Devoir à la maison n°20

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

1 Par définition de l'espérance,

$$\mathbb{E}(X) = \sum_{k=1}^{n} k \mathbb{P}(X = k)$$

$$= \sum_{k=1}^{m-1} k \mathbb{P}(X = k) + \sum_{k=m}^{n} k \mathbb{P}(X = k)$$

$$\leq (m-1) \sum_{k=1}^{m-1} \mathbb{P}(X = k) + n \sum_{k=m}^{n} \mathbb{P}(X = k)$$

$$= (m-1) \mathbb{P}(X \leq m-1) + n \mathbb{P}(X \geq m)$$

$$\leq (m-1) + n \mathbb{P}(X \geq m)$$

2 Supposons $n \ge 2$ et donnons-nous $k \in [2, n]$. Comme ln est croissante sur [k-1, k],

$$\forall t \in [k-1, k], \ln(t) \le \ln(k)$$

Par croissance de l'intégrale,

$$\int_{k-1}^{k} \ln(t) \, dt \le \int_{k-1}^{k} \ln(k) = \ln(k)$$

Ainsi

$$\int_{1}^{n} \ln(t) dt \sum_{k=2}^{n} \int_{k-1}^{k} \ln(t) dt \le \sum_{k=2}^{n} \ln(k) = \sum_{k=1}^{n} \ln(k)$$

Comme une primitive de ln sur \mathbb{R}_+^* est $t \mapsto t \ln(t) - t$,

$$n\ln(n) - n + 1 \le \sum_{k=1}^{n} \ln(k)$$

Cette inégalité est encore vraie si n = 1. On peut encore écrire

$$n\ln(n) - n + 1 \le \ln(n!)$$

puis par croissance de l'exponentielle

$$\left(\frac{n}{e}\right)^n e \le n!$$

Or $e \ge 1$ donc

$$\left(\frac{n}{e}\right)^n \leq n!$$

Comme u est bornée, U_n est une partie non vide et bornée de \mathbb{R} . Elle admet donc une borne inférieure et une borne supérieure, ce qui justifie la définition de \underline{u}_n et \overline{u}_n .

Puisque $U_{n+1} \subset U_n$, $\inf(U_n) \le \inf(U_{n+1})$ et $\sup(U_n) \ge \sup(U_{n+1})$. Les suites \underline{u} et \overline{u} sont donc respectivement croissante et décroissante.

Enfin, u étant bornée, les suites u et \overline{u} le sont également. Elles convergent d'après le théorème de convergence monotone.

1

4 Soit v une suite décroissante et plus grande que u. Fixons $n \in \mathbb{N}^*$. Alors

$$\forall k \geq n, u_k \leq v_k \leq v_n$$

Ainsi

$$\overline{u}_n = \sup_{k \ge n} u_k \le v_n$$

Donc $\overline{u} \leq v$: \overline{u} est donc la plus petite suite décroissante et plus grande que u. De même, soit v une suite croissante et plus petite que u. Fixons $n \in \mathbb{N}^*$. Alors

$$\forall k \geq n, u_k \geq v_k \geq v_n$$

Ainsi

$$\overline{u}_n = \inf_{k > n} u_k \ge v_n$$

Donc $v \leq \underline{u} : \underline{u}$ est donc la plus grande suite croissante et plus petite que u.

Fixons $n \in \mathbb{N}^*$. Alors pour tout entier $k \geq n$, $u_k \leq v_k$ puis $\sup_{k \geq n} u_n \leq \sup_{k \geq n} v_k$ ou encore $\overline{u}_n \leq \overline{v}_n$. On en déduit que $\lim \overline{u} \leq \lim \overline{v}$.

6 Remarquons que pour tout $n \in \mathbb{N}^*$, $\underline{u}_n \le u_n \le \overline{u}_n$.

Si \underline{u} et \overline{u} sont adjacentes, elles convergent vers la même limite. D'après le théorème d'encadrement, u converge également (vers cette même limite).

Supposons que u converge. On sait déjà que \overline{u} et \overline{u} sont respectivement croissante et décroissante. Notons ℓ la limite de u et donnons-nous $\varepsilon > 0$. Par définition de la limite, il existe $p \in \mathbb{N}^*$ tel que pour tout entier $n \ge p$, $\ell - \varepsilon \le u_n \le \ell + \varepsilon$. Si l'on se donne un entier $n \ge p$, alors pour tout entier $k \ge n$, on a encore $\ell - \varepsilon \le u_k \le \ell + \varepsilon$. Ainsi

$$\ell - \varepsilon \le \inf_{k \ge n} u_k \le \sup_{k \ge n} u_k \le \ell + \varepsilon$$

Finalement.

$$\forall n \geq p, \ \ell - \varepsilon \leq \underline{u}_n \leq \overline{u}_n \leq \ell + \varepsilon$$

Ceci montre que \underline{u} et \overline{u} convergent toutes deux vers ℓ . Elles sont donc adjacentes. On a également montré que dans ce cas, $\lim u = \lim u = \lim \overline{u}$.

7 Par définition de la division euclidienne

$$m = qn + r = (q - 1)n + (n + r)$$

Par définition de la sous-additivité :

$$u_m = u_{(q-1)n+(n+r)} \le u_{(q-1)n} + u_{n+r}$$

Or on montre aisément par récurrence que pour tout $k \in \mathbb{N}^*$, $u_{kn} \le k \le u_n$. Donc

$$u_m \le (q-1)u_n + u_{n+r}$$

Ainsi

$$\frac{u_m}{m} \leq \frac{q-1}{m}u_n + \frac{u_{n+r}}{m} = \frac{(q-1)n}{m} \cdot \frac{u_n}{n} + \frac{u_{n+r}}{m}$$

On a vu précédemment que (q-1)n = m-n-r. De plus, par définition du reste d'une division euclidienne, $0 \le r \le n-1$ donc $n \le n+r \le 2n-1$. Ainsi

$$u_{n+r} \le \max\{u_n, u_{n+1}, \dots, u_{2n-1}\}$$

Finalement,

$$\frac{u_m}{m} \leq \frac{m-n-r}{m} \cdot \frac{u_n}{n} + \frac{\max\{u_n, u_{n+1}, \dots, u_{2n-1}\}}{m}$$

8 La suite u étant positive, la suite $\left(\frac{u_m}{m}\right)_{m\in\mathbb{N}^*}$ est minorée par 0.

De plus, en prenant n = 1 dans la question précédente, on a r = 0 et

$$\forall m \geq 2, \frac{u_n}{m} \leq \frac{m-1}{m}u_1 + \frac{u_1}{m} = u_1$$

© Laurent Garcin MP Dumont d'Urville

La suite $\left(\frac{u_m}{m}\right)_{m\in\mathbb{N}^*}$ est donc également majorée.

Reprenons à nouveau la question précédente avec $n \in \mathbb{N}^*$ quelconque.

$$\forall m \geq 2n, \ \frac{u_m}{m} \leq \frac{m-n-r}{m} \cdot \frac{u_n}{n} + \frac{\max\{u_n, u_{n+1}, \dots, u_{2n-1}\}}{m} \leq \frac{u_n}{n} + \frac{M_n}{m}$$

en posant $M_n = \max\{u_n, u_{n+1}, \dots, u_{2n-1}\}$. La suite $\left(\frac{u_n}{n} + \frac{M_n}{m}\right)_{m \in \mathbb{N}^*}$ converge évidemment vers $\frac{u_n}{n}$ donc d'après la question $\mathbf{6}$,

$$\overline{\lim_{m \to +\infty}} \frac{u_n}{n} + \frac{M_n}{m} = \lim_{m \to +\infty} \frac{u_n}{n} + \frac{M_n}{m} = \frac{u_n}{n}$$

Mais d'après la question 5 (encore valide si une suite est plus grande qu'une autre à partir d'un certain rang),

$$\overline{\lim}_{m \to +\infty} \frac{u_m}{m} \le \overline{\lim}_{m \to +\infty} \frac{u_n}{n} + \frac{M_n}{m} = \frac{u_n}{n}$$

9 Posons $\ell = \overline{\lim_{m \to +\infty}} \frac{u_m}{m}$ et $v_n = \frac{u_n}{n}$ pour $n \in \mathbb{N}^*$. Alors

$$\forall n \in \mathbb{N}^*, \ell \leq v_n \leq \overline{v_n}$$

D'après le théorème des gendarmes, $\lim v_n = \ell$.

10 Soit
$$\omega \in \bigcap_{k=1}^{n} \{X_k < x\}$$
. Alors pour tout $k \in [1, n]$, $X_k(\omega) < x$ donc $Y_n(\omega) = \frac{1}{n} \sum_{k=1}^{n} X_k(\omega) < \frac{nx}{n} = x$. Ainsi

$$\bigcap_{k=1}^{n} \{ \mathbf{X}_k < x \} \subset \{ \mathbf{Y}_n < x \}$$

On en déduit que

$$\mathbb{P}\left(\bigcap_{k=1}^{n} \{X_k < x\}\right) \le \mathbb{P}(Y_n < x)$$

Mais comme $X_1, ..., X_n$ sont mutuellement indépendantes,

$$\prod_{k=1}^{n} \mathbb{P}(X_k < x) \le \mathbb{P}(Y_n < x)$$

Comme les X_k ont tous la même loi,

$$\forall k \in [1, n], \ \mathbb{P}(X_k < x) = \mathbb{P}(X_1 < x) = 1$$

Finalement, $\mathbb{P}(Y_n < x) \ge 1$ et donc $\mathbb{P}(Y_n < x) = 1$.

Soit
$$\omega \in \bigcap_{k=1}^{n} \{X_k \ge x\}$$
. Alors pour tout $k \in [[1, n]], X_k(\omega) \ge x$ donc $Y_n(\omega) = \frac{1}{n} \sum_{k=1}^{n} X_k(\omega) \ge \frac{nx}{n} = x$. Ainsi

$$\bigcap_{k=1}^{n} \{ X_k \ge x \} \subset \{ Y_n \ge x \}$$

On en déduit que

$$\mathbb{P}\left(\bigcap_{k=1}^{n} \{X_k \ge x\}\right) \le \mathbb{P}(Y_n \ge x)$$

Mais comme $X_1, ..., X_n$ sont mutuellement indépendantes,

$$\prod_{k=1}^{n} \mathbb{P}(X_k \ge x) \le \mathbb{P}(Y_n \ge x)$$

Comme les X_k ont tous la même loi,

$$\forall k \in [1, n], \ \mathbb{P}(X_k < x) = \mathbb{P}(X_1 < x) > 0$$

Finalement, $\mathbb{P}(Y_n < x) > 0$.

© Laurent Garcin MP Dumont d'Urville

11 Soit
$$\omega \in \left(\{ \mathbf{Y}_m \ge x \} \cap \left\{ \frac{1}{n} \sum_{k=m+1}^{m+n} \mathbf{X}_k \ge x \right\} \right)$$
. Alors

$$\frac{1}{m} \sum_{k=1}^{m} X_k(\omega) \ge x \qquad \text{et} \qquad \frac{1}{n} \sum_{k=m+1}^{m+n} X_k(\omega) \ge x$$

donc

$$\sum_{k=1}^{m} X_k(\omega) \ge mx \qquad \text{et} \qquad \sum_{k=m+1}^{m+n} X_k(\omega) \ge nx$$

puis

$$\sum_{k=1}^{m+n} X_k(\omega) \ge mx + nx = (m+n)x$$

et enfin

$$\frac{1}{m+n}\sum_{k=1}^{m+n}X_k(\omega)\geq x$$

ou encore

$$Y_{m+n}(\omega) \ge x$$

Ainsi $\omega \in \{Y_{m+n} \ge x\}$. On en déduit que

$$\left(\{ \mathbf{Y}_m \ge x \} \cap \left\{ \frac{1}{n} \sum_{k=m+1}^{m+n} \mathbf{X}_k \ge x \right\} \right) \subset \{ \mathbf{Y}_{m+n} \ge x \}$$

puis

$$\mathbb{P}\left(\{\mathbf{Y}_m \geq x\} \cap \left\{\frac{1}{n} \sum_{k=m+1}^{m+n} \mathbf{X}_k \geq x\right\}\right) \leq \mathbb{P}(\mathbf{Y}_{m+n}) \geq x$$

D'après le lemme des coalitions, Y_m et $\frac{1}{n}\sum_{k=m+1}^{m+n}X_k$ sont indépendantes donc

$$\mathbb{P}\left(\{\mathbf{Y}_m \geq x\} \cap \left\{\frac{1}{n} \sum_{k=m+1}^{m+n} \mathbf{X}_k \geq x\right\}\right) = \mathbb{P}(\mathbf{Y}_m \geq x) \mathbb{P}\left(\frac{1}{n} \sum_{k=m+1}^{m+n} \mathbf{X}_k \geq x\right)$$

Comme les X_k sont indépendantes, on a en termes de fonctions génératrices :

$$G_{\sum_{k=m+1}^{m+n} X_k} = \prod_{k=m+1}^{m+n} G_{X_k}$$

Mais comme les \mathbf{X}_k suivent la même loi, elles ont même fonction génératrice. Ainsi

$$G_{\sum_{k=m+1}^{m+n} X_k} = \prod_{k=1}^n G_{X_k} = G_{\sum_{k=1}^n X_k}$$

Par conséquent, $\sum_{k=1}^{m+n} X_k$ et $\sum_{k=1}^{n} X_k$ ont la même loi. On en déduit que

$$\mathbb{P}\left(\sum_{k=m+1}^{m+n} X_k \ge nx\right) = \mathbb{P}\left(\sum_{k=1}^{n} X_k \ge nx\right)$$

et donc

$$\mathbb{P}\left(\frac{1}{n}\sum_{k=m+1}^{m+n}X_k \geq x\right) = \mathbb{P}\left(\frac{1}{n}\sum_{k=1}^{n}X_k \geq x\right) = \mathbb{P}(Y_n \geq x)$$

Finalement

$$\mathbb{P}(Y_m \ge x)\mathbb{P}(Y_n \ge x) \le \mathbb{P}(Y_{m+n} \ge x)$$

Si $\mathbb{P}(X_1 \ge x) = 0$, alors $\mathbb{P}(X_1 < x) = 1$. D'après la question **10**, $\mathbb{P}(Y_n < x) = 1$ pour tout $n \in \mathbb{N}^*$ et donc $\mathbb{P}(Y_n \ge x) = 0$

pour tout $n \in \mathbb{N}^*$. Ainsi $\left(\mathbb{P}(Y_n \ge x)^{\frac{1}{n}}\right)_{n \in \mathbb{N}^*}$ converge vers 0. Si $\mathbb{P}(X_1 \ge x) > 0$, alors $\mathbb{P}(Y_n \ge x) > 0$ pour tout $n \in \mathbb{N}^*$ toujours d'après la question **10**. On peut alors poser $u_n = -\ln \mathbb{P}(Y_n \ge x)$. La suite (u_n) est alors positive puisqu'une probabilité est inférieure ou égale à 1. D'après la question précédente permet alors d'affirmer que $u_{m+n} \le u_m + u_n$ pour tout $(m,n) \in (\mathbb{N}^*)^2$. La question 9 montre que la suite $\left(\frac{u_n}{u_n}\right)$ converge vers un réel ℓ . Il en découle de $\left(\mathbb{P}(\mathbf{Y}_n \geq x)^{\frac{1}{n}}\right)$ converge vers $e^{-\ell}$.

© Laurent Garcin MP Dumont d'Urville

13 Le résultat est clair lorsque s = 1. Supposons-le vrai pour un certain $s \in \mathbb{N}^*$. Donnons-nous alors une liste a de jetons donnant s + 1 piles. Soit $z = a_j$ une jeton de la pile s + 1. A un moment précédent, on a donc mis un jeton $z' = a_i$ sur la pile s tel que i < j et $a_i > a_j$. Considérons la liste a' consistant en la liste a privée des éléments de la pile s + 1. En appliquant le processus de l'énoncé à a', on va donc aboutir aux mêmes s piles qu'avec la liste a. En appliquant l'hypothèse de récurrence, il existe une suite b' vérifiant :

- b' est décroissante et de longueur s;
- pour tout $i \in [1, s]$, le jeton b'_i est dans la pile i;
- $b'_s = z'$.

On construit alors b en posant $b_i = b'_i$ pour $i \in [1, s]$ et $b_{s+1} = z$.

- b' est décroissante de longueur s et $b_{s+1} = z = a_i < a_i = b_s$ donc b est décroissante de longueur s + 1.
- Pour tout $i \in [1, s]$, $b_i = b_i'$ est bien dans la pile i et b_{s+1} est bien dans la pile s+1.
- $b_{s+1} = z$.

Le résultat est donc établi par récurrence.

Notons à nouveau s le nombre de piles obtenu à l'aide du processus décrit dans la question précédente. Si $s \ge q+1$, on extrait de a une liste décroissante de longueur s comme dans la question précédente. En prenant les q+1 premiers termes de cette liste, on obtient une liste extraite de a décroissante et de longueur q+1.

Si $s \le q$, une des piles contient au moins p+1 éléments, sinon le nombre de jetons serait inférieur ou égal à pq. Les éléments de cette pile (du bas vers le haut) forment une suite extraite de a croissante et de longeur supérieure ou égale à p+1. En extrayant les p+1 premiers termes de cette suite extraite, on obtient une suite extraite de a croissante et de longueur p+1.

Soit $i \in [1, n]$. Alors $\mathbb{P}(\{A_1 = i\} \cap \{A_2 = i\}) = 0$ car pour tout $\omega \in \Omega$, $B(\omega)$ est injective. Mais $\mathbb{P}(A_i = 1) \neq 0$ et $\mathbb{P}(A_2 = i) \neq 0$ car il existe des permutations $\sigma \in S_n$ telles que $\sigma(1) = i$ et $\sigma(2) = i$. Les variables aléatoires A_1, \dots, A_n ne sont donc pas mutuellement indépendantes.

Comme B suit une loi uniforme sur S_n , $\mathbb{P}(A^s) = \frac{\operatorname{card} S_{n,s}}{\operatorname{card} S_n}$ où $S_{n,s}$ est l'ensemble des permutations $\sigma \in S_n$ telles que $\sigma(s_1) < \sigma(s_2) < \dots < \sigma(s_k)$. Se donner une telle permutation revient à choisir les k images de s_1, \dots, s_k dans $[\![1,n]\!]$ puis à se donner une bijection de $[\![1,n]\!] \setminus \{s_1,\dots,s_k\}$ sur $[\![1,n]\!] \setminus \{\sigma(s_1),\dots,\sigma(s_k)\}$. Ainsi $\operatorname{card} S_{n,s} = \binom{n}{k}(n-k)! = \frac{n!}{k!}$. Puisque $\operatorname{card} S_n = n!$, on obtient $\mathbb{P}(A^s) = \frac{1}{k!}$.

17 Notons f l'application qui à $\sigma \in S_n$ associe la longueur de la plus longue liste extraite de $(\sigma(1), \dots, \sigma(n))$. Alors $C_n = f(B)$. Considérons également l'application Φ qui $\sigma \in S_n$ associe la permutation σ' définie par $\sigma'(k) = \sigma(n+1-k)$. Alors Φ est une involution de S_n donc une bijection. De plus, Φ établit une bijection entre les suites croissantes $(\sigma(1), \dots, \sigma(n))$ et $(\sigma'(1), \dots, \sigma'(n))$. On en déduit que $D_n = f \circ \Phi(B)$. Pour tout $k \in [1, n]$,

$$\{C_n = k\} = \{B \in f^{-1}(\{k\})\}\$$
 et $\{D_n = k\} = \{B \in \Phi^{-1}(f^{-1}(\{k\}))\}\$

Or B suit une loi uniforme sur S_n donc

$$\mathbb{P}(\mathbf{C}_n = k) = \frac{\operatorname{card} f^{-1}(\{k\})}{\operatorname{card} \mathbf{S}_n} \qquad \text{et} \qquad \mathbb{P}(\mathbf{D}_n = k) = \frac{\operatorname{card} \Phi^{-1}(f^{-1}(\{k\}))}{\operatorname{card} \mathbf{S}_n}$$

Comme Φ est bijective, card $f^{-1}(\{k\}) = \operatorname{card} \Phi^{-1}(f^{-1}(\{k\}))$ donc $\mathbb{P}(C_n = k) = \mathbb{P}(D_n = k)$. Ainsi C_n et D_n ont la même loi.

Notons p le plus grand entier naturel tel que $p^2+1 \le n$ i.e. $p = \left \lfloor \sqrt{n-1} \right \rfloor$. La plus longue liste croissante (resp décroissante) extraite de A est plus longue que la plus longue liste croissante (resp. décroissante) extraite des p^2+1 éléments de A. Mais l'une de ces deux dernières listes est de longueur supérieure ou égale à p+1 d'après la question 14 et ces deux listes sont de longueur au moins 1. Ainsi $C_n+D_n \ge p+1+1=p+2$. Par linéarité et croissance de l'espérance

$$\mathbb{E}(\mathbf{C}_n) + \mathbb{E}(\mathbf{D}_n) = \mathbb{E}(\mathbf{C}_n + \mathbf{D}_n) \geq p + 2$$

Or C_n et D_n ont la même loi donc la même espérance. Ainsi

$$\mathbb{E}(C_n) \ge \frac{p+2}{2} = \frac{\left|\sqrt{n-1}\right| + 2}{2} > \frac{\sqrt{n-1} + 1}{2}$$

De plus,

$$\sqrt{n} - \sqrt{n-1} = \frac{1}{\sqrt{n} + \sqrt{n-1}} \le 1$$

donc $\sqrt{n-1} + 1 \ge \sqrt{n}$. Finalement,

$$\mathbb{E}(C_n) \ge \frac{\sqrt{n}}{2}$$

18 Notons E_k l'ensemble des suites strictement croissantes de longueur k extraites de la liste (1, 2, ..., n). Alors

$${C_n \ge k} \subset \bigcup_{s \in E_k} A^s$$

puis

$$\mathbb{P}(\mathsf{C}_n \geq k) \leq \mathbb{P}\left(\bigcup_{s \in \mathsf{E}_k} \mathsf{A}^s\right) \leq \sum_{s \in \mathsf{E}_k} \mathbb{P}(\mathsf{A}_s)$$

D'après la question **16**, $\mathbb{P}(A_s) = \frac{1}{k!}$ pour tout $s \in E_k$ donc

$$\mathbb{P}(C_n \ge k) \le \frac{\operatorname{card} E_k}{k!} = \frac{\binom{n}{k}}{k!}$$

19 Il suffit de prendre $k = \left[\alpha e \sqrt{n}\right]$. Alors

$$\{C_n \ge k\} \subset \{C_n \ge \alpha e \sqrt{n}\} \subset \{C_n > k-1\}$$

Mais comme C_n est à valeurs entières, $\{C_n > k-1\} = \{C_n \ge k\}$. Ainsi

$$\mathbb{P}(C_n \ge \alpha e \sqrt{n}) = \mathbb{P}(C_n \ge k) \le \frac{\binom{n}{k}}{k!} = \frac{n!}{(n-k)!} \cdot \frac{1}{(k!)^2}$$

D'une part,

$$\frac{n!}{(n-k)!} \le n^k$$

et d'autre part, d'après la question 2,

$$\frac{1}{(k!)^2} \le \frac{e^{2k}}{k^{2k}}$$

Finalement,

$$\mathbb{P}(C_n \ge \alpha e \sqrt{n}) \le \frac{n^k e^{2k}}{k^{2k}} = \left(\frac{e\sqrt{n}}{k}\right)^{2k}$$

Or $\alpha e \sqrt{n} \le k$ donc

$$\mathbb{P}(C_n \ge \alpha e \sqrt{n}) \le \left(\frac{1}{\alpha}\right)^{2k}$$

Comme $\alpha > 1$, $\frac{1}{\alpha} < 1$ et comme $2k \ge 2\alpha e\sqrt{n}$, $\left(\frac{1}{\alpha}\right)^{2k} \le \left(\frac{1}{\alpha}\right)^{2\alpha e\sqrt{n}}$. Enfin,

$$\mathbb{P}(\mathsf{C}_n \geq \alpha e \sqrt{n}) \leq \left(\frac{1}{\alpha}\right)^{2\alpha e \sqrt{n}}$$

20 D'après la question 1,

$$\mathbb{E}(C_n) < k - 1 + \mathbb{P}(C_n > k)$$

On rappelle que $\mathbb{P}(C_n \ge k) = \mathbb{P}(C_n \ge \alpha e \sqrt{n})$ de sorte que

$$\frac{\mathbb{E}(C_n)}{\sqrt{n}} \le \alpha e + \frac{1}{\sqrt{n}} \left(\frac{1}{\alpha}\right)^{2\alpha e \sqrt{n}}$$

© Laurent Garcin MP Dumont d'Urville

Posons $\alpha = \frac{1 + n^{-1/4}}{\sqrt{n}}$ de sorte que

$$\frac{\mathbb{E}(C_n)}{\sqrt{n}} \le (1 + n^{-1/4})e + \varepsilon_n$$

avec

$$\varepsilon_n = \frac{1}{\sqrt{n}} \left(\frac{1}{1 + n^{-1/4}} \right)^{2(1 + n^{-1/4})e\sqrt{n}}$$

Remarquons que

$$\ln(\varepsilon_n) = -\frac{1}{2}\ln(n) - 2(1+n^{-1/4})e\ln(1+n^{-1/4})$$

 $\overline{\lim_{n \to +\infty}} \frac{\mathbb{E}(C_n)}{\sqrt{n}}.$ D'après la question 5,

$$\overline{\lim_{n \to +\infty}} \, \frac{\mathbb{E}(\mathsf{C}_n)}{\sqrt{n}} \le \overline{\lim_{n \to +\infty}} (1 + n^{-1/4}) e + \varepsilon_n$$

Mais comme la suite de terme général $(1 + n^{-1/4})e + \varepsilon_n$ converge, on a d'après la question 6,

$$\varlimsup_{n\to +\infty}(1+n^{-1/4})e+\varepsilon_n=\lim_{n\to +\infty}(1+n^{-1/4})e+\varepsilon_n=e$$

Finalement,

$$\overline{\lim_{n\to+\infty}} \, \frac{\mathbb{E}(\mathsf{C}_n)}{\sqrt{n}} \leq e$$