VI.5. Exemple : suites récurrentes linéaires d'ordre 2

Nous allons démontrer le théorème 8.34 dans le cas complexe. La démonstration est similaire dans le cas des suites récurrentes linéaires d'ordre 2 à valeurs réelles.

Proposition 15.53

On obtient une formule explicite pour le terme général d'une suite récurrente linéaire d'ordre 2 vérifiant $u_{n+2} = au_{n+1} + bu_n$ en résolvant l'équation caractéristique puis

- si $\Delta \neq 0$ en écrivant $u_n = \lambda z_1^n + \mu z_2^n$ où z_1, z_2 sont les deux solutions distinctes de l'équation caractéristique et $\lambda, \mu \in \mathbb{K}$ doivent être calculées de sorte à ce que $u_0 = \lambda z_1^0 + \mu z_2^0 = \lambda + \mu$ et $u_1 = \lambda z_1 + \mu z_2$;
- si $\Delta = 0$ en écrivant $u_n = (\lambda n + \mu)z_0^n$ où z_0 est l'unique solution double de l'équation caractéristique et $\lambda, \mu \in \mathbb{K}$ vérifient $u_0 = (\lambda \times 0 + \mu)z_0^0 = \mu$ et $u_1 = (\lambda + \mu)z_0 = (\lambda + u_0)z_0$.

Démonstration

On rappelle que $a \in \mathbb{C}$ et $b \in \mathbb{C}$ sont **donnés**.

- 1) L'ensemble F des suites à valeurs complexes vérifiant $\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n$ est un \mathbb{C} -espace vectoriel de dimension 2. En effet :
 - a) $E = \mathbb{C}^{\mathbb{N}}$ (l'ensemble des suites à valeurs complexes) est un \mathbb{C} -espace vectoriel.
 - b) F est un sous-espace vectoriel de E puisque :
 - $F \subset E$: évident.
 - La suite nulle est dans $F: 0 = a \times 0 + b \times 0$.
 - Soient u, v deux suites de F, alors, $\forall (\lambda, \mu) \in \mathbb{C}^2, \forall n \in \mathbb{N}$: $(\lambda u + \mu v)_{n+2} = \lambda u_{n+2} + \mu v_{n+2} = \lambda (au_{n+1} + bu_n) + \mu (av_{n+1} + bv_n)$ Donc $(\lambda u + \mu v)_{n+2} = a (\lambda u_{n+1} + \mu v_{n+1}) + b (\lambda u_n + \mu v_n)$ c'est-à-dire $(\lambda u + \mu v)_{n+2} = a(\lambda u + \mu v)_{n+1} + b(\lambda u + \mu v)_n$.
 - c) dim F = 2: soient U et V les suites de F vérifiant $U_0 = 1, U_1 = 0$ et $V_0 = 0, V_1 = 1$. On a par exemple $U_2 = aU_0 + bU_1 = a$ tandis que $V_2 = aV_0 + bV_1 = b$. La famille (U, V) est libre et génératrice de F.
 - Libre : soit $\lambda, \mu \in \mathbb{C}$ tels que $\lambda U + \mu V$ est la suite nulle. Alors $\lambda U_0 + \mu V_0 = \lambda = 0$ et $\lambda U_1 + \mu V_1 = \mu = 0$. Donc la famille est libre.
 - Génératrice de F: soit w ∈ F. Quel que soit l'entier n, w_{n+2} = aw_{n+1} + bw_n. Cherchons (λ, μ) ∈ C² tels que w = λU + μV.
 w₀ = λU₀ + μV₀ = λ d'une part, et
 w₁ = λU₁ + μV₁ = μ d'autre part.
 De plus, on montre alors par récurrence double que ∀n ∈ N, w_n = λU_n + μV_n

De plus, on montre alors par récurrence double que $\forall n \in \mathbb{N}, w_n = \lambda U_n + \mu V_n$ (car U, V et w sont toutes trois dans F et vérifient donc la formule de récurrence définissant F).

2) Ensuite, on remarque que

• si $\Delta \neq 0$ (discriminant de l'équation caractéristique), alors la famille $\left(\left(z_1^n\right)_{n\in\mathbb{N}};\left(z_2^n\right)_{n\in\mathbb{N}}\right)$ est une base de F:

il suffit de montrer qu'elle est libre puisque F est de dimension 2 et que la famille comporte deux suites distinctes (car $z_1 \neq z_2$)

$$\forall n \in \mathbb{N}, \lambda z_1^n + \mu z_2^n = 0 \Rightarrow \begin{cases} n = 0 : \lambda + \mu = 0 \\ n = 1 : \lambda z_1 + \mu z_2 = 0 \end{cases}$$

On résout le système et on trouve $\lambda = \mu = 0$.

- si $\Delta=0$ (discriminant de l'équation caractéristique), alors la famille $\left(\left(z_{0}^{n}\right)_{n\in\mathbb{N}};\left(nz_{0}^{n}\right)_{n\in\mathbb{N}}\right)$ est une base de F (laissé en exercice).
- 3) On a bien montré que $\forall u \in F, \exists \lambda \in \mathbb{C}, \exists \mu \in \mathbb{C},$

 $\forall n \in \mathbb{N}, u_n = \lambda z_1^n + \mu z_2^n$ dans le premier cas,

 $\forall n \in \mathbb{N}, u_n = \lambda z_0^n + \mu n z_0^n$ dans le deuxième cas.