

ARGOMENTI DELLA LEZIONE

- Richiamo della rappresentazione numerica nei calcolatori: numeri interi e numeri reali
- ☐ Reti combinatorie
 - ☐ Codificatore e Decodificatore
 - Addizionatore e Sottrattore
 - ☐ Comparatore aritmetico e logico
- ☐ Reti sequenziali
 - ☐ Registro di memorizzazione
 - ☐ Registro Contatore
 - ☐ Registro a scorrimento
- ☐ Interconnessione
 - ☐ Multiplexer e demultiplexer, mesh, bus

RAPPRESENTAZIONE NUMERICA

Numeri e loro rappresentazione

☐ Un **numero** può essere rappresentato in vari modi con simboli diversi

1 7	11 ∢٣	21 ≪ ₹	31 ⋘ ₹	41 ÆY	51 AX Y
2	12 < TY	22 ≪ TY	32 ⋘™	42 X YY	52 A TT
3 777	13 4 777	23 《 TYY	33 ⋘ १११ ४	43 4 177	53 A TTT
4	14 🗸 👺	24	34 ⋘❤	44	54 X
5	15 ∢₩	25 ⋘₩	35 ⋘₩	45	55 4
6 ***	16 ₹₹ ₹	26 ⋘₩	36 ⋘∰	46	55 - X
7 198	17 ₹₹	27	37 444 🐯	47	
8 🐺	18 ∢₩	28 ⋘₩	38 ₩₩₩	48 🏕 ₩	57 餐 😇
9 🗰	19 ∢辨	29 🕊 🇱	39 ⋘∰	49 🛠 🌃	58 - 🏈 🖷
10 🕊	20 🕊	30 ₩₩	40	50 🍂	59 Æ

1	T	8	VIII	
2	II	9	IX	
3	III	10	Х	
4	IV	50	L C	
5	٧	100		
6	VI	500	D	
7	VII	1000	М	

I		Ш	IIII	IIII	T	T	Т	
1	2	3	4	5	6	7	8	9
					4	ᅰ	411	#
10	20	30	40	50	60	70	8	90

APPRESENTAZIONE NUMERICA

Sistema posizionale

- ☐ Introdotto da Leonardo Fibonacci dopo essere entrato in contatto con alcuni commercianti arabi (che avevano acquisito le nozioni da matematici indiani)
- Fibonacci, nel suo saggio *Liber abaci* del 1202, spiega il nuovo metodo di rappresentazione che assegnava un valore diverso a una stessa cifra in relazione alla sua posizione. Ne spiega anche la modalità per svolgere calcoli
- ☐ In più introdusse, per la prima volta, lo zero (zephirum); un nuovo segno grafico che simboleggiava il concetto di vuoto (o di assenza di valore), ovvero l'unico numero a non essere positivo né negativo

$$N = \sum_{i=0}^{m} a_i b^i \quad \text{con } 0 \le a_i \le b - 1 \quad \text{e scelta } b > 1$$

(2312) =
$$2 \cdot 10^3 + 3 \cdot 10^2 + 1 \cdot 10^1 + 2 \cdot 10^0$$

= $2 \cdot 1000 + 3 \cdot 100 + 1 \cdot 10 + 2 = 2312$

RAPPRESENTAZIONE NUMERICA Sistema posizionale in base due

□ Presentato da Gottfried
Wilhelm von Leibniz nel 1666
nel suo trattato l'Arte
combinatoria con il quale
gettò le basi della logica
simbolica, su cui si regge il
funzionamento dei moderni
calcolatori, e formulò per
l'appunto l'idea del calcolo
binario, che riduca in forma più
semplice le 'leggi del pensiero'

$$N = \sum_{i=0}^{m} a_i 2^i \quad \text{con } 0 \le a_i \le 1$$

$$(1011) = 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 2 \cdot 2^{0} =$$

$$= 8 + 0 + 2 + 1 = 13$$

RAPPRESENTAZIONE NUMERICA

Il numero e la sua rappresentazione

- ☐ In campo matematico si usa la base 10
- ☐ In campo informatico si fa riferimento al sistema binario, ottale e esadecimale

Valore	Base
110582	10
11010111111110110	2
327766	8
1AFF6	16

RAPPRESENTAZIONE NUMERICA Numero e dimensione della parola

- Lo spazio a disposizione per immagazzinare le informazioni relative a un numero binario è limitato dalla dimensione della parola di rappresentazione
- ☐ In una parola di dimensione *n* bit, tutte le informazioni relative al numero, segno compreso, devono occupare non più di *n* bit.
- Dopo una operazione aritmetica il numero da rappresentare può eccedere la dimensione della parola provocando un **overflow**

PAROLA DI 16 BIT

PAROLA DI 16 BIT CON OVERFLOW

RAPPRESENTAZIONE NUMERICA

Insieme numerici

- Gli elaboratori elettronici supportano delle funzioni logiche (e logico-aritmetiche) operanti sulle stringhe e delle funzioni aritmetiche che gestiscono:
 - Numeri interi, per cui si ha una rappresentazione:
 - ☐ Senza segno
 - ☐ Con segno
 - ☐ Bit del segno
 - ☐ Complemento a uno
 - ☐ Complemento a due
 - ☐ **Numeri reali**, per cui si ha una rappresentazione:
 - urgola fissa
 - ☐ virgola mobile

INTERO SENZA SEGNO

Sistema binario

- ☐ Un **intero senza segno** è un valore assunto positivo
- ☐ Gli *n* bit della parola sono usati <u>tutti</u> per rappresentare le cifre del numero
- ☐ Una parola a *n* bit permette di trattare un qualsiasi numero il cui **intervallo di rappresentazione** (o *range*) è [0;2ⁿ-1]

$$N = \sum_{i=0}^{\lceil \log_2 N \rceil} a_i 2^i \qquad 0 \le a_i \le 1$$

DECIMALE	BINARIO
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

INTERI SENZA SEGNO

Rappresentazioni con base non binaria

- Per rappresentazioni generiche con base maggiore a 10 si introducono, per convenzione, caratteri alfabetici in maiuscolo
 - Sistema esadecimale 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
 - Sistema in base venti 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,I,L
- È importante usare simboli per evitare ambiguità

ES: Nel sistema esadecimale 10 indica il valore 16 (cioè $1\cdot16^1+0\cdot16^0$); mentre il valore decimale 10 è espresso con la lettera A

$$(10)_{16}$$
=16 e $(A)_{16}$ =10

Superati i simboli alfabetici si ricorre a simboli speciali (es.: ♣ ♦ ♥ ♠) definibili dall'utente (le associazioni tra simboli e numero devono essere noti)

VALORE	BASE	RAPPRESENTAZIONE
2502		
	10	(2502) ₁₀
	16	(9C6) ₁₆
	8	(4706) ₈
	2	(0000100111000110) ₂

INTERI SENZA SEGNO

Rappresentazione in base due

Un metodo per convertire un valore da una base decimale ad una binaria è quello delle divisione successive

82	Quoziente	Resto
82:2	41	0 LSB
41:2	20	1
20:2	10	0
10:2	5	0
5:2	2	1
2:2	1	0
1MSB		
		1010010

 $(82)_{10} = (01010010)_2$

INTERI SENZA SEGNO

Rappresentazione da base binaria a decimale

$$(82)_{10} = (01010010)_2$$

$$N=0.2^7+1.2^6+0.2^5+1.2^4+0.2^3+0.2^2+1.2^1+0.2^0$$

Modalità di rappresentazione

- □ Nella rappresentazione dei numeri interi c'è la necessità di riservare un bit relativo al segno (+ oppure -) o di scegliere una codifica che consenta di discriminare in maniera chiara e precisa i valori negativi da quelli positivi
- ☐ I tre metodi usati sono:
 - ☐ bit del segno
 - complemento a uno
 - ☐ complemento a due (affermato in quasi tutti i calcolatori elettronici)

A Second

INTERI CON SEGNO

Bit del segno

- □ Nel formato bit del segno, il bit più significativo dell'intera parola è riservato al segno del numero:
 - ❖ 1 per identificare il segno -
 - ❖ 0 per identificare il segno +
- ☐ In rappresentazione:
 - si codifica il numero in binario
 - si antepone il bit del segno
- Per una parola di lunghezza *n* l'intervallo di valori rappresentabili va da

$$[-2^{n-1}+1; 2^{n-1}-1]$$

$$(+15)_{10}$$
 = $(00001111)_2$
 $(-12)_{10}$ = $(10001100)_2$

$$(+0)_{10}$$
 = $(\mathbf{0}0000000)_2$
 $(-0)_{10}$ = $(\mathbf{1}0000000)_2$

Complemento a uno

- Il complemento a uno è realizzato complementando (ovvero ¬0=1 e ¬1=0) tutte le cifre che costituiscono la parola
- ☐ Il segno di un numero è individuato dal valore del primo bit, infatti tutti i numeri positivi iniziano con il bit 0, mentre quelli negativi hanno il bit più significativo impostato a 1

```
(+15)_{10} = (00001111)_2
(-15)_{10} = (11110000)_2
```

$$(+0)_{10}$$
 = $(00000000)_2$
 $(-0)_{10}$ = $(11111111)_2$

Complemento a due

- ☐ Nel complemento a due il bit più significativo ha peso negativo
- ☐ I numeri negativi in complemento a due si ottengono complementando l'intero positivo e sommando a questo ultimo il valore 1
- L'intervallo di valori rappresentabile è $[-2^{n-1}; 2^{n-1}-1]$

$$N = -a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i$$

$$(+15)_{10} = (00001111)_2$$

$$(-12)_{10} = (11110100)_2$$

$$(\mathbf{0})_{10} = (00000000)_2$$

 $(-12)_{10}$ Valore assoluto: $(00001100)_2$

Complementare: (11110011)₂

Somma di 1: (11110100)₂

Complemento a due: operazioni

☐ Sui numeri si interviene mediante operazioni elementari (somma, sottrazione, moltiplicazione, divisione, modulo) o complesse (integrazione, derivazione, calcolo di convoluzione,...)

Comando	Funzione
00	Somma (A+B)
01	Moltiplicazione (A*B)
10	Resto della divisione (A%B)
11	Quoziente della divisione (A/B)

Complemento a due: addizione

- Nel caso della addizione tra numeri interi binari si ha (considerando la somma di cifre ad uguale posizione) il risultato
 - ❖ 1 se una delle due cifre è 1 e l'altra è zero e non c'è riporto
 - ❖ 0 altrimenti (con un riporto nel caso in cui entrambe le cifre sono 1)
 - Il riporto all'ultima cifra può essere un trabocco o overflow

Cifra addendo1	Cifra addendo2	Risultato	Riporto
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

MTERI CON SEGNO Complemento a due: addizione

Esempio

0	0	1	1	0	1	1	0	1	1	0	1	0	0	0				Riporto
0	0	0	1	1	0	0	1	0	0	1	0	1	1	0	0	6444	+	Operando 1
0	0	0	1	1	0	1	1	0	1	1	0	1	0	1	0	7018	=	Operando 2
0	0	1	1	0	1	0	0	1	0	0	1	0	1	1	0	13462		Risultato
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			posizione

Complemento a due: addizione (trabocco)

☐ La somma di due numeri binari in complemento a due può comportare un **trabocco** (*carry*) non influente sul risultato finale

1	1	1	1	1	1	1	1				Riporto
	0	0	0	0	1	1	1	1	15	+	Sottraendo
	1	1	1	1	1	0	1	1	-5		Minuendo
1	0	0	0	0	1	0	1	0	=10	10	Risultato
	7	6	5	4	3	2	1	0			Posizione

Complemento a due: addizione (overflow)

☐ In caso di due numeri in complemento a due con segno uguale può presentarsi una condizione di non rappresentabilità del risultato (overflow) a causa della dimensione prefissata della parola

1	0	0	0	0	0	0	1				Riporto
	1	0	0	0	1	0	0	1	-137	+	Sottraendo
	1	0	1	0	0	0	0	1	-95	=	Minuendo
1	0	0	1	0	1	0	1	0	42	(-232)	Risultato
	7	6	5	4	3	2	1	0			posizione

Osservazione

- ☐ Il trabocco (C), la negatività del numero (N), la mancanza di presenza di Overflow (W) contribuiscono a determinare se due operandi sono uguali o maggiori
- ☐ La presenza di un Overflow, tipicamente, individua una condizione di errore dopo un calcolo aritmetico

NTERI CON SEGNO Complemento a due: sottrazione

- Nel caso della sottrazione tra numeri in base binaria si ha (considerando le cifre ad uguale posizione) il risultato
 - ❖ 1 se una delle due cifre è 1 e l'altra è zero; ma se la prima cifra è minore della seconda si deve richiedere un prestito alle cifre successive
 - ❖ 0 altrimenti

Cifra1	Cifra2	Risultato	Prestito		
0	0	0	0		
0	1	1	1		
1	0	1	0		
1	1	0	0		

Complemento a due: sottrazione

Esempio 58-44

11101 0 -	1110 1 0 -	111 0 10 -	11 <mark>01</mark> 10 -	11 0 110 -	1 <mark>01</mark> 110 -
10110 0 =	1011 0 0=	101 1 00=	101100=	10 1 100=	101100=
0	10	10	110	110	1110

1 0 1110 -	1 01110 -	
1 0 1100=	1 01100=	
	001110	
01110	001110	14

Cifra1	Cifra2	Risultato	Prestito	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

Complemento a due: sottrazione (caso pratico)

Esempio 58 + (-44)

111010 - 0111010 + 0111010+ 101100 = 1010100 = 1010100 = 10001110

Complemento a due: moltiplicazione

- Nel caso della
 moltiplicazione tra numeri
 in base binaria si procede in
 maniera analoga a quella per
 il calcolo decimale
- ☐ Si esegue la somma dei prodotti parziali opportunamente slittati

			1	0	0	0	•
			1	0	0	1	=
			1	0	0	0	+
		0	0	0	0		+
	0	0	0	0			+
1	0	0	0				=
1	0	0	1	0	0	0	_

Un numero reale, in generale,
è definibile da una tripla
$\mathfrak{R}=dove:$

- ☐ S è il segno
- ☐ I è la parte intera
- ☐ F la parte frazionaria

La parte frazionaria è distinta
da quella intera con una
virgola o (nella notazione
scientifica internazionale) con
un punto

+3.75	<+;3;75>
13.73	1.,5,2,5

- □ Nei calcolatori elettronici i numeri reali possono essere rappresentati in due modi: virgola fissa (fixed point) o virgola mobile (floating point)
- ☐ Attualmente i calcolatori elettronici utilizzano, per lo più, il sistema in virgola mobile

Virgola fissa

- ☐ I numeri in **virgola fissa** offrono una possibile rappresentazione dei valori reali
- Per operare con questo formato è necessario dapprima stabilire la lunghezza della parola e poi determinare la suddivisone in due campi: uno per la parte intera (rappresentabile ad esempio con il complemento a due) e un'altra per la parte frazionaria

Parte Intera	Parte frazionaria					
k	n-k					
+3,75 -1,75	0011 1100 1111 1100					

Virgola fissa: moltiplicazioni successive


```
0.8515625 =
0.8515625 \cdot 2 = 1 + 0.703125
0.703125 \cdot 2 = 1 + 0.40625
0.40625 \cdot 2 = 0 + 0.8125
0.8125 \cdot 2 = 1 + 0.625
0.625 \cdot 2 = 1 + 0.25
0.25 \cdot 2 = 0 + 0.5
0.5 \cdot 2 = 1 + 0
```

1101101

Virgola fissa

Parte Intera				Parte frazionaria								
S	2 ^{k-1}			2 ²	<i>2</i> ¹	2 ⁰	2-1	2 -2	2 -3	2-4		2 ^{-n+k}

Par	te Int	era		Parte frazionaria			
0	1	0	1	1	1	0	0

+5,75

Parte Intera				Parte frazionaria				
1	1	1	0	1	0	1	0	

-2,625

Virgola mobile

- La rappresentazione in **virgola mobile** è definita dalla tripla:
 - < *S*; *M*; *E* > dove:
 - ❖ Sè il segno del numero
 - ❖ M la sua mantissa
 - ❖ E il suo esponente
- Il motivo principale per l'introduzione dei numeri in virgola mobile (o *floating point*) sta nella possibilità di utilizzare un **intervallo di numeri più ampio** per effettuare i calcoli riducendo però il numero di valori disponibili a parità di bit utilizzati per la codifica
- Non tutti i numeri possono essere rappresentati, ma solo un sottoinsieme limitato (aumenta il range, ma diminuisce la precisione)

$$\mathfrak{R} = (-1)^S \cdot M \cdot 10^E$$

+3,75 S=0 M=375 E=-2

-1,75 S=1 M=175 E=-2

+11,504 S=0 M=11504 E=-3

-146,9 S=1 M=1469 E=-1

Virgola mobile: standard IEEE 754

- Nella aritmetica in virgola mobile in base 2 la prima decisione da prendere è quanti bit devono essere assegnati a esponente e mantissa
- ☐ La notazione scientifica, stabilita dall'IEEE754, definisce quattro formati:
 - ☐ Mezza precisione (16bit)
 - ☐ Singola precisione (32bit)
 - ☐ Doppia precisione (64bit)
 - ☐ Quadrupla precisione (128bit)
 - ☐ Ottupla precisione (256bit)

$$\mathfrak{R} = (-1)^S \cdot M \cdot 2^E$$

Formati standard IEEE-754

Singola precisione (FLOAT)

Segno	Esponente	Mantissa
1 bit	8 bit	23 bit

Doppia precisione (DOUBLE)

S	egno	Esponente	Mantissa
	1 bit	11 bit	52 bit

NUMERI REALI Virgola mobile: standard IEEE 754

- ☐ La notazione scientifica adotta una forma standard
- ☐ La forma standard elimina gli zeri iniziali per avere esattamente una cifra diversa da zero a sinistra della virgola decimale (Es: il numero 34.56 ha forma standard: 3.456)
- Pertanto, un numero **in virgola mobile in base due normalizzato** ha una mantissa la cui cifra più a sinistra è diversa da zero
 - ☐ Per i numeri floating point normalizzati in base due, si ha una cifra uguale ad 1

+00101010,1100100010000000000000						
	S	M	E			
NON normalizzata +0,010101011001000100·2 ⁷	(0) ₂	(101010110010001) ₂	00000111 (+7)			
Normalizzata +1,0101011001000100·2 ⁵	(0) ₂	(101010110010001) ₂	00000101 (+5)			

23bit

8bit

NUMERI REALI Virgola mobile: standard IEEE 754

Osservazione. Poiché il bit più a sinistra di una mantissa in base due normalizzata è sempre 1, non è necessario codificarlo (così si risparmia un bit); perciò il bit iniziale, in alcune architetture, diventa un bit nascosto (hidden bit)

+0101010,110010001 (42.783203)					
	S	M	Е		
Normalizzato con bit	(0) ₂	(101010110010001) ₂	00000101 (5)		
nascosto +1,0101011001000100·2 ⁵		23bit	8bit		

NUMERI REALI Virgola mobile: standard IEEE 754

Lo standard usa anche la **polarizzazione dell'esponente** (o **notazione in eccesso**) cioè all'esponente si somma 127, singola precisione, o 1023, doppia precisione, e si sfruttano delle combinazioni speciali (es.:00000000 e 11111111) per rappresentare determinati valori

L'uso della polarizzazione dell'esponente semplifica l'ordinamento dei valori in virgola mobile attraverso il confronto tra interi

+0101010,110010001 (42.783203)								
	S E ^{POLARIZZATO} M							
Normalizzato con bit	0	(10000100) ₂	(10101011001000100) ₂					
nascosto e polarizzato +1,0101011001000100·2 ⁵⁺¹²⁷	1bit	8 bit	23 bit					

NUMERI REALI Virgola mobile: standard IEEE 754

☐ La notazione scientifica, infatti, sfruttando l'esponente polarizzato definisce dei casi particolari utili nel campo matematico

Singola P	Singola Precisione		Doppia precisione	
Esponente	Mantissa	Esponente Mantissa		
0	0	0	0	Zero
0	≠0	0	≠0	± valore denormalizzato
1-254	Qualsiasi	1-2046	qualsiasi	± valore floating point IEEE
255	0	2047	0	<u>+</u> ∞
255	≠0	2047	≠0	NaN

Virgola mobile: esempio singola precisione

☐ Il numero -5,125 è rappresentabile in singola precisione come segue:

Trasformazione delle parte intera e frazionata in binario:

 $-101,001\cdot2^{0}$

Normalizzazione: -01,01001·2²

☐ Rappresentazione:

 $\ddot{E}=2+127=129=(10000001)_2$.

Esponente polarizzato	Mantissa con bit nascosto
1 10000001	01001000000000000000

9bit 23bit

Virgola mobile: esempio singola precisione

Verifica

- ☐ Il segno è 1 quindi il numero è negativo
- ☐ La mantissa è 1(bit nascosto)+ 2^{-2} + 2^{-5} =1.28125.
- ☐ Esponente è 10000001=129 quindi 129-127=2
- \square In sintesi: (-1)· 1.28125·2²=- 1.28125·4=-5.125

Esponente polarizzato	Mantissa con bit nascosto
1 10000001	01001000000000000000

9bit 23bit

Virgola mobile: esempio doppia precisione

☐ Il numero +10,125 è rappresentabile in doppia precisione come segue:

Trasformazione delle parte intera e frazionata in binario: +1010,001·20

Normalizzazione: +01,010001·2³

☐ Rappresentazione:

S=segno positivo=(0)₂

 $\ddot{E}=3+1023=1026=(10000000010)_{2}$.

Esponente polarizzato	Mantissa con bit nascosto
0 1000000010	010001000000000000000000000000000000000
4 2 '	F31 ':

12bit 52bit

NUMERI REALI Virgola mobile: esercizio proposto

Esercizio proposto

Dato il numero reale -110,90625

Rappresentarlo secondo lo standard IEEE754 singola precisione normalizzato e polarizzato e effettuare la verifica

rirgola mobile: operazioni somma e sottrazione

- L'algoritmo di **addizione** (e sottrazione) in virgola mobile si divide in quattro fasi fondamentali:
 - 1. Allineamento degli esponenti
 - 2. addizione (o sottrazione) delle mantisse
 - 3. normalizzazione
 - 4. arrotondamento delle mantisse (ed eventuale normalizzazione)

Esempio.

Dati i valori 17,12 e 423,50:

Rappresentazione: 1,712·10¹ e 4,235·10²

Allineamento esponenti: 1,712·10¹ e 42,35·10¹

Somma: 44,062·10¹

Normalizzazione: 4,4062·10²

NUMERI REALI Virgola mobile: Overflow - Underflow

Un elaboratore presenta un **overflow/underflow aritmetico** nel caso in cui una operazione aritmetica che utilizza variabili a virgola mobile genera un risultato più grande/piccolo di quelli rappresentabili con la parola a disposizione

7,6252=76252·10)-4	7	6		2		5	2	
12345=12345·10)0	1	2		3	4	1	5	
	1	2	3	4	5	0	0	0	0
					7	6	2	5	2
	1	2	3	5	2	6	2	5	2

NUMERI REALI Virgola mobile: operazioni moltiplicazione

- ☐ La **moltiplicazione** in virgola mobile si articola in:
 - 1. somma degli esponenti
 - 2. prodotto delle mantisse
 - 3. Normalizzazione (ed eventuale arrotondamento delle mantisse)

Esempio.

Dati i valori 980,12 e 50,00:

Rappresentazione: $9,8012 \cdot 10^2$ e $5 \cdot 10^1$

Somma esponenti: 2+1

Prodotto mantisse: 49,006

Normalizzazione mantissa:4, 9006·10¹

Rappresentazione: $4,9006 \cdot 10^{1+(3)}$

A SOLV

NUMERI REALI

Virgola mobile: operazioni

Dati i valori **5,703125** e **10,25**:

$$(5,703125)_{10}$$
= $(101,101101)_2$ = 1,011011010·2²
 $(10,25)_{10}$ = $(1010,010000)_2$ = 1,010010000·2³

Virgola mobile: addizione

Somma

 $(5,703125)_{10}$ = $(101,101101)_2$ = $1,011011010\cdot 2^2$ $(10,25)_{10}$ = $(1010,010000)_2$ = $1,010010000\cdot 2^3$

 $1,011011010 \cdot 2^2 e 1,010010000 \cdot 2^3$

Allineamento esponenti:

 $1,011011010 \cdot 2^2 \ e \ 10,10010000 \cdot 2^2$

Somma:

1,011011010+10,100100000

 $11,111111101\cdot 2^2$

Normalizzazione:

 $1,1111111101\cdot 2^3$

Rappresentazione (normalizzata e polarizzata):

<0, 10000010, 11111111101000000...0>

15,953125

Moltiplicazione

 $(5,703125)_{10}$ = $(101,101101)_2$ = $1,011011010\cdot 2^2$ $(10,25)_{10}$ = $(1010,010000)_2$ = $1,010010000\cdot 2^3$

 $1,01101101 \cdot 2^2 e 1,01001 \cdot 2^3$

Somma esponenti:

2+3=5 cioè 10+11=101

Moltiplicazione mantisse:

1,1101001110101

Risultato:

 $1,1101001110101 \cdot 2^5$

Normalizzazione mantissa:

 $1,1101001110101 \cdot 2^5$

Rappresentazione (normalizzata e polarizzata):

<0, 10000100, 1110100111010100000...0>

58,45703125

Esercizio proposto

Dati i numeri reali **0,5** e -**0,4375**

- 1. Rappresentarli in virgola mobile singola precisione in modalità normalizzata e polarizzata
- 2. Effettuare la somma
 - A. Rappresentare il risultato della somma in modalità normalizzata e polarizzata
- 3. Effettuare il prodotto
 - A. Rappresentare il risultato del prodotto in modalità normalizzata con il bit nascosto e polarizzata

Esercizio proposto (per casa)

Dati i numeri reali 12,0625 e -28,1875

- 1. Rappresentarli in virgola mobile singola precisione
- 2. Effettuare la somma
 - A. Rappresentare il risultato della somma in modalità normalizzata e polarizzata
- 3. Effettuare il prodotto
 - A. Rappresentare il risultato del prodotto in modalità normalizzata con il bit nascosto e polarizzata

Esercizio proposto

Dati i numeri reali 0,5 e -0,4375

Rappresentarli in virgola mobile singola precisione in modalità normalizzata e polarizzata

SEGNO=+ SEGNO=- PARTE INTERA=0 = $(0)_2$ PARTE INTERA=0 = $(0)_2$ PARTE FRAZIONATA=0,5= $(0.1)_2$ PARTE FRAZIONATA=0,4375= $(0,0111)_2$ VALORE=0,1 \cdot 20 VALORE=1 \cdot 2-1 VALORE=-1,110 \cdot 2-2

<0,11111111,1> <1,11111110,111000>

Esercizio proposto

- Dati i numeri reali **0,5** e -**0,4375**
- ☐ Effettuare la somma
 - Rappresentare il risultato della somma in modalità normalizzata e polarizzata

1/ALODES 4 440 S-2	ALLINEAMENTO VALORE1=+1·2 ⁻¹	SOTTRA	AZIONE SOTT	NORMALIZZAZIONE 0,001=1,0 ·2 ⁻³ (·2 ⁻¹)	
	VALORE2=-0,1110·2 ⁻¹	1,000- 0,111=	•	Cioè: +1,0 ·2 ⁻⁴	
		0,001	0,001		
	<0,01111011,0000	0000000	0000000000000000>		

Esercizio proposto

- Dati i numeri reali **0,5** e -**0,4375**
- ☐ Effettuare la somma (variante con il complemento a due

VALORE1=+1·2⁻¹ VALORE2=-1,11·2⁻²

ALLINEAMENTO

 $VALORE1 = +1.2^{-1}$

SOTTRAZIONE COMPL 2

VALORE 1:1000·2⁻⁴ 01000 01000

VALORE2=-0,111·2⁻¹

VALORE 2:0111·2⁻⁴ 00111

11001

NORMALIZZAZIONE

100001 1 · 2⁻⁴

 1.2^{-4}

Esercizio proposto

Dati i numeri reali **0,5** e -**0,4375**

- ☐ Effettuare il prodotto
 - Rappresentare il risultato della somma in modalità normalizzata e polarizzata

```
VALORE=+1·2<sup>-1</sup>
VALORE=-1,110·2<sup>-2</sup> SOMMA ESPONENTI
-3
```

MOLTIPLICAZIONEù1,1 NORMALIZZAZIONE 1,110x1=1,11 Non necessaria

> Cioè: -1,11 ·2⁻³

