Airbnb - Boston

```
In [1]: # Import Neccessary libraries
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sb
    import time

# Import library for VIF
    from statsmodels.stats.outliers_influence import variance_inflation_factor
    from sklearn.linear_model import ElasticNet
    from sklearn import preprocessing
    from sklearn.metrics import *

import folium
    from folium import plugins
    from folium.plugins import HeatMap
```

```
In [2]: ur = "http://data.insideairbnb.com/united-states/ma/boston/2021-12-17/data/
ur1 = "http://data.insideairbnb.com/united-states/ma/boston/2021-12-17/visu
```

We have imported pandas ,numpy for basic data analysis. Seaborn and matplotlib for data visualization. Folium for maps.

```
In [3]: # Loading Dataset
boston = pd.read_csv(ur,compression='gzip',low_memory=False)
boston2 = pd.read_csv(ur1)
```

Data Exploration , Visualization and Processing

```
In [4]: ### Created a Subset of data
dat = boston[['host_id', 'accommodates', 'bedrooms', 'beds', 'amenities']].copy
boston3 = pd.merge(boston2,dat)
boston3.tail()
```

Out[4]:

	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitu
107384	53772114	Entire Modern Apartment in Downtown Boston 2 R	434990435	Luke	NaN	South End	42.3448
107385	53772114	Entire Modern Apartment in Downtown Boston 2 R	434990435	Luke	NaN	South End	42.3448
107386	53772114	Entire Modern Apartment in Downtown Boston 2 R	434990435	Luke	NaN	South End	42.3448
107387	53772114	Entire Modern Apartment in Downtown Boston 2 R	434990435	Luke	NaN	South End	42.3448
107388	53756737	The Arbor Retreat	42715907	Emma	NaN	Jamaica Plain	42.3048

5 rows × 22 columns

In [5]: ### Calculating Summary Statistics boston3.describe()

Out[5]:

	id	host_id	neighbourhood_group	latitude	longitude	pr
count	1.073890e+05	1.073890e+05	0.0	107389.000000	107389.000000	107389.000
mean	4.461479e+07	1.758024e+08	NaN	42.342998	-71.084340	147.847
std	1.192542e+07	1.221205e+08	NaN	0.019351	0.033584	116.540
min	3.781000e+03	4.804000e+03	NaN	42.235330	-71.172520	0.000
25%	4.208014e+07	1.074344e+08	NaN	42.335150	-71.101850	50.000
50%	4.961078e+07	1.074344e+08	NaN	42.347970	-71.070840	149.000
75%	5.227869e+07	2.978601e+08	NaN	42.355180	-71.061640	212.000
max	5.383997e+07	4.349904e+08	NaN	42.392790	-70.997810	10000.000

In [6]: ### Precise Summary of the Dataframe boston3.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 107389 entries, 0 to 107388
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	id	107389 non-null	int64
1	name	107389 non-null	object
2	host_id	107389 non-null	int64
3	host_name	61820 non-null	object
4	neighbourhood_group	0 non-null	float64
5	neighbourhood	107389 non-null	object
6	latitude	107389 non-null	float64
7	longitude	107389 non-null	float64
8	room_type	107389 non-null	object
9	price	107389 non-null	int64
10	minimum_nights	107389 non-null	int64
11	number_of_reviews	107389 non-null	int64
12	last_review	29052 non-null	object
13	reviews_per_month	29052 non-null	float64
14	<pre>calculated_host_listings_count</pre>	107389 non-null	int64
15	availability_365	107389 non-null	int64
16	<pre>number_of_reviews_ltm</pre>	107389 non-null	int64
17	license	23450 non-null	object
18	accommodates	107389 non-null	int64
19	bedrooms	88219 non-null	float64
20	beds	82280 non-null	float64
21	amenities	107389 non-null	object
_			

dtypes: float64(6), int64(9), object(7)

memory usage: 18.8+ MB

In [7]: ### Check for null values boston3.isna().sum()

	1,1	
Out[7]:		0
	name	0
	host_id	0
	host_name	45569
	neighbourhood_group	107389
	neighbourhood	0
	latitude	0
	longitude	0
	room_type	0
	price	0
	minimum_nights	0
	number_of_reviews	0
	last_review	78337
	reviews_per_month	78337
	calculated_host_listings_count	0
	availability_365	0
	number_of_reviews_ltm	0
	license	83939
	accommodates	0
	bedrooms	19170
	beds	25109
	amenities	0
	dtype: int64	

```
In [8]: ### Percentage of null rows in each column
def missing(datas):
    print (round((datas.isnull().sum() * 100/ len(datas)),2).sort_values(as
missing(boston3)
```

neighbourhood_group	100.00
license	78.16
last_review	72.95
reviews_per_month	72.95
host_name	42.43
beds	23.38
bedrooms	17.85
id	0.00
accommodates	0.00
<pre>number_of_reviews_ltm</pre>	0.00
availability_365	0.00
calculated_host_listings_count	0.00
number_of_reviews	0.00
name	0.00
minimum_nights	0.00
price	0.00
room_type	0.00
longitude	0.00
latitude	0.00
neighbourhood	0.00
host_id	0.00
amenities	0.00
dtype: float64	

```
In [9]: boston3.replace({'f': 0, 't': 1},inplace = True)
   boston3.hist(bins=50, figsize=(10,10))
   plt.savefig('distribution.png', dpi=650, bbox_inches='tight')
   plt.show()
```


We can drop the columns with less categories. Checking whether boolean and categorical features contain sufficient numbers of instances in each category to make them worth including. It can be seen that several columns only contain one category and can be dropped while preprocessing.

Data Preprocessing

```
In [10]: # To protect the privacy of the hosts and reviewers, we drop them as well a
         boston3.drop(['id','host_name','last_review','license',], axis=1, inplace=T
In [11]: boston3.drop(['neighbourhood group'], axis=1, inplace=True)
In [12]: boston3.isnull().sum()
Out[12]: name
                                                 0
                                                 0
         host id
         neighbourhood
                                                 0
         latitude
                                                 0
         longitude
                                                 0
                                                 0
         room type
                                                 0
         price
         minimum nights
                                                 0
         number_of_reviews
         reviews per month
                                             78337
         calculated_host_listings_count
                                                 0
         availability 365
                                                 0
         number of reviews ltm
                                                 0
         accommodates
                                                 0
         bedrooms
                                             19170
         beds
                                             25109
         amenities
                                                 0
         dtype: int64
```

```
In [13]: #Percentage of null rows in each column
         def missing(datas):
             print (round((datas.isnull().sum() * 100/ len(datas)),2).sort_values(as
         missing(boston3)
         reviews per month
                                             72.95
         beds
                                             23.38
         bedrooms
                                             17.85
                                              0.00
         name
         accommodates
                                              0.00
         number of reviews 1tm
                                              0.00
         availability 365
                                              0.00
                                              0.00
         calculated_host_listings_count
         number_of_reviews
                                              0.00
                                              0.00
         host id
         minimum nights
                                              0.00
         price
                                              0.00
         room type
                                              0.00
                                              0.00
         longitude
         latitude
                                              0.00
         neighbourhood
                                              0.00
         amenities
                                              0.00
         dtype: float64
In [14]: ### Filling the null values with mean and median
         boston3['reviews per month'].fillna(boston3['reviews per month'].mean(), in
         boston3['beds'].fillna(boston3['beds'].median(), inplace=True)
         boston3['bedrooms'].fillna(boston3['bedrooms'].median(), inplace=True)
In [15]: missing(boston3)
                                             0.0
         name
         reviews_per_month
                                             0.0
         beds
                                             0.0
         bedrooms
                                             0.0
         accommodates
                                             0.0
         number of reviews 1tm
                                             0.0
         availability 365
                                             0.0
         calculated host listings count
                                             0.0
         number of reviews
                                             0.0
         host id
                                             0.0
         minimum nights
                                             0.0
         price
                                             0.0
         room_type
                                             0.0
         longitude
                                             0.0
         latitude
                                             0.0
         neighbourhood
                                             0.0
         amenities
                                             0.0
         dtype: float64
In [16]: bosub = boston3[["price", "number of reviews", "reviews per month", "calculate
```

```
In [17]: ### Plot to check the outliers
boston1=bosub.select_dtypes(exclude=['object'])

for column in boston1:
    plt.figure(figsize=(10,2))
    sb.boxplot(data=boston1, x=column)
```



```
In [18]: #Since our target variable is the price, we have standardized the values su
         # are in one standarad deviation
         x data = boston3.price
         standard = preprocessing.scale(x_data)
         print(standard)
         [-0.19604426 -0.41914292 -0.41914292 ... -0.07591421 -0.07591421
          -0.307593591
In [19]: boston3.amenities[:1].values
Out[19]: array(['["Cable TV", "Dishes and silverware", "Cooking basics", "Patio or
         balcony", "Hair dryer", "Refrigerator", "Hot water", "Dedicated workspac
         e", "Bed linens", "Wifi", "Essentials", "Washer", "Air conditioning", "TV
         with standard cable", "Oven", "Stove", "Dryer", "Smoke alarm", "Extra pil
         lows and blankets", "Hangers", "Carbon monoxide alarm", "Dishwasher", "He
         ating", "Shampoo", "Free parking on premises", "Iron", "Kitchen", "Coffee
         maker", "Microwave", "Long term stays allowed", "Free street parking"]'],
               dtype=object)
In [20]: amenities list = list(boston3.amenities)
         amenities_list_string = " ".join(amenities_list)
         amenities list string = amenities list string.replace('{', '')
         amenities list string = amenities list string.replace('}', ',')
         amenities_list_string = amenities_list_string.replace('[',
         amenities list string = amenities_list_string.replace(']',
         amenities list string = amenities list string.replace('"', '')
         amenities set = [x.strip() for x in amenities list string.split(',')]
         amenities set = set(amenities set)
         amenities set
Out[20]: {'',
          '2-5 years old',
          '21\\ HDTV with Roku',
          '24-hour fitness center',
          '32\\ HDTV',
          '32\\ HDTV with',
          '32\\ HDTV with Amazon Prime Video',
          '32\\ HDTV with Netflix',
          '32\\ HDTV with standard cable',
          '36\\ HDTV with Apple TV',
          '37\\ HDTV with Amazon Prime Video',
          '40\\ HDTV with Amazon Prime Video',
          '40\\ HDTV with Apple TV',
          '40\\ HDTV with Roku',
          '40\\ HDTV with standard cable',
          '40\\ TV',
          '40\\ TV with Apple TV',
          '42\\ HDTV',
          '42\\ HDTV with Amazon Prime Video',
```

```
boston3.loc[boston3['amenities'].str.contains('Air conditioning Central air
boston3.loc[boston3['amenities'].str.contains('Gym|24-hour fitness center|P
boston3.loc[boston3['amenities'].str.contains('Apple TV Game console Game c
boston3.loc[boston3['amenities'].str.contains('Avanti stainless steel elect
boston3.loc[boston3['amenities'].str.contains('Electric stove|Gas stove|Ike
boston3.loc[boston3['amenities'].str.contains('BBQ grill|Fire pit|Barbecue
boston3.loc[boston3['amenities'].str.contains('balcony|Patio or balcony|Pat
boston3.loc[boston3['amenities'].str.contains('Beach view Beachfront Lake a
boston3.loc[boston3['amenities'].str.contains('Bed linens | Bed sheets and pi
boston3.loc[boston3['amenities'].str.contains('Breakfast|Complimentary cont
boston3.loc[boston3['amenities'].str.contains('Coffee maker Espresso machin
boston3.loc[boston3['amenities'].str.contains('Cooking basics'), 'cooking b
boston3.loc[boston3['amenities'].str.contains('Dryer|Dryer \\u2013 In build
boston3.loc[boston3['amenities'].str.contains('Elevator'), 'elevator'] = 1
boston3.loc[boston3['amenities'].str.contains('Children\\u2019s books and t
boston3.loc[boston3['amenities'].str.contains('Free driveway parking on pre
boston3.loc[boston3['amenities'].str.contains('Private fenced garden or bac
boston3.loc[boston3['amenities'].str.contains('Host greets you'), 'host gre
boston3.loc[boston3['amenities'].str.contains('Private hot tub Shared outdo
boston3.loc[boston3['amenities'].str.contains('Internet|Pocket wifi|Wifi|Po
boston3.loc[boston3['amenities'].str.contains('Long term stays allowed'),
boston3.loc[boston3['amenities'].str.contains('Private entrance'), 'private
boston3.loc[boston3['amenities'].str.contains('Pets|pet|Cat(s)|Dog(s)|Pets
boston3.loc[boston3['amenities'].str.contains('Safe Security system Securit
boston3.loc[boston3['amenities'].str.contains('Self check in'), 'self_check
boston3.loc[boston3['amenities'].str.contains('Smoking allowed'), 'smoking
boston3.loc[boston3['amenities'].str.contains('Step-free access|Wheelchair|
boston3.loc[boston3['amenities'].str.contains('Suitable for events'), 'even
boston3.loc[boston3['amenities'].str.contains('Aveeno body soap|Bathtub|Bee
boston3.loc[boston3['amenities'].str.contains('Sonos Bluetooth sound system
boston3.loc[boston3['amenities'].str.contains('Dedicated workspace|Dedicate
boston3.loc[boston3['amenities'].str.contains('Freezer|GE refrigerator| LG
boston3.loc[boston3['amenities'].str.contains('Onsite restaurant \\u2014 Co
```

<ipython-input-21-90ad71994ea5>:23: UserWarning: This pattern is interpre
ted as a regular expression, and has match groups. To actually get the gr
oups, use str.extract.

boston3.loc[boston3['amenities'].str.contains('Pets|pet|Cat(s)|Dog(s)|Pets allowed'), 'pets allowed'] = 1

```
In [22]: replacecols = boston3.iloc[:,0:].columns
boston3[replacecols] = boston3[replacecols].fillna(0)
nonessential_amenities = []
for col in boston3.iloc[:,17:].columns:
    if boston3[col].sum() < len(boston3)/10:
        nonessential_amenities.append(col)
boston3.drop(nonessential_amenities, axis=1, inplace=True)
boston3.drop('amenities', axis=1, inplace=True)</pre>
```

```
In [23]: boston3.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 107389 entries, 0 to 107388

```
Data columns (total 34 columns):
#
    Column
                                    Non-Null Count
                                                     Dtype
                                                     ____
___
    _____
                                    _____
0
    name
                                    107389 non-null object
 1
    host id
                                    107389 non-null int64
 2
    neighbourhood
                                    107389 non-null object
 3
    latitude
                                    107389 non-null float64
 4
    longitude
                                    107389 non-null float64
5
    room type
                                    107389 non-null
                                                     object
                                    107389 non-null int64
 6
    price
 7
    minimum_nights
                                    107389 non-null int64
    number of reviews
                                    107389 non-null
                                                     int64
 8
9
    reviews per month
                                    107389 non-null float64
 10 calculated_host_listings_count
                                    107389 non-null
                                                     int64
    availability 365
                                    107389 non-null int64
 11
 12 number of reviews ltm
                                    107389 non-null int64
 13
    accommodates
                                    107389 non-null int64
 14 bedrooms
                                    107389 non-null float64
 15
    beds
                                    107389 non-null float64
 16 air conditioning
                                    107389 non-null float64
                                    107389 non-null float64
 17
    gym
 18
                                    107389 non-null float64
    tv
19
    bbq
                                    107389 non-null float64
20 nature and views
                                    107389 non-null float64
21 bed linen
                                    107389 non-null float64
22 coffee machine
                                    107389 non-null float64
23 cooking basics
                                    107389 non-null float64
                                    107389 non-null float64
24 white goods
25
    elevator
                                    107389 non-null float64
                                    107389 non-null float64
26 parking
                                    107389 non-null float64
 27
    hot tub sauna or pool
28 internet
                                    107389 non-null float64
                                    107389 non-null float64
29 long term stays
 30 private entrance
                                    107389 non-null float64
31 toiletries
                                    107389 non-null float64
 32 workspace
                                    107389 non-null float64
                                    107389 non-null float64
 33 refrigerator
dtypes: float64(23), int64(8), object(3)
memory usage: 28.7+ MB
```

Data Visualization

```
In [24]: boston3=boston3.drop(['nature_and_views'],axis=1)
```

coffee_machine 0.415872
accommodates 0.413670
bed_linen 0.406062
gym 0.403006
Name: price, dtype: float64

```
In [26]: ### Features that influence Price
price_corr.plot(kind = 'bar', color = 'g');
plt.xticks(rotation=45);
```


In [27]: boston3.head()

Out[27]:

	name	host_id	neighbourhood	latitude	longitude	room_type	price	minimum_nights
0	HARBORSIDE- Walk to subway	4804	East Boston	42.36413	-71.02991	Entire home/apt	125	32
1	** Private! Minutes to center!**	8229	Roxbury	42.32844	-71.09581	Entire home/apt	99	3
2	** Private! Minutes to center!**	8229	Roxbury	42.32844	-71.09581	Entire home/apt	99	3
3	** Private! Minutes to center!**	8229	Roxbury	42.32844	-71.09581	Entire home/apt	99	3
4	** Private! Minutes to center!**	8229	Roxbury	42.32844	-71.09581	Entire home/apt	99	3

5 rows × 33 columns

```
In [28]: ### Barplot to find the price of different neighbourhoods in Boston

plt.figure(figsize=(15,10))
plt.xticks(rotation=50)
listings = boston3.sort_values(by = 'price')
sb.barplot(x='neighbourhood', y= 'price',palette= "bright", data = boston3)
plt.xlabel(xlabel='Neighbourhood', fontsize=15)
plt.ylabel(ylabel='price', fontsize=15)
```

Out[28]: Text(0, 0.5, 'price')

Out[29]:


```
In [30]: from PIL import Image

plt.figure(figsize=(13,8))
gx = plt.gca()
boston3.plot(kind='scatter',x='longitude',y='latitude',label='Listings', c=
plt.legend()
plt.show()
```


In [32]: boston3.describe()

Out[32]:

	host_id	latitude	longitude	price	minimum_nights	number_of_revie
count	1.073890e+05	107389.000000	107389.000000	107389.00000	107389.000000	107389.000
mean	1.758024e+08	42.342998	-71.084340	147.84707	51.843345	11.181
std	1.221205e+08	0.019351	0.033584	116.54091	36.352791	38.862
min	4.804000e+03	42.235330	-71.172520	0.00000	1.000000	0.0000
25%	1.074344e+08	42.335150	-71.101850	50.00000	30.000000	0.0000
50%	1.074344e+08	42.347970	-71.070840	149.00000	32.000000	0.0000
75%	2.978601e+08	42.355180	-71.061640	212.00000	91.000000	1.0000
max	4.349904e+08	42.392790	-70.997810	10000.00000	1000.000000	678.000

8 rows × 30 columns

In [33]: boston3.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 107389 entries, 0 to 107388
Data columns (total 33 columns):

#	Column	Non-Nu	ll Count	Dtype
0	name		non-null	object
1	host_id	107389	non-null	int64
2	neighbourhood	107389	non-null	object
3	latitude	107389	non-null	float64
4	longitude	107389	non-null	float64
5	room_type	107389	non-null	object
6	price	107389	non-null	int64
7	minimum_nights	107389	non-null	int64
8	number_of_reviews	107389	non-null	int64
9	reviews_per_month	107389	non-null	float64
10	<pre>calculated_host_listings_count</pre>	107389	non-null	int64
11	availability_365	107389	non-null	int64
12	number_of_reviews_ltm	107389	non-null	int64
13	accommodates	107389	non-null	int64
14	bedrooms	107389	non-null	float64
15	beds	107389	non-null	float64
16	air_conditioning	107389	non-null	float64
17	gym	107389	non-null	float64
18	tv	107389	non-null	float64
19	bbq	107389	non-null	float64
20	bed_linen	107389	non-null	float64
21	coffee_machine	107389	non-null	float64
22	cooking_basics	107389	non-null	float64
23	white_goods	107389	non-null	float64
24	elevator	107389	non-null	float64
25	parking	107389	non-null	float64
26	hot_tub_sauna_or_pool	107389	non-null	float64
27	internet	107389	non-null	float64
28	long_term_stays	107389	non-null	float64
29	<pre>private_entrance</pre>	107389	non-null	float64
30	toiletries		non-null	float64
31	workspace	107389	non-null	float64
32	refrigerator	107389	non-null	float64
4+175	a_{0} , f_{1} , a_{0} + f_{1} / f_{2}) f_{1}	+ / 2 \		

dtypes: float64(22), int64(8), object(3)

memory usage: 27.9+ MB

```
In [34]: ### correlation verify each feature against the target feature

plt.figure(figsize=(12,8))
   title = 'Correlation matrix of variables'
   sb.heatmap(boston3.corr(), square=True, cmap='YlGnBu')
   plt.title(title)
   plt.ioff()
```

Out[34]: <matplotlib.pyplot._IoffContext at 0x7f893dd399a0>


```
In [35]: boston3=boston3._get_numeric_data()
   boston3=boston3.dropna(axis=0)
   boston3=boston3.drop(['latitude','longitude'],axis=1)
   boston3=boston3.drop(['number_of_reviews_ltm'],axis=1)
   boston3.head()
```

Out[35]:

	host_id	price	minimum_nights	number_of_reviews	reviews_per_month	calculated_host_listings_c
0	4804	125	32	21	0.27	_
1	8229	99	3	110	0.71	
2	8229	99	3	110	0.71	
3	8229	99	3	110	0.71	
4	8229	99	3	110	0.71	

5 rows × 27 columns

Multi-Collinearity

```
In [36]: def calc_vif(X):

# Calculating VIF

vif = pd.DataFrame()

vif["variables"] = X.columns

vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.s

return(vif)
```

```
In [37]: x = boston3.iloc[:,:-1]
calc_vif(x)
```

Out[37]:

	variables	VIF
0	host_id	7.131918
1	price	4.364104
2	minimum_nights	7.098761
3	number_of_reviews	1.909629
4	reviews_per_month	6.208965
5	calculated_host_listings_count	17.979208
6	availability_365	11.736312
7	accommodates	17.591002
8	bedrooms	30.443464
9	beds	17.887075
10	air_conditioning	6.963641
11	gym	3.731983
12	tv	11.819420
13	pdd	1.743540
14	bed_linen	9.566801
15	coffee_machine	9.450196
16	cooking_basics	4.028319
17	white_goods	10.950189
18	elevator	3.603388
19	parking	2.176904
20	hot_tub_sauna_or_pool	2.105857
21	internet	135.087303
22	long_term_stays	119.966757
23	private_entrance	6.258084
24	toiletries	1.913979
25	workspace	4.101958

```
In [38]: boston3=boston3.drop(['internet'],axis=1)
boston3=boston3.drop(['long_term_stays'],axis=1)
boston3=boston3.drop(['host_id'],axis=1)
```

```
In [39]: boston3.iloc[:,6:20].corr()
```

Out[39]:

	accommodates	bedrooms	beds	air_conditioning	gym	tv
accommodates	1.000000	0.811684	0.791003	0.124014	0.109612	0.253955
bedrooms	0.811684	1.000000	0.852407	0.084183	-0.034519	0.109999
beds	0.791003	0.852407	1.000000	0.105523	-0.030464	0.086498
air_conditioning	0.124014	0.084183	0.105523	1.000000	0.006799	0.136304
gym	0.109612	-0.034519	-0.030464	0.006799	1.000000	0.247503
tv	0.253955	0.109999	0.086498	0.136304	0.247503	1.000000
bbq	0.062040	-0.041420	-0.014476	0.057425	0.472893	0.119941
bed_linen	0.274648	0.065092	0.055282	0.228350	0.365264	0.439707
coffee_machine	0.323299	0.093667	0.080691	0.209567	0.418689	0.394103
cooking_basics	0.247697	0.158002	0.203304	-0.103488	-0.031880	0.117889
white_goods	0.044392	0.050702	0.030545	0.092243	0.188861	0.156572
elevator	0.132249	0.005295	-0.031894	0.223253	0.600709	0.257625
parking	-0.086699	-0.045489	0.051400	-0.011805	-0.299307	-0.252522
hot_tub_sauna_or_pool	0.113075	0.019042	0.027351	-0.209335	0.493113	0.127826

```
In [40]: boston3 = boston3.loc[boston3['price'] < 5000]</pre>
```

```
In [41]: boston3['price'].describe()
```

```
Out[41]: count
                   107382.000000
         mean
                      147.484206
         std
                      106.597849
         min
                        0.000000
         25%
                       50.000000
         50%
                      149.000000
         75%
                      212.000000
         max
                     3999.000000
         Name: price, dtype: float64
```

```
In [42]: boston3.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 107382 entries, 0 to 107388
         Data columns (total 24 columns):
              Column
                                              Non-Null Count
                                                              Dtype
              ____
         ___
                                              _____
                                                               ____
          0
              price
                                              107382 non-null
                                                              int64
          1
             minimum_nights
                                              107382 non-null int64
              number_of_reviews
                                              107382 non-null int64
          2
          3
              reviews per month
                                              107382 non-null float64
          4
              calculated host listings count
                                              107382 non-null int64
          5
              availability 365
                                              107382 non-null int64
          6
              accommodates
                                              107382 non-null int64
              bedrooms
                                              107382 non-null float64
                                              107382 non-null float64
          8
              beds
          9
              air conditioning
                                              107382 non-null float64
          10
             gym
                                              107382 non-null float64
          11
                                              107382 non-null float64
             tv
                                              107382 non-null float64
          12 bbq
          13 bed linen
                                              107382 non-null float64
          14 coffee machine
                                              107382 non-null float64
          15 cooking basics
                                              107382 non-null float64
          16 white goods
                                              107382 non-null float64
                                              107382 non-null float64
          17 elevator
                                              107382 non-null float64
          18 parking
          19 hot tub sauna or pool
                                              107382 non-null float64
          20 private entrance
                                              107382 non-null float64
          21 toiletries
                                              107382 non-null float64
          22 workspace
                                              107382 non-null float64
          23 refrigerator
                                              107382 non-null float64
         dtypes: float64(18), int64(6)
         memory usage: 20.5 MB
In [43]: from sklearn.model selection import train test split
         x train, x test, y train, y test = train test split(boston3.drop(["price"],
In [44]: from ALY6040 Group3 import normalize data
         xscaler,x processed = normalize data(x train)
```

Decision Tree

```
In [45]: from sklearn.tree import DecisionTreeRegressor
    from ALY6040_Group3 import train_model,score,predict

model1 = decisionTree = train_model(x_processed,y_train,DecisionTreeRegress start_time = time.time()
    e = predict(model1,xscaler,x_test)
    o = score(y_test,e)
    print(type(model1).__name___,o)
    print("Execution time: " + str((time.time() - start_time)) + ' ms')
    a,b,c = o
    xc=str((time.time() - start_time))

tab = pd.DataFrame({'Actual Values': np.array(y_test).flatten(), 'Decision tab.set_index('Actual Values', inplace=True)
    tab
```

DecisionTreeRegressor {'MAE': 11.325720752933316, 'R2': 0.847319073813082 5, 'RMSE': 41.55910163033422}
Execution time: 0.020350217819213867 ms

Out[45]:

Decision Tree

Actual Values				
34	33.969697			
203	201.531915			
240	240.000000			
128	128.000000			
131	131.000000			
341	341.000000			
40	42.285714			
247	247.000000			
52	52.000000			
34	35.338462			
299	299.000000			
196	196.000000			
177	214.333333			
120	120.000000			
181	181.000000			
205	179.800000			
194	187.666667			
132	132.000000			
277	277.000000			
60	60.000000			

In [46]: ### Predicted Values vs Actual Values in Decision Tree plt.figure(figsize=(15,8)) ax1=sb.distplot(y_test,hist=False,color='blue',label='real value') ax2=sb.distplot(e,hist=False,color='red',label='predicted value') plt.legend()

/Users/miravparekh/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2557: FutureWarning:

`distplot` is a deprecated function and will be removed in a future versi on. Please adapt your code to use either `displot` (a figure-level functi on with similar flexibility) or `kdeplot` (an axes-level function for ker nel density plots).

/Users/miravparekh/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2557: FutureWarning:

`distplot` is a deprecated function and will be removed in a future versi on. Please adapt your code to use either `displot` (a figure-level functi on with similar flexibility) or `kdeplot` (an axes-level function for ker nel density plots).

Out[46]: <matplotlib.legend.Legend at 0x7f8889bc4c70>

Feature Importance

```
In [47]: ### Feature importance plot of Decision Tree

def plot_feature_importance(importance,names,model_type):

    feature_importance = np.array(importance)
    feature_names = np.array(names)
    data={'feature_names':feature_names,'feature_importance':feature_import
    fi_df = pd.DataFrame(data)
    fi_df.sort_values(by=['feature_importance'], ascending=False,inplace=Tr
    plt.figure(figsize=(10,8))
    sb.barplot(x=fi_df['feature_importance'], y=fi_df['feature_names'])
    plt.title(model_type)
    plt.xlabel('FEATURE IMPORTANCE')
    plt.ylabel('FEATURE NAMES')

plot_feature_importance(model1.feature_importances_,x_train.columns,'Decisi
```


Cross Validation

Random Forest Regressor

```
In [49]: from sklearn.ensemble import RandomForestRegressor

model2 = RandomForestRegressor = train_model(x_processed,y_train,RandomFore
    start_time = time.time()
    u = predict(model2,xscaler,x_test)
    r = score(y_test,u)
    print(type(model2).__name___,r)
    print("Execution time: " + str((time.time() - start_time)) + ' ms')

xcl=str((time.time() - start_time))

tab['Random Forest Regressor'] = np.array(u[:20])
tab
```

RandomForestRegressor {'MAE': 11.190295587176706, 'R2': 0.909354308780441 3, 'RMSE': 32.021917965836806} Execution time: 0.6434817314147949 ms

Out[49]:

Decision Tree Random Forest Regressor

Actual Values		
34	33.969697	33.925001
203	201.531915	201.523025
240	240.000000	240.000000
128	128.000000	128.000000
131	131.000000	131.180000
341	341.000000	341.000000
40	42.285714	42.209118
247	247.000000	247.000000
52	52.000000	52.000000
34	35.338462	35.395881
299	299.000000	299.000000
196	196.000000	196.000000
177	214.333333	214.460994
120	120.000000	120.000000
181	181.000000	181.050000
205	179.800000	176.761500
194	187.666667	186.478005
132	132.000000	132.000000
277	277.000000	277.000000
60	60.000000	59.980000

In [50]: ### Predicted Values vs Actual Values in Random Forest Regressor plt.figure(figsize=(15,8)) ax1=sb.distplot(y_test,hist=False,color='blue',label='real value') ax2=sb.distplot(u,hist=False,color='red',label='predicted value') plt.legend()

/Users/miravparekh/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2557: FutureWarning:

`distplot` is a deprecated function and will be removed in a future versi on. Please adapt your code to use either `displot` (a figure-level functi on with similar flexibility) or `kdeplot` (an axes-level function for ker nel density plots).

/Users/miravparekh/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2557: FutureWarning:

`distplot` is a deprecated function and will be removed in a future versi on. Please adapt your code to use either `displot` (a figure-level functi on with similar flexibility) or `kdeplot` (an axes-level function for ker nel density plots).

Out[50]: <matplotlib.legend.Legend at 0x7f893d41f2b0>

Feature Importance

Hyperparameter Tuning

```
In [52]: from sklearn.ensemble import RandomForestRegressor
Rf = RandomForestRegressor(random_state=42)
Rf.fit(x_train, y_train)
```

Out[52]: RandomForestRegressor(random_state=42)

```
In [53]: from sklearn.model_selection import GridSearchCV
param_grid = {
    'bootstrap': [True],
    'max_depth': [80, 85, 90],
    'max_features': ['auto'],
    'min_samples_leaf': [1],
    'min_samples_split': [2, 4],
    'n_estimators': [780, 800, 820]
}
```

```
In [55]:
         grid_search.fit(x_train, y_train)
         grid search.best params
         Fitting 2 folds for each of 18 candidates, totalling 36 fits
         KeyboardInterrupt
                                                    Traceback (most recent call las
         t)
         <ipython-input-55-a52e1defc50d> in <module>
         ----> 1 grid search.fit(x train, y train)
               2 grid search.best params
         ~/opt/anaconda3/lib/python3.8/site-packages/sklearn/utils/validation.py i
         n inner f(*args, **kwargs)
              61
                             extra_args = len(args) - len(all_args)
              62
                             if extra args <= 0:</pre>
         ---> 63
                                 return f(*args, **kwargs)
              64
              65
                             # extra_args > 0
         ~/opt/anaconda3/lib/python3.8/site-packages/sklearn/model_selection/_sear
         ch.py in fit(self, X, y, groups, **fit params)
                                 return results
             839
             840
         --> 841
                             self._run_search(evaluate_candidates)
             842
             843
                             # multimetric is determined here because in the case
          of a callable
         ~/opt/anaconda3/lib/python3.8/site-packages/sklearn/model selection/ sear
         ch.py in run search(self, evaluate candidates)
                     def run search(self, evaluate candidates):
            1286
                         """Search all candidates in param_grid"""
            1287
         -> 1288
                         evaluate candidates(ParameterGrid(self.param grid))
            1289
            1290
         ~/opt/anaconda3/lib/python3.8/site-packages/sklearn/model selection/ sear
         ch.py in evaluate candidates(candidate params, cv, more results)
                                                n_splits, n_candidates, n candidate
             793
         s * n splits))
             794
         --> 795
                                 out = parallel(delayed( fit and score)(clone(base
         estimator),
             796
                                                                         х, у,
             797
                                                                         train=trai
         n, test=test,
         ~/opt/anaconda3/lib/python3.8/site-packages/joblib/parallel.py in call
         _(self, iterable)
            1052
                             with self. backend.retrieval context():
            1053
         -> 1054
                                  self.retrieve()
            1055
                             # Make sure that we get a last message telling us we
          are done
                             elapsed time = time.time() - self. start time
            1056
```

```
~/opt/anaconda3/lib/python3.8/site-packages/joblib/parallel.py in retriev
e(self)
    931
                    try:
    932
                        if getattr(self. backend, 'supports timeout', Fal
se):
--> 933
                            self. output.extend(job.get(timeout=self.time
out))
                        else:
    934
    935
                            self. output.extend(job.get())
~/opt/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py
in wrap future result(future, timeout)
                AsyncResults.get from multiprocessing."""
    540
    541
--> 542
                    return future.result(timeout=timeout)
                except CfTimeoutError as e:
    543
                    raise TimeoutError from e
    544
~/opt/anaconda3/lib/python3.8/concurrent/futures/ base.py in result(self,
timeout)
    432
                        return self.__get_result()
    433
--> 434
                    self. condition.wait(timeout)
    435
    436
                    if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]
~/opt/anaconda3/lib/python3.8/threading.py in wait(self, timeout)
    300
                try:
                        # restore state no matter what (e.g., KeyboardInt
errupt)
                    if timeout is None:
    301
--> 302
                        waiter.acquire()
    303
                        gotit = True
    304
                    else:
KeyboardInterrupt:
```

```
In [ ]: from sklearn.ensemble import RandomForestRegressor

Rf = RandomForestRegressor(random_state=42, bootstrap= True,
    max_depth= 80,
    max_features= 'auto',
    min_samples_leaf= 1,
    min_samples_split= 2,
    n_estimators= 780)

Rf.fit(x_train, y_train)

In [ ]: ss= Rf.predict(x_test)
    ssg = score(y_test,ss)
    print(type(Rf). name ,ssg)
```

Cross Validation

```
In []: from sklearn.model_selection import cross_val_score
    from sklearn.ensemble import RandomForestRegressor

lm2 = RandomForestRegressor()
    scores = cross_val_score(lm2, x_train, y_train, scoring='r2', cv=7)
    print('scores:',scores)
    print('Mean Score',np.mean(scores))
```

XGBoost

```
In [56]: import xgboost as xgb

model3 = xgb = train_model(x_processed,y_train,xgb.XGBRegressor())
start_time = time.time()
h = predict(model3,xscaler,x_test)
j = score(y_test,h)
print(type(model3).__name___,j)
print("Execution time: " + str((time.time() - start_time)) + ' ms')

xc2=str((time.time() - start_time))

tab['XGBoost'] = np.array(h[:20])
tab
```

/Users/miravparekh/opt/anaconda3/lib/python3.8/site-packages/xgboost/comp at.py:31: FutureWarning:

pandas.Int64Index is deprecated and will be removed from pandas in a futu re version. Use pandas.Index with the appropriate dtype instead.

XGBRegressor {'MAE': 15.525294087041559, 'R2': 0.9120283150987354, 'RMS E': 31.546066398182603} Execution time: 0.055891990661621094 ms

Out[56]:

Actual Values

Decision Tree Random Forest Regressor XGBoost

Actual Values			
34	33.969697	33.925001	35.097530
203	201.531915	201.523025	196.505692
240	240.000000	240.000000	230.773285
128	128.000000	128.000000	151.425720
131	131.000000	131.180000	131.134521
341	341.000000	341.000000	328.379211
40	42.285714	42.209118	45.962440
247	247.000000	247.000000	233.773773
52	52.000000	52.000000	48.915230
34	35.338462	35.395881	38.652424
299	299.000000	299.000000	310.659882
196	196.000000	196.000000	190.672577
177	177 214.333333		214.501129
120	120.000000	120.000000	130.386276
181	181.000000	181.050000	185.921860
205	179.800000	176.761500	178.372894
194	187.666667	186.478005	193.043060
132	132.000000	132.000000	156.580856

Decision Tree Random Forest Regressor XGBoost

Actual Values

277	277.000000	277.000000	252.791519
60	60.000000	59.980000	67.213402

```
In [ ]: plt.figure(figsize=(15,8))
    ax1=sb.distplot(y_test,hist=False,color='blue',label='real value')
    ax2=sb.distplot(u,hist=False,color='red',label='predicted value')
    plt.legend()
```

Feature Importance

Hyperparameter Tuning

```
In [ ]: import xgboost as xgb
        xg = xgb.XGBRegressor(random_state=42)
        xg.fit(x_train, y_train)
In [ ]: from sklearn.model selection import GridSearchCV
        param_grid = {'learning_rate': [0.1, 0.05],
                       'max depth': [5, 7, 9],
                      'n_estimators': [100, 500, 900]}
In []: gs = GridSearchCV(estimator = xg,
                                   param grid = param grid,
                                   cv = 2, n_{jobs} = -1, verbose = 2,
                                    scoring = 'accuracy')
In [ ]: gs.fit(x_train, y_train)
        gs.best_params_
In [ ]: from xgboost import XGBRegressor
        xg = XGBRegressor(random_state = 42, learning_rate = 0.1, max_depth = 5, n_
        xg.fit(x_train,y_train)
In [ ]: |xj= xg.predict(x_train)
        dsx = score(y train,xj)
        print(type(xg).__name__,dsx)
```

Cross Validation

```
In [ ]: from sklearn.model_selection import cross_val_score
    import xgboost as xgb
    lm1 = xgb.XGBRegressor()
    scores = cross_val_score(lm1, x_train, y_train, scoring='r2', cv=7)
    print('scores:',scores)
    print('Mean Score',np.mean(scores))
```

Linear Regression

```
In [58]: from sklearn.linear_model import LinearRegression

model4 = linearRegression = train_model(x_processed,y_train,LinearRegressio
    start_time = time.time()
    w = predict(model4,xscaler,x_test)
    p = score(y_test,w)
    print(type(model4).__name__,p)
    print("Execution time: " + str((time.time() - start_time)) + ' ms')

xc3=str((time.time() - start_time))

tab['Linear Regression'] = np.array(w[:20])
tab
```

LinearRegression {'MAE': 41.337713933599446, 'R2': 0.4810204575904966, 'R MSE': 76.6211873143184}

XGBoost Linear Regression

Execution time: 0.013142108917236328 ms

Decision Tree Random Forest Regressor

Out[58]:

Actual Values				
34	33.969697	33.925001	35.097530	59.999143
203	201.531915	201.523025	196.505692	207.851565
240	240.000000	240.000000	230.773285	203.099159
128	128.000000	128.000000	151.425720	193.862797
131	131.000000	131.180000	131.134521	154.622943
341	341.000000	341.000000	328.379211	206.177947
40	42.285714	42.209118	45.962440	47.359935
247	247.000000	247.000000	233.773773	210.418266
52	52.000000	52.000000	48.915230	70.707581
34	35.338462	35.395881	38.652424	103.220043
299	299.000000	299.000000	310.659882	255.795042
196	196.000000	196.000000	190.672577	206.727563
177	214.333333	214.460994	214.501129	210.148438
120	120.000000	120.000000	130.386276	187.213011
181	181.000000	181.050000	185.921860	199.358890
205	179.800000	176.761500	178.372894	205.837079
194	187.666667	186.478005	193.043060	203.354411
132	132.000000	132.000000	156.580856	198.270749
277	277.000000	277.000000	252.791519	172.610189
60	60.000000	59.980000	67.213402	143.253494

Cross Validation

Feature Importance

```
In [ ]: importance = model4.coef_
for i,v in enumerate(importance):
    print('Feature: %0d, Score: %.5f' % (i,v))
    plt.xlabel('FEATURE IMPORTANCE')
    plt.ylabel('FEATURE NAMES')
    plot_feature_importance([x for x in range(len(importance))],importance,'Lin
```

Regularization

```
In []: # Creating a linear regression model with Elastic net
    re = ElasticNet(alpha=1.0,l1_ratio=0.5)
    re.fit(boston3.drop(["price"],axis=1),boston3.price)
    y_pred=re.predict(x_test)

print("RMSE: %.3f" % mean_squared_error(y_test, y_pred))
print("R2: %.3f" % r2_score(y_test, y_pred))
```

```
In [ ]: from tabulate import tabulate
        xz=o['RMSE']
        xz1=r['RMSE']
        xz2=dsx['RMSE']
        xz3=p['RMSE']
        xxz=o['MAE']
        xxz1=r['MAE']
        xxz2=dsx['MAE']
        xxz3=p['MAE']
        xxxz=o['R2']
        xxxz1=r['R2']
        xxxz2=dsx['R2']
        xxxz3=p['R2']
        tab2 = [
            ["Decision Tree", xxz, xxxz, xz],
            ["Random Forest Regressor", xxz1, xxxz1, xz1],
            ["XGBoost", xxz2, xxxz2, xz2],
            ["Linear Regression", xxz3, xxxz3, xz3]
        ]
        head = ["Model", "MAE", "R2", "RMSE"]
        print(tabulate(tab2, headers=head, tablefmt="grid"))
```

In []: