
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2010; month=1; day=15; hr=11; min=25; sec=5; ms=832;]

Validated By CRFValidator v 1.0.3

Application No: 10596024 Version No: 2.0

Input Set:

Output Set:

Started: 2009-12-29 16:23:06.670 **Finished:** 2009-12-29 16:23:09.284

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 614 ms

Total Warnings: 25
Total Errors: 0

No. of SeqIDs Defined: 35

Actual SeqID Count: 35

Erro	or code	Error Descript	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)

Input Set:

Output Set:

Started: 2009-12-29 16:23:06.670 **Finished:** 2009-12-29 16:23:09.284

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 614 ms

Total Warnings: 25
Total Errors: 0

No. of SeqIDs Defined: 35

Actual SeqID Count: 35

Error code Error Description

This error has occured more than 20 times, will not be displayed

 \mathbb{W} 402 Undefined organism found in <213> in SEQ ID (26)

W 402 Undefined organism found in <213> in SEQ ID (27)

SEQUENCE LISTING

```
<110> National Research Council of Canada
<120> FATTY ACID ELONGASE (FAE) GENES AND THEIR UTILITY IN INCREASING
      ERUCIC ACID AND OTHER VERY LONG-CHAIN FATTY ACID PROPORTIONS IN SEED OIL
<130> PAT 989W-2
<140> 10596024
<141> 2009-12-29
<150> US 60/524,645
<151> 2003-11-25
<160> 35
<170> PatentIn version 3.5
<210> 1
<211> 18
<212> DNA
<213> Artificial
<220>
<223> F1 Forward Primer
<400> 1
tctwggwggm atgggttg
                                                                      18
<210> 2
<211> 6
<212> PRT
<213> Artificial
<220>
<223> Coded by F1 Forward Primer
<400> 2
Leu Gly Gly Met Gly Cys
<210> 3
<211> 18
<212> DNA
<213> Artificial
<220>
<223> R1 Reverse Primer
<400> 3
tdtaygcyar ctcrtacc
                                                                      18
```

```
<210> 4
<211> 6
<212> PRT
<213> Artificial
<220>
<223> Coded by R1 Reverse Primer
<400> 4
Trp Tyr Glu Leu Ala Tyr
<210> 5
<211> 20
<212> DNA
<213> Artificial
<220>
<223> P Forward Primer
<400> 5
accatgtcag gaacaaaagc
                                                                     20
<210> 6
<211> 23
<212> DNA
<213> Artificial
<220>
<223> PR Reverse Primer
<400> 6
                                                                     23
ttaatttaat ggaacctcaa ccg
<210> 7
<211> 32
<212> DNA
<213> Artificial
<220>
<223> F2 Forward Primer
<400> 7
tcgaggatgt cgcttcaccg atttggaaac ac
                                                                     32
<210> 8
<211> 33
<212> DNA
<213> Artificial
```

<220>

```
<223> R2 Reverse Primer
<400> 8
gtttccaaat cggtgaagcg acatcctcga tgg
                                                                      33
<210> 9
<211> 25
<212> DNA
<213> Artificial
<220>
<223> F3 Forward Primer
<400> 9
taggatccat gtcaggaaca aaagc
                                                                      25
<210> 10
<211> 30
<212> DNA
<213> Artificial
<220>
<223> R3 Reverse Primer
<400> 10
                                                                      30
tagagctctt aatttaatgg aacctcaacc
<210> 11
<211> 30
<212> DNA
<213> Artificial
<220>
<223> R4 Reverse Primer
<400> 11
                                                                      30
taggatcctt aatttaatgg aacctcaacc
<210> 12
<211> 17
<212> DNA
<213> Artificial
<220>
<223> F4 Forward Primer
<400> 12
atgtcaggaa caaaagc
                                                                      17
<210> 13
<211> 22
```

<212> DNA

<213>	Artificial	
<220>		
<223>	R5 Reverse Primer	
<400>	13	
	aatg gaacctcaac cg	22
caaccc	auty gaucereaute eg	
<210>	14	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	F5 Forward Primer	
<400>		
gcaatg	acgt ccattaacgt aaag	24
.010	15	
<210>		
<211> <212>		
	Artificial	
\213/	Altilitat	
<220>		
	R6 Reverse Primer	
<400>	15	
ttagga	ccga ccgttttggg c	21
<210>	16	
<211>	29	
<212>		
<213>	Artificial	
.000		
<220>		
<223>	F6 Forward Primer	
<400>	16	
	gaat gacgtccatt aacgtaaag	29
caccca	gaac gacgeeeace aacgeaaag	
<210>	17	
<211>	27	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	R7 Reverse Primer	
<400>	17	
atggta	cctt aggaccgacc gttttgg	27

```
<210> 18
<211> 22
<212> DNA
<213> Artificial
<220>
<223> NN-3 Primer
<400> 18
tttcttcgcc acttgtcact cc
                                                                      22
<210> 19
<211> 21
<212> DNA
<213> Artificial
<220>
<223> NN-4 Primer
<400> 19
cgcgctatat tttgttttct a
                                                                      21
<210> 20
<211> 32
<212> DNA
<213> Artificial
<220>
<223> OM087 Primer
<400> 20
                                                                      32
agagagagg atccatgagt gtgataggta gg
<210> 21
<211> 33
<212> DNA
<213> Artificial
<220>
<223> OM088 Primer
<400> 21
gaggaagaag gatccgggtc tatatactac tct
                                                                      33
<210> 22
<211> 503
<212> PRT
<213> Tropaeolum majus
<400> 22
Met Ser Gly Thr Lys Ala Thr Ser Val Ser Val Pro Leu Pro Asp Phe
               5
                                   10
                                                      15
```

Lys G	ln Ser	Val 20	Asn	Leu	Lys	Tyr	Val 25	Lys	Leu	Gly	Tyr	His 30	Tyr	Ser
Ile Th	nr His 35	Ala	Met	Tyr	Leu	Phe 40	Leu	Thr	Pro	Leu	Leu 45	Leu	Ile	Met
Ser Al	la Gln	Ile	Ser	Thr	Phe 55	Ser	Ile	Gln	Asp	Phe 60	His	His	Leu	Tyr
Asn H:	is Leu	Ile	Leu	His 70	Asn	Leu	Ser	Ser	Leu 75	Ile	Leu	Cys	Ile	Ala 80
Leu Le	eu Leu	Phe	Val 85	Leu	Thr	Leu	Tyr	Phe 90	Leu	Thr	Arg	Pro	Thr 95	Pro
Val Ty	yr Leu	Leu 100	Asn	Phe	Ser	Суз	Tyr 105	Lys	Pro	Asp	Ala	Ile 110	His	Lys
Cys As	sp Arg 115	_	Arg	Phe	Met	Asp 120	Thr	Ile	Arg	Gly	Met 125	Gly	Thr	Tyr
	lu Glu 30	Asn	Ile	Glu	Phe 135	Gln	Arg	Lys	Val	Leu 140	Glu	Arg	Ser	Gly
Ile GI 145	ly Glu	Ser	Ser	Tyr 150	Leu	Pro	Pro	Thr	Val 155	Phe	Lys	Ile	Pro	Pro 160
Arg Va	al Tyr	Asp	Ala 165	Glu	Glu	Arg	Ala	Glu 170	Ala	Glu	Met	Leu	Met 175	Phe
Gly Al	la Val	Asp 180	Gly	Leu	Phe	Glu	Lys 185	Ile	Ser	Val	Lys	Pro 190	Asn	Gln
Ile G	ly Val 195		Val	Val	Asn	Cys 200	Gly	Leu	Phe	Asn	Pro 205	Ile	Pro	Ser
Leu Se	er Ser 10	Met	Ile	Val	Asn 215	Arg	Tyr	Lys	Met	Arg 220	Gly	Asn	Val	Phe
Ser Ty 225	yr Asn	Leu	Gly	Gly 230	Met	Gly	Суз	Ser	Ala 235	Gly	Val	Ile	Ser	Ile 240

Asp	Leu	Ala	Lys	Asp 245	Leu	Leu	Gln	Val	Arg 250	Pro	Asn	Ser	Tyr	Ala 255	Leu
Val	Val	Ser	Leu 260	Glu	Суз	Ile	Ser	Lys 265	Asn	Leu	Tyr	Leu	Gly 270	Glu	Gln
Arg	Ser	Met 275	Leu	Val	Ser	Asn	Cys 280	Leu	Phe	Arg	Met	Gly 285	Gly	Ala	Ala
Ile	Leu 290	Leu	Ser	Asn	Lys	Met 295	Ser	Asp	Arg	Trp	Arg 300	Ser	Lys	Tyr	Arg
Leu 305	Val	His	Thr	Val	Arg 310	Thr	His	Lys	Gly	Thr 315	Glu	Asp	Asn	Cys	Phe 320
Ser	Суз	Val	Thr	Arg 325	Lys	Glu	Asp	Ser	Asp 330	Gly	Lys	Ile	Gly	Ile 335	Ser
Leu	Ser	Lys	Asn 340	Leu	Met	Ala	Val	Ala 345	Gly	Asp	Ala	Leu	Lys 350	Thr	Asn
Ile	Thr	Thr 355	Leu	Gly	Pro	Leu	Val 360	Leu	Pro	Met	Ser	Glu 365	Gln	Leu	Leu
Phe	Phe 370	Ala	Thr	Leu	Val	Gly 375	Lys	Lys	Val	Phe	Lys 380	Met	Lys	Leu	Gln
Pro 385	Tyr	Ile	Pro	Asp	Phe 390	Lys	Leu	Ala	Phe	Glu 395	His	Phe	Суз	Ile	His 400
Ala	Gly	Gly	Arg	Ala 405	Val	Leu	Asp	Glu	Leu 410	Glu	Lys	Asn	Leu	Lys 415	Leu
Ser	Ser	Trp	His 420	Met	Glu	Pro	Ser	Arg 425	Met	Ser	Leu	Tyr	Arg 430	Phe	Gly
Asn	Thr	Ser 435	Ser	Ser	Ser	Leu	Trp 440	Tyr	Glu	Leu	Ala	Tyr 445	Ser	Glu	Ala
Lys	Gly 450	Arg	Ile	Lys	Lys	Gly 455	Asp	Arg	Val	Trp	Gln 460	Ile	Ala	Phe	Gly

Ser Gly Phe Lys Cys Asn Ser Ala Val Trp Lys Ala Leu Arg Asn Val 465 470 475 480

Asn Pro Ala Glu Glu Lys Asn Pro Trp Met Asp Glu Ile His Leu Phe 485 490 495

Pro Val Glu Val Pro Leu Asn 500

<210> 23

<211> 1765

<212> DNA

<213> Tropaeolum majus

<400> 23

tgcctgattt	caagcaatca	gttaatctaa	aatatgttaa	acttggttat	cattactcga	120
tcactcatgc	aatgtatctt	tttctaaccc	ctcttcttct	cataatgtct	gctcaaatct	180
caactttctc	tattcaagat	tttcaccatc	tttataacca	tcttatcctc	cacaatctct	240
catcccttat	cctatgcatc	gctctcctcc	tcttcgtctt	aaccctctat	ttccttactc	300
gtcccacgcc	tgtttattta	ctcaacttct	cttgttacaa	accggatgct	attcacaaat	360
gcgaccgccg	tcgtttcatg	gacaccattc	gtggaatggg	tacttatacg	gaagagaaca	420
tcgagtttca	aaggaaagtt	ctagaaaggt	ccggaatagg	ggaatcgtct	tatcttcctc	480
cgactgtgtt	taaaattcct	cctagggttt	acgatgcgga	ggaacgcgcg	gaggctgaga	540
tgctgatgtt	cggtgcggtt	gatgggcttt	tcgagaaaat	atctgttaaa	ccgaatcaaa	600
tcggggtttt	ggttgtgaat	tgtgggttgt	ttaatccgat	accgtcttta	tcttccatga	660
ttgtgaatcg	ctacaagatg	agagggaatg	tttttagtta	taatttgggt	ggaatgggtt	720
gtagtgcggg	tgtgatttcg	attgatcttg	ctaaagatct	tcttcaggtt	cgtcccaact	780
catatgcttt	ggtggttagt	ttggaatgta	tctcgaagaa	cttgtatctc	ggtgaacaaa	840
gatcgatgct	tgtttccaac	tgtttgtttc	gaatgggtgg	ggcggcgatt	ttgctttcga	900
ataaaatgtc	ggatcgatgg	agatcaaagt	atagattggt	tcatacggtt	cgaacccaca	960
agggtaccga	ggataactgc	ttttcttgcg	taactagaaa	ggaagactcg	gacgggaaga	1020
tcggtatttc	tttatcgaag	aacctaatgg	ctgttgccgg	agacgcattg	aagactaata	1080
tcacaaccct	cggaccactt	gttctaccca	tgtcggaaca	attactcttc	ttcgctactt	1140
tggtcggaaa	aaaggttttc	aagatgaagc	tacagccgta	tataccggat	ttcaagttgg	1200

agtttttttt gttgagaata accatgtcag gaacaaaagc aacatcagtt tctgttccac 60

ctttcgagca	tttctgtatt	catgcaggtg	gaagagctgt	tctggatgaa	ttggagaaga	1260
acttgaagct	ttcgagttgg	catatggaac	catcgaggat	gtcgctttac	cgatttggaa	1320
acacgtcgag	tagttcgctt	tggtacgagt	tggcttattc	ggaggcgaaa	gggagaataa	1380
agaagggaga	tcgagtatgg	caaatcgcgt	ttgggtcggg	atttaagtgt	aacagtgcgg	1440
tgtggaaggc	tctaaggaat	gttaatccgg	cggaagagaa	aaatccttgg	atggatgaga	1500
ttcacctatt	tccggttgag	gttccattaa	attaaaacct	atcttcaagt	tacaagttgt	1560
tgttgttgtt	tcattaggtt	taataataag	ctaatatgga	aagcctttct	actctctttt	1620
ttttccactt	tttttttca	atttcagagt	tgggtcttag	ttgtatcatc	tacatgagtg	1680
tattcgctat	gcgctattcg	ctattcgcta	ttcactagtt	aataaaatca	aacgtccaaa	1740
aaaaaaaaa	aaaaaaaaa	aaaaa				1765

<210> 24

<211> 506

<212> PRT

<213> Crambe abyssinica

<400> 24

Met Thr Ser Ile Asn Val Lys Leu Leu Tyr His Tyr Val Ile Thr Asn $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Leu Phe Asn Leu Cys Phe Phe Pro Leu Thr Ala Ile Val Ala Gly Lys 20 25 30

Ala Ser Arg Leu Thr Ile Asp Asp Leu His His Leu Tyr Tyr Ser Tyr 35 40 45

Leu Gln His Asn Val Ile Thr Ile Ala Pro Leu Phe Ala Phe Thr Val 50 55 60

Phe Gly Ser Ile Leu Tyr Ile Val Thr Arg Pro Lys Pro Val Tyr Leu 65 70 75 80

Val Glu Tyr Ser Cys Tyr Leu Pro Pro Thr Gln Cys Arg Ser Ser Ile 85 90 95

Ser Lys Val Met Asp Ile Phe Tyr Gln Val Arg Lys Ala Asp Pro Phe 100 105 110

Arg	Asn	Gly 115	Thr	Cys	Asp	Asp	Ser 120	Ser	Trp	Leu	Asp	Phe 125	Leu	Arg	Lys
Ile	Gln 130	Glu	Arg	Ser	Gly	Leu 135	Gly	Asp	Glu	Thr	His 140	Gly	Pro	Glu	Gly
Leu 145	Leu	Gln	Val	Pro	Pro 150	Arg	Lys	Thr	Phe	Ala 155	Ala	Ala	Arg	Glu	Glu 160
				165					170					Asn 175	
_			180	_				185					190	Ser	
		195					200					205		Phe	
	210					215					220			Val	
225					230					235				Tyr	240
Ile	Tyr	Ala	Gly	245 Asp	Asn	Arg	Ser	Met	250 Met	Val	Ser	Asn	Cys	255 Leu	Phe
Arg	Val	Gly	260 Gly	Ala	Ala	Ile	Leu	265 Leu	Ser	Asn	Lys	Pro	270 Arg	Asp	Arg
Arg	-	275 Ser	Lys	Tyr	Glu		280 Val	His	Thr	Val	-	285 Thr	His	Thr	Gly
	290 Asp	Asp	Lys	Ser		295 Arg	Cys	Val	Gln		300 Gly	Asp	Asp	Glu	
305 Gly	Lys	Thr	Gly		310 Ser	Leu	Ser	Lys	_	315	Thr	Glu	Val	Ala	320 Gly
				325					330					335	

Arg Thr Val Lys Lys Asn Ile Ala Thr Leu Gly Pro Leu Ile Leu Pro

340 345 350

Leu Ser Glu Lys Leu Leu Phe Phe Val Thr Phe Met Ala Lys Lys Leu

360 355 Phe Lys Asp Lys Val Lys His Tyr Tyr Val Pro Asp Phe Lys Leu Ala 375 Ile Asp His Phe Cys Ile His Ala Gly Gly Arg Ala Val Ile Asp Val 395 390 Leu Glu Lys Asn Leu Gly Leu Ala Pro Ile Asp Val Glu Ala Ser Arg 410 405 415 Ser Thr Leu His Arg Phe Gly Asn Thr Ser Ser Ser Ser Ile Trp Tyr 420 425 430 Glu Leu Ala Tyr Ile Glu Ala Lys Gly Arg Met Lys Lys Gly Asn Lys 435 440 445 Val Trp Gln Ile Ala Leu Gly Ser Gly Phe Lys Cys Asn Ser Ala Val 450 455 Trp Val Ala Leu Ser Asn Val Lys Ala Ser Thr Asn Ser Pro Trp Glu 470 475 465 His Cys Ile Asp Arg Tyr Pro Val Lys Ile Asp Ser Asp Ser Ala Lys 485 490 495 Ser Glu Thr Arg Ala Gln Asn Gly Arg Ser 500 505 <210> 25 <211> 1521 <212> DNA <213> Crambe abyssinica <400> 25 atgacgtcca ttaacgtaaa gctcctttac cattacgtca taaccaacct ttttaacctc 60 tgtttctttc cgttaacggc gatcgtcgcc gggaaagcct ctcggcttac catagacgat cttcaccact tatattattc ctatctccaa cacaacgtca taaccatagc tccactcttt 180 240 gcctttaccg ttttcggttc gattctctac atcgtgaccc ggcccaaacc ggtttacctc

gttgagtact	catgctacct	tccaccaacg	cagtgtagat	caagtatctc	caaggtcatg	300
gatatatttt	atcaagtaag	aaaagctgat	ccttttcgta	acgggacatg	cgatgactcg	360
teetggettg	acttcttgag	gaagattcaa	gaacgttcag	gtctaggcga	cgaaactcac	420
ggccccgagg	gactgcttca	ggtccctccc	cggaagactt	ttgcggcggc	gcgtgaagag	480
acggagcaag	taatcgtcgg	tgcgctgaaa	aatctattcg	agaacaccaa	agttaaccct	540
aaagatatag	gtatacttgt	ggtgaactca	agcatgttta	atccaactcc	ttcactctca	600
gcgatggtcg	ttaatacttt	caagctccga	agtaacgtaa	gaagctttaa	ccttggtggc	660
atgggttgta	gtgctggcgt	tatagccatt	gatctggcta	aggacttgtt	gcatgtccat	720
aaaaacacgt	atgctcttgt	ggtgagcaca	gagaacatca	cttataacat	ttacgctggc	780
gataatagat	ccatgatggt	ttcaaactgc	ttgttccgtg	ttggcggggc	cgctattttg	840
ctctccaaca	agcctagaga	tcgaagacgg	tccaaatacg	agctagttca	cacggtccga	900
acacataccg	gagctgatga	caagtctttc	cgatgcgtcc	aacaaggaga	cgatgagaac	960
ggcaaaaccg	gagtgagttt	gtccaaggac	ataaccgagg	ttgctggtcg	aacggttaag	1020
aaaaacatag	caacattggg	tcctttgatt	cttcctttaa	gcgagaaact	tcttttttc	1080
gttaccttca	tggccaagaa	acttttcaaa	gataaagtta	agcattacta	tgtcccggac	1140
ttcaagcttg	ctattgacca	tttttgtata	catgcgggag	gcagagccgt	gatcgatgtg	1200
ctagagaaga	atttaggcct	agcaccgatc	gatgtagagg	catcaagatc	aacgttacat	1260
agatttggta	acacatcatc	tagctcaata	tggtatgagt	tggcatacat	agaggcaaaa	1320
ggaaggatga	agaaaggtaa	taaagtttgg	cagattgctt	tagggtcagg	ctttaagtgt	1380
aacagtgcgg	tttgggtagc	tttaagcaat	gtcaaggctt	cgacaaatag	tccttgggaa	1440
cattgcatcg	atagataccc	ggttaaaatt	gattctgatt	cagctaagtc	agagactcgt	1500
gcccaaaacg	gtcggtccta	a				1521

<210> 26

<211> 506

<212> PRT

<213> Arabidopsis sp.

<400> 26

Met Thr Ser Val Asn Val Lys Leu Leu Tyr Arg Tyr Val Leu Thr Asn 1 5 10 15

Phe Phe Asn Leu Cys Leu Phe Pro Leu Thr Ala Phe Leu Ala Gly Lys

20 25 30

Ala Ser Arg Leu Thr Ile Asn Asp Leu His Asn Phe Leu Ser Tyr Leu