LISTING OF THE CLAIMS:

Claim 1 (Currently Amended): A film having a high transmittance and matt property, comprising, on a transparent support, a hard coat layer having incorporated therein particles of a particle size of 1.0 to 10 μ m that is larger than the thickness of the hard coat layer thereby providing a concavo-convex structure, and a low-refractive-index layer having a refractive index of 1.45 or less and covering said hard coat layer, wherein the low-refractive index layer covering the hard coat layer maintains said concavo-convex structure formed by incorporating said particles in the hard coat layer, and

wherein the film has a haze value of 1.0 % or more, and a total transmittance of light of 93.5 % or more, and

wherein a density of the particles is in a range of 100 to 5000 particles/m².

Claim 2 (Previously Presented): The film having a high transmittance and matt property according to claim 1, wherein said low-refractive-index layer is formed by incorporating therein a fluorine-containing macromolecular compound being cross-linked by heat or ionization radiation, and has a coefficient of kinetic friction of 0.2 or less.

Claim 3 (Previously Presented): The film having a high transmittance and matt property according to claim 1, wherein said hard coat layer contains a cross-linked binder polymer, and monodispersed transparent fine particles having an average particle size larger than the average thickness of the hard coat layer and having a particle size distribution of 0.2 or less in terms of coefficient of variation.

Claim 4 (Previously Presented): The film having a high transmittance and matt property according to claim 1, wherein said hard coat layer contains a cross-linked binder polymer, and monodispersed transparent fine particles composed of a resin having a Moh's scale of hardness of less than 7, which have an average particle size larger than the average thickness of the hard coat layer and which have a particle size distribution of 0.2 or less in terms of coefficient of variation, and wherein said low-refractive-index layer is composed of a fluorine-containing compound being cross-linked with a refractive index of 1.45 or less and a coefficient of kinetic friction of 0.15 or less.

Claim 5 (Previously Presented): The film having a high transmittance and matt property according to claim 3, wherein the low-refractive-index layer is formed by incorporating therein a fluorine-containing macromolecular compound being cross-linked by heat or ionization radiation, and has a coefficient of kinetic friction of 0.2 or less.

Claim 6 (Previously Presented): The film having a high transmittance and matt property according to claim 5, wherein said hard coat layer contains a cross-linked binder polymer, and monodispersed transparent fine particles composed of a resin having a Moh's scale of hardness of less than 7, which have an average particle size larger than the average thickness of the hard coat layer and which have a particle size distribution of 0.2 or less in terms of coefficient of variation, and wherein said low-refractive-index layer is composed of a fluorine-containing compound being cross-linked with a refractive index of 1.45 or less and a coefficient of kinetic friction of 0.15 or less.

Claim 7 (Previously Presented): The film having a high transmittance and matt property according to claim 1, wherein said film having a high transmittance and matt property is an optical film comprising, on a transparent support, a hard coat layer and a low-refractive-index layer having a lower refractive index than that of said transparent support, laminated in this order, and wherein said hard coat layer contains a cross-linked binder polymer, and monodispersed transparent fine particles having an average particle size larger than the average thickness of the hard coat layer and having a particle size distribution of 0.1 or less in terms of coefficient of variation.

Claim 8 (Previously Presented): A polarizing plate having a high transmittance and matt property, comprising a polarizing layer and two protective films thereon, wherein at least one of the protective films is the film having a high transmittance and matt property according to any one of claims 1 to 7, and wherein a matted layer is disposed at the opposite side to the polarizing layer.

Claim 9 (Previously Presented): A liquid crystal display device, using the film having a high transmittance and matt property according to any one of claims 1 to 7.

Claim 10 (Previously Presented): A liquid crystal display device, comprising two polarizing plates provided on both sides of a liquid crystal cell, wherein the polarizing plate provided at the back light side is the polarizing plate having a high transmittance and matt property according to claim 8, the matted layer being disposed toward the back light side.

Claim 11 (Canceled)

Claim 12 (Previously Presented): The film having a high transmittance and matt property according to claim 1, wherein an average particle diameter of the particles is larger than the thickness of the hard coat layer by 0.5 to $5.0\mu m$.

Claim 13 (Canceled)

Claim 14 (New): The film having a high transmittance and matt property according to claim 1, wherein the density of the particles is in a range of 200 to 2000 particles/m².