HW3

方科晨

2024年3月29日

Problem1.

(a) 要最小化 $||Ax - b||_{\infty} = \max_{i} (Ax - b)_{i}$, 则有线性规划如下:

minimize
$$c$$

subject to $Ax - b \le c \cdot e$

其中 e 为全 1 向量。由于要最小化 c ,则限制条件中必有一维取等号,此 时 $c = \|Ax - b\|_{\infty}$,故两者等价。

(b) 要最小化 $||Ax - b||_1 = \sum_i |Ax - b|_i$ 。 我们有如下的线性规划:

minimize
$$\sum_{i} (y_i + z_i)$$
 subject to
$$Ax - b = y - z$$

$$y \ge 0$$

$$z > 0$$

不难发现这对于每一维来说 y_i, z_i 都是独立的。对于每一维 i 来说,有 $(Ax-b)_i = y_i - z_i$,假设 $y_i > 0, z_i > 0$,则存在一个 $0 < a \le \min(y_i, z_i)$ 使得 $y_i - a \ge 0, z_i - a \ge 0, (Ax - b)_i = (y_i - a) - (z_i - a)$ 满足限制条件,而且同时有 $(y_i - a) + (z_i - a) < y_i + z_i$,这样肯定不是最优解。故对于每一维 i ,都有 $y_i = 0, z_i = 0$ 中的一个成立,则只有两种情况 $y_i = 0, z_i = -(Ax - b)_i = |Ax - b|_i \ge 0$ 或者 $y_i = (Ax - b)_i = |Ax - b|_i \ge 0$,则

 $y_i + z_i = |Ax - b|_i$ 。那么 $\sum_i (y_i + z_i)$ 正是我们要求的 $||Ax - b||_1$,故两问题等价。

(c) 我们有以下线性规划问题:

minimize
$$\sum_{i} (y_i + z_i)$$

subject to $Ax = b$
 $x = y - z$
 $y \ge 0$
 $z > 0$

等价性的证明同理于 (b)。

Problem2.

(a)
$$\Rightarrow |x| = x_1 - x_2, |y| = x_3 - x_4$$
, 转化后有如下标准型:

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

其中
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_6 \end{pmatrix}$$
, $c = (1, 1, 1, 1, 0, 0)$, $A = \begin{pmatrix} 1 & -1 & 1 & -1 & -1 & 0 \\ 1 & -1 & 0 & 0 & 0 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ (b) \diamondsuit $x = x_1, y = x_2 - x_3, z = x_4$, 转化后有如下标准型:

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

$$b = \begin{pmatrix} 7 \\ 5 \\ 1 \\ 6 \end{pmatrix}$$

Problem3.

(a) 如下图

图 1:

(b) 转化为如下标准型:

maximize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

其中,
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_6 \end{pmatrix}$$
, $c = \begin{pmatrix} 3 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $A = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 2.5 \\ 9 \\ 4 \\ 3 \end{pmatrix}$

- (c) 由 (a) 中的图可以看出 extreme point 有 $(x_1, x_2) = (0, 0), (4, 0), (4, 2.5), (3, 3), (0.5, 3), (0, 2.5)$
 - (d) 最优解为 $(x_1, x_2) = (4, 2.5)$, 取到的最优值为 24.5

Problem4.

(a) 由于 $e^T x = 1 \Leftrightarrow \sum_i x_i = 1$,因此 $c^T x = \sum_i c_i x_i \geq \sum_i (\min_i c_i) x_i = \min_i c_i \sum_i x_i = \min_i c_i$ 。 令 $k = \arg\min_i c_i$ (有多个则任取一),则 $x_k = 1, x_i = 0, \forall i \neq k$ 时可以取到极值。

若限制改为 $e^Tx \leq 1$,则有 $c^Tx \geq \sum_i (\min_i c_i) x_i = \min_i c_i \sum_i x_i$ 。又由于有 $0 \leq \sum_i x_i \leq 1$,故当 $\min_i c_i \geq 0$ 时,有 $c^Tx \geq \min_i c_i \sum_i x_i \geq 0$,当 $x_i = 0, \forall i$ 时取到等号。当 $\min_i c_i < 0$ 时,则有 $c^Tx \geq \min_i c_i \sum_i x_i \geq \min_i c_i$,令 $k = \arg\min_i c_i$ (有多个则任取一),当 $x_k = 1, x_i = 0, \forall i \neq k$ 时可以取到极值。

(b) 当 β 是 0 到 n 之间的整数时,不妨令 $c^T=(c_1,\cdots,c_n)$ 且 $c_{(1)},\cdots,c_{(n)}$ 为 c_i 从小到大排序后的值。那么有 $c^Tx\leq\sum_{i=1}^{\beta}c_{(i)}$ 。当排序后 c_i 的下标小于等于 β 时 $x_i=1$,否则 $x_i=0$

若限制改为 β 不是整数。则有 $c^T x \leq \sum_{i=1}^{[\beta]} c_{(i)} + \{\beta\} c_{[\beta]+1}$ 。 当排序后 c_i 的下标小于等于 $[\beta]$ 时 $x_i = 1$,当 c_i 排序后下标为 $[\beta] + 1$ 时 $x_i = \{\beta\}$,否则 $x_i = 0$

若限制改为 $e^T x \leq \beta$,那么有 $c^T x \leq \sum_{i=1}^{\beta} \min(c_{(i)}, 0)$ 。当 $c_i < 0$ 且排序后 c_i 的下标小于等于 β 时 $x_i = 1$,否则 $x_i = 0$

Problem5.

由 $Ax \le b$ 可转化成 Ax + s = b ,则原来的条件 $Ax \le b, Cx = d$ 可转化为如下形式:

$$\begin{pmatrix} A & I_4 \\ C & 0 \end{pmatrix} \begin{pmatrix} x \\ s \end{pmatrix} = \begin{pmatrix} b \\ d \end{pmatrix}$$

其中 $\begin{pmatrix} A & I_4 \\ C & 0 \end{pmatrix}$ 为 5×8 的矩阵,秩为 5 。选取 $s_2 = s_3 = s_4 = 0$,可解得 $x_1 = x_2 = x_3 = x_4 = s_1 = 1$ 为一个 feasible solution。故 $x^* = (1; 1; 1; 1)$ 为一个 extreme point。

Problem6.

线性规划为标准型,其中有 $A = \begin{pmatrix} 1 & 0 & 4 & 0 & \alpha \\ 0 & 1 & -1 & 0 & \beta \\ 0 & 0 & 2 & 1 & \gamma \end{pmatrix}$,不难发现该矩阵

行满秩。故存在最优的基解。

Problem7.

- (a) 其中 (1) 等价于 Ax>0 ,可以转化成 $-Ax+\alpha e\leq 0, \alpha>0$,由 Farkas's Lemma,有如下的 alternative system: $(A\ e)^Ty=(0\ 1)^T,y\geq 0$, 等价于 $A^Ty=0,y>0$ 。 故得证。
 - (b) 该系统等价于 $Ax = b, A^{T}(y^{1} y^{2}) + s = c, c^{T}x b^{T}(y^{1} y^{2}) + \alpha = c$

 $0, x, y^1, y^2, s, \alpha > 0$, 也可写为以下形式:

$$\begin{pmatrix} A & 0 & 0 & 0 & 0 \\ 0 & A^T & -A^T & I & 0 \\ c^T & -b^T & b^T & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y^1 \\ y^2 \\ s \\ \alpha \end{pmatrix} = \begin{pmatrix} b \\ c \\ 0 \end{pmatrix}, \begin{pmatrix} x \\ y^1 \\ y^2 \\ s \\ \alpha \end{pmatrix} \ge 0$$

故由 Farkas' Lemma, 有 alternative system:

$$\begin{pmatrix} A^{T} & 0 & c \\ 0 & A & -b \\ 0 & -A & b \\ 0 & I & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} y' \\ -x' \\ -\tau \end{pmatrix} \le 0, \begin{pmatrix} b^{T} & c^{T} & 0 \end{pmatrix} \begin{pmatrix} y' \\ -x' \\ -\tau \end{pmatrix} > 0$$

该系统等价于 $A^Ty' - c\tau \le 0, Ax' - b\tau = 0, x' \ge 0, \tau \ge 0, b^Ty' - c^Tx' > 0$

Problem8.

使用 cvx 求得三个函数为 $f_{ls}(x) = 0.5755x + 4.1841$, $f_{l_1} = 0.9716x + 4.9459$, $f_{l_{\infty}} = -0.5249x + 3.9335$ 对应的三个图像依次如下:可以发现对于整体的趋势来说, l_1 -norm 拟合得最好; l_2 -norm 倾向于体现整体的趋势,但由于离群值带来的偏差是平方级别的,所以也会显示出部分离群值带来的影响;而 l_{∞} -norm 由于是取 max ,显著得受到离群值的影响。

图 2: $f_{ls}(x)$

图 3: f_{l_1}

图 4: $f_{l_{\infty}}$