Theory of Algorithms Proof Strategies

Calvin Walker

Greedy Algorithms:

Greedy Algorithm Stays Ahead: At each step, the greedy algorithm does at least as well as any other solution.

- Define $f_i(S)$ to be the performance of schedule S at time-step j
- Use induction to show that for all $j, f_j(S_{greedy}) \ge f_j(S')$
 - For the inductive step, demonstrate that all choices available to S' are available to S_{greedy} , and that S_{greedy} always takes the optimum of these choices.
- We can also use proof by contradiction, by assuming that j is the first index such that $f_j(S_{greedy}) < f_j(S')$
 - Show directly for base case.
 - Use the fact that $f_{j-1}(S_{greedy}) \geq f_{j-1}(S')$ to arrive at a contradiction

Exchange Argument: For any optimal solution S, we can iteratively adjust S without affecting performance until it is S_{greedy} , so S_{greedy} is also an optimal solution.

- For $i_{j+1} < i_j$, consider swapping i_j and i_{j+1}
- Show that the swap either does not affect some metric of interest, or improves it.

Divide and Conquer: