EPITA / InfoS1	
NOM:	Prénom :

Novembre 2017

Groupe:.....

Contrôle Electronique - CORRIGE

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (5 points - pas de points négatifs pour le QCM)

- A. Choisissez la bonne réponse :
- 1. Une différence de potentiels entre 2 points est aussi appelée :
 - a- Une intensité

c- Une puissance

Une tension

- d- Une conductance
- 2. Pour mesurer l'intensité d'un courant dans un dipôle, on utilise un ampèremètre branché en série avec ce dipôle.
 - (a) VRAI

- b- FAUX
- 3. Le courant qui entre dans un générateur a une intensité plus faible que celle de celui qui en ressort.
 - a- VRAI

- FAUX
- 4. Dans le schéma ci-dessus, on a les courants suivants :

$$I_1 = 5mA$$
; $I_2 = 1mA$; $I_3 = 1mA$; $I_4 = -3mA$

Calculer le courant I.

- a- I = 4 mA
- c- $I = 10 \, mA$
- I = 2 mA d- I = 8 mA

- 5. Quand on associe 2 résistances en parallèle, on conserve :
 - a- Le courant qui les traverse
- c- Rien du tout

- - la tension à leurs bornes

B. Soit des résistances de valeurs $R_1=1\,\Omega$ et $R_2=1\mathrm{k}\Omega$. Calculer les résistances équivalentes :

1. R_2 et R_2 en série

2. R_1 et R_2 en série

3. R_1 et R_1 en parallèle

4. 10 résistances R_1 en série

5. $10 \text{ résistances } R_2 \text{ en parallèle}$

<u>Exercice 2.</u> Généralités et Lois de Kirchhoff (6 points)

On considère le circuit ci-contre dans lequel on suppose connus I et R.

1. Exprimer la résistance R' en fonction de R pour que $U = \frac{R.I}{4}$.

6u a alurs
$$V = Rep. T$$
 (Loi d'6hm).

$$= S \frac{RX}{4} = \frac{2RR'}{2R+R'} X = S 2R+R' = 8R'$$

$$= S \left[\frac{R'}{7} = \frac{2}{7} R \right]$$

2. Déterminer l'expression de la tension U' en fonction de I et des résistances. (On prendra toujours $U=\frac{R.I}{4}$)

R, 3R et 2R sout en série

U: Tension aux bornes du R+2R+3R

on cherche U': Tension aux bornes du 3R

=> PDT: U' = 3R U = U
R+3R+2R = 2

or, U = RT => |U' = RT 8

Exercice 3. Lois de Kirchoff (4,5 points)

Soit le circuit suivant :

Remarque préalable : les réponses attendues dépendent des positions des interrupteurs et sont indépendantes les unes des autres : ce n'est donc pas un "grand" exercice mais 4 "petits" à partir du même schéma. Redessinez les circuits sur votre brouillon pour pouvoir répondre correctement aux

questions, et, Commencez par les cas qui vous paraissent les plus simples!

La tension ${\it E}$ et les 3 résistances sont supposées connues.

Remplir le tableau suivant (résultat seul, pas le détail des calculs). Les tensions demandées ne devront dépendre \underline{QUE} de \underline{E} et/ou des résistances $\underline{R_1}$, $\underline{R_2}$ ou $\underline{R_3}$ (sauf s'ils sont nuls !) et PAS les unes des autres !!

Posez-vous les bonnes questions ... vous aurez les bonnes réponses !!

K_1	K ₂	U_1	U_3	U
0	0	<u>R1</u> E R1+R2		R2 E R1+R2
0	F	R1 (R1HR3) E R1R2+R1R3+R1R3	- R12 R3 E R1 R2 + R1 R3 + R2 R3	O
F	0		0	۲)
L.	F	0	Ē	

Rq : O = OuvertF = Fermé

Exercice 4. Théorème de superposition (2,5 points)

Soit le circuit suivant :

Déterminer l'expression de I_1 dans R_1 en fonction de E_1 , I_3 , R_1 , R_2 , R_3 en utilisant le théorème de superposition.

Etat 1: Gu conserve EI, on annule
$$T_3$$
.

 $E_1 \cap R_1 + R_2$
 $R_3 \cap R_1 + R_2 + R_3$

Etat 2: 6u conserve
$$T_3$$
, on annule E_1
 R_1+R_2
 R_3
 R_1+R_2
 R_3
 $R_1+R_2+R_3$
 R_3
 $R_1+R_2+R_3$
 R_3

Cl:
$$I_1 = I_1' + I_1'' = \frac{E_1 - R_3 I_3}{R_1 + R_2 + R_3}$$

$$I_{1} = \frac{E_{1} - R_{3}I_{3}}{R_{1} + R_{2} + R_{3}}$$

Exercice 5. Association de résistances (2 points)

Quelle est la résistance équivalente totale (détaillez votre raisonnement — On imagine que le courant « entre » par le point A et « ressort » en B)

