : pour les symétries

Ce n'est pas une symétrie pour un vecteur axial (alors que ça l'est pour un vecteur polaire)

3) Produit vectoriel

Le produit vectoriel de deux vecteurs vrais donne un pseudo-vecteur, et celui d'un vecteur vrai par un pseudo-vecteur donne un vecteur vrai.

Ainsi, avec comme avec la "règle des signes" (en notant + un vecteur vrai, –

un pseudo-vecteur):
$$\vec{a} \wedge \vec{b} = \vec{c}$$

Exemple:
$$\vec{F} = q(\vec{v} \land \vec{B})$$
vrai vrai pseudo

III Angle solide

A) Rappel sur les angles dans le plan

Il est alors clair par homothétie que le dl' peut être n'importe où. La définition de l'angle $d\alpha$ est donc correcte (elle ne dépend pas de l'endroit où on fait la mesure)

B) Définition

Angle solide sous lequel, depuis le point P, on voit la surface infinitésimale en M:

$$d\Omega = d\vec{S} \cdot \frac{\vec{r}}{r^3} = \frac{d\sigma}{r^2} \quad \text{(où } \vec{r} = \overrightarrow{PM} \text{) avec } d\sigma = dS.\cos\theta$$

Pour une surface non élémentaire, on intègre la relation.

C) Interprétation

Pour une sphère de centre P et de rayon r, $dS.\cos\theta$ correspond à la surface projetée sur la sphère.

Ainsi, $d\Omega = \frac{d\sigma}{r^2}$ dépend uniquement du cône centré en O et s'appuyant sur la contour de dS (si on s'éloigne, r augmente et la surface augmentera en r^2 .

D) Angles solides particuliers

• Demi cône de révolution :

On prend une calotte sphérique avec le même angle α :

Ainsi,
$$\Omega = \iint d\vec{S} \cdot \frac{\vec{r}}{r^3} = \frac{1}{r^2} \iint dS$$

On a : $dS' = r \cdot d\theta \times 2\pi \times r \sin \theta$

Donc
$$\Omega = \frac{1}{r^2} \int_0^{\alpha} dS' = \int_0^{\alpha} 2\pi \sin \theta . d\theta = 2\pi (1 - \cos \alpha)$$

Et, pour une variation de l'angle de $d\theta$, on a $d\Omega = 2\pi \sin \theta . d\theta$

• Espace entier:

L'angle solide de l'espace entier correspond au cas précédent avec $\alpha = \pi$. On a ainsi $\Omega = 4\pi$

• Demi-espace:

Correspond aussi au cas précédent avec $\alpha = \frac{\pi}{2}$, donc $\Omega = 2\pi$

IV Champs

A) Champs de scalaires, champs de vecteurs

1) Champ de scalaires

Définition:

C'est une application $f: \mathcal{E} \to \mathbb{R}$ où \mathcal{E} est un espace affine de dimension 3.

En général, f dépend aussi de t: f(M,t)

Choix d'une origine :

On fixe un point O, et pour tout point M, on note $\vec{r} = \overrightarrow{OM}$

On a ainsi $f(M) = \widetilde{f}(\vec{r})$ (pratiquement, on confond f et \widetilde{f})

Choix d'un système de coordonnées :

 \vec{r} peut s'écrire en coordonnées cartésiennes, cylindriques ou sphériques.

On a ainsi $f(\vec{r}) = \widetilde{f}(x, y, z)$ en cartésiennes.

De même, on confondra aussi \tilde{f} et f.

2) Champ de vecteurs

Définition :

C'est une application de la forme $M \mapsto \vec{A}(M)$ (où $\vec{A}(M)$ appartient à un espace vectoriel de dimension 3)

Comme pour les champs scalaires, on écrira indifféremment $\vec{A}(M)$, $\vec{A}(\vec{r})$ ou $\vec{A}(x,y,z)$.

B) Opérateurs relatifs aux champs

On trouve pour les champs scalaires le gradient et le Laplacien (scalaire)

Pour les champs de vecteurs, on a aussi le Laplacien (vectoriel), et la divergence, le rotationnel.

1) Le gradient

On considère ici l'espace muni d'un repère $(O, \vec{u}_x, \vec{u}_y, \vec{u}_z)$

• Définition :

Soit f(x, y, z) un champ scalaire.

On pose
$$\overrightarrow{\text{grad}} f = \frac{\partial f}{\partial x} \vec{u}_x + \frac{\partial f}{\partial y} \vec{u}_y + \frac{\partial f}{\partial z} \vec{u}_z$$

• Notation nabla:

On note
$$\vec{\nabla} = \frac{\partial}{\partial x} \vec{u}_x + \frac{\partial}{\partial y} \vec{u}_y + \frac{\partial}{\partial z} \vec{u}_z$$
 (notation symbolique)

Ainsi, on a $\nabla f = \overrightarrow{\operatorname{grad}} f$.

(Attention : il ne faut pas essayer d'adapter la notation à d'autres systèmes de coordonnées, les résultats seraient la plupart du temps faux)

• Définition intrinsèque du gradient :

On considère un champ scalaire f(x, y, z). On a :

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$$

Et
$$d\vec{r} = dx.\vec{u}_x + dy.\vec{u}_y + dz.\vec{u}_z$$

On a donc $df = \vec{\nabla} f \cdot d\vec{r}$, et cette définition implicite de $\vec{\nabla} f$ est indépendante de la base choisie.

Si de plus f dépend de t, on a ainsi $df = \vec{\nabla} f \cdot d\vec{r} + \frac{\partial f}{\partial t} dt$

• Interprétation :

On cherche les conséquences sur f d'un déplacement élémentaire :

Pour un déplacement (élémentaire) dans le plan orthogonal à $\vec{\nabla} f$, f ne varie pas : $df = \vec{\nabla} f \cdot d\vec{r} = 0$.

C'est au contraire en se déplaçant dans la direction de ∇f (dans le même sens ou à l'opposé) que la variation sera la plus importante.

Gradient en coordonnées cylindriques et sphériques

- Cylindriques :

Expression du gradient :

Avec
$$f(r, \theta, z)$$
:

$$df = \frac{\partial f}{\partial r}dr + \frac{\partial f}{\partial \theta}d\theta + \frac{\partial f}{\partial z}dz$$

Et
$$d\vec{r} = dr.\vec{u}_r + rd\theta.\vec{u}_\theta + dz.\vec{u}_z$$
.

Ainsi,
$$\vec{\nabla} f = \frac{\partial f}{\partial r} \vec{u}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \vec{u}_\theta + \frac{\partial f}{\partial z} \vec{u}_z$$

- Sphériques :

Avec
$$f(r, \theta, \varphi)$$
:

$$df = \frac{\partial f}{\partial r} dr + \frac{\partial f}{\partial \theta} d\theta + \frac{\partial f}{\partial \varphi} d\varphi$$

Et
$$d\vec{r} = dr.\vec{u}_r + rd\theta.\vec{u}_\theta + r\sin\theta.d\varphi.\vec{u}_\varphi$$

Avec
$$f(r, \theta, \varphi)$$
:
$$df = \frac{\partial f}{\partial r} dr + \frac{\partial f}{\partial \theta} d\theta + \frac{\partial f}{\partial \varphi} d\varphi$$
Et $d\vec{r} = dr.\vec{u}_r + rd\theta.\vec{u}_\theta + r\sin\theta.d\varphi.\vec{u}_\varphi$
Ainsi, $\nabla f = \frac{\partial f}{\partial r} \vec{u}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \vec{u}_\theta + \frac{1}{r\sin\theta} \frac{\partial f}{\partial \varphi} \vec{u}_\varphi$

2) Divergence

Définition :

Pour un champ de vecteur \vec{A} :

$$\operatorname{div} \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} = \vec{\nabla} \cdot \vec{A}$$

Propriétés :

C'est un opérateur linéaire, et il ne dépend pas de la base choisie :

Pour un déplacement élémentaire de M à M', on a une variation $d\vec{A}$ Ainsi avec les matrices :

$$\begin{pmatrix} dA_{x} \\ dA_{y} \\ dA_{z} \end{pmatrix} = \begin{pmatrix} \frac{\partial A_{x}}{\partial x} & \frac{\partial A_{x}}{\partial y} & \frac{\partial A_{x}}{\partial z} \\ \frac{\partial A_{y}}{\partial x} & \frac{\partial A_{y}}{\partial y} & \frac{\partial A_{y}}{\partial z} \\ \frac{\partial A_{z}}{\partial x} & \frac{\partial A_{z}}{\partial y} & \frac{\partial A_{z}}{\partial z} \end{pmatrix} \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix}$$

Et
$$\operatorname{Tr}(B) = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} = \operatorname{div} \vec{A}$$

Donc la matrice dans une autre base aura la même trace (puisqu'elles seront semblables), d'où l'indépendance de la base pour la divergence.

3) Rotationnel

$$\overrightarrow{\operatorname{rot}} \, \vec{A} = \vec{\nabla} \wedge \vec{A} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \wedge \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} = \dots$$

- C'est un pseudo-opérateur (il dépend de la convention d'orientation choisie). Si \vec{A} est un vecteur vrai, rot \vec{A} sera un pseudo-vecteur.
 - C'est un opérateur linéaire
 - Il est indépendant de la base choisie

4) Laplacien

• Scalaire

Soit f un champ scalaire.

On pose alors
$$\Delta f = \operatorname{div} \overrightarrow{\operatorname{grad}} f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f$$

Vectoriel

En coordonnées cartésiennes :

Pour
$$\vec{A} = A_x \vec{u}_x + A_y \vec{u}_y + A_z \vec{u}_z$$

On pose
$$\vec{\nabla}^2 \vec{A} = \vec{\nabla}^2 A_x \vec{u}_x + \vec{\nabla}^2 A_y \vec{u}_y + \vec{\nabla}^2 A_z \vec{u}_z$$

On a une définition intrinsèque :

$$\vec{\nabla}^2 \vec{A} = \overrightarrow{\text{grad}} \operatorname{div} \vec{A} - \overrightarrow{\text{rot}} \overrightarrow{\text{rot}} \vec{A} = \vec{\nabla} \vec{\nabla} \cdot \vec{A} - \vec{\nabla} \wedge (\vec{\nabla} \wedge \vec{A})$$

5) Formulaire

• Identités :

$$\overrightarrow{\text{rot}} \, \overrightarrow{\text{grad}} f = \overrightarrow{0} \, (\overrightarrow{\nabla} \wedge \overrightarrow{\nabla} f = \overrightarrow{0})$$

$$\overrightarrow{\text{div rot }} f = 0 \ (\overrightarrow{\nabla} \cdot \overrightarrow{\nabla} \wedge \overrightarrow{A} = 0)$$

• Produits:

$$\vec{\nabla} f g = g \vec{\nabla} f + f . \vec{\nabla} g$$

$$\vec{\nabla} \cdot f \vec{A} = \vec{\nabla} f \cdot \vec{A} + f \cdot \vec{\nabla} \cdot \vec{A}$$

$$\vec{\nabla} \wedge f \vec{A} = f \cdot \vec{\nabla} \wedge \vec{A} + \vec{\nabla} f \wedge \vec{A}$$

$$\vec{\nabla} \cdot (\vec{A} \wedge \vec{B}) = \vec{B} \cdot \vec{\nabla} \wedge \vec{A} - \vec{A} \cdot \vec{\nabla} \wedge \vec{B}$$

• Composition:

$$\vec{\nabla} g(f(\vec{r})) = g'(f)\vec{\nabla} f$$

C) Circulation et flux d'un champ de vecteurs

1) Circulation

• Définition :

$$p^{\times}$$
 Γ \times Q

On pose
$$C = C(P, Q, \Gamma) = \int_{P}^{Q} \vec{A} \cdot d\vec{l}$$

• Théorème de Stokes:

Enoncé : on considère une surface ouverte $\Sigma\,,$ orientée compatiblement avec son contour $\Gamma\,$:

Alors
$$\oint_{\Gamma} \vec{A} \cdot d\vec{l} = \iint_{\Sigma} (\vec{\nabla} \wedge \vec{A}) \cdot d\vec{S}$$

Discussion:

- Ce résultat donne une définition intrinsèque du rotationnel de \vec{A} .

Pour retrouver les composantes du rotationnel à partir de cette formule, par exemple la composante selon \vec{u}_x : on prend une surface élémentaire dS, orientée selon \vec{u}_x :

$$d\vec{S}$$

Ainsi, $d\vec{S} = dS.\vec{u}_x$

Et, d'après le théorème de Stokes :

$$\oint_{\Gamma} \vec{A} \cdot d\vec{l} = \iint_{dS} (\vec{\nabla} \wedge \vec{A}) \cdot d\vec{S} = (\vec{\nabla} \wedge \vec{A}) \cdot d\vec{S} = (\vec{\nabla} \wedge \vec{A}) dS \cdot \vec{u}_x$$

D'où on tire la composante selon \vec{u}_x , après calcul de l'intégrale et connaissant dS , \vec{A} .

- Pour le gradient, on avait :

$$\int_{P}^{Q} df = \int_{P}^{Q} \vec{\nabla} f \cdot d\vec{r}$$

Soit
$$\underline{f(Q) - f(P)} = \underbrace{\int_{P}^{Q} \nabla f \cdot d\vec{r}}_{\text{dim } 1}$$

Ici,
$$\underbrace{\oint_{\Gamma} \vec{A} \cdot d\vec{l}}_{\text{dim1}} = \underbrace{\iint_{\Sigma} (\vec{\nabla} \wedge \vec{A}) \cdot d\vec{S}}_{\text{dim2}}$$
; on gagne encore une dimension.

Formule de Kelvin:

Notons $\vec{I} = \oint_{\Gamma} f . d\vec{l}$. Soit \vec{u} un vecteur fixe quelconque.

On note $I = \vec{I} \cdot \vec{u}$. Ainsi:

$$\begin{split} I &= \vec{I} \cdot \vec{u} = \vec{u} \cdot \oint_{\Gamma} f . d\vec{l} = \oint_{\Gamma} (f \vec{u}) \cdot d\vec{l} = \iint_{\Sigma} (\vec{\nabla} \wedge f \vec{u}) \cdot d\vec{S} \\ &= \iint_{\Sigma} (f . \vec{\nabla} \wedge \vec{u} + \underbrace{\vec{\nabla} f \wedge \vec{u}}_{\text{produit mixte}}) \cdot d\vec{S} = -\iint_{\Sigma} \vec{\nabla} f \wedge d\vec{S} \cdot \vec{u} \\ &= \left(-\iint_{\Sigma} \vec{\nabla} f \wedge d\vec{S} \right) \cdot \vec{u} \end{split}$$

Comme cette égalité est valable pour tout \vec{u} , on a donc $\vec{I} = \oint_{\Gamma} f d\vec{l} = -\iint_{\Gamma} \vec{\nabla} f \wedge d\vec{S}$

• Champ à circulation conservative

Définition:

C'est un champ pour lequel $C = \int_{P}^{Q} \vec{A} \cdot d\vec{l} = C(P, Q, T)$

Définition équivalente :

Pour toute courbe fermée Γ , $\oint_{\Gamma} \vec{A} \cdot d\vec{l} = 0$

Ou encore:

En tout point de l'espace, $\vec{\nabla} \wedge \vec{A} = \vec{0}$

Ou

Il existe un champ scalaire f tel que $\vec{A} = \vec{\nabla} f$

Découle de la caractérisation précédente :

Si $\vec{A} = \vec{\nabla} f$, alors $\vec{\nabla} \wedge \vec{A} = \vec{\nabla} \wedge \vec{\nabla} f = \vec{0}$ donc \vec{A} est conservative.

Si \vec{A} est conservative, alors :

$$C = \int_{P}^{Q} \vec{A} \cdot d\vec{l} = \underbrace{\int_{O}^{Q} \vec{A} \cdot d\vec{l}}_{f(Q)} - \underbrace{\int_{O}^{P} \vec{A} \cdot d\vec{l}}_{f(P)}$$

Donc, pour Q très voisin de P:

$$\vec{A} \cdot d\vec{l} = df$$
, donc $\vec{A} = \vec{\nabla} f$.

Remarque:

On note v = -f.

Ainsi, $\vec{A} = -\vec{\nabla}v$. On dit que \vec{A} dérive du potentiel scalaire v.

On a donc quatre formulations équivalentes :

- \vec{A} est à circulation conservative
- \vec{A} est irrotationnel
- \vec{A} dérive d'un potentiel scalaire
- \vec{A} est un champ de gradient.

2) Flux d'un champ de vecteur

• Définition :

On considère une surface Σ :

On définit $\phi_{\Sigma} = \iint_{\Sigma} \vec{A} \cdot d\vec{S}$

Si la surface est ouverte, le signe de ϕ_{Σ} dépend de l'orientation choisie.

• Théorème de Green et Ostrogradski :

On considère un champ \vec{A} , une surface Σ fermée (orientée vers l'extérieur) délimitant un volume ν :

Alors
$$\iint_{\Sigma} \vec{A} \cdot d\vec{S} = \iiint_{V} \vec{\nabla} \cdot \vec{A} \cdot d\tau$$

Cette formule donne aussi une définition intrinsèque de la divergence de \vec{A} . Conséquences :

$$\iint_{\Sigma} \vec{A} \wedge d\vec{S} = -\iiint_{V} \vec{\nabla} \wedge \vec{A} \cdot d\tau$$

Formule "du gradient":

$$\iint_{\Sigma} f d\vec{S} = \iiint_{\Sigma} \vec{\nabla} f . d\tau$$

(Faire le même raisonnement que pour la formule de Kelvin)

• Champs à flux conservatif

Définition:

Pour toutes surfaces Σ_1 et Σ_2 de même contour, on a $\phi_{\Sigma_1} = \phi_{\Sigma_2}$

Définitions équivalentes :

- $\phi_{\Sigma} = 0$ pour toute surface fermée
- $\vec{\nabla} \cdot \vec{A} = 0$ en tout point de l'espace
- Il existe un champ de vecteurs \vec{B} tel que $\vec{A} = \overrightarrow{\text{rot }} \vec{B}$.

On dit alors que \vec{A} dérive du potentiel vecteur \vec{B} .

 $(\vec{B} \text{ n'est pas unique} : \vec{B}' = \vec{B} + \vec{\nabla} \phi, \text{ où } \phi \text{ est quelconque, convient})$

Le potentiel vecteur est donc défini « à un gradient près ».

Il est ainsi équivalent de dire que :

- \vec{A} est à flux conservatif
- \vec{A} est à divergence nulle (solénoïdal)
- \vec{A} dérive d'un potentiel vecteur.

V Gradients et Laplaciens de 1/r.

A) Gradient de 1/r.

On note $\vec{r} = \overrightarrow{PM}$, r = PM

On a:
$$\frac{1}{r} = f(P, M) = \frac{1}{\sqrt{(x_M - x_P)^2 + (y_M - y_P)^2 + (z_M - z_P)^2}}$$

On s'arrange ici pour avoir $\frac{1}{r} = f(P)$ ou $\frac{1}{r} = f(M)$ (c'est-à-dire qu'on fixe un des points)

Calcul de $\vec{\nabla}_M \frac{1}{r}$ (à P fixé):

$$\vec{u}_r$$
 M

$$\vec{\nabla}_{M} \frac{1}{r} = \frac{\partial \frac{1}{r}}{\partial r} \vec{u}_{r} = \frac{-1}{r^{2}} \vec{u}_{r}.$$

Ainsi,
$$\vec{\nabla}_M \frac{1}{r} = \frac{-\vec{r}}{r^3}$$

Et, de la même façon, $\vec{\nabla}_P \frac{1}{r} = +\frac{\vec{r}}{r^3} = -\vec{\nabla}_M \frac{1}{r}$

Remarque:

Avec une autre fonction f(r) quelconque, on a toujours $\vec{\nabla}_P f(r) = -\vec{\nabla}_M f(r)$

B) Laplacien de 1/r en fonction de M.

Calcul:

Pour $r \neq 0$:

$$\vec{\nabla}^2 \frac{1}{r} = \vec{\nabla} \cdot \vec{\nabla}_M \frac{1}{r} = -\vec{\nabla} \cdot \frac{\vec{r}}{r^3} = -\frac{1}{r^3} \vec{\nabla} \cdot \vec{r} - \vec{\nabla} \frac{1}{r^3} \cdot \vec{r}$$
$$= -\frac{3}{r^3} - 3 \times \left(\frac{1}{r}\right)^2 \left(\frac{-\vec{r}}{r^3}\right) \cdot \vec{r} = 0$$

Pour r = 0

On considère un petit volume v autour de P entouré par une surface fermée $\sum_{\Gamma(x,y)} (x,y)$

$$\iiint_{v} \vec{\nabla}^{2} \frac{1}{r} d\tau = \iiint_{v} \vec{\nabla} \cdot \vec{\nabla}_{M} \frac{1}{r} d\tau = \oiint_{\Sigma} \vec{\nabla}_{M} \frac{1}{r} \cdot d\vec{S}$$
$$= -\oiint_{\Sigma} \frac{\vec{r}}{r^{3}} \cdot d\vec{S} = -\oiint_{\Sigma} \underbrace{d\Omega}_{\substack{\text{angle} \\ \text{solide}}} = -4\pi$$

Application:

Calcul de
$$\iiint_{\text{espace}} f(M) \vec{\nabla}^2 \frac{1}{r} d\tau$$

On réduit l'étude à une petite sphère entourant P (de façon que f soit aussi proche de f(P) qu'on le souhaite):

$$\iiint_{\text{espace}} f(M) \vec{\nabla}^2 \frac{1}{r} d\tau = \iiint f(P) \vec{\nabla}^2 \frac{1}{r} d\tau = -4\pi f(P)$$

VI Distribution de Dirac

A) Unidimensionnelle

1) Fonction de Dirac comme limite d'une porte

Si
$$|x| < \frac{a}{2}$$
, $\pi_a(x) = \frac{1}{a}$

Si
$$|x| > \frac{a}{2}$$
, $\pi_a(x) = 0$

Ainsi,
$$\int_{-\infty}^{+\infty} \pi_a(x) dx = 1$$
.

On pose alors
$$\delta(x) = \lim_{a \to 0} \pi_a(x)$$
.

2) Définition

Si
$$x \neq 0$$
, $\delta(x) = 0$

Si
$$x = 0$$
, $\delta(x) = +\infty$

$$\int_{-\infty}^{+\infty} \delta(x) dx = 1$$

Dessin, représentation :

Remarque:

Pour la définition, on aurait pu partir d'une autre fonction :

3) Propriétés

Pour une fonction f continue :

$$\int_{-\infty}^{+\infty} f(x)\delta(x)dx = \int_{-\infty}^{+\infty} f(0)\delta(x)dx = f(0)$$

On peut en effet supposer f(x) suffisamment proche de f(0) car $\delta(x) = 0$ pour $x \neq 0$.

$$\int_{-\infty}^{+\infty} f(x)\delta(x-x_0)dx = \int_{-\infty}^{+\infty} f(x_0)\delta(x-x_0)dx = f(x_0)$$

$$\int_{-\infty}^{+\infty} f(x)\delta'(x)dx = \underbrace{[f(x)\delta(x)]_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} f'(x)\delta(x)dx}_{=0} = -f'(0)$$

B) Tridimensionnelle

$$\vec{r} = \overrightarrow{OM}$$
Définition:
$$\delta(\vec{r}) = 0 \text{ si } \vec{r} \neq \vec{0}$$

$$\delta(\vec{r}) = +\infty \text{ si } \vec{r} = \vec{0}$$

$$\iiint_{\text{espace}} \delta(\vec{r}) d\tau = 1$$
Propriétés:
$$\iiint_{\text{espace}} f(\vec{r}) \delta(\vec{r}) d\tau = f(\vec{0})$$

$$\iiint_{\text{espace}} f(\vec{r}) \delta(\vec{r} - \vec{r_0}) d\tau = f(\vec{r_0})$$

$$\iiint_{\text{espace}} f(\vec{r}) \nabla \delta(\vec{r}) d\tau = -\nabla f(\vec{0})$$
Remarque:
On a ainsi
$$\nabla_M^2 \left(\frac{1}{r}\right) = -4\pi \delta(\vec{r})$$

Fonctionnelle linéaire : être mathématique qui a une fonction associe un scalaire

C'est par exemple l'application $f \mapsto f(\vec{0})$

L'application $f \mapsto \iiint_{\text{espace}} f(\vec{r}) \delta(\vec{r}) d\tau$ en est une.

Notation : $\langle \delta, f \rangle = \iiint_{\text{espace}} f(\vec{r}) \delta(\vec{r}) d\tau = f(\vec{0})$

VII Equations de Laplace et Poisson – conditions aux limites

A) Equation de Laplace

1) Définition

On considère un champ scalaire ϕ (de classe C^2)

Alors ϕ est solution de l'équation de Laplace si et seulement si $\vec{\nabla}^2 \phi = 0$

c'est-à-dire en cartésiennes
$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

Les solutions de l'équation de Laplace sont appelées les fonctions harmoniques.

Il y en a une infinité.

2) Interprétation

$$D \stackrel{A}{\overset{\bullet}{\overset{\bullet}{\bigcap}}} B$$

$$M\begin{pmatrix} x \\ y \\ z \end{pmatrix}, A\begin{pmatrix} x+a \\ y-a \\ z+a \end{pmatrix}, B\begin{pmatrix} x+a \\ y+a \\ z+a \end{pmatrix} \dots$$

On cherche $\phi(M) - \langle \phi \rangle$.

On prend un petit volume cubique autour de M (c'est-à-dire a petit).

Ainsi,
$$<\phi>=\frac{\phi(A)+\phi(B)+...}{8}$$
. On a :

$$\phi(A) = \phi(M) + \underbrace{a\frac{\partial\phi}{\partial x} - a\frac{\partial\phi}{\partial y} + a\frac{\partial\phi}{\partial z}}_{\text{s'annule avec les autres termes}} + \underbrace{\frac{1}{2}a^2 \left(\frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2} + \frac{\partial^2\phi}{\partial z^2}\right)}_{=0 \text{ car } \bar{\nabla}^2\phi = 0}$$

$$+a \times (-a) \frac{\partial^2 \phi}{\partial x \partial y} + (-a) \times a \frac{\partial^2 \phi}{\partial y \partial z} + a^2 \frac{\partial^2 \phi}{\partial x \partial z} + \underbrace{a^3(...)}_{\text{s'annule...}} + a^4 ...$$

s'annule aussi avec les autres termes

(En fait, les termes d'ordre impairs s'annulent)

Ainsi, $\phi(M) - \langle \phi \rangle = 0$ à des termes d'ordre 4 près.

Théorème de la moyenne :

Alors $\phi(M) = \langle \phi \rangle = \frac{1}{4\pi R} \oiint \phi dS$ (rigoureusement, et pour tout R)

Démonstration:

On a:

$$<\phi> = \frac{1}{4\pi R} \oiint \phi(P)R^2 \sin\theta d\theta d\varphi$$

Et
$$\phi(P) = \phi(M) + \int_0^R \frac{\partial \phi}{\partial r} dr$$

Donc

$$<\phi> = \underbrace{\frac{1}{4\pi} \iint \phi(M) \sin \theta d\theta}_{=\phi(M)} + \underbrace{\frac{1}{4\pi} \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{R} \frac{\partial \phi}{\partial r} dr \sin \theta d\theta d\phi}_{=\phi(M) + \underbrace{\frac{1}{4\pi} \int_{0}^{R} \frac{dr}{r^{2}} \int_{0}^{\pi} \int_{0}^{2\pi} r^{2} \sin \theta d\theta d\phi}_{=0} \frac{1}{r^{2}} \underbrace{\frac{\partial \phi}{\partial r}}_{\bar{\nabla}\phi\bar{u}_{r}}$$

$$= \phi(M) + \underbrace{\frac{1}{4\pi} \int_{0}^{R} \frac{dr}{r^{2}} \underbrace{\iint \bar{\nabla} \phi \cdot d\bar{S}}_{=0}}_{=0}$$

$$= \phi(M) + \underbrace{\frac{1}{4\pi} \int_{0}^{R} \frac{dr}{r^{2}} \underbrace{\iint \bar{\nabla} \cdot \bar{\nabla} \phi}_{=0} d\tau}_{=0}$$

$$= \phi(M)$$

3) Propriétés

- L'équation de Laplace est une équation différentielle linéaire et homogène.
- Aucune solution n'a d'extremum absolu (découle du théorème de la moyenne)

B) Equation de Poisson

1) Définition

f étant une fonction donnée, ϕ est solution de l'équation de Poisson si et seulement si $\vec{\nabla}^2 \phi = f$

2) Propriétés

- C'est une équation linéaire non homogène
- Si ϕ_1 et ϕ_2 sont deux solutions de l'équation de Poisson, alors $\phi_1 \phi_2$ est solution de l'équation de Laplace.

C) Conditions aux limites et unicité de la solution

$$\nabla \Sigma$$

$$\nabla^2 \phi = f$$

Conditions aux limites de Dirichlet :

$$\nabla$$
 ϕ fixé en tout point de la surface $\nabla^2 \phi = f$

Si il y a une fonction ϕ vérifiant ces conditions, alors cette solution est unique (attention, il n'y a pas nécessairement existence)

Conditions aux limites de Neumann:

Si il y a une fonction ϕ vérifiant ces conditions, alors cette solution est unique à une constante près. (même remarque que précédemment)

D) Théorème de superposition

Si ϕ_1 satisfait l'équation de Laplace avec les conditions [1], Et si ϕ_2 satisfait l'équation de Laplace avec les conditions [2],

Alors $\phi_1 + \phi_2$ satisfait l'équation de Laplace avec les conditions [1+2].

VIII Complément

A) Méthode de calcul de la divergence et du rotationnel

1) Exemple 1 : calcul de la divergence en coordonnées cylindriques.

On considère un petit élément de volume :

D'après le théorème de Green et Ostrogradski,

$$\oint \vec{A} \cdot d\vec{S} = \iiint \vec{\nabla} \cdot \vec{A} d\tau, \text{ c'est-à-dire ici } \vec{A}_1 \cdot \delta \vec{S}_1 + \vec{A}_2 \cdot \delta \vec{S}_2 + ... \vec{A}_6 \cdot \delta \vec{S}_6 = \vec{\nabla} \cdot \vec{A} d\tau.$$

$$\delta \vec{S}_1 = dz \times (r + dr) d\theta \vec{u}_r$$
, donc $\vec{A}_1 \cdot \delta \vec{S}_1 = A_r (r + dr, \theta, z) dz \times (r + dr) d\theta$

Et
$$\delta \vec{S}_2 = -dz \times rd\theta . \vec{u}_r$$
, d'où $\vec{A}_2 \cdot \delta \vec{S}_2 = -A_r(r,\theta,z)dz \times rd\theta$

Donc
$$\vec{A}_1 \cdot \delta \vec{S}_1 + \vec{A}_2 \cdot \delta \vec{S}_2 = \frac{\partial (rA_r)}{\partial r} dr dz d\theta$$

$$\delta \vec{S}_3 = dr dz \vec{u}_{\theta}$$
, donc $\vec{A}_3 \cdot \delta \vec{S}_3 = A_{\theta}(r, \theta + d\theta, z) dr dz$

Et
$$\vec{A}_4 \cdot \delta \vec{S}_4 = -A_{\theta}(r, \theta, z) dr dz$$

Donc
$$\vec{A}_3 \cdot \delta \vec{S}_3 + \vec{A}_4 \cdot \delta \vec{S}_4 = \frac{\partial (A_\theta)}{\partial \theta} d\theta dr dz$$

Et enfin
$$\vec{A}_5 \cdot \delta \vec{S}_5 + \vec{A}_6 \cdot \delta \vec{S}_6 = \frac{\partial (A_z)}{\partial z} dz \cdot r d\theta dr$$

D'autre part, $d\tau = dr \cdot dz \cdot r d\theta$

Donc $\vec{\nabla} \cdot \vec{A} = \frac{\vec{A}_1 \cdot \delta \vec{S}_1 + ... + \vec{A}_6 \cdot \delta \vec{S}_6}{d\tau} = \frac{1}{r} \frac{\partial (rA_r)}{\partial r} + \frac{\partial (A_z)}{\partial \tau} + \frac{1}{r} \frac{\partial (A_\theta)}{\partial \theta}$

2) Exemple 2 : Composante radiale du rotationnel en sphériques.

On considère un petit élément de surface d'une sphère de rayon r:

 $d\vec{S}$: r = cte, $\theta \rightarrow \theta + d\theta$, $\varphi \rightarrow \varphi + d\varphi$

D'après le théorème de Stokes, $\oint \vec{A} \cdot d\vec{l} = \iint (\vec{\nabla} \wedge \vec{A}) \cdot d\vec{S}$

Donc, ici : $\vec{A}_1 \cdot d\vec{l}_1 + \vec{A}_2 \cdot d\vec{l}_2 + \vec{A}_3 \cdot d\vec{l}_3 + \vec{A}_4 \cdot d\vec{l}_4 = (\vec{\nabla} \wedge \vec{A}) \cdot d\vec{S}$

 $d\vec{l}_1 = -rd\theta \vec{u}_{\theta}$, donc $\vec{A}_1 \cdot d\vec{l}_1 = -A_{\theta}(r, \theta, \varphi + d\varphi)rd\theta$

Et $\vec{A}_2 \cdot d\vec{l}_2 = A_{\theta}(r, \theta, \varphi)rd\theta$. Donc $\vec{A}_1 \cdot d\vec{l}_1 + \vec{A}_2 \cdot d\vec{l}_2 = -\frac{\partial A_{\theta}}{\partial \varphi} d\varphi rd\theta$

 $\vec{A}_3 \cdot d\vec{l}_3 = A_{\varphi}(r, \theta + d\theta, \varphi)r\sin(\theta + d\theta)d\varphi, \text{ et } \vec{A}_4 \cdot d\vec{l}_4 = -A_{\varphi}(r, \theta, \varphi)r\sin(\theta)d\varphi$

Donc $\vec{A}_3 \cdot d\vec{l}_3 + \vec{A}_4 \cdot d\vec{l}_4 = \frac{\partial A_{\varphi} \sin \theta}{\partial \theta} r d\theta d\varphi$

On a : $d\vec{S} = r^2 \sin \theta d\theta d\phi . \vec{u}_r$

Donc $(\vec{\nabla} \wedge \vec{A}) \cdot \vec{u}_r = \frac{1}{r \sin \theta} \left(\frac{\partial A_{\varphi} \sin \theta}{\partial \theta} - \frac{\partial A_{\theta}}{\partial \varphi} \right)$