סיכום באופטימיזציה

תזכורת ממדעי הנתונים:

: אם (positive semi-definite) PD <u>הגדרה:</u> מטריצה תקרא

 $\forall x \neq 0 \quad x^T A x > 0$

 $A = A^T$ מטריצה A תקרא סימטרית אם מטריצה

אם (סימטרית חיובית) אם A תקרא מטריצה מטריצה מטריצה A

 $A = A^{T}$

 $\forall x \neq 0 \quad x^T A x > 0$

. $(A^T)_{ij} = (A)_{ji}$: איסומן A^T ויוגדר להיות של transposea של מטריצה הגדרה:

: אם: ערכים עצמיים בהתאמה בהתאמה ערכים עצמיים ווקטור $v \neq 0$ ווקטור סקלר λ

 $Av = \lambda v$

 $|a_{ii}| > \Sigma_{i \neq j} |a_{ij}|$ מטריצה A דומיננטית באלכסון אם מריצה מטריצה

I-A אם λ הוא ערך עצמי של A אז אוערך עצמי של מטריצה , A אם , לכל מטריצה לכל מטריצה אוא ערך עצמי של

. אם ורק אם A^TA הפיך אם full Rank משפט: A היא מטריצה

 A^TA אם ורק אם $full\ Rank$ היא מטריצה A היא A

משפט: אם $\lambda > 0$ אז המטריצה $A^TA + \lambda I$ היא חיובית ממש

Ax = b קיום פתרון למשוואה

. full-Rank פתרון יחיד- A הפיכה והמטריצה לא סינגולרית והיא 1

2. אין פתרון- בהכרח קיימת תלות ליניארית בעמודות A) A לא הפיכה).

Ae=0 כלשהו שמקיים A סינגולרית כי קיים וקטור e כלשהו שמקיים A

נורמה ווקטורית

נורמה מוגדרת על ווקטור $v \in \mathbb{R}^n$ אם היא מקיימת את האקסיומות נורמה

. $\forall v \in \mathbb{R}^n$, $||v|| \ge 0$ and $||v|| = 0 \leftrightarrow v = 0$.1

 $\forall v \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$, $||\alpha v|| = |\alpha|||v||$ הומוגניות: 2.

. $\forall u, v \in \mathbb{R}^n \ ||u+v|| \le ||v|| + ||u||$.3

<u>הנורמות הנפוצות:</u>

$$\|\mathbf{v}\|_1 = \sum_{i=1}^n |v_i|, \quad \|\mathbf{v}\|_2 = \left(\sum_{i=1}^n v_i^2\right)^{\frac{1}{2}}, \quad \|\mathbf{v}\|_{\infty} = \max_i |v_i|$$

מכפלה פנימית

מכפלה פנימית בין שני ווקטורים מוגדרת ע"י שלושת האקסיומות הבאות:

 $. < u, v > = \overline{< v, u >}$ סימטריות.

 $< u, v_1 + v_2 > = < u, v_1 > + < u, v_2 >$, $< \alpha u, \beta v > = \bar{\alpha} \beta < u, v >$ ליניאריות.

 $< u, u > \ge 0$ and < u, u > = 0 if f(u) = 0 אי שליליות.3

המ"פ הנפוצה:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i} \bar{u}_{i} v_{i} = \mathbf{u}^{*} \mathbf{v}.$$

<u>נורמה של מטריצה:</u>

$$||A||_a \triangleq \max_{\mathbf{x} \in \mathbb{C}^n} \frac{||A\mathbf{x}||_a}{||\mathbf{x}||_a}$$

$$||A||_F = \left(\sum_i \sum_j |a_{ij}|^2\right)^{\frac{1}{2}}.$$

משפט:

 $|Ax|_a \le |A|_a |x|_a$ לכל נורמה מושרית,

 $|AB|_a \le |A|_a |B|_a$ לכל נורמה מושרית,

. בערך מוחלט. A בערך העצמי המקסימלי של מטריצה בערך מוחלט. $p(A) = \max |\lambda_i|$

משפט: בהינתן נורמה מושרית, היא חוסמת מלמעלה את הרדיוס הספקטרלי.

$$||A|| \ge p(A)$$

נושא: Condition number

$$cond(A) = \left| \left| A^{-1} \right| \right| ||A||$$

$$\lambda \dots (A)$$

$$cond(A) \ge \frac{\lambda_{max}(A)}{\lambda_{min}(A)} \ge 1$$

 $.e = x - x^* = A^{-1}r$ הגדרה: ווקטור השגיאה הוא

.r=Ae : באופן דומה נקבל כי.r=Ax-b באופן השארית השארית ווקטור השארית

<u>Least squares תזכורת על</u>

 $x^* = argmin_x \left| |Ax - b| \right|_2^2$ עלינו לפתור את המשוואה

•הפונקציה הזו אי שלילית ולכן חסומה מלמטה ע"י 0 ולכן בהכרח יש פתרון למשוואה.

•על מנת לפתור את המשוואה נגזור, נשווה ל-0 ונקבל:

$$A^T A x = A^T b$$

נוכל להפוך של A^TA כיוון שהיא לא סינגולרית.

נגזרות נפוצות:

$$f(x) = x^T x$$
, $\nabla f = 2x$.1
 $f(x) = v^T x$, $\nabla f = v$.2

$$f(x) = v^T x$$
 , $\nabla f = v$.2

$$f(x) = v^T A^T A x, \nabla f = A^T A v . 3$$

$$.f(x) = x^T A^T A x, \nabla f = 2A^T A x .4$$

:Weighted least squares

<u>מוטיבציה:</u> לפעמים נרצה לתת דגש לחלק מהמשוואות.

$$\left| \left| r \right| \right|_{W}^{2} = r^{T}Wr$$
 : פונקציית המשקל

 $x^* = (A^T W A)^{-1} A^T W b$ נפתור את המשוואה הבאה:

:Regularized least squares

<u>מוטיבציה:</u> לפעמים נצטרך מידע נוסף כדי "לסדר את הפתרון", עבור מטריצות סינגולריות ייתכן כי המחשב לא יצליח לפתור בגלל חלוקה ב-0.

 $x^* = (A^TA + \lambda I)^{-1}A^Tb$ עבור $\lambda > 0$ נפתור את המשוואה הבאה:

-המטריצה $A^TA + \lambda I$ תמיד הפיכה.

נושא: פתרון משוואות ליניאריות בצורה ישירה

שיטה ראשונה היא השיטה שלמדנו עד כה באלגברה של דירוג המטריצה עד הגעה למדורגת קנונית.

<u>פירוק *LU*:</u>

A=LU נפרק את A למכפלה של מטריצות נוחות יותר לשימוש

L משפט: לכל מטריצה ריבועית A קיים LU כך שPA=LU כאשר P זו מטריצת הפרמוטציות, L משולשית עליונה.

פירוק צ'ולסקי:

 $A=LL^T$ נפרק את למכפלה של מטריצות נוחות יותר לשימוש

.($A = LL^T$ אז אלגוריתם צ'ולסקי לא ייכשל (קיים פירוק SPD אז אלגוריתם A

: אלגוריתם לפירוק צ'ולסקי

```
Algorithm: Cholesky \#A \in \mathbb{C}^{n \times n} Initialize: L = 0^{n \times n}. for i = 1, ..., n do l_{ii} = \left(a_{ii} - \sum_{k=1}^{i-1} l_{ik} \bar{l}_{ki}\right)^{\frac{1}{2}}. for j = i+1, ..., n do l_{ij} = \frac{1}{l_{ii}} \left(a_{ij} - \sum_{k=1}^{i-1} l_{ik} \bar{l}_{kj}\right), end end
```

. מעל מרחב מ"פ כלשהו u,v>=0 אורתוגונליים אם u,v>=0

 $.0^T O = I$ הגדרה: מטריצה אורתוגונלית אם

 R^n אורתוגונליים בגודל מהווה בסיס למרחב set $\{v_i\}$

תהליך גרהם שמידט:

מטרה: לקחת קבוצה של ווקטורים ולהפוך אותם לבסיס אורתוגונלי למרחב.

- Step 1: $q_1 = a_1$.
- Step 2: $\mathbf{q}_2 = \mathbf{a}_2 \frac{\langle \mathbf{a}_2, \mathbf{q}_1 \rangle}{\|\mathbf{q}_1\|^2} \mathbf{q}_1$.
- Step 3: $\mathbf{q}_3 = \mathbf{a}_3 \frac{\langle \mathbf{a}_3, \mathbf{q}_1 \rangle}{\|\mathbf{q}_1\|^2} \mathbf{q}_1 \frac{\langle \mathbf{a}_3, \mathbf{q}_2 \rangle}{\|\mathbf{q}_2\|^2} \mathbf{q}_2$.
- Step i: $\mathbf{q}_i = \mathbf{a}_i \sum_{j=1,...,i-1} \frac{\langle \mathbf{a}_i, \mathbf{q}_j \rangle}{\langle \mathbf{q}_j, \mathbf{q}_j \rangle} \mathbf{q}_j$.

פירוק QR

עבור Q מטריצה אורתוגונלית ו-R מטריצה משולשית עליונה.

משולשית ולכן בהכרח הפיכה. R

 $.x^* = R^{-1}Q^Tb$: פתרון LS ע"י פירוק זה יהיה על ידי המשוואה

פירוק SVD

מטריצות אורתוגונליות V,U, אלכסונית, בך ש- ערכונית, עריצות אורתוגונליות מטריצות לכל מטריצה A קיימות מטריצות ומתקיים $A=U\Sigma V^T$

- A^TA ערכי האלכסון של Σ הם שורשי הע"ע של•
 - . SPD היא מטריצה $\Sigma^2 ullet$

 $\Sigma V^T x^* = U^T b$: פתרון *LS* ע"י פירוק זה יהיה על ידי המשוואה

 $.x^*=A^tb$, $A^t=V\Sigma^{-1}U^T$ נקבל full-Rank אם A היא full-Rank נקבל $x^*=A^tb$, $A^t=V(\Sigma)^tU^T$ נקבל full-Rank אם A אינה

$$(\Sigma^{\dagger})_{ii} = \begin{cases} (\Sigma_{ii})^{-1} & \Sigma_{ii} \neq 0 \\ 0 & \Sigma_{ii} = 0 \end{cases}$$

נושא: פתרון משוואות ליניאריות בצורה איטרטיבית

מוטיבציה: לא תמיד רוצים פתרון מדויק אלא מקורב שיגיע מהר.

שיטה איטרטיבית מוגדרת כך (חד נקודתית או רב נקודתית בהתאם לכמה פתרונות היא "מתחשבת בהם")

$$x^{(k+1)} = \phi(x^{(k)}) \text{ or } x^{(k+1)} = \phi(x^{(k)}, \dots, x^{(0)})$$
$$\lim_{k \to \infty} \{x^{(k)}\} = x^*$$

<u>הגדרה:</u> קצב התכנסות מוגדר להיות

$$\lim_{k \to \infty} \frac{\left| \left| x^{(k+1)} - x^* \right| \right|}{\left| \left| x^{(k)} - x^* \right| \right|^p} = C$$

 $|\mathcal{C}| < 1$ תנאי הכרחי להתכנסות הוא.

 $e^{(k)} = x^* - x^{(k)}$ הגדרה: ווקטור השגיאה מוגדר

 $r^{(k)} = b - Ax^{(k)}$ ווקטור השארית מוגדר להיות הארית ווקטור השארית

$$\lim_{k \to \infty} \{ \mathbf{e}^{(k)} \} = \lim_{k \to \infty} \{ \mathbf{r}^{(k)} \} = 0.$$

יתנאי עצירה אפשריים:

$$\frac{\|A\mathbf{x}^{(k)} - \mathbf{b}\|}{\|\mathbf{b}\|} < \epsilon \quad \text{or} \quad \frac{\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|}{\|\mathbf{x}^{(k)}\|} < \epsilon.$$

שיטות "פשוטות"

A = M + N מבצעים פירוק של מטריצה

מוטיבציה: ככל שמטריצה M מקורבת יותר ל-A נקבל את הפתרון בפחות איטרציות. מטרה: לבחור מטריצה M נוחה להיפוך כדי להקל על החישובים.

בחירת M מתבצעת כך ש-M הפיכה.

*הרדיוס הספקטרלי הוא קבוע ההתכנסות עבור שיטות אלו.

 $p(I - M^{-1}A) < 1$ תנאי הכרחי להתכנסות:

$$\mathbf{x}^{(k+1)} = M^{-1}(\mathbf{b} - N\mathbf{x}^{(k)}) = \mathbf{x}^{(k)} + M^{-1}(\mathbf{b} - A\mathbf{x}^{(k)}),$$

<u>שיטת יעקובי:</u>

. A נבחרת להיות האלכסון של M

$$A = D + L + U$$
, $M = D$, $N = L + U$

$$\mathbf{x}^{(k+1)} = D^{-1}(\mathbf{b} - (L+U)\mathbf{x}^{(k)}) = \mathbf{x}^{(k)} + D^{-1}(\mathbf{b} - A\mathbf{x}^{(k)}).$$

<u>שיטת גאוס-זיידל:</u>

. בשיטה זו M היא משולשית תחתונה

$$A = D + L + U, M = L + D, N = U$$

$$(L+D)\mathbf{x} = \mathbf{b} - U\mathbf{x} \Rightarrow (L+D)\mathbf{x}^{(k+1)} = \mathbf{b} - U\mathbf{x}^{(k)},$$

מטריצה דומיננטית באלכסון אזי שיטת יעקובי וגאוס-זיידל מתכנסות. A

משפט: אם A היא SPD אז גאוס-זיידל מתכנס.

שיטות יעקובי וגאוס-זיידל ממשוקלות:

: מיתן להוסיף משקול לצעד, עבור $0 < w \le 1$ הצעד יהיה

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \omega D^{-1}(\mathbf{b} - A\mathbf{x}^{(k)}),$$

קצב התכנסות:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha(\mathbf{b} - A\mathbf{x}^{(k)}),$$

 $C = p(I - \alpha A)$ במקרה זה מתקיים כי

$$.p(I - \alpha A) = \max\{|1 - \alpha \lambda_{max}|, |1\alpha \lambda_{min}|\}$$
 טענה:

$$.lpha_{opt} = rac{2}{\lambda_{max} + \lambda_{min}}$$
נקבל כי

. בצורה חמדנית באלי לא ריאלי לחישוב ולכן נחשב לכל היטרציה lpha בצורה חמדנית מחדנית.

$$\alpha^{(k)} = \frac{\langle r^{(k)}, r^{(k)} \rangle}{\langle r^{(k)}, Ar^{(k)} \rangle}$$

הפונקציה שאותה ממזערים:

$$f(x) = \frac{1}{2} ||x - x^*||_A^2 = \frac{1}{2} x^T A X - x^T b + \frac{1}{2} (x^*)^T b$$

. מונוטונית עולה $f(x^{(k)})$ מטריצה חיובית מוגדרת אז גאוס זיידל מתכנס והפונקציה מטריצה חיובית מוגדרת אז אוס זיידל מתכנס

שיטת Steepest Descent

. SPD שהיא A

הצעד באלגוריתם מוגדר להיות:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}^{(k)}) = \mathbf{x}^{(k)} + \alpha(\mathbf{b} - A\mathbf{x}^{(k)}),$$

. עבור $lpha^{(k)}$ שחושבה למעלה

במקרה זה השגיאה המתקבלת היא:

$$\mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \frac{\langle \mathbf{r}^{(k)}, A\mathbf{e}^k \rangle}{\langle \mathbf{r}^{(k)}, A\mathbf{r}^{(k)} \rangle} \mathbf{r}^{(k)}.$$

ומתקיים:

$$\langle \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}, \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)} \rangle = 0,$$

Conjugate Gradients (CG) שיטת

מטרה: השגיאה בכל צעד היא A-אורתוגונלית לווקטור השארית מהאיטרציה שלפני.

נמצא כיוונים שיהיו בסיס אורתוגונלי מווקטורי השארית בכל איטרציה.

$$\mathbf{p}^{(k)} = \mathbf{r}^{(k)} - \sum_{i=0}^{k-1} \frac{\langle \mathbf{r}^{(k)}, A\mathbf{p}^{(i)} \rangle}{\langle \mathbf{p}^{(i)}, A\mathbf{p}^{(i)} \rangle} \mathbf{p}^{(i)}.$$

: הצעד באלגוריתם יהיה

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)}\mathbf{p}^{(k)}, \ \mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha^{(k)}A\mathbf{p}^{(k)}.$$

(מימד המטריצה) איטרציות ב-n איטרציות (מימד המטריצה) אזי שיטת ב-CG אזי שיטת אזי שיטת $full\ Rank$ היא אם ב- $full\ Rank$ היא שנבחר.

תתי המרחבים של קרילוב

עד כה בכל השיטות התבססנו רק על הפתרון מהאיטרציה הקודמת, הפעם נתבסס על כל הפתרונות כך:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(0)} + \sum_{i=0}^{k} \alpha^{(i)} \mathbf{r}^{(i)}.$$

במקרה זה ווקטורי השגיאה יהיו כך:

$$e^{(k+1)} \in e^{(0)} + span\{r^{(0)}, Ar^{(0)}, \dots, A^k r^{(0)}\}$$

k+1 מתקיים שמרחב זה הוא ממימד SPD מתקיים שמרחב ullet

נושא: אופטימיזציה ללא אילוצים

נושא בור פונקציית המחיר f(x) - עבור פונקציות לא לינאריות, כך ש $x^* = argmin_{x \in R^n} f(x)$ נושא אנחנו מעוניינים למזער.

קצת חדוו"א:

<u>כיף מספר 1 -טורי טיילור:</u>

במשתנה 1:

$$f(x+\epsilon) = f(x) + f'(x)\epsilon + \frac{1}{2}f''(x)\epsilon^2 + \frac{1}{3!}f'''(c)\epsilon^3 , c \in [x, x+\epsilon]$$

בשני משתנים:

$$f(x_1 + \epsilon_1, x_2 + \epsilon_2) = f(x_1, x_2) + \frac{\partial f}{\partial x_1} \epsilon_1 + \frac{\partial f}{\partial x_2} \epsilon_2 + \frac{1}{2} \frac{\partial^2 f}{\partial x_1^2} \epsilon_1^2 + \frac{1}{2} \frac{\partial^2 f}{\partial x_2^2} \epsilon_2 + \frac{\partial f}{\partial x_1 x_2} \epsilon_1 \epsilon_2$$

עבור פונקציה ווקטורית:

$$f_i(\mathbf{x} + \boldsymbol{\varepsilon}) \approx f_i(\mathbf{x}) + \langle \nabla f_i(\mathbf{x}), \boldsymbol{\varepsilon} \rangle.$$

ולכל הווקטור נשתמש בנוסחה

$$\delta \mathbf{f} = \mathbf{f}(\mathbf{x} + \boldsymbol{\varepsilon}) - \mathbf{f}(\mathbf{x}) \approx \mathbf{J}\boldsymbol{\varepsilon},$$

כיף מספר 2-מטריצת הסיין:

$$\nabla^2 f = H = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix}$$

: מוגדר גם כ- ϵ ולכן פונקציית טיילור יכולה להיראות כך

$$f(\mathbf{x} + \boldsymbol{\varepsilon}) = f(\mathbf{x}) + \langle \nabla f, \boldsymbol{\varepsilon} \rangle + \frac{1}{2} \langle \boldsymbol{\varepsilon}, H \boldsymbol{\varepsilon} \rangle + O(\|\boldsymbol{\varepsilon}\|^3),$$

כיף מספר 3- מטריצת יעקוביאן:

$$\mathbf{J} = \begin{bmatrix} - & \nabla f_1(\mathbf{x}) & | - \\ - & \nabla f_2(\mathbf{x}) & - \\ & \vdots & \\ - & \nabla f_m(\mathbf{x}) & - \end{bmatrix} \quad \mathbf{J}_{i,j} = \frac{\partial f_i}{\partial x_j}.$$

קצת תיכון:

R>0 אם קיימת סביבה f(x) אם לוקאלי (מקומי) של תקרא מינימום לוקאלי תקרא מינימום לו $\forall x\ s.\ t: ||x-x^*|| < R\ f(x^*) \le f(x)$ כך ש

מתקיים $x \in \mathbb{R}^n$ אם לכל f(x) אם גלובאלי מינימום מינימום x^* מתקיים $f(x^*) \leq f(x^*)$

משפט: נניח ש- $abla^2 f(x^*)$ רציפה בסביבה של x^* ומתקיים x^* ומתקיים x^* היא חיובית מוגדרת x^* אזי x^* הוא מינימום לוקאלי ממש של

•לפי ערן- בקורס שלנו ניתן להניח שהכל גזיר ורציף ונחמד.

קמירות:

. S- אם כל קו שמחבר בין 2 נק' בקבוצה נמצא ב $S \in \mathbb{R}^n$ אם כל קו שמחבר היא

$$\alpha x + (1 - \alpha)y \in S$$
, $\forall 0 \le \alpha \le 1$, $x, y \in S$

הגרף f תקרא פונקציה קמורה אם התחום שעליה היא מוגדרת קמור ולכל 2 נק' x,y בתחום הגרף f נמצא מתחת למיתר בין x,y .

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \forall 0 \le \alpha \le 1, x, y \in S$$

בקורס שלנו נתעסק רק ב R^n שהוא תחום קמור.

הגדרות שקולות אלטרנטיביות:

אם אם קמור מעל תחום קמור f אם f גזירה, f תהיה קמורה מעל תחום קמור S אם S שימושית: נניח כי f גזירה, f עריה, f אם f א

. f מינימום לוקאלי הוא גם מינימום גלובאלי של x^* מינימום מינימום f פונקציה קמורה, כל x^* מינימום לוקאלי הוא גזירה, אז כל נקודה x^* כך ש- x^* היא נק' מינימום גלובאלי של x^* .

אם f קמורה ממש אז יש נקודה יחידה , אחרת יכולות להיות אינסוף.

נושא: שיטות איטרטיביות לאופטימיזציה

- •אנחנו חושבים על בעיות קמורות למרות שהשיטות עובדות (בערך) גם עבור בעיות לא קמורות.
 - $0 < \nabla f, d > < 0$: שיקיים שיקיים בכיוון ירידה להשתמש בכיוון ירידה להשתמש בייון ירידה איקיים ירצה להשתמש

שיטת <u>Steepest Descent</u>

: הצעד באלגוריתם הוא

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \nabla f(\mathbf{x}^{(k)})$$

. מוגדר להיות ווקטור יחידה שמייצג את כיוון הירידה d

מוגדר להיות גודל הצעד. α

$$d_{SD} = -\nabla f(x^{(k)})$$

מדובר למעשה ב"משפחת dים" שכל אחד מהם סבבה מבחינתנו ככיוון ירידה.

$$fig(x^{(k)}+lpha dig) < f(x^{(k)}\leftrightarrow <
abla fig(x^{(k)}ig), d> < 0$$
 עבור $lpha > 0$ מספיק קטן נקבל

נקבל כיוון ירידה. M שהיא $d=-M\nabla f$ נקבל כיוון ירידה.

<u>: LS-כ SD פירוש של</u>

$$d_{SD}^{(k)} = -\alpha \nabla f(x^{(k)})$$

 $.x^{(k+1)} = x^{(k)} - \alpha \nabla f(x^{(k)})$: והצעד יהיה

שיטת ניוטון:

מוטיבציה: שיטה זו הרבה יותר חזקה מ*SD* אבל יקרה כי אנחנו מבצעים יותר חישובים. מתי מומלץ? הפיכת H (אפילו בצורה מקורבת) הוא לא יקר מדיי, ואם בשיטה יש מעט פרמטרים.

$$d_N^{(k)} = -(\nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)})$$

 $M=H=
abla^2 f(x^{(k)})$ עבור כי מדובר בכיוון ירידה כי הוא מהצורה d=-M
abla f

:Quasi Newton שיטת

<u>מוטיבציה:</u> שיטת ניוטון דרשה המון חישובים, שיטת *SD* דרשה מעט מדיי חישובים, השיטה הזו נמצאת באמצע שלהן.

בוחרים מטריצה $M^{(k)}$ מקורבת להסיין ($abla^2 f(x^{(k)})$) למשל כמו יעקובי שנבחר את האלכסון מטריצה $M^{(k)}$ שהיא $M^{(k)}$ על מנת לשמר את כיוון הירידה.

<u>נושא: חיפוש על ישר</u>

מטרה: למצוא את גודל הצעד הטוב ביותר. נגדיר פונקציה שתלויה ב $lpha^{(0)}$ ננחש ונוריד אותו עד $lpha^{(0)}$ שנגיע לירידה "מספיקה".

$$\phi(\alpha) = f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}), \quad \alpha^{(k)} = \underset{\alpha}{\operatorname{arg min}} \phi(\alpha)$$

$$f(\mathbf{x}^{(k)} + \alpha_j \mathbf{d}^{(k)}) \le f(\mathbf{x}^{(k)}) + c\alpha_j \langle \nabla f, \mathbf{d}^{(k)} \rangle.$$

0 < c < 1 עבור

שיטת Coordinate descent

מטרה: לעבור על כל המשתנים x_i ועבור כל אחד למצוא מינימום סקלארי בהינתן שמקבעים את האחרים (דומה לגזירה ב2 משתנים)

:הצעד

$$x_i^{(k+1)} \leftarrow \arg\min_{x_i} f(x_1^{(k+1)}, x_2^{(k+1)}, ..., x_{i-1}^{(k+1)}, x_i, x_{i+1}^{(k)}, ..., x_n^{(k)})$$

שיטה זו היא בדיוק גאוס-זיידל לא ליניארי.

שיטת Newton לא מדויק

נניח כי H היא לא SPD אזי יש לה ע"ע שליליים. "נייצב" את ההסיין ע"י ביצוע הזזה eta. אם H לא הפיך אז מומלץ לבצע את ההזזה הזו.

$$\nabla^2 f(\mathbf{x}^{(k)})\mathbf{d} = -\nabla f(\mathbf{x}^{(k)})$$

$$M = (\nabla^2 f + \beta I)$$

בושא: Data fitting problems

מוטיבציה: אנחנו מעוניינים למצוא מינימום לפונקציה שאינה ליניארית ולכן *LS* בעייתי, ננסה ליצור מצב בו נקבל בעיית מינימום ריבועי ליניארית בכל איטרציה.

$$\min_{\mathbf{x}} f(\mathbf{x}) = \min_{\mathbf{x}} \frac{1}{2} \left| \left| f(\mathbf{x}) - y^{obs} \right| \right|_{2}^{2}$$

כאשר f(x) היא ווקטור של פונקציות שהן לא בהכרח ליניאריות.

עבור מימד 1:

: יהיה *SD* יהיה•

$$x^{(k+1)} = x^{(k)} - \alpha^{(k)} \nabla_{x} f(x^{(k)})$$

•הצעד בשיטת ניוטון יהיה:

$$f(x^{(k)} + \epsilon) = f(x^{(k)}) + \langle \nabla f(x^{(k)}, \epsilon \rangle + \frac{1}{2} \langle \epsilon, \nabla^2 f(x^{(k)}) \epsilon \rangle + O(||\epsilon||^3)$$

•הצעד בשיטת גאוס-ניוטון (לאחר פיתוח טיילור מסדר ראשון והשארת הריבוע) יהיה:

$$f(x + \epsilon) \approx \frac{1}{2} (f(x) + f'(x)\epsilon - y^{obs})^2$$

: עבור רב מימד

יהיה: בשיטת גאוס-ניוטון יהיה:

$$f(x^{(k)} + d) \approx f(x^{(k)}) + J(x^{(k)})d$$
$$d_{GN}^{(k)} = -(J^T J)^{-1} \nabla (f(x^{(k)}))$$

יתכן שיהיה לה ערך עצמי 0 והיא לא תהיה $J^T J$ אבחנה: $J^T J$ היא מטריצה אווי ולא גאוס ניוטון יכלו להיווצר בעיות.

: סינגולרית $J^T J$ סינגולרית עבור המקרה בו

$$\mathbf{d}_{LM}^{(k)} = \arg\min_{\mathbf{d}} \frac{1}{2} \|\mathbf{f}(\theta^{(k)}) + \mathbf{J}(\theta^{(k)})\mathbf{d} - \mathbf{y}^{obs}\|_{2}^{2} + \frac{\mu}{2} \|\mathbf{d}\|_{2}^{2},$$

 $\mu > 0$ עבור

נושא: IRLS

. וזה קשה l_2 אנחנו מעוניינים לבצע בנורמה שאינה אנחנו מעוניינים לבצע בנורמה אנחנו מעוניינים לבצע

נבצע פתרון איטרטיבי כך שבכל איטרציה נבצע בצע ממושקל עם l_2 . ובכל איטרציה נעדכן את מטריצת המשקל בהתאם כדי למצוא את הפתרון הבא.

: הצעד באלגוריתם יהיה

$$x^{(k+1)} = \operatorname{argmin}_{x} ||Ax - b||_{W^{(k)}}^{2}$$

<u>:l₁פתרון ב</u>

(ונוסיף 1/2 ממקדם של המשוואה בצעד) . $w_i^{(k)} = \frac{1}{\left(|a_i^T x^{(k)} - b| + \epsilon\right)}$ המשקול בכל צעד יהיה

$:l_n$ פתרון ב

(ונוסיף 1/2 מקדם של המשוואה בצעד) . $w_i^{(k)} = \frac{1}{\left|a_i^T x^{(k)} - b\right|^{p-2} + \epsilon}$ המשקול בכל צעד יהיה

<u>ו באופן כללי: IRLS</u>

 $.r^* = argmin_r \Sigma_i \phi(r_i)$ נרצה לפתור את נרצה

: בכל איטרציה ונתקן את המשקל בהתאם. הצעד יהיה

$$r^{(k+1)} = argmin_r ||r||_{W^{(k)}}^2$$

$$w_i^{(k)} = \frac{\phi'(r_i)}{2r_i}$$
במקרה זה

נושא: אופטימיזציה עם אילוצים

<u>מוטיבציה:</u> אנחנו מעוניינים למצוא x מינימאלי ובו בזמן לקיים מספר אילוצים של שוויונים ואי שוויונים.

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \quad \text{subject to} \quad \begin{cases} c_j^{\text{eq}}(\mathbf{x}) = 0 & j = 1, ..., m^{\text{eq}} \\ c_l^{\text{ieq}}(\mathbf{x}) \le 0 & l = 1, ..., m^{\text{ieq}} \end{cases},$$

. כאשר פונקציית האילוץ המטרה פונקציית האילוץ היא פונקציית המטרה f(x)

יסימן האי שוויון יכול להיות \geq או \leq זה לא משנה כל עוד דואגים להוסיף מינוס ולהשאיר את שמעות המשוואה כמו שהיא.

אומגה היא מרחב הפתרונות החוקיים x (שמקיימים את האילוצים) מהם נחפש את הפתרון יאומגה היא מרחב הפתרונות החוקיים x

:פורמאלי

$$\Omega = \left\{\mathbf{x}|c_j^{\mathrm{eq}}(\mathbf{x}) = 0, \quad j = 1,...,m^{\mathrm{eq}}; \quad c_l^{\mathrm{ieq}}(\mathbf{x}) \leq 0, \quad l = 1,...,m^{\mathrm{ieq}}\right\}.$$

אילוצים עם שוויונים (כופלי לגראנז'):

. הוא מינימום x^* אזי $\nabla f(x^*) + \lambda \nabla c_i(x^*) = 0$ קיים $\lambda > 0$ קיים $\lambda > 0$

. הוא מקסימום x^* אזי $\nabla f(x^*) + \lambda \nabla c_i(x^*) = 0$ קיים $\lambda > 0$ קיים

יהיה כיוון ירידה וישמר את האילוצים עליו לקיים: d•על מנת ש

$$.<\nabla f, d><0.1$$

$$.<\nabla c,d>=0.2$$

 $\left(I - \frac{1}{<\nabla c, \nabla c>} \nabla c \nabla c^T\right) \nabla f$ הגדרה: מטריצת הטלה היא

 $.\nabla f - \lambda \nabla c = 0$ יהיו מקבילים. $\nabla c, \nabla f$ יהיו נרצה ש•

 $L(x,\lambda) = f(x) + \lambda c(x)$ הגדרה: פונקציית לגראדיאנט היא

ליניארית במטריצת הגרדיאנט של x^* נאמר ש- LICQ קיים אם אין תלות ליניארית במטריצת הגרדיאנט של x^* האילוצים (יעקוביאן היא

אזי קיים וקטור יחיד λ^* שיקרא אוזי קיים וקטור יחיד x^* שיקרא משפט: x^* שיקרא "כופל לגראנז" שעבורו מתקיים :

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*) = \nabla f(\mathbf{x}^*) + (I^{eq})^T \lambda^* = 0$$

מתקיים $\nabla L(x^*,\lambda^*)=0$ ונניח כי λ^* מתקיים ויש λ^* כופל לגראנז' המקיים λ^* ונניח כי λ^* אזי λ^* של λ^* הוא פתרון מינימום ויש λ^* כופל לגראנז' המקיים λ^* ונניח כי λ^* מתקיים λ^* אזי λ^* של λ^* היא λ^* היא λ^* ונניח כי וון ש"מותר לנו ללכת בו")

<u>פורמאלית:</u>

$$\mathbf{y}^{\top} \nabla_{\mathbf{x}}^2 \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{y} \geq 0 \quad \forall \quad \mathbf{y} \in \mathbb{R}^n \quad s.t. \quad \mathbf{J}^{\mathsf{eq}} \mathbf{y} = 0.$$

ברב מימד:

$$\min_{\lambda} \|\mathbf{J}^T \lambda + \nabla f\|_2^2 = 0,$$

יאם יהיה את אותו האילוץ מספר פעמיים זה לא ייצור בעיה אבל J לא תהיה הפיכה וזה יכול לפגוע במשפטים שתוארו למעלה.

אסור שיהיה לנו כיוון ירידה d שמקיים את כל האילוצים.

$$L(x,\lambda) = f(x) + \bar{\lambda}^T \bar{c}(\bar{x})$$

$$\nabla L_x = \nabla_x f + J\bar{\lambda} = 0$$

$$\nabla L_{\lambda} = \bar{c}(\bar{x}) = 0$$

אילוצים עם אי-שוויונים:

מוטיבציה: מעוניינים למצוא כיוון ירידה d שיקיים את האילוצים.

$$c^{ieq}(x+d) \approx c^{ieq}(x) + \langle \nabla c^{ieq}(x), d \rangle \leq 0$$

. שרירותית הוא איחוד אילוצי האי שוויון שמתקיימים בשוויון x בנקודה בקודה אירותית הוא איחוד אילוצי האי שוויון שמתקיימים בשוויון.

$$\{l \mid c_l^{ieq}(x) = 0\}$$

•אי שוויונים פעילים למעשה מתנהגים כמו שוויונים.

(אפילו אם קצת). אז d חופשי לנוע אפילו אם קצת) אבחנה: אם מתקיים כי $c^{ieq}(x) < 0$

אם האילוץ $c^{ieq}(x)$ לא פעיל בנקודה x אזי אנחנו יכולים לזוז לכל הכיוונים אך אם הוא כן פעיל אזי $c^{ieq}(x)$ לא פעיל בנקודה x אזי אנחנו יכולים לזוז לכל הכיוונים אך אם הוא כן פעיל אזי בעלינו לדרוש $c^{ieq}(x)=0$ ועל מנת לספק את האילוצים עלינו לדרוש $c^{ieq}(x)=0$ ועל מנת לספק את האילוצים עליו לקיים גם את התנאי $c^{ieq}(x)=0$ יהיה כיוון ירידה ולכן עליו לקיים גם את התנאי $c^{ieq}(x)=0$ יהיו מקבילים. כלומר $c^{ieq}(x)=0$ עבור $c^{ieq}(x)=0$ יהיו מקבילים. כלומר $c^{ieq}(x)=0$

פונקציית לגראדיאנט:

$$L(x, \lambda^{eq}, \lambda^{ieq}) = f(x) + (\lambda^{eq})^T c^{eq}(x) + (\lambda^{ieq})^T c^{ieq}(x)$$

כאשר λ^{eq} הוא וקטור שמימדו הוא כמספר אילוצי השוויון ו- λ^{ieq} הוא וקטור שמימדו הוא כמספר אילוצי האי-שוויון.

בעיית אופטימיזציה עם אילוצים, ושתנאי הרגולריות x^* הוא פתרון של בעיית אופטימיזציה עם אילוצים, ושתנאי הרגולריות $\lambda^{eq*}, \lambda^{ieq^*}$ כך ש-

$$\begin{split} \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^{\text{eq}*}, \boldsymbol{\lambda}^{\text{ieq}*}) &= \nabla f(\mathbf{x}^*) + (\mathbf{J}^{\text{eq}})^{\top} \boldsymbol{\lambda}^{\text{eq}*} + (\mathbf{J}^{\text{ieq}})^{\top} \boldsymbol{\lambda}^{\text{ieq}*} = 0 \\ \mathbf{c}^{\text{eq}}(\mathbf{x}^*) &= 0 \\ \mathbf{c}^{\text{ieq}}(\mathbf{x}^*) &\leq 0 \\ \boldsymbol{\lambda}^{\text{ieq}*} &\geq 0 \end{split}$$

$$[Complementary \ slackness] \quad for \ l = 1, ..., m^{\text{ieq}} \ \lambda_l^{\text{ieq}*} c_l^{\text{ieq}}(\mathbf{x}) = 0 \end{split}$$

 $^{.\}lambda^{ieq^*}=0$ עבור אילוץ אקטיבי יתקיים כי $\lambda^{ieq^*}>0$ ועבור אילוץ אינו אקטיבי יתקיים יים יי

 $\lambda^{eq\,*},\lambda^{ieq\,^*}$ ונניח ש- x^* הוא פתרון שמקיים את תנאי הניח (נניח ש- x^* הוא פתרון שמקיים את תנאי (הסיין אי שלילי) ושתנאי LICQ מתקיים אזי צריך להתקיים (מיין אי שלילי

$$\mathbf{y}^{\top} \nabla_{\mathbf{x}}^{2} \mathcal{L}(\mathbf{x}^{*}, \boldsymbol{\lambda}^{\mathrm{eq}*}, \boldsymbol{\lambda}^{\mathrm{ieq}*}) \mathbf{y} \geq 0 \quad \forall \quad \mathbf{y} \in \mathbb{R}^{n} \quad s.t. \quad \left\{ \begin{array}{c} \mathbf{J}^{\mathrm{eq}} \mathbf{y} = 0 \\ \nabla c_{l}^{\mathrm{ieq}}(\mathbf{x}^{*}))^{\top} \mathbf{y} = 0 \quad l \in \mathcal{A}(\mathbf{x}^{*}) \end{array} \right.$$

אבחנה: נקודה x^* במקרה זה היא **חשודה לקיצון** אך תחשב מינימום אך ורק אם הביטוי מלמעלה יהיה חיורי

שלבי הפתרון של בעיית אופטימיזציה עם אילוצי אי-שוויון:

- 1. נתעלם לגמרי מהאי שוויונים ונחפש פתרון לבעיה.
- 2. נציב את הפתרון שמצאנו בכל האילוצים . אם הפתרון מקיים את כל האילוצים נוכל לסיים כאן.
- 3. אחרת, קיימת לפחות משוואה אחת שהפתרון לא מקיים, אם קיימות יותר נבחר אחת באקראיות ונציב אותה בפונקציית לגראדיאנט ונחפש פתרון (נצא מנקודת הנחה שבמבחן הוא ייתן מערכת משוואות פתירה)
- 4. את הפתרון שמצאנו נציב באילוצים ונוודא שהוא מקיים את כל האילוצים, אם כן נוכל **לסיים כאן.**
 - . 3. אחרת, ניקח אילוץ אחר או את כל האילוצים שלא התקיימו ונפעיל שוב את השיטה מ-3
 - 6. בעזרת הפתרון שמצאנו נמצא את λ (וקטור כופלי לגראנז') ועבור האילוצים הפעילים אנחנו $\lambda>0$ אמורים לקבל $\lambda>0$ ועבור הלא פעילים

אבחנה: שיטת פתרון זו לא כיפית בכלל! 😕

<u>:Penalty</u>

מוטיבציה: נהפוך בעיית אופטימיזציה עם אילוצים לבעיית אופטימיזציה ללא אילוצים ונזרוק אותה מוטיבציה: נהפוך בעיית אופטימיזציה עם אילוצים לבעיית אופטימיזציה לאלגוריתם ניוטון, SD או גאוס-ניוטון .

נגדיר ho סקלאר שיהיה המקדם של האילוצים במשוואה ועבור ho מספיק גדול או שהוא יקיים פגדיר ho או שהפונקציה תקבל ערך מאוד גבוה. כך או כך , ho תמיד יגרום לכך שנפר את האילוצים כל עוד הם לא מתקיימים.

$$\min f(x) + \rho (c(x))^{2}$$

$$\min f(x) + \rho_{1} ||c(x)||_{2}^{2} + \rho_{2}||\max\{0, c^{ieq}(x)\}||_{2}^{2}$$

נתחיל מ- ho_0 בגודל סביר ולאט לאט מגדילים. מומלץ לא להתחיל עם ערך גדול מדיי על מנת לא נתחיל מ- $ho_0 <
ho_1 < \dots <
ho_k$ להקשות על האלגוריתם לפתור את הבעיה.