DSC 215 - PROBABILITY AND STATISTICS FOR DATA SCIENCE

INFERENCE FOR NUMBERICAL DATA

COMPUTER SCIENCE & ENGINEERING
HALICIOĞLU DATA SCIENCE INSTITUTE

Introduction

- In previous modules, we considered inference in the following settings, all involving *categorical data*:
 - A single proportion
 - Difference of two proportions
 - Multiple groups
- We
 - Constructed confidence intervals
 - Conducted hypothesis tests
- Here, we consider inference, in the setting of numerical data.

Introduction

- Here, we consider inference, in the setting of numerical data. We will focus on:
 - A single mean
 - Paired data
 - Difference of two means
 - Many means
- We will construct
 - Confidence intervals
 - Conduct hypothesis tests

One-Sample Means and the t-Distribution

Categorical Data

- Sample proportion: \hat{p} Population proportion: p
- Modeled \hat{p} using normal distribution centered at p and with $SE = \sqrt{\frac{p(1-p)}{n}}$.
- Used properties of the normal distribution to construct confidence intervals and conduct hypothesis tests.

Numerical Data

- Sample mean: \bar{x} Population mean: μ
- Will model \bar{x} using t-distribution (and a single parameter, the degrees of freedom df)

 Will use properties of the t-distribution distribution to construct confidence intervals and conduct hypothesis tests

Why the *t*-Distribution?

Central limit theorem (for sample mean):

If our sample consists of n independent observations from a population with mean μ and standard deviation σ , and n is large enough,

then the sampling distribution of \bar{x} is nearly normal with

mean =
$$\mu$$

$$SE = \frac{\sigma}{\sqrt{n}}.$$

- Two issues to consider:
- Conditions under which the CLT approximation can be safely used.
- In practice, we don't know σ , so we must estimate it. As our estimation is imperfect we use a new distribution: the t-distribution to resolve this issue.

Conditions Needed to Apply the CLT

- As in the categorical data setting, we need two conditions to be satisfied to apply the CLT for a sample mean
 - Independence: The sample observations must be independent. For example, this happens if our sample is a random sample from a large population.
 - Normality: If the n is small, we require that the sample observations come from a normally distributed population. This condition can be relaxed as n increases.

Rules of thumb for normality:

- n < 30: If there are no outliers in the data, we assume normality of the data, which implies normality of \bar{x} .
- $n \ge 30$: If there are no extreme outliers in the data, we assume normality of \bar{x} even if distribution of the observations is not.

Estimating σ , Introducing the t-Distribution

- In practice, we don't know the population mean μ or standard deviation σ .
- As in the categorical data case, we will use the sample value as a proxy for the population value.

$$SE_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \approx \frac{S}{\sqrt{n}}$$

• t-distribution:

- Always centered at 0.
- Parametrized by a single parameter: the degrees of freedom df.
- In general df = n 1.

Estimating σ , Introducing the t-Distribution

- In practice, we don't know the population mean μ or standard deviation σ .
- As in the categorical data case, we will use the sample value as a proxy for the population value.

$$SE_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \approx \frac{S}{\sqrt{n}}$$

- t-distribution:
- Always centered at 0.
- Parametrized by a single parameter: the degrees of freedom df.
- In general df = n 1.

The larger the degrees of freedom, the more closely the t-distribution approximates the standard normal.