Deterministic Optimization

Linear Optimization Modeling Network Flow Problems

Andy Sun

Assistant Professor
School of Industrial and Systems Engineering

Maximum Flow Problem

Modeling using Linear Programs

Learning Objectives

Discover another (pair of)
 problem(s) related to the
 transportation problem, which is
 even more interesting, has a
 deep theory behind, and many
 applications.

Maximum Flow Problem

A general directed graph Fixed supply and demand Bipartite graph

A million-dollar question: How much supply b_s can be transported from source to target through the network with limited arc capacity?

Maximum Flow Problem: LP Model

Decision variables: x_{ij} for $(i,j) \in \mathcal{A}$, where \mathcal{A} is the set of arcs.

Arc capacity

A Concrete Example

Capacity constrained network

Max flow solution

Minimum Cut Problem

A s-t **cut** S is a subset of nodes Such that $S \in S$ and $t \notin S$

So a **cut** *S* is a separation of Source node from target node

Capacity of a cut S is the total capacity of arcs that cross from S to its complement Denoted as $C(S) := \sum_{(i,j) \in A, i \in S, j \notin S} c_{ij}$

A million-dollar question:

Can you find a cut with minimum capacity?

 $Minimum cut = C(S_5) = 8$

Minimum cut = Max Flow

Minimum cut = $C(S_5) = 8 = Max$ Flow

Is this a Coincidence?

Not at all! There is a deep theory behind it – LP duality.

Max-flow and min-cut are two LPs dual to each other.

Intuitively, it makes sense too.

Summary

- We constructed a LP model for maximizing the amount of flow that can be pushed through a network.
- We discovered another related LP, Minimum cut problem, which is "dual" to the max flow problem.