# Formula Page

On this page I have posted Tesla coil formulas for a reference to those who prefer to make calculations on paper. Below is a table of formulas on this page.

| Ohm's Law           | Transformer Input and Output | Capacitive Reactance      |
|---------------------|------------------------------|---------------------------|
| Inductive Reactance | Resonant Circuit Formula     | Spiral Coil               |
| Helical Coil        | Inverse Conical Coil         | Secondary Coil Dimensions |
| Medhurst            | Toroid Capacitance           | Sphere Capacitance        |
| Plate Capacitors    | Leyden Jar Capacitors        | AC RMS/Peak Voltage       |
| Rotary Gap Firing   | Rotary Gap Electrode Speed   | Energy for L and C        |

#### Ohm's Law

$$E = IZ$$

$$P = IE$$

E = volts

I = current in amps

Z = impedance or resistance in ohms

P = power in watts

# **Transformer Input and Output**

$$E_pI_p = E_sI_s$$

 $E_p = primary voltage$ 

 $I_p$  = primary current in amps

 $E_S$  = secondary voltage

 $I_S$  = secondary current in amps

# Capacitive Reactance

$$X_c = \frac{1}{2\pi FC}$$

 $X_C$  = capacitive reactance in ohms

F = frequency in hertz

C = capacitance in farads

#### **Inductive Reactance**

$$X_L = 2\pi FL$$

 $X_L$  = inductive reactance in ohms

F = frequency in hertz

L = inductance in henrys

#### **Resonant Circuit Formula**

$$4\pi^{2}F^{2}LC = 1$$

$$F = \frac{1}{2\pi\sqrt{LC}}$$

F = frequency in hertz

L = inductance in henrys

C = capacitance in farads

### **Spiral Coil Inductance**

$$L = \frac{(NR)^2}{8R + 11W}$$

L = inductance of coil in microhenrys ( $\mu$ H)

R = average radius of the coil in inches

N = number of turns

W = width of the coil in inches



#### **Helical Coil Inductance**

$$L = \frac{(NR)^2}{9R + 10H}$$

 $L = inductance of coil in microhenrys (<math>\mu H$ )

N = number of turns

R = radius of coil in inches (Measure from the center of the coil to the middle of the wire.)

H = height of coil in inches



### **Inverse Conical Coil Inductance**

$$L_1 = \frac{(NR)^2}{9R + 10H}$$
  $L_2 = \frac{(NR)^2}{8R + 11W}$ 

$$L = \sqrt{(L_1 \sin(x))^2 + (L_2 \cos(x))^2}$$

 $L = inductance of coil in microhenrys (<math>\mu H$ )

 $L_1$  = helix factor

 $L_2$  = spiral factor

N = number of turns

R = average radius of coil in inches

H = effective height of the coil in inches

W = effective width of the coil in inches

X = rise angle of the coil in degrees



### **Secondary Coil Dimensions**

$$L = \frac{\pi DAH}{12}$$

$$T = AH$$

$$A = \frac{1}{B}$$

L = length of wire in feet

D = outer diameter of coil form in inches

H = height of windings in inches

A = number of turns per inch

T = total number of turns

B = thickness of wire in inches

#### Medhurst

$$C = 0.29 L + 0.41 R + 1.94 \sqrt{\frac{R^3}{L}}$$

C = self capacitance in picofarads

R = radius of secondary coil in inches

L = length of secondary coil in inches

# **Toroid Capacitance**

$$C = 1.4 \left( 1.2781 - \frac{D_2}{D_1} \right) \sqrt{\pi D_2(D_1 - D_2)}$$

C = capacitance in picofarads

 $D_1$  = outside diameter of toroid in inches

 $D_2$  = diameter of cross section of toroid in inches

This equation courtesy Bert Pool.

# **Sphere Capacitance**

$$C = \frac{25.4 \,\mathrm{R}}{9}$$

C = capacitance in picofarads

R = radius in inches

### **Plate Capacitors**

$$C = \frac{0.224 \text{KA}(\text{N} - 1)}{1,000,000 D}$$

C = capacitance in microfarads

K = dielectric constant

A = area of each plate in square inches

N = number of plates

D = distance between plates in inches (thickness of dielectric)

### Leyden Jar Capacitors

$$C = \frac{0.224 \pi KD(H + 0.25D)}{1,000,000T}$$

C = capacitance in microfarads

K = dielectric constant

D = diameter of jar in inches

H = height of jar in inches

T =thickness of jar in inches

# AC RMS and Peak Voltage

$$E_{RMS} = 0.7071 \cdot E_{P}$$

$$E_{RMS} = RMS$$
 voltage

$$E_p = peak voltage$$

# Rotary Spark Gap Firings per Second

$$F = \frac{RE}{60}$$

F = firings per second (hertz)

R = motor RPM rating

E = number of rotary electrodes

### Rotary Spark Gap Electrode Speed

$$S = \frac{\pi RD}{1056}$$

S = electrode speed (MPH)

R = motor RPM rating

D = diameter of electrode placement circle (inches)

### Energy for L and C

Capacitance

Inductance

 $J = 0.5 V^2 C$ 

 $J = 0.5 I^2 L$ 

J = joules of energy stored

V = peak charge voltage

I = peak current

C = capacitance in farads

L = inductance in henries

I stated peak values of V and I because I want to emphasize not to use RMS values. The energy stored at any given time is of course:  $J(t) = 0.5 [V(t)]^2 C$  and  $J(t) = 0.5 [I(t)]^2 L$ .

How a Tesla Coil Works | Calculations | Formulas | Construction | Modeling | Java Calculator | Safety | Pictures |
Specifications | About Me | Download | Links | Other Projects

Back to homepage.

ElectronXLC@earthlink.net

Copyright © 1998-2001, Matt Behrend, All Rights Reserved.