

planetmath.org

Math for the people, by the people.

properties of direct product

 ${\bf Canonical\ name} \quad {\bf Properties Of Direct Product}$

Date of creation 2013-03-22 18:29:15 Last modified on 2013-03-22 18:29:15

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 10

Author CWoo (3771) Entry type Derivation Classification msc 18A30

Related topic CategoricalDirectSum

Let \mathcal{C} be a category. This entry lists some of the basic properties of categorical direct product:

Proposition 1. (uniqueness of products) A product $(C, \{\pi_i\}_{i \in I})$ of objects $\{C_i\}_{i \in I}$, if it exists, is unique up to isomorphism.

Before proving this, let us observe first that if $f:C\to C$ is a morphism such that

$$\pi_i = \pi_i \circ f \tag{1}$$

then $f = 1_C$ necessarily, since the universal property of product C, f is the unique morphism such that (1) holds, but then $\pi_1 = \pi_1 \circ 1_C$ as well, and this forces $f = 1_C$.

Proof. If $(D, \{g_i\}_{i\in I})$ is another product of $\{C_i\}_{i\in I}$, we get two unique morphisms $x: D \to C$ and $y: C \to D$ such that $\pi_i = g_i \circ y$ and $g_i = \pi_i \circ x$ for all $i \in I$. So $\pi_i = (\pi_i \circ x) \circ y = \pi_i \circ (x \circ y)$. From the previous paragraph, we see that $x \circ y = 1_C$. Similarly, $g_i = g_i \circ (y \circ x)$, so that $y \circ x = 1_D$. This shows that C is isomorphic to D.

This justifies writing $\prod_{i\in I} C_i$ (with π_i) as the product of $\{C_i\}_{i\in I}$. In case I has cardinality 2, we write $C_1 \times C_2$ as the product of C_1 and C_2 . Also, when $I = \emptyset$, we set the product as any terminal object T in \mathcal{C} .

Proposition 2. If I is the disjoint union of J and K, then

$$\prod_{i \in I} C_i \cong \prod_{j \in J} C_j \times \prod_{k \in K} C_k,$$

assuming all products exist.

Proof. Let

$$C = \prod_{i \in I} C_i$$
, $D = \prod_{j \in J} C_j$, and $E = \prod_{k \in K} C_k$.

We break down the proof into two cases:

• Suppose one of J and K is the empty set, say, $J = \emptyset$. Then D is a terminal object, and K = I, so that E = C. In other words, we want to show that

$$C \cong D \times C$$
.

First, notice that we have morphisms $1_C: C \to C$ and $e_C: C \to D$ (where e_C is unique since D is terminal). If A is any object with morphisms $f: A \to C$ and $e_A: A \to D$. Any $g: A \to C$ with $f = 1_C \circ g$ and $e_A = e_C \circ g$ must result in f = g. This shows that C may be viewed as the product of D and C, or $C \cong D \times C$.

• Now, suppose neither J nor K is empty. We have projection morphisms $f_i: C \to C_i$ for all $i \in I$, $g_j: D \to C_j$ for all $j \in J$, and $h_k: E \to C_k$ for all $k \in K$. Write $F = D \times E$ with projections $p_1: F \to D$ and $p_2: F \to E$.

For every $i \in I$, define morphisms $x_i : F \to C_i$ as follows: if $i \in J$, then $x_i = g_i \circ p_1$. Otherwise, $x_i = h_i \circ p_2$. Since J and K are disjoint, this I-indexed set of morphisms is well-defined. By the universality of the product C, we get a unique morphism $x : F \to C$ such that $x_i = f_i \circ x$.

Next, from the universal properties of the products D and E, we have two unique morphisms $y: C \to D$ and $z: C \to E$ such that $f_j = g_j \circ y$ and $f_k = h_k \circ z$ for any $j \in J$ and $k \in K$. From the morphisms $y: C \to D$ and $z: C \to E$ and the universality of the product F, we have another unique morphism $f: C \to F$ such that $y = p_1 \circ f$ and $z = p_2 \circ f$.

Then $p_1 \circ (f \circ x) = (p_1 \circ f) \circ x = y \circ x$. Since $g_j \circ y \circ x = f_j \circ x = x_j = g_j \circ p_1$ for any $j \in J$, we have $y \circ x = p_1$, so that $p_1 \circ (f \circ x) = p_1$. Similarly, $p_2 \circ (f \circ x) = p_2$. This shows that $f \circ x = 1_F$. Also, $f_i \circ (x \circ f) = (f_i \circ x) \circ f = x_i \circ f$. Now, if $i \in J$, then $x_i \circ f = g_i \circ p_1 \circ f = g_i \circ y = f_i$, and if $i \in K$, then $x_i \circ f = h_i \circ p_2 \circ f = h_i \circ z = f_i$. As a result, $f_i \circ (x \circ f) = f_i$ for all $i \in I$, which implies $x \circ f = 1_C$. This shows that $C \cong F = D \times E$.

This completes the proof.

Corollary 1. (commutativity of products) $A \times B \cong B \times A$, if one (and hence the other) exists.

This shows that it does not matter whether we say $A \times B$ as the product of A and B, or the product of B and A.

Corollary 2. (associativity of products) $A \times (B \times C) \cong A \times B \times C \cong (A \times B) \times C$, whenever the products are defined.

Remarks. All of the properties can be dualized, so that coproducts are unique up to isomorphism, and commutativity and associativity laws hold as well.