NAMA : ISEP LUTPI NUR

NPM : 2113191079

KELAS : INFORMATIKA A2 2019

MATA KULIAH: KECERDASAN BUATAN

PERTEMUAN: MINGGU 10 MODEL HEBB & MCCULOOTH

1. Soal di slide halaman 18

A. Soal

B. Jawaban

X1	X2	$net = \sum_{i=1}^{2} x_i w_i + b$	$f(net) = \begin{cases} 1 & jika \ net \ge 2 \\ 0 & jika \ net < 2 \end{cases}$
1	1	1*2+1*-1=1	0
1	0	1*2+0*-1=2	1
0	1	0*2+1*-1=-1	0
0	0	0*2+0*-1=0	1

Tampak juga bahwa f(net) SAMA dengan target yang dimaksud dengan fungsi AND dan NOT.

Bobot yang tepat untuk pengetahuan ini adalah W1= 2 dan W2=-1

BERARTI: jaringan dapat mengerti pola yang dimaksudkan.

- 2. Soal di slide halaman 19
 - A. Soal

- Lakukan pembuktian, jika diketahui $w_1 = 2$ dan $w_2 = 2$
- Menunjukkan Knowledge apa?

B. Jawaban

X1	X2	$net = \sum_{i=1}^{2} x_i w_i + b$	AND	OR	XOR
1	1	1*2+1*2=4	1	1	0
1	0	1*2+0*2=2	0	1	1
0	1	0*2+1*2=2	0	1	1
0	0	0*2+0*2=0	0	0	0

 $\text{Ketika menggunakan fungsi Hard limit } f(net) = \begin{cases} 0 \ jika \ net \leq 0 \\ 1 \ jika \ net > 0 \end{cases} \\ \text{Maka knowledge } \textbf{OR} \text{ akan cocok}$

Fungsi biner hard limit

3. Soal di slide halaman 25

A. Soal

Latihan

Buatlah jaringan Hebbian dengan 3 masukan dan sebuah target keluaran untuk mengenali pola yang tampak pada tabel berikut

I.	Masukan				
X1	X2	Хз	t		
1 .	1	1	1		
1	1	0	0		
1	0	1	0		
0	1	1	0		

B. Jawaban

Mula2 semua bobot dan bias diberi nilai = 0. Untuk setiap data masukan dan target, perubahan bobot dihitung dari perkalian data masukan dan targetnya Δ w₁ = x₁ t; Δ w₂ = x₂ t; Δ b = 1 * t = t

Bobot w_i (baru) = w_i (lama) + Δw_i (i = 1,2)

Hasil iterasi bobot menggunakan rumus tersebut tampak pada tabel berikut:

Masukan	target	Perubahan bobot	Bobot Baru
(x ₁ x ₂ 1)	t	$(\Delta w_1 \ \Delta w_2 \ \Delta b)$	(w ₁ w ₂ b)
	Insialisasi		(0 0 0)
(1 1 1)	1	(1 1 1)	(1 1 1)
(1 0 1)	0	(0 0 0)	(1 1 1)
(0 1 1)	0	(0 0 0)	(1 1 1)
(0 0 1)	0	(0 0 0)	(1 1 1)

Tampak bahwa bobot hanya berubah akibat pasangan data pertama saja. Pada data ke-2 hingga ke-4, tidak ada perubahan bobot karena target = 0, sehingga perubahan bobot (hasil kali masukan target) = 0

Jadi menurut tabel interasi di atas, bobot jaringan akhir adalah $w_1 = w_2 = 1$, dan b = 1

$$net = \sum_{i=1}^{2} x_i w_i + b = 1 * x_1 + 1 * x_2 + 1 = x_1 + x_2 + 1$$

Jika diuji cobakan pada seluruh data masukan , maka akan diperoleh hasil sepeti tampak pada table berikut.

X1	X2	$net = \sum_{i=1}^{2} x_i w_i + b$	$f(net) = \begin{cases} 1 & jika \ net \ge 0 \\ 0 & jika \ net < 0 \end{cases}$
1	1	1*1 + 1*1 + 1= 3	1

1	0	1*1 + 0*1 + 1= 2	1
0	1	0*1 + 1*1 + 1= 2	1
0	0	0*1 + 0*1 + 1= 1	1

Tampak bahwa f(net) tidak sama dengan target yang dimaksud dengan fungsi AND.

BERARTI: jaringan tidak dapat mengerti pola yang dimaksudkan.

Jika target berupa data bipolar, maka table masukan dan target, tampak pada table berikut

		Target	
X1	X 2	1	t
1	1	1	1
1	0	1	-1
0	1	1	-1
0	0	1	-1

Menggunakan cara seperti jawaban a., diperoleh tabel berikut:

Masukan	target	Perubahan bobot	Bobot Baru
(x ₁ x ₂ 1)	t	$(\Delta w_1 \ \Delta w_2 \ \Delta b)$	(w ₁ w ₂ b)
	Insialisasi		(0 0 0)
(1 1 1)	1	(1 1 1)	(1 1 1)
(1 0 1)	-1	(-1 0 -1)	(0 1 0)
(0 1 1)	-1	(0 -1 -1)	(0 0 -1)
(0 0 1)	-1	(0 0 -1)	(0 0 -2)

Diperoleh $w_1 = 0$, $w_2 = 0$ dan b = -2

Jika diuji cobakan pada data masukan maka akan diperoleh hasil seperti tabel berikut:

X1	X2	$net = \sum_{i=1}^{2} x_i w_i + b$	$f(net) = \begin{cases} 1 & jika \ net \ge 0 \\ 0 & jika \ net < 0 \end{cases}$
1	1	1*0 + 1*0 + (-2)= -2	-1
1	0	1*0 + 0*0 + (-2)= -2	-1
0	1	0*0 + 1*0 + (-2)= -2	-1
0	0	0*0 + 0*0 + (-2)= -2	-1

Tampak juga bahwa f(net) tidak sama dengan target yang dimaksud dengan fungsi AND.

BERARTI: jaringan tidak dapat mengerti pola yang dimaksudkan.

Tabel masukan dan keluaran bipolar

	· · · · · · · · · · · · · · · · · · ·				
	Masukan				
X 1	X2	1	t		
1	1	1	1		
1	-1	1	-1		
-1	1	1	-1		
-1	-1	1	-1		

Menggunakan cara yang sama dengan jawaban a., diperoleh tabel berikut:

Masukan	target	Perubahan bobot	Bobot Baru
(x ₁ x ₂ 1)	t	$(\Delta w_1 \ \Delta w_2 \ \Delta b)$	(w ₁ w ₂ b)
	Insialisasi		(0 0 0)
(1 1 1)	1	(1 1 1)	(1 1 1)
(1 -1 1)	-1	(-1 1 -1)	(0 2 0)
(-1 1 1)	-1	(1 -1 -1)	(1 1 -1)
(-1 -1 1)	-1	(1 1 -1)	(2 2 -2)

Diperoleh $w_1 = 2$, $w_2 = 2$ dan b = -2

Jika diuji cobakan pada data masukan maka akan diperoleh hasil seperti tabel berikut:

X1	X2	$net = \sum_{i=1}^{2} x_i w_i + b$	$f(net) = \begin{cases} 1 & jika \ net \ge 0 \\ 0 & jika \ net < 0 \end{cases}$
1	1	1*2 + 1*2 + (-2)= 2	1
1	-1	1*2 + (-1)*2 + (-2)= -2	-1
-1	1	(-1)*2 + 1*2 + (-2)= -2	-1
-1	-1	(-1)*2 + (-1)*2 + (-2)= -6	-1

Tampak juga bahwa f(net) SAMA dengan target yang dimaksud dengan fungsi AND. **BERARTI :** jaringan dapat mengerti pola yang dimaksudkan.