(Mathematical) expectation: mean of the values of a random variable;

(Mathematical) expectation: mean of the values of a random variable;

Variance: to express the extent to which a random variable diverts from the mean.

(Mathematical) expectation: mean of the values of a random variable;

Variance: to express the extent to which a random variable diverts from the mean.

Characteristic function: a powerful tool to analyze random variables

Example

In order to evaluate A's shooting level, randomly observe his ten shootings and record the number of cycles he hits each time and the frequency as below.

x_k	8	9	10
v_k	2	5	3
$f_k = v_k/N$	0.2	0.5	0.3

The average number of cycles is

$$\sum x_k f_k = 8 * 0.2 + 9 * 0.5 + 10 * 0.3 = 9.1.$$

- 3.1 Mathematical Expectation
 - 3.1.1 Expectations for discrete random variables

一般地

$$\overline{x} = (\sum x_k v_k)/N = \sum x_k f_k.$$

- 3.1 Mathematical Expectation
 - 3.1.1 Expectations for discrete random variables

一般地

$$\overline{x} = (\sum x_k v_k)/N = \sum x_k f_k.$$

当N越来越大时, 频率 f_k 会稳定到概率 p_k ,

一般地

$$\overline{x} = (\sum x_k v_k)/N = \sum x_k f_k.$$

当N越来越大时, 频率 f_k 会稳定到概率 p_k , 从而平均值 \overline{x} 会稳定到

$$\sum x_k p_k.$$

3.1 Mathematical Expectation
3.1.1 Expectations for discrete random variables

Definition

Suppose that a discrete random variable ξ has the distribution sequence

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_k & \cdots \\ p_1 & p_2 & \cdots & p_k & \cdots \end{pmatrix}.$$

If the series $\sum_k x_k p_k$ converges absolutely, that is, $\sum_k |x_k| p_k < \infty$, the sum is called mathematical expectation or mean of ξ , written as

$$E\xi = \sum_{k} x_k p_k.$$

- 3.1 Mathematical Expectation
 - 3.1.1 Expectations for discrete random variables

Example

The degenerate distribution $P(\xi = a) = 1$ has mathematical expectation $E\xi = a$. In other words, the expectation of a constant is just itself.

3.1 Mathematical Expectation
3.1.1 Expectations for discrete random variables

Example

Calculate the mathematical expectation of the binomial distribution

$$P(\xi = k) = \binom{n}{k} p^k q^{n-k}, \quad k = 0, 1, 2, \dots, n.$$

- 3.1 Mathematical Expectation
 - 3.1.1 Expectations for discrete random variables

$$E\xi = \sum_{k=0}^{n} k p_k$$

$$E\xi = \sum_{k=0}^{n} kp_k$$

$$= \sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^k q^{n-k}$$

$$E\xi = \sum_{k=0}^{n} k p_k$$

$$= \sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^k q^{n-k}$$

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)![(n-1)-(k-1)]!} p^{k-1} q^{n-1-(k-1)}$$

$$E\xi = \sum_{k=0}^{n} k p_{k}$$

$$= \sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^{k} q^{n-k}$$

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)![(n-1)-(k-1)]!} p^{k-1} q^{n-1-(k-1)}$$

$$= np \sum_{r=0}^{n-1} \frac{(n-1)!}{r![(n-1)-r]!} p^{r} q^{n-1-r}$$

$$E\xi = \sum_{k=0}^{n} k p_{k}$$

$$= \sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^{k} q^{n-k}$$

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)![(n-1)-(k-1)]!} p^{k-1} q^{n-1-(k-1)}$$

$$= np \sum_{k=0}^{n-1} \frac{(n-1)!}{r![(n-1)-r]!} p^{r} q^{n-1-r} = np(p+q)^{n-1} = np.$$

Example

Calculate the mathematical expectation of the Poisson distribution

$$P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, 2, \cdots$$

Example

Calculate the mathematical expectation of the Poisson distribution

$$P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, 2, \dots$$

$$E\xi$$

Example

Calculate the mathematical expectation of the Poisson distribution

$$P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, 2, \cdots$$

$$E\xi = \sum_{k=0}^{\infty} kP(\xi = k) = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda}$$

Example

Calculate the mathematical expectation of the Poisson distribution

$$P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, 2, \cdots$$

$$E\xi = \sum_{k=0}^{\infty} kP(\xi = k) = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda}$$
$$= \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda}$$

Example

Calculate the mathematical expectation of the Poisson distribution

$$P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, 2, \cdots$$

$$E\xi = \sum_{k=0}^{\infty} kP(\xi = k) = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda}$$
$$= \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} = \lambda.$$

Example

Calculate the mathematical expectation of the geometric distribution

$$P(\xi = k) = pq^{k-1}, k = 1, 2, \dots, 0$$

- 3.1 Mathematical Expectation
 - 3.1.1 Expectations for discrete random variables

$$E\xi = \sum_{k=1}^{\infty} kpq^{k-1}$$

$$E\xi = \sum_{k=1}^{\infty} kpq^{k-1}$$

$$= p \sum_{k=1}^{\infty} (x^k)'|_{x=q} = p(\sum_{k=1}^{\infty} x^k)'|_{x=q})$$

$$E\xi = \sum_{k=1}^{\infty} kpq^{k-1}$$

$$= p \sum_{k=1}^{\infty} (x^k)'|_{x=q} = p(\sum_{k=1}^{\infty} x^k)'|_{x=q})$$

$$= p(\frac{x}{1-x})'|_{x=q}$$

$$E\xi = \sum_{k=1}^{\infty} kpq^{k-1}$$

$$= p \sum_{k=1}^{\infty} (x^k)'|_{x=q} = p(\sum_{k=1}^{\infty} x^k)'|_{x=q})$$

$$= p(\frac{x}{1-x})'|_{x=q}$$

$$= p \frac{1}{(1-x)^2}|_{x=q} = \frac{1}{p}.$$

Example

Suppose that

$$P(\xi = (-1)^k \frac{2^k}{k}) = \frac{1}{2^k}, \quad k = 1, 2, \cdots.$$

- 3.1 Mathematical Expectation
 - 3.1.1 Expectations for discrete random variables

Example

Suppose that

$$P(\xi = (-1)^k \frac{2^k}{k}) = \frac{1}{2^k}, \quad k = 1, 2, \dots$$

$$\sum_{k=1}^{\infty} x_k p_k = \sum_{k=1}^{\infty} (-1)^k \frac{1}{k}$$

- 3.1 Mathematical Expectation
 - 3.1.1 Expectations for discrete random variables

Example

Suppose that

$$P(\xi = (-1)^k \frac{2^k}{k}) = \frac{1}{2^k}, \quad k = 1, 2, \dots$$

$$\sum_{k=1}^{\infty} x_k p_k = \sum_{k=1}^{\infty} (-1)^k \frac{1}{k} = ?.$$

- 3.1 Mathematical Expectation
 - 3.1.1 Expectations for discrete random variables

Note that

$$\sum_{k=1}^{\infty} |x_k| p_k = \sum_{k=1}^{\infty} \frac{1}{k} = \infty.$$

- 3.1 Mathematical Expectation
 - 3.1.1 Expectations for discrete random variables

Note that

$$\sum_{k=1}^{\infty} |x_k| p_k = \sum_{k=1}^{\infty} \frac{1}{k} = \infty.$$

We say that $E\xi$ does not exist, although $\sum_{k=1}^{\infty} x_k p_k$ is convergent.

Basic properties of expectations of discrete random variables

Property 1 (Absolute integrability): $E\xi$ is finite if and only if $E|\xi| < \infty$. Further

$$E|\xi| = \sum_{k=1}^{\infty} |x_k| P(\xi = x_k),$$

$$E\xi = E\xi^{+} - E\xi^{-}, \quad E|\xi| = E\xi^{+} + E\xi^{-}.$$

- 3.1 Mathematical Expectation
 - 3.1.1 Expectations for discrete random variables

Property 2 (*Linearity*) (1): $E(a\xi) = aE\xi$.

Property 2 (*Linearity*) (1): $E(a\xi) = aE\xi$.

In fact, when a=0, the result is obvious; when $a\neq 0$, if the pmf of ξ is $P(\xi=x_i)=p_i$, then the pmf of $a\xi$ is $P(a\xi=ax_i)=p_i$. So

Property 2 (*Linearity*) (1): $E(a\xi) = aE\xi$.

In fact, when a=0, the result is obvious; when $a\neq 0$, if the pmf of ξ is $P(\xi=x_i)=p_i$, then the pmf of $a\xi$ is $P(a\xi=ax_i)=p_i$. So

$$E(a\xi) = \sum_{i} (ax_i)p_i = a\sum_{i} x_i p_i = aE(\xi).$$

- 3.1 Mathematical Expectation
 - 3.1.1 Expectations for discrete random variables

Property 2(2):
$$E(\xi + \eta) = E\xi + E\eta$$
. In fact, let $\zeta = \xi + \eta$. Then

3.1 Mathematical Expectation

3.1.1 Expectations for discrete random variables

Property 2(2):
$$E(\xi + \eta) = E\xi + E\eta$$
. In fact, let $\zeta = \xi + \eta$. Then

$$E(\zeta) = \sum_{l} z_{l} P(\zeta = z_{l}) = \sum_{l} z_{l} P(\xi + \eta = z_{l})$$

- 3.1 Mathematical Expectation
 - 3.1.1 Expectations for discrete random variables

Property 2(2):
$$E(\xi + \eta) = E\xi + E\eta$$
. In fact, let $\zeta = \xi + \eta$. Then

$$E(\zeta) = \sum_{l} z_{l} P(\zeta = z_{l}) = \sum_{l} z_{l} P(\xi + \eta = z_{l})$$
$$= \sum_{l} z_{l} \sum_{i,j:x_{i}+y_{j}=z_{l}} P(\xi = x_{i}, \eta = y_{j})$$

- 3.1 Mathematical Expectation
 - 3.1.1 Expectations for discrete random variables

Property 2(2):
$$E(\xi + \eta) = E\xi + E\eta$$
. In fact, let $\zeta = \xi + \eta$. Then

$$E(\zeta) = \sum_{l} z_{l} P(\zeta = z_{l}) = \sum_{l} z_{l} P(\xi + \eta = z_{l})$$

$$= \sum_{l} z_{l} \sum_{i,j:x_{i}+y_{j}=z_{l}} P(\xi = x_{i}, \eta = y_{j})$$

$$= \sum_{l} \sum_{i,j:x_{i}+y_{j}=z_{l}} (x_{i} + y_{j}) P(\xi = x_{i}, \eta = y_{j})$$

Property 2(2):
$$E(\xi + \eta) = E\xi + E\eta$$
. In fact, let $\zeta = \xi + \eta$. Then

$$E(\zeta) = \sum_{l} z_{l} P(\zeta = z_{l}) = \sum_{l} z_{l} P(\xi + \eta = z_{l})$$

$$= \sum_{l} z_{l} \sum_{i,j:x_{i}+y_{j}=z_{l}} P(\xi = x_{i}, \eta = y_{j})$$

$$= \sum_{l} \sum_{i,j:x_{i}+y_{j}=z_{l}} (x_{i} + y_{j}) P(\xi = x_{i}, \eta = y_{j}) = \sum_{i,j} (x_{i} + y_{j}) P(\xi = x_{i}, \eta = y_{j})$$

Property 2(2):
$$E(\xi + \eta) = E\xi + E\eta$$
. In fact, let $\zeta = \xi + \eta$. Then

$$E(\zeta) = \sum_{l} z_{l} P(\zeta = z_{l}) = \sum_{l} z_{l} P(\xi + \eta = z_{l})$$

$$= \sum_{l} z_{l} \sum_{i,j:x_{i}+y_{j}=z_{l}} P(\xi = x_{i}, \eta = y_{j})$$

$$= \sum_{l} \sum_{i,j:x_{i}+y_{j}=z_{l}} (x_{i} + y_{j}) P(\xi = x_{i}, \eta = y_{j}) = \sum_{i,j} (x_{i} + y_{j}) P(\xi = x_{i}, \eta = y_{j})$$

$$= \sum_{i,j} x_{i} P(\xi = x_{i}, \eta = y_{j}) + \sum_{i,j} y_{j} P(\xi = x_{i}, \eta = y_{j})$$

Property 2(2):
$$E(\xi + \eta) = E\xi + E\eta$$
.

In fact, let $\zeta = \xi + \eta$. Then

$$E(\zeta) = \sum_{l} z_{l} P(\zeta = z_{l}) = \sum_{l} z_{l} P(\xi + \eta = z_{l})$$

$$= \sum_{l} z_{l} \sum_{i,j:x_{i}+y_{j}=z_{l}} P(\xi = x_{i}, \eta = y_{j})$$

$$= \sum_{l} \sum_{i,j:x_{i}+y_{j}=z_{l}} (x_{i} + y_{j}) P(\xi = x_{i}, \eta = y_{j}) = \sum_{i,j} (x_{i} + y_{j}) P(\xi = x_{i}, \eta = y_{j})$$

$$= \sum_{i,j} x_{i} P(\xi = x_{i}, \eta = y_{j}) + \sum_{i,j} y_{j} P(\xi = x_{i}, \eta = y_{j})$$

$$= \sum_{i} x_{i} P(\xi = x_{i}) + \sum_{i} y_{j} P(\eta = y_{j}) = E\xi + E\eta.$$

3.1 Mathematical Expectation
3.1.1 Expectations for discrete random variables

Property 3 (*Monotonicity*): If $\xi \leq \eta$ and the expectations of ξ and η exist, then $E\xi \leq E\eta$.

 $E[\eta - \xi] = E\eta - E\xi$ exists.

3.1.1 Expectations for discrete random variables

Property 3 (Monotonicity): If $\xi \leq \eta$ and the expectations of ξ and η exist, then $E\xi \leq E\eta$. Proof. $\eta - \xi$ is also a discrete random variable. By Property 2. Property 3 (Monotonicity): If $\xi \leq \eta$ and the expectations of ξ and η exist, then $E\xi \leq E\eta$. Proof. $\eta - \xi$ is also a discrete random variable. By Property 2. $E[\eta - \xi] = E\eta - E\xi$ exists. On the other hand, $\eta - \xi \geq 0$. It follows that $E[\eta - \xi] \geq 0$ by the definition of the expectation. So $E\eta \geq E\xi$. Property 4 : If the expectations of ξ and η exist, and ξ and η are independent, then the expectation of $\xi\eta$ exists and

$$E[\xi\eta] = E\xi E\eta.$$

Property 4 : If the expectations of ξ and η exist, and ξ and η are independent, then the expectation of $\xi\eta$ exists and

$$E[\xi\eta] = E\xi E\eta.$$

Proof. Write $\xi = \sum_{i=1}^{\infty} x_i I\{\xi = x_i\}$ and $\eta = \sum_{j=1}^{\infty} y_j I\{\eta = y_j\}$. Let $\zeta = \xi \eta$. Then the distribution sequence of ζ is

$$P(\zeta = z_k) = \sum_{i,j: x_i y_j = z_k} P(\xi = x_i, \eta = y_j)$$

= $\sum_{i,j: x_i y_j = z_k} P(\xi = x_i) P(\eta = y_j).$

Then

$$E|\zeta| = \sum_{k} |z_{k}| P(\zeta = z_{k})$$

$$= \sum_{k} \sum_{i,j:x_{i}y_{j}=z_{k}} |z_{k}| P(\xi = x_{i}) P(\eta = y_{j})$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |x_{i}y_{j}| P(\xi = x_{i}) P(\eta = y_{j})$$

$$= \sum_{i=1}^{\infty} |x_{i}| P(\xi = x_{i}) \cdot \sum_{j=1}^{\infty} |y_{j}| P(\eta = y_{j})$$

$$= E|\xi| \cdot E|\eta|.$$

Repeating the argument yields

$$E\zeta = \sum_{k} z_{k} P(\zeta = z_{k})$$

$$= \sum_{k} \sum_{i,j:x_{i}y_{j}=z_{k}} z_{k} P(\xi = x_{i}) P(\eta = y_{j})$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_{i}y_{j} P(\xi = x_{i}) P(\eta = y_{j})$$

$$= \sum_{i=1}^{\infty} x_{i} P(\xi = x_{i}) \cdot \sum_{j=1}^{\infty} y_{j} P(\eta = y_{j})$$

$$= E\xi \cdot E\eta.$$

- 3.1 Mathematical Expectation
 - 3.1.1 Expectations for discrete random variables

Suppose that ξ follows the binomial distribution B(n, p), find $E\xi$.

Solution. Consider a Bernoulli trial and set p = P(A) and

$$\xi_i = \left\{ \begin{array}{l} 1, \quad A \text{ occurs in the } i\text{-th trial }, \\ 0, \quad A \text{ does not occur in the } i\text{-th trial }. \end{array} \right.$$

Solution. Consider a Bernoulli trial and set p = P(A) and

$$\xi_i = \left\{ \begin{array}{l} 1, \quad A \text{ occurs in the } i\text{-th trial }, \\ 0, \quad A \text{ does not occur in the } i\text{-th trial }. \end{array} \right.$$

Thus ξ_i follows 0-1 distribution, $E\xi_i = p$

Solution. Consider a Bernoulli trial and set p = P(A) and

$$\xi_i = \left\{ \begin{array}{l} 1, \quad A \text{ occurs in the } i\text{-th trial }, \\ 0, \quad A \text{ does not occur in the } i\text{-th trial }. \end{array} \right.$$

Thus ξ_i follows 0-1 distribution, $E\xi_i = p$ and $\sum_{i=1}^n \xi_i \sim B(n,p)$.

Solution. Consider a Bernoulli trial and set p = P(A) and

$$\xi_i = \left\{ \begin{array}{l} 1, \quad A \text{ occurs in the } i\text{-th trial }, \\ 0, \quad A \text{ does not occur in the } i\text{-th trial }. \end{array} \right.$$

Thus ξ_i follows 0-1 distribution, $E\xi_i = p$ and $\sum_{i=1}^n \xi_i \sim B(n,p)$. Hence $E\xi = E\left[\sum_{i=1}^n \xi_i\right] = \sum_{i=1}^n E\left[\xi_i\right] = np$.

Suppose ξ has pdf p(x). First, assume that ξ takes its values only on a finite interval [a,b].

Now partition [a, b] into smaller intervals:

$$a = x_0 < x_1 < \dots < x_n = b$$
, then

$$P(x_k < \xi \le x_{k+1}) = \int_{x_k}^{x_{k+1}} p(x) dx \approx p(x_k) \Delta x_k,$$

Define a random ξ_n as

$$\xi_n = x_k$$
, if $x_k < \xi < x_{k+1}$.

The ξ_n is discrete random variable with

$$E\xi_n = \sum_k x_k P(x_k < \xi \le x_{k+1}) \approx \sum_k x_k p(x_k) \Delta x_k.$$

As $n \to \infty$.

$$|\xi_n - \xi| \le \max_k \Delta x_k \to 0$$

and

$$\sum_{k} x_k p(x_k) \Delta x_k \to \int_a^b x p(x) dx.$$

It is natural to define

$$E\xi = \int_{a}^{b} x p(x) dx.$$

If ξ takes its values on the real line $(-\infty,\infty)$, letting $a\to -\infty, b\to \infty$, we get the following definition.

Definition

Suppose that ξ is a continuous random variable with density p(x), and

$$\int_{-\infty}^{+\infty} |x| p(x) dx < \infty,$$

then we call

$$E\xi = \int_{-\infty}^{+\infty} x p(x) dx$$

the mathematical expectation of ξ . If $\int_{-\infty}^{\infty} |x| p(x) dx = \infty$, we say that the expectation of ξ does not exist.

- 3.1 Mathematical Expectation
 - 3.1.2 Expectations of continuous random variables

Suppose $\xi \sim U[a, b]$. Calculate $E\xi$.

Solution.

Example

Suppose $\xi \sim U[a, b]$. Calculate $E\xi$.

Solution. Since ξ has the density function

$$p(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & \text{otherwise,} \end{cases}$$

Example

Suppose $\xi \sim U[a, b]$. Calculate $E\xi$.

Solution. Since ξ has the density function

$$p(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & \text{otherwise,} \end{cases}$$

$$E\xi = \int_{-\infty}^{\infty} x p(x) dx$$

Example

Suppose $\xi \sim U[a, b]$. Calculate $E\xi$.

Solution. Since ξ has the density function

$$p(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & \text{otherwise,} \end{cases}$$

$$E\xi = \int_{-\infty}^{\infty} xp(x)dx = \int_{a}^{b} x \frac{1}{b-a} dx$$

Example

Suppose $\xi \sim U[a, b]$. Calculate $E\xi$.

Solution. Since ξ has the density function

$$p(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & \text{otherwise,} \end{cases}$$

$$E\xi = \int_{-\infty}^{\infty} x p(x) dx = \int_{a}^{b} x \frac{1}{b-a} dx$$
$$= \frac{1}{2} \frac{b^{2} - a^{2}}{b-a} = \frac{a+b}{2}.$$

- 3.1 Mathematical Expectation
 - 3.1.2 Expectations of continuous random variables

Calculate the expectation of the exponential random variable ξ with parameter λ .

Solution.

Calculate the expectation of the exponential random variable ξ with parameter λ .

Solution. Since ξ has the density function

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \le 0, \end{cases}$$

Calculate the expectation of the exponential random variable ξ with parameter λ .

Solution. Since ξ has the density function

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \le 0, \end{cases}$$

$$E\xi = \int_0^\infty x\lambda e^{-\lambda x} dx = \frac{1}{\lambda}.$$

Example

Calculate the expectation of the normal random variable

$$\xi \sim N(a, \sigma^2).$$

Solution.

Calculate the expectation of the normal random variable

$$\xi \sim N(a, \sigma^2).$$

Solution. First we note

$$\int_{-\infty}^{\infty} |x| \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}} dx < \infty,$$

which implies that ξ has expectation.

Example

Calculate the expectation of the normal random variable

$$\xi \sim N(a, \sigma^2).$$

Solution. First we note

$$\int_{-\infty}^{\infty} |x| \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}} dx < \infty,$$

which implies that ξ has expectation. Also,

$$E\xi = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}} dx$$

Example

Calculate the expectation of the normal random variable $\xi \sim N(a, \sigma^2)$.

Solution. First we note

$$\int_{-\infty}^{\infty} |x| \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}} dx < \infty,$$

which implies that ξ has expectation. Also,

$$E\xi = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}} dx$$
$$= \frac{a}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dz + \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z e^{-\frac{z^2}{2}} dz$$

Example

Calculate the expectation of the normal random variable $\xi \sim N(a, \sigma^2)$.

Solution. First we note

$$\int_{-\infty}^{\infty} |x| \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}} dx < \infty,$$

which implies that ξ has expectation. Also,

$$E\xi = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}} dx$$

$$= \frac{a}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dz + \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z e^{-\frac{z^2}{2}} dz$$

$$= a.$$

- 3.1 Mathematical Expectation
 - 3.1.2 Expectations of continuous random variables

Example

Show the Cauchy distribution does not have expectation.

3.1.2 Expectations of continuous random variables

Example

Show the Cauchy distribution does not have expectation.

Proof. The Cauchy distribution has the density

$$p(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty.$$

Example

Show the Cauchy distribution does not have expectation.

Proof. The Cauchy distribution has the density

$$p(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty.$$

Since

$$\int_{-\infty}^{\infty} |x|p(x)dx = 2\int_{0}^{\infty} \frac{x}{\pi(1+x^2)}dx = \infty,$$

so the expectation does not exist.

3.1.2 Expectations of continuous random variables

Example

The expectation of the Cauchy distribution

$$p(x) = \frac{\sigma}{\pi(\sigma^2 + (x - \mu)^2)}, \quad -\infty < x < \infty.$$

does not exist.

Example

The expectation of the Cauchy distribution

$$p(x) = \frac{\sigma}{\pi(\sigma^2 + (x - \mu)^2)}, \quad -\infty < x < \infty.$$

does not exist.

$$\int_{-\infty}^{\mu} p(x)dx = \frac{1}{2} - - - - 中位数$$

一般地, 设 ξ 的分布函数是F(x), 对0 , 如果

$$P(\xi < \lambda_p) \le p \le P(\xi \le \lambda_p), \ \mathbb{P} F(\lambda_p - 0) \le p \le F(\lambda_p),$$

 $称 \lambda_p 为 F 的 p 分 位 数.$

一般地, 设 ξ 的分布函数是F(x), 对0 , 如果

$$P(\xi < \lambda_p) \le p \le P(\xi \le \lambda_p), \ \mathbb{P} F(\lambda_p - 0) \le p \le F(\lambda_p),$$

一分位数回归

3.1.3 General definition Suppose ξ has cdf F(x). Consider $-n = x_0 < x_1 < \cdots < x_{k_n} = n$, Define a random ξ_n as

$$\xi_n = x_k$$
, if $x_k < \xi \le x_{k+1}$.

The ξ_n is discrete random variable with

$$E\xi_n = \sum_k x_k P(x_k < \xi \le x_{k+1}) = \sum_k x_k \Delta F(x_k),$$

where
$$\Delta F(x_k) = F(x_{k+1}) - F(x_k)$$
. As $n \to \infty$, $|\xi_n - \xi| \le \max_k \Delta x_k \to 0$.

It is natural to define

$$E\xi = \lim \sum_{k} x_k \Delta F(x_k)$$

It is natural to define

$$E\xi = \lim_{k} \sum_{k} x_{k} \Delta F(x_{k})$$
$$= \int_{-\infty}^{\infty} x dF(x) \quad \text{(Stieltjes integral)}.$$

Definition

Suppose that ξ has distribution function F(x). If $\int_{-\infty}^{\infty} |x| dF(x) < \infty$, then we call

$$E\xi = \int_{-\infty}^{\infty} x dF(x)$$

the mathematical expectation of ξ . When $\int_{-\infty}^{\infty} |x| dF(x) = \infty$, we say that the expectation of ξ does not exist.

Remark 1 When ξ is a discrete r.v.,

$$\int_{-\infty}^{\infty} x dF(x) = \sum_{k} x_{k} [F(x_{k}) - F(x_{k} - 0)]$$
$$= \sum_{k} x_{k} P(\xi = x_{k}).$$

Remark 1 When ξ is a discrete r.v.,

$$\int_{-\infty}^{\infty} x dF(x) = \sum_{k} x_k [F(x_k) - F(x_k - 0)]$$
$$= \sum_{k} x_k P(\xi = x_k).$$

When ξ is a continuous r.v., then

$$\int_{-\infty}^{\infty} x dF(x) = \int_{-\infty}^{\infty} x d\left[\int_{-\infty}^{x} p(y) dy\right]$$
$$= \int_{-\infty}^{\infty} x p(x) dx.$$

Remark 2. $F(x) = \int_{-\infty}^{x} dF(t)$. So for any random variable ξ , $P(\xi \in B)$ can be written as the Stieltjes integral

$$P(\xi \in B) = \int_{x \in B} dF(x).$$

Note that the distribution functions of $\xi^+ = \max\{\xi,0\}$ and $\xi^- = \max\{-\xi,0\}$ are, respectively,

$$F_{\xi^{+}}(x) = \begin{cases} P(\xi \le x) = F(x), & \text{if } x \ge 0; \\ 0; & \text{if } x < 0; \end{cases}$$

$$F_{\xi^{-}}(x) = \begin{cases} P(-\xi \le x) = 1 - F(-x - 0), & \text{if } x \ge 0; \\ 0; & \text{if } x < 0. \end{cases}$$

It is easily seen that $\int_0^\infty x dF(x) = \int_0^\infty x dF_{\xi^+}(x)$,

$$\int_{-\infty}^{0} x dF(x) = \int_{-\infty}^{0} x dF(x - 0) = -\int_{0}^{\infty} x d(1 - F(-x - 0))$$
$$= -\int_{0}^{\infty} x dF_{\xi^{-}}(x).$$

It is easily seen that $\int_0^\infty x dF(x) = \int_0^\infty x dF_{\xi^+}(x)$,

$$\int_{-\infty}^{0} x dF(x) = \int_{-\infty}^{0} x dF(x - 0) = -\int_{0}^{\infty} x d(1 - F(-x - 0))$$
$$= -\int_{0}^{\infty} x dF_{\xi^{-}}(x).$$

So $E\xi$ exists if and only if both $E\xi^+$ and $E\xi^-$ exist. Further, $E\xi=E\xi^+-E\xi^-$, $E|\xi|=E\xi^++E\xi^-$.

Proposition. Let F(x) be the cdf of ξ . Then

$$E\xi = \int_0^\infty P(\xi > y)dy - \int_0^\infty P(-\xi > y)dy,$$
$$= \int_0^\infty P(\xi \ge y)dy - \int_0^\infty P(-\xi \ge y)dy.$$

Proposition. Let F(x) be the cdf of ξ . Then

$$E\xi = \int_0^\infty P(\xi > y)dy - \int_0^\infty P(-\xi > y)dy,$$

=
$$\int_0^\infty P(\xi \ge y)dy - \int_0^\infty P(-\xi \ge y)dy.$$

$$\int_0^\infty x dF(x) = \int_0^\infty \int_{0 \le y < x} dy dF(x)$$

Proposition. Let F(x) be the cdf of ξ . Then

$$E\xi = \int_0^\infty P(\xi > y)dy - \int_0^\infty P(-\xi > y)dy,$$
$$= \int_0^\infty P(\xi \ge y)dy - \int_0^\infty P(-\xi \ge y)dy.$$

$$\int_0^\infty x dF(x) = \int_0^\infty \int_{0 \le y < x} dy dF(x)$$
$$= \int_0^\infty dy \int_{y < x} dF(x)$$

Proposition. Let F(x) be the cdf of ξ . Then

$$E\xi = \int_0^\infty P(\xi > y)dy - \int_0^\infty P(-\xi > y)dy,$$
$$= \int_0^\infty P(\xi \ge y)dy - \int_0^\infty P(-\xi \ge y)dy.$$

$$\int_0^\infty x dF(x) = \int_0^\infty \int_{0 \le y < x} dy dF(x)$$
$$= \int_0^\infty dy \int_{y < x} dF(x)$$
$$= \int_0^\infty P(\xi > y) dy.$$

3.1 Mathematical Expectation 3.1.3 General definition

Similarly,

$$\int_{-\infty}^{0} x dF(x) = -\int_{-\infty}^{0} \int_{x < y \le 0} dy dF(x)$$

3.1 Mathematical Expectation 3.1.3 General definition

Similarly,

$$\int_{-\infty}^{0} x dF(x) = -\int_{-\infty}^{0} \int_{x < y \le 0} dy dF(x)$$
$$= -\int_{-\infty}^{0} dy \int_{x < y} dF(x)$$

Similarly,

$$\int_{-\infty}^{0} x dF(x) = -\int_{-\infty}^{0} \int_{x < y \le 0} dy dF(x)$$
$$= -\int_{-\infty}^{0} dy \int_{x < y} dF(x)$$
$$= -\int_{-\infty}^{0} P(\xi < y) dy$$

Similarly,

$$\int_{-\infty}^{0} x dF(x) = -\int_{-\infty}^{0} \int_{x < y \le 0} dy dF(x)$$

$$= -\int_{-\infty}^{0} dy \int_{x < y} dF(x)$$

$$= -\int_{-\infty}^{0} P(\xi < y) dy$$

$$= -\int_{0}^{\infty} P(-\xi > y) dy.$$

The first equality is proved. The proof of the second equality is similarly.