

Sensor de estacionamiento

Protocolos de Comunicación de Sistemas Embebidos

Trabajo práctico final

Autor:

Profesor:

- Sr. Juan Manuel Hernández

- Ing. Israel Pavelek

Link al repositorio: https://github.com/juanmaher/PdM_cese_workspace/tree/main/parking_sensor

Índice

Recorrido por la presentación

Guía

- 1. Aplicación
- 2. Periféricos
- 3. Máquina de estados finitos
- 4. Módulos
- 5. Detalles de código

Aplicación

Sensor de estacionamiento

- Desarrollo sobre la plataforma NUCLEO-F429ZI de ST.
- Lectura de proximidad a objetos sólidos mediante el sensor ultrasónico (HC-SR04) y el cálculo temporal del ancho de los pulsos.
- Procesamiento de los datos medidos para darle un valor de acuerdo a la resolución preestablecida (8 niveles).
- Detección de la señal de marcha atrás o reversa, representada mediante un botón.
- Escritura a una terminal serie de los valores medidos a través del protocolo UART para debugging.
- Escritura mediante I2C de los valores obtenidos en el display (PCF8574 HD44780).

Periféricos

Periféricos

UART

- USART3
- 115200 8N1
- TX -> PD8
- RX -> PD9

GPIO

- TRIGGER PIN -> PE2
- REVERSE PIN -> PC13

12C

- I2C1
- SCL -> PB8
- SDA -> PB9
- 100 kHz

TIM

- TIM1
- ECHO PIN -> PE9
- TIM1_CC_IRQn (ambos flancos)

Display LED - Expander de I2C a 8 bit

Características del display

Modelo: HD44780

Modo: 4 bits - 2 lines

Comunicación paralela

<u>Características del expander</u>

- Modelo: PCF8574
- Comunicación por I2C
- Frecuencia de clock: 100 kHz

Interfaz I2C

En este ejemplo, se muestra como inicialmente se envía la dirección del esclavo y luego los bits de datos que se quieran escribir. Luego del ACK, se ve como se transmiten esos datos a los pines de salida del expander.

Comunicación con Display HD44780

Busco que el expander escriba en su salida los 8 bits con el formato de la tabla.

Ejemplo:

```
0x6D = 0b01101101
D7 = 0
D6 = 1
D5 = 1
D4 = 0
E = 1
B = 1
R/~W = 0
RS = 1
```

Signal	No. of Lines	I/O	Device Interfaced with	Function	
RS	1	I	MPU	Selects registers. 0: Instruction register (for write) Busy flag: address counter (for read) 1: Data register (for write and read)	
R/W	1	l	MPU	Selects read or write. 0: Write 1: Read	
E	1	1	MPU	Starts data read/write.	
DB4 to DB7	4	I/O	MPU	Four high order bidirectional tristate data bus pins. Used for data transfer and receive between the MPU and the HD44780U. DB7 can be used as a busy flag.	

Análisis de bits

Primero, envió la dirección del esclavo (0x27 << 1 = 0x4E = 0b01001110). Luego, envío un comando de escritura.

Análisis temporal de la comunicación

Symbol	Parameter	Conditions	MIN.	TYP.	MAX	UNIT
t_pv	output data valid	CL ≤ 100 pF	-	-	4	us

Tiempo de escritura de datos sobre pines de salida.

Medición temporal de la comunicación expander - display

Valor máximo = 4 us y Valor medido = 0,292 us

Sensor ultrasónico

Características del sensor

Modelo: HC-SR04

• Rango: 2 cm - 400 cm

Precisión: +- 0.3 cm

<u>Implementación</u>

- Módulos usados:
 - GPIO para TRIG
 - TIM para ECHO

Prueba de medición

Esta medición fue tomada a aproximadamente 5 cm de un objeto. El valor obtenido fue procesado y se obtuvo el nivel máximo de resolución posible (NIVEL 8). Este dato se transforma en dos barras de 16 caracteres como se muestra en el display.

Medición temporal del pulso

Medición realizada a ~5 cm del sensor ultrasónico

Resultados de mediciones

Fórmula para obtención de resultado:

 $D = T \times V / 2$ (D = distancia[m], T = tiempo [s], V = velocidad [m/s])

Nro. Medición	Distancia objeto [cm]	Tiempo de pulso [us]	Distancia medida [cm]	Error [cm]
1	3	141,708	2,409	-0,591
2	5	255,458	4,343	-0,657
3	8	501,833	8,531	+0,531

Para la ecuación se utilizó el valor de la velocidad del sonido (340 m/s). La precisión especificada por fabricante es de 0,3 cm.

Máquina de estados finitos

Máquina de estados finitos

CONFIGURATION

 Inicializo display, sensor ultrasónico, UART, señal de reversa (user button) y timers.

WELCOME

- Prendo display.
- Escribo mensaje de bienvenida.
- Inicio 1s timer.

IDLE

Apago display.

MEASURING

Inicio la medición del sensor ultrasónico.

SHARING

- Transformo la información recibida a nivel de resolución.
- Envío el dato por UART y lo escribo en el display.
- o Prendo el display si es la primera medición.
- Inicio 1s timer.

Módulos

Módulos

- Se separó en módulos de acuerdo a funcionalidades comunes.
 - Comunicación con el exterior (UART).
 - Interfaz de usuario (Display).
 - Herramientas y utilidades (debounce y delay no bloqueante).
 - Sensado de señales externas (ultrasónico y reversa).
- Los drivers del display, ultrasónico y reversa fueron planteados de forma genérica para no tener dependencias con el hardware. Se implementó una capa de aplicación y una capa de bajo nivel (port.c).

```
Drivers
 V API
  V Inc.
   Communication
    C API_uart.h
   ∨ HMI
    C API display port.h
    C API_display.h

∨ Misc

    C API debounce.h
    C API delay.h
   Sensors
    C API_hcsr04_port.h
    C API hcsr04.h
    C API reverse port.h
    C API reverse.h

✓ Src

   Communication
    C API uart.c
   ∨ HMI
    C API display port.c
    C API_display.c
   ∨ Misc
    C API_debounce.c
    C API_delay.c
   Sensors
    C API hcsr04 port.c
    C API_hcsr04.c
    C API_reverse_port.c
    C API reverse.c
```

¡Gracias!