

LISA Data Analysis for All

Michael Katz+ on behalf of the organizers

Goals for this workshop

LEARN ABOUT LISA DATA ANALYSIS THROUGH CODE!

HEAR ABOUT THE LISA MISSION!

DISCUSS DEI IN ASTRONOMY

Let's talk about the LISA Mission!

Let's talk about the LISA Mission!

Let's talk about the LISA Mission!

How does LISA measure things? Ira Thorpe

LISA Science Objectives Kelly Holley-Bockelmann

LISA Multiband and Multimessenger Science Shane Larson

Diversity, Equity, and Inclusion in Astronomy

Short discussions

(~10-15min)

Pseudo-random timing (like real life!)

Please be respectful of everyone

LISA Analysis Tools Library & Framework

LISA Analysis Tools Code (github.com/mikekatz04/LISAanalysistools)

Fast EMRI Waveforms (github.com/BlackHolePerturbationToolkit/FastEMRIWaveforms)

Eryn (MCMC + RJMCMC sampler; github.com/mikekatz04/Eryn)

BBHx (MBHB + SOBHB; github.com/mikekatz04/BBHx)

GBGPU (GBs+; github.com/mikekatz04/GBGPU)

Fast LISA Response (github.com/mikekatz04/lisa-on-gpu)

LISA Analysis Tools Workshop Tutorials

github.com/mikekatz04/LATW

Question 2

We have asked you to compute the sky-averaged sensitivity curves. What does that mean? Can you determine, without looking at the documentation what the total sky-averaging factor is?

Links to documentation

LISA Analysis Tools Workshop Tutorials

github.com/mikekatz04/LATW

0. Python basics needed for LATW

1. Introduction to LISA Analysis Tools

Our goal for the workshop!

- 2. EMRIs and LISA Response
- 3. Fixed-dimensional MCMC
- 4. MBHBs + MCMC
- 5. RJMCMC (trans-dimensional sampling)
- 6. GBs + MCMC + RJMCMC

Rest is optional.
You can decide after tutorial 1!

*All tutorials have answer keys (in the tutorials/tutorial_answers/ folder). They can be helpful if you are stuck.

LISA Data Analysis Basics

Our goal is to calculate the signal-to-noise ratio (SNR) and Likelihood for a source in LISA data. Key mathematics terms we will see in this lesson:

Data array $\rightarrow d(t) \rightarrow$ Fourier Transform $\rightarrow \tilde{d}(f)$

Template array $\rightarrow h(t) \rightarrow$ Fourier Transform $\rightarrow \tilde{h}(f)$

Noise Power Spectral Density $\rightarrow S_n(f)$

Inner Product
$$\rightarrow \langle a(t)|b(t)\rangle = 4\Re \left[\int_{-\infty}^{\infty} \frac{\tilde{a}(f)^*\tilde{b}(f)}{S_n(f)}df\right]$$

SNR (Optimal) $\rightarrow \sqrt{\langle h|h\rangle}$

$$\log \text{Likelihood } (\ln \mathcal{L}) \rightarrow -\frac{1}{2} \langle d-h|d-h \rangle = -\frac{1}{2} [\langle d|d \rangle + \langle h|h \rangle - 2\langle d|h \rangle]$$

Sine wave in our example case.

Trapezoidal or rectangular summation numerically.

Google Colab Instructions for LATW

github.com/mikekatz04/LATW

1) "File". "Open Notebook". "Github". Type "mikekatz04/LATW" in the search bar. Hit Enter. Click the link for "tutorials/Tutorial#.ipynb".

2) Click "Copy to Drive". Then start working!

