• (Multiplicative Modular Dynamic)

Let m be a modulus, and a $\in \overline{+}(m)$. Consider

• a mod m: $\overline{+}(m) \longrightarrow \overline{+}(m)$

 $\overline{x} \mapsto \overline{x \cdot a}$

Prop. Let m be a modulus, and a $\in \overline{\Phi}(m)$. Then the dynamics of a mod m consists of cycles of the same length.

Notation: Im(a) the length of each cycle in the dynamics of

• a mod m: $\Phi(m) \longrightarrow \Phi(m)$

(ovo: l_m(a) | 9(m)

```
Ihm (Euler - Fermat)
     Let m be a modulus, and a \in \overline{F}(m). Then
                  = 1 \mod m
Proof. By prop. the dynamies of oa mod m consists of
        cycles of the same length la. Hence la) (m).
     Say \varphi(m) = d \cdot l(\alpha). Then
              \alpha^{\varphi(m)} \equiv (\alpha^{\ell(\alpha)})^{d} \mod m
                      \equiv (1)^d \mod m
                      = 1 \mod m
```

E.g. Find natural sequesertation of
$$2^{2022} \mod 9$$
.

$$(9) = 6 \qquad \text{$ \oint (9) = \{1, 2, 4, 5, 7, 8\} \}}$$
By Euler-Fermal, $2^6 \equiv 1 \mod 9$.

$$(2022 \div 6'') \qquad 2022 \equiv 0 \mod 6 \qquad \text{that N is divided by 3 iff its sum op digits}$$

$$2^{2022} \equiv 2^6 \mod 9 \qquad 2^{2000} + 22 \qquad \text{is divided by 3, then you see invadiately.}}$$

$$2^{2022} \equiv 2^6 \mod 9 \qquad 3^{2000} + 22 \qquad \text{is divided by 3, then you see invadiately.}}$$

$$2^{2022} \equiv 2^6 \mod 9 \qquad 3^{2000} + 22 \qquad \text{is divided by 3, then you see invadiately.}}$$

$$2^{2022} \equiv 2^6 \mod 9 \qquad 3^{2000} + 22 \qquad \text{is divided by 3, then you see invadiately.}}$$

$$2^6 \equiv 3^{23} \equiv (3^2)^3 \equiv 9^3 \equiv 0^3 \equiv 0 \mod 9$$

$$2^{2022} \mod 9 \qquad 2^{2022} \mod 9 \qquad 2^{$$

Coro. [Fernat's Little theorem)

If p is a prime number. Then for any $a \in \overline{\Phi}(p)$, $a^{p-1} \equiv 1 \mod p$.

(a is coprime to p)

Another formulation:

If p is a prime number. Then for any integer a, $a^p \equiv a \mod p$.

Proof: Apply the theorem to P and notice that $\varphi(P) = P-1$.

Application: Primality Testing.

Given a number N, determine whether N is a prime.

- · Try to check all I < x < N if there is one x N.
- Just check $|\langle \pi \leq \sqrt{N} \rangle$. If no such π divides N, then N is prime.

If N is composite. say N=a.b. We may assume a s b $a^2 \leq a \cdot b = N \Rightarrow a \leq \sqrt{N}$ and $a \mid N$.

• If there is some 1 < x < N st. $x^{N-1} \neq 1 \mod N$, then N cannot be prime. (By Fernat's little theorem) Not prime

This number x is called a Fernat witness for the compositeness of N

Otherwise lie. $x^{N-1} \equiv 1 \mod N$), x is called a Fermet liar. N's prine maybe

E.g. N=91

a = 2

Looks difficult!

(Pingala's Algorithm)
$$90 = (10)$$

$$90 = (1011010)_{2} \quad 1.2^{6} + 0.2^{5} + 1.2^{4} + 1.2^{3} + 0.2^{0} + 0.2^{0} + 0.2^{0}$$

$$2^{90} \equiv (2^{2^{6}}) \cdot (2^{2^{4}}) \cdot (2^{2^{3}}) \cdot (2^{2}) \mod 9$$

$$= 64 \mod 9$$

- Advastage: Termat's Primality Testing (who Pingala's Algorithm) is faster than Sieve Method.

O(k-log-2n) k times
O(n log logn): - Disadvantage: There one termat lions! So run it k tines and not meet a witness (1) k But ne hove: Theorem: If there is a Fermat widness, then half of $\overline{\mathcal{I}}(N)$ are Fermat witness! Caration: There are composite number M (e.g. 561) s.t. for all $x \in \overline{\mathcal{I}}(M)$. They are called "Fermat pseudoprime"

After-class reading

- About how **Pingala's algorithm** implements the idea that computing modular exponential by squares and simple multiplications:
 - 1. You may notice that, to generate a table showing natural representatives of $a^{2^*} \mod N$, one only needs to repeat the process "square modulo N", whose dynamics finally falls into a cycle.
 - 2. By replace each a^{2^*} appearing in the decomposition of a^{N-1} with its natural representatives modulo N, one still need to do the multiplication cleverly: pairing the same factors to use the results from "square modulo N".
 - 3. The Pingala's algorithm packages these ideas into a systematic algorithm. One can show that they are essentially doing the same computation.
- You can read pp. 160–163 for more on primality testings.
- This webpage provides an animated illustration of modular dynamics.
- We will discuss **primitive root theorem** (but not its proof) and its application to **cryptog-raphy** next time. Please read the rest of **chapter 6** for preparing.