

Art of Problem Solving 2013 Iran MO (2nd Round)

National Math Olympiad (Second Round) 2013

Day 1	
1	Find all pairs (a,b) of positive integers for which $\gcd(a,b)=1$, and $\frac{a}{b}=\overline{b.a}$. (For example, if $a=92$ and $b=13$, then $b/a=13.92$)
2	Let n be a natural number and suppose that w_1, w_2, \ldots, w_n are n weights. We call the set of $\{w_1, w_2, \ldots, w_n\}$ to be a <i>Perfect Set</i> if we can achieve all of the $1, 2, \ldots, W$ weights with sums of w_1, w_2, \ldots, w_n , where $W = \sum_{i=1}^n w_i$. Prove that if we delete the maximum weight of a Perfect Set, the other weights make again a Perfect Set.
3	Let M be the midpoint of (the smaller) arc BC in circumcircle of triangle ABC . Suppose that the altitude drawn from A intersects the circle at N . Draw two lines through circumcenter O of ABC parallel to MB and MC , which intersect AB and AC at K and L , respectively. Prove that $NK = NL$.
Day 2	
1	Let P be a point out of circle C . Let PA and PB be the tangents to the circle drawn from C . Choose a point K on AB . Suppose that the circumcircle of triangle PBK intersects C again at T . Let P' be the reflection of P with respect to A . Prove that $ \angle PBT = \angle P'KA $
2	Suppose a $m \times n$ table. We write an integer in each cell of the table. In each move, we chose a column, a row, or a diagonal (diagonal is the set of cells which the difference between their row number and their column number is constant) and add either $+1$ or -1 to all of its cells. Prove that if for all arbitrary 3×3 table we can change all numbers to zero, then we can change all numbers of $m \times n$ table to zero.
	(<i>Hint</i> : First of all think about it how we can change number of 3×3 table to zero.)
3	Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive integers for which
	$a_{n+2} = \left[\frac{2a_n}{a_{n+1}}\right] + \left[\frac{2a_{n+1}}{a_n}\right].$

www.artofproblemsolving.com/community/c3897

Contributors: dan23, War-Hammer

Art of Problem Solving 2013 Iran MO (2nd Round)

Prove that there exists a positive integer m such that $a_m = 4$ and $a_{m+1} \in \{3, 4\}$. **Note.** [x] is the greatest integer not exceeding x.

www.artofproblemsolving.com/community/c3897

Contributors: dan23, War-Hammer