Vision in Human and Machine

Part 8 Models of Perceptual Grouping

Heiko Wersing

Honda Research Institute Europe GmbH

Models of Perceptual Grouping 1

Convergent hierarchical Stimulus Binding "Gestalt" processing

Dynamical modeling approaches

Phase models

Baldi & Meir 1990 Sompolinsky, Golomb, & Kleinfeld 1992 Zemel, Williams, & Mozer 1993

Coupled oscillator models

von der Malsburg & Schneider 1986 Schillen & König 1994 Wang & Terman 1997

Assignment/labeling models

Parent & Zucker 1989 Opara & Wörgötter 1998 Wersing, Steil, & Ritter 2000

Models of Perceptual Grouping 3

c) LEGION grouping B

Example: Greyscale image segmentation

- Similarity: Pixel distance and intensity difference
- LEGION: Oscillator model (Wang 1997)
- ECU: Energy-based cluster update (spin relaxation model) Opara et al (1998)
- CLM: Competitive Layer Model (Ritter 1990)

b) LEGION grouping A

g) CLM R=5

e) ECU T=2.5

h) CLM $\,$ R=3 $\,$ i) CLM $\,$ R=1 $\,$ Models of Perceptual Grouping $\,$ 4

The Competitive Layer Model - CLM

Continuity Interaction Input Grouping

Mathematic formulation

$$\dot{x}_{r\alpha} = -x_{r\alpha} + \sigma \left(J \left(h_r - \sum_{\beta} x_{r\beta} \right) + \sum_{r'} \mathsf{f}_{rr'}^{\alpha} x_{r'\alpha} + x_{r\alpha} \right) \tag{1}$$

$$= -x_{r\alpha} + \sigma \left(-\frac{\partial E}{\partial x_{r\alpha}} + x_{r\alpha} \right) \tag{2}$$

$$\sigma(x) = \max(0, x) \tag{3}$$

$$E = -\frac{J}{2} \sum_{r} \left(h_r - \sum_{\beta} x_{r\beta} \right)^2 - \frac{1}{2} \sum_{\alpha} \sum_{rr'} f_{rr'}^{\alpha} x_{r\alpha} x_{r'\alpha}. \tag{4}$$

CLM dynamics performs gradient descent in a quadratic energy function

Models of Perceptual Grouping 7

Assignment property of the CLM

- Gradient descent dynamics
- Local minima satisfy consistency equation

$$\sum_{r'} f_{rr'} x_{r'\alpha} > \sum_{r'} f_{rr'} x_{r'\beta} \quad \text{for all} \quad r,\beta \neq \alpha(r)$$

Deterministic Annealing Global inhibition strength → k=0k=1/Nk=10/Nm=0←Background layer strength m=2m=4

Models of Perceptual Grouping 9

Deterministic Annealing

$$E = -\frac{J}{2} \sum_{r} \left(h_r - \sum_{\beta} x_{r\beta} \right)^2 - \frac{1}{2} \sum_{\alpha} \sum_{rr'} f_{rr'}^{\alpha} x_{r\alpha} x_{r'\alpha}. \tag{4}$$

$$E = -\frac{J}{2} \sum_{r} \left(h_r - \sum_{\beta} x_{r\beta} \right)^2 - \frac{1}{2} \sum_{\alpha} \sum_{rr'} f_{rr'}^{\alpha} x_{r\alpha} x_{r'\alpha} + T \sum_{r} x_{r\alpha}^2.$$
 (5)

Without annealing: Suboptimal local minimum

Deterministic annealing: Slowly allow more structure For optimization

Models of Perceptual Grouping 11

CLM simulation algorithm

1. Initialize all $x_{r\alpha}$ with small random values around

$$x_{r\alpha}(t=0) \in [h_r/L - \epsilon, h_r/L + \epsilon].$$

Initialize T with $T=T_c$.

2. Do $N \cdot L$ times: Choose (r, α) randomly and update $x_{r\alpha} = \max(0, \xi)$, where

$$\xi = \frac{Jh_r - \sum_{\beta \neq \alpha} Jx_{r\beta} + \sum_{r' \neq r} \mathsf{f}_{rr'}^{\alpha} x_{r'\alpha}}{J - \mathsf{f}_{rr}^{\alpha} + T} \ .$$

3. Decrease T by $T:=\eta T$, with $0<\eta<1$. Go to step 2 until convergence.

Applications of the CLM

Models of Perceptual Grouping 13

Design of lateral interactions

CLM Dynamics

- The dynamics can be characterized by linear eigenmodes
- Symmetry breaking dynamics performs the grouping operation
- Good grouping quality requires deterministic annealing

Models of Perceptual Grouping 15

Emergence of groups with annealing

Texture Segmentation (Ontrup 1998)

- Vector of local Gabor responses
- Feature vector consists of mean and variance of vector on the image
- Perform a PCA in this space→Use proximity in the feature space

$$d_{\text{text}}(r,r') = \sqrt[n]{\sum_{i=1}^{4} \left(\frac{|p_r^i - p_{r'}^i|}{\sqrt{\sigma(p^i)}}\right)^n},$$

$$f_{rr'} = e^{-\frac{d_{\text{text}}^2(r,r')}{R_{\text{sim}}^2}} + c e^{-\frac{|\mathbf{x}_r - \mathbf{x}_{r'}|^2}{R_{\text{prox}}^2}} - k$$

Models of Perceptual Grouping 17

Setting parameters

Grouping results

Models of Perceptual Grouping 19

Grouping results – Orientation Contrast

Grouping results – Craig/Cornsweet Illusion

Models of Perceptual Grouping 21

Grouping results

Grouping results

Models of Perceptual Grouping 23

Grouping results

Learning of lateral interactions

(Wersing, Adv. Neur. Inf. Proc. Systems, NIPS. 2000) (Weng, Wersing, Steil, & Ritter. IEEE Trans. Neural Networks. 2007)

Models of Perceptual Grouping 25

Lateral Interaction Learning (Weng et al. 2007) Feature Proximity Pairs Functions Basis Functions $g_{rr'}^{j}$ Training Set PGoal State(s) $(\mathbf{m}_r, \mathbf{m}_{r'})$ $d_p(\mathbf{m}_r, \mathbf{m}_{r'})$ Proximity Hand Labeling(s) Vector d_{rr} Clustering Desired IA Pattern(s) Proximity Prototype $\tilde{\mathbf{d}}_j$ Voronoi Cell V_j $\hat{r} \bigcirc \hat{f}_{rr'} > 0$ Random Sampling

Lateral Interaction Learning (Weng et al. 2007)

Models of Perceptual Grouping 27

More complex training patterns

Models of Perceptual Grouping 29

