# Part IA — Probability

## Based on lectures by Dr D. Yeo

## Lent 2022

## **Contents**

| 0 | Introduction                          |                                                      |   |  |  |  |  |  |
|---|---------------------------------------|------------------------------------------------------|---|--|--|--|--|--|
| 1 | Forr                                  | Formal Setup                                         |   |  |  |  |  |  |
|   | 1.1                                   | Examples of Probability Spaces                       | 3 |  |  |  |  |  |
| 2 | Con                                   | nbinatorial Analysis                                 | 3 |  |  |  |  |  |
|   | 2.1                                   | Subsets                                              |   |  |  |  |  |  |
|   | 2.2                                   | Random Walks                                         |   |  |  |  |  |  |
|   | 2.3                                   | Stirling's Formula                                   | 9 |  |  |  |  |  |
|   | 2.4                                   | (Ordered) compositions                               | ) |  |  |  |  |  |
| 3 | Properties of Probability measures 11 |                                                      |   |  |  |  |  |  |
|   | 3.1                                   | Countable sub-additivity                             |   |  |  |  |  |  |
|   | 3.2                                   | Continuity                                           |   |  |  |  |  |  |
|   | 3.3                                   | Inclusion-Exclusion Principle                        |   |  |  |  |  |  |
|   | 3.4                                   | Bonferroni Inequalities                              |   |  |  |  |  |  |
|   | 3.5                                   | Counting with IEP                                    | 3 |  |  |  |  |  |
|   | 3.6                                   | Independence                                         | 3 |  |  |  |  |  |
|   |                                       | 3.6.1 Properties                                     | ) |  |  |  |  |  |
|   | 3.7                                   | Conditional Probability                              | ) |  |  |  |  |  |
|   |                                       | 3.7.1 Properties                                     | 1 |  |  |  |  |  |
|   |                                       | 3.7.2 Law of Total Probability and Bayes' Formula    | 3 |  |  |  |  |  |
| 4 | Disc                                  | rete Random Variables 27                             | 7 |  |  |  |  |  |
|   | 4.1                                   | Discrete Probability Distributions                   | 3 |  |  |  |  |  |
|   |                                       | 4.1.1 Bernoulli distribution - "(biased) coin toss"  | 3 |  |  |  |  |  |
|   |                                       | 4.1.2 Binomial distribution                          | ) |  |  |  |  |  |
|   |                                       | 4.1.3 More than one RV                               | ) |  |  |  |  |  |
|   |                                       | 4.1.4 Geometric distribution ("Waiting for success") | ) |  |  |  |  |  |
|   |                                       | 4.1.5 Poisson Distribution                           | ) |  |  |  |  |  |

| 4.2 | Expectation                                                                   | 31 |
|-----|-------------------------------------------------------------------------------|----|
|     | 4.2.1 Properties of Expectation                                               | 34 |
| 4.3 | Variance                                                                      | 37 |
|     | 4.3.1 Sums of RVs                                                             | 40 |
|     | 4.3.2 Chebyshev's Inequality                                                  | 43 |
| 4.4 | Conditional Expectation                                                       | 44 |
| 4.5 | Random Walks                                                                  | 46 |
|     | 4.5.1 Simple Random Walk (SRW) on $\mathbb{Z}$ - Main example in our course . | 46 |

## §0 Introduction

Text in blue is usually less important.

## Example 0.1

Dice: outcomes  $1, 2, \dots, 6$ .

- $\mathbb{P}(2) = \frac{1}{6}$ .
- $\mathbb{P}(\text{multiple of } 3) = \frac{2}{6} = \frac{1}{3}.$
- $\mathbb{P}(\text{not a multiple of } 3) = \frac{2}{3}$
- $\mathbb{P}(\text{prime}) = \frac{1}{2}$ .

$$\begin{split} \mathbb{P}(\text{prime or multiple of 3}) &= \frac{1}{3} + \frac{1}{2} = \frac{5}{6}. \\ &= \frac{4}{6} = \frac{2}{3}. \\ \mathbb{P}(\text{prime or multiple of 3}) &= \frac{1}{3} + \frac{1}{2} - \frac{1}{6} = \frac{2}{3} \end{split}$$

## §1 Formal Setup

#### **Definition 1.1** (Sample Space)

The **sample space**  $\Omega$  is a set of outcomes.

#### **Definition 1.2** ( $\sigma$ -algebra)

- Let  $\mathcal{F}$  a collection of subsets of  $\Omega$  (called *events*).
- $\mathcal{F}$  is a  $\sigma$ -alegbra if

F1.  $\Omega \in \mathcal{F}$ .

F2.  $A \in \mathcal{F}$  then  $A^c = \Omega \setminus A \in \mathcal{F}$ .

F3.  $\forall$  countable collections  $(A_n)_{n\in\mathbb{N}}\in\mathcal{F}$ , the union  $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{F}$  also.

Remark 1. The motivation for F2 is so that  $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$  (the probability of not A is defined as expected).

#### **Definition 1.3** (Probility Measure)

Given  $\sigma$ -algebra  $\mathcal{F}$  on  $\Omega$ , function  $\mathbb{P}: \mathcal{F} \to [0,1]^a$  is a **probability measure** if

P2.  $\mathbb{P}(\Omega) = 1$ .

P3.  $\forall$  countable collections  $(A_n)_{n\in\mathbb{N}}$  of disjoint events in  $\mathcal{F}$ :

$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mathbb{P}(A_n).$$

Then  $(\Omega, \mathcal{F}, \mathbb{P})$  is a probability space.

<sup>a</sup>P1.  $\mathbb{P}(A) \geq 0$ 

#### Example 1.1

Coming back to Example 0.1.  $\Omega = \{1, 2, ..., 6\}$  so

 $\mathbb{P}(\Omega) = \mathbb{P}(1 \text{ or } 2 \text{ or } 3 \text{ or } 4 \text{ or } 5 \text{ or } 6) = 1 \text{ and } \mathcal{F} \text{ is all subsets of } \Omega.$ 

#### Question

Why 
$$\mathbb{P}: \mathcal{F} \to [0,1]$$

and not 
$$\mathbb{P}: \Omega \to [0,1]$$
?

If  $\Omega$  is countable:

- In general:  $\mathcal{F} = \text{all subsets of } \Omega$ , i.e.  $\mathcal{P}(\Omega)$  (the power set).
- $\mathbb{P}(2)$  is shorthand for  $\mathbb{P}(\{2\})$ .
- $\mathbb{P}$  is determined by  $(\mathbb{P}(\{w\}), \forall w \in \Omega)$  (e.g. unfair dice).

If  $\Omega$  is uncountable:

- E.g.  $\Omega = [0, 1]$ . Want to choose a real number, all equally likely.
- If  $\mathbb{P}\left(\{0\}\right) = \alpha > 0$  then  $\mathbb{P}\left(\left\{0, 1, \frac{1}{2}, \dots, \frac{1}{n}\right\}\right) = (n+1)\alpha$  if n large as  $\mathbb{P} > 1$ .
- So  $\mathbb{P}(\{0\}) = 0$ , or  $\mathbb{P}(\{0\})$  is undefined.
- What about  $\mathbb{P}\left(\left\{x:x\leq\frac{1}{3}\right\}\right)$ ?
  - ? "Add up" all  $\mathbb{P}(\{x\})$  for  $x \leq \frac{1}{3}$ . However this range is uncountable and we can't take a sum of uncountably many terms.

#### Aside

#### Question

Can we choose uniformly from an infinite countable set? (E.g.  $\Omega=\mathbb{N}$  or  $\Omega=\mathbb{Q}\cap[0,1]$ )

#### Answer

No it is not possible but that's ok there  $\exists$  lots of interesting probability measures of  $\mathbb{N}$ !

*Proof.* Suppose possible

- $\mathbb{P}(\{0\}) = \alpha > 0 \quad \forall \ \omega \in \Omega$ . Then  $\mathbb{P}(\Omega) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = \sum_{\omega \in \Omega} \alpha = \infty$ . If of  $P2 : \mathbb{P}(\Omega) = 1$ .
- $\mathbb{P}(\{0\}) = 0 \quad \forall \ \omega \in \Omega. \text{ Then } \mathbb{P}(\Omega) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = \sum_{\omega \in \Omega} 0 = 0.$

#### **Proposition 1.1** (From the axioms)

• 
$$\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$$

Proof. 
$$A, A^c$$
 are disjoint.  $A \cup A^c = \Omega$ .  
 $\Longrightarrow \mathbb{P}(A) + \mathbb{P}(A^c) = \mathbb{P}(\Omega) = 1$ 

- $\mathbb{P}(\emptyset) = 0$
- If  $A \subseteq B$  then  $\mathbb{P}(A) \leq \mathbb{P}(B)$
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

#### §1.1 Examples of Probability Spaces

#### Example 1.2 (Uniform Choice)

 $\Omega$  finite,  $\Omega = \{\omega_1, \ldots, \omega_n\}$ ,  $\mathcal{F} = \text{all subsets. } uniform \text{ choice (equally likely)}$ 

$$\mathbb{P}: \mathcal{F} \to [0,1], \ \mathbb{P}(A) = \frac{|A|}{|\Omega|}.$$

In particular:  $\mathbb{P}(\{\omega\}) = \frac{1}{|\Omega|} \quad \forall \ \omega \in \Omega.$ 

#### **Example 1.3** (Choosing without replacement)

*n* indistinguishable marbles labelled  $\{1,\ldots,n\}$ . Pick  $k \leq n$  marbles uniformly at random. Here:  $\Omega = \{A \subseteq \{1,\ldots,n\}, |A| = k\} \quad |\Omega| = \binom{n}{k}$ 

#### Example 1.4 (Well-shuffled deck of cards)

Uniformly chosen permutation of 52 cards.

$$\begin{split} \Omega &= \{ \text{all permutations of 52 cards} \} \\ |\Omega| &= 52! \\ \mathbb{P}( \text{\tiny first three cards}_{\text{have the same suit}}) &= \frac{52 \times 12 \times 11 \times 49!}{52!} = \frac{22}{425} \\ \text{Note:} &= \frac{12}{51} \times \frac{11}{50} \end{split}$$

#### Example 1.5 (Coincident Birthdays)

There are n people; what is the probability that at least two of them share a birth-day?

Assumptions:

- No leap years! (365 days)
- All birthdays are equally likely

Let  $\Omega = \{1, \dots, 365\}^n$  and  $\mathcal{F} = \mathcal{P}(\Omega)$ .

Let  $A = \{$ at least two people share the same birthday $\}$  and so  $A^c = \{$ all n birthdays are different $\}$ .

$$\mathbb{P}(A^c) = \frac{|A^c|}{|\Omega|} = \frac{365 \times 364 \dots \times (365 - n + 1)}{365^n}$$

$$\mathbb{P}(A) = 1 - \mathbb{P}(A^c)$$

Note that at n = 22,  $\mathbb{P}(A) \approx 0.476$  and at n = 23,  $\mathbb{P}(A) \approx 0.507$ . So when there are at least 23 people in a room, the probability that two of them share a birthday is around 50%.

KEY IDEA: Calculating  $\mathbb{P}(A^c)$  is easier than  $\mathbb{P}(A)$ .

## §2 Combinatorial Analysis

#### §2.1 Subsets

#### Question

Let  $\Omega$  be finite and  $|\Omega| = n$ . How many ways to partition  $\Omega$  into k disjoint subsets  $\Omega_1, \ldots, \Omega_k$  with  $|\Omega_i| = n_i$  (with  $\sum_{i=1}^k n_i = n$ )?

#### **Answer**

$$M = \binom{n}{n_1} \binom{n-n_1}{n_2} \binom{n-n_1-n_2}{n_3} \dots \binom{n-(n_1+\dots+n_{k-1})}{n_k}$$
Choose Then choose first part second part
$$= \frac{n!}{n_1! (n-n_1)!} \times \frac{(n-n_1)!}{n_2! (n-n_1-n_2)!} \times \frac{[n-(n+n_1+\dots+n_{k-1})]!}{0!n_k!}$$

$$= \frac{n!}{n_1! n_2! \dots n_k!}$$

$$= \binom{n}{n_1, n_2, \dots, n_k}$$
Multinomial coefficient

Key sanity check

- Does ordering of the subsets matter?

E.g. Is  $\Omega_2 = \{3,4,7\}, \Omega_3 = \{1,5,8\}$  equal to  $\Omega_3 = \{3,4,7\}, \Omega_2 = \{1,5,8\}$ ? No, ordering does matter as we put elements first in the second subset then the third.

#### §2.2 Random Walks



$$\Omega = \{ (X_0, X_1, \dots, X_n) : X_0 = 0, |X_n - X_{k-1}| = 1 \ \forall \ k = 1, \dots, n \}.$$
$$|\Omega| = 2^n \text{ (we can go either up or down at each } k)$$

$$\mathbb{P}(X_n=n)=\frac{1}{2^n}$$
 
$$\mathbb{P}(X_n=0)=0 \text{ if } n \text{ is odd}$$
 What about  $\mathbb{P}(X_n=0)$  when  $n$  is even

*Idea* - Choose  $\frac{n}{2}$  ks for  $X_k = X_{k-1} + 1$  and the rest  $X_k = X_{k-1} - 1$  (i.e. go up half the time and down the other half).

$$\mathbb{P}(X_n = 0) = 2^{-n} \binom{n}{\frac{n}{2}}$$
$$= \frac{n!}{2^n \left(\frac{n}{2}!\right)^2}$$

#### Question

What happens when n is large?

#### §2.3 Stirling's Formula

**Notation.** Let  $(a_n), (b_n)$  be two sequences. Say  $a_n \sim b_n$  as  $n \to \infty$  if  $\frac{a_n}{b_n} \to 1$  as  $n \to \infty$ .

## Example 2.1

$$n^2 + 5n + \frac{6}{n} \sim n^2$$

#### Example 2.2 (Non-Example)

$$\exp\left(n^2+5n+\tfrac{6}{n}\right)\nsim \exp(n^2)$$

#### Theorem 2.1 (Stirling)

$$n! \sim \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n}$$
 as  $n \to \infty$ .

## Theorem 2.2 (Weaker Version)

 $\log n! \sim n \log n$ .

Proof. 
$$\log(n!) = \log 2 + \cdots + \log n$$
.



"Upper Integral"
$$\int_{1}^{n} \log x \, dx \leq \log n! \leq \int_{1}^{n+1} \log x \, dx$$

$$\underbrace{n \log n - n + 1}_{\sim n \log n} \leq \log n! \leq \underbrace{(n+1) \log (n+1) - n}_{\sim n \log n}$$

Key idea: Sandwiching between lower/upper integrals. It was useful that

- $\log x$  is increasing
- $\log x$  has a nice integral!

§2.4 (Ordered) compositions

**Definition 2.1** (Composition)

A **composition** of m with k parts is a sequence  $(m_1, \ldots, m_k)$  of non-negative integers with  $m_1 + \cdots + m_k = m$ .

Example 2.3

$$3 + 0 + 1 + 2 = 6 \neq 1 + 2 + 0 + 3 = 6$$
  
 $\star \star \star | \star | \star | \star \star$ 

There is a bijection between compositions and sequences of m stars and (k-1) dividers. So the number of compositions is  $\binom{m+k-1}{m}$ .

Comment: Easy to mistake k with k-1 in no. of dividers.

## §3 Properties of Probability measures

Let  $(\Omega, \mathcal{F}, \mathbb{P})$  be a probability space and  $\mathbb{P}: \mathcal{F} \to [0, 1]$ .

#### **Definition 3.1** (Countable additivity)

P3 :  $\mathbb{P}(\bigcup_{n\in\mathbb{N}} A_n) = \sum_{n\in\mathbb{N}} \mathbb{P}(A_n)$  for  $(A_n)_{n\in\mathbb{N}}$  disjoint.

#### Question

What if the sets are not disjoint?

#### §3.1 Countable sub-additivity

#### **Proposition 3.1** (Countable sub-additivity)

Let  $(A_n)_{n\in\mathbb{N}}$  be a sequence of events in  $\mathcal{F}$ . Then

$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq\sum_{n\in\mathbb{N}}\mathbb{P}(A_n).$$

May also be called a union bound.

Intuition:



 $\sum_{n\in\mathbb{N}} \mathbb{P}(A_n)$  "double counts" some sub-events.

*Proof. Idea*: Rewrite  $\bigcup_{n\in\mathbb{N}} A_n$  as a *disjoint* union. Define  $B_1=A_1$  and  $B_n=A_n\setminus (A_1\cup\cdots\cup A_{n-1})$   $\forall \ n\geq 2.$ 



So

- $\bigcup_{n\in\mathbb{N}} B_n = \bigcup_{n\in\mathbb{N}} A_n$ .
- $(B_n)_{n\in\mathbb{N}}$  is disjoint (by construction).

• 
$$B_n \subseteq A_n \implies \underbrace{\mathbb{P}(B_n) \le \mathbb{P}(A_n)}_{\text{Q4, Sheet 1}}$$

$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_{n}\right)=\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}B_{n}\right)\underset{P3\text{ on }\left(B_{n}\right)}{=}\underset{n\in\mathbb{N}}{\sum}\mathbb{P}\left(B_{n}\right)\leq\underset{n\in\mathbb{N}}{\sum}\mathbb{P}\left(A_{n}\right)$$

#### §3.2 Continuity

#### Proposition 3.2 (Continuity)

Let  $(A_n)_{n\in\mathbb{N}}$  be an increasing sequence of events in  $\mathcal{F}$ , i.e.  $A_n\subseteq A_{n+1}\quad\forall n$ . Then  $\mathbb{P}(A_n)\leq \mathbb{P}(A_{n+1})$ . So  $\mathbb{P}(A_n)$  converges as  $n\to\infty$ .

In fact:  $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}\left(\bigcup_{n\in\mathbb{N}} A_n\right)$ .

For motivation try Q6, Sheet 1.

*Proof.* Let us reuse the  $B_n$ s from the previous subsection.

- $\bigcup_{k=1}^{n} B_k = A_n$  (disjoint union).
- $\bigcup_{n\in\mathbb{N}} B_n = \bigcup_{n\in\mathbb{N}} A_n$

 $<sup>^</sup>a$ As probabilities are bounded above by 1 and increasing.



$$\mathbb{P}(A_n) = \sum_{k=1}^n \mathbb{P}(B_k) \overset{n \to \infty}{\to} \sum_{k \ge 1} \mathbb{P}(B_k) = \mathbb{P}\left(\bigcup_{n \in \mathbb{N}} B_n\right) = \mathbb{P}\left(\bigcup_{n \in \mathbb{N}} A_n\right)$$

#### §3.3 Inclusion-Exclusion Principle

Background:  $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$ .

Similarly:  $A, B, C \in \mathcal{F}$ 

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cup B) - \mathbb{P}(B \cup C) - \mathbb{P}(C \cup A) + \mathbb{P}(A \cap B \cap C).$$

#### Proposition 3.3 (Inclusion-Exclusion Principle)

Let  $A_1, \ldots, A_n \in \mathcal{F}$ , then:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mathbb{P}(A_{i}) - \sum_{1 \leq i_{1} < i_{2} \leq n} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}}) + \sum_{1 \leq i_{1} < i_{2} < i_{3} \leq n} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}) - \dots + (-1)^{n+1} \mathbb{P}(A_{1} \cap \dots \cap A_{n})$$

$$= \sum_{I \subset \{1, \dots, n\}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right)$$

Note:  $\sum_{1 \leq i_1 < i_2 \leq n}$  is the sum of all triples that are distinct and unordered.

*Proof.* By induction. For n = 2 it holds (Q4e, Sheet 1).

$$\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \mathbb{P}\left(\left(\bigcup_{i=1}^{n-1} A_i\right) \cup A_n\right)$$

Using n = 2 case we get:

$$= \mathbb{P}\left(\bigcup_{i=1}^{n-1} A_i\right) + \mathbb{P}(A_n) - \mathbb{P}\left(\left(\bigcup_{i=1}^{n-1} A_i\right) \cap A_n\right)$$

We want to break down the final element on the RHS

Idea: 
$$\left(\bigcup_{i=1}^{n-1} A_i\right) \cap A_n = \bigcup_{i=1}^{n-1} \left(A_i \cap A_n\right)$$

If we apply IEP to  $\bigcup_{i=1}^{n-1} (A_i \cap A_n)$  we need to calculate  $\bigcap_{i \in J} (A_i \cap A_n)$ 

$$\bigcap_{i \in J} (A_i \cap A_n) = \bigcap_{i \in J \cup \{n\}} A_i, \qquad J \subset \{1, \dots, n-1\}$$

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{\substack{J \subset \{1, \dots, n-1\}\\J \neq \emptyset}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right) + \mathbb{P}(A_{n})$$

$$- \sum_{\substack{J \subset \{1, \dots, n-1\}\\J \neq \emptyset}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J \cup \{n\}} A_{i}\right)$$

$$n-1 \text{ case on } (A_{i} \cap A_{n})$$

$$J \cup \{n\} \mapsto I.$$

$$J \cup \{n\} \mapsto I.$$

$$-(-1)^{|J|+1} \mapsto (-1)^{|I|+1}$$

$$= \sum_{\substack{I \subset \{1, \dots, n-1\}\\I \neq \emptyset}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_i\right) + \mathbb{P}(A_n)$$
Just changed the labels
$$+ \sum_{\substack{I \subset \{1, \dots, n\}\\n \in I, \ |I| > 2}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_i\right)$$

$$= \sum_{\substack{I \subset \{1, \dots, n\}\\I \neq \emptyset}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_i\right).$$

Let us check that we have indeed counted all subsets I.

- $\sum_{\substack{I\subset\{1,\ldots,n-1\}\\I\neq\emptyset}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i\in I} A_i\right)$  accounts for all subsets where  $n\notin I$ .
- $\mathbb{P}(A_n)$  accounts for  $\{n\}$   $\sum_{\substack{I \subset \{1,\dots,n\} \\ I \subseteq I}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_i\right)$  accounts for all subsets where  $n \in I$  and  $I \neq \{n\}$ .

#### §3.4 Bonferroni Inequalities

#### Question

What if you *truncate* IEP (Inclusion-Exclusion Principle)?

#### Proposition 3.4 (Bonferroni Inequality)

Recall: Countable sub-additivity -  $\mathbb{P}(\cup A_i) \leq \sum \mathbb{P}(A_i)$ .

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{k=1}^{r} (-1)^{k+1} \sum_{i_{1} < i_{2} < \dots < i_{k}} \mathbb{P}(A_{i_{1}} \cap \dots \cap A_{i_{k}}) \quad \text{if } r \text{ is odd}$$

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \geq \sum_{k=1}^{r} (-1)^{k+1} \sum_{i_{1} < i_{2} < \dots < i_{k}} \mathbb{P}(A_{i_{1}} \cap \dots \cap A_{i_{k}}) \quad \text{if } r \text{ is even}$$

*Proof.* By induction on r and n. Let r be odd

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \mathbb{P}\left(\bigcup_{i=1}^{n-1} A_{i}\right) + \mathbb{P}(A_{n}) - \mathbb{P}\left(\bigcup_{i=1}^{n-1} (A_{i} \cap A_{n})\right)$$

$$\mathbb{P}\left(\bigcup_{i=1}^{n-1} A_{i}\right) \leq \sum_{\substack{J \subset \{1, \dots, n-1\}\\1 \leq |J| \leq r}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right)$$

$$n-1 \text{ case.}$$

$$\mathbb{P}\left(\bigcup_{i=1}^{n-1} (A_{i} \cap A_{n})\right) \geq \sum_{\substack{J \subset \{1, \dots, n-1\}\\1 \leq |J| \leq r-1}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J \cup \{n\}} A_{i}\right)$$

$$1 \leq |J| \leq r-1^{a}$$

$$r-1 \text{ case on } (A_{i} \cap A_{n})$$

Using the same rearranging as in the proof of Inclusion-Exclusion Principle

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{\substack{I \subset \{1,\dots,n\}\\1 < |I| < r}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_i\right).$$

The case of r being even is similar, simply note all three inequalities are reversed.  $\Box$ 

#### Question

When is it good to truncate at e.g. r = 2?

#### §3.5 Counting with IEP

Uniform probability measure on  $\Omega$ ,  $|\Omega| < \infty$ .  $\mathbb{P}(A) = \frac{|A|}{|\Omega|} \quad \forall A \subseteq \Omega$ . Then  $\forall A_1, \ldots, A_n \subseteq \Omega$ 

$$|A_1 \cup \dots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \sum_{i_1 < \dots < i_k} |A_i \cap \dots \cap A_{i_k}|$$

(and similarly for Bonferroni Inequalities).

#### Example 3.1 (Surjections)

What is the probability that a function  $f:\{1,\ldots,n\}\to\{1,\ldots,m\},\ n\geq m$  is a surjection? Let  $\Omega=\{f:\{1,\ldots,n\}\to\{1,\ldots,m\}\}$  and  $A=\{f\in\Omega:\mathrm{Image}(f)=\{1,\ldots,m\}\}.$ 

 $\forall i \in \{1, \dots, m\} \text{ define } B_i = \{f \in \Omega : i \notin \text{Image}(f)\}.$ 

Key observations:

•

$$A = B_1^c \cap \dots B_m^c$$
$$= (B_1 \cup \dots \cup B_m)^c$$

•  $|B_{i_1} \cap \cdots \cap B_{i_k}|$  is nice to calculate.

$$|B_{i_1} \cap \dots \cap B_{i_k}| = |\{f \in \Omega : i_1, \dots, i_k \notin \operatorname{Image}(f)| = (m-k)^n$$

 $<sup>^{</sup>a}J$  doesn't include n and we only want r elements in the intersection

 $<sup>^{</sup>a}J$  doesn't include n and we only want r elements in the intersection

$$IEP \to |B_1 \cup \dots \cup B_m| = \sum_{k=1}^m (-1)^{k+1} \sum_{i_1 < \dots < i_k \text{ same for all } i_1, \dots, i_k} |B_{i_1} \cap \dots \cap B_{i_k}|$$

$$= \sum_{k=1}^m (-1)^{k+1} \binom{m}{k} (m-k)^n$$

$$|A| = m^n - |B_{i_1} \cap \dots \cap B_{i_k}|$$

$$= \sum_{k=0}^m (-1)^k \binom{m}{k} (m-k)^n$$

#### Example 3.2 (Derangements)

What is the probability that a permutation has no fixed points? Derangements can be useful in a Secret Santa.

 $\Omega = \{\text{permuations of } \{1, \dots, n\} \}$  and the derangements, D, are  $\{\sigma \in \Omega : \sigma(i) \neq i \forall i = 1, \dots, n\}$ .

#### Question

Is  $\mathbb{P}(D) = \frac{|D|}{|\Omega|}$  large or small (e.g. when  $n \to \infty$ ?)

 $\forall i \in \{1, \dots, n\} : A_i = \{\sigma \in \Omega : \sigma(i) = i\}.$ Key observations:

• 
$$D = A_1^c \cap \dots A_n^c = (\bigcup_{i=1}^n A_i)^c$$
.

•

$$\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) = \frac{(n-k)!}{n!}$$

$$IEP \to \mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{k=1}^n (-1)^{k+1} \sum_{i_1 < \dots < i_k} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})$$

$$= \sum_{k=1}^n (-1)^{k+1} \binom{n}{k} \frac{(n-k)!}{n!}$$

$$= \sum_{k=1}^n (-1)^{k+1} \frac{1}{k!}$$

$$\mathbb{P}(D) = 1 - \mathbb{P}\left(\bigcup_{i=1}^n A_i\right)$$

$$= 1 - \sum_{k=1}^n \frac{(-1)^{k+1}}{k!}$$

$$= \sum_{k=0}^{n} \frac{(-1)^k}{k!}$$

$$\lim_{n \to \infty} \mathbb{P}(D) = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{k!}$$

$$= e^{-1} \approx 0.37.$$

Remark 2.

• What if instead  $\Omega' = \{\text{all functions } f : \{1, \dots, n\} \text{ to itself}\}$ ?

$$D = \{ f \in \Omega' : f(i) \neq i \quad \forall i = 1, \dots, n \}.$$

$$\mathbb{P}(D) = \frac{(n-1)^n}{n^n}$$

$$= \left(1 - \frac{1}{n}\right)$$

$$\lim_{n \to \infty} D = e^{-1}.$$

- We would liked to have calculated  $\mathbb{P}(D)$  by doing  $\left(\frac{n-1}{n}\right)^n$  as we have n choices each with probability  $\frac{n-1}{n}$ . We will be allowed to do this soon! See Example 3.6
- f(i) is a random quantity associated to  $\Omega$ . We will be allowed to study f(i) as a random variable soon.
- We are allowed to toss a fair coin n times,  $\Omega = \{H, T\}^n$ . But we have not yet studied tossing an unfair coin n times.

#### §3.6 Independence

 $(\Omega, \mathcal{F}, \mathbb{P})$  as before.

#### **Definition 3.2** (Indepence)

Events  $A, B \in \mathcal{F}$  are **independent**  $(A \perp \!\!\! \perp B)$  if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

A countable<sup>a</sup> collection of events  $(A_n)$  are **independent** if  $\forall$  distinct  $i_1, \ldots, i_k{}^b$  we have:

$$\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) = \prod_{j=1}^k \mathbb{P}(A_{i_j}).$$

 $^a$ including finite

bk is finite

Remark 3 (Caution). "Pairwise independence" does not imply independence.

### Example 3.3

$$\begin{split} \Omega &= \{(H,H),(H,T),(T,H),(T,T)\} \\ \mathbb{P}(\{\omega\}) &= \frac{1}{4} \quad \forall \ \omega \in \Omega. \\ A &= \text{first coin is } H = \{(H,H),(H,T)\}. \\ B &= \text{second coin is } H = \{(T,H),(H,H)\}. \\ C &= \text{both coins have the same outcome} = \{(T,T),(H,H)\}. \\ \mathbb{P}(A) &= \mathbb{P}(B) = P(C) = \frac{1}{2}. \\ A \cap B &= A \cap C = B \cap C = \{(H,H)\}. \\ \mathbb{P}(A \cap B) &= \mathbb{P}(A \cap C) = \mathbb{P}(B \cap C) = \frac{1}{4}. \quad \text{Pairwise independence} \ \checkmark \\ \mathbb{P}(A \cap B \cap C) &= \frac{1}{4} \neq \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C). \quad \text{Independence} \ \times \end{split}$$

#### Example 3.4 (Independence)

 $\Omega' = \{\text{all functions } f : \{1, \dots, n\} \text{ to itself } A = \{f \in \Omega' : f(i) = i\}$ 

$$A_{i} = \{ f \in \Omega' : f(i) = i \}.$$

$$\mathbb{P}(A_{i}) = \frac{n^{n-1}}{n^{n}} = \frac{1}{n}$$

$$\mathbb{P}(A_{i_{1}} \cap \dots \cap A_{i_{k}}) = \frac{n^{n-k}}{n^{n}}$$

$$= \frac{1}{n^{k}}$$

$$= \prod_{j=1}^{k} \mathbb{P}(A_{i_{j}})$$

Here:  $(A_i)$  are independent events.

$$\Omega = \{\sigma: \text{ permutation of } \{1, \dots, n\}\}$$

$$A_i = \{\sigma \in \Omega : \sigma(i) = i\}$$

$$\mathbb{P}(A_i) = \frac{(n-1)!}{n!} = \frac{1}{n}.$$

$$i \neq j \quad \mathbb{P}(A_i \cap A_j) = \frac{(n-2)!}{n!}$$

$$= \frac{1}{n(n-1)}$$

$$\neq \mathbb{P}(A_i)\mathbb{P}(A_j)$$

Here:  $(A_i)$  are not independent events.

#### §3.6.1 Properties

#### Claim 3.1

If A is independent of B, then A is also independent of  $B^c$ .

Proof.

$$\mathbb{P}(A \cap B^c) = \mathbb{P}(A) - \mathbb{P}(A \cap B)$$
$$= \mathbb{P}(A) - \mathbb{P}(A)\mathbb{P}(B)$$
$$= \mathbb{P}(A)[1 - \mathbb{P}(B)]$$
$$= \mathbb{P}(A)\mathbb{P}(B^c)$$

Claim 3.2

A is independent of  $B = \Omega$  and of  $C = \emptyset$ 

*Proof.* 
$$\mathbb{P}(A \cap \Omega) = P(A) = \mathbb{P}(A) \underbrace{\mathbb{P}(\Omega)}_{=1}$$
 and so  $A \perp \!\!\! \perp \emptyset$  by Claim 1.

#### §3.7 Conditional Probability

 $(\Omega, \mathcal{F}, \mathbb{P})$  as before.

Consider  $B \in \mathcal{F}$  with  $\mathbb{P}(B) > 0$ ,  $A \in \mathcal{F}$ 

#### **Definition 3.3** (Conditional Probability)

The **conditional probability** of A given B is  $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ .

"The probability of A is we know B happened". (e.g. revealing information in succession)

#### Example 3.5

A, B independent.

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$

"Knowing whether B happened doesn't affect the probability of A".

#### §3.7.1 Properties

- P1  $\mathbb{P}(A \mid B) \geq 0$
- P2  $\mathbb{P}(B \mid B) = 1 = \mathbb{P}(\Omega \mid B)$
- P3  $(A_n)$  disjoint events  $\in \mathcal{F}$ :

#### Claim 3.3

$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}} A_n \mid B\right) = \sum_{n\in\mathbb{N}} \mathbb{P}(A_n \mid B)$$

Proof.

$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\mid B\right) = \frac{\mathbb{P}\left(\left(\bigcup_nA_n\right)\cap B\right)}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}\left(\bigcup_n\left(A_n\cap B\right)\right)}{\mathbb{P}(B)}, \quad \cup(A_n\cap B) \text{ is a disjoint union}$$

$$= \frac{\sum_n\mathbb{P}(A_n\cap B)}{\mathbb{P}(B)}$$

$$= \sum_{n\in\mathbb{N}}\mathbb{P}(A_n\mid B)$$

Summary: Use definition and apply P1, P2, P3 to the numerator.

 $\mathbb{P}(\bullet \mid B)$  is a function from  $\mathcal{F} \to [0,1]$  that satisfies the rules to be a probability measure on  $\Omega$ .

#### Aside?

Consider  $\Omega' = B$  (especially in finite or countable setting). Let  $\mathcal{F}' = \mathcal{P}(B)$ . Then  $(\Omega', \mathcal{F}', \mathbb{P}(\bullet \mid B))$  also satisfies rules to be a probability measure on  $\Omega'$ .

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B \mid A) \tag{1}$$

$$\mathbb{P}(A_1 \cap A_2 \cap \dots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2 \mid A_1)\mathbb{P}(A_3 \mid A_1 \cap A_2)\dots\mathbb{P}(A_n \mid A_1 \cap \dots \cap A_{n-1})$$

#### Example 3.6

Uniform choice of a permutation  $(\sigma(1), \sigma(2), \ldots, \sigma(n)) \in \Sigma_n$ .

#### Claim 3.4

$$\mathbb{P}\left(\sigma(k) = i_k \mid \sigma(1) = i, \dots, \sigma(k-1) = i_{k-1}\right), \quad i_1, \dots, i_{k-1} \text{ distinct.}$$

$$= \begin{cases} 0 & \text{if } i_k \in \{i_1, \dots, i_{k-1}\}.\\ \frac{1}{n-k+1}^a & \text{else} \end{cases}$$

Proof.

$$\mathbb{P}(\sigma(k) = i_k \mid \sigma(1) = i, \dots, \sigma(k-1) = i_{k-1}) = \frac{\mathbb{P}(\sigma(1) = i, \dots, \sigma(k) = i_k)}{\mathbb{P}(\sigma(1) = i, \dots, \sigma(k-1) = i_{k-1})}$$

$$= \frac{\frac{(n-k)!}{n!}}{\frac{(n-k+1)!}{n!}}$$

$$= \frac{(n-k)!}{(n-k+1)!}$$

$$= \frac{1}{n-k+1}$$

$$\mathbb{P}(\sigma(1) = i, \dots, \sigma(k) = i_k) = 0 \quad \text{if } i_k \in \{i_1, \dots, i_{k-1}\}.$$

<sup>&</sup>lt;sup>a</sup>This is an example of (Ordered) compositions

<sup>&</sup>lt;sup>a</sup>This is an example of (Ordered) compositions

#### §3.7.2 Law of Total Probability and Bayes' Formula

#### **Definition 3.4** (Partition)

 $(B_1, B_2, \dots)^a \in \Omega$  is a **partition** of  $\Omega$  if:

- $\Omega = \bigcup_n B_n$
- $(B_n)$  are disjoint

#### Theorem 3.1 (Law of Total Probability)

 $(B_n)$  a finite or countable partition of  $\Omega$  with  $B_n \in \mathcal{F} \ \forall \ n \ \text{s.t.} \ \mathbb{P}(B_n) > 0$ . Then  $\forall \ A \in \mathcal{F}$ :

$$\mathbb{P}(A) = \sum_{n} \mathbb{P}(A \mid B_n) \mathbb{P}(B_n).$$

Also know as "Partition Theorem".

*Proof.* Note that  $\bigcup_n (A \cap B_n) = A$ .

$$\mathbb{P}(A) = \sum_{n \in \mathbb{N}} \mathbb{P}(A \cap B_n)$$
$$= \sum_{n} \mathbb{P}(A \mid B_n) \mathbb{P}(B_n) \text{ by Equation (1)}$$

#### Theorem 3.2 (Bayes' Formula)

Same setup as above

$$\mathbb{P}(B_n \mid A) = \frac{\mathbb{P}(A \cap B_n)}{\mathbb{P}(A)}$$
$$= \frac{\mathbb{P}(A \mid B_n)\mathbb{P}(B_n)}{\sum_m \mathbb{P}(A \mid B_m)\mathbb{P}(B_m)}.$$

Let n = 2:  $\mathbb{P}(B \mid A)\mathbb{P}(A) = \mathbb{P}(A \mid B)\mathbb{P}(B) = \mathbb{P}(A \cap B)$ 

#### Example 3.7 (Lecture course)

Consider a Lecture course which has 2/3 of the lectures on weekdays and 1/3 on

<sup>&</sup>lt;sup>a</sup>finite or countable

weekends. Let

$$\mathbb{P}(\text{forget notes} \mid \text{weekday}) = \frac{1}{8}$$

$$\mathbb{P}(\text{forget notes} \mid \text{weekend}) = \frac{1}{2}$$

What is  $\mathbb{P}(\text{weekend} \mid \text{forget notes})$ ? Let  $B_1 = \{\text{weekday}\}, B_2 = \{\text{weekend}\}$  and  $A = \{ \text{forget notes} \}.$ 

By LTP (Law of Total Probability):  $\mathbb{P}(A) = \frac{2}{3} \times \frac{1}{8} + \frac{1}{3} \times \frac{1}{2} = \frac{1}{4}$ . By Bayes' Formula:  $\mathbb{P}(B_2 \mid A) = \frac{1}{3} \times \frac{1}{2} / \frac{1}{4} = \frac{2}{3}$ .

#### **Example 3.8** (Disease Testing)

Suppose p are infected and (1-p) are not.  $\mathbb{P}(\text{tests positive} \mid \text{infected}) = 1 - \alpha$  and  $\mathbb{P}(\text{tests positive} \mid \text{not infected}) = \beta \text{ where } \alpha, \beta \in (0, 1).$ 

We want to work out  $\mathbb{P}(\text{infected} \mid \text{test positive})$ .

By LTP:  $\mathbb{P}(\text{test positive}) = p(1 - \alpha) + (1 - p)\beta$ .

By Bayes' Formula:  $\mathbb{P}(\text{infected} \mid \text{test positive}) = \frac{p(1-\alpha)}{p(1-\alpha)+(1-p)\beta}$ .

Suppose  $p \ll \beta$  then  $p(1-\alpha) \ll (1-p)\beta$  so  $\mathbb{P}(\text{infected} \mid \text{test positive}) \sim \frac{p(1-\alpha)}{(1-p)\beta} \sim \frac{p}{\beta}$ which is small.

#### Example 3.9 (Simpson's Paradox)

Scientists ask: do jelly beans make you tongue change colour?

| Oxford | Change | No change | % change |                |
|--------|--------|-----------|----------|----------------|
| Blue   | 15     | 22        | 41%      | $\Delta = 3\%$ |
| Green  | 5      | 8         | 38%      |                |

| Cambridge | Change | No change | % change |                 |
|-----------|--------|-----------|----------|-----------------|
| Blue      | 10     | 3         | 77%      | $\Delta = 15\%$ |
| Green     | 23     | 14        | 62%      |                 |

| Total | Change | No change | % change |                 |
|-------|--------|-----------|----------|-----------------|
| Blue  | 25     | 25        | 50%      | $\Delta = -6\%$ |
| Green | 28     | 22        | 56%      |                 |

The conclusion from this example should be that the Cambridge methodology is different to the Oxford one rather than anything about blue/green jelly beans.<sup>a</sup>

24

Let  $A = \{\text{change colour}\}, B = \{\text{blue}\}, B^C = \{\text{green}\}, C = \{\text{Cambridge}\}, C^c = \{\text{Oxford}\}.$ 

$$\mathbb{P}(A \mid B \cap C) > \mathbb{P}(A \mid B^c \cap C)$$

$$\mathbb{P}(A \mid B \cap C^c) > \mathbb{P}(A \mid B^c \cap C^c)$$

$$\implies \mathbb{P}(A \mid B) > \mathbb{P}(A \mid B^c)$$

#### Theorem 3.3 (Law of Total Probability for Conditional Probabilities)

Suppose  $C_1, C_2, \ldots$  a partition of B.

$$\mathbb{P}(A \mid B) = \sum_{n} \mathbb{P}(A \mid C_{n}) \mathbb{P}(C_{n} \mid B)$$

Proof.

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}(A \cap (\bigcup_n C_n))}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}(\bigcup_n (A \cap C_n))}{\mathbb{P}(B)}$$

$$= \frac{\sum_n \mathbb{P}(A \cap C_n)}{\mathbb{P}(B)}$$

$$= \frac{\sum_n \mathbb{P}(A \mid C_n) \mathbb{P}(C_n)}{\mathbb{P}(B)}$$

$$= \sum_n \mathbb{P}(A \mid C_n) \frac{\mathbb{P}(B \cap C_n)}{\mathbb{P}(B)} \quad C_n \subset B \implies B \cap C_n = C_n$$

$$= \sum_n \mathbb{P}(A \mid C_n) \mathbb{P}(C_n \mid B)$$

#### Non Examinable

Special Case:

<sup>&</sup>lt;sup>a</sup>Obviously this is a frivolous example however if we changed Oxford to November 2021, Cambridge to January 2021 and we were measuring vaccine efficacy for different vaccines we would get similar results. And it would be reasonable to conclude that the main underlying factor was a change in the viral landscape rather than waning efficacy.

- If all  $\mathbb{P}(C_n)$  are equal then so are  $\mathbb{P}(C_n \mid B)$ . Note  $\sum_n \mathbb{P}(C_n \mid B) = 1$ .
- If  $\mathbb{P}(A \mid C_n)$  are all equal.

Then  $\mathbb{P}(A \mid B) = \mathbb{P}(A \mid C_n)$ .

#### Example 3.10 (Well-shuffled deck of cards)

Uniformly chosen *permutation*,  $\sigma \in \Sigma_{52}$ , of 52 cards.  $\{1, 2, 3, 4\}$  are *aces*. Let  $A = \{\sigma(1), \sigma(2) \text{ are aces}\}$ ,  $B = \{\sigma(1) \text{ is an ace}\} = \{\sigma(1) \leq 4\}$ ,  $C_1 = \{\sigma(1) = 1\} \dots C_4 = \{\sigma(1) = 4\}$ .

Note:

•

$$\mathbb{P}(A \mid C_i) = \mathbb{P}(\sigma(2) \in \{1, 2, 3, 4\} \mid \sigma(1) = i) \quad i \le 4$$
  
=  $\frac{3}{51}$  by Example 3.6

• 
$$\mathbb{P}(C_1) = \cdots = \mathbb{P}(C_4) = \frac{1}{52}$$
.

So 
$$\mathbb{P}(A \mid B) = \frac{3}{51}$$
 and  $\mathbb{P}(A) = \mathbb{P}(B)\mathbb{P}(A \mid B) = \frac{4}{52} \times \frac{3}{51}$ 

## §4 Discrete Random Variables

*Motivation*: Roll two dice.  $\Omega = \{1, \dots, 6\}^2 = \{(i, j) : 1 \le i, j \le 6\}$ . If we restrict our attention to:

- the first dice e.g.  $\{(i, j) : i = 3\}$ .
- the sum of the dice e.g.  $\{(i, j) : i + j = 8\}$ .
- the max of the dice e.g.  $\{(i,j): i,j \leq 4, i \text{ or } j=4\}.$

This is annoying and we want to move on from sets.

Goal: "Random real-valued measurements", we want the value of the first dice to be X and the sum to be X+Y ...

#### **Definition 4.1** (Discrete Random Variable)

A discrete random variable X on a probability space  $(\Omega, \mathcal{F}, \mathbb{P})$  is a function  $X : \Omega \to \mathbb{R}$  s.t.

- $\{\omega \in \Omega : X(\omega) = x\} \in \mathcal{F}$
- Image(X) if finite or countable (subset of  $\mathbb{R}$ ).
- We abbreviate  $\{\omega \in \Omega : X(\omega) = x\}$  as  $\{X = x\}$ . So  $\mathbb{P}(X = x)$  is valid.
- Often  $\operatorname{Image}(X) = \mathbb{Z}$  or  $\mathbb{N}_0$  or  $\{0,1\}$  etc. not {Heads or Tails}.

If  $\Omega$  is finite or countable and  $\mathcal{F} = \mathcal{P}(\Omega)$  both blue bullet points hold automatically.

#### **Example 4.1** (Part II Applied Probability)



"random arrival process". Let  $\Omega = \{\text{countable subsets } (a_1, a_2, \dots) \text{ of } (0, \infty) \}$  and  $N_t = \text{number of arrivals by time } t = |\{a_i : a_i \leq t\}| \in \mathbb{N}_0 \text{ is a discrete RV (random variable) for each time } t.$ 

#### **Definition 4.2** (Probability Mass Function)

The **probability mass function** of discrete RV X is the function  $p_X : \mathbb{R} \to [0, 1]$  given by  $p_X(x) = \mathbb{P}(X = x) \quad \forall \ x \in \mathbb{R}$ .

Note.

• if  $x \notin \text{Image}(X)$  then  $p_X(x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\}) = \mathbb{P}(\emptyset) = 0$ .

•

$$\sum_{x \in \operatorname{Im}(X)} p_X(x) = \sum_{x \in \operatorname{Im}(X)} \mathbb{P}\left(\underbrace{\{\omega \in \Omega : X(\omega) = x\}}\right)$$

$$= \mathbb{P}\left(\bigcup_{x \in \operatorname{Im}(X)} \{\omega \in \Omega : X(\omega) = x\}\right)$$

$$= \mathbb{P}(\Omega)$$

$$= 1$$

#### **Example 4.2** (Indicator function)

For event  $A \in \mathcal{F}$ , define  $1_A : \Omega \to \mathbb{R}$  by

$$1_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{else} \end{cases}$$

 $1_A$  is a discrete RV with Image =  $\{0,1\}$ .  $p_{1_A}(1) = \mathbb{P}(1_A = 1) = \mathbb{P}(A), \ p_{1_A}(0) = \mathbb{P}(1_A = 0) = \mathbb{P}(A^c)$  and  $p_{1_A}(x) = 0 \quad \forall \ x \notin \{0,1\}.$ 

This encodes "did A happen" as a real number.

Remark 4. Given a pmf  $p_X$  (probability mass function), we can always construct a probability space  $(\Omega, \mathcal{F}, \mathbb{P})$  and a RV defined on it with this pmf.

- $\Omega = \text{Im}(X) \text{ i.e. } \{x \in \mathbb{R} : p_X(x) > 0\}$
- $\mathcal{F} = \mathcal{P}(\Omega)$
- $\mathbb{P}(\{x\}) = p_X(x)$  and extend to all  $A \in \mathcal{F}$

#### §4.1 Discrete Probability Distributions

 $\Omega$  is finite.

#### §4.1.1 Bernoulli distribution - "(biased) coin toss"

If  $X \sim \text{Bern}(p)$  where  $p \in [0, 1]$  then  $\text{Im}(X) = \{0, 1\}$  and  $p_X(1) = \mathbb{P}(X = 1) = p$  and  $p_X(0) = 1 - p$ .

#### Example 4.3

 $1_A \sim \text{Bern}(p) \text{ with } p = \mathbb{P}(A).$ 

#### §4.1.2 Binomial distribution

This can be used to model the number of heads when a coin is tossed n times.

If 
$$X \sim \text{Bin}(n,p)$$
 where  $n \in \mathbb{Z}^+$  and  $p \in [0,1]$  then  $\text{Im}(X) = \{0,1,\ldots,n\}, \ p_X(k) = \mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}. \ \sum_{k=0}^n p_X(k) = (p+(1-p))^n = 1.$ 

#### §4.1.3 More than one RV

Motivation: Roll a dice with outcome  $X \in \{1, 2, ..., 6\}$ . Events:  $A = \{1 \text{ or } 2\}, B = \{1 \text{ or } 3 \text{ or } 5\}, B = \{1 \text{ or } 3 \text{ or } 5\}.$   $1_A \sim \operatorname{Bern}\left(\frac{1}{3}\right), 1_B \sim \operatorname{Bern}\left(\frac{1}{2}\right), 1_C \sim \operatorname{Bern}\left(\frac{1}{2}\right).$  Note:  $1_A \leq 1_B$  for all outcomes but  $1_A \leq 1_C$  for all outcomes is false.

#### **Definition 4.3** (Independent RVs)

Let  $X_1, \ldots, X_n$  be discrete RVs. We say  $X_1, \ldots, X_n$  are independent if:

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \mathbb{P}(X_1 = x) \dots \mathbb{P}(X_n = x_n) \quad \forall \ x_1, \dots, x_n \in \mathbb{R}.$$

(suffices to check  $\forall x_i \in \text{Im}(X_i)$ )

#### Example 4.4

 $X_1, \ldots, X_n$  independent RVs each with the Bernoulli(p) distribution. Study  $S_n = X_1 + \cdots + X_n$ . Then

$$\mathbb{P}(S_n = k) = \sum_{\substack{x_1 + \dots + x_n = k \\ x_i \in \{0,1\}}} \mathbb{P}(X_1 = x_1, \dots, X_n = x_n) 
= \sum_{\substack{x_1 + \dots + x_n = k \\ x_1 + \dots + x_n = k}} \mathbb{P}(X_1 = x_1) \dots \mathbb{P}(X_n = x_n) 
= \sum_{\substack{x_1 + \dots + x_n = k \\ x_1 + \dots + x_n = k}} p^{|\{i: x_i = 1\}|} (1 - p)^{|\{i: x_i = 0\}|} 
= \sum_{\substack{x_1 + \dots + x_n = k \\ x_1 + \dots + x_n = k}} p^k (1 - p)^{n - k} 
= \binom{n}{k} p^k (1 - p)^{n - k}.$$

So  $S_n \sim \text{Bin}(n, p)$ .

#### Example 4.5 (Non-example)

 $(\sigma(1), \sigma(2), \dots, \sigma(n))$  a uniform permutation.

#### Claim 4.1

 $\sigma(1)$  and  $\sigma(2)$  are not independent.

Suffices to find 
$$i_1, i_2$$
 s.t.  $\mathbb{P}(\sigma(1) = i_1, \sigma(2) = i_2) \neq \mathbb{P}(\sigma(1) = i_1)\mathbb{P}(\sigma(2) = i_2)$ . E.g.  $\mathbb{P}(\sigma(1) = 1, \sigma(2) = 1) = 0 \neq \mathbb{P}(\sigma(1) = 1)\mathbb{P}(\sigma(2) = 1)$ 

Consequence of definition

Let  $X_1, \ldots, X_n$  be independent. Then  $\mathbb{P}(X_1 \in A_1, \ldots, X_n \in A_n) = \mathbb{P}(X \in A_1) \ldots \mathbb{P}(X_n \in A_n) \quad \forall A_1, \ldots, A_n \subset \mathbb{R}$  countable.

Let  $\Omega = \mathbb{N}$ , "Ways of choosing a random integer"

#### §4.1.4 Geometric distribution ("Waiting for success")

This can be used to model the number of coin tosses until we get a head.

If  $X \sim \text{Geo}(p)$  were  $p \in (0,1)$ .  $\text{Im}(X) = \{1,2,\dots\}$ ,  $p_X(k) = \mathbb{P}((\text{k-1}) \text{ failures, then success on the kth trial}) = (1-p)^{k-1}p$ . Check:  $\sum_{k \geq 1} (1-p)^{k-1}p = p \sum_{t \geq 0} (1-p)^t = \frac{p}{1-(1-p)} = 1$ .

Alternatively: "Count how many failures before a success"  $\operatorname{Im}(Y) = \{0, 1, 2, \dots\}, \ p_Y(k) = \mathbb{P}(k \text{ failures, then success on the } (k+1)\text{th trial}).$  Check:  $\sum_{k>0} (1-p)^k p = 1$ .

#### §4.1.5 Poisson Distribution

If  $X \sim \text{Po}(\lambda)$  (or  $\text{Poi}(\lambda)$ ) with  $\lambda \in (0, \infty)$ .  $\text{Im}(X) = \{0, 1, 2, \dots\}$  and  $\mathbb{P}(X = k) = e^{-\lambda} \lambda^k / k! \quad \forall \ k \geq 0$ . Check:  $\sum_{k \geq 0} \mathbb{P}(X = k) = e^{\lambda} \sum_{k \geq 0} \frac{\lambda^k}{k!} = e^{\lambda} e^{\lambda}$ .

Motivation: Consider  $X_n \sim \text{Bin}(n, \frac{\lambda}{n})$ 



Split time interval  $[0, \lambda]$  into n small intervals.

- Probability of an arrival in each interval is p, independently across intervals.
- Total no. of arrivals is  $X_n$ .

$$\mathbb{P}(X_n = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

Fix k and let  $n \to \infty$ 

$$= \frac{n!}{n^k(n-k)!} \times \underbrace{\frac{\lambda^k}{k!}}_{\text{no n}} \times \underbrace{\left(1 - \frac{\lambda}{n}\right)^n}_{\rightarrow e^{-\lambda}} \times \underbrace{\left(1 - \frac{1}{n}\right)^{-k}}_{\rightarrow 1}$$

$$\frac{n!}{n^k(n-k)!} = \frac{n(n-1)\dots(n-k+1)}{n^k}$$

$$= 1 \times \left(1 - \frac{1}{n}\right) \times \left(1 - \frac{2}{n}\right) \times \dots \times \left(1 - \frac{k-1}{n}\right)$$

$$\to 1 \quad \text{There are a fixed number of terms all converging to 1}$$

$$\mathbb{P}(X_n = k) \underset{n \to \infty}{\to} e^{-\lambda} \frac{\lambda^k}{k!}.$$

We might want to say  $Bin(n, \frac{\lambda}{n})$  converges to  $Po(\lambda)$ , but what does convergence of random variables mean?

## §4.2 Expectation

 $(\Omega, \mathcal{F}, \mathbb{P})$  and X a discrete RV. For now: X only takes non-negative values. " $X \geq 0$ "

#### **Definition 4.4** (Expectation)

The expectation of X (or expected value or mean)

$$\mathbb{E}[X] = \sum_{x \in \text{Im}(X)} x \mathbb{P}(X = x)$$
$$= \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\})$$

"Average of values taken by X, weighted by  $p_X$ ".

#### Example 4.7 (Uniform Dice)

X uniform on  $\{1, 2, \dots, 6\}$ 

$$\mathbb{E}[X] = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \dots + \frac{1}{6} \cdot 6$$
  
= 3.5

*Note.*  $\mathbb{E}[X]$  need not be in Im(X).

#### Example 4.8 (Binomial Distribution)

Let  $X \sim \text{Binomial}(n, p)$ 

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \mathbb{P}(X = k)$$

$$= \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1 - p)^{k}$$

$$Trick: \quad k \binom{n}{k} = \frac{k \times n!}{k! \times (n - k)!}$$

$$= \frac{n!}{(k - 1)!(n - k)!}$$

$$= n \binom{n - 1}{k - 1}$$

$$\mathbb{E}[X] = n \sum_{k=1}^{n} \binom{n - 1}{k - 1} p^{k} (1 - p)^{k}$$

$$= np \sum_{k=1}^{n} \binom{n - 1}{k - 1} p^{k-1} (1 - p)^{k}$$

$$= np \sum_{l=0}^{n-1} \binom{n - 1}{l} p^{l} (1 - p)^{(n-1)-l}$$

$$= np (p + (1 - p))^{n-1}$$

$$= np.$$

*Note.* We would like to say:

$$\mathbb{E}[\operatorname{Bin}(n,p)] = \mathbb{E}[\operatorname{Bern}(p)] + \dots + \mathbb{E}[\operatorname{Bern}(p)]$$

We will be able to do this soon.

#### Example 4.9 (Poisson Distribution)

Let  $X \sim \text{Poisson}(\lambda)$ 

$$\mathbb{E}[X] = \sum_{k \ge 0} k \mathbb{P}(X = k)$$

$$= \sum_{k \ge 0} k \cdot e^{-\lambda} \frac{\lambda^k}{k!}$$

$$= \sum_{k \ge 1} e^{-\lambda} \frac{\lambda^k}{(k-1)!}$$

$$= \lambda \sum_{k \ge 1} e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!} \quad \text{pmf of Poisson}(\lambda)$$

$$= \lambda.$$

*Note.* We would like to say

$$\mathbb{E}[\operatorname{Poisson}(\lambda)] \approx \mathbb{E}\left[\operatorname{Bin}\left(n,\frac{\lambda}{n}\right)\right] = \lambda$$

It is not true in general that  $\mathbb{P}(X_n = k) \approx \mathbb{P}(X = k) \implies \mathbb{E}[X_n] \approx \mathbb{E}[X]$ 

#### Not important

If X can take on any real value (not necessarily  $X \geq 0$ )

$$\mathbb{E}[X] = \sum_{x \in \mathrm{Im}(X)} x \mathbb{P}(X = x)$$

unless: A, 
$$\sum_{\substack{x>0\\x\in \mathrm{Im}(X)}}x\mathbb{P}(X=x)=+\infty$$
 and B,  $\sum_{\substack{x<0\\x\in \mathrm{Im}(X)}}x\mathbb{P}(X=x)=+\infty.$ 

Then we say  $\mathbb{E}[X]$  is not defined. Do we really want to study  $\infty + \frac{2}{3}(-\infty)$ 

#### Summary:

- A and B,  $\mathbb{E}[X]$  is not defined.
- A but not B,  $\mathbb{E}[X] = +\infty$ .
- B but not A,  $\mathbb{E}[X] = -\infty$ .
- neither A nor B, X is then integrable i.e.  $\mathbb{E}[X]$  absolutely converges.

<sup>&</sup>lt;sup>1</sup>Some people say not defined instead of letting  $\mathbb{E}[X] = \pm \infty$ 

#### Example 4.10

Most examples in the course are integrable except:

- $\mathbb{P}(X=n) = \frac{6}{\pi^2} \frac{1}{n^2}$  for  $n \ge 1$ . Note that  $\sum \mathbb{P}(X=n) = 1$ . Then  $\mathbb{E}[X] = \sum \frac{6}{\pi^2} \frac{1}{n} = +\infty$ .
- $\mathbb{P}(X=n) = \frac{3}{\pi^2} \frac{1}{n^2}$  for  $n \in \mathbb{Z} \setminus \{0\}$ . Then  $\mathbb{E}[X]$  is not defined. "It's symmetric so  $\mathbb{E}[X] = 0$ ", we have decided that this is wrong to prevent many things going wrong in second and third year courses in probability.

#### Example 4.11 (Indicator Function)

$$\mathbb{E}[1_A] = \mathbb{P}(A).$$

#### §4.2.1 Properties of Expectation

#### **Proposition 4.1**

If  $X \geq 0$ , then  $\mathbb{E}[X] \geq 0$  with equality iff  $\mathbb{P}(X = 0) = 1$ .

Proof. 
$$\mathbb{E}[X] = \sum_{\substack{x \in \text{Im}(X) \\ x \neq 0}} x \mathbb{P}(X = x)$$

#### Proposition 4.2 (Linearity of expectation)

Given random variables X, Y (both integrable) on same probability space  $\forall \lambda, \mu \in \mathbb{R}$ 

$$\mathbb{E}[\lambda X + \mu Y] = \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y]$$
  
Similarly 
$$\mathbb{E}[\lambda_1 X_1, + \dots + \lambda_n X_n] = \lambda_1 \mathbb{E}[X_1] + \dots + \lambda_n \mathbb{E}[X_n]^a$$

Note. Independence is NOT a condition.

*Proof.* If  $\Omega$  is countable:

$$\begin{split} \mathbb{E}[\lambda X + \mu Y] &= \sum_{\underline{z} \in \mathrm{Im}(\lambda X + \mu Y)} z \mathbb{P}(\lambda X + \mu Y = \underline{z}) \quad \text{awkward} \\ &= \sum_{\omega \in \Omega} (\lambda X(\omega) + \mu Y(\omega)) \mathbb{P}(\{\omega\}) \end{split}$$

<sup>&</sup>lt;sup>a</sup>holds for countably infinite collection though proof is omitted until more analysis experience.

<sup>&</sup>lt;sup>a</sup>holds for countably infinite collection though proof is omitted until more analysis experience.

$$= \lambda \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\}) + \mu \sum_{\omega \in \Omega} Y(\omega) \mathbb{P}(\{\omega\})$$
$$= \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y].$$

## Aside - Special Cases

- 1. If  $\lambda, c \in \mathbb{R}$  then:
  - a)  $\mathbb{E}[X+c] = \mathbb{E}[X] + c$
  - b)  $\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X]$
- 2. a) X,Y random variables (both integrable) on same probability space.  $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$ .
  - b) in fact  $\lambda, \mu \in \mathbb{R}$   $\mathbb{E}[\lambda X + \mu Y] = \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y]$  (similarly  $\mathbb{E}[\lambda_1, X_1, + \cdots + \lambda_n X_n] = \lambda_1 \mathbb{E}[X_1] + \cdots + \lambda_n \mathbb{E}[X_n]$ )

#### Corollary 4.1

 $X \ge Y^a$  then  $\mathbb{E}[X] \ge \mathbb{E}[Y]$ .

 $^{a}X(\omega) > Y(\omega) \quad \forall \ \omega \in \Omega$ 

Proof.

$$\begin{split} X &= (X-Y) + Y \\ \mathbb{E}[X] &= \mathbb{E}[X-Y] + \mathbb{E}[Y] \\ X-Y &\geq 0 \implies \mathbb{E}[X-Y] \geq 0 \quad \text{by Proposition 4.1.} \end{split}$$

#### **Example 4.12** (Counting Problems)

 $(\sigma(1), \ldots, \sigma(n))$  uniform on  $\Sigma_n$ .  $Z = |\{i : \sigma(i) = i\}| = \text{number of fixed points. Let } A_i = \{\sigma(i) = i\}, \text{ recall from Example 3.4 } A_i \text{s not independent.}$ 

Key step:

$$Z = 1_{A_1} + \dots + 1_{A_n}$$
$$\mathbb{E}[Z] = \mathbb{E}[1_{A_1} + \dots + 1_{A_n}]$$

$$= \mathbb{E}[1_{A_1}] + \dots + \mathbb{E}[1_{A_n}] \quad \text{by Linearity of expectation}$$

$$= \mathbb{P}(A_1) + \dots + \mathbb{P}(A_n) \quad \text{by Example 4.11}$$

$$= \frac{1}{n}n = 1.$$

*Note.* Same answer as  $Bin(n, \frac{1}{n})$ 

#### **Proposition 4.3**

If X takes values in  $\{0, 1, 2, \dots\}$  then

$$\mathbb{E}[X] = \sum_{k \ge 0} \mathbb{P}(X \ge k)$$

*Proof.* One can carefully re-arrange the summands which is left as an exercise to the reader.  $\hfill\Box$ 

Alternative. Write  $X = \sum_{k \geq 1} 1_{X \geq k}^{a}$  then take  $\mathbb{E}[X]$ :

$$\begin{split} \mathbb{E}[X] &= \mathbb{E}\left[\sum \mathbf{1}_{X \geq q}\right] \\ &= \sum \mathbb{E}[\mathbf{1}_{X \geq k}] \\ &= \sum \mathbb{P}(X \geq k) \end{split}$$

<sup>a</sup>Sanity check: let X=7,  $1_{X\geq 1}=\cdots=1_{X\geq 7}=1$  whilst  $1_{X\geq 8}=1_{X\geq 9}=\cdots=0$ .

#### Claim 4.2 (Markov's Inequality)

Let  $X \ge 0$  be a random variable. Then  $\forall \ a > 0$ :

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}$$

The LHS is interesting, e.g. if we want to bound the probability of an extreme outcome, whilst the RHS is easy to study.

*Note.* Is  $a = \frac{\mathbb{E}[X]}{2}$  useful? No, we already know probabilities are less than 2. If a is large it might be useful

*Proof.* Observe  $X \geq a 1_{X \geq a}{}^a$  and take  $\mathbb{E}$ 

$$\mathbb{E}[X] \ge a\mathbb{E}[1_{X \ge a}]$$

Note. Markov's Inequality is also true for continuous RVs.

Studying  $\mathbb{E}[f(X)]$  Let  $f: \mathbb{R} \to \mathbb{R}$  be a function. Then f(x) is also a random variable<sup>2</sup>.

# Claim 4.3

$$\mathbb{E}[f(x)] = \sum_{x \in \text{Im}(x)} f(x) \mathbb{P}(X = x)^{\underline{a}}.$$

<sup>a</sup>if it exists

 $^a$ if it exists

Proof. Let 
$$A = \text{Im}(f(x)) = \{f(x) : x \in \text{Im}(X)\}$$
. Starting with RHS 
$$\sum_{x \in \text{Im}(X)} f(x) \mathbb{P}(X = x) = \sum_{y \in A} \sum_{\substack{x \in \text{Im}(X) \\ f(x) = y}} f(x) \mathbb{P}(X = x)$$
$$= \sum_{y \in A} y \sum_{\substack{x \in \text{Im}(X) \\ f(x) = y}} \mathbb{P}(X = x)$$
$$= \sum_{y \in A} y \mathbb{P}(f(X) = y) \quad \text{by additivity}$$
$$= \mathbb{E}[f(X)]$$

### §4.3 Variance

 $\underline{\text{Motivation}}$ 

$$U_n \sim \text{Uniform}(\{-n, -n+1, \dots, n\})$$
  
 $V_n \sim \text{Uniform}(\{-n, n\})$   
 $Z_n = 0$   
 $S_n = \text{random walk for } n \text{ steps}$   
 $\sim n - 2 \operatorname{Bin}\left(n, \frac{1}{2}\right)$ 

 $<sup>2</sup>X:\Omega\to\mathbb{R}$  so  $f(X):\Omega\to\mathbb{R}$ .

All of these have  $\mathbb{E} = 0$ .

Variance is a way to "measure how concentrated a RV is around its mean".

### **Definition 4.5**

The **variance** of X is:

$$Var(X) = \mathbb{E}\left[ (X - \mathbb{E}[X])^2 \right]$$

### **Proposition 4.4**

 $\operatorname{Var}(X) \geq 0$  with equality  $\iff \mathbb{P}(X = \mathbb{E}[X]) = 1$  (as  $(X - \mathbb{E}[X])^2$  so by Proposition 4.1).

### **Definition 4.6** (Alternative characterisation)

$$\operatorname{Var}(X) = \mathbb{E}\left[X^2\right] - (\mathbb{E}[X])^2 \quad (\geq 0)$$

*Proof.* Write  $\mu = \mathbb{E}[X]$ 

$$\begin{aligned} \operatorname{Var}(X) &= \mathbb{E}\left[ (X - \mu)^2 \right] \\ &= \mathbb{E}\left[ X^2 - 2\mu X + \mu^2 \right] \\ &= \mathbb{E}[X^2] - 2\mu \underbrace{\mathbb{E}[X]}_{\mu} + \mu^2 \\ &= \mathbb{E}[X^2] - \mu^2 \end{aligned}$$

# Proposition 4.5 (Properties)

If  $\lambda, c \in \mathbb{R}$ 

- $Var(\lambda X) = \lambda^2 Var(X)$ .
- Var(X + c) = Var(X)

Proof.

$$\mathbb{E}[X+c] = \mu + c$$
$$Var(X+c) = \mathbb{E}\left[\left(X+c - (\mu+c)^2\right)\right]$$

$$= \mathbb{E}\left[ (X - \mu)^2 \right]$$
  
= Var(X).

### Example 4.13 (Poisson Distribution)

Let  $X \sim \text{Poisson}(\lambda)$ 

$$Var(X) = \mathbb{E}[X^2] - \lambda^2$$

"Falling factorial trick": sometimes easier to calculate  $\mathbb{E}[X(X-1)]$  than  $\mathbb{E}[X^2]$ 

$$\mathbb{E}[X(X-1)] = \sum_{k \geq 2} \underbrace{k(k-1)}_{\text{function}} e^{-\lambda} \frac{\lambda^k}{k!}$$

$$= \lambda^2 e^{-\lambda} \sum_{k \geq 2} \frac{\lambda^{k-1}}{(k-2)!}$$

$$= \lambda^2$$

$$\mathbb{E}[X^2] = \mathbb{E}[X(X-1)] + \mathbb{E}[X]$$

$$= \lambda^2 + \lambda$$

$$\text{Var}(X) = \lambda$$

# Example 4.14 (Geometric Distribution)

Let  $Y \sim \text{Geom}(p)$  where  $Y \in \mathbb{N}$ .

$$\mathbb{E}[Y] = \frac{1}{p}, \ \operatorname{Var}(Y) = \frac{1-p}{p^2}.$$

Proof left as an exercise.

Note.  $\lambda$  large:  $\operatorname{Var}(x) = \mathbb{E}[X]$ , more concentrated p small:  $\operatorname{Var}(Y) \approx \frac{1}{p^2} = (\mathbb{E}[X])^2$ .

### Example 4.15 (Bernouli Distribution)

Let  $X \sim \text{Bern}(p)$ .

$$\mathbb{E}[X] = 1 \times p = p$$

$$\mathbb{E}[X^2] = 1^2 \times p = p$$
$$Var(X) = p - p^2$$
$$= p(1 - p)$$

# Example 4.16 (Binomial Distribution)

Let  $X \sim Bin(n, p)$ 

$$\mathbb{E}[X] = np$$

$$\mathbb{E}\left[X^2\right] = \mathbf{ugly}$$

# §4.3.1 Sums of RVs

Goal: Study  $Var(X_1 + \cdots + X_n)$ . Do the  $X_i$ s need to be independent.

Proposition 4.6 (Preliminary: Expectation of Product of RVs)

If X, Y are independent RVs and f, g are functions  $\mathbb{R} \to \mathbb{R}$ . Then:  $\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]$  "Splits as a product".

### Example 4.17

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

### Example 4.18

Let  $f(x) = g(x) = z^x$  (or  $e^{tx}$ ).

Proof. (X, Y discrete)

$$\begin{split} \mathrm{LHS} &= \sum_{x,y \in \mathrm{Im}} f(x) g(y) \mathbb{P}(X = x, Y = y) \\ &= \sum_{x,y \in \mathrm{Im}} f(x) g(y) \mathbb{P}(X = x) \mathbb{P}(Y = y) \\ &= \left[ \sum_{x \in \mathrm{Im}} f(x) \mathbb{P}(X = x) \right] \left[ \sum_{y \in \mathrm{Im}} g(x) \mathbb{P}(Y = y) \right] \\ &= \mathbb{E}[f(X)] \mathbb{E}[g(Y)] \end{split}$$

### Proposition 4.7 (Sums of independent RVs)

Let  $X_1, \ldots, X_n$  be independent. Then

$$Var(X_1 + \cdots + X_n) = Var(X_1) + \cdots + Var(X_n)$$

*Proof.* (Suffices to Prove (STP) n=2). Say  $\mathbb{E}[X]=\mu$ ,  $\mathbb{E}[Y]=\nu$ 

$$\begin{aligned} \operatorname{Var}(X+Y) &= \mathbb{E}\left[ (X+Y-\mu-\nu)^2 \right] \\ &= \mathbb{E}\left[ (X-\mu)^2 \right] + \mathbb{E}\left[ (Y-\nu)^2 \right] + 2\mathbb{E}[(X-\mu)(Y-\nu)]. \\ &= \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\mathbb{E}[X-\mu]\mathbb{E}[Y-\nu] \\ &= \operatorname{Var}(X) + \operatorname{Var}(Y). \end{aligned}$$

Example 4.19 (Binomial)

Going back to Binomial Distribution, Var(Bin(n, p)) = np(1 - p).

<u>Goal</u>: Study Var(X + Y) when X, Y not independent.

### **Definition 4.7** (Covariance)

Let X, Y be two RVs. Their **covariance** is

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

"Measures how dependent X, Y are and in which <u>direction</u>" (X large  $\implies Y$  larger if Cov > 0 else Y smaller).

Proposition 4.8 (Properties)

$$Cov(X, Y) = Cov(Y, X)$$

$$Cov(X, X) = Var(X)$$

**Definition 4.8** (Alternative Characterisation)

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Proof.

$$Cov(X,Y) = \mathbb{E} [(X - \mu)(Y - \nu)]$$

$$= \mathbb{E}[XY] - \mu \mathbb{E}[Y] - \nu \mathbb{E}[X] + \mu \nu$$

$$= \mathbb{E}[XY] - \mu \nu.$$

### **Proposition 4.9** (More Properties)

Let  $\lambda \in \mathbb{R}$ 

$$\begin{aligned} &\operatorname{Cov}(\lambda, X) = 0 \\ &\operatorname{Cov}(X + \lambda, Y) = \operatorname{Cov}(X, Y) \\ &\operatorname{Cov}(\lambda X, Y) = \lambda \operatorname{Cov}(X, Y) \\ &\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X, Y) \end{aligned}$$

Covariance is <u>linear</u> in each argument i.e.  $Cov(\sum \lambda_i X_i, Y) = \sum \lambda_i Cov(X_i, Y)$  and  $Cov(\sum \lambda_i X_i, \sum \mu_j Y_j) = \sum_{i=1}^n \sum_{j=1}^m \lambda_i \mu_j Cov(X_i, Y_j)$ .

### Proposition 4.10 (Sums of RVs)

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}\right)$$
$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{Cov}(X_{i}, X_{j})^{a}$$

$$\frac{{}^{a} \text{or } 2\sum_{i < j} \text{Cov}(X_{i}, X_{j})}{{}^{a} \text{or } 2\sum_{i < j} \text{Cov}(X_{i}, X_{j})}$$

### **Proposition 4.11**

 $X, Y \text{ independent } \Longrightarrow \operatorname{Cov}(X, Y) = 0, \text{ the converse is false.}$ 

# Example 4.20

Let 
$$Y = -X$$
,  $Var(Y) = Var(X)$ . So  $Var(X + Y) = Var(0) = 0 \neq Var(X) + Var(Y)$ .

### Example 4.21 (Uniform Permutation)

Let  $(\sigma(1), \ldots, \sigma(n))$  be uniformly chosen on  $\Sigma_n$ . Let  $A_i = \{\sigma(i) = i\}$  and  $N = 1_{A_1} + \cdots + 1_{A_n}$  (N is the number of fixed points).

$$\mathbb{E}[N] = n \times \frac{1}{n} = 1$$

 $A_i$  and  $A_j$  are not independent

$$\operatorname{Var}(1_{A_1}) = \frac{1}{n} \left( 1 - \frac{1}{n} \right)$$

$$\operatorname{Cov}(1_{A_i}, 1_{A_j}) = \mathbb{E}[1_{A_i} 1_{A_j}] - \mathbb{E}[1_{A_i}] \mathbb{E}[1_{A_j}]$$

$$= \mathbb{E}[1_{A_i \cap A_j}] - \mathbb{E}[1_{A_i}] \mathbb{E}[1_{A_j}]$$

$$= \mathbb{P}(A_i \cap A_j) - \mathbb{P}(A_i) \mathbb{P}(A_j)$$

$$= \frac{1}{n(n-1)} - \frac{1}{n} \times \frac{1}{n}$$

$$= \frac{1}{n^2(n-1)} > 0$$

Note: Cov doesn't depend on i, j

$$Var(N) = \sum_{i=1}^{n} Var(1_{A_i}) + \sum_{i \neq j} Cov(1_{A_i}, 1_{A_j})$$

$$= n \times n \left(1 - \frac{1}{n}\right) + n(n-1) \times \frac{1}{n^2(n-1)}$$

$$= 1 - \frac{1}{n} + \frac{1}{n}$$

Compare with Bin  $\left(n, \frac{1}{n}\right)$ :  $\mathbb{E} = 1$ ,  $\operatorname{Var} = n \times \frac{1}{n} \left(1 - \frac{1}{n}\right) = 1 - \frac{1}{n}$ .

#### §4.3.2 Chebyshev's Inequality

### Proposition 4.12 (Chebyshev's Inequality)

Let X be a RV,  $\mathbb{E}[X] = \mu$ ,  $Var(X) = \sigma^2 < \infty$ .

$$\mathbb{P}(|X - \mu| \ge \lambda) \le \frac{\operatorname{Var}(X)}{\lambda^2}$$

Remember the proof, not the statement.

*Proof.* Idea: Apply Markov's Inequality to  $(X - \mu)^2$ .

$$\mathbb{P}\left((X - \mu)^2 \ge \lambda^2\right) \le \frac{\mathbb{E}\left[(X - \mu)^2\right]}{\lambda^2}$$
$$= \frac{\operatorname{Var}(X)}{\lambda^2}$$

<u>Danger</u>: Applying Markov's Inequality to  $|X - \mu|$ ,  $\mathbb{E}[|X - \mu|]$  is less nice than  $\mathbb{E}[(X - \mu)^2]$ .

#### Comments

- Chebyshev's Inequality gives better bounds than Markov's Inequality (decays with  $\lambda^2$  instead of  $\lambda$ ).
- We can apply it to all RVs, not just those  $\geq 0$ .
- Caveat: We need  $\operatorname{Var}(X) < \infty$  which is a stronger condition than  $\mathbb{E}[X] < \infty$ .

### **Definition 4.9** (Standard Deviation)

 $\sqrt{\operatorname{Var}(X)}$  is the **standard deviation**,  $\sigma$ , of X.

It has the same "units" as X but not many nice properties so Var is generally preferred.

We can rewrite Chebyshev as  $\mathbb{P}(|X - \mu| \ge k\sigma) \le 1/k^2$ 

### §4.4 Conditional Expectation

Setting:  $(\Omega, \mathcal{F}, \mathbb{P})$ .

Recall the definition of Conditional Probability.

# **Definition 4.10** (Conditional Expectation)

 $B \in \mathcal{F}$  with  $\mathbb{P}(B) > 0$ , X a RV. The **conditional expectation** is

$$\mathbb{E}[X \mid B] = \frac{\mathbb{E}[X1_B]}{\mathbb{P}(B)}$$

Example 4.22 (Uniform Dice)

Let X be a dice, uniform on  $\{1, \ldots, 6\}$ .

$$\mathbb{E}[X \mid X \text{ prime}] = \frac{\frac{1}{6}[0+2+3+0+5+0]}{\frac{1}{2}}$$
$$= \frac{1}{3}(2+3+5)$$
$$= \frac{10}{3}.$$

# **Definition 4.11** (Alternative Characterisation)

$$\mathbb{E}[X \mid B] = \sum_{x \in \operatorname{Im} X} x \mathbb{P}(X = x \mid B).$$

Proof.

$$\text{RHS} \ = \sum \frac{x \mathbb{P}(\{X = x\} \cap B)}{\mathbb{P}(B)}$$
$$= \sum_{\substack{x \neq 0 \\ x \in \text{Im } X}} \frac{x \mathbb{P}(X1_B = x)}{\mathbb{P}(B)}$$
$$\text{Note: } \mathbb{E}[X1_B] = \sum_{\substack{x \neq 0 \\ x \in \text{Im } X}} x \mathbb{P}(X1_B = x)$$

# **Proposition 4.13** (Law of Total Expectation)

Let  $(B_1, B_2, ...)$  be a finite or countably-infinite partition of  $\Omega$  with  $B_n \in \mathcal{F} \quad \forall n$  s.t.  $\mathbb{P}(B_n) > 0$ . X a RV.

$$\mathbb{E}[X] = \sum_{n} \mathbb{E}[X \mid B_n] \mathbb{P}(B_n).$$

# Example 4.23

Let  $X = 1_A$  we recover the Law of Total Probability.

Proof.

RHS = 
$$\sum_{n} \mathbb{E}[X1_{B_n}]$$

$$= \mathbb{E}\left[\sum X \cdot (1_{B_1} + \dots + 1_{B_n})\right] \text{ by Linearity of expectation}$$

$$= \mathbb{E}[X \cdot 1]$$

$$= \mathbb{E}[X].$$

Application: Two stage randomness where  $(B_n)$  describes what happens in stage 1.

### Example 4.24 (Sums of random number of terms)

Let  $(X_n)_{n\geq 1}$  be IID and  $N\in\{0,1,2,\dots\}$  be a random index independent of  $(X_n)$ .  $S_n=X_1+\dots+X_n$  with  $\mathbb{E}[X_n]=\mu$  so  $\mathbb{E}[S_n]=n\mu$ . Then

$$\mathbb{E}[S_N] = \sum_{n \ge 0} \mathbb{E}[S_N \mid N = n] \mathbb{P}(N = n)$$
$$= \sum_{n \ge 0} \mathbb{E}[S_n] \mathbb{P}(N = n)^a$$
$$= \sum_{n \ge 0} n\mu \mathbb{P}(N = n)$$
$$= \mu \mathbb{E}[N].$$

#### §4.5 Random Walks

### **Definition 4.12** (Random Walk)

Let  $(X_n)_{n\geq 1}$  be IID RVs then  $S_n=x_0+X_1+\cdots+X_n$ .  $(S_0,S_1,S_2,\ldots)$  is a random process called a **Random Walk** started from  $x_0$ .

#### §4.5.1 Simple Random Walk (SRW) on $\mathbb{Z}$ - Main example in our course

$$P(X_i = +1) = p$$
,  $\mathbb{P}(X = -1) = q = 1 - p$ .  
 $x_0 \in \mathbb{Z}$  (often  $x_0 = 0$ ).  
Special case:  $p = q = \frac{1}{2}$  is "symmetric".  
 $\mathbb{P}(S_2 = x_0) = pq + qp = 2pq$ 

Useful interpretation: A gamble repeatedly plays a game where he wins £1 with  $\mathbb{P} = p$ , loses £1 with  $\mathbb{P} = q$ .

Often: stops at  $\pounds 0$ .

<sup>&</sup>lt;sup>a</sup>KEY STEP  $\mathbb{E}[S_N \mid N=n] = \mathbb{E}[S_n \mid N=n] = \mathbb{E}[S_n]$  last step follows as  $S_n$  and  $\{N=n\}$  are independent.

<sup>&</sup>lt;sup>a</sup>KEY STEP  $\mathbb{E}[S_N \mid N=n] = \mathbb{E}[S_n \mid N=n] = \mathbb{E}[S_n]$  last step follows as  $S_n$  and  $\{N=n\}$  are independent.

# Question

Suppose the gambler starts with  $\pounds x$  at time 0. What is the probability he reaches  $\pounds a$  before  $\pounds 0$ . (0 < x < a)

**Notation.**  $\mathbb{P}_x(\cdot) = \mathbb{P}(\cdot \mid x_0 = x)$  "measure of RW started from  $x_0$ ."

### **Answer**

Key idea: Conditional on  $S_1 = z$ ,  $(S_1, S_2, ...)$  is a random walk started from z. Apply Law of Total Probability

$$\mathbb{P}_x(S \text{ hits a before } 0) = \sum_{z} {}^{a}\mathbb{P}_x(S \text{ hits a before } 0 \mid S_1 = z)\mathbb{P}_x(S_1 = z)$$

$$= \sum_{z} \mathbb{P}_z(S \text{ hits a before } 0)\mathbb{P}_x(S_1 = z)$$

$$\text{let } h_x = \mathbb{P}_x(S \text{ hits a before } 0).$$

$$S_1 = x \pm 1$$

$$h_x = ph_{x+1} + qh_{x-1}.$$

Important to specify boundary conditions:  $h_0 = 0$ ,  $h_a = 1$ 

### Solving Linear Recurrence Equations

 $ph_{x+1} - h_x + qh_{x-1} = 0$  is a homogenous equation whose solutions form a vector space. We want to find two LI solutions and we guess  $h_x = \lambda^x$  So

$$p\lambda^{x+1} - \lambda^x + q\lambda^{x-1} = 0$$
$$p\lambda^2 - \lambda + q = 0$$
$$\lambda = 1, \frac{q}{p}$$

Case  $q \neq p$ 

$$h_x = A + B\left(\frac{q}{p}\right)^x$$

Use BCs to find A,B:

$$x = 0: h_0 = 0 = A + B$$

$$x = a: h_a = 1 = A + \left(\frac{q}{p}\right)^a$$

$$h_x = \frac{\left(\frac{q}{p}\right)^x - 1}{\left(\frac{q}{p}\right)^a - 1}.$$

Case  $p = q = \frac{1}{2}$ : Note  $h_x = x$  "x is the average of x + 1 and x - 1" General solution:  $h_x = A + Bx$  BCs

$$h_0 = 0 = A$$

$$h_a = 1 = Ba$$

$$h_x = \frac{x}{a}$$

#### Question

Suppose the gambler starts with £x at time 0. What is the expected absorption time,  $T = \min\{n \ge 0 : S_n = 0 \text{ or } S_n = a\}$ . "first time S hits  $\{0, a\}$ "

#### **Answer**

Apply Law of Total Expectation

We want  $\mathbb{E}_x[T]$  ( $\mathbb{E}[T]$  when we start from x) which we label as  $\tau_x$ 

$$\tau_x = \mathbb{E}_x[T]$$

$$= p\mathbb{E}_x[T \mid S_1 = x+1] + q\mathbb{E}_x[T \mid S_1 = x-1]$$

$$= p\mathbb{E}_{x+1}[T+1] + q\mathbb{E}_{x-1}[T-1]$$

$$= p(1 + \mathbb{E}_{x+1}[T]) + q(1 + \mathbb{E}_{x-1}[T])$$

$$= 1 + p\tau_{x+1} + q\tau_{x-1}$$

Boundary conditions:  $\tau_0 = \tau_a = 0$  "We're already there".

We already solved the homogenous case of this equation previously. Inhomogeneous case:  $ph_{x+1} - h_x + qh_{x-1} = -1$ . Find a particular solution Guess: "one level more complicated than general solution" Add on general solution. Solve for BCs.

 $p \neq q$ : Guess:  $h_x = \frac{x}{q-p}$  woks as a particular solution

 $p=q=\frac{1}{2}$ : Guess  $h_x=Cx^2$  might work Sub in:  $\frac{C}{2}(x+1)^2-Cx^2+\frac{C}{2}(x-1)^2=-1$  C=-1 so  $h_x=A+Bx-x^2$  (find A,B with BCs) roots are 0 and a so  $h_x=x(a-x)$  and  $h_x\geq 0$ 

Probability sanity check:  $p=q=\frac{1}{2}$ . "Fair game" Study: Expected profit if you start from £x and play until time T.  $\mathbb{E}_x[S_T]=a\mathbb{P}_x(S_T=a)+0\times\mathbb{P}_x(S_T=0)=ah_x=x$ . Fits our intuition for fair games.  $\checkmark$ 

<sup>&</sup>lt;sup>a</sup>Subscript:  $z \in \text{Im}(S_1)$  but we will bother with that any more

<sup>&</sup>lt;sup>a</sup>Subscript:  $z \in \text{Im}(S_1)$  but we will bother with that any more