JP 48-56843 A

Application No.: 46-90289

Filing Date: November 13, 1971

5 Publication Date: August 9, 1973

Applicant: National Food Research Institute

Title of the Invention:

METHOD FOR FRACTIONATING SOYBEAN PROTEIN Claim:

A method for fractionating soybean protein into a 11S-rich fraction and a 7S-rich fraction by extracting a defatted soybean powder with a dilute calcium salt solution.

公開特許公報

①特開昭 48-56843

昭48.(1973) 8. 9 43公開日

②特願昭 *46-90289*

昭似.(197/)//./3 ②出願日

審査請求

(全3頁)

庁内整理番号

62日本分類

2048 49 6762 44

34 CO 16 771

SPS和46年11月/3日

特許庁長官 井 土 武 久

大豆蛋白質の分面法 1. 発明の名称

2. 発明者

東京都品川区東五反田 5 - 2 - 1 1 住所

氏名

3. 特許出顧人

東京都江東区塩浜1-4 伴所

氏名

4. 代 趣 人 〒103

東京都中央区日本橋本町4丁目8番5号 住所 日本借中央ビル5階

氏名 (7407) 弁理士 久 保 由 電話 (663) 0648 番

5. 添附書類の自食

(1) 明

85

互

子 (外1名)

1. 発明の名称

大豆蛋白質の分画法

2. 特許請求の範囲

脱脂大豆粉末を稀カルシウム塩稻液で抽出処理 することにより大豆蛋白質を118成分に富む区 と75成分に登むとか。 分に分面する方法。

3. 発明の詳細な説明

本発明は脱脂大豆粉末を稀カルシウム塩酪液で 抽出処理することにより大豆蛋白質を分画する方 法に関する。

大豆蛋白質は28,78,118および158 の1成分に分けられることが知られている。本発・ 明者らは大豆蛋白質の凝固現象について研究を重 ねた結果,大豆蛋白質の主成分たる78成分と11 S成分がその性質において著しい差異があること を知見した。すなわち、118成分より製造した ものに比して非常に硬く,たとえばテキスチュロ ノーターによる測定結果では2乃至20倍も硬く, かつしなやかで弾力性に富むことを認めた。

との事実は食品加工上極めて興味深いことであ り、特に食品素材としての利用に大きな期待がか けられる。

しかしながら、従来、これら両成分の経済的な 分離法がなく,僅かに実験室的に両成分を分画す る方法として脱脂大豆粉末に5倍量の水を加えて 提拌、抽出した全水抽出溶液を氷水中に放置して 低温で沈でんし易い118成分を分画し、上澄よ り78成分を分画する方法が行たわれているにす ぎない。

ところが、このような実験室的方法によって得 られる118成分に富む分画(冷沈蛋白)の収率 は精々、全盤素の25%止まりであって、工業的 には利用し難い。

本発明者らは78成分と118成分はカルシウ ム沈でん反応において異なる挙動を示すことに着 カルシウムゲル並びに加熱ゲルは7S成分よりの ~ 目し。カルシウム塩との反応性の差異を利用して 両成分を分面する方法を見出した。すなわち、脱 脂大豆粉末を直接,稀カルジウム塩稻液で処理し て7 S 成分に富む区分を多く的に抽出し、11 S 成分に富む区分と分画する。抽出液の蛋白成分を 酸沈でんさせた後、P H 関整して再溶解する。抽出 残渣を稀アルカリ性温湯を用いて抽出処理することによって11 S 成分に富む区分が得られる。

カルンウム塩としては塩化カルンウム、硫酸カルンウム、乳酸カルンウム、その他のカルンウム 塩が使用できるが、特に塩化カルンウムが好ましい。カルンウム塩の濃度は一般的には 0.005~0.02 モルの範囲のものが良く、好ましくは 0.0 1 モル 附近のものを使用する。

本発明の方法によると、118 成分に含む分面の収率は全窒素のほぼ40 まを占め、従来法よりも格段とすぐれている。その上、各分面の蛋白質含有量はほぼ90 まに達している。また、操作も簡便であり、工程を著しく省略できるという利点もある。

前記したように、118成分より製造したゲル は非常に硬く、かつしなやかで弾力性に富むので、 かまぼこその他の食品素材としての用途が期待さ ns.

次に、本発明の実施例を示すが、本発明はこれ によって制限されるものではない。

(例)

脱脂大豆粉 1.5 % に 0.0 1 モルの塩化カルシウム溶液 1.5 % を加え、室温で 5 時間洗浄、抽出した後、シャープレス連続速心分離機により上滑と残渣とに分離した。

上滑を PH 4.5 に調整して蛋白質を沈でん分離せ しめ、PH を中性に調整し、再溶解後、噴粉乾燥した。 (A分面)

一方、残渣は7.5 ℓの水で洗浄した後,7.5 ℓ,4 0 ℃の温水に懸濁し、PH を7.5 に調整した。約1 時間放置後,シャープレス連続遠心分離機により遠心分離し、上滑を噴霧乾燥した。(B分画) 各分画の収率を第1 表に示す。

第 1 表

	全 愛 案 (9)	収率 (%)
脱脂大豆粉 (1500g)	1 1 9.4	100,
0.01M CaOl, 残渣	7 6.6	6 4
118に富む区分	5 1.2 :	4 3
アルカリ残渣	2 3.9	20
0.0 1 M CaCe, 抽出知	3 2.5	3 6
ホェイ	2 3.9	20
78に富む区分	1 9.1	16

7 8 に富む区分および11 8 に富む区分についての分析結果を以下の第2 表に示す。

無 2 寿

	强分(%)	蛋白	質(%)※	Ca (99)	P (%)
118に賞む区分	7.6	912	(98.7)	0.2	0.0 7
78に富む区分	7.7	8.88	(962)	0.2	0.0 5

* N 量を 6.2 5倍して得たもの。()内の数値は 乾燥物についての計算値である。 次に、A、B分面を用いて製造したカルシウム グルおよび加熱グルについてテキスチュロメータ ーにより物性を調べた。その結果を第1図に示す。 硬さは最初のピークの高さを入力電圧で割った 値であり、凝集性は第二のピーク部分の面積を最 初のピーク部分の面積で割った値である。

また、各分画の蛋白組成についての測定結果を 第3表に示す。

第 3 表

	78に富む区分(9)	118に富む区分(労	
28	1 4.7	7.1	
78	6 8.0	2 1.1	
118	1 7.4	. 61.8	
158	. –	9.5	
118:78	1:3.9	3.0 : 1	
118+158:78	<u> </u>	3.4 : 1 .	

ところで、本発明者らが種々の大豆品種の蛋白 組成について調べた結果によると、天然のもので 1 1 8 成分の最大のものは 118/78=1.8,7 8 成分 の最大のものは 78/118=1.3 である。したがって、 上記の結果と比較すれば明らかなように。天然の・ 脱脂大豆から直接にA分面、B分面のような蛋白 組成のものを得ることはできない。

本発明に係るA、B分面の蛋白含有単は蛋白質 含有率は蛋白質としてほぼ90gに達しており, 分離蛋白質として十分に評価し得るものである。 4. 図面の簡単を説明

第1図は本発明の方法により分画した A, B分 両を用いて製造したカルシウムゲルおよび加熱ゲ ルの物性を示すものである。

> 特許出願人 **農林省食糧研究所長** 弁理士 久保田 藤 郎 代理人

囪

6. 前記以外の発明者

住所 東京都大田区中央5-9-2

迈 氏名

昭和48年 1 月 10 日

特許庁長官 三 名 幸

1. 事件の要示

特顧昭46-90289

2. 発明の名歌

(以上)

大豆蛋白質の分面法

3. 名称を変更した者

事件との関係 特許出版人 住所 東京都在東区短浜1丁目4番12号

旧名称 段林省食行研究所县

新名称 農林省食品総合研究所長

4.代 理 人

住所 京京都中央区日本橋本町 4 丁目 8 吞 5 弓 日本将中央ビル5階

(7407) 弁理士 久保田 日 郎 電話 (663) 0 6 4 8

5. 添附存類の目録

名称変更を証明する音節

