Tutorial on Approximate Bayesian Computation

Michael Gutmann

https://sites.google.com/site/michaelgutmann

University of Helsinki Aalto University
Helsinki Institute for Information Technology

16 May 2016

Content

Two parts:

- 1. The basics of approximate Bayesian computation (ABC)
- 2. Computational and statistical efficiency

What is ABC?

A set of methods for approximate Bayesian inference which can be used whenever sampling from the model is possible.

Michael Gutmann ABC Tutorial 2 / 65

Part I

Basic ABC

Program

Preliminaries

Statistical inference Simulator-based models Likelihood function

Inference for simulator-based models

Exact inference

Approximate inference

Rejection ABC algorithm

Program

Preliminaries

Statistical inference Simulator-based models Likelihood function

Inference for simulator-based models
Exact inference
Approximate inference
Rejection ABC algorithm

Big picture of statistical inference

- ► Given data **y**^o, draw conclusions about properties of its source
- ▶ If available, possibly take prior information into account

General approach

- \triangleright Set up a model with potential properties θ (parameters)
- \blacktriangleright See which θ are reasonable given the observed data

Likelihood function

- lacktriangle Measures agreement between heta and the observed data \mathbf{y}^o
- ightharpoonup Probability to see data $m {f y}$ like $m {f y}^o$ if property $m {f heta}$ holds

Likelihood function

- lacktriangle Measures agreement between heta and the observed data \mathbf{y}^o
- ightharpoonup Probability to see data $m {f y}$ like $m {f y}^o$ if property $m {f heta}$ holds

Likelihood function

For discrete random variables:

$$L(\theta) = \Pr(\mathbf{y} = \mathbf{y}^{o} | \theta) \tag{1}$$

For continuous random variables:

$$L(\boldsymbol{\theta}) = \lim_{\epsilon \to 0} \frac{\Pr(\mathbf{y} \in B_{\epsilon}(\mathbf{y}^{o}) | \boldsymbol{\theta})}{\operatorname{Vol}(B_{\epsilon}(\mathbf{y}^{o}))}$$
(2)

Performing statistical inference

- ▶ If $L(\theta)$ is known, inference boils down to solving an optimization/sampling problem
- Maximum likelihood estimation

$$\hat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

Bayesian inference

$$p(\theta|\mathbf{y}^o) \propto p(\theta) \times L(\theta)$$

posterior \propto prior \times likelihood

Textbook case

- ▶ model \equiv family of probability density/mass functions $p(\mathbf{y}|\theta)$
- Likelihood function $L(\theta) = p(\mathbf{y}^o | \theta)$
- Closed form solutions are possible.

Simulator-based models

- Not all models are specified as family of pdfs $p(\mathbf{y}|\theta)$.
- Here: simulator-based models:
 models which are specified via a mechanism (rule) for generating data

Toy example

- ▶ Let $y|\theta \sim \mathcal{N}(\theta, 1)$
- Family of pdfs as model:

$$p(y|\theta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y-\theta)^2}{2}\right)$$
 (3)

Simulator-based model:

$$y = z + \theta \qquad z \sim \mathcal{N}(0, 1) \tag{4}$$

or

$$y = z + \theta$$
 $z = \sqrt{-2\log(\omega)}\cos(2\pi\nu)$ (5)

where ω and ν are independent random variables uniformly distributed on (0,1)

Formal definition of a simulator-based model

- Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space.
- A simulator-based model is a collection of (measurable) functions $g(.,\theta)$ parametrized by θ ,

$$\boldsymbol{\omega} \in \Omega \mapsto \mathbf{y} = g(\boldsymbol{\omega}, \boldsymbol{\theta}) \in \mathcal{Y}$$
 (6)

▶ The functions $g(.,\theta)$ are typically not available in closed form.

Other names for simulator-based models

- Models specified via a data generating mechanism occur in multiple and diverse scientific fields.
- Different communities use different names for simulator-based models:
 - Generative models
 - Implicit models
 - Stochastic simulation models
 - ▶ Probabilistic programs

Examples

- Astrophysics:
 Simulating the formation of galaxies, stars, or planets
- Evolutionary biology: Simulating evolution
- Neuroscience: Simulating neural circuits
- Ecology: Simulating species migration
- Health science:
 Simulating the spread of an infectious disease

Simulated neural activity in rat somatosensory cortex (Figure from https://bbp.epfl.ch/nmc-portal)

Example (health science)

 Simulating bacterial transmissions in child day care centers (Numminen et al, 2013)

Michael Gutmann

ABC Tutorial

Advantages of simulator-based models

- Direct implementation of hypotheses of how the observed data were generated.
- ▶ Neat interface with physical or biological models of data.
- Modeling by replicating the mechanisms of nature which produced the observed/measured data. ("Analysis by synthesis")
- Possibility to perform experiments in silico.

Disadvantages of simulator-based models

- ► Generally elude analytical treatment.
- Can be easily made more complicated than necessary.
- Statistical inference is difficult . . . but possible!

Family of pdfs induced by the simulator

- ▶ For any fixed θ , the output of the simulator $\mathbf{y}_{\theta} = g(., \theta)$ is a random variable.
- ▶ No closed-form formulae available for $p(\mathbf{y}|\theta)$.
- ▶ Simulator defines the model pdfs $p(\mathbf{y}|\theta)$ implicitly.

Implicit definition of the model pdfs

Parameter value θ'

Parameter value θ

Implicit definition of the likelihood function

For discrete random variables:

$$L(\theta) = \Pr\left(y = y^o \mid \theta\right) = \mathcal{P}\left(\left\{\omega : g(\omega, \theta) = y^o\right\}\right)$$

Implicit definition of the likelihood function

For continuous random variables: $L(\theta) = \lim_{\epsilon \to 0} L_{\epsilon}(\theta)$

Michael Gutmann

ABC Tutorial

Implicit definition of the likelihood function

► To compute the likelihood function, we need to compute the probability that the simulator generates data close to **y**^o,

$$\mathsf{Pr}\left(\mathbf{y} = \mathbf{y}^o | oldsymbol{ heta}
ight)$$
 or $\mathsf{Pr}\left(\mathbf{y} \in B_\epsilon(\mathbf{y}^o) | oldsymbol{ heta}
ight)$

- ▶ No analytical expression available.
- ▶ But we can empirically test whether simulated data equals \mathbf{y}^o or is in $B_{\epsilon}(\mathbf{y}^o)$.
- ► This property will be exploited to perform inference for simulator-based models.

Program

Preliminaries

Statistical inference Simulator-based models Likelihood function

Inference for simulator-based models

Exact inference Approximate inference Rejection ABC algorithm

Exact inference for discrete random variables

- For discrete random variables, we can perform exact Bayesian inference without knowing the likelihood function.
- ▶ By definition, the posterior is obtained by conditioning $p(\theta, \mathbf{y})$ on the event $\mathbf{y} = \mathbf{y}^o$:

$$p(\theta|\mathbf{y}^{\circ}) = \frac{p(\theta, \mathbf{y}^{\circ})}{p(\mathbf{y}^{\circ})} = \frac{p(\theta, \mathbf{y} = \mathbf{y}^{\circ})}{p(\mathbf{y} = \mathbf{y}^{\circ})}$$
(7)

Exact inference for discrete random variables

- Generate tuples (θ_i, \mathbf{y}_i) :
 - 1. $\theta_i \sim p_{\theta}$
 - 2. $\omega_i \sim \mathcal{P}$
 - 3. $\mathbf{y}_i = g(\boldsymbol{\omega}_i, \boldsymbol{\theta}_i)$

(iid from the prior)

(by running the simulator)

(by running the simulator)

- ▶ Condition on $\mathbf{y} = \mathbf{y}^o \Leftrightarrow \text{Retain only the tuples with } \mathbf{y}_i = \mathbf{y}^o$
- ► The θ_i from the retained tuples are samples from the posterior $p(\theta|\mathbf{y}^o)$.

Example

- ▶ Posterior inference of the success probability θ in a Bernoulli trial.
- ▶ Data: y° = 1
- Prior: $p_{\theta} = 1$ on (0,1)
- Generate tuples (θ_i, y_i)
 - 1. $\theta_i \sim p_\theta$
 - 2. $\omega_i \sim U(0,1)$
 - 3. $y_i = \begin{cases} 1 & \text{if } \omega_i < \theta_i \\ 0 & \text{otherwise} \end{cases}$

```
% Observed data
yobs = 1;
% Number of samples to generate from the posterior
N = 10000;
% Sample from prior, uniform on (0,1)
theta = rand(1,N);
% Run the "simulator"
omega = rand(1,N);
ysim = omega
theta;
% Check for simulated data which are equal to observed data
index = (ysim==yobs);
% Samples from the posterior
thetaPost = theta(index);
```

▶ Retain those θ_i for which $y_i = y^o$.

Example

- ▶ The method produces samples from the posterior.
- Monte Carlo error when summarizing the samples as an empirical distribution or computing expectations via sample averages.
- ▶ Histogram for *N* simulated tuples (θ_i, y_i)

Limitations

- Only applicable to discrete random variables.
- And even for discrete random variables: Computationally not feasible in higher dimensions
- ▶ Reason: The probability of the event $\mathbf{y}_{\theta} = \mathbf{y}^{o}$ becomes smaller and smaller as the dimension of the data increases.
- Out of N simulated tuples only a small fraction will be accepted.
 - ► The small number of accepted samples do not represent the posterior well.
 - ► Large Monte Carlo errors

Approximations to make inference feasible

- Settle for approximate yet computationally feasible inference.
- Introduce two types of approximations:
 - 1. Instead of working with the whole data, work with lower dimensional summary statistics \mathbf{t}_{θ} and \mathbf{t}^{o} ,

$$\mathbf{t}_{\theta} = T(\mathbf{y}_{\theta}) \qquad \mathbf{t}^{\circ} = T(\mathbf{y}^{\circ}).$$
 (8)

2. Instead of checking $\mathbf{t}_{\theta} = \mathbf{t}^{o}$, check whether $\Delta_{\theta} = d(\mathbf{t}^{o}, \mathbf{t}_{\theta})$ is less than ϵ . (d may or may not be a metric)

Approximation of the likelihood function

$$L(\theta) = \lim_{\epsilon \to 0} L_{\epsilon}(\theta)$$
 $L_{\epsilon}(\theta) = \frac{\Pr(y \in B_{\epsilon}(y^{\circ})|\theta)}{\operatorname{Vol}(B_{\epsilon}(y^{\circ}))}$

- Approximations are equivalent to:
 - 1. Replacing $\Pr(\mathbf{y} \in B_{\epsilon'}(\mathbf{y}^o) \mid \boldsymbol{\theta})$ with $\Pr(\Delta_{\boldsymbol{\theta}} \leq \epsilon \mid \boldsymbol{\theta})$
 - 2. Not taking the limit $\epsilon \to 0$
- ▶ Defines an approximate likelihood function $\tilde{L}_{\epsilon}(\theta)$,

$$\tilde{L}_{\epsilon}(\boldsymbol{\theta}) \propto \Pr\left(\Delta_{\boldsymbol{\theta}} \leq \epsilon \mid \boldsymbol{\theta}\right)$$
 (9)

ightharpoonup Discrepancy Δ_{θ} is a (non-negative) random variable

$$\Delta_{\theta} = d(\mathbf{t}^{o}, \mathbf{t}_{\theta}) = d(T(\mathbf{y}^{o}), T(\mathbf{y}_{\theta}))$$

Rejection ABC algorithm

- The two approximations made yield the rejection algorithm for approximate Bayesian computation (ABC):
 - 1. Sample $\theta_i \sim p_{\theta}$
 - 2. Simulate a data set \mathbf{y}_i by running the simulator with θ_i $(\mathbf{y}_i = g(\omega_i, \theta_i))$
 - 3. Compute the discrepancy $\Delta_i = d(T(\mathbf{y}^o), T(\mathbf{y}_i))$
 - 4. Retain θ_i if $\Delta_i < \epsilon$
- ▶ This is *the* basic ABC algorithm.

Properties

lacktriangle Rejection ABC algorithm produces samples $m{ heta} \sim ilde{p}_{\epsilon}(m{ heta}|\mathbf{y}^o)$,

$$\tilde{p}_{\epsilon}(\boldsymbol{\theta}|\mathbf{y}^{o}) \propto p_{\boldsymbol{\theta}}(\boldsymbol{\theta})\tilde{L}_{\epsilon}(\boldsymbol{\theta})$$
 (10)

$$\widetilde{L}_{\epsilon}(\boldsymbol{\theta}) \propto \Pr(\underbrace{d(T(\mathbf{y}^{o}), T(\mathbf{y}))}_{\Delta_{\boldsymbol{\theta}}} \leq \epsilon \mid \boldsymbol{\theta})$$
 (11)

- ▶ Inference is approximate due to
 - ▶ the summary statistics *T* and distance *d*
 - $\epsilon > 0$
 - the finite number of samples (Monte Carlo error)

Part II

Computational and statistical efficiency

Brief recap

- ► Simulator-based models: Models which are specified by a data generating mechanism.
- ▶ By construction, we can sample from simulator-based models. Likelihood function can generally not be written down.
- ▶ Rejection ABC: Trial and error scheme to find parameter values which produce simulated data resembling the observed data.
- Simulated data resemble the observed data if some discrepancy measure is small.

Efficiency of ABC

- 1. Computational efficiency: How to efficiently find the parameter values which yield a small discrepancy?
- 2. Statistical efficiency: How to measure the discrepancy between the simulated and observed data?

Program

Computational efficiency

Difficulties

Solutions

Recent work

Statistical efficiency

Difficulties

Solutions

Recent work

Program

Computational efficiency

Difficulties

Solutions

Recent work

Statistical efficiency
Difficulties
Solutions
Recent work

- Inference of the mean θ of a Gaussian of variance one.
- $Pr(\mathbf{y} = \mathbf{y}^o | \boldsymbol{\theta}) = 0.$
- ▶ Discrepancy Δ_{θ} :

$$\Delta_{\theta} = (\hat{\mu}^{o} - \hat{\mu}_{\theta})^{2},$$

$$\hat{\mu}^{o} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{o},$$

$$\hat{\mu}_{\theta} = \frac{1}{n} \sum_{i=1}^{n} y_{i},$$

$$y_{i} \sim \mathcal{N}(\theta, 1)$$

Discrepancy Δ_{θ} is a random variable.

Probability that Δ_{θ} is below some threshold ϵ approximates the likelihood function.

- ▶ Here, $T(\mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} y_i$ is a sufficient statistics for inference of the mean θ
- ▶ The only approximation is $\epsilon > 0$.
- ▶ In general, the summary statistics will not be sufficient.

▶ In the Gaussian example, the probability for $\Delta_{\theta} \leq \epsilon$ can be computed in closed form $\Delta_{\theta} = (\hat{\mu}^{o} - \hat{\mu}_{\theta})^{2}$

$$\Pr(\Delta_{\theta} \leq \epsilon) = \Phi\left(\sqrt{\textit{n}}(\hat{\mu}^{\textit{o}} - \theta) + \sqrt{\textit{n}\epsilon}\right) - \Phi\left(\sqrt{\textit{n}}(\hat{\mu}^{\textit{o}} - \theta) - \sqrt{\textit{n}\epsilon}\right)$$

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u^2\right) du$$

- ▶ For $n\epsilon$ small: $\tilde{L}_{\epsilon}(\theta) \propto \Pr(\Delta_{\theta} \leq \epsilon) \propto \sqrt{\epsilon}L(\theta)$
- For small ε good approximation of the likelihood function.
- ▶ But for small ϵ , $\Pr(\Delta_{\theta} \leq \epsilon) \approx 0$: Very few samples will be accepted

Two widely used algorithms

- ► Two widely used algorithms which improve computationally upon rejection ABC:
 - 1. Regression ABC (Beaumont et al, 2002)
 - 2. Sequential Monte Carlo ABC (Sisson et al, 2007)
- ▶ Both use rejection ABC as a building block.
- Sequential Monte Carlo (SMC) ABC is also known as Population Monte Carlo (PMC) ABC.

Two widely used algorithms

- ▶ Regression ABC consists in running rejection ABC with a relatively large ϵ and then adjusting the obtained samples so that they are closer to samples from the true posterior.
- ▶ Sequential Monte Carlo ABC consists in sampling θ from an adaptively constructed proposal distribution $\phi(\theta)$ rather than from the prior in order to avoid simulating many data sets which are not accepted.

Basic idea of regression ABC

- ▶ The summary statistics $\mathbf{t}_{\theta} = T(\mathbf{y}_{\theta})$ and θ have a joint distribution.
- Let \mathbf{t}_i be the summary statistics for simulated data $\mathbf{y}_i = g(\boldsymbol{\omega}_i, \boldsymbol{\theta}_i)$.
- We can learn a regression model between the summary statistics (covariates) and the parameters (response variables)

$$\boldsymbol{\theta}_i = f(\mathbf{t}_i) + \boldsymbol{\xi}_i \tag{12}$$

where ξ_i is the error term (zero mean random variable).

▶ The training data for the regression are typically tuples (θ_i, \mathbf{t}_i) produced by rejection-ABC with some sufficiently large ϵ .

Basic idea of regression ABC

Fitting the regression model to the training data (θ_i, \mathbf{t}_i) yields an estimated regression function \hat{f} and the residuals $\hat{\boldsymbol{\xi}}_i$,

$$\hat{\boldsymbol{\xi}}_i = \boldsymbol{\theta}_i - \hat{\boldsymbol{f}}(\mathbf{t}_i) \tag{13}$$

▶ Regression ABC consists in replacing θ_i with θ_i^* ,

$$\boldsymbol{\theta}_{i}^{*} = \hat{f}(\mathbf{t}^{o}) + \hat{\boldsymbol{\xi}}_{i} = \hat{f}(\mathbf{t}^{o}) + \boldsymbol{\theta}_{i} - \hat{f}(\mathbf{t}_{i}) \tag{14}$$

- ▶ Corresponds to an adjustment of θ_i .
- ▶ If the relation between **t** and θ is learned correctly, the θ_i^* correspond to samples from an approximation with $\epsilon = 0$.

Michael Gutmann

ABC Tutorial

Basic idea of sequential Monte Carlo ABC

- We may modify the rejection ABC algorithm and use $\phi(\theta)$ instead of the prior p_{θ} .
 - 1. Sample $\theta_i \sim \phi(\theta)$
 - 2. Simulate a data set \mathbf{y}_i by running the simulator with θ_i $(\mathbf{y}_i = g(\omega_i, \theta_i))$
 - 3. Compute the discrepancy $\Delta_i = d(T(\mathbf{y}^o), T(\mathbf{y}_i))$
 - **4**. Retain θ_i if $\Delta_i \leq \epsilon$
- ▶ The retained samples follow a distribution proportional to $\phi(\theta)\tilde{L}_{\epsilon}(\theta)$

Basic idea of sequential Monte Carlo ABC

▶ Parameters θ_i weighted with w_i ,

$$w_i = \frac{p_{\theta}(\theta_i)}{\phi(\theta_i)},\tag{15}$$

follow a distribution proportional to $p_{\theta}(\theta)\tilde{L}_{\epsilon}(\theta)$.

- ► Can be used to iteratively morph the prior into a posterior:
 - Use a sequence of shrinking thresholds ϵ_t
 - ▶ Run rejection ABC with ϵ_0 .
 - ▶ Define ϕ_t at iteration t based on the weighted samples from the previous iteration (e.g Gaussian mixture with means equal to the θ_i from the previous iteration).

Basic idea of sequential Monte Carlo ABC

Learning a model of the discrepancy

$$\tilde{L}_{\epsilon}(\theta) \propto \Pr\left(\Delta_{\theta} \leq \epsilon \mid \theta\right)$$

- ▶ The approximate likelihood function $\tilde{L}_{\epsilon}(\theta)$ is determined by the distribution of the discrepancy Δ_{θ}
- ▶ If we knew the distribution of Δ_{θ} we could compute $\tilde{L}_{\epsilon}(\theta)$.
- We proposed to learn a model of Δ_{θ} and to approximate $\tilde{L}_{\epsilon}(\theta)$ by $\hat{L}_{\epsilon}(\theta)$,

$$\tilde{L}_{\epsilon}(\boldsymbol{\theta}) \propto \widehat{\mathsf{Pr}} \left(\Delta_{\boldsymbol{\theta}} \le \epsilon \mid \boldsymbol{\theta} \right)$$
 (16)

▶ Model is learned more accurately in regions where Δ_{θ} tends to be small to make further computational savings.

(Gutmann and Corander, Journal of Machine Learning Research, in press)

Michael Gutmann

ABC Tutorial

- ► Likelihood intractable for cross-sectional data
- ▶ But generating data from the model is possible

- Comparison of the proposed approach with a standard population Monte Carlo ABC approach.
- ▶ Roughly equal results using 1000 times fewer simulations.

4.5 days with 200 cores↓90 minutes with seven cores

Posterior means: solid lines, credibility intervals: shaded areas or dashed lines.

(Gutmann and Corander, 2015)

- Comparison of the proposed approach with a standard population Monte Carlo ABC approach.
- Roughly equal results using 1000 times fewer simulations.

Posterior means are shown as solid lines, credibility intervals as shaded areas or dashed lines.

Program

Computational efficiency

Difficulties

Solutions

Recent work

Statistical efficiency

Difficulties

Solutions

Recent work

- Discrepancy measure affects the accuracy of the estimates
- Bad discrepancy: estimated posterior = prior
- Bad discrepancy: vanishingly small acceptance probability
- ► Good discrepancy: good trade-off between loss of information and increase in acceptance probability

How to choose the discrepancy measure?

- Manually
 - Use expert knowledge about \mathbf{y}^o to define summary statistics T.
 - Use Euclidean distance for d.

$$\Delta_{\boldsymbol{\theta}} = ||T(\mathbf{y}^{o}) - T(\mathbf{y}_{\boldsymbol{\theta}})||$$

- Semi-automatic
 - ▶ Simulate pairs (θ_i, \mathbf{y}_i)
 - ightharpoonup Define a large number of summary statistics $ilde{T}$
 - ▶ Define *T* as a smaller number of (linear) combinations of them, automatically learned from the simulated pairs.
 - Use Euclidean distance for d.
- ▶ Combinations are typically determined via regression with the $\tilde{T}(\mathbf{y}_{\theta})$ as covariates and parameters θ as reponse variables.

e.g. Nunes and Balding, 2010; Fearnhead and Prangle, 2012; Aeschbacher et al, 2012; Blum et al, 2013

Discrepancy measurement via classification

(Gutmann et al, 2014)

- ► Classification accuracy (discriminability) as discrepancy measure Δ_{θ} .
- ▶ Discriminability of 100% indicates maximally different data sets: 50% indicates similar data sets.

- ► Likelihood intractable for cross-sectional data
- But generating data from the model is possible

(Gutmann et al, 2014)

- Our classification-based distance measure does not use domain/expert knowledge.
- ► Performs as well as a distance measure based on domain knowledge (Numminen et, 2013).

(Gutmann et al, 2014)

- ▶ Robustness is a concern when relying on expert knowledge
- ► Classification-based distance can automatically compensate errors in the expert input.

- ► The topic was Bayesian inference for models specified via a simulator (implicit / generative models).
- Introduced approximate Bayesian computation (ABC).
- Principle of ABC: Find parameter values which yield simulated data resembling the observed data.

- ► The topic was Bayesian inference for models specified via a simulator (implicit / generative models).
- Introduced approximate Bayesian computation (ABC).
- Principle of ABC: Find parameter values which yield simulated data resembling the observed data.
- Covered three classical algorithms:
 - 1. Rejection ABC
 - 2. Regression ABC
 - 3. Sequential Monte Carlo ABC

- ► The topic was Bayesian inference for models specified via a simulator (implicit / generative models).
- Introduced approximate Bayesian computation (ABC).
- Principle of ABC: Find parameter values which yield simulated data resembling the observed data.
- Covered three classical algorithms:
 - 1. Rejection ABC
 - 2. Regression ABC
 - 3. Sequential Monte Carlo ABC
- Choice of discrepancy measure between simulated and observed data

- ► The topic was Bayesian inference for models specified via a simulator (implicit / generative models).
- Introduced approximate Bayesian computation (ABC).
- Principle of ABC: Find parameter values which yield simulated data resembling the observed data.
- Covered three classical algorithms:
 - 1. Rejection ABC
 - Regression ABC
 - 3. Sequential Monte Carlo ABC
- Choice of discrepancy measure between simulated and observed data
- Recent work of mine
 - Combining modeling of the discrepancy and optimization to increase computational efficiency
 - Using classification to measure the discrepancy

63 / 65

References

My papers: https://sites.google.com/site/michaelgutmann/publications

- Numminen et al. Estimating the Transmission Dynamics of Streptococcus pneumoniae from Strain Prevalence Data. Biometrics. 2013.
- Beaumont et al. Approximate Bayesian Computation in Population Genetics. Genetics, 2002.
- Sisson et al. Sequential Monte Carlo without likelihoods. PNAS. 2007.
- Nunes and Balding. On optimal selection of summary statistics for approximate Bayesian computation. Statistical Applications in Genetics and Molecular Biology, 2010.
- ► Fearnhead and Prangle. Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2012.
- Aeschbacher et al. A novel approach for choosing summary statistics in approximate Bayesian computation. Genetics, 2012.
- Blum et al. A Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation. Statistical Science, 2013.

ABC Tutorial 64 / 65

Review papers

- ▶ Beaumont. Approximate Bayesian Computation in Evolution and Ecology. *Annual Review of Ecology, Evolution, and Systematics*, 2010.
- ► Hartig et al. Statistical inference for stochastic simulation models theory and application. *Ecology Letters*, 2011.
- ► Marin et al. Approximate Bayesian computational methods. *Statistics and Computing*, 2012.
- Sunnaker et al. Approximate Bayesian Computation. PLoS Computational Biology, 2013.