

Análise Comparativa do
Uso do YOLOv5 com e sem
Pré-processamento de
Imagens para Contagem de
Veículos

Processamento de Imagens BCC – Noite

Visão geral do projeto

Análise comparativa detalhada entre o uso do modelo YOLOv5 para a contagem de veículos em imagens, com e sem a aplicação de técnicas de pré-processamento de imagem.

SOBRE ESTA APRESENTAÇÃO

- Dataset Utilizado
- Configuração de Treinamento Algoritmo:
 - YOLOv5
 - Parâmetros e ajustes
- Resultados Iniciais
- Pré-processamento de Imagens:
 - Técnicas aplicadas
 - Justificativa
- Resultados Após Pré-processamento
- Análise Comparativa dos Resultados

Dataset

Foi utilizada uma base de dados disponível no Kaggle (Cars Video Object Tracking) composta por aproximadamente 300 imagens de carros em estradas. Esta base de dados é ideal para tarefas de detecção e rastreamento de objetos, oferecendo uma variedade de cenários de tráfego para treinar modelos de visão computacional.

Configuração de Treinamento

O que é o YOLOv5?

YOLOv5 (You Only Look Once, versão 5) é um modelo de detecção de objetos em tempo real, conhecido por sua eficiência e rapidez. Ele consegue identificar e localizar vários objetos em uma imagem ou vídeo de forma simultânea, sendo amplamente utilizado em aplicações como vigilância, direção autônoma e contagem de veículos. A versão 5 traz melhorias em precisão e velocidade, tornando-o leve e fácil de treinar em diferentes tipos de hardware treinar em diferentes tipos de hardware.

Imagem: 640x640 pixels

• Balanceia qualidade e velocidade

Batch Size: 16

• O modelo será atualizado a cada 16 imagens.

Épocas: 100

• O modelo passará pelos dados 100 vezes.

Resultados Iniciais

Os primeiros resultados mostram que o YOLOv5 está contando os veículos com grande precisão, graças à excelente qualidade das imagens do dataset utilizado.

- Precisão Elevada: O modelo reconhece e conta os veículos com alta taxa de acerto.
- Imagens de Alta Qualidade: A qualidade superior das imagens no dataset ajudou o YOLOv5 a detectar até os detalhes mais sutis.
- Velocidade em Tempo Real: Processamento rápido, adequado para aplicações como monitoramento de tráfego.
- Detecção Consistente: O modelo identifica múltiplos veículos em diferentes condições com precisão.

Pré-processamento de Imagens:

Essas técnicas de pré-processamento foram escolhidas para melhorar a qualidade das imagens e o desempenho do YOLOv5. O ajuste de contraste e brilho ajuda na detecção de veículos em diferentes condições de iluminação. O redimensionamento padroniza o tamanho das imagens, evitando distorções nos objetos e garantindo consistência para o modelo. Já o data augmentation, com rotação e espelhamento, amplia a diversidade do dataset, tornando o modelo mais robusto e capaz de reconhecer veículos em diversos ângulos e situações.

Contraste e Brilho

• Melhorar o contraste e o brilho pode destacar objetos em diferentes condições de iluminação, facilitando a detecção de veículos em cenários com luz forte ou fraca.

Redimensionamento e Padronização

• Redimensionar todas as imagens para um tamanho padrão, garante que o YOLOv5 receba entradas consistentes, evitando distorções e mantendo a proporção de objetos.

Data Augumentation

 Aplicar técnicas como rotação, espelhamento ou pequenas alterações na escala aumenta a variedade dos dados de treinamento. Isso ajuda o modelo a generalizar melhor e a lidar com diferentes ângulos e perspectivas dos veículos.

Resultados Após Pré-processamento

Os resultados após o pré-processamento das imagens, que incluiu ajuste de contraste e brilho, redimensionamento, padronização e data augmentation, mostraram uma leve melhoria em comparação com os resultados iniciais. A qualidade das imagens do dataset original já era bastante boa, e o pré-processamento contribuiu para ajustes finos na performance do modelo.

- Leve Melhora na Precisão: O modelo apresentou uma leve melhoria na contagem de veículos, resultado das otimizações no pré-processamento das imagens. A precisão foi aprimorada, mas não houve uma diferença drástica devido à alta qualidade inicial das imagens.
- Otimização de Detalhes: As técnicas de contraste e brilho, juntamente com o redimensionamento e a padronização, ajudaram a realçar detalhes sutis nas imagens, resultando em uma detecção mais refinada.
- Data Augmentation Eficiente: A inclusão de data augmentation contribuiu para uma maior robustez do modelo, permitindo que o YOLOv5 lidasse melhor com variações nas condições das imagens, embora o impacto não tenha sido tão significativo quanto esperado.
- Desempenho Consistente: A velocidade de processamento e a consistência na detecção de múltiplos veículos continuaram a se manter em níveis elevados, refletindo a eficácia geral das técnicas de pré-processamento aplicadas.

Análise Comparativa dos Resultados

1. Precisão

- Antes do Pré-Processamento: O YOLOv5 já demonstrava uma alta precisão na contagem de veículos, com uma taxa de acerto notável.
- Após o Pré-Processamento: A precisão foi levemente aprimorada. O ajuste de contraste e brilho, junto com o redimensionamento e padronização, contribuiu para uma detecção mais refinada, embora a melhoria não tenha sido drástica devido a alta qualidade inicial das imagens.

2. Qualidade das Imagens

- Antes do Pré-Processamento: As imagens do dataset eram de alta qualidade, permitindo ao modelo detectar detalhes sutis com eficácia.
- Após o Pré-Processamento: O pré-processamento ajudou a realçar ainda mais os detalhes, mas a melhoria foi marginal, refletindo a qualidade já elevada das imagens originais.

3. Velocidade de Processamento

- Antes do Pré-Processamento: O modelo apresentou um desempenho rápido e adequado para monitoramento em tempo real.
- Após o Pré-Processamento: A velocidade de processamento manteve-se consistente.
 O pré-processamento não impactou negativamente a velocidade, continuando a ser adequado para aplicações em tempo real.

4. Detecção Consistente

- Antes do Pré-Processamento: O modelo já era eficaz em identificar múltiplos veículos em diferentes condições.
- Após o Pré-Processamento: A detecção continuou a ser consistente, com uma leve melhoria na capacidade de lidar com variações nas condições das imagens devido ao data augmentation.

5. Data Augmentation

- Antes do Pré-Processamento: Não aplicado.
- Após o Pré-Processamento: A data augmentation foi eficaz em aumentar a robustez do modelo, embora o impacto na melhoria da precisão não tenha sido tão significativo quanto o esperado.

Referências

- [1] John Canny. A computational approach to edge detection. IEEE Transactions on PatternAnalysis and Machine Intelligence, 8(6):679–698, 1986.
- [2] Lin Chen, Chao Yang, and Han Zhang. Improving Object Detection Performance through Image Enhancement. Springer, 2015.
- [3] Milton Friedman. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance, volume 32. American Statistical Association, 1937.
- [4] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice Hall,2002.
- [5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition. IEEE, 2016.
- [6] Glenn Jocher. Yolov5 documentation. Technical report, Ultralytics, 2020.
- [7] Glenn Jocher. Yolov5: Real-time object detection using yolov5. GitHub Repository,2020.
- [8] Glenn Jocher. Yolov5: Real-time object detection using yolov5. arXiv preprint ar-Xiv:2004.10934, 2020.
- [9] Anna Khoreva et al. Towards robust neural networks via closest point perturbation. In-ternational Journal of Computer Vision, 126(7):728–743, 2018.
- [10] José H. Nascimento and Carlos Silva. Detecção e rastreamento de objetos em imagens. Revista Brasileira de Computação e Matemática, 12:45–60, 2007.
- [11] William K. Pratt. Digital Image Processing: PIKS Scientific Inside. Wiley, 2007.
- [12] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Com-puter Vision and Pattern Recognition (CVPR), pages 779–788. IEEE, 2016.
- [13] X. Tang, C. Wu, and J. Liu. Image preprocessing techniques for object detection. Journal of Computer Vision Research, 15(3):123–135, 2017.
- [14] Klaas Zuiderveld. Contrast limited adaptive histogram equalization (clahe). In MedicalImaging: Image Processing, 2351:474–485, 1994

