CÁLCULO NUMÉRICO UERJ

Método dos Mínimos Quadrados - Caso Linear

Rodrigo Madureira rodrigo.madureira@ime.uerj.br IME-UERJ

Sumário

- Introdução
- 2 Método dos Mínimos Quadrados Caso Linear
- 3 Exemplo
- 4 Bibliografia

Seja a tabela a seguir:

χ	χ1	x ₂	 x_{m-1}	χ_{m}
y	y ₁	y 2	 $y_{\mathfrak{m}-1}$	y _m

Desejamos ajustar uma curva $y = \phi(x)$ aos pontos da tabela.

Essa curva pode ser uma reta, uma parábola, uma exponencial, etc.

Se for escolhida uma reta $\varphi(x) = ax + b$, devemos determinar a e b de modo que a reta se ajuste ao conjunto de pontos dados com o mínimo de desvios entre os pontos e a reta.

Figura: Visão macroscópica de um ponto da tabela e da reta

Denotamos

 $d_i = y_i - \phi(x_i) = y_i - \alpha x_i - b$ como o desvio de cada ponto (x_i, y_i) da tabela em relação à reta $\phi(x)$.

O ideal seria que cada desvio fosse nulo para o ajuste da reta, mas em geral,

$$\varphi(x_i) = ax_i + b \neq y_i.$$

E por que usamos a abordagem da soma dos mínimos quadrados dos desvios para fazer o ajuste da reta aos pontos?

Abordagem 1: Minimizar a soma dos desvios

Exemplo: Ajuste de uma reta a apenas dois pontos (x_1, y_1) e (x_2, y_2) .

Problema: A reta $\varphi_1(x)$ se ajusta perfeitamente aos dois pontos. Mas, não é a única que se ajusta a eles com soma de desvios nula. Logo, esta abordagem falha.

Abordagem 2: Minimizar a soma dos módulos dos desvios $(S = |d_1| + |d_2|)$

 $\Rightarrow S_2 = |d_1| + |d_2| = 2|d_1| \neq 0$

Problema: Para minimizar uma função, devemos derivá-la e igualar a zero. Porém, a função modular $|d_i| = |y_i - ax_i - b|$ não possui derivada na origem em relação às incógnitas α e b, para i = 1, 2. Logo, esta abordagem também falha.

Então, vamos tratar da abordagem que realmente funciona: **minimizar a soma dos quadrados dos desvios**.

Se temos uma tabela com m pontos

χ	χ_1	χ_2	 x_{m-1}	$\chi_{\rm m}$
y	y ₁	y 2	 $y_{\mathfrak{m}-1}$	ym

e queremos ajustá-los a uma reta $\phi(x)=\alpha x+b$ de modo a **minimizar os quadrados dos desvios** $d_i^2=(y_i-\phi(x_i))^2=(y_i-\alpha x_i-b)^2$, para $i=1,2,\ldots,m$.

Neste caso, a reta que se ajusta aos pontos é única e o desvio ao quadrado d_i^2 possui derivada em relação às incógnitas α e b em cada ponto $i=1,2,\ldots,m$.

Assim, a soma dos quadrados dos desvios será dada por:

$$S = d_1^2 + d_2^2 + \ldots + d_m^2 = \sum_{i=1}^m d_i^2 = \sum_{i=1}^m (y_i - ax_i - b)^2$$

Para achar a **reta que minimiza a soma dos quadrados dos desvios**, devemos encontrar os valores de seus coeficientes α e b, que são as nossas incógnitas.

Para minimizar a soma dos quadrados destes desvios, devemos derivar S em relação às incógnitas α e b e igualar a zero:

$$\frac{\partial S}{\partial a} = 0,$$
 (1) $\frac{\partial S}{\partial b} = 0.$ (2)

De (1), obtemos:

$$\frac{\partial S}{\partial a} = 0 \Rightarrow \frac{\partial}{\partial a} \left(\sum_{i=1}^{m} (y_i - ax_i - b)^2 \right) = \sum_{i=1}^{m} \left[\frac{\partial}{\partial a} (y_i - ax_i - b)^2 \right] = 0$$

$$\Rightarrow \sum_{i=1}^{m} [2(y_i - ax_i - b)(-x_i)] = 0 \Rightarrow 2 \sum_{i=1}^{m} (y_i - ax_i - b)(-x_i) = 0$$

$$\Rightarrow \sum_{i=1}^{m} (-x_i y_i + ax_i^2 + bx_i) = 0 \Rightarrow \sum_{i=1}^{m} (-x_i y_i) + \sum_{i=1}^{m} ax_i^2 + \sum_{i=1}^{m} bx_i = 0$$

$$\Rightarrow a \sum_{i=1}^{m} x_i^2 + b \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} x_i y_i \quad (3)$$

De (2), obtemos:

$$\begin{split} &\frac{\partial S}{\partial b} = 0 \Rightarrow \frac{\partial}{\partial b} \left(\sum_{i=1}^{m} (y_i - ax_i - b)^2 \right) = \sum_{i=1}^{m} \left[\frac{\partial}{\partial b} (y_i - ax_i - b)^2 \right] = 0 \\ &\Rightarrow \sum_{i=1}^{m} [2(y_i - ax_i - b)(-1)] = 0 \Rightarrow 2 \sum_{i=1}^{m} (y_i - ax_i - b)(-1) = 0 \\ &\Rightarrow \sum_{i=1}^{m} (-y_i + ax_i + b) = 0 \Rightarrow \sum_{i=1}^{m} (-y_i) + \sum_{i=1}^{m} ax_i + \sum_{i=1}^{m} b = 0 \\ &\Rightarrow a \sum_{i=1}^{m} x_i + b \sum_{i=1}^{m} 1 = \sum_{i=1}^{m} y_i \quad \Rightarrow a \sum_{i=1}^{m} x_i + b \cdot m = \sum_{i=1}^{m} y_i \quad (4) \end{split}$$

Logo, para descobrir a **reta dos mínimos quadrados** $\varphi(x) = \alpha x + b$, devemos descobrir α e b através do sistema formado pelas equações (3) e (4):

$$\begin{cases} \left(\sum_{i=1}^{m} x_i^2\right) a + \left(\sum_{i=1}^{m} x_i\right) b = \sum_{i=1}^{m} x_i y_i \\ \left(\sum_{i=1}^{m} x_i\right) a + \left(\sum_{i=1}^{m} 1\right) b = \sum_{i=1}^{m} y_i \end{cases}$$

Resumindo:

Para achar a reta $\phi(x) = ax + b$ que se ajusta aos pontos de uma tabela

χ	χ ₁	χ_2	 x_{m-1}	$\chi_{\rm m}$
y	y ₁	y ₂	 $y_{\mathfrak{m}-1}$	ym

pelo Método dos Mínimos Quadrados, devemos encontrar primeiro as incógnitas α e b da reta no sistema linear

$$\begin{bmatrix} \sum_{i=1}^m x_i^2 & \sum_{i=1}^m x_i \\ \sum_{i=1}^m x_i & \sum_{i=1}^m 1 \\ b \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^m x_i y_i \\ \sum_{i=1}^m y_i \end{bmatrix}$$

Considere a tabela

							11,0	
f(x)	1,0	2,0	4,0	4,0	5,0	7,0	8,0	9,0

Estime o valor de f(15,5) com o ajuste pela reta dos mínimos quadrados.

Solução: Nete exemplo, temos 8 pontos na tabela. Logo, m=8. Portanto, para achar as incógnitas α e b da reta $\phi(x)=\alpha x+b$, devemos resolver o sistema linear

$$\begin{bmatrix} \sum_{i=1}^{8} x_i^2 & \sum_{i=1}^{8} x_i \\ \sum_{i=1}^{8} x_i & \sum_{i=1}^{8} 1 \\ b \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{8} x_i y_i \\ \sum_{i=1}^{8} y_i \end{bmatrix}$$

Vamos resolver primeiro os somatórios da seguinte forma:

i	χ_{i}	yi	χ_i^2	x_iy_i
1	1,0	1,0	1,0	1,0
2	3,0	2,0	9,0	6,0
3	4,0	4,0	16,0	16,0
4	6,0	4,0	36,0	24,0
5	8,0	5,0	64,0	40,0
6	9,0	7,0	81,0	63,0
7	11,0	8,0	121,0	88,0
8	14,0	9,0	196,0	126,0
SOMAS	56,0	40,0	524,0	364,0

Agora, resolvemos o sistema linear:

$$\begin{bmatrix} 524 & 56 \\ 56 & 8 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 364 \\ 40 \end{bmatrix}$$

Usando Eliminação de Gauss, obtemos o sistema aumentado:

$$\left[\begin{array}{ccc|c} 524 & 56 & | & 364 \\ 56 & 8 & | & 40 \end{array}\right] \begin{array}{ccc|c} L_1 & (\div 4) & \Rightarrow & \left[\begin{array}{ccc|c} 131 & 14 & | & 91 \\ 7 & 1 & | & 5 \end{array}\right] \begin{array}{c} L_1 \\ L_2 \end{array}$$

$$piv\hat{o} = 131; \quad m_{21} = \frac{7}{131} \Rightarrow L_2 \leftarrow L_2 - \frac{7}{131}L_1.$$

$$\begin{bmatrix} 131 & 14 & | & 91 \\ 0 & 33/131 & | & 18/131 \end{bmatrix} \begin{array}{c} L_1 \\ L_2 \end{array}$$

Solução:

$$b = \frac{18}{33} = \frac{6}{11}$$
; $131a + 14(\frac{6}{11}) = 91 \Rightarrow a = \frac{7}{11}$.

Logo, a reta dos mínimos quadrados procurada é $\varphi(x) = \frac{7}{11}x + \frac{6}{11}$.

Agora, para estimar o valor de f(15,5), basta calcular $\phi(15,5)$ na reta encontrada:

$$\varphi(15,5) = \frac{7}{11}(15,5) + \frac{6}{11} \approx 10,4091.$$

Referências I

- DORN, W. S.; McCRACKEN, D.D.. Cálculo Numérico Com Estudos de Casos Em Fortran IV. Ed. Campus, 1978.
- RUGGIERO, M.; LOPES, V.. Cálculo Numérico: Aspectos Teóricos e Computacionais. Pearson, 1996, 2a. Ed.
- BURDEN, R.. Numerical Analysis. Brooks/Cole Pub Co, 1996, 6th Edition.