Linear algebra

Inner product $\langle \psi | \times | \phi \rangle = \langle \psi | \phi \rangle = \sum_{i=1}^n \psi_i^* \phi_i$. Outer product $| \psi \rangle \langle \phi | = \sum_{i=1}^n \sum_{j=1}^n \psi_i \phi_j^* | i \rangle \langle j |$.

Tensor / Kronecker product $|\psi\rangle\otimes|\phi\rangle=|\psi_1\phi,\psi_2\phi,...,\psi_n\phi\rangle$.

$$A\otimes B=egin{bmatrix} a_{11}B & \cdots & a_{1n}B \ dots & \ddots & dots \ a_{m1}B & \cdots & a_{mn}B \end{bmatrix}.$$

Hadamard / Element-wise product $|\psi\rangle \circ |\phi\rangle = |\psi\rangle \odot |\phi\rangle = |\psi\phi\rangle = |\psi_1\phi_1, \psi_1\phi_2, ..., \psi_n\phi_n\rangle$

$$A\circ B=A\odot B=egin{bmatrix} a_{11}b_{11}&\cdots&a_{1n}b_{1n}\ dots&\ddots&dots\ a_{m1}b_{m1}&\cdots&a_{mn}b_{mn} \end{bmatrix}.$$

Eigenvalues λ_i / (normalised) eigenvectors $|v_i
angle \boxed{U|v_i
angle=\lambda_i|v_i
angle}$, for unitary matrix U .

For diagonalisable matrix, spectral decomposition $U = \sum_{i=1}^n \lambda_i |v_i
angle \; \langle v_i|$.

Unitary \cap Hermitian: $A^2 = I$ (self-inverse), e.g. X, Y, Z, H.

 \subseteq Hermitian $A=A^\dagger$ (self-adjoint) \lor **Unitary** $A^\dagger A=I \implies A^{-1}=A^\dagger$ (unique inverse).

 \subseteq normal matrices $A^\dagger A = A A^\dagger.$

Postulates of quantum mechanics

Superposition, interference

Entanglement: non-separability

Concepts in quantum mechanics

Measurement and the Helstrom-Holevo bound $p \leq rac{1+\sin heta}{2}$, where $|\langle\psi_a|\psi_b
angle|=\cos heta$.

The no-signalling principle: after measurement, the entanglement is collapsed, thus not possible to transmit information.

The no-cloning principle: impossible to copy an unknown quantum state. $\nexists U.U(|\psi\rangle|0\rangle) = |\psi\rangle|\psi\rangle$.

The no-deleting principle: impossible to delete one of the unknown quantum state copies. $\nexists \tilde{U}.\tilde{U}(|\psi\rangle|\psi\rangle)=|\psi\rangle|0\rangle.$

Quantum circuits

Universal gate set: $\{H, T, CNOT\}$, where $\pi/8$ gate is T. $\pi/4$ gate is S. (not self-invertible)

Phase gate $S=T^2$, $Z=S^2$, X=HZH , Y=iXZ=SXSZ .

- proof for Z = HXH (L8. search)
 - either by matrix multiplication.
 - or geometric interpretation (X/Z: rotate 180 degree about x/z-axis, H: swap x and z axis).

by self-inverse, $CNOT = CX = (I \otimes H) \times CZ \times (I \otimes H)$.

SWAP can be decomposed into 3 CNOTs.

Entanglement circuits via Hadamard-CNOT combination $\left| \operatorname{CNOT}(H \otimes I) | 00 \right\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \left| \operatorname{CNOT}(H \otimes I) | 00\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \right|$

$$|\operatorname{CNOT}(H\otimes I)|00
angle = rac{1}{\sqrt{2}}(|00
angle + |11
angle)$$

Quantum information applications

Teleportation (send a qubit via two bits)

Super**dense** coding (send **two bits** via one qubit) $\{I, X, Z, XZ\} o ext{CNOT} + ext{Hadamard}.$

Deutsch-Jozsa algorithm

 $f:\{0,1\}^n o \{0,1\}$, which is either constant or balanced.

$$oxed{H^{\otimes n}|x
angle=rac{1}{\sqrt{2^n}}\sum_{z\in\{0,1\}^n}(-1)^{x\cdot z}|z
angle}$$

Proof: as $|x\rangle = |x_1...x_n
angle$, where $x_i \in \{0,1\}$ and

$$egin{aligned} H|x_i
angle &=rac{1}{\sqrt{2}}(|0
angle + (-1)^{x_i}|1
angle) \ &=rac{1}{\sqrt{2}}(|z_1=0
angle + (-1)^{x_i}|z_j=1
angle) \ &=rac{1}{\sqrt{2}}((-1)^{x_i imes 0}|z_1=0
angle + (-1)^{x_i imes 1}|z_2=1
angle) \ &=rac{1}{\sqrt{2}}((-1)^{x_i imes z_1}|z_1=0
angle + (-1)^{x_i imes z_2}|z_2=1
angle) \ &=rac{1}{\sqrt{2}}\sum_{z_i\in\{0,1\}}(-1)^{x_i imes z_j}|z_j
angle \end{aligned}$$

 $H^{\otimes n}|x_1...x_n
angle=\otimes_i(H|x_i
angle)$, and the power of the function is $\sum_i x_i imes z_i=x\cdot z$, we are done.

Quantum Search

Quantum Fourier Transform (QFT)

$$|x
angle o |y
angle : \sum_{j=0}^{N-1} x_j |j
angle o \sum_{k=0}^{N-1} y_k |k
angle$$
 , where $\boxed{y_k = rac{1}{\sqrt{N}} \sum_{j=0}^{N-1} w^{jk} x_j}$ and $w^{jk} = e^{i rac{2\pi}{N} jk}$.

In the matrix form, we have the following transformation,

$$egin{bmatrix} y_0 \ y_1 \ y_2 \ \dots \ y_N \end{bmatrix} = egin{bmatrix} 1 & 1 & 1 & \dots & 1 \ 1 & \omega & \omega^2 & \dots & \omega^{N-1} \ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(N-1)} \ 1 & \dots & \dots & \dots & \dots \ 1 & \omega^{N-1} & \omega^{2(N-1)} & \dots & \omega^{(N-1)(N-1)} \end{bmatrix} \cdot egin{bmatrix} x_0 \ x_1 \ x_2 \ \dots \ x_N \end{bmatrix}, ext{where } \omega = e^{irac{2\pi}{N}}.$$

The dimension of Hilbert space for n qubits $N=2^n$. The sinusoid's frequency $f=rac{k}{N}$, i.e., k cycles per N samples.

inverse QFT (iQFT)

$$|y
angle o |x
angle : \sum_{k=0}^{N-1} y_k |k
angle o \sum_{j=0}^{N-1} x_j |j
angle$$
 , where $x_j = rac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-jk} y_k$ and $w^{-jk} = e^{-irac{2\pi}{N}jk}$.

Note that the normalizing terms should be a product of $\frac{1}{N}$, where the above satisfies unitary. The exponential term is negated in one of the two.

Quantum Phase Estimation (QPE)

precision up to t bits. If given the eigenvector $|u\rangle$ of U and eigenvalue $e^{i2\pi\phi}$ with **phase** $\phi\in[0,1)$, we have $U|u
angle=e^{i2\pi\phi}|u
angle.$

- preparation

 - $\circ~1^{st}$ register: $H^{\otimes t}|0
 angle^{\otimes t}=rac{1}{\sqrt{2^t}}\sum_{x\in\{0,1\}^t}|x
 angle$ (superposition) $\circ~2^{nd}$ register: the (superposition of) given eigenvector(s) |u
 angle with eigenvalue $e^{i2\pi\phi}$,
- oracle U^j on the $\mathbf{1}^{st}$ register (Entanglement)

$$egin{array}{l} \circ rac{1}{\sqrt{2}}(\ket{0}+\ket{1})
ightarrow rac{1}{\sqrt{2}}(\ket{0}+(e^{i2\pi\phi})^j\ket{1}) \end{array}$$

$$egin{array}{l} \circ rac{1}{\sqrt{2^t}} \sum_{x=0}^{2^t-1} |x
angle
ightarrow rac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} (e^{i2\pi\phi})^j |j
angle \end{array}$$

- $\circ 2^{nd}$ register: respective $|u\rangle$ with eigenvalue $e^{i2\pi\phi}$ and phase ϕ .
- iQFT (Interference)
- measurement
 - $\circ 1^{st}$ register: t bits approximation of $|\tilde{\phi}\rangle$
 - $\circ~2^{nd}$ register: $|u\rangle$ with phase ϕ .

Application: factoring

order finding: for coprime x and N, find $x^r \equiv 1 \mod N$, where r is the least positive integer.

$$U|r
angle=|(x\cdot r)\mod N
angle \implies$$
 For eigenstates $s\in[0,r-1],$ we have eigenvectors $|u_s
angle=rac{1}{\sqrt{r}}\sum_{j=0}^{r-1}e^{-i2\pirac{s}{r}}j|x^j\mod N
angle$ with **phase** $\phi=rac{s}{r}.$

Use QPE, 2^{nd} register prepared with equal superposition of unknown eigenvectors $\frac{1}{\sqrt{r}}\sum_{j=0}^{r-1}|u_j\rangle=|1\rangle$ (shallow-depth quantum circuit X).

factoring: for composite integer N, $N=p\cdot q$, where p and q are prime numbers.

Shor's algorithm

Application: quantum chemistry

Trotter formula: $U=e^{-i(H_1+H_2)t}=U_1U_2=e^{-iH_1t}e^{-iH_2t}+O(t^2)$, where U_1 and U_2 don't commute.

Projective measurement with (normalized) eigenvectors

Ground state energy estimation $|e_0\rangle$ of a H with eigenvalue $\lambda_0=E_0.$

Use QPE, 2^{nd} register should be prepared as close to the eigenvector such that it's sufficiently dominated by the ground state $|e_0\rangle$ (L15. adiabatic state preparation).

Fault tolerance

bit-flip, phase-flip, Shor code, Steane code

Fault tolerance threshold $p_{th}=rac{1}{c}$, for suppressed error rate $p=cp_e^2+O(p_e^3)$. Per-gate error rate $rac{(cp_e)^{2^k}}{c}$ after k concatenation.