## 1. Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z kwantyzacją liniową, dynamiczną oraz nieliniową, a także ich wpływem na jakość sygnału mowy. Analizie poddana zostanie wartość SQNR. Dodatkowo badana będzie także minimalna szybkość przesyłu niezbędna do realizacji każdego z kwantyzerów.

## 2. Przebieg ćwiczenia



Rysunek 1: Wyznaczanie progu percepcji szumów kwantyzacji

Kolejne wartości SQNR układają się na prostej, której współczynnik nachylenia opisywany jest poniższym wzorem:

$$a = \frac{SQNR(b_2) - SQNR(b_1)}{b_2 - b_1} \left[ \frac{dB}{bit} \right].$$

Podstawiając do wzoru dokładne wartości z wykresu otrzymujemy:

$$a = \frac{40.19 - 22.12}{12 - 9} = 6.023 \left[ \frac{dB}{bit} \right].$$

Wartość ta posiada niewielką niepewność, ponieważ określamy ją w pojedynczym eksperymencie, podczas którego wykorzystane zostały estymatory. Dla każdej z badanych ilości bitów na próbkę wykonany został odsłuch analizowanego sygnału mowy. Subiektywne wrażenia, a także minimalna szybkość transmisji oraz wartości SQNR zostały zebrane w poniższej tabeli.

Tabela 1: Wrażenia subiektywne, wymagana szybkość transmisji oraz wartość SQNR dla różnej ilości bitów na próbkę przy częstotliwości próbkowania fs = 8 kHz

| Liczba bitów<br>na próbkę | Wrażenia subiektywne                                                                                        | Vt [kb/s] | SQNR [dB] |
|---------------------------|-------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 4                         | Przekaz niezrozumiały                                                                                       | 32        | -11,46    |
| 5                         | Przekaz niezrozumiały                                                                                       | 40        | -4,442    |
| 6                         | Przekaz częściowo zrozumiały                                                                                | 48        | 2,691     |
| 7                         | Przekaz zrozumiały, brak<br>akceptacji jakości, wysoki<br>poziom trzasków                                   | 56        | 9,591     |
| 8                         | Przekaz zrozumiały, jakości na<br>granicy przyzwoitości, średni<br>poziom trzasków                          | 64        | 15,99     |
| 9                         | Przekaz zrozumiały, akceptacja<br>jakości, brak trzasków, średni<br>poziom szumów                           | 72        | 22,12     |
| 10                        | Przekaz zrozumiały, akceptacja<br>jakości, brak trzasków, średni<br>poziom szumów                           | 80        | 28,17     |
| 11                        | Przekaz zrozumiały, akceptacja<br>jakości, brak trzasków, niski<br>poziom szumów                            | 88        | 34,11     |
| 12                        | Przekaz zrozumiały, akceptacja<br>jakości, brak trzasków, bardzo<br>niski poziom szumów, wartość<br>progowa | 96        | 40,19     |

Dla ilości bitów na próbkę b = 9 trzaski w sygnale mowy przestają być zauważalne. Odpowiada to SQNR = 22 dB i szybkości transmisji Vt = 72 kb/s. Stopniowo zwiększając ilość bitów jakość ulega poprawie, aż do b = 12, co odpowiada SQNR = 40 dB i Vt = 96 kb/s. Jest to wartość progowa. Dalsze zwiększanie b nie przyniesie oczekiwanych rezultatów – słyszalnej poprawy jakości sygnału mowy, a będzie wymagało ciągłego zwiększania wymagań sprzętowych. Powyżej b = 12 zauważalne stają się też szumy kwantyzacji. Zależnie więc od zastosowań, dla kwantyzera liniowego optymalnym zakresem pracy jest obszar pomiędzy 9, a 12 bitów na próbkę.

Rysunek 2: Porównanie czterobitowego kwantyzera dynamicznego z kwantyzerem liniowym



Równoważnym, w sensie SQNR, dla czterobitowego kwantyzera dynamicznego jest dziewięciobitowy kwantyzer liniowy. Różnica SQNR wynosi jedynie 1dB na korzyść kwantyzera liniowego, jednak kwantyzer dynamiczny wymaga do pracy minimalnej szybkości transmisji aż o 40 kb/s mniejszej. Jest to prawie o połowę mniej niż potrzebuje równoważny kwantyzer liniowy.

Rysunek 3: Wartość SQNR w funkcji u przy ustalonej ilości bitów na próbkę



Na rysunku trzecim przedstawiono wykres SQNR = f(u) dla kwantyzera nieliniowego przy różnych wartościach b. Następnie na wykres naniesione zostały dwunastobitowy kwantyzer liniowy, a także czterobitowy kwantyzer dynamiczny. Analizując wykres, zauważono, że:

- kwantyzer nieliniowy dostarcza sygnał o dobrej jakości SQNR = 40 dB dla b = 8 bitów/próbkę,
- kwantyzer dynamiczny wykazuje lepsze własności przy jakości SQNR = 20 dB wymaga minimalnej szybkości transmisji mniejszej o 8 kb/s niż równoważny kwantyzer nieliniowy,
- kwantyzer nieliniowy posiada lepsze własności niż kwantyzer liniowy przy jakości SQNR = 40 dB zysk na szybkości transmisji wynosi 24 kb/s.

Każdy analizowany kwantyzer nieliniowy osiąga stabilny poziom SQNR dla u > 100. Dalsze zwiększanie tego parametru nie przynosi poprawy jakości sygnału, można wtedy jedynie zwiększyć ilość bitów na próbkę.

## 3. Wnioski końcowe

- Rys. 1 przedstawia kwantyzer liniowy o współczynniku nachylenia prostej a = 6.023 dB/bit.
- Dla kwantyzera liniowego przy wartości b = 9 bitów na próbkę w sygnale mowy przestają być słyszalne trzaski, a jakość sygnału możemy uznać za przyzwoitą. Wymaga to szybkości transmisji Vt = 72 kb/s i oferuje SQNR = 22 dB.
- Dla kwantyzera liniowego wartością progową jest b = 12 bitów na próbkę. Jest to próg percepcji szumów kwantyzacji. Oferowana wtedy wartość SQNR to 40 dB przy szybkości transmisji Vt = Dalsze zwiększanie ilości bitów na próbkę nie poprawia jakości, a wymaga zwiększania zasobów sprzętowych.
- Analizując kwantyzer dynamiczny z b = 4 bity na próbkę, wyznaczony został równoważny kwantyzer liniowy, który wymagał b = 9 bitów na próbkę. Zastosowanie kwantyzer dynamicznego pozwala obniżyć szybkość transmisji do 32 kb/s. Jest to o 40 kb/s mniej, niż wymaga równoważny kwantyzer liniowy.
- Kwantyzer nieliniowy dostarcza sygnał o jakości SQNR = 40 dB dla b = 8 bitów na próbkę.
- Kwantyzer dynamiczny wykazuje lepsze własności od kwantyzera nieliniowego przy jakości SQNR = 20 dB. Wymaga minimalnej szybkości transmisji mniejszej o 8 kb/s niż równoważny kwantyzer nieliniowy.
- Kwantyzer nieliniowy posiada lepsze własności niż kwantyzer liniowy przy jakości SQNR = 40 dB. Zysk na szybkości transmisji wynosi 24 kb/s.