

Devoir Libre de Magnétostatique 1^{ère} Année AP, Année 2019-2020

Exercice 1:

On considère la nappe surfacique de courant définie en coordonnées cylindriques (ρ, φ, z) par:

$$\begin{cases} \overrightarrow{j}(\rho,\varphi,z) = j_0 \frac{z}{H} \overrightarrow{e_{\varphi}} & \text{si } \rho = R \text{ et } 0 \le z \le H \\ \overrightarrow{j}(\rho,\varphi,z) = 0 & \text{sinon} \end{cases}$$

- 1. Déterminer la direction du champ $\vec{B}(0)$ crée par la distribution au point O (centre de la base du cylindre)
- 2. Calculer ce champ magnétique $\vec{B}(0)$.
- 3. Quel est le moment magnétique $\overrightarrow{dM}(z)$ d'une tranche de la distribution de courant comprise entre z et z+dz
- 4. Calculer le moment magnétique total \overrightarrow{M} de la nappe de courant \overrightarrow{j}

R

Exercice 2:

On considère une sphère de rayon R , portant une densité surfacique uniforme

 σ . La sphère tourne autour de l'axe Oz avec une vitesse angulaire uniforme ω .

On donne : la charge totale de la sphère Q = 10^{-5} C, R = 2 cm et ω = 200~rd / s

 μ_0 = $4\pi\times 10^{-7}~H~m^-1~$ (perméabilité magnétique du vide)

- 1. Calculer la densité surfacique uniforme $\,\sigma\,$
- 2. Calculer le champ magnétique *B* au centre de la sphère
- 3. Calculer le moment magnétique de la sphère