Exercício 01 - Sejam A e B fórmulas. Classifique as afirmações a seguir em verdadeiras ou falsas, justificando sua resposta.

a)Se A é satisfatível, então \neg A é satisfatível A é satisfatível sse, \exists I | I [A] = T. Se I[A] = T, então I[\neg A] = F. Assim, se A é satisfatível, então \neg A não o é.

b)A é tautologia se \neg A é contraditória A é uma tautologia,sse \forall I | I [A] = T. Se \forall I | I [A] = T, então \forall I | I [\neg A] = F. Logo, \neg é uma Contradição

c)A é tautologia se A é satisfatível A é uma tautologia,sse ∀I | I [A] = T. Se A é satisfatível,então∃I | I [A] = T. Logo, A somente será tautologia se ela for satisfatível.

d)Se A é contraditória, então $\neg A$ é satisfatível Se $\forall I \mid I [A] = F$, então $\forall I \mid I [\neg A] = T$. Se A é satisfatível, então $\exists I \mid I [A] = T$. Logo $\neg A$ é satisfatível.

e)Se A \mid = B e A é tautologia implica que B é tautologia Se A \mid = B, então \forall I \mid I[A] = T, I[B] = T. B não precisa ser Tautologia para atender essa condição. Basta somente que \forall I \mid I[A] = T, I[B] = T. Logo, B pode ser satisfatível ou Tautologia.

f)Se A \mid = B e B é tautologia implica que A é tautologia Se A \mid = B, então \forall I \mid I[A] = T, I[B] = T. Se B é tautologia, então \forall I \mid I[A] = T, I[B] = T. Isso não implica em A ser tatutologia para antender essa condição. Logo, B pode ser satisfatível ou Tautologia.

Exercício 02 - Utilizando todos os métodos de validação vistos em sala, diga se cada sentença abaixo é contraditória, satisfatível ou tautologia.

Tabela Verdade:

P	P→P
T	Т
F	\mathbf{T}

Tautologia.

Demonstração

P→P é tautologia sse, ∀I | I [P] = T.

Como a implicação consiste somente em uma possibilidade I [P] = F, essa condição nunca é satisfeita, uma vez que nesse caso, $T \rightarrow T$ e $F \rightarrow F$. Logo $P \rightarrow P$ é tautologia.

Método da Negação:

$$H = P \rightarrow P$$

Supondo que H não é tautologia, então∃I | I [H] = F.

Para $I[P \rightarrow P] = F \Rightarrow I[P] = T$ e I[P] = T, logo: Absurdo. P não pode assumir dois valores ao mesmo instante. Logo H é tautologia.

Árvore semântica: H = P→P

A partir de agora, afin economizar tempo (e espaço, sequi fica enococorme >.<') farei uma forma para cada exercício a seguir.

b)
$$P \rightarrow \neg P$$

Tabela Verdade:

P	¬Р	P⇒¬P
Т	F	F
F	Т	Т

Satisfatível

$$H = \neg P \rightarrow P$$

H é satisfatível sse, $\exists I \mid I[H] = T$.

Como a implicação consiste somente uma possibilidade de I[H] = F, a saber: $I[\neg P] = T$ e I[P] = F.

Sempre que $I[\neg P] = T$, I[P] = F. H não é tautologia. Não obstante, Sempre que $I[\neg P] = F$, I[H] = T.

Logo, H é satisfatível pois ∃I | I [H] = T.

d) P⇔P

Árvore semântica: H = P⇔P

Logo H é tautologia.

e)
$$P \rightarrow (Q \rightarrow P)$$

$$H = P \rightarrow (Q \rightarrow P)$$

Supondo que H não é tautologia, então ∃I | I [H] = F.

Para $I[P \rightarrow (Q \rightarrow P)] = F \Rightarrow I[P] = T$, I[Q] = T e I[P] = F, logo: Absurdo. P não pode assumir dois valores ao mesmo instante. Logo H é tautologia.

$$f) (P \rightarrow (Q \lor R)) \rightarrow (P \land (Q \rightarrow \neg R))$$

$$\mathbf{H} = (\mathbf{P} \mathbin{\rightarrow} (\mathbf{Q} \vee \mathbf{R})) \mathbin{\rightarrow} (\mathbf{P} \wedge (\mathbf{Q} \mathbin{\rightarrow} \neg \mathbf{R}))$$

Tabela Verdade:

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	-	,	• , ,						
T T F T T T T T T T T T T T T T T T T T	-	P	Q	R	$\neg R$	$(Q \vee R)$	(Q⇒¬R)	$(P \!\!\!\rightarrow\!\!\! (Q \vee R))$	$(P \wedge (Q {\rightarrow} \neg R))$	Н
T F T F T T T T T T T T T T T T T T T T	,	Г	T	T	F	Т	F	T	F	F
T F F T F T F T F T T F T F T F F T F T T T T F F T F T F T T T F	,	Г	Т	F	Т	Т	Т	Т	T	T
F T T F T F T F F F T F F T F F T F T F	,	Г	F	Т	F	Т	Т	T	T	Т
FTFTT T T F	,	Г	F	F	Т	F	Т	F	T	T
FFTFT T F	-	F	Т	Т	F	T	F	Т	F	F
	-	F	Т	F	Т	T	Т	T	F	F
FFFTF T T F	-	F	F	Т	F	Т	Т	T	F	F
	-	F	F	F	Т	F	Т	T	F	F

Logo, H é satisfatível.

g)
$$(P \lor R) \land (Q \lor R) \rightarrow (P \land Q) \lor R$$

Demosntração.

Seja uma fórmula $H = (P \vee R) \wedge (Q \vee R) \rightarrow (P \wedge Q) \vee R$. Seja I, interpretação.

Para que exista I[H] = F, o conectivo " \rightarrow ", deve "implicar T \rightarrow F, logo para que I[H] = F sse I[(P \vee R) \wedge (Q \vee R)] = T e I[(P \wedge Q) \vee R] = F.

Para
$$I[(P \land Q) \lor R] = F \Leftrightarrow I[P] = T \text{ ou } F, I[Q] = T \text{ ou } F \text{ e } I[R] = F$$

Seja
$$I[P] = F$$
, $I[Q] = T$ e $I[R] = F$, então $I[(P \land Q) \lor R] = F$ e $I[(P \lor R) \land (Q \lor R)] = F$.

Seja
$$I[P] = T$$
, $I[Q] = F$ e $I[R] = F$, então $I[(P \land Q) \lor R] = F$ e $I[(P \lor R) \land (Q \lor R)] = F$

Portanto, não há caso em que H = F. Logo, H é satisfatível e Tautologia.

h)
$$P \rightarrow Q \rightarrow (P \land Q)$$

Demonstração do Absurdo:

Seja uma fórmula $H = P \rightarrow Q \rightarrow (P \land Q)$. Seja I, interpretação.

Suponhamos que $\exists I \mid I[H] = F \Leftrightarrow I[P \rightarrow Q] = T e I [(P \land Q)] = F$

$$\Leftrightarrow I [(P \land Q)] = F$$

$$\Leftrightarrow I[P] = F e I[Q] = F$$

$$\Leftrightarrow I[P \rightarrow Q] = T$$

$$\Leftrightarrow I[P] = F e I[Q] = F$$

Concluímos que H não é tautologia, pois existe interpretação H = F. C.Q.D

i) ¬(A⇔B)

¬(A⇔B) é satisfatível.

$j)\:A \land (B {\Leftrightarrow} C)$

Tabela Verdade:

A	В	C	(B⇔C)	A∧(B⇔C)
Т	Т	Т	Т	Т
Т	Т	F	F	F
Т	F	Т	F	F
Т	F	F	Т	Т
F	Т	Т	Т	F
F	Т	F	F	F
F	F	Т	F	F
F	F	F	Т	F

 $A \land (B \Leftrightarrow C)$ é satisfatível.

$k) (A \wedge B) \Leftrightarrow (A \wedge C)$

 $Tabela\ Verdade:$

A	В	\mathbf{C}	(A ∧ B)	(A ∧ C)	$(A \land B) \Leftrightarrow (A \land C)$
Т	T	Т	Т	Т	Т
Т	Т	F	Т	F	F
T	F	Т	F	T	F
Т	F	F	F	F	Т
F	Т	Т	F	F	Т
F	Т	F	F	F	Т
F	F	Т	F	F	Т
F	F	F	F	F	Т

 $(A \land B) \Leftrightarrow (A \land C)$ é satisfatível.

l) $(\neg A \lor B) \rightarrow C$

Método da Negação:

Seja H = (¬A∨B)→C. Seja I, interpretação.

Suponhamos que H não é tautologia.

Então
$$\exists I \mid I[H] = F \Leftrightarrow I[(\neg A \lor B)] = T \ e \ I \ [C] = F$$

 $\Leftrightarrow I[(\neg A \lor B)] = T$
 $\Leftrightarrow I[A] = F \ e \ I[B] = T$

Se $\exists I \mid I[A] = F$ e I[B] = T e I[C] = F, então H não é tautologia. C.Q.D

$$m) (A \Leftrightarrow B) \Rightarrow (\neg A \land B)$$

Método da Negação:

Seja H = (A⇔B)→(¬A ∧ B). Seja I, interpretação.

Suponhamos que H não é tautologia.

Então
$$\exists I \mid I[H] = F \Leftrightarrow I[(A \Leftrightarrow B)] = T e I [(\neg A \land B)] = F$$

$$\Leftrightarrow$$
 I [(\neg A \wedge B)] = F

$$\Leftrightarrow$$
 I[A] = T e I[B] = F

Para $I[(A \Leftrightarrow B)] = T \Rightarrow I[A] = T$ ou $F \in I[B] = T$ ou F.

Logo, há um absurdo pois enquanto A = T, B = F e enquanto B = T, A = F.

Logo, não há I[(A⇔B)] = T.

Portanto H é Tautologia.

Exercício 3 Construa a árvore semântica associada à fórmula abaixo e diga se ela é tautologia, satisfatível ou contraditória.

