1. Solution

The sample size, *n*, is 24. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 24 \rceil$	6	51.45
Q2	$\lceil 0.5 \times 24 \rceil$	12	51.57
Q3	$\lceil 0.75 \times 24 \rceil$	18	51.71

We determine the IQR.

$$IQR = Q3 - Q1$$

= 51.71 - 51.45
= 0.26

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $51.45 - 1.5 \times 0.26$
= 51.06
upper boundary = Q3 + $1.5 \times IQR$
= $51.71 + 1.5 \times 0.26$
= 52.1

We determine the outliers.

outliers =
$$\{52.3\}$$

We identify the ends of the whiskers: 51.19 and 51.84. We plot the boxplot.

2. Solution

The sample size, *n*, is 28. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 28 ceil$	7	53.31
Q2	$\lceil 0.5 \times 28 \rceil$	14	56.66
Q3	$\lceil 0.75 \times 28 \rceil$	21	62.35

We determine the IQR.

$$IQR = Q3 - Q1$$

= $62.35 - 53.31$
= 9.04

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $53.31 - 1.5 \times 9.04$
= 39.75
upper boundary = Q3 + $1.5 \times IQR$
= $62.35 + 1.5 \times 9.04$
= 75.91

We determine the outliers.

outliers =
$$\{76.64, 77.13\}$$

We identify the ends of the whiskers: 50.45 and 70.42. We plot the boxplot.

