

RTOS GPIO 开发指南

版本号: 1.0

发布日期: 2020.7.9

版本历史

版本号	日期	制/修订人	内容描述
1.0	2020.7.9	Allwinner	1. 初版

目 录

1	前言	1
	1.1 文档简介	1
	1.2 目标读者	1
	1.3 适用范围	1
2	模块介绍	2
_	15ペイコ 2.1 模块功能介绍	2
	2.2 相关术语介绍	
	2.2.1 硬件术语	2
	2.2.2 软件术语	3
	2.3 模块配置介绍	ა 3
		ა 3
	2.3.1 platform 配置说明	
	2.3.2 kernel menuconfig 配置说明	3
	2.4 源码结构介绍	4
	2.5 驱动框架介绍	4
3	模块接口说明	5
	3.1 数据结构	5
	3.1.1 引脚定义 gpio pin t	5
	Q块接口说明 3.1 数据结构	6
	3.1.3 引脚上下拉 gpio_pull_status_t	6
	3.1.4 引脚数据 gpio_data_t	6
	3.1.5 引脚电压能力 gpio_power_mode_t	7
	3.1.6 中断模式 gpio interrupt mode t	7
	3.2 hal_gpio_check_valid	7
	3.3 hal_gpio_get_data	7
	3.4 hal_gpio_set_data	8
	3.5 hal gpio set direction	8
	3.6 hal_gpio_get_direction	8
	3.7 hal gpio set pull	9
	3.8 hal gpio get pull	9
	3.9 hal gpio set driving level	9
	3.10 hal_gpio_get_driving_level	9
	3.11 hal_gpio_pinmux_set_function	10
	3.12 hal gpio sel vol mode	10
	3.13 hal_gpio_set_debounce	10
	3.14 hal_gpio_to_irq	11
	3.15 hal_gpio_irq_request	11
	3.16 hal gpio irq free	11
	3.17 hal_gpio_irq_enable	12
	3.18 hal_gpio_irq_disable	12
	3.19 hal gpio init	12
	o.10 mar_gpro_mit	14

4 模块使用范例

文档密级: 秘密

5 FAQ 14

13

前言

1.1 文档简介

介绍 RTOS 中 GPIO 驱动的接口及使用方法,为 GPIO 的使用者提供参考。

1.2 目标读者

GPIO 驱动、及应用层的开发/维护人员。

1.3 适用范围

)驱动、及应用层的开发/维护人员。						
3 适用范围						
	表 1-1: 适用产品列表	Σ				
产品名称	内核版本 驱	动文件				
V459	Melis	hal_gpio.c				
F133	Melis	hal_gpio.c				
R328	FreeRTOS	hal_gpio.c				
R329-DSP	FreeRTOS	hal_gpio.c				

2 模块介绍

2.1 模块功能介绍

图 2-1: PORT 控制器

整个 GPIO 控制器由数字部分(GPIO 和外设接口)以及 IO 模拟部分(输出缓冲,双下拉,pad)组成。其中数字部分的输出可以通过 MUX 开关选择,模拟部分可以用来配置上下拉,驱动能力以及引脚输出电压等等。具体的规格如下:

- 可以在软件上配置各个引脚的状态
- 每个引脚都可以触发中断
- 可以配置上拉/下拉/无上下拉三种状态
- 每个引脚都可以配置 4 种驱动能力
- 可以配置边缘中断触发
- 最高 99 个中断

2.2 相关术语介绍

2.2.1 硬件术语

术语	解释说明
MUX	multiplexer,数据选择器

2.2.2 软件术语

术语	解释说明
HAL	Hardware Abstraction Layer,硬件抽象层
RTOS	Real Time Operatiing System,实时操作系统
GPIO	General Purpose Input/Output,通用输入输出

2.3 模块配置介绍

2.3.1 platform 配置说明

在不同的 Sunxi 硬件平台中,GPIO 的设计有差别,但平台配置文件的信息基本类似,如下:

其中:

- 1. platform-gpio.h 主要包含 GPIO 控制器基地址、GPIO 中断号、pin 的声明等信息,这部分参考 GPIO SPEC 即可。
- 2. gpio-sunXX.c 主要包含每个平台的 GPIO 描述符配置,这部分也是参考 GPIO SPEC 即可。

2.3.2 kernel menuconfig 配置说明

图 2-2: GPIO menuconfig

版权所有 © 珠海全志科技股份有限公司。保留一切权利

2.4 源码结构介绍

```
hal/source/gpio/ ---- 驱动源码
  - gpio.h
   hal_gpio.c
  - Kconfig
  Makefile
   sun8iw18
     — gpio-sun8iw18.c
     Makefile
    └─ platform-gpio.h
  - sun8iw19
    ├─ gpio-sun8iw19.c
     Makefile
    └─ platform-gpio.h
include/hal/ ---- 驱动APIs声明头文件
└─ hal_gpio.h
hal/test/gpio/ ---- 驱动APIs测试代码
 Makefile
  - test_conf.h
  test gpio.c
```

2.5 驱动框架介绍 rtos-hal rtos-hal gpio gpio gpio gpio sun8iw18 gpio-sun8iw18 gpio-sun8iw18 gpio-sun8iw18 gpio-sun8iw18 gpio-sun8iw19 gpio-sun8iw19

图 2-3: GPIO 驱动框架

版权所有 © 珠海全志科技股份有限公司。保留一切权利

模块接口说明

API	解释说明
hal_gpio_check_valid	判断 GPIO 的合法性
hal_gpio_get_data	获取指定 GPIO 的电平状态
hal_gpio_set_data	设置指定 GPIO 的电平状态
hal_gpio_set_direction	设置指定 GPIO 的 IO 模式
hal_gpio_get_direction	获取指定 GPIO 的 IO 模式
hal_gpio_set_pull	设置指定 GPIO 的上下拉状态
hal_gpio_get_pull	获取指定 GPIO 的上下拉状态
hal_gpio_set_driving_level	设置指定 GPIO 的驱动能力
hal_gpio_get_driving_level	获取指定 GPIO 的驱动能力
hal_gpio_pinmux_set_function	设置指定 GPIO 的复用功能
hal_gpio_sel_vol_mode	设置指定 GPIO 组的电压模式
hal_gpio_set_debounce	设置指定 GPIO 组的中断采样频率
hal_gpio_to_irq	获取指定 GPIO 的 IRQ 中断号
hal_gpio_irq_request	GPIO 中断申请
hal_gpio_irq_free	GPIO 中断释放
hal_gpio_irq_enable	使能 GPIO 中断
hal_gpio_irq_disable	关闭 GPIO 中断
hal_gpio_init	GPIO 驱动初始化

3.1 数据结构

由于 GPIO 需要配置每个引脚的引脚复用功能,中断类型,驱动能力,上下拉,输出/输入数据,输入/输出方向等等,所以对 GPIO 的这些配置都封装在一个 enum 枚举结构里面,方便使用。下面是一些配置的定义。想要了解更多的可以到 hal gpio.h 查看

3.1.1 引脚定义 gpio_pin_t

该枚举定义了可用的每个引脚定义,在配置引脚的时候将相关参数传入则可,具体定义如下:

```
typedef enum
{
    GPIO_PC0 = GPIOC(0),
```

文档密级: 秘密


```
GPIO_PC1 = GPIOC(1),
    GPIO_PC2 = GPIOC(2),
    GPIO_PC3 = GPIOC(3),
    ...
    GPIO_PL0 = GPIOL(0),
    GPIO_PL1 = GPIOL(1),
    GPIO_PL2 = GPIOL(2),
    GPIO_PL3 = GPIOL(3),
    GPIO_PL4 = GPIOL(4),
    GPIO_PL5 = GPIOL(5),
} gpio_pin_t;
```

3.1.2 引脚驱动能力 gpio driving level t

该枚举定义了引脚的驱动能力的值,具体定义如下:

3.1.3 引脚上下拉 gpio_pull_status t

该枚举定义了引脚的上下拉的值,具体定义如下:

3.1.4 引脚数据 gpio data t

该枚举定义引脚的输入输出数据,具体定义如下:

3.1.5 引脚电压能力 gpio_power_mode_t

该枚举定义了引脚的电压模式,可以配置成 1.8V 和 3.3V,具体定义如下

```
typedef enum
{
    POWER_MODE_330 = 0,
    POWER_MODE_180 = 1
} gpio_power_mode_t;
```

3.1.6 中断模式 gpio_interrupt_mode_t

该枚举定义了引脚的中断模式,具体定义如下:

3.2 hal gpio check valid

• 作用: 判断 GPIO 的合法性

参数:

• pin id

• 返回:

true: 合法false: 不合法

3.3 hal_gpio_get_data

• 作用: 获取指定 GPIO 的电平状态

• 参数:

• 参数 1:pin id

• 参数 2: 存放频率的指针变量

• 返回:

-1: 失败0: 成功

3.4 hal_gpio_set_data

• 作用:设置指定 GPIO 的电平状态

• 参数:

• 参数 1:pin id

● 参数 2: 需设置的电平高低

• 返回:

• -1: 失败

• 0: 成功

3.5 hal_gpio_set_direction

- 参数:
 - 参数 1:pin id
 - 参数 2: 需设置的 IO 模式
- 返回:

• -1: 失败

• 0: 成功

3.6 hal_gpio_get_direction

● 作用: 获取指定 GPIO 的 IO 模式

• 参数:

• 参数 1:pin id

• 参数 2: 存放 IO 模式的指针变量

• 返回:

• -1: 失败

• 0: 成功

3.7 hal_gpio_set_pull

• 作用:设置指定 GPIO 的上下拉状态

• 参数:

• 参数 1:pin id

● 参数 2: 需设置的上下拉状态

• 返回:

-1: 失败0: 成功

3.8 hal_gpio_get_pull

• 作用: 获取指定 GPIO 的上下拉状态

• 参数:

• 参数 1:pin id

• 参数 2: 存放上下拉状态的指针变量

• 返回:

• -1: 失败

• 0: 成功

3.9 hal_gpio_set_driving_level

• 作用:设置指定 GPIO 的驱动能力

• 参数:

• 参数 1:pin id

• 参数 2: 需设置的驱动能力

• 返回:

• -1: 失败

• 0: 成功

3.10 hal gpio get driving level

• 作用: 获取指定 GPIO 的驱动能力

- 参数:
 - 参数 1:pin id
 - 参数 2: 存放驱动能力的指针变量
- 返回:
 - -1: 失败
 - 0: 成功

3.11 hal_gpio_pinmux set function

- 作用:设置指定 GPIO 的复用功能
- 参数:
 - 参数 1:pin id
 - 参数 2: 需设置的复用功能
- 返回:
 - -1: 失败
 - 0: 成功

mod 3.12 hal_gpio_sel_vol_mode

- 作用:设置指定 GPIO 组的电压模式
- 参数:
 - 参数 1:pin id
 - 参数 2: 需设置的电压模式
- 返回:
 - -1: 失败
 - 0: 成功

3.13 hal_gpio_set_debounce

- 作用:设置指定 GPIO 组的中断采样频率
- 参数:
 - 参数 1:pin id
 - 参数 2: 需设置的值(bit0-clock select; bit6:4-clock pre-scale)

- 返回:
 - -1: 失败
 - 0: 成功

3.14 hal_gpio_to_irq

- 作用: 获取指定 GPIO 的 IRQ 中断号
- 参数:
 - 参数 1:pin id
 - 参数 2: 存放中断号的指针变量
- 返回:
 - -1: 失败
 - 0: 成功

© C 3.15 hal_gpio_irq request

- 作用: GPIO 中断申请
- 参数:
 - 参数 1: 中断号
 - 参数 2: 中断处理函数
 - 参数 3: 中断触发模式
 - 参数 4: 私有数据指针变量
- 返回:
 - -1: 失败
 - 0: 成功

3.16 hal_gpio_irq_free

- 作用: GPIO 中断释放
- 参数:
 - 参数 1: 中断号
- 返回:
 - -1: 失败
 - irq: 成功释放的 irq 号

3.17 hal_gpio_irq_enable

- 作用: 使能 GPIO 中断
- 参数:
 - 参数 1: 中断号
- 返回:
 - -1: 失败
 - 0: 成功

3.18 hal_gpio_irq_disable

- 作用: 关闭 GPIO 中断

3.19 hal_gpio_init / • 作用: GPIO 驱动初始ル 参数:

- - void
- 返回:
 - -1: 失败
 - 0: 成功

4 模块使用范例

可参考驱动 APIs 测试代码(hal/test/gpio/)。

5 FAQ

无

著作权声明

版权所有 © 2021 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留 一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司("全志")之间签署的商业合同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围内。使用前请认真阅读合同条款和相关说明,并严格遵循本文档的使用说明。您将自行承担任何不当使用行为(包括但不限于如超压,超频,超温使用)造成的不利后果,全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。