



# Formalisation et validation d'une méthode de construction de systèmes de blocs

Jessy Colonval et Henri de Boutray

Institut FEMTO-ST, Université Bourgogne Franche-Comté, Besançon, France

13/06/2019







#### Introduction

- Master recherche et doctorant encadrés par A. Giorgetti
- Cadre : étude de géométries finies dites quantiques [PGHS15]
- Constat : nombreux de programmes pour la recherche en mathématiques expérimentales pas suffisamment accessibles, structurés et documentés [SBB+12]
- Langage Magma (Magma Computational Algebra System)
- Bonnes pratiques : test intensif, structuration, factorisation, documentation et distribution libre du code
- Application à une méthode de construction de systèmes de blocs de Key et Moori

[PGHS15] M. Planat, A. Giorgetti, F. Holweck, M. Saniga. Quantum contextual finite geometries from dessins d'enfants. 2015.

[SBB<sup>+</sup>12] V. Stodden, D.H. Bailey, J. Borwein, R.J. LeVeque, W. Rider. Setting the Default to Reproducible. Technical report 2012.





## Definition (Système de blocs)

Un bloc est une partie non vide d'un ensemble  $\Omega$ . Un système de blocs (block design en anglais)  $\mathcal{B}$  est un ensemble de blocs.

## Definition (Structure d'incidence)

Une structure d'incidence est un triplet  $\mathcal{D}=(\Omega,\mathcal{B},\mathcal{I})$  où  $\Omega=\{1,\ldots,n\}$  est un ensemble d'éléments fini,  $\mathcal{B} = \{b_1, \dots, b_p\}$  numérote un système de blocs sur  $\Omega$  et  $\mathcal{I} \subseteq \Omega \times \mathcal{B}$  est une *relation d'incidence*, qui définit l'appartenance d'un élément à un bloc.

# Exemple de structure d'incidence

| $\mathcal{I}$         | 1 | 2 | 3 | 4 | 5 |
|-----------------------|---|---|---|---|---|
| $b_1$                 | 1 | 1 | 1 | 1 | 1 |
| <i>b</i> <sub>2</sub> | 1 | 0 | 1 | 0 | 0 |
| <i>b</i> <sub>3</sub> | 1 | 0 | 0 | 1 | 0 |
| <i>b</i> <sub>4</sub> | 0 | 1 | 0 | 1 | 0 |
| <i>b</i> <sub>5</sub> | 0 | 1 | 0 | 0 | 1 |
| b <sub>6</sub>        | 0 | 0 | 1 | 0 | 1 |

| $b_1 = \{1, 2, 3, 4\}$ | . 5} |
|------------------------|------|
|                        | , •, |
| $b_2 = \{1, 3\}$       |      |
| $b_2 = \{1, 4\}$       |      |

$$b_4 = \{2, 4\}$$

$$b_4 = \{2, 4\}$$
  
 $b_5 = \{2, 5\}$ 







# Proposition

Let G be a finite primitive permutation group acting on the set  $\Omega$  of size n. Let  $\alpha \in \Omega$ , and let  $\Delta \neq \{\alpha\}$  be an orbit of the stabilizer  $G_{\alpha}$  of  $\alpha$ . If

$$\mathcal{B} = \{\Delta^g : g \in G\}$$

and, given  $\delta \in \Delta$ ,

$$\varepsilon = \{ \{\alpha, \delta\}^{g} : g \in G \},\$$

then B forms a self-dual 1- $(n, |\Delta|, |\Delta|)$  design with n blocks, and  $\varepsilon$  forms the edge set of a regular connected graph of valency  $|\Delta|$  [...] then  $\mathcal{D} = (\Omega, \mathcal{B})$  forms a symmetric 1- $(n, |\Delta|, |\Delta|)$  design. Further, if  $\Delta$  is a self-paired orbit of  $G_{\alpha}$  then  $\Gamma = (\Omega, \varepsilon)$  is a regular connected graph of valency  $|\Delta|$ ,  $\mathcal{D}$  is self-dual [. . . ]

[KM02] J.D. Kev. J. Moori.

Codes, Designs and Graphs from the Janko Groups  $J_1$  and  $J_2$ . 2002.

[KM08] J.D. Key, J. Moori.

Correction to: Codes, Designs and Graphs from the Janko Groups  $J_1$  and  $J_2$ 2008 Jessy Colonval et Henri de Boutray



# Plan

- Définitions
- 2 Implémentation
- Validation
- 4 Conclusion





# Les types de systèmes de blocs

## Definition (Systèmes de blocs t-(v, k, $\lambda$ ))

Un système de blocs t- $(v,k,\lambda)$  est un système agissant sur v éléments, composé de blocs de cardinalité k, tel qu'un sous-ensemble quelconque de taille t soit présent dans exactement  $\lambda$  blocs [Col10].

# Definition (BIBD)

Un BIBD (Balanced Incomplete Block Design) est un système de blocs 2- $(v,k,\lambda)$  [Col10].

#### Plan de Fano

Le système de blocs  $\{\{2,3,5\},\{3,4,6\},\{4,5,7\},\{7,1,3\},\{6,1,5\},\{2,4,1\},\{7,2,6\}\}$ , sur 7 éléments, est composé de blocs de 3 éléments, tels que tous les sous-ensembles de taille 2 soient présents dans exactement 1 bloc. C'est donc un système de blocs 2-(7,3,1).

[Col10] C. Colbourn.

CRC Handbook of Combinatorial Designs. 2010.



# Les groupes de permutations

## Definition (Permutations)

Une permutation d'un ensemble  $\Omega$  est une bijection de  $\Omega$  sur lui-même.

- Notation matricielle
  - ▶ 1<sup>ère</sup> ligne : éléments à permuter
  - 2<sup>e</sup> ligne : images
- Notation en produit de cycles disjoints

#### Exemple de permutation

L'une des permutations possibles de l'ensemble  $\Omega = \{1 \dots 7\}$  est

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 6 & 1 & 3 & 5 & 7 \end{pmatrix}.$$

La même permutation en produit de cycles disjoints s'écrit (1,2,4)(3,6,5).

#### Definition (Groupes de permutations)

Un groupe de permutations est un groupe G composé de permutations d'un ensemble  $\Omega$  avec pour opération la composition des permutations.



# Les groupes de permutations primitifs

#### Definition (Groupes transitifs)

Le groupe de permutations G sur un ensemble fini  $\Omega$  est un groupe transitif si, pour tous les éléments x et y de  $\Omega$ , il existe une permutation g de G telle que  $g \bullet x = y$ .

## Definition (Groupes primitifs)

Le groupe de permutations G est un groupe primitif s'il est transitif et s'il ne préserve aucune partition non triviale de  $\Omega$ , i.e. les partitions dont le seul élément est  $\Omega$  et les partitions dont tous les éléments sont des singletons.

#### Exemple de groupe non primitif

Le groupe de permutations  $H = \{ \text{ Id, } (1,2,3,4), \ (1,4,3,2), \ (1,3) \ (2,4) \}$  sur  $\{1,2,3,4\}$  est transitif mais n'est pas primitif. La partition  $(X_1,X_2)$  où  $X_1 = \{1,3\}$  et  $X_2 = \{2,4\}$  est préservée par (1,2,3,4), i.e.  $(1,2,3,4)X_1 = X_2$  et  $(1,2,3,4)X_2 = X_1$ .





# Stabilisateurs et orbites d'un groupe

## Definition (Stabilisateurs)

Le stabilisateur d'un élément  $\alpha$  de  $\Omega$  sous l'action de G est l'ensemble des permutations de G qui laissent  $\alpha$  invariant sous leur action, soit  $G_{\alpha} =_{\mathsf{def}} \{g \in G : g \bullet \alpha = \alpha\}.$ 

## Exemple de stabilisateurs

Soit le groupe G généré par les permutations (1,2,3,4,5,6,7) et (1,2,4)(3,6,5) agissant sur l'ensemble  $\Omega=\{1\dots7\}$  et  $\alpha=1$ . Le stabilisateur de G sur  $\alpha$  est le groupe  $G_{\alpha}=\{$  Id, (2,3,5) (4,7,6), (2,5,3) (4,6,7)  $\}$ .



# Stabilisateurs et orbites d'un groupe

#### Definition (Stabilisateurs)

Le stabilisateur d'un élément  $\alpha$  de  $\Omega$  sous l'action de G est l'ensemble des permutations de G qui laissent  $\alpha$  invariant sous leur action, soit  $G_{\alpha} =_{\mathsf{def}} \{g \in G : g \bullet \alpha = \alpha\}.$ 

#### Exemple de stabilisateurs

Soit le groupe G généré par les permutations (1,2,3,4,5,6,7) et (1,2,4)(3,6,5) agissant sur l'ensemble  $\Omega=\{1\dots7\}$  et  $\alpha=1$ . Le stabilisateur de G sur  $\alpha$  est le groupe  $G_{\alpha}=\{$  Id, (2,3,5) (4,7,6), (2,5,3) (4,6,7)  $\}$ .

#### Definition (Orbites)

L'orbite  $O_x =_{\mathsf{def}} \{g \bullet x : g \in H\}$  d'un élément x de  $\Omega$  selon un groupe de permutations H sur  $\Omega$  est l'ensemble des images de x par ses permutations.

#### Exemple d'orbites

Les orbites de  $G_{\alpha}$  sont  $O_1 = \{1\}$ ,  $O_2 = O_3 = O_5 = \{2, 3, 5\}$  et  $O_4 = O_6 = O_7 = \{4, 6, 7\}$ .





## Construction du plan de Fano

Soit le groupe de permutations primitif G généré par les permutations (1,2,3,4,5,6,7) et (1,2,4)(3,6,5) agissant sur l'ensemble  $\Omega=\{1\dots7\}$  et  $\alpha=1$ .

Rappel:  $G_{\alpha} = \{ \text{ Id}, (2,3,5)(4,7,6), (2,5,3)(4,6,7) \} \text{ et } O_1 = \{1\}, O_2 = O_3 = O_5 = \{2,3,5\} \text{ et } O_4 = O_6 = O_7 = \{4,7,6\}.$ 

Pour l'orbite  $\Delta = \{2,3,5\}$ , le système de blocs construit est  $\mathcal{B} = \{ \{2,3,5\}, \{3,4,6\}, \{4,5,7\}, \{7,1,3\}, \{6,1,5\}, \{2,4,1\}, \{7,2,6\} \}.$ 







#### Definition (Structure duale)

La structure d'incidence  $\mathcal{D}=(\Omega,\mathcal{B},\mathcal{I})$  a pour structure d'incidence duale  $\mathcal{D}^{-1}=_{\operatorname{def}}(\mathcal{B},\Omega,\mathcal{I}^{-1})$  où  $(y,x)\in\mathcal{I}^{-1}$  si et seulement si  $(x,y)\in\mathcal{I}$ .

## Definition (Auto-dual)

Un système de blocs est auto-dual (self-dual en anglais) s'il est isomorphe à son dual.

#### Exemple de structure auto-duale

| $\mathcal{I}$         | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----------------------|---|---|---|---|---|---|---|
| $b_1$                 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| <i>b</i> <sub>2</sub> | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| <i>b</i> <sub>3</sub> | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
| <i>b</i> <sub>4</sub> | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| <i>b</i> <sub>5</sub> | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| <i>b</i> <sub>6</sub> | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
| <i>b</i> <sub>7</sub> | 0 | 0 | 1 | 1 | 0 | 1 | 0 |







## Proposition (Extrait)

[...] given  $\delta \in \Delta$ ,

$$\varepsilon = \{\{\alpha, \delta\}^g : g \in G\}, [\ldots]$$

#### Construction d'un des graphes correspondants

Soit le précédent groupe primitif G généré par les permutations (1,2,3,4,5,6,7) et (1,2,4)(3,6,5) agissant sur l'ensemble  $\Omega=\{1\dots7\},\ \alpha=1$  et l'orbite  $\Delta=\{2,3,5\}.$  Avec  $\delta=2$ , le graphe construit est le graphe complet  $K_7$ .





## **Sommaire**

- Définitions
- 2 Implémentation
- Walidation
- 4 Conclusion



#### Fonction de calcul des orbites $\Delta$

## Proposition (Extrait)

Let G be a finite primitive permutation group acting on the set  $\Omega$  of size n. Let  $\alpha \in \Omega$ , and let  $\Delta \neq \{\alpha\}$  be an orbit of the stabilizer  $G_{\alpha}$  of  $\alpha$ . [...]

```
/**
 * Compute orbits of stabilizers of a primitive group [KMO2, Proposition 1].
 * @param G::GrpPerm A primitive group
 * Creturn Deltas:: Assoc An associative array indexed by alpha
      and containing the corresponding delta set
AllDelta := function(G)
 n := Degree(G):
  Omega := \{1..n\};
  Deltas := AssociativeArray();
  for alpha in Omega do
    Galpha := Stabilizer(G, alpha):
   orbits := Orbits(Galpha);
    Deltas[alpha] := { IndexedSetToSet(Delta) : Delta in orbits | Delta ne { alpha } };
  end for:
  return Deltas:
end function:
```

AFADI '19



# Fonction de construction de systèmes de blocs

#### Proposition (Extrait)

Let G be a finite primitive permutation group acting on the set  $\Omega$  of size n. [...]

$$\mathcal{B} = \{\Delta^g : g \in G\}[\dots]$$

```
/**
 * Builds all block designs from a primitive group [KMO2, Proposition 1]
 * Oparam G::GrpPerm A primitive group
 * Greturn blocks:: Assoc An associative array indexed by delta indexes
      and containing corresponding block designs
 */
BlckDsgnsFromPrmtvGrp := function(G)
  Deltas := AllDelta(G):
  blocks := AssociativeArray();
  for alpha in Keys(Deltas) do
    for Delta in Deltas[alpha] do
      blocks[Delta] := { Delta^g : g in G };
    end for:
  end for:
  return blocks:
end function;
```





# Proposition (Extrait)

Let G be a finite primitive permutation group acting on the set  $\Omega$  of size n. [...] given  $\delta \in \Delta$ ,

$$\varepsilon = \{\{\alpha, \delta\}^{g} : g \in G\}, [\ldots]$$

```
/**
 * Construct all graphs from a primitive group [KM02,KM08]
 * Oparam G::GrpPerm A primitive group
 * Greturn graphs:: Assoc An associative array indexed by delta indexes
      and containing the corresponding graph represented by a set of edges
GraphFromPrmtvGrp := function(G)
  Deltas := AllDelta(G):
  graphs := AssociativeArrav():
  for alpha in Keys(Deltas) do
    graphs[alpha] := AssociativeArray();
    for Delta in Deltas[alpha] do
      graphs[alpha][Delta] := [ { {alpha, delta}^g : g in G } : delta in Delta ];
    end for:
  end for;
  return graphs;
end function:
```



## **Sommaire**

- 1 Définitions
- 2 Implémentation
- Walidation
- 4 Conclusion





# Fonctions proposées par Magma

# Proposition (Extrait)

[...]

then  $\mathcal B$  forms a self-dual 1- $(n,|\Delta|,|\Delta|)$  design with n blocks, and  $\varepsilon$  forms the edge set of a regular connected graph of valency  $|\Delta|$  [...] then  $\mathcal D=(\Omega,\mathcal B)$  forms a symmetric 1- $(n,|\Delta|,|\Delta|)$  design. Further, if  $\Delta$  is a self-paired orbit of  $G_\alpha$  then  $\Gamma=(\Omega,\varepsilon)$  is a regular connected graph of valency  $|\Delta|$ ,  $\mathcal D$  is self-dual [...]

- IsSelfDual
- ► IsSymmetric
- Parameters
- ▶ IsConnected
- ► IsRegular

- Valence
- ► IncidenceStructure
- Design
- Graph
- PrimitiveGroups



# Fonction caractéristique d'un système de blocs t- $(v, k, \lambda)$

```
Proposition (Extrait)

[...]

then \mathcal{B} forms a self-dual 1-(n, |\Delta|, |\Delta|) design with n blocks [...]

then \mathcal{D} = (\Omega, \mathcal{B}) forms a symmetric 1-(n, |\Delta|, |\Delta|) design. [...]
```

```
/**
 * Characterization of t-(v,k,lambda) block designs
 * Oparam blocks::Set The design blocks
 * @param t::RngIntElt The number of elements distinct in lambda blocks
 * @param v::RngIntElt The number of blocks
 * @param k::RngIntElt The cardinality of blocks
 * Oparam lambda::RngIntElt The number of blocks contains t elements distinct
 * Oreturn BoolElt Indicates that blocks design is a t-(v.k.lambda) block design
CorrectDesign := function(blocks, t, v, k, lambda)
  incidence := IncidenceStructure <v | blocks >:
  if not IsDesign(incidence, t) then
   return false:
  end if:
  record := Parameters(Design(incidence, t)):
  return record'v eq v and record'k eq k and record'lambda eq lambda;
end function;
```

AFADI '19





# Symétrie

## Definition (Symétrie selon Key et Moori)

Un système de blocs est symétrique s'il possède autant d'éléments que de blocs.

## Definition (Symétrie selon Magma)

Un système de blocs est symétrique si c'est un BIBD et s'il possède autant d'éléments que de blocs.

## Exemples de symétries







# Systèmes de blocs

- ▶ 74 groupes de permutations primitifs (tous jusqu'au degré 13)
- 926 systèmes de blocs construits
- ▶ 574 107 secondes (environ 7 jours)
- ▶ 0 contre-exemple pour la proposition originale
- ▶ 0 contre-exemple pour la correction (définition symétrie de Key et Moori)
- 398 contre-exemples pour la correction (définition symétrie de Magma)





## Graphes

- $\blacktriangleright$  49 groupes de permutations primitifs (tous jusqu'au degré n=10)
- 2 546 graphes construits
- ▶ 1606 secondes (environ 27 minutes)
- ▶ 110 contre-exemples pour la proposition originale
- 0 contre-exemple pour la correction



## Conclusion

- Exemple d'implémentation et de validation d'une proposition mathématique
- Confirmation d'une erreur dans la proposition originale
- Validation de la correction pour tous les groupes primitifs de degré entre 1 et 13
- Révélation d'une ambiguïté sur la définition de symétrie
- Code complet accessible à l'adresse https://quantcert.github.io/Designs/



# Questions

- Merci pour votre attention
- Questions ?