

B.Sc. EXAMINATION School of Computing 2 Hours

May 2013

Computer Systems 2B Computer Architecture and Operating Systems (AC22005)

This examination paper contains SIX questions.

Attempt TWO questions from Section A and TWO questions from Section B.

Only calculators approved by the School of Computing for exam use may be used in this exam.

SECTION A Attempt TWO questions from this Section.

Question 1

- (a) (i) Describe the general principles which make the use of caches common in microprocessor and microcomputer architecture.[4 Marks]
 - (ii) Name and describe *three* specific **types of cache** which can be found in modern microprocessors; include a description of what is stored in the cache in each case.

[9 Marks]

- **(b)** A particular 32-bit computer has 4GB of main memory, segmented into 128KB frames. A paged, byte-addressable virtual memory is being used, and the processor is executing a program which is segmented into eight pages.
 - (i) How many bits are required to store the frame number in the page translation table?

[1 Mark]

- (ii) Pages 1, 2 and 5 of the program are in memory frames 12, 5 and 25 respectively; the other pages are in virtual memory. Draw the relevant section of the page translation table to reflect the current state of this program. [5 Marks]
- (iii) Consequently, if the CPU needs to access the following (hexadecimal) logical addresses in this order, what corresponding physical addresses or page faults will be generated?

\$000B754A \$000F00D6 \$0005F2CB

[6 Marks]

- (a) Describe the **programmer's model** of a typical CPU, giving a brief description of its main elements. [6 Marks]
- (b) The width of the data bus in microprocessors has increased over the years. Describe and explain the effect which this has had on both machine code instructions and their operands.
 [4 Marks]
- (c) (i) Explain how microprocessor addressing modes have changed over the years.

[3 Marks]

- (ii) Give an example of an addressing mode from a modern processor which an older 8-bit processor would not have, explaining how it works. [3 Marks]
- (iii) What potential benefits have these addressing mode changes given to the programmer, and have these been realised in practice?

[3 Marks]

(d) State how the **power consumption** of a processor relates to the number of transistors it contains, and the implications for future processors. [6 Marks]

(a) (i) Mention three differences and three similarities between programming in C# in Visual Studio and programming in C / C++ in a command-line environment.

[6 Marks]

- (ii) name three user interface components available from the Toolbox when building a C# graphical user interface in Visual Studio Design View; for each component, give an example of how it is typically used.[3 Marks]
- **(b)** Describe the **bus hierarchy** within the architecture of a modern PC and the reasons why it has developed. Name and briefly describe *three* of the standard PC buses.

[8 Marks]

(c) Describe the operation of I/O using **Direct Memory Access (DMA)**, noting any advantages and disadvantages of this method. Give an appropriate example of its use.

[8 Marks]

SECTION B Attempt TWO questions from this Section.

Question 4

(a) Explain what **Resource Allocation Denial** is, and what role it plays in an Operating System, including its main advantage relative to **Process Initiation Denial**.

[8 Marks]

(b) A certain system has three types of non-pre-emptible resource, named A, B and C. There are five processes P0, P1, P2, P3 and P4 needing to use these resources, and at a certain instant of time the resource allocation is as shown in the table below.

Claim Matrix (Total Resources Required)						Allocation Matrix (Current Resource Allocation)						Available Vector	
	P0	P1	P2	Р3	P4		PO	P1	P2	P3	P4		
A	1	4	0	0	2	A	0	2	0	0	1	A	2
В	3	2	4	3	1	В	1	2	2	0	0	В	0
C	2	0	3	2	3	C	1	0	1	0	1	C	1

- (i) Show that this allocation of resources is "safe". Explain carefully how your calculation proceeds. [8 Marks]
- (ii) Explain what "safe" means in this context. [4 Marks]
- (c) If process P2 requests the use of 1 more unit of resource C, should this be allowed immediately? Justify your answer. [5 Marks]

- (a) Describe, using appropriate diagram(s), the structure of the **Microsoft Windows™** Operating System. Amongst other aspects, your answer should highlight features that:
 - facilitate the portability of the Operating System between different hardware platforms;
 - promote the modularity of the Operating System and associated applications.

[9 Marks]

- (b) Describe the CPU scheduling objectives of Microsoft® Windows™, and explain how its scheduling system attempts to address these objectives. Use diagrams in your answer.
 [8 Marks]
- (c) Imagine that you are commissioned to modify the Microsoft[®] Windows[™] scheduling system so that it contains a new scheduling mode for supporting scientific computation, i.e. the scheduler needs to give more Run time to **CPU-bound** (compute-intensive) applications at the expense of **I/O-bound** (interactive or user-oriented) processes. Describe how you would approach this project, and show the design that you would develop in order to achieve this new scheduling mode. [8 Marks]

- (a) (i) Explain what a **thread** is and how it relates to the concept of a **process**. Note advantages that threads offer and instances where they would be used. [6 Marks]
 - (ii) Explain what a **critical section of program code** is, and the problems that it can cause. Outline a method of combating these problems and illustrate this in pseudocode.

 [7 Marks]
- (b) (i) Describe briefly how the FIFO (First-In-First-Out) disk scheduling algorithm works, and note one advantage and one disadvantage of the algorithm. [4 Marks]
 - (ii) The heads on a hard disk drive are currently reading cylinder number 20, and the current queue of required cylinders is:

Write down the order in which these cylinders will be accessed, assuming that no further requests arrive, and that the **FIFO** algorithm is used. **[6 Marks]**

(iii) Compute the total number of cylinders that have to be traversed in order to service the above requests using the **FIFO** algorithm, starting from cylinder 143. [2 Marks]

[End of Examination Paper]