Введение в искусственный интеллект. Современное компьютерное зрение Семинар 8. Генеративные состязательные сети

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем

13 апреля 2021 г.

План семинара

Вывод формул!

План семинара

- Вывод формул!
- 2 Условные состязательные генеративные сети

• Пусть
$$p = (p_1, \dots, p_n), \quad \sum_{i=1}^n p_i = 1, 0 \le p_i \le 1.$$

- Пусть $p = (p_1, \dots, p_n), \quad \sum_{i=1}^n p_i = 1, 0 \le p_i \le 1.$
- Энтропия $H(p) = -\sum_{i=1}^n p_i \log p_i$

- Пусть $p = (p_1, \dots, p_n), \quad \sum_{i=1}^n p_i = 1, 0 \le p_i \le 1.$
- Энтропия $H(p) = -\sum_{i=1}^{n} p_i \log p_i$
- Унитарное кодирование для класса y_c : $y_{one-hot} = (0, \dots, 1, \dots, 0), \quad y_i = 0, i \neq y_c, \quad y_i = 1, i = y_c$

- Пусть $p = (p_1, \dots, p_n), \quad \sum_{i=1}^n p_i = 1, 0 \le p_i \le 1.$
- Энтропия $H(p) = -\sum_{i=1}^{n} p_i \log p_i$
- Унитарное кодирование для класса y_c : $y_{one-hot} = (0, \dots, 1, \dots, 0), \quad y_i = 0, i \neq y_c, \quad y_i = 1, i = y_c$
- ullet В этом случае для $i=y_c$: $p_i \log p_i = 1 \cdot \log 1 = 1 \cdot 0 = 0$

- Пусть $p = (p_1, \dots, p_n), \quad \sum_{i=1}^n p_i = 1, 0 \le p_i \le 1.$
- Энтропия $H(p) = -\sum_{i=1}^{n} p_i \log p_i$
- Унитарное кодирование для класса y_c : $y_{one-hot} = (0, \dots, 1, \dots, 0), \quad y_i = 0, i \neq y_c, \quad y_i = 1, i = y_c$
- ullet В этом случае для $i=y_c$: $p_i \log p_i = 1 \cdot \log 1 = 1 \cdot 0 = 0$
- А для $i \neq y_c$ воспользуемся правилом Лопиталя: $p_i \log p_i = \lim_{x \to 0} x \log x = \lim_{x \to 0} \frac{\log x}{1/x} = \lim_{x \to 0} \frac{(\log x)'}{(1/x)'} = \lim_{x \to 0} \frac{1/x}{-1/x^2} = -\lim_{x \to 0} x = 0$

- Пусть $p = (p_1, \dots, p_n), \quad \sum_{i=1}^n p_i = 1, 0 \le p_i \le 1.$
- Энтропия $H(p) = -\sum_{i=1}^{n} p_i \log p_i$
- Унитарное кодирование для класса y_c : $y_{one-hot} = (0, \dots, 1, \dots, 0), \quad y_i = 0, i \neq y_c, \quad y_i = 1, i = y_c$
- ullet В этом случае для $i=y_c$: $p_i \log p_i = 1 \cdot \log 1 = 1 \cdot 0 = 0$
- А для $i \neq y_c$ воспользуемся правилом Лопиталя: $p_i \log p_i = \lim_{x \to 0} x \log x = \lim_{x \to 0} \frac{\log x}{1/x} = \lim_{x \to 0} \frac{(\log x)'}{(1/x)'} = \lim_{x \to 0} \frac{1/x}{-1/x^2} = -\lim_{x \to 0} x = 0$
- ullet Таким образом, разобрали все случаи, и $H(p) = -\sum_{i=1}^n p_i \log p_i = 0$.

- ullet Пусть $p = (p_1, \dots, p_n), \quad \sum_{i=1}^n p_i = 1, 0 \le p_i \le 1,$
- $q = (q_1, \ldots, q_n), \quad \sum_{i=1}^n q_i = 1, 0 \le q_i \le 1.$

- ullet Пусть $p = (p_1, \dots, p_n), \quad \sum_{i=1}^n p_i = 1, 0 \le p_i \le 1,$
- $q = (q_1, \ldots, q_n), \quad \sum_{i=1}^n q_i = 1, 0 \le q_i \le 1.$

- Пусть $p = (p_1, \dots, p_n), \quad \sum_{i=1}^n p_i = 1, 0 \le p_i \le 1,$
- $q = (q_1, \ldots, q_n), \quad \sum_{i=1}^n q_i = 1, 0 \le q_i \le 1.$

Неравенство Гиббса

 $\sum_{i=1}^{n} p_i \log p_i \ge \sum_{i=1}^{n} p_i \log q_i$ для любых распределений p,q, при этом равенство достигается только при p=q.

Доказательство.

ullet При x>0 имеем $\log x \leq x-1$, причем равенство достигается только при x=1.

- Пусть $p = (p_1, \dots, p_n), \quad \sum_{i=1}^n p_i = 1, 0 \le p_i \le 1,$
- $q = (q_1, \ldots, q_n), \quad \sum_{i=1}^n q_i = 1, 0 \le q_i \le 1.$

Неравенство Гиббса

 $\sum_{i=1}^{n} p_{i} \log p_{i} \geq \sum_{i=1}^{n} p_{i} \log q_{i}$ для любых распределений p,q, при этом равенство достигается только при p=q.

- При x>0 имеем $\log x \le x-1$, причем равенство достигается только при x=1.
- Пусть I множество индексов, в которых $p_i > 0$.

- Пусть $p = (p_1, \dots, p_n), \quad \sum_{i=1}^n p_i = 1, 0 \le p_i \le 1,$
- $q = (q_1, \ldots, q_n), \quad \sum_{i=1}^n q_i = 1, 0 \le q_i \le 1.$

Неравенство Гиббса

 $\sum_{i=1}^{n} p_i \log p_i \ge \sum_{i=1}^{n} p_i \log q_i$ для любых распределений p,q, при этом равенство достигается только при p=q.

Доказательство.

- При x>0 имеем $\log x \le x-1$, причем равенство достигается только при x=1.
- ullet Пусть I множество индексов, в которых $p_i > 0$.
- Тогда $\sum_{i \in I} p_i \log q_i \sum_{i \in I} p_i \log p_i = \sum_{i \in I} p_i \log \frac{q_i}{p_i} \le \sum_{i \in I} p_i (\frac{q_i}{p_i} 1) = \sum_{i \in I} q_i \sum_{i \in I} p_i \le 1 \sum_{i \in I} p_i = 1 1 = 0$

Доказательство.

- В случае $p_i = 0$:
 - $p_i \log p_i = 0$ (см. ранее),

- В случае $p_i = 0$:
 - $p_i \log p_i = 0$ (см. ранее),
 - ullet Тогда $\sum_{i:p_i=0}p_i\log q_i-\sum_{i:p_i=0}p_i\log p_i=\sum_{i:p_i=0}p_i\log q_i\leq\sum_{i:p_i=0}p_i\log 1=0.$

- В случае $p_i = 0$:
 - $p_i \log p_i = 0$ (см. ранее),
 - ullet Тогда $\sum_{i:p_i=0}p_i\log q_i-\sum_{i:p_i=0}p_i\log p_i=\sum_{i:p_i=0}p_i\log q_i\leq\sum_{i:p_i=0}p_i\log 1=0.$
- ullet Таким образом, $\sum_{i=1}^n p_i \log p_i \geq \sum_{i=1}^n p_i \log q_i$, при этом равенство возможно только при $rac{q_i}{p_i}=1$ в случае $i\in I$,

- В случае $p_i = 0$:
 - $p_i \log p_i = 0$ (см. ранее),
 - ullet Тогда $\sum_{i:p_i=0}p_i\log q_i-\sum_{i:p_i=0}p_i\log p_i=\sum_{i:p_i=0}p_i\log q_i\leq\sum_{i:p_i=0}p_i\log 1=0.$
- ullet Таким образом, $\sum_{i=1}^n p_i \log p_i \geq \sum_{i=1}^n p_i \log q_i$, при этом равенство возможно только при $rac{q_i}{p_i}=1$ в случае $i\in I$,
- ullet Но тогда и $p_i=q_i=0,\quad i\notin I.$ ■

Доказательство.

- В случае $p_i = 0$:
 - $p_i \log p_i = 0$ (см. ранее),
 - ullet Тогда $\sum_{i:p_i=0}p_i\log q_i-\sum_{i:p_i=0}p_i\log p_i=\sum_{i:p_i=0}p_i\log q_i\leq\sum_{i:p_i=0}p_i\log 1=0.$
- ullet Таким образом, $\sum_{i=1}^n p_i \log p_i \geq \sum_{i=1}^n p_i \log q_i$, при этом равенство возможно только при $rac{q_i}{p_i}=1$ в случае $i\in I$,
- ullet Но тогда и $p_i=q_i=0,\quad i
 otin I. <math>\blacksquare$

Следствие. Максимальная энтропия для $p=(p_1,\ldots,p_n), \quad \sum_{i=1}^n p_i=1, 0 \leq p_i \leq 1$ равна: $H(p)=-\sum_{i=1}^n p_i \log p_i \leq -\sum_{i=1}^n p_i \log \frac{1}{n}=\log n \sum_{i=1}^n p_i=\log n.$

Функция близости Кульбака-Лейблера

Определение

Функция близости (divergence) двух распределений, заданных на одном пространстве функций распределения S — это функция $D(\cdot||\cdot): S \times S \to \mathbb{R}$, такая что:

- ullet $D(P||Q) \geq 0$ для всех $P,Q \in S$
- $D(P||Q) = 0 \Leftrightarrow P = Q$

Функция близости Кульбака-Лейблера

Определение

Функция близости (divergence) двух распределений, заданных на одном пространстве функций распределения S — это функция $D(\cdot||\cdot): S \times S \to \mathbb{R}$, такая что:

- ullet $D(P||Q) \geq 0$ для всех $P,Q \in S$
- $D(P||Q) = 0 \Leftrightarrow P = Q$

Функция близости Кульбака-Лейблера

$$D_{KL}(P||Q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

Функция близости Кульбака-Лейблера

Определение

Функция близости (divergence) двух распределений, заданных на одном пространстве функций распределения S — это функция $D(\cdot||\cdot):S\times S\to \mathbb{R}$, такая что:

- ullet $D(P||Q) \geq 0$ для всех $P,Q \in S$
- $D(P||Q) = 0 \Leftrightarrow P = Q$

Функция близости Кульбака-Лейблера

$$D_{KL}(P||Q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

Доказательство. $D_{KL}(P||Q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)} = \sum_{x} p(x) \log p(x) - \sum_{x} p(x) \log q(x) \ge 0$, при этом равенство достигается только при P = Q (следствие из неравенства Гиббса).

Метрика на основе функции близости Йенсена-Шеннона (1)

Функция близости Йенсена-Шеннона

$$D_{JS}(P||Q) = rac{1}{2}D_{KL}(P||M) + rac{1}{2}D_{KL}(Q||M)$$
, где $M = rac{1}{2}(P+Q)$.

Метрика на основе функции близости Йенсена-Шеннона (1)

Функция близости Йенсена-Шеннона

$$D_{JS}(P||Q) = rac{1}{2}D_{KL}(P||M) + rac{1}{2}D_{KL}(Q||M)$$
, где $M = rac{1}{2}(P+Q)$.

Определение метрики

Функция $d:X imes X o \mathbb{R}$ называется метрикой на пространстве X, если:

- d(x,y) = d(y,x),
- $d(x,z) \leq d(x,y) + d(y,z).$

Метрика на основе функции близости Йенсена-Шеннона (1)

Функция близости Йенсена-Шеннона

$$D_{JS}(P||Q) = rac{1}{2}D_{KL}(P||M) + rac{1}{2}D_{KL}(Q||M)$$
, где $M = rac{1}{2}(P+Q)$.

Определение метрики

Функция $d:X imes X o \mathbb{R}$ называется метрикой на пространстве X, если:

- **2** d(x, y) = d(y, x),
- $d(x,z) \leq d(x,y) + d(y,z).$

Теорема

$$\sqrt{D_{JS}(P||Q)}$$
 — метрика.

Метрика на основе функции близости Йенсена-Шеннона (2)

$$igoplus \sqrt{D_{JS}(P||Q)}=0\Leftrightarrow D_{JS}(P||Q)=0\Leftrightarrow D_{KL}(P||M)=D_{KL}(Q||M)=0, P=Q=rac{1}{2}(P+Q)$$
 (из свойств функции близости D_{KL});

¹Endres D. M., Schindelin J. E. "A new metric for probability distributions". 2003.

Метрика на основе функции близости Йенсена-Шеннона (2)

- $igoplus \sqrt{D_{JS}(P||Q)}=0\Leftrightarrow D_{JS}(P||Q)=0\Leftrightarrow D_{KL}(P||M)=D_{KL}(Q||M)=0, P=Q=rac{1}{2}(P+Q)$ (из свойств функции близости D_{KL});
- ② $\sqrt{D_{JS}(P||Q)} = \sqrt{\frac{1}{2}D_{KL}(P||M) + \frac{1}{2}D_{KL}(Q||M)} = \sqrt{\frac{1}{2}D_{KL}(Q||M) + \frac{1}{2}D_{KL}(P||M)} = \sqrt{D_{JS}(Q||P)};$

¹Endres D. M., Schindelin J. E. "A new metric for probability distributions". 2003.

Метрика на основе функции близости Йенсена-Шеннона (2)

- $igcup_{JS}(P||Q)=0\Leftrightarrow D_{JS}(P||Q)=0\Leftrightarrow D_{KL}(P||M)=D_{KL}(Q||M)=0, P=Q=rac{1}{2}(P+Q)$ (из свойств функции близости D_{KL});
- ② $\sqrt{D_{JS}(P||Q)} = \sqrt{\frac{1}{2}D_{KL}(P||M) + \frac{1}{2}D_{KL}(Q||M)} = \sqrt{\frac{1}{2}D_{KL}(Q||M) + \frac{1}{2}D_{KL}(P||M)} = \sqrt{D_{JS}(Q||P)};$
- Ф А с неравенством треугольника здесь все действительно сложнее. За деталями см. дополнительную литературу
 ¹. ■

¹Endres D. M., Schindelin J. E. "A new metric for probability distributions". 2003.

GAN и оптимальное распределение D/G(1)

Если обозначить за p_g — распределение G(z), то оригинальную функцию потерь

$$\min_{G} \max_{D} V(D,G) = \min_{G} \max_{D} [\mathbb{E}_{x \sim p_{data}} \log D(x) + \mathbb{E}_{z \sim p_{z}} \log (1 - D(G(z)))]$$

можно переписать как

Если обозначить за p_g — распределение G(z), то оригинальную функцию потерь

$$\min_{G} \max_{D} V(D,G) = \min_{G} \max_{D} [\mathbb{E}_{x \sim p_{data}} \log D(x) + \mathbb{E}_{z \sim p_{z}} \log (1 - D(G(z)))]$$

можно переписать как

$$\min_{G} \max_{D} V(D,G) = \min_{G} \max_{D} [\mathbb{E}_{x \sim p_{data}} \log D(x) + \mathbb{E}_{x \sim p_g} \log (1 - D(x))]$$

GAN и оптимальное распределение D/G(1)

Если обозначить за p_g — распределение G(z), то оригинальную функцию потерь

$$\min_{G} \max_{D} V(D,G) = \min_{G} \max_{D} [\mathbb{E}_{x \sim p_{data}} \log D(x) + \mathbb{E}_{z \sim p_{z}} \log (1 - D(G(z)))]$$

можно переписать как

$$\min_{G} \max_{D} V(D,G) = \min_{G} \max_{D} [\mathbb{E}_{x \sim p_{data}} \log D(x) + \mathbb{E}_{x \sim p_g} \log (1-D(x))]$$

Теорема

$$\operatorname{arg\,max}_D V(D,G) = D_G = rac{p_{data}}{p_{data} + p_g}$$
 .

GAN и оптимальное распределение D/G(1)

Если обозначить за p_g — распределение G(z), то оригинальную функцию потерь

$$\min_{G} \max_{D} V(D,G) = \min_{G} \max_{D} [\mathbb{E}_{x \sim p_{data}} \log D(x) + \mathbb{E}_{z \sim p_{z}} \log (1 - D(G(z)))]$$

можно переписать как

$$\min_{G} \max_{D} V(D,G) = \min_{G} \max_{D} [\mathbb{E}_{x \sim p_{data}} \log D(x) + \mathbb{E}_{x \sim p_g} \log (1 - D(x))]$$

Теорема

$$\operatorname{arg\,max}_D V(D,G) = D_G = rac{p_{data}}{p_{data} + p_g}.$$

Доказательство.
$$V(D,G)=\mathbb{E}_{\mathbf{x}\sim p_{data}}\log D(\mathbf{x})+\mathbb{E}_{\mathbf{x}\sim p_{\mathbf{g}}}\log(1-D(\mathbf{x}))=\int_{\mathbf{x}}(p_{data}(\mathbf{x})\log D(\mathbf{x})+p_{\mathbf{g}}(\mathbf{x})\log(1-D(\mathbf{x})))d\mathbf{x}$$

Теорема

$$\operatorname{arg\,max}_D V(D,G) = D_G = rac{p_{data}}{p_{data} + p_g}.$$

Доказательство. Найдем точку экстремума функции $f(s) = p_{data} \log s + p_g \log (1-s)$:

Теорема

$$\operatorname{arg\,max}_D V(D,G) = D_G = \frac{p_{data}}{p_{data} + p_g}.$$

Доказательство. Найдем точку экстремума функции $f(s) = p_{data} \log s + p_g \log (1-s)$:

- $\bullet f'(s) = \frac{p_{data}}{s} \frac{p_g}{1-s},$
- $f'(s) = 0 \Leftrightarrow p_{data}(1-s) p_g s = 0 \Leftrightarrow s = \frac{p_{data}}{p_{data} + p_g}$.

Теорема

$$\operatorname{arg\,max}_D V(D,G) = D_G = rac{p_{data}}{p_{data} + p_g}.$$

Доказательство. Найдем точку экстремума функции $f(s) = p_{data} \log s + p_g \log (1-s)$:

- $\bullet f'(s) = \frac{p_{data}}{s} \frac{p_g}{1-s},$
- $f'(s) = 0 \Leftrightarrow p_{data}(1-s) p_g s = 0 \Leftrightarrow s = \frac{p_{data}}{p_{data} + p_g}$.

При этом $s=\frac{p_{data}}{p_{data}+p_g}$ — точка максимума функции f(s) (можно проверить, например, что $\lim_{s\to 0+}f'(s)>0$, $\lim_{s\to 1-}f'(s)<0$).

Теорема

$$\operatorname{arg\,max}_D V(D,G) = D_G = rac{p_{data}}{p_{data} + p_g}.$$

Доказательство. Найдем точку экстремума функции $f(s) = p_{data} \log s + p_g \log (1-s)$:

•
$$f'(s) = \frac{p_{data}}{s} - \frac{p_g}{1-s}$$
,

•
$$f'(s) = 0 \Leftrightarrow p_{data}(1-s) - p_g s = 0 \Leftrightarrow s = \frac{p_{data}}{p_{data} + p_g}$$
.

При этом $s=\frac{p_{data}}{p_{data}+p_g}$ — точка максимума функции f(s) (можно проверить, например, что $\lim_{s\to 0+}f'(s)>0, \lim_{s\to 1-}f'(s)<0$).

Таким образом,
$$\arg\max_D V(D,G) = D_G = \frac{p_{data}}{p_{data} + p_g}$$
.

GAN и оптимальное распределение D/G (3)

Пусть
$$C(G) = \max_D V(D, G)$$

Теорема

 $arg min_G C(G) = p_{data}, C(p_{data}) = -\log 4.$

GAN и оптимальное распределение D/G (3)

Пусть
$$C(G) = \max_D V(D, G)$$

Теорема

 $arg min_G C(G) = p_{data}, C(p_{data}) = -\log 4.$

$$\begin{array}{l} \bullet \ \ C(G) = \mathbb{E}_{x \sim p_{data}} \log D_G(x) + \mathbb{E}_{x \sim p_g} \log (1 - D_G(x)) = \\ \mathbb{E}_{x \sim p_{data}} \log \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} + \mathbb{E}_{x \sim p_g} \log \frac{p_g(x)}{p_{data}(x) + p_g(x)}, \end{array}$$

GAN и оптимальное распределение D/G (3)

Пусть
$$C(G) = \max_D V(D, G)$$

Теорема

$$arg min_G C(G) = p_{data}, C(p_{data}) = -\log 4.$$

$$\bullet \ \ C(G) = \mathbb{E}_{x \sim p_{data}} \log D_G(x) + \mathbb{E}_{x \sim p_g} \log (1 - D_G(x)) = \\ \mathbb{E}_{x \sim p_{data}} \log \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} + \mathbb{E}_{x \sim p_g} \log \frac{p_g(x)}{p_{data}(x) + p_g(x)},$$

•
$$\mathbb{E}_{\mathbf{x} \sim p_{data}} \log \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})} = \mathbb{E}_{\mathbf{x} \sim p_{data}} \log \frac{p_{data}(\mathbf{x})}{\frac{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}{2}} - \mathbb{E}_{\mathbf{x} \sim p_{data}} \log 2 = D_{KL}(p_{data}||\frac{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}{2}) - \log 2,$$

GAN и оптимальное распределение D/G (3)

Пусть
$$C(G) = \max_D V(D, G)$$

Теорема

$$arg min_G C(G) = p_{data}, C(p_{data}) = -\log 4.$$

- $\bullet \ \ C(G) = \mathbb{E}_{x \sim p_{data}} \log D_G(x) + \mathbb{E}_{x \sim p_g} \log (1 D_G(x)) = \\ \mathbb{E}_{x \sim p_{data}} \log \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} + \mathbb{E}_{x \sim p_g} \log \frac{p_g(x)}{p_{data}(x) + p_g(x)},$
- $\mathbb{E}_{x \sim p_{data}} \log \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} = \mathbb{E}_{x \sim p_{data}} \log \frac{p_{data}(x)}{\frac{p_{data}(x) + p_g(x)}{2}} \mathbb{E}_{x \sim p_{data}} \log 2 = D_{KL}(p_{data}||\frac{p_{data}(x) + p_g(x)}{2}) \log 2,$
- $\mathbb{E}_{x \sim p_g} \log \frac{p_g(x)}{p_{data}(x) + p_g(x)} = D_{KL}(p_g || \frac{p_{data}(x) + p_g(x)}{2}) \log 2$,

GAN и оптимальное распределение D/G (3)

Пусть
$$C(G) = \max_D V(D, G)$$

Теорема

 $arg min_G C(G) = p_{data}, C(p_{data}) = -\log 4.$

- $\bullet \ C(G) = \mathbb{E}_{x \sim p_{data}} \log D_G(x) + \mathbb{E}_{x \sim p_g} \log(1 D_G(x)) = \\ \mathbb{E}_{x \sim p_{data}} \log \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} + \mathbb{E}_{x \sim p_g} \log \frac{p_g(x)}{p_{data}(x) + p_g(x)},$
- $\mathbb{E}_{\mathbf{x} \sim p_{data}} \log \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})} = \mathbb{E}_{\mathbf{x} \sim p_{data}} \log \frac{p_{data}(\mathbf{x})}{\frac{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}{2}} \mathbb{E}_{\mathbf{x} \sim p_{data}} \log 2 = D_{KL}(p_{data}||\frac{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}{2}) \log 2,$
- $\mathbb{E}_{x \sim p_g} \log \frac{p_g(x)}{p_{data}(x) + p_g(x)} = D_{KL}(p_g||\frac{p_{data}(x) + p_g(x)}{2}) \log 2$,
- $\bullet \Rightarrow C(G) = D_{\mathsf{KL}}(p_{\mathsf{data}}||\frac{p_{\mathsf{data}}(\mathsf{x}) + p_{\mathsf{g}}(\mathsf{x})}{2}) + D_{\mathsf{KL}}(p_{\mathsf{g}}||\frac{p_{\mathsf{data}}(\mathsf{x}) + p_{\mathsf{g}}(\mathsf{x})}{2}) 2\log 2,$

GAN и оптимальное распределение D/G (4)

Теорема

$$arg min_G C(G) = p_{data}, C(p_{data}) = -\log 4.$$

Доказательство.

$$ullet$$
 \Rightarrow $C(G) = 2D_{JS}(p_{data}||p_g) - \log 4 \ge - \log 4$,

12 / 14

GAN и оптимальное распределение D/G (4)

Теорема

$$arg min_G C(G) = p_{data}, C(p_{data}) = -\log 4.$$

- $\bullet \Rightarrow C(G) = 2D_{JS}(p_{data}||p_g) \log 4 \ge -\log 4,$
- ullet При этом $C(G) = -\log 4 \Leftrightarrow D_{JS}(p_{data}||p_g) = 0 \Leftrightarrow p_{data} = p_g$. lacksquare

GAN и оптимальное распределение D/G (4)

Теорема

$$arg min_G C(G) = p_{data}, C(p_{data}) = -\log 4.$$

Доказательство.

- $\Rightarrow C(G) = 2D_{JS}(p_{data}||p_g) \log 4 \ge \log 4$,
- ullet При этом $C(G) = -\log 4 \Leftrightarrow D_{JS}(p_{data}||p_g) = 0 \Leftrightarrow p_{data} = p_g$. $lacksymbol{\blacksquare}$

Замечание. Таким образом, генератор G будет пытаться полностью повторять распределение исходных данных: $p_g = p_{data}$.

$$\min_{G} \max_{D} [\mathbb{E}_{x \sim p_{data}, y \sim p_{y}} \log D(x, y) + \mathbb{E}_{z \sim p_{z}, y \sim p_{y}} \log (1 - D(G(z, y), y))]$$

$$\min_{G} \max_{D} [\mathbb{E}_{x \sim p_{data}, y \sim p_{y}} \log D(x, y) + \mathbb{E}_{z \sim p_{z}, y \sim p_{y}} \log (1 - D(G(z, y), y))]$$

$$\min_{G} \max_{D} [\mathbb{E}_{x \sim p_{data}, y \sim p_{y}} \log D(x, y) + \mathbb{E}_{z \sim p_{z}, y \sim p_{y}} \log (1 - D(G(z, y), y))]$$

$$\min_{G} \max_{D} [\mathbb{E}_{x \sim p_{data}, y \sim p_{y}} \log D(x, y) + \mathbb{E}_{z \sim p_{z}, y \sim p_{y}} \log (1 - D(G(z, y), y))]$$

Ссылки для любознательных:

Image2Image Translation от Д. Михайлова

$$\min_{G} \max_{D} [\mathbb{E}_{x \sim p_{data}, y \sim p_{y}} \log D(x, y) + \mathbb{E}_{z \sim p_{z}, y \sim p_{y}} \log (1 - D(G(z, y), y))]$$

Ссылки для любознательных:

- 1 Image2Image Translation от Д. Михайлова
- 2 Image Generation от А. Иванюты

Спасибо за внимание!

