Ecuaciones Diferenciales

Hugo Del Castillo Mola

22 de noviembre de 2022

Índice general

I	Estabilidad y Sistemas Autónomos	2
1.	Estabilidad	3
	1.1. Definiciones	3
	1.2. Estabilidad Sistemas Lineales	4

Parte I Estabilidad y Sistemas Autónomos

Capítulo 1

Estabilidad

1.1. Definiciones

Definición 1.1 (Sistema Autónomo). Un sistema de ecuaciones diferenciales se dice autónomo si no depende explícitamente de la variable temporal t. Un sistema autónomo es de la forma

$$= \begin{cases} x'_1 = a_{11}x_1 + \dots + a_{1n}x_n \\ x'_2 = a_{21}x_1 + \dots + a_{2n}x_n \\ \vdots \\ x'_n = a_{n1}x_1 + \dots + a_{nn}x_n \end{cases}$$

donde $a_{ij} \in \mathbb{R}$.

Definición 1.2 (Punto de Equilibrio). Sea el sistema

$$y'(t) = Ay(t).$$

un sistema lineal autónomo. Se dice que $x \in \mathbb{R}^n$ es un punto de equilibrio del sistema si Ax = 0.

Definición 1.3 (Punto de Equilibrio Hiperbólico). *Un punto de equilibrio* es un punto de equilibrio hiperbólico si

$$\forall \lambda \in \rho(A), \quad \operatorname{Re}(\lambda) \neq 0$$

Definición 1.4 (Estabilidad). Sea \overline{u} un punto de equilibrio de $\dot{u}=f(u)$. Se dice que \overline{u} es estable si

$$\forall \epsilon > 0, \exists \delta(\epsilon) > 0, \delta(\epsilon) \le \epsilon, \forall u_0 : ||\overline{u} - u_0|| \le \lambda$$

entonces, para $\varphi(t,u_0)$ solución se verifica

$$||\varphi(t, u_0) - \overline{u}|| \le \epsilon, \quad \forall t \ge 0.$$

Definición 1.5 (Estabilidad Asintótica). *Un punto de equilibrio estable es asintóticamente estable si*

$$\exists \lambda : \lim_{t \to \infty} \varphi(t, u_0) = \overline{u}.$$

1.2. Estabilidad Sistemas Lineales

Nota. Consideramos el sistema lineal

$$\dot{u}(t) = A(t)u(t) + b(t)$$

donde $A \in C(\mathbb{R}; \mathbb{R}^{d \times d})$, $b \in C(\mathbb{R}; \mathbb{R}^{d \times d})$ y $u \in \mathbb{R}^n$.