§ 38. Самосопряженные операторы

Б.М.Верников

Уральский федеральный университет, Институт естественных наук и математики, кафедра алгебры и фундаментальной информатики

Самосопряженный оператор

Определение

Линейный оператор $\mathcal A$ в пространстве со скалярным произведением V называется *самосопряженным*, если для любых векторов $\mathbf x, \mathbf y \in V$ выполнено равенство $\mathcal A(\mathbf x) \cdot \mathbf y = \mathbf x \cdot \mathcal A(\mathbf y)$.

• Термин «самосопряженный» объясняется следующим образом. Можно доказать, что для произвольного линейного оператора $\mathcal A$ в пространстве со скалярным произведением V существует, и притом единственный, линейный оператор $\mathcal B$ в V такой, что $\mathcal A(\mathbf x) \cdot \mathbf y = \mathbf x \cdot \mathcal B(\mathbf y)$ для любых $\mathbf x, \mathbf y \in V$. Оператор $\mathcal B$ называется сопряженным к $\mathcal A$. Таким образом, самосопряженный оператор — это оператор, сопряженный сам к себе. Рассмотрение сопряженных операторов яввляется важной и содержательной частью линейной алгебры, которая не входит в наш курс по причине нехватки времени.

Оператор ортогонального проектирования

Приведем пример самосопряженного оператора. Пусть S — подпространство пространства со скалярным произведением V. В силу теоремы об ортогональном разложении (см. § 36) $V=S\oplus S^{\perp}$. Следовательно, мы можем рассмотреть оператор проектирования на S параллельно S^{\perp} (см. пример 3 в §29). Он называется оператором ортогонального проектирования на подпространство S и обозначается через \mathcal{P}_S . Пусть $\mathbf{x},\mathbf{y}\in V$. Тогда $\mathbf{x}=\mathbf{x}_{\perp}+\mathbf{x}^{\perp},\mathbf{y}=\mathbf{y}_{\perp}+\mathbf{y}^{\perp},\mathbf{x}_{\perp}\mathbf{y}^{\perp}=\mathbf{x}^{\perp}\mathbf{y}_{\perp}=0$, $\mathcal{P}_S(\mathbf{x})=\mathbf{x}_{\perp}$ и $\mathcal{P}_S(\mathbf{y})=\mathbf{y}_{\perp}$. Следовательно, с одной стороны,

$$P_{S}(\mathbf{x}) \cdot \mathbf{y} = \mathbf{x}_{\perp}(\mathbf{y}_{\perp} + \mathbf{y}^{\perp}) = \mathbf{x}_{\perp}\mathbf{y}_{\perp} + \mathbf{x}_{\perp}\mathbf{y}^{\perp} = \mathbf{x}_{\perp}\mathbf{y}_{\perp} + \mathbf{0} = \mathbf{x}_{\perp}\mathbf{y}_{\perp},$$

ас другой —

$$\mathbf{x} \cdot \mathcal{P}_{\mathcal{S}}(\mathbf{y}) = (\mathbf{x}_{\perp} + \mathbf{x}^{\perp})\mathbf{y}_{\perp} = \mathbf{x}_{\perp}\mathbf{y}_{\perp} + \mathbf{x}^{\perp}\mathbf{y}_{\perp} = \mathbf{x}_{\perp}\mathbf{y}_{\perp} + \mathbf{0} = \mathbf{x}_{\perp}\mathbf{y}_{\perp}.$$

Следовательно, $\mathcal{P}_S(\mathbf{x}) \cdot \mathbf{y} = \mathbf{x} \cdot \mathcal{P}_S(\mathbf{y})$, т. е. \mathcal{P}_S — самосопряженный оператор.

Mатрица самосопряженного оператора (1)

 \overline{A} ля произвольной матрицы $A=(a_{ij})$ над полем $\mathbb C$ или $\mathbb R$ положим $\overline{A}=(\overline{a_{ij}})$. Ясно, что если A — матрица над $\mathbb R$, то $\overline{A}=A$.

Определение

Квадратная матрица A над полем $\mathbb C$ или $\mathbb R$ называется эрмитовой, если $A=\overline{A^\top}$. Матрица $\overline{A^\top}$ обозначается через A^* . Ясно, что если A — матрица над $\mathbb R$, то $A^*=A^\top$.

Предложение о матрице самосопряженного оператора

Для произвольного линейного оператора ${\cal A}$ в пространстве со скалярным произведением V следующие условия эквивалентны:

- а) \mathcal{A} самосопряженный оператор;
- 6) матрица оператора ${\cal A}$ в любом ортонормированном базисе пространства V эрмитова;
- в) существует ортонормированный базис пространства V, в котором матрица оператора ${\cal A}$ эрмитова.

Доказательство. Достаточно доказать импликации $a) \Longrightarrow 6)$ и $b) \Longrightarrow a$), поскольку импликация $b) \Longrightarrow a$) очевидна.

Mатрица самосопряженного оператора (2)

 $(a) \Longrightarrow 6$) Пусть P — ортонормированный базис пространства V, а $x, y \in V$. Матрицу оператора \mathcal{A} в базисе P обозначим через A_P . Используя теорему о скалярном произведении в ортонормированном базисе (см. § 36) и формулу (1) из § 29, имеем

$$\begin{split} &\mathcal{A}(x) \cdot y = \left[\mathcal{A}(x) \right]_P^\top \cdot \overline{[y]_P} = \left[\mathcal{A}_P \cdot [x]_P \right]^\top \cdot \overline{[y]_P} = [x]_P^\top \cdot \mathcal{A}_P^\top \cdot \overline{[y]_P}, \\ &x \cdot \mathcal{A}(y) = [x]_P^\top \cdot \overline{[\mathcal{A}(y)]_P} = [x]_P^\top \cdot \overline{\mathcal{A}_P \cdot [y]_P} = [x]_P^\top \cdot \overline{\mathcal{A}_P} \cdot \overline{[y]_P}. \end{split}$$

Таким образом, оператор $\mathcal A$ самосопряжен тогда и только тогда, когда

$$[\mathbf{x}]_{P}^{\top} \cdot A_{P}^{\top} \cdot \overline{[\mathbf{y}]_{P}} = [\mathbf{x}]_{P}^{\top} \cdot \overline{A_{P}} \cdot \overline{[\mathbf{y}]_{P}}. \tag{1}$$

Поскольку в качестве $[\mathbf{x}]_P^{\top}$ и $[\mathbf{y}]_P$ могут выступать, соответственно, любая строка длины $n = \dim V$ и любой столбец той же длины, мы можем дважды применить ослабленный закон сокращения для матриц (см. § 25) и сделать вывод, что равенство (1) эквивалентно равенству $A_P^ op = \overline{A_P}$. А это, в свою очередь, эквивалентно тому, что $A_P=\overline{\overline{A_P}}=\overline{A_P^\top}=A_P^*$.

 $(B) \Longrightarrow A$ Пусть P- тот ортонормированный базис пространства V, в котором матрица оператора ${\mathcal A}$ эрмитова. Обозначим эту матрицу через A_P . Повторяя в обратном порядке рассуждения, проведенные при доказательстве импликации $a \implies 6$), получаем, что оператор Aсамосопряжен.

Матрица самосопряженного оператора в евклидовом пространстве

Определение

Квадратная матрица A называется симметрической, если $A = A^{\top}$.

Очевидно, что квадратная матрица над полем $\mathbb R$ эрмитова тогда и только тогда, когда она является симметрической матрицей. Поэтому из предложения о матрице самосопряженного оператора немедленно вытекает

Следствие о матрице самосопряженного оператора в евклидовом пространстве

Для произвольного линейного оператора ${\cal A}$ в евклидовом пространстве ${\cal V}$ следующие условия эквивалентны:

- а) A самосопряженный оператор;
- б) матрица оператора ${\cal A}$ в любом ортонормированном базисе пространства V симметрична;
- в) существует ортонормированный базис пространства V, в котором матрица оператора ${\cal A}$ симметрична.

Основная теорема о самосопряженном операторе: формулировка и доказательство достаточности

Основная теорема о самосопряженном операторе

Линейный оператор A в пространстве V со скалярным произведением является самосопряженным тогда и только тогда, когда в V существует ортонормированный базис, в котором матрица этого оператора диагональна, причем все числа на ее главной диагонали являются действительными.

Доказательство. Достаточность. Очевидно, что диагональная матрица, в которой все числа на главной диагонали действительны, эрмитова. Поэтому достаточность непосредственно вытекает из предложения о матрице самосопряженного оператора.

Основная теорема о самосопряженном операторе: схема доказательства необходимости (1)

Необходимость. Доказательство необходимости основывается на следующих трех утверждениях.

Лемма о корнях характеристического уравнения самосопряженного оператора

Все корни характеристического уравнения самосопряженного оператора ${\cal A}$ являются действительными числами.

Лемма о собственных векторах самосопряженного оператора

Собственные векторы самосопряженного оператора ${\cal A}$, относящиеся к его различным собственным значениям, ортогональны.

Лемма о корневых подпространствах самосопряженного оператора

Если N — корневое подпространство пространства V относительно самосопряженного оператора \mathcal{A} , то всякий ненулевой вектор из N является собственным вектором оператора \mathcal{A} .

Основная теорема о самосопряженном операторе: схема доказательства необходимости (2)

Покажем, как из этих трех лемм вытекает требуемое нам утверждение. Основным полем пространства V является одно из полей $\mathbb C$ и $\mathbb R$. В силу леммы о корнях характеристического уравнения самосопряженного оператора, все корни этого уравнения лежат в основном поле. Это означает, что многочлен $\chi_{_{\it A}}(x)$ разложим на линейные множители. Пусть N_1, N_2, \ldots, N_m — всевозможные корневые подпространства пространства V относительно оператора \mathcal{A} . По теореме о корневом разложении (см. § 34) $V=igoplus_{i=1}^m N_i$. Для всякого $i=1,2,\ldots,m$ обозначим через P_i ортонормированный базис пространства N_i и положим $P=igcup\limits_{i=1}^m P_i$. В силу замечания о базисе прямой суммы подпространств (см. $\S24$), P- базис в V. Согласно лемме о корневых подпространствах самосопряженного оператора, P состоит из собственных векторов оператора \mathcal{A} . В силу критерия приводимости оператора к диагональному виду (см. §31), матрица оператора ${\mathcal A}$ в базисе P диагональна, а из доказательства этого критерия вытекает, что на ее главной диагонали стоят собственые значения оператора \mathcal{A} . Лемма о корнях характеристического уравнения самосопряженного оператора гарантирует, что эти собственные значения являются действительными числами.

Основная теорема о самосопряженном операторе: схема доказательства необходимости (3)

Осталось понять, что базис P ортонормирован. Пусть $\mathbf{x} \in P_i$ и $\mathbf{y} \in P_j$. Из ортонормированности базисов P_1, P_2, \ldots, P_n вытекает, что длины векторов \mathbf{x} и \mathbf{y} равны $\mathbf{1}$, и если i=j, то \mathbf{x} и \mathbf{y} ортогональны. Если же $i \neq j$, то \mathbf{x} и \mathbf{y} — собственные векторы, относящиеся к различным собственным значениям, и их ортогональность вытекает из леммы о собственных векторах самосопряженного оператора.

Доказательство леммы о корнях характеристического уравнения самосопряженного оператора

Доказательство леммы о корнях характеристического уравнения самосопряженного оператора. Пусть λ — корень характеристического уравнения оператора \mathcal{A} . Зафиксируем некоторый базис P пространства V и обозначим через A матрицу оператора \mathcal{A} в этом базисе. Тогда выполнено равенство $|A-\lambda E|=0$. В силу признака существования ненулевого решения крамеровской системы (см. § 9), система линейных уравнений $(A-\lambda E)X=O$ имеет ненулевое решение (x_1,x_2,\ldots,x_n) . Обозначим через \mathbf{x} вектор с координатами (x_1,x_2,\ldots,x_n) в базисе P. Тогда $(\mathcal{A}-\lambda \mathcal{E})(\mathbf{x})=\mathbf{0}$, т. е. $\mathcal{A}(\mathbf{x})=\lambda \mathbf{x}$. Следовательно,

$$\mathcal{A}(\mathbf{x}) \cdot \mathbf{x} = (\lambda \mathbf{x}) \cdot \mathbf{x} = \lambda \cdot \mathbf{x} \mathbf{x} \quad \mathbf{u} \quad \mathbf{x} \cdot \mathcal{A}(\mathbf{x}) = \mathbf{x} \cdot (\lambda \mathbf{x}) = \overline{\lambda} \cdot \mathbf{x} \mathbf{x}.$$

Поскольку оператор \mathcal{A} самосопряжен, $\mathcal{A}(\mathbf{x}) \cdot \mathbf{x} = \mathbf{x} \cdot \mathcal{A}(\mathbf{x})$, и потому $\lambda(\mathbf{x}\mathbf{x}) = \overline{\lambda}(\mathbf{x}\mathbf{x})$, т.е. $(\lambda - \overline{\lambda}) \cdot \mathbf{x}\mathbf{x} = \mathbf{0}$. Но $\mathbf{x}\mathbf{x} \neq \mathbf{0}$, поскольку $\mathbf{x} \neq \mathbf{0}$. Следовательно, $\lambda = \overline{\lambda}$, т.е. $\lambda \in \mathbb{R}$.

Доказательство леммы о собственных векторах самосопряженного оператора

Доказательство леммы о собственных векторах самосопряженного оператора. Пусть \mathcal{A} — самосопряженный оператор, а x и y — собственные векторы оператора \mathcal{A} , относящиеся к его различным собственным значениям λ_1 и λ_2 соответственно. Учитывая, что, в силу леммы о корнях характеристического уравнения самосопряженного оператора, λ_2 — действительное число, имеем

$$\mathcal{A}(\mathbf{x})\cdot\mathbf{y}=(\lambda_1\mathbf{x})\mathbf{y}=\lambda_1(\mathbf{x}\mathbf{y})\quad\text{if}\quad\mathbf{x}\cdot\mathcal{A}(\mathbf{y})=\mathbf{x}(\lambda_2\mathbf{y})=\,\overline{\lambda_2}\,(\mathbf{x}\mathbf{y})=\lambda_2(\mathbf{x}\mathbf{y}).$$

Поскольку оператор $\mathcal A$ самосопряжен, $\mathcal A(\mathbf x)\cdot \mathbf y=\mathbf x\cdot \mathcal A(\mathbf y)$. Следовательно, $\lambda_1(\mathbf x\mathbf y)=\lambda_2(\mathbf x\mathbf y)$, т.е. $(\lambda_1-\lambda_2)(\mathbf x\mathbf y)=0$. Поскольку $\lambda_1-\lambda_2\neq 0$, мы получаем, что $\mathbf x\mathbf y=0$.

Доказательство леммы о корневых подпространствах самосопряженного оператора (1)

Доказательство леммы о корневых подпространствах самосопряженного оператора. По определению корневого подпространства,

 $N=\mathrm{Ker}(\mathcal{A}-\lambda\mathcal{E})^s$, где λ — некоторое собственное значение оператора \mathcal{A} , а s — минимальное натуральное число с тем свойством, что $\mathrm{Ker}(\mathcal{A}-\lambda\mathcal{E})^s=\mathrm{Ker}(\mathcal{A}-\lambda\mathcal{E})^{s+1}$. Для того, чтобы доказать, что все ненулевые векторы из N являются собственными векторами оператора \mathcal{A} , достаточно показать, что s=1, т.е. что $N=\mathrm{Ker}(\mathcal{A}-\lambda\mathcal{E})$. В самом деле, в этом случае для любого вектора $\mathbf{x}\in N$ выполнено равенство $(\mathcal{A}-\lambda\mathcal{E})(\mathbf{x})=\mathbf{0}$, откуда $\mathcal{A}(\mathbf{x})=\lambda\mathbf{x}$.

Требуется доказать, что $\operatorname{Ker}(\mathcal{A}-\lambda\mathcal{E})=\operatorname{Ker}(\mathcal{A}-\lambda\mathcal{E})^2$. Включение $\operatorname{Ker}(\mathcal{A}-\lambda\mathcal{E})\subseteq \operatorname{Ker}(\mathcal{A}-\lambda\mathcal{E})^2$ очевидно, так как $\operatorname{Ker}\mathcal{B}\subseteq \operatorname{Ker}\mathcal{B}^2$ для любого линейного оператора \mathcal{B} . Осталось проверить, что $\operatorname{Ker}(\mathcal{A}-\lambda\mathcal{E})^2\subseteq \operatorname{Ker}(\mathcal{A}-\lambda\mathcal{E})$. Пусть $\mathbf{x}\in \operatorname{Ker}(\mathcal{A}-\lambda\mathcal{E})^2$. Положим $\mathbf{y}=(\mathcal{A}-\lambda\mathcal{E})(\mathbf{x})$. Достаточно доказать, что $\mathbf{y}=\mathbf{0}$, так как в этом случае $(\mathcal{A}-\lambda\mathcal{E})(\mathbf{x})=\mathbf{0}$, т.е. $\mathbf{x}\in \operatorname{Ker}(\mathcal{A}-\lambda\mathcal{E})$.

Ясно, что $\mathbf{y} \in \operatorname{Im}(\mathcal{A} - \lambda \mathcal{E})$. С другой стороны, $(\mathcal{A} - \lambda \mathcal{E})(\mathbf{y}) = (\mathcal{A} - \lambda \mathcal{E})^2(\mathbf{x}) = \mathbf{0}$, и потому $\mathbf{y} \in \operatorname{Ker}(\mathcal{A} - \lambda \mathcal{E})$. Таким образом, $\mathbf{y} \in \operatorname{Im}(\mathcal{A} - \lambda \mathcal{E}) \cap \operatorname{Ker}(\mathcal{A} - \lambda \mathcal{E})$. Поэтому достаточно установить, что $\operatorname{Im}(\mathcal{A} - \lambda \mathcal{E}) \cap \operatorname{Ker}(\mathcal{A} - \lambda \mathcal{E}) = \{\mathbf{0}\}$.

Доказательство леммы о корневых подпространствах самосопряженного оператора (2)

Поскольку $\operatorname{Ker}(\mathcal{A} - \lambda \mathcal{E}) \cap \left(\operatorname{Ker}(\mathcal{A} - \lambda \mathcal{E})\right)^{\perp} = \{\mathbf{0}\}$, для этого, в свою очередь, достаточно проверить, что $\operatorname{Im}(\mathcal{A} - \lambda \mathcal{E}) \subseteq \left(\operatorname{Ker}(\mathcal{A} - \lambda \mathcal{E})\right)^{\perp}$.

Пусть $\mathbf{a} \in \operatorname{Im}(\mathcal{A} - \lambda \mathcal{E})$ и $\mathbf{b} \in \operatorname{Ker}(\mathcal{A} - \lambda \mathcal{E})$. В силу сказанного выше, достаточно убедиться в том, что $\mathbf{a}\mathbf{b} = 0$. Из выбора вектора \mathbf{a} вытекает, что $\mathbf{a} = (\mathcal{A} - \lambda \mathcal{E})(\mathbf{c}) = \mathcal{A}(\mathbf{c}) - \lambda \mathbf{c}$ для некоторого вектора \mathbf{c} . А из выбора вектора \mathbf{b} следует, что $(\mathcal{A} - \lambda \mathcal{E})(\mathbf{b}) = \mathbf{0}$, откуда $\mathcal{A}(\mathbf{b}) - \lambda \mathbf{b} = \mathbf{0}$, т.е. $\mathcal{A}(\mathbf{b}) = \lambda \mathbf{b}$. Используя тот факт, что оператор \mathcal{A} самосопряжен, а $\lambda = \overline{\lambda}$ (в силу леммы о корнях характеристического уравнения самосопряженного оператора), имеем

$$\begin{aligned} \mathbf{a}\mathbf{b} &= \big(\mathcal{A}(\mathbf{c}) - \lambda \mathbf{c}\big)\mathbf{b} = \mathcal{A}(\mathbf{c}) \cdot \mathbf{b} - (\lambda \mathbf{c})\mathbf{b} = \mathbf{c} \cdot \mathcal{A}(\mathbf{b}) - \lambda(\mathbf{c}\mathbf{b}) = \\ &= \mathbf{c}(\lambda \mathbf{b}) - \lambda(\mathbf{c}\mathbf{b}) = \overline{\lambda}(\mathbf{c}\mathbf{b}) - \lambda(\mathbf{c}\mathbf{b}) = \lambda(\mathbf{c}\mathbf{b}) - \lambda(\mathbf{c}\mathbf{b}) = 0. \end{aligned}$$

Лемма доказана.

Тем самым, мы завершили доказательство основной теоремы о самосопряженных операторах.

Матрица перехода от одного ортонормированного базиса к другому

Определение

Квадратная матрица A над полем $\mathbb C$ называется $\mathit{унитарной}$, если $AA^* = A^*A = E$.

Ясно, что если матрица A унитарна, то она обратима и $A^{-1}=A^st$.

Предложение о матрицах перехода в унитарном пространстве

Матрица перехода от одного ортонормированного базиса к другому ортонормированному базису в унитарном пространстве является унитарной.

Доказательство. Пусть V — унитарное пространство, $C = \{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n\}$ и $D = \{\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_n\}$ — его ортонормированные базисы и $T = (t_{ij})$ — матрица перехода от C к D. По определению матрицы перехода произведение i-й строки матрицы T^{\top} на j-й столбец матрицы \overline{T} равно скалярному произведению векторов \mathbf{d}_i и \mathbf{d}_j . Поскольку базис D ортонормирован, это означает, что $T^{\top} \cdot \overline{T} = E$. Следовательно, $E = \overline{E} = \overline{T^{\top} \cdot \overline{T}} = \overline{T^{\top}} \cdot \overline{\overline{T}} = \overline{T^{\top}} \cdot \overline{T} = T^{*}T$. Аналогично проверяется, что $TT^* = E$.

Матрица перехода от одного ортонормированного базиса к другому в евклидовом пространстве

Определение

Квадратная матрица A над полем $\mathbb R$ называется *ортогональной*, если $A^{\top}A=E$.

Ясно, что если матрица A ортогональна, то она обратима и $A^{-1} = A^{\top}$.

Если A — квадратная матрица над полем $\mathbb R$, то $A^* = A^{\top}$. Следовательно, всякая унитарная матрица над полем $\mathbb R$ ортогональна. Поэтому из предложения о матрицах перехода в унитарном пространстве вытекает

Следствие о матрицах перехода в евклидовом пространстве

Матрица перехода от одного ортонормированного базиса к другому ортонормированному базису в евклидовом пространстве является ортогональной.

Следствия об эрмитовых и симметрических матрицах

Из основной теоремы о самосопряженном операторе, предложения о матрице самосопряженного оператора и предложения о матрицах перехода в унитарном пространстве вытекает

Следствие об эрмитовых матрицах

Квадратная матрица A над полем $\mathbb C$ эрмитова тогда и только тогда, когда существуют унитарная матрица T и диагональная матрица D с действительными числами на главной диагонали такие, что $D=T^*AT$.

А из основной теоремы о самосопряженном операторе, следствия о матрице самосопряженного оператора в евклидовом пространстве и следствия о матрицах перехода в евклидовом пространстве вытекает

Следствие о симметрических матрицах

Квадратная матрица A над полем $\mathbb R$ является симметрической тогда и только тогда, когда существуют ортогональная матрица T и диагональная матрица D такие, что $D = T^\top AT$.