#### **EXAMINATION COVERSHEET**

#### Spring 2022 Final Examination



| THIS EXAMINATION CONTENT IS STRICTLY CONFIDENTIAL                                    |                                       |
|--------------------------------------------------------------------------------------|---------------------------------------|
| Students must comply with requirements stated in the Examination Policy & Procedures |                                       |
| Student Number:                                                                      |                                       |
| First Name:                                                                          |                                       |
| Family Name:                                                                         |                                       |
|                                                                                      |                                       |
| Date of Examination:                                                                 | 27/06/22                              |
| (DD/MM/YY)                                                                           |                                       |
|                                                                                      |                                       |
| Subject Code:                                                                        | Math 142                              |
| Subject Title:                                                                       | Essentials of Engineering Mathematics |
| Time Permitted to Write Exam:                                                        | 2 Hours                               |
| Total Number of Questions:                                                           | 6 MCQs + 5 Written Questions          |
| Total Number of Pages (including this page):                                         | 9                                     |

#### INSTRUCTIONS TO STUDENTS FOR THE EXAM

- 1. Please note that subject lecturer/tutor will be unavailable during exams. If there is a doubt in any of the exam questions i.e. problem solving etc. students should proceed by assuming values etc. Students should mention their assumption on the question paper.
- 2. Answers must be written (and drawn) in black or blue ink
- 3. Any mistakes must be crossed out. Whitener and ink erasers must not be used.
- 4. Part A: MCQs. Answer ALL questions. The marks for each question are shown next to each question.
- 5. Part B: Written. Answer ALL questions. The marks for each question are shown next to each question.
- 6. You must show your work in detail.
- 7. Total marks: 100. This Exam is worth 40% of your final marks for Math 142.

#### **EXAMINATION MATERIALS/AIDS ALLOWED**

Approved Calculators and Formula Sheet

<u>Exam Unauthorised Items</u> - Students bringing these items to the examination room must follow the instructions of the invigilators with regards to these items.

- 8. Bags, including carrier bags, backpacks, shoulder bags and briefcases
- 9. Any form of electronic device including but not limited to mobile phones, smart watches, MP3 players, handheld computers and unauthorised calculators;
- 10. Calculator cases and covers, opaque pencil cases
- 11. Blank paper
- 12. Any written material

NOTE: The University does not guarantee the safe-keeping of students' personal items during examinations. Students concerned about the safety of their valuable items should make alternative arrangements for their care.

# Part A MCQ (30%) (circle your choice)

#### (5pts) Problem 1

Evaluate the improper integral  $L = \int_2^\infty \frac{dx}{x \ln^2 x}$ .

- (a)  $L = \ln 2$
- $(b) \quad L = \frac{1}{\ln 2}$
- (c)  $L = +\infty$
- $(d) \quad L=2$
- (e)  $L = e^2$

## (5pts) Problem 2

Evaluate the improper integral  $A = \int_0^1 \frac{x}{\sqrt{1-x^2}} dx$ 

- $(a) \quad A = 1$
- (b) A = 2
- (c) A = -1
- $(d) A = \frac{1}{2}$
- (e)  $A = -\infty$

#### (5pts) Problem 3

Let  $a_n$  be the sequence given by

$$\cos(\pi)$$
,  $\cos\left(\frac{\pi}{2}\right)$ ,  $\cos\left(\frac{\pi}{3}\right)$ ,  $\cos\left(\frac{\pi}{4}\right)$ , ...

If  $L = \lim_{n \to \infty} a_n$ , then

- (a) L = 4
- (b) L = 3
- (c) L = 2
- (d) L = 1
- (e) L=0

#### (5pts) Problem 4

The series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}}$$

- (a) converges absolutely
- (b) converges conditionally
- (c) diverges
- (d) is a convergent geometric series
- (e) is a divergent telescoping series

#### (5pts) Problem 5

The radius of convergence of the power series  $\sum_{n=1}^{\infty} \frac{x^n}{n2^n}$  is

- (a)  $\sqrt{2}$
- $(b) \quad \frac{1}{2}$
- (c) 1
- (d)  $\infty$
- (e) 2

#### (5pts) **Problem 6**

The coefficient of  $x^3$  in Maclaurin series of the function  $f(x) = \sin(\pi - x)$  equal to

- $(a) \quad \frac{-1}{3}$
- $(b) \quad \frac{-1}{6}$
- (c) 1
- (d) 6
- $(e) \quad \frac{-1}{2}$

# Part B Written Questions (70%)

## (15pts)Problem 1

Find the interval of convergence of the following power series

1. 
$$\sum_{n=0}^{\infty} \frac{(x+2)^n}{\sqrt{n}}$$
 2.  $\sum_{n=0}^{\infty} \frac{x^n}{n^n}$ .

$$2. \sum_{n=0}^{\infty} \frac{x^n}{n^n}.$$

## (10pts)Problem 2

Show that the equation is separable and solve it.

$$y\frac{dy}{dx} - \left(1 + y^2\right)x^2 = 0$$

## (15pts)Problem 3

Show that the differential equation is exact and solve the initial value problem.

$$(y-x^3) dx + (x+y^3) dy = 0, \quad y(0) = \sqrt{2}$$

# (15pts)Problem 4

Show that the equation is Bernoulli and solve it.

$$\frac{dy}{dx} = \frac{2y}{x} - x^2y^2$$

# (15pts)Problem 5

Show that the equation is homogeneous and solve it.

$$x^2 \frac{dy}{dx} = xy - y^2$$