- a. The negation of a \neq -assignment is also an \neq -assignment because flipping the truth value of each literal inside ($true \lor false \lor whatever$) is ($false \lor true \neg whatever$); the pair of literals that oppose each other is still opposing each other.
- b. To prove that this is NP-complete, we need to prove that it is both NP and NP-hard. It's obviously in NP because it's easy to verify in polynomial-time whether a potential answer is a ≠-assignment (see if each clause has a pair of opposing literals).

To prove it's NP-hard, we will reduce from any 3-SAT problem to obtain an answer for 3-SAT. The polynomial-time conversion from a 3-SAT problem ϕ to a \neq -SAT problem ϕ_{\neq} is as follows:

The *i*th clause in ϕ looks like this:

$$(a_i \lor b_i \lor c_i)$$

We will transform it into two clauses to obtain ϕ_{\neq} as such:

$$(a_i \lor b_i \lor new_i) \land (c_i \lor \neg new_i \lor false)$$

This is a polynomial time conversion because it's a constant time conversion (it takes 6 steps at most regardless of the clause).

As you can see, there's a new variable called new for each clause in the transformed formula, and false is a constant that's always false.

Claim: ϕ is satisfiable if and only if ϕ_{\neq} is \neq -satisfiable.

Proof:

Claim: if ϕ is satisfiable, then ϕ_{\neq} is \neq -satisfiable.

Proof: See this table for what new_i and w should be given ϕ 's satisfying assignment (0 is false and 1 is true); the last row is if the clause is unsatisfiable:

a_i	b_i	new _i	c_i	$\neg new_i$	if <i>f alse</i> were a variable
1	1	0	1	1	0
1	1	0	0	1	$\frac{x}{x}$
1	0	<mark>0, 1</mark>	1	1, 0	<mark>0, x</mark>
1	0	<mark>0, 1</mark>	0	1, 0	<mark>x, 1</mark>
0	1	<mark>0, 1</mark>	1	1, 0	<mark>0, x</mark>
0	1	<mark>0, 1</mark>	0	1, 0	x, 1
0	0	1	1	0	x x
0	0	1	0	0	<u>1</u>

Cells with two values correspond in order (e.g. 0, 1 in new_i would force $\neg new_i$ to be 1, 0). x means whatever (could be either 0 or 1).

We set new_i to be always 0 unless both a and b are 0. In any case, false is always 0 (it's a constant) and it would make for a \neq -assignment if given a satisfying assignment for ϕ .

Claim: if ϕ is unsatisfiable, then ϕ_{\neq} is also unsatisfiable.

Proof: If ϕ is unsatisfiable, then \exists at least one clause where all three literals are false (i.e. $a_i=0, b_i=0, c_i=0$). This would force new_i to be 1, and of course $\neg new_i$ to be 0. But false is a constant and is always 0, so the second clause would be all 0 and thus \neq -unsatisfiable, causing the entire ϕ_{neq} to be \neq -unsatisfiable.