Екзаменаційний білет № 2

- 1. Поняття рекурсивної функції.
- 2. Графік ПР Φ є ПРМ.
- 3. Показати, що множина значень M функції $f(x, y) = x + y \in P\Pi M$.

Екзаменаційний білет № 3

1. Рекурсивно перелічимі множини. Рекурсивні та примітивно рекурсивні множини. 2. Рекурсивно перелічимі множини. 3. Показати, що кожна нескінченна РП множина М містить нескінченну рекурсивну підмножину.

Екзаменаційний білет № 4

- 1. Теорема про мажоруючі неявні функції.
- 2. Функція, універсальна для одномісних ПРФ приймає кожне значення нескінченну кількість разів. Довести.
- 3. Показати, що образ РП множини М відносно ЧРФ $f(x) \in P\Pi M$.

Екзаменаційний білет № 5

- 1. Теорема Поста.
- 2. Нехай $g(x) = \mu_y(1 + sg(y) = x)$, $h(z) = \mu_x(g(x) = z)$. Знайти область визначення функції h(z).
- 3. Показати, що множина $M = \{ \langle x_1, ..., x_n \rangle, \exists y f(x_1, ..., x_n, y) = 0 \} \in P\PiM$, де $f \Psi P\Phi$.

Екзаменаційний білет №

1. Нумерація п-ок натуральних чисел. Основні тотожності. 2. Нехай множини А і В відрізняються скінченою кількістю елементів. Довести, що жи

А РПМ, то В РПМ.

3. Нехай задані клінівські номери функцій f(x) і g(x). Знайти клінівський номер іх суперпозиції.

Екзаменаційний білет № 14

1. Поняття примітивно рекурсивної функції.

2 Довести, що якщо предикати P(x) і Q(x) рекурсивні, то предикат $P(x) \to Q(x)$ рекурсивний.

3. Довести, що існує число n таке, K(n,0) = n.

Екзаменаційний білет № 16

- 1. Теорема про існування нерекурсивних рекурсивно перелічимих множини.
- 2. Якщо графік всюди визначеної функції f(x) є РПМ, то f є РФ. Довести.
- 3. Нехай f, g рекурсивні функції, причому g бієкція. Крім того, нехай $f(x) \ge g(x)$ для всіх х. Тоді, якщо ρ_g – РМ, то ρ_f – РМ. Довести. (ρ_f – область значень f(x)).

Екзаменаційний білет № 21

1. Універсальна функція Кліні.

2. Чи ∈ функція

$$f(x) = \begin{cases} 1, \ K(x, x) = 1 \\ 0, \ \text{в інших випадках} \end{cases}$$

ЧРФ?.

3. Довести, що функція
$$f(x) = \left[\sqrt{\left[\frac{x}{2}\right]}\right] \in \Pi P \Phi$$
.

атверджено на засіданні кафедри інформаційних систем 9.11.18 р., г

Екзаменаційний білет № 25.

1. Універсальна функція Кліні.

2. Показати, що якщо функція f(x) є ЧРФ, то всяка функція, яка відрізняється від f(x) на екінченній множині значень аргументу, с ЧРФ,

3. Якщо множина А рекурсивна, то множина N \ A - рекурсивна. Довести.

Е поменаційний білет № 26

- 1. Універсальна функція Кліні.
 - 2. Функція

$$f(x, y) = \begin{cases} K(x, y), K(x, y) \text{ визначена} \\ 0, \text{ в інших випадках} \end{cases}$$

не є ЧРФ. Довести.

3. Якщо множини А і В рекурсивні, то множина А∩В – рекурсивна. Дов

Екзаменаційний білет № 28

- 1. Універсальна функція Кліні.
- 2. Довести, що прообраз РПМ відносно ЧРФ ϵ РПМ.
- 3. Якщо m-універсальна множина m-зводиться до РПМ α , то α теж ϵ m-універсальною множиною. Довести.