

LOGISTIC REGRESSION

WHAT IS LOGISTIC REGRESSION?

- Logistic Regression is a standard classification machine learning algorithm.
- Like Linear Regression, Logistic Regression finds weights for each column of data.
- Unlike Linear Regression, Logistic Regression splits the data in half.
- Logistic Regression uses the sigmoid function to convert all outputs to 0 or 1.
- Logistic Regression is a classifier, not a regressor, even though it's called "Logistic Regression."

Positive X values

Positive X values are mapped to class 1

Negative X values

Negative X values are mapped to class 0

X values in the middle

X values in the middle have the greatest uncertainty

The Sigmoid ranges from 0 to 1

These values may be interpreted as probabilities

This point has a y-value of 0.99 so there is a 99% probability it belongs in class 1.

This point has a y-value of 0.2 so there is a 20% probability it belongs in class 1, and 80% probability it belongs to class 0.

This point is almost indeterminate, but it will be placed in class 1 since there is a probability of greater than 50% that it belongs in class 1.

HOW LOGISTIC REGRESSION WORKS

- Weights are randomly chosen to multiply each column.
- The sum of the weighted columns becomes the t-value.
- The t-value is placed in the sigmoid equation and mapped to 0 or 1.
- The percentage of correct predictions is returned.
- Weights are adjusted depending on the error (using gradient descent).
- Another iteration continues.
- The iterations continue until the error is minimized.

HAPPY CODING!