Experimental Physik II Kapitel 17

author email

 $\mathrm{July}\ 2,\ 2016$

Contents

17 Magnetfelder in Materie / Magnetismus	2
17.1 Betrachte Magnetischesmoment eines kreisenden geladenen	
Teilchens	

17 Magnetfelder in Materie / Magnetismus

- Magnetische Momente durch Elektronen in Atomen
- Magnetische Momente (MMe) des Elektronensystems von Atomen als Ursache der magnetischen Wechselwirkung
- Je nach Art der WW zwischen Materie und Magnetfeldern lassen sich die Materialien in die folgenden "Klassen" unterteilen:
 - Paramagnetische
 - Diamagnetische
 - Ferromagnetische
 - Antiferromagnetische
 - Ferrimagnetische

Materialien

Wie äußert sich entsprechend Magnetismus?

Experiment: Spule mit Luft: $\vec{B} = \vec{B_0}$

Spule mit Eisenkern: $\vec{B} >> \vec{B_0}$; $\vec{B} \approx 4...5 \times \vec{B_0}$

17.1 Betrachte Magnetischesmoment eines kreisenden geladenen Teilchens

$$\mu_{mg} = I \cdot A = \left(\frac{q}{T}\right) \cdot (\pi r^2) = \frac{1}{2} \cdot q \cdot \omega r^2$$

$$= \frac{q}{2m} \cdot |\vec{L}|$$
Es gilt: $\vec{\mu}_{mg} = \frac{q}{2m} \cdot \vec{L}$

Für Elektronen im Atom:

$$\vec{\mu}_{mg} = \frac{-e}{2m_e} \cdot \vec{L}$$

 \Rightarrow MM durch Bahndrehimpuls!

Bohr'sches Atommodell: Drehimpuls ist quantisiert

$$|ec{L}|=n\cdot \hbar \hspace{0.5cm} \left(\hbar=rac{h}{2\pi}
ight)$$

kleinster Wert: n = 1:

$$\mu = -\frac{e}{2m_e} \cdot \hbar = \mu_{Bohr} = -9.13 \times 10^{-24} \,\mathrm{Am}^2$$

 μ_{Bohr} : Bohr'sches Magnetton

$$\Rightarrow \mu = n \cdot \mu_{Bohr}$$

Gyromagnetisches Verhältnis (g-Faktor):

$$g = \frac{(\mu/|\vec{L}|)}{\frac{1}{2}\frac{e}{m_e}} = 1$$
 für Bahnelektronen

Zusätzlich berücksichtigen: Eigendrehimpuls des Elektrons (Spin) $S=\frac{1}{2}\hbar$ (Quantenmechanik)

Bei der Berechnung des zugehörigen MM tritt ein zusätzlicher Faktor auf: gs:

$$\vec{\mu}_S = -q_S \cdot \frac{e}{2m_e} \cdot \vec{S}$$
 $g_S \approx 2, 0$

- \Rightarrow gesamtes MM eines e^- ist die Summe aus Beitrag von \vec{L} und $\vec{S}.$
- \Rightarrow gesamtes MM eines Atoms ist \sum der MM alle einzelnen e^- !
- \Rightarrow Je nach Elektronkonfiguration (Besetzung der verschiedenen Schalter) ist Kompensation möglich
- ⇒ Komplett gefüllte Schalen liefern keinen Beitrag zum MM!
- \Rightarrow Materialien wie He, Ne, Ar, ... sind nicht magnetisierbar
- ⇒ Diese Effekte bestimmen die "Magnetisierung" des Materials!

Äußeres Feld \vec{B}_0 :

$$ec{B} = ec{B}_0 + \overbrace{\mu_0 ec{M}}^{Magnetisierung}$$

 \vec{M} : mittleres magnetisches Moment/Volumen

$$ec{M} = n \cdot \underbrace{< ec{\mu}_{mg}>}_{ ext{mittl. MM/Atom(Molekül)}}$$

n: Dichte der Atome (Moleküle)

$$\vec{B} = \vec{B}_0 + \mu_0 \cdot \vec{M}$$

Anschauliche Erklärung: Ampere: "Atomare Ringströme"

Naives Bild: "Ausrichtung der Elementarmagnete" (...Schale)

Magnetische Feldstärke: \vec{H}

Im Vakuum/Luft: $\vec{B}_0 = \mu_0 \cdot \vec{H}$

Mit Materie:

$$\begin{split} \vec{B} &= \vec{B}_0 + \mu_0 \cdot \vec{M} = \mu \cdot \vec{H} \\ \mu_0 \cdot \vec{H} + \mu_0 \vec{M} \\ \Rightarrow &= \mu_0 \cdot \vec{H} \big(1 + \underbrace{X_m}_{\text{magnetische Suszeptibilität}} \big) \\ &= \mu_0 \cdot \mu_r \cdot \vec{H} \end{split}$$

 $\mu_r(1+X_m)$ relative Permeabilität

 $\mu = \mu_0 \mu_r$ Permeabilität

 $X_m > 0$: Paramagnet • $X_m < 0$: Diamagnet •

Experiment: Materie im inhomogenen Magnetfeld

Paramagnet: wird in inhom. \vec{B} -Feld hineingezogen Diamagnet: wird aus \vec{B}_{inhom} heraus-gedrängt Ferromagnet: Wie Paramagnet, aber viel stärker

• Diamagnetismus

- Störung der e^- -Bahnen durch äußeres Feld

– Verursacht kleine MMe, die $\uparrow \downarrow$ zu \vec{B}_0 sind.

$$\vec{M} \uparrow \downarrow \vec{B}_0 \Rightarrow \mathcal{X}_m < 0 !$$

Tritt bei allen Materialien auf, wird aber fast immer durch Paramagnetismus überlagert.

• Paramagnetismus

 \exists pemanente MMe aus Bahn- und Spinmagnetismus der Valenzelektronen, die im äußeren $\vec{B}\text{-Feld}$ entgegen der thermischen Bewegung ausgerichtet werden:

$$\vec{M} \uparrow \uparrow \vec{B}_0 \Rightarrow \mathcal{X}_m > 0$$
!

Für kleine Magnetfelder: $|\vec{M}| \sim |\vec{B}_0|/T$

Für große Felder (und/oder kleine Temperaturen; $\mu_{mag}\cdot B_0>>k_BT)$

komplette Ausrichtung, dann $|\vec{M}| = |\vec{M}_S|$ \leftarrow Sättigungsmagnetisierung

Curie-Gesetz:
$$M = \frac{1}{3} \frac{\mu_{mg} \cdot B_0}{k_B T} \cdot M_S$$
 $(X_m \sim T^{-1})$

• Ferromagnetismus

Hier: WW der MMe untereinander ("Spin-Spin-WW") Beitrag zur freien Energie:

$$E = -\frac{1}{2} \cdot \mathop{J^{\text{Austauschkonstante}}}_{J} \sum_{\substack{i,j \\ \text{Gitterplätze}}} S_i S_j$$

$$S_{i,j}=\pm rac{1}{2}\;,\;+rac{1}{2}:\;\uparrow\;\;\;,\;-rac{1}{2}:\;\;\downarrow\;\;MM$$

- \Rightarrow Kompetitiv: Energieminimierung/Entropiemaximierung!
- \Rightarrow Benachbarte MMe "wollen" parallel stehen! $\Rightarrow X_m = X_m(\vec{B}_0)$
- ⇒ permanente Magnetisierung, wenn Temperatur nicht zu hoch!
- ⇒ Parallele Ausrichtung der MMe in mikroskopischem Bereich
- "Domänen" (Weiss'sche Bezirke) $10^{-8}...10^{-12} \text{ m}^3$, $10^{21}...10^{17} \text{ Atome}$
- \Rightarrow Barkhausen-Effekt!

• i Ferromagnetsimus: Mikroskopisch

Beitrag zur Energie $E=-\frac{1}{2}J\sum_{i,j}s_is_j$ $s_{i,j}=\pm 1/2$

• ii J < 0

Antiferromagnetismus Gesamtmagnetisierung "0"

• iii

Ferrimagnetismus (nicht verschwindende Gesamtmagnetisierung)

 \Rightarrow Ferromagnetische Kopplung \Rightarrow Domänenstruktur

Magnetisierung im äußeren Feld:

- 1. Domänenwachstum
- 2. Drehung der Magnetisierung

Zu 1. : Kein Kontinuierlicher Prozess, sondern:

\Rightarrow Barkhausen-Effekt

Energiebilanz (Einfluss der Entropie!): Ferromagnetische Ordnung nicht temperaturstabil, d.h. einer "kritischen Temperatur" (Curie-Temperatur) Übergang zu paramagnetischem Verhalten.

Exp: Drehender Ni.Ring

"Stabilen" ferromagnetische Ordnung: ⇒ "Arbeit" notwendig, um Magnetisierung aufzuheben (oder: äußeres Feld in Gegenrichtung!)

 $\Rightarrow {\rm Hysterese}$

Weichmagnetische Stoffe: leicht mangnetisierbar (Kleine Fläche von Hys-

terese umschlossen)

Hartmagnetische Stoffe: schwer magnetisierbar, große Fläche