Valores e Vectores Próprios

Def.: Seja A ume metrit que drada. Se um vector n ≠ 0 e um múnio ro à são tais que Ax = λ μ, entro dit-re que χ ε ractor própus de A associado ao valor própuso λ.

Ex:
$$A = \begin{pmatrix} 1 & -1 \\ -2 & 0 \end{pmatrix}$$
 e $M = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ depende pur $\begin{pmatrix} 1 & -1 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

i. 4., $AM = 2M$ logo $M = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ e'vector propries de A associado ao valor proprio 2 de A

Mas, a un valor prépris estro associados aperros a un valor próprio estro associados ume infinidede de de vertous préprios.

Se χ i vector próprio de A associado ao valor próprio λ , entro $\chi \neq \varrho$ e $A\chi = \lambda \chi$. That, considerando $\alpha \chi$ $(\alpha \neq 0)$ turne $A(\alpha \chi) = \alpha(\chi) = \alpha(\lambda \chi) = \lambda(\alpha \chi)$, ou reje, $\alpha \chi$ i terribair vector próprio de A associado ao valor próprio λ .

de A se ésoise det (A- à I) = 0

sem: à el valor proprio de A sse

A $\chi = \lambda \chi$ pare algum $\chi \neq 0$ $A \chi - \lambda \chi = 0$ $(A - \lambda \chi) \chi = 0 \quad \text{fore algum } \chi \neq 0$

Sistema homogénio com soluções alein de mula