Bifurcations of zero balance state in one boundary-value problem

with deviation in edge condition

Leonid Ivanovsky

P.G. Demidov Yaroslavl State University, Scientific Center in Chernogolovka of RAS

Boundary-value problem

$$\dot{u} = u'' + \gamma u - u^3,\tag{1}$$

$$u'(0,t) = 0,$$
 (2)
 $u'(1,t) = \alpha u(x_0,t),$

$$\alpha, \gamma \in \mathbb{R}, \quad x_0 \in [0, 1].$$

Normal form

$$u = \sqrt{\varepsilon}u_0 + \varepsilon u_1 + \varepsilon^{\frac{3}{2}}u_2 + O(\varepsilon^2),$$

$$\alpha = \alpha_{cr} + \varepsilon, \quad s = \varepsilon t.$$

$$u_0 = z(s)e^{i\omega t}v(x) + \overline{z}(s)e^{-i\omega t}\overline{v}(x).$$

Form for u_0

$$\sqrt{\varepsilon}$$
: $\dot{u_0} = u_0'' + \gamma u_0$,

$$u'_0(0,t) = 0,$$

 $u'_0(1,t) = \alpha_{cr} u_0(x_0,t).$

Form for u_2

$$\varepsilon^{\frac{3}{2}}$$
: $z'e^{i\omega t}v + \dot{u}_2 = u''_2 + \gamma u_2 - (ze^{i\omega t}v + \overline{z}e^{-i\omega t}\overline{v})^3$

$$u'_2(0,t) = 0,$$
 $u'_2(1,t) = \alpha_{cr} u_2(x_0,t) + u_0(x_0,t)$
 $z' = \phi z + dz |z|^2$

Divergent loss of stability ($\lambda = 0$)

$$v'' + \gamma v = 0, (3)$$

$$v'(0) = 0,$$
 $v'(1) = \alpha_{cr} v(x_0),$
(4)

Main results: theorems

Theorem 1: In the case of $Re(\phi) > 0$, Re(d) < 0 $\exists \varepsilon_0 > 0 \ \forall \varepsilon \in (0, \varepsilon_0]$ there is observed an exponentially-orbitally stable cycle with asymptotic form $z(s) = \sqrt{-\frac{Re(\phi)}{Re(d)}} \exp\left(i\left(Im(\phi) - \frac{Im(d)Re(\phi)}{Re(d)}\right)s + i\gamma\right)$.

Theorem 2: For $\gamma < \gamma_*$ zero solution of (1), (2) will be asymptotically stable, if $\alpha < \beta$ and $\alpha > \alpha_{cr}$, where β , α_{cr} are roots of boundary-value problem (3), (4) and transcendental equation (5), respectively.

Oscillating loss of stability $(\lambda = i\omega)$

$$v(x) = c \operatorname{ch}(\mu x),$$

$$v'(1) = \alpha_{cr} v(x_0)$$

$$\mu = \sqrt{-\gamma + i\omega}, \quad \omega \in \mathbb{R}.$$
(5)

System for numerical experiments

$$\dot{u}_j = n^2(u_{j+1} - 2u_j + u_{j-1}) + \gamma u_j - u_j^3, \quad j = \overline{1, n}, \tag{6}$$

$$u_0 = u_1,$$

$$u_{n+1} = u_n + \frac{\alpha}{n} u_k,$$

$$k = k(x_0) \in \mathbb{N}, \quad k \in [1, n]$$

$$(7)$$

Numerical results: areas of stability for zero solution

Numerical results

