

STP12NK60Z STF12NK60Z, STW12NK60Z

N-channel 650 V @ Tjmax, 0.53 Ω, 10 A TO-220, TO-220FP, TO-247 Zener-protected SuperMESH™ Power MOSFET

Features

Туре	V _{DSS} (@Tjmax)	R _{DS(on)} max	I _D	P _W
STP12NK60Z	650 V	<0.640 Ω	10 A	150 W
STF12NK60Z	650 V	<0.640 Ω	10 A	35 W
STW12NK60Z	650 V	<0.640 Ω	10 A	150 W

- Extremely high dv/dt capability
- 100% avalanche tested
- Gate charge minimized
- Very low intrinsic capacitances
- Very good manufacturing repeatability

Switching applications

Description

The SuperMESH™ series is obtained through an extreme optimization of ST's well established strip-based PowerMESH™ layout. In addition to pushing on-resistance significantly down, specialties is taken to ensure a very good dv/dt capability for the most demanding application. Such series complements ST full range of high voltage Power MOSFETs.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order codes	Marking	Package	Packaging
STP12NK60Z	P12NK60Z	TO-220	Tube
STF12NK60Z	F12NK60Z	TO-220FP	Tube
STW12NK60Z	W12NK60Z	TO-247	Tube

October 2009 Doc ID 11324 Rev 7 1/15

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data	0
5	Revision history 1	4

1 Electrical ratings

Table 2. Absolute maximum ratings

Cumbal	Parameter	Value	Unit	
Symbol	Farameter	TO-220, TO-247	TO-220FP	Ollit
V _{DS}	Drain-source voltage (V _{GS} = 0)	600		V
V _{GS}	Gate-source voltage	±30		V
I _D	Drain current (continuous) at T _C = 25 °C	10	10 ⁽¹⁾	Α
I _D	I _D Drain current (continuous) at T _C = 100 °C		6.3 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	40	40 ⁽¹⁾	Α
P _{TOT}	Total dissipation at T _C = 25 °C	150	35	W
	Derating factor	1.2	0.27	W/°C
V _{ESD(G-S)}	Gate source ESD (HBM-C=100 pF, R=1.5 kΩ)		2500	V
dv/dt (3)	Peak diode recovery voltage slope	4.5		V/ns
V_{ISO} Insulation withstand voltage (RMS) from all three leads to external heat sink (t =1 s;T _C = 25 °C)		2500		V
T _{stg}	Storage temperature	-55 to 150		°C
T _j	Max operating junction temperature	150	°C	

^{1.} Limited only by maximum temperature allowed

Table 3. Thermal data

Symbol	Parameter		Value			
Symbol	raiametei	TO-220 TO-247		TO-220FP	Unit	
R _{thj-case}	Thermal resistance junction-case max	0.83		3.6	°C/W	
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	50	62.5	°C/W	
T _I	Maximum lead temperature for soldering purpose	300		°C		

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AS}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj Max)	10	Α
E _{AS}	Single pulse avalanche energy (starting Tj=25°C, I _D =I _{AS} , V _{DD} =50 V)	260	mJ

^{2.} Pulse width limited by safe operating area

^{3.} $I_{SD} \leq$ 10 A, di/dt \leq 200 A/ μ s, V_{DD} = 480 V

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5. On/off

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	600			٧
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = Max rating V_{DS} = Max rating, T_{C} =125 °C			1 50	μA μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$	3	3.75	4.5	٧
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, I_D = 5 \text{ A}$		0.53	0.64	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	V _{DS} =10 V _, I _D = 5 A	-	9	-	S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	-	1740 195 49	-	pF pF pF
Coss eq. (2)	Equivalent output capacitance	V _{GS} = 0, V _{DS} = 0 to 480 V	-	101	-	pF
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	V_{DD} = 300 V, I_{D} = 5 A, R_{G} =4.7 Ω V_{GS} = 10 V (see Figure 19)	-	22.5 18.5 55 31.5	-	ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 480 V, I_{D} = 10 A, V_{GS} = 10 V (see Figure 20)	-	59 10 32	-	nC nC nC

^{1.} Pulsed: pulse duration = 300 μs, duty cycle 1.5%

^{2.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS}

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		10 40	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 10 A, V _{GS} = 0	-		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 10 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		358		ns
Q_{rr}	Reverse recovery charge	V _{DD} = 50 V	-	3		μC
I _{RRM}	Reverse recovery current	(see Figure 24)		17		Α
t _{rr}	Reverse recovery time	$I_{SD} = 10 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		460		ns
Q_{rr}	Reverse recovery charge	$V_{DD} = 50 \text{ V}, T_j = 150 ^{\circ}\text{C}$	-	4.2		μC
I _{RRM}	Reverse recovery current	(see Figure 24)		18.2		Α

- 1. Pulse width limited by safe operating area
- 2. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%

Table 8. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
BV _{GSO} (1)	Gate-Source breakdown voltage	Igs=± 1 mA (open drain)	30	-	-	٧	

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for TO-220 Figure

Figure 3. Thermal impedance for TO-220

Figure 4. Safe operating area for TO-247

Figure 5. Thermal impedance for TO-247

Figure 6. Safe operating area for TO-220FP

Figure 7. Thermal impedance for TO-220FP

Figure 8. Output characteristics

Figure 9. Transfer characteristics

Figure 10. Transconductance

Figure 11. Static drain-source on resistance

Figure 12. Gate charge vs gate-source voltage Figure 13. Capacitance variations

Figure 14. Normalized gate threshold voltage Figure 15. Normalized on resistance vs vs temperature temperature

Figure 16. Source-drain diode forward characteristics

Figure 17. Normalized breakdown voltage vs temperature

Figure 18. Maximum avalanche energy vs temperature

3 Test circuits

Figure 19. Switching times test circuit for resistive load

Figure 20. Gate charge test circuit

Figure 21. Test circuit for inductive load switching and diode recovery times

Figure 22. Unclamped inductive load test circuit

Figure 23. Unclamped inductive waveform

Figure 24. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

TO-220 type A mechanical data

D:		mm	
Dim	Min	Тур	Max
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

TO-220FP mechanical data

Dim.	mm					
Dilli.	Min.	Тур.	Max.			
А	4.4		4.6			
В	2.5		2.7			
D	2.5		2.75			
E	0.45		0.7			
F	0.75		1			
F1	1.15		1.70			
F2	1.15		1.5			
G	4.95		5.2			
G1	2.4		2.7			
Н	10		10.4			
L2		16				
L3	28.6		30.6			
L4	9.8		10.6			
L5	2.9		3.6			
L6	15.9		16.4			
L7	9		9.3			
Dia	3		3.2			

TO-247	mec	hani	ical	l d	lata
--------	-----	------	------	-----	------

Dim.	mm.			
	Min.	Тур.	Max.	
A	4.85		5.15	
A1	2.20		2.60	
b	1.0		1.40	
b1	2.0		2.40	
b2	3.0		3.40	
С	0.40		0.80	
D	19.85		20.15	
Е	15.45		15.75	
е		5.45		
L	14.20		14.80	
L1	3.70		4.30	
L2		18.50		
øΡ	3.55		3.65	
øR	4.50		5.50	
S		5.50		

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
12-Apr-2004	1	First release
06-Sep-2005	2	Inserted ecopack indication
13-Sep-2005	3	Final version
05-Sep-2006	4	The document has been reformatted
26-Apr-2007	5	The document has been updated on 1: Electrical ratings
25-Jan-2008	6	Modified: dv/dt value on Table 2: Absolute maximum ratings
13-Oct-2009	7	Added new package, mechanical data: TO-247

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

