ФГБОУ ВПО

«Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева»

Сергиенко Антон Борисович

Тестовые функции для глобальной оптимизации. v.1.4

Оглавление

yo	Условные обозначения						
Введение							
1	Зад	Задачи вещественной оптимизации					
	1.1	Функция Ackley					
		1.1.1	Описание функции	6			
		1.1.2	Параметры для алгоритмов оптимизации	7			
		1.1.3	Основная задача и подзадачи	7			
		1.1.4	Нахождение ошибки оптимизации	8			
		1.1.5	Свойства задачи	8			
		1.1.6	Реализация	8			
		1.1.7	Ссылки	9			
	1.2	Эллип	тический параболоид	9			
		1.2.1	Описание функции	9			
		1.2.2	Параметры для алгоритмов оптимизации	10			
		1.2.3	Основная задача и подзадачи	11			
		1.2.4	Нахождение ошибки оптимизации	11			
		1.2.5	Свойства задачи	12			
		1.2.6	Реализация	12			
	1.3	Функ	ция Растригина	12			
		1.3.1	Описание функции	12			
		1.3.2	Параметры для алгоритмов оптимизации	13			
		1.3.3	Основная задача и подзадачи	14			
		1.3.4	Нахождение ошибки оптимизации	14			
		1.3.5	Свойства задачи	15			

3 a	ключ	2.1.5 пение	Реализация	22 23				
		2.1.5	Реализация	22				
		2.1.4	Свойства задачи	22				
		2.1.3	Нахождение ошибки оптимизации	21				
		2.1.2	Основная задача и подзадачи	21				
		2.1.1	Описание функции	20				
	2.1	Сумма	всех элементов бинарного вектора	20				
2	Задачи бинарной оптимизации 20							
		1.4.7	Ссылки	19				
		1.4.6	Реализация	18				
		1.4.5	Свойства задачи	18				
		1.4.4	Нахождение ошибки оптимизации	17				
		1.4.3	Основная задача и подзадачи	17				
		1.4.2	Параметры для алгоритмов оптимизации	17				
		1.4.1	Описание функции	16				
	1.4	Функц	ия Розенброка	16				
		1.3.7	Ссылки	15				
		1.3.6	Реализация	15				

Условные обозначения

```
a \in A — элемент a принадлежит множеству A.
```

 \bar{x} — обозначение вектора.

 $\arg f(x)$ — возвращает аргумент x, при котором функция принимает значение f(x).

Random(X) — случайный выбор элемента из множества X с равной вероятностью.

 $Random\left(\{x^i\mid p^i\}\right)$ — случайный выбор элемента x^i из множества X, при условии, что каждый элемент $x^i\in X$ имеет вероятность выбора равную p^i , то есть это обозначение равнозначно предыдущему.

random(a,b) — случайное действительное число из интервала [a;b].

int(a) — целая часть действительного числа a.

 $\mu(X)$ — мощность множества X.

Замечание. Оператор присваивания обозначается через знак «=», так же как и знак равенства.

Замечание. Индексация всех массивов в документе начинается с 1. Это стоит помнить при реализации алгоритма на С-подобных языках программирования, где индексация начинается с нуля.

Замечание. Вызывание трех функций: Random(X), $Random(\{x_i \mid p_i\})$, random(a,b) – происходит каждый раз, когда по ходу выполнения формул, они встречаются. Если формула итерационная, то нельзя перед ее вызовом один раз определить, например, random(a,b) как константу и потом её использовать на протяжении всех итераций неизменной.

Замечание. Надстрочный индекс может обозначать как возведение в степень, так и индекс элемента. Конкретное обозначение определяется в контексте текста, в котором используется формула с надстрочным индексом.

Замечание. Если у нас имеется множество векторов, то подстрочный индекс обозначает номер компоненты конкретного вектора, а надстрочный индекс обозначает номер вектора во множестве, например, $\bar{x}^i \in X$ $(i=\overline{1,N}), \, \bar{x}^i_j \in \{0;1\}, \, (j=\overline{1,n}).$ В случае, если вектор имеет свое обозначение в виде подстрочной надписи, то компоненты вектора проставляются за скобками, например, $(\bar{x}_{max})_j = 0$ $(j=\overline{1,n}).$

Замечание. При выводе матриц и векторов элементы могут разделяться как пробелом, так и точкой с запятой, то есть обе записи $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}^T$ и $\begin{pmatrix} 1;1;1;1;1;1;1;1 \end{pmatrix}^T$ допустимы.

Замечание. При выводе множеств элементы разделяются только точкой с запятой, то есть допустима только такая запись: $\{1; 1; 1; 1; 1; 1; 1; 1\}^{T}$.

Введение

В данном документе рассмотрено множество тестовых функций, которые можно использовать для проведения исследований алгоритмов оптимизации. К каждой функции дано подробное описание, график (если это возможно), свойств и параметров, которые позволят единообразно проводить сравнения разных алгоритмов оптимизации во избежания несостыковок с точки зрения разного понимания нахождения ошибки, точности работы алгоритмом.

Данный документ представляет его версию 1.2 от 1 сентября 2013 г.

Последнюю версию документа можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Тестовые функции реализованы на языке C++ в библиотеке **MathHarrixLibrary** в разделе «Тестовые функции для оптимизации», которую можно найти по адресу:

https://github.com/Harrix/MathHarrixLibrary.

Все библиографические материалы, которые используются в документе, приведены в виде скриншотов и скринов в папке _**Biblio** на https://github.com/Harrix/HarrixTestFunctions.

С автором можно связаться по адресу sergienkoanton@mail.ru или http://vk.com/harrix.

Сайт автора, где публикуются последние новости: http://blog.harrix.org/, а проекты располагаются по адресу http://harrix.org/.

Глава 1

Задачи вещественной оптимизации

1.1 Функция Ackley

1.1.1 Описание функции

Идентификатор: MHL_TestFunction_Ackley.

Наименование: Функция Ackley.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = 20 + e - 20e^{-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n}\bar{x}_{i}^{2}}} - e^{\frac{1}{n}\sqrt{\sum_{i=1}^{n}\cos(2\pi\cdot\bar{x}_{i})}}, \text{ где}$$
 (1.1)

 $\bar{x} \in X, \ \bar{x}_j \in [Left_j; Right_j], \ Left_j = -5, \ Right_j = 5, \ j = \overline{1, n}.$

Обозначение: \bar{x} — вещественный вектор;

n — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума: $\bar{x}_{min} = (0, 0, \dots, 0)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_j = 0$ $(j = \overline{1, n})$.

Минимум функции: $f(\bar{x}_{min}) = 0.$

График: Рисунок 1.1 нас 7 стр.

Рисунок 1.1. Функция Ackley

1.1.2 Параметры для алгоритмов оптимизации

Точность вычислений: $\varepsilon = 0.025$.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации) :

 $NumberOfParts_j = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для x_j **координаты равна** (для алгоритмов бинарной оптимизации) :

 $(k_2)_j = 12 \ (j = \overline{1,n}).$

Замечание: $NumberOfParts_j$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq \frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon},$$
где $\left(k_{2}\right)_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$

1.1.3 Основная задача и подзадачи

Изменяемый параметр: n — размерность вещественного вектора.

Значение в основной задаче: n=2.

Подзадача №2: n=3.

Подзадача №3: n=4.

Подзадача №4: n = 5.

Подзадача №**5**: n = 10.

Подзадача №6: n = 20.

Подзадача №7: n = 30.

1.1.4 Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| \leq \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}\right)_{j}\right)^{2}}}{n} \right)}{N}.$$

Ошибка по значениям целевой функции:

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.1.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **шии:**

Одномерной или многомерной опти- Многомерной: n. **мизации:**

Функция унимодальная или много- Функция многоэкстремальная. **экстремальная:**

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.1.6 Реализация

Реализация MathHarrixLibrary функции библиотеки взята В разде-«Тестовые функции найти ДЛЯ оптимизации», которую ПО адресу https://github.com/Harrix/MathHarrixLibrary.

```
Код 1.1. Код функции MHL_TestFunction_Ackley

double MHL_TestFunction_Ackley(double *x, int VMHL_N)

{
/*
```

```
Функция многих переменных: Ackley.

Тестовая функция вещественной оптимизации.

Входные параметры:

х - указатель на исходный массив;

VMHL_N - размер массива х.

Возвращаемое значение:

Значение тестовой функции в точке х.

*/

double VMHL_Result;

double f1,f2=0;

f1=exp(-0.2*sqrt(TMHL_SumSquareVector(x,VMHL_N)/double(VMHL_N)));

for (int i=0;i<VMHL_N;i++) f2=f2+cos(2.*MHL_PI*x[i]);

f2=exp(f2/double(VMHL_N));

VMHL_Result=20.+exp(1)-20.*f1-f2;

return VMHL_Result;

}
```

1.1.7 Ссылки

Данная функция приводится в следующих источниках:

- 1. [1, ctp. 5] Empirical review of standard benchmark functions using evolutionary global optimization.
- 2. [2] Ackley's Function.

1.2 Эллиптический параболоид

1.2.1 Описание функции

Идентификатор: MHL_TestFunction_ParaboloidOfRevolution.

Наименование: Эллиптический параболоид.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = \sum_{i=1}^{n} \bar{x}_i^2$$
, где (1.2)

 $\bar{x} \in X$, $\bar{x}_j \in [Left_j; Right_j]$, $Left_j = -2$, $Right_j = 2$, $j = \overline{1, n}$.

Обозначение:

 \bar{x} — вещественный вектор;

n — размерность вещественного вектора.

Решаемая задача оптимизации:

 $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума:

 $ar{x}_{min} = \left(0,0,\dots,0\right)^{\mathrm{T}}$, то есть $\left(ar{x}_{min}\right)_j = 0$ $(j = \overline{1,n}).$

Минимум функции:

 $f\left(\bar{x}_{min}\right) = 0.$

График:

Рисунок 1.2 нас 10 стр.

Рисунок 1.2. Эллиптический параболоид

1.2.2 Параметры для алгоритмов оптимизации

Точность вычислений:

 $\varepsilon = 0.01.$

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации):

 $NumberOfParts_j = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для x_j **координаты равна** (для алгоритмов бинарной оптимизации) :

 $(k_2)_j = 12 \ (j = \overline{1, n}).$

Замечание: $NumberOfParts_j$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq\frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon},$$
где $(k_{2})_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$

1.2.3 Основная задача и подзадачи

Изменяемый параметр: n — размерность вещественного вектора.

Значение в основной задаче: n = 2.

Подзадача №2: n=3.

Подзадача №3: n=4.

Подзадача №4: n = 5.

Подзадача №5: n = 10.

Подзадача №6: n = 20.

Подзадача №7: n = 30.

1.2.4 Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| \leq \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_x = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^k\right)_j - \left(\bar{x}_{min}\right)_j\right)^2}}{n}\right)}{N}.$$

Ошибка по значениям целевой функции:

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.2.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **ции:**

Одномерной или многомерной опти- Mногомерной: n.

мизации:

Функция унимодальная или много- Функция унимодальная.

экстремальная:

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.2.6 Реализация

Реализация функции взята библиотеки MathHarrixLibrary ИЗ В раздефункции «Тестовые ДЛЯ оптимизации», которую МОЖНО найти ПО адресу https://github.com/Harrix/MathHarrixLibrary.

```
Kog 1.2. Kog функции MHL_TestFunction_ParaboloidOfRevolution

double MHL_TestFunction_ParaboloidOfRevolution(double *x, int VMHL_N)

{
/*

Функция многих переменных: Эллиптический параболоид.
Тестовая функция вещественной оптимизации.
Входные параметры:

x - указатель на исходный массив;
VMHL_N - размер массива x.
Возвращаемое значение:

Значение тестовой функции в точке x.

*/

double VMHL_Result=0;
for (int i=0;i<VMHL_N;i++) VMHL_Result+=x[i]*x[i];
return VMHL_Result;
}
```

1.3 Функция Растригина

1.3.1 Описание функции

Идентификатор: MHL_TestFunction_Rastrigin.

Наименование: Функция Растригина.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = 10n + \sum_{i=1}^{n} (\bar{x}_i^2 - 10 \cdot \cos(2\pi \cdot \bar{x}_i)),$$
 где (1.3)

 $\bar{x} \in X, \ \bar{x}_j \in [Left_j; Right_j], \ Left_j = -5, \ Right_j = 5, \ j = \overline{1, n}.$

Обозначение:

 \bar{x} — вещественный вектор;

n — размерность вещественного вектора.

Решаемая задача оптимизации:

 $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума:

 $\bar{x}_{min} = (0, 0, \dots, 0)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_j = 0$ $(j = \overline{1, n})$.

 $f\left(\bar{x}_{min}\right) = 0.$

Минимум функции: График:

Рисунок 1.3 нас 13 стр.

Рисунок 1.3. Функция Растригина

1.3.2 Параметры для алгоритмов оптимизации

Точность вычислений:

 $\varepsilon = 0.025$.

Число интервалов, на которые предполагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации) :

 $NumberOfParts_j = 4095 \ (j = \overline{1, n}).$

Для этого длина бинарной строки для x_j **координаты равна** (для алгоритмов бинарной оптимизации) :

 $(k_2)_i = 12 \ (j = \overline{1, n}).$

Замечание: $NumberOfParts_j$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq\frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon}, \text{где }\left(k_{2}\right)_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$$

1.3.3 Основная задача и подзадачи

Изменяемый параметр: n — размерность вещественного вектора.

Значение в основной задаче: n=2.

Подзадача №2: n = 3.

Подзадача №3: n=4.

Подзадача №4: n = 5.

Подзадача №5: n = 10.

Подзадача №6: n = 20.

Подзадача №7: n = 30.

1.3.4 Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| \leq \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}\right)_{j}\right)^{2}}}{n} \right)}{N}.$$

Ошибка по значениям целевой функции:

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.3.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **ции:**

Одномерной или многомерной опти- Многомерной: n. **мизации:**

Функция унимодальная или много- Функция многоэкстремальная. **экстремальная:**

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.3.6 Реализация

Реализация функции библиотеки MathHarrixLibrary взята ИЗ В раздефункции «Тестовые ДЛЯ оптимизации», которую МОЖНО найти ПО адресу https://github.com/Harrix/MathHarrixLibrary.

```
Kog 1.3. Код функции MHL_TestFunction_Rastrigin

double MHL_TestFunction_Rastrigin(double *x, int VMHL_N)

{

/*

Функция многих переменных: функция Растригина.

Тестовая функция вещественной оптимизации.

Входные параметры:

x - указатель на исходный массив;

VMHL_N - размер массива x.

Возвращаемое значение:

3начение тестовой функции в точке x.

*/

double VMHL_Result=0;

for (int i=0;i<VMHL_N;i++) VMHL_Result+=x[i]*x[i]-10.*cos(2.*MHL_PI*x[i]);

VMHL_Result+=10*VMHL_N;

return VMHL_Result;

}
```

1.3.7 Ссылки

Данная функция приводится в следующих источниках:

- 1. [3] Rastrigin function.
- 2. [4] Non-linear Continuous Multi-Extremal Optimization.
- 3. [5] Parametric Optimization.

1.4 Функция Розенброка

1.4.1 Описание функции

Идентификатор: MHL_TestFunction_Rosenbrock.

Наименование: Функция Розенброка.

Тип: Задача вещественной оптимизации.

Формула (целевая функция):

$$f(\bar{x}) = \sum_{i=1}^{n-1} \left(100 \left(\bar{x}_{i+1} - \bar{x}_i^2 \right)^2 + (1 - \bar{x}_i)^2 \right),$$
 где (1.4)

 $\bar{x} \in X, \ \bar{x}_j \in [Left_j; Right_j], \ Left_j = -2, \ Right_j = 2, \ j = \overline{1, n}.$

Обозначение: \bar{x} — вещественный вектор;

n — размерность вещественного вектора.

Решаемая задача оптимизации: $\bar{x}_{min} = \arg\min_{\bar{x} \in X} f(\bar{x}).$

Точка минимума: $\bar{x}_{min} = (1, 1, \dots, 1)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_j = 1$ $(j = \overline{1, n})$.

Минимум функции: $f(\bar{x}_{min}) = 0.$

График: Рисунок 1.4 нас 16 стр.

Рисунок 1.4. Функция Розенброка

1.4.2 Параметры для алгоритмов оптимизации

Точность вычислений: $\varepsilon = 0.01.$

Число интервалов, на которые пред-полагается разбивать каждую компоненту вектора \bar{x} в пределах своего изменения (для алгоритмов дискретной оптимизации) :

Для этого длина бинарной строки для $(k_2)_j = 12 \ (j = \overline{1,n}).$ x_j координаты равна (для алгоритмов бинарной оптимизации) :

Замечание: $NumberOfParts_j$ выбирается как минимальное число, удовлетворяющее соотношению:

$$NumberOfParts_{j}=2^{(k_{2})_{j}}-1\geq\frac{10\left(Right_{j}-Left_{j}\right)}{\varepsilon}, \text{где }\left(k_{2}\right)_{j}\in\mathbb{N},\left(j=\overline{1,n}\right).$$

1.4.3 Основная задача и подзадачи

Изменяемый параметр: n — размерность вещественного вектора.

Значение в основной задаче: n = 2.

Подзадача №2: n=3.

Подзадача №3: n=4.

Подзадача №4: n = 5.

Подзадача №5: n = 10.

Подзадача №6: n = 20.

Подзадача №7: n = 30.

1.4.4 Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}_{submin}^k со значениями целевой функции $f\left(\bar{x}_{submin}^k\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R = \frac{\sum_{k=1}^{N} S\left(\bar{x}_{submin}^{k}\right)}{N}, \text{ где}$$

$$S\left(\bar{x}_{submin}^{k}\right) = \begin{cases} 1, \text{ если } \left|\left(\bar{x}_{submin}^{k}\right)_{j} - (\bar{x}_{min})_{j}\right| \leq \varepsilon, j = \overline{1, n}; \\ 0, \text{ иначе.} \end{cases}$$

Ошибка по входным параметрам:

$$E_{x} = \frac{\sum_{k=1}^{N} \left(\frac{\sqrt{\sum_{j=1}^{n} \left(\left(\bar{x}_{submin}^{k}\right)_{j} - \left(\bar{x}_{min}\right)_{j}\right)^{2}}}{n} \right)}{N}.$$

Ошибка по значениям целевой функции:

$$E_f = \frac{\sum_{k=1}^{N} \left| f\left(\bar{x}_{submin}^k\right) - f\left(\bar{x}_{min}\right) \right|}{N}.$$

1.4.5 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **шии:**

Одномерной или многомерной опти- Многомерной: n. **мизации:**

Функция унимодальная или много- Функция многоэкстремальная. **экстремальная:**

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

1.4.6 Реализация

Реализация функции ИЗ библиотеки MathHarrixLibrary взята В разде-«Тестовые функции для оптимизации», которую можно найти ПО адресу https://github.com/Harrix/MathHarrixLibrary.

```
Код 1.4. Код функции MHL_TestFunction_Rosenbrock
double MHL TestFunction Rosenbrock(double *x, int VMHL N)
{
/*
Функция многих переменных: функция Розенброка.
Тестовая функция вещественной оптимизации.
Входные параметры:
 х - указатель на исходный массив;
 VMHL_N - pasmep maccuba x.
Возвращаемое значение:
 Значение тестовой функции в точке х.
double VMHL Result=0;
for (int i=0;i<VMHL_N-1;i++) VMHL_Result+=100.*(x[i+1]-x[i]*x[i])*(x[i+1]-x[i]*x[i])</pre>
   +(1.-x[i])*(1.-x[i]);
return VMHL_Result;
}
```

1.4.7 Ссылки

Данная функция приводится в следующих источниках:

- 1. [6] Rosenbrock function.
- 2. [7] Rosenbrock Function.

Глава 2

Задачи бинарной оптимизации

2.1 Сумма всех элементов бинарного вектора

2.1.1 Описание функции

Идентификатор: MHL_TestFunction_SumVector.

Наименование: Сумма всех элементов бинарного вектора.

Тип: Задача бинарной оптимизации.

Формула (целевая функция):

 $f\left(\bar{x}\right) = \sum_{i=1}^{n} \bar{x}_i, \text{ где} \tag{2.1}$

 $\bar{x} \in X, \ \bar{x}_j \in \{0; 1\}, \ j = \overline{1, n}.$

Обозначение: \bar{x} — бинарный вектор;

n — размерность бинарного вектора.

Объем поискового пространства: $\mu\left(X\right)=2^{n}.$

Решаемая задача оптимизации: $\bar{x}_{max} = \arg\max_{\bar{x} \in X} f(\bar{x}).$

Точка максимума: $\bar{x}_{max} = (1, 1, \dots, 1)^{\mathrm{T}}$, то есть $(\bar{x}_{max})_j = 1$ $(j = \overline{1, n})$.

Максимум функции: $f(\bar{x}_{max}) = n.$

Точка минимума: $\bar{x}_{min} = (0, 0, \dots, 0)^{\mathrm{T}}$, то есть $(\bar{x}_{min})_j = 0$ $(j = \overline{1, n})$.

Минимум функции: $f(\bar{x}_{min}) = 0.$

2.1.2 Основная задача и подзадачи

Изменяемый параметр: n — размерность бинарного вектора.

Значение в основной задаче: n = 20.

Подзадача №2: n = 30.

Подзадача №3: n = 40.

Подзадача №4: n = 50.

Подзадача №5: n = 60.

Подзадача №6: n = 70.

Подзадача №7: n = 80.

Подзадача №8: n = 90.

Подзадача №9: n = 100.

Подзадача №10: n = 200.

2.1.3 Нахождение ошибки оптимизации

Пусть в результате работы алгоритма оптимизации за N запусков мы нашли решения \bar{x}^k_{submax} со значениями целевой функции $f\left(\bar{x}^k_{submax}\right)$ соответственно $(k=\overline{1,N})$. Используем три вида ошибок:

Надёжность:

$$R=rac{\sum_{k=1}^{N}S\left(ar{x}_{submax}^{k}
ight)}{N},$$
 где $S\left(ar{x}_{submax}^{k}
ight)=\left\{egin{array}{l} 1, \ ext{ecли } ar{x}_{submax}^{k}=ar{x}_{max}; \ 0, \ ext{иначе}. \end{array}
ight.$

Ошибка по входным параметрам:

$$E_x = \frac{\sum_{k=1}^{N} \left(\frac{\sum_{j=1}^{n} \left| \left(\bar{x}_{submax}^k \right)_j - \left(\bar{x}_{max} \right)_j \right|}{n} \right)}{N}.$$

Ошибка по значениям целевой функции:

$$E_f = \frac{\sum_{k=1}^{N} \left(\frac{\left| f\left(\bar{x}_{submax}^k\right) - f\left(\bar{x}_{max}\right)\right|}{n} \right)}{N}.$$

2.1.4 Свойства задачи

Условной или безусловной оптимиза- Задача безусловной оптимизации. **ции:**

Одномерной или многомерной опти- Многомерной: n. **мизации:**

Функция унимодальная или много- Функция унимодальная. **экстремальная:**

Функция стохастическая или нет: Функция не стохастическая.

Особенности: Нет.

2.1.5 Реализация

Реализация функции взята ИЗ библиотеки MathHarrixLibrary В разде-«Тестовые функции ДЛЯ оптимизации», которую МОЖНО найти ПО адресу https://github.com/Harrix/MathHarrixLibrary.

```
Kod 2.1. Kod функции MHL_TestFunction_SumVector

double MHL_TestFunction_SumVector(int *x, int VMHL_N)

{

/*

Сумма всех элементов бинарного вектора.

Тестовая функция бинарной оптимизации.

Входные параметры:

x - указатель на исходный массив;

VMHL_N - размер массива x.

Возвращаемое значение:

Значение тестовой функции в точке x.

*/

double VMHL_Result=0;

for (int i=0;i<VMHL_N;i++) VMHL_Result+=x[i];

return VMHL_Result;

}
```

Заключение

В данном документе были рассмотрены множество тестовых функций, которые позволят более корректно проводить исследования в области глобальной оптимизации.

Литература

- 1. Dieterich Johannes M., Hartke Bernd. Empirical review of standard benchmark functions using evolutionary global optimization // CoRR. 2012. T. abs/1207.4318.
- 2. Ackley's Function. http://www.cs.unm.edu/~neal.holts/dga/benchmarkFunction/ackley.html.
- 3. Rastrigin function. http://en.wikipedia.org/wiki/Rastrigin_function.
- 4. Non-linear Continuous Multi-Extremal Optimization. http://www.maths.uq.edu.au/cetoolBox/node3.html.
- 5. Parametric Optimization. http://www.pg.gda.pl/~mkwies/dyd/geadocu/fcnfun6.html.
- 6. Rosenbrock function. http://en.wikipedia.org/wiki/Rosenbrock function.
- Rosenbrock Function. http://www-optima.amp.i.kyoto-u.ac.jp/member/ student/hedar/Hedar_files/TestGO_files/Page2537.htm.