Devoir surveillé n°11

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 —

Les parties II et III sont liées mais la partie I est indépendante du reste du problème.

Partie I -

Soit $p \in \mathbb{N}^*$ et $A \in \mathcal{M}_p(\mathbb{R})$ telle que $A^2 \neq 0$ et $A^3 = 0$. On note I la matrice identité de $\mathcal{M}_p(\mathbb{R})$. Pour tout $t \in \mathbb{R}$, on pose $E(t) = I + tA + \frac{t^2}{2}A^2$.

- **1.** Vérifier que pour tout $(s, t) \in \mathbb{R}^2$, E(s + t) = E(s)E(t).
- **2.** En déduire que $E(t)^n = E(nt)$ pour tout $t \in \mathbb{R}$ et tout $n \in \mathbb{N}$.
- **3.** Montrer que E(t) est inversible pour tout $t \in \mathbb{R}$ et déterminer son inverse.
- **4.** Montrer que la famille (I, A, A²) est une famille libre de $\mathcal{M}_n(\mathbb{R})$.
- **5.** En déduire que l'application $E: t \in \mathbb{R} \mapsto E(t)$ est injective.
- **6.** Dans cette question, p = 3 et $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Expliciter la matrice E(t) pour tout $t \in \mathbb{R}$ sous la forme d'un tableau matriciel.

Partie II -

On note $\mathcal{B}_0 = (e_1, e_2)$ la base canonique de \mathbb{R}^2 . Soit la matrice $A = \begin{pmatrix} 4 & -6 \\ 1 & -1 \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$. On note f l'endomorphisme de \mathbb{R}^2 canoniquement associé à A.

- 1. Montrer que $F = Ker(f 2 Id_{\mathbb{R}^2})$ et $G = Ker(f Id_{\mathbb{R}^2})$ sont deux droites vectorielles supplémentaires dans \mathbb{R}^2 . Préciser un vecteur directeur u de F et un vecteur directeur v de G.
- 2. Sans calculs, déterminer la matrice de l'endomorphisme f dans la base $\mathcal{B} = (u, v)$.
- 3. En déduire qu'il existe une matrice P inversible et une matrice D diagonale dans $\mathcal{M}_2(\mathbb{R})$ telles que $A = PDP^{-1}$. Expliciter P, D et P^{-1} .
- **4.** Expliciter D^n pour tout $n \in \mathbb{N}$. Démontrer que $A^n = PD^nP^{-1}$ pour tout $n \in \mathbb{N}$. En déduire l'expression de A^n pour tout $n \in \mathbb{N}$ sous forme d'un tableau matriciel.

Partie III -

On reprend les notations de la partie II.

1. En utilisant l'inégalité de Taylor-Lagrange, montrer que pour tout réel t,

$$e^t = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{t^k}{k!}$$

2. Pour tout $t \in \mathbb{R}$ et tout $n \in \mathbb{N}$, on pose $E_n(t) = \sum_{k=0}^n \frac{t^k}{k!} A^k$. On écrira cette matrice sous la forme

$$\left(\begin{array}{cc} a_n(t) & b_n(t) \\ c_n(t) & d_n(t) \end{array}\right)$$

Expliciter sous forme de sommes les coefficients $a_n(t)$, $b_n(t)$, $c_n(t)$ et $d_n(t)$ pour tout $t \in \mathbb{R}$.

3. Pour tout $t \in \mathbb{R}$, on pose

$$a(t) = \lim_{n \to +\infty} a_n(t) \qquad b(t) = \lim_{n \to +\infty} b_n(t) \qquad c(t) = \lim_{n \to +\infty} c_n(t) \qquad d(t) = \lim_{n \to +\infty} d_n(t)$$

et
$$E(t) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}$$
. Expliciter $a(t)$, $b(t)$, $c(t)$ et $d(t)$ pour tout $t \in \mathbb{R}$.

4. Montrer qu'il existe des matrices Q et R de $\mathcal{M}_2(\mathbb{R})$ telles que

$$\forall t \in \mathbb{R}, \ \mathrm{E}(t) = e^{2t}\mathrm{Q} + e^{t}\mathrm{R}$$

et expliciter Q et R.

- 5. Calculer les matrices Q^2 , R^2 , QR et RQ. Que peut-on dire des endomorphismes q et r canoniquement associés à Q et R? On précisera sa réponse à l'aide des droites F et G de la question H.1.
- 6. En déduire que

$$\forall (s,t) \in \mathbb{R}^2, \ \mathrm{E}(s+t) = \mathrm{E}(s)\mathrm{E}(t)$$

Que dire de $E(t)^n$ pour $t \in \mathbb{R}$ et $n \in \mathbb{N}$? Que dire de l'inversibilité de E(t) et de son éventuel inverse pour $t \in \mathbb{R}$?

L'application E : $t \in \mathbb{R} \mapsto \mathrm{E}(t)$ est-elle injective?

Problème 2 —

Partie I – Définition d'une application

Soit *n* un entier naturel non nul.

Soit T(X) un polynôme de $\mathbb{C}[X]$ de degré n.

Soit f l'application définie sur $\mathbb{C}[X]$ qui à tout P(X) de $\mathbb{C}[X]$ associe Q(X) + XR(X) où Q(X) et R(X) sont respectivement le quotient et le reste de la division euclidienne de $P(X^2)$ par T(X).

On a donc $P(X^2) = Q(X)T(X) + R(X)$ avec deg(R(X)) < deg(T(X)).

On notera f_n la restriction de f à $\mathbb{C}_n[X]$.

- 1. Montrer que f est une application linéaire.
- **2.** Montrer que f_n est un endomorphisme de l'espace vectoriel ($\mathbb{C}_n[X], +, .$).

- **3.** Dans cette question uniquement n = 2 et $T(X) = X^2$.
 - **a.** Donner la matrice A de f_2 sur la base canonique $(1, X, X^2)$.
 - **b.** Calculer A^2 . En déduire que f_2 est bijective et donner son application réciproque. En déduire la nature de f_2 .

Partie II – Etude d'un cas particulier

Soit a un complexe fixé. Dans cette partie uniquement, n = 3 et $T(X) = X^3 + X^2 + a$.

1. Montrer que f_3 a pour matrice sur la base canonique $(1, X, X^2, X^3)$ de $\mathbb{C}_3[X]$:

$$B = \begin{pmatrix} 0 & 0 & -1 & -a-1 \\ 1 & 0 & a+1 & 1+a+a^2 \\ 0 & 0 & -a & -a-1 \\ 0 & 1 & 1 & 2a+2 \end{pmatrix}$$

- **2.** Calculer le déterminant de f_3 .
- 3. Donner les valeurs de a pour lesquelles f_3 n'est pas bijective.
- **4.** Dans cette question a = -1.
 - **a.** Donner une base de Ker f_3 , le noyau de f_3 ainsi qu'une base de Im f_3 , l'image de f_3 .
 - **b.** Le noyau et l'image de f_3 sont-ils supplémentaires ?

Partie III - Etude du noyau

- 1. Soit P(X) un polynôme non nul de degré p tel que : 2p < n. Montrer que f(P(X)) est non nul.
- **2.** Soit P(X) un polynôme. Montrer qu'il appartient au noyau de f si et seulement si il existe un polynôme R(X) de degré strictement inférieur a n tel que : $P(X^2) = R(X)(1 XT(X))$.
- **3.** En déduire que si P(X) est un élément du noyau de f, alors il appartient à $\mathbb{C}_n[X]$.
- **4.** Déduire de la question **III.2** que pour tout élément P du noyau de f et que pour tout k de \mathbb{N} tel que deg(P(X)) + $k \le n$, le polynôme X^k P(X) appartient au noyau de f.
- 5. On suppose dans cette question que le noyau de f n'est pas réduit au polynôme nul. Soit I l'ensemble des entiers naturels k tels qu'il existe un polynôme du noyau de f qui a pour degré k.
 - **a.** Montrer que I possède un plus petit élément d.
 - **b.** Soit $P_0(X)$ un polynôme du noyau ayant pour degré d. Soit $P_1(X)$ un autre polynôme du noyau ayant pour degré d. Montrer qu'il existe un complexe c tel que $P_1(X) = cP_0(X)$.
 - **c.** Montrer qu'un polynôme P(X) appartient au noyau de f si et seulement s'il existe un polynôme S(X) de degré inférieur ou égal à n-d tel que $P(X) = S(X)P_0(X)$.
- **6.** On suppose dans cette question que $T(X) = X^3 + X^2 1$. Donner le noyau de f.

Partie IV - Etude d'un produit scalaire

Dans cette partie on prendra $T(X) = X^2$ et on considérera g la restriction de f_2 à $\mathbb{R}_2[X]$.

- 1. Montrer que g est bien un endomorphisme de l'espace vectoriel $r\acute{e}el$ ($\mathbb{R}_2[X], +, .$). Donner sa matrice A sur la base canonique de $\mathbb{R}_2[X]$.
- **2.** Soit $\langle .,. \rangle$ définie sur $\mathbb{R}_2[X]^2$ à valeurs dans \mathbb{R} par :

$$\forall (U(X),V(X)) \in \mathbb{R}_2[X]^2, \langle U(X),V(X)\rangle = U(1)V(1) + U'(1)V'(1) + U''(1)V''(1)$$

Montrer que $\langle .,. \rangle$ est un produit scalaire sur $(\mathbb{R}_2[X],+,.)$.

- 3. Montrer que la matrice A de g sur la base canonique est une matrice orthogonale.
- **4. a.** La base canonique de $\mathbb{R}_2[X]$ est-elle orthonormale pour le produit scalaire $\langle ., . \rangle$?
 - **b.** L'application g est-elle une isométrie vectorielle pour le produit scalaire $\langle .,. \rangle$?