Reference Sheet for Discrete Maths

Propositional Calculus

Order of decreasing binding power: =, \neg , \land/\lor , \Rightarrow/\Leftarrow , $\equiv/\not\equiv$.

Equivales is the only equivalence relation that is associative $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$, and it is symmetric and has identity true.

Discrepancy (difference) ' $\not\equiv$ ' is symmetric, associative, has identity 'false', mutually associates with equivales $((p \not\equiv q) \equiv r) \equiv (p \not\equiv (q \equiv r))$, and mutually interchanges with it as well $(p \not\equiv q \equiv r) \equiv (p \equiv q \not\equiv r)$. Finally, negation commutes with difference: $\neg (p \equiv q) \equiv \neg p \equiv q$.

Implication has the alternative definition $p \Rightarrow q \equiv \neg p \lor q$, thus having true as both left identity and right zero; it distributes over \equiv in the second argument, and is self-distributive; and has the properties:

Shunting
$$p \land q \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$$

Contrapositive $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$
Leibniz $e = f \Rightarrow E[z = e] = E[z = f]$

Modus Ponens

$$\begin{array}{ccc} p \wedge (p \Rightarrow q) & \equiv & p \wedge q \\ p \wedge (q \Rightarrow p) & \equiv & p \\ p \wedge (p \Rightarrow q) & \Rightarrow & q \end{array}$$

It is a linear order relation generated by 'false \Rightarrow true'; whence "from false, follows anything": false \Rightarrow p. Moreover it has the useful properties "(3.62) Contextualisation": $p \Rightarrow (q \equiv r) \equiv p \wedge q \equiv p \wedge r$ —we have the context p in each side of the equivalence— and $p \Rightarrow (q \Rightarrow r) \equiv p \wedge q \Rightarrow p \wedge r$. Implication is "Subassociative": $((p \Rightarrow q) \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$. Finally, we have " \equiv - \equiv Elimination": $(p \equiv q \equiv r) \Rightarrow s \equiv p \Rightarrow s \equiv q \Rightarrow s \equiv r \Rightarrow s$.

Conjunction and disjunction distribute over one another, are both associative and symmetric, \vee has identity false and zero true whereas \wedge has identity true and zero false, \vee distributes over $\vee, \equiv, \wedge, \Rightarrow, \Leftarrow$ whereas \wedge distributes over $\equiv -\equiv$ in that $p \wedge (q \equiv r \equiv s) \equiv p \wedge q \equiv p \wedge r \equiv p \wedge s$, and they satisfy,

Most importantly, they satisfy the "Golden Rule": $p \wedge q \equiv p \equiv q \equiv p \vee q$.

Max \uparrow **and Min** \downarrow each distribute over the other, addition distributes over both, subtraction acts like De Morgans, the operators are selective, and non-negative multiplication distributes over both. (*Tropical mathematics* is math with ' \uparrow , +' instead of '+, ×'.)

The many other properties of these operations —such as weakening laws and other absorption laws and case-analysis (\sqcup -char)— can be found by looking at the list of *lattice* properties —since both the Booleans (\Rightarrow , \land , \lor) and numbers (<, \downarrow , \uparrow) are lattices.

Orders

An order is a relation \sqsubseteq : $\tau \to \tau \to \mathbb{B}$ satisfying the following three properties:

$$\begin{array}{lll} \textbf{Reflexivity} & & \textbf{Transitivity} & & \textbf{Mutual Inclusion} \\ a \sqsubseteq a & & a \sqsubseteq b \land b \sqsubseteq c \Rightarrow a \sqsubseteq c & & a \sqsubseteq b \land b \sqsubseteq a \equiv a = b \end{array}$$

Indirect Inclusion is like 'set inclusion' and Indirect Equality is like 'set extensionality'.

Indirect Equality (from above)
$$x=y\equiv (\forall z\bullet x\sqsubseteq z\equiv y\sqsubseteq z)$$
 Indirect Inclusion (from above) $x\sqsubseteq y\equiv (\forall z\bullet x\sqsubseteq z\equiv z\boxtimes z)$ Indirect Equality (from below) $x=y\equiv (\forall z\bullet z\sqsubseteq x\equiv z\sqsubseteq y)$ Indirect Inclusion (from below) $x\sqsubseteq y\equiv (\forall z\bullet z\sqsubseteq x\Rightarrow z\sqsubseteq y)$

An order is bounded if there are elements $\top, \bot : \tau$ being the lower and upper bounds of all other elements:

Top Element $a \sqsubseteq \top$ Bottom Element $\bot \sqsubseteq a$ Top is maximal $\top \sqsubseteq a \equiv a = \top$ Bottom is minimal $a \sqsubseteq \bot \equiv a = \top$

Lattices

A *lattice* is a pair of operations \Box , \Box : $\tau \to \tau \to \tau$ specified by the properties:

The operations act as providing the greatest lower bound, 'glb', 'supremum', or 'meet', by \sqcap ; and the least upper bound, 'lub', 'infimum', or 'join', by \sqcup .

Let \square be one of \sqcap or \sqcup , then:

Symmetry of
$$\square$$
 Associativity of \square Idempotency of \square $a\square b = b\square a$ $(a\square b)\square c = a\square (b\square c)$ $a\square a = a$

Zero of
$$\square$$
 Identity of \square Absorption Self-Distributivity of \square $a \sqcup \top = \top$ $a \sqcup \bot = a$ $a \sqcap (b \sqcup a) = a$ $a \sqcap (b \sqcap a) = a$ $a \sqcup (b \sqcap a) = a$

The following four properties are all equivalent:

Duality Principle:

If a statement S is a theorem, then so is $S[(\sqsubseteq, \sqcap, \sqcup, \top, \bot) := (\supseteq, \sqcup, \sqcap, \bot, \top)].$

Conditionals

"If to \\" may be taken as axiom from which we may prove the remaining 'alternative definitions' "if to ...".

```
if to \wedge
                   P[z = \text{if } b \text{ then } x \text{ else } y \text{ fi}] \equiv (b \Rightarrow P[z = x]) \land (\neg b \Rightarrow P[z := x])
                 P[z = \text{if } b \text{ then } x \text{ else } y \text{ fi}] \equiv (b \land P[z = x]) \lor (\neg b \land P[z := x])
if to \vee
                  P[z = \text{if } b \text{ then } x \text{ else } y \text{ fi}] \equiv b \land P[z = x] \not\equiv \neg b \land P[z := x]
if to ≢
                   P[z = \text{if } b \text{ then } x \text{ else } u \text{ fi}] \equiv b \Rightarrow P[z = x] \equiv \neg b \Rightarrow P[z := x]
if to \equiv
```

Note that the "≡" and "≢" rules can be parsed in multiple ways since \equiv is associative, and \equiv mutually associates with \neq .

> if true if true then x else y fi = xif false if false then x else y fi = ythen true if R then true else P fi $= R \vee P$ if R then false else P fi $= \neg R \land P$ then false else true if R then P else true fi = $R \Rightarrow P$ else false if R then P else false fi $= R \wedge P$

if swap if b then x else y fi = if $\neg b$ then y else x fi

if idempotency if b then x else x fi = x

if guard strengthening if b then x else y fi = if $b \wedge x \neq y$ then x else y fi

if b then E else F fi = if b then E[b = true] else F[b = false] fi if Context

P[z = if b then x else y fi] = if b then P[z = x] else P[z = y] fiif Distributivity

if junctivity (if b then x else y fi) \oplus (if b then x' else y' fi)

= if b then $(x \oplus x')$ else $(y \oplus y')$ fi

Quantification

Let $_\oplus_$ be an associative and symmetric operation with identity Id.

Abbreviation	$(\oplus x \bullet P) = (\oplus x \mid true \bullet P)$
Empty range	$(\oplus x \mid false \bullet P) = Id$
One-point rule	$(\oplus x \mid x = E \bullet P) = P[x = E]$
Distributivity	$(\oplus x \mid R \bullet P \oplus Q) = (\oplus x \mid R \bullet P) \oplus (\oplus x \mid R \bullet Q)$
Nesting	$(\oplus x, y \mid X \land Y \bullet P) = (\oplus x \mid X \bullet (\oplus y \mid Y \bullet P))$
Dummy renaming	$(\oplus x \mid R \bullet P) = (\oplus y \mid R[x = y] \bullet P[x = y])$

Disjoint Range split $(\oplus x \mid R \lor S \bullet P) = (\oplus x \mid R \bullet P) \oplus (\oplus x \mid S \bullet Q)$

provided $R \wedge S \equiv \mathsf{false}$

Range split $(\oplus x \mid R \lor S \bullet P) \oplus (\oplus x \mid R \land S \bullet P)$ $(\oplus x \mid R \bullet P) \oplus (\oplus x \mid S \bullet Q)$

Idempotent Range split $(\oplus x \mid R \lor S \bullet P) = (\oplus x \mid R \bullet P) \oplus (\oplus x \mid S \bullet Q)$ $provided \oplus is idempotent$

Set Theory

The set theoretic symbols \in , =, \subseteq , are defined as follows.

Axiom, Set Membership: $F \in \{x \mid R \bullet E\} \equiv (\exists x \mid R \bullet F = E)$

Axiom, Extensionality: $S = T \equiv (\forall x \bullet x \in S \equiv x \in T)$

Axiom. Subset: $S \subseteq T \equiv (\forall x \bullet x \in S \Rightarrow x \in T)$

As witnessed by the following definitions, it is the \in relation that translates set theory to propositional logic.

> Universe $x \in \mathbf{U}$ trueEmpty set $x \in \emptyset$ \equiv false Complement $x \in {\sim}S$ $\equiv x \notin S$ Union $x \in S \cup T$ $\equiv x \in S \lor x \in T$ $x \in S \cap T$ Intersection $\equiv x \in S \land x \in T$ **PseudoComplement** $x \in S \rightarrow T$ $\equiv x \in S \Rightarrow x \in T$ Difference $x \in S - T$ $\equiv x \in S \land x \notin T$ $\equiv S \subseteq T$ Power set $S \in \mathbb{P}T$

The pairs \emptyset | false, \mathbf{U} | true, $\cup | \vee, \cap | \wedge, \subseteq | \Rightarrow, \sim | \neg$ are related by \in and so all equational theorems of propositional logic also hold for set theory —indeed, that is because both are Boolean algebras.

 \rightarrow Set difference is a residual wrt \cup , and so satisfies the division properties below.

 \rightarrow Subset is an order and so satisfies the aforementioned order properties. It is bounded below by \emptyset and above by \mathbf{U} .

The relationship between set comprehension and quantifier notation is:

 $\{x \mid R \bullet P\} = (\cup x \mid R \bullet \{P\})$ Set comprehension as union Membership as inclusion $x \in S \equiv \{x\} \subseteq S$ $x = y \equiv \hat{x} \in \{y\}$ Equality as membership

Combinatorics

Axiom, Size: $\#S = (\Sigma x \mid x \in S \bullet 1)$ Axiom, Interval: $m..n = \{x : \mathbb{Z} \mid m \le x \le n\}$

The following theorems serve to define '#' for the usual set theory operators.

 $\#S \leq 0 \equiv S = \emptyset$ Positive definite $\#\mathbb{P}S = 2^{\#S}$ Power set size Principle of Inclusion-Exclusion $\#(S \cup T) = \#S + \#T - \#(S \cap T)$ Monotonicity $S \subseteq T \Rightarrow \#S \le \#T$ $S \subseteq T \Rightarrow \#(T-S) = \#T - \#S$ Difference rule $\#(\sim S) = \#\dot{\mathbf{U}} - \#\dot{S}$ Complement size Range size $(\Sigma x : \mathbf{U} \mid x \notin S \bullet 1) = \#\mathbf{U} - \#S$ Interval size #(m..n) = n - m + 1 for m < n $(\Sigma i:1..n \bullet E)/n < (\uparrow i:1..n \bullet E)$ Pigeonhole Principle $(\downarrow i:1..n \bullet E) < (\Sigma i:1..n \bullet E)/n$ ("min < avq < max")

Rule of sum: $\#(\cup i \mid Ri \bullet P) = (\Sigma i \mid Ri \bullet \#P)$ provided the range is pairwise disjoint: $\forall i, j \bullet R i \land R j \equiv i = j$.

Rule of product: $\#(\times i \mid Ri \bullet P) = (\Pi i \mid Ri \bullet \#P)$

Converse —an over-approximation of inverse (A4)

Residuals, Division

Suppose we have an associative operation $_{\S}$ with identity Id and two operations "under \setminus " and "over /" specified as follows.

When \S is symmetric, as in the special cases $\S = \square$, the divisions coincide: $x/y = y \setminus x$.

Monotonicity of
$$\S$$
 $a \sqsubseteq a' \land b \sqsubseteq b' \Rightarrow a \S b \sqsubseteq a' \S b'$
Subdistributivity of \S over \sqcap $a \S b \sqcap c \supseteq a \S b \sqcap a \S c$

Numerator monotonicity
$$b \sqsubseteq b' \Rightarrow a \setminus b \sqsubseteq a \setminus b'$$
 $b \sqsubseteq b' \Rightarrow b/a \sqsubseteq b'/a$
Denominator antitonicity $a' \sqsubseteq a \Rightarrow a \setminus b \sqsubseteq a' \setminus b$ $a' \sqsubseteq a \Rightarrow b/a \sqsubseteq b/a'$

Exact division $(\exists z \bullet y = x \, \mathring{\varsigma} \, z) \equiv x \, \mathring{\varsigma} (x \backslash y) = y$ Exact division $(\exists z \bullet y = x \backslash z) \equiv x \backslash (x \, \mathring{\varsigma} \, y) = y$

Modal and Dedekind rules:

$$\begin{array}{lll} \text{(Axioms)} & \text{(Theorems)} \\ a \, \sharp \, b \, \sqcap \, c \, \sqsubseteq \, a \, \sharp \, (b \, \sqcap \, a \, \lnot \, c) & a \, \backslash b \, \sqcap \, c \, \sqsubseteq \, a \, \backslash (b \, \sqcap \, a \, \lnot \, c) \\ a \, \sharp \, b \, \sqcap \, c \, \sqsubseteq \, (a \, \sqcap \, c \, \lnot \, b \,) \, \lnot \, b & a \, \backslash b \, \sqcap \, c \, \sqsubseteq \, (a \, \sqcap \, c \, \backslash b) \, \backslash \, b \\ a \, \sharp \, b \, \sqcap \, c \, \sqsubseteq \, (a \, \sqcap \, c \, \backslash b) \, \backslash \, (b \, \sqcap \, a \, \lnot \, c) & a \, \backslash \, b \, \sqcap \, c \, \sqsubseteq \, (a \, \sqcap \, c \, \backslash b) \, \backslash \, (b \, \sqcap \, a \, \lnot \, c) \\ \end{array}$$

Division for the special case $\ \ \ = \ \square$ is known the relative pseudo-complement: Denoted $x \to y$ ("x implies y"), it is the largest piece 'outside' of x that is still included in y. The relative pseudocomplement internalises inclusion, $z \sqsubseteq (x \to y) \Rightarrow (z \sqsubseteq x \Rightarrow z \sqsubseteq y)$; more generally: $x \sqsubseteq y \equiv \operatorname{Id} \sqsubseteq x \setminus y$.

$$\begin{array}{ll} \text{Pseudo-complement} & \text{Semi-complement} \\ x \sqcap a \sqsubseteq b \equiv x \sqsubseteq a \to b & a-b \sqsubseteq x \equiv a \sqsubseteq b \sqcup x \\ \end{array}$$

Strong modus ponens
$$a \sqcap (a \to b) = a \sqcap b \\ a \to (x \sqcap a) = a \to x$$
 Absorption
$$(x \sqcup b) - b = x - b \\ (a - b) \sqcup b = a \sqcup b$$

Division for the special case $\ \ = \ \sqcup$ in the dual order ($\ \square$) is known as the difference or relative semi-complement: Denoted x-y ("x without y"), it is the smallest piece that along with y 'covers' x; i.e., it is the least value that 'complements' ("fill up together") y to include x. (Possibly for this reason, set difference is sometimes denoted $S \setminus T$ in other books!)

Named Properties

The above properties are preserved by converse: Let P be any of the above properties, then $Px \equiv P(x^{\smile})$.

```
univalent x
                                   x \subseteq \mathfrak{g} x \sqsubseteq \mathsf{Id}
                                                                                 injective
                                                                                                                      x \, x \subseteq \mathsf{Id}
                           \equiv
                                   \mathsf{Id} \sqsubseteq x \, \mathfrak{g} \, x^{\smile}
                                                                                 surjective x \equiv
                                                                                                                      \mathsf{Id} \sqsubseteq x \lor \& x
total
                    x
                                                                                 bijective
                           \equiv total x \land univalent x
                                                                                                      x \equiv
                                                                                                                      surjective x \wedge \text{injective } x
mapping
                   \boldsymbol{x}
                         \equiv mapping x \land bijective x
                    x
```

Duality theorems

$\begin{array}{cccc} \text{univalent} \left(x^{\smile} \right) & \equiv & \text{injective} \ x \\ \text{total} & \left(x^{\smile} \right) & \equiv & \text{surjective} \ x \\ \text{mapping} \left(x^{\smile} \right) & \equiv & \text{bijective} \ x \\ \text{iso} & \left(x^{\smile} \right) & \equiv & \text{iso} & x \end{array}$

Invertiblility theorems

```
\begin{array}{ll} \operatorname{total} x \wedge \operatorname{injective} x \Rightarrow x \, \mathring{\mathfrak{g}} \, x^{\smile} = \operatorname{Id} \\ \operatorname{iso} x & \equiv \quad x \, \mathring{\mathfrak{g}} \, x^{\smile} = \operatorname{Id} \, \wedge \, x^{\smile} \, \mathring{\mathfrak{g}} \, x = \operatorname{Id} \\ \operatorname{iso} x & \Rightarrow \quad (\exists g \bullet x \, \mathring{\mathfrak{g}} \, g = \operatorname{Id} = g \, \mathring{\mathfrak{g}} \, x) \end{array}
```

Shunting laws:

$$\begin{array}{lll} \text{univalent } f & \Rightarrow & (x \, \S \, f \sqsubseteq y \, \Leftarrow \, x \sqsubseteq y \, \S \, f^{\backsim}) \\ \text{total } f & \Rightarrow & (x \, \S \, f \sqsubseteq y \, \Rightarrow \, x \sqsubseteq y \, \S \, f^{\backsim}) \\ \text{mapping } f & \Rightarrow & (x \, \S \, f \sqsubseteq y \, \equiv \, x \sqsubseteq y \, \S \, f^{\backsim}) \end{array}$$

Relations

Relations are sets of pairs ...

```
x (R) y
Tortoise
                                                   (\forall x, y \bullet x (R) y \equiv x (S) y)
Extensionality
                           R = S
                                                  (\forall x, y \bullet x (R) y \Rightarrow x (S) y)
Inclusion
                           R \subseteq S
                           u (\emptyset)v
                                                  false
Empty
Universe
                           u (A \times B) v
                                             \equiv
                                                   u \in A \land v \in B
Complement
                           u (\sim S) v
                                              \equiv \neg(u (S) v)
                           u (S \cup T)v
                                              \equiv u(S)v \vee u(T)v
Union
Intersection
                           u (S \cap T)v
                                              \equiv u(S)v \wedge u(T)v
                           u (S-T)v
                                                    u(S)v \wedge \neg(u(T)v)
Difference
PseudoComplement
                          u(S \Rightarrow T)v \equiv
                                                   u(S)v \Rightarrow u(T)v
An Identity
                           u ( \mathbb{I} A ) v
                                              \equiv u = v \in A
                           u (Id) v
The Identity
                                              \equiv u = v
Converse
                           u ( R\sim ) v
                                                  v ( R ) u
Composition
                           u (R;S)v
                                              \equiv (\exists x \bullet u(R)x \wedge x(S)v)
                                               \equiv (\forall x \bullet x (S) u \Rightarrow x (R) v) 
 \equiv (\forall y \bullet v (S) y \Rightarrow u (R) y) 
Under Division
                           u (S \setminus R) v
Over Division
                           u (R/S)v
```

Division generalises extensional subset inclusion and indirect reasoning for orders.

- u is related by 'R over S' to v precisely when "anything is R-over u if it is S-over v."
- u is related by 'S under R' to v precisely when "everything S-under u is also R-under v."

Example: Define E via $x \in X$ via $X \subseteq X \in X$, then $A \subseteq X \subseteq X$ then $A \subseteq X \subseteq X$. Example (Indirect inclusion): Define L via $X \subseteq X$ via $X \subseteq X$ then $X \subseteq X$.

Interpreting Named Properties

We will interpret the named properties using

 \diamond Relations: Formulae on sets of pairs; " $\forall x \bullet \dots$ "

 $\diamond\,$ Graphs: Dots and lines on a page

♦ Matrices: 1s and 0s on a grid

♦ Programs: Transformations of inputs to outputs

Properties of a relationship flavour

reflexive $R \equiv (\forall b \bullet b (R) b)$

Every node in a graph has a 'loop', a line to itself (Thus, paths can always be increased in length: $R \subseteq R$; R)

The diagonal of a matrix is all 1s

irreflexive $R \equiv (\forall b \bullet \neg (b (R) b))$

No node in a graph has a loop The diagonal of a matrix is all 0s

symmetric $R \equiv (\forall b, c \bullet b (R) c \equiv c (R) b)$

The graph is undirected; we have a symmetric matrix

antisymmetric $R \equiv (\forall b, c \bullet b (R) c \land c (R) b \Rightarrow b = c)$

Mutually related nodes are necessairly self-loops

"Mutually related items are necessairly indistinguishable"

asymmetric $R \equiv (\forall b, c \bullet b (R) c \Rightarrow \neg (c (R) b))$

At most 1 edge (regardless of direction) relating any 2 nodes

transitive $R \equiv (\forall b, c, d \bullet b (R) c (R) d \Rightarrow b (R) d$

Paths can always be shortened (but nonempty)

idempotent $R \equiv \text{Lengths of paths can be changed arbitrarily (nonzero)}$

Intuitively, by considering the interpretations only, we find

 $\mathsf{reflexive}\,R \ \land \ \mathsf{transitive}\,R \ \Rightarrow \ \mathsf{idempotent}\,R$

Super cool stuff!

"Relations are simple graphs"

Relations directly represent *simple graphs*: Dots (*nodes*) and at most 1 line (*edge*) between any two. E.g., cities and highways (ignoring multiple highways).

Treating R as a graph:

R A bunch of dots on a page and an arrow from x to y when $x \in \mathbb{R}$ y

 R^{\smile} Flip the arrows in the graph

Dom R The nodes that have an outgoing edge Ran R The nodes that have an incoming edge $x \in R \setminus Y$ A path of length 1 (an edge) from x to y

x (R; R) y A path of length 2 from x to y

 $R \cup R^{\smile}$ The associated undirected graph ("symmetric closure")

Properties of an operational flavour

univalent $R \equiv (\forall b, c, c' \bullet b (R) c \land b (R) c' \Rightarrow c = c')$ —aka "partial function"

Graph: Every node has at most one outgoing edge

Matrix: Every row has at most one 1

Prog: The program is deterministic, same-input yields same-output

injective $R \equiv (\forall b, b', c \bullet b (R) c \wedge b' (R) c \Rightarrow b = b')$

Graph: Every node has at most one incoming edge

Matrix: Every column has at most one 1

Prog: The program preserves distinctness (by contraposition)

total $R \equiv (\forall b \bullet \exists c \bullet b (R) c)$

Graph: Every node has at least one outgoing edge

Matrix: Every row has at least one 1

Prog: The program terminates; has at least one output for each input

surjective $R \equiv (\forall c \bullet \exists b \bullet b (R) c)$

Graph: Every node has at least one incoming edge

Matrix: Every column has at least one 1

Prog: All possible outputs arise from some input

mapping $R \equiv \text{total } R \wedge \text{univalent } R - \text{also known as a "(total) function"}$

Graph: Every node has exactly one outgoing edge

Matrix: Every row has exactly one 1

Prog: The program always terminates with a unique output

 $\mbox{bijective} \quad R \quad \equiv \quad \mbox{surjective} \, R \, \wedge \, \mbox{injective} \, R$

Graph: Every node has exactly one incoming edge

Matrix: Every column has exactly one 1

Prog: Every output arises from a unique input

iso $R \equiv \mathsf{mapping}\,R \land \mathsf{bijective}\,R$

Graph: It's a bunch of 'circles'

Matrix: It's a permutation; a re-arrangement of the identity matrix

Prog: A non-lossy protocol associating inputs to outputs