实验一 通信信号同步电路

设计一个通信调制信号的同步电路,实现对输入的中频信号的变频和同步。题目不涉及实体硬件电路,所有功能的设计及仿真均在 EDA 开发环境中实现,根据总体设计框图及说明、各个模块电路设计说明、时序说明、仿真结果、资源报告、设计总结和程序源代码评定实验结果。

一、 仟务一: 简单通信信号同步电路设计(必做)

设计一个可应用于扩频通信中的扩频同步电路,实现输入的扩频中频信号的下变频和码同步电路。

图 1 下变频与码同步电路结构

输入信号描述

输入的中频信号IFin使用 2 位精度采样,采样数据使用补码表示。输入的中频信号IFin可由如下表达式表示:

$$IFin = f(D \oplus M) \cos(2\pi f n T + \phi)$$

其中,符号 Θ 表示异或操作,f(x)为极化函数,

$$f(x) = \begin{cases} 1, & x = 1 \\ -1, & x = 0 \end{cases}$$

D为信号中调制的二进制数据序列,数据速率为 1 kbps,M为用于扩频的伪随机码序列,由循环长度为 31 的 m 码产生。M的速率(即码片速率)为 31 kbps,其每一位所占的时间称为一个码片周期。数据位D的每一位都与M序列的一个循环周期对齐。f为载波频率,f=124 kHz,n为采样序列标号,T是采样周期,采用载波频率的 4 倍采样。

信号同步原理

在信号接收端,中频信号IFin经采样后输入该同步电路,在下变频操作中,使用本地载波产生电路产生的两路本地载波信号 $s_1(n)$ 、 $s_2(n)$ 与输入信号IFin相乘,得到两路下变频信号I和Q(分别为同相支路、正交支路),其中本地载波信号为

$$s_1(n) = \cos(2\pi f n T + \phi)$$

$$s_2(n) = \sin(2\pi f n T + \phi)$$

随后,将两路下变频信号与本地码产生器产生的本地码序列进行相关操作 (若本地码为 1,则乘以 1,若本地码为 0,则乘以-1),并在 $T_S=1$ ms 的时长内 对相关后的两路信号进行积分,两路信号的积分结果分别为 I 、 Q ,并求能量信 号 $S=I^2+Q^2$ 。

由于 m 码的互相关和自相关特性,当本地码产生器的相位与发送端码产生器产生的序列相位一致时,积分结果S可达到最大值,当两者不一致时,S保持一个较小值。因此,可设定一门限值 S_{th} 与积分结果S相比较,若 $S < S_{th}$,可认为本地码产生器与发送端码产生器未达到同步状态,此时应将本地码产生器的相位延后一个码片周期,并重新开始积分过程,直至达到 $S \geq S_{th}$,即本地码产生器与发送端码产生器同步的状态。

二、任务二: testbench 编写实验(必做)

- (1) 设计上述电路的 testbench,调制的电文 D 可自行定义。对设计的电路进行是进行仿真。
- (2) 若有必要,可添加其他模块,在设计各模块时,可以添加其他信号,但不要更改设计要求中定义的信号。

三、任务三: 利用 AI 辅助设计复杂信号捕获电路(附加)

阅读北斗 ICD 及北斗信号捕获参考文献,在任务一、任务二的基础上。借助 AI 工具,设计北斗 BII 信号的捕获电路及仿真代码,完成信号同步。

四、报告要求

	项目	主要内容	分值
设计报告	系统方案	设计思路	
		总体设计框图及说明	
		必要的理论计算和分析	
		AI 辅助设计的技巧总结	
	电路与程序设计	模块设计框图	
		关键信号说明及时序	
		程序及注释	
	测试结果	仿真结果完整性	
		仿真结果说明与分析	
		完成设计要求第6项	
	设计报告结构及	正文结构规范	
	规范性	图表的完整与准确性	
	小计		
设计要求	完成任务一		
	完成任务二		
	完成任务三		

	小计	
总分		100

五、实验要求:

- 1. 实验期限: 6个学时
- 2. 分值: 必做题目占分数 70%, 附加题 30%。
- 3. 仿真工具:不限
- 4. 任务一及任务二请不要使用 AI 工具,任务三请尽量使用 AI 工具。