KTH Matematik Σ p G/U bonus Examinator: Maurice Duits Efternamn förnamn pnr programkod Kontrollskrivning 3A till Diskret Matematik SF1610, för CINTE, vt2016Inga hjälpmedel tillåtna. Minst 8 poäng ger godkänt. Godkänd KS nr n medför godkänd uppgift n vid tentor till (men inte med) nästa ordinarie tenta (högst ett år), $n = 1, \ldots, 5$. 13–15 poäng ger ett ytterligare bonuspoäng till tentamen. Uppgifterna 3)-5) kräver väl motiverade lösningar för full poäng. Uppgifterna står inte säkert i svårighetsordning. Spara alltid återlämnade skrivningar till slutet av kursen! Skriv dina lösningar och svar på samma blad som uppgifterna; använd baksidan om det behövs. 1) (För varje delfråga ger rätt svar $\frac{1}{2}$ p, inget svar 0p, fel svar $-\frac{1}{2}$ p. Totalpoängen på uppgiften rundas av uppåt till närmaste icke-negativa heltal.) Kryssa för om påståendena a)-f) är sanna eller falska (eller avstå)! falskt sant Varenda delgrupp H till en abelsk grupp (G, \circ) är också abelsk. b) Den symmetriska gruppen S_n har en delgrupp av storlek $2 \text{ om } n \geq 2.$ Gruppen $(\mathbb{Z}_{28}, +)$ har en delgrupp av storlek 8. Permutationen (3 4 5) är udda. Varje grupp har en cyklisk delgrupp.

Ordningen av ett element q i en grupp (G, \circ) delar alltid

f)

gruppens storlek |G|.

poäng uppg.1

Namn	poäng uppg.2

2a) (1p) Ange samtliga olika sidoklasser till delgruppen $\{0,3,6,9\}$ i gruppen $(\mathbb{Z}_{12},+)$.

(Det räcker att ange rätt svar.)

b) (1p) Ange ett element i den symmetriska gruppen S_5 som har ordning 6. (Det räcker att ange rätt svar.)

c) (1p) Ange grupptabellen för $(\mathbb{Z}_5 \setminus \{0\}, \cdot)$ (operationen multiplikation). (Det räcker att ange rätt svar.)

Namn	poäng uppg.3

3) (3p) Bestäm samtliga delgrupper till gruppen $(\mathbb{Z}_{30},+)$. OBS. Lösningen ska motiveras.

Namn	poäng uppg.4

4) (3p) I S_7 , låt $\pi=(1\ 2\ 3)(4\ 6)(5\ 7)$ och $\psi=(3\ 4\ 5)$. Bestäm en permutation σ sådan att $\pi^{-1}\circ\sigma\circ\pi=\psi.$

OBS. Lösningen ska motiveras.

Namn	poäng uppg.5

5) (3p) Bestäm storleken av den minsta delgruppen till $(\mathbb{Z}_{120}, +)$ som innehåller elementen 6 och 10.

OBS. Lösningen ska motiveras.