1 Pre-talk question.

Let $Y_1(N)/\mathbb{F}_p$ with (p, N) = 1 be the level N modular curve which is the moduli space of elliptic curves with level structure.

Recall that an elliptic curve E/\mathbb{F}_p is ordinary if of the equivalent properties hold,

- (a) $E[p](\overline{\mathbb{F}_p}) \cong \mathbb{Z}/p\mathbb{Z}$
- (b) $E[p^n](\overline{\mathbb{F}_p}) \cong \mathbb{Z}/p^n\mathbb{Z}$
- (c) $E_{\overline{\mathbb{F}_p}}[p^{\infty}] \cong \mathbb{Q}_p/\mathbb{Z}_{[} \oplus \mu_{p^{\infty}}$

Otherwise E is supersingular. The locus $Y_1(N)^{\text{ord}} \subset Y_1(N)$ is open. We cannot expect,

$$X = \mathcal{E}[p^{\infty}]/Y_1(N)^{\mathrm{ord}}$$

to be étale locally isomorphic to $\mathbb{Q}_p/\mathbb{Z}_p \oplus \mu_{p^{\infty}}$. However, there is an exact sequence,

$$0 \longrightarrow X^1 \longrightarrow X \longrightarrow X^0 \longrightarrow 0$$

where X^1 is multiplicative and X^0 is étale (SOMTHING?)

We define the Igusa variety,

$$IG^{\mathrm{ord}}$$

as the moduli space of isomorphisms $X^0 \xrightarrow{\sim} \mathbb{Q}_p/\mathbb{Z}_p$ and $X^1 \xrightarrow{\sim} \mu_{p^{\infty}}$. Them

$$IG^{\operatorname{ord}} = \varprojlim IG_p^{\operatorname{ord}}$$

Then IG^{ord} is a $\mathbb{Z}_p^{\times} \times \mathbb{Z}_p^{\times}$ pro-étale torsor.

Remark. Why is this useful? We can lift $Y_1(N)^{\text{ord}}$ to a formal scheme over \mathbb{Z}_p then IG^{ord} lifts to a torsor over the formal scheme $\mathcal{IG}^{\text{ord}}$. Sections of this torsor are used to define p-adic modular forms. Indeed, p-adic modular forms (a la Katz or Hidas) are exactly sections of the lifted Igusa variety.

Theorem 1.0.1 (Igusa). $\pi_0(IG^{\text{ord}}) \cong \mathbb{Z}_p^{\times}$ equivariantly for the $\mathbb{Z}_p^{\times} \times \mathbb{Z}_p^{\times}$ action via $(a,b) \mapsto ab^{-1}$.

Let $\mathcal{A}_{g,N}$ be the moduli space of principally polarized abeilain varieties and let Σ be a fixed polarized p-divisoble group. Then $C_{\Sigma} \subset \mathcal{A}_{g,N}$ consisting of those \mathbb{F}_p -points A such that $A[p^{\infty}] \cong C_{\Sigma}$ compatibly wit hthe polarisations up to a \mathbb{Z}_p^{\times} -scalar.

Theorem 1.0.2 (Oort). C_{Σ} is locally closed, smooth, equidimensional and there is an Igusa variety $IG_{\Sigma} \to C_{\Sigma}$ and this is an Aut (Σ)-torsor.

Theorem 1.0.3 (Chai-Oort). If Σ is not supersingular, then C_{Σ} is connected and $\pi_0(IG_{\Sigma}) \cong \mathbb{Z}_p^{\times}$.

Let (G, X) be a Shimura datum of Hodge type σ and p > 2 a prime where $G_{\mathbb{Q}_p}$ is unramified $U^p \subset G(\mathbb{A}_f^p)$ a compact open $U_p \subset G(\mathbb{Q}_p)$ hyperspecial. We let,

$$\mathfrak{Sh}_f/\overline{\mathbb{F}_p}$$

be the special fiver of the canonical integral model (exists by Kisin). Then we also get,

$$C_{\Sigma}\subset\mathfrak{Sh}_{G}$$

locally closed, smooth (Kisin) and Igusa varieties,

$$IG_{\Sigma} \to C_{\Sigma}$$

Then IG_{Σ} is a torsor for some profinite group.

Theorem 1.0.4. Assume G^{der} is simply connected, G^{ab} is \mathbb{Q} -simple, and that $p \not\mid W_G$ where W_G is the Weil group. If C_{Σ} is not contained in the basis locus,

$$\pi_0(IG_\Sigma) \cong \pi_0(\mathfrak{Sh}_G) \times G^{\mathrm{ab}}(\mathbb{Z}_p)$$

Remark. If $C_{\Sigma} \subset \mathfrak{Sh}_{G_U}$ base U then IG_{Σ} is 0-dimensional. Some results obtained by Knet-Shing using different methods such as asymtotic point counts.

Remark. $IG_{\Sigma} \to C_{\Sigma}$ is a profinite H_{Σ} -torsor so

$$\pi_0(C_{\Sigma}) = \pi_0(IG_{\Sigma})/H_{\Sigma} = \pi_0(\mathfrak{Sh}_{G_{\sigma}}) \times \frac{G^{\mathrm{ab}}(\mathbb{Z}_p)}{H_{\Sigma}}$$