Matemática atuarial

Aula 3-Juros e Inflação

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

Juros e inflação

≻ Inflação

- Aumento médio de preços, ocorrido no período considerado, usualmente medido por um índice expresso como taxa percentual.
 - >FIPE
 - >FGV
 - **≻**DIEESE
- È a elevação generalizada dos preços de uma economia.
 - >Excesso de gastos
 - > Aumento de salários mais rápido do que da produtividade
 - > Aumento dos lucros
 - > Aumento nos preços das matérias primas
 - **>**...

Juros e inflação

- \triangleright Taxa real de juros (t_r)
 - Essa taxa elimina o efeito da inflação
 - ➤ Podem ser inclusive negativas

A relação entre a taxa de juros efetiva (i) a taxa de inflação no período (j) e a taxa real (t_r) é dada por:

$$(1+i) = (1+t_r)(1+j)$$

EXEMPLO 1: Suponha que para o período de 1 ano, a inflação tenha sido de 15%. E a taxa nominal de juros que um banco cobra sobre um empréstimo (capitalizado mensalmente) seja de 36% ao ano. Qual é a taxa real de ganho do banco?

EXEMPLO 1: Suponha que para o período de 1 ano, a inflação tenha sido de 15%. E a taxa nominal de juros que um banco cobra sobre um empréstimo (capitalizado mensalmente) seja de 36% ao ano. Qual é a taxa real de ganho do banco?

Resp.:

$$i = \left(1 + \frac{0.36}{12}\right)^{12} - 1$$

$$i = 42,58\%$$
 ao ano.
 $(1 + 0,4258) = (1 + t_r)(1 + 0,15)$

$$t_r \approx 23,98\%$$
 ao ano.

O ganho real do banco terá sido de 23,98% ao ano.

Juros Compostos - Valor presente e Valor futuro

$$M = P(1+i)^n$$

O capital P também é chamado de <u>valor presente</u>, F_0 , (VP) e o montante M de <u>valor futuro</u>, F(VF), assim:

$$F = F_0(i+1)^n$$

Logo:

$$F_0 = \frac{1}{(1+i)^n} F$$

 $FCC(i,n) = (1+i)^n$: Fator de capitalização (O incremento no valor presente até se tornar valor futuro).

 $FAC(i,n) = v^n = \frac{1}{(1+i)^n}$: Fator de atualização do capital, <u>ou fator de desconto</u> (O decremento no valor futuro até voltar ao valor presente).

Série é a generalização do conceito de soma para uma sequência de infinitos termos.

$$S_n = \sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + \cdots$$

Se a é um número real diferente de zero, então a série infinita:

$$S = \sum_{i=0}^{\infty} ar^{i} = a + ar + ar^{2} + \dots$$

É chamada, série geométrica de razão r.

A sequência de elementos de uma série geométrica é chamada de progressão geométrica.

 \triangleright A soma de *n* termos de um progressão geométrica é dada por S_n , tal que

$$S_n = \sum_{i=0}^{n-1} ar^i = \sum_{i=1}^n ar^{i-1} = \frac{a(1-r^n)}{1-r}$$

para $r \neq 1$

Demonstração:

$$S_n = a + ar + \dots + ar^{n-1} \quad (1)$$

Multiplicando-se pela razão r:

$$rS_n = ar + ar^2 + \dots + ar^n \quad (2)$$

Subtraindo-se a (2) de (1), cancelando-se os termos repetidos:

$$S_n - rS_n = (a + ar + ... + ar^{n-1}) - (ar + ar^2 + ... + ar^{n-1} + ar^n)$$

$$S_n - rS_n = a - ar^n$$

$$S_n(1 - r) = a(1 - r^n)$$

$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Resp.:

Resp.:

Como
$$S_n = \frac{a(1-r^n)}{(1-r)}$$
, temos que para $n \to \infty$ e $0 < r < 1$, é igual a

$$S = \frac{a}{1 - r}$$

$$S = \frac{\frac{9}{10}}{1 - \frac{1}{10}} = \frac{\frac{9}{10}}{\frac{9}{10}} = 1$$

 \triangleright Depósitos em série correspondem a um conjunto de n depósitos de valores (R_j) , distribuídos ao longo do tempo.

Depósitos constantes e distintos.

O movimento de dinheiro devido aos depósitos em série constitui o chamado fluxo de caixa.

Fluxo Antecipado: Depósitos no início dos períodos, ou seja, iniciam-se na data zero.

 \triangleright Ao fazer n depósitos, o primeiro depósito começa na data 0, e o último é feito na data n-1

O conjunto de depósitos ao longo dos n períodos, constitui-se num fluxo de caixa.

Fluxo Postecipado: Depósitos no final dos períodos, ou seja, iniciam-se na data um.

 \triangleright Ao fazer n depósitos, o primeiro depósito começa na data 1, e o último é feito na data n.

EXEMPLO 3: Qual é o montante **após** n depósitos mensais iguais a R, feitos em uma conta poupança que remunera a uma taxa de juros mensal igual a i? Considere o fluxo antecipado.

Data0	R					
Data1		R				
Data2			R			
Data3				R		
					•••	
Data(n-1)	$R(1+i)^{n-1}$	$R(1+i)^{n-2}$	$R(1+i)^{n-3}$	$R(1+i)^{n-4}$		R
	$R(1+i)^n$	$R(1+i)^{n-1}$	$R(1+i)^{n-2}$	$R(1+i)^{n-3}$		R(1+i)

$$S = F_0 + F_2 + F_3 + \dots + F_{n-1} = \sum_{j=0}^{n-1} F_j$$

$$S = R(1+i)^n + R(1+i)^{n-1} + R(1+i)^{n-2} + \dots + R(1+i) = \sum_{i=1}^n R(1+i)^i$$

$$S = \sum_{j=1}^{n} R(1+i)^{j} = (1+i) \sum_{j=1}^{n} R(1+i)^{j-1}$$

 $\sum_{j=1}^{n} R(1+i)^{j-1}$ corresponde a soma de n elementos de uma progressão geométrica, o termo inicia (a) é igual a R e a razão (r) é igual a (1+i). Assim:

$$S = \frac{R[1 - (1+i)^n]}{[1 - (1+i)]}(1+i) = -\frac{R[1 - (1+i)^n](1+i)}{i}$$

Logo:

$$S = \frac{R(1+i)[(1+i)^n - 1]}{i}$$

- ►No caso de depósitos variáveis tem-se que (fluxo antecipado *).
 - Fluxo antecipado porém o modelo considera depósito no mês de resgate, dai é um fluxo genérico na verdade.
- \triangleright Após o primeiro mês o primeiro depósito (F_0) montara á:

$$F_1 = R_0(1+i) + R_1$$

► Após o segundo mês temos:

$$F_2 = F_1(1+i) + R_2$$

$$F_3 = F_2(1+i) + R_3$$

$$F_4 = F_3(1+i) + R_4$$

...

►Note também que:

$$F_{1} = R_{0}(1+i) + R_{1}$$

$$F_{2} = F_{1}(1+i) + R_{2} = [R_{0}(1+i) + R_{1}](1+i) + R_{2}$$

$$F_{2} = R_{0}(1+i)^{2} + (1+i)R_{1} + R_{2}$$

$$F_{3} = F_{2}(1+i) + R_{3} = [R_{0}(1+i)^{2} + (1+i)R_{1} + R_{2}](1+i) + R_{3}$$

$$F_{3} = R_{0}(1+i)^{3} + (1+i)^{2}R_{1} + (1+i)R_{2} + R_{3}$$

$$F_{4} = F_{3}(1+i) + R_{4} = [R_{0}(1+i)^{3} + (1+i)^{2}R_{1} + (1+i)R_{2} + R_{3}](1+i) + R_{4}$$

$$F_{4} = R_{0}(1+i)^{4} + (1+i)^{3}R_{1} + (1+i)^{2}R_{2} + (1+i)R_{3} + R_{4}$$

 \triangleright No tempo n, lembrando o resgate é feito após o último depósito, assim R_n não é depositado.

$$S = \sum_{j=0}^{n-1} (1+i)^{n-j} R_j$$

>Fluxo Antecipado

$$S = \sum_{j=0}^{n-1} (1+i)^{n-j} R_j$$

≻Fluxo Postecipado

$$S = \sum_{j=1}^{n} (1+i)^{n-j} R_j$$

	Fluxo Antecipado	Fluxo Postecipado
Depósito de valor fixo	$S = \frac{R(1+i)[(1+i)^n - 1]}{i}$	$S = \frac{R[(1+i)^n - 1]}{i}$
Depósito de valor variável	$S = \sum_{j=0}^{n-1} (1+i)^{n-j} R_j$	$S = \sum_{j=1}^{n} (1+i)^{n-j} R_j$

EXEMPLO 4: Faz-se um depósito mensal de \$100,00 em uma conta de poupança que paga juros de 0,6% ao mês. Qual é o montante na conta ao fim de três meses? Considere o fluxo Antecipado e também Postecipado.

Fluxo Antecipado:

$$S = \frac{100(1+0,006)[(1+0,006)^3 - 1]}{0,006} = \$303,6144$$

ou

$$S = \sum_{j=0}^{2} (1 + 0,006)^{3-j} 100 = 100(1,006)^3 + (1,006)^2 100 + (1,006)100 = \$303,6144$$

Fluxo Postecipado:

$$S = \frac{100[(1+0,006)^3 - 1]}{0,006} = \$301,8036$$

ou

$$S = \sum_{j=1}^{3} (1 + 0,006)^{3-j} 100 = (1,006)^{2} 100 + (1,006) 100 + 100 = \$301,8036$$

Imagina agora que ao invés do interesse no montante ao fim de n depósitos, queremos saber o valor presente (VP) de todos esses depósitos.

Data 0	R	$R\left(\frac{1}{1+i}\right)$	$R\left(\frac{1}{1+i}\right)^2$	$R\left(\frac{1}{1+i}\right)^3$		$\left R \left(\frac{1}{1+i} \right)^{n-1} \right $
Data1		R				
Data2			R	•		
Data3				R		
•••					•••	
Data(n-1)						R

$$VP = \sum_{i=0}^{n-1} R\left(\frac{1}{1+i}\right)^{j} = \frac{R(1-v^{n})}{1-v}$$

Em que
$$v = \frac{1}{1+i}$$

 \triangleright O valor presente de uma série de pagamentos representa por exemplo um valor de financiamento a uma taxa i que será pago em n prestações

	Fluxo Antecipado	Fluxo Postecipado	
Pagamento Constante	$VP = \frac{R(1 - v^n)}{1 - v}$	$VP = \frac{Rv(1 - v^n)}{1 - v}$	
Pagamento Variável	$VP = \sum_{j=0}^{n-1} v^j R_j$	$VP = \sum_{j=1}^{n} v^{j} R_{j}$	

EXEMPLO 5: Uma empresa conseguiu um financiamento de \$15000,00 a ser liberado em 4 prestações, sendo a primeira paga no ato da liberação dos recursos, a uma taxa de 2% ao ano. Qual o valor da prestação?

EXEMPLO 5: Uma empresa conseguiu um financiamento de \$15000,00 a ser liberado em 4 prestações, sendo a primeira <u>paga</u> no ato da liberação dos recursos, a uma taxa de 2% ao ano. Qual o valor da prestação?

Resp.:

$$VP = \frac{R(1-v^n)}{1-v} \to R = \frac{VP(1-v)}{1-v^n}$$

Como $v = \frac{1}{1+0.02}$ então

$$R = \frac{15000(1-v)}{1-v^4} = $3862,11$$

> Pagamento no ato da liberação dos recursos

$$VP = \sum_{j=0}^{n-1} v^{j} R_{j} = R + v R + v^{2} R + v^{3} R$$

$$R = \frac{\text{VP}}{\left[1 + \left(\frac{1}{1+i}\right) + \left(\frac{1}{1+i}\right)^2 + \left(\frac{1}{1+i}\right)^3\right]} = \frac{15000}{1 + \frac{1}{1,02} + \frac{1}{1,0404} + \frac{1}{1,0612}} = \$3862,11$$

EXEMPLO 6: Uma empresa conseguiu um financiamento de \$15000,00 a ser liberado em 4 prestações, sendo a primeira paga 1 ano após a liberação dos recursos, a uma taxa de 2% ao ano. Qual o valor da prestação?

EXEMPLO 6: Uma empresa conseguiu um financiamento de \$15000,00 a ser liberado em 4 prestações, sendo a primeira **paga 1 ano após a liberação dos recursos**, a uma taxa de 2% ao ano. Qual o valor da prestação?

Resp.:

$$VP = \frac{Rv[1-v^n]}{1-v} \to R = \frac{15000[1-v]}{v(1-v^4)} = \$3939,356$$

> Pagamento 30 dias após a liberação dos recursos

$$VP = \sum_{i=1}^{n} \left(\frac{1}{1+i}\right)^{j} R_{j} = v R + v^{2}R + v^{3}R + v^{4}R$$

$$R = \frac{15000}{\left[\left(\frac{1}{1,02} \right) + \left(\frac{1}{1,02} \right)^2 + \left(\frac{1}{1,02} \right)^3 + \left(\frac{1}{1,02} \right)^4 \right]} = \$3939,35$$

EXEMPLO: Uma empresa conseguiu um financiamento de \$15000,00 a ser liberado em 4 prestações, sendo a primeira paga 1 mês após a liberação dos recursos, a uma taxa de 2% ao mês. Qual o valor da prestação?

$$R = \frac{15000[1 - v]}{v(1 - v^4)} = \$3939,356$$

Mês	Prestação	Juros	Amortização	Saldo Devedor
				15000
1	3939, 356	15000(0,02) = 300	3939,356 - 300 = 3639 , 356	15000 - 3639,356 = 11360 , 644
2	3939, 356	11360,644(0,02) = 227 , 213	3939,356 - 227,213 = 3712 , 14312	7648, 5009
3	3939, 356	7648,5009(0,02) = 152 , 9700176	3939,356 — 152,9700176 = 3786 , 385982	3862, 1149
4	3939, 356	3862,1149(0,02) = 77 , 24229795	3939,356 - 77,24229795 = 3862 , 113702	0,0011

EXEMPLO 7: (Entregar)

Mostre que $S=(1+i)^n VP$, nas seguintes situações:

a)
$$S = \frac{R(1+i)[(1+i)^n - 1]}{i}$$
 e $VP = \frac{R(1-v^n)}{1-v}$

b)
$$S = \frac{R[(1+i)^n - 1]}{i}$$
 e $VP = \frac{Rv(1-v^n)}{1-v}$

Obs.:
$$v = \frac{1}{1+i} e R = 1$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2^a edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MAR QUES,R. Fundamentos da matemática atuarial: vida e pensões. Curitiba :CRV,2022.

Bibliografia

JAMES,B. R.; Probabilidade: Um Curso em nível intermediário, IMPA, Rio de Janeiro, 3 ed., 2004

Magalhães, M. N. Lima, A. C. P. **Noções de Probabilidade e Estatística**, Editora USP: São Paulo, 2001.

