International Rectifier

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

Description

Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The D-Pak is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead, I-Pak, version (IRFU series) is for throughhole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications.

IRFR3411PbF IRFU3411PbF

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	32		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	23	A	
I _{DM}	Pulsed Drain Current ①	110		
P _D @T _C = 25°C	Power Dissipation	130	W	
	Linear Derating Factor	0.83	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
I _{AR}	Avalanche Current①	16	A	
E _{AR}	Repetitive Avalanche Energy①	13	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	7.0	V/ns	
T _J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.2	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount)*		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient		110	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter		Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$	
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.12		V/°C	Reference to 25°C, I _D = 1mA	
R _{DS(on)}	Static Drain-to-Source On-Resistance		36	44	mΩ	V _{GS} = 10V, I _D = 16A ④	
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	
9fs	Forward Transconductance	21			S	V _{DS} = 50V, I _D = 16A⊕	
I _{DSS}	Drain-to-Source Leakage Current			25	μA	V _{DS} = 100V, V _{GS} = 0V	
צפטי	Brain to Godice Leakage Guilent			250	μΛ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$	
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V	
I _{GSS}	Gate-to-Source Reverse Leakage			-100	''^	V _{GS} = -20V	
Q _g	Total Gate Charge		48	71		I _D = 16A	
Q _{gs}	Gate-to-Source Charge		9.0	14	nC	$V_{DS} = 80V$	
Q _{gd}	Gate-to-Drain ("Miller") Charge		14	21		V_{GS} = 10V, See Fig. 6 and 13	
t _{d(on)}	Turn-On Delay Time		11			$V_{DD} = 50V$	
t _r	Rise Time		35		ns	I _D = 16A	
t _{d(off)}	Turn-Off Delay Time		39		1115	$R_G = 5.1\Omega$	
t _f	Fall Time		35			V _{GS} = 10V, See Fig. 10 ⊕	
L _D	Internal Drain Inductance		4.5			Between lead,	
L-D			4.5		nH	6mm (0.25in.)	
			7.5			from package	
L _S	Internal Source Inductance					and center of die contact	
C _{iss}	Input Capacitance		1960			V _{GS} = 0V	
Coss	Output Capacitance		250			$V_{DS} = 25V$	
C _{rss}	Reverse Transfer Capacitance		40		pF	f = 1.0MHz, See Fig. 5	
E _{AS}	Single Pulse Avalanche Energy ^②		700⑤	185©	mJ	I _{AS} = 16A, L = 1.5mH	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			33		MOSFET symbol	
	(Body Diode)		33	A	showing the		
I _{SM}	Pulsed Source Current		110		integral reverse		
	(Body Diode)①			110	٥	p-n junction diode.	
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 16A$, $V_{GS} = 0V$ ④	
t _{rr}	Reverse Recovery Time		115	170	ns	$T_J = 25^{\circ}C, I_F = 16A$	
Q _{rr}	Reverse Recovery Charge		505	760	nC	di/dt = 100A/µs ④	
t _{on}	Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)						

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\label{eq:starting} \begin{array}{ll} \text{ Starting T}_J = 25^{\circ}\text{C}, \ L = 1.5\text{mH} \\ \text{R}_G = 25\Omega, \ I_{AS} = 16\text{A}. \ \text{(See Figure 12)} \end{array}$
- $\label{eq:loss} \begin{array}{l} \text{ } \exists \text{ } I_{SD} \leq 16\text{A, di/dt} \leq 340\text{A/}\mu\text{s, } V_{DD} \leq V_{(BR)DSS}, \\ T_{J} \leq 175^{\circ}\text{C.} \end{array}$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- ⑤ This is a typical value at device destruction and represents operation outside rated limits.
- $\mbox{\em (6)}$ This is a calculated value limited to $T_J=175\mbox{\em c}$.
- * When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint dering techniques refer to application note #AN-994.

International TOR Rectifier

IRFR/U3411PbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area www.irf.com

International IOR Rectifier

IRFR/U3411PbF

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For N-channel HEXFET® power MOSFETs

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14,5M-1994
- 2,- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- A- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.— SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- DIMENSION by & c DO NOT INCLUDE WOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

 _______DIMENSION by & cf APPLIED TO BASE METAL ONLY.
- A- DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

S Y		N O I				
B	MILLIM	ETERS	INC	INCHES		
l D	MIN,	MAX.	MIN.	MAX.	E S	
Α	2,18	2.39	.086	.094		
A1	-	0.13	-	.005		
ь	0.64	0.89	.025	.035		
ь1	0.65	0.79	.025	.031	7	
b2	0.76	1,14	.030	.045		
b3	4,95	5.46	.195	.215	4	
С	0.46	0.61	.018	.024		
с1	0,41	0.56	.016	.022	7	
c2	0.46	0.89	.018	.035		
D	5,97	6,22	.235	,245	6	
D1	5.21	-	.205	-	4	
Ε	6.35	6.73	.250	.265	6	
E1	4.32	-	.170	-	4	
e	2.29	BSC	.090			
Н	9,40	10,41	.370	,410		
L	1,40	1,78	.055	,070		
L1	2.74 BSC		.108			
L2	0.51 BSC		.020	BSC		
L3	0,89	1,27	.035	,050	4	
L4	-	1.02	-	.040		
L5	1.14	1.52	.045	.060	3	
ø	0.	10*	0.	10*		
ø1	0.	15*	0.	15*		
ø2	25*	35°	25*	35*		

LEAD ASSIGNMENTS

<u>HEXF</u>ET

- 1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

IGBT & CoPAK

1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

D-Pak (TO-252AA) Part Marking Information

Notes:

- 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

International IOR Rectifier

IRFR/U3411PbF

I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

- NOTES:
 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- \triangle dimension D & e do not include hold. Flash, Mold Flash shall not exceed .005 [0,13] per side. These dimensions are Measured at the outhost extremes of the plastic body.
- A- THERMAL PAD CONTOUR OPTION WITHIN DIMENSION 64, L2, E1 & D1.
- A- LEAD DIMENSION UNCONTROLLED IN L3.
- A- DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- 7.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-251AA (Date 06/02).
- 8.- CONTROLLING DIMENSION; INCHES.

S	DIMENSIONS					
M B O	MILLIM	ETERS	INC	O T E S		
L	MIN.	MAX.	MIN.	MAX.	S	
Α	2.18	2.39	.086	.094		
A1	0.89	1.14	.035	.045		
b	0.64	0.89	.025	.035		
ь1	0.65	0,79	.025	.031	6	
b2	0.76	1.14	.030	.045		
ь3	0.76	1.04	.030	.041	6	
b4	4.95	5,46	.195	.215	4	
С	0.46	0.61	.018	.024		
c1	0,41	0,56	,016	,022	6	
c2	0.46	0.89	.018	.035		
D	5.97	6.22	.235	.245	3	
D1	5,21	-	.205	-	4	
Ε	6.35	6,73	.250	,265	3	
E1	4.32	-	.170	-	4	
е	2.29 BSC		,090			
L	8.89	9.65	.350	.380		
L1	1,91	2,29	.045	.090		
L2	0,89	1,27	.035	,050	4	
L3	1,14	1,52	.045	,060	5	
ø1	0,	15"	0.	15*		
ø2	25*	35*	25*	35*		

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

I-Pak (TO-251AA) Part Marking Information

Notes:

- 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com

International

TOR Rectifier

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES

1. OUTLINE CONFORMS TO EIA-481.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

www.irf.com

Visit us at www.irf.com for sales contact information.09/2010

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.