תורת החבורות – תרגיל בית 12 – פתרון

שאלה 2:

. וובכך נקבל את השוויון. $H \supseteq S_n$ נוכיח בשלושה שלבים ני ווכיח . $H \triangleq \left\langle \left\{ \left(k \mid k+1\right) \right\}_{k=1}^{n-1} \right\rangle$ תהי

שלב 2: יהיו $(x,y) = (1,x)(1,y)(1,x) \in H$, אז $(x,y) = (1,x)(1,y)(1,x) \in H$ מכילה את כל הטרנספוזיציות.

שלב 3: יהי
$$\mu = (x_1, x_2, \dots, x_t) \in S_n$$
 שלב 3:

אז של המכפלות של , $\mu=(x_1,x_t)(x_1,x_{t-1})\cdots(x_1,x_2)\in H$ אז אז אז $H\supseteq S_n$ הינו מכפלת מעגלים ארים, קיבלנו את ההכלה S_n הינו מכפלת מעגלים ארים.

:3 שאלה

 $(k \ k+1) \in \langle (12), \ (12\cdots n) \rangle$ $1 \leq k \leq n-1$ לפי התרגיל הקודם מספיק להוכיח כי לכל $(k \ k+1) = (12\cdots n)^{k-1} (12) \left((12\cdots n)^{k-1}\right)^{-1}$ אבל

שאלה 6:

בסתירה לחד-חד-ערכיות של ().

 $\phi\colon Q_8 \to S_4$ נניח בשלילה כי הטענה אינה נכונה, אז קיים מונומורפיזם

$$\phi(i) = (1\,2\,3\,4)$$
 איז $\phi(i) = \phi(i) = \phi(i) = \phi(i)$ הינו 4-מעגל, ונניח בה"כ כי

$$j \in Q_8$$
 באותו אופן לגבי . $\phi(-1) = \phi(i^2) = \phi(i)^2 = (13)(24) \iff i^2 = -1$

אבל לכל
$$\mu \in S_4$$
 אבל לכל . $\phi(j)^2 = \phi(-1) = (1\,3)(2\,4) \iff j^2 = -1$

$$\phi(i)\!=\!\left(1\,2\,3\,4\right)\!=\!\phi(\,j)$$
בכך קיבלנו כי . $\mu\!=\!\left(1\,2\,3\,4\right)$ אם ורק אם . $\mu^2\!=\!\left(1\,3\right)\!\left(2\,4\right)$

<u>שאלה 7:</u>

. $g\left(x_iH\right)=gx_iH$ פועלת על X עייי G . $X=\left\{x_iH\right\}_{i=1}^n$: H תהי קבוצת G . $X=\left\{x_iH\right\}_{i=1}^n$: H שייי G . G G . G G G . G G G . G G . G . G G .

$$\left[G: \operatorname{Ker}(\varphi)\right] = \left|\frac{G}{\operatorname{Ker}(\varphi)}\right| = \left|\operatorname{Im} m(\varphi)\right| \le n!$$
 מכאן

 $.\phi(g)=id_X$ אז $,g\in N$ יהי $N\subseteq H$ ונישאר להראות כי $N\triangleq Ker(\phi)\lhd G$ $.g\in H \iff gH=H \iff g(H)=H$ בפרט , אם $g\in N$ בפרט ,

<u>שאלה 8:</u>

- הראשוני [G:H]=p כך ש $H \leq G$ הראשוני $H \leq G$ הראשוני של תרגיל שהוכח בכיתה $H \leq G$ אז $H \leq G$ הראשוני שמחלק את הסדר של G, אז G
 - . $o\left(x\right)\in\left\{p,p^{2}\right\}$, לכן קיים $1\neq x\in G$ לכן קיים , $\left|G\right|=p^{2}=4>1$

$$o(y) = p$$
, $y =$
$$\begin{cases} x & o(x) = p \\ x^p & o(x) = p^2 \end{cases}$$
 אנדיר $y \in G$ ענדיר $y \in G$

אז $H=\left\langle y\right\rangle$ גם כן. כעת לפי הסעיף אז $H=\left\langle y\right\rangle$ אז $H=\left\langle y\right\rangle$ אז לפי התת-חבורה מסדר H כיתה הנייל) אז לפי תרגיל כיתה הניילי

ג) אם G ציקלית, אז אין מה להוכיח, לכן נניח כי לא. במקרה הזה כל האיברים (פרט ליחידה) $G\neq \langle x \rangle$ אם $G\neq \langle x \rangle$ אין מה להוכיח, לכן נניח כי לא. במקרה הזה כל האיברים (פרט ליחידה) הם מסדר $g\neq \langle x \rangle$ יהי $g\neq \langle x \rangle$ ברור כי מתקיים $g= |\langle x \rangle| = |\langle y \rangle| = |\langle x \rangle| = 0$. יותר מכך, ויהי $g= \langle x \rangle \langle y \rangle = 0$, ברור כי מתקיים $g= \langle x \rangle \langle y \rangle = 0$, ושתיהן תחיינ לפי סעיף אי. $g= \langle x \rangle \langle y \rangle = 0$, ואז נסיים. נוכיח זאת: $g= \langle x \rangle \langle y \rangle = 0$, ואז נסיים. נוכיח זאת:

נשים לב כי $1 \leq k, t \leq p-1$ לכן קיימים, $yx \in G = \left\langle x \right\rangle \left\langle y \right\rangle = \left\{ x^i y^j \right\}_{1 \leq i, j \leq p-1}$ נשים לב כי $y^{t-1} \in \left\langle x \right\rangle \cap \left\langle y \right\rangle$ אז $yx = x^k y^{t-1}$ כמו כן $x^k \in \left\langle x \right\rangle \cap \left\langle y \right\rangle$ אז $yx = x^k y^t$ מכאן מקבלים כי $x^t \in \left\langle x \right\rangle \cap \left\langle y \right\rangle$ באותו אופן $x \in \{x\}$

<u>שאלה 9:</u>

ישנם 8-1=8 אפשרויות לבחור שורה ראשונה (כל האפשריות פרט לשורת-אפסים), ו |G|=48 ישנם |G|=48 אפשרויות לבחור שורה שנייה (כל האפשריות פרט לכפולה של שורה ראשונה), סה"כ |H|=2*3*2 שתייות לבחירת כל אחד מאברי האלכסון הראשי ו-3 אפשרויות לבחירת |H|=2*3*2 (b), לכן |G:H|=4

-- $g(x_iH)=gx_iH$ פועלת על X עייי G . $X=\left\{x_iH\right\}_{i=1}^4$:H תהי קבוצת 4 הקוסטים של G העוד G לתוך G שניתן לזהות עם S_4 יותר מכך הינו הומומורפיזם על, לכן נישאר להראות כי גרעין שלו הוא G .

 $1\leq i\leq 4$ אם ורק אם לכל $y\left(x_iH\right)=x_iH$ $1\leq i\leq 4$ אם ורק אם לכל $y\in Ker\left(\phi\right)$. $x^{-1}yx\in H$ אם ורק אם לכל $x_i^{-1}yx_i\in H$ $1\leq i\leq 4$ אם ורק אם לכל $yx_iH=x_iH$

. משולשת עליונה
$$y = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \iff y = x^{-1}yx \in H \iff x = I$$
 (1

$$y = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \iff b = 0 \iff \begin{pmatrix} d & 0 \\ b & a \end{pmatrix} = x^{-1}yx \iff x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 (2)

. שקלרית.
$$y = aI \iff a = d \iff \begin{pmatrix} a & 0 \\ a - d & d \end{pmatrix} = x^{-1}yx \in H \iff x = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 (3

להפך . Ker $(\phi)\subseteq Z(G)$, לכן קיבלנו כי , $Z(GL_n(F))=\{\alpha I|\alpha\in F\}$. להפך . $x^{-1}yx=y\in\{\alpha I|\alpha\in\mathbb{Z}_3\}\subseteq H\ x\in G$ ולכל $y\in Z(G)=\{\alpha I|\alpha\in\mathbb{Z}_3\}$