ΤΕΣΤ ΣΤΑ ΟΡΙΑ 1.4-1.5

1. Είναι $\lim_{x \to x_0} f(x) = \lim_{x \to +x_0} f(x)$ όταν:

Α. Η f δεν ορίζεται σε διάστημα της μορφής (x_0, β)

Β. Η f ορίζεται μόνο σε διάστημα της μορφής (α, x_0)

Γ. Η f ορίζεται σε διάστημα της μορφής (x_0, β) , αλλά όχι σε διάστημα της μορφής (α, x_0)

Δ. Η f ορίζεται σε διαστήματα της μορφής $(\alpha$, $x_0)$ και $(x_0$, $\beta)$

Ε. Τίποτα από τα παραπάνω

2. Μία συνάρτηση f μπορεί να έχει στο x_0 περισσότερα από ένα όρια $\Sigma - \Lambda$

3. Υπάρχει συνάρτηση f με πεδίο ορισμού το A = [-3 ,2] έτσι ώστε $\lim_{x \to 3} f(x) = 1$ $\Sigma - \Lambda$

4. Αν $\lim_{x \to x_0} f(x) = \lambda$ τότε:

5. Αν $\lim_{x \to x_0} f(x) > 0$ τότε:

Α. f(x) > 0 για κάθε x στο πεδίο ορισμού Β. f(x) < 0 για κάθε x στο πεδίο ορισμού Γ. f(x) > 0 κοντά στο x_0

Δ. f(x) ≤ 0 κοντά στο x_0 Ε. Τίποτα από τα παραπάνω

6. Αν $f(x) \le g(x)$ κοντά στο x_0 , τότε $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$ $\Sigma - \Lambda$

7. Αν $|f(x)| \le x^2$ κοντά στο 0, τότε $\lim_{x \to 0} f(x) = 0$ $\Sigma - \Lambda$

8. Eina $\lim_{x \to 0} (x \cdot \eta \mu \frac{1}{x}) = 0$ kai $\lim_{x \to 0} (x^3 \cdot \text{son} \frac{1}{x}) = 0$ $\Sigma - \Lambda$