U.S.N.											
--------	--	--	--	--	--	--	--	--	--	--	--

7

BMS College of Engineering, Bangalore-560019

(Autonomous Institute, Affiliated to VTU, Belgaum)

January 2017 Semester End Make Up Examinations

Course: Engineering Mathematics -1 Duration: 3 hrs Course Code: 15MA1ICMAT Max Marks: 100 Date: 13.01.2017 Instructions: Answer five full questions choosing one from each unit. UNIT 1 a) If $y = e^{m\cos^{-1}x}$ then prove that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2+m^2)y_n = 0$. 1 6 7 Show that for the curve $r = a(1 - \cos \theta)$, $\frac{\rho^2}{r}$ is a constant. Expand $f(x) = \tan^{-1} x$ in powers of x upto fourth degree terms. 7 If $u = e^{ax+by} f(ax-by)$ then prove that $b \frac{\partial u}{\partial x} + a \frac{\partial u}{\partial y} = 2abu$. 2 6 Expand $f(x, y) = x y^2 + \cos(x y)$ in powers of (x-1) and $(y - \frac{\pi}{2})$ upto second b) 7 degree terms. At a given instant, the sides of a rectangle are 4ft and 3ft respectively. They are c) increasing at the rate of 1.5ft/sec. and 0.5 ft/sec. respectively. Find the rate at 7 which the area is increasing at that instant. a) If $u = f(e^{y-z}, e^{z-x}, e^{x-y})$ then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$. 3 6 Given that u = 2y z, v = 3z x, w = 4x y, prove that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 96$. b) 7 A rectangular box open at the top is to have volume of 32 cubic feet. Find the c) dimension of the box requiring least material for construction. 7 UNIT 3 a) Solve: $\frac{dy}{dx} = \frac{x^2 + y^2 + 1}{2xy}$. 4 6 Find the orthogonal trajectories of the family of curves $\frac{2a}{r} = 1 - \cos \theta$. b) 7 c) If the temperature of the air is $30^{\circ}c$ and the substance cools from $100^{\circ}c$ to $70^{\circ}c$ in

15 minutes, find when the temperature will be $40^{\circ}c$.

UNIT 4

5	a)	Solve: $\frac{d^2y}{dx^2} - y = (3x+1)e^x$.	6
	b)	Solve: $(x-1)^3 \frac{d^3 y}{dx^3} + 2(x-1)^2 \frac{d^2 y}{dx^2} - 4(x-1) \frac{dy}{dx} + 4y = 4\log(x-1)$	7
	c)	Determine Q and I in the LRC-circuit with $L=0.5H$, $R=6\Omega$, $C=0.02F$,	
		$E(t) = 24\sin(10t)$ and $Q = I = 0$ at $t = 0$.	7
		OR	
6	a)	Solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x$	6
	b)	Using the method of variation of parameters, solve :	
		$\frac{d^2y}{dx^2} - y = \frac{2}{1 + e^x}$	7
	c)	If the weight W=16 lb, spring constant K=10 lb/ft, damping force = $2\frac{dx}{dt}$, external	
		force $F(t) = 5\cos(2t)$, find the displacement of the weight at any time t , given	7
		$x = \frac{dx}{dt} = 0 \text{ at } t = 0.$	
		UNIT 5	
7	a)	Evaluate $\int_{0}^{\infty} \frac{x^4}{(1+x^2)^4} dx$	6
	b)	Find the area common to the cardioids $r = a(1 + \cos \theta)$ and $r = a(1 - \cos \theta)$	7
	c)	Obtain the series solution of Bessel's differential equation.	7
