Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No

Faculty of Engineering

End Sem (Even) Examination May-2019 EC3CO12 / EI3CO12 VLSI Design

Rnowledge is Power Programme: B.Tech. Branch/Specialisation: EC/EI

Duration: 3 Hrs. Maximum Marks: 60

		nestions are compulsory. Inte should be written in full inst			of
Q.1	i.	Due to body effect in MOS	transistors		1
		(a) Channel length decrease		rent increases	
		(c) Channel width increases	(d) Threshold	l voltage gets affected	
	ii.	Which of these is one of the	states of tristat	e inverter	1
		(a) Short circuit	(b) High impo	edance	
		(c) Unknown	(d) Closed		
	iii.	Minimum transis	stors will be rec	quired to implement 3 input	1
		NAND gate by using static	CMOS logic.		
		(a) 3 (b) 4	(c) 6	(d) 10	
	iv.	Propagation delay of any sta	atic CMOS logi	c circuit can be reduced by	1
		(a) Decreasing load capacita	ance		
		(b) Decreasing the size of tr	ansistors		
		(c) Increasing no. of series of	connected transi	stors	
		(d) Increasing fan out			
	v.	If in a state machine state,	A is k-distingu	ishable to state B, and N is	1
		the total number of states th	an which of the	following is true	
		(a) $k>N$ (b) $k>2N$	(c) k = N	(d) $k < N$	
	vi.	J, K excitations required for	state transition	$1\rightarrow 0$ in JK flip flop are	1
		(a) $0, X$ (b) $1, X$	(c) X, 1	(d) X, 0	
	vii.	-	h a unique sequ	ence of unstable states then	1
		it is called as			
		(a) Race (b) Cycle	(c) Hazard	(d) Glitch	
	viii.	Which of these is a type of a	•	-	1
		(a) Cut-off mode	(b) Linear mo		
		(c) Saturation mode	(d) Pulse mod		
				P.T.	O.

	ix.	In IC fabrication, diffusion	n is p	rimarily	y u	sed	l for	forma	ition (of		1
		(a) Doped regions	(1	b) Oxid	le l	aye	er					
		(c) Metal contacts	(d) Epita	axi	al l	ayer					
	х.	Full form of PLA is										1
		(a) Programmable linear ar	rray									
		(b) Programmable logic ar	rray									
		(c) Propagation line array										
		(c) Propagation logic array	y									
Q.2	i.	Draw neat and detailed Y-	-chart	t regard	ling	g V	LSI	desigi	ı flow	V		2
	ii.	Explain various operating	g re	gions c	of	enl	hanc	ement	type	e n-cha	annel	3
		MOSFET with proper diag	gram	S.								
	iii.	What do you mean by p	pass	transist	tors	s (1	PT)	and t	ransn	nission	gate	5
		(TG)? Draw TG schemati	ic dia	agram o	of	pos	sitive	edge	trigg	gered D)-flip	
		flop and explain its working	op and explain its working.									
OR	iv.					5						
		(a) Body effect	(1	b) Chan	nne	el le	ength	mod	ulatio	n		
Q.3	i.	Realize following function	ns wi	th static	e C	M	SC					4
		(a) $Y = (AB)$	(1	b) Y= (.	Α+	-B)	,					
		(c) $Y = [A(B+C)+DE]$	(d) Y=(A	4+	B)(C+D))				
	ii.	Draw schematic and expla	ain th	e worki	ing	g of	stati	ic CM	IOS i	nverter	with	6
		the help of VTC. Also deri	ive n	nathema	atic	cal	expr	essior	ns of '	V _{IL} , V _{II}	H and	
		V _{TH} for same circuit.										
OR	iii.	Draw neat schematic diagram	ram o	of 28-tra	ans	siste	or Cl	MOS	full a	dder ci	rcuit.	6
Q.4	i.	Give at least four difference	ces b	etween	M	eal	y and	l Moc	ore sta	ite mac	hines.	2
	ii.	Minimize following state in	mach	nine by	usi	ng	parti	tion r	netho	d.		3
		_		N S	S, z		_					
		1	PS	x = 0	х	=	1					
		-	A	E, 0								
			-	22,0	_	, ,						

	NS	S, z
PS	x = 0	x = 1
A	E, 0	C, 0
B	C, 0	A, 0
C	B, 0	G, 0
D	G, 0	A, 0
E	F, 1	B, 0
\boldsymbol{F}	E, 0	D, 0
G	D, 0	G, 0

• • •	D: (011)	sequence detector by using JK flip flops.
111	Design a Till	seallence aetector by listing 1K film flons
111.	Donalia Oli	seducince detector by using fix individual.

OR	iv	Derive minimal form	n of state r	nachine	given below.	
----	----	---------------------	--------------	---------	--------------	--

		NS	, z	
PS	I_1	I_2	I_3	I_4
A		C, 1	E, 1	B, 1
B	E, 0	_	_	_
C	F, 0	F, 1	_	_
D	_	_	B, 1	_
E	_	F, 0	A, 0	D, 1
F	C, 0	_	B, 0	C, 1

Q.5 Attempt any two:

- i. Design a fundamental mode asynchronous sequential circuit having 5 two inputs (x₁ and x₂) and one output (z). Z=1 if both inputs are equal to 1, but only if x₁ becomes 1 before x₂.
- i. Find all the races in the flow table given below and indicate those that 5 are critical and those that are not. Find another assignment and draw table which contains no critical races.

		Sta	te	
y ₁ y ₂	$x_1x_2 \\ 00$	01	11	10
00	(00)	11	(00)	11
01	11	(01)	11	11
10	00	(10)	11	11
11	11	(II)	00	11

iii. Draw the logic diagram of POS

$$Y = (x_1+x_2')(x_2+x_3)$$

Show the presence of hazard, its type and a way of removal.

Q.6 i. Realize the following functions by using PAL with four inputs and 3- 4 wide AND-OR structure:

(a)
$$F_1 = \Sigma_m (0,2,12,13)$$

(b)
$$F_2 = \Sigma_m (0,2,3,4,5,6,7,8,10,11,15)$$

i. Discuss CMOS n-well fabrication process step by step with the help of 6 appropriate diagrams.

(a) CPLD

5

6

5

Marking Scheme EC3CO12 / EI3CO12 VLSI Design

Q.1	i.	Due to body effect in MOS transistors		1
	ii.	(d) Threshold voltage gets affected Which of these is one of the states of tristate	inverter	1
	11.	(b) High impedance	Ziliverter	1
	iii.	Minimum transistors will be req NAND gate by using static CMOS logic. (c) 6	uired to implement 3 input	1
	iv.	Propagation delay of any static CMOS logic	c circuit can be reduced by	1
		(a) Decreasing load capacitance	•	
	v.	If in a state machine state, A is k-distinguithe total number of states than which of the (d) k< N		1
	vi.	J, K excitations required for state transition	1→0 in JK flip flop are	1
		(a) $0, X$ (b) $1, X$ (c) $X, 1$	(d) X, 0	
	vii.	When a circuit goes through a unique seque it is called as	ence of unstable states then	1
	viii.	(b) Cycle Which of these is a type of asynchronous so	quantial airquita	1
	VIII.	Which of these is a type of asynchronous se (d) Pulse mode	quential circuits	1
	ix.	In IC fabrication, diffusion is primarily used	I for formation of	1
		(a) Doped regions		
	х.	Full form of PLA is		1
		(b) Programmable logic array		
Q.2	i.	Y-chart regarding VLSI design flow		2
	ii.	Operating regions of enhancement type n-ch	nannel MOSFET	3
		1 mark for each (Diagram + explanation)	(1 mark * 3)	
	iii.	Pass transistors (PT)	1 mark	5
		Transmission gate (TG)	1 mark	
		D-flip flop diagram	2 marks	
		Working	1 mark	
OR	iv.	(a) Body effect	2.5 marks	5
		(b) Channel length modulation	2.5 marks	
Q.3	i.	1 mark for each functions with static CMOS	S (1 mark * 4)	4
	ii.	Schematic	1 mark	6
		VTC	1 mark	
		Working	1 mark	

OR	iii.	Derivation 1 mark for each (1 mark * 3) Schematic diagram of 28-transistor CMOS		6
OK	111.	For carry part	3 marks	U
		For sum part	3 marks	
		•		
Q.4	i.	At least four differences between Mealy and	l Moore state machines	2
		0.5 mark for each difference	(0.5 mark * 4)	
	ii.	Minimal partition method.	2 marks	3
		Reduced table	1 mark	
	iii.	'011' sequence detector by using JK flip flo	ps.	5
		For state diagram	1 mark	
		State table	1 mark	
		Transition table	1 mark	
		Excitation table	1 mark	
		Logic table	1 mark	
OR	iv	Minimal form of state machine		5
		Merger graph/table	2 marks	
		Determination of minimal set of compatible		
		Reduced Table	1 mark	
Q.5		Attempt any two:		
	i.	Wave form	1 mark	5
		Flow table	1 mark	
		Reduced flow table	1 mark	
		Transition table	1 mark	
		Logic circuit	1 mark	
	ii.	Race identification	3 mark	5
		State assignment	1 mark	
		Table	1 mark	
	iii.	Logic diagram of POS	1 mark	5
		Hazard Identification	2 marks	
		Way of removal	2 marks	
Q.6	i.	2 marks for each function by using PAL w	vith four inputs and 3-wide	4
Q.0	1.	AND-OR structure	(2 marks * 2)	•
	ii.	CMOS n-well fabrication process step	(2 marks 2)	6
	11.	1 mark for each step	(1 mark * 6)	J
OR	iii.	(a) CPLD	3 marks	6
ΟI	111.	(b) FPGA	3 marks	U
		(0) 11 0/1	Jimarks	
