

MINISTÉRIO DAS TELECOMUNICAÇÕES, TECNOLOGIAS DE INFORMAÇÃO E COMUNICAÇÃO SOCIAL MINISTÉRIO DA EDUCAÇÃO

TÉCNICAS DE LINGUAGENS DE PROGRAMAÇÃO

UNIDADE IX: NORMALIZAÇÃO. Parte 3

Ano Lectivo 2022 / 2023.

PROF. PAULO TUMBA E JOELSON LUSSATI

SUMÁRIO: UNIDADE IX - NORMALIZAÇÃO

- 1. A Teoria da Normalização
- 2. As Formas Normais

NORMALIZAÇÃO

- Uma Base de Dados, para ser um modelo que represente "bem" a realidade, precisa de ser depurada de anomalias e outros problemas que podem vir a existir.
- Esta depuração é conseguida pela Teoria da Normalização.
- Normalização processo de análise dos esquemas relacionais, que minimiza a redundância de dados e anomalias.
- Este processo utiliza as dependências funcionais e o conceito de chaves para "normalizar" uma base de dados.
- As bases de dados são normalizadas para evitar redundâncias e para proteger a integridade dos dados.

NORMALIZAÇÃO

Normalização – exemplo1

Dado o esquema da tabela: Filmes (Nome, Ano, Duração, nome Estudio, morada Estudio)

Nome	Ano	Duração	NomeEstudio	MoradaEstudio
Star Wars	1977	120	Fox	10 Elm St., Los Angeles
Pocahontas	1995	115	Disney	56 Oak St., Los Angeles
Rei Leão	1994	120	Disney	56 Oak St., Los Angeles
Tudo o Vento Levou	1939	180	Paramount	44 Pine St., Los Angeles

- Redundância A morada o estúdio aparece várias vezes, o que pode originar anomalias:
 - Actualização de dados
 - Apenas mudar a morada da segunda tupla sem mudar na terceira.
 - Eliminação de dados
 - Se eliminar, o filme Star Wars ou o filme Tudo o vento levou os estúdios Fox e
 Paramount desaparecem da BD.

FORMAS NORMAIS

Formas normais

- · A Teoria da Normalização permite decompor as tabelas de modo a eliminar os problemas.
- · As tabelas que não satisfazem certas propriedades formas normais —são sucessivamente decompostas em tabelas mais pequenas de modo a satisfazerem as propriedades pretendidas.
- Formas Normais
 - Primeira Forma Normal (1FN)
 - Segunda Forma Normal (2FN)
 - Terceira Forma Normal (3FN)

Primeira forma normal – 1FN

- Diz-se que uma relação está na 1FN se o domínio de todos os atributos são atómicos (não divisíveis).
- Isto significa que um atributo só pode admitir valores simples e não conjunto de valores, e que não existam grupos de atributos repetitivos.
- Normalização
 - Decompor atributos compostos em atributos atómicos.
 - Decompor atributos multi-valor em relação com chave externa.

Nota: O bom mapeamento para o modelo relacional permite que se obtenha relações na 1FN.

Primeira forma normal - 1FN

Exemplo:

Nome	Cidade	ВІ	Cursos
Artur	Luanda	1021	Programador
Ana	Luena	1022	Operador, Programador
Carlos	Namibe	1023	Analista, Programador
Paulo	Saurimo	1024	Operador

- •Esta relação não está na 1FN, pois curso não é atributo atómico.
- •Para se resolver tem-se que decompor a relação em:
- Pessoas(BI, Nome, Cidade)
- PessoasCursos(BI, Curso)

Segunda forma normal - 2FN

Atributo primário – atributo que é membro da chave primária.

Diz-se que uma tabela R está na 2FN se está na 1FN e se todo atributo não primário A em R tem dependência funcional completa da chave primária de R.

Isto significa que na 2FN, os atributos que não são chave dependem da totalidade da chave.

Exemplo:

- · Turma (NrProfessor, CodTurma, DirectorTurma, DescriçãoTurma)
- Esta relação não está na 2FN pois, a chave primária é composta por NrProfessor e CodTurma mas DirectorTurma e DescriçãoTurma apenas dependem funcionalmente de CodTurma.
- · Para passar para a 2FN tem que se decompor a relação:
 - Turma (CodTurma, DirectorTurma, DescriçãoTurma)
 - TurmaProfessor(NrProfessor, CodTurma)

Terceira forma normal – 3FN

- Diz-se que uma tabela R está na 3FN se está na 2FN e se todo atributo não primário A em R tem dependência funcional não transitiva da chave primária de R.
- · Uma DF é transitiva quando, $X \rightarrow Y$ e $Y \rightarrow Z$, logo $X \rightarrow Z$.
- · Isto significa que um esquema relacional está na 3FN se para todos os atributos não-chave A com $X \to A$ e $A \notin X$, X é uma super-chave.
- Se X não é uma super-chave, então X ou faz parte de uma chave (logo $X \to A$ é uma dependência parcial e viola 2NF) ou X não faz parte de qualquer chave ($S \to X$ para alguma chave S e logo $S \to A$ é uma dependência transitiva).

Terceira forma normal – 3FN

Exemplo:

Obs: NomeGrupo é a dependência transitiva

- · Professor (NrProfessor, Nome, Localidade, CodGrupoDisciplinar, NomeGrupo)
- · A relação não está na 3FN, pois:
 - NrProfessor → CodGrupoDisciplinar e
 - CodGrupoDisciplinar → NomeGrupo, logo NrProfessor → NomeGrupo
- Para passar para a 3FN tem que se decompor a relação:
 - GrupoDisciplinar (CodGrupoDisciplinar, NomeGrupo)

NORMALIZAÇÃO

Considerações sobre normalização

- 1. Quando se define cuidadosamente o modelo entidade relacionamento (consequentemente se obtém um bom DER) e quando se faz a conversão(mapeamento) adequada das tabelas, essas tabelas geradas a partir do DER não precisam de ser "muito normalizadas".
- 2. Normalizar uma tabela de cada vez.
- 3. FN de uma tabela é a forma normal mais restrita atendida.
- 4. Decompor tabelas, criando outras tabelas.
- 5. Existem várias outras formas normais, como por exemplo; Forma Normal de Boyce Codd (FNBC), 4FN, 5 FN são pouco utilizadas pois as restrições são muito complexas. A industria de BD considera que se normaliza até a 3FN.

EXERCÍCIOS

Exercício 2

- Dada a tabela T, com o seguinte esquema:
- T(A, B, C), onde A é uma chave primária, e as dependências funcionais seguintes se verificam:

$$-F = \{A \rightarrow B, B \rightarrow C\}$$

• T está na 3FN? Senão coloque nessa forma normal.

EXERCÍCIOS

Exercício 3

- Considere uma tabela com o seguinte esquema:
 - Nro_aluno, cod_depto, nome_depto, sigla_depto, cod_orient, nome_orient, tel_orient, cod_curso).
- Normalize a tabela de modo que as seguintes dependências funcionais devem ser garantidas: –
 cod_depto → {nome_depto, sigla_depto};
 - cod_orient → {nome_orient, tel_orient};
 - nro_aluno → {cod_depto, cod_orient, cod_curso};
- Obs: um aluno somente pode estar associado a um departamento;
 - um aluno faz apenas um único curso;
 - um aluno somente pode ser orientado por um único orientador.

OBRIGADO

Valeu!