Explainable Empirical Risk Minimization

for

Trustworthy Al

Alex(ander) Jung Assistant Professor for Machine Learning Department of Computer Science Aalto University

Outline

- Empirical Risk Minimization
- What is an Explanation?
- Measuring Explainability
- Explainable Empirical Risk Minimization

Outline

- Empirical Risk Minimization
- What is an Explanation?
- Measuring Explainability
- Explainable Empirical Risk Minimization

ML Principle (informal)

fit model to data to make accurate

predictions or forecasts!

4, 5, 6, 7, 8, ?

ML Principle (more formal)

learn hypothesis out of a hypothesis space (model) that allows to predict label of a data point from its features

Empirical Risk Minimization

Empirical Risk Minimization

Always\Validate! $\chi^{(i)}, \gamma^{(i)}$ label y training error validation error $E_{v} = (\hat{y}^{(1)} - y^{(1)})^{2}$ $E_t = \frac{1}{3} \sum_{i=1}^{3} (\hat{y}^{(i)} - y^{(i)})^2$

feature x

Life-Cycle of ML

- learn hypothesis h(x) via ERM ("train")
- apply h(x) to new data ("validate")
- adapt ERM design choices and repeat

Design Choices: Data, Model, Loss.

- Human agency and oversight
- Technical robustness and safety
- Privacy and data governance
- Transparency
- Diversity, non-discrimination and fairness
- Societal and environmental wellbeing
- Accountability

https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html

Explainability.

"...Technical explainability requires that the decisions made by an AI system can be understood and traced by human beings. Moreover, trade-offs might have to be made between enhancing a system's explainability (which may reduce its accuracy) or increasing its accuracy (at the cost of explainability)..."

Two Key Questions

what is an explanation ?

how to measure explainability?

Outline

Empirical Risk Minimization

• What is an Explanation?

Measuring Explainability

Explainable Empirical Risk Minimization

ISO/IEC TR 24028

"...An explanation is always an attempt to communicate understanding. The effectiveness of an explanation can be improved by tailoring..."

Premium Version of Explanations ...

Among my students,

explaining a ML method could amounts to

specification of data format and source

specification of model (hypothesis space)

specification of loss function

Explaining Entire ML Method.

"linear regression learns a linear hypothesis by minimizing the average squared error on training set"

Explaining Individual Predictions.

provide information about how prediction h(x) is computed for given data point with features x

e.g., "the prediction is obtained since x=4 for this data point and we use a linear hypothesis h(x) = w1*x1+w2*x2 with weights w1 = 10 and w2=4"

LIME - Local Interpretable Model-Agnostic

M. Ribeiro, S. Singh, C. Guestrin, ""Why Should I Trust You?": Explaining the Predictions of Any Classifier", <i>arXiv e-prints</i>, 2016.

Explaining Decision Tree Prediction.

Explaining via Counterfactual.

if your salary would be higher than 50 kEur, then the loan would have been granted

Explaining a Prediction.

Figure 1: Image of a clay colored sparrow and how parts of it look like some learned prototypical parts of a clay colored sparrow used to classify the bird's species.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, Jonathan K. Su "This Looks Like That: Deep Learning for Interpretable Image Recognition", Neurips 2019

Case-Based Reasoning.

Lamy et.al., "Explainable artificial intelligence for breast cancer: A visual case-based reasoning approach," Artificial Intelligence in Medicine, Volume 94, 2019.

Towards a Definition.

"explanation is some artefact "e" that is revealed to a user "u" who is also served the prediction $\hat{y} = h(x)$ for a data point with features x"

A Precise Definition.

since we serve explanations for predictions on unlabelled data, explanation is a (stochastic) function of features only,

data point

restrict function e(.) to belong to feasible set \mathcal{F} (similar to a hypothesis space!)

Outline

- Empirical Risk Minimization
- What is an Explanation?
- Measuring Explainability
- Explainable Empirical Risk Minimization

Explainability is Subjective.

"... explanation should be timely and adapted to the expertise of the stakeholder concerned (e.g. layperson, regulator or researcher)...."

Adapting to User

SEO Basics: What are user signals?

4 October 2017 | 13 Comments | Tags Google Analytics, SEO basics, Webmaster tools

"User signals are behavioral patterns.... The most important user signals are the bounce rate and the click-through rate (CTR)"

https://yoast.com/what-are-user-signals/

User Signal.

data point

features x, label y

User Brain Signal.

Products Services Applications Science About us

GO BACK TO BLOG

NEUROTECHNOLOGY - SCIENCE & RESEARCH

What is BCI? An introduction to brain-computer interface using EEG signals

User Psychological Signal

What do you see ?

https://www.tutordale.com/what-do-you-see-pictures-psychology/

User Signal via Interpretable Representation (Features)

"...Lime explains those classifiers in terms of interpretable representations (words), even if that is not the representation actually used by the classifier..."

https://homes.cs.washington.edu/~marcotcr/blog/lime/

Abstract User Signal.

some user-specific quantity e associated with a data point

might interpret e as user-specific feature or label

A Simple Probabilistic Model

data point features "x", label y

joint distribution $p(x,e, \hat{y},u)$

user summary "u"

explanation e(x)

predicted yield " $\hat{y} = h(x)$ "

Explainability = Predictability

My Information-Theory Slide.

conditional entropy

$$I(e; \hat{y}|u) = H(\hat{y}|u) - H(\hat{y}|e,u)$$

conditional mutual information

see Chapter 8 of

T. Cover, J. Thomas, "Elements of Information Theory", Wiley, 2005

Computing Explanations

$$I(e^*; \hat{y}|u) = \sup_{e \in \mathcal{F}} I(e; \hat{y}|u)$$
set of "allowed" explanations

optimal explanation varies for different users u ! expersonalized explanations!

Towards an Algorithm.

$$I(e^*; \hat{y}|u) = \sup_{e \in \mathcal{F}} I(e; \hat{y}|u)$$

- estimate $h(\hat{y}|e,u)$ using i.i.d. training set $(x^{(1)}, u^{(1)}, \hat{y}^{(1)})...(x^{(m)}, u^{(m)}, \hat{y}^{(m)})$
- ullet choose tractable explanation space ${\mathcal F}$
- apply your favourite solver

The Story so far...

- measure (lack of) eplainability via $H(\hat{y}|e,u)$
- construct map e(x) to minimize $H(\hat{y}|e,u)$

• IDEA: skip explanation and minimize $H(\hat{y}|u)$ by learning simpler (interpretable) predictor $\hat{y} = h(x)$

Outline

- Empirical Risk Minimization
- What is an Explanation?
- Measuring Explainability
- Explainable Empirical Risk Minimization

Recall the ERM Principle

Overfitting.

Avoid Overfitting by Regularization.

learnt hypothesis should be nearly constant for data points whose feature values are within distance 0.5

Regularization via Augmentation.

Explainable ERM (EERM)

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} L((x^{(i)}, y^{(i)}), h) + \lambda H(h|u)$$

- H(h|u) measures (lack of) subj. explainability
- h(x) similar for data points with similar user signal u
- EERM design choices: \mathcal{H} and loss L

Regularization = Implicit Pruning!

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} L((x^{(i)}, y^{(i)}), h) + \lambda H(h|u)$$
equivalent to

$$\min_{h \in \mathcal{H}^{(\lambda)}} \frac{1}{m} \sum_{i=1}^{m} L((x^{(i)}, y^{(i)}), h)$$

with pruned (interpretable) model $\mathcal{H}^{(\lambda)} \subset \mathcal{H}$

Explainable Linear Regression

Algorithm 1 Explainable Linear Regression

Input: explainability parameter λ , training set \mathcal{D} (see (5))

1: solve

$$\widehat{\mathbf{w}} \in \underset{\alpha \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^n}{\operatorname{argmin}} \sum_{i=1}^m \underbrace{\left(y^{(i)} - \mathbf{w}^T \mathbf{x}^{(i)}\right)^2}_{\text{empirical risk}}$$

$$+ \lambda \underbrace{\left(\mathbf{w}^T \mathbf{x}^{(i)} - \alpha u^{(i)}\right)^2}_{\text{subjective explainability}} \tag{19}$$

Output: $h^{(\lambda)}(\mathbf{x}) := \mathbf{x}^T \widehat{\mathbf{w}}$

Explainable Decision Trees

EERM vs. LIME

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} L((x^{(i)}, y^{(i)}), h) + \lambda H(h|u)$$

$$\xi(x) = \operatorname{argmin}_{g \in G} \ \mathcal{L}(f, g, \Pi_x) + \Omega(g)$$

- EERM and LIME essentially solve a regularized ERM
- LIME solves separate regularized ERM for each feature value x
- "empirical risk" in LIME based on faithfulness to given ML method

Explainability vs. Risk - Ideal

risk (expected loss)

Explainability vs. Risk - Practical

To Summarize ...

- identify explainability with predictability
- subj. expl. = conditional entropy of predictions
- require user signal to define "subjective"
- EERM uses subj. explain. to regularize ERM
- special case: expl. lin.reg and expl. decision trees

References

- W.J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, "<u>Definitions</u>, methods, and applications in interpretable machine learning", PNAS, Vol. 116, No. 44, 2019
- M. T. Ribeiro, S. Singh, and C. Guestrin.. "Why Should I Trust You?": Explaining the Predictions of Any Classifier. SIGKDD, 2016.
- AJ and P. Nardelli, "An Information-Theoretic Approach to Personalized Explainable Machine Learning," in *IEEE Signal Processing Letters*, vol. 27, pp. 825-829, 2020, doi: 10.1109/LSP.2020.2993176.
- L. Zhang, G. Karakasidis, A. Odnoblyudova, L. Dogruel, AJ, "Explainable Empirical Risk Minimization", 2020. https://arxiv.org/abs/2009.01492

References (ctd)

- Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, Jonathan K. Su "This Looks Like That: Deep Learning for Interpretable Image Recognition", Neurips 2019
- Lamy et.al., "Explainable artificial intelligence for breast cancer: A visual case-based reasoning approach," Artificial Intelligence in Medicine, Volume 94, 2019.
- AJ, "Machine Learning: The Basics," Springer, Singapore, 2022.