Computer Networks COL 334/672

Software Defined Networking

Tarun Mangla

Slides adapted from KR

Sem 1, 2024-25

Recap: SDN Controller

- maintains network state information
- interacts with network control applications "above" via northbound API
- interacts with network switches "below" via southbound API
- implemented as distributed system performance, scalability, faulttolerance, robustness

protocol - opplication

Software defined networking (SDN)

- operators don't "program" switches by creating/sending OpenFlow messages directly.
- Instead use higher-level abstraction at controller
- "brains" of control: implement control functions using lower-level services, API provided by SDN controller
- unbundled: can be provided by 3rd party: distinct from routing vendor, or SDN controller

SDN: control/data plane interaction example

- 1 S1, experiencing link failure uses OpenFlow port status message to notify controller
- 2 SDN controller receives OpenFlow message, updates link status info
- 3 Dijkstra's routing algorithm application has previously registered to be called when ever link status changes. It is called.
- 4 Dijkstra's routing algorithm access network graph info, link state info in controller, computes new routes

SDN: control/data plane interaction example

- 5 link state routing app interacts with flow-table-computation component in SDN controller, which computes new flow tables needed
- 6 controller uses OpenFlow to install new tables in switches that need updating

SDN: Key Challenges

Hardening the control plane

Scalability | Leal-une | Logrably centralizer culture |

Reliability | Drotributed systems Reliability • Security

Internet-scaling: beyond a single AS (?)

Controlly backup

What else is programmable in the network?

- Programmable data plane
- Network function virtualization (NFV)

maky Middleboxes programmable

Status Quo: Bottom-up design

How to make Data Plane Programmable?

• Move the data plane to software

• Generally, too slow for data plane functions

Any optimization techniques?

Parallelism across multiple servers and cores

Optimizations in NUMA

• Fast I/O ...

• What about programmable hardware?

• FPGA: but costly, power-hungry, slower

Bird's-eye view of FPGA

How to make Data Plane Programmable?

- Move the data plane to software
 - Generally, too slow for data plane functions
 - Any optimization techniques?
 - Parallelism across multiple servers and cores
 - Optimizations in NUMA
 - Fast I/O ...

- What about programmable hardware?
 - FPGA: but costly, power-hungry, slower

Bird's-eye view of FPGA

What about Programmable Hardware?

"Programmable swit of 10-100x on switches. ve and consume They are mor power."

inventional wisdom in networking

Domain Specific Processors

Domain Specific Processors

Protocol Independent Switch Architecture

Reducing complexity

switch.p4

Switch OS

IPv4 and IPv6 routing

- Unicast Routing
 - Routed Ports & SVI
 - VRF
- Unicast RPF
- Strict and Loose
- Multicast
- PIM-SM/DM & PIM-Bidii

Ethernet switching

- VLAN Flooding
- MAC Learning & Aging
- STP state
- **VLAN Translation**

Load balancing

- $-L\Lambda$
- ECMP & WCMP
- Resilient Hashing
- -Flowlet Switching

Fast Failover

- LAG & ECMP

Tunneling

- IPv4 and IPv6 Routing & Switching
 - IP in IP (Gin4, 4in4)
 - VXLAN, NVGRE, GENEVE & GRE
 - Segment Routing, ILA

MPLS

- LER and LSR
- IPv4/v6 routing (L3VPN)
- L2 switching (EoMPLS, VPLS)
- MPLS over UDP/GRE

ACL

- MAC ACL, IPv4/v6 ACL, RACL
- QoS ACL, System ACL, PBR
- Port Range lookups in ACLs

QOS

- QoS Classification & marking
- Drop profiles/WRED
- Ruce v2 & Fcue
- CoPP (Control plane policing)

NAT and L4 Load Balancing

Security Features

Storm Control, IP Source Guard

Monitoring & Telemetry

- Ingress Mirroring and Egress Mirroring-
- Negative Mirroring
- Sflow
- INT

Counters

- Route Table Entry Counters
- VLAN/Bridge Domain Counters
- Port/Interface Counters

Protocol Offload

- BFD, OAM

Multi-chip Fabric Support

Forwarding, QOS

What else is programmable in the network?

Programmable data plane

Network function virtualization

Middleboxes

Data delivery is not the only required functionality.

Elements in the network path for security, performance enhancements etc.

One-third of all network devices in enterprises are middleboxes!

Sherry et al., SIGCOMM'12

Evolution of Middleboxes

Need for

flexibility

Dedicated hardware

Software

Middleboxes

Network functions

From Hardware Middleboxes...

Data delivery is not the only required functionality.

To Software Network Functions (NF)

Primarily deployed in a VM (Network Function Virtualization or NFV)

Functional Elements, not Middleboxes

WAN Optimizer = Caching + Deduplication + Compression + Encryption + Forward Error Correction + Rate Limiter

 Application Firewall = IP Defragmenter + Application Detection Engine + Logger + Blocker

 IDS = IP Defragmenter + Preprocessing + Misuse Detection Engine + Logger

Why NFV?

Softwarization leads to faster innovation

Why NFV?

- Softwarization leads to faster innovation
- Ease of deployment, configuration, and management
- Consolidation: Reduce number of hardware boxes in the network

Being adopted by both carriers and cloud providers

NFV Challenges

- Virtual network function management
 - Where and how to install network functions?
- Unpredictable (low) Performance
 - How to mitigate the overheads of virtualization?
- Fault Tolerance
 - How to handle recovery in case of faults?

Summary

- Increased programmability in the networks
 - Greater flexibility → Faster innovation

- Programmable control plane
 - SDN
- Programmable data plane
 - SDN-2 / P4

- Software middleboxes implemented in VMs
 - Network function virtualization (NFV)

Attendance

