Formal Methods – Assignment 1

28/03/2018

- 1. Prove that e is not rational.
- 2. Let $S(n) = 1 + 2 + 3 + \ldots = n(n+1)/2$. Let $C(n) = 1^3 + 2^3 + 3^3 + \ldots = (n^4 + 2n^3 + n^2)/4$. Prove by induction that $S(n)^2 = C(n)$ for every n.
- 3. Prove that if $2^n 1$ is prime, then n is prime.
- 4. Prove that:
 - i 5n + 4 is odd whenever n is odd. (Use Proof by Contradiction)
 - ii 3 divides $n^3 + 2n$ for all $n \in N$. (Use Proof by Induction)
- 5. Show that $2^{3n+1} + 5$ is always a multiple of 7. (using induction)
- 6. Show that in any group of n people, there are two who have an identical number of friends within the group.
- 7. Prove the following by contrapositive:
 - i An integer n is even if and only if n+1 is odd.
 - ii If n and m have the same parity then n+m is even.
 - iii If x^2 is even then x is even.
- 8. State the alphabet Σ for the following languages:

i
$$L=\Sigma^*=\{\varepsilon,0,1,00,01,10,11,000,001,010,011,...\}$$
 ii $L=\Sigma^+=\{a,aa,aaa,...\}$ iii $L=\Sigma^+=\{\varepsilon\}$

9. For each of the following languages, give three strings that are part of the language and three strings that are not part of the language. Assume the alphabet is $\{a, b\}$ in all the languages:

```
i \Sigma^*a\Sigma^*b\Sigma^*a\Sigma^* ii (\varepsilon \cup a)b
```

- 10. Prove that $(L^*)^* = L^*$ for any language L.
- 11. Of the following, select the language which has no pair of consecutive 1's $(\Sigma = \{0, 1\})$:
 - i $(0 \cup 10)^*(1 \cup \varepsilon)$
 - ii $(0 \cup 10)^*(1 \cup \varepsilon)^*$
 - iii $(0 \cup 101)^*(0 \cup \varepsilon)^*$

Assignment 1 Page 1/9

iv
$$(1 \cup 010)^*(1 \cup \varepsilon)^*$$

12. Define Kleene closure of L for following cases:

i
$$L=\{0,1\}$$

ii
$$L=\{\varepsilon\}$$

13. Given a language L over Σ , we define the reverse of L as $L^R = \{w^R \mid w \in L\}$. For each of the following, either prove equality or provide a counter example. Which of the false equalities can be made true by replacing = with a containment sign

i
$$(S \cup T)^R = S^R \cup T^R$$

ii
$$(ST)^R = T^R.S^R$$
.

14. Observe the following DFA and give the numbers (binary form) accepted by it

- 15. Draw DFA which accepts binary numbers divisible by 5.
- 16. Which language does the below DFA recognise? Make the transition table for the DFA. Assume alphabet is $\{0,1\}$.

- 17. Design DFA for the following languages:
 - i $\{ w \mid w \text{ has either an even number of 1's or an odd number of 0's, but not both} \}$. The alphabet is $\{0,1\}$.
 - ii $\{w \mid w \text{ has 'aab' as a substring}\}$. The alphabet is $\{a,b,c\}$
- 18. Design a state diagram of a DFA for the given language. $(\Sigma = \{a, b\})$

Assignment 1 Page 2 / 9

- i {w|w has even length and an odd number of a's}
- ii {w|w contains neither the substrings ab nor ba}
- 19. Design a DFA to accept the language $L = \{ w \mid w \text{ has exactly even number of 0's and 1's } \}$
- 20. Design a DFA to accept the language string with regular expression $(111 \cup 11111)^*$.
- 21. Construct a DFA for the following regular expressions

i
$$a^*(ab)^*b^*$$
 , alphabet = {a, b}
$$ii \ (0 \cup 1)^*10(0 \cup 1)^*$$
 , alphabet = {0, 1}

22. Convert NFA to DFA

23. Convert the below NFA to a DFA.

24. Convert below NFA to DFA. Please remove the irrelevant states(states which can't be reached from start state) in the final DFA.

Assignment 1 Page 3 / 9

- 25. For the following, construct DFA and then give the state diagram of the NFA recognizing the union of the two languages.
 - i $\{w|w \text{ begins with a 1 and ends with a 0}\}$
 - ii {w|w contains at least three 1's}
- 26. Convert the following NFA to DFA and informally describe the language it accepts.

Here * represents final state.

27. Convert the following NFA to DFA

28. Convert the following NFA to DFA

29. Prove that the language { string w such that w has an odd number of a's and an even number of b's} over the alphabet {a,b} is regular.

Assignment 1 Page 4/9

30. Prove that for two regular languages L_1 and L_2 , $L_1 \cap L_2$ is also regular where $L_1 \cap L_2 = \{\text{Strings that are a part of both } L_1 \text{ and } L_2 \}$.

31. Prove:

- i Set of regular languages is closed under complement operation. (Hint: Any regular language have an NFA and every NFA can be represented as a DFA. So prove that every DFA has a complement DFA)
- ii Prove that if L_1 is regular and L_2 is regular then so is $L_1 L_2$ (the set of all strings in L_1 but not in L_2).
- 32. If L^* is regular, is L regular? Justify.
- 33. If L, M and N are any languages, prove that $L(M \cup N) = LM \cup LN$.
- 34. True or False: If L_1 and L_2 are two languages such that $L_1.L_2$ and $L_2.L_1$ are all regular, then L_1 must be regular.
- 35. If L is a regular language then so is L^R (Reverse of L) .
- 36. Give regular expressions: for all cases, the alphabet is $\{0,1\}$.
 - i The language of strings of length at least two that begin with 0 and end in 1.
 - ii The language of strings of length at least two that have a 1 as their second symbol.
 - iii The language of strings of length at least k that have a 1in position k. Do this in general, for every $k \geqslant 1$.
- 37. Convert below NFA to its corresponding regular expression. Assume alphabet is $\{a, b, c, d, e\}$.

- 38. In Unix shell and other related places, a regular expression can also optionally contain the $[n_1 n_2]$ feature which corresponds to repeats of the pattern between n_1 and n_2 times, both inclusive. Can this type of regular expression be represented using an NFA? If yes, how?
- 39. The following DFA corresponds to the language of binary strings which represent all natural numbers that give remainder 4 when divided by 5.

$$(L = \{w | w \in \{0, 1\}^*, w = < n >, n \in \mathbb{N}, n \equiv 4 \mod 5\})$$

Write the regular expression for this DFA.

Assignment 1 Page 5 / 9

- 40. Write regular expression for the following languages:
 - i The set of strings over alphabet {a, b, c} containing at least one a and at least one b.
 - ii The set of strings of 0's and 1's whose tenth symbol from the right end is 1.
 - iii The set of strings of 0's and 1's with atmost one pair of consecutive 1's.
- 41. Let S and T be language over $\Sigma = \{a, b\}$ represented by the regular expressions $(a \cup b^*)^*$ and $(a \cup b)^*$, respectively. Which of the following is true?

$$\mathbf{i}~S\subset T$$

ii
$$T\subset S$$

iii
$$S=T$$

iv
$$S \cap T = \phi$$

42. Convert the following DFA to regular expression using GNFA

- 43. By using equivalence between R.E. and NFA, convert the following regular expressions into NFA's.
 - i $0\Sigma^*0$
 - ii (11)*
- 44. Convert each of the following GNFAs with k states to their corresponding GNFAs with k-1 states.

i.

Assignment 1 Page 6 / 9

In the above GNFA, q_i is the start state, q_j is the end state. R_1, R_2, R_3, R_4 are arbitrary regular expressions

45. Give regular expression for the following NFA:

The alphabet is $\{0,1\}$

- 46. Give regular expression corresponding to the complement of : $(a \cup ab)^*$ (Hint : Find NFA from the regular expression, and then DFA)
- 47. Convert the following regular expressions to NFA's with ε -transition.

i 01*

ii $(0 \cup 1)01$

iii $00(0 \cup 1)^*$

48. Which of the given regular expressions correspond to the automata shown? Explain it in a sentence.

Assignment 1 Page 7 / 9

$$i (110 \cup 1)*0$$

ii
$$(11 \cup 110)*1$$

iii
$$(110 \cup 11)^*0$$

iv
$$(1 \cup 110)*1$$

49. Convert the following regular expressions to NFA

ii
$$a \cup (a \cup b)^*b(ab)^*$$

- 50. Use the Pumping Lemma to show that the language $\{1^i\#1^j\#1^{i+j}\}$ is not regular. The alphabet is $\{1,\#\}$.
- 51. State whether the below statements are True or False with justification using pumping lemma:

i
$$L = \{w \mid w = w^R, w \in \{0, 1\}^*\}$$
 is not a regular language.

ii
$$L = \{ww^R \mid w \in \{0,1\}^*\}$$
 is not a regular language.

where w^R is the reverse of w.

52. Prove that the following language is not regular:

$$L = \{0^m 1^n 0^{m+n} : m, n > 0\}$$

53. Prove that the following language is not regular using the pumping lemma:

$$\{w \mid w \in \{0,1\}^* \text{ is not a palindrome}\}.$$

- 54. Prove that the following languages are not regular.
 - i $\{0^n \mid n \text{ is a perfect square}\}$
 - ii $\{0^n \mid n \text{ is power of } 2\}$

Assignment 1 Page 8 / 9

- 55. i Prove that $L = \{ww \mid w \in \{0,1\}^*\}$ is not regular.
 - ii Prove that L ={w | No of 0's in w \neq No of 1's in w, w in $\{0,1\}^*$ } is not regular.
- 56. Prove that the following languages are not regular

i
$$L = \{ 1^n \mid n \text{ is prime number } \}$$

ii L=
$$\{0^i1^j\mid i>j\}$$

Assignment 1 Page 9 / 9