Autonomous Driving in Urban Centers Roundabout Monitoring

Julian Scholle

May 18, 2017

Test Platform

Figure: Snowfox

Test Platform

Figure: Snowfox Sensors

Main Problems

- Object Detection
 - Segmentation
 - Tracking
 - Classification
- Simulation
 - Scenario
 - Logic
- Evaluation
 - Simulation
 - Real Measurements
 - Performance

http://velodynelidar.com/blog/ how-to-change-laser-angle-and-fov-vlp-16/

Segmentation

https://www.mrt.kit.edu/mitarbeiter_3401.php

Figure: Unsegmented Data

Figure: Segmented Data

Figure: LiDAR Segments

Figure: RANSAC - Random Sample Consensus

Segmentation - Clustering

Figure: Segmented Data

Segmentation - Clustering

Figure: DBSCAN - Density-Based Spatial Clustering with Noise

| Page: 11 / 53

Tracking

http://www.vehicletrackingexperts.co.uk/is-it-illegal-to-track-your-spouses-or-childs-car/

Tracking

Figure: Segmented Data

Tracking

Figure: Tracked Objects

Tracking - Tracking of simplified Clusters

- clusters are defined through their mean center point
- tracking is done through a simple distance criteria

Tracking - Tracking of Simplified Clusters

- now, we can track the objects from timestep to timestep
- but.. we need more information
 - direction and speed of the object movement
 - prediction of the movement

Tracking - Tracking of Simplified Clusters

calculation the the movement through:

$$\Delta x = P_x(t) - P_x(t_{-2m}) + \Delta C_x$$

$$\Delta y = P_y(t) - P_y(t_{-2m}) + \Delta C_y$$

$$\theta = \operatorname{atan2}(\Delta y, \Delta x)$$

Tracking - Tracking of Simplified Clusters

Tracking - How to Calculate Bounding Boxes

Figure: Minimum Bounding Box

Liang Zhang et al. "Multiple Vehicle-like Target Tracking Based on the Velodyne LiDAR"

| Page: 19 / 53

Tracking - How to Calculate Bounding Boxes

Figure: Object Rotation and Division

Tracking - How to Calculate Bounding Boxes

Figure: Maximize Y-Values

Tracking - How to Calculate Bounding Boxes

Figure: Calculating Correction

$$\Delta x = R_x - L_x$$

$$\Delta y = R_y - L_y$$

$$\theta_{correction} = \text{atan2}(\Delta y, \Delta x)$$

| Page: 22 / 53

Tracking - Size calculation

Figure: Size Calculation

Tracking - Size calculation

Figure: Bounding Box Calculation Cases

Tracking - Size calculation

Figure: Object Size Histogram

Tracking - Confidence

Increase confidence value by one, if the object could be tracked and

- ► The width of the object is less than the length of the obstacle plus 1.5m
- ▶ The length of the obstacle is less than 10m
- ▶ The width of the obstacle is less than 4m

and halved if not

| Page: 26 / 53

Classification

http://www.playrific.com/t/9065/classification

Classification

Using simple size based approach

pedestrian: length < 1.5 m and width < 1.5 m

cyclist: length < 2 m and width < 1.5 m

car: length < 10 m and width < 4 m

undefined: length >= 10 m and width >= 4 m

State Estimation

http://www.mathfinance.cn/kalman-filter-example/

State Estimation

using constant turn rate and velocity model and extended Kalman filter

$$\vec{x}(t) = \begin{bmatrix} x & y & \theta & v & \omega \end{bmatrix}^T$$

x - x-Axis

y - y-Axis

 θ - Object Yaw Angle

v - Object Velocity

 ω - Yaw Rate

State Estimation - Extended Kalman Filter

$$f = \vec{x}(t + \Delta t) = egin{bmatrix} rac{v}{\omega}(-\sin(heta) + \sin(\Delta t \omega + heta)) + x(t) \ rac{v}{\omega}(\cos(heta) - \cos(\Delta t \omega + heta)) + y(t) \ \omega \Delta t + heta \ v \ \omega \end{bmatrix}$$

- ▶ a lot more equations..
- hacks for numerical stability (yawrate near zero)
- ▶ singularity in rotation (because $[-180^{\circ} \le \theta \le 180^{\circ}]$)

State Estimation - Extended Kalman Filter

- filtering the data
- prediction of the future position if an object could not be detected in a timestep
- reassigning in case of redetection, using the predicted position

Simulation

Figure: Simulation - Scenario

Simulation

Figure: Simulation - Intersection Position

Evaluation

Figure: Detection Distance Performance

Timestep 1 Timestep 2

Evaluation

Figure: Detection Distance Performance Pedestrians/Cyclists

| Page: 36 / 53

Evaluation

Figure: Car Position Error

Figure: Tracking Error

Figure: Car Position Error / Distance

Figure: Simulation Sensor Resolution

Figure: Speed

Figure: Classification

Name	Car [%]	Bike [%]	Pedestrian [%]	UnCl [%]
Pedestrian	0	0	100	0
Car0	100	0	0	0
Car1	100	0	0	0
Car2	98.2	0.73	0.98	0
Bike0	0	0.5	99.5	0
Bike1	0	0	100	0
Bike2	1.9	1.2	96.9	0

| Page: 42 / 53

Evaluation

Figure: Confidence Filtering

without filtering with filtering

Figure: Reflector Posts

Conclusion

Improvements

http://velodynelidar.com/blog/how-to-change-laser-angle-and-fov-vlp-16/

Autonomous Driving in Urban Centers Roundabout Monitoring

Julian Scholle

May 18, 2017

Why Roundabouts

Figure: Accident Rate in City Limits

Why Roundabouts

Figure: Accident Charge Rate in City Limits

Mapping

Mapping

ROUNDABOUT

roundabout id: int

lanes : lane[]

junctions : tuple[]

inner_lane_radius : float[]
outer_lane_radius : float[]

center: VERTEX2

Mapping

Figure: Mapping - Lanesegment

State Machine

INF

Evaluation

Figure: Performance

