Specialized Static Analysis Frameworks

Material covered in chapter 10 of Introduction to Static Analysis: an Abstract Interpretation Perspective

Purpose of this lecture

In this lecture we

- review of specialized static analysis techniques that can be simple yet powerful enough for specific cases in hand
- discuss some limitations, if any, and how these techniques can be seen from the general abstract interpretation point of view
- intended more as a survey of the specialized frameworks than an in-depth coverage

We cover three specialized frameworks:

- static analysis by equations
- static analysis by monotonic closure
- static analysis by proof construction

Use of specialized frameworks

Practical altenatives to the aforementioned general, abstract interpretation frameworks

- analogous to domain-specific programming languages as opposed to general-purpose ones
- can be practical alternatives when the target languages and properties are good fits for them
 - for simple languages and properties,
 - ▶ ∃frameworks that are simple yet powerful enough
- the burden of soundness proof can be reduced and the special algorithms can outperform the general worklist-based fixpoint iteration algorithms

Outline

- Static Analysis by Equations
- Static Analysis by Monotonic Closure
- 3 Static Analysis by Proof Construction
- 4 Summary

Static analysis by equations

- static analysis = equation setup and resolution
 - equations capture all the executions of the program
 - a solution of the equations is the analysis result
- represent programs by control-flow graphs
 - nodes for semantic functions (statements)
 - edges for control flow
- straightforward to set up sound equations

For each node

we set up equations

$$y_1 = f(x_1 \sqcup x_2)$$
$$y_2 = f(x_1 \sqcup x_2)$$

$$y_2 = f(x_1 \sqcup x_2)$$

Example: data-flow analysis for integer intervals

Example (Data-flow analysis)

Program

input (x); while (x \leq 99) x := x+1

$$x_0 = [-\infty, +\infty]$$

 $x_1 = x_0 \sqcup x_3$
 $x_2 = x_1 \sqcap [-\infty, 99]$
 $x_3 = x_2 \oplus 1$
 $x_4 = x_1 \sqcap [100, +\infty]$

Figure: Equations for the program

Figure: Control-flow graph

Limitations

Not powerful enough for arbitrary languages

- control-flow before analysis?
 - control is also computed in modern languages
 - impossible: the dichotomy of control being fixed and data being dynamic
- sound transformation function?
 - error prone for complicated features of modern languages
 - e.g. function call/return, function as a value, dynamic method dispatch, exception, pointer manipulation, dynamic memory allocation,

...

- lacks a systematic approach
 - ▶ to prove the correctness of the analysis
 - to vary the accuracy of the analysis

Outline

- Static Analysis by Equations
- 2 Static Analysis by Monotonic Closure
- 3 Static Analysis by Proof Construction
- 4 Summary

Static analysis by monotonic closure (1/2)

- static analysis = setting up initial facts then collecting new facts by a kind of chain reaction
 - has rules for collecting initial facts
 - has rules for generating new facts from existing facts
- the initial facts immediate from the program text
- the chain reaction steps simulate the program semantics
- the universe of facts is finite for each program
- analysis accumulates facts until no more possible

Static analysis by monotonic closure (2/2)

- let R be the set of the chain-reaction rules
- let X_0 be the initial fact set
- let Facts be the set of all possible facts

Then, the analysis result is

$$\bigcup_{i\geq 0} Y_i, \quad \text{where} \quad Y_0 = X_0 \text{ and } Y_{i+1} = Y \text{ such that } Y_i \vdash_R Y.$$

Or, equivalently, the analysis result is the least fixpoint

$$\bigcup_{i>0}\phi^i(\emptyset)$$

of monotonic function $\phi : \wp(Facts) \to \wp(Facts)$:

$$\phi(X) = X_0 \cup (Y \text{ such that } X \vdash_R Y).$$

Example: pointer analysis (1/3)

$$\begin{array}{lll} P & ::= & \mathcal{C} & \text{program} \\ \mathcal{C} & ::= & \text{statement} \\ & \mid & L := & R & \text{assignment} \\ & \mid & \mathcal{C} & ; & \mathcal{C} & \text{sequence} \\ & \mid & \text{while } B & \mathcal{C} & \text{while-loop} \\ L & ::= & x \mid *x & \text{target to assign to} \\ R & ::= & n \mid x \mid *x \mid \&x & \text{value to assign} \\ B & & & \text{Boolean expression} \end{array}$$

- goal: estimate all "points-to" relations between variables that can occur during executions
- ullet a o b: variable a can point to (can have the address of) variable b

Example: pointer analysis (2/3)

The initial facts that are obvious from the program text are collected by this rule:

$$\frac{x := \& y}{x \to y}$$

The chain-reaction rules are as follows for other cases of assignments:

$$\frac{x := y \quad y \to z}{x \to z} \qquad \frac{x := *y \quad y \to z \quad z \to w}{x \to w}$$

$$\underbrace{*x := y \quad x \to w \quad y \to z}_{w \to z} \qquad \underbrace{*x := *y \quad x \to w \quad y \to z \quad z \to v}_{w \to v}$$

$$\frac{*x := \&y \quad x \to w}{w \to y}$$

Example: pointer analysis (3/3)

Example (Pointer analysis steps)

• initial facts are from the first two assignments:

$$x \rightarrow a, y \rightarrow x$$

ullet from $y \to x$ and the while-loop body, add

$$\mathbf{x} \to \mathbf{b}$$

- from the last assignment:
 - From $x \rightarrow a$ and $y \rightarrow x$, add $a \rightarrow a$
 - from $x \to b$ and $y \to x$, add $b \to b$
 - from $x \rightarrow a$, $y \rightarrow x$, and $x \rightarrow b$, add $a \rightarrow b$
 - froom $x \to b$, $y \to x$, and $x \to a$, add $b \to a$

Limitations

Not powerful enough for arbitrary language

- sound rules?
 - error prone for complicated features of modern languages
 - e.g. function call/return, function as a data, dynamic method dispatch, exception, pointer manipulation, dynamic memory allocation, ...
- accuracy problem
 - consider program a set of statements, with no order between them
 - rules do not consider the control flow
 - the analysis blindly collects every possible facts when rules hold
 - accuracy improvement by more elaborate rules, yet no systematic way for soundness proof

Example: higher-order control-flow analysis (1/4)

Consider the following higher-order call-by-value functional language. Each subexpression of the program is uniquely labeled:

```
P ::= F program
F ::=  expression
\mid x  variable
\mid \lambda x.E  a function with argument x and body E
\mid E E  function application
E ::= F_I  expression F with label I
```

- a program is an expression without a free variable
- program execution is defined by the *beta reduction* (\rightarrow) sequence in the call-by-value order: $(\lambda x.e) \ e' \rightarrow \{e'/x\}e$, where $\{e'/x\}e$ denotes the expression obtained by replacing x by e' in e. We assume that, during execution, every function's argument is uniquely renamed.

Example: higher-order control-flow analysis (2/4)

Control-flow is determined by which functions are called for each application expression. We need to collect which lambda expression can be bound to which argument during execution.

• for example, the program

$$(\lambda x.(x(\lambda y.y)))(\lambda z.z)$$

runs as follows:

$$(\lambda x.(x(\lambda y.y)))(\lambda z.z)$$
 $\rightarrow (\lambda z.z)(\lambda y.y)$
 $\rightarrow \lambda v.v$

• during the execution, the first step binds x to $\lambda z.z$ and the second step binds z to $\lambda y.y$

Example: higher-order control-flow analysis (3/4)

We let an analysis collect facts about which lambda expression " $\lambda x.e$ " a sub-expression may evaluate to. Hence, we represent each fact by a pair $L \ni R$, meaning "L can have value R".

$$\begin{array}{lll} L & ::= & \textit{I} \mid x & \text{ expression label or variable} \\ R & ::= & \textit{I} \mid x \mid v & \\ v & ::= & \lambda x.E & \text{value} \\ \end{array}$$

Note that set of facts $L \ni R$ for a program is finite.

initial fact setup rules:

$$\frac{(\lambda x.E)_I}{I \ni \lambda x.E} \qquad \frac{(x)_I}{I \ni x}$$

• the propagation rules:

$$\frac{(E_{l_1} E_{l_2})_l \quad l_1 \ni \lambda \mathbf{x}.E_{l_3} \quad l_2 \ni v}{l \ni l_3 \quad \mathbf{x} \ni v} \qquad \frac{l_1 \ni l_2 \quad l_2 \ni v}{l_1 \ni v}$$

Example: higher-order control-flow analysis (4/4)

Example (Control-flow analysis)

The initial facts are collected from the lambda expressions 1, 3, and 4 and variable expressions 5, 6, and 7:

$$\{1 \ni \lambda x.(x(\lambda y.y)), 3 \ni \lambda y.y, 4 \ni \lambda z.z, 5 \ni x, 6 \ni y, 7 \ni z\}$$

- from expression 0, we add $x \ni 4$ (parameter binding) and $0 \ni 2$ (application result)
- then by the last propagation rule from $x \ni 4$ and $4 \ni \lambda z.z$, we add $x \ni \lambda z.z$, and then from $5 \ni x$, we add $5 \ni \lambda z.z$
- then from application expression 2, we add $z \ni 3$ (parameter binding) and $2 \ni 7$ (application result)
- then by the last propagation rule, we add $z \ni \lambda y.y.$; then, from $7 \ni z$, we add $7 \ni \lambda y.y.$, then $2 \ni \lambda y.y.$, and then $0 \ni \lambda y.y.$

Limitations

- the above analysis uses a crude abstraction for the function values. It collects only the function code part (lambda expressions), with no distinction for the values of the function's free variables.
 - a function value in the concrete semantics is a pair of the function code and a table (called *environment*) that determines the values of the function's free variables. The above analysis completely abstracts away the environment part.
 - during a program's execution, a function expression $(\lambda x.E)$ may evaluate into distinct values at different contexts (i.e., when the function's free variable is the parameter of a function that is multiply called with different values).
- for more elaborate abstraction for function values, the above analysis needs an overhaul, whose design and soundness assurance will be facilitated by general semantic frameworks of chapters 3 and 4.

Outline

- Static Analysis by Equations
- Static Analysis by Monotonic Closure
- 3 Static Analysis by Proof Construction
- 4 Summary

Static analysis by proof construction

- static analysis = proof construction in a finite proof system
- finite proof system = a finite set of inference rules for a predefined set of judgments
- the soundness corresponds to the soundness of the proof system.
 - ▶ the input program is provable ⇒ the program satisfies the proven judgment.

Example: type inference (1/4)

• judgment that says expression E has type τ is written as

$$\Gamma \vdash E : \tau$$

• Γ is a set of type assumptions for the free variables in E.

Example: type inference (2/4)

Consider *simple types*

$$\tau ::= \operatorname{int} \mid \tau \to \tau$$

$$\frac{\mathbf{x} : \tau \in \Gamma}{\Gamma \vdash n : \operatorname{int}} \qquad \frac{\mathbf{x} : \tau \in \Gamma}{\Gamma \vdash \mathbf{x} : \tau}$$

$$\frac{\Gamma + \mathbf{x} : \tau_1 \vdash E : \tau_2}{\Gamma \vdash \lambda \mathbf{x} . E : \tau_1 \to \tau_2} \qquad \frac{\Gamma \vdash E_1 : \tau_1 \to \tau_2 \quad \Gamma \vdash E_2 : \tau_1}{\Gamma \vdash E_1 E_2 : \tau_2}$$

Figure: Proof rules of simple types

Theorem (Soundness of the proof rules)

Let E be a program, an expression without free variables. If $\emptyset \vdash E : \tau$, then the program runs without a type error and returns a value of type τ if it terminates.

Example: type inference (3/4)

Program

$$(\lambda x.x 1)(\lambda y.y)$$

is typed int because we can prove

$$\emptyset \vdash (\lambda x.x \ 1)(\lambda y.y) : int$$

as follows:

$$\begin{array}{c} x: \textit{int} \rightarrow \textit{int} \ \in \{x: \textit{int} \rightarrow \textit{int}\} \\ \hline \{x: \textit{int} \rightarrow \textit{int}\} \vdash x: \textit{int} \rightarrow \textit{int}\} \\ \hline \\ \underbrace{\{x: \textit{int} \rightarrow \textit{int}\} \vdash x: \textit{int}}_{\{x: \textit{int} \rightarrow \textit{int}\} \vdash x: \textit{int}} \\ \hline \\ \underbrace{\{x: \textit{int} \rightarrow \textit{int}\} \vdash x: \textit{int}}_{\{y: \textit{int}\} \vdash y: \textit{int}} \\ \hline \\ \underbrace{\{y: \textit{int}\} \vdash y: \textit{int}}_{\{y: \textit{int}\} \vdash y: \textit{int}} \\ \hline \\ \underbrace{\{y: \textit{int}\} \vdash y: \textit{int}}_{\{y: \textit{int} \rightarrow \textit{int}\} \\ \hline \\ \emptyset \vdash (\lambda x. x: 1)(\lambda y. y): \textit{int}} \\ \end{array}$$

Example: type inference (4/4)

Algorithm

• given a program E, $V(\emptyset, E, \alpha)$ (new type variable α) returns a set of type equations of $\tau \doteq \tau'$. Here, $\tau := \alpha \mid int \mid \tau \to \tau$.

$$\begin{array}{rcl} V(\Gamma,n,\tau) &=& \{\tau \doteq int\} \\ V(\Gamma,\mathtt{x},\tau) &=& \{\tau \doteq \Gamma(\mathtt{x})\} \\ V(\Gamma,\lambda\mathtt{x}.E,\tau) &=& \{\tau \doteq \alpha_1 \rightarrow \alpha_2\} \cup V(\Gamma+\mathtt{x}:\alpha_1,E,\alpha_2) \quad (\mathsf{new} \ \alpha_i) \\ V(\Gamma,E_1\ E_2,\tau) &=& V(\Gamma,E_1,\alpha \rightarrow \tau) \cup V(\Gamma,E_2,\alpha) \quad (\mathsf{new} \ \alpha) \end{array}$$

- solving the equations $V(\emptyset, E, \alpha)$ is done by the *unification* procedure
- the unification procedure finds the most general (least) solution

Theorem (Correctness of the algorithm)

Solving the equations \equiv proving in the simple type system

More precise analysis? (i.e., for more programs that run without a type error to be provable)

• need new proof rules (e.g., polymorphic type systems) and algorithms

Limitations

- for target languages that lack a sound static type system, we have to invent it:
 - design a finite proof system
 - prove the soundness of the proof system
 - design its algorithm that automates proving
 - prove the correctness of the algorithm
- what if the unification procedure is not enough?
 - for some properties, the algorithm can generate constraints that are unsolvable by the unification procedure
- for some conventional imperative languages, sound and precise-enough static type systems are elusive

Outline

- Static Analysis by Equations
- Static Analysis by Monotonic Closure
- Static Analysis by Proof Construction
- Summary

Summary

Sketched three specialized framework and their limitations

- static analysis by equations (a.k.a "data-flow analysis")
- static analysis by monotonic closure
- static analysis by proof construction (a.k.a "static type system")

A reminder

- for specific languages and semantic properties, they can be powerful enough, yet
- weak in handling arbitrary languages and properites
- not general enough as the semantics-based frameworks (chapter 3 and chapter 4)