Standard 13: Triple Integrals - Rectangular Coo	rdinates	
Triple Integrals		
The work also up Cours into arching aver a la	a diagonal ragion is interesting our	a three-dimensional region. It should come
as no surprise that we use a triple integr		
SSS € f(x,y,≥) dv.	ar to trinegratio over a till ee difficilisional	region. The general representation of
rectangular - prism region		
Over the box B= [a,b] x [c,d] x [r,s] = {(x,y,z)	la=x=b, c=y=d, r=z=s3, the triple integral	$ SSS_B f(x,y,z) dv = \int_r^s \int_c^d S_b f(x,y,z) dx dy dz.$
Note: we could rewrite this integral six d	fferent ways, dxdydz, dxdzdy, dydxdz, dy	dzdx, dzdxdy, dzdydx.
example. Evaluate SSSB 8 xyz dV for B= [2	,3]×[1,2]×[0,1].	= S' S? S3 8 xyz dx dy dz
SSE 8xyz dxdydz = 52 52 52 8 xyz dzdydx	= 5, 5, 6 xy = d = dx dy = 5, 5, 4 xy = 1, dx dy	= 5' 5' 4x242 dx dy dz
$= \int_{3}^{3} \int_{3}^{2} 4xyz^{2} \int_{0}^{1} dy dx$ $= \int_{3}^{3} \int_{3}^{2} 4xy dy dx$	$= \int_{1}^{2} \int_{2}^{3} 4xy dx dy$ $= \int_{1}^{2} \int_{2}^{3} 4xy dx dy$	= Jo J. 41x ye 12 dyde = Jo J. 4132 ye - 4(2)2 ye dyde
$= S_{2}^{3} 2 \times 1^{2} dx$	$= \int_{1}^{2} \int_{2}^{2} x ^{2} dx$ $= \int_{1}^{2} \int_{2}^{2} x ^{2} dx$	= 5. 5. 3645-1645 dydz
$= \int_{2}^{3} 2 x(z)^{2} - 2 x(1)^{2} dx$	$= \int_{1}^{2} 2 \times (3)^{2} - 2 \times (2)^{2} dy$	= 5' 5.2 20 yz dy dz
= 5 ³ lox dx	= 5, 18 x - 8 x dy	= 5' 10 y² z 1² dz
$= 3x^{2} l_{2}^{3}$	= 5.2 10× dy	$= \int_0^1 10(2)^2 z - 10(1)^2 z dz$
= 3 (3)2 - 3(2)2	$=5x^2$	= 5' 30 z d ≥
= 27 - 12	$=5(2)^2+5(1)^2$	= 15 2 10
= 16	= 15	= 15
triple integrals: V=SSR U(x,y)-U(x,y) dA= S	$\int_{R} J_{u_{(1\times N)}} 1 dz dA = JJJ_{\epsilon} 1 dN$	
We have three ways to describe a gen	eral region in three-dimension:	
(i) E= { (x,y, 2) (x,y) e D, u, (x,y) = 2 = u2(x,y) }		
2		
2=u2(x4)		
	Dis the shadow region in the xy-plane	
	SSEF(x,y,z) dv = SSD[Su,x,y, f(x,y,z) dz] dA	
2=u(x,y)		
example Evaluate SSSE 2xdV where E is the re	gion under the plane 2xt3ytz=6 that lies in th	e first octant.
3		
13 X +2		3-D graph
		onto xy-plane
7	- Find bour	nds for D and z
x	2 2	Ge c 6 - 2x-3y
$D = \{(x,y) \mid 0 \le x \le x\}$	3.04 $y \le r \cdot 3x + 35$ 5. $\frac{3}{3}x + 2$ $f(x, y, z) dy dx$	= Slo [50-2x-3v 2x d2] dA = S3 1-2/3x+2 50-2x-3v 2x d2 dy dx
JJD F(X, N, 2) &A = J.	Ja t(x,4,2) dy ax	= Jo Jo Jo 2x dzdy dx

