This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Chip ant nna

Patent Number:

EP0762539

Publication date:

1997-03-12

Inventor(s):

TSURU TERUHISA (JP); MANDAI HARUFUMI (JP); SHIROKI KOJI (JP); ASAKURA

KENJI (JP)

Applicant(s)::

MURATA MANUFACTURING CO (JP)

Requested Patent:

☐ JP90<u>55618</u>

Application

Number:

EP19960113098 19960814

Priority Number(s): JP19950209706 19950817

IPC Classification: H01Q13/20

EC Classification:

H01Q1/36B, H01Q1/38, H01Q13/20C

Equivalents:

Abstract

A chip antenna (10) exhibiting directivity to a plurality of planes of polarization and a wide bandwidth, which comprises a substrate (11) either of a dielectric material or a magnetic material, at least one conductor (14) meanderingly formed on the surface of the substrate (11) and/or inside the substrate and having at least one change of direction, e.g., a corner, and at least one feeding terminal (15) provided on the surface of the substrate (11) for applying a voltage to the conductor. The chip antenna further comprises at least one

fixing terminal (16) to fix the substrate (11) to a surface of a mounting board.

Data supplied from the esp@cenet database - I2

U-308

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-55618

(43)公開日 平成9年(1997)2月25日

(51) Int.Cl. ⁸		識別記号	庁内整理番号	F I		技術表示箇所			
H01Q	7/00			H01Q	7/00				
	1/36				1/36				
	11/04				11/04			•	
				· 接查替求	-fatheli	請求項の数 2	0 T	(A 0	: 1551)
				水相互合	水明水	南水块0数2	<u> </u>	(± (,只
(21)出顧書号		特額平7-209706	(71)出顧人	000006231					
•		•			株式会社	上村田製作所			
(22)出顧日		平成7年(1995)8月		京都府北	是岡京市天神二	丁目26種	10号		
		•		(72)発明者	44 2000	X			
					京都府县	曼岡京市天神二	丁目26番	10号	株式
			•		会社村E	田製作所内	•		
				(72)発明者	萬代 清	全文			
•						長岡京市天神二 ⁷ 日製作所内	丁目26 種	10号	株式

(72)発明者

白木 浩司

会社村田製作所内

最終頁に続く

(54) 【発明の名称】 チップアンテナ

(57)【要約】

【目的】 複数の偏波面に対する指向性と広い周波数帯 域幅を有するチップアンテナを提供する

【構成】 チップアンテナ10は、酸化チタン、酸化バリウムを主成分とする誘電材料からなり、複数に積層してなる直方体の基体11の一方主面111上に、銅あるいは銅合金等からなり、一端が給電部12で、他端が自由端13の導体14を10か所のコーナを有するミアンダ形状に、印刷、蒸着、貼り合わせ、あるいはメッキすることにより形成される。この際、ミアンダ状の導体14に直方体の基体11の一方の短い側面から相対する他方の短い側面にかけて設けられている。そして、基体11の一方の端面112には、導体14の給電部12が接続される給電用端子15が形成され、他方の端面113には、チップアンテナ10を外部回路が設けられた実装基板(図示せず)等に固定するための固定用端子16が形成されている。

京都府長岡京市天神二丁目26番10号 株式

K-229

(2)

特開平9-55618

1

【特許請求の範囲】

01-12-14 11:16

01 12/14 11:20

【請求項1】 誘電材料及び磁性材料のいずれか一方からなる基体と、該基体の表面及び内部の少なくとも一方に、少なくとも1つのコーナーを有するミアンダ状に形成された少なくとも1つの導体とを備え、

前記基体表面に、前記導体に電圧を印加するための少な くとも1つの給電用端子を備えたことを特徴とするチッ プアンテナ。

【請求項2】 前記基体表面に、前記基体を実装基板表面に固定するための少なくとも1つの固定用端子を備え 10 たことを特徴とする請求項1に記載のチップアンテナ。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、チップアンテナに 関し、特に、移動体通信用及びローカルエリアネットワ ーク (LAN) 用のチップアンテナに関する。

[0002]

【従来の技術】チップアンテナの従来例としては、例えば電子情報通信学会編"電子情報通信ハンドブック"

(オーム社、昭和63年3月30日) 第1分冊pp13. 20 53" マイクロストリップアンテナ"に示されたものが ある。

【0003】図10は、上述の文献に示された従来のマイクロストリップアンテナの斜視図である。このマイクロストリップアンテナ1は誘電体基板2を有しており、誘電体基板2の表面には複数のコーナーを有する、すなわちミアンダ状をしたストリップ導体3が、裏面には接地電極4が設けられている。この際、ストリップ導体3は誘電体基板2及び接地電極4と共にマイクロストリップ線路を構成している。

[0004]

【発明が解決しようとする課題】ところが、上記の従来のマイクロストリップアンテナ1においては、放射する電波の偏波が単一であり、偏波面が異なる複数電波を放射することができない、すなわち指向性が誘電体基板2の上面方向のみであるという問題点があった。

【0005】本発明の目的は、このような問題点を解消するためになされたものであり、複数の偏波面に対する 指向性と広い周波数帯域幅を有するチップアンテナを提供することを目的とする。

[0006]

【課題を解決するための手段】上述する問題点を解決するため本発明は、誘電材料あるいは磁性材料のいずれか一方からなる基体と、該基体の表面及び内部の少なくとも一方に、少なくとも1つのコーナーを有するミアンダ状に形成された少なくとも1つの導体とを備え、前記基体表面に、前記導体に電圧を印加するための少なくとも1つの給電用端子を備えたことを特徴とする。

【0007】また、前記基体表面に、前記基体を実装基 利得板表面に固定するための少なくとも1つの固定用端子を 50 る。

備えたことを特徴とする。

【0008】これにより、請求項1のチップアンテナによれば、誘電材料あるいは磁性材料のいずれか一方で形成された基体を用いることで、伝搬速度が遅くなり、波長短縮が生じるため、誘電材料あるいは磁性材料の比誘電率を ϵ とすると、実効線路長は、 ϵ $^{1/2}$ 倍になる。

2

【0009】 請求項2のチップアンテナによれば、固定 用端子を設けているため、表面実装基板に安定して固定 することが可能となる。

[0010]

【発明の実施の形態】以下、図面を参照して本発明の実施例を説明する。なお、各実施例中において、第1の実施例と同一もしくは同等の部分には同一番号を付し、詳細な説明は省略する。

【0011】図1に本発明に係るチップアンテナの第1の実施例の斜視図を示す。チップアンテナ10は、酸化チタン、酸化バリウムを主成分とする誘電材料からなり、複数に積層してなる直方体の基体11の一方主面11上に、銅あるいは銅合金等からなり、一端が給電端12で、他端が自由端13の導体14を10か所のコーナーを有するミアンダ状に、印刷、蒸着、貼り合わせ、あるいはメッキすることにより形成する。この際、ミアンダ状の導体14は、直方体の基体11の相対する一方の側面から他方の側面にかけて設けられている。

【0012】また、基体11の一方の端面112には、 導体14の給電端12が接続される給電用端子15が形成され、他方の端面113には、チップアンテナ10を 外部回路が設けられた実装基板(図示せず)等に固定するための固定用端子16が形成されている。

30 【0013】このように構成したチップアンテナ10の 反射損失特性及び感度を測定した。このときの反射損失 特性を図6に、x軸方向の主偏波に対する感度を図7 に、y軸方向の主偏波に対する感度を図8に示す。

【0014】図6の反射損失特性の測定結果から、チップアンテナ10の帯域幅Hが140MHzであり、従来のマイクロストリップアンテナ1の帯域幅である20MHzに対して7倍程度広くなっていることが立証された。また、図7、図8の感度の測定結果から、チップアンテナ10が、x軸及びy軸方向の主傷波に対して感度を有し、無指向性に近い形で機能していることが立証された。

【0015】以上のように、第1の実施例では、チップアンテナ10が、x軸及びy軸方向の主偏被に対して、無指向性に近い形で機能しているため、複数の偏波面に対する指向性を有することが可能である。

【0016】また、基体11の一方主面111上に、導体14を10か所のコーナーを有するミアンダ状に設けるため、線路長を長くすることが可能となる。従って、利得を低下させることなく帯域幅を広くすることができ

(3)

特關平9-55618

U-308

【0017】さらに、基体11を誘電材料で構成するこ とで、伝搬速度が遅くなり、波長短縮が生じるため、基 体11の比誘電率をεとすると、実効線路長はε^{1/2} 倍 になり、実行線路長がさらに長くなる。従って、電流分 布の領域が増えるため、放射量する電波の量が多くな り、アンテナの利得を向上させることができ、帯域幅を 広くすることができる。

【0018】また、逆に、従来のチップアンテナと同様 の特性にした場合、線路長は $\epsilon^{1/2}$ 分の1になるため、

チップアンテナLQを小型化することが可能となる。 【0019】図2及び図3に本発明に係るチップアンテ ナの第2の実施例の斜視図及び分解斜視図を示す。チッ プアンテナ20は、酸化チタン、酸化パリウムを主成分 とする誘電材料からなり、複数に積層してなる直方体の 基体21 甲に、銅あるいは銅合金等からなり、一端が給 電端22で、他端が自由端23の導体24を10か所の コーナーを有するミアンダ状に設けることにより形成す る。この際、ミアンダ状の導体24は、第1の実施例と 同様に、直方体の基体 2 1 の相対する一方の側面から他 方の側面にかけて設けられている。

【0020】また、第1の実施例と同様に、基体21の 一方の端面211には、導体24の給電端22が接続さ れる給電用端子15が形成され、他方の端面212に は、チップアンテナ20を外部回路が設けられた実装基 板(図示せず)等に固定するための固定用端子16が形 成されている。

【0021】ここで、チップアンテナ20は、基体21 を構成するシート層216の表面に、印刷、蒸着、貼り

合わせ、あるいはメッキにより、ミアンダ状の導体24 を設けた後、シート層21a~21cを積層することに より形成される。

【0022】以上のように、第2の実施例では、基体2 1内部に導体24を封止して形成しているため、第2の 実施例と比較して、波長がさらに短縮でき、チップアン テナ20の実効線路長がさらに長くなる。従って、利得 をさらに向上させることができ、帯域幅をさらに広くす ることができる。

【〇〇23】また、積層構造によりチップアンテナ20 を形成しているため、小形で安価なチップアンテナを形 成することができる。

【0024】上述のように、第1及び第2の実施例で は、基体11に酸化チタン、酸化パリウムを主成分とす る材料を用いた場合を示したが、他の誘電材料及び磁性 材料を用いてもよい。

【0025】次に、表1に基体11に誘電材料及び磁性 材料を用いた場合のチップアンテナ10の共振点におけ る比帯域幅を示す。ここで、材料No、1~9は銹電材 料であり、材料No. 10~12は磁性材料である。な お、比帯域幅は、比帯域幅 [%] =(帯域幅 [GHz] /中心周波数 [GHz]) ×100によって求めた値で ある。また、このチップアンテナ10は、導体14のゴ ーナー数及び長さを調整することにより、0.24GH: z用及び0.82GHz用として作製した。

[0026]

【表1】

材料No.	組成	比帯域幅		
		0. 24GHz	0. 82GHz	
1	Bi-Pb-Ba-Nd-Ti-0	1.1	1.0	
2	Pb-Ba-Nd-Ti-0	l. 7	1.5	
3	Ba-Nd-Ti-0	2.4	2. 3	
4	Nd-Ti-0	2. 9	2. 7	
5	Mg-Ca-Ti-O	3. l	3. 0	
. 6	Hg-Si-O	3. 5	9. 3	
7	Ba-Al-Si-O	3. 8	3.4	
8	(Ba-A1-Si-0)+テフロン樹脂	4.1	3.7	
8	デフロン樹脂	4. 5	4.3	
10	Ni/Co/Fe/0=0.47/0.06/0.94/4.00	2. 5	2.4	
11	Ni/Co/Fe/0=0.45/0.08/0.94/4.00	8.0	2. 7	
12	(Ni/Co/Fe/0=0.45/0.08/0.94/4.00)++7ロソ樹脂	3. 2	3. 0	

【0027】これらの比帯域幅の測定結果から、チップ アンテナ10の基体11に誘電材料あるいは磁性材料の いずれを用いても、ほぼ同等のアンテナ特性、すなわち 比帯域幅が得られることが立証された。

【0028】なお、第3の実施例として、図4及び図5

に示すように、チップアンテナ30の基体31を構成す るシート層32a~32cの表面に設けた導電パターン 33a~33cをピアホール34で接続して導体35を 形成してもよい。

【0029】また、第1、第2の実施例では、ミアンダ

特願平9-55618

状が略矩形の場合を説明したが、図9(a)及び図9 (b) に示すようにミアンダ状が略波形状あるいは略の こぎり歯形状でもよい。

【0030】さらに、第1、第2の実施例では、基体の 内部あるいは表面にミアンダ状の導体を設ける場合を説 明したが、基体内部に空洞を設け、導体を空洞の内表面 にミアンダ状に形成してもよい。この場合、空洞の大き さを調整することにより、共振周波数の調整が可能とな る。

状の導体のコーナー数が10個の場合を説明したが、線 路長に応じて1つ以上選択すればよい。

【0032】さらに、第1~第3の実施例では、ミアン ダ状の導体が相対する一方の側面から他方の側面にかけ て形成される場合について説明したが、ミアンダ状に形 成されていればどの方向に形成されていてもよい。

【0033】また、第1、第2の実施例では、導体が1 本の場合を説明したが、複数本形成してもよい。

【0034】さらに、第1、第2の実施例では、導体が 基体の表面あるいは内部に形成される場合を説明した が、表面及び内部の両方に形成してもよい。

【0035】また、第1の実施例では、基体は複数のシ 一ト層を積層することによって形成される場合を説明し たが、1個の単体で形成されてもよい。

【0036】さらに、第2の実施例では、複数のシート 層を積層することにより、基体の内部にミアンダ状の導 体を設ける場合を説明したが、基体の表面にミアンダ状 の導体を設けた後、誘電材料あるいは磁性材料からなる 他の基体で封止することにより、基体内部にミアンダ状 の導体を形成してもよい。

【0037】また、第1、第2の実施例では、導体とし て銅あるいは銅合金を用いる場合を説明したが、金、 銀、白金、あるいは、パラジウム等、低抵抗導体であれ ばどのような材料でもよい。

【0038】さらに、第1、第2の実施例では、基体が 直方体の場合を説明したが、球体、立方体、円柱、円 錐、あるいは、角錐でもよい。

【0039】また、給電用端子、固定用端子の位置は、 本発明の実施にあたって必須要件となるものではない。

【発明の効果】請求項1のチップアンテナによれば、チ ップアンテナが、x軸及びy軸方向の主偏波に対して、 無指向性に近い形で機能しているため、複数の偏波面に 対する指向性を有することが可能である。

6

【0041】また、基体の表面あるいは内部の少なくと も一方に、導体を少なくとも1つのコーナーを有するミ アンダ状に設けるため、線路長を長くすることが可能と なる。従って、利得を低下させることなく帯域幅を広く することができる。

【0042】さらに、誘電材料あるいは磁性材料からな る基体を用いることで伝搬速度が遅くなり、波長短縮が 生じるため、基体の比誘電率をことすると、実効線路長 は $\epsilon^{1/2}$ 倍になり、実行線路長が長くなる。従って、電 【0031】また、第1、第2の実施例では、ミアンダ 10 流分布の領域が増えるため、放射量する電波の量が多く なり、アンテナの利得をさらに向上させることができ、 構域幅をさらに広くすることができる。

> 【0043】また、逆に、従来のチップアンテナと同様 の特性にした場合、線路長は $\epsilon^{1/2}$ 分の1になるため、 チップアンテナを小型化することが可能となる。

> 【0044】 請求項2のチップアンテナによれば、固定 用端子を設けているため、表面実装時に安定して実装す ることができる。

【図面の簡単な説明】

【図1】本発明に係るチップアンテナの第1の実施例の 斜視図である。

【図2】本発明に係るチップアンテナの第2の実施例の 斜視図である。

【図3】図2のチップアンテナの分解斜視図である。

【図4】本発明に係るチップアンテナの第3の実施例の 断面図である。

【図5】図4のチップアンテナの分解斜視図である。

【図6】図1のチップアンテナの反射損失特性である。

【図7】図1のチップアンテナのx軸方向の交差偏波に 30 対する感度である。

【図8】図1のチップアンテナのy軸方向の交差偏波に 対する感度である。

【図9】本発明に係るチップアンテナのミアンダ状の導 体の別の実施例であり、(a)は略波形状、(b)は略 のこぎり歯形状である。

【図10】従来のチップアンテナの断面図である。

【符号の説明】

1.0, 20, 30 チップアンテナ

11, 21, 31 基体

12,22 給電端

> 13,23 自由端

14, 24, 35 遺体

給電用端子 15

16 . 固定用端子 (5)

特開平9-55618

[図1]

[図2]

[図4]

【図9】

20 21c 21c 21b

22

24

【図3】

[図5]

[図10]

[図6]

7/1/1/J

(6)

特開平9-55618

[図8]

フロントページの続き

(72) 発明者 朝倉 健二 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所內