INFO 6205 Program Structure and Algorithms

Nik Bear Brown Random Algorithms

Topics

Probability

Random variables

Permutations

Combinations

Tail Bounds

Bayesian Framework

Las Vegas Algorithms

Monte Carlo Algorithms

RP Class

Probability

- *Probability* is a measure of the likelihood of a random phenomenon or chance behavior. Probability describes the long-term proportion with which a certain outcome will occur in situations with short-term uncertainty.
- Probability is expressed in numbers between 0 and 1. Probability = 0 means the event never happens; probability = 1 means it always happens.
- The total probability of all possible event always sums to 1.

Probability

1.The probability of any event E, P(E), must be between 0 and 1 inclusive. That is,

$$0 \le P(E) \le 1$$
.

- 2. If an event is **impossible**, the probability of the event is 0.
- 3. If an event is a certainty, the probability of the event is 1.
- 4. If $S = \{e_1, e_2, ..., e_n\}$, then

$$P(e_1) + P(e_2) + ... + P(e_n) = 1.$$

Unions and Intersections

AND Rule of Probability

Probability - The OR Rule of Probability

- The probability that either one of 2 different events will occur is the sum of their separate probabilities.
- For example, the chance of rolling either a 2 or a 3 on a die is 1/6 + 1/6 = 1/3.

Mutually Exclusive Events

- The OR Rule of Probability
- Mutually exclusive events-no outcomes from S in common

Probability - NOT Rule

- The chance of an event not happening is 1 minus the chance of it happening.
- For example, the chance of not getting a 2 on a die is 1 1/6 = 5/6.
- This rule can be very useful. Sometimes complicated problems are greatly simplified by examining them backwards.

$$P(A') = 1 - P(A)$$

For an event A, A' is the **complement of A**; A' is everything in S that is

not in A.

Probability

• if A and B are mutually exclusive events:

$$P(A \text{ or } B) = P(A) + P(B)$$

ex., die roll: $P(1 \text{ or } 6) = 1/6 + 1/6 = .33$

possibility set:

```
sum of all possible outcomes

^{\sim}A = anything other than A

P(A \text{ or } ^{\sim}A) = P(A) + P(^{\sim}A) = 1
```

Probability

- one event has no influence on the outcome of another event
- if events A & B are independent then P(A&B) = P(A)*P(B)
- if P(A&B) = P(A)*P(B) then events A & B are independent
- coin flipping

```
if P(H) = P(T) = .5 then

P(HTHTH) = P(HHHHHH) = .5*.5*.5*.5*.5 = .5^5 = .03
```

Random variables assign a real number to each outcome:

$$X: \Omega \to \mathbb{R}$$

 $\omega \to X(\omega)$

Random variables can be:

Discrete: if it takes at most countably many values (integers).

Continuous: if it can take any real number.

Distribution of a random variable $F(x) = F_X(x) = P(X \le x)$

(i)
$$F(x) \rightarrow 0$$
 when $x \rightarrow -\infty$

(ii)
$$F(x) \rightarrow 1$$
 when $x \rightarrow +\infty$

(iii) F(x) is nondecreasing.

$$x_1 < x_2 \Longrightarrow F(x_1) \le F(x_2)$$

(iv) F(x) is right-continuous.

$$F(x) \rightarrow F(x_0)$$
 when $x \rightarrow x_0$ $x > x_0$

- For a random variable, we define
- Probability function
- Density function,

depending on whether it is discrete or continuous

Probability function

$$p(x) = p_X(x) = P(X = x)$$

verifies

$$(i) p(x) \ge 0$$

$$(ii)\sum_{x}p(x)=1$$

Probability density function

verifies

(i)
$$f(x) \ge 0$$

$$(ii) \quad \int_{-\infty}^{+\infty} f(x) dx = 1$$

We have

$$F(x) = \int_{-\infty}^{x} f(t)dt \text{ and } f(x) = F'(x).$$

F completely determines the distribution of a random variable.

$$P(a < X \le b) = F(b) - F(a) = \begin{cases} \sum_{a < x \le b} p(x) \\ \int_a^b f(t) dt \end{cases}$$

Bernoulli

$$X \equiv B(1, p)$$

$$P(X = 1) = p$$

$$P(X = 0) = 1 - p$$

Binomial

Successes in *n* independent Bernoulli trials with success probability *p*

$$X \equiv B(n, p)$$

$$P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x} \quad x = 0,1,2,...,n$$

$$with \quad \binom{n}{x} = \frac{n!}{x!(n-x)!}$$

Geometric

Time of first success in a sequence of independent Bernoulli trials with success probability p

$$X \equiv G(p)$$

 $P(X = x) = (1-p)^{x-1} \cdot p$ $x = 1,2,3,...$

Poisson

X expresses the number of "rare events"

$$X \equiv P(\lambda), \quad \lambda > 0$$

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!} \qquad x = 0, 1, 2, \dots$$

Uniform

$$X \equiv U[a,b] \qquad f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{for } x < a \\ \frac{x-a}{b-a} & \text{for } a \le x < b \\ 1 & \text{for } x \ge b \end{cases}$$

$$F(x) = \begin{cases} \frac{1}{b-a} & \text{for } a < x < b \\ \frac{x-a}{b-a} & \text{for } a \le x < b \end{cases}$$

Exponential

$$X = \exp(\beta)$$

$$f(x) = \begin{cases} \frac{1}{\beta} e^{\frac{-x}{\beta}} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 - e^{\frac{-x}{\beta}} & \text{for } x \ge 0 \end{cases}$$

Normal

$$X \equiv N(\mu, \sigma^{2})$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right)$$

$$x \in \mathbb{R}$$

$$\mu \in \mathbb{R}$$

$$\sigma^{2} \ge 0$$

$$f(x)$$

$$F(x)$$

Properties of normal distribution

(i)
$$\frac{X-\mu}{\sigma} \equiv N(0,1) \quad \text{standard normal}$$
(ii)
$$Z \equiv N(0,1) \Rightarrow \sigma Z + \mu \equiv N(\mu,\sigma^2)$$

$$X_i \equiv N(\mu_i,\sigma_i^2)$$
(iii)
$$\Rightarrow \sum_i X_i \equiv N(\sum_i^n \mu_i, \sum_i^n \sigma_i^2) \quad \text{independent i=1,2,...,n}$$

Two random variables X and Y are independent if and only if:

$$p(x, y) = p_X(x)p_Y(y)$$

$$f(x,y) = f_X(x)f_Y(y),$$

for all values x and y.

Discrete variables

$$p(x | y) = P(X = x | Y = y) = \frac{p(x, y)}{p(y)}$$

Continuous variables

$$f(x \mid y) = \frac{f(x, y)}{f(y)}$$

If X and Y are independent:

$$p(x \mid y) = p(x)$$

$$f(x \mid y) = f(x)$$

$$EX = \mu_X = \sum_{x} xp(x)$$
$$EX = \mu_X = \int xf(x)dx$$

Properties:

(i)
$$E\sum_i \alpha_i X_i = \sum_i \alpha_i E X_i$$
 $i=1,...,n$ (ii) If $X_i, i=1,...,n$ are independent then:

$$E\prod_{i} X_{i} = \prod_{i} EX_{i}$$

Moment of order k

$$EX^{k} = \sum_{x} x^{k} p(x)$$
$$EX^{k} = \int x^{k} f(x) dx$$

Variance

Given X with
$$\mu = EX$$

$$VX = \sigma_X^2 = E(X - \mu)^2$$

$$\sigma_X = \sqrt{VX} = (E(X - \mu)^2)^{1/2}$$

standard deviation

Permutations

ABCDE

- How many ways can we choose 2 letters from the above 5, without replacement, when the order in which we choose the letters is important?
- $5 \times 4 = 20$

Permutations (cont.)

$$5 \times 4 = 20 = \frac{5!}{(5-2)!} = \frac{5!}{3!} = 5 \times 4$$

Notation:
$$_5P_2 = \frac{5!}{(5-2)!} = 20$$

Combinations

ABCDE

- How many ways can we choose 2 letters from the above 5, without replacement, when the order in which we choose the letters is not important?
- $5 \times 4 = 20$ when order important
- Divide by 2: $(5 \times 4)/2 = 10$ ways
- N choose K (5 choose 2)

Bounding Numbers of Combinations

• N choose K

$$\binom{n}{k} \sim \frac{n^k e^{-\frac{k^2}{2n} - \frac{k^3}{6n^2}}}{k!} (1 - o(1)) \quad \text{for } k = o \binom{\frac{3}{4}}{n^4}$$

Combinations (cont.)

$$\binom{5}{2} = {}_{5}C_{2} = \frac{5!}{(5-2)!2!} = \frac{5!}{3!2!} = \frac{5 \times 4}{1 \times 2} = \frac{20}{2} = 10$$

$$\binom{n}{r} = {n \choose r} = \frac{n!}{(n-r)!r!}$$

Tail Bounds

- In the analysis of randomized algorithms, we need to know how much does an algorithms run-time/cost deviate from its expected run-time/cost.
- That is we need to find an upper bound on Pr[X deviates from E[X] a lot]. This we refer to as the tail bound on X.

Markov and Chebychev Inequalities

Markov Inequality (uses only mean)

Prob
$$(A \ge x) \le \frac{\mu}{x}$$

Chebychev Inequality (uses mean and variance)

Prob
$$(|A - \mu| \ge \Delta) \le \frac{\sigma^2}{\Delta^2}$$

Markov and Chebychev Inequalities

• Example, if B is a Binomial with parameters n,p

Then Prob
$$(B \ge x) \le \frac{np}{x}$$

$$|B - np| \ge \Delta \le \frac{np}{x}$$

Chernoff bounds

The Chernoff bound for a random variable X is obtained as follows: for any t >0,

$$Pr[X \ @ a] = Pr[e^{tX} \ @ e^{ta}] \le E[e^{tX}] / e^{ta}$$

Similarly, for any t <0,

$$Pr[X \ @ a] = Pr[e^{tX} \ @ e^{ta}] \le E[e^{tX}] / e^{ta}$$

The value of t that minimizes $E[e^{tX}] / e^{ta}$ gives the best possible bounds.

Chernoff Bound of Random Variable A

- Uses all moments
- Uses moment generating function

Prob
$$(A \ge x) \le e^{-sx} M_A(s)$$
 for $s \ge 0$

$$= e^{\gamma(s) - sx} \text{ where } \gamma(s) = \ln (M_A(s))$$

$$\le e^{\gamma(s) - s \gamma'(s)}$$

By setting $x = \gamma'$ (s) 1st derivative minimizes bounds

Chernoff Bound of Discrete Random Variable A

Prob
$$(A \ge x) \le z^{-x} G_A(z)$$
 for $z \ge 1$

- Choose $z = z_0$ to minimize above bound
- Need Probability Generating function

$$G_A(z) = \sum_{x>0} z^x f_A(x) = E(z^A)$$

Chernoff Bounds for Binomial B with parameters n,p

• Above mean $x \ge \mu$

Prob
$$(B \ge x)$$

$$\leq \left(\frac{n-\mu}{n-x}\right)^{n-x} \left(\frac{\mu}{x}\right)^{x}$$

$$\leq e^{x-\mu} \left(\frac{\mu}{x}\right)^x \text{ since } \left(1-\frac{1}{x}\right)^x < e^{-1}$$

$$\leq e^{-x-\mu} \text{ for } x \geq \mu e^2$$

Chernoff Bounds for Binomial B with parameters n,p

• Below mean $x \le \mu$

Prob (B \le x)
$$\leq \left(\frac{n-\mu}{n-x}\right)^{n-x} \left(\frac{\mu}{x}\right)^{x}$$

Birthday Problem

• What is the smallest number of people you need in a group so that the probability of 2 or more people having the same birthday is greater than 1/2?

Answer: 23

No. of people 23 30 40 60

Probability .507 .706 .891 .994

Birthday Problem

- A={at least 2 people in the group have a common birthday}
- A' = {no one has common birthday}

3 people :
$$P(A') = \frac{364}{365} \times \frac{363}{365}$$

23 people :
$$P(A') = \frac{364}{365} \times \frac{363}{365} \times \dots \frac{343}{365} = .498$$
so $P(A) = 1 - P(A') = 1 - .498 = .502$

The Bayesian Framework

- The Bayesian framework assumes that we always have a prior distribution for everything.
 - The prior may be very vague.
 - When we see some data, we combine our prior distribution with a likelihood term to get a posterior distribution.
 - The likelihood term takes into account how probable the observed data is given the parameters of the model.
 - It favors parameter settings that make the data likely.
 - It fights the prior
 - With enough data the likelihood terms always win.

Basic Probability Formulas

Product rule

$$P(A \wedge B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

Sum rule

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

Bayes theorem

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$$

 Theorem of total probability, if event Ai is mutually exclusive and probability sum to 1

$$P(B) = \sum_{i=1}^{n} P(B \mid A_i) P(A_i)$$

Bayes Theorem

• Given a hypothesis h and data D which bears on the hypothesis:

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$$

- *P(h)*: independent probability of *h*: *prior probability*
- *P(D)*: independent probability of *D*
- P(D|h): conditional probability of D given h: likelihood
- P(h|D): conditional probability of h given D: posterior probability

Maximum A Posterior

- Based on Bayes Theorem, we can compute the Maximum A Posterior (MAP) hypothesis for the data
- We are interested in the best hypothesis for some space H given observed training data D.

$$h_{MAP} \equiv \underset{h \in H}{\operatorname{argmax}} P(h \mid D)$$

$$= \underset{h \in H}{\operatorname{argmax}} \frac{P(D \mid h)P(h)}{P(D)}$$

$$= \underset{h \in H}{\operatorname{argmax}} P(D \mid h)P(h)$$

H: set of all hypothesis.

Note that we can drop P(D) as the probability of the data is constant (and independent of the hypothesis).

Naïve Bayes Background

There are two main methods for training a classifier:

a) Discriminative Classifiers

Examples: k-NN, decision trees, Neural Networks, SVM

b) Generative Classifiers

Example: Bayesian approaches (naive Bayes...)

Discriminative approach seems easier, as the task is easier; you don't need to model classes (observation distribution of features in those classes), just need to find where the query instance belongs to.

Naïve Bayes

- The Naïve Bayes Assumption: Assume that all features are independent given the class label Y
- Equationally speaking:

$$P(X_1, ..., X_n | Y) = \prod_{i=1}^n P(X_i | Y)$$

(We will discuss the validity of this assumption later)

Las Vegas Algorithms

- Always gives the true answer.
- Running time is random.
- Running time is bounded.
- Random Quick sort is a Las Vegas algorithm.

Monte Carlo Algorithms

- It may produce incorrect answer!
- We are able to bound its probability.
- By running it many times on independent random variables, we can make the failure probability arbitrarily small at the expense of running time.

Monte Carlo Example

• Suppose we want to find a number among n given numbers which is larger than or equal to the median.

Suppose $A_1 < ... < A_n$.

We want A_i , such that $i \ge n/2$.

It's obvious that the best deterministic algorithm needs O(n) time to produce the answer.

n may be very large!

Suppose n is 100,000,000,000!

Monte Carlo Example

- Choose 100 of the numbers with equal probability.
- find the maximum among these numbers.
- Return the maximum.

- The running time of the given algorithm is O(1).
- The probability of Failure is $1/(2^{100})$.
- Consider that the algorithm may return a wrong answer but the probability is very smaller than the hardware failure or even an earthquake!

RP Class (randomized polynomial)

- Bounded polynomial time in the worst case.
- If the answer is Yes; Pr[return Yes] > ½.
- If the answer is No; Pr[return Yes] = 0.
- ½ is not actually important.

PP Class (probabilistic polynomial)

- Bounded polynomial time in worst case.
- If the answer is Yes; Pr[return Yes] > ½.
- If the answer is No; Pr[return Yes] < ½.
- Unfortunately the definition is weak because the distance to ½ is important but is not considered.

Graph Connectivity

- You want to check if two vertices u and v are in the same connected component.
- Start a random walk from v.
- Have a random walk of length 2n³.
- If you haven't visited u, the probability of u to be in this component is less than ½.
- By repeating this algorithm, you can make the probability of failure arbitrarily small.
- Running time of algorithm is $O(n^3)$.
- Required space is O(logn).

Graph Contraction

For an undirected graph G, we can construct a new graph G' by <u>contracting</u> two vertices u, v in G as follows:

- u and v become one vertex {u,v} and the edge (u,v) is removed;
- the other edges incident to u or v in G are now incident on the new vertex {u,v} in G';

Note: There may be multi-edges between two vertices. We just keep them.

Karger's Min-cut Algorithm

```
For i = 1 to 100n^2
     repeat
         randomly pick an edge (u,v)
         contract u and v
       until two vertices are left
     c<sub>i</sub> ← the number of edges between
  them
Output mini c<sub>i</sub>
```

Key Idea

• Let $C^* = \{c_1^*, c_2^*, ..., c_k^*\}$ be a min-cut in G and C^i be a cut determined by Karger's algorithm during some iteration i.

• Cⁱ will be a min-cut for G if during iteration "i" none of the edges in C* are contracted.

• If we can show that with <u>prob.</u> $\Omega(1/n^2)$, where n = |V|, C^i will be a mincut, then by <u>repeatedly obtaining min-cuts</u> $O(n^2)$ times and taking minimum gives the min-cut with high prob.

Karger's Min-cut Algorithm

(i) Graph G (ii) Contract nodes C and D (iii) contract nodes A and CD

Note: C is a cut but not necessarily a min-cut.

C is a cut, but not necessarily a min-cut.

(Iv) Cut $C = \{(A,B), (B,C), (B,D)\}$

Analysis of Karger's Algorithm

- In step 1, Pr [no crossing edge picked] >= 1 2/n
- Similarly, in step 2, Pr [no crossing edge picked] ≥ 1-2/(n-1)
- In general, in step j, Pr [no crossing edge picked] ≥ 1-2/(n-j+1)
- Pr {the n-2 contractions never contract a crossing edge}
 - = Pr [first step good]
 - * Pr [second step good after surviving first step]
 - * Pr [third step good after surviving first two steps]
 - * ...
 - * Pr [(n-2)-th step good after surviving first n-3 steps]
 - \geq (1-2/n) (1-2/(n-1)) ... (1-2/3)
 - = [(n-2)/n] [(n-3)(n-1)] ... [1/3] = 2/[n(n-1)] = $\Omega(1/n^2)$