K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS Diode Application

Numerical 1:

For the circuit shown in figure 1, Plot

a) Input $V_{in}(t)$ and output $V_{out}(t)$ waveform

b) VTC Curve

Given: $V_{in} = 10$ Vp-p sinusoidal signal with frequency of 500Hz.

Use constant voltage model i.e. $V_{D_{on}}=0.7V,\,V_B=1V$ and $R_1=1k\Omega$

Figure 1: Circuit 1

Solution:

Assuming constant voltage model $(V_{D_{on}} = 0.7V)$ for the diode D_1 , bias voltage V_B forward biases the diode D_1

 \rightarrow If $V_{in} < (-V_{D1_{on}} + V_B)$, diode D_1 is ON(as cathode voltage is greater than anode voltage) and hence circuit reduces to the circuit shown in figure 2

Figure 2: When diode is ON

$$V_{out} = -V_{D1_{on}} + V_B = -0.7 + 1 = 0.3V$$

$$V_{out}=0.3V$$

 \rightarrow If $V_{in} > (-V_{D1_{on}} + V_B)$, diode D_1 is OFF(as anode voltage is greater than cathode voltage) and hence circuit reduces to the circuit shown in figure 3

Figure 3: When diode is OFF

 $\therefore V_{out} = V_{in}$ [i.e. output follows the input]

SIMULATED RESULTS:

Above circuit was simulated in LTSpice and results are presented below:

Figure 4: Circuit Schematic 1

Figure 5: Input & Output waveform

Figure 6: VTC Curve

From the above waeforms, we could conclude that the clipper circuit was a negative biased shunt(parallel) clipper.

Comparison of Theoretical and Simulated Values:

Parameters	Theoretical	Simulated
level of clipped voltage	0.3V	0.33V

Table 1: Question 1

Numerical 2:

For the circuit shown in figure 8, Plot: Input $V_{in}(t)$ and output $V_{out}(t)$ waveforms Given: $V_{in}(t) = 16$ Vp-p sinusoidal signal with frequency of 1000Hz.

Figure 7: Input

Figure 8: Circuit 2

Solution:

The given diode D_1 is silicon diode, hence $V_{D1_{on}} = 0.7V$

 \rightarrow If $V_{in} > (V_{D1_{on}} + V_B)$, i.e. $V_{in} > 4.7V$ diode D_1 is ON(as anode voltage is greater than cathode voltage) and hence circuit reduces to the circuit shown in figure 9

Figure 9: When diode is ON

$$V_{out} = V_{D1_{on}} = 0.7V$$

$$oldsymbol{V_{out}=0.7V}$$

 \rightarrow If $V_{in} < (V_{D1_{on}} + V_B)$, i.e. $V_{in} < 4.7V$ diode D_1 is OFF and hence circuit reduces to the circuit shown in figure 10

Figure 10: When diode is OFF

Applying KVL to the input loop:

$$V_{in} - IR_1 - V_B - V_{out} = 0$$

$$V_{out} = V_{in} - V_B$$

$$V_{out} = V_{in} - 4$$

Minimum value of V_{out} is when $V_{in} = -8V$

$$V_{out} = -8 - 4 = -12V$$

$$\therefore V_{out} = -12V$$

SIMULATED RESULTS:

Above circuit was simulated in LTSpice and results are presented below:

Figure 11: Circuit Schematic 2

Figure 12: Input & Output waveform

Comparison of Theoretical and Simulated Values:

Parameters	Theoretical	Simulated
Minimum level of clipped voltage	0.7V	0.604V

Table 2: Question 2

Numerical 3:

For the circuit shown in figure 14, Plot: Input $V_{in}(t)$ and output $V_{out}(t)$ waveforms Given: $V_{in}(t)=16$ Vp-p square wave with frequency of 1000Hz. $C_1=10\mu\mathrm{F},\,R_1=10k\Omega,$ diode D_1 is Silicon diode hence, $V_{D1_{ON}}=0.7V$ & $V_B=2.7V$

Figure 13: Input waveform

Figure 14: Circuit 3

Solution:

The given diode D_1 is silicon diode, hence $V_{D1_{ON}} = 0.7V$

Also,
$$V_{in} = 10 \text{ Vp-p i.e. } V_{max} = 5V$$

Assumptions:-

$$RC = 10 \times 10^{3} \times 10 \times 10^{-6} = 0.1s = 100ms$$

Time period of input signal = 1 ms

RC time constant is large enought (than time period of input signal) to source that voltage across capacitor does not discharge significantly during the period, The diode is OFF

 \rightarrow If $V_{in} > (V_{D1_{ON}} - V_B)$, i.e. $V_{in} > -2V$ diode D_1 is ON(as anode voltage is greater than cathode voltage) and hence circuit reduces to the circuit shown in figure 15

PULSE(5 -5 0.5m 10p 10p 0.5m 1m)

Figure 15: When diode is ON

$$V_{out} = V_{D1_{ON}} - V_B = 0.7V - 2.7V = -2V$$

 $V_{out} = -2V$

At the same time, C_1 charges and voltage across capacitor V_{C_1} reaches upto V_{max} Applying KVL to the input loop:-

$$V_{in} - V_{C_1} - V_{D1_{on}} + V_B = 0$$

 $V_{C_1} = V_{in} - 0.7 + 2.7 = V_{max} + 2 = 5 + 2 = 7V$

i.e. Voltage across capacitor during positive half cycle

 \rightarrow If $V_{in} < (V_{D1_{ON}} - V_B)$, i.e. $V_{in} < -2V$ diode D_1 is OFF and hence circuit reduces to the circuit shown in figure 16

PULSE(5 -5 0.5m 10p 10p 0.5m 1m)

Figure 16: When diode is OFF

During negative half cycle, capacitor holds the charges, $V_{C_1} = 7V$ and act as battery Applying KVL to the input loop:

$$-V_{in} - V_{C_1} - V_{out} = 0$$

$$V_{out} = -V_{in} - V_{C_1}$$

$$V_{out} = -V_{in} - 7$$

Minimum value of V_{out} is when $V_{in} = -5V$

$$V_{out} = -5 - 7 = -12V$$

$$\therefore V_{out} = -12V$$

SIMULATED RESULTS:

Above circuit was simulated in LTSpice and results are presented below:

Figure 17: Circuit Schematic 3

Figure 18: Input & Output waveform

Since, the output waveform is shifted down of the x-axis, the given circuit is negative clamper.

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ Values:}$

Parameters	Theoretical	Simulated
Positive level voltage clamping	-2V	-2.084V
Negative level voltage clamping	-12V	-12.09V

Table 3: Question 3

