19CHN1

HIMADRI MANDAL

October 27, 2021

§1 Solution

Solution. The answer is $-512 \le S \le 288$. 288 is achieved at a=b=4 and c=d=e=-1 and the -512 is achieved at a=9 and b=c=d=e=-1. Lets prove the inequalities now,

Let $x_1 = a + b$, $x_2 = c + d$, $x_3 = e + a$, $x_4 = b + c$, $x_5 = d + e$. Then the conditions become

$$\sum_{i} x_i = 10 \quad \text{and} \quad x_i + x_{i+1} \le 6 \ \forall i$$

We also have $-2 \le x_i \le 8$ for each i, and $S = x_1 x_2 x_3 x_4 x_5$. Let $f(i) = \begin{cases} 0 & x_i \ge 0 \\ 1 & \text{otherwise} \end{cases}$. $T = \sum_{\text{cyc}} f(i)$

Lets do some casework.

- If T = 0 then $S \ge 0$ and $S \le 2^5 = 32$ by AM-GM.
- If T = 1 $S \le 0$, and $|S| \le 2 \cdot 3^2 \cdot 3^2 = 162$ by AM-GM (since $x_1 x_2 \le 9$, $x_3 x_4 \le 9$).
- If T=2, so $S\geq 0$. Two of the nonnegative x_i 's must be adjacent, say x_1 and x_2 , thus $x_1x_2\leq 9$. So $|S|\leq 2^2\cdot 9\cdot 8=288$.

Equality is achieved at (3, 3, -2, 8, -2).

- If T=3, so $S\leq 0$. In that case, $|S|\leq 2^3\cdot 8^2=512$. Equality is achieved at (-2,-2,-2,8,8).
- If T = 4, so $S \ge 0$. Then $|S| \le 2^4 \cdot 8 = 128$.
- T = 5 is not possible since $\sum_{i} x_i = 10$.

Therefore, we deduce that

$$-512 < S < 288$$

as desired. \Box