

第十四届中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA

数智赋能 共筑未来

可观测数据融合处理平台探索

唐恒建 OPPO 高级后端工程师

- •1、可观测要素
- 2、opentelemetry现状
- •3、各类可观测方案对比
- •4、可观测数据融合平台
- •5、总结

可观测要素

DTCC 2023 第十四届中国数据库技术大会 DATABASE TECHNOLOGY CONFERENCE CHINA 2023

Increasingly complex software deployments

可观测要素

opentelemetry现状

- 维度: metric、trace、log
- 语言: JIT: Java、Rust、Python 非JIT类: C++、Go
- agent, collect (batch)
- Multi protocol: receiver, exporter

opentelemetry现状


```
receivers:
 otlp:
   protocols:
     grpc:
     http:
 prometheus:
   config:
     scrape_configs:
     - job name: 'app'
       scrape interval: 10s
       static_configs:
       - targets: ['app:8080']
exporters:
 otlp:
   endpoint: ¶
              4317
   tls:
     insecure: true
 prometheusremotewrite:
   endpoint: http://
   tls:
     insecure: true
   headers:
     X-Scope-OrgID: demo
```


各类可观测方案对比

DTCC 2023 第十四届中国数据库技术大会 DATABASE TECHNOLOGY CONFERENCE CHINA 2023

Dynatrace

Dynatrace

Datadog

Session Replay Network Device Monitoring Cloud Security Posture Continuous Management Profiler Cloud Deployment Workload Tracking Serverless Security Monitoring Incident Database Management Tracing Monitoring without Log Real User Limits™ **CI Visibility** Management Monitoring Logging Synthetic Watchdog Error without Monitoring Tracking **Root Cause** LimitsTM Analysis APM Network **Cloud SIEM** Real-Time Unified Infrastructure Monitoring Distributed Watchdog Performance Watchdog Hosts / Clouds / VMs / Containers / Processes / IoT Insights Tracing Monitoring Mobile RUM **Data Platform** Alerts 2011 2016 2010 2012 2013 2014 2015 2017 2018 2019 2020 2021.... Founded Datadog to break down silos Deployed everywhere, used by everyone

Datadog

Grafana

Grafana

- 以exemplar为连接
- 联动metrics、log trace
- Metrics->logs
- metrics->trace

Victoriametrics

Clients Prometheus Grafana vmselect fully supports PromQL and can API clients be used as Prometheus datasource in Grafana Load balancer VictoriaMetrics cluster Stateless vmselect fetches and merges data from vmselect M vmselect 1 vmstorage during queries Stateful vmstorage stores time series data vmstorage 1 vmstorage N Stateless vminsert spreads time series across vminsert 1 vminsert P available vmstorage nodes Load balancer Writers Multiple Prometheus instances may write data to VictoriaMetrics cluster **OpenTSDB** Graphite Prometheus Influx There is support for other ingestion remote_write API Line Protocol Plaintext Protocol Put Protocol protocols

- Less CPU Usage
- Less Disk Usage

Victoriametrics

VictoriaLogs --- Preview stage

- inspired by ClickHouse architecture
- It uses bloom filters
- encoding and compression for fields with different data types
- logs for the same log stream close to each other.
- maintains sparse index for log timestamps
- high cardinalitymetrics added.

Openobserve

Openobserve


```
0 2023 08 12 09 7096057797229543424rrz203.json
                                                                                                                         7096060482146140160LYnjyi.parquet
                    — 0_2023_08_12_09_keeping_70960574089670164501TZ932.json
                    — 0 2023 08 12 09 keeping 7096057408954433536XxJWc6.json
                    0 2023 08 12 09 keeping 7096057408987987969D7p6RX.json
"key":"files/org_name/metrics/scrape_duration_seconds/2023/08/12/09/70960577972253491200GLIuf.parquet","meta":
                                                                                                                         7096059936337166337bly72H.parquet
{"min ts":1691831406600000, "max ts":1691831997003000, "records":44, "original_size":9412, "compressed_size":3767},
'deleted":false
"key":"files/org_name/metrics/scrape_samples_post_metric_relabeling/2023/08/12/09/7096057797221154816eI9FRP.pa
     ,"meta":{"min ts":1691831406600000,"max ts":1691831997003000,"records":44,"original size":9686,"compresse
 size":3516},"deleted":false
("key":"files/org_name/metrics/scrape_series_added/2023/08/12/09/7096057797246320640UNBTLu.parquet","meta":{"mi
ts":1691831406600000, "max ts":1691831997003000, "records":44, "original size":8890, "compressed size":3353}, "del
                                                                                                                         7096059936181977088z6s2s2.parquet
eted":false
{"key":"files/org_name/metrics/scrape_samples_scraped/2023/08/12/09/7096057797258903552MJsMFv.parquet","meta":{
"min_ts":1691831406600000,"max_ts":1691831997003000,"records":44,"original_size":9026,"compressed_size":3380},"
deleted":false
{"key":"files/org_name/metrics/up/2023/08/12/09/7096057797271486464RMqg56.parquet","meta":{"min_ts":16918314066
00000, "max ts":1691831997003000, "records":44, "original size":8140, "compressed size":3197}, "deleted":false
                                                                                                                         70960599363371663360not3R.parquet
                               WAL
                                                                                                                   block
```

1168.com

S

Openobserve

抽象平台层

分布式、高可用、高基数

数据融合平台

扩展log、trace底座能力, 作为数据存储层

夯实metrics能力

v1.0 - 基于多副本实现存储高可靠

v1.0 - 小结

实现:

- 1. 基于 Prometheus TSDB 构建多租户的分布式存储服务。
- 2. 租户之间可以配置不同的读写QPS 限制和存储周期。
- 3. 分布式 scraper 和 ruler 实现数据抓取和 rule 评估的高可靠。

不足:

- 1. 长时间存储集群运维压力大, 扩容和坏盘修复较复杂。
- 2. 读写没有分离,相互影响,尤其长时间范围查询。
- 3. 本地存储多副本,对于冷数据(一个月前)没有进行去重,造成存储浪费。

v2.0 - 基于对象存储的分级存储

v2.0 - 集中压缩和自动降精度

v2.0 - 小结

实现:

- 1. 集中压缩,数据去重,降低成本。
- 2. 自动降精度,长时间范围查询自动转化,提升查询效率。
- 3. 依赖对象存储实现长时间数据集中存储。

不足:

- 1. 超大规模数据压缩时间长,占用磁盘和内存大,受限 TSDB 索引中 symbols 长度 64GB 限制,高 level 压缩会导致失败。
- 2. 历史数据和乱序数据写入支持较差。
- 3. 仅支持 OpenMetrics/Prometheus 数据格式写入。

DTCC 2023 第十四届中国数据库技术大会

v3.0 - 高基数和大规模数据存储挑战

第十四届中国数据库技 DATABASE TECHNOLOGY CONFERENCE

v3.0 - 高基数和大规模数据存储挑战

Level 5 compaction


```
523
524
       func (w *Writer) finishSymbols() error {
525
526 +
               symbolTableSize := w.f.pos - w.toc.Symbols - 4
527 +
               // The symbol table's <len> part is 4 bytes. So the total symbol table size must be less than or equal to 2^32-1
528 +
               if symbolTableSize > 4294967295 {
529 +
                       return errors.Errorf("symbol table size exceeds 4 bytes: %d", symbolTableSize)
530 +
531 +
532
               // Write out the length and symbol count.
               w.buf1.Reset()
533
534 +
               w.buf1.PutBE32int(int(symbolTableSize)
               w.buf1.PutBE32int(int(w.numSymbols))
               if err := w.writeAt(w.buf1.Get(), w.toc.Symbols); err != nil {
```

https://github.com/prometheus/prometheus/pull/9104

v3.0 - 高基数和大规模数据存储挑战

action: drop

regex: 'node_(nf_conntrack_statl


```
Name

01H6ZNQJ2AP1XJXKTFH38GFYSB/

01H70017RX6BDD5NHP78V3FCJP/

01H7038RZ7WEZFM8Z6YK2NB8KR/
```

```
Path:

Name

01H70A4G6YQAMQRQBV4EJCFWE7/

01H70H07J3FEJ2FEPYEGP0WCSG/

01H70QVYPZ45JMN6THVWMV21YT/

01H70YQNZ0YWWK9KE4JCTTD568/

01H715KDD8YV7P58GYMW40M0GN/

01H71CF4F1D97M586661DM6QHQ/
```


v3.0 - OpenTelemetry 协议支持


```
Metric #4
Descriptor:
     -> Name: http_durations_histogram_seconds
     -> Description: Http latency distributions.
     -> DataType: Histogram
     -> AggregationTemporality: Cumulative
HistogramDataPoints #0
Data point attributes:
     -> code: Str(200)
     -> method: Str(GET)
     -> path: Str(/v1/books/show)
StartTimestamp: 2022-10-19 14:38:52.634 +0000 UTC
Timestamp: 2022-10-19 14:39:22.597 +0000 UTC
Count: 4938
Sum: 94.990601
ExplicitBounds #0: 0.050000
ExplicitBounds #1: 0.100000
ExplicitBounds #2: 0.250000
ExplicitBounds #3: 0.500000
ExplicitBounds #4: 1.000000
ExplicitBounds #5: 2.000000
Buckets #0, Count: 4845
Buckets #1, Count: 26
Buckets #2, Count: 37
Buckets #3, Count: 30
Buckets #4, Count: 0
Buckets #5, Count: 0
Buckets #6, Count: 0
# HELP http_durations_histogram_seconds Http latency distributions.
# TYPE http_durations_histogram_seconds histogram
http_durations_histogram_seconds_bucket{code="200",method="GET",path="/v1/books/show",le="0.05"} 4845
http_durations_histogram_seconds_bucket{code="200",method="GET",path="/v1/books/show",le="0.1"} 4871
http_durations_histogram_seconds_bucket{code="200",method="GET",path="/v1/books/show",le="0.25"} 4908
http durations histogram seconds bucket{code="200",method="GET",path="/v1/books/show",le="0.5"} 4938
http_durations_histogram_seconds_bucket{code="200",method="GET",path="/v1/books/show",le="1"} 4938
http_durations_histogram_seconds_bucket{code="200",method="GET",path="/v1/books/show",le="2"} 4938
http_durations_histogram_seconds_bucket{code="200",method="GET",path="/v1/books/show",le="+Inf"} 4938
http_durations_histogram_seconds_sum{code="200",method="GET",path="/v1/books/show"} 94.9906009000003
http_durations_histogram_seconds_count{code="200",method="GET",path="/v1/books/show"} 4938
```


抽象平台层

分布式、高可用、高基数

数据融合平台

扩展log、trace等底座能力, 作为数据存储层

第十四届中国数据库技术大会

抽象平台层

扩展log、trace能力

TSDB format

XOR chunk data

- Index
- Chunks
- Head Chunks
- Tombstones
- Wal
- Memory Snapshot

				1	
num_samples <uint16></uint16>	ts_0 <varint></varint>	v_0 <float64></float64>	ts_1_delta <uvarint></uvarint>	v_1_xor <varbit_xor></varbit_xor>	ts_2_dod <varbit_ts:< td=""></varbit_ts:<>

log chunk data

				11
num_samples <uint16></uint16>	ts_0 <int64></int64>	data len <int64></int64>	log_data <varint></varint>	ts 1 <int64></int64>

扩展log能力

```
func (a *xorAppender) Append(t int64, v float64) {
   var tDelta Uint64
   num := binary.BigEndian.Uint16(a.b.bytes())
   switch num {
       buf := make([]byte, binary.MaxVarintLen64)
        for _, b := range buf[:binary.PutVarint(buf, t)] {
           a.b.writeByte(b)
        a.b.writeBits(math.Float64bits(v), nbits: 64)
        tDelta = wint64(t - a.t)
        buf := make([]byte, binary.MaxVarintLen64)
        for _, b := range buf[:binary.PutUvarint(buf, tDelta)] {
           a.b.writeByte(b)
        a.writeVDelta(v)
   default:
```

```
DTCC 2023
第十四届中国数据库技术大会
DATABASE TECHNOLOGY CONFERENCE CHINA 2023
```

```
func (a *logAppender) AppendLog(t int64, v string) {
   chunk format:
   // 1. write time section
   buf := make([]byte, 8)
   binary.BigEndian.PutUint64(buf, uint64(t))
   for _, b := range buf {
       a.b.writeByte(b)
   lenbuf := make([]byte, 8)
   fmt.Println( a... "en(v)", len(v))
   binary.BigEndian.PutUint64(lenbuf, wint64(len(v)))
   for _, b := range lenbuf {
       a.b.writeByte(b)
   fmt.Println( a...: "2--a.b.stream: ",a.b.stream)
```


eBPF

Parca

[bpf profile_cpu] "has_unwind_information" works rather than "has_fp" even though a porgrame(C) compiled with frame pointers

https://github.com/parca-dev/parca-

kernel userspace readUserStack ebpf map dwarf_stack_ walk_user_stacktrace_impl -> traces obtainProfiles → stack_traces bpf_tail_call profile_cpu ConvertToPprof → stack_counts

OpenTelemetry Auto Instrumentation using eBPF https://github.com/open-telemetry/opentelemetry-go-instrumentation/pull/149

eBPF

总结

- 1、各类方案百花齐放,多调研和灰度验证
- 2、平台聚焦服务业务为主
- 3、找到适合业务的技术方案
- 4、慎重叠加解决方案
- 5、尽量抽象平台能力,扩展底层能力

谢谢

欢迎关注公众号~

Grafana fans

欢迎关注公众号~

TemporalData

CloudnativeDat

Alalgorithm

Distribute