Logical Topology Survivability in IP-over-WDM Networks: Survivable Lightpath Routing for Maximum Logical Topology Capacity and Minimum Spare Capacity Requirements

Tachun Lin¹ Zhili Zhou² Krishnaiyan Thulasiraman¹

¹School of Computer Science, University of Oklahoma Oklahoma, USA

> ²IBM T. J. Watson Research Center New York, USA

IP-over-WDM Network

- Two-layer network
 - IP (logical) network
 - WDM (physical) network
- Concept of lightpath

(a) A logical link (IP link)

(b) A lightpath corresponding to the logical link (1,4) in physical topology.

Survivability in IP-over-WDM Networks

(4,6)

(c) A survivable mapping.

(4,6)

Capacitated IP-over-WDM Networks

Pioneer Works

- Modiano and Narula-Tam, "Survivable routing of logical topologies in WDM networks", INFOCOM 2001
 - Propose ILP formulation to solve the survivable routing problem
 - Required to enumerate ALL CUTSETS in the topology
- Kurant and Thiran, "Survivable mapping algorithm by ring trimming (SMART) for large IP-over-WDM networks", BroadNets, 2004
 - Propose structural approach based on piecewise survivability and heuristics
- Thulasiraman et al., "Circuits/Cutsets duality and a unified algorithms framework for survivable logical topology design in IP-over-WDM optical networks", INFOCOM 2009
 - Study and extend the structural approach using circuits/duality
 - Propose CITCUIT-SMART, CUTSET-SMART, and INCIDENCE-SMART algorithms

Definitions

Definition

Weakly survivable routing: a lightpath routing that guarantees the logical topology remains connected after a single physical link failure

Definition

Strongly survivable routing: a weakly survivable routing that guarantees all logical demands are satisfied

Definition

Spare capacity: additional capacity added to physical links to satisfy logical demands

Problem Description

Problem 1:

- Given a capacitated IP-over-WDM network with demands on logical links
- Find a weakly survivable routing for the logical topology with different optimization criteria
 - Maximize total logical demand satisfied
 - Maximize demand satisfaction on one logical link
- Rerouting after a physical link failure to achieve maximum demand satisfaction

Problem Description

Problem 2:

- Given a capacitated IP-over-WDM network with demands on logical links
- Find a strongly survivable routing for the logical topology which requires minimum spare capacity

Weakly Survivable Routing - MILP Approach

Two-stage approach

- First stage:
 - Weakly survivable routing
 - Maximize demand satisfaction
- Second stage:
 - Minimize maximum unsatisfied demand through rerouting

Weakly Survivable Routing – MILP Approach

Variables used in MILP formulation

Variable	Description	Info.	
	· ·	-	
y _{ii} st	binary variable indicates whether the logical link	first stage for Problem 1.	
,	$(s,t) \in E_L$ is routed through the physical link		
	$(i,j) \in E_P$. If yes, $y_{ij}^{st} = 1$, otherwise, $y_{ij}^{st} = 0$.		
f st ij	flow on physical link (i, j) due to lightpath (s, t)	first stage for Problem 1.	
r ^{ij} st	fractional variable for connectivity constraints.	first stage for Problem 1.	
ρ_{st}	the capacity for the logical link (s, t) , where ρ_{st}	first stage for Problem 1.	
	is the smallest capacity of links in the lightpath.		
θ	variable for max single logical link capacity.	first stage for Problem 1.	
Cij	capacity on the physical link (i, j) .	given.	
d _{st}	demand for the logical link (s, t) .	given.	
u _{ij}	link utilization request on the physical link (i, j)	given.	
λ_{ij}^{st}	maximal flow for logical link (s, t) after a physical	second stage for Problem 1.	
	link failure and re-routing		
xst klij	rerouted flow on (k, ℓ) which can be maintained	second stage for Problem 1.	
Keij	after the physical link (i, j) failure and re-routing.		
zst klij	binary variable indicates whether (s, t) re-route	second stage for Problem 1.	
KEIJ	through (k, ℓ) after (i, j) failure.		
η_{ij}	amount of spare capacity required on the physi-	second stage of Problem 2.	
.,,	cal link (i, j) to satisfy strong survivability	_	
М	a large positive number	Problem 1.	

Lightpath constraint:

$$\sum_{(i,j)\in E_P}y_{ij}^{st}-\sum_{(j,i)\in E_P}y_{ji}^{st}=1, \qquad \qquad \text{if } s=i, (s,t)\in E_L \qquad (1)$$

$$\sum_{(i,j)\in E_P} y_{ij}^{st} - \sum_{(j,i)\in E_P} y_{ji}^{st} = -1, \qquad \text{if } t = i, (s,t) \in E_L$$
 (2)

$$\sum_{(i,j)\in E_P}y_{ij}^{st}-\sum_{(j,i)\in E_P}y_{ji}^{st}=0, \qquad \qquad \text{otherwise}, (s,t)\in E_L \qquad (3)$$

$$y_{ij}^{st} + y_{ji}^{st} \le 1,$$
 $(i,j) \in E_P, (s,t) \in E_L$ (4)

selects a lightpath for each logical link

Flow equivalent constraint:

$$f_{k\ell}^{st} + M(y_{k\ell}^{st} - 1) \le f_{pq}^{st} + M(1 - y_{pq}^{st}),$$

$$(s, t) \in E_L, (k, \ell), (p, q) \in E_P, (k, \ell) \ne (p, q)$$
(5)

guarantees that the flow on each selected lightpath is the same for every physical link in the lightpath

Flow conservation constraint:

$$\sum_{(i,j)\in E_P} f_{ij}^{st} - \sum_{(j,i)\in E_P} f_{ji}^{st} = \rho_{st}, \qquad \text{if } s = i, (s,t) \in E_L$$
 (6)

$$\sum_{(i,j)\in E_P} f_{ij}^{st} - \sum_{(j,i)\in E_P} f_{ji}^{st} = -\rho_{st}, \qquad \text{if } t = i, (s,t) \in E_L$$
 (7)

$$\sum_{(i,j)\in E_P} f_{ij}^{st} - \sum_{(i,j)\in E_P} f_{ji}^{st} = 0, \qquad \text{otherwise}, (s,t) \in E_L$$
 (8)

$$\rho_{st} \leq d_{st}, \qquad (s,t) \in E_L \qquad (9)$$

requires the flow on each selected lightpath to be less than or equal to the logical demand

Bounded flow constraint:

$$(f_{ii}^{st} + f_{ii}^{st}) \le My_{ii}^{st}, \qquad (i,j) \in E_P, (s,t) \in E_L$$

$$\tag{10}$$

assures that each physical link carries flow only if the lightpath(s) route through the physical link

Capacity constraint:

$$\sum_{(s,t)\in E_L} (f_{ij}^{st} + f_{ji}^{st}) \le c_{ij}, \qquad (i,j)\in E_P$$
(11)

guarantees that the flow on a physical link will not exceed the capacity of the physical link

Congestion constraint (optional):

$$\sum_{(s,t)\in E_l} (y_{ij}^{st} + y_{ji}^{st}) \le u_{ij}, \qquad (i,j)\in E_P, \tag{12}$$

- Idea: if there exists a logical spanning tree after any physical link failure, the
 routing is survivable (based upon Q. Deng et al., "Survivable IP over WDM: a
 mathematical programming problem formulation," Allerton Conference on
 Communication, Control and Computing, 2002)
- For each physical link (i,j), the set of logical links (s,t) for which $r_{st}^{ij} \neq 0$ must form a spanning tree in the logical topology this guarantees that unfailed logical links form a connected graph
- Survivability constraint:

$$\sum_{(s,t)\in E_l} r_{st}^{ij} - \sum_{(t,s)\in E_l} r_{ts}^{ij} = -1, \qquad \text{if} \quad s = v_1, (i,j) \in E_P, \tag{13}$$

$$\sum_{(s,t)\in E_L} r_{st}^{ij} - \sum_{(t,s)\in E_L} r_{ts}^{ij} = \frac{1}{|V_L| - 1},$$
 oth

otherwise,
$$(i,j) \in E_P$$
, (14)

$$0 \leq r_{st}^{ij} \leq 1 - (y_{ij}^{st} + y_{ji}^{st}),$$

$$(i,j) \in E_P, (s,t) \in E_L, \qquad (15)$$

$$0 \leq r_{ts}^{ij} \leq 1 - (y_{ij}^{st} + y_{ji}^{st}),$$

$$(i,j) \in E_P, (s,t) \in E_L \qquad (16)$$

Benefit: do not need to enumerate all cutsets

Objective: maximize total logical link demands:

$$\max \sum_{(s,t)\in E_L} \rho_{st} \tag{17}$$

s.t. Constraint (1)–(11), (13)–(16),

$$y_{ij}^{st} \in \{0,1\}, r_{ij}^{st} \ge 0, f_{ij}^{st} \ge 0, \rho_{st} \ge 0 \ (i,j) \in E_P, (s,t) \in E_L$$
 (18)

• Objective: maximize the minimum demand satisfaction on a single logical link:

$$max \theta$$

s.t.
$$\theta \le \rho_{st}$$
 (19)

- R_{ij} : a set of logical links which is disconnected due to the failure of physical link (i,j)
- Re-routing constraint: For all $(i,j) \in E_P$

$$\begin{split} & \sum_{(k,\ell) \in E_P \setminus \{(i,j)\}} z_{k\ell ij}^{st} - \sum_{(\ell,k) \in E_P \setminus \{(i,j)\}} z_{\ell kij}^{st} = 1, & \text{if } s = k, (s,t) \in R_{ij} \ \ (20) \\ & \sum_{(k,\ell) \in E_P \setminus \{(i,j)\}} z_{k\ell ij}^{st} - \sum_{(\ell,k) \in E_P \setminus \{(i,j)\}} z_{\ell kij}^{st} = -1, & \text{if } t = k, (s,t) \in R_{ij} \ \ (21) \\ & \sum_{(k,\ell) \in E_P \setminus \{(i,j)\}} z_{k\ell ij}^{st} - \sum_{(\ell,k) \in E_P \setminus \{(i,j)\}} z_{\ell kij}^{st} = 0, & \text{otherwise}, (s,t) \in R_{ij} \ \ \ (22) \end{split}$$

finds alternative lightpath for disrupted logical link (s, t)

• Residual capacity constraint: For all $(i, j) \in E_P$

$$\sum_{(s,t)\in R_{ij}} (x_{k\ell ij}^{st} + x_{\ell kij}^{st}) \le c_{k\ell} - \sum_{(u,v)\in E_L \setminus R_{ij}} \rho_{uv}^* y_{k\ell}^{uv*}, (k,\ell) \in E_P \setminus \{(i,j)\} \quad (23)$$

$$x_{k\ell ij}^{st} \leq Mz_{k\ell ij}^{st}, \ (s,t) \in R_{ij}, \qquad \qquad (k,\ell) \in E_P \setminus \{(i,j)\} \quad (24)$$

$$\lambda_{ij}^{st} \ge X_{k\ell ij}^{st}, \quad (s,t) \in R_{ij}, \qquad (k,\ell) \in E_P \setminus \{(i,j)\} \quad (25)$$

$$\lambda_{ij}^{st} \leq x_{k\ell ij}^{st} + M(1 - z_{k\ell ij}^{st}), \qquad (s,t) \in R_{ij}, (k,\ell) \in E_P \setminus \{(i,j)\} \quad (26)$$

assures that each physical link on alternative lightpath for disrupted logical link carry flow up to its capacity

• Flow equivalence constraint:

$$x_{k\ell ij}^{st} + M(z_{k\ell ij}^{st} - 1) \le x_{pqij}^{st} + M(1 - z_{pqij}^{st}),$$

$$(s, t) \in R_{ij}, (k, \ell), (p, q) \in E_P \setminus \{(i, j)\}$$
(27)

guarantees that the flow on physical links of alternative lightpath will be equivalent

Objective: maximum demand satisfaction

$$\max \sum_{(s,t)\in E_L} \sum_{(i,j)\in E_P} \lambda_{ij}^{st}$$
 (28)

s.t. Constraints (20) to (27),

$$z_{k\ell ij}^{st} \in \{0,1\}, \lambda_{ij}^{st}, x_{k\ell ij}^{st} \ge 0, (i,j) \in E_P, (s,t) \in E_L, (k,\ell) \in E_P \setminus \{(i,j)\}$$
 (29)

Strongly Survivable Routing – MILP Approach

- First stage
 - Weakly survivable routing

$$\max \sum_{(s,t)\in E_L} \rho_{st} \tag{30}$$

- Second stage
 - Minimize spare capacity required to satisfy all demands after failure

$$\min \sum_{(i,j)\in E_P} \eta_{ij} \tag{31}$$

s.t. Constraints (19) to (21), (23) to (26),

$$\sum_{(s,t)\in R_{ij}} d_{st}(z_{k\ell ij}^{st} + z_{\ell kij}^{st}) \leq c_{k\ell} - \sum_{(s,t)\in E_{L}\setminus R_{ij}} \rho_{st}^{*} y_{k\ell}^{st*} + \eta_{k\ell}, \tag{22}')$$

$$(i,j) \in E_P, (k,\ell) \in E_P \setminus (i,j)$$

Weakly Survivable Heuristics - First Stage

Assumption: all demands can be satisfied by physical link capacity **INCIDENCE-SMART+Augmentation**

- Identify datum node △ (logical node with the highest degree)
- If there exists a logical node v with degree ≥ 2
 - Find edge-disjoint lightpaths for any two adjacent edges of v
 - Remove v and all adjacent edges of v
- If there exists a logical node v with degree = 1 (logical edge (u, v))
 - Augment (u, v) with a parallel edge (u', v')
 - Find edge-disjoint lightpaths for (u, v) and (u', v')
 - Remove (u, v)
- If there exists a logical node v with degree = 0 (individual node)
 - Add two parallel edges connecting (v, \triangle)
 - Find two edge-disjoint lightpaths for (v, \triangle)
 - Remove v

(a)

(b) Logical topology G_L , v_4 is the datum vertex.

- INC(v₁), INC(v₂), INC(v₃), INC(v₅) is an INC-sequence of length k = 4
- Iteration 1:
 - Pick v_1 , Degree $v_1 \ge 2$ in the current graph. Map at most two edges incident on $v_1(\{e_1, e_5\})$ into disjoint lightpaths
 - Delete $\{e_1, e_5, e_6, e_7\}$ from the graph

Iteration 2:

- Pick v_2 , Degree $v_2 \ge 2$ in the current graph. Map at most two edges incident on $v_2 \{e_2, e_8\}$ into disjoint lightpaths
- Delete $\{e_2, e_8, e_9\}$ from the graph

- Iteration 3:
 - Pick v_3 , Degree $v_3 = 2$ in the current graph. Map the two edges incident on $v_3 \{e_3, e_{10}\}$ into disjoint lightpaths
 - Delete $\{e_3, e_{10}\}$ from the graph
- Iteration 4:
 - Pick v_5 , Degree $v_5 = 1$ in the current graph
 - Provide a protection edge e
 - Map e and e4 into disjoint lightpaths
 - Delete $\{e, e_4\}$ from the graph

Solution in General Case

- K. Thulasiraman, Muhammad Javed, Tachun Lin, Guoliang (Larry) Xue, "Logical topology augmentation for guaranteed survivability under multiple failures in IP-over-WDM optical networks", IEEE ANTS, 2009
- K. Thulasiraman, Tachun Lin, Muhammad Javed, Guoliang (Larry) Xue, "Logical topology augmentation for guaranteed survivability under multiple failures in IP-over-WDM optical networks", Optical Switching and Networking, 2010

Weakly Survivable Heuristics – Second Stage

- For each physical link (i,j)
 - Find out a set of logical links R_{ij} which will be disconnected if (i, j) fails
 - Calculate the residual capacity on each physical link after (i, j) fails
 - For each logical link in R_{ij}
 - Find an alternative lightpath which avoids (i, j) and has maximal residual capacity along the path
 - Calculate the demand which can be satisfied with the alternative lightpath
 - Subtract the satisfied demands from the specified demands

Strongly Survivable Heuristics – Second Stage

- For each physical link (i,j)
 - Find out a set of logical links R_{ij} which will be disconnected if (i, j) fails
 - Calculate the residual capacity on each physical link after (i, j) fails
 - For each logical link in R_{ij}
 - Find an alternative lightpath which avoids (i, j) and has maximal residual capacity along the path
 - Calculate the (extra) capacity required to satisfy with the alternative lightpath
 - Calculate the total extra capacity to be added to physical links to satisfy all logical demands after any single physical link failure

Simulation Results

Tested physical topologies

Simulation Results

Table 1: Comparison of MILP and heuristic results on demand satisfaction after failure (weakly survivable)

	SMALL	G3	G6	EURO 1	EURO 2	RAND
MILP	0/28	38/38	69/71	17/17	45/47	361/387
Ratio	0%	100%	97%	100%	96%	93%
Heuristic	0/28	32/36	44/62	10/17	41/47	317/372
Ratio	0%	89%	71%	59%	87%	85%

Table 2: Comparison of MILP and heuristic results on minimum spare capacity (strongly survivable)

	SMALL	G3	G6	EURO 1	EURO 2	RAND
MILP	26	3	17	10	6	2
Heuristic	26	3	21	12	6	18

State of the Art

Where we are

Conclusions

- Introduce the weakly and strongly survivable concept in capacitated IP-over-WDM networks
- Provide MILP formulation and heuristics for weakly and strongly survivable problem in capacitated IP-over-WDM networks
- Future works
 - Load-balancing on logical demand satisfaction
 - Augmentation in logical network to guarantee survivability in MILP formulation
 - Survivable routing for multiple failure scenario