Compression avec l'algorithme de Huffman

Loïc Haas & Romain Maillard

26 septembre 2014

1 Réalisation du code

La structure des classes étant imposée la réalisation du code était relativement vite faite.

Amélioration possible

- Format du stockage de l'arbre de Huffman, par exemple le linéariser et stoker uniquement les valeur binaires des octets de chaque feuille.
- Pour la décompression et compression utiliser un tableau avec comme index les valeurs valeurs binaire d'accès à chaque feuille de l'arbre.
- Lors de la décompression lire plus d'information dans le buffer. Par exemple lire kilo octet par kilo octet au-lieu de le faire par octet.
- Utiliser un container plus approprier que vector qui permet les suppression en tête sans devoir déplacer l'Intégralité des données en mémoire.

2 Comparaison des résultats

Résultats obtenus

Format de fichier	Taille initiale	Taille après compression	Proportion de compression ¹
txt	1015k	576k	57%
txt	79o	251o	318%
bmp	23829ko	6381ko	27%
jpg	302k	287k	95%
pdf	28163o	29250o	103%
pdf	13386 ko	12305ko	91%
flac	21329ko	21311ko	100%

Table 1 – Résultats de compressions par rapport au type de fichier

Discutions des résultats

En observant le tableau si-dessus, nous pouvons faire les remarques suivantes :

- Les fichiers utilisant déjà un algorithme de compression comme .flac, .jpg, .pdf, possède un taux de compression très faible de lors de 91 à 100
- Les fichiers standard possèdent un bon taux de compression. 57% pour notre .txt ou 27% pour notre .bmp.

^{1.} Proportion par rapport a la taille initiale par exemple si le fichier initiale fait 1024 Ko et le fichier de destination fais 512 Ko la proportion sera de 50 %

- Une grande répétitivité dans un fichier permet un très grand taux de compression. Par exemple notre fichier .bmp contient une grande quantité de pixel blanc ce qui explique le taux de 27%.
- Le cas du fichier texte court est très intéressant. En effet le tableau de Huffman prenant de la place dans le fichier compressé, la taille finale du fichier compressé est plus grande avec un taux de compression de 318%