Graphs & Algo cheat-sheet

Check bipartite: Look for odd cycles. G is bipartite iff G has no odd cycles. (2-colou r, P) **Independent Set:** $I \subseteq V$ is independent iff $\neg \exists$ edge between vertices in I. NP Max degree d, then \max independent set $|I| \ge \frac{n}{d+1}$.

Vertex Cover: Set $S \subseteq V$ such that every edge $(v, w) \in E : v \in S \lor w \in S$. NP S is a vertex cover iff $V \setminus S$ is independent.

Matching: Set $M \subseteq E$ such that no vertex V has more than one edge in E. P (Also called *independent edge set*.)

Perfect Matching: Every vertex is exactly incident to one edge in M. X-saturating matching: Match all vertices of X in a bipartite graph (X,Y).

- max Matching ≤ min Vertex Cover. (Equality holds for bipartite graphs.)
- Maximal matching of M? Then **min** vertex cover |C| is: $|M| \leq |C| \leq |2M|$
- Hall's Theorem : G has an X-saturating matching iff $\forall S \subseteq X$: $|N(S)| \geq |S|$
- Tutte-Berge theorem: $\max M = \min_U \frac{1}{2}(n + U o(G \setminus U))$
- Tutte's matching theorem: G has a perfect matching iff $\forall U \subseteq V : o(G \setminus U) \leq |U|$

Dominating set: Set $S \subseteq V$ such that each vertex is either in S or has a neighbour in S.

Probability theory

$$\binom{n}{k} \leq rac{n^k}{k!}$$
 and $\binom{n}{k} \leq (rac{en}{k})^k$ and $\binom{n}{k} \leq 2^n$ and finally for $p \in [0,1]: (1-p)^n \leq e^{-pn}$.

Markov's inequality: $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$ (X non-negative and a > 0.)

Probabilistic idea is to randomly assign (or assign with probability p) stuff:

- 1. $\exists i: n_i \geq \mathbb{E}[X]$ and $\exists_j: n_j \leq \mathbb{E}[X]$. Useful for expected sizes of certain sets.
- 2. Consider event A(X). If $\Pr[A(X)] > 0$, then there must exist a value of X where A occurs. Similar vice-versa.

Lovasz Local Lemma (LLL): Consider n bad events A_1, \ldots, A_n . Furthermore, it holds that $\forall_{1 \leq i \leq n} : \Pr[A_i] \leq p$ and each A_i depends on at most d other events A_j .

• Then $ep(d+1) \leq 1 \implies \Pr[\bigcap_i \bar{A}_i] > 0$.

Exponential time algorithms

3-colouring: Whether you can colou r the vertices of a graph with 3 colou rs. Checking if $\forall X \subseteq V$ whether X is independent \to if $G(V \setminus X)$ is 2-colourable? $O^*(2^n)$

Vertex cover: Considering the k decision variant, i.e. vertex cover of at most size k. Brute force: $O^*(2^n)$ by checking all 2^n subsets or all $\sum_{i=0}^k \binom{n}{k}$ subsets. For a random edge, add either u or v and continue recursively on k-1 edges: $O^*(2^k)$. For $u \in V$ where $deg(u) \geq 2$, either add u or add all neighbours: $O^*(1.62^k)$.

Cluster editing: Graph is cluster graph if all connected components are cliques. Look for X such that $(V, E \triangle X)$ is a cluster graph. Look for induced $P_3 : uv, vw \in E \land uw \notin E$. Recurse by either add uw, remove uv or remove vw on k-1: $O^*(3^k)$.

Feedback Vertex Set: Set $X \subseteq V$ such that $G[V \setminus X]$ is a forest, i.e. any cycle has \geq one vertex in X. Solvable with *iterative compression*: given solution of k+1, compress to k.

Dynamic Programming + Inclusion / Exclusion

Knapsack: Given w_1,\ldots,w_n and v_1,\ldots,v_n , pick $X\subseteq\{1,\ldots,n\}$ to maximize $\sum_{e\in X}v_e$ while $\sum_{e\in X}w_e\leq W$. A[i,j] is $\max\left\{\sum_{e\in X}v_e \text{ with } X\subseteq\{1,\ldots,i\} \text{ and } \sum_{e\in X}w_e\leq j\right\}$.

k-colouring: $A_k[X]$ is true of it has a k-colouring. Recursion: try all subsets $Y \subseteq X$ and look for $A_{k-1}[X \setminus Y] \wedge A_1[Y]$, where the latter checks if it is an independent set. $O^*(3^n)$.

TSP: Find cycle C such that V[C] = V and $\omega(V[C])$ is minimized.

Walk: Sequence vertices such that their edges are consecutively connected on **G**

Path: Walk while only visiting each vertex once.

Cyclic walk: Walk such that we start and end in the first vertex.

Cycle: Path such that we start and end in the first vertex.

Pick arbitrary s, define $A_t[X] = \min\{\omega(E[P]) : P \text{ is a path from } s \text{ to } t \text{ using vertices } V[X]\}$. Recursion works by looking for the minimum path of: $\{\text{in-neighbours } t' + \omega(t',t)\}$ where t' also has to be in X. $O^*(2^n)$, as we need to consider all subsets $X \subseteq V$.

Inclusion/Exclusion: calculate union via sum of intersection and vice versa:

$$\left|igcap_{i=1}^n P_i
ight| = \sum_{F\subseteq \{1,\ldots,n\}} (-1)^{|F|} \left|igcap_{i\in F} ar{P}_i
ight|$$

One can think of $\,P_i$ as $\,good\,properties$. Note: $\,ar{P}_i=U\setminus P_i$ and $|\bigcap_i P_i|=|U\setminus \bigcup_i ar{P}_i|$.

Hamiltonian cycle: Consider P_i as a cyclic walk of length n visiting vertex i. Then $|\bigcup_{i\in F} \bar{P}_i|$ are all cyclic walks not visiting $F\equiv$ all cyclic walks of length n of $V\setminus F$. DP solution: $w_F(s,t',k)$ is #walks $s\to t$ of length k, and recurse / sum over all $N^-(t)\setminus F$

Treewidth

Tree decomposition: Pair X, T where $X = \{X_1, \ldots, X_l\}$ are bags, with $X_i \subseteq V$. T is the tree on X_i . 1. $\bigcup_{i=1}^l X_i = V$. 2. Edge in G? Then u and v should be in at least one X_i together. 3. All X_i containing v are connected.

Width: $\max_{i=1}^n |X_i| - 1$. Treewidth: Minimum width of all tree decompositions.

Cops and robbers: w + 1 cops can win iff graph has treewidth $\leq w$.

We can create **Nice tree decompositions** in polynomial time:

Introduce: Bag with one child and $X_i = X_j \cup v$. Leaf: $|X_i| = 1$.

Forget: Bag with one child and $X_i = X_j \setminus v$. **Join:** Bag with two children, $X_i = X_j = X_{j'}$.

Given planar graph and rooted spanning tree S of G of at most height h (\max # edges root \rightarrow leaf), then a tree decomposition of G of width $\leq 3h$ can be found in poly time. Removing vertices and edges from a graph does not increase treewidth.

Planar graph: Can be drawn without overlapping edges. ($O(n^2)$ or even O(n))

Euler's formula: If G is planar and connected, then n - m + f = 2 (m edges, f faces).

Contracting an edge: merge u and v into w with neighbours of u and v.

Graph **H** is a minor of **G** if it can be obtained by contracting only.

Grid Minor Theorem: $\forall l \in \mathbb{N}$: all planar graphs have either $(l \times l)$ -grid as a minor or

Treewidth at most 91. This can be found in polynomial time

Kuratowski's theorem: G is planar iff it has no K_5 or $K_{3,3}$ as minor.

Randomized Algorithms (expected running times here)

Incremental construction: First randomly permute the input objects. Then add objects one by one in a list, maintaining a partial solution $1 \dots i$. Then add i + 1 to the list.

Backward analysis: Calculate $\mathbb{E}[\mathcal{I}_i]$ in backward direction. Cu rrently at Sol(i), want to go back to Sol(i-1). Sorting example: s_1, \ldots, s_i are already sorted. Remove s_k , affects points $L_{k-1} = (s_{k-1}, s_{k+1})$. Prob of picking interval is $\frac{1}{i}$. $\mathbb{E}[\mathcal{I}_i] = \frac{|L_i|}{i} + \cdots + \frac{|L_i|}{i} \leq \frac{2n}{i}$.

Convex hull: For each point within C_i , make a bidirectional pointer to edge e of C_i , by intersection with origin. New point p_{i+1} outside? Delete intersected edge + points and walk along C to remove vertices until convex hull good again O(n). Then update all pointers that pointed to the removed edges to the 2 new edges.

Backwards analysis: Ha ve $|C_i| \leq i$. Remove random point p_k . Inside? Done. On C_i ? Remove two edges. Let |e| be #points pointing to e. Then $\mathbb{E}[\mathcal{I}_i] = \sum_{e \in C_i} \frac{2|e|}{i} \leq O(\frac{n}{i})$.

Karger's min cut algorithm: Want to find S such that edges between S and \bar{S} is minimized. **Contraction:** Same as in Treewidth, but we can have multiple edges now. Choose random edge e and contract until 2 vertices are left. Suppose k min-cut. Then $\forall_{v \in V} d(v) \geq k$ and thus $m \geq \frac{nk}{2}$. $O(n^4)$. Speed up version after recursion: $O(n^2 \log n)$.

Probabilistic exponential time algorithms

Algorithms that output **true** with a certain probability ($1 - \frac{1}{e}$), but never a false positive.

Stirling's approximation: $n! \approx \binom{n}{e}$ for $O^*(n)$ algorithms.

 ${f k} ext{-path:}$ Given directed graph, determine whether ${m k} ext{-path}$ exists. N

Note: for DAGs, solvable in $O^*(1)$ time via simple DP.

General k-path 1: randomly assign numbers $\{1,\ldots,k\}$ to vertices. Transform into DAG by only keeping consecutive edges. Look for k-path. Probability $\frac{1}{k^k}$, so need to repeat

this k^k time.

General k-path 2: randomly assign colours $\{1, \ldots, k\}$ to vertices. Look for *colourful* k-path via DP: Check whether all different-coloured in-neighbours have a solution for k-1 colours, namely $X \setminus c(v)$. $O^*(2^k)$. Doing this check e^k times for c.e.p., so $O^*((2e)^k)$.

FVS 2: Lemma: $|X| \geq \frac{|E|}{2}$. Algorithm: first remove edge cases (v,v), $deg(v) \leq 2$. Then pick an edge + its endpoint at random, probability of $\frac{1}{4}$ of being in X. Recurse on k-1. Need to repeat this at most 4^k time as probability is $\frac{1}{4^k}$ of getting correct FVS. $O^*(4^k)$ W

Isolation: given family $F \subseteq 2^U$ and weight function ω , ω isolates F if there is a unique $S \in F$ such that $\omega(S) = \min_{S' \in F} \omega(S')$. I.e. there is a unique set that has the minimum value of all sets in F.

Isolation Lemma: For every $e \in U$, choose $\omega(e) \in \{1, \dots, N\}$ at random. So randomly assignment numbers a set results in a unique minimizing set $\Pr[\omega \text{ isolates } F] \geq 1 - \frac{|U|}{N}$

Matrix multiplications

We can multiply two matrices in $O(n^{\omega})$ time, where $\omega \leq 2.37$. ($\omega \approx 2.81$ in lecture notes) For graph G with adjacency matrix A. Define $B = A^2$, then $b_{ik} = \sum_{j=1}^n a_{ij} a_{jk}$ is the # of walks on two edges from v_i to v_k . A^3 contains # of 3-walks.

Triangle count: Compute $trace(A^3)/6$, where the /6 comes from the fact that one can start at three vertices in two directions and $trace(A) = \sum_{i=1}^m a_{ii}$, sum of diagonal. **Square:** We can compute the square of a graph G in $O(n^\omega)$ time. The square of G is G' where we put an edge between each vertex of distance ≤ 2 .

Spectral Graph Theory

Laplacian Matrix: Diagonal entires are the degree of vertex i, while if there exists an edge between v_i and v_j , then $(L_G)_{ij} = -1$. Eigenvalues are $\lambda_1, \leq \lambda_2 \leq \cdots \leq \lambda_n$, whose corresponding eigenvector v_i are orthogonal to each other and ha ve length $||v_i||^2 = 1$.

Laplacian quadratic form: For any vector $x \in \mathbb{R}^n : x^T L_G x = \sum_{(i,j) \in E} (x_i - x_j)^2$. Can think of this as placing a value of x_i on vertex i, then $(x_i - x_j)^2$ defines the length of the edge. Also, we can decompose every graph as $L_G = \sum_{(i,j) \in E} L_{i,j}$. Every eigenvalue is non-negative and it holds that: $\lambda_i = v_i^T L_G v_i$

 $\lambda_1=0$ and v_1 is a scaling of the all-ones vector. For the rest: $\lambda_i=\min_{x:x\perp v_1,\ldots,v_{i-1}}rac{x^TLx}{x^Tx}$

Suppose the graph has k disconnected components, then $\lambda_1 = \cdots = \lambda_k = 0$.

Let G be a connected, d-regular graph. $\lambda_n=2d$ iff G is bipartite.

Expansion: $\phi_G(S) = \frac{E[S,V \setminus S]}{d|S|}$. For d-regular graph $G: \frac{\lambda_2}{2d} \leq \phi(G) \leq \sqrt{\frac{2\lambda_2}{d}}$