

Chemical Engineering 4H03

Introduction to Clustering

Jake Nease McMaster University

Where are We?

- We have covered some introductory material
 - Visualization
 - Types of data
- We have covered several supervised machine learning methods and tools good for mapping inputs (X) to continuous outputs (Y)
 - Regression
 - PCA/PCR/PLS
 - ANNs
- We have not yet looked at a modeling method for classification, NOR have we looked at unsupervised learning

Objectives for this Topic

- We would like top introduce one of the oldest and most approachable unsupervised learning methods: clustering
- Specifically, we will investigate K-Means clustering
 - What is clustering?
 - Motivating example
 - K-Means clustering
 - Training procedure
 - Coded demo in MATLAB
 - Benefits/drawbacks
- This will lead us to a more holistic conversation around other clustering techniques and why we may use them

Motivation

 Imagine for a moment that you are building a model to predict an output according to some inputs X, BUT the general "location" of the inputs affects the model's performance

Examples:

- A bank predicting which financial products a customer can afford
- NETFLIX recommending international films for my wife and Parks/Recreation for me
- Trying to identify if a person is in an "at-risk" domestic situation
- Wanting to predict the performance of a chemical or manufactured product, but the properties and performance are very different depending on the product's composition
- Others?

Clustering

- Clustering the process of dividing data into subgroups or "clusters" that exhibit local similarities in data
 - For us, that means they have similar values in columns of X
- This can be very powerful if, for example, our data exhibits piecewise-linear correlation
 - Then we can train separate PCA models that are more accurate locally, and then assign new points to the appropriate "clustered model" as they arrive
- I'll gently point out here that most examples are twodimensional
 - BUT, practically speaking any number of dimensions (including one!) is permissible

Unsupervised Learning

- As mentioned before, clustering is a form of unsupervised learning, whereas everything else in 4H to this point has been supervised learning
- Supervised learning can compare the output of a model to a known and desired output
 - "Training"
- Unsupervised learning does not have an output to compare to, and must come up with that on its own
 - How many clusters?
 - Where to place the clusters?
 - How to ensure the clusters are behaving as they should?

Unsupervised Learning

- As mentioned before, clustering is a form of unsupervised learning, whereas everything else in 4H to this point has been supervised learning
- Supervised learning can compare the output of a model to a known and desired output
 - "Training"
- Unsupervised learning does not have an output to compare to, and must come up with that on its own
 - How many clusters?
 - Where to place the clusters?
 - How to ensure the clusters are behaving as they should?

A Motivating Example

- A bank is looking at the **debt** and **income** levels of customers. With this knowledge, they may have several objectives:
 - Ensuring minimal risk to the bank for giving loans
 - Identifying at-risk customers
 - Suggesting the right product based on financial stability

A Motivating Example

You might visually separate the data this way

A Motivating Example

- Some logical next questions:
 - How do we find those "ellipses"?
 - What do we use as an initial guess?
 - What is the terminology?
- I'll mention here that there are different forms of clustering:
 - Partitional Clustering (divides data into non-overlapping groups) and is the topic of focus for 4H
 - Hierarchical Clustering (builds a decision-tree style hierarchy to cluster based on the relationships in the data)
 - Density-Based Clustering (determines the number and locations of clusters based on maximizing the density of each cluster and separating them by low density regions)

Fitting Clusters

Now I want granola. Thanks, marketing.

What Makes a Good Cluster?

- For a method to successfully define clusters, it must follow two rules:
- 1. The data in a given cluster must be similar to each other
 - This corresponds to having similar values in the columns of X
 - Visually, it means the data are gathered in local subspaces of X
- 2. The data that belong to different clusters must be as different as possible
 - A good clustering method delineates between subspaces as much as it focuses on identifying them in the first place

Back to the Example

- Consider the data from before with two clusters sets:
 - What are all the reasons method (II) is inferior to (I)

Measuring Cluster Performance

- Our example contains only two columns in X
 - So, it is pretty easy to visually verify the clusters
- When we have many more columns (especially > 3D), we require mathematical representations of cluster quality
- Inertia calculates the intra-cluster distance between points as Euclidian distances
 - Used to measure how "similar" the points in a cluster are
- The Dunn Index measures the distance between clusters
 - Used to measure how "different" any cluster is from another

Measuring Cluster Performance

• Inertia of cluster c_k is nothing more than the cumulative distance from all points in a cluster to the cluster centroid

$$\mathcal{I}_k = \sum_{i \in c_k} \|\boldsymbol{d}_i\| = \sum_{i \in c_k} \|\boldsymbol{x}_i - \boldsymbol{\mu}_k\|$$

Centroid μ_k is marked as x

- \mathcal{I}_k is the inertia for cluster c_k
- x_i is observation i
- $i \in c_k$ means that point i belongs to cluster c_k
- $m{\mu}_k$ is the centroid (dimensional average) of cluster c_k

Objective Function of K-Means

- The **objective** of K-means clustering is to minimize the cumulative squared inertia by assigning points x_i to cluster c_k for $k = 1 \dots K$ clusters:
- In general, we say that we want to partition the data according to a set of K clusters $C = \{c_1, c_2, ..., c_K\}$ to minimize:

$$\min_{C} \phi = \sum_{k=1}^{K} \sum_{i \in c_{k}} \|d_{i}\|^{2} = \sum_{k=1}^{K} \sum_{i \in c_{k}} \|x_{i} - \mu_{k}\|^{2}$$

- C is the set of clusters
- x_i is observation i
- $i \in c_k$ means that point i belongs to cluster c_k
- μ_k is the centroid (average) of cluster c_k

Yup, it's basically minimizing the sum of squared errors again :3

A Couple of Notes

- Each observation x_i has the same number of columns according to our data ${\bf X}$
 - Thus, the "location" of x_i can be imagined as a "location" in N dimensions, most easily visualized by two dimensions
- Each centroid μ_k also has the dimension as x_i and can be thought of as the center of mass of the data cloud belonging to c_k if all points "weigh" the same
- The centroid of a cloud of data c_k is thus:

$$\mu_k = \frac{1}{N_k} \sum_{i \in c_k} x_i$$

- In the above expression, N_k is the number of points in cluster c_k
- Thus, the vector d_i is the same dimension as x_i and μ_k , and represents a vector drawn from the centroid μ_k to x_i

The K-Means Procedure

INITIALIZATION

- Let $X = \{x_1, x_2, \dots x_i, x_{i+1}, \dots x_N\}$ be a set of CENTERED/SCALED data
- Commit to K clusters (this can be chosen adaptively later)
- Let $\mathbf{M}^{(0)} = \left\{ \boldsymbol{\mu}_1^{(0)}, \boldsymbol{\mu}_2^{(0)}, \cdots \boldsymbol{\mu}_k^{(0)}, \boldsymbol{\mu}_{k+1}^{(0)}, \cdots \boldsymbol{\mu}_K^{(0)} \right\}$ be a set of cluster centers for iteration j=0
- Randomly assign vectors in X as the initial guesses for M

ALGORITHM

- 1. Compute the distance $oldsymbol{d}_{i,k}$ from each point $oldsymbol{x}_i$ to each center $oldsymbol{\mu}_k^{(j)}$
- 2. Assign each point x_i to $c_k^{(j)}$ by selecting the k such that $d_{i,k}$ is minimized for all i. Assign this to value d_i and let $i \in c_k^{(j)}$
 - IF no points x_i were assigned a different $c_k^{(j)}$ than $c_k^{(j-1)}$, STOP. The current set of clusters is locally optimal
 - ELSE, proceed to (3)
- 3. Calculate the new center of mass of each cluster according to the points x_i contained in c_k : $\mu_k^{(j+1)} = \frac{1}{N_k} \sum_{i \in c_k} x_i$
- 4. Update the iteration counter j = j + 1 and return to (1)

WHEW. In English, Please?

ALGORITHM

- 1. Find the distance from each point to each cluster center
- 2. Whichever center the point is closest to, consider the point as part of that cluster
 - IF the same points are in all clusters, they will stay that way forever, so stop
 - ELSE, proceed to (3)
- 3. Chances are some points changed clusters. If this is the case, we compute a new cluster center of mass (noting that it does NOT have to be the same as a specific point)
- 4. Then do the whole dang thing again

Example in MATLAB

Benefits/Drawbacks of K-Means

Don't feel bad. No one is perfect.

K-Means Clustering Boons/Busts

Advantages of K-Means

- Relatively easy to use
- Gives us a (locally) optimal solution to the least-squares problem
- Effective if data have high degree of separation
- Relatively efficient computationally

Disadvantages of K-Means

- Need to know number of clusters beforehand
- Highly overlapping data may be misclassified
- Works only for continuous data (requires μ_k)
- Requires centering/scaling to avoid biasing distances
- Data sets of different sizes/shapes can also lead to bad clustering
- Randomly choosing initial clusters can lead to bad results

How Many Clusters?

- Since K-Means requires us to know the number of clusters ahead of time, it is often not immediately obvious how many clusters to use
 - It is pretty easy to visually verify in 2D, but (as we know) many data sets have many columns in X
- A strategy for determining the appropriate number of clusters is to track the **total inertia** \mathcal{I}_K of the converged clusters as a function of number of clusters K

$$\mathcal{I}_K = \sum_{k=1}^K \mathcal{I}_k$$

• The total inertia \mathcal{I}_K is computed once the K clusters have CONVERGED

The Elbow Plot

- One can visualize the total inertia \mathcal{I}_K as a function of K
- The below plot is for our example (can be much more bendy but three is clearly the right number here)
- Rule of thumb: when the slope of this plot reaches it's "elbow," stop using additional clusters
- Generally, this is represented by a sudden change in slope that continues linearly

Random Initialization

- Sometimes random initialization will lead to bad clusters
 - Can be caused from bad initial placement of cluster centers

This is clearly not the best use of these clusters

Better Initialization: K++

- K++ Initialization attempts to start the clusters as far apart as possible (initialization of M)
 - Intended to prevent accidental segregation of data that should not be separated
 - Works very well if the clusters are already well separated
 - More computationally expensive

Algorithm to select initial $\mathbf{M}^{(0)} = \left\{ \boldsymbol{\mu}_1^{(0)}, \boldsymbol{\mu}_2^{(0)}, \cdots \boldsymbol{\mu}_k^{(0)}, \boldsymbol{\mu}_{k+1}^{(0)}, \cdots \boldsymbol{\mu}_K^{(0)} \right\}$

- 1. Select a random point $oldsymbol{x}_i$ as $oldsymbol{\mu}_1^{(0)}$, let $M = \left\{oldsymbol{\mu}_1^{(0)}
 ight\}$ and set k=1
- 2. Compute all $d_{i,k}$ for all x_i to all $\mu_k^{(0)}$ and assign each point x_i to a cluster $c_{k,i}$ recording d_i as the inertia of x_i to the nearest cluster center $\mu_k^{(0)}$
- 3. Assign the point x_i with highest resulting d_i (furthest point from any cluster) as $\mu_{k+1}^{(0)}$ and let $M = \{M, \mu_{k+1}^{(0)}\}$
- 4. IF k + 1 = K
 - TRUE: let M be the initial set of cluster centers
 - **FALSE**: let k = k + 1 and return to (2)

• First center chosen at random

• Identify longest distance and assign as new center

١3.

Assign to closest center (again)

• Identify longest distance and assign as new center

Begin K-Means procedure with K cluster centers

Measuring Cluster Quality

- The "quality" of clusters can be used to see how compact a set of clusters is
- The metric used to measure this is known as the Dunn Index
 - Measures the ratio between the closest two clusters in the set of clusters versus the maximum single inertial distance contained by one cluster
 - Our objective is to maximize the Dunn Index \mathcal{D} :

$$- \mathcal{D} = \frac{\min(\text{inter-cluster inertia})}{\max(\text{intra-cluster inertia})}$$

Nothing more than the distance between all cluster centers

$$\mathcal{D} = \frac{\min(\|\mu_k - \mu_j\| \ \forall \ k, j \neq k)}{\max(d_i \ \forall \ i)}$$

For Our Data Set

- The Dunn Index gives us another measure of how tightly packed our clusters are AND how far apart they are
 - Useful for helping choose the number of clusters
 - Useful for arguing that a cluster network is supported by the data

- Another K-Means challenge is when the size of clusters is different
 - Since we are minimizing the cumulative inertia, it is often optimal to assign large clusters to several cluster centers
 - Can also cause issues when more clusters are chosen, as large (broad) data sets often result in substantial inertia improvements when more clusters are used to describe the same "cloud"
- We don't really have a good solution to this for this algorithm, although using the Dunn Index can really help
 - Identifies when clusters are forming close to each other, which may mean segregating an otherwise broadly grouped set of points

 K-Means is unable to partition data that differentiates in a **nonlinear** fashion

- Typically, this means that the data are not grouped "spatially" in the coordinate space to which they belong
 - In other words, it might be inappropriate to measure inertia between points as the Euclidian distance or "as the crow flies"
- The commonly used example for this type of data are the target rings or half-moons

- Since K-Means is an unsupervised learning method, it is very difficult to know if the data is misclassified based on shape
- For data known to be highly nonlinear, consider support vector machines with kernel functions to project the nonlinear data into a linear space
 - This is not UNSUPERVISED because we need to know which group each point belongs to (supervised)
 - We MIGHT cover this in 4H if interested, else check out:
 - The Wiki page
 - The <u>Scikit formulation page</u>
 - This <u>idiot's guide to SVM from MIT</u> (their name, not mine)

Conclusions

- K-Means Clustering is our first (and only) exposure to unsupervised learning methods
- Very handy for identifying sub-classes in a data set
 - Locally optimal separation based on "inertia" of data
- Comes with some nice tools to help us fit when graphics are not an option
 - Elbow plot
 - K++ initialization
 - Dunn Index
- Not good for all types of data
 - Different sizes of data that should belong to each cluster
 - Different variances of data that should be within same cluster
 - Nonlinear shapes of data that do not conform to inertia optimization

