

TD 2 – Théorème de Cauchy-Lipschitz

Définition 1.1. Soit $f: \Omega \subset \mathbf{R} \times \mathbf{R}^n \to \mathbf{R}^n$, Ω ouvert, f continue, et soit $(t_0, x_0) \in \Omega$. Une solution du problème de Cauchy de second membre f et de condition initiale (t_0, x_0) est un couple (I, x) où I est un intervalle ouvert de \mathbf{R} et $x: I \to \mathbf{R}^n$ une fonction dérivable telle que

$$\left\{ \begin{array}{l} \dot{x}(t)=f(t,x(t)),\ t\in I\\ x(t_0)=x_0. \end{array} \right.$$

La définition précédente implique en particulier qu'une solution (I, x) est telle que $t_0 \in I$ (l'intervalle ouvert est donc non-vide), que $(t, x(t)) \in \Omega$ quel que soit $t \in I$, et que $x \in \mathcal{C}^1(I, \mathbf{R}^n)$. On aura besoin de la généralisation suivante du théorème du point fixe :

- \triangleright **Exercice 1.** Soit F une partie fermée (et non-vide) d'un espace de Banach E, et soit $g: F \to F$ telle que g^p soit contractante pour un certain naturel p. Montrer que g possède un unique point fixe.
- \triangleright Exercice 2. (Théorème de Cauchy-Lipschitz) Comme à la définition 1.1, on suppose f continue sur l'ouvert Ω .
 - 2.1. Montrer que l'ensemble des solutions ordonné par

$$(I,x) \leq (J,y) \iff I \subset J \text{ et } x = y_{|I}$$

et dont on admet qu'il est non-vide¹ possède un élément maximal (on parle de solution maximale du problème de Cauchy).

On suppose désormais que f est localement Lipschitzienne en x, i.e. que tout point de Ω possède un voisinage V sur lequel f est Lipschitzienne en x: il existe $k \geq 0$ tel que pour tous t, x, y tels que (t, x) et (t, y) soient dans V,

$$|f(t,x) - f(t,y)| \le k|x - y|. \tag{1}$$

Dans (1), |.| désigne l'une quelconque des normes équivalentes sur \mathbb{R}^n .

 $^{^{1}}$ Théorème de Peano : la seule continuité de f garantit l'existence de solution.

MI2 TD 2

2.2. Montrer qu'il existe un voisinage $C = B_f(t_0, \eta) \times B_f(x_0, \varepsilon)$ (ou *cylindre de sécurité*) sur lequel f est Lipschitzienne en x et tel que $\eta \sup_C |f| \leq \varepsilon$.

2.3. Soit $E = \mathscr{C}^0(B_f(t_0, \eta), \mathbf{R}^n)$ muni de la norme $||x||_{\infty} = \sup_{B_f(t_0, \eta)} |x|$, soit $F \subset E$ l'ensemble des fonctions de E à valeurs dans $B_f(x_0, \varepsilon)$, et soit $\phi: F \to F$ définie par

$$\phi(x)(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds.$$

Montrer que ϕ possède un unique point fixe. En déduire l'existence d'une solution pour le problème de Cauchy.

- **2.4.** Montrer que le problème possède une et une seule solution maximale (au sens de la question 2.1). Montrer que les courbes intégrales maximales forment une partition de Ω .
- **2.5.** Discuter les trois exemples suivants : $\dot{x} = x$, $\dot{x} = x^2$, et $\dot{x} = \sqrt{|x|}$.
- ightharpoonup Exercice 3. Soit $f: I \times \mathbf{R} \to \mathbf{R}$, I ouvert, f continue; on suppose que f est Lipschitzienne en x sur tout $I \times \mathbf{R}$.
 - **3.1.** Montrer que le problème possède une solution globale (i.e. définie sur I tout entier).
 - 3.2. Appliquer la question précédente au problème de Cauchy linéaire

$$\dot{x} = A(t)x + b(t)$$

avec A et b continues de I dans $\mathcal{L}(\mathbf{R}^n, \mathbf{R}^n)$ et \mathbf{R}^n , respectivement.