COL380

Introduction to Parallel & Distributed Programming

Parallel Algorithms

- Maximize concurrency
 - → Reduce dependency
 - OK to sometime recompute data
- Map tasks to processors
 - → Statically or Dynamically
 - → Reduce communication

Parallel Addition

```
p = n; B[i] = A[i]
                                        p3
               p0
                       p1
                               p2
p = p/2; if(i<p) B[i] = B[2i] + B[2i+1]
                                        p3
                               p2
              p0
                       p1
p = p/2; if(i<p) B[i] = B[2i]+B[2i+1]
              p0
                       p1
p = p/2; if(i<p) B[i] = B[2i]+B[2i+1]
```

```
p = n/2

forall i < n

B[i] = A[i]

while(p > 0) {

forall i < p

B[i] = B[2i] + B[2i + 1]

p = p/2;

}
```

p6

p7

p4

- processors: n
- time: O(log n)
- Speed-up: n/(log n)
- Efficiency: 1/log(n)
- Cost: n log n
- Work: n

n operands ⇒ log n steps

- n operands ⇒ log n steps
- Total work = O(n)

How do you map processor to work

- → n/2i processors per step
- → step i: if !(id%2i)
 - ▶ Read: id, id+2ⁱ⁻¹
 - Write: id

- n operands ⇒ log n steps
- Total work = O(n)

How do you map processor to work

- → n/2i processors per step
- → step i: forall id < n/2i
 - ▶ Read: 2*id, 2*id+ 1
 - Write: id

- n operands ⇒ log n steps
- Total work = O(n)

How do you map processor to work

- → n/2i processors per step
- → step i: forall id < n/2i
 - Read: id, id+ n/2i
 - Write: id

- n operands ⇒ log n steps
- Total work = O(n)

- Count the number of operations
 - → Then allocate to p processors
- Often, convenient to start with p
 - And map operations to p processors
- How do you map processor to work
 - → Consider p < n
 - → Locally reduce at each processor
 - → p/2i processors per step
 - → step i: if !(id%2i)

Prefix Sums

Input: x

- P[0] = x[0]
- For i = 1 to n-1
 - $\rightarrow P[i] = P[i-1] + x[i]$

Prefix Sums

Input: x

- P[0] = x[0]
- For i = 1 to n-1
 - \rightarrow P[i] = P[i-1] + x[i]

Subodh Kuma

Prefix Sums

S	0	0	1	2	3	3	4	4	4	4	5
filter	0	0	1	1	1	0	1	O	O	0	1
D^{I}	0	1	2	3	4	5	6	7	8	9	10

Input: x

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

Subodh Kumai

Input: x

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

Prefix Sums


```
forall i < n

if(filter(D[i]))

R[i] = Map(D[i]);
```


Subodh Kumai

•
$$P[0] = x[0]$$

- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

•
$$P[0] = x[0]$$

- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

•
$$P[0] = x[0]$$

- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

Subodh Kuma

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

- P[0] = x[0]
- For i = 1 to n-1
 - $\Rightarrow P[i] = P[i-1] + x[i]$

$$T(n) = T(n/2) + O(1)$$

 $W(n) = W(n/2) + Kn/2$

$$W(n) = O(n)$$


```
prefixSums(P, x, [0:n))
   forall i in [0:n/2)
       y[i] = OP(x[2*i], x[2*i+1])
   prefixSum(z, y, [0:n/2))
   P[0] = x[0]
                                    Or OP^{-1}(z[i/2], x[i]),
   forall i in [1:n)
                                   if op invertible
       if(i\&1) P[i] = z[i/2]
       else P[i] = OP(z[i/2-1], x[i])
                        Prefix Sum
```

$$P[0] = x[0]$$

For i = 1 to n-1

$$P[i] = P[i-1] + x[i]$$

Upward-pass

forall i = 0 to n

B[0][i] = A[i]

for h = 1 to log n

forall i in 0:n/2h

B[h][i] = B[h-1][2i] **OP** B[h-1][2i+1]

P[0] = x[0]

For i = 1 to n-1

P[i] = P[i-1] + x[i]

forall i = 0 to n

B[0][i] = A[i]

for h = 1 to log n

forall i in 0:n/2h

B[h][i] = B[h-1][2i] **OP** B[h-1][2i+1]

for h = log n to 0

C[h][0] = B[h][0]

Downward-pass

forall i in 1:n/2h

Odd i: C[h][i] = C[h+1][i/2]

Even i: C[h][i] = C[h+1][i/2-1] **OP** B[h][i]

P[0] = x[0]

For i = 1 to n-1

P[i] = P[i-1] + x[i]

forall i = 0 to n

B[0][i] = A[i]

for h = 1 to $\log n$

forall i in 0:n/2h

B[h][i] = B[h-1][2i] **OP** B[h-1][2i+1]

for h = log n to 0

C[h][0] = B[h][0]

Downward-pass

forall i in 1:n/2h

Odd i: C[h][i] = C[h+1][i/2]

Even i: C[h][i] = C[h+1][i/2-1] **OP** B[h][i]

P[0] = x[0]For i = 1 to n-1 P[i] = P[i-1] + x[i]

forall i = 0 to n

B[0][i] = A[i]

for h = 1 to $\log n$

forall i in 0:n/2h

B[h][i] = B[h-1][2i] **OP** B[h-1][2i+1]

for h = log n to 0

C[h][0] = B[h][0]

Downward-pass

forall i in 1:n/2h

Odd i: C[h][i] = C[h+1][i/2]

Even i: C[h][i] = C[h+1][i/2-1] **OP** B[h][i]

Prefix Sum Binary Tree (Non recursive)

if(right child): take parent's sum if(left child): add uncle's sum \$[0:3n/4)

```
P[0] = x[0]
For i = 1 to n-1
P[i] = P[i-1] + x[i]
```

forall i = 0 to n

B[0][i] = A[i]

for h = 1 to $\log n$

forall i in 0:n/2h

B[h][i] = B[h-1][2i] **OP** B[h-1][2i+1]

for h = log n to 0

C[h][0] = B[h][0]

Downward-pass

forall i in 1:n/2h

Odd i: C[h][i] = C[h+1][i/2]

Even i: C[h][i] = C[h+1][i/2-1] **OP** B[h][i]


```
P[0] = x[0]
For i = 1 to n-1
P[i] = P[i-1] + x[i]
```

forall i = 0 to n

B[0][i] = A[i]

for h = 1 to $\log n$

forall i in 0:n/2h

B[h][i] = B[h-1][2i] **OP** B[h-1][2i+1]

for h = log n to 0

C[h][0] = B[h][0]

Downward-pass

forall i in 1:n/2h

Odd i: C[h][i] = C[h+1][i/2]

Even i: C[h][i] = C[h+1][i/2-1] **OP** B[h][i]

if(A[i] <= B[j])

$$C[k++] = A[i++]$$

else
 $C[k++] = B[j++]$

A Triangle
$$T(2n) = T(n) + ?$$

if(A[i] <= B[j])

$$C[k++] = A[i++]$$

else
 $C[k++] = B[j++]$

if(A[i] <= B[j])

$$C[k++] = A[i++]$$

else
 $C[k++] = B[j++]$
 $T(2n) = T(n) + ?$
 $T(2n) = T(3n/2) + log n$
find

- Determine Rank of each element in A U B
- Rank(x, A U B) = Rank(x, A) + Rank(x, B)
 - → A and B are each sorted; only need to compute the ranks in the other list
- Find Rank(A[i], B) ∀i and Rank(B[j], A) ∀j
 - → Find each rank by binary search
 - → O(log n) time
- O(n log n) work

if(A[i] <= B[j])

$$C[k++] = A[i++]$$

else
 $C[k++] = B[j++]$

Partition A and B into log n sized blocks

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- Rank each selected element of A in B
 - → Binary search

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- · Rank each selected element of A in B
 - → Binary search
- Merge pairs of sub-sequences

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- Rank each selected element of A in B
 - → Binary search
- Merge pairs of sub-sequences
 - → If $|B_i| \le \log(n)$, Sequential merge in O(log n) time

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- Rank each selected element of A in B
 - → Binary search
- Merge pairs of sub-sequences
 - → If $|B_i| \le \log(n)$, Sequential merge in O(log n) time

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- Rank each selected element of A in B
 - → Binary search
- Merge pairs of sub-sequences
 - → If $|B_i| \le \log(n)$, Sequential merge in O(log n) time
 - → Otherwise, partition B_i into log n blocks
 - ▶ And also subdivide A_i into sub-sub-sequences

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- Rank each selected element of A in B
 - → Binary search
- Merge pairs of sub-sequences
 - → If $|B_i| \le \log(n)$, Sequential merge in O(log n) time
 - → Otherwise, partition B_i into log n blocks
 - ▶ And also subdivide A_i into sub-sub-sequences

- Towards Optimal
 - Merge(A,B)

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- Rank each selected element of A in B
 - → Binary search
- Merge pairs of sub-sequences
 - → If $|B_i| \le \log(n)$, Sequential merge in O(log n) time
 - → Otherwise, partition B_i into log n blocks
 - ▶ And also subdivide A_i into sub-sub-sequences

Total time is O(log n) Total work is O(n)

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- Rank each selected element of A in B
 - → Binary search ←
- Merge pairs of sub-sequences
 - → If $|B_i| \le \log(n)$, Sequential merge in $O(\log n)$ time
 - → Otherwise, partition B_i into log n blocks
 - ▶ And also subdivide A_i into sub-sub-sequences

Total time is O(log n)Total work is O(n)

Data Partitioning Technique

limited by

Can we do better?

Fast Merge (A,B)

- Select from A, elements i√n, i ∈ [0: √n)
- · Rank each selected element of A in B

→ √n Parallel searches, use √n processors for each search

Fast Merge (A,B)

- Select from A, elements i√n, i ∈ [0: √n)
- Rank each selected element of A in B

- → √n Parallel searches, use √n processors for each search
- Similarly rank √n selected elements from B in A

Fast Merge (A,B)

- Select from A, elements i√n, i ∈ [0: √n)
- Rank each selected element of A in B

- → √n Parallel searches, use √n processors for each search
- Similarly rank √n selected elements from B in A
- Recursively merge pairs of sub-sequences
 - → Total time: $T(n) = O(1)+T(\sqrt{n}) = O(\log \log n)$
 - → Total work: $W(n) = O(n) + \sqrt{n} W(\sqrt{n}) = O(n \log \log n)$

Fast, but too much work Not work optimal

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - → A₁, A₂, ...
 - → B₁, B₂, ...

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \Rightarrow B' = $q_1, q_2 ...$

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \rightarrow B' = $q_1, q_2 ...$

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \Rightarrow B' = q_1 , q_2 ...

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - → A₁, A₂, ...
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \Rightarrow B' = q_1 , q_2 ...

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \rightarrow B' = $q_1, q_2 ...$

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \rightarrow B' = $q_1, q_2 ...$

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - → A₁, A₂, ...
 - → B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \rightarrow B' = q_1 , q_2 ...

Now merge separated blocks of A and B

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - \rightarrow B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \rightarrow B' = $q_1, q_2 ...$
- Now merge separated blocks of A and B

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - \rightarrow B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂...
 - \rightarrow B' = $q_1, q_2 ...$
- Now merge separated blocks of A and B

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - \rightarrow B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \rightarrow B' = $q_1, q_2 ...$
- Now merge separated blocks of A and B

- Use the fast, non-optimal algorithm on small enough subsets
- Subdivide A and B into blocks of size IIg n (IIg = log log)
 - \rightarrow $A_1, A_2, ...$
 - \rightarrow B₁, B₂, ...
- Select first element of each block
 - \rightarrow A' = p₁, p₂ ...
 - \rightarrow B' = $q_1, q_2 ...$

Merge O(llg n) sized blocks O(n/llg n) times

Optimal Merge (A,B) (Analysis)

1. Merge A' and B' – find Rank(A':B'), Rank(B':A')

- → Use fast non-optimal algorithm
 - ▶ Time = $O(\log \log n)$, Work = O(n)
- 2. Compute Rank(A':B) and Rank(B':A)
 - → If Rank(p_i , B) is r_i , p_i lies in block B_{r_i}
 - Sequentially: Time = $O(\log \log n)$, Work = O(n)
- 3. Compute ranks of remaining elements
 - Sequentially: Time = O(log log n), Work = O(n)

