Esteban

MTH 230 Fall '24 HW 1

1) a. Q -> P

$$d \in Q \to P$$

2)	$ \begin{array}{c c} P & Q & P \rightarrow Q & P \rightarrow Q \\ \hline T & T & T \end{array} $	
	T T T T T T T T	
	FT T F T	

Hence Picyle's law is a tautology

_	Q	1	P.>	0 ($2 \rightarrow R$	(d) n(e)	(9)	
T	Ī	T	T		T	T	(d)1(e)1	a) (g) > (e)
T .	T	F	T	1	F	F		T
	F	I	F	T	-	E	F	// T / /
F .	F	F	F	T		F	5-	T
2.	T	F	T	T		T	F	7
= .	F	T	T	T		F.	F	T
=		'					į –	T
.)	F	1,F	1	1		T	10	TT

Hence $(P \rightarrow Q) \land (D \rightarrow R) \land P) \rightarrow R$ is a tautology

Estebon leorales MTH 230 Fall '24 3.) conta direct of: $((P \rightarrow Q) \land (Q \rightarrow R) \land P) \rightarrow R$ We assume that (P >Q) 1 (Q >R)1P holds a True truth value, from this we can deduce that P must contain a True Truth value from the condunction. In order to make the first conjunct, (P -> Q), Q must be True by assumption by Similar logic, R me cannot be false as it would make the second conjunct Jabe so R is True, Thus, an implication where the precedent and antecedent a True 15 also True by def. 4) Ytap for to Apat for to Apyt Tfor fool person 'p' at time t 5,) (a,) $\forall x, x \in \text{person}, 7 H(x) \rightarrow R(x)$ Ha); person x Studies History R(x): person x repents History (b) 3x, 7H(x) 1 7R(x) using the equivalent expression of ; x → B = 7d v B and demorgen's law 7(72 VB) = 017B 6.) lim f(x) = Le R: <=> 420, 75,0 s.t. 0 < 1 × - × 1 < S ⇒ 1 fix) - 21 < € f(x) is cts. at x_0 iff (a) Def. $\lim_{x\to 0} f(x) = f(0) = x_0$ $\lim_{x\to 0} f(x) = \lim_{x\to 0} f$ Xedom (fx1) 5 lim f(x) = f(x) | In order to show that f was not continues, I would use the negation assol show that 16 value would be True thus making the original Statement false, and hence our function would not be continues. b) lim x =0, by def, 4870, 28,0 tx, BC1x-0165 => 10 x-0168

X >0 Pick &= 1/2 asbitrarily, OCIXICS => IXICVZ, If S= Vz or Ress them

our Statement is tree, thus S:= & and this works for all & we choose