Feuille d'exercices nº 6

Analyse de Fourier & équations aux dérivées partielles

Dans la suite, on utilise le convention de Fourier suivante

$$\mathcal{F}(u)(\xi) = \int_{\mathbf{R}^d} e^{-i\xi \cdot x} u(x) dx, \qquad \xi \in \mathbf{R}^d.$$

On utilisera aussi l'identification canonique des fonctions $u: X \times Y \to Z$, $(t,x) \mapsto u(t,x)$ avec les fonctions $X \to Z^Y$, $t \mapsto u(t,\cdot)$.

Exercise 1. Soit $d \in \mathbb{N}^*$ et $P \in \mathbb{C}[X_1, \dots, X_d]$ un polynôme de degré $M \in \mathbb{N}$ tel qu'il existe R > 0 et C tel que, pour tout $\xi \in \mathbb{R}^d$ tel que $\|\xi\| \ge R$, l'on ait $|P(i\xi)| \ge C \|\xi\|^M$.

- 1. Montrer que si d=1 tout polynôme non nul vérifie l'hypothèse.
- 2. Pour $d \geq 2$ donner un exemple de polynôme ne s'annulant pas sur i \mathbf{R}^d mais ne vérifiant pas l'hypothèse.
- 3. On suppose de plus que P ne s'annule pas sur $i\mathbf{R}^d$. Montrer que pour tout $f \in L^2(\mathbf{R}^d; \mathbf{C})$ il existe un unique $u \in H^M(\mathbf{R}^d; \mathbf{C})$ tel que $P(\nabla)u = f$.

Exercise 2. Soit $d \in \mathbf{N}^*$ et $P \in \mathbf{C}[X_1, \cdots, X_d]$ un polynôme de degré $M \in \mathbf{N}$ tel que

$$\sup_{\xi \in \mathbf{R}^d} \operatorname{Re}(P(\mathrm{i}\xi)) < +\infty.$$

- 1. Déterminer à quelle condition sur $\alpha \in \mathbf{C}$ le polynôme P défini par $P(\nabla) = \alpha \Delta$ vérifie l'hypothèse.
- 2. Montrer que, pour tout t > 0, l'application linéaire

$$S(t): L^2(\mathbf{R}^d; \mathbf{C}) \to L^2(\mathbf{R}^d; \mathbf{C}), \quad u_0 \mapsto \mathcal{F}^{-1}(e^{t P(\mathbf{i} \cdot)} \mathcal{F}(u_0))$$

est bien définie et continue.

3. Soit $u_0 \in L^2(\mathbf{R}^d; \mathbf{C})$. On considère

$$u: \mathbf{R}_+ \times \mathbf{R}^d \to \mathbf{C}, \quad (t, x) \mapsto S(t)(u_0)(x).$$

- (a) Montrer que $u \in \mathcal{C}^0(\mathbf{R}_+; L^2(\mathbf{R}^d; \mathbf{C}))$.
- (b) Montrer que si de plus $u_0 \in H^M(\mathbf{R}^d; \mathbf{C})$ alors $u \in \mathcal{C}^0(\mathbf{R}_+; H^M(\mathbf{R}^d; \mathbf{C})) \cap \mathcal{C}^1(\mathbf{R}_+; L^2(\mathbf{R}^d; \mathbf{C})), \ \partial_t u = P(\nabla)u \text{ et } u(0, \cdot) = u_0.$
- 4. Montrer que si T > 0, $u \in \mathcal{C}^0([0,T]; H^d(\mathbf{R}^d; \mathbf{C})) \cap \mathcal{C}^1([0,T]; L^2(\mathbf{R}^d; \mathbf{C}))$ avec $\partial_t u = P(\nabla)u$ et $v \in \mathcal{C}^0([0,T]; H^d(\mathbf{R}^d; \mathbf{C})) \cap \mathcal{C}^1([0,T]; L^2(\mathbf{R}^d; \mathbf{C}))$, alors

$$\langle u(T,\cdot); v(T,\cdot)\rangle_{L^2(\mathbf{R}^d;\mathbf{C})} = \langle u(0,\cdot); v(0,\cdot)\rangle_{L^2(\mathbf{R}^d;\mathbf{C})} + \int_0^T \langle u(s,\cdot); (\partial_t v + \overline{P}(-\nabla)v)(s,\cdot)\rangle_{L^2(\mathbf{R}^d;\mathbf{C})} \,\mathrm{d}s.$$

5. En déduire que pour tout $u_0 \in H^M(\mathbf{R}^d; \mathbf{C})$, il existe un unique $u \in \mathcal{C}^0(\mathbf{R}_+; H^M(\mathbf{R}^d; \mathbf{C})) \cap \mathcal{C}^1(\mathbf{R}_+; L^2(\mathbf{R}^d; \mathbf{C}))$ tel que $\partial_t u = P(\nabla)u$ et $u(0, \cdot) = u_0$.