7. Transition-based parsing of CFGs

Embedding and acceptability patterns

The following collection of sentences provides a motivating "test set" for basic theories of human sentence processing.

- (1) Left-branching structures
 - a. Mary won
 - b. Mary 's baby won
 - c. Mary 's boss 's baby won
- (2) Right-branching structures
 - a. John met the boy
 - b. John met the boy that saw the actor
 - c. John met the boy that saw the actor that won the award
- (3) Center-embedding structures
 - a. the actor won
 - b. the actor the boy met won
- c. the actor the boy the baby saw met won

Assignment Project Exam Help

https://powcoder.com

ptable
Add WeChat powcoder

the actor the boy the baby saw won

unacceptable

Here's a CFG generating all the sentences in (1), (2) and (3):

 $S \rightarrow WHILE S S$ $NP \rightarrow NP POSS N$ $NP \rightarrow (D) N (PP) (SRC) (ORC)$ $VP \rightarrow V (NP) (PP)$

 $PP \rightarrow P NP$

 $SRC \rightarrow THAT VP$ $ORC \rightarrow NP V$

 $S \rightarrow NP VP$

 $N \rightarrow baby$, boy, actor, wife, boss

 $NP \rightarrow Marv$, John $V \to \text{met}$, saw, won

 $D \to the$

 $P \rightarrow on$, in, with

 $THAT \rightarrow that$ $POSS \rightarrow 's$

WHILE \rightarrow while

Left-branching structure:

inside (Mary) (NP) inside (Mary's beby) (NP)

* who do you wonder who met?

pushdown automata

3 CFG parsing schemas

In all of the following: A, B, etc. are placeholders for a nonterminal; x_1 , x_2 , etc. are placeholders for a terminal symbol; and Φ is a placeholder for a sequence of nonterminals (in the form of a "stack").

We assume that the right-hand side of each CFG rule has either a single terminal symbol or a sequence of one-or-more nonterminal symbols. $A \to \mathbb{K}$

3.1 Bottom-up

Bottom-up parsing schema

Starting configuration: $(\epsilon, x_1 \dots x_n)$ where $x_1 \dots x_n$ is the input

SHIFT step: $(\Phi, x_i x_{i+1} \dots x_n) \Longrightarrow (\Phi A, x_{i+1} \dots x_n)$ where there is a rule $A \to x_i$ in the grammar

REDUCE step: $(\Phi B_1 \dots B_m, x_i \dots x_n) \Longrightarrow (\Phi A, x_i \dots x_n)$ where there is a rule $A \to B_1 \dots B_m$ in the grammar

Goal configuration: (A, ϵ)

where A is one of the grammar's start symbols

D N V D N At Exam Help the 600

Example:

	Type of transition	Rule used	Configuration	
0	_	_	(e, the property powcode	er com
1	SHIFT	$D \to the$	(D, baby saw life boy)	1.COIII
2	SHIFT	$N \to baby$	(D N, saw the boy)	2
3	REDUCE	$NP \rightarrow D N$	(NP, saw the boy)	the boy)
4	SHIFT	$V \to saw$	(NP V, the boy)	→ * •
5	SHIFT	$D \to the$		wcoder
6	SHIFT	$N \to boy$		
7	REDUCE	$NP \rightarrow D N$	(NP V NP, e) (NP V NP, e) (NP VP, e)	, ε)
8	REDUCE	$\mathrm{VP} \to \mathrm{V} \ \mathrm{NP}$	$(NP VP, \epsilon)$, ()
9	REDUCE	$S \to NP VP$	$ \begin{array}{c} \text{(NP VP, } \epsilon) \\ \text{(S, } \epsilon) \end{array} $	Ρ, ε)
			(2 N NP	s)
			R, (Did of)	, =)
			\times	

A -> x A -> BCD

3.2 Top-down

Top-down parsing schema

Starting configuration: $(A, x_1 \dots x_n)$ where A is one of the grammar's start symbols and $x_1 \dots x_n$ is the input

PREDICT step: $(A\Phi, x_i \dots x_n) \Longrightarrow (B_1 \dots B_m \Phi, x_i \dots x_n)$ where there is a rule $A \to B_1 \dots B_m$ in the grammar

MATCH step: $(A\mathbf{\Phi}, x_i x_{i+1} \dots x_n) \Longrightarrow (\mathbf{\Phi}, x_{i+1} \dots x_n)$

where there is a rule $A \to x_i$ in the grammar

Goal configuration: (ϵ, ϵ)

Example:

	Type of transition	Rule used	Configuration	the	. Boy
0	_	_	(S, the baby saw the boy)		
1	PREDICT	$S \to NP\ VP$	(NP VP, the baby saw the boy)		
2	PREDICT	$\mathrm{NP} \to \mathrm{D} \; \mathrm{N}$	(D N VP, the baby saw the boy)		
3	MATCH	$D \to the$	(N VP,•baby saw the boy)		- 1
4	MATCH	$N \to baby$	Acception	Project Exam H	eln
5	PREDICT	$VP \rightarrow V NP$	(V NP, sw the boy)		.01
6	MATCH	$V \to saw$	(NP, the boy)		
7	PREDICT	$\mathrm{NP} \to \mathrm{D} \ \mathrm{N}$	(D N, the boy)		
8	MATCH	$D \to the$	(N, boy)	11	
9	MATCH	$N \to boy$	(ϵ, ϵ) NUTUS: //D	owcoder.com	

John net the boy that say the actor Add We Chat powcoder 8

	6	Add Wel
VP UP		(c 6)
ha V NP		(S, G)
	Ο.	
met //	L:	(NP UP, O)
D N SRC	M:	(VP,I)
the boy		
	P ;	(V NP, 1)
D THAT UP that /	۸۸ ۰	(NP 2)
749+ / /	,,,,,	(NP, 2) (DN SRC,
	P ;	(DASKC,
\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc		

	<u> </u> 2E	RE	CE
HUMANS	no incr.	No Mer,	jucrease
BU	3->3 no lucreose	8-12	4→6 increase
TD	476 incr.	3→3	
LC			

3.3 Left-corner

Left-corner parsing schema

Starting configuration: $(\overline{A}, x_1 \dots x_n)$

where A is one of the grammar's start symbols and $x_1 \dots x_n$ is the input

SHIFT step: $(\Phi, x_i x_{i+1} \dots x_n) \Longrightarrow (A\Phi, x_{i+1} \dots x_n)$ where there is a rule $A \to x_i$ in the grammar

MATCH step: $(\overline{A}\Phi, x_ix_{i+1}\dots x_n) \Longrightarrow (\Phi, x_{i+1}\dots x_n)$

where there is a rule $A \to x_i$ in the grammar

LC-PREDICT step: $(B_1 \Phi, x_i \dots x_n) \Longrightarrow (\overline{B_2} \dots \overline{B_m} A \Phi, x_i \dots x_n)$

where there is a rule $A \to B_1 \dots B_m$ in the grammar

LC-CONNECT step: $(B_1 \overline{A} \Phi, x_i \dots x_n) \Longrightarrow (\overline{B_2} \dots \overline{B_m} \Phi, x_i \dots x_n)$ where there is a rule $A \to B_1 \dots B_m$ in the grammar

Goal configuration: (ϵ, ϵ)

B, B2 ... B.

S->NP UP

$N = \{S, UP, NP\}$
{S, UP, NP, S, UP, NP}
bottom-up top-down

Example:

	Type of transition	Rule used	Assignment Project Exam Help
0	_	_	Street Street Tropect L'Aann Help
1	SHIFT	$D \to the$	$(D \bar{S}, baby saw the boy)$
2	LC-PREDICT	$\mathrm{NP} \to \mathrm{D} \; \mathrm{N}$	$(\bar{N} NP \bar{S}, baby saw the boy)$
3	MATCH	$N \to baby$	(NP S, saw the boy)
4	LC-CONNECT	$S \to NP\ VP$	(VP, sawtte boy) (VP, sawtte by S:// powcoder.com,
5	SHIFT	$V \to saw$	(V VP, the boy)
6	LC-CONNECT	$\mathrm{VP} \to \mathrm{V} \ \mathrm{NP}$	$(\overline{NP}, \text{ the boy})$
7	SHIFT	$D \to the$	$(D \overline{NP}, boy)$
8	LC-CONNECT	$\mathrm{NP} \to \mathrm{D} \; \mathrm{N}$	(\bar{N}, boy)
9	MATCH	$N \to boy$	(N, boy) Add WeChat powcoder
		NP	the boy

LC-PREDICT (UPSS, saw the boy)

NPODAN

ANBCD

(DS, baby saw the boy) (ANNPS,) A