Macroeconomía Laboral

Tarea 2

Instrucciones generales: Puede utilizar cualquier procesador de texto (Latex, R Markdown, Jupyter, Microsoft Word) para las respuestas, o puede enviar una foto nítida y completa de sus respuestas escritas a mano. No se otorgarán puntos si la respuesta es ilegible. Puede enviar la respuesta a todas las preguntas, pero solamente se calificarán **cuatro.** Indique claramente cuáles preguntas desea que se califiquen.

Fecha de entrega: Miércoles 18 de mayo antes de las 11:59 p.m. Enviar PDF a i2022ucr@gmail.com.

1. **Ofertas salariales uniformes y salario mínimo.** Suponga que las ofertas salariales se sacan de una distribución uniforme sobre el intervalo [0, B]. En particular, la función de densidad es:

$$f(w) = \begin{cases} \frac{1}{B} & \text{para } w \in [0, B] \\ 0 & \text{lo contrario} \end{cases}$$

Y la función de distribución es:

$$\int_0^w dF(w') = \int_0^w f(w')dw' = \begin{cases} 0 & \text{para } w < 0 \\ \frac{w}{B} & \text{para } w \in [0, B] \\ 1 & \text{para } w > B \end{cases}$$

Además, $E(w)=\frac{1}{2}B$ y $Var(w)=\frac{1}{12}B^2$. Del mismo modo, $Prob(w'>w)=1-F(w)=\frac{B-w}{B}$.

<u>a</u>) Muestre que, con una función uniforme, el salario de reserva cumple que:

$$w_R - z = \frac{\beta}{1 - \beta} \frac{1}{2B} \left(B - w_R \right)^2$$

<u>b</u>) Simplifique la expresión anterior para obtener la solución de w_R . Para facilitar las cosas, defina $a = \frac{\beta}{1-\beta} \frac{1}{2B}$. Utilice la fórmula cuadrática para encontrar las dos soluciones para w_R y argumente cuál se puede descartar.

1

- <u>c</u>) Utilizando los resultados en b, argumente cuál es el efecto de un aumento en z sobre w_R
- <u>d</u>) Utilizando el instrumental gráfico en clase, muestre el efecto de un incremento en B sobre w_R . Explique intuitivamente el resultado.
- e) Utilizando el mismo instrumental gráfico y la expresión de E(w) para una función de distribución uniforme¹, explique el efecto de imponer un salario mínimo en esta economía sobre el salario de reserva.
- 2. **Desempleo con chance de no recibir ofertas.** Una persona trabajadora saca una oferta salarial bajo los siguientes términos: cada período, con probabilidad ϕ , $1 > \phi > 0$, la persona no recibe oferta (puede interpretarse como si la persona saca una oferta salarial que paga w = 0 para siempre). Con probabilidad 1ϕ , la persona recibe una oferta para trabajar ganando w para siempre, con w distribuida de una función de distribución F(w). Asuma que F(0) = 0, F(B) = 1 para un B > 0. Los sorteos sucesivos de ofertas están independiente e idénticamente distribuidos. El trabajador escoge la estrategia que maximiza

$$E\sum_{t=0}^{\infty}\beta^t x_t, \quad \text{con} \quad 0 < \beta < 1$$

Con $x_t = w$ si la persona está empleada y $x_t = z$ si la persona está desempleada. Acá z es la compensación por desempleo, y w es el salario al cual el trabajador es empleado. Asuma que, una vez que la oferta es aceptada, el salario se mantiene en w para siempre. Sea v(w) el valor esperado de $\sum_{t=0}^{\infty} \beta^t x_t$ para una persona desempleada que tiene una oferta w y se comporta óptimamente. Escriba **solamente** la Ecuación de Bellman para el problema de la persona trabajadora.

3. Crecimiento salarial y el salario de reserva. Una persona trabajadora recibe en cada período una oferta para trabajar ganando w_t para siempre, con $w_t = w$ en el primer período y $w_t = \phi^t w$ en los períodos t siguientes. Asuma que $\phi > 1$, es decir, que el salario aumenta con los años de experiencia. La función objetivo a maximizar para el trabajador es

$$E\sum_{t=0}^{\infty}\beta^t x_t, \quad \text{con} \quad 0<\beta<1$$

y $x_t = w_t$ si la persona está empleada y z si está desempleada. Sea v(w) el valor óptimo de la función objetivo de una persona desempleada que tiene una oferta w

¹En general, para $X \sim U[a,b]$, $E(X) = \frac{1}{2}(b+a)$

en mano. Suponga que $\beta \phi < 1$.

a) Muestre que el valor de aceptar una oferta está dado por

$$E\sum_{t=0}^{\infty} \beta^t x_t = \frac{w}{1 - \beta \phi}$$

- b) Plantee la ecuación de Bellman para v(w)
- <u>c</u>) Usando el mismo argumento del modelo estándar de McCall, especifique el valor de v(w) cuando $w \leq w_R$ y el valor de v(w) cuando $w \geq w_R$
- d) Dado que w_R cumple que:

$$\frac{w_R}{1 - \beta \phi} = z + \beta \int_0^B v(w') dF(w')$$

Utilice la respuesta en (c) para mostrar que el salario de reserva satisface que:

$$(1-\beta)w_R - \beta \int_{w_R}^B (w' - w_R) dF(w') = (1-\beta\phi)z$$

- e) Explique el efecto de un aumento en z sobre w_R . Pista: utilice la ecuación obtenida en (d) y la regla de Leibniz para mostrar que el lado izquierdo de la ecuación en (d) es creciente en w_R .
- <u>f</u>) Utilizando la ecuación obtenida en (d) ¿Cuál es el efecto de un aumento en ϕ sobre w_R ? Explique intuitivamente el efecto.