

This datasheet of **Akulon® Fuel Lock FLE-LP NA99001** from **Envalior** is provided by the international plastics database **CAMPUS**.

Akulon® Fuel Lock FLE-LP NA99001 | PA6-I | Envalior

Product Texts

Low fuel permeation PA6 suitable for use in injection molding/welding of small engine fuel tanks

ISO 1043 PA6-I

Rheological properties	dry / cond	Unit		
Melt volume-flow rate, MVR	13 / *	cm³/10min	ı	
Temperature	250 / *	°C		
Load	2.16 / *	kg		
Molding shrinkage, parallel	1.9 / *	%		
Molding shrinkage, normal	1.8 / *	%		
Mechanical properties	dry / cond	Unit		
Tensile modulus	1750 / 530	MPa		
Yield stress	43 / -	MPa		
Yield strain	4.2 / -	%		
Nominal strain at break	>50 / -	%		
Charpy impact strength, +23°C	N/N	kJ/m²		
Charpy impact strength, -30°C	N/N	kJ/m²		
Charpy notched impact strength, +23°C	80 / N	kJ/m²		
Charpy notched impact strength, -30°C	22 / 20	kJ/m²		
Puncture - maximum force, +23°C	3300 / -	N		
Puncture energy, +23°C	48 / -	J		
Thermal properties	dry / cond	Unit		
Temp. of deflection under load, 1.80 MPa	55 / *	°C		
Temp. of deflection under load, 0.45 MPa This website uses cookies. By using this website, you a Vicatosciesening temperature, 50°C/h 50N	100 / * gree to the us 130 / *	°C e of °C	Privacy Policy	Close

Coeff. of linear therm. expansion, parallel	100 / *	E-6/K
Coeff. of linear therm. expansion, normal	110 / *	E-6/K
Other properties	dry / cond	Unit
Water absorption	7/*	%
Humidity absorption	2.5 / *	%
Density	1060 / -	kg/m³
Rheological calculation properties	Value	Unit
Density of melt	869	kg/m³
Thermal conductivity of melt	0.22	W/(m K)
Spec. heat capacity melt	2740	J/(kg K)
Eff. thermal diffusivity	9.37E-8	m²/s

Diagrams

This website uses cookies. By using this website, you agree to the use of cookies.

Characteristics

Processing

Injection Molding

Delivery form

Pellets

Regional Availability

North America, Europe, Asia Pacific

Other text information

Injection molding

Injection Molding Recommendations
Steel recommendations for molds screws and barrels
Trouble shooting guideline for injection molding

Chemical Media Resistance

Alcohols

Methanol (23°C)

Ethanol (23°C)

Hydrocarbons

Toluene (23°C)

Ketones

Acetone (23°C)

Ethers

Diethyl ether (23°C)

Other

Ethyl Acetate (23°C)

Water (23°C)

All the trademarks mentioned here are trademarks of Envalior.

Seller represents and warrants exclusively that on the date of delivery by Seller the product shall be in conformity with the specifications agreed upon. Seller makes no other representations or warranties, whether express or implied.

Seller is not responsible or liable for the design of the products of the Customer and it is the responsibility of the Customer to determine that the Seller's product is safe, complies with application laws and regulations, and is technically or otherwise fit for its intended use. Seller does not endorse or claim suitability of its products for a specific application and disclaims each and every representation or warranty, whether express or implied, in that respect.

Typical values are indicative only and are not to be construed as being binding specifications. Colorants in the product or other additives may cause significant variations in typical values.

Copyright © Envalor 2024. All rights reserved. No part of the information may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of Envalor.

The CAMPUS internet database is no seed by Altair Engineering GmbH. Altair Engineering GinbH assumes Glose liability for the system to be free of errors. Any decision about the application of materials in ust be double

checked with the producer of this material.		
CAMPUS® is a registered trademark of CWFG mbH, Frankfurt am Main, 2024		
This website uses cookies. By using this website, you agree to the use of cookies.	Privacy Policy	Close