Содержание работы

В даннй работе нам необходимо изучить данные пользователей мобильного приложения продаж. Исследование состоит из двух этапов:

Этап 1: Исследование воронки продаж. Необходимо выяснить, как пользователи проходят по этапам покупки, и на каких стадия происходит потеря

Этап 2: Исследование результатов А/А/В теста. Необходимо выяснить, приведет ли изменение в интерфейсе к увеличению продаж.

Описание данных: Каждая запись в таблице — это действие пользователя, или событие.

EventName — название события; DeviceIDHash — уникальный идентификатор пользователя; EventTimestamp — время события; Expld — номер эксперимента: 246 и 247 — контрольные группы, а 248 — экспериментальная.

Импорт библиотек и данных

```
BBOA [1]: import pandas as pd import numpy as np import datetime as dt import plotly.express as px from plotly import graph_objects as go from plotly.subplots import make_subplots from statsmodels.stats.proportion import proportions_ztest, proportion_confint

BBOA [3]: df = pd.read_csv('D:\download\npoext\logs_exp.csv','\t')
```

```
_
```

Проверка данных

```
Ввод [4]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 244126 entries, 0 to 244125
         Data columns (total 4 columns):
          # Column
                             Non-Null Count
                                              Dtype
              EventName
                             244126 non-null object
              DeviceIDHash 244126 non-null int64
          1
              EventTimestamp 244126 non-null int64
             ExpId
                             244126 non-null int64
         dtypes: int64(3), object(1)
         memory usage: 7.5+ MB
```

Пустых значений нет, с типами данных согласен.

```
Ввод [5]: display(df.sample(10))
```

	EventName	DeviceIDHash	EventTimestamp	Expld
46723	MainScreenAppear	6274455082583969109	1564732395	246
47949	MainScreenAppear	1225191038684666184	1564734628	247
10587	OffersScreenAppear	1631833249019071459	1564648603	246
23592	MainScreenAppear	3722204315779155652	1564669136	247
82982	OffersScreenAppear	4779085621780049711	1564823602	248
91799	OffersScreenAppear	6510083166221201809	1564836840	248
219032	MainScreenAppear	1730229860931366431	1565163814	246
181286	CartScreenAppear	1754140665440434215	1565070595	247
156439	MainScreenAppear	670503647908011387	1565007167	247
49548	MainScreenAppear	6326495816973010604	1564737531	247

В принципе EventName и Expld можно поменять тип данных на категориальный, но это не принципиально. Переименую столбцы исходя из моих представлений об удобстве именования

```
Ввод [6]: #df.columns=['ev_name','ev_userid','ev_timest','ev_group']

df = df.rename(columns={'EventName': 'ev_name', 'DeviceIDHash': 'ev_userid','EventTimestamp':'ev_timest','ExpId':'ev_group'})
```

Посмотрим сколько у на пользователей в разных группах, и какие вообще группы есть. И определя переменную groups, которую в дальнейшем буду использовать для итерации по группам.

```
Ввод [7]: print(df.groupby('ev_group').agg({'ev_userid':'count'}))
groups = [246, 247, 248]

ev_userid
ev_group
```

246 80304 247 78075 248 85747 Групп для A/A/B теста три, как и должно быть. Число пользователей контрольных A/A групп различается на 3 процента, а разница между группой А номер 247 и группой В около 9%. Многовато, но еще допустимо.

Выделю время из столбца EventTimestamp

```
BBOД [8]: df['ev_dt']=df.ev_timest
    df.ev_dt=pd.to_datetime(df['ev_dt'], unit='s')
    df['ev_date']=df.ev_dt.dt.date
    df.ev_date=pd.to_datetime(df.ev_date)
```

Посмотрим, какие типы событий етсь в данных

```
Ввод [9]: print(df.ev_name.unique())
```

```
['MainScreenAppear' 'PaymentScreenSuccessful' 'CartScreenAppear' 'OffersScreenAppear' 'Tutorial']
```

Количество событий по типам:

```
Ввод [10]: print(df.groupby('ev_name').agg({'ev_userid':'count'}))
```

```
ev_userid
ev_name
CartScreenAppear 42731
MainScreenAppear 119205
OffersScreenAppear 46825
PaymentScreenSuccessful 34313
Tutorial 1052
```

Сколько всего уникальных пользователей

```
Ввод [11]: print("уникальных пользователей : {}".format(len(df.ev_userid.unique())))
```

уникальных пользователей: 7551

Проверим данные на дубликаты. Проверку и удаление выполню, взяв для анализ все столбцы кроме номера группы. Таким образом, я уберу случаи, когда один и тот-же пользователь попал в несколько групп А/В теста.

```
Ввод [12]: print(df.duplicated(subset=['ev_name', 'ev_userid', 'ev_timest']).sum())
```

413

Имеется 413 дубликатов, удаляем.

```
Ввод [13]: df=df.drop_duplicates(subset=['ev_name', 'ev_userid', 'ev_timest'])
```

Посмотрим, что у нас с датами

Ввод [14]: print(df.ev_dt.describe())

```
count unique 176654
top 2019-08-01 14:40:35
freq 9
first 2019-07-25 04:43:36
last 2019-08-07 21:15:17
Name: ev_dt, dtype: object
```

<ipython-input-14-19cd4559111f>:1: FutureWarning: Treating datetime data as categorical rather than numeric in `.describe` is depr
ecated and will be removed in a future version of pandas. Specify `datetime_is_numeric=True` to silence this warning and adopt the
future behavior now.

```
print(df.ev_dt.describe())
```

Данные за период с 25.07.19 по 07.08.19. Посмотри, что с распределение числа событий по дням.

```
BBOA [15]: dftmp=df.groupby('ev_date').agg({'ev_name':'count'}).reset_index()

fig = go.Figure(data=[go.Bar(x=dftmp['ev_date'], y=dftmp['ev_name'],text=dftmp['ev_name'],textposition='auto')])
fig.update_xaxes(title_text='Дата')
fig.update_yaxes(title_text='Количество событий')
fig.update_layout(title_text='Количество событий за весь период')
fig.show()
```

Количество событий за весь период

Данные за период до 01.07 отброшу, т.к. их можно считать недостоверными, и они составляю менее 1% от всех данных.

```
Ввод [16]: print('Число записей с датой <=31.07.2019 : {}'.format(len(df[df.ev_date<='2019-07-31'].index)))
print('Количество уникальных пользователей в периоде до 31.07.2019 : {}'.format(df[df.ev_date<='2019-07-31'].ev_userid.nunique()))

Число записей с датой <=31.07.2019 : 2826
Количество уникальных пользователей в периоде до 31.07.2019 : 1451

Ввод [17]: # формируем список пользователей в удаляемых данных
dfdel=df[df.ev_date<='2019-07-31'].groupby('ev_userid').agg({'ev_name':'count'}).reset_index()

Ввод [18]: df.drop(df[df.ev_date<='2019-07-31'].index,inplace=True)
df=df.reset_index(drop=True)

Ввод [19]: x=dfdel.ev_userid.isin(df.ev_userid)
display(x.value_counts())

True 1434
```

Посмотрим, сколько событий приходиться на одного пользователя.

17

Name: ev_userid, dtype: int64

False

```
BBOA [20]: dftmp=df.groupby('ev_userid').agg({'ev_name':'count'}).reset_index()
    print(dftmp.ev_name.describe())
    ddf=dftmp.groupby('ev_name').agg({'ev_userid':'count'}).reset_index()

fig = go.Figure(data=[go.Bar(x=ddf['ev_name'], y=ddf['ev_userid'])])
    fig.update_xaxes(title_text='Количество событий на одного пользователя')
    fig.update_yaxes(title_text='Количество пользователей')
    fig.update_layout(title_text='Распределение количества событий')
    fig.show()
```

```
count
         7534.000000
           31.973321
mean
           65.090307
std
min
            1.000000
25%
            9.000000
50%
           19.000000
75%
           37.000000
         2307.000000
max
Name: ev_name, dtype: float64
```

Распределение количества событий

Слишком длинный хвост, построю то-же самое но для пользователей с менее чем 50 событий на пользователя.

```
BBOQ [21]: ddf=ddf[ddf.ev_name<50]
fig = go.Figure(data=[go.Bar(x=ddf['ev_name'], y=ddf['ev_userid'])])
fig.update_xaxes(title_text='Количество событий на одного пользователя')
fig.update_yaxes(title_text='Количество пользователей')
fig.update_layout(title_text='Распределение количества событий с ограничением ')
fig.show()
```

Распределение количества событий с ограничением

75% процентов пользователей имеют менее 40 событий. Посмотрим на плотность распределения. Для плотности я сразу возьму пользователей с числом событий менее 40, иначе это будет не колокол а дельта-функция и график будет не информативный.

```
Ввод [22]: fig = go.Figure(data=[go.Histogram(x=dftmp[dftmp.ev_name<40]['ev_name'], histnorm='probability density')]) fig.update_xaxes(title_text='Bepoятность') fig.update_yaxes(title_text='Количество событий на пользователя') fig.update_layout(title_text='Распределение вероятности количества событий с ограничением ') fig.show()
```

Распределение вероятности количества событий с ограничением

Среднее было 31, а судя по графику плотности, наиболее часто встречающееся значение числа событий на пользователя - около 6.

Посмотрю еще раз на разбивку количества событий по дням, после удаления данных до 01.08.19

```
Ввод [23]: dftmp=df.groupby('ev_date').agg({'ev_name':'count'}).reset_index()

fig = go.Figure(data=[go.Bar(x=dftmp['ev_date'], y=dftmp['ev_name'],text=dftmp['ev_name'],textposition='auto')])

fig.update_xaxes(title_text='Дата')

fig.update_yaxes(title_text='Количество событий')

fig.update_layout(title_text='Количесиво событий по дням, после удаления')

fig.show()
```

Количесиво событий по дням, после удаления

Количество событий по дням, с разбивкой по группам

Разброс есть, но аномалий не вижу.

Анализ воронки событий

Посмотрим, как часто встречаются события разных типов, с разбивкой по группам.

типы и частота событий

Количество событий разных типов, с разбивкой по группам

То-же самое, но без разбивки по группам

```
Ввод [26]: dftmp=df.groupby('ev_name').ev_userid.agg(['count','nunique']).sort_values(by='count',ascending=False) fig = go.Figure(data=[go.Bar(x=dftmp.index, y=dftmp['count'],text=dftmp['count'],textposition='auto')]) fig.update_xaxes(title_text='Tun событий') fig.update_yaxes(title_text='Число событий') fig.update_layout(title_text='Количество событий разных типов') fig.show()
```

Количество событий разных типов

пользователей на событие

Посмотрим сколько уникальны пользователей совершали то или иное событие.

```
Ввод [27]: #бычисляем процент пользователей, хоть раз совершивших действие.
total_users=len(df.ev_userid.unique())
bar_text=dftmp['nunique']/total_users
bar_text=bar_text.apply(lambda s: '{:.1%}'.format(s))

#pucyem график
fig = go.Figure(data=[go.Bar(x=dftmp.index, y=dftmp['nunique'],text=bar_text,textposition='inside')])

fig.update_xaxes(title_text='Tun события')
fig.update_yaxes(title_text='Количество пользователей')
fig.update_layout(title_text='Количество пользователей по типам событий. Подписи - доля пользователей события от общего числа.')
fig.show()
```

Количество пользователей по типам событий. Подписи - доля пользователей события от общего числа.

Посмотрим на то-же самое с разбивкой по группам.

```
Ввод [28]: fig=go.Figure()
           for el in groups:
               dftmp=df[df.ev_group==el].groupby(['ev_name']).ev_userid.agg(['nunique']).sort_values(by='nunique',ascending=False)
               total_users=len(df[df.ev_group==el].ev_userid.unique())
               bar_text=dftmp['nunique']/total_users
               bar_text=bar_text.apply(lambda s: '{:.1%}'.format(s))
               fig.add_trace(go.Bar(
                   name=el,
                   x=dftmp.index,
                   y=dftmp['nunique'],
                   text=bar_text,
                   textposition='auto'))
           fig.update_xaxes(title_text='Тип события')
           fig.update_yaxes(title_text='Количество пользователей')
           fig.update_layout(title_text='Количество пользователей по типам событий. Подписи - доля пользователей события от общего числа.')
           fig.show()
```

Количество пользователей по типам событий. Подписи - доля пользователей события от общего числа.

Аномалий нет, по событиям - воронка, по группам - примерно одинаково.

порядок событий

Посмотрев на типы событий, можно принять следующее решение: Воронка событий будет представленна в следующем виде: MainScreenAppear -> OffersScreenAppear -> CartScreenAppear -> PaymentScreenSuccessful

Событие Tutorial нужно исключить из воронки событий, т.к. оно не имеет непосредственного участия в процессе покупки.

воронка событий

Приступим к визуализации воронки событий. Подготовим данные.

```
Ввод [29]: df_funel=df[df.ev_name!='Tutorial'].loc[:,['ev_name','ev_userid','ev_group']]
dftmp=df_funel.groupby(['ev_name','ev_group']).agg({'ev_userid':'nunique'}).reset_index()
dftmp=dftmp.sort_values(by='ev_userid',ascending=False)
```

Построим воронку событий с разбивкой по группам, но без учета пследовательности переходов. Т.е. берем всех уникальных пользователей каждого события.

```
Ввод [30]: fig=go.Figure()
              y_labels=pd.Series(dftmp.ev_name.unique())
              for i, group in enumerate(groups):
                   fig.add_trace(go.Funnel(
                        name=str(group),
                        x=dftmp[dftmp.ev_group==group].ev_userid,
                       y=y_labels, #y_labels - моя переменная, в которой в нужном порядке перечисленны типы событий textinfo = "value+percent previous", connector = {"fillcolor": '#bde0eb'}, insidetextfont = {'color': 'white', 'size': 14}))
              fig.update_yaxes(title_text='Уникальных пользователей')
              fig.update layout(
                  title_text="Воронка событий без учета последовательности переходов",
                  height=600,
                  legend=dict(
                  orientation="h",
                  bgcolor = 'rgba(0,0,0,0.05)',
                  yanchor="top",
                  y=0,
                  xanchor="left",
                  x=0.01))
              fig.show()
```

Воронка событий без учета последовательности переходов

В целом выглядит не плохо. 63% решили сделать покупку, 82% выбрали товар и 95% оплатили. Теперь посмотрим воронку событий с учетом последовательности переходов для каждого пользователя.

Подготовка данных.

```
Ввод [32]:
           fig = go.Figure()
           for i, group in enumerate(groups):
               fig.add_trace(go.Funnel(
                    name = str(group),
                    y = y_labels, #y_labels - моя переменная, в которой в нужном порядке перечисленны типы событий
                    x = funnel[group],
textposition = "inside",
                    textinfo = "percent previous",
                    constraintext='outside',
                    textangle = 90,
                    connector = {"fillcolor": '#bde0eb'},
                    insidetextfont = {'color': 'white'}))
           fig.update_yaxes(title_text='Уникальных пользователей')
           fig.update_layout(
               title_text="Воронка событий с учетом последовательности переходов",
               legend=dict(
               orientation="h"
               bgcolor = 'rgba(0,0,0,0.05)',
               yanchor="top",
               y=0,
               xanchor="left",
               x=0.01))
```

Воронка событий с учетом последовательности переходов

Предполагаемой последовательности шагов следует многие пользователи, но далеко не все. Это нам говорит о том, что есть несколько способов дойти до оплаты в приложении, например возможность мгновенной оплаты товара без перехода в корзину.

Анализ теста

fig.show()

Приступим к анализу результатов А/А/В теста

проверка А/А групп

Сначала проверим данные обоих групп А, что-бы удостовериться, что они соответствую друг другу. Проверять гипотезы на статистическую значимость мы будем с помощью z-теста.

Подготовим данные.

```
Ввод [33]: # переменная ztest_df будет содержать данные для анализа
           ztest_df=df[df.ev_name!='Tutorial'].pivot_table(
            index='ev_name',
            columns='ev_group',
            values='ev_userid',
            aggfunc='nunique')
           # добавим столбец, содержащий сумму данных обеих групп А
           ztest_df['All']=ztest_df[246]+ztest_df[247]
           # вычисляем общее число событий
           tmpdf=df[df.ev_name!='Tutorial'].groupby('ev_group').agg({'ev_userid':'nunique'}).transpose()
           # добавим столбец, содержащий сумму данных обеих групп А
           tmpdf['All']=tmpdf[246]+tmpdf[247]
           # добавляем строку содержащую общее число событий
           ztest_df=ztest_df.append(tmpdf)
           # переименуем название итоговых цифр
           ztest_df=ztest_df.rename(index={'ev_userid':'total'})
```

Ввод [34]: display(ztest_df)

ev_group	246	247	248	All
CartScreenAppear	1266	1238	1230	2504
MainScreenAppear	2450	2476	2493	4926
OffersScreenAppear	1542	1520	1531	3062
PaymentScreenSuccessful	1200	1158	1181	2358
total	2483	2512	2535	4995

Как представленно выше, переменная ztest_df содержит данные положительных исходов и общее число событий в разрезе типов событий и групп. Столбец All - это сумма столбцов 246 и 247. Строка total - это общее число событий.

Оформим блок, вычисляющий статистическую разницу и отображающий графики в виде процедуры.

```
Ввод [35]: def z_test(group_a,group_b,alpha): # параметры вызова: группа 1, группа 2, пороговое значение стат. значимости
                count a=ztest df[group a].total # выбираем значения всех исходов, переданных в параметрах вызова групп
                count_b=ztest_df[group_b].total
                for el in y_labels: #y_labels - моя переменная, в которой в нужном порядке перечисленны типы событий
                    success_a=ztest_df[ztest_df.index==el][group_a].to_numpy() # выбираем значения положительных исходов,
                    success_b=ztest_df[ztest_df.index==el][group_b].to_numpy() # для групп переданных в параметрах вызова
                    successes = np.hstack([success_a, success_b])
                                                                                    # формируем структуры, для передачи в функцию,
                    nobs = [count_a, count_b]
                                                                                    # вычисляющую z-тест
                    z stat, pval = proportions ztest(successes, nobs=nobs)
                                                                                   # вычисляем z-тест
                    # я заодно вычислил еще и эти дополнительные параметры, что-бы посмотреть как это работает,
                    # но незнаю, стоит ли их оставлять в итоговом решении.
                    #(lower_con, lower_treat), (upper_con, upper_treat) = proportion_confint(successes, nobs=nobs, alpha=alpha)
                    print('Γρуππα {} p-value: {:.3f}'.format(el,pval))
                    if (pval < alpha):</pre>
                        print("Отвергаем нулевую гипотезу: между долями есть значимая разница")
                    else:
                        print("Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными")
                    print('')
                # рисуем воронки. Можно было сделать в цикле с перебором кортежа из входных параметров процедуры, но я оставил так.
                fig = go.Figure()
                funel_df=ztest_df[ztest_df.index!='total'].sort_values(by=246,ascending=False)
                                           # воронка для группы 1
                fig.add_trace(go.Funnel(
                        name=str(group),
                        x=funel_df[group_a],
                        y=y_labels,
textinfo = "value+percent previous"
                        connector = {"fillcolor": '#bde@eb'},
insidetextfont = {'color': 'white', 'size': 14}))
                                           # воронка дл ягруппы 2
                fig.add_trace(go.Funnel(
                        name=str(group),
                        x=funel_df[group_b],
                        y=y_labels,
textinfo = "value+percent previous",
                        connector = {"fillcolor": '#bde0eb'},
insidetextfont = {'color': 'white', 'size': 14}))
                fig.update_yaxes(title_text='Уникальных пользователей')
                fig.update layout(
                title_text="Воронка событий без учета последовательности переходов",
                height=600,
                legend=dict(
                orientation="h",
                bgcolor = 'rgba(0,0,0,0.05)',
                yanchor="top",
                y=0,
                xanchor="left",
                x=0.01))
                fig.show()
```

Проверяем статистические критерии разницы между контрольными группами А1 и А2.

- 1. Нулевая гипотеза: доли удачных исходов двух групп равны.
- 2. Альтернативная гипотеза: доли удачных исходов двух групп не равны.

Ввод [36]: z_test(246,247,0.05)

Группа MainScreenAppear p-value: 0.753

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Группа OffersScreenAppear p-value: 0.248

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Группа CartScreenAppear p-value: 0.229

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Группа PaymentScreenSuccessful p-value: 0.114

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Воронка событий без учета последовательности переходов

проверка группы с изменениями

Проверяем статистические критерии разницы между контрольной группой А1 и группой В.

- 1. Нулевая гипотеза: доли удачных исходов двух групп равны.
- 2. Альтернативная гипотеза: доли удачных исходов двух групп не равны.

Ввод [37]: z_test(246,248,0.05)

Группа MainScreenAppear p-value: 0.339

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Группа OffersScreenAppear p-value: 0.214

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Группа CartScreenAppear p-value: 0.081

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Группа PaymentScreenSuccessful p-value: 0.217

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Воронка событий без учета последовательности переходов

Проверяем статистические критерии разницы между контрольной группой А2 и группой В.

- 1. Нулевая гипотеза: доли удачных исходов двух групп равны.
- 2. Альтернативная гипотеза: доли удачных исходов двух групп не равны.

Ввод [38]: z_test(247,248,0.05)

Группа MainScreenAppear p-value: 0.519

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Группа OffersScreenAppear p-value: 0.933

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Группа CartScreenAppear p-value: 0.588

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Группа PaymentScreenSuccessful p-value: 0.728

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Воронка событий без учета последовательности переходов

Проверяем статистические критерии разницы между суммой контрольных групп А1 и А2 и группой В.

- 1. Нулевая гипотеза: доли удачных исходов двух групп равны.
- 2. Альтернативная гипотеза: доли удачных исходов двух групп не равны.

Ввод [39]: z_test('All',248,0.05)

Группа MainScreenAppear p-value: 0.349

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Группа OffersScreenAppear p-value: 0.446

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Группа CartScreenAppear p-value: 0.187

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Группа PaymentScreenSuccessful p-value: 0.611

Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Воронка событий без учета последовательности переходов

Мы провели 16 проверок статистических гипотез с уровнем значимости 0.05 (12 из них проверяли разницу между контрольными группами и группой с изменённым шрифтом) и ни одна из них не выявила значимой разницы.

Если провести эти же исследования при уровне значимости 0.1 (не включенны в итоговую работу) только одна из проверок покажет значимую разницу, между контрольной группой 246 и экспериментальной в доле перехода пользователей в корзину(CartScreenAppear), но эта разница будет не в пользу нашей экспериментальной группы. Т.к. при уровне значимости 0.1 каждый десятый раз можно получать ложный результат, это означает, что изначально выбранный нами уровень значимости 0.05 верен.

Исходя из результатов данного A/A/B-теста, мы можем заключить, что на поведение пользователей изменение шрифта значимого эффекта не оказало. Что можно считать успехом, т.к. целью было узнать не отпугнут ли изменения пользователей. В то же время учитывая результаты эксперимента, если изменение шрифта не продиктовано проблемами в работе приложения, его можно не менять.

популярное событие

Самым часто встречающимся событие во всех группах является MainScreenAppear

Заключение

По результату анализа данных можно сделать следующие выводы:

- 1. Данные до 01.08.19 признанны не существенными и в анализе не используются. Анализ строится на данных с 01.08.19 по 07.08.19 включительно.
- 2. Среднее значение числа событий на пользователя составило 32, наиболее часто встречающееся значение 8
- 3. Анализ данных в разрезе групп не выявил аномалий.
- 4. Воронка события взята в виде: MainScreenAppear -> OffersScreenAppear -> CartScreenAppear -> PaymentScreenSuccessful. Событие Tutorial из воронки продаж исключенно.

5. Анализ воронки продаж без учета последовательности шагов показал, что более 60% пользователей, зашедших на сайт доходят до просмотра товаров, 85% из них добавляют товар в корзину и 95% из дообавивших товар в корзину совершает покупку.

Если же посмотреть на воронку событий с учетом последовательности шагов, то мы видим, что если цифра дошедших до просмотра каталога (около 58%) примерно равна соответствующей цифре в воронке событий без учета последовательности (около 63%), то на следующих шагах цифры намного меньше.

Это может быть вызванно тем, что имеются другие, кроме предпологаемого нами, пути покупки товара. Например кнопка купить в один клик в катрочке товара.

- 6. Анализ данных А/А/В теста для контрольных групп А1 и А2 не выявил статистической разницы в данных.
- 7. Анализ данных А/А/В теста для контрольных групп А1,А2 и их суммы в сравнении с группой В не выявил статистической разницы в данных.
- 8. Исходя из результатов данного А/А/В-теста, мы можем заключить, что на поведение пользователей изменение шрифта значимого эффекта не оказало.

Ввод []:	
овод [].	