

Soal

1 Gambarlah lintasan dari

$$g(t) = \frac{-2t}{1+t^2} + i\frac{1-t^2}{1+t^2}$$

untuk $t \in [-1, 1]$.

 $\fbox{\bf 2}$ Hitunglah $\int\limits_C z e^{z^2} \; \mathrm{d}z$ dengan Clintasan berupa lingkaran.

$$f(z) = \frac{1}{(z^2 + 4)^2}$$

sepanjang lengkungan C:|z-i|=2.

 $\boxed{\mathbf{4}}$ Hitunglah $\int\limits_C f(z) \;\mathrm{d}z$ jika

$$f(z) = \frac{e^{2z} - z^2}{(z-2)^3}$$

dan C : |z - 1| = 3.

SOAL NOMOR

Gambarlah lintasan dari

$$g(t) = \frac{-2t}{1+t^2} + i\frac{1-t^2}{1+t^2}$$

untuk $t \in [-1, 1]$.

Solusi:

Misalkan $u(t)=\text{Re }g(t)=-\frac{2t}{1+t^2}$ dan $v(t)=\text{Im }g(t)=\frac{1-t^2}{1+t^2}.$ Karena

$$u(t)^{2} + v(t)^{2} = \frac{4t^{2}}{(1+t^{2})^{2}} + \frac{1-2t^{2}+t^{4}}{(1+t^{2})^{2}} = \frac{1+2t^{2}+t^{4}}{(1+t^{2})^{2}} = 1.$$

Ini menunjukkan bahwa lintasan tersebut bagian lingkaran yang berpusat di z=0 dan jari-jari 1. Tinjau bahwa $g(-1)=\frac{2}{2}+0=1,$ $g(0)=0+i\cdot\frac{1}{1}=i,$ dan $g(1)=\frac{-2}{2}+0=-1.$ Diperoleh lintasan g(t) sebagai berikut.

Hitunglah $\int\limits_C z e^{z^2} \;\mathrm{d}z$ dengan Clintasan berupa lingkaran.

Solusi:

Perhatikan bahwa fungsi eksponensial e^z , fungsi polinom z dan z^2 masing-masing entire. Akibatnya, komposisi fungsi z^2 dan e^z , yaitu e^{z^2} , juga merupakan fungsi entire. Selain itu, hasil kali fungsi z dan e^{z^2} , yaitu ze^{z^2} , juga merupakan fungsi entire. Misalkan C sebarang lintasan berupa lingkaran, maka C tertutup sederhana. Karena ze^{z^2} entire,

Misalkan C sebarang lintasan berupa lingkaran, maka C tertutup sederhana. Karena ze^{z^2} entire menurut Cauchy-Goursat, berlaku $\int_C ze^{z^2} dz = \boxed{0}$ untuk sebarang lintasan lingkaran C.

Hitunglah $\int_C f(z) dz$ jika

$$f(z) = \frac{1}{(z^2 + 4)^2}$$

sepanjang lengkungan C:|z-i|=2.

Solusi:

Tinjau bahwa

$$f(z) = \frac{1}{(z^2 + 4)^2} = \frac{1}{(z + 2i)^2(z - 2i)^2}$$

yang berarti titik singular f(z) adalah $z=\pm 2i$.

Misalkan C_1 adalah lintasan lingkaran yang berpusat di z=2i sedemikian sehingga $int(C_1)\subseteq int(C)$ serta berorientasi positif (berlawanan arah jarum jam). Tinjau f(z) analitik di $C\setminus C_1$, dari sini akan berakibat $\int\limits_C f(z) \,\mathrm{d}z = \pm \int\limits_{C_1} f(z) \,\mathrm{d}z$ di mana tanda + saat C berorientasi positif

dan – saat berorientasi negatif. Kemudian, dari Cauchy berlaku

$$\int_{C_1} f(z) dz = \int_{C_1} \frac{dz}{(z+2i)^2 (z-2i)^2} = \int_{C_1} \frac{\frac{1}{(z+2i)^2} dz}{(z-2i)^2} = \frac{2\pi i}{1!} g'(2i)$$

di mana $g(z)=\frac{1}{(z+2i)^2} \implies g'(z)=-\frac{2}{(z+2i)^3}$ dan diperoleh $g'(2i)=-\frac{2}{(4i)^3}=-\frac{2}{-64i}=\frac{1}{32i}$. Dari sini diperoleh $\int_{C_1} f(z) \; \mathrm{d}z = 2\pi i \cdot \frac{1}{32i}=\frac{\pi}{16}.$ Jadi, $\int_{C} f(z) \; \mathrm{d}z = \left[\pm \frac{\pi}{16}\right] \mathrm{d}i \; \mathrm{mana} \; \mathrm{tanda} + \mathrm{saat} \; C \; \mathrm{berorientasi} \; \mathrm{positif} \; \mathrm{dan} - \mathrm{saat} \; C \; \mathrm{berorientasi} \; \mathrm{negatif}.$

$$\int_{C_1} f(z) \, \mathrm{d}z = 2\pi i \cdot \frac{1}{32i} = \frac{\pi}{16}.$$

Hitunglah $\int\limits_C f(z) \;\mathrm{d}z$ jika

$$f(z) = \frac{e^{2z} - z^2}{(z-2)^3}$$

dan C: |z - 1| = 3.

Solusi:

Perhatikan bahwa z=2 merupakan titik singular dari f(z).

Misalkan C_1 lintasan lingkaran berpusat di z=2 sedemikian sehingga $int(C_1)\subseteq int(C)$ serta berorientasi positif. Ini berakibat $\int\limits_C f(z) \,\mathrm{d}z = \pm \int\limits_{C_1} f(z) \,\mathrm{d}z$ di mana tanda + saat C berorientasi positif dan – saat C berorientasi negatif. Kemudian, dari Cauchy berlaku

$$\int_{C_1} \frac{e^{2z} - z^2}{(z - 2)^3} dz = \frac{2\pi i}{2!} g''(2) = \pi i g''(2), \quad g(z) = e^{2z} - z^2.$$

Diperoleh $g'(z) = 2e^{2z} - 2z \implies g''(z) = 4e^{2z} - 2$ dan diperoleh $g''(2) = 4e^4 - 2$. Jadi,

$$\int_{C} f(z) dz = \pm \pi i \left(4e^{4} - 2 \right) = \boxed{\pm 2\pi i \left(2e^{4} - 1 \right)}$$

di mana tanda + saat ${\cal C}$ berorientasi positif dan - saat ${\cal C}$ berorientasi negatif.