WORLD INTELLECTUAL PROPERT (ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/13, 15/10, 15/62, 15/70, 1/21,

(11) International Publication Number:

WO 97/08320

C07K 1/04, G01N 33/53

A1 (43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

PCT/EP96/03647

(22) International Filing Date:

19 August 1996 (19.08.96)

(30) Priority Data:

EP 95113021.0 18 August 1995 (18.08.95)

(34) Countries for which the regional or international application was filed:

DE et al.

(71) Applicant (for all designated States except US): MORPHOSYS GESELLSCHAFT FÜR PROTEINOPTIMIERUNG MBH [DE/DE]; Frankfurter Ring 193a, D-80807 München (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KNAPPIK, Achim [DE/DE]; Killerstrasse 16, D-82166 Gräfelfing (DE). PACK, Peter [DE/DE]; Franz-Wolter-Strasse 4, D-81925 München (DE). ILAG, Vic [PH/DE]; Knorrstrasse 85. D-80807 München (DE). GE, Liming [CN/DE]; Nestroystrasse 17, D-81373 München (DE). MORONEY, Simon [NZ/DE]; Osterwaldstrasse 44, D-80805 München (DE). PLÜCKTHUN, Andreas [DE/CH]; Möhrlistrasse 97, CH-8006 Zürich (CH).
- (74) Agent: VOSSIUS & PARTNER; P.O. Box 86 07 67, D-81634 München (DE).

Published With international search report.

> Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,

(54) Title: PROTEIN/(POLY)PEPTIDE LIBRARIES

(57) Abstract

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of humanderived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

ction of a synthetic human antibody library based Database of human Ig gene segments Translation in amino acid sequences Alignment of protein sequences Rearranged Germline sequences sequences Computation of Assignment to germline counterpart families Assignment to Database of used families germline families Computation of Analysis of consensus sequences canonical structures Structural Analysis Design of CDRs Genc Design

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
ΑT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
ВJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	IS	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
Fl	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

11.0

/)<u>.</u>

Protein/(Poly)peptide Libraries

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and OD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

_¥.

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

4

Detailed Description of the Invention

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a dafabase of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL, or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immunoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural subelements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: $V\kappa1$, $V\kappa2$, $V\kappa3$, $V\kappa4$, $V\lambda1$, $V\lambda2$, $V\lambda3$, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, $C\kappa$, $C\lambda$, CH1 or any combination of said HuCAL consensus genes.

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine residues (Hochuli et al., 1988), which are able to bind to metal ions,

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL H3k2 single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more or the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

Protein:

The term protein comprises monomeric polypeptide chains as well as homo- or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, α -helices, β -sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

Unique cleavage sites:

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

_ : ._,

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly)peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

Immunoglobulin superfamily (IqSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for <u>Human Combinatorial Antibody Library</u>. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

Universal framework:

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecule or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

sequences, which contains ends compatible with the cleavage sites thus created, is inserted.

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

Legends to Figures and Tables

Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.

- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene Vκ1 was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains Cκ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7A/B: Sequences of the synthetic genes encoding the constant domains C_K (A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic $C\lambda$ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vκ2. The signal sequence (amino acids 1 to 21) was derived from the *E. coli* phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRI site).

- Fig. 9: Plasmid map of the vector plG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from plG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage f1 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEI derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sublibraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- Fig. 14: Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein scFv fragments: M: molecular weight marker, A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified scFv fragments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against ß-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-ß, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and B-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against β-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-B, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 25: Schematic representation of the modular pCAL vector system.
- Fig. 25a: List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.
- Fig. 26: List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig. 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31: Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b:List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- Fig. 36: Functional map and sequence of the ß-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for V_{κ} CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.
- Table 1: Summary of human immunoglobulin germline sequences used for computing the germline membership of rearranged sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. (1) The germline name used in the various calculations, (2) the references number for the corresponding sequence (see appendix for sequence related citations), (3) the family where each sequence belongs to and (4), the various names found in literature for germline genes with identical amino acid sequences.
- Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

the length of the sequence in amino acids (2), the germline family (3) as well as the computed germline counterpart (4). The number of amino acid exchanges between the rearranged sequence and the germline sequence is tabulated in (5), and the percentage of different amino acids is given in (6). Column (7) gives the references number for the corresponding sequence (see appendix for sequence related citations).

- Table 3: Assignment of rearranged V sequences to their germline counterparts.

 (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The germline genes are tabulated according to their family (1), and the number of rearranged genes found for every germline gene is given in (2).
- Table 4: Computation of the consensus sequence of the rearranged V kappa sequences. (A), V kappa subgroup 1, (B), V kappa subgroup 2, (C), V kappa subgroup 3 and (D), V kappa subgroup 4. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. (1) Amino acids are given with their standard one-letter abbreviations (and B means D or N, Z means E or Q and X means any amino acid). The statistical analysis summarizes the number of sequences found at each position (2), the number of occurrences of the most common amino acid (3), the amino acid residue which is most common at this position (4), the relative frequency of the occurrence of the most common amino acid (5) and the number of different amino acids found at each position (6).
- Table 5: Computation of the consensus sequence of the rearranged V lambda sequences. (A), V lambda subgroup 1, (B), V lambda subgroup 2, and (C), V lambda subgroup 3. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.
- Table 6: Computation of the consensus sequence of the rearranged V heavy chain sequences. (A), V heavy chain subgroup 1A, (B), V heavy chain subgroup 1B, (C), V heavy chain subgroup 2, (D), V heavy chain subgroup 3, (E), V heavy chain subgroup 4, (F), V heavy chain subgroup 5, and (G), V heavy chain subgroup 6. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.

Examples

Example 1: Design of a Synthetic Human Combinatorial Antibody Library (HuCAL)

The following example describes the design of a fully synthetic human combinatorial antibody library (HuCAL), based on consensus sequences of the human immunoglobulin repertoire, and the synthesis of the consensus genes. The general procedure is outlined in Fig. 1.

1.1 Sequence database

1.1.1 Collection and alignment of human immunoglobulin sequences

In a first step, sequences of variable domains of human immunoglobulins have been collected and divided into three sub bases: V heavy chain (VH), V kappa (V κ) and V lambda (V λ). For each sequence, the gene sequence was then translated into the corresponding amino acid sequence. Subsequently, all amino acid sequences were aligned according to Kabat et al. (1991). In the case of V λ sequences, the numbering system of Chuchana et al. (1990) was used. Each of the three main databases was then divided into two further sub bases: the first sub base contained all sequences derived from rearranged V genes, where more than 70 positions of the sequence were known. The second sub base contained all germline gene segments (without the D- and J- minigenes; pseudogenes with internal stop codons were also removed). In all cases, where germline sequences with identical amino acid sequence but different names were found, only one sequence was used (see Table 1). The final databases of rearranged sequences contained 386, 149 and 674 entries for V κ , V λ and VH, respectively. The final databases of germline sequences contained 48, 26 and 141 entries for V κ , V λ and VH, respectively.

1.1.2 Assignment of sequences to subgroups

The sequences in the three germline databases where then grouped according to sequence homology (see also Tomlinson et al., 1992, Williams & Winter, 1993, and Cox et al., 1994). In the case of $V\kappa$, 7 families could be established. $V\lambda$ was divided into 8 families and VH into 6 families. The VH germline genes of the VH7 family (Van Dijk et al., 1993) were grouped into the VH1 family, since the genes of the two families are highly homologous. Each family contained different numbers of germline genes, varying from 1 (for example VH6) to 47 (VH3).

1.2 Analysis of sequences

1.2.1 Computation of germline membership

For each of the 1209 amino acid sequences in the databases of rearranged genes, the nearest germline counterpart, i.e. the germline sequence with the smallest number of amino acid differences was then calculated. After the germline counterpart was found, the number of somatic mutations which occurred in the rearranged gene and which led to amino acid exchanges could be tabulated. In 140 cases, the germline counterpart could not be calculated exactly, because more than one germline gene was found with an identical number of amino acid exchanges. These rearranged sequences were removed from the database. In a few cases, the number of amino acid exchanges was found to be unusually large (>20 for VL and >25 for VH), indicating either heavily mutated rearranged genes or derivation from germline genes not present in the database. Since it was not possible to distinguish between these two possibilities, these sequences were also removed from the database. Finally, 12 rearranged sequences were removed from the database because they were found to have very unusual CDR lengths and composition or unusual amino acids at canonical positions (see below). In summary, 1023 rearranged sequences out of 1209 (85%) could be clearly assigned to their germline counterparts (see Table 2).

After this calculation, every rearranged gene could be arranged in one of the families established for the germline genes. Now the usage of each germline gene, i.e. the number of rearranged genes which originate from each germline gene, could be calculated (see Table 2). It was found that the usage was strongly biased towards a subset of germline genes, whereas most of the germline genes were not present as rearranged genes in the database and therefore apparently not used in the immune system (Table 3). This observation had already been reported in the case of V_K (Cox, et al., 1994). All germline gene families, where no or only very few rearranged counterparts could be assigned, were removed from the database, leaving 4 V_K , 3 V_K , and 6 VH families.

1.2.2 Analysis of CDR conformations

The conformation of the antigen binding loops of antibody molecules, the CDRs, is strongly dependent on both the length of the CDRs and the amino acid residues located at the so-called canonical positions (Chothia & Lesk, 1987). It has been found that only a few canonical structures exist, which determine the structural

repertoire of the immunoglobulin variable domains (Chothia et al., 1989). The canonical amino acid positions can be found in CDR as well as framework regions. The 13 used germline families defined above (7 VL and 6 VH) were now analyzed for their canonical structures in order to define the structural repertoire encoded in these families.

In 3 of the 4 V κ families (V κ 1, 2 and 4), one different type of CDR1 conformation could be defined for every family. The family V κ 3 showed two types of CDR1 conformation: one type which was identical to V κ 1 and one type only found in V κ 3. All V κ CDR2s used the same type of canonical structure. The CDR3 conformation is not encoded in the germline gene segments. Therefore, the 4 V κ families defined by sequence homology and usage corresponded also to 4 types of canonical structures found in V κ germline genes.

The 3 V λ families defined above showed 3 types of CDR1 conformation, each family with one unique type. The V λ 1 family contained 2 different CDR1 lengths (13 and 14 amino acids), but identical canonical residues, and it is thought that both lengths adopt the same canonical conformation (Chothia & Lesk, 1987). In the CDR2 of the used V λ germlines, only one canonical conformation exists, and the CDR3 conformation is not encoded in the germline gene segments. Therefore, the 3 V λ families defined by sequence homology and usage corresponded also to 3 types of canonical structures.

The structural repertoire of the human VH sequences was analyzed in detail by Chothia et al., 1992. In total, 3 conformations of CDR1 (H1-1, H1-2 and H1-3) and 6 conformations of CDR2 (H2-1, H2-2, H2-3, H2-4, H2-5 and H2-x) could be defined. Since the CDR3 is encoded in the D- and J-minigene segments, no particular canonical residues are defined for this CDR.

All the members of the VH1 family defined above contained the CDR1 conformation H1-1, but differed in their CDR2 conformation: the H2-2 conformation was found in 6 germline genes, whereas the conformation H2-3 was found in 8 germline genes. Since the two types of CDR2 conformations are defined by different types of amino acid at the framework position 72, the VH1 family was divided into two subfamilies: VH1A with CDR2 conformation H2-2 and VH1B with the conformation H2-3. The members of the VH2 family all had the conformations H1-3 and H2-1 in CDR1 and CDR2, respectively. The CDR1 conformation of the VH3 members was found in all cases to be H1-1, but 4 different types were found in CDR2 (H2-1, H2-3, H2-4 and H2-x). In these CDR2 conformations, the canonical framework residue 71 is always

defined by an arginine. Therefore, it was not necessary to divide the VH3 family into subfamilies, since the 4 types of CDR2 conformations were defined solely by the CDR2 itself. The same was true for the VH4 family. Here, all 3 types of CDR1 conformations were found, but since the CDR1 conformation was defined by the CDR itself (the canonical framework residue 26 was found to be glycine in all cases), no subdivisions were necessary. The CDR2 conformation of the VH4 members was found to be H2-1 in all cases. All members of the VH5 family were found to have the conformation H1-1 and H2-2, respectively. The single germline gene of the VH6 family had the conformations H1-3 and H2-5 in CDR1 and CDR2, respectively.

In summary, all possible CDR conformations of the $V\kappa$ and $V\lambda$ genes were present in the 7 families defined by sequence comparison. From the 12 different CDR conformations found in the used VH germline genes, 7 could be covered by dividing the family VH1 into two subfamilies, thereby creating 7 VH families. The remaining 5 CDR conformations (3 in the VH3 and 2 in the VH4 family) were defined by the CDRs themselves and could be created during the construction of CDR libraries. Therefore, the structural repertoire of the used human V genes could be covered by 49 (7 x 7) different frameworks.

1.2.3 Computation of consensus sequences

The 14 databases of rearranged sequences (4 V κ , 3 V λ and 7 VH) were used to compute the HuCAL consensus sequences of each subgroup (4 HuCAL- Vk, 3 HuCAL- Vλ, 7 HuCAL- VH, see Table 4, 5 and 6). This was done by counting the number of amino acid residues used at each position (position variability) and subsequently identifying the amino acid residue most frequently used at each position. By using the rearranged sequences instead of the used germline sequences for the calculation of the consensus, the consensus was weighted according to the frequency of usage. Additionally, frequently mutated and highly conserved positions could be identified. The consensus sequences were crosschecked with the consensus of the germline families to see whether the rearranged sequences were biased at certain positions towards amino acid residues which do not occur in the collected germline sequences, but this was found not to be the case. Subsequently, the number of differences of each of the 14 consensus sequences to each of the germline sequences found in each specific family was calculated. The overall deviation from the most homologous germline sequence was found to be 2.4 amino acid residues (s.d. = 2.7), ensuring that the "artificial" consensus sequences

can still be considered as truly human sequences as far as immunogenicity is concerned.

1.3 Structural analysis

So far, only sequence information was used to design the consensus sequences. Since it was possible that during the calculation certain artificial combinations of amino acid residues have been created, which are located far away in the sequence but have contacts to each other in the three dimensional structure, leading to destabilized or even misfolded frameworks, the 14 consensus sequences were analyzed according to their structural properties.

It was rationalized that all rearranged sequences present in the database correspond to functional and therefore correctly folded antibody molecules. Hence, the most homologous rearranged sequence was calculated for each consensus sequence. The positions where the consensus differed from the rearranged sequence were identified as potential "artificial residues" and inspected.

The inspection itself was done in two directions. First, the local sequence stretch around each potentially "artificial residue" was compared with the corresponding stretch of all the rearranged sequences. If this stretch was found to be truly artificial, i.e. never occurred in any of the rearranged sequences, the critical residue was converted into the second most common amino acid found at this position and analyzed again. Second, the potentially "artificial residues" were analyzed for their long range interactions. This was done by collecting all available structures of human antibody variable domains from the corresponding PDB files and calculating for every structure the number and type of interactions each amino acid residue established to each side-chain. These "interaction maps" were used to analyze the probable side-chain/side-chain interactions of the potentially "artificial residues". As a result of this analysis, the following residues were exchanged (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: S₆₅T Vκ1: N₃₄A,

Vκ3: G₉A, D₆₀A, R₇₇S

Vλ3: V₇₈T

1.4 Design of CDR sequences

The process described above provided the complete consensus sequences derived solely from the databases of rearranged sequences. It was rationalized that the CDR1 and CDR2 regions should be taken from the databases of used germline sequences, since the CDRs of rearranged and mutated sequences are biased towards their particular antigens. Moreover, the germline CDR sequences are known to allow binding to a variety of antigens in the primary immune response, where only CDR3 is varied. Therefore, the consensus CDRs obtained from the calculations described above were replaced by germline CDRs in the case of VH and V_K . In the case of V_A , a few amino acid exchanges were introduced in some of the chosen germline CDRs in order to avoid possible protease cleavage sites as well as possible structural constraints.

The CDRs of following germline genes have been chosen:

HuCAL gene	CDR1	CDR2
HuCAL-VH1A	VH1-12-1	VH1-12-1
HuCAL-VH1B	VH1-13-16	VH1-13-6,-7,-8,-9
HuCAL-VH2	VH2-31-10,-11,-12,-13	VH2-31-3,-4
HuCAL-VH3	VH3-13-8,-9,-10	VH3-13-8,-9,-10
HuCAL-VH4	VH4-11-7 to -14	VH4-11-8,-9,-11,-12,-14,-16
		VH4-31-17,-18,-19,-20
HuCAL-VH5	VH5-12-1,-2	VH5-12-1,-2
HuCAL-VH6	VH6-35-1	VH6-35-1
HuCAL-V _K 1	Vκ1-14,-15	Vĸ1-2,-3,-4,-5,-7,-8,-12,-13,-18,-19
HuCAL-Vκ2	Vκ2-6	Vĸ2-6
HuCAL-Vk3	Vκ3-1,-4	Vĸ3-4
HuCAL-Vκ4	Vκ4-1	Vĸ4-1
HuCAL-Vλ1	HUMLV117,DPL5	DPL5
HuCAL-Vλ2	DPL11,DPL12	DPL12
HuCAL-V\3	DPL23	HUMLV318

In the case of the CDR3s, any sequence could be chosen since these CDRs were planned to be the first to be replaced by oligonucleotide libraries. In order to study the expression and folding behavior of the consensus sequences in *E. coli*, it would be useful to have all sequences with the same CDR3, since the influence of the CDR3s on the folding behavior would then be identical in all cases. The dummy sequences QQHYTTPP and ARWGGDGFYAMDY were selected for the VL chains (kappa and lambda) and for the VH chains, respectively. These sequences are known to be compatible with antibody folding in *E. coli* (Carter et al., 1992).

1.5 Gene design

The final outcome of the process described above was a collection of 14 HuCAL amino acid sequences, which represent the frequently used structural antibody repertoire of the human immune system (see Figure 2). These sequences were back-translated into DNA sequences. In a first step, the back-translation was done using only codons which are known to be frequently used in E. coli. These gene sequences were then used for creating a database of all possible restriction endonuclease sites, which could be introduced without changing the corresponding amino acid sequences. Using this database, cleavage sites were selected which were located at the flanking regions of all sub-elements of the genes (CDRs and framework regions) and which could be introduced in all HuCAL VH, Vκ or Vλ genes simultaneously at the same position. In a few cases it was not possible to find cleavage sites for all genes of a subgroup. When this happened, the amino acid sequence was changed, if this was possible according to the available sequence and structural information. This exchange was then analyzed again as described above. In total, the following 6 amino acid residues were exchanged during this design (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: T₂Q

VH6: S₄,G

Vκ3: E₁D, I₅₈V

Vκ4: K₂₄R

Vλ3: T₂₂S

In one case (5'-end of VH framework 3) it was not possible to identify a single cleavage site for all 7 VH genes. Two different type of cleavage sites were used instead: BstEll for HuCAL VH1A, VH1B, VH4 and VH5, and NspV for HuCAL VH2, VH3, VH4 and VH6.

Several restriction endonuclease sites were identified, which were not located at the flanking regions of the sub-elements but which could be introduced in every gene of a given group without changing the amino acid sequence. These cleavage sites were also introduced in order to make the system more flexible for further improvements. Finally, all but one remaining restriction endonuclease sites were removed in every gene sequence. The single cleavage site, which was not removed was different in all genes of a subgroup and could be therefore used as a "fingerprint" site to ease the identification of the different genes by restriction digest. The designed genes, together with the corresponding amino acid sequences and the group-specific restriction endonuclease sites are shown in Figure 3, 4 and 5, respectively.

1.6 Gene synthesis and cloning

The consensus genes were synthesized using the method described by Prodromou & Pearl, 1992, using the oligonucleotides shown in Fig. 6. Gene segments encoding the human constant domains $C\kappa$, $C\lambda$ and CH1 were also synthesized, based on sequence information given by Kabat et al., 1991 (see Fig. 6 and Fig. 7). Since for both the CDR3 and the framework 4 gene segments identical sequences were chosen in all HuCAL $V\kappa$, $V\lambda$ and VH genes, respectively, this part was constructed only once, together with the corresponding gene segments encoding the constant domains. The PCR products were cloned into pCR-Script KS(+) (Stratagene, Inc.) or pZErO-1 (Invitrogen, Inc.) and verified by sequencing.

Example 2: Cloning and Testing of a HuCAL-Based Antibody Library

A combination of two of the synthetic consensus genes was chosen after construction to test whether binding antibody fragments can be isolated from a library based on these two consensus frameworks. The two genes were cloned as a single-chain Fv (scFv) fragment, and a VH-CDR3 library was inserted. In order to test the library for the presence of functional antibody molecules, a selection procedure

was carried out using the small hapten fluorescein bound to BSA (FITC-BSA) as antigen.

2.1 Cloning of the HuCAL VH3-Vk2 scFv fragment

In order to test the design of the consensus genes, one randomly chosen combination of synthetic light and heavy gene (HuCAL-Vκ2 and HuCAL-VH3) was used for the construction of a single-chain antibody (scFv) fragment. Briefly, the gene segments encoding the VH3 consensus gene and the CH1 gene segment including the CDR3 - framework 4 region, as well as the $V\kappa 2$ consensus gene and the Cκ gene segment including the CDR3 - framework 4 region were assembled yielding the gene for the VH3-CH1 Fd fragment and the gene encoding the $V\kappa 2$ -C κ light chain, respectively. The CH1 gene segment was then replaced by an oligonucleotide cassette encoding a 20-mer peptide linker with the sequence AGGGSGGGGGGGGGGG. The two oligonucleotides encoding this linker were 5'- TCAGCGGGTGGCGGTTCTGGCGGCGGTGGCGGTGGTTC-TGGCGGTGGTTCCGATATCGGTCCACGTACG-3' and 5'-AATTCCGTACG-TGGACCGATATCGGAACCACCGCCAGGAACCACCGCCACCGCTCCCACCGC CGCCAGAACCGCCACCCGC-3', respectively. Finally, the HuCAL-V_K2 gene was inserted via EcoRV and BsiWI into the plasmid encoding the HuCAL-VH3-linker fusion, leading to the final gene HuCAL-VH3-Vk2, which encoded the two consensus sequences in the single-chain format VH-linker-VL. The complete coding sequence is shown in Fig. 8.

2.2 Construction of a monovalent phage-display phagemid vector pIG10.3

Phagemid pIG10.3 (Fig. 9) was constructed in order to create a phage-display system (Winter et al., 1994) for the H3κ2 scFv gene. Briefly, the EcoRI/HindIII restriction fragment in the phagemid vector pIG10 (Ge et al., 1995) was replaced by the c-myc followed by an amber codon (which encodes an glutamate in the amber-suppresser strain XL1 Blue and a stop codon in the non-suppresser strain JM83) and a truncated version of the gene III (fusion junction at codon 249, see Lowman et al., 1991) through PCR mutagenesis.

2.3 Construction of H-CDR3 libraries

Heavy chain CDR3 libraries of two lengths (10 and 15 amino acids) were constructed using trinucleotide codon containing oligonucleotides (Virnekās et al., 1994) as templates and the oligonucleotides complementing the flanking regions as primers. To concentrate only on the CDR3 structures that appear most often in functional antibodies, we kept the salt-bridge of R_{H94} and D_{H101} in the CDR3 loop. For the 15-mer library, both phenylalanine and methionine were introduced at position 100 since these two residues were found to occur quite often in human CDR3s of this length (not shown). For the same reason, valine and tyrosine were introduced at position 102. All other randomized positions contained codons for all amino acids except cystein, which was not used in the trinucleotide mixture.

The CDR3 libraries of lengths 10 and 15 were generated from the PCR fragments using oligonucleotide templates O3HCDR103T (5'- GATACGGCCGTGTATTA-TTGCGCGCGT (TRI)6GATTATTGGGGCCAAGGCACCCTG-3') and O3HCDR153T (5'-GATACGGCCGT GTATTATTGCGCGCGT(TRI)10(TTT/ATG)GAT(GTT/TAT)TGGG-GCCAAGGCACCCTG-3'), and primers O3HCDR35 (5'-GATACGGCCGTGTATTA-TTGC-3') and O3HCDR33 (5'-CAGGGTGCCTTGGCCCC-3'), where TRI are trinucleotide mixtures representing all amino acids without cystein, (TTT/ATG) and (GTT/TAT) trinucleotide mixtures encodina the amino acids phenylalanine/methionine and valine/tyrosine, respectively. The potential diversity of these libraries was 4.7×10^7 and 3.4×10^{10} for 10-mer and 15-mer library, respectively. The library cassettes were first synthesized from PCR amplification of the oligo templates in the presence of both primers: 25 pmol of the oligo template O3HCDR103T or O3HCDR153T, 50 pmol each of the primers O3HCDR35 and O3HCDR33, 20 nmol of dNTP, 10x buffer and 2.5 units of Pfu DNA polymerase (Stratagene) in a total volume of 100 μl for 30 cycles (1 minute at 92°C, 1 minute at 62°C and 1 minute at 72°C). A hot-start procedure was used. The resulting mixtures were phenol-extracted, ethanol-precipitated and digested overnight with Eagl and Styl. The vector pIG10.3-scH3κ2cat, where the Eagl-Styl fragment in the vector pIG10.3-scH3κ2 encoding the H-CDR3 was replaced by the chloramphenicol acetyltransferase gene (cat) flanked with these two sites, was similarly digested. The digested vector (35 μ g) was gel-purified and ligated with 100 μ g of the library cassette overnight at 16°C. The ligation mixtures were isopropanol precipitated, airdried and the pellets were redissolved in 100 μl of ddH2O. The ligation was mixed with 1 ml of freshly prepared electrocompetent XL1 Blue on ice. 20 rounds of electroporation were performed and the transformants were diluted in SOC medium, shaken at 37°C for 30 minutes and plated out on large LB plates (Amp/Tet/Glucose)

at 37°C for 6-9 hrs. The number of transformants (library size) was 3.2x10′ and 2.3x10′ for the 10-mer and the 15-mer library, respectively. The colonies were suspended in 2xYT medium (Amp/Tet/Glucose) and stored as glycerol culture. In order to test the quality of the initial library, phagemids from 24 independent colonies (12 from the 10-mer and 12 from the 15-mer library, respectively) were isolated and analyzed by restriction digestion and sequencing. The restriction analysis of the 24 phagemids indicated the presence of intact vector in all cases. Sequence analysis of these clones (see Fig. 10) indicated that 22 out of 24 contained a functional sequence in their heavy chain CDR3 regions. 1 out of 12 clones of the 10-mer library had a CDR3 of length 9 instead of 10, and 2 out of 12 clones of the 15-mer library had no open reading frame, thereby leading to a nonfunctional scFv; one of these two clones contained two consecutive inserts, but out of frame (data not shown). All codons introduced were presented in an even distribution.

Expression levels of individual library members were also measured. Briefly, 9 clones from each library were grown in 2xYT medium containing Amp/Tet/0.5% glucose at 37°C overnight. Next day, the cultures were diluted into fresh medium with Amp/Tet. At an OD_{600nm} of 0.4, the cultures were induced with 1 mM of IPTG and shaken at RT overnight. Then the cell pellets were suspended in 1 ml of PBS buffer + 1 mM of EDTA. The suspensions were sonicated and the supernatants were separated on an SDS-PAGE under reducing conditions, blotted on nylon membrane and detected with anti-FLAG M1 antibody (see Fig. 11). From the nine clones of the 10-mer library, all express the scFv fragments. Moreover, the gene III / scFv fusion proteins were present in all cases. Among the nine clones from the 15-mer library analyzed, 6/9 (67%) led to the expression of both scFv and the gene III/scFv fusion proteins. More importantly, all clones expressing the scFvs and gene III/scFv fusions gave rise to about the same level of expression.

2.4 Biopanning

Phages displaying the antibody libraries were prepared using standard protocols. Phages derived from the 10-mer library were mixed with phages from the 15-mer library in a ratio of 20:1 (1×10^{10} cfu/well of the 10-mer and 5×10^8 cfu/well of the 15-mer phages, respectively). Subsequently, the phage solution was used for panning in ELISA plates (Maxisorp, Nunc) coated with FITC-BSA (Sigma) at concentration of 100 μ g/ml in PBS at 4°C overnight. The antigen-coated wells were blocked with 3% powder milk in PBS and the phage solutions in 1% powder milk were added to each

well and the plate was shaken at RT for 1 hr. The wells were then washed with PBST and PBS (4 times each with shaking at RT for 5 minutes). The bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. The eluted phage solutions were immediately neutralized with 1/2 the volume of 1 M Tris-Cl, pH 7.6. Eluted phage solutions (ca. 450 μ l) were used to infect 5 ml of XL1 Blue cells at 37°C for 30 min. The infected cultures were then plated out on large LB plates (Amp/Tet/Glucose) and allowed to grow at 37°C until the colonies were visible. The colonies were suspended in 2xYT medium and the glycerol cultures were made as above described. This panning round was repeated twice, and in the third round elution was carried out with addition of fluorescein in a concentration of 100 μ g/ml in PBS. The enrichment of specific phage antibodies was monitored by panning the initial as well as the subsequent fluorescein-specific sub-libraries against the blocking buffer (Fig. 12). Antibodies with specificity against fluorescein were isolated after 3 rounds of panning.

2.5 ELISA measurements

One of the criteria for the successful biopanning is the isolation of individual phage clones that bind to the targeted antigen or hapten. We undertook the isolation of anti-FITC phage antibody clones and characterized them first in a phage ELISA format. After the 3rd round of biopanning (see above), 24 phagemid containing clones were used to inoculate 100 μ l of 2xYT medium (Amp/Tet/Glucose) in an ELISA plate (Nunc), which was subsequently shaken at 37°C for 5 hrs. 100 μ l of 2xYT medium (Amp/Tet/1 mM IPTG) were added and shaking was continued for 30 minutes. A further 100 μ l of 2xYT medium (Amp/Tet) containing the helper phage (1 x 109 cfu/well) was added and shaking was done at RT for 3 hrs. After addition of kanamycin to select for successful helper phage infection, the shaking was continued overnight. The plates were then centrifuged and the supernatants were pipetted directly into ELISA wells coated with 100 μ I FITC-BSA (100 μ g/ml) and blocked with milk powder. Washing was performed similarly as during the panning procedure and the bound phages were detected with anti-M13 antibody-POD conjugate (Pharmacia) using soluble POD substrate (Boehringer-Mannheim). Of the 24 clones screened against FITC-BSA, 22 were active in the ELISA (Fig. 13). The initial libraries of similar titer gave rise to no detectable signal.

Specificity for fluorescein was measured in a competitive ELISA. Periplasmic fractions of five FITC specific scFvs were prepared as described above. Western blotting indicated that all clones expressed about the same amount of scFv fragment

(data not shown). ELISA was performed as described above, but additionally, the periplasmic fractions were incubated 30 min at RT either with buffer (no inhibition), with 10 mg/ml BSA (inhibition with BSA) or with 10 mg/ml fluorescein (inhibition with fluorescein) before adding to the well. Binding scFv fragment was detected using the anti-FLAG antibody M1. The ELISA signal could only be inhibited, when soluble fluorescein was added, indicating binding of the scFvs was specific for fluorescein (Fig. 14).

2.6 Sequence analysis

The heavy chain CDR3 region of 20 clones were sequenced in order to estimate the sequence diversity of fluorescein binding antibodies in the library (Fig. 15). In total, 16 of 20 sequences (80%) were different, showing that the constructed library contained a highly diverse repertoire of fluorescein binders. The CDR3s showed no particular sequence homology, but contained on average 4 arginine residues. This bias towards arginine in fluorescein binding antibodies had already been described by Barbas et al., 1992.

2.7 Production

E. coli JM83 was transformed with phagemid DNA of 3 selected clones and cultured in 0.5 L 2xYT medium. Induction was carried out with 1 mM IPTG at OD_{600nm} = 0.4 and growth was continued with vigorous shaking at RT overnight. The cells were harvested and pellets were suspended in PBS buffer and sonicated. The supernatants were separated from the cell debris via centrifugation and purified via the BioLogic system (Bio-Rad) by with a POROS®MC 20 column (IMAC, PerSeptive Biosystems, Inc.) coupled with an ion-exchange chromatography column. The ion-exchange column was one of the POROS®HS, CM or HQ or PI 20 (PerSeptive Biosystems, Inc.) depended on the theoretical pl of the scFv being purified. The pH of all the buffers was adjusted to one unit lower or higher than the pl of the scFv being purified throughout. The sample was loaded onto the first IMAC column, washed with 7 column volumes of 20 mM sodium phosphate, 1 M NaCl and 10 mM imidazole. This washing was followed by 7 column volumes of 20 mM sodium phosphate and 10 mM imidazole. Then 3 column volumes of an imidazole gradient (10 to 250 mM) were applied and the eluent was connected directly to the ion-exchanger. Nine column volumes of isocratic washing with 250 mM imidazole was followed by 15 column volumes of 250 mM to 100 mM and 7 column volumes of an imidazole / NaCl gradient (100 to 10 mM imidazole, 0 to 1 M NaCl). The flow rate was 5 ml/min. The purity of scFv fragments was checked by SDS-PAGE Coomassie

staining (Fig. 16). The concentration of the fragments was determined from the absorbance at 280 nm using the theoretically determined extinction coefficient (Gill & von Hippel, 1989). The scFv fragments could be purified to homogeneity (see Fig. 16). The yield of purified fragments ranged from 5 to 10 mg/L/OD.

Example 3: HuCAL H3x2 Library Against a Collection of Antigens

In order to test the library used in Example 2 further, a new selection procedure was carried out using a variety of antigens comprising B-estradiol, testosterone, Lewis-Y epitope (LeY), interleukin-2 (IL-2), lymphotoxin-B (LT-B), E-selectin ligand-1 (ESL-1), and BSA.

3.1 Biopanning

The library and all procedures were identical to those described in Example 2. The ELISA plates were coated with β -estradiol-BSA (100 μ g/ml), testosterone-BSA (100 μ g/ml), LeY-BSA (20 μ g/ml) IL-2 (20 μ g/ml), ESL-1 (20 μ g/ml) and BSA (100 μ g/ml), LT- β (denatured protein, 20 μ g/ml). In the first two rounds, bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. In the case of BSA, elution after three rounds of panning was carried out with addition of BSA in a concentration of 100 μ g/ml in PBS. In the case of the other antigens, third round elution was done with 0.1 M triethylamine. In all cases except LeY, enrichment of binding phages could be seen (Figure 17). Moreover, a repetition of the biopanning experiment using only the 15-mer library resulted in the enrichment of LeY-binding phages as well (data not shown).

3.2. ELISA measurements

Clones binding to ß-estradiol, testosterone, LeY, LT-ß, ESL-1 and BSA were further analyzed and characterized as described in Example 2 for FITC. ELISA data for anti-ß-estradiol and anti-ESL-1 antibodies are shown in Fig. 18. In one experiment, selectivity and cross-reactivity of binding scFv fragments were tested. For this purpose, an ELISA plate was coated with FITC, testosterone, ß-estradiol, BSA, and ESL-1, with 5 wells for each antigen arranged in 5 rows, and 5 antibodies, one against each of the antigens, were screened against each of the antigens. Fig. 19

shows the specific binding of the antibodies to the antigen it was selected for, and the low cross-reactivity with the other four antigens.

3.3 Sequence analysis

The sequencing data of several clones against β -estradiol (34 clones), testosterone (12 clones), LT- β (23 clones), ESL-1 (34 clones), and BSA (10 clones) are given in Figures 20 to 24.

Example 4: Vector Construction

To be able to take advantage of the modularity of the consensus gene repertoire, a vector system had to be constructed which could be used in phage display screening of HuCAL libraries and subsequent optimization procedures. Therefore, all necessary vector elements such as origins of single-stranded or double-stranded replication, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, or detection tags had to be made compatible with the restriction site pattern of the modular consensus genes. Figure 25 shows a schematic representation of the pCAL vector system and the arrangement of vector modules and restriction sites therein. Figure 25a shows a list of all restriction sites which are already incorporated into the consensus genes or the vector elements as part of the modular system or which are not yet present in the whole system. The latter could be used in a later stage for the introduction of or within new modules.

4.1 Vector modules

A series of vector modules was constructed where the restriction sites flanking the gene sub-elements of the HuCAL genes were removed, the vector modules themselves being flanked by unique restriction sites. These modules were constructed either by gene synthesis or by mutagenesis of templates. Mutagenesis was done by add-on PCR, by site-directed mutagenesis (Kunkel et al., 1991) or multisite oligonucleotide-mediated mutagenesis (Sutherland et al., 1995; Perlak, 1990) using a PCR-based assembly method.

Figure 26 contains a list of the modules constructed. Instead of the terminator module M9 (HindIII-Ipp-PacI), a larger cassette M9II was prepared to introduce Fsel as additional restriction site. M9II can be cloned via HindIII/BsrGI.

All vector modules were characterized by restriction analysis and sequencing. In the case of module M11-II, sequencing of the module revealed a two-base difference in positions 164/65 compared to the sequence database of the template. These two different bases (CA → GC) created an additional BanII site. Since the same two-base difference occurs in the f1 origin of other bacteriophages, it can be assumed that the two-base difference was present in the template and not created by mutagenesis during cloning. This BanII site was removed by site-directed mutagenesis, leading to module M11-III. The BssSI site of module M14 could initially not be removed without impact on the function of the CoIE1 origin, therefore M14-Ext2 was used for cloning of the first pCAL vector series. Figures 29 to 34 are showing the functional maps and sequences of the modules used for assembly of the modular vector pCAL4 (see below). The functional maps and sequences of additional modules can be found in Figure 35a. Figure 35b contains a list of oligonucleotides and primers used for the synthesis of the modules.

4.2 Cloning vector pMCS

To be able to assemble the individual vector modules, a cloning vector pMCS containing a specific multi-cloning site (MCS) was constructed. First, an MCS cassette (Fig. 27) was made by gene synthesis. This cassette contains all those restriction sites in the order necessary for the sequential introduction of all vector modules and can be cloned via the 5'-HindIII site and a four base overhang at the 3'-end compatible with an AatII site. The vector pMCS (Figure 28) was constructed by digesting pUC19 with AatII and HindIII, isolating the 2174 base pair fragment containing the bla gene and the CoIE1 origin, and ligating the MCS cassette.

4.3 Cloning of modular vector pCAL4

This was cloned step by step by restriction digest of pMCS and subsequent ligation of the modules M1 (via Aatll/Xbal), M7III (via EcoRI/HindIII), and M9II (via HindIII/BsrGI), and M11-II (via BsrGI/NheI). Finally, the bla gene was replaced by the cat gene module M17 (via Aatll/BgIII), and the wild type CoIE1 origin by module M14-Ext2 (via BgIII/NheI). Figure 35 is showing the functional map and the sequence of pCAL4.

4.4 Cloning of low-copy number plasmid vectors pCALO

A series of low-copy number plasmid vectors was constructed in a similar way using the p15A module M12 instead of the ColE1 module M14-Ext2. Figure 35a is showing the functional maps and sequences of the vectors pCALO1 to pCALO3.

Example 5: Construction of a HuCAL scFv Library

5.1. Cloning of all 49 HuCAL scFv fragments

All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes were assembled as described for the HuCAL VH3-V κ 2 scFv in Example 2 and inserted into the vector pBS12, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991).

5.2 Construction of a CDR cloning cassette

For replacement of CDRs, a universal β-lactamase cloning cassette was constructed having a multi-cloning site at the 5'-end as well as at the 3'-end. The 5'-multi-cloning site comprises all restriction sites adjacent to the 5'-end of the HuCAL VH and VL CDRs, the 3'-multi-cloning site comprises all restriction sites adjacent to the 3' end of the HuCAL VH and VL CDRs. Both 5'- and 3'-multi-cloning site were prepared as cassettes via add-on PCR using synthetic oligonucleotides as 5'- and 3'-primers using wild type β-lactamase gene as template. Figure 36 shows the functional map and the sequence of the cassette bla-MCS.

5.3. Preparation of VL-CDR3 library cassettes

The VL-CDR3 libraries comprising 7 random positions were generated from the PCR fragments using oligonucleotide templates $V\kappa1\&V\kappa3$, $V\kappa2$ and $V\kappa4$ and primers O_K3L_5 and O_K3L_3 (Fig. 37) for the $V\kappa$ genes, and V). and primers O_L3L_5 (5'-GCAGAAGGCGAACGTCC-3') and O_L3LA_3 (Fig. 38) for the $V\kappa$ genes. Construction of the cassettes was performed as described in Example 2.3.

5.4 Cloning of HuCAL scFv genes with VL-CDR3 libraries

Each of the 49 single-chains was subcloned into pCAL4 via Xbal/EcoRI and the VL-CDR3 replaced by the B-lactamase cloning cassette via Bbsl/Mscl, which was then replaced by the corresponding VL-CDR3 library cassette synthesized as described above. This CDR replacement is described in detail in Example 2.3 where the cat gene was used.

5.5 Preparation of VH-CDR3 library cassette

The VH-CDR3 libraries were designed and synthesized as described in Example 2.3.

5.6 Cloning of HuCAL scFv genes with VL- and VH-CDR3 libraries

Each of the 49 single-chain VL-CDR3 libraries was digested with BssHII/Styl to replace VH-CDR3. The "dummy" cassette digested with BssHII/Styl was inserted, and was then replaced by a corresponding VH-CDR3 library cassette synthesized as described above.

Example 6: Expression tests

Expression and toxicity studies were performed using the scFv format VH-linker-VL. All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes assembled as described in Example 5 were inserted into the vector pBS13, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991). A map of this vector is shown in Fig. 39.

E. coli JM83 was transformed 49 times with each of the vectors and stored as glycerol stock. Between 4 and 6 clones were tested simultaneously, always including the clone H3 κ 2, which was used as internal control throughout. As additional control, the McPC603 scFv fragment (Knappik & Plückthun, 1995) in pBS13 was expressed under identical conditions. Two days before the expression test was performed, the clones were cultivated on LB plates containing 30 μ g/ml chloramphenicol and 60 mM glucose. Using this plates an 3 ml culture (LB medium

containing 90 $\mu \mathrm{g}$ chloramphenicol and 60 mM glucose) was inoculated overnight at 37 °C. Next day the overnight culture was used to inoculate 30 ml LB medium containing chloramphenicol (30 $\mu g/ml$). The starting OD_{600nm} was adjusted to 0.2 and a growth temperature of 30 °C was used. The physiology of the cells was monitored by measuring every 30 minutes for 8 to 9 hours the optical density at 600 nm. After the culture reached an OD 600nm of 0.5, antibody expression was induced by adding IPTG to a final concentration of 1 mM. A 5 ml aliquot of the culture was removed after 2 h of induction in order to analyze the antibody expression. The cells were lysed and the soluble and insoluble fractions of the crude extract were separated as described in Knappik & Plückthun, 1995. The fractions were assayed by reducing SDS-PAGE with the samples normalized to identical optical densities. After blotting and immunostaining using the $\alpha\text{-FLAG}$ antibody M1 as the first antibody (see Ge et al., 1994) and an Fc-specific anti-mouse antiserum conjugated to alkaline phosphatase as the second antibody, the lanes were scanned and the intensities of the bands of the expected size (appr. 30 kDa) were quantified densitometrically and tabulated relative to the control antibody (see Fig. 40).

Example 7: Optimization of Fluorescein Binders

7.1. Construction of L-CDR3 and H-CDR2 library cassettes

A L-CDR3 library cassette was prepared from the oligonucleotide template CDR3L (5'-TGGAAGCTGAAGACGTGGGCGTGTATTATTGCCAGCAG(TR5)(TRI)₄CCG(TRI)-TTTGGCCAGGGTACGAAAGTT-3') and primer 5'-AACTTTCGTACCCTGGCC-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (TR5) comprised a trinucleotide mixture representing the 5 codons for Ala, Arg, His, Ser, and Tyr.

A H-CDR2 library cassette was prepared from the oligonucleotide template CDRsH (5'-AGGGTCTCGAGTGGGTGAGC(TRI)ATT(TRI)₂₋₃(6)₂(TRI)ACC(TRI)TATGCGGATA-GCGTGAAAGGCCGTTTTACCATTTCACGTGATAATTCGAAAAACACCA-3'), and primer 5'-TGGTGTTTTTCGAATTATCA-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (6) comprised the incorporation of (A/G) (A/C/G) T, resulting in the formation of 6 codons for Ala, Asn, Asp, Gly, Ser, and Thr, and the length distribution being obtained by performing one substoichiometric coupling of the (TRI) mixture during synthesis, omitting the capping step normally used in DNA synthesis.

DNA synthesis was performed on a 40 nmole scale, oligos were dissolved in TE buffer, purified via gel filtration using spin columns (S-200), and the DNA concentration determined by OD measurement at 260 nm (OD $1.0 = 40 \ \mu g/ml$).

10 nmole of the oligonucleotide templates and 12 nmole of the corresponding primers were mixed and annealed at 80°C for 1 min, and slowly cooled down to 37°C within 20 to 30 min. The fill-in reaction was performed for 2 h at 37°C using Klenow polymerase (2.0 μ l) and 250 nmole of each dNTP. The excess of dNTPs was removed by gel filtration using Nick-Spin columns (Pharmacia), and the double-stranded DNA digested with Bbsl/Mscl (L-CDR3), or Xhol/Sful (H-CDR2) over night at 37°C. The cassettes were purified via Nick-Spin columns (Pharmacia), the concentration determined by OD measurement, and the cassettes aliquoted (15 pmole) for being stored at -80°C.

7.2 Library cloning:

DNA was prepared from the collection of FITC binding clones obtained in Example 2 (approx. 10^4 to clones). The collection of scFv fragments was isolated via Xbal/EcoRl digest. The vector pCAL4 (100 fmole, $10~\mu g$) described in Example 4.3 was similarly digested with Xbal/EcoRl, gel-purified and ligated with 300 fmole of the scFv fragment collection over night at 16° C. The ligation mixture was isopropanol precipitated, air-dried, and the pellets were redissolved in $100~\mu l$ of dd H_2 O. The ligation mixture was mixed with 1 ml of freshly prepared electrocompetent SCS 101 cells (for optimization of L-CDR3), or XL1 Blue cells (for optimization of H-CDR2) on ice. One round of electroporation was performed and the transformants were eluted in SOC medium, shaken at 37°C for 30 minutes, and an aliquot plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9 hrs. The number of transformants was 5 x 10^4 .

Vector DNA (100 μ g) was isolated and digested (sequence and restriction map of scH3 κ 2 see Figure 8) with Bbsl/Mscl for optimization of L-CDR3, or Xhol/NspV for optimization of H-CDR2. 10 μ g of purified vector fragments (5 pmole) were ligated with 15 pmole of the L-CDR3 or H-CDR2 library cassettes over night at 16°C. The ligation mixtures were isopropanol precipitated, air-dried, and the pellets were redissolved in 100 μ l of dd H₂O. The ligation mixtures were mixed with 1 ml of freshly prepared electrocompetent XL1 Blue cells on ice. Electroporation was performed and the transformants were eluted in SOC medium and shaken at 37°C for 30 minutes. An aliquot was plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9

hrs. The number of transformants (library size) was greater than 10⁸ for both libraries. The libraries were stored as glycerol cultures.

7.3. Biopanning

This was performed as described for the initial $H3\kappa2$ H-CDR3 library in Example 2.1. Optimized scFvs binding to FITC could be characterized and analyzed as described in Example 2.2 and 2.3, and further rounds of optimization could be made if necessary.

References

Barbas III, C.F., Bain, J.D., Hoekstra, D.M. & Lerner, R.A., PNAS 89, 4457-4461 (1992).

- Better, M., Chang, P., Robinson, R. & Horwitz, A.H., Science 240, 1041-1043 (1988).
- Blake, M.S., Johnston, K.H., Russel-Jones, G.J. & Gotschlich, E.C., Anal. Biochem. 136, 175-179 (1984).
- Carter, P., Kelly, R.F., Rodrigues, M.L., Snedecor, B., Covrrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. & Henner, D., Bio/Technology 10, 163-167 (1992).
- Chothia, C. & Lesk, A.M., J. Biol. Chem. 196, 910-917 (1987).
- Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.A., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 799-817 (1992).
- Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. & Poljak, R.J., Nature 342, 877-883 (1989).
- Chuchana, P., Blancher, A., Brockly, F., Alexandre, D., Lefranc, G & Lefranc, M.-P., Eur. J. Immunol. 20, 1317-1325 (1990).
- Cox, J.P.L., Tomlinson, I.M. & Winter, G., Eur. J. Immunol. 24, 827-836 (1994).
- Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A., In: Antibody Engineering. Borrebaeck, C.A.K. (Ed.). p.229-266 (1995), Oxford University Press, New York, Oxford.)
- Gill, S.C. & von Hippel, P.H., Anal. Biochem. 182, 319.326 (1989).
- Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. & Stüber, D., Bio/Technology 6, 1321-1325 (1988).
- Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. & Conlon, P.J. Bio/Technology 6, 1204-1210 (1988).
- Kabat, E.A., Wu, T.T., Perry, H.M., Gottesmann, K.S. & Foeller, C., Sequences of proteins of immunological interest, NIH publication 91-3242 (1991).
- Knappik, A. & Plückthun, A., Biotechniques 17, 754-761 (1994).
- Knappik, A. & Plückthun, A., Protein Engineering 8, 81-89 (1995).
- Kunkel, T.A., Bebenek, K. & McClary, J., Methods in Enzymol. 204, 125-39 (1991).
- Lindner, P., Guth, B., Wülfing, C., Krebber, C., Steipe, B., Müller, F. & Plückthun, A., Methods: A Companion to Methods Enzymol. 4, 41-56 (1992).
- Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A., Biochemistry 30, 10832-10838 (1991).
- Pack, P. & Plückthun, A., Biochemistry 31, 1579-1584 (1992).

Pack, P., Kujau, M., Schroeckh, V., Knüpfer, U., Wenderoth, R., Riesenberg D. & Plückthun, A., Bio/Technology 11, 1271-1277 (1993).

- Pack, P., Ph.D. thesis, Ludwig-Maximilians-Universität München (1994).
- Perlak, F. J., Nuc. Acids Res. 18, 7457-7458 (1990).
- Plückthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. & Riesenberg, D., A practical approach. Antibody Engineering (Ed. J. McCafferty). IRL Press, Oxford, pp. 203-252 (1996).
- Prodromou, C. & Pearl, L.H., Protein Engineering 5, 827-829 (1992).
- Rosenberg, S.A. & Lotze, M.T., Ann. Rev. Immunol. 4, 681-709 (1986).
- Skerra, A. & Plückthun, A., Science 240, 1038-1041 (1988).
- Skerra, A., Pfitzinger, I. & Plückthun, A., Bio/Technology 9, 273-278 (1991).
- Sutherland, L., Davidson, J., Glass, L.L., & Jacobs, H.T., BioTechniques 18, 458-464, 1995.
- Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 776-798 (1992).
- Ullrich, H.D., Patten, P.A., Yang, P.L., Romesberg, F.E. & Schultz, P.G., Proc. Natl. Acad. Sci. USA <u>92</u>, 11907-11911 (1995).
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder Jr., H.W. & Milner, E.C.B., Eur. J. Immunol. 23, 832-839 (1993).
- Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. & Moroney, S.E., Nucleic Acids Research 22, 5600-5607 (1994).
- Vitetta, E.S., Thorpe, P.E. & Uhr, J., Immunol. Today 14, 253-259 (1993).
- Williams, S.C. & Winter, G., Eur. J. Immunol. 23, 1456-1461 (1993).
- Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R., Ann. Rev. Immunol. 12, 433-455 (1994).

Table 1A: Human kappa germline gene segments

Used Name'	Reference ²	Family ³	Germline genes
Vk1-1	9	1	08; 018; DPK1
.Vk1-2	1	1	L14; DPK2
Vk1-3	2	1	L15(1); HK101; HK146; HK189
Vk1-4	9	1	L11
Vk1-5	2	1	A30
Vk1-6	1	1	LFVK5
Vk1-7	1	1	LFVK431
Vk1-8	1	1	L1; HK137
Vk1-9	1	1	A20; DPK4
Vk 1-10	1	1	L18; Va"
Vk1-11	1 .	1	L4; L18; Va'; V4a
Vk1-12	2	1	L5; L19(1); Vb; Vb4; DPK5; L19(2); Vb"; DPK6
Vk1-13	2 -	1	L15(2); HK134; HK166; DPK7
Vk1-14	. 8	1	L8; Vd; DPK8
Vk1-15	. 8	1	L9; Ve
Vk1-16	1	1	L12(1); HK102; V1
Vk1-17	2	1	L12(2)
Vk1-18	1	1	O12a (V3b)
Vk1-19	6	1	02; 012; DPK9
Vk1-20	2	1	L24; Ve"; V13; DPK10
Vk1-21	1	1	04; 014
Vk 1-22	2	1	L22
Vk1-23	2	1	L23
Vk2-1	1	2	A2; DPK12
Vk2-2	6	. 2	O1; O11(1); DPK13
Vk2-3	6	2	012(2); V3a
Vk2-4	2	2	L13
Vk2-5	1	2	DPK14
Vk2-6	4	2	A3; A19; DPK15
Vk2-7	4	2	A29; DPK27
Vk2-8	4	2	A13
Vk2-9	1	2	A23

Table 1A: (continued)

Used Name'	Reference'	Family	Germline genes
Vk2-10	4	2	A7; DPK17
Vk2-11	4	2	A17; DPK18
Vk2-12	4	2	A1; DPK19
Vk3-1	11	3	A11; humkv305; DPK20
Vk3-2	1	3	L20; Vg"
Vk3-3	2	3	L2; L16; humkv328; humkv328h2; humkv328h5; DPK21
Vk3-4	11	. 3	A27; humkv325; VkRF; DPK22
Vk3-5	2	3	L25; DPK23
Vk3-6	2	3	L10(1)
Vk3-7	7	3	L10(2)
Vk3-8	7	3	L6; Vg
Vk4-1	3	4	B3; VkIV; DPK24
Vk5-1	10	5	B2; EV15
Vk6-1	12	6	A14; DPK25
Vk6-2	12	6	A10; A26; DPK26
Vk7-1	5	7	B1

Table 1B: Human lambda germline gene segments

· Used Name ¹	Reference	r Family	Germline genes
DPL1	1	1	
DPL2	1	1	HUMLV1L1
DPL3	•	1	HUMLV122
DPL4	1	1	
HUMLV117	1		VLAMBDA 1.1
DPL5	2	1	1 11 10 44 \ / c c = D
DPL6	1	1	HUMLV117D
	. 1	1	
DPL7	1	1	IGLV1S2
DPL8	1	1	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1	2	
DPL12	1	2	
DPL13	1	2	
DPL14	1	2	
DPL16	1	3	Humlv418; IGLV3S1
DPL23	1 .	3	VI III.1
Humlv318	4 .	3	
DPL18	1	7	4A; HUMIGLVA
DPL19	. 1	7	
DPL21	1	8	VL8.1
HUMLV801	5	8	
DPL22	1	9	
DPL24	1	unassigned	VLAMBDA N.2
gVLX-4.4	6	10	

48
SUBSTITUTE SHEET (RULE 26)

Table 1C: Human heavy chain germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	1	RR.VH1:2
VH1-12-2	6	1	hv1263
VH1-12-9	7	1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	1	DP3
VH1-12-4	19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	I-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b; 7-81; YAC-10
VH1-12-7	19	1	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	10	1	E3-10
VH1-13-3	19	1	-DP1
VH1-13-4	12	1	V35
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	I-2; DP75
VH1-13-7	21	1	V1-2
VH1-13-8	19	1	DP8
VH1-13-9	3	1	1-1
VH1-13-10	19	1	DP12
VH1-13-11	15	1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13	3	1	1-92
VH1-13-14	- 18	1	I-3; V1-3
VH1-13-15	19	1	DP15; V1-8
VH1-13-16	3	1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HG3
VH1-13-18	19	. 1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	2	II-5b
VH2-31-1	2	2	VH2S12-1
VH2-31-2	2	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	VH2S12-10
VH2-31-5	14	2	V2-26; DP26; 2-26
VH2-31-6	15	2	VF2-26

49

SUBSTITUTE SHEET (RULE 26)

Table 1C: (continued)

Used Name'	Reference ²	Family ²	Germline genes
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2	2	VH2S12-12
VH2-31-10	18	2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	2 .	2	VH2S12-14
VH3-11-1	13	3	v65-2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3	3	13-2; DP48
VH3-11-4	19	3	DP52
VH3-11-5	14	3	v3-13
VH3-11-6	19	3	DP42
VH3-11-7	3	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	22-2B; DP35; V3-11
VH3-13-5	19	3	DP59; VH19; V3-35
VH3-13-6	25	. 3	f1-p1; DP61
VH3-13-7	19	3	DP46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3	VH26
VH3-13-9	5	3	vh26c
VH3-13-10	19	3	DP47; VH26; 3-23
VH3-13-11	3	3	1-91
VH3-13-12	19	3	DP58
VH3-13-13	3	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14	24	. 3	3019B9; DP50; 3-33; 3d277
VH3-13-15	27	3	COS 3
VH3-13-16	19	3	DP51
VH3-13-17	16	3	HII
VH3-13-18	19	3	DP53; COS 6; 3-74; DA-8
VH3-13-19	19	3	DP54; VH3-11; V3-7
VH3-13-20	14	3	V3-64; YAC-6
VH3-13-21	14	3	V3-48
VH3-13-22	14	3	V3-43; DP33
VH3-13-23	14	3	V3-33

Table 1C: (continued)

Used Name'	Reference ²	Family ³	Germline genes
VH3-13-24	14	3	V3-21; DP77
VH3-13-25	14	3	V3-20; DP32
VH3-13-26	14	3	V3-9; DP31
VH3-14-1	3	3	12-2; DP29; 3-72; DA-3
VH3-14-4	7	. 3	YAC-9; 3-73; MTGL
VH3-14-2	4	3	VHD26
VH3-14-3	19	3	DP30
VH3-1X-1	1	3	LSG8.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	3	LSG11.1; HUM4IGVH
VH3-1X-3	3	3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM15IGVH; HUM2IGVH; HUM9IGVH
VH3-1X-4	1	3	LSG4.1
VH3-1X-5	1	3	LSG2.1
VH3-1X-6	1	3	LSG6.1; HUM10IGVH
VH3-1X-7	18	3	3-15; V3-15
VH3-1X-8	1	3	LSG12.1; HUM5IGVH
VH3-1X-9	14	3	V3-49
VH4-11-1	22	4	Tou-VH4.21
VH4-11-2	17	4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-3	23	4	4.44
VH4-11-4	23	4	4.44.3
VH4-11-5	23	4	4.36
VH4-11-6	23	4	4.37
VH4-11-7	18	4	IV-4; 4.35; V4-4
VH4-11-8	17	4	VH4.11; 3d197d; DP71; 58p2
VH4-11-9	20	4	H7
VH4-11-10	20	4	Н8
VH4-11-11	20	4	Н9
VH4-11-12	17	4	VH4.16
VH4-11-13	23	4	4.38
VH4-11-14	17	4	VH4.15
VH4-11-15	11	4	58
VH4-11-16	10	4	71-4; V4-59
VH4-21-1	11	4	11
VH4-21-2	17	4	VH4.17; VH4.23; 4d255; 4.40; DP69
VH4-21-3	17	4	VH4.19; 79; V4-4b

Table 1C: (continued)

Used Name'	Reference ²	Family	Germline genes
VH4-21-4	19	4	DP70; 4d68; 4.41
VH4-21-5	19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH~JA
VH4-21-7	17	4	VH4.13; 1-9II; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv4005; 3d24d
VH4-21-9	17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	DP64; 3d216d
VH4-31-4	19	4	DP65; 4-31; 3d277d
VH4-31-5	23	4	4.33; 3d75d
VH4-31-6	20	4	H10
VH4-31-7	20	4	- H11
VH4-31-8	23	. 4	4.31
VH4-31-9	23	4	4.32
VH4-31-10	20	4	3d277d
VH4-31-11	20	4	3d216d
VH4-31-12	20	4.	3d279d
VH4-31-13	17	4	VH4.18; 4d154; DP79
VH4-31-14	8	4	V4-39
VH4-31-15	11 .	4	2-1; DP79
VH4-31-16	23	4	4.30
VH4-31-17	17	4	VH4.12
VH4-31-18	10	4	71-2; DP66
VH4-31-19	23	4	4.39
VH4-31-20	8	4	V4-61
VH5-12-1	9	. 5 ·	VH251; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; VHVAU; VHVBLK; VhAU; V5-51
VH5-12-2	17	5	VHVJB
VH5-12-3	3	5	1-v; DP80; 5-78
VH5-12-4	9	5	VH32; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6 .	VHVI; VH6; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VHVIBLK; VHVIMW; DP74; 6-1G1; V6-1

Table 2A: rearranged human kappa sequences

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
III-3R	108	1	08	1	1,1%	70
No.86	109	1	08	3	3,2%	80
AU	108	1	08	6	6,3%	103
ROY	108	Ţ	80	6	6,3%	43
IC4	108	1	08	6	6,3%	70
HIV-B26	106	1	80	3	3,2%	8
GRI	108	1	80	8	8,4%	30
AG	106	1	08	8	8,6%	116
REI	108	1	.08	9	9,5%	86
CLL PATIENT 16	88	1	08	2	2,3%	122
CLL PATIENT 14	87	1	08	2	2,3%	122
CLL PATIENT 15	88	1	08	2	2,3%	122
GM4672	108	1	08	11	11,6%	24
HUM. YFC51.1	108	1	08	12	12,6%	110
LAY	108	1	08	12	12,6%	48
HIV-b13	106	1	08	9 .	9,7%	8
MAL-NaCl	108	1	08	13	13,7%	102
STRAb SA-1A	108	1	02	0	0,0%	120
HuVHCAMP	108	1	08	13	13,7%	100
CRO	108	1	02	10	10,5%	30
Am107	108	1	02	12	12,6%	108
WALKER	107	1	02	4	4,2%	57
III-2R	109	1	A20	0	0,0%	70
FOG1-A4	107	1	A20	4	4,2%	41
HK137	95	1	L1	0	0,0%	10
CEA4-8A	107	. 1	02	7	7,4%	41
Va'	95	1	L4	0	0,0%	90
TR1.21	108	1	02	4	4,2%	92
HAU	108	1	02	6	6,3%	123
HK102	95	1	L12(1)	0	0,0%	9
H20C3K	108	1	L12(2)	3	3,2%	125
CHEB	108	i	02	7	7,4%	5
HK134	95	1	L15(2)	0	0,0%	10
TEL9	108	1	02	9	9,5%	73
			5.9			

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
TR1.32	103	1	02	3	3,2%	92
RF-KES1	97	1	A20	4	4,2%	121
WES	108	1	L5	10	10,5%	61
DILp1	95	1	04	1	1,1%	70
SA-4B	107	1	L12(2)	8	8,4%	120
HK101	95	1	L15(1)	0	0,0%	9
TR1.23	108	1	02	5	5,3%	92
HF2-1/17	108	1	A30	0	0,0%	4
2 E7	108	1	A30	1	1,1%	62
33.C9	107	1	L12(2)	7	7,4%	126
3D6	105	1	L12(2)	2	2,1%	34
l-2a	108	1	L8	8	8,4%	. ~ 70
RF-KL1	97 ·	1	L8	4	4,2%	121
TNF-E7	108	1	A30	9	9,5%	41
TR1.22	108	1	02	7	7,4%	92
HIV-B35	106	1	02	2	2,2%	8
HIV-b22	106	1	02	2	2,2%	8
HIV-b27	106	1	02	2	2,2%	8
·lV-Β8	107	1	02	10	10,8%	8
HIV-b8	107	1	02	10	10,8%	8
RF-SJ5	95	1 .	A30	5	5,3%	113
GAL(I)	108	1	A30	6	6,3%	64
R3.5H5G	108	1	02	6	6,3%	70
IIV-b14	106	1	A20	2	2,2%	8
NF-E1	105	1	L5	8	8,4%	41
VEA	108	1	A30	8	8,4%	37
U .	108	1	L12(2)	5	5,3%	40
0G1-G8	108	1	L8	11	11,6%	41
X7RG1	108	1	L1	8	8,4%	70
LI	108	1	L8	3	3,2%	72
UE	108	1	L12(2)	11	11,6%	32
UNm01	108	1	L12(2)	10	10,5%	. 6
IV-b1	106	1	A20	4	4,3%	8
IV-s4	103	1	02	2	2,2%	8

WO 97/08320 .

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
CAR	107	1	L12(2)	11	11,7%	79
BR _.	107	. 1	L12(2)	11	11,6%	50
CLL PATIENT 10	88	1	02	0	0,0%	122
CLL PATIENT 12	88	1	02	0	0,0%	122
KING	108	1 .	L12(2)	12	12,6%	30
V13	95	1	L24	0	0,0%	46
CLL PATIENT 11	87	1	02	0	0,0%	122
CLL PATIENT 13	87	1	02	0	0,0%	122
CLL PATIENT 9	88	1	012	1	1,1%	122
HIV-B2	106	1	A20	9	9,7%	8
HIV-b2	106	1	A20	9	9,7%	8
CLL PATIENT 5	88	1	A20	1	1,1%	· " 122
CLL PATIENT 1	88	. 1	L8	2	2,3%	122
CLL PATIENT 2	88	1	L8	0	0,0%	122
CLL PATIENT 7	88	1	L5	0	0,0%	122
CLL PATIENT 8	88	1	L5	0	0,0%	122
HIV-b5	105	1	L5	11	12,0%	8
CLL PATIENT 3	87	1	L8	1	1,1%	122
CLL PATIENT 4	88	-1	L9	0	0,0%	122
CLL PATIENT 18	85	1	L9	6	7,1%	122
CLL PATIENT 17	86	1	L12(2)	7	8,1%	122
HIV-b20	107	3	A27	11	11,7%	8
2C12	108	1 '	L12(2)	20 .	21,1%	68
1B11	108	1	L12(2)	20	21,1%	68
1H1	108	1	L12(2)	21	22,1%	68
2A12	108	1	L12(2)	21	22,1%	68
CUR	109	3	A27	0	0.0%	66
GLO	109	3	A27	0	0,0%	16
RF-TS1	96	3	A27	0	0,0%	121
GAR'	109	3	A27	0	0.0%	67
FLO	109	3	A27	0	0.0%	66
PIE	109	3	A27	0	0.0%	91
HAH 14.1	109	3	A27	1	1.0%	51
HAH 14.2	109	3	A27	1	1,0%	51

Table 2A: (continued)

Name ¹	aa²	Computed	Germline	Diff. to germline ^s	% diff. to germline ⁶	Reference
		family ³	gene⁴		3	
HAH 16.1	109	3	A27	1	1,0%	51
NOV	109	3	A27	1	1,0%	52
33.F12	108	3	A27	1	1,0%	126
8E10	110	3	A27	1	1,0%	25
TH3	109	3	A27	1	1,0%	25
HIC (R)	108	3	A27	0	0,0%	51
SON	110	3	A27	1	1,0%	67 .
PAY	109	3	A27	1	1,0%	66
GOT	109	3	A27	1	1,0%	67
mAbA6H4C5	109	3	A27	. 1	1,0%	12
BOR'	109	3	A27	2	2,1%	84
RF-SJ3	96	3	A27	2	2,1%	121
SIE	109	3	A27	2	2.1%	15
ESC	109	3	A27	2	2,1%	98
HEW'	110	3	A27	2	2,1%	98
YES8c	109	. 3	A27	3	3,1%	33
П	109	3	A27	3	3,1%	114
mAb113	109	3	A27	3	3,1%	71
HEW	107	3	A27	0	0,0%	94
BRO	106	3	-A27	0	0,0%	94
ROB	106	3 .	A27	0	0,0%	94
VG9	96	3	A27	4	4,2%	11
NEU	109	3	A27	4	4,2%	6 6
WOL	109	3	A27	4	4,2%	2
35 G 6	109	3	A27	4	4,2%	59
RF-SJ4	109	3	A11	0	0,0%	88
KAS	109	3	A27	4	4,2%	84
BRA	106	3	A27	1	1,1%	94
I AH	106	3	A27	1	1,1%	94
HIC	105	3	A27	0	0,0%	94
S-2	109	. 3	A27	6	6,3%	87
Н'	107	3	A27	6	6,3%	38
:V1-15	109	3	A27	6.	6,3%	83
SCA .	108	3	A27	6	6,3%	65
	٠		56			-

PCT/EP96/03647

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
mAb112	109	3	A27	6	6,3%	71
SIC	103	3	A27	3	3,3%	94
SA-4A	109	3	A27	6	6,3%	120
SER	108	3	A27	6	6,3%	98
GOL'	109	3	A27	7	7,3%	82
B5G10K	105	3	A27	9	9,7%	125
HG2B10K	110	3	A27	-9	9,4%	125
Taykv322	105	3	A27	5	5,4%	52
CLL PATIENT 24	89	3	A27	1	1,1%	122
HIV-b24	107	3	A27	7	7,4%	8
HIV-b6	107	3	A27	7	7,4%	8
Taykv310	99	3	A27	1	1,1%	52
KA3D1	108	3	L6	0	0,0%	85
19.E7	107	3	L6	0	0,0%	126
rsv6L	109	3	A27	12	12,5%	7
Taykv320	98	3	A27	1	1,2%	52
Vh	96	3	L10(2)	0	0,0%	89
LS8	108	3	L6	1	1,1%	109
LS1	108	3	L6	1	1,1%	109
LS2S3-3	107	3	L6	2 ·	2,1%	99
LS2	· 108	3	L6	1,	1,1%	109
LS7	108	3	L6	1	1,1%	109
LS2S3-4d	107	3	L6	2	2,1%	99
LS2S3-4a	107	3	L6	2	2,1%	99
LS4	108	3	L6	1	1,1%	109
LS6	108	3	L6	1	1,1%	109
LS2S3-10a	107	3	L6	. 2	2,1%	99
LS2S3-8c	107	3	L6	2	2,1%	99
LS5	108	3	L6	1	1,1%	109
LS2S3-5	107	3	L6	3	3,2%	99
LUNm03	109	3	A27	13	13,5%	6
IARC/BL41	108	3	A27	13	13,7%	55
slkv22	99	3	A27	3	3,5%	13
POP	108	3	L6	4	4,2%	111

5天

Table 2A: (continued).

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
LS2S3-10b	107	3	L6	3	3,2%	99
LS2S3-8f	107	3	L6	3	3,2%	99
LS2S3-12	107	3	L6	3	3,2%	99
HIV-B30	107	3	A27	11	11,7%	8
HIV-B20	107	3	A27	11	11,7%	8
HIV-b3	108	3	A27	11	11,7%	8
HIV-s6	104	3	A27	9	9,9%	8
YSE	107	3	L2/L16	1	1,1%	72
POM .	109	3	L2/L16	. 9	9,4%	53
Humkv328	95	3	L2/L16	1	1,1%	19
CLL	109	3	L2/L16	3	3,2%	47
LES	96	3	L2/L16	3	3,2%	38
HIV-s5	104	3	A27	11	12,1%	8
HIV-s7	104	3	A27	11	12,1%	8
slkv1	99	3	A27	7	8,1%	13
Humka31es	95	-3	L2/L16	4	4,2%	18
sikv12	101	3	A27	8	9,2%	13
RF-TS2	95	3	L2/L16	3	3,2%	121
11-1	109	3	L2/L16	4	4,2%	70
HIV-s3	105	3	A27	13	14,3%	8
RF-TMC1	96	3 .	L6	10	10,5%	121
GER	109	3	L2/L16	7	7,4%	75
GF4/1.1	109	3	L2/L16	8	8,4%	36
mAb114	109	3	L2/L16	6	6,3%	71
HIV-loop13	109	3	L2/L16	7	7,4%	8
bkv16	86	3	L6	1	1,2%	13
CLL PATIENT 29	86	3	L6	1	1,2%	122
slkv9	98	3	L6	3	3,5%	13
bkv17	99	3	L6	1	1,2%	13
slkv14	99	3	L6	1	1,2%	13
slkv16	101	3	L6	2	2,3%	13
bkv33	101	3	L6	4	4,7%	13
slkv15	99	3	L6	2	2,3%	13
okv6	100	3	L6	3	3,5%	13

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
R6B8K	108	3	L2/L16	12	12,6%	125
AL 700	107	3	L2/L16	9	9,5%	117
slkv11	100	3	L2/L16	3	3,5%	13
słkv4	97	3	L6	4	4,8%	13
CLL PATIENT 26	87	3	L2/L16	1	1,1%	122
AL Se124	103	3	L2/L16	9	- 9,5%	117
slkv13	100	3	L2/L16	6	7,0%	13
bkv7	100	3	L2/L16	5	5,8%	13
bkv22	100	3	L2/L16	6	7,0%	13
CLL PATIENT 27	84	3	L2/L16	0	0,0%	122
bkv35	100	3	L6	8	9,3%	13
CLL PATIENT 25	87	3	L2/L16	4	4,6%	122
slkv3	86	3	L2/L16	7	8,1%	13
slkv7	99	1	02	7	8,1%	13
HuFd79	111	3	L2/L16	24	24,2%	21
RAD	99	3	A27	9	10,3%	78
CLL PATIENT 28	83	3	L2/L16	4	4,8%	122
REE	104	3	L2/L16	25	27,2%	95
FR4	99	3	A27	8	9,2%	77
MD3.3	92	3	L6	. 1	1,3%	54
MD3.1	92	3	L6	0	0,0%	54
GA3.6	92	3	L 6	2	2,6%	54
M3.5N	92	3	L6	3	3,8%	54
MEI.	82	3	A27	0	0,0%	65
MD3.4	92	3	L2/L16	1	1,3%	54
MD3.2	91	3	L6	3	3,8%	54
VER	97	3	A27	19	22,4%	20
CLL PATIENT 30	78	3	L6	. 3	3.8%	122
M3.1N	92	3	L2/L16	1	1,3%	54
MD3.6	91	3	L2/L16	0	0.0%	54
MD3.8	91	3	L2/L16	0	0,0%	54
GA3.4	92	3	L6	7	9.0%	54
M3.6N	92	3	A27	0	0,0%	54
MD3.10	92	3	A27	0	0.0%	54

Table 2A: (continued)

Name ¹	.aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
MD3.13	91	3	A27	0	0,0%	54
MD3.7	93	3	A27	0	0.0%	54
MD3.9	93	3	A27	0 .	0,0%	54
GA3.1	93	3	A27	6	7,6%	54
bkv32	101	3	A27	5	5,7%	13
GA3.5	93	3	A27	5	6,3%	54
GA3.7	92	3	A27	_7	8,9%	54
MD3.12	92	3	A27	2	2,5%	54
M3.2N	90	3	L6	6	7,8%	54
MD3.5	92	3	A27	1	1,3%	54
M3.4N	91	. 3	L2/L16	8	10,3%	54
M3.8N	91	3	L2/L16	7	9.0%	54
M3.7N	92	3	A27	3	3,8%	54
GA3.2	92	3	A27	9	11,4%	54
GA3.8	93	3	A27	4	5,1%	54
GA3.3	92	3	A27	8	10,1%	54
M3.3N	92	3	A27	5	6,3%	54
B6	83	3	A27	8	11,3%	78
E29.1 KAPPA	78	3	L2/L16	0	0,0%	22
SCW	108	1	08	12	12,6%	31
REI-based CAMPATH-9	107	1	08	14	14,7%	39
RZ	107	1	08	14	14,7%	50
31	108	1	08	14	14,7%	14
AND	107	1	02	13	13,7%	69
2A4	109	1	02	12	12,6%	23
(A	108	. 1	08	19	20,0%	107
MEV	109	1	02	14	14,7%	29
DEE	106	1	02	13	14,0%	76
DU(IOC)	108	1	02	18	18,9%	60
łuRSV19VK	111	1	08	21	21,0%	115
SP2	108	1	02	17	17,9%	93
3J26	99	1 -	08	21	24,1%	1 .
NI ·	112	1	08	24	24,2%	106
SMA 0310EUCIV2	106	1	L12(1)	21	22,3%	105

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CLL PATIENT 6	71	1	A20	0	0,0%	122
BJ19	85	1	08	16	21,9%	1
GM 607	113	2	А3	0	0.0%	58
R5A3K	114	2	А3	. 1	1,0%	125
R1C8K	114	2	A 3	1	1,0%	125
VK2.R149	113	2	А3	. 2	2,0%	118
TR1.6	109	2	A3	4	4,0%	92
TR1.37	104	2	A3	5	5,0%	92
FS-1	113	2	A 3	6	6.0%	87
TR1.8	110	2	A 3	6	6,0%	92
NIM	113	2 .	A3	8	8,0%	28
Inc	112	2	A3	11	11,0%	35
TEW	107	2	A3	6	6,4%	96
CUM	114	2	01	7	6,9%	44
HRF1	71	2	A3	4	5,6%	124
CLL PATIENT 19	87	2	A3	0	0,0%	122
CLL PATIENT 20	87	2	A3	0	0,0%	122
MIL	112	2	A3	16	16,2%	26
FR	113	2	_ A3	20	20,0%	101
MAL-Urine	83	1	02	6	8,6%	102
Tayky306	73	3	A27	1	1,6%	52
Taykv312	75	3	A27	1	1,6%	52
HIV-b29	93	3	A27	14	17,5%	8
1-185-37	110	3	A27	0	0,0%	119
1-187-29	110	3	A27	0	0.0%	119
TT117	110	.3	A27	9	9,4%	63
HIV-loop8	108	3	A27	16	16,8%	8
rsv23L	108	3	A27	16	16,8%	7
HIV-b7	107	3	A27	14	14,9%	8
HIV-b11	107	3	A27	15	16,0%	8
HIV-LC1	107	3	A27	19	20,2%	8
HIV-LC7	107	3	A27	20	21,3%	8
HIV-LC22	107	3	A27	21	22.3%	8
HIV-LC13	107	3	A27	21	22,3%	8
			61			

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
HIV-LC3	107	3	A27	21	22,3%	8
HIV-LC5	107	3	A27	21	22,3%	8
HIV-LC28	107	3	A27	21	22,3%	8
HIV-b4	107	3	A27	22	23,4%	8
CLL PATIENT 31	87	3	A27	15	17,2%	122
HIV-loop2	108	3	L2/L16	17	17,9%	8
HIV-loop35	108	3	L2/L16	17	17,9%	8
HIV-LC11	107	3	A27	23	24,5%	8
HIV-LC24	107	3	A27	23	24,5%	8
HIV-b12	107	3	A27	24	25,5%	8
HIV-LC25	107	3	A27	24	25,5%	8
HIV-b21	107	3	A27	24	25,5%	. 8
HIV-LC26	107	3	A27	26	27,7%	8
G3D10K	108	1	L12(2)	12	12,6%	125
П125	108	1	L5	8	8,4%	63
HIV-s2	103	3	A27	28	31,1%	8
265-695	108	1	L5	7	7,4%	3
2-115-19	108	1	A30	2	2,1%	119
rsv13L	107	1	02	20	21,1%	7
HIV-b18	106	1	02	14	15,1%	8
RF-KL5	98	3	L6	36	36,7%	97
ZM1-1	113	2	A17	7	7,0%	3
HIV-s8	103	1	08	16	17,8%	8
K- EV15	95	5	B2	0	0,0%	112
RF-TS3	100	2	A23	0	0,0%	121
HF-21/28	111	2	A17	1	1,0%	17
RPMI6410	113	2	A17	1	1,0%	42
JC11	113	2	A17	1	1,0%	49
0-81	114	2	A17 .	5	5,0%	45
FK-001	113	4	В3	0	0.0%	81
CD5+.28	101	4	B3	1	1,0%	27
LEN	114	4	В3	1	1.0%	104
UC	114	4	В3	1	1,0%	- 111
CD5+.5	101	4	B3	1	1,0%	27

Table 2A: (continued)

Name ¹	aa²	Computed	Germline	Diff. to	% diff. to	Reference'
		family ³	gene⁴	germline ⁵	germline ⁶	
CD5+.26	101	4	В3	1	1,0%	27
CD5+.12	101	4	В3	2	2,0%	27
CD5+.23	101	4	В3	2	2,0%	27
CD5+.7	101	4	В3	2	2,0%	27
VJI	113	4	В3	3	3,0%	56
LOC	113	4	В3	3	3,0%	72
MAL	113	4	В3	3	3,0%	72
CD5+.6	101	4	В3	3	3,0%	27
H2F	113	4	B 3	3	3,0%	70
PB17IV	114	4	В3	4	4,0%	76 74
CD5+.27	101	4	В3	4	4.0%	27
CD5+.9	101	4	В3	4	4,0%	27
CD528	101	4	В3	5	5,0%	27
CD526	101	4	В3	6	5,9%	27
CD5+.24	101	4	В3	6	5,9%	27
CD5+.10	101	4	В3	6	5,9%	27
CD519	101	4	В3	6	5,9%	27
CD518	101	4	B3	. 7	6,9%	27 27
CD516	101	4	B3	8	7,9%	27 27
CD524	101	4	B3	8	7,9%	27 27
CD517	101	4	B3	10	9,9%	
MD4.i	92	4	B3	0	0,0%	27 54
MD4.4	92	4	В3	0	0,0%	54 54
MD4.5	92	4	В3	0	0,0%	54
MD4.6	92	4	В3	0	0,0%	54 54
MD4.7	92	4	B3	0	0,0%	54
MD4.2	92	4	B3	1	1,3%	54 54
MD4.3	92	4	B3	5	6,3%	
CLL PATIENT 22	87	2	A17	2	2,3%	54
CLL PATIENT 23	84	2	A17	2	2,3%	122 122

Table 2B: rearranged human lambda sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ³
WAH	110	1	DPL3	7	7%	68
1B9/F2	112	1	DPL3	7	7%	9
DIA	112	1	DPL2	7	7%	36
mAb67	89	1	DPL3	0	0%	29
HiH2	110	1	DPL3	12	11%	3
NIG-77	. 112	1	DPL2	9	9%	72
ОКА	112	1	DPL2	7	7%	84
KOL	112	1	DPL2	12	11%	40
T2:C5	111	1	DPL5	0	0%	6
T2:C14	110	. 1	DPL5	0	0%	6
PR-TS1	110	1	DPL5	0	0%	55
4G12	111	1	DPL5	1	1%	35
KIM46L	112	1	HUMLV117	0	0%	8
Fog-B	111	1	DPL5	3	3%	31
9F2L	111	1	DPL5	3	3%	79
mAb111	110	ì	- DPL5	3	3%	48
PHOX15	111	1	DPL5	4	4%	49
BL2	111	1	DPL5	4	4%	74
NIG-64	111	1	DPL5	4	4%	72
RF-SJ2	100	1	DPL5	6	6%	78
AL EZI	112	1	DPL5	7	7%	41
IM	112	1	HUMLV117	7	7%	18
RF-SJ1	100	1,	DPL5	9	9%	78
GLV1.1	98	1	DPL4	0	0%	1
1EM	112	1	HUMLV117	11	10%	42
CB-201	87	1	DPL2	1	1%	62
ИЕМ	109	1	DPL2	6	6%	50
1210	111	. 2	DPL10	4	4%	45
IOV	110	2	DPL10	8	8%	25
IEI	111	2	DPL10	8	8%	24
IL MC	110	2	DPL11	6	6%	28
1ES	112	2	DPL11	8	8%	84
0G1-A3	111	2	DPL11	9	9%	27
L NOV	112	2	DPL11	7	7%	28
			4			

SUBSTITUTE SHEET (RULE 26)

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
HMST-1	110	2	DPL11	4	4%	82
HBW4-1	108	2	DPL12	9	9%	52
WH	110	2	DPL11	11	11%	34
11-50	110	2	DPL11	7	7%	82
HBp2	110	2	DPL12	8	8%	3
NIG-84	113	2	DPL11	12	11%	73
VIL	112	2	DPL11	9	9%	58
TRO	111	2	DPL12	10	10%	61
ES492	108	2	DPL11	15	15%	76
mAb216	89	2	DPL12	1	1%	7
BSA3	109	3	DPL16	0	0%	49
THY-29	110	3	DPL16	0 -	- 0%	27
PR-TS2	108	3	DPL16	0	0%	55
E29.1 LAMBDA	107	3	DPL16	1	1%	13
mAb63	109	3	DPL16	2	2%	29
TEL14	110	. 3	DPL16	6	6%	- 49
6H-3C4	108	3.	DPL16	7	7%	39
SH	109	3	DPL16	7	7%	70
AL GIL	109	3	DPL16	8	8%	23
H6-3C4	108	3	DPL16	8	8%	83
V-lambda-2.DS	111	2	DPL11	3	3%	15
8.12 ID	110	2	DPL11	3	3%	81
DSC	111	2	DPL11	3	3%	56
PV11	110	2	DPL11	1	1%	56
33.H11	110	2	DPL11	4	4%	81
AS17	111	2	DPL11	7	7%	56
SD6	110	2	DPL11	7	7%	56
KS3	110	2	DPL11	9	9%	56
PV6	110	2	DPL12	5	5% .	56
NGD9	110	2	DPL11	7	7%	56
MUC1-1	111	2	DPL11	11	10%	27
A30c	111	2	DPL10	6	6%	56
KS6	110	2	DPL12	6	6%	56
TEL13	111	2	DPL11 ら5	11	10%	49

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
AS7	110	2	DPL12	6	6%	56
MCG	112	2	DPL12	12	11%	20
U266L	110	2	DPL12	13	12%	77
PR-SJ2	110	2	DPL12	14	13%	55
вон	112	2	DPL12	11	10%	37
TOG ·	111	2	DPL11	19	18%	53
TEL16	111	2	DPL11	19	18%	49
No.13	110	2	DPL10	14	13%	52
ВО	112	2	DPL12	18	17%	80 -
WIN	112	2	DPL12	17	16%	11
BUR	104	2	DPL12	15	15%	46
NIG-58	110	2	DPL12	20	19%	69
WEIR	112	2	DPL11	26	25%	21
THY-32	111	1	DPL8	8	8%	27
TNF-H9G1	111	1	DPL8	9	9%	27
mAb61	111	1	DPL3	1	1%	29
LV1L1	98	1	DPL2	0	0%	54
НА	113	1	DPL3	14	13%	63
LA1L1	111	1	DPL2	3	3%	54
RHE	112	1	DPL1	17	16%	22
K1B12L	113	1	DPL8	17	16%	79
LOC	113	1	DPL2	15	14%	84
NIG-51	112	1	DPL2	12	11%	67
NEWM	104	1	DPL8	23	22%	10
MD3-4	106	3	DPL23	14	13%	4
COX	112	1	DPL2	13	12%	84
HiH10	106	3	DPL23	13	12%	3
VOR	112	ī	DPL2	16	15%	16
AL POL	113	1	DPL2 ·	16	15%	57
CD4-74	111	1	DPL2	19	18%	27
AMYLOID MOL	102	3	DPL23	15	15%	30
OST577	108	3	Humlv318	10	10%	4
NIG-48	113	1	DPL3	42	40%	66
CARR	108	3	DPL23	18	17%	19
			66			

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
mAb60	108	3	DPL23	14	13%	29
NIG-68	99	3	DPL23	25	26%	32
KERN	107	3	DPL23			
ANT	107	3		26	25%	59
LEE	110	3	DPL23	17	16%	19
CLE .	94	3	DPL23	18	17%	85
VL8		3 8	DPL23	17	17%	19
MOT	98		DPL21	0	0%	81
	110	3	Humlv318	23	22%	38
GAR	108	3	DPL23	26	25%	33
32.B9	98	8	DPL21	5	5%	81
PUG	108	3	Humlv318	24	23%	19
T1	115	8	HUMLV801	52	50%	6
RF-TS7	96	7	DPL18	4	4%	60
YM-1	116	8	HUMLV801	51	49%	75
K6H6	112	8	HUMLV801	20	19%	44
K5C7	112	8	HUMLV801	20	19%	44
K5B8	112	8	HUMLV801	20	19%	44
K5G5	112	8	HUMLV801	20	19%	44
K4B8	112	8	HUMLV801	19	18%	44
K6F5	112	8 .	HUMLV801	17	16%	44
HIL	108	3	DPL23	22	21%	47
KIR	109	3	DPL23	20	19%	19
CAP	109	3	DPL23	19	18%	84
1B8	110	3	DPL23	22	21%	- 43
SHO	108	3	DPL23	19	18%	19
HAN	108	. 3	DPL23	20	19%	19
cML23	96	3	DPL23	3	3%	12
PR-SJ1	96	3	DPL23	7	7%	55
BAU	107	3	DPL23	9	9%	5
TEX	99	3	DPL23	8	8%	19
X(PET)	107	3	DPL23	9	9%	51
DOY	106	3	DPL23	9	9%	19
COT	106	3	DPL23	13	12%	19
Pag-1	111	3	Humlv318	5	5%	31
				-	5 . 0	J ,

67

SUBSTITUTE SHEET (RULE 26)

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
DIS	107	3	Humlv318	2	2%	19
WIT	108	3	Humlv318	. 7	7%	19
I.RH	108	3	Humlv318	12	11%	19
S1-1	108	3	Humiv318	12	11%	52
DEL	108	3	Humlv318	14	13%	17
TYR	108	3	Humlv318	11	10%	19
J.RH	109	3	Humlv318	13	12%	19
THO	112	2	DPL13	38	36%	26
LBV	113	1	DPL3	38	36%	2
WLT	112	1	DPL3	33	31%	14
SUT	112	2	DPL12	37	35%	65

Table 2C: rearranged human heavy chain sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
21/28	119	1	VH1-13-12	0	0,0%	31
8E10	123	1	VH1-13-12	0	0.0%	31
MUC1-1	118	1	VH1-13-6	4	4,1%	42
gF1	98	1	VH1-13-12	10	10,2%	75
VHGL 1.2	98	1	VH1-13-6	2	2,0%	26
HV1L1	98	1	VH1-13-6	0	0,0%	81
RF-TS7	104	1	VH1-13-6	3	3,1%	96
E55 1.A15	106	1	VH1-13-15	1	1,0%	26
HA1L1	126	1	VH1-13-6	7	7,1%	81
UC	123	1	VH1-13-6	5	5,1%	115
WIL2	123	1	VH1-13-6	6	6,1%	55
R3.5H5G	122	1	VH1-13-6	10	10,2%	70
N89P2 .	123	1	VH1-13-16	11	11,2%	70 77
mAb113	126	1	VH1-13-6	10	10,2%	71
LS2S3-3	125	1	VH1-12-7	5	5,1%	98
LS2S3-12a	125	1	VH1-12-7	5	5,1%	98
LS2S3-5	125	1	VH1-12-7	5	5,1%	98
LS2S3-12e	125	1	VH1-12-7	5	5,1%	98
LS2S3-4	125	1	VH1-12-7	5	5,1%	98
LS2S3-10	125	1	VH1-12-7	5	5,1%	98
LS2S3-12d	125	1	VH1-12-7	6	6,1%	98
LS2S3-8	125	1	VH1-12-7	5	5,1%	98
LS2	125	1	VH1-12-7	6	6,1%	113
LS4	105	1	VH1-12-7	6	6,1%	113
LS5	125	1	VH1-12-7	6	6,1%	113
LS1	125	1	VH1-12-7	6	6,1%	113
LS6	125	1	VH1-12-7	6	6,1%	113
LS8	125	. 1	VH1-12-7	7	7,1%	113
THY-29	122	1	VH1-12-7	0	0,0%	42
1B9/F2	122	1	VH1-12-7	10	10,2%	21
51P1	122	1	VH1-12-1	0	0,0%	105
VEI	127	1	VH1-12-1	0	0.0%	55
AND	127	1	VH1-12-1	0	0.0%	55 55
.7	127	1	VH1-12-1	0	0.0%	55 54
.22	124	1	VH1-12-1	0	0.0%	
.24	127	1	VH1-12-1	0	0.0%	54 54
			6	J	0.0%0	54

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
L26	116	1 .	VH1-12-1	0	0,0%	54
L33	119	1	VH1-12-1	0	0.0%	54
L34	117	1	VH1-12-1	0	0,0%	54
L36	118	1	VH1-12-1	0	0,0%	54
L39	120	1	VH1-12-1	0	0,0%	54
L41	120	1	VH1-12-1	0	0,0%	54
L42	125	1	VH1-12-1	0	0,0%	54
VHGL 1.8	101	1	VH1-12-1	0	0,0%	26
783c	127	1	VH1-12-1	0	0,0%	22
X17115	127	1	VH1-12-1	0	0,0%	37
L25	124	1	VH1-12-1	0	0,0%	54
L17	120	1	VH1-12-1	1	1,0%	54
L30	127	1	VH1-12-1	1	1,0%	54
L37	120	1	VH1-12-1	1	1,0%	54
TNF-E7	116	1 .	VH1-12-1	2	2,0%	42
mÁb111	122	1	VH1-12-1	7	7,1%	71
III-2R	122	1	VH1-12-9	3	3,1%	70
KAS	121	1	VH1-12-1	7	7,1%	79
YES8c	122	1	VH1-12-1	8	8,2%	34
RF-TS1	123	1	VH1-12-1	8	8,2%	82
BOR'	121	1	VH1-12-8	7	7,1%	79
VHGL 1.9	101	1 .	VH1-12-1	8	8,2%	26
mAb410.30F305	117	1	VH1-12-9	5	5,1%	52
EV1-15	127	1	VH1-12-8	10	10,2%	78
mAb112	122	1	VH1-12-1	11	11,2%	71
EU	117	1	VH1-12-1	11	11,2%	28
H210	127	1	VH1-12-1	12	12,2%	66
TRANSGENE	104	1	VH1-12-1	0	0,0%	111
CLL2-1	93	1	VH1-12-1	0	0.0%	30
CLL10 13-3	97	1	VH1-12-1	0 .	0.0%	29
LS7	99	1	VH1-12-7	4	4,1%	113
ALL7-1	87	1 .	VH1-12-7	0	0.0%	30
CLL3-1	91	1	VH1-12-7	1	1,0%	30
ALL56-1	85	1	VH1-13-8	0	0,0%	30
ALL1-1	87	1	VH1-13-6	1	1,0%	30
ALL4-1	94	1	VH1-13-8	0	0,0%	30

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
ALL56 15-4	85	1	VH1-13-8	5	5,1%	29
CLL4-1	88	1	VH1-13-1	1	1,0%	. 30
Au92.1	98	1	VH1-12-5	0	0,0%	49
RF-TS3	120	1	VH1-12-5	1	1,0%	82
Au4.1	98	1	VH1-12-5	1	1,0%	49
HP1	121	1	VH1-13-6	13	13,3%	110
BLI	127	1	VH1-13-15	5	5,1%	72
No.13	127	. 1	VH1-12-2	19	19,4%	76
TR1.23	122	1	VH1-13-2	23	23,5%	88
S1-1	125	1	VH1-12-2	18	18,4%	76
TR1.10	119	1	VH1-13-12	14	14,3%	88
E55 1.A2	102	1	VH1-13-15	3	3,1%	26
SP2	119	1	VH1-13-6	15	15,3%	89
TNF-H9G1	111	1	VH1-13-18	2	2,0%	42
G3D10H	127	1	VH1-13-16	19	19,4%	127
TR1.9	118	1	VH1-13-12	14	14,3%	88
TR1.8	121	1	VH1-12-1	24	24,5%.	88
LUNm01	127	1	VH1-13-6	22	22,4%	9
K1B12H	127	1	VH1-12-7	23	23,5%	127
L3B2	99	1	VH1-13-6	. 2	2,0%	46
ss2	100	1	VH1-13-6	2	2,0%	46
No.86	124	1	VH1-12-1	20	20,4%	76
TR1.6	124	1	VH1-12-1	19	19,4%	88
ss7	99	1	VH1-12-7	3	3,1%	46
s5B7	102	1	VH1-12-1	0	0.0%	46
s6A3	97	1	VH1-12-1	0	0,0%	46
ss6	99	1	VH1-12-1	0	0.0%	46
L2H7	103	1	VH1-13-12	0	0.0%	46
s6BG8	93	1	VH1-13-12	0	0.0%	46
s6C9	107	1	VH1-13-12	0	0,0%	46
HIV-b4	124	1	VH1-13-12	21	21,4%	12
HIV-b12	124	1	VH1-13-12	21	21,4%	12
L3G5	98	1	VH1-13-6	1	1,0%	46
22	115	1	VH1-13-6	11	11,2%	118
L2A12	99	1	VH1-13-15	3	3,1%	46
PHOX15	124	1	VH1-12-7	20	20,4%	73
			ブ		-0,170	, ,

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	l Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
LUNm03	127	1	VH1-1X-1	18	18,4%	9
CEA4-8A	129	1	VH1-12-7	1	1,0%	42
M60	121	2 .	VH2-31-3	3	3,0%	103
HiH10	127	2	VH2-31-5	. 9	9,0%	4
COR	119	2	VH2-31-2	11	11,0%	91
2-115-19	124	2	VH2-31-11	8	8,1%	124
0 U	125	2	VH2-31-14	20	25,6%	92
HE	120	2	VH2-31-13	19	19,0%	27
CLL33 40-1	78	2	VH2-31-5	2	2,0%	29
E55 3.9	88	3	VH3-11-5	7	7,2%	26
MTFC3	125	3	VH3-14-4	21	21,0%	131
MTFC11	125	3	VH3-14-4	21	21,0%	131
MTFJ1	114	3	VH3-14-4	21	21,0%	131
MTFJ2	114	3	VH3-14-4	21	21,0%	131
MTFUJ4	100	3	VH3-14-4	21	21,0%	131
MTFUJ5	100	3	VH3-14-4	21	21,0%	131
MTFUJ2	100	3	VH3-14-4	22	22,0%	131
MTFC8	125	3	VH3-14-4	23	23,0%	131
TD e Vq	113	3	VH3-14-4	0	0,0%	16
rMTF	. 114	3	VH3-14-4	5	5,0%	131
MTFUJ6	100	3	VH3-14-4	10	10,0%	131
RF-KES	107		VH3-14-4	. 9	9,0%	85
N51P8	126	3	VH3-14-1	9	9.0%	77
TEI	119	3	VH3-13-8	21	21,4%	20
33.H11	115	3	VH3-13-19	10	10.2%	129
SB1/D8	101	3	VH3-1X-8	14	14,0%	2
38P1	119	3	VH3-11-3	0	0,0%	104
BRO'IGM	119	3	VH3-11-3	13	13,4%	19
NIE	119	3	VH3-13-7	15	15,3%	87
3D6	126		VH3-13-26	5	5,1%	
ZM1-1	112	3	VH3-11-3	8	8,2%	35
55 3.15	110		VH3-13-26	0	0,0%	5 26
₃ F9	108	3	VH3-13-8	15	15,3%	26 75
HY-32	120		VH3-13-26	3	3,1%	75 42
RF-KL5	100.		VH3-13-26	5 ·		42
DST577	122		VH3-13-26 VH3-13-13	5 6	5,1%	96
	. = -	•	VII3-13-13 ア <u>2</u>	O	6,1%	5

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
ВО	- 113	3	VH3-13-19	15	15,3%	10
Π125	121	3	VH3-13-10	15	15,3%	64
2-115-58	127	3	VH3-13-10	11	11,2%	124
KOL	126	3	VH3-13-14	16	16,3%	102
mAb60	118	3	VH3-13-17	14	14,3%	45
RF-AN	106	3	VH3-13-26	8	8,2%	85
BUT	115	3	VH3-11-6	13	13,4%	119
KOL-based CAMPATH-	118	2	V/II2 12 12			
B1	119	3 3	VH3-13-13	16	16,3%.	41
N98P1	127	3	VH3-13-19	13	13,3%	53
П117	107	3	VH3-13-1	13	13,3%	77
WEA	114		VH3-13-10	12	12,2%	64
HIL		3	VH3-13-12	15	15,3%	40
	120	3	VH3-13-14	14	14.3%	23
s5A10	97	3	VH3-13-14	0	0,0%	46
s5D11	98	3	VH3-13-7	0	0,0%	46
s6C8 s6H12	100	3	VH3-13-7	0	0.0%	46
VH10.7	98	3	VH3-13-7	0	0,0%	46
HIV-loop2	119 126	3 3	VH3-13-14	16	16,3%	128
HIV-loop35	126	3	VH3-13-7	16	16,3%	12
TRO	122	3	VH3-13-7	16	16,3%	12
SA-4B	123	3	VH3-13-1	13	13,3%	61
L2B5	98	3	VH3-13-1	15	15,3%	125
s6E11	95	3	VH3-13-13	0	0.0%	46
s6H7	100	3	VH3-13-13	0	0,0%	46
ss1	102	3	VH3-13-13 VH3-13-13	0	0,0%	46
ss8	94	3	VH3-13-13	0 0	0.0%	46
DOB	120	3	VH3-13-13 VH3-13-26		0,0%	46
THY-33	115	3	VH3-13-26	21 20	21.4%	116
NOV	118	3	VH3-13-19	14	20.4%	42
rsv13H	120		VH3-13-19 VH3-13-24	20	14,3%	38
L3G11	98		VH3-13-24	20	20,4%	11
L2E8	99		VH3-13-19	0	2.0%	46
L2D10	101		VH3-13-19		0,0%	46
L2E7	98		VH3-13-10	1	1,0%	46
===,	J.0	J	v113-13-10	1	1,0%	46

Table 2C: (continued)

Name ¹	aa²	Computed family ³	d Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
L3A10	100	3	VH3-13-24	0	0,0%	46
L2E5	97	3	VH3-13-2	1	1,0%	46
BUR	119	3	VH3-13-7	21	21,4%	67
s4D5	107	3	VH3-11-3	1	1,0%	46
19	116	3	VH3-13-16	4	4,1%	118
s5D4 .	99	3	VH3-13-1	0	0.0%	46
s6A8	100	3	VH3-13-1	0	0,0%	46
HIV-loop13	123	3	VH3-13-12	17	17,3%	12
TR1.32	112	3	VH3-11-8	18	18,6%	88
L2B10	97	3	VH3-11-3	1	1,0%	46
TR1.5	114	3	VH3-11-8	21	21,6%	88
s6H9	101	3	VH3-13-25	0	0.0%	46
8 .	112	3	VH3-13-1	6	6,1%	118
23	115	3	VH3-13-1	6	6,1%	118
7	115	3	VH3-13-1	4	4,1%	118
TR1.3	120	3	VH3-11-8	20	20,6%	88
18/2	125	3	VH3-13-10	0 .	0,0%	32
18/9	125	3	VH3-13-10	0	0.0%	31
30P1	119	3	VH3-13-10	0	0,0%	106
HF2-1/17	125	3	VH3-13-10	0	0,0%	8
A77	109	3	VH3-13-10	0	0,0%	44
B19.7	108	3 .	VH3-13-10	0	0,0%	44
M43	119	3	VH3-13-10	0	0,0%	103
1/17	125	3	VH3-13-10	0	0,0%	31
18/17	125	3	VH3-13-10	0	0,0%	31
E54 3.4	109	3	VH3-13-10	0	0,0%	26
LAMBDA-VH26	98	3	VH3-13-10	1	1,0%	95
E54 3.8	111	3	VH3-13-10	1	1,0%	26
GL16	106	3	VH3-13-10	1	1,0%	44
1G12	125	3	VH3-13-10	1	1,0%	56
473	106	3	VH3-13-10	2	2,0%	44
AL1.3	111	3	VH3-13-10	3	3,1%	117
3.A290	118	3	VH3-13-10	2	2,0%	108
\b18	127	3	VH3-13-8	2	2,0%	100
54 3.3	105	3	VH3-13-10	3	3,1%	26
5G6	121		VH3-13-10	3	3,1%	57

タ4 SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
A95	107	3	VH3-13-10	5	5,1%	44
Ab25	128	3	VH3-13-10	5	5,1%	100
N87	126	3	VH3-13-10	4	4,1%	77
ED8.4	99	3	VH3-13-10	6	6,1%	2
RF-KL1	122	3	VH3-13-10	6	6,1%	82
AL1.1	112	3	VH3-13-10	2	2,0%	117
AL3.11	102	3	VH3-13-10	1	1,0%	117
32.B9	127	3	VH3-13-8	6	6,1%	129—
TK1	109	3	VH3-13-10	2	2,0%	117
POP	123	3	VH3-13-10	8	8,2%	115
9F2H	127	3	VH3-13-10	9	9,2%	127
VD	115	3	VH3-13-10	9	9,2%	10
Vh38Cl.10	121	3	VH3-13-10	8	8,2%	74 ·
Vh38Cl.9	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.8	121	3	VH3-13-10	8	8,2%	74
63P1	120	3	VH3-11-8	0	0,0%	104
60P2 ·	117	3	VH3-11-8	0	0,0%	104
AL3.5	90	3	VH3-13-10	· 2	2,0%	117
GF4/1.1	123	3	VH3-13-10	10	10,2%	39
Ab21	126	3	VH3-13-10	12	12,2%	100
TD d Vp	118	3	VH3-13-17	2	2,0%	16
Vh38Cl.4	119	3	VH3-13-10	8	8,2%	74
Vh38Cl.5	119	3	VH3-13-10	8	8,2%	74
AL3.4	104	3	VH3-13-10	1	1,0%	117
FOG1-A3	115	3	VH3-13-19	2	2,0%	42.
HA3D1	117	3	VH3-13-21	1	1,0%	81
E54 3.2	112	3	VH3-13-24	0	0,0%	26
mAb52	128	3	VH3-13-12	2	2,0%	51
mAb53	128	3	VH3-13-12	2	2,0%	51
mAb56	128	3	VH3-13-12	2	2,0%	51
mAb57	128	3	VH3-13-12	2	2,0%	51
mAb58	128	3	VH3-13-12	2	2,0%	51
mAb59	128	3	VH3-13-12	2	2,0%	51
mAb105	128		VH3-13-12	2	2,0%	51
mAb107	128		VH3-13-12	2	2.0%	51
E55 3.14	110	3	VH3-13-19	0	0,0%	26

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
F13-28	106	3	VH3-13-19	1	1,0%	94
mAb55	127	3	VH3-13-18	4	4,1%	51
YSE	117	3	VH3-13-24	6	6,1%	72
E55 3.23	106	3	VH3-13-19	2 ·	2,0%	26
RF-TS5	101	3	VH3-13-1	3	3,1%	85
N42P5	124	3	VH3-13-2	7	7,1%	77
FOG1-H6	110	3	VH3-13-16	7	7,1%	42
0-81	115	3	VH3-13-19	11 -	11,2%	47
HIV-s8	122.	3	VH3-13-12	11	11,2%	. 12
mAb114	125	3	VH3-13-19	12	12,2%	71
33.F12	116	3	VH3-13-2	4	4,1%	129
484	119	3	VH3-1X-3	0	0,0%	101
M26	123	3	VH3-1X-3	0	0,0%	103
VHGL 3.1	100	3	VH3-1X-3	0	0,0%	26
E55 3.13	113	3	VH3-1X-3	1	1,0%	26
SB5/D6	101	3	VH3-1X-6	3	3,0%	2
RAY4	101	3	VH3-1X-6	3	3,0%	2
82-D V-D	106	3	VH3-1X-3	5	5,0%	112
MAL	129	3	VH3-1X-3	5	5,0%	72
LOC	123	3	VH3-1X-6	5	5,0%	72
LSF2	101	3	VH3-1X-6	11	11,0%	2
HIB RC3	100	3 .	VH3-1X-6	41	11,0%	1
56P1	119	3	VH3-13-7	0	0,0%	104
M72	122	3	VH3-13-7	0	0,0%	103
M74	121	3	VH3-13-7	0	0,0%	103
E54 3.5	105	3	VH3-13-7	0	0,0%	26
2E7	123	3	VH3-13-7	0	0.0%	63
2P1	117	3	VH3-13-7	0	0,0%	104
RF-SJ2	127	3	VH3-13-7	1	1,0%	83
PR-TS1	114	3	VH3-13-7	1	1,0%	85
KIM46H	127	3	VH3-13-13	0	0.0%	18
E55 3.6	108	3	VH3-13-7	2	2,0%	26
E55 3.10	107	3	VH3-13-13	1	1,0%	26
3.B6	114		VH3-13-13	1	1,0%	108
E54 3.6	110		VH3-13-13	1	1,0%	26
FL2-2	114		VH3-13-13	1	1.0%	80

76

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

		Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
RF-SJ3	112	3	VH3-13-7	2	2,0%	85
E55 3.5	105	3	VH3-13-14	1	1,0%	26
BSA3	121	3	VH3-13-13	1	1,0%	73
HMST-1	119	3	VH3-13-7	3 .	3,1%	130
RF-TS2	126	3	VH3-13-13	4	4,1%	82
E55 3.12	109	3	VH3-13-15	0	0,0%	26
19.E7	126	3	VH3-13-14	3	3,1%	129
11-50	119	3	VH3-13-13	6	6,1%	130
E29.1	120	3	VH3-13-15	2	2,0%	25
E55 3.16	108	3	VH3-13-7	6	6,1%	26
TNF-E1	117	3	VH3-13-7	7	7,1%	42
RF-SJ1	127	3	VH3-13-13	6	6,1%	83
FOG1-A4	116	3	VH3-13-7	8	8,2%	42
TNF-A1	117	3	VH3-13-15	4	4,1%	42
PR-SJ2	107	3	VH3-13-14	8	8,2%	85
HN.14	124	3	VH3-13-13	10	10,2%	33
CAM'	121	3	VH3-13-7	12	12,2%	65
HIV-B8	125	3	VH3-13-7	9	9,2%	12
HIV-b27	125	3	VH3-13-7	9	9,2%	12
HIV-b8	125	3	VH3-13-7	9	9,2%	12
HIV-s4	125	3	VH3-13-7	9	9,2%	12
HIV-B26	125	3	VH3-13-7	9	9,2%	12
HIV-B35	125	3	VH3-13-7	10	10,2%	12
HIV-b18	125	3	VH3-13-7	10	10,2%	12
HIV-b22	125	3	VH3-13-7	11	11,2%	.12
HIV-b13	125	3	VH3-13-7	12	12,2%	12
333	117	3	VH3-14-4	24	24,0%	24
1H1	120	3	VH3-14-4	24	24,0%	24
1B11	120	3	VH3-14-4	23	23,0%	24
CLL30 2-3	86	3	VH3-13-19	1	1,0%	29
GA	110	3	VH3-13-7	19	19,4%	36
JeB	99	3	VH3-13-14	3	3,1%	7
GAL	110	3	VH3-13-19	10	10,2%	126
K6H6	119	3	VH3-1X-6	18	18,0%	60
K4B8	119	3	VH3-1X-6	18	18,0%	60
K5B8	119	3	VH3-1X-6	18	18,0%	60

77

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Compute family ³	d Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
K5C7	119	3	VH3-1X-6	19	19,0%	60
K5G5	119	3	VH3-1X-6	19	19,0%	60
K6F5	119	3	VH3-1X-6	19	19,0%	60
AL3.16	98	3	VH3-13-10	1	1,0%	117
N86P2	98	3	VH3-13-10	3	3.1%	
N54P6	95	3	VH3-13-16	. 7	7,1%	77 77
LAMBDA HT112-1	126	4	VH4-11-2	0	0,0%	77
HY18	121	4	VH4-11-2	0	0,0%	3
mAb63	126	4	VH4-11-2	0	0,0%	43
FS-3	105	4	VH4-11-2	0		45
FS-5	111	4	VH4-11-2	0	0,0%	86
FS-7	107	4	VH4-11-2	0	0,0%	86
FS-8	110	4	VH4-11-2	0	0,0%	86
PR-TS2	105	4	VH4-11-2	0	0,0%	86
RF-TMC	102	4	VH4-11-2	0	0,0%	85
mAb216	122	4	VH4-11-2		0,0%	85
mAb410.7.F91	122	4	VH4-11-2	1	1,0%	15
mAbA6H4C5	124	4	VH4-11-2	1	1,0%	52
Ab44	127	4	VH4-11-2	2	1,0%	15
6H-3C4	124	4	VH4-11-2	3	2,1%	100
FS-6	108	4	VH4-11-2	3 6	3,1%	59
FS-2	114	4 .	VH4-11-2	6	6,2%	86
HIG1	126	4	VH4-11-2	o 7	6,2%	84
FS-4	105	4	VH4-11-2	8	7,2%	62
SA-4A	123	4	VH4-11-2	9	8,2%	86
ES-C	119	4	VH4-11-2		9,3%	125
) J	78	4	VH4-11-9	10 16	10,3%	99
\b26	126	4	VH4-31-4	8	16,5%	58
S2	124		VH4-31-12		8,1%	100
165- 6 95	115	4	VH4-11-7	15 16	15,2%	110
VAH	129		VH4-11-7 VH4-31-13		16,5%	5
68-D	122	4	VH4-11-8	19 22	19,2%	93
8P2	118	4	VH4-11-8		22,7%	6
1Ab67	128		VH4-11-8 VH4-21-4	0	0,0%	104
.L39	115		VH4-21-4 VH4-11-8	1	1,0%	45
nF7	111			2	2,1%	108
	• • •	**	VH4-31-13	3	3,0%	75

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
33.C9	122	4	VH4-21-5	7	7,1%	129
Pag-1	124	4	VH4-11-16	5	5,2%	50
B3	123	4	VH4-21-3	8	8,2%	53
IC4	120	4	VH4-11-8	6	6,2%	70
C6B2	127	4	VH4-31-12	4	4,0%	48
N78	118	4	VH4-11-9	11	11,3%	77
B2	109	4	VH4-11-8	12	12,4%	53
WRD2	123	4	VH4-11-12	6	6,2%	90
mAb426.4.2F20	126	4	VH4-11-8	2	2,1%	52
E54 4.58	115	4	VH4-11-8	1	1,0%	26
WRD6	123	4	VH4-11-12	10	10,3%	90
mAb426.12.3F1.4	122	4	VH4-11 - 9	.4	4,1%	52
E54 4.2	108	4	VH4-21-6	2	2,0%	26
WIL	127	4	VH4-31-13	0	0,0%	90
COF	126	4	VH4-31-13	0	0,0%	90
LAR	122	4	VH4-31-13	2	2,0%	90
WAT	125	4	VH4-31-13	4	4,0%	90
mAb61	123	4	VH4-31-13	5	5,1%	45
WAG	127	4	VH4-31-4	0	0,0%	90
RF-SJ4	108	4	VH4-31-12	. 2	2,0%	85
E54 4.4	110	4	VH4-11-7	0	0,0%	26
E55 4.A1	108	4	VH4-11-7	0	0,0%	26
PR-SJ1	103	4	VH4-11-7	1	1,0%	85
E54 4.23	111	4	VH4-11-7	1	1,0%	26
CLL7 7-2	97	4	VH4-11-12	0	0,0%	29
37P1	95		VH4-11-12	0	0,0%	104
ALL52 30-2	91		VH4-31-12	4	4,0%	29
EBV-21	98	5	VH5-12-1	0	0.0%	13
CB-4	98	5	VH5-12-1	0	0,0%	13
CLL-12	98	5	VH5-12-1	0	0,0%	13
L3-4	98	- 5	VH5-12-1	0	0,0%	13
CLL11	98	5	VH5-12-1	0	0,0%	17
CORD3	98	5	VH5-12-1	0	0.0%	17
CORD4	98	5	VH5-12-1	0	0,0%	17
CORD8	98	5	VH5-12-1	0	0,0%	17
CORD9	98	5	VH5-12-1	0	0,0%	17

*×*9

SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647

Table 2C:

(continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
CD+1	98	5 .	VH5-12-1	0	0,0%	17
CD+3	98	5	VH5-12-1	0	0,0%	- 17
CD+4	98	5	VH5-12-1	0	0,0%	17
CD-1	98	5	VH5-12-1	0	0.0%	17
CD-5	98	5	VH5-12-1	0	0,0%	17
VERG14	98	5	VH5-12-1	0	0,0%	17
PBL1	98	5	VH5-12-1	0	0,0%	17
PBL10	98	5	VH5-12-1	0	0,0%	17
STRAb SA-1A	127	5	VH5-12-1	0	0,0%	125
DOB,	122	5	VH5-12-1	0	0,0%	97
VERG5	98	5	VH5-12-1	0	0.0%	17
PBL2	98	5	VH5-12-1	1	1,0%	17
Tu16	119	5	VH5-12-1	1 -	1,0%	49
PBL12	98	5	VH5-12-1	1	1,0%	17
CD+2	98	5	VH5-12-1	1	1,0%	17
CORD10	98	5	VH5-12-1	1	1,0%	17
PBL9	98	. 5	VH5-12-1	1	1,0%	17
CORD2	98	5	VH5-12-1	2	2,0%	17
PBL6	98	5	VH5-12-1	2	2,0%	17
CORD5	98	5	VH5-12-1	. 2	2,0%	17
CD-2	98	5	VH5-12-1	· 2	2,0%	17
CORD1	98	5	VH5-12-1	2	2,0%	17
CD-3	98	5	VH5-12-1	3	3,1%	17
VERG4	98	5	VH5-12-1	. 3	3,1%	17 .
PBL13	98	.5	VH5-12-1	3	3,1%	-17 .
PBL7	98	5	VH5-12-1	3	3,1%	17
HAN	119	5	VH5-12-1	3	3,1%	97
VERG3	98	. 5	VH5-12-1	3	3,1%	17
PBL3	98	5	VH5-12-1	3	3,1%	17
VERG7	98	5	VH5-12-1	3	3,1%	17
PBL5	94	5	VH5-12-1	0	0,0%	17
CD-4	98	5	VH5-12-1	4	4,1%	17
CLL10	98	5	VH5-12-1	4	4,1%	17
PBL11	98	5	VH5-12-1	4	4,1%	17
CORD6	98	5	VH5-12-1	.4	4,1%	17
VERG2	98	5	VH5-12-1	5	5,1%	17

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
83P2	119	5	VH5-12-1	0	0,0%	103
VERG9	98	5	VH5-12-1	6	6,1%	17
CLL6	98	5	VH5-12-1	6	6,1%	17
PBL8	98	5	VH5-12-1	7	7,1%	17
Ab2022	120	5	VH5-12-1	3	3,1%	100
CAV	127	5	VH5-12-4	0	0.0%	97
HOW'	120	5	VH5-12-4	0	0,0%	97
PET	127	5	VH5-12-4	0	0,0%	97
ANG	121	5	VH5-12-4	0	0,0%	97
KER	121	5	VH5-12-4	0	0,0%	97
5.M13	118	5	VH5-12-4	0	0,0%	107
Au2.1	118	5	VH5-12-4	1	1,0%	49
WS1	126	5	VH5-12-1	9	9,2%	110
TD Vn	98	5	VH5-12-4	1	1,0%	16
TEL13	116	5	VH5-12-1	9	9,2%	73
E55 5.237	112	5	VH5-12-4	2	2,0%	26
VERG1	. 98	5	VH5-12-1	10	10,2%	17
CD4-74	117	5	VH5-12-1	10	10,2%	42
257-D	125	5	VH5-12-1	11	11,2%	6
CLL4	98	5	VH5-12-1	11	11,2%	17
CLL8	98	5	VH5-12-1	11	11,2%	17
Ab2	124	5	VH5-12-1	12	12,2%	120
Vh383ex	98	5	VH5-12-1	12	12,2%	120
CLL3	98	5	VH5-12-2	11	11,2%	17
Au59.1	122	5	VH5-12-1	12	12,2%	49
TEL16	117	5	VH5-12-1	12	12,2%	73
M61	104	5	VH5-12-1	0	0,0%	103
ΓuO	99	5	VH5-12-1	5	5,1%	49
P2-51	122	5	VH5-12-1	13	13,3%	121
P2-54	122	5	VH5-12-1	11	11,2%	121
P1-56	119	5	VH5-12-1	9	9,2%	121
P2-53	122	5	VH5-12-1	10	10,2%	121
P1-51	123	5	VH5-12-1	19	19,4%	121
P1-54	123	5	VH5-12-1	3	3,1%	121
² 3-69	127		VH5-12-1	4	4,1%	121
23-9	119	5	VH5-12-1	4	4,1%	121

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
1-185-37	125	5	VH5-12-4	0	0,0%	124
1-187-29	. 125	5	VH5-12-4	0	0,0%	124
P1-58	128	5	VH5-12-4	10	10,2%	121
P2-57	118	5	VH5-12-4	3	3,1%	121
P2-55	123	5	VH5-12-1	5	5,1%	121
P2-56	123	5	VH5-12-1	20	20,4%	121
P2-52	122	5	VH5-12-1	11	11,2%	121
P3-60	122	5	VH5-12-1	8	8,2%	121
P1-57	123	5 -	VH5-12-1	4	4,1%	121
P1-55	122	5	VH5-12-1	14	14,3%	121
MD3-4	128	5	VH5-12-4	12	12,2%	5
P1-52	121	5	VH5-12-1	11	11,2%	121
CLL5	98	5	VH5-12-1	13	13,3%	17
CLL7	98	5	VH5-12-1	14	14,3%	17
L2F10	100	5	VH5-12-1	1	1,0%	46
L3B6	98	5	VH5-12-1	1	1,0%	46
VH6.A12	119	6	VH6-35-1	· 13	12,9%	122
s5A9	102	6	VH6-35-1	1	1,0%	46
s6G4	99	6	VH6-35-1	1	1,0%	46
ss3	99	6	VH6-35-1	1	1,0%	46
6-1G1	101	6	VH6-35-1	0	0,0%	14
F19L16	107	6 .	VH6-35-1	0	0,0%	68
L16	120	6	VH6-35-1	0	0,0%	69
M71	121	6	VH6-35-1	0	0,0%	103
ML1	120	6	VH6-35-1	0	0.0%	69
F19ML1	107	6	VH6-35-1	0	0.0%	68
15P1	127	6	VH6-35-1	0	0.0%	104
VH6.N1	121	6	VH6-35-1	0 .	0,0%	122
VH6.N11	123	6	VH6-35-1	0	0,0%	122
VH6.N12	123	6	VH6-35-1	0	0.0%	122
VH6.N2	125	6	VH6-35-1	0	0,0%	122
VH6.N5	125	6	VH6-35-1	0	0,0%	122
VH6.N6	127	6	VH6-35-1	0	0.0%	122
VH6.N7	126	6	VH6-35-1	0	0,0%	122
VH6.N8	123	6	VH6-35-1	0	0.0%	122
VH6.N9	123	6	VH6-35-1	0	0,0%	122

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
VH6.N10	123	6	VH6-35-1	0	0,0%	122
VH6.A3	123	6	VH6-35-1	0	0,0%	122
VH6.A1	124	6	VH6-35-1	0	0,0%	122
VH6.A4	120	6	VH6-35-1	0	0,0%	122
E55 6.16	116	6	VH6-35-1	0	0.0%	26
E55 6.17	120	6	VH6-35-1	0	0,0%	26
E55 6.6	120	6	VH6-35-1	0	0,0%	26
VHGL 6.3	102	6	VH6-35-1	0	0,0%	26
CB-201	118	6	VH6-35-1	0	0,0%	109
VH6.N4	122	6	VH6-35-1	0	0,0%	122
E54 6.4	109	6	VH6-35-1	1	1,0%	26
VH6.A6	126	6	VH6-35-1	1	1.0%	122
E55 6.14	120	6	VH6-35-1	1	1,0%	26
E54 6.6	107	6	VH6-35-1	1	1,0%	26
E55 6.10	112	6	VH6-35-1	1	1,0%	26
E54 6.1	107	6	VH6-35-1	2	2,0%	26
E55 6.13	120	6	VH6-35-1	2	2,0%	26
E55 6.3	120	6	VH6-35-1	2	2,0%	26
E55 6.7	116	6	VH6-35-1	2	2,0%	26
E55 6.2	120	6	VH6-35-1	2	2,0%	26
E55 6.X	111	6	VH6-35-1	2	2,0%	26
E55 6.11	111	6	VH6-35-1	3	3,0%	26
VH6.A11	118	6 .	VH6-35-1	3	3,0%	122
A10	107	6	VH6-35-1	3	3,0%	68
E55 6.1	120	6	VH6-35-1	4	4,0%	26
FK-001	124	6	VH6-35-1	4	4,0%	65
VH6.A5	121	6	VH6-35-1	.4	4,0%	122
VH6.A7	123	6	VH6-35-1	4	4,0%	122
HBp2	119	6	VH6-35-1	4	4,0%	4
Au46.2	123	6	VH6-35-1	5	5,0%	49
A431	106	6	VH6-35-1	5	5,0%	68
VH6.A2	120	6	VH6-35-1	5	5,0%	122
VH6.A9	125	6	VH6-35-1	8	7,9%	122
√H6.A8	118	6	VH6-35-1	10	9,9%	122
VH6-FF3	118	6	VH6-35-1	2	2,0%	123
VH6.A10	126	6	VH6-35-1	12	11,9%	122

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
VH6-EB10	117	6	VH6-35-1	3	3,0%	123
VH6-E6	119	6	VH6-35-1	· 6	5,9%	123
VH6-FE2	121	6	VH6-35-1	6	5,9%	123
VH6-EE6	116	6	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5,9%	123
VH6-EX8	113	6	VH6-35-1	6	5,9%	123
VH6-FG9	121	6	VH6-35-1	8	7,9%	123
VH6-E5	116	6	VH6-35-1	9	8,9%	123
VH6-EC8	122	6	VH6-35-1	9	8,9%	123
VH6-E10	120	6	VH6-35-1	10	9,9%	123
VH6-FF11	122	6	VH6-35-1	11	10,9%	123
VH6-FD2	115	6	VH6-35-1	11	10,9%	123
CLL10 17-2	88	6	VH6-35-1	4	4.0%	29
VH6-BB11	94	6	VH6-35-1	4	4,0%	123
VH6-B4I	93	6	VH6-35-1	7	6,9%	123
JU17	102	6	VH6-35-1	3	3,0%	114
VH6-BD9	96	6	VH6-35-1	11	10,9%	123
VH6-BB9	94	6	VH6-35-1	12	11,9%	123

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
I	Vkl-l	28	
I	Vk1-2	0	
1	Vk1-3	1	
1	Vk 1-4	0	
1	Vk1-5	7	•
1	VkI-6	0	
1	Vk1-7	. 0	
1	Vk1-8	2	
1	Vk1-9	9	
1	Vk1-10	0	
ŀ	Vk1-11	1	
1	Vk1-12	7	
1	Vk1-13	1	
1	Vk1-14	7	
1	Vk1-15	2	
1	Vk1-16	2	
1	Vk1-17	16	
1	Vk1-18	1	
1	Vk1-19	33	
1	Vk1-20	1	
1	Vk1-21	1	
i	Vk1-22	0	
i	Vk1-23	0	119 entries
2	Vk2-1	0	
2	Vk2-2	1	
2	Vk2-3	0	
2	Vk2-4	0	
2	Vk2-5	0	
2	Vk2-6	-16	
2	Vk2-7	0	
2	Vk2-8	0	
2	Vk2-9	1	
2	Vk2-10	0	
2	Vk2-11	7	
2	Vk2-12	0	25 entries
3	Vk3-1	ı	
3	Vk3-2	0	

Table 3A:

(continued)

Family 1	Name	Rearranged ²	Sum
3	Vk3-3	35	
3	Vk3-4	115	
3	Vk3-5	0	
. 3	Vk3-6	0	
. 3	Vk3-7	1	
3	Vk3-8	40	192 entries
4	Vk4-1	33	33 entries
5	Vk5-1	l	1 entry
6	Vk6-1	0	
6	Vk6-2	0	0 entries
7	Vk7-1	0	0 entries

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
			Juni
1	DPL1	1	
1	DPL2	14	•
1	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	
1	DPL5	13	
1	DPL6	0	
1	DPL7	. 0	
1	DPL8	3	
1	DPL9	0	42 entries
2	DPL10	5	
2	VLAMBDA 2.1	0	
2	DPL11	23	
2	DPL12	15	
. 2	DPL13	0	
2	DPL14	0	43 entries
3	DPL16 .	10	
3	DPL23	19	
3	Humlv318	9	38 entries
7	DPL18	1	
7	DPL19	0	1 entries
8	DPL21	2	
8	HUMLV801	6	8 entries
9	DPL22	0	0 entries
unassigned	DPL24	0	0 entries
10	gVLX-4.4	0	0 entries

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

	Family ¹	Name	Rearranged	² Sum
-	1	VH1-12-1	38	
	1	VH1-12-8	2	
	1	VH1-12-2	2	
	1	VH1-12-9	2	
	1	VH1-12-3	0	
	1	VH1-12-4	0	
	1	VH1-12-5	3	
	1	VH1-12-6	0	
	1	VH1-12-7	23	
	1	VH1-13-1	1	-
	1.	VH1-13-2	1	
	1	VH1-13-3	0	
	1	VH1-13-4	0	
	1	VH1-13-5	0	
	1	VH1-13-6	17	
	1	VH1-13-7	0	
	1	VH1-13-8	3	
	1	VH1-13-9	0	
	1	VH1-13-10	0	
	1	VH1-13-11	0	
	1	VH1-13-12	10	
	1	VH1-13-13	0	
	1	VH1-13-14	0	
	1	VH1-13-15	4	
	1	VH1-13-16	2	
	1	VH1-13-17	0	
	1	VH1-13-18	1	
	1	VH1-13-19	0	
	1	VH1-1X-1	1	110 entries
	2	VH2-21-1	0	
	2	VH2-31-1	0	
	2	VH2-31-2	. 1	
	2	VH2-31-3	1	
	2	VH2-31-4	0	
	2	VH2-31-5	2	
	2	VH2-31-6	0	
	2	VH2-31-7	0	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum				
2	VH2-31-14	1					
2	VH2-31-8	0					
2	VH2-31-9	0					
2	VH2-31-10	0					
2	VH2-31-11	1					
2	VH2-31-12	0					
2	VH2-31-13	1	7 entries				
3	VH3-11-1	0					
3	VH3-11-2	0					
3	VH3-11-3	5					
3	VH3-11-4	0					
3	VH3-11-5	1					
3	VH3-11-6	1					
3 -	VH3-11-7	0					
3	VH3-11-8	5					
3	VH3-13-1	9					
3	VH3-13-2	3					
3	VH3-13-3	0					
3	VH3-13-4	0					
3	VH3-13-5	0					
3	VH3-13-6	0					
3	VH3-13-7	32					
3	VH3-13-8	4					
3	VH3-13-9	0					
3	VH3-13-10	46					
3	VH3-13-11	0					
3	VH3-13-12	11					
3	VH3-13-13	17					
3	VH3-13-14	8					
3	VH3-13-15	4					
3	VH3-13-16	3					
3	VH3-13-17	2					
3	VH3-13-18	1					
3	VH3-13-19	13					
3	VH3-13-20	1					
3	VH3-13-21	1					
3	VH3-13-22	0					

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
3	VH3-13-23	0	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-26	6	
3	VH3-14-1	1	•
3	VH3-14-4	15	
3	VH3-14-2	0	
3	VH3-14-3	0	
3	VH3-1X-1	0	
3	VH3-1X-2	0	
3	VH3-1X-3	6	
3 3	VH3-1X-4	0	
3	VH3-1X-5	0	
3	VH3-1X-6	11	
3	VH3-1X-7	0	
3	VH3-1X-8	1	
3	VH3-1X-9	0	212 entries
4	VH4-11-1	0	
4	VH4-11-2	20	
4	VH4-11-3	0	
4	VH4-11-4	0	•
4	VH4-11-5	0	
4	VH4-11-6	0	
4	VH4-11-7	5	
4	VH4-11-8	7	
4	VH4-11-9	3	
4	VH4-11-10	0	
4	VH4-11-11	0	
4	VH4-11-12	4	
4	VH4-11-13	0	
4	VH4-11-14	0	
4	VH4-11-15	0	•
4 .	VH4-11-16	1	
4	VH4-21-1	0	
4	VH4-21-2	0.	
4	VH4-21-3	1	
4	VH4-21-4	1	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
4	VH4-21-5	1	· - · · · · · · · · · · · · · · · · · ·
4	VH4-21-6	1	
. 4	VH4-21-7	0	
4	VH4-21-8	0	
. 4	VH4-21-9	0	
4	VH4-31-1	0	
4	VH4-31-2	0	
4	VH4-31-3	0	
4 [.]	VH4-31-4	2	
4	VH4-31-5	0	
4	VH4-31-6	0	
4	VH4-31-7	0	
4	VH4-31-8	0	
4 .	VH4-31-9	0	
4	VH4-31-10	0	
4	VH4-31-11	0	
4	VH4-31-12	4	
4	VH4-31-13	· 7	
4	VH4-31-14	0	
4	VH4-31-15	0 ·	
4 .	VH4-31-16	0	
4	VH4-31-17	. 0	
4	VH4-31-18	0	
4	VH4-31-19	0 .	
4	VH4-31-20	0	57 entries
5	VH5-12-1	82	
5	VH5-12-2	1	
5	VH5-12-3	0	
5	VH5-12-4	14	97 entries
6	VH6-35-1	74	74 entries

WO 97/08320
Table 4A: Analysis of V kappa subgroup 1

PCT/EP96/03647

•		Framework I														
amino acid'	-	7	<u>س</u>	4	ະດ	9	_	6	60	10	-	12	13	<u>,</u>	15	16
А			1										102	2		1
В			1		<u> </u>		1									
С															1	
D	64	ı _					<u>.</u>									
E	8	}	14	ļ	<u>.</u>	<u>.</u>		<u>.</u>							1	
F	1					<u>.</u>	<u>.</u>	<u>.</u>	1	6	3				l	
G	1					<u>.</u>										105
Н	<u> </u>				<u></u>											
<u> </u>	1	65	5	<u> </u>		<u> </u>	<u>.</u>	<u> </u>							4	
K		<u></u>	1	<u>.</u>	<u> </u>		<u>.</u>	<u>.</u>								
L	<u> </u>	6	<u> </u>	21	<u></u>	<u></u>					96		1			
М	1	<u> </u>	<u> </u>	66	<u></u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>					
N				<u></u>	<u></u>	<u></u>	<u> </u>		<u></u>	<u></u>	<u></u>					
Р	<u> </u>			<u></u>		<u> </u>	<u></u>	103		1	<u> </u>	2			1	
Q			62	<u> </u>	<u> </u>	88		<u>.</u>		<u>.</u>	1					
R	ļ		<u></u>	ļ	<u>.</u>	<u>.</u>										
·S	 					<u>.</u>	89		102	80	<u>.</u>	103		103		
T	 	1	<u></u>		8 8		<u> </u>			18						
V		1	9								- 8		2		98	
W																
X	1															****
Y																
unknown (?)																
not sequenced			_													
sum of seq ² .	74	74	87	87	88	89	89	103	104	105	105	105	105	105	105	105
oomcaa,	64	65	62	66	88	88	89	103	102	80	96	103	102	103	98	105
mcaa*	D	1	Q	М	Ţ	Q	S	Р	S	S	L	S	Α	S	٧	G
rel. oomcaas	%98	%88	71%	9/9/	100%	%66	100%	100%	98%	76%	91%	98%	97%	980%	93%	100%
pos occupied ^e	:	•	5	2	1	2	1	1	3	4	3	2	3	3		1

Table 4A: Analysis of V kappa subgroup 1

						*		T							
amino acid' .	17	18	19	20	21	22	23	24	25	92	27	4	8	U	۵
А			1	1		1			103	3					
В											1	1			
. C							105							·	
D	101														
E	2	<u>.</u>						1	1		2	?			
F	<u> </u>				2										
G		<u> </u>	<u></u>	<u></u>						1					
Н	<u> </u>	ļ	ļ	<u></u>							1				
	<u> </u>		6	4	101	1	<u>.</u>								
K					<u></u>	<u></u>	<u></u>	2			1				
L	ļ	<u></u>				<u></u>		1							
M						<u></u>		<u> </u>							
N ·										1					
Р	ļ		<u> </u>												
Q			<u></u>		··········			20	<u></u>	<u></u>	100				
R :		94)- 	ļ	81	<u> </u>		<u></u>				
S		5		1					<u> </u>	102					
T		6		99		103			1	1					
V		•••••	98		2	••••••••••••									
W						••••••									
X	1	•••••				***********		•••••							
Y	1														
						•••••		•••••				105	105	105	105
unknown (?)						•									
not sequenced	==														
sum of seq²															
:	101	:	:	99	101	103	105	81	103	102	100	105	105	105	105
mcaa'	D	R	V	Ţ	1	T	С	R	Α	S	Q	-	-	-	-
rel. oomcaas	%96	90%	93%	94%	%96	%86	100%	77%	98%	97%	95%	100%	100%	100%	100%
pos occupied ⁶	4	3	3	4	3	3	1	5	3	4	5	1	1	1	1

Table 4A: Analysis of V kappa subgroup 1

	CDF	RI								T					
amino acid'	ш	u.	28	29	30	31	32	33	34	35	36	37	38	39	40
Α						1	1		1 4:	2					
В													1	1	
. C							1								
D			25		1	! !	5 7	7							
E							1					2	2		
F				1	1		7	'			6	6			
G			25	<u></u>	7	3	3		4	1					
H					1	2	2		1			2			
1				98	1	4			1						
K						7								95	
L	<u></u>				2	1		101							
M	<u> </u>	ļ				<u></u>				-	-				
N	<u> </u>		6		16	42			50)					
Р	ļ	<u></u>						<u> </u>							102
Q		<u></u>		·	<u></u>		<u> </u>	<u></u>				. 98	103	2	
R	<u></u>	·····			16	3	2							3	1
S	ļ	<u></u>	41	2	57	32	3	1	1						1
T	ļ	<u></u>	7			4			4					1	
V			1	4	1			1							
W				•••••		•	21		<u></u>	104					
X					••••••				1						
Y					1		60				98				
-	105	105				**********		••••••							
unknown (?)				·										3	
not sequenced						1	1	1	1	1	1	1	1	1	1
sum of seq²	105	105	105	105	105	104	104	104	104	104	104	104	104	104	104
oomcaa,	105	105	41	98	57	42	60	101	50	104	98	98	103	95	102
mcaa¹	-	-	S	1	S	N	Υ	L	N	W	Υ	Q	Q	К	Р
rel. oomcaaʻ	100%	100%	39%	93%	54%	40%	58%	97%	48%	100%	94%	94%	%66	91%	980%
pos occupied ^s	1	1	6	4	12	11	9	4	8	1	2	5	2	:	3

WO 97/08320

PCT/EP96/03647

Table 4A: Analysis of V kappa subgroup 1

	Fran	newo	rk II										CDR I	ı	
amino acid'	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55
Α			94							50	95				
В															
. C															
D										21	1	1	1		
E	1	3			1	1				1	·	1			33
F				·		1			3			• 1			
G	100		1							9	2				
Н									2						1
		1				1		100					1		
K		95			86					16			2		5
L		1		••••	•••••	89	103							101	
M					**********			2							
N					10					2		1	25		
Р				104	************					1					1
Q		1			1										62
R					3	3	*****						1	1	2
S					1		•••••		5	1	1	99	41	2	
Т		3			1					1	4	1	31		
V			9			9					1		1		
W															
X					1								1		
Y									92	1					
-															
unknown (?)	3														
not sequenced	1	1	1	1	1	1	2	3	3	2	1	1	1	1	_1
sum of seq ²	104	104	104	104	104	104	103	102	102	103	104	104	104	104	104
oomcaa3	100	95	94	104	86	89	103	100	92	50	95	99	41	101	62
mcaa*	G	Κ	Α	Р	Κ	L	Į	ı	Y	Α	Α	S	S	L	٥
rel. oomcaa ^s	%96	91%	%06	100%	83%	96%	100%	%86	%06	49%	91%	95%	39%	97%	%09
pos occupied ⁶	2	6	3	1	.8	6	1	2	4	10	:		:	:	

Table 4A: Analysis of V kappa subgroup 1

amino acid'	26	57	58	29	09	61	62	63	. 64	65	99	29	89	69	70
A	3										2	1	1	1	
В				1				<u></u>						<u></u>	
<u>.</u> C	<u></u>		<u>.</u>	<u></u>		<u> </u>			<u></u>						
D	1	<u>.</u>	<u></u>			<u></u>	<u></u>						<u></u>		67
E	Į	<u></u>		<u></u>	<u></u>	<u></u>		<u></u>	<u></u>				1	<u>.</u>	30
F			1				103					3			
G	2	105	<u></u>	<u></u>		<u></u>			105	4	101	<u></u>	102	<u>.</u>	
Н		<u>.</u>	ļ	<u></u>	<u>.</u>	<u></u>	ļ			<u>.</u>	<u></u>				3
	3		4				1	3		<u>.</u>					
K	1	<u></u>	<u></u>	<u></u>		1									1
L					: : : :			1							
М														1	
N	6								<u></u>						
Р	1			101	2										
Q									<u> </u>	1					
R	1					103		1		1	1			2	
S	68			· 2	103			98		96		100			
Т	19			1	••••••	1		2		3		•••••		101	
V		•••••	99			••••••	1	******							1
W								••••••					·		
X			1	•••••		•••••		***********			1		1		2
Y												1			1
_															
unknown (?)															
not sequenced															
sum of seq²	105	105	105	105	105	105	105	105	105	105	105	105	105	105	105
oomcaa,	68	105	99	101	103	103	103	98	105	96	101	100	102	101	67
mcaa'	S	G	V	Р	S	R	F	S	G	. S	G	S	G	T	D
rel. oomcaas	65%	100%	94%	%96	98%	%86	%86	93%	100%	91%	%96	95%	97%	%96	64%
pos occupied ⁶	10	1	4		•••••••••••••••••••••••••••••••••••••••	:	3	:	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	:			•••••••••••••••••••••••••••••••••••••••	7

Table 4A: Analysis of V kappa subgroup 1

,	Fr	amev	vork l	li .											
amino acid'	71	72	73	74	75	9/	7.7	78	79	8	81	82	83	84	82
Α		3				1				2				101	1
В					1				3		2				
. C				į											
D						1					16	101			
E											83				
F	102	1	21										73		
G							4				1			2	
Н															
ı					9 9	5							17		
K															
L			81					103	1				1		
М															1
N						7	4								1.7
Р					-					97					1
Q									97						
R						2	1		2						
S		2		1		86	94			4			1		
Т		98		102		2	1								97
V	1		2		4			1					11		1
W															
X				1							1	2			
Y	1														
-															
unknown (?)											••••••				
not sequenced	1	1	1	1	1	1	1	1	2	2	2	2	· 2	2	3
sum of seq²	104	104	104	104	104	104	104	104	103	103	103	103	103	103	102
oomcaa ³	102	98	81	102	99	86	94	103	97	97	83	101	73	101	97
mcaa*	F	T	L	T	I	S	S	L	Q	Р	Ε	D	F	Α	T
rel. oomcaa ^s	%86	94%	78%	%86	95%	83%	%06	%66	94%	94%	810/0	%86	71%	98%	95%
pos occupied ⁵	3	4	3	3	3	7	5	2	4	3	5	2	5	2	6

Table 4A: Analysis of V kappa subgroup 1

											CDF	R III					
amino acid'	98	87	88	89	06	6	5 6	36	93	94	95	} <	< 0	Ω (ء د	٦ ٦	<u>п</u>
Α						1	7	1			5	1	Ī	-			
В					2	3		Ī		<u> </u>					-		
. C			10	2						<u> </u>				-	-	····•	
D								23	5		1		-		<u>-</u>		
Ε					·-			1	1	· † ······	·· ·	1	1				
F			7				3		••••••	1:			···				
G							1		1	<u> </u>		1		1			
Н			1	4	,	6	7	3	1	†····	<u> </u>						
								4	1	2	?	1					
К		1				7		1	********								
L				7			6	2		18	;	2					
М																	
N						(3	1	19	1		·		-			
Р							······				82	2 6	 G				
Q				90	86	1		2		********							
R						· · · · · · · · · · · · · · · · · · ·	<u> </u>	1	2	2		· ! ·····	<u> </u>		·	·	
S	1			·	}	27	,	3	58		10	·		-	- .		
Ţ						3	·:	·- -	15	*********		 -	·	<u> </u>	<u> </u>	·	
V				•	••••••	<u> </u>	1			5		<u> </u>	·	<u> </u>	<u> </u>	·	
W					***********	······································	***************************************			1	•••••			·		ļ	
Χ					••••••••••		<u> </u>	1	1		**********	<u></u>	<u> </u>	<u> </u>		<u>.</u>	
Υ	101	93				42	32		1	23	***********		<u></u>	÷			-
-									Ť		3	82	88	89	89	89	89
unknown (?)		1															
not sequenced	2	3	3	2	2	1	1		1	1	4	16	16	16	16	16	16
sum of seq²	103	102	102	103	103	104	104	10)4	104							
oomcaa3	101		102	90	86	42		:	8	25	:			:		89	
mcaa'	Υ	Υ	С	Q	Q	Υ	Υ	S		T	P		-	-	-	-	- 00
rel. oomcaas	%86	91%	100%	87%	83%	40%	31%		0/200	24%		92%	%66	000%	%00I	%00	· %000
pos occupied ⁶	3	3	1	4	5	11	12		0	14	:	:		1	•••••••••••••••••••••••••••••••••••••••		1

Table 4A: Analysis of V kappa subgroup 1

							Fr	ame	wor	k IV] .
amino acid'	96	97	86	99	100	101	102	103	104	105	106	V	107	108	sum
А	1									<u> </u>					627
В					1	<u> </u>				1				<u> </u>	19
·C					<u></u>	<u></u>						<u> </u>	<u></u>		209
D	1			······						15		······			459
E					2					65					258
F	6		86								2				451
G				87	29	87								2	894
Н	2	1													40
	5					<u></u>		<u></u>	1		72				606
K	1	1				<u> </u>	<u></u>	77				<u></u>	79		480
L	18	1	1	ļ	ļ 	<u></u>	<u></u>	<u></u>	22	4	2				793
<u>M</u>		1				<u></u>	<u></u>	<u></u>			5		<u></u>		77
N	1										1		2		232
Р	6				7									1	620
Q	1				48					1					865
R	6	•••••						6					2	70	413
S	2	2					,								1636
T	2	82					87	3					2		1021
V	2	•••••						1	63		3				440
W	15														141
X												•••••			14
Y	16						-								564
<u>-</u>	4	1										85		1	1250
unknown (?)												••••••			7
not sequenced	16	16	18	18	18	18	18	18	19	19	20	20	20	31	589
sum of seq?	89	89	87	87	87	87	87	87	86	86	85	85	85	74	
oomcaa3	18	82	86	87	48	87	87	77	63	65	72	85	79	70	
mcaa*	L	Ţ	F	G	G	G	T	Κ	٧	Ε	1	-	Κ	R	
rel. oomcaa ^s	20%	92%	%66	100%	55%	100%	100%	89%	73%	26%	85%	100%	93%	95%	
pos occupied ⁶	17	7	2	1	5	1	1	4	3	5	6	1	4	4	

Table 4B: Analysis of V kappa subgroup 2

	Γ		phe		9.0																		
	L	—										Fra	me	wo									
amino acid	' '	-	7	ო	4	S.	တ	/	ω	6	0	-		7 .	<u>~</u>	4	15	16	17	18	19	20	21
А																	T				22		<u> </u>
В											•••••												ļ
· C																	<u>i</u> .		•••••				<u></u>
D	1	14						Ī			******								•••••				
E		3			i						•••••	ļ		<u>-</u>			·		15				
F										1	1	····											
G								-		Ī	•••••			<u> </u>				22					•••••
Н							****				•												••••••
			8								•		<u> </u>	·									22
K												•••••		-		-							22
L			3		1				1	7		18	ļ !				6					<u> </u>	
М				1	5						;	·······			;								
N					1			1				•••••					-						
Р					Ī			1	8			••••••	18	. 		1	<u>-</u>			22		<u>i</u> .	
Q						18	3					•••••							7				
R		<u></u>												-		-							
S							18	3		1	7				-		·		<u>-</u>			22	
T					17	,						•••••			21							:	
V			6 17	7 1										18	·								
W										<u> </u>		•••••	•••••						<u>-</u>			<u>i</u>	
X																······							
Υ	L													• • • • • • • • • • • • • • • • • • • •			·	-					
_											Ī						Ė	╈	÷	Ť	÷	+	=
unknown (?)			<u>.</u>		1				-					•••••••		<u></u>	<u> </u>						
not sequenced	5		5	5	4	4	4	4	4	1	4	4	4	4	1	1		-					
sum of seq ²	17	17	17	17	18	18	18	18	18	3 18	3 1	8	18	18	21	21	22	2:	2 2	2 2	2 2	2 2	_ 2
oomcaa ₃	14	8	17	15	17	18	18	18	17	17	7 1	8	18	18	21	15	22	15	5 2	2 2	 2 2	2 2	2
mcaa*	D	1	٧	М	T	Q	S	Р	L	S	:	:	:	٧		Ρ			F			••••	
rel. oomcaas	%	%	%(_ي د	,e	%(%	%	٥	۰,	••••••		- .	.	.								
	82(47	100%	88	940	5	5	5	940	940	5	3	8	5	001	710%	100	089%	100	5 5		100%)
pos occupied ^r	2	3	1	3	1	1	1	1	2	2	<u>.</u>	1	1	1	1	2	1	2		1	1	•••	1

Table 4B: Analysis of V kappa subgroup 2

											CDI	₹1								Τ	
amino acid'	22	23	24	25	26	27	∢	В	U	۵	ш	u.	28	29	30	31	32	33	34	35	36
Α																					
В																					
. C	<u> </u>	22																			
D	<u> </u>	<u>.</u>	<u></u>							1			9		1	1			11		
E	.	<u></u>																			
F .	.	<u> </u>													2						7
G		<u> </u>									1			22							
Н										16						• •	1	<u></u>	1		
l																					
К			1													1					
L						1		22	13									22			
М	ļ	<u> </u>							1										•		
N													10		7	12			9		
Р																					
Q	1					21															·· ···
R			21								2										•••••
S	21			22	22		22				19		1								
Ţ																8					•••••
V									8												
W										1										22	••••
Х													1	********	1		•		1		•••••
Y										4			1		11	••••	21				15
-												22									
unknown (?)																			••••		
not sequenced																					
sum of seq'	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
oomcaa,	21	22	21	22	22	21	22	22	13	16	19	22	10	22	11	12	21	22	11	22	15
mcaa*	S	С	R	S	S	Q	S	L	L	Н	S	-	N	G	Υ	N	Υ	L	D	W	Υ
rel. oomcaa'									:			:	45%		•••••	•••••••••••••••••••••••••••••••••••••••	••••••	••••••		100%	•••••
pos occupied ^a																					

Table 4B: Analysis of V kappa subgroup 2

					Frar	new	ork	11									CDR	11			
amino acid'	37	38	39	40	4	42	43	4	45	46	47	48	49	20	51	52	53	54	55	56	57
Α							Ī												14		
В													1						-		
· C																					
D																<u> </u>			7		
E									1									·		<u></u>	
F																					
G					22						-				12				1		22
Н																		<u></u>			
l'										1		22									
K		<u></u>	15											5							
L	16				<u>.</u>					14	21			14	1						
M						<u> </u>															
N		<u></u>			<u></u>	<u></u>		<u> </u>									18				
Р	ļ			22	<u></u>			21	<u></u>		ļ		<u> </u>								
Q	6	22				22		<u></u>	12	<u> </u>				1							
R			7					<u></u>	8	7			<u>.</u>	1				22			
S			•••••				21	<u></u>							2	22	2			22	
T								ļ									1				
V											1				6						
W			·····																		
X																					
Y													21				1				
-																					
unknown (?)																					
not sequenced							1	1	1				1	1	_1						
sum of seq'	22	22	22	22	22	22	21	21	21	22	22	22	21	21	21	22	22	22	22	22	22
oomcaa,	16	22	15	22	22	22	21	21	12	14	21	22	21	14	12	22	18	22	14	22	22
mcaa*	:	:	:				:				:	:	:	:			-	R	Α	S	G
rel. oomcaa'	73%	100%	%89	100%	100%	100%	100%	100%	57%	64%	95%	100%	100%	67%	57%	100%	82%	100%	64%	100%	100%
pos occupied ^r																			3	1	

102

Table 4B: Analysis of V kappa subgroup 2

	_													F	ram	ewo	rk II	ı			
amino acid'	58	. G	9	61	6	3 8	8 4	, r	3 8	5 6	3 6	3 6	3 8	5 5		73	74	75	76	77	78
А													T		T			T		Ī	
В																					
С																		-	-		
D			22	2				1				1	2	2	-						†
E													-		-						
F					2									22	2	- -			<u> </u>		-
G .							2	ı	2	2	2	1			<u> </u>	<u> </u>			<u> </u>	<u> </u>	1
Н													-								
1														<u> </u>			1	21			İ
K		<u>.</u>									<u> </u>		-			<u> </u>	19	†		-	<u> </u>
L.													<u> </u>			21	1				
M													•						<u> </u>		
N		<u> </u>											-			<u> </u>		<u> </u>	 		
Р	ļ	22								Ţ				<u> </u>		•		<u> </u>			
Q	ļ	<u> </u>																			•
R	ļ	<u>.</u>		20				1					-							20	
S	.			1		22		21		22						<u> </u>			20	1	††
T	ļ	<u>.</u>		1								22			21				1		
V	22	<u> </u>			1																21
W	ļ	<u> </u>	<u></u>					<u></u>													
Χ	ļ															<u></u>					
Υ																<u></u>					
-																					
unknown (?)								<u></u>							1						
not sequenced																1	1	1	1	1	1
sum of seq'	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	21	21	21	21	21	21
oomcaa,	: :		22						:	:							• • • • • • • • • • • • • • • • • • • •				
mcaa*	٧	Р	D	R	F				:				D			L		•••••••	•	:	
rel. oomcaas	100%	100%	100%	91%	95%	100%	95%	95%	100%	100%	95%	100%	100%	100%	92%	100%	30%	100%	95%	95%	0001
pos occupied ⁿ	1	1	1	3	2	1	2	2	1	}	2	1	1	1	1	1	3	1	2	· • ·	

DE 40. Allalysis (ПОР				<u>ν -</u>					Τ		<u> </u>					CDR	111		
amino acid'	79	80	.8	82	83	84	85	86	87	8	68	06	91	92	93	94	95	⋖	8	· U	٥
A		20)			Ī							14				l i				
В													1		1						•
. C										2	1							<u> </u>			
D				1 2	ı									<u> </u>				Ī			<u> </u>
E	19)	20)									<u> </u>			<u></u>					
F .	ļ	<u>.</u>			<u></u>																
G	1				<u>.</u>	21				,			6			1		2			
Н	ļ				<u> </u>								1		7	-					
		<u>.</u>	<u>.</u>				1									1					•
К																<u> </u>					
L	<u> </u>	<u> </u>	ļ				1							12		<u> </u>	2			<u> </u>	
М	ļ	<u>.</u>									21		-								
N .	<u> </u>			<u>.</u>	<u> </u>	<u>.</u>															
Р	ļ	1	ļ			<u></u>		<u>.</u>								2	16	1			
Q	1	<u></u>			<u> </u>			<u> </u>				20			13						
R	ļ	<u> </u>	<u></u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u></u>			1							
S	ļ	ļ			<u></u>	<u></u>	<u></u>	<u></u>		<u></u>		<u></u>				3	2				
T	 				<u></u>	<u></u>		<u></u>	<u> </u>		<u> </u>			8		7					
V	ļ			<u></u>	21		19												•		
W	ļ				<u></u>			<u></u>	<u></u>		<u></u>					6			••••		
X					<u>.</u>																•
Υ								21	21	<u> </u>											
-			•••••															14	17	17	17
unknown (?)																					
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	5	5	5	5
sum of seq ²	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	20	17	17	17	17
oomcaa ₃	19	20	20	21	21	21	19	21	21	21	21	20	14	12	13	7	16	14	17	17	17
mcaa'							•••••			• • • • • • • • • • • • • • • • • • • •	*******	0	••••••••		······			<u>.</u> .	-	-	-
rel. oomcaa'	%06	92%	95%	100%	100%	100%	%06	100%	100%	100%	100%	95%	67%	57%	62%	33%	%08	32%	100%	100%	100%
pos occupied ^a	3	2	2	1	1	1	3	1	1	1	1	2	3	3	3	7	3	3	1	1	1

104

	_											ewo							7
amino acid'	ц	ט נ	- 9	5 6	à g	8 8	5	3	10	102	103	2 2	100	co (901	V	107	108	- sum
Α												T		T			_		71
В										•••••				1	-	•		·	3
С										•••••					 -	•••••		 -	43
D						Ī		 -		••••••	<u> </u>					•••••	ļ		112
E										•••••			1	3		•••••		ļ	71
. F				1	1	7				•••••		-				•••••			72
G						1	7	2 1	6	•••••	ļ			1	···· ! ··				233
Н										*****							•••••		26
l			3	3									1	1	4		*******		94
K		7				Ī			- -	•••••	12				<u>-</u>		13		66
L			2	2				<u> </u>			•••••	11	·	-	<u>†</u>				219
M										••••	••••••								37
N								1			••••••		-		<u> </u>				56
Р			1			İ		- -	•••			-	 		- 	-			159
0			1				14	1				•	ļ	-	-				159
R											4			-	- 	1		12	126
S			<u> </u>								******	<u> </u>	 	·	<u></u>				325
Ţ				17						16					1				140
V		<u></u>	<u> </u>								•••••	5			1				146
W			2												1				31
X												•••••			·				3
Y			7											ļ	<u> </u>				123
-	17	17													1:	3			134
unknown (?)												••••	••••••		•				2
not sequenced	5	5	5	5	5	5	6	ε	}	6	6	6	7	8) }	9	10	211
sum of seq'	17	17	17	17	17	17	16	16	1	6	16	16	15	14	1:	3 1	13	12	
	17		:		17			:	:	:		•				*******			
mcaa'	-	-	Υ	Ţ	F			G		••••	•	L		ŀ	-		K		
rel. oomcaaʻ	%00	%00	.1%	%00	100%	%00	8%	%00	%000	000	2%	%6	7%	0001	%00 00%	ò	% 000	%00	
pos occupied	1	1	7	1	1	1	2	1	-	1	2	დ 2	<u>ω</u>			·	1	Ξ.	

SUBSTITUTE SHEET (RULE 26)

Table 4C: Analysis of V kappa subgroup 3

	_																
	Ŀ										-	rame	worl	k I			_
amino acid'		2	4 (~	, -	+ 4	י נ	، م	۰ ،	× 0	y	:	= 5	7 ;		<u> </u>	2 (ä
A			5					2		27						1	=
В		1						•			····						
. с										···			2		-		
D		2	<u> </u>	Ī	···-	1	-	·		14	 			<u>i</u>	<u>i</u>		•••
E	76	3	2	7													•
F .			1								<u> </u>				1		••
G	1							····	8	2	<u> </u>				••••	1 15	 5
Н	<u> </u>										1		-				
		7:	5									•				•	••
K	3		<u>.</u>									Ī				-	•••
L			1 1	10	4			1	Ī		15	0	12	9		1	
·M	5	<u> </u>		1:	3												
N		<u></u>	<u></u>									<u> </u>			5	·- -	•
Р								12	4						147	, ,	••
Q			<u> </u>	<u>.</u>		12:	3										
R			<u> </u>	<u> </u>	1									<u> </u>			•
S			<u></u>	ļ			119)		3	1	150) 1	141	<u> </u>	· 	•
T		2	<u>.</u>	ļ	117	<u> </u>	<u>.</u>	<u> </u>		147	7			5	1		••
V		1	89	1	<u> </u>	<u> </u>	1		<u> </u>		1		22		1		•••
W		·····		<u>.</u>	<u> </u>	<u></u>	<u>.</u>	<u>.</u>									•••
X					ļ	<u> </u>	<u> </u>	<u> </u>									••
Υ [<u> </u>			<u> </u>									••
-					<u>.</u>	<u></u>	<u> </u>	<u> </u>	<u> </u>								=
unknown (?)							ļ			<u></u>							
ot sequenced																	
sum of seq'	88	88										152					
oomcaa'	76	75	89	104	117	123	119	124	82	147	150	150	129	141	147	152	
mcaa'	E	1	٧	L	T	0	S	Ρ	G	T	L	S	L	S	Р	G	***************************************
rcl. oomcaas	86%	85%	76%	%88	%66	100%	97%	100%	65%	99%	%66	%66	85%	93%	97%	%00	
os occupied"	6	6	3	3	2	1	:	1				:	:	:	6 6	1	

Table 4C: Analysis of V kappa subgroup 3

				•				\top									_
amino acid'	17	- α	0 0	2 2		22		? 5	25	. u	27		. ~			CD	_
Α	7				2			-						-) ш	_
В									16	b .	1						
· c			<u> </u>				10									<u> </u>	••••
D		6		<u></u>		<u></u>	18				1				<u></u>	<u></u>	
E	14	***************************************	1				-										
F	1	<u> </u>				7	1					1	<u> </u>				
G	-	1	1			<u> </u>	<u> </u>			1		<u> </u>		<u></u>			
Н									<u> </u>	1	1		1			<u></u>	
1	-	-	1		5 :	 2					17	/ <u> </u>					
К	-		1					<u>i</u>	5			<u>.</u>					
L			·	-	173		·		J		<u> </u>			<u>. </u>		-	
М			************	-			-					1					
N			<u> </u>			<u> </u>				<u>.</u>				<u>.</u>	-	<u> </u>	
Р		1		<u> </u>	<u> </u>			·	<u> </u>	·		g	<u>'</u>	<u></u>		-	
Q	1		-		<u> </u>	·		·	-		159	ļ			·		
R		175	5	· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u> </u>	176	; ;	1	1	÷	<u> </u>	<u>.</u>		<u> </u>	
S				<u> </u>	· 	180			· : · · · · · · · ·	175	Ť	87	:	<u></u>	ļ	<u> </u>	
T		1		174			<u></u>		· • · · · · · · · · · · · · · · · · · ·	2	<u> </u>	1	<u>.</u>	<u></u>		<u></u>	
V		1	4	1	<u> </u>			<u> </u>	1	÷	<u> </u>	1	:	<u> </u>	<u>.</u>	<u> </u>	
W						<u> </u>	<u></u>	1	-		<u> </u>	•	<u>.</u>	<u> </u>	<u> </u>		
X					<u> </u>				<u></u>	 				ļ	<u></u>		
Y					Î	1		<u> </u>	<u> </u>		1						
_													182	182	182	182	
unknown (?)									•		1				.02	2	
not sequenced																	
sum of seq'	153	181	182	182	182	182	181	182	182	181	181	182	182	182	182	182	
oomcaa,	146	175	178	174	173	180	181	176	166	175	159	87	182	182	182	182	
mcaa•	Ε		Α	T	L	S	,		Α		Q	S	-	-	-	-	
rel. oomcaa ^s	95%	97%	980%	%96	95%	%66	100%	97%	91%	97%	980%	48%	%001	%001	%001	%00	
pos occupied ⁶	3	7	2			3	1		5	:	· · · · · · · · · · · · · · · · · · ·	······	1			1	

Table 4C: Analysis of V kappa subgroup 3

	_							· ·							F	rame
amino acid	' ц	- 6	7 0	67 6	3 ;	<u> </u>	35	33	34	35	36	÷ 6	ž (⊋ ;	+ - -
А					1	1		1	81				Ī			
В																
C									-							
D				1	1	2	1	····	<u>-</u>	<u>+</u>				-	<u>-</u>	
E						····	1							1	<u>-</u>	<u>-</u>
F			1				7		<u>-</u>		1					
G				2	7	3	1		2		<u>-</u>	<u>-</u>			1 18	i
Н				1	•		2	<u>-</u>	-	·	1	1	2	1	1	· · ·
1		2	4	4	1	1				•			-			
K					1	1		<u> </u>	····	···		-	15	3		
L			8	1			1 17	6			•		3	<u> </u>		
·M														-		
N				3 1	2 2	5 3	2					<u> </u>			<u> </u>	
· P		<u>.</u>				1	Ī	<u> </u>		···	<u> </u>			170	<u>.</u>]	
Q	ļ	<u>.</u>				1	1				183	3 167	••••••••	••••••••	•••••••••	181
R		<u>.</u>	10) ;	3 18	3 10	3		1			 	27	· † · · · · ·	5	101
·S	_	72	2 86	151	118	3 4	1		<u> </u>			· •	<u> </u>	· :	5	·
Ţ		1	1	3	3 8	3 1	1						1	•		<u> </u>
V	.	76	68	<u> </u>	1	-		7				3	-	Ť	<u>.</u>	
W		ļ	5		<u>.</u>	<u> </u>			18	5		<u> </u>	·			
<u>X</u>			<u></u>	<u></u>							***********			<u> </u>	·	
Y			<u> </u>	1	1	115				183					<u> </u>	
-	182		<u>.</u>	<u> </u>	<u>.</u>											
unknown (?)					<u> </u>						1	<u> </u>		***************************************	<u></u>	
ot sequenced																
sum of seq ²	182	182	182	181	181	182	183	184	185	185	185	185	184	184	184	184
oomcaa,	182		86	151	118	115	176	181	185	183	183	167	153	170	184	181
mcaa'	-	٧	S	S	S	Υ	L	: .	W	Υ	Ω	Q	К	Р	G	Q
el. oomcaas	100%	42%	47%	83%	65%	63%	%96	%86	100%	99%	%66	% 06	83%	92%.	%00	- %86
os occupied"	1	6	11	10							7	ტ 4	<u> </u>	6 6		6

Table 4C: Analysis of V kappa subgroup 3

	rk l			roup		-				·	CDF	11			Τ	-
amino acid¹	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58
А	17	6							4 14	7		T	176	3 1		T
В																
. c										1		<u> </u>		<u> </u>		1
D								4:	3		· ·	********	2	2		1
E												- 				
F .				1		1		1		-	********			·	-	
G							Ī	125	5	<u> </u>	<u> </u>		2	10	179	1
Н				İ			Ç)	1	1		•	·			
1						178	3					***********		1		168
K			1								7	1	<u> </u>			
L		1		179	174	1		<u> </u>	•		·		·	<u> </u>	<u></u>	
М						3					1		·			†
N			1					1	·	· † · · · · · · ·	53	÷		2		
Р	5	184			Ī					2	÷		2			
Q							1	•					•			
R			182					1	<u> </u>	<u> </u>	4	180				
S							3	6	4	179		† -	:	5		
T	3						<u></u>	<u></u>	11	·······	44	÷		164		2
V				3	9	•	<u> </u>	3	19	<u></u>					•	15
W							1	·	<u> </u>	<u> </u>		1				
X						••••••										
Y							165								2	,
-																
unknown (?)			1										······ <u></u>	<u>-</u>		
not sequenced													•	•		
· sum of seq'	184	185	185	183	183	183	183	183	183	183	183	183	185	185	185	185
oomcaa,													176			
mcaa'			R			ı	Υ	:			S	:	:	T	G	1
rel. oomcaa'	96%	%66	%86	98%	95%	97%	%06	68%	9/008	%86		%86	95%	%68	97%	91%
pos occupied [*]	3	:	:	:	;	:	:	:	:	:	:	4	ა 5	7	3	3

WO 97/08320

	_														Fran	iewo	rk III
amino acid	, C	£ 6	3 2	5 E	70 59	3 2	o 0	ရှိ မ	99	29	89	69	20	71	7.2	1 ,	2, 2
Α			68		<u></u>				3		5	3	1			3	
В											•		······································				
. C									·····				•••••				
D		1	12				1	····	İ		····			<u></u>			
E							·		1		1		30				
F				18	3			····						183	 }		2
G						18	14	3 1	78	_ 1	77						
Н			1		····	Ī									·	<u></u>	-
1					1						***			•••••••	-	1	
K				1				Ī	İ		-	···	<u>-</u>	*******		<u>'</u>	
L					1		<u>+</u>			····•		-		• • • • • • • •	 -	18	
. M					-			-	1					••••••	<u></u>	10	<u> </u>
N			1			<u> </u>		<u> </u>	· 			-	<u>-</u>	••••••	1		
Р	17	7			<u> </u>	<u> </u>	- -	<u>.</u>			·	<u>i</u>		•••••••	<u></u>		
Q				•	•		•	•					1	••••••			
R			182	2	2		Ī	1	·		- 	2		••••••		<u></u>	<u> </u>
S	7	7			180		179))	18	5	··· † ·····	3		•••••	7	<u> </u>	2
T	1	١	2	?	3		:	2			17	•••••			172	<u> </u>	179
V			3				1	<u> </u>	1	*******	1		-			ļ	1/3
W						<u> </u>	·	<u> </u>	· †·····	··· ·	 1	-		<u>:</u>	•••••••	<u>:</u> :	<u> </u>
X			Ī		<u></u>			•					<u>i</u>		*********		<u></u>
Υ							·	<u> </u>	<u> </u>		·	·		1	•••		
_											T	+	Ť	_			
unknown (?)						••••	<u> </u>	1	·	·				<u>l</u>			
ot sequenced						•	<u></u>		•	·		-	-			••••••	
sum of seq ²	185	185	185	185	185	185	185	185	185	185	185	18	4 1	84	194	104	104
oomcaa³	177	112	182	183	180	184	179	178	185	177	177	15	2: 1:	87 	172	104	170
mcaa*	Р	D	R	F	S	G		G	S	G	T	D		F.	T	102 L	
rel. oomcaas	%96	61%	%86	%66	97%	%66	92%	%96		-			•	90%	93%	99% ،	97%
os occupied [«]	3				:	2			·			Ĭ) !	- -	······································		•
			••••••				·····	0		<u>.</u>		.i	T :	2	5	2	3

Table 4C: Analysis of V kappa subgroup 3

			_									•				
amino acid'	75	9/	22	78	79	80	81	82	83	84	82	98	87	88	68	90
А							3			174						
В					1											
· C									2				1	182		
D			1				3	182								
E					149		175									2
F		1							178		2	1	4			
G			3					1		2					<u></u>	
Н											1				1	7
1	178			-				1	1		9					
К							1									
L				178		1			1		7		1		<u> </u>	1
М										1	5					
N	1	5														
Р						149										
Q					34			٠						1	181	155
R		1	111							3						1
S		169	65			34			1				2			
T		8	4							1						8
V	4			6					1	3	159					7
W																
X																
Υ	1										1	183	176		1	2
-																
unknown (?)																
not sequenced																
sum of seq²	184	184	184	184	184	184	182	184	184	184	184	184	184	183	183	183
oomcaa,	178	169	111	178	149	149		182	178	174	159	183	176	182	181	155
mcaa'	ı	S	R	L	Ε	Р	E	D	F	Α	V	Υ	Υ	С	Q	Q
rel. oomcaa ^s	97%	92%	%09	97%	81%	81%	%96	%66	97%	95%	%98	99%	%96	%66	%66	85%
pos occupied ⁶	4	5								6				2		

Table 4C: Analysis of V kappa subgroup 3

	_						CD	R III			-								
amino acid	J' (91	92	6	3 3	† r		٠ ،	20	U	, ,	ם כ	ח ה	0	2 6	- 	80	 66	00
Α				1	8	3	3							Ī					1
В						•				*****	*******								
· c		2				1					-	-		<u>-</u>	2		<u>-</u>		
D				8	5	Ī			<u>+</u>							1			~~~~~
E				2							<u> </u>				1				***********
F		5			2					******					7	16	6		
G		1	104	1 1	5		1	1	2	******		<u> </u>		····	1		····÷····	66	41
Н		4	1	1								Ī		···÷·····	2		1		
			•••••	<u>.</u>	1			1		••••••				···•	4				
K		<u></u>	<u>.</u>		2	<u>.</u>		1							1	-	1	····	1
L L				ļ		2	7	5						42	2	·•			
. M		<u>.</u>	1	<u> </u>			1	2											
N			28	71	ļ <u>.</u>	<u>.</u>		<u></u>	<u></u>	•••••				1	1		Ī		*****
Р			····			1 13	9 2	4						7	7	2			9
Q		1		1	<u> </u>		3	1			<u> </u>			3	3			1	14
R	3	4	2	3	<u> </u>		2	2			<u> </u>	<u>.</u>		19					
S	- 	2	33	••••••••••••••••••••••••••••••••••••••	÷	1!	5	2	<u>.</u>	•••••		<u></u>	<u>.</u>	1	8	}			
T			2	13	1		1	2	1			<u></u>	<u> </u>	1	154	ŀ			
V		<u>.</u>			<u> </u>		3 . 1	<u> </u>	<u>.</u>			<u> </u>	<u> </u>	2	<u> </u>				
W	. .				69	<u> </u>	<u>.</u>	<u> </u>	<u>.</u>		•••••	<u> </u>	<u></u>	24	<u></u>	<u>.</u>	<u>.</u>		
X	ļ			•••••••		<u> </u>	<u>.</u>	·	ļ		•••••		<u> </u>		<u>.</u>				
Y	134	4	1	1		<u> </u>	<u> </u>	<u> </u>						43					
- (2)	 	<u>.</u>		3	3	7	127	167	1 1 6	59	169	169	169	8	1	1	1		1
unknown (?)		-			••••••	ļ 			ļ										
not sequenced	*							14	-					14					16
sum of seq²	183	1	83	183	182	182	169	169	16	9	169	169	169	169	166	167	167	16	37
oomcaa¹						:	127	167	16	9	169	169	169	43	154	166	166	1 1	14
mcaa*	Υ		3	N	S	Р	-	-	-	<u>.</u>	-	-	-	Υ	Ţ	F	G	C)
rel. oomcaas	73%		57%	39%	26%	76%	75%	%66	1000	200	100%	100%	100%	25%	93%	99%	%66		0/289
pos occupied ⁶	8	1	11	13	8	11	12	2	<u></u>	1	1	1	1		5			-	6

2

1/3

5

7

5

4

7

pos occupied⁶

Table 4D: Analysis of V kappa subgroup 4

	L											Fr	ame	wo	kΙ					
amino acid'	-	- (7 (ე <u>.</u>	4 r	n (o 1	_ (œ	6	9	-		7 9	<u>ي</u> :	4	15	16	17	0
А												Ī	2	4	T					1
В										•••••					-		İ			
· c							····		<u>-</u>		1	<u> </u>						1		-
D	2	5								26	•••••				<u>-</u>					
E											•••••	<u> </u>	······································						25	-
F											••••••	<u> </u>								<u></u>
G		<u>.</u>							····		••••••	<u> </u>	<u>† </u>	1			-	24	••••••	 -
Н		<u>.</u>																		-
		2	6										<u> </u>						••••••	<u> </u>
K		<u>.</u>					1					********	 -						•••••	<u> </u>
L			<u>.</u>		1							26				2	6		•••••	 -
M				2	4							•••••••	†						•••	·
N		1			<u>.</u>							•••••••			-		··· · ···	<u>-</u>		
Р								2	6				1				<u> </u>			
Q	 	<u>.</u>	1		<u>.</u>	2	5						,							*******
R		<u>.</u>	<u></u>		<u>.</u>	<u></u>	<u> </u>	<u></u>	<u> </u>								-			26
5	ļ	ļ		ļ			26	5			25				26	5	Ī	1		*********
T	 	ļ	ļ		26		<u>.</u>		<u>.</u>								-			*******
<u>V</u>	ļ	<u> </u>	25	1	<u> </u>		<u>.</u>		<u> </u>				••••	26			-			••••••
W	 	<u></u>	<u>.</u>		ļ		<u>.</u>		<u>.</u>											
<u>X</u>	-	<u> </u>	ļ	ļ			<u> </u>	ļ	<u>.</u>				•••••							
ΥΥ	L		<u> </u>	_			<u> </u>		<u> </u>											
***************************************	 	<u>.</u>	ļ		<u></u>		<u></u>		ļ											
unknown (?)						······			<u> </u>											
not sequenced	7				==		_	==	===	7	7	7						7	7	7
sum of seq ²	26	26	26	26	26	26	26	26	26	3 2	6	26	26	26	26	26	2	6 2	26	26
oomcaa,			25	24	26	25	26	26	26	3 2	5	26	24	26	26	26	2	4 2	25	26
mcaa•	D		٧	М	Ţ	Q	S	Р	D	9	5	L	Α	٧	S	L	G	ا		R
rel. oomcaa ^s	%96	100%	%96	92%	100%	%96	100%	100%	100%	050	0/-00	100%	92%	100%	100%	%001	%26	è	3640	%00 100
pos occupied ^a	2	1	2	3	1	2	1	1	1	;	:	·····		1		•••••	0	•	<u>.</u>	1

1/4

Table 4D: Analysis of V kappa subgroup 4

		774		<u> </u>	'													
														C	ORI			
amino acid'		2 6	2 5	23	22	3 2	5 7	5 5	97	27	V	20	ပ (ח ח	- a	2 5	2 2
А	2	6						1	T			1		Ī				_
В								****										
· c					3	3								 		-		-
D					<u> </u>		<u> </u>		· -			1		1			1	<u> </u>
E				····•													-	
F .																		-
G						******	1		<u>-</u>							<u>.</u>	-	<u> </u>
Н							···									<u> </u>		<u> </u>
]	Î		2	6			-	-	-			1					·	
K	1					3	3									ļ)	20
L												2 _3	1					30
M			-			-	····								-		<u></u>	<u>:</u>
N				26	5		<u> </u>		 			 				30	31	1
Р					1		· ·	1				<u> </u>			1	30	31	<u></u>
Q				-					3	2						•	ļ	1
R					-		1			1					-	 -	1	1
<u>S</u> .						<u> </u>	3	1 3:	3	3	3	<u> </u>		32	32	 -	1	
Ţ		26												-		<u> </u>		
V		<u> </u>		1			 -				2	B :	2			<u></u>		•••••
W							<u> </u>		<u> </u>							<u> </u>		••••
Χ										-				<u> </u>	·			••••••
Υ							<u> </u>		-		-	1	32	2				••••
-								_		_							_	
unknown (?)					**********	••••••	<u> </u>		·			<u> </u>		·				
not sequenced	7	7	7	7				-										
sum of seq ²	26	26	26	26	33	33	33	33	3:	3 3	33	33	33	33	33	33	33	
oomcaa³	26	26	26	26	33	33	31	33	32	2 33	28	31	32	32	32	30	31	30
mcaa•	Α		ı	Ν	_ :			:	Q	S	٧	;	Υ				N.	
rel. oomcaas	%00	%00	%00	%00	%00	100%	Q.	%(ی	%	۰.	<u> </u>						
	Õ	ŏ	ŏ	ŭ	ŏ	10	94%	100%	97%	100%	85%	94%	97%	97%	97%	91%	94%	91%
pos occupied"	1	1	1	1	1	1	3	1	2	1	5	2	2	2	2	3	3	4

Table 4D: Analysis of V kappa subgroup 4

											Fr	ame	work	: 11				
amino acid'	31	33	3 5	34	3, 5	3 %	3 2) c	3 2	5	? ;	+ 5	42 42	44	45	46	47	α
Α				3	2						2							Ī
В																		-
. С																		
D																-	<u> </u>	<u> </u>
E												1			-			
F ·														<u> </u>		·	<u> </u>	
G									<u> </u>	·	3	2				-		<u> </u>
Н							2	-				<u> </u>			-	<u> </u>	<u> </u>	<u> </u>
1											-			- †		÷		3:
K					1				3:	3	-	1			32	· †		
L			33	}			<u> </u>									· · · · · · · ·	33	
M																<u> </u>		
N	33					<u> </u>	1		<u> </u>	<u> </u>						<u> </u>		<u></u>
Р				<u> </u>	<u> </u>		1			3		<u> </u>	31	33				
Q .							32	2 33	3		-	32						
R		<u> </u>					7		†	†	-				1	<u></u>		
S							<u> </u>		<u> </u>				2			<u>:</u>	•••••	<u></u>
Ţ				1					•									
V						•						·	·			4	••••••	
W					33					······	<u> </u>	<u> </u>						
Χ							• !				<u></u>							,.
Y		3 3				31												
· -								-									-	
unknown (?)								······································				<u> </u>						••••••
not sequenced				•		••••••												•••••
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa,												32						
mcaa*	N		L	:	:	Υ	_	_	K		:	:			K		:	1
rel. oomcaas	100%	100%	100%	97%	100%	94%	97%	100%	100%	94%	•••••			100%	97%	, %88	, %001	97%
pos occupied ⁶	1	1	1					1				: :			<u>െ</u> 2	œ 2	1	ი 2

Table 4D: Analysis of V kappa subgroup 4

					CDF	11			T									
amino acid'	49	20	51	52	53	54	55	56	57	58	59	9	61	62	63	64	65	99
А			30)						Ī		T						T
В											********							·
· c					-		1			<u> </u>		 -						
D									<u> </u>	<u> </u>		33	}		-	<u> </u>		<u> </u>
E							32	2						·	-	·	-	
F														33		·		
G					· · · · · · · · · · · · · · · · · · ·		<u> </u>		33	<u> </u>	<u> </u>	-			·	33	3	33
Н							<u> </u>		·					•		1		
1					1				•		·			·		·		
K									· †					<u> </u>				<u> </u>
L									·			·					·	<u> </u>
М									·	·····		}					<u></u>	
N					2				·	<u> </u>	<u> </u>	ļ		<u> </u>		<u> </u>		<u></u>
Р			-	1					<u> </u>	ļ	33		1	<u> </u>	ļ	<u> </u>		<u></u>
Q		•							-					}		ļ		
R		<u> </u>	 !			33							32			<u> </u>		
S		<u></u>	1	31	1			33						<u></u>	32	<u></u>	33	
Ţ			2	1	29	•				•••••			•••••					
V							1			33			**********		••••			
W		33				•	•••••			••••••			•••••		••••			
Х										•••••••			•••••••		•			
Y	33														•••••	•••••		
-																		=
unknown (?)							••••	••••••						••••				
not sequenced								•••••				******		•••••		••••••		••••••
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa,											33							
mcaa'	Υ	:	Α	S	T	R	Ε	S	•	٠٧	Р	D	R	F	S	G	S	G
rel. oomcaa'	100%	100%	91%	94%	98%	100%	97%	100%	••••••	100%	100%	100%	97%		92%		, %00	»00
pos occupied ⁶	1	1	3	:	4	1	2	1		1	1	1	2	1	2	1		1

117

WO 97/08320

Table 4D: Analysis of V kappa subgroup 4

	_																	
	_					Fra	mev	vork	111		· .							
amino acid'		۹	68	69	70	7	72	73	74	75	92	77	78	79	 08	81	82	83
А										$\overline{}$		Ī	T		33			
В																		
· C									<u>†</u>							·		
D					32												33	
E																33	J J	
F.						32	·····									J.J.		
G			33		1				<u>†</u>					<u>i</u>				
Н																		
1										33								
K														<u>i</u>		<u>i</u>		
L						•		33					2					
· M												·	1			-		
N					<u> </u>						2	1			-	<u></u>		
Р		1																
Q	1												3		-			-
R		-			<u> </u>		<u> </u>		<u> </u>	<u> </u>		<u> </u>		 	-			
S	33	}		Ī			·			3	0 3			<u> </u>				
T			3:	3		3	3	3	3		1	=		<u></u>	-	<u> </u>		
V						1 .			-					 	-		33	
. W					1	<u> </u>			-					<u> </u>	<u> </u>	-	3.	1
Χ						*******			-		_		<u> </u>	<u> </u>				<u></u>
Y							-	-		1		<u> </u>		<u></u>	<u> </u>	<u>-</u>		
				Ī			T	 	Ť	Ť	十	Ť	-		-	-	-	-
unknown (?)							1		†	<u> </u>	-	·	·	<u></u>		<u>.</u>		<u> </u>
not sequenced											-	·			·		ļ	ļ
sum of seq ²	33	33	33	33	33	33	3	33	33	33	33	33	33	33	33	31	22	22
oomcaa,	33	33	33	32	32	33	33	33	33	30	32	32	32	33	22	33	22	22
mcaa'	S	G	T	D	F	T	L	: _	1		: _	:	0 Q	:	_	D	33 V	
rel. oomcaas	100%	100%	100%	97%	97%	100%	· †	· [÷		97%			100%		:		97%
pos occupied"	1	1	1			·····	÷		<u> </u>	3	:	:		=		Ξ	Ξ	တ်

Table 4D: Analysis of V kappa subgroup 4

												CDR	Ш					
amino acid'	85	98	87	88	83	90	91	92	93	94	95	4	8	U	۵	'n	u.	96
A										1	T							
В																		
· C				33								-						-
D	!	<u>.</u>	<u></u>	<u>.</u>	<u>.</u>			1	1									
<u>E</u>	<u>.</u>	<u>.</u>	<u></u>															
F .			1					1										
G		<u></u>							2	_						<u> </u>		
. Н	. .	<u></u>	1		3													
1		<u> </u>	<u> </u>	<u> </u>	<u></u>					2								
K	ļ	<u>.</u>		<u></u>	<u></u>	<u></u>	<u> </u>											
L	ļ	ļ	,	<u></u>		1		2		1	3						·	
· M	ļ	<u></u>	<u> </u>															
N	ļ	<u> </u>					<u></u>		4	4								
Р	Į									1	29	1						4
· Q	 	<u></u>			30	32					1	-						1
R	ļ							<u> </u>	1			1						2
S	ļ						2		23	2		••••						1
<u>T</u> .	ļ								2	22								
V	33																	
W			•••••	•••••														2
X	ļ																	•
Υ		33	31				31	29										1
-												13	15	15	15	15	15	3
unknown (?)																		
not sequenced			_								_	==	18	\Rightarrow		=	\Rightarrow	
sum of seq ²	: :	÷	:	:	;	:	:	:	:	33	:		••••••	•••••••	•	•	••••••	15
oomcaa,	: :	:	31	33	30	32	31	29	23	22	29	13	15	15	15	15	15	4
mcaa⁴	٧	··· -	Υ		Q	Q	Υ	Υ	S	Ţ	Р	-	-	-	-	-	-	Р
rel. oomcaa ⁵	100%	100%	94%	100%	91%	92%	94%	%88	70%	%29	%88	87%	100%	100%	100%	100%	100%	27%
pos occupied ⁶	: :	:		1					6	7	•••••	3	1	1	1	1	1	<u>.</u> 8

Table 4D: Analysis of V kappa subgroup 4

	_	Ī	<u>-</u>				Fra	mew	ork	IV					7
amino acid'		6	86	 66	9	5	102	103	104	105	901	Α,	107	801	sum
Α									_						183
В											!				163
С				-		<u> </u>									CO
D				****											68 154
E										14			.		105
F			15							17	<u>i</u>				82
G		••••		15	4	15									228
Н															6
											14				135
K						<u>-</u>		14			<u></u>		13		158
L									4						258
М		1													27
N		<u>.</u>									····		1		136
Р							1								195
Q		ļ		1	1				1						264
R								1		1			1	11	116
S	1	2									1				499
T	12	2		<u>.</u>		14	4								236
V	-	ļ				<u>.</u>			9						196
W	ļ	<u></u>		<u> </u>		<u>.</u>	-		1						69
X	ļ	<u></u>		<u>.</u>											
Y	L														254
		ļ		<u></u>	ļ	ļ					15				106
unknown (?)							<u></u>		.,						
not sequenced											3 18				518
sum of seq'	15	15	15	15	15	15	15	15	15	15	15	15	1	1	
oomcaa ¹	12	15	15	11	15	14	14	9	14	14	15	13	1	1	
mcaa•	Ţ	F	G	Q	G	T	K	٧	Ε	1	_	Κ	R		
rel. oomcaaʻ	80%	100%	100%	73%	100%	93%	93%	%09	93%	93%	%00I	87%	%UO	?	
pos occupied ^e	3	1	1	2	••••••					••••••	1	•••••			

/20

Table 5A: Analysis of V lambda subgroup 1

											Fra	mev	vork	ı				·	
amino acid		7	က	4	ស	9	7	. &	6	2	=	12	13	14	15	16	17	18	6
А									-		19)	18	3 20					Ī
В								<u> </u>							<u> </u>		†·····		<u> </u>
· C													<u> </u>				-		
D													<u> </u>				<u> </u>	<u> </u>	<u> </u>
E									<u> </u>						•	·		1	
F.						•			-			·	·			·	<u> </u>		ļ
G								<u> </u>			1		22	-		42	<u> </u>		
Н	2												<u> </u>		<u></u>		<u> </u>	<u></u>	ļ
1			1			Ī					1		<u> </u>			<u> </u>	<u> </u>		
К													<u> </u>					14	
L			1	41							1		<u> </u>						
M	<u> </u>												1		• • • • • • • • • • • • • • • • • • • •				
N													*********		•••••				
Р		<u></u>					41	41					••••••••••••••••••••••••••••••••••••••	1	41		••••		
Q	22	<u></u>	1			41				**************************************							42		•••••
R		<u></u>	<u> </u>							<u> </u>		**********			****			25	•
S	 	39	<u></u>						41			41			1			1	
T	 				41									19	•••••			1	*******
V		1	38								20		1	1					42
W		,														******			
X																			
Υ														•					********
	16																		••••••
-										41									
unknown (?)																			
not sequenced	_ 2	2	1	1	1	1	1	1	1	1	1	1	1	1					
sum of seq ²	40	40	41	41	41	41	41	41	41	41	41	41	41	41	42	42	42	42	42
oomcaa,	22	39	38	41	41	41	41	41	41	41	20	41	22	20	41	42	42	25	42
mcaa'		S		L	Ţ	Q	Р	Р	S	-	:	S			Р	G	Q	R	
rel. oomcaas	55%	98%	93%	100%	100%	100%	100%	100%	100%	0001	49%	%00 ₁	54%	49%	%86	100%	000,	%09	100%
pos occupied"		••••••••••••		1		:	:		:	:	4		:	4	••••••	1	1	<u>ن</u> 5	 1

121

·												DRI							Τ
amino acid'	20	21	22	23	24	25	26	27	۵	ш	28	29	30	31	⋖	32	33	34	35
Α	2	2										2	2 2	2			1		
В		<u>.</u>									1		-			- 			
С				42	2					<u> </u>						<u> </u>			<u> </u>
D										3			3	1	1		3	1	
E												-	1						
F		<u> </u>	<u>.</u>		1				1			-			1	1			
G		<u>.</u>				42	3	1			2	39	4	2	!				<u> </u>
• н		<u></u>	<u>.</u>										Ī	2		2		2	
1	1	41	<u> </u>	<u> </u>						1	37		<u> </u>					1	
K				<u> </u>						1			1						
L	<u> </u>	1	<u></u>	<u> </u>							1				-			<u> </u>	
M	.	ļ	<u></u>	ļ		<u>.</u>					1								
N		<u>.</u>	<u></u>	<u></u>	<u></u>	<u></u>		2	1	37			13	31	2	-	1	9	
Р		ļ	<u>.</u>	<u></u>	<u> </u>											1			
Q		<u> </u>	<u> </u>	<u> </u>							·			•••••		1	<u> </u>	<u></u>	
R	<u> </u>		<u> </u>	<u></u>			1	1					5	*******		<u></u>			
S	1		42		38		34	34	38				13	1	1	3		19	
Т	38		<u> </u>		3		4	3	2			1		1		7		2	
V											1			********		2	40		
W																			42
Χ																	••••		
Y														4	1	20		7	
Z																			
-															36				
unknown (?)												•							
not sequenced												Ī			1	1	1	1	
sum of seq'	42	42	42	42	42	42	42	42	42	42	42	42	42	42	41	41	41	41	42
oomcaa ₃	•	•		•			:							******	******	20		*******	******
mcaa*	Ţ	:	S	С	S	G	S	S	S		1		N	N	-	Υ	٧		W
rel. oomcaa ^s	20%	98%	100%	100%	%06	100%	81%	81%	%06	98%	88%	93%	31%	74%	%88	49%	%86	46%	%00 I
pos occupied ⁶	:	2	1	1	3	•••••	4	6	:	4	5	·	8	7	:	10	2	7	1

122

Table 5A: Analysis of V lambda subgroup 1

				•		Fran	new	ork l	1					_					
amino acidi	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54
Α							4	40									1		
В													-		Ī	<u> </u>			
. C													Ī						
D						1					†		1		13	10	8		
E					! !	<u> </u>	?	•		2	······				5	·		1	
F	1			4		<u></u>							······	1	÷				
G		<u> </u>				39				·					1	ļ			
Н	1	1	6	1				•••••			<u> </u>			1				1	
1		:								ļ <u>-</u>			40	·····	1				
К							1			35	<u> </u>		 		1	1		18	
L			1	31	••••							40						1	
М		•			•••••		1						1				· 	1	••••
N		·			•••••				······	1			······		3	28	30	·-····i	•••••
, P		•••••			42	1			42					•					
Q		39	34	•••••									 					15	
R		2		1		1			•••••	4					7				40
S		••••••					-	1	•••••		••••••		••••••	•••••	9		3	····· ·	
T							36	1	••••		•••••				1				······································
V		•••••	1	5			•		•••••		1	2	1						
W											•••••								1
Х					•••••						•••••						••••••		
Υ	40				*************									40	1	1			
Z		••••									•••••						•••••		
-																			_
unknown (?)										<u>-</u>							•••••		
not sequenced										·····	•••••	••••••	•••••						
sum of seq'	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
					;	;	:				**********	40	**********	•	• • • • • • • • • • • • • • • • • • • •		•••••••••	********	******
mcaa*	:		Q	:	Р		:	Α				•••••		•••••••••••••••••••••••••••••••••••••••	D	•••••••••••••••••••••••••••••••••••••••	N	••••••	
rel. oomcaa ^s	35%	33%	81%	74%	%00 ₁	3%	•••••••••••••••••••••••••••••••••••••••	·······		•••••••••••••••••••••••••••••••••••••••		95%		••••••			•••••		95%
pos occupied ⁶			:												ო 10	······································	4	9	ე 3

123

Table 5A: Analysis of V lambda subgroup 1

,	_	DR	[]					T												
amino acid'	u u	3 6	გ <	ξ α	٠ ر	ے ر	ם כ	u [ر د	ဂို ဂိ	56	9	61	62	3	3 3	- u	g (<u> </u>	۵ ک
Α		1									Ī			_		 -	5		-	
В											-	******		<u> </u>			-			
. С								•			····	•••••		- 					-	-
D												38		<u> </u>		-	_	-		!
E													•••••	·						
F													••••••	38	} }					
G								4	1			2	••••••			3	 6			
Н												1	•••••	<u> </u>	·	<u> </u>				
1									1	7			••••••	3				-		
K						<u> </u>							•••••				-	3	 R	
L			1			···					1		•••••							
М												****				†	·	-		
N											·									
Р	38	}								3	8					·				
Q																· 			<u></u>	
R						1							42	•••••			ļ	4	 L	 -
S	2	4()								2				42		42	· <u>†</u> ···		<u> </u>
T						-		Ī			-		<u>i</u>			1	!	<u></u>		
V	.							1	24		-		···· ·	1	•••••	<u> </u>			 	
W															•••••••					·
Χ						-									••••••				ļ	·
Υ															*******				ļ	ļ
Z								-			ļ				•••••		•••••		ļ	<u> </u>
~			41	41	41	41	42					Ť	T	T					42	42
unknown (?)											ļ		-				•••••		72	72
not sequenced	1	1					•••••	1	1	1		1	<u>-</u>					••••••		
sum of seq'	41	41	41	41	41	41	42	41	41	41	41	1 4	12	42	42	42	42	42	42	42
oomcaa³	38	40	41	41	41	41	42	41	24	38	38	3 4	12	38	42	36	47	38	42	42
mcaa'	Р	S	-	-	-	-	-		٧		:	:	:	;	S	G	S	K	<i>f L</i>	72
rel. oomcaa ^s	93%	%86	100%	100%	100%	0001	%00 ₁			· · · · · · · · · · · · · · · · · · ·						•••••••••••••••••••••••••••••••••••••••	·······		%OC	100%
pos occupied ^a	3	2	1	1	1	1	1	1	2	<u>გ</u>	<u>ი</u>		:		<u>=</u> 1	3	۲ ۱	6 2		

124

	_				Fra	me	woı	k II	ı	- ·												
amino acid		6 8	89 (69	2	71	72	7.7	, ,	4	75	9/	, ,	` ;	× ×	 ?	2 :	 x	82	83	84	
А			1	3		41		T		24							2				38	-
В										Ī	•••••	<u> </u>	1		· i ·			-				
. С									•		••••••									-	••••••	+
D			1				•••••								-			1	41		•••••	3
E												••••	·}		·•	1	2	4	•••••	42	•••••	
F .							•••••					••••••				-					•••••••	
G		4	0			•	••••••	-	1	7		1	4	2			1	5			• • • • • • • • • • • • • • • • • • • •	ļ
Н											•••••	••••••	1			1		-				<u> </u>
·							•••••		<u> </u>		41	••••••	 	•								
K						. [•••••		<u> </u>			•••••	<u></u>		- - 							
L						1		42	2		***	•••••		4	1				-			
М									<u> </u>				ļ				-					
N							•••••	•••••	·			••••••		-					1			••••••
Р												••••					2	-	-			•••••
Q						<u>†</u>			<u> </u>						31	·· ! ······	<u></u>	-				
R						Ī		*******	<u> </u>					-	8	·	-					•••••
S	42			1 4	2	-	24	••••••	<u> </u>	-		20	•••••	ļ		20		<u></u>			1	
T			38	3		<u> </u>	18	••••••	<u> </u>		····	21	••••••	<u> </u>		17	·÷·····	 				•••••
V						1		·· ··· ····	1	! -	1		••••••	1	 	1	÷				3	•••••
W								••••••					•••••		1		2					
X													••••••	ļ		ļ			<u> </u>			•••••
Υ								••••••	•••••				••		<u></u>		<u></u>					•••••
Z								•••••	• • • • • • • • • • • • • • • • • • • •			<u>i</u>	******		<u></u>					<u></u>		•••••
-						1				İ	Ť	┪							-	+-	÷	_
unknown (?)		••••••				1			*******					••••••					<u> </u>	<u> </u>		
ot sequenced						İ		•••••	•••••			···						•••••	<u> </u>	<u>.</u>		•
sum of seq ²	42	42	42	42	42	2 4	2	42	42	4	2 4	12	42	42	42	42	42	42	47	1	2	42
oomcaa,	42	40	38	42	4	1 2	4	42	24	4	1 2	21	42	41	31	20	24	41	47	30	2 .	72 77
mcaa'	S	G	T	S	Α	5		L	Α				G			:	E		E	:	2	••••
rel. oomcaas	100%	95%	%06	%00I	%86	70%	9, ,	100%	57%	80%	•••••••	•••••	_	•••••••	•••••	48%		••••••		·······	-	0/088
os occupied ^r	1	:			2		:	<u>-</u>	3		:	•	<u>-</u> 1	<u>6</u> 2	<u>ب</u> 5	<u>4</u>	<u>/</u> S	8 2		•	3	88 5

125

WO 97/08320
Table 5A: Analysis of V lambda subgroup 1

				Π	•					CĖ	R III								
amino acid'	98	87	88	83	90	91	92	93	94			_ &	ں	۵	w	щ	96	- 26	86
А				22	15			1	Ī			16					4	1	
В								:	<u> </u>	Ī					<u> </u>				
С			42												1	<u> </u>	-	<u> </u>	
D						-	39	17			7	'	İ				· · · · · · · ·		
E												1					1	<u></u>	
F		2								1			<u></u>		•				36
G				14	<u> </u>	 !		1	<u></u>			-17	1		<u> </u>	<u> </u>	5	1	:
Н		1	!	<u> </u>				<u> </u>					1			†	<u> </u>		
1											1		<u> </u>		<u> </u>		<u> </u>	1	
К			<u> </u>				<u> </u>	<u> </u>	<u></u>	<u> </u>	1								
L				1			······································	<u> </u>		37		ļ	1					1	
М							<u> </u>	•										1	
N						**********	2	2	·······		9	1				·············			
Р								<u> </u>		1	•		•••••		†	·····	6		
Q				3									•		<u> </u>				
R									5	1	2						2		
S					4			17	35		18		1				1		
Т					22			1	1		1		••••••						
V				1				1		1		2	********				9	34	
W						38	•										7		
X																			
Y	42	39				3		1									3		
Z																			
_											2	4	35	39	38	38	1		
unknown (?)					į							Ī					i	Ī	
not sequenced				1	_ 1	1	1	1	1	1	1	1	3	3	3	3	3	3	4
sum of seq ²	42	42	42	41	41	41	41	41	41	41	41	4.1	39	39	38	38	39	39	36
oomcaa,	42	39	42	22	22	38	39	17	35	37	18	17	35	39	38	38	9	34	36
mcaa'	Υ	Υ	С	Α	T	W	D	D	S	L	S	G	-	-	-	-	٧	٧	F
rel. oomcaas	100%	93%	100%	54%	54%	93%	95%	41%	85%	%06	44%	41%	%06	100%	100%	100%	23%	87%	100%
pos occupied [®]	1		1	:	3	2		8	•	5		6	5		1	· -	10	6	1

Table 5A: Analysis of V lambda subgroup 1

					Fran	new	ork l	V				_	1
	amino acid'	66	100	101	102	103	104	105	106	⋖	107	108	sum
	А								T	Ī			285
İ	В								<u> </u>				
	С		-		<u> </u>			1		<u> </u>	<u> </u>		84
	D	1								·		-	224
	E		1										81
.	F				}								87
	· G	36	31	36						<u> </u>	26		559
	Н									<u></u>			25
	1									<u> </u>			188
	K					30							141
	L						25			34			344
	М												5
	N					1							176
	Р											1	296
	Q					3				1		18	251
	R					1					2		156
	5		1								2		720
	T		3		36	1		36					359
	V						11		36	1			282
	W		•••••								1		92
	Χ										<u></u>		
	Y										<u></u>		202
	Z												16
-	-												524
-	unknown (?)	·				<u>-</u>							
	not sequenced		-	=							10	22	141
	<u> </u>	36	36	36	36	36	36	36	36	36	31	19	
	oomcaa,			36	36	30	25	36	36	34	26	18	
	mcaa'	G	G	G	Ţ	K	L	T	٧	L	G	O	
	rel. oomcaa ^s	100%	%98	100%	100%	83%	%69	100%	100%	94%	84%	95%	
	pos occupied ^a	1	4	1	1	5	2	1	1	3	4		

127

Table 5B: Analysis of V lambda subgroup 2

											Fı	rame	wor	k I					
amino acid'	-	- ر	٦ ٣) ·<	<u>ب</u> ۱	· (c) r	, 0		n (2 :	- :	2 C	2 5	ָּרְ הָ	. a	5 [<u> </u>	<u>δ</u> 6
Α			3	5				3	30			6	-	1	1				
В															<u> </u>				
· C		<u> </u>											Ī		İ				-
D													The state of the s		-		1		
E															!				
F															-				
G	1												4	2	-	4	2	1	
Н		2	<u>.</u>										•					1	
1	<u> </u>												•						28
K			<u></u>	<u> </u>									<u> </u>		<u> </u>	<u> </u>	- 		
L		<u>.</u>	<u>.</u>	4()										1 3	} }	-		1
M													1		· †		· · · · · ·	<u> </u>	-
N		ļ	<u>.</u>								Ī		1		<u> </u>		İ		***************************************
Р		ļ	į				42	2 (6				1		40)			
Q	22	ļ	4			41								-	************		42	2	<u> </u>
R	<u> </u>	<u> </u>		ļ		<u>.</u>		(5	1					<u> </u>			<u> </u>	1
S	 	41		<u> </u>	<u></u>	<u> </u>	<u> </u>		4()		42		42	-			43	
T		<u> </u>	<u> </u>		42	<u></u>				ı			Ī		<u> </u>				<u> </u>
V		1	2	<u>.</u>							36	5	Ī						14
W	ļ		<u> </u>																
X			ļ													•••••	<u> </u>		
Y								<u></u>	<u>.</u>								••••••••••••••••••••••••••••••••••••••		
Z	16										<u> </u>								
-										42									
unknown (?)		····		•••••		1					<u>.</u>								
not sequenced										-			:						
	40	42	42	40	42	42	42	42	42	42	42	42	43	43	43	43	43	43	43
oomcaa,	22	41	35	40	42	41	42	30	40	42	36	42	42	42	40	42	42	43	28
mcaa*	Q	S	Α	L	Ţ	Q	Р	Α	S	:	٧	S	:	:		G	Q	•••••	. 1
rel. oomcaa ^s	55%	%86	83%	100%	100%	98%	100%	71%	95%	100%	%98	100%	%86	%86	93%	%86	980%	100%	965%
pos occupied ⁶		2	•	1	1	1	1	:			:	:	2	2	2	2	<u>ი</u> 2		

120

Table 5B: Analysis of V lambda subgroup 2

					Τ							DRI						-	T
amino acid'	20	21	22	23	24	25	26	27	۵	ш			30	31	⋖	32	33	34	35
А			T		-		1					T				1	;	1	
В				<u> </u>	<u> </u>	<u> </u>		İ		·			·	 			<u> </u>		
. C				42		1			1		<u> </u>	-	·	1	<u> </u>	·	<u>.</u>	-	†
D				· · · · · · · · · · · · · · · · · · ·		1				39		1	4	· <u> </u>	5	ļ	<u> </u>	<u> </u>	<u> </u>
Е												<u> </u>			1	······		<u> </u>	
F .		1				Ī					 		1		:	4		<u> </u>	
G						43		1				39	26		·······				
Н								1						······	1	1		i	
1	.	41			1					•	6		<u> </u>				•••••••		
· K	.	<u></u>	<u>.</u>	<u> </u>									<u></u>		4		••••••		
L	ļ	1	<u> </u>	<u>.</u>												4			
M																			
N		<u></u>						1	3	4	••••••	1	4	3	28				
Р		<u>.</u>						1			•••••								
Q											*********								
R		<u>.</u>							1		******		2		•••••				
S		<u> </u>	42		3		3	35	38		••••		5	1	2	4	1	42	
Т	43	<u> </u>	<u> </u>		36		39	3		<u> </u>	••••	1		•••••		-	******		
V										Ī	37			<u>-</u>		Ī	41		
W		ļ												Ī		·····			43
X																			
Υ								1				1		37		29			
Z															,				
_															1	-			
unknown (?)															1				
not sequenced			1	1													1	1	
	43																	42	43
oomcaa,	43	41	42	42	36	43	39	35	38	39	37	39	26	37	28	29	41	42	43
mcaa'	T	:	S	С	Ţ	G	T	S	S		٧	G	:		N	······································	٧	S	W
rel. oomcaas	100%	95%	100%	100%	84%	100%	91%	81%	%88	91%	%98	91%	%09	86%	65%	67%	%86	%00	%00
pos occupied ⁶	1	3	1	1	1	1	:		4	•	2		7	5	7	6	2		1

Table 5B: Analysis of V lambda subgroup 2

						Fra	mev	vork	II						T				
amino acid'	36	3,	38	39	6	41	42	43	5 2	t u	· ·	2 т) A	5 6	. G		52	53	
Α						1 4		===	- -					T					T
В													••••••		<u>i</u>			<u> </u>	
С						-		- 	···						··•			·	
D					ı	2		1					 		20))	1 2) 1	
E										-					20		<u>-</u>	2	
F .	1	2											···•		7	······	- i		-
G						36									··· [2 2	2	1	-
Н			2	34	l .													1	
		<u>.</u>					1					1	9 4:	3			1	<u> </u>	-
K							40)		4	••••				·- 	<u></u>		21	
<u>L</u>	<u></u>		1	1							3	8	6		·· ·	<u> </u>			
M	_	<u></u>	<u> </u>									2	6		<u> </u>	<u> </u>	1		
N	.	ļ	<u>.</u>	2											1	<u> </u>	·	12	
Р	ļ	ļ	<u> </u>	<u>.</u>	41				4:	3					-			••••	
Q]	41	39	<u></u>	<u></u>		********				2					· · · · · · · · · · · · · · · · · · ·			
R	 	1	<u></u>		<u>.</u>	<u> </u>	1	<u> </u>								···········	2		4
S]	<u></u>	<u> </u>	<u> </u>	1		••••••							2			21	3	
T		<u> </u>	<u> </u>	<u></u>	ļ		1						Ī		•		7		
<u>V</u>		ļ	<u> </u>			1		3				1 2				39			
W	ļ		<u> </u>																
X																			*****
Υ	41			5										34				2	*****
Z																			•••••
		••••••••						••••••											
unknown (?)		1	1							<u> </u>	<u></u>								******
ot sequenced																			
	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa¹	41	41	39	34	41	36	40	40	43	41	38	26	43	34	20	39	21	21	43
mcaa'	Υ					G					:	:	1	:			•••••		R
rel. oomcaas	95%	92%	91%	79%	95%	84%	93%	93%	100%	95%	98%	9009	100%	%62	47%	31%	49%	49%	100%
os occupied ^e	2	2	3		:	4					:	: :		·····÷		:	8	8	

Table 5B: Analysis of V lambda subgroup 2

	CI	DR II						Τ											
amino acid'	55	56	٧	8	့ပ	۵	ш	57	58	59	9	61	62	63	64	65	99	⋖	~
Α					T		T						T	T	T :	2	Ī		Ī
В											<u> </u>		-				Ť	·	
· C								<u> </u>		<u> </u>	<u>†</u>	·	-		-	1	- 	·	 -
D						<u> </u>					17	,	<u> </u>		-			<u> </u>	-
E								<u> </u>			<u> </u>		<u> </u>		•	- 			†
F								•			·		42		<u> </u>		†	†	
G								43	1		-				41			·	
Н											2								
<u> </u>	.	<u>.</u>	<u>.</u>						3		1		<u> </u>						
K	ļ	<u> </u>	<u> </u>								<u> </u>		1		<u> </u>		42		
L		<u>.</u>	<u> </u>								1		1				<u> </u>	 	
М											<u></u>					<u> </u>	<u> </u>		
N											19	<u> </u>					:		
Р	43	ļ								15	<u></u>	ļ	†						
Q		<u></u>	<u></u>																
R												43					1		•••••
<u>S</u>		43								28	2	**********		43		42			••••
Ţ														••••••	<u> </u>				•••••
V									39		•••••			••••					•••••
W														********					•••••
Χ																			
Υ							••••				2			•					•••••
Z																			•••••
_			43	43	43	43	43											43	43
unknown (?)													•••••		***************************************		•••••		••••••
ot sequenced																	•••••	*****	
sum of seq ²	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa,	43	43	43	43	43	43	43	43	39	28	19	43	42	43	41	42	42	43	 43
mcaa'	Р		- [-	-	-	-	G	٧	S	•	R	F		;	:	K		
rel. oomcaa'	100%	100%	100%	100%	100%	100%	100%	100%	91%	35%	44%	%00 ₁	%86	00001		%86	%86	100%	%00l
oos occupied [*]	1	1	1	:									2		<u>. 6</u> 2	<u>ர</u> 2	ი 2	1	<u>-</u>

131

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

·				Fr	ame	wor	k III							_					
amino acid'	67	89	69	70	7.1	72	73	74	75	9/	77	78	79	80	81	82	83	84	85
А		3		1	43									36				43	
В	1	<u> </u>																	
. С											-					<u> </u>	<u> </u>		
D		1	2								Ī				3	42		<u> </u>	39
E		<u></u>									1	<u> </u>			38		43	:	
F .						<u> </u>					<u> </u>	<u></u>	:		•		<u> </u>		
G		39									42				1				
Н															 !				2
1									35				<u>.</u>						
К			1					-											
L	1						43					43							
M		<u></u>																	
N			38												1	1			1
Р													•	2					
Q													41						
R								• · · · · · · · · · · · · · · · · · · ·					. 2			••••••			
S	42			1		43	*******			42			•						
T			1	41				43		1				2		·····	·····		
V									8				•••••	3		····· <u></u>			
W												······							******
X												1							
Υ														•			•••••		
Z																			
-												1							
unknown (?)			1		<u> </u>				·										1
not sequenced	1																		
sum of seq'	42	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa,	42	39	38	41	43	43	43	43	35	42	42	43	41	36	38	42	43	43	39
mcaa'	S	G	N	Ţ	Α	S	L	Ţ	1	S	G	L	Q	Α	Ε	D	Ε	Α	D
rel. oomcaas	100%	91%	88%	95%	100%	100%	100%	100%	81%	98%	%86	100%	95%	84%	98%	%86	%00	%00	91%
pos occupied ⁶		3	····· ·		1	1		:	2	:	:	1	:	4	4	2	1	1	3

132

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

	_			Γ						CD	R II							T	
amino acid'	98	87	88	89	96	91	92	93	94	95	⋖	8	ပ	٥	ш	ட	96	97	98
Α				☶		-	-	Ī			<u> </u>	Ī	Ţ-		_		; 	1	-
В						<u> </u>					<u> </u>		·					<u> </u>	<u> </u>
· C			43	11				•		<u> </u>			· • • • • • • • • • • • • • • • • • • •		Ť	- 	·		
D						<u> </u>		3	1	2			<u>†</u>				1	<u> </u>	
Е						Ī	1	1	İ	 			†	†	 				
F .		3	3			3		<u> </u>	ļ	1	}	1					5		42
G				<u>}</u>		•	1	21	3	4	·						1		
Н						1	·!·····				ļ	•	<u></u>		·	ļ		i	
						<u> </u>	1	1	•••••	1	2		<u> </u>		<u> </u>	·····	1	7	
К			<u> </u>			<u> </u>	 	<u></u>	•••••	3	!				ļ	ļ	<u> </u>	.	
L			<u> </u>	Ī			<u></u>		•••••			1	1	ļ	<u> </u>		6	5	·····
М		<u> </u>		†······			<u> </u>		•••••			<u> </u>	<u></u> .	ļ !		ļ	1		
N									5	7	5				<u> </u>	ļ	1		•••••
Р	ļ				***********		••••••	1	**********			4				<u></u>	'		••••••
Q] [!							2					ļ			•
R					•••••		2		3					••••••			5		
S		1	<u> </u>	30	41	••••		12	•••••••••••••••••••••••••••••••••••••••	***********				••••••			1		
Т			<u> </u>		*******			4	•••••••••••••••••••••••••••••••••••••••	•••••••								<u>.</u>	
V							1		······	<u>.</u>				•••••			11	28	
w																	5		
X							•••••										<u> </u>		
Y	43	39				39	••••••		1	6	•••••						4		
Z							••••••			<u>.</u>									
-										1	3	36	42	43	43	43		=	_
unknown (?)									2				72	7.7	73	40			
not sequenced					1						1							1	1
sum of seq ²	43	43	43	43	42	43	43	43	43	43			43	43	43	12	12		42
oomcaa,				30															42 42
mcaa'	Υ			5				G	:	:	T				_	_		•••••••••••	42 F
rel. oomcaa ^s	100%	91%	100%		···· <u>-</u>		•••••	49%	·			14%	%8,	%00 ₁	%00I	%00	26% <		ـ %001
pos occupied ⁶	••••••		·····÷	3	2	3	7	7	8	11	6	5	2			1	····· ·	9 5	<u>-</u> 1

Table 5B: Analysis of V lambda subgroup 2

		_				Fra	me	w	ork	IV						7
	amino acid	, 6	88	3	10	103	201	20.	104	0.01	60.	90 •	∢ .		108	∟i Sum
	Α			1				_					Ī	_		280
	В			<u>-</u>				••••				_				- 200
	С			<u>-</u>									-			99
	D					 		••••	•••••		<u> </u>	- -	<u> </u>		•••••	188
	E								•••••							107
	F					•			•••••							113
	G	4	2 3	3	42				••••••	-			1	9	••••••	567
	Н					•••••									******	48
	i					******			******		1			- -		184
	К	_					3	6	••••••						******	189
	L							Ī	28	3		4	0	1		264
	M					•••••			*****					- -		29
	N							1								146
-	Р															238
	Q	ļ	ļ	<u>.</u>			1	ı İ							14	250
	R	ļ					2	2	******					4		121
	S	 	ļ					<u>.</u>		1				2		831
	T	ļ	7	<u> </u>		41		<u>.</u>	•••••	40						398
	<u>V</u>	ļ	<u>.</u>	<u> </u>	<u>ļ</u>			<u>.</u>	14		42	1				327
	W	ļ	ļ	<u></u>				<u> </u>								48
	X		ļ	<u> </u>			••••••	<u>.</u>		•••••						
	Υ		ļ	ļ	ļ		1		,							285
	Z			<u> </u>	<u> </u>	_		_				<u> </u>				16
-	•••••••••••••••••••••••••••••••••••••••		: 		ļ		•••••	<u></u>								555
$\ \cdot\ $	unknown (?)				<u>.</u>											8
L	not sequenced	==		_	<u> </u>	2						2				80
	sum of seq ²											41			4	
	oomcaa³	:			•	•	:	2	8	40	42	40	19	1	4	
	mcaa⁴	G	G		÷		K	J		Ţ	٧	L	G	O		
	rel. oomcaas	%00 I	79%	100%	è	8	88%	Š	0/- /0	95%	%00I	%	%	%000	2	
	المد محمد عنامطو		•••••••		÷	····•	******			······		%86	76%	<u> </u>	5	
ı	pos occupied ^a	1	4	1	<u>:</u>	1	5		2	3	1	2	3	•••••	1	

134

Table 5C: Analysis of V lambda subgroup 3

				_							Fr	ame	worl	(I					
amino acid'		2	<u>က</u>	4	2	9	7	∞	0	, <u>c</u>	: =	: 2	<u>.</u>	5 4	, r	. A	17	. 8	0
A				<u>.</u>	1]	2	7				2	0	1		T	2
В	_			<u>.</u>	<u>.</u>										-				
. C				<u>.</u>	<u> </u>													T	<u> </u>
D		<u>.</u>	5		<u> </u>		10)									Ī	1	
E		<u>.</u>	20)										1			1	<u> </u>	
F .	1		<u> </u>	<u>.</u>	ļ	<u> </u>							1			1		1	
G			1	<u></u>	ļ											3	7	-	-
Н		<u>.</u>		<u></u>	<u>.</u>	<u> </u>		<u> </u>										<u> </u>	
		<u></u>	<u>.</u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>					Ī				-	<u> </u>	<u> </u>
K	<u> </u>	<u> </u>	<u></u>			<u> </u>	<u></u>	<u> </u>					-				2	· · · · · · · · · · · · · · · · · · ·	
L		<u></u>	<u> </u>	37	<u> </u>	<u> </u>		<u> </u>			4	1] 1	1	()		<u> </u>	
M	 		<u>.</u>	<u> </u>	<u></u>	<u> </u>			<u> </u>							<u> </u>	-		
N	 				ļ													-	
Р	<u> </u>	ļ					26	35	1						27	,	1	;	1
Q	4	ļ	4			38											36	••••••••••••••••••••••••••••••••••••••	
R			ļ						<u></u>										·
<u>S</u>	13	14			1		1		28	<u> </u>		37		18					
Ţ	 				36		••••	1		<u>.</u>	<u> </u>							38	•••••
V			8	1					2		34		36				<u> </u>		10
W																		•••••	
X										***************************************		<u></u>							*******
Υ		23																	•
Z																			
-	20									38			·						
unknown (?)					<u> </u>	·····													
10t sequenced				_															**********
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa,	20	23	20	37	36	38	26	35	28	38	34	37	36	20	27	37	36	38	27
mcaa*	-	Υ	E	L	Ţ				S	-	٧	:	٧	:	Р		Q	•••••••	•••••••••••
rel. oomcaas	53%	61%	53%	97%	95%	100%	%89	92%	74%	100%	%68	97%	95%	53%	71%	97%	95%	%00I	71%
oos occupied"	4	3	5	2	3		:	:	:			•		:	4	<u>-</u>	····		

Table 5C: Analysis of V lambda subgroup 3

*					Т														T
					<u> </u>		-			-		DRI							<u></u>
amino acid'	20	21	22	23	24	25	26	27	۵	ш	28	29	30	31	⋖	32	33	34	35
А			1					5					1	1			21	3	
В		<u> </u>											Ī		-	-		-	-
С				38											<u> </u>			5	
D							30	1		·			10			3		1	<u></u>
E		<u>.</u>					2	2				1	3	6				<u> </u>	
F														1	-	2	<u> </u>		
G		<u>.</u>	<u></u>		9	38		1				23	4						·
Н	Ĭ	<u> </u>	<u></u>				1									2		9	
	<u></u>	38	<u> </u>	<u> </u>							9			1				**********	
K		<u> </u>	<u> </u>					7					2	13		Ī			
L	<u> </u>		<u>.</u>								28								•••••
M	1	<u></u>	<u></u>											1					
N]	<u> </u>	2				4	9	·		1		2			1		2	
Р		ļ	1									3							
Q	 				10						<u></u>			4					
R	25							2		<u></u>	<u></u>	10	1	•••••			1		
<u>S</u>	9		1		19			10					11	2		8		14	
T	3		33					1				1	4						
V																1	15		
W																			38
X																			
Y							1							8		20	1	4	
Z																			
-									38	38					37				
unknown (?)																			
not sequenced	<u> </u>														1	1			
sum of seq'	38	38	38	38	38	38	38	38	38	38	38	38	38	37	37	37	38	38	38
oomcaaı	25	38	33	38	19	38	30	10	38	38	28	23	11	13	37	20	21	14	38
mcaa'	R	1	T	С	S	G	D	S	-	-	L	G	S	Κ	-	Υ	Α	S	W
rel. oomcaa ^s	%99	100%	87%	100%	20%	100%	79%	26%	100%	100%	74%	61%	29%	35%	100%	54%	55%	37%	100%
pos occupied ^a	4	1	5	1	3	1		9	1	1	3	······ ፣	9	9	1		4	7	1

Table 5C: Analysis of V lambda subgroup 3

						Fra	mew	ork	11						Ī				
amino acid'	36	37	38	39	· 6	14	42	43	44	45	46	47	. 48	- 64	55	51	52	53	54
Α								23	1		Ī	Ī			T	1		1	
В								-		<u> </u>		<u> </u>	·	<u> </u>			·		<u> </u>
С								<u> </u>			<u> </u>		†	<u> </u>	·				<u> </u>
D			<u> </u>	<u> </u>	<u> </u>			•	-	-	†	-	<u> </u>	<u> </u>	9	22	2	8	<u> </u>
E E			1	1	<u> </u>			·		•	<u> </u>		<u> </u>		5			3	÷
F	3					<u> </u>		·		†	•	†	<u> </u>	2	2		1	·····	
G						36	-			†	†	<u> </u>	<u> </u>		9	2			
Н				<u> </u>	· • • • • • • • • • • • • • • • • • • •		1					ļ	·	1	3	·}		1	ļ
1				:					 	1	<u> </u>		28	·!	<u> </u>		1		
K				32		 !	<u> </u>	<u> </u>			<u> </u>		<u> </u>	·······	2	6			
L			2	<u> </u>	<u> </u>		ļ		ļ	6	33	1	<u> </u>	·	<u> </u>				
М			······								1	<u></u>	1						
N.						•••••	······			<u> </u>		ļ	<u></u>	<u></u>		1	19	9	
Р					36		1	•	38					ļ					
Q		37	35	1		•••••	36						•	ļ	9			1	
R		1		4		2			••••••						1				38
S		********		1	2	•		14			********						10		
T		*******					••••••									2			
٧		••••••						1	•••••	31	4	37	9						
W														••••••					
Х									••••••				••••••	•••••					
Y	35					•••••	•••••							35					
Z							•••••		••••••										
-																	Ť		=
unknown (?)		**********							•••••••				••••••						
not sequenced					<u>-</u>							•••••••••••••••••••••••••••••••••••••••	*******						
sum of seq'	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa,		:	:	32	:			:		•	•		******	******		22		*******	•••••
mcaa'	Υ	•		•	Р	G				٧	L	٧	1		•••••••••••••••••••••••••••••••••••••••	÷	N	K	•••••••••••••••••••••••••••••••••••••••
rel. oomcaas	92%	92%	92%	34%	95%	35%	95%	61%	100%	82%	37%	92%	,4%	••••••	24%	58%	20%	34%	%00 I
pos occupied [®]		:	7	:	:	:			•		:	:	:	:		8	<u>5</u>	9	

Table 5C: Analysis of V lambda subgroup 3

		_	:DR	II	_				T	_												
amino ac	id'	75	2 4	90	∢ ι	<u>σ</u> (ے ر) r	<u>.</u> [<u>``</u>	 82	- 69	00		5 5	7 9	<u></u>	4		99	∀	
А				1	T		-			Ŧ	-		_		T		-			-		
В	********	-						-				•		-		-					******	<u> </u>
С										-				-		-						
D							<u>†</u>						9)	<u> </u>	- -						<u> </u>
E													27	· [·····		+					•	
F												•••••	•••••		3	 3	i					
G									3	8		•••••	••••••	······				38				
Н													*******		†							••••••
1			<u> </u>							3	7		••••••		<u> </u>	-			_			••••••
K									Ī				••••••		<u> </u>	·		-				
<u> </u>		••••••	<u> </u>		<u> </u>							····		••••••		<u> </u>					<u> </u>	•••••
M			<u>.</u>	<u>.</u>		<u>.</u>									İ		···		İ		_	
N			ļ	<u>.</u>			<u>.</u>							******			- 		2	1	_	•••••
Р		37	1								3	6		••••••	*******		<u> </u>					
Q		••••••	ļ		<u>.</u>	<u>.</u>								•••••••	••••••••••••••••••••••••••••••••••••••				<u> </u>		-	•
R				ļ	<u> </u>	<u>.</u>								38								
S		1	36	<u>.</u>	ļ		<u> </u>	<u> </u>	<u>.</u>			1				38	3	38	3 1	2		
T				<u> </u>	ļ	<u></u>	<u> </u>	<u> </u>	<u>.</u>						••••••	•	<u> </u>		··÷	5		
V]			<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>						••••••	-		<u> </u>			
W			•••••		<u> </u>		<u> </u>	-	<u> </u>									1			-	····
X	-		••••••		<u></u>	ļ												-				
Y							ļ	ļ	ļ		ļ											
Z		-																				
	_			38	38	38	38	38			<u> </u>	<u>.</u>								38	3 3	38
unknown (?)		-									<u> </u>	ļ	1			••••••		<u>!</u>				
not sequence	_!_	4								1			1									
sum of seq ²	3	18	38	38	38	38	38	38	38	37	37	3	7	38	38	38	38	38	38	38	3	18
oomcaa ³	3		36	38	38	38	38					:		38	38	38	38	38	21	38	3	8
mcaa*	1	2		-	-	-	-	-	G	1	Р	·····		R	F	S	G	S	N		-	
rel. oomcaas	0.70	0/2/2	95%	100%	100%	100%	100%	100%	100%	100%	92%	7.30%		% 000 1	100%	%00	%00	%00 I	55%	%001	7000	0 0 0
pos occupied	5 <u> </u>	2							1					·····		····÷	••••••	1				1

Table 5C: Analysis of V lambda subgroup 3

				Fr	ame	wor	k III												
amino acid'	67	89	69	20	71	72	73	74	75	9/	77	78	79	8	81	82	83	84	85
А				1	36	1						11	1	34				38	
В		<u> </u>	<u> </u>															<u> </u>	
. с											1			<u> </u>	<u> </u>		<u></u>		
D											1	-	<u> </u>	<u> </u>		38			37
E				1				Ī					10		14				1
F.										·			<u> </u>						
G		37			!) 		-		28				10				
H.			1																
1						1		1	37	1	1	<u> </u>			1		••••		
K			1	<u> </u>						<u> </u>			•		••••••				
L						•	38								2				
M						*******					<u> </u>		······		10	·····i			
N			28			**********		<u> </u>		1									
Р		; :				••••	••••••		ļ										
Ω		1				*******	•••••					••••	25		••••				
R						••••••	••••••		······	1	10		1	•••••••••••••••••••••••••••••••••••••••					
S	37		2			11	*******			23				1	******				
T	1		6	37	<u>-</u>	25	•••••••	36		12		13		2					
V					2		********		1			··· <u>-</u>	•••••••••••••••••••••••••••••••••••••••	1	•••••••••••••••••••••••••••••••••••••••	-			
W					·······	•••••	••••••					••••••		·····		 	<u>-</u>		
X					•	********	•••••					······							
Y						*******	••••	••••••						•	•			•	
Z							********	•											
_														Ť				Ť	_
unknown (?)							***************************************												
not sequenced									*********			•••••		1					
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa ³																38			
mcaa'	:	:	•	T	:	T	L	- 3	:	:	G		:	Α		D	······	Α	
rel. oomcaa ^s	97%	97%	74%	92%	95%	%99	100%		••••••	••••••	74%	••••••		••••••			·····i		97%
pos occupied ⁶	:	:	:	:	2	•			:	:	:	3		;	6	1	1	1	<u>ი</u> 2

WO 97/08320

PCT/EP96/03647

Table 5C: Analysis of V lambda subgroup 3

	_																		_		
	_										CDI	_		•							
amino acid	' 6	9 (8	8 6	8 6	2	- G	76	93	94	92	٧	8	ر	ے ر	، د	ו ת	<u>.</u>	96	97	86
Α					1	13	3	2			1	2		T	T		-		4		
В								-					·	<u> </u>	-		-				
· C				38		<u> </u>		·						+	-						
D						<u> </u>	3	32	1	1		6		-	+						
E				1	1			İ			-	ŭ		· 2		-	- -		2		<u> </u>
F .			2						2					<u> </u>						•••••	35
G								••••		3	14	ે	· 	<u> </u>		1					·
Н													•••••			-			3	1	
ı			-	<u> </u>				i						ļ						A	
K		········			Ī							1	•••••	<u> </u>	-	<u></u>	-			4	
L			<u>-</u>		1	<u> </u>			1		1	•••••		1	ļ				4	2	
М								<u> </u>		1			.			·			1		•••••••••••••••••••••••••••••••••••••••
N				10)	-		2		:		10	1		 	-		-		1	
Р						-				1				3	ļ	·			1		
Q				25	5						1	1				<u> </u>		-			
R						1()					•••••	••••••	*******		·	-	-			
S	<u> </u>			1	14	1		•••••••	3 26	•••••••	••••	•••••	•	*******		<u></u>		 			
T	<u> </u>					1] 3			7			********		·		<u> </u>			
V					11	-		<u> </u>		<u> </u>	<u> </u>		•••••	••••••		<u> </u>		1	Ω	<u>.</u> 2Ω	
W						23		1			- -					<u> </u>		÷	1	20	
X	.							-	1	 						<u></u>			' 		
Y	38	36					1		1			1	3	1	*******			 	3		
Z		<u> </u>	<u> </u>	<u> </u>											••••••		ļ				
_											1	0	15	31	36	37	36		 -	1	=
unknown (?)		<u></u>									-				•••••			ļ			
not sequenced	L_						1	1	1	1		2	1	1	1	1	1	<u></u>	- 	1	3
sum of seq'	38	38	38	38	38	38	37	37									37	37	7 3	7	25
oomcaa,	38	36	38	25	14	23	32	28	26	14	1(D. 1	5	31	36	37	36	18		Ω	25
mcaa'	Υ	Υ	С	Q	S	W	D	S	S		N	:	-	-	-	-	_		-		
rel. oomcaas	%00 I	<u>%</u>	<u></u> %(Q	o,	0,	,o	٥	٥							%		•••••			
		95%	100%		37%	610	698	76%	700/	38%	28%	70,7	5	84%	92%	100%	97%	19%	7,60%	2 8	% 000
pos occupied ⁶	1	2	1	5	3	5	4	7	8	6	:)	•	5	2	1	2			`'	1
						-				***********	********			·····i			<u>-</u> 1				

Table 5C: Analysis of V lambda subgroup 3

		_			Fran	new	ork l	٧]
	amino acid'	66	100	101	102	.103	104	105	106	۷	107	108	- sum
	Α							T	Ī				265
	В		-	<u> </u>		<u> </u>		<u> </u>		<u> </u>			
	С			<u> </u>		<u> </u>		 	·	<u> </u>	1	<u> </u>	82
	D		<u> </u>					<u> </u>	<u> </u>	<u> </u>			225
	E					2	<u> </u>						145
	F						<u></u>		-	1			90
	G	35	31	35		•				<u> </u>	24		461
	Н									•			32
	İ		<u></u>					<u> </u>		:			160
	K					30		ļ	<u> </u>				110
	L				• • • • • • • • • • • • • • • • • • • •		28	<u> </u>		33			233
	М				••••••		•						17
	N				••••••			<u></u>	<u> </u>				126
	Р								•	1			249
	Q											7	275
	R					2							154
	S										2		501
	T		4		35			35					347
	V						7		35		<u> </u>		308
	W			į									62
	Х												
	Υ												211
	Z												
													603
	unknown (?)					<u> </u>							1
Į	not sequenced	3	3	3	3	4	3	3	3	4	11	28	. 89
	sum of seq ²	35	35	35	35	34	35	35	35	34	27	7	
	oomcaa ₃	35	31	35	35	30	28	35	35	33	24	7	
	mcaa'	G	G	G	T	K	L	Ţ	٧	L	G	Q	
	rel. oomcaa'	100%	%68	100%	100%	%88	80%	100%	100%	92%	%68	100%	
	bos occnbieq _e	1	2	1	1	3	2	1	1	2	3	1	

141

Table 6A: Analysis of V heavy chain subgroup 1A

														Fı	rame	woi	rk I			
amino acid'	-	2	က	4	2	9	7	8	6	0	=	12	13	14	15	16	17	18	19	20
А					1	14			60	_						24	1		<u> </u>	
В																	<u> </u>			
С										<u> </u>	<u> </u>	<u> </u>								
D										<u></u>	<u> </u>	<u> </u>		! !			<u> </u>			
E	1				2	1		2		64		<u> </u>				<u> </u>	<u> </u>		<u> </u>	
F																				
G								58	1		•			!	64	·····			•	
Н			2							••••••							}	\$ - -	······	
ı		2													<u> </u>				<u></u>	
K		2										57	64						60	
L			2	59							3		******							
М		1											•••••	••••••						•••••
· N												6		•••••						
Р													•••••	63			•			
Q	53		56		2	45														
R												1				•			3	
S ·							60		3					1		40	63			
T																			1	
V	2	55		1	55						61							64		64
W														••••••						•••
X																				
Y																				
Z	3															_				
_																				
unknown (?)				٠																
not sequenced	11	10	10	10	10	10	10	10	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq'	59	60	60	60	60	60	60	60	64	64	64	64	64	64	64	64	64	64	64	64
oomcaa,	53	55	56	59	55	45	60	58	60	64	61	57	64	63	64	40	63	64	60	64
mcaa*		٧											Κ	Р	G		·÷	• • • • • • • • • •	K	*******
rel. oomcaa ^s	%06	92%	93%	%86	92%	75%	100%	97%	94%	100%	95%	%66	100%	%86	100%	33%	%86	%001	34%	%001
pos occupied ⁶		:	:	:	:			:	:		•••••	•••••		******	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••	•••••	•••••	*******

Table 6A: Analysis of V heavy chain subgroup 1A

														CI	ORI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	٧	В	32	33	34	35	36	37	38
Α				62				1							41					
В		<u> </u>					·										<u> </u>			
· c		63																		
D							1										<u> </u>			
E																				
F									69					3		3				
G				1		69	41		1						23	}				
Н							••••••			1		••••	•••••	1			1			
1							•••••	1								61	1		1	
K			63				•••••		·	1	1			••••••						
L							••••						••••••		1	2				
М															•••	4				
N							•••••			2	5		•••••	•	•••••		4			
Р													******	••••	1	•				
Q													•••••	•						
R		1	1		-					1	1					••••				70
S	63				68		1			40	60			2		••••	60			
T	1			2				68		25	3	•••••••			3		4			
V														********	1				69	
W													******					70		
X																				
Υ							27							64						
Z																				
_												70	70							
unknown (?)						·														
not sequenced	6	6	6	5	2	1														
sum of seq ²	64	64	64	65	68	69	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa	63	63	63	62	68	69	41	68	69	40	60	70	70	64	41	61	60	70	69	70
mcaa*	S	С	K	Α	S	G	G	T	F	S	S	-	-	Υ	Α	ı	S	W	٧	R
rel. oomcaas	%86	%86	%86	95%	100%	100%	29%	97%	%66	57%	96%	100%	100%	91%	29%	87%	%98	100%	%66	100%
pos occupied ⁶	2	2				:		:	:	:	:	:	:	•						

Table 6A: Analysis of V heavy chain subgroup 1A

				Fra	ame	wor	k II			-				_						
amino acid'	39	40	4	42	43	44	45	46	47	48	49	.50	51	52	∢	8	ပ	53	54	55
Α		70									1				5					
В			<u> </u>							<u> </u>						<u> </u>	<u> </u>	<u> </u>		
· C		<u> </u>																<u></u>		
D								1									<u></u>	<u> </u>		
E								69												
F											•		2					3	39	
G			1	68		69	•		1	•	69	39			1	} - -			•••••	68
Н			1	•					•	•						}				
						••••							65	38				34		
К													••••	•						
L				1			68			1		1	•••••					2	4	
М							******			67				2				4		
N							••••							4				3	22	
Р			68				1	•	•					•	44					
Q	69				69								••••		•	•••••		1	1	1
R	1			1		1					•••••••	4	••••••					1		
S					1				1	1				22					1	1
T													1	2	4			1	3	
V										1			2	2	16			1		
w							1		67			26								
X																				
Υ									1									20		
Z																				
-																70	70			
unknown (?)																				
not sequenced																				
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa,	69	70	68	68	69	69	68	69	67	67	69	39	65	38	44	70	70	34	39	68
mcaa'	Q	Α	Р	G	Q	G	L	Ε	W	М	G	G	ı	١	Р	-	-	ı	F	G
rel. oomcaa ^s	%66	100%	97%	97%	%66	%66	97%	%66	%96	%96	%66	26%	93%	54%	63%	100%	100%	49%	26%	97%
pos occupied ^e		:	:						;	4	:	:	:	:	:	:	:	:	••••••	

144

Table 6A: Analysis of V heavy chain subgroup 1A

		DR	II												-					
amino acid	26	22	58	59	9	61	62	63	64	65	99	67	89	69	70	71	72	73	74	75
Α	1	34			69											43				
В																				
· C																				
D	15		1							2							70			
E									1									33		
F				1				48				3		4						
G	1						3			67										
Н			1																	
l	4												1	44				1		
K	1		2	1			47		1		1							8		
L	1	1		·				22				2	•••••	1		3				
М														21						
N	9		59			•	18													
Р	1	7		•			*********													
Q	1	1				70	****		64											
R	2					•	2		1		69					i		1		
S '		1	2		1										5				70	
Т	34	26	4						3				66	*******	65	24		27		67
٧										1		65	3							3
W								••••••						*******						
Х													••••	•	*******					
Υ			1	68																
Z																		:		
- .																				
unknown (?)																				
not sequenced																İ				
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa ³							***********	•••••••••••••••••••••••••••••••••••••••	••••••••	·····	•••••••••••••••••••••••••••••••••••••••					43	·÷			
mcaa*		*******			Α	********	********	•		*******		٧	••••••	1	T		·····	Ε		
rel. oomcaa ^s	%6:	%6:	14%	0/2/0	%6 ₁	%00	2%	%6.	1%	%9	%6	3%	4%	3%	3%	61%	100%	47%	%001	%96
pos occupied ⁶																	:	₹		<u>5</u>

145

PCT/EP96/03647

Table 6A: Analysis of V heavy chain subgroup 1A

		·			ram	PMC	rk l	11												
		_	8		_						3	4	r.	9		<u> </u>		0		7
amino acid'	<u> </u>	_	~	<u>~</u>	<u></u>	8	8	<u> </u>	<u> </u>		ω΄	œ	82	98	8	88	<u></u> & .	<u></u>	9	6
Α .			64			1						3			1	70				
В																				
· C																				70
D						2							26	70	.,					
Е						64							44							
F																	1	1	2	
G									1			_	·							
Н				1				1												
l		1			٠		3	1	1								2			
K											3									
L					3		63			70							2			
М					67										1		1			
N	4							1	16											
Р																				
Q				1		3														
R	3							23	1		62									
S	62		1					41	49			67			1					
Т	1	69	2					3	2		4				67					•
V			3				4				1						64			
w																				
Х																				
Y				68														69	68	
Z																				
-																				
unknown (?)																				
not sequenced																				
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa,	62	69	64	68	67	64	63	41	49	70	62	67	44	70	67	70	64	69	68	70
mcaa'	S	T	Α	Υ	М	Ε	L	S	S	L	R	S	E	D	Ţ	Α	٧	·Y	Υ	С
rel. oomcaa ^s	Q	Q	Q	Q	Q.	Q	Q	,o	ؠ	%(٥	Q	٥	%(,o	%	. م	٥,	٥	%
ici. uullicad	89%	990	91%	970	696	910	900	590	700	100	890	960	63%	100	960	100%	910	990	970	00
pos occupied ^a	4	2	4	3	2	4	3	6	6	1	4	2	2	1	4	1	5	2	2	1

148

Table 6A: Analysis of V heavy chain subgroup 1A

										CD	R III									
amino acid'	93	94	92	96	97	98	66	100	∢	æ	ပ	٥	w	ட		I	_	_	×	101
Α	66	2	16		1	1	1	4	1	2	2	1	1		1	1	1	2		1
В																		<u></u>		
. С					1	1	16	2		1	1	7	2	1						
D			16	5	3		3	5	4	3	4			1	1	14				59
E			9				2			1			1			1				
F .					1	3		2		3	1	2		2	1	••••••			28	2
G		2	14	13	20	10	14	5	20	15	16	3	3	4	15	1	1	7		
Н						•••••	•	•		1	1	1	•••••	1		······				
ı				2	5	2	2		2	2	1	1	••••	•••••	1					
K		5			2	1			1				•••••		•••••				•	
L		1	4	4	2	5	2	1	1		4	2		1			1		1	
М			1		2		1		1			1	1	••••			•••••		10	
N				2	2	1	2	1	2	2	2	2			1	1	4			
P				20	3		1	3						1	4	1		1		1
Q				1			1		1	1	1				•••••					
R		55	1	5	7	8	1	4		2		1		16				•••••		
S		1	1	5	5	5	5	21	5	11	8	4	3		2	1		2		1
T	1	3	3	5	4	1	3	4	2	5	2		1		*******	1	1			
V	3		3	2	4	3	3	3	4	2	2	2	1	2	1					
W				1	1	3	1	1			2		3				1	5	1	
Х					*******	******									•••••					
Υ		1		2	3	20	5	4	9	1	2	11	20	10	6	9	10	7	1	
Z															**********					
-				1	2	2	3	6	11	11	14	23	26	26	31	34	46	39	21	1
unknown (?)													1		1	1		2	3	
not sequenced			2	2	2	4	4	4	4	5	5	5	5	5	5	5	5	5	5.	5
sum of seq'	70	70	68	68	68	66	66	66	66	65	65	65	65	65	65	65	65	65	65	65
oomcaa³	66	55	16	20	20	20	16	21	20	15	16	23	26	26	31	34	46	39	28	59
mcaa'	Α	R	Α	Ρ	G	Υ	С	5	G	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	94%	79%	24%	29%	29%	30%	24%	32%	30%	23%	25%	35%	40%	40%	48%	52%	71%	%09	43%	91%
pos occupied ⁶	:			:		:	:		;	:		:			:	••••••		:		

142

Table 6A: Analysis of V heavy chain subgroup 1A

	Γ				Fra	me	wor	k IV					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
Α													670
В		. 	 !				<u> </u>	<u> </u>	 -	<u> </u>	 -		
С			<u> </u>				<u> </u>		<u> </u>		<u> </u>		165
D		1	1					<u></u>	 -		<u> </u>		308
Е	1	1											297
F	2												226
G			58		59	1	1						928
Н				1									14
ı	3			••••••					4				286
К				3		1							325
L	3			1	••••		40	1					386
М	1						3	•••••					189
N				1						******			176
Р	5			••••••						•••••	•	1	238
Q				52						•			494
R				1				••••••					351
S											53	51	972
T						54	11	. 1	51		1		736
V	15		1				1	54		54		1	699
W		59		1									243
Х													
Y	34		1										542
Z													3
_	1												578
unknown (?)													8
not sequenced	5	9	9	10	11	14	14	14	15	16	16	17	406
sum of seq?	65	61	61	60	59	56	56	56	55	54	54	53	
oomcaa,	34	59	58	52	59	54	40	54	51	54	.53	51	
mcaa'	Υ	W	G	Q	G	Ţ	L	٧	T	٧	S	S	
rel. oomcaa ^s	52%	97%	95%	87%	100%	%96	71%	%96	93%	100%	%86	%96	
pos occupied ⁶	:	:	:				5	:		1		3	

148

SUBSTITUTE SHEET (RULE 26)

Table 6B: Analysis of V heavy chain subgroup 1B

					,		_						-	F	ram	ewo	rk I			
amino acid		5	ო	4	Ŋ	9	7	8	တ	01	=	12	13	14	15	16	17	18	19	20
Α									32	2						34				
В									1	•	<u> </u>	·					<u> </u>	<u> </u>	.	
· C														<u> </u>				<u> </u>		
D					<u> </u>				-	<u> </u>	<u> </u>	<u> </u>		 	-			<u> </u>	<u> </u>	<u> </u>
E		1			5	1				35	Ì	<u> </u>			<u> </u>	<u> </u>	 			
F												-					<u></u>	<u> </u>		
G								27	••••••••••••••••••••••••••••••••••••••		•	-			35			<u></u>		
Н			1						·······		+	<u> </u>		1	-					
1										<u></u>				<u> </u>				ļ	 !	1
Κ		3	1	<u> </u>					<u></u>	<u> </u>	<u> </u>	34	33	<u></u>					33	•••••
L			3	26	1					<u> </u>		<u> </u>					••••			
М				1	1					<u></u>		<u></u>								
N												<u> </u>					•••••			
Р									1				••••	33			1			
Q	21		20			26					•••••		••••••							
R	1								•••••			1	2	•••••	*********					
S							27									1	34			******
T									1		•••••		•••••••	1				•••••	2	
V	3	21			20						-35		••••••	••••••		Ī		35		34
W							٠				•	•••••	•••••	•••••					····· ·	*****
X																				
Υ														•••••						
Z															_					
_																				
unknown (?)								<u>_</u>									<u>-</u>			
not sequenced	15	15	15	13	13	13	13	13	6	5	5	5	5	5	5	5	5	5	_5	5
sum of seq²	25	25	25	27	27	27	27	27	34	35	35	35	35	35	35	35	35	35	35	35
oomcaa ³			:	:	:	:		:				•				34	*******	*******		
mcaa*	0		Q	L	:				Α		٧		K				S	·······÷	Κ	•••••••••••••••••••••••••••••••••••••••
rel. oomcaas	84%	84%	80%	%96	74%	%96	100%	100%	94%	100%	100%	92%	94%	34%	%001	97%	37%	100%	94%	97%
pos occupied ^a																2	••••••	•••••		თ 2

SUBSTITUTE SHEET (RULE 26)

Table 6B: Analysis of V heavy chain subgroup 1B

	_														CDF	1	_			T	
amino acid'	2	22	7 2	2 6	7 7	2, 2,	, ,	7000	2 6	67	30	ي ا	∢ (α (3.5	3	34	35	36	37	38
Α				3	0							2				6			<u> </u>		T
В		<u> </u>									Ī							<u> </u>	<u> </u>		
- C		3	5									<u>i</u>					•••••		<u> </u>		<u> </u>
D											····	1				5	******	1	<u> </u>	<u> </u>	1
E				3								1					••••	<u></u>	<u> </u>	<u> </u>	
F								2	3	9					2	2				<u> </u>	-
G					1	4()				1 1	4				1			 	<u> </u>	1
H															3	1		34		-	·
l									1		1					••••	9	••••••	<u> </u>	. 	
K			28	3					1				···•						ļ	<u> </u>	<u>.</u>
L			<u> </u>						1	1	- -	1					5		<u> </u>	2	.
M.									<u> </u>		<u> </u>						3				·
N							1		<u> </u>	- †	1	3						3		<u> </u>	
Р				-					1		<u> </u>					 1					<u> </u>
Q			2								<u> </u>	1				 		1			1
R			2				-	2		<u> </u>	-	-			1					<u></u>	37
S	35				40)		5			2 1	5			2		-		******	<u></u>	
T				3				32	1	34	÷					 					
V				1			1			· †	- †	1				2	<u>i</u> 2			38	
W								<u> </u>	Ī		<u> </u>				<u> </u>	<u> </u>	<u>-</u> i	···	40	•	
Х									 		<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>					
Υ							36				1	 		32	19)		1			
Z								 !	·····		•		<u> </u>								
***************************************											Ī	40) • 40	<u></u>	<u> </u>		Ť	i			=
unknown (?)							•••••				<u> </u>				·····	ļ					
not sequenced	5	5	5	5			**********	********				†				 					
sum of seq'	35	35	35	35	40	40	40	40	40	40	40	40	40	40	40	4(;	40	4N	40	40
						40															
mcaa*	S	С	K	Α	S					T		-	-	:	Υ	·	••••				R
rel. oomcaa'	100%	100%	%08	%98	100%	100%	%06	%08	%86	35%	38%	%001	%00 l	····			.i	<u>i</u>	i		
pos occupied ^a	1	1	4	4	1	1	4	4	2	6	10	1	1	ა 5	11	5		5	1	<u>გ</u>	<u>ნ</u> 4

WO 97/08320 .

Table 6B: Analysis of V heavy chain subgroup 1B

													Γ							
	<u> </u>		_			wor						_	<u>_</u>						**	
amino acid'	ض ا			42	£	44	45	46	47	48	49	-	من	(ئر	▼	<u></u>	<u>ں</u>	2	22	ٽ —
Α	ļ	39	ļ	ļ	ļ	1		<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	ļ		7	ļ	ļ	1	<u> </u>	<u> </u>
В	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>		<u> </u>
· C	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ		<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>			<u> </u>	ļ	<u> </u>	<u> </u>		<u> </u>
D	 	ļ	<u> </u>	<u> </u>	<u> </u>				ļ	<u> </u>		<u></u>		1	ļ	<u></u>	<u></u>	<u> </u>	1	<u> </u>
E]	<u> </u>	ļ	1	<u> </u>			39	ļ	<u></u>		: : : •			<u> </u>	<u></u>	<u> </u>	1	1	<u> </u>
F .	!	<u></u>	ļ	<u></u>	<u></u>		. 2	ļ	<u>.</u>	ļ			1					1		
G	<u></u>	<u></u>	<u> </u>	39	<u>.</u>	28					39	1			1			9	1	3
Н	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>													2		
		<u> </u>	<u> </u>							3			34						•••••••	
K					1								******						1	
L			1				37	•••••					1						••••	
M			<u> </u>	[*******			37		2	4	•••••						
N		<u></u>												35	•••••			20	12	
Р		1	34		•		1		•••••						31					
Q	39		•••••		39	•		1						••••••	•••••	•••••				
R	1					10						4		•••••				3	1	
S			1			1	•••••		•••••					2				•	20	
T			4		•••••		••••							1				<u>.</u>	3	
٧ `						•	•••••							1						
W							•		40		·····	33						<u>-</u>		•
Χ																		i		•••••
Y																		2		
Z										•										····
_						Ť									_	40	40	<u>:</u>		
unknown (?)										<u>i</u>				ù						•••••
not sequenced								-												•••••
sum of seq'	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa ¹				:		28	••••••	• • • • • • • • • • • • • • • • • • • •		••••••	••••••••	•••••••••••	••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••	·····÷	÷	-	••••••	*****
mcaa'		Α				G										-	····	20 N	••••••	
							••••••		••••••	-	·		••••••				.	-		
rel. oomcaas	98%	%86	85%	%86	98%	70%	93%	980%	100%	93%	%86	83%	85%	988%	78%	100%	100%	20%	20%	980%
pos occupied ^e	2	2	4	2	2	4	3	2	1	2	2	4	4	5	4	1	1	9	8	2

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

	_	С	DR											T									
amino acid'	r G	3	23	28	59	3	3 3	<u>-</u>	62	63	64	5 6	ი <u>კ</u>	9 5	۵ ۵	8 6 0	, Q	? ;	=	72	73	74	75
Α		1	2			2	7	2			T		1		1		T		2				1
В														Ī						<u>†</u>	•••••		<u> </u>
С											Ī	İ								-			<u> </u>
D		1								•••••	Ī	İ	4	<u>†</u>					 -	35			
E		2		2				1			<u> </u>		1						1				
F				••••	4	1				39		<u> </u>					3						
G	1	5		6			1			*******	<u></u>	3	4										ļ
Н				1	1						·									1			<u></u> -
l		1	1	1								-		•••	1	1 1	3					••••••	22
· K	1	2	2	8		<u> </u>			36		1	- 	<u> </u>	-			<u> </u>		1			••••••	- 44
L		1	<u>-</u>	•••••				1		1		<u> </u>		- 	+		1		<u>-</u>				
М			Ī					<u> </u>	Ť			·	- !	-	-	2					1		1
N	17	,		18					1		•••••	†	<u> </u>	-	-					4			
Р										<u>-</u>		İ	<u> </u>	<u> </u>	<u> </u>				<u> </u>			3	
Q							3(3			37		1				···}						••••••
R				2					1		2		37	7				34	. 		1		*******
S	1	<u> </u>			2	11			1	Ī	•••••	†	-	<u> </u>				•		-	•÷	37	··
T		3	5	2		1			1	Ť			· † -		39). 	40) 1	· -	3	···÷··	<u> </u>	5
V	1									Ť	******		 -	38	· !·····	 					<u> </u>		
W							<u> </u>				******		3	÷				 -	 -				
Χ													İ	<u> </u>					 	- 		<u>-</u>	
Υ					33	•••••••		1					†	†	·				<u> </u>	-			
Z												••••••						ļ	 !		-		
-												-						<u> </u>	_	÷	÷	Ť	=
unknown (?)								 !				******							<u></u>	<u> </u>	<u>i</u>		
not sequenced										Ī			***************************************							<u> </u>			
sum of seq'	40	4() 4	0 4	10	40	40	4() 4	0 4	40	40	40	40	40	40	40	40	40	40	1 4	n	<u></u>
oomcaa,	17	35	5 1	8 3	33	27	36	36	3	9 :	37	34	37	38	39	23	40	34	75	35	2 7	7	70
mcaa'	N	T	٨	1	Υ	Α	Q	K	F				R			М		_ :	******	T		5	••••••
rel. oomcaas	43%	88%	450%	0.00	83%	%89	%06	%06	980%		93%	85%	93%	95%	%86	58%	100%	85%	38%	35%	· 		55%
os occupied"						:	:										1						

Table 6B: Analysis of V heavy chain subgroup 1B

					Fran	new	ork	Ш												
amino acid'	92	77	78	79	8	81	82	۷	8	U	83	84	85	86	87	88	68	. 6	91	92
Α			3	5					-		T	1		2		4)	T		
В											İ	<u> </u>						- 	-	†
· c				Ī					· · · · · · · · · · · · · · · · · · ·	<u> </u>	İ	· •	<u> </u>						<u> </u>	37
D ·	1					4		-		<u> </u>	İ	· • • • • • • • • • • • • • • • • • • •	19) 4()		<u> </u>	- 	·	
E						35		-	<u> </u>	İ	-	<u> </u>	19				<u> </u>		<u>.</u>	·
F			1								 -	2	•••••••				<u> </u>	-	2	1
G						1		1	2				·			-		†	·	
Н																	·	· .	-	ļ
ı		1										<u> </u>	<u> </u>			-	1	<u>.</u>		
K											1	•					<u> </u>	<u> </u>	<u> </u>	<u> </u>
L					2		39			39		<u> </u>				<u> </u>	2	 	! -	1
М					37	<u> </u>	1				-	<u> </u>	-	-		<u></u>	2	<u> </u>	<u></u>	
N	7							1	2							<u> </u>		<u></u>	 	
Р												1				†			1	
Q		<u>.</u>	<u></u>															•		
R	4	<u></u>	<u>.</u>					2	16		37		••••••					 !		
S	27	<u> </u>	<u>:</u>	1				35	20		١	36	•••••••			 !		1	1	
Т	1	39						1			1				40					
V			4		1					1				••••••			33			
W				•••••			·							••••••	•					
X													•••••		••••••					
Υ				39										•••••		•••••		38	35	
Z																				
-																				
unknown (?)															********				····	
not sequenced																	1	1	1	1
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	39	39	39	39
oomcaa ³	27	39	35	39	37	35	39	35	20	39	37	36	19	40	40	40	33	38	35	37
mcaa'	S	T	Α	Υ	М	Ε	L	S	S	L	R	S	D	D	T	Α	٧	·······	Υ	*****
rel. oomcaa ^s	%89	%86	98%	%86	93%	98%	98%	88%	50%	%86	93%	%06	48%	100%	100%	0001	85%	92%	%06	95%
pos occupied	5	2		2								4					•••••		:	3

Table 6B: Analysis of V heavy chain subgroup 1B

	Γ			-					_		DR	 	·								
amino acid'	93	94	, b	9	97	86	6	3 2	3 <				_	ш	u		בי	 :	. –	· ×	. 5
Α	3	7	1	6	T	1	1	T	2	3	1	3		1				Ŧ		5	Ť
В		<u> </u>	<u> </u>	<u> </u>								<u></u> -			<u> </u>	<u> </u>			<u> </u>	<u> </u>	
. C			1	<u> </u>	<u>-</u>		3		<u> </u>	<u> </u>	2	1			<u> </u>	-				<u> </u>	-
D				7		5 :	••••••••		···÷·	<u>+</u>	÷	<u>-</u> -	1	••••••	- 2	2 :	2	1	2	-	27
Ε				2		1		1	1	1		·····	····		·	·	1		-	<u> </u>	1-
F .					1	1 ;	3			2	1	1	1	1			1			2 1	5
G			1	7	7	5 !	5 9	9	4	7	1	3		2	2	2	 		•••••••	3	1
Н		<u>.</u>		1			2	2			1	1					<u> </u>				
			1]	1	3 1	1	1	1	1	1	1						<u> </u>	1	
К			1			1				1	1		1		1		-	1	- 	<u> </u>	
L		<u> </u>	2	2 4	1 4	4	3	}			1	2	1	1	2	-	1		†	2	
M	ļ	<u> </u>		2	2	1	1			<u> </u>	Ī					1	<u> </u>	Ť	<u> </u>	4	
N	<u> </u>	<u> </u>	<u>.</u>	<u> </u>	1						1	1	1		******	3		1	<u> </u>	<u> </u>	1
Р	ļ	ļ	<u>.</u>	6	3 4					I	1		3	2				1	<u> </u>	1	
Q		ļ	<u>.</u>	<u>.</u>	1								1	2	1				•		
R	1	31	<u>.</u>	5	1	1	3						1		1			<u> </u>	1		
S	<u> </u>	1	3	3	1	4	3	6	3	3 :	2	2	1		1			<u> </u>	<u> </u>	<u> </u>	
Ţ		2	1	1	2	2	1	5	1		1	1		1			1		1		
V	1		7	1	1		1	3	1	2	2		1		•••••	1	2	1	 	<u> </u>	1
W			1	<u> </u>	1		2	2		1	1	1				********	1		4		
X			<u></u>	<u> </u>	<u></u>																
Υ			<u></u>	5	5	4	2	3		4	;	3	3	2	1	2	. 2	6	2		
Z					<u> </u>											_					
-			<u> </u>	1	1	4	6	8	10	11	14	1 2	0 2	23	25	25	25	23	18	11	6
unknown (?)		·	<u> </u>				•••••		<u></u>	<u> </u>	<u>.</u>									3	
not sequenced	1	1	3	3	3	3	3	3	4	4		1	4	4	4	4	4	4	4	4	4
sum of seq ²	39	39	37	37	37	37	37	37	36	36	36	3	6 3	6	36	36	36	36	36	36	36
oomcaa,	37	31	7	7	5	5	9	8	10	11	14	2	0 2	3	25	25	25	23	18	15	27
mcaa'	Α	R	D	G	D	G	G	-	-	-	<u> </u>	-		-	-	- [-	-	-	F	D
rel. oomcaas	95%	79%	19%	19%	14%	14%	24%	22%	28%	31%	39%	560%	2000	04-00	%69	%69	%69	64%	20%		75%
pos occupied ⁶	3	8	10	12	18	13	13	12	12	17 15.	14	1	3 1	0	9	8	7	8	8	5	5

Table 6B: Analysis of V heavy chain subgroup 1B

	Г				F	ram	ewo	rk I\	//////				7
amino acid'	102	103	104	105							112	113	اب د
Α				Ī						T		T	340
В							-		İ				
C						<u> </u>		<u> </u>	<u> </u>	-			79
D	1	2					1	<u> </u>	<u> </u>		<u> </u>		179
E					ı			<u> </u>		•			159
F	1								<u> </u>	· [130
G			27	,	26	5	·······	-		1	 		450
Н	1							1					51
1	7	'						1	3	3			113
K				2	2		1	1	<u> </u>			-	194
L							12	?	İ	1		†	204
М							2	÷		1			144
N	1						-		†	<u> </u>			138
Р	1			1			<u> </u>	•	•				128
Q				23				·	•	·			253
R				! !			1						247
S	3						<u> </u>	÷	1	<u> </u>	18	18	}
Т		<u> </u>				21	6		16	Ť	1		390
V	6							21	<u> </u>	!			342
W		29						<u> </u>	!				158
X								<u> </u>	<u> </u>				
Y	11												294
Z											•••••		
_	3												394
unknown (?)	·									******	•••••		3
not sequenced	4	11	13	13	14	19	19	19	20	20	21	22	458
sum of seq²	36	29	27	27	26	21	21	21	20	20	19	18	
:			;						16				
mcaa'		W	G	Q			**********		T	٧	S	S	
rel. oomcaas	31%	100%	100%	85%	100%	000	57%	0001	%08	%06	92%	%00	
pos occupied ⁶	:	:	:				<u></u>	1	3		<u>თ</u> 2		
			i		•••••••	155			<u></u> .			!.;	

SUBSTITUTE SHEET (RULE 26)

Table 6C: Analysis of V heavy chain subgroup 2

															Fran	1614/	ork I			
amino acid'	<u> </u>		1 ~) 4	. س	, <u>u</u>	· ·	- α	, σ	, [2 =	- :	7 ~					. 8	61	- 0
Α	7					Ī		Ī			3		-				T	T	1	T
В					<u> </u>		-											-		-
. С			···	<u> </u>						1					-			- 	-	<u> </u>
D			•							-							<u> </u>	-		 -
E		1					6			-	<u> </u>				-		2	<u> </u>	<u> </u>	<u> </u>
F .																	<u> </u>	<u> </u>	<u> </u>	<u> </u>
G								(6	•									•	-
Н																			·	
		1	1													1				·
K		<u>.</u>	<u>. [</u>		3	}							6	5	1				<u> </u>	<u> </u>
L		<u> </u>	<u> </u>	()						(6		`` <u>`</u>				6	-	6
M		<u> </u>	<u> </u>														-	<u> </u>		
N	<u> </u>	<u></u>					1												<u> </u>	<u> </u>
Р	ļ	<u></u>	<u>.</u>		<u>.</u>		1		6					6			1			<u> </u>
Q	2		<u> </u>		<u>.</u>	<u></u>	<u></u>									4		<u> </u>		
R	ļ	<u> </u>	<u> </u>	<u>.</u>	2	<u></u>	<u></u>	<u></u>	<u> </u>	<u> </u>							<u> </u>			
S	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		4	<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u>.</u>								
T	ļ	<u> </u>	6	<u> </u>	1			<u>.</u>	<u> </u>	2					5		5		6	
V	ļ	5	<u> </u>	<u> </u>	<u></u>	<u></u>			<u></u>	1		6								
W	ļ	<u></u>	<u> </u>	<u></u>			<u></u>				<u> </u>									
X	ļ	<u></u>	ļ					<u></u>	<u></u>					<u></u>				·		
Y	ļ		ļ					<u></u>	ļ			<u></u>	<u></u>							
Z	3											<u> </u>								
-												ļ								
unknown (?)						······														
not sequenced			1	1	1	1	1	1	1	1	1	1	1	1	1	1	_1	1	1	_1
sum of seq ⁷	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa ₃	3	••••••	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••	••••••			••••••	3	6		********	••••••••	5	4	5	6	6	6
mcaa*	Z		T	L	K		S		Р	Α	L	٧	K	Р	T	Q	T	L	T	L
rel. oomcaas	20%	83%	100%	100%	20%	100%	67%	100%	100%	20%	100%	100%	100%	100%	83%	67%	83%	100%	100%	100%
pos occupied ⁶				1	3	•	:	:	:		:	:	:	1	2	2	•••••••••••••••••••••••••••••••••••••••	1	1	1

Table 6C: Analysis of V heavy chain subgroup 2

														C	DRI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	< <	8	32	33	34	35	36	37	20
Α								1					1			1	Ī	T		Ī
В												<u> </u>	<u> </u>		-			<u> </u>	- 	<u> </u>
C		;	7					<u> </u>				-	<u> </u>			2	-		·	
D							-			<u> </u>	•	1	 						-	-
E										İ	<u> </u>	·	· <u>†</u> ·····		<u> </u>		<u>-</u>	<u> </u>	<u> </u>	
F				3			6		1	- 	<u> </u>	· • · · · · · · · · · · · · · · · · · ·					<u> </u>	- -		<u> </u>
G						7			1	·		‡	4		3	 1	3	 1		<u></u>
Н				•								·							·	-
				•							<u> </u>	·	1				<u> </u>	·	7	<u>.</u>
К				Ī	<u> </u>				<u> </u>		 	·		ļ			ļ	<u> </u>	<u> </u>	
L		1	1	2		 	1		6	· 	<u> </u>	· -					<u> </u>	-	<u> </u>	<u> </u>
М			-	<u> </u>				<u> </u>		ļ	· .	· 	<u> </u>	5			<u> </u>	<u> </u>	<u> </u>	<u> </u>
N		<u> </u>	•						ļ	<u></u>	2	<u> </u>	<u></u>		ļ		<u></u>	<u> </u>		
Р		<u> </u>	1					<u> </u>	<u></u>	<u> </u>		·			ļ	ļ	ļ	<u> </u>	<u> </u>	<u> </u>
Q		;	<u></u>		•••••	•••••					<u></u>		ļ		<u></u>		.	}	<u> </u>	
R			·		•••••		•••••		}		ļ	ļ	2	·····	1	ļ				
S		<u> </u>	1		6			6	 !	6	2	4			<u>-</u> -		4	<u> </u>	<u> </u>	ļ
Ţ	6		6	†		•••••			······	1	!	†	·	••••••		<u> </u>		<u></u>	<u> </u>	
V			<u> </u>	2		••••••	•••••			<u></u>	<u></u>	<u> </u>		2		7		<u></u>		<u></u>
W			<u> </u>			•••••	•	•••••		<u> </u>	<u></u>							7		
Χ					******		•••••••	•••••	••••											
Υ					1			•••••	•••••					•••••	•••••					•••••
Z		•••••							·											
-																				
unknown (?)																				
not sequenced	1																	••••		••••••
sum of seq ²	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa³	6	7	6	3	6	7	6	6	6			••••••		5	3	7		7	•••••	<u>'</u> . 7
mcaa•	T	С	T	••••••	S	G	F		L	S	T	S	······	М	G	V	S	W	ı	R
rel. oomcaas	100%	100%	%98	43%	%98	100%	%98	96%	96%	%98	43%	57%	57%	71%	43%	100%	57%	0001	0001	%00 ₁
pos occupied ⁶		1		3	2	1	2	2	2						;	:	:	:		
•						•••••••	1						. 	·····i	i.					······

WO 97/08320

PCT/EP96/03647

Table 6C: Analysis of V heavy chain subgroup 2

					ran	iew	ork I	ı												
amino acid'	39	40	7	÷ 5	7 6	? ?	ų ų	ָר ל ני	5 5	}	ę ç	r c	8 1	ີດ ເ	70	۵ ک	ם (ع ر	S 4	55
Α							6					7			1					
В																	Ť		*****	<u> </u>
. C											<u> </u>							-		<u> </u>
D												İ			2					3 6
E									7		<u> </u>							_		
F	_														2					- -
G			1		7		1											İ		-
Н													2				<u>-</u>		<u> </u>	1
1														6				-		
K					(3										 -	-	-		·
L								7		•	7		2	1	 1		- -			
M									<u> </u>	<u> </u>	<u> </u>	-		<u> </u>			-		†	
N												-							3	
Р		5	7	7													-	•		
Q	6					-	·			1	-						·	-	-	
R	1				1					•	<u> </u>	2	?		<u> </u>	<u> </u>	<u> </u>		·	
S	<u> </u>	1								<u> </u>							-	1 2	2	
Ţ		<u> </u>								Ī	<u> </u>	<u> </u>							<u> </u>	
<u>V</u>									Ī	Ī	<u> </u>	<u> </u>	-		<u> </u>	1		·	· †	
W									7			1				-		4		
Χ			<u></u>							-			· · · · · · · · · · · · · · · · · · ·	1			<u> </u>	†	1	
Y										<u> </u>				·:	1				•	
Z										<u> </u>		<u> </u>								
		*******		<u></u>											6	7	7			_
unknown (?)		•••••															 !	••••••• •		
not sequenced																		 		
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa³	6	5				••••••	7	7	7	7	7	2	6	2	6	7	7	4	3	6
mcaa'	Q	Р	Р	G	K	Α	L	Ε	W	L	Α	Н	ł	D	-	-	-	W	D	D
rel. oomcaa ^s	%98	71%	100%	300%	%98	%98	100%	100%	100%	100%	100%	29%	%98	29%	96%	%00 ₁	100%	57%	43%	%98
pos occúpied ⁶	2	3	1	1	2	2	1	1	1	1	1	4	2	5	2	1				2

Table 6C: Analysis of V heavy chain subgroup 2

	_	CI	DR I				-						T									
amino acid		oc C	22	28	23	8	61	62	63	64	65	9 0	8 8	/9	— 89	69	20	71	72	73	74	75
А															-		-				T	7
В			Ī							••••••											<u> </u>	
. C			<u>-</u>				****			•••••	 	†									<u> </u>	
D		5		<u>i</u>	Ī					••••••		<u> </u>							6	1	ļ	<u> </u>
E		1								1		-	-						O	1	<u> </u>	-
F			1		1							-			-			<u>:</u>				-
G												<u> </u>								••••••		
Н					1															••••••		
												<u> </u>	- <u>i</u> -			6						-
K		1	6							4		<u></u>				0		6			•••••	
L		Ī					-		7		••••••	<u></u>		7				0			••••••	6
M				<u> </u>	··· ·				<u>-</u>	····- 	*******	<u> </u>	-	<u> </u>	-				<u> </u>		••••••	
N	1												<u> </u>									
P		<u> </u>		•		-	2			· <u>i</u> .			<u>.</u>	-					1			
Q			-							-			 -	-	-							
R		-		2			1			2		7	<u>.</u>					1				
S				2		6		7			4	•••••			 1		5					1
Ţ		1		Ī		·	4				3	•••••	<u> </u>	·	<u>' </u>	~ ! ····	2				7	
V				Ī						<u>-</u>		••••••	<u></u>	<u> </u>		1				6		
W			-	1	1			-		<u>i</u>		••••••	<u></u>			<u> </u>						
X		1			-	1				· 		•••••				-						
Υ				3 4	1	-						•••••		<u> </u>		-						
Z		-		<u> </u>		-						••••	•••••		-							
_								T	-	i	Ť				÷	÷		+	÷	\dotplus	-	=
unknown (?)											···-		••••••			 -		<u></u> .				
not sequenced													••••••	ļ				<u>.</u>				
sum of seq²	7	7	7	7	7	7	7	,	7	7	7	7	7	7	7	7	,	 7	 7	7	7	
oomcaa³	5	6	3	4	E	4	7	7	7	4	4	7	7	• • • • • • • • • • • • • • • • • • • •	<u> </u>	·		1	-	6	<i>7</i>	<u>،</u>
mcaa'	D	Κ	Υ	Υ	S	T	S	L	Κ		····÷··	R	L	******	·····	S	••••••		÷	····÷····	···•÷··	K
rel. oomcaas	71%	%98	43%	57%	%98	57%	100%	100%	570%	2073	0/2/0	100%	100%	%98	%98	71%	%98	160%	2000		_	86%
pos occupied ^a	3	2	3	4	•		:	:	1 :	7	····	····÷	·····	••••••	:	2	•	:	;		<u>- i .</u>	2
							•	15				*********	*******	********	••••••	· • • • • • • • • • • • • • • • • • • •	····	.i	i	<u>_</u> i		

Table 6C: Analysis of V heavy chain subgroup 2

·	_				Fr	ame	woi	k III													
amino acid	, ,	9/	7.7	.78	79	8	8	82	⋖ ़	ω	ပ	83	84	85	98	87	88	89	- 06	7 6	92
Α					T	T	Ī							1			5		-	-	-
В			Ī							·····					••••••	**		<u></u>	-	-	
. C			Ī	Ī					1		·				•••••	•••••••• •	<u> </u>	<u> </u>	-	-	7
D		-			···						<u>i</u>	6			7			<u>.</u>	·	-	
E																			<u> </u>	 	
F.						1				i									<u> </u>	 	-
G																	2		<u></u>		
Н				Ì														•••••	<u></u>	<u> </u>	-
. 1				•			2		1										<u></u>	<u> </u>	
К				-														••••••		<u> </u>	+
L				Ī		6				-	<u>i</u>									<u> </u>	-
M			:					7		-	5									<u> </u>	
N		5								6	-	1							····		-
Р											Ť		7								
Q			7								•									•••••	
R																		.			
S	2	2																		••••••	
Ţ							5		5							7		7		•	
V				7	7					<u> </u>	1			6				<u>.</u>	<u>i</u>	•••••	
W									-	-				Ĭ				<u>-</u>			
X										<u> </u>						-					
Υ																	- -		7	7	
Z	_	<u> </u>																			
_								1		1	1	T		Ť	Ť	Ť		Ť	+	-	-
unknown (?)		<u> </u>	<u>.</u>							-	-	<u> </u>									
not sequenced																	<u> </u>	-			
sum of seq'	7	7	7	7	7	7	7	7	7	,	7	7	7	7	7	7	7	7	7	7	7
oomcaa ₃	5	7	7	7	6	5	7	5	6	5 !	5	6	7 (3	7			7	7	7	7
mcaa*	Ν	Q	٧	٧	L	Ţ	М	T	N	Μ	D	Р	٧	D				····÷···	·	Υ	С
rel. oomcaas	71%	100%	100%	100%	%98	71%	100%	71%	%98	71%	96%	100%	86%	100%	%CO1	10%	200	200	% 000	000 ₁	%00 ₋
pos occupied ⁶	2	1	1	1	2	2	•	:	:	:	:	:	1 2	:		• • • • • • • • • • • • • • • • • • • •	•••	1		1	1
									160	•									******		:

WO 97/08320 .

Table 6C: Analysis of V heavy chain subgroup 2

										CC)R II	l								
amino acid'	93	94	95	96	97	98	66	100	۷	8	U	۵	m	ட	ပ				~	101
Α	5							1	1 2	2 1					Ī	Ī	Ī	Ī		Ī
В		<u> </u>								· · · · · · · · · · · · · · · · · · ·	Ī							Ī	<u> </u>	<u> </u>
. С									<u> </u>		Ī					<u> </u>	<u> </u>			<u> </u>
D												<u> </u>				-	<u> </u>	ŀ		(
E								2	?		1						1			
F .			<u>.</u>														1		3	
G						1	1		1	2	1	1	1	1				·		
Н		1	<u>.</u>	1														•	•	<u> </u>
<u> </u>			3			2														<u> </u>
K							1				<u> </u>	<u> </u>				·		<u> </u>		<u></u>
L				<u> </u>				1		1	<u> </u>				···	<u> </u>		İ	1	
M _.								1	Ţ	Ī						<u> </u>	<u> </u>	<u> </u>	2	
N				1	2											<u> </u>	1			
Р				1	1		1	·······	1							 -		;	<u></u>	
Q			1				·			•		••••				······	}		•	•
R		6	1			1			1				••••	••••••			 			
S				1		1	1											<u> </u>		
T				1			1		1			•••••		•••••		 !		<u> </u>		
V	2		1	1	1	••••••••••••••••••••••••••••••••••••••	1	1			1	•••••	*********	*******						••••••
W						1						•••••		•••••	1			1		••••••
Χ					•		••••						•••••	•••••	••••					•••••
Υ	-				2	•••••					1	2	1	1	1			2		******
Z							•••••								•••••		•••••			
_										2	2	3	4	4	4	6	5	3		
unknown (?)												•••••	******						`	•••••
ot sequenced			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq'	7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa ³	5	6	3	1	2	2	1	2	2	2	2	3	4	4	4	6	••••••	•••••••••••••••••••••••••••••••••••••••	3	6
mcaa•	Α	R	ı	Н	N	1	G	Ε	Α	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa³	71%	%98	20%	17%	33%	33%	17%	33%	33%	33%	33%	20%	67%	67%	67%	100%	83%	20%	20%	100%
os occupied"	2	2	4	6	4	5	6	5	5	4	5	3	3	3	3	:	2	3	3	1

Table 6C: Analysis of V heavy chain subgroup 2

		Γ		-			Fran	new	nek	IV					7
	omino osid	ل و ،	7 9	ກຸ	4 i				_		_	_	2	_	Ţ
	amino acid	,		<u> </u>	- ·	<u> </u>	2	20	2	2_		Ξ	=	Ξ	sum
	A		<u></u>								1				35
	В													*******	
	С										<u>-</u> -			*******	16
	D									Ī					43
	E														21
	F							•							18
	G				6		6								55
	Н														6
															29
	K					1			1	<u> </u>					42
	L		1					<u> </u>	3						78
	М								-			-			20
	N									<u> </u>					23
	Р		١						1	<u> </u>					41
	Q				;	3									23
	R				2	?									41
	S												6	3	82
	T						(3			5				102
	V	3						<u> </u>	(3	(6	_		68
	W		6							·	<u> </u>	*****			29
	Χ							·				-			4
į	Υ	1								<u> </u>	-	-			35
	Z								1		-				3
	-												T	1	56
	unknown (?)														
	not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	4	54
	sum of seq'	6	6	6	6	6	6	6	6	6	6	6	3	3	
	oomcaa ₃	3	6	6	3	6	6	3	6	5	6	6	3	3	
	mcaa*	٧	W	G	Q	G	Ţ	L	٧	T	٧	S	S		
	rel. oomcaas	%	%00 I	%00 I	%	%(%	,o	. %	٥	%	%	%	2	
	3 33600	20%	ŏ	ŏ	20%	100%	100%	20%	5	83%	100%	100%	100%)	
	pos occupied"	4	1	1	3	1	1	4	1	2	1	1	1		
						1	62	-						-	

SUBSTITUTE SHEET (RULE 26)

Table 6D: Analysis of V heavy chain subgroup 3

amino acid ¹															Fran
А		2	. ი	4	5	9	7	8	6	5	Ξ	12	13	14	
						1		1		1	2		1		3
В	<u> </u>			1			1							1	
. C			<u> </u>							-			***************************************		
D	1						1		••••••••	11	6				
E	110)	()	1	5 16	6			9			8	3	
F .	ļ	<u>.</u>										1			
G	 							18	1 193	3 174			 		202
Н)						-			4	, <u> </u>	-
İ												9)		
K		5	3										26	 	
L		1	5	176	43	1		<u> </u>			140).).		:	·
M		12		1				†*************************************							ļ
N						·········				1				ļ	<u> </u>
Р													1	194	
Q	41		138	1	3	12			·····				162	·····	
R			6					······					4	·····	<u></u>
S							178			2	ļ	<u></u>		8	<u> </u>
T						 !	1	!			<u></u>				
V	5	147		1	118				ļ	ļ	62	195			
W								••••••						••••	1
X	·				**********						••••••			**********	
Y					************	• •• •• •• •• •• •• •• •• •• •• •• •• •		••••••	•••••			· · · · · · · · · · · · · · · · · · ·		***************************************	••••••
Z	8				**********	***************************************		••••••		······					••••••
-															
unknown (?)						**********		**********			***********	**********			
ot sequenced	47	47	45	33	32	32	32	31	10	7	6	6	6	6	6
sum of seq'	165	165	167	179	180	180	180	181				 :	206		
													162		
mcaa'	Ε	٧	Q	L	V	E	S	G	G	G	L	V	Q	P	<u> </u>
rel. oomcaas	%29	%68	83%	%86	999	92%	99%	100%	%96	85%	9%89	95%	%6,	94%	%86
oos occupied"	5	4	7	4	5	4		1	:	:	3	:	7	4	4

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

	wor	k I	····												
amino acid'	16	17	18	13	20	21	22	23	24	25	26	27	28	29	30
Α								183	3 192	2		1			
В														"	
· C							1 209)							
D											-				7
E	8							{	3		3	3	1		
F .		1	1				l					20	1	201	
G	134								2	2	207	,			3
H															1
	ļ							2				3	17	1	·
K		<u></u>		15											4
L			205		201							6		3	
M			1										1		
N													10		10
Р								1					2	! !	
Q			1	<u></u>	<u></u>										
R	62			191											11
S		206	<u></u>			207		4	2	209			15		174
T	4	1		2			<u> </u>	4	4			1	163		
<u> </u>					8			7	9				1	6	
W															
Χ					•••••••										
Y					*********					***********					
<u>Z</u>															
-								•••••							
unknown (?)												*********			
not sequenced	4				3		=						2	:	:ـــــــــــــــــــــــــــــــــــــ
													210		
									192		207	201	163	201	174
mcaa*	G	S	L	R	L	S	С	Α	Α	<u>S</u>	G	F	T	F.	S
rel. oomcaa ^s	64%	%66	%66	92%	%96	%66	100%	988%	92%	100%	%86	95%	78%	95%	83%
pos occupied ⁶	4	3	4	3	2	3	1	••••••	••••••	1		4		4	7

Table 6D: Analysis of V heavy chain subgroup 3

	L			(CDRI				T						Fran
amino acid		, ⊲		32	33	34	35	35	37	à	30	§ 6	5 1	42	43
A		1		1	7 8	0		1			1	18	37		1
В						•									-
. C						••••••	*******						1		-
D	2	6			3	7		2		*******			<u></u>		<u>-</u>
E		1			1	0								1	- -
F .					5										
G	1	3			3	1		1					2	209)
Н					4		8	8				-			
		1			1	1	5		1	2					
K		7										1			20
L		3					3			2			2 1	 	
M						19:	3			-	-			<u> </u>	ļ
N	35	5		8	3	3	34	1				-			
Р				1			-						1 191		
Q							**********				209	-!	1		1
R	7									207	··	·!····			
<u>S</u>	103			17	8		72					·	14		
T	9				15		10)	<u> </u>			4	·········	·	•
V	2				7	1			197			2	·		
W	<u> </u>				30			212							
Χ	1										······				
Υ	1			154	19		3								
Z		<u> </u>					<u> </u>				·	••••••••			•••••••
		210	210											Ť	
unknown (?)								***********				•••••••			••••••
not sequenced	2			2	2			•••••	1	1	1	**********			*********
sum of seq ²	210	210	210	210	210	212	212	212	211	211	211	212	212	212	212
oomcaa,	103	210	210	154	80	193	88	212	197	207	209	187	191	209	202
mcaa'	S	-	-	Υ	Α	М	Н	W	٧	R	Q	Α	Р	•••••••••••••••••••••••••••••••••••••••	202 K
rel. oomcaa ^s	49%	100%	100%	73%	38%	91%	42%	100%	93%	%86	%66	88%	%06	99%	95%
oos occupied ⁶	14	1	1	9	10	4	9	1				 9	ნ 5	ပ 4	ტ 4

Table 6D: Analysis of V heavy chain subgroup 3

	work	: 11									-				
amino acid'	44	45	46	47	48	49	20	51	52	4	æ	U	53	54	55
А	1					77	42	2	1	2	2	14	i i	7	· .
В			3							1					
· C								-					1		
D			1							7	'		94	8	3
E			198						3	2	2 1		2		1
F							7	1	2	1				1	8
G	207					33	11		10	46			4	163	85
Н							6			1					
1					3		3	191		1	-				1
K								1	37	2	30)	3	1	
L		211			5		12	1							
М							1	1		······································					
N							13		7	9	2		13	11	1
Р		1								1			1		
Q			7				7			10					
R	1	<u></u>		: : :			24	1	17	5	1		2		16
S	3		<u></u>	1	: : : :	102	11	9	118	43		1	74	17	82
T							3	5	4	2		13	12	3	3
V			3		204		49	2		1		6			
W				210			1		8	6		,			
X				•••••									4		3
Y			,	1			22		5	58		-			8
Z															
_				•••••	•					14	178	178	2	1	1
unknown (?)											**********				
not sequenced						·									
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa³		211	198	210	204	102	49	191	118	58	178	178	94	163	85
mcaa'	G	L	E	W	V	S	٧	1	S	Υ	-	-	D	G	G
rel. oomcaa ^s	%86	100%	93%	%66	%96	48%	23%	%06	26%	27%	84%	84%	44%	77%	40%
pos occupied ⁶	4	2	5	;		3	•••••	9		19	5	:	12	9	12

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

·	_	CDR	11									Ţ.			
amino acid'	26	57	28	59	09	61	62	63	64	65	99	29	89	69	70
А		9	1 :	2	17	4 3	3			T				1	
В		1	2				**********								
. C															<u> </u>
D	1	1	17	7		160	0								<u> </u>
Е		3 (3 2	2			1			2					
F .	1		3	3 2	2							207	7	-	
G		5	5	5	4	1 !	5			212	2 1		-		†
Н	1		4	ŀ		***************************************	*********						<u> </u>		
	3	37	2				-	8	3				14	208	··········
K	1	61							199) }	8				
L	1	1	1		1						·	· ····		1	<u></u>
М	8		2		1								-		
N	51		4			2			2	2			<u> </u>		
P	1	1			6	8	18		1						
Q	3	2					<u> </u>		2		2			··········	
R	5	4			5	•			6	:	201	·	ļ		
5	48		11		4		193				ļ	2	7		211
Ţ	42	97	5		7								189	···	1
V		2			10	2		204				1		3	••••••••
W			2												*********
Χ	4		1			1									·····
Υ	9		151	210			1	************				1	1		·**********
Z										••••••		•••••••••		••••	·********
-															
unknown (?)									•••••		***********	•••••	••••••		••••••
not sequenced											******************	••••••	•••••		••••••
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa ₃	51	97	151	210	174	160	193	204	199	212	201	207	189	208	211
mcaa'	N	Ţ	Υ	Υ	Α	D	S	٧	Κ	G	R	F	T	ı	S
rel. oomcaas	24%	46%	71%	%66	82%	75%	91%	%96	94%	100%	95%	98%	9%68	%86	100%
pos occupied ⁶	19		15	2	:					1	4	<u></u> 5	<u> </u>	3	2
					••••••••	:	16	·····i				<u></u>			

Table 6D: Analysis of V heavy chain subgroup 3

										Fran	newo	rk III			
amino acid'	71	72	73	74	75	9/	77	78	79	80	81	82	⋖.	8	ပ
Α				57			1	8						1	
В											2				
С													<u></u>		
D		199	38		2	2			1		-	<u> </u>	10	: :	
E		6			4						5				
F									13		Ţ				
G													1	4	
Н						1			1		2		2		
l			1				2	2				3	1	1	
K					186	6							3		
L								188		209		3	1		212
M	1				2		10	3		2	`	205			
N		5	170		2	188					3		181	10	
Р							1								
Q					7						199				
R	211	•		,	1	1							2	8	
S				153	8	10	56		3				6	186	
T							142				1		.4	2	
V				1				11		1		1			
W															
X		2	2			4							1		
Υ									194						
Z															
-															
unknown (?)								*******							
not sequenced			1	1											
sum of seq?	212	212	211	211	212	212	212	212	212	212	212	212	212	212	212
oomcaa ₁	211	199	170	153	186	188	142	188	194	209	199	205	181	186	212
mcaa'	R	D	Ν.	S	K	N	T	L	Υ	L	Q	М	N	S	L
rel. oomcaa ^s	100%	94%	81%	73%	%88	89%	67%	%68	92%	%66	94%	97%	85%	88%	0001
pos occupied ⁶	2			3		•••••••	•••••••••••••••••••••••••••••••••••••••		:	:	6	:	:		1

Table 6D: Analysis of V heavy chain subgroup 3

		·									1				
amino acid'	83	84	85	98	87	88	88	06	91	92	93	94	95	96	97
А		149	9 1			1 20	7	T			17:	3	2 1	5 9) 1
В						···		-							
· C			·							1 21(n		5	 2	1
D			15	209)	*******		-				··········	2 54		' 6
E	1		190)					-			-	1		11
F .							-	1	15	5		1		·	
G] 1	1	6				4				7		3 34		- <u>j</u>
Н		1						·	1	 				3	·!····
1	ŀ	8					2	2				-		15	·
K	30)						·				60	·:	3	
L							18	1				1		11	<u> </u>
М					2		1				ļ			6	<u>:</u>
N		1		1			*	†····			<u> </u>	2	20	•	
Р		9									1	·	·	·•••••••••••••••••••••••••••••••••••••	·····
Q				1						***********		5	·•••••••	•	! :
R	177								<u> </u>			103	<u></u>	· <u>!</u> ······	
S		1			1						<u> </u>	3	·····	:	••••••••••
T	3	28			207		1				25	!	!		•••••
V		9			•		187			!	10	····	·········		•••••
W										1	:····		3	·····	
Χ				1	••••••••••						***************************************				
Υ								211	194		•	•••••••••	12	9	8
Z											•••••				
-													1	3	4
unknown (?)								************			**********		•••••••••		
not sequenced					1	1	1	1.	1	1	1	1	7	12	13
sum of seq'	212	212	212	212	211	211	211	211	211	211	211	211	205	200	
									194						35
mcaa'	R	Α	Ε	D	T	Α	٧	Υ	Υ	С	Α	R	D	R	G
rel. oomcaa ⁵	83%	70%	%06	%66	98%	%86	89%	100%	92%	100%	82%	49%	26%	. 5%	0/081
pos occupied ⁶	5	10	4	4	4			: •		2	5	14	18	20	21

7

WO 97/08320

PCT/EP96/03647

Table 6D: Analysis of V heavy chain subgroup 3

					CD	R III									
amino acid'	86	66	100	∢	ω	Ú	۵	ш	ய	တ	Ι	_		×	101
Α	7	13	7	9	6	2	2 3		5 !	5		9	1:	3	2
В															
· c	13	5		1	2	11	3		2	2					1
D	11	7	10	4	2	3	10	3	3	3 1			3 2	2	146
E	6	3	1	13		1	1								1
F	3	5	4	5	5	6	3		7	2			1	65	1
G	34	17	35	17	14	23	10	5	1	5		3 2	2 32	2	6
Н	3	4	3	2	9	2		1	3	1	2	2 8	3 1		
	6	11	4	4	3	1	3	10	3	3	2	2	1	2	
K	2	11			3	1									
L	26	13	4	12	8	2	6	3	10	3				2	1
M		1	2			***********					1			32	
N	4	6	4	3	2	2	6				2	5			2
Р	6	5	5	6	9	8	2	3	2	1		3		9	
Q	4		1	1	1	1	. 1					1			
R	4	10	9	7	5	5	2	3	1		1	Ţ	2		4
S	16	28	27	25	24	8	11	9	3		2	3	1	1	1
T	6	12	9	17	17	1	2	5	1	9	3	1			
V	13	7	15	4	3	6	2	12		1	1	1	1		
<u> </u>	6	5	6	7	2	4		•••••		1	************	6	10		
X				1				••••••			***********				1
ΥΥ	16	14	17	5	8	18	20	13	20	25	28	32	28		
Z															
-	12	21	35	54	73	87	102	110	126	135	134	120	91	71	21
unknown (?)							3	2		1			3	2	
not sequenced	14		14	14	15	19	21	22			23			26	25
	:	:	:	197	•		•	:			***********	******************	••••••••••••••••••••••••	185	186
oomcaa ₃	34	28	35	54	73	87	102	110	126	135	134	120	91	71	146
mcaa*	G	S	G	-	-	-	-	-	-	-	-	-	-	-	D
rel. oomcaa ^s	17%	14%	18%	27%	37%	45%	54%	58%	67%	72%	71%	65%	49%	38%	78%
pos occupied ⁶	20	20	19	20	19	20	17	•••••••••••••••••••••••••••••••••••••••	14	12	12	•••••	12	8	11

Table 6D: Analysis of V heavy chain subgroup 3

					Fr	amev	vork	IV					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
Α	1		1			2							1767
В				1							-		13
С													470
D	2												1121
E					1								832
F	2		•••••										807
G			140		130		1						2743
Н	4												179
1	15								1	1			651
K				13									933
Ĺ	10			1			91					2	1881
M							6						496
N	1					1							844
Р	17					1	1						568
Q				111									949
R				8									1413
S	7	1									118	110	3009
T						123	27		122			1	1426
V	34		1			1		125		119			1851
W		158											686
X													26
Y	82												1598
Z													8
_	9	2	2	2	2	2	2	2	2	2	1	1	2023
unknown (?)													12
not sequenced	27	50	67	75	78	81	83	84	86	89	92	97	1650
sum of seq²	184	161	144	136	133	130	128	127	125	122	119	114	
oomcaa3	82	158	140	111	130	123	91	125	122	119		110	
wcaa,	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaa ^s	45%	98%	97%	82%	98%	95%	71%	%86	98%	%86	%66	%96	
pos occupied ⁶	12	3	4	6	3	6	6	2	3	3	2	4	

171

Table 6E: Analysis of V heavy chain subgroup 4

														F	ram	ewo	rk I			
amino acid!	_	7	٣	4	ß	9	7	œ	တ	0	=	12	13	14	15	16	17	8	19	20
Α									19)				1	1		1		1	1
В												<u> </u>	-				<u> </u>	<u> </u>		<u> </u>
· C												<u> </u>			<u> </u>	<u> </u>		<u> </u>		-
D										<u> </u>	<u> </u>				<u> </u>			<u> </u>	·	
E						32	2			-						44	İ	<u> </u>		<u> </u>
F									1		-						·		<u> </u>	†
G								54	1	53	-					2				
Н		<u>.</u>	4		2															
															†			<u> </u>	<u> </u>	
K										<u> </u>		1	54					<u> </u>	1	
L		7		54					<u> </u>	<u> </u>	53	19		1		<u> </u>		53		50
M									Ī	Ī		<u> </u>						!		
N																		<u></u>		·······
Р		<u> </u>							33					51	1					2
Q	52	<u></u>	50		51	20										7		•		
R	1	<u></u>	<u> </u>																	
S	ļ		<u> </u>				33	<u> </u>	<u> </u>						52		•••••		52	
T		<u> </u>							1		·						52			
V	ļ	47				1						34							******	1
W							20				·									
Χ																				
ΥΥ																				
Z	1																			
_																			_	
unknown (?)																		•••••••••		
not sequenced	3	3	3	3	4	4	4	3	3	4	4	3	3	4	4	4	4	4	3	4
sum of seq'														• •• •• • • • • •	********	********		*******	. .	
oomcaa'			50						33	53	53	34	54	51	52	44	52	53	52	50
mcaa*	Q	٧	Q	L	0	Ε	S	G	Р	G	L	٧	K	Р	S	Ε	T	L	S	L
rel. oomcaas	%96	87%	93%	100%	%96	%09	62%	100%	61%	100%	100%	63%	100%	%96	%86	83%	%86	100%	%96	94%
pos occupied ^a														3		3	-	1	<u>-</u>	3

Table 6E: Analysis of V heavy chain subgroup 4

														·CI	DRI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	⋖	8	32	33	34	35	36	37	38
Α			22											1						
В																				
. С		53													1					
D			1								4	1	1	1			1			<u> </u>
Ε											Ī						<u></u>			<u> </u>
F					1		••••••		22					1	1				1	
G						53	53)········	•••••	21	3	4	••••		j	8			
Н							1							2)				
l			1					1	32	•••••		••••	•••••	•••••					51	
K													•							
L										•••									1	
M							••••			•										
N							••••			1	1	•	2	2			1			
Р				•••••				3							••••					
Q				•		••••		•••••			1					•••••	•			
R				•		1		•••••		3	2		1		********					5
S			2	•••••	35			51	1	52	25	5	9	1	•••••		44		1	
T	53		29	•							2	1					3			
٧				55		1			1								•••		3	•
W												1			2	56		57		
Χ				•													•••••			
Υ					19	•••••	1							48	52					•••••
Z																				•
-												45	39							
unknown (?)															•					
not sequenced	4	4	2	2	2	2	2	2	1	1	1			1	1	1				
sum of seq ²	53	53	55	55	55	55	55	55	56	56	56	56	56	56	56	56	57	57	57	5
	: :						••••••			:	:		•••••••	••••••				•••••••••••••••••••••••••••••••••••••••	51	
mcaa'					*******	*******	******	********	*******		S		-	••••••				W		R
rel. oomcaas	100%	100%	53%	100%	64%	%96	%96	93%	57%	93%	45%	%08	%02	%98	93%	100%	7 7%	00001	%68	7000
			:				•••••••••••••••••••••••••••••••••••••••		·		··-··	·····	••••••••••••			**********				

Table 6E: Analysis of V heavy chain subgroup 4

	_			Fr	ame	wo	k II						Τ		-					
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	51	52	< <		U	53	54	55
Α			8	1							1		1							Ī
В .												<u> </u>						<u> </u>	<u> </u>	<u> </u>
· C											•	<u> </u>					-	İ	-	Ť
D										<u> </u>			<u> </u>		- 		†	<u> </u>	1	<u>†</u>
E				1				56	3	<u> </u>	Ť	22	2		<u>-</u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>
F .			-							1	<u> </u>				- 		·	·		-
G				55		55			-		56	1		-				1		57
Н		2			••••••••••••••••••••••••••••••••••••••		}		<u> </u>	1								24	·	
l				,					†	54	<u> </u>	1	54			<u> </u>	ļ	<u> </u>	<u></u>	!
K					54					· †	†				 		 	<u> </u>		!
L		1	<u></u>				55			2	 					 	 	<u> </u>	<u> </u>	<u> </u>
. М		Ī							 	<u> </u>			ļ	ļ	<u> </u>	 		<u></u>	<u> </u>	<u> </u>
N		Ī					•••••	!			†			21		ļ	 	<u> </u>	<u> </u>	
Р		50	49				2				†······	!					<u></u>	<u></u>	-	
Q	56	••••••••••••••••••••••••••••••••••••••		••••	••••••	•••••	*******	1	ļ	†	······	1	·	ļ	ļ			<u>-</u>		ļ
R					3	2	•••••		 			9	:	1	ļ				<u></u>	ļ
S		3					•			<u></u>		7		1		<u></u>			52	
T	1	1					•••••	•••••	ļ										5	
V										1			3	<u></u>						
W							•••••		56					•••••				••••••		
Х				<u>-</u>				•••••				•••••				••••				•••••
Υ				******			******	*******	1			15		32		••••		23		•••••
Z																				
-															57	57	57			-
unknown (?)			•	. [••••	••••••					•••••						
not sequenced							····			-										
sum of seq²	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	 57
oomcaa¹			49																	
mcaa•	Q	Р	Р	G	Κ		L	Ε	W	ı	G		1	Υ	-	-	-	•••••••	5	•••••••
rel. oomcaas	98%	%88	%98	%96	95%	%96	%96	%86	%86	95%	%86	39%	92%	26%	%00 I	%00 ₁	%00 00%	42%	11%	100%
pos occupied ⁶																				

174

Table 6E: Analysis of V heavy chain subgroup 4

	(CDR	11																	
amino acid'	26	57	58	59	8	61	62	63	64	. 65	99	67	89	69	2	71	72	73	74	75
Α		1									1		1			1				1
В					Ī					<u></u>				-			 -		 	<u> </u>
· c					Ī				Ī		<u> </u>				<u> </u>	 	<u> </u>	İ	<u> </u>	<u>† </u>
D		<u> </u>	2		<u> </u>				Ī			1	 !		<u> </u>		55			<u> </u>
E		<u></u>			Ī		<u> </u>		<u> </u>	 	 	<u> </u>			<u> </u>		1	 		<u> </u>
F .				3					<u> </u>					ļ	1		<u> </u>	1	<u> </u>	
G	1]	-	1	•							<u></u>		<u></u>
Н			2					ļ	<u> </u>	••••••••••••••••••••••••••••••••••••••			••••				 !		ļ	
l	1	1	•									1	1	48		3			<u></u>	
К				<u> </u>	1				53				********					1		51
L						1		55				1	••••••		!	3				1
М					<u> </u>								••••••	7				2		
N	2		40		53								2							1
Р						54	••••	1												
Q		•••••				•••••		••••							•		1	•••••		
R	2				¢				3		56			•••••		••••••		,		2
S	49		1		2		56			56			1		56		••••••	1	57	·
Т	1	54	1			1	••••	••••	1			···-i	51	••••••	1	•••••		52	•••••	
V	1	1					••••••	•				53		2	••••	50				1
W								*******		***********										
Х											· · · · · · · · · · · · · · · · · · ·									
Υ			11	54		********								•••••	•••••					
Z																••••••				
-																				
unknown (?)											······			•••••	*******	••••••				*******
not sequenced					1	1	1	1			·····	1	1		******	******		•••••		
sum of seq ²	57	57	57	57	56	56	56	56	57	57	57	56	56	57	57	57	57	57	57	57
oomcaa³	: :		:	:	:	:					56					•••••		•••••		
mcaa'					N				K		R		T			••••••	D	T	S	•••••••••••••••••••••••••••••••••••••••
rel. oomcaa ^s	%98	95%	20%	95%	95%	%96	100%	%86	93%	%86	%86	95%	91%	84%	%86	88%	%96	91%	100%	%68
pos occupied ⁶	7	4	6	2	3												3	5	1	

Table 6E: Analysis of V heavy chain subgroup 4

	_			_	Fran	new	ork	111												
amino acid'	92	77	78	79					. 20	·	33	94	85	96	87		3 69	 8	31	32
A	T		<u> </u>	<u> </u>	T	T	T		_	-	T		5 5	_		5			T	T
В	-	·	-	-						<u>.</u>			J J	<u>' </u>	-		<u> </u>	<u> </u>	<u>. </u>	
. С	1	· 	-	-				 -	-			<u>.</u>					-	-	 	-
D	1-	<u> </u>	-	<u> </u>	1			-	<u> </u>	<u> </u>	-	-	-	5	7	<u> </u>			<u> </u>	57
E	1	<u> </u>	· !	<u> </u>		1		-		<u> </u>			<u> </u>		<u></u>	-		-	-	-
F .	1		54	 L	·	<u></u>	ļ			- 			-	<u> </u>			<u>.</u>	 	<u> </u>	-
G	1	†					ļ		- !		 		-						ļ	ļ
Н	I		·•						<u>'</u>		·			-				<u></u>	<u> </u>	-
	l	ļ	1				ļ .	1	·	 -	1 3		-			·	·	<u> </u>	<u></u>	ļ
K	3	<u> </u>	<u></u>	 -	-	46		2		<u> </u>	-	<u></u>	<u> </u>	 		<u> </u>		<u></u>	<u> </u>	<u></u>
Ĺ	ļ	†·····	1	ļ	5 5	·····	·:	÷		2	. <u></u>	-	 	-		 	1	<u> </u>	<u> </u>	<u> </u>
M	ļ			<u> </u>		······	1	·		1	 -			ļ	<u> </u>	<u> </u>	1	-	<u> </u>	<u> </u>
N	54			<u></u>	<u> </u>	3	······	·:	1	÷	<u> </u>		<u></u>		<u></u>		<u> </u>	<u></u>		<u></u>
Р				<u> </u>	<u></u>							· 	ļ	ļ			<u> </u>	<u></u> .	<u></u>	<u></u>
Q		54			1	1		j	<u></u>				!		ļ	ļ				ļ
R				 		2	i	2		ļ Ī		1	ļ	ļ				·		
S			1	57				:	·····	 	1	ļ	ļ		2	ļ	<u></u>		1	
Ţ		•						:	;	ļ !	:	:	ļ !	ļ	55	·····	ļ			
V		••••••				•••••	2		•	:	:	1	 -			<u></u>	55		•••••	
W		••••		•••••		••••••	••••••					<u> </u>			ļ					
Х							•													
Υ .							••••••			******			••••••					57	56	
Ζ -											•••••			•••••	•••••					
-																				_
unknown (?)											•				•					
not sequenced											•				••••					
sum of seq'	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
												55								
mcaa ⁴	N	0	F	S	L	K		S	S	٧	T	Α	Α	D	T	Α	٧	Υ	Υ	С
rel. oomcaas	92%	95%	95%	100%	%96	81%	93%	77%	%96	95%	93%	%96	100%	100%	%96	100%	%96	100%	%86	100%
pos occupied ⁶	2	2	4	1	3	8	4	7	3	3	:	:	1	1	2	•		1	2	1
								••	1	76	•	*********	••••••••	*******				À.		

Table 6E: Analysis of V heavy chain subgroup 4

										Ct	DR II	ı							-	
amino acid'	93	94	95	96	97	86	66	100	A	80	ပ	۵	ш	щ	ပ	I	: -	_	· ×	101
Α	56	3	3	3 3	3	2	5	4	2	2 2	2 4	1	7	2			1	1 1	2	
В										<u> </u>	-	1				<u> </u>				·
С					1				1		İ	· • • • • • • • • • • • • • • • • • • •	-	<u> </u>				<u></u>		· •
D			e		5	5	5	4	3	2	. 4	3	3 1		1	1 2	2	- 		41
E			6	1	•	•	:	:	<u> </u>	1	7	7		! 1	···	-			<u> </u>	
F.				4	1	1		2	3	2	· 	· <u>†</u> ···	· [1	<u> </u>				31	
G			25	9	10	8	10	11	4	7	•	• •••••	· • · · · · · · · · · · · · · · · · · ·	-i	1	1 2	2 1	9	·÷	-
Н			1	•			1			1			1							2
1				1		2	4	1	3	2	3		1				·	 	1	
K			2	1						2	2	<u> </u>		1				<u> </u>	-	<u> </u>
L			2	6	7	3	5	3	2	4	1	5	3	3	 	1	<u> </u>	<u> </u>	-	
M				1	4		3	1		2	1	<u></u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	9	
N				3				**********	2	1	1	5	1	1			2			
Р .				4	5	3	1	1	2	1	1	1	2	3	1	2	1	<u> </u>		
Q					1			********	}	••••••••••••••••••••••••••••••••••••••	1	·····	<u>:</u>		3	·				1
R		54	4	12	2	5	5	3	2	3	1	2		••••	2	····			<u></u>	
S		1	1	4	8	8	1	2	5	7	4	2	1	1	1		 	 	ļ <u>-</u>	
T		1	1	2	1	3	4	4	3	3			1	1	1				<u></u>	
V	1	1	4	2	2	5	4	4	7	3	1	2	1				<u></u>			
W			1	2	1	2	2	4	5	1	1	2		2	1		3	2		
X												•		********	••••					
Y				1	4	5	3	6	4	2	3	4	8	4	8	3	5	8	••••	2
Z															•••••	••••••	•••••	•••••		
-						1	2	4	6	9	11	16	23	27	29	34	31	14	4	
unknown (?)														1			1	1	1	
not sequenced			1	1	1	1	1	2	3	3	6	7	8	9	9	10	11	11	11	11
sum of seq ²	57	57	56	56	56	56	56	55	54	54	51	50	49	48	48	47	46	46	46	46
oomcaa¹	56	54	25	12	10	8	10	11	7	9	11	16	23	27	29	34	31	14	31	41
mcaa'	Α	R	G				G			-	-	-	-	-	-	-	-	-		D
rel. oomcaa ^s	98%	95%	45%	21%	18%	14%	18%	20%	13%	17%	22%	32%	47%	26%	%09	72%	%29	30%	%29	9/068
pos occupied ⁶	2	4	12	16	16	16	16	16	16	18 12		13	15	13	10	9	8	5	4	4

Table 6E: Analysis of V heavy chain subgroup 4

		Γ					ram	ewo	rk I\	/				7
	amino acid'	102	103	104	105						11	12	7	 Sum
	А	T	T	T		T		1	<u> </u>		1			332
	В	▐	<u> </u>					-			<u>'</u>	-	-	- 332
	С		<u> </u>	-	<u> </u>	<u> </u>							 	113
	D		<u> </u>		-						-	-	-	210
	Е			Ī				<u> </u>	-	-				176
	F							******	-			-		135
	G			41		4()	1						674
	Н									1				45
	1	Ç)				1							282
	K				3	3	·		·	<u> </u>				278
	L	4	ļ.					19)		<u> </u>			540
	М		<u>.</u>					ç)	Ī				43
i	N		<u>.</u>		<u>.</u>		1							204
	Р	3			2								2	281
	0				29									334
	R	1		<u></u>	4	<u></u>		1						250
	S	1	<u> </u>	<u> </u>	1			<u></u>				36	33	986
	T	ļ	<u> </u>	<u> </u>	1	ļ	33	8	<u> </u>	34	<u> </u>	<u></u>		532
	V	12	<u> </u>	<u></u>		<u> </u>	<u> </u>	<u> </u>	36		36			488
	W		46					<u></u>	<u> </u>					267
	X						<u></u>	ļ						
	Υ	16											٠	455
	Z													1
	-													466
	unknown (?)													4
	not sequenced			_			_							426
	sum of seq?				:	:		•			********	*******	********	
						:			36	34	36	36	33	
	mcaa'	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
	rel. oomcaa ^s	34%	100%	100%	73%	100%	%68	51%	100%	94%	100%	100%	94%	
	pos occupied ^a								1	3	1	1	2	

170

Table 6F: Analysis of V heavy chain subgroup 5

														F	ram	ewo	rk l			
amino acid'	_	2	က	4	ა	9	7	8	6	10	Ξ	12	<u>.</u> €	14	15	16	17	8	0	20
. A					1			1	89		1			1		T				T
В								Ī				<u> </u>					<u> </u>		 -	<u> </u>
· C							1			-	<u> </u>	· !····		<u> </u>		·		†		-
D										2		<u> </u>								<u> </u>
E	88	1			2			-	4	93	<u> </u>		<u> </u>			92				<u> </u>
F									<u></u>	Ī	<u></u>		·			-	1	•		-
G	1					[92		••••••••••••••••••••••••••••••••••••••					94		·	İ		-
Н									}	• !	••••••••••••••••••••••••••••••••••••••	•								
ı								 !	 !						<u> </u>	ļ		<u></u>	<u>.</u>	96
K								············				94	94	 			<u> </u>	<u> </u>	77	
L		1		91		2											 	95	:	<u> </u>
M			<u> </u>	<u> </u>							3					<u> </u>			1	
N				-										······································		<u></u>				
Р				1					1	•••				94		<u></u>				
Q	. 3		92		1	90					• • • • • • • • • • • • • • • • • • • •					3			1	
R						1				•••••		1	1	•••••	1				17	
S							92					*********					94			
Т																	•••••			
V		90			89				1		91							••••		
W												••••	•••••			•••••	********			
X															••••	••••				
Υ																••••				
Z																	••••			•••••
-																				
unknown (?)															•••••					••••
not sequenced	5	5	_5	5	4	4	4	4	2	2	2	2	2	2	2	2	2	2	_1	1
sum of seq ²	92	92	92	92	93	93	93	93	95			_								
oomcaa,	88	90	92	91	89	90	92	92	89	93	91	94			********	*********		********		
mcaa'	Ε	٧	Q	L	٧	Q	S	G	Α	Е	٧	Κ	K	Р	G	E	S	L	Κ	1
rel. oomcaas	%96	%86	100%	%66	%96	97%	%66	%66	94%	%86	%96	%66	%66	%66	%66	9/0/6	%66	100%	%08	100%
pos occupied ^a	:	•	•						:	:	•	•					••••••	·····	•••••	******

Table 6F: Analysis of V heavy chain subgroup 5

												Т	-			000		-		_	_	_
amina acid	_		7 6	~ ·	4 1	2	 9	_	8	6	_					CDR					_	_
amino acid'	$\widehat{-}$	1 (7 (-	7	7	~	5	<u>സ</u>	<u>-ن</u>) <	<u>τ</u> .	, o	<u></u>	<u>۔۔۔</u>	~ ~	<u>ښ</u>	<u>۾</u>	37	<u>-</u>
Α					3	2						1						<u></u>	8		1	l
В			<u></u>		<u></u>						<u> </u>	<u>.</u>	<u></u>									
. С		9	6						1				1									Ī
D		<u>.</u>							2				2					<u> </u>	1			†
E							2						1					<u> </u>	7	*****	*****	Ť
F .			<u>.</u>			3		6		97						2			·		••••••	•
G				9	2	(33				•••••		1					7	72		•••••	•
H										******	••••••	1	1			4					******	
·									i		4	: -			-		g	3				-
Κ.			8	9					1		••••••	<u></u>	<u> </u>			-			<u>i</u>			١.
L			Ī										· 				1		<u>i</u>	<u>i</u>	2	<u>.</u>
M		<u> </u>		1					1		••••••		. <u>‡</u>	-			******	1			····· ·	-
N		1		 	<u> </u>				2		4	14				2		1:			1	
Р	1			<u> </u>		1							ļ			-						
Q			4	- 	<u> </u>							······	ļ					-				•
R			••••••	· • · · · · · · · · · · · · · · · · · ·	- 		1		2			•••••	<u></u>			1	 I		<u></u>			
S	94		•	· 	9				. <u>-</u> 34		10	61	<u></u>		······	·			<u>.</u>			
T	2	÷	· ! ·····	<u> </u>		-			5	····	•••••	16	÷	<u> </u>		2		1:	-†			•
V		 		 	 				J.		/3			ļ	<u> </u>	<u></u>	·†	·÷·····	1		_	
W				 -	-			-		<u>i</u>		•••••					÷		-		13	
Χ			·						-	<u>i</u>					······	93	ļ	<u> </u>	9	/	<u></u>	•
Υ			<u></u>		-	-	9	 N							07			<u></u>	<u>.</u>			
Z			•	<u></u>	ļ										87		ļ	<u></u>	ļ			
			<u> </u>			-	÷	÷	÷	÷	÷	_	0.7	07			<u> </u>	<u> </u>	<u>!</u>	 	$\stackrel{dash}{ o}$	=
unknown (?)					ļ !			-		<u>i</u>	<u></u>		37	97			<u></u>	<u></u>	<u> </u>			•••
ot sequenced	1	1	1	1	1	1		 I										<u></u>	<u> </u>			•••
sum of seq'	===					<u> </u>	<u> </u>		7 a	7 0	17	Q 7	97	07	0.7	0.7	07	<u> </u>	_		-	=
oomcaa,	94	96	89	92	90	ดา	Qr) Ω	1 O	7	// /5	3/ C1	ינט	الا 07	٦/ ده	9/	9/	97	9	/ 9	/ ! !	9
mcaa'	S	С	K	G	S	G	Y	, o. S	F			S .	9/	9/	۲/ 8/	93 W	93	72 G	9. W	··· <u>·</u> ·····	••••	9 F
1	%86	%OC	93%	%	••••••				- 	∔	;	<u>-</u>	%O	%C			- %		ļ			•
<u>.</u>	······································	2	ි 5	96	94	97	94	87	-	<u> </u>	`	63	2	õ	%06	ე96	96	74%	100%	%96) (%000 000 000 000 000 000 000 000 000 00

Table 6F: Analysis of V heavy chain subgroup 5

				F	ram	ewo	rk I	<u> </u>	· · · · · ·				Т							
amino acid'	39	9	41	42	43	44	45	3	5 4	48	40	· 6	3 5	: ::	- Z		۰ د	53	54	55
А				1		Ī	1	T				T				1	T		2	
В											-	<u> </u>	••••••				-			
· c											<u> </u>	<u> </u>			1			- 	- 1	† -
D		<u></u>								·	<u> </u>			1	4			· · †·····	3 93	; - }
Е		<u>.</u>			3	}		9	7				<u> </u>			-			2	· ! · · · · ·
F		<u>.</u>											1		2		•			
G		<u>.</u>	<u>.</u>	97		96	3				9!	5			-			69) 1	•
Н		<u>.</u>	<u>.</u>	<u>.</u>								-			3		···········			
1			<u>.</u>	<u></u>	<u> </u> -					1		7!	92	2		1	-	·	-	
K		1	<u>.</u>	<u> </u>	94						-					1	·	<u> </u>	<u>†</u>	<u> </u>
L	ļ	<u>.</u>	<u> </u>	<u></u>			94	ļ.		2		2	2 1				<u> </u>	<u> </u>	<u> </u>	
M		92	<u> </u>		<u> </u>					89		-	1				<u> </u>	<u> </u>	<u>†</u>	
N	ļ	<u></u>	<u> </u>	<u> </u>							Ī					<u> </u>			<u> </u>	
Р	 	<u></u>	96				2			-		-		1	93		<u> </u>	†		1
Q .	97	<u></u>	<u></u>	<u></u>			1			-						-	<u> </u>			
R	.	1	<u> </u>	<u> </u>							1	14				·}	·	1		
S		ļ		<u> </u>						Ţ	<u></u>	1			1	···		16		96
T	ļ	1		<u> </u>								3	1		1	 -	 -			
V	.	2								5	1	1	2							
W									94	<u> </u>		<u> </u>					<u> </u>			
X																				•••••
Y								ļ	3					76						
Z																				
-																97	97			_
unknown (?)							*******									•				
not sequenced		_																		
sum of seq'.	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97
oowcaa,	97	92	96	97	94	96	94	97	94	89	95	75	92	76	93	97	97	69	93	96
mcaa'	u	M	Р	G	K	G	L	E	W	М	G	1	1	Υ	Р	-	-		••••••	S
rel. oomcaas	100%	95%	%66	100%	97%	99%	92%	100%	97%	92%	%86	77%	95%	9/08/	%9(%00ı	%00 ₁	71%	%9(%66
pos occupied ⁶	1	5	2	1	2	2	3	١	2	4	3	7		6	:	1	:	6	·············	2

Table 6F: Analysis of V heavy chain subgroup 5

	_	CE	DR I										T									
amino acid'	3	00	57	28	29	8	61	62	63	2) (ဝှာ	99	67	89	69	70	71	72	73		75
Α			6					1	_	Ī		T	Ţ	_		7		88	-		_	-
В							*****	•••••				····							<u> </u>	<u> </u>		
· C						1					1	1	<u>+</u>						<u></u>	<u> </u>	+	
D	7	7		······································	-				•••••	<u> </u>		2							97	<u> </u>	-	
E		3									2							•••••	37	 	2	
F .					2				91	· · · · · ·	-			1		3		•••••				
G		1							*******		9	4									·	-
Н									••••••	·			5								·	
			4	1					1					3		38					ļ	91
K				2					******	†······	-	<u> </u>	<u>-</u>							93	<u> </u>	31
<u> </u>		<u>.</u>					1		4		<u> </u>	Ī	···÷···				2					<u> </u>
M		<u>.</u>									<u> </u>	Ī				3			<u>i</u>	••••••		1
N	2	2	1	4	2						<u> </u>		···•					 	<u>i</u>	•		
Р		<u>.</u>				g	5	1		1	 										1	
Q	<u>.</u>	<u>.</u>								91		8	1							1	·	
R		<u> </u>	7	8						3	<u></u>	•	1			1				1		
S	2	1	2	<u>.</u>	9	5	1 9)5	1						1	9	5				96	1
T	ļ	85	5	2		1				*******	······································	<u> </u>		9	6			Ť	<u>i</u>			4
V	ļ	<u> </u>			1								9	3	•••••	2		9		<u>-</u>		
W		<u></u>							•		•••••	<u> </u>	•				-					
X													<u> </u>								·	
Υ	12			9	2						********			-		-						
Z											******											
_			ļ	<u>.</u>													Ī	Ť	Ť	Ť	_	_
unknown (?)			<u> </u>	<u>.</u>		<u>.</u>														<u>-</u>		
not sequenced																						
sum of seq'	97	97	97	97	97	97	97	7 9	7	97	97	97	97	97	97	97	9	7 9	7 9	7	 97	97
oomcaa ³	77	85	78	92	95	95	9:	5 9	1 9	91	94	81	93	96	88	95	8	8 9	7 9)3	96	91
mcaa'	D	T	R	Υ	S	Р	S	F		O	G	Q		Ţ	ı	S			•••••	<	······	1
rel. oomcaas	79%	%88	%08	95%	%86	98%	%86	940%		94%	9/0/6	34%	%96	966	91%	%86	91%	2000	800	3000	99%	94%
pos occupied ^a	:			:·····		•	:	:	:		:			:	ა 5			·÷		···· - ···	ი 2	ნ 4

182

Table 6F: Analysis of V heavy chain subgroup 5

	_																			
					Frar	new	ork	111												
amino acid'	92	77	78	79	80	. 6	82	⋖	ω	·	83	84	85	98	87	88	89	90	91	92
Α			91								1	96	3		T	9:	3		T	
В										<u> </u>	·	<u> </u>	<u> </u>	-			<u> </u>	-	Ť	
. C							1				-	 -	-	<u> </u>	-		<u> </u>	· 	†	9
D		-	Ī	1					<u> </u>	†	†			96	; }			· 	· 	-
E		<u></u>	1		<u> </u>	1	<u> </u>	<u> </u>		<u> </u>	1							-	 	
F		1	•	1						<u> </u>	·	 		<u> </u>	·		-	2	6	
G	1				·		·	3	1	<u> </u>				ļ	·	4				
Н						3				<u></u>									<u>.</u>	 .
l		<u> </u>	<u></u>							<u> </u>			<u> </u>		2		9	ļ	<u> </u>	<u></u>
K			1			<u> </u>		<u> </u>	·	<u></u>	91	<u></u>	<u> </u>	 -			1	÷	<u> </u>	<u></u>
L			<u> </u>		96			<u> </u>		97	÷·	<u> </u>	<u> </u>				2	÷	<u> </u>	
М	ļ	ļ	<u> </u>		! ****-			 	ļ		<u> </u>			<u></u>			84	<u> </u>	<u> </u>	
N	7		<u> </u>		}			2	2						2			<u></u>		
Р			1														<u></u>	<u> </u>		
Q			Î			93						•••••								
R	1						1	1	3		3	•••••		•••••						•••••
S	87	2	1	1		****		90	91	•••••			96		5					
Ţ	2	94	2			•••••••		1		•••••	1		1		88	<u>:</u>	1			•••••
V			2		1	********	•••••			••••••				1						•••••
W						•••••	95					*******	••••••	••••••						•••••
Χ						•••••								********	•••••					
Υ		•		94				*******						•••••				94	89	
Z																				
-													-							
unknown (?)						*********	******			••••••	Ī				•••••					•••••
not sequenced														******				1	2	2
sum of seq ²	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	:	:	
											91									
mcaa'	S	T	Α	Υ	L	Q	W	S	S	L		Α	S	D	T	Α	М	Υ	Υ	C
rel. oomcaas	%06	97%	94%	92%	%66	%9E	%86	93%	34%	00%	94%	99%	%66	%6€	11%	%9,	87%	98%	94%	000%
pos occupied ^a	4	3	5	4	2	3	3	5	4	1	5	2	2		თ 4		••••••	·····	<u>ი</u>	••••

Table 6F: Analysis of V heavy chain subgroup 5

											CE	OR I	II .								
amino acid'	93	3 3	2 4 r	c c	. y	6	χ Σ	က်	90	Ą	8	ر	, ,) r	ט נ	۲ (C -		` ^	101
Α	9	2		1	1	2		3	4	3	2	2		1		T	1			4	2
В										••••••		Ī	<u>-</u>			-		-		<u>-</u>	
· C							1	1	1	****			2		1						
D					3	3	3	3	1	******	:	·÷·····	· 	···· i· ····		2	1	1	2		37
E				1		1			:	1	:	:				1		•	 1		
F .						1		3			3		2		····					2	6
G				1	9 1	1 1	2 1	2	5	2	4		3 1	0	2	1				5	-
Н	<u></u>		•	. :	. :	•	2	:		•••••		•	:-:	1							
1		<u>. į</u>			3		2	2	1	1	4	1		1		1	1	···•			
K	<u>.</u>	<u>.</u>	1	1	1		1	3	1		******							2		<u> </u>	
L		<u> </u>	1	1	2	3	1	1	2	5	•••••	1			1		1	- !	<u> </u>	<u> </u>	
M	<u> </u>				<u></u>	2	1	1		1	1	1		1				· † · · · ·	·	1()
N	<u> </u>	<u>.</u>	<u>.</u>		1		2		1	1	2				1				·· ·	2	
Р ·	<u> </u>	<u>.</u>		5	1	4	3	1	2				1	1	1	1	1		-	-	
Q	ļ		1 ;	3	2		1	1	4	2	1	2							-		3
R	ļ	92	2	7	9 :	2 2	2		2	1		2									
S	.		1	<u> </u>	3 2	2 (6	4	4	5	3	5	3	2	? 2	2		1		1	
T	1	ļ	1	<u> </u>	3 2	2		2	6	3	3	6	1		1				<u> </u>		
V	2	<u></u>	2	2 4	1 4	L.		1		1	2			1				<u> </u>		 -	
W		<u></u>	1		2	1						1		2		1		1	1		
X			ļ	<u>.</u>		<u></u>	<u></u>											-			
Υ			ļ	1	6	3	(3	9	8	7	2	1	2	6	8	9	9	10		1
Z			<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>									<u> </u>			
-			<u> </u>	ļ	ļ	1	1		2	8	10	16	23	30	30	31	32	30	22	7	2
unknown (?)			<u> </u>	· · ·		ļ		ļ	<u>.</u>	<u>.</u>				1	:		1				
not sequenced	2	2	52	52	52	52	52	52	2 5	2 !	52	52	52	52	52	52	52	52	52	53	52
sum of seq ²	95	95	45	45	45	45	45	45	5 4	5 4	15	45	45	45	45	45	45	45	45	44	45
oomcaa,	92	92	11	9	11	12	12	9) (8 1	0	16	23	30	30	31	32	30	22	26	37
mcaa*	Α	K	L	G	G	G	G	Υ	Υ		-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	92%	97%	24%	20%	24%	27%	27%	20%	18%		0/077	36%	51%	37%	37%	%6	1%	7%	%6	59%	82%
pos occupied ^a	3	4	13	16	14	18	16	15	16	5 1	5	14	11	11	9	و 8	4	<u>و</u> 6	6	<u>ഗ</u> 4	<u>.</u> 5

Table 6F: Analysis of V heavy chain subgroup 5

				-	F	rame	ewo	rk IV	,				7
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
Α			Ī			Ī			T			1	611
В												1	
С					<u> </u>	<u> </u>						<u> </u>	205
D	1			<u> </u>	Ī						1		458
Е				1		-						<u>.</u>	404
F	2												256
G		-	41		41								1065
Н							<u> </u>					·····	44
ı	9					·	†		2				588
К				3		<u> </u>	<u> </u>	-					650
L	2				1		25	1					549
М				<u></u>			8	· [303
N				<u> </u>									64
Р	2					1		†			1		414
Q				34	·							,	612
R				3	·····	 	!		ļ		ļ		351
S	2					 !	<u> </u>	 !			40	39	1545
Т	1	: :				40	8		39		ļ		604
V	11							40		41			594
w		43								••••			432
X										•••			
Y	13					•							738
Z			•			•				**			
-	2												635
unknown (?)						•	••••			••••••	••••		4
not sequenced	52	54	56	56	56	56	56	56	56	56	56	57	1678
sum of seq'	45	43	41	41	41	41	41	41	41	41	41	40	
	•	:	:					40	•••••	•••••••	************		
mcaa⁴	Υ		G	Q		T	L	٧	T	٧	S	·····	
rel. oomcaas	%	%C	%C	%	%C	ي	Q.	98%	<u>چ</u>	%00		9	
									950	5	%86	98%	
pos occupied ⁶	10	1	1	4	1	2	3	2	2	1	2	2	

185

Table 6G: Analysis of V heavy chain subgroup 6

	L														Fran	newo	ork I			
amino acid'		^	ı ٣	. 4	<u>ري</u>	. e	, ,	. α	, o	, =	? =	2	<u> </u>	4	. r	9	2	8	6	. (
Α											Ī	T	1		T		T			Ī
В		<u></u>	<u> </u>																<u> </u>	<u> </u>
· C										•••••						<u> </u>		<u> </u>	İ	
D										<u> </u>	-							<u> </u>	<u>.</u>	
E									-	-	-		-		-			<u></u>		-
F .											-	-					·		·	
G								5	2	67	,			-			.	·	•	-
Н										-						1				
										·	<u>.</u>	<u> </u>	<u> </u>			<u> </u>				
K									-		<u> </u>	<u> </u>	68	}					<u></u>	
L			Ī	52					1	<u> </u>	68	} 1					†	67	1	. 6
М				-								<u> </u>	İ				<u> </u>	<u> </u>	<u> </u>	-
N							-	·		<u> </u>	<u> </u>	· 		†			<u> </u>		ļ	
Р			Ī						68	-	·····	†		67					1	
Q	52		52		51	52				†						68	}			
R					1				*******	1	ļ				ļ		ļ			
S							52		<u> </u>	<u></u>	<u></u>	İ		1	68		 !		66	
T										<u> </u>							68			<u></u>
V		52								<u></u>	••••••••••••••••••••••••••••••••••••••	66						1		
W					**********							!	<u> </u>						•••••	
X								<u></u>					<u> </u>						••••••	
Y					*********	•••••	••••			•••••		 !								
Z					••••••		****			•••••	•									•••••
-																				_
unknown (?)											•••••			••••••						•••••
not sequenced	22	22	22	22	22	22	22	22	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq ²	52	52	52	52	52	52	52	52	68	68	68	68					:			
oomcaa,	52	52	52	52	51	52	52	52	68	67	68	66	68	67	68	68	68	67	66	68
mcaa*	Q	٧	Q	L	Q	Q	S	G		G	L	٧		Р	S	Q	T	······	S	******
rel. oomcaas	100%	100%	100%	100%	%86	100%	100%	100%	100%	%66	100%	9/0/6	100%	%66	100%	%00 ₁	0001		97%	0000
oos occupied ⁶	1	1	1	1	2	1	1	1	1	2	1	3	1	2		1	·····- -		••••••	

Table 6G: Analysis of V heavy chain subgroup 6

	_							-			T		_		DRI	_			Т	
amino acid'	21	22	23	24	25	26	27	28	29	30	31	⋖	8			34	35	36	37 1	
А	7		67	-	Ī	Ī	T	T	T	<u> </u>		T	<u> </u>	 -	67	:				<u> </u>
В			<u> </u>	<u> </u>	<u> </u>	<u> </u>	-				·	<u> </u>					<u> </u>	 	<u> </u>	
С		68		<u> </u>		<u> </u>			<u> </u>	-	·	<u> </u>		-	<u> </u>	·		<u>.</u>		-
D		-		-			68	}			1		·			<u> </u>	1	<u> </u>	 	
E										1								<u> </u>	-	<u> </u>
F .										2				1	1		·		1	
G			1			69							3	1	2	-	†	<u> </u>		<u> </u>
Н	<u> </u>									<u></u>	<u> </u>						1	·	-	+
<u> </u>		<u></u>	<u></u>	64								2			<u></u>		1		70)
K		<u>:</u>								<u></u>		3					<u> </u>	<u> </u>		<u> </u>
L		<u> </u>	<u> </u>							<u> </u>						 	<u> </u>	 -		1
M	.	<u> </u>										<u> </u>				<u> </u>	<u> </u>			<u> </u>
N							1		<u> </u>		2	66					70	<u></u>	<u> </u>	<u> </u>
Р									······································				•••••				-		 !	-
Q													••••••							<u></u>
R											2	1	•••••	*******						7
S	1			1	69			69		68	66		67		3		1		•••••	
Ţ	67										2	1	4	•••••	1	••••		••••	••-	
V			1	4					70		•			6		•••••••			2	
W		1													•	74		74	*******	
Χ													•							
Y												1				******			1	
Z																********				
_													_							
unknown (?)											1									
ot sequenced	5	5	5	5	5	5	5	5	4	4										
sum of seq ²	69	69	69	69	69	69	69	69	70	70	74	74	74	74	74	74	74	74	74	74
												66								
mcaa'	Ţ	С	Α	1	S		D		٧	S	S		S	Α			N	*******	1	******
rel. oomcaa ^s	92%	%66	92%	93%	100%	100%	%66	100%	100%	92%	%68	%68	91%	89%	91%	100%	95%	100%	%56	100%
pos occupied ^e	3	2	3	3	1	1	2	1	1	2	••••••	6	••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••		····÷	1	··	1

WO 97/08320 .

Table 6G: Analysis of V heavy chain subgroup 6

				Fr	ame	wor	k II													
amino acid'	33	40	4	42	43	44	45	46	47	48	49	20	51	52	⋖	8	U	53	54	U
Α				1							Ī		1					1		T
В		<u> </u>											-					-		
. С											<u> </u>	<u> </u>	<u></u>				<u> </u>	<u> </u>		
· D			1	<u> </u>						<u> </u>	<u> </u>							·	<u> </u>	Ť
E								74		<u> </u>	1						<u> </u>	<u> </u>		<u> </u>
F .									1			<u> </u>		2	1			1		-
G		-				74		·}	·		74	1	······				 -		1	
Н								·····			•			 	1					
ı				:					†	<u></u>	<u> </u>	 !			<u> </u>	-				-
K	1				1		••••				<u> </u>	<u></u>				1			66	:
L	1			:			74			74	<u></u>				······································		!			:
М				<u> </u>			*********								······		 	 		
N							••••••												1	
Р			73				*******							•••••		 				
Q	72						********		·······					•••••		······································	···	 !		
. R					73		•	•••••		•••••		73		********		72			1	••••
S		74	1	7 3			•								•••••	1		72		
Ţ								••••••	••••••				73						5	••••
V							••••	•••••	•				•••••							
W									74						•	•••••				7
Χ																	•••			•••••
Υ		·												72	72					
Z															••••••					•••••
_																	74			
unknown (?)														••••••						
ot sequenced																				••••
sum of seq'	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	7
oomcaa,	:	:		:	:		**********		••••••	·····÷	•		73	•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •		·····			••••
mcaa*		S		S	R	G	L			L						R			Κ	••••
rel. oomcaa ^s	97%	%001	99%	%66	%66	100%	100%	100%	100%	100%	100%	%66	%66	92%	97%	97%	%001	97%	39%	3000
os occupied ^a	:		•	2				:	:	:	•	•	2	:	:			•	••••••	••••

Table 6G: Analysis of V heavy chain subgroup 6

	_	CDF	}									Τ								
amino acid'	56	27	58	59	09	61	62	63	64	65	99	67	- 89	69	70	71	72	73	74	75
А					73		$\overline{}$			_		T		2		-;-	5		-	T
В									<u> </u>			<u> </u>								†
· C				1	1				-	- 			<u> </u>				 			<u> </u>
D			68	}	<u> </u>	1					· ‡ -	-				2	73	- 	 	
E	1		3			7	,			 	<u> </u>	<u> </u>						ļ	<u> </u>	2
F	7									1	1						·····	 -	<u> </u>	
G			1				1	1		8					- -	·	·		·	†
Н	1	<u>.</u>											•				1		<u> </u>	+
1	<u> </u>	<u>.</u>	<u>.</u>			1						65	2	71	·		······	1		<u> </u>
K		1	<u> </u>	<u> </u>	<u>.</u>				67	· [<u> </u>				1	<u> </u>		<u> </u>	<u></u>	70
L	1		<u> </u>			5		2		-		4					 -	1		
M				<u> </u>			•			1	<u> </u>	1								
N	2	65	1						1]					69					
Р		ļ			1	1						······································				66				
Q									2		1						,			
R		1							3		73							• • • • • • • • • • • • • • • • • • • •		
S	2	2	1	1			73			66	•	••••	1	********	2	1			73	
Т	<u> </u>	4											69	1			••••			2
V						58		72				4	••••••	2		1	•••••	*********		
W																		•••••		
X						*******														
ΥΥ	60	1		72		•••••												······		***
Z																			••••••	
-							******													
unknown (?)																				
not sequenced	===																			
sum of seq'	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
	60	65	68	72	73	58	73			66										
mcaa¹	Υ	N	D	Υ	Α	٧	S	٧	K	S	R	1	Ţ	1	N	Р	D	T	S	Κ
rel. oomcaa ^s	81%	%88	92%	97%	%66	78%	%66	97%	91%	89%	%66	988%	93%	%96	93%	89%	%66	%96	%66	95%
pos occupied ⁶												4	4	3	4		2	4	2	3

Table 6G: Analysis of V heavy chain subgroup 6

															•						
					Fra	mev	vork	111													
amino acid'	92	77	78	29	2	2	. 6	7 <	ς α	ے د	, "	3 8	ט מ	5 9	00	3 8	8 6	n 0	S 6	- 6	3.5
Α													Ī	1		7	4	T	T	1	-
В											<u> </u>						·	<u> </u>			
· C												··· ·	T.				<u> </u>		-	7	3
D									3	<u>-</u>	•		<u> </u>	7	3						-
E										-	<u> </u>		7						-		
F .			7	1						1		-	*******	-						3	
G															1						-
Н						1	2		1									·•			-
. 1			1							•		-				<u> </u>		2			
К									4		<u> </u>	<u> </u>	•	-				<u> </u>		- 	-
L		1			74		72	2		1	Ī	<u> </u>				-	<u> </u>				
М							1			1	·			-				2			
N	74							63	3											 	-
Р										1		70)		·	·	<u> </u>				
Q		72				71	-			•						<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
R		1				1	-	1			<u> </u>						.				-
S				74				1	73	3	1	3					·	·	-		
T								1		-	73		<u> </u>		74		 	1	·	 -	-
V			2				1		Ī	73		 	<u> </u>	·			70			†	
W										<u> </u>								1	÷		-
χ																	 	·	<u> </u>	<u> </u>	-
Υ										1						·····	ļ	73	70		
Z															ļ						•
-												_					<u> </u>				
unknown (?)								******	······	<u> </u>			 !	•••••				•	<u></u>	!	
not sequenced												1				•••••			<u></u>	<u></u>	
sum of seq²	74	74	74	74	74	74	74	74	74	74	74	73	74	74	74	74	74	74	74	74	
oomcaa,	74	72	71	74	74	71	72	63	73	73	73	70	73	73	74	74	70	73	70	73	
mcaa¹	N	Q	F	S	L	Q	L	N	S	٧	_ :	Р	Ε	D	T	Α		Υ	Υ	********	
rel. oomcaas	100%	92%	%96	100%	100%	%96	97%	85%	%66	%66	%66	%96	%66	%66	100%	100%	95%	%66	95%	%66	
pos occupied ⁶	1	3	3	1	1	3	3	7	2	2	2	2	2	2	1	1		2		2	
			•						19			********								· 	;

Table 6G: Analysis of V heavy chain subgroup 6

	CDR III																			
amino acid'	93	94	95	96	97	98	66	100	∢	8	U	۵	ш	щ	တ	I		_	×	101
Α	69		11	1	3	12	4	3	2	5		8					Ī	10	1	
В			:					 !				<u> </u>					<u> </u>		 	
· C					1		1			1		1	1				-		<u> </u>	
D			19	4	3	7	4	3	1	6	1	1	1					<u> </u>		62
E			10	4	2	1	2	2	1	2							1			
F	1		1	1	1		1	2	3		2	· • • • • • • • • • • • • • • • • • • •		1					38	4
G	1		16	4	15	15	11	8	6	2	5	1	8	6	1	<u></u>	••••••••••••••••••••••••••••••••••••••	17		
Н				1		1			1	1	1	1				1	1	1		
l l			<u> </u>	1	2		2		5	1										
K		1	1	1	1	1	1	1				1								
L			1	8	4	2	3	2	1					1	5				8	
Μ				1				1			5								11	
N			1	3	1	2	1	1	1	3		2		1	••••	1	3			
Р				10	4		5	3		5	1		1	••••••	••••					
Q			1	1	1	1	***************************************		•		1			•••••						1
R		69	1	7	8	1	8	8	3		1	1	5							1
S		3	5	5	5	7	6	7	3	4	2			•••••		1	1			*******
T			1	1	4	3	4	4	6	3	1		•••••	1						
V	3	1	4	5	1	9			4		9	5	1	1		••••			2	
W			1	6	8		3	2	4								4	4		
X										·····				•••••						
Y				6	4	2	2	2	6	6	2	4	2	1	8	8	12	12		
Z																				
_				2	3	7	14	23	25	33	41	47	53	54	57	56	50	28	12	4
unknown (?)															1		•••••	İ		
not sequenced				1	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq²	74	74	73	72	71	71	72	72	72	72	72	72	72	72	72	72	72	72	72	72
oomcaa ³	69	69	19	10	15	15	14	23	25	33	41	47	53	54	57	56	50	28	38	62
mcaa'			D				-	-	-	-	-	-	-	-	-	-	-	-	F	••••••
rel. oomcaa ^s	93%	93%	26%	14%	21%	21%	19%	32%	35%	₄ 6%	57%	35%	74%	75%	%6,	,8%	%6;	%61	3%	%98
pos occupied ^a		:	:	•												•				

Table 6G: Analysis of V heavy chain subgroup 6

		_	Francis L DZ										7	
		L	102 103 104 105 106 107 107 108 113 113											
	amino acid'	102	103	104	105	106	107	108	109	110	=	117	113	sum
	Α								2					494
	В											<u> </u>	-	1
	С						- -	<u> </u>	-			<u> </u>		147
	D									1				403
	E													186
	F	2	2									2	2	150
	G			49)	50)							571
	Н	2	?									-	Ť	18
	1	g)				3	}	1					304
	K				1			1						293
	L	5						26						632
	М							8			_			31
	N		<u>.</u>										-	436
	Р	4		<u></u>	6								1	387
	Q				40								,	539
	R		<u></u>		2	! ! !	<u>.</u>							495
	S	4		1	<u>.</u>		1					43	46	1271
	T		<u> </u>				45	4		45				640
	V	21		<u> </u>				2	46		48			647
	W		65					5						398
	X													ļ
١	Y	19					,							518
ı	Z													
	* **	2												585
	unknown (?)													13
	not sequenced	5	8	23	24	23	24	25	25	28	25	28	26	580
	sum of seq'	68	65	50	49	50	49	48	48	45	48	45	47	
	oomcaa,	21	65	49	40	50	45	26	46	45	48	43	46	
	mcaa⁴	٧	W	G	Q	G	Ţ	L	٧	T	٧	S	S	
	rel. oomcaas	%	%C	%	82%	%	0	Q.	Q.	%(%(Q	,o	
	<u> </u>	:		••••••	······ ·		·····	•••••	%96	100%	100%	%96	98%	
	pos occupied ⁶	9	1	2	4	1	3	7	3	1	1	2	2	

192

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 . Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816-5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 4 Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.
- Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L. Spinelli, S., Touchard, G., Preud'homme, J.-L. & Cogne, M. (1993) J.lmmunol., 150, 3561–3568.
- 6 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- 8 Barbas, C.F., lii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181-189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- 12 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799-3803.
- Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905.

- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900–1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688–694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869-2873.
- 22 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401–1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98-103.
- Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989) J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353-367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405-1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- 30 Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 31 Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991) Arthritis And Rheumatism, 34, 343-350.
- Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., Iadarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

36 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.

- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158-3163.
- 39 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- 40 Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155-3161.
- 41 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 42 Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207; Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- 43 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077-1080.
- 44 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718-1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195-205.
- 45 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc.Acids Res., 12, 5249-5263.
- 47 Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195-2199.
- 48 Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.; Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.
- 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
- 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
- 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp.Med., 167, 840-852.
- 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.Immunol., 142, 4261-4268.
- 53 Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur.J.Immunol., 23, 3272-3277.
- Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6515-6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995-7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903–1911.
- 60 Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 63 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503-1504.
- 65 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)
 J.Immunol., 131, 1322-1325.
- 66 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)
 J.Immunol., 131, 1322-1325.
- 67 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)
 J.Immunol., 131, 1322-1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)
 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

- 74 Marsh, P., Mills, F. & Gould, H. (1985) Nuc.Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671-3673.
- 76 Milstein, C. & Deverson, E.V. (1971) Biochem.J., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur J. Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 81 Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805–810.
- 82 Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 85 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651-1654; (1975)
 Z.Physiol.Chem., 356, 167-191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand-J.Immunol., 36, 349-362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp.Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- 93 Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem. Biophys. Res. Commun., 179, 372-377.

197

94 Pratt, L.F., Rassenti, L., Larrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.

- 95 Prelli, F., Tummolo, D., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 98 Rassenti, L.Z., Pratt, L.F., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060-1066.
- 99 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- Riesen, W., Rudikoff, S., Oriol, R. & Potter, M. (1975) Biochemistry, 14, 1052-1057; Riesen,
 W.F., Braun, D.G. & Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096-2100; Riesen, W.F.
 & Jaton, J.C. (1976) Biochemistry, 15, 3829.
- 102 Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111-115; (1972)
 Z.Physiol.Chem., 353, 345-370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Pollock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.Immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.Immunol., 151, 2296-2308.

111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.

- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- Suter, L., Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- 117 Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603-1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur.J.Immunol., 23, 391-397.
- , 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, I.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795–2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids Res., 17, 3975.

2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc. Acids Res., 13, 2931-2941.

- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767; Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- 7 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
- 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
- 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- 14 Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand.J.Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.Immunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur.J.Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Linke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.Immunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149-155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901-906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. & Cornwell, G.G., Iii (1988) Biochem.J., 256, 973-980.

24 Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.

- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.
- 27 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 29 Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem.J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem J., 268, 135-140.
- 32 Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848-852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.Immunol., 131, 1871–1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.Immunol., 124, 301-306.
- 35 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 36 Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415-421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.Immunol., 17, 1407-1414.
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin. Exp. Immunol., 71, 508-516.
- 40 Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-

- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- 43 Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 45 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.
- 46 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020; Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006-9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718-1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 49 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581–597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L. & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349-357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem.J., 110, 631-652.
- 52 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol.Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971)
 Z.Physiol.Chem., 352, 859-877.

Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 867-871; (1971)
 Z.Physiol.Chem., 352, 247-266.

- 60 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- 64 Sletten, K., Husby, G. &t Natvig, J.B. (1974) Scand.J.Immunol., 3, 833-836.; Sletten, K., Natvig, J.B., Husby, G. &t Juul, J. (1981) Biochem.J., 195, 561-572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453-460.; Frangione,
 B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490-2493.
- Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979)
 J.Biochem., 86, 1523-1535.
- Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321-333.
- Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686-3690.
- Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol. Chem. Hoppe-Seyler, 366, 617-625.
- 72 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228–1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl. Acids Res., 12, 8407-8414.
- Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992) Mol.Immunol., 29, 723-728.
- 76 Tveteraas, T., Sletten, K. & Westermark, P. (1985) Biochem.J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

78 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603–1613.

- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol.Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107-1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.Invest., 85, 1722-1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Conley, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- 9 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- 10 Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.

- Barbas, C.F., Iii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812–823.
- 13 Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529–1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.
- Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845-848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 22 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 23 Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553-560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Trela, M., Sklar, J. & Levy, R. (1986) Cell, 44, 97-106.
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur.J.Immunol., 23, 110-118.
- 27 Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3-24.

Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161-3170.

- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- 31 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- 32 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991) Arthritis And Rheumatism, 34, 343–350.
- Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- 41 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- 42 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 43 Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781-1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934–1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- 45 Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.

46 Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741-3752.

- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689-1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331-1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325-1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294-1301.
- 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087-2096.
- Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 56 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993)
 J.Exp.Med., 178, 1903-1911.
- Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318 1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
- 59 Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975)
 Z.Physiol.Chem., 356, 1337-1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717-1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181-189.
- 63 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 64 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.

- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020.
- Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203-213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989)
 J.Exp.Med., 170, 1347-1355.
- Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 74 Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, J.Juliusson, G. & Einhorn, S. (1988) J.Immol., 141, 3994-3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- 76 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.lmmunol., 150, 1348-1357.
- Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 80 Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391-1403.
- 81 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831–842.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N., Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.

- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992) J.Immunol., 149, 2337-2344.
- Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351,
 1591–1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571–1604.
- 88 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372–377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041-2046.
- 91 Press, E.M. & Hogg, N.M. (1970) Biochem.J., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83-103.
- Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, L.C. (1981)
 Proc.Nat.Acad.Sci.Usa, 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L. & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- 94 Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247-251.
- Rabbitts, T.H., Bentley, D.L., Dunnick, W., Forster, A., Matthyssens, G. &t Milstein, C. (1980) Cold Spring Harb.Symp.Quanti.Biol., 45, 867-878; Matthyssens, G. &t Rabbitts, T.H. (1980) Proc.Nat.Acad.Sci.Usa, 77, 6561-6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 97 Rassenti, L.Z. & Kipps, T.J. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526–1530.
- Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.

- 102 Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 107 Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-8567.
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020-8023.
- 112 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 113 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 114 Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821-2828.
- 116 Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

120 Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835-2839.

- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp.Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973)
 Z.Physiol.Chem., 354, 1505-1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- 130 Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481–1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.
- B. References of germline sequences

References of human germline kappa sequences

- 1 Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827-836.
- 2 Huber, C., Et Al. (1993) Eur.J.Immunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur.J.Immunol. 22, 1023.
- 5 Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25, 479.

6 Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur.J.Immunol., 21, 1821-1827.

- Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495–3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H.D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- 12 Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601-607.

References of human germline lambda sequences

- 1 Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456-1461.
- Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L. & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids.Res., 17, 3976.
- Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992) Mol.Immunol., 29, 1515-1518.
- Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc. Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.

Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.

- Buluwela, L. & Rabbitts, T.H. (1988) Eur.J.lmmunol., 18, 1843-1845.; Buluwela, L., Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7, 2003-2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 6 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986)
 J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761-768.
- Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047-1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501-2506.
- Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993). (Temporal)
- 16 Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405-4409.
- 17 Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- 18 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 19 Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter. G. (1992) J.Mol.Biol. 227, 776-798.

20 Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.Immunol., 150, 2858-2868.

- 21 Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993) Eur.J.Immunol., 23, 832-839.
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234–2240.
- 23 Weng, N.-P., Snyder, J.G., Yu-Lee, L.-Y. & Marcus, D.M. (1992) Eur.J.Immunol., 22, 1075-1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson, D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193-203.
- 26 Chen, P.P.& Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)

Claims

1. A method of setting up one or more nucleic acid sequences encoding one or more (poly)peptide sequences suitable for the creation of libraries of (poly)peptides said (poly)peptide sequences comprising amino acid consensus sequences, said method comprising the following steps:

- deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
- optionally, identifying amino acids in said (poly)peptide sequences to be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
- (c) identifying at least one structural sub-element within each of said (poly)peptide sequences;
- (d) backtranslating each of said (poly)peptide sequences into a corresponding coding nucleic acid sequence;
- (e) setting up cleavage sites in regions adjacent to or between the ends of sub-sequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- 2. A method of setting up two or more sets of one or more nucleic acid sequences comprising executing the steps described in claim 1 for each of said sets with the additional provision that said cleavage sites are unique between said sets.
- 3. The method of claim 2 in which at least two of said sets are deduced from the same collection of at least three homologous proteins.
- The method according to any one of claims 1 to 3, wherein said setting up further comprises the synthesis of said nucleic acid coding sequences.
- The method according to any one of claims 1 to 4, further comprising the cloning of said nucleic acid coding sequences into a vector.

6. The method according to any one of claims 1 to 5, wherein said removal of unfavorable interactions results in enhanced expression of said (poly)peptides.

- 7. The method according to any one of claims 1 to 6, further comprising the steps of:
 - (f) cleaving at least two of said cleavage sites located in regions adjacent to or between the ends of said sub-sequences; and
 - (g) exchanging said sub-sequences by different sequences; and
 - (h) optionally, repeating steps (f) and (g) one or more times.
- 8. The method according to claim 7, wherein said different sequences are selected from the group of different sub-sequences encoding the same or different sub-elements derived from the same or different (poly)peptides.
- 9. The method according to claims 7 or 8, wherein said different sequences are selected from the group of:
 - (i) genomic sequences or sequences derived from genomic sequences;
 - (ii) rearranged genomic sequences or sequences derived from rearranged genomic sequences; and
 - (iii) random sequences.
- 10. The method according to any one of claims 1 to 9 further comprising the expression of said nucleic acid coding sequences.
- 11. The method according to any one of claims 1 to 10 further comprising the steps of:
 - screening, after expression, the resultant (poly)peptides for a desired property;
 - (k) optionally, repeating steps (f) to (i) one or more times with nucleic acid sequences encoding one or more (poly)peptides obtained in step (i).
- 12. The method according to claim 11, wherein said desired property is selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

13. The method according to any one of claims 1 to 12, wherein said cleavage sites are sites cleaved by restriction enzymes.

- 14. The method according to any one of claims 1 to 13, wherein said structural sub-elements comprise between 1 and 150 amino acids.
- 15. The method according to claim 14, wherein said structural sub-elements comprise between 3 and 25 amino acids.
- 16. The method according to any one of claims 1 to 15, wherein said nucleic acid is DNA.
- 17. The method according to any one of claims 1 to 16, wherein said (poly)peptides have an amino acid pattern characteristic of a particular species.
- 18. The method according to claim 17, wherein said species is human.
- 19. The method according to any one of claims 1 to 18, wherein said (poly)peptides are at least part of members or derivatives of the immunoglobulin superfamily.
- 20. The method according to claim 19, wherein said members or derivatives of the immunoglobulin superfamily are members or derivatives of the immunoglobulin family.
- 21. The method according to claim 19 or 20, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3.
- 22. The method according to claim 20 or 21, wherein said (poly)peptides are or are derived from the HuCAL consensus genes:
 Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Cκ, Cλ, CH1 or any combination of said HuCAL consensus genes.
- 23. The method according to any one of claims 20 to 22, wherein said derivative of said immunoglobulin family or said combination is an Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragment.

24. The method according to claims 22 to 23, wherein said derivative is an scFv fragment comprising the combination of HuCAL VH3 and HuCAL V\(\text{\chi}\)2 consensus genes that comprises a random sub-sequence encoding the heavy chain CDR3 sub-element.

- 25. The method according to any one of claims 1 to 24, wherein at least part of said (poly)peptide sequences or (poly)peptides is connected to a sequence encoding at least one additional moiety or to at least one additional moiety, respectively.
- 26. The method according to claim 25, wherein said connection is formed via a contiguous nucleic acid sequence or amino acid sequence, respectively.
- 27. The method according to claims 25 to 26, wherein said additional moiety is a toxin, a cytokine, a reporter enzyme, a moiety being capable of binding a metal ion, a peptide, a tag suitable for detection and/or purification, or a homo- or hetero-association domain.
- 28. The method according to any one of claims 10 to 27, wherein the expression of said nucleic acid sequences results in the generation of a repertoire of biological activities and/or specificities, preferably in the generation of a repertoire based on a universal framework.
- 29. A nucleic acid sequence obtainable by the method according to any of claims 1 to 28.
- A collection of nucleic acid sequences obtainable by the method according to any of claims 1 to 28.
- 31. A recombinant vector obtainable by the method according to any of claims 5 to 28.
- 32. A collection of recombinant vectors obtainable by the method according to any of claims 5 to 30.
- 33. A host cell transformed with the recombinant vector according to claim 31.

34. A collection of host cells transformed with the collection of recombinant vectors according to claim 32.

- 35. A method of producing a (poly)peptide or a collection of (poly)peptides as defined in any of claims 1 to 28 comprising culturing the host cell according to claim 33 or the collection of host cells according to claim 34 under suitable conditions and isolating said (poly)peptide or said collection of (poly)peptides.
- A (poly)peptide devisable by the method according to any one of claims 1 to 3, encoded by the nucleic acid sequence according to claim 29 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 37. A collection of (poly)peptides devisable by the method according to any one of claims 1 to 3, encoded by the collection of nucleic acid sequences according to claim 30 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 38. A vector suitable for use in the method according to any of claims 5 to 28 and 35 characterized in that said vector is essentially devoid of any cleavage site as defined in claim 1(e) and 2.
- 39. The vector according to claim 38 which is an expression vector.
- 40. A kit comprising at least one of:
 - (a) a nucleic acid sequence according to claim 29;
 - (b) a collection of nucleic acid sequences according to claim 30;
 - (c) a recombinant vector according to claim 31;
 - (d) a collection of recombinant vectors according to claim 32;
 - (e) a (poly)peptide according to claim 36;
 - (f) a collection of (poly)peptides according to claim 37;
 - (g) a vector according to claim 38 or 39; and optionally,
 - (h) a suitable host cell for carrying out the method according to claim 35.
- **41**. A method of designing two or more genes encoding a collection of two or more proteins, comprising the steps of:

- (a) either
 - (aa) identifying two or more homologous gene sequences, or
 - (ab) analyzing at least three homologous genes, and
 deducing two or more consensus gene sequences therefrom,
- (b) optionally, modifying codons in said consensus gene sequences to remove unfavourable interactions between amino acids in the resulting proteins,
- (c) identifying sub-sequences which encode structural subelements in said consensus gene sequences
- (d) modifying one or more bases in regions adjacent to or between the ends of said sub-sequences to define one or more cleavage sites, each of which:
 - (da) are unique within each consensus gene sequence,
 - (db) do not form compatible sites with respect to any single sub-sequence,
 - (dc) are common to all homologous sub-sequences.
- 42. A method of preparing two or more genes encoding a collection of two or more proteins, comprising the steps of :
 - (a) designing said genes according to claim 41, and
 - (b) synthesizing said genes.
- 43. A collection of genes prepared according to the method of claim 42.
- 44. A collection of two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and

- (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- **45**. The collection of genes according to either of claims 43 or 44 in which each of said gene sequences has a nucleotide composition characteristic of a particular species.
- 46. The collection of genes according to claim 45 in which said species is human.
- 47. The collection of genes according to any of claims 43 to 46 in which one or more of said gene sequences encodes at least part of a member of the immunoglobulin superfamily, preferably of the immunoglobulin family.
- 48. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody heavy chains.
- 49. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody light chains.
- 50. A collection of vectors comprising a collection of gene sequences according to any of claims 43 to 49.

51. The collection of vectors according to claim 50 comprising the additional feature that the vector does not comprise any cleavage site that is contained in the collection of genes according to any of claims 43 to 49.

- **52.** A method for identifying one or more genes encoding one or more proteins having a desirable property, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins.
 - screening said collection to isolate one or more proteins having a desired property,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the proteins isolated in step (b) one or more genetic sub-sequences encoding structural subelements, and replacing said sub-sequence(s) by one or more second sub-sequences encoding structural sub-elements, to generate new vectors according to either of claims 50 or 51.
 - (e) optionally, repeating steps (a) to (c).
- **53**. A method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims50 or 51 a collection of proteins,
 - (b) screening said collection to isolate one or more antibody fragments which bind to said target,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the antibody fragments isolated in step (b) one or more genetic sub-sequences encoding structural sub-elements, and replacing said sub-sequence(s) by one or

more second sub-sequences encoding structural sub-generate new vectors according to either of claims 50 or 51,

- (e) optionally, repeating steps (a) to (c).
- 54. A kit comprising two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 55. A kit comprising two or more genetic sub-sequences which encode structural sub-elements, which can be assembled to form genes, and which carry cleavage sites, each of which:
 - (a) lie at or adjacent to the ends of said genetic sub-sequences,
 - do not form compatible sites with respect to any single sub-sequence, and
 - (d) are common to all homologous sub-sequences.

Figure 1: construction of a synthetic human antibody library based on consensus sequences

Figure 2A: VL kappa consensus sequences

_	٦ _	<u></u>				_		_				
	5	'	<u></u>		<u>ن</u> ،			75		\propto	· ~	~~
	8	'			>		=	: 82	ila	Z) -
<u>~</u>	A		S				CDR	25		S	S	S
CDRI	72	1	O	_	_			2ا (۱	∢	9	< <	< <
	97		S					_] 09	<		Ŋ	\geq
	25	1	S					6t	· >	>	>	>
<u> </u>	77	2	<u>~</u>	<u>~</u>	<u>~</u>			84	-	_		_
	23	0	C	ပ	S			124	1-		_	_
	22		S	S	Z			97	-	_	_	_
	21	_						St	$ \times $	O	\propto	\prec
	50		S	 	-		x 2	77	_	٥	٥	٥
	61	>	⋖	A	<		10V	43	<	S	X	م
	81	2	Δ_	\propto	\propto		le V	72	$ \times $	O	O	O
	21		ш ш	<u>п</u>	ш		framework	lτ	9	G	G	9
	91	9	9	9	G		1	"	م	٥	Д	۵_
	91	>	<u>م</u>	٩				36	X	\checkmark	\times	\times
논	tl 0	S	_	S	S			38	Q	O	Q	9
framework	13	A	>		>			37	Q		O	0
ne	15	S.	۵.	S	Α.			36	/	≻	_	>
rar	11	S			ا		<u> </u>	32		>	>	3
	01	S	01	A	S (34	A		Α.	4
	6	۵.	_	Д Д	P D			33	7 ,			
	8	S	S	S	S			35	S	<i>></i>	<i>></i>	~
	9		Q.		0		=	31	S	_	S	Z
	G	Q M T Q		<u>⊢</u>	. i		CDRI	30		<u> </u>	10	×
1	5 7 8 7	>	1 V M T	1 7 \	N >			50	- 9	9 2	S	S S N N
	٤	0	>	>	>			28	1	-	1	
	7.	_	_	_	_			E	ı	S	ı	S
	i l					ı		וה	ı	I	1	
	- [VK1 D	Vk2	VK3	VK4 D	Į		u [\ \ \ \ \
		≯	≯	\gtrsim	≯				/k1	VK2	Vk3	≯

S
A :
v
ಲ
_
_
01
_
~
_
O
_
Š
-
S
S
Ξ.
~
v
_
_
<u>~</u> .
Š
10
_
Š
\mathbf{c}
-
\mathbf{c}
-
ന
õ
_
a
ч
арра
\sim
_
_
>
::
2A:
٠.
N
٠,
٠.
v
_
_
ğ
_
O
ш.
ч.

19 X	V P D R	V P D
89 > >	- 1	- 1
72 0 0 0 0	- 1	
) =1		ı
CDRI CDRI CD S S S S S S S S S S S S S S S S S S S	- 1	ı

Figure 2B: VL lambda consensus sequences

_	٦	·			٦		_			
	82	1	>	_			_]	g	Ö	9
	3	Z		1			99	$ \sim$	S	S
12	0	S	S	1			99	ام	۵	۵
CDRI	72	1	Ś	\forall		=	179	2	\propto	\propto
	97	1	—			CDR	53	a	Z	
	25	1	Ð	G		ျပ	25	Z	S	S
<u></u>	74	4	⊢	S			19	Z	>	
	23	1	S	S			09			
•	22	S	S	S			67	>	>	>
	12	-	_				84	-		_
	50	 - -	—	8		,	14	_	Σ	>
	16	>		\forall			97	-	_	
	81	8	S	—			St	\times	\checkmark	>
	11	a	Q	O		\$	77	مـ	٥	ما
	91	9	G	9		lo.	43	⋖	A	∢
	91	٩	Δ.	ط		framework	77	⊢	\checkmark	0
k 1	τl	A	S	Α.		am	·lt	O	G	9
framework 1	13	9	G	>		f-	07	٥	٩	۵.
<u>ا</u>	15	S	S	S			38	7	エ	\times
'n	11	>	>	>	•		38	Q	O	0
₽	10		ı	1			37	O	O	9
Ì	6	S	S	S			36	>	>	>
	8	Д	A	۵			35	≥	\geq	3
	7	J P	Д (7 P			34	S	S	S
	9)	0	0			33	>	>	⋖
ł	ב		, 			<u>~</u>	33	>	≻	>
	7	7 /	-	_		CDRI	A	-	Z	
	ک ح	<i>></i>	. Z				131	<i>_</i>	≻	7
	(7	0 S A L				30	(C)	0 G Y N Y V	
	ı ($\frac{\circ}{-}$	<u> </u>	<u>~</u>			٥٥ [<u>.</u>	<u></u>	<u></u>
	9 5 7 1	Š	W2	VA3 SYELT			25 32 33 33 33	₹ 	W2	W3 GDK - YA
		-	-	-						

Figure 2B: VL lambda consensus sequences

	_				•				
	78	>	>	>-					
	98	>	>	>					
	98								
	1/8	4	⋖	Ø					
	83	ш	ш	ш					
	85								
1	18	ш	ш	ш					
İ	08	S	⋖	⋖					
	62	a	O	O	•				
	87			—] ZOI	O	Ö	9
	LL	9	9	9		A	_		
	92	 	S	S		901	>	>	>
3	97	-		_	5+	901	-	⊢	
논	74	⋖	—		framework 4	104			_
0 M	73		_	_	NO N	103	$ \times $	· ×	\prec
ηe	72	S	S	 	ne	102	-	· - -	
framework	LL	⋖	A	Ø	rar	101	9	G	9
	02	S	\vdash	Ė		100	0	9	9
	69	—	Z	Z		66	9	G	ပ
	89	9	G	G		86	Щ	ட	ᄔ
	۷9	S	S	S		<u></u>	>	>	>
	99	\times	\checkmark	Z		96	مـ	٥	ما
	99	S	S	S		96	م	۵	م ا
	† 9	9	9	G		7 6	 	 	-
	63	5	S	S	CORIII	63	—		-
	79	1	LL_	ш	8	65	>	>	>
	19	R	∝.	\propto		16	王	Q	エ
	09	0	Z	ш		06	O	Q	0 0 H
	69	<u>م</u>	S	٥		68	0	C O	
	89	<u>></u>	<u>></u>			88	0		ပ
·		W1 V P D	M_2	W3			W1 C 0	W2	% 3

Figure 2C: V heavy chain consensus sequences

												,						
											۷5	X	—	\checkmark	 	-	⊢	Z
				<u> </u>					_		99	<u></u>	9		S	S		>
	30	S	—	S	S	S	—	S			99	9	g		9	g	S	≥
	67	ш	ய	_	ш		щ	>		l ·	75	u	S		9	S		\mathbf{Y}
	28	-	⊢	S	-	Ņ	S	S		8	23	-	Z	≥	S	>	9	S
	77	9	>	·	ட	9	>				Э	1	1	1	1	ı	t	ı
	97	ပ	9	9	9	Ð	G	G			8	1	ı	1	į.	1	ı	æ
	52	S	S	S	S	S	S	S			A	مـ	م	ı	9	1	٩	>
	74	⋖	Ø	ட	\forall	>	9	-			25	-	Z		S	>	>	>
	23	\times	\checkmark	—	\forall	<u>-</u>	\checkmark	4		ľ	ιs	-	_					-
	77	C	\mathcal{O}	\mathcal{O}	\mathcal{O}	ပ	ပ	ပ			09	9	≥		\triangleleft	>		~
	17	S	S	-	S	\vdash	S	\vdash			67	9	9	$ \checkmark $	S	G	9	0
	50	>	>	_		_	_	_			84	≥	≥	_	>	_	Σ	_
	6l	\prec	\checkmark	—	\propto	S	\checkmark	S			Lt	≥	\geq	≥	\geq	≥	≥	3
1	81	>	>	_		_	_	_		2	97	ш	ш	ய	ш	ш	ш	ш
논	11	S	S	\vdash	S		S	\vdash		1 1	94	-		_	_	_	_	
WO	91	S	\forall	0	9	ш	ш	Q		mework	44	9	9	A	9	9	9	0
ne	SI	9	9	\vdash	9	S	G	S		ne	43	O	0	\checkmark	\checkmark	\checkmark	\checkmark	ے.
framework	ÞΙ	مـ	ط	۵	۵	Δ_	۵_	ᡗ		frar	45	9	9	9	9	O	9	9
	13	\times	\checkmark	\prec	O	\checkmark	\prec	\prec		-	17	مـ	Δ_	۵	۵	م	م	ما
	15	不	\checkmark	>	>	>	\checkmark	>.			04	A	Ø	٩	A	۵	Σ	2
	11	>	>		_	_	>				38	Q	O	O	0	O	O	
	01	ш	ш	\forall	9	9	ш	ပ			38	8	\propto	\propto	\propto	\propto	\propto	\propto
	6	A	\forall	۵.	9	Δ_	\forall	۵_			37	>	>	_	>		>	-
	8	9	9	9	9	9	9	ပ			36	i .	\geq	≥	≥	≥	≥	\leq
	L	S		S				- 1			35	S	工	9	S	\sim		Z
	9	Q	O	ш	ш	ш	O	a			34	-	≥	>	Σ	≥	_	3
	S	>	>	\checkmark	>	O	>	0		CDRI	33	A	>	9	\forall	>	≥	4
	7		_							ט	35	>	>-	>	>-	>-	>	4
	3	a	O	O	O	O	O				8	'	ı	9	i	ı	ı	S
	7	>	>	>	>	>	>	>			A	ŀ	ł	S	ı	1		2
	L	0	0	0	ш	0	ш				15	S	S	<u>—</u>	S	S	S	S
		14	18	2	\sim	4	2	ယ				14	18	2	က	4	2	ယ
		VH1	, H	VH2	Ή.	VH4	¥.	9H/				¥.	H.	×H.	×Η	VH4	Ή	9HV
							SU	STIT	UTÉ	SHE	ET (P.U	ILE 2	6)					
									ь	/ 204	•							

rences
Seq
nsus
consense
chain
heavy
>
5C:
Figure

	98	ш	ш	>	ш	A	S	ш	7		113	V) (/	7 1) V	7 V	7 0	2 0
1	148	2	S	م	\forall	\forall	\forall	٩		4	115	10) V) V) V	ט ר	7 V	n v
	83	2	\propto		\propto	—	\checkmark	—		논	111	>	• >	· >	· >	· `>	> >	> >
) J.	-		\geq		>		>		NO.	011	 	·		- -			
	8	2	S	Z	S	S	S	S		mev	60 L		>	. >	· >	> >	٠ >	> >
	A	2	S		Z	S	S	Z		fran	801		_		·	. <u> </u>	. <u> </u>	ــ ا
1	85	-	_	≥	Σ		≥			4	201	 -	<u> </u>	·		- }		· -
	18	ш	ш	—	Ö	\leq	O	Q			901	5	<u></u>	<u> </u>	<u> </u>	<u>ن</u> د	<u>ن</u> د	9
က	08	\geq	Σ		_		_				901	0		O				
framework	64	>	>	>	>	S	>	S			104	9	9	9	5	· ©	9	9
N N	87	⋖	⋖	>		ட	\forall	ட			103	$ \leq$	≥	≥	3	3	3	≥
١Ē	LL	—	—	O	—	O	—	O			102	>	>					>
175	94	S	S	z	Z	Z	S	z			101			Ω				Ω
	97		-	\checkmark	\checkmark	\checkmark	_	×		=	3	≥	Σ	Σ	≥	≥	≥	Σ
	74	S	S	S	S	S	S	S		CDRI	8	1						A
	23	ய	—	-	Z	-	\checkmark	-		딩	A	>					>	
	7.5										100	ш	ш	ட	ш	ட	ட	щ
	lΖ	Ø	\propto	\checkmark	\propto	>	\forall	ٔ م			66	9	9	9	9	9	9	9
	02	⊢	—	S	S	S	S	Z			86						۵	
	69	—	Σ		_	_	_	-			۷6	9	9	9	9	9	9	9
	89	 	—		├	—	—	—			96	9	9	9	9	9	9	9
	۷9	>	>		ட	>	>				96	≥	\geq	\geq	≥	≥	≥	≥
	99	\propto	\propto	\propto	\propto	\propto	O	~			7 6	<u>~</u>	\propto	\propto	\propto	\propto	\simeq	8
•	99	9	9	—	9	S	9	2		3	£6.	Ø	\forall	\forall	$ \checkmark $	⋖	\forall	\triangleleft
	† 9	O	Q	\checkmark	\checkmark	¥ ,	O	\times		,	65	ပ	ں	\mathcal{O}	ပ	ں	ပ	<u>ا</u>
RII	63	ட	ட		>		ட	>	İ	framework	16	>-	>	>-	>-	>-	>	>
CDRI	79	\checkmark	\checkmark	S	S	S	S	\ \	İ	ue l	06	>	>-	>-	>	>-	>-	>
	19	O	O			۵_	۵.	>	}	rai	68	>	>	—	>	>	≥	>
	09	A	\forall	S	\forall	Z	S	\triangleleft		_	88	A	⋖	A	\forall	\forall	\triangleleft	\triangleleft
	69	>	>	>-	>	>-	>-	>			۲8		—	—	- -	—	—	\vdash
	85	Z	Z	<u>></u>	>_	Z	<u>«</u>		ĺ		98							
1		1 A		~	<u> </u>	4	5	9				١		<u>~</u>	~	-+	10	
		Ŧ.	VH1	Ĭ,	VH3	Ť	+	\forall				H	/H1	/H2	/H	VH4	Æ	9НЛ
	,						Sl	JBSTI	TUT!	E SHE / 204	ET (RU	E 26	3	_	_	<u> </u>	<i>></i>	_
									•	, 204	7							

Ω	GA	_	6 0 0 0	A.	CA	SH	~~ TC
Ŋ	GCGTGGGTGA CGCACCCACT	H	AGCTATCTGG TCGATAGACC	> -	CGAAACTATT AATTTATGCA GCTTTGATAA TTAAATACGT	G S BamHI	~~~~ GCTCTGGATC
>	STG	\succ	CTA 3AT	H	rtt AAA	ω _	CT
70	900	Ŋ	AG(TC(~~~~~~~ ATT AAT TAA TTA		GCI
ω	GA	တ	C	L AseI	~~~ TT AA	Ŋ	S
A	CTGAGCGCGA GACTCGCGCT	H	rta aat	H	CTA SAT.	W	rAG
Ŋ	AGG TC		CA.	云	AA(TT(मि	$_{ m TT}$
니	CTGAGCGCGA GACTCGCGCT	O	GGGCATTAGC CCCGTAATCG		CGAAACTATT GCTTTGATAA	α	CGTTTTAGCG
S	0 0 0	Q		Ф.		တ	
ഗ	~~~ CCCGTCTAGC GGGCAGATCG	ഗ	ATTACCTGCA.GAGCGAGCCA TAATGGACGT CTCGCTCGGT	Ø	~~~ GGTAAAGCAC CCATTTCGTG	Д	TGCAAAGCGG GGTCCCGTCC
Ωι	CGT(K.	3007 3007	×	AAZ		$\frac{1}{2}$
		- 4	GAC	р П	~~. GG1 CC2	V SanDI	G GGTCCC
S BanII	TGACCCAGAG CCC ACTGGGTCTC GGG	t I	~~~~~~ TGCA.G ACGT C	P SexA	₹	Ŋ	~ ~ ⊕ ⊕
ence Q	TGACCCAGAG ACTGGGTCTC		ATTACCTGCA. TAATGGACGT	S A	~~ \AAC lTG	Ø	}GC(
e sequ	\CC(H	'ACC		GAZ	0	AAZ
1) gene	TG2 AC1	H	ATT TAP	Q	GCAGAAACCA CGTCTTTGGT		TGC
арра 1 (Vк Q М	GA	[\mathcal{C}	ø		니	
kappa Q V	CCA 3GT	T V	rga act	W Y KpnI	rac Pac	ß	CAG
ure 3A: V k D I ECORV	~~~~~~ GATATCCAGA CTATAGGTCT	α,	TCGTGTGACC AGCACACTGG	\mathbf{Z}	CGTGGTACCA GCACCATGGT	Ŋ	AG(
Figure 3A: V kappa 1 (Vk1) gene sequence . D I Q M T Q ECORV	~~ GAT CT <i>F</i>	щ	TCC AGC	M A	CGTGGTACCA	Ø	GCCAGCAGCT

ACGTACG TGCATGC

TTGAAATTAA AACTTTAATT

GGTACGAAAG CCATGCTTTC

R T BsiwI

 \mathbf{X}

Н

団

>

 \bowtie

H

Ŋ

~ ~ ~ ~ ~

	CGAGACCTAG
	ACGITICGCC CCAGGGCAGG GCAAAAICGC CGAGACCIAG
(pa)	C CCAGGGCAGG
) gene sequence (continu	ACGITICGCC
Figure 3A: V kappa 1 (Vk1	CGGTCGTCGA

	ن ک	GTC	CGGTCGTCGA		ACG	TL	ICG	CC	CCA	GGG	CAG	<u>.</u>	CAA	AATC	3 <u>@</u> C	ACGTTTCGCC CCAGGGCAGG GCAAAATCGC CGAGACCTAG	ACCI	'AG	
	_	E E	₽	Ω	Įτί	H	H	L	-	Н	တ	ഗ	니	OI	P C O	F T L. T I S S L Q P E D F Eco57I	<u>щ</u>	f	
															?	~ ~ ~ ~ ~ ~ ~			
	Вал	BamHI														BbsI	ы		
	?															?	?		
٥.	Ü	GCA	CGGCACTGAT		$T^{\dagger}T$	AC	CCT	GA	CCA'	TTA	GCA	(J	TTTACCCTGA CCATTAGCAG CCTGCAACCT	CAAC		GAAGACTTTG	ACTT)TG	
ID 0 = 1	ا	CGT	GCCGTGACTA		AAATGGGACT	TG	3GA		GGT,	AAT	CGT	ບ ບ	:GAC	GTTG	3GA	GGTAATCGTC GGACGTTGGA CTTCTGAAAC	rga.	AC	
	E		> >	>	<u> </u>			C	Ξ	>	E-	E	Ω	Д	E	`` ·	ζ	(
	•		1	•)		וּע	א	1 1	4	4	⊣	4	ч	- 1		ק קר	, גכ	
	CG.	ACC	CGACCTATTA	rta	TTG	CCZ	λGC,	AG	CAT	ראק ד	ACC.	ر م	TIGCCAGCAG CATTATACCA COCCAGO	ייטט'י				(
	j	() ()	サイベ サイ へつ 中 つ つ		\ \ \ \		֓֞֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓) (, E) (! f) (7 7 7 7 7	ノノりり	5 Ç	
) 9	ე ე -	714		744	ָ פַּ	פ כ	ر	GIA	AIA	ا ت	<u>ب</u>	9999	0990	TG	AACGGICGIC GIAATATGGT GGGGCGGCTG GAAACCGGTC		U L U	

ب
\mathbf{c}
⊏
ď
\supset
0
sedne
Š
gene
-
~
gene
/ĸ2) g
ζ2
×
>
_
2
<u> </u>
_
_
_
_
kappa
kappa
kappa
kappa
kappa
kappa
: 3B: V kappa
: 3B: V kappa
: 3B: V kappa
kappa

ÞÌ	GA	.	0 0 0	Q	AG TC	ഥ	TT AA
Q	CTCCGGGCGA GAGGCCCGCT	Z	CATAGCAACG GTATCGTTGC	വ	AAGCCCGCAG TTCGGGCGTC	α	~ CGGATCGTTT GCCTAGCAAA
Д	0 0 0 0 0	W	rag atc	Ø) (0,0) (0,0)	Д	BAT(
Γ.	CT(GA(出	CA7 GT2	01	AAC		~ GGC
ΙΛ	GA	ᆸ	TG AC	Q	CA CA	A TO	GGGTCC CCAGG G
	AGT PCA	H	rgc.	G KAI	GGT(V SanDI	GT(
വ	, , , , ,		CCJ 662	P G SexAI	ACCAGGT IGGTCCA	ල ග්	000 000
H	CTGCCAGTGA GACGGTCACT	W	AAGCCTGCTG TTCGGACGAC		AACCAGGTCA TTGGTCCAGT	Ŋ	AGTGGGGTCC TCACCCCAGG
W) (CG	Q	CA	×	AA TT	Ą	CC GG
ъ	CCCACTGAGC	ω.	~ GAAGCAGCCA CTTCGTCGGT	L D	TACCTTCAAA ATGGAAGTTT	N R A	CAACCGTGCC GTTGGCACGG
<u>с</u> , ;	CAC	W	AGC ICG	니	~~ GCT GGA	 7	\CC GG
S P Banii		~		Y KpnI	3G TACC	4	CA.
	TGACCCAGAG ACTGGGTCTC	C R PstI	ATTAGCTGCA G TAATCGACGT C	W Kr	ξ 00 00 00	W	AG TC
Q ~	TGACCCAGAG ACTGGGTCTC		ATTAGCTGCA TAATCGACGT	Σ Q	~~ TCTGGATTGG AGACCTAACC	O	ATCTGGGCAG TAGACCCGTC
E	ACC IGG	Ω.	rag atc	ъ	rGG. \CC'	ᆸ	OTG(
Σ	TG.	H 	AT. TAI	Н	TC! AG2	. .	ATC
4	GA	Ŋ	0 0 0	>	TA AT	×	TT AA
> >	CGT	& S	CGA	Z	AAC TTG	H e)	~~~ AAT ITA
D I ECORV	GATATCGTGA CTATAGCACT	Ωι	GCCTGCGAGC CGGACGCTCG	\succ	GCTATAACTA CGATATTGAT	L AseI	CTATTAATTT GATAATTAAA
Ощ∮	GAS) ((((O	GC.	H	CT? GA1

Figure 3B: V kappa 2 (VK2) gene sequence (continued)

_	rgg ACC	Д
	TG1	E
ĸ	9 9	
Ω	AGCCGTGTGG TCGGCACACC	[-
Н	ATT PAA	≻
· 	AA2 I'I'I	出
GSGTDFTLKISRV Bamhi	CCTGAAAATT GGACTTTTAA	V G V Y Y C Q Q H Y T T P
⊟		Q
[Tri	CCGATTTTAC GGCTAAAATG	Ö
Д	ATT TAA	×
c .	000 000	≯
Н	AH	_
Q	200	
G S BamHI	TCC(Q
G Baj	cctaggccgt	> .
w	CT	71 72 20 30 30 30
	SCT	A E E C O S 7 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
ი ი	00C	A ⊞ √ C ∨
ഗ	TAGCGGCTCT ATCGCCGAGA	田

TACCACCCG ATGGTGGGC AGCAGCATTA TCGTCGTAAT TATTATTGCC ATAATAACGG AAGCTGAAGA CGTGGGCGTG TTCGACTTCT GCACCCGCAC

11111 BsiWI . K X 回 × Е Ç Ø MscI G ſι Е Д

0 0 0 TAATTTGCAT ATTAAACGTA GAAAGTTGAA CCGACCTTTG GCCAGGGTAC GCCTGGAAAC CGGTCCCATG

ഥ		Ą;	4		ပ	JG.				TA	(ָן פ	-	?	Ω̈́
Ŋ		CTCCGGGCGA) } }		AGCAGCTATC	TCGTCGATAG	ř	H		ATTAATTTAT TAATTAAATA	,	מ	Bamhl	′	GCGGCTCTGG
		ָט טטט) ဟ		SC	CG.	ŀ	⊣ ⊢	?	AT			ň		CT(
Д		ָט ט ט ט)		CA	GT	۰	ل AseI	~ ~ ~ ~ ~ ~ ~	TA AT	(פ			:GG
ഗ	•	CT	S		AG	E		Ø	?	AT TA	,	^			9
		T C			· O	D D	+	1		CT	·	Ŋ			ΓA
니		CT()		GA(CT(ב	4		GT(CA(ţ	4			TL
S		CTGAGCCTGT	>		GAGCGTGAGC	CTCGCACTCG				CACCGCGTCT	ב	4			GCGCGTTTTA
٦.		GA TO	် လ		SGC	CG	נ	Ч		200),GC
니		CT)		GA	CI	_	~		CA	۲	Ç			Ö
E) (J) O		CA	Ę	^	C .		AG II C	Þ	<u>.</u>		2	C C
		~~~ CCCGGCGACC GGGCGACC	<u>လ</u>		S G	CICGCICGGI	C	X		CCAGGTCAAG GGTCCAGTTC			7	~ ~ ~ ~ ~ ~ ~	TGGGGTCCCG
A		() () ()	) )		GA	CT	Ć	ם פ	<b>?</b>	GT	11	י א המינה	g	₹	GT
Д	Н		A A		760	ည်	D	SexAI	~ ~ ~ ~ ~ ~	CAG	. ر	)	3	<b>?</b>	999
	nI.	` ``` ```	<u> </u>	<b>?</b>	. G7		-	Se		5 6					Ţ
S	BanI	TGACCCAGAG CCCGGCGACC	)	PstI	CTGAGCTGCA GAGCGAGCCA	GACTCGACGT	7	4	<b>?</b>	AA TT	E	4			AC
Suce Q		TGACCCAGAGAG	O !	PS ××	TG	AC				A CCAGCAGAAA T GGTCGTCTTT	4	4			CA
e sequi		700	\ \ \ \	,	₹ 9			וע		SCA	Ω	,			3TG
gene		GA(			TG/	AC.	C	K	}	CA(	μ.	•			CC
Vk3) L					_			Н	<b>?</b>	ŪĞ	ď	)			Ū
oa 3 (		1.GC	· -		ACC.	GG	>	KpnI	~ ~ ~ ~ ~ ~	STA	ď				SCA
′kappa'	<b>:&gt;</b>		A A		CG7	3C1	3	بکر	{	I GC	U	,			3AC
3C: V T	EcoRV	~~. AT( TA(	7		TG(	AC	<b>~</b>	3		CG,	A	1			GC(
Figure 3C: V kappa 3 (Vk3) gene sequence ${\sf D}$ ${\sf I}$ ${\sf V}$ ${\sf L}$ ${\sf T}$ ${\sf Q}$	되 O	~~~~~~ GATATCGTG CTATAGCAC	<u>.</u>		ACGTGCGAC	TGCACGCTG		_		TGGCGTGGTA CCAGCAGAAA ACCGCACCAT GGTCGTCTTT	ڔ	)			GGCGCGAGCA GCCGTGCAAC
ш.		, O C	•		A.	$\vdash$	<b>-</b>	4		T &					$\odot$

Figure 3C: V kappa 3 (Vk3) gene sequence (continued)

CGCCGAGACC
CGCGCAAAAT C
ACCCCAGGGC
CGGCACGTTG
CCGCGCTCGT

Ωн	₹	S	?
P E Eco57I	<pre></pre>	Bbs	\ \ \
다 C	<b>?</b>		
Ŀ			
니			
S			
ഗ			
Н.			
Н			
ы			
Ħ			
Ĺτι			
Q			
E			
ტ		<b>}</b> -	ı
S		BamH	

GGACTTCTGA CCTGAAGACT ACTGGTAATC GTCGGACCTT CAGCCTGGAA TGACCATTAG CTAAAATGGG GATTTTACCC ATCCGGCACG TAGGCCGTGC ~ ~ ~ ~

Д Д ⊱ E  $\succ$ 二 Ø Ø  $\circ$  $\succ$ > Ø

MscI

G

لتا

Е

CTGGAAACCG GACCTTTGGC CCACCCCGCC GGTGGGGCGG CAGCATTATA GTCGTAATAT TTATTGCCAG AATAACGGTC TTGCGGTGTA AACGCCACAT

Q G T K V E I K R T MscI BsiWI CAGGGTACGA AAGTTGAAAT TAAACGTACG GTCCCATGCT TTCAACTTTA ATTTGCATGC

SUBSTITUTE SHEET (RULE 26)

لتا

Figure 3D: V kappa 4 (Vк4) gene sequence

			•				5D 5 3
দ্র	A T		TATAGCAGCA ATATCGTCGT	Д	_ TCAGCCGCCG AGTCGGCGGC	民	~~~~ TCCCGGATCG AGGGCCTAGC
	GCCTGGGCGA CGGACCCGCT	W	ÖÖ		Ď Ď		\T IA
Q	φ C)		CA GT	Д	000	Ω	G7 C1
	$\mathcal{G}$	W	ijΰ	,,	ÜΫ	0	$\mathcal{O}$
ļ	Ţ		FA TA	Q	AG TC	ር	, Ω Q
	ÖÖ	$\Rightarrow$	Ă.T.		် ညီ တွဲ	I	∑ ດີ (
<b>5</b> 0	^ω Ω		HA		) H 4(	V SanDI	}
W	K H	_	ဖွဲ့ ပွဲ			V San	GAAAGCGGGG CTTTCGCCCC
_	P D	H	T C	X	~ \ F F F	ტ 01	` ຜູ້ ນ ບູບ ູ
>	CTGGCGGTGA GACCGCCACT	>	GAGCGTGCTG CTCGCACGAC	P G SexAI	AGAAACCAGG TCTTTGGTCC		$\mathcal{O}$
æ	(C) (C)	>	CD CO	01	~, AC TG	Ŋ	$\mathcal{G}\mathcal{G}$
7	တို့ ပို့		Ŭ Ö	X	Ą Į:		A'A I'I
ъ	I G	W	A F		G7 C1	团	Ą
Н	5 6		0 D	$\bigcirc$ I	A F		0 O
	נ) ני	Q	A H	Q	$\mathcal{O}$		ŢŢ
$\Omega$	တို့ ပို		$\mathcal{O}(\mathcal{O})$	Q	AG I'C	民	00
	cccgatagc ggcctatcg	W	~ GAAGCAGCCA CTTCGTCGGT	•	~~~~~~ TGGTACCAGC ACCATGGTCG	_	ATCCACCCGT
Д	A F		A T	Y KpnI	~~~~~~ GGTACC CCATGG	⊱	AC
	90	W.	$\mathcal{G}_{\mathcal{G}}$	Y	ŢŢ		$\mathcal{O}_{\mathcal{O}}$
Д	> C) (b)		A.A. I.T	$\geq$	~ 00 U	ഗ	TC
H	÷ 0 0	- 4	າ ຜູວ.		ĒĀ		Æ [+ .
S BanII	000 000 000 000	K H	TGCA G ACGT C		0 U	<<	ပ္ပ္
μ	<b>∤</b> ∤ ∤	C .	ATTAACTGCA TAATTGACGT	Ø	CTATCTGGCG GATAGACCGC	K.	~ TTTATTGGGC AAATAACCCG
Q	₹ F C	റ മ	TG A	<b>д</b> .	$\mathcal{G}_{\mathcal{G}}$	3	ည် ပို့
Ü	ijğ.	Z	^ Ç Ğ	H .	CT GA		TT AA
⊱	000	4	7 7		T, A,	⊱	AT.
	A C	Н	IT AA	$\succ$	T.A.		T 4
	T( A(	• •	A E		00	Н	~ [- ≪
$\Sigma$	d [4		ひひ	Z	A F	Гн	
	\( \frac{1}{2} \)	E	ပို့ ဗို	Z	ĄŢ	L AseI	~~~~~ ATTAA TAATT
$\triangleright$	G T C A		G.7.	$\Join$	4		¥ F 4
>	YÜĞ	A	$\Omega$		CA	<b>₽</b>	TA AT
D I EcoRV	~~~~~ GATATCGTGA CTATAGCACT		ACGTGCGACC TGCACGCTGG	Z	ACAACAAAAA TGTTGTTTTT	- *	AAACTATTAA TTTGATAATT
U D D	~~ AT	民	() () ()		C.A. G.T	×	A <i>i</i> T']
μщ	~ 62 C2		A( T(	Z	ĀĒ		A F

Figure 3D: V kappa 4 (Vk4) gene sequence (continued)

	ל) ל			<i>ር ነ ርካ</i>		
Ŋ	) ) ) ) ) ) )	[-		ACC		
N	CGT	Y T T		ACC	H	ひひ
Н	ATTTCGTCCC TAAAGCAGGG	≯		TTATACCACC AATATGGTGG	BsiWI	GAAATTAAAC GTACG CTTTAATTTG CATGC
₽	) (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00) (0.00 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0	H		CA	E I K R	~~ GAAATTAAAC CTTTAATTTG
T L T	TACCCTGACC ATGGGACTGG	луч у у		GCCAGCAGCA	X	raa att
F-4	998 388	Q		CAG STC	H	י אסרי: דאזי:
-		F \		950	闭	GAA CTT
ſτι	TT AA	O		rt AA	_	Ε̈́Α
Д	3AT CTA	×		TAT		AG1 TC2
T O F	GCACTGATTT CGTGACTAAA	$\Rightarrow$		TAT ATA	X	GAA
	GCA CG1	>		GTGTATTATT CACATAATAA	T K V	TACGAAAGTT ATGCTTTCAA
r D	, <u>0</u> 0	_				
G S BamHI	TCC AGG	ĸ,		000	$\bigcirc$	100 100
G S BamHI	GGATCC	D V A		GTC	G MscI	~~ CC? GG1
Ŋ	TCTGGATCCG AGACCTAGGC		<b>≀</b> ⊢	SA AGACGTGGCG	G Q G MscI	TTGCCAGGG AACCGGTCCC
	•	57 I	~~~~ BbsI	•	ഥ	
Ŋ	000	A E Eco57I	BbsI	TGA ACT	E	CCT
ഗ	AGC ICG	女田	ł	AGC ICG	E C	GA
ſщ	TTTTAGCGGC AAAATCGCCG	O		TGCAAGCTGA ACGTTCGACT	Д	CCGCCGACCT
	TT	ᅱ		TG AC	വ	0 0 0

ĸ	ນ ດີ ດີ	<b>.</b> .	ATG PAC	≯	GCTGATTTAT CGACTAAATA	H X	}
Q	~~~~~ CAGGTCAGCG GTCCAGTCGC	≯	AGCAACTATG TCGTTGATAC	Н	GCTGATTTAT CGACTAAATA	G S BamHI	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
ڻ <u>.</u> .	× CO CA CA CA CA CA CA CA CA CA CA CA CA CA	Z	CAA	ъ	TGA ACT	ന മ്	<b>?</b>
P SexAI	C CAGGI G GTCCA	Ŋ	AG( TC(		0 0 0	Ŋ	
S P D	∑	ტ	0 0 0	H	CT		
Æ	AGTGGCGCAC TCACCGCGTG	Н	CAACATTGGC GTTGTAACCG	ᅜ	~~~~ cgccgaaact gcggctttga	Įт	
Q	000		ACA!	വ	0 0 0 0 0 0 0 0	R.	
W	AGT	Z	CAA GTT	A BbeI		Ω	
$\triangleright$	H C C	ഗ	AG TC		, , , , , , , , , , , , , ,	Д	
S	GCCTTCAGTG CGGAAGTCAC Eco57I	ω .	GCAGCAGCAG CGTCGTCGTC	H	CCCGGGACGG	$\triangleright$	
	CTTCAG GAAGTC ECO57I	W	AGC.	P G Xmai	~~~~~ 5550055	O	}
С	000	r h	250	ΔХ	. Ω Ω Ω Ω		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Д	ပ ဗ	Ŋ	ပ္ ပ္	г	TG	PS Bsu36I	} }
۾ م	CAC CAC	W	TAG ATC	Q	AGT TCA	다 없	}
sequen	TGACCCAGCC ACTGGGTCGG	S C BssSI	~~~~~ TCGTGTAGCG AGCACATCGC	Q	.~~ CCAGCAGTTG GGTCGTCAAC	民	
gene	TG7	മയ				Ø	
1 (VX.1) L	0 0 0	Н	TC PAG	r Y Kpni	GGTA CCAT	z	
mbda V	CAGAGCGTGC GTCTCGCACG	E	~ TGTGACCATC ACACTGGTAG	M	~~~~ TGAGCTGGTA ACTCGACCAT		
A: S S	GAG CTC	>	TGA ACT	W	AGO	Z	
Figure 4A: V lambda 1 (VA.1) gene sequence Q S V L T Ç	CA( GT(	•	A A C	>	TG	Ω.	
ű.							

Figure 4A: V lambda 1 (VA.1) gene sequence (continued)

GCGGATCCAA CGCCTAGGTT	S E D BbsI	AGCGAAGACG TCGCTTCTGC	V F G TGTGTTTGGC ACACAAACCG	
GATCGTTTTA CTAGCAAAAT	O 11 0	GGGCCTGCAA CCCGGACGTT	CCACCCGCC GGTGGGGGGG	
AGGCGTGCCG TCCGCACGGC	T I T	TTGCGATTAC AACGCTAATG	Q H Y T T P P CAGCATTATA CCACCCGCC GTCGTAATAT GGTGGGGGGG	L G MscI ~~~ TCTTGGC AGAACCG
AGCGTCCCTC TCGCAGGGAG	S A S L	AGCGCGAGCC TCGCGCTCGG	Y C Q TTATTGCCAG AATAACGGTC	L T V HpaI ~~~~~~ AGTTAACCGT TCAATTGGCA
GATAACAACC CTATTGTTGG	ა ი	AAGCGGCACC TTCGCCGTGG	E A D Y AAGCGGATTA TTCGCCTAAT	G G T K GGCGCACGA CCGCCGTGCT

	ഗ	7G		Η̈́		μĄ	დ ⊢	+
	Q	AG2	Z	AAC TTG	Н	GAT	G S Ramht	GGATC
	<u></u>	~~ GTC CAG	≻	PAT ATA	$\mathbf{Z}$	SAT(	, ü	
	$\vdash$	~~~~~~ CAGGTCAGAG GTCCAGTCTC	Ŋ	GGCTATAACT CCGATATTGA	니	ACTGATGATT TGACTACTAA	Ŋ	TTAGCGGATC AATCGCCTAG
I	SexA	1			×		Įτι	·
(	Ω	JCA AGT	Ŋ	900		GA	民	GT.
(	<b>.</b>	7007 7007	>	GTC	A P BbeI	0000	z	ACC
7	Ŋ	AGCGGCTCAC TCGCCGAGTG	Ω	CGATGTGGGC GCTACACCCG	A Q	AGGCGCCGAA TCCGCGGCTT	ഗ	AGCAACCGTT TCGTTGGCAA
			ഗ		×		•.	
*	>	AGT(		CAC	ΩH	GGA	>	GTG
C	Ŋ	CTTCAG GAAGTC Eco57I	Ŋ	TAG	P G XmaI	000000 000000	Ŋ	Ğ Ğ G G G G
<b>K</b>	C	AGCTTCAGTG TCGAAGTCAC Eco57I	<b>[</b> -	GTACTAGCAG CATGATCGTC	H	CATCCCGGGA GTAGGGCCCT	S 191	CTCAGGCGTG GAGTCCGCAC
ρ	Ь		ტ		Η.		PSu36I	}
		) ) ) ) )	. <del>[-</del> 1	000	Q	CAG	дд	TCC AGG
uence		CCA	ÜН	STA CAT	Q	CAG	K,	, 3007 3007
ne Sequ	4	TGACCCAGCC ACTGGGTCGG	S C BssSI	~~~~~ TCGTGTACGG AGCACATGCC	Y KpnI	GTACCAGCAG CATGGTCGTC	Z	GCAACCGTCC CGTTGGCAGG
λ2) ge T.	j		, M	}		≀	W	
da 2 (V A	¢	GTG	H	ATC TAG	_	CTG GAC	>	rga act
/lamb	)	000	H	ACC IGG	W	3AG CTC		ATG:
Figure 4B: V lambda 2 (Vλ2) gene sequence 〇 S A T. エー		CAGAGCGCAC GTCTCGCGTG	Н	CATTACCATC GTAATGGTAG	>	~ ATGTGAGCTG TACACTCGAC	Ω .	TATGATGTGA ATACTACACT
Figuri (		C.		C2 G1	≯	AT TA	≯	TA AT

Figure 4B: V lambda 2 (VA2) gene sequence (continued)

					•
E BbsI	CAAGCGGAAG GTTCGCCTTC	전 〉 관	GCCTGTGTTT CGGACACAAA		
. <b>4</b>	ου Ο Ο Ο Ο	$\triangleright$	GT		
S G L Q A	CAAG	Д	GCCI		-
니	TAGCGGCCTG ATCGCCGGAC	YYCQQHY, TP	ATACCACCCC TATGGTGGGG		
ტ	,	⊣	AC TG		
Ŋ	000 000	E	ATACCACCCC TATGGTGGGG		
	AT AT	, 54	AT TA		
Н	'AT TA		TT	G MscI	TGGC ACCG
H	ACC IGG	工	GCA TGT	ر Ms	~~ ITG AAC
<b>□</b>	GCCTGACCAT CGGACTGGTA	Q	CAGCAGCATT GTCGTCGTAA	V L G Msc	CGTTCTTGGC GCAAGAACCG
	990	Q	CAG	Þ	CGI
ഗ		<b>.</b> .		₽	
Ø	900	O	TTG AAC	K L T Hpal	~~~~~~ GTTAAC CAATTG
H	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X	TA	H	~~ AGT'
N T A S L T I	AACACCGCGA TTGTGGCGCT	$\Rightarrow$	TTATTATTGC AATAATAACG	124	CGAAGTTAAC GCTTCAATTG
				E	
O	990		GG2	വ	GC 2
ഗ	AGC ICG	A	AGC		0 0 0 0 0
K BamHI	~ CAAAAGCGGC GTTTTCGCCG	D E BbsI	~~ ACGAAGCGGA TGCTTCGCCT	Ö	GGCGGCGGCA CCGCCGCCGT
Ва	C.A. G.T.	D Bb	AC TG	Ŋ	90

Figure 4C: V lambda 3 (VA3) gene sequence

H	SAC CTG	70	SCT GA	Д	AT TA
Q	CAC	Q1	SAG	0	ATG
G Q AI	~ CAC	Y A S	300	Y D D	rg2 AC1
S V A P SexAI	AC CAGGTCAGAC FG GTCCAGTCTG	×	TACGCGAGCT ATGCGCTCGA	⊱	TTATGATGAT AATACTACTA
₹ S	AGCGTTGCAC TCGCAACGTG	×	GGGCGATAAA CCCGCTATTT	L V I	TTCTGGTGAT AAGACCACTA
_	rtg Vac	Д	AT.	>	GTC
	CGJ GC2	O	300 000	H	TG
Ŋ	AG	O	990		rtc AAG
_	ຍ ດ	H		Q A P V Bbel	
S Q	AG7 FC2 7 I	D A L	0 0 0 0 0	Д,	CA
ഗ	CTTCAG GAAGTC Eco57I	74	TGC ACG	A Bbei	000000 000000
Д	GCCTTCAGTG CGGAAGTCAC Eco57I	Ω	GCGATGCGCT CGCTACGCGA	B	CAGGCGCCAG GTCCGCGGTC
	000	<i>c</i> h	$\mathcal{O}$	Ø	CA
ᅀ	D 0	Ω Ω	(b) (c)	נח ש	) to to
Q	A F O T	Ω.	AGC	P G Xmal	100 100 100 100 100
A O E	TGACCCAGCC ACTGGGTCGG	OH	TCGTGTAGCG	K P G XmaI	GAAACCCGGG CTTTGGGCCC
ζ.	GAC	S S B S S I	CGI	K	AAA TTT
, in ,	Ŧ	m i			GZ CZ
[+7]	AAC TTG	<b>⊢</b>	TC	O.	CA
凹	TG7	ΩĽ	STA	α,	CAG
≯	TA.	A R	) (GC(	→ H > H	ACC PGG
.ω	AGCTATGAAC TCGATACTTG	K	CGCGCGTATC GCGCGCATAG	W Y Q Q KpnI	GGTACCAGCA CCATGGTCGT
	1-4 L⁻1		0 0	<i>≤</i> ≀	$\Omega$

Figure 4C: V lambda 3 (VA3) gene sequence (continued)

ტ	ı		رب رب	) () ()				כי ני	) ()	71	י זי ני	) ()	
ഗ			\ GC(	10G(	Ø			טט	CTGCTTCGCC	· ·		ACCGCCGCCG	
Z			ACZ	TG	田			4 A C	CTI		יט י ט	000	
	H	}	CCA	GGI	Ω	H	~~~~~~	GAD	CTC	U U	T, C	ACC	
Ω	amH	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ΑT	ΓA	[ <del>L</del> ]	Bbs	} } }	AA	ĮĮ.	ĮΉ	Ē	Z A	
Ŋ	ф	}	S	CC			į	GG	Ü	>	TG	ACZ	
ഗ			AGC	rcg	Æ			SGC	SCG	٥.	TG	3AC	
ĹΉ	Bsu36I BamHI		TTTAGCGGAT CCAACAGCGG	AAATCGCCTA GGTTGTCGCC	TLTISGT QAE DEA			TCAGGCGGAA GACGAAGCG	AGTCCGCCTT	оон уттр ру Б	TATACCACCC CGCCTGTGTT	ATATGGTGGG GCGGACACAA	
瓦			S	CG	E			AC	J.C	щ	S	GG	
і Ш			AAC	$\mathrm{TTG}$	ტ			390	SCG	₽	CAC	3TG	
Д			CCCGGAACGC	GGGCCTTGCG	Ŋ			TTAGCGGCAC	AATCGCCGTG	<b>:</b> -	TAC	ATG	
			$\mathcal{S}$		ы					×	TA		
Н			AT	TA	_			CA	ĞŦ	出	ΑT	TA	
ഗ	H	1	360	CCG	Н			<b>3AC</b>	CTG	$\alpha$	₹GC	rcg	
Ŋ	136	~~~~~.	CAC	GT(	H			EU.	GA(	<u> </u>	GC7	CG.	
	Bsc	<i>(</i> } }.	CCTCAGGCAT	GGAGTCCGTA	₽			ACCCTGACCA	TGGGACTGGT	Q	CCAGCAGCAT	GGTCGTCGTA	
Д										U			
K			CGJ	GC?	7			CGC	900 900	×	ATT	TAA	
S D R			3AC	TG	N T A			CAC	TG	ζ.	\TT.	AA	
ഗ			TCTGACCGTC	AGACTGGCAG	Z			CAACACCGCG	GTTGTGGCGC	D Y Y C	ATTATTATTG	TAATAATAAC	

Hpal MscI

CGAAGTTAA CCGTTCTTGG C

Е

X

E

· w	AG JC		A T C	Ŋ	() () ()	$\alpha$	•
Ŋ	CGGGCAGCAG GCCCGTCGTC	Ø	AGCTATGCGA TCGATACGCT		GATGGGCGGC CTACCCGCCG	Q G R TTCAGGGCCG AAGTCCCGGC	H
Ŋ	GC A	≯	TAT ATA	ტ	3 3 3 3 3 3 3	Q AGG	闰
J	900	W	100°	Σ	AT(	AGT	Σ
Д	_			M	_	لتبا	
×	AAA	Ω	AG TC		.~ 'GT(	K AG T	×
×	GTGAAAAAC CACTTTTTTG	ഥ	CACTTTTAGC GTGAAAATCG	L. E XhoI	GTCTCGAGTG CAGAGCTCAC	A Q K GCGCAGAAGT CGCGTCTTCA	ø
>	rga act	E	ACT PGA	ТХ	~~ CT AGA	A 000 000	⊱
	57		75 55	ტ	G Z	G G G	
臼	TGGCGCGGAA ACCGCGCCTT	D D	CCTCCGGAGG GGAGGCCTCC	Q	16G	Y 'AC 'TG	Ŋ
Ø	TGGCGCGGAA ACCGCGCCTT	S G BspEI	CCTCCGGAGG		CCTGGGCAGG	A N Y GGCGAACTAC CCGCTTGATG	₽
Ŋ	3 3 3 3 3 3 3 3	S B S	rcc Agg	Ŋ	√~~  GG \ACC	A CGA	W
J	TG( AC(	4	CC	<u>Н</u>	CC.7	) ) ) ) )	
ຄ ດ	JC AG	A		A BstXI	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	E C D	団
iguenc Q	CAG STC	X	AA!		CCAAGCC CCTGG GGTTCGG GGACC	GC2	Ω
Jene se V	TTC	Ö	TGC	O'	CCA	F TTG AAC	æ
41A) g	~~ TGGTTCAGTC ACCAAGTCAG	S	AGCTGCAAAG TCGACGTTTC	民	GCGCCAAGCC CGCGGTTCGG	F G T TTTTGGCAC AAAACCGTG	E
hain 1A (W Q L MfeI	}			>		H	
chain Q Mf	ZAA GTT	$\triangleright$	AGT ICA	M	36G 200	Р С С С С	H
heavy $V$	TG	X	AAZ		CTC	I TTC AAC	HH
5A: V	CAGGTGCAAT GTCCACGTTA	$\triangleright$	CGTGAAAGTG GCACTTTCAC	W	TTAGCTGGGT AATCGACCCA	I I P ATTATTCCGA TAATAAGGCT	V T BstEII
Figure 5A: V heavy chain 1A (VH1A) gene sequence $Q V Q L V Q$ MfeI	ט ט		ٽŏ	Н	E A	A T	Ä
ı.							

Figure 5A: V heavy chain 1.A (VH1A) gene sequence (continued)

ATGGAACTGA TACCTTGACT	ጸ ል	ATTATTGCGC GCGTTGGGGC TAATAACGCG CGCAACCCCG	L V	CCCTGGTGAC GGGACCACTG		
	H	~ ~ ~ 0 0 0 0 0 0 0	E			
CGTAT GCATA	C A BssHI	TGCGC GC ACGCG CG	Ŋ	~~~ AGGCA TCCGT	-	
CACCGCGTAT GTGGCGCATA	<b>&gt;</b>	АТТАТ ТААТА	G Q StyI	GGCCAAGGCA CCGGTTCCGT		
AAAGCACCAG TTTCGTGGTC	T A V Y EagI	ACGCCCGTGT	D Y W	GGATTATTGG		
ACCGCGGATG TGGCGCCTAC	о Б	TAGCGAAGAT ATCGCTTCTA	Y A M	TTTATGCGAT AAATACGCTA		<b>७</b> ८
GGTGACCATT CCACTGGTAA	S S L R	GCAGCCTGCG CGTCGGACGC	р О С	GGCGATGGCT CCGCTACCGA	V S S BlpI	

Figure 58: V heavy chain 18 (VH1B) gene sequence

					•	
တ်	CGGGCGCGAG GCCCGCGCTC	≯	AGCTATTATA TCGATAATAT	×	GATGGGCTGG CTACCCGACC	Q G R TTCAGGGCCG AAGTCCCGGC
<b>4</b>	0 0 0 0 0	X	ATT TAA	O	0 0 0 0	0 0 0 0 0
	900	ഗ	3CTZ	ڻ س	ATG!	Q CAC
д		. 01		-		দ
×	AAC	Ħ	ACC	M	GTG	K AGT
×	AAA TTT	Ĺτι	TTT AAA	L E XhoI	TCGA	O AGA TCT
V К К Р	GTGAAAAAC CACTTTTTTG	T E	TACCTTTACC ATGGAAATGG	HX	GTCTCGAGTG CAGAGCTCAC	A Q K GCGCAGAAGT CGCGTCTTCA
€)	,	₩	·	ტ		
Э Д	1997 1007		GAT	P G Q G	CAG	Y CTA GAT
A;	0 0 0 0	S G Bspei	CCGGA	O	~~ GGG CCC	N GAA CTT
G	CGGCGCGGAA		CCTCCGGATA GGAGGCCTAT	дн	GCC CCTGGGCAGG CGG GGACCCGTCC	T N Y CACGAACTAC GTGCTTGATG
Ŋ	AG TC	C K A		A BstXI	l	
ŏ A	TGGTTCAGAG ACCAAGTCTC	×	AGCTGCAAAG TCGACGTTTC		CCGCCAAGCC GGCGGTTCGG	ATAGCGGCGG TATCGCCGCC
>	STT(	O	TGG		~~ 3007 3663	8 660 1060
<b>.</b>		 വ	AGC	ш,	055	ATP TAT
Q L Mfei	caat Gita	>	TG	>	GT	GA CT
	GCA	×	AAG TTC	S	TGG	CCC GGG
> Ø	CAGGTGCAAT GTCCACGTTA	V K V	CGTGAAAGTG GCACTTTCAC	H	TGCACTGGGT ACGTGACCCA	I N P ATTAACCCGA TAATTGGGCT
Q	CA GT	-	<u>်</u> ပီ ပ	Σ	H Q Q	AT

	H		ATGGAACTGA TACCTTGACT	ָ ר	<b>9</b>		GCGTTGGGGC CGCAACCCCG		H	•	AC	.T.
			AC: IG2				360		>		E E	AC
	回		GA	_	<b>₹</b>		TT( AA(		J			ת ה
	M		TG	þ	4	Į	900		LV		CCCTGGTGAC	GGGACCACT'G
					HH	1						
	×		TA: AT2	ر د		1111111	300		ריז	,	CA	5 9
	T A Y		CACCGCGTAT GTGGCGCATA	ر	) m	į	ATTATTGCGC TAATAACGCG		E 5 0 5	$\text{StyI}_{\sim\sim\sim\sim\sim\sim}$	GGCCAAGGCA	)   
			3 3 3 3 3 3	>	4		TAT TTA		Q,	s ≀	CA	5
	<b>.</b> .		CA( GT(	>			ATJ TAZ		O	ł	000	) )
	ഗ			A V Y	ł							
	Н		CCAGCATTAG GGTCGTAATC	>	•	ACGGCCGTGT	ACGGCCGTGT TGCCGGCACA		Z		E A	)
	w		CA7 GT2	<b>₽</b>	ЭI		360		×		TAT ATA	
(par			AG		щ		0 0 0 0 0		M X Q		GGATTATTGG CCTAATAACC	
ontinı	E		000	Ħ	!	ł	AC TG					) }
18 (VH1B) gene sequence (continued)	T R D T		TA AT	Ω			AT		Σ		AT	1 †
edne	Ω		GA	EI CI			AG,		Y A M			!
gene :	ĸ			ħ			SCI		<b>~</b>		ATG	
H1B)	H		ACCCGTGATA TGGGCACTAT	ഗ			TAGCGAAGAT ATCGCTTCTA				TTTATGCGAT AAATACGCTA	
				~4			- •		ഥ			
chain	Z		ATG	ሺ			0 0 0 0 0		rh		SCT	
eavy (	ĦН	l	255	H			CT( GA(		<u>ი</u>		TGC	
B: V h	/ EET	111	IGA ACT	ഗ			\GC \CG	1	Ω		GA	
Figure 5B: V heavy chain	V T BstEII	1	GGTGACCATG CCACTGGTAC	ഗ			GCAGCCTGCG CGTCGGACGC		Ŋ		GGCGATGGCT CCGCTACCGA	
Ę.	• •											

GGCCAAGGCA CCGGTTCCGT GGATTATTGG CCTAATAACC TTTATGCGAT AAATACGCTA S S BlpI GGGCTACCGA >

GGTTAGCTCA G

	E	4	CGACCCAAAC GCTGGGTTTG		0 0 0	니	[G	K MluI	~~ AC TG
	С	A)	YA.	Q	ACGTCTGGCG TGCAGACCGC	<b>—</b>	;C.1	ر ال	GCCTGAAAAC CGGACTTTTG
		•	3G.7		TC	$\geq$	99	太 5.	AA TT
	E	4	200	വ	TC		~ GT CA	ы	IG AC
	E	•	GA	E	$\frac{1}{2}$	ы Н	~ ~ CT		) () ()
					A F	L XhoI	} Ö Ö	ഗ	ŏΰ
	M D		AC IG	(O)	O	ı X	CT CGAG SA GCTC	01	A L
	×	, 1	CTGGTGAAAC GACCACTTTG	S L S	TAGCCTGTCC ATCGGACAGG	G K A L	GGAAAGCCCT CGAGTGGCTG	E	TATAGCACCA ATATCGTGGT
	L V		[GZ	니	T.C	H	000		CA
			15; 12;		000	$\bowtie$	AA TT	ഗ	AG TC
	口		TG	ഗ	AG TC		GA CT	≻	AT
					H A	ניז	<u>₹</u> ७ ℧	·	HA
	Ø		೨೨೨೨೨೨೨ ೨೭೯೯	ĮΤΙ	IT AA	O	CAGCCGCCTG G	<b>\</b>	AT A
•	P A		G G G	S G Bspei	~~~~~~ TTTCCGGATT AAAGGCCTAA	F F	. ~	D K Y	TGATAAGTAT ACTATTCATA
	ы		ÖÖ	) Ids	~~~~~~ TCCGGA AGGCCT	P P BstXI		$\bowtie$	JAG T'T
	G		) (3) (4)	လည္သ		BS		_	T.P.
	O		900	-	, TT AA	Ø	~~ AG TC		GA
				Гъ			}		
ence	ഗ		TGAAAGAAAG ACTTTCTTTC	T C T	ACCTGTACCT TGGACATGGA	$\alpha$	CTGGATTCGC GACCTAAGCG	Ω	ATTGGGATGA TAACCCTACT
edu	H		AA	H	AC TG		T.C. A.G	Ω	AT
ine s			AG TC	Ö	GT CA	Н	AT FA		<u> </u>
2) g(	×	•	AA TT		CT	M	C D	Z	7 7 7 7 7 7 7
$\exists$		→ → H ~	HG.	<b>⊱</b> ⊣ .	4 I G (		CT(		۱۲۲) ۱۸۲
in 2	П	H →	_			<i>(</i> D		Ω	
/ cha	Ø	Mfe	AA.	H	CT(	Ŋ	9000		'TG
reav	<u></u>		CAGGTGCAAT GTCCACGTTA	<u>د</u>	CCTGACCCTG GGACTGGGAC	>	TTGGCGTGGG AACCGCACCC	Н	AT.
>	>		ST(	[→	AC TG		000	H	TG AC
e 5C	<u> </u>		50,0	Ţ	TC	G	99		T C A G
Figure 5C: V heavy chain 2 (VH2) gene sequence	Ø		CA GT		99 99	>	TTGGCGTGGG AACCGCACCC	A	GCTCTGATTG CGAGACTAAC
_							•		

gene sequence
3
(ZH3
3
chain
heavy
>
50:
igure

W	AG	a	GA	Æ	0 0 0 0	4 0 0 0 0
Ö	CGGGCGGCAG GCCCGCCGTC	A	AGCTATGCGA TCGATACGCT	တ	GGTGAGCGCG CCACTCGCGC	K G R TGAAAGGCCG ACTTTCCGGC
O	355 GG(	×	TAI AT		GAC	K AAG TTC
	0 0 0 0	ß	5 5 5 6	$\triangleright$	GT	GAZ
Д	-			M		> 5
Q	CTGGTGCAAC	<b>.</b>	TACCTTTAGC ATGGAAATCG	12	GTCTCGAGTG CAGAGCTCAC	A D S V GCGGATAGCG CGCCTATCGC
Ŏ A	rgc ACG	Ĺτί	TT	L E Xhol	TCGAG	TA
ı	361 CC2	E	CCT 562	л×	CTC	D SGA CT
Н	CT		TA( AT(		GTC	GC(C
ליז	$\frac{\partial}{\partial x}$	ĮĦ	TT &	M M		
Ŋ	ອວວອວວອວວອ	G E E E E E E E E	CCTCCGGATT GGAGGCCTAA	<b>×</b>	cctgggaagg ggacccttcc	T Y Y CACCTATTAT GTGGATAATA
Ŋ	000 000 000	ו מט	0 0 0 0			Y TA:
ъ	0 0 0 0 0	х д ≀	CTC	Дı	CC CCTGG GG GGACC	T VCC 1GG
		Æ		XIX	500	C.2 G.1
W	AAG TTC	A A	0 0 0 0 0	A BstX	~ CCC CC CC CC	S TAG
凹	GAZ CTJ	4	300		~~~ AAG TTC	0 0 0 0 0 0
>	TG AC	Ö	TG( AC(		~~; CC2 GG:	0 0 0 0
. }	TGGTGGAAAG ACCACCTTTC	ß	AGCTGCGCGG TCGACGCGCC	R.	GCGCCAAGCC CGCGGTTCGG	S G G G G S S G C G C G C G C G C G C G
J⊢≀				>		ഗ
M M M M M M M M M M M M M M M M M M M	AA 3TT	니	CT	h-3-	999	G CA CA
> '	FGC ACC	民	CG1 3C <i>P</i>	M	CTC	2 6 6 6 6
	GAAGTGCAAT CTTCACGTTA	H	CCTGCGTCTG GGACGCAGAC	w	TGAGCTGGGT ACTCGACCCA	I S G ATTAGCGGTA TAATCGCCAT
[I]	GA		CC	Σ	TG AC	H A T T A T

GGTTAGCTCA CCAATCGAGT

Figure 5D: V heavy chain 3 (VH3) gene sequence (continued)

I S R D N S K N T L Y L Q M Pmli Nspv	TT TCACGTGATA ATTCGAAAAA CACCCTGTAT CTGCAAATGA AA AGTGCACTAT TAAGCTTTTT GTGGGACATA GACGTTTACT	R A E D T A V Y Y C A R W G EagI BSSHII	CG TGCGGAAGAT ACGGCCGTGT ATTATTGCGC GCGTTGGGGC GC ACGCCTTCTA TGCCGGCACA TAATAACGCG CGCAACCCCG	F Y A M D Y W G Q G T L V T Styl	CT TTTATGCGAT GGATTATTGG GGCCAAGGCA CCCTGGTGAC SA AAATACGCTA CCTAATAACC CCGGTTCCGT GGGACCACTG	H C
I L	TTTTACCATT AAAATGGTAA	N N L	ACAGCCTGCG TGTCGGACGC	В О О	GGCGATGGCT CCGCTACCGA	V S S BlpI

Figure 5E: V heavy chain 4 (VH4) gene sequence

	•						
H	AAC	٨.	TT	×	AT.	> II	GGT CCA
团	GA2 CT1	≯	TTA	ტ	GCT	R V stEII	7.00 3.00
လ	CGAGCGAAAC GCTCGCTTTG	₩	AGCTATTATT TCGATAATAA	Н	GATTGGCTAT CTAACCGATA	S B	AAAGCCGGGT TTTCGGCCCA
Д	90	ß	AG( TC(	• •	GA7 CT2		AA? TTT
	AC	ß	) (G	Z	TG AC	×	GA
×	GAA	н	TTA	田田	CGAG	H	CCT
>	CTGGTGAAAC GACCACTTTG		CAGCATTAGC GTCGTAATCG	L E Xhoi	TCC	Ŋ	AGO
H	CTC	W	CAG		GTCTCGAGTG CAGAGCTCAC	Д	CCGAGCCTGA GGCTCGGACT
Ŋ	0 0 0 0 0	<u>ი</u>	466 100	Ŋ	000 000	z	AT.
ф	3000	S G Bspei	CCGGA	*	GAA	≯	ATA TAT
_O	TGGTCCGGGC	S B	TTTCCGGAGG AAAGGCCTCC	ט	CCTGGGAAGG GGACCCTTCC	Z	CAACTATAAT GTTGATATTA
	·	>	_	XI	1		CA
Ω	AAG TTC	EH	5 5 5 5 5 5 5 5	P BstX	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Ħ	CAC
国	AGA.	U	SCA(	OI	AG(	ഗ	AGC
O ₁	~~ TGCAAGAAAG ACGTTCTTTC		ACCTGCACCG TGGACGTGGC	rk	TCGCCAGCCG	O	GCGGCAGCAC CGCCGTCGTG
ДΗ	l	E				တ	
Ø	~~~ AAT TTA	н	CTG	Н	SAT CTA	<b>≯</b> 1	ATA Pat
	19C7	w	\6C(	Z	TG		TTZ
>	CAGGTGCAAT GTCCACGTTA	н	CCTGAGCCTG GGACTCGGAC	ഗ	ggagctggat cctcgaccta	<b>≻</b> 1	АТТТАТТАТА ТАААТААТАТ
O ₁	CA GT		CC	M	99	H	AT

Figure 5E: V heavy chain 4 (VH4) gene sequence (continued)

	A H	٠	ε ) εn	_	۲. ۵		
ß	AAACTGAGCA TTTGACTCGT	r	TTGGGGCGGC		TGGTGACGGT ACCACTGCCA		
. 7	GA CT	Ö	) (G	[-	ACC		
H	ACT	<b>1</b> >	990	>	TG.		
×	AA.	M	PTG		990		
		<b>K</b>		H			
H	GTTTAGCCTG CAAATCGGAC	H	ATTGCGCGCG TAACGCGCGC	H	CAAGGCACCC GTTCCGTGGG		
ഗ	AGC	C A BssHII	909090 9090909		CA		
দ	TTZ AA	ပ ကို	TGC ACG	VI G	4GG		
	GH	<b>.</b>	AT. TA	Q StyI	CAAGG		
Q	A L	¥	TT A		}		
z	CGAAAAACCA GCTTTTTGGT	≯	GCCGTGTATT CGCCACATAA	ტ	TTATTGGGGC AATAACCCCG		
	AAA	>	TG.	3	TG( AC(		
× .>	SAA	ДH	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<b>≯</b>	'AT'		
S NspV	≀	, EagI	0000 0 0000 0		TT		
	GTTGATACTT CAACTATGAA		000 000 000	Д	GA		
Ŧ	rac atg	Ω	ATA PAT	$\Sigma$	TG		
Д	GA: CT2	П	367 CC1	Ø	CGA		•
>	TT	Ø	GGCGGATACG CCGCCTATGC		ATGCGATGGA TACGCTACCT		
		Æ		⋈			
W	AG( TC(		) (CC(	Į۲ı	LT1 AAA		ርካ ርነ
НН	~~~~ GACCATTAGC CTGGTAATCG	Ħ	AC		CT' GA	S pI	~~ CA( GT(
T t E I	7 C C A G G T	>	3TG 2AC	O	rgg NCC	s s BlpI	GCTCA
T BstE.	GACC	ഗ	GCGTGACGGC CGCACTGCCG	Ω	GATGGCTTTT CTACCGAAAA	ഗ	TAGCTCAG ATCGAGTC
					_		

Н

S [고] C Д 又 又  $\gt$ ഥ ø G Figure 5F: V heavy chain 5 (VH5) gene sequence ഗ Ø П MfeI Ø

CGGGCGAAAG GCCCGCTTTC GTGAAAAAAC CACTTTTTG GCCGCGCCTT CGGCGCGGAA ACCAAGTCTC TGGTTCAGAG CTTCACGTTA GAAGTGCAAT

3 ഗ E Ŀ ഗ  $\succ$ BSPEI ~~~~~~ C ഗ G 又  $\mathcal{O}$ M.  $\mathbf{H}$ 区 Ы

AGCTATTGGA TCGATAACCT AAGGAAATGC TTCCTTTACG CAAGGCCTAT GTTCCGGATA TCGACGTTTC AGCTGCAAAG GGACTTTTAA CCTGAAAATT

G Σ 3 ~~~~~ ப XhoI 口 G  $\searrow$ G Д BstXI Σ Ø  $\propto$  $\gt$ 3 G

GATGGGCATT CTACCCGTAA CAGAGCTCAC GTCTCGAGTG GGACCCTTCC GCGCCAGATG CCTGGGAAGG CGCGGTCTAC AACCGACCCA TTGGCTGGGT

TTCAGGGCCA ഗ O L AGAGGCTCGA TCTCCGAGCT ഗ Д ഗ TACCCGTTAT ATGGGCAATA ⊱ GCGATAGCGA CGCTATCGCT ഗ  $\Box$ ᠐ TAAATAGGCC ATTTATCCGG ρι

Н

CTTCAATGGA GAAGTTACCT 3 Ø П CACCGCGTAT GTGGCGCATA Þ  $\vdash$ TTTCGTAATC AAAGCATTAG S  $\vdash$ S Figure 5F: V heavy chain 5 (VH5) gene sequence (continued) 又 AGCGCGGATA TCGCGCCTAT ø ഗ CCACTGGTAA GGTGACCATT V T BstEII

ATTATTGCGC GCGTTGGGGC G ⋈ 召 BSSHII Ø Ö  $\succ$  $\succ$ ACGGCCATGT Σ Ø 믑 AGCGAGCGAT S Ø GCAGCCTGAA 又 Н ഗ ഗ

CGCAACCCCG <u>[--</u>1 >  $\vdash$  $\vdash$ TAATAACGCG G StyI Ø G TGCCGGTACA 3 TCGCTCGCTA  $\Sigma$ K ſτι CGTCGGACTT G  $\Box$ S

CCCTGGTGAC GGGACCACTG CCGGTTCCGT GGCCAAGGCA GGATTATTGG CCTAATAACC AAATACGCTA TTTATGCGAT GGCGATGGCT CCGCTACCGA

~ ~ ~ ~ ~ ~ BlpI  $\gt$ 

 $\circ$ GGTTAGCTCA CCAATCGAGT

G

Figure 5G: V heavy chain 6 (VH6) gene sequence

H	AC TG	
Q	CAA	ഗ
ഗ	16C(	Z
•	CGAGCCAAAC GCTCGGTTTG	S
тų		
X	AAA ITTI	ഗ
>	TG2 AC1	>
Q L Q Q S G P G L V K P S Q T MfeI	CTGGTGAAAC GACCACTTTG	S N S S N S O
ڻ ن	) (G	Ω
വ	200 300	S G l BspEI
U	TGGTCCGGGC ACCAGGCCCG	S G BSPEI
	TG AC	
S		H
Ø	AGT TCA	Ø
CX	.~~ TGCAACAGTC ACGTTGTCAG	T C A I
	TGCZ	. <del>[  </del> .
H C	₹	
QΣ	~~~~ CAAT GTTA	니
>	TGC	ഗ
> 0	CAGGTGCAAT GTCCACGTTA	. υ 
		•

AGCAACAGCG TCGTTGTCGC П ⋈ 口 XhoI TAGCGTGAGC ATCGCACTCG Ы U 吖 ~~~~~~~~~~~ G TTTCCGGAGA AAAGGCCTCT <u>എ</u> BstXI ഗ Ø ACCTGTGCGA TGGACACGCT 区 3 CCTGAGCCTG GGACTCGGAC Z Z Ø Ø

GGCGTGGCCT CGAGTGGCTG CCGCACCGGA GCTCACCGAC GTCAGAGGAC CTGGATTCGC CAGTCTCCTG GACCTAAGCG CGGCGTGGAA GCCGCACCTT

CGGTGAGCGT GCCACTCGCA Þ TTGCTAATAC AACGATTATG × Ω Z CAAATGGTAT GTTTACCATA  $\geq$ × GGCCGTACCT ATTATCGTAG TAATAGCATC ഗ CCGGCATGGA ĸ G

V S S BlpI ~~~~~~ GTTAGCTCAG CAATCGAGTC

₽

Н

CCTGGTGACG (GGACCACTGC (

Figure 5G: V heavy chain 6 (VH6) gene sequence (continued)	KSRITINPDTSKNOFS BsaBI	GAAAAGCCGG ATTACCATCA ACCCGGATAC TTCGAAAAAC CAGTTTAGCC CTTTTCGGCC TAATGGTAGT TGGGCCTATG AAGCTTTTTG GTCAAATCGG	Q L N S V T P E D T A V Y C A EagI BssHII	TGCAACTGAA CAGCGTGACC CCGGAAGATA CGGCCGTGTA TTATTGCGCG ACGTTGACTT GTCGCACTGG GGCCTTCTAT GCCGGCACAT AATAACGCGC	WGGODGFYAMDYWGQGT HII	CGTTGGGGCG GCGATGGCTT TTATGCGATG GATTATTGGG GCCAAGGCAC GCAACCCCGC CGCTACCGAA AATACGCTAC CTAATAACCC CGGTTCCGTG
Figure 5G: V hea	X N	GAAAAGC CTTTTCG	L Q L	TGCAACT ACGTTGA	R W SSHII	CGTTGGG
				CUDOTITUTE		

- Figure 6: oligonucleotides for gene synthesis
- O1K1 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
  - **01K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGGC -3'
  - **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
- **O1K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTTCTGCTGGTACCACGCCAG -3'
- O1K5 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- **O1K6** 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **02K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **O2K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
- O2K3 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTGACCTGGTTTTTG -3'
- O2K5 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- O2K6 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CCACACGCCTAATTTTCAGGG -3'
- O3K1 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG-CCCGG -3'
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- O3K3 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

Figure 6: (continued)

- O3K4 5'- GCACGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- O3K5 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- O3K6 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- **O4K1** 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- **O4K2** 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAAACTATCTGGCGTGGTACCAG 3'
- **O4K4** 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **O4K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC -3'
- O1L1 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- **O1L2** 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- **O1L3** 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- **O1L4** 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCCGTCCCGGGCAACTGC -3'
- **O1L5** 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

- O1L6 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'
- **O2L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- O2L2 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- O2L3 5'- GTACGGGTACTAGCAGCGATGTGGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- O2L4 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCCTTCCCGGGATGCTGCTGGTAC -3'
- O2L5 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- O2L6 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- O3L1 5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-GCCTTCAGTGAGCG -3'
- O3L2 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- O3L3 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- O3L4 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- O3L5 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGGCAACACCGCGACCCTGACCATTAGCGG -3'
- O3L6 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-TCAGGGTC -3'
- O1246H1 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- O1AH25'- GGCTTTGCAGCTCACTTTCACGCTGCTGCCCGG-TTTTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3'

- **O1AH3** 5 ' GAAAGTGAGCTGCAAAGCCTCCGGAGGCACTTT-TAGCAGCTATGCGATTAGCTGGGTGCGCCAAGCCCCTGGGCAGGTC -3 '
- **O1AH4** 5 ' GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCC-AAAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGC -3 '
- **O1AH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCCTGCG 3 '
- **O1ABH6** 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- O1BH25'- GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGG-TTTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3'
- **O1BH3** 5 ' GAAAGTGAGCTGCAAAGCCTCCGGATATACCTT-TACCAGCTATTATATGCACTGGGTCCGCCAAGCCCCTGGGCAGGTC -3 '
- **O1BH4** 5 ' GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC -3 '
- **O1BH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3 '
- **O2H2** 5'- GGTACAGGTCAGGGTCAGGGTTTGGGTCGGTTT-CACCAGGGCCGGCCGCTTTCTTTCAATTGCACCTGGGCTTTG-3'
- **O2H3** 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3'
- **O2H4** 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGCTGG -3'

- O2H5 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT GG -3'
- **O2H6** 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- O3H1 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCCT-GGTGCAACCGGGCGGCAG -3'
- O3H2 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCGC-AGCTCAGACGCAGGCTGCCGCCCGGTTGCAC -3'
- O3H3 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- O3H4 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- O3H5 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAAACACCCTGTATCTGCAAATGAACAG-3'
- O3H6 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **04H2** 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- O4H3 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGA-GGCAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
- O4H4 5'- GATTATAGTTGGTGCTGCCGCTATAATAATAT-AGCCAATCCACTCGAGACCCTTCCCAGGCGGCTGGCGAATCCAGG-3'
- **O4H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
- **O4H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

Figure 6: (continued)

**O5H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA-ATTG -3'

- **O5H2** 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3'
- **O5H4** 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGCAC -3'
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTTC -3'
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT- TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- **O6H3** 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGCGTGGAACTGGATTCGCCAGTCTCCTGGGCG-3'
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTG-GCG -3'
- **O6H5** 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC -3'
- **O6H6** 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- OCLK15'- GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCCGCCGACCTTTGGCCAGGGTAC -3'
  SUBSTITUTE SHEET (RULE 26)

- OCLK2 5 ' GCGGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'
- OCLK3 5 ' GAGCGTGTTTATTTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGTGTGCCTGCTG -3 '
- OCLK4 5'- CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC-TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3'
- OCLK5 5 ' GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3 '
- OCLK6 5'- GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG -3'
- OCLK7 5 ' GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3 '
- OCLK8 5 ' GGCATGCTTATCAGGCCTCGCCACGATTAAAAG-ATTTAGTCACCGGGCTGCTCAGAC -3'
- OCH1 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- OCH3 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCGCACGG-CTGCCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- OCH4 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- OCH5 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- OCH6 5'- GTGCCTAAGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- OCH8 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

Figure 7A: sequence of the synthetic Ck gene segment

$\bigcirc$	4 = .				•
A A P S V F I F P P S D E Q	GCGATGAACA CGCTACTTGT	N F Y AACTTTTATC TTGAAAATAG	Q S G GCAAAGCGGC CGTTTCGCCG	A C C	A C C
[ <del>1</del> ]	A.A T.T	Y TA	9 9	S K D S T Y S AGCAAAGATA GCACCTATTC TCGTTTCTAT CGTGGATAAG	K H K AAACATAAAG TTTGTATTTC
	J.G.	F.T.	S S S S S S S S S S S S S S S S S S S	TZ	TA
Ω	3A.	, T.	AZ TT	E C G	H CA:
	200	N A F	CA GT	CA	K AAA TTT
ß				က်က်	A FI
,	GA	A C H G	THE CHE	ra AT	E AA TT
щ	$\mathcal{C}_{\mathcal{C}}$	A F	d D D	D SAS	G Z Z
<u>α</u>	TTTCCGCCGA AAAGGCGGCT	L L N CCTGCTGAAC GGACGACTTG	ACAACGCGCT TGTTGCGCGA	S K D AGCAAAGATA TCGTTTCTAT	D Y E GGATTATGAA CCTAATACTT
•	7C(	200	Z & F	R AA TT	TT AA
ഥ	TT:	C.7.	CA	ა ცე	OABO
	•		D A H	A H	0 0
Н	CGTGTTTATT GCACAAATAA	V V C GCGTGGTGTG CGCACCACAC	A T C	D PAT PAT	$A \cup D$
_	TA AT	V TG AC	D T C		Y AA DT:
Įτί	TT AA	90	K JAAAG TTTC	Q K Y Y C	K AA,
>	FG.	3 T (	1 1,72,7	LAC TIG	အ ပုံ ပု
	500	250	≱ ຄົວ ວິດ	E Q D CGAACAGGAT GCTTGTCCTA	S K A TGAGCAAAGC ACTCGTTTCG
01		rΛ			니
0,1	JAC CTC	49. 10.	A AG	A AC TG	C) C) C)
Д	CTGCTCCGAG GACGAGGCTC	G T A S GGCACGGCGA CCGTGCCGCT	K V Q GAAAGTTCAG CTTTCAAGTC	S V T AAAGCGTGAC TTTCGCACTG	T L T ACCCTGACCC TGGGACTGGG
	TC AG	C C C	CATI <	V CGT(	1.07 1.03 1.03
Æ	ე ე	CA GT	K AAA( TTT:	လ ဂိုင်	[C]
	CH	0 0 0	3A.	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	F Q D
Ø	_				
<b>&gt;</b>	IG(	နှင့် ကြိုင်	760 200	() () () ()	ა ი ი ი
> " ]	. 55. 	/ /A2/ [TT:	E A	C C C	CA
M		K AA; TT:	AC	8 6 6 6	S AG TC
BsiWI	ccracegree ccareccacc	L K S ACTGAAAAGC TGACTTTTCG	GG H	CA	P H C
	7 D D	L K S ACTGAAAAGC TGACTTTTCG	P R E A CGCGTGAAGC GCGCACTTCG	N S Q E AACAGCCAGG TTGTCGGTCC	L S S TCTGAGCAGC AGACTCGTCG
			_	• •	2 14

Figure 7A: sequence of the synthetic Ck gene segment (continued)

V T X	TA	古山 ないよいないし
д	$S_{\mathcal{C}}^{\mathcal{C}}$	ť
ഗ	AGC	F.C.F.
ഗ	TGAGCAGCCC	ACTCGTCGGG
Н		
ტ	CATCAAGGTC	GTAGTTCCAG
O,	CAA	GTI
H	CAT	GTA
[-	ACC	CTTCACTGG
<b>△</b>	GTG	CAC
臼	CGAAGTGACC	GCTT
ပ	T _G	AC
Ø	rgcg	ACGC.
≯	TA	ATA
>	ŢĠ	AC.

S F N R G E A · *

StuI

SphI

TCTTTTAATC GTGGCGAGGC CTGATAAGCA TGC AGAAAATTAG CACCGCTCCG GACTATTCGT ACG

Figure 78: sequence of the synthetic CH1 gene segment

S ഗ Д Þ Ы Д لتا > ഗ Д G  $\times$ E Sal S Ø BlpI

TCCGAGCAGC AGGCTCGTCG TTCCGCTGGC AAGGCGACCG GGTTCGCACA CCAAGCGTGT CTGGTTTCCA GACCAAAGGT CGAGTCGCAG GCTCAGCGTC

TTAAAGATTA CCGACGGACC AATTTCTAAT > GGCTGCCTGG Ö C GGCTGCCCTG CCGACGGGAC Ø Þ GCGGCGGCAC CGCCGCCGTG ⊱ ტ . ന ഗ TTTTCGTGGT AAAAGCACCA ഗ 又

CTGACCAGCG GACTGGTCGC GTCGCCCGC CAGCGGGGCG Ø Ü ഗ TGAGCTGGAA GGTCAGTGGC ACTCGACCTT Z 3 ഗ CCAGTCACCG Н > TTTCCCGGAA AAAGGGCCTT Д ſτι

GTATAGCCTG CATATCGGAC H CGTCGCCGGA GCAGGGGCCT ഗ ഗ ഗ CACGACGTTT GTGCTGCAAA O Н > CTTTCCGGCG GAAAGGCCGC Þ Щ Ŀı GCGTGCATAC CGCACGTATG Е H > G

TCTGGATATA AGACCTATAT Ø AATCCGTGAG TTAGGCACTC G CTCGTCGTCG GAGCAGCAGC ഗ ഗ TGACCGTGCC ACTGGCACGG ⊱ AGCAGCGTTG TCGTCGCAAC ഗ

Figure 78; sequence of the synthetic CH1 gene segment (continued)

K K V	AAAAAGTGG	TTTTTCACC
Ω	GAT	CTA
K V D	GTG	CAC
又	CAAAGTGGAT	GTTTCACCTA
E	AC	
S S	AAC	TTG
ഗ	CGAGCAACAC	GCTCGTTGTG
Д		
N H K	AACCATAAAC	TTGGTATTTG
田	CAI	GTP
Z	AAC	TT
>	CGTG	SCAC
Z	:AA(	TTGC
O	TTGCAA	AACG'

ECORI*

EcoRI HindIII

AACCGAAAAG CGAATTCTGA TAAGCTT TTGGCTTTTC GCTTAAGACT ATTCGAA

Figure 7C: functional map and sequence of module 24 comprising the synthetic CA gene segment (huCL lambda)



SUBSTITUTE SHEET (RULE 25) 47 / 204

CTCTGGTGGT

CCGCCCTCAC

CGGGGCAGTT

CGTCTATCGT

CCGGACCTIC

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

CCCCGCCTGT	DraIII ~~~ AAAGCCGCAC TTTCGGCGTG	GGCGAACAAA CCGCTTGTTT	CCGTGACAGT GGCACTGTCA	SACCACCA
CATTATACCA CCCCGCCTGT GTAATATGGT GGGGGGGACA	MscI DraIII ~~~~~~~ TGGCCAGCCG AAAGCCGCAC ACCGGTCGGC TTTCGGCGTG		TATCCGGGAG CCC ATAGGCCCTC GGC	GCCCCGTCAA GGCGGGAGTG GAGACCACCA
TTGCCAGCAG		GCTGTTTCCG CCGAGCAGCG AAGAATTGCA CGACAAAGGC GGCTCGTCGC TTCTTAACGT	TAGCGACTTT 1 ATCGCTGAAA A	GCCCCGTCAA
CGGATTATTA GCCTAATAAT	HpaI ~~~~~~ GGCACGAAGT TAACCGTTCT CCGTGCTTCA ATTGGCAAGA	GCTGTTTCCG CGACAAAGGC	TGTGCCTGAT ACACGGACTA	GCAGATAGCA GCCCCGTCA
BbsI ~~~~~ GAAGACGAAG CTTCTGCTTC	GTTTGGCGGC	DraIII ~~~~~~ CGAGTGTGAC GCTCACACTG	GCGACCCTGG CGCTGGGACC	GGCCTGGAAG
H	51	101	151	201
	Substitu	TE SHEET (RULE 26)		

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

GATAGACTCG CTATCTGAGC AACAAGTACG CGGCCAGCAG TTGTTCATGC GCCGGTCGTC ACAAAGCAAC TGTTTCGTTG CACCCTCCAA GTGGGAGGTT 251

RleAI

GTCCCACAGA AGCTACAGCT GCCAGGTCAC TCGATGTCGA CGGTCCAGTG CAGGGTGTCT CTGACGCCTG AGCAGTGGAA TCGTCACCTT GACTGCGGAC 301

StuI

~ ~ ~ ~ ~ ~

CTCCGGACTA GAGGCCTGAT GCATGAGGGG AGCACCGTGG AAAAAACCGT TGCGCCGACT ACGCGGCTGA TTTTTGGCA TCGTGGCACC CGTACTCCCC

SphI

?

401 AAGCATGC TTCGTACG

SUBSTITUTE SHEET (RULE 26) 49 / 204

351

Figure 7D: oligonucleotides used for synthesis of module M24 containing CA gene segment

## M24: assembly PCR

M24-A: GAAGACAAGCGGATTATTGCCAGCAGCATTATACCACCCCGCCTGTGTTTGGCGGCG-GCACGAAGTTAACCGTTC

M24-B: CAATTCTTCGCTGCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-

GAACGGTTAACTTCGTGCCGC

M24-C: CGCCGAGCAGCGAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-

TTTATCCGGGAGCCGTGACA

M24-D: TGTTTGGAGGGTGTGGTGGTCTCCACTCCCGCCTTGACGGGGCTGCTATCTGCCTTCCAG-

GCCACTGTCACGGCTCCCGG

M24-E: CCACACCCTCCAAACAAGCAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC

CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F: GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTCCACGGTGCTCCCCTCATGCGT-

GACCTGGCAGCTGTAGCTTC

^{нз-Vк2} Ё Т Р	TCTTCACCCC AGAAGTGGGG	ഗ	GAAAGCGGCG CTTTCGCCGC	A A S Bspei	CGCGGCCTCC	A P G BstxI	AAGCCCCTGG	TTCGGGGACC
thain fragment V L L SapI	l	ы У		U		R Q H	ł	
onsensus single-c L P	TTACCGTTGC AATGGCAACG	Q MfeI	GCAATTGGTG CGTTAACCAC	л П	GTCTGAGCTG CAGACTCGAC	N N	TGGGTGCGCC	ACCCACGCGG
letic gene encoding the ${ m cc}$ ${ m L}$ ${ m A}$ ${ m L}$	ACTGGCACTC TGACCGTGAG	C D E V	AAGATGAAGT TTCTACTTCA	G S L	GGCAGCCTGC CCGTCGGACG	A M ··	TGCGATGAGC	ACGCTACTCG
restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 S T I A L A L L P L L F SapI	GCACTATTGC CGTGATAACG	A D Y K	GCCGACTACA CGGCTGATGT	ъ d Õ	GCAACCGGGC CGTTGGCCCG	F S S Y	TTAGCAGCTA	AATCGTCGAT
Figure 8: sequence and re M K Q (	ATGAAACAAA TACTTTGTTT	V T K	TGTTACCAAA ACAATGGTTT	O I O	GCGGCCTGGT CGCCGGACCA	G F T E BSPEI	GGATTTACCT	CCTAAATGGA

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) C ഗ G S Ø ഗ > 3 回 XhoI C ×

GGCAGCACCT CCGTCGTGGA CGGTAGCGGC GCCATCGCCG CGCGCTAATC GCGCGATTAG GAGTGGGTGA CTCACCCACT CTTCCCAGAG GAAGGGTCTC

Nspv 1111 Z Д PmlI K വ Н E 됴  $\alpha$ U ×  $\gt$ S K  $\succ$ 

×

TGATAATTCG ACTATTAAGC CCATTTCACG GGTAAAGTGC GGCCGTTTTA CCGGCAAAAT TAGCGTGAAA ATCGCACTTT TAATACGCCT ATTATGCGGA ×

K

H

口

K

召

Н

S

Z

 $\mathbf{\Sigma}$ 

Q

П

Н

Е

Z

EagI AAGATACGGC TTCTATGCCG 1111 CTGCGTGCGG GACGCACGCC TTACTTGTCG AATGAACAGC TGTATCTGCA ACATAGACGT TTTTTGTGGG AAAAACACCC NspV

Σ Q >لترا G Ω G C 3 K 4 EagI

BSSHII

GCGATGGATT TGCGCGCGTT GGGGCGCGA TGGCTTTTAT CGTGTATTAT

nent VH3-Vk2 (continued) CGCTACCTAA GGSS	TGGCGGTTCT ACCGCCAAGA	G S D I ECORV	GTTCCGATAT CAAGGCTATA	ы Б	GGCGAGCCTG CCGCTCGGAC	N U	CAACGGCTAT GTTGCCGATA
nsensus single-chain fragm ACCGAAAATA S S A G BlpI	GCTCAGCGGG	<u>ა</u>	GGCGGTGGTG CCGCCACCAC	V T P	AGTGACTCCG TCACTGAGGC	I H S	TGCTGCATAG ACGACGTATC
Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) GCACATAATA ACGCGCGCAA CCCCGCCGCT ACCGAAATA CGCTACCTAA $Y M G Q G T L V T V S S A G G G S S S A G G S S S A G G S S S A G G S S S A G G G S S S A G G G S S S A G G G S S S A G G G S S S A G G G S S S A G G G S S S A G G G S S S A G G G S S S A G G G S S S A G G G S S S A G G G S S S A G G G S S S A G G G S S S A G G G S S S S$	AGGCACCCTG GTGACGGTTA TCCGTGGGAC CACTGCCAAT	S D D S D	GGAGCGGTGG CGGTGGTTCT CCTCGCCACC GCCACCAAGA	Q S P L S L P Banii	A H	C Ps	CTGCAGAAGC AGCCAAAGCC GACGTCTTCG TCGGTTTCGG
Figure 8: sequence and res GCACATAATA Y W G Q Sty	ATTGGGGGCCA	ტ ტ	GGCGGCGGTG	V M T ECORV	CGTGATGACC GCACTACTGG	A S II S	CGAGCATTAG GCTCGTAATC

continued) L L ASEI	~~~ ATT TAA		90	Æ	CT	H	A T G
3-Vk2 (conti Q L AS	~ CTA GAT	W	TAG	巨	AAG	Д	2000 0000
Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) $N \ Y \ L \ Q \ K \ P \ G \ Q \ S \ L \ L \ L \ RPnI$	~~~ CGCAGCTATT GCGTCGATAA	[ī-t	CGTTTTAGCG GCAAAATCGC	>	TGTGGAAGCT ACACCTTCGA	Д	CCCCGCCGAC
ment \ P		K	_			E	
ain fragr S	990	Ω	GAT	ĸ	0 0 0 0 0		CCA
single-cha Q	AAA TTT	Д	C C C C C C C C C C C C C C C C C C C	W	rag atc	H	ATA( PAT(
Sus sing G	GGTCAAAGCC CCAGTTTCGG	G V Eco0109I	G GGTCCCGGAT C CCAGGGCCTA	H	AAATTAGCCG TTTAATCGGC	х н	CATTATACCA GTAATATGGT
the consent P (SexAI	l	G G G	₹	×		,	
ng the o	ACC2 TGG1		STGC	T L K	TGA	O ⁱ	CAG
encodin K	AAA.	A S	CAC	H	999 ₁	Q	CAG
gene Q	TCAAAAACCA AGTTTTTGGT	4	GTGCCAGTGG CACGGTCACC	<u> </u>	TTTACCCTGA AAATGGGACT	Ö	TTGCCAGCAG AACGGTCGTC
ntheti L	·	R.		0	·	×	
ap of the sy I Y KpnI	GTACC CATGG	Z	AAC	Д	CGA	<b>≯</b> 1 .	ATT TAA
map of W	ATTGGTACCT TAACCATGGA	တ	GGCAGCAACC CCGTCGTTGG	Ħ	~ CGGCACCGAT GCCGTGGCTA	>	GCGTGTATTA CGCACATAAT
riction	ATT TAA	ഗ	999 000	Ŋ	000 000		555
nd rest	0 0 0	ᆔ	TG AC			Ŋ	
T Funce an	AACTATCTGG TTGATAGACC	≯	~~~ AATTTATCTG TTAAATAGAC	G S BamH	GCTCTGGATC CGAGACCTAG	>	GAAGACGTGG CTTCTGCACC
8: sequ	CTA		TTT	ß	rct. AGA	$\Box$	AAGA( TTCT(
Figure N	AA( TT(	I AseI	AAT TTA	Ŋ	300	田园	GAZ CTT

rigare 8: sedecires and resultation in the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued)					,
ent VH3-V	ഥ	RI	2	TTC	AAG
in fragir	曰	ECORI	1 1 1	BAA	CTT
gle-chai	R T E	BsiWI	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ACG(	TGC(
ISENSUS SIN	ሺ	BS	<b>≀</b> <b>≀</b>	ACGTACGGAA	TGCATGCCTT
נחפ כטח	E H K			AA	ΤI
coaing	Н			AATI	LTA2
c dene en	ഠ			TTGAAATTAA	AACTTTAATT
ייונויייייייייייייייייייייייייייייייייי	>			AG .	1C 7
בוע א	<b>×</b>			BAAZ	TTJ
o de la	G T K V			racc	ATG(
	C			GGTACGAAAG	CCATGCTTTC
	O'	Н	l	CAG	
) I oh .	ტ	Msc	1111	GGC	SCCG
iguic o. s	ഥ		ł	CTTTGGCCAG	GAAACCGGTC



SUBSTITUTE SHEET (RULE 26) 56 / 204

E01	<u></u> ≥	<u></u> ≥	≥	≥	≥	≥	≥	≥	>	: ≥	∶≥	∶≥	: ≥
105	>	>	>	>	>	>	>	>	>-	>	>	>	<del></del>
101													
J00 L	$\sum_{i}$	1	ı		1	t	ı	t	ı	1	ı	1	ı
100D	1	. 1	ı	ı	ı	ı	ı	t	1	1	.1	ı	ı
J001	•	1	ı	ı	ı	ı	ı	ı	ı	1	ı	1	1
1008	⋖	i	1	ı	ı	1	ı	ı	ı		ı	ı	ı
A001	<b>&gt;</b>	1	i	ı	1	1	t	1	ı	1	ı	ı	ı
001	ட	>-	エ	エ	à	>	۵	ı	S	$\checkmark$	⋖		Σ
66	G	Z	≥	>-	⋖	9	0	$\propto$	Z	S	⋖	>	≯
86	Ω	Σ	ш		$\leq$		⋖	<u> -</u>	∝		ட	0	ш
26	G	$\checkmark$	<b>—</b>	ш		<b>—</b>	ш	_	Z	G	<b>—</b>	م	S
96	G	9	$\simeq$	$\propto$	ட	Z	Z	⋖	>-	>	$\times$	⋖	0'
<i>S6</i>	≥	ட	I	>	¥	≷	_	<b>—</b>	≥	S	Ś	>	Σ
<b>7</b> 6	$\propto$	∝	$\propto$	$\propto$	$\propto$	$\propto$	$\propto$	$\propto$	$\propto$	$\propto$	<u>~</u>	$\propto$	$\simeq$
86	<u> </u>	<b>⋖</b>	⋖	⋖	⋖	⋖	⋖	⋖	4	⋖	⋖	⋖	⋖
76	O	S	C	ပ	ပ	ن	ပ	ပ	ر ر	ပ	ပ	ပ	<del>ا</del>
∢		B											

Figure 10: Sequence analysis of initial libraries

O

333333333  $\Sigma \Sigma \Gamma \Sigma \Sigma \Gamma \Gamma \Sigma \Sigma \Sigma \Sigma$ > - 木 > で - エト > - で  $\Sigma \succ R \times \Sigma$  S S U U U D L U  $\succ$  O I O L I Z K L A  $\checkmark$ し ら F E Z E > Z L Y F TA> S O O Z J T O F $I \times Z \vdash X \cap S \subseteq M Z \vdash$ >  $\neg$  Q Q  $\times$  > q q q  $\vdash$  Q $\succ \Sigma \times \vdash \succ * \ltimes \Sigma \times \circ \succ$ RKKKKKKKKK 4 4 4 4 4 4 4 4 4  $\circ$ 

Figure 11: Expression analysis of initial library





Figure 12: Increase of specificity during the panning rounds



Figure 13: Phage ELISA of clones after the 3rd round of panning



Clone Number

Figure 14: Competition ELISA



- No Inhibition
- Inhibition with BSA
- ☐ Inhibition with Fluorescein

101 000000000000000 3001 ктттт Z ттттттттт.  $0001 \times \times \times \times \times \times \times - 0 \times \times$ 2001 LKIKZOK>YOZUXYK 8001 CZCXX.  $\text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY} \text{LY$ 001 Z K T K X D J > O K O L O > K >  $86 \pm 0 \times \pi -> \pm 1 \pm 0 \times \pi = - \times \pi$  $79 \leq 20 \leq 700$  $89 \times \text{KKK} \times \text{TKKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KKK} \times \text{KK$  $P_{Q}$  aranananananananan 

Figure 16: Purification of fluorescein binding scFv fragments



Figure 17: Enrichment factors after three rounds of panning



anti-B-estradiol antibodies D4-6 04-1 Figure 18: ELISA of anti-ESL-1 and anti- $\beta$ -estradiol antibodies anti-ESL-1 antibodies 0.8 9.0 0 J9A-(mn204)00 SNBSTILLTE SHEET (UTE 59) 66 / 504

Figure 19: Selectivity and cross-reactivity of HuCAL antibodies



Figure 20: Sequence analysis of estradiol binders

```
Frequency
                                                            33333333333
             105
                                                          >>>>>>>>>>>>>
                101
                                                             100F
                                                           \mathsf{T} \mathrel{\mathop{>}} \mathsf{T} \mathsf{T} \mathsf{T} \mathsf{T} \mathrel{\mathop{>}} \mathsf{Z} \mathrel{\mathop{>}} \mathsf{Z} \mathrel{\mathop{>}} \mathsf{Z} \mathsf{Z} \mathsf{Z} \mathsf{T}
                                                           0 \times \alpha \pi \pi \Sigma \cdot \alpha > \pi \pi \Sigma
1000
                                                            J001
  100R
                                                           K K O H V K I Y > K O K
                                                            \vdash Z - D \geqslant I \mid \bot D \bot X \geq
  A001
                                                              A X D I I K D Z S N K N K
             001
                                                           Q = X = Q = A = X = X = X = X
                                                            \exists \exists \exists \exists \Box \exists A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists \Box A \exists 
                         86
                                                            16
                                                              x Q x v T Q Z x x x Z Z
                         96
                                                          \vdash Z \times \succ > Z - \alpha \leq Z Z Z
                         96
                                                          \alpha
                         t6
                                                               4444444444
                          63
```

SUBSTITUTE SHEET (RULE 26)

Figure 21: Sequence analysis of testosterone binders

Frequency	4	- (~	) C	۷ ۲-		
103	<u></u>	: ≥	: ≥	: ≥	: ≥	: ≥
105	>	>	- ,>-	>	· >-	· >-
101						Ω
100E	ட	LL.	LL	. ц	ட	ட
100D	Ø	O	O	Σ	≥	O
J001		Σ	Σ	<b>—</b>	$\checkmark$	Σ
100B	$\checkmark$	$\checkmark$	$\leq$	×	≥	O
A001	$\propto$	O	Z	Σ	_	œ
001	$\times$	≥	$\propto$	≥	œ	S
66	Ø,	A	⋖	⋖	8	Ø
86	O	エ	>-	9		$\propto$
<b>Z</b> 6	$\checkmark$	$\simeq$	$\checkmark$	<u>مح</u>	٩	$\checkmark$
96	-	Z	>	$\checkmark$	<b>×</b>	$\propto$
<i>9</i> 6	>	>	>	>-	<u>.</u> œ	>-
<b>7</b> 6	$\propto$	$\propto$	$\propto$	$\propto$	$\propto$	$\propto$
63	$\forall$	⋖	⋖	⋖	⋖	A
76	<del>ا</del>	$\overline{\mathcal{C}}$	C	ر ر	$\overline{\mathcal{O}}$	$\mathcal{C}$

Figure 22: Sequence analysis of lymphotoxin-ß binders

Frequency	16		•	<del>, , .</del>	- <del>-</del>			
103	≥	≥	≥	≥	<b>≥</b>	≥	<b>≥</b>	` ≥
105	>	>-	>-	>-	>	>	>	>-
101	۵				ب			_
100E	ட	Σ	ட	Σ	Σ	ட	Σ	ட
J001	工	م	Q	≥	>	S	≥	≥
J001	9		>	Ţ	エ	Q	ш	>
1008	$\checkmark$	>	≥	エ		<b>—</b>	z	≥
A001	_	S	>-	مـ	$\propto$	ட	ш	ட
001	$\times$	Z	Z	$\checkmark$	⋖	O	<b></b> -	_
66	S	ட			Q	S	a	_
86	<u>~</u>			>-	ш	Z	ட	<b></b>
<i>1</i> 6	>	<u>«</u>	<u>۵</u>	Ø		工	工	مـ
96	$\propto$	≥	Ø	O	_	≥		≥
<i>9</i> 6	O	1	Σ		<b>∝</b>	S	>	
<b>t</b> 6	œ	$\propto$	$\propto$	∝	œ	<u>~</u>	œ	$\simeq$
£6	Α_	⋖	V	V	A	⋖	⋖	⋖
76	ب	ں	ن	ں	ن	ں	ں	<del>ن</del>

•												
Frequency	4	4	2	<del></del>		2	<del>,</del>	13	က	<b>-</b>		<b>-</b>
103	3	≥	3	≥	8	>	≥	≥	3	≥	≥	≥
105	>	>	>	>	>	>	>	>	>	>	>-	>
101								Ω		۵		
300≀	1	ட	≥	Σ	Σ	Σ	u.	ட	Σ	ட	ı	Σ
000 l	1	~	O	_	O		$\prec$	$\checkmark$	<u>~</u>	ட	ŧ	_
100Ca	ŧ	ı	1	ı	$\propto$	1	ı	ı	,	ı	ı	1
J001	ı	~	œ	$\propto$	~	_	8	<u>~</u>	≥	$\propto$	ı	α.
100B	ι	>	S		۵		>	<u>~</u>		×	1	$\propto$
A001	ı	ட	$\checkmark$	Ø	≥	Σ	≥	<b>—</b>	エ	S	ı	O
001	ய	S	S	9	S		$\propto$	$\checkmark$	>	$\checkmark$	ட	<b>×</b>
66	<u> </u>		S	>	Ø	>	<b>-</b>	S	>-	<b>—</b>	ய	<b>—</b>
86	ட	ш	w	ш	س.	≥	ш	ய	O	ш	≥	ш
<b>∠</b> 6	ග		$\checkmark$		ட	ш	S	$\checkmark$	<b> </b>	$\propto$	_	ш
96	ட	ட	_	Q	工	Z	>	ட	$\checkmark$	≥	>-	ட
<i>9</i> 6	Ð	O		ш	Z	ш	O	O	$\checkmark$	8		O
<b>7</b> 6	$\propto$	$\propto$	œ	$\propto$	$\propto$	~	~	<u>~</u>	$\simeq$	$\propto$	<u>~</u>	ď
63	⋖	⋖	Ø	⋖	Ø	⋖	⋖	4	⋖	α	⋖	⋖
<i>7</i> 6	ပ	ں	ပ	ں	ں	ن	ر ر	ں	ں	ر ا	ں	ر

SUBSTITUTE SHEET (RULE 26)

Figure 24: Sequence analysis of BSA binders

			-			
Frequency		-	-	•	-	
103	>	≥	≥	≥	≥	≥
105	>	>	>	>	>	>
101						
100E	Σ	ட	Σ	Σ	Σ	ட
100D	>	æ	œ	O	>	ட
J001	>	ட	>	S	≥	I
100B		>	>	≥	Z	<b>—</b>
A001		Z	ш	S	۵.	·
001	Ø	>	≥	_	A	<u>م</u>
66	>	Σ	O	œ	≥	$\checkmark$
86	ட	>-	ш	>-	œ	ட
<i>L</i> 6	Ð	<b>—</b>	ட	ш	S	O
96	Q	ц.	யு	$\prec$	مـ	g
<i>9</i> 6	Ω	>	>	<u>.</u>	>	0
<b>7</b> 6	$\propto$	œ	$\propto$	$\propto$	$\alpha$	$\propto$
83	A	A	A	⋖	⋖	4
<i>76</i>	ပ	ں	ں	ں	ပ	C

**S**t∏

phoA

lox' site

BgIII Jox site npA | alac p/o+lox' lox site ColEI Ext2 origin p15A module AatIII Jac p/o cat pCAL system Nhel fl ori Fsel BsrGII gIII ss ECO R Pack lpp-Terminatortails/ (His, myc) Hind=1 domains module IMPassóc. Figure 25: modular pCAL vector system functions (IL2) lacI effector long SUBSTITUTE SHEET (RULE 26)

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

unique restriction site	Isoschizomers
Aatll	
AfIII	Bfrl, BspTl, Bst98l
Ascl	
Asel	Vspl, Asnl, PshBl
BamHI	Bstl
Bbel	Ehel, Kasl, Narl
Bbsl	BpuAl, Bpil
BgIII	
Blpl	Bpu1102I,CellI, BlpI
BsaBl	Maml, Bsh1365l, BsrBRI
BsiWl	Pfl23II, SplI, SunI
BspEl	AccIII, BseAI, BsiMI, Kpn2I, Mrol
BsrGl	Bsp1407I, SspBI
BssHII ·	Paul
BstEll	BstPl, Eco91l, EcoO651
BstXI	
Bsu36l	Aocl, Cvnl, Eco811
Dralll	
DsmAl	
Eagl	BstZI, EclXI, Eco52I, XmaIII
Eco57I	
Eco0109I	Drall
EcoRI	
EcoRV	Eco32I
Fsel	
HindIII	
Hpal	
Kpnl	Acc65l, Asp718l
Mlul	
Mscl	Ball, MluNl

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

unique restriction site	Isoschizomers
Muni	Mfel
Nhel	
Nsil	Ppu10l, EcoT22l, Mph1103l
NspV	Bsp119l, BstBl, Csp45l, Lspl, Sful
Pacl	
Pmel	
Pmll	BbrPl, Eco72l, PmaCl
Psp5II	PpuMI
Pstl	
RsrII	(Rsril), Cpol, Cspl
SanDI	1
Sapl	
SexAI	
Spel	
Sfil	
Sphl	Bbul, Pael, Nspl
Stul	Aatl, Eco147l
Styl	Eco130l, EcoT14l
Xbal	BspLU11II
Xhol	PaeR7I
Xmal	Aval, Smal, Cfr91, PspAl

Figure 26: list of pCAL vector modules

WO 97/08320				PCT/EP96/036
reference	Skerra et al. (1991) Bio/Technology 9, 273-278	Hoess et al. (1986) Nucleic Acids Res. 2287-2300	see M2	Ge et al., (1994) Expressing antibodies in E. coli. In: Antibody engineering: A practical approach. IRL Press, New York, pp 229-266
template	vector pASK30	(synthetic)	(synthetic)	vector plG10
sites to be inserted	Aatll	lox, BgIII	lox', Sphl	none
sites to be removed	2x Vspl (Asel)	2x Vspl (Asel)	none	Sphl, BamHl
functional element	lac promotor/operator	Cre/lox recombination site	Cre/lox' recombination site	gllip of filamentous phage with N- terminal myctail/amber codon
module/flan- king restriction sites	Aatll-lacp/o- Xbal	BgIII-lox- Aatii	Xbal-lox'- Sphl	EcoRI- gIIIlong- HindIII
No	M1	M2	M3	M7-1

Figure 26: list of pCAL vector modules

r <del></del>	<del></del>				101	/EP96/036
see M7-I	see M7-I	see M3	see M1	see M1	see M1	see M1
vector plG10	vector p1G10	(synthetic)	(synthetic)	pASK30	pASK30	pASK30
		lox	Pacl, Fsel	Pacl, Fsel, BsrGl	BsrGl, Nhel	BsrGI, Nhel
Sphl	Sphl, Bbsl	none	none	Vspl, Eco571, BssSl	Dralll (Banll not removed)	DrallI, BanlI
truncated gIllp of filamentous phage with N-terminal Gly- Ser linker	truncated gillp of filamentous phage with N-terminal myctail/amber codon	Cre/lox recombination site	lpp-terminator	beta-lactamase/bla (ampR)	origin of single- stranded replication	origin of single- stranded replication
EcoRI-gIIIss- HindIII	M7-III EcoRI-gIIIss- HindIII	SphI-lox- HindIII	HindIII-Ipp- Pacl	Pacl/Fsel-bla- BsrGl	BsrGI-f1 ori- Nhel	BsrGI-f1 ori- Nhel
M7-II	M7-III	M8	M9-II	M10-	M11-	M11-

Figure 26: list of pCAL vector modules

ı ———	<del></del>		<del></del>		PCT/EF
Rose, R.E. (1988) Nucleic Acids Res.	see M3	Yanisch-Peron, C. (1985) Gene 33.103-119	Cardoso, M. & Schwarz, S. (1992) J. Appl. Bacteriol. 72, 289-	see M1	Knappik, A & Plückthun, A. (1994) BioTechniques 17, A
Nhel, BgIII pACYC184	(synthetic)	pUC19	pACYC184	(synthetic)	(synthetic)
	BgIII, lox, Xmnl	BgIII, Nhel			·
BssSI, VspI, NspV	none	Eco571 (BssSl not removed)	BspEI, MscI, StyI/NcoI	(synthetic)	(synthetic)
origin of double- stranded replication	Cre/lox recombination site	origin of double- stranded replication	chloramphenicol- acetyltransferase/ cat (camR)	signal sequence of phosphatase A	signal sequence of phosphatase A + FLAG detection tag
Nhel-p15A- BgIII	BgIII-lox- BgIII	Bgill-ColEl- Nhel	Aatll-cat- BgIII	Xbal-phoA- EcoRi	Xbal-phoA- FLAG-EcoRI
M12	· M13	M14- Ext2	M17	M19	M20

SUBSTITUTE SHEET (RULE 26)

Figure 26: list of pCAL vector modules

WO 97/0832	0	
Lee et al. (1983) Infect. Immunol. 264-268	see M1	Lindner et al., (1992) Methods: a companion to methods in enzymology 4, 41-
(synthetic)	pASK30	(synthetic)
(synthetic)	BstXI, Mlul,BbsI, Banll, BstEII, Hpal, Bbel, VspI	(synthetic)
heat-stable enterotoxin II signal (synthetic) sequence	lac-repressor	poly-histidine tail
Xbal-stll- Sapl	Afill-laci- Nhel	EcoRI-Histail- HindIII
M21	M41	M42





SUBSTITUTE SHEET (RULE 26) 80 / 204

2	יולמיו ביי ימיוניים יוסף יים למיי	(222	6,5		
	HindIII	·II:	PacI		BsrGI
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<b>? ? ?</b>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Н	ACATGTAAGC TGTACATTCG	TTCCCCCCCC AAGGGGGGGGGGGGGGGGGGGGGGGGGGG	CCTTAATTAA: GGAATTAATT	000000000000000000000000000000000000000	TGTACACCCC ACATGTGGGG
	NheI		Bglii	Aa	Aatii Xbai
	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	<b>? ? ?</b>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
51	CCCCCGCTA	322222225	CCAGATCTCC	CCCCCCCGA CGTCCCCCCT	CGTCCCCCCT
	GGGGGGCGAT	999999999	GGTCTAGAGG	GGGGGGCT GCAGGGGGGA	GCAGGGGGGA
	XbaI	Sphi		ECORI AAtII	II
	~ ~ ~ ~ ~	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<b>?</b>
101	CTAGACCCCC	CCCCCGCATG	CCCCCCATG CCCCCCCCC	CGAATTCGAC GTC	GTC
	GATCTGGGGG	GGGGCGTAC	9999999999	GGGGGCGTAC GGGGGGGGG GCTTAAGCTG CAG	CAG

SUBSTITUTE SHEET (RULE 26)

Figure 28: functional map and sequence of pMCS cloning vector



(continued)
vector
cloning ve
of pMCS
al map and sequence
functional r
Figure 28:

TTGTTTATTT AACAAATAAA	AACCCTGATA TTGGGACTAT	CAACATTTCC GTTGTAAAGG	TGTTTTTGCT ACAAAAACGA	AGTTGGGTGC TCAACCCACG BSSSI	ATCCTTGAGA TAGGAACTCT
GAACCCCTAT CTTGGGGATA	ATGAGACAAT TACTCTGTTA	TATGAGTATT ATACTCATAA	TTTGCCTTCC AAACGGAAGG	Eco57I ~~~~~~ GCTGAAGATC CGACTTCTAG	CAGCGGTAAG GTCGCCATTC
AATGTGCGCG TTACACGCGC	GTATCCGCTC CATAGGCGAG	AAAGGAAGAG TTTCCTTCTC	TTTGCGGCAT	AGTAAAAGAT TCATTTTCTA	TGGATCTCAA ACCTAGAGTT
TTTTCGGGGA	ATTCAAATAT TAAGTTTATA	ТААТАТТGAA АТТАТААСТТ	TATTCCCTTT ATAAGGGAAA	CGCTGGTGAA GCGACCACTT	TACATCGAAC ATGTAGCTTG
CAGGTGGCAC GTCCACCGTG	TTCTAAATAC AAGATTTATG	AATGCTTCAA TTACGAAGTT	GTGTCGCCCT CACAGCGGGA	CACCCAGAAA GTGGGTCTTT	ACGAGTGGGT TGCTCACCCA BSSST
₩	51	101	151	201	251

TGACAACGAT ACTGTTGCTA

TTGAATGAAG

GTGACGCCGG

ACTCACTATT

CGGTATTGGT

GGGGATCATG

GCACAACATG CGTGTTGTAC

CCGCTTTTT

AAGGAGCTAA

CGGAGGACCG

51

ഹ

GCCTCCTGGC

601

651

TTCCTCGATT

GGCGAAAAA

CCCCTAGTAC

Figure 28: functional map and sequence of pMCS cloning vector (continued)

			-		
301	GTTTTCGCCC	CGAAGAACGT GCTTCTTGCA	~~~~~ TTTCCAATGA AAAGGTTACT	TGAGCACTTT ACTCGTGAAA	TAAAGTTCTG ATTTCAAGAC
351	CTATGTGGCG	CGGTATTATC GCCATAATAG	CCGTATTGAC GGCATAACTG	GCCGGGCAAG CGGCCCGTTC	AGCAACTCGG TCGTTGAGCC
401	TCGCCGCATA	CACTATTCTC GTGATAAGAG	AGAATGACTT TCTTACTGAA	GGTTGAGTAC CCAACTCATG	TCACCAGTCA AGTGGTCAGT
451	CAGAAAAGCA GTCTTTTCGT	TCTTACGGAT AGAATGCCTA	GGCATGACAG CCGTACTGTC	TAAGAGAATT ATTCTCTTAA	ATGCAGTGCT TACGTCACGA
501	GCCATAACCA	TGAGTGATAA	TGAGTGATAA CACTGCGGCC	AACTTACTTC TGACAACGAT	TGACAACGAT

T TGATCGTTGG GAACCGGAGC TGAATGAAGC CATACCAAAC A ACTAGCAACC CTTGGCCTCG ACTTACTTCG GTATGGTTTG	3 ACACCACGAT GCCTGTAGCA ATGGCAACAA CGTTGCCAAA
TGATCGTTGG GAACCGGAGC TGAATGAAGC	ATGGCAACAA
GAACCGGAGC CTTGGCCTCG	GCCTGTAGCA
TGATCGTTGG ACTAGCAACC	ACACCACGAT
TAACTCGCCT ATTGAGCGGA	GACGAGCGTG

CATTTTTAAT GTAAAAATTA

TTTAAAACTT

TTTAGATTGA AAATCTAACT

TCATATATAC AGTATATATG

CCAAGTTTAC GGTTCAAATG

1001

AAATTTTGAA

AACTGTCAGA TTGACAGTCT

AAGCATTGGT

CTCACTGATT GAGTGACTAA

AGATAGGTGC TCTATCCACG

CAGATCGCTG

951

GTCTAGCGAC

TTCGTAACCA

Figure 28: functional map and sequence of pMCS cloning vector (continued)

[

[_

GCAACGCGTT	AseI	CAATTAATAG GTTAATTATC	CTCGGCCCTT GAGCCGGGAA	AGCGTGGGTC TCGCACCCAG	TCCCGTATCG AGGGCATAGC	ACGAAATAGA TGCTTTATCT
TACCGTTGTT		TTCCCGGCAA AAGGGCCGTT	CACTTCTGCG GTGAAGACGC	GGAGCCGGTG CCTCGGCCAC	TGGTAAGCCC ACCATTCGGG	CTATGGATGA GATACCTACT
CGGACATCGT		TTACTCTAGC AATGAGATCG	GTTGCAGGAC CAACGTCCTG	TGATAAATCT ACTATTTAGA	TGGGGCCAGA	AGTCAGGCAA TCAGTCCGTT
TGTGGTGCTA		GGCGAACTAC CCGCTTGATG	GGCGGATAAA CCGCCTATTT	GGTTTATTGC CCAAATAACG	ATTGCAGCAC TAACGTCGTG	CACGACGGGG GTGCTGCCCC
CTGCTCGCAC		ACTATTAACT TGATAATTGA	ACTGGATGGA TGACCTACCT	CCGGCTGGCT GGCCGACCGA	TCGCGGTATC AGCGCCATAG	TAGTTATCTA ATCAATAGAT
		01	51	301	51	0.1

SUBSTITUTE SHEET (RULE 26)

 $\infty$ 

σ

 $\infty$ 

Figure 28: functional map and sequence of pMCS cloning vector (continued)

1051	TTAAAAGGAT AATTTTCCTA	CTAGGTGAAG	ATCCTTTTTG TAGGAAAAAC		ATAATCTCAT TATTAGAGTA
1101	CCTTAACGTG GGAATTGCAC	AGTTTTCGTT	_	CCACTGAGCG GGTGACTCGC	CCACTGAGCG TCAGACCCCG GGTGACTCGC AGTCTGGGGC
1151	CAAAGGATCT GTTTCCTAGA	TCTTGAGATC	ひび	CTTTTTTCT GAAAAAAAGA	TTTTTTCT GCGCGTAATC AAAAAAAGA CGCGCATTAG
1201	AAACAAAAA TTTGTTTTT	ACCACCGCTA TGGTGGCGAT	000	CCAGCGGTGG GGTCGCCACC	AGCGGTGG TTTGTTTGCC
1251	CTACCAACTC GATGGTTGAG	TTTTTCCGAA	GG.	GGTAACTGGC CCATTGACCG	(
	ļ			ਹੁੱ }	T/SODE
1301	AAATACTGTC TTTATGACAG	CTTCTAGTGT GAAGATCACA	AGC	AGCCGTAGTT TCGGCATCAA	CGTAGTT AGGCCACCAC
1351	CTGTAGCACC GACATCGTGG	GCCTACATAC CGGATGTATG	CTC	CTCGCTCTGC GAGCGAGACG	GCTCTGC TAATCCTGTT

Figure 28: functional map and sequence of pMCS cloning vector (continued)

1401	GCTGCCAGTG CGACGGTCAC	GCGATAAGTC CGCTATTCAG	GTGTCTTACC CACAGAATGG	GGGTTGGACT CCCAACCTGA	CAAGACGATA GTTCTGCTAT
1451	GTTACCGGAT CAATGGCCTA	AAGGCGCAGC TTCCGCGTCG	GGTCGGGCTG CCAGCCCGAC	AACGGGGGGT TTGCCCCCCA	TCGTGCACAC
1501	AGCCCAGCTT TCGGGTCGAA	GGAGCGAACG CCTCGCTTGC	ACCTACACCG TGGATGTGGC	AACTGAGATA TTGACTCTAT	CCTACAGCGT GGATGTCGCA
 1551	GAGCTATGAG CTCGATACTC	AAAGCGCCAC TTTCGCGGTG	GCTTCCCGAA CGAAGGGCTT	GGGAGAAAGG CCCTCTTTCC	CGGACAGGTA GCCTGTCCAT
 1601	TCCGGTAAGC	GGCAGGGTCG CCGTCCCAGC	GAACAGGAGA CTTGTCCTCT	GCGCACGAGG CGCGTGCTCC BSSSI	GAGCTTCCAG CTCGAAGGTC
1651	GGGGAAACGC CCCCTTTGCG	CTGGTATCTT GACCATAGAA	TATAGTCCTG	TCGGGTTTCG AGCCCAAAGC	CCACCTCTGA GGTGGAGACT
1701	CTTGAGCGTC GAACTCGCAG	GATTTTTGTG CTAAAAACAC	ATGCTCGTCA TACGAGCAGT	GGGGGGCGGA	GCCTATGGAA CGGATACCTT
1751	AAACGCCAGC	AACGCGGCCT	TTTTACGGTT	CCTGGCCTTT	TGCTGGCCTT

SUBSTITUTE SHEET (RULE 26)

Figure 28: functional map and sequence of pMCS cloning vector (continued)

TTGCGCCGGA AAAATGCCAA GGACCGGAAA ACGACCGGAA	PacI AATTAACCCC CCCCCTGTA TTAATTGGGG GGGGGGACAT	lii ~~~~ ATCTCCCCC CCCCGACGTC TAGAGGGGG GGGGCTGCAG	ECORI  CCCCCCGAA TTCACGT GGGGGCTT AAGTGCA
AAAATGCCAA GG,	PacI ~~~~~~~ CCCCCCCTT AATTAACCCC GGGGGGAA TTAATTGGGG	Bglii ~~~~~~ cccccccag arcrccccc GGGGGGTC TAGAGGGGG	Sphi ~~~~~~ CGCATGCCCC CCC GCGTACGGGG GGC
TTGCGCCGGA	HindIII ~~~~~~ GTAAGCTTCC CATTCGAAGG	NheI ~~~~~~ CCGCTAGCCC GGCGATCGGG	~ ACCCCCCCCC TGGGGGGGG
TTTGCGGTCG	TTGCTCACAT	BsrGI ~~ CACCCCCCC GTGGGGGGGG	Xbal ~~~~~ CCCCCTCTAG GGGGAGATC
	1801	1851	1901

SUBSTITUTE SHEET (RULE 26) 88 / 204





SUBSTITUTE SHEET (RULE 28)

Figure 29: functional map and sequence of pCAL module M1

H	
u	
ď	
ď	

- GGCTTTACAC CCGAAATGTG AGGCACCCCA TCCGTGGGGT CTCACTCATT GAGTGAGTAA TGTGAGTTAG ACACTCAATC GACGTCTTAA CTGCAGAATT
- GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT CGGCTCGTAT GCCGAGCATA AAATACGAAG TTTATGCTTC 51

XbaI

GA CGAATTTCTA GCTTAAAGAT ACCATGATTA TGGTACTAAT AACAGCTATG TTGTCGATAC TCACACAGGA AGTGTGTCCT

SUBSTITUTE SMEET (RULE 28)

101





SUBSTITUTE SHEET (RULE 26)

Figure 30: functional map and sequence of pCAL module M7-11 (continued)

}	
,	
3	
3	
,	
<u>,</u>	
5	
,	
•	
<u>'</u>	
7	
,	$\mathbb{Z}$
	ECORI
Ŀ	2
	ſΉ
;	-
,	
;	

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
~	GAATTCGAGC	AGAAGCTGAT	CTCTGAGGAG GATCTGTAGG	GATCTGTAGG	GTGGTGGCTC
	CTTAAGCTCG	TCTTCGACTA	TCTTCGACTA GAGACTCCTC	CTAGACATCC	CACCACCGAG

AATAAGGGGG TTATTCCCCC	
T GGCAAACGCT	
PATGAAAAGAT A TACTTTTCTA	
GATTTTGATT CTAAAACTAA	
TGGTTCCGGT ACCAAGGCCA	•
51	,

ATGGTTTCAT	GCTGCTATCG	TGATTACGGT	CTGTCGCTAC	AAACTTGATT	151	TIT: 145 4
CGCTAAAGGC GCGATTTCCG	TACAGTCTGA ATGTCAGACT	GAAAACGCGC CTTTTGCGCG	AAATGCCGAT GAAAACGCGC TTTACGGCTA CTTTTGCGCG	CTATGACCGA GATACTGGCT	T 0 T	CUDO

TACCAAAGTA	GGTGATTTTG CCACTAAAAC
A GACAGCGATG ACTAATGCCA CGACGATAGC TACCAAAGTA	A TGGTGCTACT GGTGATTTTG
ACTAATGCCA	CTAATGGTAA GATTACCATT
GACAGCGATG	TCCGGCCTTG AGGCCGGAAC
TTTGAACTAA	TGGTGACGTT ACCACTGCAA
	201
re even	T/318 F 44

A TTCCCAAATG GCTCAAGTCG GTGACGGTGA TAATTCACCT	AAGGGTTTAC CGAGTTCAGC CACTGCCACT ATTAAGTGGA
GTGACGGTGA	CACTGCCACT
GCTCAAGTCG	CGAGTTCAGC
TTCCCAAATG	AAGGGTTTAC
GCTCTAA	GACCGAGATT
251	

## XmnI

## AATCGGTTGA TTAGCCAACT TCCCTCCCTC AGGGAGGGAG ATATTTACCT TATAAATGGA ATTTCCGTCA TAAAGGCAGT TTAATGAATA AATTACTTAT 301

Figure 30: functional map and sequence of pCAL module M7-II (continued)

TTTTCTATTG AAAAGATAAC	TCTTTGCGTT TCTTTTATAT AGAAACGCAA AGAAAATATA	TTTGCTAACA TACTGCGTAA AAACGATTGT ATGACGCATT
ACCATATGAA TGGTATACTT		TTTGCTAACA AAACGATTGT
GCGCTGGTAA	TTCCGTGGTG	ATTTTCTACG TAAAAGATGC
TTTGTCTTTG AAACAGAAAC	AATAAACTTA TTATTTGAAT	TTATGTATGT AATACATACA
ATGTCGCCCT TACAGCGGGA	ATTGTGACAA TAACACTGTT	GTTGCCACCT
351	401	451

HindIII

TAAGGAGTCT TGATAAGCTT
ATTCCTCAGA ACTATTCGAA

SUBSTITUTE SHEET (RULE 28)

501





SUBSTITUTE SHEET (RULE 26)

Figure 31: functional map and sequence of pCAL module M9-II (continued)

1	<b>-</b>	4
ł	-	4
Į	_	Н
r	C	3
	C	⇉
•	_	4
:	I	7

AGATTGTGCG TCTAACACGC AAAATGGCGC TTTTACCGCG TGTGAAGTGA ACACTTCACT TTCGAACTGG AAGCTTGACC 866666666 

~~~~~~~ PacI

FseI

GCCGGCCTGG CGGCCGGACC 9999999999 TTAATTAAAG TGTCTGCCGT ACATTTTTT TGTAAAAAA 57

CCCCCCCCCC AATTAATTTC ACAGACGGCA

BsrGI

666ACAGGGGGG TGTCCCCCC GGGGGGGTGT CCCCCCACA 101

SUBSTITUTE SHEET (AULE 26)

SUBSTITUTE SHEET (RULE 26) 96 / 204

Figure 32: functional map and sequence of pCAL module M11-III (continued)

NheI

| Н | GCTAGCACGC | GCCCTGTAGC
CGGGACATCG | GGCGCATTAA
CCGCGTAATT | 000000000000000000000000000000000000000 | TGTGGTGGTT
ACACCACCAA |
|-----|------------|--------------------------|--------------------------|---|--------------------------|
| 51 | ACGCGCAGCG | TGACCGCTAC | ACTTGCCAGC | GCCCTAGCGC | CCGCTCCTTT |
| | TGCGCGTCGC | ACTGGCGATG | TGAACGGTCG | CGGGATCGCG | GGCGAGGAAA |
| 101 | CGCTTTCTTC | CCTTCCTTTC
GGAAGGAAAG | TCGCCACGTT
AGCGGTGCAA | CGCCGGCTTT
GCGGCCGAAA | CCCCGTCAAG
GGGGCAGTTC |
| 151 | CTCTAAATCG | GGGCATCCCT | TTAGGGTTCC | GATTTAGTGC | TTTACGGCAC |
| | GAGATTTAGC | CCCGTAGGGA | AATCCCAAGG | CTAAATCACG | AAATGCCGTG |
| 201 | CTCGACCCCA | AAAAACTTGA | TTAGGGTGAT | GGTTCTCGTA | GTGGGCCATC |
| | GAGCTGGGGT | TTTTTGAACT | AATCCCACTA | CCAAGAGCAT | CACCCGGTAG |
| 251 | GCCCTGATAG | ACGGTTTTTC | GCCCTTTGAC | GTTGGAGTCC | ACGTTCTTTA |
| | CGGGACTATC | TGCCAAAAAG | CGGGAAACTG | CAACCTCAGG | TGCAAGAAAT |
| 301 | ATAGTGGACT | CTTGTTCCAA | ACTGGAACAA | CACTCAACCC | TATCTCGGTC |
| | TATCACCTGA | GAACAAGGTT | TGACCTTGTT | GTGAGTTGGG | ATAGAGCCAG |
| 351 | TATTCTTTTG | ATTTATAAGG | GATTTTGCCG | ATTTCGGCCT | ATTGGTTAAA |

| tinued) |
|---|
| 11-III (con |
| Ξ |
| CAL mod |
| ce of p |
| sednen |
| nap and |
| 2: functional map and sequence of pCAL module |
| e 32: fi |
| Figur |

| 401 | ATAAGAAAAC | TAAATATTCC | CTAAAACGGC | TAAAGCCGGA | TAAAGCCGGA TAACCAATTT |
|-----|------------|------------|------------|------------|-----------------------|
| | AAATGAGCTG | ATTTAACAAA | AATTTAACGC | GAATTTTAAC | GAATTTTAAC AAAATATTAA |
| | TTTACTCGAC | TAAATTGTTT | TTAAATTGCG | CTTAAAATTG | TTTATAATT |

BsrGI

451 CGTTTACAAT TTCATGTACA GCAAATGTTA AAGTACATGT

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (NULE 26)

CGCAGCGGTC GGGCTGAACG

CCGGATAAGG

TGGACTCAAG ACGATAGTTA

351

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

BglII

| TGAGCGTCAG | TTTTCTGCGC | CGGTGGTTTG | ACTGGCTACA | GTAGTTAGGC | CTCTGCTAAT | CTTACCGGGT |
|-----------------------|---------------|----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|
| ACTCGCAGTC | AAAAGACGCG | GCCACCAAAC | TGACCGATGT | CATCAATCCG | GAGACGATTA | GAATGGCCCA |
| TTCGTTCCAC TC | GAGATCCTTT TT | CCGCTACCAG CG | TCCGAAGGTA AC | TAGTGTAGCC GT | ACATACCTCG CT | TAAGTCGTGT CT |
| AAGCAAGGTG AC | CTCTAGGAAA AA | GGCGATGGTC GC | AGGCTTCCAT TG | ATCACATCGG CA | TGTATGGAGC GA | ATTCAGCACA GA |
| AACGTGAGTT TTGCACTCAA | GGATCTTCTT (| AAAAAACCA (
TTTTTTGGT (| CAACTCTTTT GTTGAGAAAA | ACTGTTCTTC 1
TGACAAGAAG 1 | AGCACCGCCT 7
TCGTGGCGGA 1 | CCAGTGGCGA 1
GGTCACCGCT 2 |
| AAAATCCCTT | AAAGATCAAA | GCTTGCAAAC | CAAGAGCTAC | GATACCAAAT | AGAACTCTGT | GTGGCTGCTG |
| TTTTAGGGAA | TTTCTAGTTT | CGAACGTTTG | GTTCTCGATG | CTATGGTTTA | TCTTGAGACA | |
| AGATCTGACC | ACCCCGTAGA | GTAATCTGCT | TTTGCCGGAT | GCAGAGCGCA | CACCACTTCA | CCTGTTACCA |
| TCTAGACTGG | TGGGGCATCT | CATTAGACGA | AAACGGCCTA | CGTCTCGCGT | GTGGTGAAGT | GGACAATGGT |
| ⊣ | 21 | 101 | 151 | 201 | 251 | 301 |
| | | SUBST | ITUTE SHEE | T (BULE 26) | | |

| _ |
|---|
| par |
| ţi |
| on |
| 2 (0 |
| Ext |
| 14- |
| Σ |
| ᆵ |
| 100 |
| וְי |
| e of pCAL modul |
| J <sub>0</sub> |
| မ် |
| uen |
| and sequence |
| b |
| e d |
| maj |
| 13 |
| Ö |
| : functional map and sequence of pCAL module M14- |
| |
| 33 |
| Figure |
| Fig |

| | ACCTGAGTTC | TGCTATCAAT | GGCCTATTCC | GCGTCGCCAG | CCCGACTTGC |
|---------|-----------------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------|
| 401 | GGGGGTTCGT
CCCCCAAGCA | GCACACAGCC
CGTGTGTCGG | CAGCTTGGAG
GTCGAACCTC | CGAACGACCT
GCTTGCTGGA | ACACCGAACT
TGTGGCTTGA |
| 451 | GAGATACCTA
CTCTATGGAT | CAGCGTGAGC
GTCGCACTCG | TATGAGAAAG
ATACTCTTTC | CGCCACGCTT
GCGGTGCGAA | CCCGAAGGGA
GGGCTTCCCT |
|
501 | GAAAGGCGGA
CTTTCCGCCT | CAGGTATCCG
GTCCATAGGC | GTAAGCGGCA
CATTCGCCGT | GGGTCGGAAC
CCCAGCCTTG | AGGAGAGCGC
TCCTCTCGCG
BssSI |
| 551 | ACGAGGGAGC
TGCTCCCTCG
BssSI | TTCCAGGGG | AAACGCCTGG
TTTGCGGACC | TATCTTTATA
ATAGAAATAT | GTCCTGTCGG
CAGGACAGCC |
| 601 | GTTTCGCCAC | CTCTGACTTG
GAGACTGAAC | AGCGTCGATT
TCGCAGCTAA | TTTGTGATGC
AAACACTACG | TCGTCAGGGG |
| 651 | GGCGGAGCCT
CCGCCTCGGA | ATGGAAAAAC
TACCTTTTTG | GCCAGCAACG
CGGTCGTTGC | CGGCCTTTTT
GCCGGAAAAA | ACGGTTCCTG
TGCCAAGGAC |

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

NheI

GCCTTTTGCT GGCCTTTTGC TCACATGGCT AGC CGGAAAACGA CCGGAAAACG AGTGTACCGA TCG

701

SUBSTITUTE SHEET (RULE 26)

GIGITCACCC TIGITACACC GITITICCAIG AGCAAACIGA

ATATGGGATA

351

١

TGAGCTGGTG ACTCGACCAC

TGAAAGACGG ACTTTCTGCC

CGTATGGCAA GCATACCGTT

CCCGGAGTTC GGGCCTCAAG

TGAATGCTCA ACTTACGAGT

301

Figure 34: functional map and sequence of pCAL module M17. (continued)

AatII

| AAGATCACTA | AGGAAGCTAA | TCCCAATGGC | ATGTACCTAT | CCGTAAAGAA | GCCCGCCTGA |
|------------|------------|------------|------------|------------|-----------------------|
| TTCTAGTGAT | TCCTTCGATT | AGGGTTACCG | TACATGGATA | GGCATTTCTT | CGGGCGGACT |
| ATAATGAAAT | TCAGGAGCTA | CGTTGATATA | CAGTTGCTCA | TTTTTAAAGA | TCACATTCTT |
| TATTACTTTA | AGTCCTCGAT | GCAACTATAT | GTCAACGAGT | AAAAATTTCT | AGTGTAAGAA |
| AACTTTCACC | ATCGAGATTT | GATATACCAC | GCATTTCAGT | TATTACGGCC | CGGCCTTTAT TCACATTCTT |
| TTGAAAGTGG | TAGCTCTAAA | CTATATGGTG | CGTAAAGTCA | ATAATGCCGG | GCCGGAAATA AGTGTAAGAA |
| GTGAGGTTCC | TTTTTGAGTT | AAAATCACTG | ACATTTTGAG | TTCAGCTGGA | AAGTTTTATC |
| CACTCCAAGG | AAAAACTCAA | TTTTAGTGAC | TGTAAAACTC | AAGTCGACCT | TTCAAAATAG |
| GGGACGTCGG | CCGGGCGTAT | AATGGAGAAA | ATCGTAAAGA | AACCAGACCG | AAATAAGCAC |
| CCCTGCAGCC | GGCCCGCATA | TTACCTCTTT | TAGCATTTCT | TTGGTCTGGC | TTTATTCGTG |
| Н | 51 | 101 | 151 | 201 | 251 |

Figure 34: functional map and sequence of pCAL module M17 (continued)

| | TATACCCTAT | CACAAGTGGG | AACAATGTGG | CAAAAGGTAC | TCGTTTGACT |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 401 | AACGTTTTCA
TTGCAAAAGT | TCGCTCTGGA | GTGAATACCA
CACTTATGGT | CGACGATTTC
GCTGCTAAAG | CGGCAGTTTC
GCCGTCAAAG |
| 451 | TACACATATA
ATGTGTATAT | TTCGCAAGAT
AAGCGTTCTA | GTGGCGTGTT
CACCGCACAA | ACGGTGAAAA
TGCCACTTTT | CCTGGCCTAT
GGACCGGATA |
| 501 | TTCCCTAAAG
AAGGGATTTC | GGTTTATTGA
CCAAATAACT | GAATATGTTT
CTTATACAAA | TTCGTCTCAG
AAGCAGAGTC | CCAATCCCTG
GGTTAGGGAC |
| 551 | GGTGAGTTTC | ACCAGTTTTG
TGGTCAAAAC | ATTTAAACGT
TAAATTTGCA | AGCCAATATG
TCGGTTATAC | GACAACTTCT
CTGTTGAAGA |
| 601 | TCGCCCCCGT | TTTCACTATG
AAAGTGATAC | GGCAAATATT
CCGTTTATAA | ATACGCAAGG
TATGCGTTCC | CGACAAGGTG
GCTGTTCCAC |
| 651 | CTGATGCCGC
GACTACGGCG | TGGCGATTCA
ACCGCTAAGT | GGTTCATCAT
CCAAGTAGTA | GCCGTTTGTG
CGGCAAACAC | ATGGCTTCCA
TACCGAAGGT |
| 701 | TGTCGGCAGA
ACAGCCGTCT | ATGCTTAATG
TACGAATTAC | AATTACAACA
TTAATGTTGT | GTACTGCGAT
CATGACGCTA | GAGTGGCAGG |
| 751 | GCGGGGCGTA | ATTTTTAA | GGCAGTTATT | GGGTGCCCTT | AAACGCCTGG |

Figure 34: functional map and sequence of pCAL module M17 (continued)

TAAAAAATT CCGTCAATAA CCCACGGGAA TTTGCGGACC CGCCCCGCAT

BglII

} ? ? ? 801 TGCTAGATCT TCC

ACGATCTAGA AGG

functional ssori Hind111 (515) Bsr61 (612) Fsel (599) gill supershort Pac! (579) Kmn1 (310) GenII-Nick Ban [1 (919) Nhei (1876) replication start EcoRI (1) 2755 bp pCAL4 Sph1 (2749) BssSI (1254) Colel Ext2 origin **Kbal** (2739) Hatll (2608) lac p/o Bg111 (1803) cat

Figure 35: functional map and sequence of modular vector pCAL4

SUBSTITUTE SHEET (NULE 28)

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

ECORI

| ATCTGTAGGG TGGTGGCTCT | TAGACATCCC ACCACCGAGA | GCAAACGCTA ATAAGGGGGC
CGTTTGCGAT TATTCCCCCG |
|-----------------------|-----------------------|--|
| TCTGAGGAGG ATCTGTAGGG | AGACTCCTCC | TGAAAAGATG
ACTTTTCTAC |
| GAAGCTGATC | CTTCGACTAG | ATTTTGATTA TGAAAAGATG
TAAAACTAAT ACTTTTCTAC |
| 4 | TTAAGCTCGT | GGTTCCGGTG
CCAAGGCCAC |
| ~ | | 51 |

| GCTAAAGGCA
CGATTTCCGT | TGGTTTCATT
ACCAAAGTAA | FTGATTTTGC |
|--|--|---|
| | CTGCTATCGA 1
GACGATAGCT 1 | CCGGCCTTGC TAATGGTAAT GGTGCTACTG GTGATTTTGC |
| AAAACGCGCT ACAGTCTGAC
TTTTGCGCGA TGTCAGACTG | GATTACGGTG
CTAATGCCAC | CCGGCCTTGC TAATGGTAAT GGTGCT |
| AATGCCGATG
TTACGGCTAÇ | TGTCGCTACT GATTACGGTG
ACAGCGATGA CTAATGCCAC | CCGGCCTTGC |
| TATGACCGAA
ATACTGGCTT | AACTTGATTC
TTGAACTAAG | GGTGACGTTT |
| 101 | 151 | 201 |
| SUBST | MHE SHEE | T (RIU F |

| | TTAAGTGGAA |
|------------|------------|
| TGACGGTGAT | CTGCCACTA |
| CTCAAGTCGG | GAGTTCAGCC |
| TCCCAAATGG | AGGGTTTACC |
| TGGCTCTAAT | ACCGAGATTA |
| 251 | |

CACTAAAACG

CCACGATGAC

ATTACCATTA

GGCCGGAACG

CCACTGCAAA

XmnI

ATCGGTTGAA TAGCCAACTT CCCTCCCTCA GGGAGGGAGT TATTTACCTT ATAAATGGAA TTTCCGTCAA AAAGGCAGTT TAATGAATAA ATTACTTATT 301

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| | | | | | , |
|--------------------------|--------------------------|--------------------------|---|---|---|
| TTTCTATTGA
AAAGATAACT | CTTTTATATG
GAAAATATAC | ACTGCGTAAT
TGACGCATTA | CGCAGATTGT
GCGTCTAACA | Fsel | GTTAAAATTC |
| CCATATGAAT
GGTATACTTA | CTTTGCGTTT
GAAACGCAAA | TTGCTAACAT
AACGATTGTA | TGAAAAATGG
ACTTTTTACC | AAGGGGGGGG | ТТААТАТТТТ
ААТТАТААА |
| CGCTGGTAAA
GCGACCATTT | TCCGTGGTGT
AGGCACCACA | TTTTCTACGT
AAAAGATGCA | ACCTGTGAAG
TGGACACTTC | PacI
~~~~~~~
CGTTTAATTA
GCAAATTAAT | ATTGTAAACG
TAACATTTGC |
| TTGTCTTTGG
AACAGAAACC | ATAAACTTAT
TATTTGAATA | TATGTATGTA
ATACATACAT | HindIII
~~~~~~
GATAAGCTTG
CTATTCGAAC | TTTTGTCTGC
AAAACAGACG | BsrGI
~~~~~~
TGTACATGAA
ACATGTACTT |
| TGTCGCCCTT
ACAGCGGGAA | TTGTGACAAA
AACACTGTTT | TTGCCACCTT
AACGGTGGAA | AAGGAGTCTT
TTCCTCAGAA | GCGACATTTT
CGCTGTAAAA | TGGGGGGGGG |
| 351 | 401 | 451 | 501 | 551 | 601 |

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| AGGCCGAAAT | GGGTTGAGTG | GGACTCCAAC | TACGAGAACC | GCACTAAATC | AAAGCCGGCG | GCGCTAGGGC |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---|--------------------------|
| TCCGGCTTTA | CCCAACTCAC | CCTGAGGTTG | ATGCTCTTGG | CGTGATTTAG | | CGCGATCCCG |
| TTTAACCAAT | GACCGAGATA | TAAAGAACGT | GATGGCCCAC | GTGCCGTAAA | CTTGACGGGG | AAAGGAGCGG |
| AAATTGGTTA | CTGGCTCTAT | ATTTCTTGCA | CTACCGGGTG | CACGGCATTT | GAACTGCCCC | TTTCCTCGCC |
| CAGCTCATTT | CAAAAGAATA | AGTCCACTAT | CTATCAGGGC | TGGGGTCGAG | CGATTTAGAG | GAAGAAAGCG |
| GTCGAGTAAA | GTTTTCTTAT | TCAGGTGATA | GATAGTCCCG | | GCTAAATCTC | CTTCTTTCGC |
| TTTGTTAAAT
AAACAATTTA | CCTTATAAAT
GGAATATTTA | TTGGAACAAG
AACCTTGTTC | GAAAAACCGT
CTTTTTGGCA | TCAAGTTTTT
AGTTCAAAAA | BanII
~~~~~~
AGGGAGCCCC
TCCCTCGGGG | GAAAGGAAGG
CTTTCCTTCC |
| GCGTTAAATT | CGGCAAAATC | TTGTTCCAGT | GTCAAAGGGC | ATCACCCTAA | GGAACCCTAA | AACGTGGCGA |
| CGCAATTTAA | GCCGTTTTAG | AACAAGGTCA | CAGTTTCCCG | TAGTGGGATT | CCTTGGGATT | TTGCACCGCT |
| 651 | 701 | 751 | 801 | 851 | 901 | 951 |

WO 97/08320 .

| 00000 | CAGC | ATAGG | GGTG | AGCT | | GTCC | GTAG |
|---|--|--------------------------|--------------------------|--------------------------|-------|--------------------------|--------------------------|
| ອວອວອອວອອອ
ວອວອວວອວວວ | AAAGGCCAGC
TTTCCGGTCG | TTTCCATAGG
AAAGGTATCC | GTCAGAGGTG
CAGTCTCCAC | CCTGGAAGCT
GGACCTTCGA | | ATACCTGTCC
TATGGACAGG | CACGCTGTAG
GTGCGACATC |
| AACCACCACA | CATGTGAGCA
GTACACTCGT | TGCTGGCGTT
ACGACCGCAA | CGACGCTCAA
GCTGCGAGTT | GGCGTTTCCC
CCGCAAAGGG | | CGCTTACCGG
GCGAATGGCC | TCTCATAGCT
AGAGTATCGA |
| 4 (continued)
CGCTGCGCGT
GCGACGCGCA | NheI
~~~~~~
GCGTGCTAGC
CGCACGATCG | AAGGCCGCGT
TTCCGGCGCA | TCACAAAAAT
AGTGTTTTTA | AAAGATACCA
TTTCTATGGT | · | CCGACCCTGC
GGCTGGGACG | CGTGGCGCTT
GCACCGCGAA |
| nce of modular vector pCAL4 (continued) GTAGCGGTCA CGCTGC | GCTACAGGGC
CGATGTCCCG | GAACCGTAAA
CTTGGCATTT | CTGACGAGCA | ACAGGACTAT
TGTCCTGATA | | CTCTCCTGTT
GAGAGGACAA | CTTCGGGAAG
GAAGCCCTTC |
| Figure 35: functional map and sequence 1001 GCTGGCAAGT CGACCGTTCA | TTAATGCGCC
AATTACGCGG | AAAAGGCCAG
TTTTCCGGTC | CTCCGCCCCC | GCGAAACCCG
CGCTTTGGGC | BSSSI | CCCTCGTGCG | GCCTTTCTCC
CGGAAAGAGG |
| Figure 35: fu
1001 | 1051 | 1101 | 1151 | 1201 | | 1251 | 1301 |
| | | SUBS | TITUTE SHE | ET (RULE 26 | 5) | | |

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| GATCTTTTCT | AAGATCCTTT | GGATCTCAAG | CAGAAAAAAA | AGATTACGCG | 1701 |
|------------|------------------------|-------------|--------------------------|--------------------------|------|
| CTAGAAAGA | TTCTAGGAAA | CCTAGAGTTC | GTCTTTTTTT | TCTAATGCGC | |
| TGCAAGCAGC | TTTTTTGTT
AAAAAACAA | GTAGCGGTGG | ACCACCGCTG
TGGTGGCGAC | CGGCAAACAA
GCCGTTTGTT | 1651 |
| GCTCTTGATC | AGAGTTGGTA | CTTCGGAAAA | AGCCAGTTAC | GCTCTGCTGT | 1601 |
| CGAGAACTAG | TCTCAACCAT | GAAGCCTTTT. | TCGGTCAATG | CGAGACGACA | |
| TGGTATCTGC | GAACAGTATT | TACACTAGAA | TAACTACGGC | AGTGGTGGCC | 1551 |
| ACCATAGACG | CTTGTCATAA | ATGTGATCTT | ATTGATGCCG | TCACCACCGG | |
| GAGTTCTTGA | CGGTGCTACA | GGTATGTAGG | AGCAGAGCGA | TAACAGGATT | 1501 |
| CTCAAGAACT | GCCACGATGT | CCATACATCC | TCGTCTCGCT | ATTGTCCTAA | |
| CAGCCACTGG | CCACTGGCAG | CGACTTATCG | CGGTAAGACA | GAGTCCAACC | 1451 |
| GTCGGTGACC | GGTGACCGTC | GCTGAATAGC | GCCATTCTGT | CTCAGGTTGG | |
| CTATCGTCTT | TATCCGGTAA | CGCTGCGCCT | TCAGCCCGAC | AACCCCCCGT | 1401 |
| GATAGCAGAA | ATAGGCCATT | GCGACGCGGA | AGTCGGGCTG | TTGGGGGGCA | |
| TGTGTGCACG | CAAGCTGGGC | TCGTTCGCTC | TCGGTGTAGG | GTATCTCAGT | 1351 |
| ACACACGTGC | GTTCGACCCG | AGCAAGCGAG | AGCCACATCC | CATAGAGTCA | |

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| GGATTTTGGT
CCTAAAACCA | TTAAAAAAT | AATTTTTTA
CATTAAGCAT
GTAATTCGTA | TGAATCGCCA ACTTAGCGGT | CATAGTGAAA
GTATCACTTT | CAAAACTGGT
GTTTTGACCA | TCAATAAACC
AGTTATTTGG |
|--------------------------|-------------------------------|--|--------------------------|------------------------------|--------------------------|------------------------------|
| TCACGTTAAG (AGTGCAATTC) | _ | TTATTGACGG A
TGTTGTAATT C
ACAACATTAA | | AATATTTGCC C
TTATAAACGG G | | AAACATATTC T
TTTGTATAAG A |
| GAACGAAAAC
CTTGCTTTTG | TAAGGGCACC | ATTCCCGTGG
ATCGCAGTAC
TAGCGTCATG | CACAAACGGC
GTGTTTGCCG | CCTTGCGTAT | CATATTGGCT
GTATAACCGA | CTGAGACGAA
GACTCTGCTT |
| ACGCTCAGTG
TGCGAGTCAC | ACCAGGCGTT | TGGTCCGCAA
CCTGCCACTC
GGACGGTGAG | TGGAAGCCAT | CACCTTGTCG
GTGGAACAGC | AGAAGTTGTC
TCTTCAACAG | CAGGGATTGG
GTCCCTAACC |
| ACGGGGTCTG
TGCCCCAGAC | BgllI
~~~~~~
CAGATCTAGC | TACGCCCCGC
ATGCGGGGGCG | TCTGCCGACA | GCGGCATCAG
CGCCGTAGTC | ACGGGGGCGA
TGCCCCCGCT | GAAACTCACC
CTTTGAGTGG |
| 1751 | 1801 | 1851 | 1901 | 1951 | 2001 | 2051 |

WO 97/08320 PCT/EP96/03647

| lar vector pCAL4 (continued) |
|---------------------------------------|
| 7 |
| S |
| r p |
| ŏ |
| z |
| × |
| <u>la</u> |
| 긁 |
| õ |
| ī |
| 0 |
| il map and sequence of modular vector |
| þ |
| ੜ |
| de |
| Ε |
| tional |
| JO L |
| 3 |
| .:
:: |
| igure 35 |
| Ę |
| ğ |
| ш. |

| 2101 | 2101 CTTTAGGGAA GAAATCCCTT | ATAGGCCAGG
TATCCGGTCC | (h) () | SG TTTTCACCGT SC AAAAGTGGCA |
|------|----------------------------|--------------------------|--------------------------|-----------------------------|
| 1612 | IAIAIGIGIA
ATATACACAT | CTTTGACGGC | E C | CTTTAGCAGC |
| 2201 | TGAAAACGTT
ACTTTTGCAA | TCAGTTTGCT
AGTCAAACGA | CATG | CATGGAAAAC
GTACCTTTTG |
| 2251 | TATCCCATAT
ATAGGGTATA | CACCAGCTCA
GTGGTCGAGT | CCGTC | CCGTCTTTCA
GGCAGAAAGT |
| 2301 | TGAGCATTCA
ACTCGTAAGT | TCAGGCGGGC | AAGAATGTGA
TTCTTACACT | AAGAATGTGA
TTCTTACACT |
| 2351 | GTGCTTATTT
CACGAATAAA | TTCTTTACGG
AAGAAATGCC | TCTTTAAAAA
AGAAATTTTT | AAAAA
TTTTT |
| 2401 | CGGTCTGGTT
GCCAGACCAA | ATAGGTACAT
TATCCATGTA | TGAGCAACTG
ACTCGTTGAC | AACTG
TTGAC |
| 2451 | TCTTTACGAT | GCCATTGGGA | TATATCAACG | ZAACG |

2751

| AACTCAAAAA
TTGAGTTTTT | GGAACCTCAC
CCTTGGAGTG | AGGCTTTACA | TCCGAAATGT
GGATAACAAT
CCTATTGTTA | Xbal Sphi | TCTCGTACGC |
|---|--------------------------|-------------------------------|--|-------------------------------|------------|
| AAATCTCGAT
TTTÄGAGCTA | GGTGAAAGTT
CCACTTTCAA | TAGGCACCCC | ATCCGTGGGG
AATTGTGAGC
TTAACACTCG | XbaI XCZZZZ ACGAATTTCT A | |
| L <sup>i</sup> (continued)
TAGCTCCTGA
ATCGAGGACT | ATTTCATTAT
TAAAGTAATA | GCTCACTCAT | CGAGTGAGTA
TGTTGTGTGG
ACAACACACC | GACCATGATT | |
| ce of modular vector pCA TTAGCTTCCT AATCGAAGGA | TAGTGATCTT
ATCACTAGAA | ATGTGAGTTA | CCGGCTCGTA
GGCCGAGCAT | AAACAGCTAT
TTTGTCGATA | |
| rigure 35: functional map and sequence of modular vector pCAL4 (continued) 2501 TTTCTCCATT TTAGCTTCCT TAGCTC AAAGAGGTAA AATCGAAGGA ATCGAC | ATACGCCCGG
TATGCGGGCC | Aatii
~~~~~~
CCGACGTCTA | CTTTATGCTT
GAAATACGAA | TTCACACAGG | EcoRI |
| rigure 35:
2501 | 2551 | 2601 | SHS STUTITE SHE | T 0 L 2 O T O L C T (RULE 26) | |

SUBSTITUTE SHEET (RULE 26) 116 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

χ 2: AatII

11111

GGCTTTACAC CCGAAATGTG AGGCACCCCA TCCGTGGGGT CTCACTCATT GAGTGAGTAA TGTGAGTTAG ACACTCAATC GACGTCTTAA CTGCAGAATT

GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT CGGCTCGTAT GCCGAGCATA TTTATGCTTC AAATACGAAG 51

XmnI

XbaI

GTATAATGTA CATATTACAT GAATAACTTC CTTATTGAAG ACCATGTCTA TGGTACAGAT AACAGCTATG TTGTCGATAC TCACACAGGA AGTGTGTCCT

SphI

CGCTATACGA AGTTATCGCA TGC GCGATATGCT TCAATAGCGT ACG

151

SUBSTITUTE SHEET (RULE 26)
117 / 204

101

Aatii

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

χ χ Bglii

TGACGTC ACTGCAG TACGAAGTTA ATGCTTCAAT ATGTATGCTA TACATACGAT ACTTCGTATA TGAAGCATAT AGATCTCATA TCTAGAGTAT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

(long) 1-L Σ

ECORI

| TTTCTGCTGT | GAATGCTACA
CTTACGATGT | GTACATGGGT
CATGTACCCA | TCTGAGGGTG |
|-----------------------|--------------------------|--------------------------|-----------------------|
| ATTGCAGACC | GCTGTCTGTG
CGACAGACAC | CAGTGTTACG
GTCACAATGC | GGGTGGTGGC |
| GTATGTCTTT TAAGTAAATG | AACTATGAGG
TTGATACTCC | TGACGAAACT
ACTGCTTTGA | CTGAAAATGA GGGTGGTGGC |
| GTATGTCTTT | TCGTTACGCT
AGCAATGCGA | TTTGTACTGG
AAACATGACC | CTTGCTATCC |
| TCGTTTTAGG | AAACTTTAGA
TTTGAAATCT | GGCGTTGTAG
CCGCAACATC | TCCTATTGGG |
| | 101 | 151 | 201 |
| | | E SHEET (RU
/ 204 | JLE 26) |

| AGACTCCCAC |
|------------|
| CCCACCACCG |
| GACTTTTACT |
| GAACGATAGG |
| AGGATAACCC |
|) |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 351
401
451 | CACTTATCCG
GTGAATAGGC
TTGAGGAGTC
AACTCCTCAG | CCTGGTACTG
GGACCATGAC
TCAGCCTCTT
AGTCGGAGAA
AGTCGGAGAA | AGCAAAACCC
TCGTTTTGGG
AATACTTTCA
TTATGAAAGT | CGCTAATCCT
GCGATTAGGA
TGTTTCAGAA
ACAAAGTCTT | AATCCTTCTC TTAGGAAGAG TAATAGGTTC ATTATCCAAGG |
|-------------------|--|--|--|--|--|
| 501 | GCTTTATCCG | TCCCCCGTAA | TTGACAAATA | TGCCCGTGAC | AATGAGTTCC |
| | CACTGACCCC | GTTAAAACTT | ATTACCAGTA | CACTCCTGTA | TCATCAAAAG |
| | GTGACTGGGG | CAATTTTGAA | TAATGGTCAT | GTGAGGACAT | AGTAGTTTTC |
| 551 | CCATGTATGA | CGCTTACTGG | AACGGTAAAT | TCAGAGACTG | CGCTTTCCAT |
| | GGTACATACT | GCGAATGACC | TTGCCATTTA | AGTCTCTGAC | GCGAAAGGTA |
| 601 | TCTGGCTTTA | ATGAGGATTT | ATTTGTTTGT | GAATATCAAG | GCCAATCGTC |
| | AGACCGAAAT | TACTCCTAAA | TAAACAAACA | CTTATAGTTC | CGGTTAGCAG |
| 651 | TGACCTGCCT
ACTGGACGGA | CAACCTCCTG | TCAATGCTGG
AGTTACGACC | CGGCGGCTCT
GCCGCCGAGA | GGTGGTGGTT
CCACCACCAA |
| 701 | CTGGTGGCGG
GACCACCGCC | CTCTGAGGGT
GAGACTCCCA | GGTGGCTCTG
CCACCGAGAC | AGGGTGGCGG | TTCTGAGGGT
AAGACTCCCA |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| CCGGTGATTT
GGCCACTAAA | ACCGAAAATG
TGGCTTTTAC | TGATTCTGTC
ACTAAGACAG | ACGTTTCCGG
TGCAAAGGCC | TCTAATTCCC
AGATTAAGGG | XmnI
~~~~~~~~
GAATAATTTC
CTTATTAAAG | GCCCTTTTGT
CGGGAAAACA |
|--------------------------|--------------------------|--------------------------|---|--------------------------|--|--------------------------|
| GGCTCTGGTT CC | GGGGCTATG AC | AAGGCAAACT TG | TTCATTGGTG AC | TTTTGCTGGC TC | CACCTTTAAT GA | GTTGAATGTC GC |
| CCGAGACCAA GG | CCCCCGATAC TG | TTCCGTTTGA AC | AAGTAACCAC TG | AAAACGACCG AG | GTGGAAATTA CT | CAACTTACAG CG |
| TTCCGGTGGT
AAGGCCACCA | ACGCTAATAA
TGCGATTATT | TCTGACGCTA
AGACTGCGAT | TATCGATGGT
ATAGCTACCA | CTACTGGTGA | GGTGATAATT
CCACTATTAA | CCCTCAATCG GGGAGTTAGC |
| AGGGAGGCGG | AAGATGGCAA | CGCGCTACAG | ACGGTGCTGC | GGTAATGGTG | AGTCGGTGAA | TACCTTCCAT |
| TCCCTCCGCC | TTCTACCGTT | GCGCGATGTC | TGCCACGACG | CCATTACCAC | TCAGCCACTT | ATGGAAGGTA |
| GGCGGCTCTG | TGATTATGAA | CCGATGAAAA | GCTACTGATT | CCTTGCTAAT | AAATGGCTCA | CGTCAATATT |
| CCGCCGAGAC | ACTAATACTT | GGCTACTTTT | CGATGACTAA | GGAACGATTA | TTTACCGAGT | GCAGTTATAA |
| 751 | 801 | 851 | O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | C
SHEET (RUL | T 0 0 1 | 1051 |

| . = | nea) |
|-------------------------|----------|
| | ਵ |
| 1 | |
| j | 9 |
| , | 2 |
| : | 2 |
| Ì | ž |
| - | رِ |
| ζ | לַ |
| 7 | <u> </u> |
| 5 | 5 |
| 20,101 | C |
| - | 5 |
| Š | ≦ |
| 3 | = |
| ÷ | 3 |
| à | <u> </u> |
| = | ب |
| ç | 2 |
| 7 | <u>.</u> |
| 5 | 5 |
| : | = |
| 7 | ž |
| ÷ | 5 |
| 2 | י
י |
| č | ź |
| 9 | 3 |
| č | 5 |
| 7 | า
ว |
| 2 | 5 |
| č | 3 |
| 5 | 3 |
| 7 | 5 |
| onal mans and securence | 5 |
| .£ | ; |
| . = | 5 |
| | |
| 5,5 | 3 |
| ٠, | , |
| Ē | , |
| ιĒ | |

| GACAAAATAA
CTGTTTTATT | CACCITTATG
GTGGAAATAC
HindIII | AGTCTTGATA
TCAGAACTAT | |
|--|-------------------------------------|-----------------------------------|---------------------------------|
| TATTGATTGT ATAACTAACA | ATATACAACG | CGTAATAAGG
GCATTATTCC | |
| ATGAATTTTC
TACTTAAAAG | CGCAAAGAAA | TAACATACTG | |
| GGTAAACCCT
CCATTTGGGA
TGGTGTCTTT | ACCACAGAAA | CTACGTTTGC
GATGCAAACG | |
| CTTTGGCGCT
GAAACCGCGA | TGAATAAGGC | TATGTATTTT
ATACATAAAA
HindI | AGCTT
TCGAA |
| 1101 | i
)
i | 1201 | 1251 |
| | | | TE SHEET (RULE 26)
124 / 204 |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 7-II (SS-TAG):

ECORI

GTGATTTTGA CACTAAAACT TCTGGTTCCG AGACCAAGGC GCCACCACCG CGGTGGTGGC GAGGCGGTTC CTCCGCCAAG CGGGAATTCG GCCCTTAAGC

GAAAATGCCG CTTTTACGGC GGCTATGACC CCGATACTGG CTAATAAGGG GATTATTCCC ATGGCAAACG TACCGTTTGC TTATGAAAAG AATACTTTTC 51

GCAAACTTGA CGTTTGAACT GACGCTAAAG CTGCGATTTC GCTACAGTCT CGATGTCAGA ATGAAAACGC TACTTTGCG

TTCTGTCGCT AAGACAGCGA

TTTCCGGCCT AAAGGCCGGA

ATTGGTGACG TAACCACTGC AATTCCCAAA TTAAGGGTTT

ACTGATTACG GTGCTGCTAT CGATGGTTTC TGACTAATGC CACGACGATA GCTACCAAAG

TGCTGGCTCT ACGACCGAGA CTGGTGATTT GACCACTAAA AATGGTGCTA TTACCACGAT TGCTAATGGT ACGATTACCA

XmnI

TAATTTCCGT ATTAAAGGCA ~~~~~~ CTTTAATGAA GAAATTACTT GATAATTCAC CTATTAAGTG CGGTGACGGT GCCACTGCCA ACCGAGTTCA TGGCTCAAGT 251

SUBSTITUTE SHEET (RULE 26)

151

201

101

| tors (continued) |
|----------------------------|
| L vec |
| pCA |
| odules and |
| mod |
| L vector |
| CAL |
| f additional p |
| inal maps and sequences of |
| maps and |
| a: Functio |
| Figure 35 |

| 301 | CAATATTTAC
GTTATAAATG | CTTCCCTCCC
GAAGGGAGGG | TCAATCGGTT
AGTTAGCCAA | GAATGTCGCC
CTTACAGCGG | CTTTTGTCTT
GAAAACAGAA |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|---|
| 351 | TGGCGCTGGT | AAACCATATG
TTTGGTATAC | AATTTTCTAT
TTAAAAGATA | TGATTGTGAC
ACTAACACTG | AAAATAAACT
TTTTATTTGA |
| 401 | TATTCCGTGG | TGTCTTTGCG
ACAGAAACGC | TTTCTTTTAT
AAAGAAAATA | ATGTTGCCAC
TACAACGGTG | CTTTATGTAT
GAAATACATA |
| 451 | GTATTTTCTA
CATAAAAGAT | CGTTTGCTAA | CATACTGCGT
GTATGACGCA | AATAAGGAGT
TTATTCCTCA | HindIII
~~~~
CTTGATAAGC
GAACTATTCG |
| 501 | H
TT
A d | | | | |

HindIII ~~~~~

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. ∞ ≖

Sphi

TAAGCTT ATTCGAA TACGAAGTTA ATGCTTCAAT ATGTACGCTA TACATGCGAT ACTTCGTATA TGAAGCATAT GCATGCCATA CGTACGGTAT

TAAAGTTCTG ATTTCAAGAC

TGAGCACTTT ACTCGTGAAA

CGAAGAACGT TTTCCAATGA GCTTCTTGCA AAAGGTTACT

GTTTTGGCCC CAAAAGCGGG

251

XmnI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

10-II: Σ

BsrGI

| AACCCTGATA | CAACATTTCC | TGTTTTTGCT | AGTTGGGTGC | ATCCTTGAGA |
|--------------------------|--------------|-----------------------|--------------|--------------|
| TTGGGACTAT | GTTGTAAAGG | ACAAAAACGA | TCAACCCACG | TAGGAACTCT |
| ATGAGACAAT
TACTCTGTTA | TATGAGTATT (| TTTGCCTTCC AAACGGAAGG | GCTGAGGATC A | CAGCGGTAAG A |
| GTATCCGCTC | AAAGGAAGAG | TTTGCGGCAT | AGTAAAAGAT | TGGATCTCAA |
| CATAGGCGAG | TTTCCTTCTC | AAACGCCGTA | TCATTTTCTA | ACCTAGAGTT |
| ATTCAAATAT | ТААТАТТGAA | TATTCCCTTT | CGCTGGTGAA | TACATCGAAC |
| TAAGTTTATA | АТТАТААСТТ | ATAAGGGAAA | GCGACCACTT | |
| GGGGGTGTAC | AATGCTTCAA | GTGTCGCCCT | CACCCAGAAA | GCGAGTGGGT |
| CCCCCACATG | TTACGAAGTT | CACAGCGGGA | GTGGGTCTTT | |
| Н | 50 | 1 0 1 | HEET (RULE | 201 |

SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | | | - | | | | |
|-------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|------------|--------------------------|
| AGCAACTCGG | TCACCAGTCA | ATGCAGTGCT | TGACAACGAT | GGGGATCATG | CATACCAAAC | CGTTGCGCAA | CAGTTAATAG |
| TCGTTGAGCC | AGTGGTCAGT | TACGTCACGA | ACTGTTGCTA | CCCCTAGTAC | GTATGGTTTG | GCAACGCGTT | GTCAATTATC |
| GCCGGGCAAG | GGTTGAGTAC | TAAGAGAATT | AACTTACTTC | GCACAACATG | TGAATGAAGC | ATGGCAACAA | TTCCCGGCAA |
| | CCAACTCATG | ATTCTCTTAA | TTGAATGAAG | CGTGTTGTAC | ACTTACTTCG | TACCGTTGTT | AAGGGCCGTT |
| PATC CCGTATTGAC GCCCATAG CGGC | AGAATGACTT
TCTTACTGAA | GGCATGACAG
CCGTACTGTC | CACTGCGGCC
GTGACGCCGG | CCGCTTTTTT
GGCGAAAAAA | GAACCGGAGC | GCCTGTAGCA | TTACTCTAGC
AATGAGATCG |
| CGGTATTATC | CACTATTCTC | TCTTACGGAT | TGAGTGATAA | AAGGAGCTAA | TGATCGTTGG | ACACCACGAT | GGCGAACTAC |
| | GTGATAAGAG | AGAATGCCTA | ACTCACTATT | TTCCTCGATT | ACTAGCAACC | TGTGGTGCTA | CCGCTTGATG |
| CTATGTGGCG | TCGCCGCATA | CAGAAAAGCA | GCCATAACCA | CGGAGGACCG | TAACTCGCCT | GACGAGCGTG | ACTATTAACT |
| | AGCGGCGTAT | GTCTTTTCGT | CGGTATTGGT | GCCTCCTGGC | ATTGAGCGGA | CTGCTCGCAC | TGATAATTGA |
| 301 | 351 | 401 | 451 | 501 | 551 | 601 | 651 |
| | | | SUBSTIT | TUTE SHEET | (BULE 28) | | • |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| CTCGGCCCTT | AGCGTGGGTC | TCCCGTATCG | ACGAAATAGA | TAACTGTCAG | TCATTTTTAA | TGACCAAAAT | GTAGAAAAGA |
|------------|------------|------------|------------|------------|-------------|------------|------------|
| GAGCCGGGAA | TCGCACCCAG | AGGGCATAGC | TGCTTTATCT | ATTGACAGTC | AGTAAAAATT | ACTGGTTTTA | CATCTTTTCT |
| CACTTCTGCG | GGAGCCGGTG | TGGTAAGCCC | CTATGGATGA | AAGCATTGGG | ATTTAAAACT | GATAATCTCA | GTCAGACCCC |
| | CCTCGGCCAC | ACCATTCGGG | GATACCTACT | TTCGTAACCC | TAAATTTTGA | CTATTAGAGT | CAGTCTGGGG |
| GTTGCAGGAC | TGATAAATCT | TGGGGCCAGA | AGTCAGGCAA | CTCACTGATT | CTTTAGATTG | GATCCTTTTT | TCCACTGAGC |
| | ACTATTTAGA | ACCCCGGTCT | TCAGTCCGTT | GAGTGACTAA | GAAATCTAAC | CTAGGAAAAA | AGGTGACTCG |
| GGCGGATAAA | GGTTTATTGC | ATTGCAGCAC | CACGACGGGG | AGATAGGTGC | CTCATATATA | TCTAGGTGAA | GAGTTTTCGT |
| CCGCCTATTT | CCAAATAACG | TAACGTCGTG | GTGCTGCCCC | TCTATCCACG | GAGTATATAT | AGATCCACTT | CTCAAAAGCA |
| ACTGGATGGA | CCGGCTGGCT | TCGCGGTATC | TAGTTATCTA | CAGATCGCTG | ACCAAGTTTA | TTTAAAAGGA | CCCTTAACGT |
| TGACCTACCT | | AGCGCCATAG | ATCAATAGAT | GTCTAGCGAC | TGGTTCAAAT | AAATTTTCCT | GGGAATTGCA |
| 701 | 751 | 801 | 851 | 901 | 951 | 1001 | 1051 |
| | | | SUBST | ITUTE SHEE | T (RULE 26) | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | | | | FseI | Paci |
|------|--------------------------|--------------------------|--------------------------|--------------------------|-----------|
| 1101 | TCAAAGGATC
AGTTTCCTAG | TTCTTGAGAT
AAGAACTCTA | CCTTTTTGAT
GGAAAAACTA | AATGGCCGGC
TTACCGGCCG | CCCCCCCTT |
| | PacI | | | | |
| | 1 1 1 1 1 | | | | |
| 1151 | AATTAAGGGG
TTAATTCCCC |)
555 | | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

[11-II

NheI

| | | | | F \ | | |
|--------------------------|--------------------------|--------------------------|----------|--------------------------|--------------------------|--------------------------|
| TGGT | CCTT | rcaac
agtro | | SGCAC | CCATC | SAAAT |
| TGTGGTGGTT
ACACCACCAA | CCGCTCCTTT
GGCGAGGAAA | CCCCGTCAAG
GGGGCAGTTC | | TTTACGGCAC
AAATGCCGTG | GTGGGCCATC | ACGTTCTTTA
TGCAAGAAAT |
| | | _ | | · | | |
| ၁၁၁၅၁၅၁၅၁၅ | GCCCTAGCGC
CGGGATCGCG | CGCCGGCTTT
GCGGCCGAAA | | GATTTAGTGC
CTAAATCACG | GGTTCTCGTA
CCAAGAGCAT | GTTGGAGTCC
CAACCTCAGG |
| | CCTZ | | | rtt?
\aa | rrcj
AAGA | 1662
ACC1 |
| 90 | 900 | 999 | | GA7
CT2 | GG1
CC2 | GTJ
CAA |
| TAA
ATT | AGC
TCG | GTT
CAA | | TCC
AGG | SAT | SAC |
| CAT | ၅၅၁) | CAC
GTG | | GGT | GGT(
CCA(| TTT(
AAA(|
| GGCGCATTAA
CCGCGTAATT | ACTTGCCAGC
TGAACGGTCG | TCGCCACGTT
AGCGGTGCAA | | TTAGGGTTCC
AATCCCAAGG | TTAGGGTGAT
AATCCCACTA | GCCCTTTGAC
CGGGAAACTG |
| | | • | | • | • | |
| GCCCTGTAGC
CGGGACATCG | TGACCGCTAC
ACTGGCGATG | CCTTCCTTTC
GGAAGGAAAG | H≀ | GGGCTCCCT
CCCCGAGGGA | AAAAACTTGA
TTTTTGAACT | ACGGTTTTTC
TGCCAAAAAG |
| CCT | ACC | TTC | BanII | 255 | AAA(
TTT(| GGT |
| | • | • | ₹ | | AA
TT | A
F
G |
| 505
505 | CGCGCAGCG
GCGCGTCGC | TTTCTTC
AAAGAAG | | TCG | CCA
GGT | TAG |
| AGCA
CGT | GCA | TTC | | AAA | TCGACCCCA
AGCTGGGGT | TGA |
| GCTAGCACGC
CGATCGTGCG | ACGC | CGCTTTCTT/
GCGAAAGAA(| | CTCTAAATCG
GAGATTTAGC | CTCGACCCCA
GAGCTGGGGT | GCCCTGATAG
CGGGACTATC |
| Н | - | , - 1 | | - | н | |
| | Ŋ | 10 | | 15 | 20 | 25 |
| | SI | JBSTITUTE S | SHEET (F | PULF 28) | | |

SUBSTITUTE SHEET (PULE 28)

| _ |
|--------------------|
| Ð |
| ä |
| -:⊑ |
| Ξ |
| ୍ଥ |
| Ş |
| ğ |
| ក្ត |
| × |
| Æ |
| Õ |
| 7 |
| _ ≥ |
| S |
| <u>نة</u> |
| 귱 |
| ě |
| . = |
| ē |
| ພ |
| > |
| ¥ |
| ပ္ပ |
| = |
| na |
| .9 |
| ē |
| ad |
| <u></u> |
| S |
| nces (|
| en
L |
| 2 |
| Seq |
| b |
| ä |
| S |
| je |
| maps and sequences |
| ē |
| Ö |
| <u>:</u> |
| Ĕ |
| 3 |
| ë. |
| re 35a: |
| نه |
| ž |
| Ē |
| _ |

| TATCTCGGTC | ATTGGTTAAA | AAAATATTAA |
|-----------------------|--|----------------------------------|
| ATAGAGCCAG | TAACCAATTT | TTTTATAATT |
| CACTCAACCC | ATTTATAAGG GATTTTGCCG ATTTCGGCCT ATTGGTTAAA
TAAATATTCC CTAAAACGGC TAAAGCCGGA TAACCAATTT | GAATTTTAAC AA
CTTAAAATTG TI |
| CTTGTTCCAA ACTGGAACAA | GATTTTGCCG | ATTTAACAAA AATTTAACGC GAATTTTAAC |
| GAACAAGGTT TGACCTTGTT | CTAAAACGGC | TAAATTGTTT TTAAATTGCG CTTAAAATTG |
| CTTGTTCCAA | ATTTATAAGG | ATTTAACAAA |
| GAACAAGGTT | TAAATATTCC | TAAATTGTTT |
| ATAGTGGACT | TATTCTTTTG | AAATGAGCTG |
| TATCACCTGA | ATAAGAAAAC | TTTACTCGAC |
| 301 | 351 | 401 |

BsrGI

451

TTCATGTACA AAGTACATGT CGTTTACAAT GCAAATGTTA

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

CTATTCCGCG

TATCAATGGC

TGAGTTCTGC

AGGCCCAACC

TCCGGGTTGG

TGCATGTCTT ACGTACAGAA

51

 \sim

GATAAGGCGC

ACTCAAGACG ATAGTTACCG

CTTGGAGCGA

TACAGTCCAG ATGTCAGGTC

GGTTCGTGCA

CTGAACGGGG

AGCGGTCGGA

301

TCGCCAGCCT

GACTTGCCCC

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | TCT
AGA | GTT
CAA | GCA | TCA | TTT
AAA |
|-------|------------|------------|------------|-------------|------------|
| | CGCGTAATCT | TTCGTAGGTT | GAGGAGCGCA | CATGACTTCA | GTGGTGCTTT |
| | GCGCATTAGA | AAGCATCCAA | CTCCTCGCGT | GTACTGAAGT | CACCACGAAA |
| | TTTTGGTCTG | AGGGCGGTTT | AACTGGCTTĞ | TTAACCGGCG | GCTGCTGCCA |
| | AAAACCAGAC | TCCCGCCAAA | TTGACCGAAC | AATTGGCCGC | CGACGACGGT |
| | CTTGAGATCG | ACCGCCTTGC | GAACCGAGGT | CAGTTTAGCC | ATTACCAGTG |
| | GAACTCTAGC | TGGCGGAACG | CTTGGCTCCA | GTCAAATCGG | TAATGGTCAC |
| | AGATGATCTT | AAACGAAAAA | CCAACTCTTT | CTTGTCCTTT | CTCTAAATCA |
| | TCTACTAGAA | TTTGCTTTTT | GGTTGAGAAA | GAACAGGAAA | GAGATTTAGT |
| 2: | AGATCTAATA | CTTGCTCTGA | CTCTGAGCTA | GTCACTAAAA | AGACTAACTC |
| BallI | TCTAGATTAT | GAACGAGACT | GAGACTCGAT | CAGTGATTTT | TCTGATTGAG |
| M 12 | Н | 51 | 101 | 151 | 201 |
| | | | SUBSTITE | JTE SHEET (| RULE 26) |

| T GGAATGAGAC AAACGCG
A CCTTACTCTG TTTGCGC | |
|--|---------------|
| GAACTGAG TGTCAGGCG: | AgeI |
| 351 ACTGCCTACC CG
TGACGGATGG GC | |
| | 1 |

| AGGAGAGCGC | GTCCTGTCGG | TTGTCAGGGG | ACTTCCCTGT | TTCGTAAGCC | CAGTGAGCGA |
|------------|------------|------------|------------|------------|------------|
| TCCTCTCGCG | CAGGACAGCC | AACAGTCCCC | TGAAGGGACA | AAGCATTCGG | GTCACTCGCT |
| AGGCAGGAAC | TATCTTTATA | TTCGTGATGC | CGGCCCTCTC | CTCCGCCCCG | CGTAGCGAGT |
| TCCGTCCTTG | ATAGAAATAT | AAGCACTACG | GCCGGGAGAG | | GCATCGCTCA |
| GTAAACCGAA | AAACGCCTGG | AGCGTCAGAT | GGCTTTGCCG | TCCAGGAAAT | AACGACCGAG |
| CATTTGGCTT | TTTGCGGACC | TCGCAGTCTA | CCGAAACGGC | AGGTCCTTTA | TTGCTGGCTC |
| AATGACACCG | CGCCAGGGGG | CACTGATTTG | ATGGAAAAAC | CCTGGCATCT | GCCGCAGTCG |
| TTACTGTGGC | GCGGTCCCCC | GTGACTAAAC | TACCTTTTTG | GGACCGTAGA | CGGCGTCAGC |
| ATAACAGCGG | AGGAGGGAGC | GTTTCGCCAC | GGCGGAGCCT | TAAGTATCTT | ATTTCCGCTC |
| TATTGTCGCC | TCCTCCCTCG | CAAAGCGGTG | | ATTCATAGAA | TAAAGGCGAG |
| 401 | 451 | 501 | 551 | 601 | 651 |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

i .

| Agel
ATCACATATT CTGCTGACGC ACCGGTGCAG
TAGTGTATAA GACGACTGCG TGGCCACGTC | XmnI
~~~~~~~~
GAAGCACTTC ACTGACACCC TCATCAGTGC
CTTCGTGAAG TGACTGTGGG AGTAGTCACG | NheI
~~~~~~
CTCCGCTA GC
GAGGCGAT CG |
|--|--|--|
| GGAAGCGGAA TATATCCTGT ATCACATATT
CCTTCGCCTT ATATAGGACA TAGTGTATAA | CCTTTTTTCT CCTGCCACAT GA
GGAAAAAAGA GGACGGTGTA CT | Nhel
CAACATAGTA AGCCAGTATA CACTCCGCTA GC
GTTGTATCAT TCGGTCATAT GTGAGGCGAT CG |
| 701 GGA
CCT | 751 CCT'
GGA | 801 CAAC
GTTC |

SUBSTITUTE SHEET (PULE 26)

BglII

XmnI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

13: Σ

BglII

11111

TTCAGATCT AAGTCTAGA 22222 TACGAAGTTA ATGCTTCAAT ATGTATGCTA TACATACGAT ACTTCGTATA TGAAGCATAT AGATCTCATA TCTAGAGTAT

SUBSTITUTE SHEET (AULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

19 \mathbf{Z} SphI XbaI

CTATTGCACT GATAACGTGA AAACAAAGCA TTTGTTTCGT AAATAAAATG TTTATTTAC GCGTAGGAGA CGCATCCTCT TCTAGAGCAT AGATCTCGTA

21111 Sapl GGCACTCTTA 51

ATGGTTTCGG TACCAAAGCC TCACCCCTGT AGTGGGGACA GGCAACGAGA CCGTTGCTCT CCGTGAGAAT

GAATTC CTTAAG

ECORI 1111

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 20

XbaI SphI

GATAACGTGA CTATTGCACT AAACAAAGCA TTTGTTTCGT AAATAAATG TTTATTTAC GCGTAGGAGA CGCATCCTCT TCTAGAGCAT AGATCTCGTA

SapI

11111

GACTACAAAG CTGATGTTTC TACCAAAGCC ATGGTTTCGG TCACCCCTGT AGTGGGGACA CCGTTGCTCT. GGCAACGAGA GGCACTCTTA CCGTGAGAAT 51

MunI EcoRI

ATGAAGTGCA ATTGGAATTC TACTTCACGT TAACCTTAAG

SUBSTITUTE SHEET (RULE 26)

101

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

21 Σ XbaI

1111

TTCTTCTTGC TTATAGCGTA AATATCGCAT TATGAAAAAG ATACTTTTTC CTCCACTAAA GAGGTGATTT TCTAGAGGTT AGATCTCCAA

NsiI

ECORI 2222

ATCTATGTTC 51

GAATTC CTTAAG ACGTATGCGA TGCATACGCT AACGATGTTT TTGCTACAAA GTTTTTTCTA CAAAAAAGAT TAGATACAAG

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 41

NheI

| Н | GCTAGCATCG | AATGGCGCAA | AACCTTTCGC | GGTATGGCAT | GATAGCGCCC |
|-----|--------------------------|--------------------------|--------------------------|------------|--------------------------|
| | CGATCGTAGC | TTACCGCGTT | TTGGAAAGCG | CCATACCGTA | CTATCGCGGG |
| | GGAAGAGAGT | CAATTCAGGG | TGGTGAATGT | GAAACCAGTA | ACGTTATACG |
| | CCTTCTCTCA | GTTAAGTCCC | ACCACTTACA | CTTTGGTCAT | TGCAATATGC |
| 101 | ATGTCGCAGA | GTATGCCGGT | GTCTCTTATC | AGACCGTTTC | CCGCGTGGTG |
| | TACAGCGTCT | CATACGGCCA | CAGAGAATAG | TCTGGCAAAG | GGCGCACCAC |
| 151 | AACCAGGCCA | GCCACGTTTC | TGCGAAAACG | CGGGAAAAAG | TGGAAGCGGC |
| | TTGGTCCGGT | CGGTGCAAAG | ACGCTTTTGC | GCCCTTTTTC | ACCTTCGCCG |
| 201 | GATGGCGGAG | CTGAATTACA | TTCCTAACCG | CGTGGCACAA | CAACTGGCGG |
| | CTACCGCCTC | GACTTAATGT | AAGGATTGGC | GCACCGTGTT | GTTGACCGCC |
| 251 | GCAAACAGTC | GTTGCTGATT | GGCGTTGCCA | CCTCCAGTCT | GGCCCTGCAC |
| | CGTTTGTCAG | CAACGACTAA | CCGCAACGGT | GGAGGTCAGA | CCGGGACGTG |
| 301 | GCGCCGTCGC
CGCGGCAGCG | AAATTGTCGC
TTTAACAGCG | GGCGATTAAA
CCGCTAATTT | TCTCGCGCCG | ATCAACTGGG
TAGTTGACCC |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 351 | TGCCAGCGTG | GTCGTGTCGA | TGGTAGAACG | AAGCGGCGTC | GAAGCCTGTA |
|-----|------------|------------|------------|------------|------------|
| | ACGGTCGCAC | CAGCACAGCT | ACCATCTTGC | TTCGCCGCAG | CTTCGGACAT |
| 401 | AAGCGGCGGT | GCACAATCTT | CTCGCGCAAC | GTGTCAGTGG | GCTGATTATT |
| | TTCGCCGCCA | CGTGTTAGAA | GAGCGCGTTG | CACAGTCACC | CGACTAATAA |
| 451 | AACTATCCGC | TGGATGACCA | GGATGCTATT | GCTGTGGAAG | CTGCCTGCAC |
| | TTGATAGGCG | ACCTACTGGT | CCTACGATAA | CGACACCTTC | GACGGACGTG |
| 501 | TAATGTTCCG | GCGTTATTTC | TTGATGTCTC | TGACCAGACA | CCCATCAACA |
| | ATTACAAGGC | CGCAATAAAG | AACTACAGAG | ACTGGTCTGT | GGGTAGTTGT |
| 551 | GTATTATTT | CTCCCATGAG | GACGGTACGC | GACTGGGCGT | GGAGCATCTG |
| | CATAATAAAA | GAGGGTACTC | CTGCCATGCG | CTGACCCGCA | CCTCGTAGAC |
| 601 | GTCGCATTGG | GCCACCAGCA | AATCGCGCTG | TTAGCTGGCC | CATTAAGTTC |
| | CAGCGTAACC | CGGTGGTCGT | TTAGCGCGAC | AATCGACCGG | GTAATTCAAG |
| 651 | TGTCTCGGCG | CGTCTGCGTC | TGGCTGGCTG | GCATAAATAT | CTCACTCGCA |
| | ACAGAGCCGC | GCAGACGCAG | ACCGACCGAC | CGTATTTATA | GAGTGAGCGT |
| 701 | ATCAAATTCA | GCCGATAGCG | GAACGGGAAG | GCGACTGGAG | TGCCATGTCC |
| | TAGTTTAAGT | CGGCTATCGC | CTTGCCCTTC | CGCTGACCTC | ACGGTACAGG |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| CGACTGGAAA
GCTGACCTTT | ACAGGTTTCC
TGTCCAAAGG | AGCTGGCACG
TCGACCGTGC | TCACTGATGC
AGTGACTACG | GTTGGCCGAT
CAACCGGCTA | 1101 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------|
| CTCCCCGCGC | CAAACCGCCT
GTTTGGCGGA | TCCCAATACG | CCACCCTGGC
GGTGGGACCG | AAAAGAAAAA
TTTTCTTTTT | 1051 |
| CTCACTGGTG
GAGTGACCAC | TGTTGCCCGT
ACAACGGGCA | GGCAATCAGC
CCGTTAGTCG | GGCGGTGAAG
CCGCCACTTC | CTCAGGGCCA
GAGTCCCGGT | 1001 |
| CTGCAACTCT
GACGTTGAGA | GGACCGCTTG
CCTGGCGAAC | AAACCAGCGT
TTTGGTCGCA | CTGCTGGGGC
GACGACCCCG | GGATTTTCGC
CCTAAAAGCG | 951 |
| CCATCAAACA
GGTAGTTTGT | CCGCTGACCA
GGCGACTGGT | TTATATCCCG
AATATAGGGC | ACAGCTCATG
TGTCGAGTAC | GATACCGAGG
CTATGGCTCC | 901 |
| GGGATACGAC
CCCTATGCTG | TCTCGGTAGT
AGAGCCATCA | GGTGCGGACA
CCACGCCTGT | GCTGCGCGTT
CGACGCGCAA | CCGAGICCGG | 851 |
| CGTGCCATTA
GCACGGTAAT | GGGCGCAATG
CCCGCGTTAC | AGATGGCGCT
TCTACCGCGA | GCCAACGATC
CGGTTGCTAG | GATGCTGGTT
CTACGACCAA | 801 |
| TTCCCACTGC
AAGGGTGACG | GAGGGCATCG
CTCCCGTAGC | AATGCTGAAT
TTACGACTTA | AAACCATGCA
TTTGGTACGT | GGTTTTCAAC | 751 |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| CCTCCGGCAA | GAAGGACTGT | TATTTCGCC | TCCGATGGGC | CGCCCGTCAC | |
|------------|------------|------------|------------|------------|-----|
| GGAGGCCGTT | CTTCCTGACA | HATAAAGCGG | AGGCTACCCG | CGG | 151 |

Aflii ------1201 TTGTTTTGCA GCCCACTTAA C

TTGTTTTGCA GCCCACTTAA GACAAAACGT CGGGTGAATT C

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Figure 35a. Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| Ŀ | • | 1 |
|-----|--------|---|
| ا ِ | | |
| _ | וַ | |
| | ָ
נ | |
| 2 | 2 | |
| | | |

BglII 1111

TTTTTTAAT AAAAAATTA TAACTGCCTT ATTGACGGAA AGGGCACCAA TCCCGTGGTT GTCCGCAAAT CAGGCGTTTA GATCTAGCAC CTAGATCGTG

TTAAGCATTC AATTCGTAAG AACATTAAGT TTGTAATTCA GCGTCATGAC CGCAGTACTG TGCCACTCAT ACGGTGAGTA 9990999999 CGCCCGCCC

51

101

AATCGCCAGC TTAGCGGTCG GATGAACCTG CTACTTGGAC GTTTGCCGTA CAAACGGCAT GAAGCCATCA CTTCGGTAGT TGCCGACATG ACGGCTGTAC

TTGCGTATAA AACGCATATT GGAACAGCGG CCTTGTCGCC GGCATCAGCA CCGTAGTCGT

TAGTGAAAAC ATCACTTTTG

ATAAACGGGT

TATTTGCCCA

AAACTGGTGA TTTGACCACT

GTTTAAATCA CAAATTTAGT AATAAACCCT

TGTATAAGAG

CTCTGCTTTT

CCCTAACCGA

TTGAGTGGGT

251

ATAACCGATG TATTGGCTAC AAGTTGTCCA TTCAACAGGT GGGGCGAAG CCCCCCCTTC

ACATATTCTC GAGACGAAAA GGGATTGGCT AACTCACCCA

TTATTTGGGA AGGCCAGGTT TTAGGGAAAT 301

CTTGCGAATA GAACGCTTAT CACGCCACAT GTGCGGTGTA TTCACCGTAA AAGTGGCATT TCCGGTCCAA AATCCCTTTA

SUBSTITUTE SHEET (RULE 26)

51

201

| ed) |
|----------|
| Ž |
| i. |
| ୃତ୍ତ |
| <u>ي</u> |
| 2 |
| Š |
| بَ |
| ပ္ထ |
| þ |
| ar |
| les |
| ğ |
| Ĕ |
| ŏ |
| ēct |
| ږ |
| Ş |
| <u>=</u> |
| วนร |
| ≝ |
| 300 |
| of : |
| es (|
| ũ |
| ant |
| Sec |
| þ |
| S a |
| ap |
| Ξ |
| ua |
| 9 |
| วนา |
| 죠. |
| 35a: Fı |
| e 3 |
| ž |
| Fig |

SUBSTITUTE SHEET (RULE 26)

| $\overline{}$ |
|---------------|
| P G |
| ≥ |
| ÷ |
| Ξ |
| ဥ |
| ت |
| ī |
| 2 |
| S |
| > |
| |
| Ö |
| న్డ |
| Ō |
| ᇤ |
| S |
| <u>ته</u> |
| 긎 |
| ŏ |
| Ē |
| = |
| ecto |
| S |
| > |
| AL vec |
| δ |
| ā |
| æ |
| Ĕ |
| .9 |
| diti |
| ŏ |
| , CO |
| ō |
| Ś |
| ဗ |
| Ξ. |
| š |
| Ö |
| S |
| р |
| aps and |
| S |
| ğ |
| 23 |
| _ |
| 23 |
| ŏ |
| Ξ |
| 5 |
| .⋽ |
| <u></u> |
| ä |
| 3. |
| به |
| ă |
| ō |
| Œ |
| |

| | 751 | ACGCCCGGTA
TGCGGGCCAT | GTGATCTTAT
CACTAGAATA | TTCATTATGG
AAGTAATACC | TGAAAGTTGG
ACTTTCAACC | AACCTCACCC
TTGGAGTGGG |
|---|------|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|
| | | AatII | | | | |
| | 801 | GACGTCTAAT
CTGCAGATTA | GTGAGTTAGC
CACTCAATCG | TCACTCATTA
AGTGAGTAAT | GGCACCCCAG
CCGTGGGGGTC | GCTTTACACT
CGAAATGTGA |
| | 851 | TTATGCTTCC
AATACGAAGG | GGCTCGTATG
CCGAGCATAC | TTGTGTGGAA | TTGTGAGCGG | ATAACAATTT
TATTGTTAAA |
| | | | | | Xbal | |
| | 901 | CACACAGGAA
GTGTGTCCTT | ACAGCTATGA
TGTCGATACT | CCATGATTAC
GGTACTAATG | GAATTTCTAG
CTTAAAGATC | ACCCCCCCCC
TGGGGGGGG |
| | | SphI | | | | HindIII |
| | 951 | CGCATGCCAT | AACTTCGTAT
TTGAAGCATA | AATGTACGCT
TTACATGCGA | ATACGAAGTT
TATGCTTCAA | ATAAGCTTGA
TATTCGAACT |
| М | 1001 | CCTGTGAAGT
GGACACTTCA | GAAAAATGGC
CTTTTTACCG | GCAGATTGTG
CGTCTAACAC | CGACATTTTT
GCTGTAAAAA | TTTGTCTGCC
AAACAGACGG |

BsrGI

FseI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

PacI

| | | <pre></pre> | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ì | ~ |
|-------------|------|--------------------------|--------------------------|---------------------------------------|--------------------------|---|
| | 1051 | GTTTAATTAA
CAAATTAATT | AGGGGGGGGG
TCCCCCCCC | GGGCCGGCCT | GGGGGGGGGT | GTACATGAAA
CATGTACTTT |
| | 1101 | TTGTAAACGT
AACATTTGCA | TAATATTTTG
ATTATAAAAC | TTAAAATTCG
AATTTTAAGC | CGTTAAATTT
GCAATTTAAA | TTGTTAAATC
AACAATTTAG |
| SUBS | 1151 | AGCTCATTTT
TCGAGTAAAA | TTAACCAATA
AATTGGTTAT | GGCCGAAATC
CCGGCTTTAG | GGCAAAATCC
CCGTTTTAGG | CTTATAAATC
GAATATTTAG |
| TITUTE SHE | 1201 | AAAAGAATAG
TTTTCTTATC | ACCGAGATAG
TGGCTCTATC | GGTTGAGTGT
CCAACTCACA | TGTTCCAGTT
ACAAGGTCAA | TGGAACAAGA
ACCTTGTTCT |
| ET (RULE 26 | 1251 | GTCCACTATT
CAGGTGATAA | AAAGAACGTG
TTTCTTGCAC | GACTCCAACG
CTGAGGTTGC | TCAAAGGGCG
AGTTTCCCGC | AAAACCGTC
TTTTTGGCAG |
| 5) | 1301 | TATCAGGGCG
ATAGTCCCGC | ATGGCCCACT
TACCGGGTGA | ACGAGAACCA
TGCTCTTGGT | TCACCCTAAT
AGTGGGATTA | CAAGTTTTTT
GTTCAAAAAA |
| | 1351 | GGGGTCGAGG | TGCCGTAAAG
ACGGCATTTC | CACTAAATCG
GTGATTTAGC | GAACCCTAAA
CTTGGGATTT | Banll
~~~~~~
GGGAGCCCCC
CCCTCGGGGG |

SUBSTITUTE SHEET (NULE 26) 159 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| AAAGGAAGGG
TTTCCTTCCC | TAGCGGTCAC
ATCGCCAGTG | CTACAGGGCG
GATGTCCCGC | GATGAGGGTG
CTACTCCCAC | AgeI | CCGGTGCGTC | CACTGACTCG
GTGACTGAGC | ACGAACGGG |
|--------------------------|--------------------------|--------------------------|---|---------|--------------------------|--------------------------|-----------------------|
| ACGTGGCGAG
TGCACCGCTC | CTGGCAAGTG
GACCGTTCAC | TAATGCGCCG
ATTACGCGGC | TGTTGGCACT
ACAACCGTGA | | AAAGGCTGCA
TTTCCGACGT | CTTCCTCGCT
GAAGGAGCGA | GCGGCGAGCG GAAATGGCTT |
| AAGCCGGCGA
TTCGGCCGCT | CGCTAGGGCG
GCGATCCCGC | CCGCCGCGCT | TGGCTTACTA | | GCAGGAGAAA | ATATATTCCG
TATATAAGGC | GCGGCGAGCG |
| TTGACGGGGA | AAGGAGCGGG
TTCCTCGCCC | ACCACCACAC
TGGTGGTGTG | GAGTGTATAC
CTCACATATG | I. | GCTTCATGTG
CGAAGTACAC | GTGATACAGG
CACTATGTCC | TCGTTCGACT |
| GATTTAGAGC
CTAAATCTCG | AAGAAAGCGA
TTCTTTCGCT | GCTGCGCGTA
CGACGCGCAT | NheI
~~~~~
CGTGCTAGCG
GCACGATCGC | .cumX | TCAGTGAAGT
AGTCACTTCA | AGCAGAATAT
TCGTCTTATA | CTACGCTCGG |
| 1401 | 1451 | 1501 | 1551 | | 1601 | 1651 | 1701 |
| | | S | UBSTITUTE SHEET (| RULE 26 |)) | | |

| <u> </u> |
|--------------|
| ed |
| <u>=</u> |
| out |
| <u> </u> |
| ors |
| ž |
| × |
| ₹ |
| <u>g</u> |
| gue |
| SS |
| 필 |
| δ |
| Ē |
| 운 |
| Š |
| Æ |
| Q |
| اعر |
| . <u>ē</u> |
| ġ |
| 3 |
| ō |
| မ် |
| ng. |
| ಕ್ಷ |
| s and sequen |
| ä |
| bs |
| 73 |
| - |
| ö |
| jć |
| Ē |
|
33 |
| 35 |
| ure |
| Figur |
| - |

| Ŋ | AG
IC | rc
AG | A.A
I'I | ე ტ
ტ | TC
AG | GA | TA
TA |
|---|--------------------------|--------------------------|--------------------------|---|--|--------------------------|--------------------------|
| TGCTTGCCCC | GAAGTGAGAG
CTTCACTCTC | GACAAGCATC
CTGTTCGTAG | AGGACTATAA
TCCTGATATT | CTCCTGTTCC
GAGGACAAGG | CGTTTGTCTC
GCAAACAGAG | CCAAGCTGGA
GGTTCGACCT | TTATCCGGTA |
| CTTTACCGAA | ACTTAACAGG
TGAATTGTCC | CCGCCCCCCT | GAAACCCGAC
CTTTGGGCTG | CTCCTGCGCT
GAGGACGCGA | GTTATGGCCG
CAATACCGGC | GCAGTTCGCT
CGTCAAGCGA | CCGCTGCGCC |
| UGCCGCTCGC | CCAGGAAGAT
GGTCCTTCTA | TCCATAGGCT
AGGTATCCGA | CAGTGGTGGC
GTCACCACCG | TGGCGGCTCC | TCATTCCGCT
AGTAAGGCGA | TTCCGGGTAG
AAGGCCCATC | TTCAGTCCGA
AAGTCAGGCT |
| attional pual vector modi
AGCAAGCTGA | CTGGAAGATG
GACCTTCTAC | AAGCCGTTTT
TTCGGCAAAA | ACGCTCAAAT
TGCGAGTTTA | CGTTTCCCCC
GCAAAGGGGG | Agel
~~~~~~
TTTACCGGTG
AAATGGCCAC | TGACACTCAG
ACTGTGAGTC | GAACCCCCCG |
| gure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) GATGCGAGCC AGCAAGCTGA CGCCGCTCGC CTT | CGGAGATTTC
GCCTCTAAAG | GGCCGCGGCA | ACGAAATCTG
TGCTTTAGAC | AGATACCAGG
TCTATGGTCC | TGCCTTTCGG | ATTCCACGCC
TAAGGTGCGG | CTGTATGCAC |
| gure 35a: Functional | 1751 | 1801 | 1851
SUB | T 100 T 180 T I I I I I I I I I I I I I I I I I I | EEI (BULE 26)
1951 | 2001 | 2051 |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| C ATGCAAAAGC ACCACTGGCA | T AGTCTTGAAG TCATGCGCCG
A TCAGAACTTC AGTACGCGGC | A GTGACTGCGC TCCTCCAAGC
T CACTGACGCG AGGAGGTTCG | T CAGAGAACCT ACGAAAAACC
A GTCTCTTGGA TGCTTTTTGG | A GCAAGAGATT ACGCGCAGAC
T CGTTCTCTAA TGCGCGTCTG | H | |
|--------------------------|--|--|--|--|-------|-------------------------------|
| CCGGAAAGAC
GGCCTTTCTG | TAGAGGAGTT
ATCTCCTCAA | ACAAGTTTTA
TGTTCAAAAT | GTTGGTAGCT
CAACCATCGA | CGTTTTCAGA
GCAAAAGTCT | BgllI | ~
CATCTTATTA
GTAGAATAAT |
| TGAGTCCAAC
ACTCAGGTTG | GTAATTGATT
CATTAACTAA | AACTGAAAGG
TTGACTTTCC | GGTTCAAAGA
CCAAGTTTCT | GCGGTTTTTT
CGCCAAAAAA | | TCAAGAAGAT
AGTTCTTCTA |
| ACTATCGTCT
TGATAGCAGA | GCAGCCACTG
CGTCGGTGAC | GTTAAGGCTA
CAATTCCGAT | CAGTTACCTC
GTCAATGGAG | GCCCTGCAAG
CGGGACGTTC | | CAAAACGATC
GTTTTGCTAG |
| 2101 | 2151 | 2201 | 2251 | 2301 | | 2351 |
| | | Si | JBSTITUTE S | SHEET (AUL | E 26) | |

SUBSTITUTE SHEET (NULE 2/ 162 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCALO-2:

BsrGI

GCAATTTAAA CGTTAAATTT TTAAAATTCG AATTTTAAGC TAATATTTG ATTATAAAAC TTGTAAACGT AACATTTGCA GTACATGAAA CATGTACTTT

CCGTTTTAGG GGCAAAATCC CCGGCTTTAG GGCCGAAATC TTAACCAATA AATTGGTTAT TCGAGTAAAA AGCTCATTTT AACAATTTAG TTGTTAAATC 51

ACAAGGTCAA TGTTCCAGTT GGTTGAGTGT CCAACTCACA ACCGAGATAG TGGCTCTATC AAAAGAATAG TTTTCTTATC CTTATAAATC GAATATTAG 101

CTGAGGTTGC GACTCCAACG AAAGAACGTG TTTCTTGCAC GTCCACTATT CAGGTGATAA TGGAACAAGA ACCTTGTTCT

TCAAAGGGCG AGTTTCCCGC

TCACCCTAAT AGTGGGATTA TGCTCTTGGT ATGGCCCACT ACGAGAACCA TACCGGGTGA TATCAGGGCG ATAGTCCCGC AAAAACCGTC TTTTGGCAG 201

GAACCCTAAA CTTGGGATTT CACTAAATCG GTGATTTAGC TGCCGTAAAG ACGGCATTTC GGGGTCGAGG CCCCAGCTCC CAAGTTTTTT GTTCAAAAAA 51 (

BanII

? ? ? ? GGGAGCCCCC GATTTAGAGC TTGACGGGGA AAGCCGGCGA ACGTGGCGAG 301

SUBSTITUTE SHEET (RULE 20)

151

GAAGGAGCGA

GAAATGGCTT

GCGGCGAGCG

TCGTTCGACT

CTACGCTCGG

CACTGACTCG

601

CTTCCTCGCT

ATATATTCCG

GTGATACAGG CACTATGTCC

AGCAGAATAT

CCGGTGCGTC

551

GGCCACGCAG

TCGTCTTATA

TATATAGGC

| TGCACCGCTC | AAGAAAGCGA AAGGAGCGGG CGCTAGGGCG CTGGCAAGTG
TTCTTTCGCT TTCCTCGCCC GCGATCCCGC GACCGTTCAC | CCGCCGCGCT TAATGCGCCG
GGCGCGCGA ATTACGCGGC | A TGTTGGCACT | AgeI |
|---|--|--|--|-----------|
| ntinued)
TTCGGCCGCT | CGCTAGGGCG | CCGCCGCGCT | TGGCTTACTA | |
| additional pCAL vector modules and pCAL vectors (continued) | AAGGAGCGGG
TTCCTCGCCC | GCTGCGCGTA ACCACCACAC
CGACGCGCAT TGGTGGTGTG | GAGTGTATAC | |
| Iditional pCAL vector mod | AAGAAAGCGA
TTCTTTCGCT | GCTGCGCGTA
CGACGCGCAT | NheI
~~~~~~
CGTGCTAGCG
GCACGATCGC | XmnI |
| Figure 35a: Functional maps and sequences of ac | AAAGGAAGGG
TTTCCTTCCC | TAGCGGTCAC | CTACAGGGCG | |
| 5a: Functional | 351 | 401 | 451 | |
| Figure 3 | | | SUBSTITUTE S | :HEET (RI |

ULE 26) 165 / 204

AAAGGCTGCA TTTCCGACGT

GCAGGAGAAA

GCTTCATGTG CGAAGTACAC

TCAGTGAAGT

GATGAGGGTG

501

CTACTCCCAC

AGTCACTTCA

CGTCCTCTTT

| tors (continued) |
|------------------|
| Ve |
| βg |
| sand |
| odule |
| tor m |
| Vec |
| S |
| <u>_</u> |
| additiona |
| ō |
| sednences |
| ps and |
| E |
| onal |
| ıncti |
| ٠.
ج |
| 35a |
| Figure 3 |

| | GTGACTGAGC | GATGCGAGCC | AGCAAGCTGA | CGCCGCTCGC | CTTTACCGAA |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 651 | ACGAACGGGG
TGCTTGCCCC | CGGAGATTTC
GCCTCTAAAG | CTGGAAGATG
GACCTTCTAC | CCAGGAAGAT | ACTTAACAGG
TGAATTGTCC |
| 701 | GAAGTGAGAG
CTTCACTCTC | GGCCGCGGCA
CCGGCGCCGT | AAGCCGTTTT
TTCGGCAAAA | TCCATAGGCT
AGGTATCCGA | CCGCCCCCCT |
| 751 | GACAAGCATC | ACGAAATCTG
TGCTTTAGAC | ACGCTCAAAT
TGCGAGTTTA | CAGTGGTGGC
GTCACCACCG | GAAACCCGAC
CTTTGGGCTG |
| 801 | AGGACTATAA
TCCTGATATT | AGATACCAGG
TCTATGGTCC | CGTTTCCCCC | TGGCGGCTCC | CTCCTGCGCT
GAGGACGCGA |
| | | | AgeI | | |
| 851 | CTCCTGTTCC
GAGGACAAGG | TGCCTTTCGG
ACGGAAAGCC | TTTACCGGTG
AAATGGCCAC | TCATTCCGCT
AGTAAGGCGA | GTTATGGCCG
CAATACCGGC |
| 901 | CGTTTGTCTC
GCAAACAGAG | ATTCCACGCC
TAAGGTGCGG | TGACACTCAG
ACTGTGAGTC | TTCCGGGTAG
AAGGCCCATC | GCAGTTCGCT
CGTCAAGCGA |
| 951 | CCAAGCTGGA
GGTTCGACCT | CTGTATGCAC
GACATACGTG | GAACCCCCCG | TTCAGTCCGA
AAGTCAGGCT | CCGCTGCGCC |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ATGCAAAAGC
TACGTTTTCG | AGTCTTGAAG
TCAGAACTTC | GTGACTGCGC
CACTGACGCG | CAGAGAACCT
GTCTCTTGGA | GCAAGAGATT
CGTTCTCTAA | Bglii
~~~~~~
GATCTAGCAC
CTAGATCGTG | ວວວອວວວວອວ |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---|--------------|
| CCGGAAAGAC A
GGCCTTTCTG I | TAGAGGAGTT A
ATCTCCTCAA I | ACAAGTTTTA G
TGTTCAAAAT C | GTTĠGTAGCT C
CAACCATCGA G | CGTTTTCAGA G
GCAAAAGTCT C | B
~~~
CATCTTATTA G
GTAGAATAAT C | AAAAAATTA C |
| TGAGTCCAAC
ACTCAGGTTG | GTAATTGATT
CATTAACTAA | AACTGAAAGG
TTGACTTTCC | GGTTCAAAGA | GCGGTTTTTT | TCAAGAAGAT
AGTTCTTCTA | TAACTGCCTT / |
| ACTATCGTCT
TGATAGCAGA | GCAGCCACTG | GTTAAGGCTA
CAATTCCGAT | CAGTTACCTC
GTCAATGGAG | GCCCTGCAAG
CGGGACGTTC | CAAAACGATC | AGGGCACCAA |
| TTATCCGGTA
AAȚAGGCCAT | ACCACTGGCA
TGGTGACCGT | TCATGCGCCG
AGTACGCGGC | TCCTCCAAGC
AGGAGGTTCG | ACGAAAAACC
TGCTTTTTGG | ACGCGCAGAC
TGCGCGTCTG | CAGGCGTTTA |
| 1001 | 1051 | 1101 | 1151 | 1201 | 1251 | 1301 |
| | | S | UBSTITUTE | SHEET (RULE | E 26) | |

| AL vectors (continued) |
|------------------------|
| ಶ್ |
| ā |
| a |
| S |
| Ę, |
| Ē |
| Ď |
| Ç |
| بِ |
| Ş |
| al p |
| ü |
| Ξ |
| aqc |
| oę |
| Ş |
| en |
| 3 |
| 25 |
| anc |
| bs |
| maps ar |
| - |
| <u>.</u> |
| JC. |
| Ē |
| 5a: |
| 35 |
| gure |
| Fig |
| |

| CATG
GTAC | AGCA
TCGT | GAAG
CTTC | CCCA | AAAT
TTTA | TAGA
ATCT | TTTC | ATCA
IAGT |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| TGCCGACATG
ACGGCTGTAC | GGCATCAGCA
CCGTAGTCGT | GGGGGCGAAG | AACTCACCCA
TTGAGTGGGT | TTAGGGAAAT
AATCCCTTTA | TATGTGTAGA
ATACACATCT | AAAACGTTTC
TTTTGCAAAG | TCCCATATCA
AGGGTATAGT |
| TTAAGCATTC
AATTCGTAAG | AATCGCCAGC
TTAGCGGTCG | TAGTGAAAAC
ATCACTTTTG | AAACTGGTGA
TTTGACCACT | AATAAACCCT
TTATTTGGGA | CTTGCGAATA
GAACGCTTAT | CAGAGCGATG
GTCTCGCTAC | GTGAACACTA
CACTTGTGAT |
| TTGTAATTCA | GATGAACCTG
CTACTTGGAC | TATTTGCCCA
ATAAACGGGT | GTTTAAATCA
CAAATTTAGT | ACATATTCTC
TGTATAAGAG | CACGCCACAT | GTATTCACTC
CATAAGTGAG | TGTAACAAGG
ACATTGTTCC |
| CGCAGTACTG | CAAACGGCAT
GTTTGCCGTA | TTGCGTATAA
AACGCATATT | TATTGGCTAC | GAGACGAAAA
CTCTGCTTTT | TTCACCGTAA
AAGTGGCATT | AATCGTCGTG
TTAGCAGCAC | TGGAAAACGG
ACCTTTTGCC |
| TGCCACTCAT | GAAGCCATCA
CTTCGGTAGT | CCTTGTCGCC
GGAACAGCGG | AAGTTGTCCA
TTCAACAGGT | GGGATTGGCT
CCCTAACCGA | AGGCCAGGTT
TCCGGTCCAA | AACTGCCGGA
TTGACGGCCT | AGTTTGCTCA
TCAAACGAGT |
| 1351 | 1401 | 1451 | 1501 | 1551 | 1601 | 1651 | 1701 |
| n. | | | | ITE SHEET (1
68 / 204 | 7ULE 26) | | |

| AL vectors (continued) |
|------------------------|
| ပွ |
| r modules and p |
| 2 |
| Vec |
| pCAL |
| additional |
| quences of |
| s and se |
| al map |
| : Function |
| 35a: |
| Figure |

| r 1 rh | F. A | r 1 | . | | | | | |
|--|------------------------------|--------------------------|------------------------------|----------------------------|------------------------------|-------|------------------------------------|--------------|
| AGCATTCATC
TCGTAAGTAG | GCTTATTTT
CGAATAAAAA | GTCTGGTTAT
CAGACCAATA | TTTACGATGC
AAATGCTACG | TCTCCATTTT
AGAGGTAAAA | ACGCCCGGTA
TGCGGGCCAT | Aatii | ~~~~~~
GACGTCTAAT
CTGCAGATTA | TTATGCTTCC |
| CCGGGTG | TAAAACTTGT G
ATTTTGAACA C | CAGCTGAACG G | CAAAATGTTC T
GTTTTACAAG A | GTGATTTTTT T
CACTAAAAAA | CTCAAAAAAT A
GAGTTTTTTA T | | AACCTCACCC G
TTGGAGTGGG C | GCTTTACACT T |
| GCCATACGGA
CGGTATGCCT | AAAGGCCGGA
TTTCCGGCCT | CCGTAATATC
GGCATTATAG | TGAAATGCCT
ACTTTACGGA | GGTATATCCA
CCATATAGGT | ATCTCGATAA
TAGAGCTATT | | TGAAAGTTGG
ACTTTCAACC | GGCACCCCAG |
| GTCTTTCATT
CAGAAAGTAA | GAATGTGAAT
CTTACACTTA | TTTAAAAAGG
AAATTTTTCC | AGCAACTGAC
TCGTTGACTG | TATCAACGGT
ATAGTTGCCA | GCTCCTGAAA
CGAGGACTTT | | TTCATTATGG
AAGTAATACC | TCACTCATTA |
| 1751 CCAGCTCACC GTCTTTCATT GCCATACGGA ACTG | AGGCGGGCAA
TCCGCCCGTT | CTTTACGGTC
GAAATGCCAG | AGGTACATTG
TCCATGTAAC | CATTGGGATA
GTAACCCTAT | AGCTTCCTTA
TCGAAGGAAT | | GTGATCTTAT
CACTAGAATA | GTGAGTTAGC |
| 1751 | 1801 | 1851 | 1901 | 1951 | 2001 | | 2051 | 2101 |
| | | | | TE SHEET (F | RULE 26) | | | |
| - | | | 1 | 69 / 204 | | | | |

| AAAGG | AGGAA | C
CCAT
GGTA | BAAGT | Pacı
~~~~~~
AATTAA
TTAATT | GATC |
|---|--------------------------|--|---|---|---|
| AATACGAAGG | CACACAGGAA
GTGTGTCCTT | SphI
~~~~~~
CGCATGCCAT
GCGTACGGTA | CCTGTGAAGT
GGACACTTCA | PacI
~~~~~~~
GTTTAATTAA
CAAATTAATT | TCCTTTGATC |
| ontinued)
CGAAATGTGA | ATAACAATTT
TATTGTTAAA | ACCCCCCCC
TGGGGGGGG | HindIII
~~~~~~
ATAAGCTTGA
TATTCGAACT | TTTGTCTGCC
AAACAGACGG | CTCAAGAAGA
GAGTTCTTCT |
| additional pCAL vector modules and pCAL vectors (continued) | TTGTGAGCGG | XbaI
CAATTTCTAG
CTTAAAGATC | ATACGAAGTT
TATGCTTCAA | CGACATTTTT
GCTGTAAAAA | CAAAAAGGAT
GTTTTTCCTA |
| dditional pCAL vector mod
AGTGAGTAAT | TTGTGTGGAA
AACACACCTT | CCATGATTAC
GGTACTAATG | AATGTACGCT
TTACATGCGA | GCAGATTGTG
CGTCTAACAC | eI
~~~~~
CGGCCATTAT
GCCGGTAATA |
| Figure 35a: Functional maps and sequences of ac
CACTCAATCG | GGCTCGTATG
CCGAGCATAC | ACAGCTATGA
TGTCGATACT | AACTTCGTAT
TTGAAGCATA | GAAAATGGC
CTTTTTACCG | Fsel
GGGGGGGGC
CCCCCCCG |
| 5a: Functional | 2151 | 2201 | 2251 | 2301 | 2351 |
| igure 3 | | SU | BSTITUTE SHEET (RI | JLE 26) | |
| u. | | | 170 / 204 | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 2401 | TTTTCTACGG | GGTCTGACGC | TCAGTGGAAC | GAAAACTCAC | GTTAAGGGAT |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | AAAAGATGCC | CCAGACTGCG | AGTCACCTTG | CTTTTGAGTG | CAATTCCCTA |
| 2451 | TTTGGTCATG | AGATTATCAA
TCTAATAGTT | AAAGGATCTT
TTTCCTAGAA | CACCTAGATC
GTGGATCTAG | CTTTTAAATT
GAAAATTTAA |
| 2501 | AAAAATGAAG | TTTTAAATCA | ATCTAAAGTA | TATATGAGTA | AACTTGGTCT |
| | TTTTTACTTC | AAAATTTAGT | TAGATTTCAT | ATATACTCAT | TTGAACCAGA |
| 2551 | GACAGTTACC | CAATGCTTAA | TCAGTGAGGC | ACCTATCTCA | GCGATCTGTC |
| | CTGTCAATGG | GTTACGAATT | AGTCACTCCG | TGGATAGAGT | CGCTAGACAG |
| 2601 | TATTTCGTTC
ATAAAGCAAG | ATCCATAGTT
TAGGTATCAA | GCCTGACTCC
CGGACTGAGG | CCGTCGTGTA
GGCAGCACAT | GATAACTACG |
| 2651 | ATACGGGAGG | GCTTACCATC | TGGCCCCCAGT | GCTGCAATGA | TACCGCGAGA |
| | TATGCCCTCC | CGAATGGTAG | ACCGGGGGTCA | CGACGTTACT | ATGGCGCTCT |
| 2701 | CCCACGCTCA | CCGGCTCCAG | ATTTATCAGC | AATAAACCAG | CCAGCCGGAA |
| | GGGTGCGAGT | GGCCGAGGTC | TAAATAGTCG | TTATTTGGTC | GGTCGGCCTT |
| 2751 | GGGCCGAGCG | CAGAAGTGGT | CCTGCAACTT | TATCCGCCTC | CATCCAGTCT |
| | CCCGGCTCGC | GTCTTCACCA | GGACGTTGAA | ATAGGCGGAG | GTAGGTCAGA |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| TTAATAGTTT | CGCTCGTCGT | GCGAGTTACA | GTCCTCCGAT | GTTATGGCAG | CTTTTCTGTG | TGCGGCGACC | CCACATAGCA |
|------------|------------|------------|------------|------------|------------|------------|------------|
| AATTATCAAA | GCGAGCAGCA | CGCTCAATGT | CAGGAGGCTA | CAATACCGTC | GAAAAGACAC | ACGCCGCTGG | GGTGTATCGT |
| AGTTCGCCAG | CGTGGTGTCA | AACGATCAAG | AGCTCCTTCG | ATCACTCATG | CCGTAAGATG | GAATAGTGTA | TAATACCGCG |
| TCAAGCGGTC | GCACCACAGT | TTGCTAGTTC | TCGAGGAAGC | TAGTGAGTAC | GGCATTCTAC | CTTATCACAT | ATTATGGCGC |
| TAGAGTAAGT | CTACAGGCAT | TCCGGTTCCC | AAAAGCGGTT | CCGCAGTGTT | GTCATGCCAT | GTCATTCTGA | CAATACGGGA |
| ATCTCATTCA | GATGTCCGTA | AGGCCAAGGG | TTTTCGCCAA | GGCGTCACAA | CAGTACGGTA | CAGTAAGACT | GTTATGCCCT |
| GCCGGGAAGC | GTTGCCATTG | TTCATTCAGC | TGTTGTGCAA | AGTAAGTTGG | TTCTCTTACT | ACTCAACCAA | TGCCCGGCGT |
| CGGCCCTTCG | CAACGGTAAC | | ACAACACGTT | TCATTCAACC | AAGAGAATGA | TGAGTTGGTT | ACGGGCCGCA |
| ATTAACTGTT | GCGCAACGTT | TTGGTATGGC | TGATCCCCCA | CGTTGTCAGA | CACTGCATAA | ACTGGTGAGT | GAGTTGCTCT |
| TAATTGACAA | CGCGTTGCAA | AACCATACCG | | GCAACAGTCT | GTGACGTATT | TGACCACTCA | CTCAACGAGA |
| 2801 | 2851 | 2901 | 2951 | 3001 | 3051 | 3101 | 3151 |
| | | 50 | אווווונפםי | HEET (RULE | (مات ا | | |

ATTTGAAT TAAACTTA

GCGGATACAT CGCCTATGTA

TCAGGGTTAT TGTCTCATGA AGTCCCAATA ACAGAGTACT

3451

BsrGI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ۰ | |
|----|---|
| | |
| 5 | |
| | |
| _≿ | |
| × | 1 |
| • | 1 |

| GCGAAAACTC
CGCTTTTGAG | CCACTCGCGC | TCTGGGTGAG | GGCGACACGG
CCGCTGTGCC | GAAGCATTTA
CTTCGTAAAT |
|----------------------------------|------------|------------|--------------------------|--------------------------|
| | CCAC | TCTG | 9999 | GAAG |
| AGTGCTCATC ATTGGAAAAC GTTCTTCGGG | TCGATGTAAC | CACCAGCGTT | GCCGCAAAA AGGGAATAAG | CAATATTATT |
| TCACGAGTAG TAACCTTTTG CAAGAAGCCC | AGCTACATTG | GTGGTCGCAA | CGGCGTTTTT TCCCTTATTC | GTTATAATAA |
| ATTGGAAAAC | GAGATCCAGT | CTTTTACTTT | GCCGCAAAAA | CTTCCTTTTT |
| TAACCTTTTG | CTCTAGGTCA | GAAAATGAAA | CGGCGTTTTT | GAAGGAAAAA |
| AGTGCTCATC | TACCGCTGTT | TCCTCAGCAT | AAGGCAAAAT | TACTCATACT |
| TCACGAGTAG | ATGGCGACAA | AGGAGTCGTA | TTCCGTTTTA | ATGAGTATGA |
| GAACTTTAAA | TCAAGGATCT | ACCCAACTGA | CAAAAACAGG | AAATGTTGAA |
| CTTGAAATTT | AGTTCCTAGA | TGGGTTGACT | GTTTTTGTCC | TTTACAACTT |
| 3201 | 3251 | 3301 | 3351 | 3401 |
| | | SUBSTITUT | TE SHEET (S | ULE 23) |

SUBSTITUTE SHEET (RULE 2

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 174 / 204

PacI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| Aatii | STTAT GACGTCTAAT
SAATA CTGCAGATTA | ACACT TTATGCTTCC
FGTGA AATACGAAGG | AATTT CACACAGGAA | Sphi
~~~~~
CCCC CGCATGCCAT | IIII
~~~
TTGA CCTGTGAAGT |
|--------------------|--------------------------------------|--------------------------------------|--------------------------|--|---|
| | ACGAAGTTAT
TGCTTCAATA | GCTTTACACT
CGAAATGTGA | ATAACAATTT
TATTGTTAAA | ACCCCCCCC | HindIII
~~~~~~
ATAAGCTTGA
TATTCGAACT |
| | TGTATGCTAT
ACATACGATA | GGCACCCCAG
CCGTGGGGGTC | TTGTGAGCGG
AACACTCGCC | XbaI
~~~~~~
GAATTTCTAG A
CTTÄAAGATC T | ATACGAAGTT
TATGCTTCAA |
| | CTTCGTATAA
GAAGCATATT | TCACTCATTA
AGTGAGTAAT | TTGTGTGGAA
AACACACCTT | CCATGATTAC
GGTACTAATG | AATGTACGCT |
| pCALO-3:.
Bglii | GATCTCATAA
CTAGAGTATT | GTGAGTTAGC
CACTCAATCG | GGCTCGTATG
CCGAGCATAC | ACAGCTATGA
TGTCGATACT | AACTTCGTAT
TTGAAGCATA |
| pCAL | Н | 51 | 101 | 151 | 201 |

SUBSTITUTE SHEET (RULE 26) 175 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GTTTAATTAA
CAAATTAATT | | TCCTTTGATC
AGGAAACTAG | GTTAAGGGAT
CAATTCCCTA | CTTTTAAATT
GAAAATTTAA | AACTTGGTCT
TTGAACCAGA | GCGATCTGTC
CGCTAGACAG | GATAACTACG
CTATTGATGC |
|--------------------------|----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| TTTGTCTGCC | | CTCAAGAAGA
GAGTTCTTCT | GAAAACTCAC
CTTTTGAGTG | CACCTAGATC
GTGGATCTAG | TATATGAGTA
ATATACTCAT | ACCTATCTCA
TGGATAGAGT | CCGTCGTGTA
GGCAGCACAT |
| CGACATTTTT
GCTGTAAAAA | | CAAAAAGGAT
GTTTTTCCTA | TCAGTGGAAC
AGTCACCTTG | AAAGGATCTT
TTTCCTAGAA | ATCTAAAGTA
TAGATTTCAT | TCAGTGAGGC
AGTCACTCCG | GCCTGACTCC
CGGACTGAGG |
| GCAGATTGTG
CGTCTAACAC | e | CGGCCATTAT | GGTCTGACGC
CCAGACTGCG | AGATTATCAA
TCTAATAGTT | TTTTAAATCA
AAAATTTAGT | CAATGCTTAA
GTTACGAATT | ATCCATAGTT
TAGGTATCAA |
| GAAAAATGGC
CTTTTTACCG | <u>ተ</u> | | TTTCTACGG
AAAAGATGCC | TTTGGTCATG
AAACCAGTAC | AAAAATGAAG
TTTTTACTTC | GACAGTTACC
CTGTCAATGG | TATTTCGTTC
ATAAAGCAAG |
| 251 | | 301 | 351 | 401 | 451 | 501 | 551 |
| | | | SUBSTITL | ITE SHEET (| RULE 20) | | |

| ਰ |
|----------|
| <u> </u> |
| inu |
| ĭ |
| ဥ |
| ۳ |
| 5 |
| 끍 |
| ě |
| تَ |
| 8 |
| ď |
| Þ |
| au |
| S) |
| Š |
| þ |
| Ĕ |
| ≒ |
| ecto |
| ĕ |
| Ĺ |
| X |
| ď |
| e |
| o |
| Ξ |
| Ŗ |
| ă |
| ō |
| S |
| ຼັ |
| Ē |
| 귱 |
| Sec |
| ō |
| ä |
| ярѕ а |
| e |
| ⊏ |
| ᆵ |
| .ō |
| ਜ਼ |
| 5 |
| Ţ |
| æ |
| 35 |
| نه |
| <u> </u> |
| Fig |
| _ |

| | 601 | けいるけいさいならる | | 出じべつじつじじ | | K |
|--------------|-------------|--------------------------|--------------------------|--------------------------|-----------------------------|--------------------------|
| | 년
)
) | TATGCCCTCC | CGAATGGTAG | ACCGGGGTCA | | CGACGTTACT |
| | 651 | CCCACGCTCA | CCGGCTCCAG | ATTTATCAGC
TAAATAGTCG | | AATAAACCAG
TTATTTGGTC |
| | 701 | GGGCCGAGCG
CCCGGCTCGC | CAGAAGTGGT
GTCTTCACCA | CCTGCAACTT
GGACGTTGAA | H & | TATCCGCCTC
ATAGGCGGAG |
| SUBSTITUT | 751 | ATTAACTGTT
TAATTGACAA | GCCGGGAAGC
CGGCCCTTCG | TAGAGTAAGT
ATCTCATTCA | A(
T | AGTTCGCCAG
TCAAGCGGTC |
| = 01155= /01 | 801 | GCGCAACGTT
CGCGTTGCAA | GTTGCCATTG
CAACGGTAAC | CTACAGGCAT
GATGTCCGTA | $\mathcal{C}_{\mathcal{G}}$ | CGTGGTGTCA
GCACCACAGT |
| " F 00\ | 851 | TTGGTATGGC | TTCATTCAGC
AAGTAAGTCG | TCCGGTTCCC | AA(
TT(| AACGATCAAG
TTGCTAGTTC |
| | 901 | TGATCCCCCA | TGTTGTGCAA
ACAACACGTT | AAAAGCGGTT
TTTTCGCCAA | AGC | AGCTCCTTCG
TCGAGGAAGC |
| | 951 | CGTTGTCAGA
GCAACAGTCT | AGTAAGTTGG
TCATTCAACC | CCGCAGTGTT
GGCGTCACAA | ATC.
TAG | ATCACTCATG
TAGTGAGTAC |

SUBSTITUTE SHEET (RULE 26)

| CTTTTCTGTG
GAAAAGACAC | TGCGGCGACC
ACGCCGCTGG | CCACATAGCA
GGTGTATCGT | | GCGAAAACTC
CGCTTTTGAG | CCACTCGCGC
GGTGAGCGCG | TCTGGGTGAG
AGACCCACTC | GGCGACACGG
CCGCTGTGCC | GAAGCATTTA |
|--|--------------------------|--------------------------|------|--------------------------|--------------------------|--------------------------|------------------------------|--------------|
| ntinued)
CCGTAAGATG
GGCATTCTAC | GAATAGTGTA
CTTATCACAT | TAATACCGCG | | GTTCTTCGGG CAAGAAGCCC | TCGATGTAAC (ABGCTACATTG) | CACCAGCGTT G | AGGGAATAAG (
TCCCTTATTC (| CAATATTATT (|
| additional pCAL vector modules and pCAL vectors (continued) TTCTCTTTACT GTCATGCCAT CCG' AAGAGAATGA CAGTACGGTA GGC, | GTCATTCTGA | CAATACGGGA
GTTATGCCCT | IrmX | AAC | GAGATCCAGT
CTCTAGGTCA | CTTTTACTTT
GAAAATGAAA | GCCGCAAAAA | CTTCCTTTTT |
| Iditional pCAL vector mod
TTCTCTTACT
AAGAGAATGA | ACTCAACCAA
TGAGTTGGTT | TGCCCGGCGT
ACGGGCCGCA | | AGTGCTCATC
TCACGAGTAG | TACCGCTGTT
ATGGCGACAA | TCCTCAGCAT
AGGAGTCGTA | AAGGCAAAAT
TTCCGTTTTA | TACTCATACT |
| Figure 35a: Functional maps and sequences of ac
1001 CACTGCATAA
GTGACGTATT | ACTGGTGAGT
TGACCACTCA | GAGTTGCTCT
CTCAACGAGA | | GAACTTTAAA
CTTGAAATTT | TCAAGGATCT
AGTTCCTAGA | ACCCAACTGA
TGGGTTGACT | CAAAAACAGG
GTTTTTGTCC | AAATGTTGAA |
| 35a: Functional
1001 | 1051 | 1101 | | 1151 | 1201 | 1251 | 1301 | 1351 |
| Figure . | | | SUBS | TITUTE SHE | EET (RULE 2
4 | 6) | | |

BanII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| CTTCGTAAAT |
|------------|
| GTTATAATAA |
| GAAGGAAAAA |
| ATGAGTATGA |
| TTTACAACTT |

| | | | | | • | |
|-------|--------------------------|--------------------------|--------------------------|--------------------------|------------|--------------------------|
| BsrGI | ACATGAAATT | GTTAAATCAG | TATAAATCAA | GAACAAGAGT | AAACCGTCTA | AGTTTTTTGG |
| | TGTACTTTAA | CAATTTAGTC | ATATTTAGTT | CTTGTTCTCA | TTTGGCAGAT | TCAAAAAACC |
| BsrGI | ATTTGAATGT | TTAAATTTTT | CAAAATCCCT | TTCCAGTTTG | AAAGGGCGAA | ACCCTAATCA |
| | TAAACTTACA | AATTTAAAAA | GTTTTAGGGA | AAGGTCAAAC | TTTCCCGCTT | TGGGATTAGT |
| | GCGGATACAT
CGCCTATGTA | AAAATTCGCG
TTTTAAGCGC | CCGAAATCGG
GGCTTTAGCC | TTGAGTGTTG
AACTCACAAC | CTCCAACGTC | GAGAACCATC
CTCTTGGTAG |
| | TGTCTCATGA | ATATTTTGTT | AACCAATAGG | CGAGATAGGG | AGAACGTGGA | GGCCCACTAC |
| | ACAGAGTACT | TATAAAACAA | TTGGTTATCC | GCTCTATCCC | TCTTGCACCT | CCGGGTGATG |
| | TCAGGGTTAT | GTAAACGTTA | CTCATTTTTT | AAGAATAGAC | CCACTATTAA | TCAGGGCGAT |
| | AGTCCCAATA | CATTTGCAAT | GAGTAAAAAA | TTCTTATCTG | GGTGATAATT | AGTCCCGCTA |
| | 1401 | 1451 | 1501 | 1551 | 1601 | 1651 |
| | | C | - דו ודר | OUTET /5··· | = 60 | |

SUBSTITUTE SHEET (RULE 26) 179 / 204

| GAGCCCCCGA
CTCGGGGGGCT | AGGAAGGGAA
TCCTTCCCTT | GCGGTCACGC
CGCCAGTGCG | ACAGGGCGCG
TGTCCCGCGC | TGAGGGTGTC
ACTCCCACAG | | GGTGCGTCAG
CCACGCAGTC | CTGACTCGCT
GACTGAGCGA |
|---|--------------------------|--------------------------|--------------------------|--|-------------|--------------------------|--------------------------|
| GAG(
CTC(| AGG. | 9000 | ACA(
TGT(| TGA(
ACT(| H | GGTC | CTG2
GAC3 |
| ontinued)
ACCCTAAAGG
TGGGATTTCC | GTGGCGAGAA
CACCGCTCTT | GGCAAGTGTA
CCGTTCACAT | ATGCGCCGCT | TTGGCACTGA | AgeI | AGGCTGCACC | TCCTCGCTCA
AGGAGCGAGT |
| additional pCAL vector modules and pCAL vectors (continued) CCGTAAAGCA CTAAATCGGA ACC | GCCGGCGAAC
CGGCCGCTTG | CTAGGGCGCT
GATCCCGCGA | GCCGCGCTTA
CGGCGCGAAT | GCTTACTATG
CGAATGATAC | | AGGAGAAAAA
TCCTCTTTTT | ATATTCCGCT
TATAAGGCGA |
| iditional pCAL vector mod
CCGTAAAGCA
GGCATTTCGT | GACGGGGAAA
CTGCCCCTTT | GGAGCGGGCG
CCTCGCCCGC | CACCACACCC
GTGGTGTGGG | GTGTATACTG
CACATATGAC | }
}
} | TTCATGTGGC
AAGTACACCG | GATACAGGAT
CTATGTCCTA |
| Figure 35a: Functional maps and sequences of ad
1701 GGTCGAGGTG
CCAGCTCCAC | TTTAGAGCTT
AAATCTCGAA | GAAAGCGAAA
CTTTCGCTTT | TGCGCGTAAC
ACGCGCATTG | NheI
~~~~~~
TGCTAGCGGA
ACGATCGCCT | XmnI | AGTGAAGTGC
TCACTTCACG | CAGAATATGT
GTCTTATACA |
| 5a: Functional
1701 | 1751 | 1801 | 1851 | 1901 | | 1951 | 2001 |
| Figure 3! | | | | TE SHEET (RULE 26)
180 / 204 | | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 2051 | ACGCTCGGTC | GTTCGACTGC
CAAGCTGACG | GGCGAGCGGA | AATGGCTTAC
TTACCGAATG | GAACGGGGCG
CTTGCCCCGC |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 2101 | GAGATTTCCT | GGAAGATGCC | AGGAAGATAC | TTAACAGGGA | AGTGAGAGGG |
| | CTCTAAAGGA | CCTTCTACGG | TCCTTCTATG | AATTGTCCCT | TCACTCTCCC |
| 2151 | CCGCGGCAAA | GCCGTTTTTC | CATAGGCTCC | GCCCCCCTGA | CAAGCATCAC |
| | GGCGCCGTTT | CGGCAAAAAG | GTATCCGAGG | CGGGGGGACT | GTTCGTAGTG |
| 2201 | GAAATCTGAC | GCTCAAATCA | GTGGTGGCGA | AACCCGACAG | GACTATAAAG |
| | CTTTAGACTG | CGAGTTTAGT | CACCACCGCT | TTGGGCTGTC | CTGATATTTC |
| 2251 | ATACCAGGCG
TATGGTCCGC | TTTCCCCCTG | GCGGCTCCCT
CGCCGAGGGA | CCTGCGCTCT
GGACGCGAGA | CCTGTTCCTG
GGACAAGGAC |
| | | AgeI | | | |
| 2301 | CCTTTCGGTT | TACCGGTGTC | ATTCCGCTGT | TATGGCCGCG | TTTGTCTCAT |
| | GGAAAGCCAA | ATGGCCACAG | TAAGGCGACA | ATACCGGCGC | AAACAGAGTA |
| 2351 | TCCACGCCTG | ACACTCAGTT | CCGGGTAGGC | AGTTCGCTCC | AAGCTGGACT |
| | AGGTGCGGAC | TGTGAGTCAA | GGCCCATCCG | TCAAGCGAGG | TTCGACCTGA |

SUBSTITUTE SHEET (RULE 26) 181 / 204

| ors (continued) |
|-------------------------|
| vecto |
| rector modules and pCAL |
| pCAL v |
| additional |
| ps and sequences of |
| nal ma |
| Function |
| gure 35a: |
| Fig |

| ATCCGGTAAC
TAGGCCATTG | CACTGGCAGC
GTGACCGTCG | ATGCGCCGGT
TACGCGGCCA | CTCCAAGCCA | GAAAAACCGC
CTTTTTGGCG | GCGCAGACCA
CGCGTCTGGT | | |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------|--------------------------|
| GCTGCGCCTT | GCAAAAGCAC
CGTTTTCGTG | TCTTGAAGTC
AGAACTTCAG | GACTGCGCTC
CTGACGCGAG | GAGAACCTAC
CTCTTGGATG | AAGAGATTAC | | |
| CAGTCCGACC | GGAAAGACAT
CCTTTCTGTA | GAGGAGTTAG
CTCCTCAATC | AAGTTTTAGT
TTCAAAATCA | TGGTAGCTCA
ACCATCGAGT | TTTTCAGAGC
AAAAGTCTCG | Bglii | TCTTATTA
AGAATAAT |
| ACCCCCCGTT
TGGGGGGCAA | AGTCCAACCC
TCAGGTTGGG | AATTGATTTA
TTAACTAAAT | CTGAAAGGAC
GACTTTCCTG | TTCAAAGAGT
AAGTTTCTCA | GGTTTTTTCG
CCAAAAAAGC | | AAGAAGATCA
TTCTTCTAGT |
| GTATGCACGA | TATCGTCTTG
ATAGCAGAAC | AGCCACTGGT
TCGGTGACCA | TAAGGCTAAA
ATTCCGATTT | GTTACCTCGG
CAATGGAGCC | CCTGCAAGGC
GGACGTTCCG | | AAACGATCTC
TTTGCTAGAG |
| 2401 | 2451 | 2501 | 2551 | 2601 | 2651 | | 2701 |
| | | | SUBSTITUT | TE SHEET (7 | ULE 28) | | |

Figure 35b: List of oligonucleotides used for synthesis of modules

M1: PCR using template

NoVspAatII: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

AAGTTAT

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

AGATCTCA

M3: PCR, NoVspAatll as second oligo

XloxS-muta: CATTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

<u>M7-I: PCR</u>

qIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

AAACGGTTGAAAGTTG

gllINEW-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

glllsupernew-fow: GGGGGGGGAATTCGAGCAGAAGCTGATCTCT-

GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG

SUBSTITUTE SHEET (AULE 25)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M8: synthesis

lox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

lox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

TATGGCATG

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCCAGGCCGGCCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

GAGGCGG

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

AAGGATCTCAAGAAGATCC

M11II/III: PCR, site-directed mutagenesis

SUBSTITUTE SHEET (RULE 26) 184 / 204

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

f1-fow: GGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

CAAGGCG

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

TTCA

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

TGAGA

M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

SUBSTITUTE SHEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

Col-rev: CCCCCCGCTAGCCATGTGAGCAAAAGGCCAGCAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

GGAGCCAGGGTGGTTTTC

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGTT-

AAGGGGGGGGGGG

SUBSTITUTE SHEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M41-MCS-rev: CTAGCCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGATGGTGG

Figure 36: functional map and sequence of ß-lactamase-MCS module

| Bbe I (1361) Ase I (1364) Eco 57I (1366) Xho I (1371) Bss HII (1376) Bbs I (1386) Bsp EI (1397) Bsr GI (1403) | |
|--|-------------|
| Bam H I (192) Pst I (1356)
Kpn I (202) Bss SI (1346)
Fse I (210) Eag I (1340)
-35 (bla)
-10 (bla)
bla-term | bla MCS |
| Pml I (189) Bsa BI (182) Nsp V (173) Bsi WI (166) Eco O109I (161) Psp 5II (161) Sty I (157) Msc I (156) Bst XI (152) Bst EII (140) Bst Bsu 36I (136) | MIU 1 (126) |

SUBSTITUTE SMEET (RULE 26)

Figure 36: functional map and sequence of θ -lactamase-MCS module (continued)

| | BsiWI NspV | C GTACGTTCGA
C CATGCAAGCT | | | TCAAAAAGGA
AGTTTTTCCT | CTCAGTGGAA
GAGTCACCTT | AAAAGGATCT
TTTTCCTAGA |
|--------------------------------------|-----------------------|----------------------------------|----------------|-----------|---------------------------------|--------------------------|--------------------------|
| Styl
Psp5II
~~~~~~
Eco0109I | ?
?
?
?
? | TGG CCAAGGTCCC
ACC GGTTCCAGGG | | FseI | GG CCGGCCATTA
CC GGCCGGTAAT | GGGTCTGACG
CCCAGACTGC | GAGATTATCA
CTCTAATAGT |
| BstXI | | AAGCCCCTGG
TTCGGGGGACC | | KpnI | ~~~~~~~
CGGTACCA
GCCATGGT | CTTTTCTACG
GAAAAGATGC | TTTTGGTCAT
AAAACCAGTA |
| Bsu36I | BstEI: | TCAGGTGACC | PmlI
~~~~~~ | | CACGTGGATC | ATCCTTTGAT
TAGGAAACTA | CGTTAAGGGA
GCAATTCCCT |
| MluI Bsu | pa:I
~~~~ | CGCGTTAACC
GCGCAATTGG | | NspVBsaBI | AGATTACCAT
TCTAATGGTA | TCTCAAGAAG
AGAGTTĊTTC | CGAAAACTCA
GCTTTTGAGT |
| | | 126 | | | 176 | 226 | 276 |

SUBSTITUTE SHEET (RULE 26) 189 / 204

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| AATCTAAAGT | TCAGTGAGGC | GCCTGACTCC | TGGCCCCCAGT | ATTTATCAGC | CCTGCAACTT | TAGAGTAAGT | CTACAGGCAT |
|------------|------------|------------|-------------|------------|------------|------------|------------|
| TTAGATTTCA | AGTCACTCCG | CGGACTGAGG | ACCGGGGTCA | TAAATAGTCG | | ATCTCATTCA | GATGTCCGTA |
| GTTTTAAATC | CAATGCTTAA | ATCCATAGTT | GCTTACCATC | CCGGCTCCAG | CAGAAGTGGT | GCCGGGAAGC | GTTGCCATTG |
| CAAAATTTAG | GTTACGAATT | TAGGTATCAA | CGAATGGTAG | GGCCGAGGTC | GTCTTCACCA | CGGCCCTTCG | CAACGGTAAC |
| TAAAAATGAA | TGACAGTTAC | TATTTCGTTC | ATACGGGAGG | CCCACGCTCA | GGGCCGAGCG | ATTAACTGTT | GCGCAACGTT |
| ATTTTTACTT | ACTGTCAATG | ATAAAGCAAG | TATGCCCTCC | GGGTGCGAGT | | TAATTGACAA | CGCGTTGCAA |
| CCTTTTAAAT | AAACTTGGTC | GCGATCTGTC | GATAACTACG | TACCGCGAGA | CCAGCCGGAA | CATCCAGTCT | TTAATAGTTT |
| GGAAAATTTA | TTTGAACCAG | CGCTAGACAG | CTATTGATGC | ATGGCGCTCT | GGTCGGCCTT | GTAGGTCAGA | AATTATCAAA |
| TCACCTAGAT | ATATATGAGT | ACCTATCTCA | CCGTCGTGTA | GCTGCAATGA | AATAAACCAG | TATCCGCCTC | AGTTCGCCAG |
| AGTGGATCTA | TATATACTCA | TGGATAGAGT | GGCAGCACAT | CGACGTTACT | TTATTTGGTC | ATAGGCGGAG | TCAAGCGGTC |
| 326 | 376 | 42.6 | 476 | 526 | 576 | 626 | 979 |

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of 8-lactamase-MCS module (continued)

| TCCGGTTCCC | AAAAGCGGTT | CCGCAGTGTT | GTCATGCCAT | GTCATTCTGA | CAATACGGGA | ATTGGAAAAC | GAGATCCAGT |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|--------------------------|-----------------------|
| | TTTTCGCCAA | GGCGTCACAA | CAGTACGGTA | CAGTAAGACT | GTTATGCCCT | TAACCTTTTG | CTCTAGGTCA |
| TTCATTCAGC
AAGTAAGTCG | TGTTGTGCAA
ACAACACGTT | AGTAAGTTGG
TCATTCAACC | TTCTCTTACT
AAGAGAATGA | ACTCAACCAA
TGAGTTGGTT | TGCCCGGCGT | AGTGCTCATC
TCACGAGTAG | TACCGCTGTT ATGGCGACAA |
| TTGGTATGGC | TGATCCCCCA | CGTTGTCAGA | CACTGCATAA | ACTGGTGAGT | GAGTTGCTCT | GAACTTTAAA | TCAAGGATCT |
| AACCATACCG | ACTAGGGGGGT | GCAACAGTCT | GTGACGTATT | TGACCACTCA | CTCAACGAGA | CTTGAAATTT | AGTTCCTAGA |
| CGCTCGTCGT | GCGAGTTACA | GTCCTCCGAT | GTTATGGCAG | CTTTTCTGTG | TGCGGCGACC | CCACATAGCA | GCGAAAACTC |
| GCGAGCAGCA | CGCTCAATGT | CAGGAGGCTA | CAATACCGTC | GAAAAGACAC | | GGTGTATCGT | CGCTTTTGAG |
| CGTGGTGTCA | AACGATCAAG | AGCTCCTTCG | ATCACTCATG | CCGTAAGATG | GAATAGTGTA | TAATACCGCG | GTTCTTCGGG |
| GCACCACAGT | TTGCTAGTTC | TCGAGGAAGC | TAGTGAGTAC | GGCATTCTAC | CTTATCACAT | ATTATGGCGC | |
| 726 | 776 | 826 | 876 | 926 | 976 | 1026 | 1076 |

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of θ -lactamase-MCS module (continued)

| | 1126 | TCGATGTAAC
AGCTACATTG | CCACTCGTGC
GGTGAGCACG
BSSSI | ACCCAACTGA
TGGGTTGACT | TCTTCAGCAT
AGAAGTCGTA
Eco57I | CTTTTACTTT
GAAAATGAAA |
|-------------|------|--------------------------|-----------------------------------|--------------------------|------------------------------------|--------------------------|
| | 1176 | CACCAGCGTT
GTGGTCGCAA | TCTGGGTGAG
AGACCCACTC | CAAAAACAGG
GTTTTTGTCC | AAGGCAAAAT
TTCCGTTTTA | GCCGCAAAAA
CGGCGTTTTT |
| SUBSTITU | 1226 | AGGGAATAAG
TCCCTTATTC | GGCGACACGG
CCGCTGTGCC | AAATGTTGAA
TTTACAACTT | TACTCATACT
ATGAGTATGA | CTTCCTTTTT
GAAGGAAAAA |
| TE QUEET /D | 1276 | CAATATTATT
GTTATAATAA | GAAGCATTTA
CTTCGTAAAT | TCAGGGTTAT
AGTCCCAATA | TGTCTCATGA
ACAGAGTACT | GCGGATACAT
CGCCTATGTA |
| III E 261 | | | | PstI | į | XhoI |
| | | | EagI | BSSSI | • | BssHII |
| | 1326 | ATTTGAATGT
TAAACTTACA | ACTCGGCCGC | ACGAGCTGCA | GGCGCCATTA AT | ATGGCTCGAG
TACCGAGCTC |
| • | | BssHII | | BspEI BsrGI | H ~ | |

SUBSTITUTE SHEET (RULE 26) 192 / 204

GTACTTTAA CATGAAATT CGCTTTGTCT TCCGGATGTA GCGAAACAGA AGGCCTACAT Figure 36: functional map and sequence of β -lactamase-MCS module (continued) BbsI GCGAAACAGA CGCGCTTCAG GCGCGAAGTC Eco57I 1376

SUBSTITUTE SHEET (RULE 26)

Figure 37: Oligo and primer design for Vx CDR3 libraries

Figure 37: Oligo and primer design for Vκ CDR3 libraries

20 30 40 -3' Α Q TGCGACTTATTATTGC T CAG Y T G G G C G T G T A T T A T T G C G CAT G G C G G T G T A T T A T T G C G CAΑ C D E F G Н 1 K M N P Q CAG R S T ٧ W Y 80% Q

SUBSTITUTE SHEET (RULE 26) 195 / 204

Figure 37: Oligo and primer design for Vκ CDR3 libraries

G 3'- G G A

T A C C T

G A C C T

G A C C T

| | | | | | • |
|-------|--|---|-------|--|-------|
| GCT | | | GCT | | GCT |
| | | | | | |
| GAT | GAT | GAT | GAT | | G A T |
| G A G | | | G A G | | G A G |
| TTT | | | TTT | ************************************** | TTT |
| GGT | GGT | GGT | GGT | •••••••••••••••••••••••••••••••••••••• | GGT |
| CAT | | | CAT | *************************************** | CAT |
| ATT | | | ATT | · · · · · · · · · · · · · · · · · · · | ATT |
| AAG | · | | AAG | | A A G |
| CTT | ************************************** | *************************************** | C T T | ************************************** | C T T |
| ATG | | | ATG | ## Part Part | ΑΤG |
| AAT | AAT | A A T | AAT | | AAT |
| | | | CCT | CCT | CCT |
| CAG | | · | C A G | | C A G |
| CGT | | | CGT | | CGT |
| TCT | TCT | TCT | TCT | TCT | TCT |
| A C T | | | ACT | | A C T |
| GTT | | | GTT | | GTT |
| TGG | | | TGG | | TGG |
| TAT | TAT | | TAT | | TAT |
| 50% Y | | | | 80% P | |

SUBSTITUTE SHEET (RULE 26) 196 / 204

Figure 37: Oligo and primer design for Vk CDR3 libraries

Figure 38: Oligo and primer design for VA CDR3 libraries

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 28) 199 / 204

Figure 38: Oligo and primer design for $V\!\lambda$ CDR3 libraries

| | 09 | | | 7 | ? | | | | | 80 |
|---|-------|----------|-----|------------------|-----|-----|-----|-----|-------|-----|
| | | | G | G | ٠. | G | | T | K | L |
| *************************************** | ····· | | G G | CGG | C G | G C | : A | C G | A A G | ATT |
| gap | gap | О О Т | | | | | | | | |
| - G C T G C T | GCI | GCI | | | | | , | | | |
| GATGAT | GAT | GΔT | | | | | | | | |
| GAGGAG | | | | | | | | | | |
| TTTTT | | | | • | | | | | | |
| GGTGGT | GGT | GGT | | | | | | | | |
| CATCAT | CAT | CAT | | | | | | | | |
| ATTATT | | | | | | | | | | |
| AAGAAG | - 1 | | | | | | | | | |
| CTTCTT | : | ; | | | | | | | | |
| ATGATG | | i | | | | | | | | |
| CCTCCT | | | | | | | | | | |
| CAGCAG | • | 1 | | | | | | | | |
| CGTCGT | | | | | | | | | • | |
| тсттст | TCT | TCT | | | | | | | | |
| ACTACT | ACT | ACT | | | | | | | | |
| GTTGTT | | - ' ' | | | | | | | | |
| T A T T A T | • | TGG | \ | | | | | | | |
| TATTAT | IAI | | | riability | • | | | | | |
| 18
18 18 | | 19
19 | | 32E+05
38E+06 | | | | | | |
| 18 18 | 18 | 19 | |)8E+08 | | | | | | |
| | | | | | | | | | | |

SUBSTITUTE SHEET (RULE 26)

Figure 38: Oligo and primer design for VA CDR3 libraries

Figure 39: functional map of expression vector series pBS13

SUBSTITUTE SHEET (RULE 25) 202 / 204

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| % soluble | к | Z | Ω | к4 | λ1 | λ2 | у3 |
|-----------|-----|-----|-------|-----|-------------|-----|-----|
| H1A | 61% | 58% | 52% | 42% | % 06 | 61% | %09 |
| H18 | 39% | 48% | %99 | 48% | 47% | 39% | 36% |
| H2 | 47% | 57% | 46% | 49% | 37% | 36% | 45% |
| H3 | 85% | 67% | 76% | 61% | 80% | 71% | 83% |
| H4 | %69 | 52% | 51% | 44% | 45% | 33% | 42% |
| H5 | 49% | 49% | . 46% | %29 | 54% | 46% | 47% |
| H6 | %06 | 58% | 54% | 47% | 45% | 20% | 51% |

| Total amount | | , | , | | , , | | (|
|------------------|----------|------|------|------|------|------|----------|
| compared to H3K2 | <u>-</u> | 2 | Ş | ¥4 | ₹ | 7 | <u>ئ</u> |
| H1A | 289% | 94% | 166% | 272% | 20% | 150% | 78% |
| H1B | 219% | 122% | 89% | 139% | 117% | 158% | 101% |
| H2 | 186% | 223% | 208% | 182% | 126% | %09 | 97% |
| H3 | 20% | - | 71% | 54% | 29% | 130% | 47% |
| H4 | 37% | 22% | %09 | 77% | 195% | 107% | 251% |
| H5 | %86 | 201% | 167% | 83% | 93% | 128% | 115% |
| He | 65% | 117% | 89% | 109% | 299% | 215% | 278% |

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| Soluble amount | , | Ç | , | | , | (| (|
|------------------|--------------|------|------|--------|------|------|------|
| compared to H3K2 | - | Ž | | Х
4 | -₹ | 77 | ۲ |
| H1A | 191% | 88% | : ` | 122% | 26% | 211% | 76% |
| H18 | 124% | 95% | | 107% | 79% | 142% | 29% |
| H2 | 126% | 204% | 139% | 130% | %99 | 50% | 20% |
| H3 | 63% | ı | | 49% | %69 | 143% | 61% |
| H4 | 40% | 47% | | 54% | 95% | 55% | 125% |
| H5 | %69 | 158% | • | 80% | 72% | 84% | 84% |
| H6 | 85% | 122% | | 77% | 162% | 162% | 212% |
| | McPC | | | | | | |
| soluble | 38% | | | | | | |
| %H3k2 total | 117% | | | | - | | |
| %H3k2 soluble | %69 | | | | | | |

INTERNATIONAL SEARCH REPORT

Inv onal Application No PCT/FP 96/03647

| A. CLAS | SIFICATION OF SUBJECT MATTER | | 101/21 3 | 0,03047 |
|--|--|------------------------------|---------------------|-----------------------|
| ÎPC 6 | C12N15/13 C12N15/10 C12N15
C07K1/04 G01N33/53 | 5/62 C12N15/ | 70 C12 | N1/21 |
| According | to International Patent Classification (IPC) or to both national cl | arrification and IDC | | |
| B. FIELD | OS SEARCHED | | | |
| IPC 6 | | | - | |
| | ation searched other than minimum documentation to the extent the extent the search of the extent the search of the extent the search of the extent the search of the extent the search of the extent the search of the extent the search of the extent the search of the extent the search of the extent the search of the extent the ext | | | |
| | MENTS CONSIDERED TO BE RELEVANT | | | |
| Category * | Citation of document, with indication, where appropriate, of the | | | · |
| | of the appropriate, of the | relevant passages | | Relevant to claim No. |
| A | EP 0 368 684 A (MEDICAL RES COU
May 1990
cited in the application
see the whole document | NCIL) 16 | | 1-55 |
| A | EUROPEAN J. IMMUNOLOGY, vol. 23, July 1993, VCH VERLAGSGESELLSCHAFT MBH, WEINHE pages 1456-1461, XP000616572 S.C. WILLIAMS AND G. WINTER: "(sequencing of human immunoglobuly V-lambda gene segments" cited in the application see the whole document | Cloning and | | 1-55 |
| X Furt | her documents are listed in the continuation of box C. | X Patent family mer | nbers are listed in | annex. |
| * Special car | regories of cited documents: | | | |
| *A* document defining the general state of the art which is not considered to be of particular relevance E* earlier document but published on or after the international filing date L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O* document referring to an oral disclosure, use, exhibition or other means P* document published prior to the international filing date but later than the priority date claimed T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone of considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. A* document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention can | | | | |
| Date of the | actual completion of the international search | Date of mailing of the | | |
| 36 | January 1997 | .1 1. | 02. 97 | |
| Name and m | nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016 | Authorized officer Hornig, H | | |

Form PCT/ISA/218 (second sheet) (July 1992)

ir (bonal Application No PCT/EP 96/03647

| | | PCT/EP 96/03647 |
|---------------------------------------|---|-----------------------|
| · · · · · · · · · · · · · · · · · · · | ation) DOCUMENTS CONSIDERED TO BE RELEVANT | |
| Category * | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
| A | PROC. NATL.ACAD SCI., vol. 89, May 1992, NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 4457-4461, XP002024223 | 1-55 |
| | C. F. BARBAS III ET AL.: "Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem" cited in the application see the whole document | |
| A | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 21, 1 November 1992, pages 10026-10030, XP000322464 COLLET T A ET AL: "A BINARY PLASMID SYSTEM FOR SHUFFLING COMBINATORIAL ANTIBODY LIBRARIES" see the whole document | 1-55 |
| A | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 8, 15 April 1992, pages 3576-3580, XP000384398 GRAM H ET AL: "IN VITRO SELECTION AND AFFINITY MATURATION OF ANTIBODIES FROM A NAIVE COMBINATORIAL IMMUNOGLOBULIN LIBRARY" see the whole document | 1-55 |
| A | PROTEIN ENGINEERING, vol. 8, no. 1, 1 January 1995, pages 81-89, XP000500393 KNAPPIK A ET AL: "ENGINEERED TURNS OF RECOMBINANT ANTIBODY IMPROVE ITS IN VIVO FOLDING" cited in the application see the whole document | 1-55 |
| A | ANNUAL REVIEW OF IMMUNOLOGY, vol. 12, 1 January 1994, pages 433-455, XP000564245 WINTER G ET AL: "MAKING ANTIBODIES BY PHAGE DISPLAY TECHNOLOGY" cited in the application see the whole document | 1-55 |
| A | JOURNAL OF MOLECULAR BIOLOGY, vol. 224, no. 2, 1 January 1992, pages 487-499, XP000564649 FOOTE J ET AL: "ANTIBODY FRAMEWORK RESIDUES AFFECTING THE CONFORMATION OF THE HYPERCARIABLE LOOPS" cited in the application see the whole document | 1-55 |
| | , | I |

1

INTERNATIONAL SEARCH REPORT

Int 20nal Application No PCT/EP 96/03647

| (Continu | n) DOCUMENTS CONSIDERED TO BE RELEVANT | | | |
|-----------|--|-----------------------|--|--|
| ategory * | | Relevant to claim No. | | |
| | NUCLEIC ACIDS RESEARCH, vol. 21, no. 9, 11 May 1993, page 2265/2266 XP000575849 WATERHOUSE P ET AL: "COMBINATORIAL INFECTION AND IN VIVO RECOMBINATION: A STRATEGY FOR MAKING LARGE PHAGE ANTIBODY REPERTOIRES" see the whole document | 1-55 | | |
| 1 | WO 95 11998 A (UNITED BIOMEDICAL INC) 4 May 1995 see the whole document | 1-55 | | |
| | ANNALES DE BIOLOGIE CLINIQUE, vol. 49, no. 4, April 1991, PARIS, FR, pages 231-242, XP000407361 R.H. MELOEN ET AL.: "The use of peptides to reconstruct conformational determinants" see page 231, right-hand column, paragraph 2 - page 233, right-hand column, line 4 | 1-55 | | |
| | CHEMICAL ABSTRACTS, vol. 122, no. 3, 16 January 1995 Columbus, Ohio, US; abstract no. 24865z, COX, JONATHAN P. L. ET AL: "A directory of human germ-line V.kappa. segments reveals a strong bias in their usage" page 227; column 1; XP002024224 cited in the application see abstract & EUR. J. IMMUNOL. (1994), 24(4), 827-36 CODEN: EJIMAF;ISSN: 0014-2980, 1994, | 1-55 | | |
| | | | | |

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

information on patent family members

Int onal Application No PCT/EP 96/03647

| Patent document ited in search report | Publication
date | | t family
ber(s) | Publication date |
|---------------------------------------|---------------------|---|---|--|
| EP-A-0368684 | 16-05-90 | AU-B-
AU-A-
CA-A- | 634186
4520189
2002868 | 18-02-93
28-05-90
11-05-90 |
| | | DE-D-
DE-T-
ES-T-
WO-A-
JP-T- | 68913658
68913658
2052027
9005144
3502801 | 14-04-94
08-09-94
01-07-94
17-05-90
27-06-91 |
| √0-A-9511998 | 04-05-95 | AU-A-
EP-A- | 8091694
0725838 | 22-05-95
14-08-96 |