6.1 The Basic of Counting

1. Basic Counting Principles

- 1) The Sum Rule
- 2) The Product Rule

2. The Inclusion-Exclusion Principle (Subtraction Rule)

If a task can be done in either n1 ways or n2 ways, then the number of ways to do the task is n1 + n2 minus the number of ways to do the task that are common to the two different ways.

$$|A1 \cup A2| = |A1| + |A2| - |A1 \cap A2|$$
.

3. Tree Diagrams

6.2 The Pigeonhole Principle

1.The Pigeonhole Principle : If k is a positive integer and k+1 or more objects are placed into k boxes, then there is at least one box containing two or more of the objects.

If f is a function from A to B, where A and B are finite sets with |A| > |B|, then there are elements a_1 , a_2 in $A(a_1 \neq a_2)$ such that $f(a_1) = f(a_2)$

Corollary 1 A function f from a set with k+1 or more elements to a set with k elements is not one-to-one.

2. The Generalized Pigeonhole Principle: If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N/k \rceil$ objects.

$$f: A \to B$$
, If $\left| \frac{|A|}{|B|} \right| = i$, then there must exist elements $a_1, a_2, \dots, a_i \in A$ such that $f(a_1) = f(a_2) = \dots = f(a_i) = b \in B$

6.3 Permutations and Combinations

1. Permutations

[Definition] A *permutation* of a set of distinct objects is an ordered arrangement of these objects. An *r-permutation* is an ordered arrangement of r elements of a set.

Notation: P(n, r)

Theorem 1 P(n, r)=n(n-1)(n-2)...(n-r+1) =
$$\frac{n!}{(n-r)!}$$

$$B = \{b_1, b_2, ..., b_r\}, A = \{a_1, a_2, ..., a_n\}, f: B \rightarrow A$$

- 1) f is an injection from B to $A \Leftrightarrow$ an r-permutation of the set A
- 2) the number of injections from B to $A \Leftrightarrow P(n, r)$

2. Combinations

[Definition] An *r-combination* of elements of a set is an unordered selection of r elements from the set.

Notation: $C(n,r) = \binom{n}{r}$ \leftarrow Binomial coefficient

[Theorem 2]
$$C(n,r) = \frac{n!}{r!(n-r)!} = n(n-1)(n-2) \dots \frac{n-r+1}{r!}$$

[Corollary 1] combination corollary Let n and r be nonnegative integers with $r \le n$. Then

$$C(n, r) = C(n, n-r)$$

3. Combinatorial Proofs

[Definition] A *combinatorial proof* of an identity is a proof that uses one of the following methods.

- A *double counting proof* uses counting arguments to prove that both sides of an identity count the same objects, but in different ways.
- A *bijective proof* shows that there is a bijection between the sets of objects counted by the two sides of the identity.

6.4 Binomial Coefficients

Theorem 1 The Binomial Theorem Let x and y be variables, and let n be a nonnegative integer. Then $(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$

[Corollary 1] Let n be a nonnegative integer. Then $\sum_{k=0}^{n} {n \choose k} = 2^n$

[Corollary 2] Let n be a positive integer. Then $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$

[Corollary 3] Let *n* be a nonnegative integer. Then $\sum_{k=0}^{n} 2^{k} {n \choose k} = 3^{n}$

Theorem 2 PASCAL'S Identity Let n and k be positive integers with $k \le n$. Then $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$

Theorem 3 Nandermonde's Identity Let m, n and r be nonnegative integers with r not exceeding either m or n. Then $\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$

[Corollary 4] If n is a nonnegative integer. Then $\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2$

Theorem 4 Let n and r be nonnegative integer with $r \le n$. Then $\binom{n+1}{r+1} = \sum_{j=r}^n \binom{j}{r}$

6.5 Generalized Permutations and Combinations

2. Permutations with Repetition

Theorem 1 The number of r-permutations of a set of n objects with repetition allowed is n^r .

3. Permutations with Indistinguishable Objects

 $A = \{ n_1 \cdot a_1, n_2 \cdot a_2, ..., n_k \cdot a_k \}, \text{ where } n_1 + n_2 + ... + n_k = n \}$

Theorem 2 The number of different permutations of n objects, where there are n_1 indistinguishable objects of type $1, ..., n_k$ indistinguishable objects of type n_k is $n!/(n_1!n_2!...n_k!)$

Theorem 3 The number of r- Circle permutations of a set of n objects is P(n, r)/r.

4. Combinations with Repetition

[Theorem 4] There are C(n-1+r,r) r-combination from a set with n elements when repetition of elements is allowed.

5. Distributing objects into boxes

1) Distinguishable objects and distinguishable boxes

Theorem 5 The number of ways to distribute n distinguishable objects into k distinguishable boxes so that n_i objects are place into box i, i=1,2,...,k, equals $n!/(n_1!n_2!...n_k!)$

2) Distinguishable objects and indistinguishable boxes

counting the ways to place n distinguishable objects into k indistinguishable boxes

S(n, j): Stirling numbers of the second kind

- the number of ways to distribute n distinguishable objects into j indistinguishable boxes so that **no boxes is empty**

- (1) S(r, 1)=S(r, r)=1 $(r\geq 1)$
- (2) $S(r, 2)=2^{r-1}-1$
- (3) S(r, r-1)=C(r,2)
- (4) S(r+1, n)=S(r,n-1)+nS(r, n)

(5)
$$S(n,j) = (\frac{\sum_{i=0}^{j-1} (-1)^i C_j^i (j-i)^n}{j!})$$

the number of ways to place n distinguishable objects into k indistinguishable boxes (exist empty

boxes)
$$\sum_{j=1}^{k} S(n,j) = \sum_{j=1}^{k} ((\sum_{i=0}^{j-1} (-1)^{i} C_{i}^{i} (j-i)^{n})/j!)$$

3) Indistinguishable objects and distinguishable boxes

-counting the ways to distribute n indistinguishable objects into k distinguishable boxes

-Same as counting the number of n-combinations for a set with k elements when repetitions are allowed.

4) Indistinguishable objects and indistinguishable boxes

-counting the ways to distribute indistinguishable objects into indistinguishable boxes

6.6 Generating Permutations and Combinations

1. Generating Permutations

The lexicographic ordering of the set of permutations of $\{1, 2, ..., n\}$

The permutation $a_1a_2...a_n$ precedes the permutation of $b_1b_2...b_n$, if for some k, with $1 \le k \le n$, $a_1 = b_1, a_2 = b_2, ..., a_{k-1} = b_{k-1}$, and $a_k < b_k$

- Given permutation $a_1a_2...a_n$, find the next larger permutation in increasing order:
 - (1) Find the integers a_i , a_{i+1} with $a_i < a_{i+1}$ and $a_{i+1} > a_{i+2} > \cdots > a_n$
 - (2) Put in the jth position the least integer among $a_{i+1}, a_{i+2}, \dots, a_n$ that is greater than a_i
 - (3) List in increasing order the rest of the integers a_i, a_{i+1}, \dots, a_n

$$124653 \rightarrow 125346$$

2. Generating Combinations

Problem 1:

Generate all combinations of the elements of a finite set.

Solution:

- \triangleright A combination is just a subset. \Rightarrow We need to list all subsets of the finite set.
- \triangleright Use bit strings of length n to represent a subset of a set with n elements. \Rightarrow We need to list all bit strings of length n.
- \triangleright The 2^n bit strings can be listed in order of their increasing size as integers in their binary expansions.

Algorithm of producing all bit strings

- Start with the bit string 000...00, with *n* zeros.
- Then, successively find the next larger expansion until the bit string 111...11 is obtained.

The method to find the next larger binary expansion:

Locate the first position from the right that is not a 1, then changing all the 1s of the right of this position to 0s and making this first 0 a 1. $1000110011 \rightarrow 1000110100$

Problem 2:

Generate all *r*-combinations of the set $\{1, 2, ..., n\}$

The algorithm for generating the r-combination of the set $\{1, 2, ..., n\}$

- (1) $S_1 = \{1, 2, ..., r\}$
- (2) If $S_i = \{a_1, a_2, \dots, a_r\}$, $1 \le i \le C_n^r 1$ has found, then the next combination can be obtained using the following rules.

First, locate the last element a_i in the sequence such that $a_i \neq n-r+i$. Then replace a_i with $a_i + 1$ and a_i with $a_i + j - i + 1$, for j = i + 1, i + 2, ..., r.