## Optimization and Computational Linear Algebra for Data Science Homework 11: Optimality conditions

Due on December 6, 2020



- Unless otherwise stated, all answers must be mathematically justified.
- Partial answers will be graded.
- Your submission has to be uploaded to Gradescope. Indicate Gradescope the page on which each problem is written.
- You can work in groups but each student must write his/her own solution based on his/her own understanding of the problem. Please list on your submission the students you work with for the homework (this will not affect your grade).
- Problems with a (\*) are extra credit, they will not (directly) contribute to your score of this homework. However, for every 4 extra credit questions successfully answered your lowest homework score get replaced by a perfect score.
- If you have any questions, feel free to contact me (lm4271@nyu.edu) or to stop at the office hours.



**Problem 11.1** (2 points). Let  $f, g : \mathbb{R}^3 \to \mathbb{R}$  be the functions defined by

$$f(x,y,z) = 2x^2 + y^2 + \frac{1}{2}z^2 + 4x - 6y - z + 1$$
 and  $g(x,y,z) = -xyz + x + y + z$ .

Compute the critical points of f and g and determine if they are global/local maximizers/minimizers or saddle points.

**Problem 11.2** (3 points). We consider the following constrained optimization problem:

minimize 
$$x - y + z$$
 subject to  $x^2 + y^2 + z^2 = 1$  and  $x + y + z = 1$ . (1)

We admit that this minimization problem has (at least) one solution (this comes from the fact that a continuous function on a compact set attains its minimum).

Using Lagrange multipliers, show that (1) has a unique solution and compute its coordinates.

**Problem 11.3** (2 points). Let  $u \in \mathbb{R}^n$  be a vector such that for all  $i \neq j$ ,  $|u_i| \neq |u_j|$ . We consider the constrained optimization problem

maximize 
$$\langle u, x \rangle$$
 subject to  $||x||_1 \leq 1$ .

- (a) Show that this problem has a unique solution  $x^*$  and give the expression of  $x^*$  in terms of u (Lagrange multipliers are not needed here).
- (b) Give a graphical interpretation.

Problem 11.4 (3 points). We will prove the spectral theorem in this problem: you are therefore not allowed to use the spectral theorem and its consequences to solve this exercise.

Let A be an  $n \times n$  symmetric matrix. We consider the following optimization problem

$$maximize \quad x^{\mathsf{T}} A x \quad subject \ to \quad ||x|| = 1. \tag{2}$$

This optimization problem admits a solution (this comes from the fact that a continuous function on a compact set achieved its maximum) that we denote by  $v_1$ .

- (a) Using Lagrange multipliers, show that  $v_1$  is an eigenvector of A.
- (b) We now consider the optimization problem

maximize 
$$x^{\mathsf{T}}Ax$$
 subject to  $||x|| = 1$  and  $\langle x, v_1 \rangle = 0$ . (3)

For the same reason as above, this problem admits a solution that we denote by  $v_2$ . Show that  $v_2$  is an eigenvector of A that is orthogonal to  $v_1$ .

(c) We now consider the optimization problem

maximize 
$$x^{\mathsf{T}}Ax$$
 subject to  $||x|| = 1$  and  $\langle x, v_1 \rangle = 0$  and  $\langle x, v_2 \rangle = 0$ . (4)

Again, this problem admits a solution that we denote by  $v_3$ . Show that  $v_3$  is an eigenvector of A that is orthogonal to  $v_1$  and  $v_2$ .

**Conclusion**: by repeating this procedure, we obtain an orthonormal family  $v_1, \ldots, v_n$  of eigenvectors of A. This proves the spectral theorem (without using any linear algebra result!).

**Problem 11.5** (\*). We consider here a simple portfolio optimization problem. Assume that we can invest in n financial assets. Each asset i has a return of  $X_i$  ( $X_i$  is a random variable) meaning that investing w\$ in the asset i will generate a return of  $w \times X_i$ \$. We introduce

$$r_i = \mathbb{E}[X_i],$$
  
 $\Sigma = \text{Cov}(X, X) = \mathbb{E}[(X - r)(X - r)^{\mathsf{T}}]$ 

that are respectively the average return and the covariance matrix of the returns. We assume that the covariance matrix  $\Sigma$  is invertible. We represent a portfolio (an investment strategy) by a vector  $w = (w_1, \ldots, w_n) \in \mathbb{R}^n$ , where each coordinate  $w_i$  represents the amount invested on the asset i. We allow  $w_i$  to be negative, which means that it is possible to "short" a security. The expected return of the portfolio is then

$$R(w) = \mathbb{E}\left[\sum_{i=1}^{n} w_i X_i\right] = \sum_{i=1}^{n} w_i r_i$$

and its variance is

$$V(w) = \operatorname{Var}\left(\sum_{i=1}^{n} w_i X_i\right) = \mathbb{E}\left[\left(\sum_{i=1}^{n} w_i (X_i - r_i)\right)^2\right] = \mathbb{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j (X_i - r_i)(X_j - r_j)\right]$$
$$= w^{\mathsf{T}} \Sigma w.$$

We want here to invest a total amount of m\$ on the assets. Given an targeted expected return  $\mu$ , we would like to find a portfolio w such that  $R(w) = \mu$  and  $\sum_{i=1}^{n} w_i = m$  for which the variance V(w) is minimal. That is, we aim at solving the following problem:

minimize 
$$V(w)$$
 subject to  $R(w) = \mu$  and  $\sum_{i=1}^{n} w_i = m$ . (5)

Let  $\mathbb 1$  denotes the all-ones vector of dimension n. We assume that  $r \notin \mathrm{Span}(\mathbb 1)$ . Show that the matrix

$$M = \begin{pmatrix} \mathbf{1}^\mathsf{T} \Sigma^{-1} \mathbf{1} & \mathbf{1}^\mathsf{T} \Sigma^{-1} r \\ \mathbf{1}^\mathsf{T} \Sigma^{-1} r & r^\mathsf{T} \Sigma^{-1} r \end{pmatrix}$$

is invertible and that the unique solution to (5) is

$$w^* = \Sigma^{-1} \begin{pmatrix} | & | \\ \mathbb{1} & r \\ | & | \end{pmatrix} M^{-1} \begin{pmatrix} m \\ \mu \end{pmatrix}.$$

