Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Practical Introductory CNNs

Class logistics and Agenda

- Wide/Deep Lab (late turn in)
- Agenda:
 - CNN Demo
 - CNN Town Hall
 - History of CNNs
 - with Modern CNN Architectures
 - However far we make it…
- Next Time:
 - Transformers

Class Overview, by topic

Last Time:

Structure of Each Tensor: Channels x Rows x Columns

TensorFlow and Basic CNNs

Last Time!

If needed:

Finish Demo

Convolutional Neural Networks

in TensorFlow

with Keras

with Sequential API!

11. Convolutional Neural Networks.ipynb

Image Data Augmentation

```
cnn = Sequential()|
# add in augmentations directly
cnn.add( RandomFlip("horizontal") ) # flip horizontally
cnn.add( RandomRotation(0.05) ) # rotate by 5%
cnn.add( RandomTranslation(height_factor=0.1, width_factor=0.1) )
cnn.add( RandomBrightness(factor=0.1, value_range=(0.0, 1.0)) ) #
cnn.add( RandomContrast(0.1) ) # add or decrease contrast
```


https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/

Transfer Learning

transfer learning: a basic primer

Many Pre-trained Models to choose from!

AlexNet

A landmark in computer vision, this 2012 winner of ImageNet has over 50,000 citations.

AlexNet (Pleces)

The same architecture as the classic AlexNet model, but trained on the Places 365 dataset.

Inception v1

Also known as GoogLeNet, this network set the state of the art in ImageNet classification in 2014

Inception v1 (Places)

The same architecture as the classic Inception vI model, but trained on the Places 365 dataset.

VGG 19

Introduced in 2014, this network is simpler than Inception variants, using only 3x3 convolutions and no branches

Inception v3

Released in 2015, this iteration of the Inception architecture improved performance and efficiency

Inception v4

Released in 2016, this is the fourth iteration of the inception architecture, focusing on uniformity.

ResNet v2 50

ResNets use skip connections to enable stronger gradients in much deeper networks. This variant has 50 layers

CNN Town Hall

Thanks to
Machine Learning the
robot apocalypse was
short lived!

History of Convolutional Neural THIS IS YOUR MACHINE LEARNING SYSTEM? Networks

Machine Learning 101

Types of CNN, 1988-1998

Heads Facebook Al Team

- **LeNet-1** (1988)
 - ~2600 params, not many layers
- **LeNet-5** (1998)
 - 7 layers, gets excellent MNIST performance

tanh or sigmoid

Major contribution, general structure:

avg

conv=>pool=>non-linearity=> ...=>MLP

C3: f. maps 16@10x10 C1: feature maps \$4: f. maps 16@5x5 INPUT 6@28x28 32x32 S2: f. maps C5: layer F6: layer OUTPUT 6@14x14 Full connection Gaussian connections Subsampling Subsampling Full connection Convalutions Convolutions

CNN History

 List of major breakthroughs from 1998 through 2010 in convolutional networks:

• 2010

Al Researcher IDSA, Switzerland

Ciresan Net

- Publishes code for running CNN via GPU
 - Subsequently wins 5 international competitions
 - from stop signs => cancer detection
- Major contribution: NVIDIA parallelized training algorithms

Figure 2: Forward propagation: a) mapping of kernel 1 grid onto the padded weight matrix; b) mapping the kernel 2 grid onto the partial dot products matrix; c) output of forward propagation.

ImageNet Competition (2010-2016)

https://www.researchgate.net/figure/Winner-results-of-the-ImageNet-large-scale-visual-recognition-challenge-LSVRC-of-the_fig7_324476862

https://www.slideshare.net/nmhkahn/case-study-of-convolutional-neural-network-61556303

Google

AlexNet, Hinton is mentor

- wins ImageNet competition
- Major contributions:
 - dropout for regularization
 - systematic use of ReLU
 - data expansion
 - overlapping max pool

AlexNet

FC 1000

FC 4096 / ReLU

FC 4096 / ReLU

Max Pool 3x3s2

Conv 3x3s1, 256 / ReLU

Conv 3x3s1, 384 / ReLU

Conv 3x3s1, 384 / ReLU

Max Pool 3x3s2

Local Response Norm

Conv 5x5s1, 256 / ReLU

Max Pool 3x3s2

Local Response Norm

Conv 11x11s4, 96 / ReLU

Warning

- Oxford VGG Net (Visual Geometry Group)
- Major contributions:
 - small cascaded kernels
 - way more layers (19 versus ~7)
 - "emulates" biology "better"
 - trained on NVIDIA GPUs for 2-3 weeks

		ConvNet Co	onfiguration		
A	A-LRN	В	C	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput ($224 imes 2$	24 RGB imag	c)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
			pcol		
conv3-128	conv3-128	com/3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
			pcol		
conv3-256	conv3-256	comv3-256	conv3-256	comv3-256	conv3-256
conv3-256	conv3-256	com/3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
			pool		
conv3-512	conv3-512	comv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pcol		
conv3-512	conv3-512	comv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	comv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pcol		
			4096		
			4096		
			1000		
		soft-	-max		

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

Network In Network

- Network in Network NiN
 - · or MLPConv

(a) Linear convolution layer

Min Lin^{1,2}, Qiang Chen², Shuicheng Yan²

¹Graduate School for Integrative Sciences and Engineering

²Department of Electronic & Computer Engineering

National University of Singapore, Singapore

{linmin, chengiang, eleyans}@nus.edu.sg

(b) Mlpconv layer

Network in Network

NiN, expanded view

J and M >> K and L

Common Choice: J==M and K==L

Convolve with *K*, 1x1 Filters *Equivalently*: each new channel is weighted sum of convolutions complete control of channels size

optional one 1x1 filters to control output size

Structure of Each Tensor: Channels x Rows x Columns

- GoogLeNet
 - or Inception V1
- Major contribution:
 - bottleneck layering
 - · parallel NiN

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Figure 2: Inception module

https://arxiv.org/pdf/1409.4842.pdf

Types of CNN, 2015 February and December

- Inception V2, Inception V1 with batch normalization
- Inception V3:
 - replace 5x5 with multiple 3x3

Types of CNN, 2015 December

Research

- Major Contributions:
 - "ensembles" not strictly sequential
 - "bio-plausible" with feedback

ResNet

Parametric ReLU PReLU: adaptive trained slope

NiN: triple bypass layer similar to bottelneck

Residual Connection, expanded view

Back Propagation: Two paths, including one without ANY operations that cause the gradient to vanish...

How big are these networks?

How big are these networks?

3x3 conv, 64

3x3 conv, 64

Transition Period in Convolutional Networks

- 2012 2017:
 - Add more layers!
 - How can we train it even deeper?
 - Can we run out of memory? Let's try! <a>
- 2017-present:
 - How can we get similar performance with reduced parameters?
 - How should the number of parameters scale for competing resource? Is there an optimum scaling for a given set of resources?

Xception • Major Contributions:

- combining branching / residual blocks
- separable convolutions (fewer trainable params)

Francois Chollet **Google**

Separable Convolution Explanation

SqueezeNet (2018)

- Idea: squeeze and expand in each layer
 - Use mostly 1x1 filters
 - downsample later in network

$$SR = \frac{|F_{s1x1}|}{|F_{e1x1}| + |F_{e3x3}|}$$

$$PCT_{3x3} = \frac{|F_{e3x3}|}{|F_{e1x1}| + |F_{e3x3}|}$$

In paper:

- Good SR = 12.5% up to 100%
- Good PCT_{3x3} from 25% up to 100%

William J. Dolly², Kurt Keutzer¹

DoepScale & UC Berkeley **Stanford University
{forresti, noskewez, kashraf, keutzer}#eees.berkeley.edu
{songhan, dally}#stanford.edu

Forrest N. Iandola¹, Song Han², Matthew W. Moskewicz¹, Khalid Ashraf¹,

SOUEEZENET: ALEXNET-LEVEL ACCURACY WITH

50x fewer parameters and <0.5MB model size

Efficient Net (2019)

Start with so

Observation 1 - Scaling up any width, depth, or resolution improve racy gain diminishes for bigger me

Observation 2 – In order to purs efficiency, it is critical to balance al width, depth, and resolution during

Depth Scalin

Resolution Scaling: If we use larger resolut Figure 8. Scaling Up EfficientNet-B0 with Different Methods.

depth:
$$d = \alpha^{\phi}$$

width:
$$w = \beta^{\phi}$$

res.:
$$r = \gamma^{\phi}$$

s.t.
$$\alpha \cdot \beta^2 \cdot \gamma^2 \approx 2$$

 $\alpha, \beta, \gamma \geq 1$

$$\alpha = 1.2$$

$$\beta = 1.1$$

$$\gamma = 1.15$$

where α, β, γ are constants that can be determined by a small grid search. Intuitively, ϕ is a user-specified coefficient that controls how many more resources are available for model scaling, while α, β, γ specify how to assign these extra resources to network width, depth, and resolution re-

optimal values found in paper!

More Modern CNN Architectures

Even more Convolutional Neural Networks

...in TensorFlow

...with Keras

Self Guided Demo

12. More Advanced CNN Techniques as TFData.ipynb

Next Time:

- Intro to Sequential Neural Network Architectures
 - Word Embeddings, 1D CNNs, Transformers
 - Ethics by Case Study