Topology - Homework Assignment 2

Question 1 Let $[a,b] \subset \mathbb{R}$ be a closed interval and consider the following set of functions:

$$C([a,b]) = \{f : [a,b] \to \mathbb{R} \mid f(x) \text{ is continuous on } [a,b]\}$$

We define the L^1 -norm of $f(x) \in C([a,b])$ by:

$$||f(x)||_{L^1} = \int_a^b |f(x)| dx$$

and the L^1 -distance between two functions by:

$$d_{L^1}(f(x), g(x)) = ||f(x) - g(x)||_{L^1} = \int_a^b |f(x) - g(x)| dx$$

Using the properties of the Riemann integral, show that d_{L^1} is a metric on the space C([a, b]). (The topology induced by this metric is called the L^1 -topology).

Question 2 Let X be a set and d_1 and d_2 be two metrics on X. Furthermore suppose that there are constants A_{12} , $A_{21} > 0$ such that:

$$d_1(x,y) \le A_{12}d_2(x,y)$$
 for all $x, y \in X$
 $d_2(x,y) \le A_{21}d_1(x,y)$ for all $x, y \in X$

Show that the metric topology induced by d_1 is the same as the metric topology induced by d_1 .

Question 3 Consider the following norm on \mathbb{R}^n :

$$\|\vec{x}\|_{\max} = \max_{1 \le i \le n} (|x_i|)$$

Define $\rho(\vec{x}, \vec{y}) = \|\vec{x} - \vec{y}\|_{\text{max}}$. Show that ρ is a metric on \mathbb{R}^n and show that the metric topology induced by ρ coincides with the standard topology of \mathbb{R}^n .

Question 4 (Extra Credit) Let $[a,b] \subset \mathbb{R}$ be a closed interval and consider the following set of functions:

$$C([a,b]) = \{f : [a,b] \to \mathbb{R} \mid f(x) \text{ is continuous on } [a,b]\}$$

we define the L^2 -inner product $\langle \cdot, \cdot \rangle_{L^2}: C([a,b]) \times C([a,b]) \to \mathbb{R}$ by:

$$\langle f(x), g(x) \rangle_{L^2} = \int_a^b f(x)g(x)dx$$

the L^2 -norm is defined by:

$$||f(x)||_{L^2} = \sqrt{\langle f(x), f(x) \rangle_{L^2}} = \sqrt{\int_a^b f(x)^2 dx}$$

and the L^2 -distance between two functions by:

$$d_{L^2}(f(x), g(x)) = ||f(x) - g(x)||_{L^2} = \sqrt{\int_a^b |f(x) - g(x)|^2 dx}$$

Using the properties of the Riemann integral, show that $\langle \cdot, \cdot \rangle_{L^2}$ is an **inner product** on the vector space C([a, b]). Then show that d_{L^2} is a metric on the space C([a, b]). (The topology induced by this metric is called the L^2 -topology).

Relevant properties of the Riemann integral:

Continuity and integrability: If f(x) is a continuous function on the interval $[a, b] \subset \mathbb{R}$, then f(x) is Riemann integrable on [a, b].

Vanishing integral: If f(x) is a continuous function on the interval $[a, b] \subset \mathbb{R}$ such that $f(x) \geq 0$ for all x in [a, b], then:

$$\int_{a}^{b} f(x)dx = 0 \Rightarrow f(x) = 0 \text{ for all } x \in [a, b]$$

Linearity: If f(x) and g(x) are two functions which are Riemann integrable on the interval $[a, b] \subset \mathbb{R}$ then for any numbers $\lambda, \mu \in \mathbb{R}$ the function $\lambda f(x) + \mu g(x)$ is Riemann integrable on [a, b] and

$$\int_{a}^{b} \lambda f(x) + \mu g(x) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx$$

Monotonicity: If f(x) and g(x) are two functions which are Riemann integrable on the interval $[a,b] \subset \mathbb{R}$ such that $f(x) \leq g(x)$ for all x in [a,b] then:

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

Definition of an inner-product

Let V be a real vector space. A function $B:V\times V\to\mathbb{R}$ is an **inner product** on V if it satisfies the following conditions:

(i) Bilinearity For any vectors \vec{u} , \vec{v} and \vec{w} in V and real numbers λ and μ :

$$B(\lambda \vec{u} + \mu \vec{v}, \vec{w}) = \lambda B(\vec{u}, \vec{w}) + \mu B(\vec{v}, \vec{w})$$

$$B(\vec{u}, \lambda \vec{v} + \mu \vec{w}) = \lambda B(\vec{u}, \vec{v}) + \mu B(\vec{u}, \vec{w})$$

(ii) Symmetry For any vectors \vec{u} and \vec{v} in V

$$B(\vec{u}, \vec{v}) = B(\vec{v}, \vec{u})$$

(iii) Positive definiteness For any vector \vec{v} in V

$$B(\vec{v}, \vec{v}) \ge 0$$

furthermore $B(\vec{v}, \vec{v}) = 0 \Rightarrow \vec{v} = \vec{0}$.