Instalações Elétricas BT I

Odailson Cavalcante de Oliveira

Dimensionamento de condutores

- Tipos de Condutores
 - Condutores isolados
 - Condutores unipolar
 - Condutores multipolar
- Critérios para dimensionamento:
 - Capacidade de condução de corrente;
 - Queda de Tensão;
 - Seção mínima;
 - Sobrecarga;
 - Curto-circuito; e
 - Choques elétricos.

Tipos de Condutores

- Condutor Isolado: possui condutor metálico e isolação.
- Cabo Unipolar: possui condutor, isolação e uma camada de revestimento, chamada cobertura, para proteção mecânica
- Cabo Multipolar: possuem sob a mesma cobertura, dois ou mais condutores isolados, denominados veias.

MATERIAL	PONTOS FRACOS	PONTOS FORTES
PVC (CLORETO DE	Baixo índice de estabilidade	Boas propriedades mecânicas e elétricas
POLIVINILA)	térmica	Não propagante de chama
XLPE (POLIETILENO	Baixa flexibilidade	Excelentes propriedades elétricas
RETICULADO)	Baixa resistência à chama	Boa resistência térmica
EPR (BORRACHA ETILENO	Baixa resistência mecânica	Excelentes propriedades elétricas
PROPILENO)	Baixa resistência a chamas	Boa resistência térmica

tipo de isolação	temperatura máxima para serviço contínuo (condutor)	temperatura limite de sobrecarga (condutor)	temperatura limite de curto-circuito (condutor)
Cloreto de polivinila (PVC)	70	100	160
Borracha etileno-propileno (EPR)	90	130	250
Polietileno-reticulado (XLPE)	90	130	250

EPR

PVC

Métodos de Instalação

- Definir parâmetros de instalação
 - O método de instalação influencia a capacidade de troca térmica entre os condutores e o ambiente, alterando a capacidade de condução de corrente dos condutores.
- Exemplo de Instalação:
 - Os condutores podem ser instalados em eletrodutos ou bandejas.
 - Os eletrodutos podem ser embutidos em alvenaria ou podem ser aparentes.

Cabos multipolares em bandeja

Condutores isolados em eletroduto embutido na alvenaria

Parâmetros de Instalação dos cabos

- NBR 5410:2004
 - Tabela 33 Tipos de linhas elétricas

Nº	Ilustração	Descrição	Condutor Isolado	Cabo Unipolar	Cabo Multipolar
1,2	Paco interna	Condutores/cabos em eletroduto de seção circular embutido em parede termicamente isolante	A 1	A 1	A2
3,4		Condutores/cabos em eletroduto aparente de seção circular sobre parede ou espaçado menos de 0,3 vez o diâmetro do eletroduto	B1	B1	B2
5,6		Condutores/cabos em eletroduto aparente de seção não-circular sobre parede	B1	B1	B2
7,8	0 0	Condutores/cabos em eletroduto de seção circular embutido em alvenaria	В1	B1	B2
11		Cabos unipolares ou cabo multipolar sobre parede ou espaçado desta menos de 0,3 vez o diâmetro do cabo	-	C	C

Nº	Ilustração	Descrição	Condutor Isolado	Cabo Unipolar	Cabo Multipolar
11A, 11B		Cabos unipolares ou cabo multipolar fixado diretamente no teto, ou afastado mais de 0,3 vez o diâmetro do cabo	-	C	C
12	,000	Cabos unipolares ou cabo multipolar em bandeja perfurada, horizontal ou vertical	-	C	C
13	000	Cabos unipolares ou cabo multipolar em bandeja não- perfurada, perfilado ou prateleira	-	F	E
14	000	Cabos unipolares ou cabo multipolar afastado(s) da parede mais de 0,3 vez o diâmetro do cabo	-	F	E
15	®	Cabos unipolares ou cabo multipolar sobre suportes horizontais, eletrocalha aramada ou tela	-	F	E

Monofásicos/Bifásicos

$$I_B = \frac{P}{V \cdot FP}$$

Trifásicos

$$I_{B} = \frac{P}{\sqrt{3} \cdot V \cdot FP}$$

• Onde:

- lB: corrente de projeto;
- P : potência ativa total do circuito;
- V : tensão do circuito;
- FP :fator de potência total do circu

$$I_B' = \frac{I_B}{k_1 \cdot k_2 \cdot k_3}$$

- Fatores de Correção à Corrente de Projeto:
 - Corrigir corrente de projeto (IB) de acordo com k1, k2 e k3.
 - k1- fatores de correção para temperaturas ambientes diferentes.
 - k2- Correção de resistividade do solo
 - k3- fator de correção de agrupamento (agrupamento de mais de um circuito em um mesmo eletroduto).

k1- Fatores de Correção para Temperaturas

NBR 5410:2004 - Tabela 40 pg. 106

TD .		Isolaç	ão					
Temperatura (°C)	PVC	EPR ou XLPE	PVC	EPR ou XLPE				
(3)	Aı	mbiente	Do solo					
10	1,22	1,15	1,10	1,07				
15	1,17	1,12	1,05	1,04				
20	1,12	1,08	1	1				
25	1,06	1,04	0,95	0,96				
30	1	1	0,89	0,93				
35	0,94	0,96	0,84	0,89				
40	0,87	0,91	0,77	0,85				
45	0,79	0,87	0,71	0,82				
50	0,71	0,82	0,63	0,76				
55	0,61	0,76	0,55	0,71				
60	0,50	0,71	0,45	0,65				

Utilizado para temperaturas ambientes diferentes de 30°C para linhas não subterrâneas e de 20°C (temperatura do solo) para linhas subterrâneas.

Conforme NBR5410:2004, item6.2.5.3 – pg. 106

k2- Correção de resistividade do solo

Utilizado em linhas subterrâneas, caso a resistividade térmica do solo seja diferente de 2,5 K.m/W, caso típico de solos secos, deve ser feita uma correção adequada nos valores da capacidade de condução de corrente. Solos úmidos possuem valores menores de resistividade térmica, enquanto solos muito secos apresentam valores maiores

Resistividade Térmica K.m/W	1	1,5	2	3
Fator de Correção	1,18	1,1	1,05	0,96

NBR 5410:2004 - Tabela 41 pg. 107

Esquema de condutores vivos do circuito	Número de condutores carregados a ser adotado
Monofásico a dois condutores	2
Monofásico a três condutores	2
Duas fases sem neutro	2
Duas fases com neutro	3
Trifásico sem neutro	3
Trifásico com neutro	3 ou 4

NBR 5410:2004 - Tabela 46 pg. 112

FCA - Fator de Correção de Agrupamento

NBR 5410:2004 - Tabela 42 pg. 108

	Disposição dos				Númer	de Cir	cuitos o	u de Cal	os Mul	tipolare	S			Tabelas dos
Item	Disposição dos cabos justapostos	1	2	3	4	5	6	7	8	9 a 11	12 a 15	15 a 19	≥ 20	métodos de referência
1	Em feixe: ao ar livre ou sobre superfície; embutidos; em conduto fechado	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50 0,45		0,41	0,38	36 a 39 (métodos A a F)
2	Camada única sobre parede, piso, ou bandeja não perfurada ou prateleira	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70		0,70		36 a 37 (métodos C)
3	Camada única no teto	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62		0,	61		
4	Camada única em bandeja perfurada	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72		0,72		38 e 39 (métodos
5	Camada única sobre leito, suporte, etc.	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78		0,	78		E a F)

Se um agrupamento consiste em N condutores isolados ou cabos unipolares, pode-se considerar tanto N/2 circuitos com 2 condutores carregados como N/3 circuitos com 3 condutores carregados.

Conforme NBR5410:2004, item6.2.5.5 – pg. 107

Caazaa	Capa			•	corrente, cabos un	•						eD.	
Seções Nominais	A	1	A	.2	В	1	В	2	(C	I)	
mm²	Nº co	ndutore	s carreg	ados	Nº co	ondutore	s carreg	ados	Nº co	ondutore	s carreg		
	2	3	2	3	2	3	2	3	2	3	2	3	
1	11	10	11	10	14	12	13	12	15	14	18	15	
1,5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18	
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24	
4	26	24	25	23	32	28	30	27	36	32	38	31	
6	34	31	32	29	41	36	38	34	46	41	47	39	
10	46	42	43	39	57	50	52	46	63	57	63	52	
16	61	56	57	52	76	68	69	62	85	76	81	67	
25	80	73	75	68	101	89	90	80	112	96	104	86	101
35	99	89	92	83	125	110	111	99	138	119	125	103	pg.
50	119	108	110	99	151	134	133	118	168	144	148	122	a 36
70	151	136	139	125	192	171	168	149	213	184	183	151	Tabela
95	182	164	167	150	232	207	201	179	258	223	216	179	
120	210	188	192	172	269	239	232	206	299	259	246	203	5410:2004
150	240	216	219	196	309	275	265	236	344	299	278	230	110
185	273	245	248	223	353	314	300	268	392	341	312	258	R 54
240	321	286	291	261	415	370	351	313	461	403	361	297	NBR

Exemplo:

• Um circuito de iluminação de 1200 W, fase-neutro, passa no interior de um eletroduto embutido de PVC, juntamente com outros quatro condutores isolados de outros circuitos em cobre. A temperatura ambiente é de 35ºC. Determinar a seção do conduto.

Critério da Queda de Tensão

Efeitos dos Níveis Anormais das Tensões de Alimentação

- A queda de tensão não deve ser superior aos limites máximos estabelecidos pela norma NBR 5410, a fim de não prejudicar o funcionamento dos equipamentos de utilização conectados aos circuitos terminais ou de utilização.
- A queda de tensão de uma instalação elétrica, desde a origem até o ponto mais afastado de utilização de qualquer circuito de utilização, não deve ser superior aos valores prescritos pela norma, dados em relação ao valor da tensão nominal da instalação
- A queda de tensão nos circuitos alimentadores e terminais (pontos de utilização) de uma instalação elétrica produz efeitos que podem levar os equipamentos desde à redução da sua vida útil até a sua queima (falha).
- Essa queda de tensão faz com que os equipamentos recebam em seus terminais uma tensão inferior aos valores nominais, prejudicando o seu desempenho.

Roteiro para dimensionamento dos condutores pela critério do limite de queda de tensão

Determinar

- Tipo de isolação do condutor
- Método de instalação
- Material do eletroduto
- Tipo do circuito (monofásico ou trifásico)
- Tensão do circuito (V)
- Corrente de projeto (IB) e potência (S)
- Fator de potência
- Comprimento do circuito em km (L)
- Queda de tensão admissível "e(%)"
- Cálculo da queda de tensão unitária
- Escolha do condutor

Tabela 58 — Seção mínima do condutor de proteção

Seção mínima do condutor de proteção correspondente mm²
S
16
S/2

Queda de tensão unitária

Queda de tensão unitária:

•
$$U_{unit} = \frac{e(\%)V}{I_BL}$$

 Com o valor da queda de tensão unitária calculado, entra-se na Tabela 10.22, verifica-se o método de instalação de condutores, e encontrase o valor cuja queda de tensão seja igual ou imediatamente inferior à calculada, obtendo desta forma a seção do condutor correspondente

Tabela 10.22 - Queda de tensão em V/A.km.

	Eletrod						Instalação ao ar livre (3)																	
	calha (ma magné	ıt.		troduto it. não i										Cab	os Sint	tenax, \	Voltena	x e Vol	talene					
Seção Nominal	Pirastic Piras Flex S	tic -	Piras	rtic Sup Flex S	er Pira Super	etic -	Cabos Unipolares (4)													C. Uni/	Bipolar	C. Tri/Te	trapolar	
mm²	Cir Monofá	sico e		uito fásico		uito		Cir	cuito M	fonofás	D T		(с	ircuito	Trifásio	© T)	Trifá	9	Mono		Circ	uito sico
				1		-,	S=10 cm		S = 2	20 cm	S =	2D	S=1	0 cm	S = 2	S = 20 cm		2D	o	2)	(2)	00		∞
	FP= 0,80	FP= 0,95	FP= 0,80	FP= 0,95	FP= 0,80	FP= 0,95	FP= 0,80	FP≈ 0,95	FP= 0,80	FP= 0,95	FP= 0,80	FP= 0,95	FP= 0,80	FP= 0,95	FP= 0.80	FP= 0.95	FP= 0.80	FP= 0,95	FP≔ 0,80	FP= 0.95	FP=0,80	FP=0,95	FP=0,80	FP=0,95
1,5	23	27.4	23.3	27.6	20.2	23.9	23.6	27.8	23.7	27.8	23.4	27.6	20.5	24.0	20.5	24.1	20.3	24.0	20.2	23.9	23.3	27.6	20.2	23.9
2,5	14	16.8	14.3	16.9	12.4	14.7	14.6	17.1	14.7	17.1	14.4	17.0	12.7	14.8	12.7	14.8	12.5	14.7	12.4	14.7	14.3	16.9	12.4	14.7
4	9.0	10.5	8.96	10.6	7.79	9.15	9.3	10.7	9.3	10.7	9.1	10.6	8.0	9.3	8.1	9.3	7.9	9.2	7.8	9.2	9.0	10.6	7.8	9.1
6	5.87	7.00	6.03	7.07	5.25	6.14		6.3 7.2 6.4 7.2		6.1	7.1	5.5	6.3	5.5	6.3	5.3	6.2	5.2	6.1	6.0	7.1	5.2	6.1	
10	3.54	4.20	3.63	4.23	3.17	3.67	3.9	4.4	3.9	4.4	3.7	4.3	3.4	3.8	3.4	3.8	3.2	3.7	3.2	3.7	3.6	4.2	3.1	3.7
16	2.27	2.70	2.32	2.68	2.03	2.33	2.6	2.8	2.6	2.8	2.4	2.7	2.2	2.4	2.3	2.5	2.1	2.4	2.0	2.3	2.3	2.7	2.0	2.3
25	1.50	1.72	1.51	1.71	1.33	1.49	1.73	1.83	1.80	1.86	1.59	1.76	1.52	1.59	1.57	1.62	1.40	1.53	1.32	1.49	1.50	1.71	1.31	1.48
35 50	1.12 0.86	0.95	1.12 0.85	0.94	0.98	1.09	1.33	1.36	1.39	1.39	1.20	1.29	1.17	1.19	1.22	1.22	1.06	1.13	0.98	1.09	1.12	1.25	0.97	1.08
70	0.64	0.95	0.62	0.67	0.76	0.82	1.05	0.76	0.87	0.80	0.93	0.97	0.93	0.91	0.96	0.94	0.82	0.85	0.75	0.82	0.85	0.93	0.74	0.81
95	0.50	0.67	0.62	0.67	0.55	0.59	0.81	0.76	0.87	0.62	0.70	0.71	0.72	0.67	0.77	0.70	0.63	0.62	0.55	0.59	0.62	0.67	0.54	0.58
120	0.42	0.42	0.40	0.41	0.36	0.36	0.63	0.49	0.71	0.52	0.36	0.34	0.51	0.52	0.56	0.46	0.50	0.47	0.43	0.44	0.48	0.50	0.42	0.43
150	0.42	0.35	0.35	0.34	0.31	0.30	0.50	0.42	0.56	0.45	0.40	0.38	0.45	0.43	0.56	0.40	0.43	0.39	0.36	0.30	0.40	0.41	0.35	0.35
185	0.32	0.30	0.30	0.29	0.27	0.25	0.44	0.36	0.51	0.43	0.42	0.32	0.40	0.37	0.46	0.40	0.34	0.29	0.27	0.30	0.30	0.29	0.30	0.30
240	0.29	0.25	0.26	0.24	0.23	0.21	0.39	0.30	0.45	0.33	0.33	0.27	0.35	0.32	0.41	0.30	0.30	0.24	0.23	0.23	0.26	0.24	0.20	0.20
300	0.27	0.22	0.23	0.20	0.21	0.18	0.35	0.26	0.41	0.29	0.30	0.23	0.32	0.23	0.37	0.26	0.28	0.21	0.21	0.18	0.23	0.20	0.20	0.18
400	0.24	0.20	0.21	0.17	0.19	0.15	0.32	0.22	0.37	0.26	0.27	0.21	0.29	0.20	0.34	0.23	0.25	0.19	0.19	0.15	0.20	0.50	0.20	0.10
500	0.23	0.19	0.19	0.16	0.17	0.14	0.28	0.20	0.34	0.23	0.25	0.18	0.26	0.18	0.32	0.21	0.24	0.17	0.17	0.14	-			-
630	0.22	0.17	0.18	0.13	0.16	0.12	0.26	0.17	0.32	0.21	0.24	0.16	0.24	0.16	0.29	0.19	0.22	0.15	0.16	0.12			-	,
800	0.21	0.16	0.17	0.12	0.15	0.11	0.23 0.15 0.29 0.18 0.22 0.15				0.22	0.14	0.27	0.17	0.21	0.14	0.15	0.11		-	-			
1000	0.21	0.16	0.16	0.11	0.14	0.10	0.21	0.14	0.27	0.17	0.21	0.14	0.20	0.13	0.25	0.16	0.20	0.13	0.14	0.10				· · ·
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
				<u>`</u> _			_		10		12	10		10	10		10		20		22	23	24	23

										lnsta	lação a	o ar liv	те (3)												
							(Cabos I	Eproten	ax e Ej	propren	•													
					Cal	oos Uni	polares	(4)						C. Uni/	C. Tri/T	etrapolar	DUPLAST		TRIPLAST AF						
			uito fásico			Circuit Trifásic				i Circu			istco		uito fásico	Circuito Trifásico		AF		Circ. Trifásico					
	() _s	©	Þ		(<u> </u>) -s-	ţ ©)	0	0	$ \odot $	∞ ∞ ⊗		(20)		(20)						
S=1	0 cm	S = 2	20 cm	S =	2D	S=1	0 cm	S = 2	20 cm	S =	2D	(2)	(2)			9	}							
FP= 0.80	FP= 0,95	FP≈ 0.80	FP≈ 0.95	FP= 0.80	FP= 0.95	FP= 0.80	FP= 0.95	FP= 0.80	FP= 0.95	FP= 0.80	FP= 0,95	FP≃ 0,80	FP= 0.95	FP= 0,80	FP= 0,95	FP= 0,80	FP≈ 0,95	FP= 0,80	FP= 0.95	FP= 0.80	FP= 0.95				
23.8	28.0	23.9	28.0	23.6	27.9	20.7	24.2	20.7	24.3	20.5	24.1	20.4	24.1	23.5	27.8	20.3	24.1	23.3	27.6	20.8	24.2				
14.9	17.4	15.0	17.5	14.7	17.3	12.9	15.1	13.0	15.1	12.8	15.0	12.7	15.0	14.6	17.3	12.7	15.0	14.3	16.9	12.9	14.9				
9.4	10.9	9.5	10.9	9.2	10.8	8.2	9.5	8.2	9.5	8.0	9.4	7.9	9.3	9.1	10.8	7.9	9.3	8.96	10.5	8.37	9.45				
6.4	7.3	6.4	7.3	6.2	7.2	5.5	6.3	5.6	6.3	5.4	6.2	5.3	6.2	6.1	7.1	5.3	6.2	6.02	7.07	5.64	6.34				
3.9	4.4	4.0	4.4	3.7	4.3	3.4	3.8	3.5	3.8	3.3	3.7	3.2	3.7	3.6	4.2	3.2	3.7		-		-				
2.58	2.83	2.64	2.86	2.42	2.74	2.25	2.46	2.31	2.48	2.12	2.39	2.05	2.35	2.34	2.70	2.03	2.34	-		-					
1.74	1.85	1.81	1.88	1.61	1.77	1.53	1.61	1.58	1.64	1.41	1.55	1.34	1.51	1.52	1.73	1.32	1.50	·		-	-				
1.34	1.37	1.40	1.41	0.94	1.30 0.99	0.94	0.92	0.99	1.23	1.06	1.14	0.99	1.10	1.15	1.26	0.98	1.09	·-			·				
0.81	0.77	0.88	0.80	0.70	0.99	0.72	0.92	0.78	0.95	0.83	0.87	0.76	0.83	0.86	0.95	0.75	0.82	<u> </u>	·						
0.66	0.59	0.72	0.62	0.56	0.54	0.72	0.52	0.78	0.55	0.50	0.63	0.43	0.59	0.63	0.67	0.54	0.58	<u> </u>	-	· ·	_ :				
0.57	0.49	0.63	0.53	0.48	0.45	0.51	0.44	0.56	0.46	0.43	0.40	0.36	0.36	0.40	0.41	0.42	0.35	· ·	-		-				
0.50	0.42	0.57	0.46	0.42	0.38	0.45	0.38	0.51	0.41	0.39	0.34	0.32	0.31	0.35	0.35	0.30	0.30		-	-	-				
0.44	0.36	0.51	0.39	0.38	0.32	0.40	0.32	0.46	0.35	0.34	0.29	0.27	0.26	0.30	0.29	0.26	0.25	-	-	-	.				
0.39	0.30	0.45	0.33	0.33	0.27	0.35	0.27	0.41	0.30	0.30	0.24	0.23	0.21	0.26	0.24	0.22	0.21	-	-	-	-				
0.35	0.26	0.41	0.29	0.30	0.24	0.32	0.24	0.37	0.26	0.28	0.21	0.21	0.18	0.23	0.20	0.20	0.18		-	-	-				
0.31	0.23	0.38		0.27	0.21	0.29	0.21	0.34	0.23	0.25	0.19	0.19	0.16		-			-		-	-				
0.28	0.20	0.34	0.23	0.25	0.18	0.26	0.18	0.32	0.21	0.24	0.17	0.17	0.14					-	٠,						
0.26	0.17	0.32	0.21	0.24	0.16	0.24	0.16	0.29	0.19	0.22	0.15	0.16	0.12				-								
0.23	0.15	0.29	0.18	0.22	0.15	0.22	0.14	0.27	0.17	0.21	0.14	0.15	0.11	-		-		-		-	-				
0.21	0.14	0.27	0.17	0.21	0.14	0.21	0.13	0.25	0.16	0.20	0.13	0.14	0.10	-				-		-	-				
26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47				

Exemplos

• Exemplo 1: dimensionar os condutores para um chuveiro, tendo como dados: P=5400 W, V=220 V, FP=1, isolação de PVC, eletroduto de PVC embutido em alvenaria; temperatura ambiente: 30°C; comprimento do circuito: 15 m.

Exemplos

 Exemplo 2: dimensionar os condutores para um circuito de tomadas da cozinha, tendo como dados: S=2000 VA, V=127 V, isolação de PVC, eletroduto embutido em alvenaria; temperatura ambiente: 30°C; comprimento do circuito: 10 m.

- Roteiro para dimensionamento dos condutores pela critério do limite de queda de tensão.
- Determinar:
 - Tipo de isolação do condutor
 - Método de instalação
 - Material do eletroduto
 - Tipo do circuito (monofásico ou trifásico)
 - Temperatura ambiente
 - Corrente de projeto (IB) e potência (S)
 - Δvunit.(Tabela 10.22)
 - Queda de tensão trecho por trecho
 - Escolha do condutor

$$\bullet \ e(\%) = \frac{100.U_{unit}I_BL}{V}$$

- Calcula-se o valor da queda de tensão nos trechos do circuito, caso o valor de queda de tensão supere o valor admitido em norma, é necessário refazer o cálculo para um seção nominal maior.
- A seção nominal do circuito todo será a maior seção dos trechos.

• Exemplo 3: supondo um circuito terminal com cargas distribuídas, conforme a figura vista a seguir: eletroduto de PVC embutido em alvenaria, temperatura: 30°C

Resposta

- S=3x600+2x100=2000VA
- IB=2000/127=15,7A
- Na tabela procura-se ΔVunit=16,9

Seção Nominal	Pirastic Piras Flex 5	tic ·	Pirae	rtic Sup Flex 8		
mm²	Cit Monofr Trifá	istca e	Circuito Monofásico		Circ Trifá	
	FP=	FP=	FP=	18-	FP=	
	0.89	0,95	0,80	0,95	0,80	
1.5		27.4	23.3	27.6	20.2	
2,5	K			16.9	12.4	
4		10.5	8.96	10.0	7.79	
- 6	5.81	7.00	6.03	7.07	5.25	
10	3.54	4.20	3.63	4.23	3.17	
1.6	2 22	2.20	9 32	2.68	2.02	

• Calculando para o primeiro trecho: $\Delta e=2,1\%$

- Repete-se o procedimento para cada trecho de tubulação
- E assim sucessivamente para cada trecho e vai lançando os valores na tabela seguinte:

				Tabela 10.22 – Par	ra seção 2,	5 mm² – C	oluna 5
Trecho	P (W)	I _p (A)	d (km)	Seção do Condutor (mm²)	Δe (V/A.km)	Δe _(trecho)	Δε _(acum.) (%)
O-A	2000	15.7	0,010	2,5	16,9	2,01	2,01
A-B	1400	11,0	0,010	2,5	16,9	1,46	3,47
B - C	800	6,3	0,010	2,5	16,9	0,84	4,31>49
C-D	200	1,6	0,003	2,5	16,9	0,06	4,37
D-E	100	0,8	0,002	2,5	16,9	0,02	4,39

• A queda de tensão do trecho B é maior do 4%. Deve-se refazer o cálculo para um seção nominal maior do que 2,5 mm2

Tabela 10.22 - Queda de tensão em V/A.km.

Circuito					
Pirastic Flax Super Pirastic Flax Super Pirastic Flax Super Pirastic Flax Super Pirastic Pir	Cabos Sintenax, Voltenax e Voltalene				
Circuito Monofásico e Trifásico e Trifásic	/Tetrapolar				
S=10 cm S=20	ircuito rifásico				
1.5 23 27.4 23.3 27.6 20.2 23.9 23.6 27.8 23.7 27.8 23.7 27.8 23.4 27.6 20.5 24.0 20.5 24.1 20.3 24.0 20.2 23.9 23.3 27.6 20.2 23.9 23.6 27.8 23.7 27.8 23.4 27.6 20.5 24.0 20.5 24.1 20.3 24.0 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 27.6 20.2 23.9 23.3 23.7 23.2 23.7 23.2 23.7 23.2 23.7 23.2 23.7 23.2 24.0 23.2 24.0 23.3 24.) (20)				
1.5 23 27.4 23.3 27.6 20.2 23.9 23.6 27.8 23.7 27.8 23.4 27.6 20.5 24.0 20.5 24.1 20.3 24.0 20.2 23.9 23.3 27.6 20. 2.5 14 16.8 14.3 16.9 12.4 14.7 14.6 17.1 14.7 17.1 14.4 17.0 12.7 14.8 12.7 14.8 12.5 14.7 12.4 14.7 12.4 14.7 14.3 16.9 12.4 4 9.0 10.5 8.96 10.6 7.79 9.15 93 10.7 9.3 10.7 9.3 10.7 9.1 10.6 8.0 9.3 8.1 9.3 7.9 9.2 7.8 9.2 9.0 10.6 72. 6 5.87 7.00 6.03 7.07 5.25 6.14 6.3 7.2 6.4 7.2 6.1 7.1 5.5 6.3 5.5 6.3 5.5 6.3 5.5 6.2 5.2 6.1 6.0 7.1 5.2 10 3.54 4.20 3.63 4.23 3.17 3.67 3.9 4.4 3.9 4.4 3.7 4.3 3.4 3.8 3.4 3.8 3.4 3.8 3.2 3.7 3.2 3.7 3.6 4.2 3.1 16 2.27 2.70 2.32 2.68 2.03 2.33 2.6 2.8 2.6 2.8 2.6 2.8 2.4 2.7 2.2 2.4 2.3 2.5 2.1 2.4 2.0 2.3 2.3 2.7 2.0 2.5 2.5 1.5 1.7 1.33 1.49 1.73 1.83 1.80 1.80 1.80 1.9 1.76 1.52 1.59 1.57 16.2 1.40 1.53 1.32 1.49 1.50 1.71 1.3 3.5 1.12 1.25 1.12 1.25 0.98 1.09 1.33 1.36 1.39 1.39 1.20 1.29 1.17 1.19 1.22 1.22 1.06 1.13 0.98 1.09 1.12 1.25 0.9 50 0.86 0.95 0.85 0.94 0.76 0.82 1.05 1.04 1.11 1.07 0.93 0.97 0.93 0.91 0.96 0.94 0.82 0.85 0.75 0.82 0.85 0.93 0.7 70 0.64 0.67 0.62 0.67 0.55 0.59 0.81 0.76 0.87 0.80 0.87 0.80 0.70 0.71 0.72 0.64 0.67 0.62 0.67 0.65 0.59 0.61 0.44 0.65 0.59 0.71 0.62 0.56 0.54 0.58 0.52 0.64 0.55 0.50 0.50 0.44 0.44 0.65 0.59 0.71 0.62 0.56 0.54 0.58 0.52 0.64 0.55 0.50 0.50 0.44 0.48 0.50 0.43 0.44 0.65 0.59 0.71 0.62 0.56 0.54 0.58 0.52 0.64 0.55 0.50 0.50 0.34 0.44 0.48 0.50 0.42 0.42 0.42 0.42 0.40 0.41 0.36 0.36 0.57 0.49 0.63 0.52 0.48 0.44 0.51 0.33 0.56 0.46 0.55 0.50 0.50 0.34 0.44 0.48 0.50 0.42 0.42 0.42 0.42 0.40 0.41 0.36 0.36 0.57 0.49 0.63 0.52 0.48 0.44 0.55 0.32 0.40 0.35 0.34 0.31 0.30 0.30 0.44 0.55 0.59 0.44 0.36 0.35 0.37 0.30 0.30 0.30 0.30 0.30 0.30 0.30	0 FP=0,95				
4 9.0 10.5 8.96 10.6 7.79 9.15 9.3 10.7 9.3 10.7 9.1 10.6 8.0 9.3 8.1 9.3 7.9 9.2 7.8 9.2 9.0 10.6 7.8 6 5.87 7.00 6.03 7.07 5.25 6.14 6.3 7.2 6.4 7.2 6.1 7.1 5.5 6.3 5.5 6.3 5.5 6.3 5.3 6.2 5.2 6.1 6.0 7.1 5.2 10 3.54 4.20 3.63 4.23 3.17 3.67 3.9 4.4 3.9 4.4 3.7 4.3 3.4 3.8 3.4 3.8 3.4 3.8 3.2 3.7 3.2 3.7 3.6 4.2 3.1 16 2.27 2.70 2.32 2.68 2.03 2.33 2.6 2.8 2.6 2.8 2.4 2.7 2.2 2.4 2.3 2.5 2.1 2.4 2.0 2.3 2.3 2.3 2.3 2.7 2.0 2.3 2.5 1.50 1.72 1.51 1.71 1.33 1.49 1.73 1.83 1.80 1.86 1.59 1.76 1.52 1.59 1.57 1.62 1.40 1.55 1.32 1.49 1.50 1.71 1.3 35 1.12 1.25 0.98 1.09 1.33 1.36 1.39 1.39 1.20 1.29 1.17 1.19 1.22 1.22 1.06 1.13 0.98 1.09 1.12 1.25 0.9 50 0.86 0.95 0.85 0.94 0.76 0.82 1.05 1.04 1.11 1.07 0.93 0.97 0.93 0.91 0.96 0.94 0.82 0.85 0.75 0.82 0.85 0.93 0.7 0.0 0.44 0.67 0.62 0.67 0.55 0.59 0.81 0.76 0.87 0.87 0.87 0.87 0.70 0.54 0.67 0.77 0.70 0.63 0.62 0.55 0.59 0.81 0.76 0.87 0.87 0.87 0.87 0.87 0.50 0.50 0.51 0.48 0.50 0.43 0.44 0.65 0.59 0.71 0.62 0.56 0.54 0.58 0.52 0.64 0.55 0.50 0.47 0.43 0.44 0.48 0.50 0.41 1.20 0.42 0.42 0.40 0.41 0.36 0.36 0.57 0.49 0.63 0.52 0.48 0.44 0.51 0.43 0.56 0.46 0.43 0.39 0.36 0.36 0.40 0.41 0.3 1.50 0.37 0.35 0.35 0.34 0.31 0.30 0.50 0.42 0.56 0.45 0.45 0.45 0.45 0.45 0.37 0.51 0.40 0.33 0.34 0.31 0.30 0.35 0.34 0.31 0.30 0.50 0.42 0.56 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	23.9				
6 5.87 7.00 6.03 7.07 5.25 6.14 6.3 7.2 6.4 7.2 6.1 7.1 5.5 6.3 5.5 6.3 5.3 6.2 5.2 6.1 6.0 7.1 5.2 10 3.54 4.20 3.63 4.23 3.17 3.67 3.9 4.4 3.9 4.4 3.7 4.3 3.4 3.8 3.4 3.8 3.2 3.7 3.2 3.7 3.6 4.2 3.1 16 2.27 2.70 2.32 2.68 2.03 2.33 2.6 2.8 2.6 2.8 2.4 2.7 2.2 2.4 2.3 2.5 2.1 2.4 2.0 2.3 2.3 2.3 2.7 2.0 2.5 1.50 1.72 1.51 1.71 1.33 1.49 1.73 1.83 1.80 1.86 1.59 1.76 1.52 1.59 1.57 1.62 1.40 1.53 1.32 1.49 1.50 1.71 1.3 35 1.12 1.25 1.12 1.25 0.98 1.09 1.33 1.36 1.39 1.39 1.20 1.29 1.71 1.19 1.22 1.22 1.06 1.13 0.98 1.09 1.12 1.25 0.99 50 0.86 0.95 0.85 0.94 0.76 0.82 1.05 1.04 1.11 1.07 0.93 0.97 0.93 0.91 0.96 0.94 0.82 0.85 0.75 0.82 0.85 0.93 0.77 0.064 0.67 0.62 0.67 0.55 0.59 0.81 0.76 0.87 0.80 0.70 0.71 0.72 0.67 0.77 0.70 0.63 0.62 0.55 0.59 0.62 0.67 0.55 0.59 0.51 0.48 0.50 0.43 0.44 0.65 0.59 0.71 0.62 0.56 0.54 0.58 0.52 0.64 0.55 0.50 0.47 0.43 0.44 0.48 0.50 0.41 0.30 0.36 0.36 0.36 0.35 0.49 0.40 0.41 0.36 0.36 0.36 0.57 0.49 0.63 0.42 0.42 0.40 0.41 0.36 0.36 0.36 0.57 0.49 0.53 0.42 0.38 0.45 0.37 0.51 0.40 0.38 0.34 0.31 0.30 0.50 0.42 0.42 0.40 0.41 0.36 0.36 0.35 0.49 0.40 0.45 0.36 0.55 0.49 0.40 0.45 0.36 0.35 0.35 0.34 0.31 0.30 0.50 0.42 0.56 0.45 0.42 0.38 0.45 0.37 0.51 0.40 0.38 0.34 0.31 0.30 0.35 0.34 0.31 0.30 0.30 0.45 0.33 0.33 0.37 0.35 0.34 0.31 0.30 0.30 0.45 0.33 0.33 0.37 0.35 0.34 0.31 0.30 0.35 0.34 0.31 0.30 0.30 0.45 0.33 0.33 0.32 0.40 0.32 0.46 0.35 0.34 0.31 0.30 0.35 0.34 0.31 0.30 0.35 0.34 0.31 0.30 0.35 0.34 0.31 0.30 0.35 0.34 0.32 0.20 0.22 0.23 0.20 0.21 0.18 0.32 0.20 0.22 0.23 0.29 0.21 0.17 0.18 0.13 0.16 0.12 0.26 0.17 0.32 0.21 0.24 0.16 0.24 0.16 0.24 0.16 0.29 0.19 0.19 0.15 0.16 0.12 0.26 0.17 0.32 0.21 0.24 0.16 0.24 0.16 0.24 0.16 0.29 0.19 0.19 0.15 0.12 0.25 0.14 0.15 0.16 0.12 0.25 0.18 0.26 0.18 0.24 0.16 0.29 0.19 0.19 0.15 0.12 0.25 0.14 0.15 0.16 0.12 0.25 0.14 0.16 0.12 0.25 0.14 0.16 0.24 0.16 0.24 0.16 0.24 0.16 0.24 0.16 0.29 0.19 0.19 0.15 0.12 0.25 0.14 0.15 0.16 0.12 0.25 0.14 0.16 0.12 0.25 0.14 0.16 0.12 0.25 0.14 0.16 0.24 0.16 0.24	14.7				
10 3.54 4.20 3.63 4.23 3.17 3.67 3.9 4.4 3.9 4.4 3.7 4.3 3.4 3.8 3.4 3.8 3.2 3.7 3.2 3.7 3.6 4.2 3.1 1.6 2.27 2.70 2.32 2.68 2.03 2.33 2.6 2.8 2.6 2.8 2.4 2.7 2.2 2.4 2.3 2.5 2.1 2.4 2.0 2.3 2.3 2.3 2.7 2.0 2.5 1.50 1.72 1.51 1.71 1.33 1.49 1.73 1.83 1.80 1.86 1.59 1.76 1.52 1.59 1.57 1.62 1.40 1.53 1.32 1.49 1.50 1.71 1.3 3.5 1.12 1.25 1.12 1.25 0.98 1.09 1.33 1.36 1.39 1.39 1.20 1.29 1.17 1.19 1.22 1.22 1.06 1.13 0.98 1.09 1.12 1.25 0.9 50 0.86 0.95 0.85 0.94 0.76 0.82 1.05 1.04 1.11 1.07 0.93 0.97 0.93 0.91 0.96 0.94 0.82 0.85 0.75 0.82 0.85 0.93 0.77 0.64 0.62 0.67 0.65 0.59 0.81 0.76 0.87 0.80 0.70 0.71 0.72 0.67 0.77 0.70 0.63 0.62 0.55 0.59 0.62 0.67 0.55 0.59 0.81 0.76 0.87 0.80 0.70 0.71 0.72 0.67 0.77 0.70 0.63 0.62 0.55 0.59 0.62 0.67 0.55 0.59 0.71 0.62 0.56 0.54 0.58 0.59 0.40 0.40 0.41 0.36 0.36 0.57 0.49 0.63 0.52 0.48 0.44 0.51 0.43 0.56 0.46 0.43 0.39 0.36 0.36 0.40 0.41 0.3 185 0.32 0.30 0.30 0.30 0.29 0.27 0.25 0.44 0.36 0.51 0.39 0.37 0.32 0.40 0.32 0.46 0.35 0.34 0.31 0.30 0.35 0.34 0.31 0.30 0.50 0.42 0.56 0.51 0.39 0.37 0.32 0.40 0.32 0.46 0.35 0.34 0.31 0.30 0.35 0.34 0.31 0.30 0.29 0.22 0.23 0.20 0.21 0.18 0.35 0.22 0.37 0.26 0.27 0.21 0.29 0.20 0.34 0.23 0.21 0.19 0.15 0.32 0.22 0.37 0.26 0.28 0.21 0.21 0.18 0.23 0.20 0.2 0.20 0.23 0.19 0.19 0.16 0.17 0.14 0.28 0.20 0.34 0.23 0.25 0.18 0.26 0.18 0.32 0.21 0.24 0.17 0.17 0.14	9.1				
16 2.27 2.70 2.32 2.68 2.03 2.33 2.6 2.8 2.6 2.8 2.4 2.7 2.2 2.4 2.3 2.5 2.1 2.4 2.0 2.3 2.3 2.7 2.0 25 1.50 1.72 1.51 1.71 1.33 1.49 1.73 1.83 1.80 1.86 1.59 1.76 1.52 1.59 1.57 1.62 1.40 1.53 1.32 1.49 1.50 1.71 1.3 35 1.12 1.25 1.12 1.25 0.98 1.09 1.33 1.36 1.39 1.20 1.29 1.17 1.19 1.22 1.22 1.06 1.13 0.98 1.09 1.12 1.25 0.9 50 0.86 0.95 0.85 0.94 0.76 0.82 1.05 1.04 1.11 1.07 0.93 0.97 0.93 0.91 0.96 0.94 0.82 0.85 0.95	6.1				
25	3.7				
35	2.3				
50 0.86 0.95 0.85 0.94 0.76 0.82 1.05 1.04 1.11 1.07 0.93 0.97 0.93 0.91 0.96 0.94 0.82 0.85 0.85 0.93 0.77 70 0.64 0.67 0.62 0.67 0.55 0.59 0.81 0.76 0.87 0.80 0.70 0.71 0.72 0.67 0.77 0.70 0.63 0.62 0.67 0.55 0.59 0.81 0.76 0.87 0.80 0.70 0.71 0.72 0.67 0.77 0.70 0.63 0.62 0.55 0.59 0.62 0.62 0.67 0.55 0.59 0.71 0.62 0.56 0.54 0.58 0.52 0.64 0.55 0.50 0.47 0.43 0.44 0.48 0.50 0.43 0.44 0.65 0.59 0.71 0.62 0.56 0.54 0.58 0.52 0.64 0.55 0.50 0.47 0.43 </td <td>1.48</td>	1.48				
70	1.08				
95	0.81				
120	0.58				
150 0.37 0.35 0.35 0.34 0.31 0.30 0.50 0.42 0.56 0.45 0.42 0.38 0.45 0.37 0.51 0.40 0.38 0.34 0.31 0.30 0.35 0.34 0.3 185 0.32 0.30 0.30 0.29 0.27 0.25 0.44 0.36 0.51 0.39 0.37 0.32 0.40 0.32 0.46 0.35 0.34 0.29 0.27 0.25 0.30 0.29 0.2 240 0.29 0.25 0.26 0.24 0.23 0.21 0.39 0.30 0.45 0.33 0.33 0.27 0.35 0.27 0.41 0.30 0.30 0.24 0.23 0.21 0.26 0.24 0.2 300 0.27 0.22 0.23 0.20 0.21 0.18 0.35 0.26 0.41 0.29 0.30 0.23 0.32 0.23 0.37 0.26 0.28 0.21 0.21 0.18 0.23 0.20 0.2 400 0.24 0.20 0.21 0.17 0.19 0.15 0.32 0.22 0.37 0.26 0.27 0.21 0.29 0.20 0.34 0.23 0.25 0.19 0.19 0.15	0.43				
185 0.32 0.30 0.30 0.29 0.27 0.25 0.44 0.36 0.51 0.39 0.37 0.32 0.40 0.32 0.46 0.35 0.34 0.29 0.27 0.25 0.30 0.29 0.22 0.26 0.24 0.23 0.21 0.39 0.30 0.45 0.33 0.33 0.27 0.35 0.27 0.41 0.30 0.30 0.24 0.23 0.21 0.26 0.24 0.23 300 0.27 0.22 0.23 0.20 0.21 0.18 0.35 0.26 0.41 0.29 0.30 0.23 0.23 0.21 0.18 0.35 0.26 0.41 0.29 0.30 0.23 0.23 0.21 0.18 0.26 0.41 0.29 0.30 0.23 0.23 0.21 0.18 0.23 0.20 0.23 0.22 0.37 0.26 0.27 0.21 0.29 0.20 0.34 0.23 0.25 0.19	0.35				
240 0.29 0.25 0.26 0.24 0.23 0.21 0.39 0.30 0.45 0.33 0.33 0.27 0.35 0.27 0.41 0.30 0.30 0.24 0.23 0.21 0.26 0.24 0.2 300 0.27 0.22 0.23 0.20 0.21 0.18 0.35 0.26 0.41 0.29 0.30 0.23 0.23 0.21 0.18 0.23 0.20 0.24 0.20 0.21 0.18 0.35 0.26 0.41 0.29 0.30 0.23 0.37 0.26 0.23 0.23 0.21 0.18 0.23 0.20 0.23 0.20 0.24 0.20 0.21 0.17 0.19 0.15 0.32 0.22 0.37 0.26 0.27 0.21 0.29 0.20 0.34 0.23 0.25 0.19 0.19 0.15 - - - - - - - - - - -	0.30				
300 0.27 0.22 0.23 0.20 0.21 0.18 0.35 0.26 0.41 0.29 0.30 0.23 0.32 0.23 0.37 0.26 0.28 0.21 0.21 0.18 0.23 0.20 0.2 400 0.24 0.20 0.21 0.17 0.19 0.15 0.32 0.22 0.37 0.26 0.27 0.21 0.29 0.20 0.34 0.23 0.25 0.19 0.19 0.15	0.20				
400 0.24 0.20 0.21 0.17 0.19 0.15 0.32 0.22 0.37 0.26 0.27 0.21 0.29 0.20 0.34 0.23 0.25 0.19 0.19 0.15 500 0.23 0.19 0.19 0.16 0.17 0.14 0.28 0.20 0.34 0.23 0.25 0.18 0.26 0.18 0.32 0.21 0.24 0.17 0.17 0.14 630 0.22 0.17 0.18 0.13 0.16 0.12 0.26 0.17 0.32 0.21 0.24 0.16 0.24 0.16 0.29 0.19 0.22 0.15 0.16 0.12	0.18				
500 0.23 0.19 0.19 0.16 0.17 0.14 0.28 0.20 0.34 0.23 0.25 0.18 0.26 0.18 0.32 0.21 0.24 0.17 0.17 0.17 0.14 630 0.22 0.17 0.18 0.13 0.16 0.12 0.26 0.17 0.32 0.21 0.24 0.16 0.24 0.16 0.29 0.19 0.22 0.15 0.16 0.12	0.10				
630 0.22 0.17 0.18 0.13 0.16 0.12 0.26 0.17 0.32 0.21 0.24 0.16 0.24 0.16 0.29 0.19 0.22 0.15 0.16 0.12 -	+ :				
800 0.21 0.16 0.17 0.12 0.15 0.11 0.23 0.15 0.29 0.18 0.22 0.15 0.22 0.14 0.27 0.17 0.21 0.14 0.15 0.11	-				
1000 0.21 0.16 0.16 0.11 0.14 0.10 0.21 0.14 0.27 0.17 0.21 0.14 0.20 0.13 0.25 0.16 0.20 0.13 0.14 0.10 -	-				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	25				

• Repete-se o procedimento para cada trecho de tubulação

• E assim sucessivamente para cada trecho e vai lançando os valores na

tabela seguinte:

					~		
Trecho	P (W)	I _p (A)	d (km)	Seção do Condutor (mm²)	Δe (V/A.km)	Δe _(trecho) (%)	Δε _(acum.) (%)
O - A	2000	15,7	0,010	4	10,6	1,31	1,31
A - B	1400	11,0	0,010	4	10,6	0,92	2,23
B-C	800	6,3	0,010	4	10,6	0,53	2,76
C - D	200	1,6	0,003	4	10,6	0,04	2,80
D-E	100	0,8	0,002	4	10,6	0,01	2,81<4%

Tabela 10.22 – Para seção 4 mm² – Coluna 5

 Os valores calculado para queda de tensão para todos os trechos do circuito são menores do 4%. Assim, a seção nominal do condutor adotada é 4,0 mm2

Exemplo 4: considerando um circuito de iluminação de um estacionamento, conforme o seguinte esquema: eletroduto de PVC embutido no solo, temperatura: 25 °C, utilizando lâmpadas a vapor de mercúrio de 250 W, com reator de 220 V e fator de potência de 0,88 (284 VA = 250 W x 0,88)

Resposta

- S=5x284=1420VA
- IB=1420/220=6,45A
- Na tabela procura-se ΔVunit=27,6

Seção Nominal	Pirastic Piras Flex S	de ·	Piraetic Sup Flex S		
mm ¹	Cir Monofé Trifá	ideo e	Circ Mone		
	FP2	FP= 0.95	FP= 0.80	0.95	
1,5	K _	0.75	62.20	27.6	
2,-5		16.8	14.3	16.9	
4	9.0	10.5	8.96	10.6	
6	5.87	7.00	6.03	7.07	

• Calculando para o primeiro trecho: $\Delta e=2,42\%$

• Repete-se o procedimento para cada trecho de tubulação

B - C

284

1,29

• E assim sucessivamente para cada trecho e vai lançando os valores na

tabela seguinte:

∆e_(acum.) Δe (trecho) $I_{\mathbf{p}}(\mathbf{A})$ Trecho S (VA) d (km) Seção do Condutor (mm²) (V/A.km)(%)1420 6.45 0,030 O - A 1.5 27.6 2.42 2,42 2,58 0,030 1,5 27.6 0.97 3.39

1,5

Tabela 10.22 – Para seção 1.5 mm² – Coluna 5

27,6

0.48

3,87<4%

 Os valores calculado para queda de tensão para todos os trechos do circuito são menores do 4%. Assim, a seção nominal do condutor adotada é 1,5 mm²

0.030

Critério da Secção Mínima

Instalação	Utilização	Seção Mínima p/ condutores de cobre (mm²)
	Circuitos de Iluminação	1,5
Fixas em geral	Circuitos de Força	2,5
	Circuitos de sinalização e controle	0,5
	Para um equipamento específico	Como especificado na norma do equipamento
Ligações flexíveis	Para qualquer outra aplicação	0,75
	Circuitos a extrabaixa tensão para aplicações especiais	0,75

Seção Mínima - Neutro

Seção dos condutores fase (mm²)	Seção mínima do condutor neutro (mm²)
S ≤ 25	S
35	25
50	25
70	35
95	50
120	70
150	70
185	95
240	120
300	150
400	185

Seção Mínima - Proteção

Seção dos condutores fase (mm²)	Seção mínima do condutor de proteção correspondente (mm²)
S ≤ 16	S
$16 < S \le 35$	16
S > 35	S/2