Digitaltechnik

Andrej Scheuer ascheuer@student.ethz.ch 28. Oktober 2020

AND

AND aus NOR

OR

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

NOR

OR aus NAND

Weitere Gates

		O NAND	NOR	XOR	XNOR
A	В	C	D	E	F
0	0	1	1	0	1
0	1	1	0	1	0
1	0	1	0	1	0
1	1	0	0	0	1

$$XOR = (A \wedge \overline{B}) \vee (\overline{A} \wedge B)$$
$$XNOR = (A \wedge B) \vee (\overline{A \wedge B})$$

XOR aus NAND

XOR aus NOR: Gleiches Schema wie NAND + 1 Inverter

XNOR aus NAND: Gleiches Schema wie XOR aus NOR

XNOR aus NOR: Gleiches Schema wie XORaus NAND

Es versteht sich natürlich, dass wenn von "Gleichem Schema wie..." gesprochen wird, die Gates trotzdem getauscht werden müssen

PMOS

CMOS

NMOS

G	Schalter	Y
0	offen	1
1	zu	0

G	Schalter	Y
0	zu	1
1	offen	0

Konstruktion von CMOS-Gates

Regeln für CMOS-Schaltungen

- 1. CMOS-Gates bestehen aus gleich vielen NMOS und PMOS.
- 2. m Eingänge: m NMOS und m PMOS.
- 3. NMOS in Serie \rightarrow PMOS parallel
- 4. NMOS parallel \rightarrow PMOS Serie

Allg. Aufbau CMOS

Umwandlung Pull-up zu Pull-down

- 1. Teilbereiche (Blöcke) identifizieren.
- 2. Schritt 1 wiederholen, bis nur noch einzelne Transistoren vorkommen.
- 3. Falls Pull-down:
 - Von GND aus mit äusserstem Block beginnen.
 - PMOS \rightarrow NMOS
- 4. Falls Pull-up:
 - Von V_{DD} aus mit äusserstem Block beginnen.
 - NMOS → PMOS.

Funktionsgleichung

parallel: \vee	Pull-Up: $y = 1$	alle $I: 0 \to I$ invert.
Serie: ∧	Pull-Down: $y = 0$	alle I : $1 \rightarrow Gl$. inver

Boolsche Algebra

Grundregeln

Kommutativität

$$A \wedge B = B \wedge A$$
$$A \vee B = B \vee A$$

Assoziativität

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C$$
$$A \vee (B \vee C) = (A \vee B) \vee C$$

Distributivität

$$(A \land B) \lor (A \land C) = A \land (B \lor C)$$
$$(A \lor B) \land (A \lor C) = A \lor (B \land C)$$

Nicht	$\overline{\overline{A}} = A$		
Null-Th.	$A \lor 0 = A$	$A \wedge 0 = 0$	
Eins-Th.	$A\vee 1=1$	$A \wedge 1 = A$	
Idempotenz	$A \lor A = A$	$A \wedge A = A$	
V. Komp.	$A \vee \overline{A} = 1$	$A \wedge \overline{A} = 0$	
Adsorp.	$A \vee (\overline{A} \wedge B) = A \vee B$		
	$A \wedge (\overline{A} \vee B)$	$=A\wedge B$	
Adsorp.	$A \lor (A \land B)$	= A	
	$A \wedge (A \vee B)$	=A	
Nachbar.G.	$(A \wedge B) \vee (\overline{A})$	$\overline{A} \wedge B) = B$	
	$(A \vee B) \wedge (\overline{A})$	$\bar{A} \vee B) = B$	

De Morgan

- $\overline{A \wedge B} = \overline{A} \vee \overline{B}$ 1. Regel
- 2. Regel $\overline{A \vee B} = \overline{A} \wedge \overline{B}$

Regeln gelten auch für n verknüpfte Terme.

Normalformen

Minterm	Maxterm
AND-Ausdruck	OR-Ausdruck
Output: 1	Output: 0
n Schaltvar. $\rightarrow 2^n$ mögl. Minterme.	n Schaltvar. $\rightarrow 2^n$ mögl Maxterme.
nicht-invertierte Var: 1	nicht-invertierte Var: 0
invertierte Var: 0	invertierte Var: 0

Disjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 1
- 2. Minterme für diese Zeilen aufstellen
- 3. Minterme mit **OR** verknüpfen

Konjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 0
- 2. Maxterme für diese Zeilen aufstellen
- 3. Maxterme mit AND verknüpfen

A	В	Y	Minterme	Maxterme
0	0	1	$\overline{A} \wedge \overline{B}$	
0	1	0		$A \vee \overline{B}$
1	0	0		$\overline{A} \vee B$
1	1	1	$A \wedge B$	

DNF
$$Y = (\overline{A} \wedge \overline{B}) \vee (A \wedge B)$$
 1 Mint. erf. \rightarrow 1 **KNF** $Y = (A \vee \overline{B}) \wedge (\overline{A} \vee B)$ 1 Maxt. erf. \rightarrow 0

Schaltung nur aus:

- NOR: KNF \rightarrow De Morgan
- NAND: DNF \rightarrow De Morgan Schaltung nur aus:
 - NOR: KNF \rightarrow De Morgan
 - XNOR: DNF \rightarrow De Morgan

Karnaugh Diagramme (KVD)

CD	00	01	11	10
00	0	1	X	
01				
11				
01				
			•	

Hat das Karnaugh Diagramm 5 Dimensionen, wird die 5te Dimension auf zwei Tabellen aufgeteilt.

Don't-Care-Zustände $X \in \{0,1\}$ Redundante, überflüssige oder unmögliche Kombinationen der Eingangsvariablen werden mit einem X markiert.

Päckchen

- Päckchen immer rechteckig (Ausnahme: über Ecken).
- Umfassen möglichst grosse Zweierpotenz.
- Dürfen über Ecken und Grenzen hinausgehen und sich überlappen.

DNF

1. KVD ausfüllen.

- Päckchen mit 1 uo X.
- 3. Vereinfachte Minterme aufstellen.
- 4. Minterme mit OR verbinden.

KNF

- KVD ausfüllen.
- 2. Päckchen mit $\mathbf{0}$ uo X.
- 3. Vereinfachte Maxterme aufstellen.
- 4. Maxterme mit AND verbinden.

Hazard

Kurzzeitige, unerwünschte Änderung der Signalwerte, die durch Zeitverzögerung der Gatter entstehen.

CD	00	01	11	10
00	0	1	1	0
01	0	15	1	0
11	1	1	0	0
01	1	15	0	0

<u>Statische Hazards</u> Stellen im Sich Päckchen orthogonal berühren, aber nicht überlappen.

Lösung Berührende Päckchen mit zusätzlichen (möglichst grossen) Päckchen verbinden.

Zahlensysteme

 $D-\,$ zu berechnende positive Zahl

R Basis/Radix von D

 b_i Koeffizient

$$D = \sum_{-\infty}^{\infty} b_i \cdot R^i$$

Darstellung D in Basis $R: \ldots b_2b_1b_0.b_{-1}b_{-2}\ldots_R$

 $\begin{array}{lll} \text{Dezimal} & 10 & b_i \in \{0,1,\ldots,9\} \\ \text{Dual/Bin\"{a}r} & 2 & b_i \in \{0,1\} \\ \text{Oktal} & 8 & b_i \in \{0,1,\ldots,7\} \\ \text{Hexa} & 16 & b_i \in \{0,1,\ldots,9,A,\ldots,F\} \end{array}$

Umwandlung Zahlensysteme

1. Ganzzahlige Division mit R: $D/R = Q_0 + r_0$.

2.

$$Q_i/R = Q_{i+1} + r_{i+1}$$

bis $Q_i = 0$.

3. Zahl ist Reste rückwärts abgelesen.

Für $1>D\geq 0$

Zweierkomplement

Cheatsheet

\mathbb{B}	\mathbb{Z}	\mathbb{B}	\mathbb{Z}
0000	0 0	1000	-8
000	1 +1	1001	-7
0010	0 +2	1010	-6
001	1 +3	1011	-5
0100	0 + 4	1100	-4
010	1 +5	1101	-3
0110	0 +6	1110	-2
011	1 + 7	1111	-1

\mathbb{B}	\mathbb{R}	\mathbb{B}	\mathbb{R}
0.000	0	1.000	-1.0
0.001	+0.125	1.001	-0.875
0.010	+0.25	1.010	-0.75
0.011	+0.375	1.011	-0.625
0.100	+0.5	1.100	-0.5
0.101	+0.625	1.101	-0.375
0.110	+0.75	1.110	-0.25
0.111	+0.875	1.111	-0.125