Mathematical Formulae

Trigonometry $\cos^2 A + \sin^2 A = 1$ $1 + \tan^2 A = \sec^2 A$ $\cot^2 A + 1 = \csc^2 A$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

$$\sin P + \sin Q = 2 \sin \frac{1}{2} (P + Q) \cos \frac{1}{2} (P - Q)$$

$$\sin 3A = 3 \sin A - 4 \sin^3 A$$

$$\sin P - \sin Q = 2 \cos \frac{1}{2} (P + Q) \sin \frac{1}{2} (P - Q)$$

$$\cos 3A = 4 \cos^3 A - 3 \cos A$$

$$\cos P + \cos Q = 2 \cos \frac{1}{2} (P + Q) \cos \frac{1}{2} (P - Q)$$

$$\sin 3A = 3 \sin A - 4 \sin^3 A$$

$$\cos 3A = 4 \cos^3 A - 3 \cos A$$

$$if t = \tan \frac{1}{2} A, \text{ then } \sin A = 2t/(1 + t^2)$$

$$\cos P - \cos Q = -2 \sin \frac{1}{2} (P + Q) \sin \frac{1}{2} (P - Q)$$

$$\cos A = (1 - t^2)/(1 + t^2)$$

<u>Differentiation</u> $\frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx}$ **<u>Integration</u>** $\int udv = uv - \int vdu$ $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{1}{v^2}\left(v\frac{du}{dx} - u\frac{dv}{dx}\right)$ $\int \left(\frac{f'}{f}\right)dx = \ln f$

		11	
у	$\frac{dy}{dx}$	у	$\int y dx + c$
x^n	nx^{n-1}	x^n	$\frac{1}{n+1}\chi^{n+1}$
$\ln x$	$\frac{1}{x}$	$\frac{1}{x}$	$\ln x$
ln(ax + b)	$\frac{a}{ax+b}$	$\frac{1}{ax+b}$	$\frac{1}{a}\ln(ax+b)$
e^{mx}	me ^{mx}	e^{mx}	$\frac{1}{m}e^{mx}$
sin mx	$m\cos mx$	sin mx	$-\frac{1}{m}\cos mx$
$\cos mx$	$-m\sin mx$	$\cos mx$	$\frac{1}{m}\sin mx$
tan mx	$m \sec^2 mx$	tan mx	$-\frac{1}{m}\ln\cos mx$
$\cot mx$	$-m \csc^2 mx$	cot mx	$\frac{1}{m}\ln\sin mx$
sec mx	$m \sec mx \tan mx$	sec x	$\ln(\sec x + \tan x) = \ln \tan \left(\frac{x}{2} + \frac{\pi}{4}\right)$
cosec mx	$-m \csc mx \cot mx$	cosec x	$-\ln(\csc x + \cot x) = \ln \tan \frac{x}{2}$
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$	$\frac{1}{\sqrt{a^2-x^2}}$	$\sin^{-1}\frac{x}{a}$
$\tan^{-1} x$	$\frac{1}{x^2+1}$	$\frac{1}{x^2 + a^2}$	$\frac{1}{a} \tan^{-1} \frac{x}{a}$
$sinh^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2 + x^2}}$	$\frac{1}{x^2 - a^2}$	$\left \frac{1}{2a} \ln \left(\frac{x-a}{x+a} \right), x > a \right $
$ \cosh^{-1}\frac{x}{a} $	$\frac{1}{\sqrt{x^2 - a^2}}$	$\frac{1}{a^2 - x^2}$	$\frac{1}{2a}\ln\left(\frac{a+x}{a-x}\right), x < a$
sinh mx	$m \cosh mx$	$e^{ax} \sin bx$	$\frac{e^{ax}}{a^2+b^2}(a\sin bx - b\cos bx)$
$\cosh mx$	m sinh mx	$e^{ax}\cos bx$	$\frac{e^{ax}}{a^2+b^2}(a\cos bx+b\sin bx)$

$$L = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \qquad \qquad L = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt$$

Surface area of revolution
$$S_x = 2\pi \int_{x_1}^{x_2} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
 $S_y = 2\pi \int_{y_1}^{y_2} x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$

$$S_x = 2\pi \int_{t_1}^{t_2} y(t) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \qquad S_y = 2\pi \int_{t_1}^{t_2} x(t) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Area bounded by parametric equations

$$x = f(t), y = g(t), \alpha \le t \le \beta$$

$$A = \int_{\alpha}^{\beta} g(t)f'(t)dt$$

$$\mu = e^{\int Pdx}, \quad \text{if} \quad \frac{dy}{dx} + Py = Q$$

Integrating factor

Newton-Raphson iteration $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Maclaurin's Series

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$

Special Maclaurin's Series

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^n x^{n+1}}{n+1} + \dots + (-1 < x \le 1)$$

$$(1+x)^r = 1 + rx + \frac{r(r-1)}{2!}x^2 + \frac{r(r-1)(r-2)}{3!}x^3 + \dots + \frac{r(r-1)\dots(r-n+1)}{n!}x^n + \dots \\ (-1 < x \le 1)$$

Taylor's Series

$$f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

Euler's method

$$y_n = y_{n-1} + hF(x_{n-1}, y_{n-1})$$
 where h is the step size

Binomial Theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
, where $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, n is any positive integer

Binomial Series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots$$
, *n* is any real number and $|x| < 1$