Bài toán ghép cặp

Graph Matching

Bài toán ghép cặp trên đồ thị

- Gi¶ sö G=(V,E) lµ ®å thÞ v« híng, trong ®ã mçi c¹nh (v,w) ®îc g¸n víi mét sè thùc c(v,w) gäi lµ träng sè cña nã.
- •§Þnh nghÜa. CÆp ghĐp M tr^an ®å thÞ G lµ tËp c¸c c¹nh cña ®å thÞ trong ®ã kh«ng cã hai c¹nh nµo cã ®Ønh chung.
 - Sè c¹nh trong M **kÝch thíc**,
 - Tæng träng sè cña c,c c¹nh trong M **träng lîng** cña cÆp ghĐp.
 - CÆp ghĐp víi kÝch thíc lín nhÊt ®îc gäi lµ cÆp ghĐp cùc ®¹i.
 - CÆp ghĐp víi träng lîng lín nhÊt ®îc gäi lµ cÆp ghĐp lín nhÊt.
 - CÆp ghĐp ®îc gäi lµ ®Çy ®ñ (hoµn h¶o) nÕu mçi ®Ønh cña ®å thÞ lµ ®Çu mót cña Ýt nhÊt mét c¹nh trong cÆp ghĐp.

Hai bài toán

- *Bμi to,n cÆp ghĐp cùc ®¹i: T×m cÆp ghĐp víi kÝch thíc lín nhÊt trong ®å thÞ G.
- **Bµi to¸n cÆp ghĐp lín nhÊt:** T×m cÆp ghĐp víi träng lîng lín nhÊt trong ®å thÞ G.

Ta $h^1 n$ $ch\tilde{O}$ $x ext{Dt}$ $c_s c$ $b \mu i$ $to_s n$ $\mathbb{R} ext{$\mathcal{A}$} t$ ra $tr^a n$ $\mathbb{R} ext{$\mathring{a}$}$ $th ext{$P$}$ hai $ph ext{$\'a$}$ $G = (X \cup Y, E)$.

Cặp ghép lớn nhất:

$$M = \{(x_1, y_1), (x_2, y_3), (x_3, y_2), (x_4, y_4)\}$$

Có trọng lượng 29.

Bµi to,n cÆp ghĐp cùc ®¹i tran ®å thÞ hai phÝa

XĐt \mathbb{R} å th \mathbb{P} hai phÝa $G = (X \cup Y, E)$.

CÆp ghĐp lµ tËp c¹nh mµ kh«ng cã hai c¹nh nµo cã chung ®Ønh

Bµi to,n: T×m cÆp ghĐp kÝch thíc lín nhÊt

Qui vÒ Bµi to¸n luång cùc ®¹i

Mỗi cung (s, i) có kntq 1.

Mỗi cung (j, t) có kntq Laph Matching

Mỗi cạnh được thay thế bởi cung có kntq 1.

Tìm luồng cực đại

Luồng cực đại từ s->t có giá trị 4.

Cặp ghép cực đại có kích thước 4.

Bµi to,n cÆp ghĐp cùc ®¹i tran ®å thÞ hai phÝa

- ◆Gi¶ sö *M* lμ mét cÆp ghĐp tran *G*.
- NÕu c^1 nh $e = (x, y) \in M$, ta nãi e lµ c^1 nh cña cÆp ghĐp (hay c^1 nh ®Ëm) vµ c¸c ®Ønh x, y lµ c¸c ®Ønh ®Ëm (hay kh«ng tù do).
- NÕu c¹nh $e = (x, y) \notin M$, th× ta nãi $e \mid \mu$ c¹nh nh¹t cßn c¸c ®Ønh $x, y \mid \mu$ c¸c ®Ønh nh¹t (hay tù do).

Đường tăng cặp ghép

- Mét ®êng ®i tr^an ®å thÞ G mµ trong ®ã hai c¹nh li^an tiÕp lµ kh«ng cïng ®Ëm hay nh¹t sÏ ®îc gäi lµ ®êng ®i lu©n phi^an ®Ëm/nh¹t (hay gäi ng¾n gän lµ ®êng ®i lu©n phi^an).
- •§êng ®i lu©n phi^an b¾t ®Çu tõ mét ®Ønh tù do thuéc tËp X vµ kÕt thóc ë mét ®Ønh tù do thuéc tËp Y ®îc gäi lµ ®êng t¨ng cÆp ghĐp.

Định lý Berge

§Pnh lý 1 (Berge C). CÆp ghĐp M lµ cùc ®¹i khi vµ chØ khi kh«ng t×m ®îc ®êng t¨ng cÆp ghĐp.

CM:

§iÒu kiÖn cÇn. B»ng ph¶n chøng. Gi¶ sö M lµ cÆp ghĐp cùc ®¹i nh ng vÉn t×m ®îc ®êng t¨ng cÆp ghĐp

$$P \equiv X_0, Y_1, X_1, Y_2, ..., X_k, Y_0$$

trong $@\tilde{a} x_0 v\mu y_0 l\mu c_s c @\emptyset nh tù do.$

Gäi E_P lµ tËp c¸c c¹nh cña ®å thÞ n»m tran ®êng ®i P

$$E_P = \{ (x_0, y_1), (y_1, x_1), ..., (x_k, y_0) \}.$$

DÔ thÊy sè lîng c¹nh nh¹t trong E_p lµ b»ng sè lîng c¹nh \mathbb{R} Ëm cña nã céng víi 1. §Ó \mathbb{R} ¬n gi¶n trong phÇn díi \mathbb{R} ©y ta \mathbb{R} ång nhÊt ký hiÖu \mathbb{R} êng \mathbb{R} i P víi tËp c¹nh E_p cña nã. X©y dùng cÆp ghĐp M' theo qui t¾c:

$$M' = (M \cup P) \setminus (M \cap P)$$
.

 $D\hat{O}$ thÊy M' còng lµ cÆp ghĐp vụ râ rµng |M'| = |M| + 1. M©u thuÉn thu $\hat{\mathbb{R}}$ chọng minh $\hat{\mathbb{R}}$ iÒu kiÖn cÇn.

Định lý Berge

- Siòu kiön ®ñ. Gi¶ sö cÆp ghĐp M cha lụ cÆp ghĐp cùc ®¹i. Gäi M* lụ cÆp ghĐp cùc ®¹i. XĐt ®å thÞ G' = (V, M∪M*). Râ rụng hai c¹nh li³n tiÕp trong mọi ®êng ®i còng nh mọi chu tr×nh trong G' kh«ng thÖ thuếc cïng mét cÆp ghĐp M hoÆc M*. V× vËy, mọi ®êng ®i còng nh mọi chu tr×nh trong G' ®Òu lụ ®êng lu©n phi³n M/M*. Do |M*| > |M|, n³n râ rụng lụ lu«n t×m ®îc Ýt nhÊt mét ®êng ®i lu©n phi³n M/M* mụ trong ®ã sè lîng c¹nh thuéc M* lụ lín h¬n sè lîng c¹nh thuéc M. Sêng ®i ®ã chÝnh lụ ®êng t¨ng cÆp ghĐp tr³n ®å thÞ G.
- §Þnh lý ®îc chøng minh.
- Chó ý: Trong chong minh ®Þnh lý ta kh«ng sö dông tÝnh hai phÝa cña G. Do ®ã, §Þnh lý 1 lµ ®óng víi ®å thÞ v« híng bÊt kú.

ThuËt to,n t×m cÆp ghĐp cùc ®¹i

- *§§Çu vµo:* §å thÞ v« híng *G* = (*V, E*).
- **®** Bíc khëi t^1 o. X©y dùng cÆp ghĐp M trong ®å thÞ G (cã thÓ b¾t ®Çu tõ $M = \emptyset$).
- ◆Bíc lÆp.
 - KiÓm tra tiau chuÈn tèi u: NÕu ®å thÞ G kh«ng chøa ®êng t¨ng cÆp ghĐp th× M lµ cÆp ghĐp cùc ®¹i, thuËt to¸n kÕt thóc.
 - Ngîc l¹i, gäi P lµ mét ®êng t¨ng cÆp ghĐp xuÊt ph¸t tỡ ®Ønh tù do $x_0 \in X$, kÕt thóc ë ®Ønh tù do $y_0 \in Y$. T¨ng cÆp ghĐp theo qui t¾c $M:=(M \cup P) \setminus (M \cap P)$, råi lÆp l¹i bíc lÆp.

Tìm đường tăng

- Tõ ®å thÞ G ta x©y dùng ®å thÞ cã híng $G_M = (X \cup Y, E_M)$ víi tËp cung E_M ®îc b»ng c,ch ®Þnh híng l¹i c,c c¹nh cña G theo quy t³4c sau:
 - i) NÕu $(x,y) \in M \cap E$, th× $(y,x) \in E_M$;
 - ii) NÕu $(x,y) \in E \setminus M$, th× $(x,y) \in E_M$. §å thÞ G_M sÏ ®îc gäi lµ ®**å thÞ t**"ng cÆp ghĐp.
- DÔ thêy:
 - Đêng t¨ng cÆp ghĐp t¬ng øng víi mét ®êng ®i xuÊt ph¸t tõ mét ®Ønh tù do $x_0 \in X$ kÕt thóc t¹i mét ®Ønh tù do $y_0 \in Y$ tr³n ®å thÞ G_M .
 - Ngîc l¹i, mét ®êng ®i trªn ®å thÞ G_M xuÊt ph¸t tõ mét ®Ønh tù do $X_0 \in X$ kÕt thóc t¹i mét ®Ønh tù do $Y_0 \in Y$ sÏ t¬ng øng víi mét ®êng t¨ng cÆp ghĐp trªn ®å thÞ G.
- V× vëy, ®Ó xĐt xem ®å thÞ G cã chøa ®êng t ng cÆp ghĐp hay kh«ng, cã thÓ thùc hiÖn thuËt to¸n t×m kiÕm theo chiÒu réng tran ®å thÞ GM b¾t ®Çu tõ c¸c ®Ønh tù do thuéc tËp X.

Thuật toán

Sö dông c,ch t×m ®êng t¨ng cÆp ghĐp theo nhÊn xĐt võa nau, tõ s¬ ®å tæng qu,t dÔ dµng x©y dùng thuËt to n ®Ó gi¶i bµi to n t×m cÆp ghĐp cùc ®¹i tr^an ®å thÞ hai phÝa víi thêi gian tÝnh $O(n^3)$, trong ®ã $n = \max(|X|,$ |Y|).

Cài đặt

Cấu trúc dữ liệu

```
Var A: Array[1..100,1..100] \text{ of Byte; (* Ma trận kề của đồ thi hai phía G *)}  Truoc, \qquad (* Ghi nhận đường đi *)  Vo, \qquad (* Vo[x]- đỉnh được ghép với <math>x \in X *)  Chong: Array[1..100] \text{ of Byte; (* Chong[y]-đỉnh được ghép với } y \in Y *)  N, x0, y0, Cnt: Byte;  Stop: Boolean;  (* Nếu (x, y) \in M thì Vo[x]=y; Chong[y]=x.  Vo[x]=0 => x là đỉnh nhạt; Chong[y]=0 => y là đỉnh nhạt *)
```

Tìm đường tăng

Procedure Tim(x:Byte); var y: Byte; begin For y:=1 to N do If (A[x,y]=1) and (Truoc[y]=0) and (y0=0) then begin Truoc[y]:=x; If Chong[y]<>0 then Tim(Chong[y]) else begin y0:=y; Exit; end: end: end;

```
Procedure Tim_Duong_Tang;
begin
    Fillchar(Truoc,Sizeof(Truoc),0);
    y0:=0;
    For x0:=1 to N do
    begin
        If Vo[x0]=0 then Tim(x0);
        If y0<>0 then exit;
    end;
    Stop:=true;
end;
```

Thủ tục MaxMatching

Procedure Tang;

```
var temp: Byte;
begin
  Inc(Cnt);
  While Truoc[y0]<>x0 do
  begin
    Chong[y0]:=Truoc[y0];
    Temp:=Vo[Truoc[y0]];
    Vo[Truoc[y0]]:=y0;
    y0:=Temp;
  end;
  Chong[y0]:=x0;
  Vo[x0]:=y0;
end;
```

Procedure MaxMatching;

```
begin
Stop:=false;
Fillchar(Vo,Sizeof(Vo),0);
Fillchar(Chong,Sizeof(Chong),0);
Cnt:=0;
While not Stop do
begin
Tim_duong_tang;
If not Stop then Tang;
end;
end;
```

Bµi to,n ph@n c«ng

Cã n c«ng viÕc vµ n thî. Mçi thî ®Òu cã kh¶ n"ng thùc hiÖn tÊt c¶ c¸c c«ng viÖc. BiÕt w_{ij} - hiÖu qu¶ ph©n c«ng thî i lµm viÖc j, (i, j = 1, 2, ..., n).

CÇn t×m c,ch ph©n c«ng thî thùc hiÖn c,c c«ng viÖc sao cho mçi thî chØ thùc hiÖn mét viÖc vµ mçi viÖc chØ do mét thî thùc hiÖn, ®ång thêi tæng hiÖu qu¶ thùc hiÖn c,c c«ng viÖc lµ lín nhÊt.

Qui về bài toán cặp ghép lớn nhất

X©y dùng ®å thÞ hai phÝa ®Çy ®ñ $G = (X \cup Y, E)$

- $X = \{x_1, x_2, ..., x_n\}$ t¬ng øng víi c¸c thî,
- $Y = \{y_1, y_2, ..., y_n\}$ t¬ng øng víi c¸c c«ng viÖc.

Mçi c¹nh (x_i, y_j) ®îc g_sn cho träng sè $w(x_i, y_j) = w_{ij}$.

Khi ®ã trong ng«n ng÷ ®å thÞ, bµi to¸n ph©n c«ng cã thÓ ph¸t biÓu nh sau: T×m trong ®å thÞ G cÆp ghĐp ®Çy ®ñ cã tæng träng sè lµ lín nhÊt. CÆp ghĐp nh vËy ®îc gäi lµ cÆp ghĐp tèi u.

C¬ së thuËt to,n

Mét phĐp g_n nh·n chếp nhën ®îc nh vëy dô dµng cã thÓ t×m ®îc, ch¼ng h¹n phĐp g_n nh·n sau ®©y lµ chếp nhën ®îc

$$f(x) = \max \{ w(x,y): y \in Y \}, x \in X,$$

 $f(y) = 0, y \in Y.$

Đồ thị cân bằng

Gi¶ sö cã f lµ mét phĐp g¸n nh·n chÊp nhËn ®îc, ký hiÖu

$$E_f = \{(x,y) \in E: f(x) + f(y) = w(x,y)\}.$$

*Ký hiÖu G_f lµ ®å thÞ con cña G sinh bëi tËp ®Ønh $X \cup Y$ vµ tËp c¹nh E_f . Ta sÏ gäi G_f lµ ®**å thÞ c**©**n b»ng**.

Tiêu chuẩn tối ưu

§Þnh lý 2. Gi¶ sö f lµ phĐp g¸n nh·n chÊp nhËn ®îc. NÕu G_f chøa cÆp ghĐp ®Çy ®ñ M*, th× M* lµ cÆp ghĐp tèi u.

Chøng minh.

Gi¶ sö G_f chøa cÆp ghĐp ®Çy ®ñ M^* . Khi ®ã tố ®Þnh nghÜa G_f suy ra M^* còng lµ cÆp ghĐp ®Çy ®ñ cña ®å thÞ G. Gäi $w(M^*)$ lµ träng lîng cña M^* : $w(M^*) = \sum_{e \in M^*} w(e)$

Do mçi c¹nh $e \in M^*$ ®Òu lµ c¹nh cña G_f vµ mçi ®Ønh cña G kÒ víi ®óng mét c¹nh cña M^* , $=\sum_{e \in M^*} w(e) = \sum_{v \in V} f(v)$

Gi¶ sö
$$M$$
 lµ mét cÆp ghĐp ®Çy ®ñ tuú ý cña G , khi ®ã $w(M) = \sum_{e \in M} w(e) \le \sum_{v \in V} f(v)$

Suy ra $w(M^*) \ge w(M)$. VËy M^* l μ cÆp ghĐp tèi u.

Sơ đồ thuật toán

- Ta sĨ b¾t ®Çu tõ mét phĐp g¸n nh·n chếp nhÊn @îc f. X@y dùng @å th $> G_f$. B 3 /4t @Çu tõ mét cÆp ghĐp M nµo ®ã trong G_f ta x©y dùng cÆp ghĐp ®Çy ®ñ trong G_f . NÕu t×m ®îc cÆp ghĐp ®Çy ®ñ M^* , th× nã chÝnh lµ cÆp ghĐp tèi u. Ngîc l¹i, ta sÏ t×m ®îc cÆp ghĐp cùc ®¹i kh«ng \mathbb{R} Çy \mathbb{R} \widetilde{n} M'. Tõ M' ta s \widetilde{l} t×m c,ch söa ph \widetilde{l} p g,n nh·n thµnh f' sao cho M' vÉn lµ cÆp ghĐp cña G_f' vµ cã thÓ tiÕp tôc ph_st triÓn M' trong G_f' ., V.V...
- Qu, tr×nh ®îc tiÕp tôc cho ®Õn khi thu ®îc cÆp ghĐp ®Çy ®ñ trong ®å thÞ c©n b»ng.

- •Gi¶ sö M lµ cÆp ghĐp cùc \mathbb{R}^1 i trong \mathbb{R}^3 thÞ G_f vµ M cha lµ cÆp ghĐp \mathbb{R} Çy \mathbb{R}^n cña G. Ta cÇn t×m c,ch \mathbb{R}^n iÒu chØnh phĐp g,n nh·n f tho¶ m·n c,c y³u cÇu \mathbb{R} Æt ra.
- Thùc hiÖn t×m kiÕm theo chiÒu réng tố c,c \mathbb{R} \mathbb{R} \mathbb{C} \mathbb{C}

|S| > |T| (do mçi ®Ønh trong T ®¹t ®îc tõ mét ®Ønh nµo ®ã trong S).

Tõ tÝnh chết cặa thuết to n t×m kiÕm theo chiÒu réng, râ rµng, kh«ng cã c¹nh nµo tố S ®Õn T*. §Ó söa ch÷a nh·n, chóng ta sÏ tiÕn hµnh gi¶m ®ång lo¹t c¸c nh·n trong S ®i cïng mét gi, trÞ λ nμο ®ã, vμ ®ång thêi sÏ t ng ®ång lo¹t nh·n cña c,c ®Ønh trong T lan λ. §iÒu ®ã ®¶m b¶o c,c c¹nh tõ S sang T (nghÜa lμ nh÷ng c¹nh mμ mét ®Çu mót thuéc S cßn mét ®Çu mót thuéc T) kh«ng bÞ lo¹i bá khái ®å thb c©n b»ng ®å thÞ c©n b»ng

C_sc tËp S vµ T trong thùc hiÖn thuËt to_sn. ChØ vÏ c_sc c¹nh trong G_f

- All Khi c,c nh·n trong S bÞ gi¶m, c,c c¹nh trong G tõ S sang T^* sÏ cã kh¶ n¨ng gia nhËp vµo \rat{B} å thÞ c \rat{C} n b»ng G_f . Ta sÏ t¨ng \rat{A} \rat{B} Õn khi cã th³m Ýt nhÊt mét c¹nh míi gia nhËp \rat{B} å thÞ c \rat{C} n b»ng. Cã hai kh¶ n¨ng:
 - NÕu c¹nh míi gia nhëp ®å thÞ c©n b»ng gióp ta th¨m ®îc mét ®Ønh kh«ng tù do y ∈ T* th× tõ nã ta sÏ th¨m ®îc mét ®Ønh ®îc ghĐp víi nã trong cÆp ghĐp x ∈ S*, vµ c¶ hai ®Ønh nµy ®îc bæ sung vµo S vµ T t¬ng øng, vµ nh vëy viÖc t×m kiÕm ®êng t¨ng sÏ ®îc tiÕp tôc më réng.
 - NÕu c¹nh míi gia nhëp ®å thÞ c©n b»ng cho phĐp th m ®îc mét ®Ønh tù do y ∈ T* th× ta t×m ®îc ®êng t ng cÆp ghĐp, vµ kÕt thóc mét pha ®iÒu chØnh nh·n.

- Ta gäi *mét pha* ®*iÒu chØnh* lµ tÊt c¶ c¸c lÇn söa nh·n cÇn thiÕt ®Ó t¨ng ®îc kÝch thíc cña cÆp ghĐp *M*.
- V× sau mçi pha ®iÒu chØnh kÝch thíc cña cÆp ghĐp t¨ng lan 1, nan ta ph¶i thùc hiÖn nhiÒu nhÊt n pha ®iÒu chØnh.
- Trong mçi pha ®iÒu chØnh, do sau mçi lÇn söa nh·n cã Ýt nhÊt hai ®Ønh míi ®îc bæ sung vµo danh s¸ch c¸c ®Ønh ®îc th¨m, n³n ta ph¶i thùc hiÖn viÖc söa nh·n kh«ng qu¸ n lÇn. MÆt kh¸c, trong thêi gian O(n²) ta cã thÓ x¸c ®Þnh ®îc c¹nh nµo tõ S sang T* lµ c¹nh gia nhËp ®å thÞ c©n b»ng (b»ng viÖc duyÖt hÕt c¸c c¹nh). Tõ ®ã suy ra ®¸nh gi¸ thêi gian tÝnh cña thuËt to¸n lµ O(n⁴).

Thuật toán

- **Bíc 0:** T×m mét phĐp g_sn nh·n chếp nhËn \mathbb{R} îc f.
- **Bíc 1:** X©y dùng \mathbb{R} å th \triangleright c \mathbb{C} n b»ng G_f .
- **Bíc 2:** T×m cÆp ghĐp cùc \mathbb{R}^1 i M trong G_f .
- Bíc 3: NÕu M lu cÆp ghĐp ®Çy ®ñ th× nã lu cÆp ghĐp lín nhết cÇn t×m. Thuết to n kỗt thóc.
- Bíc 4: Gäi S lµ tËp c¸c ®Ønh tù do trong X. Thùc hiÖn t×m kiÕm tố c¸c ®Ønh trong S. Gäi T lµ tËp c¸c ®Ønh cña Y ®îc th "m trong qu¸ tr×nh t×m kiÕm. Bæ sung c¸c ®Ønh trong X ®îc th "m trong qu¸ tr×nh t×m kiÕm vµo S.
- **Bíc 5:** Tiỗn hµnh ®iÒu chØnh nh·n f ta sÏ bæ sung ®îc c¸c c¹nh vµo G_f cho ®ỗn khi t×m ®îc ®êng t¨ng, bæ sung c¸c ®Ønh míi ®îc th¨m vµo S vµ T t¬ng øng nh ®· m« t¶ ë tr³n. T¨ng cÆp ghĐp M vµ quay l¹i bíc 3.

Tăng hiệu quả

- §Ó cã ®îc thuËt to¸n víi ®¸nh gi¸ thêi gian tÝnh tèt h¬n, vÊn ®Ò ®Æt ra lµ lµm thÕ nµo cã thÓ tÝnh ®îc gi¸ trÞ λ t¹i mçi lÇn söa nh·n cña pha ®iÒu chØnh mét c¸ch nhanh chãng.
- Ta x,c @Þnh @é lÖch cña c,c c¹nh theo c«ng thøc

$$slack(x, y) = f(x) + f(y) - c(x, y).$$

Tăng hiệu quả

Khi ®ã

$$\lambda = \min_{x \in S, y \in T^*} slack(x, y)$$

•Râ rµng viÖc tÝnh trùc tiÕp λ theo c«ng thøc ®ßi hái thêi gian O(n²). B©y giê, nÕu víi mçi ®Ønh trong T* ta ghi nhËn l¹i c¹nh víi ®é lÖch nhá nhÊt

$$slack(y_j) = \min_{x_i \in S} slack(x_i, y_j).$$

Tăng hiệu quả

- ViÖc tÝnh gi¸ trÞ ®é lÖch slack(y) ®ßi hái thêi gian O(n²) ë ®Çu pha ®iÒu chØnh. Khi tiÕn hunh pha ®iÒu chØnh ta cã thÓ söa l¹i tÊt c¶ c¸c ®é lÖch trong thêi gian O(n) do chóng bÞ thay ®æi cïng mét gi¸ trÞ (do nh·n cña c¸c ®Ønh trong S gi¶m ®ång lo¹t ®i cïng mét gi¸ trÞ λ). Khi mét ®Ønh x ®îc chuyÓn tõ S* sang S ta cÇn tÝnh l¹i c¸c ®é lÖch cña c¸c ®Ønh trong T*, viÖc ®ã ®ßi hái thêi gian O(n). Tuy nhi³n sù kiÖn mét ®Ønh ®îc chuyÓn tõ S* sang S chØ x¶y ra nhiOu nhÊt n lÇn.
- Nh vëy, mçi pha ®iÒu chØnh cã thÓ cµi ®Æt víi thêi gian $O(n^2)$. Do cã kh«ng qu, n pha ®iÒu chØnh trong thuËt to,n, nan c,ch cµi ®Æt nµy cho ta thuËt to,n víi thêi gian tÝnh $O(n^3)$.

Xét bài toán với ma trận hiệu quả

$$W = \begin{vmatrix} 4 & 4 & 1 & 3 \\ 3 & 2 & 2 & 1 \\ 5 & 4 & 4 & 3 \\ 1 & 1 & 2 & 2 \end{vmatrix}$$

Bắt đầu từ phép gán nhãn

f(y)	0	0	0	0
4	4	4	1	3
3	3	2	2	1
5	5	4	4	3
2	1	1	2	2

Đồ thị cân bằng G_f

CÆp ghĐp cùc ®¹i t×m ®îc

$$M = \{(x_1, y_2), (x_2, y_1), (x_4, y_4) \}.$$

T×m kiÕm theo chiÒu réng b¾t ®Çu tõ ®Ønh tù do x_3 ta cã

$$S \leq r\{p_X \text{ Matshing}, T = \{y_1\}$$

♦TÝnh

 $\lambda = \min \{f(x) + f(y) - w(x,y) : x \in \{x_2, x_3\}, y \in \{y_2, y_3, y_4\} \} = 1.$

◆TiÕn hµnh söa nh·n,

f(y)	1	0	0	0
f(x) 4	4	4	1	3
2	3	2	2	1
4	5	4	4	3
2	1	1	2	2

◆Theo ®êng t¨ng cÆp ghĐp

$$X_3$$
, Y_3 , X_4 , Y_4

ta t¨ng cÆp ghĐp *M* thµnh cÆp ghĐp ®Çy ®ñ

$$M = \{(x_1, y_2), (x_3, y_1), (x_2, y_3), (x_4, y_4)\},\$$

®ảng thêi lµ cÆp ghĐp tèi u víi träng l îng

$$W(M) = 4 + 2 + 5 + 2 = 13.$$

Cài đặt trên Pascal

```
type    data1=array [1..maxn,1..maxn] of integer;
    data2=array [1..2*maxn] of integer;
    data3=array [1..2*maxn] of longint;

var    c: data1;
    px, py, q, queue: data2;
    a, b, f: data3;
    n, n2, k, u, z: integer;
```

Khởi tạo

procedure init;

```
var i, j: integer;
begin
     n2:= n+n; fillchar(f,sizeof(f),0);
     for i:=1 to n do
      for j:=1 to n do
       if f[i] < c(i, j) then f[i] := c(i, j);</pre>
     k:=0;
     fillchar(px,sizeof(px),0); fillchar(py,sizeof(py),0);
     for i:=1 to n do
      for j:=1 to n do
       if (py[j]=0) and (f[i]+f[j+n]=c(i,j)) then
       begin
          px[i]:=j; py[j]:=i; inc(k);
          break;
       end;
end;
```

Tìm đường tăng

```
function FoundIncPath: boolean:
var dq, cq, v, w: integer;
begin
   fillchar(q,sizeof(q),0);
   dq:=1; cq:=1; queue[dq]:=u; q[u]:=u;
   while dq<=cq do
   begin
      v:=queue[dq]; inc(dq);
      if v<=n then
      begin
         for w:=n+1 to n2 do
          if (f[v]+f[w]=c(v,w-n)) and (q[w]=0) then
          begin inc(cq); queue[cq]:=w; q[w]:=v; end;
      end else
      if (py[v-n]=0) then begin FoundIncPath:=true;z:=v;exit; end
      else begin w:=py[v-n]; inc(cq); queue[cq]:=w; q[w]:=v; end;
   end:
   FoundIncPath:=false;
end;
```

Tìm đỉnh tự do

```
function FreeNodeFound :boolean;
var i:integer;
begin
   for i:=1 to n do
      if px[i]=0 then
      begin
          u:=i;
          FreeNodeFound:=true;
          exit;
      end;
  FreeNodeFound :=false;
end;
```

Tăng cặp ghép và Sửa nhãn

```
procedure Tangcapghep;
var i, j: integer;
  ok: boolean;
begin
 j:=z; ok:=true;
 while j<>u do
 begin
   i:=q[j];
   if ok then
   begin
     px[i]:=j-n;
     py[j-n]:=i;
   end:
   j:=i;
   ok:= not ok;
 end:
 inc(k):
end:
```

```
procedure Suanhan;
var i, j: integer;
  d: longint;
begin
   d:= maxlongint;
   for i:=1 to n do
     if q[i]>0 then
      for j:=n+1 to n2 do
        if q[j]=0 then
          if d>longint(f[i]+f[j]-c(i,j-n)) then
              d:=longint(f[i]+f[j]-c(i,j-n));
   for i:=1 to n do
     if q[i]>0 then dec(f[i],d);
   for j:=n+1 to n2 do
     if q[j]>0 then inc(f[j],d);
end;
```

Main Procedure

```
procedure Solve;
begin
   init;
   while FreeNodeFound do
   begin
       while not FoundIncPath do suanhan;
       Tangcapghep;
   end;
end;
```

