MT – DNN

Multi-Task Deep Neural Networks for Natural Language Understanding

NLP 2조

0. Abstract

- ◆ MT-DNN은 BERT에 Multi-task learning(GLUE TASK 9개 활용)을 수행한 성능개선 모델
 - ·다양한 Task의 Supervised Dataset을 모두 사용하여 대용량 데이터로 학습
 - ·Multi-task Learning을 통해 특정 Task에 Overfitting되지 않도록 Regularization
- ◆ 다음 Task에서 SOTA 성능(BERT보다 높음)
 - •8개의 GLUE Task
 - ·SNLI와 SciTail Task로 Domain Adaptation

1. Introduction

Language Representation

- ◆ Language Model Pre-Training
 - ·unlabeled dataset을 활용한 학습 방법
 - ·대표적으로 문장에서 특정 단어를 맞추는 방식으로 Unspervised Learning
 - •ELMO, BERT 등등
- ◆ Multi-task learning
 - ·여러 Task의 Labeled Dataset을 활용하여 1개의 모델 Supervised Learning
 - •어떤 Task에서 학습 효과가 다른 Task의 성능에 영향을 미칠 것이라는 가정 ex) 스키를 잘 타는 사람이 스케이트 를 잘 탈 수 있다.

1. Introduction

◆Language Model Pre-Training – BERT

Book Corpus, Wikipedia Data를 활용하여 다음 2가지 방식으로 학습

Masked Word Prediction

문장이 주어졌을 때 특정 Word를 Masking하고 다른 주변 Word들을 활용하여 해당 Word를 예측하는 방식으로 학습 ex) my dog is [Mask] → my dog is hairy

Next Sentence Prediction

문장이 2개 주어졌을 때, 2개의 문장이 연결된 문장인지 아닌지를 Classification 하도록 학습 ex) Input = the man went to the store [SEP] he bought a gallon of milk → IsNext

1. Introduction

◆Multi Task Learning

- Supervised Task를 1개의 모델을 통해 학습
 - GLUE의 9개 Task (한 모델을 통해 한꺼번에 학습하는 것이 본 논문의 메인 아이디어)
- MTL의 이점
 - 대용량 Supervised Dataset을 활용하여 학습 가능
 - 모델이 특정 Task에 Overfitting되지 않도록 Regularization 효과를 줄 수 있음

2. Tasks

- ◆ Single Sentence Classification : 하나의 문장이 Input으로 주어졌을 때 class 분류 Task
 - CoLA(문장이 문법적으로 맞는지 분류), SST-2(영화 Review 문장의 감정 분류)
- ◆ Text Similarity: 문장 쌍이 주어졌을 때, 점수를 예측하는 Regression Task
 - STS-B(문장 간의 의미적 유사도를 점수로 예측)
- ◆ Pairwise Text Classification : 문장 쌍이 주어졌을 때, 문장의 관계를 분류하는 Task
 - RTE,MNLI(문장 간의 의미적 관계를 3가지로 분류: Entailment, Contradiction, Neutral)
 - QQP,MRPC(문장 간 의미가 같은 여부를 분류)
- ◆ Relevance Ranking: 질문 문장과 지문이 주어졌을 때, 지문 중 정답이 있는 문장을 찾는 Task
 - QNLI(질문, 지문 중 한 문장이 쌍으로 주어졌을 때 해당 지문 문장에 질문의 답이 있는지 여부 분류)
 - → MT DNN에서는 이를 Rank 방식으로 바꾸어 Task 수행

MT-DNN model의 구조

MT-DNN model의 구조

1. Shared layer – Lexicon Encoder (I1)

- BERT의 임베딩 방식과 동일
- X = {x1, ..., xm} sequence가 input으로 들어오면 Embedding vector로 변환
- token / segment / position embedding

1. Shared layer – Transformer Encoder(I2)

- Lexicon Encoder (I1) 의 임베딩 벡터를 입력으로 받아서 multilayer bidirectional Transformer encoder 사용하여 각 Token의 Output Vector 추출
- Transformer → 생성된 vector는 self attention을 통해 주변 token 정보를 반영한 contextual embedding vector

MT-DNN model의 구조

2. Task specific layer

- (1) Single-Sentence Classification Output
 - Transformer Encoder (I2) 로부터 얻은 output vector의 [CLS] 토른
 : contextual embedding 을 진행한 벡터
 - 하나의 문장을 분류하는 Classification Output은 다음과 같이 계산

: [CLS] Token과 Task Specific Parameter의 곱에 Softmax를 취하여 각 Input Sentence X 가 각 class에 속할 확률 계산

- 2. Task specific layer
- (2) Text Similarity Output
 - Transformer Encoder (I2) 로부터 얻은 output vector의 [CLS] 토른
 : 문장쌈 (X1,X2)의 semantic representation
 - Sentence pair로 이루어진 (X1, X2)의 유사도는 다음과 같이 계산

$$ext{Sim}(X_1, X_2) = ext{g(} ext{w}_{STS}^ op \cdot ext{x} ext{)}$$
 $ext{sigmoid}$
 $ext{Task}$
 $ext{specific}$
 $ext{parameter}$
 $ext{Class}$

2. Task specific layer

- (3) Pairwise Text Classification Output
 - ◆ stochastic answer network (SAN)를 활용하여 classification
 - 핵심 IDEA : Multi Step reasoning
 - RNN을 이용하여 K-step Reasoning을 하는 것이 특징

각 K step 마다,

$$P_r^k = ext{softmax}(\mathbf{W}_3^ op [\mathbf{s}^k; \mathbf{x}^k; |\mathbf{s}^k - \mathbf{x}^k|; \mathbf{s}^k \cdot \mathbf{x}^k])$$
 $\cdot s^k; x^k$: 작 문장인 vector $\cdot |s^k - x^k|$: 문장간 위시도

- 두 문장 자체의 Embedding Vector, 그리고 두 문장 간 관계(차의 크기와 Dot Product)를 concat하여 구성된 Vector를 활용하여 문장 간 관계를 분류
 - → 최종적으로 모든 K-step에서 나온 output vector를 평균

2. Task specific layer

- (4) Relevance Ranking Output
 - Sigmoid function을 통해 모든 answer candidate 문장을 scoring하고 ranking을 통해 1개의 문장만을 True로 분류

3.1 The Training Procedure

- 9개의 GLUE Dataset 을 모아 Training dataset을 구성
- Batch 단위로 training할 때 마다 shared layer 와 해당 task의 specific layer 학습

$$-\sum_{c} \mathbb{1}(X, c) \log(P_r(c|X)), \tag{6}$$

$$(y - Sim(X_1, X_2))^2,$$
 (7)

$$-\sum_{(Q,A^{+})} P_{r}(A^{+}|Q), \tag{8}$$

Answer가 포함된 문장

$$P_r(A^+|Q) = \frac{\exp(\gamma \text{Rel}(Q, A^+))}{\sum_{A' \in \mathcal{A}} \exp(\gamma \text{Rel}(Q, A'))}, \quad (9)$$

Algorithm 1: Training a MT-DNN model.

Initialize model parameters Θ randomly.

Pre-train the shared layers (i.e., the lexicon encoder and the transformer encoder).

Set the max number of epoch: $epoch_{max}$. //Prepare the data for T tasks.

for t in 1, 2, ..., T do

Pack the dataset t into mini-batch: D_t .

end

for epoch in $1, 2, ..., epoch_{max}$ do

1. Merge all the datasets:

$$D = D_1 \cup D_2 ... \cup D_T$$

2. Shuffle D

for b_t in D do

 $//b_t$ is a mini-batch of task t.

3. Compute loss : $L(\Theta)$

 $L(\Theta) = \text{Eq. 6}$ for classification

 $L(\Theta) = \text{Eq. 7 for regression}$

 $L(\Theta) = \text{Eq. 8 for ranking}$

4. Compute gradient: $\nabla(\Theta)$

5. Update model: $\Theta = \Theta - \epsilon \nabla(\Theta)$

end

end

3.1 The Training Procedure

MT-DNN model의 구조

4. Evaluation – GLUE test set

• BERT (80.5) → MT-DNN (82.7) 2.2% 섬능 향상

→데이터가 적을 때 더 높은 성능 향상

Single Sentence Classification			າ S	1 0/16		wise Text ssification	Relevance Ranking				
Model		SST-2		STS-B		MNLI-m/mm	QNLI	RTE	WNLI	AX	Score
	8.5k	67k	3.7k	7k	364k	393k	108k	2.5k	634		
BiLSTM+ELMo+Attn 1	36.0	90.4	84.9/77.9	75.1/73.3	64.8/84.7	76.4/76.1	-	56.8	65.1	26.5	70.5
Singletask Pretrain Transformer ²	45.4	91.3	82.3/75.7	82.0/80.0	70.3/88.5	82.1/81.4	-	56.0	53.4	29.8	72.8
	45.0	00.4	00.000.0	0.5.2.10.4.0	70.4.100.4	00.000.6		50.4		20.1	760
GPT on STILTs 3	47.2		87.7/83.7				-	69.1	65.1	29.4	76.9
BERT ⁴ _{LARGE}	60.5		89.3/85.4				92.7	70.1	65.1	39.6	80.5
MT-DNN _{no-fine-tune}	58.9	94.6	90.1/86.4	89.5/88.8	72.7/89.6	86.5/85.8	93.1	79.1	65.1	39.4	81.7
MT-DNN	62.5	95.6	91.1/88.2	89.5/88.8	72.7/89.6	86.7/86.0	93.1	81.4	65.1	40.3	82.7
Human Performance	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0/92.8	91.2	93.6	95.9	-	87.1

Sementically equivalent problem

NLI problem

4. Evaluation – GLUE dev set

◆ ST-DNN:

Multi Task Learning을 하지 않고 Task specific layer만 바꾸어서 (SAN, Pairwise Ranking Loss) 학습한 모델

- SAN 을 사용하여 얻은 성능 향상 효과는 그다지 크지 않음
- QNLI는 Ranking approach로 큰 성능 향상

SAN

Relevance Ranking Loss

Model	MNLI-m/mm	QQP	RTE	QNLI (v1/v2)	MRPC	CoLa	SST-2	STS-B
BERT _{LARGE}	86.3/86.2	91.1/88.0	71.1	90.5/92.4	89.5/85.8	61.8	93.5	89.6/89.3
ST-DNN	86.6/86.3	91.3/88.4	72.0	96.1/-	89.7/86.4	-	-	-
MT-DNN	87.1/86.7	91.9/89.2	83.4	97.4/92.9	91.0/87.5	63.5	94.3	90.7/90.6

4. Evaluation – Domain Adaptation

◆ Procedure

- 1.MT-DNN or BERT를 initial model로 함(base, large 모델 세팅 포함)
- 2.task-specific training data로 학습된 MT-DNN 을 적용시켜서 SNLI, SciTail 각각에 맞는 모델을 만듦
- 3.task-specific test data로 폄가
- ◆ Result
 - •더 적게 train할수록 MT-DNN 더 성능 발달
 - →데이터가 적을 때 MT-DNN의 성능이 훨씬 좋음
 - ·BERT보다 domain adaptation에 일관되게 효과적임

5. Conclusion

◆ MT-DNN

- BERT에 Multi-task learning을 수행하여 성능 개선
- SNLI, SciTail, GLUE에 대해 10개 NLU task에서 SOTA의 결과를 냄
- Domain adatation 실험에서 일관되게 좋은 결과

MT – DNN

Multi-Task Deep Neural Networks for Natural Language Understanding

NLP 2조

