## Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника» Кафедра «Радиоэлектронные системы и устройства»

#### Семинар №5

«Определение параметров модели диода по данным эксперимента» по дисциплине

«Электроника»

Вариант № 12

Выполнил ст. группы РЛ6-41

Мухин Г.А.

Филимонов С.В.

Болотина Е.Е.

Фамилия И.О.

Проверил доцент

Крайний В.И.

Оценка в баллах\_\_\_\_\_

#### Исходные параметры модели транзистора 2Т316Б:

Is=3.49f Xti=3 Eg=1.11 Vaf=102 Bf=74.97 Ne=1.483 Ise=44.72f Ikf=.1322 Xtb=1.5 Var=55 Br=.2866 Nc=2 Isc=447f Ikr=.254 Rb=66.7 Rc=7.33 Cjc=3.934p Vjc=.65 Mjc=.33 Fc=.5 Cje=1.16p Vje=.69 Mje=.33 Tr=65.92n Tf=94.42p Itf=.15 Vtf=15 Xtf=2

# Схема для исследования выходных характеристик биполярного транзистора:

#### Схема для снятия выходных характеристик:



Окно задания параметров:



Определяем из справочника биполярных транзисторов максимальное значение коллекторного тока 50 мА.



# Схема для исследования входных характеристик биполярного транзистора:





#### Определение тока коллектора и напряжения база-эмиттер в режиме



0.0027

0.0015

0.905

0.0039

1.09

0.005

1.174

 $V_{ce}$  – напряжение коллектор-эмиттер;

0.0003

0.778

 $I_{\text{снас}}$  – ток насыщения коллектора;

 $I_{\text{в}}$  – ток базы;

 $I_{\text{\tiny B}}, A$ 

 $V_{Be}$ , B

 $V_{\mbox{\tiny Be}}$  — напряжение база-эмиттер.

#### Расчет выходной проводимости



 $h_{0e} = \Delta I_c / \Delta V_{ce} = (0.168896 - 0.167408) / (10.515 - 9.512) = 0.0015 \text{ Cm}.$ 

## Расчет статического коэффициента передачи по току



| I <sub>c</sub> , A | 0.0099 | 0.065  | 0.104  | 0.135  | 0.164 |
|--------------------|--------|--------|--------|--------|-------|
| I <sub>B</sub> , A | 0.0003 | 0.0015 | 0.0027 | 0.0039 | 0.005 |
| BF                 | 33     | 43     | 38     | 35     | 33    |
| $(I_c/I_B)$        |        |        |        |        |       |

### Определение напряжения насыщения $V_{ce}$

(при заданном  $I_c/I_B=10$ )

| I <sub>c.hac</sub> , A         | 0.003  | 0.015  | 0.027  | 0.039  | 0.05  |
|--------------------------------|--------|--------|--------|--------|-------|
| $I_{\scriptscriptstyle B}$ , A | 0.0003 | 0.0015 | 0.0027 | 0.0039 | 0.005 |
| V <sub>ce</sub> , B            | 0.146  | 0.232  | 0.333  | 0.435  | 0.528 |



## Расчет параметров модели биполярного транзистора в программе Model

## Окно расчетов 1



### Окно расчетов 2



## Окно расчетов 3



## Окно расчетов 4



## Схема для исследования выходных характеристик биполярного транзистора (совмещение характеристик)



R1,R2,R3,R4 – резисторы для уменьшения влияния транзисторов друг на друга;

R5 – внутреннее сопротивление источника.



ī

## Параметры модели транзистора (Q2T316BAVG), полученные в программе Model:

```
ВІРОLAR TRANSISTOR.LIB – Блокнот

Файл Правка Формат Вид Справка

****

* BIPOLAR TRANSISTOR.LIB

****

*** Bipolar Transistor

.MODEL q2T316b NPN (IS=9.88816F BF=58.8835 NF=1.06803 VAF=102.7 IKF=230.927M + ISE=2.372389e-016 NE=1.16298 BR=23.4499M IKR=10M ISC=6.24604F NC=2 RE=2 RC=2 + CJE=2P MJE=500M CJC=5P MJC=500M TF=1N XTF=500M VTF=10 ITF=10M TR=10N)
```

#### Параметры исходного транзистора, заданного по условию (Q2T316B):

```
.model q2T316b NPN(Is=3.49f Xti=3 Eg=1.11 Vaf=102 Bf=74.97 Ne=1.483
+ Ise=44.72f Ikf=.1322 Xtb=1.5 Var=55 Br=.2866 Nc=2 Isc=447f Ikr=.254
+ Rb=66.7 Rc=7.33 Cjc=3.934p Vjc=.65 Mjc=.33 Fc=.5 Cje=1.16p Vje=.69
+ Mje=.33 Tr=65.92n Tf=94.42p Itf=.15 Vtf=15 Xtf=2)
```



$$\sigma = |(I_c^{\text{ синий }} - I_c^{\text{ красный }})|/I_c^{\text{ синий }} \cdot 100\% = |(11.074 - 10.089)|/11.074 \cdot 100\% = 8.89471\%$$

Поскольку погрешность не превышает 10%, то изменять ничего не нужно, и мы получили идеальную модель биполярного транзистора.