Video 1: Welcome to the course

• Is investing a monkey-business?

http://www.theglobeandmail.com/report-on-business/rob-magazine/three-reasons-a-monkey-is-a-better-investor-than-you/article14021500/

- Professor of finance
- Advisor to investment companies
 - Expertise in portfolio management
 - Focus on risk management.

- Simple tricks to avoid large losses:
 - Carefully selected diversfied portfolios;
 - Backtesting and online monitoring of performance
- Learn this by doing at Datacamp!

- Ch. 1 Portfolio weights and returns
- Ch. 2 Porfolio performance evaluations
- Ch. 3 Drivers of performance
- Ch. 4 Portfolio optimization

Video 2: The portfolio weights

 Two similar companies: Invest in either of them based on tossing a coin?

 Two similar companies: Invest in either of them based on tossing a coin?

Portfolio weights

Investment	Value invested	Weight
1	V_1	$w_1 = \frac{V_1}{V_1 + \dots + V_N}$
2	V_2	$w_2 = \frac{V_2}{V_1 + \dots + V_N}$
* *		
N	V _N	$w_{\rm N} = \frac{V_{\rm N}}{V_1 + \dots + V_{\rm N}}$

values <- c(500000, 200000, 100000, 20000)
names(values) <- c("Inv 1","Inv 2","Inv 3","Inv 4")
weights <- values/sum(values)
barplot(weights)</pre>

- Allocation strategies
 - Optimize mean and variance (chapter 4)
 - Betting on one asset;
 - Equal weighting of a diversified set of assets;
 - Market capitalization based weighting

— ...

http://www.falibo.com/vocabulary/idiom-dont-put-all-your-eggs-in-one/

Video 3: The portfolio return

- Weights reveal active investment bets;
- Returns are the relative changes in value:

Initial value	100
Final value	120

$$\frac{120 - 100}{100} = 20\%$$

Asset 1	 Asset N
InValue.Asset ₁	 InValue.Asset _N
FinValue.Asset ₁	 FinValue.Asset _N

InValue.Portfolio = InValue.Asset₁ + ... + InValue.Asset_N

 $FinValue.Portfolio = FinValue.Asset_1 + ... + FinValue.Asset_N$

 $Portfolio\ Return = rac{FinValue.Portfolio-InValue.Portfolio}{InValue.Portfolio}$

Asset 1	Asset 2
InValue.Asset ₁ = \$200	InValue. Asset ₂ = \$300
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330

InValue.Portfolio =
$$$200 + $300 = $500$$

$$Portfolio\ Return = \frac{FinValue.Portfolio-InValue.Portfolio}{InValue.Portfolio} = \frac{510-500}{500} = 2\%$$

New formula

$$Portfolio\ Return = w_1 R_1 + w_2 R_2 + ... w_N R_N$$

with:
$$R_i = \frac{FinValue. Asseti - InValue. Asseti}{InValue. Asseti}$$

$$w_i = \frac{InValue.Asseti}{\sum_{j=1}^{N} InValue.Asset_j}$$

Asset 1	•••	Asset N
InValue.Asset ₁		InValue.Asset _N
FinValue.Asset ₁	•••	FinValue.Asset _N

Asset 1	 Asset N
$\mathbf{w}_1 = \frac{InValue.Asset_1}{InValue.Portfolio}$	 $\mathbf{w}_{N} = \frac{\mathit{InValue.AssetN}}{\mathit{InValue.Portfolio}}$
$R_1 = \frac{FinValue.Asset_1 - InValue.Asset_1}{InValue.Asset_1}$	 $R_{N} = \frac{FinValue.AssetN - InValue.AssetN}{InValue.AssetN}$

 $Portfolio\ Return = w_1 R_1 + w_2 R_2 + ... w_N R_N$

Asset 1	Asset 2
InValue.Asset ₁ = \$200	InValue. Asset ₂ = \$300
FinValue.Asset ₁ = \$180	FinValue.Asset ₂ = \$330

Asset 1	Asset 2
$w_1 = \frac{200}{500} = 40\%$	$w_2 = \frac{300}{500} = 60\%$
$R_1 = \frac{180 - 200}{200} = -10\%$	$R_2 = \frac{330 - 300}{300} = 10\%$

 $Portfolio\ Return = 0.4*(-10\%)+0.6*(10\%)=2\%$

Video 4: The PerformanceAnalytics package

- Portfolio analysis requires to compute a time series of portfolio returns;
- Save time and use the functionality in the package PerformanceAnalytics to do so.

- PerformanceAnalytics is the go-to package for the analysis of portfolio returns in R
- Created by two quants from the city of Chicago:

Peter Carl

Brian Peterson

Return.calculate to compute the asset returns

Return.portfolio to compute the portfolio return

Return.calculate <- function (prices)

	AAPL MSFT
2006-01-03	9.829465 21.07395
2006-01-04	9.858394 21.17602
2006-01-05	9.780810 21.19173
2006-01-06	10.033286 21.12891
2006-01-09	10.000411 21.08966
2006-01-10	10.632916 21.19958

1
9
52

head(prices)

returns <- Return.calculate(prices)
head(returns)</pre>

Return.calculate

In: prices Out: returns

	AAPL MSFT
2006-01-03	9.829465 21.07395
2006-01-04	9.858394 21.17602
2006-01-05	9.780810 21.19173
2006-01-06	10.033286 21.12891
2006-01-09	10.000411 21.08966
2006-01-10	10.632916 21.19958

```
AAPL MSFT

2006-01-04 0.002943090 0.0048434670

2006-01-05 -0.007869842 0.0007415934

2006-01-06 0.025813404 -0.0029640809

2006-01-09 -0.003276594 -0.0018579752

2006-01-10 0.063247901 0.0052121756

2006-01-11 0.037595802 0.0107407783
```

head(prices)

returns <- Return.calculate(prices)
returns <- returns[(-1),]
head(returns)</pre>

Definiting the time series of portfolio weights:

- Set initial weights and do not intervene such that subsequent weights are only a consequence of price dynamics.
- Dynamic portfolio allocation: frequently buy and sell assets to actively change the portfolio weights (portfolio rebalancing).

Return.portfolio <- function (R, weights = NULL, rebalance_on = c(NA, "years", "quarters", "months", "weeks", "days"))