ECE: 5300 Switching Theory
Exam II
Due: Thursday 11/8/2018

Name:			
Note: S	how all vour work		

1. In the state and output tables for a sequential machine M given below some of the next state and output entries are left unspecified (-). Specify the next states and outputs such that M has an input consistent partition π that is closed and an output consistent partition τ such that $\pi.\tau = \pi(0)$. If such partitions cannot be found give reasons.

If the partitions defined above are found, give (i) the state assignment for M based on π and τ , (ii) state transition table for M and (iii) minimum cost sum of products expressions for next state variables and output.

PS	X=0	X=1	X=0	X=1
Α	D	ı	0	0
В	ı	Τ	0	ı
С	G	D	1	-
D	ı	C	ı	ı
Е	В	F	0	1
F	Η	-	ı	1
G	С	Α	-	-
Н	ı	В	1	-

NS Z

- 2. For the incompletely specified sequential machine given below:
- (i) find pairs of compatible states
- (ii) find sets of maximal compatible states
- (iii) give the state table, in standard form, of a reduced machine with minimum number of states.

PS	X=00	X=01	X=11	X=10
Α	В,О		E,1	
В	A,0	С,-		
С	С,-	A,1	E,-	D,1
D		В,-	Α,-	
Е	С,-	B,1	-,0	F,-
F	F,1	Α,-	В,-	E,-

NS, Z

3. For the machine M given below (i) find a state assignment using fan-out based method, (ii) find a state assignment based on fan-in based method, and (iii) give minimum cost sum of product expressions for the next state variables and output using the state assignments found.

PS	X=0	X=1
Α	A,01	B,11
В	C,11	D,10
С	E,00	F,11
D	B,01	C,10
Ε	G,11	A,10
F	F,10	G,00
G	B,01	G,11

NS, PQ

4. Give the state table of a synchronous sequential machine M with one input X and one output Z which scans five consecutive inputs applied to it and outputs a 1 if the number of 1s in the five consecutive inputs is greater than or equal to 2 and starts scanning the next five inputs. The number of states in M should be no more than 12.

5. Determine if the function $f(a,b,c,d) = \Sigma(1,3,5,6,7,13,15)$ can be realized by a single threshold gate. If yes, give the weight threshold vector of the gate and if no give reasons.