

December 2017 **Final Examination**

Electric Circuits 1 ECSE 200A - 001

Monday, December 18, 2017, at 2:00 PM

EXAMINER:

Prof. Odile Liboiron-Ladouceur ASSOC. EXAMINER: Prof. Sharmistha Bhadra

STUDENT NAME:	SOLUTIONS	McGILL ID:
INSTRUCTIONS:		
EXAM:	CLOSED BOOK ⊠	OPEN BOOK □
	SINGLE-SIDED □	PRINTED ON BOTH SIDES OF THE PAGE □
	MULTIPLE CHOICE ANSWI	ER SHEETS
	ANSWER IN BOOKLET	EXTRA BOOKLETS PERMITTED: YES ⊠ NO □
	ANSWER ON EXAM	
	SHOULD THE EXAM BE:	RETURNED ⊠ KEPT BY STUDENT □
CRIB SHEETS:	NOT PERMITTED 🗵	PERMITTED e.g. one 8 1/2X11 handwritten double-sided sheet
		Specifications:
DICTIONARIES:	TRANSLATION ONLY	REGULAR □ NONE ⊠
CALCULATORS:	NOT PERMITTED	PERMITTED (Faculty Standard Only)
ANY SPECIAL INSTRUCTIONS: e.g. molecular models		

Course: ECSE-200A-001

Carefully read each question. There is a total of five questions. Write your answers in the exam booklet. Write your name on the exam booklet. Each question has multiple parts (a, b, c, d ...) to answer. Show the steps you take to find your answer and clearly indicate your answer. Write your answers using SI units and SI multipliers. Each question is worth 20 points for a total of 100 points.

Question 1

Consider the circuit shown below. Answer the following questions.

- a) What is the voltage v_{ab} if the resistance R is infinite $(R \rightarrow \infty)$?
- b) What is the current i_R through the resistor R if its resistance is zero $(R = 0 \Omega)$?
- c) What is the power delivered by the current supply if the resistance R is 60 Ω (R = 60 Ω)?
- d) Illustrate the relationship between the current i_{ab} and the voltage v_{ab} by plotting the i_{ab} - v_{ab} diagram of the circuit on the right side of the a-b terminals (i.e., disconnect the current supply). Clearly label your diagram. Assume the resistor R has a resistance R of 30 Ω ($R = 30 \Omega$).

Course: ECSE-200A-001

Extra Working Space

Question 2

Consider the circuit shown below. Answer the following questions.

- a) What is the value of v_x when an open circuit is applied to terminals A and B $(R_L \to \infty)$?
- b) What is the value of v_x when a short circuit is applied to terminals A and B $(R_L \to 0)$?
- c) What is the Norton equivalent circuit with respect to the terminals A and B?
- d) What is the maximum power that the circuit can deliver to an optimally chosen load resistor R_L ?
- e) What should R_L be for maximum power transfer if the current i_{AB} is 1 A?

KCL to find VA

VA-10V+VA-ZV+VA = O 3 VA = 12 V VA = 4V

from conf. in b), find isc

KCL at terminal A: OV-4V+isc+O-12V=O452

Vab

For RT, find Voc from

LSC= 16V=4A

452

$$V_{A}-V_{OC}=i \rightarrow V_{A}-4i=V_{OC}$$
 $R_{T}=V_{OC}=\frac{10V}{15C}=\frac{5}{2}$
 $\frac{5}{12}=2.5$
 $\frac{22}{3}+4.\frac{2}{3}=V_{OC}$

$$\frac{22}{3} + 4 \cdot \frac{2}{3} = \text{Voc}$$

Betrack orking Space

Question 3

Consider the circuit shown below. The circuit is in dc steady state for t < 0 s. The switch closes at t = 0 s. Answer the following questions.

- a) Draw the Thevenin equivalent circuit connected to the capacitor for t < 0 s.
- b) Draw the Thevenin equivalent circuit connected to the capacitor for t > 0 s.
- c) What is $v_c(t)$ for t > 0?
- d) What is $i_c(t)$ for t > 0?

3a) t<0s steady state Voc: 3V. 452 = 3 V

only ind. Src. so find Voc. then Rr Voc = V1. 452 65+45+1052

VOL gind V, with nodal analysis

-08 -0.2A + V,-2V + V, = 0

x20 - 4V + V,-2V + V,= 6V
2V,= 6V -

Find Rr by shutting off supplies. 2V,= 6V -> V,=3V 200m4 > 0A > open 2v > 0.v > short

Rt: 4521(202+1052+652)=3.652

KVL: - IV+IV+VA=O > VA=OV

c) Find initial condition using voltage continuity Velo:) = Velor) from part a) V((0-)= Vc(0+)= 3 V

Find final condution at t >00

NO current thru 42 -> Vc(00)=OV

NSTANT 7 = RTC: 100. 56×10-12 = 1000 ×10-12 = 1 ns = 142.86 ps. time constant

d)
$$i = \frac{Cdv}{dt}$$
 $i_{c}(t) = \frac{50 \times 10^{-12} F}{dt} \frac{d}{dt} \left[\frac{3}{5} e^{-\frac{7 \cdot t}{n5}} \right]$
= $\frac{30 \times 10^{-12}}{10^{-9}} \left(\frac{-7}{10^{-9}} \right) e^{-\frac{7 \cdot t}{n5}} = \frac{210 \times 10^{-3}}{10^{-3}} e^{-\frac{71}{10}}$

Pagenumber 46)

Question 4

Course: ECSE-200A-001

Consider the circuit shown below. Assume that the operational amplifier is ideal and that the circuit is in <u>dc steady state</u>. Answer the following questions.

- a) What is the power supplied by the current source and the voltage source?
- b) What is the resistor that dissipates the most power?
- c) What is the electrical energy absorbed by the 500 Ω in one second?
- d) What is the energy stored by the capacitor and by the inductor?

Page number: 5

Extra Working Space

2)
$$\frac{dV}{dt} = power = SU(t) = Sp(t)dt = S24.5mWdt$$

Constant
insteady
Slort