Lec-25. 正态总体参数的假设检验

主讲教师: 吴利苏 (wulisu@sdust.edu.cn)

主 页: wulisu.cn

本次课内容

- 1. 单个正态总体均值的检验
 - σ^2 已知, 检验 μ : Z 检验
 - σ^2 未知, 检验 μ : t 检验
- 2. 两个正态总体均值差的检验 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 未知, 检验 $\mu_1 \mu_2$: t 检验
- 3. 基于成对数据的检验
- **4.** 单个正态总体方差的检验
 - μ 未知, 检验 σ^2 : χ^2 检验
- **5.** 两个正态总体方差商的检验 μ_1, μ_2 未知, 检验 σ_1^2/σ_2^2 : F 检验

$1.1. \sigma^2$ 已知, 检验 μ : Z 检验

- 设总体 $X \sim N(\mu, \sigma^2), \sigma^2$ 已知.
- $X_1, X_2, ..., X_n$ 是来自总体 $N(\mu, \sigma^2)$ 样本.
- $x_1, ..., x_n \neq X_1, ..., X_n$ 的样本观测值.

假设问题 (显著水平为 α)

$$H_0: \mu = \mu_0,$$
 $H_1: \mu \neq \mu_0,$ $H_0: \mu \geq \mu_0,$ $H_1: \mu < \mu_0,$ $H_0: \mu \leq \mu_0,$ $H_1: \mu > \mu_0,$

其中 μ0 是已知的常数.

双边假设

• 双边假设

$$H_0: \mu = \mu_0, \qquad H_1: \mu \neq \mu_0,$$

其中 μ_0 是已知的常数.

- 检验统计量 $Z = \frac{\overline{X} \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$.
- 拒绝域 $|z| = \left| \frac{\overline{x} \mu_0}{\sigma / \sqrt{n}} \right| \ge z_{\alpha/2}$.

左边假设

• 左边假设

$$H_0: \mu \ge \mu_0, \qquad H_1: \mu < \mu_0,$$

其中 μ_0 是已知的常数.

- 检验统计量 $Z = \frac{\overline{X} \mu_0}{\sigma/\sqrt{n}}$.
- 拒绝域 $z = \frac{\bar{x} \mu_0}{\sigma / \sqrt{n}} \le -z_\alpha$.

左边假设

• 右边假设

$$H_0: \mu \leq \mu_0, \qquad H_1: \mu > \mu_0,$$

其中 μ_0 是已知的常数.

- 检验统计量 $Z = \frac{\overline{X} \mu_0}{\sigma/\sqrt{n}}$.
- 拒绝域 $z = \frac{\bar{x} \mu_0}{\sigma/\sqrt{n}} \ge z_\alpha$.

1.2. σ^2 未知, 检验 μ : t 检验

- 设总体 $X \sim N(\mu, \sigma^2), \sigma^2$ 未知.
- $X_1, X_2, ..., X_n$ 是来自总体 $N(\mu, \sigma^2)$ 样本.
- $x_1, ..., x_n \neq X_1, ..., X_n$ 的样本观测值.

假设问题 (显著水平为 α)

其中 Lin 是已知的常数.

$$H_0: \mu = \mu_0,$$
 $H_1: \mu \neq \mu_0,$
 $H_0: \mu \geq \mu_0,$ $H_1: \mu < \mu_0,$
 $H_0: \mu \leq \mu_0,$ $H_1: \mu > \mu_0,$

5/43

双边假设

• 双边假设

$$H_0: \mu = \mu_0, \qquad H_1: \mu \neq \mu_0$$

- 检验统计量 $t = \frac{\overline{X} \mu_0}{S/\sqrt{n}} \sim t(n-1)$.
- 拒绝域

$$|t| = \frac{|\overline{x} - \mu_0|}{s/\sqrt{n}} \ge t_{\alpha/2}.$$

左边假设

• 左边假设

$$H_0: \mu \geq \mu_0, \qquad H_1: \mu < \mu_0,$$

其中 μ_0 已知.

- 检验统计量 $t = \frac{\overline{X} \mu_0}{S/\sqrt{n}} \sim t(n-1)$.
- 拒绝域 $t = \frac{\overline{x} \mu_0}{s/\sqrt{n}} \le -t_\alpha(n-1)$.

右边假设

• 右边假设

$$H_0: \mu \leq \mu_0, \qquad H_1: \mu > \mu_0,$$

其中 μ_0 已知.

- 检验统计量 $t = \frac{\overline{X} \mu_0}{S/\sqrt{n}} \sim t(n-1)$.
- 拒绝域

$$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} \ge t_\alpha(n-1).$$

例

某种元件的寿命 X(以 h 计) 服从正态分布 $N(\mu, \sigma^2), \mu, \sigma^2$ 均未知. 现测得 16 只元件的寿命 如下

159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170

问是否有理由认为元件的平均寿命大于 225 h?

解: 按题意需检验

$$H_0: \mu \le \mu_0 = 225, \qquad H_1: \mu > 225.$$

取 = 0.05. 则此检验问题的拒绝域为

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \ge t_\alpha(n-1)$$

现在 $n = 16, t_{0.05}(15) = 1,7531.$ 又算得 $\bar{x} = 241.5, s = 98.7259$,即有

又算得
$$\bar{x} = 241.5, s = 98.7259$$
,即有
$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = 0.6685 < 1.7531$$

t 没有落在拒绝域中, 故接受 H_0 , 即认为元件的

平均寿命不大于 225 h. □1(

2.1. σ_1^2, σ_2^2 已知, 检验 $\mu_1 - \mu_2$: Z 检验

两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, σ_1^2 和 σ_2^2 已知. 假设 (δ 通常取为 0)

$$H_0: \mu_1 - \mu_2 = \delta, \qquad H_1: \mu_1 - \mu_2 \neq \delta$$

- 当 H_0 成立时, $\mu_1 \mu_2$ 的无偏估计 $\bar{X} \bar{Y} \sim N(\delta, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$.
- 检验统计量: $Z = \frac{\overline{X} \overline{Y} \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1).$
- 拒绝域 |z| ≥ z_{α/2}.

2.2.
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
 未知, 检验 $\mu_1 - \mu_2$: t 检验

两个正态总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 未知. 假设

$$H_0: \mu_1 - \mu_2 = \delta, \qquad H_1: \mu_1 - \mu_2 \neq \delta$$

 $n_0 \cdot \mu_1 - \mu_2 = 0, \qquad n_1 \cdot \mu_1 - \mu_2 \neq 0$

$$t = \frac{\overline{X} - \overline{Y} - \delta}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t (n_1 + n_2 - 2)$$

检验拒绝域

检验统计量

$$|t| = \frac{|\overline{x} - \overline{y} - \delta|}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \ge t_{\alpha/2} (n_1 + n_2 - 2)$$

 $S_w^2 = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{n_1 + n_2 - 2}.$ • 检验统计量

$$t = \frac{\overline{X} - \overline{Y} - \delta}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t (n_1 + n_2 - 2)$$

• 由 $P_{H_0}\{|t| \geq k\} = \alpha$, 得拒绝域

 $|t| = \frac{|\overline{x} - \overline{y} - \delta|}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \ge t_{\alpha/2} (n_1 + n_2 - 2)$

右边检验

$$H_0: \mu_1 - \mu_2 \le \delta, \qquad H_1: \mu_1 - \mu_2 > \delta$$

• 检验统计量和拒绝域

$$t = \frac{\overline{x} - \overline{y} - \delta}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \ge t_\alpha (n_1 + n_2 - 2)$$

左边检验

$$H_0: \mu_1 - \mu_2 \ge \delta, \qquad H_1: \mu_1 - \mu_2 < \delta$$

• 检验统计量和拒绝域

$$t = \frac{\overline{x} - \overline{y} - \delta}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \le -t_\alpha \left(n_1 + n_2 - 2 \right)$$

例

用两种方法 (A 和 B) 测定冰自 -0.72 ℃ 转变为 0 ℃ 的水的融化热 (以 cal/g 计). 测得以下的数据: 方法 A

79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 80.05 80.03 80.02 80.00 80.02

方法 B:

设这两个样本相互独立, 且分别来自正态总体 $N(\mu_1, \sigma^2)$ 和 $N(\mu_2, \sigma^2)$, μ_1, μ_2, σ^2 均未知, 试检验假设 (取显著性水平 $\alpha=0.05$)

$$H_0: \mu_1 - \mu_2 \leq 0, H_1: \mu_1 - \mu_2 > 0.$$

解:
$$n_1 = 13$$
, $\overline{x}_A = 80.02$, $s_A^2 = 0.024^2$, $n_2 = 8$, $\overline{x}_B = 79.98$, $s_B^2 = 0.031^2$,

$$n_2 = 8, x_B = 79.98, s_B^2 = 0.031$$

 $s_W^2 = \frac{12 \times s_A^2 + 7 \times s_B^2}{19} = 0.0007178.$

$$t = \frac{\overline{x}_{As} - \overline{x}_B}{s_w \sqrt{1/13 + 1/8}} = 3.323 > t_{0.05} (13 + 8 - 2) = 1.7291.$$

故拒绝
$$H_0$$
, 认为 $\mu_1 > \mu_2$, 即方法 A 比方法 B 测得的融化热要大.

3. 基于成对数据的检验

例

有两台光谱仪 I_x , I_y , 用来测量 9 块试块材料中某种金属的含量, 得到 9 对观察值如下.

x (%)									
y (%)									
d=x-y (%)	0.10	0.09	-0.12	0.18	-0.18	0.11	0.12	0.13	0.11

间能否认为这两台仪器的测量结果有显著的差异 (取 $\alpha = 0.01$)?

- 配对研究的数据是成对地收集得到的, 所以也称为成对数据的研究.
- 配对研究采用了比较的思想, 比通常的单个 样本推断更让人信服. 这种方法在医学和 生物研究领域中广泛存在.
- 成对数据检验的基本思想是将两样本问题 转为单样本问题。
- 上例中的 $D_i = X_i Y_i$ 可看为独立同分布的.

- 假设成对数据 $(X_1, Y_1), \dots, (X_n, Y_n)$.
- 设差值 $D_i = X_i Y_i, i = 1, \dots, n$.
- 设 D_i 为正态总体 $N(\mu_D, \sigma_D^2)$ 的样本. 为比较两总体均值是否有显著差异, 可考虑如下的检验问题:

$$H_0: \mu_D = 0,$$
 $H_1: \mu_D \neq 0$
 $H_0: \mu_D \leq 0,$ $H_1: \mu_D > 0$
 $H_0: \mu_D \geq 0,$ $H_1: \mu_D < 0$

双边检验

假设

$$H_0: \mu_D = 0, \qquad H_1: \mu_D \neq 0$$

记

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i, \quad S_D^2 = \frac{1}{n-1} \sum_{i=1}^{n} (D_i - \overline{D})^2,$$

- 检验统计量 $t = \frac{\overline{D}}{S_D/\sqrt{n}} \sim t(n-1)$,
- 拒绝域 $|t| \geq t_{\alpha/2}(n-1)$.

右边检验

假设

$$H_0: \mu_D \le 0, \qquad H_1: \mu_D > 0$$

• 检验统计量和拒绝域

$$t = \frac{\overline{d}}{s_d/\sqrt{n}} \ge t_\alpha(n-1)$$

.

左边检验

假设

$$H_0: \mu_D \ge 0, \qquad H_1: \mu_D < 0$$

• 检验统计量和拒绝域

$$t = \frac{\overline{d}}{s_d/\sqrt{n}} \le -t_\alpha(n-1)$$

.

例

做实验以比较人对红光或绿光的反应时间 (以 s 计). 测量数据如下:

红光 (x)	0.30	0.23	0.41	0.53	0.24	0.36	0.38	0.51
绿光 (y)	0.43	0.32	0.58	0.46	0.27	0.41	0.38	0.61
d=x-y	-0.13	-0.09	-0.17	0.07	-0.03	-0.05	0.00	-0.10

设 $D_i = X_i - Y_i (i = 1, 2, \dots, 8)$ 是来自正态总体 $N(\mu_D, \sigma_D^2)$ 的样本, μ_D, σ_D^2 均末知, 试检验假设 (取显著性水平 $\alpha = 0.05$)

$$H_0: \mu_D \geq 0, H_1: \mu_D < 0.$$

解: $n=8, \overline{d}=-0.0625, s_d=0.0765,$ 而

$$\frac{\overline{d}}{s_d/\sqrt{8}} = -2.311 < -t_{0.05}(7) = -1.8946.$$

故拒绝 H_0 , 认为 $\mu_D < 0$, 即认为人对红光的反应时间小于对绿光的反应时间, 也就是人对红光的反应要比绿光快.

4. μ 未知, 检验 σ^2 : χ^2 检验

设总体 $X \sim N(\mu, \sigma^2), \mu, \sigma^2$ 未知, $X_1, ..., X_n$ 是总体 X 的样本, 双边检验

$$H_0: \sigma^2 = \sigma_0^2, \qquad H_1: \sigma^2 \neq \sigma_0^2$$

其中 σ_0^2 是已知常数.

• σ^2 的无偏估计量为样本方差 S^2 , 且在原假设成立时

$$\frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n-1).$$

• 检验统计量 $\chi^2 = \frac{(n-1)S^2}{\sigma^2}$

$$\frac{(n-1)S^2}{\sigma_0^2} \le k_1, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{(n-1)S^2}{\sigma_0^2} \ge k_2.$$

 $P\left\{\frac{(n-1)S^2}{\sigma_0^2} \le k_1\right\} = \frac{\alpha}{2}, P\left\{\frac{(n-1)S^2}{\sigma_0^2} \ge k_2\right\} = \frac{\alpha}{27/43}.$

$$P\{$$
拒绝 H_0 |当 H_0 为真 $\}$

为计算方便, 习惯上取

$$= P_{\sigma_0^2} \left\{ \frac{(n-1)S^2}{\sigma_0^2} \le k_1, \, \cancel{3} \frac{(n-1)S^2}{\sigma_0^2} \ge k_2 \right\} = \alpha.$$

• 所以.

拒绝域

 $k_1 = \chi_{1-\alpha/2}^2 (n-1),$

 $k_2 = \chi^2_{\alpha/2} (n-1).$

 $\frac{(n-1)s^2}{\sigma_0^2} \le \chi_{1-\alpha/2}^2(n-1), \, \, \, \, \, \, \, \frac{(n-1)s^2}{\sigma_0^2} \ge \chi_{\alpha/2}^2(n-1)$

单边检验

右边检验
$$H_0: \sigma^2 \leq \sigma_0^2$$
, $H_1: \sigma^2 > \sigma_0^2$

拒绝域

$$\frac{(n-1)s^2}{\sigma_0^2} \ge \chi_\alpha^2(n-1).$$

左边检验: $H_0: \sigma^2 = \sigma_0^2$, $H_1: \sigma^2 < \sigma_0^2$

拒绝域

$$\frac{(n-1)s^2}{\sigma_0^2} \le \chi_{1-\alpha}^2(n-1).$$

例

某厂生产的某种型号的电池, 其寿命 (以 h 计) 长期以来服从方差 $\sigma^2 = 5000$ 的正态分布, 现有 一批这种电池, 从它的生产情况来看, 寿命的波 动性有所改变. 现随机取 26 只电池, 测出其寿 命的样本方差 $s^2 = 9200$. 问根据这数据能否推 断这批电池的寿命的波动性较以往的有显著的 变化 (取 $\alpha = 0.02$)?

解: 显著性水平 $\alpha = 0.02$ 下检验假设

$$H_0: \sigma^2 = 5000, \qquad H_1: \sigma^2 \neq 5000.$$

$$n = 26, \sigma_0^2 = 5000,$$

$$\chi_{\alpha/2}^2 (n-1) = \chi_{0,01}^2 (25) = 44.314,$$

$$\chi_{1-a/2}^2 (25) = \chi_{0.99}^2 (25) = 11.524.$$

$$\chi^2_{1-a/2}(25) = \chi^2_{0.99}(25) = 11.524.$$
 所以拒絕战为

所以拒绝域为

$$\frac{(n-1)\,s^2}{\sigma_0^2} \ge 44.314 \quad \cancel{3} \frac{(n-1)\,s^2}{\sigma_0^2} \le 11.524.$$

由观察值 $s^2 = 9200$ 得 $\frac{(n-1)s^2}{\sigma_s^2} = 46 > 44.314$, 所 以拒绝 H_0 .

μ_1, μ_2 未知, 检验 σ_1^2/σ_2^2 : F 检验

设 X_1, X_2, \dots, X_{n_1} 是来自 $N(\mu_1, \sigma_1^2)$ 的样本, Y_1, Y_2, \dots, Y_{n_2} 是来自 $N(\mu_2, \sigma_2^2)$ 的样本, 两样本相互独立. 并记 $\overline{X}, \overline{Y}, S_1^2, S_2^2$ 分别为两样本的均值和方差. 设 μ_1, μ_2 未知, 检验假设 (显著水平 α)

$$H_0: \sigma_1^2 = \sigma_2^2, \qquad H_1: \sigma_1^2 \neq \sigma_2^2.$$

• 检验统计量

$$F = \frac{S_1^2}{S_2^2}$$
.

• 在原假设成立时.

$$F \sim F(n_1 - 1, n_2 - 1)$$

• 拒绝域

单边检验

左边检验:
$$H_0: \sigma_1^2 \geq \sigma_2^2$$
, $H_1: \sigma_1^2 < \sigma_2^2$

- 检验统计量 $F = \frac{S_1^2}{S_2^2}$.
 - 拒绝域 $F \leq F_{1-\alpha}(n_1-1, n_2-1) = \frac{1}{F_{\alpha}(n_2-1, n_1-1)}$

右边检验:
$$H_0: \sigma_1^2 \leq \sigma_2^2$$
, $H_1: \sigma_1^2 > \sigma_2^2$

- 检验统计量 $F = \frac{S_1^2}{S_2^2}$.
- 拒绝域 $F \geq F_{\alpha}(n_1 1, n_2 1)$.

例

用两种方法 (A 和 B) 测定冰自 -0.72 ℃ 转变为 0 ℃ 的水的融化热 (以 cal/g 计). 测得以下的数据: 方法 A

79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 80.05 80.03 80.02 80.00 80.02

方法 B:

设这两个样本相互独立, 且分别来自正态总体 $N(\mu_A, \sigma_A^2)$ 和 $N(\mu_B, \sigma_B^2)$, μ_A , μ_B , σ_A^2 , σ_B^2 均未知, 试检验假设 (取显著性水平 $\alpha=0.01$)

$$H_0: \sigma_A^2 = \sigma_B^2, \qquad H_1: \sigma_A^2 \neq \sigma_B^2.$$

解: $n_1 = 13, n_2 = 8, \alpha = 0.01,$ 所以拒绝域为

$$\frac{s_A^2}{s_B^2} \ge F_{0.005}(12,7) = 8.18,$$

 $\frac{s_A^2}{s_D^2} \le F_{0.095}(12,7) = \frac{1}{F_{0.005}(7,12)} = \frac{1}{5.52} = 0.18.$

现在
$$s_A^2 = 0.024^2, s_B^2 = 0.031^2, s_A^2/s_B^2 = 0.60.$$

故接受 Ho, 认为两总体方差相等.

两总体方差相等也称两总体具有方差齐性.

0.18 < 0.60 < 8.18

σ^2 已知, 检验 μ 的假设

	•		
	双边假设	右边假设	左边假设
	$H_0: \mu = \mu_0$	$H_0: \mu \leq \mu_0$	$H_0: \mu \geq \mu_0$
	$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu < \mu_0$
检验统计量	Z =	$= \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0)$,1)
拒绝域	$ z \ge z_{\alpha/2}$	$z \ge z_{\alpha}$	$z \le -z_{\alpha}$

σ^2 未知, 检验 μ 的假设 ($\star\star\star\star\star$)

	双边假设	右边假设	左边假设
	$H_0: \mu = \mu_0$	$H_0: \mu \le \mu_0$ $H_1: \mu > \mu_0$	$H_0: \mu \geq \mu_0$
	$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu < \mu_0$
检验统计量	t =	$=rac{\overline{X}-\mu_0}{S/\sqrt{n}}\sim t(n-1)$	- 1)
拒绝域	$ t \ge t_{\alpha/2}$	$t \geq t_{\alpha}$	$t \leq -t_{\alpha}$

 σ_1^2, σ_1^2 已知, 检验 $\mu_1 - \mu_2$ 的假设

	• · . · · ·	右边假设 $H_0: \mu_1 - \mu_2 \ge \delta$ $H_1: \mu_1 - \mu_2 > \delta$	
	$H_1: \mu_1 - \mu_2 \neq \delta$	$H_1: \mu_1 - \mu_2 > \delta$	$H_1: \mu_1 - \mu_2 < \delta$
检验统计量	Z	$=rac{\overline{X}-\overline{Y}-\delta}{\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}}\sim N(0,1)$	1)
拒绝域	$ z \geq z_{lpha/2}$	$z \ge z_{\alpha}$	$z \le -z_{\alpha}$

$$\sigma_1^2 = \sigma_1^2 = \sigma^2$$
 未知, 检验 $\mu_1 - \mu_2$ 的假设

	双边假设	右边假设	左边假设	
	$H_0: \mu_1 - \mu_2 = \delta$	$H_0: \mu_1 - \mu_2 \ge \delta$ $H_1: \mu_1 - \mu_2 > \delta$	$H_0: \mu_1 - \mu_2 = \delta$	
	$H_1: \mu_1 - \mu_2 \neq \delta$	$H_1: \mu_1 - \mu_2 > \delta$	$H_1: \mu_1 - \mu_2 < \delta$	
检验统计量	$t = \frac{\overline{X} - \overline{Y} - \delta}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t \left(n_1 + n_2 - 2 \right)$			
	$S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}.$			
拒绝域	$ t \geq t_{\alpha/2}$	$t \geq t_{\alpha}$	$t \leq -t_{\alpha}$	

μ 未知, 检验 σ^2 的假设

	双边假设 $H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2$	右边假设 $H_0: \sigma^2 \leq \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$	$H_0: \sigma^2 \geq \sigma_0^2$
检验统计量	$\chi^2 = \frac{\zeta}{2}$	$\frac{n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$	- 1).
拒绝域	$\chi^2 \ge \chi^2_{\alpha/2}$	$\chi^2 \ge \chi^2_{\alpha}$	$\chi^2 \le \chi^2_{1-\alpha}$
	域 $\chi^2 \leq \chi^2_{1-\alpha/2}$		

μ_1, μ_2 未知, 检验 σ_1^2/σ_2^2 的假设

	双边假设 $H_0:\sigma_1^2=\sigma_2^2\ H_1:\sigma_1^2 eq\sigma_2^2$	右边假设 $H_0: \sigma_1^2 \leq \sigma_0 2^2 \ H_1: \sigma_1^2 > \sigma_2^2$	左边假设 $H_0:\sigma_1^2\geq\sigma_2^2\ H_1:\sigma_1^2<\sigma_2^2$
检验统计量	F	$= \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1)$	
拒绝域	$F \ge F_{\alpha/2} (n_1 - 1, n_2 - 1)$ 或	$F \ge F_{\alpha} \left(n_1 - 1, n_2 - 1 \right)$	$F \le F_{1-\alpha} (n_1 - 1, n_2 - 1)$
	$F \le F_{1-\alpha/2} (n_1 - 1, n_2 - 1)$		

成对数据, 检验 μ_D 的假设

		右边假设	
	$H_0: \mu_D = 0$	$H_0: \mu_D \le 0$ $H_1: \mu_D > 0$	$H_0: \mu_D \ge 0$
	$H_1:\mu_D\neq 0$	$H_1: \mu_D > 0$	$H_1: \mu_D < 0$
检验统计量	t =	$\frac{\overline{D}}{S_D/\sqrt{n}} \sim t(n-1)$	- 1)
拒绝域	$ t \ge t_{\alpha/2}$	$t \geq t_{\alpha}$	$t \leq -t_{\alpha}$