

Codec Steuerung mit I2C

Infrastructure Block

(Teil von Phase-1)

Zürcher Hochschule

Infrastructure Block

Taktteiler & Synchronisation

Achtung: Modulo Divider und Synchronizer nicht mit Reset versehen

Audio Codec

Sampling Frequency: 8kHz – 96kHz

ADC SNR: 90dB ('A' weighted)

DAC SNR: 100dB ('A' weighted)

Headphone Amplifier: 2 x 50 mW

Preis: SFr. 1.61 (1000 Stück)

Datenblatt: OLAT: *Literatur*

Audio Codec Block Diagram

zh

Normal Operation

Audio Codec Block Diagram

Analog Loopback

Audio Codec Block Diagram

z

Digital Loopback

WM8731 on the DE2-115 Board

Overview over Audio Codec Registers

- R0 : Left Line In
- R1 : Right Line In
- R2 : Left Headphone Out
- R3: Right Headphone Out
- R4 : Analog Audio Control Path
- R5 : Digital Audio Path Control
- R6 : Power Down Control
- R7 : Digital Audio Interface Format
- R8 : Sampling Control (sample rate)
- R9 : Activation (activate digital audio interface)
- R10 14 : Reserved
- R15 : Reset

Audio Codec Register Map

Register Addresses (7-bits)

Register Data (9-bits)

REGISTER	В	В	В	В	В	В	В	В8	В7	В6	B5	В4	В3	B2	B1	В0
	15	14	13	12	11	10	9									
R0 (00h)	0	0	0	0	0	0	0	LRIN BOTH	LIN MUTE	0	0			LINVOL		
R1 (02h)	0	0	0	0	0	0	1	RLIN BOTH	RIN MUTE	0	0			RINVOL		
R2 (02h)	0	0	0	0	0	1	0	LRHP BOTH	LZCEN				LHPVOL			
R3 (06h)	0	0	0	0	0	1	1	RLHP BOTH	RZCEN				RHPVOL			
R4 (08h)	0	0	0	0	1	0	0	0	SIDE	ATT	SIDETONE	DAC SEL	BY PASS	INSEL	MUTEMIC	MIC BOOST
R5 (0Ah)	0	0	0	0	1	0	1	0	0	0	0	HPOR	DAC MU	DEE	MPH	ADC HPD
R6 (0Ch)	0	0	0	0	1	1	0	0	PWR OFF	CLK OUTPD	OSCPD	OUTPD	DACPD	ADCPD	MICPD	LINEINPD
R7 (0Eh)	0	0	0	0	1	1	1	0	BCLK INV	MS	LRSWAP	LRP	M	/L	FOF	RMAT
R8 (10h)	0	0	0	1	0	0	0	0	CLKO DIV2	CLKI DIV2		s	R		BOSR	USB/NORM
R9 (12h)	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	ACTIVE
R15(1Eh)	0	0	0	1	1	1	1					RESET				
			AD	DRE	SS		DATA									

zh

Audio Codec Settings

WM8731 on the DE2-115 Board

FPGA-System-Clock

Alle Blöcke in FPGA (ausser Taktteiler) werden mit dem clk_12m getriggert (synchrones Design mit «single clock-domain»).

clk12m:

Der Master Clock für das System und den Audio Codec. Wird auch MCLK oder AUD_XCK genannt (Datenblatt oder DE2-115 board)

Audio Abtastrate: "Normal Mode" = 48 kHz (andere Abtastraten möglich)

SAMPLING RATE		MCLK FREQUENCY		SAMPLE RATE				
ADC DAC				TYPE				
kHz	kHz	MHz	BOSR	SR3	SR2	SR1	SR0	
48	48	12.288	0 (256fs)	0	0	0	0	1

Audio Codec Register 8

Audio Codec Settings

Example: W8731_ADC_DAC_M12DB_48K

			CI VI
Register	Address Bits B[15:9]	Data Bits B[8:0]	Beschreibung
R0 LEFT_LINE_IN	"0000000" = 0x00	"000001111" = 0x00F	No mute, no both, volume -12 dB
R1 RIGHT_LINE_IN	"0000001" = 0x01	"000001111" = 0x00F	No mute, no both, volume -12 dB
R2 LEFT_HP_OUT	"0000010" = 0x02	"001101101" = 0x06D	No zero-cross, no both, volume -12dB
R3 RIGHT_HP_OUT	"0000011" = 0x03	"001101101" = 0x06D	No zero-cross, no both, volume -12dB
R4 ANALOG_AP	"0000100" = 0x04	"000010010" = 0x012	Mute microphone, select DAC, disable bypass, disable sidetone,
R5 DIGITAL_AP	"0000101" = 0x05	"000000000" = 0x000	Disable DAC mute, disable de-emphasis,
R6 POWER_DOWN	"0000110" = 0x06	"000000000" = 0x000	No power down mode selected
R7 DIGITAL_AI	"0000111" = 0x07	"000000010" = 0x002	Audio-IF I2S Mode, audio data 16 bits wide,
R8 SAMPLING	"0001000" = 0x08	"000000000" = 0x000	Normal mode, MCLK 12,28MHz, sample rate 48kHz (both ADC and DAC), SR=[0011],
R9 DIGITAL_ACTIVATE	"0000111" = 0x09	"000000001" = 0x001	Activate Audio Digital Interface
R10 – R14 RESERVED A-E	0x0A - 0x0E	"000000000" = 0x000	No need to write
R15 RESET	"0001111" = 0x0F	"000000000" = 0x000	Only write if SW-reset required 12

Audio Codec Settings

Example: W8731_BYPASS_M12DB_8K

Register	Address Bits B[15:9]	Data Bits B[8:0]	Beschreibung
R0 LEFT_LINE_IN	"0000000" = 0x00	"000001111" = 0x00F	No mute, no both, volume -12 dB
R1 RIGHT_LINE_IN	"0000001" = 0x01	"000001111" = 0x00F	No mute, no both, volume -12 dB
R2 LEFT_HP_OUT	"0000010" = 0x02	"001101101" = 0x06D	No zero-cross, no both, volume -12dB
R3 RIGHT_HP_OUT	"0000011" = 0x03	"001101101" = 0x06D	No zero-cross, no both, volume -12dB
R4 ANALOG_AP	"0000100" = 0x04	"000001010" = 0x00A	Mute microphone, disable DAC, enable bypass, disable sidetone,
R5 DIGITAL_AP	"0000101" = 0x05	"000001000" = 0x008	Enable DAC mute, disable de-emphasis,
R6 POWER_DOWN	"0000110" = 0x06	"000000000" = 0x000	No power down mode selected
R7 DIGITAL_AI	"0000111" = 0x07	"000000010" = 0x002	Audio-IF I2S Mode, audio data 16 bits wide,
R8 SAMPLING	"0001000" = 0x08	"000000000" = 0x00C	Normal mode, MCLK 12,28MHz, sample rate 48kHz (both ADC and DAC), SR=[0011],
R9 DIGITAL_ACTIVATE	"0000111" = 0x09	"000000001" = 0x001	Activate Audio Digital Interface
R10 – R14 RESERVED A-E	0x0A - 0x0E	"000000000" = 0x000	No need to write
R15 RESET	"0001111" = 0x0F	"000000000" = 0x000	Only write if SW-reset required

Typendefinierung eines Arrays


```
type codec_array is array(0 to 7) of std_logic_vector(8 downto 0);
```


std_logic_vector(8 downt 0)

Zürcher Fachhochschule

Array mit Konstanten füllen

```
constant: C_W8731_ANALOG_BYPASS: codec_array :=
(
0 => "011001101"
1 => "111001101",
2 => "111001101",
3 => "111001101",
4 => "011001101",
5 => "011001101",
6 => "011001101",
7 => "011001101",
8 => "011001101",
9 => "011001101"
);
```

Achtung: Dateninhalt nur Beispiel

Auslesen eines Arrays

In Entity:

```
output_data : out std_logic_vector(8 downto 0);
```

In Architektur:

```
output_data <= C_W8731_ANALOG_BYPASS(array_pointer);</pre>
```


Package: reg_table_pkg

Die folgenden Initialisierungstabellen sind in reg_table_pkg.vhd enthalten

```
C_W8731_ANALOG_BYPASS

C_W8731_ANALOG_MUTE_LEFT

C_W8731_ANALOG_MUTE_RIGHT

C_W8731_ANALOG_MUTE_BOTH

C_W8731_ADC_DAC_ODB_48K
```

Damit die Tabellen benutzt werden können, muss *reg_table_pkg* in *codec_controller.vhd* eingebunden werden mit:

```
use work.reg_table_pkg.all;
```

Synthi-Top mit Codec Control Interface

Codec Control Interface

Codec Controller

SW(2)	SW(1)	SW(0)	Codec Initialisierungs-Tabelle
0	0	1	C_W8731_ANALOG_BYPASS
1	0	1	C_W8731_ANALOG_MUTE_LEFT
0	1	1	C_W8731_ANALOG_MUTE_RIGHT
1	1	1	C_W8731_ANALOG_MUTE_BOTH
х	х	0	C_W8731_ADC_DAC_0DB_48K

Zürcher Fachhochschule

Codec Control Automat (FSM)

Zürcher Fachhochschule

zh

Codec Control Interface

Timing zwischen codec_controller and i2c_master Block

Synthi Top

synthi_top

CLOCK_50 GPIO_26 KEY_0 KEY_1		infrastructure		AUD_XCK
SW(170)	codec_contro		i2c_master midi_controller	I2C_SCLK I2C_SDAT
	tone_ generator	digital_ loop_ switch Digital-Loop / Normal-Operation (Tone Generator)	i2s_master	AUD_DACDAT AUD_BCLK AUD_DACLRCK AUD_ADCLRCK
AUD_ADCDAT				

25

Testbench Ausbau für i2c

Stimulating the Codec Controller

Bits (2..0) von Argument 1 definieren sw(2..0)

synthi_top_tb

ini_cod(tv, SW(2 downto 0), KEY_1);

synthi_top

codec_controller
initialize write_o
sw_sync_i write_data

Checking the Output of the I2C_slave_bfm

i2c_ch0 00 00 01 4a i2c_ch1 00 00 00 f3 i2c_ch3 00 00 00 ff ... Vergleichswert = 4 x Byte = 32-bit von denen nur die 9 LSb verwendet werden

Test Vector Script: testcase.dat

```
synthi top tb
```

```
I2C_SCLK
I2C_SDAT

reg_data0 
reg_data1 
reg_data2

reg_data2

reg_data9
```

```
elsif cmd = string'("i2c_ch0") then
    gpo_chk(tv, reg_data0);

elsif cmd = string'("i2c_ch1") then
    gpo_chk(tv, reg_data1);
```

```
signal reg_data0 : std_logic_vector(31 downto 0);
signal reg_data1 : std_logic_vector(31 downto 0);
signal reg_data2 : std_logic_vector(31 downto 0);
```


Zürcher Fachhochschule