TEST CODE: PMB

BOOKLET No. Afternoon

Duration of test: 2 hours

Write your *registration number, test code, booklet no.,* etc. in the appropriate places on your ANSWER BOOKLET.

This test has questions arranged in two groups.

Each group consists of 6 questions.

You need to answer 4 questions FROM EACH GROUP.

Each question carries 10 marks. Total marks = 80.

ALL ROUGH WORK MUST BE DONE ON THIS BOOKLET
AND/OR ON YOUR ANSWER BOOKLET.
CALCULATORS ARE NOT ALLOWED.

STOP! WAIT FOR THE SIGNAL TO START

INSTRUCTIONS FOR CANDIDATES

- Please answer FOUR questions from EACH group.
- Each question carries 10 marks. Total marks: 80.
- \mathbb{R} , \mathbb{C} , \mathbb{Q} and \mathbb{N} denote respectively the set of all real numbers, the set of all complex numbers, the set of all rational numbers and the set of all positive integers.

Group A

- 1. Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers defined as follows: $x_1=1$ and for all $n\in\mathbb{N}$, $x_{n+1}=(3+2x_n)/(3+x_n)$.
 - (a) Show that there exists $\lambda \in (0,1)$ such that for all $n \geq 2$,

$$|x_{n+1} - x_n| \le \lambda |x_n - x_{n-1}|.$$

- (b) Prove that $\lim_{n\to\infty} x_n$ exists and find its value.
- 2. Examine, with justification, whether the following limit exists:

$$\lim_{N \to \infty} \int_{N}^{e^{N}} x e^{-x^{2016}} dx.$$

If the limit exists, then find its value.

- 3. Does there exist a continuous function $f : \mathbb{R} \to \mathbb{R}$ that takes every real value exactly twice? Justify your answer.
- 4. Suppose $f:[0,1]\to\mathbb{R}$ is a bounded function such that f is Riemann integrable on [a,1] for every $a\in(0,1)$. Is f Riemann integrable on [0,1]? Justify your answer. **[P. T. O.]**

5. Let $h: \mathbb{R}^2 \to \mathbb{R}^2$ be a surjective function such that

$$||h(\mathbf{x}) - h(\mathbf{y})|| \ge 3||\mathbf{x} - \mathbf{y}||$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$. Here $\|\cdot\|$ denotes the Euclidean norm on \mathbb{R}^2 . Show that the image of every open set (in \mathbb{R}^2) under the map h is an open set (in \mathbb{R}^2).

6. Suppose that $g:[0,1]\times[0,1]\to\mathbb{R}$ is a continuous function and

$$D = \{(x, y) \in \mathbb{R}^2 : 0 < x < y < 1\}.$$

Define a new function $G:[0,1]\times[0,1]\to\mathbb{R}$ by

$$G(x,v) = \int_0^x g(u,v)du, \quad (x,v) \in [0,1] \times [0,1].$$

Now define another function $\psi: D \to \mathbb{R}$ by

$$\psi(x,y) = \int_{x}^{y} G(x,v)dv, \quad (x,y) \in D.$$

Does $\frac{\partial \psi}{\partial y}$ exist at every point in D? Justify your answer.

Group B

- 7. Let *A* be a 2×2 matrix with complex entries. Suppose that det(A) = 0 and $trace(A) \neq 0$. Show the following:
 - (a) $Kernel(A) \cap Range(A) = \{0\}.$
 - (b) $\mathbb{C}^2 = \text{span}(\text{Kernel}(A) \cup \text{Range}(A)).$
- 8. Suppose that B is a nonzero 2×2 matrix with complex entries. Prove that $B^2 = 0$ if and only if the B and the matrix $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ are similar.
- 9. Let S_{17} be group of all permutations of 17 distinct symbols. How many subgroups of order 17 does S_{17} have? Justify your answer.

- 10. Suppose that H and K are two subgroups of a group G. Assume that [G:H]=2 and K is not a subgroup of H. Show that HK=G.
- 11. For any ring R, let R[X] denote the ring of all polynomials with indeterminate X and coefficients from R. Examine, with justification, whether the following pairs of rings are isomorphic:
 - (a) $\mathbb{R}[X]$ and $\mathbb{C}[X]$.
 - (b) $\mathbb{Q}[X]/(X^2-X)$ and $\mathbb{Q}\times\mathbb{Q}$.
- 12. For any $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, let $\mathbb{Q}(\alpha)$ be the smallest subfield of \mathbb{R} containing $\mathbb{Q} \cup \{\alpha\}$. Find a basis for the vector space $\mathbb{Q}(\sqrt{3} + \sqrt{5})$ over $\mathbb{Q}(\sqrt{15})$.