Sports Analytics

Aaron Nielsen

2022-05-23

Contents

Al	pout	5			
1	Exploratory Data Analysis	7			
	1.1 Using dplyr, tidyverse, ggplot	7			
	1.2 Baseball	7			
	1.3 Football	7			
	1.4 Basketball	7			
	1.5 Soccer	7			
	1.6 Volleyball	7			
	1.7 Hockey	7			
2	Probability	9			
	2.1 Definitions and Axioms	9			
	2.2 Theorems and Laws	9			
	2.3 Random Variables	9			
3	Simulation 1				
4	Statistical Inference	13			
	4.1 One Sample and Two Sample t-tests and confidence intervals	13			
5	Correlation 1				
6	Linear Regression				
7	Data Scraping				
8	Principal Component Analysis				
9	Clustering				
10	0 Classification				
	1 Decision Trees 11.1 Random Forests				

4		CONTENTS

	11.2 Gradient Boosting	27		
12	Non-parametric Statistics	29		
13	Baseball	31		
14	Football	33		
15	Basketball	35		
16	Soccer	37		
17	Hockey	39		
18	8 Volleyball			
19	9 Other Sports			
20	Ellie's stuff	45		
21	Levi's stuff	47		
22	Isaac's stuff	49		
23	Aaron's stuff 23.1 Notes for Chapter 2 (Probability)	51 51 51		
24	Reference: Footnotes and citations 24.1 Footnotes	53 53		
25	Reference: Blocks 25.1 Equations	55 55 55		

About

This book serves as the course textbook for STAT 351 (Sports Analytics 1) and STAT 451 (Sports Analytics 2) at Colorado State University.

This project was first created during the summer of 2022 by Aaron Nielsen, Levi Kipp, Ellie Martinez, and Isaac Moorman.

6 CONTENTS

Exploratory Data Analysis

- 1.1 Using dplyr, tidyverse, ggplot
- 1.2 Baseball
- 1.3 Football
- 1.4 Basketball
- 1.5 Soccer
- 1.6 Volleyball
- 1.7 Hockey

Probability

- 2.1 Definitions and Axioms
- 2.2 Theorems and Laws
- 2.3 Random Variables

Simulation

Statistical Inference

4.1 One Sample and Two Sample t-tests and confidence intervals

Correlation

Linear Regression

Data Scraping

Principal Component Analysis

Clustering

Classification

Decision Trees

- 11.1 Random Forests
- 11.2 Gradient Boosting

Non-parametric Statistics

Baseball

Football

Basketball

Soccer

Hockey

Volleyball

Other Sports

Ellie's stuff

Levi's stuff

Isaac's stuff

Aaron's stuff

23.1 Notes for Chapter 2 (Probability)

Axioms of Probability:

- 1. $P(A) \ge 0$
- 2. $P(\Omega) = 1$
- 3. If A_1,A_2,\dots,A_n are disjoint events, then $P(\cup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$

Theorem 23.1 (Bayes theorem). Let A and B be events in Ω such that P(B) > 0. Then we have the following:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

23.2 Notes for Chapter 4 (Simulation)

23.2.1 Baseball Simulation Example

library(tidyverse)

This is a baseball example for chapter 4.

```
set.seed(2022)
n.sims <- 1000
hits <- rep(0,n.sims)
avg <- 0.300
atbats.mean <- 450
atbats.sd <- 100
sim.atbats <- round(rnorm(n.sims,atbats.mean,atbats.sd))</pre>
```

```
for(i in 1:n.sims){
    sim.hits <- rbinom(1,sim.atbats[i],avg)
    hits[i] = sim.hits
}
hits.df <- data.frame(Hits=hits)
hits.df %>% ggplot(aes(x=Hits)) + geom_histogram()
```


Reference: Footnotes and citations

24.1 Footnotes

Footnotes are put inside the square brackets after a caret ^[]. Like this one ¹.

24.2 Citations

Reference items in your bibliography file(s) using Okey.

For example, we are using the **bookdown** package [Xie, 2022] (check out the last code chunk in index.Rmd to see how this citation key was added) in this sample book, which was built on top of R Markdown and **knitr** [Xie, 2015] (this citation was added manually in an external file book.bib). Note that the .bib files need to be listed in the index.Rmd with the YAML bibliography key.

The RStudio Visual Markdown Editor can also make it easier to insert citations: https://rstudio.github.io/visual-markdown-editing/#/citations

¹This is a footnote.

Reference: Blocks

25.1 Equations

Here is an equation.

$$f(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 (25.1)

You may refer to using \@ref(eq:binom), like see Equation (25.1).

25.2 Theorems and proofs

Labeled theorems can be referenced in text using \@ref(thm:tri), for example, check out this smart theorem 25.1.

Theorem 25.1. For a right triangle, if c denotes the length of the hypotenuse and a and b denote the lengths of the **other** two sides, we have

$$a^2 + b^2 = c^2$$

 $Read\ more\ here\ https://bookdown.org/yihui/bookdown/markdown-extensions-by-bookdown.html.$

25.3 Callout blocks

The R Markdown Cookbook provides more help on how to use custom blocks to design your own callouts: https://bookdown.org/yihui/rmarkdown-cookbook/custom-blocks.html

Bibliography

Yihui Xie. Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition, 2015. URL http://yihui.org/knitr/. ISBN 978-1498716963.

Yihui Xie. bookdown: Authoring Books and Technical Documents with R Markdown, 2022. URL https://CRAN.R-project.org/package=bookdown. R package version 0.26.