Class-conditional independence as an assumption about the structure of a new environment

Presentation at the ABC Mini Conference, 29 Nov 2012

Jana Jarecki Jonathan Nelson Björn Meder

Class-conditional independence of features

Classifications

Assign an object with features by considering feature values to a category

Class-conditional independence of features

If Species A
the relationship
between one feature
values and class
is independent of another
feature value

Class-conditional independence of features

→ Species A

→ Species A

→ Species B

(Nelson et al., 2010; Meder & Nelson, 2012)

Assumption Why?

Class-conditional independence of features

- Facilitates performance of heuristics,
 e.g. FFT, TTB, Tallying
 (Katsikopoulos

 Martignon, 2006)
- Deals with combinatorial explosion
 - Reduction
 - Inference
- Useful eve (e.g. Domingos €

Hypothesis Assumptions

- People approach unknown environments assuming class-conditional independence of features
 - initial belief
 - initial learning strategy

 Specific categorization decisions early in learning

Experiment Task

Experiment Environment

Experiment Environment

- Limited maximum accuracy
 - Naive Bayes Classifier
 - with class-conditional feature assumption
 - Fast-and-Frugal-Tree Classifiers
 - Different construction methods
- Which strategies are used here?

Data Glance

Item 111

Actual Environment:

Assuming class-

conditional indep.:

ltem • | 111 • 000

<u>Item ooo</u>

Actual Environment:

Assuming classconditional indep.:

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Times each item was seen

Proportion of correct responses averaged over previous times

Data Glance

Item 111

Actual Environment: A

Assuming class-conditional indep.:

<u>Item ooo</u>

Actual Environment: A

Assuming classconditional indep.: B

Summary so far

Reasonable to have assumptions

 Learning contra-intuitive environments is possible

 Initial response pattern more variable for contradictory item (ooo) Thank you.

Issues we are thinking about

- Information encoding how could the learning process work
- Datasets to check if assumption yields low decision error
- Theoretical reasons for using the assumption
- Heuristics what heuristics work when classconditional independence does not hold?

References

Domingos et al (1997) On the optimality of the simple Bayesian classifier under zero-one loss Machine Learning 29 (2-3) 103-130 doi: 10.1023/A:1007413511361

Katsikopoulos et al (2006) Naive heuristics for paired comparisons: Some results on their relative accuracy Journal Of Mathematical Psychology 50 (5) 488-494 doi: 10.1016/j.jmp.2006.06.001

Fast & Frugal Trees in this Environment

Validities

Features f1f2f3	for A	for B
1XX	0.78	0.22
OXX	0.56	0.44
X1X	0.78	0.22
XOX	0.56	0.44
XX1	0.78	0.22
XXO	0.56	0.44

Tree: Max(val+,val-): 39 % accuracy

Fast & Frugal Trees in this Environment

Validities

for A	for B
0.78	0.22
0.56	0.44
0.78	0.22
0.56	0.44
0.78	0.22
0.56	0.44
	0.78 0.56 0.78 0.56 0.78

Tree: ZigZag(val+,val-): 61 % accuracy

Fast & Frugal Trees in this Environment

Validities

Features f1f2f3	for A	for B
1XX	0.78	0.22
OXX	0.56	0.44
X1X	0.78	0.22
xox	0.56	0.44
XX1	0.78	0.22
XXO	0.56	0.44

Tree: 78 % accuracy

Motivation What?

