4.4 범주형 독립변수

이 절에서는 범주형 독립변수를 가지는 경우의 회귀분석모형을 공부한다.

범주형 변수가 하나인 경우

 x_1, x_2, \dots, x_D 라는 D개의 독립변수를 가지는 선형회귀모형을 생각하자.

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_D x_D$$

여기에서 x_1 이라는 독립변수만 범주형 변수이고 'A'과 'B'라는 두 가지의 범주값을 가질 수 있다고 하자.

가장 간단한 방법은 전체 데이터를 $x_1 = A$ 인 데이터와 $x_2 = B$ 인 데이터 두 그룹으로 나누어 각각의 데이터에 대한 선형회귀모형을 만드는 것이다. 즉 다음과 같은 2개의 선형회귀모형을 만든다.

model A:
$$\hat{y} = w_{A,0} + w_{A,2}x_2 + \dots + w_{A,D}x_D$$
 (if $x_1 = A$)

model B:
$$\hat{y} = w_{B,0} + w_{B,2}x_2 + \dots + w_{B,D}x_D$$
 (if $x_1 = B$)

그런데 올바른 선형회귀모형에서는 x_1 이 아닌 다른 변수 예를 들어 x_2 의 값이 변할 때 y값이 변화하는 정도, 즉 가중치 w_2 는 x_1 의 값이 A이든 B든 같아야 한다. 하지만 위와 같은 두 개의 선형회귀모형을 만들면 w_2 의 값이 $w_{A,2}$ 와 $w_{B,2}$ 라는 두 가지의 다른 값이 나오므로 위 모형은 적당하지 않다.

더미변수 방법은 범주형 변수 x_1 을 d_{1A} , d_{1B} 라는 두 개의 더미변수로 바꾸는 것이다. 더미변수는 상수항을 포함하기 때문에 더미변수로 변환하면 상수항은 없어진다.

$$\hat{y} = w_0$$
 + $w_1 x_1$ + $w_2 x_2 + \dots + w_D x_D$
 $\hat{y} = w_{1A} d_{1A} + w_{1B} d_{1B}$ + $w_2 x_2 + \dots + w_D x_D$

더미변수가 2개인 이유는 더미변수가 가질 수 있는 범주값이 2개이기 때문이다. 범주값이 K개이면 범주형 변수 x_1 을 d_{11},\ldots,d_{1K} 라는 K개의 더미변수로 바꾸어야 한다.

풀랭크 방식

풀랭크(full-rank) 방식에서는 더미변수의 값을 원핫인코딩(one-hot-encoding) 방식으로 지정한다. 즉 범주값이 2가지인 경우에는

$$x_1 = A \rightarrow d_{1A} = 1, d_{1B} = 0$$

 $x_1 = B \rightarrow d_{1A} = 0, d_{1B} = 1$

이 된다. 이 값을 대입하면 더미변수의 가중치는 상수항이 된다.

$$x_1 = A \rightarrow \hat{y} = w_{1A} + w_2 x_2 + \dots + w_D x_D$$

 $x_1 = B \rightarrow \hat{y} = w_{1B} + w_2 x_2 + \dots + w_D x_D$

위 수식은 $x_1=A$ 인 데이터에 대해서는 $\hat{y}=w_{1A}+w_2x_2+\cdots+w_Dx_D$ 모형을 사용하고 $x_1=B$ 인 데이터에 대해서는 $\hat{y}=w_{1B}+w_2x_2+\cdots+w_Dx_D$ 모형을 사용하게 된다는 뜻이다. 이렇게 하면 범주값이 달라졌을때 상수항만 달라지고 다른 독립변수의 가중치(영향)는 같은 모형이 된다.

%load_ext tikzmagic

In [2]:

그림: 풀랭크 방식 더미변수 가중치의 의미

선형회귀모형에 범주형 독립변수가 있으면 더미변수의 가중치 이외에 별도의 상수항이 있으면 안된다. 만약 위의 모형에서 별도의 상수항 w_0 이 존재한다면 모형은 다음처럼 될 것이다.

$$x_1 = A \rightarrow \hat{y} = (w_0 + w_{1A}) + w_2 x_2 + \dots + w_D x_D$$

 $x_1 = B \rightarrow \hat{y} = (w_0 + w_{1B}) + w_2 x_2 + \dots + w_D x_D$

이 경우에는 w_0+w_{1A} 나 w_0+w_{1B} 의 값은 구할 수 있어도 w_0 값과 w_{1A} 값을 분리할 수는 없다. **범주형 독립 변수가 있으면 상수항은 포함시키지 않는다.**

축소랭크 방식

축소랭크(reduced-rank) 방식에서는 특정한 하나의 범주값을 기준값(reference, baseline)으로 하고 기준값에 대응하는 더미변수의 가중치는 항상 1으로 놓는다. 다른 범주형 값을 가지는 경우는 기준값에 추가적인 특성이 있는 것으로 간주한다. 예를 들어 다음 축소랭크 방식은 $x_1 = A$ 를 기준값으로 하는 경우이다.

$$x_1 = A \rightarrow d_{1A} = 1, d_{1B} = 0$$

 $x_1 = B \rightarrow d_{1A} = 1, d_{1B} = 1$

반대로 $x_1 = B$ 를 기준값으로 하면 다음과 같아진다.

$$x_1 = A \rightarrow d_{1A} = 1, d_{1B} = 1$$

 $x_1 = B \rightarrow d_{1A} = 0, d_{1B} = 1$

이 값을 대입하면 기준값인 더미변수의 가중치는 상수항이 되고 나머지 더미변수의 가중치는 그 상수항에 추가적으로 더해지는 상수항이 된다. $x_1 = A$ 를 기준값으로 하는 경우에는 다음과 같다.

$$\begin{array}{lll} x_1 = A & \rightarrow & \hat{y} = w_{1A} & +w_2x_2 + \cdots + w_Dx_D \\ x_1 = B & \rightarrow & \hat{y} = w_{1A} + w_{1B} & +w_2x_2 + \cdots + w_Dx_D \end{array}$$

In [3]:

그림 : 축소랭크 방식 더미변수 가중치의 의미

예제

다음 데이터는 1920년부터 1939년 사이의 노팅엄(Nottingham)지역 월 평균 기온이다. 이 데이터에서 독립변수는 월(monath)이며 범주값으로 처리한다. value로 표기된 값이 종속변수인 해당 월의 평균 기온이다. 분석의 목적은 독립변수인 월 값을 이용하여 종속변수인 월 평균 기온을 예측하는 것이다. 우선 다음 코드를 사용하여 데이터 전처리를 한다.

In [4]:

```
import datetime
from calendar import isleap

def convert_partial_year(number):
  "연 단위 숫자에서 날짜를 계산하는 코드"
  year = int(number)
  d = datetime.timedelta(days=(number - year) * (365 + isleap(year)))
  day_one = datetime.datetime(year, 1, 1)
  date = d + day_one
  return date

df_nottem = sm.datasets.get_rdataset("nottem").data
  df_nottem["date0"] = df_nottem[["time"]].applymap(convert_partial_year)
  df_nottem["date"] = pd.DatetimeIndex(df_nottem["date0"]).round('60min') + datetime.timedelta(seconds)
  df_nottem["month"] = df_nottem["date"].dt.strftime("%m").astype('category')
  del df_nottem["date0"], df_nottem["date"]
  df_nottem.tail()
```

Out [4]:

	time	value	month
235	1939.583333	61.8	08
236	1939.666667	58.2	09
237	1939.750000	46.7	10
238	1939.833333	46.6	11
239	1939.916667	37.8	12

월과 기온의 관계를 박스플롯으로 시각화하면 다음과 같다.

df_nottem.boxplot("value", "month")
plt.show()

회귀분석 모형은 다음과 같다. x는 월을 나타내는 독립변수, \hat{y} 은 월 평균기온을 나타내는 종속변수다.

$$\hat{y} \sim x$$

x를 풀랭크 방식으로 더미변수화하면 다음과 같은 모형이 된다. 이 식에서 d_i 는 i월을 지시하는 더미변수다.

$$\hat{y} \sim w_1 d_1 + w_2 d_2 + w_3 d_3 + \dots + w_{12} d_{12}$$

더미변수의 값을 대입하면 다음과 같다.

$$x = 1 \rightarrow d = (1, 0, 0, 0, \dots, 0) \rightarrow \hat{y} = w_1$$

$$x = 2 \rightarrow d = (0, 1, 0, 0, \dots, 0) \rightarrow \hat{y} = w_2$$

$$x = 3 \rightarrow d = (0, 0, 1, 0, \dots, 0) \rightarrow \hat{y} = w_3$$

$$\vdots$$

$$x = 12 \rightarrow d = (0, 0, 0, 0, \dots, 1) \rightarrow \hat{y} = w_{12}$$

따라서 w_i 는 i월의 기온의 표본평균값으로 계산된다.

statsmodels 패키지의 OLS 클래스를 사용하면 다음과 같이 회귀분석을 할 수 있다. 월 데이터가 숫자이므로 연속값으로 인식하지 않도록 C() 연산자를 사용하였다.

In [6]:

```
model = sm.OLS.from_formula("value ~ C(month) + 0", df_nottem)
result = model.fit()
print(result.summary())
```

OLS Regression Results

	coef	std err	t	P> †	 [0.025	0.975
Covariance Type:		nonrobust				
Df Model:		11				
Of Residuals:		228	BIC:			1137.
No. Observations:		240	AIC:			1096.
Time:		19:54:19	Log-Like	elihood:		-535.82
Date:	Wed,	30 Oct 2019	Prob (F-	-statistic):		2.96e-125
Method:	L	east Squares.	F-statis	stic:		277.3
Model:		0LS	Adj. R-s	squared:		0.927
Dep. Variable:		value	R-square	ed:		0.930
			=======		======	

	coef	std err	t	P> t	[0.025	0.975]
C(month)[01]	39.6950	0.518	76.691	0.000	38.675	40.715
C(month)[02] C(month)[03]	39.1900 42.1950	0.518 0.518	75.716 81.521	0.000 0.000	38.170 41.175	40.210 43.215
C(month)[04]	46.2900	0.518	89.433	0.000	45.270	47.310
C(month)[05]	52.5600	0.518	101.547	0.000	51.540	53.580
C(month)[06]	58.0400	0.518	112.134	0.000	57.020	59.060
C(month)[07]	61.9000	0.518	119.592	0.000	60.880	62.920
C(month)[08]	60.5200	0.518	116.926	0.000	59.500	61.540
C(month)[09]	56.4800	0.518	109.120	0.000	55.460	57.500
C(month)[10]	49.4950	0.518	95.625	0.000	48.475	50.515
C(month)[11]	42.5800	0.518	82.265	0.000	41.560	43.600
C(month)[12]	39.5300 	0.518	76.373 	0.000	38.510	40.550
Omnibus: Prob(Omnibus): Skew: Kurtosis:		5.430 0.066 -0.281 3.463		.*		1.529 5.299 0.0707 1.00

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

1월을 기준월로 하는 축소랭크 방식을 사용하면 더미변수는 다음과 같다.

$$x = 1 \rightarrow d = (1, 0, 0, 0, \dots, 0) \rightarrow \hat{y} = w_1$$

$$x = 2 \rightarrow d = (1, 1, 0, 0, \dots, 0) \rightarrow \hat{y} = w_1 + w_2$$

$$x = 3 \rightarrow d = (1, 0, 1, 0, \dots, 0) \rightarrow \hat{y} = w_1 + w_3$$

$$\vdots$$

$$x = 12 \rightarrow d = (1, 0, 0, 0, \dots, 1)$$

포뮬러 문자열에서 +0 을 제외하면 축소랭크 방식을 사용한다. 이 때는 1월의 평균 기온을 기준으로 각 월의 평균 기온이 1월보다 얼마나 더 높은지를 나타내는 값이 회귀모형의 계수가 된다.

```
model = sm.OLS.from_formula("value ~ C(month)", df_nottem)
result = model.fit()
print(result.summary())
```

OLS Regression Results

D	1	0	0.000
Dep. Variable:	value	R-squared:	0.930
Model:	0LS	Adj. R-squared:	0.927
Method:	Least Squares	F-statistic:	277.3
Date:	Wed, 30 Oct 2019	Prob (F-statistic):	2.96e-125
Time:	19:54:19	Log-Likelihood:	-535.82
No. Observations:	240	AIC:	1096.
Df Residuals:	228	BIC:	1137.
Df Model:	11		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	39.6950	0.518	76.691	0.000	38.675	40.715
C(month)[T.02]	-0.5050	0.732	-0.690	0.491	-1.947	0.937
C(month)[T.03]	2.5000	0.732	3.415	0.001	1.058	3.942
C(month)[T.04]	6.5950	0.732	9.010	0.000	5.153	8.037
C(month)[T.05]	12.8650	0.732	17.575	0.000	11.423	14.307
C(month)[T.06]	18.3450	0.732	25.062	0.000	16.903	19.787
C(month)[T.07]	22.2050	0.732	30.335	0.000	20.763	23.647
C(month)[T.08]	20.8250	0.732	28.450	0.000	19.383	22.267
C(month)[T.09]	16.7850	0.732	22.931	0.000	15.343	18.227
C(month)[T.10]	9.8000	0.732	13.388	0.000	8.358	11.242
C(month)[T.11]	2.8850	0.732	3.941	0.000	1.443	4.327
C(month)[T.12]	-0.1650	0.732	-0.225	0.822	-1.607	1.277
Omnibus:		5.430	Durbin-Wa	 tson:		1.529
Prob(Omnibus):		0.066	Jarque-Be	ra (JB):		5.299
Skew:		-0.281	Prob(JB):			0.0707
Kurtosis:		3.463	Cond. No.			12.9

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

보스턴 집값 데이터의 범주형 변수

보스턴 집값 데이터는 CHAS 라는 범주형 변수가 있고 이 변수는 0과 1 두 개의 값을 가진다.

만약 보스턴 집값 데이터에서 상수값 가중치를 가지는 모형을 만들면 축소 랭크 방식으로 더미변수 변환되어 있는 것과 같다. 즉 다음과 같은 두 개의 모형을 각각 회귀분석하는 경우라고 볼 수 있다.

• CHAS = 1 인 경우,

$$y = (w_0 + w_{\text{CHAS}}) + w_{\text{CRIM}} \text{CRIM} + w_{\text{ZN}} \text{ZN} + \cdots$$

• CHAS = 0 인 경우,

$$y = w_0 + w_{\text{CRIM}} \text{CRIM} + w_{\text{ZN}} \text{ZN} + \cdots$$

In [8]:

```
from sklearn.datasets import load_boston

boston = load_boston()

dfX = pd.DataFrame(boston.data, columns=boston.feature_names)
dfy = pd.DataFrame(boston.target, columns=["MEDV"])
df_boston = pd.concat([dfX, dfy], axis=1)

model1 = sm.OLS.from_formula("MEDV ~ " + "+".join(boston.feature_names), data=df_boston)
result1 = model1.fit()
print(result1.summary())
```

OLS Regression Results

Dep. Variate Model: Method: Date: Time: No. Observate Df Residua Df Model:	ations:	Leas Wed, 30	19:54:1 50 49	S Adj s F-s 9 Pro 9 Log 6 Ald		tic):	0.741 0.734 108.1 6.72e-135 -1498.8 3026. 3085.
Covariance	Type:	1	nonrobus				
=======	CO6	ef std	err	====== t	P> t	[0.025	0.975]
Intercept	36.459		. 103	7.144		26.432	46.487
CRIM	-0.108		.033	-3.287		-0.173	-0.043
ZN	0.046		.014	3.382		0.019	0.073
INDUS	0.020		.061	0.334		-0.100	0.141
CHAS	2.686		.862	3.118			4.380
NOX RM	-17.766 3.809		. 820 . 418	-4.651 9.116		-25.272 2.989	-10.262 4.631
AGE	0.000		. 4 10	0.052		-0.025	0.027
DIS	-1.475		. 199	-7.398		-1.867	-1.084
RAD	0.306		. 199	4.613		0.176	0.436
TAX	-0.012		.004	-3.280		-0.020	-0.005
PTRAT I O	-0.952		. 131	-7.283		-1.210	-0.696
В	0.00		.003	3.467		0.004	0.015

Omnibus:	 Durbin-Watson:	1.078
Prob(Omnibus):	Jarque-Bera (JB):	783.126
Skew:	Prob(JB):	8.84e-171
Kurtosis:	Cond. No.	1.51e+04

-10.347

0.051

Warnings:

LSTAT

-0.5248

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.
- [2] The condition number is large, 1.51e+04. This might indicate that there are strong multicollinearity or other numerical problems.

반대로 보스턴 집값 데이터에서 상수값 가중치를 가지지 않는 모형을 만들면 풀 랭크 방식으로 더미변수 변환되어 있는 것과 같다. 즉 다음과 같은 두 개의 모형을 각각 회귀분석하는 경우라고 볼 수 있다.

0.000

-0.624

-0.425

• CHAS = 1 인 경우,

 $y = w_{\text{CHAS}=0}) + w_{\text{CRIM}} \text{CRIM} + w_{\text{ZN}} \text{ZN} + \cdots$ $y = w_{\text{CHAS}=1}) \text{CRIM} + w_{\text{ZN}} \text{ZN} + \cdots$

In [9]:

CHAS = 0 인 경우,

```
feature_names = list(boston.feature_names)
feature_names.remove("CHAS")
feature_names = [name for name in feature_names] + ["C(CHAS)"]
model2 = sm.OLS.from_formula("MEDV ~ 0 + " + "+".join(feature_names), data=df_boston)
result2 = model2.fit()
print(result2.summary())
```

OLS Regression Results

Dep. Variable:	MEDV	R-squared:	0.741
Model:	0LS	Adj. R-squared:	0.734
Method:	Least Squares	F-statistic:	108.1
Date:	Wed, 30 Oct 2019	Prob (F-statistic):	6.72e-135
Time:	19:54:19	Log-Likelihood:	-1498.8
No. Observations:	506	AIC:	3026.
Of Residuals:	492	BIC:	3085.
Of Madal:	10		

Df Model: 13 Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
C(CHAS)[0.0]	 36.4595	5. 103	7.144	0.000	 26.432	46.487
C(CHAS)[1.0]	39.1462	5.153	7.597	0.000	29.023	49.270
CRIM	-0.1080	0.033	-3.287	0.001	-0.173	-0.043
ZN	0.0464	0.014	3.382	0.001	0.019	0.073
INDUS	0.0206	0.061	0.334	0.738	-0.100	0.141
NOX	-17.7666	3.820	-4.651	0.000	-25.272	-10.262
RM	3.8099	0.418	9.116	0.000	2.989	4.631
AGE	0.0007	0.013	0.052	0.958	-0.025	0.027
DIS	-1.4756	0.199	-7.398	0.000	-1.867	-1.084
RAD	0.3060	0.066	4.613	0.000	0.176	0.436
TAX	-0.0123	0.004	-3.280	0.001	-0.020	-0.005
PTRAT10	-0.9527	0.131	-7.283	0.000	-1.210	-0.696
В	0.0093	0.003	3.467	0.001	0.004	0.015
LSTAT	-0.5248	0.051	-10.347	0.000	-0.624	-0.425

Omnibus:	178.041	Durbin-Watson:	1.078
Prob(Omnibus):	0.000	Jarque-Bera (JB):	783.126
Skew:	1.521	Prob(JB):	8.84e-171
Kurtosis:	8.281	Cond. No.	2.01e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.
- [2] The condition number is large, 2.01e+04. This might indicate that there are strong multicollinearity or other numerical problems.

두 개 이상의 범주형 변수가 있는 경우

두 개 이상의 범주형 변수가 있는 경우에는 축소형 방식을 사용한다. 이 때 주의할 점은 모든 범주형 범수의 가중

치는 기준값 상수항에 더해지는 상수항으로 취급된다. 예들 들어 x_1 은 A, B 의 두가지 값을 가지고 x_2 은 X, Y의 두가지 값을 가지고 값을 가지는 경우 상수항과 각 더미변수의 가중치의 의미는 다음과 같아진다.

- w_{AX} : 기준값 $x_1 = A, x_2 = X$ 인 경우의 상수항
- $w_{1,B}$: 기준값 $x_1 = B, x_2 = X$ 인 경우에 추가되는 상수항
- $w_{1,Y}$: 기준값 $x_1 = A, x_2 = Y$ 인 경우에 추가되는 상수항
- $w_{1,B} + w_{1,Y}$: 기준값 $x_1 = B, x_2 = Y$ 인 경우에 추가되는 상수항

In [10]:

범주형 독립변수와 실수 독립변수의 상호작용

만약 범주형 변수의 값이 달라질 때 상수항만 달라지는 것이 아니라 다른 독립변수들이 미치는 영향도 달라지는 모형을 원한다면 상호작용(interaction)을 쓰면 된다. 예를 들어 범주형 독립변수 x_1 과 실수 독립변수 x_2 를 가지는 회귀모형에서 연속값 독립변수 x_2 가 미치는 영향 즉 가중치가 범주형 독립변수 x_1 의 값에 따라 달라진다면 범주형 독립변수를 더미변수 d_1 으로 인코딩하고 연속값 독립변수 x_2 는 d_1 과의 상호작용 항 d_1 : x_2 를 추가하여 사용한다.

이 때 모형은 다음과 같아진다.

$$\hat{y} = w_0 + w_1 x_1 \cdot w_2 x_2$$

$$= w_0 + (w_{1A} d_A + w_{1B} d_B) \cdot (w_2 x_2)$$

$$= w_0 + w_{2A} d_A x_2 + w_{2B} d_B x_2$$

$$x_1 = A$$
일 때는 $d_A = 1, d_B = 0$ 에서

$$\hat{y} = w_0 + w_{2A} x_2$$

$$x_1 = B$$
일 때는 $d_A = 0, d_B = 1$ 에서

$$\hat{y} = w_0 + w_{2B}x_2$$

이므로 x_1 범주값에 따라 x_2 의 기울기가 달라지는 모형이 된다.

In [11]:

만약 범주형 독립변수도 종속변수에 영향을 미치고 범주형 독립변수와 실수 독립변수의 상호작용도 종속변수에 영향을 미친다면 모형은 다음과 같아진다.

$$\hat{y} = w_1 x_1 + w_{12} x_1 \cdot w_2 x_2$$

$$= (w_{1A} d_A + w_{1B} d_B) + (w_{1A} d_A + w_{1B} d_B) \cdot (w_2 x_2)$$

$$= (w_{1A} d_A + w_{1B} d_B) + (w_{2A} d_A + w_{2B} d_B) x_2$$

$$= (w_{1A} + w_{2A} x_2) d_A + (w_{2B} + w_{2B} x_2) d_B$$

 $x_1 = A$ 일 때는 $d_A = 1, d_B = 0$ 에서

$$\hat{y} = w_{1A} + w_{2A} x_2$$

 $x_1 = B$ 일 때는 $d_A = 0, d_B = 1$ 에서

$$\hat{y} = w_{1B} + w_{2B}x_2$$

이므로 x_1 범주값에 따라 상수항과 x_2 의 기울기가 모두 달라지는 모형이 된다.

