AMENDMENTS TO THE CLAIMS

Claim 1 (Original): A wireless communication system for hosting a plurality of processes, each process in said plurality of processes executed in accordance with a communication protocol, the communication protocol including a set of functions, said wireless communication system comprising:

a plurality of application specific instruction set processors (ASISPs), each ASISP capable of executing a subset of said set of functions included in said communication protocol; and

a scheduler connected to said plurality of ASISPs for scheduling said plurality of ASISPs in accordance with a time-slicing algorithm so that each process in said plurality of processes is supported by said wireless communication system.

Claim 2 (Original): The wireless communication system of claim 1 wherein each said ASISP in said plurality of ASISPs further comprises:

an input register for receiving an input program and state associated with a process in said plurality of processes, each instruction in said input program being part of a limited purpose instruction set that supports said subset of functions included in said communication protocol; and

an output register for storing a value that indicates a state of said process after execution of said input program.

Claim 3 (Original): The wireless communication system of claim 2, wherein

said input program is associated with a first process selected from said plurality of processes; and

3

said time-slicing algorithm includes a step of allocating a selected ASISP in said plurality of ASISPs to said input program for a predetermined period of time.

Claim 4 (Original): The wireless communication system of claim 3 wherein said input program is not interrupted by said scheduler during said predetermined period of time.

Claim 5 (Original): The wireless communication system of claim 3 wherein execution of said input program is completed during said predetermined period of time.

Claim 6 (Original): The wireless communication system of claim 2, wherein said scheduler further includes a synchronization mechanism for synchronizing said plurality of ASISPs, the synchronization mechanism capable of reallocating an ASISP in said plurality of ASISPs from a first input program that is associated with a first process to a second input program that is associated with a second process.

Claim 7 (Original): The wireless communication system of claim 6 wherein said first process is a first echo and said second process is a second echo.

Claim 8 (Original): The wireless communication system of claim 6 wherein said first process is each echo associated with a first mobile and said second process is each echo associated with a second mobile.

Claim 9 (Original): The wireless communication system of claim 2, wherein

said time-slicing algorithm defines a predetermined period of time;

said limited purpose instruction set includes a "wait" instruction for synchronization; and

each ASISP in said plurality of ASISPs is configured so that when said "wait" instruction is received by said input register, the ASISP does execute a communication protocol function during said predetermined period of time and then automatically returns to an idle state thereby reducing a power consumption of the ASISP during the predetermined period of time.

Claim 10 (Original): The wireless communication system of claim 2, further including a plurality of memory modules, each memory module in said plurality of memory modules associated with a different ASISP selected from said plurality of ASISPs.

Claim 11 (Original): The wireless communication system of claim 10 wherein said state of said process stored in said output register is stored in a unique segment of said different memory module, the unique segment of said memory module being determined by an identity of said process.

Claim 12 (Original): The wireless communication system of claim 11 wherein said output register is further used to store a process identifier value that provides said identity of said process.

Claim 13 (Original): The wireless communication system of claim 1 wherein said communication protocol is a code division multiple access (CDMA) protocol.

Claim 14 (Original): The wireless communication system of claim 13 wherein said communication protocol is selected from the group consisting of IS-95 CDMA, IS-95B CDMA, CDMA TIA IS2000, TIA IS 2000A, wideband CDMA (WCDMA), cdma2000, and ARIB WCDMA.

Claim 15 (Original): The wireless communication system of claim 1 wherein said communication protocol is a time division multiple access (TDMA) protocol.

Claim 16 (Original): The wireless communication system of claim 15 wherein said communication protocol is IS-136 TDMA.

6

Claim 17 (Original): The wireless communication system of claim 1 wherein said ASISP is a finger ASISP and said subset of functions comprises a delay lock loop (DLL) and a channel estimation.

Claim 18 (Original): The wireless communication system of claim 1 wherein said ASISP is a combiner ASISP and said subset of functions comprises a frequency error estimation, a finger energy estimation, and a signal-to-interference (SIR) estimation.

Claim 19 (Original): The wireless communication system of claim 1 wherein each process in said plurality of processes is an echo.

Claim 20 (Original): The wireless communication system of claim 1 wherein each process in said plurality of processes uniquely corresponds to a different mobile hosted by said wireless

Application No.: 09/912,721

Docket No.: 04303/100N159-US1

communication system and each said process combines a plurality of echoes associated with the corresponding different mobile.

7

Claim 21 (Original): The wireless communication system of claim 1 wherein each said ASISP in said plurality of ASISPs is capable of executing said subset of said set of functions on a time-scale of about 400 to about 5,000 times per second.

Claim 22 (Original): The wireless communication system of claim 1 wherein each said ASISP in said plurality of ASISPs further comprises:

an input register for receiving an input program associated with a process in said plurality of processes, each instruction in said input program being part of a limited purpose instruction set that supports said subset of functions included in said communication protocol; and

each instruction in said limited purposed instruction set includes an arithmetic logic unit field, a load field, and a load/store field.

Claim 23 (Original): A method for reducing an amount of inter-process overhead between computing components in a device capable of hosting a plurality of communication processes, each communication process in said plurality of communication processes operating in accordance with a communication protocol, comprising:

protocol; and

8

providing a centralized controller for sending control commands to each said ASISP in said plurality of ASISPs; wherein

said centralized controller schedules the functions calculated by each said ASISP in said plurality of ASISPs in a master/slave relationship, thereby reducing said amount of inter-process overhead between said computing components in said device.

Claim 24 (Original): A method for hosting a communication process with a communication architecture in accordance with a communication protocol, comprising:

allocating a plurality of application specific instruction set processors (ASISPs) in said architecture to support said communication process, each ASISP in said plurality of ASISPs capable of executing a subset of a set of functions defined by said communication protocol; and

providing a centralized controller in said architecture for scheduling each said ASISP in said plurality of ASISPs in accordance with a scheduling scheme.

from said centralized controller, wherein said process state information describes a state of said communication process.

Claim 26 (Original): The method of claim 25, wherein each said ASISP in said plurality of ASISPs receives input from non-scheduling control blocks in said communication architecture in addition to said scheduling commands from said centralized controller.

Claim 27 (Original): The method of claim 24, wherein said scheduling scheme is a time-slicing algorithm that allocates computational tasks to each ASISP is said plurality of ASISPs in a time-sliced fashion.

Claim 28 (Original): The method of claim 24 wherein a first group of ASISPs in said plurality ASISPs are dimensioned and configured to perform finger calculations and a second group of ASISPs in said plurality of ASISPs are dimensioned and configured to perform combiner calculations.

Claim 29 (Original): The method of claim 28 wherein said subset of functions associated with each ASISP is said first group of ASISPs comprise a delay lock loop (DLL) and a channel estimation.

Claim 30 (Original): The method of claim 28 wherein said subset of functions associated with each ASISP in said second group of ASISPs comprise a frequency error estimation, a finger energy estimation, and a signal-to-interference (SIR) estimation.

Claim 31 (Original): A method for hosting a plurality of processes in a wireless communication system, each process in said plurality of processes executed in accordance with a communication protocol, the communication protocol including a set of functions, comprising:

distributing a plurality of application specific instruction set processors (ASISPs), each ASISP capable of executing a subset of said set of functions included in said communication protocol; and

providing a scheduler for scheduling said plurality of ASISPs in accordance with a timeslicing algorithm so that each process in said plurality of processes is supported by said wireless communication system.

Claim 32 (Original): The method of claim 31 wherein each said ASISP in said plurality of ASISPs is dimensioned and configured to provide:

an input register for receiving an input program and state associated with a process in said plurality of processes, each instruction in said input program being part of a limited purpose instruction set that supports said subset of functions included in said communication protocol; and

an output register for storing a value that indicates a state of said process after execution of said input program.

Claim 33 (Original): The method of claim 32, wherein

said input program is associated with a first process selected from said plurality of processes; and

said time-slicing algorithm includes a step of allocating a selected ASISP in said plurality of ASISPs to said input program for a predetermined period of time.

Claim 34 (Original): The method of claim 33 wherein execution of said input program is completed during said predetermined period of time.

Claim 35 (Original): The method of claim 32, wherein said scheduler further includes a synchronization mechanism for synchronizing said plurality of ASISPs, the synchronization mechanism capable of reallocating an ASISP in said plurality of ASISPs from a first input program

second process is a second echo.

Docket No.: 04303/100N159-US1

that is associated-with -a-first process to a second input program that is associated with a second process.

Claim 36 (Original): The method of claim 35 wherein said first process is a first echo and said

Claim 37 (Original): The method of claim 35 wherein said first process is each echo associated with a first mobile and said second process is each echo associated with a second mobile.

Claim 38 (Original): The method of claim 32, wherein

said time-slicing algorithm defines a predetermined period of time;

said limited purpose instruction set includes a "wait" instruction for synchronization; and

each ASISP in said plurality of ASISPs is configured so that when said "wait" instruction is received by said input register, the ASISP does execute a communication protocol function during said predetermined period of time and then automatically returns to an idle state thereby reducing a power consumption of the ASISP during the predetermined period of time.

Claim 39 (Original): The method of claim 32, further comprising

distributing a plurality of memory modules, each memory module in said plurality of memory modules associated with a different ASISP selected from said plurality of ASISPs.

Claim 40 (Original): The wireless communication system of claim 39 wherein said state of said process stored in said output register is stored in a unique segment of said different memory module, the unique segment of said memory module being determined by an identity of said process.

Claim 41 (Original): The method of claim 40 wherein said output register is further used to store a process identifier value that provides said identity of said process.

Claim 42 (Original): The method of claim 31 wherein said communication protocol is a code division multiple access (CDMA) protocol.

Claim 43 (Original): The method of claim 42 wherein said communication protocol is selected from the group consisting of IS-95 CDMA, IS-95B CDMA, CDMA TIA IS2000, TIA IS 2000A, wideband CDMA (WCDMA), cdma2000, and ARIB WCDMA.

Claim 44 (Previously Presented): The method of claim 31 wherein each process in said plurality of processes is an echo.

Claim 45 (Previously Presented): The method of claim 31 wherein each process in said plurality of processes uniquely corresponds to a different mobile hosted by said wireless communication system and each said process combines a plurality of echoes associated with the corresponding different mobile.

Claim 46 (Previously Presented): The method of claim 31 wherein each said ASISP in said plurality of ASISPs is capable of executing said subset of said set of functions on a time-scale of about 400 to about 5,000 times per second.

Claim 47 (Previously Presented): The method of claim 31 wherein each said ASISP in said plurality of ASISPs further comprises:

an input register for receiving an input program associated with a process in said plurality of processes, each instruction in said input program being part of a limited purpose instruction set that supports said subset of functions included in said communication protocol; and

each instruction in said limited purposed instruction set includes an arithmetic logic unit field, a load field, and a load/store field.