Solving linear systems II

MEI-CHEN YEH

Last lecture

- Solving linear systems
 - ► Gaussian elimination
 - ▶ LU factorization

Review: Gaussian elimination

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	1
a ₁₁	a ₁₂	a ₁₃	a ₁₄	b_1
a ₂₁	a ₂₂	<i>a</i> ₂₃	a ₂₄	b_2
a ₃₁	<i>a</i> ₃₂	<i>a</i> 33	<i>a</i> 34	b ₃
a ₄₁	<i>a</i> ₄₂	<i>a</i> ₄₃	<i>a</i> 44	b ₄

- A linear system with 4 unknowns and 4 equations
- Steps
 - 1. Subtract multiples $l_{i1} = a_{i1} / a_{11}$ of row 1 from row i, i = 2, ..., 4.
 - 2. Set $a'_{ik} = a_{ik} l_{i1} a_{1k}$, i, k = 2, ..., 4.
 - 3. Set $b'_i = b_i l_{i1}b_1$, i = 2, ..., 4.

Review: Gaussian elimination

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	1
a ₁₁	a ₁₂	a ₁₃	a ₁₄	b_1
0	a'_{22}	a'_{23}	a'_{24}	b_2'
0	a'_{32}	a'_{33}	a'_{34}	b ' ₃
0	a'_{42}	a'_{43}	a' ₄₄	b' ₄

- A linear system with 4 unknowns and 4 equations
- Steps
 - 1. Subtract multiples $I'_{i2} = a'_{i2} / a'_{22}$ of row 2 from row i, i = 3, ..., 4.
 - 2. Set $a''_{ik} = a'_{ik} l'_{i2} a'_{2k}$, i, k = 3, ..., 4.
 - 3. Set $b''_{i} = b'_{i} l'_{i2}b'_{2}$, i = 3, ..., 4.

Review: Gaussian elimination

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	1
a ₁₁	a ₁₂	a ₁₃	a ₁₄	b_1
0	a'_{22}	a'_{23}	a'_{24}	b_2'
0	0	a"/33	$a_{34}^{'''}$	b"3
0	0	a'' ₄₃	a'''	b"4

- A linear system with 4 unknowns and 4 equations
- Steps
 - 1. Subtract multiples $l'_{i3} = a''_{i3} / a''_{33}$ of row 3 from row i, i = 4.
 - 2. Set $a'''_{ik} = a''_{ik} l'_{i3} a''_{3k}$, i, k = 4.
 - 3. Set $b'''_{i} = b''_{i} l'_{i3}b''_{3}$, i = 4.

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	1
a ₁₁	a ₁₂	a ₁₃	a ₁₄	b_1
0	a'_{22}	a'_{23}	a'_{24}	b_2'
0	0	a'''	a_{34}''	b"3
0	0	0	a'''	b''' ₄

Review: A = LU

Actual storage scheme

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	1
a ₁₁	a ₁₂	a ₁₃	a ₁₄	b_1
1/21	a'_{22}	a'_{23}	a'_{24}	b_2'
<i>l</i> ₃₁	1/32	$a_{33}^{''}$	$a_{34}^{''}$	b"3
141	I'_{42}	1'43	a'''	b""4

Review: Complexity of Gaussian Elimination

- ightharpoonup Elimination: $O(n^3)$
- \triangleright Substitution: $O(n^2)$

Today

- Error estimation
- ► Improving the naïve approach
 - Gaussian elimination with partial pivoting (PA = LU factorization)

Error estimation

true solution: \underline{x} approximate solution: \underline{x}_{α}

- Two questions regarding the accuracy of \underline{x}_a as an approximation to the solution of the linear system of equations $\underline{A}\underline{x} = \underline{b}$.
- 1. First we investigate what we can derive from the residual $\underline{r}_a = \underline{b} A\underline{x}_a$. Note that $\underline{r} = \underline{b} A\underline{x} = \underline{0}$
- 2. Then, how sensitive is the solution to the perturbations in the initial data? That is, what is the effect of errors in the initial data (<u>b</u>, A) on the solution <u>x</u>?

Infinity norm

The **infinity norm**, or the **maximum norm**, of the vector $\underline{x} = [x_1, ..., x_n]^T$ is

$$\|\underline{x}\|_{\infty} = \max |x_i|, \qquad i = 1, ..., n.$$

► The infinity norm of $x = [3, 2, -8, 1, 4, -2, -9, -4]^T$ is ?

Infinity norm

The matrix (absolute row sum) norm of an n x n matrix A is

$$||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|.$$

Example

$$A = \begin{bmatrix} 1 & 1 \\ 1.0001 & -1 \end{bmatrix}$$

$$||A||_{\infty} = 2.0001$$

More definitions

true solution: \underline{x} approximate solution: \underline{x}_{a}

Residual (note: it is a vector!)

$$\underline{b} - A\underline{x}_a$$

Backward error

$$\|\underline{b} - A\underline{x}_a\|_{\infty}$$

Forward error

$$\|\underline{x} - \underline{x}_a\|_{\infty}$$

Example

Consider the linear system:

$$x_1 + x_2 = 2$$
$$1.0001x_1 + x_2 = 2.0001$$

- The solution $\underline{x} = [1, 1]^T$
- ► Consider the approximate solution $\underline{x}_{\alpha} = [-1, 3.0001]^{T}$

$$x_1 + x_2 = 2$$
$$1.0001x_1 + x_2 = 2.0001$$

$$\underline{x} = [1, 1]^{T}$$

$$\underline{x}_{a} = [-1, 3.0001]^{T}$$

► The backward error is:

$$\|\underline{r}_a\|_{\infty} = \|\underline{b} - A\underline{x}_a\|_{\infty} = \|\begin{bmatrix}2\\2.0001\end{bmatrix} - \begin{bmatrix}1\\1.0001\end{bmatrix} + \begin{bmatrix}-1\\3.0001\end{bmatrix}\|_{\infty}$$

$$= \left\| \begin{bmatrix} 2 \\ 2.0001 \end{bmatrix} - \begin{bmatrix} 2.0001 \\ 2 \end{bmatrix} \right\|_{\infty} = \left\| \begin{bmatrix} -0.0001 \\ 0.0001 \end{bmatrix} \right\|_{\infty}$$

$$x_1 + x_2 = 2$$
$$1.0001x_1 + x_2 = 2.0001$$

$$\times \underline{x} = [1, 1]^T$$

$$\underline{\mathbf{x}}_{a} = [-1, 3.0001]^{T}$$

► The **forward error** is:

$$\left\| \underline{x} - \underline{x}_a \right\|_{\infty} = \left\| \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} -1 \\ 3.0001 \end{bmatrix} \right\|_{\infty}$$
$$= \left\| \begin{bmatrix} 2 \\ -2.0001 \end{bmatrix} \right\|_{\infty}$$

What does this mean?

backward error 小 forward error 大

Even though the "approximate solution" is relatively far from the exact solution, it nearly lies on both lines!

The error magnification factor

error magnification factor =
$$\frac{\text{relative forward error}}{\text{relative backward error}} = \frac{\frac{||x - x_a||_{\infty}}{||x||_{\infty}}}{\frac{||r||_{\infty}}{||b||_{\infty}}}$$

 $\underline{\underline{x}}_{a} = [-1, 3.0001]^{T}$ Example: $\underline{\underline{b}} = [2, 2.0001]^{T}$

relative forward error: 2.0001/1 = 2.0001

relative backward error: 0.0001/2.0001 = 0.00005

error magnification factor: 2.0001/0.00005 = 40004.0001

The condition number

- The condition number of a square matrix A, cond(A), is the maximum possible error magnification factor for solving $A\underline{x} = \underline{b}$, over all right-hand sides \underline{b} .
- ► The condition number of the n x n matrix A is

$$cond(A) = ||A|| \cdot ||A^{-1}||.$$

$$A \times A^{-1} = A^{-1} \times A = \mathbf{I}$$

Example
$$x_1 + x_2 = 2$$

$$1.0001x_1 + x_2 = 2.0001$$

$$A = \begin{bmatrix} 1 & 1 \\ 1.0001 & 1 \end{bmatrix} \qquad ||A||_{\infty} = 2.0001$$

$$A^{-1} = \begin{bmatrix} -10000 & 10000 \\ 10001 & -10000 \end{bmatrix} \qquad ||A^{-1}||_{\infty} = 20001$$

The condition number of A is

$$cond(A) = 2.0001 * 20001 = 40004.0001$$

So, how does the residual $\hat{\bf r}:={\bf b}-A\hat{\bf x}$ affect the error ${\bf z}:=\hat{\bf x}-{\bf x}$?

$$Az = A(\hat{\mathbf{x}} - \mathbf{x}) = A\hat{\mathbf{x}} - \mathbf{b} = -\hat{\mathbf{r}}.$$

$$\|\mathbf{b}\| = \|A\mathbf{x}\| \le \|A\| \|\mathbf{x}\|, \quad \Rightarrow \frac{\|\mathbf{b}\|}{\|A\|} \le \|\mathbf{x}\|$$

$$\|\mathbf{z}\| = \|-A^{-1}\hat{\mathbf{r}}\| \le \|A^{-1}\| \|\hat{\mathbf{r}}\|$$

$$\frac{\|\mathbf{z}\|}{\|\mathbf{x}\|} \le \frac{\|A^{-1}\| \|\hat{\mathbf{r}}\|}{\|\mathbf{b}\| / \|A\|} \le \|A\| \|A^{-1}\| \frac{\|\hat{\mathbf{r}}\|}{\|\mathbf{b}\|}$$

relative forward error

relative backward error

Summary of error estimation

$$cond(A) \cdot \epsilon$$
 error magnification factor =
$$\frac{\text{relative forward error}}{\text{relative backward error}} = \text{cond(A)}$$

$$\epsilon$$
 = $||A|| \times ||A^{-1}||$

Today

- ► Error estimation
- ► Improving the naïve approach
 - Gaussian elimination with partial pivoting (PA = LU factorization)

Cases where the naïve Gaussian elimination may fail?

When meeting a zero multiple...

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$$

► Could be solved by exchanging row 1 and row 2

<i>x</i> ₁	<i>X</i> ₂	1	<i>x</i> ₁	<i>X</i> ₂	1
0	1	4	1	1	7
1	1	7	0	1	4

It is rare to hit a precisely zero pivot, but common to hit a very small one.

Swamping

Consider the system:

$$10^{-20}x_1 + x_2 = 1$$
$$x_1 + 2x_2 = 4.$$

Exact solution

$$\begin{bmatrix} 10^{-20} & 1 & | & 1 \\ 1 & 2 & | & 4 \end{bmatrix}$$
 (2) $- (1)*10^{20}$
$$\begin{bmatrix} 10^{-20} & 1 & | & 1 \\ 0 & 2 - 10^{20} & | & 4 - 10^{20} \end{bmatrix}$$

$$\begin{bmatrix} 10^{-20} & 1 & | & 1 \\ 1 & 2 & | & 4 \end{bmatrix}$$
 (2) $-(1)*10^{20}$
$$\begin{bmatrix} 10^{-20} & 1 & | & 1 \\ 0 & 2 - 10^{20} & | & 4 - 10^{20} \end{bmatrix}$$

$$(2-10^{20})x_2 = 4-10^{20} \longrightarrow x_2 = \frac{4-10^{20}}{2-10^{20}}$$

$$10^{-20}x_1 + \frac{4 - 10^{20}}{2 - 10^{20}} = 1$$

$$x_1 = 10^{20} \left(1 - \frac{4 - 10^{20}}{2 - 10^{20}} \right)$$
$$x_1 = \frac{-2 \times 10^{20}}{2 - 10^{20}}.$$

$$[x_1, x_2] = \left[\frac{2 \times 10^{20}}{10^{20} - 2}, \frac{4 - 10^{20}}{2 - 10^{20}}\right] \approx [2, 1].$$

$$\begin{bmatrix} 10^{-20} & 1 & | & 1 \\ 1 & 2 & | & 4 \end{bmatrix}$$
 (2) $-(1)*10^{20}$
$$\begin{bmatrix} 10^{-20} & 1 & | & 1 \\ 0 & 2 - 10^{20} & | & 4 - 10^{20} \end{bmatrix}$$

► IEEE double precision

$$ightharpoonup 2 - 10^{20} = -10^{20}$$

$$4 - 10^{20} = -10^{20}$$

$$-10^{20}x_2 = -10^{20} \longrightarrow x_2 = 1.$$

$$10^{-20}x_1 + 1 = 1,$$

$$[x_1, x_2] = [0, 1].$$

$$\begin{bmatrix} 1 & 2 & | & 4 \\ 10^{-20} & 1 & | & 1 \end{bmatrix}$$

$$(2) - (1)*10^{-20}$$

$$\begin{bmatrix} 1 & 2 & | & 4 \\ 0 & 1 - 2 \times 10^{-20} & | & 1 - 4 \times 10^{-20} \end{bmatrix}$$

▶ IEEE double precision, after row exchange

$$ightharpoonup 2 - 10^{20} = -10^{20}$$

$$\rightarrow$$
 4 - 10^{20} = - 10^{20}

$$x_1 + 2x_2 = 4$$
$$x_2 = 1$$

$$[x_1, x_2] = [2, 1]$$

The difference?

$$\begin{bmatrix} 10^{-20} & 1 & | & 1 \\ 1 & 2 & | & 4 \end{bmatrix}$$
 (2) $-(1)*10^{20}$
$$\begin{bmatrix} 10^{-20} & 1 & | & 1 \\ 0 & 2 - 10^{20} & | & 4 - 10^{20} \end{bmatrix}$$

"Swamp" the bottom equation! Two independent equations \rightarrow two copies of the top equation

$$\begin{bmatrix} 1 & 2 & | & 4 \\ 10^{-20} & 1 & | & 1 \end{bmatrix}$$

$$(2) - (1)*10^{-20}$$

$$\begin{bmatrix} 1 & 2 & | & 4 \\ 0 & 1 - 2 \times 10^{-20} & | & 1 - 4 \times 10^{-20} \end{bmatrix}$$

Remedy for swamping (and zero pivoting)

Multiples in Gaussian elimination should be kept as small as possible to avoid swamping.

Partial pivoting

Forces the absolute value of multiples to be no larger than 1

Partial pivoting

<i>x</i> ₁	X_2	<i>X</i> ₃	<i>X</i> ₄	1
a ₁₁	a ₁₂	a ₁₃	a ₁₄	b_1 b_2
a ₂₁	a ₂₂	a ₂₃	a ₂₄	b_2
a ₃₁	<i>a</i> ₃₂	<i>a</i> 33	<i>a</i> 34	b ₃
a ₄₁	<i>a</i> ₄₂	<i>a</i> ₄₃	<i>a</i> 44	b ₄

Searches for the maximal element in modulus: The index p of the pivot in the k-th step of GE is determined by

$$|a_{pk}^{(k-1)}| = \max_{i \ge k} |a_{ik}^{(k-1)}|$$

- ▶ If p > k then rows p and k are exchanged.
- ▶ This strategy implies that $|I_{ik}| \le 1$.

Example: Partial pivoting

Solve the linear system: $x_1 - x_2 + 3x_3 = -3$

$$x_1 - x_2 + 3x_3 = -3$$
$$-x_1 - 2x_3 = 1$$
$$2x_1 + 2x_2 + 4x_3 = 0.$$

$$\begin{bmatrix}
1 & -1 & 3 & | & -3 \\
-1 & 0 & -2 & | & 1 \\
2 & 2 & 4 & | & 0
\end{bmatrix}
\begin{bmatrix}
2 & 2 & 4 & | & 0 \\
0 & 1 & 0 & | & 1 \\
1 & -1 & 3 & | & -3
\end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 & 4 & | & 0 \\ -1 & 0 & -2 & | & 1 \\ 1 & -1 & 3 & | & -3 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 & | & 0 \\ 0 & 1 & 0 & | & 1 \\ 0 & -2 & 1 & | & -3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 & 4 & | & 0 \\ 0 & 1 & 0 & | & 1 \\ 1 & -1 & 3 & | & -3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 & 4 & | & 0 \\ 0 & 1 & 0 & | & 1 \\ 0 & -2 & 1 & | & -3 \end{bmatrix}$$

Example: Partial pivoting (cont.)

$$\begin{bmatrix}
2 & 2 & 4 & | & 0 \\
0 & 1 & 0 & | & 1 \\
0 & -2 & 1 & | & -3
\end{bmatrix}$$

$$\left[\begin{array}{cccccccc}
2 & 2 & 4 & | & 0 \\
0 & -2 & 1 & | & -3 \\
0 & 0 & \frac{1}{2} & | & -\frac{1}{2}
\end{array}\right]$$

$$\frac{1}{2}x_3 = -\frac{1}{2}$$
$$-2x_2 + x_3 = -3$$

$$2x_1 + 2x_2 + 4x_3 = 0,$$

$$x = [1, 1, -1]$$

Permutation matrix

- A permutation matrix is a *n* x *n* matrix consisting of all zeros, except for a single 1 in every row and column.
- ▶ Is the identity matrix a permutation matrix?
- ► How many 3x3 permutation matrices?

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Fundamental theorem of Permutation matrices

- Let P be the n x n permutation matrix formed by a particular set of row exchanges applied to the identity matrix. Then, for any n x n matrix A, PA is the matrix obtained by applying exactly the same set of row exchanges to A.
- Example:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ g & h & i \\ d & e & f \end{bmatrix}$$

PA = LU factorization

Find the PA=LU factorization of $A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 4 & -4 \\ 1 & 3 & 1 \end{bmatrix}$

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \text{exchange rows 1 and 2} \rightarrow \begin{bmatrix} 4 & 4 & -4 \\ 2 & 1 & 5 \\ 1 & 3 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\rightarrow \text{exchange rows 2 and 3} \rightarrow \begin{bmatrix} 4 & 4 & -4 \\ \frac{1}{4} & 2 & 2 \\ \frac{1}{2} & -1 & 7 \end{bmatrix}$$

$$\begin{array}{c}
\text{subtract } -\frac{1}{2} \times \text{row 2} \\
\text{from row 3}
\end{array} \longrightarrow \begin{bmatrix} 4 & 4 & -4 \\ \frac{1}{4} & 2 & 2 \\ \frac{1}{2} & -\frac{1}{2} & 8 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 5 \\ 4 & 4 & -4 \\ 1 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{4} & 1 & 0 \\ \frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 4 & 4 & -4 \\ 0 & 2 & 2 \\ 0 & 0 & 8 \end{bmatrix}$$

$$P \qquad A \qquad L \qquad U$$

Solving $A\underline{x} = \underline{b}$ (using PA = LU)

- \rightarrow Ax = b
- \triangleright PA \underline{x} = P \underline{b}
- ightharpoonup LUx = Pb
- ightharpoonup L(Ux) = Pb, Ux = c
- Solve

$$L\underline{c} = P\underline{b} \text{ for } \underline{c}$$

$$Ux = c for x$$

Example: PA = LU for solving $A\underline{x} = \underline{b}$

$$A = \begin{bmatrix} 2 & 1 & 5 \\ 4 & 4 & -4 \\ 1 & 3 & 1 \end{bmatrix}, b = \begin{bmatrix} 5 \\ 0 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 5 \\ 4 & 4 & -4 \\ 1 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{4} & 1 & 0 \\ \frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 4 & 4 & -4 \\ 0 & 2 & 2 \\ 0 & 0 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 5 \\ 4 & 4 & -4 \\ 1 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{4} & 1 & 0 \\ \frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 4 & 4 & -4 \\ 0 & 2 & 2 \\ 0 & 0 & 8 \end{bmatrix}$$

$$P \qquad A \qquad L \qquad U$$

Solve

$$L\underline{c} = P\underline{b} \text{ for } \underline{c}$$

 $U\underline{x} = \underline{c} \text{ for } \underline{x}$

1.
$$Lc = Pb$$
 for c

$$\begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{4} & 1 & 0 \\ \frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ 5 \end{bmatrix}$$

2.
$$U\underline{x} = \underline{c}$$
 for \underline{x}

$$\begin{bmatrix} 4 & 4 & -4 \\ 0 & 2 & 2 \\ 0 & 0 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ 8 \end{bmatrix}$$

get
$$\underline{x} = [-1, 2, 1]^T$$

get $\underline{c} = [0, 6, 8]^{T}$

程式練習 And, please upload your program on moodle.

ightharpoonup Use PA = LU factorization with pivoting to solve the linear system

$$\begin{pmatrix} 4.0 & 2.0 & -1.0 & 3.0 \\ 3.0 & -4.0 & 2.0 & 5.0 \\ -2.0 & 6.0 & -5.0 & -2.0 \\ 5.0 & 1.0 & 6.0 & -3.0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 16.9 \\ -14.0 \\ 25.0 \\ 9.4 \end{pmatrix}$$

- Please output
 - \blacktriangleright the solution x (optional)
 - the permutation matrix P
 - ▶ the factorization matrices L and U