Isabelle/HOL Proof Assistant

Isar engine

Use of Natural Deduction (ND) instead of Gentzen sequent calculus (LJ/LK). Thus, Γ is a **metacontext** and its objects can be used with following commands: assume A, show B...

Syntax of Isabelle commands

Inspection Commands

- type-checking terms : term "(hol-term)"
- evaluating terms : value "\(hol-term \)"
- explore libraries:
 find_theorems <theorem content>* [name: <theorem name>]*

Specification Commands

- non-recursive definitions : definition f :: " $\langle \tau \rangle$ " where name : "f x1 ... xn = $\langle \tau \rangle$ "
- type definitions:
 typedef ('a1, ..., 'an) κ = "⟨set-expr⟩" ⟨proof⟩
 Example. typedef even = "{ x :: int. x mod 2 = 0 }"

Specification Mechanism Commands

datatype definitions:

```
datatype ('a1, ..., 'an) = \langle c \rangle :: "\langle \tau \rangle"| \ldots | \langle c \rangle :: "\langle \tau \rangle"
```

• recursive function definitions : typedef ('a1, ..., 'an) κ = " $\langle \text{set-expr} \rangle$ " $\langle \text{proof} \rangle$ Example. typedef even = " $\{ x :: \text{int. } x \text{ mod } 2 = 0 \}$ "

inductively defined sets:

```
inductive <c> [ for <v> :: "<\tau>" ] where <thmname> : "<\varphi>" | ... | <thmname> = "<\varphi>"
```

Example.

```
inductive path for rel :: "'a \Rightarrow 'a \Rightarrow bool" where base : "path rel x x" | step : "rel x y \Rightarrow path rel y z \Rightarrow path rel x z"
```

• extended notation for cartesian products (records):

```
record \langle c \rangle = [\langle record \rangle +]

tag_1 :: "\langle \tau_1 \rangle"

...

tag_n :: "\langle \tau_n \rangle"
```

Apply rules and theorems

- apply assumption proves $[\![B_1,\ldots,B_m]\!]\Rightarrow C$ by unifying C with one of the B_i
- apply (rule (intro-rule)):
 - 1. decompose formulae to the right of \Rightarrow
 - 2. applying $[A_1, \ldots, A_n] \Rightarrow A$ to subgoal C,
 - (a) unify A and C
 - (b) replace C with n new subgoals A_1, \ldots, A_n
- apply (erule (elim-rule)):
 - 1. decompose formulae to the left of \Rightarrow
 - 2. applying $[\![A_1,\ldots,A_n]\!]\Rightarrow A$ to subgoal C, like rule but also
 - (a) unifies first premise of rule with an assumption
 - (b) eliminates that assumption
- apply (case_tac \(\text{term}\\)): case distinctions on arbitrary terms (e.g. excluded_middle on type bool)
- apply (rule_tac x = "\langle term\" in \langle rule \rangle)
 - 1. like rule but ?x in $\langle rule \rangle$ is instanciated by $\langle term \rangle$ before application
 - 2. applying $[A_1, \ldots, A_n] \Rightarrow A$ to subgoal C,
 - (a) x is in $\langle \text{rule} \rangle$, not in goal
 - (b) (term) may contain parameters from the goal and those introduced in Isar texts
- apply (erule_tac x = " $\langle term \rangle$ " in $\langle rule \rangle$) : similar
- apply (rename_tac x₁...x_n) renames the rightmost (inner) n
 parameters to x₁,..., x_n
- apply (frule \(\frac{rule}{}\):?
- apply clarify: applies all safe rules that do not split the goal
- apply safe : applies all safe rules
- apply fast : sequent based automatic
- apply best : search tactics
- apply blast: automatic tableaux prover (works well on predicate logic)
- apply metis: resolution prover for FO with equality
- insert ?

Logical rules

Rules Safety

Definition. Safe rules preserve provability.

- safe: conjI, impI, notI, iffI, refl, ccontr, classical, conjE, disjE, allI, exE
- unsafe: disjl1, disjl2, impE, iffD1, iffD2, notE, allE, exI
- 1. Apply safe rules before unsafe ones
- 2. Create parameters first, unknowns later

Description operator

1. ε -operator : εx P(x) is a value that satisfies P (if exists) ; written in Isabelle as SOME x.Px s.t.

$$\frac{P(?x)}{P(\mathtt{SOME}\;x.P(x))}\;\mathtt{someI}$$

2. ι -operator : ε implies Axiom of Choice¹ :

Intuitionistic logic (LJ)

Name	Rule in Gentzen style	Desc.
TrueI	$\overline{\Gamma \vdash \top}$	
FalseE	$\frac{\Gamma \vdash \bot}{\Gamma \vdash P}$	
notI	$\frac{\Gamma,A\vdash\bot}{\Gamma\vdash\neg A}$	
notE	$\frac{\Gamma \vdash A \Gamma \vdash \neg A}{\Gamma \vdash P}$	
conjI	$\frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \land B}$	
conjE	$\frac{\Gamma \vdash A \land B \Gamma, A, B \vdash C}{\Gamma \vdash C}$	
conjunct1	$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A}$	
conjunct2	$\frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$	
context_conjI	$\frac{\Gamma \vdash A \Gamma, A \vdash B}{\Gamma \vdash A \land B}$	
disjI1	$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B}$	
disjI2	$\frac{\Gamma \vdash A}{\Gamma \vdash B \lor A}$	
disjCI	$\frac{\Gamma, \neg B \vdash A}{\Gamma \vdash A \lor B}$	
disjE	$\frac{\Gamma \vdash A \lor B \Gamma, A \vdash C \Gamma, B \vdash C}{\Gamma \vdash C}$	
impI	$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B}$	
impE	$\begin{array}{c cccc} \underline{\Gamma \vdash A \Rightarrow} B & \underline{\Gamma \vdash A} & \underline{\Gamma, B \vdash C} \\ \hline & \underline{\Gamma \vdash C} & \end{array}$	
impCE	$\frac{\Gamma, A \vdash B \Gamma, \neg A \vdash B}{\Gamma \vdash B}$	
mp	$\frac{\Gamma \vdash A \Rightarrow B \Gamma \vdash A}{\Gamma \vdash B}$	⇒-elim
iffI	$\frac{\Gamma \vdash A \Rightarrow B \Gamma \vdash B \Rightarrow A}{\Gamma \vdash A \Leftrightarrow B}$	
iffE	$\frac{\Gamma \vdash A \Leftrightarrow B \qquad \Gamma, A \Rightarrow B, B \Rightarrow A \vdash C}{\Gamma \vdash C}$	
iffD1	$\frac{\Gamma \vdash A \Leftrightarrow B}{\Gamma \vdash A \Rightarrow B}$	
iffD2	$\frac{\Gamma \vdash A \Leftrightarrow B}{\Gamma \vdash B \Rightarrow A}$	

¹Axiom of Choice: $\forall x \; \exists y \; Pxy \Rightarrow \exists f \; \forall x \; P \; x \; (fx)$

De Morgan Extensions

notnotD	$\frac{\Gamma, \neg \neg P}{\Gamma \vdash P}$
de_Morgan_disj	$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$
de_Morgan_conj	$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$
disj_not1	$\neg P \lor Q \Leftrightarrow P \Rightarrow Q$
disj_not2	$P \vee \neg Q \Leftrightarrow Q \Rightarrow P$

Non-Constructive Classical Logic (LK)

Name	Rule in sequent style	Desc.
True_or_false	$\overline{\Gamma \vdash A \Leftrightarrow \top \lor A \Leftrightarrow \bot}$	
classical	$\frac{\Gamma, \neg A \vdash A}{\Gamma \vdash A}$	absurd ?
excluded_middle	$\overline{\Gamma \vdash A \vee \neg A}$	
ccontr	$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash \bot}$	

Non-Constructive First Order Logic (FO)

- ullet $\bigwedge x$: new parameters introduced
- \bullet ?x: new unknowns introduced

Name	Rule in sequent style	Desc.
allI	$\frac{\Gamma \vdash \bigwedge x \ P(x)}{\Gamma \vdash \forall x \ P(x)}$	∀-intro
allE	$\frac{\Gamma \vdash \forall x \ P \Gamma, P(?x) \vdash Q}{\Gamma \vdash Q}$	
exI	$\frac{\Gamma \vdash P(?x)}{\Gamma \vdash \exists x \ P(x)}$	∃-intro
exE	$\frac{\Gamma \vdash \exists x \ P \Gamma, \bigwedge x \ \dot{P}(x) \vdash Q}{\Gamma \vdash Q}$	∃-elim
spec	$\frac{\Gamma \vdash \forall x \ P(x)}{\Gamma \vdash P(?x)}$	

Equational Logic

Name	Rule in sequent style	Desc.
refl	$\overline{x=x}$	
sym	$\frac{y - x}{y = x}$ $\frac{x - x}{x = y}$	
trans	$\frac{x = y y = z}{x = z}$	
subst	$\frac{x = y P(x)}{P(y)}$	
ext	$\frac{\wedge t \ P(t) = Q(t)}{P = Q}$	

 $\overline{\text{\LaTeX cheat sheet template made by Winston Chang}} \\ \text{\texttt{http://www.stdout.org/}} \sim \text{\texttt{winston/latex/}} \\$