MAE 6291 Cocomelon Code

Introduction

Motivations

- Original Idea:
 - o Get a website deployed
 - Physical component: robotic arms hitting buttons
 - o Digital component: clicker game
- Continued Idea:
 - Get a website deployed
 - o Remotely activate Pi's sensors
 - Gashapon

Goals

Personal

- Get GUI and motor practice
 Project
 - For impatient socially awkward Ipad babies in dermatology office waiting rooms that are unaware of the dangers of UV

Final

 Get project done and make better trapdoor

IoT Architecture

LAYER

Interface Layer

Service Layer

Network Layer

Sensing Layer

THINGS

- Linode (html and flask code deployed to)
- Flask (for backend of main website)
- Ngrok (similar to Cloudfare, for tunneling)
 R.I.P. dweet.io
- Hardware LED light
 Hardware Servo Motors (responding to cloud input)

Materials & Methods

Materials & Hardware Used

- 2 Servo Motors, 1 LED light, approx. 100 popsicle sticks, Glue gun & sticks, gashapon balls
- Raspberry Pi
- HyperText Transfer Protocol (HTTP), Internet Protocol (IP), Ngrok (Tunneling protocol)

App, or API developed

- Python & Libraries
 - Flask (webserver), GPIO (pi pin control), Requests (connect devices), Time (timing of events),

Methods:

- Flask website deployed through Linode, PuTTY (SSH terminal client), and WinSCP (secure file transfer)
- Remote RaspberryPi access through Ngrok
- LED light control & Servo motor control

Learning Outcomes

Conclusions:

- Websites are hard to deploy
- Not every python code can be pushed into a website
- Research library compatibility and updates (dweet.io)

Results:

- Downsized project due to time allotted
- More mechanically involved (Narins project review)
- Absolute disgust towards flask and in turn python

Future Directions

- Unused parts (Servo motors, LED lights)
- Graphics & Aesthetic HTML

