## PLP - 10 TOPIC 10 — LOGICAL EQUIVALENCE

Demirbaş & Rechnitzer

# TAUTOLOGIES AND LOGICAL EQUIVALENCE

### **TAUTOLOGIES AND CONTRADICTIONS**

Statements that are always true turn out to be very useful.

#### **DEFINITION: TAUTOLOGIES AND CONTRADICTIONS.**

A tautology is a statement that is always true

A contradiction is a statement that is always false.

The following are examples of tautologies

$$P \lor (\sim P) \qquad \qquad \sim (P \lor Q) \iff ((\sim P) \land (\sim Q))$$

The following are examples of contradictions

$$(P \wedge (\sim P) \qquad \qquad (P \wedge Q) \wedge ((\sim P) \vee (\sim Q))$$

#### A VERY USEFUL TAUTOLOGY

- ullet The statements  $P \lor Q$  and  $Q \lor P$  have the same truth-tables.
- The are not the same but they are equivalent
- We can express this by saying " $(P \lor Q) \iff (Q \lor P)$  is a tautology"

#### **DEFINITION:**

Two statements R and S are logically equivalent when " $R\iff S$ " is a tautology.

In this case we write  $R\equiv S$  .

#### Showing logical equivalence

- build the truth tables, or
- think about when each side is true and false

## A USEFUL EQUIVALENCE

Consider 
$$(P \implies Q) \equiv (\sim P) \lor Q$$
.

Why are these equivalent — when true, when false?

- Know your truth-tables!
- LHS is false only when (P,Q) = (T,F). Otherwise true.
- RHS is false when both  $(\sim P), Q$  are false, that is (P,Q) = (T,F). Otherwise false.

True at same time, false at same time. So equivalent.

Can also build the truth-tables — tedious but works.

| P | Q | $P \implies Q$ | $(\sim P) \lor Q$ |
|---|---|----------------|-------------------|
| Т | Т | T              | T                 |
| Т | F | F              | F                 |
| F | Т | Т              | Т                 |
| F | F | T              | Т                 |

## **USEFUL LOGICAL EQUIVALENCES**

## THEOREM: LOGICAL EQUIVALENCES.

Let P and Q be statements. Then

#### **Implication**

$$(P \implies Q) \equiv ((\sim P) \lor Q))$$

#### **Contrapositive**

$$(P \implies Q) \equiv ((\sim Q) \implies (\sim P))$$

#### **Biconditional**

$$(P \iff Q) \equiv ((P \implies Q) \land (Q \implies P))$$

#### **Double negation**

$$\sim (\sim (P)) \equiv P$$

#### **Commutative laws**

$$P \lor Q \equiv Q \lor P$$
 and  $P \land Q \equiv Q \land P$ 

## **USEFUL LOGICAL EQUIVALENCES 2**

## THEOREM: LOGICAL EQUIVALENCES.

Let P,Q and R be statements. Then

#### **Associative laws**

$$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$$
 and  $P \land (Q \land R) \equiv (P \land Q) \land R$ 

#### **Distributive laws**

$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$
 and  $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$ 

#### **DeMorgan's laws**

$$\sim (P \lor Q) \equiv (\sim P) \land (\sim Q)$$
 and  $\sim (P \land Q) \equiv (\sim P) \lor (\sim Q)$ 

#### **BACK TO THE CONTRAPOSITIVE**

Show that 
$$(P \implies Q) \equiv (\sim Q \implies \sim P)$$
 using equivalences

$$(P \implies Q) \equiv (\sim P \lor Q)$$
 implication as or  $\equiv (Q \lor \sim P)$  commutes  $\equiv (\sim \sim Q \lor \sim P)$  double negative  $\equiv (\sim Q \implies \sim P)$  or as implication

Why is this useful a useful equivalence?

- Contrapositive is equivalent to the original implication
- Proving one is true is *equivalent* as proving the other is true
- Sometimes the contrapositive is easier to prove than the original

#### **BACK TO THE CONTRAPOSITIVE**

Show that 
$$(P \implies Q) \equiv (\sim Q \implies \sim P)$$
 using equivalences

$$(P \implies Q) \equiv (\sim P \lor Q)$$
 implication as or  $\equiv (Q \lor \sim P)$  commutes  $\equiv (\sim \sim Q \lor \sim P)$  double negative  $\equiv (\sim Q \implies \sim P)$  or as implication

Why is this useful a useful equivalence?

- Contrapositive is equivalent to the original implication
- Proving one is true is *equivalent* as proving the other is true
- Sometimes the contrapositive is easier to prove than the original

#### **BACK TO THE CONTRAPOSITIVE**

Show that 
$$(P \implies Q) \equiv (\sim Q \implies \sim P)$$
 using equivalences

$$(P \implies Q) \equiv (\sim P \lor Q)$$
 implication as or  $\equiv (Q \lor \sim P)$  commutes  $\equiv (\sim \sim Q \lor \sim P)$  double negative  $\equiv (\sim Q \implies \sim P)$  or as implication

Why is this useful a useful equivalence?

- Contrapositive is equivalent to the original implication
- Proving one is true is *equivalent* as proving the other is true
- Sometimes the contrapositive is easier to prove than the original

