

CONTENTS

선형 회귀 (Linear Regression) 뉴럴 네트워크 (Neural Network) 신경망, 인공신경망 K-평균 (K-Means)

• 변수 사이의 선형적인 관계를 모델링 한 것.

• 통계학: 관찰된 연속형 변수들에 대해 두 변수 사이의 모형을 구한뒤 적합도를 측정해 내는 분석 방법

• 선형: 직선적이다

• 회귀: 돌아오다

• 대표적으로 '일하는 시간과 매출액', '공부한 시간과 성적' 등이 선형적인 관계를 가지고 있습니다. 예를 들어 장사꾼의 노동 시간과 매출 데이터가 다음과 같다고 가정해봅니다.

하루 매출
25,000
55,000
75,000
110,000
128,000
155,000
180,000

- 선이 그려짐
- 학습을 시킨다 주어진 데이터를
 학습시켜서 가장 합리적인 '직선'을
 찾아내는 것
- 데이터는 3개 이상일 때 의미가
 있슴 (데이터가 2개라면 단순히 두 점을 잇는 직선이 되어버림)

가설을 수정해가며 가장 합리적인
 식을 찾아내는 과정이 선형 회귀
 모델을 이용한 기계학습

가장 합리적인 선이란?

가설

방정식을 이용해 직선을 표현

$$H(x) = Wx + b$$

- 가설이 얼마나 정확한 지 판단하는 기준
- 비용은 알고리즘 분야에서 굉장히 중요한 개념
- 해당 직선이 얼마나 '정확한' 데이터인지 판단하기 위해선 비용을 계산

각 데이터에 아래의 직선을 그렸다고 가정

- 비용을 계산할 때는 '데이터와 직선과의 거리'를 구해서 계산
- 예측 값과 실제 값의 차이점이 각 점에 대한 비용

전체 Cost = (예측 값 - 실제 값)² 의 평균

- H(x) = Wx + b에서, 현재의 W, b값과 데이터를 이용하면 비용함수를 구함
- 비용 함수로 구한 비용이 적을수록 좋음

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$

다음 chapter에서 배울 인공신경망에서

Cost function = Loss function

경사 하강(Gradient Descent)

H(x) = Wx + b을 간단히 H(x) = Wx로 바꿀때

경사 하강(Gradient Descent)

경사 하강(Gradient Descent)

점프를 하면서 학습하는 과정에서 점프(Jump) 폭을 적당히 조절

미분(derivative)과 기울기(slope)

미분을 수행해서 곡선의 골짜기로 도달하도록 합니다.

Gradient Descent - 점프

- 곡선의 특성상 초반에 많은 폭으로 변화
- 너무 작게 점프하면 오랫동안 학습해야 함
- 너무 크게 점프하면 학습 결과가 부정확할 수 있슴

Gradient Descent - 점프

너무 크게 점프한 경우

Gradient Descent

- 많은 머신러닝 라이브러리는 경사 하강 라이브러리를 효과적으로 제공
- 수학적 수식을 이용해 직접 경사 하강을 구현할 필요가 없음
- 간단히 실제 프로그램에 적용 가능

sklearn LinearRegression 구현하기(implementation)

- import하기
- https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
 - 0

from sklearn.linear_model import LinearRegression

sklearn LinearRegression

• 모델을 생성하고, 그 안에 X, y 데이터를 fit

line_fitter = LinearRegression()
line_fitter.fit(X, y)

01

선형 회귀 (Linear Regression)

sklearn LinearRegression

fit() 메서드는 선형 회귀 모델에 얻을수 있는 값

- 기울기: line_fitter.coef_
- 절편: line_fitter.intercept_

예: y = 5x + 2

- / 5 coefficient(기울기)
- 2 (y-)intercepts(절편)

기울기 - H, 절편 - b

line_fitter = LinearRegression()
line_fitter.fit(X, y)

fit(X, y, sample_	weight=None)
Fit linear mode	l.
Parameters:	X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data
	y: array-like of shape (n_samples,) or (n_samples, n_targets) Target values. Will be cast to X's dtype if necessary
	sample_weight : array-like of shape (n_samples,), default=None Individual weights for each sample
	New in version 0.17: parameter sample_weight support to LinearRegression.
Returns:	self : returns an instance of self.
4	

*싸이킷런 단순 선형회귀에서는 <u>최소제곱법(Ordinary Least Squares)</u>을 활용

02 뉴럴 네트워크 (Neural Network)

어떤 장난꾸러기 학생이 선생님의 부등호를 지웠네요. 어떤 부등호였들까요?

Math Quiz #1 - Teacher's Answer Key

$$1) 2 4 5 = 3$$

$$2)$$
 5 2 8 = 2

$$3) 2 2 1 = 3$$

$$4)$$
 4 2 2 = 6

아래와 같은 input과 output이 있다고 가정합니다. 0을 넣었을때 32가 나오고, 8을 넣었을때 46.4가 나옵니다.

Input: 0, 8, 15, 22

Output: 32, 46.4, 59, 71.6

38을 넣었을때 어떤 숫자가 나올까요?

Input: 0, 8, 15, 22, 38

Output: 32, 46.4, 59, 71.6, ?

Question: What will be the Output value for an Input value of 38?

100.4가 나옵니다.

그럼, 이건 어떤 공식에 의해 나온 output일까요?

Input: 0, 8, 15, 22, 38

Output: 32, 46.4, 59, 71.6, 100.4

F = C * 1.8 + 32는 화씨를 섭씨로 바꾸는 공식입니다.

Input: 0, 8, 15, 22, 38

Output: 32, 46.4, 59, 71.6, 100.4

$$F = C * 1.8 + 32$$

F = Fahrenheit

C = Celsius

입력값은 섭씨(C = Celsius)로 표시됩니다.

Input: 0, 8, 15, 22, 38

Output: 32, 46.4, 59, 71.6, 100.4 F = C * 1.8 + 32 F = Fahrenheit C = Celsius

출력값은 화씨(F = Fahrenheit)로 표시됩니다.

Input: 0, 8, 15, 22, 38

Output: 32, 46.4, 59, 71.6, 100.4

$$F = C * 1.8 + 32$$

F = Fahrenheit

C = Celsius

다시 말해 입력은 섭씨 온도의 온도 값을 나타내고 출력은 화씨로 나타낸 해당 온도를 나타냅니다.

예를 들어, 0의 입력 값은 화씨 32도에 해당하는 섭씨 0 도의 온도를 나타냅니다. 이 공식에서 보는 것처럼 32에 0을 곱하고 32를 더합니다.

예를 들어, 0의 입력 값은 화씨 32도에 해당하는 섭씨 0 도의 온도를 나타냅니다. 이 공식에서 보는 것처럼 32에 0을 곱하고 32를 더합니다.

유사하게, 입력 값 15는 15섭씨에 59화씨에 해당합니다.

이 공식에 적용하면 15에 1.8을 곱하고 32를 더하여 59를 얻습니다.

유사하게, 입력 값 15는 15섭씨에 59화씨에 해당합니다.

이 공식에 적용하면 15에 1.8을 곱하고 32를 더하여 59를 얻습니다.

유사하게, 입력 값 15는 15섭씨에 59화씨에 해당합니다.

이 공식에 적용하면 15에 1.8을 곱하고 32를 더하여 59를 얻습니다.

머신러닝이란?

- 기계(computer)가 이 특정한 입력과 출력 사이의 관계를 이해
- 기계(computer)가 올바른 공식(알고리즘)을 파악.

전통 소프트웨어(Traditional Softare)

개발 (Development)

입력값과 알고리즘이 정해진 상태에서 기능/함수(function)을 구현해서 출력값을 만들어 냄.

- 입력값
- 로직(logic)을 적용
- 출력값

머신러닝

입력값과 출력값을 알고 있지만 출력값을 만들어 내는 알고리즘은 알지 못함.

- 입력값과 출력값
- 알고리즘을 배움

이 공식을 함수로 컴퓨터 프로그램을 작성하려고 한다고 가정해 봅니다. 전통적인 소프트웨어(Traditional Software) 개발에서는 이 관계를 함수를 사용하여 모든 프로그래밍 언어로 쉽게 구현할 수 있습니다.

$$F = C * 1.8 + 32$$

Python을 사용하는 경우.

def function(C):

$$F = C * 1.8 + 32$$

return F

함수는 입력값 C를 받음 -> 알고리즘을 사용하여 출력 값 F를 계산 -> F값을 출력

머신러닝은 입력값과 출력값은 있지만 알고리즘이 없습니다.

머신러닝은이러 입력과 출력 간의 관계를 학습하는 신경망(neural network)을 사용함. 신경망은 사전 정의 된 수학(predefined Math) 및 내부 변수(internal variables)로 구성된 계층들(layers)의 스택(stacks)으로 생각할 수 있슴.

입력 값은 신경망에 공급되고 레이어(layer) 스택(stack)을 따라 이동.

수학(Math)과 내부 변수(internal variables)가 적용되고 결과값 출력이 생성.

학습(training) - 뉴럴 네트워크(neural network)가 입력과 출력 사이의 올바른 관계를 알기 위해서는 훈련시켜야 합니다. 반복적으로 네트워크가 입력을 출력에 매핑 (mapping) 시키도록함으로써 신경 네트워크를 훈련시킵니다.

학습(training)을 하는 동안 네트워크(network)가 입력을 받아 출력을 생성 할 때까지레이어(layer)의 내부 변수(internal variables)를 조정합니다.

네트워크(network)를 조정하여 내부 변수를 조정하는 학습(training) 과정은 **수천** 또는 **수백만** 입력 및 출력 데이터에 대해 반복함.

간단히 정리하면, 머신러닝 알고리즘은 변수를 조정하여 일부 입력을 일부 출력에 올바르게 맵핑(mapping) 할 수있는 함수(function)라 할수 있슴.

03 K-평균 (K-Means)

클러스터링(Clustering)

클러스터링(Clustering) 이란?

- 여러 개의 데이터가 있을 때 데이터를 군집화
- 비슷한 데이터끼리 묶으면 관리하기가 쉽다는 장점
- 예) 우리가 학원을 운영한다고 했을 때 학생을 고급반, 중급반, 초급반으로 나누어 적절히 분류
- 이러한 클러스터링 기법은 적용할 사례가 매우 많다는 특징

클러스터링(Clustering)

- K-means 알고리즘으로 대표적인 비지도학습(Unsupervised Learning) 알고리즘
- K-means에서 파생된 알고리즘 및 흡사한 알고리즘은 매우 다양
- 또한 다양한 분야에서 응용될 수 있으므로 제대로 이해하는 것이 중요

K-means 사전 준비

- 클러스터링을 수행할 데이터의 주제를 결정
 - o 예) 수학 학원에서 학생들의 성적에 따라 반을 구분하기)
- 얼마나 많은 클러스터를 만들지 고민해야 함
 - 예) 고급반, 중급반, 초급반, ...)
- 데이터를 준비
 - 데이터가 정확할수록 유리
- 클러스터링을 수행하기 위한 방법은 다양
 - 예) 무작위 중심(Centroid) 값 선택, K-means++, ...

K-means 수행 과정

- 중심(Centroid)에 가까운 데이터를 클러스터에 포함
- 중심(Centroid)을 클러스터의 중앙으로 이동

K-means는 위 두 과정을 반복 수행하면 됩니다. 그러면 결과적으로 완전하게 군집화된 클러스터들을 얻을 수 있습니다. 더이상 중심(Centroid)의 위치가 변하지 않을 때까지 반복하는 것이 일반적입니다.

데이터가 있을 때 1, 2, 3 세 개의 클러스터가 존재한다고 무작위로 설정을 합니다.

하나의 데이터를 선택해봅시다. 이 때 세 개의 클러스터 중에서 무엇에 제일 가깝나요? 바로 1에 가장 가깝습니다'

그러므로 해당 데이터를 클러스터 1에 속하도록 만듭니다.

이러한 과정을 전체 데이터에 대해 수행하면 다음과 같습니다.

클러스터링 예시 - 무작위 중심(Centroid) 값 선택 알고리즘 대략적으로 군집화가 완료되었습니다.

이제 여기에서 더 완벽한 클러스터링을 위해 중심(Centroid)의 위치를 데이터의 중간으로 이동시키게 됩니다. 그 결과는 다음과 같습니다

이제 이렇게 <u>중심(Centroid)의 위치를 이동시키고 다시 모든 데이터에 대해 어떠한 클러스터</u> <u>중심(Centroid)에 가까운지 하나씩 체크 합니다.</u>

만약 특정한 데이터가 다른 클러스터에 더 가깝다면 그 클러스터에 속하도록 설정 하게 됩니다. 우리가 다룬 위 예시에서는 클러스터 중심(Centroid)의 위치가 더이상 바뀌지 않으므로 여기에서 클러스터링이 끝납니다.

- 초반의 중심 값 설정을 다르게 하는 방법
- K-means 같이 무작위 위치에서 중심 값을 설정할 수도 있지만 직접 수동으로 지정할수도 있合

혹은, K-means++

K-means++란 <u>자동으로 적절한 클러스터들의 중심 위치를 찾아주는 알고리즘</u>

가장 먼저 특정한 노드를 선택하여 클러스터의 중심으로 설정합니다.

이후에 해당 노드에서 가장 먼 노드를 2번째 클러스터의 중심으로 설정합니다.

그 다음부터는 이미 선택된 중심점들로부터 가장 멀리 있는 노드가 중심이 됩니다.

결과적으로 이렇게 초기 클러스터 중심 데이터들을 설정할 수 있었습니다. K-means는 이와 같이 클러스터링을 수행하는 대표적인 알고리즘 중 하나입니다.

