```
In [1]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         plt.style.use('fivethirtyeight')
         import warnings
         warnings.filterwarnings('ignore')
         %matplotlib inline
In [2]:
         import os
         # 운영체제별 한글 폰트 설정
         if os.name == 'posix': # Mac 환경 폰트 설정
             plt.rc('font', family='AppleGothic')
         elif os.name == 'nt': # Windows 환경 폰트 설정
             plt.rc('font', family='Malgun Gothic')
         plt.rc('axes', unicode_minus=False) # 마이너스 폰트 설정
         # 글씨 선명하게 출력하는 설정
         %config InlineBackend.figure format = 'retina'
In [3]:
         data1 = pd.read csv('NHIS OPEN GJ 2017 100.csv',encoding='euc-kr')
         data2 = pd.read csv('NHIS OPEN GJ 2018 100.csv')
In [4]:
         # 데이터 묶기 + 사용 컬럼만 빼내기
         data = pd.concat([data1,data2])
         column_m, column_n,column_o, column_z = '수축기혈압','이완기혈압','식전혈당(공복혈당)'
         data = data[[column m, column n,column o, column z]]
In [5]:
         data
                수축기혈압 이완기혈압 식전혈당(공복혈당) 흡연상태
Out[5]:
              0
                   120.0
                            80.0
                                          99.0
                                                  1.0
              1
                   130.0
                            82.0
                                         106.0
                                                  3.0
              2
                   120.0
                            70.0
                                          98.0
                                                  1.0
              3
                   145.0
                            87.0
                                          95.0
                                                  1.0
              4
                   138.0
                            82.0
                                         101.0
                                                  1.0
                             ...
        999995
                   110.0
                            70.0
                                         107.0
                                                  1.0
```

114.0

98.0

94.0

85.0

1.0

2.0

2.0

1.0

2000000 rows × 4 columns

136.0

162.0

140.0

120.0

88.0

90.0

98.0

0.08

999996

999997

999998

999999

Null 개수 확인

```
In [6]:
         data.isnull().sum()
        notnull data = data.dropna(axis =0)
        print(data)
        print(notnull data)
                수축기혈압 이완기혈압
                                  식전혈당(공복혈당)
                                                  흡연상태
                120.0
                       80.0
                                    99.0
                                          1.0
                130.0
                                   106.0
                                           3.0
        1
                        82.0
        2
                120.0
                       70.0
                                   98.0
                                          1.0
                145.0
                      87.0
                                    95.0
                                          1.0
                138.0
                       82.0
                                   101.0
                                          1.0
                        . . .
                                          . . .
                  . . .
                                     . . .
        999995
                       70.0
               110.0
                                   107.0
                                          1.0
        999996
               136.0
                       88.0
                                   114.0
                                          1.0
        999997
               162.0
                      90.0
                                   98.0
                                          2.0
        999998 140.0 98.0
                                    94.0
                                          2.0
        999999 120.0
                       80.0
                                    85.0
                                          1.0
        [2000000 rows x 4 columns]
                수축기혈압 이완기혈압
                                  식전혈당(공복혈당)
                                                  흡연상태
        0
                120.0 80.0
                                    99.0
                                          1.0
        1
                130.0
                       82.0
                                   106.0
                                           3.0
        2
                120.0
                        70.0
                                   98.0
                                          1.0
        3
                145.0
                      87.0
                                   95.0
                                          1.0
                138.0
                       82.0
                                   101.0
                                          1.0
        4
        999995
               110.0
                       70.0
                                   107.0
                                          1.0
        999996
               136.0
                       88.0
                                   114.0
                                          1.0
               162.0
                       90.0
                                           2.0
        999997
                                   98.0
               140.0
                      98.0
                                   94.0
                                           2.0
        999998
```

[1993626 rows x 4 columns]

80.0

이상치 제거

999999 120.0

- 식전혈당 300 이상 데이터 제거
- 혈당 300이상 + 220 /60 수축기, 140/40 이완기 데이터 제거

85.0

1.0

```
In [7]:
         notnull_lower_300_data = notnull_data[notnull_data[column_o] <= 300]</pre>
         sys_cut_data = notnull_lower_300_data[(notnull_lower_300_data[column_m] >= 60
         dias cut data = sys cut data[(sys cut data[column n] >= 40) & (sys cut data[column n] >= 40)
         print(notnull lower 300 data)
         data = dias cut data
         print(data)
                수축기혈압 이완기혈압 식전혈당(공복혈당) 흡연상태
        0
                120.0 80.0
                                     99.0
                                            1.0
        1
                130.0
                        82.0
                                    106.0
                                            3.0
        2
                120.0
                        70.0
                                     98.0
                                            1.0
        3
                145.0
                                     95.0
                        87.0
                                            1.0
```

1.0

. . .

1.0

1.0

2.0

2.0

1.0

101.0

107.0

114.0

98.0

94.0

85.0

. . .

[1990562 rows x 4 columns]

138.0

110.0

136.0

162.0

140.0

999999 120.0

. . .

82.0

. . .

70.0

88.0

90.0

98.0

80.0

999995

999996

999997

999998

```
수축기혈압 이완기혈압 식전혈당(공복혈당) 흡연상태
       120.0 80.0
0
                        99.0
                              1.0
                       106.0
                               3.0
1
       130.0 82.0
2
                        98.0
       120.0 70.0
                              1.0
3
       145.0 87.0
                        95.0
                              1.0
      138.0 82.0
                       101.0
                              1.0
              . . .
                               . . .
999995 110.0 70.0
                        107.0
                              1.0
999996
      136.0 88.0
                        114.0
                              1.0
999997
      162.0 90.0
                        98.0
                               2.0
999998 140.0 98.0
                        94.0
                               2.0
999999 120.0 80.0
                        85.0
                              1.0
```

[1990388 rows x 4 columns]

2021.4.6.

```
In [8]: diabetes = data[data[column_o] >= 126]
    diabetes
```

Out[8]:		수축기혈압	이완기혈압	식전혈당(공복혈당)	흡연상태
	11	109.0	69.0	137.0	2.0
	37	167.0	84.0	128.0	1.0
	75	149.0	90.0	155.0	1.0
	76	130.0	80.0	160.0	2.0
	85	120.0	74.0	140.0	3.0
	•••				•••
	999936	114.0	62.0	137.0	2.0
	999940	146.0	101.0	143.0	1.0
	999942	132.0	66.0	150.0	1.0
	999977	132.0	96.0	160.0	2.0
	999991	110.0	76.0	217.0	1.0

152785 rows × 4 columns

전체 인원(널제거, 공복혈당 300이상 제거): 1990388 당뇨 인원: 152785

```
In [9]:

total_people = 1990388

total_dia = 152785

p_diabetes = total_dia/total_people

p_not_diabetes = (total_people - total_dia)/total_people

print("당뇨 확률 : %f, 당뇨x 확률 : %f" % (p_diabetes,p_not_diabetes))

P = np.array([p_diabetes,p_not_diabetes])
```

당뇨 확률 : 0.076761, 당뇨x 확률 : 0.923239

H(parent) 계산

```
In [10]:
h_parent = - ((P[0]*np.log2(P[0]))+ (P[1] * np.log2(P[1])))
print("H(parent) (당뇨병 엔트로피) : %f"%(h_parent))
h_parent
```

```
H(parent) (당뇨병 엔트로피): 0.390664
Out[10]: 0.39066374732574616

In [11]: # Function compute Entropy
def H(p):
    id_p = np.where(p != 0)
    return -np.sum(p[id_p]*np.log2(p[id_p]))

# Compute H(X)
# Expected result: H = 1.27985422583
print ("H = ", H(P))
```

H = 0.39066374732574616

흡연 여부 엔트로피

```
In [12]:
         z1 people = len(data[data[column z] == 1])
          z2 people = len(data[data[column z] == 2])
         z3 people = len(data[data[column z] == 3])
In [13]:
         print( "흡연1 : %d 흡연2 : %d 흡연3 : %d 흡연 총 인원 : %d" % (z1 people,z2 people,z
         흡연1 : 1209391 흡연2 : 352982 흡연3 : 428015 흡연 총 인원 : 1990388
In [14]:
         z1 dia = len(data[(data[column z] == 1) & (data[column o] >= 126)])
         z1 not dia = len(data[(data[column z] == 1) & (data[column o] < 126)])</pre>
         z2 dia = len(data[(data[column z] == 2) & (data[column o] >= 126)])
         z2 not dia = len(data[(data[column z] == 2) & (data[column o] < 126)])</pre>
          z3 dia = len(data[(data[column z] == 3) & (data[column o] >= 126)])
          z3 not dia = len(data[(data[column z] == 3) & (data[column o] < 126)])</pre>
In [15]:
         print("흡연여부:1, 당뇨인 사람 = %d, 당뇨x인 사람 = %d" %(z1 dia, z1 not dia))
         print("흡연여부:2, 당뇨인 사람 = %d, 당뇨x인 사람 = %d" %(z2_dia, z2_not_dia))
         print("흡연여부:3, 당뇨인 사람 = %d, 당뇨x인 사람 = %d" %(z3_dia, z3_not_dia))
         흡연여부:1, 당뇨인 사람 = 75897, 당뇨x인 사람 = 1133494
         흡연여부:2, 당뇨인 사람 = 37179, 당뇨x인 사람 = 315803
         흡연여부:3, 당뇨인 사람 = 39709, 당뇨x인 사람 = 388306
```

H(children) 계산

```
In [16]:
    p_z1_dia = z1_dia/z1_people
    p_z1_not_dia = (z1_people - z1_dia) / z1_people
    p_z2_dia = z2_dia/z2_people
    p_z2_not_dia = (z2_people - z2_dia) / z2_people
    p_z3_dia = z3_dia/z3_people
    p_z3_not_dia = (z3_people - z3_dia) / z3_people

    p_z1 = z1_people/total_people
    p_z2 = z2_people/total_people
    p_z3 = z3_people/total_people
```

IG(Information Gain) 계산

: 질문) 계산할 때 확률 부분이 'z1 && 당뇨/z1인 사람' 이게 맞을까요? 'z1인 사람/ 전체 사람' 이게 맞을까요? 둘 다 해볼께요.. 두번째가 맞는듯

```
In [18]:
z_IG_1 = h_parent - ((p_z1_dia *h_z1) + (p_z2_dia *h_z2) + (p_z2_dia *h_z2))
z_IG_2 = h_parent - ((p_z1 * h_z1) + (p_z2 * h_z2) + (p_z3 * h_z3))
print(z_IG_1, z_IG_2)
```

0.2671259330594141 0.003147859406958775

수축/이완 혈압 엔트로피

 \sim 혈압 기준은 두 세가지 정도 있는데 추후에 다른 기준으로 분리해서 해보려고 함 \sim 일단 그냥 +20 씩 분류할 께요

```
In [19]:
          # 고혈합 분류법
          # only bp = data[(data[column m] >= 140) \& (data[column n] < 90)]
          # 1v2 bp = data[(data[column m] >= 160) | (data[column n] >= 100)]
          # 1v1 bp = data[((data[column m] >= 140) & (data[column m] <= 159)) |
                           ((data[column_n] >= 90) & (data[column_n] <= 99))]
          # 1v0 bp = data[((data[column m] >= 130) & (data[column m] <= 139)) |
                           ((data[column_n] >= 80) & (data[column_n] <= 89))]
          # warn bp = data[((data[column m] \geq 120) & (data[column m] \leq 129)) &
                           (data[column n] < 80)]
          # normal bp = data[((data[column m] >= 90) & (data[column m] < 120)) &</pre>
                           ((data[column n] >= 60) & (data[column n] < 80))]
          \# low_bp = data[(data[column_m] < 90) & (data[column_n] < 60)]
          # 단순히 범위로 수축기: 60~220(+20) , 이완기: 40~140 (+15, 마지막만 +10)
          sys lv0 = data[(data[column m] >= 60) & (data[column m] < 80)]</pre>
          sys lv1 = data[(data[column m] >= 80) & (data[column m] < 100)]</pre>
          sys lv2 = data[(data[column m] >= 100) & (data[column m] < 120)]</pre>
          sys_lv3 = data[(data[column_m] >= 120) & (data[column_m] < 140)]</pre>
          sys_lv4 = data[(data[column_m] >= 140) & (data[column_m] < 160)]</pre>
          sys_lv5 = data[(data[column_m] >= 160) & (data[column_m] < 180)]</pre>
          sys lv6 = data[(data[column m] >= 180) & (data[column m] < 200)]</pre>
          sys lv7 = data[(data[column m] >= 200) & (data[column m] <= 220)]</pre>
          sys len = np.array([len(sys lv0),len(sys lv1),len(sys lv2),len(sys lv3),
                              len(sys lv4),len(sys lv5),len(sys lv6),len(sys lv7)])
```

```
sys_x = range(len(sys_len))
plt.bar(sys_x,sys_len)
plt.show()
print("수축기혈압 전체 인원 분포",sys_len, sys_len.sum() == total_people)
```

```
800000
400000
0
1
2
3
4
5
6
7
```

수축기혈압 전체 인원 분포 [103 73036 770312 934401 181663 27103 3349 421] True

이완기혈압 전체 인원 분포 [14482 437070 1171540 326398 38031 2500 367] True

```
In [21]:
    sys_lv0_diab = sys_lv0[sys_lv0[column_o]>=126]
    sys_lv1_diab = sys_lv1[sys_lv1[column_o]>=126]
    sys_lv2_diab = sys_lv2[sys_lv2[column_o]>=126]
    sys_lv3_diab = sys_lv3[sys_lv3[column_o]>=126]
    sys_lv4_diab = sys_lv4[sys_lv4[column_o]>=126]
```

```
sys_lv5_diab = sys_lv5[sys_lv5[column_o]>=126]
sys_lv6_diab = sys_lv6[sys_lv6[column_o]>=126]
sys lv7 diab = sys lv7[sys lv7[column o]>=126]
dias lv0 diab = dias lv0[dias lv0[column o]>=126]
dias lv1 diab = dias lv1[dias lv1[column o]>=126]
dias_lv2_diab = dias_lv2[dias_lv2[column_o]>=126]
dias_lv3_diab = dias_lv3[dias_lv3[column_o]>=126]
dias lv4 diab = dias lv4[dias lv4[column o]>=126]
dias lv5 diab = dias lv5[dias lv5[column o]>=126]
dias lv6 diab = dias lv6[dias lv6[column o]>=126]
sys diab len = np.array([len(sys lv0 diab),len(sys lv1 diab),len(sys lv2 diab
                         len(sys lv3 diab), len(sys lv4 diab), len(sys lv5 dial
                         len(sys lv6 diab),len(sys lv7 diab)])
dias diab len = np.array([len(dias lv0 diab),len(dias lv1 diab),
                          len(dias lv2 diab),len(dias lv3 diab),
                          len(dias lv4 diab),len(dias lv5 diab),len(dias lv6
print(sys len)
print(sys diab len, sys diab len.sum())
print(dias len)
print(dias diab_len, dias_diab_len.sum())
## sys diab len.sum() == dias diab len.sum() == 당뇨병 인원
```

```
[ 103 73036 770312 934401 181663 27103 3349 421]
[ 3 1821 35449 83416 26611 4763 653 69] 152785
[ 14482 437070 1171540 326398 38031 2500 367]
[ 655 21343 91270 34202 4883 380 52] 152785
```

확률 구하기

```
| px1=[0 for _ in range(len(sys_len))]
| py1=[0 for _ in range(len(sys_len))]
| for i in range(len(sys_len)):
| px1[i] = sys_diab_len[i] / sys_len[i]
| py1[i] = (sys_len[i] - sys_diab_len[i]) / sys_len[i]
| print("수축기 당뇨 확률: ",px1)
| print("수축기 정상 확률: ",py1)

| px2=[0 for _ in range(len(dias_len))]
| py2=[0 for _ in range(len(dias_len))]
| for i in range(len(dias_len)):
| px2[i] = dias_diab_len[i] / dias_len[i]
| py2[i] = (dias_len[i] - dias_diab_len[i]) / dias_len[i]
| print("이완기 당뇨 확률: ",px2)
| print("이완기 정상 확률: ",py2)
```

수축기 당뇨 확률: [0.02912621359223301, 0.024932909797907882, 0.0460190156715720 4, 0.08927216473441274, 0.1464855253959254, 0.17573700328376932, 0.19498357718 722006, 0.16389548693586697]
수축기 정상 확률: [0.970873786407767, 0.9750670902020921, 0.9539809843284279, 0.9107278352655872, 0.8535144746040746, 0.8242629967162307, 0.80501642281278, 0.836104513064133]
이완기 당뇨 확률: [0.04522855959121668, 0.04883199487496282, 0.0779060040630281 5, 0.10478618128787553, 0.12839525650127528, 0.152, 0.14168937329700274]
이완기 정상 확률: [0.9547714404087834, 0.9511680051250372, 0.9220939959369718, 0.8952138187121245, 0.8716047434987247, 0.848, 0.8583106267029973]

```
In [23]: sys_entropy = []
```

```
for x,y in zip(px1,py1):
              P = np.array([x,y])
              print(P)
              print(H(P))
              sys entropy.append(H(P))
          print("수축기혈압 엔트로피 : ")
          for i in range(len(sys_len)):
              print("lv%d = %f" % (i,sys entropy[i]))
         [0.02912621 0.97087379]
         0.18999075553626754
         [0.02493291 0.975067091
         0.1683061994731502
         [0.04601902 0.95398098]
         0.26923904364961826
         [0.08927216 0.91072784]
         0.4340357206412661
         [0.14648553 0.85351447]
         0.6009749954631391
         [0.175737 0.824263]
         0.6706618294011848
         [0.19498358 0.80501642]
         0.7117810758706125
         [0.16389549 0.83610451]
         0.6435478784630176
         수축기혈압 엔트로피:
         1v0 = 0.189991
         lv1 = 0.168306
         1v2 = 0.269239
         1v3 = 0.434036
         1v4 = 0.600975
         1v5 = 0.670662
         lv6 = 0.711781
         1v7 = 0.643548
In [24]:
          dias entropy = []
          for x,y in zip(px2,py2):
              P = np.array([x,y])
              print(P)
              print(H(P))
              dias_entropy.append(H(P))
          print("이완기혈압 엔트로피 : ")
          for i in range(len(dias_len)):
              print("lv%d = %f" % (i,dias entropy[i]))
         [0.04522856 0.95477144]
         0.26577153576502643
         [0.04883199 0.95116801]
         0.28141448371513106
         [0.077906 0.922094]
         0.3947575435909049
         [0.10478618 0.89521382]
         0.48398636839174347
         [0.12839526 0.87160474]
         0.5530206875307276
         [0.152 0.848]
         0.6148227571490692
         [0.14168937 0.85831063]
         0.5886460862619332
         이완기혈압 엔트로피:
         1v0 = 0.265772
         1v1 = 0.281414
         1v2 = 0.394758
```

```
1v3 = 0.483986
         1v4 = 0.553021
         1v5 = 0.614823
         1v6 = 0.588646
In [25]:
         p sys = []
         p dias = []
         for i in range(len(sys len)):
             p sys.append(sys len[i] / total people)
          for i in range(len(dias len)):
             p dias.append(dias len[i] / total people)
         print(p sys)
         print(p_dias)
         arr p sys = np.array(p sys)
         arr p dias = np.array(p dias)
          # bp arr = np.array([len(low bp),len(normal bp),len(warn bp),len(lv0 bp),len(
          # px = np.array(bp arr/total people)
          # print (px)
         [5.174870427273476e-05, 0.03669435306081025, 0.38701599889066857, 0.4694567089
         431809, 0.09127014431357103, 0.013616943028193497, 0.0016825865107707642, 0.00
         0211516548532245961
         [0.007275968303667425, 0.21959035122800177, 0.5885988058609678, 0.163987122108
         85516, 0.01910732982714928, 0.0012560365114741448, 0.00018438615988440444]
In [26]:
         sys_IG = h_parent - sum(arr_p_sys * sys_entropy)
         print("수축기혈압 정보증가량 : ", sys IG)
         dias IG = h parent - sum(arr p dias * dias entropy)
         print("이완기혈압 정보증가량 : ", dias IG)
         수축기혈압 정보증가량 : 0.011200037300218568
         이완기혈압 정보증가량: 0.003765219580828927
        : 다음과 같은 정보증가량을 구할 수 있고, 이를 기반으로 수축기 혈압의 정보가 더 중요하다고 고려할 수 있다.
 In [ ]:
```