Logistic Regression Assignment Template

Use this notebook as a template to start your own analysis. Your analysis should be more indepth than the limited analysis you see here (i.e. you should explore the relationships between more of the variables then what you see in this notebook). Think of this notebook as a jumping off point to get you started with the code. Customize for your own analysis!

You should use Tableau for your final visualizations for the video.

```
#start by importing the appropriate packages and data from the CSV file
In [11]:
           import numpy as np
           import pandas as pd
           from scipy import stats
           import matplotlib.pyplot as plt
           import seaborn as sns
           import statsmodels.api as sm
           from statsmodels.formula.api import logit, probit, ols
           import statsmodels as sm
           import statsmodels.formula.api as sm
           import statsmodels.api as sm2
           data = pd.read csv('Uber2.csv')
In [12]:
          data.head()
             wait_time treatment commute trips_express rider_cancellations total_driver_payout total_r
Out[12]:
          0
                    2
                              0
                                        1
                                                  3245
                                                                    256
                                                                               34458.41163
                    5
                                        0
                                                  2363
                                                                    203
                                                                               29764.34982
                              1
                    2
          2
                              0
                                        0
                                                  2184
                                                                     118
                                                                               27437.36736
          3
                    5
                              1
                                        1
                                                  3584
                                                                    355
                                                                               44995.45299
                    2
                              0
                                                  2580
                                                                     181
                                                                               27583.95530
           sumstats=data.describe()
In [13]:
           sumstats.round(decimals=4)
Out[13]:
```

	wait_time	treatment	commute	trips_express	rider_cancellations	total_driver_payout	to
count	126.000	126.000	126.0000	126.0000	126.0000	126.0000	
mean	3.500	0.500	0.1587	2515.5238	177.7381	28237.2207	
std	1.506	0.502	0.3669	497.6936	51.6318	5450.9540	
min	2.000	0.000	0.0000	1638.0000	95.0000	18769.9930	
25%	2.000	0.000	0.0000	2225.0000	147.7500	24721.8883	
50%	3.500	0.500	0.0000	2427.5000	166.0000	27352.8406	
75%	5.000	1.000	0.0000	2661.7500	187.2500	30586.1075	
max	5.000	1.000	1.0000	4507.0000	355.0000	48600.4220	

```
In [14]: #divide the data into 2 dataframes: one for the treatment group and one for the
    df_treatment = data[data['treatment'] == 1]
    df_control = data[data['treatment'] == 0]
```

In [15]: #check to the dataframe to make sure that only the treatment group is in the tre df_treatment

Out[15]:	wait_time	treatment	commute	trips_express	rider_cancellations	total_driver_payout	total
1	5	1	0	2363	203	29764.34982	
3	5	1	1	3584	355	44995.45299	
5	5	1	0	2022	135	23888.11085	
7	5	1	0	2018	150	25794.86992	
9	5	1	1	2539	284	34047.47390	
•••							
117	5	1	0	2059	129	22995.15900	
119	5	1	0	1970	204	24339.58356	
121	5	1	0	2655	173	28288.52115	
123	5	1	0	2359	154	23525.11595	
125	5	1	0	2421	196	26017.52602	

63 rows × 8 columns

```
In [16]: #conduct a mann-whitney test to test whether a variable, in this example rider_c
#is the number of rider_cancellations statistically significantly different in t
u_statistic, p_value = stats.mannwhitneyu(df_treatment['wait_time'],df_control['
print('U-Statistic: ', u_statistic)
print('p-value: ', p_value)
```

U-Statistic: 0.0 p-value: 2.626795160290819e-29

```
In [17]: sns.regplot(x='total_matches', y='total_driver_payout', data=data)
```



```
In [18]: sns.catplot(x="treatment", y="rider_cancellations", hue="treatment", kind="bar",
```

Out[18]: <seaborn.axisgrid.FacetGrid at 0x7f92d87a43d0>

In [24]: model1=ols("wait_time ~ rider_cancellations + total_driver_payout + trips_expres
model1.summary()

Out[24]:

OLS Regression Results

Dep. Variable:	wait_time	R-squared:	0.473
Model:	OLS	Adj. R-squared:	0.451
Method:	Least Squares	F-statistic:	21.56
Date:	Tue, 13 Apr 2021	Prob (F-statistic):	2.41e-15
Time:	18:29:51	Log-Likelihood:	-189.50
No. Observations:	126	AIC:	391.0
Df Residuals:	120	BIC:	408.0
Df Model:	5		

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	6.0128	0.622	9.673	0.000	4.782	7.244
rider_cancellations	0.0249	0.003	7.853	0.000	0.019	0.031
total_driver_payout	-0.0001	3.26e-05	-4.192	0.000	-0.000	-7.21e-05
trips_express	-0.0019	0.001	-2.395	0.018	-0.003	-0.000
total_matches	-0.0002	0.001	-0.361	0.718	-0.001	0.001
total_double_matches	0.0016	0.000	3.583	0.000	0.001	0.003

Covariance Type:

 Omnibus:
 6.820
 Durbin-Watson:
 2.894

 Prob(Omnibus):
 0.033
 Jarque-Bera (JB):
 3.109

 Skew:
 -0.010
 Prob(JB):
 0.211

 Kurtosis:
 2.231
 Cond. No.
 1.81e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.81e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [20]: sns.relplot(x="total_matches", y="rider_cancellations", kind="line", ci="sd", da
```

Out[20]: <seaborn.axisgrid.FacetGrid at 0x7f92d92f72b0>


```
In [21]: sns.relplot(data=data, x="rider_cancellations", y="total_driver_payout", col="tr
kind="scatter")
```

Out[21]: <seaborn.axisgrid.FacetGrid at 0x7f92d7d05e80>

In []: