

Tecnologie e applicazioni web

WebSocket

Filippo Bergamasco (filippo.bergamasco@unive.it)

http://www.dais.unive.it/~bergamasco/

DAIS - Università Ca'Foscari di Venezia

Academic year: 2021/2022

WebSocket

Protocol that allows a simple **full-duplex** communication using an underlying TCP/IP connection.

Designed to be compatible with HTTP

- Same ports
- Initial handshake based on HTTP
- Proxy support

Full-duplex

Unlike the HTTP protocol, once a WebSocket connection has been established, the exchange of messages can take place indifferently and simultaneously between client and server

Overcomes the HTTP request-response model

WebSocket

Can be used inside the web browser or standalone.

WebSocket is designed to allow the transport of messages in a **bidirectional way** in web-based applications (therefore within the browser)

WebSocket

Two high-level components:

- 1. Handshake protocol, based on HTTP, to negotiate the connection parameters and establish a communication channel
- 2. A framing mechanism to transfer binary/ascii data with the following features:
 - a. Very low overhead
 - b. Low latency

WebSocket handshake

The WebSocket communication channel is established from an existing HTTP connection.

- HTTP Upgrade header used to negotiate a protocol switch
- This mechanism allows the crossing of proxies supporting the WebSocket protocol
- Designed to prevent malicious attacks

GET /socket HTTP/1.1

Host: thirdparty.com

Origin: http://example.com

Connection: Upgrade Upgrade: websocket

Sec-WebSocket-Version: 13

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Sec-WebSocket-Protocol: appProtocol,appProtocol-v2

Sec-WebSocket-Extensions: x-webkit-deflate-

message, x-custom-extension

Handshake begins with a GET request to a certain server's resource

```
GET /socket HTTP/1.1
Host: thirdparty.com
Origin: http://example.com
```

Connection: Upgrade Upgrade: websocket 4

Sec-WebSocket-Version: 13

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Sec-WebSocket-Protocol: appProtocol,appProtocol-v2

Sec-WebSocket-Extensions: x-webkit-deflate-

message, x-custom-extension

Client asks for a protocol switch from HTTP to WebSocket

Client's supported GET /socket HTTP/1.1 WebSocket version Host: thirdparty.com Origin: http://example.com Connection: Upgrade Upgrade: websocket Sec-WebSocket-Version: 13 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ== Sec-WebSocket-Protocol: appProtocol,appProtocol-v2 Sec-WebSocket-Extensions: x-webkit-deflatemessage, x-custom-extension

```
GET /socket HTTP/1.1

Host: thirdparty.com

Origin: http://example.com

Connection: Upgrade

Upgrade: websocket

Sec-WebSocket-Version: 13

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Sec-WebSocket-Protocol: appProtocol, appProtocol-v2

Sec-WebSocket-Extensions: x-webkit-deflate-
message, x-custom-extension
```

Random string encoded in base-64 used to:

- Verify if the server support the protocol
- Invalidate proxy caches and avoid duplicate handshakes

```
GET /socket HTTP/1.1
Host: thirdparty.com
Origin: http://example.com
Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Version: 13
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Sec-WebSocket-Protocol: appProtocol, appProtocol-v2
Sec-WebSocket-Extensions: x-webkit-deflate-
message, x-custom-extension

List of sub-protocols and extension that might be
used
```

```
HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Access-Control-Allow-Origin: http://example.com
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+x0o=
Sec-WebSocket-Protocol: appProtocol-v2
Sec-WebSocket-Extensions: x-custom-extension
Response code to acknowledge the protocol switch
```

```
HTTP/1.1 101 Switching Protocols
```

Upgrade: websocket Connection: Upgrade

Access-Control-Allow-Origin: http://example.com

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+x0o=

Sec-WebSocket-Protocol: appProtocol-v2

Sec-WebSocket-Extensions: x-custom-extension

Hash of the key sent on the previous request + a predefined string depending by the protocol

```
HTTP/1.1 101 Switching Protocols
```

Upgrade: websocket Connection: Upgrade

Access-Control-Allow-Origin: http://example.com

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+x0o=

Sec-WebSocket-Protocol: appProtocol-v2

Sec-WebSocket-Extensions: x-custom-extension

Sub-protocol to use and supported extensions

Handshake

After the exchange of request-response messages:

- TCP (or SSL/TLS) connection is kept open
- New messages are exchanged according to WebSocket protocol (HTTP is not used anymore)

WebSocket messages

- Protocol allows the exchange of binary or text messages (UTF-8) of arbitrary length
- Communication is full-duplex. Both client and server can pre-emptively send a message when needed. The other peer is notified when a new message arrives
- Messages are divided in frames, each frame is sent sequentially and reassembled at destination

Bit	+07			+815		+1623	+2431
0	FIN Opcode			Mask	Length	Extended length (0—8 bytes)	
32							
64						Masking key (0–4 bytes)	
96						Payload	

Variable frame overhead (2 to 10 bytes). All messages sent by the client contain a masking key (0-4 bytes) causing an additional overhead from 6 to 14 bytes

- o: Some other frames are needed to complete the message
- 1: Message is completed with this frame

Message type: text (1), binary (2), close (8), ping (9), pong (10)

- 0: Frame is NOT masked
- 1: Frame is masked

Message length (one or more bytes)

Payloads of all client-initiated messages are masked (XOR) with this key to avoid «cache poisoning» attacks.

Message payload

Framing

Messages are framed for two reasons:

- 1. Messages can be transferred without knowing their size in advance (infinite streams are also possible)
- 2. Frames belonging to different messages can be interleaved to reduce the latency (higher priority can be given to small messages)

WebSocket in JavaScript

WebSocket is supported in the vast majority of existing web browsers.

Socket.io library simplifies the development of WebSocket applications in JavaScript

https://socket.io/ socket.io

Allows the asynchronous exchange of «events» between client and server, and vice versa

https://socketio-whiteboard-zmx4.herokuapp.com/