Ryan Finn CSC 449 Nov. 30, 2022 Exam II

1. **procedure** SARSA(number of episodes $N \in \mathbb{N}$ discount factor $\lambda \in (0, 1]$ learning rate $\alpha_n = 1 / \lg(n + 1)$) Initialize matrices Q(s, a) and n(s, a) to 0, $\forall s, a$ **for** episode $k \in \{1, 2, 3, ..., \frac{n}{n}N^{[1]}\}$ **do** *t* ← 1 Initialize s, Choose a, from a uniform distribution over the actions Choose a_t from s_t using μ_t : an ϵ -greedy policy with respect to $Q^{[2]}$ **while** Episode *k* is not finished **do** Take action a_t : observe reward r_{t+1} and next state s_{t+1} Choose a_{t+1} from s_{t+1} using μ_t : an ϵ -greedy policy with respect to Qif The current state is terminal then $y_t = 0$ else $y_t = r_{t+1} + \max_a Q(s_{t+1}, a)$ $y_t = r_{t+1} + \lambda Q(s_{t+1}, a_{t+1})^{[3]}$ endif $n(s_t, a_t) \leftarrow n(s_t, a_t) + 1$ Update Q function: $Q(s_{t+4}, a_{t+4}) \leftarrow Q(s_t, a_t) - \alpha_{n(st-at)}(y_t - Q(s_t, a_t))$ $Q(s_t, a_t) \leftarrow Q(s_t, a_t) - \alpha_{n(st, at)} (y_t - Q(s_t, a_t))^{[4]}$ $t \leftarrow t + 1$ end while end for

[1]: A bit of a technicality, but N is actually defined as the number of episodes, not n which is a matrix.

[2]: This probably isn't a necessary change, since Q is already initialized to all 0, so a_1 will just end up as the very first or last action in the action space. But, if Q is ever initialized as a non-zero matrix this change could be important. That's also how SARSA is defined in the book.

[3]: $y_t = r_{t+1} + \max_a Q(s_{t+1}, a)$ is the target updater for a Q-Learning algorithm, not a SARSA algorithm.

[4]: $Q(s_t, a_t)$ is what should be updated, not $Q(s_{t+1}, a_{t+1})$.

end procedure

|-5

- a. Greedy deterministic
- b. So long as ϵ -greedy is used with an $\epsilon > 0$, then yes, the Q values will converge as the number of time steps increases towards infinity. This is because every action must eventually be sampled infinite times, as time increases, for any positive ϵ , as dictated by the Law of Large Numbers.