Электронное методическое пособие для проведения лекций и практических занятий по дисциплинам «Методика преподавания математики», «Методика решения олимпиадных задач по математике».

Занятия проводятся в Департаменте математического и компьютерного моделирования Института математики и компьютерных технологий ДВФУ. Аудитория - студенты направления 01.03.02 Прикладная математика и информатика, 02.03.01 Математика и компьютерные науки. Пособие может быть также использовано для подготовки или самоподготовки школьников к ЕГЭ, олимпиадам, конкурсным испытаниям.

Автор: Захарова Евгения Николаевна.

Руководитель: Александр Георгиевич Колобов.

Оглавление

Глава 1. Теория	3
1.1 Элементарные функции и их графики	3
1.2 Основные преобразования графиков функций	11
1.3 Формулы функций, задающих базовые геометрические элементы	13
1.4 Что такое параметр?	15
1.4 Область допустимых значений и область определения	16
1.5 Основные тригонометрические формулы	17
Глава 2. Практика	19
2.1 Уравнения с параметром	19
2.1.1 Первый пример	19
2.1.2 Второй пример	20
2.1.3 Третий пример	21
2.1.4 Четвёртый пример	23
2.1.5 Пятый пример	24
2.2 Неравенства с параметром.	26
2.2.1 Первый пример	26
2.2.2 Второй пример	28
2.2.3 Третий пример	30
2.2.4 Четвёртый пример	32
2.2.5 Пятый пример	34
2.3 Системы с параметром.	36
2.3.1 Первый пример	36
2.3.2 Второй пример	37
2.3.3 Третий пример	39
2.3.4 Четвёртый пример	40
2.3.5 Пятый пример	41

Глава 1. Теория

Суть методического пособия в том, что преподавателю достаточно нажать пару клавиш, чтобы вывести для аудитории основную необходимую для лекции или практического занятия информацию.

1.1 Элементарные функции и их графики

Прежде всего нужно ученику хорошо знать графики элементарных функций, уметь быстро выполнять их построение. Уверенное знание графиков помогает не запутаться с определением области допустимых значений. Элементарные функции делятся на пять типов: степенные $(y = x^a)$, показательные $(y = a^x)$, логарифмические $(y = \log_a x)$, тригонометрические (содержат sinx, cos x, tgx, ctgx), обратные тригонометрические (содержат arcsinx, arccos x, arctgx, arcctgx).

Графики распространённых степенных функций:

Функция $y = x^n, n > 1$, натуральное, четное. Рисунок 3.

Функция $y = x^n, n > 1$, натуральное, нечетное. Рисунок 4.

Функция $y = \frac{1}{r}$. Рисунок 5.

Функция $y = \sqrt{x}$. Рисунок 6.

Функция $y = \sqrt[3]{x}$. Рисунок 7.

Рисунок 1

Рисунок 2

Рисунок 3

Рисунок 4

Рисунок 5

Графики показательных функций:

Функция $y = a^x$, a > 1. Рисунок 8.

Функция $y = a^x$, 0 < a < 1. Рисунок 9.

Рисунок 6

Рисунок 7

Графики логарифмических функций:

Функция $y = \log_a x$, a > 1. Рисунок 10.

Функция $y = \log_a x$, 0 < a < 1. Рисунок 11.

Рисунок 8

Рисунок 9

Графики тригонометрических функций:

Функция y = sinx. Рисунок 12.

Функция $y = \cos x$. Рисунок 13.

Функция y = tgx. Рисунок 14.

Функция y = ctgx. Рисунок 15.

Рисунок 10

Рисунок 11

Рисунок 12

Рисунок 13

Графики обратных тригонометрических функций:

Функция y = arcsinx. Рисунок 16.

Функция $y = arc \cos x$. Рисунок 17.

Функция y = arctgx. Рисунок 18.

Функция y = arcctgx. Рисунок 19.

Рисунок 14

Рисунок 15

Рисунок 16

Рисунок 17

1.2 Основные преобразования графиков функций

Далее нужно знать основные преобразования графиков функций. Пусть дана функция y = f(x), k > 0. Рассмотрим, как он меняется относительно своего исходного положения в разных случаях.

График функции y = f(x + k) сдвинут на k вправо, y = f(x - k) на k влево.

График функции y = f(x) + k сдвинут на k вверх, y = f(x) - k на k вниз. График функции y = f(kx) при 0 < k < 1 «растянут» по горизонтали в k раз, а при k > 1 «сжат» в k раз. Рисунок 20.

Рисунок 18

График функции y = k * f(x) при 0 < k < 1 «сжат» по вертикали в k раз, а при k > 1 «растянут» в k раз. Рисунок 21.

Рисунок 19

График функции y = f(-x) симметричен графику функции y = f(x) относительно оси Y.

График функции y = -f(x) симметричен графику функции y = f(x) относительно оси X.

График функции y = f(|x|) отличается от графика функции y = f(x) тем, что левая относительно оси X часть графика заменяется на зеркально отражённую правую.

График функции y = |f(x)| отличается от графика функции y = f(x) тем, что нижняя относительно оси X часть графика зеркально отражается и перемещается в верхнюю часть графика.

1.3 Формулы функций, задающих базовые геометрические элементы

Для использования геометрического метода необходимо хорошо знать формулы функций, задающих базовые геометрические элементы, поскольку этот метод основан на геометрических интерпретациях.

Формула окружности:

$$(x-a)^2 + (y-b)^2 = r^2$$
, $|r|$ – радиус, (a,b) – центр

Формула круга:

$$(x-a)^2 + (y-b)^2 \le r^2$$
, $|r| -$ радиус, $(a,b) -$ центр

Формула верхней полуокружности:

$$\sqrt{(x-a)^2} + b = r^2$$
, $|r| -$ радиус, $(a,b) -$ центр

Формула нижней полуокружности:

$$-\sqrt{(x-a)^2} + b = r^2$$
, $|r|$ – радиус, (a,b) – центр

Формула ромба, симметричного относительно начала координат:

$$a|x| + b|y| = c$$
, a, b, c — положительные

Геометрический смысл модуля:

 $p(a,b) = |a-b|, \quad p(a,b)$ — расстояние от a до b |a| — модуль числа равен расстоянию от него до нуля Формула расстояния между двумя точками на плоскости:

$$p(a,b) = \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2}$$

Неравенство треугольника:

 $AC \le AB + BC$, AC, AB и BC - длины сторон треугольника ABC Уравнение отрезка в радикалах:

$$\sqrt{(x-x_1)^2+(y-y_1)^2}+\sqrt{(x-x_2)^2+(y-y_2)^2}=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

Стандартная схема построения графика функции включает в себя следующие элементы: область определения функции, область значений функции, нули функции, промежутки знакопостоянства функции, поведение функции в бесконечности, производная функции, промежутки возрастания и убывания (включая точки максимума и минимума и значения в этих точках).

				гся при их	наличии:	четность-не	ечетность,
П	ериодичнос	сть, асимпто	оты.				
				14			

1.4 Что такое параметр?

Кратко пройдясь по функциям, их графикам и геометрическим формулам, перейдём непосредственно к заданию с параметром.

Что такое параметр? Это коэффициент, который находится в неравенстве или уравнении. Параметр может менять своё значение, при этом решение неравенства или уравнения также меняется. Общий вид уравнения с параметром f(x,a)=0. В зависимости от параметра a меняется и множество корней уравнения. Важно рассмотреть все случаи, выделить значения параметра, при котором меняется решение. При исследовании области допустимых значений уравнения есть смысл рассматривать и область допустимых значений x, и область допустимых значений a, то есть множество пар (x,a), при которых функция f(x,a) определена. При решении уравнения с параметром часто бывает удобно выразить параметр как функцию a = f(x) и перейти в систему координат xOa. В данной системе координат выполняется построение функции a, учитывая область определения для значений x.

1.4 Область допустимых значений и область определения

Очень важно не ошибиться при определении области допустимых значений и области определения. Я выделила основные правила, которые надо помнить.

Во-первых, знаменатель не должен быть равен нулю $\frac{f(x)}{g(x)}$; $g(x) \neq 0$.

Во-вторых, выражение под корнем не может быть отрицательным $\sqrt{f(x)}; f(x) \ge 0.$

В-третьих, в логарифме подлогарифмическое выражение и основание должны быть положительными, при этом основание не равно единице

$$\log_{f(x)} g(x) = \begin{cases} g(x) > 0 \\ f(x) > 0 \\ f(x) \neq 1 \end{cases}$$

В-четвёртых, квадратное уравнение ($a^2 + bx + c = 0$, $a^2 \neq 0$) не имеет решений, если дискриминант меньше нуля; имеет два различных корня, если дискриминант больше нуля; имеет один корень, если дискриминант равен нулю.

1.5 Основные тригонометрические формулы

Также есть ряд формул, которые ученик должен помнить наизусть — это тригонометрические тождества, формулы двойного угла, формулы суммы и разности, формулы произведения, формулы сложения:

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha}$$

$$ctg\alpha = \frac{\cos\alpha}{\sin\alpha}$$

$$\sin^2\alpha + \cos^2\alpha = 1$$

$$tg\alpha * ctg\alpha = 1$$

$$1 + tg^2\alpha = \frac{1}{\cos^2\alpha}$$

$$1 + ctg^2\alpha = \frac{1}{\sin^2\alpha}$$

$$\sin 2\alpha = 2\sin\alpha \cdot \cos\alpha$$

$$\cos 2\alpha = \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha$$

$$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$$

$$\cos\alpha + \cos\beta = 2\cos\frac{\alpha + \beta}{2} * \cos\frac{\alpha - \beta}{2}$$

$$\cos\alpha - \cos\beta = 2\sin\frac{\alpha + \beta}{2} * \sin\frac{\beta - \alpha}{2}$$

$$\sin\alpha + \sin\beta = 2\sin\frac{\alpha + \beta}{2} * \cos\frac{\alpha - \beta}{2}$$

$$\sin\alpha - \sin\beta = 2\sin\frac{\alpha - \beta}{2} * \cos\frac{\alpha + \beta}{2}$$

$$\sin\alpha \cdot \sin\beta = \frac{\cos\alpha - \beta + \cos\alpha + \beta}{2}$$

$$\sin\alpha \cdot \sin\beta = \frac{\cos\alpha - \beta - \cos\alpha + \beta}{2}$$

$$\sin\alpha \cdot \cos\beta = \frac{\sin\alpha + \beta + \sin\alpha - \beta}{2}$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$cos(\alpha - \beta) = cos\alpha \cdot cos\beta + sin\alpha \cdot sin\beta$$
$$sin(\alpha + \beta) = sin\alpha \cdot cos\beta + cos\alpha \cdot sin\beta$$
$$sin(\alpha - \beta) = sin\alpha \cdot cos\beta - cos\alpha \cdot sin\beta$$

При решении любого задания стоит сразу применить метод областей, заключающейся в последовательном построении всех указанных в задании областей и ограничений — в большинстве случаев это заметно упрощает решение.

Варианты данного задания, которые в большинстве случаев легче и быстрее решить геометрическими методами, можно условно разделить на три вида: уравнения с параметром, неравенства с параметром и системы с параметром. Далее я продемонстрирую решение стандартных примеров каждого вида.

Глава 2. Практика

2.1 Уравнения с параметром

2.1.1 Первый пример

Пример решения задания типа «уравнения с параметром»:

Задание:

Уравнение a|x+1| + (1-a)|x-1| + 2 = 0 имеет два корня, найти a.

Решение:

$$a(|x+1|-|x-1|) = -2-|x-1|$$

Построим графики. Рисунок 22.

При a = 0 нет решений.

При a > 2 два решения.

При a < -1 два решения.

Рисунок 20

2.1.2 Второй пример

Задание:

Уравнение

$$\frac{x^2 - 2x + a^2 - 4a}{x^2 - a} = 0$$

имеет два решения, найти a.

Решение:

При всех точках $(x-1)^2 + (a-2)^2 = 5$ числитель равен нулю.

При всех точках $a = x^2$ знаменатель равен нулю.

Построим графики. Рисунок 23.

Подставив второе уравнение в первое, находим точки пересечения окружности и параболы: (0;0),(2;4),(-1;1).

$$2 - \sqrt{5} < a < 2 + \sqrt{5}, a \neq 0, a \neq 1, a \neq 4$$

Рисунок 21

2.1.3 Третий пример

Задание:

Уравнение

$$\frac{2a - x^2 - 3x}{x + a^2} = 0$$

Имеет два корня, найти а.

Решение:

$$\frac{2a - x^2 - 3x}{x + a^2} = 0 \leftrightarrow \begin{cases} 2a - x^2 - 3x = 0 \\ x + a^2 \neq 0 \end{cases} \leftrightarrow \begin{cases} a = \frac{x^2 + 3x}{2} \\ x \neq -a^2 \end{cases}$$

Используем систему координат xOa. Построим график функций

 $a = \frac{x^2 + 3x}{2}$ и $x = -a^2$ (пунктиром). Получается парабола, на которой находятся выколотые точки. Рисунок 24.

Рисунок 22

$$a = \frac{x^2 + 3x}{2}, x = -a^2 \leftrightarrow a = \frac{a^4 - 3a^2}{2}$$

$$a^4 - 3a^2 - 2a = 0$$

$$a(a^3 - 3a - 2) = 0$$

$$a(a + 1)(a^2 - a - 2) = 0$$

$$a(a + 1)^2(a - 2) = 0$$

$$a = -1; a = 0; a = 2$$

$$a = \frac{x^2 + 3x}{2}$$
 — парабола, вершина $\left(-\frac{3}{2}; -\frac{9}{8}\right)$

Два решения у данного в задании уравнения будет при:

$$-\frac{9}{8} < a < -1$$
, $-1 < a < 0$, $0 < a < 2$, $a > 2$

2.1.4 Четвёртый пример

Задание:

Уравнение
$$|x^2 - 2x - 3| - ax = 2(3a + 2)$$

Имеет три корня, найти а.

Решение:

$$|x^{2} - 2x - 3| - ax = 2(3a + 2) \leftrightarrow |x^{2} - 2x - 3| = ax + 6a + 4$$
$$y = ax + 6a + 4 \leftrightarrow y - 4 = a(x + 6)$$

y = a(x + 6) — прямые, определяемые параметром a и проходящие через точку (-6; 4).

Выполним построение графика функции $y = |x^2 - 2x - 3|$. Рисунок 25.

Рисунок 23

Есть два случая, в которых у уравнения три решения.

Во-первых, если график функции $y = |x^2 - 2x - 3|$ пересечётся с графиком функции y = a(x+6) + 4 в точке (3; 0), то есть будет выполнено следующее условие:

$$a(3+6) + 4 = 0 \leftrightarrow 9a + 4 = 0 \leftrightarrow a = -\frac{4}{9}$$

Во-вторых, если график функции y = a(x+6)+4 пройдёт через точку (1; 4), то есть будет выполнено следующее условие:

$$a(1+6) + 4 = 4 \leftrightarrow 7a + 4 = 4 \leftrightarrow a = 0$$

Таким образом, при $a = -\frac{4}{9}$ и a = 0 условия задания выполняются.

2.1.5 Пятый пример

Задание:

Уравнение

$$\frac{x^2 - 4x + a}{x^2 - 6ax + 5a^2} = 0$$

Имеет два решения, найти a.

Решение:

$$\frac{x^2 - 4x + a}{x^2 - 6ax + 5a^2} = 0 \leftrightarrow \begin{cases} x^2 - 4x + a = 0 \\ x^2 - 6ax + 5a^2 \neq 0 \end{cases} \leftrightarrow \begin{cases} a = -x^2 + 4x \\ (x - 5a)(x - a) \neq 0 \end{cases}$$

$$\leftrightarrow \begin{cases} a = -x^2 + 4x \\ a \neq x \\ a \neq \frac{x}{5} \end{cases}$$

Нужно использовать систему координат x0a. Рисунок 26.

Построим график полученной системы. Получится парабола, на которой есть выколотые точки.

Найдем точки пересечения функций $a = -x^2 + 4x$ и a = x.

$$a = -a^2 + 4a$$
$$a = 0$$
$$a = 3$$

Найдем точки пересечения функций $a = -x^2 + 4x$ и $a = \frac{x}{5}$

$$a = -25a^{2} + 20a$$

$$a = 0$$

$$a = \frac{19}{25}$$

Рисунок 24

Таким образом, условие из задания выполняется при:

$$a < 0$$
, $0 < a < \frac{19}{25}$, $\frac{19}{25} < a < 3$, $3 < a < 4$

2.2 Неравенства с параметром

2.2.1 Первый пример

Пример решения задания типа «неравенства с параметром»:

Задание:

Множество решений неравенства $\sqrt{5-x}+|x+a|\leq 3$ - отрезок, найти a.

Решение:

$$\sqrt{5-x} \le 3 - |x+a|$$

$$y = \sqrt{5-x}$$

$$y = 3 - |x+a|$$

Построим графики функций. Рисунок 27.

Рисунок 25

При $a \in (-8; 4)$ график левой части неравенства ниже графика правой части неравенства. При a = -2 точка x = 5 становится решением (помимо отрезка), что противоречит условию.

При уменьшении a отрезок с правым концом в точке x = 5 входит в решение. Левый конец сдвигается до точки касания, в точке касания решение снова становится одним отрезком.

Случай касания:

$$(\sqrt{5-x})' = -1$$

$$x = 4\frac{3}{4}$$

$$a = -2\frac{1}{4}$$

 $(-2\frac{1}{4}; -2]$ — не удовлетворяет условию

2.2.2 Второй пример

Задание:

Решения неравенства $|3x - a| + 2 \le |x - 4|$ образуют отрезок длины 1, найти a.

Решение:

$$|3x - a| \le |x - 4| - 2$$
$$y = |3x - a|$$

$$y = |x - 4| - 2$$

Выполним построение графиков данных функций. Рисунок 28.

Рисунок 26

Исходя из рисунка можно сделать вывод, что решения есть только при

$$\frac{a}{3} \le 2, \qquad \frac{a}{3} \ge 6$$

Рассмотрим первый случай:

$$\begin{cases} a \le 6 \\ |3x - a| \le -x + 2 \end{cases} \leftrightarrow \begin{cases} a \le 6 \\ 3x - a \le -x + 2 \\ 3x - a \ge x - 2 \end{cases} \begin{cases} a \le 6 \\ x \le \frac{a + 2}{4} \\ x \ge \frac{a - 2}{2} \end{cases}$$

$$\frac{a + 2}{4} - \frac{a - 2}{2} = 1, \quad a = 2$$

Рассмотрим второй случай:

$$\begin{cases} a \ge 18 \\ |3x - a| \le x - 6 \end{cases} \leftrightarrow \begin{cases} a \ge 18 \\ 3x - a \le x - 6 \\ 3x - a \ge -x + 6 \end{cases} \leftrightarrow \begin{cases} a \ge 18 \\ x \le \frac{a - 6}{2} \\ x \ge \frac{a + 6}{4} \end{cases}$$
$$\frac{a - 6}{2} - \frac{a + 6}{4} = 1, \quad a = 22$$

Решения образуют отрезок (длина 1), при a = 2, a = 22.

2.2.3 Третий пример

Задание:

Неравенство

$$|\cos^2 x + 0.5\sin 2x + (1-a)\sin^2 x| \le 1.5$$

Выполняется для любого действительного числа x, найти a.

Решение:

При sinx = 0 неравенство верно вне зависимости от параметра a.

Рассмотрим ситуацию $sinx \neq 0$:

$$|\cos^{2} x + 0.5\sin 2x + (1 - a)\sin^{2} x| \le 1.5 \leftrightarrow |1 + \sin x \cos x - a \sin^{2} x| \le 1.5 \leftrightarrow$$

$$\leftrightarrow \begin{cases} 1 + \sin x \cos x - a \sin^{2} x \le 1.5 \\ 1 + \sin x \cos x - a \sin^{2} x \ge -1.5 \end{cases} \leftrightarrow \begin{cases} a \sin^{2} x \ge \sin x \cos x - 0.5 \\ a \sin^{2} x \le \sin x \cos x + 2.5 \end{cases} \leftrightarrow$$

$$\leftrightarrow \begin{cases} 2a \ge 2ctgx - \frac{1}{\sin^{2} x} \\ 2a \le 2ctgx - 1 - ctg^{2}x \\ 2a \le 2ctgx + 5 + 5ctg^{2}x \end{cases} \leftrightarrow$$

$$\begin{cases} 2a \ge 2ctgx + 5 + 5ctg^{2}x \\ 2a \le 2ctgx - 1 - ctg^{2}x \\ 2a \le 2ctgx + 5 + 5ctg^{2}x \end{cases} \leftrightarrow$$

$$\begin{cases} 2a \ge -(ctgx - 1)^{2} \\ 2a \le 5\left(ctgx + \frac{1}{5}\right)^{2} + \frac{24}{5} \end{cases}$$

Пусть t = ctgx. Построим график полученной системы в системе координат aOt. Рисунок 29.

Рисунок 27

Нас интересует часть между параболами, то есть значения параметра $0 \le a \le \frac{12}{5}$

2.2.4 Четвёртый пример

Задание:

Неравенство

$$\frac{\sqrt{6+x-x^2}}{x-2a} \le \frac{\sqrt{6+x-x^2}}{2x-2a+4}$$

Имеет два решения, найти a.

Решение:

$$\begin{cases} 6+x-x^2 \ge 0 \\ x \ne 2a \end{cases} \leftrightarrow \begin{cases} -2 \le x \le 3 \\ x \ne 2a \\ x \ne a-2 \end{cases}$$

При $6 + x - x^2 = 0$ неравенство верно при любом a.

При $6 + x - x^2 > 0$:

$$\begin{cases}
\frac{1}{x - 2a} \le \frac{1}{2x - 2a + 4} \leftrightarrow \begin{cases}
\frac{x + 4}{(x - 2a)(x - a + 2)} \le 0 \\
-2 < x < 3
\end{cases}$$

$$\leftrightarrow \begin{cases}
\frac{1}{(x - 2a)(x - a + 2)} \le 0 \\
-2 < x < 3
\end{cases}$$

Используем систему координат x0a. Рисунок 30.

Рисунок 28

При a < -1 два решения, при a = -1 одно решение, при -1 < a < 5 бесконечность решений, при a = 5 одно решение, при a > 5 два решения. В итоге условиям задания соответствует $(-\infty; -1) \cup (5; +\infty)$.

2.2.5 Пятый пример

Задание:

Найти a, при котором неравенство $\log_{|x-a|}(x^2+ax) \le 2$ выполняется для всех $x \in [2; 2,5]$.

Решение:

При $a \in [2; 2,5]$ и x = a неравенство неопределённо, поэтому $a \notin [2; 2,5]$.

При $a \in [1; 1,5] \cup [3; 3,5]$ и $x = a \pm 1$ неравенство неопределённо, поэтому $a \notin [1; 1,5] \cup [3; 3,5]$.

Должно выполняться x(x + a) > 0, поэтому a > -2.

$$\frac{\log_2(x^2 + ax) - 2\log_2|x - a|}{|x - a| - 1} \le 0 \leftrightarrow$$

$$\leftrightarrow \frac{\log_2(x^2 + ax) - \log_2(x^2 - 2ax + a^2)}{(x - a)^2 - 1} \le 0 \leftrightarrow \frac{x^2 + ax - x^2 + 2ax - a^2}{(x - a - 1)(x - a + 1)} \le 0 \leftrightarrow \frac{a(3x - a)}{(x - a - 1)(x - a + 1)} \le 0$$

В системе координат аОх построим графики функций:

$$a = 0$$

$$a = 3x$$

$$a = x + 1$$

$$a = x - 1$$

Рисунок 31.

Рисунок 29

Учитывая $x \in [2; 2,5]$ и область допустимых значений: $a \in (-2; 0] \cup (1,5; 2) \cup (2,5; 3) \cup [7,5; +\infty).$

2.3 Системы с параметром

2.3.1 Первый пример

Пример решения задания типа «системы с параметром»:

Задание:

Система

$$\begin{cases} 3|x - 2a| + 2|y - a| = 6\\ xy - x - 2y + 2 = 0 \end{cases}$$

имеет три решения, найти a.

Решение:

Первое уравнение – ромб, второе – две прямые. Рисунок 32.

Рисунок 30

Существует два случая, когда система может иметь три решения.

Во-первых, если верхняя (или нижняя) вершина находится на прямой y = 1, то a = 4 или a = -2. Центр ромба удалён на 6 от прямой x = 2, поэтому у прямой x = 2 нет пересечения с ромбом. В случае, когда правая (или левая) вершина лежит на прямой x = 2, происходит следующее: a = 2 или a = 0, а центр ромба на 1 удалён от прямой y = 1, а прямая y = 1 пересекает ромб в двух точках.

Во-вторых, точка пересечения прямых не должна совпасть с вершиной ромба, то есть $a \neq 1, x = 2, y = 1.$

$$8|a - 1| = 6$$

$$a = 2; \frac{1}{4}; \frac{7}{4}; 0$$

2.3.2 Второй пример

Задание:

Система

$$\begin{cases} \frac{(\sqrt{12-x^2}-y)((x+4)^2+(y+4)^2-8(x+4)+x^2-y^2-24)}{2-x^2} = 0\\ y = 1-2a \end{cases}$$

Имеет два решения, найти а.

Решение:

$$(x+4)^2 + (y+4)^2 - 8(x+4) + x^2 - y^2 - 24 = 8\left(y + \frac{x^2}{4} - 3\right)$$

Первое уравнение из данной в задании системы эквивалентно следующей системе:

$$\begin{cases} \left(\sqrt{12 - x^2} - y\right) \left(y + \frac{x^2}{4} - 3\right) = 0 \\ x \neq \pm \sqrt{2} \end{cases}$$

График первого уравнения из данной в задании системы — это графики $y = \sqrt{12 - x^2}$ (полуокружность)

$$y = -\frac{x^2}{4} + 3$$
 при $x \in [-\sqrt{12}; \sqrt{12}]$ с выколотыми точками $x = \pm \sqrt{2}$ (участок параболы)

График первого уравнения из данной в задании системы – прямая, зависящая от параметра *а*. Прямая горизонтальная.

Случаи, в которых у данной системы два решения, это случаи, когда у графиков две общие точки. Рисунок 33.

Найдём значения у:

$$\begin{cases} y = 0 \\ y = 2.5 \\ 3 < y < \sqrt{10} \\ \sqrt{10} < y < \sqrt{12} \end{cases}$$

$$\begin{cases} 1 - 2a = 0 & a = 0,5\\ 1 - 2a = 2,5\\ 3 < 1 - 2a < \sqrt{10} & \leftrightarrow -\frac{\sqrt{10} - 1}{2} < a < -1\\ \sqrt{10} < 1 - 2a < \sqrt{12} & -\frac{2\sqrt{3} - 1}{2} < a < -\frac{\sqrt{10} - 1}{2} \end{cases}$$

Рисунок 31

В итоге получается следующее:

$$\left(-\frac{2\sqrt{3}-1}{2}; -\frac{\sqrt{10}-1}{2}\right) \cup \left(-\frac{\sqrt{10}-1}{2}; -1\right) \cup \left\{-\frac{3}{4}; \frac{1}{2}\right\}$$

2.3.3 Третий пример

Задание:

Система

$$\begin{cases} y(y-7) = xy - 5(x+2) \\ x \le 6 \\ \frac{a(x-6) - 2}{y-2} = 1 \end{cases}$$

Имеет одно решение, найти a.

Решение:

$$y(y-7) = xy - 5(x+2) \leftrightarrow y^2 - (x+7)y + 5(x+2) = 0 \leftrightarrow \begin{cases} y = 5 \\ y = x+2 \end{cases}$$

$$\begin{cases} y = 5 \\ y = x+2 \\ y = a(x-6) \\ x \le 6, y \ne 2 \end{cases}$$

Нужно найти a, при котором прямые y = a(x - 6) и объединение лучей y = 5 и y = x имеют одну общую точку. При этом $x \le 6$, $y \ne 2$. Рисунок 34.

Рисунок 32

В итоге получается следующее:

$$a \in [0;1) \cup \left\{-\frac{5}{3}; -\frac{1}{3}\right\}$$

2.3.4 Четвёртый пример

Задание:

Система
$$\begin{cases} x^2 + y^2 = a \\ \sin(\pi x + \pi y) = 0 \end{cases}$$

Имеет четыре решения, найти a.

Решение:

$$\begin{cases} x^2 + y^2 = a \\ \sin(\pi x + \pi y) = 0 \end{cases} \leftrightarrow \begin{cases} x^2 + y^2 = a \\ \pi x + \pi y = \pi k, \quad k \in \mathbb{Z} \end{cases} \leftrightarrow \begin{cases} x^2 + y^2 = a \\ y = -x + k, \quad k \in \mathbb{Z} \end{cases}$$

Построим график системы уравнений. Рисунок 35. График функции $x^2 + y^2 = a$ это окружность с радиусом \sqrt{a} и центром в точке (0; 0), но при a < 0 уравнение $x^2 + y^2 = a$ не имеет решений, то есть должно быть $a \ge 0$ (при a = 0 окружность становится точкой, а у системы одно решение - (0; 0)). График функции y = -x + k это параллельные прямые.

Когда у окружности и прямых четыре общие точки, система имеет четыре решения.

Рисунок 33

При y = -x и a > 0 есть две общие точки.

При y = -x + 1 и y = -x - 1 в случае касания параметр a одинаковый. Радиус будет равен $\frac{\sqrt{2}}{2}$, следовательно, $a = \frac{1}{2}$, а система имеет четыре решения.

2.3.5 Пятый пример

Задание:

Система

$$\begin{cases} \sqrt{(x+2)^2 + y^2} + \sqrt{x^2 + (y-a)^2} = \sqrt{4 + a^2} \\ 5y = |6 - a^2| \end{cases}$$

Имеет одно решение, найти неотрицательные a.

Решение:

Рассмотрим уравнение $\sqrt{(x+2)^2+y^2}+\sqrt{x^2+(y-a)^2}=\sqrt{4+a^2}$. Ему удовлетворяют точки (x;y), задаваемые данным уравнением и принадлежащие отрезку прямой, проходящей через точку (-2;0) и точку (0;a) – точку A и точку B соответственно, которые образуют отрезок. Длина данного отрезка равна $\sqrt{4+a^2}$, это сумма расстояний от точки A и точки B до точки (x;y).

Рассмотрим уравнение $5y = |6 - a^2|$. Ему удовлетворяют точки (x; y), принадлежащие прямой $y = \frac{|6 - a^2|}{5}$, проходящей через точку $\left(0; \frac{|6 - a^2|}{5}\right)$ — точку C и параллельную оси абсцисс. Рисунок 36.

Рисунок 34

Условие о неотрицательности a означает, что $a \ge 0$.

При a = 0 система не имеет решений (совпадение точек B и C).

При a > 0, если точка C находится между точкой B и началом координат (или совпадает с одной из этих точек), то условие задачи выполнено.

$$0 \le \frac{|6 - a^2|}{5} \le a \leftrightarrow |6 - a^2| \le 5a \leftrightarrow \begin{cases} 6 - a^2 \le 5a \\ 6 - a^2 \ge -5a \end{cases} \leftrightarrow$$

$$\leftrightarrow \begin{cases} (a - 1)(a + 6) \ge 0 \\ (a + 1)(a - 6) \le 0 \end{cases} \leftrightarrow \begin{cases} a \ge 1 \\ a \le 6 \end{cases} \leftrightarrow 1 \le a \le 6$$

B итоге $1 \le a \le 6$.