Probabilistic Graphical Models

Jerónimo Hernández-González

Example: Latent Dirichlet Allocation (LDA) for topic modeling

Example: Latent Dirichlet Allocation (LDA) for topic modeling

BN with repeated structure Student-grade

N students; for each student n, her grade (G_n) is a sample from a Normal distribution $\mathcal{N}(\mu,\sigma^2)$

BN with repeated structure Student-grade II

 $N \ \, \text{students;}$ for each student n, her intelligence (I_n) determines her grade (G_n)

BN with repeated structure

 $Intersection:\ Difficulty-Intelligence-Grade$

S subjects and N students for each subject s with a specific difficulty D_s , and for each student n with a specific intelligence I_n , both the difficulty of the subject (D_s) and her intelligence (I_n) determine her grade (G_{sn})

BN with repeated structure

 $Intersection:\ Difficulty\text{-}Intelligence\text{-}Grade$

S subjects and N students for each subject s with a specific difficulty D_s , and for each student n with a specific intelligence I_n , both the difficulty of the subject (D_s) and her intelligence (I_n) determine her grade (G_{sn})

General intelligence

BN with Repeated Structure

 $Nesting:\ Difficulty\text{-}Intelligence\text{-}Grade$

S subjects with N students for each subject s with a specific difficulty D_s , there are N students; for each student n her intelligence (I_{sn}) and the difficulty of the subject (D_s) determine her grade (G_{sn})

BN with Repeated Structure

 $Nesting:\ Difficulty\text{-}Intelligence\text{-}Grade$

S subjects with N students

for each subject s with a specific difficulty D_s , there are N students; for each student n her intelligence (I_{sn}) and the difficulty of the subject (D_s) determine her grade (G_{sn})

Subject-specific intelligence

Example: Latent Dirichlet Allocation (LDA) for topic modeling

Plate Semantics

Let A and B be random variables inside a common plate indexed by i. Which statement is true?

[You may select 1 or more options]

- a) For each i, A(i) and B(i) have different CPDs.
- b) For each i, A(i) and B(i) have edges connecting them to the same variables outside of the plate.
- c) For each i, A(i) and B(i) have the same CPDs.
- d) There is an instance of A and an instance of B for every i.

Plate Interpretation

Consider this plate model with edges removed. What might possibly represent an instance of X in the grounded model?

[You may select 1 or more options]

- a) Whether a specific teacher T taught a specific course C at school S
- b) Whether someone with expertise E taught something of difficulty D at a place in location L
- c) Whether a specific teacher T is a tough grader
- d) None
- e) Whether a teacher with expertise E taught a course of difficulty D

Grounded Plates

Consider this plate model and assume that there are s schools, t teachers and c courses in each school. How many instances of the Difficulty variable are there?

- a) c
- b) $s \cdot c$
- c) Not enough information to answer
- $d) s \cdot t$

Probabilistic Graphical Models

Jerónimo Hernández-González

Limitations

- cannot have edges between two instances of the same variable (e.g., position a time t depends on position at time t-1)
- cannot have edges between particular pairs selected by some other relation

(e.g., Genotype(U1) depends on Genotype(U2), where U2 is mother of U1

Alternatives

- Dynamic Bayesian Networks (DBNs)
 Specific to repetitions over time
- Probabilistic relational models
 More flexibility

$Template\ models$

What is a template model?

- X takes different values at each (discrete) time step
 X(t) is the random variable at time t
- Markov assumption

$$\boldsymbol{X}(t+1) \perp \!\!\! \perp \boldsymbol{X}(0), \ldots, \boldsymbol{X}(t-1) \mid \boldsymbol{X}(t)$$

Stationary assumption (Time invariance or homogenous)

$$P(X(t+1) | X(t))$$
, the same for all t

Use conditional Bayesian network to define $P(\boldsymbol{X}(t+1)|\boldsymbol{X}(t))$ 2-time slice Bayesian network, Dynamic Bayesian network, Hidden Markov models

Temporal models

Dynamic Bayesian Network

- 1. Bayesian network over X(0)
- 2. Conditional BN for $\boldsymbol{X}(t+1)$ given $\boldsymbol{X}(t)$ (2-time-slice)

Temporal models

Example: Dynamic Bayesian Network (DBN) for vehicle position

$$P(W', V', L', F', O'|W, V, L, F) = p(O'|F', L')p(F'|F, W)p(L'|L, V)p(V'|V, W)p(W'|W)$$

Temporal models

Example: Dynamic Bayesian Network (DBN) for vehicle position

Grounded (unrolled) BN

Markov Assumption

If a dynamic system X satisfies the Markov assumption for all time t > 0, which statement is true?

- a) $X^{(t+1)} \perp \!\!\!\perp X^{(t)}$
- b) $X^{(t+1)} \perp \!\!\!\perp X^{(t)} | X^{(t-1)}$
- c) $X^{(t+1)} \perp \!\!\!\perp X^{(0:(t-1))} | X^{(t)}$

Independencies in DBNs

In this DBN, which of these independence statements are true?

[You may select 1 or more options]

- a) $O^{(t)} \perp \!\!\!\perp X^{(t+1)} | X^{(t)}$
- b) $O^{(t)} \perp \!\!\!\perp X^{(t-1)} | X^{(t)}$
- c) $O^{(t)} \perp \!\!\!\perp O^{(t-1)}$
- d) $O^{(t)} \perp \!\!\!\perp O^{(t-1)} | X^{(t)}$

Applications of DBNs

For which of the following applications might one use a DBN?

- a) Modeling data taken at different locations along a road, where the data at each location is influenced by the data at many other locations.
- b) Predicting the probability that today will be a snow day (school will be closed because of the snow), when this probability depends only on whether yesterday was a snow day.
- c) Predicting the probability that today will be a snow day (school will be closed because of the snow), when this probability depends only on whether yesterday, the day before yesterday, and 2 Mondays ago were snow days.
- d) Modeling time-series data, where the events at each time-point are influenced by only the events at the one time-point directly before it

Probabilistic Graphical Models

Jerónimo Hernández-González