Understandings:

- Alkanes: have low reactivity and undergo free radical substitution reactions.
- Alkenes: are more reactive than alkanes and undergo addition reactions. Bromine water can be
 used to distinguish between alkenes and alkanes.
- Alcohols: undergo nucleophilic substitution reactions with acids (also called esterification or condensation) and some undergo oxidation reactions.
- Halogenoalkanes: are more reactive than alkanes. They can undergo (nucleophilic) substitution
 reactions. A nucleophile is an electron-rich species containing a lone pair that it donates to an
 electron-deficient carbon.
- **Polymers:** addition polymers consist of a wide range of monomers and form the basis of the plastics industry.
- Benzene: does not readily undergo addition reactions but does undergo electrophilic substitution reactions.

1 Alkanes

1.1 Combustion

 Complete Combustion Product: CO₂ and H₂O

Incomplete Combustion
 Product1: CO and H₂O
 Product2: C and H₂O

1.2 Free Radical Substitution with Halogens

1.2.1 Initiation

A halogen molecule broke into two halogen **atoms** Homolytic: Evenly distributed electrons Hetrolytic: Non-evenly distributed

1.2.2 Propogation

- 1. Free radicals collide with other molecules
- 2. New free radical species form and collide with other molecules
- 3. The 2nd generation of free radical (same as the first step one) collide with the same molecule
- 4. A chain reaction has formed

1.2.3 Termination

Free radicals collide with each other to form molecules.

Decrease in number of free radicals

2 Alkene

2.1 Addition Reaction

2.1.1 With Halogens

No additional requirements for the reaction to take place

With Iodine: Slow at room temperature

2.1.2 With Hydrogen

Called **Hydrogenation**

Reaction Requirements:

- 1. Nickel as catalyst
- 2. High temperature

2.1.3 With Hydrogen Halides (H-X)

Reaction Requirements: Heat

2.1.4 With Water

- 1. Concentrated H_2SO_4
- 2. Heat

2.2 Distinguish between alkanes and alkenes

- Alkene: Bromine water from orange to colorless
- Alkane: No color change

2.3 Addition Polymerisation

- 1. To break the alkene apart and form monomers
- 2. Repeat monomers to form polymers

2.3.1 Common Polymers formed by alkenes and uses

- Polyethene (from C_2H_2) to be used as plastic bags
- Polychroethene (from CH₂CHCl) to be used as electric cables
- Polypropene (from C₃H₆ to be used as car bumpers

3 Alcohols

- Writing equations for the complete combustion of alcohols
- Oxidation reactions of primary and secondary alcohols (using acidified potassium dichromate (VI) or potassium magnate (VII) as oxidizing agents.
- Esterfication

3.1 Combustion Reaction

Produce CO₂ and H₂O See Combustion

3.2 Oxidation

3.2.1 Primary Alcohols

 $C_2H_5OH \rightarrow^{+[O],heat}CH_3HO$

Primary alcohols \rightarrow Aldehydes \rightarrow Carboxylic acid

Reflux Distillation: end product of carboxylic acid vs. aldehydes

Color Change

From **orange** to **green**

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

3.2.2 Secondary alcohols

Secondary alcohols \rightarrow Ketones

3.2.3 Tertiary Alcohols

Do **NOT** have oxidation reaction.

3.3 Esterfication/condensation reaction

Alcohol + Carboxylic acid \rightarrow Ester

- The compound with the double bond oxygen is the carboxylic acid.
- o Reaction Requirement: Concentrated sulfuric acid as the catalyst

10/esterformed.png

Figure 10.44 An esterification reaction.

Figure 1: Example of an esterification reaction

3.3.1 Condensation Reaction

Two molecules join together with the **elimination** of water.

Esterification could be also described as **nucleophilic substitution** (will be talked in the next section)

4 Halogenalkanes

4.1 Nucleophilic Substitution

Nucleophile: is a molecule or negatively charged ion that

- has a lone pair of electrons
- is attracted to a highly positively charged region

4.1.1 With NaOH

Requirement: Heat

4.1.2 With NH₃

Requirement: Concentrated, sealed tube

4.1.3 With KCN

Requirement:

- 1. KCN
- 2. Methanol
- 3. Heat under reflux

5 Benzene

5.1 Electrophilic Substitution

Electrophile: An electrophile is an electron-deficient species that

- is attracted to regions of relatively high electron density
- accepts a pair of electrons to form a covalent bond

Benzene has π delocalised system, thus has a region of high electron density

5.1.1 Nitration

Reaction Condition:

- 1. Concentrated Surlfuric Acid
- 2. Concentrated Nitric Acid