#### Лабораторная работа №5

# ИССЛЕДОВАНИЕ МОДЕЛИ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ С КОМБИНИРОВАННОЙ ДИСЦИПЛИНОЙ ОБСЛУЖИВАНИЯ

#### 1. Система массового обслуживания с комбинированной ДО

Из теории массового обслуживания и теории телетрафика известны некоторые аналитические модели СМО с комбинированной ДО. Выбор той или иной модели зависит от свойств входящего потока, а также от свойств процесса обслуживания.

Цели данной работы состоит в освоении системы имитационного моделирования и изучении моделей СМО с комбинированной ДО.

План работы:

- 1. Построить имитационную модель СМО с комбинированной ДО, выполнить ее валидацию.
- 2. Получить и сопоставить результаты имитационного и аналитического моделирования на примере CMO M/M/1/k.
- 3. Модифицировать имитационную модель в модель многофазной СМО и исследовать ее функционирование (на примере двухфазной СМО).
  - 4. Сформулировать полученные результаты и сделать выводы.

## 2. Построение имитационной модели

2.1 Построить структуру модели СМО M/M/1/k в системе AnyLogic Для построения модели используются библиотечные элементы типов: source, delay, queue и sink, параметр, переменная (возможно использовать наработки из предыдущей лабораторной работы).

Элементы соединяются как показано на рисунке 1.



Рисунок 1 – Структура модели

# 2.2 Определить свойства элементов модели

| ■ Свойства 🏻                       |                               |
|------------------------------------|-------------------------------|
| <b>●</b> source - Source           |                               |
| Имя:                               | source 🗸 Отображать имя       |
| Тип заявки:                        | Packet                        |
| Прибывают согласно:                | =_ Времени между прибытиями 🔻 |
| Время между прибытиями:            | exponential( a )              |
| За 1 раз создается несколько заяво | ок: =_ 🔳                      |
| Ограниченное кол-во прибытий:      | =, 🔳                          |

Рисунок 2 – Изменение свойств элемента source

| ■ Свойства 🏻                  |         |                |
|-------------------------------|---------|----------------|
| · queue - Queue               |         |                |
| Имя:                          | queue   | Отображать имя |
| Тип заявки:                   | Packet  |                |
| Вместимость:                  | = 20    |                |
| Максимальная вместимость:     | =       |                |
| Место заявок:                 | =, [    | T 75           |
| ▼ Специфические               |         |                |
| Очередь:                      | =_ FIFO | ₹              |
| Разрешить уход по таймауту:   | =_ 🗆    |                |
| Разрешить вытеснение:         |         |                |
| Вернуть заявку в исходную точ | ky: = 🔽 |                |

Рисунок 3 –Изменение свойств элемента queue

| ■ Свойства 🛭              |                                                                                  |
|---------------------------|----------------------------------------------------------------------------------|
| ( delay - Delay           |                                                                                  |
| Имя:                      | delay ☑ Отображать имя                                                           |
| Тип заявки:               | Packet                                                                           |
| Тип:                      | <ul> <li>Определенное время</li> <li>Пока не вызван метод stopDelay()</li> </ul> |
| Время задержки:           | <pre> @ exponential( 1 ) </pre>                                                  |
| Вместимость:              | = 1                                                                              |
| Максимальная вместимость: | =, 🔳                                                                             |

Рисунок 4 – Изменение свойств элемента delay



Рисунок 5 –Изменение свойств элемента sink1

#### 2.3 Валидация модели

#### 2.3.1 Проверка функционирования

Произвести компиляцию и запуск имитационной модели (время остановки не задано), значение интенсивности нагрузки выбрать a=0,9.

После успешной компиляции и запуска выбрать максимальную скорость работы модели



После нескольких секунд работы модели на максимальной скорости среднее значение вероятности потери заявки составит примерно равным 0,012, рисунок



Рисунок 6 –Проверка работы модели

Если при компиляции обнаружены ошибки, проверить структуру модели и значения свойств ее параметров, внести исправления и повторить попытку компиляции и запуска.

#### 2.3.2 Сравнение результатов с аналитической моделью

Выполнить ряд прогонов имитационной модели для двух типов СМО: M/M/1/K с разным значением интенсивности нагрузки и размера очереди. Полученные оценки вероятности потерь занести в таблицу 1, округлять числа до 3 знаков после запятой.

Для аналитической модели М/М/1/К выбрать выражение

$$p = \frac{1 - \rho}{1 - \rho^{K+1}} \rho^K$$

 $\rho = \frac{a}{\mu} = a\bar{t}$ , K – равно количеству мест ожидания в очереди + 1.

Таблица – 1 Оценки вероятности потерь для различных значений интенсивности нагрузки СМО M/M/1

| N | а   |    | Максимальная длина очереди (К-1) |     |    |    |    |    |    |    |    |    |    |  |
|---|-----|----|----------------------------------|-----|----|----|----|----|----|----|----|----|----|--|
|   |     | 0  |                                  | ) 1 |    | 4  | 5  |    | 10 |    | 20 |    | 0  |  |
|   |     | ИМ | AM                               | ИМ  | AM | ИМ | AM | ИМ | AM | ИМ | AM | ИМ | AM |  |
| 1 | 0,1 |    |                                  |     |    |    |    |    |    |    |    |    |    |  |
| 2 | 0,2 |    |                                  |     |    |    |    |    |    |    |    |    |    |  |
| 3 | 0,3 |    |                                  |     |    |    |    |    |    |    |    |    |    |  |
| 4 | 0,4 |    |                                  |     |    |    |    |    |    |    |    |    |    |  |
| 5 | 0,5 |    |                                  |     |    |    |    |    |    |    |    |    |    |  |
| 6 | 0,6 |    |                                  |     |    |    |    |    |    |    |    |    |    |  |

| 7  | 0,7  |  |  |  |  |  |  |
|----|------|--|--|--|--|--|--|
| 8  | 0,8  |  |  |  |  |  |  |
| 9  | 0,9  |  |  |  |  |  |  |
| 10 | 0,99 |  |  |  |  |  |  |

ИМ – имитационное моделирование,

АМ – аналитическое моделирование.

По данным таблицы 1 построить графики зависимости доли потерянных заявок от интенсивности нагрузки и длины очереди.

#### 3. Исследование СМО G/G/1/К

#### 3.1 Построение модели СМО G/G/1/K

Модифицировать модель СМО M/M/1/K путем изменения свойств элементов source и delay. Структура и элементы модели приведены на рисунке 7.



Рисунок 7 – Структура модели

### 3.2 Определить свойства элементов модели

| source - Source                     |                                     |                                   |
|-------------------------------------|-------------------------------------|-----------------------------------|
| Имя:                                | source                              | Отображать                        |
| Тип заявки:                         | Packet                              |                                   |
| Прибывают согласно:                 | =,                                  | Времени между прибытиями 🔻        |
| Время между прибытиями:             | $\supset$                           | gamma( a, b, 0 )                  |
| За 1 раз создается несколько заявок | c =                                 |                                   |
| Ограниченное кол-во прибытий:       | =_,                                 |                                   |
| Новая заявка:                       | =_                                  | <b></b> Packet                    |
|                                     |                                     | (чтобы создать другой тип, добав  |
| Местоположение прибытия:            | =,                                  | Не задано 🔻                       |
| Специфические                       |                                     |                                   |
| Действия                            |                                     |                                   |
| До прибытия:                        |                                     |                                   |
| При подходе к выходу:               |                                     |                                   |
| <b>(</b>                            | entity.or<br>LaTime.ac<br>:m=time() | rigTime=time();<br>dd(time()-tm); |

Рисунок 8 –Изменение свойств элемента source



Рисунок 9 – Изменение свойств элемента queue

| 🛮 Свойства 🛭              |                                                    |
|---------------------------|----------------------------------------------------|
| 🔇 delay - Delay           |                                                    |
| Имя:                      | delay    ✓ Отображать имя                          |
| Тип заявки:               | Packet                                             |
| Тип:                      | =_    Определенное время                           |
|                           | <ul><li>Пока не вызван метод stopDelay()</li></ul> |
| Время задержки:           | <pre>pexponential( 1 )</pre>                       |
| Вместимость:              | = 1                                                |
| Максимальная вместимость: | =, 🔳                                               |

Рисунок 10 – Изменение свойств элемента delay

| 🔳 Свойства 🛭        |                                                                             |
|---------------------|-----------------------------------------------------------------------------|
| 🗷 sink - Sink       |                                                                             |
| Имя:<br>Тип заявки: | sink                                                                        |
| ▼ Действия          |                                                                             |
| При входе:          | <pre>data.add(time()-entity.origTime); ro=sTime.mean()/iaTime.mean();</pre> |
|                     | ·                                                                           |

Рисунок 11 –Изменение свойств элемента sink



Рисунок 12 – Изменение свойств элемента sink1

| □ Свойства 🖾                                                                  |                       |           |
|-------------------------------------------------------------------------------|-----------------------|-----------|
| 🕾 slider - Бегунок                                                            |                       |           |
| Имя:                                                                          | slider                | Исключить |
| Ориентация: 🔘 Горизонт                                                        | альная 🍥 Вертикальная |           |
| Добавить метки                                                                |                       |           |
| Ѿ Связать с:                                                                  | Ь                     |           |
| Минимальное значение:                                                         | 0.1                   |           |
| Максимальное значение:                                                        | 5                     |           |
| Доступность:                                                                  |                       |           |
| ▼ Действие                                                                    |                       |           |
| <pre>data.reset(); iaTime.reset(); sTime.reset(); p=0; cnt=0; lstcnt=0;</pre> |                       |           |

Рисунок 13 – Изменение свойств элемента slider

# 3.2 Проведение имитационных экспериментов

Выполнить имитационное моделирование для ряда значений интенсивности нагрузки а и количества мест ожидания в очереди. Полученные результаты занести в таблицу 2.

Таблица – 2 Оценки вероятности потерь для различных значений интенсивности нагрузки СМО G/G/1/K

| N | а   |       | Максимальная длина очереди (К-1) |   |   |    |    |       |       |    |   |    |    |  |
|---|-----|-------|----------------------------------|---|---|----|----|-------|-------|----|---|----|----|--|
|   |     |       | 5                                |   |   |    |    |       |       | 10 |   |    |    |  |
|   |     | $C_a$ | $C_b$                            | τ | t | ИМ | ам | $C_a$ | $C_b$ | τ  | t | ИМ | ам |  |
| 1 | 0,1 |       |                                  |   |   |    |    |       |       |    |   |    |    |  |
| 2 | 0,2 |       |                                  |   |   |    |    |       |       |    |   |    |    |  |
| 3 | 0,3 |       |                                  |   |   |    |    |       |       |    |   |    |    |  |
| 4 | 0,4 |       |                                  |   |   |    |    |       |       |    |   |    |    |  |
| 5 | 0,5 |       |                                  |   |   |    |    |       |       |    |   |    |    |  |
| 6 | 0,6 |       |                                  |   |   |    |    |       |       |    |   |    |    |  |
| 7 | 0,7 |       |                                  |   |   |    |    |       |       |    |   |    |    |  |

| 8  | 0,8  |  |  |  |  |  |  |
|----|------|--|--|--|--|--|--|
| 9  | 0,9  |  |  |  |  |  |  |
| 10 | 0,99 |  |  |  |  |  |  |

им – имитационное моделирование,

ам – аналитическое моделирование.

t – среднее время обслуживания,

au – среднее интервала между заявками.

В качестве аналитической модели принять выражение

$$p \approx \frac{1 - \rho}{1 - \rho^{\frac{2}{C_a^2 + C_b^2} K + 1}} \cdot \rho^{\frac{2}{C_a^2 + C_b^2} K}$$

$$\rho = \frac{t}{\tau}.$$

По результатам из таблицы 2 построить графики зависимости вероятности потерь от интенсивности нагрузки и максимальной длины очереди.

По полученным результатам сделать соответствующие выводы.

## 5. Выводы по работе

Сформулировать выводы по каждому из этапов выполнения работы:

- 1. По построению имитационной модели СМО с комбинированной ДО.
- 2. По результатам имитационного и аналитического моделирования на примере CMO M/M/1/K.
  - 3. По результатам исследования СМО G/G/1/K.