Friday, October 5, 2018 11:31

Autyp(
$$D_{2n}$$
) = ?

$$P(S) \text{ has order } n$$

$$\Rightarrow P(Y) = Y^{i} \text{ where } (j,n)=1.$$

$$(P(S) = ST^{i} \text{ for some } i.$$

we show that $\forall j \in (\mathbb{Z}/n\mathbb{Z})^{n}$, and $\forall i=0,...,n-1$,

we get a $\exists y \in S$ $\exists x \in S$

Page 1

(iii) our gr hom is bijective.

Aut gp
$$(\mathbb{Z}_{n}\mathbb{Z})$$
 \longrightarrow Aut gp (\mathbb{D}_{2n})

graph $\mathbb{Z}_{n}\mathbb{Z}$ \longrightarrow \mathbb{Z}_{r} \longrightarrow \mathbb{Z}

$$\phi(n) = 2 \iff n = 3, 4, 6$$

$$\cos\left(\frac{2\pi}{m}\right) \in \mathbb{Q} \iff m = 1, 2, 3, 4, 6$$

$$(\text{voot systems of type } A_2, B_2, G_2).$$

$$Ker(f) = Z(G)$$

 $Im(f) = Inner automorphisms.$

Problem: Given a group homomorphism $\Psi: G \longrightarrow H$ and a composition series $\Sigma: H = H. \ E \ H_1 \ E \dots \ E \ H_m = 5es$.

Define $G_j = \Psi'(H_j)$. Prove that $\Sigma': G = G_0 \ E \ G_1 \ E \dots \ E \ G_n = \ker(\psi) \ E \ for an injective <math>f$ has an injective f has an inject

and if Y is surjective them this is an isomorphism Vosism-1.

$$\frac{P_{r\infty}f}{(A)} = \frac{1}{2} \text{ and } G_1 = \frac{1}{2} \text{ and } G_2 = \frac{1}{2} \text{ and } G_3 = \frac{1}{2} \text{ and } G_4 = \frac{$$

(b) Each
$$G_{jii} \not= G_j$$
 because $\forall f : \mathcal{G}_j \longrightarrow \mathcal{G}_2 \trianglerighteq A$, $f^{-}(A) \trianglerighteq \mathcal{G}_j$.
[to show: $g \in \mathcal{G}_j \implies g \times g^{-1} \in f^{-1}(A)$, i.e. $f(g \times g^{-1}) \in A$, i.e. $f(g) f(x) f(g)^{-1} \in A$

(c)
$$G_{j} = \psi^{-1}(H_{j}) \xrightarrow{\psi} H_{j}$$

$$\downarrow \pi$$

$$\downarrow \pi$$

$$\downarrow \pi$$

$$\downarrow H_{j+1}$$

$$\downarrow H_{j+1}$$

$$\downarrow H_{j+1}$$

to show:
$$\ker(\Psi_{i}) = G_{j+1}$$

$$\chi \longmapsto \Psi(x) \longmapsto \pi(\Psi(x)) = e$$

$$\chi \in G_{j+1} \iff \Psi(x) \in H_{j+1} = \kappa_{\tau r}(\pi)$$

 \mathcal{D}

not necessarily finite.

Ex: let G be a group, N & G.

G has a J-H series iff N 4 G/N have J-H series. l(G) = l(N) + l(G/N).

 $\underline{Hint}: G \xrightarrow{\pi} G/N$