INVESTIGACIÓN OPERATIVA

Análisis de sensibilidad

Semana 5 – Sesión 9

Logro de la sesión

Al finalizar la sesión, el alumno comprenderá el análisis de sensibilidad y su aplicación en los modelos de programación lineal

Temas a tratar

- ✓ Conceptos del análisis de sensibilidad
- ✓ Aplicación y ejemplos del análisis de sensibilidad

En todo modelo matemático de PL tenemos los siguientes componentes:

- ✓ Coeficiente objetivo: Son los valores que acompañan a las variables en la función obietivo.
- ✓ Coeficiente tecnológico: Son los valores que acompañan a las variables en las restricciones
- Recurso disponible: son los valores que se encuentran al lado derecho de las restricciones.

Conceptos

- ☐ El Análisis de Sensibilidad consiste en determinar cuánto afectaría a la solución óptima, el cambio, dentro del rango de variación, de alguno de los parámetros del modelo.
- El análisis de sensibilidad trata de estudiar el margen permitido de variación de los parámetros del modelo. Es el intervalo permisible para permanecer óptimo
- ☐ El Análisis de Sensibilidad nos permite conocer qué ocuriría si cambian los coeficientes de la función objetivo o la cantidad de recursos disponibles.

Ejemplo 1

Una fábrica produce 2 productos en dos máquinas. Una unidad del producto 1 requiere 2 horas en la maquina A y 1 hora en la maquina B, y una unidad del producto 2 requiere 1 hora en la maquina A y 3 horas en la maquina B. La ganancia por unidad de los productos 1 y 2 son de \$30 y \$20, respectivamente. El tiempo disponible diariamente para cada maquina es de 8 horas.

- a) Calcular la producción optima de cada máquina para maximizar la ganancia.
- b) Determinar el rango de factibilidad de los coeficientes objetivos y los recursos disponibles

a) Calcular la producción optima de cada máquina para maximizar la ganancia.

Global optimal solution found Objective value: Infeasibilities: Total solver iterations: Elapsed runtime seconds:		128.0000 0.000000 2 3.53	
Model Class:		LP	
Total variables: Nonlinear variables: Integer variables:	2 0 0		
Total constraints: Nonlinear constraints:	3		
Total nonzeros: Nonlinear nonzeros:	6 0		
	Variable X1 X2 Row 1 MAQ1 MAQ2	Value 3.200000 1.600000 Slack or Surplus 128.0000 0.000000	Reduced Cost 0.000000 0.000000 Dual Price 1.000000 14.00000 2.000000

En Lindo

En Lingo

b) Determinar el rango de factibilidad de los coeficientes objetivos y los recursos disponibles

Reporte del rango del análisis de sensibilidad

Current	Allowable	Allowable
Coefficient	Increase	Decrease
30.00000	10.00000	23.33333
20.00000	70.00000	5.000000
	Coefficient 30.00000	Coefficient Increase 30.00000 10.00000

increm	ientos	0	aecrementos
permit	idos de la	as vari	ables
30 - 23	.33 ; 30 +	10	
20-5	; 20 + 7	70	

Righthand Side Ranges: Rangos del lado derecho de la restricción

	Current	Allowable	Allowable
Row	RHS	Increase	Decrease
MAQ1	8.000000	8.000000	5.333333
MAQ2	8.000000	16.00000	4.000000

Incrementos o decrementos permitidos en los recursos

Ejemplo 2

Gutchi Company fabrica bolsos de mano, estuches y mochilas. La elaboración incluye piel y materiales sintéticos, y la piel es la materia prima escasa o limitante. El proceso de producción requiere dos tipos de mano de obra calificada: costura y acabado. La siguiente tabla muestra la disponibilidad de los recursos, su consumo por los tres productos y las utilidades por unidad.

REQUERIMIENTOS DE RECURSOS POR UNIDAD				
Recurso	Bolso de Mano	Estuches	Mochila	Disponibilidad diaria
Piel (metros²)	2	1	3	42 metros ²
Costura (hr)	2	1	2	40 hrs
Acabado (hr)	1	0.5	1	45 hrs
Precio de venta (\$)	24	22	45	

Ejemplo 2

Análisis de sensibilidad cuando varian los coeficientes de las variables en la función objetivo

Que pasaria con mi FO si hay un incremento de \$6 dólares en mi producto bolsos.

Max 24x1+22x2+45x3

st PIEL)2x1+x2+3x3<=42 COSTURA)2x1+x2+2x3<=40 ACABADO)x1+0.5x2+x3<=45 end

Dado que nuestro problema es menor o igual todas tendran Holguras.

Si hubiera una restricción de mayor o igual, se tiene un Excedente.

Variable	Value	Reduced Cost
 X1	0.000000	20.00000
 X2	36.00000	0.000000
 Х3	2.000000	0.000000
Row	Slack or Surplus	Dual Price

INOW	Stack of Surptus	Dual ITTCC
1	882.0000	1.000000
PIEL	0.000000	1.000000
COSTURA	0.000000	21.00000
ACABAD0	25.00000	0.000000

į.	Objective Coefficient Ranges:		
7	Current	Allowable	Allowable
Variable	Coefficient	Increase	Decrease
X1	24.00000	20.00000	INFINITY
X2	22.00000	0.5000000	7.000000
X3	45.00000	21.00000	1.000000

Utilidad de bolsos: \$24 + \$6 = \$30

Rangos:

- Infinito. <= Bolso de mano <= 24 + 20
- infinito <= Bolso de mano <= 44</p>

Como 30 esta dentro del rango. Los valores para todas las variables siempre se van a mantener (x1, x2 y x3)

¿Cuanto seria la nueva función objetivo?

Datos de mt2 de piel:

- . Variación del recurso = 6
- . Valor de la variable x1 (bolso) = 0

FO = Utilid. Inicial + Var. recurso * x1 Utilidad = \$882 + (6)*(0)

Utilidad = \$882

Análisis de sensibilidad cuando varian los coeficientes de las variables en la función objetivo

Que pasaria con mi FO si hay un incremento de \$6 dólares en mi producto bolsos.

Comprobando con el software

```
max 30*x1+22*x2+45*x3;

[piel] 2*x1+x2+3*x3<=42;

[costura] 2*x1+x2+2*x3<=40;

[acabado] x1+0.5*x2+x3<=45;

end
```

Global optimal solution found.

Objective value:

Infeasibilities:

Total solver iterations:

Elapsed runtime seconds:

0.00000
0.000000

Variable Reduced Cost Value 14.00000 0.000000 X2 36.00000 0.000000 2.000000 0.000000 Slack or Surplus Dual Price Row 882,0000 1.000000 **PIEL** 0.000000 1.000000 **COSTURA** 21.00000 0.000000 25.00000 0.000000 ACABADO

Otro caso

Que pasaría con la FO si hay una variación de -\$2 en la utilidad de mi produto estuches.

22-7 <= Bolsos <= 22+ 0.5

882-2(36) = 810

DUAL PRICE (PRECIO DUAL)

- ☐ Es el monto en que el resultado de la **función objetivo** mejorará si el lado derecho de la restricción aumentase en una unidad.
- □ Esta mejora dependerá si el modelo es maximizar o minimizar la función objetivo. Si el objetivo es maximizar, entonces la mejora significará un aumento del valor óptimo. Si el objetivo es minimizar, entonces la mejora significará una disminución del valor óptimo.

Max 24x1+22x2+45x3 st PIEL)2x1+x2+3x3<=42 COSTURA)2x1+x2+2x3<=40 ACABADO)x1+0.5x2+x3<=45 end

Global optimal solution found.				
Objective value	2!	882.0000		
Variable	Value	Reduced Cost		
X1	0.000000	20.00000		
X2	36.00000	0.000000		
X3	2.000000	0.000000		
Row	Slack or Surplus	Dual Price		
1	882.0000	1.000000		
PIEL	0.000000	1.000000		
COSTURA	0.000000	21.00000		
ACABADO	25.00000	0.000000		

Pregunta: Si se puede aumentar la capacidad de los recursos disponibles para los productos. Cúal tendría la prioridad? El que tenga el mayor Precio Dual nos va a convenir en caso se aumente la capacidad de los recursos.

DUAL PRICE

Ejemplo:

Piel: 1. Por cada unidad de recurso que aumenta o disminuya. La utilidad aumenta o disminuye en \$1.

El mismo concepto para Costura y Acabado.

Análisis de Sensibilidad - Ejemplo

Análisis de sensibilidad cuando hacemos variaciones en la parte derecha de los recursos

Que pasaria si en vez de 40 horas para costura, consigo 1 hora más. ¿Cuánto sera la nueva utilidad?.

Current

Coefficient

Objective Coefficient Ranges:

Allowable

Increase

Allowable

Decrease

max = 24 * x1 + x1	·22*x2+45*x3;
[piel] 2*x	1+x2+3*x3<=42;
[costura]	2*x1+x2+2*x3<=40;
[acabado]	x1+0.5*x2+x3 <= 45;
end	

Variable	Value	Reduced Cost
X1	0.000000	20.00000
X2	36.00000	0.000000
X3	2.000000	0.000000
Row	Slack or Surplus	Dual Price
1	882.0000	1.000000
PIEL	0.000000	1.000000
COSTURA	0.000000	21.00000
ACABAD0	25.00000	0.000000

ost	
000	
000	
000	
ice	
000	
000	_
000	1
	_

Variable

	X1	24.00000	20.00000	INFINITY
	X2	22.00000	0.5000000	7.000000
	Х3	45.00000	21.00000	1.000000
	Righthand Side Ranges:			
		Current	Allowable	Allowable
	Row	RHS	Increase	Decrease
	PIEL	42.00000	18.00000	2.000000
	COSTURA	40.00000	2.000000	12.00000
	ACABAD0	45.00000	INFINITY	25.00000
l		10.00		

40 hrs + 1 hr = 41 hrs de costura

Rangos:

40 - 12 <= HRS DE COSTURA <= 40 + 2

28 <= HRS DE COSTURA <= 42

en este rango el precio dual siempre sera 21

41 hrs esta en el rango [28; 42]....ok

¿Entonces cuanto seria la nueva utilidad?

Datos:

- . Variación de horas costura = 1 hora
- . Precio dual de costura = 21

UTILIDAD = Utilid. Inicial + Var. costura * Precio

dual

Utilidad = \$882 + (1)*(21)

Utilidad = \$903

Tenemos 40 hrs de costura (disponibilidad recurso) Por cada unidad (hora) que aumentemos o disminuimos la utildad aumentara o dismuira en 21 dolares

Análisis de Sensibilidad - Ejemplo

Análisis de sensibilidad cuando hacemos variaciones en la parte derecha de los recursos

Que pasaria si en vez de 40 horas para costura, consigo 1 hora más. Cuanto sera la nueva utilidad?.

0.10

```
Comprobamos con el software

max=24*x1+22*x2+45*x3;

[piel] 2*x1+x2+3*x3<=42;

[costura] 2*x1+x2+2*x3<=41;

[acabado] x1+0.5*x2+x3<=45;

end

Global optimal solution found.

Objective value:

Infeasibilities:

Total solver iterations:

2
```

Elapsed runtime seconds:

Otro caso:

Qué pasaría si en vez de 40 horas de costura tenemos 30 horas de costura ¿Cuánto seria la utilidad? = 882-10(21) = 672

Conclusiones

• En programación lineal, el análisis de Sensibilidad nos permite conocer qué ocurrirá si cambian los coeficientes de la función objetivo o la cantidad de recursos disponibles.

Universidad Tecnológica del Perú