UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea

Iulie 2018

CHESTIONAR DE CONCURS

Numărul legitimației de bancă ______

Numele _____

Prenumele tatălui _____

Prenumele

DISCIPLINA: Algebră și Elemente de Analiză Matematică Ma

VARIANTA E

- 1. Să se rezolve sistemul de ecuații $\begin{cases} x y = 2 \\ x 3y = 0 \end{cases}$ în mulțimea numerelor reale. (6 pct.)
 - a) x = y = 2; b) x = 1, y = 3; c) x = 1, y = 2; d) x = -3, y = 5; e) x = 3, y = 1; f) x = 2, y = 1.
- 2. Suma soluțiilor reale ale ecuației $x^3 3x^2 5x = 0$ este: (6 pct.)
 - a) 7; b) 3; c) 5; d) -5; e) 6; f) 8.
- 3. Să se determine $x \in \mathbb{R}$ astfel încât numerele 2, 4, x (în această ordine) să fie în progresie geometrică. (6 pct.)
 - a) x = 18; b) x = 11; c) x = 8; d) x = 5; e) x = 14; f) x = 9.
- **4.** Să se calculeze determinantul $D = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 0 & 3 \\ 2 & 4 & 6 \end{vmatrix}$. **(6 pct.)**
 - a) D=14; b) D=4; c) D=1; d) D=0; e) D=3; f) D=11.
- 5. Mulțimea soluțiilor reale ale ecuației $\sqrt{x+3} x = 1$ este: (6 pct.)
 - a) \emptyset ; b) $\{1\}$; c) $\{-1,3\}$; d) $\{3,4\}$; e) $\{-3,0\}$; f) $\{-2,3\}$.
- 6. Să se rezolve inecuația 7x+2>5x+4. (6 pct.)
 - a) $x \in (-\infty, -4)$; b) $x \in (0,1)$; c) $x \in (-3,0)$; d) $x \in (-4, -3)$; e) $x \in (1,\infty)$; f) $x \in \emptyset$.
- 7. Fie funcția $f:(0,\infty)\to\mathbb{R}$, $f(x)=\frac{x\ln x}{\left(1+x^2\right)^2}$. Dacă F este o primitivă a funcției f astfel încât F(1)=0,

să se calculeze $\lim_{x\to\infty} F(x)$. (6 pct.)

- a) $\frac{1}{3}\ln 7$; b) $\frac{1}{5}\ln 2$; c) $\frac{1}{3}\ln 3$; d) $\frac{1}{4}\ln 2$; e) $\frac{1}{4}\ln 5$; f) $\frac{1}{2}\ln 2$.
- 8. Să se rezolve ecuația $2^{x+1} = 16$. (6 pct.)
 - a) x = 2; b) x = 6; c) $x = \frac{1}{2}$; d) x = -1; e) x = 3; f) x = 4.

9. Să se determine $x \in \mathbb{R}$ astfel încât numerele 2, 8, x (în această ordine) să fie în progresie aritmetică. (6 pct.)

a)
$$x = 18$$
; b) $x = 16$; c) $x = 10$; d) $x = 6$; e) $x = 12$; f) $x = 14$.

10. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x + e^x$. Să se calculeze f'(0). (6 pct.)

11. Să se rezolve ecuația $x^2 + x - 2 = 0$ în mulțimea numerelor reale. (6 pct.)

a)
$$x_1 = -3$$
, $x_2 = 3$; b) $x_1 = 0$, $x_2 = -1$; c) $x_1 = -1$, $x_2 = -3$; d) $x_1 = 2$, $x_2 = -1$; e) $x_1 = -2$, $x_2 = 1$;

- f) $x_1 = 3$, $x_2 = 2$.
- 12. Fie polinomul $f = X^3 + 4X^2 + X 4$. Să se determine restul împărțirii polinomului f la polinomul g = X 1. (6 pct.)
 - a) -1; b) 3; c) 6; d) 7; e) 2; f) 10.
- 13. Fie matricea $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. Să se calculeze determinantul matricei A^2 . (6 pct.)
 - a) 4; b) 25; c) 9; d) 15; e) 16; f) 0.
- 14. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[3]{x(1-x)^2}$. Să se determine suma absciselor punctelor de extrem local. (6 pct.)

a)
$$\frac{1}{6}$$
; b) $\frac{3}{4}$; c) $\frac{4}{3}$; d) $\frac{2}{5}$; e) $\frac{1}{4}$; f) $\frac{5}{2}$.

- 15. Să se rezolve ecuația $\log_3(x-1) = 2$. (6 pct.)
 - a) x = 7; b) x = 8; c) x = 14; d) x = 10; e) x = 11; f) x = 3.