STRIP LINE DUAL MODE FILTER

Patent Number:

JP6112701

Publication date:

1994-04-22

Inventor(s):

FUJIMURA MUNENORI; others: 01

Applicant(s)::

MATSUSHITA ELECTRIC IND CO LTD

Requested Patent:

¹⁰ JP6112701

Application Number: JP19920257799 19920928

Priority Number(s):

IPC Classification:

H01P1/203; H01P1/208; H01P7/08

EC Classification:

Equivalents:

JP2906863B2

Abstract

PURPOSE:To provide a strip line dual mode filter which can solve such problems as the conventional filter with which a wide pass band is limited, etc., and can be applied to the HPFs of various electrical equipments with high efficiency.

CONSTITUTION:A uniwavelength resonator 101 is provided with four terminals at each 90 deg. in terms of the electric length, and the terminal set at a position distant from the terminal connected to an input inductor 102 at 90 deg. in terms of the electric length is connected to the terminal set at a position of 180 deg. in terms of the electric length via a feedback circuit 106. Then other terminals are connected to the output inductors respectively. In such a constitution, it is possible to obtain a strip line dual mode filter which can control the degrees of coupling in a wide range and with high performance by means of the proper circuit 106 and also can produce the orthogonal mode resonances which are not coupled to each other with regard to a single strip line ring resonator.

Data supplied from the esp@cenet database - I2

(12)公開特許公報 (A) (11)特許出願公開番号

特開平6-112701

(43)公開日 平成6年(1994)4月22日

(51) Int. Cl. 5

識別記号 庁内整理番号 FΙ

技術表示箇所

H 0 1 P

1/203

1/208

7/08

審査請求 未請求 請求項の数7

Α

(全5頁)

(21)出願番号

特願平4-257799

(22)出願日

平成4年(1992)9月28日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 藤村 宗範

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 牧本 三夫

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 小鍜治 明 (外2名)

(54)【発明の名称】ストリップ線路デュアル・モード・フィルタ

(57)【要約】

【目的】 各種電気機器の高周波帯フィルタ等に用いら れるストリップ線路デュアル・モード・フィルタに関す るもので、従来のストリップ線路デュアルモードフィル 夕における通過帯域が大きくとれない等の課題を解決 し、広帯域、高性能なストリップ線路デュアル・モード ・フィルタを提供することを目的とする。

【構成】 一波長リング共振器101において電気長で 90°毎に4つの端子を設け、入力インダクタ102を 接続した端子から電気長で90°の位置にある端子と1 80°の位置にある端子を帰還回路106を介して接続 し、残りの端子に出力インダクタを接続した構成によ り、一つのストリップ線路リング共振器において互いに 結合しない直交モード共振を生じさせ適切な帰還回路 1 06によって結合度を制御できる広帯域で高性能なスト リップ線路デュアルモードフィルタが実現できる。

【特許請求の範囲】

【請求項1】 線路の電気長が360°の一波長ストリップ線路リング共振器の線路上に90° おきに四つの端子を設け、第1の端子に入力インダクタを接続し、その第1の端子から電気長で180°の位置にある第2の端子と90°の位置にある第3、第4の端子の一方に帰還回路を介して接続し、他方の端子に出力インダクタを接続したストリップ線路デュアル・モード・フィルタ。

【請求項2】 入出力に用いられるインダクタをストリップ線路リング共振器および入出力線路の特性インピー 10 ダンスに比し特性インピーダンスの高いストリップ線路で構成したこと特徴とする請求項1記載のストリップ線路デュアル・モード・フィルタ。

【請求項3】 帰還回路をストリップ線路で構成したことを特徴とする請求項1あるいは2記載のストリップ線路デュアル・モード・フィルタ。

【請求項4】 帰還回路を容量およびインダクタの集中 定数素子で構成したことを特徴とする請求項1、あるい は2記載のストリップ線路デュアル・モード・フィル タ。

【請求項5】 帰還回路に増幅回路を設けたことを特徴とする請求項1および2記載のストリップ線路デュアル・モード・フィルタ。

【請求項6】 平行結合部を設けた線路の電気長が略360°で線路幅が一様な一波長ストリップ線路リング共振器に対して、入出力インダクタを接続する二つの端子を電気長で90°離れた位置に設け、その端子が平行結合線路に平行な中心線に対して対称の位置にあることを特徴とするストリップ線路デュアル・モード・フィルタ。

【請求項7】 平行結合部を設けた線路の電気長が略360°で線路幅が一様な一波長ストリップ線路リング共振器に対して、当該一波長ストリップ線路リング共振器 および入出力線路の特性インピーダンスに比し、特性インピーダンスの高いストリップ線路を接続する二つの端子を電気長で90°離れた位置に設け、その端子が平行結合線路に平行な中心線に対して対称の位置にあることを特徴とするストリップ線路デュアル・モード・フィルタ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、UHF~SHF帯における通信装置、計測機器に利用される小形、低コストのストリップ線路デュアル・モード・フィルタに関するものである。

[0002]

【従来の技術】ストリップ線路リング共振器フィルタ ると、この図 は、通常放射損失を少なくする為に一波長ストリップ線 モードが存在し路リング共振器等が用いられるが、損失は少なくても形 開放のストリッ状が大きいという欠点を有していた。この一波長ストリ 50 事を意味する。

ップ線路リング共振器フィルタの欠点を解決するため、 一つの共振器に二つの直交モードを励振するデュアル・ モード・フィルタも提案されているが実用化には至って いない。

2

【0003】以下に従来のストリップ線路デュアル・モード・フィルタについて説明する。図5は、従来のストリップ線路デュアル・モード・フィルタの構成図である。これはJ.A.Curtis (ジェー・エイ・カーチス)等により1991 IEEE International Microwave Symposium Digest (1991年 アイ・イー・イー・イー インターナショナル マイクロウエーブ シンポジウム ダイジェスト),pp.443-446(N-1)に発表されている。

【0004】図5において、201は一波長(電気長で360°)のストリップ線路リング共振器、202、203は入出力線路、204、205は入出力の結合容量を実現するギャップ容量、206は先端開放のストリップ線路スタブである。入出力間は90°、先端開放のストリップ線路スタブ206と入出力線路202、203の中心まで135°になるように配置されている。

20 【0005】以上のように構成されたストリップ線路デュアル・モード・フィルタについて、以下その動作について進行波の概念で定性的に説明する。

【0006】まず入力線路202より伝搬した進行波は結合容量を実現するギャップ容量204を介し一波長のストリップ線路リング共振器201に電界結合し、入力線路近傍に強い電界を発生する。この電界はストリップ線路リング共振器201中を時計方向及び反時計方向へ進行波として伝搬する。

【0007】ここではまず反時計方向回りの進行波を考 える。この進行波は、90°位相変化をうけて出力線路 203の近傍に達するがここでは電界は最小となってい るので出力線路203には結合しない。これより更に1 35°進むと先端開放のストリップ線路スタブ206の 位置に達する。ここでは線路に不連続な部分が存在する ため一部は反射波となり、残りは入力線路202の近傍 まで伝搬しギャップ容量204を介して入力線路202 に再結合する。さて、先端開放のストリップ線路スタブ 206からの反射波は135°後退して出力線路203 の近傍に達するが、往復270°の位相差となっている 40 ためここでは電界は最大となり電界結合を生じ出力線路 203に進行波が伝搬する事になる。同様に時計方向回 りの進行波も先端開放のストリップ線路スタブ206で の反射波だけが出力線路203に伝搬される。反射の大 きさは不連続部分が大きければ顕著であるから、先端開 放のストリップ線路スタブ206の線路長で伝搬する進 行波の大きさを制御できる。この動作を共振器としてみ ると、この図5の構成の場合は共振器に二つの直交する モードが存在し、その二つの共振モードの結合度は先端 開放のストリップ線路スタブ206の構造で制御できる

3

【0008】即ちデュアル・モード・フィルタとして動 作しており一つの共振器で2段のフィルタに対応する機 能を持っていると考える事ができ小型化に寄与する構成 であるといえる。

[0009]

【発明が解決しようとする課題】しかしながら上記の構 成では、結合度、即ちフィルタとしての通過帯域幅が先 端開放のストリップ線路スタブのみで調整し通過帯域が 大きくとれないのでフィルタの適用領域が限られ、多段 フィルタの構成が困難であるという課題を有していた。 【0010】本発明は上記従来技術の課題を解決するも ので、帯域が広く、多段フィルタの構成が容易でアクテ ィブ素子の組み合わせが容易に行い得るストリップ線路 デュアル・モード・フィルタを提供することを目的とす る。

[0011]

【課題を解決するための手段】この目的を達成するため に本発明のストリップ線路デュアル・モード・フィルタ は、入出力にインダクタを用い、ストリップ線路リング 共振器を構成するストリップ線路にスタブ等の不連続部 分を設けない一様線路で構成するとともに、ストリップ 線路リング共振器の内部或いは外部に帰還回路を設け、 空間的に直交した2つの共振モードを励振するか、ある いは平行結合部を有するストリップ線路ループ共振器を スタブ等の不連続部分を設けない一様線路で構成し、平 行結合により2つの共振モードを励振させることによ り、デュアル・モード・フィルタを実現できる構成を有 している。

[0012]

【作用】この構成によって互いに結合しない直交した2 つのモードで共振器を励振できるため、1個および複数 個のストリップ線路リング共振器を用いたデュアル・モ ード・フィルタが実現できる。また帰還回路によって結 合度を制御でき、多用な回路を採用できるためフィルタ の設計の自由度が拡大し、受動フィルタのみならず増幅 機能を有する同調フィルタとか、フィルタ機能を有する 電力増幅等への応用も容易にでき、入出力にインダクタ 等を用いるために容量を用いた場合に比し、高調波の抑 圧作用が期待できる。

[0013]

【実施例】 (実施例1) 以下、本発明の第1の実施例に ついて、図面を参照しながら説明する。

【0014】図1において、101は一波長(電気長で 360°) のストリップ線路リング共振器、102、1 03はストリップ線路リング共振器101上において互 いに電気長で90°離れた位置A, Bに接続された入出 カインダクタ、104、105はその入出力インダクタ 102、103の入出力端子、106はストリップ線路 リング共振器101上の位置C、Dの間に接続された帰 還回路である。なお、位置A、B,C、Dは隣合う互い 50

の端子間で電気長で90°毎の点である。また、入出力 インダクタンス102、105、及び帰還回路106の 接続点はストリップ線路リング共振器101の外側、及 び内側の端部に接続しているが、電気長で90°毎の点 であれば、ストリップ線路リング共振器101の中央部 に接続しても良い。

4

【0015】以上のように構成されたストリップ線路デ ュアル・モード・フィルタについて図1を用いてその動 作を説明する。

10 【0016】まず、入出力端子104を励振すると、入 出力インダクタ102を介して電界結合によりストリッ プ線路リング共振器101に結合する。ストリップ線路 リング共振器101上の位置Aに伝搬した波は、電気長 で180°の位置にあるCにて電界が最大となり帰還回 路106へ伝搬する。同様に位置Dで励振した波は、位 置Bに伝搬し、入出力インダクタ103を介して入出力 端子105出力へ伝搬する。

【0017】ストリップ線路リング共振器101上の位 置Aから電気長で90°の位置にあるB,Dにおいては 電界は零となり、波は伝搬しない。同様に位置Dを励振 すると、位置Bには進行波は伝搬するが位置A、Cには 伝搬しない。したがって一波長のストリップ線路リング 共振器101には互いに結合しない2つの共振モードが 存在することがわかる。

【0018】ここで位置Aを励振し、位置Cに伝搬した 波を適当な帰還回路106を介して位置Dに印加する と、この進行波は位置Bにのみ伝搬する。したがって位 置Aから入力された信号は位置C、位置Dを経由して位 置Bに出力されるという一方向にのみ信号が伝搬される 回路が構成できる。即ち、端子104を入力端子とした 場合、端子105が出力端子となりストリップ線路リン グ共振器1つを用いて2段のフィルタが実現できる。フ イルタの通過帯域幅は、主として帰還回路106で決定 される。また帰還回路106には容量、インダクタ、ス トリップ線路、増幅回路等、多様な回路を採用すること ができる。ここで具体的に示した帰還回路110はこれ らの回路の組み合わせによっても実現可能なことは言う までもない。また、図2では、図1におけるインダクタ を入出力線路110、111或いは一波長ストリップ線 路リング共振器の特性インピーダンスに比し特性インピ ーダンスの高いストリップ線路で構成したものであり、 その動作は図1に示した動作と同様の動作をする。

【0019】本実施例によるストリップ線路デュアル・ モード・フィルタの高調波における減衰量と同様回路構 成で従来の容量結合によるストリップ線路デュアル・モ ード・フィルタの減衰量を(表1)に比較して示してい る。

[0020]

【表1】

40

				6
	2 F 0	3 F 0	4 F 0	5 F O
本実施例	23 dB	43 dB	41 dB	44 dB
従来例	7 dB	4 dB	2 dB	3 dB

【0021】この表は、回路解析による結果であり、容 量およびインダクタは理想的素子として解析しており、 実際には(表1)に示すほどの効果は期待できないが、 明らかに本実施例によるストリップ線路デュアル・モー ド・フィルタは高調波抑圧の点で優れた効果がある。

【0022】以上のように、図1に示す構成をとること により、ストリップ線路リング共振器101は一様線路 であるからほぼ完全な直交モード励振が実現でき、また 帰還回路として多様な回路を選択することができ、モー ド間の結合も外部回路で自由に制御でき、また入出力を 20 インダクタ或いはストリップ線路を用いることにより容 量結合に比し、高調波を抑圧できるという優れた効果が 得られる。

【0023】(実施例2)以下本発明の第2の実施例に ついて図3を用いて説明する。

【0024】図3において、107は一波長(電気長で 360°)のストリップ線路ループ共振器で、区間10 7 Aにおいて平行結合部を形成している。102、10 3はストリップ線路ループ共振器107における区間1 07Aの対向する線路の端部に接続された入出力インダ 30 クタ、104、105はその入出力インダクタ102、 103の入出力端子である。図3において図1と異なる 点は、帰還回路106に代わり区間107Aによる平行 結合部を用いてストリップ線路デュアル・モード・フィ ルタを構成した点である。なお、入出カインダクタ10 2、103を接続する位置A, B間は電気長で90°離 れた位置であり、その端子が平行結合部に平行な中心線 X-X に対して対称の位置にある。

【0025】以上のように構成されたストリップ線路デ ュアル・モード・フィルタについて、図3を用いてその 40 動作を説明する。

【0026】まず、ストリップ線路ループ共振器107 上の位置Aから電気長で90°の位置にある位置Bにお いては電界は零となるため、位置Bには波は伝搬しな い。一方、位置Aで励振した波は、右回り、左回りにお いてストリップ線路ループ共振器107における区間1 07Aの対向する平行結合部でそれぞれ電磁界結合し、 端子Bで電界が最大となるモードが存在する。したがっ て一波長のストリップ線路リング共振器には互いに結合 しない2つの共振モードが存在することになる。

【0027】以上のように、図3に示す構成をとること により、ストリップ線路リング共振器101は一様線路 であるからほぼ完全な直交モード励振が実現でき、また 帰還回路として多様な回路を選択することができ、モー ド間の結合も外部回路で自由に制御でき、また入出力を インダクタ或いは、ストリップ線路を用いることにより 容量結合に比し、高調波を抑圧できるという優れた効果 が得られる。また、図4では、図3におけるインダクタ を図2と同様に入出力線路110、111或いは一波長 ストリップ線路リング共振器の特性インピーダンスに比 し特性インピーダンスの高いストリップ線路で構成した ものであり、その動作は図3に示した動作と同様の動作 をする。

【0028】以上のように、ストリップ線路デュアル・ モード・フィルタとして動作し、線路間隔により通過帯 域幅を制御でき、また入出力をインダクタ或いは、スト リップ線路を用いることにより容量結合に比し、高調波 を抑圧できるという優れた効果が得られる。

【0029】また実施例1、2ではストリップ線路デュ アル・モード・フィルタとして示してきたが、使用する 線路は、マイクロストリップ線路、或いはトリプレート 構造などのように積層構造にして内部に取り込んだ線路 によって構成されてもよい。

[0030]

【発明の効果】以上のように本発明は、入出力にインダ クタを用い、ストリップ線路リング共振器を構成するス トリップ線路にスタブ等の不連続部分を設けない一様線 路で構成するとともに、ストリップ線路リング共振器の 内部或いは外部に帰還回路を設け、空間的に直交した2 つの共振モードを励振するか、あるいは平行結合部を有 するストリップ線路ループ共振器をスタブ等の不連続部 分を設けない一様線路で構成し、平行結合により2つの 共振モードを励振させることにより、互いに結合しない 直交した2つのモードで共振器を励振できるため、1個 および複数個のストリップ線路リング共振器を用いたデ ュアル・モード・フィルタが実現できる。また帰還回路 によって結合度を制御でき、多用な回路を採用できるた めフィルタの設計の自由度が拡大し、受動フィルタのみ ならず増幅機能を有する同調フィルタとか、フィルタ機 50 能を有する電力増幅等への応用も容易にでき、入出力に

インダクタ等を用いるために容量を用いた場合に比し、 高調波の抑圧作用が期待できる。

【図面の簡単な説明】

【図1】本発明の第1の実施例におけるストリップ線路 デュアル・モード・フィルタの平面図

【図2】同ストリップ線路デュアル・モード・フィルタ の別の平面図

【図3】本発明の第2の実施例におけるストリップ線路 デュアル・モード・フィルタの平面図

【図4】同ストリップ線路デュアル・モード・フィルタ 10 110、111 入出力線路

の別の平面図

【図5】従来のストリップ線路デュアル・モード・フィ ルタの平面図

8

【符号の説明】

101、107 ストリップ線路リング共振器

102、103 入出力インダクタ

104、105 入出力端子

106 帰還回路

108、109 ストリップ線路

