Assignment 1.

Vectorized Representation

MSDS 453: Natural Language Processing

Husein Adenwala

Northwestern University

1. Introduction & Problem Statement

The purpose of this assignment is to compare and evaluate different vectorization and word embedding techniques on the 249 manually collected and labeled movie reviews. The objective is to understand which technique and parameters are best suited for creating a vocabulary for the given corpus which will eventually be used for sentiment analysis. This research will experiment with different data wrangling methods to create TF-IDF vectors and Doc2Vec and Word2Vec embedding sizes of varying lengths. Finally, I will use a cosine similarity matrix, T-SNE plot and k-means clustering to evaluate the vectorizing and embedding created by all the experiments.

2. Literature review

TF-IDF, Word2Vec, and Doc2Vec are frequently used Word Embedding methods. TF-IDF reflects the relative importance of a word over the whole corpus in a text. Term frequency (TF) is the total number of times a term(t) exists in a document(D) and the inverse document frequency (IDF) is the reciprocal number of documents(d) in which the term appears over the total number of documents(N). The importance of the word increases as the increase in the number of times it appears in a document, but it is neutralized by the frequency of the word in the entire data set. The function calculates the tf – idf as tf-idf = tf(t, D) * idf(d, N). A high tf-idf score implies a high frequency of a word in a document and a low frequency of documents for that term over the entire document collection (Jitendra, 2021).

Word2vec and doc2vec techniques are the new techniques for preserving the whole corpus of contextual word knowledge. It basically provides a dense vector representation of a term which has a semantic meaning (Mikolov et al, 2013).

Doc2vec, a numerical representation of a document, is a modified form of embedding word2vec for a large set of text including paragraphs or documents. While the word vector depicts a word, the document vector offers the definition of a document (Mikalov et al, 2013). The document-ID is also trained while training the word vectors, and it retains a numeric representation of the document at the end of the training. Doc2vec model representation makes the algorithm quicker, and less memory consuming. The current analysis resulted in a better performance by using the document vector representation in the machine learning model. There is not a unique technique that dominates the others, because each one has a better behavior for each type of content, or according to each use case (Aguilar et al, 2020).

3. Data preparation, exploration, visualization

The data consists of 249 movie reviews of 25 movies that was stored and uploaded in a csv file. The tables and plots below show the movies' names, the number of movie reviews and movie genres.

All 25 movies have 10 reviews except the movie Martian and Red Notice, which have 9 and 20 reviews respectively. The number of positive and negative reviews are equal for all movies except Martian. Also, it is important to note that the count for each movie genre is unbalanced; the Drama genre has only 9 reviews.

Movie Name	Number of Reviews			
Arrival	10			
CasinoRoyale	10			
Cruella	10			
Encanto	10			
Frozen2	10			
GroundhogDay	10			
GuardiansOfTheGalaxy	10			
Hereditary	10			
Interstellar	10			
KingOfStatenIsland	10			
Lamb	10			
MissionImpossibleFallout	10			
PACIFICRIM	10			
PiratesOfTheCaribbean:TheCurseOfTheBlackPearl	10			
PiratesOfTheCarribean	10			
Poltergeist	10			
RedNotice	20			
SpeedRacer	10			
SpiderMan3	10			
TheConjuring3	10			
TheMartian	9			
TheMatrixResurrecton	10			
TheRing	10			
Us	10			

Genre of Movie	Number of Reviews
Action	70
Comedy	60
Drama	9
Horror	60
Sci_Fi	50

Total word count: 198977

Movie Title	Review Type (pos or neg)
Arrival	Negative
	Positive
Casino_Royale	Negative
Cruella	Positive Negative
Cruella	Negative Positive
Encanto	Negative
Litearies	Positive
Frozen 2	Negative
	Positive
Groundhog Day	Negative
	Positive
Guardians_of_the_Galaxy	Negative
	Positive
Hereditary	Negative
	Positive
Interstellar	Negative
W 0.00	Positive
KingOfStatenIsland	Negative Positive
Lamb	Negative
Lamo	Positive
Mission Impossible Fallout	Negative
	Positive
Pacific_Rim	Negative
	Positive
Pirates_of_the_Caribbean_Curse_of_the_Black_Pear	
	Positive
Poltergeist	Negative
Bud Handara	Positive
Red_Notice	Negative 1
Speed_Racer	Negative
Speed_nace:	Positive
Spider_Man_3	Negative
	Positive
Sudden_Impact	Negative
	Positive
The Martian	Negative
	Positive
The Ring	Negative
The Control of The Books Hade No Bo Th	Positive
The_Conjuring_The_Devil_Made_Me_Do_It	Negative Positive
The Matrix Resurrecton	Negative
the Tuest TV Treatment of Cont	Positive

Most common word in the text corpus:

Data Processing

All movie reviews were combined to create the Corpus. This corpus was tokenized and normalized. I experimented with 5 methods for normalizing the data such as removing punctuation, stop word removal, stemming, lemmatization, lower case, key term extraction (NTLK Rake()) and removing nonalphabet words.

The Corpus was then tokenized to create the vocabulary that was used to create TF-IDF and Doc2Vec and Word2Vec embeddings. I experimented with Doc2Vec and Word2Vec embedding sizes of 100, 200 and 300.

4. Research Design and Modeling Method(s)

Step 1 Qualitative approach

I manually extracted key terms that I found important and prevalent in my movie review documents (Frozen 2). I found cast names, movie names and character names to be important and adjectives, verbs and catch phrases that are commonly used to describe movies to be prevalent.

Following is the key term extraction from my 10 reviews of Frozen 2:

```
['Frozen 2', 'Elsa', 'Anna', 'Kristoff', 'Sven', 'Olaf', 'Josh Gad', 'Kristen Bell', 'Jonathan Groff', 'Idina Menzel', 'spectac ular', 'sweet spot', 'fun', 'cash grab', 'warm', 'disappointed', 'bored', 'joy', 'lackluster', 'sweet', 'jaded', 'enjoy', 'Menz el', 'disappointed', 'abhorent', 'sequelentertain', 'Frozen', 'comedy', 'surprising', 'underwhelmed', 'dazzling', 'pleasant']
```

Step 2 Quantitative approach

I evaluated 5 data wrangling method to understand the effect on the vocabulary and its subsequent effect on vectorizing and embeddings. For each of the data wrangling methods, I also evaluated the impact of changing vector size for Doc2Vec and Word2Vec.

The following table describes the 23 experiments.

	Method 1				Metho	d 2		Method 3		Method 4	Method 5		
Data Wrangling	Remove punctuations				on , stop word ,	l .	punctuatio	n and stop	remove punctuation and	remove punctuation and extract key term using Rake()			
Methods				ste	mming and	lower case	remove non alphabet and			ngrams = 2	function (NTLK)		
Word2Vec embedding													
vector size	100	200	300	100	200	300	100	200	300	300	300		
Doc2Vec embedding													
vector size	100	200	300	100	200	300	100	200	300	300	300		

Methods 1-5 created a vocabulary size of approximate 17,400; 11,400; 15,400; 128,500 and 17,300 words respectively.

The goal in methods 1-3 was to progressively remove non-important words; however, in method 2, I found stemming was incorrectly modifying words. For example, movie was stemmed to movi. I also, evaluated the performance of ngams (2) technique and Key term extraction technique using NTLK Rake library that is a domain-independent keyword extraction algorithm which tries to determine key phrases in a body of text by analyzing the frequency of word appearance and its co-occurrence with other words in the text.

I also experimented with the impact of Doc2Vec and Word2Vec embedding vector size in capturing the semantic meaning in the word and document of the text corpus.

To evaluate the different data wrangling and embedding vector sizes, I created T-SNE plot and did K-mean cluster analysis to analyze the vector space, where in theory, words that have similar meaning would be in the same vector space.

5. Results

Experiments:

23 experiments were done by varying data wrangling methods and Word2Vec and Doc2Vec wedding vector sizes.

Below are TF-IDF mean scores results, cosine similarity matrices and T-SNE plots for the 23 experiments.

			Method 1								Meth	od 2							Metho	
Data Wrangling Remove punctuations Methods			Data Wrangling Methods		Remove punctuation , stop word , stemming and lower case					Data Wrangling Methods			v re	Remove punctuation and stor word and lemmatization, remove non alphabet and						
- 1	Vord2Vec eml	bedding				Word2Vec embedding								Word2Vec embedding						
-	ector size			00 300		vector size	vector size			200 300		vector size				00	200	300		
- 1	oc2Vec embe ector size	•		100 200 300		Doc2Vec embedding							Doc2Vec embedding					200		
V	ector size		100	vector size 100 200 300		vector size			1	100		300								
	Words match with Step 1 manual extraction scores word mean_tfidf_score word mean_tfidf_score				Words match with Step 1 manual extraction				Top 10 tf-idf mean scores			Words match with Step 1 manual extraction				scores		tf-idf mean		
0	Frozen	1.209	0	the	40.414		word r	mean_tfidf_sc	ore					_	index		ean_tfidf_score			mean_tfidf_scor
2	Elsa	1.010	1	and	22.426	-								0	5504	frozen	1.179	0	film	5.27
3	comedy	0.889	2	of	21.631	0	elsa	1.3	308					2	5527 4360	fun elsa	1.037	1	movie	4.93
4	Anna	0.613				1	frozen	1.1	195		ad			3	2545	comedy	0.952	2	like	3.13
5	enjoy	0.358	3	to	19.458	2	fun	1.0	037	_	word	mean_ti	fidf_score	. 4	540	anna	0.729	3	bond	3.00
6	sweet	0.293	4	is	12.665					0	film		5.292	5	4505	enjoy	0.358	4	cruella	2.85
7	spectacular Kristoff	0.289	5	in	12.582	3	anna		729	1	movi		4.938	6	12597	spectacular	0.299	5	time	2.37
9	Olaf	0.248	6	that	10.895	4	enjoy	0.6	636		IIIOVI			7	13318	sweet	0.293	6	family	2.35
10	Menzel	0.237				5	sweet	0.3	345	2	like		3.271	8	7576	kristoff	0.282			
11	disappointed	0.237	7	it	8.013	6	kristoff	0.5	315	3	bond		2.974		9272	olaf	0.248		character	2.30
12	warm	0.182	8	with	7.010									10	8428	menzel	0.237	8	make	2.21
13	joy	0.182	9	as	6.771	7	spectacular	0.2	299	4	cruella		2.853	11	3752 7385	disappointed	0.237	9	story	2.10
14	surprising	0.156				8	olaf	0.3	265	5	make		2.518		14800	joy warm	0.207			
16	Sven	0.139				9	menzel	0.3	254	•			2 425		13246	surprising	0.156			
17	bored	0.110								6	famili		2.435	15	3315	dazzling	0.152			
18	lackluster	0.095				10	joy	0.2	245	7	time		2.405	16	13287	sven	0.139			
19	pleasant	0.095				11	warm	0.	195	0			2 200	17	1518	bored	0.110			
20	frozen	0.079				12	sven	0	139	8	charact		2.300	18	9997	pleasant	0.095			
21	jaded	0.062								9	stori		2.118	19	7601	lackluster	0.095			
22	underwhelmed	0.023				13	pleasant	0.0	095					20	7265	iaded	0.062			

				<u> </u>					Me	thod 5		
		Method 4						rem	ove pu	nctuation and		
					Dat	ta Wranglin	3	extract key term using Rake()				
Data Wrangling		remove punctuation and ngrams = 2				thods		function (NTLK)				
Methods	·					ord2Vec em	bedding					
	- 4-0				-	tor size		300				
Word2Vec emb					c2Vec emb	edding						
vector size		300				ctor size		300				
Doc2Vec embe	dding											
vector size	300				Words mate 1 manual ex		p Top 10 tf-idf mean scores					
Words match with Step 1 manual extraction word mean_tfidf_score		Top 10 tf-idf mean scores word mean tfidf score				word m	ean_tfidf_score		word	mean_tfidf_scor		
						frozen	1.179	0	film	4.54		
						fun	1.037	1	movie	3.88		
						elsa	1.010			0.00		
word mear		_	·····	cun_tnun_cccrc	3	comedy	0.899	2	one	3.48		
jonathan groff	0.182	0	the the	46.610	5	enjoy	0.358	3	like	3.10		
kristen bell	0.169	1	and and	23.430	6	spectacular	0.299	4	cruella	2.85		
idina menzel	0.156				7	sweet	0.293	5	bond	2.78		
			of of	21.799	8	kristoff	0.282	6	family	2.23		
josh gad	0.156	3	to to	19.614	9	olaf menzel	0.248	7	time	2.18		
cash grab	0.129			10.501	11	disappointed	0.237	8	harry	1.99		
sweet spot	0.062		4	in in	13.501	12	joy	0.195		,		
		5	is is	12.786	13	warm	0.182	9	much	1.96		
				44 407	14	surprising	0.156					
		6	that that	11.427	15	dazzling	0.152					
		7	it it	10.275	17	bored	0.139					
		0		7.348	18	pleasant	0.095					
		8	as as	7.348	19	lackluster	0.095					
		9	with with	7.219	20	jaded	0.062					
					21	underwhelmed	0.023					

Data wrangling methods 3 and 5 produced the best result and were able to discriminate between vectors from different movies except there was overlap for the movie Red Notice (which was the movie that had 20 reviews from two different IDs).

Doc2Vec TSNE plot for methods 3 and 5, where the vector size was 300, provided distinct clusters as seen below.

Word2Vec T-SNE plot for method 3 where Word2Vec embedding was 300 was marginally better compared to other wrangling methods and vector size.

Analysis and Interpretation

Key Findings:

Comparing with words in Step1 and mean scores

As seen in the results above, Methods 1, 3, and 5 produced the best match with the manually selected words, the words that I thought would be important and prevalent. However, they did not have a high mean score compared to the more common words such as movie, character, like etc. The words that have high mean score are words that are the commonly used in movies reviews (word such as like, movie, film) and should be removed in the data wrangling process. This shows that data wrangling can further improved.

Data wrangling methods:

I found method 3 and method 5 of data wrangling most effective in reducing the noise from the corpus. Method 3 (i.e. Removing punctuation, stop word removal, lemmatization, lower case and removing non-alphabet words) and model 5 (using the NTLK Run Package (result similar to method 3)) reduced the noise in the data and produced the best Cosine similarly matrix, T-SNE and K-mean cluster plot.

Embedding vector size

Increasing vector size marginally improved the clustering in the T-SNE plot. A vector of size 300 produced the best Doc2Vec T-SNE that could distinguish between several clusters. T-SNE plot for Word2Vec did not show clusters in elongated lines which might suggest a connection between several words.

Best Method

Method 3 of data wrangling with embedding size of 300 for Doc2Vec and Word2Vec was the best at creating distinct clusters in the vector space as seen in the T-SNE plot and cosine similarity matrix heatmap. This was also reflected in K-means cluster analysis.

The elbow method for TF-IDF as seen in the plot below shows that there are probably 25 optimal clusters; however, that cannot be discriminated in the K-means cluster plot but intuitively makes sense as there are 25 movies.

The elbow method for Doc2Vec as seen in the plot below shows that the idea cluster is between 3 and 6; however, there are 4 distinct clusters in K-means cluster plot. This could represent the 5 movie genres; however, as we have noted above, the representation of movie genres was unbalanced, as the Drama genre only had 9 reviews.

K-mean analysis Method 3 – embedding vector size 300

6. Conclusion

The results of the 23 experiments show that the data wrangling improves the vocabulary and creates vectors and embedding vectors that provide semantic meaning; however, the improvements were modest. I found method 3 to be the best data wrangling method in the experiment which normalized the data by removing punctuation, stop words, non-alphabet words; lemmatization and converting all the text to lower case. Also, I found that increasing 100, 200 to 300 slightly improves (at a diminishing rate) clustering in the T-SNE plot, which seems to suggest that the vectors are able to put similar-meaning words or documents in clusters; however, this might not be the case and requires further analysis.

In general, data wrangling has more of an impact on the quality of the vocabulary. The data wrangling methods that we have applied in this assignment are domain-independent and as a result retain many non-important words in the corpus such as movie, like, film etc. In the next steps, we need to apply data wrangling methods that are more apt for movie reviews.

References:

Aguilar, J., Salazar, C., Velasco, H., Monsalve-Pulido, J.A., & Montoya, E. (2020). Comparison and Evaluation of Different Methods for the Feature Extraction from Educational Contents. *Comput.*, *8*, 30.

Mikolov, T., Chen, K., Corrado, G.S., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. *ICLR*.

Jitendra, S. (2021). Natural Language Processing using Tfidf , Word2vec and Bert. Towards Data sciendce. https://medium.com/@js2441995/natural-language-processing-using-tfidf-word2vec-and-bert-825cc2c663c3

Appendix:

Appendix A

Method 3: Word2Vec Doc2Vec Embedding size 100

T-SNE words2vec

T-SNE Word2Vec

Appendix B

Method 1 Word2Vec Doc2Vec Embedding size 100

K-means dov2vec

T-SNE doc2vec

T-SNE word2vec

