Рубежный контроль №2

Тема: Методы построения моделей машинного обучения

Хижняков В.М. ИУ5-65Б

Загрузка необходимых библиотек:

Ввод [1]:

```
as as pd

y as np

prn as sns

n import preprocessing

n import svm

n.model_selection import train_test_split

n.model_selection import cross_val_score

t import XGBClassifier

n.metrics import accuracy_score, balanced_accuracy_score

n.metrics import precision_score, recall_score, fl_score, classification_report

n.metrics import confusion_matrix

n.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error, mean_metrics import roc_curve, roc_auc_score

n.ensemble import AdaBoostClassifier

n.impute import SimpleImputer
```

Ввод [2]:

```
data = pd.read_csv('./HRDataset_v14.csv', sep=",")
TARGET_COL_NAME = 'RecruitmentSource'
TARGET_IS_NUMERIC = data[TARGET_COL_NAME].dtype != 'O'
TARGET_IS_NUMERIC
```

Out[2]:

False

Ввод [3]:

data

Out[3]:

	Employee_Name	EmplD	MarriedID	MaritalStatusID	GenderID	EmpStatusID	DeptID	Perf
0	Adinolfi, Wilson K	10026	0	0	1	1	5	
1	Ait Sidi, Karthikeyan	10084	1	1	1	5	3	
2	Akinkuolie, Sarah	10196	1	1	0	5	5	
3	Alagbe,Trina	10088	1	1	0	1	5	
4	Anderson, Carol	10069	0	2	0	5	5	
306	Woodson, Jason	10135	0	0	1	1	5	
307	Ybarra, Catherine	10301	0	0	0	5	5	
308	Zamora, Jennifer	10010	0	0	0	1	3	
309	Zhou, Julia	10043	0	0	0	1	3	
310	Zima, Colleen	10271	0	4	0	1	5	

311 rows × 36 columns

Ввод [4]:

data.shape

Out[4]:

(311, 36)

Ввод [5]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 311 entries, 0 to 310
Data columns (total 36 columns):

Data	cordinis (cocar so cordinis).			
#	Column		-Null Count	Dtype
0	 Employee Name		non-null	object
1	EmpID	311	non-null	int64
2	MarriedID	311	non-null	int64
3	MaritalStatusID	311	non-null	int64
4	GenderID	311	non-null	int64
5	EmpStatusID	311	non-null	int64
6	DeptID	311	non-null	int64
7	PerfScoreID	311	non-null	int64
8	FromDiversityJobFairID	311	non-null	int64
9	Salary	311	non-null	int64
10	Termd	311	non-null	int64
11	PositionID	311	non-null	int64
12	Position	311	non-null	object
13	State	311	non-null	object
14	Zip	311	non-null	int64
15	DOB	311	non-null	object
16	Sex	311	non-null	object
17	MaritalDesc	311	non-null	object
18	CitizenDesc	311	non-null	object
19	HispanicLatino	311	non-null	object
20	RaceDesc	311	non-null	object
21	DateofHire	311	non-null	object
22	DateofTermination	104	non-null	object
23	TermReason	311	non-null	object
24	EmploymentStatus	311	non-null	object
25	Department	311	non-null	object
26	ManagerName	311	non-null	object
27	ManagerID	303	non-null	float64
28	RecruitmentSource	311	non-null	object
29	PerformanceScore	311	non-null	object
30	EngagementSurvey	311	non-null	float64
31	EmpSatisfaction		non-null	int64
32	SpecialProjectsCount	311	non-null	int64
33	LastPerformanceReview_Date		non-null	object
34	DaysLateLast30		non-null	int64
35	Absences	311	non-null	int64
dt.vne	es: float64(2), int64(16), ol	oiec:	t.(18)	

dtypes: float64(2), int64(16), object(18)

memory usage: 87.6+ KB

Ввод [6]:

```
# проверим есть ли пропущенные значения data.isnull().sum()
```

Out[6]:

Employee_Name	0
EmpID	0
MarriedID	0
MaritalStatusID	0
GenderID	0
EmpStatusID	0
DeptID	0
PerfScoreID	0
FromDiversityJobFairID	0
Salary	0
Termd	0
PositionID	0
Position	0
State	0
Zip	0
DOB	0
Sex	0
MaritalDesc	0
CitizenDesc	0
HispanicLatino	0
RaceDesc	0
DateofHire	0
DateofTermination	207
TermReason	0
EmploymentStatus	0
Department	0
ManagerName	0
ManagerID	8
RecruitmentSource	0
PerformanceScore	0
EngagementSurvey	0
EmpSatisfaction	0
SpecialProjectsCount	0
LastPerformanceReview Date	0
DaysLateLast30	0
Absences	0
dtype: int64	

Удалим колонки, которые не влияют на целевой признак

Построим heatmap для лучшего визуального представления всез корреляций

Ввод [7]:

```
cmap = sns.cm.rocket_r
ax = sns.heatmap(data.corr(), cmap=cmap)
```



```
data = data.drop(columns=['Employee Name', 'EmpID', 'DateofTermination', 'ManagerID')
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 311 entries, 0 to 310
Data columns (total 32 columns):
 #
     Column
                                    Non-Null Count Dtype
                                    _____
     _____
 0
     MarriedID
                                    311 non-null
                                                      int64
 1
     MaritalStatusID
                                    311 non-null
                                                      int64
                                    311 non-null
 2
     GenderID
                                                      int64
    EmpStatusID
 3
                                    311 non-null int64
                                  311 non-null int64
311 non-null int64
311 non-null int64
 4
    DeptID
 5
     PerfScoreID
 6
     FromDiversityJobFairID
 7
     Salary
                                    311 non-null
                                                    int64
                                    311 non-null
 8
     Termd
                                                     int64
                                    311 non-null int64
311 non-null object
311 non-null object
311 non-null int64
311 non-null object
311 non-null object
311 non-null object
 9
     PositionID
 10 Position
 11
    State
 12
     Zip
 13
     DOB
 14
    Sex
 15 MaritalDesc
                                    311 non-null object
                                    311 non-null
 16 CitizenDesc
                                                      object
 17
    HispanicLatino
                                    311 non-null object
                                   311 non-null object
311 non-null object
311 non-null object
311 non-null object
 18 RaceDesc
 19 DateofHire
 20 TermReason
 21 EmploymentStatus
 22 Department
                                   311 non-null
                                                     object
 23 ManagerName
                                   311 non-null
                                                      object
                                   311 non-null object
     RecruitmentSource
 25 PerformanceScore
                                   311 non-null object
                                   311 non-null float64
 26 EngagementSurvey
                                   311 non-null
 27 EmpSatisfaction
                                                      int64
 28 SpecialProjectsCount 311 non-null int64
 29 LastPerformanceReview Date 311 non-null
                                                    object
 30 DaysLateLast30
                                    311 non-null
                                                      int64
     Absences
                                    311 non-null
                                                      int64
```

dtypes: float64(1), int64(15), object(16)

memory usage: 77.9+ KB

Обработка пропусков

Ввод [9]:

```
# Импьютация наиболее частыми значениями
imp = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
imputed = {}

for col in data:
    contains_nan = data[col].isnull().sum() != 0
    if contains_nan:
        data_imp = data[[col]]
        data_imp = imp.fit_transform(data_imp)
        imputed[col] = data_imp

for col_name in imputed:
    df = pd.DataFrame({col_name:imputed[col_name].T[0]})
    data[col_name] = df.copy()

data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 311 entries, 0 to 310
Data columns (total 32 columns):
 #
      Column
                                           Non-Null Count Dtype
      _____
                                           _____
___
                                           311 non-null int64
 0
     MarriedID
                                           311 non-null
 1
      MaritalStatusID
                                                                int64
 2
     GenderID
                                          311 non-null int64
                                       311 non-null int64
311 non-null int64
311 non-null int64
311 non-null int64
311 non-null int64
311 non-null int64
311 non-null int64
311 non-null object
 3
                                          311 non-null int64
     EmpStatusID
 4
     DeptID
 5
      PerfScoreID
 6
      FromDiversityJobFairID
 7
      Salary
 8
      Termd
 9
      PositionID
 10 Position
 11 State
 12
      Zip
 13
     DOB
     Sex
 15 MaritalDesc
     CitizenDesc
 17 HispanicLatino
                                          311 non-null
 18 RaceDesc
                                                              object
                                          311 non-null
 19 DateofHire
                                                               object
 20 TermReason
                                          311 non-null object
                                         311 non-null object
311 non-null object
311 non-null object
 21 EmploymentStatus
 22 Department
 23 ManagerName
 24 RecruitmentSource
                                         311 non-null object
 25 PerformanceScore
                                         311 non-null
                                                              object
                                          311 non-null
 26 EngagementSurvey
                                                              float64
                                          311 non-null
 27 EmpSatisfaction
                                                               int64
 28 SpecialProjectsCount 311 non-null int64
     LastPerformanceReview_Date 311 non-null object
 29
 30
      DaysLateLast30
                                           311 non-null
                                                                int64
                                                                int64
                                           311 non-null
 31 Absences
dtypes: float64(1), int64(15), object(16)
```

dtypes: float64(1), int64(15), object(16)
memory usage: 77.9+ KB

Кодирование строковых признаков (LabelEncoding)

Ввод [10]:

```
not_number_cols = data.select_dtypes(include=['object'])
number_cols = data.select_dtypes(exclude=['object'])
```

Ввод [11]:

```
le = preprocessing.LabelEncoder()

for col_name in not_number_cols:
    data[col_name] = le.fit_transform(data[col_name])

data
```

Out[11]:

	MarriedID	MaritalStatusID	GenderID	EmpStatusID	DeptID	PerfScoreID	FromDiversityJobl
0	0	0	1	1	5	4	
1	1	1	1	5	3	3	
2	1	1	0	5	5	3	
3	1	1	0	1	5	3	
4	0	2	0	5	5	3	
306	0	0	1	1	5	3	
307	0	0	0	5	5	1	
308	0	0	0	1	3	4	
309	0	0	0	1	3	3	
310	0	4	0	1	5	3	

311 rows × 32 columns

Масштабируем числовые данные

Ввод [12]:

```
scaler = preprocessing.MinMaxScaler()
number_fields_source = number_cols.loc[:, number_cols.columns!=TARGET_COL_NAME] if T
for col_name in number_fields_source:
    data[col_name] = scaler.fit_transform(data[[col_name]])
data
```

Out[12]:

	MarriedID	MaritalStatusID	GenderID	EmpStatusID	DeptID	PerfScoreID	FromDiversityJobl
0	0.0	0.00	1.0	0.0	0.8	1.000000	_
1	1.0	0.25	1.0	1.0	0.4	0.666667	
2	1.0	0.25	0.0	1.0	0.8	0.666667	
3	1.0	0.25	0.0	0.0	0.8	0.666667	
4	0.0	0.50	0.0	1.0	0.8	0.666667	
306	0.0	0.00	1.0	0.0	0.8	0.666667	
307	0.0	0.00	0.0	1.0	0.8	0.000000	
308	0.0	0.00	0.0	0.0	0.4	1.000000	
309	0.0	0.00	0.0	0.0	0.4	0.666667	
310	0.0	1.00	0.0	0.0	0.8	0.666667	

311 rows × 32 columns

Делим выборку на обучающую и тестовую

Ввод [13]:

```
target = data[TARGET_COL_NAME]
data_X_train, data_X_test, data_y_train, data_y_test = train_test_split(
    data, target, test_size=0.2, random_state=1)
```

Ввод [14]:

```
data_X_train.shape, data_y_train.shape
```

```
Out[14]:
((248, 32), (248,))
```

```
data X test.shape, data y test.shape
Out[15]:
((63, 32), (63,))
Ввод [16]:
np.unique(target)
Out[16]:
array([0, 1, 2, 3, 4, 5, 6, 7, 8])
Метод опорных векторов
Ввод [17]:
svr 1 = svm.LinearSVC()
svr_1.fit(data_X_train, data_y_train)
/Users/vadim/opt/anaconda3/lib/python3.9/site-packages/sklearn/svm/ ba
se.py:985: ConvergenceWarning: Liblinear failed to converge, increase
the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
Out[17]:
LinearSVC()
Ввод [18]:
data y pred 1 = svr 1.predict(data X test)
accuracy_score(data_y_test, data_y_pred_1)
Out[18]:
0.2698412698412698
Ввод [19]:
f1_score(data_y_test, data_y_pred_1, average='micro')
Out[19]:
0.2698412698412698
Ввод [20]:
f1_score(data_y_test, data_y_pred_1, average='macro')
Out[20]:
0.19544586132821426
```

Ввод [15]:

```
Ввод [21]:
f1 score(data y test, data y pred 1, average='weighted')
Out[21]:
0.25382983030041856
Ввод [22]:
svr 2 = svm.LinearSVC(C=1.0, max iter=10000)
svr_2.fit(data_X_train, data_y_train)
/Users/vadim/opt/anaconda3/lib/python3.9/site-packages/sklearn/svm/ ba
se.py:985: ConvergenceWarning: Liblinear failed to converge, increase
the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
Out[22]:
LinearSVC(max iter=10000)
Ввод [23]:
data_y_pred_2 = svr_2.predict(data_X_test)
accuracy_score(data_y_test, data_y_pred_2)
Out[23]:
0.4603174603174603
Ввод [24]:
f1_score(data_y_test, data_y_pred_2, average='micro')
Out[24]:
0.4603174603174603
Ввод [25]:
f1_score(data_y_test, data_y_pred_2, average='macro')
Out[25]:
0.35007859826700405
Ввод [26]:
f1_score(data_y_test, data_y_pred_2, average='weighted')
Out[26]:
0.48227841861382226
Ввод [27]:
svr_3 = svm.LinearSVC(C=1.0, penalty='l1', dual=False, max_iter=10000)
svr_3.fit(data_X_train, data_y_train)
Out[27]:
LinearSVC(dual=False, max iter=10000, penalty='11')
```

```
Ввод [28]:
data_y_pred_3_0 = svr_3.predict(data_X_train)
accuracy_score(data_y_train, data_y_pred_3_0)
Out[28]:
0.7943548387096774
Ввод [29]:
data y pred 3 = svr 3.predict(data X test)
accuracy_score(data_y_test, data_y_pred_3)
Out[29]:
0.5714285714285714
Ввод [30]:
f1_score(data_y_test, data_y_pred_3, average='micro')
Out[30]:
0.5714285714285714
Ввод [31]:
f1 score(data y test, data y pred 3, average='macro')
Out[31]:
0.5131972789115646
Ввод [32]:
f1 score(data y test, data y pred 3, average='weighted')
Out[32]:
0.5757105064247922
Градиентный бустинг
Ввод [33]:
ab1 = AdaBoostClassifier()
abl.fit(data_X_train, data_y_train)
data_y_pred_1 = ab1.predict(data_X_test)
data_y_pred_1_0 = ab1.predict(data_X_train)
accuracy score(data y train, data y pred 1 0)
Out[33]:
```

0.7661290322580645

```
Ввод [34]:
accuracy_score(data_y_test, data_y_pred_1)
Out[34]:
0.6031746031746031
Ввод [35]:
f1_score(data_y_test, data_y_pred_1, average='micro')
Out[35]:
0.6031746031746031
Ввод [36]:
f1_score(data_y_test, data_y_pred_1, average='macro')
Out[36]:
0.634920634920635
Ввод [37]:
f1_score(data_y_test, data_y_pred_1, average='weighted')
Out[37]:
0.5149911816578483
```

Выводы

При использовании метода опорных векторов наилучшую точность (0.794) показала модель с параметрами C=1.0, penalty='l1', dual=False, max_iter=10000. При дальнейшей манипуляции с параметрами можно было бы добиться неплохих результатов.

При использовании градиентного бустинга в целом показатели гораздо выше, предпочтительнее использовать его.