Linear Algebra Notes

Nong Minh $\mathrm{Hieu^1}$

 1 School of Physical and Mathematical Sciences, Nanyang Technological University (NTU - Singapore)

Contents

1	Vector Spaces				
	1.1	Definition of Vector Space			
	1.2	Subspace and Spanning Sets			
		Linear Independence			
	1.4	Basis and Dimension			
	A List of Definitions B Important Theorems				
C Important Corollaries					
D	Imp	portant Propositions			
E.	F. References				

1 Vector Spaces

1.1 Definition of Vector Space

Definition 1.1 (Vector Space).

A **vector space** (over a field \mathbb{F}) consists of a set V with two operations "+" and "·" subject to the conditions that for all $\vec{v}, \vec{w}, \vec{u} \in V$ and scalars $r, s \in \mathbb{F}$:

1. Closure under:

i Vector addition: $\vec{v} + \vec{w} \in V$.

ii Scalar multiplication: $r \cdot \vec{v} \in V$.

2. Properties of vector addition:

iii Commutativity: $\vec{v} + \vec{w} = \vec{w} + \vec{v}$.

iv Associativity: $(\vec{v} + \vec{w}) + \vec{u} = \vec{v} + (\vec{w} + \vec{u})$.

3. Properties of scalar multiplication:

v Associativity : $r \cdot (s \cdot \vec{v}) = (rs) \cdot \vec{v}$.

vi Distributivity over scalar addition: $(r+s) \cdot \vec{v} = r \cdot \vec{v} + s \cdot \vec{v}$.

vii Distributivity over vector addition: $r \cdot (\vec{v} + \vec{w}) = r \cdot \vec{v} + r \cdot \vec{w}$.

4. Inverse elements:

viii Additive inverse: $\forall \vec{v} \in V, \exists -\vec{v} \in V : \vec{v} + (-\vec{v}) = \vec{0}.$

5. Identity elements:

ix Additive identity: $\exists \vec{0} \in V : \vec{0} + \vec{v} = \vec{v}, \forall \vec{v} \in V.$

x Multiplicative identity: $\exists 1 \in \mathbb{F} : 1 \cdot \vec{v} = \vec{v}, \quad \forall \vec{v} \in V.$

For brevity, we will denote vectors as bold face letters instead of overhead arrows after this definition. For example, \mathbf{u}, \mathbf{v} and \mathbf{w} .

Remark 1.1 ("Over a field"). When we use the phrase "a vector space over a field \mathbb{F} ", this means that the scalars that we use will be taken from the field \mathbb{F} . It does not mean that our vector space consists of \mathbb{F} -valued vectors. For example, the following vector space:

$$L = \{(x, \alpha x) : x \in \mathbb{C}, \alpha \in \mathbb{R} \}$$

is a vector space over \mathbb{R} (scalar multiplications are done with real-valued scalars) even though the vectors are complex-valued.

Remark 1.2 (Trivial Space). A vector space with one element is called a **trivial space**.

Example 1.1 (A simple example). The following is a vector space over \mathbb{R} :

$$L = \left\{ \begin{pmatrix} x & y \end{pmatrix}^{\top} : y = 3x \right\}.$$

This is easy to verify. Let us go through each condition one by one. Let the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \in L$ defined as follows:

$$\mathbf{u}_1 = \begin{pmatrix} x_1 \\ 3x_1 \end{pmatrix}, \quad \mathbf{u}_2 = \begin{pmatrix} x_2 \\ 3x_2 \end{pmatrix}, \quad \mathbf{u}_3 = \begin{pmatrix} x_3 \\ 3x_3 \end{pmatrix}..$$

All the axioms of a vector space are satisfied. Let $\alpha, \beta \in \mathbb{R}$, we have:

1. Closure under vector addition:
$$\mathbf{u}_1 + \mathbf{u}_2 = \begin{pmatrix} x_1 \\ 3x_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ 3x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ 3(x_1 + x_2) \end{pmatrix} \in \mathbf{L}$$
.

2. Closure under scalar multiplication:
$$\alpha \mathbf{u}_1 = \alpha \begin{pmatrix} x_1 \\ 3x_1 \end{pmatrix} = \begin{pmatrix} \alpha x_1 \\ 3\alpha x_1 \end{pmatrix} \in \mathbf{L}$$
.

3. Additive commutativity:
$$\mathbf{u}_1 + \mathbf{u}_2 = \begin{pmatrix} x_1 + x_2 \\ 3x_1 + 3x_2 \end{pmatrix} = \begin{pmatrix} x_2 + x_1 \\ 3x_2 + 3x_1 \end{pmatrix} = \mathbf{u}_2 + \mathbf{u}_1.$$

4. Additive associativity:
$$(\mathbf{u}_1 + \mathbf{u}_2) + \mathbf{u}_3 = \begin{pmatrix} (x_1 + x_2) + x_3 \\ 3(x_1 + x_2) + 3x_3 \end{pmatrix} = \begin{pmatrix} x_1 + (x_2 + x_3) \\ 3x_1 + 3(x_2 + x_3) \end{pmatrix} = \mathbf{u}_1 + (\mathbf{u}_2 + \mathbf{u}_3).$$

5. ... (We can easily verify other axioms as well).

Example 1.2 (Polynomials of degree 3). Consider the following set of real-coefficients polynomials with degree of at most 3:

$$\mathcal{P}_3 = \left\{ a_0 + a_1 x + a_2 x^2 + a_3 x^3 \middle| a_0, a_1, a_2, a_3 \in \mathbb{R} \right\}.$$

Then, \mathcal{P}_3 is a vector space over \mathbb{R} under the following operations:

$$(a_0 + a_1x + a_2x^2 + a_3x^3) + (b_0 + b_1x + b_2x^2 + b_3x^3)$$

$$= (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + (a_3 + b_3)x^3,$$

$$\alpha \cdot (a_0 + a_1x + a_2x^2 + a_3x^3) = (\alpha a_0) + (\alpha a_1)x + (\alpha a_2)x^2 + (\alpha a_3)x^3.$$

We can think of \mathcal{P}_3 as being "the same" as the vector space \mathbb{R}^4 . For every set of real coefficients a_0, \ldots, a_3 , we have the following correspondence:

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
 corresponds to $\begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$.

Similarly, for any $n \geq 1$, \mathcal{P}_n is also a vector space over \mathbb{R} .

Definition 1.2 (Vector Space as Abelian Group).

Let V be a vector space over a field \mathbb{F} with two operations "+" and "·". Then, (V, +) is an (additive) Abelian group that satisfies the additional axioms on scalar multiplications:

i
$$\lambda \mathbf{u} \in V$$
 for all $\lambda \in \mathbb{F}$ and $\mathbf{u} \in V$. (Closure under scalar multiplication)

ii
$$(\lambda \mu)\mathbf{u} = \lambda(\mu \mathbf{u})$$
 for all $\lambda, \mu \in \mathbb{F}$ and $\mathbf{v} \in V$. (Associativity)

iii
$$\lambda(\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \lambda \mathbf{v}, \ \mathbf{u}, \mathbf{v} \in V \text{ and } \lambda \in \mathbb{F}.$$
 (Distributivity in V)

iv
$$(\lambda + \mu)\mathbf{u} = \lambda \mathbf{u} + \mu \mathbf{u}, \ \lambda, \mu \in \mathbb{F}$$
 and $\mathbf{u} \in V$. (Distributivity in \mathbb{F})

$$v \ 1u = u \ for \ all \ u \in V.$$
 (Multiplicative identity)

Basically, we can think of vector spaces as Abelian groups with additional structures involving scalar multiplications. According to definition 1.1, the fact that V is an Abelian group makes it satisfy properties (i), (iii), (iv), (vii) and (viii). The additional properties regarding scalar multiplication are listed above.

1.2 Subspace and Spanning Sets

In example 1.1, we saw a vector space over \mathbb{R} that is a subset of \mathbb{R}^2 , $L = \{(x, 3x)^\top : x \in \mathbb{R}\}$, which is a line through the origin. In this section, we provide a formal definition for subspace of a vector space:

Definition 1.3 (Subspace).

For vector space V with two operations "+" and "·". S is called a subspace of V if:

- $S \subseteq V$.
- S is a vector space under the inherited operations.

Proposition 1.1: Closure of Subspace under Linear Combination

For a non-empty subset S of a vector space V over a field \mathbb{F} . Under the inherited operations, the following statements are equivalent:

- 1. S is a subspace of V.
- 2. S is closed under linear combinations of any number of vectors: For all $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ and $\mathbf{u}_1, \ldots, \mathbf{u}_n \in S$, $\sum_{i=1}^n \lambda_i \mathbf{u}_i \in S$.

The above proposition gives us a convenient tool to work with whenever we want to prove that some subset of a vector space is a subspace. Instead of going through all the axioms in definition 1.1, we can just prove that the subset is closed under finite linear combinations. For example, we have the following proposition:

Proposition 1.2: Operations that Preserves Subspaces

Let V be a vector space over a field \mathbb{F} and $U, W \subseteq V$ be subspaces. Then, the following subsets of V:

- 1. $U + W = \{\mathbf{u} + \mathbf{w} : \mathbf{u} \in U, \mathbf{w} \in W\}^{a}$,
- 2. $U \cap W = \{ \mathbf{v} \in V : \mathbf{v} \in U \text{ and } \mathbf{v} \in W \}$

are all subspaces of V.

^aLater we will learn that the direct sum $U \oplus W$ is also a subspace. Basically $U \oplus W = U + W$ where $U \cap W = \{0\}$.

Proof (Proposition 1.2).

We know that U + W is definitely a subset of V because of its closure under vector addition. It is also trivial that $U \cap W \subseteq V$. Now we prove that any finite linear combination of each subset belongs to itself.

1. U + W: Let $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ be a finite sequence of scalars and $\mathbf{v}_1, \ldots, \mathbf{v}_n \in U + W$. Then, for any $1 \le i \le n$, we have $\mathbf{v}_i = \mathbf{u}_i + \mathbf{w}_i$ where $\mathbf{u}_i \in U$ and $\mathbf{w}_i \in W$. Therefore, we have:

$$\sum_{i=1}^{n} \lambda_i \mathbf{v}_i = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i + \sum_{i=1}^{n} \lambda_i \mathbf{w}_i.$$

Since we have $\sum_{i=1}^{n} \lambda_i \mathbf{u}_i \in U$ and $\sum_{i=1}^{n} \lambda_i \mathbf{w}_i \in W$ due to closure under linear combinations of subspaces, we have $\sum_{i=1}^{n} \lambda_i \mathbf{v}_i \in U + W$. Therefore, U + W is also closed under linear combinations and hence, a subspace of V.

2. $U \cap W$: Let $\mathbf{v}_1, \dots, \mathbf{v}_n \in U \cap W$ and $\lambda_1, \dots, \lambda_n \in \mathbb{F}$. It holds that $\sum_{i=1}^n \lambda_i \mathbf{v}_i \in U$ because U is a subspace. Since W is also a subspace $\sum_{i=1}^n \lambda_i \mathbf{v}_i \in W$. Therefore, $\sum_{i=1}^n \lambda_i \mathbf{v}_i \in U \cap W$.

 \Box .

Definition 1.4 (Span (Linear Closure)).

The span of a non empty subset S of a vector space over a field \mathbb{F} is the set of all linear combinations of vectors from S.

$$\operatorname{span}(S) = \left\{ \sum_{i=1}^{n} \lambda_i \mathbf{v}_i : \mathbf{v}_i \in S, \lambda_i \in \mathbb{F} \right\}. \tag{1}$$

The span of an empty subset of a vector space is its trivial space (span(\emptyset) = {0}).

Proposition 1.3: Span of Subsets in Vector Spaces

In a vector space, the span of any subset is a subspace.

Proof (Proposition 1.3).

Let V be a vector space over \mathbb{F} and $S \subseteq V$. Denote that $\tilde{S} = \operatorname{span}(S)$. Obviously $\tilde{S} \subseteq V$ due to closure under linear combinations of vector spaces. We have to prove that \tilde{S} is also closed under linear combinations. Let $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ and $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \tilde{S}$. For each \mathbf{v}_i , we have:

$$\mathbf{v}_i = \sum_{j=1}^{n_i} \alpha_{i,j} \mathbf{u}_{i,j} \text{ where } \alpha_{i,1}, \dots, \alpha_{i,n_i} \in \mathbb{F}, \mathbf{u}_{i,1}, \dots, \mathbf{u}_{i,n_i} \in S.$$

Therefore, we have:

$$\sum_{i=1}^{n} \lambda_i \mathbf{v}_i = \sum_{i=1}^{n} \sum_{j=1}^{n_i} \alpha_{i,j} \mathbf{u}_{i,j} \in \tilde{S}.$$

Therefore, \tilde{S} is a subspace of V.

 \Box .

Proposition 1.4: Adding Vectors to Span

Let V be a vector space over a field \mathbb{F} and $S \subseteq V$. Let $\mathbf{v} \in V$, then

$$\operatorname{span}(S \cup \{\mathbf{v}\}) = \operatorname{span}(S) \iff \mathbf{v} \in \operatorname{span}(S). \tag{2}$$

Proof (Proposition 1.4).

We immediately have $\operatorname{span}(S \cup \{\mathbf{v}\}) = \operatorname{span}(S) \implies \mathbf{v} \in \operatorname{span}(S)$ because if $\mathbf{v} \notin \operatorname{span}(S)$, then the two sets cannot be equal because $\mathbf{v} \in \operatorname{span}(S \cup \{\mathbf{v}\})$.

To prove the opposite side, suppose that $\mathbf{v} \in \text{span}(S)$. Hence, we can write \mathbf{v} as a linear combination of vectors in S:

$$\mathbf{v} = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i, \quad \lambda_i \in \mathbb{F}, \mathbf{u}_i \in S.$$

We prove that $\operatorname{span}(S \cup \{\mathbf{v}\}) = \operatorname{span}(S)$ by showing that:

- 1. $\operatorname{span}(S) \subseteq \operatorname{span}(S \cup \{\mathbf{v}\})$.
- 2. $\operatorname{span}(S \cup \{\mathbf{v}\}) \subseteq \operatorname{span}(S)$.

The first containment is clear. To prove the second point, we prove that for any $\mathbf{w} \in \text{span}(S \cup \{\mathbf{v}\})$, $\mathbf{w} \in \text{span}(S)$. Let $\alpha_1, \ldots, \alpha_{m+1} \in \mathbb{F}$ and $\mathbf{s}_1, \ldots, \mathbf{s}_m \in S$, we can write \mathbf{w} as follows:

$$\mathbf{w} = \sum_{j=1}^{m} \alpha_j \mathbf{s}_j + \alpha_{m+1} \mathbf{v}$$

$$= \sum_{j=1}^{m} \alpha_j \mathbf{s}_j + \alpha_{m+1} \sum_{i=1}^{n} \lambda_i \mathbf{u}_i$$

$$= \sum_{j=1}^{m} \alpha_j \mathbf{s}_j + \sum_{i=1}^{n} \alpha_{m+1} \lambda_i \mathbf{u}_i,$$

which is a linear combination of vectors in S. Hence, $\mathbf{w} \in \text{span}(S)$. Therefore, we conclude that $\text{span}(S \cup \{\mathbf{v}\}) \subseteq \text{span}(S)$. \square .

Corollary 1.1: Adding Indepdent Vector to Span

Let V be a vector space over a field \mathbb{F} and $S \subseteq V$. Let $\mathbf{v} \in V$, then

$$\operatorname{span}(S) \subset \operatorname{span}(S \cup \{\mathbf{v}\}) \iff \mathbf{v} \notin \operatorname{span}(S). \tag{3}$$

Proof (Corollary 1.1).

We prove from both sides:

- 1. $\operatorname{span}(S) \subset \operatorname{span}(S \cup \{\mathbf{v}\}) \implies \mathbf{v} \notin \operatorname{span}(S)$: Suppose the opposite that $\mathbf{v} \in \operatorname{span}(S)$. Then, by proposition 1.4, we have $\operatorname{span}(S) = \operatorname{span}(S \cup \{\mathbf{v}\})$, which contradicts the initial assumption.
- 2. $\mathbf{v} \notin \operatorname{span}(S) \Longrightarrow \operatorname{span}(S) \subset \operatorname{span}(S \cup \{\mathbf{v}\})$: Similar to the above, we prove by contradiction using proposition 1.4.

Proposition 1.5: Removing Vectors from Span

Let $\mathbf{v} \in S$. Then, removing \mathbf{v} from S does not shrink the span if and only if it is a linear combination of other vectors in the set.

$$\operatorname{span}(S \setminus \{\mathbf{v}\}) = \operatorname{span}(S) \iff \mathbf{v} \in \operatorname{span}(S \setminus \{\mathbf{v}\}). \tag{4}$$

 \Box .

Proof (Proposition 1.5).

This is a direct consequence of proposition 1.4 (By applying the proposition with $\tilde{S} = S \setminus \{\mathbf{v}\}$). From proposition 1.5, we have the following corollary.

Corollary 1.2: Remove Vector from Linearly Independent Sets

A set S is linearly independent if and only if removing any vector from S shrinks the span. In other words:

$$\forall \mathbf{v} \in S : \operatorname{span}(S \setminus \{\mathbf{v}\}) \subset \operatorname{span}(S). \tag{5}$$

Proof (Corollary 1.2).

We prove by contradiction. Suppose that we have $\mathbf{v} \in S$ and $\operatorname{span}(S \setminus \{\mathbf{v}\}) = \operatorname{span}(S)$. Then, by proposition 1.5, we have $\mathbf{v} \in \operatorname{span}(S \setminus \{\mathbf{v}\})$. Hence, \mathbf{v} is a linear combination of the other vectors in S, which is a contradiction since we assumed S to be independent. \Box .

1.3 Linear Independence

Definition 1.5 (Linear Independence).

We have the following definitions of linear independence:

- 1. In any vector space, a finite set of vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ is said to be linearly independent if **NONE** of its elements is a linear combination of the others from the set. Otherwise, the set is linearly dependent.
- 2. A finite set of vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ is linearly independent if and only if:

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n = 0 \implies \alpha_i = 0, \quad \forall 1 \le i \le n.$$

3. A finite set of vectors $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is linearly independent if and only if:

$$\forall 1 \le k \le n : \mathbf{v}_k \notin \operatorname{span}(S \setminus {\mathbf{v}_k}),$$

In other words, every vector in S is not spanned by the remaining vectors of S.

4. An <u>infinite</u> set of vectors $V = \{\mathbf{v}_k\}_{k=1}^{\infty}$ is linearly independent if every finite subset of V is linearly independent.

Definition 1.6 (Properties of Linear Independence).

From propositions 1.4, 1.5 and corollaries 1.1, 1.2, we have the following properties that relate linear independence to spanning sets:

	Same as $\operatorname{span}(S)$	
	True	False
$\overline{\operatorname{span}(S \cup \{\mathbf{v}\})}$	$\mathbf{v} \in \operatorname{span}(S)$	$\mathbf{v} \notin \operatorname{span}(S)$
$\operatorname{span}(S \setminus \{\mathbf{v}\})$	$\mathbf{v} \in \operatorname{span}(S \setminus {\mathbf{v}})$	$\mathbf{v} \notin \operatorname{span}(S \setminus \{\mathbf{v}\})$

Table 1: Conditions for $\operatorname{span}(S \cup \{\mathbf{v}\}) = \operatorname{span}(S)$ and $\operatorname{span}(S \setminus \{\mathbf{v}\}) = \operatorname{span}(S)$.

1.4 Basis and Dimension

A L	ist of Definitions
1.1 1.2 1.3 1.4 1.5	Definition (Vector Space)2Definition (Vector Space as Abelian Group)3Definition (Subspace)4Definition (Span (Linear Closure))5Definition (Linear Independence)7Definition (Properties of Linear Independence)7
	Important Theorems Important Corollaries Adding Indepdent Vector to Span
D 1.1 1.2	Important Propositions Closure of Subspace under Linear Combination
1.3 1.4 1.5	Span of Subsets in Vector Spaces

E References

References

- [1] Rick Durrett. *Probability: Theory and Examples.* 4th. USA: Cambridge University Press, 2010. ISBN: 0521765390.
- [2] Erhan undefinedinlar. *Probability and Stochastics*. Springer New York, 2011. ISBN: 9780387878591. DOI: 10.1007/978-0-387-87859-1. URL: http://dx.doi.org/10.1007/978-0-387-87859-1.
- [3] Wikipedia. Vitali set Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=Vitali%20set&oldid=1187241923. [Online; accessed 24-December-2023]. 2023.