1.3 Healthcare Data resources and UK BioBank

Angela Wood and Fergus Imrie

amw79@medschl.cam.ac.uk

Aims

- Overview of major healthcare data resources
 - UK Biobank
 - Emerging Risk Factors Collaboration
 - NHS Digital Trusted Research Environment
 - INTERVAL
- Considerations and challenges in handling healthcare data resources
- Inspire new research ideas

Objectives

- Challenges of healthcare dataset (UK Biobank)
- Individual participant data meta-analysis (Emerging risk factors collaboration)
- Population-wide Electronic Health records (NHS Digital Trusted Research Environment)
- Large-scale multi-omics (INTERVAL)

Challenges of healthcare dataset

- Healthcare data from different sources:
 - Imaging
 - Text
 - Tabular (including omcis and patient health history)
 - o Temporal....
- Source of such data: can impact the data and usability
 - o EHR
 - Biobanks
 - Clinical trials
 - Medical studies
- UK BioBank
 - o https://www.ukbiobank.ac.uk/
 - Over 0.5 mil volunteers in UK, 40 to 69 yo
 - Enrollment between 2006 to 2010
 - Invitation-based
 - Follow-up of up to 30 years after enrollment
 - o Information from Biobanks: Heterogeneity of information
 - Questionnaires
 - Lifestyle, physical activity, habits, diet and social/professional status
 - Test of memory (source of reporting bias) –Text
 - Interview
 - Clinical history questions (diagnosis, symptoms, and tests)
 - Conducted by nurses (source of reporting bias)
 - Physical Measurement
 - Body composition, visual and auditory acuity, bp, heigh, weight etc.

- imaging
- Basic screenings/ tests
 - FEV, FVC, ultrasound bone densitometry
- Fitness test
 - ECG waveforms
- Samples
 - Blood cell counts, blood and urine composition, DNA information
 - Omics test undertaken Genetics
- Features can be broadly categorized into:
 - Demographics questionnaire
 - Physical measurements and body compositions physical measurements
 - Clinical history questionnaire, nurse interview
 - Symptoms
 - Diagnostic tests and biomarkers Basic screening/tests, fitness test, samples
 - Physical activity fitness test
 - Psychology questionnaire
 - Diet and nutrition questionnaire
 - Social and environment questionnaire
- Data collection
 - 22 Assessment centers
 - Allowing regional variation
 - Problem with harmonizing across regions
 - Problems with equipment and methods
 - Enrolled over four years between 2006 to 2010
 - Time: source of differences between samples
- Medical dataset vs ML datasets

Medical datasets	ML datasets	
Example: BreCaHAD https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-019-4121-7	Example: ImageNet https://www.image-net.org/	
Often relatively small	Can be very large	
Dirty: different conditions, missing data, missing outcomes etc.	Clean	
Multimodal (heterogenous)	Unimodal	
Broad range of purposes: Make discoveries, test hypothesis, insurance "If we could do something" Render the results to be flawed/ impossible/	To test algorithms = often have performed preliminary evaluations	

meaningless

- Unique challenges in healthcare data
 - Multiple streams of measurement
 - Sparse, irregularly, and informatively sampled measurements
 - Multiple outcomes of interest
 - Various events of interests
 - Various morbidities (i.e. not just cats vs dogs)
 - True clinical states are sometime unobserved (e.g. onset of disease)
 - Many possible patterns (heterogenous phenotypes, comorbidities)
- Accessing healthcare data
 - Strict regulations due to valid concerns regarding privacy
 - Strong regulators (e.g. HIPAA and GDPR) not allowing direct share private data to ML community from data holders (e.g. hospitals)

Assessing cardiovascular risk using multiple studies: The Emerging Risk Factors Collaboration

- Motivation
 - Enhance precision/ reduce overfitting/ increase generalizability
- Challenges
 - Harmonization of information
 - Combining analysis of different study designs
 - Accounting for measurement errors
 - Adjusting for known or potential confounders observed in a subset of studies
 - Assessing effect modification (within or between studies)
 - Dealing with missing data
- Emerging risk factors collaboration (ERFC)
 - https://www.phpc.cam.ac.uk/ceu/erfc/
 - Consortium of > 130 prospective studies from 30 countries
 - The Emerging Risk Factors Collaboration: analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases
 - https://link.springer.com/article/10.1007/s10654-007-9165-7
 - Collated and harmonized individual-participant data (IPD) from ~2.5M participants
 - Aim: to study risk factors for cardiovascular disease and cause-specific mortality in greater detail:
 - Circulating lipid markers
 - Major lipids, apolipoproteins, and risk of vascular disease. JAMA, 2009
 - https://jamanetwork.com/journals/jama/fullarticle/184863
 - Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA, 2009

- https://jamanetwork.com/journals/jama/article-abstract/184315
- Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet, 2010
 - https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(10)60319-4/fulltext
- Lipid-related markers and cardiovascualar disease prediction.
 JAMA 2012
 - https://jamanetwork.com/journals/jama/fullarticle/1187927
- Inflammatory markers
 - C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant metaanalysis. Lancet, 2010
 - https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(09)61717-7/fulltext
 - Interleukin-6 receptor pathways in coronary disease: a collaborative meta-analysis of 82 studies. Lancet 2012
 - https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(11)61931-4/fulltext
 - C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 2012
 - https://www.nejm.org/doi/full/10.1056/nejmoa1107477
- Glycaemia markers
 - Surveillance intervals for small abdominal aortic aneurysms: a meta-anaylsis. JAMA. 2013
 - https://jamanetwork.com/journals/jama/fullarticle/1656254
- Adiposity markers
 - Adult height and the risk of cause-specific death and vascular morbidity in 1 million people: individual participant meta-analysis. Int J Epidemiol 2012
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465767/
 - Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2014
 - https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(14)60460-8/fulltext
- Diabetes
 - Leucocyte Telomere Length and Risk of Type 2 Diabetes Mellitus: New Prospective Cohort Study and Literature-Based Meta-Analysis. Lustig AJ, editor. PLoS ONE
 - https://journals.plos.org/plosone/article?id=10.1371/journal. pone.0112483

- Cardiometabolic multimorbidity
 - Association of cardiometabolic multimorbidity with mortality. JAMA. 2015
 - https://jamanetwork.com/journals/jama/fullarticle/2382980
- Alcohol
 - Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies
 - https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)30134-X/fulltext
- Depression
 - Association between depressive symptoms and incident cardiovascular diseases. JAMA. 2020
 - https://jamanetwork.com/journals/jama/fullarticle/2774050#
 :~:text=ln%20a%20pooled%20analysis%20of%20563%20
 255%20participants%20in%2022,magnitude%20of%20ass
 ociations%20was%20modest.
- Aetiological hypothesis and risk prediction assessment
- Methodological developments occurring in parallel as necessary
- Exemplar: Risk thresholds for alcohol consumption
 - o Rationale:
 - Low-risk limits recommended for alcohol consumption vary substantially across different national guidelines
 - o Aim:
 - To define thresholds associated with lowest risk for all-cause mortality and

- No overlapping participants across the three groups
- No missing data
- People with no existing CVD
- Harmonization of information across studies
 - Months taken to harmonizing
 - Checking with study coordinators for agreement

Methods to record alcohol consumption	Different types of alcohol	Various recoding formats	
Self-administered Interview-led questionnaires Food frequency questionnaires Dietary recall surveys	Beer, wine, cider, spirits/liquor, alcopops, long drink, fortified wine, liqueur, sake, shochu, tharra, aperitif/digestif	Amount in a given period Frequency of drinks in a given period Categories for amount of frequency	
↓			
Harmonised and cross-referenced into the following variables: Amount, status, duration, stop age, start age, years stopped, usage frequency and Categorised as "never", "never/ex", "ex", "ex/current", and "current" drinkers			
↓			
UK standard scale of grams/ week (1 unit = 8 grams of ethanol)			

- ERFC covering the highest recruitment amongst ERFC, EPIC-CVD, UK Biobank:
- Consumption divided into 4 categories:
 - Between 7 to 10% include those drinking more than recommended
 - Majority drinking within guidelines
- Smokers
- UK biobank more healthy than others
- Individual participant data meta-analysis strategy
 - Prospective studies: cohort (78)/ nested case-control (4)/ case-cohort(1)

2-Stage analysis strategy

Stage 1: Estimate study-specific risk ratios
Cox model/ (un)conditional logistic model/ Prentice-Weighted Cox model
Stratified by sex, centre
Adjusted for age, smoking and diabetes

 \downarrow

Stage 2: Pool estimates by random-effects meta-analysis

- Accounting for measurement error in reported drinking
 - Publications of:
 - Measurement error as an explanation for the alcohol harm paradox: analysis of eight cohort studies
 - https://academic.oup.com/ije/article/49/6/1836/5913111?login=fals

e

- AJE 2013 (?)
- Measurement error/ within-person variability in exposure/confounders
 - Biased associations in analysis using only single measurements
 - Often quantified by regression dilution ratio (RDR)
- To correct bias, we estimated long-term "usual" alcohol consumption
 - Multi-level regression calibration
 - 152,640 serial assessments in 71,011 individuals from 37 studies
 - Regress re-survey measures (or lifetime alcohol consumption available in EPIC-CVD) on baseline alcohol consumption, adjusted for relevant covariates with random effects for study and re-survey
 - Estimate conditional expectations of usual levels and include in regression models
- Study and re-survey regression dilution ratios
 - Average regression dilution ratio around 0.54
 - Enhanced precision to assess less common outcomes
- Key points
 - Described:
 - Challenges arising from disparate study designs

- Data available for enhanced precision
- Handling measurement error using repeated measures in sub-samples
- Computational limitations individual participant data meta-analysis with large datasets
- Translation of findings in to clinically useful interpretations
- Stat program:
 - http://www.phpc.cam.ac.uk/ceu/erfc/programs//

Part 3: Population-wide Electronic Health Records Exemplar: NHS Digital Trusted Research Environment

- BHF data science centre:
 - Interrogating linked health data from >60 million people to better understand CVD
 - o https://www.hdruk.ac.uk/helping-with-health-data/bhf-data-science-centre/
- UK-wide network of national Trusted Research Environment (TREs)

[Diagram]

- NHS Digital's new Trusted Research Environment
 - Linked electronic health records for research on a nationwide cohort of more than 54 million people in England: data resource
 - https://www.bmj.com/content/373/bmj.n826

- Enables whole population research:
 - >55 million people alive on 1st Jan 2020 -> >95% of population
 - Statistically powerful
 - Comprehensive information on characteristics and health outcomes
 - Includes all age groups, ethnicities, geographic locations, socioeconomic, health and personal characteristics
 - All datasets updated monthly
- CVD-COVID-UK/COVID-IMPACT consortium: enabling across to UK population linked health data
 - https://www.hdruk.ac.uk/projects/cvd-covid-uk-project/

- bhfdsc@hdruk.ac.uk
- o Population coverage:
 - England (NHSD): >55M
 - Scotland (Safe Haven): >5M
 - Wales (SAIL): >3M
- Consortium
 - >250 members
 - >40 NHS and academic organisations
- Analysts:
 - >70 analysts in the TREs
 - TRE(s) accessible by approved researchers
- Project:
 - 30+ approved projects, more coming
 - Protocols/ algorithms in GitHub
 - Published outputs...
- CVD-COVID-UWCOVID-IMPACT projects:
 - Methods
 - Data management and analysis methods
 - High-throughput phenotyping approaches
 - Improving methods to minimise bias in ethnicity data
 - Medicines
 - Effects of ACE inhibitors & ARBs on COVID-19
 - Impact of COVID-19 on managing BP and lipids
 - Assessing COVID-19 impact through medicines
 - Antipsychotic prescribing during the pandemic and
 - cardiovascular risk in patients with dementia
 - Evaluation of antithrombotic use on COVID-19 outcomes
 - Repurposing medicines to prevent COVID-19
 - Others
 - COVID-19 infection, vaccination and vascular risk
 - Direct and indirect effects of COVID-19 in people with
 - cardiovascular disease
 - COVID and cardiovascular disease risk prediction
 - Impact of COVID-19 on Congenital Heart Disease (CHD)
 - patients undergoing cardiac surgery
 - Influence of multi-morbidity on outcomes of COVID-19
 - Predicting severe COVID-19 in people with rare diseases Genomics of multi-morbidity and susceptibility to COVID-19
 - Longer-term effects of COVID-19 in non-hospitalised people
 - Evaluating how palliative and end of life care teams have responded to COVID-19
 - Coronary revascularisation and outcomes before and after the COVID-19 pandemic

- Children admitted to hospital with COVID-19 risk factors, risk groups and NHS care utilization
- Understanding the increased risk of severe COVID-19 in people with intellectual & developmental disabilities
- Risks of cardiovascular disease in people with COVID-19 and pre-existing respiratory disease
- Impact of COVID-19 on eye disease
- Impact of COVID-19 on heart failure
- Impact of COVID-19 on people with diabetes
- Novel and key benefits of population-wide data for research:
 - Scale and depth
 - Generalisability
 - Public health policies
- Challenges of using population-wide data for research
 - ~65 million people alive on 1st Jan 2020, registered with an NHS general practitioners in England, Scotland and Wales
 - Consistent data curation pipelines and quality checks
 - Defining population of interest
 - Phenotyping diseases and conditions
 - Study designs
 - Analytical approaches and interpretation
 - Distributing analytical pipelines between systems
 - Computationally efficient analyses
 - Open access Protocols/algorithms in GitHub
- Linking data from different healthcare settings to ascertain incident cardiovascular events
 - https://www.bmj.com/content/373/bmj.n826

62 966 people with a first ever myocardial infarction from 1 Jan-31 Oct 2020 (1.4 incident events per 1000 person years)

- 3.5 million people with COVID-19 by mid Feb 2021:
 - 3.1 million with a positive test
 - 2.4 million diagnosed in primary care
 - 364,000 hospitalized
- Higher risks of major vascular and arterial disease following hospitalised COVID-19
 - Non-hospitalised also remain higher risk (double) of vascular events of up to 2 years
 - Knight et al., 2022 Circulation (?)
- Key points:
 - During the COVID-19 pandemic, it has become possible to conduct research of clinical and policy relevance at UK population-wide scale using rich, diverse linked national health data
 - A critical enabler has been the establishment in 2020-21 of NHS Digital's new trusted research environment for England
 - This has enabled many, well-powered studies and insights
 - All analyses require essential data curation/wrangling tasks (at least 80% of research project time)
 - Transparency in all stages of analyses reproducible research
 - National coordination, a team science approach and public support essential
 - Hot press: CODE-EHR best practice framework for the use of structured electronic healthcare records in clinical research, BMJ 2022

Part 4: Large-scale multi-omics: Exemplar "INTERVAL"

- INTERVAL trial:
 - https://www.intervalstudy.org.uk/
 - Randomized trial assessing how often blood donors can safely give whole blood

- In addition to questions that can be answered by the randomised trial, created a bioresource of 50,000 trial participants to address other epidemiological questions, particularly those relating to genetics
- Domains of the expressed genome: study at scale with Interval bioresource:
 - https://www.phpc.cam.ac.uk/ceu/interval-bioresource/
 - All 50,000 participants:
 - Basic lifestyle and self-reported health information using web-based questionnaire

Example of studies from INTERVAL:

- The allelic landscape of human blood cell trait variation and links to complex disease.
 Cell 2016
 - https://www.cell.com/cell/fulltext/S0092-8674(16)31463 returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867416314635%3Fshowall%3Dtrue
 - Astle et al.
- Genomic atlas of the human plasma proteome. Nature 2018
 - o https://www.nature.com/articles/s41586-018-0175-2
 - o Sun et al.
- Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals.
 Nature Metabolism 2020
 - o https://www.nature.com/articles/s42255-020-00287-2
 - Folkersen et al.
- Whole-exome sequencing identifies rare genetic variants associated with human plasma metabolites. AJHG 2022
 - https://www.cell.com/ajhg/fulltext/S0002-9297(22)00157-4
 - Bomba et al.
- Machine learning optimized polygenic scores for blood cell traits identify sex-specific trajectories and genetic correlations with disease. Cell Genomics 2022
 - https://www.cell.com/cell-genomics/pdf/S2666-979X(21)00107-5.pdf
 - Xu et al.

Final remarks:

- Large-scale data resources more widely available and accessible
 - With restrictions
- Unique challenges:
 - Esp. from routine health data (those not collected for research)
- Data generally need to be pre-processing steps and data quality checks
 - Project specific
- Get in touch:
 - o amw79@medschl.cam.ac.uk