UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/41

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	41

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *q* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	41

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	41

d=	2 × 8	B1		
[25	× 16cos20]	M1		For using WD = $Fdcos \alpha$
Wo	rk done is 376 J	A1	3	
		M1		For applying Newton's second law to either particle (3 terms)
0.65	5g - T = 0.65a and $T - 0.35g = 0.35a$	A1		Accept $(0.65 - 0.35)g = (0.65 + 0.35)a$ as an alternative to one of these equations
		M1		For solving for T
Ten	sion in the string is 4.55 N	A1		
Mag	gnitude of resultant is 9.1 N	B1ft	5	
(i)	(a) $[2 \times 12\cos 40 - 15\cos 50]$	M1		For resolving in direction AB
	Component is 8.74 N	A1		
	(b) Component is 11.5 N	B1	3	
(ii)	Magnitude is 14.4 N or direction is 52.7° (or 0.920°) anticlockwise from i dir'n	M1		For using $R^2 = X^2 + Y^2$ or $\tan \theta = Y/X$
		A1		
	Direction is 52.7° (or 0.920°) anticlockwise from i dir'n or magnitude is 14.4 N	B1	3	
(i)	1.76 = 0.8u + 0.32a	M1		For using $s = ut + \frac{1}{2} at^2$ for AB
		A1		
	$[1.76 + 2.16 = (0.8 + 0.6)u + \frac{1}{2}(0.8 + 0.6)^{2}a \text{ or}$ 2.16 = (u + 0.8a)0.6 + \frac{1}{2}0.6^{2}a]	M1		For using $s = ut + \frac{1}{2} at^2$ for AC or $v = u + at$ for AB and $s = ut + \frac{1}{2} at^2$ for BC
	3.92 = 1.4u + 0.98a or $2.16 = 0.6u + 0.66a$	A1		
	u = 1.4 and $a = 2$	M1		For solving for u and a
		A1	6	
(ii)	$[2 = 10\sin\theta]$	M1		For using $a = g \sin \theta$
	θ = 11.5	A1	2	
(i)	$F = 12\cos\alpha$	B1		
		M1		For resolving forces vertically
	$R_1 = 2g + 12\sin\alpha$	A1		
	$[12 \times 0.8 \le \mu(2g + 12 \times 0.6)]$	M1		For using $F_1 \le \mu R$
	[25 Word	 (b) Component is 11.5 N (ii) Magnitude is 14.4 N or direction is 52.7° (or 0.920°) anticlockwise from i dir'n Direction is 52.7° (or 0.920°) anticlockwise from i dir'n or magnitude is 14.4 N (i) 1.76 = 0.8u + 0.32a [1.76 + 2.16 = (0.8 + 0.6)u + ½ (0.8 + 0.6)²a or 2.16 = (u + 0.8a)0.6 + ½0.6²a] 3.92 = 1.4u + 0.98a or 2.16 = 0.6u + 0.66a u = 1.4 and a = 2 (ii) [2 = 10sinθ] θ = 11.5 (i) F = 12cosα 	25 × 16cos20] M1 Work done is 376 J A1 M1 O.65g - T = 0.65a and T - 0.35g = 0.35a A1 M1 O.65g - T = 0.65a and T - 0.35g = 0.35a A1 M1 O.65g - T = 0.65a and T - 0.35g = 0.35a A1 M1 Tension in the string is 4.55 N A1 Magnitude of resultant is 9.1 N B1ft Gi) (a) [2 × 12cos40 - 15cos50] M1 Component is 8.74 N A1 (b) Component is 11.5 N B1 Gi) Magnitude is 14.4 N or direction is 52.7° (or 0.920°) M1 A1 Direction is 52.7° (or 0.920°) anticlockwise from i dir'n A1 Direction is 52.7° (or 0.920°) anticlockwise from i dir'n or magnitude is 14.4 N A1 [1.76 + 2.16 = (0.8 + 0.6)u + ½ (0.8 + 0.6)²a or 2.16 = (u + 0.8a)0.6 + ½0.6²a] 3.92 = 1.4u + 0.98a or 2.16 = 0.6u + 0.66a A1 u = 1.4 and a = 2 M1 A1 (ii) [2 = 10sinθ] M1 θ = 11.5 A1 Gi) F = 12cosα B1 M1 M1 H1 H1 H2 H2 H3 H3 H3 H3 H3 H3	25 × 16cos20

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	41

	(ii)	$12\cos\alpha > \mu R_2$	B1		
		$R_2 = 2g - 12 \times 0.6$	B1		
		μ < 9.6/12.8 = 3/4	B1	3	
6	(i)	PE gain = 1200g × 45	B1		
		$WD = 1200g \times 45 + 360\ 000$	M1		For WD by car's engine = PE gain + WD against resistance
		Work done is 900 000 J or 900 kJ	A1	3	
	(ii)	WD against resistance = 360 × sin5/sin1 (kJ) or {360000 ÷ (45/sin5°)} × (45/sin1°) (J) or 697.24 × 2578.44 (J) or 1798 (kJ)	В1		
		KE gain = 1660 + 540 - 1798	B1ft		Accept 1660 + 540 - 1800
		$[402000 = \frac{1}{2}1200(v^2 - 225)]$	M1		For using KE gain = $\frac{1}{2}$ m($v^2 - 15^2$)
		Speed is 29.9 ms ⁻¹	A1	4	AG
	(iii)	$\frac{P_B}{P_C} = \left(\frac{DF_B}{DF_C}\right) \times \frac{v_B}{v_C} = 1.5 \times 15/29.9$	M1		For using $P = Fv$
			A 1		
		Ratio is 0.75	A1	3	
7	(i)	$v(100) = 0.16 \times 1000 - 0.016 \times 10000 = 0$	B1	1	AG
	(ii)	$a = 1.5 \times 0.16t^{\frac{1}{2}} - 0.032t$	M1		For using $a = dv/dt$
			A1		
		$\begin{bmatrix} t^{\frac{2}{3}} = 0.24/0.032 \implies t = 56.25 \implies \\ v_{\text{max}} = 0.16 \times 421.875 - 0.016 \times 3164.0625 \end{bmatrix}$	M1		For solving $a = 0$ and subst into $v(t)$
		Maximum speed is $16.9 \text{ ms}^{-1} (\text{or} 16\frac{7}{8} \text{ ms}^{-1})$	A 1	4	
	(iii)	$s = 2/5 \times 0.16t^{\frac{5}{2}} - 0.016t^{\frac{3}{4}}$	M1		For using $s = \int v dt$
			A 1		
		Distance is 1070 m	A1	3	
	(iv)	$\frac{1}{3}t^{\frac{3}{2}}(0.192 - 0.016\sqrt{t}) = 0$	M1		For attempting to solve $s(t) = 0$
		Value of <i>t</i> is 144	A1	2	