RWorksheet_Lomibao#4b

lomibao

2024-10-29

```
1.
vectorA \leftarrow c(1, 2, 3, 4, 5)
mtr <- matrix(0, nrow = 5, ncol = 5)
for (i in 1:5) {
 for (j in 1:5) {
    mtr[i, j] <- abs(i - vectorA[j])</pre>
print(mtr)
        [,1] [,2] [,3] [,4] [,5]
## [1,]
          0
## [2,]
        1
              0
                     1
                          2
## [3,]
                     0
## [4,]
        3 2 1
                          0
## [5,]
              3
                     2
  2.
vec \leftarrow c(1, 2, 3, 4, 5)
for(i in vec){
  cat(rep("*", i),"\n")
## * *
start_num <- as.integer(readline(prompt="Enter the starting number for the Fibonacci sequence: "))</pre>
## Enter the starting number for the Fibonacci sequence:
a <- 0
b <- 1
if (!is.na(start_num) < 0) {</pre>
cat("Please enter a non-negative starting number.\n")
} else {
repeat {
```

```
if (!is.na(start_num) && a >= start_num) {
cat(a, "\n")
}
temp <- a + b
a <- b
b <- temp
if (!is.na(start_num) && a > 500) {
}
}
}
## Please enter a non-negative starting number.
4.A
data <- read.csv("/cloud/project/shoesz.csv")</pre>
head(data)
     Shoe.size Height Gender
## 1
          6.5 66.0
## 2
          9.0
                68.0
                            F
                           F
## 3
          8.5 64.5
## 4
          8.5 65.0
## 5
          10.5
                 70.0
                           М
          7.0
                 64.0
B. Both male and female got 14.
male_data <- subset(data, Gender == "M")</pre>
female_data <- subset(data, Gender == "F")</pre>
num_males <- nrow(male_data)</pre>
num_females <- nrow(female_data)</pre>
cat("Number of observations for Male: ", num_males, "\n")
## Number of observations for Male: 14
cat("Number of observations for Female: ", num_females, "\n")
## Number of observations for Female: 14
  C.
library(ggplot2)
HouseHoldData <-read.csv("/cloud/project/HouseholdData - Sheet1.csv")</pre>
ggplot(HouseHoldData, aes(x=Sex, fill=Sex)) +
  geom_bar() +
  ggtitle("Number of Males and Females in Household Data") +
  xlab("Gender") +
  ylab("Count") +
  scale_fill_manual(values = c("blue", "pink")) +
  theme minimal()
```



```
exp <- c(Food = 60, Electricity = 10, Savings = 5, Miscellaneous = 25)

percent <- round(100 * exp/ sum(exp), 1)

labels <- paste(names(exp), percent, "%")

colors <- c("blue", "green", "yellow", "red")

pie(exp, labels = labels, col = colors, main = "Dela Cruz Family Monthly Expenses")</pre>
```

Dela Cruz Family Monthly Expenses

data(iris)
iris

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa

## 33	5.2	4.1	1.5	0.1	setosa
## 34	5.5	4.2	1.4	0.2	setosa
## 35	4.9	3.1	1.5	0.2	setosa
## 36	5.0	3.2	1.2	0.2	setosa
## 37	5.5	3.5	1.3	0.2	setosa
## 38	4.9	3.6	1.4	0.1	setosa
## 39	4.4	3.0	1.3	0.2	setosa
## 40	5.1	3.4	1.5	0.2	setosa
## 41	5.0	3.5	1.3	0.3	setosa
## 42	4.5	2.3	1.3	0.3	setosa
## 43	4.4	3.2	1.3	0.2	setosa
## 44	5.0	3.5	1.6	0.6	setosa
## 45	5.1	3.8	1.9	0.4	setosa
## 46	4.8	3.0	1.4	0.3	setosa
## 47	5.1	3.8	1.6	0.2	setosa
## 48	4.6	3.2	1.4	0.2	setosa
## 49	5.3	3.7	1.5	0.2	setosa
				0.2	
## 50 ## 51	5.0	3.3	1.4 4.7		setosa
## 51	7.0	3.2			sicolor
## 52	6.4	3.2	4.5		sicolor
## 53	6.9	3.1	4.9		sicolor
## 54	5.5	2.3	4.0		sicolor
## 55	6.5	2.8	4.6		sicolor
## 56	5.7	2.8	4.5		sicolor
## 57	6.3	3.3	4.7		sicolor
## 58	4.9	2.4	3.3		sicolor
## 59	6.6	2.9	4.6	1.3 ver	sicolor
## 60	5.2	2.7	3.9	1.4 ver	sicolor
## 61	5.0	2.0	3.5	1.0 ver	sicolor
## 62	5.9	3.0	4.2	1.5 ver	sicolor
## 63	6.0	2.2	4.0	1.0 ver	sicolor
## 64	6.1	2.9	4.7	1.4 ver	sicolor
## 65	5.6	2.9	3.6	1.3 ver	sicolor
## 66	6.7	3.1	4.4	1.4 ver	sicolor
## 67	5.6	3.0	4.5	1.5 ver	sicolor
## 68	5.8	2.7	4.1	1.0 ver	sicolor
## 69	6.2	2.2	4.5	1.5 ver	sicolor
## 70	5.6	2.5	3.9	1.1 ver	sicolor
## 71	5.9	3.2	4.8	1.8 ver	sicolor
## 72	6.1	2.8	4.0	1.3 ver	sicolor
## 73	6.3	2.5	4.9	1.5 ver	sicolor
## 74	6.1	2.8	4.7	1.2 ver	sicolor
## 75	6.4	2.9	4.3		sicolor
## 76	6.6	3.0	4.4		sicolor
## 77	6.8	2.8	4.8		sicolor
## 78	6.7	3.0	5.0		sicolor
## 79	6.0	2.9	4.5		sicolor
## 79	5.7	2.6	3.5		sicolor
## 81	5.5	2.4	3.8		sicolor
## 82	5.5	2.4	3.7		sicolor
## 83		2.4			sicolor
## 84	5.8 6.0	2.7	3.9 5.1		sicolor
	6.0				
## 85 ## 86	5.4	3.0	4.5		sicolor
## 86	6.0	3.4	4.5	1.6 ver	sicolor

##		6.7	3.1	4.7		versicolor
##	88	6.3	2.3	4.4	1.3	versicolor
##	89	5.6	3.0	4.1	1.3	versicolor
##	90	5.5	2.5	4.0	1.3	versicolor
##	91	5.5	2.6	4.4	1.2	versicolor
##	92	6.1	3.0	4.6	1.4	versicolor
##	93	5.8	2.6	4.0	1.2	versicolor
##	94	5.0	2.3	3.3	1.0	versicolor
##	95	5.6	2.7	4.2	1.3	versicolor
##	96	5.7	3.0	4.2	1.2	versicolor
##	97	5.7	2.9	4.2	1.3	versicolor
##	98	6.2	2.9	4.3	1.3	versicolor
##	99	5.1	2.5	3.0	1.1	versicolor
##	100	5.7	2.8	4.1	1.3	versicolor
##	101	6.3	3.3	6.0	2.5	virginica
##	102	5.8	2.7	5.1	1.9	virginica
##	103	7.1	3.0	5.9	2.1	virginica
##	104	6.3	2.9	5.6	1.8	virginica
##	105	6.5	3.0	5.8	2.2	virginica
##	106	7.6	3.0	6.6	2.1	virginica
##	107	4.9	2.5	4.5	1.7	virginica
##	108	7.3	2.9	6.3	1.8	virginica
##	109	6.7	2.5	5.8	1.8	virginica
##	110	7.2	3.6	6.1	2.5	virginica
##	111	6.5	3.2	5.1	2.0	virginica
##	112	6.4	2.7	5.3	1.9	virginica
##	113	6.8	3.0	5.5	2.1	virginica
##	114	5.7	2.5	5.0	2.0	virginica
##	115	5.8	2.8	5.1	2.4	virginica
##	116	6.4	3.2	5.3	2.3	virginica
##	117	6.5	3.0	5.5	1.8	virginica
##	118	7.7	3.8	6.7	2.2	virginica
##	119	7.7	2.6	6.9	2.3	virginica
##	120	6.0	2.2	5.0	1.5	virginica
##	121	6.9	3.2	5.7	2.3	virginica
##	122	5.6	2.8	4.9	2.0	virginica
	123	7.7	2.8	6.7	2.0	virginica
	124	6.3	2.7	4.9	1.8	virginica
	125	6.7	3.3	5.7	2.1	virginica
##	126	7.2	3.2	6.0	1.8	virginica
##	127	6.2	2.8	4.8	1.8	virginica
	128	6.1	3.0	4.9	1.8	virginica
	129	6.4	2.8	5.6	2.1	virginica
##	130	7.2	3.0	5.8	1.6	virginica
##	131	7.4	2.8	6.1	1.9	virginica
##	132	7.9	3.8	6.4	2.0	virginica
##	133	6.4	2.8	5.6	2.2	virginica
##	134	6.3	2.8	5.1	1.5	virginica
##	135	6.1	2.6	5.6	1.4	virginica
##	136	7.7	3.0	6.1	2.3	virginica
	137	6.3	3.4	5.6	2.4	virginica
	138	6.4	3.1	5.5	1.8	virginica
	139	6.0	3.0	4.8	1.8	virginica
	140	6.9	3.1	5.4		•
##	140	0.5	J.1	J.4	2.1	virginica

```
## 141
               6.7
                                       5.6
                                                   2.4 virginica
                           3.1
## 142
               6.9
                           3.1
                                       5.1
                                                   2.3 virginica
## 143
                           2.7
               5.8
                                       5.1
                                                   1.9 virginica
## 144
               6.8
                           3.2
                                       5.9
                                                   2.3 virginica
## 145
               6.7
                           3.3
                                       5.7
                                                   2.5 virginica
## 146
               6.7
                          3.0
                                       5.2
                                                   2.3 virginica
## 147
               6.3
                          2.5
                                       5.0
                                                   1.9 virginica
                                                   2.0 virginica
## 148
               6.5
                           3.0
                                       5.2
## 149
               6.2
                           3.4
                                       5.4
                                                   2.3 virginica
## 150
               5.9
                           3.0
                                       5.1
                                                   1.8 virginica
```

A.It show the no.objeccts, variable, length and etc.

```
str(iris)
                    150 obs. of 5 variables:
## 'data.frame':
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species
                : Factor w/ 3 levels "setosa", "versicolor", ...: 1 1 1 1 1 1 1 1 1 1 ...
 В.
mean_length <- colMeans(iris[, c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")])</pre>
mean_length
## Sepal.Length Sepal.Width Petal.Length Petal.Width
##
       5.843333
                    3.057333
                                 3.758000
                                              1.199333
  C.
species_distribution <- table(iris$Species)</pre>
colors <- c("blue", "red", "green")</pre>
pie(species_distribution,
    main = "Distribution of Iris Species",
    col = colors,
    labels = paste(names(species_distribution), "(", species_distribution, ")", sep=""))
legend("topright", legend = names(species_distribution), fill = colors, title = "Species")
```

Distribution of Iris Species

```
Species
                                     setosa(50)
                                                    setosa
                                                       versicolor
                                                    virginica
versicolor(50)
                                     virginica(50)
                                                                    D.
setosa <- subset(iris, Species == "setosa")</pre>
versicolor <- subset(iris, Species == "versicolor")</pre>
virginica <- subset(iris, Species == "virginica")</pre>
tail(setosa)
##
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 45
                                         1.9
               5.1
                           3.8
                                                     0.4 setosa
## 46
               4.8
                            3.0
                                         1.4
                                                      0.3 setosa
## 47
               5.1
                                                     0.2 setosa
                            3.8
                                         1.6
               4.6
## 48
                            3.2
                                         1.4
                                                     0.2 setosa
## 49
               5.3
                           3.7
                                         1.5
                                                     0.2 setosa
## 50
               5.0
                            3.3
                                         1.4
                                                      0.2 setosa
tail(versicolor)
##
       Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                              Species
## 95
                5.6
                             2.7
                                          4.2
                                                       1.3 versicolor
                                                      1.2 versicolor
## 96
                5.7
                             3.0
                                          4.2
## 97
                5.7
                             2.9
                                          4.2
                                                      1.3 versicolor
## 98
                6.2
                             2.9
                                          4.3
                                                       1.3 versicolor
## 99
                5.1
                             2.5
                                          3.0
                                                       1.1 versicolor
## 100
                5.7
                             2.8
                                          4.1
                                                       1.3 versicolor
tail(virginica)
       Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                             Species
##
## 145
                6.7
                                          5.7
                                                       2.5 virginica
## 146
                6.7
                             3.0
                                          5.2
                                                       2.3 virginica
## 147
                6.3
                             2.5
                                          5.0
                                                       1.9 virginica
## 148
                6.5
                             3.0
                                          5.2
                                                       2.0 virginica
## 149
                6.2
                                          5.4
                                                       2.3 virginica
                             3.4
## 150
                5.9
                             3.0
                                          5.1
                                                      1.8 virginica
  Ε.
iris$Species <- as.factor(iris$Species)</pre>
colors <- c("setosa" = "blue", "versicolor" = "pink", "virginica" = "blueviolet")</pre>
```

Iris Dataset

The scatterplot shows clear separation between setosa and the other two species based on Sepal Length and Sepal Width.

F.

8.

A.

```
library(readxl)
alexa <- read_excel("alexa_file.xlsx")
alexa$variation <- gsub("Black Show", "BlackShow", alexa$variation)
alexa$variation <- gsub("Black Dot", "BlackDot", alexa$variation)</pre>
```

```
alexa$variation <- gsub("Black Plus", "BlackPlus", alexa$variation)</pre>
alexa$variation <- gsub("Black Spot", "BlackSpot", alexa$variation)</pre>
alexa$variation <- gsub("White Show", "WhiteShow", alexa$variation)</pre>
alexa$variation <- gsub("White Dot", "WhiteDot", alexa$variation)</pre>
alexa$variation <- gsub("White Plus", "WhitePlus", alexa$variation)</pre>
alexa$variation <- gsub("White Spot", "WhiteSpot", alexa$variation)</pre>
#knitr::include_graphics("file path")
  В.
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
variations.RData <- alexa %>%
  count (alexa$variation)
save(variations.RData, file = "variations.RData")
print(variations.RData)
## # A tibble: 16 x 2
##
      `alexa$variation`
                                        n
      <chr>
##
                                    <int>
## 1 Black
                                      261
## 2 BlackDot
                                      516
## 3 BlackPlus
                                      270
## 4 BlackShow
                                      265
## 5 BlackSpot
                                      241
## 6 Charcoal Fabric
                                      430
## 7 Configuration: Fire TV Stick
                                      350
## 8 Heather Gray Fabric
                                      157
## 9 Oak Finish
                                      14
## 10 Sandstone Fabric
                                       90
## 11 Walnut Finish
                                       9
## 12 White
                                       91
## 13 WhiteDot
                                      184
## 14 WhitePlus
                                       78
## 15 WhiteShow
                                       85
## 16 WhiteSpot
                                      109
```

C.

```
barplot(
  variations.RData$n,
  names.arg = variations.RData$`alexa$variation`,
  cex.names = 0.4,
  main = "Count of Variations",
  ylab = "Count",
  col = rainbow(length(variations.RData$n)),
  border = "black",
  las = 2
)
```

Count of Variations


```
bar <- variations.RData %>%
  filter(grepl("^Black|^White", `alexa$variation`))

par(mfrow = c(1, 2))

barplot(
  bar$n[bar$^alexa$variation` %in% c("Black", "BlackPlus", "BlackShow", "BlackSpot", "BlackDot")],
  names.arg = bar$^alexa$variation`[bar$^alexa$variation` %in% c("Black", "BlackPlus", "BlackShow", "Bl
  las = 3,
  cex.names = 1,
  main = "Black Variations",
  ylab = "Count",
  col = "black",
  border = "black"
)
```

```
barplot(
  bar$n[bar$`alexa$variation` %in% c("White", "WhitePlus", "WhiteShow", "WhiteSpot", "WhiteDot")],
  names.arg = bar$`alexa$variation`[bar$`alexa$variation` %in% c("White", "WhitePlus", "WhiteShow", "Wh
  las = 2,
  cex.names = 1,
  main = "White Variations",
  ylab = "Count",
  col = "white",
  border = "black"
)
```

