ECM2002	M2002 Machine Learning Algorithms							
				3 0 0 4 4				
Prerequisite:	ECM1002 - Analysis of Data Structures and Algorithms							
~ ~~								
Course Object								
To introduce the concept of Machine Learning								
 To provide the skills required to handle Linear models 								
 To develop the knowledge about various Learning paradigms 								
To introduce advanced and graph based learning algorithms								
F 4 10								
E xpected Ou The student w								
		:						
• Identify the right learning algorithm for a given problem								
	oply the learning algorithms to real	-						
• De	sign models for supervised and uns	upervisea	learning.					
Student I ear	ning Outcomes (SLO): 2,7,9							
Student Lear	ining Outcomes (SLO). 2,7,7							
Module:1 S	Supervised Learning	6	Hours	SLO: 2				
	Machine Learning – Supervised Learning – Ap	_						
	ression Models	. 1						
	Linear Methods	6	Hours	SLO: 2				
	ssion Models and Least Squares – Subset S							
_	ons. Linear methods for classification – l	Linear Disc	criminant Ar	nalysis – Logisti				
Regression								
Module:3 H	Armongions and Dogularizations	- (Hours	SLO: 2				
	Expansions and Regularizations	6						
rmering and	Feature extraction – Smoothing splines – K	terner smoo	uning memoc	18 -				
Module:4 N	Model Assessment and Inference	6	Hours	SLO: 2				
	ment and Selection – Model Inference							
	Additive Models – Tree based methods		·6 6, ··;	<i>J</i> ,				
ingomum 1								
ingonum 1								
	earning Paradigms I	7	Hours	SLO:7				
Module:5 I	Learning Paradigms I sis – Nearest Neighbour - Principal Compo	=						
Module:5 I Cluster Analy	sis – Nearest Neighbour - Principal Compo	=						
Module:5 I Cluster Analy Component A	sis – Nearest Neighbour - Principal Componalysis	onents, Mat		tion, Independen				
Module:5 I Cluster Analy Component A Module:6 I	sis – Nearest Neighbour - Principal Componalysis Learning Paradigms II	onents, Mat	rix Factoriza	tion, Independen SLO:7				
Module:5 I Cluster Analy Component A Module:6 I	sis – Nearest Neighbour - Principal Componalysis	onents, Mat	rix Factoriza	tion, Independen				

Mo	dule:7	Advanced Learning Algorithms	4	Hours	SLO:9			
Random Forests – Ensemble Learning – Graphical Models								
Mo	dule:8	Contemporary Issues	2	Hours				
		Total Lecture:	45	Hours				
Text Books:								
1.	Friedm	nan Jerome, Trevor Hastie, and Robert Tibshirani. The Elements of Statistical Learning.						
	Springe	nger-Verlag, 2 nd Edition, 2013.						
2.	Ethem	n Alpaydin,"Introduction to Machine Learning", MIT Press, Third Edition 2014.						
Reference Books:								
1.	Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012							
2.	Peter F	ter Flach, "Machine Learning: The Art and Science of Algorithms that Make Sense of						
	Data", Cambridge University Press, 2012.							
3.	Michae	Michael Bowles, Machine Learning in Python: Essential Techniques for Predictive						
	Analysis, Wiley, 2015							
Tyı	Typical Projects:				SLO: 9			
	1 Leaning from Data - Datasets for various domains can be downloaded							

- 1. Leaning from Data Datasets for various domains can be downloaded

- Video Analytics
 Speaker Recognition
 Image based object identification