(CMPSEGS)

Segurança de Sistemas

Tecnologia em Análise e Desenvolvimento de Sistemas

Autenticação e Autorização

Prof. Me. Leonardo Arruda

leonardo.arruda@ifsp.edu.br

Tríade CID

- Confidencialidade: dados acessíveis apenas a autorizados.
- Integridade: dados corretos, completos e confiáveis.
- Disponibilidade: dados e sistemas sempre acessíveis.
- Autenticidade: garante origem e veracidade da informação.
- Irretratabilidade: impede negação de envio ou recebimento de dados.

Autenticação

Introdução

A autenticação prova a identidade de diversas entidades do sistema computacional.

Objetivos:

- Identificar usuários para o sistema;
- Identificar sistema para os usuários;
- Identificar sistemas para outros sistemas (módulo de pagamento);
- Garantir a origem de uma aplicação etc.

Introdução

Etapas de autenticação em um servidor:

- 1. Login (inicia a sessão do usuário);
- 2. Autenticação do cliente;
- 3. Criação de processos;
- 4. Utilizar os sistemas criados pelos processos;
- 5. Finalizar a sessão do usuário (logout);

Fluxo Geral

Fluxo Geral

- 1. Cliente solicita autorização ao usuário.
- 2. Se autorizado, o cliente recebe uma concessão.
- 3. Cliente solicita token de acesso ao Servidor de Autorização.
- 4. Servidor valida concessão e emite token de acesso.
- 5. Cliente solicita recurso protegido usando token.
- 6. Servidor valida token e entrega o recurso.

Autenticação

Consistem em dois passos:

- Identificação: fornecer identidade (nome de usuário, cartão magnético, cartão de proximidade etc.);
- Verificação: apresentar ou gerar informações de autenticação para provar identidade (senha alfanumérica, senha numérica (PIN), digitais etc.)

A autenticação de usuários é a base para grande parte dos tipos de controle de acesso e para a responsabilização do usuário.

Autenticação e Autorização

Autenticidade vs. Autenticação

Autenticidade:

- Garantia de que a informação, mensagem ou transação é verdadeira e confiável;
- Dado não foi falsificado e que realmente veio de quem afirma ter enviado;
- Uma mensagem autêntica não garante, por si só, que o usuário seja autêntico.

Autenticação:

- Processo de verificar a identidade de um usuário, sistema ou entidades antes de conceder acesso a recursos;
- Identificação e verificação;
- Ex.: Usuário e senha (validação);

Como evitar o ataque de repetição?

Autenticação de mensagens resistente a ataques de repetição

- **Túnel seguro**: impede captura de mensagens por atacante (HTTPS);
- Desafio-resposta:
 - MACs calculados sobre nonces (token criptográfico) ou carimbos de tempo;
 - Sistema envia um código e o usuário deve responder rapidamente;
 - Intruso que tenta repetir a mensagem envia tag incorreta
 - Ex.: Token de banco ou serviços de autenticação (Google Authenticator)

Como evitar o ataque de repetição?

Estratégias de autenticação

- Algo que o individuo conhece ou sabe:
 - Senhas, número de identificação pessoal (PIN) e respostas a perguntas de segurança;
- Algo que o indivíduo possui:
 - Cartões eletrônicos com senhas, smart cards e chaves físicas (token);
- Algo que o indivíduo é (biometria estática):
 - Impressão digital, retina e face;
- Algo que o individuo faz (biometria dinâmica):
 - Reconhecimento de voz, características de escrita e andar.

Estratégias de autenticação

Usadas individualmente ou de forma combinada ("autenticação multifator"):

- Todas podem prover autenticação;
- Todas apresentam vantagens e desvantagens;

Captura de Senhas:

- Na **rede**, se enviada às claras (Ex.: HTTP, telnet)
 - Solução: usar túnel seguro (HTTPS, SSH);

- Durante a digitação ("keyloogers")
 - Solução: antimalware

- Explorando mau uso: senha escrita em arquivo ou anotada em papel; engenharia social.
 - Solução: educação de usuários

Reuso de senhas por usuários

- Problema: a mesma senha em múltiplos sistemas aumenta o risco caso seja capturada;
- Soluções:
 - Gerenciador de senhas: armazenam senhas de forma cifrada, protegidas por uma senha mestre (Browser);
 - Single Sign-On (SSO): login único via provedores confiáveis (Google, Facebook, etc), que verificam a identidade do usuário.
 - Educação de usuários: não reutilizar senhas em serviços críticos; usar e-mails descartáveis ou ferramentas como "BugMeNot" para serviços irrelevantes (logins compartilháveis).

Ataques de força bruta

Baixa entropia de senhas

 Média de 40 bits; piora com políticas inadequadas (proibir caracteres especiais, limitar tamanho, manter senhas padrão);

Ataques Online:

- Tentativas repetidas diretamente no sistema (Ex.: login de bancos, e-mails etc.);
- Solução: bloqueio temporário de usuários após várias tentativas falhas.

Ataques offline:

- Roubo de base de dados ou dispositivo (Ex.: Yahoo, Dropbox);
- Senhas armazenadas em texto claro podem ser reutilizadas em outros sistemas;
- Ferramentas automatizadas: password crackers automatizados (Ex.: <u>Cain</u>, <u>John the Ripper</u>);
- Solução: uso de password hashing para proteger senhas.

ECONOMIA

Ataque ao Dropbox expõe senhas de 68 milhões de usuários

Dados foram roubados em 2012, mas hackers só divulgaram agora

O Globo

31/08/2016 - 09:41 / Atualizado em 31/08/2016 - 11:05

https://oglobo.globo.com/economia/ataque-ao-dropboxexpoe-senhas-de-68-milhoes-de-usuarios-20023920

Hack Brief: 4-Year-Old Dropbox Hack Exposed 68 Million People's Data

Dropbox had a security "incident" in 2012, but the true scale and severity of that hack is only now coming to light.

GETTY IMAGES

https://www.wired.com/2016/08/hack-brief-four-year-olddropbox-hack-exposed-68-million-peoples-data/

HACKING

Yahoo corrige informação e diz que vazamento de dados afetou ao menos 500 milhões de usuários

Por Redação - 23 de setembro de 2016

https://tiinside.com.br/23/09/2016/yahoo-corrige-informacao-e-diz-que-vazamento-de-dados-afetou-ao-menos-500-milhoes-de-usuarios/

Yahoo's 2013 Email Hack Actually Compromised Three Billion Accounts

Ten months ago, Yahoo disclosed the biggest breach in history. As it turns out, the company severely underestimated the impact. Think a billion users is bad? Try three billion.

https://www.wired.com/story/yahoo-breach-three-billion-accounts/

Ataques de força bruta se base/dispositivo armazena:

- Senhas armazenadas às claras (texto simples):
 - O atacante que obtém o banco de dados tem custo praticamente zero para descobrir a senha, porque já está disponível.
 - Consequência: se o usuário reutiliza a mesma senha em outros sistemas, todos eles ficam vulneráveis.

Usuário	Senha (Texto Claro)
alice	senha123
bob	qwerty!
carol	123456
david	minhaSenha2025

Senhas armazenadas como hash:

- O hash é uma função criptográfica unidirecional que transforma a senha em uma sequência fixa de caracteres.
- Ataque possível: o atacante usa tabelas précomputadas (como rainbow tables) ou serviços online gratuitos que associam hashes comuns a senhas conhecidas.
- Exemplo: hashes de senhas de 16 caracteres ou menos podem ser rapidamente resolvidos usando essas tabelas ou serviços online.
- Custo do ataque: mais alto que senhas em texto claro, mas ainda possível para senhas fracas ou populares.

Usuário Senha (Texto Claro) Hash (SHA-256 simple		Hash (SHA-256 simplificado)
alice	senha123	ef92b778bafe771e89245b89ecbc0b8c
bob	qwerty!	d8578edf8458ce06fbc5bb76a58c5ca4
carol	123456	8d969eef6ecad3c29a3a629280e686cf
david	minhaSenha2025	3c8b2f1c9d2e6b4f7a2c9f1d5e0a6b7c

Hash + Salt

- Conceito: Cada senha é combinada com um salt (valor aleatório, ex.:128 bits) antes gerar hash.
- Objetivo: impedir ataques baseados em tabelas précalculadas (Rainbow tables). Para cada salt, seria necessário gerar uma tabela nova, o que exige um armazenamento imenso (~ 2¹²⁸ bits)

	2	
Password	p4s5w3rdz	p4s5w3rdz
Salt	et52ed	ye5sf8
Hash	lvn49sa	z32i6t0

Hash + Salt

- Conceito: Cada senha é combinada com um salt (valor aleatório, ex.:128 bits) antes gerar hash.
- Objetivo: impedir ataques baseados em tabelas précalculadas (Rainbow tables). Para cada salt, seria necessário gerar uma tabela nova, o que exige um espaço imenso (~ 2¹²⁸ bits)

Desempenho / Ataque:

- Pouco prático em computadores comuns, mas ataques podem ser feitos em paralelo.
- Ex.: Cluster de GPUs (>10¹² hashes/s) consegue quebrar uma senha alfanumérica de 8 caracteres em ~5,5 horas (2012).

Password p4s5w3rdz p4s5w3rdz

Salt et52ed ye5sf8

Hash lvn49sa z32i6t0

https://securityledger.com/2012/12/new-25-gpu-monster-devours-passwords-in-seconds/

Password hasshing (com salt)

- Custo configurável: define t (tempo de processamento) segundos e m MB de RAM para gerar o hash.
 - Quanto menor a memória (m), maior o custo para o atacante (cresce exponencialmente)
- Objetivo: tornar o custo imperceptível para usuários legítimos, mas significativo para atacantes.
- Exemplos de configuração (força do cadeado):
 - t = 1s, m = 1GB → usuário espera 1s ao logar e atacante precisa de milhões de GB de RAM.
 - t = 100 ms, m = 20MB → login rápido e mesmo com GPU, o consumo de memória por tentativa limita os ataques em massa.

Configurável	1 núcleo de processamento		1000 núcleos de processamento	
Algoritmo	testes/s	uso de memória	testes/s	uso de memória
1 hash	> 10000	< 1 KiB	> 10.000.000	alguns KiB
PBKDF/bcrypt	1	< 1 KiB	1000 (todos)	alguns KiB
Lyra2/Argon2		1 Gi8	8 (992 parados)	8 GiB

O usuário ajusta para que não atrapalhe quem tem a chave (usuário), mas dificulta ao máximo o atacante.

https://stytch.com/blog/what-is-password-hashing/

Password Hashing com Salt

Salted Password & Hashing

Mohamed Rimsan

Criando boas senhas

- Use variedade: inclua letras maiúsculas, minúsculas, números e símbolos (até espaços podem ser usados);
- Evite fragilidades: não use palavras de dicionário, nomes pessoais ou dados óbvios.

• Se usar palavras, combine várias (*passphrase*) ou aplique erros propositais de ortografia.

Password

Criando boas senhas

- Construa a partir de frases: fáceis de lembrar, mas difíceis de adivinhar.
 - Ex.: "Esta era uma boa senha.. Até que mostrei ela para vocês da aula!" → Eeubs...Aqmepvda!
 - Ex.: "Quem ri por último é porque não entendeu a piada" ->
 Qrp'u, 'epneap.

• **Dica extra**: combine duas ou mais frases para aumentar o comprimento da senha e reforçar a segurança.

Cartões

- Tipos: magnéticos, sem contato (NFC), entre outros;
- Uso: armazenam apenas um código de segurança fixo.
- Vulnerabilidades:
 - Clonagem;
 - Roubo;
 - Compartilhamento indevido.

Tokens

- Tipos: papel ou eletrônicos;
- Uso: geram senhas temporárias (OTP).
 - Ex.: TOPT é baseado no relógiointerno + chave secreta (HMAC).
 - Mesmo código é gerado pelo token e pelo servidor, desde que estejam sincronizados.
 - Funciona bem contra ataques de repetição.

Vulnerabilidades:

- Papel: fácil de copiar ou clonar;
- Eletrônico:
 - Recomenda-se usode senha/PIN;
 - Clonagem é rara (OTP não revela a chave secreta);

Cartões Inteligentes (Smart Cards)

- Exemplos: cartões de crédito, SIM Card, bilhetes eletrônicos
- Uso: processamento seguro de código de autenticação.
 - Comunicação via criptografia com chaves protegidas;
 - Fisicamente: não podem ser extraídas (hardware projeto para isso);
 - Logicamente: podem ser apagadas após tentativas incorretas (PIN incorreto);

Vulnerabilidades:

- Fraude no leitor: o que é mostrado pode não ser o que o cartão realmente envia.
- Falhas em algoritmos/protocolos: Mifare Classic (Bilhete Único) e Cartões de crédito sem contato (NFC). https://www.usenix.org/system/files/conference/woot13/woot13-roland.pdf

FIGURA 3.3 Dimensões do smart card 0 chip do smart card está embutido no cartão plástico e não fica visível. As dimensões seguem o padrão ISO 7816-2.

Após falha técnica, 40 mil Bilhetes Únicos são bloqueados, diz SPTrans

Empresa informa que vai substituir bilhetes que apresentarem falhas

Agência Estado, São Paulo

02/07/23 às 16:54 | Atualizado 03/07/23 às 08:14

https://www.cnnbrasil.com.br/nac ional/apos-falha-tecnica-40-milbilhetes-unicos-sao-bloqueadosdiz-sptrans/

Biometria

- Método de autenticação que identifica o usuário com base em características físicas (como digitais, íris ou face) ou comportamentais (como assinatura, digitação ou padrões de voz).
- Permite uma validação única e individual, aumentando a segurança em comparação com senhas ou cartões.

Impressão Digital

• Leitura de minúcias: coleção de pontos identificáveis em uma impressão digital (terminação e bifurcação são mais utilizadas).

Processo:

Dados armazenados em banco de dados para comparação posterior

FIGURA 3.6 Sistema biométrico genérico 0 registro cria uma associação entre um usuário e as características biométricas desse usuário. Dependendo da aplicação, a autenticação de usuário envolve verificar se um usuário alegado é o usuário real ou identificar um usuário desconhecido.

Biometria (Vulnerabilidades):

- Reprodução de dados biométricos
 - Ex.: dedo de borracha, foto de alta resolução de olhos ou da face;
- Roubo de dados em trânsito: interceptação durante comunicação entre sensor e sistema;
- Ataque de repetição: reutilização de dados biométricos capturados para autenticação;
- Roubo da base de informações biométricas: base de dados do TSE (eleição);
- Criação de objetos falsos: dispositivos ou lentes que simulm a leitura biométrica correta. Ex.: lente para leitura de íris;
- Revogação é um desafio: um dedo ou outra informação biométrica revogada não é facilmente substituível.

Biometria (Contramedidas):

- Contra falsificações:
 - Sensores de alta acurácia: dificultam a criação de réplicas.
 - Combinação de sensores: verificam presença real (ex.: temperatura da pele, profundidade da íris).
 - Monitoramento dos sensores: evita apresentação de artefatos como fotos ou impressões falsas.

Proteção de dados:

- Transmissão segura: canal de comunicação criptografado e protegido fisicamente.
- Armazenamento seguro: módulo de registros protegido fisicamente e logicamente contra acesso indevido

Ataques, autenticadores e defesas

ı	Tabela 3.4	Alguns ataques	potenciais.	autenticadores	suscetíveis e defesas típicas	3
- 1			1			-

Ataques	Autenticadores	Exemplos	Defesas típicas
Ataque a cliente	Senha	Adivinhação, busca exaustiva	Grande entropia; tentativas limitadas
	Token	Busca exaustiva	Grande entropia; tentativas limitadas; roubo de objeto requer presença
	Biométrico	Falsa correspondência	Grande entropia; tentativas limitadas
Ataque a sistema	Senha	Roubo de texto às claras, busca em dicionário, busca exaustiva	Uso de hash; grande entropia; proteção de banco de dados de senhas
	Token	Roubo de código de acesso	Mesmas da senha; código de acesso de uso único
	Biométrico	Roubo de gabarito	Captura de dispositivo de autenticação; desafio/ resposta
Escuta, roubo e cópia	Senha	"Olhar sobre os ombros" ("shoulder surfing")	Diligência do usuário para proteger segredo; diligência do administrador para revogar rapidamente senhas comprometidas; autenticação multifator
	Token	Roubo, falsificação de hardware	Autenticação multifator; token resistente ou que evidencia falsificação
	Biométrico	Cópia (spoofing) da biometria	Detecção de cópia no dispositivo de captura e autenticação do dispositivo de captura
Repetição	Senha	Repetição de resposta roubada para senha	Protocolo de desafio/resposta
	Token	Repetição de resposta roubada para código de acesso	Protocolo de desafio/resposta; código de acesso de uso único
	Biométrico	Repetição de resposta roubada para gabarito biométrico	Detecção de cópia no dispositivo de captura e autenticação do dispositivo de captura via protocolo de desafio/resposta
Cavalo de Troia	Senha, token, biometria	Instalação de cliente falso ou dispositivo de captura	Autenticação de cliente ou dispositivo de captura dentro do perímetro de segurança confiável
Negação de service	Senha, token, biometria	Bloqueio após várias autenticações fracassadas	Multifator com token

Dúvidas?

Referências Bibliográficas

SÊMOLA, Marcos. *Gestão da segurança da informação: uma visão executiva*. 2. ed., 8. tiragem. Rio de Janeiro: [s.n.], 2018.

SILVA, Pedro Tavares; CARVALHO, Hugo; TORRES, Catarina Botelho. Segurança dos sistemas de informação: gestão estratégica da segurança empresarial. 1. ed. Lisboa; V. N. Famalicão: Centro Atlântico, 2003. ISBN 972-8426-66-6.

STALLINGS, William; BROWN, Lawrie. Segurança de computadores: princípios e práticas. 2. ed. Tradução Arlete Simille Marques. Rio de Janeiro: Elsevier, 2014. ISBN 978-85-352-6449-4.