Combining Two Functions: Sums and Differences

• When two functions f(x) and g(x) are combined to form the function (f+g)(x), the new function is called the sum of f and g. For any given value of x, the value of the function is represented by f(x)+g(x). The graph of f+g can be obtained from the graphs of functions f and g by adding the corresponding y-coordinates.

• Similarly, the difference of two functions, f-g, is (f-g)(x)=f(x)-g(x). The graph of f-g can be obtained by subtracting the y-coordinate of g from the y-coordinate of f for every pair of corresponding x-values.

- Algebraically, (f+g)(x)=f(x)+g(x) and (f-g)(x)=f(x)-g(x).
- The domain of f+g or f-g is the intersection of the domains of f and g. This means that the functions f+g and f-g are only defined where the domains of both f and g overlap.

Given $f(x) = -x^2 + 3$ and g(x) = -2x, determine the graphs of f(x) + g(x) and f(x) - g(x). Discuss the key characteristics of the resulting graphs.

Given
$$f = \{(-7, 3), (-4, 0), (-2, -8), (1, -3), (4, 0), (6, 2)\}$$
 and $g = \{(-7, -5), (-5, -1), (-3, 2), (1, 10), (3, -4), (6, 9)\}$, calculate a) $f + g$ c) $g + g$ b) $g - f$ d) $f - f$

Example 3

- a) If $f(x) = \log(3-x)$ and $g(x) = \sqrt{x+3}$, determine the domain of f+g.
- b) If $f(x) = \frac{1}{2x+5}$ and $g(x) = \frac{1}{x-4}$, determine the domain of f-g.

Combining Two Functions: Products

When two functions, f(x) and g(x), are combined to form the function $(f \times g)(x)$, the new function is called the product of f and g. For any given value of x, the function value is represented by $f(x) \times g(x)$. The graph of $f \times g$ can be obtained from the graphs of functions f and g by multiplying each g-coordinate of g by the corresponding g-coordinate of g.

- Algebraically, $f \times g$ is defined as $(f \times g)(x) = f(x) \times g(x)$.
- The domain of $f \times g$ is the intersection of the domains of f and g .
- If f(x) = 0 or g(x) = 0, then $(f \times g)(x) = 0$.
- If $f(x) = \pm 1$, then $(f \times g)(x) = \pm g(x)$. Similarly, if $g(x) = \pm 1$, then $(f \times g)(x) = \pm f(x)$.

Example 1

Determine the graph of $y = (f \times g)(x)$, given the graphs of f(x) = x and $g(x) = -x^2 + 9$.

For each of the following pairs of functions, determine $(f \times g)(x)$ and state its

domain. Then find
$$(f \times g)(-2)$$
, if possible.
a) $f(x) = \{(-6, 1), (-4, -3), (-2, 0), (1, 0), (3, 5), (10, -6)\},$
 $g(x) = \{(-8, 12), (-4, 2), (-2, -7), (0, -6), (5, -9), (10, -1)\}$

b)
$$f(x) = \sqrt{x+2}$$
, $g(x) = \frac{1}{x+2}$

c)
$$f(x) = \log(x+5)$$
, $g(x) = 2^x$

d)
$$f(x) = 5x^2 - 20$$
, $g(x) = \frac{1}{3x + 6}$

Exploring Quotients of Functions

- When two functions, f(x) and g(x), are combined to form the function $(f \div g)(x)$, the new function is called the quotient of f and g. For any given value of x, the value of the function is represented by $f(x) \div g(x)$. The graph of $f \div g$ can be obtained from the graphs of functions f and g by dividing each y-coordinate of f by the corresponding f-coordinate of f.
- Algebraically, $(f \div g)(x) = f(x) \div g(x)$.
- $f \div g$ will be defined for all x -values that are in the intersection of the domains of f and g, except in the case where g(x) = 0. If the domain of f is A, and the domain of g is B, then the domain of $f \div g$ is $\{x \in \Re \mid x \in A \cap B, \ g(x) \ne 0\}$.
- If f(x) = 0 when $g(x) \neq 0$, then $(f \div g)(x) = 0$.
- If $f(x) = \pm 1$, then $(f \div g)(x) = \pm \frac{1}{g(x)}$. Similarly, if $g(x) = \pm 1$, then $(f \div g)(x) = \pm f(x)$. Also, if $f(x) = \pm g(x)$, then $(f \div g)(x) = \pm 1$.

Example 1 Given f(x) = 2x - 10 and $g(x) = x^2 + x - 30$, graph the function $y = (f \div g)(x)$.

Determine $(f \div g)(x)$ for each of the following pairs of functions, and state its domain. a) $f(x) = \sqrt{1-2x}$, $g(x) = x^2 + 9$ b) $f(x) = 4^x$, $g(x) = \log(x-7)$ c) $f(x) = \sin x$, $g(x) = \cos x$

a)
$$f(x) = \sqrt{1-2x}$$
, $g(x) = x^2 + 9$

b)
$$f(x) = 4^x$$
, $g(x) = \log(x-7)$

c)
$$f(x) = \sin x$$
, $g(x) = \cos x$

Composition of Functions

- Two functions, f and g, can be combined using a process called composition, which can be represented by f(g(x)). The output for the inner function g is used as the input for the outer function f. The function f(g(x)) can be denoted by $(f \circ g)(x)$.
- Algebraically, the composition of f with g is denoted by $(f \circ g)(x)$, whereas the composition of g with f is denoted by $(g \circ f)(x)$. In most cases, $(f \circ g)(x) \neq (g \circ f)(x)$ because the order in which the functions are composed matters.
- Let $(a,b) \in g$ and $(b,c) \in f$. Then $(a,c) \in f \circ g$. A point in $f \circ g$ exists where an element in the range of g is also in the domain of f. The function $f \circ g$ exists only when the range of g overlaps the domain of f.

- The domain of $(f \circ g)(x)$ is a subset of the domain of g. It is the set of values, x, in the domain of g for which g(x) is in the domain of f.
- If both f and f^{-1} are functions, then $(f^{-1} \circ f)(x) = x$ for all x in the domain of f, and $(f \circ f^{-1})(x) = x$ for all x in the domain of f^{-1} .

If $f(x) = x^2 + 2x$ and g(x) = 10 - 3x, find the following.

a) f(g(-4))b) $(g \circ f)(6)$

c) $(f \circ f)(1)$

d) g(g(0))

Example 2

Let $f(x) = \frac{1}{x-1}$ and $g(x) = \sqrt{x+3}$. Determine $f \circ g$, and find its domain.

Example 3

Given the functions $f(x) = x^2$ and $g(x) = \log x$, determine whether $(f \circ g)(x) = (g \circ f)(x)$.

Show that if $f(x) = \frac{2x-7}{x+9}$, then $(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$.

Example 5

Given $h(x) = \sin(6x^3 + 5)$, find two functions f and g such that $h = f \circ g$.

Exercises:

1. Consider $f(x) = 4 - x^2$, $g(x) = \sqrt{x+3}$, $h(x) = \frac{1}{2x}$. Evaluate the following.

- (a) $(f \circ q)(1)$
- (b) $(g \circ h)(1)$
- (c) $(f \circ g)(x)$
- (d) $(g \circ h)(x)$
- (e) $(h \circ g)(x)$
- (f) $(f \circ q)(x^2)$
- (g) $(f \circ g \circ h)(x)$

2. Using the functions given in the previous exercise, explain why $(f \circ g)(-4)$ does not exist.

3. Let $s(x) = \sqrt{x}$ and $t(x) = x^2 + 2x + 1$. Evaluate $(s \circ t)(x)$ and state its domain and range.

4. $f(x) = \sqrt{\frac{1}{x^2+2}}$. Write f(x) as the composition of two or more functions.

Answers i

Section 1

- 1. (a) 0
- (c) 1-x (d) $\sqrt{\frac{1}{2x}+3}$ (e) $\frac{1}{2\sqrt{x+3}}$ (g) $1-\frac{1}{2x}$

2. The number -4 is not in the domain of g.

3. We have $(s \circ t)(x) = \sqrt{x^2 + 2x + 1}$. Its domain is \mathbb{R} and its range is $[0, \infty)$.

4. We have $f(x)=(g\circ h)(x)$ where $g(x)=\sqrt{x}$ and $h(x)=\frac{1}{x^2+2}$. Another possibility is $g(x)=\sqrt{\frac{1}{x+2}}$ and $h(x)=x^2$.

- 5. For each function h given below, decompose h into the composition of two functions f and g so that $h = f \circ g$.
 - (a) $h(x) = (x+5)^2$
 - (b) $h(x) = \sqrt[3]{5x^2 + 1}$
 - (c) $h(x) = 2^{\cos x}$
 - (d) $h(x) = \cos(2^x)$
 - (e) $h(x) = \frac{\sqrt{x^2 + 1} 1}{\sqrt{x^2 + 1} + 1}$