Exploratory Data Analysis for Machine Learning

IBM Machine Learning - Project 1 Name- Kunal Saxena February 2021

About the data

- The data originally came from the Board Game Geek database, including 90,000+ board games, their description, and ratings.
- This data set was collected by R for Data Science (R4DS) Online Learning Community and posted on their GitHub in March 2019. The .csv file can be found in Tidy Tuesday repository.
- R4DS selected games that have at least 50 ratings and were published between 1950 and 2016.

 The final data set has 10,532 rows and 22 columns.
- The data were split before this analysis: 80% train and 20% test

Data dictionary

Variable name	Туре	Description
game_id	integer	Unique game identifier
description	string	A paragraph of text describing the game
image	string	URL image of the game
max_player	integer	Maximum recommended players
max_playtime	integer	Maximum recommended playtime (min)
min_age	integer	Minimum recommended age
min_players	integer	Minimum recommended players
min_playtime	integer	Minimum recommended playtime (min)
name	string	Name of the game

R Data exploration plan

This analysis is the initial step in an attempt to build a baseline model to predict game average ratings based on their characteristics.

- Data Overview
- Data Cleaning and Feature Engineering: Categorical Data
- Data Cleaning and Feature Engineering: Numeric Data
- Hypothesis Testing

Data overview

- The train set has 8,425 rows and 22 columns
- There are missing data only in most of the categorical variables

game_id	9
year_published	9
average_rating	е
playing_time	9
name	9
min_playtime	9
users_rated	9
min_age	9
max_playtime	9
max_players	9
description	е
min_players	9
image	1
thumbnail	1
publisher	2
category	79
designer	94
mechanic	751
artist	2238
family	2255
expansion	6236
compilation	8103

·Categorical data

- 1. Data Cleaning:
- Remove features that are not useful to discriminate the target: description, image, name, thumbnail, family, expansion, and compilation
- Also remove game_id

freq	top	unique	count	
2	How could that have happened? Black Stories ar	8423	8425	description
2	//cf.geekdo-images.com/images/pic2262580.png	8422	8424	image
5	Robin Hood	8314	8425	name
2	//cf.geekdo-images.com/images/pic2410035_t.png	8422	8424	thumbnail
141	Franz Vohwinkel	3881	6187	artist
364	Wargame,World War II	3310	8346	category
6	Traveller: The Classic Games, Games 1-6+	269	322	compilation
442	(Uncredited)	3978	8331	designer
7	Règlement de l'An XXX,Regulations of the Year	2106	2189	expansion
312	Crowdfunding: Kickstarter	3321	6170	family
406	Hex-and-Counter	2708	7674	mechanic
140	GMT Games	4538	8423	publisher

·Categorical data

2. Feature engineering:
Counts derived from category aggregates

- Each columns have multiple values that are separated by commas
- Extract unique values and print out total number of these values for each column
- Derive new features that count number of artists, designers, and publishers of each game
- Remove columns: artists, designer, and publisher
- Remove rows that have missing values

```
Number of unique values of artist: 5416
Number of unique values of category: 83
Number of unique values of designer: 4476
Number of unique values of mechanic: 51
Number of unique values of publisher: 3045
```

-Categorical data

Categories derived from category aggregates

- Get a set of all unique values in each variable
- Create new columns based on these values
- Iterate through all rows and fill in dummy values for each new column
- Group these dummy variables if possible

Note: One game can be assigned to more than one category/ mechanic

The next two pages represent bar plots of 44 game categories (grouped from 81 categories) and 51 game mechanics.

The data set now has 5,608 rows and 109 columns

Data description

82	max_players	max_playtime	min_age	min_players	min_playtime	playing_time	year_published	average_rating	users_rated	num_artist	num_category	num_designer	num_mechanic	num_publisher
count	5608.000000	5608.000000	5608.000000	5608.000000	5608.000000	5608.000000	5608.000000	5608.000000	5608.000000	5608.000000	5608.000000	5608.000000	5608.000000	5608.000000
mean	5.010521	105.758559	9.955599	2.059379	91.313302	105.758559	2004.717725	6.546314	1166.660663	2.203994	2.651926	1.411733	2.600927	2.824893
std	7.543777	866.538797	3.301289	0.674542	848.267125	866.538797	11.284651	0.775103	3548.581155	7.690679	1.300462	0.802652	1.501255	3.683774
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1951.000000	2.339400	50.000000	1.000000	1.000000	1.000000	1.000000	1.000000
25%	4.000000	30.000000	8.000000	2.000000	30.000000	30.000000	2001.000000	6.051200	100.000000	1.000000	2.000000	1.000000	1.000000	1.000000
50%	4.000000	45.000000	10.000000	2.000000	45.000000	45.000000	2009.000000	6.548855	237.000000	1.000000	2.000000	1.000000	2.000000	2.000000
75%	6.000000	90.000000	12,000000	2.000000	90,000000	90.000000	2013.000000	7.065962	755.250000	2.000000	3.000000	2,000000	3.000000	3.000000
max	362.000000	60000.000000	25.000000	9,000000	60000.000000	60000,000000	2016.000000	9.003920	67655.000000	510.000000	14.000000	11.000000	12.000000	92.000000

- The target (average_rating) has a normal distribution
- Most features are right skewed
- Severe outliers

Feature engineering

Log transformation for skewed variables

- Apply log transformation and check for skewness again.
- The result shows that log transformation does not work well for num_artist, num_designer, num_publisher, and year_published

Next page present a pairplot of numeric features that have nearly normal distribution.

- No strong linear relationship between the features and the target. Linear regression might not be well-suited to this problem
- Might try adding polynomial and interaction terms and examine their correlation with the target

Adding polynomial and interaction terms

This plot shows that polynomial and interaction terms do not have significantly higher correlations with the target comparing to the original features

Polynomial Features and Their Correlations average rating log min players. ing num catégory log num mechanic log playing firms min. age". min_age log_game_age min age log min players mys_age ling_num_callegory min, age log, num, mechanic log min players log num category log min players log num mechanic log min players log playing time top num callegory*7 og num category log num mechanic log rum category log playing take log_num_mechanic*2 log num mechanic log playing time

log playing firm?"

Binning numeric data that cannot be scaled by log transformation

- These are num_artist, num_designer, num_publisher, and year_published
- Apply dummy transformation to these bins
- New columns from these bins: group_artist_three_or_more, group_designer_three_or_more, group_max_players_five_or_six, group_max_players_seven_or_more, group_publisher_four_or_more, group_year_published_between_2001_and_2009, group_year_published_between_2010_and_2013, and group_year_published_between_2014_and_2016

Remove the original columns after transformation (log and binning). The data set now has 5,240 rows and 131 columns

→Hypothesis testing

- Main purpose: check if there are differences in average ratings between one group and others
- Due to different variances between two groups, Welch's t-test is used.
- Perform multiple tests across all categories, mechanics, and groups (derived from numeric data)
- Sample of hypotheses:
 - Ho: War games and other games have similar ratings on average
 - H_a: There is a difference in average ratings between war games and other games

Hypothesis testing

- Result tables are shown in the next three pages. These values are sorted by p-values with colored bars (green for positive values and red for negative ones)
- For those that have p-value < 0.05 and |t-value| > 1.96, we reject the null hypotheses
- The sign of t-value suggests the direction of the test. A positive sign means that the group of interest has higher average ratings than others. On the contrary, a negative sign means that the group of interest has lower average ratings than others.

				maze
	t-value	p-value	pira	tes
category_name			political	Ü
children's game	-15.841916	0.000000	mythology	
war	13.893726	0.000000	spies/secret agents	
component	-10.584794	0.000000	entertainment	
humor	-9.138182	0.000000	religious	
party game	-7.005245	0.000000	print & play	
animals	-6.487482	0.000000	aviation / flight	
trains	4.741813	0.000006	skills	
renaissance	4.690531	0.000007	exploration	
activity	4,241476	0.000024	environmental	
space exploration	4.478895	0.000032	adventure	
fighting	3.980679	0.000077	mature / adult	
ustry / manufacturing	4.088935	0.000090	arabian	
age of reason	3. 980063	0.000221	murder/mystery	
ancient	3.669080	0.000289	horror	
abstract strategy	-3.629330	0.000328	sports	
medieval	3.532035	0.000461	medical	
fantasy	3,358155	0.000818	travel	
farming	3.341165	0.001299	prehistoric	
science fiction	2.937326	0.003463	american west	
nautical	2,900014	0.004100	mafia	
			zombies	

				<u> </u>	
	t-value	p-value	action / movement programming	4.203600	0.000050
mechanic_name			pattern building	-4.014621	0.000088
area control / area influence	13.681888	0.000000	stock holding	3.906744	0.000189
worker placement	12.531980	0.000000	betting/wagering	-3.804758	0.000243
simulation	11.917241	0.000000	point to point movement	3.653005	0.000308
variable player powers	11.257887	0.000000	secret unit deployment	3.471693	0.000631
deck / pool building	11.228836	0.000000	simultaneous action selection	3.098684	0.002062
roll / spin and move	-10.953231	0.000000	tile placement	2.819089	0.004956
action point allowance system	8.988847	0.000000	singing	-3.479737	0.005121
grid movement	9.043836	0.000000	player elimination	2.795235	0.005905
dice rolling	8.376262	0.000000	set collection	-2.591833	0.009665
hex-and-counter	7.67 8370	0.000000	rock-paper-scissors	-2.586553	0.013116
card drafting	7.236475	0.000000	acting	-2.472040	0.016953
route/network building	7,371719	0.000000	partnerships	2.153588	0.032088
campaign / battle card driven	7.395763	0.000000	time track	2.053270	0.048476
variable phase order	7,497286	0.000000	role playing	1.959523	0.051902
pattern recognition	-7.046414	0.000000	paper-and-pencil	1.934789	0.060433
area movement	6,696161	0.000000	commodity speculation	1.693678	0.093399
co-operative play	6.594492	0.000000	storytelling	-1.496163	0.138264
Maka to construct the factor	-5.584741		auction/bidding	1.426467	0.154380
trick-taking	Total Constant	0.000000	area-impulse	1.207543	0.239942
modular board	4,749033	0.000003	trading	-1.016744	0.310614
chit-pull system	5.020407	0.000003	area enclosure	0.984194	0.328520
crayon rail system	6.101341	0.000040	pick-up and deliver	0.741010	0.459464
memory	-4.161645	0.000043	voting	-0.721287	0.471988
hand management	4.088635	0.000045	take that	-0.422657	0.673047
			press your luck	0.323775	0.746403
			line drawing	0.253232	0.802941

*Hypothesis testing

These tables show that on average:

- People like war games
- People do not like children's games and component games
- People like games that use area control /
 area influence, worker placement,
 simulation, variable player powers, and
 deck / pool building
- People do not like games that use roll / spin and move mechanic
- People like games published between 2014 and 2016
- People like games that were designed by three or more artists

	t-value	p-value
group_name		
year_published_between_2014_and_2016	21.686049	0.000000
artist_three_or_more	10.349241	0.000000
year_published_between_2001_and_2009	-9.785744	0.000000
max_players_five_or_six	-9.068495	0.000000
publisher_four_or_more	6.625750	0.000000
year_published_between_2010_and_2013	5.153826	0.000000
designer_three_or_more	2.842000	0.004688
max_players_seven_or_more	-2.561497	0.010632

Hypothesis testing

Since these features might have effects on each other, there need to be more analyses before jumping to a conclusion. For example, perhaps area control mechanic is mostly used in war games, or children's games are mostly played by rolling and spinning. War games might be more complex and need more artists to complete.

*Further data engineering and analyzing

- Score game complexity by calculating weighted average of number of artists, number of designers, and number of publishers. Examine the relationship between this score and the target
- Reduce categorical data dimensionality and create interaction terms among them or with numeric data
- Apply mutual information regression for feature selection
- Apply Backward Stepwise Regression
- Build a pipeline to preprocess data and run the model on the test set

· Conclusion

As shown in the analysis, linear regression might not be a good fit to this data set. However, it might be good enough as a baseline model. To collect a better dataset, one might request the Board Game Geek API and retrieve other features such as weight (complexity rating), number of reviews, or explore available data from Kaggle.

Jupyter Notebook for this analysis can be found here:
https://github.com/KunalSaxena22/IBM-EDA-For-Machine_Learning-Project.git

Thanks!