Name: Panneerselvam N

Role : Research Intern – Inspect

Date: 23/05/2021

Weekly Report -1

Unmanned Aerial Vehicle(UAV)

Unmanned aerial vehicle(UAV) is an aircraft with carries no human pilot or passengers. Commonly UAV are known as Drones.

Basic Components used UAV:

- **▶** Body
- ➤ Power supply (Lithium polymer and Lithium-ion)
- > Sensors (Accelerator, speed and distance sensor, GPS, LiDAR)
- Controller (Flight controller , System on chip , Autopilot)
- Communication medium— (Radio signal, Data link)
- > Software

Firmware : ArduCopter-v1 , PX4 Middleware : PX4 , ArduPilot

Operating system: ROS, Nuttx, Linux distributions

Types of UAV:

- Multi-rotor type
- Fixed wing
- Single rotor type
- Fixed wing Hybrid

Applications of UAV:

- Aerial Inspection
- Aerial Photography
- Mapping & surveying
- ➤ Agriculture
- Product delivery
- Corp spraying and monitoring
- Traffic Monitoring
- Defence
- Drone racing

Advantages of UAV:

- 1.Drones can Survey dangerous places
- 2.Drones can enforce security and surveillance
- 3.Used in various industries
- 4.Get high quality and clear Photography
- 5. Good at Shooting a Wide Range
- 6.3D Models Can be Done Easily

Limitations of UAV:

- 1.Low operation speed (UAV has less operation speed with compared to Manned Aerial Vehicle)
- 2. Battery Life : (Battery Life limits the operating time of UAV)
- 3. Weather Changes: (Sometimes temperature, snow and wind affects the Drones)
- 4. Vulnerable to hackers: (There is possibility of hackers misuse Drones)
- 5. Operating skill: (Little bit operating skill is required to control drones)
- 6.Software Issues: (If software is crashed during drone flying, there will possibility to damage any people or others)

Current Advancement in Drones:

- ➤ AI enabled drone
- ➤ Drone and Virtual Reality
- > Battery optimization

Aerial Inspection:

Drone is used to inspect and identify defeats or faults of an industry by capturing and analyzing drone data is called Aerial Inspection.

List of industries used Aerial Inspection:

- > Agriculture
- Chemistry Industries
- Construction
- Renewable energy(Solar, wind)
- Oil and Gas

Advantages of Aerial Inspection:

- 1.Accuracy: (Good inspection accuracy)
- 2.Speed: (Inspection speed is very high compared to manual process)
- 3. Safety: (Drone gives safe inspection)
- 4. Access any object : (Inspect even very small and big objects)
- 5.Cost effective : (Drone gives cost effective way of Inspection)

Disadvantages of Aerial Inspection:

- 1.Skills requires : (Some drone operating and domain knowledge is required)
- 2.Privacy: (Possible to hackers to hack drone and misuse that data)
- 3. Manual correction: (only inspection is done by drone, but correction is done by manually)

Software used in Aerial inspection:

- Scopito
- > Agisoft PhotoScan:
- ➤ Pix4D:
- Bentley ContextCapture:
- Droedeploy

Tower Inspection with Drones

A Tower is an tall structure ,taller than it's wide and majorly used to carry something in large height.

Types of Towers:

- ➤ Lattice Tower:
- ➤ Monopole Tower:
- ➤ Guyed Tower:
- > Stealth Tower:

Components Used in Towers

In Telecommunication Towers:

- 1. Whip Antenna (Used to Receiving and Transmitting Radio signals)
- 2. Antenna Array (Set of antennas used provide signal in particular directions)
- 3.Microwave Dish (Special type antenna used to point to point connection)
- 4.Port holes (Holes cut into the base and top of tower to allow cables and wiring to pass through the tower structure, from the base station to the antennas.)
- 5. Remote Radio Unit(RRU) (Radio Wireless Transceiver)

In Power Transmission Towers:

- 1.Conductors (Conductors are used to power transmission)
- 2.Insulators (To give insulation between two conductors)
- 3.Fuses (Protects from current surges)
- 4.Cross arm (Support for conductor)
- 5. Body Extension (Used to increase the height of towers)
- 6. Leg Extension (Gives Initila support for towers)

<u>Aerial Inspection in Tower – Use Cases :</u>

- ➤ Identifying Hazards (Structural damage, Beehives, Bird nest, etc)
- ➤ Pre-work inspection (Use data collected via drone to determine what types of tools will be required for tower inspector to do his or her job.)
- Structural Analysis (To find degradations in tower)

Electric Towers

Electric towers are the tall structure used transmit power using overhead lines .This is also called electric Pylons.

Classifications of Towers:

- Suspension Towers
- ➤ Tension Towers
- > Transposition towers
- Special Towers

Things to be inspected in Electric Towers:

- **The ground,** such as ground movement or erosion
- **Power lines**, such as hot-spots or indicators of corona discharge
- Transmission towers, such as corrosion, broken components, and foreign objects on the tower

- Surrounding vegetation, such as tree growth rate and areas of vegetation encroachment
- ➤ **Others**, such as unauthorized debris and construction activity

List of Components to be inspected:

- > Transmission tower
- ➤ Lightning-arrester
- ➤ Suspension type white porcelain insulator
- Suspension type porcelain insulator
- Polymer insulator
- Spacer
- Porcelain insulator
- ➤ Polymer insulator
- > Spacer
- ➤ Sag adjuster with bolted tension clamp
- ➤ Vibration damper;
- Balisor.

AI techniques used in Electric tower inspection:

- > Yolov3
- ➤ K-means Clustering
- Template Matching
- > Foreground Extraction
- Support vector Macines
- ➤ Gaussian Filter

Yolov3 Performance:

Components Type				YOLO V3		YOLO V3 (Multi-Scaling Removed)	
	#Train Samples	#Test Samples	Total #Samples	Precision (%)	Recall (%)	Precision (%)	Recall (%)
Transmission- tower	4002	1458	5460	80.86	84.03	81.81	85.46
Spacer	2692	464	3156	78.87	86.93	81.9	92.96
Balisor	316	82	398	100.00	100.00	100.00	100.00
Lightning- arrester	2982	454	3436	83.91	89.42	84.93	90.75
PorSTI-W+ PorSTI-R	7404	990	8394	91.87	97.07	93.42	97.47
Insulator (polymer)	800	48	848	92.23	95.36	93.35	96.21
Damper- weight	4088	352	4440	77.19	75.00	79.83	81.45
Sag adjuster	1830	334	2164	71.85	86.64	75.45	87.2
Avg.	24,114	4182	28,296	84.60	89.31	86.34	91.44

Wind Turbine Inspection

A wind turbine is a device that converts the wind's kinetic energy into electrical energy. This wind turbines are most important renewable energy source.

Types:

Wind turbine are majorly classified into two types.

- Horizontal axis wind turbine (HAWT)
- axis wind turbine(VAWT)

Components in Wind turbine :(Outer Only)

- > Tower
- Nacelle
- Rotor Blades
- Lighting Receptors
- **➤** Bolts

Faults occur in wind turbine (Surface only):

- ➤ Leading Edge erosion
- Surface cracks
- Damaged lightning receptors
- Damaged vortex generators,
- ➤ Oil leakages in gearbox

Fault Detection Using Deep learning:

Various Object Detection Algorithms : Object Detection methods :

- ➤ Fast R-CNN.
- ➤ Faster R-CNN.
- ➤ Histogram of Oriented Gradients (HOG)
- ➤ Region-based Convolutional Neural Networks (R-CNN)
- ➤ Region-based Fully Convolutional Network (R-FCN)
- ➤ Single Sho Detector(SSD)
- ➤ Spatial Pyramid Pooling (SPP-net)
- ➤ YOLO (You Only Look Once

Datasets availabe for wind Turbine:

- EasyInspect Dataset
- ➤ DTU Drone Inspection Dataset

➤ Wind Turbine Blade SfM Image

Classification Algorithms:

- ➤ Logistic Regression
- ➤ Naïve Bayes
- > Stochastic Gradient Descent
- K-Nearest Neighbours
- Decision Tree
- Random Forest
- Support vector Machines

Handling Data Insufficiency:

Image Transformation : New samples are created by rotating, cropping, resizing, shifting and noising from original image.

Image synthesis : The synthetic image is generated from real-world images by synthesizing the instance image and background image. The background image is separated by U-Net . Mask-RCNN and FCN.

GAN(Generative Adversarial Network):

The generative model of GAN can generate an new image by inputting an original image.

The image can be transformed to another style such as day-to-night, summer-to-winter, sunny-to-foggy etc.