Cheat Sheet

1 Probabilities

Notations. Let \mathcal{B}_p denote the Bernouilli distribution with probability p. SD(X, Y) denotes the statistical distance between random variables (X, Y) over a set S, defined as

$$SD(X, Y) = \frac{1}{2} \cdot \sum_{x \in S} |\Pr[X = x] - \Pr[Y = x]|$$

$$= \max_{f: S \mapsto \{0, 1\}} |\Pr[f(X) = 1] - \Pr[f(Y) = 1]|$$

$$= \max_{Z \subseteq S} |\Pr[X \in Z] - \Pr[Y \in Z]|.$$

1.1 Basics Probabilities

Union Bound, Bayes' Rule.

$$\Pr[A \cup B] \le \Pr[A] + \Pr[B], \quad \Pr[A|B] = \frac{\Pr[B|A] \cdot \Pr[A]}{\Pr[B]}.$$

Others.

$$\min\{\Pr[A], \Pr[B]\} \le \Pr[A \cap B] \le \Pr[A] + \Pr[B] - 1$$
$$\Pr[A \cap B] \le \Pr[A|B]$$

1.2 Expectations

 $|\mathbb{E}[XY]| \leq \mathbb{E}[|XY|] \leq \sqrt{\mathbb{E}[|X|^2]} \mathbb{E}[|Y|^2]$ (Cauchy-Schwarz) For ϕ convex, $\phi(\mathbb{E}[X]) \leq \mathbb{E}[\phi(X)]$ (Jensen)

1.3 Concentration Bounds

Lemma 1.1 (Markov Inequality). Let X be a positive random variable with finite expected value μ . Then for any k > 0,

$$\Pr[X \ge k] \le \frac{\mu}{k}.$$

Lemma 1.2 (Bienaymé-Chebyshev Inequality). Let X be a random variable with finite expected value μ and finite nonzero variance σ^2 . Then for any k > 0,

$$\Pr[|X - \mu| \le k\sigma] \le \frac{1}{k^2}.$$

Lemma 1.3 (Chernoff Inequality). Let $n \in \mathbb{N}$ and let (X_1, \dots, X_n) be independent random variables taking values in $\{0, 1\}$. Let X denote their sum and $\mu \leftarrow \mathbb{E}[X]$. Then for any $\delta \in [0, 1]$,

$$\Pr[X \ge (1+\delta)\mu] \le \exp\left(-\frac{\delta^2 \mu}{3}\right)$$
$$\Pr[X \le (1-\delta)\mu] \le \exp\left(-\frac{\delta^2 \mu}{2}\right).$$

Furthermore, for any $\delta \geq 0$,

$$\Pr[X \ge (1+\delta)\mu] \le \exp\left(-\frac{\delta^2\mu}{2+\delta}\right).$$

Lemma 1.4 (Generalized Chernoff Inequality [5]). Let $n \in \mathbb{N}$ be an integer and let (X_1, \dots, X_n) be boolean random variables such that, for some $\delta \in [0, 1]$, it holds that for every subset $S \subset [n]$, $\Pr[\wedge_{i \in S} X_i] \leq \delta^{|S|}$. Then for any $\gamma \in [\delta, 1]$,

$$\Pr\left[\sum_{i=1}^{n} X_i \ge \gamma n\right] \le \exp\left(-nD(\gamma||\delta)\right),\,$$

where $D(\gamma||\delta)$ denotes the relative entropy function, satisfying $D(\gamma||\delta) \ge 2(\gamma - \delta)^2$.

For more discussions and a constructive proof of the generalized Chernoff bound, see Impagliazzo and Kabanets [3].

Lemma 1.5 (Bernstein Inequality). Let X_1, \dots, X_m be independent zero-mean random variables, and let M be a bound such that $|X_i| \leq M$ almost surely for i = 1 to m. Let X denote the random variable $\sum_{i=1}^{m} X_i$. It holds that

$$\Pr[X > B] \le \exp\left(-\frac{B^2}{2\sum_{i=1}^m \operatorname{Enc}[X_i^2] + \frac{2}{3}MB}\right).$$

Bounded Difference Inequality. First proved by McDiarmid in [4], in a more general form than below. Special case of Azuma inequality [1]. Let $(n, m) \in \mathbb{N}^2$ be two integers. We say that a function $\Phi : [n]^m \mapsto \mathbb{R}$ satisfies the *Lipschitz property with constant d* if for every $\vec{x}, \vec{x}' \in [n]^m$ which differ in a single coordinate, it holds that

$$|\Phi(\vec{x}) - \Phi(\vec{x}')| \le d.$$

Lemma 1.6 (Bounded Difference Inequality). Let $\Phi : [n]^m \mapsto \mathbb{R}$ be a function satisfying the Lipschitz property with constant d, and let (X_1, \dots, X_m) be independent random variables over [n]. Then

$$\Pr[\Phi(X_1,\cdots,X_m) < \mathbb{E}[\Phi(X_1,\cdots,X_m)] - t] \le \exp\left(-\frac{2t^2}{m \cdot d^2}\right).$$

1.4 Entropy Notions

Let $\mathbf{H}(x) = x \log(1/x) + (1-x) \log(1/(1-x))$ be the binary entropy function. We let $\mathbf{H}_1(X)$ and $\mathbf{H}_\infty(X)$ denote respectively the Shannon entropy, min-entropy, average min-entropy conditioned on Z, and ε -smooth min-entropy of a random variable X, defined as

$$\begin{aligned} \mathbf{H}_{1}(X) &= -\sum_{x \in \text{Supp}(X)} \Pr[X = x] \cdot \log \Pr[X = x] \\ \mathbf{H}_{\infty}(X) &= \min_{x \in \text{Supp}(X)} \log(1/\Pr[X = x]) \\ \tilde{\mathbf{H}}_{\infty}(X|Z) &= -\log \underset{Z \leftarrow Z}{\mathbb{E}} [2^{-\mathbf{H}_{\infty}(X|Z = z)}] \\ \mathbf{H}_{\infty}^{\varepsilon}(X) &= \max_{\text{SD}(X,Y) \leq \varepsilon} \mathbf{H}_{\infty}(Y). \end{aligned}$$

Note that $H_1(\mathcal{B}_p) = H(p)$.

Lemma 1.7 ([2], Lemma 2.2a). For any $\delta > 0$, $H_{\infty}(X|Z=z)$ is at least $H_{\infty}(X|Z) - \log(1/\delta)$ with probability at least $1 - \delta$ over the choice of z.

Lemma 1.8 ([2], Lemma 2.2b). Conditioning on Z that has b bits of information reduces the entropy of X by at most b: $H_{\infty}(X|Z_1,Z_2) \ge H_{\infty}(X,Z_1|Z_2) - \log |\text{Supp}(Z_1)|.$

1.5 Binomial Coefficients

• For any $0 < \mu < 1/2$ and $m \in \mathbb{N}$,

$$\sum_{i=0}^{\mu m} \binom{m}{i} = 2^{mH(\mu) - \frac{\log m}{2} + O(1)}.$$

- For k = o(n), $\log {n \choose k} = (1 + o(1))k \log \frac{n}{k}$. For any (k, n), $\left(\frac{n}{k}\right)^k \le {n \choose k} \le \frac{n^k}{k!} < \left(\frac{ne}{k}\right)^k$.

1.6 Useful Inequalities

- $\forall x > 0$, $\exp(-x) > 1 x$.
- $\forall 0 < x < \frac{2-\sqrt{2}}{2}, 1-x > 2^{-\frac{2+\sqrt{2}}{2}}x$.
- $\forall n \ge 1, \left(1 \frac{1}{n}\right)^n \le \exp(-1)$ and $\exp(-1) \le \left(1 \frac{1}{n}\right)^{n-1}$.
- $\forall \delta > 0, \frac{2\delta}{2+\delta} \leq \log(1+\delta).$

1.7 Useful Lemmas

Splitting Lemma. Let $A \subset X \times Y$ such that $\Pr[(x,y) \in X]$ A] $\leq \varepsilon$. For any $\varepsilon' < \varepsilon$, defining B as B = $\{(x, y) \in X \times A\}$ $Y \mid \Pr_{y' \leftarrow_r Y}[(x, y') \in A] \ge \varepsilon - \varepsilon'$, it holds that

$$\Pr[B] \ge \varepsilon' \quad \forall (x,y) \in B, \Pr_{y'}[(x,y') \in A] \ge \varepsilon - \varepsilon' \quad \Pr[B|A] \ge \varepsilon'/\varepsilon.$$

Forking Lemma. For any $q \ge 1$, any set H with $|H| \ge 2$, and randomized PPT algorithm \mathcal{A} which, on input (x, h_1, \dots, h_q) returns a pair $(J, \sigma) \in [q] \times \{0, 1\}^*$, and input distribution \mathcal{D} , let

$$\begin{split} \operatorname{acc} &\stackrel{\operatorname{def}}{=} \Pr[x \leftarrow_r \mathcal{D}, (h_1, \cdots, h_q) \leftarrow_r H, \\ & (J, \sigma) \leftarrow_r \mathcal{A}(x, h_1, \cdots, h_q) : J \geq 1]. \end{split}$$

Then define the following algorithm $F_{\mathcal{A}}$: on input $x \in \text{Supp}(\mathcal{D})$, $F_{\mathcal{A}}(x)$ picks coins $r, (h_1, \dots, h_q) \leftarrow_r H$, and runs $(I, \sigma) \leftarrow$ $\mathcal{A}(x, h_1, \dots, h_q; r)$. If I = 0, it returns $(0, \varepsilon, \varepsilon)$. Else, it picks $(h'_1, \dots, h'_q) \leftarrow_r H$, and runs $(I', \sigma') \leftarrow \mathcal{A}(x, h_1, \dots, h_{I-1}, h_I)$ $h'_{I}, \cdots, h'_{q}, r$). If I = I' and $h_{I} \neq h_{I'}$, it returns $(1, \sigma, \sigma')$; else, it returns $(0, \varepsilon, \varepsilon)$. Let

$$\operatorname{frk} \stackrel{\text{def}}{=} \Pr[x \leftarrow_r \mathcal{D}, (b, \sigma, \sigma') \leftarrow_r \mathsf{F}_{\mathcal{A}}(x) : b = 1].$$

Then

$$acc \le \frac{q}{h} + \sqrt{q \cdot frk}$$
.

Leftover Hash Lemma.

Piling-Up Lemma. For $0 < \mu < 1/2$ and random variables (X_1, \dots, X_t) i.i.d. to \mathcal{B}_u , it holds that

$$\Pr\left[\bigoplus_{i=1}^{t} X_i = 0\right] = \frac{1}{2} \cdot \left(1 + (1 - 2\mu)^t\right) = \frac{1}{2} + 2^{-c_{\mu}t - 1},$$

where $c_{\mu} = \log \frac{1}{1-2\mu}$. In other terms, for any $0 < \mu \le \mu' < \mu'$ 1/2, it holds that

$$\mathcal{B}_{\mu} \oplus \mathcal{B}_{\frac{\mu'-\mu}{1-2\mu}} \approx \mathcal{B}_{\mu'}.$$

1.8 Hashing

Universal, pairwise independent

References

- [1] Kazuoki Azuma. 1967. Weighted sums of certain dependent random variables. Tohoku Mathematical Journal, Second Series 19, 3 (1967),
- [2] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. 2004. Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. In EUROCRYPT 2004 (LNCS, Vol. 3027), Christian Cachin and Jan Camenisch (Eds.). Springer, Heidelberg, 523-540. https:// //doi.org/10.1007/978-3-540-24676-3 31
- [3] Russell Impagliazzo and Valentine Kabanets. 2010. Constructive proofs of concentration bounds. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Springer, 617-631.
- Colin McDiarmid. 1989. On the method of bounded differences, in "Survey in Combinatorics," (J. Simons, Ed.) London Mathematical Society Lecture Notes, Vol. 141.
- [5] Alessandro Panconesi and Aravind Srinivasan. 1997. Randomized Distributed Edge Coloring via an Extension of the Chernoff-Hoeffding Bounds. SIAM J. Comput. 26, 2 (1997), 350-368.