Brownian Motion and Stochastic Calculus

最終更新: 2022年10月19日

<u>注意</u>: 記述の正確性は保証しません. ややこしいことになりたくないので, 本文の引用は最小限にしています. ? マークは不明/自信なし/要復習を意味しています.

確率論の復習[1]

確率空間を作る

- 抽象空間 Ω^{*1} と σ -field*2 $\mathcal{F} \subset \mathcal{P}(\Omega)$ の組 (Ω, \mathcal{F}) を 可測空間 という.
- 可測空間 (Ω, \mathcal{F}) 上の測度*3で $P(\Omega) = 1$ をみたすものを **確率測度** という.
- ullet (Ω, \mathcal{F}, P) を 確率空間 という. \mathcal{F} は確率を測ることができる事象の集まり. 情報量とみなせる.

測度0集合に関する用語

- 事象 $A \in \mathcal{F}$ が P(A) = 1 をみたすとき, A が **ほとんど確実に** 起こるといい, A a.s. とかく.
- (Ω, \mathcal{F}, P) が 完備 とは、零集合の部分集合がすべて可測のときにいう.
- (Ω, \mathcal{F}, P) からその完備な拡張である **完備化** $(\Omega, \tilde{\mathcal{F}}, \tilde{P})$ を構成できる.

確率変数

- (Ω, \mathcal{F}, P) : 確率空間, (S, \mathcal{S}) : 可測空間. $X = X(\omega)$ が \mathcal{S} -値確率変数 であるとは, $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ が可測写像である*4ときにいう.
- 写像 X が確率変数であることと同値な条件としては $\forall a \in \mathbb{R}, \{X < a\} \in \mathcal{F}$ などがある*5.
- X が確率変数になるような最小限の \mathcal{F} が作れる: $\mathcal{F} = \mathcal{F}_X := \{X^{-1}(A); A \in \mathcal{S}\}$ とすればよい. \mathcal{F}_X を 確率 変数 X が生成する σ -field といい, $\sigma(X)$ とかく.

分布

- 確率変数 X の 分布, distribution とは $P_X(A) = P(X^{-1}(A))$ によって定義される (S, S) 上の確率測度 P_X のことをいう.*6
- μ を $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ 上の確率測度とするとき, $F(x):=F_{\mu}(x)=\mu((-\infty,x]), x\in\mathbb{R}$ を μ の 分布関数 という.
- ullet X を確率変数とするとき、その分布 P_X の分布関数 F_X を X の分布関数 という. つまり $F_X(x)=P(X\leq x), x\in\mathbb{R}$ である.

^{*1} ただの集合. なんの構造ももたない.

 $^{^{*2}}$ 3 条件: (1) $\Omega \in \mathcal{F}$. (2) 補集合で閉じている. (3) 加算和で閉じている.

 $^{^{*3}}$ σ -additivity: A_n たちが互いに交わらないとき $P(\cup_n A_n) = \sum_n P(A_n)$ をみたす $P: \mathcal{F} \to [0,\infty]$ を**測度**というのだった.

 $^{^{*4}}$ S に属する集合の逆像が F に属する.

 $^{^{*5}}$ $\{X \leq a\}$ は基本的な事象であり、 当然その確率が定義されることが望まれる。確率が定義できるためには、それは F に属さねばならない。確率変数とは、そのような望ましい性質をもつ関数である。

^{*6} 確率変数の分布に着目するという立場からいえば、確率空間のとりかたには任意性がある. Ω 自身がそれほど重要で積極的な意味をもつわけではない: 確率空間 Ω を区間 (0,1) にとりかえて、同じ分布をもつように確率変数を再構成することが可能である.

期待值

• 期待値 $E[X] = \int_{\Omega} X(\omega) P(d\omega)^{*7}$. 事象 A 上に限るとき $E[X,A] := \int_{A} X(\omega) P(d\omega) = E[X \cdot 1_{A}]$.

不等式

- Chebyshev $P(|X| > \epsilon) \leq \frac{1}{\epsilon^p} E[|X|^p].$
- Jensen $\psi : \mathbb{R} \to \mathbb{R}$: 下に凸. $\psi(E[X]) \leq E[\psi(X)]$.
- Schwarz Hölder で p = q = 2 とおく.

期待値と極限操作の交換

- Lebesgue's convergence theorem $X_n \to X(a.s.)$ かつ非負確率変数 Y で可積分なものが存在し $\forall n, |X_n| \leq Y$ をみたすならば $\lim_n E[X_n] = E[X]$.
- monotone convergence theorem $0 \le X_1 \le X_2 \cdots$ かつ $X_n \to X(a.s.)$ ならば $\lim_n E[X_n] = E[X]$.
- Fatou's lemma $X_n \ge 0$ ならば $E[\liminf_n X_n] \le \liminf_n E[X_n]$.

いろいろな収束

- 1. a.s. convergence $X_n(\omega) \to X(\omega)$ a.s. $\supset \sharp \ \mathcal{P}(\lim_n X_n = X) = 1$.
- 2. convergence in probability 任意の $\epsilon > 0$ に対して $\lim_n P(|X_n X| > \epsilon) = 0$.
- 3. convergence in the mean of order $p \not \ge 1$ に対し $\lim_n E[|X_n X^p|] = 0$.
- 4. convergence in law/distribution 任意の $f \in C_b(\mathbb{R})$ に対して $\lim_n E[f(X_n)] = E[f(X)]^{*8}$.

 $1 \implies 2, 3 \implies 2, 2 \implies 4$. **一様可積分** というを導入すると逆向きの矢印が成り立つようになったりする.

独立性の定義

• 事象の独立性: 事象の集まり $\{A_k\}_{1 \le k \le n}$ が 独立 \iff 任意の $1 \le l \le n$ と任意の $1 \le k_1 < k_2 < \dots < k_l \le n$ に対して

$$P\left(\bigcap_{i=1}^{l} A_{k_i} = \prod_{i=1}^{l} P(A_{k_i})\right).$$

• σ -field の独立性: \mathcal{F} の部分 σ -field $\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_n$ が 独立 $\stackrel{\text{def}}{\Longleftrightarrow}$ 任意の $C_k \in \mathcal{F}_k$ $(1 \le k \le n)$ に対して

$$P(C_1 \cap C_2 \cap \cdots \cap C_n) = \prod_{k=1}^n P(C_k).$$

• 確率変数列の独立性: S_k -値確率変数列 $(X_k)_{1\leq k\leq n}$ が 独立 \iff 任意の $A_k\in\mathcal{S}_k$ $(1\leq k\leq n)$ に対して

$$P(X_k \in A_k, k = 1, 2, \dots, n) = \prod_{k=1}^{n} P(X_k \in A_k).$$

^{*&}lt;sup>7</sup> 可積分のとき

 $^{^{*8}(}X_n), X$ の分布のみによって定まる概念だから、これらは必ずしも同一の確率空間で定義されている必要はない.

独立性に関する性質

- 確率変数列の独立性は、可測関数との合成によって保たれる、
- 可積分な独立な確率変数列 (X_k) に対し, $E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n]$.
- 組ごとに独立な確率変数列 (X_k) に対し、 $\mathrm{Var}(X_k) < \infty, 1 \leq k \leq n$ ならば、 $\mathrm{Var}(\sum_{k=1}^n X_k) = \sum_{k=1}^n \mathrm{Var}(X_k)$.

独立確率変数列の存在

• 直積 σ -field と 直積測度を入れた確率空間に、独立確率変数列を構成できる。まず有限個でやってから、柱状集合から Kolmogorov の σ -field を作って無限確率変数列に拡張する。

条件つき期待値

G を F の部分 σ -field とする. X は確率変数. 条件

- 1. $B \in \mathcal{G} \implies E[X, B] = E[Y, B]$
- 2. Y は G-可測な確率変数

をみたす確率変数 $Y(\omega)$ を $E[X|\mathcal{G}](\omega)$ とかいて, \mathcal{G} の下での X の 条件つき期待値 という.

条件つき期待値の性質

- 1. $a, b \in \mathbb{R}$ に対し, $E[aX + bY|\mathcal{G}] = aE[X|\mathcal{G}] + bE[Y|\mathcal{G}]$, a.s.
- 2. $X \ge 0$, a.s. $\Longrightarrow E[X|\mathcal{G}] \ge 0$, a.s.
- $3. \ X$ が \mathcal{G} -可測で XY が可積分ならば $E[XY|\mathcal{G}] = XE[Y|\mathcal{G}], \ a.s.$
- 4. \mathcal{H} , \mathcal{G} を \mathcal{F} の部分 σ -field で $\mathcal{H} \subset \mathcal{G}$ とすれば $E[E[X|\mathcal{G}]|\mathcal{H}] = E[X|\mathcal{H}]$, a.s.
- 5. X と $\mathcal G$ が独立ならば $E[X|\mathcal G]=E[X],\ a.s.$ したがって f を $\mathbb R$ 上の Borel 可測関数として f(X) が可積分ならば $E[f(X)|\mathcal G]=E[f(X)].$

大数の法則

 \bullet (X_k) の 標本平均 Y_n

$$Y_n := \frac{1}{n} \sum_{k=1}^n X_k, \quad \overline{m}_n = \frac{1}{n} \sum_{k=1}^n m_k$$
 (1)

- ullet 規格化された標本平均 $ilde{Y}_n:=Y_n-\overline{m}_n.$
- ullet (大数の弱法則) ある条件 *9 のもとで, $\tilde{Y}_n o 0$, 確率収束
- (大数の強法則 1,2) ある条件 *10*11 のもとで, $\tilde{Y}_n \to 0$, 概収束.

大数の強法則の証明に用いる道具

• (Borel-Cantelli の補題)

^{*9 1.} (X_n) が組ごとに独立. 2. $\sup_n \operatorname{Var}(X_n) < \infty$.

^{*}10 1. (X_n) が独立. 2. $\sum_{n=1}^{\infty} \frac{1}{n^2} \text{Var}(X_n) < \infty$. (Kolmogorov の第 1 定理)

^{*11 1.} (X_n) は i.i.d. 2. $m=E[X_n]<\infty$. (Kolmogorov の第 2 定理)

● (Kolmogorov の不等式)

中心極限定理

大数の法則は標本平均 Y_n の収束極限 E[X] についてのべたものである。しかし、このような結果を現実に応用しようとする場合、「n を実際にどの程度大きくとれば Y_n が E[X] に十分近いといえるのか」が重要。中心極限定理 (CLT) は大数の法則の誤差項 $Y_n-E[X]$ の挙動を調べるものであり、雑にいうと、この項は $n\to\infty$ のとき $O(1/\sqrt{n})$ で減衰し、

$$Y_n = \frac{1}{n} \sum_{k=1}^{n} X_k = E[X] + \frac{1}{\sqrt{n}} Z + \cdots$$

となるような Z が求まることを主張している. 具体的には $Z \sim \mathcal{N}(0, \sigma^2)$ である.

$$Z_n = \sqrt{n} \left(\frac{1}{n} \sum_{k=1}^n X_k - E[X] \right), \quad Z_n \to Z.$$

しかし、収束の意味は(概収束や確率収束よりも弱い)法則収束(弱収束、分布収束)である。 つまり、 $P(a \leq Z_n \leq b)$ が $n \to \infty$ のときに Z の対応する確率 $P(a \leq Z \leq b)$ に収束することが期待できる.

CLT の証明に向かって

- (弱収束と同値な条件)
- (Prokhorov の定理) (μ_{α}) は相対コンパクト \iff (μ_{α}) は緊密 (tight). 証明の概略
 - 1. **Helly の選出定理**を用いる.

特性関数

- 確率測度 μ の 特性関数 $\varphi(\xi) := \varphi_{\mu}(\xi) = \int_{\mathbb{R}} e^{i\xi x} \mu(dx), \quad \xi \in \mathbb{R}.$
- 確率変数 X の 特性関数 とは, X の分布 P_X の特性関数のこと. つまり $\varphi(\xi) := \varphi_X(\xi) = E[e^{i\xi X}]$.
- (一意性定理) $\forall \xi \in \mathbb{R}, \varphi_{\mu}(\xi) = \varphi_{\tilde{\mu}}(\xi) \implies \mu = \tilde{\mu}.$
- 特性関数の各点収束は分布の弱収束と同値である.
- (Bochner の定理) 特性関数の特徴づけ: $\varphi(\xi)$ が
 - $1. \xi = 0$ で連続
 - 2. $\varphi(0) = 1$
 - 3. 正定值

をみたすなら φ はある $\mu \in \mathcal{P}(\mathbb{R})$ の特性関数.

CLT の証明

• (中心極限定理, CLT) (X_n) は i.i.d. 確率変数列で, $E[X_n] = m, Var(X_n) = v$. このとき $Z_n = \sqrt{n}(\frac{1}{n}\sum_{k=1}^n X_k - m)$ は $Z_n \to Z$, 法則収束. $(Z \sim \mathcal{N}(0,v))$

離散時間 Martingale

• \mathcal{F} の部分 σ -field の増加列 (\mathcal{F}_n) を情報系 (filtration) という.

- (X_n) が filtration (\mathcal{F}_n) に関して martingale $\stackrel{\text{def}}{\Longleftrightarrow}$
 - 1. (\mathcal{F}_n) -adapted: 各 n に対し X_n は \mathcal{F}_n -可測.
 - 2. 各 X_n は可積分.
 - 3. $E[X_{n+1}|\mathcal{F}_n] = X_n, a.s. \geq$ なら submartingale, \leq なら supermartingale.
- $\mathcal{F}_n := \sigma(X_1, X_2, \dots, X_n)$ から定まる (\mathcal{F}_n) を (X_n) の 自然な filtration という.
- 下に凸な関数 ψ による変換 $X_n \mapsto \psi(X_n)$ で martingale \to submartingale, submartingale \to submartingale.

Doob 分解

• submartingale は martingale と増加過程の和に分解できる.

Markov time, stopping time

- ランダムな時刻 τ が時刻 n あるいはそれ以前におこるかどうかが時刻 n までの情報 (\mathcal{F}_n) から判断可能なものを (\mathcal{F}_n) -Markov time という.
 - -A への **到達時刻** τ_A は Markov time
 - A からの 最終脱出時刻 σ_A は Markov time ではない.
- (\mathcal{F}_n) -Markov time τ に対し, τ 時以降は区別不能な σ -field \mathcal{F}_{τ} を τ 時までの情報量 という.

optional sampling theorem

- ある種のランダムな時間変更について martingale 性が保存される, つまり
- (X_n) : (\mathcal{F}_n) -submartingale, (τ_k) : 有界な (\mathcal{F}_n) -Markov time の増加列のとき, $(Y_k) := (X_{\tau_k})$ は (\mathcal{F}_{τ_k}) -submartingale.

Doob の不等式

• ある時間区間における martingale の最大値は最後の時刻における情報のみによって評価できる:

$$P\left(\max_{1\le k\le n} X_k \ge a\right) \le \frac{1}{a} E[X_n^+].$$

submartingale の収束定理

- 単調増加実数列 (a_n) が上に有界なら $\lim_{n\to\infty}a_n$ が存在する. この事実の確率バージョン.
- (submartingale の収束定理) submartingle (X_n) が 有界性 $\sup_n E[X_n^+] < \infty$ をみたすとき、ある可積分な確率変数 X があって $X_n \to X, a.s.$ となる.

証明の概略

1. 上向き横断回数が無限回にならないことを示す.

p 次変動

- $[M]_n := \sum_{k=1}^n (M_k M_{k-1})^2$ を (M_n) の **2 次変動** という.
- $p \ge 1$ に対し $\sum_{k=1}^{n} |M_k M_{k-1}|^p$ を (M_n) の p 次変動 という. p = 1 のとき 全変動 という.

連続時間 martingale の導入にともなう定義

- filtration (\mathcal{F}_t) , $t \in \mathbb{R}_{\geq 0}$ が **右連続** \iff 任意の $t \geq 0$ に対して $\mathcal{F}_t = \mathcal{F}_{t+}$ がなりたつ. $(\mathcal{F}_{t+} := \bigcap_{\epsilon > 0} \mathcal{F}_{t+\epsilon})$
- $(X_t)_{t\geq 0}$ が 右連続 (càdlàg) $\stackrel{\text{def}}{\Longleftrightarrow}$ 任意の $\omega\in\Omega$ に対し $X_t(\omega)$ が t について右連続かつ左極限をもつ.

1 Martingales, Stopping Times, and Filtrations

- \blacksquare 2,10 (def.1.3 \Longrightarrow def.1.1 \Longrightarrow def.1.2 がなりたつこと)
 - $1.3 \implies 1.1$: 任意の $s \in [0,\infty)$ に対し明らかに $P[X_t = Y_t; \forall t \in [0,\infty)] \leq P[X_s = Y_s]$ がなりたつから, $P[X_t = Y_t; \forall t \in [0,\infty)] = 1 \implies \forall t \in [0,\infty), P[X_t = Y_t] = 1$, つまり $1.3 \implies 1.1$.
 - 1.1 ⇒ 1.2: 不等式 $|P[(X_{t_1},\ldots,X_{t_n})\in A]-P[(Y_{t_1},\ldots,Y_{t_n})\in A]|\leq 2P[(X_{t_1},\ldots,X_{t_n})\neq (Y_{t_1},\ldots,Y_{t_n})]$ を示す. 1.1 を仮定して不等式を用いれば、 $|P[(X_{t_1},\ldots,X_{t_n})\in A]-P[(Y_{t_1},\ldots,Y_{t_n})\in A]|\leq 2P[(X_{t_1},\ldots,X_{t_n})\neq (Y_{t_1},\ldots,Y_{t_n})]\leq \sum_{i=1}^n P(X_{t_i}\neq Y_{t_i})=0$ から 1.2 を得る.では不等式を示す. $\mathbf{X}=(X_{t_1},\ldots,X_{t_n}), \mathbf{Y}=(Y_{t_1},\ldots,Y_{t_n})$ とおく.

$$|P[\mathbf{X} \in A] - P[\mathbf{Y} \in A]| = |P[(\mathbf{X} \in A) \cap (\mathbf{X} = \mathbf{Y})] + P[(\mathbf{X} \in A) \cap (\mathbf{X} \neq \mathbf{Y})]$$

$$- P[(\mathbf{Y} \in A) \cap (\mathbf{X} = \mathbf{Y})]| - P[(\mathbf{Y} \in A) \cap (\mathbf{X} \neq \mathbf{Y})]|$$

$$= |P[(\mathbf{X} \in A) \cap (\mathbf{X} \neq \mathbf{Y})] - P[(\mathbf{Y} \in A) \cap (\mathbf{X} \neq \mathbf{Y})]|$$

$$\leq P[(\mathbf{X} \in A) \cap (\mathbf{X} \neq \mathbf{Y})] + P[(\mathbf{Y} \in A) \cap (\mathbf{X} \neq \mathbf{Y})]$$

$$\leq 2P[\mathbf{X} \neq \mathbf{Y}]$$

より示された. 他の導出法については [2] を参照.

参考文献

- [1] 確率論, 舟木直久(朝倉書店, 2004)
- $[2] \ \texttt{https://math.stackexchange.com/questions/1613202/if-one-stochastic-process-is-a-modification-of-ancestic-process-is-a-modification-of-a-modification$