CS 20 Laboratory 1: Introduction to Electric Circuits

1. Resistor Color Bands

Label	Resistor Color Bands	Computed Resistance
R1	Brown, Orange, Brown, Gold	130 Ω, 5%
R2	Red, Red, Brown, Gold	220 Ω, 5%
R3	Green, Blue, Brown, Gold	560 Ω, 5%
R4	Brown, Red, Red, Gold	1200 Ω, 5%

2. Series Circuits

(a) Since the circuit is in series,
$$R_{eff}=R_1+R_2+\cdots+R_n$$

$$R_{eff}=R_1+R_2+R_3=130~\Omega+~220~\Omega+~560~\Omega=~910~\Omega$$

(b) In the previous item, the resistance is given by $R_{eff}=910~\Omega$ and voltage is 5 V. For V_1 :

$$V_1 = \left(\frac{R_1}{R_{eff}}\right)(V) = \left(\frac{130 \,\Omega}{910 \,\Omega}\right)(5V) = 0.7142857143 \,V \approx 0.714 \,V \,or \,714.286 \,mV$$

For V_2 :

$$V_2 = \left(\frac{R_2}{R_{eff}}\right)(V) = \left(\frac{220 \,\Omega}{910 \,\Omega}\right)(5V) = 1.208791209 \,V \approx 1.209 \,V$$

For V_3 :

$$V_3 = \left(\frac{R_3}{R_{eff}}\right)(V) = \left(\frac{560 \,\Omega}{910 \,\Omega}\right)(5V) = 3.076923077 \,V \approx 3.077 \,V$$

(c) To compute for the theoretical current through the circuit, use Ohm's Law:

$$I = \frac{V}{R} = \frac{5 V}{910 \Omega} = 5.94505495 \times 10^{-3} A \approx 5.495 \, mA$$

3. Parallel Circuits

(a) Since the circuit is in parallel, $\frac{1}{R_{eff}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$

$$\frac{1}{R_{eff}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{130 \Omega} + \frac{1}{220 \Omega} + \frac{1}{560 \Omega} = \frac{1123}{80080} \Omega$$

$$R_{eff} = \left(\frac{1}{R_{eff}}\right)^{-1} = \left(\frac{1123}{80080}\Omega\right)^{-1} = 71.30899377 \Omega \approx 71.309 \Omega$$

voltage source I = 70.117 mA Vd = 5 V (R = 71.309 Ω) P = -350.587 mW

(b) In the previous item, the resistance is given by $R_{eff} \approx 71.309~\Omega$ and voltage is 5V.

To solve the theoretical current of each resistor, compute first for the current through the entire network:

Using Ohm's Law, $I = \frac{V}{R} = \frac{5V}{71.309 \,\Omega} = 0.07011738262 \, A \approx 0.07A \, or \, 70.117 \, mA$ For i_1 :

$$i_1 = \left(\frac{\frac{1}{R_1}}{\frac{1}{R_{eff}}}\right)(i) = \left(\frac{\frac{1}{130 \Omega}}{\frac{1}{71.309 \Omega}}\right)(0.07A) = 0.03846153846 A \approx 0.0385 A \text{ or } 38.462 \text{ mA}$$

resistor I = 38.462 mA Vd = 5 V R = 130 Ω P = 192.308 mW For i_2 :

$$i_2 = \left(\frac{\frac{1}{R_2}}{\frac{1}{R_{eff}}}\right)(i) = \left(\frac{\frac{1}{220 \Omega}}{\frac{1}{71.309 \Omega}}\right)(0.07A) = 0.02272727373 A \approx 0.0227 A \text{ or } 22.727 \text{ mA}$$

resistor I = 22.727 mA Vd = 5 V R = 220 Ω P = 113.636 mW

For i_3 :

$$i_3 = \left(\frac{\frac{1}{R_3}}{\frac{1}{R_{eff}}}\right)(i) = \left(\frac{\frac{1}{560 \Omega}}{\frac{1}{71.309 \Omega}}\right)(0.07A) = 8.928571429 \times 10^{-3} A \approx 8.929 \, mA$$

resistor I = 8.929 mA Vd = 5 V R = 560 Ω P = 44.643 mW (c) To compute for the theoretical voltage through the circuit, use Ohm's Law:

$$V = IR = (0.07A)(71.309~\Omega) = 5V$$

voltage source L = 70.117 mA Vd = 5 V (R = 71.309 Ω) P = -350.587 mW