

proof of limit of nth root of n

Canonical name ProofOfLimitOfNthRootOfN

Date of creation 2014-02-28 7:21:31 Last modified on 2014-02-28 7:21:31 Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 19

Author rspuzio (6075)

Entry type Proof
Classification msc 30-00
Classification msc 12D99

In this entry, we present a self-contained, elementary proof of the fact that $\lim_{n\to\infty} n^{1/n} = 1$. We begin by with inductive proofs of two integer inequalities — real numbers will not enter until the very end.

Lemma 1. For all integers n greater than or equal to 5,

$$2^n > n^2$$

Proof. We begin with a few easy observations. First, a bit of arithmetic:

$$2^5 = 32 > 25 = 5^2$$

Second, some algebraic manipulation of the inequality n > 4:

$$n-1 > 3$$

$$(n-1)^{2} > 9$$

$$(n-1)^{2} > 2$$

$$n^{2} - 2n + 1 > 2$$

$$2n^{2} > n^{2} + 2n + 1$$

$$2n^{2} > (n+1)^{2}$$

These observations provide us with the makings of an inductive proof. Suppose that $2^n > n^2$ for some integer $n \ge 5$. Using the inequality we just showed,

$$2^{n+1} = 2 \cdot 2^n > 2n^2 > (n+1)^2.$$

Since $2^5 > 5^2$ and $2^n > n^2$ implies that $2^{n+1} > (n+1)^2$ when $n \ge 5$ we conclude that $2^n > n^2$ dor all $n \ge 5$.

Lemma 2. For all integers n greater than or equal to 3,

$$n^{n+1} > (n+1)^n$$

Proof. We begin by noting that

$$3^4 = 81 > 64 = 4^3.$$

Next, we make assume that

$$(n-1)^n > n^{(n-1)}.$$

for some n. Multiplying both sides by n:

$$n(n-1)^n > n^n.$$

Multiplying both sides by $(n+1)^n$ and making use of the identity $(n+1)(n-1) = n^2 - 1$,

$$n(n^2 - 1)^n > n^n(n+1)^n$$
.

Since $n^2 > n^2 - 1$, the left-hand side is less than n^{2n+1} , hence

$$n^{2n+1} > n^n(n+1)^n.$$

Canceling n^n from both sides,

$$n^{(n+1)} > (n+1)^n$$
.

Hence, by induction, $n^{(n+1)} > (n+1)^n$ for all $n \ge 3$.

Theorem 1.

$$\lim_{n \to \infty} n^{1/n} = 1$$

Proof. Consider the subsequence where n is a power of 2. We then have

$$(2^m)^{(1/2^m)} = 2^{m/2^m}.$$

By lemma 1, $m/2^m < 1/m$ when $m \ge 5$. Hence, $(2^m)^{1/2^m} < 2^{1/m}$. Since $\lim_{m\to 0} 2^{1/m} = 1$, and $(2^m)^{1/2^m} > 1$, we conclude by the squeeze rule that

$$\lim_{m \to 0} (2^m)^{1/2^m} = 1.$$

By lemma 2, the sequence $\{n^{1/n}\}$ is decreasing. It is clearly bounded from below by 1. Above, we exhibited a subsequence which tends towards 1. Thus it follows that

$$\lim_{n \to \infty} n^{1/n} = 1.$$