

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190902301

FCC REPORT (BLE)

Applicant: General Procurement, Inc

Address of Applicant: 800 E Dyer Road Santa Ana, CA 92705 United States

Equipment Under Test (EUT)

Product Name: 7.0 inch tablet

Model No.: Koral 7W4X

Trade mark: Hyundai

FCC ID: 2AIOHHT0701W16

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 06 Sep., 2019

Date of Test: 07 Sep., to 17 Oct., 2019

Date of report issued: 18 Oct., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	18 Oct., 2019	Original

Tested by:	Test Engineer	Date:	18 Oct., 2019
Reviewed by:	Winner Thang	Date:	18 Oct., 2019
	Project Engineer		

3 Contents

		Page
1	COVER PAGE	1
2	2 VERSION	2
3	CONTENTS	2
		•
4		
5	GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF E.U.T 5.3 TEST ENVIRONMENT AND TEST MODE 5.4 DESCRIPTION OF SUPPORT UNITS 5.5 MEASUREMENT UNCERTAINTY 5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 5.7 LABORATORY FACILITY 5.8 LABORATORY LOCATION 5.9 TEST INSTRUMENTS LIST	
6	TEST RESULTS AND MEASUREMENT DATA	8
	6.1 ANTENNA REQUIREMENT: 6.2 CONDUCTED EMISSION 6.3 CONDUCTED OUTPUT POWER 6.4 OCCUPY BANDWIDTH 6.5 POWER SPECTRAL DENSITY 6.6 BAND EDGE 6.6.1 Conducted Emission Method 6.6.2 Radiated Emission Method 6.7 SPURIOUS EMISSION 6.7.1 Conducted Emission Method 6.7.2 Radiated Emission Method	9121618182025
7	7 TEST SETUP PHOTO	32
ጸ	R FUT CONSTRUCTIONAL DETAILS	34

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.4-2014
ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	General Procurement, Inc
Address:	800 E Dyer Road Santa Ana, CA 92705 United States
Manufacturer/ Factory:	Shen Zhen Cheng Fong Digital-Tech Limited
Address:	Building A, ChengFong Industrial Area, Huaxing road, Dalang, Longhua, Shen Zhen, China

5.2 General Description of E.U.T.

Product Name:	7.0 inch tablet
Model No.:	Koral 7W4X
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.09 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-2400mAh
AC adapter:	Model: K-T100502000U
	Input: AC100-240V, 50/60Hz, 0.35A
	Output: DC 5.0V, 2000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode	Keep the EUT in continuous transmitting with modulation		

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCISE1909023

Report No: CCISE190902301

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2021
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	\	Version: 6.110919	b

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.09 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15	FCC Part 15 C Section 15.207		
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz		
Class / Severity:	Class B	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	·	Limit (dRuV)		
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logar	ithm of the frequency.		
Test procedure	line impedance stabili 50ohm/50uH coupling 2. The peripheral device through a LISN that p with 50ohm terminatic setup and photograph 3. Both sides of A.C. line interference. In order positions of equipmen	ators are connected to the zation network (L.I.S.N.) impedance for the means are also connected to rovides a 500hm/50uH con. (Please refer to the bons). The are checked for maximum to find the maximum empt and all of the interface ANSI C63.4-2014 on construction networks.	which provides a suring equipment. the main power oupling impedance lock diagram of the test um conducted ission, the relative cables must be	
Test setup:	LISN 40cm		AC power	
Test Instruments:	Refer to section 5.9 for det	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Product name:	7.0 inch tablet	Product model:	Koral 7W4X
Test by:	Yaro	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

MHz dBuV dB dB dBuV dBuV dBuV dB 1 0.158 20.08 -0.44 10.77 30.41 55.56 -25.15 2 0.162 43.75 -0.44 10.77 54.08 65.34 -11.26 3 0.177 41.06 -0.43 10.77 51.40 64.64 -13.24 4 0.178 19.88 -0.43 10.77 30.22 54.59 -24.37 5 0.194 38.92 -0.41 10.76 49.27 63.84 -14.57 6 0.219 37.88 -0.40 10.76 48.24 62.88 -14.64 7 0.234 36.05 -0.40 10.75 46.40 62.30 -15.90 8 0.555 14.40 -0.39 10.76 24.77 46.00 -21.23 9 0.675 17.42 -0.38 10.77 27.81 46.00 -18.19	Remark
2 0.162 43.75 -0.44 10.77 54.08 65.34 -11.26 3 0.177 41.06 -0.43 10.77 51.40 64.64 -13.24 4 0.178 19.88 -0.43 10.77 30.22 54.59 -24.37 5 0.194 38.92 -0.41 10.76 49.27 63.84 -14.57 6 0.219 37.88 -0.40 10.76 48.24 62.88 -14.64 7 0.234 36.05 -0.40 10.75 46.40 62.30 -15.90	
2 0.162 43.75 -0.44 10.77 54.08 65.34 -11.26 3 0.177 41.06 -0.43 10.77 51.40 64.64 -13.24 4 0.178 19.88 -0.43 10.77 30.22 54.59 -24.37 5 0.194 38.92 -0.41 10.76 49.27 63.84 -14.57 6 0.219 37.88 -0.40 10.76 48.24 62.88 -14.64 7 0.234 36.05 -0.40 10.75 46.40 62.30 -15.90 8 0.555 14.40 -0.39 10.76 24.77 46.00 -21.23 9 0.675 17.42 -0.38 10.77 27.81 46.00 -18.19	Average
3 0.177 41.06 -0.43 10.77 51.40 64.64 -13.24 4 0.178 19.88 -0.43 10.77 30.22 54.59 -24.37 5 0.194 38.92 -0.41 10.76 49.27 63.84 -14.57 6 0.219 37.88 -0.40 10.76 48.24 62.88 -14.64 7 0.234 36.05 -0.40 10.75 46.40 62.30 -15.90 8 0.555 14.40 -0.39 10.76 24.77 46.00 -21.23 9 0.675 17.42 -0.38 10.77 27.81 46.00 -18.19	QP
4 0.178 19.88 -0.43 10.77 30.22 54.59 -24.37 5 0.194 38.92 -0.41 10.76 49.27 63.84 -14.57 6 0.219 37.88 -0.40 10.76 48.24 62.88 -14.64 7 0.234 36.05 -0.40 10.75 46.40 62.30 -15.90 8 0.555 14.40 -0.39 10.76 24.77 46.00 -21.23 9 0.675 17.42 -0.38 10.77 27.81 46.00 -18.19	QP
5 0.194 38.92 -0.41 10.76 49.27 63.84 -14.57 6 0.219 37.88 -0.40 10.76 48.24 62.88 -14.64 7 0.234 36.05 -0.40 10.75 46.40 62.30 -15.90 8 0.555 14.40 -0.39 10.76 24.77 46.00 -21.23 9 0.675 17.42 -0.38 10.77 27.81 46.00 -18.19	Average
6 0.219 37.88 -0.40 10.76 48.24 62.88 -14.64 7 0.234 36.05 -0.40 10.75 46.40 62.30 -15.90 8 0.555 14.40 -0.39 10.76 24.77 46.00 -21.23 9 0.675 17.42 -0.38 10.77 27.81 46.00 -18.19	QP
7 0.234 36.05 -0.40 10.75 46.40 62.30 -15.90 8 0.555 14.40 -0.39 10.76 24.77 46.00 -21.23 9 0.675 17.42 -0.38 10.77 27.81 46.00 -18.19	QP
8	QP
9 0.675 17.42 -0.38 10.77 27.81 46.00 -18.19	Average
	Average
10 0.679 33.03 -0.38 10.77 43.42 56.00 -12.58	QP
11 0.759 13.48 -0.38 10.80 23.90 46.00 -22.10	Average
12 3.074 10.56 -0.44 10.92 21.04 46.00 -24.96	The state of the s

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	7.0 inch tablet	Product model:	Koral 7W4X
Test by:	Yaro	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2	MHz	dBu∇	<u>dB</u>	₫B	dBu₹	—dBu∇	<u>d</u> B	
1	0.158	41.56	-0.68	10.77	51.65	65.56	-13.91	QP
1 2 3	0.178	40.28	-0.69	10.77	50.36	64.59	-14.23	QP
	0.194	39.28	-0.69	10.76	49.35	63.84	-14.49	QP
4 5 6 7 8 9	0.194	17.32	-0.69	10.76	27.39	53.84	-26.45	Average
5	0.215	37.30	-0.68	10.76	47.38	63.01	-15.63	QP
6	0.270	30.25	-0.65	10.75	40.35	61.12	-20.77	QP
7	0.471	15.46	-0.65	10.75	25.56	46.49	-20.93	Average
8	0.595	26.93	-0.64	10.77	37.06	56.00	-18.94	QP
9	0.595	16.17	-0.64	10.77	26.30	46.00	-19.70	Average
10	0.679	18.43	-0.64	10.77	28.56	46.00	-17.44	Average
11	2.736	11.26	-0.67	10.93	21.52	46.00	-24.48	Average
12	3.025	10.72	-0.67	10.92	20.97			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	2.78		
Middle	2.86	30.00	Pass
Highest	2.13		

Test plot as follows:

6.4 Occupy Bandwidth

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.534		
Middle	0.528	>500	Pass
Highest	0.534		
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.026		
Middle	1.032	N/A	N/A
Highest	1.032		

Test plot as follows:

6.5 Power Spectral Density

Measurement Data:

- Datai			
Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	3.51		
Middle	3.99	8.00	Pass
Highest	2.88		

Test plots as follow:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plots as follow:

6.6.2 Radiated Emission Method

0.0.2 Radiated Ellission Method								
	Test Requirement:	FCC Part 15 C Section 15.205 and 15.209						
	Test Frequency Range:	2.3GHz to 2.5	GHz					
	Test Distance:	3m						
	Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
		Above 1GHz	Peak	1MHz	3MHz	Peak Value		
			RMS	1MHz	3MHz	Average Value		
	Limit:	Frequer	ncy L	imit (dBuV/m @3		Remark		
		Above 10	GHz —	54.00 74.00	P	verage Value Peak Value		
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 				ted 360 degrees ce-receiving e-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees nction and 0 dB lower than d the peak values ions that did not using peak, quasi-		
	Test setup:	AE (T	Test Receiver	3m and Reference Plane	Antenna Tower			
	Test Instruments:	Refer to section	on 5.9 for deta	nils				
	Test mode:	Refer to section	on 5.3 for deta	ils				
	Test results:	Passed						

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					
	MHz	dBu∀		 <u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000							

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∇	<u>dB</u> /m	<u>dB</u>	<u>d</u> B	dBu√/m	dBuV/m	<u>dB</u>	
1	2390.000								
2	2390.000	13.43	27.08	4.69	0.00	46.88	54.00	-7.12	Average

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						
	MHz	—dBu∜		<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						
	MHz	—dBu∜	dB/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	5 and 15.209				
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RBW VB		sW	W Remark	
·	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value	
	Above 1GHz	Peak	1MHz	3M	Hz	Peak Value	
	Above 10112	RMS	1MHz	3MHz Average Value			
Limit:	Frequency		mit (dBuV/m @	23m)		Remark	
	30MHz-88M		40.0			Quasi-peak Value	
	88MHz-216N		43.5			Quasi-peak Value	
	216MHz-960I		46.0			Quasi-peak Value	
	960MHz-1G	HZ	54.0		(Quasi-peak Value	
	Above 1GF	łz —	54.0 74.0			Average Value Peak Value	
Test Procedure:	1GHz)/1.5r The table of highest rad 2. The EUT antenna, we tower. 3. The antenna the ground Both horizon make the notes and to find the offind the offind the limit spoof the EUT have 10 dE	m(above 1GHwas rotated 3 iation. was set 3 minimum and height is valued and verneasurement. Suspected en the ante of the rota table maximum reasurement is sion level of the cified, then the would be reasurement.	dz) above the 360 degrees to seters away unted on the standard from one the maximutical polarizations was tuned ding. In was set the Maximum Hamal to set in percession the set in percession could be ported. Other lid be re-tested	e groun to deter from the top of a ne met um val tions of EUT wa ed to he from 0 to Pea lold Mo eak mod oe stop wise the d one b	d at a rmine ne intervariation of the a arrange degree deg	table 0.8m(below a 3 meter camber. the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and a 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data	
Test setup:	Below 1GHz Turn Table Ground Plane Above 1GHz	4m 4m 0.8m			Antenna Search Antenn Test zeiver	1	

Measurement Data (worst case):

Below 1GHz:

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X
Test By:	Yaro	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor				Limit Line		Remark
-	MHz	—dBu∀	<u>dB</u> /π	<u>d</u> B	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	<u>dB</u>	
1	40.135	51.73	12.40	1.22	29.90	35.45	40.00	-4.55	QP
2	96.099	54.21	11.58	2.00	29.55	38.24	43.50	-5.26	QP
1 2 3	158.668	51.67	9.24	2.57	29.14	34.34	43.50	-9.16	QP
4 5 6	199.286	51.31	10.58	2.86	28.83	35.92	43.50	-7.58	QP
5	351.708	40.63	14.62	3.10	28.57	29.78	46.00	-16.22	QP
6	528.246	39.51	18.31	3.77	29.04	32.55	46.00	-13.45	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	7.0 inch tablet	Product model:	Koral 7W4X
Test By:	Yaro	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor				Limit Line		Remark
_	MHz	dBu∜	dB/m		<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	72.084	45.90	8.19	1.56	29.70	25.95	40.00	-14.05	QP
2	99.528	46.66	12.41	1.95	29.53	31.49	43.50	-12.01	QP
2	167.237	55.05	9.54	2.64	29.07	38.16	43.50	-5.34	QP
4	199.286	54.02	10.58	2.86	28.83	38.63	43.50	-4.87	QP
5	264.746	45.59	12.99	2.85	28.51	32.92	46.00	-13.08	QP
6	793.396	37.51	21.39	4.35	28.23	35.02	46.00	-10.98	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

ADOVE TOTIZ											
	Test channel: Lowest channel										
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	48.92	30.85	6.80	41.81	44.76	74.00	-29.24	Vertical			
4804.00	48.11	30.85	6.80	41.81	43.95	74.00	-30.05	Horizontal			
			Dete	ctor: Averaç	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	40.53	30.85	6.80	41.81	36.37	54.00	-17.63	Vertical			
4804.00	40.78	30.85	6.80	41.81	36.62	54.00	-17.38	Horizontal			
			Test ch	nannel: Midd	lle channel						
			De	tector: Peak	Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	48.04	31.20	6.86	41.84	44.26	74.00	-29.75	Vertical			
4884.00	48.27	31.20	6.86	41.84	44.49	74.00	-29.51	Horizontal			
			Dete	ctor: Averaç	ge Value						

Botoston: 7 Wordgo Valdo											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	40.16	31.20	6.86	41.84	36.38	54.00	-17.62	Vertical			
4884.00	40.92	31.20	6.86	41.84	37.14	54.00	-16.86	Horizontal			
		•									
Test shown shill Esh est shown all											

Test channel: Highest channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4960.00	48.13	31.63	6.91	41.87	44.80	74.00	-29.20	Vertical				
4960.00	48.79	31.63	6.91	41.87	45.46	74.00	-28.54	Horizontal				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4960.00	40.64	31.63	6.91	41.87	37.31	54.00	-16.69	Vertical				
4960.00	40.15	31.63	6.91	41.87	36.82	54.00	-17.18	Horizontal				

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.