周四下午第6组11号 2018.10.18

测量非线性元件的伏安特性 实验报告

蔡丹杨

(北京大学化学与分子工程学院 1700011774)

1 数据处理

(1) 测量大小电阻的阻值

实验开始前,先用数字万用表的欧姆档对电阻阻值进行了粗测,测得小电阻 R_{x1} 阻值约为 49.43Ω ,大电阻 R_{x2} 阻值约为 $0.9946k\Omega$ 。

然后用外接法测量了小电阻 R_{x1} 的阻值(图 1),使用的电表量程分别为 30mA(内阻 4.8Ω)和 2V(内阻 $2k\Omega$)、记录的 8 组数据如表 1 所示。

图 1 测量小电阻的阻值实验电路原理图

U/V	0.08	0.20	0.37	0.65	0.88	1.00	1.16	1.38
I/mA	1.6	4.1	7.6	13.2	17.9	20.3	23.6	28.0

表 1 用电流表外接法测量小电阻数据

算得回归方程 $I=0.03071+20.29U,1-r^2\approx 1.6\times 10^{-5}$,即 $R_{x1}\approx 49.28\Omega$ 。由书中给出的修正公式 $\frac{1}{R_{x}}=\frac{I}{U}-\frac{1}{R_{y}}$ 修正系统误差,算得修正值 $R_{x1}\approx 49.3\Omega$,与未修正时相差不大,测量误差较小。

同理用内接法测量了大电阻 $R_{\times 2}$ 的阻值(图 2),使用的电表量程分别为 15mA(内阻 9.2Ω)和 10V(内阻 $10k\Omega$),记录的 8 组数据如表 2 所示。

图 2 测量小电阻的阻值实验电路原理图

U/V	0.70	2.45	3.76	5.00	6.23	7.48	8.85	9.94
I/mA	0.7	2.4	3.7	4.9	6.2	7.4	8.8	9.9

表 2 用电流表外接法测量大电阻数据

算得回归方程U=0.03637+1.003I, $1-r^2\approx 8.4\times 10^{-5}$,即 $R_{x2}\approx 1003\Omega$ 。由书中给出的修正公式 $R_x=\frac{U}{I}-R_A$ 修正系统误差,算得修正值 $R_{x2}\approx 994\Omega$,与未修正时相比有一些变化,且符合粗测值。

(2) 测量稳压二极管的伏安特性曲线

使用了电流表外接法进行测量(图 3),测得的数据见表 3 和表 4。其中,正向电压测量使用 20mA 和 2V 量程;反向电压中电压超过 2V 的改用 20V 档,电流低于 2mA 的换用 2mA 档。

周四下午第6组11号 2018.10.18

图 3 测量稳压二极管伏安特性曲线实验电路原理图

U/V	0.0000	0.3722	0.4830	0.5480	0.6032	0.6719	0.6963
I/mA	0.000	0.000	0.000	0.003	0.012	0.064	0.118
U/V	0.7262	0.7390	0.7696	0.7827	0.7921	0.8000	0.8472
I/mA	0.259	0.367	0.861	1.242	1.605	1.986	8.934

表 3 伏安特性曲线正向电压数据

U/V	-0.4127	-0.7953	-1.1288	-2.008	-2.998	-3.629	-4.000	-4.252	-4.411
I/mA	0.0000	0.0000	0.0000	-0.0003	-0.0010	-0.0024	-0.0044	-0.0072	-0.0103
U/V	-4.568	-4.707	-4.933	-4.996	-5.000	-5.019	-5.027	-5.043	-5.054
I/mA	-0.0156	-0.0243	-0.0734	-0.1699	-0.3142	-0.7318	-1.0560	-1.8562	-2.489
U/V	-5.113	-5.142	-5.143	-5.145	-5.146	-5.147	-5.153	-5.182	-5.213
I/mA	-7.539	-9.826	-9.932	-10.116	-10.278	-10.352	-12.096	-15.800	-19.883

表 4 伏安特性曲线反向电压数据

据此作出伏安特性曲线如图 4 所示,正向导通电压为 0.7865V,并可算出:

图 4 绘制的伏安特性曲线

正向电压为 0.8V 的点静态电阻为 $R_D = \frac{U}{I} = \frac{0.8000V}{1.986\text{mA}} = 402.8\Omega;$

反向电压为-4V 的点静态电阻为 $R_D = \frac{U}{I} = \frac{-4.000 \text{V}}{-0.0044 \text{mA}} = 9.1 \times 10^5 \Omega;$

周四下午第6组11号 2018.10.18

反向电流为-10mA 的点动态电阻为(用中心差分) $R_{D'} = \frac{\Delta U}{\Delta I} = \frac{0.004 \text{V}}{0.352 \text{mA}} = 11\Omega$ 。

2 思考题

(1) 使用多用表(20kΩ以上各档) 测量二极管的正向电阻,为什么各档测得数值不同?如果测量一个线性电阻,情况会怎样?

答:数字多用表的不同欧姆档是由内置电源和不同阻值的电阻所组成的。在使用不同档位时,多用表接入电路部分的内阻不同,输出到二极管的路端电压也不同,而二极管是非线性元件,在不同的电压下有不同的静态电阻,因而各档测定的数值不同。如果测量一个线性电阻,由于调零时已经调好了电表的内阻,所以只要内部电源供电稳定,测量结果就不会有较大偏差。

(2) 测量正向伏安曲线时你采用了哪种电表接法,为什么?

答:采用了电流表外接法。因为使用电流表内接法时,电流表能测定通过稳压二极管电流的准确值,但电压表不能测得稳压管两端的准确电压。由于稳压管正向电阻较小,电流表上有较为可观的电压降,使电压测定值的相对误差较大。而如果采用电流表外接法,电压表可以测得两端电压的准确电压,虽然电流表不能测得准确电流,但电压表分到电流比例较小,相对误差更小。

3 分析与讨论

在测定电阻的结果部分中,按照伏安法修正公式对测量所得的电阻进行了修正。对于小电阻 R_{xl} ,测量结果从 49.28Ω修正为 49.3Ω,基本没有变化。对于大电阻 R_{xl} ,测量结果从 1003Ω修正为 994Ω,较好地修正了误差,且与粗测结果基本一致。上述实验证明了伏安法修正公式的合理性,从中我们可以看到,电流表内接法适合测量大电阻,所测的结果也偏大。电流表外接法适合测量小电阻,所测的结果也偏小。

实验还测量了稳压二极管在一些特征值下的静态、动态电阻,它们分别代表了稳压二极管在一定条件下的性能。在正向电压为 0.8V(超过导通电压)时,静态电阻为 402.8Ω ,这部分静态电阻代表了二极管导通之后的电阻。在反向电压为-4V 时,静态电阻为 $9.1\times10^5\Omega$,阻值很大,但没有反向击穿,说明稳压管在未导通时有良好的单向导电性。在反向电流为-10mA 时,动态电阻为 11Ω ,阻值很小,伏安曲线几乎竖直。这说明,稳压二极管在反向击穿状态下能很好的以稳压模式工作。

4 收获与感想

通过这次实验,我学习了电学实验的基本操作,理解了断开开关连接电路等操作对安全性的意义,并实际运用这些知识测定了电阻和稳压二极管的伏安特性。我们还学习了作图处理实验数据的方法,这为以后的实验打下了基础。

感谢老师对实验的讲解,以及王世伟同学交换实验仪器台面的帮助。