$\iiint \left(\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau(\Delta + \mathcal{K})_{\alpha\beta} + \frac{1}{3} r_{2} \left(4 \, \partial_{\beta} \mathcal{R}_{\alpha_{i}\theta} - 2 \, \partial_{\beta} \mathcal{R}_{\alpha_{\theta_{i}}} + 2 \, \partial_{\beta} \mathcal{R}_{\alpha_{\theta_{i}}} + \partial_{\theta} \mathcal{R}_{\alpha_{\beta_{i}}} + \partial_{\theta} \mathcal{R}_{\alpha_{\beta_{i}}} - 2 \, \partial_{\theta} \mathcal{R}_{\alpha_{i}\beta} \right) \partial^{\theta} \mathcal{R}^{\alpha\beta_{i}} + \frac{1}{2} \, t_{1} \left(2 \, \mathcal{R}^{\alpha_{i}}_{\ \alpha} \ \mathcal{R}^{\theta}_{i \theta} - 4 \, \mathcal{R}^{\theta}_{\alpha_{\theta_{i}}} \right) \partial^{\theta} \mathcal{R}^{\alpha\beta_{i}} + \frac{1}{2} \, t_{2} \, t_{3} \, d^{\alpha} \mathcal{R}^{\beta_{i}}_{\beta} - 4 \, \mathcal{R}^{\beta_{i}}_{\alpha_{i}\theta} + 2 \, \partial_{\beta} \mathcal{R}^{\beta_{i}\theta}_{\alpha_{i}\theta} - 2 \, \partial_{\beta} \mathcal{R}^{\beta_{i}\theta}$ $\partial_{i}f^{\alpha i}+4\,\mathcal{A}_{i}^{\theta}\,\partial^{i}f^{\alpha}_{\alpha}-2\,\partial_{i}f^{\theta}_{\theta}\,\partial^{i}f^{\alpha}_{\alpha}-2\,\partial_{i}f^{\alpha i}\,\partial_{\theta}f^{\alpha i}_{\theta}+4\,\partial^{i}f^{\alpha}_{\alpha}\,\partial_{\theta}f^{\theta}_{\theta}-2\,\partial_{\alpha}f_{\theta}\,\partial^{\theta}f^{\alpha i}-\partial_{\alpha}f_{\theta}\,\partial^{\theta}f^{\alpha i}+\partial_{i}f_{\theta\theta}$ $\partial^{\theta}f^{\alpha \iota} + \partial_{\theta}f_{\alpha \iota}\partial^{\theta}f^{\alpha \iota} + \partial_{\theta}f_{\iota \alpha}\partial^{\theta}f^{\alpha \iota} + 2\,\mathcal{A}_{\alpha \theta \iota}\,(\,\mathcal{A}^{\alpha \iota \theta} + 2\,\partial^{\theta}f^{\alpha \iota})) + \\$ $r_{\underline{c}} \left(\partial_{i} \mathcal{A}_{\theta \kappa}^{\kappa} \partial^{\theta} \mathcal{A}_{\alpha}^{\alpha_{i}} - \partial_{\theta} \mathcal{A}_{\kappa}^{\kappa} \partial^{\theta} \mathcal{A}_{\alpha}^{\alpha_{i}} - (\partial_{\alpha} \mathcal{A}_{\alpha}^{\alpha_{i}\theta} - 2 \partial^{\theta} \mathcal{A}_{\alpha}^{\alpha_{i}}) (\partial_{\kappa} \mathcal{A}_{\kappa}^{\kappa} - \partial_{\kappa} \mathcal{A}_{\theta \kappa}^{\kappa})))[t, x, y, z] dz dy dx dt$ **Wave operator**

PSALTer results panel

· <i>J</i> - T	O	0	U	O											
⁰⁻ Æ [∥] †	0	0	0	$k^2 rt.$	$^{1.}^{+}\mathcal{H}^{\parallel}{}_{lphaeta}$	$^{1.}^{+}\mathcal{F}\!\!\!/^{\perp}{}_{lphaeta}$	$1^+f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{H}^{\parallel}{}_{lpha}$	$^1{\mathscr H}^{\scriptscriptstyle\perp}{}_{lpha}$	$^{1}f^{\parallel}_{\alpha}$	$\frac{1}{2}f_{\alpha}$				
				$^{1^{+}}\mathcal{A}^{\parallel}\dagger^{^{lphaeta}}$	$k^2 r_{5} - \frac{t_{1}}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{i k t}{\sqrt{2}}$	0	0	0	0				
				$^{1.^{+}}\mathcal{A}^{\scriptscriptstyle \perp}\dagger^{^{lphaeta}}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0				
				$\overset{1}{\cdot}f^{\parallel}\uparrow^{\alpha\beta}$	$\frac{i kt.}{\sqrt{2}}$	0	0	0	0	0	0				
				$^{1}\mathcal{A}^{\parallel}\dagger^{lpha}$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	ikt.				
				$^{1}\mathcal{A}^{\perp}\dagger^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0				
				$^{1}f^{\parallel}\dagger^{\alpha}$	0	0	0	0	0	0	0				
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	-Ī k t . 1	0	0	0	$^{2,^{+}}\mathcal{A}^{\parallel}{}_{lpha_{k}}$	3 $^{2^{+}}f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{A}^{\parallel}{}_{\alpha\beta\chi}$	
											$^{2.}\mathcal{A}^{\parallel}\dagger^{\alpha\beta}$	2	$-\frac{i k t_{1}}{\sqrt{2}}$	0	
											$2.^+f^{\parallel} \uparrow^{\alpha\beta}$	y 2	$k^2 t_1$	0	
											$2^{-}\mathcal{A}^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	$\frac{t}{\frac{1}{2}}$	
Satu	ırated	l prop	aga	tor											
	$^{0,^{+}}\sigma^{\parallel}$	0.+ _T	0.+	· 0· σ											
0+ "	1	i √2 k													

$0.^{+}\sigma^{\parallel} + \frac{1}{(1+2k^{2})^{2}t_{1}} \frac{t^{-}\sqrt{2}k}{(1+2k^{2})^{2}t_{1}} = 0$ $0^{+} \tau^{\parallel} + \frac{i \sqrt{2} k}{(1+2k^{2})^{2} t_{1}} - \frac{2k^{2}}{(1+2k^{2})^{2} t_{1}} \quad 0 \qquad 0$

 $0^+_{\cdot} \tau^{\perp} \dagger 0 0 0$

∘ σ" †	Ü	U	U	$k^2 rt.$	$1.^+\sigma^{\parallel}{}_{\alpha\beta}$	$\overset{1}{\cdot}$ $\sigma^{\scriptscriptstyle\perp}{}_{lphaeta}$	$\stackrel{1,^+}{\iota}_{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}_{\alpha}$	$\frac{1}{2}\sigma^{\perp}{}_{\alpha}$	$1^{-}\tau^{\parallel}_{\alpha}$	$1 \tau_{\alpha}$			
				$^{1.^{+}}\sigma^{\parallel}$ $^{+^{lphaeta}}$		$-\frac{\sqrt{2}}{t_1+k^2t_1}$		0	0	0	0			
			:	$\overset{1}{\cdot}$ $\sigma^{\scriptscriptstyle \perp}$ $\overset{+}{\sigma}$	$-\frac{\sqrt{2}}{t_1^2+k^2}t_1$	$\frac{-2 k^2 r_1 + t_1}{(1+k^2)^2 t_1^2}$	$-\frac{i(2k^3rkt.)}{51}(1+k^2)^2t.^2$	0	0	0	0			
				$1.^+\tau^{\parallel} + ^{\alpha\beta}$	$\frac{i \sqrt{2} k}{t + k^2 t}$	$\frac{i\left(2k^{3}r_{.}-kt_{.}\right)}{\left(1+k^{2}\right)^{2}t_{.}^{2}}$	$\frac{-2 k^4 r + k^2 t}{(1+k^2)^2 t}$	0	0	0	0			
				$\dot{\Gamma}^{\sigma}$	0	0	0	0	$\frac{\sqrt{2}}{t_i + 2 k^2 t_i}$	0	$\frac{2 i k}{t_1 + 2 k^2 t_1}$			
				$\dot{\cdot}^{\sigma^{\!\scriptscriptstyle\perp}} \dot{\sigma}^{\!\scriptscriptstyle\perp} \dot{\tau}^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	$\frac{-2 k^2 r_1 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i \sqrt{2} k (2 k^2 r_{.5} t_{.1})}{(t_{.1} + 2 k^2 t_{.1})^2}$			
				$\dot{\tau}$ $\dot{\tau}$ $\dot{\tau}$	0	0	0	0	0	0	0			
				$\frac{1}{\tau}\tau^{\perp} + \frac{\alpha}{2}$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i \sqrt{2} k (2 k^2 r_{5} - t_{1})}{(t_{1} + 2 k^2 t_{1})^2}$	0	$\frac{-4 k^4 r_1 + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$	$^{2^{+}}\sigma^{\parallel}{}_{lphaeta}$	$2^+_{\cdot \tau} \ _{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
												$\frac{2}{(1+2k^2)^2t_1}$	-	0
											$2^+_{\cdot} \tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{2i \sqrt{2} k}{(1+2k^2)^2 t}$	$\frac{4 k^2}{(1+2 k^2)^2 t_1}$	0
											$2^{-}\sigma^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	$\frac{2}{t}$
Sour	ce con	strain	nts											
Spin- _l	parity form	C	Covaria	ant form									Multip	licities

Spin-parity form	Covariant form	Multiplicities			
$0^{+}_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1			
$-2 \bar{\imath} k^{0,+} \sigma^{\parallel} + {}^{0,+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1			
$2 i k 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3			
1- _τ " == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3			
$\bar{i} k \stackrel{1^+}{\cdot} \sigma^{\perp}{}^{\alpha\beta} + \stackrel{1^+}{\cdot} \tau^{\parallel}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3			
	$\partial_{\chi}\partial^{\alpha}\tau (\Delta + \mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau (\Delta + \mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau (\Delta + \mathcal{K})^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$				
$-2 i k 2^{+}_{\cdot} \sigma^{\parallel^{\alpha\beta}} + 2^{+}_{\cdot} \tau^{\parallel^{\alpha\beta}} = 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi}_{\ \chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}-\right.$	5			
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+$				
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon}-$				
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} +$				
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}^{\epsilon}) == 0$				
Total expected gauge generators:					
Massive spectr	um				
•					

(No particles)

Unitarity conditions r. < 0 &&t. < 0

Massless spectrum