${\bf CS~374:Computational~and~Numerical~Methods} \\ {\bf Assignments}$

COMPUTATIONAL AND NUMERICAL METHOD

PURVIL MEHTA (201701073) BHARGEY MEHTA (201701074)

 $\label{lem:communication} Dhirubhai\ Ambani\ Institute\ of\ Information\ and\ Communication\ Technology\\ Gandhinagar$

JANUARY 1, 2020

Contents

1	Assignment 1	2
	1.1 The Entropy Function	2
	1.2 Plots	
	1.2.1 Observation	2
	1.2.2 Equations	2
	1.3 Approximation	3
	1.4 Plots	4
2	Assignment 2	5
	Assignment 2 2.1 Plots	5
	2.2 Code Run-time	6
3	Assignment 3	7
	3.1 Analytical Methods	7
4	Assignment 4	8
	4.1 Analytical Methods	8
5	Assignment 5	9

1.1 The Entropy Function

We have the entropy function as,

$$\langle I \rangle = -k \sum p_i \log p_i$$

1.2 Plots

Figure 1: Entropy Function for k = 1

1.2.1 Observation

- We can see that the function peaks at $p = \frac{1}{2}$
- We can interpret this as maximum information available at $p = \frac{1}{2}$ so the function peaks at that point. At p = 0 or p = 1, we already know what event is going to take place so the information we obtain from that event is 0.

1.2.2 Equations

$$\begin{split} \langle I \rangle &= -k[p\log_2 p + (1-p)\log_2 (1-p)] \\ &\frac{\mathrm{d}}{\mathrm{d}p} \langle I \rangle = -k[\log_2 p + 1 + -\log_2 (1-p) - 1]/l \, n(2) = 0 \end{split}$$

So we have,

$$-k[\log_2 p - \log_2 (1-p)]/ln(2) = 0$$

$$\log_2 p = \log_2 (1-p)$$

$$p = 1-p$$

$$p = \frac{1}{2}$$

1.3 Approximation

Apply a very small perturbation as $p=\frac{1}{2}+\epsilon$, in which $\epsilon<<\frac{1}{2}$. Show that in this perturbation approach $\langle I \rangle \approx a-b\epsilon^2$, with a=k and $b=\frac{4k}{\ln 2}$. We will be using the approximation $\ln(1+x)\approx x$

We have

$$\begin{split} \langle I \rangle &= -k[p \log_2 p + (1-p) \log_2 (1-p)] \\ &= -k[(\frac{1}{2} + \epsilon) \log_2 (\frac{1}{2} + \epsilon) + (\frac{1}{2} - \epsilon) \log_2 (\frac{1}{2} - \epsilon)] \\ &= -k[\frac{1}{2} (\log_2 (\frac{1}{2} + \epsilon) + \log_2 (\frac{1}{2} - \epsilon)) + \epsilon (\log_2 (\frac{1}{2} + \epsilon) - \log_2 (\frac{1}{2} - \epsilon))] \\ &= -\frac{k}{\ln 2} [\frac{1}{2} (\ln (\frac{1}{2} + \epsilon) + \ln (\frac{1}{2} - \epsilon)) + \epsilon (\ln (\frac{1}{2} + \epsilon) - \ln (\frac{1}{2} - \epsilon))] \\ &= -\frac{k}{\ln 2} [\frac{1}{2} (\ln (\frac{1 + 2\epsilon}{2}) + \ln (\frac{1 - 2\epsilon}{2})) + \epsilon (\ln (\frac{1 + 2\epsilon}{2}) - \ln (\frac{1 - 2\epsilon}{2}))] \\ &= -\frac{k}{\ln 2} [\frac{1}{2} (\ln (1 + 2\epsilon) + \ln (1 - 2\epsilon) - 2 \ln 2) + \epsilon (\ln (1 + 2\epsilon) - \ln (1 - 2\epsilon) + \ln 2 - \ln 2)] \\ &\approx -\frac{k}{\ln 2} [\frac{1}{2} (2\epsilon - 2\epsilon - 2 \ln 2) + \epsilon (2\epsilon - (-2\epsilon))] \\ &\approx -\frac{k}{\ln 2} [\frac{1}{2} (-2 \ln 2) + \epsilon (4\epsilon)] \\ &\approx -\frac{k}{\ln 2} [-\ln 2 + 4\epsilon^2] \\ &\approx k - (\frac{4k}{\ln 2}) \epsilon^2 \end{split}$$

Thus we have $\langle I \rangle \approx k - (\frac{4k}{\ln 2})\epsilon^2$ with a = k and $b = \frac{4k}{\ln 2}$ by comparison.

1.4 Plots

$$\begin{split} \langle I \rangle &= -k[p\log_2 p + (1-p)\log_2 (1-p)] \\ \langle I \rangle &\approx k - (\frac{4k}{\ln 2})\epsilon^2 \\ \text{where } p = \frac{1}{2} + \epsilon \end{split}$$

Figure 2: Actual Function V/s Approximation

2.1 Plots

Figure 3: Two plots corresponding to v = f(r)

Figure 4: The Plots don't meet but they do come close

2.2 Code Run-time

Function Name	Calls	<u>Total Time</u>	Self Time*	Total Time Plot (dark band = self time)
assign2	1	15.163 s	4.325 s	
accretion	4050150	10.601 s	10.601 s	
<u>xlabel</u>	1	0.137 s	0.137 s	1
<u>bisection</u>	402	0.121 s	0.041 s	1

Figure 5: $\triangle V = 10$

Function Name	<u>Calls</u>	<u>Total Time</u>	Self Time*	Total Time Plot (dark band = self time)			
assign2	1	139.903 s	39.618 s				
<u>accretion</u>	40227738	100.192 s	100.192 s				
<u>bisection</u>	402	0.105 s	0.037 s				

Figure 6: $\triangle V = 1$

Function Name	Calls	Total Time	Self Time*	Total Time Plot (dark band = self time)
assign2	1	1353.255 s	380.050 s	
accretion	402024532	973.114 s	973.114 s	
bisection	402	0.091 s	0.032 s	

Figure 7: $\triangle V = 0.1$

Figure 8: y = y(R), u = u(R)

3.1 Analytical Methods

$$xyR^{2} = 1$$

$$y^{4} - By^{2} - \frac{4y}{R^{2}} + \frac{3}{R^{4}} = 0$$

$$\frac{dy}{dR} = \frac{2(3 - 2yR^{2})}{R^{3}(2y^{3}R^{2} - ByR^{2} - 2)}$$

The turning point in the velocity profile occurs when the numerator in the RHS becomes zero. Hence we have $y=\frac{3}{2R^2}$, which gives us $x=\frac{2}{3}$. Solution for the y will be

$$y = -\frac{-R^4 + 4R^2 + \sqrt{(R^4 - 4r^2)^2 + 12R^4B}}{2R^4B}$$

$$y = -\frac{-R^4 + 4R^2 - \sqrt{(R^4 - 4r^2)^2 + 12R^4B}}{2R^4B}$$

Figure 9: H = H(X)

4.1 Analytical Methods

$$4H - H^4 = 3(X - D)$$
$$\frac{dH}{dX} = \frac{3}{4(1 - H^3)}$$

By looking at the above equation we can say that at H = 1 slope of the function become ∞ . Thus at point H = 1, function will take hydraulic jump and will be discontinuous.

