III) valeur absolsue d'un réel : définition et propriétés – distance

1) Valeur absolue d'un réel

Activité

a) Complete le tableau suivant :

а	2	-3,5	0,1	-0,1	0
-a	-2	3,5	-0,1	0,1	0
a	2	3,5	0,1	0,1	0

b) Que remarque-t-on de a et |a|? ainsi que -a et |a|?

CORRECTION

- a) Voir tableau
- b) On remarque que $|a| = a \operatorname{si} a \ge 0$ et $|a| = -a \operatorname{si} a \le 0$

<u>Définition</u>: on appelle valeur absolue d'un réel x, le réel noté |x| défini par :

Si
$$x \ge 0$$
 alors $|x| = x$

Si
$$x \le 0$$
 alors $|x| = -x$

Propriétés

Pour tout réel x :s

$$|x| \ge 0$$

Si
$$x=0$$
 alors $|x|=0$

Si
$$|x| = 0$$
 alors $x = 0$

Pour tous réels \boldsymbol{x} et \boldsymbol{y}

$$|x|.|y| = |x.y|$$

$$\frac{|x|}{|y|} = \left| \frac{x}{y} \right|$$

Si
$$|x| = |y|$$
 alors $\begin{cases} x = y \\ x = -y \end{cases}$

Exercice

Ecrire sans le symbole de la valeur absolue :

b)
$$|\pi - 4|$$

b)
$$|\pi - 4|$$
 c) $|x - 2|$

d)
$$|-x+1|$$

Correction

Ecrivons sans le symbole de la valeur absolue :

a)
$$|-5| = 5$$
 (car $|a| = -a$ si $a \le 0$ donc $-a = -(-5) = 5$)

b)
$$|\pi - 4| = -\pi + 4$$
 ($car |a| = -a si a \le 0 donc - a = -(\pi - 4) = -\pi + 4$

c)
$$|x-2| = \begin{cases} x-2 \sin x - 2 \ge 0 \\ -x+2 \sin x - 2 \le 0 \end{cases}$$
 (car $|x| \begin{cases} x \sin x \ge 0 \\ -x \sin x \le 0 \end{cases}$)

c)
$$|x-2| = \begin{cases} x-2 & \text{si } x \ge 2 \\ -x+2 & \text{si } x \le 2 \end{cases} (\operatorname{car} |x| \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x \le 0 \end{cases})$$

d)
$$|-x+1| = \begin{cases} -x+1 \ si-x+1 \ge 0 \\ x-1 \ si-x+1 \le 0 \end{cases} (\operatorname{car} |x|) \begin{cases} x \ si \ x \ge 0 \\ -x \ si \ x \le 0 \end{cases}$$

$$d) |-x+1| = \begin{cases} -x+1 & \text{si } x \le 1 \\ x-1 & \text{si } x > 1 \end{cases} (\operatorname{car} |x|) \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

2) Distance de deux réels

Activité

- 1) Sur une droite graduée de 1cm, place les points A, C, M et N d'abscisses respectives : -3; -0,5; 4 et 6
- 2) Calcule les distances AC, AP, PN et CP.

Correction

1) Plaçons les points A, C, M et N sur la droite graduée

2) Calculons les distances :

$$AC = |-0.5 - (-4)|$$
 $AP = |4 - (-3)|$ $PN = |6 - 4|$ $CM = |4 - (-0.5)|$

$$AC = |-0.5 + 4|$$
 $AP = |4 + 3|$ $PN = |2|$ $CM = |4 + 0.5|$

$$AC = |3,5|$$
 $AP = |7|$ $PN = 2cm$ $CM = |4,5|$

$$AC = 3,5cm$$
 $AP = 7cm$ $CM = 4,5cm$

Définition : soit **a** et **b** deux réels quelconques on note A et B d'abscisses respectives **a** et **b** sur une droite graduée. On appelle distance des réels a et b, le réel noté : |b - a|. On le note d(a;b) et on a : d(a;b) = d(b;a) = |b - a| = AB

Conséquence : pour tous réels a et b :

Si
$$a = b$$
 alors d (a; b) =0

Si
$$d(a;b) = 0$$
 alors $a = b$

$$d(a,b) \geq 0$$

$$d(a;b) = d(b;a)$$

Exercice

Soit S et T deux points sur une droite graduée d'abscisses respectives 5 et x

- a) Calculer la distance ST en fonction de x
- b) Déterminer la valeur de x sachant que ST=4cm

Correction

a) La distance ST en fonction de x.

$$ST = |x - 5|$$

b) La valeur de x

$$|x - 5| = 4cm$$

$$\begin{cases} x-5=4 \\ x-5=-4 \end{cases} \quad \leftrightarrow \quad \begin{cases} x=4+5 \\ x=-4+5 \end{cases} \leftrightarrow \begin{cases} x=9 \\ x=1 \end{cases}$$

Donc
$$x = 9 ou x = 1$$