

Parallel Computing

Exercise 5

Andres Rodriguez, 4th June 2015

Homework 5 - Remember

✓ Deadline

10.05.2015 - 11:59:pm

✓ E-mail

Andres Rodriguez a.rodriguez-escobar@tu-braunschweig.de

✓ Content

ZIP file including - Source code

- Written report as *.pdf file

Let's remember from the 2 Exercise Session using OpenMP

Let's remember from the 2 Exercise Session using OpenMP

Both of theses analog forms represent a naive approach

```
start = get_time();

//Run trapezoidal rule in thread_count number of threads
#pragma omp parallel num_threads(thread_count)

double temp_result;

temp_result = local_trap(a, b, n);

#pragma omp critical

function

global_result += temp_result;

global_result += temp_result;

end = get_time();

elapsed_time = end - start;

elapsed_time = end - start;
```


Naïve approach representation:

Optimized approach representation:

Definite Integral – Trapezoidal Rule

MPI – Implementation

(MPI_Reduce & MPI_Allreduce Commands)

Inter Process Communication – Broadcasting

Naïve approach representation:

Inter Process Communication – Broadcasting

Optimized approach representation:

Inter Process Communication – Broadcasting

MPI – Implementation

(Optimized Broadcast Derivation)

