CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

Cache Organization

Lecture No.- 04

Recap of Previous Lecture

Topics to be Covered

Topic

Cache Mapping

Topic

Direct Mapping

Topic

Tag & Index

NAT

The memory access time is 1 nanosecond for a read operation with a hit in #Q. cache, 5 nanoseconds for a read operation with a miss in cache, 2 nanoseconds for a write operation with a hit in cache and 10 nanoseconds for a write operation with a miss in cache. Execution of a sequence of instructions involves 100 instruction fetch operations; 60 memory operand read operations and 40 memory operand write operations. The cache hitratio is 0.9. The average memory access time (in nanoseconds) in executing the sequence of instructions is?

tang weite =
$$0.9 * 1 + 0.1 * 5 = 1.4 \text{ hs}$$

tang weite = $0.9 * 2 + 0.1 * 10 = 2.8 \text{ ns}$

Total Read =
$$100 + 60 = 160$$
 | $tavg = (0.8 \times 1.4)$
1. of read = $\frac{160}{200} = 0.8$ | $total = \frac{160}{200} = 0.8$ | $total$

tang =
$$(0.8 \times 1.4)$$

+ (0.2×2.8)
= 1.68 ns

#Q. Assume a miss rate of 2% for the instruction cache and of 4% for the data cache, a miss penalty of 100 cycles for all misses, and a frequency of 36% of loads and stores. If the CPI is 2 without memory stalls, determine how much faster the processor runs with a perfect cache that never misses.

Topic: Cache Mapping

CPU always generates m.m. address

Transformation of mm Leter in Cache mm

Topic: Cache Mapping

La mapping is applied on blocks.

- Direct Mapping
- Set Associative Mapping
- Fully Associative Mapping

- Blocks in cache = 10 (0-9)
- Blocks in Main memory = 100(00-99)

Cache		1		3 👨	4 6ck64	5	6	7	8	9
Main	00	6ck 91	02	03	04	05	06	07	08	09
Memory	10	11	12	13	14	15	16	17	18	19
	20	21	22	23	24	25	26	27	28	(20)
	30	31	32	33	34	35	36	37	38	39
	:	:	:	:	:	:	:	:	:	:
	90	91	92	93	94	95	96	97	98	99

CPU Request (MM block)	Mapping (CM block no.)	Hit /Miss	Comments
51	51%10=1	Miss	Bring block 51 of mm into cm at block 1.
64	64%10 = 4	miss	Dring block 64 of mm into cm at block 4.
91	91%10 = 1	miss	Bring block 91 of mm into cm at block 1, by replacing block 51

Tag => Tag is stored to identify which block among all competitors is present in cache (currently mapped in cm)

mm block no.

Tag cm block no.

ex:- mm block no. 51

5/1 cm block no.

son mm block no.	cm block	Tay	Hit/miss	Comment
51	51%10=1	5	Miss	Bring block 51 of mm into Cm at block 1 with tag 5
91	91%-10 = 1		Miss	oring block 91 of mm into m at block 1, by replacing block 51 and update tag to 9.
1 By Block 91 2 Block 92	goto cm Le chec which blo present	k tag to ck of mr	n is	needed block with tag = 9
2	Tag in present	block =	5 but CPU	needed block with tag = 9

Blocks in cache

- =4(00-11)
- Blocks in Main memory
- = 8 (000-111)

cm	00	01	10	
mm	100	001	010	011

Cache Memory

Main Memory

CPU Request (MM block)	Mapping (CM block no.)	Hit /Miss	Comments
$(5)_{10} = (101)_{2}$	101 cm block no. = (01) ₂ = (01) ₁₀	Miss	Bring mm block (101)2 into cm at block (01)2 with tay 1
$(4)_{10} = (001)_{2}$	$\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$	Miss	Bring mm block (001)2 into cm at block (01)2 by replacing block (101)2 and update tag by o

Actually CPU generates more address which is add. of a byte.

Hence we will derive more block not from given more add.

It do the same as explained to search in Cache for hit/miss

2 mins Summary

Topic

Cache Mapping

Topic

Direct Mapping

Topic

Tag & Index

Happy Learning THANK - YOU