長庚大學106學年度第一學期 作業系統 第二次小考

系級: 姓名: 學號:

1. (40%) 考慮在時間點0的時候已經就緒(ready)的五個工作,排隊的順序為P1, P2, P3, P4, P5。使用三個排程演算法FCFS (First-Come, First-Served)、SJF (Shortest-Job-First)以及RR (Round Robin)來排程,而RR所使用的time quantum為 2 ms。(1)請畫下三個排程演算法的排程圖,(2)請分別算出三個排程演算法中每個工作的等待時間,若無算式一率不給分(算式可以只是簡單的加減法運算),(3)請分別算出三個排程演算法的平均等待時間,若無算式一率不給分。

Process	Burst Time
\mathbf{P}_1	10 ms
P_2	7 ms
P3	2 ms
P_4	6 ms
P5	1 ms

Answer:

(1) FCFS:

		\mathbf{P}_1					P_2		P	3	P.	4	P ₅
0					10				17	19			25 26
SJF:													
P ₅	P ₃		P ₄			P_2					\mathbf{P}_1		
0 1	3	3		9				16					26
RR:													
P_1	P_2	P ₃	P ₄	P ₅	P_1	P_2	P ₄	\mathbf{P}_1	P ₂	P ₄	P_1	P_2	P_1
0	2	4	6	8 9)	11	13 15		17	19	21	23	24 26

(2)

FCFS: P₁: 10-10= 0, P₂: 17-7=10, P₃: 19-2=17, P₄: 25-6=19, P₅: 26-1=25

SJF: P₁: 26-10= 16, P₂: 16-7=9, P₃: 3-2=1, P₄: 9-6= 3, P₅: 1-1= 0 RR: P₁: 26-10= 16, P₂: 24-7=17, P₃: 6-2=4, P₄: 21-6= 15, P₅: 9-1= 8

(3)

FCFS: (0+10+17+19+25)/5 = 14.2

SJF: (16+9+1+3+0)/5 = 5.8 RR: (16+17+4+15+8)/5 = 12

2. (30%) 有兩個工作 P_1 及 P_2 ,所需的執行時間(Burst Time)分別是17 ms 與3 ms, P_1 於時間0到達, P_2 於時間點4 ms到達,現在考慮兩個排程演算法 P_2 字它們以及 P_3 的小字它們就能 P_4 以前分別算出兩個排程演算法的平均等待時間,若無算式一率不給分。

Answer:

(1)

Preemptive SJF:

		*	
	P_1	P_2	P_1
0	4	1 7	20

Non-preemptive SJF:

(2)

Preemptive SJF: (3+0)/2 = 1.5

Non-preemptive SJF: (0 + (20-4-3))/2 = 6.5

3. (30%) 使用RR (Round Robin)排程演算法來排程以下五個工作,在時間點0的時候所有工作就緒 (ready),排隊的順序為 P_1 , P_2 , P_3 , P_4 , P_5 。系統中time quantum的設定有兩個選項,分別為 6 ms 與 12 ms。(1)當我們希望可以盡量減少context switch的次數時,哪一個time quantum設定較佳?(請提供數字比較或說明,若只有答案一率不給分)。(2)當我們希望可以盡量減少平均等待時間時,哪一個time quantum設定較佳?(請提供數字比較或說明,若只有答案一率不給分)。

Process	Burst Time
P1	15 ms
P ₂	6 ms
P3	2 ms
P4	5 ms
P5	8 ms

Answer:

6 ms:

12 ms:

	\mathbf{P}_1	P_2	P ₃	P_4	P ₅	P_1			
() 1	2 18	20	25	33	36			

- (1) 12 ms. Using 6 ms as the time quantum has 2 more context switches than that of using 12 ms.
- (2) 6 ms.

6 ms: ((36-15)+(12-6)+(14-2)+(19-5)+(33-8))/5 = 15.612 ms: ((36-15)+(18-6)+(20-2)+(25-5)+(33-8))/5 = 19.2