

Caenorhabditis elegans lifespan prediction from early adulthood health data with a hidden Markov model

Sangbin Han¹

¹School of Biological Sciences, Seoul National University, Seoul 151-747, Korea

Background

- Caenorhabditis elegans (C. elegans) is a transparent nematode (~ 1 mm in length) which has been widely used as a model organism in biology.
- It has a short life cycle of about 3 days and an average lifespan of 2-3 weeks.
- It is the first model organism for which we have a complete cell lineage, a complete connectome (map of neuronal connections), and a complete genome sequence.
- Due to the above advantages, C. elegans has been a prominent model organism for studying aging.

Science magazine cover image (24 December 2010)

Research Goal

- To construct a computational model that predicts C. elegans lifespan from early adulthood health data sequence.
 - ✓ Early selection of long-lived or short-lived *C. elegans* can assist in the longitudinal analysis of aging.

Experimental Design

Data Acquisition and Processing

- Zhang et al., 2016, Cell Systems
- 734 isogenic individuals kept in identical environment
- Longitudinal physiological measures by lifelong high-resolution imaging (every 3 hours over their lifespans)

Early adulthood (0-2 days) measures (17

Cohorts Across Disribution of Adult Lifespans

(Zhang et al., 2016, Cell Systems)

- per individual) were used.
- Neuromuscular function
 - Displacement over 3 hours (mm)
- Little (33.3%): < 0.438 mm Normal (33.2%): < 0.545 mm
- Large (33.5%): ≥ 0.545 cm
- Somatic investment
- Cross-sectional size (mm²) Small (33.3%): < 0.0666 mm²
- Normal (33.5%): $< 0.0809 \text{ mm}^2$
- Large (33.2%): $\geq 0.0809 \text{ mm}^2$

Reproductive investment

- Cumulative area of eggs laid (mm²)
- Small (33.4%): $< 0.0370 \text{ mm}^2$
- Normal (33.3%): $< 0.0775 \text{ mm}^2$
- Large (33.3%): $\geq 0.0775 \text{ mm}^2$
- Reproductive Neuromuscular Somatic Function Investment Investment

(body size)

(Zhang et al., 2016, Cell Systems)

(oocyte count)

- Individuals were classified into 3 groups according to their adult lifespans (days).
 - Short-lived individuals (n = 243): < 9 days 9 hours
 - Normal-lived individuals (n = 234): < 11 days 3 hours
 - Long-lived individuals (n = 257): ≥ 11 days 3 hours

Hidden Markov Model

(movement)

Number of models = 3 (short, normal, or long-lived)

$$\frac{1}{n+1}I_n + \begin{bmatrix} \frac{1}{n+1} & \cdots & \frac{1}{n+1} \\ \vdots & \ddots & \vdots \\ \frac{1}{n+1} & \cdots & \frac{1}{n+1} \end{bmatrix}$$

Number of hidden states (n) = [1, 4, 7, 10, 13, 16, 19]

Number of observable states (early adulthood health measures) = 27 states = 3 (movement) \times 3 (body size) \times 3 (area of eggs laid)

Datasets were randomly splitted into training (50%) and test (50%) sets. Example sequence of emissions: [2, 5, 15, 15, 15, 15, 15, 27, 27, 27, 27, 27, 27, 18, 18, 18, 18]

Initial transition matrix

Results

Accuracy by number of hidden states

- Tolerance = 1e-6
- Max iterations = 100
- 13 hidden states showed better test accuracy.
- Short-lived training: 55.56%
- Short-lived test: 46.30%
- Normal-lived training: 51.39%
- Normal-lived test: 40%
- Long-lived training: 22.36%
- Long-lived test: 16.67%

Accuracy by –log(tolerance)

- Number of hidden states = 13
- Max iterations = 100
- 1e-4 tolerance showed better test accuracy.
- Short-lived training: 54.81%
- Short-lived test: 46.30%
- Normal-lived training: 51.39%
- Normal-lived test: 41.11%
- Long-lived training: 23.60%
- Long-lived test: 15.63%

Discussion

Problems

- Low prediction accuracy for lifespans of long-lived individuals
- Below half test set prediction accuracy

Possible Reasons

- Initialization of transition matrix and emission matrix
 - Transition matrix and emission matrix were arbitrarily initialized.
 - We might make a much better model with various initializations of the two matrices.
- Same model architecture for all model
 - Same number of hidden states, same tolereance, and same maximum number of iterations were used.
- Low number of samples
- Early adulthood health in *C. elegans* is not related to aging (maybe not)

- Inappropriate classification of *C.elegans* individuals
 - There might be a subclass of *C.elegans* which has a different longevity mechanism.
 - Clustering techniques (e.g. principal component analysis) can be applied.

References

- Kenyon, Cynthia. "The nematode Caenorhabditis elegans." Science 240.4858 (1988): 1448-1453.
- Brenner, Sydney. "The genetics of Caenorhabditis elegans." Genetics 77.1 (1974): 71-94.
- Izquierdo, Eduardo J., and Randall D. Beer. "The whole worm: brain-body-environment models of C. elegans." Current opinion in neurobiology 40 (2016): 23-30.
- Zhang, William B., et al. "Extended twilight among isogenic C. elegans causes a disproportionate scaling between lifespan and health." Cell systems 3.4 (2016): 333-345.