Language models

Outline

- 1. Feed-forward neural language models
- 2. Vanilla RNNs for language modelling
- 3. Bi-directional RNNs
- 4. LSTMs

Nihir will be your lecturer for the next few weeks, starting from Monday

Feedback survey for the course is available

Talk at the end of last lecture...

If you want to see an hour long version of my 5 minute talk at the end of the last lecture:

https://www.youtube.com/watch?v=I1ELSZNFeHc

Feed-Forward Neural Language Models

Feed-Forward Neural Language Models

- Neural-based LMs have several improvements:
 - Avoids n-gram sparsity issue
 - Contextual word representations i.e. embeddings
- FFLM quickly superseded by RNN LMs

4-gram Feed-forward LM (FFLM)

Feed-forward LM (FFLM)

- First applications of neural networks to LM
 - Approximates history with the last C words
 - C affects the model size!
- 4-gram FFLM has a context size of 3
 - The context is formed by concatenating word embeddings

$$c_k = [\text{EMB}(\text{"the"}); \text{EMB}(\text{"cat"}); \text{EMB}(\text{"sat"})]$$

Feed-forward LM (FFLM)

- First successful attempt to use neural LMs
 - Simple and elegant NN perspective to n-gram LMs
 - 10 to 20% perplexity improvement over smoothed 3-gram language model (Bengio et al. 2003)

Quickly superseded by RNN LMs

RNNs for language modelling

Outline

- 1. Feed-forward neural language models
- 2. Vanilla RNNs for language modelling
- 3. Bi-directional RNNs
- 4. LSTMs

Recap on vanilla RNNs (classification)

Recap on vanilla RNNs (classification)

We "back-propagate through time" (BPTT)

Vanishing gradients

- Why do our nonlinear activation functions contribute?
 - o Sigmoid?
 - o Tanh?

What else contributes to vanishing gradients / exploding gradients?

Vanilla RNNs: Many-to-many

- Every input has a label:
 - Language modelling -> predicting the next word

 The LM loss is predicted from the cross-entropy losses for each predicted word

Vanilla RNNs: Many-to-many, during training

Vanilla RNNs: Many-to-many, during training

Vanilla RNNs: Many-to-many, during training

Vanilla RNNs: Teacher forcing

Note: this is different from what happens if we apply our language model

Weight tying, reducing the no. parameters

We can use the same embedding weights in our output layer:

```
e_t = Ex_t
h_{t+1} = tanh(Wh_t + Ue_t)
y_t = softmax(E^T h_t)
```

The embedding layer E maps our one-hot-label of the input into a word embedding:

- E has dimensions: H x |V|
- E^T therefore has dimensions: |V| x H

Bonus question:

In the case above, what are the implications for the dimensions of U?

Bi-directional RNNs

Outline

- 1. Feed-forward neural language models
- 2. Vanilla RNNs for language modelling
- 3. Bi-directional RNNs
- 4. LSTMs

Bi-directional RNNs:

- We could do grammatical error detection in this way
- Could we do sentence classification tasks?

One potential solution for classification:

We can concatenate the representations at the end of the RNNs for both directions

Multi-layered RNNs

We can feed in our hidden state from an earlier later into the next layer.

Bidirectional multi-layered RNNs

There are a few different ways this can be done:

LSTM

Outline

- 1. Feed-forward neural language models
- 2. Vanilla RNNs for language modelling
- 3. Bi-directional RNNs
- 4. LSTMs

Introducing the LSTM

Introducing the cell state

- Cell states (C₁) represent 'long term memory'
- Hidden states (h,) is current working memory (e.g. the same as for vanilla RNN)

Breaking down an LSTM:

Step 1: we start from what we know already:

$$g_t = \tanh(W_{ig}x_t + W_{hg}h_{t-1} + b_g)$$

Step 2: we define our **cell state**:

$$c_t = f_t * c_{(t-1)} + i_t * g_t$$

This is our long term memory, as the model may choose to keep $\mathbf{C_t}$ very similar to $\mathbf{C_{t-1}}$

Breaking down an LSTM:

Step 1: we start from what we know already:

$$g_t = \tanh(W_{ig}x_t + W_{hg}h_{t-1} + b_g)$$

Step 2: we define our cell state:

$$c_t = f_t * c_{(t-1)} + i_t * g_t$$

How much do we use the long-term memory: (vector with values between 0,1)

How much do we use the last hidden state:

(vector with values between 0 and 1)

"Forget gate"

"Input gate"

Breaking down an LSTM:

Step 1: we start from what we know already:

$$g_t = \tanh(W_{ig}x_t + W_{hg}h_{t-1} + b_g)$$

Step 2: we define our cell state:

$$c_t = f_t * c_{(t-1)} + i_t * g_t$$

How much do we use the long-term memory: (vector with values between 0,1) How much do we use the last hidden state and our new input: (vector with values between 0 and 1)

"Forget gate"

"Input gate"

"Forget gate"

 $f_t = \sigma(W_{if}x_t + W_{hf}h_{t-1} + b_f)$

Just a way we can learn what to forget based on content so far (last hidden state), and our new input

Breaking down an LSTM:

"Input gate"

$$i_t = \sigma(W_{ii}x_t + W_{hi}h_{t-1} + b_i)$$

We do the same again, allow our model to create a vector of numbers between 0 and 1

Step 1: we start from what we know already:

$$g_t = \tanh(W_{iq}x_t + W_{hq}h_{t-1} + b_q)$$

Step 2: we define our cell state:

$$c_t = f_t * c_{(t-1)} + i_t * g_t$$

How much do we use the long-term memory: (vector with values between 0,1)

How much do we use the last hidden state and our new input: (vector with values between 0 and 1)

"Forget gate"

"Input gate"

Breaking down an LSTM:

Step 1: we start from what we know already:

$$g_t = \tanh(W_{ig}x_t + W_{hg}h_{t-1} + b_g)$$

Step 2: we define our cell state:

$$c_t = f_t * c_{(t-1)} + i_t * g_t$$

Step 3: prepare next hidden state:

$$h_t = o_t * \tanh(c_t)$$

Breaking down an LSTM:

-

Step 1: we start from what we know already:

$$g_t = \tanh(W_{ig}x_t + W_{hg}h_{t-1} + b_g)$$

Step 2: we define our cell state:

$$c_t = f_t * c_{(t-1)} + i_t * g_t$$

Step 3: prepare next hidden state:

$$h_t = o_t * anh(c_t)$$
An opportunity to scale C_t , multiplying by a vector of values between 0,1 "Output gate"

"Output gate"

$$o_t = \sigma(W_{io}x_t + W_{ho}h_{t-1} + b_o)$$

We do the same again, allow our model to create a vector of numbers between 0 and 1

Breaking down an LSTM:

Step 1: we start from what we know already:

$$g_t = \tanh(W_{ig}x_t + W_{hg}h_{t-1} + b_g)$$

Step 2: we define our cell state:

$$c_t = f_t * c_{(t-1)} + i_t * g_t$$

Step 3: prepare next hidden state:

$$h_t = o_t * anh(c_t)$$

The output gate and tanh is what differentiates \mathbf{h} , and \mathbf{c} .

"Output gate"

$$o_t = \sigma(W_{io}x_t + W_{ho}h_{t-1} + b_o)$$

We do the same again, allow our model to create a vector of numbers between 0 and 1

Full equations:

$$i_{t} = \sigma(W_{ii}x_{t} + W_{hi}h_{t-1} + b_{i})$$

$$f_{t} = \sigma(W_{if}x_{t} + W_{hf}h_{t-1} + b_{f})$$

$$o_{t} = \sigma(W_{io}x_{t} + W_{ho}h_{t-1} + b_{o})$$

$$g_{t} = \tanh(W_{ig}x_{t} + W_{hg}h_{t-1} + b_{g})$$

$$c_{t} = f_{t} * c_{(t-1)} + i_{t} * g_{t}$$

$$h_{t} = o_{t} * \tanh(c_{t})$$

Why do LSTMs help with vanishing gradients?

Consider our cell state (long range memory storage):

$$c_t = f_t * c_{(t-1)} + i_t * g_t$$

What helps?

The gradients through the cell states are hard to vanish

Two reasons why:

- 1. Additive formula means we don't have repeated multiplication of the same matrix (we have a derivative that's more 'well behaved')
- 2. The forget gate means that our model can learn when to let the gradients vanish, and when to preserve them. This gate can take different values at different time steps.

A simplified architecture (GRU)

How GRUs work:

Our gates: Reset gate (Z_t) and update gate (Γ_t)

Our equations:

$$g_t = \tanh(W_{ig}x_t + r_t * (W_{hg}h_{t-1} + b_g))$$

$$h_t = (1 - z_t) * g_t + z_t * h_{t-1}$$

Incorporates x_t with the last hidden state

Based on the previous hidden state

Another approach for debiasing

For interest only, not assessed

Hiding biases from model representations

Hiding biases from model representations

$$\min_{\theta_e, \theta_c} \max_{\theta_a} \sum_{\langle \mathbf{h}, \mathbf{p}, y \rangle \in \mathcal{D}} (1 - \lambda) \mathcal{L}_{ce}(y, \hat{y}) \\
- \frac{\lambda}{n} \sum_{i=1}^{n} \mathcal{L}_{ce}(y, \hat{y}_{a_i}),$$

Stacey at al.

Avoiding the Hypot

Avoiding the Hypothesis-Only Bias in Natural Language Inference via Ensemble Adversarial Training

Appendix

Neural Language Models (NLM)

Note - we limit the history to the previous C words.