Recap-1 The Compilers' Front End

Front End of Compilers

PART I: Regex \rightarrow NFA \rightarrow (Min) DFA

Regex describes a language

- Regex describes a language
- Primitive regex
 - \emptyset , ϵ , a

- Regex describes a language
- Primitive regex
 - Ø, *∈*, *a*
- Given two regex: r_1 , r_2 , the following are regex
 - $r_1 | r_2$
 - r_1r_2
 - r_1^*
 - (*r*₁)

- Regex describes a language
- Primitive regex
 - Ø, *∈*, *a*
- Given two regex: r_1 , r_2 , the following are regex
 - $r_1 | r_2$
 - r_1r_2
 - r_1^*
 - (*r*₁)
- Example: $(a|b)^*c$

Language by Regex

- The language represented by regex are defined below
- Primitive regex
 - $L(\emptyset) = \emptyset$; $L(\epsilon) = \{\epsilon\}$; $L(a) = \{a\}$

Language by Regex

- The language represented by regex are defined below
- Primitive regex
 - $L(\emptyset) = \emptyset$; $L(\epsilon) = \{\epsilon\}$; $L(a) = \{a\}$
- Given two regex: r_1 , r_2 , the following are regex
 - $L(r_1|r_2) = L(r_1) \cup L(r_2)$
 - $L(r_1r_2) = L(r_1)L(r_2)$
 - $L(r_1^*) = (L(r_1))^*$
 - $L((r_1)) = L(r_1)$

Regex to NFA (DFA)

- Primitive regex
 - $L(\emptyset) = \emptyset$; $L(\epsilon) = \{\epsilon\}$; $L(a) = \{a\}$

Regex to NFA (DFA)

- Primitive regex
 - $L(\emptyset) = \emptyset$; $L(\epsilon) = \{\epsilon\}$; $L(a) = \{a\}$

Regex to NFA (DFA)

- Primitive regex
 - $L(\emptyset) = \emptyset$; $L(\epsilon) = \{\epsilon\}$; $L(a) = \{a\}$
- Given two regex: r_1 , r_2 , the following are regex
 - $L(r_1|r_2) = L(r_1) \cup L(r_2)$
 - $L(r_1r_2) = L(r_1)L(r_2)$
 - $L(r_1^*) = (L(r_1))^*$
 - $L((r_1)) = L(r_1)$

- Build the NFA for the regex: $(a|b)^*c$
- $L((a|b)^*c) = (L(a|b))^*L(c) = (L(a) \cup L(b))^*L(c)$

- Build the NFA for the regex: $(a|b)^*c$
- $L((a|b)^*c) = (L(a|b))^*L(c) = (L(a) \cup L(b))^*L(c)$

- Build the NFA for the regex: $(a|b)^*c$
- $L((a|b)^*c) = (L(a|b))^*L(c) = (L(a) \cup L(b))^*L(c)$

- Build the NFA for the regex: $(a|b)^*c$
- $L((a|b)^*c) = (L(a|b))^*L(c) = (L(a) \cup L(b))^*L(c)$

- Build the NFA for the regex: $(a|b)^*c$
- $L((a|b)^*c) = (L(a|b))^*L(c) = (L(a) \cup L(b))^*L(c)$

- Subset Construction
- A subset of NFA states is a DFA state

	а	b
q_0	q_1	q_2
q_1	q_0	q_3
q_2	q_4	q_5
q_3	q_4	q_5
q_4	q_4	q_5
q_5	q_5	q_5

	а	b
q_0	q_1	q_2
q_1	q_0	q_3
q_2	q_4	q_5
q_3	q_4	q_5
q_4	q_4	q_5
q_5	q_5	q_5

Step 1	$\{q_0, q_1, q_5\}, \{q_2, q_3, q_4\}$	Distinguish final and non-final states
Step 2		
Step 3		

Step 1	$\{q_0, q_1, q_5\}, \{q_2, q_3, q_4\}$	Distinguish final and non-final states
Step 2	$\{q_0, q_1\}, \{q_5\}$	$\delta(q_0,a/b)$ and $\delta(q_1,a/b)$ are in the same set, but $\delta(q_5,a/b)$ not
Step 3		

Step 1	$\{q_0, q_1, q_5\}, \{q_2, q_3, q_4\}$	Distinguish final and non-final states
Step 2	$\{q_0, q_1\}, \{q_5\}, \{q_2, q_3, q_4\}$	$\delta(q_0,a/b)$ and $\delta(q_1,a/b)$ are in the same set, but $\delta(q_5,a/b)$ not
Step 3		

Step 1	$\{q_0, q_1, q_5\}, \{q_2, q_3, q_4\}$	Distinguish final and non-final states
Step 2	$\{q_0, q_1\}, \{q_5\}, \{q_2, q_3, q_4\}$	$\delta(q_0,a/b)$ and $\delta(q_1,a/b)$ are in the same set, but $\delta(q_5,a/b)$ not
Step 3	$\{q_0, q_1\}, \{q_5\}, \{q_2, q_3, q_4\}$	The result does not change and the algorithm completes

Step 1	$\{q_0, q_1, q_5\}, \{q_2, q_3, q_4\}$	Distinguish final and non-final states
Step 2	$\{q_0, q_1\}, \{q_5\}, \{q_2, q_3, q_4\}$	$\delta(q_0,a/b)$ and $\delta(q_1,a/b)$ are in the same set, but $\delta(q_5,a/b)$ not
Step 3	$\{q_0, q_1\}, \{q_5\}, \{q_2, q_3, q_4\}$	The result does not change and the algorithm completes

Step 1	$\{q_0, q_1, q_5\}, \{q_2, q_3, q_4\}$	Distinguish final and non-final states
Step 2	$\{q_0, q_1\}, \{q_5\}, \{q_2, q_3, q_4\}$	$\delta(q_0,a/b)$ and $\delta(q_1,a/b)$ are in the same set, but $\delta(q_5,a/b)$ not
Step 3	$\{q_0, q_1\}, \{q_5\}, \{q_2, q_3, q_4\}$	The result does not change and the algorithm completes

PART II: CFG and Parsing

Context Free Grammar (CFG)

- A context-free grammar is a tuple G = (N, T, S, P)
 - N: a finite set of non-terminals
 - T: a finite set of terminals, such that $N \cap T = \emptyset$
 - $S \in N$: start non-terminals
 - P: production rules in the form of $A \to a$, where $A \in N$ and $a \in (N \cup T)^*$

```
assignment → identifier = expression
expression → term + term
term → identifier
term → identifier * number
```

```
assignment → identifier = expression
expression → term + term
term → identifier
| identifier * number
```


- Write a context-free grammar for the following languages
 - 0*1*

- Write a context-free grammar for the following languages
 - $0^n 1^{2n}$

- Write a context-free grammar for the following languages
 - L = { w | w is a string of balanced parentheses }

- Write a context-free grammar for the following languages
 - $a^i b^j c^k$ where i = j or j = k

- Write a context-free grammar for the following languages
 - $a^i b^j c^k$ where $i \neq j$ or $j \neq k$

Building a Parser in Practice

- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Problem 1: A left-recursive grammar can cause infinite loops
 - · when expanding a non-terminal, we may find itself and expand it again
- Problem 2: Backtracking may be necessary
 - when one derivation does not work, we may try others

• A grammar is left-recursive if it has a non-terminal A such that there is a derivation $A \Rightarrow^+ A\alpha$

- A grammar is left-recursive if it has a non-terminal A such that there is a derivation $A \Rightarrow^+ A\alpha$
- **Example:** $A \rightarrow A\alpha \mid \beta$ is left-recursive

• A grammar is left-recursive if it has a non-terminal A such that there is a derivation $A \Rightarrow^+ A\alpha$

• **Example:** $A \rightarrow A\alpha \mid \beta$ is left-recursive, can be transformed into

$$\beta \alpha^*$$

- A grammar is left-recursive if it has a non-terminal A such that there is a derivation $A \Rightarrow^+ A\alpha$
- **Example:** $A \rightarrow A\alpha \mid \beta$ is left-recursive, can be transformed into

- A grammar is left-recursive if it has a non-terminal A such that there is a derivation $A \Rightarrow^+ A\alpha$
- **Example:** $A \rightarrow A\alpha \mid \beta$ is left-recursive, can be transformed into

$$\begin{array}{ccc} A \to \beta A' \\ A' \to \alpha A' & | & \epsilon \end{array}$$

$$A \to A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$$

?????

- A grammar is left-recursive if it has a non-terminal A such that there is a derivation $A \Rightarrow^+ A\alpha$
- **Example:** $A \rightarrow A\alpha \mid \beta$ is left-recursive, can be transformed into

$$\begin{array}{ccc} A \to \beta A' \\ A' \to \alpha A' & | & \epsilon \end{array}$$

$$A \to A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$$

$$A \to \beta_1 A' \mid \beta_2 A' \mid \cdots \mid \beta_n A'$$

$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \cdots \mid \alpha_m A' \mid \epsilon$$

Building a Parser in Practice

- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Problem 1: A left-recursive grammar can cause infinite loops
 - · when expanding a non-terminal, we may find itself and expand it again
- Problem 2: Backtracking may be necessary
 - when one derivation does not work, we may try others

Predictive parsers are recursive descent parser w/o backtracking

- Predictive parsers are recursive descent parser w/o backtracking
- LL(1)
 - L: scanning input from left to right
 - L: leftmost derivation
 - 1: Using one input symbol of lookahead at each step

- Predictive parsers are recursive descent parser w/o backtracking
- LL(1)
 - L: scanning input from left to right
 - L: leftmost derivation
 - 1: Using one input symbol of lookahead at each step
- LL(1) grammar (Not ambiguous! Not left-recursive!)
 - Rich enough to cover most programming constructs

• Predi Non - Input Symbol $E \rightarrow TE$ • LI Series Ferminal $E \rightarrow TE'$ • LI Series For $E' \rightarrow F$ • L

- LL(1) grammar (Not ambiguous! Not left-recursive!)
 - Rich enough to cover most programming constructs

• Predi Non - Input Symbol Terminal id + * () \$
• LL(1) E $E \to TE'$ $E \to TE'$ $E' \to \epsilon$ $E' \to \epsilon$ $T \to FT'$ $T' \to \epsilon$ $T' \to \epsilon$ $T' \to \epsilon$ $T' \to \epsilon$ $T' \to \epsilon$

- LL(1) grammar (Not ambiguous! Not left-recursive!)
 - Rich enough to cover most programming constructs
 - To build the predictive table, let's define $FIRST(\alpha)$; $FOLLOW(\alpha)$

First() and Follow()

- FIRST(α):
 - A set of terminals that α may start with

First() and Follow()

- FIRST(α):
 - A set of terminals that α may start with
- FOLLOW(α):
 - A set of terminals that can appear immediately to the right of α

First()

- Example: $S \rightarrow c A b$; $A \rightarrow a b \mid a$
- $FIRST(a) = \{a\}$
- $FIRST(b) = \{b\}$
- $FIRST(c) = \{c\}$

First()

- Example: $S \rightarrow c A b$; $A \rightarrow a b \mid a$
- FIRST $(a) = \{a\}$
- $FIRST(b) = \{b\}$
- FIRST $(c) = \{c\}$
- $FIRST(S) = \{c\}$
- $FIRST(A) = \{a\}$

- FOLLOW(α):
 - A set of terminals that can appear immediately to the right of α
 - $\$ \in FOLLOW(S)$, where \$ is string's end marker, S the start non-terminal

- Example: $S \rightarrow c A b$; $A \rightarrow a b \mid a$
- $FOLLOW(S) = \{\$\}$
- $FOLLOW(A) = \{b\}$

- Example: $S \rightarrow c A b$; $A \rightarrow a b \mid a$
- $FOLLOW(S) = \{\$\}$
- $FOLLOW(A) = \{b\}$
- Example: $S \rightarrow c A A$; $A \rightarrow a b \mid a$
- $FOLLOW(S) = \{\$\}$

- Example: $S \rightarrow c A b$; $A \rightarrow a b \mid a$
- $FOLLOW(S) = \{\$\}$
- $FOLLOW(A) = \{b\}$
- Example: $S \rightarrow c A A$; $A \rightarrow a b \mid a$
- $FOLLOW(S) = \{\$\}$
- FOLLOW(A) \supseteq FIRST(A)\{ ϵ } = {a}

- Example: $S \rightarrow c A b$; $A \rightarrow a b \mid a$
- $FOLLOW(S) = \{\$\}$
- $FOLLOW(A) = \{b\}$
- Example: $S \rightarrow c A A$; $A \rightarrow a b \mid a$
- $FOLLOW(S) = \{\$\}$
- FOLLOW(A) \supseteq FIRST(A)\{ ϵ } = {a}
- $FOLLOW(A) \supseteq FOLLOW(S) = \{\$\}$

- To build a parsing table M[A, a], for each $A \to \alpha$
 - $\forall a \in FIRST(\alpha): M[A, a] = A \rightarrow \alpha$
 - $\epsilon \in \text{FIRST}(\alpha) \Rightarrow \forall b \in \text{FOLLOW}(A) : M[A, b] = A \to \alpha$

Non -	INPUT SYMBOL						
TERMINAL	id	+	*	()	\$	
E	$E \to TE'$			$E \to TE'$			
E'		E' o +TE'			$E' \to \epsilon$	$E' \to \epsilon$	
T	$T \to FT'$			$T \to FT'$			
T'		$T' \to \epsilon$	$T' \to *FT'$		$T' o \epsilon$	$T' \to \epsilon$	
F	$F o \mathbf{id}$			$F \to (E)$			

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid \mathbf{id}$$

- To build a parsing table M[A, a], for each $A \to \alpha$
 - $\forall a \in \text{FIRST}(\alpha) : M[A, a] = A \rightarrow \alpha$
 - $\epsilon \in \text{FIRST}(\alpha) \Rightarrow \forall b \in \text{FOLLOW}(A) : M[A, b] = A \to \alpha$

Non -	INPUT SYMBOL						
TERMINAL	id	+	*	()	\$	
E	$E \to TE'$			$E \to TE'$			
E'		E' o +TE'			$E' \to \epsilon$	$E' \to \epsilon$	
T	$T \to FT'$			$T \to FT'$			
T'		$T' \to \epsilon$	$T' \to *FT'$		$T' o \epsilon$	$T' \to \epsilon$	
F	$F o \mathbf{id}$			$F \to (E)$			

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid \mathbf{id}$$

- To build a parsing table M[A, a], for each $A \to \alpha$
 - $\forall a \in FIRST(\alpha): M[A, a] = A \rightarrow \alpha$
 - $\epsilon \in \text{FIRST}(\alpha) \Rightarrow \forall b \in \text{FOLLOW}(A) : M[A, b] = A \rightarrow \alpha$

Non -	INPUT SYMBOL						
TERMINAL	id	+	*	()	\$	
E	$E \to TE'$			$E \to TE'$			
E'		$E' \to +TE'$			$E' \to \epsilon$	$E' \to \epsilon$	
T	$T \to FT'$			$T \to FT'$			
T'		$T' \to \epsilon$	$T' \to *FT'$		$T' o \epsilon$	$T' \to \epsilon$	
F	$F o \mathbf{id}$			$F \to (E)$			

E	\rightarrow	T E'
E'	\rightarrow	$+ T E' \mid \epsilon$
T	\rightarrow	F T'
T'	\rightarrow	$*FT' \mid \epsilon$
F	\rightarrow	$(E) \mid \mathbf{id}$

- To build a parsing table M[A, a], for each $A \to \alpha$
 - $\forall a \in FIRST(\alpha): M[A, a] = A \rightarrow \alpha$
 - $\epsilon \in \text{FIRST}(\alpha) \Rightarrow \forall b \in \text{FOLLOW}(A) : M[A, b] = A \to \alpha$

NON -	INPUT SYMBOL						
TERMINAL	id	+	*	()	\$	
\overline{E}	$E \to TE'$			$E \to TE'$			
E'		$E' \to +TE'$			$E' \to \epsilon$	$E' \to \epsilon$	
T	$T \to FT'$			$T \to FT'$			
T^{\prime}		$T' \to \epsilon$	$T' \to *FT'$		$T' \to \epsilon$	$T' \to \epsilon$	
F	$F o \mathbf{id}$			$F \to (E)$			

E	\rightarrow	T E'
E'	\rightarrow	$+ T E' \mid \epsilon$
T	\rightarrow	F T'
T'	\rightarrow	$*FT' \mid \epsilon$
F	\rightarrow	$(E) \mid \mathbf{id}$

Choose the production rule as per the table; empty means error

Building a Parser in Practice

- Each non-terminal has a procedure or function for parsing
- => Recursive-Descent Parser
- Problem 1: A left-recursive grammar can cause infinite loops
 - · when expanding a non-terminal, we may find itself and expand it again
- Problem 2: Backtracking may be necessary
 - when one derivation does not work, we may try others

PART III: IR Generation

Three-Address Code

• do i = i + 1; while (a[i + 2] < v);

```
L: t_1 = i + 1

i = t_1

t_2 = i + 2

t_3 = a [t_2]

if t_3 < v goto L
```

```
100: t_1 = i + 1

101: i = t_1

102: t_2 = i + 2

103: t_3 = a [t_2]

104: if t_3 < v goto 100
```

Symbolic Labels

Numeric Labels

• Implementation methods: quadruples, triples, etc.

Static Single-Assignment

- Feature 1: Every variable has only one definition
- Feature 2: Using φ to merge definitions from multi paths
- => Direct def-use chains

```
if (flag) x = -1; else x = 1; y = x * a;

if (flag) x_1 = -1; else x_2 = 1; x_3 = \varphi(x_1, x_2); y = x_3 * a
```


Dominance Relations

- A dom B
 - if all paths from Entry to B goes through A
- A post-dom B
 - if all paths from B to Exit goes through A
- Strict (post-)dominance A (post-)dom B but A ≠ B
- Immediate dominance A strict-dom B, but there's no C, such that A strict-dom C, C strict-dom B

Dominator Tree

- Almost linear time to build a dominator tree.
 - Node: Block
 - Edge: Immediate dom relation

Why is it a tree?

Flow Graph

Dominator Tree

Dominance Frontier

- DF(B) = { ... } for the block B
 - The immediate successors of the blocks dominated by B
 - Not strictly dominated by B

Dominance Frontier

- DF(B) = { ... } for the block B
 - The immediate successors of the blocks dominated by B
 - Not strictly dominated by B

- $DF(\mathbb{B}) = \{ \dots \}$ for a set of blocks \mathbb{B}
 - $\mathsf{DF}(\mathbb{B}) = \cup_{\mathsf{B} \in \mathbb{B}} \mathsf{DF}(\mathsf{B})$

Iterated Dominance Frontier

- Iterated DF of a block set B
 - $DF_1 = DF(\mathbb{B}); \mathbb{B} = \mathbb{B} \cup DF_1$
 - $DF_2 = DF(\mathbb{B})$; $\mathbb{B} = \mathbb{B} \cup DF_2$
 - •
 - until fixed point! (i.e., $DF_n = DF_{n-1}$)

THANKS!