MODULE 2

RANDOM VARIABLE AND ITS DISTRIBUTION

LECTURE 9

Topics

2.4 TYPES OF RANDOM VARIABLES: DISCRETE, CONTINUOUS AND ABSOLUTELY CONTINUOUS

2.4 TYPES OF RANDOM VARIABLES: DISCRETE, CONTINUOUS AND ABSOLUTELY CONTINUOUS

Let X be a r.v. defined on a probability space (Ω, \mathcal{F}, P) and let $(\mathbb{R}, \mathcal{B}_1, P_X)$ be the probability space induced by X. Let F_X be the d.f. of X. Then F_X will either be continuous everywhere or it will have countable number of discontinuities. Moreover the sum of sizes of jumps at the point of discontinuities of F_X will be either 1 or less than 1. These properties can be used to classify a r.v. into three broad categories.

Definition 4.1

A random variable X is said to be of discrete type if there exists a non-empty and countable set S_X such that $P(\{X = x\}) = F_X(x) - F_X(x -) > 0$, $\forall x \in S_X$ and $P_X(S_X) = \sum_{x \in S_X} P(\{X = x\}) = \sum_{x \in S_X} [F_X(x) - F_X(x -)] = 1$. The set S_X is called the *support* of the discrete random variable X.

Remark 4.1

If a r.v. X is of discrete type then $P_X(S_X^C) = 1 - P_X(S_X) = 0$ and, consequently $P(\{X = x\}) = 0$, $\forall x \in S_X^C$, i. e., $F_X(x) - F_X(x -) = 0$, $\forall x \in S_X^C$ and F_X is continuous at every point of S_X^C . Moreover, $F_X(x) - F_X(x -) = P(\{X = x\}) > 0$, $\forall x \in S_X$. It follows that the support S_X of a discrete type r.v. X is nothing but the set of discontinuity points of the d.f. F_X . Moreover the sum of sizes of jumps at the point of discontinuities is

$$\sum_{x \in S_x} [F_X(x) - F_X(x - 1)] = \sum_{x \in S_x} P(\{X = x\}) = P_X(S_X) = 1. \blacksquare$$

Thus we have the following theorem.

Theorem 4.1

Let X be a random variable with distribution function F_X and let D_X be the set of discontinuity points of F_X . Then X is of discrete type if, and only if, $P(\{X \in D_X\}) = 1$.

Definition 4.2

Let X be a discrete type random variable with support S_X . The function $f_X : \mathbb{R} \to \mathbb{R}$, defined by,

$$f_X(x) = \begin{cases} P(\{X = x\}), & \text{if } x \in S_X \\ 0, & \text{otherwise} \end{cases}$$

is called the *probability mass function* (p.m.f.) of X.

Example 4.1

Let us consider a r.v. Z having the d.f. F considered in Example 3.2 (iii). The set of discontinuity points of F is $D_Z = \{0, 2, 3, 6, 12, 15\}$ and

$$P(\{Z \in D_Z\}) = \sum_{z \in D_Z} [F(z) - F(z -)] = 1.$$

Therefore the r.v. Z is of discrete type with support $S_Z = D_Z = \{0, 2, 3, 6, 12, 15\}$ and p.m.f.

$$f_{Z}(z) = \begin{cases} [F(z) - F(z -)], & \text{if } z \in S_{Z} \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \frac{1}{8}, & \text{if } z \in \{0, 2, 15\} \\ \frac{1}{4}, & \text{if } z = 3 \end{cases}$$

$$= \begin{cases} \frac{3}{10}, & \text{if } z = 6 \\ \frac{3}{40}, & \text{if } z = 12 \\ 0, & \text{otherwise} \end{cases}$$

Figure 4.1. Plot of p.m.f. $f_Z(z)$

Note that the p.m.f. f_X of a discrete type r.v. X, having support S_X , satisfies the following properties:

(i)
$$f_X(x) > 0$$
, $\forall x \in S_X$ and $f_X(x) = 0$, $\forall x \notin S_X$, (4.1)

(ii)
$$\sum_{x \in S_X} f_X(x) = \sum_{x \in S_X} P(\{X = x\}) = 1.$$
 (4.2)

Moreover, for $B \in \mathcal{B}_1$,

$$P_X(B) = P_X(B \cap S_X) + P_X(B \cap S_X^C)$$

$$= P_X(B \cap S_X) \qquad \text{(since } B \cap S_X^C \subseteq S_X^C \text{ and } P_X(S_X^C) = 0)$$

$$= \sum_{x \in B \cap S_X} f_X(x).$$

This suggests that we can study probability space $(\mathbb{R}, \mathcal{B}_1, P_X)$, induced by a discrete type r.v.X, through the study of its p.m.f. f_X . Also

$$F_X(x) = \sum_{y \in (-\infty, x] \cap S_X} f_X(y), \ x \in \mathbb{R}$$

and

$$f_X(x) = P(X = x) = F_X(x) - F_X(x - x), x \in \mathbb{R}.$$

Thus, given a p.m.f. of a discrete type of r.v., we can get its d.f. and vice-versa. In other words, there is one-one correspondence between p.m.f.s and distribution functions of discrete type random variables.

The following theorem establishes that any function $g: \mathbb{R} \to \mathbb{R}$ satisfying (4.1) and (4.2) is p.m.f. of some discrete type random variable.

Theorem 4.2

Suppose that there exists a non-empty and countable set $S \subseteq \mathbb{R}$ and a function $g: \mathbb{R} \to \mathbb{R}$ satisfying: (i) g(x) > 0, $\forall x \in S$; (ii) g(x) = 0, $\forall x \notin S$, and (iii) $\sum_{x \in S} g(x) = 1$. Then there exists a discrete type random variable on some probability space $(\mathbb{R}, \mathcal{B}_1, P)$ such that the p.m.f. of X is g.

Proof. Define the set function $P: \mathcal{B}_1 \to \mathbb{R}$ by

$$P(B) = \sum_{x \in B \cap S} g(x), \quad B \in \mathcal{B}_1.$$

It is easy to verify that P is a probability measure on \mathcal{B}_1 , i.e., $(\mathbb{R}, \mathcal{B}_1, P)$ is a probability space. Define $X: \mathbb{R} \to \mathbb{R}$ by $X(\omega) = \omega$, $\omega \in \mathbb{R}$. Clearly X is a r.v. on the probability space $(\mathbb{R}, \mathcal{B}_1, P)$ and it induces the same probability space $(\mathbb{R}, \mathcal{B}_1, P)$. Clearly $P(\{X = x\}) = g(x)$, $x \in \mathbb{R}$, and $\sum_{x \in S} g(x) = 1$. Therefore the r.v. X is of discrete type with support S and S and S and S and S much support S much support S and S much support S much support S and S much support S much s

Example 4.2

Consider a coin that, in any flip, ends up in head with probability $\frac{1}{4}$ and in tail with probability $\frac{3}{4}$. The coin is tossed repeatedly and independently until a total of two heads have been observed. Let X denote the number of flips required to achieve this. Then $P(\{X=x\})=0$, if $x \notin \{2,3,4,\cdots\}$. For $i \in \{2,3,4,\cdots\}$

$$P(\{X=i\}) = \left(\binom{i-1}{1} \frac{1}{4} \left(\frac{3}{4}\right)^{i-2}\right) \frac{1}{4}$$
$$= \frac{i-1}{16} \left(\frac{3}{4}\right)^{i-2}.$$

Moreover, $\sum_{i=2}^{\infty} P(\{X=i\}) = 1$. It follows that *X* is a discrete type r.v. with support $S_X = \{2, 3, 4, ...\}$ and p.m.f.

$$f_X(x) = \begin{cases} \frac{x-1}{16} \left(\frac{3}{4}\right)^{x-2}, & \text{if } x \in \{2, 3, 4, \dots\} \\ 0, & \text{otherwise} \end{cases}.$$

Figure 4.2. Plot of p.m.f. $f_X(x)$

The d.f. of X is

$$F_X(x) = P(\{X \le x\})$$

$$= \begin{cases} 0, & \text{if } x < 2 \\ \frac{1}{16} \sum_{j=2}^{i} (j-1) \left(\frac{3}{4}\right)^{j-2}, & \text{if } i \le x < i+1, \ i=2,3,4,\cdots \end{cases}$$

$$= \begin{cases} 0, & \text{if } x < 2 \\ 1 - \frac{i+3}{4} \left(\frac{3}{4}\right)^{i-1}, & \text{if } i \le x < i+1, \quad i=2,3,4,\cdots \end{cases}$$

Example 4.3

A r.v. X has the d.f.

$$F_X(x) = \begin{cases} 0, & \text{if } x < 2\\ \frac{2}{3}, & \text{if } 2 \le x < 5\\ \frac{7-6k}{6}, & \text{if } 5 \le x < 9\\ \frac{3k^2 - 6k + 7}{6}, & \text{if } 9 \le x < 14\\ \frac{16k^2 - 16k + 19}{16}, & \text{if } 14 \le x \le 20\\ 1, & \text{if } x > 20 \end{cases}$$

where $k \in \mathbb{R}$.

- (i) Find the value of constant k;
- (ii) Show that the r.v. *X* is of discrete type and find its support;
- (iii) Find the p.m.f. of X.

Solution. (i) Since F_X is right continuous, we have

$$F_X(20) = F_X(20+)$$

 $\Rightarrow 16k^2 - 16k + 3 = 0$
 $\Rightarrow k = \frac{1}{4} \text{ or } k = \frac{3}{4}.$ (4.3)

Also F_X is non-decreasing. Therefore

$$F_X(5-) \le F_X(5)$$

$$\Rightarrow k \le \frac{1}{2}.$$
(4.4)

On combining (4.3) and (4.4) we get k = 1/4. Therefore

$$F_X(x) = \begin{cases} 0, & \text{if } x < 2\\ \frac{2}{3}, & \text{if } 2 \le x < 5\\ \frac{11}{12}, & \text{if } 5 \le x < 9\\ \frac{91}{96}, & \text{if } 9 \le x < 14\\ 1, & \text{if } x \ge 14 \end{cases}$$

(ii) The set of discontinuity points of F_X is $D_X = \{2, 5, 9, 14\}$. Moreover

$$P(\{X=2\}) = F_X(2) - F_X(2-) = \frac{2}{3},$$

$$P(\{X=5\}) = F_X(5) - F_X(5-) = \frac{1}{4},$$

$$P(\{X=9\}) = F_X(9) - F_X(9-) = \frac{1}{32},$$

$$P(\{X=14\}) = F_X(14) - F_X(14-) = \frac{5}{96},$$

and

$$P(\{X \in D_X\}) = P(\{X = 2\}) + P(\{X = 5\}) + P(\{X = 9\}) + P(\{X = 14\})$$
$$= 1.$$

Therefore the r.v. *X* is of discrete type with support $S_X = \{2, 5, 9, 14\}$.

(iii) Clearly the p.m.f. of X is given by

$$f_X(x) = P(\{X = x\}) = \begin{cases} \frac{2}{3}, & \text{if } x = 2\\ \frac{1}{4}, & \text{if } x = 5\\ \frac{1}{32}, & \text{if } x = 9\\ \frac{5}{96}, & \text{if } x = 14\\ 0, & \text{otherwise} \end{cases}$$

Example 4.4

A r.v. X has the p.m.f.

$$f_X(x) = \begin{cases} \frac{c}{(2x-1)(2x+1)}, & \text{if } x \in \{1,2,3,\cdots\}, \\ 0, & \text{otherwise} \end{cases}$$

where $c \in \mathbb{R}$.

- (i) Find the value of constant *c*:
- (ii) For positive integers m and n, such that m < n, evaluate $P(\{X < m + 1\}), P(\{X \ge m\}), P(\{m \le X < n\})$ and $P(\{m < X \le n\})$;
- (iii) Determine the d.f. of X.

Solution.

(i) Let S_X be the support of X so that $S_X = \{x \in \mathbb{R}: f_X(x) > 0\}$ and $\sum_{x \in S_X} f_X(x) = 1$. Clearly, SX = 1, 2, 3, ... and

$$\sum_{i=1}^{\infty} \frac{c}{(2i-1)(2i+1)} = 1$$

$$\Rightarrow \lim_{n \to \infty} \sum_{i=1}^{n} \frac{c}{(2i-1)(2i+1)} = 1$$

$$\Rightarrow \frac{c}{2} \lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{1}{2i-1} - \frac{1}{2i+1} \right] = 1$$

$$\Rightarrow \frac{c}{2} \lim_{n \to \infty} \left[\sum_{i=1}^{n} \frac{1}{2i-1} - \sum_{i=1}^{n} \frac{1}{2i+1} \right] = 1$$

$$\Rightarrow \frac{c}{2} \lim_{n \to \infty} \left[1 - \frac{1}{2n+1} \right] = 1$$

$$\Rightarrow c = 2.$$

(ii) For positive integers m and n such that m < n, we have $P(\{X < m + 1\}) = P(\{X \le m\})$

$$= \sum_{i=1}^{m} \frac{2}{(2i-1)(2i+1)}$$

$$= \sum_{i=1}^{m} \left[\frac{1}{2i-1} - \frac{1}{2i+1} \right]$$

$$= 1 - \frac{1}{2m+1}$$

$$= \frac{2m}{2m+1},$$

$$P(\{X \ge m\}) = 1 - P(\{X < m\})$$

$$= 1 - \frac{2(m-1)}{2(m-1)+1}$$

$$= \frac{1}{2m-1},$$

$$P(\{m \le X < n\}) = P(\{X < n\}) - P(\{X < m\})$$

$$= \frac{2(n-1)}{2n-1} - \frac{2(m-1)}{2m-1}$$

$$= \frac{2(n-m)}{(2n-1)(2m-1)},$$

$$P(\{m < X \le n\}) = P(\{m+1 \le X < n+1\})$$

and

$$P(\{m < X \le n\}) = P(\{m+1 \le X < n+1\})$$
$$= \frac{2(n-m)}{(2n+1)(2m+1)}.$$

(iii) Clearly, for $x < 1, F_X(x) = 0$. For $i \le x < i + 1, i = 1, 2, 3, ...$

$$F_X(x) = P(\{X < i+1\}) = \frac{2i}{2i+1}$$
. (using (ii))

Therefore,

$$F_X(x) = \begin{cases} 0, & \text{if } x < 1 \\ \frac{2i}{2i+1}, & \text{if } i \le x < i+1, i = 1, 2, 3, \dots \end{cases}$$