Algebra Lineare e Geometria Analitica Ingegneria dell'Automazione Industriale

Ayman Marpicati

A.A. 2022/2023

Indice

Capitolo 1	Nozioni preliminari	Pagina 4
1.1	Relazioni su un insieme	4
1.2	Strutture algebriche	4
1.3	Matrici	5
Canitala 2		- · ·
Capitolo 2	Spazi vettoriali	Pagina 7
2.1	Generalità	7
2.2	Sottospazi di uno spazio vettoriale	7
2.3	Indipendenza e dipendenza lineare	8
2.4	Sistemi di generatori di uno spazio vettoriale	10
2.5	Basi e dimensione	10
2.6	Intersezione e somma di sottospazi	14
Capitolo 3	Sistemi lineari	Pagina 17
3.1	Determinante di una matrice quadrata	17
3.2	Matrici invertibili	18
3.3	Dipendenza lineare e determinanti	18
3.4	Sistemi lineari	19
3.5	Cambiamenti di base	23
Capitolo 4	Autovalori, autovettori e diagonalizzabilità	Pagina 25
_		9
4.1 4.2	Ricerca di autovalori, polinomio caratteristico	25
4.2	Matrici diagonalizzabili	26
Capitolo 5	Forme bilineari e prodotti scalari	Pagina 28
5.1	Forme bilineari	28
5.2	Prodotti scalari e ortogonalità	28
5.3	Spazi con prodotto scalare definito positivo	30
5.4	Matrici di forme bilineari	33
5.5	Matrici ortogonali e basi ortonormali	34
5.6	Matrici reali simmetriche	34

Capitolo 1

Nozioni preliminari

1.1 Relazioni su un insieme

Definizione 1.1.1: Relazione su un insieme

Una **relazione** su un insieme A è un qualunque sottoinsieme di \mathcal{R} del prodotto cartesiano $A \times A$. Una relazione \mathcal{R} su un insieme A si dice:

- riflessiva se, per ogni $a \in A$, aRa;
- simmetrica se, per ogni $a, b \in A$, aRb allora a = b;
- antisimmetrica se, per ogni $a, b \in A$, $aRb \in bRa$ allora a = b;
- transitiva se, per ogni $a, b, c \in A$, $aRb \in bRc$ allora aRc;

Definizione 1.1.2: Relazione d'ordine totale

Una relazione d'ordine \mathcal{R} su un insieme A si dice **relazione d'ordine** se è riflessiva, antisimmetrica e transitiva. Se inoltre, gli elementi di A sono a due a due confrontabili, cioè, per ogni $a,b \in A$, risulta $a\mathcal{R}b$ oppure $b\mathcal{R}a$, la relazione \mathcal{R} si dice **relazione d'ordine totale**.

1.2 Strutture algebriche

Definizione 1.2.1: Gruppo

Sia (G, \star) un insieme con un'operazione \star . La struttura (G, \star) si dice **gruppo** se:

- l'operazione ★ è associativa;
- esiste in G l'elemento neutro;
- \bullet ogni elemento di $g \in G$ è simmetrizzabile.

Se l'operazione ★ soddisfa anche la proprietà commutativa, il gruppo si dice abeliano.

1.3. MATRICI 5

Definizione 1.2.2: Campo

Sia A un insieme sul quale sono definite due operazioni che indichiamo con i simboli "+" e "·" e che chiamiamo somma e prodotto rispettivamente. La struttura $(A, +, \cdot)$ è un **campo** se sussistono le condizioni seguenti:

- (A, +) è un gruppo abeliano il cui elemento neutro è indicato con 0;
- $(A \setminus \{0\}, \cdot)$ è un gruppo abeliano con elemento neutro $e \neq 0$;
- valgono le proprietà distributive (sinistra e destra) del prodotto rispetto alla somma, cioè per ogni $a,b,c\in A$

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
; $(a+b) \cdot c = a \cdot c + b \cdot c$

1.3 Matrici

Definizione 1.3.1: Matrice

Dato un campo K si dice **matrice** di tipo $m \times n$ su K una tabella del tipo:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

avente m righe ed n colonne, i cui elementi a_{ij} sono elementi di K.

Definizione 1.3.2: Matrice quadrata

Una matrice di tipo $n \times n$ è detta matrice quadrata di ordine n. Queste vengono indicate con $M_n(K)$.

Definizione 1.3.3: Prodotto righe per colonne

Date le matrici $A=(a_{ih})\in K^{m,n}(K)$ con $i\in I_m, h\in I_n$ e $B=(b_{hj})\in K^{n,p}$ con $h\in I_n, j\in I_p$, si dice **prodotto righe per colonne** di A per B la matrice

$$A \cdot B = (c_{ij}) \text{ con } i \in I_m, j \in I_p$$
 ove

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{h \in I_n} a_{ih}b_{hj}$$

Esempio 1.3.1

Prendiamo per esempio le due matrici:

$$A = \begin{pmatrix} -3 & 0 & 2 \\ -4 & 7 & 1 \end{pmatrix} \quad B = \begin{pmatrix} -5 & -1 & 2 \\ 0 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}$$

Il loro prodotto è

$$\begin{pmatrix} -3\cdot (-5) + 0\cdot 0 + 2\cdot 1 & -3\cdot (-1) + 0\cdot 1 + 2\cdot 1 & -3\cdot 2 + 0\cdot (-2) + 2\cdot 3 \\ -4\cdot (-5) + 7\cdot 0 + 1\cdot 1 & -4\cdot (-1) + 7\cdot 1 + 1\cdot 1 & -4\cdot 2 + 7\cdot (-2) + 1\cdot 3 \end{pmatrix}$$

Quindi

$$A \cdot B = \begin{pmatrix} 17 & 5 & 0 \\ 21 & 12 & -19 \end{pmatrix}$$

Definizione 1.3.4: Matrice identica

L'elemento neutro delle matrici quadrate di ordine n è la matrice identica, cioè la matrice:

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Definizione 1.3.5: Trasposta di una matrice

Sia $A=(a_{ij})$ una matrice di $K^{m,n}$. Si dice **trasposta** di A la matrice $K^{n,m}$ ottenuta scambiando tra loro le righe con le colonne, cioè ${}^tA=(b_{ji})$ ove $b_{ji}=a_{ij}$ per ogni $i\in I_n$ e $j\in I_m$.

Capitolo 2

Spazi vettoriali

2.1 Generalità

Definizione 2.1.1: Spazio vettoriale

Siano K un campo e V un insieme. Si dice che V è uno **spazio vettoriale** sul campo K, se sono definite due operazioni: un'operazione interna binaria su V, detta somma, $+: V \times V \to V$ e un'operazione estrema detta prodotto esterno o prodotto per scalari, $\cdot: K \times V \to V$, tali che

- (V, +) sia un gruppo abeliano;
- \bullet il prodotto esterno \cdot soddisfi le seguenti proprietà:
 - $-\ (h\cdot k)\cdot v = h\cdot (k\cdot v) \quad \forall h,k\in K \quad e \quad \forall v\in V$
 - $-(h+k)\cdot v = h\cdot v + k\cdot v \quad \forall h, k \in K \quad e \quad \forall v \in V$
 - $-h \cdot (v+w) = h \cdot v + h \cdot w \quad \forall h, k \in K \quad e \quad \forall v, w \in V$
 - $-1 \cdot v = v \quad \forall v \in V$

Gli elementi dell'insieme V sono detti **vettori**, gli elementi del campo K sono chiamati **scalari**. L'elemento neutro di (V, +) è detto **vettor nullo** e indicato $\underline{0}$ per distinguerlo da 0, zero del campo K. L'opposto di ogni vettore \mathbf{v} viene indicato con $-\mathbf{v}$.

Teorema 2.1.1

Sia V uno spazio vettoriale sul campo K, siano $k \in K$ e $v \in V$. Allora

$$kv = 0 \iff k = 0 \text{ oppure } v = 0$$

Dimostrazione: Se k = 0

$$0v = (0+0)v = 0v + 0v$$

e sommando -0v ad ambo i membri si ottiene appunto $\underline{0} = 0v$. Se è $v = \underline{0}$, si procede nel modo analogo. Viceversa, se $kv = \underline{0}$ e $k \neq 0$ dimostriamo che $v = \underline{0}$. Dato che $k \neq 0$, esiste l'inverso $k^{-1} \in K$ e, moltiplicando ambo i membri della precedente uguaglianza per k^{-1} si ottiene $k^{-1}(kv) = k^{-1}\underline{0}$ che, per quanto dimostrato in precedenza dà il $\underline{0}$. Dato che $k^{-1}(kv) = (k^{-1}k)v = 1v = v$, per la proprietà 4, si ha v = 0.

2.2 Sottospazi di uno spazio vettoriale

Definizione 2.2.1: Sottospazio vettoriale

Sia $\emptyset \neq U \subseteq V$, diremo che U è **sottospazio vettoriale** di V se è esso stesso uno spazio vettoriale rispetto alla restrizione delle stesse operazioni.

Proposizione 2.2.1 Primo criterio di riconoscimento

Sia V(K) uno spazio vettoriale e sia $\emptyset \neq U \subseteq V$ un suo sottoinsieme. Il sottoinsieme U è uno spazio vettoriale di V se, e soltanto se, sono verificate le seguenti condizioni:

- 1. $\forall u, u' \in U \quad u + u' \in U$
- 2. $\forall k \in K, \ \forall u \in U \quad ku \in U$

Proposizione 2.2.2 Secondo criterio di riconoscimento

Sia V(K) uno spazio vettoriale sul campo K e sia $\emptyset \neq U \subseteq V$, U è sottospazio di V(K) se e soltanto se

$$hv_1 + kv_2 \in U \quad \forall v_1, v_2 \in U \quad e \quad h, k \in K$$

2.3 Indipendenza e dipendenza lineare

Definizione 2.3.1: Combinazione lineare

Siano $v_1, v_2, ..., v_n \in V(K)$ si dice combinazione lineare di vettori $v_1, v_2, ..., v_n$ ogni vettore v:

$$v = k_1 \cdot v_1 + k_2 \cdot v_2 + ... + k_n \cdot v_n \quad \text{con } k_1, k_2, ..., k_n \in K$$

Definizione 2.3.2: Sistema di vettori libero

Sia V(K) e sia A un sistema di vettori di V(K), $A = [v_1, v_2, ..., v_n]$, allora A si dice **libero** se l'unica combinazione lineare di vettori di A che dà il vettore nullo è a coefficienti tutti nulli

$$0 = k_1 \cdot v_1 + k_2 \cdot v_2 + ... + k_n \cdot v_n \implies k_1 = k_2 = ... = k_n = 0$$

Se A è libero i suoi vettori si dicono linearmente indipendenti.

Definizione 2.3.3: Sistema di vettori legato

Sia V(K) e sia A un sistema di vettori di V(K), $A = [v_1, v_2, ..., v_n]$, allora A si dice **legato** se **non** è libero. Quindi:

$$\exists k_1, k_2, ..., k_n \text{ non tutti nulli} : \underline{0} = k_1 \cdot v_1 + k_2 \cdot v_2 + ... + k_n \cdot v_n$$

Se A è legato i suoi vettori si dicono linearmente dipendenti.

Qui di seguito daremo delle proposizioni riguardo ai sistemi liberi e legati:

Proposizione 2.3.1

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K). Se $\underline{0}$ appartiene ad A, il sistema A è legato.

Dimostrazione: Sia $0 \in A$, senza perdita di generalità, possiamo supporre che $0 = v_1$ quindi:

$$1 \cdot v_1 + 0 \cdot v_2 + \dots + 0 \cdot v_n = 1 \cdot 0 + 0 = 0 \implies A$$
è legato

⊜

Proposizione 2.3.2

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K). Se in A appaiono due vettori proporzionali allora A è legato.

Dimostrazione: Senza perdita di generalità possiamo supporre che $v_1 = kv_2$ e quindi:

$$1v_1 + kv_2 + 0v_3 + ... + 0v_n = v_1 - kv_2 + 0 = 0 \implies A$$
è legato

☺

Proposizione 2.3.3

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K). A è legato se e solo se almeno uno dei vettori si può riscrivere come combinazione lineare degli altri.

 $Dimostrazione: \implies$: Per ipotesi A è legato e quindi:

$$0 = k_1 v_1 + k_2 v_2 + \dots + k_n v_n \text{ con almeno un } k_i = 0$$

Senza perdita di generalità supponiamo che $k_1 \neq 0$

$$-k_1 v_1 = k_2 v_2 + \dots + k_n v_n \qquad v_1 = \frac{1}{k_1} (-k_2 v_2 - \dots - k_n v_n)$$
$$v_1 = -\frac{k_2}{k_1} v_2 - \frac{k_3}{k_1} v_3 - \dots - \frac{k_n}{k_1} v_n$$

e quindi v_1 è combinazione lineare di $v_1, ..., v_n$.

⇐ : Per ipotesi uno dei vettori di A è combinazione lineare degli altri e senza perdita di generalità:

$$v_1 = k_2 v_2 + k_3 v_3 + \dots + k_n v_n$$
 $\underline{0} = -1v_1 + k_2 v_2 + \dots + k_n v_n$

siccome $-1 \neq 0$ A è legato.

⊜

Proposizione 2.3.4

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K) e sia $u \in V(K)$. Se $A \cup \{u\}$ è legato, allora u è combinazione lineare dei vettori di A.

Dimostrazione: Per ipotesi $A \cup \{u\}$ è legato, cioè:

$$\exists k_1,k_2,...,k_n,b\in K \text{ non tutti nulli }: \underline{0}=k_1v_1+k_2v_2+...+k_nv_n+bu$$

sia per assurdo b = 0

$$\underline{0} = k_1 v_1 + k_2 v_2 + \dots + k_n v_n \text{ con } k_1 \neq 0 \implies A \text{ è legato, assurdo!} \implies b \neq 0$$
$$-bu = k_1 v_1 + k_2 v_2 + \dots + k_n v_n \quad u = -\frac{k_1}{b} v_1 - \frac{k_2}{b} v_2 - \dots - \frac{k_n}{b} v_n$$

 $\implies u$ è combinazione lineare dei vettori $v_1, v_2, ..., v_n$

⊜

Proposizione 2.3.5

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K) e sia $B \supseteq A$ sistema di vettori di V(K). Se A è legato allora anche B è legato.

Dimostrazione:

$$\exists k_1, k_2, ..., k_n \in K \text{ non tutti nulli } : \underline{0} = k_1 v_1 + k_2 v_2 + ... + k_n v_n$$

Se $B = [v_1, v_2, ..., v_n, w_1, w_2, ..., w_m]$ allora

$$0 = k_1 v_1 + k_2 v_2 + ... + k_n v_n + 0 w_1 + 0 w_2 + ... + 0 w_m$$

 \implies B è legato.

⊜

☺

Proposizione 2.3.6

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K) e sia $B \subseteq A$ sistema di vettori di V(K), se A è libero, allora B è libero.

Dimostrazione: Sia, per assurdo, B legato, allora per la proposizione precedente anche A è legato. **Assurdo!** Quindi B è libero.

2.4 Sistemi di generatori di uno spazio vettoriale

Definizione 2.4.1: Sistema di generatori

Sia A sistema di vettori di V(K). A si dice sistema di generatori di V(K) se ogni $v \in V(K)$ si può scrivener come combinazione lineare di un numero finito di vettori di A.

Definizione 2.4.2: Copertura lineare

Sia A un sistema di vettori di V(K) si dice copertura (o chiusura) lineare di A l'insieme $\mathcal{L}(A)$ di tutte le combinazioni lineari di sottoinsiemi finiti di A.

N.B.

Dato A sistema di vettori di V(K)

- 1. $\mathcal{L}(A)$ è il più piccolo sottospazio di V(K) che contiene A
- 2. $\mathcal{L}(A) \leq V(K)$
- 3. $\mathcal{L}(\mathcal{L}(A)) = \mathcal{L}(A)$

Ogni spazio vettoriale ammette un sistema di generatori e:

- se V(K) ammette un sistema di generatori finito $\implies V(K)$ si dice finitamente generato.
- se ogni sistema di generatori di V(K) ha cardinalità infinita $\implies V(K)$ non è finitamente generato.

2.5 Basi e dimensione

Lemma 2.5.1

Sia $S = [v_1, v_2, ..., v_n]$ un sistema di generatori per uno spazio vettoriale V(K), e sia $v \in S$ combinazione lineare degli altri vettori (linearmente dipendente dagli altri) $\Longrightarrow S \setminus \{v\}$ è sistema di generatori per V(K)

Dimostrazione: Sia, senza perdere di generalità, v_1 combinazione lineare di $v_2, v_3, ..., v_n$

$$v_1 = k_2 v_2 + k_3 v_3 + \dots + k_n v_n$$

sia $v \in V(K)$

$$v = h_1 v_1 + h_2 v_2 + \dots + h_n v_n = h_1 (k_2 v_2 + \dots + k_n v_n) + h_2 v_2 + \dots + h_n v_n$$

$$v = \underbrace{(h_1 k_2 + h_2)}_{\in K} v_2 + \dots + \underbrace{(h_1 k_n + h_n)}_{\in K} v_n \in \mathcal{L}([v_2, v_3, \dots, v_n]) = \mathcal{L}(S \setminus \{v_1\})$$

 $\implies S \setminus \{v_1\}$ è un sistema di generatori.

Teorema 2.5.1

Sia V(K) uno spazio vettoriale finitamente generato, non banale $(V(K) \neq \{\underline{0}\})$, allora esso ammette un sistema libero di generatori.

(2)

Dimostrazione: sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori per V(K), abbiamo due possibilità:

- 1. A è libero ⇒ A è un sistema di generatori libero;
- 2. A è legato $\implies \exists v \in A$ combinazione lineare degli altri, senza perdita di generalità possiamo porre $v = v_1 \implies A \setminus \{v_1\} = A_1$ è sistema di generatori.

Se ci troviamo nel secondo caso possiamo reiterare il procedimento e trovare $A_2 \to A_3 \to \dots$ finché non arriviamo ad un sistema libero di generatori.

Osserviamo che A contiene almeno un $v \in A$: $v \neq \underline{0}$, questo perché $A_n = [0]$ e $v_n \neq \underline{0}$ perché $A \neq \{\underline{0}\} \implies A_n$ è necessariamente libero.

Definizione 2.5.1: Base

Sia $S = (v_1, v_2, ..., v_n)$ sequenza libera di vettori di V(K). S è detta base se e solo se S è una sequenza libera di generatori.

Definizione 2.5.2: Base canonica di \mathbb{R}^n

((1,0,0,...,0)(0,1,0,...,0),...,(0,0,0,...,1))è una base canonica per \mathbb{R}^n .

Lemma 2.5.2 Lemma di Steinitz

Sia V(K) uno spazio vettoriale finitamente generato. Sia $B = [v_1, v_2, ..., v_n]$ sistema di generatori e $A = [u_1, u_2, ..., u_m]$ sistema libero. Allora la cardinalità di A sarà sempre minore o uguale a quella del sistema di generatori. $(m \le n)$

Dimostrazione: Sia per assurdo m > n, poiché B genera V(K) u_1 si scrive come:

$$u_1 = k_1 v_1 + k_2 v_2 + ... + k_n v_n$$

Essendo A libero $u_1 \neq \underline{0} \implies k_1, k_2, ..., k_n$ non sono tutti nulli \implies senza perdita di generalità $k_1 \neq 0$

$$-k_1v_1 = -u_1 + k_2v_2 + \dots + k_nv_n \qquad v_1 = \frac{1}{k_1}(u_1 - k_2v_2 - \dots - k_nv_n)$$

$$\implies v_1 \in \mathcal{L}([u_1, v_2, v_3, ..., v_n])$$

B è sistema di generatori, $B \cup \{u_1\}$ è sistema di generatori, di conseguenza $(B \cup \{u_1\} \setminus \{v_1\}) = B_1 = [u_1, v_2, ..., v_n]$ è ancora sistema di generatori per V(K).

Allo stesso modo posso riscrivere

$$u_2 = \alpha u_1 + h_2 v_2 + h_3 v_3 + \dots + h_n v_n \quad \text{con } \alpha, h_2, h_3, \dots, h_n \in K$$

Se avessimo $h_2 = h_3 = \dots = h_n = 0$ $u_2 = \alpha$ ma ciò non può succedere perché A è libero $\implies \exists h_i \neq 0$ e senza perdita di generalità supporremo $h_2 \neq 0$ quindi:

$$-h_2v_2 = \alpha u_1 - u_2 + h_3v_3 + \dots + h_nv_n \qquad v_2 = \frac{1}{h_2}(-\alpha u_1 + u_2 - h_3v_3 - \dots - h_nv_n)$$

 v_2 è linearmente dipendente da $B_2 = [u_1, u_2, v_3, ..., v_n]$ e B_2 , per lo stesso motivo di B_1 è ancora sistema di generatori.

Ora immaginiamoci di reiterare il procedimento n volte fino a trovare un sistema $B_n = [u_1, u_2, ..., u_n]$. Siccome avevamo supposto che m > n essendo B_n sistema di generatori dovremo essere in grado di scrivere anche u_{n+1} come combinazione lineare dei vettori di B_n , cioè:

$$u_{n+1} \in \mathcal{L}(B_n)$$
 $u_{n+1} = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n$

questo comporta che A sia legato, ma questo è assurdo! $\implies m \le n$.

Teorema 2.5.2

Sia V(K) uno spazio vettoriale finitamente generato, e siano B_1 e B_2 due sue basi le loro cardinalità sono uguali:

$$B_1 = (v_1, v_2, ..., v_n)$$
 $B_2 = (u_1, u_2, ..., u_n)$ $m = r$

Dimostrazione: Per dimostrarlo è sufficiente applicare il lemma di Steinitz

- B_1 sistema di generatori, B_2 sistema libero $\implies n \ge m$;
- B_2 sistema di generatori, B_1 sistema libero $\implies m \ge n$.

 $m \ge n \in n \ge m \iff n = m.$

(

Definizione 2.5.3: Dimensione

Dato uno spazio vettoriale finitamente generato, non banale, chiamiamo **dimensione** di V la cardinalità di una qualsiasi delle sue basi. Inoltre se $V = \{0\}$ poniamo la dim(V) = 0

Qui di seguito enunciamo una serie di conseguenze del lemma di Steinitz.

Proposizione 2.5.1

Sia $V_n(K)$ uno spazio vettoriale di dimensione n su K e sia $S = [v_1, v_2, ..., v_n]$ un sistema di generatori. Allora S è libero.

Dimostrazione: Sia $B = [w_1, w_2, ..., w_n]$ una base di $V_n(K)$. Sia per assurdo S legato. Senza perdita di generalità $v_1 = k_2v_2 + k_3v_3 + ... + k_nv_n$. Allora $S' = S \setminus \{v_1\}$ è ancora sistema di generatori. $|S'| = n - 1 \ge |B|$ perché B è libero per il lemma di Steinitz. **Assurdo!**. Quindi S è libero.

Proposizione 2.5.2

Sia V(K) uno spazio vettoriale di dimensione n sul campo K. Sia $S = [v_1, v_2, ..., v_n]$ un sistema libero. Allora S è anche un sistema di generatori.

Dimostrazione: Sia $B = [w_1, w_2, ..., w_n]$ una base di V(K), supponiamo per assurdo che S non generi.

$$\implies \exists v \in V \text{ con } v \neq 0$$

 $S' = S \cup \{u\}$ è ancora libero, supponiamo per assurdo che non lo sia:

sia
$$0 = k_1v_1 + k_2v_2 + \dots + k_nv_n + \alpha v$$
 con $\alpha \neq 0$

altrimenti avremmo: $0 = k_1v_1 + k_2v_2 + ... + k_nv_n$

$$v = \frac{1}{\alpha}(-k_1v_1 - k_2v_2 - \dots - k_nv_n) \in \mathcal{L}(S)$$

 $\implies v \in \mathcal{L}(S)$ assurdo! Contro l'ipotesi che $v \notin \mathcal{L}(S) \implies S'$ è libero.

$$\underbrace{|S'| = n+1}_{\text{sistema libero}} \leq \underbrace{|B| = n}_{\text{sequenza di generatori}} \rightarrow \text{ per il lemma di Steinitz}$$

Assurdo! \implies S è un sistema di generatori.

⊜

Proposizione 2.5.3

m vettori in $V_n(K)$ con m > n sono sempre linearmente dipendenti.

Dimostrazione: Siano per assurdo $[v_1, v_2, ..., v_m]$, m vettori linearmente indipendenti con m > n. Sia B una base di $V_n(K)$. $m = |S = [v_1, v_2, ..., v_m]| \le |B| = n$ per il lemma di Steinitz. Ma per ipotesi m > n, assurdo!

☺

(3)

Proposizione 2.5.4

m vettori in $V_n(K)$ con $m < n \implies$ non possono generare.

Dimostrazione: siano $v_1, v_2, ..., v_m$ per assurdo m vettori che generano $V_n(K)$ con m < n allora:

$$m = |S = [v_1, v_2, ..., v_n]| \ge |B| = n \text{ con } m \ge n \text{ per il lemma di Steinitz}$$

Assurdo! Va contro all'ipotesi.

Teorema 2.5.3 Teorema di caratterizzazione delle basi

Sia $B = (v_1, v_2, ..., v_n)$ una sequenza di vettori di V(K). B è una base se e solo se ogni vettore di V si può scrivere in maniera univoca come combinazione lineare dei vettori di B.

$$\forall v \in V, \exists! \ v = k_1 v_1 + k_2 v_2 + ... + k_n v_n \quad k_i \in K$$

Dimostrazione: \implies sia B una base di V. Per ogni v si ha che $v \in \mathcal{L}(B)$ perché B è una sequenza di generatori. Supponiamo per assurdo che esista $v \in V$:

$$v = v = k_1 v_1 + k_2 v_2 + \dots + k_n v_n = h_1 v_1 + h_2 v_2 + \dots + h_n v_n$$
 con almeno un $k_i \neq h_i$

$$(k_1 - h_1)v_1 + (k_2 - h_2)v_2 + ... + (k_n - h_n)v_n = 0$$

B è una sequenza libera, quindi $(k_i - h_i) = 0 \implies k_i = h_i$ perché l'unica combinazione lineare che dà il vettore nullo è quella a coefficienti tutti nulli. Ma avevamo supposto che $k_i \neq h_i \implies \mathbf{assurdo!} \implies \exists !$ la combinazione lineare dei vettori di B che dà v ($\forall v \in V$).

 \iff per ipotesi $\forall v \in V \exists !$ combinazione lineare dei vettori di B che dà v. B è una sequenza di generatori, cioè $\forall v \in V \implies v \in \mathcal{L}(B)$. Supponiamo per assurdo che B sia legato $\implies \exists k_i \in K$ non nullo:

$$0 = k_1 v_1 + k_2 v_2 + ... + k_n v_n$$
 $0 = 0 v_1 + 0 v_2 + ... + 0 v_n$

quindi esistono almeno due combinazioni lineari di B che danno $\underline{0}$. Dato che $\underline{0} \in V$ per ipotesi esiste un unica combinazione lineare dei vettori di B che dà $\underline{0}$. **Assurdo!** Quindi B è una sequenza libera e B è una base per V.

Definizione 2.5.4: Componenti di un vettore rispetto ad una base

Sia $B=(v_1,v_2,...,v_n)$ una base di $V_n(K)$ e sia $v\in V$. Chiameremo componenti di v rispetto alla base B la sequenza $(k_1,k_2,...,k_n)$:

$$v = k_1 v_1 + k_2 v_2 + \dots + k_n v_n$$

Proposizione 2.5.5

Sia $V_n(K)$ uno spazio vettoriale di dimensione n sul campo K, allora $V_n(K)$ ammette almeno un sottospazio di dimensione $m \ \forall 0 \leq m \leq n$.

Dimostrazione: sia $B = (v_1, v_2, ..., v_n)$ una base di $V_n(K)$ e sia $0 \le m \le n$, ci sono due possibilità:

- 1. $m = 0 \implies \{0\}$ è il sottospazio voluto;
- 2. $0 < m \le n$ e quindi $S = (v_1, v_2, ..., v_m)$
- $\mathcal{L}(S)$ ha dimensione *m* perché *S* è libero $(S \subseteq B)$ e genera, per definizione $\mathcal{L}(S)$.

☺

Proposizione 2.5.6

Siano $U, W \leq V_n(K)$ e sia $U \leq W$, allora:

- 1. $\dim(U) \leq \dim(W)$
- 2. $U = W \iff \dim(U) = \dim(W)$

Dimostrazione: Dimostriamo i due punti:

1. Sia B base per U e B' base per W, se per assurdo

$$\underbrace{\dim(U) = |B|}_{\text{sequenza libera di }W} > \underbrace{\dim(W) = |B'|}_{\text{genera }W}$$

contro il lemma di Steinitz.

 $2. \implies \text{è banale};$

 \iff sia per assurdo U < W e sia B base di U, allora

$$|B| = \dim(U) = \dim(W)$$

quindi B è una base anche per $W \implies \mathcal{L}(B) = W \implies W = U$ Assurdo!

Teorema 2.5.4 Teorema del completamento ad una base

Sia $V_n(K)$ uno spazio vettoriale di dimensione n e sia $A = (v_1, v_2, ..., v_p)$, ove $p \le n$, una sequenza libera di vettori in $V_n(K)$. Allora, in una qualunque base di B di $V_n(K)$, esiste una sequenza B' di vettori, tale che $A \cup B'$ è una base di $V_n(K)$.

2.6 Intersezione e somma di sottospazi

Proposizione 2.6.1

Sia $V_n(K)$ uno spazio vettoriale di dimensione n sul campo K e siano $U, V \leq V \implies U \cap W$ è sottospazio di V.

Dimostrazione: Richiamo il secondo criterio di riconoscimento dei sottospazi. $U \cap W$ è un sottospazio di $V \iff$ è sottoinsieme non vuoto di V:

$$\forall v_1, v_2 \in U \cap W, \ \forall k_1, k_2 \in K, \ k_1v_1 + k_2v_2 \in U \cap W$$

 $U \cap W$ è sottoinsieme non vuoto di V, perché $U \subseteq V$, $W \subseteq V$ e $\underline{0} \in U \cap W$. Siano ora $v_1, v_2 \in U \cap W$ e $k_1, k_2 \in K$, osserviamo per il secondo criterio di riconoscimento che $k_1v_1 + k_2v_2 \in U$ e per lo stesso motivo $k_1v_1 + k_2v_2 \in W$ $\implies k_1v_1 + k_2v_2 \in U \cap W \implies U \cap W$ è un sottospazio vettoriale.

Sotto le stesse ipotesi della proposizione precedente abbiamo che $U \cup W$ non è un sottospazio a meno che $U \subseteq W$ oppure $W \subseteq U$.

Definizione 2.6.1: Spazio di somma

Dati $U \in W \le V$ spazio vettoriale di dimensione n su K definiamo lo spazio di somma come:

$$U + W := \{u + w \mid u \in U \ e \ w \in W\}$$

Proposizione 2.6.2

Dati U e $W \leq V$ spazio vettoriale di dimensione n su K abbiamo che: $U + W \leq V$

Dimostrazione: Osserviamo che $U+W\subseteq V$ perché dato $u\in U$ e $w\in W$, $u\in V$ e $w\in V$ ⇒ $u+w\in V$, il quale non è vuoto perché $0\in U+W$. Siano $v_1,v_2\in U+W$ e siano $k_1,k_2\in K$

$$k_{1} \cdot \underbrace{v_{1}}_{=u_{1}+w_{1}} + k_{2} \cdot \underbrace{v_{2}}_{=u_{2}+w_{2}} = k_{1}(u_{1}+w_{1}) + k_{2}(u_{2}+w_{2}) = \underbrace{(k_{1}u_{1}+k_{1}w_{1})}_{u_{3} \in U \text{ per il } 2^{\circ} \text{ criterio}} + \underbrace{(k_{2}u_{2}+k_{2}w_{2})}_{w_{3} \in W \text{ per il } 2^{\circ} \text{ criterio}}$$

$$\implies u_{3}+w_{3} \in U+W \implies \text{per il } 2^{\circ} \text{ criterio } U+W \leq V$$

Proposizione 2.6.3

Siano $U, W \leq V_n(K)$ allora U + W è il più piccolo sottospazio di V che cotiene $U \cup W$; equivalentemente

$$\mathcal{L}(U \cup W) = U + W$$

Definizione 2.6.2: Somma diretta

Dati $U, W \leq V_n(K)$ diremo che U+W è somma diretta se $\forall v \in U+W$ può essere scritto come unico modo come u+w. Equivalentemente

$$\forall v \in U + W \quad \exists! \ u \in U \ e \ w \in W : \quad v = u + w$$

Se U+W è una somma diretta allora la indicheremo con $U\oplus W$.

Proposizione 2.6.4

Siano $U, W \le V_n(K)$ allora $U \oplus W \iff U \cap W = \{0\}.$

Dimostrazione: \Longrightarrow Siano U,W in somma diretta e sia, per assurdo: $x \in U \cap W$ con $x \neq \underline{0}$. Sia v = u + w con $u \in U$ e $w \in W$. Consideriamo

$$v + x - x = v \implies v = u + w + x - x = \underbrace{u + x}_{\in U} + \underbrace{w - x}_{\in W} = u_1 + w_1$$

u = u + x e w = w - x poiché la somma è diretta $\implies x = 0 \implies \mathbf{Assurdo!} \implies U \cap W = \{0\}$

 \iff Siano $U, W: U \cap W = \{0\}$ e supponiamo per assurdo che esista $v \in U + W$:

$$v = u_1 + w_1 \quad e \quad v = u_2 + w_2 \qquad \text{con } u_1, u_2 \in U \quad e \quad w_1, w_2 \in W \quad e \quad (u_1, w_1) \neq (u_2, w_2)$$

$$u_1 + w_1 = u_2 + w_2 \quad v_2 = \underbrace{u_1 - u_2}_{\in U} = \underbrace{w_2 - w_1}_{\in W} \in U \cap W$$

$$\Longrightarrow u_1 - u_2 = \underbrace{0}_{} \quad e \quad w_2 - w_1 = \underbrace{0}_{}$$

$$\Longrightarrow u_1 = u_2 \quad e \quad w_1 = w_2$$

che è assurdo! Questo perché avevamo supposto che v avesse due scritture distinte come somma i elementi di U e W.

$$\implies \exists ! \ (u_1, w_1): \quad u, \in U \quad e \quad w_1 \in W: \quad v = u_1 + w_1 \ e \ U \oplus W$$

Corollario 2.6.1

Siano $U, W \le V_n(K)$ allora $V = U \oplus W \iff U + W = V \ e \ U \cap W = \{0\}.$

(2)

N.B.

Siano $U, W \le V_n(K)$ e sia B_1 una base di V e B_2 una base di $W \implies B_1 \cup B_2$ è sequenza di generatori per lo spazio U + W. In generale l'unione di due basi, non è a sua volta una base per U + W.

Proposizione 2.6.5

Siano $U, M \leq V_n(K) : U \oplus W$ e sia A una sequenza libera di vettori di U e B una sequenza libera di vettori di U. Allora $A \cup B$ è una sequenza libera di vettori della $U \oplus W$.

Dimostrazione: Siano $A = (u_1, u_2, ..., u_k)$ e $B = (w_1, w_2, ..., w_h)$ e supponiamo per assurdo che $a_1, a_2, ..., a_k \in K$ e $b_1, b_2, ..., b_h \in K$, quindi per assurdo sia legata la combinazione lineare:

$$0 = a_1u_1 + a_2u_2 + ... + a_ku_k + b_1w_1 + b_2w_2 + ... + b_hw_h$$
 non tutti nulli

$$\underbrace{-(a_1u_1 + a_2u_2 + \dots + a_ku_k)}_{\in U} = \underbrace{b_1w_1 + b_2w_2 + \dots + b_hw_h}_{\in W}$$

$$\implies 0 = b_1 w_1 + b_2 w_2 + ... + b_h w_h \quad e \quad 0 = a_1 u_1 + a_2 u_2 + ... + a_k w_k$$

ma A e B sono sequenze libere quindi $a_1 = a_2 = \dots = a_k = 0$ e $b_1 = b_2 = \dots = b_h = 0$

$$\implies \nexists a_1, a_2, ..., a_k, b_1, b_2, ..., b_h$$
 non tutti nulli:

$$0 = a_1u_1 + a_2u_2 + ... + a_ku_k + b_1w_1 + b_2w_2 + ... + b_hw_h \implies Assurdo!$$

 $\implies A \cup B$ è una sequenza libera.

Corollario 2.6.2

Siano $U, W \in V_n(K) : U \oplus W$ e siano $B_U \in B_W$ basi di $U \in W \implies B_U \cup B_W$ è una base per $U \oplus W$.

Proposizione 2.6.6 Formula di Grassmann

Dati $U, W \leq V_n(K)$ abbiamo che:

$$\dim(U+W)+\dim(U\cap W)=\dim(U)+\dim(W)$$

Definizione 2.6.3: Complemento diretto

Sia $W \leq V_n(K)$ si dice **complemento diretto** di W in V uno spazio $U \leq V : U \oplus W = V$.

N.B.

Un complemento diretto di W in V esiste sempre e si trova estendendo una base di W a una base di V. In generale questo non è unico.

Capitolo 3

Sistemi lineari

Determinante di una matrice quadrata 3.1

Definizione 3.1.1: Determinante

Sia $A = (a_{ij})$ una matrice quadrata, di ordine n, a elementi in un campo K. Si dice **determinante** di A, e si scrive |A| oppure det(A), l'elemento di K definito ricorsivamente come segue:

1. se
$$n = 1$$
 $A = (a_{11})$ $\det(A) = |A| = a_{11}$

1. se
$$n = 1$$
 $A = (a_{11})$ $\det(A) = |A| = a_{11}$
2. se $n > 1$ $A = a_{ij}$ $\det(A) = (-1)^{1+1}a_{11} \det A_{11} + (-1)^{1+2}a_{12} \det A_{12} + \dots + (-1)^{1+n}a_{1n} \det A_{1n}$

Se
$$A=\begin{pmatrix} a_{11}&a_{12}\\a_{21}&a_{22} \end{pmatrix}$$
, il suo determinante è $|A|=a_{11}a_{22}-a_{12}a_{21}.$

Mentre se

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Allora la il determinante di A è

$$|A| = a_{11}a_{22}a_{33} + a_{13}a_{21}a_{32} + a_{12}a_{23}a_{31} - a_{13}a_{22}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Definizione 3.1.2: Complemento algebrico

Sia $A = (a_{ij})$ una matrice quadrata di ordine n, a elementi in campo K. Si dice **complemento algebrico** dell'elemento a_{hk} , e si indica Γ_{hk} , il determinante della matrice quadrata di ordine n-1, ottenuta da A sopprimendo la h-esima riga e la k-esima colonna, preso con il segno $(-1)^{h+k}$.

Teorema 3.1.1 Primo teorema di Laplace

Data la matrice quadrata di ordine n, la somma dei prodotti degli elementi di una sua riga (o colonna), per i rispettivi complementi algebrici, è il determinante di A.

Pertanto, la formula per il calcolo del determinante di $A = (a_{ij})$ rispetto alla a i-esima riga è

$$|A| = \sum_{i=1}^{n} a_{ij} \Gamma_{ij} \qquad \forall i = 1, 2, ..., n$$

rispetto alla j-esima colonna è

$$|A| = \sum_{i=1}^{n} a_{ij} \Gamma_{ij}$$
 $\forall j = 1, 2, ..., n$

Teorema 3.1.2 Secondo teorema di Laplace

Sia A una matrice quadrata di ordine n. La somma dei prodotti degli elementi di una sua riga (o colonna) per i complementi algebrici degli elementi di un'altra riga (o colonna) vale zero. Quindi

$$A \in M_n(K) \implies \begin{cases} a_{i1}\Gamma_{j1} + a_{i2}\Gamma_{j2} + \dots + a_{in}\Gamma_{jn} = 0 & i \neq j \\ a_{1i}\Gamma_{1j} + a_{2i}\Gamma_{2j} + \dots + a_{ni}\Gamma_{nj} = 0 & i \neq j \end{cases}$$

Teorema 3.1.3 Teorema di Bidet

Date due matrici quadrate di ordine n, A e B, il determinante della matrice prodotto $A \cdot B$ è uguale al prodotto dei determinanti di A e B, cioè

$$|A \cdot B| = |A||B|$$

3.2 Matrici invertibili

Definizione 3.2.1: Matrice invertibile

Una matrice quadrata, di ordine n, si dice **invertibile** quando esiste una matrice B, quadrata e dello stesso ordine, tale che $A \cdot B = B \cdot A = I_n$, dove I_n è la matrice identica di ordine n. La matrice B si dice **inversa** di A e si indica A^{-1} .

Teorema 3.2.1

Sia $A \in M_n(K)$; allora A è invertibile $\iff |A| \neq 0$ e in tal caso

$$A^{-1} = \frac{1}{|A|} {}^t A_a$$

dove A_a si chiama **matrice aggiunta** di A ed è la matrice ottenuta da A sostituendo ogni elemento con il suo complemento algebrico Γ .

3.3 Dipendenza lineare e determinanti

Definizione 3.3.1: Minore

Sia $A \in K^{m,n}$. Si chiama **minore di ordine** p estratto da A, con $p \in \mathbb{N}$, $p \neq 0$, $p \leq \min\{m,n\}$, una matrice quadrata di ordine p ottenuta cancellando m-p righe e n-p colonna da A.

Teorema 3.3.1

Una sequenza $S = (v_1, v_2, ..., v_n)$ di n vettori dello spazio vettoriale $V_n(K)$ è libera se, e soltanto se, la matrice A, che ha nelle proprie righe (o colonne) le componenti dei vettori di S in una base di $V_n(K)$, ha determinante non nullo ed è legata se, e soltanto se, tale matrice A ha determinante nullo.

Definizione 3.3.2: Rango di una matrice

Sia A una matrice di $K^{m,n}(K)$. Si dice **rango** della matrice A, e si scrive $\rho(A)$, l'ordine massimo di un minore estraibile da A con determinante non nullo.

3.4. SISTEMI LINEARI 19

Osservazione: Data la matrice A di $K^{m,n}(K)$

- 1. $\rho(A) = 0 \iff A \text{ è la matrice nulla};$
- 2. $\rho(A) = \rho({}^{t}A)$;
- 3. $\rho(A) \leq \min(m, n)$.

Definizione 3.3.3: Spazio delle righe e delle colonne

Data una matrice A, avente m righe ed n colonne, si dice **spazio delle righe** di A, e si indica $\mathcal{L}(R)$, il sottospazio $K^n(K)$ generato dalle righe di A. Si dice **spazio delle colonne** di A, e si indica $\mathcal{L}(C)$, il sottospazio vettoriale di $K^m(K)$ generato dalle colonne di A.

Teorema 3.3.2 Teorema di Kronecker

Gli spazi vettoriali $\mathcal{L}(R)$ ed $\mathcal{L}(C)$, di una matrice $A \in K^{m,n}(K)$, hanno la stessa dimensione e tale dimensione coincide con il rango di A. Cioè:

$$\dim(\mathcal{L}(R)) = \dim(\mathcal{L}(C)) = \rho(A).$$

Dimostrazione: Dimostriamo che dim $(\mathcal{L}(R)) = \rho(A)$. La dimostrazione per quanto riguarda le colonne è completamente analoga. Sia $s = \dim(\mathcal{L}(R)) \Longrightarrow$ abbiamo s righe linearmente indipendenti nella matrice A e quindi per il teorema precedente esiste un minore in A di ordine s a determinante non nullo. Pertanto $\rho(A) \geq s$. Sia per assurdo $\rho(A) = r > s$, dovrebbe esistere in A un minore di ordine r a determinante non nullo. Se chiamiamo ora $S = (R_1, R_2, \ldots, R_r)$ la sequenza di righe nella matrice A, la matrice A ha un minore di ordine r non singolare e di conseguenza è libera. Quindi

$$\dim \mathcal{L}(R) \ge \dim \mathcal{L}(S) = r > s = \dim \mathcal{L}(R).$$

Ma questo è un **assurdo!** Quindi

$$\rho(A) = r \le s = \dim \mathcal{L}(R) \implies r = s.$$

Corollario 3.3.1

Se A è una matrice quadrata di ordine n, con elementi in un campo K, le sequent condizioni sono equivalenti:

- 1. $|A| \neq 0$;
- 2. A è invertibile;
- 3. $\rho(A) = n$;
- 4. le righe sono linearmente indipendenti e, quindi, sono base di K^n ;
- 5. le colonne sono linearmente indipendenti e, quindi, sono base di K^n .

Teorema 3.3.3 Teorema degli orlati

Una matrice $A \in K^{m,n}(K)$ ha rango p se, e solo se, esiste un minore M di ordine p a determinante non nullo e tutti i minori di ordine p + 1, che contengono M, hanno determinante nullo.

3.4 Sistemi lineari

Definizione 3.4.1: Sistema lineare

Un sistema lineare è un insieme di m equazioni lineari in n incognite a coefficienti in campo K.

⊜

Un sistema lineare si può, quindi, indicare nel modo seguente:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m_1}x_1 + a_{m_2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

con $a_{ij}, b_l \in K$. Gli elementi a_{ij} si chiamano coefficienti delle incognite, gli elementi b_l si dicono termini noti. La matrice $m \times n$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

è detta matrice dei coefficienti o matrice incompleta, la matrice $n \times 1$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

è detta delle matrice colonna delle incognite, mentre la matrice $m \times 1$

$$B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

è detta matrice colonna dei termini noti. La matrice $m \times (n+1)$

$$A|B = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ a_{21} & \dots & a_{2n} & b_2 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}$$

è detta matrice completa. Infine, il sistema iniziale si può riscrivere come: $A \cdot X = B$, cioè

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Definizione 3.4.2: Sistema omogeneo

Un sistema lineare si dice omogeneo quando tutti i termini noti sono nulli.

$$AX = 0$$

Osservazione: Data $A \in K^{m,n}$ $A = \begin{pmatrix} C_1 & C_2 & \dots & C_n \end{pmatrix}$ ove le colonne C_j sono vettori di $K^{m,1}$ e quindi utilizziamo utilizzando questa notazione il sistema si può scrivere come

$$x_1C_1 + x_2C_2 + \ldots + x_nC_n = B$$

Definizione 3.4.3: Sistema compatibile

Un sistema lineare in m equazioni ed n incognite ha soluzione, ovvero si dice che il sistema è **compatibile**, se esiste almeno una n-upla $\alpha_1, \alpha_2, \ldots, \alpha_n$ di elementi di K che risolve tutte le equazioni del sistema. Tale n-upla è detta **soluzione**.

3.4. SISTEMI LINEARI 21

Osservazione: Posto $A = (C_1, C_2, \dots, C_n)$

$$A \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = B \iff \alpha_1 C_1 + \alpha_2 C_2 + \ldots + \alpha_n C_n = B$$

che è equivalente a dire che B è combinazione lineare delle colonne di A. Quindi il sistema è risolubile se, e soltanto se, $B \in \mathcal{L}(C_1, C_2, \ldots, C_n)$.

Teorema 3.4.1 Teorema di Rouché-Capelli

Un sistema lineare AX = B è compatibile se, e soltanto se, $\rho(A) = \rho(A|B)$.

$$\implies \rho(A|B) = \rho(A)$$

" \Leftarrow " Per ipotesi abbiamo che $\rho(A|B) = \rho(A)$. Quindi

$$\dim \mathcal{L}(C_1, C_2, \dots, C_n, B) = \dim \mathcal{L}(C_1, C_2, \dots, C_n) \implies \mathcal{L}(C_1, C_2, \dots, C_n, B) = \mathcal{L}(C_1, C_2, \dots, C_n)$$

$$\implies B \in \mathcal{L}(C_1, C_2, \dots, C_n)$$

$$\implies \exists (k_1, k_2, \dots, k_n) : k_1 C_1 + k_2 C_2 + \dots + k_n C_n = B$$

(3)

Quindi la n-upla (k_1, k_2, \ldots, k_n) è soluzione di AX = B e di conseguenza il sistema è compatibile.

Teorema 3.4.2 Teorema di Cramer

Sia AX = B un sistema lineare in n equazioni ed n incognite. Se $det(A) \neq 0$ allora AX = B ammette un'unica soluzione.

Indichiamo con B_1 , la matrice ottenuta sostituendo a C_i la colonna dei termini noti (B).

$$A = (C_1, C_2, \dots, C_n)$$
 $B_1 = (C_1, C_2, \dots, C_{i-1}, B, C_{i+1}, \dots, C_n)$

Se $det(A) \neq 0$ allora $(X_1, X_2, ..., X_n)$ è data da:

$$X_1 = \frac{|B_1|}{|A|} = \frac{\det(B_1)}{\det(A)}$$

Definizione 3.4.4: Sistema principale equivalente

Sia AX = B un sistema compatibile, si dice sistema principale equivalente un sistema A'X = B' ottenuto eliminando m - p equazioni da AX = B tale che $\rho(A'|B') = \rho(A') = p$.

Teorema 3.4.3

Un sistema AX = B compatibile ha le stesse soluzioni di un suo sistema principale equivalente.

Osservazione: $\rho(A) = \rho(A|B)$ se il sistema lineare è omogeneo e quindi è sempre compatibile. In particolare $X = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ è sempre soluzione di $AX = \underline{0}$.

Definizione 3.4.5: Autosoluzioni

Le soluzioni di un sistema lineare omogeneo diverse dalla soluzione nulla si dicono autosoluzioni.

⊜

N.B.

Non è detto che un sistema lineare omogeneo ammetta autosoluzioni.

Proposizione 3.4.1

Un sistema lineare omogeneo $AX = B = \underline{0}$ ammette autosoluzioni se, e solo se, $\rho(A) < n$ (con n numero di incognite).

Corollario 3.4.1

Un sistema lineare omogeneo $AX = B = \underline{0}$ con $A \in M_n(K)$ ammette autosoluzioni se, e soltanto se, $\det(A) = 0$.

Teorema 3.4.4

Sia $AX = \underline{0}$ un sistema lineare omogeneo con $A \in K^{m,n}$ e sia S l'insieme delle sue soluzioni, allora S è un sottospazio di K^n di dimensione $n - \rho(A)$.

Osservazioni:

- 1. $0 \in S$
- 2. se $n \rho(A) > 0$ abbiamo autosoluzioni
- 3. Se $B \neq 0$ l'insieme delle soluzioni di AX = B non è un sottospazio di K^n perché $A0 = 0 \neq B \implies \{0\} \notin S$.

Proposizione 3.4.2

Sia AX = B un sistema lineare in m equazioni ed n incognite, detto S l'insieme delle soluzioni abbiamo che

$$S = \begin{cases} \{x_0 + z : x_0 \in S, z \in S\} \text{ se } AX = B \text{ è compatibile} \\ \emptyset \text{ se } AX = B \text{ non è compatibile} \end{cases}$$

Definizione 3.4.6: Sistema lineare omogeneo associato

Dato AX = B sistema lineare in m equazioni ed n incognite diciamo che $AX = \underline{0}$ è il **sistema lineare** omogeneo associato a AX = B.

Proposizione 3.4.3

Le soluzioni di un sistema lineare compatibile AX = B sono tutte e sole del tipo $\overline{X} = X_0 + Z$, ove X_0 è una soluzione particolare di AX = B e Z è la soluzione di $AX = \underline{0}$, sistema omogeneo associato ad AX = B.

Dimostrazione: Sia \overline{X} soluzione di AX = B, poniamo $Z = \overline{X} - X_0 \iff \overline{X} = X_0 + Z$

$$AZ = A(\overline{X} - X_0) = A\overline{X} - AX_0 = B - B = 0$$

Quindi Z è soluzione del sistema lineare omogeneo associato ad A. Di conseguenza $\overline{X}=X_0+Z$

Dato AX = B sistema lineare in m equazioni ed n incognite compatibile, le sue soluzioni sono tante quante quelle del sistema lineare omogeneo associato che costituiscono uno spazio vettoriale di dimensione $n - \rho(A)$. Se il campo è infinito, posto $\rho(A) = p$, si dice che le soluzioni sono ∞^{n-p} (cioè che l'insieme delle soluzioni dipende da $n - \rho(A)$ parametri).

⊜

Teorema 3.4.5

Sia $AX = \underline{0}$ un sistema lineare omogeneo in n incognite e sia $\rho(A) = n - 1$. Se si indica con $A'X = \underline{0}$ un sistema principale equivalente ad $AX = \underline{0}$ e si indicano con $\Gamma_1, \Gamma_2, \ldots, \Gamma_n$ i determinanti dei minori di ordine n-1, ottenuti eliminando in A' successivamente la prima, la seconda, ..., la n-esima colonna, allora le soluzioni del sistema sono, al variare di $\lambda \in K$,

$$S = (\lambda \Gamma_1, -\lambda \Gamma_2, \dots, (-1)^{n-1} \lambda \Gamma_n)$$

3.5 Cambiamenti di base

in uno spazio vettoriale $V_n(K)$, di dimensione n, siano $B = (e_1, e_2, \dots, e_n)$ e $B' = (e'_1, e'_2, \dots, e'_n)$ due basi assegnate. Ogni vettore della base B' si può esprimere come combinazione lineare dei vettori della base B, cioè

$$\begin{cases} e'_1 = a_{11}e_1 + a_{12}e_2 + \dots + a_{1n}e_n \\ e'_2 = a_{21}e_1 + a_{22}e_2 + \dots + a_{2n}e_n \\ \dots \\ e'_n = a_{n1}e_1 + a_{n2}e_2 + \dots + a_{nn}e_n \end{cases}$$

con le seguenti posizioni

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, E = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix} \text{ ed } E' = \begin{pmatrix} e'_1 \\ e'_2 \\ \vdots \\ e'_n \end{pmatrix}$$

il sistema si può scrivere in forma compatta

$$E' = AE$$

Definizione 3.5.1: Matrice del cambiamento di base

La matrice A si dice matrice del cambiamento di base da B a B'.

Proposizione 3.5.1

La matrice A del cambiamento di base da B a B' è invertibile e $A^{-1} = A'$.

Dimostrazione:

$$E = A'E' = A'(AE) = (A'A)E \implies A'A = I_n$$

 $E' = AE = A(A'E') = (AA')E' \implies AA' = I_n$

Stabiliamo il legame tra le componenti di uno stesso vettore v, rispetto a due basi diverse $B \in B'$. Poniamo

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} e X' = \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}$$

Possiamo scrivere il generico vettore $v \in V_n(K)$

$$v = x_1 e_1 + x_2 e_2 + \dots + x_n e_n = (x_1, x_2, \dots, x_n) E = {}^t X E$$

$$v = x_1' e_1' + x_2' e_2' + \dots + x_n' e_n' = (x_1', x_2', \dots, x_n') E = {}^t X' E'$$

$$v = {}^t X E = {}^t X' E$$

Sostituendo si ha ${}^tXE = {}^tX'AE$, ove A è la matrice del cambiamento di base da B a B', quindi, dato che le componenti dei vettori sono univocamente determinate

$$X = {}^t A X'$$

$$X' = {}^t A^{-1} X$$

Possiamo dire quindi che le componenti di uno stesso vettore rispetto a due basi B e B' sono legate dalla matrice del cambiamento di base da B a B'.

Capitolo 4

Autovalori, autovettori e diagonalizzabilità

4.1 Ricerca di autovalori, polinomio caratteristico

Definizione 4.1.1: Polinomio ed equazione caratteristica

Se A è una matrice quadrata di ordine n, si dice **polinomio caratteristico** di A, e si indica $p_A(\lambda)$, il determinante della matrice $A - \lambda I_n$, cioè

$$p_A(\lambda) = |A - \lambda I_n|$$

L'equazione $p_A(\lambda) = |A - \lambda I_n|$ è detta equazione caratteristica di A.

Definizione 4.1.2: Autovalori

Le radici del polinomio caratteristico si chiamano **autovalori** di A.

Definizione 4.1.3: Autospazio

Lo spazio delle soluzioni del sistema $(A - \overline{\lambda}I_n)X = 0$, dove $\overline{\lambda}$ è un autovalore, si chiama **autospazio** associato a $\overline{\lambda}$ e si indica con $V_{\overline{\lambda}}$.

Definizione 4.1.4: Autovettori

I vettori non nulli dell'autospazio $V_{\overline{\lambda}}$ si chiamano **autovettori** relativi a $\overline{\lambda}$.

Osservazione: Si potrebbe dimostrare che se il polinomio caratteristico di $A \in M_n(K)$ ha grado n allora gli autovalori di A sono al massimo n.

Definizione 4.1.5: Matrici simili

Due matrici $A, B \in M_n(K)$ si dicono **simili** se esiste $P \in M_n(K)$ con $|P| \neq 0$ tale che

$$B = P^{-1}AP$$
 $PB = AP$

Proposizione 4.1.1

Due matrici simili A, B hanno lo stesso determinante e lo stesso polinomio caratteristico (e di conseguenza gli stessi autovalori).

Dimostrazione: Per ipotesi le due matrici A, B sono simili quindi:

$$\exists P \in M_n(K), \ |P| \neq 0: \ B = P^{-1}AP$$

$$|B| = |P^{-1}AP| = |P^{-1}||A||P| = \frac{1}{|P|}|A||P| = |A| \implies |B| = |A|$$

$$p_B(\lambda) = |B - \lambda I_n| = |P^{-1}AP - \lambda P^{-1}I_nP| = |P^{-1}(A - \lambda I_n)P| = \frac{1}{|P|}|A - \lambda I_n||P| = |A - \lambda I_n| = p_A(\lambda)$$

e attraverso questa serie di passaggi abbiamo potuto dimostrare che se due matrici sono simili allora avranno sia lo stesso determinante che lo stesso polinomio caratteristico.

4.2 Matrici diagonalizzabili

Definizione 4.2.1: Matrice diagonalizzabile

Una matrice $A \in M_n(K)$ si dice **diagonalizzabile** se è simile ad una matrice diagonale, ovvero esistono $D, P \in M_n(K)$ con D matrice diagonale, $|P| \neq 0$ e $D = P^{-1}AP$.

Teorema 4.2.1 Primo criterio di diagonalizzabilità

Una matrice $A \in M_n(K)$ è diagonalizzabile se, e soltanto se, K^n ammette una base costituita da autovettori di A.

Dimostrazione: " \Longrightarrow " Per ipotesi A è diagonalizzabile quindi $\exists D, P \in M_n(K) : D$ è diagonale $|P| \neq 0$ e PD = AP. Per semplicità denotiamo le colonne di $P = (P_1 \ P_2 \ \dots \ P_n)$.

$$AP = A (P_1 \quad P_2 \quad \dots \quad P_n) = (AP_1 \quad AP_2 \quad \dots \quad AP_n)$$

$$PD = (P_1 \quad P_2 \quad \dots \quad P_n) \begin{pmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{pmatrix} = (d_1P_1 \quad d_2P_2 \quad \dots \quad d_nP_n)$$

Quindi

$$(AP_1 \quad AP_2 \quad \dots \quad AP_n) = \begin{pmatrix} d_1P_1 & d_2P_2 & \dots & d_nP_n \end{pmatrix} \iff AP_1 = d_1P_1, \ AP_2 = d_2P_2, \dots, \ AP_n = d_nP_n$$
$$\implies AX = \lambda X \quad \lambda = d_i \quad X = P_i$$

dove d_i è un autovalore, P_i è un autovettore di A e $(P_1 \ P_2 \ \dots \ P_n)$ è una sequenza di n autovettori. Poiché dim $K^n = n$ e la sequenza è composta da n vettori, è sufficiente controllare la lineare indipendenza di P. Ma siccome avevamo supposto per ipotesi che $|P| \neq 0$ le sue n colonne sono linearmente indipendenti. Quindi $B = (P_1, P_2, \dots, P_n)$ è una base di K^n costituita da autovettori di A.

" \Leftarrow " è analogo, basta ripercorrere il ragionamento a ritroso.

Osservazione: Se $A \in M_n(K)$ è diagonalizzabile allora:

- D ha sulla diagonale principale gli autovalori di A;
- P, cioè la matrice diagonalizzante, ha nelle colonne gli autovettori della base di K^n .

Definizione 4.2.2: Molteplicità algebrica e geometrica

Sia $\overline{\lambda}$ un autovalore di $A \in M_n(K)$; si chiama:

- molteplicità algebrica di $\overline{\lambda}$ il numero di volte che $\overline{\lambda}$ è radice del polinomio caratteristico, e si indica con $a_{\overline{\lambda}}$
- molteplicità geometrica di $\overline{\lambda}$ la dimensione dell'autospazio $V_{\overline{\lambda}}$ associato a $\overline{\lambda}$, e si indica con $g_{\overline{\lambda}}$.

Proposizione 4.2.1

Sia $\overline{\lambda}$ un autovalore di $A \in M_n(K)$. Allora

$$1 \le g_{\overline{\lambda}} \le a_{\overline{\lambda}}$$

Proposizione 4.2.2

Sia $A \in M_n(K)$ e siano $\lambda_1, \lambda_2, \dots, \lambda_n$ t autovalori di A distinti tra loro, allora la somma dei relativi autospazi è diretta.

$$V_{\lambda_1} \oplus V_{\lambda_2} \oplus \ldots \oplus V_{\lambda_t}$$

Osservazioni:

- 1. $A \in M_n(K) \implies \deg(p_A(\lambda)) = n$, quindi ho al massimo n autovalori;
- 2. $\sum a_{\lambda_i} \leq n$;
- 3. $\sum a_{\lambda_i} = n \iff$ tutti gli autovalori di A sono in K;
- 4. $S = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \ldots \oplus V_{\lambda_t} \implies \dim S = \sum \dim V_{\lambda_i} = \sum g_{\lambda_i}$
- 5. Autovettori provenienti da autospazi diversi sono tra loro linearmente indipendenti (perché la somma è diretta).

Teorema 4.2.2 Secondo criterio di diagonalizzabilità

Sia $A \in M_n(K)$ e siano $\lambda_1, \lambda_2, \dots, \lambda_n$ gli autovalori distinti di A. Allora A è diagonalizzabile se, e soltanto se:

- 1. tutti gli autovalori di A sono in K;
- 2. Per ogni autovalore vale $a_{\lambda_i} = g_{\lambda_i}$ (e allora si dice che l'autovalore è regolare).

Dimostrazione: " ⇒ " Per ipotesi A è diagonalizzabile. Per il primo criterio di diagonalizzabiltà K^n ammette una base B formata da autovettori, cioè tale che $\mathcal{L}(B) = K^n$ e $B \subseteq V_{\lambda_1} \oplus V_{\lambda_2} \oplus \ldots \oplus V_{\lambda_t} \leq K^n$. Quindi

$$K^{n} = \mathcal{L}(B) \leq \mathcal{L}(V_{\lambda_{1}} \oplus V_{\lambda_{2}} \oplus \dots \oplus V_{\lambda_{t}}) = V_{\lambda_{1}} \oplus V_{\lambda_{2}} \oplus \dots \oplus V_{\lambda_{t}} \leq K^{n}$$

$$\Longrightarrow V_{\lambda_{1}} \oplus V_{\lambda_{2}} \oplus \dots \oplus V_{\lambda_{t}} = K^{n}$$

$$\Longrightarrow n = \dim K^{n} = \dim(V_{\lambda_{1}} \oplus V_{\lambda_{2}} \oplus \dots \oplus V_{\lambda_{t}}) = \sum g_{\lambda_{i}} \leq \sum a_{\lambda_{i}} \leq n$$

Siccome $\sum a_{\lambda_i} = n$ tutti gli autovalori di A sono in K. Inoltre $\sum g_{\lambda_i} = \sum a_{\lambda_i}$ e $g_{\lambda_i} \leq a_{\lambda_i} \implies a_{\lambda_i} = g_{\lambda_i}$. "

" Per ipotesi abbiamo che tutti gli autovalori di A soni in K e per ogni autovalore vale $a_{\lambda_i} = g_{\lambda_i}$. Per ogni autovalore $\overline{\lambda}$ avremo un relativo autospazio a cui corrisponde una relativa base di autovettori B_1, B_2, \ldots, B_t . Chiamiamo $B = \bigcup_{i=1}^t B_i$, cioè l'unione di tutte le basi. Certamente B è libera perché la somma di sottospazi distinti è diretta.

$$|B| = |\bigcup B_i| = \sum |B_i| = \sum \dim V_{\lambda_i} = \sum g_{\lambda_i} = \sum a_{\lambda_i} = n$$

Quindi B è una base di K^n costituita da autovettori e per il primo criterio di diagonalizzabilità A è diagonalizable.

Capitolo 5

Forme bilineari e prodotti scalari

5.1 Forme bilineari

Definizione 5.1.1: Forma bilineare e prodotto scalare

Sia $V_n(K)$ uno spazio vettoriale. Una **forma bilineare** in V è una funzione $*: V \times V \to K$:

- $\bullet \ (u+v)*w=u*w+v*w \qquad \forall u,v,w\in V \ \forall k\in K$
- $\bullet \ u * (v + w) = u * v + u * w \qquad \forall u, v, w \in V \ \forall k \in K$
- $\bullet \ (ku) * v = u * (kv) = k(u * v) \qquad \forall u, v, w \in V \ \forall k \in K$

Se poi \ast verifica anche l'ulteriore proprietà

• v * w = w * v $\forall u, v, w \in V \ \forall k \in K$

Allora si chiama **prodotto scalare** (o forma bilineare simmetrica).

Osservazione: Si deduce chiaramente che $\forall v \in V \quad \underline{0} * v = 0 = v * \underline{0}$.

Esempio 5.1.1 (Prodotto scalare euclideo e standard)

1. Definiamo il **prodotto scalare euclideo** come una funzione $*: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$:

$$(x_1, x_2, \dots, x_n) * (x'_1, x'_2, \dots, x'_n) = x_1 x'_1 + x_2 x'_2 + \dots + x_n x'_n$$

2. Definiamo il **prodotto scalare standard** come la funzione $*: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to \mathbb{R}$:

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix} * \begin{pmatrix} x'_1 & x'_{12} & \dots & x'_{1n} \\ x'_{21} & x'_{22} & \dots & x'_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x'_{n1} & x'_{n2} & \dots & x'_{nn} \end{pmatrix} = x_{11}x'_{11} + x_{12}x'_{12} + \dots + x_{nn}x'_{nn}$$

5.2 Prodotti scalari e ortogonalità

Definizione 5.2.1: Ortogonalità

In uno spazio vettoriale V(K), con prodotto scalare ".", due vettori v e w di V si dicono **ortogonali**, e si scrive $v \perp w$, se $v \cdot w = 0$.

Definizione 5.2.2: Complemento ortogonale

Sia V(K) uno spazio vettoriale e "·" un prodotto scalare. Sia $\emptyset \neq A \subseteq V$; si chiama **complemento ortogonale** (o più semplicemente ortogonale) di A l'insieme

$$A^{\perp} = \{ v \in V : v \perp w, \forall w \in A \} \qquad 0 \in A^{\perp} \neq \emptyset$$

Proposizione 5.2.1

Sia V(K) uno spazio vettoriale con prodotto scalare "·". Sia $\emptyset \neq A \subseteq V$. Allora A^{\perp} è un sottospazio vettoriale.

Dimostrazione: Sappiamo che $\underline{0} \in A^{\perp} \neq \emptyset$

Dobbiamo dimostrare che

$$\forall u_1, u_2 \in A^{\perp}, \ \forall k_1, k_2 \in K \qquad k_1 u_1 + k_2 u_2 \in A^{\perp}$$

Possiamo scrivere per la proprietà di ortogonalità che

$$\forall w \in A \quad u_1 \cdot w = 0 \quad u_2 \cdot w = 0$$

Quindi

$$(k_1u_1 + k_2u_2) \cdot w = (k_1u_1) \cdot w + (k_2u_2) \cdot w = k_1(\underbrace{u_1 \cdot w}_{=0}) + k_2(\underbrace{u_2 \cdot w}_{=0})$$

$$\implies k_1u_1 + k_2u_2 \in A^{\perp} \implies A^{\perp}$$
è un sottospazio.

⊜

Osservazioni:

- 1. $A \subseteq B \implies A^{\perp} \supseteq B^{\perp}$
- 2. $A^{\perp} = [\mathcal{L}(A)]^{\perp}$
- 3. Generalmente se $A \leq V(K) \implies A \neq (A^{\perp})^{\perp}$, ma $A \subseteq (A^{\perp})^{\perp}$

Proposizione 5.2.2

Sia $V_n(K)$ uno spazio vettoriale con prodotto scalare "·" e siano $v, w \in V(K)$ con $w \cdot w \neq \underline{0}$. Allora

$$\exists v_1, v_2 \in V : v = v_1 + v_2, v_1 = kw, v_2 \perp w$$

Dimostrazione:

$$k = \frac{v \cdot w}{w \cdot w}$$
 $v_1 = kw = \left(\frac{v \cdot w}{w \cdot w}\right) \cdot w$

$$v_2 = v - v_1 \iff v_1 + v_2 = v$$

Ora verifichiamo che $v_2 \perp w$

$$v_2 \perp w \iff (v - v_1) \cdot w = \left(v - \frac{v \cdot w}{w \cdot w}\right) \cdot w = v - w - \frac{v \cdot w}{w \cdot w} \cdot w \cdot w = v \cdot w - v \cdot w = 0$$

Definizione 5.2.3: Coefficiente di Fourier e proiezione

Sia $V_n(K)$ uno spazio vettoriale con prodotto scalare "." e siano $v, w \in V(K)$ con $w \cdot w \neq \underline{0}$. Allora

$$k = \frac{v \cdot w}{w \cdot w}$$

si chiama coefficiente di Fourier di v lungo w e

$$v_1 = \frac{v \cdot w}{w \cdot w} \cdot w$$

si chiama **proiezione** di v lungo w.

Definizione 5.2.4: Forma quadratica

Sia $V_n(K)$ uno spazio vettoriale con prodotto scalare "·" e sia $v \in V(K)$. Si chiama forma quadratica associata a "·" la funzione

$$q: \begin{cases} V \to K \\ v \mapsto q(v) = v \cdot v \end{cases}$$

5.3 Spazi con prodotto scalare definito positivo

Definizione 5.3.1: Prodotto scalare definito positivo

Sia V(K) uno spazio vettoriale su campo K ordinato. Un prodotto scalare " \cdot " in V si dice **definito positivo** se

$$\forall v \in V \quad v \cdot v \ge 0 \quad e \quad v \cdot v = 0 \iff v = 0$$

Per chiarezza da qui in avanti quando si parla di prodotti scalari definiti positivi $K = \mathbb{R}$ in modo tale che esso sia ordinato. Di conseguenza denotiamo con **spazio vettoriale metrico reale** $V_n^{\circ}(\mathbb{R})$, cioè uno spazio vettoriale dotato di un prodotto scalare definito positivo.

Definizione 5.3.2

Dato $V_n^{\circ}(\mathbb{R})$ si chiama **norma** la funzione

$$\|\cdot\|: \begin{cases} V \to \mathbb{R} \\ v \mapsto \|v\| = \sqrt{v \cdot v} = \sqrt{q(v)} \end{cases}$$

Esempio 5.3.1 (Vettori geometrici)

$$\vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}| \cos \alpha$$

$$||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{|\vec{v}| |\vec{v}| \cos 0} = \sqrt{|\vec{v}|^2} = |\vec{v}|$$

Osservazioni:

- 1. La norma generalizza la nozione di "lunghezza" di un vettore.
- 2. $||v|| = 0 \iff v \cdot v = 0 \iff v = 0$

Proposizione 5.3.1

In $V_n^{\circ}(\mathbb{R})$ valgono i seguenti fatti

- 1. $||v|| \ge 0$ e $||v|| = 0 \iff v = 0$
- 2. ||kv|| = |k|||v||
- 3. $|v\cdot w| \leq \|v\|\cdot \|w\|$ (disuguaglianza di Schwarz)
- 4. $||v + w|| \le ||v|| + ||w||$ (disuguaglianza triangolare)

Osservazioni: Sia "·" un prodotto scalare euclideo definito su $\mathbb{R}^n(\mathbb{R})$. La sua base canonica è

$$B_c = ((1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, 0, \dots, 0, 1)) = (e_1, e_2, \dots, e_n)$$

- 1. $||e_i|| = \sqrt{e_i \cdot e_i} = 1$
- 2. $e_i \cdot e_j = 0 \quad \forall i \neq j \implies e_i \perp e_j$
- 3. $\forall (x_1, x_2, \dots, x_n) = x_1(1, 0, \dots, 0) + x_2(0, 1, 0, \dots, 0) + \dots + x_n(0, 0, \dots, 0, 1)$ $\implies v \cdot e_i = x_i = \text{i-esima componente di } v \text{ rispetto a } B_c$

Definizione 5.3.3: Base ortogonale e ortonormale

I vettori v_1, v_2, \ldots, v_n di uno spazio vettoriale $V_n^{\circ}(\mathbb{R})$ formano un insieme **ortogonale** se $v_i \cdot v_j = 0$, $i \neq j$. Se inoltre ciascuno dei v_i ha norma unitaria, allora parleremo di insieme **ortonormale**. Se poi tali vettori costituiscono una base di $V_n^{\circ}(\mathbb{R})$ parleremo di base ortogonale o ortonormale.

Proposizione 5.3.2

Se $\emptyset \neq A \subseteq V_n^{\circ}(\mathbb{R})$ e costituito da vettori tutti non nulli. Allora A è libero.

Dimostrazione:

$$A = \{v_1, v_2, \dots, v_n\} \quad v_i \cdot v_j = 0 \quad \forall i \neq j. \quad \text{Siano } \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R} : \quad \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = \underline{0}$$

$$0 = 0 \cdot v_1 = (\alpha_1, \alpha_2, \dots, \alpha_n) \cdot v_1 = \alpha_1 \qquad \underbrace{v_1 \cdot v_1}_{\neq 0 \implies v_1 \neq \underline{0} \implies \|v_1\|^2 \neq 0} \quad +\alpha_2 \underbrace{v_2 \cdot v_2}_{=0} + \dots + \alpha_n \underbrace{v_n \cdot v_n}_{=0} = \underbrace{\|v_1\|^2}_{\neq 0} \underbrace{\alpha_1}_{=0}$$

Ripeto il ragionamento per ciascuno dei v_i e ottengo che gli unici α che mi danno il vettore nullo sono quelli tutti nulli. Quindi se $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0 \implies A$ è libero.

Osservazione: In $V_n^{\circ}(\mathbb{R})$ se A è un insieme ortogonale di n vettori tutti diversi dal vettore nullo allora A è libero. Dunque fissato un ordine abbiamo una base ortogonale.

Teorema 5.3.1 Processo di ortogonalizzazione di Gram-Schmidt

Siano $V_n^{\circ}(\mathbb{R})$ e $B=(e_1,e_2,\ldots,e_n)$ una base. La sequenza $B'=(e'_1,e'_2,\ldots,e'_n)$ così definita

$$e'_{1} = e_{1}$$

$$e'_{2} = e_{2} - \frac{e_{2} \cdot e'_{1}}{e'_{1} \cdot e'_{1}} \cdot e'_{1}$$

$$e'_{3} = e_{3} - \frac{e_{3} \cdot e'_{1}}{e'_{1} \cdot e'_{1}} \cdot e'_{1} - \frac{e_{3} \cdot e'_{2}}{e'_{2} \cdot e'_{2}} \cdot e'_{2}$$

$$\vdots$$

$$e'_{n} = e_{n} - \frac{e_{n} \cdot e'_{1}}{e'_{1} \cdot e'_{1}} \cdot e'_{1} - \dots - \frac{e_{n} \cdot e'_{n-1}}{e'_{n-1} \cdot e'_{n-1}} \cdot e'_{n-1}$$

è una base ortogonale di $V_n^{\circ}(\mathbb{R})$.

Osservazione: Se i primi p vettori di B sono già ortogonali tra loro il metodo di Gram-Schmidt non li cambia.

Teorema 5.3.2

Se A è un sottoinsieme non vuoto di $V_n^{\circ}(\mathbb{R})$, la cui copertura non coincide con $V_n^{\circ}(\mathbb{R})$, allora

$$V_n^{\circ}(\mathbb{R}) = \mathcal{L}(A) \oplus A^{\perp}$$

Dimostrazione: Prima di tutto dimostriamo che $\mathcal{L}(A) \cap A^{\perp} = \{\underline{0}\}$ infatti: $v \in \mathcal{L}(A) \cap A^{\perp}$ e se $v \in A^{\perp} = [\mathcal{L}(A)]^{\perp}$ $v \cdot v = 0 \implies v = \underline{0}$ poiché ci troviamo in un prodotto scalare definito positivo. Quindi la somma è diretta. Ora si può dimostrare che $\mathcal{L}(A) \oplus A^{\perp} = V_n^{\circ}(\mathbb{R})$. Sia dim $\mathcal{L}(A) = p$ e sia $B = (v_1, v_2, \dots, v_p)$ una base ortogonale di $\mathcal{L}(A)$; per il teorema di completamento ad una base possiamo completare B ad una base di $V_n^{\circ}(\mathbb{R})$. Aggiungiamo a B n - p vettori. Ora applichiamo a tale base il processo di ortogonalizzazione di Gram-Schmidt. $B' = (v_1, \dots, v_p, v'_{p+1}, \dots, v'_n)$ è una base ortogonale di $V_n^{\circ}(\mathbb{R})$. Quindi $\mathcal{L}(B') = V_n^{\circ}(\mathbb{R})$. Ora tutti i vettori aggiunti sono ortogonali ai vettori originali, cioè $v'_{p+1}, \dots, v'_n \in \mathcal{L}(A)^{\perp} = A^{\perp} \implies \mathcal{L}(A) \oplus A^{\perp} = V_n^{\circ}(\mathbb{R})$. ⊜

Osservazioni:

- 1. A^{\perp} è un complemento diretto di $\mathcal{L}(A)$
- 2. Per la formula di Grassmann abbiamo che

$$n = \dim(\mathcal{L}(A) \oplus A^{\perp}) = \dim \mathcal{L}(A) + \dim A^{\perp} \implies \dim A^{\perp} = n - \dim \mathcal{L}(A)$$

3. Per il punto precedente possiamo affermare che se il prodotto scalare è definito positivo allora $U \leq V_n^{\circ}(\mathbb{R}) \implies U = (U^{\perp})^{\perp}$

Teorema 5.3.3

L'insieme delle soluzioni di un sistema lineare omogeneo è un sottospazio vettoriale di dim : $n - \rho(A)$

Dimostrazione: In \mathbb{R}^n con prodotto scalare euclideo

$$(x_1, x_2, \dots, x_n) \cdot (x'_1, x'_2, \dots, x'_n) = x_1 x'_1 + x_2 x'_2 + \dots + x_n x'_n$$

Quindi possiamo riscrivere il sistema come

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \dots & \iff \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases} \iff \begin{cases} (a_{11}, \dots, a_{1n}) \cdot (x_1, \dots, x_n) = 0 \\ \dots & \iff \\ (a_{m1}, \dots, a_{mn}) \cdot (x_1, \dots, x_n) = 0 \end{cases}$$

Pensando alle righe di A come vettori di \mathbb{R}^n le equazioni del sistema esprimono il fatto che il prodotto scalare di tali righe per il generico vettore (x_1, x_2, \ldots, x_n) è uguale a zero. Quindi il generico vettore è ortogonale a tutte le righe di A. Chiamando $\mathcal{L}(R)$ lo spazio generato dalle righe di A. L'insieme S delle soluzioni di $AX = \underline{0}$ coincide con $\mathcal{L}(R)^{\perp}$. E quindi per il teorema di Kronecker dim $S = n - \dim \mathcal{L}(R) = n - \rho(A)$.

5.4 Matrici di forme bilineari

Definizione 5.4.1: Matrice di forma bilineare

Sia $V_n(K)$ uno spazio vettoriale, "*" una forma bilineare e $B=(e_1,e_2,\ldots,e_n)$ base di $V_n(K)$. Si chiama matrice della forma bilineare "*" rispetto a B

$$A_{B}^{*} = \begin{pmatrix} e_{1} * e_{1} & e_{1} * e_{2} & \dots & e_{1} * e_{n} \\ e_{2} * e_{1} & e_{2} * e_{2} & \dots & e_{2} * e_{n} \\ \vdots & \vdots & \ddots & \vdots \\ e_{n} * e_{1} & e_{n} * e_{2} & \dots & e_{n} * e_{n} \end{pmatrix} \in M_{n}(K)$$

Si può indicare in modo più compatto con

$$A_B^* = (e_i * e_j)$$

N.B.

La matrice di una forma bilineare dipende dalla base fissata.

Proposizione 5.4.1

La matrice che rappresenta un prodotto scalare rispetto a una base qualsiasi è simmetrica.

Dimostrazione: $B = (e_1, e_2, \dots, e_n)$ e "·" è il prodotto scalare. Allora $A_B^{\cdot} = (e_i \cdot e_j) = (e_j \cdot e_i) = {}^tA_B^{\cdot}$.

Proposizione 5.4.2

Sia "·" un prodotto scalare su $V_n(K)$ e sia B una sua base. Sia A_B una matrice associata a "·" rispetto alla base B. Allora

 $\bullet \ B$ è ortogonale $\ \Longleftrightarrow \ A_B^{\cdot}$ è diagonale

$$e_i \cdot e_j = 0 \quad \forall i \neq j \iff a_{ij} = 0 \quad \forall i \neq j$$

• B è ortonormale $\iff A_B^{\cdot} = I_n \in M_n(K)$

$$e_i \cdot e_j = 0 \quad \forall i \neq j \quad e \quad e_i \cdot e_i = 1 \quad \forall 1 \leq i \leq n \iff a_{ij} = 0 \quad \forall i \neq j \quad e \quad a_{ii} = 1 \quad \forall 1 \leq i \leq n$$

Osservazione: Utilizzando la matrice associata ad una forma bilineare "*" è possibile calcolare

$$v * w \quad \forall v, w \in V_n(K)$$

Proposizione 5.4.3

Sia B una base di $V_n(K)$ e sia "*" una forma bilineare su V. Dette

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad e \quad Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

le matrici colonne delle componenti rispettivamente di v e di $w \in V$ risulta:

$$v * w = {}^t X A_B^* Y$$

☺

⊜

⊜

5.5 Matrici ortogonali e basi ortonormali

Definizione 5.5.1: Matrice ortogonale

Sia $A \in M_n(K)$ diciamo che A è **ortogonale** se ${}^tA = A^{-1}$. Quindi

$$A^t A = {}^t A A = I_n$$

Proposizione 5.5.1

Sia $A \in M_n(K)$ una matrice ortogonale. Allora $|A| \in \{-1, 1\}$

Dimostrazione:

$$|I_n| = 1 = |AA^{-1}| = |A^tA| = |A||^t A| = |A||A| = |A|^2$$

 $|A|^2 = 1 \iff |A| = \pm 1$

Proposizione 5.5.2

Sia $A \in M_n(K)$. A è ortogonale se, e soltanto se, le sue righe (o colonne) costituiscono una base ortonormale di $\mathbb{R}^n(\mathbb{R})$ rispetto al prodotto scalare euclideo (dello spazio euclideo $\mathbb{R}^n(\mathbb{R})$).

Dimostrazione: " \Longrightarrow "

$$\begin{pmatrix} R_1 \\ \vdots \\ R_n \end{pmatrix} \iff {}^t A = ({}^t R_1, \dots, {}^t R_n)$$

$$A^t A = I_n = \begin{pmatrix} R_1 \\ \vdots \\ R_n \end{pmatrix} ({}^t R_1, \dots, {}^t R_n) = \begin{pmatrix} R_1 \cdot R_1 & R_1 \cdot R_2 & \dots & R_1 \cdot R_n \\ R_2 \cdot R_1 & R_2 \cdot R_2 & \dots & R_2 \cdot R_n \\ \vdots & \vdots & \ddots & \vdots \\ R_n \cdot R_1 & R_n \cdot R_2 & \dots & R_n \cdot R_n \end{pmatrix}$$

$$R_i \cdot R_j = 0 \quad \text{se} \quad i \neq j, \quad R_i \cdot R_i = 1 \quad \forall 1 \leq i \leq n$$

Quindi le righe di A sono una base ortonormale. Il ragionamento è completamente analogo per le colonne. " \Leftarrow " Si può dimostrare ripercorrendo le implicazioni al contrario.

5.6 Matrici reali simmetriche

Teorema 5.6.1

Sia $A \in M_n(\mathbb{R})$ simmetrica allora

- 1. Gli autovalori di A sono tutti reali (teorema spettrale)
- 2. Gli autovettori di A relativi ad autospazi distinti sono ortogonali tra loro

Dimostrazione del punto 2: Siano x e y autovettori relativi ad autovalori λ e μ distinti. Quindi $AX = \lambda x$ e $AX = \mu y$. Sia $\lambda \neq 0$. Quindi

$$({}^{t}x^{t}y)\lambda = (\lambda^{t}x)y = {}^{t}(x\lambda)y = {}^{t}(Ax)y = ({}^{t}x^{t}A)y = ({}^{t}xA)y = {}^{t}x(Ay)$$

$$= {}^{t}x\mu y = \mu({}^{t}xy) = \mu({}^{t}x^{t}y) \implies ({}^{t}x^{t}y)\lambda = ({}^{t}x^{t}y)\mu$$

$$\lambda k = \mu k \iff (\lambda - \mu)k = 0 \iff \mu = \lambda \text{ oppure } {}^{t}x^{t}y = 0$$

ma $\mu \neq \lambda$ perché x e y stanno in autospazi distinti $\implies {}^t x^t y = 0 \implies x$ e y sono ortogonali.

Corollario 5.6.1

Una matrice reale e simmetrica di ordine n ammette n autovalori contati con la loro molteplicità algebrica.

Definizione 5.6.1: Matrice ortogonalmente diagonalizzabile

Data $A \in M_n(K)$ è detta **ortogonalmente diagonalizzabile** se esistono D, matrice diagonale di ordine n, e P matrice ortogonale di ordine n tali che

$$D = P^{-1}AP = {}^tPAP$$

Teorema 5.6.2

I seguenti fatti sono equivalenti

- 1. $A \in M_n(\mathbb{R})$ è ortogonalmente diagonalizzabile;
- 2. \mathbb{R}^n ammette una base ortonormale di autovettori di A;
- $3.\ A$ è una matrice reale e simmetrica.