COMPARATIVE ANALYSIS OF GANS AND DIFFUSION MODELS

GAN'S

DIFFUSION

Two neural networks compete; one generates synthetic data, the other discriminates between real and fake, improving realism.

Probabilistic model transforms noisy input into target distribution, used for image generation, denoising, and inpainting.

Architecture

GANS	SIMILARITY	DIFFUSION
 Adversial loss Generator- Discriminator setup 	Data GenerationNoise Handling	 Reconstruction Loss Sequential Refinement Setup
 Slower convergence Hard to Train Traning not Stable 	 Probabilistic Modeling Data Generation 	 Faster Convergence Easy to train Training
Actual generator model does not have true loss		 Actual generator model does have true loss