Limitlar haqidagi asosiy teoremalar

1-teorema(yig`indining limiti haqida). Ikki funksiya algebraik yig`indisining limiti shu funksiyalar limitlarining algebraik yig`indisiga teng:

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$
 (1)

Bu teorema istalgancha chekli sondagi funksiyalar algebraik yig`indisi uchun ham o`rinli.

2-teorema(ko`paytmaning limiti haqida). Ikki funksiya ko`paytmasining limiti shu funksiyalar limitlarining ko`paytmasiga teng:

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$
 (2)

Natija. O`zgarmas ko`paytuvchini (bo`luvchini) limit belgisidan tashqariga chiqarish mumkin:

$$\lim_{x \to a} [C f(x)] = C \cdot \lim_{x \to a} f(x), \qquad (C - o'zgarmas son). \quad (2')$$

3-teorema (bo`linmaning limiti haqida). Ikki funksiya nisbatining limiti, maxrajning limiti noldan farqli bo`lganda, bu funksiyalar limitlarining nisbatiga teng:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \qquad (\lim_{x \to a} g(x) \neq 0)$$
(3)

4-teorema (tengsizlikda limitga o`tish haqida). Agar f(x) funksiya x=a nuqtada limitga ega va bu nuqtaning biror atrofida f(x)>0 bo`lsa, u holda

$$\lim_{x \to a} f(x) \ge 0 \tag{4}$$

bo`ladi.

5-teorema (oraliq funksiyaning limiti haqida). Agar x=a nuqtaning biror atrofidagi barcha nuqtalarda

$$f_I(x) \le \varphi(x) \le f_2(x)$$
 va $\lim_{x \to a} f_I(x) = \lim_{x \to a} f_2(x) = A$ (5)

bo`lsa, $\lim_{x\to a} \varphi(x) = A$ bo`ladi.

Teoremalarning isbotlari

1-teoremaning isboti

f(x) va g(x) ning $x \rightarrow a$ dagi limitlari A va B bo`lsin:

$$\lim_{x \to a} f(x) = A, \qquad \lim_{x \to a} g(x) = B$$

 3° - xossaga asosan f(x) ni $A + \alpha(x)$, g(x) ni $B + \beta(x)$ deb yezish mumkin, bunda $\alpha(x)$ va $\beta(x)$ lar $x \rightarrow a$ da cheksiz kichik funksiyalar:

$$f(x) = A + \alpha(x), \quad g(x) = B + \beta(x), \qquad \lim_{x \to a} \alpha(x) = 0, \qquad \lim_{x \to a} \beta(x) = 0.$$

Unda $f(x)+g(x)=(A+B)+\alpha(x)+\beta(x)$. 2°-xossaga ko`ra $\alpha(x)+\beta(x)$ ham cheksiz kichik miqdor, shuning uchun A+B son f(x)+g(x) ning limiti bo`ladi(3°-xossaga ko`ra):

$$\lim_{x \to a} [f(x) + g(x)] = A + B = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

Teorema isbotlandi.

2-teoremaning isboti

1-teoremaning isboti kabi bajaramiz:

$$\lim_{x \to a} f(x) = A, \implies f(x) = A + \alpha(x), \qquad \lim_{x \to a} \alpha(x) = 0, \qquad (4)$$

$$\lim_{x \to a} g(x) = B \implies g(x) = B + \beta(x), \qquad \lim_{x \to a} \beta(x) = 0$$

$$f(x) \cdot g(x) = [A + \alpha(x)] \cdot [B + \beta(x)] = A \cdot B + [A \cdot \beta(x) + B \cdot \alpha(x) + \alpha(x) \cdot \beta(x)].$$

O`rta qavs ichidagi ifoda 2° - xossaga ko`ra $x \rightarrow a$ da cheksiz kichik funksiya. Shuning uchun $A \cdot B$ 3° -xossaga ko`ra $x \rightarrow a$ da $f(x) \cdot g(x)$ ning limiti bo`ladi:

$$\lim_{x \to a} [f(x) \cdot g(x)] = A \cdot B = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

Teorema isbotlandi.

3-teoremaning isboti

Shartga ko`ra $\lim_{x\to a} g(x) = V \neq 0$. Oldingi teoremaning isbotiga o`xshash bajaramiz va (4) dan foydalanamiz:

$$\frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})} = \frac{A + \alpha(x)}{B + \beta(x)} = \frac{A}{B} + \frac{A + \alpha(x)}{B + \beta(x) - \frac{A}{B}} = \frac{A}{B} + \frac{B \cdot \alpha(x) - A \cdot \beta(x)}{B \cdot (B + \beta(x))}.$$

Oxirgi kasr $B\neq 0$ bo`lgani uchun 2° -xossaga asosan cheksiz kichik. Shuning uchun $\frac{A}{B}$ son

 $\frac{f(x)}{g(x)}$ ning $x \rightarrow a$ dagi limitidir(3°-xossaga ko`ra):

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$$
 (\lim_{x \to a} g(x) \neq 0)

Teorema isbotlandi.

Keyingi ikki teoremaning isbotini ko`rsatilgan adabiyotlardan topib o`rganishni tavsiya etamiz. **Eslatma.** Yuqoridagi teoremalar *a* cheksiz bo`lganida ham o`rinli.

1-misol

Limitni hisoblang.

$$\lim_{x\to\infty}\frac{4+3x^2}{x^2}$$

$$\Delta \qquad \lim_{x \to \infty} \frac{4 + 3x^2}{x^2} = \lim_{x \to \infty} \frac{4}{x^2} = \lim_{x \to \infty} \frac{4}{x^2} + \lim_{x \to \infty} 3 = 0 + 3 = 3. \qquad Javoib: 3. \quad \blacktriangle$$

2-misol

Limitni hisoblang.

$$\lim_{x\to 1} (x+1)(4x-7)$$
.

Δ

$$\lim_{x \to 1} (x+1)(4x-7) = \lim_{x \to 1} (x+1) \cdot \lim_{x \to 1} (4x-7) = (\lim_{x \to 1} x+1) \cdot (\lim_{x \to 1} 4x-7) =$$

$$= (1+1) \cdot (4\lim_{x \to 1} x-7) = 2 \cdot (4-7) = 2 \cdot (-3) = -6. \quad Javobi: -6. \quad \blacktriangle$$

3-misol

Limitni hisoblang.

$$\lim_{x\to 2} \frac{3x-2}{2x+1}$$

$$\Delta \quad \lim_{x \to 2} \frac{3x - 2}{2x + 1} = \frac{\lim_{x \to 2} (3x - 2)}{\lim_{x \to 2} (2x + 1)} = \frac{3 \cdot 2 - 2}{2 \cdot 2 + 1} = \frac{4}{5}. \qquad Javob: \frac{4}{5}. \quad \blacktriangle$$

4-misol

Limitni hisoblang.

$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x + 1}.$$

 $\Delta x \rightarrow I$ da sura`tning ham, maxrajning ham limiti θ ga teng. Shuning uchun nisbatning limiti haqidagi teoremani qo`llab bo`lmaydi. Oldin shakl almashtirish bajaramiz:

$$\frac{x^2 + 3x + 2}{x + 1} = \frac{(x + 1)(x + 2)}{x + 2}.$$

Endi limitga o`tamiz:

$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x + 1} = \lim_{x \to -1} (x + 2) = -1 + 2 = 1.$$
 Javob: 1

3. ANIQMASLIKLARNI OCHISH (YECHISH)

0/0 va ∞/∞ aniqmasliklarning ta'rifi

1-ta'rif. Agar $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \infty$ bo`lsa, $\frac{f(x)}{g(x)}$ ifoda x=a da $\frac{\infty}{\infty}$ ko`rinishdagi

aniqmaslik, $\lim_{x\to a} \frac{f(x)}{g(x)}$ limitni hisoblash esa $\frac{\infty}{\infty}$ aniqmaslikni ochish (yechish) deyiladi.

Masalan: $\lim_{x\to\infty} \frac{x^2+5}{7-x+4x^2}$, $\lim_{n\to\infty} \frac{\sqrt{2+3n^4}}{1+n-6n^2}$ lar $\frac{\infty}{\infty}$ aniqmasliklardir.

2-ta'rif. Agar $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ bo`lsa, $\frac{f(x)}{g(x)}$ ifoda x = a da $\frac{0}{0}$ ko`rinishdagi

aniqmaslik, $\lim_{x\to a} \frac{f(x)}{g(x)}$ limitni hisoblash esa $\frac{0}{0}$ aniqmaslikni ochish(yechish) deyiladi.

Masalan: $\lim_{x\to 1} \frac{x^2-1}{x^2-3x+1}$, $\lim_{n\to 2} \frac{\sqrt{16-n^4}}{3n-6}$, $\lim_{x\to 0} \frac{x^2+x}{\sin 2x}$ lar $\frac{0}{0}$ aniqmasliklardir.

3-ta'rif. Agar $\lim_{x\to a} f(x) = 0$, $\lim_{x\to a} g(x) = \infty$ bo`lsa, $f(x)\cdot g(x)$ ifoda x=a da $0\cdot \infty$ ko`rinishdagi aniqmaslik, $\lim_{x\to a} f(x)\cdot g(x)$ limitni hisoblash esa $0\cdot \infty$ aniqmaslikni ochish (yechish) deyiladi.

Masalan: $\lim_{r\to 0} x ctgx$, $\lim_{n\to\infty} n(\sqrt{n^2+1}-\sqrt{n^2-1})$ lar $0\cdot\infty$ aniqmasliklardir.

Shu kabi: $\infty - \infty$, 1^{∞} , ∞^{0} , 0^{0} aniqmasliklar ham ta'riflanadi.

1-eslatma

 ∞ / ∞ aniqmaslikni ochishda, $x \to \infty$, f(x) va g(x) - ko`phadlar, n- ular darajalarng eng kattasi bo`lsa, avval kasrning surat va maxrajini x^n ga bo`lib, keyin limitga o'tiladi. Masalan:

$$\lim_{x \to \infty} \frac{3x^4 - 5x + 2}{4x^4 + 7x + 1}$$

 ∞/∞ ko`rinishdagi aniqmaslik. Uni ochish uchun, avval kasrning surat va maxrajini x^4 ga bo`lib, so'ng limitga o`tamiz:

$$\lim_{x \to \infty} \frac{3x^4 - 5x^2 + 2}{4x^4 + 7x^3 + 1} = \lim_{x \to \infty} \frac{3 - \frac{5}{x^2} + \frac{2}{x^4}}{4 + \frac{7}{x} + \frac{1}{x^4}} = \frac{3 - 0 + 0}{4 + 0 + 0} = \frac{3}{4}. \quad Javob: \quad \frac{3}{4}$$

1-eslatmada aytilgan usulni surat yoki maxrajdagi ko'phadlar ildiz ostida kelganida ham qo'llash mumkin.

1-misol

Limitni hisoblang.

$$\lim_{x \to \infty} \frac{4 - 15x^2}{\sqrt{7 + 9x^4}}.$$

$$\Delta \qquad \lim_{x \to \infty} \frac{4 - 15x^2}{\sqrt{7 + 9x^4}} = \lim_{x \to \infty} \frac{\frac{4 - 15x^2}{x^2}}{\frac{\sqrt{7 + 9x^4}}{x^2}} = \lim_{x \to \infty} \frac{\frac{4}{x^2} - 15}{\sqrt{\frac{7}{x^4} + 9}} = \frac{0 - 15}{\sqrt{0 + 9}} = -\frac{15}{3} = -3. \quad Javob: -3 \qquad \blacktriangle$$

2-eslatma

0/0 aniqmaslikni ochishda, $x \rightarrow a$, f(x) va g(x) – ko'phadlar bo'lsa, avval, kasrning surat

va maxrajini 0 ga aylantiruvchi (bu ko'pincha x - a yoki uning darajasi) ifodaga qisqartirib, keyin limitga o'tiladi. Masalan:

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{2x - x^2}$$

limit ostidagi kasr $x = 2 \,da \,0/0$ aniqmaslikdir. Uni ochish uchun, avval kasrning surat va maxrajini x-2 ga qisqartirib, so'ng limitga o'tamiz:

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{2x - x^2} = \lim_{x \to 2} \frac{(x - x_1)(x - x_2)}{x(2 - x)} = \lim_{x \to 2} \frac{(x - 2)(x - 1)}{x(2 - x)} = \lim_{x \to 2} \frac{1 - x}{x} = \frac{1 - 2}{2} = -\frac{1}{2}.$$

Bu yerda $x_1 = 2$, $x_2 = 1$ $x^2 - 3x + 2 = 0$ kvadrat tenglamaning ildizlari.

Limitni toping.

$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 9}$$

$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 9} = \lim_{x \to 3} \frac{(x - 3)(x - 2)}{(x - 3)(x + 3)} = \lim_{x \to 3} \frac{x - 2}{x + 3} = \frac{3 - 2}{3 + 3} = \frac{1}{6}.$$
 Javob: $\frac{1}{6}$.

2-eslatmada aytilgan usulni surat yoki maxrajdagi ko'phadlar ildiz ostida kelganida ham qo'llash mumkin.

Limitni toping.

$$\lim_{x \to 0} \frac{x^2 + x}{\sqrt{1 + x} - \sqrt{1 - x}}.$$

$$\lim_{x \to 0} \frac{x^2 + x}{\sqrt{1 + x} - \sqrt{1 - x}} = \lim_{x \to 0} \frac{x(x+1)(\sqrt{1 + x} + \sqrt{1 - x})}{(\sqrt{1 + x} - \sqrt{1 - x})(\sqrt{1 + x} + \sqrt{1 - x})} = \lim_{x \to 0} \frac{x(x+1)(\sqrt{1 + x} + \sqrt{1 - x})}{(1+x) - (1-x)} = \lim_{x \to 0} \frac{x(x+1)(\sqrt{1 + x} + \sqrt{1 - x})}{2x} = \lim_{x \to 0} \frac{x(x+1)(\sqrt{1 + x} + \sqrt{1 - x})}{2} = \lim_{x \to 0} \frac{x(x+1)(\sqrt{1 + x} + \sqrt{1 - x})}{2} = 1. \quad \text{Javob} : 1.$$

 ∞ - ∞ , $0\cdot\infty$, 0^0 , 1^∞ , ∞^0 aniqmasliklar, ko`p hollarda 0/0 yoki ∞ / ∞ aniqmasliklarga keltirilib yechiladi (ochiladi).

Limitni toping.

$$\lim_{x \to \infty} x(\sqrt{x^2 + 4} - \sqrt{x^2 + 1})$$

Bu $x \to \infty$ da $\infty - \infty$ aniqmaslik. Limitga o`tishdan oldin limit ostidagi kasrning surat va maxrajini $\sqrt{x^2+4} + \sqrt{x^2+1}$ ga ko`paytiramiz:

$$\lim_{x \to \infty} x(\sqrt{x^2 + 4} - \sqrt{x^2 + 1}) = \lim_{x \to \infty} \frac{x(\sqrt{x^2 + 4} - \sqrt{x^2 + 1})(\sqrt{x^2 + 4} + \sqrt{x^2 + 1})}{\sqrt{x^2 + 4} - \sqrt{x^2 + 1}} = \lim_{x \to \infty} \frac{x((x^2 + 4) - (x^2 + 1))}{\sqrt{x^2 + 4} + \sqrt{x^2 + 1}} = \lim_{x \to \infty} \frac{3x}{\sqrt{x^2 + 4} + \sqrt{x^2 + 1}}.$$

Hosil bo`lgan ∞/∞ aniqmaslikni ochish uchun kasrning surat va maxrajini x ga bo`lamiz, keyin limitga o`tamiz:

$$\lim_{x \to \infty} \frac{3}{\frac{\sqrt{x^2 + 4} + \sqrt{x^2 + 1}}{x}} = \lim_{x \to \infty} \frac{3}{\sqrt{x + \frac{4}{x^2}} + \sqrt{x + \frac{1}{x^2}}} = \frac{3}{1 + 1} = 1,5. \quad \blacktriangle$$

1-misoldagi limitning **Maple KMS** da hisoblablanishi quyidagicha:

> restart:

Limit((4-15*x^2)/sqrt(7+9*x^4),x=infinity)= limit((4-15*x^2)/sqrt(7+9*x^4), x=infinity);

$$\lim_{x \to \infty} \frac{4 - 15 x^2}{\sqrt{7 + 9 x^4}} = -5$$