

LAB 6 NORMALIZATION

Summarized by Taylor Qin Don't distribute with others outside the tutorial!

Two properties

Lossless join – " capture the same

data " R -> R1 and R2 R1 join R2 = R

Dependency preservation — " capture the same meta-data "

R -> R1 and R2

FDs in R should be preserced in either R1 or R2 or derivable from the combinations of FDs from R1 and R2

LOSSLESS JOIN

• **Example 2:** The following decomposition from R into R_3 and R_4 doesn't have the lossless join property. It generates spurious tuples.

R		
Name <u>StudentID</u> DoB		
Mike	123456	20/09/1989
Mike	123458	25/01/1988

SELECT * FROM R ₃ NATURAL JOIN R ₄		
Name	Name StudentID DoB	
Mike	123456	20/09/1989
Mike	123456	25/01/1988
Mike	123458	20/09/1989
Mike	123458	25/01/1988

R_3	
Name	StudentID
Mike	123456
Mike	123458

R_4	
Name	DoB
Mike	20/09/1989
Mike	25/01/1988

DEPENDENCY PRESERVATION

• Example 2: Given a FD $\{StudentID\} \rightarrow \{Name\}$ defined on R

R		
Name <u>StudentID</u> <u>CourseNo</u>		
Mike	Mike 123456 COMP2400	
Mike	123458	COMP2600

R_1	
Name CourseNo	
Mike	COMP2400
Mike	COMP2600

R_2	
StudentID	CourseNo
123456	COMP2400
123458	COMP2600

Does the above decomposition preserves {StudentID} → {Name}?
No, because {StudentID} and {Name} are not in a same relation after decomposition.

Answer:

Lossless join? Yes! because A is a superkey for R1 and R2.

Dependency preserving? No! because ($\Sigma 1 \cup \Sigma 2$) * != Σ * from the fact that {A \rightarrow B, A \rightarrow C} cannot derive B \rightarrow C.

Lossless join? Yes

The common attributes of R1 and R2 are {A}. A is a superkey for R1 and R2. Dependency preservation? {A->B, A->C} -> {A->B, B->C, A->C} B->C cannot be inferred from the LHS B*=B

- If R with a set Σ of FDs is decomposed into R_1 with Σ_1 and R_2 with Σ_2 ,
 - Lossless join if and only if the common attributes of R_1 and R_2 are a superkey for R_1 or R_2 ;
 - Dependency preserving if and only if $(\Sigma_1 \cup \Sigma_2)^* = \Sigma^*$ holds.

Exercise: Consider R={A, B, C} with the set of FDs Σ = {A \rightarrow B, B \rightarrow C, A \rightarrow C}. Does the decomposition of R into R1 = {A, B} and R2 = {A, C} fulfill lossless join and dependency preserving? $\Sigma 1$ = {A \rightarrow B} and $\Sigma 2$ = {A \rightarrow C}

NORMAL FORMS

1NF -> BCNF: ?

NORMAL FORMS

1NF -> BCNF: Weak -> Strong

4NF, 5NF will not be covered in the course.

BCNF

BCNF: A relation schema R is in BCNF if whenever a non-trivial FD $X \to A$ holds in R, then X is a superkey.

- Non-trivial: A is not a subset of X
 trivial AB->A
- When a relation schema is in BCNF, all data redundancy based on functional dependency are removed.
- The order in which the FDs are applied may lead to different results.
- Lossless join! Why? X is the superkey of XY, same for X'/X'Y'.
- May not be dependency-preserving -> 3NF (less restrictive lossless and dependency-preserving)

3NF

3NF: A relation schema R is in 3NF if whenever a non-trivial FD $X \rightarrow A$ holds in R, then X is a superkey or A is a prime attribute .

- 3NF preserves all the functional dependencies at the cost of allowing some data redundancy
- Steps:
 - Find a minimal cover
 - Group FDs in the minimal cover
 - Remove redundant ones
 - Add a key (if necessary)
 - Project FDs

BCNF decomposition

{PropertyNo, Address, StaffNo, StaffName, Date, Time, CameralD}

- -> {{ProperNo, Address}, {PropertyNo, StaffNo, StaffName, Date, Time, CameraID}}
- -> {{ProperNo, Address}, {StaffNo, StaffName}, {PropertyNo, StaffNo, Date, Time, CameralD}}

BCNF EXAMPLE

For each relation, please (a) determine the candidate keys, and (b) in 3NF? In BCNF? and (c) if a relation is not in BCNF then decompose it into a collection of BCNF relations.

R6(A,B,C,D,E) with functional dependencies $A \rightarrow E$, BC $\rightarrow A$, DE $\rightarrow B$.

C, D do not appear on the RHS of any FD, so C, D must be in the candidate keys.

CD+ = CD

Keys: {ACD, BCD, CDE}

(b)
All attributes are prime attributes, thus the schema is in 3NF.
Not in BCNF! Because A, BC, DF are not superkeys.

(c) {ABCDE} -(A->E)-> {AE, **ABCD**} (Not BC is not the key) -(BC->A)-> {AE, ABC, BCD}

PRACTICE

For each relation, please (a) determine the candidate keys, and (b) if a relation is not in BCNF then decompose it into a collection of BCNF relations.

- a. $R1(A,C,B,D,E), A \rightarrow B, C \rightarrow D$
- b. R2(A,B,F), $AB \rightarrow F$, $B \rightarrow F$

PRACTICE

HI!

For each relation, please (a) determine the candidate keys, and (b) if a relation is not in BCNF then decompose it into a collection of BCNF relations.

- $R1(A,C,B,D,E), A \rightarrow B, C \rightarrow D$
- b. R2(A,B,F), $AB \rightarrow F$, $B \rightarrow F$
- a.

(ACE)+=ABCDE
First compute the keys for R1. The attributes A, C, E do not appear on right hand side of any functional dependency therefore they must be part of a key. So we start from {A, C, E} and find out that this set can determine all features. So the key is {A, C, E}

We have dependencies $A \rightarrow B$ and $C \rightarrow D$ so the table is not BCNF. Applying the BCNF decomposition algorithm, the non-BCNF dependency is A \rightarrow B, therefore create two relations (A, C, D, E) and (A, B). The first relation is still not in BCNF since we have a non-BCNF dependency $C \rightarrow D$. Therefore decompose further into (A, C, E) and (C, D). Now all relations are in BCNF and the final BCNF scheme is (A, C, E), (C, D), (A, B).

{ABCDE} -(A->B)> {AB, ACDE} -(C->D)> {AB, CD, ACE}

{ABCDE} -(A->B)> {AB, ACDE} -(C->D)> {AB, CD, ACE}

PRACTICE

For each relation, please (a) determine the candidate keys, and (b) if a relation is not in BCNF then decompose it into a collection of BCNF relations.

- a. R1(A,C,B,D,E), $A \rightarrow B$, $C \rightarrow D$
- b. R2(A,B,F), $AB \rightarrow F$, $B \rightarrow F$

b.

First compute keys for R2. Note that AB \rightarrow F is totally redundancy since we already have B \rightarrow F. A,B do not appear on right side of any dependency, so start by computing attribute set closure of {AB}. Since AB \rightarrow F, we have {AB}+ = {ABF} and therefore {AB} is the key.

Since we have $B \to F$, i.e., F is partially dependent on the key, the relation is not in BCNF. During BCNF decomposition, we have $B \to F$ as the non-BCNF relation therefore create new schema (A,B) (B,F). Both are in BCNF.

 $\{ABF\} - (B->F) > \{BF, AB\}$

3NF EXAMPLE

R = (A, B, C, D). F = {C \rightarrow D, C \rightarrow A, B \rightarrow C}. Does it satisfy any normal forms?

3NF EXAMPLE

R = (A, B, C, D). F = { $C \rightarrow D$, $C \rightarrow A$, $B \rightarrow C$ } Does it satisfy any normal forms?

B+ = BC (B \rightarrow C)

 $= BCD (C \rightarrow D)$

= ABCD ($C \rightarrow A$) so the candidate key is B.

B is the ONLY candidate key, because nothing determines B: There is no rule that can produce B, except $B \rightarrow B$.

R is not 3NF, because:

C→D causes a violation,

- C→D is non-trivial ({D} ⊄ {C}).
- C is not a superkey.
- D is not part of any candidate key.

C→A causes a violation

Similar to above

B→C causes no violation

Since R is not 3NF, it is not BCNF either.

3NF EXAMPLE

R = (A, B, C, D). F = {C \rightarrow D, C \rightarrow A, B \rightarrow C}. Decompose it into 3NF:

- Find a minimal cover
 Already minimal cover
- Group FDs in the minimal cover {CD, AC, BC}
- Remove redundant ones
 No redundant ones
- Add a key (if necessary)
 B already in BC. No need.
- Project FDs
 Correct! Done.

MOVE ONTO YOUR LAB EXERCISE

- Ask in the channel if you have any doubts
- A2 already out on wattle