

INTRODUCTION

Today, reading and sharing news has become a primary form of entertainment for many people. Predicting the popularity of news before publication would greatly benefit the media industry, including authors, advertisers, and reporters. The practical applications of being able to predict the popularity of online news content are vast and varied. By understanding the consumption habits of online news users, news organizations can deliver more valuable and engaging content that resonates with people. This approach allows news authorities to allocate resources more judiciously and stay informed of trend changes and human choices based on current situations. Ultimately, it leads to increased profitability by delivering relatable content to a larger audience more quickly and efficiently.

ABOUT THE DATASET

We have taken the dataset from the UC Irvine Machine Learning Repository. The dataset summarizes a heterogeneous set of features about articles published by Mashable in two years. The dataset has 39797 instances and 61 attributes (58 predictive attributes, 2 non-predictive attributes, and 1 target field). The target field is the number of shares, which indicates the article's popularity.

VARIABLES

Additional Variable Information

Number of Attributes: 61 (58 predictive attributes, 2 non-predictive, 1 goal field)

Attribute Information:

0. url: URL of the article (non-predictive)

1. timedelta: Days between the article publication and the dataset acquisition (non-predictive)

2. n_tokens_title: Number of words in the title

3. n_tokens_content: Number of words in the content
4. n_unique_tokens: Rate of unique words in the content
5. n_non_stop_words: Rate of non-stop words in the content

6. n_non_stop_unique_tokens: Rate of unique non-stop words in the content

7. num_hrefs: Number of links

8. num_self_hrefs: Number of links to other articles published by Mashable

9. num_imgs: Number of images10. num_videos: Number of videos

11. average_token_length: Average length of the words in the content

12. num_keywords: Number of keywords in the metadata

13. data_channel_is_lifestyle: Is data channel 'Lifestyle'?

14. data_channel_is_entertainment: Is data channel 'Entertainment'?

15. data_channel_is_bus: Is data channel 'Business'?

17. data_channel_is_tech: Is data channel 'Tech'?

PRE-PROCESSING

CHECK FOR NULL VALUES

```
> # Exploratory Data Analysis and Cleaning Data
> sum(is.na(popularity.df)) # no null values found
[1] 0
> |
```

No null values were found!

CORRELATION MATRIX

OBSERVATIONS FROM CORRELATION MATRIX

STRONG NEGATIVE CORRELATION

kw_min_min - kw_max_max
kw_max_max - timedelta
global_sentiment_polarity - rate_negative_words

STRONG POSITIVE CORRELATION

n_non_stop_words - n_unique_tokens
n_non_stop_unique_words - n_unique_tokens
n_non_stop_unique_words - n_non_stop_words
kw_avg_min - kw_max_min
kw_avg_avg - kw_max_avg
self_reference_avg_sharess - self_reference_min_shares
self_reference_avg_sharess - self_reference_max_shares
...and more

LOG TRANSFORMATION OF TARGET VARIABLE - SHARES

BEFORE TRANSFORMATION

AFTER TRANSFORMATION

CORRELATION WITH THE TARGET VARIABLE - SHARES

```
> # checking for predictors having a strong correlation with the target variable - shares
> shares_correlation<-cor_matrix['shares', ]
> strong_correlations<-shares_correlation[abs(shares_correlation)>0.2] # Shares has a strong correlation with only itself
> strong_correlations
shares
1
```

Shares has a strong correlation with only itself!

EXPLORATORY DATA ANALYSIS

kw_max_avg vs Shares

global_subjectivity vs Shares

kw_avg_max vs Shares

kw_max_max vs Shares

REMOVE NON-PREDICTIVE AND CORRELATED VARIABLES

```
# remove strongly correlated variables to avoid multicolinearity
popularity.df <- subset(popularity.df, select = -c(url, timedelta, is_weekend, kw_max_min,
                                                   kw_avg_min, kw_min_max, kw_max_max,
                                                   global_sentiment_polarity,
                                                   global_rate_negative_words, n_unique_tokens,
                                                   n_non_stop_unique_tokens,
                                                   kw_avg_max, self_reference_min_shares,
                                                   self_reference_max_shares,
                                                   LDA_02, LDA_00, LDA_04,
                                                   max_positive_polarity, min_negative_polarity,
                                                   abs_title_sentiment_polarity))
```

TRANSFORM VARIABLES

```
# transform variables
popularity.df$kw_max_avg = log(popularity.df$kw_max_avg + 1)
popularity.df$self_reference_avg_sharess = log(popularity.df$self_reference_avg_sharess + 1)
```

CONVERT CATEGORICAL VALUES TO FACTORS

```
# convert categorical values to factors
popularity.df$weekday_is_monday <- factor(popularity.df$weekday_is_monday)</pre>
popularity.df$weekday_is_wednesday <- factor(popularity.df$weekday_is_wednesday)</pre>
popularity.df$weekday_is_thursday <- factor(popularity.df$weekday_is_thursday)</pre>
popularity.df$weekday_is_friday <- factor(popularity.df$weekday_is_friday)</pre>
popularity.df$weekday_is_tuesday <- factor(popularity.df$weekday_is_tuesday)</pre>
popularity.df$weekday_is_saturday <- factor(popularity.df$weekday_is_saturday)</pre>
popularity.df$weekday_is_sunday <- factor(popularity.df$weekday_is_sunday)</pre>
popularity.df$data_channel_is_lifestyle <- factor(popularity.df$data_channel_is_lifestyle)</pre>
popularity.df$data_channel_is_entertainment <- factor(popularity.df$data_channel_is_entertainment)</pre>
popularity.df$data_channel_is_bus <- factor(popularity.df$data_channel_is_bus)</pre>
popularity.df$data_channel_is_socmed <- factor(popularity.df$data_channel_is_socmed)</pre>
popularity.df$data_channel_is_tech <- factor(popularity.df$data_channel_is_tech)</pre>
popularity.df$data_channel_is_world <- factor(popularity.df$data_channel_is_world)</pre>
summary(popularity.df)
str(popularity.df)
```


MULTILINEAR REGRESSION MODEL

SPLITTING DATASET INTO TRAINING (60%) AND VALIDATION (40%)

```
# Splitting dataframe into training (60%) and validation (40%)
set.seed(12012023)
split <- sample(c(rep(1,0.6*nrow(popularity.df)),rep(0,0.4*nrow(popularity.df))))
table(split)
train.df <- popularity.df[split==1,]
valid.df <- popularity.df[split==0,]</pre>
```

MODEL 1 - ALL THE PREDICTORS

```
#### Multilinear Regression Model ####

model.all <- lm(shares ~ ., data = train.df)
summary(model.all)
pred.all = predict(model.all, valid.df)
accuracy(pred.all, valid.df$shares)</pre>
```

MODEL 2 - USING FORWARD STEP

```
## Linear Regression Model Using Forward Step ##
model.null <- lm(shares~1, data = train.df)
model.step <- step(model.null, scope=list(lower=model.null, upper=model.all), direction = "forward")
summary(model.step) # Which variables were added?
model.step.pred <- predict(model.step, valid.df)
accuracy(model.step.pred, valid.df$shares)</pre>
```

MODEL 3 - USING BACKWARD STEP

Linear Regression Model Using Backward Step
model.step <- step(model.all, direction = "backward")
summary(model.step) # Which variables were dropped?
model.step.pred <- predict(model.step, valid.df)
accuracy(model.step.pred, valid.df\$shares)</pre>

MODEL 4 - USING BOTH STEP

```
## Linear Regression Model Using Both Step ##
model.step <- step(model.all, direction = "both")
summary(model.step) # Which variables were dropped/added?
model.step.pred <- predict(model.step, valid.df)
accuracy(model.step.pred, valid.df$shares)</pre>
```

RESIDUAL ANALYSIS AND HOMOSCEDASTICITY

RESIDUAL ANALYSIS

HOMOSCEDASTICITY TEST

MODEL COMPARISON

COMPARING PREDICTION ACCURACY

MODEL 1 - USING ALL PREDICTORS

ME RMSE MAE MPE MAPE Test set -0.002098004 0.8637441 0.642574 -1.303289 8.512656 MODEL 2 - USING FORWARD STEP

ME RMSE MAE MPE MAPE Test set -0.002183005 0.8638055 0.6426699 -1.304746 8.514365

MODEL 3 - USING BACKWARD STEP

ME RMSE MAE MPE MAPE Test set -0.002137957 0.8637679 0.6426055 -1.304113 8.513484 MODEL 3 - USING BOTH STEPS

ME RMSE MAE MPE MAPE
Test set -0.002137957 0.8637679 0.6426055 -1.304113 8.513484

COMPARING R-SQUARED VALUES

MODEL 1 - USING ALL PREDICTORS

Residual standard error: 0.8715 on 22785 degrees of freedom Multiple R-squared: 0.118, Adjusted R-squared: 0.1166 F-statistic: 80.25 on 38 and 22785 DF, p-value: < 2.2e-16

MODEL 3 - USING BACKWARD STEP

Residual standard error: 0.8714 on 22793 degrees of freedom Multiple R-squared: 0.1179, Adjusted R-squared: 0.1167 F-statistic: 101.5 on 30 and 22793 DF, p-value: < 2.2e-16

MODEL 2 - USING FORWARD STEP

Residual standard error: 0.8714 on 22794 degrees of freedom Multiple R-squared: 0.1179, Adjusted R-squared: 0.1168 F-statistic: 105 on 29 and 22794 DF, p-value: < 2.2e-16

MODEL 3 - USING BOTH STEPS

Residual standard error: 0.8714 on 22793 degrees of freedom Multiple R-squared: 0.1179, Adjusted R-squared: 0.1167 F-statistic: 101.5 on 30 and 22793 DF, p-value: < 2.2e-16

THANK YOU Group 5