In Fig. 10.67, $I_{EE}=1$ mA and $V_A=5$ V. Calculate the voltage gain of the circuit. Note that the gain is independent of the tail current.

Figure 10.67

Ex 2:

Consider the circuit illustrated in Fig. 10.102. Assume a small dc drop across R_1 and R_2 .

Figure 10.102

- (a) Select the input CM level to place Q_1 and Q_2 at the edge of saturation.
- (b) Select the value of R_1 (= R_2) such that these resistors reduce the differential gain by no more than 20%.

Ex 3:

Design the circuit of Fig. 10.96 for a gain of 50 and a power budget of 1 mW. Assume

Figure 10.96

$$V_{A,n}=6~\mathrm{V}$$
 and $V_{CC}=2.5~\mathrm{V}$.

Assuming perfect symmetry and $V_A < \infty$, compute the differential voltage gain of each stage depicted in Fig. 10.69.

Figure 10.69