The Association between Temperature Variation and the Outcomes of Hospitalized Cardiovascular Disease Patients in Shanxi, China

PHS6060 Grantwriting Presentation

Miao Cai November 28, 2018

Background

- CVD is the leading cause of death worldwide in 2016
- long time exposure in extreme temperature
- a more comprehensive understanding on the effect of temperature variation

Overall goal: to explore the association between temperature variation and the outcomes of CVD patients in Shanxi, China

The long-term goal to reduce CVD hospitalizations and mortality due to weather changes in China

Aims

1. Determine the association between temperature variation and the hospitalization rates of chronic CVD patients

Hypothesis: more regional temperature variation is associated with a higher rate of chronic CVD hospitalizations

2. Examine the association between temperature variation and the mortality of chronic CVD patients

Hypothesis: temperature variation is independently associated with patients' in-hospital mortality after adjusting for the covariates.

Significance

- CVD is the leading cause of death worldwide and in China
- Dramatic weather changes and human activities
- Little evidence exists on the association between temperature variation and CVD outcomes

Figure 1 CVD disease burden

Figure 2 Global temperature pattern

Innovation

- A generally overlooked area
- A decomposition of temperature variation into vertical and horizontal variation
- Bayesian statistical models
- 127 regions or districts in a populous province

Figure 3 Temperature variation in Yucheng, Shanxi

Approach

The Shanxi Chinese population

- Large sample size:
 36 million residents, 1.2 million
 CVD inpatients
- very different temperature patterns
- long observation window: year 2013 to 2017
- regional variation:127 districts or counties

Figure 4 Patient volume distribution in 127 cities or counties

Different temperature patterns

- Average temperature difference within a day is **12 Celsius degrees**
- Average temperature difference between summer and winter is 28.1 Celsius degrees

Figure 5 Temperature variation across 127 counties and districts

Data

The Shanxi hospitalized patient Database

- All patients hospitalized in secondary and tertiary hospitals
- socio-demographic status (age, sex, marital status, occupation)
- admission and discharge status
- up to 10 secondary ICD-10 diagnosis codes
- outcome upon discharge

China Meteorological Database

- Maximum temperature,
- Average temperature,
- Minimum temperature,
- Wind speed,
- Humidity,
- ullet Air quality index (AQI): SO_2 , NO_2 , pm10, pm2.5, CO, and O_3 .

Conceptual framework

Figure 6 Conceptual framework

Statistical analysis - Aim 1

$$egin{aligned} Y_{jt} \sim ext{POI}(Pop_{jt}*\lambda_{jt}) \ \log(\lambda_{jt}) &= eta_{0j} + eta_{1j}HV_{jt} + eta_{2j}VV_{jt} + eta_{3}Tem_{jt} + eta_{4}Old_{jt} \ &+ eta_{5}Edu_{jt} + eta_{6}Air_{jt} + eta_{7}Season_{jt} \ eta_{0j} \sim N(\mu_{0},\sigma_{0}) \ eta_{1j} \sim N(\mu_{1},\sigma_{1}) \ eta_{2j} \sim N(\mu_{2},\sigma_{2}) \end{aligned}$$

- *j*: index for region (districts/counties)
- t: a certain time during 2013 and 2017
- ullet Y_{jt} : total number of CVD hospitalization in district j, time t
- ullet Pop_{jt} : total number of population
- ullet HV_{jt} : Horizontal temperature variation
- ullet VV_{jt} : Vertical temperature variation
- ullet $Tem_{\it it}$: Average temperature at that time

Statistical analysis - Aim 2

$$egin{aligned} D_{ijt} &\sim ext{POI}(heta_{ijt}) \ ext{logit}(heta_{ijt}) &= eta_{0j} + eta_{1j} H V_{jt} + eta_{2j} V V_{jt} + eta_{3} Tem_{jt} + eta_{4} Age_{i} + eta_{5} Gender_{jt} \ &+ eta_{6} Occupation_{i} + eta_{7} Comorbidity_{i} + eta_{8} Gravity_{i} + eta_{9} Season_{jt} \ eta_{0j} &\sim N(\mu_{0}, \sigma_{0}) \ eta_{1j} &\sim N(\mu_{1}, \sigma_{1}) \ eta_{2j} &\sim N(\mu_{2}, \sigma_{2}) \end{aligned}$$

- *j*: index for patient
- ullet D_{ijt} : Whether patient i died during hospitalization or not,
- ullet $heta_{ijt}$: The probability of in-hospital death for patient i,
- $Gravity_i$: Gravity of disease.

Estimation method

- Stan: Hamiltonian Markov chain Monte Carlo
- Non-informative priors
- 3000 burn-in
- 7000 simulations per chain
- 4 chains
- Gelman-Rubin statistics and posterior convergence checks

Potential Problems and Solutions

Incomplete air pollution data

- Air pollution data prior to 2015 may be missing.
- separate analysis for complete and non-complete air pollution data

Non-convergence for the Bayesian models

- Non-convergence due to large sample size
- Frequentist methods or firefly MCMC (subsampling)

Missing data

- missing completely at random (MCAR) exclude these missing cases
- missing at random (MAR) analysis based on the complete sample

Adjacency of regions

- Bayesian Gaussian model
- geographically weighted regression

Questions and Answers