MC536 - Grupo 9 - Dieta de frutas

Estevam Souza Machado

Farzin Shams

Guilherme Augusto Sakai Yoshike

Pedro Correa Bueno de Castro

140596

139424

138446

118355

Proposta inicial:

 Compor uma dieta com porções de alimentos distintos que suprissem as necessidades nutricionais diárias de vitaminas e minerais por faixa etária.

• Bases encontradas:

Faixas etárias -> Vitaminas e minerais

Age	Vitamin A See Report		Folate (Vitamin B-9) See Report		Vitamin C See Report		Vitamin D See Report		Calcium See Report		Iron See Report	
	RDA ¹	Upper Limit ²	RDA ³	Upper Limit ⁴	RDA	Upper Limit	RDA ⁵	Upper Limit	RDA	Upper Limit	RDA	Upper Limit
1 - 3	1,000 IU	2,000 IU	150 mcg	300 mcg	15 mg	400 mg	600 IU	2,500 IU	700 mg	2,500 mg	7 mg	40 mg
4 - 8	1,300 IU	3,000 IU	200 mcg	400 mcg	25 mg	650 mg	600 IU	3,000 IU	1,000 mg	2,500 mg	10 mg	40 mg
9 - 13	2,000 IU	5,666 IU	300 mcg	600 mcg	45 mg	1,200 mg	600 IU	4,000 IU	1,300 mg	2,500 mg	8 mg	40 mg
14 - 18	1,000 IU	9,333 IU	400 mcg	800 mcg	75 mg (m) 65 mg (f) 80 mg (preg) 115 mg (lact)	1,800 mg	600 IU	4,000 IU	1,300 mg	2,500 mg	11 mg (m) 15 mg (f) 27 mg (preg) 10 mg (lact)	45 mg
Adult	3,000 IU (m) 2,300 IU (f)	10,000 IU	400 mcg 600 mcg (preg)/ 500 mcg (lact)	1,000 mcg	90 (m) 75 mg (f) 85 mg (preg) 120 (lact)	2,000 mg	600 IU (51- 70 years) 800 IU (71+ years)	4,000 IU	1,000 mg (to 50 years) 1,200 mg (51+ years)	2,500 mg	8 mg (m) 18 mg (f 19 to 50 years) 8 mg (f 51+ years) 27 mg (preg) 9 mg (lact)	45 mg

Alimentos -> Nutrientes

Pears, values per 100g						
Minerals						
Calcium, Ca	mg	9				
Iron, Fe	mg	0.18				
Zinc, Zn	mg	0.10				
Vitamins						
Vitamin C, total ascorbic acid	mg	4.3				
Thiamin	mg	0.012				
Riboflavin	mg	0.026				
Niacin	mg	0.161				

Modelo ER proposto para a resolução:

Complicações:

- Base de alimentos muito extensa
- Base de nutrientes é diferente entre as bases
- Necessidades ideal (mínima) e máxima diárias
- Gênero

• Reformulação do problema:

- Frutas e sucos
- Intersecção das bases de nutrientes
- Apenas a necessidade ideal diária para cada faixa etária
- Gênero masculino

• Ferramentas:

Python

BeautifulSoup

• Faixas etárias -> vitaminas e minerais

Recommended Daily Intakes and Upper Limits for Common Nutrients

Age	Vitamin A See Report		Folate (Vitamin B-9) See Report		Vitamin C See Report		Vitamin D See Report		Calcium See Report		Iron See Report	
	RDA ¹	Upper Limit ²	RDA ³	Upper Limit ⁴	RDA	Upper Limit	RDA ⁵	Upper Limit	RDA	Upper Limit	RDA	Upper Limit
1 - 3	1,000 IU	2,000 IU	150 mcg	300 mcg	15 mg	400 mg	600 IU	2,500 IU	700 mg	2,500 mg	7 mg	40 mg
4 - 8	1,300 IU	3,000 IU	200 mcg	400 mcg	25 mg	650 mg	600 IU	3,000 IU	1,000 mg	2,500 mg	10 mg	40 mg
9 - 13	2,000 IU	5,666 IU	300 mcg	600 mcg	45 mg	1,200 mg	600 IU	4,000 IU	1,300 mg	2,500 mg	8 mg	40 mg
14 - 18	1,000 IU	9,333 IU	400 mcg	800 mcg	75 mg (m) 65 mg (f) 80 mg (preg) 115 mg (lact)	1,800 mg	600 IU	4,000 IU	1,300 mg	2,500 mg	11 mg (m) 15 mg (f) 27 mg (preg) 10 mg (lact)	45 mg
Adult	3,000 IU (m) 2,300 IU (f)	10,000 IU	400 mcg 600 mcg (preg)/ 500 mcg (lact)	1,000 mcg	90 (m) 75 mg (f) 85 mg (preg) 120 (lact)	2,000 mg	600 IU (51- 70 years) 800 IU (71+ years)	4,000 IU	1,000 mg (to 50 years) 1,200 mg (51+ years)	2,500 mg	8 mg (m) 18 mg (f 19 to 50 years) 8 mg (f 51+ years) 27 mg (preg) 9 mg (lact)	45 mg

Source: Dietary Reference Intakes Tables and Application fitd.reviewTable 68px x 154px National Academy of Sciences,

- Faixas etárias -> vitaminas e minerais
 - Desafios:
 - Tags não padronizadas
 - Caracteres inválidos
 - Valores e unidades na mesma célula
 - Informações adicionais não padronizadas
 - Caracteres de tabulação, carriage return, newline, etc.
 - (IU, mg, mcg) -> mcg

Faixas etárias -> vitaminas e minerais

```
#etapa que tira os caracteres inuteis dos valores das tabelas
col names cleaned = re.sub('(See Report).*', '', col names[0].text)
col names cleaned = re.sub('\(.*', '', col names cleaned)
col_names_cleaned = re.sub(' *$', '', col_names_cleaned)
cells mg = cols[col + (col - 1)].find all("center") #tabela alinhada, calculo para obter os dados referentes a cada nutriente
cells_mg_cleaned = re.sub('( )*', '', cells_mg[0].text)
cells_mg_cleaned = re.sub('(g)+.*', 'g', cells_mg_cleaned)
cells mg cleaned = re.sub('(IU)+.*', 'IU', cells mg cleaned)
cells_mg_cleaned = re.sub(',', '', cells_mg_cleaned)
valoridealprocura = re.findall('[0-9]+[.]*[0-9]*',cells mg cleaned)
valorideal = valoridealprocura[0]
unidadeideal = re.sub('[0-9]+[.]*[0-9]*[.]*', '', cells mg cleaned)
multideal = 1
if unidadeideal == 'mq':
 multideal = 1000
elif unidadeideal == 'q':
 multideal = 1000000
elif unidadeideal == 'IU':
 if col names cleaned == 'Vitamin A':
multideal = 0.3
 elif col names cleaned == 'Vitamin C':
multideal = 50
 elif col names cleaned == 'Vitamin D':
multideal = 0.025
 elif col names cleaned == 'Vitamin E':
multideal = 0.667
```

Alimentos -> nutrientes

09006	Apples, raw, without skin, cooked, microwave	Fruits and Fruit Juices
09003	Apples, raw, with skin	Fruits and Fruit Juices
09403	Apricot nectar, canned, with added ascorbic acid	Fruits and Fruit Juices
09036	Apricot nectar, canned, without added ascorbic acid	Fruits and Fruit Juices
09029	Apricots, canned, extra heavy syrup pack, without skin, solids and liquids	Fruits and Fruit Juices
09025	Apricots, canned, extra light syrup pack, with skin, solids and liquids	Fruits and Fruit Juices
09357	Apricots, canned, heavy syrup, drained	Fruits and Fruit Juices

Pears, value	s pe	r 100g
Minerals		
Calcium, Ca	mg	9
Iron, Fe	mg	0.18
Zinc, Zn	mg	0.10
Vitamins		
Vitamin C, total ascorbic acid	mg	4.3
Thiamin	mg	0.012
Riboflavin	mg	0.026
Niacin	mg	0.161

- Alimentos -> nutrientes
 - Desafios:
 - Iteração a muitas páginas.
 - Muitos alimentos do mesmo tipo.
 - Tag com problema de sintaxe.
 - Nomes de nutrientes em formatos diferentes dos da base anterior.
 - Intersecção dos nutrientes nas bases.
 - Padronização de unidades.

Alimentos -> nutrientes

```
vetor_alimentos = []
vetor_nutrientes = []
nutriente_existente = False

#iteracao nas paginas dos alimentos

#for page in range(0,14):
    url = "http://ndb.nal.usda.gov/ndb/?format=&count=&max=25&sort=fd_s&fg=Fruits+and+Fruit+Juices&man=&lfacet=&qlookup=&offset="+str(page*25")+"&order=asc"
    req = requests.get(url)
    soup = BeautifulSoup(req.content, 'lxml')
    name_aux = ""
    col_aux=""

# tabela com a lista de alimentos
    table = soup.find_all("div", {"class": "wbox"})
    lines = table[0].find_all("tr")
```


• Alimento, Nutriente, FaixaEtaria e relações

• Relacionamento entre Alimento e Nutriente

Tangerines	Iron	270.0
Tangerines	Magnesium	11000.0
Tangerines	Niacin	445.0
Tangerines	Phosphorus	10000.0
Tangerines	Potassium	133000.0
Tangerines	Riboflavin	29.0
Tangerines	Thiamin	82.0
Tangerines	Vitamin A	43.0
Tangerines	Vitamin B-12	0.0
Tangerines	Vitamin B-6	42.0
Tangerines	Vitamin C	34200.0
Tangerines	Vitamin D	0.0
Tangerines	Vitamin E	100.0
Tangerines	Vitamin K	0.0
Tangerines	Zinc	510.0
Watermelon	Calcium	7000.0
Watermelon	Folate	3.0
Watermelon	Iron	240.0
Watermelon	Magnesium	10000.0
Watermelon	Niacin	178.0
Watermelon	Phosphorus	11000.0
Watermelon	Potassium	112000.0
Watermelon	Riboflavin	21.0
Watermelon	Thiamin	33.0
Watermelon	Vitamin A	28.0
Watermelon	Vitamin B-12	0.0
Watermelon	Vitamin B-6	45.0
Watermelon	Vitamin C	8100.0
Watermelon	Vitamin D	0.0
Watermelon	Vitamin E	50.0
Watermelon	Vitamin K	0.1
Watermelon	Zinc	100.0
+		++
1820 rows in set (0.00 sec)		

Melancia e seus nutrientes, indicando quantidade de Vitamina C

• Relacionamento entre FaixaEtaria e Nutriente

Toddler

mysql> select * from FaixaEtaria_Nutriente;						
id_nutriente	id_idade	quantidade_ideal	quantidade_maxima			
Calcium	Adult	1000000.0	2500000.0			
Folate	Adult	400.0	1000.0			
Iron	Adult	8000.0	45000.0			
Magnesium	Adult	400000.0	350000.0			
Niacin	Adult	16000.0	35000.0			
Phosphorus	Adult	700000.0	4000000.0			
Potassium	Adult	4700000.0	NULL			
Riboflavin	Adult	1300.0	NULL			
Thiamin	Adult	1200.0	NULL			
Vitamin A	Adult	900.0	3000.0			
Vitamin B-12	Adult	2.4	NULL			
Vitamin B-6	Adult	1300.0	100000.0			
Vitamin C	Adult	90000.0	2000000.0			
Vitamin D	Adult	15.0	100.0			
Vitamin E	Adult	22.0	733.7			
Vitamin K	Adult	120.0	NULL			
Zinc	Adult	11000.0	40000.0			
Calcium	Child	1000000.0	2500000.0			
Folate	Child	200.0	400.0			
Iron	Child	10000.0	40000.0			
Magnesium	Child	130000.0	110000.0			
Niacin	Child	8000.0	15000.0			
Phosphorus	Child	500000.0	3000000.0			
Potassium	Child	3800000.0	i NULL İ			
Riboflavin	Child	600.0	i NULL İ			
Thiamin	Child	600.0	i NULL İ			
Vitamin A	Child	390.0	900.0			
Vitamin B-12	Child	1.2	NULL			

'Adulto' e seus nutrientes necessários, quantidades para Vitamina C

Nova relação 'equivale'

- Criação da lista de alimentos para cada FaixaEtaria
 - 1^a abordagem
 - Teste de combinações -> menor lista
 - Resultado: tempo de execução inviável
 - Algumas conclusões: Vitamina D, Vitamina B 12 e Zinco não supridos bem por frutas
 - 2ª abordagem
 - Alimento ideal para cada nutriente
 - Nutrientes não supridos -> adição dos melhores alimentos para cada até suprí-los
 - Resultado: lista encontrada! -> relações seAlimenta criada, entre as faixas etárias e os alimentos que compõem sua lista encontrada. Porém, listas de dietas com mais de 2kg de alimentos. Por quê?

Relações entre Toddler e Adult e os alimentos da dieta encontrada

- Cálculo da média do número de alimentos necessários para suprir cada nutriente
 - Query da média das quantidades de cada nutriente nos alimentos
 - Query das quantidades ideais de cada nutriente para uma FaixaEtaria
 - Para cada nutriente divide-se a quantidade ideal pela média por alimento
 - Resultado: quantos alimentos, na média, são necessários para suprir cada nutriente

 Cálculo da média do número de alimentos necessários para suprir cada nutriente

- Cálculo da média do número de alimentos necessários para suprir cada nutriente
 - Conclusão
 - Frutas e sucos não são suficientes para todos esses nutrientes!
 - São suficientes, no entando, para suprir Vitaminas C e E