Math 136 - Linear Algebra

Winter 2016

Lecture 24: March 4, 2016

Lecturer: Yongqiang Zhao Notes By: Harsh Mistry

24.1 Matrix Inverses

Theorem 24.1 If β and ζ are bases for an n-dimensional vector space \mathbb{V} , then the change of coordinate matrices ζP_{β} and βP_{ζ} satisfy

$$_{\zeta}P_{\beta\beta}P_{\zeta}=I={}_{\beta}P_{\zeta\zeta}P_{\beta}$$

This shows that $_{\zeta}P_{\beta}$ and $_{\beta}P_{\zeta}$ are multiplicative inverses of each other

24.2 Left and Right Inverse

Definition 24.2 *Let* A *be* a $m \times n$ *matrix.*

If B is an $m \times n$ matrix such that $AB = I_m$, then B is a right inverse of A If C is an $n \times m$ matrix such that $CA = I_n$, then C is called a left inverse of A

Note (For Right Inverses): $[\vec{e_1} \dots \vec{e_m}] = AB = [A\vec{b_1} \dots A\vec{b_m}]$

Theorem 24.3 If A is an $m \times n$ matrix with m > n, then A cannot have a right inverse

Corollary 24.4 If A is an $m \times n$ matrix with m < n, then A cannot have a left inverse

24.3 Matrix Inverse

Definition 24.5 An $n \times n$ matrix is called a square matrix

Definition 24.6 Let A be a $n \times n$ matrix. IF B is a matrix such that AB = I = BA, then B is called a inverse of A.

We write $B = A^{-1}$ and we A is said to be invertible

Remark: If $B = A^{-1}$ then $A = B^{-1}$

Theorem 24.7 The inverse of a matrix is unique

Proof: B = BI = B(AC) = (BA)C = IC = C

Theorem 24.8 If A and B are $n \times n$ matrices such that AB = I, then A and B are invertible and rankA = rankB = n

End of Lecture Notes Notes by : Harsh Mistry