Instructors: Erik Demaine, Jason Ku, and Justin Solomon

Problem Set 1

Problem Set 1

Name: Gabriel Chiong
Collaborators: None

Problem 1-1.

(a) $(f_5, f_3, f_4, f_1, f_2)$

(b)
$$(f_1, f_2, f_5, f_4, f_3)$$

(c)
$$\{f_2, f_5\}, f_4, f_1, f_3\}$$

(d) $(f_5, f_2, f_1, f_3, f_4)$

Problem 1-2.

- (a) We can recursively swap the outer most elements at index i and i + k 1, with each recursive invocation excluding the pair that was swapped. The base case occurs when there are fewer than 2 elements to swap. This algorithm is correct by induction on the left most index i.
 - Since each insert and delete call causes the indexes of the later elements to shift, there is a certain order of operations we can use to minimize the effects of index shifting. At each recursive call, first define x_2 to be the result of the call to delete the (i + k 1)th element. After which, we obtain the right most element x_1 from a call to deleting the *i*th element. When inserting the deleted elements in their swapped positions, x_2 must first be inserted at index i before x_1 is inserted at index i + k 1.
 - There are four $O(\log n)$ operations in each of the k/2 recursive calls, therefore the running time of this algorithm is $O(k \log n)$ as required.
- (b) We can recursively move the first element starting at index i to before index j, with each recursive call decreasing the value of k by 1. The base case occurs when there is less than 1 element left to move (when k < 1). The correctness of this algorithm is proven by induction on k, by maintaining the invariant that i is the index of the first item to be moved, k is the number of items to be moved, and k denotes the index of the item in front of which we must place the items.

The subtlety of this question lies in the need to handle both cases where i < j and i > j. When i < j, removing the item at i causes the index of the element at j to be shifted down. Similarly, if i > j, inserting the element in front of j causes the index of the next recursive call's i to be shifted up.

There are two $O(\log n)$ operations in each of the k recursive calls, therefore the running time of this algorithm is $O(k \log n)$ as required.

Problem Set 1 3

Problem 1-3. The idea is to store the n pages in a static array of size 3n, which can be rebuilt under certain size conditions. The requirement to read_page (i) in O(1) time rules out the use of a linked-list data structure. Let us call this array S.

A call to build (x) the database takes O(n) time in the worst-case, with n=|x|. The layout of the array is as follows:

- •The P_1 elements until A occupies the beginning of S. We label the end of this as a_1 .
- •The next n slots are empty. We label the end of this subsequence a_2 .
- •The P_2 elements between A and B occupies the next portion of the array. We label the end of this subsequence b_1 .
- •The next n slots are empty. We label the end of this subsequence b_2 .
- •The P_3 last elements from B on-wards fill the rest of the array S.

To maintain the correctness of this data structure at all times, the invariant that P_1 , P_2 , P_3 are stored contiguously in that order with separation of greater than 0 array slots in between.

For read_page (i), we need to consider three cases, depending on whether i is in either of P_1, P_2, P_3 .

```
•If i is in P_1, return S[i].
```

- •If i is in P_2 , return $S[a_2 + (i (a_1 + 1))]$.
- •If i is in P_3 , return $S[b_2 + (i (a_1 + 1) (b_1 + 1))]$.

This returns the correct page as long as the separation invariant on the indices are maintained, and takes O(1) worst-case time, based on array lookup and some arithmetic operations.

The shift_mark (m, d) operation for A only changes the position of the mark to either $a_1 + 1$ or $a_2 - 1$. Similarly, when applied to B, the position of the mark changes to either $b_1 + 1$ or $b_2 - 1$. This algorithm is correct as it maintains the index invariant. It only involves one array index lookup and one write, therefore, this takes O(1) time in the worst-case.

The move_page (m) operation moves a page from an index in (a_1,b_1) to (b_1+1,a_1+1) respectively. Any move needs to maintain the index invariant so that the algorithm runs correctly. If any call to move_page (m) breaks the separation invariant, the array will need to be rebuilt. The empty space changes by at most 1 slot on each call, and there are n empty slots between adjacent blocks of entries. Thus, the O(n) rebuild is only required after n operations. Each operation takes O(1) time otherwise, therefore this operation takes amortized O(1) time.

4 Problem Set 1

Problem 1-4.

(a) The following descriptions involving a new element with x assumes that a linked-list node has been created to store data, x.

For insert_first(x), first set x.next to L.head, x.prev to None, and L.head.prev to x. Finally, point L.head to x.

For insert_last (x), point L.tail.next to x, x.prev to L.tail, and x.next to None. Finally, point L.tail to x.

For delete_first(), shift L.head to L.head.next, and set L.head.prev to be None. This effectively shifts L.head forwards by one element.

For delete_last(), shift L.tail to L.tail.prev, and set L.tail.next to be None. This effectively shifts L.tail backwards by one element.

- (b) Set $x_1.prev.next$ to $x_2.next$, and $x_2.next.prev$ to $x_1.prev$. This removes the sublist from x_1, \ldots, x_2 inclusive. Then return the pointer to x_1 .
- (c) First connect L_2 to the correct nodes in L_1 by setting L_2 .head.prev to x and L_2 .tail.next to x.next. Next, we correctly fix the connections in L_1 by setting x.next.prev to be $L_2.tail$ and x.next to be $L_2.head$. Finally, remove the links in L_2 by setting both $L_2.head$ and $L_2.tail$ to be None.
- (d) Submit your implementation to alg.mit.edu.