1. Care dintre următoarele funcții sunt asimpotic pozitive?

$$egin{align} a) & f_1(n) = \sqrt{rac{n-7}{10n-n^2}} \ b) & f_2(n) = rac{n^2-1}{sin(rac{n\cdot\pi}{2})} \ c) & f_3(n) = rac{2+\sqrt{n^2-16}-n}{ln(n^2-10n+25)} \ d) & f_4(n) = (100-n!)\cdot 2^{50-n} \ \end{array}$$

Rezolvare:

- a) Funcția $f_1:D\to\mathbb{R}$, $f_1(n)=\sqrt{\frac{n-7}{10n-n^2}}$, unde $D=\{n\in\mathbb{R}\mid n>7\ si\ n<10\}$, nu este aimptotic pozitivă deoarece nu există A (finită) astfel încât $D=N\setminus A$.
- b) Funcția $f_2:D o\mathbb{R}$, $f_2(n)=rac{n^2-1}{sin(rac{n\cdot\pi}{2})}$, unde D=N, nu este asimpotic pozitivă deoarece nu există A (finită) astfel încât $D=N\setminus A$.
- c) Funcția $f_3:D o\mathbb{R}$, $f_3(n)=rac{2+\sqrt{n^2-16}-n}{ln(n^2-10n+25)}$, unde $D=\{n\in\mathbb{N}\mid n\geq 7\}$, este asimptotic pozitivă, deoarece $D=N\setminus A$ cu $A=\{0,1,2,3,4,5,6\}$ (mulțime finită) și $f_3(n)>0,\ \forall\ n\geq 7$.
- d) Funcția $f:D\to\mathbb{R}$, $f_4(n)=(100-n!)\cdot 2^{50-n}$, unde D=N, nu este aimptotic pozitivă deoarece nu există A (finită) astfel încât $D=N\setminus A$.
 - 2. Demonstrați că:

$$a) \ n \cdot lnn = O(n^2)$$

a)
$$n\sqrt{n} = \Omega(n \cdot lnn)$$

a)
$$n! = \Omega(e^n)$$

a)
$$n! = O(n^n)$$

Rezolvare:

- a) Întrucât $lim_{n \to \infty} rac{n \cdot lnn}{n^2} = lim_{n \to \infty} rac{lnn}{n} = 0$ (n tinde mai rapid la ∞) și $0 \in [0, +\infty)$ $\implies n \cdot lnn = O(n^2)$
- b) Deoarece $\lim_{n\to\infty} \frac{n\cdot\sqrt{n}}{n\cdot lnn} = \lim_{n\to\infty} \frac{\sqrt{n}}{lnn} = \infty$ (\sqrt{n} tinde mai rapid la ∞) și $\infty\in(0,+\infty]$ $\implies n\sqrt{n} = \Omega(n\cdot lnn)$.
- c) Deoarece $lim_{n o\infty}rac{n!}{e^n}=\infty$ (n! tinde mai rapid la ∞) și $\infty\in(0,+\infty]\implies n!=\Omega(e^n)$.
- d) Întrucât $\lim_{n \to \infty} rac{n!}{n^n} = 0$ (n! tinde mai rapid la ∞) și $0 \in [0,+\infty) \implies n! = O(n^n)$.