19 Problems: Eigenvalues and Eigenvectors II

1. Explain why the chara	acteristic polynomial of an n	$\times n$ matrix has degree n .	Make your explana	ation easy to read by
starting with some sim	aple examples, and then use	properties of the determi	nant to give a gene	eral explanation.

2. Compute the characteristic polynomial $P_M(\lambda)$ of the matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Now, since we can evaluate polynomials on square matrices, we can plug M into its characteristic polynomial and find the $matrix\ P_M(M)$. What do you find from this computation? Does something similar hold for 3×3 matrices? What about $n\times n$ matrices?

3. Discrete dynamical system. Let M be the matrix given by

$$M = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}.$$

Given any vector $v(0) = \begin{pmatrix} x(0) \\ y(0) \end{pmatrix}$, we can create an infinite sequence of vectors v(1), v(2), v(3), and so on using the rule

$$v(t+1) = Mv(t)$$
 for all natural numbers t.

(This is known as a discrete dynamical system whose initial condition is v(0).)

- (a) Find all eigenvectors and eigenvalues of M.
- (b) Find all vectors v(0) such that

$$v(0) = v(1) = v(2) = v(3) = \cdots$$

(Such a vector is known as a fixed point of the dynamical system.)

(c) Find all vectors v(0) such that $v(0), v(1), v(2), v(3), \ldots$ all point in the same direction. (Any such vector describes an *invariant curve* of the dynamical system.)