Problem 1:

Consider the following sinusoidal steady-state circuit, with a 6 Ohm resistor and a 3 Henry inductor. If x(t) is the input signal and y(t) is the output signal, then what is the frequency response $H(\omega)$ of this circuit when $\omega = 2$?

- (a) (1+j)/2
- (b) (1-j)/2
- (c) (1+j)
- (d) (1-j)
- (e) (1+j)/3
- (f) (1-j)/3
- (g) (1+j)/6
- (h) (1-j)/6
- (i) None of these

Problem 2:

Suppose $f(t) = \sum_{n=-\infty}^{\infty} \frac{e^{3jnt}}{1+n^2}$. If G_n are the (exponential form) Fourier series coefficients of $g(t) = \frac{d}{dt}f(t)$, then what is G_2 ?

- (a) 6j/5
- (b) 3j/5
- (c) 2j/5
- (d) j/5
- (e) 6/5
- (f) 3/5
- (g) 2/5
- (h) 1/5
- (i) None of these

Problem 3:

Suppose the output from an LTI system is $2je^{3jt}+e^{-2jt}$ when the input is $-e^{3jt}+2e^{-2jt}$. What is the output from the same system when the input is $2e^{3jt}-je^{-2jt}$?

- (a) $-4je^{3jt} (j/2)e^{-2jt}$
- (b) $4je^{3jt} + (j/2)e^{-2jt}$
- (c) $je^{3jt} 2je^{-2jt}$
- (d) $-je^{3jt} + 2je^{-2jt}$
- (e) $-4e^{3jt} (1/2)e^{-2jt}$
- (f) $4e^{3jt} + (1/2)e^{-2jt}$
- (g) $e^{3jt} 2e^{-2jt}$
- (h) $-e^{3jt} + 2e^{-2jt}$
- (i) None of these

Problem 4:

Consider the cascade of two LTI systems shown below, with input x(t) and output y(t). If the impulse response of each of these LTI systems is h(t) = rect(t), then what is the output y(t) when the input is $x(t) = \delta(t)$?

(a)
$$\begin{cases} t+1 & \text{if } -1 < t \le 0 \\ 1-t & \text{if } 0 < t \le 1 \\ 0 & \text{else} \end{cases}$$

(b)
$$\begin{cases} t & \text{if } 0 < t \le 1\\ 2 - t & \text{if } 1 < t \le 2\\ 0 & \text{else} \end{cases}$$

(c)
$$\begin{cases} 2(t+1) & \text{if } -1 < t \le 0 \\ 2(1-t) & \text{if } 0 < t \le 1 \\ 0 & \text{else} \end{cases}$$

(d)
$$\begin{cases} 2t & \text{if } 0 < t \le 1\\ 2(2-t) & \text{if } 1 < t \le 2\\ 0 & \text{else} \end{cases}$$

(e)
$$\begin{cases} 2t+1 & \text{if } -1/2 < t \le 0\\ 1-2t & \text{if } 0 < t \le 1/2\\ 0 & \text{else} \end{cases}$$

- (f) rect(t)
- (g) 2rect(t)
- (h) $\delta(t)$
- (i) None of these

Problem 5:

Two periods of a periodic function x(t) are drawn below. If x(t) is the input to an LTI system with frequency response $H(\omega)$, where $H(\omega)=2$ if $2.5<|\omega|<4$ and $H(\omega)=0$ otherwise, then what is the output y(t)?

- (a) None of these
- (b) $2(1 + \cos(3t))$
- (c) $2(1-\cos(3t))$
- (d) $2\cos(3t)$
- (e) $-2\cos(3t)$
- (f) $2\cos(2\pi t/3)$
- (g) $-2\cos(2\pi t/3)$
- (h) $2(1 + \cos(2\pi t/3))$
- (i) $2(1-\cos(2\pi t/3))$

Problem 6:

Consider the system shown below. For what values of a is the system linear and time-invariant?

- (a) None of these values
- (b) All of these values
- (c) 0
- (d) 1
- (e) -1
- (f) 2
- (g) -2
- (h) 3
- (i) -3

${\bf Problem}\ 7:$

Suppose $F(\omega)$ (shown below) is the Fourier transform of f(t). What is $\int_{-\infty}^{\infty} |f(t)|^2 dt$?

- (a) $5/\pi$
- (b) $10/\pi$
- (c) $3/\pi$
- (d) $6/\pi$
- (e) $4/\pi$
- (f) $2/\pi$
- (g) 10
- (h) 6
- (i) 4
- (j) 0
- (k) None of these

${\bf Problem}\ 8:$

Suppose when x(t) is the input to an LTI system with impulse response h(t) = sinc(4t), the output is y(t) = sinc(3t). If $X(\omega)$ is the Fourier transform of x(t), then what is X(1)?

- (a) 4/3
- (b) 3/4
- (c) 3
- (d) 4
- (e) $4\pi/3$
- (f) $3\pi/4$
- (g) $\pi/4$
- (h) $\pi/3$
- (i) None of these

${\bf Problem}\ 9:$

What is
$$\int_{-4}^{1} \frac{\cos(\pi t)\delta(t+2)e^{j\pi t}}{e^{\pi t}} dt ?$$

- (a) $e^{2\pi}$
- (b) $e^{-2\pi}$
- (c) 0
- (d) 1
- (e) $e^{2\pi}\delta(t+2)$
- (f) $e^{-2\pi}\delta(t+2)$
- (g) $\delta(t+2)$
- (h) None of these

Problem 10:

Suppose $X(\omega)$ is the Fourier transform of x(t) = 2rect(t/3). What is $X(\pi)$?

- (a) $-4/\pi$
- (b) $4/\pi$
- (c) -6
- (d) 6
- (e) $-2/\pi$
- (f) $2/\pi$
- (g) -3
- (h) 3
- (i) None of these

Problem 11:

If $s(t) = \sum_{n=-\infty}^{\infty} \delta(t - (2n+1))$, and $S(\omega)$ is the Fourier transform of s(t), then what is $\int_{-1}^{7} |S(\omega)| d\omega$?

- (a) 3π
- (b) 3
- (c) 2π
- (d) 2
- (e) 4π
- (f) 4
- (g) 5π
- (h) 5
- (i) 6π
- (j) 6
- (k) None of these

Problem 12:

Suppose $f(t) = \sum_{n=-1}^{1} F_n e^{jnt}$ and $F_{-1} = 2j$ and $F_0 = -3$. If $\int_{-4\pi/3}^{2\pi/3} |f(t)|^2 dt = 28\pi$, then which of the following could be F_1 ?

- (a) -j
- (b) π
- (c) 3π
- (d) $\sqrt{2}j$
- (e) 2
- (f) -3
- (g) 7
- (h) 9j
- (i) None of these

Problem 13:

Suppose f(t) has Fourier transform $F(\omega) = \text{rect}(\omega - 9) + \text{rect}(\omega + 9)$. If $G(\omega)$ is the Fourier transform of g(t) = f(-t/3), then what is $G(\pi)$?

- (a) 3
- (b) 3π
- (c) π
- (d) 0
- (e) $-\pi$
- (f) $-\pi/3$
- (g) -3
- (h) $\pi/3$
- (i) 1/3
- (j) None of these

Problem 14:

What is the Fourier transform of $e^{-4t}u(t)*1$?

- (a) $\frac{\pi}{2}\delta(\omega)$
- (b) $\frac{\pi}{2}$
- (c) $\frac{1}{4}\delta(\omega)$
- (d) $\frac{1}{4}$
- (e) $\frac{\pi}{4}\delta(\omega)$
- (f) $\frac{\pi}{4}$
- (g) $\frac{1}{2}\delta(\omega)$
- (h) $\frac{1}{2}$
- (i) None of these

Problem 15:

Let $f(t) = |\cos(t)|$, and let F_n be the (exponential form) Fourier series coefficients for f(t). What is F_0 ?

- (a) $2/\pi$
- (b) 2
- (c) 2π
- (d) $4/\pi$
- (e) 4
- (f) 4π
- (g) $\pi/2$
- (h) $\pi/4$
- (i) None of these

Problem 16:

If f(t) (shown below) has Fourier transform $F(\omega)$, then what is the Fourier transform of F(t) when $\omega = 1$?

- (a) 3π
- (b) 4π
- (c) 2
- (d) 1
- (e) 3/2
- (f) 2π
- (g) π
- (h) $2/\pi$
- (i) $4/\pi$
- (j) $1/\pi$
- (k) 0
- (l) None of these

Problem 17:

If y(t) = x(t) * h(t) (drawn below), then what is the value of the signal x(t+3) * h(t-2) when t = -1/2?

- (a) 3/2
- (b) 1/2
- (c) -1/2
- (d) 1
- (e) 2
- (f) 0
- (g) 2/3
- (h) -1
- (i) None of these

Problem 18:

Suppose $f(t) = \sum_{n=-3}^{3} F_n e^{2jnt}$, where $F_n = (-2)^n e^{j\pi n}$. If $F(\omega)$ is the Fourier transform of f(t), then what is $\int_{3}^{7} F(\omega) d\omega$?

- (a) 24π
- (b) -8π
- (c) 24
- (d) 8
- (e) 8π
- (f) 12
- (g) -4
- (h) 4π
- (i) None of these

Problem 19:

If x(t) (drawn below) is the input to an LTI system with impulse response h(t) (drawn below), then what is the output y(t) when t = 1?

- (a) 4
- (b) 5
- (c) 3
- (d) 2
- (e) 1
- (f) 0
- (g) -1
- (h) -2
- (i) -3
- (j) None of these

${\bf Problem}\ 20:$

If $x(t) = e^{2t} * u(t)$, then what is x(3)?

- (a) $e^6/2$
- (b) $e^{-6}/2$
- (c) $2e^6$
- (d) e^6
- (e) e^{-6}
- (f) $e^6 1$
- (g) $e^6 2$
- (h) $e^{-6} 1$
- (i) None of these

Problem 21:

For which values of a is sinc(at) NOT bandlimited?

- (a) None of these values
- (b) All of these values
- (c) 0
- (d) 1
- (e) 2
- (f) 3
- (g) -1
- (h) π
- (i) $\pi/2$

Problem 22:

Suppose $X(\omega) = \text{rect}(\omega/2)$ is the input to an LTI system with frequency response $H(\omega) = \sum_{n=-\infty}^{\infty} \delta(\omega - \pi n)$ and $Y(\omega)$ is the output. If y(t) is the inverse Fourier transform of $Y(\omega)$, then what is y(3)?

- (a) $1/(2\pi)$
- (b) $1/\pi$
- (c) 1
- (d) 2π
- (e) π
- (f) $1/(3\pi)$
- (g) 3π
- (h) 3
- (i) 2
- (j) 0
- (k) None of these

Problem 23:

Suppose that when x(t) = u(t+3) is the input to an LTI system with impulse response h(t), the output is y(t) (drawn below). What is h(t)?

(a)
$$\delta(t-1) + \delta(t-2) - 2\delta(t-5)$$

(b)
$$\delta(t+2) + \delta(t+1) - 2\delta(t-2)$$

(c)
$$\delta(t+5) + \delta(t+4) - 2\delta(t+1)$$

(d)
$$u(t-1) + u(t-2) - 2u(t-5)$$

(e)
$$u(t+2) + u(t+1) - 2u(t-2)$$

(f)
$$u(t+5) + u(t+4) - 2u(t+1)$$

(g) None of these

Problem 24:

If $F(\omega) = \text{rect}(\omega)$ and $G(\omega) = \sum_{n=-4}^{4} \delta(\omega - 2n)$, then what is $\int_{-\infty}^{\infty} |f(t)g(t)|^2 dt$?

- (a) $9/(2\pi)^3$
- (b) $1/\pi^3$
- (c) $9/(2\pi)^2$
- (d) $2/\pi^2$
- (e) $9/(2\pi)$
- (f) $4/\pi$
- (g) 9
- (h) 8
- (i) 8π
- (j) None of these

Problem 25:

What is the period of $f(t) = |e^{j4|t|}| + e^{j5t} + e^{j6t}$?

- (a) 2π
- (b) π
- (c) $2\pi/5$
- (d) $2\pi/6$
- (e) $\pi/15$
- (f) $\pi/5$
- (g) $\pi/6$
- (h) 5
- (i) 6
- (j) 30
- (k) 1
- (l) f(t) is not periodic
- (m) None of these

Problem 26:

If $x(t) = \cos(t)\cos(2t)$ is the input to an LTI system with impulse response $H(\omega)$, where $H(\omega) = 1$ if $1.5 < |\omega| < 4$ and $H(\omega) = 0$ otherwise, then what is the output time signal?

- (a) $\cos(3t)/2$
- (b) $\cos(3t)$
- (c) $\cos(2t)/2$
- (d) $\cos(2t)$
- (e) $\pi \cos(3t)$
- (f) $\pi \cos(2t)$
- (g) 0
- (h) $\cos(t)$
- (i) None of these

Problem 27:

Consider the system shown below. For what value(s) of a is the system linear and time-invariant?

- (a) None of these values
- (b) All of these values
- (c) 1
- (d) 2
- (e) 3
- (f) πj
- (g) $2\pi j$
- (h) π
- (i) 2π

Problem 28:

What is the Laplace transform of u(2022t-6) ? (No need to find the region of convergence.)

- (a) $e^{-s/337}/s$
- (b) $-e^{-s/337}/s$
- (c) $e^{-s/2022}/s$
- (d) $-e^{-s/2022}/s$
- (e) $e^{-s/6}/s$
- (f) $-e^{-s/6}/s$
- (g) 1/s
- (h) -1/s
- (i) None of these

Problem 29:

What is the limit as t goes to infinity of e^{45jt} ?

- (a) None of these
- (b) 1
- (c) e^{45j}
- (d) e^{-45j}
- (e) π
- (f) -1
- (g) $-\pi$
- (h) 0
- (i) ∞

Problem 30:

What is the inverse Laplace transform of X(s)=3/(s+2)+2/(s-4) if X(s) exists when s=-3+2j?

(a)
$$-\left(3e^{-2t} + 2e^{4t}\right)u(-t)$$

(b)
$$\left(3e^{-2t} + 2e^{4t}\right)u(-t)$$

(c)
$$-\left(3e^{-2t} + 2e^{4t}\right)u(t)$$

(d)
$$\left(3e^{-2t} + 2e^{4t}\right)u(t)$$

(e)
$$-3e^{-2t}u(-t) + 2e^{4t}u(t)$$

(f)
$$3e^{-2t}u(-t) - 2e^{4t}u(t)$$

(g)
$$-3e^{-2t}u(t) + 2e^{4t}u(-t)$$

(h)
$$3e^{-2t}u(t) - 2e^{4t}u(-t)$$

(i) None of these

Problem 31:

Suppose x(t) is the inverse Laplace transform of 3/(s-j-2) and the Fourier transform of x(t) exists. What is $x(-\pi)$?

- (a) $3/e^{2\pi}$
- (b) $3e^{2\pi}$
- (c) $-3/e^{2\pi}$
- (d) $-3e^{2\pi}$
- (e) $3/e^{4\pi}$
- (f) $3e^{4\pi}$
- (g) 3
- (h) -3
- (i) 0
- (j) None of these

Problem 32:

Suppose x(t) = sinc(2022t) and h(t) = sinc(45t). If $x(t)\cos(45t)$ is the input to an LTI system with impulse response h(t), then what is the output?

- (a) $\frac{\pi}{2022}$ sinc (45t)
- (b) $\operatorname{sinc}(45t)$
- (c) $\frac{\pi}{45}$ sinc(2022t)
- (d) sinc(2022t)
- (e) $\frac{\pi^2}{45 \cdot 2022}$
- (f) $\frac{\pi^2}{45 \cdot 2022} \operatorname{sinc}(45t)$
- (g) $\frac{\pi^2}{45 \cdot 2022} \operatorname{sinc}(2022t)$
- (h) $\frac{\pi}{2022}$
- (i) $\frac{\pi}{45}$
- (j) None of these

Problem 33:

What is the phasor of $4\sin(\pi/3 + 3t)$?

- (a) $4e^{-j\pi/6}$
- (b) $4e^{j\pi/6}$
- (c) $4e^{5j\pi/6}$
- (d) $4e^{-5j\pi/6}$
- (e) $4e^{j\pi/3}$
- (f) $4e^{-j\pi/3}$
- (g) $4e^{2j\pi/3}$
- (h) $4e^{-2j\pi/3}$
- (i) None of these

Problem 34:

If x(t) has Laplace transform X(s)=2j/(s+3), then what is the Laplace transform of $x^*(t)$ evaluated at s=2+j ?

- (a) -2j/(5+j)
- (b) 2j/(5+j)
- (c) -2j/(5-j)
- (d) 2j/(5-j)
- (e) 2j
- (f) -2j
- (g) 5 j
- (h) 5 + j
- (i) None of these

Problem 35:

Suppose f(t) is a periodic function that can be written as $f(t) = \sum_{n=-\infty}^{\infty} \frac{e^{3jnt/2}}{2+n^2}$. If f(t) is the input to an LTI system with frequency response $H(\omega)$ shown below, then what is the output y(t)?

- (a) $1 + \frac{2}{3}\cos(3t/2)$
- (b) $2 + \frac{2}{3}\cos(3t/2)$
- (c) $1 + \frac{1}{3}\cos(3t/2)$
- (d) $2 + \frac{1}{3}\cos(3t/2)$
- (e) 1
- (f) 2
- (g) $\frac{2}{3}\cos(3t/2)$
- (h) $\frac{1}{3}\cos(3t/2)$
- (i) None of these

${\bf Problem}\ 36:$

What is the Fourier transform of $e^{-5|t|-t}$ when $\omega=2$?

- (a) $\frac{-5}{-14+2j}$
- (b) $\frac{5}{-14+2j}$
- (c) $\frac{-5}{-7+j}$
- (d) $\frac{5}{-7+j}$
- (e) $\frac{5}{21}$
- (f) $\frac{-5}{21}$
- (g) $\frac{10}{21}$
- (h) $\frac{-10}{21}$
- (i) None of these