

Long- and Short-term Preference Learning for Next POI Recommendation

Yuxia Wu, Ke Li, Guoshuai Zhao, Xueming Qian*

SMILES LAB, Xi'an Jiaotong University, Xi'an, China

Outline

- Motivation
- Our Method
- Experiments
 - Datasets
 - Comparative Results
 - Discussions
- Future Work

Motivation

(1) Why next POI recommendation?

Where to go next?

Users:

Recommend the interesting places

Business:

Attract more potential customers

Motivation

五五大日

(2) What affects the choice of where to go next time?

(3) How to learn users' preference?

Our Method

Long- and Short-term Preference Learning model (LSPL)

Long-term preference

+

Short-term preference

Our Method

Experiments

Datasets

Two public Foursquare check-in datasets [4]: New York City (NYC) and Tokyo (TKY)

Information: user ID, POI ID, category name, GPS and timestamp

Table 1. Datasets Statistics

	#user	#location	#category	#session	
NYC	1,083	38,333	398	11,415	
TKY	2,293	61,858	385	28,727	

[4] Dingqi Yang, Daqing Zhang, Vincent W. Zheng, et al. Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 45(1): 129-142.

https://sites.google.com/site/yangdingqi/home/foursquare-dataset

Comparative Results

Table 2. Performance Comparison With Baselines

Datasets	Methods	p@1	p@5	p@10	p@20	MAP@20
NYC	FPMC [1]	0.0892	0.2262	0.2943	0.3895	0.1483
	SHAN [2]	0.1353	0.1779	0.1896	0.2019	0.1545
	DeepMove[3]	0.1408	0.2946	0.3630	0.4052	0.2101
	LSPL	0.1501	0.3204	0.3901	0.4461	0.2257
ТКҮ	FPMC [1]	0.0655	0.1725	0.2385	0.2944	0.1128
	SHAN [2]	0.1084	0.1527	0.1684	0.1813	0.1296
	DeepMove [3]	0.1282	0.2488	0.2923	0.3289	0.182
	LSPL	0.1497	0.3281	0.3986	0.4596	0.2162

Observations

- Our model outperforms the baselines.
- DeepMove shows better performance than FPMC and SHAN.

^[1] Steffen Rendle, Christoph Freudenthaler, Lars Schmidt-Thieme. Factorizing personalized markov chains for next-basket recommendation. In Proc. WWW, 2010.

^[2] Haochao Ying, Fuzheng Zhang, Yanchi Liu, et al. Sequential recommender system based on hierarchical attention networks. In Proc. IJCAI. 2018.

^[3] Jie Feng, Yong Li, Chao Zhang, et al. Deepmove: Predicting human mobility with attentional recurrent networks. In Proc. WWW, 2018: 1459-1468.

Discussion

Discussions

- 'long' is the worst one under P@1 and P@5.
- Models with only one module show poor performance.
- Our LSPL model is the best.

long: Variant model with only the long-term module

loc: Variant model with only the location-level module

cate: Variant model with only the category-level module

+: take another factor into consideration

LSPL: Our model with long- and short-term preference learning module.

Future Work

- Incorporate more context information
- Consider sequential information for long-term preference learning
- Dynamic preference learning

Thank You & QA

Email: wuyuxia@stu.xjtu.edu.cn

Smiles Lab: http://smiles.xjtu.edu.cn/

SMILES LAB