Elektrik Devre Temelleri

2024-2025 Bahar Dönemi

Hafta 9 18 Nisan 2025

Sibel ÇİMEN
Umut Engin AYTEN

2. İşlemsel Transfer İletkenliği Kuvvetlendiricisi (OTA)

 g_m : geçiş iletkenliği.

p(+): non-inverting input.

n(-): inverting input.

o: output.

ideal OTA:

$$i_p = i_n = 0$$

$$i_0 = g_m(v_p - v_n)$$

2. İşlemsel Transfer İletkenliği Kuvvetlendiricisi (OTA)

Lineerleştirilmiş devre modeli:

$$i_b = g_m(v_p - v_n)$$

idealde:

$$R_i = \infty$$

$$R_o = \infty$$

2. İşlemsel Transfer İletkenliği Kuvvetlendiricisi (OTA)

Lineerleştirilmiş devre modeli:

ideal OTA:

$$i_p = i_n = 0$$

$$i_o = g_m (v_p - v_n)$$

idealde:

$$R_i = \infty$$

$$R_o = \infty$$

3. Akım Taşıyıcılar (Current Conveyors)

Birinci Nesil Akım Taşıyıcı:

$$i_y = i_x$$
 $v_x = v_y$
 $i_z = \beta i_x$

$$\beta = +1 \rightarrow CCI + \beta = -1 \rightarrow CCI - \beta$$

3. Akım Taşıyıcılar (Current Conveyors)

İkinci Nesil Akım Taşıyıcı:

$$i_y = 0$$

 $v_x = v_y$
 $i_z = \beta i_x$

$$\beta = +1 \rightarrow CCII + \beta = -1 \rightarrow CCII - \beta$$

5-Uçlu Elemanlar

1. Çift Çıkışlı Akım Taşıyıcılar (DO-CC)

$$i_{y} = 0$$

$$v_{x} = v_{y}$$

$$i_{z1} = i_{x}$$

$$i_{z2} = -i_{x}$$

2. Current Differencing Buffer Amplifier (CDBA)

$$v_p = 0$$

$$v_n = 0$$

$$v_w = v_z$$

$$i_z = -(i_p - i_n)$$

3. Current Feedback Amplifier (CFA)

$$i_p = 0$$

$$v_n = v_p$$

$$i_z = i_n$$

$$v_z = v_w$$

6-Uçlu Elemanlar

1. Differential Voltage Current Conveyor (DVCC)

$$i_{y1} = 0$$

$$i_{y2} = 0$$

$$v_x = v_{y1} - v_{y2}$$

$$i_{z1} = i_x$$

$$i_{z2} = -i_x$$

Örnek: $v_o=?$

Örnek: Şekildeki 2-uçlu elemanın tanım bağıntısını bulunuz.

Örnek: Şekildeki devrenin nasıl çalıştığını açıklayınız.

Örnek: $v_{out} = ?$

Örnek:

$$egin{array}{l} v_L = ? \\ i_L = ? \\ p_L = ? \\ p_{opamp} = ? \end{array}$$

Örnek: Düğüm ve ek denklemlerini yazın, genelleştirilmiş düğüm denklemlerini yazın.

