DM N°5 (pour le 30/11/2012)

Notations et objectifs.

Dans tout ce problème, n est un entier naturel supérieur ou égal à 2 et E est un espace vectoriel de dimension fine n sur le corps \mathbb{R} des nombre réels.

 $\mathcal{L}(E)$ désigne l'algèbre des endomorphismes de E et GL(E) l'ensemble des endomorphismes de E qui sont bijectifs.

On note 0 l'endomorphisme nul et id l'application identité.

Pour tout endomorphisme f, Ker(f) et Im(f) désigneront respectivement le noyau et l'image de f. L'ensemble des valeurs propres de f sera noté Sp(f) et on notera :

$$\mathcal{R}(f) = \{ h \in \mathcal{L}(\mathbf{E}) \mid h^2 = f \}.$$

 $\mathbb{R}[X]$ désigne l'espace des polynômes à coefficients réels.

Etant donné $f \in \mathcal{L}(E)$ et $P \in \mathbb{R}[X]$ donné par $P(X) = \sum_{k=0}^{\ell} a_k X^k$, on définit $P(f) \in \mathcal{L}(E)$ par :

$$P(f) = \sum_{k=0}^{\ell} a_k f^k$$

où
$$f^0 = \text{id}$$
 et pour $k \in \mathbb{N}^*$, $f^k = \underbrace{f \circ \cdots \circ f}_{\text{k fois}}$.

Si f_1,\ldots,f_q désignent q endomorphismes de E $(q\in\mathbb{N}^*)$ alors $\prod_{1\leqslant i\leqslant q}f_i$ désignera l'endomorphisme

$$f_1 \circ \cdots \circ f_q$$
.

Pour tout entier p non nul, $\mathbb{M}_p(\mathbb{R})$ désigne l'espace des matrices carrées à p lignes et p colonnes à coefficients dans \mathbb{R} .

 I_p est la matrice identité de $\mathbb{M}_p(\mathbb{R})$.

L'objectif du problème est d'étudier des conditions nécessaires ou suffisantes à l'existence de racines carrées d'un endomorphisme f et de décrire dans certains cas l'ensemble $\mathcal{R}(f)$.

Partie I

A) On désigne par f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par :

$$A = \begin{pmatrix} 8 & 4 & -7 \\ -8 & -4 & 8 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1) Montrer que f est diagonalisable.
- 2) Déterminer une base (v_1, v_2, v_3) de \mathbb{R}^3 formée de vecteurs propres de f et donner la matrice D de f dans cette nouvelle base.
- 3) Soit P la matrice de passage de la base canonique à la base (v_1, v_2, v_3) . Soit un entier $m \ge 1$. Sans calculer l'inverse de P, exprimer A^m en fonction de D, P et P^{-1} .
- 4) Calculer P^{-1} , puis déterminer la base de f^m dans la base canonique.
- 5) Déterminer toutes les matrices de $\mathbb{M}_3(\mathbb{R})$ qui commutent avec la matrice D trouvée à la question 2).
- 6) Montrer que si $H \in \mathbb{M}_3(\mathbb{R})$ vérifie $H^2 = D$, alors H et D commutent.

- 7) Déduire de ce qui précède toutes les matrices H de $\mathbb{M}_3(\mathbb{R})$ vérifiant $H^2 = D$, puis déterminer tous les endomorphismes h de \mathbb{R}^3 vérifiant $h^2 = f$ en donnant leur matrice dans la base canonique.
- B) Soient f et j les endomorphismes de \mathbb{R}^3 dont les matrices respectives A et J dans la base canonique sont données par :

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \text{ et } J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

- 1) Calculer J^m pour tout entier $m \ge 1$.
- 2) En déduire que pour tout $m \in \mathbb{N}^*$, $f^m = \mathrm{id} + \frac{1}{3}(4^m 1)j$. Cette relation est-elle encore valable pour m = 0?
- 3) Montrer que f admet deux valeurs propres distinctes λ et μ telles que $\lambda < \mu$.
- 4) Montrer qu'il existe un unique couple (p,q) d'endomorphismes de \mathbb{R}^3 tel que pour tout entier $m \geqslant 0$, $f^m = \lambda^m p + \mu^m q$ et montrer que ces endomorphismes p et q sont linéairement indépendants.
- 5) Après avoir calculé p^2 , q^2 , $p \circ q$ et $q \circ p$, trouver tous les endomorphismes h, combinaisons linéaires de p et q qui vérifient $h^2 = f$.
- 6) Montrer que f est diagonalisable et trouver une base de vecteurs propres de f. Ecrire la matrice D de f, puis la matrice de p et de q dans cette nouvelle base.
- 7) Déterminer une matrice K de $\mathbb{M}_2(\mathbb{R})$ non diagonale telle que $K^2 = I_2$, puis une matrice Y de $\mathbb{M}_3(\mathbb{R})$ non diagonale telle que $Y^2 = D$.
- 8) En déduire qu'il existe un endomorphisme h de \mathbb{R}^3 vérifiant $h^2=f$ qui n'est pas combinaison linéaire de p et q.
- 9) Montrer que tous les endomorphismes h de \mathbb{R}^3 vérifiant $h^2 = f$ sont diagonalisables.

Partie II

Soit f un endomorphisme de E. On suppose qu'il existe $(\lambda,\mu)\in\mathbb{R}^2$ et deux endomorphismes non nuls p et q de E tels que :

$$\lambda \neq \mu \text{ et } \begin{cases} \text{ id} = p + q \\ f = \lambda p + \mu q \\ f^2 = \lambda^2 p + \mu^2 q. \end{cases}$$

- 1) Calculer $(f \lambda id) \circ (f \mu id)$. En déduire que f est diagonalisable.
- 2) Montrer que λ et μ sont valeurs propres de f et qu'il n'y en a pas d'autres.
- 3) Déduire de la relation trouvée dans la question 1) que $p \circ q = q \circ p = 0$ puis montrer que $p^2 = p$ et $q^2 = q$.
- 4) On suppose jusqu'à la fin de cette partie que $\lambda\mu\neq 0$. Montrer que f est un isomorphisme et écrire f^{-1} comme combinaison linéaire de p et q.
- 5) Montrer que pour tout $m \in \mathbb{Z}$:

$$f^m = \lambda^m p + \mu^m q.$$

6) Soit F le sous-espace de $\mathcal{L}(E)$ engendré par p et q. Déterminer la dimension de F.

- 7) On suppose dans la suite de cette partie que λ et μ sont strictement positifs. Déterminer $\mathcal{R}(f) \cap F$.
- 8) Soit k un entier supérieur ou égal à 2. Déterminer une matrice K de $\mathbb{M}_k(\mathbb{R})$ non diagonale et vérifiant $K^2 = I_k$.
- 9) Montrer que si l'ordre de multiplicité de la valeur propre λ est supérieur ou égal à 2, alors il existe un endomorphisme $p' \in \mathcal{L}(E) \setminus F$ tel que $p'^2 = p$ et $p' \circ q = q \circ p' = 0$.
- 10) En déduire que si $\dim(E) \ge 3$, alors $\mathcal{R}(f) \not\subset F$.

Partie III

Soient p_1, \ldots, p_m , m endomorphismes non nuls de E et $\lambda_1, \ldots, \lambda_m$, m nombres réels distincts. Soit f un endomorphisme de E vérifiant pour tout entier $k \in \mathbb{N}$:

$$f^k = \sum_{i=1}^m \lambda_i^k p_i.$$

1) Montrer que pour tout $P \in \mathbb{R}[X]$, on a :

$$P(f) = \sum_{i=1}^{m} P(\lambda_i) p_i.$$

- 2) En déduire que $\prod_{i=1}^{m} (f \lambda_i id) = 0$, puis que f est diagonalisable.
- 3) Pour tout entier ℓ tel que $1 \le \ell \le m$, on considère le polynôme :

$$L_{\ell}(X) = \prod_{\substack{1 \leq i \leq m \\ i \neq \ell}} \frac{(X - \lambda_i)}{(\lambda_{\ell} - \lambda_i)}.$$

Montrer que pour tout entier ℓ , tel que $1 \le \ell \le m$, on a $p_{\ell} = L_{\ell}(f)$. En déduire que $\operatorname{Im}(p_{\ell}) \subset \operatorname{Ker}(f - \lambda_{\ell} \operatorname{id})$, puis que le spectre de f est :

$$\mathrm{Sp}(f)=\{\lambda_1,\ldots,\lambda_m\}.$$

4) Vérifier que pour tout couple d'entiers (i,j) tels que $1 \le i,j \le m$, on a :

$$p_i \circ p_j = \begin{cases} 0 & \text{si } i \neq j \\ p_i & \text{si } i = j. \end{cases}$$

- 5) Justifier le fait que la somme $\sum_{i=1}^{m} \operatorname{Ker}(f \lambda_{i} \operatorname{id})$ est directe et égale à E et que les projecteurs associés à cette décomposition de E sont les p_{i} .
- 6) Soit F le sous-espace vectoriel de $\mathcal{L}(E)$ engendré par $\{p_1,\ldots,p_m\}$. Déterminer la dimension de F.
- 7) Déterminer $\mathcal{R}(f) \cap F$ dans le cas où $\lambda_1, \dots, \lambda_m$ sont des réels positifs ou nuls.
- 8) Dans cette question, on suppose de plus que m = n.
 - a) Préciser alors la dimension des sous-espaces propres de f.
 - b) Montrer que si $h \in \mathcal{R}(f)$, tout vecteur propre de f est également vecteur propre de h.

- c) En déduire que $\mathcal{R}(f) \subset F$ et donner une condition nécessaire et suffisante sur les λ_i pour que $\mathcal{R}(f)$ soit non vide.
- 9) Montrer que si m < n et si tous les λ_i sont positifs ou nuls, alors $\mathcal{R}(f) \not\subset F$.

Partie IV

- A) Soit f un endomorphisme non nul de E tel qu'il existe un entier p > 1 tel que $f^p = 0$ et $f^{p-1} \neq 0$.
- 1) Montrer qu'il existe $x \in E$ non nul tel que la famille $(x, f(x), f^2(x), \dots, f^{p-1}(x))$ est libre. En déduire que $p \le n$ et que $f^n = 0$.
- 2) Montrer que si $\mathcal{R}(f) \neq \emptyset$, alors $2p-1 \leq n$.
- 3) Déterminer les réels a_0,\ldots,a_{n-1} tels que $\sqrt{1+x}=\sum_{k=0}^{n-1}a_kx^k+{\rm O}(x^n)$ au voisinage de 0. Dans la suite, ${\rm P}_n$ désigne le polynôme défini par ${\rm P}_n({\rm X})=\sum_{k=0}^{n-1}a_k{\rm X}^k$.
- 4) Montrer qu'il existe une fonction η bornée au voisinage de 0 telle que l'on ait $P_n^2(x)-x-1=x^n\eta(x)$. En déduire que X^n divise P_n^2-X-1 .
- 5) Montrer alors que $\mathcal{R}(f+\mathrm{id})\neq\emptyset$. Plus généralement, montrer que pour tout réel α réel, $\mathcal{R}(\alpha f+\mathrm{id})\neq\emptyset$, puis que pour tout β réel strictement positif, $\mathcal{R}(f+\beta\mathrm{id})\neq\emptyset$.

B)

- 1) Soit $T=(a_{ij})_{1\leqslant i,j\leqslant n}$ une matrice triangulaire supérieure de $\mathbb{M}_n(\mathbb{R})$ dont tous les coefficients diagonaux sont égaux à un réel λ . Montrer que $(T-\lambda I_n)^n=0$.
- 2) On suppose dans toute la suite que f est un endomorphisme de E dont le polynôme caractéristique est scindé et qui n'admet qu'une seule valeur propre λ . Déduire de la question précédente que $E = \text{Ker}(f \lambda \text{id})^n$.
- 3) Montrer que si $\lambda > 0$ alors $\mathcal{R}(f) \neq \emptyset$.

