

FINAL MARK

GIRRAWEEN HIGH SCHOOL Mathematics Extension 1 HSC ASSESSMENT Trial Examination 2014 ANSWERS COVER SHEET

Name:	Teacher:	_
rame		

QUESTION	MARK	HE2	HE3	HE4	HE5	HE6	HE7
1 -6	/6						√
7-9	/3			. 🗸			√ .
10	/1					√	√
	/10						
11a-c	/6						√
d	/3			√			✓
е	/3			√		√	√
f	/3						√
	/15						
12a	/4	\checkmark					√
Ъ	/5						√
С	/2			√			√
d	/4						√
	/15						
13a	/4		√		√		√
ь	/7	.			√		✓
С	/4						√
	/15						
14ab	/9						√
С	/6		√				√
,	/15						
TOTAL	/70	/4	/10	/11	/16	/4	/70

HSC Outcomes

Mathematics Extension 1

HE1 appreciates interrelationships between ideas drawn from different areas of mathematics.

HE2 uses inductive reasoning in the construction of proofs.

HE3 uses a variety of strategies to investigate mathematical models of situations involving binomial probability, projectiles, simple harmonic motion and exponential growth and decay.

HE4 uses the relationship between functions, inverse functions and their derivatives

HE5 applies the chain rule to problems including those involving velocity and acceleration as functions of displacement.

HE6 determines integrals by reduction to a standard form through a given substitution.

HE7 evaluates mathematical solutions to problems and communicates them in an appropriate form.

GIRRAWEEN HIGH SCHOOL MATHEMATICS

Trial Examination

Year 12 Extension 1

August 2014

Time allowed: 120 minutes (Plus 5 minutes reading time)

INSTRUCTIONS:

- Attempt ALL questions.
- For Questions 1 to 10, write the letter corresponding to the correct response on your working paper.
- For Questions 11 to 14:
 - All questions are worth equal marks.
 - All necessary working should be shown in every question. Marks will be deducted for careless or badly arranged work.
 - Board-approved calculators may be used.
 - Each question attempted is to be returned on a *separate* piece of paper labelled clearly Question 11, Question 12, etc. Each sheet of paper should clearly show your name.
 - Diagrams are NOT to scale.

Question 1

The point that divides the interval between A(-8,12) and

B (13,-9) externally in the ratio 2:5 is

$$(A)(-22,26)$$

$$(B)(-2,6)$$

$$(C)(7,-3)$$

Question 2

The remainder when a polynomial P(x) is divided by

(x+1)(x-2) is 2x-3. When P(x) is divided by (x+1) the remainder will be

(D)
$$(x-2)$$

Question 3

In the diagram above O is the circle centre. If $\angle AOC = \frac{2\pi}{5}$, $\angle ABC =$

$$(A)\frac{\pi}{5}$$

(B)
$$\frac{2\pi}{5}$$
 (C) $\frac{3\pi}{5}$ (D) $\frac{4\pi}{5}$

(C)
$$\frac{3\pi}{5}$$

(D)
$$\frac{4\pi}{5}$$

Question 4

$$\int 6\cos^2 3x. \, dx =$$

(A)
$$2\sin^3 3x + 6$$

(B)
$$2\cos^3 6x + C$$

(A)
$$2sin^3 3x + C$$
 (B) $2cos^3 6x + C$ (C) $3x + \frac{1}{2}sin6x + C$

(D)
$$3x - \frac{1}{2}sin6x + C$$

Question 5

The number of different committees of 2 men and 3 women which can be formed from a group of 7 men and 8 women is

(A)
$$\frac{15!}{5!10!}$$

(B)
$$\frac{7!8!}{2!3!(5!)^2}$$

$$(C)\frac{7!8!}{2!3!}$$

(C)
$$\frac{7!8!}{2!3!}$$
 (D) $\frac{7!8!}{(5!)^2}$

Question 6

The solution to 3x + 2 = |2x - 1| is

$$(A) x = -3$$

(B)
$$x = -\frac{1}{5}$$

(A)
$$x = -3$$
 (B) $x = -\frac{1}{5}$ (C) $x = -3$ or $x = -\frac{1}{5}$

(D)No solutions.

Question 7

The graph of y = f(x) is below:

The graph of $y = f^{-1}(x)$ will be:

 χ

Question 8

The derivative of $y = x^2 \sin^{-1} x$ is

(A)
$$y' = \frac{2x}{\sqrt{1-x^2}}$$

(B)
$$y' = \frac{2x}{\sqrt{1-x^2}} + x^2 \sin^{-1} x$$

(C)
$$y' = 2x\sin^{-1}x + \frac{x^2}{\sqrt{1-x^2}}$$
 (D) $y' = 2x\cos^{-1}x + x^2\sin^{-1}x$

Question 9

The general solution to the equation
$$2\sin 2\theta = -\sqrt{3}$$
 is (A) $\theta = (-1)^{n+1} \times \frac{\pi}{6} + \frac{n\pi}{2}$ (B) $\theta = (-1)^{n+1} \times \frac{\pi}{3} + n\pi$

(C)
$$\theta = (-1)^n \times \frac{\pi}{6} + \frac{n\pi}{2}$$
 (D) $\theta = (-1)^n \times \frac{\pi}{3} + n\pi$

(D)
$$\theta = (-1)^n \times \frac{\pi}{3} + n\pi$$

Question 10

(Note: use $u = e^x$)

$$\int \frac{e^x}{\sqrt{1 - e^{2x}}} \cdot dx \qquad (A)^{\frac{\pi}{6}} \qquad (B)^{\frac{\pi}{4}}$$

$$(A)\frac{\pi}{6}$$

(B)
$$\frac{\pi}{4}$$

(C)
$$\frac{\pi}{3}$$

$$(C)\frac{\pi}{3} \qquad (D)\frac{\pi}{2}$$

Question 11 (15 Marks – show all necessary working on a separate piece of paper)

Marks

(a) Solve for $x: \frac{3}{2x-1} \ge \frac{1}{5}$

3

2

- (b) Find the acute angle between the lines y = 2x 1 and x + y = 3. Answer to the nearest minute.
- 1
- (c) How many different ways are there of arranging the letters of the word HALLOWEEN in a circle?
- 3

(d) Find $\int_{-\frac{-3}{2}}^{\frac{-1}{2}} e^{x} dx$

(Use the substitution $u = e^x$)

(e) Use the substitution $x = u^2$ to find

$$\int \frac{1}{\sqrt{x(1-x)}} \, dx$$

(f)

3

has roots α , β and γ . If $\alpha + \beta + \gamma = \frac{3}{2}$,

 $\alpha^2 + \beta^2 + \gamma^2 = \frac{49}{4}$ and $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{2}{5}$ find the values

The polynomial equation $2x^3 + px^2 + qx + r = 0$

of p, q and r.

Question 12 (15 Marks – show all necessary working

on a separate piece of paper)

(a) Prove using mathematical induction for all integers

4

$$n \ge 1$$
: $1^3 + 2^3 + \dots + n^3 = \frac{1}{4}n^2(n+1)^2$

Question 12 (continued)

Marks

- (b) A piece of metal with an initial temperature of $30^{\circ}C$ is placed in a furnace with temperature $900^{\circ}C$. The temperature of the surface of the metal obeys Newton's law of cooling that is, $\frac{dT}{dt} = k(900 T)$ where T is the current temperature of the surface of the metal and t is the time in minutes since the metal was first put into the furnace.
 - (i) Prove that $T = 900 Ae^{-kt}$ satisfies the differential equation $\frac{dT}{dt} = k(900 T)$.
 - (i) If the surface of the metal heats up to $540^{\circ}C$ 2 after 30 minutes, find the values of A and k.
 - (ii) The surface of the metal starts to melt at 700°C. 2

 To the nearest minute, when will the surface have started to melt?
- (c) For the graph of $y = 2\cos^{-1}\left\{\frac{x}{3}\right\}$
 - (i) State the domain and range. 1
 - (ii) Sketch the graph over its full domain. 1
- (d) (i) Express $\sqrt{5}sin\theta \sqrt{3}cos\theta$ in the form . 2 $Asin(\theta \alpha)$.
 - (ii) Hence or otherwise solve the equation $\sqrt{5}\sin\theta \sqrt{3}\cos\theta = \sqrt{3} \text{ for } 0 \le \theta \le 360^{\circ}.$

Question 13 (15 Marks – show all necessary working on a separate piece of paper)

Marks

- (a) A particle moves along a straight line so that its velocity obeys the rule $v^2 = -9x^2 + 90x 189$.
 - (i) Show that the particle is moving with simple harmonic motion.

- 1
- (ii) By finding where the velocity is zero, find the endpoints and the amplitude of the motion.
- 2

(iii) Find the period of the motion.

- 1
- (b) A puddle of water with depth D lies in the base of a sphere which has been formed by rotating the bottom part of the circle $x^2 + y^2 = 9$ about the y axis (see diagram.)

- (i) Show that the volume of water in the puddle is given 2 by $V = \frac{\pi}{3} \{27(D-3) (D-3)^3 + 54\}$
- (ii) Show that the surface area of the top of the puddle is 2 given by $S = \pi(6D D^2)$

Question 13 continues on the next page

Question	Marks	
(iii)	If the volume of water in the puddle is decreasing at a rate proportional to its surface area (i.e. $\frac{dv}{dt} = -kS$, k a constant), show that the rate at which the <i>depth</i> of the	2
(iv)	water is changing is $-kcm/min$. If the depth of the water is initially $1cm$, time is in minutes and $k = 0.02$ find out how long it will take for the puddle to evaporate entirely.	1
(c) (i)	Show that the equation $e^x + x = 0$ has a root between $x = 0$ and $x = -1$.	1
(iii)	Using $x_0 = -0.5$, use one application of Newton's method to find a better approximation for the root of $e^x + x = 0$.	3

Question 14 (15 Marks – show all necessary working on a separate piece of paper)

Marks

(a) In $\triangle ABC$, AB = AC and BK bisects $\angle \triangle ABC$. The circle through A, B and K cuts BC at D. (see diagram below)

- (i) Copy or trace the diagram on to your answer 1 paper and state why $\angle DKC = 2\alpha$.
- (ii) Prove that AK = DC.

Question 14 continues on the next page

Question 14 (continued)

Marks

(b) $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are on the parabola $x^2 = 4ay$. The tangents at P and Q meet the x axis at A and B respectively and meet each other at T. M is the midpoint of PQ. Note that q is negative and |p| > |q|. (See diagram.)

- (i) Find the gradient of the chord PQ and the gradient of the tangent at P.
 (ii) Find the coordinates of M.
 1
 (iii) If A ROTILLA RAT, shows that mg = 1
 2
- (iii) If $\triangle PQT ||| \triangle BAT$ show that pq = -1. 2

 (Hint: If $\triangle PQT ||| \triangle BAT$ then $tan \angle QPT = tan \angle ABT$.)
- (iv) If pq = -1 find the locus of M.

Question 14 continues on the next page

Question 14 (continued)

Marks

1

2

1

(c) (i) A howitzer is located on a hill 100 metres high. It has a muzzle velocity of 500m/s. For a shell fired from the howitzer at an angle α up from the horizontal, the equations of motion are $x = 500t\cos\alpha \text{ and } y = -\frac{1}{2}gt^2 + 500t\sin\alpha + 100.$

(Do NOT prove these!)

- (A) Show that $y = \frac{-gx^2}{500000} sec^2\alpha + xtan\alpha + 100$
- (B) If the howitzer is aimed so that a shell fired from it will hit a target 5000m away on the plain below, find the two angles at which it could be fired to hit this target.

 (Use $g = 9.8m/s^2$)

(ii) Another howitzer with a muzzle velocity of
$$Vm/s$$
 is on level ground (so the initial height is $0m$.) If it fires a shell at an angle α to the horizontal the equation for y in terms of x is

$$y = \frac{-gx^2}{2V^2} sec^2 \alpha + xtan\alpha$$
. (Do NOT prove this!)

(A) If the shell is fired to hit a target R metres 1 away show that

$$gR^2tan^2\alpha - 2V^2Rtan\alpha + gR^2 = 0.$$

(B) Show that
$$tan\alpha = \frac{V^2 \pm \sqrt{V^4 - g^2 R^2}}{gR}$$
 1

(C) Show that the two possible values of α which result in the shell hitting the target add up to 90° .

Here endeth the examination!!!

(11)(c) HALLOWEEN -> 9 letter, 2 L3, 283. = B. 4267 [4DP]

