## Theorem: Field Characteristic

### Theorem: Field Characteristic

Every Field has characteristic either 0 or a Prime Number number.

#### **Definitions**

The **characteristic** of a field F, denoted char(F), is the smallest positive integer n such that:

$$\underbrace{1+1+\ldots+1}_{n \text{ times}} = 0$$

If no such n exists, we say char(F) = 0.

#### Statement

For any field F: 1. If  $\operatorname{char}(F) \neq 0$ , then  $\operatorname{char}(F) = p$  for some prime p 2. If  $\operatorname{char}(F) = 0$ , then F contains a copy of  $\mathbb{Q}$  3. If  $\operatorname{char}(F) = p$ , then F contains a copy of  $\mathbb{F}_p$ 

#### Proof Sketch

Suppose char(F) = n > 0. If n = ab with 1 < a, b < n, then:

$$(a \cdot 1)(b \cdot 1) = (ab) \cdot 1 = n \cdot 1 = 0$$

Since fields have no zero divisors, either  $a \cdot 1 = 0$  or  $b \cdot 1 = 0$ , contradicting the minimality of n. Therefore n must be prime.

#### Examples

- $\operatorname{char}(\mathbb{Q}) = 0$ ,  $\operatorname{char}(\mathbb{R}) = 0$ ,  $\operatorname{char}(\mathbb{C}) = 0$
- $\operatorname{char}(\mathbb{F}_p) = p$  for any prime p
- $\operatorname{char}(\hat{GF}(p^n)) = p$  for any prime power  $p^n$

#### Consequences

- In characteristic p:  $(a+b)^p = a^p + b^p$  (Freshman's Dream)
- The Frobenius map  $x \mapsto x^p$  is a field homomorphism in characteristic p

# Dependency Graph



Local dependency graph