Calculating Quantiles

Problem

In this problem, you will need to find quantiles for a population of N values. These values are indexed 1, ..., N from lowest to highest. The kth Q-quantile of such population is determined by computing the index $I_k = N * k / Q$ and taking the value found at index I_k . If I_k is not an integer, then it is rounded up to the next integer to get the index. For a given value of Q, there will be (Q - 1) quantiles.

For example, for Q=2 the 1st (and only) quantile of the population $\{3, 5, 6\}$ is 5. This is also known as a median. Explanation: N=3, Q=2, k=1, which means $I_1=$ ceiling (3*1/2))=2. Value at index 2 is 5.

Here is a graphical example to illustrate this:

15 values q = 5-quantiles

Input Format

Your solution should read input from Standard Input in the following format:

Q M V₁ C₁ V₂ C₂ ...

Here Q is the Q-quantile, M is the number of v_i/c_i pairs, v_i is a value in the population, and c_i is its count, i.e. the number of times v_i appear in the population. Values of v_i are guaranteed to be distinct, but may not necessarily appear in order.

For example:

...means that the population of numbers is { 1, 2, 2, 2, 3 } and we need to calculate the single 2-quantile (aka median) of this population.

Sample Input #2:

3 3 7 2 6 2 5 2

Sample Output #2:

5 6

Constraints

 $1 \le N \le 10^{12}$.

 $2 \le Q$. However, Q is not guaranteed to be less than N.

1 ≤ M ≤ 100000

 $1 \leq c_i$

 v_i and c_i values are integers