Anneaux et Corps

David Wiedemann

Table des matières

1	Ger	neralites	2
	1.1	Definitions de base et exemples connus	2
	1.2	Anneaux integres et corps	3
	1.3	Corps des Fractions	3
	1.4	Ideaux et anneaux quotients	4
\mathbf{L}	ist	of Theorems	
	1	Definition (Sous-anneau)	2
	2	Definition (Morphismes d'anneau)	2
	2	Proposition	2
	3	Proposition	2
	5	Proposition (Propriete universelle de l'anneau des polynomes)	2
	3	Definition (Sous-anneau engendre)	2
	4	Definition (Diviseurs de 0)	3
	5	Definition (Anneau integre)	3
	8	Proposition	3
	9	Corollaire	3
	6	Definition	3
	7	Definition (Corps de Fractions)	3
	10	Theorème	:
	11	Proposition (Propriete universelle du corps des fractions)	9
	Q	Definition (Ideal)	/

Lecture 1: Introduction

Mon 21 Feb

1 Generalites

1.1 Definitions de base et exemples connus

Tous les anneaux ont des unites.

Exemple

 $-\mathbb{Z},\mathbb{R},\mathbb{C},M_n(\mathbb{R})$

Definition 1 (Sous-anneau)

Pour $B \subset A$, A un anneau, B est un sous-anneau ssi

- B est stable pour l'addition et la multiplication
- $-1 \in E$

Definition 2 (Morphismes d'anneau)

 $f: A \rightarrow B$ est un homomorphisme si

- $f preserve +, \cdot$
- -f(1)=1

Proposition 2

 $Si\ f:A \to B\ est\ un\ homomorphisme\ d'anneaux,\ alors\ Imf\subset B\ est\ un\ sous-anneau$

Proposition 3

 $Si\ f:A\to B\ est\ un\ homomorphisme\ d'anneaux,\ B=0\implies \ker f\subset A$ n'est pas un sous-anneau.

Exemple

- $a_0 + a_1t + a_2t^2 + \dots, a_i \in A$ les series formelles sur A avec l'addition et la multiplication usuelle.
- Polynomes : serie formelle avec nb fini de coeff. non nuls

Proposition 5 (Propriete universelle de l'anneau des polynomes)

 ev_c est un homomorphisme et tout morphisme partant de A factorise a travers A[t].

Definition 3 (Sous-anneau engendre)

Pour $f: A \to B$ une inclusion, l'image $Imev_c = A[c] \subset B$ est le plus petit sous-anneau de B engendre par A et c.

Exemple

$$\mathbb{Z}[i] = \left\{ \sum_{j=0}^{n} a_j i^j | a_j \in \mathbb{Z} \right\} = \left\{ a + bi | a, b \in \mathbb{Z} \right\}$$

Exemple (Anneaux de groupes)

Soit G un groupe fini et A un anneau, alors on construit

$$AG = \left\{ \sum \lambda_g g | \lambda_g \in A \right\}$$

1.2 Anneaux integres et corps

Definition 4 (Diviseurs de 0)

Un element a est un diviseur de 0 si il existe b non nul tel que ab ou ba = 0

Definition 5 (Anneau integre)

 $\textit{Un anneaux est integre ssi } a \cdot b = 0 \implies a = 0 \textit{ ou } b = 0$

Lecture 2: Ideaux

Wed 23 Feb

Proposition 8

 $a \in A \text{ inversible} \implies non \text{ diviseur de zero}$

Preuve

$$c = 1 \cdot c = bac = 0$$

Corollaire 9

 $a \in A^{\times} \implies inverse \ est \ unique.$

Definition 6

A est integre s'il est commutatif et sans diviseurs de 0

1.3 Corps des Fractions

Definition 7 (Corps de Fractions)

A integre, si $A \mapsto K$ est un sous-anneau d'un corps K tel que $\forall x \in K$, $\exists a \in A, b \in A \setminus \{0\}$ $x = \frac{a}{b}$.

Alors K est un corps de fractions.

Theorème 10

Pour chaque anneau integre, il existe un corps de fractions $A \to K$.

Preuve

$$K = A \times A \setminus \{0\} / \sim avec(a, b) \sim (a', b') \iff ab' = ba'$$

Proposition 11 (Propriete universelle du corps des fractions)

Pour chaque morphisme $\iota: A \to L$ avec L un corps, ι factorise de maniere unique a travers Frac(A)

Car c'est un objet universel dans $*\downarrow U$, le corps des fractions est unique.

1.4 Ideaux et anneaux quotients

Soit $I \subset A$ un sous-ensemble.

Definition 8 (Ideal)

 $\label{lem:constraint} \begin{tabular}{ll} Un sous-ensemble I est un ideal si c'est un sous-groupe additif qui est stable par multiplication par les elements de A. \end{tabular}$