Analysis I

Wintersemester 2013/2014

Prof. Dr. D. Lenz

Blatt 3

Abgabe 07.11.2014

- (1) ('Kurze Induktion' impliziert 'Lange Induktion') Es genüge (N, e, ν) mit $e \in N$ und $\nu : N \to N$ den Peano Axiomen und es seien $A_n, n \in N$, die in der Vorlesung betrachteten Mengen. Seien weiterhin Aussagen $B(n), n \in N$ gegeben. Zeigen Sie, dass B(n) für alle $n \in N$ wahr ist, falls gilt
 - B(e) ist wahr.
 - Gilt B(k) für alle $k \in A_n$, so folgt dass $B(\nu(n))$ wahr ist.
- (2) (Wohlordnung und Induktionsaxiom) Sei eine Menge B gegeben mit einem ausgezeichneten Element e und einer bijektiven Abbildung

$$\nu: B \longrightarrow B \setminus \{e\}$$

und einer Totalordnung \leq mit

$$n < \nu(n)$$
 für alle $n \in B$.

Zeigen Sie die Äquivalenz der folgenden beiden Aussagen:

- (i) (B, \leq) ist wohlgeordnet (d.h. jede nichtleere Teilmenge von (B, \leq) besitzt ein bzgl. \leq kleinstes Element).
- (ii) Es erfüllt (B, e, ν) das zweite Peano Axiom.

(Hinweis zu (ii) \Longrightarrow (i): Seien A_n die in der Vorlesung betrachteten Mengen. Die Menge $A_n \cup \{l : \nu(n) \leq l\}$ ist induktiv, stimmt also mit N überein. Damit ist also $\nu(n)$ ein kleinstes Element des Komplement von A_n . Zeigen Sie nun, dass eine Teilmenge von B ohne kleinstes Element im Komplement aller A_n liegt.)

(3) Sei $(K, +, \cdot)$ ein Körper und es werde das Inverse bzgl. Addition von $x \in K$ mit -x bezeichnet. Beweisen Sie

$$(-x) \cdot (-y) = x \cdot y.$$

Geben Sie bei jedem Schritt an, welches Körperaxiom Sie verwenden.

(4) Finden Sie eine Addition und eine Multiplikation auf $\mathbb{F}_3 = \{0, 1, 2\}$, so dass \mathbb{F}_3 ein Körper wird. Kann man \mathbb{F}_3 anordnen?

Zusatzaufgabe: (Rekursive Definition von Mengen) Es genüge (N, e, ν) den Peano Axiomen. Seien zu jedem $n \in N$ eine Menge X_n und eine Abbildungen F_n gegeben, so dass F_n die Teilmengen von X_n auf Teilmengen von $X_{\nu(n)}$ abbilden. Sei $S_e \subseteq X_e$ gegeben. Zeigen Sie:

Es gibt eine eindeutige Familie von Mengen T_n , $n \in \mathbb{N}$, mit $T_e = S_e$ und $T_{\nu(n)} = F_n(T_n)$ für alle $n \in \mathbb{N}$.