УДК 513.015.7

м. и. башмаков, а. н. кириллов Фильтрация лютц формальных групп

§ 0. Обозначения

(0.1). Пусть p— простое число; K— конечное расширение поля p-адических чисел \mathbf{Q}_p ; $\mathcal{O} = \mathcal{O}_K$ — кольцо целых элементов поля K, $\mathfrak{M} = \mathfrak{M}_K$ — максимальный идеал кольца \mathcal{O} , $k = \mathcal{O}/\mathfrak{M}$ — поле вычетов локального кольца \mathcal{O} . Идеал \mathfrak{M} является главным; пусть π — его образующая. Дискретное нормирование $v = v_K$ поля K нормализуем так, чтобы $v_K(\pi) = 1$.

Через \overline{K} обозначается алгебраическое замыкание поля K; нормирование v продолжается естественным образом на \overline{K} . Это продолжение обозначается тем же символом v.

(0.2). Пусть F(x, y) — одномерная формальная группа над \mathcal{O} . Известно, что тогда F(x, y) является коммутативной. Для любого конечного расширения $L \nearrow K$ через F(L) обозначим абелеву группу, которая как множество есть \mathfrak{M}_L , а сложение определено при помощи формальной группы F:

$$\alpha + \beta = F(\alpha, \beta)$$
, где $\alpha, \beta \in \mathfrak{M}_L$.

Через $F(\overline{K})$ обозначается $\bigcup_{L/K} F(L)$, где F(L) определено ранее, и L/K пробегает все конечные алгебраические расширения.

(0.3). На $\mathfrak{M}=\mathfrak{M}_K$ (соответственно на \mathfrak{M}_L , $\mathfrak{M}_{\overline{K}}$, ...) имеется фильтрация $\mathfrak{M}\supseteq \mathfrak{M}^2\supseteq \ldots \supseteq \mathfrak{M}^s\supseteq \ldots$. Ясно, что $\mathfrak{M}^s=(\pi^s)$ и $\mathfrak{M}^s/\mathfrak{M}^{s+1}\simeq k$ (соответственно $\mathcal{O}_L/\mathfrak{M}_L$, \overline{k} , ...).

Заметим, что если α , $\beta \in \mathfrak{M}_{K}^{s}$ (соотв. \mathfrak{M}_{L}^{s} , $\mathfrak{M}_{\overline{K}}^{s}$, . . .), то $\alpha + \beta \in \mathfrak{M}_{K}^{s}$ (соотв. \mathfrak{M}_{L}^{s} , $\mathfrak{M}_{\overline{K}}^{s}$, . . .) и, следовательно, абелева группа F(K) (соотв. F(L), $F(\overline{K})$, . . .) снабжена фильтрацией: $F(K) = F_{1}(K) \supset F_{2}(K) \supset \ldots \supset F_{s}(K) \supset \ldots$ (соотв. для полей L, \overline{K} , . . .). Так как $F(x, y) \equiv x + y \pmod{\deg 2}$, то $F_{s}(K)/F_{s+1}(K) \simeq k$.

Определение (0.3.1). Фильтрация $\{F_i(K)\}_{i\geqslant 1}$ группы F(K) называется фильтрацией Лютц формальной группы F (над полем K).

(0.4). Формальный ряд $\varphi(x) \in \mathcal{O}[[x]]$, $\varphi(0) = 0$, называется гомоморфизмом формальных групп, $F \stackrel{\varphi}{\to} G$, если $\varphi(F(x, y)) = G(\varphi(x), \varphi(y))$. При

этом φ называется изогенией, если Кег φ конечно. Мы изучаем действие φ на фильтрации Лютц $\{F_i(K)\}$, $\{G_i(K)\}$ этих групп, а также факторфильтрацию на Сокег φ .

(0.5). К изучению поведения фильтраций формальных групп приводят различные задачи из теории эллиптических кривых. Простейшей из них является описание свойств элементарных абелевых p-расширений локального поля (случай $F = \mathbf{G}_m$). В работах $(^2)$, $(^9)$ изучалось деление точки эллиптической кривой над локальным полем на изогению. Работа $(^8)$ содержит описание норменного гомоморфизма на точках эллиптической кривой для Γ -расширения локального поля. В настоящей работе развивается техника для изучения фильтраций формальных групп (фильтраций Лютц). В качестве иллюстрации приводятся новые доказательства указанных выше результатов. Основными результатами работы являются теорема (2.3.6) и предложение (3.1.6).

§ 1. Вспомогательные факты из теории формальных групп

(1.1). Высота эндоморфизма формальной группы. Пусть R — коммутативное кольцо с единицей, R^+ — аддитивная группа этого кольца.

ЛЕММА (1.1.1) (3). Пусть $\varphi \in \operatorname{End}_R(F)$, $\varphi \neq 0$. Определим $c(\varphi) = \varphi'(0) \in R$. Тогда:

- 1) если R^+ не имеет **Z**-кручения, то $c(\varphi) \neq 0$;
- 2) если R^+ имеет характеристику p (p-nростое число) и если $c(\varphi) = 0$, то существуют $\psi(t) \in R[[t]]$ и целое число h, h > 0, такие, что
 - a) $c(\psi) \neq 0, \psi(0) = 0,$
 - $6) \ \varphi(t) = \psi(t^{p^h}).$

Определение (1.1.2). Однозначно определенное в лемме (1.1.1) число $h = h(\varphi)$ называется высотой эндоморфизма φ .

Определение (1.1.3). Высота эндоморфизма $[p]_F$ называется высотой формальной группы F (над кольцом R, характеристики p>0).

Определение (1.1.4). Если R — локальное кольцо, \mathfrak{M} — его максимальный идеал, $k=R/\mathfrak{M}$ — его поле вычетов и F(x,y) — формальная группа над R, то высотой эндоморфизма $\phi \in \operatorname{End}_R(F)$ (соотв. высотой F над R) называется высота $\overline{\phi} \in \operatorname{End}_R(\overline{F})$ над полем k (соотв. высота \overline{F} над k), где «черта» означает редукцию modulo \mathfrak{M} (если $\overline{\phi} \neq 0$). При $\overline{\phi} = 0$ положим $h(\phi) = \infty$.

ЛЕММА (1.1.5) (3). Пусть $\varphi: F \longrightarrow G$ — изогения формальных групп (над полем K). Тогда:

- 1) гомоморфизм $\varphi: F(\overline{K}) \longrightarrow F(\overline{K})$ сюръективен;
- 2) $\operatorname{Ker} \varphi(\overline{K}) \stackrel{\text{def}}{=} \{\alpha \in F(\overline{K}) \mid \varphi(\alpha) = 0\}$ является конечной абелевой группой порядка $p^{h(\varphi)}$.

Следствие (1.1.6). Пусть F — формальная группа (над полем K), $h = h(\phi) < \infty$. Тогда $[p]_F$ является изогенией и

$$\operatorname{Ker}([p]_{F})(\overline{K}) \simeq (\mathbf{Z}/p \mathbf{Z})^{h}.$$

(1.2). Многоугольник Ньютона формальной группы. Мы используем обозначения § 0.

Рассмотрим эндоморфизм $f \in \operatorname{End}_{\mathcal{O}}(F)$ формальной группы F. Пусть $f(x) = \sum_{i=1}^{\infty} a_i x^i$, где $a_i \in \mathcal{O}$. Условие $h = h(F) < \infty$ означает, что $v_K(a_i) \geqslant 1$, если $1 \leqslant i \leqslant q = p^h$ и $v(a_g) = 0$.

Нас, в дальнейшем, будет интересовать действие f на фильтрацию Лютц. Для этой цели используется многоугольник Ньютона эндоморфизма f. В области $M = \{(x, y) \in \mathbb{R}^2 | x \geqslant 0, y \geqslant 0\}$ отметим точки $(i, v_K(a_i))$, где $1 \leqslant i \leqslant q$. Из всех ломаных с вершинами в отмеченных точках и соединяющих точки $(1, v(a_i))$ и $(q, v(a_q))$ выберем наиболее близкую к границе области M. Эта ломаная является нижней границей выпуклой оболочки множества $\{(i, v(a_i)) | 1 \leqslant i \leqslant q\}$. Построенная ломаная называется многоугольником Ньютона эндоморфизма f. Его (собственные вершины) $(q_0, v(a_{q_0})), (q_1, v(a_{q_1})), \ldots, (q_m, v(a_{q_m}))$, где $1 = q_0 \leqslant q_1 \leqslant \ldots \leqslant q_m = q$, являются важными инвариантами формальной группы f. Заметим, что $v(a_{q_m}) = v(a_q) = 0$ и $v(a_1) = v(a_{q_0}) > v(a_{q_1}) > \ldots$ $v(a_{q_m}) = 0$. Отметим следующие, хорошо известные, свойства многоугольника Ньютона (мы следуем работе f

(1.2.1). Тангенс угла наклона прямой, соединяющей точки $(i, v(a_i))$ и $(j, v(a_i))$, где j > i, к X-ой оси координат равен

$$-\frac{v(a_i)-v(a_i)}{i-i}$$

и, следовательно, равен v-порядку элемента $z_0 \in \overline{K}$, для которого $v\left(a_i z_0^i\right) = v\left(a_i z_0^i\right)$.

(1.2.2). Обозначим $V = \operatorname{Ker} f(\overline{K})$, $\operatorname{Card}(V) = p^h$. Пусть

$$\alpha_i = \frac{v\left(a_{q_{i-1}}\right) - v\left(a_{q_i}\right)}{q_i - q_{i-1}} \in \mathbf{Q},$$

где $1 \leq i \leq m$. Тогда

(1.2.2.1). Card $\{x \in V \mid v(x) = \alpha_i\} = q_i - q_{i-1}$. Кроме того, v_{κ} -порядок любого элемента из V равен α_i для некоторого i, $1 \le i \le m$. Ясно, что $\alpha_1 > \alpha_2 > \ldots > \alpha_m$.

(1.2.2.2). Положим $V^0=0$, $V^i=\{x\in V\mid v(x)\geqslant \alpha_i\}$ для $1\leqslant i\leqslant m$. (Ясно, что $0=V^0\subset V^1\subset\ldots\subset V^m=V$.) Тогда V^i являются подгруппами V и $\mathrm{Card}\,(V^i)=q_i$. Следовательно, $q_i=p^{h_i}$, где $0< h_1<\ldots< h_m=h$.

(1.2.2.3). Положим $t_i = \alpha_{m-i+1}$ (таким образом, $t_1 < t_2 < \ldots < t_m$) для $1 \le i \le m$, $t_0 = 1$, $t_{m+1} = \infty$. Тогда если $x \in \overline{K}$, $t_k \le v(x) < t_{k+1}$, то

$$\min \{v(a_1x), v(a_2x^2), \ldots, v(a_qx^q)\} = v(a_{q_{m-k}}x^{q_{m-k}}) =$$

$$= q_{m-k}v(x) + v(a_{q_{m-k}}) \text{ для } 1 \leqslant k \leqslant m.$$

Определение (1.2.3). Функция Эрбрана для многоугольника Ньютона.

Пусть q_0, q_1, \ldots, q_m и $t_0, t_1, \ldots, t_m, t_{m+1}$ — инварианты многоугольника Ньютона. Положим для $x \in \mathbb{R}^+$,

$$\varphi(x) = qt_1 + (t_2 - t_1) q_{m-1} + (t_3 - t_2) q_{m-2} + \ldots + (x - t_k) q_{m-k},$$

если $t_k \leqslant x < t_{k+1}$, $0 \leqslant k \leqslant m$. Тогда (рекуррентные соотношения!) получаем, что если $t_k \leqslant v(x) < t_{k+1}$, $0 \leqslant k \leqslant m$, то $v(a_{q_{m-k}}x^{q_{m-k}}) = \varphi(v(x))$.

Ясно, что ϕ строго возрастает. Через ψ будет обозначаться обратная κ ϕ функция.

Следствие (1.2.4). Если $x \in \overline{K}$, $v(x) = i \gg 0$, то $\min\{v(a_1x), \ldots, v(a_qx^q)\} = \varphi(i)$.

Предложение (1.2.5). 1) Если $x \in \mathfrak{M}_{K}^{i}$, то $f(x) \in \mathfrak{M}_{K}^{\phi(i)}$.

2) Если $x \in \mathfrak{M}_K^i \setminus \mathfrak{M}_K^{i+1}$, $i \notin \{t_1, \ldots, t_m\}$, то $f(x) \in \mathfrak{M}_K^{\phi(i)} \setminus \mathfrak{M}_K^{\phi(i)+1}$. Доказательство. 1) Имеем:

$$v(f(x)) \geqslant \min \{v(a_1x), \ldots, v(a_qx^q)\} = \varphi(v(x)).$$

2) Если
$$x \in \mathfrak{M}_k^i \setminus \mathfrak{M}_K^{i+1}$$
, $i \notin \{t_1, \ldots, t_m\}$, то $v(f(x)) = v(a_1x + \ldots + a_qx^q) = \min\{v(a_1x), \ldots, v(a_qx^q)\} = \varphi(i)$.

Так как φ строго возрастает, то если $v(f(x)) > \varphi(i)$, то $x \in \mathfrak{M}_K^{i+1}$. Замечания.

- (1.2.6). Результаты пункта (1.2.2) показывают, что многоугольник Ньютона зависит лишь от класса изоморфных (над \mathcal{O}) формальных групповых законов.
- (1.2.7). Многоугольник Ньютона можно определять и с помощью разложения Вейерштрасса формального ряда (над \mathcal{O}) [см. (2)].
 - (1.2.8). Из пункта (1.2.6) легко следует, что $\phi_{f \circ g} = \phi_{f} \circ \phi_{g}$.
- (1.2.9). О связи многоугольника Ньютона формальной группы и характеристического многочлена эндоморфизма Фробениуса в алгебре $\operatorname{End}_{k}(\overline{F})$ см. (4).
 - (1.3). Примеры.
- (1.3.1). (Высота 1.) В этом случае $f(x) = a_1x + a_2x^2 + \ldots + a_px^p + \ldots$, где $v(a_i) \geqslant 1$ при $1 \leqslant i \leqslant p-1$, $v(a_p) = 0$. Следовательно, m = 1, $t_1 = \frac{v(a_1)}{p-1}$.

Если
$$h=h\left(F\right)$$
, то $a_{1}^{h}\sim p$ и $v\left(a_{1}\right)=\frac{e}{h}$.

Функция Эрбрана

$$\phi \left(i \right) = \begin{cases} pi, & \text{если } 0 \leqslant i \leqslant t_1, \\ pt_1 + (i - t_1), & \text{если } i \geqslant t_1, \end{cases}$$

$$\psi \left(i \right) = \begin{cases} \frac{i}{p}, & \text{если } 0 \leqslant i \leqslant pt_1, \\ t_1 + (i - pt_1), & \text{если } i \geqslant pt_1. \end{cases}$$

(1.3.2). (Высота 2.) В этом случае $f(x)=a_1x+a_2x^2+\ldots+a_px^p+\ldots+a_px^p+\ldots+a_px^p^2+\ldots$, где $v(a_i)\geqslant 1$ при $1\leqslant i\leqslant p^2-1$, $v(a_{p^2})=0$. Пусть $e_1=v(a_1),\ r=v(a_p)$. Положим

$$t_2' = \frac{e_1 - r}{p - 1}, \quad t_1' = \frac{r}{p^2 - p}, \quad e_2 = \frac{e_1}{p^2 - 1}.$$

Возможны два случая:

1) $t_1' < t_2'$. Тогда $t_1' < e_2 < t_2'$. Следовательно, m=2, $h_1=1$, $t_1=t_1'$, $t_2=t_2'$. Функция Эрбрана

$$\phi\left(i\right) = \begin{cases} \rho^{2}i, \text{ если } 0 \leqslant i \leqslant t_{1}, \\ \rho^{2}t_{1} + \rho\left(i - t_{1}\right), \text{ если } t_{1} \leqslant i \leqslant t_{2}, \\ \rho^{2}t_{1} + \rho\left(t_{2} - t_{1}\right) + (i - t_{2}), \text{ если } i \geqslant t_{2}. \end{cases}$$

2) $t_1' \geqslant t_2'$. Тогда $t_1' \geqslant e_2 \geqslant t_2'$. Следовательно, m=1, $t_1=e_2$. Функция Эрбрана

$$\phi\left(i
ight)=egin{cases} p^2i, & ext{ecam } 0\leqslant i\leqslant t_1, \\ p^2t_1+p\left(i-t_1
ight), & ext{ecam } i\geqslant t_1. \end{cases}$$

§ 2./ Свойства фильтрации Лютц

(2.0). Пусть $F(x,y) \in \mathcal{O}[[x,y]]$ — формальная группа над кольцом целых элементов \mathcal{O} локального поля K, char k=p>0, где k — поле вычетов. Рассмотрим конечное расширение Галуа L/K с группой $G=\operatorname{Gal}(L/K)$. В группе G имеется фильтрация (группами ветвления): G_0 — группа инерции, $G_i=\{\sigma\in G_0|\Pi^\sigma-\Pi\in\Pi^{i+1}\mathcal{O}_L\}$, где $i\geqslant 1$, Π — простой элемент поля L. Опишем действие группы G на фильтрацию Лютц $\{F_i(L)\}$.

ЛЕММА (2.0.1). 1) Если $P \in F_a(L)$, $\sigma \in G_i$ ($i \ge 1$), то

$$P^{\sigma} - P \subset F_{a+i}(L)$$
.

2) Ecnu(a, p) = 1, $P \subseteq F_a(L) \setminus F_{a+1}(L)$, $\sigma \subseteq G_i \setminus G_{i+1}$, to

$$P^{\sigma} = F = F_{a+i}(L) \setminus F_{a+i+1}(L)$$
.

Доказательство. Имеем:

$$P^{\sigma} - P = F(z^{\sigma}, [-1]_F(z)) = z^{\sigma} - z + \sum_{\substack{i+j \ge 2 \\ i \ge 1, j \ge 0}} a_{ij} (z^{i\sigma} - z^i) ([-1]_F(z))^j,$$

где $a_{ij} \in \mathcal{O}_K$ (это коэффициенты формальной группы F(x, y)), $z \in \mathfrak{M}_L$ параметр, соответствующий точке $P \in F(L)$. Ясно, что $[-1]_F(z) \equiv -z$ (mod deg 2). Следовательно,

$$v_L(P^{\sigma} - P) = v_L(z^{\sigma} - z).$$

Ho $z^{\sigma}-z=\Pi^{a+i}$ ξ , где ξ \in \mathcal{O}_L , и при выполнении условий п. 2) ξ \in \mathcal{O}_L^* .

(2.1). Действие эндоморфизма f на фильтрацию Лютц. (Обозначения (1.2.2).)

Предложение (2.1.1). 1) Если Р \in F_i(K) \setminus F_{i+1}(K), $i\notin$ { t_1,\ldots,t_m },

$$f(P) \subseteq F_{\varphi(i)}(K) \setminus F_{\varphi(i)+1}(K)$$

(это переформулировка предложения (1.2.6)).

2) Если $i \notin \{t_1, \ldots, t_m\}$, то f индуцирует изоморфизм

$$F_{i}(K)/F_{i+1}(K) \simeq F_{\varphi(i)}(K)/F_{\varphi(i)+1}(K).$$

3) Имеет место точная последовательность

$$0 \to V^{m-r}/V^{m-r-1} \to F_{t_r}(K)/F_{t_r+1}(K) \xrightarrow{\overline{t}} F_{\varphi(t_r)}(K)/F_{\varphi(t_r)+1}(K) \to D_r \to 0,$$

еде D_r — конечная абелева еруппа, $Card(D_r) = Card(V^{m-r}/V^{m-r-1}) = p^{m-r-h_{m-r-1}}$.

Следствие (2.1.2). 1) Если $P \in F_a(K) \setminus F_{a+1}(K)$, $\varphi(t_k) < a < \varphi(t_{k+1})$, $0 \le k \le m$, и $a \equiv 0 \pmod{q_{m-k}}$, то существует точка $R \in F(K)$ такая, что

$$P - f(R) \subseteq F_{a+1}(K)$$
.

- 2) $E c_{\Lambda} u \ a > \varphi(t_m)$, to $F_a(K) \subset Im f(K)$.
- (2.3). Деление точек на изогению f. В этом пункте предположим дополнительно, что ядро изогении f определено над полем K. Тогда инварианты t_1, \ldots, t_m являются целыми числами.

Определение (2.3.0) (поле K_P). Для каждой точки $P \in F(K)$ существует точка $Q \in F(\overline{K})$ такая, что f(Q) = P. Рассмотрим поле K_P — минимальное поле определения точки Q. Это поле не зависит от выбора точки Q. Опишем свойства полей K_P .

- (2.3.1). Расширение K_P/K является расширением Галуа, группа Галуа которого $G(P) = \operatorname{Gal}(K_P/K)$ является абелевой p-группой.
- (2.3.2). Гомоморфизм $G(P) \rightarrow V$, определенный как $\sigma \rightarrow Q^{\sigma} Q$, не зависит от выбора точки Q и является инъективным.
- (2.3.3). Если $P \in F_a(K) \setminus F_{a+1}(K)$, (a, p) = 1, $\varphi(t_k) < a < \varphi(t_{k+1})$, $0 \le k \le m$, то гомоморфизм пункта (2.3.2) определяет изоморфизм

$$G(P) \to V^{m-k}$$
.

Доказательство. Так как по условию V определено над полем K, то все эти утверждения следуют из теории Куммера.

Следствие (2.3.4). 1) Если $P \in F_a(K) \setminus F_{a+1}(K)$, (a, p) = 1, $\varphi(t_k) < a < \varphi(t_{k+1})$, $0 \le k \le m$, то расширение K_P / K вполне разветвлено и имеет степень q_{m-k} .

2) Если $P \in F_{\varphi(t_m)} \setminus \text{Im } f(K)$, то расширение K_p/K неразветвлено.

ТЕОРЕМА (2.3.6). Рассмотрим $P \in F_a(K) \setminus F_{a+1}(K)$, (a, p) = 1. Тогда скачки в верхней фильтрации высшими группами ветвления для группы G(P) происходят в следующих значениях:

$$\{\varphi(t_1) - a, \varphi(t_2) - a, \ldots, \varphi(t_m) - a\}.$$

Замечание (2.3.6.1). В условиях теоремы мы считаем, что $G^x=0$ при x<0.

Доказательство теоремы (2.3.6). Докажем сначала следующую лемму.

ЛЕММА (2.3.5). Пусть точка $P \in F_a(K) \setminus F_{a+1}(K)$, (a, p) = 1, $\varphi(t_k) < < a < \varphi(t_{k+1})$, $0 \le k < m$. Определим функцию $\theta(a) = q_{m-k} \psi(a)$. Пусть $Q \in F(\overline{K})$ — такая точка, что f(Q) = P. Тогда

$$Q = F_{\theta(a)}(K_P) \setminus F_{\theta(a)+1}(K_P).$$

Доказательство леммы (2.3.5). Если $Q \in F_i(K_P) \setminus F_{i+1}(K_P)$, то из условия f(Q) = P следует, что $q_{m-k}a = \phi_{K_P}(i) = q_{m-k}\phi\left(\frac{i}{q_{m-k}}\right)$, т. е. $i = q_{m-k}\psi(a) = \theta(a)$, q. e. d.

Пусть теперь G = G(P). Рассмотрим $\sigma \in G_i \setminus G_{i+1}$ (см. (2.0)). Так как $(\theta(a), p) = 1$ (см. (2.3.5)), то по лемме (2.0.1) получаем:

$$Q^{\sigma} = Q \subseteq F_{\theta(a)+i}(K_P) \setminus F_{\theta(a)+i+1}(K_P).$$

С другой стороны, $Q^{\sigma} - Q = V$; следовательно,

$$Q^{\sigma} - Q \in F_{q_{m-ktr}}(K_P)$$

для некоторого r, где $k+1 \le r \le m$ (см. (2.3.4.1) и (1.2.2.2)). Отсюда следует, что скачки в нижней фильтрации высшими группами ветвления для группы G происходят в следующих значениях:

$$\{q_{m-k}t_{k+1}-\theta(a), q_{m-k}t_{k+2}-\theta(a), \ldots, q_{m-k}t_m-\theta(a)\}$$

(см. (2.3.3)). Переходя к верхней фильтрации, получаем, что

$$\varphi_{K_{P}/K}(q_{m-k}t_{k+u}-\theta(a))=\varphi(t_{k+u})-a, \quad 1\leqslant u\leqslant m-k,$$

q. e. d.

(2.4). Примеры.

(2.4.1). (Высота 1.) В этом случае (см. (1.3.1)) m=1, $t_1=\frac{v(a_1)}{p-1}=\frac{e_0}{h}$, где $e_0=\frac{e}{p-1}$ и h=h(F); $\phi(t_1)=pt_1$. Пусть $1\leqslant a\leqslant pt_1$, (a,p)=1. Рассмотрим точку $P\Subset F_a(K)\searrow F_{a+1}(K)$, поле K_P и группу G=G(P) (см. (2.3.0)). Тогда $G=G_0=G_1=\ldots=G_{c(a)}\ne G_{c(a)+1}=\ldots=\{1\}$, где $c(a)=ept_1-a$ (для циклических расширений степени p верхняя и нижняя фильтрации в группе G совпадают). Предположим, что корни p-ой степени из единицы лежат в поле K. Тогда $K_P=K(\sqrt[p]{\alpha})$, где $\alpha\Subset K^*\searrow K^{*p}$. Пусть $\omega_K(\alpha)$ — «главная часть mod^*p » элемента α . Тогда известно, что $\omega_K(\alpha)+c(a)=pe_0$ [см. (5)]. Следовательно, $\omega_K(\alpha)=pe_0-c(a)=pht_1-(pt_1-a)=a+pt_1(h-1)$.

Замечание (2.4.1.1). Этот результат (в другом контексте) был получен в (2).

(2.4.1.2). (Случай мультипликативной группы G_m). Рассмотрим группу F(x, y) = x + y + xy. Ясно, что $F(K) \simeq U_1$ и $F_a(K) \simeq U_a = \{\alpha \in \mathcal{O} \mid \alpha = 1\}$

 $\equiv 1 \pmod{\pi^a}$). Фильтрация $\{U_a\}_{a\geqslant 1}$ в группе K^* индуцирует фильтрацию в группе $K^*/K^{*p} = C_0 \supset C_1 \supset \ldots \supset C_{pe_0} \supset C_{pe_0+1} = \{1\}$ (отметим, что $C_{pi} = C_{pi+1}$ для $1 \leqslant i \leqslant e_0$). Тогда $\omega_K(\alpha)$ для элемента $\alpha \in K^* \setminus K^{*p}$ (см. (2.4.1)) — это максимальное целое число s такое, что образ α в K^*/K^{*p} лежит в C_s (отметим, что $(\omega_K(\alpha), p) = 1$, кроме случая $\omega_K(\alpha) = pe_0$). Положим $\omega_K(\alpha) = \infty$, если $\alpha \in K^{*p}$. Пусть $c_K(\alpha) = pe_0 - \omega_K(\alpha)$, если $1 \leqslant \omega_K(\alpha) \leqslant pe_0$.

ЛЕММА (2.4.1.2'). Пусть L/K— конечное p-расширение Γ алуа, $\psi_{L/K}$ — функция Эрбрана расширения L/K. Пусть $\alpha \in K^* \setminus K^{*p}$ — такой элемент, что $c_K(\alpha)$ отлично от скачков функции $\psi_{L/K}$. Тогда

$$c_L(\alpha) = \psi_{L/K}(c_K(\alpha)).$$

Доказательство. Для циклического расширения простой степени эта лемма доказана, например, в (°). Общий случай следует из мультипликативности функции Эрбрана.

(2.4.2). (Высота 2.)

Случай 1). m=2, $h_1=1$, $t_1=\frac{r}{p^2-p}$, $t_2=\frac{e_1-r}{p-1}$, $t_1< t_2$. Рассмотрим точку $P\in F_a(K)\backslash F_{a+1}(K)$, (a,p)=1. Поле K_P и группа G=G(P)— как в (2.3.0). Из теоремы (2.3.6) следует, что

 $G=G^0=G^1=\ldots=G^{\phi(t_1)-a}
eq G^{\phi(t_1)-a+1}=\ldots=G^{\phi(t_2)-a}
eq G^{\phi(t_2)-a+1}=\{1\}.$ Из определений находим:

$$\varphi(t_1) - a = p^2 t_1 - a, \quad \varphi(t_2) - a = p[t_2 + (p-1)t_1] - a.$$

Предположим, что корни p-ой степени из единицы лежат в поле K и что $K_P = K(\sqrt[p]{\alpha}, \sqrt[p]{\beta})$, где $\alpha, \beta \in K^*$ (это условие выполняется, если, например, F соответствует эллиптической кривой). Из теоремы Эрбрана (см. (1), стр. 66, теорема 9.2) следует, что, например,

$$c_K(\alpha) = p^2 t_1 - a, \quad c_K(\beta) = \varphi(t_2) - a.$$

Следовательно,

$$\omega_K(\alpha) = pe_0 - p^2t_1 + a, \quad \omega_K(\beta) = pe_0 - p[t_2 + (p-1)t_1] + a.$$

I. Если теперь $f = [p]_F$, h(F) = 2, то $e_1 = e$ и $e_0 = t_2 + pt_1$. Таким образом, $\omega_K(\alpha) = pt_2 + p^2t_1 - p^2t_1 + a = a + pt_2$,

$$\omega_K(\beta) = pt_2 + p^2t_1 - pt_2 - p^2t_1 + pt_1 + a = a + pt_1.$$

II. Если $f=g^2,\ h\left(g\right)=1,\ h=h\left(F\right)\geqslant 2,\ ext{то }e_1=rac{2e}{h},\ r=rac{e_1}{2}$. Следова-

тельно, $t_1=\frac{e_1}{2p\,(p-1)}$, $t_2=\frac{e_1}{2\,(p-1)}$. Таким образом, $t_2=pt_1$ и из теоремы (2.3.6) получаем:

$$\omega_K(\alpha) = pe_0 - (p^2t_1 - a) = a + pt_2(h - 1),$$

$$\omega_K(\beta) = pe_0 - [pt_2 + p(p - 1)t_1] + a = a + t_2 + pt_2(h - 2).$$

Случай II был разобран впервые в работе (3).

Случай 2). $m=1,\ t_1=\frac{e_1}{p^2-1}$. Пусть $1\leqslant a\leqslant p^2t_1$, $(a,\ p)=1$. Тогда из теоремы (2.3.6) следует, что

$$G = G^0 = G^1 = \dots = G^{p^2 t_1 - a} \neq G^{p^2 t_1 - a + 1} = \dots = \{1\}.$$

Если, как в случае 1), $K_P=K$ ($\sqrt[p]{a},\sqrt[p]{\beta}$), α , β \in K^* , то c_K (α) = c_K (β) = p^2t_1-a .

Следовательно,

$$\omega_K(\alpha) = \omega_K(\beta) = \rho e_0 - \rho^2 t_1 + \alpha$$
.

Пусть теперь $f = [p]_F$, h(F) = 2. Тогда $e_i = e$, $e_0 = (p+1)t_i$. Следовательно, $\omega_K(\alpha) = \omega_K(\beta) = a + pt_i$.

Замечание (2.4.2).

- 1. Случай 2) реализуется, например, для эллиптических кривых, определенных над \mathbf{Q}_p , редукция которых по модулю p невырождена и суперсингулярна.
- 2. Случай 1) II реализуется для кривых с комплексным умножением, для которых p ветвится в поле комплексного умножения и не делит кондуктора.
- 3. Случай 2) реализуется для кривых с комплексным умножением, для которых p распадается в поле комплексного умножения и не делит кондуктора.

§ 3. Оператор нормы

(3.1). Пусть F — формальная группа над \mathcal{O}_{κ} . Рассмотрим конечное расширение Галуа $L \nearrow K$ с группой Галуа G. Определим гомоморфизм нормы $N_F \colon F(L) \to F(K) \colon$ для $x \in F(L)$ положим

$$N_F(x) - \sum_{\sigma \in G}^{(F)} x^{\sigma} \quad (\subseteq F(K)),$$

где $\Sigma^{(F)}$ обозначает сумму относительно формальной группы F. Предположим теперь, что $(L:K)=p,\ h=h(F)$.

ЛЕММА (3.1.1) (10). Имеет место следующее разложение:

$$N_F(x) = \operatorname{Tr}_{L/K}(x) + \sum_{i=1}^{h} a_{pi} N_{L/K}(x^{p^{i-1}}) + \ldots,$$

где многоточие означает члены более высокого v-порядка, чем выписанные.

Рассмотрим многочлен

$$g(z) = \sum_{i=1}^{h} a_{pi} z^{p^{i-1}}.$$

Пусть

 $s_0 = 1 < s_1 < \ldots < s_n = p^{h-1}$, $u_0 = 0 < u_1 < \ldots < u_n < u_{n+1} = \infty$ — инварианты многоугольника Ньютона для g(z). Через φ_N обозначим функцию Эрбрана для g(z), т. е. $\varphi_N = \varphi_g$.

Замечание (3.1.2). Если t_1, \ldots, t_m — инварианты многоугольника Ньютона для F (см. (1.2)), то $u_i \geqslant t_i$, $0 \leqslant i \leqslant n$.

ЛЕММА (3.1.3). Для любого $a \in \mathbb{Q}$, $a \geqslant 0$, существует единственное k такое, что $p \varphi_N(u_k) - u_k + p \leqslant a \leqslant p \varphi_N(u_{k+1}) - u_{k+1} + p$.

Доказательство очевидно.

О пределение (3.1.4). Пусть $D-v_L$ -порядок дифференты расширения L/K. Через k_0 обозначим целое число такое, что

$$p\phi_N\left(u_{k_0}\right)-u_{k_0}+p\leqslant D\leqslant p\phi_N\left(u_{k_0+1}\right)-u_{k_0+1}+p$$
 (см. (3.13)) (эквивалентное определение:
$$\frac{p\phi_N\left(u_{k_0}\right)-u_{k_0}}{p-1}\leqslant \frac{D}{p-1}\leqslant \frac{p\phi_N\left(u_{k_0+1}\right)-u_{k_0+1}}{p-1}\right).$$

Предложение (3.1.5). Если $x \in F_i(L)$, то $N_F(x) \in F_{\mu(i)}(K)$, где

$$\mu (i) = \begin{cases} \phi_N(i), & \textit{ecau } i \leq \left[\frac{D - p\phi_N(u_{k_0}) + ps_{n-k_0}u_{k_0}}{ps_{n-k_0} - 1} \right] - \delta_{n,k_0}, \\ \left[\frac{D + i}{p} \right], & \textit{ecau } i \geq \left[\frac{D - p\phi_N(u_{k_0}) + ps_{n-k_0}u_{k_0}}{ps_{n-k_0} - 1} \right] - \delta_{n,k_0}, \\ \delta_{n,k_0} = \begin{cases} 0, & \textit{ecau } n \neq k_0, \\ 1, & \textit{ecau } n = k_0. \end{cases} \end{cases}$$

Доказательство. Ясно, что если $v_{\scriptscriptstyle K}(z)=i$, то

$$\min \{v(a_p z), v(a_{p^2} z^p), \ldots, v(a_{p^h} z^{p^{h-1}})\} = \varphi_N(i).$$

Следовательно,
$$v\left(N_{F}\left(x\right)\right)\geqslant\min\left\{ \left[\frac{D+i}{p}\right],\ \varphi_{N}\left(i\right)\right\} .$$

Шаг І.
$$\left[\frac{D+i}{p}\right] \leqslant s_{n-k}i + v\left(a_{ps_{n-k}}\right) \Leftrightarrow i > \frac{D-pv\left(a_{ps_{n-k}}\right)-p}{ps_{n-k}-1}$$
.

Действительно,
$$\frac{D+i}{p}-1 < \left[\frac{D+i}{p}\right] \leqslant \frac{D+i}{p}$$
. Таким образом,
$$\left[\frac{D+l}{p}\right] \leqslant s_{n-k}i + v\left(a_{ps_{n-k}}\right) \Leftrightarrow \frac{D+i}{p}-1 < s_{n-k}i + v\left(a_{ps_{n-k}}\right).$$

III ar II.
$$u_k \leqslant \frac{D - pv\left(a_{ps_{n-k}}\right) - p}{ps_{n-k} - 1} < u_{k+1} \Leftrightarrow$$

$$p\varphi_N(u_k) - u_k + p \leq D \leq p\varphi_N(u_{k+1}) - u_{k+1} + p$$
.

Это вытекает из следующих формул:

$$\varphi_N(u_k) = u_k s_{n-k} + v(a_{\rho s_{n-k}}), \quad \varphi_N(u_{k+1}) = u_{k+1} s_{n-k} + v(a_{\rho s_{n-k}}).$$
 III ar III.

$$\min\left\{ \left[\frac{D+i}{p}\right], \ \phi_{N}\left(i\right)\right\} = \begin{cases} \phi_{N}\left(i\right), \ \text{если } i \leqslant \frac{D-\textit{pv}\left(a_{\textit{ps}_{n-k_{0}}}\right)-\textit{p}}{\textit{ps}_{n-k_{0}}-1}, \\ \left[\frac{D+i}{p}\right], \ \text{если } i > \frac{D-\textit{pv}\left(a_{\textit{ps}_{n-k_{0}}}\right)-\textit{p}}{\textit{ps}_{n-k_{0}}-1}. \end{cases}$$

Действительно, пусть $u_{k} \leqslant i < u_{k+1}$. Тогда

$$\min\left\{\left[\frac{D+i}{p}\right], \ \varphi_N\left(i\right)\right\} = \left[\frac{D+i}{p}\right] \Leftrightarrow i > \frac{D-pv\left(a_{ps_{n-k}}\right)-p}{ps_{n-k}-1}$$

(см. Шаг I). Значит, $\frac{D-\rho v\;(a_{\rho s_{n-k}})-\rho}{\rho s_{n-k}-1} < u_{k+1}$. Следовательно, $k \geqslant k_0$ и

$$i > \frac{D - pv(a_{ps_{n-k_0}}) - p}{ps_{n-k_0} - 1}$$
.

Мы должны теперь показать, что если

$$i > \frac{D - pv (a_{ps_{n-k_0}}) - p}{ps_{n-k_0} - 1}$$

If $u_k \leqslant i < u_{k+1}$, to

$$i > \frac{\textit{D} - \textit{pr} \; (\textit{a}_{\textit{ps}_{n-k}}) - \textit{p}}{\textit{ps}_{n-k} - 1} \; .$$

Заметим сначала, что $k \ge k_0$. Для $k = k_0$ утверждение очевидно. Пусть $k > k_0$ и предположим, что

$$i < \frac{D - pv (a_{ps_{n-k}}) - p}{ps_{n-k} - 1}.$$

Тогда

$$u_k < \frac{D - pv\left(a_{ps_{n-k}}\right) - p}{ps_{n-k} - 1}$$

и, следовательно, $k \le k_0$ — противоречие. Предложение доказано. Следствие (3.1.6). Если $z = F_a(K)$,

$$a > \varphi_N\left(\left[\frac{D - pv\left(a_{ps_{n-k_0}}\right)}{ps_{n-k_0} - 1}\right] - \delta_{n,k_0}\right),$$

to $z \in N_F(F(L))$.

Предложение (3.1.7). Пусть F — формальная группа над \mathcal{O}_{κ} , K_{∞}/K — Γ -расширение, соответствующее простому числу p. Тогда если $h(F) \geqslant 2$, то группа универсальных норм в F(K) из поля K_{∞} равна нулю.

Доказательство. Пусть $K = K_0 - K_1 - \dots - K_m - \dots -$ «этажи» Γ -расширения; $(K_m : K_{m-1}) = p$, $K_\infty = \bigcup_{m \geqslant 0} K_m$. Тогда расширение K_m / K_{m-1}

вполне разветвлено для $m \geqslant m_0$ для некоторого m_0 . Ясно, что можно считать $m_0 = 1$. Заметим, что если $\phi_{N, m}$ функция Эрбрана, построенная для полей $K_m \diagup K_{m-1}$, $m \geqslant 1$, то

$$\phi_{N,m}(i) = p^{m-1} \phi_N \left(\frac{i}{p^{m-1}} \right),$$
где $\phi_N = \phi_{N,1}$.

Далее, если $u_k \leqslant i \leqslant u_{k+1}$, то

$$\varphi_N(i) = s_{n-k}i + v(a_{ps_{n-k}}) \geqslant pi$$

при условии, что k < n, и $\phi_N(i) = i + v(a_p)$, если k = n.

Таким образом, если

$$\varphi_N^{(r)}(i) = \underbrace{\varphi_N\left(\varphi_N\left(\dots\left(\varphi_N\left(i\right)\right)\dots\right)\right)}_{r \text{ pa3}},$$

то для фиксированного i (при условии, что $h(F) \geqslant 2$) имеем:

$$\varphi_N^{(r)}(i) \xrightarrow[r \to +\infty]{} + \infty$$
.

Следовательно:

Шаг I. Для вычисления функции $\mu_m(i)$ можно считать, что

$$\mu_{m}\left(i
ight)=\left[rac{D\left(K_{m}/K_{m-1}
ight)+i}{p}
ight]$$
, где $m\geqslant r_{0}.$

В силу результатов Тэйта (7), для $m \geqslant m_{0}$

$$D_m = D(K_m/K_{m-1}) = (p^{m+1}e_0 - c)(p-1),$$

где c — константа, не зависящая от m. Ясно, что можно считать $m_0 = 1$.

Шаг II. Существует s_0 такое, что для любого $m \geqslant s_0$ выполняется условие: если $i \geqslant i_0^{(m)}$, то $\left[\frac{D_m+i}{p}\right] \geqslant i_0^{(m-1)}$, где

$$i_0^{(m)} = \left[\frac{D_m - p^{m+1}v(o)}{ps_{n-k_0} - 1} \right].$$

Доказательство очевидно.

Ясно, что можно считать $s_0 = 1$.

Пусть теперь $\mu_m^{(r)} = \mu_{m-r+1} \left(\mu_{m-r+2} \left(\dots \right. \mu_m \left(i \right) \right) \right)$. Тогда

$$\mu_{m}^{(r)}(i) \geqslant r(p-1) p^{m+1-r}e_{0} - \frac{c_{1}}{p-1} + \frac{i}{p^{r}}$$
,

где $c_1=$ const. Следовательно, $\mu_m^{(m)}(i) > m (p-1) pe_0$ — const, где const не зависит от m, i. Итак, если $\alpha \in F(K)$ является универсальной нормой из поля K_{∞} , то в предыдущей формуле можно взять m такое, что $\mu_m^{(m)} > v$ (α). Следовательно, $\alpha=0$, q. e. d.

Поступило 15.VII.1974

Литература

- ¹ Алгебраическая теория чисел, М., «Мир», 1969.
- ² **Беркович В. Г.**, О делении на изогению точек эллиптической кривой, Матем. сб., 93 (135) (1974), 465—486.
- ³ Frölich A., Formal goups, Lecture notes in math., 74 (1968), Berlin.
- 4 Cox L., Formal A-modules, Bull. Amer. Math. Soc.. 79 (1973), 690—694.
- ⁵ Serre J.—P., Corps Locaux, Paris, 1962.
- ⁶ Serre J.—P., Propriétès Galoisiennes des Pointes d'ordre, Fini des Courbes Elliptigues, Invent. Math., 15 (1972), № 4, 259—331.
- ⁷ Tate J., p-Divisible Groups, Proc. of a Conference on Local Fields held at Driebergen, Springer (158—183) (Русский перевод «Математика», 13:2 (1969), 3—25).
- 8 Hazevinkel M., On Norm for One Dimensional Formal Groups, II, Beport 7210 on the Econometric Institute, Rotterdam, 1972.
- ⁹ Башмаков М. И., Аль-Надер Н. Ж., Поведение кривой $x^3+y^3=$ в круговом Γ -расширении, Матем. сб., 90 (132) (1973), 117—130.
- 10 Введенский О. Н., Двойственность эллиптических кривых над локальным полем. II. Изв. АН СССР. Сер. матем., 30 (1966), № 4, 891—922.