University Network Setup Using Cisco Packet Tracer

Project Report

Prepared by: Gauri Deepak Desale

Date: 23/02/25

Software Used: Cisco Packet Tracer v7.3

1. Introduction

This project involves designing and configuring a **university network** with multiple departments. The network includes **switches**, **routers**, **VLANs**, **DHCP**, **and routing protocols** to ensure **secure and efficient data communication**.

2. Network Topology & Components

A. Departments & Network Structure

The university network consists of four buildings:

1. **Building A:** Electrical and Computer Engineering Department

2. Building B: Mathematics Department

3. **Building C:** Admissions Office

4. **Building D:** Computer Science Department (Branch Campus)

Each department is assigned a **separate VLAN** for isolation and security.

B. Network Devices Used

Device	Purpose
Cisco 2911 Router	Main routing between departments
Cisco 3650-24PS Switch	Core switch for inter-VLAN communication

Cisco 2960-24TT Switches	Switches for each department
Cloud Router	Internet connectivity
Servers	Email, Web, DHCP, and File Sharing
Host Devices (PCs, Printers)	Used by staff and students
Copper & Fiber Cables	Network connectivity

3. Step-by-Step Configuration

This section details the **configuration of switches**, **routers**, **VLANs**, **DHCP**, **and routing protocols**.

A. Switch Configuration

1. Create VLANs for Departmental Separation

Each department has a VLAN assigned for logical segmentation.

Commands to configure VLANs on Switches:

cisco

CopyEdit

Switch(config)# vlan 10

Switch(config-vlan)# name Electrical_Engineering

Switch(config-vlan)# exit

Switch(config)# vlan 20

Switch(config-vlan)# name Mathematics

Switch(config-vlan)# exit

Switch(config)# vlan 30

Switch(config-vlan)# name Admissions

Switch(config-vlan)# exit

Switch(config)# vlan 40

Switch(config-vlan)# name Computer_Science

Switch(config-vlan)# exit

2. Assign VLANs to Specific Ports

Each department's PCs and devices are assigned to the correct VLAN.

Example: Assigning VLAN 10 to ports (FastEthernet 0/2 to 0/10):

cisco

CopyEdit

Switch(config)# interface range FastEthernet 0/2-10

Switch(config-if)# switchport mode access

Switch(config-if)# switchport access vlan 10

Switch(config-if)# exit

Repeat this for VLAN 20, 30, and 40, assigning the correct ports.

3. Configure Trunk Ports

Trunk ports allow VLAN traffic to pass between switches and routers.

Configuring Trunking on the Switch:

cisco

CopyEdit

Switch(config)# interface FastEthernet 0/1

Switch(config-if)# switchport mode trunk

Switch(config-if)# switchport trunk allowed vlan 10,20,30,40

Switch(config-if)# exit

This ensures that all VLANs can communicate through this trunk link.

B. Router Configuration

To allow **communication between VLANs**, a **router-on-a-stick** configuration is used.

1. Enable Inter-VLAN Routing (Router-on-a-Stick)

Each VLAN gets a **subinterface** on the router for routing.

Configure Router Subinterfaces:

cisco

CopyEdit

Router(config)# interface GigabitEthernet0/0.10

Router(config-subif)# encapsulation dot1Q 10

Router(config-subif)# ip address 192.168.10.1 255.255.255.0

Router(config-subif)# exit

Router(config)# interface GigabitEthernet0/0.20

Router(config-subif)# encapsulation dot1Q 20

Router(config-subif)# ip address 192.168.20.1 255.255.255.0

Router(config-subif)# exit

Router(config)# interface GigabitEthernet0/0.30

Router(config-subif)# encapsulation dot1Q 30

Router(config-subif)# ip address 192.168.30.1 255.255.255.0

Router(config-subif)# exit

C. DHCP Server Configuration

DHCP is configured to dynamically assign IP addresses to VLAN users.

1. Configure DHCP Server on Router

cisco

CopyEdit

Router(config)# ip dhcp pool VLAN10_Pool

Router(dhcp-config)# network 192.168.10.0 255.255.255.0

```
Router(dhcp-config)# default-router 192.168.10.1
Router(dhcp-config)# dns-server 8.8.8.8
Router(dhcp-config)# exit
```

Repeat this for VLAN 20, 30, and 40 with different IP ranges.

2. Exclude Reserved IPs

cisco

CopyEdit

Router(config)# ip dhcp excluded-address 192.168.10.1 192.168.10.10

This prevents **IP conflicts** with routers and servers.

D. Routing Configuration

For communication between **different VLANs and external networks**, we configure **RIPv2 and Static Routing**.

1. Enable RIPv2 for Internal Routing

cisco

CopyEdit

Router(config)# router rip

Router(config-router)# version 2

Router(config-router)# network 192.168.10.0

Router(config-router)# network 192.168.20.0

Router(config-router)# network 192.168.30.0

Router(config-router)# network 192.168.40.0

Router(config-router)# no auto-summary

Router(config-router)# exit

2. Configure Static Routing for Internet Access

cisco CopyEdit Router(config)# ip route 0.0.0.0 0.0.0.0 192.168.100.1

This directs all non-local traffic to the internet.

E. Testing & Verification

After configuring the network, we perform **testing** to ensure everything works.

1. Test VLAN Connectivity with Ping

bash CopyEdit ping 192.168.10.2 ping 192.168.20.2 ping 192.168.30.2

Expected Output:

bash

CopyEdit

Reply from 192.168.10.2: bytes=32 time<1ms TTL=128

2. Check VLANs on Switch

cisco

CopyEdit

Switch# show vlan brief

This confirms VLANs are properly assigned.

3. Verify Trunk Ports

cisco

CopyEdit

Switch# show interfaces trunk

4. Check DHCP IP Assignment

On a PC, run:

bash

CopyEdit

ipconfig /all

It should display a **DHCP-assigned IP** from the VLAN subnet.