A RESTRICTION THEOREM FOR FLAT MANIFOLDS OF CODIMENSION TWO

LAURA DE CARLI AND ALEX IOSEVICH

Introduction: Let M denote a submanifold of \mathbb{R}^{n+2} of codimension 2. Let \mathcal{R} denote a restriction operator

((1.1)r)
$$\mathcal{R}f(\eta) = \int e^{-i\langle x, \eta \rangle} f(x) dx, \quad \eta \in M, \quad f \in \mathcal{S}(\mathbb{R}^{n+2}).$$

We wish to find an optimal range of exponents p such that

where $d\sigma$ is a compactly supported measure on M.

Let $\mathcal{F}[d\sigma]$ denote the Fourier transform of $d\sigma$. By a theorem of Greenleaf (see [G]), the inequality ((1.2)) holds for $p = \frac{2(2+\gamma)}{4+\gamma}$ if

$$|\mathcal{F}[d\sigma](R\zeta)|| \le C(1+R)^{-\gamma}, \qquad \zeta \in S^{n+1}.$$

The purpose of this paper is to use Greenleaf's result to establish a restriction theorem for a class of degenerate submanifolds of \mathbb{R}^{n+2} of codimension 2. We shall assume that our manifold is given as a joint graph of two homogeneous functions, where the first graphing function is homogeneous of degree 1 and the second graphing function is homogeneous of degree m. Under the appropriate curvature assumption we will show that ((1.3)) holds with $\gamma = \frac{n}{m}$.

An application of Greenleaf's result yields a restriction theorem with $p = \frac{2(2m+n)}{4m+n}$.

We shall need the following definitions.

Nonvanishing Gaussian curvature: Let Σ be a submanifold of \mathbb{R}^{N+1} of codimension 1 equiped with a smooth compactly supported measure $d\mu$. Let $J: \Sigma \to S^N$ be the usual Gauss map taking each point on Σ to the outward unit normal at that point. We say that Σ has everywhere nonvanishing Gaussian curvature if the differential of the Gauss map dJ is always nonsingular.

Strong curvature condition: Let S be a submanifold of \mathbb{R}^{N+2} of codimension 2 equiped with a smooth compactly supported measure $d\mu$. Suppose that S is a joint graph of smooth functions g_1 and g_2 , where $g_j : \mathbb{R}^N \to \mathbb{R}$. Let $\mathcal{N}_{x_0}(S)$ denote the two dimensional space of normals to S at a point x_0 . We say that S satisfies the strong curvature condition (SCC) if for all $x_0 \in S$ in some neighborhood of support $(d\mu)$,

$$\det D^2(\nu_1 g_1(x) + \nu_2 g_2(x)) \neq 0, \qquad \forall \nu \in \mathcal{N}_{x_0}$$

, where D^2 denotes the Hessian matrix.

One can check that the above definitions are independent of the parametrization. Our main result is the following:

Main Theorem. Let $M = \{(x, x_{n+1}, x_{n+2}) \in \mathbb{R}^{n+2} : x_{n+1} = \phi_1(x), x_{n+2} = \phi_2(x)\},$ $n \geq 2$, where $\phi_i \in C_0^{\infty}(\mathbb{R}^n \setminus \{0\})$, ϕ_1 is homogeneous of degree 1, and ϕ_2 is homogeneous of degree $m \geq 2$. Let $\Sigma_j = \{x : \phi_j(x) = 1\}$. Assume also that ϕ_2 only vanishes at the origin and that Σ_2 has everywhere nonvanishing Gaussian curvature. Let

$$F(\xi, \lambda_1, \lambda_2) = \int_{\mathbb{R}^n} e^{i(\langle \xi, x \rangle + \lambda_1 \phi_1(x) + \lambda_2 \phi_2(x))} \chi(x) \, dx,$$

where $\chi \in \mathcal{C}_0^{\infty}(\mathbb{R}^n)$.

a) Suppose that the restriction of ϕ_1 to the set where $\phi_2 = 1$, $\phi_1|_{\Sigma_2}$, is constant. Then

$$|F(\xi, \lambda_1, \lambda_2)| \le C(|\xi| + |\lambda|_1 + |\lambda|_2)^{-\frac{n}{m}}$$

when $m \geq 2n$.

b) Let $M_{|_{\{x_{n+2}=1\}}}$ denote the restriction of M to the hyperplane $\{x_{n+2}=1\}$. If $M_{|_{\{x_{n+2}=1\}}}$ (wiewed as a submanifold of codimension 2 of $\{x_{n+2}=1\}$) satisfies the strong curvature condition, then ((1.4)) holds for $m \geq 2$.

The conclusions of part (a) do not in general hold if m < 2n. Let $\phi_1(x) = |x|$, $\phi_2(x) = |x|^m$. Let $\xi = (0, 0, \dots, 0)$. Then, in polar coordinates,

$$F(0, \lambda_1, \lambda_2) = C \int_0^\infty e^{i(\lambda_1 r + \lambda_2 r^m)} r^{n-1} \chi(r) dr.$$

It is not hard to see that the best isotropic decay for this integral cannot exceed

$$O\left(\left(\sqrt{\lambda_1^2 + \lambda_2^2}\right)^{-\frac{1}{2}}\right)$$
. Hence the restriction $m \geq 2n$ is necessary.

Remarks: (1) It is known that isotropic decay estimates for the Fourier transform of the surface-carried measure cannot be expected to yield an optimal restriction theorem (see

e.g. [C]). We shall apply a homogeneity argument due to Knapp to the class of manifolds considered in the theorem above.

Let \mathcal{R} denote the restriction operator defined above. Let $\hat{f}_{\delta} = h$, where h is the characteristic function of a rectangle in \mathbb{R}^{n+2} with sides of lengths $(1, 1, \dots, 1, C, C)$, C large.

Then

$$||f_{\delta}||_p \approx \delta^{(1-1/p)(n+m+1)}$$
 and $||\mathcal{R}f_{\delta}||_p \approx \delta^{n/2}$.

Hence ((1.2)) can only hold if $p \le \frac{2(n+m+1)}{n+2(m+1)}$.

If we apply Greenleaf's result ((1.3)) to the Main Theorem, we see that ((1.2)) holds for $p \leq \frac{2(2m+n)}{4m+n}$.

The gap between this exponent and the exponent given by Knapp's homogeneity argument suggests that the restriction theorem (1.2) may hold for a wider range of exponents. The result obtained using the Main Theorem is not sharp. In order to obtain a sharp result one would probably have to obtain precise non-isotropic estimates for the Fourier transform of the surface carried measure using the techniques of M. Christ (see [C]).

(2) The curvature conditions of the Main Theorem are not entirely satisfying because there is no natural transition between parts (a) and (b).

We hope to address these difficulties in a subsequent paper.

Proof of the main result:

Notation:

- (1) Given a, b > 0 we say that $a \approx b$ (a comparable to b) if there exist $c_1, c_2 > 0$ such that $c_1a \leq b \leq c_2a$. We say that a >> b (a much larger than b) if the inequality $a \leq Cb$ is not satisfied for any C > 0. The notion $a \ll b$ is defined similarly.
- (2) We denote by C a generic constant which may change from line to line.

Proof of part (a) of the Main Theorem. Let $\Psi(x) = \langle \xi, x \rangle + \lambda_1 \phi_1(x) + \lambda_2 \phi_2(x)$. Then $\nabla \Psi(x) = \xi + \lambda_1 \nabla \phi_1(x) + \lambda_2 \nabla \phi_2(x)$. Since $\phi_{1|_{\Sigma_2}}$ is constant by assumption, then $\phi_1 \neq 0$ away from the origin. Hence, $\nabla \phi_1(x) \neq 0$ away from the origin by the Euler homogeneity relation, and since every component of $\nabla \phi_1(x)$ is homogeneous of degree zero, we have $|\nabla \phi_1(x)| \geq C$ for all $x \in \text{support}(\phi_1)$.

Suppose that $|\xi| \ll |\lambda_2| \ll |\lambda_1|$ or $|\lambda_2| \ll |\xi| \ll |\lambda_1|$. Then $|\nabla \Psi(x)| \geq C|\lambda_1|$ and so an integration by parts argument (see theorem (1) in the appendix) shows that $|F(\xi, \lambda_1, \lambda_2)| \leq C(1+|\lambda_1|)^{-N} \quad \forall N > 0$. Similarly, if $|\lambda_1| \ll |\lambda_2| \ll |\xi|$, or $|\lambda_1| \approx |\lambda_2| \ll |\xi|$, then $|F(\xi, \lambda_1, \lambda_2)| \leq C(1+|\xi|)^{-N} \quad \forall N > 0$.

If we rewrite F using polar coordinates with respect to Σ_2 and assume that χ is radial with respect to $\Sigma_2 igmsa$, we get

$$F(\xi, \lambda_1, \lambda_2) = \int_0^{+\infty} r^{n-1} \chi(r) \int_{\Sigma_2} e^{i(r\langle \xi, \omega \rangle + r\lambda_1 + r^m \lambda_2)} d\sigma(\omega) dr,$$

where $d\sigma$ is the Lebesgue measure carried by Σ_2 . Let $I(\xi)$ denote the Fourier transform of the surface-carried measure on Σ_2 ,

$$I(\xi) = \int_{\Sigma_2} e^{i\langle \xi, \, \omega \rangle} \, d\sigma(\omega).$$

Since the Gaussian curvature on Σ_2 never vanishes, we can use the method of stationary phase (see theorem (3) in the appendix) to write $I(\xi) = b(\xi)e^{iq(\xi)}$, where ξ belongs to a cone Γ containing the normal directions to Σ_2 on the support of $d\sigma$, and where $b(\xi)$ is a symbol of order $-\frac{n-1}{2}$, $q(\xi)$ is homogeneous of degree 1, and $q(\xi) \approx |\xi|$. Away from Γ , $I(\xi)$ decays rapidly in $|\xi|$.

Suppose that we are in one of the cases where $|\xi|$ dominates:

- (1) $|\lambda_2| \ll |\lambda_1| \approx |\xi|$,
- $(2) |\lambda_1| \ll |\lambda_2| \approx |\xi|,$
- (3) $|\lambda_1| << |\lambda_2| << |\xi|$,
- (4) $|\lambda_2| << |\lambda_1| << |\xi|$,
- (5) $|\lambda_1| \approx |\lambda_2| \approx |\xi|$.

Using our observation about $I(\xi)$, we write

$$F(\xi, \lambda_1, \lambda_2) = \int_0^{+\infty} r^{n-1} e^{i(rq(\xi) + r\lambda_1 + r^m \lambda_2)} b(r\xi) \chi(r) dr.$$

Then

$$|F(\xi, \lambda_1, \lambda_2)| \le C \int_0^2 r^{n-1} |b(r\xi)| dr.$$

Let $s = r | \xi |$, and define $\tilde{\xi} = \xi |\xi|^{-1}$. The integral above is bounded by

$$C|\xi|^{-n} \int_0^{2|\xi|} s^{n-1} |b(s\tilde{\xi})| ds =$$

$$= C|\xi|^{-n} \int_0^N s^{n-1} |b(s\tilde{\xi})| ds + C|\xi|^{-n} \int_N^{2|\xi|} s^{n-1} |b(s\tilde{\xi})| ds,$$

where N is large. The first integral is $O(|\xi|^{-n})$ and the second integral is bounded by

$$C |\xi|^{-n} \int_{N}^{2|\xi|} s^{\frac{n-1}{2}} ds \le C(1+|\xi|)^{-\frac{n-1}{2}}.$$

Note that $\frac{n-1}{2} \ge \frac{n}{m}$ when $m \ge \frac{2n}{n-1}$.

We are left to consider the cases where λ_2 dominates:

- $(1) |\xi| \approx |\lambda_1| \ll |\lambda_2|,$
- $(2) |\xi| \ll |\lambda_1| \approx |\lambda_2|,$
- $(3) |\xi| \ll |\lambda_1| \ll |\lambda_2|,$
- (4) $|\lambda_1| \ll |\xi| \ll |\lambda_2|$.

As before, let

$$F(\xi, \lambda_1, \lambda_2) = \int_0^{+\infty} r^{n-1} e^{i(rq(\xi) + r\lambda_1 + r^m \lambda_2)} b(r\xi) \chi(r) dr.$$

Let $s\lambda_2^{-1/m} = r$. Then

$$F(\xi, \lambda_1, \lambda_2) = \lambda_2^{-\frac{n}{m}} \int_0^{+\infty} s^{n-1} e^{i(q(s\lambda_2^{-1/m}\xi) + s\lambda_2^{-1/m}\lambda_1 + s^m)} b(s\lambda_2^{-1/m}\xi) \chi(s\lambda_2^{-1/m}) ds.$$

Let

$$G(\xi, \lambda_1, \lambda_2) = \int_0^{+\infty} s^{n-1} e^{i(\lambda_2^{-1/m} sq(\xi) + s\lambda_2^{-1/m} \lambda_1 + s^m)} b(s\lambda_2^{-1/m} \xi) \chi(s\lambda_2^{-1/m}) ds.$$

It suffices to show that $|G(\xi, \lambda_1, \lambda_2)|$ is uniformly bounded. When $|\frac{\lambda_1 + |\xi|}{\lambda_2^{\frac{1}{m}}}|$ is sufficiently small, then |G| is bounded by $C|\int_0^{+\infty} e^{it^m}t^{n-1}dt|$. An integration by parts argument shows that this integral converges. In particular the above integral equals $e^{\frac{2\pi i}{m}}\frac{1}{m}\Gamma\left(\frac{n}{m}\right)$. Thus we may assume that $|\frac{\lambda_1 + |\xi|}{\lambda_2^{\frac{1}{m}}}| \geq C$.

Let
$$\Phi(s) = s \frac{\lambda_1 + q(\xi)}{\lambda_2^{\frac{1}{m}}} + s^m$$
. Then $\Phi'(s) = 0$ if $s = C \left(\frac{\lambda_1 + q(\xi)}{\lambda_2^{\frac{1}{m}}}\right)^{\frac{1}{m-1}}$, and $\Phi''(s) = m(m-1)s^{m-2}$.

If we apply the van der Corput Lemma (see theorem (2) in the appendix) in the case k=2, and recall that in particular |b| is uniformly bounded, we see that |G| is bounded by

$$C\left|\frac{\lambda_1+|\xi|}{\lambda_2^{\frac{1}{m}}}\right|^{-\frac{(m-2)}{2(m-1)}+\frac{n-1}{m-1}}|.$$

The power of $|\frac{\lambda_1 + |\xi|}{\lambda_2^{\frac{1}{m}}}|$ in the expression above is non-positive if $m \geq 2n$, and so $G(\xi, \lambda_1, \lambda_2)$ is uniformly bounded. This completes the proof of part (a) of the Main Theorem.

Proof of part (b) of the Main Theorem. As before, we rewrite F using polar coordinateds associated to Σ_2 . We get

$$F(\xi, \lambda_1, \lambda_2) = \int_0^{+\infty} \int_{\Sigma_2} e^{i(r\langle \omega, \xi \rangle + r\lambda_1 \phi_1(\omega) + \lambda_2 r^m)} r^{n-1} \chi(r) d\omega dr,$$

where, as before, χ is a smooth cutoff function which is radial with respect to the polar coordinates associated to Σ_2 . Let

$$I(\xi, \lambda_1) = \int_{\Sigma_2} e^{i(\langle \omega, \xi \rangle + \lambda_1 \phi_1(\omega))} d\omega.$$

Using the implicit function theorem we can parametrize Σ_2 near a point s_0 by a smooth function $\psi: \mathbb{R}^{n-1} \to \mathbb{R}$. Without loss of generality, we can assume that $\nabla \phi_1(s_0) = 0$ and that $\nabla \phi_2(s_0) = (0, 0, \dots, 0, 1)$. Thus, we can locally write $\Sigma_2 = \{(\omega', \omega_n) : \omega_n = \psi(\omega')\}$. The restriction of M to the hyperplane $\{x_{n+2} = 1\}$ can thus be locally parametrized by the functions $\psi(\omega')$ and $\phi_1(\omega', \psi(\omega'))$. If we let $\xi = (\xi', \xi_n)$, we can write $I(\xi, \lambda_1)$ as a finite sum of terms of the form

((1.5))
$$\int_{\mathbb{R}^{n-1}} e^{i(\langle \omega', \xi' \rangle + \xi_n \psi(\omega') + \lambda_1 \phi_1(\omega', \psi(\omega')))} \chi_1(\omega') d\omega',$$

where χ_1 is a smooth cutoff function supported in a neighborhood of s_0 . It was observed by M. Christ (see [C]) that the strong curvature condition (see the introduction) implies the following result.

Lemma. Let Ω be a submanifold of \mathbb{R}^{N+2} of codimension 2 locally parametrized by smooth functions g_1 and g_2 , where $g_j : \mathbb{R}^N \to \mathbb{R}$. Let $d\sigma$ denote a smooth measure on Ω . Suppose that Ω satisfies the strong curvature condition. Then

$$|\mathcal{F}[d\sigma](R\eta)| \le C(1+R)^{-\frac{N}{2}}.$$

The proof of the lemma shows that the integral in ((1.5)) can be written as $b(\xi, \lambda_1)e^{iq(\xi, \lambda_1)}$, where (ξ, λ_1) belongs to a cone containing the normal directions to $M_{|\{x_{n+2}=1\}}$ on the support of $d\sigma$, $b(\xi, \lambda_1)$ is a symbol of order $-\frac{n-1}{2}$, $q(\xi, \lambda_1)$ is homogeneous of degree 1, and $|q(\xi, \lambda_1)| \approx (|\xi| + |\lambda_1|)$.

We must analyze the following integral:

((1. 6))
$$\int_0^{+\infty} r^{n-1} e^{i(rq(\xi,\lambda_1) + r^m \lambda_2)} b(r\xi, r\lambda_1) \chi(r) dr.$$

We may assume that $|q(\xi, \lambda_1)| \leq C |\lambda_2|$, since if $|q(\xi, \lambda_1)| \geq c |\lambda_2|$ for a sufficiently large c > 0, then the integral in ((1. 6)) decays rapidly in $|\xi| + |\lambda_1|$. (See theorem (1) in the appendix.)

Let $s = r\lambda_2^{\frac{1}{m}}$. Then, the integral in (1. 6) can be written as

$$\lambda_2^{-\frac{n}{m}} \int_0^{+\infty} s^{n-1} e^{i(s\lambda_2^{\frac{1}{m}}q(\xi,\lambda_1)+s^m)} b(s\lambda_2^{\frac{1}{m}}\xi, s\lambda_2^{\frac{1}{m}}\lambda_1) \chi(s\lambda_2^{\frac{1}{m}}) dr.$$

Let

$$G(\xi, \lambda_1, \lambda_2) = \int_0^{+\infty} s^{n-1} e^{i(s\lambda_2^{\frac{1}{m}}q(\xi, \lambda_1) + s^m)} b(s\lambda_2^{\frac{1}{m}}\xi, s\lambda_2^{\frac{1}{m}}\lambda_1) \chi(s\lambda_2^{\frac{1}{m}}) dr.$$

As before, it suffices to show that $|G(\xi, \lambda_1, \lambda_2)|$ is uniformly bounded. When $|\frac{|\lambda_1| + |\xi|}{\lambda_2^{\frac{1}{m}}}|$ is sufficiently small, then |G| is bounded by $C \left| \int_0^{+\infty} e^{it^m} t^{n-1} dt \right|$. Hence we can assume $|\frac{|\lambda_1| + |\xi|}{\lambda_2^{\frac{1}{m}}}| \geq C$. We can write $G(\xi, \lambda_1, \lambda_2) = \int_0^N + \int_N^{C|\lambda_2|^{\frac{1}{m}}}$, N large. The first integral is uniformly bounded. In order to handle the second integral let $\Phi(s) = s\lambda_2^{\frac{1}{m}}q(\xi, \lambda_1) + s^m$. Then $\Phi'(s) = 0$ if $s = c_m \left(\lambda_2^{-\frac{1}{m}}q(\xi, \lambda_1)\right)^{\frac{1}{m-1}}$, and $\Phi''(s) = m(m-1)s^{m-2}$. If the critical point is smaller than N the integral has rapid decay, so we may assume that $\left|\lambda_2^{-\frac{1}{m}}q(\xi, \lambda_1)\right|$ is large. If we recall that $|q(\xi, \lambda_1)| \approx |\xi| + |\lambda_1|$, then by the van der Corput lemma (see theorem (2) in the appendix) we get

$$((1.7)) \int_{N}^{C|\lambda_{2}|^{\frac{1}{m}}} \leq \left| \frac{|\lambda_{1}| + |\xi|}{\lambda_{2}^{\frac{1}{m}}} \right|^{-\frac{(m-2)}{2(m-1)} + \frac{n-1}{m-1} - \frac{n-1}{2(m-1)} - \frac{n-1}{2}}.$$

Note that the third and the fourth terms in the power of $\left|\frac{|\lambda_1| + |\xi|}{\lambda_2^{\frac{1}{m}}}\right|$ arise from the fact that b is a symbol of order $-\frac{n-1}{2}$, and $\left|\frac{|\lambda_1| + |\xi|}{\lambda_2^{\frac{1}{m}}}\right|$ is large.

The power of $\left|\frac{|\lambda_1|+|\xi|}{\lambda_2^{\frac{1}{m}}}\right|$ in ((1. 7)) is nonnegative provided that $m \geq 2$. Hence, $|G(\xi, \lambda_1, \lambda_2)|$ is bounded and the proof is complete.

Appendix

In this section we recall a few classical results that we used to prove the Main Theorem. The first two theorems, which deal with oscillatory integrals, can be found e.g. in [St].

Theorem 1. Suppose $\phi \in C_0^{\infty} \mathbb{R}^n$ and suppose that ψ is a real-valued and smooth function which has no critical points on the support of ϕ . Then

$$\left| \int_{\mathbb{R}^n} e^{i\lambda\psi(x)} \phi(x) dx \right| = O(\lambda^{-N})$$

as $\lambda \to \infty$, for every $N \ge 0$.

Theorem 2. Suppose that ψ is real-valued and smooth and that ϕ is complex-valued and smooth in [a, b]. If $|\psi^{(k)}(x)| \geq 1$, then

$$\left| \int_a^b e^{i\lambda\psi(x)}\phi(x)dx \right| \leq C_k \lambda^{-\frac{1}{k}} \left[|\phi(b)| + \int_a^b |\phi'(t)| \ dt \right]$$

holds when

- $(1) k \ge 2$
- (2) or k = 1, if in addition it is assumed that $\psi'(x)$ is monotonic.

Theorem 3. Let S be a smooth hypersurface in \mathbb{R}^n with nonvanishing Gaussian curvature, and let $d\sigma$ be a \mathcal{C}^{∞} measure on S. Then

$$\left| \widehat{d\mu}(\xi) \right| \le C(1+|\xi|)^{-\frac{n-1}{2}}.$$

Moreover suppose that $\Gamma \subset \mathbb{R}^n \setminus \{0\}$ is the cone consisting of all ξ which are normal to some point $x \in S$ belonging to some compact neighborhood \mathcal{N} of support $(d\mu)$. Then,

$$\frac{\partial^{\alpha}}{\partial \xi} \widehat{d\mu}(\xi) = O\left((1 + |\xi|)^{-N} \right), \quad \forall N, \text{ if } \xi \notin \Gamma,$$

$$\widehat{d\mu}(\xi) = \sum = a_j(\xi) e^{i\langle x_j, \xi \rangle}, \qquad \text{if } \xi \in \Gamma,$$

where the finite sum is taken over all points $x_j \in \mathcal{N}$ having ξ as a normal and

$$\left|\frac{\partial^{(\alpha)}}{\partial \xi} \widehat{d\mu}(\xi)\right| \le C_{\alpha} (1 + |\xi|)^{-\frac{n-1}{2} - |\alpha|}.$$

Proof. See [So] pag. 50-51.

References

- [C] M. Christ, Restriction of the Fourier transform to submanifolds of low codimension, Thesis, University of Chicago (1982).
- [DC] L. De Carli, Unique continuation for higher order elliptic operators, Thesis, UCLA (1993).
 - [G] A. Greenleaf, Principal curvatures in harmonic analysis, Ind. Univ. Math. J. 30 (1981), 519-537.
 - [H] L. Hormander, The analysis of linear partial differential operators I, New York, 1990.
 - [I1] A. Iosevich, Maximal Operators associated to families of flat curves and hypersurfaces, Thesis, UCLA (1993).

- [12] A. Iosevich, Maximal Operators associated to families of flat curves in the plane. To appear in Duke Math.J.
- [L] W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Am. Math. Soc. 69 (1963), 766-770.
- [So] C.D.Sogge, Fourier integrals in classical analysis, Cambridge University Press, Cambridge, 1993.
- [St] E. M. Stein, Harmonic Analysis, Princeton University Press, Princeton, 1993.