Intro Neural Networks

Matt Olson

September 8, 2017

Matt Olson Week 1 September 8, 2017 1/10

Overview

- Q: What is a Deep Neural Network?
 - A bunch of logistic regressions jammed together
- Training has recently become feasible: Hinton (2006), GPUs
- We will cover: notation, back prop, examples
- \bullet Outline / discussion study group organization

 Matt Olson
 Week 1
 September 8, 2017
 2 / 10

The Perceptron (Logistic Regression)

Matt Olson Week 1 September 8, 2017 3 / 10

Larger Networks

- $w_{i,k}^{\ell}$ connects node k in layer $\ell-1$ to node j in layer ℓ .
- The red edge is $w_{3,2}^2$.

4 / 10

Larger Networks Ctd.

- ullet (vectorized) $z^\ell = W_\ell a^\ell$ and $a^\ell = g\left(z^\ell
 ight)$
- Prediction at a point x: $\widehat{y}(x) = g(W_3g(W_2g(W_1x)))$

The Learning Problem

Observe $\{(x_1, y_1), \dots, (x_n, y_n)\}$ with $y_i \in \{0, 1\}$. Fix a network architecture with L hidden layers. Find weights W_1, \dots, W_L that minimize

$$\underset{W_{1},...,W_{L}}{\text{minimize}} \quad 1/n \sum_{i=1}^{n} \mathcal{L}\left(y_{i},\widehat{y}\left(x_{i}\right)\right)$$

where \mathcal{L} is a loss function (say, cross-entropy) and

$$\widehat{y}(x_i) = g(W_L g(W_{L-1}g(\cdots g(W_1x))))$$

- This minimization problem is attacked through gradient descent
- Need to compute $\nabla_{W} \mathcal{L}(y_i, \hat{y}(x_i))$

The Chain Rule

Recall that for functions h_1, \ldots, h_L (of conformable dimensions)

$$f = h_{L} \circ h_{L-1} \circ \cdots \circ h_{1}$$

$$Df = Dh_{L} \circ Dh_{L-1} \circ \cdots \circ Dh_{1}$$

$$\nabla f = (Dh_{1})^{T} \circ (Dh_{2})^{T} \circ \cdots \circ (Dh_{L})^{T}$$

Matt Olson Week 1 September 8, 2017 7 / 10

Gradient Calculations

For simplicity, let's return to the network with two hidden layers from a previous slide and take $\mathcal{L}(y,\theta) = 1/2(y-\theta)^2$.

- Feed x_i through the network to get activations a^1 , a^2 , a^3 and prediction $\widehat{y}(x_i)$
- ullet Form $G(\ell) = \mathrm{diag}\left([g'(z_1^\ell), \ldots, g'(z_{L_\ell}^\ell)]
 ight)$ for $\ell=1,2,3$
- "Trick": $\frac{\partial \mathcal{L}}{\partial w_{j,k}^{\ell}} = \frac{\partial \mathcal{L}}{\partial z_{j}^{\ell}} \frac{\partial z_{j}^{\ell}}{\partial w_{j,k}^{l}}$

 - $\blacktriangleright \ \frac{\partial \mathcal{L}}{\partial z^2} = G(2)W_3^T G(3) \left(y_i \widehat{y}(x_i)\right)$
 - $\qquad \qquad \qquad \bullet \frac{\partial \mathcal{L}}{\partial z^1} = G(1)W_2^T G(2)W_3^T G(3)(y_i \widehat{y}(x_i))$

Matt Olson Week 1 September 8, 2017 8 / 10

Backpropagation

An efficient algorithm for computing $\frac{\partial \mathcal{L}}{\partial w_{j,k}^I}$ at a point x. For a neural network with L+1 layers:

- (1) Feed x through the network and compute a^1, \ldots, a^L and prediction $\widehat{y}(x)$.
- (2) $G(\ell) = \operatorname{diag}\left([g'(z_1^{\ell}), \ldots, g'(z_{L_{\ell}}^{\ell})]\right)$ for $\ell = 1, \ldots, L$.
- (3) $\delta^L = G(L)(y \widehat{y}(x))$
- (4) $\delta^{\ell} = G(\ell) W_{\ell+1}^{T} \delta^{\ell+1}$ for $\ell = 1, \dots, L-1$.
- (5) $\frac{\partial \mathcal{L}}{\partial w_{i,k}^{\ell}} = a_k^{\ell-1} \delta_j^{\ell}$

 Matt Olson
 Week 1
 September 8, 2017
 9 / 10

Zooming In

