

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”

Mazdoor Kisan Shakti Sangathan

“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”

Jawaharlal Nehru

“Step Out From the Old to the New”

IS 4945-2 (1968): Cotton Twines for Fish Nets, Part II:
Twines for Trawl Nets [TXD 18: Textile Materials for
Marine-Fishing Purposes]

“ज्ञान से एक नये भारत का निर्माण”

Satyanaaranay Gangaram Pitroda

Invent a New India Using Knowledge

“ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”

Bhartṛhari—Nītiśatakam

“Knowledge is such a treasure which cannot be stolen”

BLANK PAGE

PROTECTED BY COPYRIGHT

IS : 4945 (Part II) - 1968

(Reaffirmed 2003)

Indian Standard

SPECIFICATION FOR COTTON TWINES FOR FISH NETS

PART II, TWINES FOR TRAWL NETS

First Reprint JUNE 1978
(Incorporating Amendment No. 1)

UDC 677.664.22:677.71

© Copyright 1978

INDIAN STANDARDS INSTITUTION
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

March 1969

IS:4945 (Part II)-1968

Indian Standard
SPECIFICATION FOR
COTTON TWINES FOR FISH NETS
PART II TWINES FOR TRAWL NETS

Textile Materials for Fishing Purposes Sectional Committee, TDC 42

Chairman

DR A. N. BOSE

Representing

Central Institute of Fisheries Technology, Ernakulam

Members

SHRI G. K. KURIYAN (*Alternate to*
Dr A. N. Bose)

SHRI ABDULLA SULAIMAN
SHRI S. N. DAS MAHAPATRA

Blue Bay Fisheries Private Ltd, Cochin (Kerala)
Orissa Fisheries Development Corporation Ltd
Cuttack

SHRI P. V. KALE
SHRI B. S. KAMATH
SHRI M. L. KAPUR

Directorate of Fisheries, Government of Maharashtra
F Fibre Corporation, Bangalore
J & P Coats (India) Private Ltd, Korattu

SHRI V. J. SAMANT (*Alternate*)
SHRI S. B. S. MANI
SHRI F. J. MATRIAS
SHRI G. V. MEDHII
SHRI S. MISKEETH
SHRI J. G. PARikh

Directorate of Fisheries, Government of Gujarat
The Kohinoor Mills Co Ltd No 1 & 2, Bombay
Garware Nylons, Bombay
Deep Sea Fishing Station, Bombay
The Silk & Art Silk Mills' Research Association,
Bombay

SHRI C. SIVARAMAN (*Alternate*)

REPRESENTATIVE
REPRESENTATIVE
REPRESENTATIVE
SHRI V. K. SANKEYAN

Garware Filament Corporation Private Ltd, Bombay
G. J. Rasivala Rope Works, Bombay
Tungbadhra Board, Hospet (Bangalore)
Nylon Net Plant, The Gujarat Fisheries Central
Co-operative Association Ltd, Ahmedabad

SHRI A. SHANMUGAM
SHRI V. S. SINGH
SHRI S. S. TOSHNIWAL (*Alternate*)
SHRI A. SUBRAMANIAM
SHRI R. VISWANATHAN
SHRI M. T. XAVIER
SHRI S. M. CHAKRABORTY,
Director (Tex)

Directorate of Fisheries, Government of Madras
J. K. Synthetic Ltd, Kanpur
Madura Mills Co Ltd, Madurai
Chemicals & Fibres of India Ltd, Bombay
Directorate of Fisheries, Government of Kerala
Director General, ISI (*Ex-officio Member*)

Secretary

SHRI P. VENKATARAMAN

Deputy Director (Tex), ISI

INDIAN STANDARDS INSTITUTION
MANAK BHAVAN, 9 BAHAUDUR SHAH ZAFAR MARG
NEW DELHI 110002

Indian Standard
**SPECIFICATION FOR
COTTON TWINES FOR FISH NETS**
PART II TWINES FOR TRAWL NETS

0. FOREWORD

0.1 This Indian Standard (Part II) was adopted by the Indian Standards Institution on 26 November 1968, after the draft finalized by the Textile Materials for Fishing Purposes Sectional Committee had been approved by the Textile Division Council.

0.2 This standard is based on the data for cotton fish net twines supplied by the Central Institute for Fisheries Technology, Ernakulam.

0.3 This standard contains clause 5.1, which calls for agreement between the buyer and the seller for permitting him to use his option for selection to suit his requirements.

0.4 For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test, shall be rounded off in accordance with IS : 2-1960*. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

1. SCOPE

1.1 This standard (Part II) prescribes constructional details and other particulars of 2 types of cotton twines used in the manufacture of trawl nets.

2. TYPES

2.1 Cotton twines used for making trawl nets shall be classified as 'Hard' and 'Extra-Hard' depending upon the twist imparted to the twines.

3. MANUFACTURE

3.1 Yarn—Cotton yarn used in the manufacture of twines shall be of the quality suitable for the purpose.

*Rules for rounding off numerical values (*revised*).

IS : 4945 (Part II) - 1968

3.2 Twines—The twines and its components shall be evenly and uniformly twisted together. They shall be free from kinks and other projections.

4. REQUIREMENTS

4.1 Construction—The twines of the 2 types shall comply with the requirements of Tables 1, 1A, 2 and 2A respectively.

4.2 Turns per Metre—The turns per metre values of the twines shall be determined according to 8.2 or 8.3 of IS : 832-1964*.

4.3 Breaking Load—The dry and wet breaking load of the twines shall be determined according to 7.1 to 7.6 of IS : 1670-1960† using a gauge length of 20 cm. The wet breaking load shall be determined by immersing the twines for 24 hours in fresh water.

4.4 Knot Breaking Load—The dry and wet knot breaking load of the twines shall be determined by the method prescribed in Appendix A.

5. PACKAGING

5.1 Twines shall be made into hanks or cheeses as required by the buyer. If hank packing is required, the twines shall be made into hanks and a suitable number of such hanks shall be packed in bundles each weighing 4.5 kg. The cheeses and bundles shall be packed in waterproof kraft paper or other suitable waterproof material as may be agreed to between the buyer and the seller.

6. MARKING

6.1 Cheeses or bundles containing twines shall be marked with the following information:

- a) Name of the material;
- b) Type and construction;
- c) Net weight of package;
- d) Year of manufacture; and
- e) Manufacturer's name, initials or trade-mark, if any.

*Method for determination of twist in yarn.

†Method for determination of breaking load (strength), elongation at break and tensile strength of single strand of cotton yarn (by constant-rate-of-traverse machine). (Since revised).

**TABLE I REQUIREMENTS OF COTTON TWINES, HARD, WITH
ZSZ TWIST
(Class 4.1)**

CONSTRUCTION (NOMINAL COUNT)	TURNS PER METER		BREAKING LOAD ON 20 cm TEST LENGTH, kg. Min		KNOT BREAKING LOAD ON 20 cm TEST LENGTH, kg. Min			
	Outer	Inner	Dry	Wet	Trawl		Reef	
			(4)	(5)	(6)	(7)	(8)	(9)
59 tex \times 5 \times 3 (or 10 \times 5/3)	226	810	12.0	12.3	8.8	11.0	10.3	11.5
59 tex \times 6 \times 3 (or 10 \times 6/3)	202	725	14.4	14.7	10.6	13.2	12.4	13.8
59 tex \times 7 \times 3 (or 10 \times 7/3)	191	680	16.8	17.2	12.3	15.5	14.5	16.1
30 tex \times 2 \times 2 (or 20 \times 2/2)	595	2140	1.6	1.6	1.17	1.48	1.38	1.53
30 tex \times 2 \times 3 (or 20 \times 2/3)	503	1800	2.4	2.5	1.76	2.22	2.07	2.30
30 tex \times 3 \times 3 (or 20 \times 3/3)	410	1470	3.6	3.7	2.65	3.33	3.10	3.45
30 tex \times 4 \times 3 (or 20 \times 4/3)	354	1268	4.8	4.9	3.52	4.45	4.15	4.60
30 tex \times 5 \times 3 (or 20 \times 5/3)	319	1140	6.0	6.2	4.42	5.55	5.18	5.74
30 tex \times 6 \times 3 (or 20 \times 6/3)	288	1092	7.2	7.3	5.30	6.65	6.22	6.90
30 tex \times 7 \times 3 (or 20 \times 7/3)	268	960	8.4	8.6	6.16	7.76	7.25	8.05
30 tex \times 8 \times 3 (or 20 \times 8/3)	250	895	9.6	9.8	7.05	8.90	8.30	9.2
30 tex \times 9 \times 3 (or 20 \times 9/3)	236	842	10.8	11.0	7.90	10.00	9.30	10.35
30 tex \times 10 \times 3 (or 20 \times 10/3)	225	805	12.0	12.3	8.80	11.10	10.35	11.5
30 tex \times 12 \times 3 (or 20 \times 12/3)	204	733	14.4	14.7	10.55	13.3	12.40	13.8
30 tex \times 15 \times 3 (or 20 \times 15/3)	183	654	18.0	18.4	13.2	16.6	15.55	17.3
30 tex \times 20 \times 3 (or 20 \times 20/3)	158	567	24.0	24.6	17.6	22.2	20.60	23.0

TABLE 1A REQUIREMENTS OF COTTON TWINES, HARD,
WITH ZZS TWIST

(Clause 4.1)

CONSTRUCTION (NOMINAL COUNT)	TURNS PER METRE		BREAKING LOAD ON 20 cm TEST LENGTH, kg, Min		KNOT BREAKING LOAD ON 20 cm TEST LENGTH, kg, Min			
	Outer	Inner	Dry	Wet	Trawl		Reef	
			(4)	(5)	(6)	(7)	(8)	(9)
59 tex \times 5 \times 3 (or 10s/5/3)	256	520	11.8	12.6	9.6	11.0	10.4	11.4
59 tex \times 6 \times 3 (or 10s/6/3)	232	455	14.2	15.2	11.4	13.2	12.4	13.8
59 tex \times 7 \times 3 (or 10s/7/3)	218	420	16.4	17.6	13.4	15.4	14.6	16.2
30 tex \times 2 \times 2 (or 20s/2/2)	677	1625	1.36	1.67	1.28	1.48	1.38	1.5
30 tex \times 2 \times 3 (or 20s/2/3)	572	1350	2.34	2.5	1.92	2.22	2.07	2.3
30 tex \times 3 \times 3 (or 20s/3/3)	467	1150	3.52	3.8	2.91	3.3	3.1	3.4
30 tex \times 4 \times 3 (or 20s/4/3)	405	915	4.70	5.0	3.85	4.4	4.2	4.6
30 tex \times 5 \times 3 (or 20s/5/3)	363	795	5.9	6.3	4.82	5.5	5.2	5.7
30 tex \times 6 \times 3 (or 20s/6/3)	330	715	7.1	7.6	5.7	6.6	6.2	6.9
30 tex \times 7 \times 3 (or 20s/7/3)	306	650	8.2	8.8	6.7	7.7	7.3	8.1
30 tex \times 8 \times 3 (or 20s/8/3)	286	600	9.4	10.0	7.7	8.9	8.3	9.2
30 tex \times 9 \times 3 (or 20s/9/3)	270	555	10.6	11.3	8.7	10.0	9.3	10.3
30 tex \times 10 \times 3 (or 20s/10/3)	258	525	11.7	12.5	9.6	11.1	10.4	11.5
30 tex \times 12 \times 3 (or 20s/12/3)	234	460	14.1	15.0	11.6	13.3	12.4	13.8
30 tex \times 15 \times 3 (or 20s/15/3)	210	394	17.6	18.8	14.5	16.6	15.6	17.3
30 tex \times 18 \times 3 (or 20s/18/3)	191	346	21.2	22.6	17.9	20.0	18.6	20.7
30 tex \times 20 \times 3 (or 20s/20/3)	181	320	23.4	25.0	19.3	22.2	20.6	23.0

**TABLE 2 REQUIREMENTS OF COTTON TWINES, EXTRA-HARD, WITH
ZSZ TWIST**
(*Clause 4.1*)

CONSTRUCTION (NOMINAL COUNT)	TURNS PER METRE		BREAKING LOAD ON 20 cm TEST LENGTH, kg, Min		KNOT BREAKING LOAD ON 20 cm TEST LENGTH, kg, Min			
	Outer	Inner	Dry	Wet	Trawl		Reef	
			(4)	(5)	(6)	(7)	(8)	(9)
59 tex \times 5 \times 3 (or 10s/5/3)	256	915	9.0	9.8	7.7	10.5	9.1	11.5
59 tex \times 6 \times 3 (or 10s/6/3)	232	830	10.8	11.6	8.2	12.6	10.9	13.8
59 tex \times 7 \times 3 (or 10s/7/3)	218	780	12.6	13.8	10.8	14.8	12.7	16.0
30 tex \times 2 \times 2 (or 20s/2/2)	678	2430	1.2	1.3	1.02	1.4	1.21	1.53
30 tex \times 2 \times 3 (or 20s/2/3)	573	2045	1.8	1.9	1.54	2.1	1.81	2.30
30 tex \times 3 \times 3 (or 20s/3/3)	468	1680	2.7	2.8	2.31	3.2	2.73	3.45
30 tex \times 4 \times 3 (or 20s/4/3)	406	1455	3.6	3.9	3.08	4.2	3.64	4.60
30 tex \times 5 \times 3 (or 20s/5/3)	363	1300	4.5	4.9	3.86	5.3	4.5	5.74
30 tex \times 6 \times 3 (or 20s/6/3)	330	1180	5.4	5.8	4.14	6.3	5.4	6.90
30 tex \times 7 \times 3 (or 20s/7/3)	306	1095	6.3	6.9	5.40	7.4	6.4	8.0
30 tex \times 8 \times 3 (or 20s/8/3)	287	1025	7.2	7.8	6.16	8.4	7.3	9.2
30 tex \times 9 \times 3 (or 20s/9/3)	267	965	8.1	8.8	6.95	9.5	8.2	10.3
30 tex \times 10 \times 3 (or 20s/10/3)	258	920	9.0	9.8	7.70	10.5	9.1	11.5
30 tex \times 12 \times 3 (or 20s/12/3)	234	835	10.8	11.5	9.20	12.6	10.9	13.8
30 tex \times 15 \times 3 (or 20s/15/3)	209	750	13.5	14.3	11.5	15.8	13.70	17.2
30 tex \times 18 \times 3 (or 20s/18/3)	190	680	16.2	17.2	13.9	19.0	16.4	20.7
30 tex \times 20 \times 3 (or 20s/20/3)	181	648	18.0	19.0	15.5	21.1	18.3	23.0

TABLE 2A REQUIREMENTS OF COTTON TWINES, EXTRA-HARD,
WITH ZZS TWIST

(Class 4.1)

CONSTRUCTION (NOMINAL COUNT)	TWISTS PER METRE		BREAKING LOAD ON 20 cm TEST LENGTH, kg, Min		KNOT BREAKING LOAD ON 20 cm TEST LENGTH, kg, Min			
	Outer	Inner	Dry	Wet	Trawl		Reef	
			(4)	(5)	(6)	(7)	(8)	(9)
59 tex \times 5 \times 3 (or 10 _s /5/3)	290	615	11.4	11.2	9.0	10.6	9.0	11.4
59 tex \times 6 \times 3 (or 10 _s /6/3)	260	535	13.6	13.8	10.8	13.6	10.8	13.8
59 tex \times 7 \times 3 (or 10 _s /7/3)	246	490	15.8	16.2	12.8	14.8	12.8	16.2
30 tex \times 2 \times 2 (or 20 _s /2/2)	765	1910	1.5	1.5	1.21	1.4	1.21	1.5
30 tex \times 2 \times 3 (or 20 _s /2/3)	645	1560	2.3	2.3	1.81	2.1	1.81	2.3
30 tex \times 3 \times 3 (or 20 _s /3/3)	526	1240	3.4	3.5	2.73	3.2	2.73	3.4
30 tex \times 4 \times 3 (or 20 _s /4/3)	456	1120	4.5	4.6	3.64	4.2	3.64	4.6
30 tex \times 5 \times 3 (or 20 _s /5/3)	408	920	5.7	5.6	4.5	5.3	4.5	5.7
30 tex \times 6 \times 3 (or 20 _s /6/3)	371	820	6.8	6.9	5.4	6.3	5.4	6.9
30 tex \times 7 \times 3 (or 20 _s /7/3)	345	750	7.9	8.1	6.4	7.4	6.4	8.1
30 tex \times 8 \times 3 (or 20 _s /8/3)	322	690	9.0	9.2	7.3	8.4	7.3	9.2
30 tex \times 9 \times 3 (or 20 _s /9/3)	304	640	10.1	10.3	8.2	9.5	8.2	10.3
30 tex \times 10 \times 3 (or 20 _s /10/3)	290	605	11.3	11.3	9.1	10.5	9.1	11.5
30 tex \times 12 \times 3 (or 20 _s /12/3)	263	535	13.5	13.8	10.9	12.6	10.9	13.8
30 tex \times 15 \times 3 (or 20 _s /15/3)	235	465	16.9	17.2	13.70	15.8	13.70	17.3
30 tex \times 18 \times 3 (or 20 _s /18/3)	215	410	20.2	20.6	16.4	19.0	16.4	20.7
30 tex \times 20 \times 3 (or 20 _s /20/3)	204	382	22.6	23.0	18.3	21.1	18.3	23.0

IS : 4945 (Part II) - 1968

6.1.1 Each cheese or bundle may also be marked with the ISI Certification mark.

Note — The use of the ISI Certification Mark is governed by the provisions of the Indian Standards Institution (Certification Marks) Act and the Rules and Regulations made thereunder. The ISI Mark on products covered by an Indian Standard conveys the assurance that they have been produced to comply with the requirements of that standard under a well-defined system of inspection, testing and quality control which is devised and supervised by ISI and operated by the producer. ISI marked products are also continuously checked by ISI for conformity to that standard as a further safeguard. Details of conditions under which a licence for the use of the ISI Certification Mark may be granted to manufacturers or processors, may be obtained from the Indian Standards Institution.

7. PACKING

7.1 A suitable number of cheeses or bundles shall be placed one over the other and wrapped with a layer of waterproof packing material, such as waterproof packing paper or polyethylene film, to form a pack. The pack shall be tied with twine of adequate strength and a suitable number of such packs shall be placed in a container of adequate strength which is previously lined with one layer of waterproof packing paper (*see* Grade 2 of IS : 1398-1960*). If necessary, the voids in the container may be stuffed with cushioning material to avoid damage in transit. The container shall be bound by iron hoops or wire.

8. SAMPLING

8.1 The quantity of cotton twine of the same construction and quality delivered to a buyer against a despatch note shall constitute a lot.

8.2 The conformity of the lot to the requirements of this standard shall be determined on the basis of the tests carried out on the samples selected from the lot.

8.3 Unless otherwise agreed to between the buyer and the seller, the number of hanks or cheeses to be selected at random from a lot shall be in accordance with Table 3.

TABLE 3 NUMBER OF HANKS OR CHEESES TO BE SELECTED

NUMBER OF HANKS OR CHEESES IN THE LOT (1)	NUMBER OF HANKS OR CHEESES TO BE SELECTED (2)	PERMISSIBLE NUMBER OF DEFECTIVES (3)
Up to 100	3	0
101 .. 300	4	0
301 .. 500	5	0
501 .. 1,000	7	0
1,001 .. 3,000	10	1
3,001 and above	15	1

*Specification for paper packing, waterproof, bitumen-laminated. (Since revised).

8.4 From each of the hanks or cheeses selected according to 8.3, five test specimens for each of the characteristics shall be tested.

8.4.1 From the test results for each hank or cheese, the average for a particular characteristic shall be calculated and compared with the corresponding value specified to determine the conformity or otherwise of the hank or cheese.

8.5 Criteria for Conformity—The lot shall be considered conforming to the requirements if the number of hanks or cheeses not meeting the requirements for one or more of the characteristics is less than or equal to the corresponding number given in col 3 of Table 3.

A P P E N D I X A (Clause 4.4)

METHOD FOR DETERMINATION OF KNOT BREAKING LOAD (WET AND DRY)

A-1. TEST SPECIMENS

A-1.1 For the purpose of this test, a length of twine of approximately 30 cm cut from each cheese or hank in the test sample shall constitute the test specimens.

A-2. CONDITIONING OF TEST SPECIMENS

A-2.1 Prior to test, the test specimens shall be conditioned in a standard atmosphere at 65 ± 2 percent relative humidity and $27^\circ \pm 2^\circ\text{C}$ temperature (see IS : 196-1966*) for at least 24 hours.

A-3. APPARATUS

A-3.1 A constant-rate-of-traverse type single strand strength testing machine (preferably power-driven) of appropriate capacity, the speed of the moving clamp of which is equal to 300 ± 15 mm/min, shall be used for this test.

*Atmospheric conditions for testing (revised).

A-4. PROCEDURE

A-4.1 Mount one test specimen on the breaking load testing machine, making in the twine a trawl knot or a reef knot in such a way that the knot is approximately positioned in the centre of the test specimen and the distance between the clamps is kept equal to 20 cm. Start the machine and carry the test to rupture. Note the breaking load of the test specimen correct to the nearest 0·1 kg.

A-4.2 Repeat the test with the remaining test specimens.

Note — The test shall take into account only the actual breaks which occur clear of the grips of the machine. Should rupture occur within 10 cm of either grip at less than the specified breaking load, the specimen shall be discarded and another specimen tested.

A-5. WET KNOT BREAKING LOAD

A-5.1 Repeat the procedure prescribed in **A-4.1** but substituting the test specimens with the ones that have been kept immersed for 24 hours in fresh water, the test being carried out after blotting out the adhering water.

INTERNATIONAL SYSTEM OF UNITS (SI UNITS)

Base Units

Quantity	Unit	Symbol
Length	metre	m
Mass	kilogram	kg
Time	second	s
Electric current	ampere	A
Thermodynamic temperature	kelvin	K
Luminous intensity	candela	cd
Amount of substance	mole	mol

Supplementary Units

Quantity	Unit	Symbol
Plane angle	radian	rad
Solid angle	steradian	sr

Derived Units

Quantity	Unit	Symbol	Conversion
Force	newton	N	1 N = 1 kg·m/s ²
Energy	joule	J	1 J = 1 N·m
Power	watt	W	1 W = 1 J/s
Flux	weber	Wb	1 Wb = 1 V·s
Flux density	tesla	T	1 T = 1 Wb/m ²
Frequency	hertz	Hz	1 Hz = 1 c/s (s ⁻¹)
Electric conductance	siemens	S	1 S = 1 A/V
Pressure, stress	pascal	Pa	1 Pa = 1 N/m ²

INDIAN STANDARDS INSTITUTION

Manak Bhavan, 9 Bahadur Shah Zafar Marg, NEW DELHI 110002

Telephone : 27 61 31 (26 lines)

Telegrams : Manakesantha

Regional Offices:

Telephone

Western : Novelty Chambers, Grant Road

BOMBAY 400007 37 97 29

Eastern : 8 Chawringhee Approach

CALCUTTA 700072 23-08 02

Southern : C.I.T. Campus, Adyar

MADRAS 600020 41 24 42

Branch Offices:

'Pushpak', Nurmohamed Shaikh Marg, Khanpur	AHMADABAD 380001	2 03 91
'F' Block, Unity Bldg, Narasimha-raja Square	BANGALORE 560002	2 78 49
Showhouse Bldg, Sachivalaya Marg	BHUBANESHWAR 751001	5 36 27
Ahimsa Bldg, SCO 82-83, Sector 17C	CHANDIGARH 160017	2 63 20
1-8-56, 57 L, N. Gupta Marg	HYDERABAD 500001	22 10 53
O 221, Todarmal Marg, Banipark	JAIPUR 302000	7 63 16
117/418 B Sarvodaya Nagar	KANPUR 208005	82 72
B.C.I. Bldg (3rd Floor), Gandhi Maidan East	PATNA 800004	5 36 55
Hantex Bldg (2nd Floor), Rly Station Road	TRIVANDRUM 695001	32 27

Reproduced by Reprography Unit, ISI, New Delhi