Число сочетаний с повторениями

Владимир Подольский

Факультет компьютерных наук, Высшая Школа Экономики

Число сочетаний с повторениями

Комбинаторные постановки

Число салатов

Число сочетаний с повторениями

Мы рассматриваем выборки k элементов из n вариантов

Мы рассматриваем выборки k элементов из n вариантов

	С повторениями	Без повторений
Упорядоченные		
Неупорядоченные		

	С повторениями	Без повторений
Упорядоченные		
Неупорядоченные		

	С повторениями	Без повторений
Упорядоченные	(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)	
Неупорядоченные		

	С повторениями	Без повторений
Упорядоченные	(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)	(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)
Неупорядоченные		

	С повторениями	Без повторений
Упорядоченные	(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)	(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)
Неупорядоченные		{a, b}, {a, c}, {b, c}

	С повторениями	Без повторений
Упорядоченные	(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)	(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)
Неупорядоченные	{a, b}, {a, c}, {b, c} {a, a}, {b, b}, {c, c}	{a, b}, {a, c}, {b, c}

	С повторениями	Без повторений
Упорядоченные		
Неупорядоченные		

	С повторениями	Без повторений
Упорядоченные	Слова n^k	
Неупорядоченные		

	С повторениями	Без повторений
Упорядоченные	Слова n^k	k -перестановки $rac{n!}{(n-k)!}$
Неупорядоченные		

	С повторениями	Без повторений
Упорядоченные	Слова n^k	k -перестановки $rac{n!}{(n-k)!}$
Неупорядоченные		Сочетания $\binom{n}{k}$

	С повторениями	Без повторений
Упорядоченные	Слова n^k	k -перестановки $rac{n!}{(n-k)!}$
Неупорядоченные	?	Сочетания $\binom{n}{k}$

Пример

Пусть у нас есть k видео, каждое относится к одной из n различных категорий. Нас интересует только количество видео в каждой категории. Сколько есть разных распределений размеров категорий?

Пример

Пусть у нас есть k видео, каждое относится к одной из n различных категорий. Нас интересует только количество видео в каждой категории. Сколько есть разных распределений размеров категорий?

Пусть k = 2, n = 3.

Вот список всех возможных распределений:

Пример

Пусть у нас есть k видео, каждое относится к одной из n различных категорий. Нас интересует только количество видео в каждой категории. Сколько есть разных распределений размеров категорий?

• Для каждого из k видео мы выбираем одну из n категорий

Пример

Пусть у нас есть k видео, каждое относится к одной из n различных категорий. Нас интересует только количество видео в каждой категории. Сколько есть разных распределений размеров категорий?

- Для каждого из k видео мы выбираем одну из n категорий
- Каждое видео добавляет 1 к размеру одной из категорий

Пример

Пусть у нас есть k видео, каждое относится к одной из n различных категорий. Нас интересует только количество видео в каждой категории. Сколько есть разных распределений размеров категорий?

 Все видео равноправны, так что выборка неупорядоченная

Пример

Пусть у нас есть k видео, каждое относится к одной из n различных категорий. Нас интересует только количество видео в каждой категории. Сколько есть разных распределений размеров категорий?

- Все видео равноправны, так что выборка неупорядоченная
- Несколько видео могут попасть в одну и ту же категорию

Пример

Пусть у нас есть k видео, каждое относится к одной из n различных категорий. Нас интересует только количество видео в каждой категории. Сколько есть разных распределений размеров категорий?

- Все видео равноправны, так что выборка неупорядоченная
- Несколько видео могут попасть в одну и ту же категорию
- Так что распределяя видео мы выбираем k неупорядоченных категорий из n вариантов с повторениями

Число сочетаний с повторениями

Комбинаторные постановки

Число салатов

Число сочетаний с повторениями

Задача

Задача

У нас есть неограниченное количество помидоров, огурцов и перцев. Мы хотим сделать салат из 4 овощей этих трех типов (мы не обязаны использовать все ингредиенты). Сколько разных салатов можно сделать?

• Выбираем 4 объекта из 3 вариантов с повторениями

Задача

- Выбираем 4 объекта из 3 вариантов с повторениями
- Порядок не важен

Задача

- Выбираем 4 объекта из 3 вариантов с повторениями
- Порядок не важен
- Это наша постановка

Задача

- Выбираем 4 объекта из 3 вариантов с повторениями
- Порядок не важен
- Это наша постановка
- Но мы пока не знаем как их посчитать

Задача

- Выбираем 4 объекта из 3 вариантов с повторениями
- Порядок не важен
- Это наша постановка
- Но мы пока не знаем как их посчитать
- Мы перечислим все салаты, а затем уже посчитаем

Задача

- Выбираем 4 объекта из 3 вариантов с повторениями
- Порядок не важен
- Это наша постановка
- Но мы пока не знаем как их посчитать
- Мы перечислим все салаты, а затем уже посчитаем
- Но мы хотим перечислить их разумно

Один и тот же салат

• Порядок не важен

Один и тот же салат

- Порядок не важен
- Давайте выпишем сначала помидоры, затем перцы, затем огурцы

- Порядок не важен
- Давайте выпишем сначала помидоры, затем перцы, затем огурцы

- Порядок не важен
- Давайте выпишем сначала помидоры, затем перцы, затем огурцы
- Переберем все возможные количества помидоров и посчитаем салаты в каждом из случаев

Случай 1: 4 помидора

Случай 1: 4 помидора

Случай 1: 4 помидора

Случай 2: 3 помидора

Случай 2: 3 помидора

Случай 2: 3 помидора

Случай 2: 3 помидора

• 4 помидора: 1 салат

Случай 3: 2 помидора

• 4 помидора: 1 салат

Случай 3: 2 помидора

• 4 помидора: 1 салат

Случай 3: 2 помидора

• 4 помидора: 1 салат

Случай 3: 2 помидора

• 4 помидора: 1 салат

Случай 3: 2 помидора

• 4 помидора: 1 салат

• 3 помидора: 2 салата

Случай 4: 1 помидор

• 4 помидора: 1 салат

• 3 помидора: 2 салата

Случай 4: 1 помидор

• 4 помидора: 1 салат

• 3 помидора: 2 салата

Случай 4: 1 помидор

• 4 помидора: 1 салат

• 3 помидора: 2 салата

Случай 4: 1 помидор

• 4 помидора: 1 салат

• 3 помидора: 2 салата

Случай 4: 1 помидор

• 4 помидора: 1 салат

• 3 помидора: 2 салата

Случай 4: 1 помидор

• 4 помидора: 1 салат

• 3 помидора: 2 салата

• 2 помидора: 3 салата

Случай 5: 0 помидоров

• 4 помидора: 1 салат

• 3 помидора: 2 салата

• 2 помидора: 3 салата

Случай 5: 0 помидоров

• 4 помидора: 1 салат

• 3 помидора: 2 салата

• 2 помидора: 3 салата

Случай 5: 0 помидоров

• 4 помидора: 1 салат

• 3 помидора: 2 салата

• 2 помидора: 3 салата

Случай 5: 0 помидоров

• 4 помидора: 1 салат

• 3 помидора: 2 салата

• 2 помидора: 3 салата

Случай 5: 0 помидоров

• 4 помидора: 1 салат

• 3 помидора: 2 салата

• 2 помидора: 3 салата

Случай 5: 0 помидоров

• 4 помидора: 1 салат

• 3 помидора: 2 салата

• 2 помидора: 3 салата

Случай 5: 0 помидоров

• 4 помидора: 1 салат

• 3 помидора: 2 салата

• 2 помидора: 3 салата

1 помидор: 4 салата

• 0 помидоров: 5 салатов

Случай 5: 0 помидоров

• 4 помидора: 1 салат

• 3 помидора: 2 салата

• 2 помидора: 3 салата

1 помидор: 4 салата

• 0 помидоров: 5 салатов

• Всего: 15 салатов

Список всех салатов

• Решение выглядит очень структурированным

- Решение выглядит очень структурированным
- Такая же структура для салатов большего размера

- Решение выглядит очень структурированным
- Такая же структура для салатов большего размера
- Но более сложная для большего числа ингредиентов

- Решение выглядит очень структурированным
- Такая же структура для салатов большего размера
- Но более сложная для большего числа ингредиентов
- Тем не менее, такая же стратегия рекурсивного подсчета работает для салатов любого размера из любого числа ингредиентов

Число сочетаний с повторениями

Комбинаторные постановки

Число салатов

Число сочетаний с повторениями

Большие салаты

Задачи

У нас есть неограниченное количество помидоров, огурцов, перцев и баклажанов. Мы хотим сделать салат из 7 овощей этих четырех типов (мы не обязаны использовать все ингредиенты). Сколько разных салатов можно сделать?

Большие салаты

Задачи

У нас есть неограниченное количество помидоров, огурцов, перцев и баклажанов. Мы хотим сделать салат из 7 овощей этих четырех типов (мы не обязаны использовать все ингредиенты). Сколько разных салатов можно сделать?

• Мы снова можем использовать рекурсивный подсчет

Большие салаты

Задачи

У нас есть неограниченное количество помидоров, огурцов, перцев и баклажанов. Мы хотим сделать салат из 7 овощей этих четырех типов (мы не обязаны использовать все ингредиенты). Сколько разных салатов можно сделать?

- Мы снова можем использовать рекурсивный подсчет
- Но вместо этого мы выведем формулу

Задачи

У нас есть неограниченное количество помидоров, огурцов, перцев и баклажанов. Мы хотим сделать салат из 7 овощей этих четырех типов (мы не обязаны использовать все ингредиенты). Сколько разных салатов можно сделать?

- Мы снова можем использовать рекурсивный подсчет
- Но вместо этого мы выведем формулу
- Это будет решением задачи и в общем виде тоже

• Порядок не важен

- Порядок не важен
- Давайте сначала перечислим помидоры, затем перцы, затем огурцы, а затем баклажаны

• Идея 1: чтобы указать конкретный салат, достаточно указать, где меняются ингредиенты

• Идея 1: чтобы указать конкретный салат, достаточно указать, где меняются ингредиенты

• Идея 1: чтобы указать конкретный салат, достаточно указать, где меняются ингредиенты

- Идея 1: чтобы указать конкретный салат, достаточно указать, где меняются ингредиенты
- Идея 2: даже текстовое описание не нужно

- Идея 1: чтобы указать конкретный салат, достаточно указать, где меняются ингредиенты
- Идея 2: даже текстовое описание не нужно

- Идея 1: чтобы указать конкретный салат, достаточно указать, где меняются ингредиенты
- Идея 2: даже текстовое описание не нужно
- Идея 3: Можем указать места смены ингредиентов перегородками

- Идея 1: чтобы указать конкретный салат, достаточно указать, где меняются ингредиенты
- Идея 2: даже текстовое описание не нужно
- Идея 3: Можем указать места смены ингредиентов перегородками

- Идея 1: чтобы указать конкретный салат, достаточно указать, где меняются ингредиенты
- Идея 2: даже текстовое описание не нужно
- Идея 3: Можем указать места смены ингредиентов перегородками
- Мы все еще можем восстановить салат: помидоры слева от первой перегородки, затем перцы и т.д.

• Что если в салате не было, например, перцев?

- Что если в салате не было, например, перцев?
- Ничего страшного

- Что если в салате не было, например, перцев?
- Ничего страшного
- Теперь, чтобы указать конкретный салат, достаточно выбрать три позиции из 10 и поставить в них перегородки

- Что если в салате не было, например, перцев?
- Ничего страшного
- Теперь, чтобы указать конкретный салат, достаточно выбрать три позиции из 10 и поставить в них перегородки
- Это обычные сочетания! Ответ в задаче $\binom{10}{3} = 120!$

Задача

У нас есть неограниченное количество помидоров, огурцов, перцев и баклажанов. Мы хотим сделать салат из 7 овощей этих четырех типов (мы не обязаны использовать все ингредиенты). Сколько разных салатов можно сделать?

Задача

У нас есть неограниченное количество помидоров, огурцов, перцев и баклажанов. Мы хотим сделать салат из 7 овощей этих четырех типов (мы не обязаны использовать все ингредиенты). Сколько разных салатов можно сделать?

Основные идеи:

• Упорядочили салат удобным способом

Задача

У нас есть неограниченное количество помидоров, огурцов, перцев и баклажанов. Мы хотим сделать салат из 7 овощей этих четырех типов (мы не обязаны использовать все ингредиенты). Сколько разных салатов можно сделать?

- Упорядочили салат удобным способом
- Салат определяется разделителями

Задача

У нас есть неограниченное количество помидоров, огурцов, перцев и баклажанов. Мы хотим сделать салат из 7 овощей этих четырех типов (мы не обязаны использовать все ингредиенты). Сколько разных салатов можно сделать?

- Упорядочили салат удобным способом
- Салат определяется разделителями
- Поместили разделители в один ряд с ингредиентами

Задача

У нас есть неограниченное количество помидоров, огурцов, перцев и баклажанов. Мы хотим сделать салат из 7 овощей этих четырех типов (мы не обязаны использовать все ингредиенты). Сколько разных салатов можно сделать?

- Упорядочили салат удобным способом
- Салат определяется разделителями
- Поместили разделители в один ряд с ингредиентами
- Осталось выбрать места для разделителей в списке
 старая задача

Число сочетаний с повторениями

Число сочетаний с повторениями

Число сочетаний с повторениями размера k из n объектов равно $\binom{k+n-1}{n-1}$

• Размер выборки = размер салата

Число сочетаний с повторениями

- Размер выборки = размер салата
- Число объектов = число ингредиентов

Число сочетаний с повторениями

- Размер выборки = размер салата
- Число объектов = число ингредиентов
- Работает то же рассуждение

Число сочетаний с повторениями

- Размер выборки = размер салата
- Число объектов = число ингредиентов
- Работает то же рассуждение
- Почему k+n-1 и n-1?

Число сочетаний с повторениями

- Размер выборки = размер салата
- Число объектов = число ингредиентов
- Работает то же рассуждение
- Почему k+n-1 и n-1?
- n ингредиентов означает $n\!-\!1$ разделитель; выбираем $(n\!-\!1)$ объект в списке из $k\!+\!(n\!-\!1)$ объектов

Стандартные комбинаторные постановки

Мы рассматриваем выборки k элементов из n вариантов

Стандартные комбинаторные постановки

Мы рассматриваем выборки k элементов из n вариантов

	С повторениями	Без повторений
Упорядоченные	Слова n^k	k -перестановки $rac{n!}{(n-k)!}$
Неупорядоченные	Сочетания с повторениями $\binom{k+n-1}{n-1}$	Сочетания $\binom{n}{k}$