Guidage d'un bras robotisé par vision

BORDEAU Raphaël - DE LA FUENTE Léo - GOURJON Amélie - MESSARA Errikos - PAGNY Louis Informatique et électronique des systèmes embarqués Tuteur entreprise : Vincent Vermorel

HUMAN - MOTION - ROBOT

Soutenance projet de fin d'études - 24 Mars 2021

Notre projet

4 Fonctionnement

2 Cahier des charges et organisation

5 Gestion de projet

3 Démonstration

6 Bilan

Problématique :

- Plus de 500 ligatures à faire à la main
- Positionnement des objets sur la dalle à des endroits souvent différents
- Aller vers la digitalisation du secteur

→ Projet : Guidage d'un bras robotisé par vision

DETECTER CROISEMENT DE LIGNES

REALISER UNE ACTION SUR INTERSECTIONS
DETECTEES

APPLICATION GRAPHIQUE POUR L'UTILISATEUR

UTILISER METHODE AGILE

ORGANISATION DU TRAVAIL

Interface utilisateur

Affichage avec Opencv
UI avec QT
Multithreading

Léo - Errikos

Robot

Création des routines de déplacement Gestion du magasin d'objet Détection du type d'objets (IA)

Amélie - Raphaël

Algorithme de vision

Détection des droites Calcul des intersections Suppression des ombres

Louis

PRÉSENTATION DU ROBOT

Bras robot 6 axes Communication: ethernet ou Wifl

Raspberry pi 3

Démonstration

TÂCHES

1

Démarrage de l'application

2

Détection des objets du magasin Sélection Action 3

Détection des intersections
Sélection
Action

Démarrage de l'application

Problème Calculs et interaction UI au même temps

Solution Multithreading

TÂCHES

1

Démarrage de l'application

2

Détection des objets du magasin Sélection Action 3

Détection des intersections
Sélection
Action

Détection des objets du magasin

Détection

Sélection

Action

Détection des objets du magasin

TÂCHES

1

Démarrage de l'application

2

Détection des objets du magasin Sélection Action 3

Détection des intersections
Sélection
Action

Détection des intersections

Détection des intersections

Droites horizontales et verticales

on cherche
$$(x,y)$$
,
$$\begin{cases} y = a_1 x + b_1 \\ y = a_2 x + b_2 \end{cases}$$

Détection des intersections

Simulation les croisement des fers

Routine de déplacement du robot :

- Attente de point(s) sélectionné(s) par l'utilisateur
- Déplacement du robot sur les intersections sélectionnées
- Retour en position d'observation

NOTRE PROJET EN QUELQUES CHIFFRES

5 å

3

37<u>5</u>4 指

600

91

GESTION DE PROJET: MÉTHODE SCRUM

Amélie et Léo 3 équipes : Qu'est-ce qu'ils ont réalisé la veille ? Robot : Amélie et Raphael Qu'est-ce qu'ils vont accomplir aujourd'hui? **Scrum Master** Quels sont les obstacles qui les retardent ? Encadrant du projet : Vision: Louis M.Vermorel Interface: Léo et Errikos Mêlée quotidienne Sprint de 1 à 4 semaines **Product** L'équipe Immuabilité de la Owner date de fin de sprint et des biens livrables de l'équipe 253 Réunion de Carnet Carnet Travail planification Revue de sprint terminé de produit de sprint de sprint 洼 Rétrospective de sprint Sprint: 10 jours environ

GESTION DE PROJET: MÉTHODE SCRUM ET KANBAN

Tableau de Kanban X

Scrum:

→ outils : Trello

Planning:

- Sprints
- Planning Poker à chaque réunion de planification de sprint (coût d'une tâche)

GESTION DE PROJET : AVANTAGES ET INCONVÉNIENTS

AVANTAGES

Améliore communication

Permet de réaliser des livrables abouties

Permet de bien re-définir les objectifs et ne pas se perdre

INCONVENIENTS

Difficulté de définir la durée d'une tâche et donc du sprint suivant

Augmente le nombre de réunions avec le client

Ce qui nous a aidé:

- Hiérarchie horizontale
- Bonne entente
- Travail en présentiel dans le même bureau => réactivité

BILAN

Projet qui a permis de développer les compétences que l'on cherchait pour notre projet professionnel : IA, Traitement Image, Threading

• • •

Mise en application de la théorie du management agile

Compétence transversale développée

Dernier projet d'étude réussi -> finir sur un bon sentiment

Merci pour votre attention

Application: Utilisation de PyQt

<u>Librairie Qt:</u>

- Multiplateforme
- Intègre de multiples langages

Notre utilisation de PyQt:

- Qthreads, Mutex et verrous
- Interruptions fermeture application

Computer Vision: Houghline

Computer Vision: Remove Shadow

Elimination de l'ombre → positions correctes

Computer Vision : Seuil Supplémentaire

Si seuil >
$$\theta \rightarrow$$
 pas d'intersection D1 et D2
(seuil = 0.1 rad)

Si seuil > $\theta \rightarrow$ On considère que c'est le même angle (seuil = 0.075 rad)