ABES ENGINEERING COLLEGE, GHAZIABAD (032)

DEPARTMENT OF AS & H

B. TECH SEM-I (2023-24)

Engineering Mathematics - I (BAS103)

Tutorial Sheet:I

Module-I (Matrices)

- 1. (a) If A is a Hermitian matrix, then show that iA is Skew-Hermitian matrix.
 - (b) Find inverse of the matrix by elementary row transformation $\begin{bmatrix} i & -1 & 2i \\ 2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$
- 2. (a) Find the ranks of the following matrices $\begin{bmatrix} 1 & 1 & 2 & 3 \\ 1 & 3 & 0 & 3 \\ 1 & -2 & -3 & -3 \\ 1 & 1 & 2 & 3 \end{bmatrix}$
 - (b) Find the rank of the following matrix by using normal form

$$\begin{bmatrix} -2 & -1 & 3 & -1 \\ 1 & 2 & -3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$

- (c) Find the value of b such that the rank of the matrix A is 3, $A = \begin{bmatrix} 2 & 4 & 2 \\ 3 & -1 & 2 \\ b & 0 & 1 \end{bmatrix}$
- 3. Find two non-singular matrices P and Q such that PAQ is in the normal form and hence, find $\rho(A)$, if A

is given by $\begin{bmatrix} 2 & 1 & 1 & 3 \\ 1 & 0 & 1 & 2 \\ 3 & 1 & 2 & 5 \end{bmatrix}$. Can we find its inverse?

- 4. (a) Find the value of λ for which the system have a solution: $x+y+z=1, x+2y+4z=\lambda, x+4y+10z=\lambda^2$ and also find the solution.
 - (b) For what values of λ , the system of equations $2x-2y+z=\lambda x$, $2x-3y+2z=\lambda y$, $-x+2y+0z=\lambda z$ possess a non-trivial solution.
- 5. Express the matrix A = $\begin{bmatrix} i & 2-3i & 4+5i \\ 6+i & 0 & 4-5i \\ -i & 2-i & 2+i \end{bmatrix}$ as the sum of Hermitian matrix & skew Hermitian matrix.
- 6. Examine the following vectors for linear dependence and find the relation between them, if possible:

$$X_1 = (1,1,-1,1), X_2 = (1,-1,-2,-1), X_1 = (3,1,0,1)$$

7. Find the eigen values & eigen vectors for the matrix:

(a)
$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$

- 8. (a) Let A be a 3×3 matrix with real entries such that det(A)=6 and the trace of A is 0. If |I| + |A| = 0 where I denotes the identity matrix of order 3 then find the eigen values of A.
 - (b) Find the eigen value of the matrix $\begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix}$ corresponding to the eigen vector $\begin{bmatrix} 51 \\ 51 \end{bmatrix}$.
- 9. Find the characteristic equation of the symmetric matrix $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ & hence also find A^{-1} by Cayley Hamilton theorem. Find the value of $A^6 6A^5 + 9A^4 2A^3 12A^2 + 23A 9I$
- $10~({\rm a})$ A three loop current network with five resistors and two voltage sources is shown in the circuit:

Find the mesh currents i_1 , i_2 , & i_3 , when the resistance R₁, R₂, R₃, R₄, R₅ are 10hm each and v₁, v₂ are 5 volts and -6 volts respectively.

10 (b) Suppose the message is in encrypted form and is received as

along with its encoding matrix*

$$E = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
. Decode the message.

ANS:- 1- (a) (b)
$$A^{-1} = \frac{1}{4} \begin{bmatrix} 0 & 1 & -2 \\ -4 & 3i & 2i \\ 0 & 1 & 2 \end{bmatrix}$$

3.
$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -2 & 0 \\ -1 & 2 & -3 \end{bmatrix}$$
, $Q = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, No

4- (a) $\lambda = 1, 2$ when $\lambda = 1, x = 1 + 2k, y = -3k, z = k$ and when $\lambda = 2, x = 2k, y = 1 - 3k, z = 2k$

$$k$$
. 4. (b) $\lambda = 1, -3$

$$5 - \begin{bmatrix} 0 & 4-2i & 2+3i \\ 4+2i & 0 & 3-2i \\ 2-3i & 3+2i & 2 \end{bmatrix} \text{ and } \begin{bmatrix} i & -2-i & 2+2i \\ 2-i & 0 & 1-3i \\ -2+2i & -1-3i & i \end{bmatrix}$$

6. Linearly dependent; $2X_1 + X_2 = X_3$

7- (a) 0,3,15
$$\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$, (b) 2,2,8 $\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ (c) 1, 2, 2; $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$

9-
$$\lambda^3 - 6\lambda^2 + 9\lambda - 4 = 0$$
, $A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$, $5A - I$

10 (a)
$$i_1 = 3.8750$$
 amp $i_2 = 2.75$ amp & $i_3 = 4.3750$ amp