国宝桥米标准化种植辅助系统项目计划

1任务说明

此次项目我们需要完成的开发任务如下

1.1 软件开发任务

软件开发任务	开发技术设定	备注
国宝桥米标准化种植手机app	flutter	依照田园宝app进行改制
国宝桥米桌面端后台管理系统	electron + Vue	无

1.2 后台及数据库开发任务

后台及数据库开发任务	开发技术设定	备注
国宝桥米标准化种植后台开发	java spring	无
国宝桥米标准化种植数据库开发	SQL	无

1.3 算法开发任务

算法开发任务	开发框架设定	备注
水层、泥浆层深度拍照识别	分水岭算法&目标物体检测算法	标尺界定, 图像矫正
田间杂草拍照识别	based on <u>Coca: Contrastive Captioners are Image-Text</u> <u>Foundation Models</u>	Source Code
田间积水拍照识别	based on <u>Coca: Contrastive Captioners are Image-Text</u> <u>Foundation Models</u>	Source Code
秧苗深浅一致 性拍照识别	based on <u>DINO: DETR with Improved DeNoising Anchor</u> Boxes for End-to-End Object Detection	Source Code
秧苗空穴率拍 照识别	目标检测&点阵分布(自研)	无
秧苗均匀度拍 照识别	目标检测&均匀度分布测定算法 (自研)	无

算法开发任务	开发框架设定	备注
泡种芽长录像 识别	based on <u>YOLOV: Making Still Image Object Detectors</u> <u>Great at Video Object Detection</u>	Source Code
出苗率拍照识别	目标检测&点阵分布(自研)	无

2 任务时间线

此次任务的开发时间线如下。

2.1 实验步骤time line

开始时间	结束时间	事件安排	备注
2022年9月12日	2022年9月21日	灌排场实验田初步试验	无
2022年9月21日	2022年10月12日	蔡甸2亩试验田进行算法试验	无
2022年10月12日	2023年3月1日	京山水稻收割完成,进行规模化实验	无

2.2 移动端开发时间线

开始时间	结束时间	事件安排	备注
2022年9月23日	2022年12月1日	移动端app开发	flutter双端构建,3种轨迹记录功 能
2022年12月20日	2022年12月30日	移动端算法接 入	8个算法部署接入

2.3 后台开发时间线

开始时间	结束时间	事件安排	备注
2022年9月23日	2022年12月30日	后台&数据库开发	无

2.4 算法开发时间线

开始时间	结束时间	事件安排	备注
2022年10月21日	2022年11月20日	水层、泥浆层深度拍照识别	无
2022年9月23日	2022年10月15日	田间杂草拍照识别	无

开始时间	结束时间	事件安排	备注
2022年9月23日	2022年10月18日	田间积水拍照识别	无
2022年10月12日	2022年11月5日	秧苗深浅一致性拍照识别	无
2022年10月15日	2022年11月10日	秧苗空穴率拍照识别	无
2022年10月15日	2022年11月10日	秧苗均匀度拍照识别	无
2022年10月30日	2022年12月20日	泡种芽长录像识别	无
2022年10月15日	2022年11月10日	出苗率拍照识别	无

2.5 开发周期Gantt图

3 具体任务分析

此次任务的具体细分任务(部分)如下。

3.1 国宝桥米标准化种植app前端原型。

如上所示,为国宝桥米标准化种植复制系统的思维导图(by 王雅婷),包含全部的系统功能,包括8个算法和3个记录流程。

国宝桥米标准化种植app的代码主体,引用自田园宝早期版本。其新ui分布构建参考figma国宝桥米项且。

- 1. 拍照识别模块引入8中算法调用模块,通过地图选定田块位置,选中田块后进行模块选择。
- 2. 田间记录,选定记录功能(可以多选)——>弹出弹框填写记录详细信息——>开始记录。

其余部分功能不做分析。

3.2 后台任务详情

后台和数据库需要满足的重点条件:

- 1. 田块划分,对国宝桥米耕种的田块进行无人机试飞划分田块。
- 2.8种算法部署

3.3 算法框架详情

3.3.1 水层、泥浆层深度拍照识别

分水岭算法&目标物体检测算法

设计思路:

- 1. 物体检测检索出拍照标尺的位置。
- 2. 图像矫正,给最大对比度,给一个30°左右的倾角循环,检索出竖直方向的白点积分最大值,那就是标准正角度。
- 3. 分水岭算法区分作标值和右读取值。

3.3.2 田间杂草拍照识别&田间积水拍照识别

based on Coca: Contrastive Captioners are Image-Text Foundation Models

3.3.3 秧苗深浅一致性拍照识别

based on DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

3.3.4 秧苗空穴率拍照识别&出苗率拍照识别

目标检测&点阵分布(自研)

设计思路:

- 1. 检测图片中的所有秧苗点。
- 2. 根据图论给定出一个全连接骨架。
- 3. 调整图框架使外骨骼呈长方形,内部虚构空缺点使得锚点能均匀分布。
- 4. 对虚构锚点计数

3.3.5 秧苗均匀度拍照识别

目标检测&均匀度分布测定算法(自研)

设计思路:

- 1. 检测图片中的所有秧苗点。
- 2. 给定一个均匀度检测算法。

3.3.6 泡种芽长录像识别

based on YOLOV: Making Still Image Object Detectors Great at Video Object Detection