SVEUČILIŠTE U RIJECI

Fakultet informatike i digitalnih tehnologija

Diplomski sveučilišni studij informatike

KRATKI IZVJEŠTAJ O PRVOM EKPERIMENTALNOM RADU

EKSPERIMENTALNI RAD IZ KOLEGIJA RAČUNALNI VID

Mentori: Prof. dr. sc. Marina Ivašić-Kos

mag. Inf. Kristina Host

Autori: Duje Vidas, Tim Jerić

Uvod

Cilj ovog zadatka bio je osmisliti inovativan način za izbjegavanje sudara brodova sa santama leda, pri čemu se naglasak stavio na razvoj sustava koji može ranije detektirati sante leda i upozoriti posadu. U okviru ovog projekta implementirane su, trenirane i evaluirane tri jednostavne konvolucijske neuronske mreže (CNN) za klasifikaciju slika santi leda i brodova. Krajnji cilj bio je identificirati model s najboljim performansama na validacijskom skupu podataka, čime bi se doprinijelo razvoju učinkovitih alata za prevenciju nesreća.

1. Učitavanje i analiza podataka

Podaci za treniranje i validaciju učitani su iz .npz datoteke (<u>input_data.npz</u>). Datoteka sadrži sljedeće elemente:

- X_train i Y_train: podaci za treniranje
- X_validation i Y_validation: podaci za validaciju

Osnovne informacije o skupu podataka su sljedeće:

- **Dimenzije ulaznih slika:** Svaka slika ima dimenzije 75×75×3, što znači da su slike u boji (RGB format).
- Broj uzoraka za treniranje: 4113 uzoraka
- Broj uzoraka za validaciju: 100 uzoraka
- Klase: [0 Brod, 1 Santa leda]
- Distribucija klasa:
 - o Trening podaci: 2001 brodova i 2112 santi leda (relativno uravnoteženo).
 - Validacijski podaci: 51 brod i 49 santi leda (gotovo potpuno uravnoteženo).
- Nedostajuće vrijednosti (NaN): Nema nedostajućih vrijednosti u podacima.

Prikazano je nekoliko uzoraka slika s pripadajućim oznakama za vizualnu provjeru kvalitete podataka.

2. Implementacija CNN modela

Razvijene su tri verzije CNN modela, svaka s različitim razinama složenosti:

SimpleCNN_v1:

- **Slojevi:** Jedan konvolucijski sloj s 8 filtera, kernel veličine 3×3.
- Aktivacija: ReLU
- **Pooling:** MaxPooling (2×2)
- **Potpuno povezani slojevi:** Jedan sloj s 32 neurona i izlazni sloj s 2 neurona (za binarnu klasifikaciju).

SimpleCNN_v2:

- **Slojevi:** Dva konvolucijska sloja s 32 i 64 filtera, oba kernela veličine 3×3.
- Aktivacija: ReLU
- **Pooling:** MaxPooling (2×2) nakon svakog konvolucijskog sloja.
- Potpuno povezani slojevi: Jedan sloj s 128 neurona i izlazni sloj s 2 neurona.

SimpleCNN_v3:

- **Slojevi:** Tri konvolucijska sloja s 32, 64 i 128 filtera.
- Aktivacija: ReLU
- **Pooling:** MaxPooling (2×2) nakon svakog konvolucijskog sloja.
- Potpuno povezani slojevi: Jedan sloj s 128 neurona i izlazni sloj s 2 neurona.

3. Treniranje i validacija modela

Svi modeli trenirani su korištenjem skripte **train.py**, koja podržava:

- Treniranje pojedinačnih modela (v1, v2, v3).
- Treniranje svih modela odjednom.

Postavke treniranja:

- Optimizator: Adam
- Funkcija gubitka: CrossEntropyLoss
- Broj epoha: Maksimalno 1000 (s ranim zaustavljanjem)
- Rano zaustavljanje: Aktivira se ako gubitak na validacijskom skupu ne pokazuje poboljšanje kroz 3 uzastopne epohe.
- Metode evaluacije: Točnost (Accuracy), Preciznost (Precision), Odziv (Recall), F1 score

Rezultati treniranja pohranjeni su u JSON datoteke (training_history_model_v1.json, itd.), dok su težine modela spremljene u .pth formate.

4. Vizualizacija i analiza metrike

Uz detaljne grafove za metrike treninga i validacije, implementirala se i funkcionalnost za prikaz pojedinačnih slika iz validacijskog skupa s predikcijama modela.

Trening metrike:

- 1. **Gubitak:** Svi modeli pokazuju konstantno smanjenje gubitka kroz epohe. Model v2 postiže najniži trening gubitak, što ukazuje na njegovu visoku sposobnost učenja.
- 2. **Točnost:** Sva tri modela pokazuju stalan rast točnosti, pri čemu Model v2 dominira u završnim epohama s najvišom točnošću.
- 3. **Preciznost i F1 score:** Oba pokazatelja značajno rastu tijekom treninga, a Model v2 ima najbolje performanse na trening podacima.

Validacijske metrike:

- 1. **Gubitak:** Validacijski gubitak kod Modela v3 pokazuje najmanju varijaciju, dok Model v2 ima oscilacije, što ukazuje na mogući problem s prekomjernim učenjem kod Modela v2.
- 2. **Točnost:** Točnost na validacijskom skupu raste za sve modele tijekom epoha. Model 3 postiže najvišu točnost, dok Model 1 zaostaje. Model 2 pokazuje promjene nakon 5. epohe, što može ukazivati na mogući problem s pretreniranjem ili fluktuacijama u performansama.
- 3. **Preciznost i F1 score:** Model v3 nadmašuje druge modele u ovim pokazateljima, što potvrđuje njegovu preciznost u klasifikaciji brodova i santi leda.

Prikaz slika i predikcija:

Kako bi se dodatno evaluirale performanse modela, implementirana je funkcija *display_predictions*, koja nasumično odabire slike iz validacijskog skupa i prikazuje njihove stvarne i predviđene oznake.

1. **Model v1 - Predikcije:** Slike za Model v1 pokazuju nekoliko netočnih predikcija, uključujući slučajeve gdje je brod klasificiran kao santa leda i obrnuto. Model ima osnovnu sposobnost prepoznavanja, ali često griješi na složenijim slikama.

2. **Model v2 - Predikcije:** Kod Modela v2 vidljivo je poboljšanje u predikcijama, iako su prisutne neke netočnosti. Primjerice, slike s većom "šumnosti" u pozadini otežavaju ispravnu klasifikaciju.

3. **Model v3 - Predikcije:** Model v3 pokazuje najbolje performanse među svim verzijama. Većina predikcija je ispravna, a netočnosti su vrlo rijetke. Ovo potvrđuje stabilnost i robusnost Modela v3 na validacijskom skupu.

Zaključak

Model 3 pokazuje najbolje performanse i na skupu za treniranje i na skupu za validaciju, s najnižim gubitkom, najvišom točnošću, preciznošću i F1 rezultatom, što ukazuje na dobru generalizaciju.

Model 2 je vrlo dobar na skupu za treniranje, ali pokazuje nestabilnost na validacijskom skupu nakon nekoliko epoha, što može biti znak pretreniranosti. Model 1 ima najslabije performanse u svim metrikama, ali stabilno napreduje kroz epohe. Zbog toga je Model 3 najbolji izbor za generalizaciju na novim podacima, dok bi Model 2 zahtijevao dodatnu provjeru kako bi se izbjegla pretreniranost.