METODY NUMERYCZNE - LABORATORIUM

Zadanie 4 – całkowanie numeryczne

Opis rozwiązania

Do rozwiazania zadania użyliśmy dwóch metod całkowania numerycznego: złożonej kwadratury Newtona-Cotesa opartej na trzech węzłach(wzór Simpsona) i kwadratury Gaussa – wielomiany Hermite'a. Przebieg algorytmu dla Newtona-Cotesa:

- 1. Podział przedziału całkowania na n*2 przedziałów.
- 2. Obliczenie połowy długości podprzedziału:

$$h = \frac{b-a}{n*2}$$

3. Obliczenie pola każdego z podprzedziałów:

$$I_n = \frac{h}{3}(g(a)f(a) + 4g(\frac{a+b}{2})f(\frac{a+b}{2}) + g(b)f(b))$$

 $I_n = \frac{h}{3}(g(a)f(a) + 4g(\frac{a+b}{2})f(\frac{a+b}{2}) + g(b)f(b))$ Gdzie g jest funkcją wagową - $g(x) = e^{-x^2}$, dodaną na potrzeby porównywania wyników obu metod.

4. Zsumowanie otrzymanych pól.

Algorytm powtarzany jest do momentu, w którym zostaje uzyskana dokładność wybrana przez użytkownika. Przebieg algorytmu dla Gaussa

- 1. Wczytanie odpowiedniej tablicy(w zależności od ilości węzłów) współczynników.
- 2. Obliczenie dla każdego węzła wartości: $A_i f(x_i)$, gdzie A_i oraz x_i są odczytywane z tablicy.
- 3. Zsumowanie uzyskanych wartości.

Wyniki

Funkcja	Wynik teoretyczny	Kwadratura Gaussa- Hermite'a (5 węzłów)	Kwadratura Gaussa- Hermite'a (3 węzły)	Kwadratura Newtona- Cotesa (eps=1e-8)
x - 5	8.862	8.862264	8.86227	8.86226
2 <i>x</i>	1.99866	1.998660	1.998446	1.998662
4log(x+3)	0.652049	0.653225	0.726761	0.652049

Wnioski

- Współczynniki oraz wezły kwadratury Gaussa-Hermite'a są niezależne od postaci funkcji podcałkowej.
- Im więcej węzłów wykorzysta się w kwadraturze Gaussa-Hermite'a, tym wynik jest dokładniejszy
- Obie metody zwracają podobne wartości, które nieznacznie różnią się od teoretycznych(obliczonych za pomocą WolframAlpha)