

Appl. No. 10/808,802
Amdt. dated 3/21/05
Reply to Office Action of 01/21/2005

Attorney Docket No.: TS03-186
N1085-90102

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

- 1 1. (Currently Amended) A method of forming an opening in a stack of insulator layers, comprising the steps of:
 - 3 providing a conductive structure;
 - 4 forming said stack of insulator layer layers on said conductive structure, with said stack of insulator layers comprised of [[an]] a first liner layer, an overlying first insulator layer, a second liner layer, an overlying second insulator layer, an anti-reflective coating (ARC), layer; and a capping, third insulator layer;
 - 8 forming a via opening in a first portion of said stack of insulator layer, with said via opening extending downwardly from a top surface of said capping, third insulator layer and terminating in said first liner layer;
 - 11 forming a photoresist shape including a trench-defining shape and a photoresist plug that completely fills said via opening up to said top surface, said trench-defining shape exposing a second portion of said stack of insulator layers;
 - 14 forming a trench opening in [[a]] said second portion of said stack of insulator layers using said trench-defining shape as an etch mask, with said trench opening extending downwardly from a top surface of said capping, third insulator layer and terminating on top surface of said second liner layer,
 - 18 removing portion of said second liner layer exposed in said trench opening;
 - 19 removing said photoresist shape including said photoresist [[plus]] plug; and
 - 20 removing a portion of said first liner layer exposed in said via opening, exposing a portion of a top surface of said conductive structure.

Appl. No. 10/808,802
Amdt. dated 3/21/2005
Reply to Office Action of 01/21/2005

Attorney Docket No.: TS03-186
N1085-90102

1 2. (Original) The method of claim 1, wherein said conductive structure is
2 comprise of copper.

1 3. (Original) The method of claim 1, wherein said first liner is a silicon nitride
2 layer, obtained via plasma enhanced chemical vapor deposition (PECVD) procedures at
3 a thickness between about 400 to 600 Angstroms.

1 4. (Original) The method of claim 1, wherein said first insulator layer is a
2 fluorinated silica glass (FSG) layer, obtained via PECVD procedures at a thickness
3 between about 500 to 1000 Angstroms.

1 5. (Original) The method of claim 1, wherein said second liner layer is a
2 silicon nitride layer, obtained via PECVD procedures at a thickness between about 200
3 to 400 Angstroms.

1 6. (Original) The method of claim 1, wherein said second insulator layer is a
2 silicon oxide layer, obtained via PECVD procedures at a thickness between about 500
3 to 1000 Angstroms.

1 7. (Original) The method of claim 1, wherein said ARC layer is a silicon
2 oxynitride layer, obtained via PRCVD procedures to a thickness between about 500 to
3 700 Angstroms.

1 8. (Original) The method of claim 1, wherein said capping, third insulator
2 layer is a silicon oxide layer, obtained via PECVD procedures at a thickness between
3 about 500 to 700 Angstroms.

Appl. No. 10/808,802
Amtd. dated 3/21/2005
Reply to Office Action of 01/21/2005

Attorney Docket No.: TS03-186
N1085-90102

1 9. (Original) The method of claim 1, wherein said via opening is defined in
2 said capping, third insulator layer, in said ARC layer, in said second insulator layer, in
3 said second liner layer, and in said first insulator layer, via an anisotropic reactive ion
4 etching (RIE) procedure, using CHF₃ as an etchant for said capping, third insulator
5 layer, for said second insulator layer, for said ARC layer and for said first insulator layer,
6 while CH_xF_y or CF₄ is used as an etchant for said second liner layer.

1 10. (Original) The method of claim 1, wherein the diameter of said via
2 opening is between about 0.25 to 2.5 um.

1 11. (Original) The method of claim 1, wherein said trench opening is defined
2 in said capping, third insulator layer, in said ARC layer, and in second insulator layer via
3 an anisotropic RIE procedure using CHF₃ as an etchant.

1 12. (Original) The method of claim 1, wherein portion of said second liner
2 layer exposed in said trench opening, is removed via a selective RIE procedure using
3 CF₄ or CH_xF_y as an etchant.

1 13. (Previously Presented) The method of claim 1, wherein said photoresist
2 shape is removed using plasma oxygen ashing procedures.

1 14. (Original) The method of claim 1, wherein portion of said first liner layer
2 exposed in said via opening, is removed via a selective RIE procedure using CF₄ or
3 CH_xF_y as an etchant.

Appl. No. 10/808,802
Amtd. dated 3/21/2005
Reply to Office Action of 01/21/2005

Attorney Docket No.: TS03-186
N1085-90102

1 15. (Original) The method of claim 1, wherein the etch rate ratio of silicon
2 nitride of said first liner layer, to silicon oxide, during the selective RIE procedure used
3 to remove portion of said first liner layer exposed in said via opening, is between about
4 5 to 1, to 10 to 1 using CF₄ or CH_xF_y as an etchant.

1 16. (Currently Amended) A method of forming a dual damascene opening in
2 a stack of insulator layers featuring a two step stop layer removal procedure, comprising
3 the steps of:

4 providing a copper structure;

5 forming said stack of insulator layers on said copper structure, with said stack of
6 insulator layers comprised of an underlying first silicon nitride stop layer, an overlying
7 first dielectric layer, a second silicon nitride stop layer, a second dielectric layer, an anti-
8 reflective coating (ARC) layer, and a capping silicon oxide layer;

9 forming a via opening in a first portion of said stack of insulator layer, with said
10 via opening extending downwardly from a top surface of said capping silicon oxide layer
11 and terminating in said first silicon nitride stop layer;

12 forming a photoresist shape including a trench-defining shape and a photoresist
13 plug that completely fills said via opening up to said top surface and overlies a portion of
14 a surface of said first silicon nitride layer, said trench-defining shape exposing a second
15 portion of said stack of insulator layers;

16 forming etching to form a trench opening in [[a]] said second portion of said stack
17 of insulator layers using said trench-defining shape as an etch mask, with said trench
18 opening extending downwardly from a top surface of said capping silicon oxide layer
19 and terminating on said surface of said second silicon nitride stop layer;

Appl. No. 10/808,802
Amdt. dated 3/21/05
Reply to Office Action of 01/21/2005

Attorney Docket No.: TS03-186
N1085-90102

20 performing a first step of said two step stop layer removal procedure to
21 selectively remove a portion of said second silicon nitride stop layer exposed in said
22 trench opening;

23 removing said photoresist shape including said photoresist plug; and

24 performing a second step of said two step stop layer removal procedure to
25 remove a portion of said first silicon nitride stop layer exposed in said via opening,
26 exposing a portion of a top surface of said copper structure.

1 17. (Original) The method of claim 16, wherein said first silicon nitride stop
2 layer is obtained via plasma enhanced chemical vapor deposition (PECVD) procedures
3 at a thickness between about 400 to 600 Angstroms.

1 18. (Original) The method of claim 16, wherein said first dielectric layer is an
2 FSG layer, obtained via PECVD procedures at a thickness between about 500 to 1000
3 Angstroms.

1 19. (Original) The method of claim 16, wherein said second silicon nitride
2 stop layer is obtained via PECVD procedures at a thickness between about 200 to 400
3 Angstroms.

1 20. (Original) The method of claim 16, wherein said second dielectric layer is
2 a silicon oxide layer, obtained via PECVD procedures at a thickness between about 500
3 to 1000 Angstroms.

1 21. (Original) The method of claim 16, wherein said ARC layer is a silicon
2 oxynitride layer, obtained via PECVD procedures to a thickness between about 500 to
3 700 Angstroms.

Appl. No. 10/808,802
Amdt. dated 3/21/05
Reply to Office Action of 01/21/2005

Attorney Docket No.: TS03-186
N1085-90102

1 22. (Original) The method of claim 16, wherein said capping, silicon oxide
2 layer is obtained via PECVD procedures at a thickness between about 500 to 700
3 Angstroms.

1 23. (Original) The method of claim 16, wherein said via opening is defined in
2 said capping silicon oxide layer, in said ARC layer, in said second dielectric layer, in
3 said second silicon nitride stop layer, and in said first dielectric layer via an anisotropic
4 reactive ion etching (RIE) procedure, using CHF₃ as an etchant for said capping silicon
5 oxide layer, for said ARC layer and for said second dielectric layer and for said first
6 dielectric layer, while CF₄ or CH_xF_y is used as an etchant for said second silicon nitride
7 stop layer.

1 24. (Original) The method of claim 16, wherein the diameter of said via
2 opening is between about 0.25 to 2.5 um.

1 25. (Original) The method of claim 16, wherein said trench opening is defined
2 in said capping silicon oxide layer, in said ARC layer, and in said second dielectric layer,
3 via an anisotropic RIE procedure using CHF₃ as an etchant.

1 26. (Original) The method of claim 16, wherein said first step of said two step
2 stop layer removal procedure, used to selectively remove portion of said second silicon
3 nitride stop layer exposed in said trench opening, is performed via a selective RIE
4 procedure using CF₄ or CH_xF_y as an etchant.

1 27. (Previously Presented) The method of claim 16, wherein said photoresist
2 shape is removed using plasma oxygen ashing procedures.

Appl. No. 10/808,802
Arndt. dated 3/21/05
Reply to Office Action of 01/21/2005

Attorney Docket No.: TS03-186
N1085-90102

1 28. (Original) The method of claim 16, wherein said second step of said two
2 step stop layer removal procedure, used to selectively remove portion of said first silicon
3 nitride stop layer exposed in said via opening, is performed via a selective RIE
4 procedure using CF₄ or CH_xF_y as an etchant.

1 29. (Original) The method of claim 16, wherein the etch ratio of silicon nitride
2 to silicon oxide, during said second step of said two step stop layer removal procedure
3 performed via a selective the selective RIE procedure used to remove portion of said
4 first silicon nitride stop layer exposed in said via opening, is between about 5 to 1, to 10
5 to 1 using CF₄ or CH_xF_y as an etchant.