e_i	S_i
00000	000
00001	001
00010	010
00100	100
01000	011
10000	101
11000	110
10010	111

Пусть принято кодовое слово Y. Находим синдром $S = YH^T$, далее выбираем соответствующий этому синдрому наиболее правдоподобный вектор ошибки \hat{e} (по таблице 2). Тогда оценка передаваемого кодового слова

Рисунок 6.2. Структурная схема декодера.

Данный код может обнаружить 2 $(d_{\min} - 1 = 3 - 1 = 2)$ ошибки, исправить все одиночные ошибки $(\left\lfloor \frac{1}{2} (d_{\min} - 1) \right\rfloor = 1)$ и только 2 двойные, синдромы которых отличаются от синдромов одиночных ошибок. Подтвердим сказанное на примере.

Пусть принимаемое кодовое слово Y = (11111), где $C_i = (01011) = C_2$, e = (10100).

Тогда
$$S=(11111)\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}=(001)$$
 . Полученному синдрому соответствует вектор

ошибки $\hat{e}=(00001)=e_1$. По (6.9) находим оценку переданного кодового слова $\hat{C}=(11111)\oplus(00001)=(11110)=C_4\neq C_2$. Т.е получаем ошибку декодирования.

Вывод. Алгоритм (6.9) работает по критерию максимального правдоподобия (МП) или по критерию минимального расстояния. Он