Econ7115: Structural Models and Numerical Methods in Economics Assignment W10

March 24, 2025

Due 23 April 2025 Zi Wang HKBU Spring 2025

- 1. Consider the following dynamic discrete choice model:
 - Each agent, with discounting factor $\beta \in (0, 1)$, owns a non-divisible asset, valued $x_t > 0$ at period t
 - The agent chooses whether to sell the asset: $a_t = 0$, not sell; $a_t = 1$, sell
 - Utility from the asset: $u(x_t, a_t) + \epsilon_t(a_t)$ where $\epsilon_t(.) \sim G_{\epsilon}$ is an idiosyncratic utility shock that is unobserved by the econometrician

$$u(x_t, a_t) = \begin{cases} 0, & \text{if } a_t = 0\\ \frac{x_t^{1-\gamma}}{1-\gamma} & \text{if } a_t = 1 \end{cases}$$
 (1)

- If $a_t = 1$, then $x_s = 0$ for all s > t
- Let $\Delta > 0$ be the growing size and $\bar{x} = x_0 + 50\Delta$ be the upper bound of asset value. If $a_t = 0$, the Markov transition probability of x_t is defined as

$$x_{t+1} = \begin{cases} x_t + \Delta, & \text{with prob. } q \in (0,1), \text{ if } x_t < \bar{x} \\ x_t, & \text{with prob. } 1 - q, \text{ if } x_t < \bar{x} \\ x_t, & \text{with prob. } 1, \text{ if } x_t = \bar{x} \end{cases}$$
 (2)

- $\epsilon_t(a_t)$ is drawn IID from the Type I Extreme Value (TIEV) Distribution
- 1. Let $V(x, \epsilon)$ be the value function. Please write down the Bellman equation in terms of $V(x, \epsilon)$.
- 2. Let $\bar{V}(x) \equiv \int V(x,\epsilon) dG_{\epsilon}$. Please write the Bellman equation in terms of $\bar{V}(x)$.
- 3. Let $x_0 = 1$, $\gamma = 0.5$, $\Delta = 0.1$, q = 0.2, and $\beta = 0.9$. Please compute the likelihood Pr[a = 1|x].
- 4. Utilizing the numerical results above, please discuss the implications of (i) γ , (ii) Δ , and (iii) q, for the likelihood Pr[a=1|x].