Greek Characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
delta	δ	limit definition
epsilon	ϵ or ϵ	limit definition
theta	θ or ϑ	angle
pi	π or π	circular constant
phi	ϕ or φ	angle, constant

Named Sets

empty set	Ø
real numbers	R
ordered pairs	\mathbf{R}^2
integers	Z
positive integers	$\mathbf{Z}_{>0}$
positive real numbers	$\mathbf{R}_{>0}$

Set Symbols

Meaning	Symbol
is a member	€
subset	_
intersection	Ω
union	U
set minus	١

Intervals

For numbers *a* and *b*, we define the intervals:

$$(a, b) = \{x \in \mathbf{R} \mid a < x < b\}$$

$$[a, b) = \{x \in \mathbf{R} \mid a \le x < b\}$$

$$(a, b] = \{x \in \mathbf{R} \mid a < x \le b\}$$

$$[a, b] = \{x \in \mathbf{R} \mid a \le x \le b\}$$

Logic Symbols

Meaning	Symbol
negation	7
and	٨
or	V
implies	\Rightarrow
equivalent	≡
iff	\iff
for all	A
there exists	3

Exponents

For $a, b > 0, x \in \mathbb{R}$, and m, n real:

$$a^{0} = 1,$$
 $0^{a} = 0$
 $1^{a} = 1,$ $a^{n}a^{m} = a^{n+m}$
 $a^{n}/a^{m} = a^{n-m},$ $(a^{n})^{m} = a^{n\cdot m}$
 $a^{-m} = 1/a^{m},$ $(a/b)^{m} = a^{m}/b^{m}$
 $\sqrt{x^{2}} = |x|$

Trigonometric Identities

$$(\cos(x))^{2} + (\sin(x))^{2} = 1$$

$$2(\cos(x))^{2} = 1 + \cos(2x)$$

$$2(\sin(x))^{2} = 1 - \cos(2x)$$

$$(\cos(x))^{2} - (\sin(x))^{2} = \cos(2x)$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\operatorname{arccot}(x) = \pi/2 - \arctan(x), \operatorname{dom}(\operatorname{arccot}) = (0,\pi)$$

$$\operatorname{arccsc}(x) = \arcsin(1/x)$$

$$\operatorname{arccsc}(x) = \arccos(1/x)$$

$$\operatorname{arcsec}(x) = \arccos(1/x)$$

$$\operatorname{arcsin}(x) + \operatorname{arccos}(x) = \pi/2$$

$$\operatorname{arcsec}(x) + \operatorname{arccsc}(x) = \pi/2$$

Limits

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \qquad \lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0$$

$$\lim_{x \to \infty} e^x = \infty \qquad \lim_{x \to -\infty} e^x = 0$$

$$\lim_{x \to \infty} \ln(x) = \infty \qquad \lim_{x \to 0^+} \ln(x) = -\infty$$

Derivatives

Specific cases

F(x)	F'(x)
$\cos(x)$	$-\sin(x)$
sin(x)	$\cos(x)$
tan(x)	$sec(x)^2$
sec(x)	sec(x) tan(x)
$\csc(x)$	$-\cot(x)\csc(x)$
cot(x)	$-\csc(x)^2$
arccos(x)	$-1/\sqrt{1-x^2}$
arcsin(x)	$1/\sqrt{1-x^2}$
arctan(x)	$1/(x^2+1)$
cosh(x)	sinh(x)
sinh(x)	cosh(x)
tanh(x)	$1/\cosh(x)^2$
arccosh(x)	$1/\sqrt{x^2-1}$
arcsinh(x)	$1/\sqrt{1+x^2}$
arctanh(x)	$1/(1-x^2)$
$\exp(x)$	$\exp(x)$
ln(x)	1/ <i>x</i>

General Cases

!	General Cases		
	F(x)	F'(x)	
	af(x) + bg(x)	af'(x) + bg'(x)	
	f(x)g(x)	f'(x)g(x) + f(x)g'(x)	
	1/g(x)	$-g'(x)/g(x)^2$	
	f(x)/g(x)	$(g(x)f'(x)-f(x)g'(x))/g(x)^2$	
	f(g(x))	g'(x)f'(g(x))	
	$f^{-1\prime}(x)$	$1/f'(f^{-1}(x))$	

Antiderivatives

$$\int a \, dx = ax$$

$$\int x^a \, dx = \frac{1}{1+a} x^{a+1}, \quad \text{if } a \neq -1$$

$$\int \frac{1}{x} \, dx = \ln|x|$$

$$\int \cos(x) \, dx = \sin(x)$$

$$\int \sin(x) \, dx = -\cos(x)$$

$$\int \tan(x) \, dx = \ln|\sec(x)|$$

$$\int \sec(x) \, dx = \ln|\tan(x) + \sec(x)|$$

$$\int \csc(x) \, dx = -\ln|\csc(x) + \cot(x)|$$

$$\int \cot(x) \, dx = \ln|\sin(x)|$$

$$\int |x| \, dx = x|x|/2$$

Sums

For $k, m, n \in \mathbb{Z}_{>0}$

$$\sum_{k=0}^{n-1} 1 = n$$

$$\sum_{k=0}^{n-1} k = \frac{(n-1)n}{2}$$

$$\sum_{k=0}^{n-1} k^2 = \frac{(n-1)n(2n-1)}{6}$$

$$\sum_{k=0}^{n-1} x^k = \frac{1-x^n}{1-x}, \quad x \neq 1$$

Logarithms

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

Famous Triangles

The 30-60-90 triangle

The 45-45-90 triangle

Laws of Cosine & Sine

Law of cosine: $C^2 = A^2 + B^2 - 2AB\cos(\gamma)$ Law of sines: $\frac{\sin(\alpha)}{A} = \frac{\sin(\beta)}{B} = \frac{\sin(\gamma)}{C}$

Area: Area = $\frac{1}{2}hB = \frac{1}{2}AB\sin(\gamma)$

Hyperbolic Functions

 $2\cosh(x) = \exp(x) + \exp(-x)$

 $2\sinh(x) = \exp(x) - \exp(-x)$

tanh(x) = cosh(x)/sinh(x)

 $\cosh(x)^2 - \sinh(x)^2 = 1$

Volumes

Right Circular Cylinder

Volume: $V = \pi r^2 h$

Area: (not including circular ends)

 $A = 2\pi r h$

Cone

Volume: $V = \frac{1}{3}\pi r^2 h$

Area (not including circular base)

 $A = \pi r \sqrt{r^2 + h^2}$

Sphere

Area: $A = 4\pi r^2$ Volume: $V = \frac{4\pi}{3}r^3$

Unit Circle

Applications

Arclength of curve y = f(x) with $a \le x \le b$

$$= \int_a^b \sqrt{1 + f'(x)^2} \, \mathrm{d}x$$

For the region Q of the xy plane given by

$$Q = \{(x, y) \mid f(x) \le y \le g(x) \land a \le x \le b\},\$$

we have

Area(Q) =
$$\int_{a}^{b} g(x) - f(x) dx$$

Assuming $0 \le f(x)$ and rotating about the x-axis

$$Vol(Q) = \pi \int_{a}^{b} g(x)^{2} - f(x)^{2} dx$$

Assuming $0 \le a < b$ and rotating about the y-axis

$$Vol(Q) = 2\pi \int_{a}^{b} x(g(x) - f(x)) dx$$

Centroid

Area(Q)
$$\times \overline{x} = \int_{a}^{b} x (g(x) - f(x)) dx$$

Area(Q)
$$\times \overline{y} = \frac{1}{2} \int_{a}^{b} \left(g(x)^2 - f(x)^2 \right) dx$$

For the region Q of the xy plane given by

$$Q = \{(x, y) \mid f(y) \le x \le g(y) \land a \le y \le b\},\$$

interchange *x* and *y* in *all* the previous formulas.

Geometric series

$$\sum_{k=0}^{\infty} z^k = \begin{cases} \frac{1}{1-z} & z \in (-1,1) \\ \infty & z \in [1,\infty] \end{cases}.$$

When $z \in (-\infty, -1]$, the series $\sum_{k=0}^{\infty} z^k$ diverges.

Divergence Test

If $\lim_{k\to\infty} a_k \neq 0$, then the series $\sum a_k$ diverges.

P-series

The series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges when $p \in (1, \infty)$; otherwise it diverges.

Ratio Test

Let a be a sequence with $0 \notin \text{range}(a)$. Define $L = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|$.

- $L \in [0,1) \Longrightarrow \sum |a_k|$ converges.
- $L \in (1, \infty) \Longrightarrow \sum a_k$ diverges.

Limit Comparison Test

Let a and b be positive sequences. Define $L = \lim_{k \to \infty} \frac{a_k}{b_k}$.

- If $L \in \mathbb{R}_{>0}$ and $\sum a_k$ converges then $\sum b_k$ converges.
- If $L \in \mathbb{R}_{>0}$ and $\sum a_k$ diverges then $\sum a_k$ diverges.
- If $L = \text{and } \sum b_k$ converges, then $\sum a_k$ converges
- If $L = \infty$ and $\sum b_k$ diverges, then $\sum a_k$ diverges.

Alternating Series Test

Let a be a positive and eventually decreasing sequence. Then $\sum (-1)^k a_k$ converges iff $\lim_{k\to\infty} a_k=0$.

Taylor and MacLaurin Series

If a function F is infinitely differentiable at a, its Taylor series centered at a is

$$\sum_{k=0}^{\infty} \frac{F^{(k)}(a)}{k!} (x-a)^k.$$

When a is zero, the Taylor series is also known as the MacLaurin Series.

Polar to Cartesian

$$x = r\cos(\theta)$$

$$y = r \sin(\theta)$$

For r > 0 and $0 \le \theta < 2\pi$

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \begin{cases} 2\pi - \arccos(x/r) & \text{if } y < 0\\ \arccos(x/r) & \text{if } y \ge 0 \end{cases}$$

Integrate Powers of Trig

Let $m, n \in \mathbb{Z}_{\geq 0}$. Then

•
$$\int \cos(x)^{2m} \sin(x)^{2n} dx = \int \left(\frac{1 + \cos(2x)}{2}\right)^m \left(\frac{1 - \cos(2x)}{2}\right)^n dx$$

•
$$\int \cos(x)^{2m+1} \sin(x)^n dx = \int (1-z^2)^m z^n dz$$
, where $z = \cos(x)$

•
$$\int \cos(x)^m \sin(x)^{2n+1} dx = \int z^m (1-z^2)^n dz$$
, where $z = \sin(x)$

•
$$\int \sec(x)^n dx = \frac{1}{n-1} \sec(x)^{n-2} \tan(x) + \frac{n-2}{n-1} \int \sec(x)^{n-2} dx$$

•
$$\int \tan(x)^{2m+1} \sec(x)^n dx = \int (z^2 - 1)^n z^{n-1} dz$$
, where $z = \tan(x)$

•
$$\int \tan(x)^{2m} \sec(x)^n dx = \int (\sec(x)^2 - 1)^m \sec(x)^n dx$$

Trig Substitutions

- $\int F\left(x,\left(1-x^2\right)^{n/2}\right) \mathrm{d}x$, use $x=\sin(\vartheta)$, where $\vartheta \in [-\pi/2,\pi/2]$, then integrate $\int F\left(\sin(\vartheta),\cos(\vartheta)^n\right)\cos(\vartheta)\,\mathrm{d}\vartheta$
- $\int F\left(x, \left(1+x^2\right)^{n/2}\right) dx$, use $x = \sinh(\vartheta)$, where $\vartheta \in \mathbf{R}$, then integrate $\int F\left(\sinh(\vartheta), \cosh(\vartheta)^n\right) \cosh(\vartheta) d\vartheta$
- $\int F\left(x, \left(x^2 1\right)^{n/2}\right) dx$, use $x = \sec(\theta)$, then integrate $\int F(\sec(\theta), \tan(\theta)^n) \sec(\theta), \tan(\theta) d\theta$

Revised August 17, 2023. Barton Willis is the author of this work. This work is licensed under Attribution 4.0 International (CC BY 4.0) For the current version of this document, visit