The Definitive Physics Definition List

Engineers of Dubious Quality

September 12, 2016

1 Measurements

Express errors/uncertainties to 1 s.f. and write the measured value to the same decimal place as its error/uncertainty

Systematic Error	An error that occurs consistently more or consistently less than the actual reading.
Random Error	An error that occurs as a scattering (or spreading) of readings about the average or mean value of the measurements.
Precision	The <i>reproducibility</i> of a measurement. Repeated measurements which are very close to one another are precise measurements. Thus an experiment which has <i>small random errors</i> (i.e. small spread of readings) is said to have <i>high precision</i> .
Accuracy	The <i>agreement</i> between the measured value and the true or accepted value of a quantity. An experiment which has <i>small systematic errors</i> is said to have <i>high accuracy</i> . The <i>average value</i> is close to the true value.
Vector Quantity	A quantity that has a <i>magnitude and direction</i> .
Scalar Quantity	A quantity that has a magnitude only.

2 Kinematics

We define a coordinate system with defined reference positive directions and we assume constant acceleration.

Displacement		The distance travelled in a stated direction from a reference point.
Velocity	$\mathbf{v} = \frac{d\mathbf{s}}{dt}$	The rate of change of displacement with respect to time.
Speed	$v = \mathbf{v} = \left \frac{d\mathbf{s}}{dt} \right $	The rate of change of distance travelled with respect to time.
Acceleration	$\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{s}}{dt^2}$	The rate of change of velocity with respect to time.

3 Dynamics

3.1 Newton's Laws of Motion

1 st Law	A body will continue in its state of rest, or move at constant speed in a stright line unless an external resultant force acts on it.			
\rightarrow Inertia	The resistance to change in the state of motion of an object			
$\rightarrow Mass$	A property of that determines the objects inertia.			
2 nd Law	The <i>rate of change of linear momentum</i> of a body is <i>directly proportional</i> to the resultant force acting on it, and its direction is in the <i>same direction</i> as this resultant force.			
	The force acting on an object is defined as the rate of change of linear momentum of an object.			
	$F \propto rac{dp}{dt}, \; F = ma$ (if constant mass)			
3 rd Law	If body A exerts a force on body B, then body B will exert an <i>equal and opposite</i> force on body A.			
	<i>Note:</i> Action-Reaction Pairs act on different bodies and are of the same nature.			
Weight	The gravitational force acting on the object.			
Weightlessness	There is no contact force acting on the object. A body experiences apparent weightlessness when the resultant force acting on it is its weight, or it is undergoing freefall.			

3.2 Momentum

Linear Momentum	$\mathbf{p} = m\mathbf{v}$	The product of an object's mass and its velocity.
Impulse	$\mathbf{J} = \int_{t1}^{t2} \mathbf{F} dt = P_f - P_i$	The product of the average force acting on an object and the time interval that the force is being applied.
Principle of Con- servation of Linear Momentum	The total momentum of the system is a constant when no external resultant force acts on it.	

4 Forces