Permeability

Team 2: Cherepanov E., Malkershin E., Zakarin T., Volkova O., Sherki D., Bhattacharjee S.

Definition

Permeability is a measure of the ability of a fluid to pass through its porous medium

The **standard unit** for permeability is the **Darcy (d)** or, more commonly, the **millidarcy (md)**

Formula

Darcy's Law:

$$Q = \frac{-kA \Delta P}{\mu L}$$

Q → Total discharge

k → coefficient of permeability

A ---- cross sectional area of flow

 $\Delta P \longrightarrow Pressure drop (P_f - P_i)$

Measuring Techniques

Lab Hydrodynamics Hydrodynamics log Correlation Profile i

1. Gas permeability

STEADY-STATE

$$k_a = \frac{2000p_a\mu q_a L}{(p_1^2 - p_2^2)^2 A}$$

- k_a = air permeability, md
- p_a = atmospheric pressure, atm
- p_1 = upstream pressure, atm
- p_2 = outlet pressure, atm
- L = length, cm
- μ = air viscosity, cP
- q_a = gas flow rate at atmospheric pressure, cm³/sec
- A = cross-sectional area, cm²

2. Liquid permeability

$$k_1 = \frac{1000\mu_1 q_1 L}{\Delta p A}$$

- k_1 = liquid permeability, md
- L = length, cm
- μ_1 = liquid viscosity, cP
- q_1 = gas flow rate at atmospheric pressure, cm³/sec
- A = cross-sectional area, cm²
- Δp = pressure drop, atm

Examples

Journal of Natural Gas Science and Engineering

Volume 65, May 2019, Pages 224-236

Gas permeability tests on core plugs from unconventional reservoir rocks under controlled stress: A comparison of different transient methods

https://doi.org/10.1016/j.jngse.2019.03.003

Examples

GEOFLUIDS

Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications

X. CUI, A. M. M. BUSTIN, R. M. BUSTIN

https://doi.org/10.1111/j.1468-8123.2009.00244.x

Darcy's law limitations

$$q = \frac{A \cdot k}{\mu} \frac{\Delta P}{L}$$

- 100% saturation
- laminar flow
- steady state flow

$$q_w = \frac{A \cdot k}{\mu_w} \frac{\Delta P}{L} \times k_{rw}(S_w)$$

$$q_o = \frac{A \cdot k}{\mu_o} \frac{\Delta P}{L} \times k_{ro}(S_o)$$

Newton's law of viscous friction low filtration velocities for filtration of non-Newtonian fluids (e.g., some oils), the relationship between the pressure

gradient and the filtration

rate may be nonlinear or

non-algebraic

Conclusion

Permeability is

- one of the main parameters of rocks
- ability to pass fluids through the rock
- evaluation of the reservoir properties of rocks

Thank you for your attention

