PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
A01H 5/00, C12N 15/29, 15/31, 15/54, 15/70, 15/74, 15/80, 15/81, 15/82, C12P 19/04

A1

(11) International Publication Number:

WO 98/44780

(43) International Publication Date:

15 October 1998 (15.10.98)

(21) International Application Number:

PCT/US98/06660

(22) International Filing Date:

3 April 1998 (03.04.98)

(30) Priority Data:

60/042,939

4 April 1997 (04.04.97)

US

(71) Applicant (for all designated States except US): EXSEED GENETICS, LLC [US/US]; Iowa State University, 1575 Food Science Building, Ames, IA 50011-1061 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): GUAN, Hanping [CN/US]; 1608 Crestwood Circle, Ames, IA 50010 (US). KEELING, Peter, L. [GB/US]; 3409 Oakland Street, Ames, IA 50011 (US).
- (74) Agent: SADOFF, B., J.; Nixon & Vanderhye, P.C., 8th floor, 1100 North Glebe Road, Arlington, VA 22201 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

- (54) Title: PLANT LIKE STARCHES AND THE METHOD OF MAKING THEM IN HOSTS
- (57) Abstract

This invention relates to hosts containing constructs with genes from the starch pathway. More typically the present invention relates to bacterial hosts that form plant like starches. Additionally the present invention relates to plant hosts that have genes from the starch pathway. The invention further relates to the starches produced by said hosts.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation	-	
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PLANT LIKE STARCHES AND THE METHOD OF MAKING THEM IN HOSTS

The present application is based on U.S. Provisional Application No. 60/062,939, filed April 4, 1997, the entire contents of which is incorporated hereby by reference.

BACKGROUND -- FIELD OF INVENTION

This invention relates to hosts containing constructs with genes from the starch pathway. More specifically the present invention relates to bacterial hosts that form plant like starches. Additionally the present invention relates to plant hosts that have genes from the starch pathway. The invention further relates to the starches produced by said hosts.

BACKGROUND -- DESCRIPTION OF PRIOR ART

The starch using industry includes diverse industries such as candy makers, makers of adhesives and paints, gravy makers, paper producers, etc. Since the demand for starch, (which is formed of amylose and amylopectin), has been dramatically increasing for specialized food and industrial uses, efforts have been undertaken to tailor the quantity and quality of starch for specific food and industrial uses.

This industry has overtime looked for a number of different starches having, high viscosity, lower viscosity, higher gelling strength and lower gelling strength, different boiling points etc. Each starch tailored for a number of uses. The industry has utilized mutant starches that have less amylopectin and mutant starches with more amylose for tailored specifications. For example the increased amylose starch has been used in the gelled candy making area. And the industry has used the increased amylopectin starches formed by mutants such as wx and wx su2 containing little amylose and mostly amylopectin for thicken foods like pudding, pies, gravies, frozen foods and batters, stews, canned foods and baby food. Additionally the mutant starches of different types have usefulness as adhesives and as sizing.

The other method used to address the industry needs for tailored starch is the use of chemical modification of the starch. Chemical derivation of the starch are produced by chemically reacting the starch with the monofunctional reagents to introduce the substituents

such as phosphate, acetate, succinate groups to stabilize the starch. Unfortunately, these types of starches can be subjected to government regulation and additionally have less acceptance generally due to the added cost of the starch.

Starch is the major form in which carbohydrates are stored in biological systems. Plant starch in chloroplasts is transitory and storage starch accumulates in storage organs of many plant. Starch can be found in all organs of most higher plants including leaves stems and roots and fruits and embryo and endosperm. In addition to higher plants starch, similar polysaccharide (glycogen) has been found in bacteria. Many bacteria produce a reserve polysaccharide similar to the glycogen found in animals.

Storage polysaccharide has been classified as being in two groups, group one has storage in the cytsol of the cell and the second group within the plastid. Escherichia coli produces a polysaccharide within the cytsol. Starch producing plants typically store starch in the plastids. Typical starch bearing plants include cassava, potato, corn, peas, rice, wheat, barley. The main starch storing tissue of corn, rice wheat and barley and oats, the cereal grains, is the endosperm.

Starches are also classified by the plant source, for example cereal starches are from cereal grains such as maize, rice, wheat, barley, oats and sorghum; tuber and root starch are from potatoes and yams and cassava.

The pathway of starch synthesis is not well understood. Generally, as noted above starch from plants, consists of two major components: amylose and amylopectin. These intertwine in the starch granule of the plants. Amylose is a linear polymer of alpha 1 -4 bonded anhydroglucose units while amylopectin is a branched polymer comprised of linear chains alpha 1-4 linked anhydroglucose units with branches resulting from alpha1-6 linkages between the linear chains. It has been known for sometime that mutant genes in starch bearing plants can be expressed and that the properties of the starch can be altered. The proportion of the two components and their structures in the mutant primarily determine the physical-chemical properties of the starch.

Thus the lack of a clear understanding of the starch synthesis pathway and the difficulty of employing mutants limited the industry to the use of existing and producible mutant starches (cereals containing mutant starch can show a tremendous yield penalty in field environments) or to the chemical modification that could be made to the starch. In the last decade the industry has been studying the effects of certain starch genes in plants and bacteria in an attempt to more clearly understand starch synthesis.. Since the late 80's it has been possible to transform plants and bacteria to contain isolated genes. In response to this the industry has transformed potatoes with a bacterial gene GS and with starch soluble synthase III gene in the antisense (forming a mutant). As part of these potato starch experiments bacteria has been transformed with certain potato starch genes. For example the SSSIII gene from potato was transformed into E.coli deficient in glgA gene. The effect of glgC and branching enzyme I and II in combination in a mutant E.coli has also been studied and glycogen like product was reported. The starch industry that is commercial does not have a particular interest in the production of glycogen which is the polysaccharide produced by bacteria and animals (the health care industry may have some such interest). The industry has thus not yet been able to generate tailored starches at reasonable prices through plant gene transformation. There remains a need for the industry to find new starches that are useful due to their changed characteristics such as lower viscosity and new starches that are useful because of their higher viscosity and new methods of producing such starches.

Glycogen synthesis in *E. coli* and starch synthesis in higher plants have similar pathways involving ADPGlc pyrophosphorylase, starch synthase,(SS) or glycogen synthase (GS,) and branching enzyme (BE). It has been suggested that ADPGlc pyrophosphorylase plays a pivotal role in regulating the amount of starch synthesized, while starch synthase and starch branching enzyme primarily determine the starch structure. Multiple forms of SBE and SS have been identified in many plants including maize, rice, pea and potato. In addition to the waxy gene coding for granule bound starch synthase (GBSS), three genes coding for the other forms of SS have been isolated from maize endosperm. Maize is the only cereal crop from which the genes coding for the five forms of SS have been isolated. Clearly a number of these sequences are published and known to those of skill in the art. Genes coding for maize SBE have also been cloned and characterized. Previous reports have demonstrated that maize SBEI

has a higher rate of branching amylose than SBEII and preferentially transfers longer chains, while SBEII shows a higher rate of branching amylopectin and preferentially transfers shorter chains. In comparison with SBE, less is known about the specificities and functions of multiple forms of SS. In *Waxy* maize, which lacks GBSS, only amylopectin is synthesized and amylose is missing. Therefore, it is generally accepted that GBSS, encoded by *waxy* gene, is primarily responsible for the synthesis of amylose. Study of *waxy* mutation in *Chlamedomonas reinhardtii* has suggested that GBSS is also involved in amylopectin synthesis. Although it has been reported that *Chlamedomonas reinhardtii* SSII controls the synthesis of intermediate size glucans of amylopectin in *Chlamedomonas*, direct evidence for the functions of SS in higher plants is still missing. Antisense technology has been used to study the functions of SS in potato, however, the results are inconclusive.

In an article written by Hanping Guan et al., entitled AMaize Branching Enzyme Catalyzes Synthesis of Glycogen-like Polysaccharide in glg B-deficient Escherichia coli@. Published in Proc. Natl. Acad. Sci. USA, Vol. 92, pp. 964-967, February 1995 Plant Biology a specific glycogen like polysaccharide from a transformed E coli was reported. This article taught the transformation of an E coli bacteria with maize BEI and BEII. These enzymes were transformed into two E coli hosts. One of the bacterial hosts was a wild type and the other was a mutant. The mutation to the bacteria was the reduction of the activity of glycogen BE in the AC71(glgB-) so that the mutant was essentially free of BE activity. The paper analyzed the debranched alpha-glucan isolated from the four different transformants. The first host was E. coli containing glgB and the second host was the AC71 without any transformed genes then AC71 transformed with maize BEII, and then AC71 with maize BEI, then AC71 with maize BEI and BEII. The resultant polysaccharide products were analyzed by HPLC, by chain length and relative peak area and by mole distribution of chains. The study led to the understanding that BEII could play a role in synthesis of the short chains of amylopectin and BEI could be involved with the longer chains of amylopectin. The paper also noted that the mutant host AC71 produced more chains with chain length of 6 then did the wild type E. Coli. The paper also noted that the maize BE and the GS of the host did not produce amylopectin like polysaccharides. The article suggested that the concerted action of GS with different BE=s could play an important role in determining the final structure of the polysaccharide synthesized. The article by Guan ends by suggesting that his study had established the basis for

studying the concerted actions of BE and SS in a bacterial model system.

The expression of E coli GS (glycogen synthases) in potatoes showed a large incidence of highly branched starch. This result was published in an article in Plant Physiol. 104,1159-1166 by Shewaker et al. This potato does not appear to be of much commercial use at this time.

5

The industry still needs the option of producing plant like starches in a fermentation process from bacteria and thus without the necessity of breeding and growing environment sensitive plants; and, the option of producing plants that generate the specific tailored starch through a plant host. And the industry needs altered and new starches that are cereal like starches or root and tuber like starches in large quantities and inexpensively thus avoiding having to use chemical modification of starch. The industry needs a host that can be readily transformed to supply different starches tailored to the industry=s need. Specifically the industry needs a host that supplies various different starches including those not capable of being made in plants or bacteria presently.

OBJECTS AND ADVANTAGES

Accordingly, several objects and advantages of the invention are to produce plant like starch through the process of fermentation.

Additional objects and advantages are the production of new starches in plants.

Still further objects and advantages will become apparent from a consideration of the ensuing description and accompanying drawings.

Another object of the present invention is the synthesis of polysaccharides including amylose, amylopectin in E. coli, and/or fungal and yeast by plant starch synthesizing enzymes including SS, SBE, bacterial branching enzyme, glycogen synthase and other enzymes in other living organism.

Yet another object of my invention is using each or combination of these enzymes or

modified enzymes studied in this patent to produce or to improve polysaccharides in any living organism including starch synthesis in plants.

SUMMARY OF THE INVENTION

The invention provides DNA constructs in a host that include most of the genes in the starch pathway of a plant such that the host produces a plant like polysaccharide. And in one embodiment produces maize starch including slightly different embodiments that make specific maize mutant like starch in a non plant host. This invention encompasses a bacterial host containing a combination of two or more of such genes SSI, SSSIIa, SSIIb, SSSIII, GBSS, BEI and BEII when the combination does not form glycogen like material. This invention encompasses a plant host transformed with any of the following maize genes or a plant host having a combination of two or more of the following maize genes SSI, SSIIa, SSIIb, SSSIII, GBSS, BEI and BEII in a hybrid or an inbred rice plant.

Additionally the present invention includes new polysaccharide produced by a transformed host. The host having a wildtype, which does not produce the new polysaccharide, the transformed host expressing at least two exogenous starch synthesis genes, the genes are selected from a group consisting of starch synthesis genes such as SSI SSIIa, SSIIb, SSIII, GBSS and optionally including at least one of the BEI and BEII genes wherein the transformed host is capable of producing such new polysaccharide.

The invention also covers a new polysaccharide wherein the host also expresses the exogenous genes selected from the following group consisting of bacterial glycogen inducing genes are selected from the group glgA, glgB, glgC and any mutants thereof. Or wherein the host also expresses the exogenous genes selected from the following group consisting of plant granule bound enzymes. And the new polysaccharide wherein the starch synthesis genes are selected from the group consisting of BEI and BEII.

The present invention broadly encompasses a host containing a transformed Glg C gene and at least one of the starch branching enzymes genes in a host in combination with at least one other transformed starch gene wherein the host produces a polysaccharide product. And a host containing transformed bacterial gene and at least one of the non starch branching

7

enzymes selected from the group consisting of debranching enzymes and soluble starch synthase

A method of producing polysaccharides which are non glycogen like in a host comprising transforming a host capable of being used in a fermentation process, with genes selected from the group which produce starch synthesizing enzymes, or glycogen synthesizing enzymes such that the host produces nonglycogen like starch, and employing the host in a fermentation process that produces polysaccharides. The host is bacteria, or a fungal or a yeast. Additionally the method of this invention includes the use of bacterial genes also such as the glycogen synthesizing genes including the glgC, glgA, glgB genes. A method wherein the genes which produce starch synthesizing enzymes include genes encoding for starch soluble synthases I, IIa, IIb and SS III (dul1). A method wherein the genes which produce starch synthesizing enzymes include genes encoding for starch debranching enzyme and branching enzymes. The invention covers the modified starch synthesizing enzymes including the N-terminally truncated SS.

In other word the invention covers a host transformed to carry a gene active in glycogen production, and at least one nonstarch branching gene active in the production of at least one of the following polysaccharides amylopectin and amylose in its original host. The host can be a monocot or a dicot plant. The host can be a cereal bearing plant. Or the host can be a bacteria.

More specifically the invention includes a host wherein at least one nonstarch genes active in the production of at least one of the following polysaccharides, amylopectin and amylose in its original plant, is selected from the group consisting of starch soluble starch synthase I, Iia, IIb, III genes and debranching enzyme gene (su1), GBSS gene, sh2 gene and bt2 gene. A host including at least one of the starch branching enzyme genes such as BEI gene, BEII gene.

The present invention can also be described as a host transformed to carry a gene active in ADPG production, and at least one starch gene active in the production of at least one of the following polysaccharides amylopectin and amylose in its original host wherein the host

produces polysaccharides that are plant like starch and not glycogen like.

Additionally the host can be transformed to carry a pyrophosphorylase gene, and glycogen synthase gene.

The scope of the present invention includes a host deficient in alpha 1,4 glucan synthesizing ability and alpha 1,4-1,6 branching enzyme capability transformed to express at least one a plant starch soluble synthesis gene. And the host can also include being transformed to express at least one gene encoding for debranching enzyme, and/or a gene encoding for starch soluble synthase I, starch soluble synthase enzyme Iia, IIb, starch soluble synthase enzyme III. This host can including being transformed to express at least one gene encoding for starch branching enzyme.

This invention also includes the production of a glycogen like material in plants. Attached hereto are a number of plasmids described by the figures and by table one, that are part of the present invention and are claimed herein. One such example is the plasmid wherein the plasmid is in a carrier host and the plasmid contains the SSIIa gene with the n terminus GENVMNVIVV and wherein the gene is approximately 1561 base pairs in length. The invention includes mutant hosts such as mutant plants like waxy rice and potatoes and corn as example and wherein the host is a mutant E. Coli, or fungus.

BRIEF DESCRIPTION OF THE DRAWINGS

- FIG. 1 shows a graph which gives the relative peak area in percent and the chain length of glycogen and starch soluble synthase I (SSI), starch soluble synthase II (SSIIa), starch soluble synthase IIb (SSIIb). Thus this shows the specificities of Maize SS=s in chain elongation.
- FIG. 2 shows plasmid pEXSC-MBEI with 7661 base pairs and promoter T7 and a Kanamycin gene and glgC and the maize starch branching enzyme I (MBEI).
 - FIG. 3 shows plasmid pEXSC3C with 7461 base pairs and promoter T7 and ampicillin

gene and the maize starch soluble synthase gene Iia. pEXS3c is the 1082 bp Nde I-EcoRI fragment containing the N-terminus of MSSSIIa (from MSSIIa in pBSK) subcloned into the Nde I-EcoRI sites of pEXS3a, replacing the N-terminus of IIA-2 with the longer IIa N-terminus. MSSIIa is the mature maize SSIIa and is 2090 bp long. The following sites are not contained in the MSSIIc insert: Apa I, BglII, Eco V, Not, Spe I, and Xba I. The N-terminus of this plasmid is AEAEAGGKD.

- FIG. 4 shows plasmid pEXSC-MBEI-MBEII with 9971 base pairs and promoter T7 and a Kanamycin gene and glgC and the maize starch branching enzyme I (MBEI) and the maize starch branching enzyme II (MBEII).
- FIG. 5 shows plasmid pEXSC-MBEII with 7521 base pairs and promoter T7 and a Kanamycin gene and glgC and the maize starch branching enzyme II (MBEII).
- FIG. 6 shows plasmid pEXSC-3a with 7990 base pairs and promoter T7 and a Kanamycin gene and the glgC gene and the maize N-terminally truncated starch synthase gene IIa (MSSIIa-2). The N-terminal sequence is GENVMNVI.
- FIG. 7 shows plasmid pEXSC-8 with 7079 base pairs and promoter T7 and a Kanamycin gene and the glgC gene and the maize starch soluble synthase gene I and version I-2.(MSSI-2), An N-terminally truncated SSI.
- FIG. 8 shows plasmid pEXSC-9 with 7551 base pairs and promoter T7 and a Kanamycin gene and the glgC gene and the maize starch soluble synthase gene IIb (SSIIb). The N-terminal sequence is AAAPAGEE.
- FIG. 9 shows plasmid pEXSC-10 with 7211 base pairs and promoter T7 and a Kanamycin gene and the glgC gene and the maize starch soluble synthase gene I, the full length SSI. The N-terminal sequence is CVAELSREGPA
- FIG. 10 shows plasmid pEXSCA with 6738 base pairs and promoter T7 and a Kanamycin gene and the glgC gene and the glgA gene.

- FIG. 11 shows plasmid pEXSC9a with 7240 base pairs and promoter T7 and ampicillin gene and the maize starch soluble synthase gene IIb-2 (Maize SS IIb-2), an N-terminally-truncated SSIIb. The N-terminal sequence is MNVVVVASECAP.
- FIG. 12 shows plasmid pEXSWX with 6968 base pairs and promoter T7 and an ampicillin gene and the N-terminally-truncated maize WX (maize granular bound starch synthase). The N-terminal sequence for wx is ASAGMNVVFVGAEMA.
- FIG. 13 shows plasmid pEXSWX2 with 6980 base pairs and promoter T7 and an ampicillin gene and the N-terminally-truncated maize WX termed as wx2. The N-terminus of wx2 is MNVVFVGAEMA.
- FIG. 14 shows plasmid pEXSC9 with 7780 base pairs and promoter T7 and ampicillin gene and *E. coli glgC* gene and the maize starch soluble synthase geneIIb (Maize SS IIb).
- FIG. 15 shows plasmid pEXSC10d with 7112 base pairs and promoter T7 and ampicillin gene, *E. coli glgC* gene and the N-terminally-truncated maize starch soluble synthase gene I termed as Maize SSI-3). The N-terminus of maize SSI-3 is MSIVFTGEASPYA.
- FIG. 16 shows plasmid pEXS10 with 5300 base pairs and promoter T7 and ampicillin gene and the full length maize starch soluble synthase gene I termed as Maize SS I.
- FIG. 17 shows plasmid pEXS8 with 7259 base pairs and promoter T7 and ampicillin gene and the N-terminally-truncated maize starch synthase gene I termed as SSI-2. The N-terminal sequence is CVAELSRDLGLEPEG.
- FIG. 18 shows plasmid pEXSCA1 with 5128 base pairs and promoter T7 and ampicillin gene and the glgA. pESCA1 is a 1551 bp SpeI-Sac I fragment containing glgA (from glgA in pBSK) subcloned into the Xba I- Sac I sites of p ET-23d which is commercially available from Novagen in Madision Wisconsin under catalog number 69748-1 and called ET-23d(+) DNA.

FIG. 19 shows the spectrum of the iodine glucan complex of the product produced by the host containing the glgC and glgA, and the pEXSC9, pEXSC3, pEXSC8, pEXSCwx the X-axis is listing nm and the Y axis is reading absorbance.

FIG. 20 shows the spectrum of the iodine glucan complex of the product produced by the host transformed with plasmids containing the glgC, the BEI, the BEII genes and glgA; glgC, the BEI, the BEII genes and maize SSI, SSI-2 and glgC, the BEI, the BEII genes and maize SSIIb, and glgC, the BEI, the BEII genes and maize SSIIa-2, and glgC, the BEI, the BEII genes, the X-axis is listing nm and the Y axis is reading absorbance.

FIG. 21 shows the product produced by the host in small bottles including the product from the host containing glgC, the BEI, the BEII genes and maize SS=s genes. Encoded as (C-I-II+8), glgC, the BEI, the BEII and maize SSI-2 genes and pEXSC10 encoded as (C-I-II+10), glgC, the BEI, the BEII and maize SSI genes and pEXSC9 encoded as (C-I-II+9),glgC, the BEI, the BEII and maize SSIIb genes and pEXSC3a encoded as (C-I-II+3a), glgC, the BEI, the BEII and maize SSIIa-2 genes and pEXSCWX encoded as (C-I-II+WX),glgC, the BEI, the BEII and maize waxy genes and pEXSCWX encoded as (C-I-II+A1), containing maize BEI, BEII and E.coli glgA genes. potato dextrin, waxy maize starch, corn amylopectin, rice starch, corn starch, pEXSC8.

FIG. 22 shows pExs-trc has 4178 base pairs with the trc promoter and the ampicillin gene. PEXS trc is pTrc99A-Ndel which has been mutagenized. (Nco I site in multiple cloning site of p Trc99A-Ndel is mutagenized to Nde I using primers EXS63 AND EXS64.) pEXS-trc contains only one Nde I site and no Nco I sites. The following sites are not contained in pEXS-trc; Bgl II, Cla I, Nco I, Not I, Sac II, SnaB I, Spe I, and Xho I.

FIG: 23 shows pEXS-trc3 has 4129 base pairs with the trc promoter and the ampicillin gene in partial and the Kanamycin gene. The pEXS-trc3 is pEXS-trc1 cut with BgII (filled in)-Sca I and religated, deleting most of the Amp gene (304 nt from the 5" end remain). The following sites are Not contained in p EXS-trc3: Apa I, BgI II, Eco V, Nco I, Not I, SnaB I, and Spe I.

- FIG. 25 shows the plasmid pEXS 103 having 6607 base pairs, adapted for plant use containing the maize 10KD zein promoter, the gene coding for the maize starch synthase I transit peptide and the Waxy 2 gene and the nos terminator and the ampicillin gene.
- FIG. 26 shows the plasmid pEXS 101 having 6979 base pairs, adapted for plant use containing the maize 10KD zein promoter, the gene coding for the maize starch synthase I transit peptide and the glg B gene and the nos terminator and the ampicillin gene.
- FIG. 27 shows the plasmid pEXS 100 having 7557 base pairs, adapted for plant use containing the maize 10KD zein promoter, and maize adh I intron, the gene coding for the maize starch synthase I transit peptide, and the glg B gene and the nos terminator and the ampicillin gene.
- FIG. 28 shows the plasmid pEXS 101 having 6273 base pairs, adapted for plant use containing the maize 10KD zein promoter, the gene coding for the maize starch synthase I transit peptide, and the glg A gene and the nos terminator and the ampicillin gene.
- FIG. 29 shows the plasmid pEXS 66 having 6001 base pairs, adapted for plant use containing the maize 10KD zein promoter, the gene coding for the maize starch synthase I transit peptide, and the glg C_3 gene and the nos terminator and the ampicillin gene.
- FIG. 30 shows the plasmid pEXS 65 having 6373 base pairs, adapted for plant use containing the maize 10KD zein promoter, the gene coding for the maize starch synthase I transit peptide, and the maize waxy gene and the nos terminator and the ampicillin gene.
- FIG. 31 shows the plasmid pEXS 64 having 7073 base pairs, adapted for plant use containing the maize 10KD zein promoter, the gene coding for the maize starch synthase I

transit peptide, and the maize soluble starch synthase IIa gene and the nos terminator and the ampicillin gene.

- FIG. 32 shows the plasmid pEXS 63 having 6473 base pairs, adapted for plant use containing the maize 10KD zein promoter, the gene coding for the maize starch synthase I transit peptide, and the maize soluble starch synthase IIa gene and the nos terminator and the ampicillin gene.
- FIG. 33 shows the plasmid pEXS 62 having 6773 base pairs, adapted for plant use containing the maize 10KD zein promoter, the gene coding for the maize starch synthase I transit peptide, and the maize soluble starch synthase I-2 gene and the nos terminator and the ampicillin gene
- FIG. 34 shows the plasmid pEXS 61 having 7013 base pairs, adapted for plant use containing the maize 10KD zein promoter, the gene coding for the maize starch synthase I transit peptide, and the maize soluble starch synthase IIb gene and the nos terminator and the ampicillin gene.
- FIG. 35 shows the plasmid pEXS 59 having 6858 base pairs, adapted for plant use containing the maize 10KD zein promoter, and maize adh I intron, the gene coding for the maize starch synthase I transit peptide, and the E.coli glgA gene and the nos terminator and the ampicillin gene
- FIG. 36 shows the plasmid pEXS 58 having 7658 base pairs, adapted for plant use containing the maize 10KD zein promoter, and maize adh I intron, the gene coding for the maize starch synthase I transit peptide, and the maize soluble starch synthase IIa gene and the nos terminator and the ampicillin gene.
- FIG. 37 shows the plasmid pEXS 56 having 6586 base pairs, adapted for plant use containing the maize 10KD zein promoter, and maize adh I intron, the gene coding for the maize starch synthase I transit peptide, and the glg C₃ gene and the nos terminator and the ampicillin gene.

WO 98/44780 PCT/US98/06660

14

- FIG. 38 shows the plasmid pEXS 54 having 7658 base pairs, adapted for plant use containing the maize 10KD zein promoter, and maize adh I intron, the gene coding for the maize starch synthase I transit peptide, and the Maize SS IIa gene and the nos terminator and the ampicillin gene.
- FIG. 39 shows the plasmid pEXS 53 having 7058 base pairs, adapted for plant use containing the maize 10KD zein promoter, and maize adh I intron, the gene coding for the maize starch synthase I transit peptide, and the maize starch soluble synthase IIa-2 gene and the nos terminator and the ampicillin gene.
- FIG. 40 shows the plasmid pEXS 52 having 7358 base pairs, adapted for plant use containing the maize 10KD zein promoter, and maize adh I intron, the gene coding for the maize starch synthase I transit peptide, and maize starch soluble synthase I-2 gene and the nos terminator and the ampicillin gene.
- FIG. 41 shows the plasmid pEXS 51 having 7398 base pairs, adapted for plant use containing the maize 10KD zein promoter, and maize adh I intron, the gene coding for the maize starch synthase I transit peptide, and maize starch soluble synthase IIb gene and the nos terminator and the ampicillin gene.
- FIG. 42 shows photograph of eleven products of altered starch produced with the present invention. The titled are encoded C-I-II=the glgC gene and the BEI and the BEII genes the following number or alternatively designation means pEXS-and the number. Thus C-I-II=the glgC gene and the BEI and the BEII and EXS-10 plasmid that contains the gene SSI, having the N-terminus shown in Table 1.
- FIG. 43 shows the DNA sequence and the protein sequence for glgA having 1488 base pairs.
- FIG. 44 shows the DNA sequence and the protein sequence for glgB having 2361 base pairs.

- FIG. 45a shows the DNA sequence for Zea mays 10-kDa zein gene having 2562 base pairs .
- FIG. 45b shows the DNA sequence for Zea mays 10-kDa zein portion of the gene used as the promoter in a number of the plasmids discussed herein.
- FIG. 46 shows the DNA sequence and the protein sequence for glgC3 (glgC₃) having 1328 base pairs containing two mutations P295D, K296E. This is a mutant of the wild type glgC gene.
- FIG. 47 shows the DNA sequence and the protein sequence for glgC (glgC) having 1328 base pairs.
- FIG. 48 shows the DNA sequence and the protein sequence for glgCwt (glgCwt) having 1328 base pairs. This is the glgC gene that is found in nature.
- FIG. 49 shows the DNA sequence and the protein sequence for the maize waxy gene denoted wx herein.
- FIG. 50 shows the DNA sequence and the protein sequence for the maize starch soluble synthase IIb encoding gene having 2423 base pairs.
- FIG. 51 shows the DNA sequence and the protein sequence for the maize starch soluble synthase IIa.
- FIG. 52 shows the DNA sequence and the protein sequence for the maize starch soluble synthase I-2 having 1749 base pairs.
- FIG. 53 shows the DNA sequence and the protein sequence for the maize branching enzyme II.

- FIG. 54 shows the DNA sequence and the protein sequence for the maize branching enzyme I.
- FIG. 55 shows the DNA sequence and the protein sequence (153) for the transit peptide portion of the maize starch soluble synthase I.
- FIG. 56, PCR analysis of transgenic rice plants. The genomic DNA isolated from rice plants were PCR amplified using specific primers for the inserted gene. The specific bands were identified on 1% agarose gel compared with non-transgenic rice plant.
- FIG. 57. Activity staining of starch synthase on renaturing SDS-PAGE gel with Iodine solution. The positive staining of maize SSI-2 indicated the expression of maize SSI-2 in transgenic rice plants.
- FIG. 58. SSI-1, SSI-2, and SSI-3 construct diagram. Three forms of SSI were constructed in the pET expression system (see Methods). pExs10a encodes SSI-1, the full length maize SSI (583 amino acids). pExs8 encodes a truncated SSI, SSI-2, with amino acids #8-52 deleted from the N-terminus of SSI-1. pExs1d encodes the most truncated form of SSI, SSI-3, with the first 93 amino acids deleted from SSI-1. A depiction of the waxy gene, encoding GBSS, is also included for comparison. The amino acid motif KS/TGGL, the putative binding site for ADPGlc, is indicated by the triangles. The KS/TGGL motif is located 18 amino acids from the N-terminus in GBSS, while the motif is 106 amino acids from the N-terminus in maize SSI. Drawing not to scale.
- FIG. 59. SSIIa-1 and SSIIa-2 construct diagram. Two forms of SSIIa were constructed in the pET expression system. pExs3c encodes SSIIb-1, the putative full length maize SSIIb. N-terminal sequencing of SSIIa-1 revealed that the polypeptide chain started at amino acid #1, so the length of SSIIa-1 is 669 amino acids. pExs3a encodes a truncated form of SSIIa, SSIIa-2, with the first 176 N-terminal amino acids deleted from SSIIa (493 amino acids total). A depiction of the waxy gene, encoding GBSS, is also included for comparison. The amino acid motif KTGGL, the putative binding site for ADPGlc, is indicated by the triangles. The

KTGGL motif is located 18 amino acids from the N-terminus in GBSS, while the motif is 194 amino acids from the N-terminus in maize SSIIa.

FIG. 60. SSIIb-1 and SSIIb-2 construct diagram. Two forms of SSIIb were constructed in the pET expression system (see Methods). pExs9 encodes SSIIb-1, the putative full length maize SSIIb. N-terminal sequencing of SSIIb-1 revealed that the polypeptide chain started at amino acid #1, so the length of SSIIb-1 is 637 amino acids. pExs9a encodes a truncated form of SSIIb, SSIIb-2, with the first 144 N-terminal amino acids deleted from SSIIb (492 amino acids total). A depiction of the waxy gene, encoding GBSS, is also included for comparison. The amino acid motif KTGGL, the putative binding site for ADPGlc, is indicated by the triangles. The KTGGL motif is located 18 amino acids from the N-terminus in GBSS, while the motif is 158 amino acids from the N-terminus in maize SSIIb.

FIG. 61. Temperature Curves for SSI enzymes. All assay components, except enzyme and [U-14C]-ADPGlc, were mixed and then preincubated at each temperature for 3 minutes before addition of enzyme and ADPGlc. For all assays, the final concentration of [U-14C]-ADPGlc was 3 mM, while amylopectin was 6 mg/ml. Each point is an average of three separate determinations.

FIG.62. Temperature Optima of SSIIa-1 and SSIIa-2. All assay components, except enzyme and [U-14C]-ADPGlc, were mixed and then preincubated at each temperature for 3 minutes before addition of enzyme and ADPGlc. For assays in the presence of 0.5 M citrate, 5 mg/ml amylopectin was used as primer. For assays without citrate, 10 mg/ml amylopectin was used. For all assays, the concentration of [U-14C]-ADPGlc was 3 mM. Each point is an average of three separate determinations.

FIG. 63. Temperature Optima of SSIIb-1 and SSIIb-2. All assay components, except enzyme and [U-14C]ADPGlc, were mixed and then preincubated at each temperature for 3 minutes before addition of enzyme and ADPGlc. For all assays, the concentration of [U-14C]ADPGlc was 3 mM and the concentration of glycogen was 40 mg/ml. Each point is an average of three separate determinations.

Gene shall mean the entire gene sequence or any mutations or varieties of the codon that produce the desired activity in the host or alternatively the section or sections of the gene sequence necessary to produce the desired activity in the host. For example glgC gene shall mean glgC₁₆, glgC₃ and other mutants that produce the desired activity in the host. Starch synthase gene shall mean full length SS, N-terminally-truncated SS or mutated SS with starch synthase activity.

Glycogen like-shall mean polysaccharide material such as those produced as the main starch product by E.coli in its native state and by the hosts as taught in the above described paper by Hanping Guan.

Non Glycogen like- shall mean polysaccharide material which is plant like and is not produced as the main starch product by E.coli in its native state and by the hosts as taught in the above described paper by Hanping Guan.

Plant like starch- is non glycogen like.

Transformed gene-shall mean a gene that was somewhere in the lineage of the plant or bacteria introduced into the plant by means other than nature. Thus the progeny of a transformed host would continue to contain a transformed gene.

Transformed host- shall mean any organism containing one or more of the novel plasmids and/or a novel combination of starch synthetic genes discussed herein.

Within this application a number of different protocols have been employed to designate the same gene or synthase. MSS#=maize soluble starch synthase, SS#will likewise mean starch synthase though not necessarily maize. STS#will also designate soluble starch synthase. GBSS=granule bound starch synthase. SBE#=starch branching enzyme, MBE= maize starch branching enzyme, MSBE#=maize starch branching enzyme, and BE#=starch branching enzyme.

The present invention broadly encompasses transforming hosts such as bacteria or plants with plant starch synthetic genes that produce a non glycogen like material (a bacteria containing BEI and BEII from maize produces a glycogen like material). Starch bearing plants and organisms hereinafter are referred to as the host. One of the primary aspects of this invention is the generation of plant like starch from a bacterial host and the production of altered starch in a plant host. The present invention has been exemplified in both bacteria and in transformed rice plants. The host can contain though it is not a limitation, an unlimited supply of ADPG from the addition of the glgC gene (the bacterial gene) to the plant. Additionally the present invention encompasses plasmids that contain the maize genes and/or the bacterial genes in a construct adapted for use in a bacteria and constructs adapted for use in a plant. The plasmids in the plant construct preferably containing an active promoter recognized by the plant, a transit peptide, and the cleavage site that permits the protein to cleave from the transit peptide when crossing into the amyloplast in the plant. The plasmids used in the rice transformation specifically encompassed the maize 10 kd zein promoter, and the transit peptide from the maize SSI gene in the constructs adapted for plant use. The present invention also encompasses the plant producing the altered starch in the starch storage section of the plant or within the host cell and the altered starch itself. Additionally the present invention encompasses the combination of a number of starch genes in combination being active in a host such that the host produces differing non glycogen polysaccharides. Still further the present invention encompasses a method of making plant like starch in a bacterial host and the method of making altered plant like starch (altered in relationship to the type or amount of starch that the host makes without the constructs containing the genes), in a plant. Yet another object of the present invention is the addition of a gene that encodes for the substrate ADPG used to form starch.

The present invention encompasses a plasmid or combination of plasmids in the same host having a promoter adapted for use in a plant and a gene encoding for ADPGlc Pyrophosphoroylase, preferably a bacterial gene, and a gene encoding for starch synthase I or its mutant form. The present invention also encompasses the combination of a promoter adapted for use in a plant and optionally a gene encoding for ADPGlc Pyrophosphoroylase, preferably a bacterial gene, and a gene encoding for starch synthase I or its mutant form, and at

WO 98/44780 PCT/US98/06660

20

least one gene encoding for branching enzyme transformed into a plant host.

The present invention encompasses a plasmid or combination of plasmids in the same host having a promoter adapted for use in a plant and a gene encoding for ADPGlc pyrophosphorylase, preferably a bacterial gene, and a gene encoding for starch synthase Iia or its mutant form. The present invention also encompasses the combination of a promoter adapted for use in a plant and optionally a gene encoding for ADPGlc pyrophosphorylase, and a gene encoding for starch synthase Iia or its mutant form, and at least one gene encoding for branching enzyme transformed in to a plant host.

The present invention encompasses a plasmid having a promoter adapted for use in a plant and a gene encoding for ADPGlc pyrophosphorylase, preferably a bacterial gene, and a gene encoding for starch synthase IIb and its mutant form. The present invention also encompasses the combination for a promoter adapted of use in a plant and an optional gene encoding for ADPGlc pyrophosphorylase, and a gene encoding for starch synthase IIb or its mutant form and at least one gene encoding for branching enzyme transformed in to a plant host.

The present invention encompasses a plasmid having a promoter adapted for use in a plant and a gene encoding for Pyrophosphoroylase, preferably a bacterial gene, and genes encoding for at least one of the following genes starch synthase I, starch synthase IIa, starch synthase IIb, DU1. The present invention also encompasses the combination of a promoter adapted for use in a plant and a gene encoding for ADPGlc Pyrophosphoroylase, preferably a bacterial gene, and genes encoding for at least one of the following genes starch synthase I, starch synthase IIa, starch synthase Iib and DU1, , and at least one gene encoding for branching enzyme transformed in to a plant host.

The present invention encompasses a plasmid or combination of plasmids in the same host having a promoter adapted for use in a plant and a gene encoding for ADPGlc Pyrophosphoroylase, preferably a bacterial gene, and genes encoding for at least one of the following genes starch synthase I, starch synthase IIa, IIb and starch synthase III (DU1). The present invention also encompasses the combination of a promoter adapted for use in a plant

PCT/US98/06660

and an optional gene encoding for ADPGlc pyrophosphorylase, preferably a bacterial gene, and genes encoding for at least one of the following genes starch synthase I, starch synthase IIa, IIb starch synthase III(DU1), and at least one gene encoding for branching enzyme, and at least one gene encoding for the debranching enzyme transformed in to a plant host.

The present invention encompasses a plasmid or combination of plasmids in the host having a promoter adapted for use in a bacteria or yeast and a gene encoding for ADPGlc Pyrophosphoroylase, preferably a bacterial gene, and a gene encoding for starch synthase I. The present invention also encompasses the combination of a promoter adapted for use in a bacteria or yeast and a gene encoding for ADPGlc Pyrophosphoroylase, preferably a bacterial gene, and a gene encoding for starch synthase I, and at least one gene encoding for branching enzyme transformed in to a bacteria or yeast host.

The present invention encompasses a plasmid or combination of plasmids in the host having a promoter adapted for use in a bacteria or yeast and a gene encoding for Pyrophosphoroylase, preferably a bacterial gene, and a gene encoding for starch synthase IIa. The present invention also encompasses the combination of a promoter adapted for use in a bacteria or yeast and optionally a gene encoding for ADPGIc Pyrophosphoroylase, preferably a bacterial gene, and a gene encoding for starch synthase IIa, and at least one gene encoding for branching enzyme transformed in to a bacteria or yeast host.

The present invention encompasses a plasmid or combination of plasmids in the same host having a promoter adapted for use in a bacteria or yeast, and a maize gene encoding for starch synthase III(DU1). The present invention also encompasses the combination of a promoter adapted for use in a bacteria or yeast and an optional gene encoding for ADPGlc Pyrophosphoroylase, preferably a bacterial gene, and a gene encoding for starch synthase III, and at least one gene encoding for branching enzyme transformed in to a bacteria or yeast host.

The present invention encompasses a plasmid or combination of plasmids in the same host having a promoter_adapted_for_use_in_bacteria_or_in_yeast_and_a_gene,-and_genes-encoding-for at least one of the following genes starch synthase I, starch synthase IIa,IIb, starch synthase III(DU1). The present invention also encompasses the combination of a promoter adapted for

use in bacteria or in yeast and a gene encoding for ADPGlc Pyrophosphoroylase, preferably a bacterial gene, and genes encoding for at least one of the following genes starch synthase I, starch synthase IIa,IIb, starch synthase III, and at least one gene encoding for branching enzyme transformed in to bacteria or into yeast hosts.

The present invention encompasses a plasmid or combination of plasmids in the same host having a promoter adapted for use in bacteria or in yeast and a gene encoding for ADPGlc Pyrophosphoroylase, preferably a bacterial gene, and genes encoding for at least one of the following genes starch synthase I, starch synthase IIa,IIb, starch synthase III The present invention also encompasses the combination of a promoter adapted for use in bacteria or in yeast and a gene encoding for Pyrophosphoroylase, preferably a bacterial gene, and genes encoding for at least one of the following genes starch synthase I, starch synthase IIa,IIb, starch synthase III(DU1), and at least one gene encoding for branching enzyme, and at least one gene encoding for the debranching enzyme transformed in to a bacteria or into a yeast host.

The present invention encompasses the truncated versions of the SSI and the SSII and the SSIII genes that still provide protein that is sufficient to make the polysaccharide.

By transforming different combinations of SS and SBE into *E. coli* HPG204(DE3) or G6MD3 defective in GS and GBE, we obtained the first evidence that maize SSI, SSII and SSIII have different specificities in the size of glucans synthesized see fig one.. Herein, we present the model system to produce differing polysaccharides from hosts with SS and SBE in *E. coli* by metabolic engineering. We also demonstrated that the truncated forms of SS had different Vmax, temperature stability and kinetic properties (Table, Fig).

We also demonstrated that transformation of starch synthase and/or branching enzyme in *E. coli* resulted in production of polysaccharides differing in size and structure. These polysaccharides can be used in food and nonfood industries to replace and/or complement starch functionalities. A large amount of these polysaccharides can be produced with fermentation technology.

Starch biosynthesis in higher plants and glycogen biosynthesis in E. coli have similar reactions which use adenosine diphosphate glucose (ADPGIc) as a substrate. This similarity

WO 98/44780 PCT/US98/06660

23

allows us to use plant starch synthase (SS) and starch branching enzyme (SBE) to complement the functions of glycogen synthase (GS) and glycogen branching enzyme (GBE) in E. coli G6MD3, which is deficient in GS and GBE. Transformation of E.coli glgC gene and maize starch synthase gene in E.coli G6MD3 produced linear a 1,4 glucan similar to amylose. coexpression of the glgC, maize starch synthase and maize branching enzyme produced branched polysaccharides. However, distinct properties of plant starch branching enzyme and starch synthase make it possible to synthesize different polysaccharides in E.coli. While maize SSI preferentially synthesis short chains (dp 6 - 15), SSII and SSIII preferentially transferred long chains (dp > 24) and intermediate chains (dp 16 - 24) respectively. Transformation of different maize starch synthases, E. coli glycogen synthase (glgA) and/or maize branching enzymes into E.coli HPG96 or E. coli G6MD3 resulted in the synthesis of different sizes of polysaccharide with DP 500-4000. These polysaccharides synthesized in E. coli by maize SS have different physical-chemical properties than polysaccharides synthesized in natural organisms including starch from plant sources and glycogen from animals. The polysaccharide can be used in food and nonfood industries to replace and/ or complement starch functionalities. A large amount of these polysaccharide can be produced by fermentation technology. The following materials were employed in the construction of the present invention some of the starting material are commercially available from Novagen in Madision Wisconsin ET-23d(+) DNA under catalog number 69748-1 and BL21(DE3) under catalog number 69387-1; ET-21a(+) DNA under catalog number 697401.

Plant Hosts

The following plasmids have been transformed into rice plants Transgenic 1, MSTSIA(pExs52) and glgC₃ (pExs66), MSTSIIa and glgC₃ (pExs53 and pExs56). The second group of rice transformatins contain MSTSIIc and glgC₃ (pExs54 and pExs56). The third group of transformation: transgenic 5 MSTSIII and glgC₃ (pExs 61 and pExs 66); transgenic 6 Mwx glgC₃ p Exs65 and pExs66). Generally see figures 25-41 for plasmid maps and figure 43-55 for sequences used in the plasmid. Additionally, glgA and glgB and glgC were combined and transformed into rice. This is combining the rice plants starch pathway with the gene encoding for ADPG and the genes encoding for at least one of the following enzymes, SSI, SSIII, Debranching enzymes, BEI, BEII, GBSS (wx).

These plasmids could have been transformed into other cereals such as corn, wheat, barley, oats, sorghum, mile in substantially the plasmid that is shown in the figures for the plant host. The promoter could be the waxy gene which is published, other additional zein promoters are known and could be used as the promoter. The promoter used herein is described in Figures 45aand 45b.

Additionally these plasmid with little additional work could be transformed into dicots such as potatoes, sweet potato, taro, yam, lotus cassava, peanuts, peas, soybean, beans, chickpeas. The promoter could be selected to target the starch storage area of the particular dicots (some are roots some are tubers). Various method of transforming monocots and dicots are known in the industry and the method of transforming the genes is not critical to the present invention. The plasmid can be introduced into Agrobacterium tumefaciens by the freeze-thaw method of An et al. (1988) Binary vectors. In Plant Molecular Biology Manual A3, S.B. Gelvin and R.A. Schilperoot,eds (Dordrecht, The Netherlands: Kluwer Academic Publishers), pp. 1-19. Preparation of Agrobacteruim inoculum carrying the construct and inoculation of plant material, regeneration of shoots, and rooting of shoots are described in Edwards et al. (1995). Biochemical and molecular characterization of a novel starch synthase from potatoes. Plant J. 8, 283-294. Additionally promoters for different dicots are known particularly 35sCaMV and Monsanto has also published a promoter that is useful in potatoes called a patatin promoter.

A number of monocots are also starch bearing plants but until about a decade ago monocots were difficult to develop transformants. The most prominent methods of transformation presently used in monocots is the gunning of micro projectiles into the plants or using Agrobacterium and subsequent regeneration of the plants from the transformed materials. Various tissues and cells can now be transformed with plasmids into monocot hosts. In fact there are teaching from at least five ago on methods of transforming not only callus but also cotyledons. The methods of transforming plants and selecting for the transformants with either selectable or screen able markers are also well known. The use of the marker in the same plasmid and the use of the markers in a separate plasmid that is co transformed into the host are well known in the art by those of ordinary skill in the art. The biotechnology methods of forming plasmids and transforming plants are listed in the book entitled AShort Protocols In Molecular Biology@, 3rd ed. Published in 1995 by JOHN WILEY& Sons, Inc. Additionally,

25

methods of transforming with the gun and with protoplasts are taught in a number of issued patents to Dekalb and Agracetus and Ciba.

PREFERRED EMBODIMENT - OPERATION

EXAMPLE 1

Construction of the E. coli expression vector.

The expression vector pExs2 was derived from pET-23d (Novagen) and pGP1-2 (15). The expression vectors pExs-trc and pExs-trc3 were derived from pTrc99a (Pharmacia) and pGP1-2. The BglII/PstI fragment (2192 bp) containing the pBR322 origin of replication was deleted from pET-23d and replaced with the BamHI/PstI fragment (3 kb) containing origin p15A and kanamycin resistance gene from pGP1-2. This process generated plasmid pEXS1 containing both ampicillin and kanamycin resistance genes. The ampicillin resistance gene was inactivated by deletion of the Scal / Bgll fragment (360 bp, Bgll end was filled in and bluntend ligated with ScaI end). Inactivation of the ampicillin resistance gene in pEXS1 generated the expression plasmid pEXS2, containing the T7 promoter, T7 terminator, kanamycin resistance gene and p15A origin of replication. Plasmid pTrc99a was digested with Nde1, filled in with kelnow fragment and blunt-end ligated to remove NdeI site. A Nde1 site was introduced at the NcoI site by mutagenesis to generate plasmid pExs-trc. The BglI and PvuII fragment(2.48 kb) in pExs-trc containing the pBR322 origin of replication was replaced by Bgll/BamHI (filled in with Klenow fragment) fragment (3 kb) containing origin p15A and kanamycin resistance gene from pGP1-2 to generate pExs-trc2. The ampicillin resistance gene was inactivated by deletion of the Scal / Bgll fragment (360 bp, Bgll end was filled in and blunt-end ligated with ScaI end). Inactivation of the ampicillin resistance gene in pExs-trc2 generated the expression plasmid pExs-trc3.

Construction of expression plasmids for maize SS. For expression of maize SS in *E. coli*, The PCR method was used to modify the N-terminus of maize SS using the following nucleiotides: primer Exs4 (5'-CAAGAATGCTGCGGGAGTC-3'), primer Exs23 (5'-AAGTCGACATATGTGCGTCGCGGAGCTGAGCAG-3'), primer Exs 57 (5'-GGGCCCCATATGAGCATTGTCTTTGTAACCGG-3'), primer Exs1 (5'-

CTCGGGCCCATATGGGGGGAGAATGTTATGAA-3'), primer Exs2 (5'-GAGGCATCAATGAACACAAAGTCG-3'), **Primer** Exs33 (5'-GAAGGCCCCATATGGCTGAGGCTGAGGCCGGGGCAAG-3'), primer Exs16 (5'-TTGGATCCATATGGGAGCTGCGGTTGCATTGGG-3') and primer Exs17 (5'-CCTGCGGGCTCTGGCTTCACC). primer Exs 55 (5'-TTGGATCCATATGAACGTCGTCGTGGTGGCTTC-3'), primer 56 (5'-GCATACCATGGAACCTCAACAGC-3'), primer 53 (5'-GGTACCATATGAACGTCGTCTTCGGCG-3'), primer Exs 54 (5'-GACAGGCCCGTAGATCTTCTCC-3'). primer Exs (5'--wx TTGGTACCATATGGCCAGCGCCGCCGGCATGAACG-3'). Primer Exs paired respectively with primer Exs23 and Exs 57 was to modify the N-terminus of maize SSSI gene to generate pExs-10 and pExs-1d. Primer Exs2 paired individually with primer Exs33 and Exs1 was to modify the N-terminus of maize SSSII to generate pExs3c and pExs3a. Primer Exs17 paired individually with primer Exs16 and Exs55 was to modify the N-terminus of maize SSSIII to generate pExs-9 and pExs-9a. Primer Exs54 paired individually with primer Exs-wx and Exs53 was used to modify the N-terminus of maize GBSS to generate pExs-wx and pExswx2. The modified N-terminus was recombined with the rest of the SS gene in pBluescript SK plasmid. The reconstructed of maize SS was subcloned from pBluescript SK to the NdeI/NotI sites of the expression vector pET-21a (Novagen), pExs-trc, pExs-trc3 (maps are attached, Table I shows the N-terminal sequence of SSS).

EXAMPLE 2

Construction of expression plasmids for *E. coli* ADPGlc pyrophosphorylase, BE and maize SBE.

E. coli glgB gene was excised from plasmid pOP12 (16). The BstX1 (filled in) / HindII fragment containing the glgB ribosome binding site and the full length glgB gene was cloned at the SmaI site of pBluescriptSK- (Stratagene). The glgB gene in pBluscriptSK- was subsequently cloned into pEXS2 at the XbaI / SalI sites to generate plasmid pEXSB. Primer G (5'- GAAGATCTGGCAGGGACCTGCACAC-3') and primer H (5'-GGACTAGTGCATTATCGCTCCTGTTTAT-3') were used to PCR the E. coli glgC gene coding for ADPGlc pyrophosphorylase from plasmid pOP12. A BgIII site and a SpeI site introduced by PCR to the N-terminal and C-terminal site respectively, were used to clone the

PCR product into pBluscript SK- at the BamHI and SpeI sites. The glgC gene including its own ribosome binding site was subcloned into expression plasmid pEXS2 at the XbaI (filled in with Klenow fragment) and NotI site to generate plasmid pEXSc. The genes coding for mature maize SBEI and SBEII along with a ribosome binding site were subcloned from plasmids pET-23d-SBEI and pET-23d-SBEII into the plasmid pEXSc at the SpeI site to form the plasmids pEXSc-SBEI and pEXSc-SBEII. The gene coding for mature maize SBEII including a ribosome binding site was cloned into pEXSc-SBEI at the XbaI/NotI sites to form plasmid pEXSc-SBEI-SBEII. E.coli glgc gene and genes encoding maize SBEI and SBEII were also cloned in plasmid pExs-trc and pExs-trc3 respectively and together as described for pExs2.

EXAMPLE 3

Isolation of E. coli HPG204 deficient in GBE and GS activities

Homologous recombination was used for the strain construction. This was done according to the method described by Hamilton et al (Journal of Bacteriology, 1989, 171:4617-4622.) A temperature-sensitive pSC101 replicon was used to facilitate the selection. The gene coding for spectinomycin adenyltransferase was inserted at PvuII sites in plasmid pOP12 to form plasmid HPG9 which has spectinomycin resistance and has C-terminus of glgB gene and N-terminus of glgA gene deleted. The DNA fragment B=SA= with Spectinomycin resistant gene inserted between partial truncated glgB and glgA was subcloned into plasmid pMAK705 at XbaI site containing temperature sensitive replicon (Hamilton et al. Journal of Bacteriology, 1989, 171:4617-4622.) to form Plasmid pMak705B=SA=. Plasmid pMak705B=SA= was transformed into TG1 cell. After the transformed cell was cultured in 3 mL LB with 100 mg/mL Spectinomycin at room temperature overnight, the cells were plated on LB agar plate containing 100 mg/mL spectinomycin and incubated at 44°C overnight. Single colonies were inoculated on LB agar plate containing 100 mg/mL spectinomycin and 0.2% glucose and incubated at 44°C and at 37°C overnight. The colonies at 37°C were stained with iodine. The colony with negative staining was selected and grown in 100 mL LB at 37°C overnight. The cells were harvested and homogenized in an extraction buffer for assaying glycogen synthase and branching enzyme activities. The cell lacking glgA and glgB activities was named as HPG204 [F=traD36 LacI D(glgBXCA) D(LacZ)M15proAB*/SupED (hsdM $mcrB)5(r_k^- \ m_k^- \ McrB^-) thiD(lac-pro AB), Spectino mycin^R, \ Chloramphenicol^R \] \ . The \ IDE3$

lysogenization kit fromNovagen was used for site specific integration of IDE3 prophage into *E. coli* HPG204 to form *E. coli* HPG204(DE3)[was DThe lysate was prepared with P1vir and its transduction into *E. coli* BL21 (DE3) [F=traD36 LacI^q D(glgBXCA) D(LacZ)M15proA⁺B⁺/SupED (hsdM-mcrB)5(r_k m_k McrB⁻)thiD(lac-proAB),Spectinomycin^R, Chloramphenicol^R]

EXAMPLE 4

Expression of maize SS and SBE in E. coli.

Plasmid pExs-2 and pExs-trc3 has kanamycin resistance and p15A origin of replication. It is compatible with plasmid pET21a, pExs-trc, pTrc99A containing pBR322 origin. Expression plasmids pExs-2 and pET-21a were used to express SS and SBE in *E. coli* HPG204(DE3). Expression plasmids pExs-trc and pExs-trc3 were used for expression in *E. coli* G6MD3. This made it possible to transform different combinations of maize SS and SBE in *E. coli* HPG204(DE3), or G6MD3 which is deficient in GS and GBE activity. An overnight culture of cells transformed with maize SS and SBE was diluted 1:20 (v/v) in fresh LB containing 0.2 % glucose, 100 mg/mL ampicillin and 50 mg/mL kanamycin. The cells were grown at 37°C for about 2 h to A600nm =0.6 before the expression of maize SBE and/or SS was induced by adding isopropyl b-D-thiogalactoside to 0.5 mM. Following growth at 25°C for 4 h, the cells were harvested in a refrigerated centrifuge.

EXAMPLE 5

Isolation of highly branched a-glucan from E. coli.

Cell pellet (30 g) was resuspended and lysed by sonication in 150 mL 50 mM trisacetate buffer (pH 7.5) containing 10 mM EDTA and 5 mM DTT. After a fraction of the homogenate was saved for assaying the STS and SBE activities, the homogenate was centrifuged at 20, 000g for 50 min at 4°C. After collecting the supernatant, the pellet was resuspended in 150 mL water and boiled for 15 min with occasional stirring. The resuspension was centrifuged at 20, 000g for 30 at room temperature. After collecting the supernatant, the pellet was washed again with 100 mL water as above. 0.1 volumes of 50% Trichloric acid (TCA) were added to the pooled fractions. After storing on ice for 30 min, the precipitate was spun down at 15,000g for 20 min, then washed with 30 mL 5% TCA and centrifuged as above.

The supernatant and wash were pooled and one volume of absolute ethanol was added. After storing on ice for 30 min, the polysaccharide was collected by centrifuging at 15, 000g for 15 min. The polysaccharide was redissolved in water and precipitated with ethanol. This step was repeated twice. The pellet was washed with methanol twice, acetone twice and dried over silica gel at room temperature.

EXAMPLE 6

Isolation of linear a 1,4 polysaccharide from E. coli

Resuspend 50 grams of cell pellet in 250 mL of 50 mM Tris acetate buffer, pH 7.5, containing 10 mM EDTA and 5 mM DTT. Sonicate for 3 minutes (45 seconds/time, output # 8, repeat 4 times with 30 seconds interval). The homogenate is centrifuged at 12,000 rpm (SA1500) for 50 minutes. The supernatant is checked with iodine staining and discarded. (Same 1 mL homogenate and 1 mL supernatant for enzyme assay. The pellet is resuspended & extracted in 100 mL DMSO. Extract the polysaccharide by heating and stirring in boiling water bath for 15 min. Let it cool down to below 40 °C and centrifuge at 12,000 rpm for 30 min at room temperature. The supernatant is pooled. The pellet is extracted two more times with 100 mL DMSO. Equal volume of absolute ethanol is added into the pooled supernatant, mixed and stored on ice for 30 minutes. Centrifuge at 12,000 rpm for 30 min at 4 °C. The pellet is redissolved in 20 mL DMSO by heating in boiling water bath. 80 mL water is added and mixed well. After adding 10 mL butanol to the solution, the solution is mixed and stored at 0 °C for one hr (mix once a while). Centrifuge at 12000 rpm for 30 min at 4°C. Repeat the step once. The pellet is redissolved in 90 mL hot water by heating in boiling water bath. Insoluble materials are immediately removed by centrifugation at room temperature. Add 10 mL butanol to the supernatant, stay at 0 °C for 1 hr and centrifuge at 12000 rpm for 30 min at 4 °C. Repeat the step once. The amylose precipitate is redissolved in 90 mL hot water by heating, and 10 mL butanol are added to the solution. After storing at 40 °C on ice for one hour, it is centrifuged at 4 °C for 30 min. Repeat the step once. The pellet is redissolved in 100 mL 10% butanol by heating. The amylose is stored at 0 °C and precipitated by centrifuging at 12000 rpm for 30 min at 4 °C. The pellet is washed with 25 mL methanol_3 times and with acetone once. Dry over silica gel.

Enzyme assays

5 mL of supernatant were used to assay STS and SBE activities as previously described (Preiss) with minor modification. The reaction mixture for STS contained 100 mM Bicine buffer, 10 mg/mL glycogen, 0.5 mg/mL BSA, 0.5 M sodium citrate, 25 mM potassium acetate, 10 mM GSH, 3 mM [14C]ADPGlc (500 dpm/nmol) and enzyme in a final volume of 0.1 mL. The reaction was carried out at 25°C for 15 min and terminated by boiling for 2 min. The unincorporated [14C]ADPGlc was separated with Dowex anion exchange column (200-400 mesh, Sigma Chemical Co.). One unit of activity is defined as 1 nmol Glc incorporated into the a-glucan per min at 25°C. SBE activity was determined by phosphorylase stimulation assay. One unit of activity is defined as 1 mmol Glc incorporated into the a-glucan per min at 30°C.

Example 8

Enzyme purification

For the recombinant SS purification, the cell pellet was resuspended in sonication buffer (50 mM Tris-acetate, pH 7.5, 10 mM EDTA, and 5 mM DTT; 7 ml buffer per gram of cell mass), and cells were lysed using a Fisher 550 Sonic Dismembrator with 5 x 1 min. bursts with 30 sec. intervals. The homogenate was centrifuged at 9600g for 30 minutes. SSI in the supernatant was then precipitated by slowly adding neutralized saturated ammonium sulfate to 40% saturation. After stirring on ice for an additional 50 minutes, proteins were collected by centrifugation at 12700g for 45 minutes. The protein pellet was then redissolved in buffer A (50 mM Tris, pH 7.5, 1 mM EDTA, and 5 mM DTT) containing 0.1 M KCl and dialyzed against the same buffer, with one change of buffer. After dialysis, the sample was centrifuged at 13000g for 20 minutes to remove insoluble materials. The resulting supernatant was loaded onto an amylose affinity column pre-equilibrated with dialysis buffer, and the flow through was collected. The column was washed with 10 column volumes of buffer A containing 0.1 M KCl, and then with buffer A containing 0.5 M KCl and 0.5 M maltose, collecting fractions during both washes. The active fractions were pooled and dialyzed overnight against buffer A,

with one change of buffer. The next day, the amylose column sample was filtered and applied to a mono Q 5/5 FPLC column (Pharmacia). After washing with buffer A, a 20 ml 0-0.4 M KCl gradient was employed. The active fractions were electrophoresed on an 8% SDS-PAGE gel (31) to determine the purity of SSI in those fractions; the fractions which were apparently homogeneous were pooled and concentrated using a Centricon-30 spin column (Amicon).

Table 1. Expression of maize starch synthases in *Escherichia coli* BL21(DE3).

Plasmic Activities* (units/mg Pro		starch synthase N-ten genes	minus	Pro	otein (mg/mL)	Specific
pET21a	Native plasmid		1.8		0.009	
pEXS-3a	SSIIa-2	GENVMNVIV	/	2.8	0.069	
pEXS-3c	SSIIa	AEAEAGGKD		2.8	0.28	
pEXS-1d	SS1-3	MSIVFVTGEA		3.0	0.23	
pEXS-8 SSI-2		GDLGLEPEG	1.9		0.097	
pExs-10SSI		CVAELSREG	1.2		0.043	
pEXS-9 SSIIb	•	GSVGAALRSY	1.8		0.515	
pEXS-9a	SSIIb-2	MNVVVASE		2.6	0.36	
pEXS-wx	GBSS (waxy)	ASAGMNVVF	,	2	0.033	
pEXS-wx2	GBSS(2)	MNVVFVGAE	и	2.2	0.32	

^{*} One unit activity is defined as one μ mol glucose incorporated into a-1,4 glucan per minute at 25°C using 5 mg/mL glycogen as primer.

Table 2. Properties of polysaccharides synthesized in E. coli.

Plasmid	Protein (Ma/ml)	STS activity	BE activity	Imax	DP	CL Yield	
pExsCA	(IVIG/IIIL)	(aniig protein)	(u/mg protein)	(nm) 580	700	(mg dry wt/g wet cell) 10.6 3.3	vet cell)
pExsC-9				585	1007	35.8 4.1	
pExsC-3a	13.3	.0015		009	983	53 1.0	
pExsC-8	12.6	.0032		580	435	31.8 7.4	
pExsC-wx	15.2	0.002		009	836	15.6 9.1	
pExsC-I-II + pExs9 7.84	7.84	0.08	4.71	480	2333	19 30	
pExsC-I-II + pExs3a 13.61	a 13.61	0.011	1.56	530	3616	22 36	
pExsC-I-II + pExsB 11.95	11.95	0.042	3.33	525	1689	17.5 131	
pExsC-I-II + pExs10 8.9	9.8	.0094	3.65	200	3174	16.6 24.5	
pExsC-I-II + pExswx 11.7	k 11.7	.007	5.4	450	2970 14.8	14.8 33.8	
pExsC-I-II + pExsA1 11	111	0.13	4.48	475	3940 14	14 28.9	

Table 3. Properties listed by degree of DP of polysaccharides synthesized in E. coli.

					•			
riasmid (N	Protein (Mg/mL)	STS activity (u/mg protein)	BE activity (u/mg protein)	· Imax (nm)	음	70	Yield (mg di	ield (mg dry wt/g wet
pExsC-I-II + pExsA1	=	0.13	4.48	475		3940 14	14	28.9
pExsC-I-II + pExs3a13.61	3.61	0.011	1.56	530	3616	22	36	
pExsC-I-II + pExs108.9	o,	.0094	3.65	200	3174	16.6	24.5	22
pExsC-I-II + pExswx11.7	1.7	.007	5.5	450	2970	14.8	33.8	œ
pExsC-I-II + pExs9	7.84	0.08	4.71	480		2333	19	30
pExsC-I-II + pExs8	11.95	0.042	3.33	525		1689	17.5	131
pExsC-9				585		1007	35.8	4.1
pExsC-3a	13.3	.0015		009		983	53	1.0
pExsC-wx	15.2	0.002		900		836	15.6	9.1
pExsCA				580		200	10.6	9.3
pExsC-8	12.6	.0032		580	•	435	31.8	7.4

Plasmid cell)	Protein (Mg/mL.)	STS activity (u/mg protein)	BE activity (u/mg protein)	: λmax (nm)	DP	ರ	Yield (mg dry wt/g wet
pExsC-3a	13.3	.0015		009	983	53	1.0
pExsC-wx	15.2	0.002		009	836	15.6	9.1
pExsC-9				585	1007	35.8	4.1
pExsCA			🕶	580	200	10.6	3.3
pExsC-8	12.6	.0032		580	435	31.8	7.4
pExsC-I-II + pExs3a 13.61	3a 13.61	0.011	1.56	530	3616	22	36
pexsC-I-II + pexs8 11.95	8 11.95	0.042	3.33	525	1689	17.5	. 131
pExsC-I-II + pExs10 8.9	10 8.9	.0094	3.65	200	3174	16.6	24.5
pExsC-I-II + pExs9 7.84	9 7.84	0.08	4.71	480	2333	19	30
pExsC-I-II + pExsA1 11	A1 11	0.13	4.48	475	3940	4	28.9
pExsC-I-II + pExswx 11.7	wx 11.7	.007	5.4	450	2970	14.8	33.8

Plasmid	Protein	STS activity	BE activity	Лтах	В	CL CL	Yield
cell)	(Mg/mL)	(u/mg protein)	(u/mg protein)	(mn)			(mg dry wt/g wet
pExsC-3a	13.3	.0015		009	983	53	1.0
pExsC-9				585	1007	35.8	4.1
pExsC-8	12.6	.0032		580	435	31.8	7.4
pExsC-I-II + pExs3a 13.61	(s3a 13.61	0.011	1.56	530	3616	22	36
pExsC-I-II + pExs9 7.84	(s9 7.84	0.08	4.71	480	2333	19	30
pExsC-I-II + pExs8 11.95	s8 11.95	0.042	3.33	525	1689	17.5	131
pExsC-I-II + pExs10 8.9	s10 8.9	.0094	3.65	500	3174	16.6	24.5
pExsC-wx	15.2	0.002		009	836	15.6	9.1
pExsC-I-II + pExswx 11.7	swx 11.7	.007	5.4	450	2970	14.8	33.8
pExsC-I-II + pExsA1 11	sA1 11	0.13	4.48	475	3940	4	28.9
pExsCA				580	200	10.6	3.3

Table 6. Purification Tables for SSI-1, SSI-2, and SSI-3.

	SSI-1	volume (ml)	total mg protein	activity U/mg	total Units	purification (fold)
	Homogenate	630	4347	0.018	76.2	1
	Supernatant	570	2622	0.020	53.0	1.1
	0-40% (NH ₄) ₂ SO ₄	48	494	0.058	28.7	3.2
	Amylose column	17	2.6	5.03	11.3	279
_	monoQ column	0.27	0.26	12.2	3.2	677
						·
	SSI-2	volume (ml)	total mg protein	activity U/mg	total Units	purification (fold)
	Homogenate	380	2797	0.0356	99.6	1
•	Supernatant	320	2118	0.0340	72.0	1
	0-40% (NH ₄) ₂ SO ₄	48	466	0.133	61.8	3.7
	Amylose column	17.5	1.2	22.6	26.5	634
_	monoQ column	1.0	0.325	17.2	5.6	483
\$	SSI-3	volume (ml)	total mg protein	activity U/mg	total Units	purification (fold)
	Homogenate	1300	16770	0.23	3900	1
	Supernatant	1100	9790	0.31	3080	1.3
(0-40% (NH ₄) ₂ SO ₄	237	2204	1.5	3294	6.5
	Amylose column	63	30	22.4	668	97
		•				

3.1

Notes: Assays performed during the course of purification contained 10 mg/ml glycogen and 3 mM [U- 14 C]-ADPGlc. Assays were performed at room temperature in the presence of 0.5 M citrate. 1 Unit = 1 μ mol [U- 14 C]-glucose transferred per min.

30.5

132

monoQ column

3.6

Table 7. Primer Kinetics for SSI enzymes

Amylopectin

			3 F	
		SSI-3	<u>SSI-2</u>	SSI-1
+ citrate	K _m V _{max}	240 ± 45 26.3 ± 0.5	230 ± 50 33.4 ± 2.1	150 ± 40 22.5 ± 0.6
- citrate	K_m V_{max}	230 ± 60 13.2 ± 0.3	68 ± 3 9.94 ± 0.18	120 ± 20 7.62 ± 0.99

Gly	cog	en

	<u>SSI-3</u>	SSI-2	<u>SSI-1</u>
+ citrate	 43.4 ± 2.5	45.6 ± 3.3	39.0 ± 2.2
- citrate	41.4 ± 2.9	45.5 ± 1.5	26.1 ± 1.4

Notes: Assays were performed at 37°C as described in the Materials and Methods. Data are expressed as the average of three independent determinations along with the standard deviation. K_m are expressed as $\mu g/ml$ primer and V_{max} are in $\mu mol/min/mg$ protein. ADPGIc = 3 mM in all assays.

*Because saturating glycogen concentrations could not be obtained, a standard 20 mg/ml glycogen was used to compare enzyme rates for that primer.

Table 8. ADPGIc Kinetics for STSI enzymes. Assays and data evaluation are as in Table II. K_m are expressed as mM ADPGIc and V_m are in μ mol/min/mg protein. 5 mg/ml amylopectin was used as primer for all assays.

		STSI-3	STSI-2	STSI-1
+ citrate	K _m	0.33 ± 0.07	0.32 ± 0.02	0.18 ± 0.02
	V_m	26.4 ± 1.4	32.6 ± 0.8	18.0 ± 0.5
- citrate	K_m	0.62 ± 0.04	0.25 ± 0.04	0.24 ± 0.02
	V_m	14.7 ± 1.3	11.7 ± 0.7	6.38 ± 0.88

Table 9. Purification Tables for SSIIa enzymes. Assays for SSIIa-2 purification contained 10 mg/ml glycogen and 1.5 mM [U- 14 C]-ADPGlc (both are at saturating concentrations). Assays for SSIIa-1 purification contained 5 mg/ml amylopectin and 3 mM [U- 14 C]-ADPGlc. Assays were performed at room temperature in the presence of 0.5 M citrate. 1 U = 1 μ mol [U- 14 C]-glucose transferred per min.

SSIIa-2

	volume (ml)	total mg protein	activity U/mg	total Units	purification (fold)
Supernatant	300	1620	0.0216	34.8	1
0-40% (NH ₄) ₂ SO ₄	53	419	0.0606	25.4	2.8
Amylose column	20	9.3	0.991	9.3	45.9
monoQ column	0.9	0.94	4.81	4.5	222

SSIIa-1

	volume (ml)	total mg protein	activity U/mg	total Units	purification (fold)
Supernatant	335	2613	0.28	737	1
0-40% (NH ₄) ₂ SO ₄	47	427	0.96	409	3.4
Amylose column	25	11.5	8.04	92	28.7
monoQ column	1.0	4.8	9.10	44	32.5

Table 10. Primer Kinetics for SSIIa enzymes. Assays were performed as described in the Materials and Methods. Data are expressed as the average of three independent determinations along with the standard deviation. K_m are expressed in μ g/ml and V_{max} are in μ mol/min/mg protein. ADPGlc = 3 mM in all assays. *NA = not applicable; enzyme cannot be saturated by primer under these conditions.

Aı	nylopect	in	
		SSIIa-2	SSIIa-1
+ citrate			
27°C	K _m	153 ± 22	182 ± 38
	$\mathbf{V}_{\mathtt{max}}$	7.82 ± 0.63	24.1 ± 0.5
37°C	$\mathbf{K}_{\mathtt{m}}$	133 ± 18	153 ± 64
	V_{max}	15.4 ± 0.6	41.1 ± 0.2
- citrate			
27°C	K _m	234 ± 30	404 ± 33
	$\mathbf{V}_{\mathtt{max}}$	4.31 ± 0.32	10.5 ± 0.3
37°C	K_m	1350 ± 220	-NA
	$\mathbf{V}_{\mathtt{max}}$	7.84 ± 0.25	-NA*
Gl	ycogen		
		SSIIa-2	SSIIa-1
+ citrate			
27°C	K _m	50.7 ± 3.8	162 ± 17
	$\mathbf{V}_{\mathtt{max}}$	5.53 ± 0.44	14.2 ± 0.7
37°C	$\mathbf{K}_{\mathbf{m}}$.	76.9 ± 7.8	350 ± 11
	$\mathbf{V}_{\mathtt{max}}$	11.3 ± 0.7	31.6 ± 0.8

Table 11. ADPGIc Kinetics for SSIIa enzymes. Assays and data evaluations are as in Table II. Concentration of primer in each case was saturating for each enzyme and was determined by the experiments detailed in Table II. K_m are expressed as mM ADPGIc and V_{max} are in μ mol/min/mg protein. *NA = not applicable, as the enzyme cannot be saturated by primer under these conditions.

with amylopectin as primer

		do primer	
		SSIIa-2	SSIIa-1
+ citrate			
27°C	K _m	0.17 ± 0.04	0.48 ± 0.09
	$\mathbf{V}_{\mathtt{max}}$	4.83 ± 0.42	23.0 ± 2.5
37°C	$\mathbf{K}_{\mathbf{m}}$	0.28 ± 0.01	0.83 ± 0.08
•	$\mathbf{V}_{\mathtt{max}}$	11.4 ± 0.6	49.1 ± 2.6
<u>- citrate</u>			
27°C	K _m	0.27 ± 0.02	0.46 ± 0.06
	$\mathbf{V}_{\mathtt{max}}$	4.87 ± 0.25	12.1 ± 0.8
37°C	$\mathbf{K}_{\mathbf{m}}$	0.28 ± 0.005	-NA*
	$\mathbf{V}_{\mathtt{max}}$	7.86 ± 0.53	-NA* .
with gly	cogen a	is primer	
with glvco	gen	SSIIa-2	SSIIa-1
+ citrate			
27°C	K _m	0.16 ± 0.03	0.19 ± 0.02
	$\mathbf{V}_{\mathtt{max}}$	4.41 ± 0.21	17.1 ± 0.7
37°C	K_m	0.15 ± 0.03	0.37 ± 0.04
	V _{max}	7.60 ± 0.94	40.1 ± 1.7

Table 12. Purification Tables for SSIIb-2 and SSIIb-1. Assays performed during the course of purification contained 10 mg/ml glycogen and 3 mM [U- 14 C]ADPGlc. Assays were performed at room temperature in the presence of 0.5 M citrate. 1 U = 1 μ mol [U- 14 C]glucose transferred per min.

SSIIb-2	volume	total mg	activity	total	purification
	(ml)	protein	U/mg	Units	fold
Supernatant	890	9256	0.48	4450	1
0-40% (NH ₄) ₂ SO ₄	190	2660	1.24	3306	2.6
Amylose column	13	31.2	50.6	1573	105
monoQ column	6.6	16.3	56.8	939	118
SSIIh-1	volumo	total ma	a attivite.	4-4-1	
SSIIb-1	volume		activity		•
SSIIb-1	volume (ml)	total mg	activity U/mg	total Units	purification fold
SSIIb-1 Supernatant			•		•
	(ml)	protein	U/mg	Units	fold
Supernatant	(ml) 365	protein 2336	U/mg 0.64	Units 1533	fold 1

Table 13. Kinetics for SSIIb enzymes. Assays were performed at 37°C as described in the Materials and Methods. Data are expressed as the average of three independent determinations along with the standard deviation. For ADPGlc kinetics, K_m are expressed in mM ADPGlc. For primer kinetics, K_m are expressed as mg/ml primer, and 3 mM ADPGIc were used in the assays. V_{max} are in µmol min-1mg-1 protein.

ADPGlc Kinetics						
		SSIIb-2	SSIIb-1			
with glycog	en					
	K _m	0.32 ± 0.04	0.71 ± 0.01			
;	$\mathbf{V}_{\mathtt{max}}$	130 ± 6	76.8 ± 3.2			
with amylo	with amylopectin					
	K_m	0.32 ± 0.03	$\textbf{0.40}\pm\textbf{0.02}$			
	$\mathbf{V}_{\mathtt{max}}$	90.9 ± 4.2	72.8 ± 2.8			
Primer Kinetics						
•		SSIIb-2	SSIIb-1			
glycogen	K _m	0.36 ± 0.02	0.43 ± 0.02			

		<u> 5511b-2</u>	<u>SSIIb-1</u>
glycogen			
	K_{m}	0.36 ± 0.02	0.43 ± 0.02
	V _{max}	120 ± 3	79.5 ± 3.3
amylopecti	n		
	$\mathbf{K_m}$	0.26 ± 0.04	$0.074 \pm$
			0.008
	$\mathbf{V}_{ extbf{max}}$	84.5 ± 2.4	67.9 ± 1.7

Table 14. Comparison of kinetic data for expressed SS's. Data for SSI and SSIIa are form Imparl-Radosevich et al., 1998; Imparl-Radosevich J>, Li P, McKean Al, Keeling PL, and Guan HP, submitted for publication. K_m for amylopectin and glycogen are epxressed in mg/ml; K_m for ADPGlc are in mM and were determined in the presence of amylopectin and 0.5 M citrate. V_{max} are in μmol min⁻¹mg⁻¹. The K_m for glycogen for SSI could not be determined as saturating concentrations of glycogen could not be reached for this enzyme.

Kinetic parameter	SSI-3ª	SSI-1	<u>SSПа-2ª</u>	SSIIa-1	SSIIb-2°	SSIIb-1
K _m for amylopectin	0.24	0.15	0.13	0.15	0.26	0.07
K _m for glycogen		<u></u>	0.077	0.35	0.36	0.43
K _m for ADPGIc	0.33	0.18	0.28	0.83	0.32	0.40
V _{max} (with amylopectin)		22.5	15.4	41.1	84.5	67.9
V _{max} (with glycogen)	43.4	39.0	11.3	31.6	120	79.5 .

adenotes N-terminally truncated form of SS, while any SS with the designation SS-1 is the full length version of the SS.

The gene coding for N-terminal extensions of STSI, STSIIa and STSIIb were inserted, in the same (+) or reverse (-) orientation of original N-terminal DNA sequence, in front of the C-terminal catalytic domains of WX2, STSIIa and STSIIb, respectively. The chimerical enzymes were expressed in E.coli, and the activities were assayed.

	WX2 C-catalytic domain	STSIIa C-catalytic domain	STSIIb C-catalytic domain
STSI N-extension	N1-WX2 (+) (-) NRA 9.0	N1-C2 (+) (-) 6.6 39.7	N1-C3 (+) (-) 89.2 NRA
STSIIa N-extension	N2-WX2 (+) (-) 9.2 11.2	N2-C2 (+) (-) 213.8 8.7	N2-C3 (+) (-) 232.5 NRA
STSIIb N-extension	N3-WX2 (+) (-) NRA NRA	N3-C2 (+) (-) 11.2 NRA	N3-C3 (+) (-) 400.5 12.0

N1: STSI N-terminal extension;

N2: STSIIa N-terminal extension:

N3: STSIIb N-terminal extension;

WX2: WX2 C-terminal catalytic domain;

C2: STSIIa C-terminal catalytic domain;

C3: STSIIb C-terminal catalytic domain.

- (+): the N-terminal extensions were inserted in front of the C-terminal catalytic domains in same orientation;
- (-): the N-terminal extensions were inserted in front of the C-terminal catalytic domains in reverse orientation.
- * Starch synthase enzyme activity: nmol/min mgprotein.
- * The residue glycogen synthase activity of BL21(DE3) is 2.6nmol/min mg protein.
- * NRA--No recombinant available.

The photographs listed in the figures 42 and 21 attempt to show the visual differences that are present into the starches as compared to those known in the art.

Description of the starch

Corn starch is a milky, slightly thickened gel which is slightly if at all flowable.

Rice starch forms two levels the upper level is a thickened syrup like consistency more flowable then corn starch (less thick then corn starch) opaque milky color (more translucent then corn starch in this level) and a lower level which is a very white glob not transmitting much light through this bottom level of material. This lower level is formed in a very thick mass and does not appear flowable.

<u>Corn amylopectin</u> is slightly less white then the top level of rice starch and is a very slightly opaque milky color (more translucent then corn starch) slightly less flowable then the rice top level.

<u>Potato dextrin</u> is the most transparent almost appearing clear but is still opaque white and it is very flowable appearing only slightly less flowable then water.

<u>Waxy Maize starch</u> will flow very slowly and has the consistency of honey. The color is very opaque transmitting little light and the color is only slightly less light then corn starch.

SSI starch made from plasmid pExs-8 has two distinct levels. The top level appears clear and slightly thicker then the flowability of water. The bottom level appears as a precipitate. This sample resembles the ornaments that contain little figures and plastic flakes resembling snowflakes. Like those ornaments when turned upside down the sample appears to be falling snow. However the flakes in this sample appear to be slightly gummy and appear in the first moments of level mixing to form a opaque white liquid.

SSI starch made from a host containing the following two plasmids pExsC BEI BEII and pExs8 is not as clear as the top level of pExs-8 and appears slightly less thick then pExs-8.

It has even more flowability then does Potato Dextrin.

SSIIb starch made from a host containing the following two plasmids pExsC BEI BEII and pExs-9 is not as clear as the top level of pExs-8 and appears slightly less thick then pExs-8. It has even more flowability then does Potato Dextrin.

WAXY starch made from a host containing the following two plasmids pExsC BEI BEII and pExs-wx is not as clear as the top level of pExs-8 but seems to have a few tiny thread like chains that settle to the bottom and when mixed give the material a slightly more white color and appears slightly less thick then pExs-8. It has even more flowability then does Potato Dextrin.

SSII starch made from a host containing the following two plasmids pExsC BEI BEII and pExs-3a is the color of corn starch and maybe slightly whiter but not as white as the bottom level of pExs8 and definitely transmitting more light through and has the flowability characteristic of pExs-8 when mixed.

glgA starch appears to have a very slight precipitate and is comparable in color to corn amylose pectin and ExsC BEI BEII and pExs-wx. And the flowability is between corn amylose and pExsC BEI BEII pExs-wx.

The samples of polysaccharides listed above form groups generally according to color as follows: waxy maize starch and corn starch and pExsC BEI BEII pExs3a and pExsc8 are the whitest group. The flowability characteristics of this group are fairly diverse. With corn starch a lump and Waxy maize starch only slightly flowable and pExsC BEI BEII and pExs-3a and pExsC-8 more like water then syrup. The second group contains corn amylopectin and pExsC BEI BEII pExs-wx and pExsC BEI BEII and pExs-A1 which are less white and clearer. The flowability of corn amylopectin is less then the other two members of this group but it is still similar. The last group is the least white and thus the clearest. This group includes pExsC BEI BEII and pExs-8, potato dextrin, pExsC BEI BEII and pExs-10, pExsC BEI BEII and pExs-9. The flowability of this group is also similar to each other.

Plant H sts

The following plasmids have been transformed into rice plants. The sequence for the mutant glgC gene is shown in Figure 46. The plasmids are made substantially in a similar manner as described above for the production of bacterial plasmid. Clearly the plasmid maps shown in figures 25-41 and this application and the listed short protocols allow the ordinarily skilled person in the art to make the present plasmids. The following combinations of plasmids have been transformed into rice plants. Additionally combinations of plasmids including the combination that includes all of the maize genes SSI, SSII, SSII, BEI, BEII, and GBSS in one host or alternatively in two host that are then crossed to form a hybrid having the entire complement of up regulated starch genes are being developed. Clearly the ordinarily skilled person in the art could have placed the sequences in the antisense positions to down regulate these genes to the extent that maize genes will down regulate the partial homologous rice genes. The first group of transgenic are group1, including rice transformants (transformed by microprojectile bombardment) containing MSTSI-2 (pExs52) and glgC₃ (pExs66), MSTSIIa-2 and glgC₃ (pExs53 and pExs56). The second group of rice transformants contains MSTSIIa and glgC₃ (pExs54 and pExs56). The third group of transformation contain: transgenic 5 MSTSIIb and glgC₃ (pExs 61 and pExs 66); transgenic 6 Maize wx and glgC₃ pExs65 and pExs66). Additionally, glgA and glgB and glgC are combined and transformed into rice. This last transformant is combining the rice plants starch pathway with the gene encoding for ADPG pyrophosphorylase and the bacterial genes. The combination of the plasmids encoding for at least one of the following enzymes, SSI, SSIIa, SSIIb, SSIII, Debranching enzymes, BEI, BEII, GBSS (wx)and some or all of the bacterial starch genes is also useful. There ae presently over 300 transformants in the greenhouse. The T1 transgenic rice plants have been screened and characterized (Figure 56, 57). 12 plants have successfully expressed maize SSI-2 in rice seeds. 21 plants have successfully expressed maize SSIIb in rice seeds. We are currently screening rice plants down regulated the rice SS expression by cosuppression and have 400 T2 plants in the greenhouse.

Maize Starch Synthase and its Mutant Forms.

In order to characterize the multiple forms of maize starch synthase, the genes coding for the full length SS and its N-terminally truncated forms were expressed in E.coli,. The recombinant enzymes were purified and kinetically characterized. We have demonstrated that different isoforms and its truncated forms all have distinct properties (Table 6-14, Figure 58-63). The specific activities (Vmax) of the purified maize SSI-1, SSI-2, and SSI-3 were 22.5, 33.4 and 26.3 :mol glc/min/mg of protein respectively, Our results have clearly indicated that the catalytic center of SSI is not located in its N-terminal extension. However, N-terminal truncation decreased the enzyme affinity for amylopectin, with the K_m for amylopectin of the truncated SSI-3 being about 60%-90% higher than that of the full length SSI-1. The effects of N-terminal truncation of SSIIa depend upon the assay conditions used. For both SSIIa-1 and SSIIa-2, the V_{max} of each enzyme increased 2-fold upon raising assay temperature from 27 ^{N}C to 37 ^NC (Tables II and III). However, the effect of temperature on ADPGic affinity was different for SSIIa-1 and SSIIa-2. For the truncated SSIIa-2, the K_m for ADPGlc was not affected by raising temperature. In contrast, the K_m of ADPGlc for the putative full length SSIIa-1 increased 2 fold upon raising the assay temperature from 27 ^NC to 37 ^NC (Table III). Interestingly, the truncated SSIIa-2 exhibited a lower K_m for ADPGlc than SSIIa-1 did in all assay conditions used in this study except that they showed similar K_m values for ADPGlc when glycogen was used as a primer at 27EC. Although N-terminal truncation of SSIIa appears to lower the K_m for ADPGlc under most assay conditions, it also must be noted that the maximal velocity of the truncated SSIIa-2 is decreased by about 2-4 fold when compared to SSIIa-1. The truncated SSIIb-2 was found to be more temperature stable than the longer SSIIb-1 in the presence of citrate, while little difference was observed in their pH activity profiles. While the putative full length SSIIb-1 showed a similar V_{max} using amylopectin or glycogen as a primer, the N-terminally truncated SSIIb-2 showed a 40% increase in V_{max} using glycogen compared with amylopectin as a primer. N-terminal truncation of SSIIb increased its V_{max} by 25% with amylopectin as a primer. We also demonstrated that kimeric enzymes of maize starch synthase (combining the C-terminal domain of SS with different N-terminal sequences of SS or unrelated sequences would produce a functional enzyme with SS activity and altered properties) (Table 15).

Conclusions, Ramifications, and Scope

Accordingly, it can be seen that, according to the invention, The starch genes can produce new and altered starch in either host, plant or bacteria. Additionally, polysaccahrides very similar to corn starch can be produced in a bacterial host.

Although the description above contains many specificities, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. Various other embodiments and ramifications are possible within it's scope. For example, different combinations of the plasmids in either host for the production of useful plant and useful grain and useful polysaccahrides.

Thus the scope of the invention should be determined by the appended claims and their legal equivalents, rather than by the examples given. All references cited herein are incorporated herein in their entirety by reference.

WHAT IS CLAIMED IS:

- 1. A method of producing polysaccharides which are non glycogen like in a host comprising:
- a. transforming a host capable of being used in a fermentation process, with genes selected from the group which produce starch synthesizing enzymes, glycogen synthesizing enzymes such that the host produces nonglycogen like starch, and
- b. employing the host in a fermentation process wherein the fermentation process produces polysaccharides.
 - 2. A method according to claim 1 wherein the host is bacteria.
- 3. A host transformed to carry a gene active in glycogen production, and at least one nonstarch branching gene active in the production of at least one of the following polysaccharides amylopectin and amylose in it original host.
 - 4. A host according to claim 3 wherein the host is a monocot.
 - 5. A host according to claim 3 wherein the host is a dicot.
 - 6. A host according to claim 3 wherein the host is a plant.
 - 7. A host according to claim 3 wherein the host is a bacteria.
 - 8. A host according to claim 3 wherein the host is a cereal bearing plant.
- 9. A host according to claim 3 wherein the bacterial gene is selected from the group consisting of glgC gene, glgA gene, glgB gene.
- 10. A host according to claim 3 wherein at least one nonstarch branching genes active in the production of at least one of the following polysaccharides amylopectin and amylose in

it original plant is selected from the group consisting of starch soluble starch synthase I, II, III genes and debranching enzyme gene (su1), GBSS gene, sh2 gene and bt2 gene.

- 11. A host according to claim 3 including at least one of the starch branching enzyme genes.
- 12. A host according to claim 11 including the starch branching enzyme gene BEI gene.
- 13. A host according to claim 11 including the starch branching enzyme gene BEII gene.
- 14. A host according to claim 12 including the starch branching enzyme gene BEII gene.
- 15. A host transformed to carry a gene active in ADPG production, and at least one starch gene active in the production of at least one of the following polysaccharides amylopectin and amylose in it original host wherein the host produces polysaccharides that are plant like starch and not glycogen like.
 - 16. A host transformed to carry a pyrophosphatase gene, glycogen synthase gene,
- 17. A host according to claim 1 wherein the gene active in glycogen production is a bacterial gene.
- 18. A host deficient in alpha 1,4 glucan synthesizing ability and alpha 1,4-1,6 branching enzyme capability transformed to express at least one a plant starch soluble synthesis gene.
- 19. A host according to claim 18 including being transformed to express at least one gene encoding for debranching enzyme.

- 20. A host according to claim 18wherein said gene is encoding for starch soluble synthase enzyme I.
- 21. A host according to claim 18wherein said gene is encoding for starch soluble synthase enzyme II.
- 22. A host according to claim 18wherein said gene is encoding for starch soluble synthase enzyme III.
- 23. A host according to claim 18 including being transformed to express at least one gene encoding for starch branching enzyme.
 - 24. A host according to claim 23 wherein the starch branching enzyme is BEI.
 - 25. A host according to claim 23 wherein the starch branching enzyme is BEII.
- 26. A plasmid wherein said plasmid is in a carrier host and said plasmid contains the SSII gene with the n terminus GENVMNVIVV wherein the gene is approximately 1561 base pairs in length.
 - 27. A Plasmid according to claim on e wherein said host is a bacterial host.
 - 28. A host according to claim two wherein the host is a wild type E. Coli.
- 29. A new polysaccharide produced by a transformed host comprising: said host having a wildtype, said wildtype of said host does not produce said new polysaccharide, said transformed host expressing at least two exogenous starch synthesis genes, said genes are selected from a group consisting of soluble starch synthesis genes such as SSI SSII SSIII, wherein the transformed host is capable of producing such new polysaccharide.

- 30. The new polysaccharide of claim 29 wherein said host also expresses the exogenous genes selected from the following group consisting of bacterial glycogen inducing genes.
- 31. The new polysaccharide of claim 29 wherein said host also expresses the exogenous genes selected from the following group consisting of plant granule bound enzymes.
 - 32. A method according to claim one wherein the host is fungal.
 - 33. A method according to claim 32 wherein the host is yeast.
- 34. A method according to claim one wherein said glycogen synthesizing genes include glgC, glgA, glgB genes.
- 35. A method according to claim one wherein said genes which produce starch synthesizing enzymes include genes encoding for starch soluble synthases I, II, III.
- 36. A method according to claim one wherein said genes which produce starch synthesizing enzymes include genes encoding for and debranching enzyme and branching enzymes.
- 37. The new polysaccharide of claim 30 wherein said bacterial glycogen inducing genes are selected from the group consisting of glgC, glgA, glgB.
- 38. The new polysaccharide of claim 29 wherein said starch synthesis genes are selected from the group consisting of BEI and BEII.

2/90

3/90 Fig 3

Author: Ping Li Date: 7/23/96

Notes:

pEXS3C is the 1082 bp Nde I-EcoR I fragment containing the N-terminus of MSSSIIc (from MSSSIIc in pBSK) subcloned into the Nde I-EcoR I sites of pEXS3a, replacing the N-terminus of IIa with the longer IIc N-terminus. MSSSIIc is the mature maize STS2 and is 2090 bo long. The following sites are NOT contained in the MSSSIIc insert: Apa I, Bgl II, EcoR V, Not I, Spe I, and Xba I. see Ping's Notebook #1 pp. 149, 159, 160. vector: pET-21a

N-terminus of MSSSIIc: AEAEAGGKD

BNSDOCID: <WO__9844780A1_I_>

Fig 4

Date:

Frg 5

Figo

Author: Date: ! Notes: 7/90

Fig 7

withor:

)ate:

lotes:

Fig8

Author:

Date:

Notes:

Fig.9

outhor: Date: i Votes:

Fig. 10

uthor: Date:

lotes:

11/90

Frg. 11

BNSDCCID: <WO__9844780A1_I_>

Fig 12

Date: lotes: 13/90

Fig 13

BNSDOCID: <WO___9844780A1_i_>

Fig. 14

uthor: Date: lotes: 15/90

Fig. 15

Author: Date: Notes:

Fig 17

BNSDOCID: <WO___9844780A1_I_>

Fig IP

pEXSA1 is a 1551 bp Spe I-Sac I fragment containing gig A (from gigA in pBSK) subcloned into the Xba I-Sac I sites of pET-23d.
see "gig A,B,C" notebook p. 71.

Page 2

Sheet1 Chart 1

Page 1

Fig 22

Author: McKean Date: 2/10/97 Notes:

pEXS-trc is pTrc99A-Ndel which has been mutagenized. (Nco I site in muttiple cloning site of pTrc99A-Ndel is mutagenized to Nde I using primers EXS63 and EXS64.) pEXS-trc contains only one Nde I site and no Nco I sites. The following sites are NOT contained in pEXS-trc: Bgl II, Cla I, Nco I, Not I, Sac II, SnaB I, Spe I, and Xho I. see Angela's Notebook #1 pp. 231, 242-244, 246, 248-250.

Fig 23

pEXS-trc3 is pEXS-trc1 cut with Bgl I (filled in)-Sca I and religated, deleting most of the Amp gene (304 nt from the 5' end remain). The following sites are NOT contained in pEXS-trc3: Apa I, Bgl II, EcoR V, Nco I, Not I, SnaB I, and Spe I. see Ping's Notebook #2 pp. 204, 209.

Eig 27

Fig 29

Winky = maize granule bound starch synthase-

1693

•,

Fig.4

Fig #1

DNASIS

***** DNA TRANSLATION LIST *****

Fig 43

*** INPUT INFORMATION ***

FILE NAME : ECGLGA1.SEQ SEQUENCE : NORMAL 1488 BP

CODON TABLE : UNIV.TCN

SEQUENCE REGION: 1 - 1488
TRANSLATION REGION: 1 - 1488

*** DNA TRANSLATION ***

1 1	ATG M	CAG	GTT V	TTA L	CAT	GTA V	TGT C	TCA S	GAG E	ATG M	TTC F	CCG P	CTG L	CTT	AAA K	ACC .	48 16
		~	•			•	_	_			_	-	_			_	10
49			CTG		GAT												96
17	G	G	L	A	D	V	I	G	A	L	P	A	A	Q	I	A	32
97					GCT												144
33	D	G	V	D	A	·R	V.	L	L	P	A	F	P	D	I	R	48
145					GAT	GCG	CAG	GTA	GTA	TCC	CGT	CGT	GAT	ACC	TCC	GCC	192
49	R	G	V	T	D	A	Q	V	V	s	R	R	D	T	s	A	. 64
193	GGA	CAT	ATC	ACG	CTG	TTG	TTC	GGT	CAT	TAC	AAC	GGG	GTT	GGC	ATT	TAC	240
65	G	H	I	T	L	L	F	G	H	Y	N	G	V	G	I	Y	80
241	CTG	ATT	GAC	GCG	CCG	CAT	CTC	TAT	GAT	CGT	CCG	GGA	AGT	CCG	TAT	CAC	288
81	L	I	D	A	P	н	L	Y	D	R	P	G	S	P	Y	H	96
289	GAT		AAC	TTA	TTT	GTC	CAT	ACC	GAC	AAC	GTA	TTG	CGT	TTT	GCG	CTG	3 36
97	D	T	N	L	F	V	Н	T	D	N	V	L	R	F	A	L	112
337	CTG	GGG	TGG	GTT	GGG	GCA	GAA	ATG	GCC	AGC	GGG	CTT	GAC	CCA	TTC	TGG	384
113	L	G	W	V	G	A	Ē	M	A	s	G	L	D	P	F	W	128
385	CGT	CCT		GTG	GTG	CAT	GCG	CAC	GAC	TGG	CAT	GCA	GGC	CTT	GCG	CCT	432
129	R	P	D	V	V	H	A	H	D	W	H	A	G	L	A	P	144
433	GCG			GCG	GCG	CGC	GGG	CGT	CCG	GCG	AAG	TCG	GTG	TTT	ACT	GTG	480
145	A	Y	L	A	A	R	G	R	P	A	K	S	V	F	T	v	160
481	CAC	AAC	CTA	GCC	TAT	CAA	GGC	ATG	TTT	TAT	GCA	CAT	CAC	ATG	AAT	GAC	528
161	Н	N	L	A	Y	Q	G	M	F	Y	A	H	H	M	N	D	176
529	ATC	CAA	TTG	CCA	TGG	TCA	TTC	TTT	AAT	ATT	CAT	GGG	CTG	GAA	TTC	AAC	576
177	I	Q	L	P	W	S	F	F	N	I	H	G	L	E	F	N	192
577	GGA	CAA	ATC	TCT	TTC	CTG	AAG	GCC	GGT	CTG	TAC	TAT	GCC	GAT	CAC	ATT	624
193	G	Q	I	S	F	L	K	A	G	L	Y	Y	A	D	H	I	208
625		GCG			CCA	ACC		GCT			ATC	ACC	GAA	CCG	CAG	TTT	672
209	T	A	V	S	P	T	Y	A	R	E	工	T	E	P	Q	F	224

44/90 Fig 43 continued

673	GCC	TAC	GGT	ATG	GAA	GGT	CTG	TTG	CAA	CAG	CGT	CAC	CGC	GAA	GGG	CGT	720
225	A	Y	G	M	E	G	L	L	Q	Q	R	H	R	E	G	R	240
721	CTT	TCC	GGC	GTA	CCG	AAC	GGC	GTG	GAC	GAG	AAA	ATC	TGG	AGT	CCA	GAG	768
241	L	S	G	V	P	N	G	V	D	E	K	I	W	S	P	E	25 6
769	ACG	GAC	TTA	CTG	TTG	GCC	TCG	CGT	TAC	ACC	CGC	GAT	ACG	TTG	GAA	GAT	81 6
257	T	D	L	L	L	A	S	R	Y	T	R	D	T	L	E	D	27 2
817	AAA	GCG	GAA	AAT	AAG	CGC	CAG	TCA	CAA	ATC	GCA	ATG	GGA	TCC	AAG	GTT	86 4
273	K	A	E	N.	K	R	Q	S	Q	I	A	M	G	S	K	V	28 8
865	GAC	GAT	AAA	GTG	CCG	CTT	TTT	GCA	GTG	GTG	AGC	CGT	CTG	ACC	AGC	CAG	912
289	D	D	K	V	P	L	F	A	V	V	S	R	L	T	S	Q	304
913	AAA	GGT	CTC	GAT	TCG	GTG	CTG	GAA	GCC	TCA	CCG	GGT	TCT	TCG	GAG	CAG	96C
305	K	G	L	D	S	V	L	E	A	S	P	G	S	S	E	Q	32C
961	GGC	GGG	CAG	CTG	GCG	CTA	CTC	GGC	GCG	GGC	GAT	CCG	GTG	CTG	CAG	GAA	100€
321	G	G	Q	L	A	L	L	G	A	G	D	P	V	L	Q	E	33€
1009	GGT	TTC	CTT	GCG	GCG	GCA	GCG	GAA	TAC	CCC	GGT	CAG	GTG	GGC	GTT	CAG	105€
337	G	F	L	A	A	A	A	E	Y	P	G	Q	V	G	V	Q	352
1057	ATT	GGC	TAT	CAC	GAA	GCA	TTT	TCG	CAT	CGC	ATT	ATG	GGC	GGC	GCG	GAC	1104
353	I	G	Y	H	E	A	F	S	H	R	I	M	G	G	A	D	368
1105	GTC	TTA	CTG	GTG	CCC	AGC	CGT	TTC	GAA	CCG	TGC	GGC	TTA	ACG	CAA	CTT	1152
369	V	I	L	V	P	S	R	F	E	P	C	G	L	T	Q	L	384
1153	TAT	GGA	TCG	AAG	TAC	GGT	ACG	CTG	CCG	TTA	GTG	CGA	CGC	ACC	GGT	GGG	1200
385	Y	G	S	K	Y	G	T	L	P	L	V	R	R	T	G	G	400
1201	CTT	GCT	GAT	ACG	GTT	TCT	GAC	TGT	TCT	CTC	GAG	AAC	CTT	GCA	GAT	GGC	1248
401	L	A	D	T	V	S	D	C	S	L	E	N	L	A	D	G	416
1249	GTC	GCC	AAT	GGG	TTT	ATC	TTC	GAA	GAT	AGT	AAT	GCC	TGG	TCG	CTG	TTA	1296
417	V	A	N	G	F	I	F	E	D	S	N	A	W	S	L	L	432
1297	CGG	ACT	ATT	CGA	CGT	GCT	TTT	GTA	CTG	TGG	TCC	TGT	CCT	CCA	CTG	TGG	1344
433	R	T	I	R	R	A	F	V	L	W	S	C	P	P	L	W	448
1345	CGG	TTT	GTG	CAA	CGT	CAG	GCT	ATG	GCA	ATG	GAT	TTT	GGC	TGG	CAG	GTC	1392
449	R	F	V	Q	R	Q	A	M	A	M	D	F	G	W	Q	V	464
1393	GCG	GCG	AAG	TCG	TAC	CGT	GAG	CTT	TAC	TAT	CGC	TCG	AAA	TAG	TTT	TCA	1440
465	A	A	K	S	Y	R	E	L	Y	Y	R	S	K		F	S	480
1441	GGA	AAC	GCC	TAC	ATG	AAT	GCT	CCG	TTT	ACA	TAT	TCA	TCG	CCC	ACG	CTT	1488
481	G	N	A	Y	M	N	A	P	F	T	Y	S	S	P	T	L	496

DNASIS

***** DNA TRANSLATION LIST *****

DATE 04-03-97

Fig. 44

*** INPUT INFORMATION ***

FILE NAME : ECGLGB.SEQ SEQUENCE : NORMAL 2361 BP

CODON TABLE : UNIV.TCN

SEQUENCE REGION: 1 - 2361

TRANSLATION REGION: 1 - 2361

*** DNA TRANSLATION ***

1 1	ATG M	TCC	GAT D	CGT R	ATC I	GAT D	AGA R	GAC D	GTG V	ATT	AAC N	GCG A	CTA L	ATT I	GCA A	GGC G	48 16
49	CAT	TTT	GCG	GAT	CCT	TTT	TCC	GTA	CTG	GGA	ATG	CAT	AAA	ACC	ACC	GCG	96
17	H	F	A	D	P	F	S	V	L	G	M	H	K	T	T	A	32
97 33	GGA G	CTG L	GAA E	GTC V	CGT R	GCC A	CTT	TTA L	CCC	GAC D	GCT A	ACC T	GAT D	GTG V	TGG W	GTG V	144 48
145							CGC							TGT	CTC	GAC	192
49	I	E	P	K	T	G	R	K	L	A	K	L	E	С	L	D	64
193 65	TCA S	CGG R	GGA G	TTC F	TTT F	AGC S	GGC G	GTC V	ATT I	CCG P	CGA R	CGT R	AAG K	AAT N	TTT F	TTC F	240 80
241 81	CGC R	TAT Y	CAG Q	TTG L	GCT A	GTT V	GTC V	TGG W	CAT H	GGT G	CAG Q	CAA Q	AAC N	CTG L	ATT I	GAT D	28 8 9 6
289														GCC			336
97	D	P	¥	R	F	G	P	L	I	Q	E	M	D	A	W	L	112
337 113	TTA L	TCT S	GAA E	GGT G	ACT T	CAC H	CTG L	CGC R	CCG P	TAT Y	GAA E	ACC T	TTA L	GGC G	GCG A	CAT H	384 128
385 129	GCA A	GAT D	ACT T	ATG M	GAT D	GGC G	GTC V	ACA T	GGT G	ACG T	CGT R	TTC F	TCT S	GTC V	TGG W	GCT A	432 144
433 145	CCA P	AAC N	GCC A	CGT R	CGG R	GTC V	TCG S	GTG V	GTT V	GGG G	CAA Q	TTC F	AAC N	TAC Y	TGG W	GAC D	480 160
481 161	GGT G	CGC R	CGT R	CAC H	CCG P	ATG M	CGC R	CTG L	CGT R	AAA K	GAG E	AGC S	GGC G	ATC I	TGG W	GAA E	528 176
529 177	CTG L	TTT F	ATC I	CCT P	GGG G	GCG A	CAT H	AAC N	GGT G	CAG Q	CTC L	TAT Y	AAA K	TAC Y	GAG E	ATG M	576 192
577 193	ATT	GAT D	GCC A	AAT N	GGC G	AAC N	TTG L	CGT R	CTG L	AAG K	TCC S	GAC D	CCT P	TAT Y	GCC A	TTT F	624 208
625	GAA	GCG	CAA			CCG		ACC	GCG		CTT	ATT	TGC	GGG	CTG	CCG	672
209	F	Α	Q	M	R	P	E	T	Д	S	上	I	С	G	L	P	224

46/90 Fig 44 continued

673	GAA	AAG	GTT	GTA	CAG	ACT	GAA	GAG	CGC	AAA	AAA	GCG	AAT	CAG	TTT	GAT	720
225	E	K	V	V	Q	T	E	E	R	K	K	A	N	Q	F	D	240
721	GCG	CCA	ATC	TCT	ATT	TAT	GAA	GTT	CAC	CTG	GGT	TCC	TGG	CGT	CGC	CAC	76 8
241	A	P	I	S	I	Y	E	V	H	L	G	S	W	R	R	H	25 6
769	ACC	GAC	AAC	AAT	TTC	TGG	TTG	AGC	TAC	CGC	GAG	CTG	GCC	GAT	CAA	CTG	81 6
257	T	D	N	N	F	W	L	S	Y	R	E	L	A	D	Q	L	27 2
817	gtg	CCT	TAT	GCT	AAA	TGG	ATG	GGC	TTT	ACC	CAC	CTC	GAA	CTA	CTG	CCC	86 4
273	V	P	Y	A	K	W	M	G	F	T	H	L	E	L	L	P	28 8
865	ATT	AAC	GAG	CAT	CCC	TTC	GAT	GGC	AGT	TGG	GGT	TAT	CAG	CCA	ACC	GGC	912
289	I	N	E	H	P	F	D	G	S	W	G	Y	Q	P	T	G	304
913	CTG	TAT	GCG	CCA	ACC	CGC	CGT	TTT	GGT	ACT	CGC	GAC	GAC	TTC	CGT	TAT	960
305	L	Y	A	P	T	R	R	F	G	T	R	D	D	F	R	Y	320
961 321	TTC F	ATT I	GAT D	GCC A	GCA A	CAC H	GCA A	GCT A	GGT G	CTG L	AAC N	gtg V	ATT	CTC L	GAC D	TGG W	100€ 33€
1009 [°]	GTG	CCA	GGC	CAC	TTC	CCG	ACT	GAT	GAC	TTT	GCG	CTT	GCC	GAA	TTT	GAT	 .105€
337	V	P	G	H	F	P	T	D	D	F	A	L	A	E	F	D	352
1057	GGC	ACG	AAC	TTG	TAT	GAA	CAC	AGC	GAT	CCG	CGT	GAA	GGC	TAT	CAT	CAG	1104
353	G	T	N	L	Y	E	H	S	D	P	R	E	G	Y	H	Q	368
1105	GAC	TGG	AAC	ACG	CTG	ATC	TAC	AAC	TAT	GGT	CGC	CGT	GAA	GTC	AGT	AAC	1152
369	D	W	N	T	L	I	Y	N	Y	G	R	R	E	V	S	N	384
1153 385	TTC F	CTC L	GTC V	GGT G	AAC N	GCG A	CTT L	TAC Y	TGG W	ATT I	GAA E	CGT R	TTT F	GGT G	ATT	GAT D	1200 400
1201	GCG	CTG	CGC	GTC	GAT	GCG	GTG	GCG	TCA	ATG	ATT	TAT	CGC	GAC	TAC	AGC	1248
401	A	L	R	V	D	A	V	A	S	M	I	Y	R	D	Y	S	416
1249	CGT	AAA	GAG	GGG	GAG	TGG	ATC	CCG	AAC	GAA	TTT	GGC	GGG	CGC	GAG	AAT	1296
417	R	K	E	G	E	W	I	P	N	E	F	G	G	R	E	N	432
1297	CTT	GAA	GCG	ATT	GAA	TTC	TTG	CGT	AAT	ACC	AAC	CGT	ATT	CTT	GGT	GAG	1344
433	L	E	A	I	E	F	L	R	N	T	N	R	I	L	G	E	448
1345	CAG	GTT	TCC	GGT	GCG	GTG	ACA	ATG	GCT	GAG	GAG	TCT	ACC	GAT	TTC	CCT	1392
449	Q	V	S	G	A	V	T	M	A	E	E	S	T	D	F	P	464
1393	GGC	GTT	TCT	CGT	CCG	CAG	GAT	ATG	GGC	GGT	CTG	GGC	TTC	TGG	TAC	AAG	1440
465	G	V	S	R	P	Q	D	M	G	G	L	G	F	W	Y	K	480
1441	TGG	AAC	CTC	GGC	TGG	ATG	CAT	GAC	ACC	TTG	GAC	TAC	ATG	AAG	CTC	GAC	1488
481	W	N	L	G	W	M	H	D	T	L	D	Y	M	K	L	D	496
1489	CCG	GTT	TAT	CGT	CAG	TAT	CAT	CAC	GAT	AAA	CTG	ACC	TTC	GGG	ATT	CTC	1536
497	P	V	Y	R	Q	Y	H	H	D	K	L	T	F	G	I	L	512
1537	TAC	AAC	TAC	ACT	GAA	AAC	TTC	GTC	CTG	CCG	TTG	TCG	CAT	GAT	GAA	gtg	1584
513	Y	N	Y	T	E	N	F	V	L	P	L	S	H	D	E	V	528
1585	GTC	CAC	GGT	aaa	aaa	TCG	ATT	CTC	gac	cgc	atg	ccg	GGC	GAC	gca	tgg	1632
529	V	H	G	K	K	S	T	L	Ď	R	M	P	G	D	A	W	544

Fig 44 coxtinued

1633	CAG	AAA	TTC	GCG	AAC	CTG	CGC	GCC	TAC	TAT	GGC	TGG	ATG	TGG	GCA	TTC	1680
545	Q	K	F	A	N	L	R	A	Y	Y	G	W	M	W	A	F	56 0
1681	CCG	GGC	AAG	AAA	CTA	CTG	TTC	ATG	GGT	AAC	GAA	TTT	GCC	CAG	GGC	CGC	1728
561	P	G	K	K	L	L	F	M	G	N	E	F	A	Q	G	R	57 6
1729	GAG	TGG	AAC	CAT	GAC	GCC	AGC	CTC	GAC	TGG	CAT	CTG	TTG	GAA	GGC	GGC	1776
577	E	W	N	H	D	A	S	L	D	W	H	L	L	E	G	G	592
1777	GAT	AAC	TGG	CAC	CAC	GGT	GTC	CAG	CGT	CTG	GTG	CGC	GAT	CTG	AAC	CTC	1824
593	D	N	W	H	H	G	V	Q	R	L	V	R	D	L	N	L	608
1825	ACC	TAC	CGC	CAC	CAT	AAA	GCA	ATG	CAT	GAA	CTG	GAT	TTT	GAC	CCG	TAC	1872
609	T	Y	R	H	H	K	A	M	H	E	L	D	F	D	P	Y	624
1873	GGC	TTT	GAA	TGG	CTG	GTG	GTG	GAT	GAC	AAA	GAA	CGC	TCG	GTG	CTG	ATC	1920
625	G	F	E	W	L	V	V	D	D	K	E	R	S	V	L	I	640
1921	TTT	GTG	CGT	CGC	GAT	AAA	GAG	GGT	AAC	GAA	ATC	ATC	GTT	GCC	AGT	AAC	1968
641	F	V	R	R	D	K	E	G	N	E	I	I	V	A	S	N	65€
1969	TTT	ACG	CCG	GTA	CCG	CGT	CAT	GAT	TAT	CGC	TTC	GGC	ATA	AAC	CAG	CCG	2016
657	F	T	P	V	P	R	H	D	Y	R	F	G	I	N	Q	P	672
2017	GGC	AAA	TGG	CGT	GAA	ATC	CTC	AAT	ACC	GAT	TCC	ATG	CAC	TAT	CAC	GGC	2064
673	G	K	W	R	E	I	L	N	T	D	S	M	H	Y	H	G	688
2065	AGT	AAT	GCA	GGC	AAT	GGC	GGC	ACG	GTA	CAC	AGC	GAT	GAG	ATT	GCC	AGC	2112
689	S	N	A	G	N	G	G		V	H	S	D	E	I	A	S	704
2113	CAC	GGT	CGT	CAG	CAT	TCA	CTA	AGC	CTG	ACG	CTA	CCA	CCG	CTG	GCC	ACT	2160
705	H	G	R	Q	H	S	L	S	L	T	L	P	P	L	A	T	720
2161	ATC	TGG	CTG	GTT	CGG	GAG	GCA	GAA	TGA	CAC	AAC	TCG	CCA	TTG	GCA	AAC	2208
721	I	W	L	V	R	E	A	E		H	N	S	P	L	A	N	736
2209	CCG	CTC	CCC	TCG	GCG	CGC	ATT	ACG	ACG	GTC	AGG	GCG	TCA	ACT	TCA	CAC	2256
737	P	L		S	A	R	I	T	T	V	R	A	S	T	S	H	752
2257	TTT	TCT	CCG	CTC	ATG	CCG	AGC	GGG	TAG	AAC	TGT	GTG		TTG	ACG	CCA	2304
753	F	S	P	L	M	P	S	G	*	N	C	V		L	T	P	768
2305	ATG	GCC	AGG	AAC	ATC	GCT	ATG	ACT	TGC	CAG	GGC	ACA	GTG	GCG	ACA	TTT	2352
769	M	A	R	N		A	M	T	C	Q	G	T	V	A	T	F	784
2353 785	GGC G	ACG T	GTT V														2361 787

Fig45a

```
LOCUS
             MZEZEIN10K
                            2562 bp
                                        DNA
                                                          PLN
                                                                     19-J
UL-1994
DEFINITION
             Zea mays 10-kDa zein gene, complete cds.
             M23537
ACCESSION
             g340933
NID
KEYWORDS
             methionine-rich protein; seed storage protein; zein pr
otein.
SOURCE
             Zea mays 3-week old seedling leaf DNA.
  ORGANISM
             Zea mays
             Eukaryota; Plantae; Embryobionta; Magnoliophyta; Lilio
psida;
             Commelinidae; Cyperales; Poaceae.
REFERENCE
             1 (bases 1 to 2562)
             Kirihara,J.A., Petri,J.B. and Messing,J.
Isolation and sequence of a gene encoding a methionine
  AUTHORS
  TITLE
-rich 10-kDa
             zein protein from maize
Gene 71, 359-370 (1988)
  JOURNAL
             89138012
  MEDLINE
COMMENT
             NCBI gi: 340933
FEATURES
                       Location/Qualifiers
     source
                       1. .2562
                       /organism="Zea mays"
                       /cell_line="inbred BSSS-53"
/dev_stage="3-week old seedling"
                       /sequenced mol="DNA"
                       /tissue_type="leaf"
     TATA signal
                       1044. .1050
     mRNA
                       1082. .1685
     CDS
                       1137. .1589
                       /note="10 kDa;
                                        NCBI gi: 511870"
                       .
/codon_start=1
                       /product="zein protein"
                       /db_xref="PID:g511870"
                       /translation="MAAKMLALFALLALCASATSATHIPGHLPPV
MPLGTMNPCMQYC
                       MMQQGLASLMACPSLMLQQLLALPLQTMPVMMPQMMTPNMMSPLM
MPSMMSPMVLPSM
                       MSQIMMPQCHCDAVSQIMLQQQLPFMFNPMAMTIPPMFLQQPFVG
AAF"
     sig_peptide
                       1137. .1199
                       /codon_start=1
     mat peptide
                       1200. T1586
                       /note="10 kDa"
                       /codon start=1
                       /product="zein protein"
     polyA_signal
                       1655. .1660
BASE COUNT
                 782 a
                           506 c
                                     471 g
                                                803 t
ORIGIN
MZEZEIN10K Length: 2562 May 29, 1996 15:41 Type: N Check: 840
```

8

49/90 ~DSPOI31.TMP

Fig 452 continued

AAGCTTGCTA CTTTCTTTCC TTAATGTTGA TTTCCCCTTT GTTAGATGTT CTTTGTGTTA TATACACTCT GTATACAAGG ATGCGATACA CACATCAGCT AGTCCTAATG ATGCCACCGA CTTTACTTGA GGAAAAGGAA ACAAATATGA TGTGGCCATC ACATTCTCAA TAACAATGAC CATGTGCGCA ATGACATACC 151 ATCATATTG ATATCATAAA AATAAATTTA TTATCAAAGT AAACATATAG 201 251 TTCATATATC AGATATTAAA GTGATAAGAA CAAATATTAC ATTTTATCTT 301 ATATAAAATG ACGAAAAAGG TACGAGTTGA AAAGGAGTCC AACCCCTTTT TTATAGCTTG TTCGGTTGCT TGTTCTCTTC GGCTAGCGAG GTGGTAGAAT GTGAGAGTGT TGCGCGTGGA TTCCCGTCGT AGTGTTCTTA GGTGATTTCT CACGGCCCAT CTGTGATATA GCGACTCATA TGTGGTGTAA TAGCCCATTG 451 GGAGAAGGGG AGAGATATAG ATCTACGTGA TTTGCACGTG ATGCACGACG 501 AACGAAACTG GTGGTTTAAA GTAGTAGAGG TTTGTCATTA GAGGTGTAAA 601 TGGTACATAT ATTATCCGTT CATATTCGAA TTTGATCCGT ATAAGAGGGC TAAGATCTAA TCCGTATACA AGTCCAAGTA TTAAGTATCC GATCCATATC 701 GGATCTTTAT CCGTATCCGT ATACTCAAAA TTTGATGTTT AAGATTTTAA TATATATTA AACTTTATAG GAACTCGATA ATATTTGTAT CTGATTTGAA 751 TTATGAAAAC AAATATGGAA CGATTAATTT CAGTCTATAT CCGTTCCGAT 801 ATTTGTCATG CTTTGCTAAA AATACCTTTA CAAGGCATCT TGTGCAGATT 851 901 ATATATTAAT CTGAAATCAG TTAGAGAAGC CTACAAATTT GACCAAATGC 951 CGAGTCATCC GGCTTATCCC CTTTCCAACT TTCAGTTCTG CAAGCGCCAG 1001 AAATCGTTTT TCATCTACAT TGTCTTTGTT GCCTGCATAC ATCTATAAAT AGGACCTGCT AGATCAATCG CAGTCCATCG GCCTCAGTCG CACATATCTA 1051 CTATACTATA CTCTAGGAAG CAAGGACACC ACCGCCATGG CAGCCAAGAT 1101 1151 GCTTGCATTG TTCGCTCTCC TAGCTCTTTG TGCAAGCGCC ACTAGTGCGA CCCATATTCC AGGGCACTTG CCACCAGTCA TGCCATTGGG TACCATGAAC 1201

50/90 ~ DSPO131. TMP

Fig 452 continued

1251	CCATGCATGC	AGTACTGCAT	GATGCAACAG	GGGCTTGCCA	GCTTGATGGC
1301	GTGTCCGTCC	CTGATGCTGC	AGCAACTGTT	GGCCTTACCG	CTTCAGACGA
1351	TGCCAGTGAT	GATGCCACAG	ATGATGACGC	CTAACATGAT	GTCACCATTG
1401	ATGATGCCGA	GCATGATGTC	ACCAATGGTC	TTGCCGAGCA	TGATGTCGCA
1451	AATAATGATG	CCACAATGTC	ACTGCGACGC	CGTCTCGCAG	ATTATGCTGC
1501	AACAGCAGTT	ACCATTCATG	TTCAACCCAA	TGGCCATGAC	GATTCCACCC
1551	ATGTTCTTAC	AGCAACCCTT	TGTTGGTGCT	GCATTCTAGA	TAGAAATATT
1601	TGTGTTGTAT	CGAATAATGA	GTTGACATGC	CATCGCGTGT	GACTCATTAT
1651	TAACAATAAA	ACAAGTTTCC	TCTTATTATC	TTTTTATATC	TCTCCCTATC
1701	CATTTTTGCA	AAGCCCATTA	TCCTTTACTC	CCTAAGTCCC	AATATATTT
1751	AGACCTTAAA	TTGTATGTCT	ATATTCAAAA	GAATGACAAT	AAATCTAGAC
1801	ATATATATAA	AACACATACA	TTAAGTATTG	TATGAATCTA	TTAAAATGCT
1851	AAAACGACTA	ATATTATGGG	ACGGAGGGAG	TACTTTATTA	GTAGATTACA
1901	TTGTTATTTT	CTCTATTCCA	AATATAAGTC	TGGTTTTTCA	ATCAATCAAT
1951	ATATATTACC	ATGTCCAAAC	ATTTTGAATT	ATATATCTAG	GTGCAGCATC
2001	CGTGCACGAT	CGTAAAAGAA	GCAGTCACGG	TGTTGGTCCC	AAAAACTAAT
2051	CGTCCGTTGT	CGGTCACCTA	TAAAGATTCA	TGAAGAGAAC	CAAAATAAGG
2101	CAATATAATT	AATGTAATAT	GACTCCTCCT	TTTGAATTAC	TTAGGAATAA
2151	CATAAGCAAA	CAAAAAAAGG	AGAAGATCAA	GGTAAATAAA	GGCATTTTGT
2201	GAGAAAACAT	GGAAGCATAA	GAATGCATAA	GTAATGATTT	GTGTCTCTTT
2251	ATATTTTTTT	TATTCACGTG	AATTTACATA	GATACCATCG	GATGTTCGAT
2301	GGTAATACAA	TGATGCCTTA	GCTCCGAGAG	CTTCGAATGA	TGAGCGATTT
2351	AAAAATACTC	CTATCAATTG	TTCGAAAGTT	CTTTGTCTCA	TGCATGGGCA
2401	ATGTACCTCT	ATTTATAGGG	ACGGTGCGAC	GTACAAATTT	GTATAAAATT
2451	ATATTTTTAT	TCCCAAATCC	TATGCATATG	TGTCGGGGAC	CATAATTAGG

~ DSPOISI . TMP

rig 45a

2501 GGTACCCTCA AGGCTCCTAA TTCTCAGCTG GTAACCCCAT CAGCATAAAG

2551 CTGCAAAGGC CT

Fig. 45b

```
MZEZEIN10K 2562 bp DNA
                                                                                                                      PLN
                                                                                                                                          19-JUL-1994
   DEFINITION Zea mays 10-kDa zein gene, complete cds.
   ACCESSION M23537
   NID
                        g340933
   KEYWORDS methionine-rich protein; seed storage protein; zein protein.
   SOURCE Zea mays 3-week old seedling leaf DNA.
     ORGANISM Zea mays
                   Eukaryota; Plantae; Embryobionta; Magnoliophyta; Liliopsida;
                   Commelinidae; Cyperales; Poaceae.
  REFERENCE 1 (bases 1 to 2562)
     AUTHORS Kirihara, J.A., Petri, J.B. and Messing, J.
     TITLE Isolation and sequence of a gene encoding a methionine-rich 10-kDa
                  zein protein from maize
    JOURNAL Gene 71, 359-370 (1988)
    MEDLINE 89138012
  COMMENT
                                  NCBI gi: 340933
  FEATURES
                                             Location/Qualifiers
         source
                                    1. .2562
                             /organism="Zea mays"
                             /cell_line="inbred BSSS-53"
                             /dev_stage="3-week old seedling"
                             /sequenced_mol="DNA"
                             /tissue_type="leaf"
        TATA_signal 1044. .1050
         mRNA
                                      1082. .1685
         CDS
                                    1137. .1589
                              /note="10 kDa; NCBI gi: 511870"
                              /codon_start=1
                              /product="zein protein"
                              /db_xref="PID:g511870"
 {\it /translation="MAAKMLALFALLALCASATSATHIPGHLPPVMPLGTMNPCMQYCAMPACTION of the control of the c
{\tt MMQQGLASLMACPSLMLQQLLALPLQTMPVMMPQMMTPNMMSPLMMPSMMSPMVL}
 PSM
                            {\bf MSQIMMPQCHCDAVSQIMLQQQLPFMFNPMAMTIPPMFLQQPFVGAAF"}
        sig_peptide 1137. .1199
                             /codon start=1
       mat_peptide
                                     1200. .1586
                             /note="10 kDa"
                             /codon_start=1
                             /product="zein protein"
       polyA_signal 1655. .1660
BASE COUNT
                                        782 a 506 c 471 g 803 t
ORIGIN
```

Fig 45b continued

	•
N	MZEZEIN10K Length: 2562 May 29, 1996 15:41 Type: N Check: 8408 1 AAGCTTGCTA CTTTCTTTCC TTAATGTTGA TTTCCCCTTT GTTAGATGTT
	51 CTTTGTGTTA TATACACTCT GTATACAAGG ATGCGATACA CACATCAGCT
	101 AGTCCTAATG ATGCCACCGA CTTTACTTGA GGAAAAGGAA ACAAATATGA
	151 TGTGGCCATC ACATTCTCAA TAACAATGAC CATGTGCGCA ATGACATACC
	201 ATCATATTTG ATATCATAAA AATAAATTTA TTATCAAAGT AAACATATAG
	251 TTCATATATC AGATATTAAA GTGATAAGAA CAAATATTAC ATTTTATCTT
	301 ATATAAAATG ACGAAAAAGG TACGAGTTGA AAAGGAGTCC AACCCCTTTT
	351 TTATAGCTTG TTCGGTTGCT TGTTCTCTTC GGCTAGCGAG GTGGTAGAAT
	401 GTGAGAGTGT TGCGCGTGGA TTCCCGTCGT AGTGTTCTTA GGTGATTTCT
	451 CACGGCCCATCTGTGATATAGCGACTCATATATGTGGTGTAATAGCCCATTG
	501 GGAGAAGGGG AGAGATATAG ATCTACGTGA TTTGCACGTG ATGCACGACG
	551 AACGAAACTG GTGGTTTAAA GTAGTAGAGG TTTGTCATTA GAGGTGTAAA
	601 TGGTACATAT ATTATCCGTT CATATTCGAA TTTGATCCGT ATAAGAGGGC
	651 TAAGATCTAA TCCGTATACA AGTCCAAGTA TTAAGTATCC GATCCATATC
	701 GGATCTTTAT CCGTATCCGT ATACTCAAAA TTTGATGTTT AAGATTTTAA
	751 TATATATTTA AACTTTATAG GAACTCGATA ATATTTGTAT CTGATTTGAA
	801 TTATGAAAAC AAATATGGAA CGATTAATTT CAGTCTATAT CCGTTCCGAT
	851 ATTTGTCATG CTTTGCTAAA AATACCTTTA CAAGGCATCT TGTGCAGATT
	901 ATATATTAAT CTGAAATCAG TTAGAGAAGC CTACAAATTT GACCAAATGC
	951 CGAGTCATCC GGCTTATCCC CTTTCCAACT TTCAGTTCTG CAAGCGCCAG
	1001 AAATCGTTTT TCATCTACAT TGTCTTTGTT GCCTGCATAC ATCTATAAAT
	1051 AGGACCTGCT AGATCAATCG CAGTCCATCG GCCTCAGTCG CAGATATCTA

1101 CTATACTATA CTCTAGGAAG CAAGGACACC ACCGCCATG

DNASIS

***** DNA TRANSLATION LIST *****

Fig. 40 DATE 04-03-97

*** INPUT INFORMATION ***

FILE NAME : ECGLGC3.SEQ SEQUENCE : NORMAL 1328 BP

CODON TABLE : UNIV.TCN

SEQUENCE REGION: 1 - 1328

TRANSLATION REGION: 1 - 1326

*** DNA TRANSLATION ***

1 1	ATG M	GTT V	AGT S	TTA L	GAG E	AAG K	AAC N	GAT D	CAC H	TTA L	ATG M	TTG L	GCG A	CGC R	CAG Q	CTG L	46 16
49 17	CCA P	TTG L	AAA K	TCT S	GTT V	GCC A	CTG L	ATA I	CTG L	GCG A	GGA G	GGA G	CGT R	GGT G	ACC T	CGC R	9€ 3 2
97 33	CTG L	AAG K	GAT D	TTA L	ACC	AAT N	AAG K	CGA R	GCA A	AAA K	CCG P	GCC A	GTA V	CAC H	TTC F	GGC G	144 48
145 49	GGT G	AAG K	TTC F		ATT								-	ATC	_	_	192 64
193 65			_		_				,		-			CAC H	-	Ī	24C 80
241		CAG	CAC	ATT	CAG	CGC	GGC	TGG	TCA	TTC	TTC	AAT	GAA	GAA	ATG	AAC	288
81 289	GAG													E GGG	M GAA	N AAC	96 336
97 337	E TGG	F TAT	V	D GGC	L ACC	L GCA	P GAT	A GCG	Q GTC	Q ACC	R CAA	M AAC	K CTC	G GAC	E ATT	N ATC	112 384
113 385	W	Y	R	G	T	A	D	A	V	T	Q	N	L	D GAC	I	I	128 432
129	R	R	Y	K	A	E	Y	V	V	I	L	A	G	D	Н	I	144
433 145	Y	K	Q	D	Y	S	R	M	L	I	D	H	V	GAA E	K	GGT G	48 0 16 0
481 161	GTA V	CGT R	TGT C	ACC T	GTT V	GTT V	TGT C	ATG M	CCA P	GTA V	CCG P	ATT I	GAA E	GAA E	GCC A	TCC S	528 176
529 177	GCA A	TTT F	GGC G	GTT V	ATG M	GCG A	GTT V	GAT D	GAG E	AAC N	GAT D	AAA K	ACT T	ATC I	GAA E	TTC F	576 192
577 193	GTG V	GAA E	AAA K	CCT P	GCT A	AAC N	CCG P	CCG P	TCA S	ATG M	CCG P	AAC N	GAT D	CCG P	AGC S	AAA K	624 208
625	тст S	CTG L	gcg A	agt S	atg M		ATC I					gcc Ą		TAT			672
209	<u> </u>		М	J	\sim	G		У	V	F	D	~	D	Y	<u> </u>	V	224

673	GAA	CTG	CTG	GAA	GAA	GAC	GAT	CGC	GAT	GAG	AAC	TCC	AGC	CAC	GAC	TTT	720
22 5	E	L	L	E	E	D	D	R	D	E	N	S	S	H	D	F	24 0
721	GGC	AAA	GAT	TTG	ATT	CCC	AAG	ATC	ACC	GAA	GCC	GGT	CTG	GCC	TAT	GCG	768
241	G	K	D	L	I	P	K	I	T	E	A	G	L	A	Y	A	25 6
769	CAC	CCG	TTC	CCG	CTC	TCT	TGC	GTA	CAA	TCC	GAC	CCG	GAT	GCC	GAG	CCG	81 6
257	H	P	F	P	L	S	C	V	Q	S	D	P	D	A	E	P	27 2
817	TAC	TGG	CGC	GAT	GTG	GGT	ACG	CTG	GAA	GCT	TAC	TGG	AAA	GCG	AAC	CTC	864
273	Y	W	R	D	V	G	T	L	E	A	Y	W	K	A	N	L	288
865	GAT	CTG	GCC	TCT	GTG	gtg	GAC	AAA	CTG	GAT	ATG	TAC	GAT	CGC	AAT	TGG	912
289	D	L	A	S	V	V	D	K	L	D	M	Y	D	R	N	W	304
913	CCA	ATT	CGC	ACC	TAC	AAT	GAA	TCA	TTA	CCG	CCA	GCG	AAA	TTC	GTG	CAG	96 0
305	P	I	R	T	Y	N	E	S	L	P	P	A	K	F	V	Q	32 0
961	GAT	CGC	TCC	GGT	AGC	CAC	GGG	ATG	ACC	CTT	AAC	TCA	CTG	GTT	TCC	GGC	1008
321	D	R	S	G	S	H	G	M	T	L	N	S	L	V	S	G	336
1009 ⁻	GGT	TGT	GTG	ATC	TCC	GGT	TCG	GTG	GTG	GTG	CAG	TCC	GTT	CTG	TTC	TCG	105 €
337	G	C	V	I	S	G	S	V	V	V	Q	S	V	L	F	S	3 52
1057	CGC	GTT	CGC		AAT	TCA	TTC	TGC	AAC	ATT	GAT	TCC	GCC	GTA	TTG	TTA	1104
353	R	V	R		N	S	F	C	N	I	D	S	A	V	L	L	368
1105	CCG	GAA	GTA	TGG	GTA	GGT	CGC	TCG	TGC	CGT	CTG	CGC	CGC	TGC	GTC	ATC	1152
369	P	E	V	W	V	G	R	S	C	R	L	R	R	C	V	I	384
1153	GAT	CGT	GCT	TGT	GTT	ATT	CCG	GAA	GGC	ATG	GTG	ATT	GGT	GAA	AAC	GCA	1200
385	D	R	A	C	V		P	E	G	M	V	I	G	E	N	A	400
1201	GAG	GAA	GAT	GCA	CGT	CGT	TTC	TAT	CGT	TCA	GAA	GAA	GGC	ATC	GTG	CTG	1248
401	E	E	D	A	R	R	F	Y	R	S	E	E	G	I	V	L	416
1249	GTA	ACG	CGC	GAA	ATG	CTA	CGG	AAG	TTA	GGG	CAT	AAA	CAG	GAG	CGA	TAA	1296
417	V	T	R	E	M	L	R	K	L	G	H	K	Q	E	R	*	432
1297 433	TGC C	AGG R	TTT F	TAC Y	ATG M	TAT Y	GTT V	CAG Q	AGA R	TGT C	TT						1328 442

DNASIS

***** DNA TRANSLATION LIST *****

FIG. 47
DATE 04-03-97

7

*** INPUT INFORMATION ***

FILE NAME : ECGLGC.DNA SEQUENCE : NORMAL 1328 BP

CODON TABLE : UNIV.TCN

SEQUENCE REGION: 1 - 1328

TRANSLATION REGION: 1 - 1326

*** DNA TRANSLATION ***

1	ATG M	GTT V	AGT S	TTA L	GAG E	AAG K	AAC N	GAT D	CAC H	TTA L	ATG M	TTG L	GCG A	CGC R	CAG Q	CTG L		48 16
49 17	CCA P	TTG L	AAA K	TCT S	GTT V	GCC A	CTG L	ATA I	CTG L	GCG A	GGA G	GGA G	CGT R	GGT G	ACC T	CGC R	Ler.	9 6 32
97 33	CTG L	AAG K	GAT D	TTA L	ACC T	AAT N	AAG K	CGA R	GCA A	AAA K	CCG P	GCC A	GTA V	CAC H	TTC F	GGC G		144 48
145 49	GGT G	AAG K	TTC F	CGC R	ATT I	ATC I	GAC D	TTT F	GCG A	CTG L	TCT S	AAC N	TGC C	ATC	AAC N	TCC S		192 64
193 65	GGG G	ATC I	CGT R	CGT R	ATG M	GGC G	GTG V	ATC I	ACC T	CAG Q	TAC Y	CAG Q	TCC S	CAC H	ACT T	CTG L		24C 8C
241 81	GTG V	CAG Q	CAC H	ATT I	CAG Q	CGC R	GGC G	TGG W	TCA S	TTC F	TTC F	AAT N	GAA E	GAA E	ATG M	AAC N		288 9€
289 97	GAG E	TTT F	GTC V	GAT D	CTG L	CTG L	CCA P	GCA A	CAG Q	CAG Q	AGA R	ATG M	AAA K	GGG G	GAA E	AAC N		336 112
337 113	TGG W	TAT Y	CGC R	GGC G	ACC T	GCA A	GAT D	GCG A	GTC V	ACC T	CAA Q	AAC N	CTC L	GAC D	ATT I	ATC I		384 128
385 129	CGT R	CGT R	TAT Y	AAA K	GCG A	GAA E	TAC Y	GTG V	GTG V	ATC I	CTG L	GCG A	GGC G	GAC D	CAT H	ATC I		432 144
433 145	TAC Y	AAG K	CAA Q	GAC D	TAC Y	TCG S	CGT R	ATG M	CTT	ATC I	GAT D	CAC H	GTC V	GAA E	AAA K	GGT G		480 160
481 161	GTA V	CGT R	TGT C	ACC T	GTT V	GTT V	TGT C	ATG M	CCA P	GTA V	CCG P	ATT I	GAA E	GAA E		_		528 176
529 177	GCA A	TTT F	GGC G	GTT V	ATG M	GCG A	GTT V	GAT D	GAG E	AAC N	GAT D	AAA K	ACT	ATC				576 192
577 193	GTG V	GAA E	AAA K	CCT P	GCT A	AAC N	CCG P	CCG	TCA S	ATG M	_		_	CCG P		_		624 208
625	ፓር ए	CTG	GCG	AGT	ATG	GGT	_	_	_		_		_	TAT				
209	S	Ĺ	A	S	M		I .	ÿ	V	F	D	A	D	V V	L	V		672 224

673	GAA	CTG	CTG	GAA	GAA	GAC	GAT	CGC	GAT	GAG	AAC	TCC	AGC	CAC	GAC	TTT	72 <i>0</i>
225	E	L	L	E	E	D	D	R	D	E	N	S	S	H	D	F	24 <i>0</i>
721	GGC	AAA	GAT	TTG	ATT	CCC	AAG	ATC	ACC	GAA	GCC	GGT	CTG	GCC	TAT	GCG	76€
241	G	K	D	L	I	P	K	I	T	E	A	G	L	A	Y	A	25€
769	CAC	CCG	TTC	CCG	CTC	TCT	TGC	GTA	CAA	TCC	GAC	CCG	GAT	GCC	GAG	CCG	81 €
257	H	P	F	P	L	S	C	V	Q	S	D	P	D	A	E	P	27 2
817	TAC	TGG	CGC	GAT	gtg	GGT	ACG	CTG	GAA	GCT	TAC	TGG	AAA	GCG	AAC	CTC	864
273	Y	W	R	D	V	G	T	L	E	A	Y	W	K	A	N	L	288
865	GAT	CTG	GCC	TCT	GTG	gtg	CCG	AAA	CTG	GAT	ATG	TAC	GAT	CGC	AAT	TGG	912
2 89	D	L	A	S	V	V	P	K	L	D	M	Y	D	R	N	W	304
913	CCA	ATT	CGC	ACC	TAC	AAT	GAA	TCA	TTA	CCG	CCA	GCG	AAA	TTC	GTG	CAG	960
305	P	I	R	T	Y	N	E	S	L	P	P	A	K	F	V	Q	32 (
961	GAT	CGC	TCC	GGT	AGC	CAC	GGG	ATG	ACC	CTT	AAC	TCA	CTG	GTT	TCC	GGC	100t
321	D	R	S	G	S	H	G	M	T	L	N	S	L	V	S	G	33t
1009	GGT	TGT	GTG	ATC	TCC	GGT	TCG	gtg	GTG	GTG	CAG	TCC	GTT	CTG	TTC	TCG	105€
337	G	C	V	I	S	G	S	V	V	V	Q	S	V	L	F	S	352
1057	CGC	GTT	CGC	gtg	AAT	TCA	TTC	TGC	AAC	ATT	GAT	TCC	GCC	GTA	TTG	TTA	1104
353	R	V	R	V	N	S	F	C	N	I	D	S	A	V	L	L	368
1105	CCG	GAA	GTA	TGG	GTA	GGT	CGC	TCG	TGC	CGT	CTG	CGC	CGC	TGC	GTC	ATC	1152
369	P	E	V	W	V	G	R	S	C	R	L	R	R	C	V	I	384
1153	GAT	CGT	GCT	TGT	GTT	ATT	CCG	GAA	GGC	ATG	GTG	ATT	GGT	GAA	AAC	GCA	1200
385	D	R	A	C	V	I	P	E	G	M	V	I	G	E	N	A	400
1201	GAG	GAA	GAT	GCA	CGT	CGT	TTC	TAT	CGT	TCA	GAA	GAA	GGC	ATC	GTG	CTG	1248
401	E	E	D	A	R	R	F	Y	R	S	E	E	G	I	V	L	41€
1249	GTA	ACG	CGC	GAA	ATG	CTA	CGG	AAG	TTA	GGG	CAT	AAA	CAG	GAG	CGA	TAA	1296
417	V	T	R	E	M	L	R	K	L	G	H	K	Q	E	R	*	432
1297 433	TGC C	AGG R	TTT F	TAC Y	ATG M	TAT	GTT V	CAG Q	AGA R	TGT C	TT						1328 442

DNASIS

***** DNA TRANSLATION LIST *****

DATE 04-03-97

Fig. 48

*** INPUT INFORMATION ***

FILE NAME : ECGLGCWT.SEQ SEQUENCE : NORMAL 1328 BP

CODON TABLE : UNIV.TCN

SEQUENCE REGION: 1 - 1328

TRANSLATION REGION : 1 - 1326

*** DNA TRANSLATION ***

1	ATG	GTT	AGT	TTA	GAG	AAG	AAC	GAT	CAC	тта	ATG	TTG	GCG	CGC	CAG	CTG	4 6
1	M	V	s	L	E	K	N	D	Н	L	M	L	A	R	Q	L	16
49	CCA	TTG	AAA	TCT	GTT	GCC	CTG	ATA	CTG	GCG	GGA	GGA	CGT	GGT	ACC	CGC	9 €
17	P	L	K	S	V	A	L	I	L	A	G	G	R	G	T	R	32
97 33	CTG L	AAG K	GAT D	TTA L	ACC T	AAT N	AAG K	CGA				GCC					144
				_				R	A	K	P	A	V	H	F	G	48
145 49	GGT G	AAG K	TTC	CGC R	ATT	ATC	GAC D	TTT	GCG A	CTG	TCT	AAC N	TGC	ATC		TCC	192
			_		_			_		_	_		_	Ι	'n	s	64
193 65	GGG G	ATC	CGT	CGT R	ATG M	GGC	GTG V	ATC	ACC	CAG	TAC	CAG O	TCC	CAC H	ACT T	CTG L	24C 8C
241	-						-			_		~	_		_		80
241 81	V	CAG Q	H	ATT	CAG	CGC R	GGC	TGG W	TCA S	TTC F	TTC	AAT N	GAA E	GAA E	ATG M	AAC N	28 € 9€
289	CAC	ттт	CTIC	CAM	OMC	ama				_	-		_	_		•	
97	E	F	V	D	L	L	P	GCA A	CAG Q	CAG	AGA R	ATG M	AAA K	GGG G	GAA E	AAC N	33€ 112
337	TGG	ጥልጥ	CGC	GGC	N C C	CCN	Cam		_	-				_	_		
113	W	Y	R	G	T	A	D	A	V	T	Q	AAC N	L	GAC D	ATT	ATC	384 128
385	CGT	CGT	TAT	AAA	GCG	GAA	ТАС	GTG	GTG	እጥ <u></u> ር	CTC	GCG	ccc	CAC	C2.00	3.000	420
129	R	R	Y	K	A	E	Y	v	v	I	L	A	G	D	H	I	432 144
433	TAC	AAG	CAA	GAC	TAC	TCG	CGT	ATG	CTT	ATC	GAT	CAC	GTC	GAA	A A A	GGT	48C
145	Y	K	Q	D	Y	S	R	M	L	I	D	Н	v	E	K	G	16C
481	GTA			ACC	GTT	GTT	TGT	ATG	CCA	GTA	CCG	ATT	GAA	GAA	GCC	TCC	528
161	V	R	С	T	V	V	С	M	P	v	P	I	E	E	A	s	176
529			GGC			GCG	GTT	GAT	GAG	AAC	GAT	AAA	ACT	ATC	GAA	TTC	576
177	A	F	G	V	M	A	V	D	E	N	D	K	T	I	E	F	192
577	GTG			. –		AAC						AAC	GAT	CCG	AGC	AAA	624
193	V	E	K	P	A	N	P	P	S	M	P	N	D	P	s	K	208
625	TCT	CŢG	GČG	AGT	ATG	GGT	ATC	TAC		TTT	GAC	GCC	GAC		CTG	TAT	672
209	S	Ĺ	A	S	M	G	I	Ÿ	V	F	D	A	ฉ	イ	<u>i</u>	٧	224

Fig. 48 Continued

673	GAA	CTG	CTG	GAA	GAA	GAC	GAT	CGC	GAT	GAG	AAC	TCC	AGC	CAC	GAC	TTT	720
22 5	E	L	L	E	E	D	D	R	D	E	N	S	S	H	D	F	2 40
721	GGC	AAA	GAT	TTG	ATT	CCC	AAG	ATC	ACC	GAA	GCC	GGT	CTG	GCC	TAT	GCG	768
241	G	K	D	L	I	P	K	I	T	E	A	G	L	A	Y	A	256
769	CAC	CCG	TTC	CCG	CTC	TCT	TGC	GTA	CAA	TCC	GAC	CCG	GAT	GCC	GAG	CCG	81 6
257	H	P	F	P	L	S	C	V	Q	S	D	P	D	A	E	P	27 2
817	TAC	TGG	CGC	GAT	GTG	GGT	ACG	CTG	GAA	GCT	TAC	TGG	AAA	GCG	AAC	CTC	864
273	Y	W	R	D	V	G	T	L	E	A	Y	W	K	A	N	L	288
865	GAT	CTG	GCC	TCT	GTG	GTG	CCG	GAA	CTG	GAT	ATG	TAC	GAT	CGC	AAT	TGG	912
289	D	L	A	S	V	V	P	E	L	D	M	Y	D	R	N	W	304
913	CCA	ATT	CGC	ACC	TAC	AAT	GAA	TCA	TTA	CCG	CCA	GCG	AAA	TTC	GTG	CAG	960
305	P	I	R	T	Y	N	E	S	L	P	P	A	K	F	V	Q	320
961	GAT	CGC	TCC	GGT	AGC	CAC	GGG	ATG	ACC	CTT	AAC	TCA	CTG	GTT	TCC	GGC	100£
321	D	R	S	G	S	H	G	M	T	L	N	S	L	V	S	G	33€
1009	GGT	TGT	GTG	ATC	TCC	GGT	TCG	GTG	GTG	GTG	CAG	TCC	GTT	CTG	TTC	TCG	105€
337	G	C	V	I	S	G	S	V	V	V	Q	S	V	L	F	S	352
1057	CGC	GTT	CGC	GTG	AAT	TCA	TTC	TGC	AAC	ATT	GAT	TCC	GCC	GTA	TTG	TTA	1104
353	R	V	R	V	N	S	F	C	N	I	D	S	A	V	L	L	368
1105	CCG	GAA	GTA	TGG	GTA	GGT	CGC	TCG	TGC	CGT	CTG	CGC	CGC	TGC	GTC	ATC	1152
369	P	E	V	W	V	G	R	S	C	R	L	R	R	C	V	I	384
1153	GAT	CGT	GCT	TGT	GTT	ATT	CCG	GAA	GGC	ATG	GTG	ATT	GGT	GAA	AAC	GCA	120C
385	D	R	A	C	V	I	P	E	G	M	V	I	G	E	N	A	400
1201	GAG	GAA	GAT	GCA	CGT	CGT	TTC	TAT	CGT	TCA	GAA	gaa	GGC	ATC	GTG	CTG	1248
401	E	E	D	A	R	R	F	Y	R	S	E	E	G	I	V	L	416
1249	GTA	ACG	CGC	GAA	ATG	CTA	CGG	AAG	TTA	GGG	CAT	AAA	CAG	GAG	CGA	TAA	1296
417	V	T	R	E	M	L	R	K	L	G	H	K	Q	E	R	*	432
1297 433	TGC C	AGG R	TTT F	TAC Y	ATG M	TAT Y	GTT V	CAG Q	AGA R	TGT C	TT						1328 442

Fig 4

```
(Linear) MAP of: Waxy0.Seq check: 2247 from: 1 to: 1917
```

With 189 enzymes: *

```
June 10, 1993 17:59
              н
                                       EH
      n C
             CaM
                    n C
                               s C B C CBca
                                         B SB
          ME vHeaM
                    u Av
                               sMahshahvsoemnshcstmnctlm
          wa iales
                    4 li
                               HwcgrhchiaRIsaagrmhscrhIl
                               IO8aFa8aJJIIpeHaFFapiFaIu
IIIIIIIIIIIIIIIIIIIIIIIII
      ih J
          oe JeIIc
                    H uJ
          II IIIII
                    I II
                                   TACcgccgagaccggtgcagcgtcgagcagcgttgcgcgcgggccggacccgcagggcctg
            A
               T S
                   Q
                     L'VATRAGLGVP
                                      Smil
                                   E
                          C
                                   c
                                        8
                             B HN
                                 o V p H
SONC ·BB1Ba
        М
               В
                          ONCAs as
   т
        Ha
            AE AsADBsuuAuaHHNM11vluDepHBallvAAas2seBMNNAuMAul
   h
        ge
            cc cacsaa44c4ehhan0aiw3dIBgsc0aivpna8aIssccc4wc4a
   a
        aΙ
            ii iJianHHHiHlaar19IJN6eIIal19IJaaIJ6HIlpiiiHoiHI
        II
            cgcaggtgcaaggcggcgcggggggggcggactcccccgggcccgcagccgccgc
       T F R R G A A Q G L R G A R A S
     SSS
                 N S
                       BBB
                                  E
              C
                 lA a
                       s scscc n B BcH
                                         NN nS
   AEuuuccssiDTT Ma AavNus
                      s sasaaHAuBsHHsoaHBHMMNllMucBTaMAsa
   cc999rrmr0dhh wc clas9p
                      H HcHcchc4aahhaRehahwwaaaw4rshcwsHc
   ii666FFaf2eaa o8 iIIp6h
                      I I8188aiHnHaaJIIanaoorIIoHFla8ocI8
   IIIIIIIIIIII II IIIIII
                      cgcctgtgcgagtcgtacgcctggtcgcgcgcgcgcggggtccgtggtcgtcgtcgc
   A D T L S M R T S A R A A P R H Q Q Q A
            N
      В
        13
            BS N
                                    BHC
                                           MMl
   FSABASDBUHHMPaTlTTsTT
                              BH a
                                    saaHMN
                                          Bbaa
   apcbcasg4hhwBchahhchh
                              ch c
                                    rechsa
                                          boeI
   uMiviJalHaaoIIaIaaGaa
                              ga 8
                                    F18ape
                                          SIII
   ct yotaccatair i
   / / // ///// // // ct %)Tracc4la[4] /// // // cgeegeggggggggggeatgaacgtegte
                                    IIIIII
                                          IIII
  geggegeeceegteeaagggeagegageageaegeggtegeggeegtaettgeageag
                       V V C /A S
                                   A G M N V V
                                    CATAT 4
                      016
                                      THEF
```

а

a

Н

F

```
BB H N
                    BBHN
                                       n CBa
                                                 BM AB
                                                          n
         BCSBaHN1 BBBSMHsDaN1
                                  sMM Au vseM
                                                 saMas
                                                          Αu
         aeacehaa gcaawhaseaa
nfHgIarI lcnHoaJaIrI
IIIIIIIV IIIIIIIIV
                                  rsw c4 ialw
Fpo iH JJIo
                                                 aenta
                                                          c4
                                                 HILIJ
                                                          iH
                                  III II IIII
                                                 IIIII
                                                          II
          // ///
    ttcgtcggcgcgagatggcgcgtggagcaagaccggcggcctcggcgacgtcctcggc
    aagcagccgcggctctaccgcggcacctcgttctggccgccggagccgctgcaggagccg
         G A E M A P W S K T G G L G D V L
                                В
                                8
                      FHH
                               Np
          n BC CB G GC naa
    CaC
                            R
                                                  BE
                                                         1
    veaM AuBsaEvsDdEdvAueeMMBNsBNa2lST
                                      В
                                                  ss A
    iIcn c4srcaiasiaiic4IIswsacacI8ath
                                                         0
                                                  mp c
    JI81 iHlF8eJJaIeIJiHIIpoleGnoI6Iya
                                                  A3 i
                                                         8
    301
    ccggacggcggccggtaccggcgcttgcccgtggcacagtaccagcagagaggggggatg
   G L P P A M A A N G H R V M V V S P R Y
                 E
               B cB S
                                              BE
                                                        BBE
         R B
               s osHc
                      sH
                            D
                                              as B
                                                        SSS
   a s
         SS
               a Ragr
                      mg
                                        3 p
                                             mp c
                                                        cmp
               H IJaF
                      Fa
                            d
                                                        GAS
               I IIII
                            I
                                              II I
                                                        III
   gaccagtacaaggacgcctgggacaccagcgtcgtgtccgagatcaagatgggagacggg
   QYKDAWD
                         T
          м
                                         Αa
                                                       i
   R
          ь
                                  AHT
                                         vu A T
                                                       n
   s
          o
                                        a9 c h
16 i a
                                  chh
                                                       C
   a
          1
                                  iaa
                                  III
   tacgagacggtcaggttcttccactgctacaagcgcggagtggaccgcgtgttcgttgac
   atgctctgccagtccaagaaggtgacgatgttcgcgcctcacctggcgcacaagcaactg
   Y E T
              R
                F F
                      H
                         С
                           Y K
                                 R
                                         D
                                           )R
                                                  F
                                                     v
                                             s
                                                   SH
            c S
                                             a
                                                  BaCaM
            oMc
                 аB
                             М
                                 Bs
                                      8
                                          gsDu a
ltp3 q
                                                  suveb
            Rnr
                 qs
Il
                             n
1
                                 рa
                                                  c9ilo
                                               q
            IlF
                                 mJ
                                      R
                                          IYnA
                                                  G6JII
            III
                                 II
                                                  IIIII
   cacccactgttcctggagagggtttggggaaagaccgaggagaagatctacgggcctgtc
   gtgggtgacaaggacctctcccaaacccctttctggctcctcttctagatgcccggacag
                  R V
                           G K T E E K I Y G P
                        W
                          . ( *)
```

		B S 1				f	B b v I	1 6 1	3		Av li uJ	F H in g ruAi 4CE Hil	BP PV Bu II		C C v a i c J 8 I I	,	4 d	E CBS OBC Rar IJF			B p 1H 2g 8i 6A II	
	541	ge	etg	gaa	cg	gac:	aca	1999	aca	acca	agc	/ ./	// ggt	tca	gee	tgc1	ato	geca	agg	gago	cact	t
			gac	ctt	gc	etga	atgt	ccc	tgt	tggt	ccg	acg	cca	agt	gg	acga	itad	ggt	cc	ctc	gtga	+ 600 a
a		A	G	T			? F	2	N	Q	I.	R	F	s	L	L	С	Q	G	A	L	-
				СВ			SE		С		•					BE	S A a			В		
		M		vAs ila				D A				M n				88	MVL	1 1		8		
		0 I	u.	JwJ	Y	HYr	IAC	e w	J			1				WE	pI6	3	L	G		
				::: /	/ ·	-/	//	I I /				I					::::: '/ /	,		I		
	601								+			-+			+-						gag	+ 660
	. :	ct	tc	gag	gtt	cct	agg	act	cgg	agtt	gt	tgtt	gg	gtat	:gaa	ıgag	gec	:tgg	tat	gec	ctc	:
a		E	A	P	P	l	L	S	L	N	N	N	P	Y	F	s	G	P	Y	G	R	-
		RB	H Z					С				В		HB Cac								
		89	aa	3				v			В	si	เมา	vee		В	1	t .				
			e t					i R			s		9:	LIS		8	7					
			1 1					I			I		I	III		i I	1					
	661	ga	cgt	cgt	gt	tcg	tct	gca	acga	actg	gc	acac	cg	/ gccc	tet	ctc	gtg	cta	cct	caa	gago	:
	001								+			-+			-+-						ctc	- 72A
a		D	v	v	F				D	W	H	T	G	P	L	s		Y	L	ĸ	s	_
						В				s	. в	В					С	:		s	;	
		M n		B		sD as			S f	£			F	HA			Y			£		
		1		r		Ja		٠	ċ		m F		o k	gc			i R			a N		
		I		I	I	II			I	I		I	I	II			I			I		
	721	aa 	cta 	cca	gt		acg	gca	teta	cag	gg	acgo	aaa	ıgac	ćgc	ttt	ctg	cat	cca	caa	cato	: 780
			gat	ggt	ca	ggg	tgc	cgt	agat	gtc	CCI	geg	ttt	ctg	gcg	aaa	gac	+ gta	ggt	gtt	gtag	780 J
a		N	Y	Q	s	Н	G	I	Y	R	D	A	K	T	A	F	С	I	н	N	I	_
			E		SH																	
						BCa svei	w.						200	s	C				s	Н		
			R	ar	9E:	riI:	s						MN		Av li				NC	Mi	_	
						FJI							рi	F	uJ				iF	lf	_	
			1	11	1 1.	 /							11		II				II	ΙI		
	781	to	cta	cca	999	300	ati	cg	ctt	ctc	cga	cta		/ :gga	/ gct	gaa	cct		// gga		/ atto	:
																					+ taag	
·a-		S	Y	Q	G	R	F	A	F	s	D	Y	P	E	L	N	L	P	E	R	F	_

```
C BBB
                                                   Ca
                                         scsD B
                                                   veM
                                         aecs s
                                                          3 p
                                                   ils
                                         JfGa
                                                          A n
                                                   Jlp
                                       I IIII
                                                   III
                                                    11
aagtcgtccttcgatttcatcgacggctacgagaagcccgtggaaggccggaagatcaac
 trcagcaggaagctaaagtagctgccgatgctcttcgggcaccttccggccttctagttg
                                    K
                                           V E
                                                 G
                                                    R
                                     E
                                    C
           н
                                  t
                                     0
         Ca BB Na S Ca h AONPa
AveMNasDFMAluAcTveXM Hl vllpu
  М
                                                   C
                                                                 В
  bB
                                                  Mv
                                                                 s
         liIscmtponva3lraiThn pl a0au9
wJIpiHYnklaIAwFqJIol hl 191M6
IIIIIIIIIIIVIIIIIII II IIVII
  05
                                                  ni
                                                           n
                                                                 a
  Ir
                                                                 J
/// // // // // // tggatgaaggccgggatcctcgaggccgacagggtcctcaccgtcagccctactacgcc
acctacttccggccctaggagctccggctgtcccaggagtggcagtcggggatgatgcgg
W M K A G I L E A D R
                                                  S P
                                 F
                                                       N
                                   р
С СВ1Н
      СВІН
                       cBS S
                              ACn
                                                               В
     Ava2gS
             м в
                       osc f
                               lvu
                                    a Ava2gST
                                                    н
                                                       ан
                                                              HsBM
              s b
                       Rar a
                               wi4
                                    c lin8isa
                                                       I h
                                                    P
h
                                                              prgs
     uJI6At
                       IJF N
                              NJH
                                                              hFlp
                       III I
                               III
                                    I IIIIII
      1 111
//// //// //// //// //// // gaggageteateteeggeategeeaggggetgeagagetegacateateatgegeeteace
ctcctcgagtagaggccgtagcggtccccgacgctcgagctgttgtagtacgcggagtgg
EELISGIARGCELDNIMRLT
                                               E
                                               c
      В
                  i S
                             1 BM A
                                      В
                                             ABONNPa
М
  М
      smm f
                  n f
                             a sa a
                                      c
                                             vs111pu
      rsw a
                  c a
I N
I I
   n
                             I ae t
                                                      s e m
l f F
I I I
                                             am0aau9
      Fpo N
                             I HI I
                                             IF9IIM6
                            I II I
                                             IIVVII
                                               11111
ggcatcaccggcatcgtcaacggcatggacgtcagcgagtgggaccccagcagggacaag
ccgtagtggccgtagcagttgccgtacctgcagtcgctcaccctgggggtcgtccctgttc
G I T G I V N .G M D V S E W D P S R D K
```

```
В
                       fΜ
                                  CBB Ga
                                           CB aB
                                                   н
                   Rc
                       la
                           SANT EEVESDdeBMMvsHecSS HaBM
                   se
                       Ιe
                           acca aaiaisiIgnwiaaleft hebn
                           lcIq egJJEaIIlloJJeIfiy aIvl
          1
                       II
                                   1111 11
                                           11 11
    tacatcgccgtgaagtacgacgtgtcgacggccgtggaggccaaggcgctgaacaaggag
1081 --
    atgtagcggcacttcatgctgcacagctgccggcacctccggttccgcgacttgttcctc
    YIAVKYDVSTAVEAKALNKE
                           s
       F
                          p
       nHC C
                       CNBI
                              S AaB
                                               s
      HuavMaMAEPS
                        vla2FMNc vusM
                                             Ар
                                                  BF
      h4eincwccsf
                        ian8oscr a9as
                                             c B
                                                  s a
      aHIR18oiitc
                        JII6kpiF I6Wp
      IIIIIIIIII
                       IVIIIIII IIII
    / / / // // gcgctgcaggaggtcgggctcccggtggaccggaacatcccgctggtggcgttcatc
                                                       ----+ 1200
    cgcgacgtccgcctccagcccgagggccacctggccttgtagggcgaccaccgcaagtag
    A L Q A E V G L P V D R N I P L V A F
                       ΕE
                             В
                       cç
                             8
                                     SN
                                             FF
                                                H S F
       СС
                       OOCa BIMBM ANNal
                                          C Bnn Ga
                                                              1
                                                    a n
       aEvs
                       11veAa2bsaFalluaAEEvAsuuBdeNAu u AvF
       caia
                       00iIpn8oaeotaa9Icaaici44ciIoc9 4 lia
                                                              I
                       99JIaI6IHIkIII6IiegJiEHHcIIti6 H uJu
IIIIIIIIIIIIVVIIIIIIIIIIIII I III
       8rJp
       IIII
    ggcaggctggaagagcagaagggcccgacgtcatggcggccgccatcccgcagctcatg
                                                               1260
    ccgtccgaccttctcgtcttcccggggctgcagtaccgccggcggtagggcgtcgagtac
    G R L E E Q K G P D V M A A A I P Q L M
                                        B
                                        6
                    Са
                                        îв
   M BMB
                    v u D
i 3 p
                а
                                       B2s
                                                       T
                                                           b H
   s bnc
                e
I
                                       s8c
                                                           o h
I a
                                                   m
                                                       a
                    R A
I I
                                                       q
I
                                                             a
I
   I III
                                       ĪIJ
   gagatggtggaggacgtgcagatcgttctgctgggcacgggcaagaagaagttcgagcgc
   ctctaccacctcctgcacgtctagcaagacgacccgtgcccgttcttcttcaagctcgcg
   EMVEDVQIVLLGTGKKKFER
```

```
C 1 B
              BH
                           BcBS
                                       s C B
 a aMsNS Ma
             Hsa
                           50CC
                                В
                                      Ms aHHsDT
 c Ispsp nI
             hae
                           aRer
                                 s
                                      wH chhash
 8 IlHph lI
             aJI
                           JIfp
                                      oI 8aaJaa
 I IIIII II
             III
                           IIII
                                      II IIIII
                                            11
 atgeteatgagegecgaggagaagtteceaggeaaggtgegegecgtggteaagtteaae
 {\tt tacgagtactcgcggctcctcttcaagggtccgttccacgcgcgcaccagttcaagttg}
 H L H S A E E K F P G K V R A V V K F N
                                         8
  F
                              H
                                     N
                                            H T
                                                       F
      HC
  n
                      P GBCC BBaH M
                                     1 Nich a s
                                                    C n
 AuT
      HaaM H
                    BfEdsvaBcseaHManNaHl2ag e p
slairicaealehseaalpa8ci I 4
                                                     vAu
                                                          T
 c4h
      hecw
                                                     ic4
                                                          а
 iНа
      aI8o
                     lMeIFJ8nfHIIapIerIhI68A I 5
                                                    JiH
                                                           q
 III
      IIII
                     / / // // // // // // // geggegetggegecgteaccagecgette
                                                    III
 cgccgcgaccgcgtggtgtagtaccggccgcggctgcacgagcggcagtggtcggcgaag
A A L A H H I M A G A D V L A V T S R F
     s
         F H
     P
                      F
                         ·N
                   SCnCsPA
  C Bi
         nCa
F v a2 ABuve
                   fAvuBvMpPvMpS
                                         F
                                              Н
                                                   На
                                                         HT
o i n8 cb4iI
                   ali4sinBsuwaf
k J I6 ivHJI
I I II IIIII
                                              g
                                                   h
                                                     c
                                                         hh
                   NuJHIRLITIOBC
                                                         aa
                   IIIIIIIIIIII
                                                         II
/ // / // // // // // // / gagccctgcggcctcatccagctgcaggggatgcgatacggaacgccctgcgcctgcgcg 1500
ctcgggacgccggagtaggtcgacgtcccctacgctatgccttgcgggacgcggacgcgc
E P C G L I Q L Q G M R Y G T P
                                                CACA
                 H
                                                      N FHS
    BB SH
                 i
                                          S
                                             N
                                                      lC naa
   AssMPq i
               SAnTM
                       R
                            T
                                        MNc
                                                     HavAueu
   garslr n
               accal
                       ¢
                                        BCT
                                                     glic419
   eWFpeA f
               lcIqy
                                        piF
                                                     aIJiHI6
   IIIIII I
                                        ΪΙΙ
                                                     IIIIIII
    /////
tecacciggtggactegtegacaccateategaaggcaagaccgggttecacatgggccgc
aggtggccacctgagcagctgtggtagtagcttccgttctggcccaaggtgtacccggcg
S T G G L V D T I I E G K T G F H H G R
В
        Н
        i
                        NBCC
                                  BM A
                                                Са
                                                           C
uDM
      SANMT e
                         lsvaMAEN sa a
              Dа
                                              E vHeM
ldw
                                                      s
                                                           ν
      accna I
              re
                        aricscca ae t
                                              a iaIs
                                                           i
0eo
      lcIlq I
              đΙ
                         IFJ8piie HI
                                               JeIç
                                                           R
III
      IIIII
                        VIIIIIII II I
                                              I IIII
ctcagcgtcgactgtaacgtcgtggagcggcggacgtcaagaaggtggccaccacattg
gagtcgcagctgacattgcagcacctcggccgcctgcagttcttccaccggtggtgtaac
L S V D C N V V E P A D V K K V A T T L
```

F B

```
SN
     n s C
     u s aHHTB
                                                              al
                            a sMaMNgSR
                                          's M
                                              В
                                                         A vH ua
     4 H chhhc bs t
                                                         l ip 3I
w Rh AI
                            c recnarus
                                          e n
                                               C
     H I Baaac
                            8 Fp8leAna
     I I IIII
                            I IIIIIIII
    cagegegecateaaggtggteggeacgeeggegtaegaggagatggtgaggaactgcatg
1621 -
    gtcgcgcggtagttccaccagccgtgcggccgcatgctcctctaccactccttgacgtac
    Q R A I K V V G T P A Y E E M V R N C M
                        EE
                        cc
                             8
                                                      р
     E
                E
                             p SS
                        00 H
     c S Ba
                c S
                        OOCa Binaa
                                                      1
                                                          CB
    Do c suD
                oAc
                        llveAa2luu
                                     BBf
    pR r t3p
                                              a
                                                   u
                                                      10
                                                          vsA
                Rlr
IwF
                        00ilpn8a99
                                     bsl
                                                      00
                                                          iav
JJa
    nI F YAn
                       99JIa16166
                                     vlM
    II I III
                                                      2e
                III
                       IIIIIIIVII
                                     III
    / ///// // // atccaggatctctcctggaagggccctgccaagaactgggagaacgtgctgctcagcctc
                                                      II
   taggteetagagaggaeetteeegggaeggttettgaeeetettgeaegaegagteggag
    I Q D L S W K G P A K N W E N V L L S
                                                 F
         B C n S C CBcS
                                                 nB C
         sMaMAuNg a vsoc
                            TH
                                      s u D
                                             T HAusMa
                                                       ss
         rncsc4ar c iaRr
                                      е 3 р
                            an
                                            h hc4rwc
                                                       at
         Fl8piHeA 8 JJIF
                            qĺ
                                      RAn
                                                       Jу
         IIIIII I IIII
                                             I IIIIII
              11
   ggggtcgcggcggcgagccaggggtcgaaggcgaggagatcgcgccgctcgccaaggag
   ccccagcggccgccgctcggtccccagcttccgctcctctagcgcggcgagcggttcctc
   G V A G G E P G V E G E E I A P L A K E
                                   EE
                                   CC
                                         8
                            H OO E PH SSS
Cacmc Oocc Bla NN aaa
    м
        GC na
                                                     Я
       EdvAueTEH
                             veabvSB11voAa2eMD11PuuuHS3TMT v
       aiic4Ihah
                             ilcoifg00i5pn8Iwpaas993hf8hwh i
       eIJiHIara
                            JIBIRc19937aI6IonIIt66Aai7aoa R
       IIIIIIII
                            / /// / / / / / / //// / / / / / / / aacgtggccgcgccctgaagagttcggcctgcagggcccctgatctcgcgcgtggtgcaa
   trgcaccggcgcgggacttctcaagccggacgtcccggggactagagcgcgcaccacgtt
                          RPAGPLISRVVQ
       ь
           s
           m
       I
           F
  agatgttgggacatcttcttatatatgctgtttcgtttatgtgatatggacaagt..
  tctacaaccctgtagaagaatatatacgacaaagcaaatacactatacctgttca..
  R C W D I F L Y M L F R L C D M D K ?
```

Fig 50

ONASIS

***** DNA TRANSLATION LIST *****

DATE 04-03-97

*** INPUT INFORMATION ***

FILE NAME : MSS3.SEQ SEQUENCE : NORMAL 2423 BP

CODON TABLE : UNIV.TCN

SEQUENCE REGION: 1 - 2423

TRANSLATION REGION: 1 - 2421

*** DNA TRANSLATION ***

1	ATG	CCG	GGG	GCA	ATC	TCT	TCC	TCG	TCG	ጥርር	CCT	thalaile i	CTC	CTC	ccc	CITIC	40
1	M	P	G	A	I	S	s	s	S	S	A	F	L	L	P	V	48 16
49	GCG	TCC	TCC	TCG	CCG	CGG	CGC	AGG	CGG	GGC	AGT	GTG	GGT	GCT	GCT	CTG .	96
17	A	S	S	S	P	R	R	R	R	G	S	V	G	A	A		32
97	CGC	TCG	TAC	GGC	TAC	AGC	GGC	GCG	GAG	CTG	CGG	TTG	CAT	TGG	GCG	CGG	144
33	R	S	Y	G	Y	S	G	A	E	L	R	L	H	W	A	R	48
145	CGG	GGC	CCG	CCT	CAG	GAT	GGA	GCG	GCG	TCG	GTA	CGC	GCC	GCA	GCG	GCA	192
49	R	G	P	P	Q	D	G	A	A	S	V	R	A	A	A	A	64
193	CCG	GCC	GGG	GGC	GAA	AGC	GAG	GAG	GCA	GCG	AAG	AGC	TCC	TCC	TCG	TCC	240
65	P	A	G	G	E	S	E	E	A	A	K	S	S	S	S	S	80
241	CAG	GCG	GGC	GCT	GTT	CAG	GGC	AGC	ACG	GCC	AAG	GCT	gtg	GAT	TCT	GCT	288
81	Q	A	G	A	V	Q	G	S	T	A	K	A	V	D	S	A	96
289	TCA	CCT	CCC	AAT	CCT	TTG	ACA	TCT	GCT	CCG	AAG	CAA	AGT	CAG	AGC	GCT	336
97	S	P	P	N	P	L	T	S	A	P	K	Q	S	Q	S	A	112
337	GCA	ATG	CAA	AAC	GGA	ACG	AGT	GGG	GGC	AGC	AGC	GCG	AGC	ACC	GCC	GCG	384
113	A	M	Q	N	G	T	S	G	G	S	S	A	S	T	A	A	128
385	CCG	GTG	TCC	GGA	CCC	AAA	GCT	GAT	CAT	CCA	TCA	GCT	CCT	GTC	ACC	AAG	432
129	P	V	S	G	P	K	A	D	H	P	S	A	P	V	T	K	144
433	AGA	GAA	ATC	GAT	GCC	AGT	GCG	GTG	AAG	CCA	GAG	CCC	GCA	GGT	GAT	GAT	480
145	R	E	I	D	A	S	A	V	K	P	E	P	A	G	D	D	160
481	GCT	AGA	CCG	GTG	GAA	AGC	ATA	GGC	ATC	GCT	GAA	CCG	gtg	GAT	GCT	AAG	528
161	A	R	P	V	E	S	I	G	I	A	E	P	V	D	A	K	176
529	GCT	GAT	GCA	GCT	CCG	GCT	ACA	GAT	GCG	GCG	GCG	AGT	GCT	CCT	TAT	GAC	576
177	A	D	A	A	P	A	T	D	A	A	A	S	A	P	Y	D	192
577	AGG	GAG	GAT	AAT	GAA	CCT	GGC	CCT	TTG	GCT	GGG	CCT	AAT	GTG	ATG	AAC	624
193	R	E	D	N	E	P	G	P	L	A	G	P	N	V	M	N	208
625	GTC	GTC	gtg	GTG	GCT	тст	gaa	TGT	gct	сст	TTC	TGC	aag	ACA	G	GC	672
209	V	V	V	✓	A	<i>S</i>	E	C	A	Р	F	C	K	T	G	G	224

Fig 50 Continued

1633	GTG	ATG	CTG	GGC	ACC	GGG	CGG	GCC	GAC	CTG	GAG	GAC	ATG	CTG	CGG	CGG	1680
545	V	M	L	G	T	G	R	A	D	L	E	D	M	L	R	R	560
1681	TTC	GAG	TCG	GAG	CAC	AGC	GAC	AAG	GTG	CGC	GCG	TGG	GTG	GGG	TTC	TCG	1728
561	F	E	S	E	H	S	D	K	V	R	A	W	V	G	F	S	576
1729	gtg	CCC	CTG	GCG	CAC	CGC	ATC	ACG	GCG	GGC	GCG	GAC	ATC	CTG	CTG	ATG	1776
577	V	P	L	A	H	R	I	T	A	G	A	D		L	L	M	592
1777	CCG	TCG	CGG	TTC	GAG	CCG	TGC	GGG	CTG	AAC	CAG	CTC	TAC	GCC	ATG	GCG	1824
593	P	S	R	F	E	P	C	G	L	N	Q	L	Y	A	M	A	608
1825	TAC	GGG	ACC	GTG	CCC	GTG	GTG	CAC	GCC	GTG	GGG	GGG	CTC	CGG	GAC	ACG	1872
609	Y	G	T	V		V	V	H	A	V	G	G	L	R	D	T	624
1873	gtg	GCG	CCG	TTC	GAC	CCG	TTC	AAC	GAC	ACC	GGG	CTC	GGG	TGG	ACG	TTC	1920
625	V	A	P	F	D	P	F	N	D	T	G	L	G	W	T	F	640
1921 _.	GAC	CGC	GCG	GAG	GCG	AAC	CGG	ATG	ATC	GAC	GCG	CTC	TCG	CAC	TGC	CTC	1968
641	D	R	A	E	A	N	R	M	I	D	A	L	S	H	C	L	656
1969	ACC	ACG	TAC	CGG	AAC	TAC	AAG	GAG	AGC	TGG	CGC	GCC	TGC	AGG	GCG	CGC	2016
657	T	T	Y	R	N	Y	K	E	S	W	R	A	C	R	A	R	672
2017	GGC	ATG	GCC	GAG	GAC	CTC	AGC	TGG	GAC	CAC	GCC	GCC	GTG	CTG	TAT	GAG	2064
673	G	M	A	E	D	L	S	W	D	H	A	A	V	L	Y	E	688
2065	GAC	GTG	CTC	GTC	AAG	GCG	AAG	TAC	CAG	TGG	TGA	GCG	AAT	TAA	TTG	GCG	2112
689	D	V	L	V	K	A	K	Y	Q	W		A	N	*	L	A	704
2113	ACG	CGA	CGC	CGC	TCC	TGT	CGC	AGG	ACC	TGG	ACG	TTA	TTT	AGA	AGG	CTC	2160
70 5	T	R	R	R	S	C	R	R	T	W	T	L	F	R	R	L	720
2161	TTC	TCC	CTG	GCG	GCT	TTG	ATG	CGT	GCG	TCG	CAT	TTG	CGC	CGG	GCG	GAC	2208
721	F	S	L	A	A	L	M	R	A	S	H	L	R	R	A	D	736
2209	GGG	CGA	CGG	TGG	TTG	GCC	TAC	CGC	CTA	CGT	CGG	CTG	CGT	GCC	CTG	GGA	2256
737	G	R	R	W	L	A	Y	R	L	R	R	L	R	A	L	G	7 52
2257	ATT	TGG	GCG	GGC	ACG	ATG	ATG	CCA	CTG	GGC	ACC	GGG	CGC	GGG	GTA	GTA	2304
753	I	W	A	G	T	M	M	P	L	G	T	G	R	G	V	V	768
2305 76 9	TGA	TAT Y	GAA E	ACC T	GAC D	GGC G	GAT D	GGA G	GAT D	GAG E	GCG A	CAT H	GGC G	ATT	TTC F	CCA P	2352 784
2353	CTG	ATA	AAT	GGG	GAG	TTG	TAT	GCT	ACT	TTA	ATA	TCG	CCA	CTC	CTG	TTA	2400
785	L	I	N	G	E	L	Y	A	T	L	I	S	P	L	L	L	800
2401 801	GTA V	TTT F	ATA I	TTG L	ATG M	GCG A	GCC A	GC									2423 807

Fig 50 continued

673	CTT	GGA	GAT	GTC	gtg	GGT	GCT	TTG	CCT	AAG	GCT	CTG	GCG	AGG	AGA	GGA	720
225	L	G	D	V	V	G	A	L	P	K	A	L	A	R	R	G	240
721	CAC	CGT	GTT	ATG	GTC	gtg	ATA	CCA	AGA	TAT	GGA	GAG	TAT	GCC	GAA	GCC	768
241	H	R	V	M	V	V	I	P	R	Y	G	E	Y	A	E	A	256
769	CGG	GAT	TTA	GGT	GTA	AGG	AGA	CGT	TAC	AAG	GTA	GCT	GGA	CAG	GAT	TCA	816
257	R	D	L	G	V	R	R	R	Y	K	V	A	G	Q	D	S	272
817 273	GAA E	GTT V	ACT T	TAT Y	TTT F	CAC H	TCT	TAC	ATT I	GAT D	GGA G	GTT V	GAT D	TTT F	GTA V	TTC F	864 288
865	GTA	GAA	GCC	CCT	CCC	TTC	CGG	CAC	CGG	CAC	AAT	AAT	ATT	TAT	GGG	GGA	912
289	V	E	A	P		F	R	H	R	H	N	N	I	Y	G	G	304
913	GAA	AGA	TTG	GAT	ATT	TTG	AAG	CGC	ATG	ATT	TTG	TTC	TGC	AAG	GCC	GCT	960
305	E	R	L	D	I	L	K	R	M	I	L	F	C	K	A	A	320
961	GTT	GAG	GTT	CCA	TGG	TAT	GCT	CCA	TGT	GGC	GGT	ACT	GTC	TAT	GGT	GAT	1008
321	V	E	V	P	W	Y	A	P	C	G	G	T	V	Y	G	D	336
1009	GGC	AAC	TTA	GTT	TTC	ATT	GCT	AAT	GAT	TGG	CAT	ACC	GCA	CTT	CTG	CCT	1056
337	G	N	L	V	F		A	N	D	W	H	T	A	L	L	P	352
1057	GTC	TAT	CTA	AAG	GCC	TAT	TAC	CGG	GAC	AAT	GGT	TTG	ATG	CAG	TAT	GCT	1104
353	V	Y	L	K	A	Y	Y	R	D	N	G	L	M	Q	Y	A	368
1105	CGC	TCT	GTG	CTT	gtg	ATA	CAC	AAC	TTA	GCT	CAT	CAG	GGT	CGT	GGC	CCT	1152
3 6 9	R	S	V	L	V	I	H	N	I	A	H	Q	G	R	G	P	384
1153	GTA	GAC	GAC	TTC	GTC	AAT	TTT	GAC	TTG	CCT	GAA	CAC	TAC	ATC	GAC	CAC	1200
385	V	D	D	F	V	N	F	D	L	P	E	H	Y	I	D	H	400
1201	TTC	AAA	CTG	TAT	GAC	AAC	ATT	GGT	GGG	GAT	CAC	AGC	AAC	GTT	TTT	GCT	1248
401	F	K	L	Y	D	N	I	G	G	D	H	S	N	V	F	A	416
1249	GCG	GGG	CTG	AAG	ACG	GCA	GAC	CGG	GTG	GTG	ACC	GTT	AGC	AAT	GGC	TAC	1296
417	A	G	L	K	T	A	D	R	V	V	T	V	S	N	G	Y	432
1297	ATG	TGG	GAG	CTG	AAG	ACT	TCG	GAA	GGC	GGG	TGG	GGC	CTC	CAC	GAC	ATC	1344
433	M	W	E	L	K	T	S	E	G	G	W	G	L	H	D	I	448
1345	ATA	AAC	CAG	AAC	GAC	TGG	AAG	CTG	CAG	GGC	ATC	GTG	AAC	GGC	ATC	GAC	1392
449	I	N	Q	N	D	W	K	L	Q	G		V	N	G	I	D	464
1393	ATG	AGC	GAG	TGG	AAC	CCC	GCT	GTG	GAC	GTG	CAC	CTC	CAC	TCC	GAC	GAC	1440
465	M	S	E	W	N	P	A	V	D	V	H	L	H	S	D	D	480
1441 481	TAC Y	ACC T	AAC N	TAC Y	ACG T			ACG T		GAC D	ACC T	GGC G	AAG K	CGG R	CAG Q	TGC C	1488 496
1489	AAG	GCC	GCC	CTG	CAG	CGG	CAG	CTG	GGC	CTG	CAG	GTC	CGC	GAC	GAC	GTG	1536
497	K	A	A	L	Q	R	Q	L	G	L	Q	V	R	D	D	V	512
1537	CCA	CTG	ATC	GGG	TTC	ATC	GGG	CGG	CTG	GAC	CAC	CAG	AAG	GGC	GTG	GAC	1584
513	P	L	I	G	F	I	G	R	L	D	H	Q	K	G	V	D	528
1585 529	ATC I	ATC I		D GAC	ece A	^{ътс} І			T.					GTG V		CTC	1672 544

Fig 51

DNASIS

***** DNA TRANSLATION LIST *****

DATE 04-03-97

*** INPUT INFORMATION ***

FILE NAME : MSS2C.SEQ SEQUENCE : NORMAL 2007 BP

1 -

2007

CODON TABLE : UNIV.TCN

TRANSLATION REGION :

SEQUENCE REGION: 1 - 2007

*** DNA TRANSLATION ***

48 A E A E A G G K D A P P E R S G GAC GCC GCC AGG TTG CCC CGC GCT CGG CGC AAT GCG GTC TCC AAA CGG 49 ~~ 96 R L PR A R R N 32 AGG GAT CCT CTT CAG CCG GTC GGC CGG TAC GGC TCC GCG ACG GGA AAC G S A v G R 48 ACG GCC AGG ACC GGC GCC TCC TGC CAG AAC GCC GCA TTG GCG GAC 145 192 49 G A Α s c Q N A L A D 64 193 GTT GAG ATC GTT GAG ATC AAG TCC ATC GTC GCC GCG CCG CCG ACG AGC 240 s I K I A A P 80 ATA GTG AAG TTC CCA GGG CGC GGG CTA CAG GAT GAT CCT TCC CTC TGG 288 F PG R G L Q D 96 289 GAC ATA GCA CCG GAG ACT GTC CTC CCA GCC CCG AAG CCA CTG CAT GAA 336 97 A P E ${f T}$ V L P 112 TCG CCT GCG GTT GAC GGA GAT TCA AAT GGA ATT GCA CCT CCT ACA GTT 337 384 S P A V DGDSN G I A 128 385 GAG CCA TTA GTA CAG GAG GCC ACT TGG GAT TTC AAG AAA TAC ATC GGT 0 E A T W 144 TTT GAC GAG CCT GAC GAA GCG AAG GAT GAT TCC AGG GTT GGT GCA GAT 480 E K Α 481 GAT GCT GGT TCT TTT GAA CAT TAT GGG ACA ATG ATT CTG GGC CTT TGT 528 E Y G 176 Н T M Ι 529 GGG GAG AAT GTT ATG AAC GTG ATC GTG GTG GCT GCA TGT TCT CCA 576 177 M N V I v E 192 TGG TGC AAA ACA GGT GGT CTT GGA GAT GTT GTG GGA GCT TTA CCC AAG 624 193 208 GCT חידה מכנה מכם מכם כמש רפיי רכיי מחיד מחים כחידי מחים כחים רכים מכם חשידי 625 672 ALARRGHRVMVVVP 209 224

71/90 Fig 51 Continued

673	GGG	GAC	TAT	GTG	GAA	GCC	TTT	GAT	ATG	GGA	ATC	CGG	AAA	TAC	TAC	AAA	720
225	G	D	Y	V	E	A	F	D	M	G	I	R	K	Y	Y	K	240
721	GCT	GCA	GGA	CAG	GAC	CTA	GAA	gtg	AAC	TAT	TTC	CAT	GCA	TTT	ATT	GAT	768
241	A	A	G	Q	D	L	E	V	N	Y	F	H	A	F	I	D	256
769	GGA	GTC	GAC	TTT	gtg	TTC	ATT	GAT	GCC	TCT	TTC	CGG	CAC	CGT	CAA	GAT	816
257	G	V	D	F	V	F	I	D	A	S	F	R	H	R	Q	D	272
817	GAC	ATA	TAT	GGG	GGA	AGT	AGG	CAG	GAA	ATC	ATG	AAG	CGC	ATG	ATT	TTG	. 864
273	D	I	Y	G	G	S	R	Q	E	I	M	K	R	M	I	L	288
865	TTT	TGC	AAG	GTT	GCT	GTT	GAG	GTT	CCT	TGG	CAC	GTT	CCA	TGC	GGT	GGT	912
289	F	C	K	V	A	V	E	V	P	W	H	V	P	C	G	G	304
913	gtg	TGC	TAC	GGA	GAT	GGA	AAT	TTG	GTG	TTC	ATT	GCC	ATG	AAT	TGG	CAC	960
305	V	C	Y	G	D	G	N	L	V	F	I	A	M	N	W	H	320
961	ACT	GCA	CTC	CTG	CCT	GTT	TAT	CTG	AAG	GCA	TAT	TAC	AGA	GAC	CAT	GGG	1008
321	T	A	L	L	P	V	Y	L	K	A	Y	Y	R	D	H	G	336
1009 ¹	TTA	ATG	CAG	TAC	ACT	CGC	TCC	GTC	CTC	GTC	ATA	CAT	AAC	ATC	GGC	CAC	1056
337	L	M	Q	Y	T	R	S	V	L	V	I	H	N	I	G	H	352
1057	CAG	GGC	CGT	GGT	CCT	GTA	CAT	GAA	TTC	CCG	TAC	ATG	GAC	TTG	CTG	AAC	1104
353	Q	G	R	G	P	V	H	E	F	P	Y	M	D	L	L	N	368
1105	ACT	AAC	CTT	CAA	CAT	TTC	GAG	CTG	TAC	GAT	CCC	GTC	GGT	GGC	GAG	CAC	1152
369	T	N	L	Q	H	F	E	L	Y	D	P	V	G	G	E	H	384
1153	GCC	AAC	ATC	TTT	GCC	GCG	TGT	GTT	CTG	AAG	ATG	GCA	GAC	CGG	GTG	gtg	1200
385	A	N	I	F	A	A	C	V	L	K	M	A	D	R	V	V	400
1201	ACT	GTC	AGC	CGC	GGC	TAC	CTG	TGG	GAG	CTG	AAG	ACA	GTG	GAA	GGC	GGC	1248
401	T	V	S	R	G	Y	L	W	E	L	K	T	V	E	G	G	416
1249	TGG	GGC	CTC	CAC	GAC	ATC	ATC	CGT	TCT	AAC	GAC	TGG	AAG	ATC	AAT	GGC	1296
417	W	G	L	H	D	I	I	R	S	N	D	W	K	I	N	G	432
1297	ATT	CGT	GAA	CGĊ	ATC	GAC	CAC	CAG	GAG	TGG	AAC	CCC	AAG	GTG	GAC	GTG	1344
433	I	R	E	R	I	D	H	Q	E	W	N	P	K	V	D	V	448
1345	CAC	CTG	CGG	TCG	GAC	GGC	TAC	ACC	AAC	TAC	TCC	CTC	GAG	ACA	CTC	GAC	1392
449	H	L	R	S	D	G	Y	T	N	Y	S	L	E	T	L	D	464
1393	GCT	GGA	AAG	CGG	CAG	TGC	AAG	GCG	GCC	CTG	CAG	CGG	GAC	GTG	GGC	CTG	1440
465	A	G	K	R	Q	C	K	A	A	L	Q	R	D	V	G	L	480
1441	GAA	GTG	CGC	GAC	GAC	GTG	CCG	CTG	CTC	GGC	TTC	ATC	GGG	CGT	CTG	GAT	1488
481	E	V	R	D	D	V	P	L	L	G	F	I	G	R	L	D	496
1489	GGA	CAG	AAG	GGC	GTG	GAC	ATC	ATC	GGG	GAC	GCG	ATG	CCG	TGG	ATC	GCG	1536
497	G	Q	K	G	V	D	I	I	G	D	A	M	P	W	I	A	512
1537	GGG	CAG	GAC	GTG		CTG	gtg	ATG	CTG	GGC	ACC	GGC	CCA	CCT	GAC	CTG	1584
513	G	Q	D	V		L	V	M	L	G	T	G	P	P	D	L	528
1585 529	gaa E	cga R	atg M	CTG L	cag Q	cac H	TTG L	gag E	cgg R		CAT [1		aac N		GTG V	cgc R	1632 544

Fig 51 continued

1633	GGG	TGG	GTC	GGG	TTC	TCG	GTC	CTA	ATG	gtg	CAT	CGC	ATC	ACG	CCG	GGC	1680
545	G	W	V	G	F	S	V	L	M	V	H	R	I	T	P	G	56 0
1681	GCC	AGC	gtg	CTG	gtg	ATG	CCC	TCC	CGC	TTC	GCC	GGC	GGG	CTG	AAC	CAG	1728
561	A	S	V	L	V	M	P	S	R	F	A	G	G	L	N	Q	576
1729	CTC	TAC	GCG	ATG	GCA	TAC	GGC	ACC	GTC	CCT	gtg	GTG	CAC	GCC	GTG	GGC	. 1776
577	L	Y	A	M	A	Y	G	T	V	P	V	V	H	A	V	G	592
1777	GGG	CTC	AGG	GAC	ACC	GTG	GCG	CCG	TTC	GAC	CCG	TTC	GGC	GAC	GCC	GGG	1824
- 593	G	L	R	D	T	V	A	P	F	D	P	F	G	D	A	G	608
1825	CTC	GGG	TGG	ACT	TTT	GAC	CGC	GCC	GAG	GCC	AAC	AAG	CTG	ATC	GAG	GTG	1872
609	L	G	W	T	F	D	R	A	E	A	N	K	L	I	E	V	624
1873	CTC	AGC	CAC	TGC	CTC	GAC	ACG	TAC	CGA	AAC	TAC	GAG	GAG	AGC	TGG	AAG	1920
625	L	S	H	C	L	D	T	Y	R	N	Y	E	E	S	W	K	640
1921	AGT	CTC	CAG	GCG	CGC	GGC	ATG	TCG	CAG	AAC	CTC	AGC	TGG	GAC	CAC	GCG	1968
641	S	L	Q	A	R	G	M	S	Q	N	L	S	W	D	H	A	65 <i>6</i>
1969 [†] 657	GCT A	GAG E	CTC L	TAC Y	GAG E	GAC D	GTC V	CTT L	GTC V	AAG K	TAC Y	CAG Q	TGG W				2007 669

BNSDOCID: <WO___9844780A1_I_>

Fig 52

DWASIS

***** DNA TRANSLATION LIST *****

DATE 04-03-97

*** INPUT INFORMATION ***

FILE NAME : MSS1B.SEQ SEQUENCE : NORMAL 1749 BP

CODON TABLE : UNIV.TCN

SEQUENCE REGION: 1 - 1749

TRANSLATION REGION: 1 - 1749

*** DNA TRANSLATION ***

1	TGC	GTC V	GCG A	GAG E	CTG L	AGC S	AGG R	GAG E	GGG G	CCC P	GCG A	CCG P	CGC R	CCG P	CTG L	CCA P	48 16
49	CCC	GCG	CTG	CTG	GCG	CCC	CCG	CTC	GTG	CCC	GGC	TTC	CTC	GCG	CCG	CCG	96
17	P	A	L	L	A	P	P	L	V	P	G	F	L	A	P	P	32
97	GCC	GAG	CCC	ACG	GGT	GAG	CCG	GCA	TCG	ACG	CCG	CCG	CCC	GTG	CCC	GAC	144
33	.A	E	P	T	G	E	P	A	S	T	P	P	P	V		D	48
145	GCC	GGC	CTG	GGG	GAC	CTC	GGT	CTC	GAA	CCT	GAA	GGG	ATT	GCT	GAA	GGT	192
49	A	G	L	G	D	L	G	L	E	P	E	G	I	A	E	G	64
193	TCC	ATC	GAT	AAC	ACA	GTA	GTT	GTG	GCA	AGT	GAG	CAA	GAT	TCT	GAG	ATT	240
65	S	I	D	N	T	V	V	V	A	S	E	Q	D	S	E		80
241	GTG	GTT	GGA	AAG	GAG	CAA	GCT	CGA	GCT	AAA	GTA	ACA	CAA	AGC	ATT	GTC	288
81	V	V	G	K	E	Q	A	R	A	K	V	T	Q	S		V	96
289	TTT	GTA	ACC	GGC	GAA	GCT	TCT	CCT	TAT	GCA	AAG	TCT	GGG	GGT	CTA	GGA	336
97	F	V	T	G	E	A	S	P	Y	A	K	S	G	G	L	G	112
337	gat	GTT	TGT	GGT	TCA	TTG	CCA	GTT	GCT	CTT	GCT	GCT	CGT	GGT	CAC	CGT	384
113	D	V	C	G	S	L	P	V	A	L	A	A	R	G	H	R	128
385	GTG	ATG	GTT	GTA	ATG	CCC	AGA	TAT	TTA	AAT	GGT	ACC	TCC	GAT	AAG	AAT	432
129	V	M	V	V	M	P	R	Y	L	N	G	T	S	D	K	N	144
433 145	TAT Y	GCA A	AAT N	GCA A	TTT F	TAC	ACA T	GAA E	AAA K	CAC H	ATT	CGG R	ATT	CCA P	TGC C	TTT F	480 160
481	GGC	GGT	GAA	CAT	GAA	GTT	ACC	TTC	TTC	CAT	GAG	TAT	AGA	GAT	TCA	GTT	528
161	G	G	E	H	E	V	T	F	F	H	E	Y	R	D	S	V	176
529	GAC	TGG	GTG	TTT	GTT	GAT	CAT	CCC	TCA	TAT	CAC	AGA	CCT	GGA	AAT	TTA	576
177	D	W	V	F	V	D	H	P	S	Y	H	R	P	G	N	L	192
577	TAT	GGA	GAT	AAG	TTT	GGT	GCT	TTT	GGT	GAT	AAT	CAG	TTC	AGA	TAC	ACA	624
193	Y	G	D	K	F	G	A	F	G	D	N	Q	F	R	Y	T	208
625	CTC	CTT	TGC	TAT	GCT	GCA	ىلىڭىل	G A G	С -Ст	سٺ	تسست	7 mC	Culti		т	_	6 ⁻ 2
209	<u>L</u>	L	C	A.	Α	A	С	E	A	P	i_	I	<u>i</u>	E	L	G-	224

Fig 52 continued

673	GGA	TAT	ATT	TAT	GGA	CAG	AAT	TGC	ATG	TTT	GTT	GTC	AAT	GAT	TGG	CAT	720
225	G	Y	I	Y	G	Q	N	C	M	F	V	V	N	D	W	H	240
721	GCC	AGT	CTA	GTG	CCA	GTC	CTT	CTT	GCT	GCA	AAA	TAT	AGA	CCA	TAT	GGT	768
241	A	S	L	V	P	V	L	L	A	A	K	Y	R	P	Y	G	256
769	GTT	TAT	AAA	GAC	TCC	CGC	AGC	ATT	CTT	GTA	ATA	CAT	AAT	TTA	GCA	CAT	816
257	V	Y	K	D	S	R	S	I	L	V	I	H	N	L	A	H	272
817	CAG	GGT	GTA	GAG	CCT	GCA	AGC	ACA	TAT	CCT	GAC	CTT	GGG	TTG	CCA	CCT	864
273	Q	G	V	E	P	A	S	T	Y	P	D	L	G	L	P	P	288
865	GAA	TGG	TAT	GGA	GCT	CTG	GAG	TGG	GTA	TTC	CCT	GAA	TGG	GCG	AGG	AGG	912
289	E	W	Y	G	A	L	E	W	V	F	P	E	W	A	R	R	304
913	CAT	GCC	CTT	GAC	AAG	GGT	GAG	GCA	GTT	AAT	TTT	TTG	AAA	GGT	GCA	GTT	960
305	H	A	L	D	K	G	E	A	V	N	F	L	K	G	A	V	320
961	v	ACA	GCA	GAT	CGA	ATC	GTG	ACT	GTC	AGT	AAG	GGT	TAT	TCG	TGG	GAG	1008
321		T	A	D	R	I	V	T	V	S	K	G	Y	S	W	E	336
1009	GTC	ACA	ACT	GCT	GAA	GGT	GGA	CAG	GGC	CTC	TAA	GAG	CTC	TTA	AGC	TCC	1056
33 7	V	T	T	A	E	G	G	Q	G	L	N	E	L	L	S	S	352
1057	AGA	AAG	AGT	GTA	TTA	AAC	GGA	ATT	GTA	TAA	GGA	ATT	GAC	ATT	AAT	GAT	1104
353	R	K	S	V	L	N	G	I	V	N	G	I	D	I	N	D	368
1105	TGG	AAC	CCT	GCC	ACA	GAC	AAA	TGT	ATC	CCC	TGT	CAT	TAT	TCT	GTT	GAT	1152
369	W	N	P	A	T	D	K	C	I	P	C	H	Y	S	V	D	384
1153	GAC	CTC	TCT	GGA	AAG	GCC	AAA	TGT	AAA	GGT	GCA	TTG	CAG	AAG	GAG	CTG	1200
385	D	L	S	G	K	A	K	C	K	G	A	L	Q	K	E	L	400
1201	GGT	TTA	CCT	ATA	AGG	CCT	GAT	GTT	CCT	CTG	ATT	GGC	TTT	ATT	GGA	AGG	1248
401	G	L	P	I	R	P	D	V	P	L	I	G	F	I	G	R	416
1249	TTG	GAT	TAT	CAG	AAA	GGC	ATT	GAT	CTC	ATT	CAA	CTT	ATC	ATA	CCA	GAT	1296
417	L	D	Y	Q	K	G	I	D	L	I	Q	L	I	I	P	D	432
1297	CTC	ATG	CGG	GAA	GAT	GTT	CAA	TTT	GTC	ATG	CTT	GGA	TCT	GGT	GAC	CCA	1344
433	L	M	R	E	D	V	Q	F	V	M	L	G	S	G	D	P	448
1345	GAG	CTT	GAA	GAT	TGG	ATG	AGA	TCT	ACA	GAG	TCG	ATC	TTC	AAG	GAT	AAA	1392
449	E	L	E	D	W	M	R	S	T	E	S	I	F	K	D	K	464
1393	TTT	CGT	GGA	TGG	GTT	GGA	TTT	AGT	gtt	CCA	gtt	TCC	CAC	CGA	ATA	ACT	1440
465	F	R	G	W	V	G	F	S	V	P	V	S	H	R	I	T	480
1441	GCC	GGC	TGC	GAT	ATA	TTG	TTA	ATG	CCA	TCC	AGA	TTC	GAA	CCT	TGT	GGT	1488
481	A	G	C	D	I	L	L	M	P	S	R	F	E	P	C	G	496
1489	CTC	AAT	CAG	CTA	TAT	GCT	ATG	CAG	TAT	GGC	ACA	GTT	CCT	GTT	GTC	CAT	1536
497	L	N	Q	L	Y	A	M	Q	Y	G	T	V	P	V	V	H	512
1537	GCA	ACT	GGG	GGC	CTT	AGA	GAT	ACC	GTG	GAG	AAC	TTC	AAC	CCT	TTC	GGT	1584
513	A	T	G	G	L	R	D	T	V	E	N	F	N	P	F	G	528
1585 529	GAG E	а <u>а</u> т (V	GGA G	GAG E	CAG Q	ಈ ಧಿ	1 C 1		TGG W	GC _A		GC»	-	رس»			1632 5414
J47		10	5	ت	υχ	5	ι	<u> </u>	10	A	F		<u> P</u>	<u> </u>	T_	<u>T_</u>	<u> </u>

75/90 Fig 52 continued

1633	GAA	AAC	ATG	TTT	GTG	GAC	ATT	GCG	AAC	TGC	AAT	ATC	TAC	ATA	CAG	GGA	1680
545	E	N	M	F	V	D	I	A	N	C	N	I	Y	I	Q	G	560
1681	ACA	CAA	GTC	CTC	CTG	GGA	AGG	GCT	AAT	GAA	GCG	AGG	CAT	GTC	AAA	AGA	1728
561	T	Q	V	L	L	G	R	A	N	E	A	R	H	V	K	R	576
1729 577																	1749 583

TRANSLATE of: mb73be2.seq check: 2027 from: 6 to: 2640 generated symbols 1 to: 878.

MZEGLUCTRN

2640 bp ss-mRNA PLN May 20,1993 DEFINITION Maize starch branching enzyme II mRNA, complete cds.

1,4-alpha-glucan branching enzyme; amylo-transglycosylase; glucanotransferase; starch branching enzyme II. **KEYWORDS**

SOURCE Zea mays (cultivar B73) 30 days post pollenation endosperm . . .

Mb73be2.pep Length: 799 Transit peptide 1-61 May 20, 1993 13:29 Type: P Check: 2844

1 MAFRVSGAVL GGAVRAPRLT GGGEGSLVFR HTGLFLTRGA RVGCSGTHGA

51 MRAAAAARKA VMVPEGENDG LASRADSAQF QSDELEVPDI SEETTCGAGV

101 ADAQALNRVR VVPPPSDGQK IFQIDPMLQG YKYHLEYRYS LYRRIRSDID

151 EHEGGLEAFS RSYEKFGFNR SAEGITYREW APGAFSAALV GDFNNWDPNA

201 DRMSKNEFGV WEIFLPNNAD GTSPIPHGSR VKVRMDTPSG IKDSIPAWIK

251 YSVOAPGEIP YDGIYYDPPE EVKYVFRHAO PKRPKSLRIY ETHVGMSSPE

301 PKINTYVNFR DEVLPRIKKL GYNAVOIMAI OEHSYYGSFG YHVTNFFAPS

351 SRFGTPEELK SLIDRAHELG LLVLMDVVHS HASSNTLDGL NGFDGTDTHY

401 FHSGPRGHHW MWDSRLFNYG NWEVLRFLLS NARWWLEEYK FDGFRFDGVT

451 SMMYTHHGLQ VTFTGNFNEY FGFATDVDAV VYLMLVNDLI HGLYPEAVTI

GEDVSGMPTF ALPVHDGGVG FDYRMHMAVA DKWIDLLKQS DETWKMGDIV 501

HTLTNRRWLE KCVTYAESHD QALVGDKTIA FWLMDKDMYD FMALDRPSTP 551

601 TIDRGIALHK MIRLITMGLG GEGYLNFMGN EFGHPEWIDF PRGPORLPSG

651 KFIPGNNNSY DKCRRRFDLG DADYLRYHGM QEFDQAMQHL EQKYEFMTSD

701 HQYISRKHEE DKVIVFEKGD LVFVFNFHCN NSYFDYRIGC RKPGVYKVVL

751 DSDAGLFGGF SRIHHAAEHF TADCSHDNRP YSFSVYTPSR TCVVYAPVE*

*RGTRCCAAC VGLSM*GKTF FQNRQMHACM LQ*GSDTLID AGKPMHLAAL 801

851 SSLFI*DLQG VN*T*SFRFS LKKKKKKL

LOCUS

SOURCE

MZEGLUCTRN 2640 bp ss-mRNA

PLN

May 20,1993

DEFINITION

KEYWORDS

Maize starch branching enzyme II mRNA, complete cds.

1,4-alpha-glucan branching enzyme; amylo-transglycosylase;

glucanotransferase; starch branching enzyme II. Zea mays (cultivar B73) 30 days post pollenation endosperm

CDNA to mRNA.

ORGANISM Zea mays

STANDARD full automatic

FEATURES

Location/Qualifiers

sig peptide

6. .188

mat peptide

/codon start=3

 $189. . \overline{2}402$

/product="starch branching enzyme II"

/codon start=3

CDS

 $6..24\overline{0}2$

/EC number="2.4.1.18"

/product="starch branching enzyme II"

/codon start=3

mb73be2.seq Length: 2640 May 20, 1993 13:28 Type: N Check: 2027

GCGAGATGGCGTTCCGGGTTTCTGGGGGGGGTGCTCGGTGGGGCCGTAAGGGCTCCCCGACTCACCGGCGGCGGG AGGGTAGTCTAGTCTTCCGGCCACACCGGCCTCTTCTTAACTCGGGGTGCTCGAGTTGGATGTTCGGGGACGCACG GGGCCATGCGCGCGGCGGCCGGCCAGGAAGGCGGTCATGGTTCCTGAGGGCGAGAATGATGGCCTCGCATCAA GGGCTGACTCGGCTCAATTCCAGTCGGATGAACTGGAGGTACCAGACATTTCTGAAGAGACAACGTGCGGTGCTG GTGTGGCTGATGCTCAAGCCTTGAACAGAGTTCGAGTGGTCCCCCCACCAAGCGATGGACAAAAAATATTCCAGA TTGACCCCATGTTGCAAGGCTATAAGTACCATCTTGAGTATCGGTACAGCCTCTATAGAAGAATCCGTTCAGACA TTGATGAACATGAAGGAGGCTTGGAAGCCTTCTCCCGTAGTTATGAGAAGTTTGGATTTAATCGCAGCGCGGAAG ATGCAGATCGTATGAGCAAAAATGAGTTTGGTGTTTGGGAAATTTTTCTGCCTAACAATGCAGATGGTACATCAC CTATTCCTCATGGATCTCGTGTAAAGGTGAGAATGGATACTCCATCAGGGATAAAGGATTCAATTCCAGCCTGGA TCAAGTACTCAGTGCAGGCCCCAGGAGAAATACCATATGATGGGATTTATTATGATCCTCCTGAAGAGGTAAAGT ATGTGTTCAGGCATGCGCAACCTAAACGACCAAAATCATTGCGGATATATGAAACACATGTCGGAATGAGTAGCC CGGAACCGAAGATAAACACATATGTAAACTTTAGGGATGAAGTCCTCCCAAGAATAAAAAAACTTGGATACAATG CAGTGCAAATAATGGCAATCCAAGAGCACTCATATTATGGAAGCTTTGGATACCATGTAACTAATTTTTTTGCGC TCATGGATGTGGTTCATAGTCATGCGTCAAGTAATACTCTGGATGGGTTGAATGGTTTTGATGGTACAGATACAC ATTACTTTCACAGTGGTCCACGTGGCCATCACTGGATGTGGGATTCTCGCCTATTTAACTATGGGAACTGGGAAG TTTTAAGATTTCTTCTCCCAATGCTAGATGGTGGCTCGAGGAATATAAGTTTGATGGTTTCCGTTTTGATGGTG TGACCTCCATGATGTACACTCATCACGGATTACAAGTAACATTTACGGGGAACTTCAATGAGTATTTTGGCTTTG CCACCGATGTAGATGCAGTGGTTACTTGATGCTGGTAAATGATCTAATTCATGGACTTTATCCTGAGGCTGTAA CCATTGGTGAAGATGTTAGTGGAATGCCTACATTTGCCCTTCCTGTTCACGATGGTGGGGTAGGTTTTGACTATC GGATGCATATGGCTGTGGCTGACAAATGGATTGACCTTCTCAAGCAAAGTGATGAAACTTGGAAGATGGGTGATA TTGTGCACACACTGACAAATAGGAGGTGGTTAGAGAAGTGTGTAACTTATGCTGAAAGTCATGATCAAGCATTAG CTCCTACCATTGATCGTGGGATAGCATTACATAAGATGATTAGACTTATCACAATGGGTTTAGGAGGAGAGGGCT ATCTTAATTTCATGGGAAATGAGTTTGGACATCCTGAATGGATAGATTTTCCAAGAGGTCCGCAAAGACTTCCAA GTGGTAAGTTTATTCCAGGGAATAACAACAGTTATGACAAATGTCGTCGAAGATTTGACCTGGGTGATGCAGACT ATCTTAGGTATCATGGTATGCAAGAGTTTGATCAGGCAATGCAACATCTTGAGCAAAAATATGAATTCATGACAT CTGATCACCAGTATATTTCCCGGAAACATGAGGAGGATAAGGTGATTGTGTTCGAAAAGGGAGATTTGGTATTTG TGTTCAACTTCCACTGCAACAACAGCTATTTTGACTACCGTATTGGTTGTCGAAAGCCTGGGGTGTATAAGGTGG TCTTGGACTCCGACGCTGGACTATTTGGTGGATTTAGCAGGATCCATCACGCAGCCGAGCACTTCACCGCCGACT GTTCGCATGATAATAGGCCATATTCATTCTCGGTTTATACACCAAGCAGAACATGTGTCGTCTATGCTCCAGTGG AGTGATAGCGGGGTACTCGTTGCTGCGGGCATGTGTGGGGCTGTCGATGTGAGGAAAAACCTTCTTCCAAAACC GGCAGATGCATGCATGCTACAATAAGGTTCTGATACTTTAATCGATGCTGGAAAGCCCATGCATCTCGCTG CGTTGTCCTCTATTTATATAAGACCTTCAAGGTGTCAATTAAACATAGAGTTTTCGTTTTTCGCTTAAAAAAA AAAAAAAAAACTCA

Fig 54

Maize Branching Enzyme I Mature Protein Sequence

1	ATVQEDKTMA	TAKGDVDHLP	IYDLDPKLEI	FKDHFRYRMK	RFLEQKGSIE	51	
	ENEGSLESFS	KGYLKFGINT	NEDGTVYREW	APAAQEAELI	GDFNDWNGAN	101	
	HKMEKDKFGV	WSIKIDHVKG	KPAIPHNSKV	KFRFLHGGVW	VDRIPALIRY	151	
	ATVDASKFGA	PYDGVHWDPP	ASERYTFKHP	RPSKPAAPRI	YEAHVGMSGE	201	
	KPAVSTYREF	ADNVLPRIRA	NNYNTVQLMA	VMEHSYYASF	GYHVTNFFAV	251	
	SSRSGTPEDL	KYLVDKAHSL	GLRVLMDVVH	SHASNNVTDG	LNGYDVGQST	301	
	QESYFHAGDR	GYHKLWDSRL	FNYANWEVLR	FLLSNLRYWL	DEFMFDGFRF	351	
:	DGVTSMLYHH	HGINVGFTGN	YQEYFSLDTA	VDAVVYMMLA	NHLMHKLLPE	401	٠.,
	ATVVAEDVSG	MPVLCRPVDE	GGVGFDYRLA	MAIPDRWIDY	LKNKDDSEWS	451	,
	MGEIAHTLTN	RRYTEKCIAY	AESHDQSIVG	DKTIAFLLMD	KEMYTGMSDL	501	
	QPASPTIDRG	IALQKMIHFI	TMALGGDGYL	NFMGNEFGHP	EWIDFPREGN	551	
	NWSYDKCRRQ.	WSLVDTDHLR	YKYMNAFDQA	MNALDERFSF	LSSSKQIVSD	601	
	MNDEEKVIVF	ERGDLVFVFN	FHPKKTYEGY	KVGCDLPGKY	RVALDSDALV	651	
	FGGHGRVGHD	VDHFTSPEGV	PGVPETNFNN	RPNSFKVLSP	PRTCVAYYRV	701	
	DEAGAGRRLH	AKAETGKTSP	AESIDVKASR	ASSKEDKEAT	AGGKKGWKFA	751	
	ROPSDODTK						

D11081

```
unannotated; RNA; UNA; 2763 BP.
XX
AC
     D11081;
     13-JUL-1992 (Rel. 32, Created)
DT
     13-JUL-1992 (Rel. 32, Last updated, Version 1)
DT
XX
     Zea mays L. maize branching enzyme-I cDNA to mRNA.
DE
\mathbf{x}\mathbf{x}
FH
     Key
                     Location/Qualifiers
FH
XX
SQ
     Sequence 2763 BP; 719 A; 585 C; 737 G; 722 T; 0 other;
D11081 Length: 2763 February 4, 1993 11:16 Type: N Check: 6169
       1 GCTGTGCCTC GTGTCGCCCT CTTCCTCGCC GACTCCGCTT CCGCCGCCGC
      51 GGCGCTCTCG CTCGCATGCT GATCGGGCGG CACCGCCGGG GATCGCGGGT
    101 GGCGGCAATG TGCGCCTGAG TGTGTTGTCT GTCCAGTGCA AGGCTCGCCG
     151 GTCAGGGGTG CGGAAGGTCA AGAGCAAATT CGCCACTGCA GCTACTGTGC
     201 AAGAAGATAA AACTATGGCA ACTGCCAAAG GCGATGTCGA CCATCTCCCC
     251 ATATACGACC TGGACCCCAA GCTGGAGATA TTCAAGGACC ATTTCAGGTA
     301 CCGGATGAAA AGATTCCTAG AGCAGAAAGG ATCAATTGAA GAAAATGAGG
     351 GAAGTCTTGA ATCTTTTCT AAAGGCTATT TGAAATTTGG GATTAATACA
     401 AATGAGGATG GAACTGTATA TCGTGAATGG GCACCTGCTG CGCAGGAGGC
    451 AGAGCTTATT GGTGACTTCA ATGACTGGAA TGGTGCAAAC CATAAGATGG
    501 AGAAGGATAA ATTTGGTGTT TGGTCGATCA AAATTGACCA TGTCAAAGGG
    551 AAACCTGCCA TCCCTCACAA TTCCAAGGTT AAATTTCGCT TTCTACATGG
    601 TGGAGTATGG GTTGATCGTA TTCCAGCATT GATTCGTTAT GCGACTGTTG
    651 ATGCCTCTAA ATTTGGAGCT CCCTATGATG GTGTTCATTG GGATCCTCCT
    701 GCTTCTGAAA GGTACACATT TAAGCATCCT CGGCCTTCAA AGCCTGCTGC
    751 TCCACGTATC TATGAAGCCC ATGTAGGTAT GAGTGGTGAA AAGCCAGCAG
    801
         TAAGCACATA TAGGGAATTT GCAGACAATG TGTTGCCACG CATACGAGCA
    851 AATAACTACA ACACAGTTCA GTTGATGGCA GTTATGGAGC ATTCGTACTA
         TGCTTCTTTC GGGTACCATG TGACAAATTT CTTTGCGGTT AGCAGCAGAT
    901
    951 CAGGCACACC AGAGGACCTC AAATATCTTG TTGATAAGGC ACACAGTTTG
   1001 GGTTTGCGAG TTCTGATGGA TGTTGTCCAT AGCCATGCAA GTAATAATGT
```

1101	ATTTTCATGC	GGGAGATAGA	GGTTATCATA	AACTTTGGGA	TAGTCGGCTG
1151	TTCAACTATG	CTAACTGGGA	GGTATTAAGG	TTTCTTCTTT	CTAACCTGAG
1201	ATATTGGTTG	GATGAATTCA	TGTTTGATGG	CTTCCGATTT	GATGGAGTTA
1251	CATCAATGCT	GTATCATCAC	CATGGTATCA	ATGTGGGGTT	TACTGGAAAC
1301	TACCAGGAAT	ATTTCAGTTT	GGACACAGCT	GTGGATGCAG	TTGTTTACAT
1351	GATGCTTGCA	AACCATTTAA	TGCACAAACT	CTTGCCAGAA	GCAACTGTTG
1401	TTGCTGAAGA	TGTTTCAGGC	ATGCCGGTCC	TTTGCCGGCC	AGTTGATGAA
1451	GGTGGGGTTG	GGTTTGACTA	TCGCCTGGCA	ATGGCTATCC	CTGATAGATG
1501	GATTGACTAC	CTGAAGAATA	AAGATGACTC	TGAGTGGTCG	ATGGGTGAAA
1551	TAGCGCATAC	TTTGACTAAC	AGGAGATATA	CTGAAAAATG	CATCGCATAT
1601	GCTGAGAGCC	ATGATCAGTC	TATTGTTGGC	GACAAAACTA	TTGCATTTCT
1651	CCTGATGGAC	AAGGAAATGT	ACACTGGCAT	GTCAGACTTG	CAGCCTGCTT
1701	CACCTACAAT	TGATCGAGGG	ATTGCACTCC	AAAAGATGAT	TCACTTCATC
1751	ACAATGGCCC	TTGGAGGTGA	TGGCTACTTG	AATTTTATGG	GAAATGAGTT
1801	TGGTCACCCA	GAATGGATTG	ACTTTCCAAG	AGAAGGGAAC	AACTGGAGCT
1851	ATGATAAATG	CAGACGACAG	TGGAGCCTTG	TGGACACTGA	TCACTTGCGG
1901	TACAAGTACA	TGAATGCGTT	TGACCAAGCG	ATGAATGCGC	TCGATGAGAG
1951	ATTTTCCTTC	CTTTCGTCGT	CAAAGCAGAT	CGTCAGCGAC	ATGAACGATG
2001	AGGAAAAGGT	TATTGTCTTT	GAACGTGGAG	ATTTAGTTTT	TGTTTTCAAT
2051	TTCCATCCCA	AGAAAACTTA	CGAGGGCTAC	AAAGTGGGAT	GCGATTTGCC
2101	TGGGAAATAC	AGAGTAGCCC	TGGACTCTGA	TGCTCTGGTC	TTCGGTGGAC
2151	ATGGAAGAGT	TGGCCACGAC	GTGGATCACT	TCACGTCGCC	TGAAGGGGTG
2201	CCAGGGGTGC	CCGAAACGAA	CTTCAACAAC	CGGCCGAACT	CGTTCAAAGT
2251	CCTTTCTCCG	CCCCGCACCT	GTGTGGCTTA	TTACCGTGTA	GACGAAGCAG
2301	GGGCTGGACG	ACGTCTTCAC	GCGAAAGCAG	AGACAGGAAA	GACGTCTCCA
2351	GCAGAGAGCA	TCGACGTCAA	AGCTTCCAGA	GCTAGTAGCA	AAGAAGACAA
2401	GGAGGCAACG	GCTGGTGGCA	AGAAGGGATG	GAAGTTTGCG	CGGCAGCCAT
2451	CCGATCAAGA	TACCAAATGA	AGCCACGAGT	CCTTGGTGAG	GACTGGACTG
2501	GCTGCCGGCG	CCCTGTTAGT	AGTCCTGCTC	TACTGGACTA	GCCGCCGCTG
2551	GCGCCCTTGG	AACGGTCCTT	TCCTGTAGCT	TGCAGGCGAC	TGGTGTCTCA

2601	TCACCGAGCA	GGCAGGCACT	GCTTGTATAG	CTTTTCTAGA	ATAATAATCA
2651	GGGATGGATG	GATGGTGTGT	ATTGGCTATC	TGGCTAGACG	TGCATGTGCC
2701	CAGTTTGTAT	GTACAGGAGC	AGTTCCCGTC	CAGAATAAAA	AAAAACTTGT
2751	TGGGGGGTTT	TTC			

Fig 55

DNASIS

***** DNA TRANSLATION LIST ****

UDATE 04-03-97

*** INPUT INFORMATION ***

FILE NAME : MSTS1TP.SEQ SEQUENCE : NORMAL 153 BP

CODON TABLE : UNIV.TCN

SEQUENCE REGION: 1 - 153

TRANSLATION REGION: 1 - 153

*** DNA TRANSLATION ***

1	atg M			CCC P	TCG S	GCC A	. GTG V			TGC C		CTC L	CTC L	GCG A	CGG R	48 16
49 17		GCC A					GTC V		CGG R	GCG A	CGC R					96 32
97 33		CGC R		_			CGG R			GAG E			AGG R	GAG E	GGG G	144 48
145 49	CCC P	CAT H	ATG M													153 51

personal personal

Fig. 56

- Marker.
 PCR of WT DNA for glgC3;
 PCR of WT DNA for SSILe-2;
 PCR of C3-9 DNA for glgC3;
 PCR of C3-35 DNA for glgC3;

- 10. PCR of C3-Ia-2 DNA for SSI-2; 12. PCR of C3-Ia-3 DNA for SSI-2;

- 3. PCR of WT DNA for SSI-2;5. PCR of C3-6 DNA for glgC3;7. PCR of C3-29 DNA for glgC3;
- 9. PCR of C3-Ia-2 DNA for glgC3;
- 11. PCR of C3-Ia-3 DNA for glgC3;
- 13. PCR of C3-Ia-4 DNA for glgC3; 15. PCR of C3-Ia-5 DNA for glgC3;

- 16. PCR of C3-Ia-5 DNA for SSI-2; 18. PCR of C3-Ia-5 DNA for SSI-2; 17. PCR of C3-IIa-2 DNA for glgC3; 18. PCR of C3-IIa-2 DNA for SSIIa-2; 20. PCR of C3-IIa-5 DNA for SSIIa-2; 21. PCR of C3-IIa-12 DNA for glgC3; 22. PCR of C3-IIa-12 DNA for SSIIa-2.

Fig 57

ر. دورون

Fig. 59

Fig. 60

Fig. 61

Fig. 62

Fig. 63

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/06660

	- SELECTION OF BUBBECT MATTER									
IPC(6) US CL	:Pleaso See Extra Sheet. :Pleaso See Extra Sheet.									
According	to International Patent Classification (IPC) or to both	national classification and IPC								
	LDS SEARCHED	namena. Caustinaura and 11 C								
	focumentation searched (classification system follows	ed by classification symbols)								
			210 60 210 46							
0.5.	435/69.1, 71.1, 101, 172.3, 194, 252.3, 252.33, 254.	11, 234.2, 320.1, 419; 800/203, DIG 9, [DIG 52, DIG 55							
Documenta	tion searched other than minimum documentation to th	e extent that such documents are included	in the fields seamhed							
			ale noids seriones							
Electronic d	data base consulted during the international search (n	ame of data base and, where practicable	search terms used)							
	,		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
		·								
	UMENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.							
X	OKITA et al. Biosynthesis of Bacteri	al Glycogen: Cloning of the	3,7,9,16,17,27,28							
	Glycogen Biosynthetic Enzyme Structu	ral Genes of Escherichia Coli.								
Y	The Journal of Biological Chemistry.	10 July 1981, Vol. 256, No.	1,2,10-15,32-36							
	13, pages 6944-6952, see pages 6944	and 6946.								
Y	US 5,348,675 A (ULLMANN et al) 20	0 September 1994, column 1,	1-3,7,9-17,26-							
	lines 9-59.		28,32-36							
			·							
Y	US 5,608,149 A (BARRY et al) 04 Ma	arch 1997, column 8, lines 5-	1,3-6,8,9,15							
	36; column 14, lines 5-67; column 18,	lines 60-67; column 21, lines								
	36-67; column 22; column 24; column	1 25, lines 29-33; column 26,								
	lines 32-59; column 38, lines 20-25.									
j										
i										
X Furth	er documents are listed in the continuation of Box C	. See patent family annex.								
	ecial categories of cited documents:	"T" later document published after the inte date and not in conflict with the appl	rnational filing date or priority							
"A" doe	cument defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the	invention							
B ear	lier document published on or after the international filing date	"X" document of particular relevance; the	claimed invention cannot be							
"L" doe	cument which may throw doubts on priority claim(s) or which is ad to establish the publication date of another citation or other	considered novel or cannot be consider when the document is taken alone	red to involve an inventive step							
±pe	cial reason (as specified)	eYe document of particular relevance; the	claimed invention cannot be							
O doe	cument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such	documents, such combination							
"P" doe	cument published prior to the international filing date but later than priority date claimed	"&" document member of the same patent								
	actual completion of the international search	Date of mailing of the international sea	rch renort							
		1 9 AUG 1998	roport							
01 JULY	1998									
Name and n	nailing address of the ISA/US	Authorized officer	0 _							
Box PCT	ner of Patents and Trademarks	()	MD_{α}							
Washington	a, D.C. 20231	DAVID T. FOX	- (11)							
Facsimile N	o. (703) 305-3230	Telephone No. (703) 308-0196								

C (Continua	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passag	Relevant to claim No.
Y	US 5,300,145 A (FERGASON et al) 05 April 1994, column lines 3-68.	3, 29-31,37,38
Y	WO 92/14827 A1 (INSTITUT FUR GENBIOLOGISCHE) 03 September 1992, pages 1-3, 9-10, 12, 15-21.	11-15,23-25,36,38
Y	IGLESIAS et al. Expression of the Potato Tuber ADP-glucose Pyrophosphorylase in <i>Escherichia coli</i> . The Journal of Biolog Chemistry. 15 January 1993, Vol. 268, No. 2, pages 1081-108 see page 1081.	ical
Y	TANAKA et al. Structure, Organization, and Chromosomal Location of the Gene Encoding a Form of Rice Soluble Starc Synthase. Plant Physiology. June 1995, Vol. 108, No. 2, page 677-783, see page 677.	i i
Y	JAMES et al. Characterization of the Maize Gene sugary1, a Determinant of Starch Composition in Kernels. The Plant Cel April 1995, Vol. 7, No. 4, pages 417-429, see pages 417-418.	3,10,18,19,36 l.
Y	HOVENKAMP-HERMELINK et al. Isolation of an amylose-starch mutant of the potato (Solanum tuberosum L.). Theoreti and Applied Genetics. 1987, Vol. 75, pages 217-221, see page 217.	cai
Y	LIN et al. Isolation and Characterization of a Starchless Muta Arabidopsis thaliana (L.) Heynh Lacking ADPglucose Pyrophosphorlyase Activity. Plant Physiology. 1988, Vol. 86 pages 1131-1135, see page 1131.	
	·	
	·	

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to su an extent that no meaningful international search can be carried out, specifically:	ch
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
Please See Extra Sheet.	
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all search claims.	chable
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite professional fee.	yment
3. As only some of the required additional search fees were timely paid by the applicant, this international search report only those claims for which fees were paid, specifically claims Nos.:	covers
4. No required additional search fees were timely paid by the applicant. Consequently, this international search re restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	port is
<u> </u>	
Remark on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.	

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

International application No. PCT/US98/06660

A. CLASSIFICATION OF SUBJECT MATTER:

IPC (6): A01H 5/00; C12N 15/29, 15/31, 15/54, 15/70, 15/74, 15/80, 15/81, 15/82; C12P 19/04

A. CLASSIFICATION OF SUBJECT MATTER:

US CL: 435/69.1, 71.1, 101, 172.3, 194, 252.3, 252.33, 254.11, 254.2, 320.1, 419; 800/205, DIG 9, DIG 52, DIG 55

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1.

Group I, claim(s) 1-3, 7, 9-17, 26-28 and 32-36, drawn to bacterial or fungal hosts transformed with a plasmid comprising starch synthesis genes, and a method for their use.

Group II, claim(s) 1, 3-6, 8-17, 26 and 34-36, drawn to plants transformed with a plasmid comprising starch synthesis genes, and a method for their use.

Group III, claim(s) 18-25, drawn to a host which is deficient for the activity of two particular starch synthesis enzymes. Group IV, claims 29-31 and 37-38, drawn to polysaccharides.

The inventions listed as Groups I-IV do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The invention of Group I, drawn to a first product and method of use, shares the technical feature of requiring transformed microbes, microbial-functional gene regulatory sequences, and processes for microbial transformation; these features are not required by any other group.

The invention of Group II, drawn to a second product and method of use, shares the technical feature of requiring transformed plant cells and plants, plant-functional regulatory sequences, and processes for plant cell transformation and whole plant regeneration; these features are not required by any other group.

The invention of Group III, drawn to a third product, shares the technical feature of requiring mutant or gene- or enzyme- inactivated host cells, and methods for such mutation or gene- or enzyme- inactivation; these features are not required by any other group.

The invention of Group IV, drawn to a fourth product, shares the technical feature of being isolated polysaccharides, this feature is not required by any other group.

Form PCT/ISA/210 (extra sheet)(July 1992)*

THIS PAGE BLANK (USPTO)