1 Somma di Reimann

Dato $[a,b] \subseteq \mathbb{R}$, fissato $n \in \mathbb{N}$ poniamo $h = \frac{b-a}{n}$ e $x_0 = a, \ x_1 = a+h, \ x_2 = a+2h, \ldots, \ x_n = a+nh$ $\forall k \in \{1,\ldots,n\}$ fissiamo $\xi_k \in [x_k-1,x_k]$ Sia f continua su [a,b]. Poniamo

$$S_n = \sum_{k=1}^n f(\xi_k)h = \sum_{k=1}^n f(\xi_k) \frac{b-a}{n}$$

 $S_n = \text{somma di Riemann n-esima}$

Nota S_n dipende dalla scelta di ξ_1, \dots, ξ_n , che è arbitraria

Osservazione $a = b \Rightarrow S_n = 0 \forall n$

Osservazione $\forall x \in [a,b]$. $f(x) = c \Rightarrow S_n = c(b-a)$ Dunque $(S_n)_{n \in \mathbb{N}}$ è costante , in questi casi

1.1 Teorema

f continuia in [a, b]. Allora $\exists \lim S_n \text{ finito t.c limite ** dipende dalla } n \to +\infty$ sulla retta dei punti ξ_1, \ldots, ξ_n fatta nella costurzuone sopra

Si scrive

$$\lim_{n \to +\infty} S_n = \int_a^b f(x) dx = \int_a^b f$$

e si dice che f è integrabile

Osservazione dalle precedenti osservazioni si deduce $\int_a^a f(x) dx = 0$ e $\int_a^b c dx = c(b-a)$

Osservazione Esistono funzioni discontinue per cui $\nexists \lim_{n\to\infty} S_n$ oppure dipende dalla scelta dei punti ξ_1,\ldots,ξ_n fatta ad ogni passo

Osservazione Se f ha un numero finito di punti di discontinuità (con salto finito) allora f è integrabile.

2 Proprietà dell'integrale

1. Linearità: f,g continue su $[a,b],\ \lambda,\mu\in\mathbb{R}$ Allora $\lambda f + \mu g$ è integrabile e vale

$$\int_{a}^{b} [\lambda f + \mu g] = \lambda \int_{a}^{b} f + \mu \int_{a}^{b} g$$

2. Additività: $f : \mathbb{R} \to \mathbb{R}integrabile$ Allora $\forall a, b, c \in \mathbb{R} \ vale$

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

3. Monotomia: f,g continue su [a, b]

$$\forall x \in [a, b] f(x) \le g(x) \Rightarrow \int_a^b f \le \int_a^b g \quad con \ a < b$$

4. Convenzione:

$$\forall a, b \int_{a}^{b} f = -\int_{b}^{a} f$$

3 Teorema della media integrale

f continua su [a, b], allora $\exists c \in [a, b] \ t.c$

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx = f(c)$$

Dimostazione: Siano x_0 e x_1 punti di minimo e massimo assoluti (Wiestrass). Allora

$$\forall x \in [a, b]. f(x_0) \le f(x) \le f(x_1) \Rightarrow \underbrace{\int_a^b f(x_0) dx}_{f(x_0)(b-a)} \le \int_a^b f(x) dx \le \underbrace{\int_a^b f(x_1) dx}_{f(x_1)(b-a)}$$

Divido per b-a e trovo

$$f(x_0) \le \frac{1}{b-a} \int_a^b f(x) dx \le f(x_1)$$

Per il teorema dei valori intermedi applicato a f,

$$\exists c \in [a, b] \ t.c \ f(c) = \frac{1}{b - a} \int_{a}^{b} f(x) dx \le f(x_1)$$

4 La primitiva di una funzione

4.1 Definizione

 $f:]a,b[\to \mathbb{R}.\ F:]a,b[\to \mathbb{R}$ si dice primidiva di f su]a,b[se vale $F'(x)=f(x)\ \forall x\in]a,b[$

Osservazione: Se F è la primitiva di f su]a,b[, allora $H:]a,b[\to \mathbb{R}, \ H(x) = F(x) + C$ è primitiva di $f \ \forall c \in \mathbb{R}$

Osservazione personale: Le primitive di una funzione f sono infinite, e sono tutte quelle che assumono una forma riconducibile a F(x)+C, dove 'C' è un valore scalare

4.2 Proposizione:

siano F e G primitive di f su]a,b[. Allora

$$\exists k \in \mathbb{R} : F(x) - G(x) = k \quad \forall x \in]a, b[$$

Dimostazione: usiamo $H:]a,b[\to \mathbb{R},\ H(x)=F(x)-G(x).$ Vale $H'(x)=0 \forall x\in]a,b[$ e dunque H è costante su]a,b[

Osservazione: La proposizione è valida purché si lavori su un intervallo [a, b]

5 Funzioni integrali

5.1 Definizione

data $f: a_0, a_0 \rightarrow \mathbb{R}$ continua e $c \in \mathbb{R}$ definiamo

(Funzione integrale di punto base c) :
$$]a_0, b_0[\to \mathbb{R}, \ I_c(x) = \int_c^x f(t)dt]$$

5.2 Proprietà di I_c

- 1. $I_c(c) = 0$
- 2. Dati $c_1, c_2 \in]a_0, b_0[$,

$$I_{c_1}(x) - I_{c_2}(x) = \int_{c_1}^{c_2} f(t)dt \implies I_{c_1} - I_{c_2} \grave{e} \text{ costante}$$

5.3 Teorema fondametale del calcolo integrale

Sia f continua su $]a_0, b_0[$, sia $c \in]a_0, b_0[$ Allora $\forall x \in]a_0, b_0[$ vale $I'_c(x) = f(x)$

Dimostazione: Bisogna trovare

$$\lim_{h \to 0} \frac{I_c(x+h) - I_c(x)}{h} = f(x)$$

 $\forall x \in]a_0, b_0[$ Guardiamo il limite destro; dunque dobbiamo provare che $\forall h_n \to 0^+$

$$h_n > 0 \forall n \text{ vale } \frac{I_c(x + h_n) - I_c(x)}{h_n} \xrightarrow[n \to +\infty]{} f(x)$$

Si scrive

$$I_c(x + h_n) - I_c(x) = \int_c^{x+h_n} f - \int_c^x f = \int_x^{x+h_n} f(t)dt$$

Per teorema della media integrale

$$\exists c_n \in [x_1, x + h_n] \ t.c \ \frac{1}{h_n} \int_x^{x + h_n} f(t) dt = f(c_n).$$

Poiché f è continua e $c_n \to x$, si ottiene $f(c_n) \to f(x)$. **qed**

5.4 Teorema fondametale del calcolo 2 o Formula di Torricelli

Se f è continua su $]a_0,b_0[$ e se F è primitiva di f su $]a_0,b_0[$ allora $\forall a,b\in]a_0,b_0[$ vale:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Dimostazione: Sia $c \in]a_0, b_0[$

 I_c e F sono le primitive di f si a_0, b_0 .

Per il teorema di caratterizzatione delle primitive

$$\exists k \in \mathbb{R} \ t.c \ F(x) = I_c(x) + k \forall x \in]a_0, b_0[$$

Dunque

$$F(b) - F(a) = I_c(b) + k - I_c(a) + k = I_c(b) - I_c(a) = \int_c^b f - \int_c^a f = \int_a^b f(x) dx$$

 \mathbf{qed}