Department of Engineering Sciences and Technology,

Second Year Btech in Computer Science Project Based Learning-Python <u>Assignment - 18</u>

Name - Paritosh kolwadkar

SRN - 31231313

Roll no -39

Batch – D2

Problem statement: Write a program to create a simple line plot, scatter plot, histogram, and bar plot using Matplotlib. Customize each plot with appropriate labels, titles, colors, and markers.

pip install matplotlib

Basic understanding of plotting using Matplotlib.

Code:

```
import matplotlib.pyplot as plt
import numpy as np

# Data for the plots

x = np.linspace(0, 10, 100)

y = np.sin(x)

y_scatter = np.random.rand(10)

x_scatter = np.random.rand(10)

data_hist = np.random.randn(1000)
```

```
categories = ['A', 'B', 'C', 'D']
values = [15, 30, 45, 10]
# 1. Line Plot
plt.figure(figsize=(10, 6))
plt.plot(x, y, label='sin(x)', color='blue', marker='o', linestyle='-',
markersize=5)
plt.title('Simple Line Plot')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.grid(True)
plt.legend()
plt.show()
# 2. Scatter Plot
plt.figure(figsize=(10, 6))
plt.scatter(x scatter, y scatter, color='red', marker='^', s=100)  # 's'
is for size of the marker
plt.title('Simple Scatter Plot')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.grid(True)
plt.show()
# 3. Histogram
plt.figure(figsize=(10, 6))
plt.hist(data hist, bins=30, color='green', edgecolor='black')
plt.title('Simple Histogram')
plt.xlabel('Value')
plt.ylabel('Frequency')
```

```
plt.grid(True)
plt.show()

# 4. Bar Plot
plt.figure(figsize=(10, 6))
plt.bar(categories, values, color='purple', edgecolor='black')
plt.title('Simple Bar Plot')
plt.xlabel('Category')
plt.ylabel('Value')
plt.grid(True)
plt.show()
```

Explanation:

1. Line Plot:

- The line plot is created using the plt.plot() function, where x is the horizontal axis and y is the vertical axis.
- Customizations include:
 - **■** Color: Blue line.
 - Marker: Circle markers ('o').
 - Linestyle: Solid line ('-').
 - Title: "Simple Line Plot".
 - Labels: X and Y axes are labeled.
 - Grid: Enabled grid for better visualization.

2. Scatter Plot:

- The scatter plot is created using the plt.scatter() function, where x_scatter and y_scatter are the data points.
- Customizations include:
 - **■** Color: Red points.
 - Marker: Triangle markers ('^').
 - Size: Marker size is set to 100.
 - **■** Title: "Simple Scatter Plot".
 - Labels: X and Y axes are labeled.
 - Grid: Enabled grid for better visualization.

3. Histogram:

- The histogram is created using plt.hist(), which visualizes the distribution of data_hist data.
- Customizations include:
 - Bins: 30 bins.
 - Color: Green bars.
 - Edge Color: Black border around the bars.
 - Title: "Simple Histogram".
 - Labels: X and Y axes are labeled.
 - Grid: Enabled grid for better visualization.

4. Bar Plot:

- The bar plot is created using plt.bar() where the x-values represent categories (like 'A', 'B', 'C', 'D') and y-values represent the corresponding values.
- Customizations include:
 - **■** Color: Purple bars.
 - Edge Color: Black border around the bars.
 - Title: "Simple Bar Plot".
 - Labels: X and Y axes are labeled.
 - Grid: Enabled grid for better visualization.

Output:

Output Explained:

- plt.plot(): Used for line plots.
- plt.scatter(): Used for scatter plots.
- plt.hist(): Used for histograms.
- plt.bar(): Used for bar plots.
- Customizations:
 - o Colors, markers, labels, and grids help improve plot readability and aesthetics.

This program demonstrates how to create different types of plots and how to customize them for better presentation and analysis.