

Part I: A Brief matplotlib API Primer

Ex. #1 Simple data plot

import numpy as np
data. np.arange(10)
data
plt.plot(data)

[<matplotlib.lines.Line2D at 0x115895fd0>]

Ex. #2 Figures and Subplots in a given figure

```
fig = plt.figure()
ax1 = fig.add_subplot(2, 2, 1)
ax2 = fig.add_subplot(2, 2, 2)
ax3 = fig.add_subplot(2, 2, 3)
```

- You can specify the overall configuration of the sub plots (e.g. 2x2)
- Also, you can specify which location you want certain plots (e.g. third parameter)

1.0

Ex. #3 creating a specific plot; also specifying the kind of line you want (black; dashed)

[<matplotlib.lines.Line2D at 0x115aeddd8>]

plt.plot(np.random.randn(50).cumsum(), 'k--')

Ex. #4 Putting it all together

```
fig = plt.figure()

ax1 = fig.add_subplot(2, 2, 1)

ax2 = fig.add_subplot(2, 2, 2)

ax3 = fig.add_subplot(2, 2, 3)

ax1.hist(np.random.randn(100), bins=20, color='k', alpha=0.3)

ax2.scatter(np.arange(30), np.arange(30) + 3 * np.random.randn(30))

ax3.plot(np.arange(10), 'g--') #green dashed line
```


- Specify the kind of plots you want by utilizing the plot variables ax1, ax2 and ax3
- First is a histogram
- Second is a scatter plot
- Third is a simple lot (notice choice of green dashed line)

Ex. #5 Close a figure window

1.0

```
plt.close('all')

fig, axes = plt.subplots(2,3)

axes
```

1.0

Ex. #6 Adjusting the spacing around subplots

Subplots_adjust(left=None, bottom=None, right=None, top=None, wspace =None, hspace=None)

```
fig, axes = plt.subplots(2, 2, sharex=True, sharey=True)

for i in range(2):
  for j in range(2):
   axes[i, j].hist(np.random.randn(500), bins=50, color='k', alpha=0.5)
  plt.subplots_adjust(wspace=0, hspace=0)
```


- Note plt.subplots returns two things: " fig " and "axes"
- You can specify which subplot you want by indexing into "axes": axes[i, j]
- Once the plots have been created then you can call "subplots_adjust()" function

Part II: Colors, Markers, and Line Styles

Ex. #7 Colors, Markers, and Line Styles

from numpy.random import randn
plt.plot(randn(30).cumsum(), 'ko--')

Note the second parameter:

- Color (e.g. k=black)
- Style of marker
- Style of line

[<matplotlib.lines.Line2D at 0x1168ecd30>]

Ex. #8 Another way of plotting, with 'color','linestyle ', and 'marker' clearly

plot(randn(30).cumsum(), color='k', linestyle='dashed', marker='o')

[<matplotlib.lines.Line2D at 0x116b5a8d0>]

Ex. #9 Steps-post

```
plt.close('all')

data = np.random.randn(30).cumsum()
plt.plot(data, 'k--', label='Default')
plt.plot(data, 'k-', drawstyle='steps-post', label='steps-post')
plt.legend(loc='best')
```

<matplotlib.legend.Legend at 0x116d671d0>

- Multiple plots superimposed on one another
- Adding a legend here, too

Part III: Ticks, Labels, and Legends

Ex. #10 Setting the title, axis labels, ticks, and ticklabels

```
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(np.random.randn(1000).cumsum())
```

There's a lot we can add to this plot!

[<matplotlib.lines.Line2D at 0x116dd17f0>]

Ex. #11 Setting the title, axis labels, ticks, and ticklabels. Putting it all together

```
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(np.random.randn(1000).cumsum())
ticks = ax.set_xticks([0, 250, 500, 750, 1000])
labels = ax.set_xticklabels(['one', 'two', 'three', 'four', 'five'],
    rotation=30, fontsize='small')
ax.set_title('My first matplotlib plot')
ax.set_xlabel('Stages')
```

Text(0.5, 0, 'Stages')

Ex. #12 Adding legends 1

fig = plt.figure(); ax = fig.add_subplot(1, 1, 1) ax.plot(randn(1000).cumsum(), 'k', label='one') ax.plot(randn(1000).cumsum(), 'k--', label='two') ax.plot(randn(1000).cumsum(), 'k.', label='three') [<matplotlib.lines.Line2D at 0x1171597f0>]

Ex. #13 Adding legends 2

<matplotlib.legend.Legend at 0x1172b50b8>

```
fig = plt.figure(); ax = fig.add_subplot(1, 1, 1) ax.plot(randn(1000).cumsum(), 'k', label='one') ax.plot(randn(1000).cumsum(), 'k--', label='two') ax.plot(randn(1000).cumsum(), 'k.', label='three') ax.legend(loc='best') # what does this do?
```

Are there any other options for the legend? If there are, what are they?

Part IV: Annotations and Drawing on a Subplot

Ex. #14 Annotations

```
import pandas as pd
from datetime import datetime
fig = plt.figure()
ax = fig.add subplot(1, 1, 1)
"IMPORTANT: Change this path before running this code "
data =
pd.read csv('/content/drive/MyDrive/CS5010/code/visualization
/spx.csv', index col=0, parse dates=True)
spx = data['SPX']
spx.plot(ax=ax, style='k-')
crisis_data = [
  (datetime(2007, 10, 11), 'Peak of bull market'),
  (datetime(2008, 3, 12), 'Bear Stearns Fails'),
  (datetime(2008, 9, 15), 'Lehman Bankruptcy')
```

```
for date, label in crisis data:
  ax.annotate(label, xy=(date, spx.asof(date) + 75),
          xytext=(date, spx.asof(date) + 225),
          arrowprops=dict(facecolor='black', headwidth=4,
width=2, headlength=4),
          horizontalalignment='left', verticalalignment='top')
ax.set xlim(['1/1/2007', '1/1/2011'])
ax.set ylim([600, 1800])
ax.set title('Important dates in the 2008-2009 financial crisis')
```

Ex. #14 Annotations

Text(0.5, 1.0, 'Important dates in the 2008-2009 financial crisis')

Ex. #15 Creating and drawing (plotting) shapes

```
fig = plt.figure(figsize=(12, 6)); ax = fig.add_subplot(1, 1, 1)
rect = plt.Rectangle((0.2, 0.75), 0.4, 0.15, color='k', alpha=0.3)
circ = plt.Circle((0.7, 0.2), 0.15, color='b', alpha=0.3)
pgon = plt.Polygon([[0.15, 0.15], [0.35, 0.4], [0.2, 0.6]],
            color='g', alpha=0.5)
ax.add_patch(rect)
ax.add_patch(circ)
ax.add_patch(pgon)
```


<matplotlib.patches.Polygon at 0x117f6cc50>

Part V: Saving Plots to File

Ex. #16 Saving Plots to File

```
import matplotlib.pyplot as plt
import numpy as np
t = np.arange(0.0, 2.0, 0.01)
s = 1 + np.sin(2*np.pi*t)
plt.plot(t, s)
plt.xlabel('time (s)')
plt.ylabel('voltage (mV)')
plt.title('Voltage vs Time (Example of Saving Plots to a File)')
plt.grid(True)
" *IMPORTANT: Change this path before running this code! * "
plt.savefig('/content/drive/MyDrive/CS5010/code/visualization/t
est.png')
plt.show()
```


Part VI: matplotlib Configuration

matplotlib Configuration

Use of 'rc' method to modify configuration

- matplotlib comes configured with color schemes and defaults that are geared primarily toward preparing figures for publication.
- Most of these default settings can be customized via an extensive set of global parameters governing figure size, subplot spacing, colors, font sizes, grid styles, and so on.
- One way to modify the configuration is to use the 'rc' method. For example, to set the global default figure size to be 10x10, enter the following code:

plt.rc('figure', figsize =(10,10))

- The first argument to rc is the component you wish to customize, such as 'figure', 'axes', 'xtick ', ytick ','grid', 'legend', or many others
- After that can follow a sequence of keyword arguments indicating the new parameters. An
 easy way to write down the options in your program is as a dict (dictionary)

Part VII: Plotting with pandas and seaborn colab

Plotting with pandas and seaborn

seaborn

- A Python data visualization library based on matplotlib
- provides a high level interface for drawing attractive and informative statistical graphics

Ex. #17 Line Plots 1

s = pd.Series(np.random.randn(10).cumsum(),
index=np.arange(0, 100, 10))
s.plot()

<matplotlib.axes._subplots.AxesSubplot at 0x11b13c4a8>

Ex. #18 Line Plots 2

```
\begin{split} \text{df = pd.DataFrame(np.random.randn(10, 4).cumsum(0),} \\ & \quad \text{columns=['A', 'B', 'C', 'D'],} \\ & \quad \text{index=np.arange(0, 100, 10))} \\ \text{df.plot()} \end{split}
```

<matplotlib.axes. subplots.AxesSubplot at 0x11b28e278>

Ex. #19 Line Plots. Another similar example

<matplotlib.axes._subplots.AxesSubplot at 0x11b42b1d0>

Ex. #20 Bar Plots

<matplotlib.axes._subplots.AxesSubplot at 0x11ba6b5f8>


```
fig, axes = plt.subplots(2, 1)
data = pd.Series(np.random.rand(16),
index=list('abcdefghijklmnop'))
data.plot.bar(ax=axes[0], color='c', alpha=0.7)
data.plot.barh(ax=axes[1], color='k', alpha=0.7)
```

Ex. #21 Bar Plots. Another bar plot example

```
import numpy as np
import matplotlib.pyplot as plt
# data to plot
n_{groups} = 4
means_frank = (90, 55, 40, 65)
means guido = (85, 62, 54, 20)
# create plot
fig, ax = plt.subplots()
index = np.arange(n_groups)
bar width = 0.35
opacity = 0.8
rects1 = plt.bar(index, means_frank, bar_width,
alpha=opacity,
color='b',
label='Frank')
```

```
rects2 = plt.bar(index + bar width, means guido, bar width,
alpha=opacity,
color='g',
label='Guido')
plt.xlabel('Person')
plt.ylabel('Scores')
plt.title('Scores by person')
plt.xticks(index + bar_width, ('A', 'B', 'C', 'D'))
plt.legend()
plt.tight_layout()
plt.show()
```

Ex. #21 Bar Plots. Another bar plot example

Ex. #22 Bar Plots. Another bar plot example

<matplotlib.axes. subplots.AxesSubplot at 0x11b0000b8>

Ex. #23 Bar Plots. Another bar plot example

<matplotlib.axes._subplots.AxesSubplot at 0x119b166d8>
<Figure size 720x432 with 0 Axes>

plt.figure()
df.plot.barh(stacked=True, alpha=0.5)
plt.close('all')

Ex. #24 Bar Plots. "tips" data set.

```
tips = pd.read_csv('<Your Path>/tips.csv')
party_counts = pd.crosstab(tips['day'], tips['size'])
party_counts
```

size	1	2	3	4	5	6
day						
Fri	1	16	1	1	0	0
Sat	2	53	18	13	1	0
Sun	0	39	15	18	3	1
Thur	1	48	4	5	1	3

pandas.crosstable

- Compute a simple cross tabulation of two (or more) factors.
- By default: computes a frequency table

total_bill	tip	smoker	day	time	size
16.99	1.01	No	Sun	Dinner	2
10.34	1.66	No	Sun	Dinner	3
21.01	3.50	No	Sun	Dinner	3
23.68	3.31	No	Sun	Dinner	2
24.59	3.61	No	Sun	Dinner	4
	16.99 10.34 21.01 23.68	16.99 1.01 10.34 1.66 21.01 3.50 23.68 3.31	16.99 1.01 No 10.34 1.66 No 21.01 3.50 No 23.68 3.31 No	16.99 1.01 No Sun 10.34 1.66 No Sun 21.01 3.50 No Sun 23.68 3.31 No Sun	16.99 1.01 No Sun Dinner 10.34 1.66 No Sun Dinner 21.01 3.50 No Sun Dinner 23.68 3.31 No Sun Dinner

Ex. #24 Bar Plots. "tips" data set.

party_counts = party_counts.loc[:, **2**:**5**] # preserve size 2 to 5 party_counts

```
# Normalize to sum to 1
party_pcts = party_counts.div(party_counts.sum(1), axis=0)
party_pcts
```

size	2	3	4	5
day				
Fri	16	1	1	0
Sat	53	18	13	1
Sun	39	15	18	3
Thur	48	4	5	1

	size	2	3	4	5
	day				
	Fri	0.888889	0.055556	0.055556	0.000000
	Sat	0.623529	0.211765	0.152941	0.011765
	Sun	0.520000	0.200000	0.240000	0.040000
7	Thur	0.827586	0.068966	0.086207	0.017241

Ex. #24 Bar Plots. "tips" data set.

<matplotlib.axes._subplots.AxesSubplot at 0x11a88ca58>

Ex. #25 Bar plot example using Seaborn 1

<matplotlib.axes. subplots.AxesSubplot at 0x1a1d1a9cf8>

import seaborn as sns # tips prior to adding new column tips.head() # adding new column to tips tips['tip_pct'] = tips['tip'] / (tips['total_bill'] - tips['tip']) tips.head() # short first 5 data items at the top of the file sns.barplot(x='tip_pct', y='day', data=tips, orient='h') # Data is tips; Using tip_pct column # Organize by 'day' # Orient the graph horizontally

Ex. #26 Plotting with pandas and seaborn

sns.barplot(x='tip_pct', y='day', hue='time', data=tips, orient='h')

Data is tips; using 'tip_pct 'column
Organization: nested grouping by a two
variables ('day' and 'time')
Orient the graph horizontally

Ex. #27 Histogram

<matplotlib.axes._subplots.AxesSubplot at 0x1a1d3063c8>

sns.set(style="whitegrid")
plt.figure()
tips['tip_pct'].plot.hist(bins=50)

Ex. #28 Density Plots 1

<matplotlib.axes._subplots.AxesSubplot at 0x1a1d4b8550>

plt.figure()
tips['tip_pct'].plot.density()

Ex. #29 Density Plots 2

```
plt.figure()
comp1 = np.random.normal(0, 1, size=200)
comp2 = np.random.normal(10, 2, size=200)
# concatenate the two distributions
values = pd.Series(np.concatenate([comp1, comp2]))
sns.distplot(values, bins=100, color='g')
```

<matplotlib.axes._subplots.AxesSubplot at 0x1a1d50cc50>

Plotting with pandas and seaborn

Ex. #30-34 Scatter or Point Plots

Next example uses the "macrodata.csv" data set. Ensure the dataset is saved in a location you are aware of!

```
macro = pd.read_csv('<your path>/macrodata.csv')
data = macro[['cpi', 'm1', 'tbilrate', 'unemp']]
trans_data = np.log(data).diff().dropna()
trans_data[-5:]
```

Macroeconomic Data

- cpi: consumer price index
- m1: M1 nominal money stock
- tbilrate average of treasury bill
- umemp unemployment rate (%)

	срі	m1	tbilrate	unemp
198	-0.007904	0.045361	-0.396881	0.105361
199	-0.021979	0.066753	-2.277267	0.139762
200	0.002340	0.010286	0.606136	0.160343
201	0.008419	0.037461	-0.200671	0.127339
202	0.008894	0.012202	-0.405465	0.042560

Ex. #30 Scatter Plot

plt.figure()
sns.regplot('m1', 'unemp', data=trans_data) # m1 vs
unemp columns to plot
plt.title('Changes in log %s versus log %s' % ('m1',
'unemp'))

seaborn.regplot
Plot data and a linear regression model fit.

Text(0.5, 1.0, 'Changes in log ml versus log unemp')

Ex. #31 Scatter or Point Plots

Great tool for visualizing the data and comparing attributes (columns) against each other.

sns.pairplot(trans_data, diag_kind='kde', plot_kws={'alpha': 0.2})

<seaborn.axisgrid.PairGrid at 0x1ald745128>

Ex. #32 Facet Grids and Categorical Data 1

sns.factorplot(x='day', y='tip_pct', hue='time', col='smoker', kind='bar', data=tips[tips.tip_pct < 1])

- Using tips data set
- Organization: nested grouping by day and time
- Show results on values of 'smoker' (i.e. no vs yes)
- Using data where tip_pct < 1

Ex. #33 Facet Grids and Categorical Data

Similar to above, only now organized by combinations of time and smoker: dinner and no, dinner and yes, lunch and no, lunch and yes

Ex. #34 Box plot

sns.factorplot(x='tip_pct', y='day', kind='box', data=tips[tips.tip_pct < 0.5])

<seaborn.axisgrid.FacetGrid at 0x1a1e764b38>

