Lenses

https://github.com/heptagons/lenses

2023/12/31

Abstract

Lenses are equilateral hexagons resembling concave and convex optical lenses. Lenses consecutive six internal angles are $(\theta_1, \theta_2, \theta_3, \theta_1, \theta_2, \theta_3)$ where $\theta_1 = X\theta_0$, $\theta_2 = Y\theta_0$, and $\theta_3 = Z\theta_0$ where $\theta_0 = 2\pi/S$ is the base angle of symmetry S = X + Y + Z.

1 Lenses

2 Symmetry 5

Symmetry 5 is based in angle $\beta = \frac{2\pi}{5}$ and produces the two rhombi $(\boldsymbol{b}, \boldsymbol{c})$ and the two lenses $(\boldsymbol{B}, \boldsymbol{C})$.

2.1 Rhombi (b,c)

Figure 1: Rhombi (b, c).

Rhombus	θ_1	θ_2
b	$\beta/2$	$4\beta/2$
c	$2\beta/2$	$3\beta/2$

Table 1: Rhombi $(\boldsymbol{b}, \boldsymbol{c})$ internal angles $\theta_1 + \theta_2 = \pi$ where $\beta = 2\pi/5$.

Figure 1 show rhombi $(\boldsymbol{b}, \boldsymbol{c})$. From the figures we calculate the areas adding the rhombi: Star (i) area is $10\boldsymbol{b}$, star (ii) area is $5\boldsymbol{c}$ and regular decagon (iii) area is $5\boldsymbol{b} + 5\boldsymbol{c}$. Table 1 show the rhombi angles.

Figure 2: Pentagon $\{5/1\}$ at (i) and pentagram $\{5/2\}$ at (ii).

Figure 2 show regular pentagon and pentagram dissected with rhombi $(\boldsymbol{b}, \boldsymbol{c})$ and a concave pentagon (in gray). Let \boldsymbol{x} be the area of such gray piece. By inspection the area of regular pentagon at (i) is $A_1 = \boldsymbol{c} + \boldsymbol{x}$ and the area of regular pentagon at (iii) is $P_2 = \boldsymbol{b} + 5\boldsymbol{c} + 2\boldsymbol{x}$. Since the side of A_2 is the double of A_1 its area is four times so we can get the value of \boldsymbol{x} in terms of $(\boldsymbol{b}, \boldsymbol{c})$

$$4P_{1} = P_{4}$$

$$4(\mathbf{c} + x) = \mathbf{b} + 5\mathbf{c} + 2x$$

$$x = \frac{\mathbf{b} + \mathbf{c}}{2}$$
(1)

We use the value of x to get the areas of pentagon (i) and pentagram (ii):

$$A\{5/1\} = \mathbf{c} + \mathbf{x}$$

$$= \frac{\mathbf{b} + 3\mathbf{c}}{2}$$
(2)

$$A\{5/2\} = \mathbf{b} + 2\mathbf{x}$$

$$= 2\mathbf{b} + \mathbf{c}$$
(3)

2.2 Lenses (B,C)

Figure 3: Lenses (B, C).

Rhombus	θ_1	θ_2	θ_3
В	β	2β	2β
C	β	β	3β

Table 2: Lenses (B, C) internal angles $\theta_1 + \theta_2 + \theta_3 = 2\pi$ where $\beta = 2\pi/5$.

Figure 6 show lenses $(\boldsymbol{B}, \boldsymbol{C})$. Figure (i) show the lense \boldsymbol{B} with perimeter $\overline{B_1...B_6}$ is formed adding two rhombi \boldsymbol{b} and adding one rhombus \boldsymbol{c} so its area is $2\boldsymbol{b} + \boldsymbol{c}$. Figure (ii) show the lense \boldsymbol{C} with perimeter $\overline{C_1...C_6}$ is formed adding two rhombi \boldsymbol{c} and substracting one rhombus \boldsymbol{b} so its area is $2\boldsymbol{c} - \boldsymbol{b}$. From the figures we see the area of star (iii) is $\boldsymbol{B}+2\boldsymbol{C}=5\boldsymbol{c}$ and the area of regular decagon (iv) is $3\boldsymbol{B}+\boldsymbol{C}=5(\boldsymbol{b}+\boldsymbol{c})$.

3 Symmetry 7

Symmetry 7 is based in angle $\gamma = \frac{2\pi}{7}$ and produces the three rhombi $(\mathbf{d}, \mathbf{f}, \mathbf{e})$ and the three lenses $(\mathbf{D}, \mathbf{E}, \mathbf{F})$.

3.1 Rhombi (d, e, f)

Figure 4: Rhombi (d, e, f).

Rhombus	θ_1	θ_2
d	$\gamma/2$	$6\gamma/2$
e	$2\gamma/2$	$5\gamma/2$
f	$3\gamma/2$	$4\gamma/2$

Table 3: Rhombi $(\mathbf{d}, \mathbf{e}, \mathbf{f})$ internal angles $\theta_1 + \theta_2 = \pi$ where $\gamma = 2\pi/7$.

Figure 4 show rhombi $(\mathbf{d}, \mathbf{e}, \mathbf{f})$. Inspecting the figures we get the areas simply adding the rhombi: Star (i) area is $14\mathbf{d}$, star (ii) area is $7\mathbf{e}$. The star at (iii) area is $7(\mathbf{e} + \mathbf{f})$ and the regular 14-gon area at (iv) is $7(\mathbf{d} + \mathbf{e} + \mathbf{f})$. Table 3 show the symmetry 7 rhombi angles.

Figure 5: Heptagon $\{7/1\}$ at (i) and heptagrams $\{7/3\}$ at (ii) and $\{7/2\}$ at (iii).

Figure 5 show regular heptagon and heptagrams dissected with rhombi (c, d, e) and with one equilateral concave heptagon (in gray). Let x be the area of such gray piece. By inspection the area of regular heptagon at (i) is $A_1 = e + 2f + x$ while the area of regular heptagon at (iv) is $A_2 = d + 7(e + f) + 2x$. Since the side of A_2 is the double of A_1 its area is four times so we can get the value of x in terms of (d, e, f):

$$4A_1 = A_2$$

$$4(\mathbf{e} + 2\mathbf{f} + \mathbf{x}) = \mathbf{d} + 7(\mathbf{e} + \mathbf{f}) + 2\mathbf{x}$$

$$\mathbf{x} = \frac{\mathbf{d} + 3\mathbf{e} - \mathbf{f}}{2}$$
(4)

We use the value of \boldsymbol{x} to calculate the areas of heptagon (i) and heptagrams (ii) and (iii) in terms of $(\boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f})$:

$$A\{7/1\} = e + 2f + x$$

$$= \frac{d + 5e + 3f}{2}$$

$$A\{7/3\} = d + 2x$$

$$= 2d + 3e - f$$
(5)

$$A\{7/2\} = A\{7/3\} + 7\mathbf{f}$$

= $2\mathbf{d} + 3\mathbf{e} + 6\mathbf{f}$ (7)

3.2 Lenses (D,E,F)

Figure 6: Lenses (D, E, F).