CS61C Fall 2018 GS Worksheet 1a Solution(Num Rep)

1. **Number Representation** (Spring 2017 MT1 #1)

Consider a base-5 number format where the digits can take values 0, 1, 2, 3, 4:

a. What is the largest number that can be represented as an unsigned base-5 number of N digits? Express your answer in terms of N.

 $5^{N} - 1$

b. Convert 623₁₀ to a number in base 5:

4443

2. Another Number Representation

a. Convert the following 8-bit two's complement numbers from hexadecimal to decimal:

0x80 = -1280xF4 = -12

0x0E = 14

b. Assume that the most significant bit (MSB) of x is a 0. We store the result of flipping x's bits into y. Interpreted in the following number representations, how large is the magnitude of y relative to the magnitude of x? Circle ONE choice per row.

Unsigned	y < x	y = x	y > x	Can't Tell
One's Complement	y < x	y = x	y > x	Can't Tell
Two's Complement	y < x	y = x	y > x	Can't Tell
Sign and Magnitude	y < x	y = x	y > x	Can't Tell

- In unsigned, a number with the MSB of 1 is always greater than one with a MSB of 0.
- In one's complement, flipping all of the bits is the negation procedure, so the magnitude will be the same.
- In two's complement, y is a negative number. Its magnitude can be found by applying the negation procedure, which is flipping the bits and then adding 1, resulting in a larger magnitude than x.
- In sign and magnitude, the 2nd MSB bit will determine the relative magnitudes of x and y, so you can't tell for certain.

3 Back to the Base-ics (Fall 2017 a) Show how the binary string 0b101 following types:	,	and displa	yed as the
ionownig types.	Hexadecimal:	0x	B6
	Unsigned Decimal:		182
	Two's Complement De	ecimal:	74
b) What is the minimum number of b values that a three-digit base-7 numb simplified decimal value.	•	U	Ŭ
Powers of 7 are shown below for refe	erence:		
7^1 = 7			
7^2 = 49			
7^3 = 343			
7^4 = 2401			
7^5 = 16807			
9			
c) What bias should be added for a b number of positive and negative num value.	<u> </u>	-	-
			171
d) Convert the unsigned number 0xD	PF to its base-7 equivalent ((i.e. the ba	se-7 number

with the same decimal value). What is the resulting number? The prefix 0s is for base-7.

__436____

4. Num Rep!

Answer the following questions about number representation:

(a) Unsigned Base 4

(i) What is the range that a 4 digit unsigned base 4 number can represent? Write the bounds in decimal.

Solution: $0000(base 4) \sim 3333 (base 4) = 0 \sim 255$

(ii) Convert 107(base 10) to unsigned base 4.

Solution: 107(base 10) = 64 + 16 * 2 + 4 * 2 + 3 = 1223(base)

(b) Signed Base 4

(i) Suppose we wanted to use a bias in order to represent negative numbers in base 4. If we are working with a 4 digit base 4 number, what should we choose as our bias?

(Our bias should create equal amounts of negative and positive numbers for our range. If this is not possible, select a bias that will result in 1 more negative number than positive numbers).

Express your answer in decimal.

Solution: 255/2 = 127. So the bias is -128 to favor negative numbers.

(ii) Suppose rather than using a bias notation, we decide to do the following. For each base 4 number, we will reserve the most significant digit to strictly be used as a sign bit. A digit value of 1 will indicate a negative number, and a digit value of 0 will indicate a positive number. Any other values will result in an invalid number.

For instance: 00034 = +3 10034 = -3 20034 = Invalid

How many valid representation can we represent with a 4 digit base 4 number using this scheme?

Solution: 2*4*4*4 = 128