Advanced Multi-variable Calculus

Midterm Examination

50 minutes

Name:

Student ID:

Instructions.

- 1. This exam is closed book. You may use one " 8.5×11 " sheet of handwritten notes. Do not share notes.
- 2. Show all the steps of your work clearly in order to receive credit.
- 3. Place a box around your answer to each question.
- 4. Raise your hand if you have a question.
- 5. Do not cheat.

Question	Points	Your Score
Q1	10	
Q2	8	
Q3	12	
Q4	10	
Q5	10	
TOTAL	50	

Q1 a) [4 points]

Assume that all given functions are differentiable. If z = f(x-y), show that $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$.

$$z = f(u(x,y))$$
 where $u(x,y) = x - y$. By chain rule, $\frac{\partial z}{\partial x} = f'(u) \frac{\partial u}{\partial x} = f'(u)$. Similarly, $\frac{\partial z}{\partial x} = -f'(u)$. Thus $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$.

Q1 b) [6 points]

Use chain rule to find out $\frac{\partial z}{\partial u}$ for $z = x^4 + x^2y$, x = s + 2t - u, $y = stu^2$; when s = 4, t = 2 and u = 1.

For s=4, t=2, u=1, x=7 and y=8. Using chain rule gives us $\frac{\partial z}{\partial u}=[(4x^3+2xy)\times -1]+[x^2\times (2stu)]$. Plugging in the given values of s, t, u and the computed values of x and y, we get $\frac{\partial z}{\partial u}=-700$.

Q2) [8 points]

Find the direction in which $f(x,y,z) = ze^{xy}$ increases most rapidly at the point (0,1,2). What is the maximum rate of increase?

 $\nabla f(x,y,z) = (yz\,e^{xy},zx\,e^{xy},e^{xy}).$ $\nabla f(0,1,2) = (2,0,1).$ The direction of most rapid change for f at the point (0,1,2) is along $\nabla f(0,1,2)$ i.e along (2,0,1). We can normalize to get a unit vector but that is not needed in this question as we are just asked to find the direction of the most rapid change.

The maximum rate of increase of f at (0,1,2) is $|\nabla f(0,1,2)| = |(2,0,1)| = \sqrt{5}$.

Q3 a) [4 points] Express the triple integral of the function $x^2 - y + z$ over the region bounded by the planes x = 0, y = 0, z = 0 and 2x + y + z = 8. Do not evaluate the integral.

We will write down the integral in the order dzdydx. The desired expression is:

$$\int_{0}^{8-2x-y} \int_{0}^{8-2x} \int_{0}^{4} (x^2-y+z) \, dz \, dy \, dx.$$

Q3 b) [8 points]

Evaluate the integral $\iiint x^2z dV$ where V is the region bounded by the spheres x^2 + $y^2 + z^2 = 4$ and $x^2 + y^2 + z^2 = 1$.

The region of integration is symmetric about all the axes. The function to be integrated is odd. The integral is hence 0.

Q4) [10 points]

Consider the iterated integral $\int_{0}^{1} \int_{0}^{1-x^2} \int_{0}^{1-x} f(x,y,z) \, dy \, dz \, dx.$

(a) [5 points] Rewrite this integral as an equivalent iterated integral in the order dy dx dz.

$$\int_{0}^{1} \int_{0}^{\sqrt{1-z}} \int_{0}^{1-x} f(x,y,z) \, dy \, dx \, dz.$$

(b) [5 points] Rewrite the integral in the order dz dx dy.

$$\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{1-x^{2}} f(x,y,z) dz dx dy.$$

Q5 [10 points]

Compute $\iint_{R} \frac{(x+y)^4}{(2-x+y)^4} dx dy$, where R is the square with vertices at (1,0), (0,1), (-1,0) and (0,1) and (0, -1).

[Hint: Use change of variables to make the integrand simpler. Compute the Jacobian, write down the expression for the integral to be evaluated in the uv-plane and then compute this new integral.]

Since the region is bounded by the lines $x + y = \pm 1$ and $x - y = \pm -1$, we make a change of variables u = x + y and v = x - y.

The Jacobian $\frac{\partial(x,y)}{\partial(u,v)} = -1/2$. Thus, $dx dy = \frac{1}{2} du dv$. Hence we get $\iint_R \frac{(x+y)^4}{(2-x+y)^4} dx dy = \int_{-1}^1 \int_{-1}^1 \frac{u^4}{(2-v)^4} \frac{1}{2} du dv = \int_{-1}^1 \frac{1}{5(2-v)^4} dv = \frac{26}{405}$.

$$\int_{-1}^{1} \int_{-1}^{1} \frac{u^4}{(2-v)^4} \frac{1}{2} \, du \, dv = \int_{-1}^{1} \frac{1}{5(2-v)^4} \, dv = \frac{26}{405}.$$