UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET

Uroš Z. Ševkušić

NALAŽENJE HAMILTONOVOG PUTA U GRAFOVIMA U OBLIKU DVODIMENZIONALNE MREŽE I SLOVA L, C, F I E

master rad

Mentor:
dr Mirko SPASIĆ, docent Univerzitet u Beogradu, Matematički fakultet
Članovi komisije:
dr Filip Marić, redovni profesor Univerzitet u Beogradu, Matematički fakultet
dr Vesna Marinković, docent Univerzitet u Beogradu, Matematički fakultet
Datum odbrane:

Mojoj devojci Mariji, porodici, prijateljima i Kazukiju Takahašiju Naslov master rada: Nalaženje Hamiltonovog puta u grafovima u obliku dvodimenzionalne mreže i slova L, C, F i E

Rezime: U ovom radu izloženi su i implementirani sekvencijalni i paralelni algoritam bez međuprocesorske komunikacije za nalaženje Hamiltonovih puteva i ciklusa u pravougaonim grafovima, i paralelizovani su algoritmi za nalaženje Hamiltonovih puteva i ciklusa u grafovima u obliku slova L, C, F i E.

Algoritmi se zasnivaju na funkcijama koje za dati čvor računaju naredni čvor na Hamiltonovom putu ili ciklusu. U radu je detaljnom analizom slučajeva, i kroz veliki broj lema i dokaza, dokazana korektnost algoritama koji računaju te funkcije, kao i da je složenost tih funkcija O(1), odnosno da se sekvencijalni algoritmi izvršavaju u vremenu linearnom po broju čvorova u grafu. Teorijski rezultati su potvrđeni detaljnom evaluacijom sekvencijalnih i paralelnih algoritama u svakom od navedenih grafova.

Izloženi algoritmi implementirani su u programskom jeziku C++, dok je grafički interfejs koji prikazuje rad algoritama implementiran korišćenjem programskih jezika Cython i biblioteke PyQt5.

Ključne reči: Hamiltonov put, Hamiltonov ciklus, L, C, F, E, dvodimenzionalna mreža, algoritmi, paralelni algoritmi, pravougaoni graf, rešetka

Sadržaj

1 Uvod				1		
2	Konstruisanje Hamiltonovog puta i ciklusa				4	
	2.1	Osnov	vni pojmovi		4	
2.2 Grafovi u obliku dvodimenzionalne mreže					6	
		2.2.1	Hamiltonov ciklus		9	
		2.2.2	Hamiltonov put		17	
	2.3	Grafo	vi u obliku slova L		41	
		2.3.1	Hamiltonov ciklus		42	
		2.3.2	Hamiltonov put		43	
	2.4	Grafo	vi u obliku slova C		48	
		2.4.1	Hamiltonov ciklus		48	
		2.4.2	Hamiltonov put		50	
	2.5	Grafo	vi u obliku slova F		53	
		2.5.1	Hamiltonov ciklus		54	
		2.5.2	Hamiltonov put		56	
	2.6 Grafovi u obliku slova E					
		2.6.1	Hamiltonov ciklus		65	
		2.6.2	Hamiltonov put		65	
3	Implementacija i evaluacija					
	3.1	Imple	mentacija		68	
	3.2	Evalua	acija	•	70	
4	Zaključak					
Ri	ihlios	rrafiia			85	

Glava 1

Uvod

Hamiltonov put u grafu je put koji počinje od nekog čvora s, obilazi sve čvorove tačno jednom, i završava se u čvoru t. Hamiltonov ciklus je specijalni slučaj Hamiltonovog puta kada je s=t.

Graf je rešetka (eng. $grid\ graph$) ako su mu čvorovi iz nekog konačnog skupa $V\subset\mathbb{Z}^2$, a grana između dva čvora postoji ako i samo ako je euklidsko rastojanje tih tačaka 1. U opštem slučaju, ispitivanje da li postoji Hamiltonov put u rešetki je NP-kompletan problem i nije poznato da li postoji algoritam polinomijalne vremenske složenosti koji rešava taj problem, kao ni da li postoji polinomijalni algoritam za nalaženje Hamiltonovog puta. [4]

U nekim tipovima rešetki postoje algoritmi polinomijalne složenosti za nalaženje Hamiltonovog puta (ciklusa). U ovom radu bavićemo se grafovima u obliku dvodimenzionalne mreže¹ i grafovima u obliku slova L, C, F i E².

Algoritmi na modelu paralelnog računara zasnovanom na dvodimenzionalnoj mreži (engl. mesh-connected computers) su detaljno istraživana oblast. Važnost efikasnih algoritama za nalaženje Hamiltonovih puteva je od dvostrukog značaja: zbog praktičnih primena na modelu paralelnog računa zasnovanog na dvodimenzionalnoj mreži, kao i zbog teorijskih rezultata koji potvrđuju da takvi algoritmi postoje i u većem broju rešetki. Algoritam za nalaženje Hamiltonovog puta u pravougaonom grafu koristi se u radu [6], gde su konstruisani optimalni algoritmi za rešavanje problema All-To-All³ na paralelnim računarima sa topologijom dvodimenzionalnog i

¹Dvodimenzionalna mreža je rešetka koja ima topologiju pravougaonika. U radu će se koristiti i naziv *pravougaoni graf.* Precizna definicija dvodimenzionalne mreže biće data kasnije u radu.

²Grafovi u obliku slova L, C, F i E su rešetke sa topologijom latiničnih slova L, C, F i E.

 $^{^3}$ Neka je dat paralelni računar sa p procesora, gde svaki procesor sadrži poruku dužine m. Problem All-To-All ili Total Exchange je problem nalaženja paralelnog algoritma kojim bi svaki

trodimenzionalnog torusa. Algoritam za nalaženje Hamiltonovog ciklusa primenjuje se u algoritmima za nalaženje Hamiltonovih puteva u dvodimenzionalnoj mreži i grafovima u obliku slova L, C, F, i E, kao što je prikazano u radovima [3] i [5]. Autoru nije poznata nijedna praktična primena algoritama za nalaženje Hamiltonovih puteva u grafovima u obliku slova L, C, F i E.

U slučaju dvodimenzionalne mreže dimenzija $m \times n$, postoje sekvencijalni algoritam vremenske složenosti O(mn) i paralelni algoritam vremenske složenosti O(1) sa mn procesora bez međuprocesorske komunikacije za nalaženje Hamiltonovog puta [3]. U slučaju grafova u obliku slova L, C, F i E, postoje sekvencijalni algoritmi vremenske složenosti O(mn) za nalaženje Hamiltonovog puta [5]. Osim navedenih radova, o egzistenciji i algoritmima za nalaženje Hamiltonovih puteva i ciklusa u navedenim grafovima može se naći u radovima [4] i [7]. U radu [4] je dokazano da je problem određivanja da li Hamiltonov put postoji u rešetki NP-kompletan, izvedeni su uslovi za postojanje Hamiltonovog puta i ciklusa u pravougaonom grafu, i predloženi su sekvencijalni i paralelni algoritam za nalaženje Hamiltonovog puta u pravougaonom grafu. Paralelni algoritam iz rada [3] je efikasniji od algoritma u [4]. U radu [7] prikazani su uslovi pod kojima postoji Hamiltonov ciklus u grafovima u obliku slova latinične abecede.

Do sada nije poznata nijedna konkretna implementacija navedenih algoritama. Takođe, u literaturi se nalaze greške, a neki koraci nisu dovoljno precizno opisani da bi se algoritam mogao implementirati, ili da bi se mogla potvrditi složenost algoritma. Cilj ovog rada je da se navedeni algoritmi implementiraju, da se svaki od koraka preciznije opiše kako bi se omogućilo dokazivanje ispravnosti algoritama, kao i da se evaluira vreme izvršavanja algoritama. U radu će biti opisani i paralelni algoritmi za nalaženje Hamiltonovih puteva i ciklusa u grafovima u obliku slova L, C, F i E. Dokaze teorema iz literature navodimo u ovom radu samo ako su u literaturi sadržali propuste ili nisu bili navedeni.

Osnova rada je funkcija koja za dati čvor računa naredni čvor na Hamiltonovom putu ili ciklusu u svakom od navedenih tipova grafa. U radu će biti pokazano kako se ta funkcija implementira, kao i da je njena složenost O(1). To omogućava implementaciju efikasnog sekvencijalnog algoritma čija je vremenska složenost O(mn), kao i paralelizaciju algoritma sa linearnim ubrzanjem. Opisani algoritam rada ove funkcije moći će da se implementira na bilo kom modelu paralelnog izvršavanja bez velikih izmena.

procesor prosledio svoju poruku svim ostalim procesima u računaru.

Za implementaciju algoritama koristiće se programski jezik C++. Algoritam će biti implementiran i u vidu grafičkog interfejsa. Za implementaciju grafičkog interfejsa biće korišćeni jezici Cython i Python, i biblioteka PyQt5 [1, 2].

Struktura rada je sledeća: u poglavlju 2 biće definisani osnovni pojmovi i biće opisani algoritmi za nalaženje Hamiltonovih puteva i ciklusa, u poglavlju 3 biće reči o implementaciji i evaluaciji algoritama, dok se u poglavlju 4 iznose osnovni zaključci rada.

Glava 2

Konstruisanje Hamiltonovog puta i ciklusa

U prvoj sekciji ovog poglavlja biće uvedeni pojmovi i činjenice korišćene u celom radu. U ostalim sekcijama biće redom opisani navedeni algoritmi.

2.1 Osnovni pojmovi

Definicija 2.1.1 (Beskonačna rešetka). Beskonačna rešetka, $G^{\infty} = (V, E)$ je graf takav da je $V = \mathbb{Z}^2$ i $E = \{(u, v) \mid dist(u, v) = 1\}$, gde je dist euklidsko rastojanje. [4]

Definicija 2.1.2 (Rešetka). *Rešetka* je podgraf beskonačne rešetke G^{∞} indukovan konačnim skupom čvorova $V \subset \mathbb{Z}^2$. Skup grana te rešetke je $E = \{(u, v) \mid dist(u, v) = 1 \land u, v \in V\}$. Za dva čvora u i v rešetke kažemo da su susedna ako $(u, v) \in E$. [4]

Napomena. Čvorove rešetke možemo posmatrati i kao tačke sa celobrojnim koordinatama u euklidskom prostoru \mathbb{R}^2 . Iz tog razloga ćemo umesto čvor koristiti često u ovom radu izraz tačka.

Napomena. Rešetka nije nužno povezan graf. U ovom radu se nećemo baviti nepovezanim rešetkama, jer u njima svakako ne postoji Hamiltonov put.

Definicija 2.1.3 (Hamiltonov put). Neka je dat graf G = (V, E). Hamiltonov put od čvora s do čvora t je konačni niz H čvorova grafa tako da je $H_0 = s$, $H_{|V|-1} = t$,

 H_{i+1} i H_i su susedni čvorovi, i $H_i \neq H_j$ za sve i, j takve da je $i \neq j$. Za čvor H_{i+1} kažemo da je sledbenik čvora H_i .

Definicija 2.1.4 (Hamiltonov ciklus). Hamiltonov ciklus je Hamiltonov put H kojem su početni i krajnji čvor susedni.

Definicija 2.1.5 (Izomorfizam grafova). Za grafove $G_1 = (V_1, E_1)$ i $G_2 = (V_2, E_2)$ kažemo da su *izomorfni* ako postoji bijektivno preslikavanje $f: V_1 \to V_2$ tako da je $E_2 = \{(f(u_1), f(u_2)) \mid u_1, u_2 \in V_1, (u_1, u_2) \in E_1\}.$

Slično se može definisati i izomorfizam Hamiltonovih puteva.

Definicija 2.1.6 (Izomorfizam Hamiltonovih puteva). Neka su data dva grafa G'(V', E') i G'' = (V'', E''), |V'| = |V''|, i neka su H' i H'' Hamiltonovi putevi u G' i G''. H' je izomorfan sa H'' ako postoji izomorfizam f grafova G' i G'' takav da je $f(H'_i) = H''_i$, za sve $0 \le i \le |V'| - 1$.

Sledeća osobina se može dokazati korišćenjem definicije relacije ekvivalencije.

Lema 2.1.1. Izomorfizam Hamiltonovih puteva je relacija ekvivalencije.

Definicija 2.1.7 (Translacija). Neka je data tačka $t = (t_x, t_y)$. Translacija za tačku t je preslikavanje koje tačku sa koordinatama (x, y) slika u tačku $(x + t_x, y + t_y)$, odnosno $T(x, y) = (x + t_x, y + t_y)$.

Definisaćemo i četiri tipa refleksija koje će biti korišćene u ovom radu.

Definicija 2.1.8 (Refleksija). Neka je data rešetka G i neka su n i m prirodni brojevi takvi da, za svaku tačku $(a,b) \in G$ važi $0 \le a < m$ i $0 \le b < n$. Neka je data proizvoljna tačka $(x,y) \in G$. Refleksija je bilo koje od naredna četiri preslikavanja:

- refleksija po x-osi: $R_x(x, y, m, n) = (x, n-1-y)$
- refleksija po y-osi: $R_{\nu}(x, y, m, n) = (m-1-x, y)$
- refleksija po dijagonali: $R_{diag}(x, y) = (y, x)$
- centralna refleksija: $R_{cent}(x, y, m, n) = R_x(R_y(x, y, m, n))$

Na slici 2.1 prikazani su neki tipovi refleksija, na primeru grafa u kojem je m=n=3.

Slika 2.1: Prva tri tipa refleksije na primeru grafa R(3,3).

2.2 Grafovi u obliku dvodimenzionalne mreže

Definicija 2.2.1 (Dvodimenzionalna mreža). *Dvodimenzionalna mreža* ili *pravouagoni graf* je rešetka indukovana skupom čvorova $R(m, n) = \{v = (v_x, v_y) \mid 0 \le v_x \le m-1, 0 \le v_y \le n-1\}$. [3, 4]

Dalje u tekstu ćemo koristiti oznaku R(m, n) za pravougaone grafove.

Definicija 2.2.2 (Parnost). Za dvodimenzionalnu mrežu kažemo da je parna ako je mn paran broj. U suprotnom kažemo da je dvodimenzionalna mreža neparna. [4]

Definicija 2.2.3 (Boja čvora). Čvor $v = (v_x, v_y)$ je bele boje ako važi $v_x + v_y \equiv_2 0$. Inače je čvor v crne boje. [3]

Lema 2.2.1 (Odnos boje i parnosti). Neka je dat pravougaoni graf R(m, n). Neka je W broj belih čvorova, a B broj crnih. Ako je R(m, n) paran, onda je B = W, a inače je W = B + 1.

Dokaz. Broj belih čvorova je broj rešenja jednačine $x+y\equiv_2 0$, za $0\leq x\leq m-1$, $0\leq y\leq n-1$. Ako je n parno, broj parnih brojeva od 0 do n-1 jednak je broju neparnih brojeva od 0 do n-1. Ako je n neparno, onda je je broj parnih za 1 veći od broja neparnih. Isto važi i za m. Označimo sa n_e broj parnih brojeva od 0 do n-1, sa n_o broj neparnih brojeva od 0 do n-1. Slično označavamo m_e i m_o . Ako je x neparno, da bi jednačina važila, mora biti i y neparno. Ako je x parno, onda mora biti i y parno. Zbog toga je $W=n_e\cdot m_e+n_o\cdot m_o$. Razmotrimo sada sva četiri slučaja:

1. m i n su parni

Tada je $m_e=m_o=\frac{m}{2},\ n_e=n_o=\frac{n}{2},$ odnosno $W=\frac{nm}{2}.$ Broj tačaka u grafu je nm, pa je $B=\frac{nm}{2}=W.$

2. m je parno, n je neparno

Tada je $m_e = m_o = \frac{m}{2}$, $n_e = n_o + 1 = \frac{n+1}{2}$, odnosno $W = \frac{(n+1)m}{4} + \frac{(n-1)m}{4} = \frac{nm}{2}$ pa je i $B = \frac{nm}{2} = W$.

3. m je neparno, n je parno

Dokaz je isti kao i u prethodnom slučaju, kada se zamene m i n.

4. m i n su neparni

Tada je $m_e = m_o + 1 = \frac{m+1}{2}, \ n_e = n_o + 1 = \frac{n+1}{2}, \ \text{odnosno} \ W = \frac{(n+1)(m+1)}{4} + \frac{(n-1)(m-1)}{4} = \frac{nm+1}{2}.$ Tada je $B = nm - W = \frac{2nm-nm-1}{2} = \frac{nm-1}{2} = W - 1,$ odnosno W = B + 1.

Definicija 2.2.4 (Kompatibilnost boja). Neka je dat pravougaoni graf R(m, n) i tačke s i t, $s \neq t$. Kažemo da su s i t kompatibilnih boja u R(m, n) ako važi nešto od sledećeg:

- \bullet s i t su bele i R je neparan
- s i t su različitih boja i R je paran. [4]

Slika 2.2: Intuicija iza pojma kompatibilnosti boja: ako Hamiltonov put postoji, onda moraju boje početnih i krajnjih čvorova biti kompatibilne. U ovom slučaju, graf je neparan i početna i krajnja tačka na putu su bele.

Lema 2.2.2 (Potreban uslov za postojanje Hamiltonovog puta). Neka su dati pravougaoni graf R(m,n) i čvorovi s i t tako da je $s \neq t$. Ako postoji Hamiltonov put od s do t u R(m,n), onda su s i t kompatibilnih boja. [4]

Na slici 2.2 je data intuicija iza prethodne leme, koja se dokazuje analizom po parnosti grafa korišćenjem činjenice da je Hamiltonov put niz čvorova suprotnih boja. U slučaju neparnog grafa, budući da 0 i |V|-1 su iste parnosti, čvorovi na tim indeksima na Hamiltonovom putu moraju biti iste boje, odnosno čvorovi s i t su jednakih boja. Takođe, broj čvorova sa parnim indeksom je u ovom slučaju veći od broja čvorova sa neparnim indeskom, pa zaključujemo da su s i t bele boje. U slučaju parnog grafa, zaključujemo da su s i t suprotnih boja, budući da su t0 i t1 suprotne parnosti. [4]

Teorema 2.2.3 (Uslovi za postojanje Hamiltonovog puta). Neka su dati pravougaoni graf R(m,n) i tačke s i t, $s \neq t$. Hamiltonov put od s do t postoji u R(m,n) ako i samo ako su s i t kompatibilnih boja i ne važi nijedan od narednih slučajeva:

- 1. R(m,n) je izomorfan sa $R'(m',1),\,s_x'\neq 0,m'-1$ ili $t_x'\neq 0,m'-1$
- 2. R(m,n) je izomorfan sa R'(m',2), $s'_x = t'_x$ i $0 < s'_x, t'_x < m-1$
- 3. R(m,n) je izomorfan sa $R'(m',3),\,m'$ je paran, s' je crna, t' je bela i važi:

a)
$$s'_x < t'_x - 1$$
, kada je $s'_y \neq 1$

b)
$$s'_x < t'_x$$
, kada je $s'_y = 1$

ili je R(m,n) izomorfan sa R'(m',3), m' je paran, s' je bela, t' je crna i važi:

a)
$$t_x' < s_x' - 1$$
, kada je $t_y' \neq 1$

b)
$$t'_x < s'_x$$
, kada je $t'_y = 1$ [4]

Na slici 2.3 možemo videti primere kada ne postoji Hamiltonov put.

Slika 2.3: Primer svakog od slučajeva u kojem Hamiltonov put od s do p ne postoji, redom: slučaj 1, slučaj 2, slučaj 3.a) i slučaj 3.b). Izomorfizam kojim se potvrđuje ovo je id.

2.2.1 Hamiltonov ciklus

U ovom delu biće prikazan algoritam za izračunavanje Hamiltonovog ciklusa, ukoliko on postoji u grafu.

Sledeća lema nam daje potrebne i dovoljne uslove za postojanje Hamiltonovog ciklusa u pravougaonom grafu. Ona je data u [3] bez dokaza.

Lema 2.2.4. Neka je dat pravougaoni graf R(m, n). Hamiltonov ciklus postoji u R(m, n) ako i samo ako je on paran i $m, n \geq 2$. [3]

Dokaz. Pokazaćemo samo da, ako Hamiltonov ciklus postoji, onda je pravougaoni graf paran i $m, n \geq 2$. Suprotan smer je konstruktivne prirode i sledi iz algoritma za nalaženje Hamiltonovog ciklusa koji će biti predstavljen kasnije.

Pretpostavimo suprotno: neka Hamiltonov ciklus postoji, ali graf nije paran ili nisu $m, n \geq 2$. Postoje dva slučaja koja moramo obraditi:

1. m = 1 ili n = 1

Graf je zapravo jedna duž. Koju god tačku izaberemo kao početnu, jasno je da nije moguće obići sve čvorove i vratiti se u polaznu tačku. Time je pokazano da Hamiltonov ciklus ne postoji.

2. graf nije paran

U skladu sa definicijama 2.1.3 i 2.1.4, Hamiltonov ciklus je niz X takav da su početni i krajnji čvor susedni. U slučaju pravougaonog grafa, njegova dužina je nm. Takođe, X_{i+i} i X_i su suprotnih boja, budući da su takve svake dve susedne tačke u pravougaonom grafu.

Na osnovu definicije 2.1.4, X je Hamiltonov put, na osnovu čega dalje zaključujemo iz leme 2.2.2 da X_0 i X_{nm-1} moraju biti kompatibilnih boja. Na osnovu definicije 2.1.4, X_0 i X_{nm-1} su susedni čvorovi, pa su zato suprotnih boja. Odavde sledi da je nm paran broj na osnovu definicije 2.2.4. To je kontradikcija sa pretpostavkom da graf nije paran.

Iz sva tri slučaja se zaključuje da Hamiltonov ciklus ne postoji, što je kontradikcija sa polaznom pretpostavkom. Odatle sledi da, ako Hamiltonov ciklus postoji, graf je paran i $m, n \geq 2$.

Uvešćemo najpre nekoliko pojmova koji će se koristiti u algoritmu za izračunavanje Hamiltonovog puta.

Definicija 2.2.5 (Orijentacija Hamiltonovog ciklusa). Neka je dat pravougaoni graf R(m,n). Ciklus može biti orijentisan CCW (surpotno od smera kazaljke na satu) ili CW (u smeru kazaljke na satu), ili neorijentisan. Ciklus je neorijentisan ako nije

orijentacije CCW, niti orijentacije CW.¹. Ciklus je orijentisan CCW ako važi, za sve x, y:

- 1. sledbenik tačke (0, y) nije tačka iznad nje,
- 2. sledbenik tačke (m-1, y) nije tačka ispod nje,
- 3. sledbenik tačke (x, n-1) nije tačka desno od nje,
- 4. sledbenik tačke (x,0) nije tačka levo od nje.

Ciklus je orijentisan CW ako važi, za sve x, y:

- 1. sledbenik tačke (m-1, y) nije tačka iznad nje,
- 2. sledbenik tačke (0, y) nije tačka ispod nje,
- 3. sledbenik tačke (x, 0) nije tačka desno od nje,
- 4. sledbenik tačke (x, n-1) nije tačka levo od nje.

Na slici 2.4 vidimo primere orijentisanih Hamiltonovih ciklusa. Osnovna ideja ovako uvedenog pojma orijentacije je da, ako posmatramo samo strelice koje povezuju čvorove na ivicama grafa i pođemo putem koje te strelice opisuju (pratimo smer strelice dokle god nije moguće skretanje), onda u orijentaciji CW (CCW) kretanje izgleda kao u smeru (suprotnom od) kretanja kazaljke na satu.

Slika 2.4: Primer ciklusa orijentacije CCW (levo) i orijentacije CW (desno).

Sledeća lema pokazuje da su refleksije koje smo definisali i orijentacija ciklusa u istom odnosu kao i orijentacija trouglova i refleksije u Euklidskoj geometriji.

¹Nije nam poznato postoji li neorijentisani Hamiltonov ciklus u pravougaonom grafu. Ipak, takvi ciklusi, čak i da postoje, neće ni biti razmatrani u ovom radu.

Lema 2.2.5 (O odnosu refleksija i orijentacije). Neka je dat pravougaoni graf R(m,n) i ciklus H na njemu. Neka je X Hamiltonov ciklus nastao primenom neke od refleksija r na ciklus H, odnosno $X_i = r(H_i)$. U zavisnosti od r:

- 1. $r = R_x$, ili $r = R_y$, ili $r = R_{diag}$, orijentacija se menja
- 2. $r = R_{cent}$, orijentacija se ne menja.

Dokaz. Pokazaćemo samo za R_y kada je H orijentacije CCW. Ostali slučajevi se razmatraju analogno. Preslikavanje R_y slika tačke (m-1, y) u (0, y), (0, y) u (m-1, y), (x, n-1) u (m-1-x, n-1), (x, 0) u (m-1-x, 0).

Razmotrimo sva četiri slučaja kako bismo pokazali da je X orijentacije CW:

- 1. sledbenik tačke (m-1, y) nije tačka iznad nje, jer $(m-1, y) = R_y(0, y, m, n)$,
- 2. sledbenik tačke (0, y) nije tačka ispod nje, jer $(0, y) = R_y(m-1, y, m, n)$
- 3. sledbenik tačke (x, 0) nije tačka desno od nje, jer $(x, 0) = R_y(m-1-x, 0, m, n)$.
- 4. sledbenik tačke (x, n-1) nije tačka levo od nje, jer $(x, n-1) = R_y(m-1-x, n-1, m, n)$.

Definicija 2.2.6 (Tip Hamiltonovog ciklusa). Neka je dat pravougaoni graf R(m, n). Ciklus je $tipa\ M_1$ ako sledbenik tačke (m-1, y) nije tačka levo od nje, za $y \neq 0, n-1$.

Ciklus je tipa M_2 ako sledbenik tačke (0,y) nije tačka desno od nje, za $y \neq 0, n-1.$

Ciklus je tipa M_3 ako sledbenik tačke (x,0) nije tačka iznad nje, za $x \neq 0, m-1$. Ciklus je tipa M_4 ako sledbenik tačke (x,n-1) nije tačka ispod nje, za $x \neq 0, m-1$.

Orijentisani Hamiltonov ciklus H je tipa M_1 ako važi sledeće: za svaka dva susedna čvora $(m-1,y_1)$ i $(m-1,y_2)$, na ciklusu H jedan od njih je sledbenik onom drugom. Neformalno, desna ivica u orijentisanom ciklusu je "ravna". Slično, u M_2 je leva ivica "ravna", u M_3 donja, a u M_4 gornja. Posmatrajmo sliku 2.4. Oba ciklusa prikazana na slici su tipova M_1 , M_3 i M_4 . Nazivi tipova su dati u skladu sa algoritmom za konstruisanje Hamiltonovog puta u pravougaonom grafu, koji će biti prikazan kasnije u radu.

Lema 2.2.6 (O odnosu između tipova). Neka je dat pravougaoni graf R(m, n). Ciklus tipa M_1 u R(m, n) je izomorfan sa ciklusom tipa:

- 1. M_2 u R(m, n),
- 2. M_3 u R(n, m),
- 3. M_4 u R(n, m).

Dokaz. Tvrđenje se dokazuje primenom sledećih izomorfizama, gde su slučajevi numerisani kao u iskazu leme:

- 1. Izomorfizam je refleksija R_y ,
- 2. Izomorfizam je refleksija $R_x \circ R_{diag}$,
- 3. Izomorfizam je R_{diag} .

Sada ćemo prikazati algoritam koji računa Hamiltonov ciklus tipa M_1 i M_3 orijentacije CCW. Definišemo funkciju next(x,y,m,n) koja izračunava sledbenika tačke (x,y) u grafu R(m,n) pseudokodom datim u Listingu 2.1. Osnovna ideja algoritma je da se najpre u Hamiltonov ciklus uključe čvorovi sa donje ivice, pa zatim sa desne, nakon čega se "cik-cak" putevima dolazi do čvora (0,n-1) ili (0,1), i odatle se put nastavlja do (0,0). Na slici 2.5 se može videti primer Hamiltonovih ciklusa dobijenih primenom ovog algoritma.

```
else if y == 1:
             \quad \textbf{if} \ \ x \, < m \, - \, \, 1 \colon \\
                  return goLeft(x, y)
             else:
                  return goUp(x, y)
         else if y = 0:
             if x < m - 1:
                  return goRight(x, y)
                 return goUp(x, y)
         else:
             return goLeft(x, y)
    else:
         if y > 1:
             return goDown(x, y)
         else if y == 1:
             if x > 0:
                  return goLeft(x, y)
             else:
                  return goDown(x, y)
         {f else}:
             return goRight(x, y)
else:
    if y \% 2 == 1
         if x == m - 1:
             if y < n - 1:
                  return goUp(x, y)
             else:
                 return goLeft(x, y)
         else if x = 0:
             return goDown(x, y)
         else:
             return goLeft(x, y)
    else:
         if x == m - 2:
             if y > 0:
                  return goDown(x, y)
             else:
                  return goRight(x, y)
         else if x == m - 1:
             return goUp(x, y)
```

else:

return goRight(x, y)

Listing 2.1: Funkcija koja izračunava sledbenika tačke (x, y) na Hamiltonovom putu u R(m, n)

Slika 2.5: Hamiltonovi ciklusi dobijeni primenom algoritma na primeru grafova R(6,5) i R(5,6). Oba ciklusa su tipova M_1 i M_3 i orijentacije CCW.

Teorema 2.2.7. [O ispravnosti algoritma za Hamiltonov ciklus] Neka je niz X definisan sledećim jednačinama:

$$X_0 = (0,0)$$

 $X_{i+1} = next(X_i, m, n), \ 0 \le i \le mn - 2$

Ako Hamiltonov ciklus postoji u R(m, n), onda je niz X Hamiltonov ciklus u tom grafu. Dodatno, X je tipa M_1 i tipa M_3 , orijentisan CCW.

Dokaz. Analizom po slučajevima, dokazuje se da je funkcija next(x, y, m, n) dobro definisana, odnosno da svaka tačka (x, y) ima svog sledbenika. Moguće je analizom po slučajevima pokazati i da je funkcija next(x, y, m, n) permutacija skupa R(m, n).

Takođe, na osnovu definicije funkcije next(x, y, m, n), svaka tačka je susedna svom sledbeniku. Odavde sledi da su X_{i+1} i X_i susedne tačke.

Dokazaćemo da, za svako $(x, y) \neq (0, 0)$, postoji indeks $0 < i \leq mn - 1$ takav da je $X_i = (x, y)$.

Proverom se može ustanoviti da je za tačke oblika (x, 0), x > 0 indeks i = x. Za tačke oblika (m - 1, y), indeks je i + y.

1. n je neparno

Dokazaćemo tvrđenje obrnutom indukcijom po x (vidi sliku 2.6).

Bazni slučaj je x = m - 1, i on je dokazan iznad.

Induktivna hipoteza: Za dato k < m-1, neka za sve tačke (x, y), takve da je x > k i y > 0, postoji indeks i takav da je $X_i = (x, y)$.

Induktivni korak:

Ako je x+1 neparno, posmatramo tačku (x+1, n-1). Na osnovu induktivne hipoteze, postoji i tako da je $X_{i-1}=(x+1, n-1)$. Tada je $X_i=(x, n-1)$, budući da je next(x+1, n-1, m, n)=(x, n-1). Na osnovu ovoga se dokazuje da važi $X_{i-1+(n-y)}=(x,y)$, za y>0.

Ako je x+1 parno, posmatramo tačku (x+1,1). Na osnovu induktivne hipoteze, postoji i tako da je $X_{i-1}=(x+1,1)$. Tada je $X_i=(x,1)$, jer je next(x+1,1,m,n)=(x,1). Na osnovu ovoga se dokazuje da je $X_{i-1+y}=(x,y)$, za y>0.

Slika 2.6: Na osnovu induktivne hipoteze, tačka X_i ima indeks u nizu. Ostale tačke na vertikali dobijaju svoje indekse na osnovu rada algoritma.

2. n je parno

Dokazaćemo tvrđenje indukcijom po y.

Bazni slučaj je y = 0, a on je dokazan iznad.

Induktivna hipoteza: Za dato k < n - 1, neka za sve tačke (x, y), takve da je x < m - 1 i y > k, postoji indeks i takav da je $X_i = (x, y)$.

Induktivni korak:

Ako je y + 1 neparan, posmatramo tačku (0, y + 1). Na osnovu induktivne hipoteze, postoji i tako da važi $X_i = (0, y + 1)$. Dalje, zaključujemo da je $X_{i+1} = (0, y)$, jer je next(0, y + 1, m, n) = (0, y). Odavde se dokazuje da je $X_{i+x+1} = (x, y)$, za x < m - 1.

Ako je y + 1 paran, posmatramo tačku (m - 2, y + 1). Na osnovu induktivne hipoteze, postoji indeks i takav da je $X_i = (m - 2, y + 1)$. Odavde sledi da je $X_{i+1} = (m - 2, y)$, jer je next(m - 2, y + 1, m, n) = (m - 2, y). Odavde se dokazuje da je $X_{i+(m-1-x)} = (x, y)$.

Tačke X_i su jedinstvene i X_{i+1} i X_i su susedne, čime je pokazano da je X Hamiltonov put od tačke X_0 do tačke X_{mn-1} . Pokažimo da važi $next(X_{mn-1}, m, n) = X_0$, odnosno da je $X_{mn-1} = (0, 1)$.

Ako bi tačka (0,1) imala manji indeks od mn-1, tada bi za neko $0 < i \le mn-1$ važilo da je $X_i = (0,0) = X_0$, što znači da tačke niza X nisu jedinstvene. Odavde sledi da je $X_{mn-1} = (0,1)$, pa su X_0 i X_{mn-1} susedne i X je Hamiltonov ciklus.

Analizom po slučajevima u algoritmu se može utvrditi da je X tipova M_1 i M_3 , kao i da je orijentacije CCW.

Jasno je da se algoritam zasnovan na funkciji next može koristiti i za izračunavanje drugih tipova Hamiltonovih ciklusa, sa drugačijim orijenacijama, ako se upotrebi odgovarajući izomorfizam.

Naredna teorema potvrđuje teorijsku složenost algoritma.

Teorema 2.2.8 (O vremenskoj složenosti). Funkcija next(x, y, m, n) radi u vremenu O(1). Izračunavanje niza na jednom procesoru zahteva vreme O(mn).

Dokaz. Može se primetiti da u proceduri definisanoj u 2.1 broj operacija ne zavisi od veličine grafa, i da je taj broj konstantan. Odatle sledi da funkcija next(x, y, m, n) radi u vremenu O(1), pa funkcija za izračunavanje Hamiltonovog ciklusa radi u vremenu O(mn).

2.2.2 Hamiltonov put

Definicija 2.2.7. Neka su dati pravougaoni graf R(m,n) i tačke $s=(s_x,s_y)$ i $t=(t_x,t_y)$. Tačke s i t su antipodi ako važi sledeće:

• $min(s_x, t_x) < 1, max(s_x, t_x) > m - 2$

• $min(s_y, t_y) \le 1$, $max(s_y, t_y) \ge n - 2$ [3]

Intuitivno, ova definicija znači da je s u okolini jednog ugla, a t je u okolini dijagonalno suprotnog ugla u grafu. Okolina ugla (0,0) je skup $\{(0,0),(0,1),(1,0),(1,1)\}$, a slično se definišu i okoline drugih uglova.

Definicija 2.2.8. Neka su dati pravougaoni graf R(m,n) i tačke s i t. Raslojavanje (eng. peeling) grafa R(m,n) je podela na pet disjunktnih pravougaonih grafova $M_1(m_1,n_1)$, $M_2(m_2,n_2)$, $M_3(m_3,n_3)$, $M_4(m_4,n_4)$ i $M_5(m_5,n_5)$ tako da važi sledeće:

- $\bullet\,$ s i tse nalaze u M_5 i u njemu su one antipodi
- M_1 , M_2 , M_3 , M_4 su ili prazni, ili parni grafovi takvi da su $m_i, n_i > 1$, gde je $1 \le i \le 4$.
- M_1 je levo od M_5
- M_2 je desno od M_5
- M_3 je iznad M_5
- M_4 je ispod M_5 .

Primer raslojavanja možemo videti na narednoj slici 2.7.

Slika 2.7: Primer raslojavanja grafa R(8,7) sa tačkama s=(2,4) i t=(5,2).

Raslojavanje nam omogućava da problem nalaženja Hamiltonovog puta svedemo na slučaj kada su s i t antipodi. U tom slučaju, pokazaće se, mnogo je jednostavnije konstruisati Hamiltonov put. Ipak, ne mora uvek postojati Hamiltonov put u M_5 . Iz tog razloga se nadalje razmatraju dva slučaja: kada postoji put u M_5 i kada ne postoji put u M_5 . Naredna potpoglavlja će se baviti tim slučajevima. U slučaju da put postoji u M_5 , za raslojavanje se kaže da je ispravno.

U radu [3] pokazano je da se raslojavanje računa u vremenu O(1). Takođe, u početku se raslojavanje radi tako da m_5 i n_5 budu iste parnosti kao m i n i da svi m_i, n_i (koji to mogu) budu parni, za $1 \le i \le 4$. Analizom po slučajevima se može pokazati da u takvom raslojavanju s i t imaju iste boje u M_5 kao i u R(m, n).

Raslojavanje je ispravno

Algoritam prikazan u [3] ima sledeće korake:

- 1. nalaženje puta u M_5 :
- 2. nalaženje ciklusa u M_1 , M_2 , M_3 i M_4
- 3. povezivanje puta i ciklusa.

Neka je $next_5(x, y, m, n, s, t)$ funkcija koja računa sledbenika tačke (x, y) na putu od s do t u pravougaonom grafu R(m, n), gde su s i t antipodi.

U slučaju kada je $m_5, n_5 \leq 3$, broj mogućih Hamiltonovih puteva je manji od neke konstante. Jasno je da, u tom slučaju, $next_5$ mora da obradi konstantno mnogo slučajeva da bi odredila sledbenika tačke. Odavde se vidi da, u slučaju da je $m, n \leq 3$, $next_5$ radi u vremenu O(1).

Ako je $m_5 > 3$ ili $n_5 > 3$, algoritam će probati da izvrši trisekciju.

Definicija 2.2.9 (Horizontalna trisekcija). *Horizontalna trisekcija* predstavlja podelu M_5 na tri pravougaona grafa:

- $M_{5_1}(m_5,2)$ je pravougaoni graf koji sadrži tačku s
- $M_{5_2}(m_5,2)$ je pravougaoni graf koji sadrži tačku t
- $M_{5_3}(m_5, n_5 4)$ je pravougaoni graf takav koji sadrži tačke koje nisu ni u M_{5_1} , ni u M_{5_2} . Primetimo da on može biti i prazan. [3]

Slično se definiše vertikalna trisekcija. Dalje ćemo razmotriti samo slučaj horizontalne trisekcije, budući da se izomorfizmom R_{diag} može slučaj vertikalne trisekcije svesti na njega.

Osnovna ideja trisekcije je da se nađu tačke p i q na uglovima od M_{5_1} i M_{5_2} okrenutim ka ostatku grafa tako da Hamiltonov put od s do t se podeli na put od s do t, pa od t do t od t ovih delova se jednostavno računa. Ako je moguće naći takve tačke, reći ćemo da je moguće izvršiti trisekciju. Za primer horizontalne trisekcije, videti sliku 2.8.

Slika 2.8: Primer horizontalne trisekcije i kako ona pomaže pri određivanju Hamiltonovog puta.

Lema 2.2.9. [O mogućnosti vršenja horizontalne trisekcije] Neka su dati pravougaoni graf R(m,n) i tačke s i t koje su antipodi. Pretpostavimo da je s ispod t (suprotan slučaj se svodi na ovaj preko izomorfizma R_x). Dodatno, pretpostavimo da postoji Hamiltonov put između s i t u R(m,n). Horizontalna trisekcija se može izvršiti ako i samo ako važi:

- $n \ge 4$
- $n \equiv_2 1$ ili $m \equiv_2 0$ ili je s bela.

Dokaz. Pretpostavimo najpre da uslovi ne važe. Ako ne važi $n \geq 4$, onda horizontalnu trisekciju nije moguće izvršiti. Zato neka je $n \equiv_2 0$, $m \equiv_2 1$ i s je crna. Pošto je m neparno, u R(m,n) su tačke (0,1) i (m-1,1) crne boje. To znači da ne postoji put od s do (0,1), kao ni put od s do (m-1,1) u R(m,n), budući da su tačke nekompatibilnih boja (lema 2.2.2). To znači da nije moguće izvršiti horizontalnu trisekciju.

Dokaz drugog smera se izvodi analizom po parnosti m i n. Dokaz nekih od slučajeva može se videti u [3].

Sledeća lema se može dokazati iz prethodne primenom izomorfizma R_{diag} .

Lema 2.2.10 (O mogućnosti vršenja vertikalne trisekcije). Neka je s levo od t. Vertikalnu trisekciju je moguće izvršiti ako i samo ako važi:

- $m \geq 4$
- $m \equiv_2 1$ ili $n \equiv_2 0$ ili je s bela.

Odavde se zaključuje da nije moguće nijednu trisekciju izvršiti u sledećim slučajevima:

• n, m < 4

U ovom slučaju, broj Hamiltonovih puteva je manji od neke konstante, pa je vreme izvršavanja algoritma O(1).

• n < 4, $m \equiv_2 0$, $n \equiv_2 1$ i leva tačka je crna

Pošto je n < 4 i $n \equiv_2 1$, zaključujemo da je n = 1 ili n = 3.

Ako je n=1, u konstantnom vremenu se može odrediti sledbenik bilo koje tačke različite od t: ako je s levo od t, sledbenik je desna tačka; inače je sledbenik leva tačka.

Ako je n=3 i m<4, ovo se svodi na slučaj kada su n,m<4. Ako je n=3 i $m\geq 4$, razmatramo dva slučaja:

1. s je levo od t

Budući da su s i t antipodi, $t_x \ge m-2$, $s_x \le 1$. Ako je m strogo veći od 4, onda zbog činjenice što je m paran je m > 5, pa je $s_x \le 1 < 2 < m-3 = (m-2)-1 < t_x-1$. Hamiltonov put od s do t ne postoji na osnovu 2.2.3.

Pošto put postoji u R(m,n), zaključujemo da je m=4. Postoje dva slučaja:

 $-s_y=1$

Kako Hamiltonov put od s do t postoji u R(m, n), na osnovu teoreme 2.2.3 sledi da je $s_x \geq t_x$. Pošto je s levo od t, važi $s_x \leq t_x$. Dakle, $s_x = t_x$, što je kontradikcija.

 $-s_y \neq 1$

Na osnovu teoreme 2.1.3, Hamiltonov put postoji jedino u slučaju da je $s_x \ge t_x - 1$. Pošto je $t_x - 1 \le s_x \le 1$, sledi da je $t_x \le 2$. Međutim,

znamo da je $t_x \ge 2$, jer je t desno od s i s i t su antipodi, pa je $t_x = 2$. Odavde je $s_x \ge 1$, pa je $s_x = 1$.

U ovom slučaju, algoritam radi tako što najpre podeli graf na dva dela: S, gde je $x \leq 1$, i T, gde je $x \geq 2$. Primetimo da se s nalazi u S, i t u T. Algoritam nalazi put od s do (1,1) u s, (1,1) povezuje sa (2,1), i nalazi put od (2,1) do t. Primetimo da su s i s dimenzija manjih od s, što svodi problem nalaženja puteva u s i s na jedan od prethodnih slučajeva. Iz tog razloga, jasno je da je i u ovom slučaju moguće definisati odgovarajuću funkciju s0 koja računa sledbenike tački na putu, kao i da je ta funkcija vremenske složenosti s0.

Primer nalaženja Hamiltonovog ciklusa u ovom slučaju vidi se na slici 2.9.

2. t je levo od s

Ovaj slučaj se radi veoma slično kao i prethodni.

Slika 2.9: Primeri nalaženja puta u M_5 kada nije moguće izvršiti ni horizontalnu, ni vertikalnu trisekciju, gde je n=3, m=4. Primetimo da na desnoj slici s i t nisu antipodi. Ipak, moguće je istim algoritmom odrediti Hamiltonov put i u tom slučaju.

- $n\equiv_2 0, m\equiv_2 1$, gornja tačka je crna, m<4Primenom izomorfizma R_{diag} se može ovaj slučaj svesti na prethodni.
- $m \equiv_2 1$, $n \equiv_2 0$ i je s bele boje, i $n \equiv_2 1$, $m \equiv_2 0$ Ovaj slučaj nije moguć.

Iz prethodne diskusije je jasno da, u slučajevima kada nije moguće izvršiti ni horizontalnu ni vertikalnu trisekciju, postoji funkcija $next_5$ koja računa sledbenika na Hamiltonovom putu u vremenu O(1).

Razmotrimo sada slučaj kada je moguće izvršiti horizontalnu trisekciju.

Pokazaćemo ispravnost algoritma definisanog pseudokodom u Listingu 2.2:

```
def
       find p(m, n, s, t):
        if (0, 1) i s su suprotnih boja:
                p = (0, 1)
            else:
                p = (m - 1, 1)
    \#\ vraca\ sledbenika\ na\ putu\ u\ grafu\ gde\ je\ n==2
\mathbf{def}
      next_m_2(x, y, m)
    # pretpostavimo da je s ispod t
    \# u suprotnom mozemo koristiti refleksiju po x-osi
       trisect(x, y, m, n, s, t):
def
        if y < 2:
            p = find_p(m, n, s, t)
            if x = p.x and y = p.y:
                 return goUp(x, y)
            else:
                 return next m 2(x, y, m)
        else if y < n - 2:
            p = find_p(m, n, s, t)
            if p = (0, 1):
                 if y \% 2 == 1:
                     if x > 0:
                         return goLeft(x, y)
                     else:
                         return goUp(x, y)
                 else:
                     if x < m - 1:
                         return goRight(x, y)
                         return goUp(x, y)
            else:
                 if y \% 2 == 1:
```

```
if x > 0:
                 return goRight(x, y)
            else:
                 return goUp(x, y)
        else:
             if x < m - 1:
                 return goLeft(x, y)
            else:
                 return goUp(x, y)
else:
    p = find p(m, n, s, t)
    if p = (0, 1):
        if n \% 2 == 1:
            q = (m - 1, n - 2)
        else:
            q = (0, n - 2)
    else:
        if n \% 2 == 1:
            q = (0, n - 2)
        else:
            q = (m - 1, n - 2)
    return next m 2(x, y - n - 2, m) + (0, n - 2)
```

Listing 2.2: Pseudokod za nalaženje Hamiltonovog puta korišćenjem horizontalne trisekcije

Funkcija $next_m_2$ nalazi sledbenika na putu u slučaju da je n=2. Ta funkcija se može generisati na jednostavan način i izvršava se u vremenu O(1).

Teorema 2.2.11 (Ispravnost funkcije **trisect**). Neka su dati pravougaoni graf R(m,n) i tačke s i t koje su antipodi, tako da je moguće izvršiti horizontalnu trisekciju. Funkcija trisect(x, y, m, n, s, t) vraća sledbenika tačke (x, y) na Hamiltonovom putu od s do t u R(m,n). Dodatno, funkcija trisect radi u vremenu O(1).

Dokaz. Hamiltonov put od s do t se dobija nadovezivanjem puteva od s do p, od (p.x, p.y + 1) do (q.x, q.y - 1) i od q do t.

Putevi od s do p i od q do t postoje na osnovu činjenice da je moguće izvršiti horizontalnu trisekciju. Naime, ako su p i q jedinstvene, zbog činjenice da je moguće izvršiti horizontalnu trisekciju, moraju postojati putevi od s do p i od q do t. Ako su (0,1) i (m-1,1) istih boja, onda je m neparno, pa važi $0+n-2 \equiv_2 m-1+n-2$,

odnosno i (0, n-2) i (m-1, n-2) su istih boja. To znači da, koju god tačku od te dve izaberemo za q, put od q do t će postojati.

Proverom se pokazuje da je trisect(q.x, q.y - 1, m, n, s, t) = q. Analizom po slučajevima, slično kao u dokazu Teoreme 2.2.7, pokazuje se da trisect ispravno računa put od (p.x, p.y + 1) do (q.x, q.y - 1).

Povezivanje Hamiltonovog puta sa Hamiltonovoim ciklusima Pokazaćemo sada kako funkcioniše korak povezivanja ciklusa i puteva. U opštem slučaju, algoritam povezivanja Hamiltonovog puta i ciklusa se može opisati sledećim koracima:

- 1. Hamiltonov put X se podeli na dva podniza: X_1 i X_2
- 2. Hamiltonov ciklus C je niz kome je početna tačka susedna poslednjoj tački od X_1 , a krajnja tačka susedna početnoj tački od X_2
- 3. konkatenacija $X_1 C X_2$ je Hamiltonov put.

Slično se može definisati algoritam koji spaja dva Hamiltonova ciklusa. Razmatramo tri slučaja:

- 1. $n_5 = 1$,
- 2. $m_5 = 1$, primenom izomorfizma R_{diag} se ovaj slučaj svodi na prethodni
- 3. $n_5, m_5 > 1$.

Zbog jednostavnosti, koristićemo oznaku $(x, y)_i$ koja označava tačku zapisanu u odnosu na donju levu tačku grafa M_i . Takođe, podrazumevamo da ciklus u oblasti M_i je tipa M_i , odnosno ciklus u M_1 je tipa M_1 , ciklus u M_2 je tipa M_2 , itd.

Takođe, u slučajevima kada se ciklus ne deli, podrazumevamo da je izabrana početna tačka ciklusa tako da se može izvršiti spajanje na kraju.

Neka je $n_5 = 1$. Prvo, M_3 ili M_4 je neprazan, ili su M_1 , M_2 , M_3 i M_4 prazni. U slučaju da su M_1 , M_2 , M_3 i M_4 prazni, onda nije potrebno izvršiti spajanje, jer je $M = M_5$ i Hamiltonov put se može naći algoritmom za nalaženje puta u M_5 . Inače, ako su M_3 i M_4 prazni, a M_1 ili M_2 nije prazan, onda su ispunjeni uslovi slučaja 1 u Teoremi 2.2.3, pa Hamiltonov put ne postoji u M. Bez gubljenja opštosti, može se pretpostaviti da je M_3 neprazan (inače se refleksijom R_x može svesti na taj slučaj), kao i da je s levo od t (inače se refleksijom s0 može svesti na taj slučaj).

Definišemo strategiju povezivanja na sledeći način, razmatrajući sledeće slučajeve:

1. M_1 je neprazan

Put u M_5 delimo tako da je $X_1 = [s]$. Orijentacija svih ciklusa je CW.

a) M_2 je neprazan

Ciklus u M_1 ne delimo, ciklus u M_3 delimo tako da je $C_{3_1} = [(0, n_5)_5, \dots, (m_3 - 1, n_3 - 1)_3]$.

i. M_4 je neprazan

Ciklus u M_2 delimo tako da je $C_{2_1} = [(0, n_2 - 1)_2, \dots, (0, 0)_2].$

Put u M je:
$$X_1 - C_1 - C_{3_1} - C_{2_1} - C_4 - C_{2_2} - C_{3_2} \to X_2$$
.

ii. M_4 je prazan

Ciklus u M_2 ne delimo.

Put u M je:
$$X_1 - C_1 - C_{3_1} - C_2 - C_{3_2} - X_2$$
.

- b) M_2 je prazan
 - i. M_4 je neprazan

Ciklus u M_4 ne delimo, ciklus u M_3 ne delimo, ciklus u M_1 delimo tako da je $C_{1_1} = [(-1,0)_5, \ldots, (m_1-1,1)].$

Put u M je:
$$X_1 - C_{1_1} - C_4 - C_{1_2} - C_3 - X_2$$
.

ii. M_4 je prazan

Ciklus u M_3 ne delimo, ciklus u M_1 ne delimo.

Put u
$$M$$
 je: $X_1 - C_1 - C_3 \rightarrow X_2$.

2. M_1 je prazan, M_2 je neprazan

Ciklus u M_3 delimo tako da je $C_{3_1} = [(0, n_5)_5, \dots, (m_3 - 1, n_3 - 1)_3]$. Orijentacija svih ciklusa je CW.

a) M_4 je neprazan

Ciklus u M_2 delimo tako da je $C_{2_1} = [(0, n_2 - 1)_2, \dots, (0, 0)_2]$, ciklus u M_4 ne delimo.

Put u M je:
$$X_1 - C_{3_1} - C_{2_1} - C_4 - C_{2_2} - C_{3_2} - X_2$$
.

b) M_4 je prazan

Put u M je:
$$X_1 - C_{3_1} - C_2 - C_{3_3} - X_2$$
.

GLAVA 2. KONSTRUISANJE HAMILTONOVOG PUTA I CIKLUSA

3. M_1 i M_2 su prazni, M_4 je neprazan

Orijentacija ciklusa u M_3 je CW, orijentacija ciklusa u M_4 je CCW. Ciklusi M_3 i M_4 se ne dele. Hamiltonov put se deli na tri dela tako da je $X_1 = [s]$, $X_2 = [(1,0)_5]$.

Put u
$$M$$
 je: $X_1 - C_3 - X_2 - C_4 - X_3$.

4. M_1 , M_2 i M_4 su prazni

Orijentacija ciklusa u M_3 je CW, ciklus u M_3 se ne deli. Hamiltonov put se deli na dva dela tako da je $X_1 = [s]$.

Put u
$$M$$
 je: $X_1 - C_3 - X_2$.

Na slici 2.10 možemo videti ilustraciju za svaki od slučajeva u ovoj konstrukciji.

Slika 2.10: Ilustracija svakog od slučajeva u strategiji povezivanja Hamiltonovog puta u M_5 sa Hamiltonovim ciklusima u M_i , $i \neq 5$, kada je $n_5 = 1$.

Razmotrimo sada slučaj kada su $n_5, m_5 > 1$.

Definicija 2.2.10. Neka je data povezana rešetka G. Neka su R_1 i R_2 disjunktni pravougaoni grafovi čija je unija G, i neka postoji Hamiltonov put X u R_1 . Kažemo da je moguće spojiti/povezati Hamiltonov put X sa ciklusom u R_2 ako postoji razlaganje Hamiltonovog puta X na dva neprazna dela X_1 i X_2 tako da je $X_1 - C - X_2$

Hamiltonov put u G za neki Hamiltonov ciklus C u R_2 . U suprotnom, kažemo da nije moguće spojiti X sa Hamiltonovim ciklusom u R_2 .

Sledeća lema nam daje potrebne i dovoljne uslove da bi bilo moguće izvršiti spajanje Hamiltonovog puta u M_5 i Hamiltonovog ciklusa u M_5 . Slični uslovi mogu se izvesti i za M_2 , M_3 i M_4 , primenom odgovarajućih refleksija.

Lema 2.2.12 (O mogućnosti spajanja M_5 i M_1). Neka je dat pravougaoni graf R(m,n), neka su M_5 i M_1 delovi ispravnog raslojavanja, odnosno u M_5 postoji Hamiltonov put. Pretpostavimo da su $n_5, m_5 > 1$. Hamiltonov put X iz M_5 nije moguće spojiti sa Hamiltonovim ciklusom iz M_1 ako i samo ako je $n_5 = 2$ i $s_x = 0_5$, $t_x = 0_5$ (vidi sliku 2.11).

Slika 2.11: Primer slučaja kada nije moguće spojiti Hamiltonov put iz M_5 sa ciklusom u M_1 . Ipak, moguće je spojiti Hamiltonov put u M_5 sa ciklusom u M_3 na prikazani način.

Dokaz. Ako je $n_5 = 2$ i $s_x = t_x = 0_5$, jedini način na koji je moguće izvršiti podelu puta X u M_5 je tako da bude $X_1 = [s]$, jer u suprotnom krajnja tačka od X_1 je t, ili ta tačka nija susedna ni sa jednom tačkom iz M_1 . Zbog toga što je s tačka na uglu i t je ispod s, njen sledbenik je tačka desno od nje, pa je početna tačka niza X_2 tačka $(s_x + 1, s_y)$ koja nije susedna ni sa jednom tačkom iz M_5 . Tada spajanje nije moguće.

Pretpostavimo da spajanje nije moguće. Analizom po slučajevima u algoritmu za konstrukciju Hamiltonovog puta u M_5 je moguće pokazati da postoji bar jedna grana na levoj ivici od M_5 . Ako je to grana od čvora $(0, y)_5$ do čvora $(0, y + 1)_5$, spajanje je ipak moguće izvršiti ako se čvor $(0, y)_5$ preusmeri levo, nakon čega se

konstruiše Hamiltonov ciklus od $(-1, y)_5$ do $(-1, y+1)_5$ tipa M_1 i orijentacije CW u M_1 i čvor $(-1, y+1)_5$ preusmeri u $(0, y+1)_5$. To je kontradikcija sa pretpostavkom da nije moguće izvršiti spajanje. Analogno se razmatra slučaj u kojem grana ide od čvora $(0, y+1)_5$ do čvora $(0, y)_5$ (potrebno je samo orijentaciju ciklusa promeniti u CCW).

Iz dokaza prethodne leme može se zaključiti da je spajanje moguće ako i samo ako postoji neki čvor na levoj ivici od M_5 čiji je sledbenik iznad ili ispod njega. Naredna lema daje algoritam za izračunavanje takvog čvora u vremenu O(1).

Lema 2.2.13. Pod pretpostavkama leme 2.2.12, ako je moguće spojiti Hamiltonov ciklus u M_1 sa Hamiltonovim putem u M_5 dobijenim algoritmom iz ovog poglavlja, onda:

- ako je $n_5 > 2$, važi bar jedan od narednih iskaza:
 - tački $(0,0)_5$ je sledbenik tačka $(0,1)_5$
 - tački $(0,1)_5$ je sledbenik tačka $(0,0)_5$
 - tački $(0,1)_5$ je sledbenik tačka $(0,2)_5$
 - tački $(0,2)_5$ je sledbenik tačka $(0,1)_5$
- ako je $n_5 = 2$, za bar jednu od tačaka $(0,0)_5$ i $(0,1)_5$, postoji sledbenik koji je iznad ili ispod nje.

Dokaz. Može se dokazati da lema važi analizom po slučajevima u algoritmu za konstrukciju Hamiltonovog puta u M_5 . Potrebno je razmotriti slučajeve kada je moguće izvršiti bilo koju od trisekcija i kada to nije moguće uraditi.

Prvi od čvorova iz prethodne leme, za koji važi svojstvo da mu je sledbenik iznad ili ispod njega, nazivaćemo *čvor povezivanja* M_5 sa M_1 . To je čvor koji će u podeli Hamiltonovog puta u M_5 biti poslednji čvor podniza X_1 .

Bez gubljenja opštosti, možemo obraditi samo slučajeve spajanja kada M_1 nije prazan i kada da je moguće spojiti Hamiltonov put u M_5 sa njim. Slučaj kada su svi M_i osim M_5 prazni je trivijalan, budući da je tada $M=M_5$.

Ako je M_1 prazan, pogodnim izomorfizmom se može graf transformisati u onaj gde je M_1 neprazan. Ako je M_1 neprazan, a nije moguće spajanje, postoje dva slučaja:

• M_3 i M_4 su prazni

U tom slučaju, $n_5 = 2$, a pošto M_1 nije prazan, važi slučaj 2 iz Teoreme 2.2.3, što znači da Hamiltonov put u M ne postoji.

• bar jedan od M_3 i M_4 nije prazan

U ovom slučaju, ako nije moguće izvršiti spajanje sa M_1 , moguće je izvršiti ga sa M_3 ili sa M_4 , na osnovu Leme 2.2.12. Pogodnim izomorfizmom se ovaj slučaj svodi na onaj gde postoji M_1 i moguće je izvršiti spajanje sa njim.

Ukoliko je potrebno primeniti izomorfizam zato što je M_1 prazan ili zato što nije moguće izvršiti povezivanje sa njim, uradićemo to tako što se primeniti prvi od narednih izomorfizama u kojem M_1 postoji i moguće je izvršiti povezivanje sa njim:

- 1. $R_{diag} \circ R_x$ gornja granica postaje leva
- 2. R_y desna granica postaje leva
- 3. R_{diag} donja granica postaje leva

Takođe, razmatraćemo samo slučajeve kada je M_3 neprazan, ili kada su M_3 i M_4 prazni. Naime, slučajevi gde je M_4 neprazan, a M_3 prazan se rešavaju na isti način kada je M_3 neprazan, samo uz zamenu oznaka vezanih za M_3 i M_4 .

U svim slučajevima, orijentacija ciklusa u M_1 je CCW ako je sledbenik tačke povezivanja M_5 sa M_1 tačka ispod nje, dok je u suprotnom orijentacija CW. Na osnovu Leme 2.2.5, ukoliko put mora direktno da se veže za M_2 , orijentacija je CCW ako je sledbenik tačke povezivanja M_5 sa M_2 tačka iznad nje, dok je u suprotnom orijentacija CW.

U slučaju da je potrebno spojiti dva ciklusa u orijentaciji CCW, u zavisnosti od slučaja, tačke povezivanja su:

- M_1 sa M_3 : $(m_1 1, n_1 2)_1$
- M_1 sa M_4 : $(m_1 1, 0)_1$
- M_3 sa M_2 : $(m_3 1, n_3 2)_3$
- M_3 sa M_1 : $(0, n_3 1)_3$
- M_2 sa M_3 : $(0, n_2 1)_2$
- M_2 sa M_4 : $(0,1)_2$

- M_4 sa M_2 : $(m_4 1, 0)_4$
- M_4 sa M_1 : $(0,1)_4$

Slično, u slučaju da je potrebno spojiti dva ciklusa u orijentaciji CW, tačke povezivanja su:

- M_1 sa M_3 : $(m_1 1, n_1 1)_1$
- M_1 sa M_4 : $(m_1 1, 1)_1$
- M_3 sa M_2 : $(m_3 1, n_3 1)_3$
- M_3 sa M_1 : $(0, n_3 2)_3$
- M_2 sa M_3 : $(0, n_2 2)_2$
- M_2 sa M_4 : $(0,0)_2$
- M_4 sa M_2 : $(m_4 1, 1)_4$
- M_4 sa M_1 : $(0,0)_4$

Zbog jednostavnosti, označimo tačke povezivanja sa $p_{i,j}$, a njihove originalne sledbenike sa $q_{i,j}$. Tačka $p_{1,5}$ je levo od $q_{5,1}$, a tačka $q_{1,5}$ je levo od $p_{5,1}$. Slično se mogu definisati tačke $p_{i,5}, q_{i,5}$ i u ostalim slučajevima.

Strategiju spajanja definišemo na sledeći način:

1. M_3 je neprazan

Hamiltonov put X u M_5 se deli tako da je $X_1 = [s, \ldots, p_{5,1}], X_2 = [q_{5,1}, \ldots, t].$

- a) M_4 je neprazan
 - i. M_2 je neprazan

Hamiltonov ciklus C_1 u M_1 se deli tako da je $C_{1_1} = [q_{1,5}, \ldots, p_{1,3}],$ $C_{1_2} = [q_{1,3}, \ldots, p_{1,5}].$ Hamiltonov ciklus C_3 u M_3 se deli tako da je $C_{3_1} = [q_{3,1}, \ldots, p_{3,2}],$ $C_{3_2} = [q_{3,2}, \ldots, p_{3,1}].$ Hamiltonov ciklus C_2 u M_2 se deli tako da je $C_{2_1} = [q_{2,3}, \ldots, p_{2,4}],$ $C_{2_2} = [q_{2,4}, \ldots, p_{2,3}].$ Hamiltonov ciklus C_4 u M_4 je jednak $[q_{4,2}, \ldots, p_{4,2}].$

Hamiltonov put u M je: $X_1 - C_{1_1} - C_{3_1} - C_{2_1} - C_4 - C_{2_2} - C_{3_2} - C_{1_2} - X_2$.

ii. M_2 je prazan

Hamiltonovi ciklusi C_3 i C_4 u M_3 i M_4 su redom $C_3 = [q_{3,1}, \ldots, p_{3,1}]$ i $C_4 = [q_{4,1}, \ldots, p_{4,1}]$. Hamiltonov ciklus C_1 se deli na cikluse C_{1_1} , C_{1_2} i C_{1_3} .

Ako je orijentacija svih ciklusa CCW, onda je Hamiltonov put u M: $X_1-C_{1_1}-C_3-C_{1_2}-C_4-C_{1_3}-X_2$. U ovom slučaju je $C_{1_1}=[q_{1,5},\ldots,p_{1,3}],\ C_{1_2}=[q_{1,3},\ldots,p_{1,4}].$

Ako je orijentacija svih ciklusa CW, onda je Hamiltonov put u M: $X_1 - C_{1_1} - C_4 - C_{1_2} - C_3 - C_{1_3} - X_2$. U ovom slučaju je $C_{1_1} = [q_{1,5}, \ldots, p_{1,4}], C_{1_2} = [q_{1,4}, \ldots, p_{1,3}].$

b) M_4 je prazan

i. M_2 je neprazan

Hamiltonov ciklus C_1 u M_1 se deli tako da je $C_{1_1} = [q_{1,5}, \ldots, p_{1,3}],$ $C_{1_2} = [q_{1,3}, \ldots, p_{1,5}].$ Hamiltonov ciklus C_3 u M_3 se deli tako da je $C_{3_1} = [q_{3,1}, \ldots, p_{3,2}],$ $C_{3_2} = [q_{3,2}, \ldots, p_{3,1}].$ Hamiltonov ciklus C_2 u M_2 je $[q_{3,2}, \ldots, p_{3,2}].$

Hamiltonov put u M je: $X_1 - C_{1_1} - C_{3_1} - C_2 - C_{3_2} - C_{1_2} - X_2$.

ii. M_2 je prazan

Hamiltonov ciklus C_1 u M_1 se deli tako da je $C_{1_1} = [q_{1,5}, \ldots, p_{1,3}],$ $C_{1_2} = [q_{1,3}, \ldots, p_{1,5}].$ Hamiltonov ciklus C_3 u M_3 je $[q_{1,3}, \ldots, p_{3,1}].$ Hamiltonov put u M je: $X_1 - C_{1_1} - C_3 - C_{1_2} - X_2.$

2. M_3 i M_4 su prazni

Hamiltonov ciklus C_1 u M_1 je $[q_{1,5}, \ldots, p_{1,5}]$.

a) M_2 je neprazan

Hamiltonov ciklus C_2 u M_2 je $[q_{2,5},\ldots,p_{2,5}]$.

Hamiltonov put u M_5 se deli tako da je $X_1 = [s, \ldots, p_{5,1}], X_2 = [q_{5,1}, \ldots, p_{5,2}],$ $X_3 = [q_{5,2}, \ldots, t].$

Hamiltonov put u M je: $X_1 - C_1 - X_2 - C_2 - X_3$.

b) M_2 je prazan

Hamiltonov put X u M_5 se deli tako da je $X_1 = [s, \ldots, p_{5,1}], X_2 = [q_{5,1}, \ldots, t].$

Hamiltonov put u M je: $X_1 - C_1 - X_2$.

Na slici 2.12 možemo videti ilustraciju za svaki od slučajeva u ovoj strategiji povezivanja.

Slika 2.12: Ilustracija za svaki od slučajeva u strategiji spajanja Hamiltonovog puta u M_5 sa Hamiltonovim ciklusima u $M_i,~i\neq 5$, kada je $n_5,m_5>1$.

Analizom po slučajevima može se pokazati ispravnost ove strategije, odnosno da su predloženi putevi zaista Hamiltonovi putevi u M. Naredna diskusija potvrdiće i vremensku složenost algoritma.

Pod pretpostavkom da su definisane funkcije $next_i$ za puteve i cikluseve u M_i , može se pomoću njih definisati funkcija next koja računa sledbenika na Hamiltono-

vom putu u M. Recimo, u slučaju $X_1-C_1-X_2$ ta funkcija izgleda ovako:

$$next(x,y) = \begin{cases} q_{1,5} & (x,y) = p_{5,1} \\ q_{5,1} & (x,y) = p_{1,5} \\ next_1(x,y) & \text{ako je (x, y) u } M_1 \text{ i } (x,y) \neq p_{1_5} \\ next_5(x,y) & \text{inače} \end{cases}$$

.

Na osnovu Leme 2.2.13, tačke $p_{5,1}, q_{5,1}, p_{1,5}, q_{1,5}$ se mogu naći u O(1) vremenu, a na osnovu toga što funkcije $next_i$ rade u vremenu O(1), zaključujemo da ovako definisana funkcija next takođe radi u vremenu O(1).

Raslojavanje nije ispravno

Put u M_5 može da ne postoji ako važi jedan od tri slučaja iz Teoreme 2.2.3. Razmatramo sledeća tri slučaja kada ne postoji Hamiltonov put u M_5 :

- 1. $n_5 = 1$
- 2. $n_5 = 2$
- 3. $n_5 = 3$ [3]

Ukoliko bi u u bilo kom od ova tri slučaja i M_3 i M_4 bili prazni, put ne bi postojao u M. Zbog toga se može uzeti, bez gubljenja opštosti, da je M_4 neprazan. [3]

Neka je najpre $n_5 = 1$. Osnovna ideja je da se, ako je to moguće, povuče donja granica od M_5 za 1 na dole. M_4 bi ostao paran graf u kojem postoji Hamiltonov ciklus, budući da je raslojavanje birano tako da m_4 , n_4 budu parni brojevi. Potrebno je pokazati da bi Hamiltonov put postojao u M'_5 . Pošto nije $s_x = t_x$, ostaje samo da se pokaže da su s i t suprotnih boja u M'_5 . Razmotrimo dva slučaja:

• M je neparan graf

Pošto put postoji u M, s i t su bele boje u M. Pošto je raslojavanje birano tako da su dimenzije svih podgrafova, osim M_5 , parne, zaključujemo da je M_5 neparan graf. Ako s ili t nije na uglu od M_5 , ne bi s i t bili antipodi u M_5 . Dakle, s i t su na uglovima od M_5 , pa put postoji u M_5 , suprotno pretpostavci.

• M je paran graf

Pošto su s i t suprotnih boja u M, slično kao u prethodnom slučaju, zaključuje se da su takve i u M_5 . Dodavanjem jednog reda u M_5 , y-koordinate se menjaju obe za 1, čime s i t ostaju suprotnih boja u M'_5 , pa Hamiltonov put postoji. [3]

Jedini slučaj kada nije moguće menjati granice je kada je $n_3 = n_4 = 2$ ili kada je M_3 prazan i $n_4 = 2$. U prvom slučaju se spoji M_3 ili M_4 sa M_5 , nakon čega se svede problem na slučaj kada je $n_5 = 3$. [3] Pretpostavimo, bez gubljenja opštosti, da je M_5 spojen sa M_3 . Moguća su naredna dva slučaja:

- Hamiltonov put ne postoji u $M_5 \cup M_3$ ovaj slučaj svodimo na slučaj kada je $n_5 = 3$ i raslojavanje nije ispravno. U ovom slučaju mora M_4 biti neprazno, jer u suprotnom Hamiltonov put ne bi postojao u R(m, n), što je kontradikcija sa pretpostavkom da on postoji.
- Hamiltonov put postoji u $M_5 \cup M_3$ korišćenjem činjenice da su s i t antipodi u M_5 , kao i da je $n_5 = 1$, pokazuje se da postoje dva izomorfna slučaja:

$$- s = (1,0)_5, t = (2,0)_5, m_5 = 3, n_5 = 1$$

$$-t = (1,0)_5, s = (2,0)_5, m_5 = 3, n_5 = 1$$

U oba slučaja postoji Hamiltonov put u $M_5 \cup M_3$, na osnovu Teoreme 2.2.3. Taj put je moguće naći kao što je prikazano na slici 2.13.

Slika 2.13: U ovom slučaju, Hamiltonov put je moguće naći u $M_5 \cup M_3$ primenom algoritma za nalaženje Hamiltonovog puta u M_5 (desno), iako s i t nisu antipodi.

Ako je $n_5 = 2$, ako postoji M_1 , onda pomeramo levu granicu od M_5 desno tako da su s i t na levoj ivici od M'_5 . Ako ne postoji M_1 , mora da postoji M_2 (u suprotnom se dokazuje da ne postoji Hamiltonov put u M), pa pomeramo desnu granicu od M_5 tako da su s i t na desnoj ivici od M'_5 . Ovaj postupak je ispravan, jer M'_1 (ili M'_2) će biti parni grafovi u kojima postoji Hamiltonov ciklus, jer $n_5 = 2$ je paran broj koji ima istu parnost kao i $n_1 = n_2 = n$, a raslojavanje se uvek u početku bira tako da su n_5 i n iste parnosti. [3]

Slika 2.14: U ovom slučaju, M_1 se proširuje za 1 na desno, nakon čega još uvek postoji Hamiltonov put u njemu, i postoji Hamiltonov put u M'_5 .

U slučaju kada je $n_5=3$, M_5 delimo na M_{5_1} , M_{5_2} , M_{5_3} , tako da su u M_{5_1} i M_{5_3} dimenzija $2\times n_5$ i jedan sadrži s, a drugi t. Algoritam nalaženja puta se sastoji od dva koraka:

- 1. u $M_{5_1} \cup M_4 \cup M_{5_3}$ se nalazi Hamiltonov put
- 2. spoje se Hamiltonovi ciklusi iz M_{5_2} , M_1 , M_3 i M_2 sa putem. [3]

U ovom slučaju je m_5 paran broj. Neka je s crna (slučaj kada je t crna se može refleksijom R_y svesti na slučaj kada je s crna, jer R_y menja boje tačkama). Takođe, pretpostavićemo da je $m_5 > 2$, jer u suprotnom se može ovaj slučaj svesti refleksijom R_{diag} na slučaj kada je raslojavanje neispravno i $n_5 = 2$. U tom slučaju, tačka s je levo od tačke t. Tačka s je crna, a tačka $(0,0)_5$ je bela, pa između njih postoji Hamiltonov put u M_{5_1} . Takođe, t je bela, a tačka $(m_5 - 1, 0)_5$ je crna, pa postoji put između njih u M_{5_3} . Dalje se povezuju tačke $(0, -1)_5$ i $(m_5 - 1, -1)_5$ Hamiltonovim putem u M_4 sličnim postupkom kao u vertikalnoj trisekciji. Nakon toga se ta tri Hamiltonova puta povezuju u Hamiltonov put od s do t u $M_{5_1} \cup M_{5_3} \cup M_4$. [3]

Ciklus u M_{5_2} se može, na primer, tretirati kao ciklus tipa M_2 , nakon čega se spaja sa putem u $M_{5_1} \cup M_{5_3} \cup M_4$ može spojiti sa leve strane. Budući da je $n_5 = 3$ i da je u svim Hamiltonovim ciklusima i grafovima R(2,3) važi iskaz leme 2.2.13, zaključujemo da se u konstantnom vremenu može naći tačka povezivanja $p_{2,5}$, kao i tačka $q_{2,5}$. Delimo Hamiltonov put X na $X_1[s,\ldots,p_{5,2}], X_2 = [q_{5,2},\ldots,t]$, a za ciklus uzimamo $C = [q_{2,5},\ldots,p_{2,5}]$. Tada je Hamiltonov put u $M_5 \cup M_4$: $X_1 - C - X_2$. Spajanje sa ciklusima u M_1 , M_3 i M_2 se vrši na isti način kao i u slučaju kada je raslojavanje u M_5 ispravno. Može se pokazati analizom po slučajevima da iskaz leme 2.2.13 važi i u ovom slučaju, što znači da je i u ovom slučaju moguće izvršiti spajanje u vremenu O(1).

Slika 2.15: U ovom slučaju, $n_5=1$ i raslojavanje nije ispravno. Zbog toga što je $n_3=n_4=2$ i Hamiltonov put ne postoji u $M_5\cup M_3$, ovaj slučaj svodi se na slučaj kada je raslojavanje nije ispravno i $n_5=3$, gde je $M_5'=M_5\cup M_3$. Na slici levo prikazano je kako se primenom opisanog algoritma nalazi put od s do t, dok je na slici desno prikazan Hamiltonov put dobijen nakon što se izvrši povezivanje Hamiltonovog puta sa Hamiltonovim ciklusom u M_{5_2} .

Odgovarajuće next funkcije mogu se lako modifikovati i u ovim slučajevima, čime se zaključuje da paralelni algoritam sa mn procesora i u ovom slučaju radi u vremenskoj složenosti O(1).

Na osnovu prethodnih razmatranja, moguće je pokazati sledeće tvrđenje, koje će biti korišćeno kasnije u radu.

Lema 2.2.14. Neka je dat pravougaoni graf R(m, n), n > 2 i neka su date tačke s i t takve da Hamiltonov put postoji od s do t u R(m, n). Ako je X Hamiltonov put nađen pomoću prethodno opisanog algoritma i ne važi n parno, m neparno, m > 2, s = (0,0) i t = (0,1), onda važi bar jedan od narednih iskaza:

- tački (0,0) je sledbenik (0,1)
- tački (0,1) je sledbenik (0,0)
- tački (0,1) je sledbenik (0,2)
- tački (0, 2) je sledbenik (0, 1).

Dokaz. Ako je $(0,1) \neq s,t$, onda ona mora imati i prethodnika i sledbenika na Hamiltonovom putu, na osnovu čega se zaključuje da tvrđenje važi.

Neka je sada s=(0,1). Ako je $t\neq(0,0)$, onda (0,0) mora imati i prethodnika i sledbenika na Hamiltonovom putu. Odavde zaključujemo da je (0,0) sledbenik od (0,1), na osnovu čega tvrđenje važi. Ako je t=(0,0), onda se jednostavnom analizom po slučajevima u algoritmu pokazuje da je sledbenik od (0,1) tačka (0,2). Na sličan način se može pokazati da tvrđenje leme važi kada je t=(0,1), osim u slučaju kada je s=(0,0), n parno i m>2 neparno.

Ipak, želeli bismo da lema važi u svim slučajevima. Zbog toga se može algoritam modifikovati jedino u slučaju kada lema ne važi, i u svim izomorfnim slučajevima. U slučaju kada je n>2 parno, m>2 neparno, s=(0,0) i t=(0,1), algoritam radi na sledeći način:

1. ako je n=4 i m=3, novi Hamiltonov put se nalazi na slici 2.16,

Slika 2.16: Hamiltonov put nastao prethodno opisanim algoritmom (levo) i modifikovani Hamiltonov put (desno).

2. inače, R(m,n) se podeli tako da je $M_5=R(3,4)$, $M_3=(0,4)+R(3,n-4)^2$ i $M_2=(3,0)+R(m-3,n)$, nakon čega se pronalazi Hamiltonov put u M_5 na način opisan iznad, i onda se taj put spoji sa ciklusima u M_3 i M_2 .

²Operacija (x,y) + R(m,n) ovde predstavlja skup tačaka iz R(m,n) transliranih vektorom (x,y). Ako je m=0 ili n=0, podrazumevamo da je R(m,n) prazan skup.

Sada se jednostavnom analizom može utvrditi da važi iskaz leme 2.2.14 u svim slučajevima.

Primetimo da analogni rezultati važe i za tačke koje se nalaze na drugim ivicama. Primenom odgovarajućih izomorfizama, može se lema dokazati i u tim slučajevima.

2.3 Grafovi u obliku slova L

Definicija 2.3.1 (Graf u obliku slova L). Za date prirodne brojeve m, n > 2, graf u obliku slova L je rešetka indukovana skupom čvorova $L(m, n) = \{(x, y) \mid (x < m \land y < 5n - 4) \lor (m \le x < 3m - 2 \land y < n)\}$. [5]

Slika 2.17: Graf L(3,3).

Na osnovu prethodne definicije, vidi se da je graf $L(m,n) \subset R(3m-2,5n-4)$ i da je R(3m-2,5n-4) najmanji pravougaoni graf koji sadrži L(m,n). U skladu sa tim, može se definisati boja čvora u grafu L(m,n) kao boja koju čvor ima u R(3m-2,5n-4).

2.3.1 Hamiltonov ciklus

Sledeća lema daje potreban i dovoljan uslov za postojanje Hamiltonovog ciklusa u grafu L(m,n).

Lema 2.3.1 (Egzistencija Hamiltonovog ciklusa). U grafu L(m,n) postoji Hamiltonov ciklus ako i samo ako je mn paran broj. [7]

Za generisanje Hamiltonovog ciklusa u L(m,n) (slika 2.18), potrebno je najpre L(m,n) podeliti na dva pravougaona grafa $R_1(m,5n-4)=\{(x,y)\mid x< m\wedge y<5n-4\}$ i $R_2(2m-2,n)=\{(x,y)\mid m\leq x<3m-2\wedge y< n\}$. U grafovima R_1 i R_2 nalazimo Hamiltonove cikluse u istoj orijentaciji. Pritom je ciklus u R_1 tipa M_1 , a u R_2 je tipa M_2 . Pošto je $m(5n-4)\equiv_2 mn\equiv_2 0$ i m,5n-4,2m-2,n>1, postoje u R_1 i R_2 Hamiltonovi ciklusi.

Ako je orijentacija oba ciklusa CCW, povezivanje vršimo tako što podelimo ciklus C_1 u R_1 tako da je $C_{1_1} = [(0,0)_1,\ldots,(m-1,0)_1]$, dok je ciklus u R_2 $C_2 = [(0,0)_2,\ldots,(0,1)_2]$, gde su sa $(x,y)_i$ označene koordinate tačaka u odnosu na donji levi ugao grafa R_i . Hamiltonov ciklus u L(m,n) je $C_{1_1} - C_2 - C_{1_2}$.

Ako je orijentacija oba ciklusa CW, povezivanje vršimo tako što podelimo ciklus C_1 u R_1 tako da je $C_{1_1} = [(0,0)_1,\ldots,(m-1,1)_1]$, dok je ciklus u R_2 $C_2 = [(0,0)_2,\ldots,(1,0)_2]$. Hamiltonov ciklus u L(m,n) je $C_{1_1} - C_2 - C_{1_2}$.

Jasno je da je odgovarajuću funkciju $next_L$ moguće napraviti na osnovu next funkcija za R_i , i da će i $next_L$ raditi u vremenu O(1).

Slika 2.18: Primer Hamiltonovog ciklusa u L(4,3).

Definicija 2.3.2 (Orijentacija). Hamiltonov ciklus u L(m,n) nastao prethodnim algoritmom ima orijentaciju CCW ako je R_1 orijentacije CCW, a inače ima orijentaciju CW.

2.3.2 Hamiltonov put

U narednim razmatranjima je $s \neq t,$ budući da se slučaj s = t svodi na slučaj Hamiltonovog ciklusa.

U [5] pokazana je naredna lema, koja daje potrebne uslove za postojanje Hamiltonovog puta od čvora s do čvora t u L(m, n).

Lema 2.3.2. Neka je dat graf u obliku slova L, L(m, n), i neka je R(m', n') najmanji pravougaoni graf koji sadrži L(m, n). Ako postoji Hamiltonov put od čvora s do čvora t u L(m, n), onda postoji takav put i u R(m', n'). [5]

Posledica ove leme je da s i t moraju biti kompatibilnih boja u R(3m-2,5n-4), budući da je to najmanji pravougaoni graf koji sadrži L(m,n). [5]

Prikazujemo algoritam za nalaženje Hamiltonovog puta u L(m,n), prateći opis iz rada [5]. Pritom, pretpostavićemo da odgovarajući Hamiltonovi putevi postoje. Postoje četiri moguća slučaja:

1.
$$s$$
i t su u $R_1'(m,4n-4) = \{(x,y) \mid x < m \wedge n \leq y < 5n-4\}$

Algoritam čine naredni koraci:

nalaženje Hamiltonovog puta od s do t u R₁ ³
Ovaj korak moguće je izvesti algoritmom za nalaženje Hamiltonovog puta u pravougaonim grafovima koji je opisan u prethodnom poglavlju. Na slici 2.19, prikazan je Hamiltonov put nađen u ovom koraku na primeru grafa L(4,3).

 $^{^3}$ Hamiltonov put tražimo u R_1 , budući da se može desiti da u R_1' on ne postoji. Recimo, u ako su s i t u R_1' , m=n=3, tada s i t moraju biti bele boje u R(3m-2,5n-4) kako bi put postojao u L(m,n). Budući da je n=3 neparan broj, u R_1' će tačke s i t biti crne boje. Na osnovu leme 2.2.2, Hamiltonov put ne može postojati u R_1' . Takođe, moguće je dokazati da nije moguć slučaj u kojem su s i t bile kompatibilnih boja u R(3m-2,5n-4) i Hamiltonov put postoji od s do t u R_1' , ali ne postoji u R_1 .

Slika 2.19: U slučaju kada su s i t u R_1' , najpre se nalazi Hamiltonov put od s do t u R_1 .

nalaženje Hamiltonovog ciklusa u R₂ Ovaj korak je moguće izvesti, budući da je 2m - 2 paran broj, 2m - 2, n > 1 i leme 2.2.4. Pritom, biramo ciklus tipa M₂, kako bi spajanje bilo moguće izvršiti u konstantnom broju koraka.

• spajanje puta i ciklusa

Na osnovu leme 2.2.14, tačku povezivanja je moguće naći u vremenu O(1), nakon čega se Hamiltonov put u R_1 i ciklus u R_2 spajaju na isti način kao u algoritmu za pravougaone grafove. Na slici 2.20 se može videti ceo Hamiltonov put od s do t, nastao nakon ovog koraka.

Slika 2.20: Hamiltonov put u R_1 se spaja sa ciklusom u R_2 .

2. s i t su u R_2

Algoritam je sličan kao u prethodnom slučaju. Čine ga naredni koraci:

- nalaženje Hamiltonovog puta u $R_2'(3m-2,n) = \{(x,y) \mid x < 3m-2 \wedge y < n\}$
- nalaženje Hamiltonovog ciklusa u R'_1 Bira se ciklus tipa M_3 kako bi spajanje moglo da se izvrši u vremenu O(1).
- spajanje puta i ciklusa

3. s i t su u R_1 i R'_2

Ako Hamiltonov put postoji u R_1 između s i t, primenjujemo algoritam iz slučaja 1. U suprotnom, primenjujemo algoritam iz slučaja 2.

4. s je u R'_1 , t je u R_2

Bira se od tačaka (m-1, n-1) i (m-1, n-2) ona čija je boja kompatibilna sa s u grafu R'_1 . Označimo tu tačku sa p, a tačku desno od nje sa q (slika 2.21). Neka je X_1 Hamiltonov put od s do p u R'_1 , a X_2 Hamiltonov put od q do t u R_2 . Tada je $X_1 - X_2$ Hamiltonov put od s do t u t0.

Slika 2.21: Nalaze se tačke p i q, nakon čega je potrebno spojiti s sa p i q sa t.

5. s je u R_2 , t je u R'_1

Slučaj je analogan prethodnom. Bira se od tačaka (m-1, n-1) i (m-1, n-2) ona čija je boja kompatibilna sa t, a tačka desno od nje se označi sa q. Neka je X_1 Hamiltonov put od s do q u R_2 , a X_2 Hamiltonov put od p do t u R'_1 . Tada je $X_1 - X_2$ Hamiltonov put od s do t u t0.

Na osnovu prethodnih rezultata, jasno je da odgovarajuća next funkcija u slučaju grafa L(m,n) radi u vremenu O(1).

Algoritam daje Hamiltonov put u svakom od četiri prethodna slučaja, ukoliko odgovarajući Hamiltonovi putevi postoje u podgrafovima od L(m, n). Na osnovu toga, važi sledeća lema:

Lema 2.3.3. Neka je dat graf u obliku slova L, L(m,n), i neka su date tačke s i t. Ako važi bar jedno od sledećih tvrđenja, Hamiltonov put od s do t postoji u L(m,n):

- \bullet s i tnisu u R_2 i postoji Hamiltonov put od s do t u R_1
- $\bullet\,$ si tnisu u R_1' i postoji Hamiltonov put od s do t u R_2'
- \bullet s je u $R_1',\,t$ je u R_2 i postoje Hamiltonovi putevi od s do p u R_1' i od q do t u R_2'

 \bullet s je u $R_2,\,t$ je u R_1' i postoje Hamiltonovi putevi od s do q u R_2 i od p do t u R_1'

Pokazaćemo da su ti uslovi potrebni uslovi za postojanje Hamiltonovog puta u L(m,n). Važan rezultat u tom pravcu jeste sledeća lema:

Lema 2.3.4. Neka je t u R_2 . Ako je Hamiltonov put od s' do t' u R_2 u slučaju 3 u 2.2.3, onda ne postoji Hamiltonov put od s do t u L(m, n), gde važi:

- ako je s u R_2 , onda s' = s, t' = t
- $\bullet\,$ ako nije su $R_2,$ onda $s'=(m,1),\,t'=t$ [5]

Tvrđenje prethodne leme važi i kada s i t zamene mesta. Može se pokazati, na sličan način na koji je to urađeno u [5], da važi i sledeća lema:

Lema 2.3.5. Neka je t u R'_1 . Ako je Hamiltonov put od s' do t' u R'_1 u slučaju 3 u teoremi 2.2.3, onda ne postoji Hamiltonov put od s do t u L(m, n), gde važi:

- ako je s u R'_1 , onda s' = s, t' = t
- $\bullet\,$ ako nije s u $R_1',$ onda $s'=(1,n),\,t'=t$

Takođe, tvrđenje prethodne leme važi i kada s i t zamene mesta.

Teorema 2.3.6. Ako Hamiltonov put od s do t postoji u L(m, n), onda važi bar jedan od uslova u lemi 2.3.3.

Dokaz. Dokaz je analiza po slučajevima u algoritmu za nalažanje Hamiltonovog puta u L(m,n). Primetimo da su slučajevi u radu algoritma disjunktni. U slučaju da ne postoji Hamiltonov put u nekom od slučajeva, primenom jedne od prethodne dve leme se pokazuje da ne postoji Hamiltonov put u L(m,n).

Lema 2.3.3 i teorema 2.3.6 nam daju potrebne i dovoljne uslove za postojanje Hamiltonovog puta u L(m,n), i pokazuju da je prikazani algoritam za nalaženje Hamiltonovog puta u L(m,n) ispravan.

Naredna lema biće važna za naredne algoritme. Ona je posledica leme 2.2.14.

Lema 2.3.7. Neka su dati graf L(m,n) i tačke s i t. Ako je X Hamiltonov put nastao primenom opisanog algoritma za nalaženje Hamiltonovih puteva u L(m,n), onda važi sledeće:

- tački (m-1,5n-5) je sledbenik ispod nje
- tački (m-1,5n-6) je sledbenik ispod ili iznad nje
- tački (m-1,5n-7) je sledbenik iznad nje.

2.4 Grafovi u obliku slova C

Definicija 2.4.1 (Graf u obliku slova C). *Graf u obliku slova C* je rešetka indukovana skupom čvorova $C(m,n) = L(m,n) \cup \{(x,y) \mid x \geq m, y \geq 4n-4\}$. [5]

Na slici 2.22 može se videti primer jednog takvog grafa.

Slika 2.22: Graf C(3,4)

Kao i u slučaju grafova L(m,n), vidi se da je $C(m,n) \subset R(3m-2,5n-4)$ i da je to najmanji pravougaoni graf koji sadrži C(m,n).

2.4.1 Hamiltonov ciklus

Na osnovu definicije Hamiltonovog ciklusa 2.1.4, Hamiltonov ciklus je Hamiltonov put kojem su početna i krajnja tačka susedne. Kako su susedni čvorovi suprotnih boja, zaključujemo da je broj belih i crnih čvorova u C(m,n) jednak u slučaju da Hamiltonov ciklus postoji u C(m,n). Na osnovu toga važi sledeći stav.

Lema 2.4.1. Ako Hamiltonov ciklus postoji u C(m, n), onda je broj belih i crnih čvorova jednak u C(m, n).

Broj čvorova u C(m,n) je, na osnovu definicije, m(5n-4) + 2(2m-2)n = 5mn - 4m + 4mn - 4n = 9mn - 4(m+n). Taj broj je paran ako i samo ako je mn paran broj. Pokazaćemo da važi lema 2.2.1 i u slučaju grafa C(m,n).

Lema 2.4.2 (Odnos boje i parnosti). Neka je W broj belih čvorova, a B broj crnih čvorova u grafu C(m,n). Ako je mn neparan broj, tada je W=B+1, a inače je W=B.

Dokaz. Na osnovu definicije, C(m,n) je sačinjen od tri pravougaona grafa $R_1(m,5n-4)$, $R_2(2m-2,n)$ i $R_3(2m-2,n)$. Označimo sa W_i broj belih čvorova u R_i , a sa B_i broj crnih čvorova u R_i . Primetimo da su R_2 i R_3 parni grafovi, pa je $W_2 = B_2$ i $W_3 = B_3$. Bez gubljenja opštosti, možemo pretpostaviti da u R_2 i R_3 čvorovi imaju iste boje kao u C(m,n). Ako je mn neparan broj, tada je $W_1 = B_1 + 1$, pa je $W = W_1 + W_2 + W_3 = B_1 + 1 + B_2 + B_3 = B + 1$. U suprotnom je W = B, čime je tvrđenje dokazano. □

Lema 2.4.3. Ako Hamiltonov ciklus postoji u C(m, n), onda je mn paran broj.

Ispravnost algoritma za nalaženje Hamiltonovog ciklusa u C(m,n) će pokazati da važi i suprotno, odnosno da važi:

Teorema 2.4.4. Hamiltonov ciklus postoji u C(m,n) ako i samo ako je mn paran broj.

Kako je C(m,n) paran kada je mn paran broj, zaključujemo da u L(m,n) postoji Hamiltonov ciklus. Takođe, kako je $C(m,n)\setminus L(m,n)$ paran pravougaoni graf, i u njemu postoji Hamiltonov ciklus. Algoritam se sastoji od sledeća tri koraka:

- 1. nalaženje Hamiltonovog ciklusa u L(m,n)
- 2. nalaženje Hamiltonovog ciklusa u $R_3(2m-2,n)=C(m,n)\setminus L(m,n)$ u istoj orijentaciji kao prethodno nađeni ciklus u L(m,n), i tipa M_2 Hamiltonov ciklus u R_3 je niz $C_3=[p,\ldots,q]$, gde su p i q tačke koje će biti određene kasnije.
- 3. povezivanje prethodno nađenih ciklusa

Ako je ciklus u L(m, n) orijentacije CCW, bira se tačka (m-1, 5n-6) za tačku povezivanja. U suprotnom se bira tačka (m-1, 5n-6). Tačku desno od one koju smo izabrali označavamo sa p, a tačku koja joj prethodi na Hamiltonovom putu u R_3 označavamo sa q.

Odgovarajuća $next_C$ funkcija za ciklus u kojem je orijentacija ciklusa u L(m,n) CCW izgleda ovako:

$$next_C(x,y) = \begin{cases} (m,5n-6) & (x,y) = (m-1,5n-6) \\ (m-1,5n-5) & (x,y) = (m,5n-5) \\ next_L(x,y,ccw) & \text{ako je (x, y) u } L(m,n) \\ next_{R_3}(x,y,ccw) & \text{inače} \end{cases}$$

Jasno je, na osnovu činjenice da $next_L$ i $next_{R_3}$ rade u vremenu O(1), da je to slučaj i sa $next_C$.

2.4.2 Hamiltonov put

Kao i za grafove L(m, n), važi sledeći stav i za grafove C(m, n).

Lema 2.4.5. Neka je dat graf u obliku slova C, C(m,n), i neka je R najmanji pravougaoni graf koji sadrži C(m,n). Neka su date tačke s i t u C(m,n). Ako Hamiltonov put od s do t postoji u C(m,n), onda postoji Hamiltonov put od s do t u R. [5]

Na osnovu ove teoreme, sledi da Hamiltonov put u C ne postoji ako su s i t nekompatibilnih boja. [5] Iz tog razloga se dalje u tekstu može pretpostaviti da su s i t kompatibilnih boja.

U [5] predložen je sledeći algoritam za nalaženje Hamiltonovog puta u C(m, n):

- 1. ako su s i t u L(m,n) i postoji Hamiltonov put u L(m,n)
 - nađi Hamiltonov put u L(m,n) od s do t (kao na slici 2.23)

Slika 2.23: Nalazi se put od s do t u grafu L(m, n)

- $\bullet\,$ nađi Hamiltonov ciklus u R_3
- spoji put i ciklus (slika 2.24)

Slika 2.24: Povezuje se Hamiltonov put u ${\cal L}(m,n)$ sa ciklusom u R_3

2. ako su si tu $L_1(m,n)$ i postoji Hamiltonov put u $L_1(m,n)$

- primeni $R_x(x, y, 3m 2, 5n 4)$ i svedi na prethodni slučaj
- 3. ako je s u R_2 , a t u R_3
 - $\bullet\,$ nađi tačku pna granici sa R_3 koja je kompatibilne boje sa s
 - tačka q je desno od p (slika 2.25)

Slika 2.25: Nađene su tačke p i q, ali Hamiltonov put u ovom slučaju ne postoji, budući da ne postoji put od q do t u R_3

- nađi Hamiltonov put od s do p u L(m, n)
- nađi Hamiltonov put od q do t u R_3
- poveži ta dva puta
- 4. ako je s u R_3 , t u R_2
 - primeni $R_x(x, y, 3m 2, 5n 4)$ i svedi na prethodni slučaj

Koraci algoritma implementiraju se na sličan način kao i u prethodnim slučajevima. U slučaju 1, ciklus u R_3 je tipa M_2 , a orijentacija zavisi od načina na koji se on povezuje sa Hamiltonovim putem u L(m,n). Da je nalaženje tačke povezivanja moguće izvršiti u vremenu O(1) garantuje lema 2.3.7. U slučaju 3, između tačaka (m-1,5n-5) i (m-1,5n-6) se bira tačka p tako da bude kompatibilne boje sa

s, što je moguće izvršiti u vremenu O(1). Odgovarajuće next funkcije za svaki od slučajeva će takođe raditi u vremenu O(1).

Kako algoritam zaista nalazi Hamiltonov put u C(m,n), uslovi neophodni za njegovo izvršavanje su dovoljni uslovi za postojanje Hamiltonovog puta u C(m,n), odnosno pokazano je da važi sledeća lema.

Lema 2.4.6. Neka su dati graf C(m,n) u obliku slova C i čvorovi s i t čije su boje kompatibilne u R(3m-2,5n-4). Ako važi bar jedno od narednih tvrđenja, Hamiltonov put od s do t postoji u C:

- s i t su u L(m, n) i postoji Hamiltonov put od s do t u L(m, n)
- \bullet s i tnisu u R_2 i postoji Hamiltonov put od $R_x(s_x,s_y,3m-2,5n-4)$ do $R_x(t_x,t_y,3m-2,5n-4)$ u L(m,n)
- \bullet s je u $R_2,\,t$ je u R_3 i postoje Hamiltonovi putevi od s do pi od q do t
- $\bullet\,$ s je u $R_3,\,t$ je u R_2 i važi prethodni iskaz kada s i t zamene mesta.

Naredna lema dokazana u [5] dokazuje da su uslovi u lemi 2.4.6 neophodni za postojanje Hamiltonovog puta u C(m, n).

Lema 2.4.7. Neka su date tačke s i t u grafu C(m, n). Ako je s u R_3 i t u L(m, n), onda uzmimo da je s = (m - 1, 5n - 6), t' = s, s' = (m, 5n - 6). Ako ne postoji Hamiltonov put od s do t u L(m, n) ili ako su R_3 , s' i t' u slučaju 3 u teoremi 2.2.3, onda u C(m, n) ne postoji Hamiltonov put od s do t.

2.5 Grafovi u obliku slova F

Definicija 2.5.1 (Graf u obliku slova F). *Graf u obliku slova F* je rešetka indukovana skupom čvorova $F(m,n) = L(m,n) \cup R_4$, gde je $R_4 = \{(x,y) \mid m \leq x < 3m - 4 \wedge 2n - 2 \leq y < 3n - 2\}$. [5]

Primer takvog grafa možemo videti na slici 2.26.

Slika 2.26: Primer grafa F(3,4)

Kao u slučaju grafova L(m,n) i C(m,n), vidi se da je $F(m,n) \subset R(3m-2,5n-4)$ i da je R(3m-2,5n-4) najmanji pravougaoni graf koji sadrži F(m,n).

2.5.1 Hamiltonov ciklus

Slično kao u slučaju C(m,n) grafova, zaključujemo da je potreban uslov da Hamiltonov ciklus postoji u grafu F(m,n) da je broj crnih i belih čvorova u njemu jednak. Pokazaćemo da je to moguće ako i samo ako je mn paran broj.

Lema 2.5.1. Neka je W broj belih čvorova u F(m,n), a B broj crnih čvorova u F(m,n). Ako je mn neparan broj, tada je W=B+1, a inače je W=B.

Dokaz. Na osnovu definicije, F(m,n) je sastavljen od grafova C(m,n) i $R_4(2m-4,n)$. R_4 je paran, pa je u njemu broj belih i crnih čvorova jednak. Na osnovu ovoga i leme 2.4.2, sledi da je W=B+1 ako i samo ako je mn neparan broj, a inače je W=B.

Na osnovu prethodne leme, zaključujemo:

Lema 2.5.2. Ako Hamiltonov ciklus postoji u F(m,n), onda je mn paran broj.

Ispravnost algoritma za računanje Hamiltonovog ciklusa u F(m,n) će pokazati da je prethodni uslov dovoljan za postojanje ciklusa.

Kako je mn paran broj, u L(m,n) postoji Hamiltonov ciklus, pa postoji i u $L_1(m,n) = \{R_x(x,y,3m-2,5n-4) \mid (x,y) \in L(m,n)\}$, odnosno u obrnutom slovu L. Algoritam se sastoji od narednih koraka:

1. nalaženje Hamiltonovog ciklusa u L_1

Ovaj korak je moguće svesti na slučaj nalaženja ciklusa u L(m,n), nakon primene izomorfizma R_x .

- 2. nalaženje Hamiltonovog ciklusa u R_4 Bira se ciklus orijentacije suprotne od L(m,n) i da bude tipa M_2 .
- 3. povezivanje nađenih ciklusa

Potrebno je pokazati da važi bar jedno od narednih tvrđenja:

- tački (m-1,3n-3) je sledbenik tačka ispod nje na ciklusu u L_1
- tački (m-1,3n-4) je sledbenik tačka ispod ili iznad nje
- tački (m-1, 3n-5) je sledbenik tačka iznad nje.

Navedene tačke imaju koordinate (m-1, 2n-2), (m-1, 2n-3) i (m-1, 2n-4) u L(m, n). Pokazaćemo da važi:

- tački (m-1, 2n-4) je sledbenik tačka ispod nje na ciklusu u L_1
- tački (m-1, 2n-3) je sledbenik tačka ispod ili iznad nje
- tački (m-1, 2n-2) je sledbenik tačka iznad nje.

Ciklus u L je sastavljen spajanjem ciklusa tipa M_1 u R_1 i ciklusa tipa M_2 u R_2 . Kako je $L_1(m,n) = \{R_x(x,y,3m-2,5n-4) \mid (x,y) \in L(m,n)\}$, ciklus u $L_1(m,n)$ se sastoji od spojenih ciklusa tipa M_1 u R_1 i ciklusa tipa M_2 u $L_1(m,n) \setminus R_1$. Date tačke se nalaze u R_1 i pripadaju ciklusu tipa M_1 . Na osnovu ovoga zaključujemo da je sledbenik od (m-1,2n-3) tačka ispod ili iznad nje, pa je povezivanje moguće izvršiti, i vreme izvršavanja je O(1).

Definicija 2.5.2 (Orijentacija). Hamiltonov ciklus u F(m,n) je orijentacije CCW ako je Hamiltonov ciklus u L(m,n) orijentacije CW. Inače je Hamiltonov ciklus u F(m,n) orijentacije CW.

2.5.2 Hamiltonov put

Kao i za prethodne grafove, važi sledeći stav.

Lema 2.5.3. Neka je dat graf F(m,n) i neka su date tačke s i t na njemu. Ako postoji Hamiltonov put od s do t u F(m,n), onda postoji i Hamiltonov put od s do t u R(3m-2,5n-4). [5]

Slično kao i pre, zaključuje se da potreban uslov da Hamiltonov put od s do t postoji u F(m,n) jeste da s i t budu kompatibilnih boja u R(3m-2,5n-4). [5]

Prikazujemo algoritam za nalaženje Hamiltonovog puta od s do t u F(m,n) koji je predložen u [5]. Algoritam sadrži sledeće korake:

- ako su s i t u $L_1(m,n)$
 - 1. nalazi se Hamiltonov put od s do t u $L_1(m,n)$ (vidi sliku 2.23)

Slika 2.27: Nalazi se Hamiltonov put od s do t u grafu $L_1(m,n)$

- 2. nalazi se Hamiltonov ciklus u R_4
- 3. povezuju se Hamiltonov put i ciklus (vidi sliku 2.28)

Slika 2.28: Povezuje se Hamiltonov put u ${\cal L}_1(m,n)$ sa Hamiltonovim ciklusom u ${\cal R}_4$

- $\bullet\,$ ako je mn paran broj i s i tnisu u $L_1(m,n)$
 - 1. nalazi se Hamiltonov put od s do tu ${\cal R}_4$ (vidi sliku 2.29)

Slika 2.29: Nalazi se Hamiltonov put od s do t u ${\cal R}_4$

2. nalazi se Hamiltonov ciklus u ${\cal L}_1(m,n)$

3. povezuju se Hamiltonov put i ciklus (vidi sliku 2.30)

Slika 2.30: Povezuje se Hamiltonov put u \mathbb{R}_4 sa Hamiltonovim ciklusom u $L_1(m,n)$

- $\bullet\,$ ako je mnneparan broj i s i tnisu u $L_1(m,n)$
 - 1. nalazi se Hamiltonov put na skupu $R_4' = R_4 \cup \{(x,y) \mid x < m \wedge 2n 2 \leq y < 3n 2\}$ (vidi sliku 2.31)

Slika 2.31: Nalazi se Hamiltonov put od s do t u R_4^\prime

- 2. skup $R_1 \setminus \{(x,y) \mid x < m \land 2n-2 \le y < 3n-2\}$ je sačinjen od dva nepovezana pravougaona grafa R_{1_1} i R_{1_2} dimenzija $m \times 2n-2$. Nalaze se Hamiltonovi ciklusi u R_{1_1} , R_{1_2} , R_2 , R_3
- 3. povezuje se Hamiltonov put sa ciklusima (vidi sliku 2.32)

Slika 2.32: Hamiltonov put u R_4^\prime se povezuje sa Hamiltonovim ciklusima u susednim grafovima

- $\bullet\,$ ako je s u $L_1(m,n),\,t$ nije u $L_1(m,n)$
 - 1. od tačaka (m-1,3n-3), (m-1,3n-4) bira se ona koja je kompatibilne boje sa s. Tu tačku označavamo sa p
 - 2. tačka qje desno do p (vidi sliku 2.33)

Slika 2.33: Nakon nalaženja tačaka p i q, potrebno je odrediti Hamiltonove puteve od s do p i od q do t. U ovom slučaju, to nije moguće uraditi zato što Hamiltonov put u $L_1(m,n)$ ne postoji od s do p, pa Hamiltonov put od s do t ne postoji

- 3. nalazi se Hamiltonov put od s do p u $L_1(m,n)$
- 4. nalazi se Hamiltonov put od q do t u R_4
- 5. spajaju se Hamiltonovi putevi
- ako s nije u $L_1(m,n)$, t jeste u $L_1(m,n)$
 - 1. od tačaka (m, 3n 3), (m, 3n 4) bira se ona koja je kompatibilne boje sa s. Tu tačku označavamo sa p
 - 2. tačka q je levo do p
 - 3. nalazi se Hamiltonov put od s do p u $L_1(m,n)$
 - 4. nalazi se Hamiltonov put od q do t u R_4
 - 5. spajaju se Hamiltonovi putevi [5]

Pod pretpostavkom da odgovarajući Hamiltonovi putevi postoje u svakom od slučajeva, osim eventualno u prvom, moguće je izvršiti odgovarajuća spajanja na osnovu leme 2.3.7 i leme 2.2.14.

U drugom slučaju, Hamiltonov ciklus u $L_1(m,n)$ se nalazi primenom izomorfizma R_x nad Hamiltonovim ciklusom u L(m,n). Spajanje se vrši slično kao u prethodnim slučajevima spajanja pravougaonog grafa i L(m,n) (npr. kao u slučaju grafa C(m,n)).

U trećem slučaju, ciklus u R_{1_1} će biti tipa M_3 , R_{1_2} tipa M_4 , R_3 tipa M_2 . Hamiltonov put se vezuje i za R_{1_1} i za R_{1_2} . Ako je orijentacija u R_{1_1} CCW, onda je tački (m-1,5n-6) sledbenik iznad nje. Kako je onda u R_3 Hamiltonov ciklus tipa M_2 , orijentacije CCW, tački (m,5n-5) bi sledbenik bila tačka ispod nje, pa se tačka (m-1,5n-6) preusmerava tako da joj sledbenik bude desno od nje, a tački (m,5n-5) je sledbenik onda levo od nje, čime su povezani ciklusi u R_{1_1} i R_3 . Slično se pokazuje ako je orijentacija CW.

Razmotrimo sada prvi slučaj. Prva dva koraka je moguće izvesti na osnovu prethodnih rezultata. Problem je u trećem koraku. Naime, ako je n=3 ili n=4, potencijalno se može desiti da u $L_1(m,n)$ odgovarajući čvorovi nemaju sledbenika iznad ili ispod sebe. Pokažimo najpre da za n>4, spajanje je uvek moguće.

Teorema 2.5.4. Neka je data rešetka G = (V, E). Neka je dat niz tačaka p_1, p_2, p_3, p_4 i p_5 takvih da $p_{i_x} = p_{j_x}$ za sve $1 \le i, j \le 5$, i da je $p_{i_y} = p_{i+1_y} + 1$ za sve $1 \le i \le 4$. Neka tačke $(p_{i_x} + 1, p_{i_y})$ ne pripadaju grafu G za sve $1 \le i \le 5$. Tada važi bar jedan od narednih iskaza:

- \bullet sledbenik od p_1 je čvor ispod njega
- \bullet sledbenik od p_2 je čvor ispod ili iznad njega
- $\bullet\,$ sledbenik od p_3 je čvor ispod ili iznad njega
- sledbenik od p_4 je čvor ispod ili iznad njega
- sledbenik od p_5 je čvor iznad njega.

Dokaz. Bar jedan od čvorova p_2 , p_3 i p_4 nije ni s ni t. Označimo ga sa P. Ako ne bi važio nijedan od iskaza, sledbenik od P bi morao da bude čvor levo od njega. Međutim, tada ne postoji čvor čiji je sledbenik P. To je kontradikcija.

Na osnovu prethodne teoreme, ako je n > 4, na granici sa R_4 , $L_1(m, n)$ ima bar pet čvorova i bar jedan od njih će moći da se iskoristi kao tačka povezivanja sa R_4 , i taj korak je moguće izvršiti u vremenu O(1).

Zato razmotrimo slučaj kada je n=4. Označimo čvorove iz $L_1(m,n)$ koji se graniče sa R_4 sa p_1 , p_2 , p_3 , p_4 , gde je p_1 sa najmanjom y-koordinatom, a p_4 sa najvećom.

Ako je bar jedna od p_2 i p_3 različita i od s i od t, zaključujemo, slično kao i pre, da ta tačka ne može nikome biti sledbenik, što je kontradikcija. Jedini slučajevi kada to nije moguće su kada je $s=p_2,\,t=p_3$ ili kada je $s=p_3$ i $t=p_2$. Primetimo da su s i t susedne, pa je Hamiltonov put ujedno i Hamiltonov ciklus. U tom slučaju, algoritam za nalaženje Hamiltonovog ciklusa se može iskoristiti da nađe Hamiltonov put ovde, uz modifikaciju da t nema sledbenika. Bira se Hamiltonov ciklus orijentacije CCW ako je s iznad t, a inače se bira ciklus orijentacije CW. Može se pokazati da će u oba slučaja u Hamiltonovom ciklusu sledbenik tačke t biti tačka s, što potvrđuje ispravnost ovog koraka.

Ako je n=3, p_4 ne postoji. Zaključujemo, sličnim rezonovanjem kao i pre, da je $s=p_2$ ili $t=p_2$. Primetimo da je 5n-4=11, pa je $p_2=(m-1,2n-1)=(m-1,5)$. Neka je $s=p_2$ i neka je t'=t, ako je t u R_1 , a inače neka je t'=p za tačku p iz slučaja kada je s u R_1 i t u R_2' u algoritmu za Hamiltonov put u L(m,n). Prilikom nalaženja Hamiltonovog puta u R_1 od s do t', lako se može dokazati da će M_5 morati da uključi tačke $p_1=s+(0,1)$ i $p_3=s-(0,1)$. Dalje se analizom po veličini M_5 i po slučajevima u algoritmu za konstrukciju Hamiltonovog puta u pravougaonom grafu R_1 može pokazati da postoji čvor povezivanja.

Uslov postojanja odgovarajućih Hamiltonovih puteva je dovoljan uslov za postojanje Hamiltonovog puta od s do t. Naredna lema dokazana u [5] pokazuje da su ti uslovi neophodni.

Lema 2.5.5. Neka je dat graf F(m, n) i neka je n = 3. Označimo $p_1 = (m-1, 2n-2)$, $p_2 = (m-1, 2n-1)$, $p_3 = (m-1, 2n)$, x = (m-2, 2n-1). Neka su s i t u F(m, n). Ako ne postoji Hamiltonov put od s'' do t'' u L(m, n) ili ako je R_4 , s', t' u slučaju 3 u teoremi 2.2.3, onda ne postoji Hamiltonov put od s do t u F(m, n), gde je:

- ako su s i t u R_4 , onda s' = s, t' = t, s'' i t'' su takvi da postoji put u L(m, n)
- ako nije s u R_4 , a t jeste, onda $s' = p_2$, t' = s, s'' = x, t'' = t
- \bullet ako nije tu $R_4,$ a sjeste, onda $s'=p_2,\,t'=t,\,s''=x,\,t''=s.$ [5]

Slično kao i za L(m, n) i C(m, n), zaključujemo da odgovarajuća funkcija $next_F$ radi u vremenskoj složenosti O(1).

Pokazaćemo da važi naredna lema koja će biti korisna kasnije.

Lema 2.5.6. Neka je dat graf F(m,n) i neka su date tačke s i t na njemu. Neka je X Hamiltonov put od s do t u F(m,n) nastao prethodno opisanim algoritmom. Tada važi bar jedan od narednih iskaza:

- sledbenik od (m-1,0) je tačka iznad nje
- sledbenik od (m-1,1) je tačka ispod ili iznad nje
- sledbenik od (m-1,2) je tačka ispod nje

Dokaz. Ako su tačke deo nekog Hamiltonovog puta u $L_1(m,n)$, tvrđenje važi na osnovu leme 2.3.7. U suprotnom, tačke su deo Hamiltonovog ciklusa u R_{1_2} , pa tvrđenje takođe važi.

2.6 Grafovi u obliku slova E

Definicija 2.6.1 (Graf u obliku slova E). *Graf u obliku slova E* je rešetka indukovana skupom čvorova $E(m,n) = F(m,n) \cup \{(x,y) \mid m \leq x \leq 3m-2 \land y < n\}.$ [5]

Na slici 2.34 se može videti primer grafa E(m, n).

Slika 2.34: Primer grafa E(4,3)

Vidi se da je $E(m,n) \subset R(3m-2,5n-4)$ i da je to najmanji pravougaoni graf koji sadrži E(m,n).

2.6.1 Hamiltonov ciklus

Ako Hamiltonov ciklus postoji u E(m,n), onda je u E(m,n) broj belih i crnih tačaka jednak.

Lema 2.6.1. Ako Hamiltonov ciklus postoji u E(m, n), onda je mn paran broj.

Dokaz. Dokazujemo da je broj belih i crnih tačaka jednak ako i samo ako je mn paran broj.

Kako je $E(m,n) = F(m,n) \cup R_2$ i u R_2 je broj belih i crnih tačaka jednak, zaključujemo da je broj belih i crnih tačaka u E jednak ako i samo ako je on jednak u F(m,n). Na osnovu leme 2.5.1, zaključujemo da je to moguće jedino ako je mn paran broj.

Dokaz da je dati uslov dovoljan daće algoritam za generisanje Hamiltonovog ciklusa u E(m,n). Algoritam čine naredni koraci:

- 1. nalaženje Hamiltonovog ciklusa u F(m,n)
- 2. nalaženje Hamiltonovog ciklusa u $R_2(2m-2,n)$
- 3. povezivanje nađenih ciklusa.

Algoritam za prvi korak dat je u prethodnom poglavlju. Drugi i treći korak su analogni koraku povezivanja Hamiltonovog ciklusa u L(m, n) sa R_2 u algoritmu za generisanje Hamiltonovih ciklusa u C(m, n). Naime, čak su i tačke povezivanja, u zavisnosti od orijentacije, potpuno identične.

Orijentacija ciklusa se definiše:

Definicija 2.6.2 (Orijentacija). Ovako generisan Hamiltonov ciklus u E(m, n) je orijentacije CCW ako je ciklus u F(m, n) orijentacije CCW, a inače je orijentacije CW.

Jasno je da odgovarajuća next funkcija za računanje sledbenika na tom ciklusu radi u vremenu O(1).

2.6.2 Hamiltonov put

Naredna lema dokazana u [5] daje jedan od potrebnih uslova za postojanje Hamiltonovog puta u E(m, n).

Lema 2.6.2. Neka je dat graf E(m,n) i neka su date tačke s i t na njemu. Ako postoji Hamiltonov put od s do t u E(m,n), onda postoji Hamiltonov put od s do t u R(3m-2,5n-4). [5]

Zaključuje se da s i t moraju biti kompatibilnih boja da bi put postojao. Zato ćemo u daljem tekstu pretpostavljati da je to slučaj.

Prikazujemo algoritam predstavljen u [5]:

- 1. ako su s i t u F(m,n) i postoji Hamiltonov put u F(m,n):
 - a) nađi Hamiltonov put od s do t u F(m,n)
 - b) nađi Hamiltonov ciklus u R_2
 - c) poveži Hamiltonov put i ciklus
- 2. ako su s i t u $F_1(m, n) = \{R_x(x, y, 3m 2, 5n 4) \mid (x, y) \in F(m, n)\}$ i postoji Hamiltonov put u $F_1(m, n)$:
 - a) primeni R_x i svedi na prethodni slučaj
- 3. ako su s i t u C(m, n) i postoji Hamiltonov put u C(m, n):
 - a) nađi Hamiltonov put od s do t u C(m,n)
 - b) nađi Hamiltonov ciklus u R_4
 - c) poveži Hamiltonov put i ciklus. [5]

U prvom slučaju, primetimo da je algoritam analogan onom za računanje Hamiltonovog puta u L(m,n) gde su s' i t' u R_1 i postoji Hamiltonov put u R_1 . Ako se, umesto funkcije za traženje Hamiltonovog puta u R_1 stavi funkcija za računanje Hamiltonovog puta u F(m,n), svodi se problem na ovaj slučaj. Kako važi 2.5.6, i korak povezivanja se može izvesti na isti način.

U trećem slučaju, algoritam je analogan onom za računanje Hamiltonovog puta u F(m,n), gde su s i t u $L_1(m,n)$. Povezivanje se može uraditi na analogan način. U slučaju da je n=3, može se pokazati da je povezivanje uvek moguće izvršiti. U slučaju n=4, gde su p_2 i p_3 jednake sa s ili t, može se primeniti algoritam za Hamiltonov ciklus u E(m,n). U slučaju da je n>4, spajanje je uvek moguće izvršiti na osnovu leme 2.5.4.

U radu [5] pokazana je sledeća lema, koja garantuje ispravnost algoritma.

Lema 2.6.3. Neka su dati graf E(m,n) i dva čvora s i t u njemu. Ako ne postoji Hamiltonov put od s do t u grafu F(m,n) (ili $F_1(m,n)$), ili ne postoji Hamiltonov put od s do t u grafu C(m,n), onda ne postoji Hamiltonov put od s do t u E(m,n). [5]

Glava 3

Implementacija i evaluacija

3.1 Implementacija

Implementacija algoritama i grafičkog interfejsa koji crta rad algoritma su javno dostupni na platformi $Github^1$. Algoritam je implementiran u programskom jeziku C++, dok je grafički interfejs implementiran korišćenjem programskih jezika Cython i Python i biblioteke PyQt5.

U implementaciji je čvor (0,0) gornji levi, dok je ovde opisan algoritam gde je čvor sa tim koordinatama donji levi. Razlog za to je što na računaru gornji levi čvor matrice ima koordinate (0,0), dok je u školskoj praksi u geometriji češće korišćen koordinatni sistem gde donji levi ugao ima koordinate (0,0). Ipak, to ne menja suštinu algoritma, budući da se izomorfizmom R_x može jedan slučaj svesti na drugi u slučaju kada je graf simetričan po x-osi, dok u ostalim slučajevima (kod grafova L(m,n) i F(m,n)) je u algoritmu potrebno samo zameniti koordinate tačaka kako bi se dobio isti algoritam.

Paralelizacija je implementirana na sledeći način.

1. indeksiranje čvorova

Definiše se funkcija koja svakom čvoru u grafu (ovo se odnosi na svaki od grafova u ovom radu) dodeljuje celobrojni indeks od 0 do |V|-1. Osnovna ideja funkcije indeksiranja je da se graf podeli po vertikalama na nizove čvorova, nakon čega j-ti čvor na i-toj vertikali dobija indeks prema formuli $j+|V_i|$, gde je V_i skup čvorova (x,y) grafa takvih da je y < i. V_0 je prazan skup. Za

¹https://github.com/TGStarGuardian/Hamiltonian-paths-in-grid-graphs

svaki od grafova u ovom radu, funkciju koja čvoru dodeljuje indeks, i inverz te funkcije moguće je izračunati u vremenu O(1).

2. paralelni algoritam

a) inicijalizacija Hamiltonovog puta/ciklusa Inicijalizuje se prazan niz X veličine |V| koji će čuvati koordinate sledbenika, odnosno X[i] = (x, y) akko je čvoru sa indeksom i sledbenik čvor(x, y). U nizu važi X[t] = (-1, -1), što označava kraj Hamiltonovog puta.

b) podela poslova

Neka je dato p procesora/niti. Neka je |V| = pq + r. Svakom od procesora se dodeljuje jedan deo niza indeksa, tako što prvih p-1 procesora dobije po q indeksa, a preostali indeksi se dodeljuju poslednjem procesoru.

c) izvršavanje

Svaki od procesora prolazi kroz indekse koje je dobio. Inverzom funkcije indeksiranja, indeks se u vremenu O(1) mapira u koordinate grafa, nakon čega se primenjuje funkciju next i rezultat se smešta u niz X.

Na slici 3.1 se nalazi grafički korisnički interfejs za iscrtavanje Hamiltonovih puteva i ciklusa u grafovima iz ovog rada. Nakon unošenja parametara m, n, s i t i izbora tipa grafa sa padajućeg menija, pritiskom na dugme **Start** se dobija slika bez Hamiltonovog puta/ciklusa, ili se šalje poruka korisniku da Hamiltonov put/ciklus ne postoji u tom slučaju. Pritiskom na dugme **Next** se postojeći put/ciklus proširuje dodavanjem naredne grane.

Slika 3.1: Program koji crta Hamiltonove puteve i cikluse na pravougaonom grafu i grafovima u obliku slova L, C, F i E

3.2 Evaluacija

Kako bi se teorijski rezultati potvrdili, izvršena je evaluacija implementiranih algoritama. Merena su vremena izvršavanja algoritma sa 1, 2, 4 i 8 procesora na 500 nasumično generisanih slučajeva. Dimenzije pravougaonog grafa su birane nasumično iz intervala [1000, 9999], što je najmanje 10^6 čvorova, a u slučaju ostalih grafova je m birano nasumično iz intervala [334, 3334], dok je n birano iz intervala [200, 1800], jer u tom slučaju 3m-2 i 5n-4 se nalaze u sličnom intervalu kao m i n kada se meri vreme za pravougaoni graf. Gornja ograničenja su birana tako da sve može da stane u radnu memoriju u računaru na kojem je vršeno merenje. Čvorovi s i t su birani nasumično, ali tako da Hamiltonov put u odgovarajućem grafu postoji. Za aproksimaciju prosečnog ubrzanja korišćena je linearna regresija.

Računar na kojem je vršena evaluacija je $Lenovo\ ThinkBook\ 15\ G4\ ABA$, sa RAM memorijom od 16 GB, procesorom $AMD\ Ryzen\ 7\ 5825U$, na operativnom sistemu $Ubuntu\ 22.04.2\ LTS$.

Postignuti su sledeći rezultati:

• postoji prava y=kx takva da nijedna tačka nije iznad nje, gde je x broj čvorova grafa, a y vreme izvršavanja sekvencijalnog algoritma u mikrosekundama. Na osnovu ovoga se može zaključiti da je vreme izvršavanja sekvencijalnog algoritma O(|V|). U tabeli 3.1 može se videti vrednost koeficijenta k za svaki od problema:

tip grafa	problem	k	slika	
pravougaoni	ciklus	0.03 3.2		
pravougaoni	put	0.41 3.3		
L	ciklus	0.05	3.4	
L	put	0.99	3.5	
С	ciklus	0.06	3.6	
С	put	3.04	3.7	
F	ciklus	0.19	3.8	
F	put	4.16	3.9	
E	ciklus	0.12	3.10	
$\overline{\mathrm{E}}$	put	10.51	3.11	

Tabela 3.1: Koeficijent k prave najgoreg slučaja za izvršavanje sekvencijalnog algoritma u zavisnosti od tipa grafa i problema

Slika 3.2: Zavisnost vremena izvršavanja algoritma za nalaženje Hamiltonovog ciklusa od broja čvorova u pravougaonom grafu

Slika 3.3: Zavisnost vremena izvršavanja algoritma za nalaženje Hamiltonovog puta od broja čvorova u pravougaonom grafu

Slika 3.4: Zavisnost vremena izvršavanja algoritma za nalaženje Hamiltonovog ciklusa od broja čvorova u grafu L

Slika 3.5: Zavisnost vremena izvršavanja algoritma za nalaženje Hamiltonovog puta od broja čvorova u grafu L

Slika 3.6: Zavisnost vremena izvršavanja algoritma za nalaženje Hamiltonovog ciklusa od broja čvorova u grafu C

Slika 3.7: Zavisnost vremena izvršavanja algoritma za nalaženje Hamiltonovog puta od broja čvorova u grafu C

Slika 3.8: Zavisnost vremena izvršavanja algoritma za nalaženje Hamiltonovog ciklusa od broja čvorova u grafu F

Slika 3.9: Zavisnost vremena izvršavanja algoritma za nalaženje Hamiltonovog puta od broja čvorova u grafu ${\bf F}$

Slika 3.10: Zavisnost vremena izvršavanja algoritma za nalaženje Hamiltonovog ciklusa od broja čvorova u grafu E

Slika 3.11: Zavisnost vremena izvršavanja algoritma za nalaženje Hamiltonovog puta od broja čvorova u grafu ${\bf E}$

 \bullet prave dobijene linearnom regresijom pri merenju prosečnog ubrzanja su skoro paralelne sa x-osom, što ukazuje na to da u prosečnom slučaju ubrzanje ne zavisi od broja čvorova u grafu. Takođe se primećuje da rast ubrzanja opada sa povećavanjem broja procesora. Zabeležena prosečna ubrzanja nalaze se u tabeli 3.2:

tip grafa	problem	2 procesora	4 procesora	8 procesora	slika
pravougaoni	ciklus	1.94	3.49	5.54	3.12
pravougaoni	put	1.76	2.93	4.40	3.13
$\overline{}$	ciklus	1.55	2.58	4.21	3.14
$\overline{}$	put	1.65	2.73	4.26	3.15
С	ciklus	1.70	2.79	4.48	3.16
С	put	1.70	2.79	4.31	3.17
F	ciklus	1.78	2.94	4.54	3.18
F	put	1.75	2.83	4.41	3.19
E	ciklus	1.77	2.91	4.50	3.20
E	put	1.76	2.85	4.43	3.21

Tabela 3.2: Postignuta ubrzanja u zavisnosti od tipa grafa, problema i broja procesora

Slika 3.12: Zavisnost ubrzanja od broja čvorova u pravougaonom grafu tokom izvršavanja algoritma za nalaženje Hamiltonovog ciklusa

Slika 3.13: Zavisnost ubrzanja od broja čvorova u pravougaonom grafu tokom izvršavanja algoritma za nalaženje Hamiltonovog puta

Slika 3.14: Zavisnost ubrzanja od broja čvorova u grafu L tokom izvršavanja algoritma za nalaženje Hamiltonovog ciklusa

Slika 3.15: Zavisnost ubrzanja od broja čvorova u grafu L tokom izvršavanja algoritma za nalaženje Hamiltonovog puta

Slika 3.16: Zavisnost ubrzanja od broja čvorova u grafu C tokom izvršavanja algoritma za nalaženje Hamiltonovog ciklusa

Slika 3.17: Zavisnost ubrzanja od broja čvorova u grafu C tokom izvršavanja algoritma za nalaženje Hamiltonovog puta

Slika 3.18: Zavisnost ubrzanja od broja čvorova u grafu F tokom izvršavanja algoritma za nalaženje Hamiltonovog ciklusa

Slika 3.19: Zavisnost ubrzanja od broja čvorova u grafu F tokom izvršavanja algoritma za nalaženje Hamiltonovog puta

Slika 3.20: Zavisnost ubrzanja od broja čvorova u grafu E tokom izvršavanja algoritma za nalaženje Hamiltonovog ciklusa

Slika 3.21: Zavisnost ubrzanja od broja čvorova u grafu E tokom izvršavanja algoritma za nalaženje Hamiltonovog puta

Mogući uzrok za usporavanje ubrzanja je neravnomeran posao koji procesori imaju da izvrše. U određenim delovima matrice, vrši se manje instrukcija nego u nekim drugim delovima matrice. Otuda se može desiti da procesori dobiju zadatke različite težine. Jedan od mogućih načina da se ovaj problem reši je da se, umesto statičkog alociranja, primeni dinamičko alociranje poslova.

Glava 4

Zaključak

U ovom radu su prikazani sekvencijalni algoritmi i paralelni algoritmi bez međuprocesorske komunikacije za nalaženje Hamiltonovih puteva i ciklusa u pravougaonom grafu, kao i u grafovima u obliku slova L, C, F i E. Algoritmi su detaljno opisani i prevaziđeni su propusti u literaturi: izostavljeni dokazi su ovde izvedeni, određeni dokazi i analize slučajeva su u ovom radu korigovani. U ovom radu je otklonjen i jedan od glavnih problema vezanih za literaturu: povezivanje Hamiltonovog puta sa ciklusom. U literaturi ta procedura nije precizno definisana i nisu razmotreni neophodni uslovi da bi se ona mogla izvršiti, kao što su postoje li odgovarajuće grane i da li je Hamiltonov ciklus dobro orijentisan. U ovom radu su ti nedostaci otklonjeni i pokazano je da se ta procedura može izvršiti u vremenu O(1).

Detaljno su opisane next funkcije za nalaženje narednog čvora na Hamiltonovom putu/ciklusu u navedenim grafovima. Dokazana je korektnost tih funkcija, odnosno navedenih algoritama za nalaženje Hamiltonovih puteva i ciklusa. Dokazano je da je vreme izvršavanja next funkcija O(1), kao i da se sekvencijalni algoritmi izvršavaju u vremenu linearnom po broju čvorova u grafu. Detaljnom evaluacijom navedenih algoritama, teorijska složenost je potvrđena, i izmerena su prosečna ubrzanja koja se dobijaju paralelizacijom sa 2, 4 i 8 procesora.

Navedeni algoritmi su implementirani u programskom jeziku C++, zajedno sa grafičkim interfejsom implementiranim pomoću programskih jezika Cython, Python i biblioteke PyQt5. Kod je javno dostupan na platformi Github, sa licencom otvorenog koda.

Dokazano je u radu da izložena procedura za povezivanje Hamiltonovog puta sa ciklusom zahteva najviše dva poziva odgovarajuće *next* funkcije. Moguće polje daljeg razvoja je nalaženje bolje procedure koja će smanjiti broj poziva odgovarajuće

next funkcije, što bi moglo dovesti do značajnog ubrzanja izloženih algoritama. Takođe, verujemo da se korišćenjem ovih rezultata mogu otkriti algoritmi za nalaženje Hamiltonovih puteva i ciklusa u grafovima u obliku drugih slova latinice.

Bibliografija

- [1] https://cython.org/.
- [2] https://pypi.org/project/pyqt5/.
- [3] Shao Dong Chen, Hong Shen, and Rodney Topor. An efficient algorithm for constructing hamiltonian paths in meshes. *Parallel Computing*, 28(9):1293–1305, 2002.
- [4] Alon Itai, Christos H. Papadimitrou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid graphs. Society for Industrial and Applied Mathematics, 11, 1982.
- [5] Fatemeh Keshavarz-Kohjerdi and Alireza Bagheri. Hamiltonian paths in some classes of grid graphs. Hindawi Publishing Corporation, Journal of Applied Mathematics, 2012, 2012.
- [6] Brigitte Plateau and Denis Trystam. Optimal total exchange for a 3-D torus of processors. 42(2):95–102, May 1992.
- [7] A. N. M. Salman. Contributions to graph theory. *Ph.D. thesis, University of Twente*, 2005.

Biografija autora

Uroš Ševkušić rođen je 22. novembra 1999. godine u Beogradu. Osnovne studije završio je na Matematičkom fakultetu Univerziteta u Beogradu, na smeru Matematika, modulu Računarstvo i informatika 2022. godine, sa prosečnom ocenom 8.725. Trenutno je student master akademskih studija na istom fakultetu.

Pored formalnog obrazovanja, Uroš voli da čita naučne radove i stiče znanja na internet kursevima iz raznih naučnih oblasti. Glavna interesovanja su mu algebra, matematička logika, validacija i verifikacija softvera, objektno-orijentisani dizajn (posebno design patterns), strukture podataka, kvantno izračunavanje, računarska grafika, kriptografija i bezbednost na internetu.