Санкт-Петербургский Политехнический Университет Петра Великого

Институт прикладной математики и механики Кафедра "Прикладная математика"

Отчёт по лабораторной работе №1
"Решение задачи линейного программирования симплекс-методом"

Выполнили студенты: Салихов С. Шарапов С. Мальцов Д. группа: 3630102/70401

Проверил: к.ф-м.н. Родионова Е.А.

> Санкт-Петервург 2020 г.

Содержание

				ıρ.
1.	Постановка задачи			
	1.1.	Поста	новка задачи ЛП	3
2. Условие применимо			рименимости	3
3.	Опи	ісание	алгоритма	3
	3.1.	Метод	ц искуственного базиса	3
	3.2.	Симп.	лекс-метод	4
	3.3.	Метод	ц крайних точек	4
	3.4.	Восст	ановление решения по решению двойственной задачи	4
4.	Результаты			4
	4.1.	Результат решения симплекс методом с начальным приближением методом искуственного базиса		4
		4.1.1	Начальный базис вектор полученный методом искуственного базиса	4
		4.1.2	Интерпретация решения	4
	4.2.	Ответ	в поставленной задаче	4
	4.3.	4.3. Результат методом крайних точек 4.4. Двойственная задача		5
	4.4.			5
	4.5.	Резул	ьтаты двойственной задачи	5
		4.5.1	Симплекс методом	5
		4.5.2	методом крайних точек	5
5.	Обо	снова	ние оптимальности решений	5
6	Придожения			

1 Постановка задачи

Требуется с помощью симплекс-метода с использованием начального приближения методом искусственного базиса и метода крайних точек решить прямую и двойственную задачу линейного программирования, включающую 4 переменных, 1 имеет ограничение на знак, и состоящую из 2 неравенств разных знаков и 2 равенств.

Также требуется написать алгоритм позволяющий восстановить решение прямой задачи по решению двойственной.

1.1 Постановка задачи ЛП

Составим задачу подходящую под наши требования:

$$\begin{cases} x_1 + x_3 = 5 \\ x_2 + x_3 = 4 \\ 4x_1 + 2x_4 >= 7 \\ 2x_1 + 4x_2 <= 8 \\ x_1 >= 0 \end{cases}$$

$$C = x_1 + 2x_2 + 3x_3 + 4x_4 -> \min$$

2 Условие применимости

Любая задача $\Pi\Pi$ сводится к канонической форме. Каноническая форма имеет следующий вид:

$$AX = b$$

 $X>=0,\ b>=0\ C=<\!\!c_i,\ x>->$ extr Сведём нашу систему к каноническому виду, для применения методов:

$$\begin{cases} x_1 + x_4 - x_5 = 5 \\ x_2 - x_3 + x_4 - x_5 = 4 \\ 4x_1 + 2x_6 - 2x_7 - x_8 = 7 \\ 2x_1 + 4x_2 - 4x_3 + x_9 = 8 \\ x_1, \dots, x_9 >= 0 \end{cases}$$

$$C = x_1 + 2x_2 - 2x_3 + 3x_4 - 3x_5 + 4x_6 - 4x_7 -$$
 min

3 Описание алгоритма

3.1 Метод искуственного базиса

Метод заключается в специальном выборе начального приближения (Реализуется, если матрица полного ранга). Алгоритм выбора данного приближения следующий:

1)Вводится вспомогательная задача: $\sum_{i \in M} y[i] - y[i]$

$$A[M,N]X[N]\,+\,E[M,M]y[M]\,=\,b[M]$$

$$x[N]>=0$$

$$y[N] > = 0$$

2) Начальный опорный вектор : x[N] = 0

$$y[N] = b[M],$$
 где $b[M] >= 0$

В качестве базиса столбца Е[М,М]

3)По завершении работы симплекс-метода отбрасываем y[N], которые мы ввели и получаем решение исходной задачи.

3.2 Симплекс-метод

Симплекс-метод позволяет переходить от одного опорного вектора к другому так, что значение целевой функции не увеличивается.

В результате не более, чем за C_n^m (максимальное количество опорных векторов) шагов достигается оптимальное значение, либо опровергается его существование.

3.3 Метод крайних точек

В свою очередь метод крайних точек заключается в переборе возможных базисных векторов и выявление того, при котором функция цели будет наименьшей. Своего рода это полный переборный алгоритм.

3.4 Восстановление решения по решению двойственной задачи

Обозначим через C_{σ} = $(c_{i1},..,c_{im})$ вектор строку, составленную из коэффициентов при неизвестных в целевой функции задачи. А через P^{-1} - матрицу обратную матрице P, где P состоит из компонент векторов $P_{i1},..,P_{im}$

Тогда имеет место теорема: Если основная задача имеет оптимальный план X^* , то $Y^* = C_{\sigma}P^{-1}$ является оптимальным планом двойственной задачи.

4 Результаты

4.1 Результат решения симплекс методом с начальным приближением методом искуственного базиса

4.1.1 Начальный базис вектор полученный методом искуственного базиса

В нашей задаче базис будет выглядеть следующим образом: X0 = [0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 7, 8]

4.1.2 Интерпретация решения

Условие оптимальности полученного решения:

- · Если задача на максимум в строке функционала нет отрицательных коэффициентов (т.е. при любом изменении переменных значение итогового функционала расти не будет).
- \cdot Если задача на минимум в строке функционала нет положительных коэффициентов (т.е. при любом изменении переменных значение итогового функционала уменьшаться не будет).

4.2 Ответ в поставленной задаче

$$X = [2.0, 1.0, 0.0, 3.0, 0.0, 0.0, 0.5, 0.0, 0.0]$$

$$N = [0, 1, 3, 6]$$

Оптимальное значение функции цели: C=11.0

4.3 Результат методом крайних точек

4.4 Двойственная задача

Двойственная к поставленной задаче(из канонического вида поставленной задачи) в каононическом виде:

$$\begin{cases} x_0 - x_1 + 4x_4 - 4x_5 + 2x_6 - 2x_7 + x_8 = 1 \\ x_2 - x_3 + 4x_6 - 4x_7 + x_9 = 2 \\ x_2 - x_3 + 4x_6 - 4x_7 - x_{10} = 2 \\ x_0 - 1x_1 + x_2 + -x_3 + x_{11} = 3 \\ x_0 - x_1 + x_2 - x_3 - x_{12} = 3 \\ 2x_4 - 2x_5 + x_{13} = 4 \\ 2x_4 - 2x_5 - x_{14} = 4 \\ -x_4 + x_5 + x_{15} = 0 \\ x_6 - x_7 + x_{16} = 0 \\ x_0 ... x_{16} >= 0 \end{cases}$$

$$= 5 * x_0 - 5 * x_1 + 4 * x_2 - 4 * x_3 + 7 * x_4 - 7 * x_5 + 8 * x_6 - 8 * x_7 - max$$

4.5 Результаты двойственной задачи

4.5.1 Симплекс методом

$$N = [1, 2, 4, 7, 15, 16]$$

4.5.2 методом крайних точек

5 Обоснование оптимальности решений

Обратимся к теореме: допустимое базисное решение системы определяет крайнюю точку области, заданной неравенствами.

Эта теорема позволяет утверждать следующее: если задача имеет оптимальное решение, то существует хотя бы одно оптимальное базисное решение.

Симплекс-метод может быть определен теперь как метод, предполагающий последовательный анализ базисных решений системы.

Предварительно исследуем вопрос существования решений, симплекс метод исключает

необходимость таких исследований, т. е. он не связан с априорными предположениями о свойствах систем. Симплекс- метод он состоит из двух этапов. Для 1-го этапа характерно следующее: начальные действия производятся с системой, входящей составной частью в стандартную форму задачи, причем не нужно ничего знать об этой системе или предварительно ее преобразовывать; в результате либо окажется найденным исходное базисное решение системы, либо последует вывод об отсутствии решения рассматриваемой задачи линейного программирования.

Если возможность решения подтверждена, начинается второй этап реализации симплексметода, приводящий к отысканию экстремума.

Обратимся теперь к теореме: допустимое базисное решение $x_i=B_i$ (i = 1,...,m), $x_j=0$ (j = m + 1,...,n) является оптимальным тогда, когда коэффициенты c_j при не базисных переменных в z = $z_0+\sum_{j=m+1}^n c_j x_j$ не отрицательны. Из теоремы следует: всякое решение системы, которому соответствует нулевая сумма

Из теоремы следует: всякое решение системы, которому соответствует нулевая сумма (z - $z_0 = 0$) при $\forall c_j > 0$ и $\forall x_j > = 0$ (j = m + 1,..., n), также будет оптимальным. Наконец, допустимое оптимальное базисное решение окажется единственным, если $\forall c_j > 0$.

6 Приложения

Код лаборатрной