

Redes de Computadores II

Escuela Superior de Informática

Este test consta de 20 preguntas con un total de 100 puntos. Debe contestar todas ellas; las respuestas incorrectas no restan. Sólo una opción es correcta a menos que se indique algo distinto. No está permitido el uso de calculadora.

Apellidos:	Nombre:	Grupo:
1. (5p) ¿Cuál es el tamaño de las direcciones l	IPv6?	
a) 16 bytes		
□ b) 32 bits		
☐ c) 64 bits		
d) Depende del protocolo de transporte	e.	
2. (5p) Marca la afirmación falsa en relación a	al protocolo IPv6.	
a) Es un protocolo de capa 3 excepto c	cuando se utiliza en modo túnel en cuyo caso es d	le trasporte
b) Es un protocolo de inter-red.		
c) Utiliza un sistema de direccionamie	nto jerárquico	
☐ d) Es un protocolo <i>plug and play</i>		
3. (5p) ¿En qué se diferencia el checksum de l	IPv4 e IPv6?	
a) En IPv6 se aplica a todo el datagran	na, no solo a la cabecera.	
b) En IPv6 es un campo de 32 bits, en	lugar de 16.	
c) No hay ninguna diferencia, tienen el	l mismo uso y formato.	
d) En IPv6, la cabecera no tiene ese ca	impo.	
4. (5p) ¿Qué ventaja aporta IPv6 respecto a IP	Pv4 en cuando a la fragmentación de paquetes?	
a) En IPv6 los encaminadores no fragr	mentan, solo el origen.	
b) En IPv6 los encaminadores también	n puede reensamblar, pero en IPv <mark>4 no pod</mark> ían.	
C) En IPv6 no es necesario fragmentar	porque la MTU de todas las tecnologías de enlac	ce es la misma.
d) No hay ninguna diferencia, el proce	edimiento de fragmenta <mark>ción no ha ca</mark> mbiado.	
5. (5p) ¿Cuál es el formato para las direccione	es broadcast en IPv6?	
a) La dirección de red poniendo todos	los bits del host-id a 1.	
b) No hay direccionamiento broadcast.		
No hay direccionamiento broadcast,		
☐ d) El direccionamiento broadcast solo	·	
6. (5p) IPv6 puede asignar automáticamente ¿Cómo es esto posible?	direcciones únicas para uso local sin necesidad	l de un servicio auxiliar.
a) En IPv6, cada nodo dispone de serie	e de su propio servidor DHCP.	
b) Porque utiliza la dirección física de	la NIC (que es glob <mark>almente ú</mark> nica) <mark>como</mark> parte de	la dirección generada
c) La tarjeta de red lleva una dirección	IPv6 válida graba en memoria ROM.	
d) IPv6 no tiene esa capacidad.		

Redes de Computadores II

Escuela Superior de Informática

7.	(5p)	¿Por qué IPv6 no utiliza el protocolo ARP?
		a) La equivalencia entre direcciones físicas y lógica es directa y se puede deducir localmente.
		b) Se utiliza un nuevo protocolo llamado <i>Neighbor Discovery</i> que además permite descubrir los encaminadores locales.
	П	c) En IPv6 el problema es averiguar las direcciones lógicas, las físicas son siempre conocidas.
		d) Se utiliza, pero solo para las «entregas indirectas».
		u) be utiliza, pero solo para las «entregas indirectas».
8.	(5p)	¿Por qué NAT no tiene sentido en una red IPv6?
		a) NAT se creó principalmente para compensar la escasez de direcciones de IPv4.
		b) Los encaminadores IPv6 no podrían manejar tablas NAT tan grandes.
	Ш	c) No se pueden traducir las direcciones IPv6 puesto que las direcciones públicas y privadas tienen tamaños distintos.
		d) NAT tiene sentido y se utiliza masivamente en IPv6.
9.	(5p)	¿Qué indica el <i>ámbito</i> (bits 13 a 16) de las direcciones multicast en IPv6?
		a) La cantidad de bits del sufijo que identifican el grupo multicast.
	Ц	b) La cantidad de miembros del grupo.
		c) La restricción de acceso que se aplica al grupo: privado, protegido, público, etc.
		d) La parte de la red en la que puede haber miembros del grupo: nodo, enlace, sitio,
10.	(5p)	Marca la afirmación falsa en relación a ICMPv6.
	Ц	a) Hereda toda la funcionalidad de ICMPv4.
		b) Incorpora los mecanismos de gestión de grupos multicast.
		c) Incorpora los mecanismos de descubrimiento de vecinos.
		d) Incorpora los mecanismos de traducción de nombres de dominio.
11.	(5p)	¿Qué necesidad cubren los algoritmos y protocolos de encaminamiento dinámico?
		a) Recalcular las tablas de rutas de los encaminadores conforme cambian las condiciones de la subred.
		b) Coordinar a los encaminadores para evitar la congestión.
		c) Generar mapas de la topología de la red para las herramientas de gestión del ISP.
		d) Obtener medidas de latencia, retardo y prestaciones de la subred.
12.	(5p)	En el contexto de encaminamiento dinámico ¿a qué se refiere la expresión «árbol sumidero» (sink tree)?
		a) Es el conjunto de rutas óptimas hacia un encaminador dado desde los demás encaminadores de la subred.
	$\overline{\Box}$	b) Es el árbol que utilizan los encaminadores para descartar el tráfico que no puede entregarse en plazo.
	\Box	c) Es el conjunto de métricas que se aplica para calcular la tabla de rutas de un nodo después de la caída de
		uno o más enlaces.
		d) No se aplica en el contexto de encaminamiento dinámico.
13.	(5p)	¿Cuál es la carácteristica principal de los protocolos de vector distancia?
		a) Almacenan y distribuyen la distancia (métrica de saltos) de cada encaminador a todos los demás.
		b) Escalan perfectamente a redes con muchos miles de encaminadores.
		c) Cada encaminador construye su tabla considerando únicamente la información que proporcionan sus vecinos.
		d) Pueden encaminar paquetes IP de cualquier tamaño.

Redes de Computadores II

Escuela Superior de Informática

14.	(Jp)	¿Cuai es la caracteristica principal de los protocolos de estado de entace:
		a) La única métrica que soportan es el número de saltos.
		b) Cada encaminador construye una topología de toda la subred y calcula las rutas óptimas a todos los encaminadores.
		c) Son funcionalmente equivalentes a los protocolos de vector distancia.
		d) Pueden encaminar paquetes IP de cualquier tamaño
15.	(5p)	¿Cuál es la causa de la «cuenta a infinito» de los protocolos de encaminamiento dinámico por vector distancia?
	\sqcup	a) Se produce por el desbordamiento de la variable que cuenta el número de saltos.
		b) Los encaminadores utilizan indirectamente datos de alcanzabilidad que ellos mismos proporcionan.
		c) Cuando un encaminador RIP envía un mensaje de prueba sigue contando indefinidamente después de recibir la respuesta.
		d) La «cuenta a infinito» es un problema del encaminamiento por «estado de enlace», no de «vector distancia».
16.	(5p)	¿En qué cosiste la técnica de «horizonte divido» (split horizon)?
		a) El encaminador A no envía a B información de otros vecinos si la recibió de B.
		b) Los encaminadores A y B no comparten información del coste de sus enlaces si tienen algún vecino común.
	Ц	c) El encaminador A informa de coste 0 a B si tiene una ruta alternativa hacia él.
	Ш	d) Los encaminadores A y B desactivan sus enlaces redundantes para evitar bucles.
17.	(5p)	Los protocolos de enrutamiento vector distancia respecto a los de estado de enlace
		a) Generan mensajes más grandes.
		b) Generan mayor cantidad de mensajes.
		c) Tienen menos probabilidades de formar bucles de enrutamiento.
	Ш	d) Requieren más capacidad de cómputo.
18.	(5p)	Marca la afirmación falsa respecto a RIP.
		a) Es un protocolo de encaminamiento de «vector distancia».
		b) Es un protocolo de pasarela interna.
		c) La versión 1 no soporta <i>classless addressing</i> .
		d) Es un protocolo complejo que nunca llegó a aplicarse en Internet.
19.	(5p)	¿En qué se basa el encaminamiento jerárquico?
	Ц	a) Los encaminadores con más cantidad de enlaces agrupan otros encaminadores con menos.
		b) Se agrupan los encaminadores según la cantidad de hosts a los que ofrecen acceso.
		c) Se definen regiones, los encaminadores solo tienen información para llegar a los otros encaminadores de su región y a cada una de las otras regiones.
		d) Existe un encaminador raíz, todos los demás le reenvían sus paquetes aunque tengan enlaces directos a sus vecinos.
20.	(5p)	¿De qué capa OSI son los protocolos OSPF y RIP?
		a) capa 3
		b) aplicación
		c) red
	Ш	d) transporte