Lecture # 16 11/8/2021

Today :

- . Finish Chy (device capacitances)
- · Soon start Ch5 (discontinuous conduction mode)

- Lost comments on MOSFET capacitances

Practical guidance on est-mating cap values:

on datasheet will find

- Practical tip on picking transistors Q: How to compare devices against one enother ? A: Need "Figure of Merit" (FOM) Most popular FOM & to cond. loss
FOM = Ron Og & to sw. loss · smaller is better · generally hard to make both small Small FOM -> better · Foll gives an idea of What is a "good" sw. · But, detailed analysis usually need to support decision. Silicon Carbide & Galium Nitride - Wide-bondgep Devices (not in book) Take a look @ physics which dictates Ron specific Majority-carrier device: $AR_{on} = \frac{k}{\mu_n \varepsilon_s E_c^3} V_B^{\odot} \uparrow \rightarrow \varepsilon_{\text{match}}$ A device area $V_B \text{ device breakdown voltage}$ So however $V_B \text{ device breakdown voltage}$ can be adjusted critical electric field for avalanche breakdown electron mobility

semiconductor permittivity

fundamental & moterial property

· Comparison of moderial Ec

	Material	Bandgap [eV]	Electron mobility µ _n [cm²/Vs]	Critical field E _c [V/cm]	Thermal conductivity [W/mºK]
	Si	1.12	1400	3×10^{5}	130
	SiC	2.36-3.25	300-900	$1.3-3.2 \times 10^6$	700
2	GaN	3.44	1500-2000 (AlGaN/GaN 2DEG)	3.0-3.5 x 106	110

can operate (
a higher (
anction
temperature

lamer Ec, gives I Ron, op

Cons . + WBG Levices ?

-> Sic inferior to Si @ below 600V b/c lower electron mobility

-> GaN devices are lateral b/c of substrate fab.

challenges

Ls need BaN on S:

- History / Trends

GaN "high electron mobility transistor" (HEMT) Source gate ↓i ti * laterd * No oxide layers AIGAN * Normally ON GaN La Need to drive intrinsic m 122 = +0 20 Substrute tuin off "electron gas" * No body diode * Avoid too large of Wgs ... gate-source disde will turn on

- Ch 5 = "Discontinuous Conduction Mode" (DCM)

& conduct.

Main I dea from prior chapters

