Consider data transformations

Consider data transformations

Original scale

Logarithmic scale

$$\log(X/Y) = \log(X) - \log(Y) = -(\log(Y) - \log(X)) = -\log(Y/X)$$

Figure 1 Plots of the female:male genetic-distance ratio against sex-averaged genetic location (in cM) along six selected chromosomes. Approximate locations of the centromeres are indicated by the triangles. The dashed lines correspond to equal female and male distances.

Tobacco budworm, Heliothis virescens

Batches of 20 male and 20 female worms were given a 3-day dose of pyrethroid *trans*-cypermethrin

The no. dead or "knocked down" in each batch was noted.

	Dose					
Sex	1	2	4	8	16	32
Male	1	4	9	13	18	20
Female	0	2	6	10	12	16

Summary statistics

Location / Center

- mean (average)
- median
- mode
- geometric mean
- harmonic mean

Scale

- standard deviation (SD)
- inter-quartile range (IQR)
- range

Other

- quantile
- quartile
- quintile

Summary statistics

mean =
$$\frac{1}{n} \sum_{i=1}^{n} x_i = (x_1 + x_2 + \ldots + x_n)/n$$

geometric mean
$$= \sqrt[n]{\prod_{i=1}^n x_i} = \exp\left\{\frac{1}{n} \sum_{i=1}^n \log x_i\right\}$$

harmonic mean
$$= 1/\left\{\frac{1}{n}\sum_{i=1}^{n}(1/x_i)\right\}$$

→ Note: these are all sample means.

- Forget about the mode.
- The mean is sensitive to outliers.
- The median is resistant to outliers.
- The geometric mean is used when a logarithmic transformation is appropriate (for example, when the distribution has a long right tail).
- The harmonic mean may be used when a reciprocal transformation is appropriate (very seldom).

A key point

The different possible measures of the "center" of the distribution are all allowable.

You should consider the following though:

- Which is the best measure of the "typical" value in your particular setting?
- → Be sure to make clear which "average" you use.

QQ-plots

QQ-plots

QQ-plots

Example

Residuals

QQ plots of all residuals

Residuals vs fitted values

SDs vs means

