## Predicting Caravan Insurance: A Bumpy Ride

Fabian Blasch, Gregor Steiner, Sophie Steininger, Jakob Zellmann

01/19/2022

#### Data

- Caravan Insurance Data Set based on real world business data
- Supplied by the Dutch datamining company Sentient Machine Research
- ▶ 86 variables containing data on
- demographic statistics
- product usage
- Unbalanced Data
- classification data set with skewed class proportions

### Elastic Net GLMs

Combination of LASSO and Ridge penalty:

$$C(\alpha;\beta) = \alpha ||\beta||_1 + \frac{1-\alpha}{2} ||\beta||_2^2.$$

- ▶ GLM from the binomial family with different link functions
- ► The minimization problem is

$$\min_{\beta \in \mathbb{R}^k} -\frac{1}{n} I(y, X; \beta) + \lambda C(\alpha; \beta)$$

where  $I(y, X; \beta)$  is the log-likelihood.

### GLMs: Link Functions

We try 4 different link functions: Normal cdf (Probit), Logistic cdf (Logit), Cauchy cdf, and complementary log-log



## GLMs: Performance



### **XGBoost**

- ▶ the learning rate,  $\eta \in [0.01, 0.6]$  (default: 0.3),
- ▶ the regularization parameters,  $(\gamma, \lambda) \in [0, 1] \times [0.01, 2]$  (default: 0 and 1 respectively),
- ▶ the maximal depth of the trees,  $max\_depth \in \{2, ..., 10\}$  (default: 6),
- ▶ the maximal number of single trees contained in one model,  $nrounds \in [1, 1000]$ ,

## XGBoost Performance



#### Random Forest

- ▶ mtry: number of variables to possibly split at in each node (85)
- min.node.size: minimal node size (8)
- splitrule: gini

# Performance Comparison



## Sampling

- ► Under sampling: sampling from the majority class without replacement and leaving the minority class in tact
- Over sampling: sampling from the minority class with replacement and leaving the majority class in tact
- ▶ Both: sampling from the minority class with replacement and from the majority class without replacement

# Forest Sampling Performance



# Current Challenge Performance

| Model     | CoIL Performance |
|-----------|------------------|
| logit     | 118              |
| probit    | 116              |
| cauchit   | 114              |
| cloglog   | 117              |
| forest    | 105              |
| over      | 100              |
| under     | 98               |
| both      | 104              |
| XGB       | 97               |
| 1st Place | 121              |
|           |                  |

## Outlook

- Cost function that penalizes false negatives
- ► Feature engineering

#### Citation

P. van der Putten and M. van Someren (eds). Coll Challenge 2000: The Insurance Company Case. Published by Sentient Machine Research, Amsterdam. Also a Leiden Institute of Advanced Computer Science Technical Report 2000-09. June 22, 2000.