规可 3180/0295
Q1. (qo, Dbaba) tm (q1, Dabaa) tm (q0, Dabaa) tm (q1, Dabab) tm (q0, Dabab) tm (q1, Dabaa) tm (q0, Dabab) tm (q0, Dabab) tm (h, Dabab)
Q2. >L -α# ω > ω Rω α Lω -
(B3. Proof: =>) Decause A is recursive, A is recursive Then A and A are recursively enumerable (=) Suppose that A is accepted by M1 and A is accepted by M2 Construct a new Turing Machine that clicides A as follows: 1) run M1, M2 on input "w" 1) If M1 accepts, accept 1f M2 accepts, reject
Q4. Proof: Suppose that II is recursively enumerable. Because II is recursively enumerable by the statement in Q3 we can know that II is recursive contractict so II is not recursively enumerable
Qs. (a) False. Couterexample: H is recursively enumerable but H is not (b) True. (c) False. Couterexample: >R a this TM does not decide any language (d) False. The couterexample is the same as (c)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Q7. Define the language as L= {"M""R": M is a DFA and R is a regular expression, L(M) = L(R) } Suppose that a Turing machine M, decides the language EQPFA = {"A""B": A and B are DFAs and L(A) = L(B)} Construct a Turing machine M2 decides L: on input "M"R" where M is a PFA and R is a regular expression Convert R into a DFA DR Run M, on "M""DR" 3. If M, accepts, accept. If M, gejects, reject. So it is recursive.

R& Construct a TM M' that enumerates A as tollows:
11/2 = a name all strings in 5th as 51. 52 se in lexicographically order
for i=1 > 3 concrete 5, 5, 5i for i ctops
If can company of the according
17 uny compartition mats, accept
Q8. Construct a TM M' that enumerates A as follows: M'= a name all strings in Σ* as si, sz, sz,in lexicographically order for i=1, z, s, generate si, sz,, si, for i steps If any computation halts, αccept so A is recursively enumerable
OS Dalina the language of
Q. Define the language as L= ("M"" 6": M writes the symbol 6 at least one when started on the empty tape. Contruct a TM Mw and a symbol 6 · 6 \(\xi\)\(\Sigm\) on in put \(\infty\)
Le 1 1 0 1 10 10 10 10 10 10 10 10 10 10 1
Contract a IM MW and a symbol & 16 & 2 M, 66 & Mw)
1. er we x
2. write w on its tape
3. run M
y write &
then M halts on w iff Mw writes the symbol 6 at least once when started on the empty tape so L is not recursive. namely the problem is undecidable.
on the empty tape
so L is not recursive, namely the problem is undecidable.
<u> </u>