MAR 3 1 2004 P.

<212> DNA

<213> Artificial Sequence

SEQUENCE LISTING

Kosan Biosciences, Inc. Khosla, Chaitan Kao, Camilla

<130>	300062-20005.03	
	PCT/US 98/14911 2002-03-12	
	US 60/076,919 1998-03-05	
	US 60/003,338 1995-07-06	
	US 08/846,247 1997-04-30	
	US 08/486,645 1995-06-07	
	US 08/238,811 1994-05-06	
	US 08/164,301 1993-12-08	
<160> 2	23	
<170> 1	FastSEQ for Windows Version 4.0	
<210> 3 <211> 2 <212> 1 <213> 4	27	
<220> <223> 1	Primer rapAT2 (forward)	
<400> 1		27
<210> 2 <211> 3 <212> I <213> A	36	
<220> <223> I	Primer rapAT2 (reverse)	
<400> 2 tttctgd		36
<210> 3		

```
<223> Primer rapKR2 (forward)
<400> 3
tttctgcagg agggcacgga ccgggcgact gcgggt
                                                                         36
<210> 4
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer rapKR2 (reverse)
<400> 4
                                                                          36
ttttctagaa ccggcggcag cggcccgccg.agcaat
<210> 5
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer rapDH/KR4 (forward)
<400> 5
                                                                          26
ttctgcagag cgtggaccgg gcggct
<210> 6
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer rapDH/KR4 (reverse)
<400> 6
                                                                          30
ttttctagag tcaccggtag aggcggccct
<210> 7
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer rapDH/ER/KR1 (left half) (forward)
                                                                          30
tttctgcagg gcgtggaccg ggcggctgcc
<210> 8
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Primer rapDH/ER/KR1 (left half) (reverse)
<400> 8
                                                                          30
tttctcgagc accacgcccg cagcctcacc
<210> 9
<211> 30
```

<213> Artificial Sequence	
<220> <223> Primer rapDH/ER/KR1 (right half) (forward)	
<400> 9 tttctcgagg tcggtccgga ggtccaggat	30
<210> 10 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer rapDH/ER/KR1 (right half) (reverse)	
<400> 10 ttttctagaa tcaccggtag aagcagcccg	30
<210> 11 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Junction sequence for PstI site	
<400> 11 gagccccagc ggtactggct gcag	24
<210> 12 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Junction sequence for XbaI site	
<400> 12 tctagagcgg tgcaggcgc cccg	24
<210> 13 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer (forward) for left flank	
<400> 13 tttggatccg ttttcgtctt cccaggtcag	30
<210> 14 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer (reverse) for left flank	
<400> 14	30

```
<210> 15
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer (forward) for right flank
<400> 15
                                                                         30
ttttctagag cggtgcaggc ggccccggcg
<210> 16
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Primer (reverse) for right flank
<400> 16
                                                                         29
aaaatgcatc tatgaattcc ctccgccca
<210> 17
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Resulting junction sequence for PstI site
<400> 17
gaacaccagc gcttctggct gcag
                                                                         24
<210> 18
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Resulting junction sequence for XbaI site
<400> 18
                                                                         24
tctagagacc ggctcgccgg tcgg
<210> 19
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Resulting engineered DEBS/rapAT2 junction
<400> 19
                                                                         21
agtgcctccg acggtggatc t
<210> 20
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Resulting engineered DEBS/rapAT2 junction
<400> 20
```

ctgcagccgg accgcaccac ccct		
<210> 21 <211> 47 <212> DNA <213> Artificial Sequence		
<220> <223> Oligonucleotide linker designed to generate		
PstI-compatible ends upon hybridization		
<400> 21 gccqqaccqc accaccctc qtqacqqaqa accqqaqacq gaqaqct	47	
geogyaeege accaeeeee gegaeggaga accaggagaeg gagagee	72 /	
<210> 22		
<211> 55		
<212> DNA <213> Artificial Sequence		
<220>		
<pre><223> Oligonucleotide linker designed to generate XbaI-compatible ends upon hybridization</pre>		
<400> 22		
ctagagetet eegteteegg tteteegtea egaggggtgg tgeggteegg etgea	55	
<210> 23		
<211> 12		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Sequence at the fusion		
<400> 23	12	
ctcactagtc ag		