Esercizi 03 — 8 pt

1 — 2 pt

Sia dato un sistema lineare $A \mathbf{x} = \mathbf{b}$, dove la matrice $A \in \mathbb{R}^{n \times n}$ è tale che: $(A)_{i,i} =$ 2 per i = 1, ..., n, $(A)_{i,i+1} = -1$ per i = 1, ..., n-1, $(A)_{n,1} = 1$ e zero altrimenti; $\mathbf{b} = \mathbf{1} \in \mathbb{R}^n$. Posto n = 100, si assegni la matrice A in Matlab[®] come matrice sparsa e si risolva il sistema lineare usando il metodo della fattorizzazione LU con pivoting totale. Si riportino l'elemento $l_{21} = (L)_{21}$ del fattore L della matrice A permutata, oltre alle componenti n-esime dei vettori ausiliari \mathbf{y} e $\mathbf{x}^{\star},$ ovvero y_n e x_n^* , associati rispettivamente alle soluzioni dei sistemi triangolari inferiore e superiore che compaiono durante l'applicazione del metodo.

$$l_{21} = 0.5$$
 $y_{100} = 4$ $x_{100}^{\star} = 1$

2 - 1 pt

Si consideri la matrice $A=\left[\begin{array}{cc} (2\gamma) & \frac{\sqrt{3}}{2}\gamma \\ \frac{\sqrt{3}}{2}\gamma & \gamma \end{array}\right]$ dipendente da un parametro $\gamma>0.$

Si determini il valore del numero di condizionamento spettrale K(A) in funzione di γ .

5

3-1 pt

Si consideri un metodo diretto per risolvere il sistema lineare $A \mathbf{x} = \mathbf{b}$, dove $A \in$ $\mathbb{R}^{n \times n}$ è una matrice non singolare e **b**, $\mathbf{x} \in \mathbb{R}^n$. Sapendo che $K_2(A) = 10^{10}$, $\|\mathbf{b}\|=10$ e che il residuo associato alla soluzione numerica $\widehat{\mathbf{x}}$ è tale che $\|\mathbf{r}\|=$ $\|\mathbf{b} - A\widehat{\mathbf{x}}\| = 10^{-11}$, si stimi l'errore relativo comesso $e_{rel} = \frac{\|\mathbf{x} - \widehat{\mathbf{x}}\|}{\|\mathbf{x}\|}$

$$10^{-2}$$

4 — 2 pt

Per una matrice $A \in \mathbb{R}^{n \times n}$ non–singolare, la sua fattorizzazione LU tramite metodo di eliminazione di Gauss (MEG) realizzata al calcolatore genera equivalentemente in aritmetica esatta una perturbazione δA tale che $\frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}} \leq 8\,n^3\,\epsilon_M\,\rho_n$, dove ϵ_M è

l'epsilon macchina e $\rho_n = \frac{\max_{i,j,k=1,...,n} |a_{ij}^{(k)}|}{\max_{i,j=1,...,n} |a_{ij}|}$ è il fattore di crescita determinato durante il MEG. Per la matrice $A = \begin{bmatrix} 10^{-6} & 10^6 & 1\\ 1 & 0 & 1\\ 1 & 1 & 1 \end{bmatrix}$, considerando la sua

fattorizzazione LU tramite MEG senza pivoting e sapendo che $\epsilon_M=2^{-52},$ si stimi la massima perturbazione relativa attesa $\frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}}$.

$$4.7962 \cdot 10^{-8}$$

5 — 2 pt

Dato il sistema lineare A $\mathbf{x} = \mathbf{b}$, dove $A = \begin{bmatrix} 6 & -2 & -2 \\ -2 & 8 & -4 \\ -2 & -4 & 10 \end{bmatrix}$ e $\mathbf{b} = (1, 1, 1)^T$, si consideri il metodo iterativo $\mathbf{x}^{(k+1)} = B$ $\mathbf{x}^{(k)} + \mathbf{g}$, per $k = 0, 1, \ldots$, dato $\mathbf{x}^{(0)}$. Sapendo che il metodo è fortemente consistente e la matrice di precondizionamento

è
$$P = \begin{bmatrix} 6 & 0 & 0 \\ -1 & 8 & 0 \\ -1 & -2 & 10 \end{bmatrix}$$
, si calcoli e si riporti $\mathbf{x}^{(2)}$, avendo posto $\mathbf{x}^{(0)} = \mathbf{b}$.

 $(0.6694, 0.6399, 0.5491)^T$