

UNIDADE I

Lógica de Programação e Algoritmos

Profa. Me. Eliane Santiago

Algoritmos

 Algoritmo é qualquer procedimento computacional bem definido, que toma algum valor ou conjunto de valores como entrada e produz um valor ou conjunto de valores como saída.
 (CORMEN, 2002)

- Uma sequência finita de instruções aplicadas a um conjunto de dados que permite solucionar classes semelhantes de problemas.
- Um algoritmo é considerado correto quando é aplicável a diferentes instâncias do problema.

Três métodos para escrever algoritmos:

- Descrição Narrativa;
- Fluxograma;
- Pseudocódigo.

Fluxo Processual

Entrada ⇔ dados

Processamento ⇔ operações

Saídas ⇔ resultados

Exemplos de ENTRADA

■ Para calcular o volume do cubo é necessário informar o cumprimento da aresta.

$$V=a^3$$

■ Para calcular a equação de 2º grau, é necessário informar as variáveis a, b e c.

$$f(x) = ax^2 + bx + c.$$

Exemplos de ENTRADA para algoritmos

Algoritmo para calcular o volume do cubo

Para calcular o volume do cubo é necessário informar o cumprimento da aresta.

5 cm

Fonte: acervo pessoal

Fórmula: V=a³.

Exemplos de ENTRADA para algoritmos

Algoritmo para calcular a área da circunferência

• Para calcular a área da circunferência, é necessário informar o raio. $A = \pi \cdot r^2$.

Fluxo Processual

Entrada Processamento Saída

Fonte: acervo pessoal

Algoritmo escrito em linguagem natural - Descrição Narrativa

Algoritmo para fazer um Bolo de Liquidificador

- 1. Separar os ingredientes.
- 2. Untar a forma.
- 3. Ligar o forno para pré-aquecer.
- 4. Bater todos os ingredientes no liquidificador por 5 minutos (exceto o fermento).
- 5. Adicionar o fermento e mexer delicadamente.
- 6. Despejar a massa na forma untada.
- 7. Assar em forno médio (180°) por 40 minutos.

Fonte: https://pratodoprato.com.br/receita/bolo-de-vo-de-liquidificador-bolo-simples-rapido-e-fofinho-p103

Fluxo Processual

Algoritmo escrito em linguagem gráfica – Fluxograma

- Descrever algoritmos em linguagem gráfica, capaz de representar o processo de solução do problema, comunicar a ideia do processo sem textos massivos.
- No fluxograma não é necessário expressar a interação com o usuário, mas sim o fluxo processual de entrada, processamento e saída.

Início do Programa Início Entrada de dados Objetos do Fluxograma Processo (comandos, instrução) Fonte: acervo pessoal Saída de dados Decisão Conector Fim do Fluxograma Fim Módulo ou subprocesso

Algoritmo para calcular e mostrar a média aritmética e exibir o resultado

Descrição narrativa

- Iniciar o algoritmo Média
- Informar 4 notas
- Calcular a média aritmética
- Escrever o resultado da média
- Fim do algoritmo

Algoritmo para calcular a média aritmética, a partir da entrada de 4 notas bimestrais, e decidir a situação do aluno

 Regra: se a média for maior ou igual a 7, o aluno é aprovado, senão reprovado.

Descrição narrativa

- Iniciar o algoritmo Média
- Informar 4 notas bimestrais
- Calcular a média aritmética
- **Se** a média for maior ou igual a 7.0, **então** escreva que o aluno está aprovado, **senão** escreva reprovado.
 - Fim do algoritmo.

Pseudocódigo

- Uma codificação escrita na estrutura e sintaxe da linguagem de programação, mas com os termos em português.
- Também denominado Portugol.
- A técnica de programação estruturada é um modelo de programação no qual os comandos são executados em ordem sequencial, permitindo desvios por meio de estruturas de decisão ou laços de repetições, bem como pela modularização do código.

Variáveis e Constantes

- Variáveis são espaços alocados na memória RAM durante a execução do programa.
- Constantes são variáveis cujo valores a ela atribuídos são fixos, ou seja, não podem ser alterados durante a execução do programa.

Variáveis e Constantes podem ser definidas com os tipos

- Inteiro.
- Real.
- Lógico.
- Caracter.

Tipos Primitivos de Dados

Tipos de Dados	Conjunto de valores que aceita	
Inteiro	Conjunto dos números inteiros. Z = {, -3, -2, -1, 0, 1, 2, 3,}	
Real	Conjunto dos números reais, ou seja, todos os inteiros e todos os números do intervalo entre dois inteiros.	
Lógico	VERDADEIRO ; FALSO	
Caractere	letra, número, símbolo ou espaço em branco. Um dado definido como caracter pode receber um número, mas operações matemáticas não poderão ser realizadas sobre ele.	

Variáveis: exemplos de declaração

Sintaxes:

```
<nome_var> : <tipo>
<var1, var2, ..., varN> : <tipo>
```

Declarações de váriáveis

base, altura : <u>inteiro</u>

salario : <u>real</u>

nome: caractere

status: <u>lógico</u>

Constantes: exemplos de declaração

Sintaxe:

```
<nome> < <valor>: <tipo> <const>
```

Declarações de constantes

```
MAX \leftarrow 100 : <u>inteiro</u> <u>const</u>

JUROS \leftarrow 0.15 : <u>real</u> <u>const</u>
```

Operador de Atribuição (←)

Dados são atribuídos às variáveis considerando o tipo do dado e da variável que o receberá.

Sintaxes:

Exemplo:

```
Algoritmo "Calculo Salario Liquido"

Var

salario bruto : real
```

salario_biuto : real salario_liquido : real

x, y, z : inteiro

Inicio

Fimalgoritmo

Interatividade

A média anual de uma determinada Instituição de Ensino é calculada de acordo com os fundamentos da média ponderada. Considerando que as notas são expressas em pontos de 0 a 10,0 múltiplos de 0,5 e à cada nota é atribuído pesos 2, 4, 4, a média é dada pela seguinte fórmula:

$$m\acute{e}dia = \frac{n1 * 2 + n2 * 4 + n3 * 4}{10}$$

Escolha qual opção apresenta as variáveis do problema e os tipos adequados.

Interatividade

- a) N1, N2, N3, media: real; p1, p2, p3: inteiro
- b) N1, N2, N3, media, p1, p2, p3 : inteiro
- c) N1, N2, N3, media: real; p1, p2, p3: caractere; media: real
- d) N1, N2, N3 : real ; p1, p2, p3, media : inteiro
- e) N1, N2, N3 : caractere ; p1, p2, p3 : inteiro ; media : inteiro

Resposta

```
a) N1, N2, N3, media: real; p1, p2, p3: inteiro
b) N1, N2, N3, media, p1, p2, p3: inteiro
c) N1, N2, N3, media: real; p1, p2, p3: caractere; media: real
d) N1, N2, N3: real; p1, p2, p3, media: inteiro
```

media: inteiro

e) N1, N2, N3 : caractere ; p1, p2, p3 : inteiro

Comandos de Entrada e Saída

Na programação há comandos específicos para acionar os dispositivos de entrada e saída.

Webcam

Microfone

Memórias Primárias

ROM

RAM

Caixas

de

som

Algoritmo para somar dois números e exibir o resultado

Fimalgoritmo

```
Digite o primeiro número: 15
Digite o segundo número: 30
O resultado é: 45
```

escreva ("O resultado é : ", soma)

Algoritmo para trocar os valores das variáveis

```
Digite um valor para x: 20
Digite um valor para y: 10
X = 10 e y = 20
```

```
Algoritmo TrocaValoresDasVariaveis
Var
    x, y, aux : inteiro
Inicio
       // entrada
       escreva ("Digite um valor para x: ")
       leia(x)
       escreva ("Digite um valor para y: ")
       leia(y)
      // processamento
      aux \leftarrow x
       X \leftarrow Y
       y ← aux
      // saída
      escreva("x = ", x, " = y = ", y)
Fimalgoritmo
```

X 10 R V 20 aux

Operadores

Operadores Aritméticos

- + Adição.
- Subtração.
- * Multiplicação.
- / Divisão.

Operadores Lógicos

- E
- OU
- NÃO

Operadores Relacionais

- = Igual
- Diferente
- Maior
- >= Maior ou igual
- Menor
- Menor ou igual

Operadores Aritméticos e Relacionais

Operadores Aritméticos

$$x \leftarrow 5+15$$
 $y \leftarrow (y-10)*2$

$$z \leftarrow (x+y)/2$$

escreva
$$(10*(x+y)/2*(z+r))$$

escreva
$$(10*(x+y)/2*(z+r))$$

Operadores Aritméticos Auxiliares

	exp(base,	expoente)
--	-----------	-----------

$$2^5 = 32$$

$$x < - \exp(5,3)$$

raizq(numero)

raiz quadrada

raizq(81) = 9

div(x, y)

retorna o quociente da divisão de x por y.

a mod b

retorna o resto da divisão de x por y

Operadores Relacionais

Operadores Relacionais

- = igual
- <> Diferente
- > Maior
- < Menor
- >= Maior ou igual
- <= Menor ou igual</p>

Operadores Relacionais

Qual é o valor da variável lógica a após a

seguinte atribuição a \leftarrow 5*2=4+10/2?

$$10 = 4 + 5$$

$$10 = 9$$

F

Exemplo de algoritmo com operadores relacionais

```
Algoritmo "Operadores Relacionais"
Var
     n1, n2 : <u>inteiro</u>
     comparacao : lógico
Início
     //entrada
     escreval ("Número 1: ")
     leia(n1)
     escreval ("Número 2: ")
     leia(n2)
     //processamento e saída
     comparação ← (n1=n2)
     escreval ("num1", n1, "é igual ", n2, " ", comparação)
     comparação ← (n1<>n2)
     escreval ("num1", n1, "é diferente de ", n2, " ", comparação)
     comparação ← (n1>n2)
     escreval ("num1", n1, "é maior que ", n2, comparação)
     //saída
     escreval ("num1", n1, "é menor que ", n2, n1<n2)</pre>
     escreval ("num1", n1, "é maior ou igual a ", n2, n1=n2)
     escreval ("num1", n1, "é menor ou iqual a ", n2, n1=n2)
Fimalgoritmo
```

Interatividade

Considere o algoritmo abaixo e responda qual será a saída após a execução. Assuma que as entradas para as variáveis x e y são, respectivamente, 10 e 20.

- a) x=10, y=20, z=20.
- b) x=10, y=20, z=205.
- c) X=20, y=10, z=10.
- d) x=20, y=205, z=20.
- e) x=20, y=20, z=205.

```
1. Algoritmo "Exercicio01"
2. Var
3.
   x, y, z: inteiro
   Inicio
           // entrada
6.
           escreval ("Digite um valor para x: ")
8.
           leia(x)
9.
           escreval ("Digite um valor para y: ")
10.
          leia(y)
11.
12. // processamento
13. z \leftarrow (x*y) + 5
14.
           x <- A
15.
16.
         // saída
         escreval("x= ", x, " y= ", y, " e z= ", z)
17.
18. Fimalgoritmo
```

Resposta

Considere o algoritmo abaixo e responda qual será a saída após a execução. Assuma que as entradas para as variáveis x e y são, respectivamente, 10 e 20.

- a) x=10, y=20, z=20.
- b) x=10, y=20, z=205.
- c) X=20, y=10, z=10.
- d) x=20, y=205, z=20.
- e) x=20, y=20, z=205.

```
1. Algoritmo "Exercicio01"
2. Var
3.
   x, y, z: inteiro
   Inicio
           // entrada
6.
           escreval ("Digite um valor para x: ")
8.
           leia(x)
9.
           escreval ("Digite um valor para y: ")
10.
          leia(y)
11.
12. // processamento
13. z \leftarrow (x*y) + 5
14.
           x < - y
15.
16.
         // saída
         escreval("x= ", x, " y= ", y, " e z= ", z)
17.
18. Fimalgoritmo
```

Operadores Lógicos

 Os operadores lógicos são expressos pelos símbolos e, ou e não, que significam, respectivamente, a conjunção, a disjunção e a negação.

Operador	Como se lê	Significado
Não	Não lógico	Negação
Е	E lógico	Conjunção
Ou	Ou lógico	Disjunção

 Cada sentença afirma (ou nega) um fato, e possui um valor verdade que pode ser VERDADEIRO ou FALSO.

Negação: operador não lógico

- A negação é verdadeira se, e somente se a proposição é falsa.
- A proposição é uma sentença declarativa afirmativa ou negativa que pode ser verdadeira ou falsa. A interpretação <u>negar uma verdade</u>, <u>obtém-se uma falsidade</u> e <u>negar uma falsidade</u>, <u>obtém-se uma verdade</u>.

Considere que a proposição:

A: João está aprovado na disciplina LPA.

Α	não A
V	F
F	V

não A: João não está aprovado na disciplina LPA.

Conjunção: operador e lógico

- A conjunção é verdadeira se, e somente se ambas as proposições são verdadeiras.
- Regra para aprovação na disciplina LPA: Estarão aprovados na disciplina alunos que possuem média maior ou igual a 7,0 e frequência igual ou superior a 75% das aulas.

Considere que as proposições A e B signifiquem

- A: média maior ou igual a 7,0.
- B: frequência superior a 75% das aulas.

Α	В	AeB
V	V	V
V	F	F
F	V	F
F	F	F

A e B:

média maior ou igual a 7,0 e frequência superior a 75%

Disjunção: operador ou lógico

- A disjunção é falsa se, e somente se ambas as proposições são falsas.
- Regra para a habilitar-se a uma vaga de emprego. Procuram-se profissionais de tecnologia com formação em Ciência da Computação ou Sistemas de Informação.

Suponha que as proposições A e B signifiquem

- A: formados em Ciência da Computação.
- B: formados em Sistemas de Informação.

Α	В	A ou B
V	V	V
V	F	V
F	V	V
F	F	F

A ou B:

 Formados em Ciência da Computação ou Sistemas de Informação.

Operadores Lógicos

```
NAO! NOT ⇔ não lógico

E && AND ⇔ e lógico

OU || OR ⇔ ou lógico
```

b)
$$2 = 10 \mod 3 = -16 < 4$$

 $2 = 1 = -16 < 4$
F = V
F

Operadores Aritméticos, Relacionais e Lógicos

Qual é o valor da variável lógica a após a seguinte atribuição?

$$a \leftarrow 2 = (2+15) \mod 3 \ \underline{OU} \ -10>4$$

mod é o resto da divisão

$$2 = (2+15) \mod 3$$
 ou $-10>4$
 $2 = 17 \mod 3$ ou $-10>4$
 $2 = 2$ ou $-10>4$
 V ou F

O operador negativo multiplica o inteiro 10 por -1, invertendo o sinal

Operadores Lógicos

Qual é o valor da variável lógica a após as seguintes atribuições?

1)
$$a \leftarrow 2 = 10 \mod 3 = 5 > -7$$
 2) $12 < 15 \text{ ou } 5 * 2 = 2 + 1$

1)
$$2 = 10 \mod 3 = 5 > -7$$

 $2 = 10 \mod 3 = 5 > -7$
 $2 = 1 = 5 > -7$
F e V

2)
$$12 < 15$$
 ou $5*2 = 2+1$

Exemplo de algoritmo com operadores aritmético, relacional e lógico

Para ser triângulo, a medida de um lado deve ser menor que a soma dos outros dois.

```
Algoritmo "Operadores Lógicos"
Var
    L1, L2, L3 : inteiro
     eh triangulo : logico
Inicio
     //entrada
    escreval ("Lado 1: ")
     leia(L1)
     escreval("Lado 2: ")
     leia(L2)
     escreval ("Lado 3: ")
     leia(L3)
     //processamento e saída
     eh triangulo \leftarrow (((L1<(L2+L3)) \underline{e} (L2<(L1+L2)) \underline{e}
                                                        (L2 < (L1 + L3))
     //saída
     escreval ("As medidas formam um triangulo? ", eh triangulo)
 Fimalgoritmo
```

Interpretações do modelo

- Na conjunção, basta que uma sentença seja FALSA para que a expressão seja falsa.
- Na disjunção, basta que uma sentença seja VERDADEIRA para que a expressão seja verdadeira.

Α	В	AeB	A ou B
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	F

 Cada linha da tabela verdade é uma interpretação do modelo da expressão avaliada.

Interpretações do modelo

Carlos afirma a seus amigos: "Sábado irei visitar Ana ou Maria".

Se, no sábado, Carlos

I. visitar Ana e, também Maria;

II. visitar Ana e não visitar Maria;

III. não visitar Ana, mas visitar Maria;

IV. não visitar nem Ana e nem Maria.

|--|

A: Carlos visitou Ana

B: Carlos visitou Maria.

Α	В	AeB	A ou B
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	F

Em qual das situações Carlos terá cumprido sua promessa?

- a) I, II e III.
- b) Somente I e II.
- c) Somente I.
- d) Somente II.
- e) Em nenhuma.

Interpretações do modelo

Carlos afirma a seus amigos: "Sábado irei visitar Ana ou Maria".

Se, no sábado, Carlos

I. visitar Ana e, também Maria;

II. visitar Ana e não visitar Maria;

III. não visitar Ana, mas visitar Maria;

IV. não visitar nem Ana e nem Maria.

A	ou	B

A: Carlos visitou Ana

B: Carlos visitou Maria.

Α	В	AeB	A ou B
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	F

Em qual das situações Carlos terá cumprido sua promessa?

- a) I, II e III.
- b) Somente I e II.
- c) Somente I.
- d) Somente II.
- e) Em nenhuma.

Interatividade

- Analise a expressão lógica e escolha a afirmativa correta.
- não F e raizq(exp(7-4,2)) < exp(5,2) ou 15 mod (raizq(49)) >= 81/9 Interprete a expressão em três partes, na forma (A e B ou C), sendo A: Não F; B: (raizq(exp(7-4,2)) < exp(5,2)); e C: 15 mod (raizq(49)) >= 81/9.
- a) A expressão é VERDADEIRA porque A sempre será verdadeiro e o resultado da conjunção (A e B ou C) é verdadeiro sempre que um dos termos é verdadeiro.
- b) A expressão é VERDADEIRA porque C é verdadeiro e na expressão (A e B ou C), basta que C seja verdadeiro para que a expressão seja verdadeira.
 - c) A expressão é VERDADEIRA porque A e B são verdadeiros e na disjunção (A e B ou C), um termo é suficiente para satisfazer a expressão lógica.
 - d) A expressão é FALSA porque a expressão C é falsa e na disjunção, todos os termos devem ser verdadeiros para que a expressão lógica seja verdadeira.
 - e) A expressão é FALSA porque as expressões A, B e C são falsas.

Resposta

 A expressão é VERDADEIRA porque A e B são verdadeiros e na disjunção (A e B ou C), um termo é suficiente para satisfazer a expressão lógica.

Resposta

- Analise a expressão lógica e escolha a afirmativa correta.
- não F e raizq(exp(7-4,2)) < exp(5,2) ou 15 mod (raizq(49)) >= 81/9 Interprete a expressão em três partes, na forma (A e B ou C), sendo A: Não F; B: (raizq(exp(7-4,2)) < exp(5,2)); e C: 15 mod (raizq(49)) >= 81/9.
- a) A expressão é VERDADEIRA porque A sempre será verdadeiro e o resultado da conjunção
 (A e B ou C) é verdadeiro sempre que um dos termos é verdadeiro.
- b) A expressão é VERDADEIRA porque C é verdadeiro e na expressão (A e B ou C), basta que C seja verdadeiro para que a expressão seja verdadeira.
 - c) A expressão é VERDADEIRA porque A e B são verdadeiros e na disjunção (A e B ou C), um termo é suficiente para satisfazer a expressão lógica.
 - d) A expressão é FALSA porque a expressão C é falsa e na disjunção, todos os termos devem ser verdadeiros para que a expressão lógica seja verdadeira.
 - e) A expressão é FALSA porque as expressões A, B e C são falsas.

Boas Práticas de Programação

- Organizar o programa em blocos.
- Indentar o código.
- Identificar variáveis com nomes significativos.
- Comentar o código para explicar uma lógica.
- Identificar constantes com letras maiúsculas e variáveis com letras minúsculas.

Blocos de programação

- Usam delimitadores de início e fim.
- Ajudam na organização do código.
- Facilitam a compreensão do código.

Bloco Principal:

Inicio comando1 comando2 comandoN Fimalgoritmo

Bloco Se:

```
se (condição) entao
    comando1
    comando2
    :
    comandoN
senão
    comando1
    comandoN
fimse
```

Bloco do laço Enquanto:

```
enquanto (condição)
    comando1
    comando2
    :
    comandoN
fimenquanto
```

Bloco Faça:

```
faca
    comando1
    comando2
    :
    comandoN
ate (condicao)
```

Indentação

- É o deslocamento dentro do bloco.
- Ajuda a identificar a sequência de comandos dentro do bloco.
- Ajuda na visualização de onde inicia e termina o bloco.
- É um recurso da lógica da programação.

```
Algoritmo "Concatenar Nome e Sobrenome"
Var
   nome, sobrenome, nome completo : caractere
Inicio
   //entrada
   escreva ("Nome: ")
   leia (nome)
   escreva ("Sobrenome: ")
   leia(sobrenome)
   //processamento
   nome completo <- nome + " " + sobrenome
   //saida
   escreva("Nome completo : ", nome_completo)
Fimalgoritmo
```

Exemplo de algoritmo

```
Algoritmo "Equação de primeiro grau"
Var
   x, y, a, b: inteiro
Inicio
   //entrada
   escreva ("Digite o valor de A..: ")
   leia(a)
   escreva ("Digite o valor de B..: ")
   leia(b)
   escreva ("Digite o valor de X..: ")
   leia(x)
   //processamento
   y < -a*x+b
   //saida
   escreva ( "O valor de y é:", y)
Fimalgoritmo
```

Comentários

 Comentários no código são textos que auxiliam na compreensão da lógica, escrito em linguagem natural.

```
| Mario | Mari
```

Comentários de uma única linha:

```
// entrada
// processamento
// saída
```

Algoritmos sequenciais

 Escreva um algoritmo que calcule o volume de um paralelepípedo. Esse algoritmo deve receber três valores reais, um para comprimento, um para largura e um para altura, depois deve apresentar o resultado calculado.

```
Algoritmo "Volume do paralelepípedo"
Var
   comprimento, largura, altura : real
Inicio
    //entrada
    escreva ("Comprimento do paralelepípedo... (C): ")
    leia(comprimento)
    escreva ("Largura do paralelepípedo..... (L): ")
    leia(largura)
    escreva ("Altura do paralelepípedo..... (A): ")
    leia(altura)
    //processamento e saída
    escreva ("O Volume do Paralelepípedo é: ", comprimento * largura * altura)
Fimalgoritmo
```

Método para desenvolver um bom algoritmo

- Ler e compreender o problema para o qual será construído um algoritmo;
- Determinar quais serão a entrada de dados do seu algoritmo;
- Determinar quais as ações, lógicas e/ou aritméticas, que deverão ser realizadas no seu algoritmo, bem como, as restrições, se houver, para cada uma dessas ações;
- Determinar qual será a saída de resultados do seu algoritmo;
- Construir o algoritmo em um dos tipos de algoritmo descritos na próxima seção;
- Testar o algoritmo.

A lógica de Programação

- A estratégia para resolver os problemas.
- O processo de resolução de problemas.
- A sequência correta para executar os comandos.
- A identificação das variáveis e os tipos corretos.

Interatividade

Dado o algoritmo abaixo, escolha a opção que representa a saída correta.

```
Algoritmo "Exercicio4"
Var
   num : inteiro
   falsoverdadeiro : logico
   nome, endereco : caractere
   num pi : real const
Inicio
    num pi <- 3.1415
    num < -10
    falsoverdadeiro \leftarrow ((num pi<3.0) ou (num>=(18 mod 5)))
    nome <- " Fulano "
    endereco <- "Av. Torres de Oliveira, 330"
    escreval(num, nome, endereco)
    escreval (falsoverdadeiro)
    escreval (num pi)
Fimalgoritmo
```

Interatividade

- a) 10 "Fulano" "Av. Torres de Oliveira, 330" FALSO 3.1415
- b) 10 'Fulano' 'Av. Torres de Oliveira, 330' VERDADEIRO 3
- c) 10 Fulano Av. Torres de Oliveira, 330FALSO3.14159265358979
 - d) 10 Fulano Av. Torres de Oliveira, 330 VERDADEIRO 3.1415
 - e) 10 Fulano Av. Torres de Oliveira, 330 VERDADEIRO 3

Resposta

Dado o algoritmo abaixo, escolha a opção que representa a saída correta.

```
Algoritmo "Exercicio4"
                           d) 10 Fulano Av. Torres de Oliveira, 330
Var
                              VERDADEIRO
   num : inteiro
                              3.1415
   falsoverdadeiro : logico
   nome, endereco : caractere
   num pi : real const
Inicio
    num pi <- 3.1415
    num < -10
    falsoverdadeiro \leftarrow ((num pi<3.0) ou (num>=(18 mod 5)))
    nome <- " Fulano "
    endereco <- "Av. Torres de Oliveira, 330"
    escreval(num, nome, endereco)
    escreval (falsoverdadeiro)
    escreval (num pi)
Fimalgoritmo
```

ATÉ A PRÓXIMA!