Test1 d'Analyse 1 G1S1 et G6S3

Exercice 1. Soit l'ensemble $A = \left\{1 + \frac{1}{2n}/n \in \mathbb{N}^*\right\}$.

Montrer en utilisant la caractérisation de la borne supérieur et la borne inférieur que

$$\sup A = \frac{3}{2} \text{ et inf } A = 1$$

Exercice2.

Soit $(U_n)_n$ une suite définie par la relation de recurrence $\begin{cases} U_0 \leq 2 \\ U_{n+1} = \frac{1}{2}U_n + 1, n \in \mathbb{N} \end{cases}$.

- 1. Montrer que $\forall n \in \mathbb{N}, U_n \leq 2$, et que la suite $(U_n)_n$ est monotone.
- 2. En déduire que la suite $(U_n)_n$ est convergente, déterminer sa limite.
- 3. On pose $V_n = U_n 2$.

Monter que $(V_n)_n$ est une suite géométrique de raison $\frac{1}{2}$. En déduire l'expression de U_n en fonction de n et U_0 .

Test1 d'Analyse 1 G1S1 et G6S3

Exercice 1. Soit l'ensemble $A = \left\{1 + \frac{1}{2n}/n \in \mathbb{N}^*\right\}$.

Montrer en utilisant la caractérisation de la borne supérieur et la borne inférieur que

$$\sup A = \frac{3}{2} \text{ et inf } A = 1$$

Exercice2.

Soit $(U_n)_n$ une suite définie par la relation de recurrence $\begin{cases} U_0 \leq 2 \\ U_{n+1} = \frac{1}{2}U_n + 1, n \in \mathbb{N} \end{cases} .$

- 1. Montrer que $\forall n \in \mathbb{N}, U_n \leq 2$, et que la suite $(U_n)_n$ est monotone.
- 2. En déduire que la suite $(U_n)_n$ est convergente, déterminer sa limite.
- 3. On pose $V_n = U_n 2$.

Monter que $(V_n)_n$ est une suite géométrique de raison $\frac{1}{2}$. En déduire l'expression de U_n en fonction de n et U_0 .

$$Test1$$
 d'Analyse 1 $G1S1$ et $G6S3$

Exercice 1. Soit l'ensemble $A = \left\{1 + \frac{1}{2n}/n \in \mathbb{N}^*\right\}.$

Montrer en utilisant la caractérisation de la borne supérieur et la borne inférieur que

$$\sup A = \frac{3}{2} \text{ et inf } A = 1$$

Exercice2.

Soit $(U_n)_n$ une suite définie par la relation de recurrence $\begin{cases} U_0 \leq 2 \\ U_{n+1} = \frac{1}{2}U_n + 1, n \in \mathbb{N} \end{cases} .$

- 1. Montrer que $\forall n \in \mathbb{N}, U_n \leq 2$, et que la suite $(U_n)_n$ est monotone.
- 2. En déduire que la suite $(U_n)_n$ est convergente, déterminer sa limite.
- 3. On pose $V_n = U_n 2$.

Monter que $(V_n)_n$ est une suite géométrique de raison $\frac{1}{2}$. En déduire l'expression de U_n en fonction de n et U_0 .