

microphone

get close!

feedthru

repeat

piezo transducer OR DIY speaker coil

 8Ω speaker OR bone conductor OR jack to speaker OR

on-board switches

rec (record) playE (play track once) playL (play while pressed)

gnd

10K default = 10 sec record time 500K pot to play w distorted sounds

3.3-5V

pins to external switches

playL ←→ vcc = play while pressed

any DIY on/off switch works

playE ←→ vcc = play once

rec ←→ vcc = record

mic input directly to speaker

microphone

Power - 3.3-5V

Power - 3.3-5V

feedthru

playback while pressed

playback once

record while pressed REC

Connect playback/record pins to any switch or sensor and VCC

Tiny jumpers to activate feedthrough or repeat modes

speaker cable

Module we have today

audio outputs

ISD1820 + 8 ohm speaker

ISD1820 + bone conductor speaker

ISD1820 + piezo speaker

Put between your teeth or on jawbone to hear sound

ISD1820 + 3.5mm jack

Then connect to any battery powered speaker for bigger sound

triggers

ISD1820 + light sensor

ISD1820 + light sensor

ISD1820 + Piezo transducer

Press, bend or knock trigger

ISD1820 + DC motor

Type e.g. 4.5-15V with gearbox

ISD1820 + light sensor

ISD1820 + tilt switch

also useful as record switch!

ISD1820 + red laser sensor

ISD1820 + vibration sensor

ISD1820 + hall effect sensor

ISD1820 + reed switch

ISD1820 + motion sensor

Needs min 4.5V (might not be reliable at 3.3V) **Tx pot** to adjust delay of trigger **Sx pot** to adjust sensitivity (distance)

distortion

3.3-5V

speaker (or other output device)

any on/off switch

default when jumper is used

	Ω	Record time	Sample rate	Bandwidth
	80K	8 secs	8 KHz	3.4 KHz
>	100K	10 secs	6.4 KHz	2.6 KHz
	120K	12 secs	5.4 KHz	2.3 KHz
	160K	16 secs	4.0 KHz	1.7 KHz
	200K	20 secs	3.2KHz	1.3 KHz

250K or 500K potentiometer

ISD1820 + 500k pot

on p2: distorts the sound

speaker (or other output device)

any on/off switch

default when jumper is used

	Ω	Record time	Sample rate	Bandwidth
	80K	8 secs	8 KHz	3.4 KHz
×	100K	10 secs	6.4 KHz	2.6 KHz
	120K	12 secs	5.4 KHz	2.3 KHz
	160K	16 secs	4.0 KHz	1.7 KHz
	200K	20 secs	3.2KHz	1.3 KHz

0 Ω 50Κ Ω 100Κ Ω 200Κ Ω

DIY variable resistor make with conductive paint