Algebraic Combinatorics HW 1

Evan Lim and Dallin Guisti

2-6-2024

Problem 1 (Closed Walks in K_n). Find a combinatorial proof of the fact that # closed walks of length l in K_n from some vertex to itself is

$$\frac{1}{n}\left((n-1)^l + (n-1)(-1)^l\right)$$

Proof. By symmetry, we can simply count the number of closed l-walks from v_1 . We write each walk as an ordered list of vertices, so that we must find the number of walks

$$v_{i_1}, v_{i_2}, \cdots, v_{i_l}, v_{i_{l+1}}$$

with all $v_{i_k} \neq v_{i_{k+1}}$ and $v_{i_1} = v_{i_{l+1}} = v_1$. We start by counting the number of walks if we allow $v_{i_l} = v_{i_{l+1}}$, and then subtract the overcounting. After the first, each of the l-1 subsequent vertices have n-1 options, for $(n-1)^{l-1}$ total sequences. We msut now subtract the number of sequences where

Conceptually, we are counting the number of closed l walks by counting the number of open l-1 walks, which is the number of total l-1 walks minus the number of closed

We now subtract the number of sequences where $v_{i_l} = v_1$, Repeating the same reasoning, we can overcount by counting $(n-1)^{l-2}$ sequences, and then subtracting the number of sequences where $v_{i_{l-1}} = v_{i_l} = v_1$. We continue this process, finishing with $(n-1)^1$ closed 2-walks, making the number of closed l-walks from a vertex to itself is

$$(n-1)^{l-1} - (n-1)^{l-2} + (n-1)^{l-3} + \dots + (-1)^{l}(n-1)$$

$$= \sum_{k=1}^{l-1} (n-1)^k (-1)^{l-1+k}$$

$$= (-1)^{l-1} \sum_{k=1}^{l-1} (1-n)^k$$

$$= (-1)^{l-1} \frac{(1-n)\left((1-n)^{l-1}-1\right)}{1-n-1}$$

$$= (-1)^l \frac{(1-n)^l - (1-n)}{n}$$

$$= \frac{1}{n} \left((n-1)^l + (n-1)(-1)^l\right),$$

as desired.

$$(n-1)^{l} - \frac{1}{n} \left((n-1)^{l-1} + (n-1)(-1)^{l-1} \right) = \frac{1}{n} \left((n-1)^{l} + (n-1)(-1)^{l} \right).$$

¹This suggests that we could complete via an inductive proof, using

Problem 2 (Eigenvalues of some bipartite graphs).

- (i) Let G[A, B] be a bipartite graph with partite sets A, B. Show by a walk-counting argument that the non-zero eigenvalues of G come in pairs $\pm \lambda$. (Eigenvalues of K_{rs}) Consider the complete bipartite graph $K_{r,s}$ (that is, having partite sets of size r and s)
- (ii) Use purely combinatorial reasoning to compute the number of closed walks of length l in $K_{r,s}$.
- (iii) Deduce the eigenvalues of $K_{r,s}$. (Eigenvalues of $K_{n,n} - nK_2$) Let H_n be the graph $K_{n,n}$ with a perfect matching removed.
- (iv) Show that the eigenvalues of H_n are

$$\pm 1(n-1 \text{ times}), \pm (n-1) \text{ (once each)}.$$

Proof.

(i) Every step on a walk takes us between partite sets A and B. Thus, there are no 2l + 1-walks, meaning that

$$\sum (\lambda_i)^{2l+1} = 0,$$

so

$$\sum (-\lambda_i)^{2l+1} = \sum (\lambda_i)^{2l+1} = 0.$$

As

$$\sum (\lambda_i)^{2l} = \sum (-\lambda_i)^{2l},$$

 $\sum \lambda_i^k$ and $\sum (-\lambda_i)^k$ agree for all positive integers k, so the $-\lambda_i$ are simply a permutation of the λ_i , meaning that all nonzero eigenvalues come in $\pm \lambda$ pairs.

(ii) Call the partite with r elements A and the partite with s elements B. If l is odd, there are zero walks. So, we assume l is even. If we begin our l-walk in A, we know go from A to B $\frac{l}{2}$ times and B to A $\frac{l}{2}$ times. Each time we go from A to B, we have s options. Each time we go from B to A, we have r options, except the last step, at which point we must return to our original vertex, for which we have r choices. There are thus $s^{l/2}r^{l/2-1}r = (rs)^{l/2}$ l-walks beginning in A, and an identical argument gives $(rs)^{l/2}$ l-walks beginning in B. The number of l-walks is thus

$$\begin{cases} 0 & l \text{ odd} \\ 2(rs)^{\frac{l}{2}} & l \text{ even} \end{cases}.$$

(iii) $\sum_{i} \lambda_i^l$ and $(rs)^l + (-rs)^l + (n-2) \cdot (0)^l$ agree for all positive l, so the eigenvalues of $K_{r,s}$ are

$$\pm rs$$
, 0 $(r+s-2 \text{ times})$.

We now consider the $K_{n,n} - nK_2$ graph, providing n = 3 as an example:

(iv) We aim to find the number of l-walks (for even l) on $K_{n,n} - nK_2$. If we write the partites as a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n such that the a_i and b_i are not connected, but a_i and b_j for $i \neq j$ are connected, then our walk-counting problem becomes analogous to the K_n problem. Any valid will alternate between A and B, but have no index repeated twice in a row. That is, a_1b_2 is a valid step, while a_1b_1 is not. We can use this to establish an bijection between l-walks starting in A and l-walks on K_n , meaning that the total number of l-walks on $K_{n,n} - nK_2$ is

$$2n\left(\frac{1}{n}\left((n-1)^l + (n-1)(-1)^l\right)\right) = 2(n-1)^l + 2(n-1)(-1)^l.$$

For odd l, the number of walks is 0, and so $\sum \lambda_i^l$ agrees for all positive l, as

$$(n-1)^l + (1-n)^l + (n-1)((-1)^l + (1)^l),$$

meaning that our eigenvalues are

$$\pm 1(n-1 \text{ times}), \pm (n-1) \text{ (once each)}.$$

Problem 3 (On the largest eigenvalue of A(G); Extra credit).

- (i) Let G be a graph with max degree $\Delta(G)$. Let λ_1 be the largest eigenvalue of A(G). Show that $\lambda_1 \leq \Delta(G)$.
- (ii) Let G be a simple graph with m edges. Show that $\lambda_1 \leq \sqrt{2m}$.

Proof. (i)

Problem 4.

- (i) Start with n coins heads up. Choose a coin at random and turn it over. Do this a total of m times. What is the probability that all coins will have heads up?
- (ii) Same as (i), except now compute the probability that all coins have tails up.
- (iii) Same as (i), but now we turn over two coins at a time.

Solution.

(i.) Flipping m coins can be modeled as an m-walk on the graph of the n-hypercube, Q_n . Thus, the probability we seek is

$$\frac{\text{\#closed } m - \text{walks}}{\text{\#}m - \text{walks}} \text{ on } \mathbb{Z}_2^n.$$

There are n^m such walks, both because each vertex has degree n/each step flips one of n coordinates and that we choose amongst n coins each flip.

In order to find the number of closed m-walks on Q_n , we consider the eigenvalues of $A(Q_n)$, which are of the form n-2i as i ranges from 0 to n, where $\lambda_i = n-2i$ has multiplicity $\binom{n}{i}$. Thus, the number of closed m-walks on Q_n is

$$\sum_{i=0}^{n} \binom{n}{i} (n-2i)^m,$$

so the desired probability is

$$\frac{\sum_{i=0}^{n} \binom{n}{i} (n-2i)^m}{n^m}.$$

(ii.) Starting with all heads and ending with all tails is akin to walking from v_1 to v_{2^n} . So, we seek the ratio

$$\frac{((A(Q_n))^m)_{1,2^n}}{n^m},$$

and applying Corollary 2.5 from the textbook gives a probability of

$$\frac{\sum_{i=0}^{n} \sum_{j=0}^{k} (-1)^{j} \binom{k}{j} \binom{n-k}{i-j} (n-2i)^{l}}{2^{n} n^{m}}.$$

(iii.) The adjacency matrix $A(Q_n)^2$ represents the number of ways to flip two coins, but it allows us to flip the same coin twice in a row, result in nonzero diagonals. Thus, if we subtract some scalar multiple of the identity from $A(Q_n)^2$, yielding a matrix with zeroes along the diagonal, we have the adjacency matrix representing the two-flip graph. Each a_{ii}

Problem 5. Let G_n be the graph with vertex set \mathbb{Z}_2^n with the edge set defined as: u and v are adjacent iff they differ in exactly two coordinates (that is, $\omega(u+v)=2$). What are the eigenvalues of G_n ?

Proof. Recall from lecture that the eigenvalues of $A(Q_n)$ are of the form n-2i as i ranges from 0 to n, where $\lambda_i = n-2i$ has multiplicity $\binom{n}{i}$. Consider $A(Q_n)^2$. We aim to show that

$$A(Q_n)^2 = nI_n + 2A(G_n)$$

via a walk counting argument. $A(Q_n)_{ij}^2$ counts the number of 2-walks from i to j (vertices on the hypercube). When i = j, this is precisely $\deg i = n$. When $i \neq j$, for there to be a 2-walk from i to j, we must have $\omega(i+j)=2$. Each step flips one coordinate of i, and since there must be exactly two coordinates to flip, we have 2!=2 such walks. Thus, $A(Q_n)_{ij}^2=2$ when $\omega(i+j)=2$. $2A(G_n)$ is the matrix with 2s when $\omega(i+j)=2$ and zeroes elsewhere, and nI_n is the matrix with ns along the diagonal. Therefore,

$$A(Q_n)^2 = nI_n + 2A(G_n),$$

so for any given eigenvalue λ_i of Q_n , since $A(Q_n)$ is diagonalizable, λ_i^2 is an eigenvalue of $A(Q_n)^2$. Thus,

$$\det(A(Q_n)^2 - \lambda_i^2 I_n) = 0$$
$$\det(nI_n + 2A(G_n) - \lambda_i^2 I_n) = 0$$
$$\det(2A(G_n) - (\lambda_i^2 - n)I_n) = 0$$
$$\det\left(A(G_n) - \frac{\lambda_i^2 - n}{2}I_n\right) = 0,$$

so $\frac{\lambda_i^2 - n}{2} = \frac{(n-2i)^2 - n}{2}$ is an eigenvalue of G_n , as i ranges from 0 to n.