Melen Leclerc

INRAE IGEPP

2025 - Rennes

Préambule

- Cours TD initialement destiné à vous fournir les bases pour analyser les données du projet expérimental
- \rightarrow formalisation d'un modèle simple pour analyser la croissance d'un champignon
- → analyse des données à l'aide du cadre de l'ANCOVA
- → utilisation de R pour la mise en pratique

Programme

- Mercredi 05/03
- → Cours TD : modèle de croissance radiale, ANCOVA
- → diapos pdf, lesion_asco.csv, cours_2023.R

Programme

- Mercredi 05/03
- → Cours TD : modèle de croissance radiale, ANCOVA
- \rightarrow diapos pdf, lesion_asco.csv, cours_2023.R
 - Mercredi 12/03
- ightarrow Soutien à l'analyse des données expérimentales, réponse aux questions
- Documents disponibles sur https://github.com/meleninrae/cours_ancova

	Mait	PDA	V8		
2dpi	(1)		•		
4dpi		0			
7dpi	0	0	•		
14dpi	0	0	0		
21dpi	0				
29dpi					

Mesures de croissance

Suivi du rayon r au court du temps t

$$\rightarrow$$
 Observations : $\mathcal{Y}_i = [(r_1, t_1), \dots, (r_i, t_i), \dots, (r_N, t_N)]$

Croissance mycélienne

Modèle de croissance radiale

- $oldsymbol{\circ}$ ρ : vitesse radiale de développement du champignon
- R : rayon maximal de la boîte ou de la feuille
- r₀ : rayon initial de la colonie
- → Modèle de croissance au cours du temps si vitesse constante ?????

Modèle de croissance radiale

- $\, \bullet \, \, \rho$: vitesse radiale de développement du champignon
- R : rayon maximal de la boîte ou de la feuille
- r₀: rayon initial de la colonie
- Rayon

$$r(t) = r_0 + \min(\rho t, R)$$

- → relation linéaire
 - Surface

$$S(t) = \pi r(t)^2$$

→ relation quadratique

Modèle de croissance radiale

- $\bullet \ \rho$: vitesse radiale de développement du champignon
- R : rayon maximal de la boîte ou de la feuille
- r₀ : rayon initial de la colonie
- Si taille de boîte/feuille infinie (ou aucune mesure après saturation au rayon maximal)
- Rayon

$$r(t) = r_0 + \rho t$$

→ relation linéaire

Des observations

$$\mathcal{Y}_i = \{(r_1, t_1), \dots, (r_i, t_i), \dots, (r_N, t_N)\}$$

Un modèle linéaire

$$r(t) = r_0 + \rho t$$

Des observations

$$\mathcal{Y}_i = \{(r_1, t_1), \dots, (r_i, t_i), \dots, (r_N, t_N)\}$$

Un modèle linéaire

$$r(t) = r_0 + \rho t$$

 \rightarrow Comment estimer les paramètres $\hat{\rho}$ et \hat{r}_0 ?

Ajustement du modèle aux données

Des observations

$$\mathcal{Y}_i = \{(r_1, t_1), \dots, (r_i, t_i), \dots, (r_N, t_N)\}$$

Un modèle linéaire

$$r(t) = r_0 + \rho t$$

- \rightarrow Comment estimer les paramètres $\hat{\rho}$ et \hat{r}_0 ?
- Régression linéaire

$$r_i = r_0 + \rho t_i + \epsilon_i$$

Données TD

Ascochytose du pois

Données TD

- Deux pathogènes : Peyronellaea pinodes (dp) & Phoma medicaginis (pm)
- Deux variétés-génotypes : résistant et sensible
- Données de croissance de lésion symptomatiques sur feuille

temps	genotype	espece	sfeuille	sain	lesion	rayon
Min. :1.000	resistant:5432	dp:6336	Min. : 0.888	Min. : 0.071	Min. :0.0000	Min. :0.0000
1st Qu.:2.000	sensible :5388	pm:4484	1st Qu.: 2.298	1st Qu.: 1.819	1st Qu.:0.0240	1st Qu.:0.0874
Median:4.000			Median : 3.274	Median : 2.666	Median :0.3000	Median :0.3090
Mean :4.451			Mean : 4.571	Mean : 3.600	Mean :0.9393	Mean :0.4153
3rd Qu.:7.000			3rd Qu.: 6.801	3rd Qu.: 5.823	3rd Qu.:1.6623	3rd Qu.:0.7274
Max. :9.000			Max. :10.653	Max. :10.588	Max. :5.9530	Max. :1.3766

Régression linéaire dans R

On prend toutes les données espèce et génotype confondus

mod<-lm(rayon~temps,data=data)</pre>

Régression linéaire dans R

On prend toutes les données espèce et génotype confondus

```
mod<-lm(rayon~temps,data=data)</pre>
```

Résultats

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1033394  0.0034246  -30.18  <2e-16 ***
temps
         Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

```
Residual standard error: 0.1811 on 10818 degrees of freedom
Multiple R-squared: 0.7409, Adjusted R-squared: 0.7408
F-statistic: 3.093e+04 on 1 and 10818 DF, p-value: < 2.2e-16
```

Régression linéaire dans R

On prend toutes les données espèce et génotype confondus

```
mod<-lm(rayon~temps,data=data)</pre>
```

Résultats

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1033394 0.0034246 -30.18 <2e-16 ***
temps
         Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Residual standard error: 0.1811 on 10818 degrees of freedom Multiple R-squared: 0.7409, Adjusted R-squared: 0.7408 F-statistic: 3.093e+04 on 1 and 10818 DF, p-value: < 2.2e-16

```
\hat{\rho} = 0.1165 \text{ et } \hat{r}_0 = -0.1033
```

Croissance moyenne

Croissance moyenne tous effets confondus :

$$r(t) = \hat{\rho} + \hat{r}_0 t = -0.1033 + 0.1165t$$

 \rightarrow ordonnée à l'origine négative...

- Régression linéaire : $r_i = r_0 + \rho t_i + \epsilon_i$
- Ajout d'une variable qualitative à deux modalités (e.g. effet espèce : dp & pm)
- Quels effets peut avoir cette variable qualitative sur la relation linéaire ?

• Des pentes différentes

Système expérimental

• Des ordonnées à l'origine différentes

Système expérimental

• Des pentes et des ordonnées à l'origine différentes

Analyse de covariance

- Régression linéaire : $r_i = r_0 + \rho t_i + \epsilon_i$
- Variable qualitative à deux modalités

- Régression linéaire : $r_i = r_0 + \rho t_i + \epsilon_i$
- Variable qualitative à deux modalités
- Idée
- \rightarrow ordonnées à l'origine : $\mu_m + \alpha_i$
- \rightarrow pente : $\mu_{\rho} + \beta_{i}$

- Régression linéaire : $r_i = r_0 + \rho t_i + \epsilon_i$
- Variable qualitative à deux modalités
- Idée
- ightarrow ordonnées à l'origine : $\mu_{r_0} + \alpha_i$
- ightarrow pente : $\mu_{
 ho} + eta_{\it i}$
- Pour la modalité 1 : $r_1(t) = (\mu_{r_0} + \alpha_1) + (\mu_{\rho} + \beta_1)t$
- Pour la modalité 2 : $r_2(t) = (\mu_{r_0} + \alpha_2) + (\mu_{\rho} + \beta_2)t$

Rappel modèle tous effets confondus

modele<-lm(rayon~temps,data=data)</pre>

- Rappel modèle tous effets confondus
 modele<-lm(rayon~temps,data=data)
- Ajout de l'effet espèce sur l'ordonnée à l'origine

- Rappel modèle tous effets confondus modele<-lm(rayon~temps,data=data)</pre>
- Ajout de l'effet espèce sur l'ordonnée à l'origine modele<-lm(rayon~temps+espece,data=data)</pre>

- Rappel modèle tous effets confondus
 modele<-lm(rayon~temps,data=data)
- Ajout de l'effet espèce sur l'ordonnée à l'origine
 modele<-lm(rayon~temps+espece,data=data)
- Ajout de l'effet espèce sur la pente

- Rappel modèle tous effets confondus
 modele<-lm(rayon~temps,data=data)
- Ajout de l'effet espèce sur l'ordonnée à l'origine
 modele<-lm(rayon~temps+espece,data=data)
- Ajout de l'effet espèce sur la pente
 modele<-lm(rayon-temps+espece:temps,data=data)

- Rappel modèle tous effets confondus modele<-lm(rayon~temps,data=data)
- Ajout de l'effet espèce sur l'ordonnée à l'origine modele < - lm (rayon~temps+espece, data=data)
- Ajout de l'effet espèce sur la pente modele<-lm(rayon~temps+espece:temps,data=data)
- Ajout de l'effet espèce sur l'ordonnée à l'origine et la pente

- Rappel modèle tous effets confondus
 modele<-lm(rayon~temps,data=data)
- Ajout de l'effet espèce sur l'ordonnée à l'origine modele<-lm(rayon~temps+espece,data=data)
- Ajout de l'effet espèce sur la pente
 modele<-lm(rayon~temps+espece:temps,data=data)
- Ajout de l'effet espèce sur l'ordonnée à l'origine et la pente modele<-lm(rayon~temps+espece+espece:temps,data=data)

ANCOVA et R

• ANCOVA
$$r_i(t) = (\mu_{r_0} + \alpha_i) + (\mu_{\rho} + \beta_i)t + \epsilon_i$$

• ANCOVA
$$r_i(t) = (\mu_{r_0} + \alpha_i) + (\mu_{\rho} + \beta_i)t + \epsilon_i$$

•
$$r_1(t) = (\mu_{r_0} + \alpha_1) + (\mu_{\rho} + \beta_1)t$$

•
$$r_2(t) = (\mu_{r_0} + \alpha_2) + (\mu_{\rho} + \beta_2)t$$

• ANCOVA
$$r_i(t) = (\mu_{r_0} + \alpha_i) + (\mu_{\rho} + \beta_i)t + \epsilon_i$$

•
$$r_1(t) = (\mu_{r_0} + \alpha_1) + (\mu_{\rho} + \beta_1)t$$

•
$$r_2(t) = (\mu_{r_0} + \alpha_2) + (\mu_{\rho} + \beta_2)t$$

modele<-lm(rayon~temps+espece+temps:espece,data=data)</pre>

ANCOVA et R

• ANCOVA
$$r_i(t) = (\mu_{r_0} + \alpha_i) + (\mu_{\rho} + \beta_i)t + \epsilon_i$$

•
$$r_1(t) = (\mu_{r_0} + \alpha_1) + (\mu_{\rho} + \beta_1)t$$

•
$$r_2(t) = (\mu_{r_0} + \alpha_2) + (\mu_{\rho} + \beta_2)t$$

modele<-lm(rayon~temps+espece+temps:espece,data=data)</pre>

Coefficients extimés

dummy.coef(modele)

Full coefficients are

(Intercept): -0.11928780.1337302 temps:

espece: dp pm

0.00000000 0.01531703

temps:espece: dp pm

0.00000000 - 0.03526847

ANCOVA et R

• ANCOVA
$$r_i(t) = (\mu_{r_0} + \alpha_i) + (\mu_{\rho} + \beta_i)t + \epsilon_i$$

•
$$r_1(t) = (\mu_{r_0} + \alpha_1) + (\mu_{\rho} + \beta_1)t$$

•
$$r_2(t) = (\mu_{r_0} + \alpha_2) + (\mu_{\rho} + \beta_2)t$$

modele<-lm(rayon~temps+espece+temps:espece,data=data)

Coefficients extimés

dummy.coef(modele)

Full coefficients are

(Intercept): -0.11928780.1337302 temps:

dp espece: pm 0.00000000 0.01531703

temps:espece: dp pm

0.00000000 - 0.03526847

$$\hat{\mu}_{\rho} = 0.133 \text{ et } \hat{\mu}_{r_0} = -0.119$$

•
$$\hat{\alpha_1} = 0$$
 et $\hat{\alpha_2} = 0.015$

•
$$\hat{\beta}_1 = 0$$
 et $\hat{\beta}_2 = -0.035$

Test des effets globaux

Quels effets sont significatifs ?

anova(modele)

Analysis of Variance Table

Response: rayon

Variance expliquée par chaque variable

Quelle est l'influence de chaque variable ?

```
cbind(variable=row.names(anova(modele)),influence=
anova(modele)$Sum/(sum(anova(modele)$Sum)))
```

```
variable influence
[1,] "temps" "0.740854333681361"
[2,] "espece" "0.0389919808107421"
[3,] "temps:espece" "0.0168035789994021"
[4,] "Residuals" "0.203350106508495"
```

• lci on ne s'intéresse qu'à l'effet du génotype sur la pente

- lci on ne s'intéresse qu'à l'effet du génotype sur la pente
- Y-a-t'il des différences significatives entre les modalités ?

- Ici on ne s'intéresse qu'à l'effet du génotype sur la pente
- Y-a-t'il des différences significatives entre les modalités ?
- ightarrow comparaison post-hoc des pentes avec cld() et emtrends()

- Ici on ne s'intéresse qu'à l'effet du génotype sur la pente
- Y-a-t'il des différences significatives entre les modalités ?
- → comparaison post-hoc des pentes avec cld() et emtrends()

```
cld(emtrends(modele, "espece", var="temps"))
```

```
espece temps.trend
                       SE
                            df lower.CL upper.CL .group
           0.0985 0.000871 10816
                                 0.0968
                                          0.100 1
pm
dp
           0.1337 0.000796 10816 0.1322
                                          0.135
```

Confidence level used: 0.95

significance level used: alpha = 0.05

Présentation des résultats

- Graphiques : modèles ajustés & données
- Tableau d'analyse de la variance : test des effets globaux

Variable	Df	p-value	variance expliquée
Year	3	0.03	6.6 %
Fields	24	< 0.001	3.2 %
Severity	5	0.15	0.5 %

O Comparaison des modalités (coefs estimés, tests post-hoc, graphiques...)

 Confusion effet sur l'ordonnée à l'origine et sur la pente (i.e. interaction quanti-quali)

- Confusion effet sur l'ordonnée à l'origine et sur la pente (i.e. interaction quanti-quali)
- Test des effets globaux : Anova() et non summary()

- Confusion effet sur l'ordonnée à l'origine et sur la pente (i.e. interaction quanti-quali)
- Test des effets globaux : Anova() et non summary()
- Hypothèse de croissance radiale constante puis modèle linéaire sur la surface

- Confusion effet sur l'ordonnée à l'origine et sur la pente (i.e. interaction quanti-quali)
- Test des effets globaux : Anova() et non summary()
- Hypothèse de croissance radiale constante puis modèle linéaire sur la surface

Merci de votre attention

Questions?

melen.leclerc@inrae.fr