

MATH437/537 Fall, 2022

Homework 7. Due December 5

1. (Sample linear discriminant analysis) Let μ_1 , μ_2 and μ_3 be the following 14×1 vectors:

$$\mu_1 = 0, \quad \mu_2 = (3, \dots, 3)^{\mathsf{T}}, \quad \mu_3 = (-3, \dots, -3)^{\mathsf{T}}.$$

- (a) Draw a sample X_1, \ldots, X_{16} iid $N_{14}(\boldsymbol{\mu}_1, 4\boldsymbol{I})$, a sample Y_1, \ldots, Y_8 iid $N_{14}(\boldsymbol{\mu}_2, 4\boldsymbol{I})$ and a sample Z_1, \ldots, Z_8 iid $N_{14}(\boldsymbol{\mu}_3, 4\boldsymbol{I})$. These samples give you a data matrix for each of three classes C_1, C_2 and C_3 .
- (b) Write the formulas you will use to compute $\widehat{\boldsymbol{B}}_{\mu}$ and $\boldsymbol{S}_{\mathrm{pooled}}$.
- (c) The kth sample discriminant of a point x is $y_k = w_k^{\top} x$. How is w_k defined?
- (d) Make a plot of all the data on the first two discriminants using different colors for each of the three classes.
- 2. Consider a linear regression problem where $\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ and \boldsymbol{X} is a 100×10 matrix with independent columns, and $\boldsymbol{\varepsilon} \sim N_{100}(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$.
 - (a) The fitted vector $\hat{\boldsymbol{y}}$ is the projection of \boldsymbol{y} onto what subspace of \mathbb{R}^{100} ?
 - (b) Let P be the projection matrix such that $\hat{y} = Py$. What is the trace of P?
 - (c) The residuals of the fit are r = Qy where Q is an orthogonal projection onto what subspace of \mathbb{R}^{100} ?
 - (d) What is the trace of \mathbf{Q} ?
 - (e) Determine $\mathbb{E} \| \boldsymbol{r} \|^2 = \mathbb{E} (\boldsymbol{y}^\top \boldsymbol{Q} \boldsymbol{y})$. (Hint: Note that $\boldsymbol{y}^\top \boldsymbol{Q} \boldsymbol{y} = (\boldsymbol{y} \boldsymbol{X} \boldsymbol{\beta})^\top \boldsymbol{Q} (\boldsymbol{y} \boldsymbol{X} \boldsymbol{\beta})$ and use a formula given in class.)
 - (f) Find an unbiased estimator of σ^2 .