UPPSALA UNIVERSITET Matematiska Institutionen Ingemar Kaj

 $\begin{array}{c} {\rm PROV~I~MATEMATIK}\\ {\rm Sannolikhet~och~statistik,~1MS321}\\ {\rm 2016\text{-}08\text{-}15} \end{array}$

Hjälpmedel: Räknedosa, formelsamling och tabellsamling för kursen 1MS321. För betygen 3, 4, resp 5 krävs normalt minst 18, 25, resp 32 poäng inkl ev bonuspoäng.

- 1. Betrakta två oberoende normalfördelade stokastiska variabler X och Y. Antag att X har väntevärde -4 och varians 5 medan Y har väntevärde -2 och varians 4. Beräkna sannolikheten att X är större än Y.
- 2. Antag att X och Y är oberoende stokastiska variabler som är Poisson-fördelade enligt

$$X \sim \text{Po}(m_1 - m_2), \quad Y \sim \text{Po}(m_1 + m_2),$$

där m_1 och m_2 är okända parametrar sådana att $m_1 > m_2$.

- a) Visa att $\widehat{m}_1 = (X + Y)/2$ är en väntevärdesriktig skattning av m_1 . (2p)
- b) Om vi har observationer x av X och y av Y, ange medelfelet för \widehat{m}_1 (2p)
- c) Ange en väntevärdesriktig skattning av m_2 och beräkna dess medelfel. (2p)
- 3. Simulera fem observationer från en slumpvariabel X med täthetsfunktion

$$f(x) = \frac{x}{2}, \quad 0 \le x \le 2,$$

och f(x) = 0 för övrigt, genom att utgå från följande fem slumptal från en likformig fördelning på intervallet [0,1]:

$$0.8147$$
, 0.9058 , 0.1270 , 0.9134 , 0.6324 .

Beräkna också väntevärdet E(X) och jämför med medelvärdet av de simulerade observationerna. (5p)

- 4. Ett nätverksprotokoll överför paket som vardera består av en 20 bytes kontrolldel (header) och en datadel (payload) av varierande storlek. Vi antar att mängden data i olika paket kan antas oberoende och av storlek 80 bytes med sannolikhet 0.2, 200 bytes med sannolikhet 0.7 och 1500 bytes med sannolikhet 0.1.
 - a) Beräkna väntevärdet av den totala storleken för ett paket. (1p)
 - b) Beräkna protokollets *effektivitet*, dvs kvoten mellan förväntad datamängd och förväntad paketstorlek. (1p)
 - c) Beräkna standardavvikelsen av den totala storleken för ett paket. (2p)
 - d) Beräkna approximativt sannolikheten att totala storleken av 3 000 paket inte överstiger 1 Mbyte. (2p)
- 5. För Markovkedjan i diskret tid med tillstånd $\{0,1,2\}$ och övergångsmatris

$$\mathbf{P} = \begin{pmatrix} 3/4 & 0 & 1/4 \\ \star & 1/3 & 0 \\ 1/4 & 1/2 & \star \star \end{pmatrix}$$

- a) ange de båda sannolikheter * och ** som saknas i matrisen; (1p)
- b) rita upp Markovkedjans övergångsdiagram; (1p)
- c) beräkna Markovkedjans stationära fördelning. (4p)

- 6. Vi har mätdata x_1, \ldots, x_n av söktider vid datalagring, där n = 16, $\bar{x} = 212.4$, s = 18.45 (enhet μs). Antag att värdena kommer från en $N(m, \sigma^2)$ normalfördelning med okänd standardavvikelse. Bilda ett 95% konfidensintervall för väntevärdet m. Jämför intervallet med det motsvarande intervall man får om vi istället antar att variansen är känd, $\sigma^2 = 400$.
- 7. Vi antar att olika användare loggar in på ett socialt web-forum vid tidpunkter som beskrivs an en Poissonprocess med intensitet $\lambda=1/10$ per minut. Deltagarna antas vara aktiva under oberoende tidsperioder (tid mellan inloggning och utloggning) som är exponentialfördelade med väntevärde 30 minuter. Systemet kan antas vara i jämvikt (dvs vi kan bortse från en viss starttid t=0).
 - a) Bestäm sannolikheten att minst en inloggning sker under en period på 15 minuter. (2p)
 - b) I den modell som beskrivs, vad är fördelningen av antal aktiva deltagare? (2p)
 - c) Om en användare loggar in vid en godtycklig tidpunkt, vad är sannolikheten att ingen annan deltagare är inloggad? (2p)