Analysis of distruptive winds to overwintering monarch butterflies

Kyle Nessen

2025-09-05

Table of contents

Introduction	2
Setup	2
Exploratory Data Analysis	2
Modeling Strategy	8
Model Building and Selection	8
Model Fitting	10
Model Comparison	11
Best Model Analysis	14
Effect Plots	15
Effect of Previous Butterfly Count	15
Effect of Temperature	15
Diurnal Pattern	16
Effect of Sun Exposure (Smooth)	17
Smooth Effects (ggplot2 style)	18
Model Diagnostics	20
Residuals vs Fitted Values	20
Q-Q Plot of Residuals	21
Distribution of Residuals	22
Second Best Model Analysis (Wind)	23
Effect Plots - Second Best Model	24

Model Diagnostics - Second Best Model							26
Results Summary							28

Introduction

This analysis investigates the first hypothesis of my master's thesis: that wind acts as a disruptive force to overwintering monarch butterflies. If true, we predict that monarch abundance at roosts will decrease when exposed to disruptive winds. I use labeled photos from my 2023-2024 dataset to test this hypothesis. I employed GAM (Generalized Additive Models) because they allow for non-linear relationships in fixed effects while maintaining the necessary random effect structure to account for temporal autocorrelation and nested sampling design.

Setup

Load libraries and data:

```
library(tidyverse)
library(mgcv)
library(lubridate)
library(plotly)
library(knitr)
library(DT)
library(here)
# Load the monarch analysis data
monarch_data <- read_csv(here("data", "monarch_analysis_lag30min.csv"))</pre>
```

Exploratory Data Analysis

The response variable is the difference in monarch counts between time t and t-1 at 30-minute intervals. I applied a cube root transformation to achieve a more normal distribution. Because the lagged comparisons create overlapping pairs of observations, I include an AR1 autocorrelation structure to account for temporal dependence.

```
knitr::include_graphics("images/clipboard-1435734413.png")
```


Figure 1: Illustration of temporal dependency in observation pairs. Points represent photos with labeled count data at 30-minute intervals. Blue boxes show non-overlapping pairs of observations. The red box shows an overlapping comparison where one observation is shared between adjacent pairs, creating temporal autocorrelation that is controlled by the AR1 structure.

```
library(gridExtra)
# Compare total butterfly counts with and without SC8
p_all <- ggplot(monarch_data, aes(x = total_butterflies_t_lag)) +</pre>
    geom_histogram(bins = 30, fill = "steelblue", alpha = 0.7) +
    labs(
        title = "Total Butterflies - All Data",
        x = "Total Butterflies (t-lag)", y = "Frequency"
    ) +
    theme_minimal()
p_no_sc8 <- ggplot(monarch_data %>% filter(deployment_id != "SC8"), aes(x = total_butterflie
    geom_histogram(bins = 30, fill = "orange", alpha = 0.7) +
        title = "Total Butterflies - SC8 Excluded",
        x = "Total Butterflies (t-lag)", y = "Frequency"
    ) +
    theme_minimal()
grid.arrange(p_all, p_no_sc8, ncol = 2)
```



```
library(corrplot)
library(gridExtra)
# Select variables used in the models
model_vars <- monarch_data %>%
    select(
        butterfly_difference_cbrt, total_butterflies_t_lag, max_gust,
        temperature_avg, butterflies_direct_sun_t_lag, time_within_day_t
    )
# Histograms of key variables
p1 <- ggplot(monarch_data, aes(x = butterfly_difference_cbrt)) +</pre>
    geom_histogram(bins = 30, fill = "steelblue", alpha = 0.7) +
    labs(
        title = "Response: Butterfly Difference (Cube Root)",
        x = "Butterfly Difference (cbrt)", y = "Frequency"
    )
p2 <- ggplot(monarch_data, aes(x = total_butterflies_t_lag)) +</pre>
    geom_histogram(bins = 30, fill = "orange", alpha = 0.7) +
    labs(
        title = "Previous Butterfly Count",
        x = "Total Butterflies (t-lag)", y = "Frequency"
p3 <- ggplot(monarch_data, aes(x = temperature_avg)) +
```

```
geom_histogram(bins = 30, fill = "red", alpha = 0.7) +
labs(
    title = "Temperature Distribution",
    x = "Average Temperature (°C)", y = "Frequency"
)

p4 <- ggplot(monarch_data, aes(x = max_gust)) +
    geom_histogram(bins = 30, fill = "lightblue", alpha = 0.7) +
    labs(
        title = "Wind Gust Distribution",
        x = "Max Gust (m/s)", y = "Frequency"
)

grid.arrange(p1, p2, p3, p4, ncol = 2)</pre>
```



```
# Correlation matrix for model variables
cor_matrix <- cor(model_vars, use = "complete.obs")

# Create correlation plot
corrplot(cor_matrix,
    method = "color",
    type = "upper",
    order = "hclust",
    tl.cex = 0.8,
    tl.col = "black",
    tl.srt = 45,</pre>
```

```
addCoef.col = "black",
number.cex = 0.7,
title = "Correlation Matrix: Model Variables"
)
```


Table 1: Correlation Matrix for Model Variables

butterfly_	diff teotenl cebuctto	etrfliesx_	tg elst goerat	bnettenfli es_d	ir ein t <u>nesu</u> ww <u>it</u> lh <u>ir</u>	lag
butterfly_difference 1.000	-0.131	0.040	0.079	-0.116	0.077	
total_butterflies_t_0alg3	1.000	-	-0.291	0.041	-0.023	
		0.105				
max_gust 0.046	-0.105	1.000	0.145	0.027	0.185	
temperature_avg 0.079	-0.291	0.145	1.000	0.099	0.386	
butterflies_direct_s0nl1	6_lag 0.041	0.027	0.099	1.000	-0.064	
time_within_day_t0.07	7 -0.023	0.185	0.386	-0.064	1.000	

```
geom_smooth(method = "loess", se = TRUE, color = "blue") +
    labs(
       title = "Butterfly Abundance Throughout the Day",
       x = "Time Within Day (minutes)", y = "Total Butterflies"
    ) +
    theme_minimal()
# Sun exposure patterns by time
p2 <- ggplot(monarch_data, aes(x = time_within_day_t, y = butterflies_direct_sun_t_lag)) +
    geom_point(alpha = 0.3, color = "orange") +
   geom_smooth(method = "loess", se = TRUE, color = "darkorange") +
   labs(
        title = "Sun Exposure Throughout the Day",
       x = "Time Within Day (minutes)", y = "Butterflies in Direct Sun"
    ) +
    theme_minimal()
# Temperature patterns by time
p3 <- ggplot(monarch_data, aes(x = time_within_day_t, y = temperature_avg)) +
    geom_point(alpha = 0.3, color = "red") +
    geom_smooth(method = "loess", se = TRUE, color = "darkred") +
   labs(
       title = "Temperature Throughout the Day",
       x = "Time Within Day (minutes)", y = "Average Temperature (°C)"
    theme_minimal()
# Response variable by time
p4 <- ggplot(monarch_data, aes(x = time_within_day_t, y = butterfly_difference_cbrt)) +
    geom_point(alpha = 0.3, color = "purple") +
    geom_smooth(method = "loess", se = TRUE, color = "darkviolet") +
   labs(
       title = "Butterfly Change Throughout the Day",
       x = "Time Within Day (minutes)", y = "Butterfly Difference (cbrt)"
    ) +
    theme minimal()
grid.arrange(p1, p2, p3, p4, ncol = 2)
```


Modeling Strategy

Our modeling approach used a comprehensive AIC-based comparison to evaluate all possible combinations of three key environmental predictors: wind speed (max_gust), temperature (temperature_avg), and solar exposure (butterflies_direct_sun_t_lag). We tested two fundamental modeling frameworks: models that include total_butterflies_t_lag as a control variable (testing effects on relative/proportional change) and models that exclude it (testing effects on absolute change). Within each framework, we systematically evaluated linear main effects, two-way and three-way interactions, and non-linear relationships using smooth terms. We also incorporated time-of-day effects to capture diurnal patterns. This resulted in 47 candidate models that comprehensively explore the parameter space while maintaining proper mixed-effects structure with random effects for deployment, observer, and day, plus AR1 correlation for within-day autocorrelation.

Model Building and Selection

Please expand the code block to see the full list of models tested.

```
library(nlme)

# Define the random effects structure and correlation
random_structure <- list(deployment_id = ~1, Observer = ~1, deployment_day = ~1)</pre>
```

```
correlation_structure <- corAR1(form = ~ observation_order_within_day_t | deployment_day)</pre>
# Model specifications for AIC comparison
model_specs <- list(</pre>
             # Null model
             "MO_null" = "butterfly_difference_cbrt ~ total_butterflies_t_lag",
             # Single variable models
             "M1_gust" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust",
             "M2_temp" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + temperature_avg",
             "M3_sun" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + butterflies_direct_su
            # Two-variable combinations
             "M4_gust_temp" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust + tempe
             "M5_gust_sun" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust + butter
             "M6_temp_sun" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + temperature_avg ·
             # Three-variable model (main effects only)
            "M7_all_main" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust + temper
             # Two-way interactions
             "M8_gust_temp_int" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust * 1
             "M9_gust_sun_int" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust * butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust * butterflies_t_lag + max_gu
             "M10_temp_sun_int" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + temperature
             # Two-way interactions with third variable as main effect
             "M12_gust_sun_int_plus_temp" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + magnetic temps = "butterflies_t_lag + magn
             "M13_temp_sun_int_plus_gust" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + to
             # All two-way interactions
             "M14_all_two_way" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust * to
             # Three-way interaction
             "M15_three_way" = "butterfly_difference_cbrt ~ total_butterflies_t_lag + max_gust * temp
             # Smooth terms models (with lag term)
             "M16_smooth_temp" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(temperations)
             "M17_smooth_sun" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + temperature
             "M18_smooth_gust" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(max_gust
             "M19_smooth_temp_sun" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(temp_sun" = "butterflies_t_lag) + s(temp_sun" = "butte
             "M20_smooth_all_main" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(max_
              "M21_time_of_day" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + temperatu:
              "M22_temp_time" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(temperatus
              "M23_all_smooth_time" = "butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(max
```

```
# Models WITHOUT lag term - testing environmental effects on absolute change
       "M24_no_lag_null" = "butterfly_difference_cbrt ~ 1",
       "M25_no_lag_gust" = "butterfly_difference_cbrt ~ max_gust",
       "M26_no_lag_temp" = "butterfly_difference_cbrt ~ temperature_avg",
        "M27 no lag sun" = "butterfly difference cbrt ~ butterflies direct sun t lag",
        "M28_no_lag_gust_temp" = "butterfly_difference_cbrt ~ max_gust + temperature_avg",
       "M29_no_lag_gust_sun" = "butterfly_difference_cbrt ~ max_gust + butterflies_direct_sun_i
       "M30_no_lag_temp_sun" = "butterfly_difference_cbrt ~ temperature_avg + butterflies_direction."
       "M31_no_lag_all_main" = "butterfly_difference_cbrt ~ max_gust + temperature_avg + butter
        "M32_no_lag_gust_temp_int" = "butterfly_difference_cbrt ~ max_gust * temperature_avg",
       "M33_no_lag_gust_sun_int" = "butterfly_difference_cbrt ~ max_gust * butterflies_direct_:
       "M34_no_lag_temp_sun_int" = "butterfly_difference_cbrt ~ temperature_avg * butterflies_
        "M35_no_lag_gust_temp_int_plus_sun" = "butterfly_difference_cbrt ~ max_gust * temperatus
       "M36_no_lag_gust_sun_int_plus_temp" = "butterfly_difference_cbrt ~ max_gust * butterflie
       "M37_no_lag_temp_sun_int_plus_gust" = "butterfly_difference_cbrt ~ temperature_avg * but
       "M38_no_lag_all_two_way" = "butterfly_difference_cbrt ~ max_gust * temperature_avg + max
        "M39_no_lag_three_way" = "butterfly_difference_cbrt ~ max_gust * temperature_avg * butter
       # Smooth terms models WITHOUT lag term
       "M40_no_lag_smooth_temp" = "butterfly_difference_cbrt ~ s(temperature_avg) + s(butterfl:
        "M41_no_lag_smooth_sun" = "butterfly_difference_cbrt ~ temperature_avg + s(butterflies_c
       "M42_no_lag_smooth_gust" = "butterfly_difference_cbrt ~ s(max_gust) + temperature_avg +
       "M43_no_lag_smooth_temp_sun" = "butterfly_difference_cbrt ~ s(temperature_avg) + s(butterfly_difference_cbrt ~ s(temperature_avg)) + s(bu
       "M44_no_lag_smooth_all_main" = "butterfly_difference_cbrt ~ s(max_gust) + s(temperature)
        "M45_no_lag_time_of_day" = "butterfly_difference_cbrt ~ temperature_avg + s(butterflies
       "M46_no_lag_temp_time" = "butterfly_difference_cbrt ~ s(temperature_avg) + s(butterflies
        "M47_no_lag_all_smooth_time" = "butterfly_difference_cbrt ~ s(max_gust) + s(temperature
cat("Total models to fit:", length(model_specs), "\n")
```

Total models to fit: 48

Model Fitting

Fitting models...

```
fitted_models <- map(model_specs, ~ fit_model_safely(.x, model_data))

# Remove failed models
successful_models <- fitted_models[!map_lgl(fitted_models, is.null)]
cat("Successfully fitted", length(successful_models), "out of", length(model_specs), "models")</pre>
```

Successfully fitted 48 out of 48 models

Model Comparison

```
# Extract AIC values
aic_results <- map_dfr(names(successful_models), function(model_name) {
    model <- successful_models[[model_name]]
    data.frame(
        Model = model_name,
        Formula = model_specs[[model_name]],
        AIC = AIC(model$lme),
        LogLik = logLik(model$lme)[1],
        df = attr(logLik(model$lme), "df")
    )
}) %>%
    arrange(AIC) %>%
    mutate(
        Delta_AIC = AIC - min(AIC),
```

```
AIC_weight = exp(-0.5 * Delta_AIC) / sum(exp(-0.5 * Delta_AIC))
)

# Display results
aic_results %>%
    select(Model, AIC, Delta_AIC, AIC_weight, df) %>%
    kable(digits = 3, caption = "Model comparison by AIC")
```

Table 2: Model comparison by AIC

Model	AIC	$Delta_AIC$	AIC_weight	df
M22_temp_time	8081.848	0.000	0.88	14
M21_time_of_day	8086.644	4.796	0.08	13
M23_all_smooth_time	8088.049	6.200	0.04	16
M46_no_lag_temp_time	8101.296	19.448	0.00	12
M16_smooth_temp	8105.876	24.028	0.00	12
$M19_smooth_temp_sun$	8105.876	24.028	0.00	12
M47_no_lag_all_smooth_time	8107.724	25.876	0.00	14
M45_no_lag_time_of_day	8108.295	26.447	0.00	11
M20_smooth_all_main	8109.249	27.401	0.00	14
M17_smooth_sun	8114.431	32.583	0.00	11
M18_smooth_gust	8119.075	37.227	0.00	13
$M40_no_lag_smooth_temp$	8126.061	44.212	0.00	10
$M43_no_lag_smooth_temp_sun$	8126.061	44.212	0.00	10
M44_no_lag_smooth_all_main	8127.871	46.023	0.00	12
M6_temp_sun	8130.775	48.927	0.00	9
M3_sun	8131.696	49.848	0.00	8
M15_three_way	8132.647	50.799	0.00	14
M5_gust_sun	8134.945	53.097	0.00	9
M11_gust_temp_int_plus_sun	8135.392	53.544	0.00	11
M7_all_main	8136.217	54.369	0.00	10
M39_no_lag_three_way	8137.407	55.559	0.00	13
M41_no_lag_smooth_sun	8139.237	57.389	0.00	9
M9_gust_sun_int	8139.410	57.562	0.00	10
M12_gust_sun_int_plus_temp	8140.795	58.946	0.00	11
M35_no_lag_gust_temp_int_plus_	844 1.931	60.082	0.00	10
$M42_no_lag_smooth_gust$	8142.038	60.190	0.00	11
M30_no_lag_temp_sun	8142.927	61.079	0.00	8
M10_temp_sun_int	8144.554	62.705	0.00	10
M31_no_lag_all_main	8146.374	64.526	0.00	9
M36_no_lag_gust_sun_int_plus_t	e8n1.48.813	66.964	0.00	10
M13_temp_sun_int_plus_gust	8150.004	68.156	0.00	11
M0_null	8153.582	71.734	0.00	7
M29_no_lag_gust_sun	8154.129	72.281	0.00	8

Model	AIC	Delta_AIC	AIC_weight	df
M27_no_lag_sun	8155.073	73.225	0.00	7
M14_all_two_way	8155.075	73.227	0.00	13
M34_no_lag_temp_sun_int	8156.678	74.830	0.00	9
M33_no_lag_gust_sun_int	8156.943	75.095	0.00	9
M2_temp	8157.623	75.775	0.00	8
M1_gust	8157.885	76.037	0.00	8
M38_no_lag_all_two_way	8160.095	78.247	0.00	12
M37_no_lag_temp_sun_int_plus_	_g8als6i0.174	78.326	0.00	10
$M8_gust_temp_int$	8162.939	81.091	0.00	10
$M4_gust_temp$	8163.059	81.210	0.00	9
M26_no_lag_temp	8170.575	88.727	0.00	7
M32_no_lag_gust_temp_int	8171.945	90.096	0.00	9
M28_no_lag_gust_temp	8175.113	93.264	0.00	8
M24_no_lag_null	8177.191	95.342	0.00	6
M25_no_lag_gust	8178.495	96.647	0.00	7

```
# Show top 5 models
cat("\nTop 5 models by AIC:\n")
```

Top 5 models by AIC:

```
head(aic_results, 5) %>%
  select(Model, Formula, AIC, Delta_AIC) %>%
  kable(digits = 3)
```

```
Model
          Formula
                                                                 AIC Delta_AIC
M22\_tempbuttitemefly\_difference\_cbrt \sim s(total\_butterflies\_t\_lag)
                                                                 8081.843000
          + s(temperature\_avg) +
          s(butterflies_direct_sun_t_lag) +
          s(time_within_day_t)
M21\_time\underline{b} wtterflies\_t\_lag)
                                                                 8086.644796
          + temperature_avg +
          s(butterflies\_direct\_sun\_t\_lag) +
          s(time_within_day_t)
M23\_all\_sbruotedflytindiefference\_cbrt \sim s(total\_butterflies\_t\_lag)
                                                                 8088.049200
          + s(max\_gust) + s(temperature\_avg) +
          s(butterflies\_direct\_sun\_t\_lag) +
          s(time_within_day_t)
```

Best Model Analysis

```
# Get the best model
best_model_name <- aic_results$Model[1]</pre>
best_model <- successful_models[[best_model_name]]</pre>
cat("Best model:", best_model_name, "\n")
Best model: M22_temp_time
cat("Formula:", aic_results$Formula[1], "\n\n")
Formula: butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(temperature_avg) + s(but
# Model summary
summary(best_model$gam)
Family: gaussian
Link function: identity
Formula:
butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + s(temperature_avg) +
    s(butterflies_direct_sun_t_lag) + s(time_within_day_t)
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
             0.1765
                         0.4453
                                  0.396
Approximate significance of smooth terms:
                                                   F p-value
                                  edf Ref.df
s(total_butterflies_t_lag)
                                2.621 2.621 12.020 8.26e-07 ***
s(temperature_avg)
                                3.930 3.930 3.230 0.0283 *
```

Effect Plots

Effect of Previous Butterfly Count

```
plot(best_model$gam,
    select = 1, main = "Effect of Previous Butterfly Count",
    xlab = "Total Butterflies (t-lag)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

Effect of Previous Butterfly Count

Effect of Temperature

```
plot(best_model$gam,
    select = 2, main = "Effect of Temperature",
    xlab = "Average Temperature (°C)", ylab = "Partial Effect",
```

```
residuals = TRUE, pch = 19, cex = 0.5
)
```

Effect of Temperature

Diurnal Pattern

```
plot(best_model$gam,
    select = 3, main = "Diurnal Pattern",
    xlab = "Time Within Day (minutes)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```


Effect of Sun Exposure (Smooth)

```
# Smooth effect of sun exposure
plot(best_model$gam,
    select = 4, main = "Effect of Sun Exposure (Smooth)",
    xlab = "Butterflies in Direct Sun (t-lag)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

Effect of Sun Exposure (Smooth)

Smooth Effects (ggplot2 style)

Previous Butterfly Count Effect

```
library(gratia)
draw(best_model$gam, select = "s(total_butterflies_t_lag)") +
    theme_minimal() +
    labs(title = "Effect of Previous Butterfly Count (ggplot2 style)")
```


Temperature Effect

```
draw(best_model$gam, select = "s(temperature_avg)") +
    theme_minimal() +
    labs(title = "Effect of Temperature (ggplot2 style)")
```


Sun Exposure Effect

```
draw(best_model$gam, select = "s(butterflies_direct_sun_t_lag)") +
    theme_minimal() +
    labs(title = "Effect of Sun Exposure (ggplot2 style)")
```


Diurnal Pattern

```
draw(best_model$gam, select = "s(time_within_day_t)") +
    theme_minimal() +
    labs(title = "Diurnal Pattern (ggplot2 style)")
```


Model Diagnostics

Residuals vs Fitted Values

```
plot(best_model$lme, main = "Residuals vs Fitted Values")
```


Q-Q Plot of Residuals

```
residuals_df <- data.frame(
    fitted = fitted(best_model$lme),
    residuals = residuals(best_model$lme, type = "normalized")
)

qqnorm(residuals_df$residuals, main = "Normal Q-Q Plot of Residuals")
qqline(residuals_df$residuals)</pre>
```


Distribution of Residuals

hist(residuals_df\$residuals, main = "Distribution of Residuals", xlab = "Residuals", breaks

Second Best Model Analysis (Wind)

```
# Get the second best model
second_best_model_name <- aic_results$Model[2]</pre>
second_best_model <- successful_models[[second_best_model_name]]</pre>
cat("Second best model:", second_best_model_name, "\n")
Second best model: M21_time_of_day
cat("Formula:", aic_results$Formula[2], "\n\n")
Formula: butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + temperature_avg + s(butterflies_t_lag)
# Model summary
summary(second_best_model$gam)
Family: gaussian
Link function: identity
Formula:
butterfly_difference_cbrt ~ s(total_butterflies_t_lag) + temperature_avg +
    s(butterflies_direct_sun_t_lag) + s(time_within_day_t)
Parametric coefficients:
               Estimate Std. Error t value Pr(>|t|)
               (Intercept)
temperature_avg 0.01903
                           0.01595
                                    1.193
                                              0.233
Approximate significance of smooth terms:
                                 edf Ref.df
                                                 F p-value
s(total_butterflies_t_lag)
                               2.698 2.698 13.127 2.0e-07 ***
s(butterflies_direct_sun_t_lag) 1.637 1.637 18.684 1.5e-05 ***
                              5.023 5.023 9.559 < 2e-16 ***
s(time_within_day_t)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.0525
 Scale est. = 4.0316
                        n = 1894
```

Effect Plots - Second Best Model

Effect of Previous Butterfly Count

```
plot(second_best_model$gam,
    select = 1, main = "Effect of Previous Butterfly Count (Second Best Model)",
    xlab = "Total Butterflies (t-lag)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

Effect of Previous Butterfly Count (Second Best Model)

Effect of Wind Gust

```
plot(second_best_model$gam,
    select = 2, main = "Effect of Wind Gust (Second Best Model)",
    xlab = "Max Gust (m/s)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

Effect of Wind Gust (Second Best Model)

Effect of Temperature

```
plot(second_best_model$gam,
    select = 3, main = "Effect of Temperature (Second Best Model)",
    xlab = "Average Temperature (°C)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

Effect of Temperature (Second Best Model)

Effect of Sun Exposure

```
plot(second_best_model$gam,
    select = 4, main = "Effect of Sun Exposure (Second Best Model)",
    xlab = "Butterflies in Direct Sun (t-lag)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

Diurnal Pattern

```
plot(second_best_model$gam,
    select = 5, main = "Diurnal Pattern (Second Best Model)",
    xlab = "Time Within Day (minutes)", ylab = "Partial Effect",
    residuals = TRUE, pch = 19, cex = 0.5
)
```

Model Diagnostics - Second Best Model

Residuals vs Fitted Values

```
plot(second_best_model$lme, main = "Residuals vs Fitted Values (Second Best Model)")
```


Q-Q Plot of Residuals

```
second_residuals_df <- data.frame(
    fitted = fitted(second_best_model$lme),
    residuals = residuals(second_best_model$lme, type = "normalized")
)

qqnorm(second_residuals_df$residuals, main = "Normal Q-Q Plot of Residuals (Second Best Model qqline(second_residuals_df$residuals)</pre>
```

Normal Q-Q Plot of Residuals (Second Best Model)

Distribution of Residuals

```
hist(second_residuals_df$residuals,
    main = "Distribution of Residuals (Second Best Model)",
    xlab = "Residuals", breaks = 30
)
```


Results Summary

This analysis provides robust evidence regarding wind effects on overwintering monarch butterfly movement through comprehensive model comparison across 47 candidate models. The results reveal several key findings:

Wind Effects: Wind was not selected in the best-performing model and only appeared once in the top 5 models (plotted above) with a non-significant effect (p = 0.218). This suggests that wind is not a primary driver of short-term monarch movement patterns at the temporal and spatial scales examined.

Primary Drivers: Temperature and diurnal patterns emerged as the strongest predictors of monarch movement. The best model revealed non-linear temperature responses with apparent thermal optima, and strong diurnal cycles consistent with monarch thermoregulatory behavior.

Model Performance: Including smooth terms substantially improved model fit (R² increased from 2.74% to 5.61%), highlighting the importance of capturing non-linear relationships in ecological modeling.

Hypothesis Evaluation: These results do not support the hypothesis that wind acts as a disruptive force to overwintering monarchs at the 30-minute temporal scale examined.