[back to article]

The Matrix Cheatsheet by Sebastian Raschka is licensed under a Creative Commons Attribution 4.0 International License.

(last updated: June 18, 2014)

Task	MATLAB/Octave	Python NumPy	R	Julia	Task
		CREA ⁻	TING MATRICES		
Creating Matrices (here: 3x3 matrix)	M> A = [1 2 3; 4 5 6; 7 8 9] A =	P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])	R> A = matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,byrow=T)	J> A=[1 2 3; 4 5 6; 7 8 9] 3x3 Array{Int64,2}:	Creating Matrices (here: 3x3 matrix)
(Here. 333 matrix)	1 2 3 4 5 6 7 8 9	P> A array([[1, 2, 3],	<pre># equivalent to # A = matrix(1:9,nrow=3,byrow=T) R> A [,1] [,2] [,3] [1,] 1 2 3 [2,] 4 5 6</pre>	1 2 3 4 5 6 7 8 9	(Here, 333 maura)
Creating an 1D column vector	M> a = [1; 2; 3] a = 1 2 3	<pre>P> a = np.array([1,2,3]).reshape(1,3) P> b.shape (1, 3)</pre>	<pre>[3,] 7 8 9 R> a = matrix(c(1,2,3), nrow=3, byrow=T) R> a [,1] [1,] 1 [2,1,2]</pre>	<pre>J> a=[1; 2; 3] 3-element Array{Int64,1}: 1 2 3</pre>	Creating an 1D column vec
Creating an 1D row vector	M> b = [1 2 3] b = 1 2 3	<pre>P> b = np.array([1,2,3]) P> b array([1, 2, 3]) # note that numpy doesn't have # explicit "row-vectors", but 1-D # arrays</pre>	[2,] 2 [3,] 3 R> b = matrix(c(1,2,3), ncol=3) R> b [,1] [,2] [,3] [1,] 1 2 3	<pre>J> b=[1 2 3] 1x3 Array{Int64,2}: 1 2 3 # note that this is a 2D array. # vectors in Julia are columns</pre>	Creating an 1D row vector
		P> b.shape			

		(3,)			
Creating a	M> rand(3,2)	P> np.random.rand(3,2)	<pre>R> matrix(runif(3*2), ncol=2)</pre>	J > rand(3,2)	Creating a
random m x n matrix	ans =	array([[0.29347865, 0.17920462],	[,1] [,2]	<pre>3x2 Array{Float64,2}:</pre>	random m x n matrix
	0.21977 0.10220	[0.51615758, 0.64593471],	[1,] 0.5675127 0.7751204	0.36882 0.267725	
	0.38959 0.69911	[0.01067605, 0.09692771]])	[2,] 0.3439412 0.5261893	0.571856 0.601524	
	0.15624 0.65637		[3,] 0.2273177 0.223438	0.848084 0.858935	
Creating a	M> zeros(3,2)	P> np.zeros((3,2))	R> mat.or.vec(3, 2)	J> zeros(3,2)	Creating a
zero m x n matrix	ans =	array([[0., 0.],	[,1] [,2]	3x2 Array{Float64,2}:	zero m x n matrix
	0 0	[0., 0.],	[1,] 0 0	0.0 0.0	
	0 0	[0., 0.]])	[2,] 0 0	0.0 0.0	
	0 0		[3,] 0 0	0.0 0.0	
Creating an	M> ones(3,2)	P> np.ones((3,2))	R> matrix(1L, 3, 2)	J> ones(3,2)	Creating an
m x n matrix of ones	ans =	array([[1., 1.],		<pre>3x2 Array{Float64,2}:</pre>	m x n matrix of ones
	1 1	[1., 1.],	[,1] [,2]	1.0 1.0	
	1 1	[1., 1.]])	[1,] 1 1	1.0 1.0	
	1 1		[2,] 1 1	1.0 1.0	
			[3,] 1 1		
Creating an	M> eye(3)	P> np.eye(3)	R> diag(3)	J > eye(3)	Creating an
identity matrix	ans =	array([[1., 0., 0.],	[,1] [,2] [,3]	<pre>3x3 Array{Float64,2}:</pre>	identity matrix
	Diagonal Matrix	[0., 1., 0.],	[1,] 1 0 0	1.0 0.0 0.0	
	1 0 0	[0., 0., 1.]])	[2,] 0 1 0	0.0 1.0 0.0	
	0 1 0		[3,] 0 0 1	0.0 0.0 1.0	
	0 0 1				
Creating a	M> a = [1 2 3]	<pre>P> a = np.array([1,2,3])</pre>	R> diag(1:3)	J > a=[1, 2, 3]	Creating a
diagonal matrix			[,1] [,2] [,3]		diagonal matrix
	M> diag(a)	<pre>P> np.diag(a)</pre>	[1,] 1 0 0	# added commas because julia	
	ans =	array([[1, 0, 0],	[2,] 0 2 0	# vectors are columnar	
	Diagonal Matrix	[0, 2, 0],	[3,] 0 0 3		
	1 0 0	[0, 0, 3]])		<pre>J> diagm(a)</pre>	
	0 2 0			3x3 Array{Int64,2}:	

0 0 3	1 0 0	
	0 2 0	
	0 0 3	
I .		

ACCESSING MATRIX ELEMENTS

Getting the dimension	$M > A = [1 \ 2 \ 3; \ 4 \ 5 \ 6]$	P> A = np.array([[1,2,3], [4,5,6]])	<pre>R> A = matrix(1:6,nrow=2,byrow=T)</pre>	J > A=[1 2 3; 4 5 6]	Getting the dimension
of a matrix	A =			2x3 Array{Int64,2}:	of a matrix
(here: 2D, rows x cols)	1 2 3	P> A	R> A	1 2 3	(here: 2D, rows x cols)
	4 5 6	array([[1, 2, 3],	[,1] [,2] [,3]	4 5 6	
		[4, 5, 6]])	[1,] 1 2 3		
	M> size(A)		[2,] 4 5 6	<pre>J> size(A)</pre>	
	ans =	P> A.shape		(2,3)	
	2 3	(2, 3)	<pre>R> dim(A)</pre>		
			[1] 2 3		
Selecting rows	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6],	<pre>R> A = matrix(1:9,nrow=3,byrow=T)</pre>	J> A=[1 2 3; 4 5 6; 7 8 9];	Selecting rows
		[7,8,9]])		#semicolon suppresses output	
	% 1st row	# 1st row	# 1st row		
	M> A(1,:)	P> A[0,:]	R> A[1,]	#1st row	
	ans =	array([1, 2, 3])	[1] 1 2 3	J> A[1,:]	
	1 2 3			1x3 Array{Int64,2}:	
		# 1st 2 rows	# 1st 2 rows	1 2 3	
	% 1st 2 rows	P> A[0:2,:]	R> A[1:2,]		
	M> A(1:2,:)	array([[1, 2, 3], [4, 5, 6]])	[,1] [,2] [,3]	#1st 2 rows	
	ans =		[1,] 1 2 3	J> A[1:2,:]	
	1 2 3		[2,] 4 5 6	2x3 Array{Int64,2}:	
	4 5 6			1 2 3	
				4 5 6	
Selecting columns	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])	<pre>R> A = matrix(1:9,nrow=3,byrow=T)</pre>	J > A=[1 2 3; 4 5 6; 7 8 9];	Selecting columns
	% 1st column	# 1st column (as row vector)	# 1st column as row vector	#1st column	
	M> A(:,1)	P> A[:,0]	R> t(A[,1])	J> A[:,1]	

MANIPULATING SHAPE AND DIMENSIONS

BASIC MATRIX OPERATIONS

Matrix-scalar	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])	R> A = matrix(1:9, nrow=3, byrow=T)	J> A=[1 2 3; 4 5 6; 7 8 9];	Matrix-scalar
operations		11,72,72, 17			operations
	M> A * 2	P> A * 2	R> A * 2	<pre># elementwise operator</pre>	
	ans =	array([[2, 4, 6],	[,1] [,2] [,3]	_	
	2 4 6 8 10 12	[8, 10, 12], [14, 16, 18]])	[1,] 2 4 6 [2,] 8 10 12	<pre>J> A .* 2 3x3 Array{Int64,2}:</pre>	
	14 16 18	[14, 10, 10]])	[3,] 14 16 18	2 4 6	
	1. 10 10	P> A + 2	[5/] 1. 10 10	8 10 12	
	M> A + 2		R> A + 2	14 16 18	
		P> A - 2			
	M> A - 2		R> A - 2	J> A .+ 2;	
		P> A / 2			
	M> A / 2		R> A / 2	J > A 2;	
		<pre># Note that NumPy was optimized for # in-place assignments</pre>		T> A / 2:	
		# e.q., A += A instead of		J> A ./ 2;	
		# A = A + A			
Matrix-matrix	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6],	<pre>R> A = matrix(1:9, nrow=3, byrow=T)</pre>	J> A=[1 2 3; 4 5 6; 7 8 9];	Matrix-matrix
multiplication		[7,8,9]])			multiplication
	M> A * A	P> np.dot(A,A) # or A.dot(A)	R> A %*% A	J> A * A	
	ans =	array([[30, 36, 42],	[,1] [,2] [,3]	3x3 Array{Int64,2}:	
	30 36 42	[66, 81, 96],	[1,] 30 36 42	30 36 42	
	66 81 96	[102, 126, 150]])	[2,] 66 81 96	66 81 96	
	102 126 150		[3,] 102 126 150	102 126 150	
Matrix-vector	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])	R> A = matrix(1:9, ncol=3)	J> A=[1 2 3; 4 5 6; 7 8 9];	Matrix-vector
multiplication		[1,0,9]])			multiplication
	M> b = [1; 2; 3]	P> b = np.array([[1], [2], [3]])	R> b = matrix(1:3, nrow=3)	J> b=[1; 2; 3];	
	M> A * b	P> np.dot(A,b) # or A.dot(b)	R> t(b %*% A)	J> A*b	
	ans =		[,1]	<pre>3-element Array{Int64,1}:</pre>	
	14	array([[14], [32], [50]])	[1,] 14	14	
	32		[2,] 32	32	
	50		[3,] 50	50	
Element-wise	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])	R> A = matrix(1:9, nrow=3, byrow=T)	J> A=[1 2 3; 4 5 6; 7 8 9];	Element-wise
matrix-matrix operations					matrix-matrix operation
	M> A .* A	P> A * A	R> A * A	J> A .* A	

	ans =	array([[1, 4, 9],	[,1] [,2] [,3]	3x3 Array{Int64,2}:	
	1 4 9	[16, 25, 36],	[1,] 1 4 9	1 4 9	
	16 25 36 49 64 81	[49, 64, 81]])	[2,] 16 25 36	16 25 36	
	49 04 61	P> A + A	[3,] 49 64 81	49 64 81	
	M> A .+ A	I A T A	R> A + A	J> A .+ A:	
	A . T A	P> A - A	Ne A + A	3- A .+ A,	
	M> A A		R> A - A	J> A A;	
		P> A / A			
	M> A ./ A		R > A / A	J> A ./ A;	
		# Note that NumPy was optimized for			
		<pre># in-place assignments</pre>			
		# e.g., A $+=$ A instead of			
		# A = A + A			
Matrix elements to power n	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])	R> A = matrix(1:9, nrow=3, byrow=T)	J> A=[1 2 3; 4 5 6; 7 8 9];	Matrix elements to power r
(here: individual elements squared)	M> A.^2	P> np.power(A,2)	R> A ^ 2	J> A .^ 2	(here: individual elements:
	ans =	array([[1, 4, 9],	[,1] [,2] [,3]	3x3 Array{Int64,2}:	
	1 4 9	[16, 25, 36],	[1,] 1 4 9	1 4 9	
	16 25 36	[49, 64, 81]])	[2,] 16 25 36	16 25 36	
	49 64 81		[3,] 49 64 81	49 64 81	
Matrix to power n	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])	R> A = matrix(1:9, ncol=3)	J> A=[1 2 3; 4 5 6; 7 8 9];	Matrix to power n
(here: matrix-matrix multiplication with itself)	M> A ^ 2	<pre>P> np.linalg.matrix_power(A,2)</pre>	# requires the 'expm' package	J> A ^ 2	(here: matrix-matrix multip itself)
with itselfy	ans =	array([[30, 36, 42],		<pre>3x3 Array{Int64,2}:</pre>	itseny
	30 36 42	[66, 81, 96],	<pre>R> install.packages('expm')</pre>	30 36 42	
	66 81 96	[102, 126, 150]])		66 81 96	
	102 126 150		<pre>R> library(expm)</pre>	102 126 150	
			R> A %^% 2		
			[,1] [,2] [,3]		
			[1,] 30 66 102		
			[2,] 36 81 126		
			[3,] 42 96 150		
Matrix transpose	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6],	R> A = matrix(1:9, nrow=3, byrow=T)	J> A=[1 2 3; 4 5 6; 7 8 9]	Matrix transpose
		[7,8,9]])		3x3 Array{Int64,2}:	
	M> A'	P> A.T	R> t(A)	1 2 3	
	ans =	array([[1, 4, 7],	[,1] [,2] [,3]	4 5 6	
	1				ı

ADVANCED MATRIX OPERATIONS

Calculating the covariance matrix of 3 random variables	M> x1 = [4.0000 4.2000 3.9000 4.3000 4.1000]'	P> x1 = np.array([4, 4.2, 3.9, 4.3, 4.1]) R> x1 = matrix(c(4, 4.2, 3.9, 4.3, 4.1), ncol=5)	J> x1=[4.0 4.2 3.9 4.3 4.1]';	Calculating the covariance of 3 random variables
(here: covariances of the means	M> x2 = [2.0000 2.1000 2.0000 2.1000 2.2000]'	P> x2 = np.array([2, 2.1, 2, 2.1, 2.2])	R> x2 = matrix(c(2, 2.1, 2, 2.1, 2.2), ncol=5)	J> x2=[2. 2.1 2. 2.1 2.2]';	(here: covariances of the n
of x1, x2, and x3)	M> x3 = [0.60000 0.59000 0.58000 0.62000 0.63000]'	P> x3 = np.array([0.6, 0.59, 0.58, 0.62, 0.63])	R> x3 = matrix(c(0.6, 0.59, 0.58, 0.62, 0.63), ncol=5)	J> x3=[0.6 .59 .58 .62 .63]';	of x1, x2, and x3)
	M> cov([x1,x2,x3])	P> np.cov([x1, x2, x3])	R> cov(matrix(c(x1, x2, x3), ncol=3))	J> cov([x1 x2 x3])	
	ans =	Array([[0.025 , 0.0075 , 0.00175],	[,1] [,2] [,3]	3x3 Array{Float64,2}:	
	2.5000e-02 7.5000e-03 1.7500e-03	B [0.0075 , 0.007 , 0.00135],	[1,] 0.02500 0.00750 0.00175	0.025 0.0075 0.00175	
	7.5000e-03 7.0000e-03 1.3500e-03	B [0.00175, 0.00135, 0.00043]])	[2,] 0.00750 0.00700 0.00135	0.0075 0.007 0.00135	
	1.7500e-03 1.3500e-03 4.3000e-04	1	[3,] 0.00175 0.00135 0.00043	0.00175 0.00135 0.00043	
Calculating	M> A = [3 1; 1 3]	P> A = np.array([[3, 1], [1, 3]])	R> A = matrix(c(3,1,1,3), ncol=2)	J > A=[3 1; 1 3]	Calculating
eigenvectors and eigenvalues	A =	1	N A = matrix(c(3,1,1,3), ncot=2)	2x2 Array{Int64,2}:	eigenvectors and eigenvalı
cigenvectors and eigenvalues	3 1	P> A	R> A	3 1	eigenvectors and eigenvan
	1 3	array([[3, 1],	[,1] [,2]	1 3	
		[1, 3]])	[1,] 3 1		
	<pre>M> [eig_vec,eig_val] = eig(A)</pre>	. , ,	[2,] 1 3	<pre>J> (eig_vec,eig_val)=eig(a)</pre>	
	eig vec =	<pre>P> eig val, eig vec = np.linalg.eig(A)</pre>		([2.0,4.0],	
	-0.70711 0.70711		R> eigen(A)	2x2 Array{Float64,2}:	
	0.70711 0.70711	P> eig_val	\$values	-0.707107 0.707107	
	eig_val =	array([4., 2.])	[1] 4 2	0.707107 0.707107)	
	Diagonal Matrix				
	2 0	P> eig_vec	\$vectors		
	0 4	Array([[0.70710678, -0.70710678],	[,1] [,2]		
		[0.70710678, 0.70710678]])	[1,] 0.7071068 -0.7071068		
			[2,] 0.7071068 0.7071068		
Generating a Gaussian dataset:	% requires statistics toolbox package	P> mean = np.array([0,0])	# requires the 'mass' package	<pre># requires the Distributions package from https://github.com/JuliaStats/Dist</pre>	Generating a Gaussian dat
	% how to install and load it in Octave:				

creating random vectors fr creating random vectors from the P> cov = np.array([[2,0],[0,2]])R> install.packages('MASS') J> using Distributions multivariate normal multivariate normal distribution given mean and download the package from: distribution given mean an covariance matrix matrix P> np.random.multivariate normal(mean, R> library(MASS) J > mean=[0., 0.]http://octave.sourceforge.net/packages.phpv. 5) (here: 5 random vectors with pkg install 2-element Array{Float64,1}: (here: 5 random vectors wi ~/Desktop/io-2.0.2.tar.gz Array([[1.55432624, -1.17972629], mean 0, covariance = 0, va mean 0, covariance = 0, variance = R> mvrnorm(n=10, mean, cov) pkg install [-2.01185294, 1.96081908], [,1] [,2] ~/Desktop/statistics-1.2.3.tar.gz [-2.11810813, 1.45784216], [1,] -0.8407830 -0.1882706 [-2.93207591, -0.07369322], [2,] 0.8496822 -0.7889329 **J**> cov=[2. 0.; 0. 2.] [-1.37031244, -1.18408792]]) [3,] -0.1564171 0.8422177 2x2 Array{Float64,2}: M> pkg load statistics [4,] -0.6288779 1.0618688 2.0 0.0 [5,] -0.5103879 0.1303697 0.0 2.0 M> mean = $[0 \ 0]$ [6,] 0.8413189 -0.1623758 [7,] -1.0495466 -0.4161082 M > cov = [2 0; 0 2]J> rand(MvNormal(mean, cov), 5) cov = [8,] -1.3236339 0.7755572 2x5 Array{Float64,2}: 2 0 [9,] 0.2771013 1.4900494 -0.527634 0.370725 -0.761928 -3.91747 1.47516 -0.448821 2.21904 2.24561 0.692063 0.390495 0 2 [10,] -1.3536268 0.2338913 M> mvnrnd(mean,cov,5) 2.480150 -0.559906 -2.933047 0.560212 0.098206 3.055316 -0.985215 -0.990936 1.122528 0.686977