TSR: Second Partial

This exam consists of 20 multiple choice questions. In every case only one answer is correct. You should answer in a separate sheet. If correctly answered, they contribute 0,5 points to the exam grade. If incorrectly answered, the contribution is negative: -0.167. So, think carefully your answers.

THEORY

1. Service deployment requires the initial installation and configuration of a service application. Besides those tasks, deployment also includes other tasks like...

Α	Program debugging.
В	Service lifecycle management.
С	Program development.
D	Program design.

2. The goal of dependency injection is...

Α	To resolve inter-component dependencies using configuration files.
В	To eliminate all inter-component dependencies at design time.
С	To keep dependency resolution as transparent as possible for the component developer.
D	To avoid the usage of containers, since they introduce performance overheads.

3. Let us assume a stateful service that needs 400 ms to locally process each update request, updating a set of data that can be transmitted to other nodes in 20 ms and applied there in 30 ms. A request message may be broadcast (in total order) in that network in 3 ms. A read-only request may be locally served in 20 ms. The ratio of accesses is 80% reads and 20% writes.

In order to scale out that service, the best approach is...

Α	To replicate it following the active model.
В	To replicate it using the passive model, forwarding all requests to the primary replica.
С	To replicate it using the passive model, but allowing that backup replicas also reply to read-only requests.
D	To not replicate it at all, since replication introduces too much coordination and does not allow any efficient scaling.

4. In data-centred consistency models, we may say that model A is stronger than B in the following cases:

	and an angle of the control of the c	
Α	A: causal, B: cache.	
В	A: FIFO, B: cache.	
С	A: causal, B: sequential.	
D	A: causal, B: FIFO.	

5. Scalable NoSQL datastores do not support the relational model because...

Α	The relational model does not admit replication.
В	The relational model cannot support sharding.
С	Relational data must be kept on disks.
D	Relational transactions may demand complex concurrency control mechanisms.

6. The CAP theorem...

Α	requires that scalable and available services use always a strict consistency model in order to tolerate network partitions.
В	allows scalable services to relax their consistency while the network remains partitioned, ensuring in this way their availability.
С	doesn't tolerate the implementation of highly available services using strong consistency models.
D	doesn't make sense in cloud computing data-centres, since no network partition may happen in those systems.

7. Regarding service scalability...

Α	A service cannot be scaled both horizontally and vertically.
В	Decentralised algorithms improve scalability on distance.
С	Sharding improves administrative scalability.
D	Contention avoidance is a key factor to achieve service scalability.

8. The main goals of a security subsystem are:

Α	Protection, access control and physical security.
В	Protection, trust management and cryptographic support.
С	Accountability, integrity, confidentiality and availability.
D	Robust policies, efficient mechanisms and correct assurance.

SEMINARS

9. Which of the following tasks is <u>NOT</u> done when we use this docker command? docker run -it ubuntu /bin/bash

Α	Run the /bin/bash command in a container.
В	Download the "ubuntu:latest" image from the Docker Hub if it wasn't in the local docker repository.
С	Collect the output of the container being used for executing that command. That output can be shown using the docker logs command.
D	Remove automatically this container once its execution has terminated.

10. The docker commit a b command...

Α	Creates a new container called "a" using the Dockerfile placed in folder "b".
В	Creates a new image "b" using the Dockerfile placed in folder "a".
С	Creates a new image "b" with the current contents of the container whose name or ID is "a".
D	Commits a docker transaction "a" that was started with a docker pull or docker push command, generating a container ID "b".

11. The "cluster" NodeJS module is used for...

Α	facilitating the deployment of a set of NodeJS programs onto a cluster of computers.
В	managing multiple threads in a NodeJS process.
С	managing a set of NodeJS processes able to share some resources; e.g., a listening port and a given program to be run by all of them.
D	easily implementing multiple memory consistency models.

12. MongoDB uses the following mechanisms to improve its scalability:

Α	Distributed concurrency control.
В	Decentralised algorithms.
С	Passive replication and data sharding.
D	Administrative scalability.

13. The main goal of MongoDB configuration servers is...:

Α	To behave as arbiters when a replica fails.
В	To take care of data distribution in multiple shards.
С	To respect the CAP theorem when network partitions arise.
D	To detect node failures, starting a recovery protocol when any failure happens.

14. Regarding the thematic classification of vulnerabilities shown in Seminar 8, it is true that...

Α	The exploitation of faults in security policies cannot be as easily automated as the exploitation of weak passwords.
В	Phishing is a "software error" vulnerability.
С	Physical protection is an example of "social engineering" vulnerability.
D	A fault in a personal-protection security policy demands less interaction to be exploited than a software-error vulnerability in the operating system.

15. Given this Dockerfile...

FROM zmq
RUN mkdir /zmq
COPY ./broker.js /zmq/broker.js
WORKDIR /zmq
EXPOSE 8000 8001
CMD node broker.js

Which of the following sentences is <u>FALSE</u>?

Α	We need to have a "broker.js" file in the host directory where this Dockerfile is placed.
В	The program to be run in the containers started from this image uses port 8000 of the container, and it is mapped to port 8001 in the host computer.
С	By default, the containers generated from this Dockerfile will run the node broker.js command.
D	This Dockerfile assumes that a "zmq" docker image exists and that image holds a correct installation of the "node" JavaScript interpreter.

16. Let us assume that the broker component shown in question 15 is now included in a docker-compose.yml file with these contents (among others that refer to other components):

version: '2'
services:
...
bro:
image: broker
build: ../broker/

Which of the following sentences is **FALSE**?

A	We may start at least one instance of the broker component with the command
	docker-compose up –d
В	Once the service is started, we may run 5 instances of the broker component using
	docker-compose scale broker=5
С	This "docker-compose.yml" file assumes that the Dockerfile shown in question 15 is
	placed in the folder "/broker/".
D	We may use docker-compose stop bro in order to stop all instances of this broker
	component.

17. Let us assume a replication protocol based on a sequencer process that uses a PUB ZeroMQ socket to forward all write events to the participating processes, in order of reception. Those events are communicated to it using PUSH-PULL channels connected to a single PULL socket held by that sequencer. That replication protocol supports the following consistency models...

COIISI	consistency models	
Α	Only the strict one.	
В	Only the cache one.	
С	Only the causal one.	
D	Sequential, processor, causal, cache and FIFO.	

18. Given the following execution:

W1(x)1, R4(x)1, W2(y)2, W1(y)3, W2(x)4, R3(y)2, W3(x)5, R1(x)5, R2(x)1, R3(x)1, R4(y)3, R1(y)2, R3(y)3, R4(x)5, R3(x)4, R2(y)3, R4(y)2, R1(x)4, R2(x)5, R4(x)4.

That execution respects the following consistency models...

	The chief and the control of the control of the chief	
Α	Only the FIFO one.	
В	Only the cache one.	
С	Processor, FIFO and cache.	
D	Sequential, processor, causal, cache and FIFO.	

19. Given the following file-downloading server program...

```
var cluster = require('cluster');
                                               } else {
var fs = require('fs');
                                                var rep = zmq.socket('rep');
var path = require('path');
                                                rep.connect(dlName);
var zmq = require('zmq');
                                                rep.on('message', function(data) {
var os = require('os');
                                                var request = JSON.parse(data);
const ipcName = 'Act2.ipc';
                                                 fs.readFile(request.path, function(err,
const dlName = 'ipc://'+ipcName;
                                              data) {
if (cluster.isMaster) {
                                                  if (err) data = ' NOT FOUND';
  var numCPUs = os.cpus().length;
                                                   rep.send(JSON.stringify({
  var rt = zmq.socket('router');
                                                      pid: process.pid,
  var dl = zmq.socket('dealer');
                                                      path: request.path,
  rt.bindSync('tcp://127.0.0.1:8000');
                                                      data: data,
  dl.bindSync(dlName);
                                                      timestamp: new Date().toString()
  rt.on('message', function() {
                                                   }))
       msg = Array.apply(null, arguments);
                                                })
       dl.send(msg); });
                                               })
  dl.on('message', function() {
                                              }
       msg = Array.apply(null, arguments);
       rt.send(msg); });
```

We have tried to run that program, but it didn't do anything useful. Its main problem is that ...

Α	ZeroMQ sockets do not admit an "ipc://" transport.
В	No cluster worker process has been created.
С	We are trying to forward "cluster" internal messages through a ZeroMQ DEALER socket.
D	A server cannot use a ROUTER socket as its endpoint.

20. The OpenSSL Heartbleed vulnerability described in Seminar 8 is an example of vulnerability that belongs to these classes:

Α	"Fault in security policy" regarding its category and "human staff" regarding its origin.
В	"Software error" regarding its category and "library/middleware" regarding its origin.
С	"Social engineering" regarding its category and "developer" regarding its origin.
D	"Software error" regarding its category and "human staff" regarding its origin.