Symbol Tables

Bùi Tiến Lên

2021

Contents

1. Abstract Data Type

2. Elementary Implementations

3. Workshop

Elementary In plementations Sequential Search Binary Search Interpolation Search Selection

Worksh

Introduction

Concept 1

A **symbol table** is a data structure of **key-value** pair abstraction that supports two basic operations:

- Insert a value (item) with specified key.
- Given a key, **search** for the corresponding value.
- For example, DNS lookup.
 - Insert domain name with specified IP address.
 - Given domain name, find corresponding IP address.

Elementary Implementations

Sequential Search Binary Search Interpolation Sear

Worksho

Search

	Target known	Target unknown
Location known	·.••• Lookup	·. Browse
Location unknown	⋰⊙.> Locate	₹`@.> Explore

Elementary I plementation Sequential Search Binary Search Interpolation Sear Selection

Worksho

Symbol table applications

Application	Purpose Of Search	Key	Value
dictionary	find definition	word	definition
book index	find relevant pages	term	list of page numbers
file share	find song to download	name of song	computer ID
financial account	process transactions	account number	transaction details
web search	find relevant web pages	keyword	list of page names
compiler	find properties of variables	variable name	type and value
routing table	route Internet packets	destination	best route
DNS	find IP address	domain name	IP address
reverse DNS	find domain name	IP address	domain name
genomics	find markers	DNA string	known positions
file system	find file on disk	filename	location on disk

Elementary In plementation Sequential Search Binary Search Interpolation Search Selection

Worksh

Symbol-Table Abstract Data Type


```
template <class Key, class Value>
class SymbolTable {
private:
  // Implementation-dependent code
public:
  int count() = 0;
  Value search(Key) = 0;
  void insert(Key, Value) = 0;
  void remove(Key) = 0;
  Key select(int) = 0;
};
```

Elementary In plementations Sequential Search Binary Search Interpolation Search Selection

Morksho

Conventions

- Value type:
 - Any generic type.
 - Values are not null. (nullValue)
- Key type:
 - Keys are any generic type.
 - Keys are Comparable.
 - Keys are unique and not null. (nullKey)

Elementary I plementation Sequential Search Binary Search Interpolation Sear Selection

Worksh

Ordered Symbol-Table Abstract Data Type

For ordered symbol-table, we need the following additional methods

Methods	Meanings
Key min()	smallest key
Key max()	largest key
Key floor(Key key)	largest key less than or equal to
	key
Key ceiling(Key key)	smallest key greater than or
	equal to key
<pre>Key select(int k)</pre>	key of rank k
int rank(Key key)	number of keys less than key
<pre>vector<key> range(int 1, int r)</key></pre>	keys in sorted set of keys [lr]
vector <key> keys(Key lo, Key hi)</key>	keys in [lohi], in sorted order

Elementary Ir plementations Sequential Search Binary Search Interpolation Search Selection

Workshop

Examples of ordered symbol table API

	keys	values
min()—	-09:00:00	Chicago
	09:00:03	Phoenix
	09:00:13	Houston
search(09:00:13) —	09:00:59	Chicago
	09:01:10	Houston
floor(09:05:00)—	- 09:03:13	Chicago
	09:10:11	Seattle
select(7)—	- 09:10:25	Seattle
rank(09:10:25) <i>is</i> 7	09:14:25	Phoenix
	09:19:32	Chicago
	09:19:46	Chicago
$keys(09:15:00, 09:25:00) \longrightarrow$	09:21:05	Chicago
	09:22:43	Seattle
	09:22:54	Seattle
	09:25:52	Chicago
ceiling(09:30:00) <i>-</i> →	-09:35:21	Chicago
	09:36:14	Seattle
max()—	-09:37:44	Phoenix

Elementary Implementations

- Sequential Search
- Binary Search
- Interpolation Search
- Selection

Elementary Implementations

Sequential Search Binary Search Interpolation Search

Morkeh

Array-based Symbol Table


```
template <class Key, class Value>
class ArraySymbolTable: public SymbolTable<Key, Value> {
private:
  Value *values:
  Key *keys;
  int N:
public:
  ArraySymbolTable() {
    . . .
```

Elementary Im plementations

Sequential Search Binary Search

Binary Search
Interpolation Sear
Selection

Worksho

Sequential Search

 The search function can scan through the array of keys to look for an item with the specified key, returning nullValue when encountering an item with a larger key

```
Value seqsearch(int 1, int r, Key key) {
  for(int i=1; i<=r; i++)
    if (keys[i] == key) return values[i];
  return nullValue;
}
Value search(Key key) {
  return seqsearch(0, N-1, key);
}</pre>
```

• Challenge: Can we make any improvement?

Elementary In

Sequential Search

Binary Search Interpolation Search

Worksh

Analysis

Theorem 1

Sequential search in a symbol table with N ordered items uses about N/2 comparisons for **search hits** andh **search misses** (on the average)

Elementary In plementations
Sequential Search

Binary Search

Interpolation Sea

Worksl

Binary Search

Idea

Given that the array keys is sorted, the search checks the middle element of the active region.

- If the middle element is the target element, the search terminates.
- Otherwise, the search recursively continues to the left or right half of the region, depending on the value of the middle element.

Elementary Implementations

Binary Search Interpolation Sear

Morkeho

Implementation


```
Value binsearch(int 1, int r, Key key) {
    int m;
    do {
        m = (1 + r) / 2;
        if (keys[m] == key)
            return values[m]:
        else if (keys[m] > key)
            r = m - 1;
        else
            1 = m + 1:
    } while (1 <= r):</pre>
    return nullValue;
```

• **Challenge**: Reimplement the function using recursion.

Elementary Implementations

Binary Search

Interpolation Sear

Worksho

Analysis

Theorem 2

Binary search never uses more than $\log_2(\textit{N}+1)$ comparisons for a search (hit or miss)

Interpolation Search

• We can replace the formula

$$m \leftarrow l + \frac{1}{2}(r - l) \tag{1}$$

with

$$m \leftarrow I + \frac{key - keys[I]}{keys[r] - keys[I]}(r - I)$$
 (2)

Elementary Ir plementations Sequential Search Binary Search Interpolation Search

Morkob

Selection

Problem. Finding the *k*-th smallest of a set of keys without required full sort.

```
template <class Item>
void select(Item a[], int l, int r, int k) {
  if (r <= l) return;
  int i = partition(a, l, r);
  if (i > k) select(a, l, i - 1, k);
  if (i < k) select(a, i + 1, r, k);
}</pre>
```

• **Challenge**: reimplement the function without using recursion

Selection

Analysis

Theorem 3

Quicksort-based selection is linear time on the average

Elementary | plementation Sequential Search Binary Search Interpolation Sea

Selection

Worksh

Cost summary for basic symbol-table implementations

implementation	,	worst case	е	ave	erage case	ordered	kov	
implementation	search	insert	remove	search hit	insert	remove	iteration	key
unordered list	N	1	Ν	N/2	1	N/2	no	equal
ordered list	N	Ν	Ν	N/2	N/2	N/2	yes	compare
ordered array	$\log_2 N$	Ν	Ν	$\log_2 extstyle extstyle $	N/2	N/2	yes	compare
goal?								

Workshop

ostract Data pe

Elementary In plementations Sequential Search Binary Search Interpolation Search

Workshop

1.	L. What is a symbol table?																														
								٠.												 											
				• •				٠.												 											

Elementary Implementations
Sequential Search
Binary Search
Interpolation Search

Workshop

Projects

1. (Big project) Design and implement a tiny relational database project.

References

Cormen, T. H. (2009).

Introduction to algorithms.

MIT press.

Sedgewick, R. (2002).

Algorithms in Java, Parts 1-4, volume 1.

Addison-Wesley Professional.

Walls and Mirrors (2014).

Data Abstraction And Problem Solving with C++.

Pearson.