

UNIVERSIDADE DE FORTALEZA CENTRO DE CIÊNCIAS TECNOLÓGICAS CURSO DE GRADUAÇÃO EM ENGENHARIA DE COMPUTAÇÃO

ANDERSON ARAUJO MACEDO

ESTUDO COMPARATIVO DE FERRAMENTAS DE SHADERS EM DIFERENTES GAME ENGINES

ANDERSON ARAUJO MACEDO

ESTUDO COMPARATIVO DE FERRAMENTAS DE SHADERS EM DIFERENTES GAME ENGINES

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Engenharia de Computação do Centro de Ciências Tecnológicas da Universidade de Fortaleza, como requisito parcial à obtenção do grau de bacharel em Engenharia de Computação.

Orientador: André Lunardi De Souza

Deve ser gerada através do preenchimento do Formulário Eletrônico de Elaboração da Ficha Catalográfica, disponível no link: http://www.uece.br/biblioteca/index.php/entrega-de-trabalho.

X000x

Sobrenome, Nome do 1º autor. (citado na folha de rosto)
Título principal: subtítulo./Nome completo do 1º autor,
Nome completo do 2º autor, Nome completo do 3º autor;
orientação [de]. – Local: ano.

Nº de folhas.: il.(se houver ilustração); 30 cm.

Inclui bibliografias: f.(nº da folha em que se encontra) Trabalho de Conclusão de Curso (Graduação em) – Universidade Estadual do Ceará – (UECE).

1. Assunto. 2. Assunto. 3. Assunto. I. Sobrenome, Nome do 2º autor. II. Sobrenome, Nome do 3º autor. III. Sobrenome, Nome do orientador (orient.). IV. Universidade Estadual do Ceará – UECE. V. Título.

CDU

ANDERSON ARAUJO MACEDO

ESTUDO COMPARATIVO DE FERRAMENTAS DE SHADERS EM DIFERENTES GAME ENGINES

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Engenharia de Computação do Centro de Ciências Tecnológicas da Universidade de Fortaleza, como requisito parcial à obtenção do grau de bacharel em Engenharia de Computação.

Aprovada em: 01 de Janeiro de 2017

BANCA EXAMINADORA

André Lunardi De Souza (Orientador) Centro de Ciências Tecnológicas - CCT Universidade de Fortaleza - UNIFOR

Membro da Banca Dois Faculdade de Filosofia Dom Aureliano Matos – FAFIDAM Universidade do Membro da Banca Dois - SIGLA

Membro da Banca Três Centro de Ciências e Tecnologia - CCT Universidade do Membro da Banca Três - SIGLA

Membro da Banca Quatro Centro de Ciências e Tecnologia - CCT Universidade do Membro da Banca Quatro - SIGLA

AGRADECIMENTOS

Primeiramente, agradeço a Deus que me mostrou o caminho a seguir nos momentos difíceis e me deu força para que eu nunca desistisse, não somente no período como universitário, mas também ao longo da vida.

Agradeço a minha mãe por ter me apoiado irrestritamente, abrindo mão de tudo por mim. E por sempre ter me incentivado a estudar e a buscar um futuro melhor. Agradeço ao meu pai pela paciência e por investir para o meu desenvolvimento pessoal e aprendizado, para que eu pudesse realizar meu sonho.

Ao professor Paulo Ricardo por ter me motivado a continuar estudando no momento em que eu mais duvidei se estava no caminho certo. E também aos professores Daniel e Imbiriba por instigarem a minha sede de aprendizado com suas aulas incríveis alinhando perfeitamente teoria e prática.

Aos amigos por ter tido a chance de conhecer todos vocês durante essa jornada; espero poder tê-los por muitos outros anos. Obrigado pelos incontáveis momentos de diversão e pelas risadas que compartilhamos juntos ao longo dos anos.

Ao professor e coordenador André Lunardi por ter insistido em me orientar quando todas as minhas alternativas já estavam esgotadas e por ter me gratificado com essa oportunidade de continuar com um ótimo aproveitamento dos meus estudos.

À Vanessa, minha esposa e amor da minha vida, por estar ao meu lado e ser minha companheira de tudo apesar de todas as dificuldades, pelo carinho e amor de todos os dias. Percebo que a vida é mais bonita contigo, leoinha.

"Nunca deixe que lhe digam que não vale a pena acreditar no sonho que se tem, ou que os seus planos nunca vão dar certo, ou que você nunca vai ser alguém"

(Renato Russo)

RESUMO

Em Pelas Ondas do Rádio: Cultura Popular, Camponeses e o MEB analisa a participação de

camponeses do nordeste brasileiro no Movimento de Educação de Base. A perspectiva da tese

é a de demonstrar como os trabalhadores envolvidos com as escolas radiofônicas elaboraram

ações para manutenção e reprodução da escola em sua comunidade, visando obter os benefícios

necessários à reprodução e melhoria de seu modo de vida. A partir de representações políticas e

culturais singulares, dentre as quais vigoraram: um sentido para escola, um papel para o sindicato

e para participação política, preceitos do direito de uso da terra e dos direitos do trabalho,

assim como, sentidos múltiplos para o uso do rádio como meio de comunicação, informação e

lazer, os camponeses do MEB, foram coadjuvantes da proposição católica modernizadora de

inícios de 1960. Isto posto, demarca que a ação do camponês nordestino e seu engajamento

político, seja no MEB, nos sindicatos rurais, nas Juventudes Agrárias Católicas (JAC's), no

MCP, e nas mais diversas instâncias dos movimentos sociais do período, não se apartaram do

processo modernizador. Neste sentido, considera-se que a modernização brasileira foi pauta das

instituições, organismos políticos e partidos, assim como, do movimento social, instância em

que ela foi ressignificada a partir de elementos da vida material, que envolviam diretamente, no

momento em questão, a problemática do direito a terra, do direito a educação e cultura e dos

direitos do trabalho.

Palavras-chave: Shaders. Unity. Unreal Engine. Godot. Otimização

ABSTRACT

In this on the radio waves: popular culture, peasants and the Basic Education Movement we analyze the participation of peasants of the Brazilian northeastern region in the Basic Education Movement. The focus of this thesis is to demonstrate how the labors involved with broadcast schools have elaborated actions for maintaining and spreading the schools in their communities, in order to achieve the necessary means to improve their way of life. Peasants of the Basic Education Movement have been coadjuvant of the modernizing catholic proposition of the early 1960s, by means of quite peculiar political and cultural representations. Some of these representations were: a meaning for the school, a role for the union and for the political participation, precepts of the land use rights and labor rights, and the multiple meanings of the radio as a mass communication, information and leisure medium. This study intends to stress that the actions – and the political enrollment – of the northeastern peasant could not ever be separated from the modernizing process. The connection can be observed in different social movements of the period, such as the Basic Education Movement, rural unions, the Catholic Agrarian Youth and the MCP. In this sense, we consider that, if the Brazilian modernization was a guideline for the institutions, political organisms and parties for the social movement, such a modernization was a guideline of demands based on elements of material life. Those elements included, by that time, the agrarian reform, the educational issue and labor urgencies.

Keywords: Adult education. Community schools. Peasants. Popular culture

LISTA DE ILUSTRAÇÕES

Figura 1 –	Demonstração do programa de computador Sketchpad	21
Figura 2 –	Placa gráfica denominada Color Graphics Adapter produzida nos anos	
	80 pela IBM	21
Figura 3 –	No lado esquerdo percebe-se que Doom fazia uso de 3D real enquanto	
	no lado direito Wolfenstein posicionava imagens 2D em diferentes ca-	
	madas para simular a profundidade tridimensional	22
Figura 4 –	Hardware da placa gráfica da NVIDIA	23
Figura 5 –	Demonstração de como é possível criar visuais únicos utilizando shaders.	25

LISTA DE TABELAS

Tabela 2 -	Duis faucibus, enim quis tincidunt pellentesque, nisl leo varius nulla,	
	vitae tempus dui mauris ac ante purus lorem	27
Tabela 3 -	Etiam molestie, nulla a egestas aliquet, velit augue congue metus	27
Tabela 4 -	Um Exemplo de tabela alinhada que pode ser longa ou curta, conforme	
	padrão IBGE	31
Tabela 5 -	Internal exon scores	33

LISTA DE QUADROS

Quadro 1 -	Praesent ex velit, pulvinar at massa vel, fermentum dictum mauris. Ut					
	feugiat accumsan augue	30				
Quadro 2 -	Duis faucibus, enim quis tincidunt pellentesque	30				

LISTA DE ALGORITMOS

Algoritmo 1 – Como escrever algoritmos no LATEX2e	. 32
Algoritmo 2 - Algoritmo de Otimização por Colônia de Formiga	. 37

LISTA DE CÓDIGOS-FONTE

Código-fonte 1 –	Hello World em C++	•	 •			•	•	•	 		•	•		•	•	37
Código-fonte 2 –	Hello World em Java								 							38

LISTA DE ABREVIATURAS E SIGLAS

API Application Programming Interface

CPU Central Process Unit

CRT Cathode Ray Tube

FPS Frames Por Segundo

GLSL OpenGL Shading Language

GPU Graphics Processing Unit

GUI Graphic User Interface

HLSL High-Level Shader Language

IBM International Business Machines

IRIS GL Integrated Raster Imaging System Graphical Library

MIT Massachusetts Institute of Technology

MS-DOS Microsoft Disk Operating System

NES Nintendo Entertainment System

OpenGL Open Graphics Library

SDK Software Development Kit

SGI Silicon Graphics International

T&L Transform & Lighting

LISTA DE SÍMBOLOS

Ae Área efetiva da antena

B Largura de faixa em que o ruído é medido em Hertz

d Distância em metros

E Campo elétrico

FA Fator da antena

Gr Ganho de recepção

h Altura efetiva ou comprimento efetivo de uma antena

I Corrente elétrica

k Constante de Boltzmann's

K Eficiência de irradiação

M Variação do patamar de ruído em função da RBW

N Condutor de neutro

NF Figura de ruído

Ni Potência do ruído na entrada

No Potência do ruído na saída

P Potência

R Resistência

Si Potência do sinal na entrada

So Potência do sinal na saída

Tempo

V Tensão

ZL Impedância da antena

Zo Impedância de referência (50Ω)

λ Comprimento de onda

Γ Coeficiente de reflexão

SUMÁRIO

1	INTRODUÇÃO	17
1.1	JUSTIFICATIVA	18
1.2	OBJETIVOS	18
1.2.1	Objetivo Geral	18
1.2.2	Objetivos Específicos	19
2	REFERENCIAL TEÓRICO	20
2.1	HISTÓRIA DA EVOLUÇÃO DA PROGRAMAÇÃO DE SHADERS	20
2.1.1	Como o OpenGL funciona	24
2.1.2	GLSL	25
2.1.3	HLSL	25
2.2	APROFUNDANDO CONCEITOS TÉCNICOS DE SHADERS	25
2.2.1	Vertex Shader	26
2.2.2	Fragment Shader	26
3	TRABALHOS RELACIONADOS	29
3.1	TRABALHO RELACIONADO A	29
3.2	TRABALHO RELACIONADO B	29
4	METODOLOGIA	31
4.1	EXEMPLO DE ALGORITMOS E FIGURAS	32
4.2	USANDO FÓRMULAS MATEMÁTICAS	34
4.3	USANDO ALGORITMOS	36
4.4	USANDO CÓDIGO-FONTE	37
4.5	USANDO TEOREMAS, PROPOSIÇÕES, ETC	38
4.6	USANDO QUESTÕES	39
4.7	CITAÇÕES	40
4.7.1	Documentos com três autores	40
4.7.2	Documentos com mais de três autores	40
4.7.3	Documentos de vários autores	40
4.8	NOTAS DE RODAPÉ	40
5	RESULTADOS	41
5.1	RESULTADOS DO EXPERIMENTO A	41
5.2	RESULTADOS DO EXPERIMENTO B	41

6	CONCLUSÕES E TRABALHOS FUTUROS	42
6.1	CONTRIBUIÇÕES DO TRABALHO	42
6.2	LIMITAÇÕES	42
6.3	TRABALHOS FUTUROS	43
	REFERÊNCIAS	44
	GLOSSÁRIO	45
	APÊNDICES	46
	APÊNDICE A – Lorem Ipsum	47
	APÊNDICE B – Modelo de Capa	48
	APÊNDICE C – Termo de Fiel Depositário	49
	ANEXOS	50
	ANEXO A – Exemplo de Anexo	51
	ANEXO B – Dinâmica das classes sociais	52

1 INTRODUÇÃO

Shader é um tipo de programa de computador utilizado para simular como a luz interage com os objetos ou as superfícies (ZUCCONI; LAMMERS, 2016). Por meio de seu uso é possível criar aspectos visuais nas superfícies de objetos 3D, para que com o uso de texturas, seja possível obter uma aparência de metal ou de madeira, por exemplo.

Por demandar recursos computacionais da GPU em tempo real, a performance de execução desses programas é um assunto que requer atenção, ainda mais levando em consideração o avanço da tecnologia de computação gráfica, que exige a renderização em um curto intervalo de tempo de gráficos cada vez mais realistas. Quanto maior a frequência de realização de cálculos e processamentos durante esse processo, maior será o impacto na performance de um jogo. Ao fazer uso de shaders custosos e não otimizados, podem ocorrer alguns problemas como surgimento de artefatos, incompatibilidade com hardwares de gerações passadas e o superaquecimento da GPU devido a cargas muito altas de trabalho.

Para realizar o desenvolvimento, a execução e o estudo de performance dos shaders, três dos mais populares motores de jogo foram escolhidos. O primeiro foi o Godot, um software para produção de jogos 2D e 3D criado no ano de 2007, quando seus desenvolvedores perceberam duas importantes mudanças no cenário de desenvolvimento de games: uma foi a melhoria de hardware disponível que permitiu que dispositivos portáteis ganhassem mais poder de processamento, a outra mudança foi na forma que as CPUs passaram a ser divididas em múltiplos núcleos, o que permitiu o advento do processamento paralelo (MANZUR; MARQUES, 2018).

O segundo motor de jogo, Unity, é a escolha mais comum entre desenvolvedores de jogos profissionais e amadores por sua capacidade de prototipação rápida e pela ampla gama de plataformas-alvo de compilação. Ela foi criada com os objetivos de fornecer uma engine de custo acessível com ferramentas profissionais e democratizar o acesso à indústria de desenvolvimento de games (HAAS, 2014).

O terceiro motor de jogo escolhido foi a Unreal Engine, produzida pela Epic Games para desenvolvimento de jogos e aplicações, seja de grandes orçamentos e níveis de promoção, seja de editoras ou produtoras independentes e com baixo orçamento. É o mais robusto e também é muito utilizado tanto por desenvolvedores profissionais quanto iniciantes (COOKSON; DOWLINGSOKA; CRUMPLER, 2016).

1.1 JUSTIFICATIVA

O processo de criação de shaders pode vir a apresentar-se, dependendo do nível de complexidade exigido pela tarefa, como uma atividade custosa e que exige elevados recursos computacionais. Sendo assim, o estudo das ferramentas de criação de shaders é importante para definir processos de otimização de performance para que empresas, indivíduos ou entusiastas possam economizar tempo e recursos ao utilizar essas ferramentas.

Cabe ressaltar que a execução de programas de shaders muito custosos pode acarretar em problemas como queda da taxa de quadros por segundo, travamentos durante a execução do programa e na pior hipótese danos permanentes ao hardware que acabam por prejudicar o utilizador final e que de maneira geral acarretam em uma má experiência de usuário.

No contexto específico dos jogos eletrônicos, o uso de shaders não otimizados pode fazer com que o jogo torne-se lento e apresente travamentos. Essas são características que tornam um jogo não atrativo e que geram sensações negativas no usuário. Elas fazem com que ele perca o interesse e se sinta frustrado, sendo levado à compartilhar feedback negativo, cujo acaba por prejudicar a imagem e as vendas do produto. Isso tem como consequência motivar outros possíveis usuários a não comprarem o jogo, principalmente aqueles que não possuem hardware compatível.

Nesse caso, a utilidade desse estudo consiste em descobrir qual game engine, utilizando critérios quantizados de performance, apresenta a melhor ferramenta para criação de Shaders. Além disso, shaders otimizados tornam-se favoráveis para serem aplicados para um público maior por ampliar a possibilidade de hardware compatível, ou seja, os jogos ou aplicações que fazem uso desse recurso conseguem ter um alcance maior e mais vendas.

1.2 OBJETIVOS

1.2.1 Objetivo Geral

Analisar e comparar as principais ferramentas de desenvolvimento de shaders dentre as game engines especificadas no escopo deste trabalho com foco na otimização de performance em cada uma, identificando os processos-chave característicos de construção e execução de shaders.

1.2.2 Objetivos Específicos

- a) Discriminar as ferramentas de criação de shader de cada game engine bem como suas características individuais.
- b) Determinar os indicadores que serão utilizados para mensurar os parâmetros que serão avaliados nos testes dos shaders.
- c) Desenvolver um "cenário" padrão que possa ser aplicado aos shaders a serem testados.
- d) Realizar testes de performance dos shaders para cada game engine.
- e) Avaliar os resultados obtidos após a conclusão dos testes.

2 REFERENCIAL TEÓRICO

Neste capítulo serão apresentados os assuntos considerados fundamentais para o entendimento dos processos que estão envolvidos no uso das tecnologias abordadas no decorrer do trabalho. No início será discutida a criação dos shaders e seu uso ao longo do tempo, em seguida serão expostos itens de ordem técnica sobre os shaders e os motores de jogo. Ao final será tratada a integração dessas tecnologias com os processos de otimização.

2.1 HISTÓRIA DA EVOLUÇÃO DA PROGRAMAÇÃO DE SHADERS

As representações visuais feitas através de imagens foram e são até hoje uma característica importante da formação da humanidade. Através do sentido da visão conseguimos absorver informações rapidamente, fazer associações durante o aprendizado e o estudo, ou ainda distinguir se algo é visualmente agradável o suficiente ou não para prender nossa atenção. O caso mais extremo seria a discussão da existência de algo que não se pode ver, como no século dezessete, quando a existência das bactérias era muito questionada, até que Antonie van Leeuwenhoek inventou o microscópio (LUTEN, 2014).

Bem no início do desenvolvimento dos primeiros computadores, quando seu acesso era destinado a um público mais restrito devido aos custos elevados e a logística complexa, a forma de representação visual para os humanos dos pulsos elétricos gerados pelo processamento de dados nos computadores era feita através de várias lâmpadas conectadas em placas ou de cartões de papel perfurados (um processo que, em alguns casos, poderia demorar várias horas para terminar). Esse cenário só começou a mudar depois da aplicação da tecnologia do tubo de raios catódicos (CRT), em 1951, pelo MIT (Massachusetts Institute of Technology) para visualizar a saída de um programa de computador instantaneamente. Cabe ainda ressaltar que a partir de então ele continuou sendo usado até o advento das novas tecnologias de monitores e televisores de tela plana (LUTEN, 2014).

Apesar do avanço citado acima, o estabelecimento da computação gráfica como conhecemos hoje teve início apenas 10 anos depois. A partir da criação de um programa de computador por Ivan Sutherland chamado Sketchpad, que permitia que o usuário desenhasse formas geométricas utilizando uma caneta óptica em um CRT que permitia a visualização em tempo real (LUTEN, 2014). Isso causou uma mudança de padrão na forma como as pessoas entendiam e utilizavam os computadores e foi o ponto de partida para o estudo e desenvolvimento da computação gráfica em tempo real e também das interfaces gráficas de usuário (GUI).

Figura 1 - Demonstração do programa de computador Sketchpad

Fonte – http://i0.wp.com/www.designleap.org/wp-content/uploads/2014/06/Sketchpad-Ivan-Sutherland-1963.jpg?resize=572%2C572

Com o avanço resultado da criação dos circuitos integrados, cujo uso nos microprocessadores proporcionou um espantoso crescimento da indústria, os computadores deixaram de ser um monopólio das grandes companhias e tornaram-se muito mais acessíveis a pessoas simples. Isso abriu várias possibilidades para o mercado de computadores pessoais, entre elas destaca-se o surgimento das primeiras placas gráficas produzidas pela IBM (International Business Machines).

Figura 2 – Placa gráfica denominada Color Graphics Adapter produzida nos anos 80 pela IBM.

Fonte – https://upload.wikimedia.org/wikipedia/commons/5/55/IBM_Color_Graphics_Adapter.jpg

Como a indústria de jogos eletrônicos tinha mais recursos para explorar devido às melhorias de hardware disponíveis, vários jogos começaram a se destacar no mercado. Entre eles os mais marcantes para a popularização do uso de tecnologia de computação gráfica tridimensional foram lançados pela empresa id Software na década de 90. O primeiro sendo Wolfenstein 3D (que na realidade utilizava o modo 7 do Super NES (Nintendo Entertainment System) para emular a ambientação tridimensional) que definiu o padrão para jogos no gênero de tiro em primeira pessoa em 3D e o segundo sendo Doom que fazia uso de renderização com perspectiva 3D em tempo real por meio de software proprietário desenvolvido pela própria id Software voltado para produção com destino a computadores que utilizavam o sistema operacional da Microsoft (MS-DOS).

Figura 3 – No lado esquerdo percebe-se que Doom fazia uso de 3D real enquanto no lado direito Wolfenstein posicionava imagens 2D em diferentes camadas para simular a profundidade tridimensional.

Fonte – https://www.retrorefurbs.com/wolfenstein-vs-doom-the-battle-of-the-first-person-shooters/

Paralelo ao cenário desses jogos (LUTEN, 2014), a Silicon Graphics (SGI), uma companhia especializada em computação gráfica 3D e líder de mercado na época, trabalhava no lançamento open source da Open Graphics Library (OpenGL), uma API (Application Programming Interface) padronizada multiplataforma de processamento de gráficos de computador em tempo real que rapidamente dominou o mercado, e que era uma derivação de outra biblioteca proprietária da mesma empresa, a IRIS GL (Integrated Raster Imaging System Graphical Library).

Vendo uma oportunidade de mercado, a Microsoft logo agiu e comprou a empresa RenderMorphics, criadora da API Reality Lab, que teve o nome alterado para Direct3D e foi distribuido como um SDK (Software Development Kit) conhecido como DirectX (LUTEN, 2014), acabando por se tornar o concorrente direto da OpenGL. Essa rivalidade no final das contas acabou sendo benéfica tanto para o mercado de jogos eletrônicos quanto para os seus consumidores, já que acelerou o desenvolvimento de novas tecnologias que exploravam ao máximo o potencial do hardware disponível.

Mais adiante, em 1999, a empresa NVIDIA foi responsável for trazer mais uma inovação ao mercado, a "primeira GPU" (Graphics Processing Unit) foi como ficou conhecida a placa gráfica GeForce 256, que fazia uso de uma tecnologia chamada T&L (Transform & Lighting) que basicamente movia os cálculos de transformação e iluminação de vértices da CPU (Central Process Unit) para a GPU. Isso permitia uma maior velocidade em operações matemáticas de ponto flutuante. Então nos próximos anos o que se viu foi um crescimento exponencial de performance de GPU para renderização em tempo real.

Figura 4 – Hardware da placa gráfica da NVIDIA.

(a) GeForce 256

(b) GPU da GeForce 256

Fonte - https://upload.wikimedia.org/wikipedia/commons

Até então shaders eram bem vistos e utilizados por melhorar a performance eliminando carga de trabalho excessiva da CPU, porém sua programação era difícil uma vez que a sintaxe utilizada era semelhante à programação em Assembly. Percebendo esse problema, a Microsoft, em 2003, lançou a versão 9.0 do Direct3D que trazia consigo a implementação da HLSL (High-Level Shader Language) que como o nome sugere permitia a programação de shaders em alto nível e possuia uma sintaxe bastante parecida com C. Enquanto isso, OpenGL também

trouxe a sua própria linguagem de alto nível chamada GLSL (OpenGL Shading Language) para competir no mercado (LUTEN, 2014).

2.1.1 Como o OpenGL funciona

Grosso modo, a API do OpenGL desenha gráficos em uma memória especializada em quadros de imagem (frame buffer) e os lê novamente quando precisa. O seu design único oferece suporte tanto a geometrias 3D quanto a imagens simples. O modelo de funcionamento dessa API pode ser descrito como cliente-servidor, pois a aplicação (cliente) faz solicitações por meio de comandos que são interpretados e processados pela implementação OpenGL (servidor) (ROST, 2006). Aqui cabe destacar que a sincronia entre cliente e servidor e suas informações/dados não ocorre quando um comando é executado mas sim quando ele é emitido.

Os comandos são sempre processados na ordem em que são recebidos pelo servidor (execução fora de ordem não é permitida). Os dados passados para um comando OpenGL são então interpretados e copiados em memória caso seja necessário e as modificações subsequentes feitas pela aplicação não surtem efeito nos dados que estão armazenados internamente pelo OpenGL. Esses procedimentos são uma forma de garantir que um primitivo — segundo Abdala (2019), uma representação discreta em grade de um elemento geométrico fundamental, e.g. ponto, linha, círculo, etc. — seja desenhado apenas se o primitivo anterior houver sido completamente desenhado (ROST, 2006).

O principio básico de funcionamento da API OpenGL é transformar dados vindos de uma aplicação em algo visível na tela, esse processo é chamado de renderização e normalmente é acelerado por um hardware com design específico chamado de acelerador gráfico, entretanto suas operações podem ser parcial ou totalmente implementadas por software executado pela CPU. Aceleradores gráficos tipicamente possuem região de memória delimitada para manutenção do conteúdo exibido na tela, sendo que cada pixel é representado por uma quantidade de bytes na memória; uma tela em escala de cinza, por exemplo, pode fazer uso de um byte para representar a tonalidade de cinza de cada pixel (ROST, 2006).

Essa região conhecida como memória de exibição é escaneada "x"vezes por segundo para eliminar a cintilação. Há ainda uma região específica para manipular dados que não são visíveis na tela chamada de memoria de não exibição. [continua na pag 33]

2.1.2 GLSL

2.1.3 HLSL

2.2 APROFUNDANDO CONCEITOS TÉCNICOS DE SHADERS

Ao estudar computação gráfica a dúvida mais comum ao se deparar com certos termos utilizados é "o que é um shader". Essa palavra pode causar uma certa estranheza no início mas sua definição não é nenhum bicho de sete cabeças. Shaders são apenas pequenos programas (assim como um reprodutor de mídia ou uma calculadora de um computador) que são executados diretamente pela GPU ao invés da CPU. Isso permite a redução da carga de trabalho gráfico da CPU pelo redirecionamento das tarefas para a GPU que possui hardware especializado para isso (LUTEN, 2014).

Figura 5 – Demonstração de como é possível criar visuais únicos utilizando shaders.

Fonte – Adaptado de https://www.youtube.com/watch?time_continue=2&v=F0CWzpYY68A&feature=emb_logo

Tecnicamente falando, um shader contém um conjunto de instruções que são executadas concorrentemente para cada pixel desenhado na tela. Essa forma de operação abre um leque de possibilidades, onde é possível por exemplo atribuir um comportamento para cada pixel baseado na sua posição na tela. Em uma comparação com programação procedural, ele funcionaria como uma função que recebe uma posição e retorna uma cor, sendo que após a compilação seu tempo de execução é extremamente rápido (VIVO; LOWE, 2015).

Uma metáfora para ajudar a compreender a dimensão da complexidade do processamento de um shader seria imaginá-lo como um bloco de várias tarefas que passa por uma linha de produção industrial. As tarefas podem ser pequenas ou grandes e consequentemente podem demandar mais processamento e energia. No caso da CPU cada trabalho seguinte teria que esperar o término do atual para começar (VIVO; LOWE, 2015). É interessante ressaltar que hoje em dia existe a tecnologia de multiprocessamento, onde os computadores normalmente possuem grupos de quatro processadores que atuam em conjunto para realizar as tarefas.

Considerando uma tela com resolução de 800x600, significa que 480.000 pixels precisam ser processados a cada frame sendo que normalmente é utilizada uma taxa de 30 frames por segundo (FPS), então será necessário fazer 14.400.000 cálculos por segundo. Isso explica o fato de video games e outras aplicações gráficas exigirem muito mais poder de processamento que outros programas. Seu conteúdo gráfico implica em inúmeras operações por cada pixel, pois cada pixel na tela precisa ser computado, e também em perspectivas e geometrias de jogos 3D (VIVO; LOWE, 2015).

Esse cenário pode ser suficiente para sobrecarregar um microprocessador comum e fica pior quando leva-se em consideração as tecnologias que fazem uso seja de taxa de FPS maior, seja de resoluções maiores como 2K, e acima. Para resolver esse problema utiliza-se processamento paralelo. A GPU possui vários pequenos microprocessadores que funcionam concorrentemente, além disso ela possui funções matemáticas específicas aceleradas via hardware para realizar operações matriciais e trigonométricas rapidamente (VIVO; LOWE, 2015).

2.2.1 Vertex Shader

A vertex shader is a GPU program that is executed once per vertex that is assigned to, and a pixel shader is a GPU program that is executed once per pixel.

2.2.2 Fragment Shader

Nunc ac pretium dui. Mauris aliquam dapibus nulla ac mattis. Aenean non tortor volutpat, varius lectus vitae, accumsan nibh. Cras pretium vestibulum enim, id ullamcorper tortor ultrices non. Integer sodales viverra faucibus. Curabitur at dui lacinia, rhoncus lacus at, blandit metus. Integer scelerisque non enim quis ornare.

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam

elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Tabela 2 – Duis faucibus, enim quis tincidunt pellentesque, nisl leo varius nulla, vitae tempus dui mauris ac ante purus lorem

Ranking	Exon Coverage	Splice Site Support
E1	Complete coverage by a single transcript	Both splice sites
E2	Complete coverage by more than a single transcript	Both splice sites
E3	Partial coverage	Both splice sites
E4	Partial coverage	One splice site
E5	Complete or partial coverage	No splice sites
E6	No coverage	No splice sites

Fonte - Elaborado pelo autor

Duis faucibus, enim quis tincidunt pellentesque, nisl leo varius nulla, vitae tempus dui mauris ac ante. Quisque purus lorem, pharetra sit amet lobortis eu, vehicula vitae purus. Ut varius, erat nec vehicula elementum, risus est tempus justo, nec vulputate augue leo egestas metus.

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum rhoncus molestie odio. Sed lobortis, justo et pretium lobortis, mauris turpis condimentum augue, nec ultricies nibh arcu pretium enim. Nunc purus neque, placerat id, imperdiet sed, pellentesque nec, nisl. Vestibulum imperdiet neque non sem accumsan laoreet. In hac habitasse platea dictumst. Etiam condimentum facilisis libero. Suspendisse in elit quis nisl aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus. Pellentesque vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec pede. Proin mattis libero vel turpis. Donec rutrum mauris et libero. Proin euismod porta felis. Nam lobortis, metus quis elementum commodo, nunc lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu dolor.

Tabela 3 – Etiam molestie, nulla a egestas aliquet, velit augue congue metus

Quisque	pharetra	tempus	vulputate
E1 E2	r r		
E3 E4	Partial coverage Partial coverage	Both splice sites Both splice sites One splice site	Both Both
E5 E6	Complete or partial coverage No coverage	No splice sites No splice sites	Both

Fonte - Elaborado pelo autor

Massachusetts Institute of Technology

- Integer non lacinia magna. Aenean tempor lorem tellus, non sodales nisl commodo ut
- Proin mattis placerat risus sit amet laoreet. Praesent sapien arcu, maximus ac fringilla efficitur, vulputate faucibus sem. Donec aliquet velit eros, sit amet elementum dolor pharetra eget
- Integer eget mattis libero. Praesent ex velit, pulvinar at massa vel, fermentum dictum mauris. Ut feugiat accumsan augue, et ultrices ipsum euismod vitae
 - Integer non lacinia magna. Aenean tempor lorem tellus, non sodales nisl commodo ut
 - o Proin mattis placerat risus sit amet laoreet.

3 TRABALHOS RELACIONADOS

Integer non lacinia magna. Aenean tempor lorem tellus, non sodales nisl commodo ut. Proin mattis placerat risus sit amet laoreet. Praesent sapien arcu, maximus ac fringilla efficitur, vulputate faucibus sem. Donec aliquet velit eros, sit amet elementum dolor pharetra eget. Integer eget mattis libero

3.1 TRABALHO RELACIONADO A

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

3.2 TRABALHO RELACIONADO B

Integer non lacinia magna. Aenean tempor lorem tellus, non sodales nisl commodo ut. Proin mattis placerat risus sit amet laoreet. Praesent sapien arcu, maximus ac fringilla efficitur, vulputate faucibus sem. Donec aliquet velit eros, sit amet elementum dolor pharetra eget. Integer eget mattis libero. Praesent ex velit, pulvinar at massa vel, fermentum dictum mauris. Ut feugiat accumsan augue, et ultrices ipsum euismod vitae

Nunc ac pretium dui. Mauris aliquam dapibus nulla ac mattis. Aenean non tortor volutpat, varius lectus vitae, accumsan nibh. Cras pretium vestibulum enim, id ullamcorper tortor ultrices non. Integer sodales viverra faucibus. Curabitur at dui lacinia, rhoncus lacus at, blandit metus. Integer scelerisque non enim quis ornare.

Nulla ac nisl. Nullam urna nulla, ullamcorper in, interdum sit amet, gravida ut,

Quadro 1 – Praesent ex velit, pulvinar at massa vel, fermentum dictum mauris. Ut feugiat accumsan augue

Quisque	pharetra	tempus	vulputate
E1	Complete coverage by a single transcript	Both	Complete
E2	Complete coverage by more than	Both splice sites	Complete
E3	Partial coverage	Both splice sites	Both

Fonte – Elaborado pelo autor

risus. Aenean ac enim. In luctus. Phasellus eu quam vitae turpis viverra pellentesque. Duis feugiat felis ut enim. Phasellus pharetra, sem id porttitor sodales, magna nunc aliquet nibh, nec blandit nisl mauris at pede. Suspendisse risus risus, lobortis eget, semper at, imperdiet sit amet, quam. Quisque scelerisque dapibus nibh. Nam enim. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nunc ut metus. Ut metus justo, auctor at, ultrices eu, sagittis ut, purus. Aliquam aliquam.

Quadro 2 – Duis faucibus, enim quis tincidunt pellentesque

Quisque	pharetra			
E1	Complete coverage by a single transcript			
E2	Complete coverage by more than			
E3	Partial coverage			
E4	Partial coverage			
E5	Partial coverage			
E6	Partial coverage			
E7	Partial coverage			

Fonte – Elaborado pelo autor

Etiam pede massa, dapibus vitae, rhoncus in, placerat posuere, odio. Vestibulum luctus commodo lacus. Morbi lacus dui, tempor sed, euismod eget, condimentum at, tortor. Phasellus aliquet odio ac lacus tempor faucibus. Praesent sed sem. Praesent iaculis. Cras rhoncus tellus sed justo ullamcorper sagittis. Donec quis orci. Sed ut tortor quis tellus euismod tincidunt. Suspendisse congue nisl eu elit. Aliquam tortor diam, tempus id, tristique eget, sodales vel, nulla. Praesent tellus mi, condimentum sed, viverra at, consectetuer quis, lectus. In auctor vehicula orci. Sed pede sapien, euismod in, suscipit in, pharetra placerat, metus. Vivamus commodo dui non odio. Donec et felis.

Integer non lacinia magna. Aenean tempor lorem tellus, non sodales nisl commodo ut. Proin mattis placerat risus sit amet laoreet. Praesent sapien arcu, maximus ac fringilla efficitur, vulputate faucibus sem. Donec aliquet velit eros, sit amet elementum dolor pharetra eget. Integer eget mattis libero. Ambiguidade Braile Coerência Dialetos Elipse Locução Adjetiva Modificadores Parônimos Síntese Borboleta

4 METODOLOGIA

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris. Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

O autor Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Tabela 4 – Um Exemplo de tabela alinhada que pode ser longa ou curta, conforme padrão IBGE

Nome	Nascimento	Documento						
Maria da Silva Maria da Silva Maria da Silva	11/11/1111 11/11/1111 11/11/1111	111.111.111-11 111.111.111-11						

Fonte – Produzido pelos autores

Nota – Esta é uma nota, que diz que os dados são baseados na regressão linear.

Anotações – Uma anotação adicional, seguida de várias outras.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi

ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

4.1 EXEMPLO DE ALGORITMOS E FIGURAS

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

```
Algoritmo 1: Como escrever algoritmos no IATEX2e
 Entrada: o proprio texto
 Saída: como escrever algoritmos com LAT<sub>E</sub>X2e
 início
     inicialização;
     repita
         leia o atual:
         se entendeu então
             vá para o próximo;
             próximo se torna o atual;
         fim
         senão
             volte ao início da seção;
         fim
     até fim do texto;
 fim
```

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam

tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Exemplo de alíneas com números:

- 1. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc dictum sed tortor nec viverra.
- 2. Praesent vitae nulla varius, pulvinar quam at, dapibus nisi. Aenean in commodo tellus. Mauris molestie est sed justo malesuada, quis feugiat tellus venenatis.
- 3. Praesent quis erat eleifend, lacinia turpis in, tristique tellus. Nunc dictum sed tortor nec viverra.
- 4. Mauris facilisis odio eu ornare tempor. Nunc dictum sed tortor nec viverra.
- 5. Curabitur convallis odio at eros consequat pretium.

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

Tabela 5 – Internal exon scores

Ranking	Exon Coverage	Splice Site Support
E1	Complete coverage by a single transcript	Both splice sites
E2	Complete coverage by more than a single transcript	Both splice sites
E3	Partial coverage	Both splice sites
E4	Partial coverage	One splice site
E5	Complete or partial coverage	No splice sites
E6	No coverage	No splice sites

Fonte – os autores

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris. Referenciando a Tabela 5 Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec

aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Figuras podem ser criadas diretamente em LaTeX, como o exemplo da ??.

Ou então figuras podem ser incorporadas de arquivos externos, como é o caso da ??. Se a figura que ser incluída se tratar de um diagrama, um gráfico ou uma ilustração que você mesmo produza, priorize o uso de imagens vetoriais no formato PDF. Com isso, o tamanho do arquivo final do trabalho será menor, e as imagens terão uma apresentação melhor, principalmente quando impressas, uma vez que imagens vetorias são perfeitamente escaláveis para qualquer dimensão. Nesse caso, se for utilizar o Microsoft Excel para produzir gráficos, ou o Microsoft Word para produzir ilustrações, exporte-os como PDF e os incorpore ao documento conforme o exemplo abaixo. No entanto, para manter a coerência no uso de software livre (já que você está usando LaTeX e abnTeX), teste a ferramenta InkScape. ao CorelDraw ou ao Adobe Illustrator. De todo modo, caso não seja possível utilizar arquivos de imagens como PDF, utilize qualquer outro formato, como JPEG, GIF, BMP, etc. Nesse caso, você pode tentar aprimorar as imagens incorporadas com o software livre Gimp. Ele é uma alternativa livre ao Adobe Photoshop.

4.2 USANDO FÓRMULAS MATEMÁTICAS

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_4}}}$$

$$a_2 + \frac{1}{a_3 + \frac{1}{a_4}}$$
(4.1)

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt

tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

$$k_{n+1} = n^2 + k_n^2 - k_{n-1} (4.2)$$

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta \tag{4.3}$$

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

$$A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

$$(4.4)$$

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ is even} \\ -(n+1)/2 & \text{if } n \text{ is odd} \end{cases}$$
 (4.5)

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

4.3 USANDO ALGORITMOS

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu

Algoritmo 2: Algoritmo de Otimização por Colônia de Formiga

Entrada: Entrada do Algoritmo

Saída: Saida do Algoritmo

início

Atribua os valores dos parâmetros;
Inicialize as trilhas de feromônios;
enquanto não atingir o critério de parada faça

para cada formiga faça

Construa as Soluções;
fim

Aplique Busca Local (Opcional);
Atualize o Feromônio;
fim

metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

4.4 USANDO CÓDIGO-FONTE

fim

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Código-fonte 1 – Hello World em C++

```
#include <iostream>
using namespace std;
int main() {
  cout << "Hello World!" << endl;
system("pause");</pre>
```

```
6 }
```

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Código-fonte 2 – Hello World em Java

```
public class HelloWorld {
  public static void main(String[] args) {
    System.out.println("Hello World!");
}
```

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

4.5 USANDO TEOREMAS, PROPOSIÇÕES, ETC

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc dictum sed tortor nec viverra. consectetur adipiscing elit. Nunc dictum sed tortor nec viverra.

Teorema 4.5.1 (Pitágoras) Em todo triângulo retângulo o quadrado do comprimento da hipotenusa é igual a soma dos quadrados dos comprimentos dos catetos.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc dictum sed tortor nec viverra. consectetur adipiscing elit. Nunc dictum sed tortor nec viverra.

```
Teorema 4.5.2 (Fermat) Não existem inteiros n > 2, e x, y, z tais que x^n + y^n = z
```

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc dictum sed tortor nec viverra. consectetur adipiscing elit. Nunc dictum sed tortor nec viverra.

Proposição 4.5.3 Para demonstrar o Teorema de Pitágoras...

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc dictum sed tortor nec viverra. consectetur adipiscing elit. Nunc dictum sed tortor nec viverra.

Exemplo 1 Este é um exemplo do uso do ambiente exe definido acima.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc dictum sed tortor nec viverra. consectetur adipiscing elit. Nunc dictum sed tortor nec viverra.

Definição 4.5.1 Definimos o produto de ...

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc dictum sed tortor nec viverra. consectetur adipiscing elit. Nunc dictum sed tortor nec viverra.

4.6 USANDO QUESTÕES

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc dictum sed tortor nec viverra. consectetur adipiscing elit. Nunc dictum sed tortor nec viverra.

Questão 1. Esta é a primeira questão com alguns itens:

- (a) Este é o primeiro item
- (b) Segundo item

Questão 2. Esta é a segunda questão:

- (a) Este é o primeiro item
- (b) Segundo item

Questão 3. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc dictum sed tortor nec viverra. consectetur adipiscing elit. Nunc dictum sed tortor nec viverra.

- (a) consectetur
- (b) adipiscing
- (c) Nunc
- (d) dictum

4.7 CITAÇÕES

4.7.1 Documentos com três autores

Quando houver três autores na citação, apresentam se os três, separados por ponto e vírgula, caso estes estejam após o texto. Se os autores estiverem incluídos no texto, devem ser separados por vírgula e pela conjunção "e".

4.7.2 Documentos com mais de três autores

Havendo mais de três autores, indica-se o primeiro seguido da expressão *et al.* (do latim *et alli*, que significa e outros), do ano e da página.

4.7.3 Documentos de vários autores

Havendo citações indiretas de diversos documentos de vários autores, mencionados simultaneamente e que expressam a mesma ideia, separam-se os autores por ponto e vírgula, em ordem alfabética.

4.8 NOTAS DE RODAPÉ

Deve-se utilizar o sistema autor-data para as citações no texto e o numérico para notas explicativas¹. As notas de rodapé podem e devem ser alinhadas, a partir da segunda linha da mesma nota, abaixo da primeira letra da primeira palavra, de forma a destacar o expoente ² e sem espaço entre elas e com fonte menor (tamanho 10).

Veja - se como exemplo desse tipo de abordagem o estudo de Netzer (1976)

² Encontramos esse tipo de perspectiva na 2ª parte do verbete referido na nota anterior, em grande parte do estudo de Rahner (1962).

5 RESULTADOS

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

5.1 RESULTADOS DO EXPERIMENTO A

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

5.2 RESULTADOS DO EXPERIMENTO B

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

6 CONCLUSÕES E TRABALHOS FUTUROS

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris. Nullam eleifend justo in nisl. In hac habitasse platea dictumst. Morbi nonummy. Aliquam ut felis. In velit leo, dictum vitae, posuere id, vulputate nec, ante. Maecenas vitae pede nec dui dignissim suscipit. Morbi magna. Vestibulum id purus eget velit laoreet laoreet. Praesent sed leo vel nibh convallis blandit. Ut rutrum. Donec nibh. Donec interdum. Fusce sed pede sit amet elit rhoncus ultrices. Nullam at enim vitae pede vehicula iaculis.

6.1 CONTRIBUIÇÕES DO TRABALHO

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

6.2 LIMITAÇÕES

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

6.3 TRABALHOS FUTUROS

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

REFERÊNCIAS

ABDALA, D. D. **Primitivas Gráficas 2D**. Uberlândia: Facom/Ufu, 2019. 74 slides, color. Disponível em: http://www.facom.ufu.br/~abdala/GBC204/03_primitivas2D.pdf>. Acesso em: 31 out. 2021.

COOKSON, A.; DOWLINGSOKA, R.; CRUMPLER, C. Unreal Engine 4 Game Development in 24 Hours, Sams Teach Yourself. Indianapolis: Sams Publishing, 2016.

HAAS, J. K. **A History of the Unity Game Engine**. 44 p. Monografia (Graduação) — Worcester Polytechnic Institute, Worcester, MA, Estados Unidos, 2014.

HOLOGRAM planet. Disponível em: https://www.youtube.com/watch?v=F0CWzpYY68A&t=2s. Acesso em: 29 out. 2021.

IBM CGA graphics card. Disponível em: https://upload.wikimedia.org/wikipedia/commons/5/55/IBM_Color_Graphics_Adapter.jpg. Acesso em: 26 out. 2021.

KL_NVIDIA_GEFORCE_256.JPG. Disponível em: https://upload.wikimedia.org/wikipedia/commons/c/c1/KL_NVIDIA_Geforce_256.jpg. Acesso em: 27 out. 2021.

LUTEN, E. **OpenGLBook.com**. [S.l.]: [S.N.], 2014. Disponível em: https://openglbook.com/the-book.html. Acesso em: 25 out. 2021.

MANZUR, A.; MARQUES, G. Godot Engine Game Development in 24 Hours, Sams Teach Yourself: The Official Guide to Godot 3.0. Indianapolis: Sams Publishing, 2018.

ROST, R. J. OpenGL Shading Language. Boston: Addison Wesley, 2006.

SKETCHPAD. Disponível em: http://i0.wp.com/www.designleap.org/wp-content/uploads/2014/06/Sketchpad-Ivan-Sutherland-1963.jpg?resize=572%2C572. Acesso em: 26 out. 2021.

VISIONTEK_GEFORCE_256.JPG. Disponível em: https://upload.wikimedia.org/wikipedia/commons/e/e1/VisionTek GeForce 256.jpg>. Acesso em: 27 out. 2021.

VIVO, P. G.; LOWE, J. **The Book of Shaders**. [S.l.]: [S.N.], 2015. Disponível em: https://thebookofshaders.com/. Acesso em: 25 out. 2021.

WOLFENSTEIN VS DOOM The battle of the first person shoo-Disponível Retro Refurbs. em: https://www.retrorefurbs.com/ ters! wolfenstein-vs-doom-the-battle-of-the-first-person-shooters/>. Acesso em: 26 out. 2021.

ZUCCONI, A.; LAMMERS, K. Unity 5.x Shaders and Effects Cookbook. Birmingham: Packt Publishing, 2016.

GLOSSÁRIO

A

Ambiguidade: possibilidade de interpretação dúbia de uma palavra ou frase.

B

Borboleta: inseto voador, que possui dois pares de asas. São todos os insetos alados da família dos lepidópteros diurnos. São encontrada na natureza com diversas cores e tamanho.

Braile: sistema de escrita para cegos. São signos desenhados em relevo para serem lidos com a ponta dos dedos.

 \mathbf{C}

Coerência: qualidade subjacente a um texto, que lhe permite ter sentido.

D

Dialetos: variedades regionais ou sociais de uma língua.

 \mathbf{E}

Elipse: omissão de termos da oração.

L

Locução Adjetiva: duas ou mais palavras que equivalem a um adjetivo.

M

Modificadores: adjetivos.

P

Parônimos: palavras que possuem sons parecidos. Exemplo: emigrar / imigrar.

S

Síntese: exposição resumida, em que se usa um mínimo de palavras.

APÊNDICES

APÊNDICE A – Lorem Ipsum

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

APÊNDICE B – Modelo de Capa

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

APÊNDICE C - Termo de Fiel Depositário

Pesquisa: ANÁLISE DA MORTALIDADE INFANTIL COM MALFORMAÇÕES CONGÊNITAS.

Pelo presente instrumento que atende às exigências legais, a Sra. Maria Consuelo Martins Saraiva, "fiel depositário" com o cargo de Secretária Municipal de Saúde de Iracema, após ter tomado conhecimento do protocolo de pesquisa intitulado: ANÁLISE DA MORTALIDADE INFANTIL COM MALFORMAÇÕES CONGÊNITAS. Analisando a repercussão desse estudo no contexto da saúde pública e epidemiologia, autoriza Karla Maria da Silva Lima, enfermeira, aluna do Curso de Mestrado Acadêmico em Enfermagem da Universidade Estadual do Ceará (UECE), sob orientação do Prof. Dr. José Maria de Castro, da UECE, ter acesso aos bancos de dados do Sistema de Informação sobre Nascidos Vivos e do Sistema de Informação sobre Mortalidade da Secretaria Municipal de Saúde de Iracema, objeto deste estudo, e que se encontram sob sua total responsabilidade. Fica claro que o Fiel Depositário pode a qualquer momento retirar sua AUTORIZAÇÃO e ciente de que todas as informações prestadas tornar-se-ão confidenciais e guardadas por força de sigilo profissional, assegurando que os dados obtidos da pesquisa serão somente utilizados para estudo.

ANEXOS

ANEXO A – Exemplo de Anexo

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

ANEXO B - Dinâmica das classes sociais

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum rhoncus molestie odio. Sed lobortis, justo et pretium lobortis, mauris turpis condimentum augue, nec ultricies nibh arcu pretium enim. Nunc purus neque, placerat id, imperdiet sed, pellentesque nec, nisl. Vestibulum imperdiet neque non sem accumsan laoreet. In hac habitasse platea dictumst. Etiam condimentum facilisis libero. Suspendisse in elit quis nisl aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus. Pellentesque vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec pede. Proin mattis libero vel turpis. Donec rutrum mauris et libero. Proin euismod porta felis. Nam lobortis, metus quis elementum commodo, nunc lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu dolor.