РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра математического моделирования и искусственного интеллекта

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 6

Дисциплина: Интеллектуальный анализ данных

Студент: Легиньких Галина

Группа: НФИбд-02-21

Москва 2024

Вариант № 6 (Wine Data Set)

Название файла: wine.data

Класс: cultivar (столбец No 1)

Метод обработки пропущенных значений – медиана признака

Метод нормализации признаков – стандартизация

Алгоритм снижения размерности данных – рекурсивное исключение признаков (RFE)

Дополнительные базовые классификаторы:

классификатор логистической регрессии с полиномиальной зависимостью (degree=2)

классификатор метода опорных векторов

Комбинированный классификатор: VotingClassifier

Ансамблевые классификаторы: RandomForestClassifier, GradientBoostingClassifier

Показатель качества модели – доля верных ответов (accuracy)

Выполнение

1. Считайте заданный набор данных из репозитария UCI, включая указанный в индивидуальном задании столбец с метками классов.

Считала данные.

```
In [23]: import pandas as pd

url = \
    "https://archive.ics.uci.edu/ml/"+\
    "machine-learning-databases/wine/wine.data"
```

Out[23]:

	Cultivar	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proant
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
•••		•••								
173	3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	
174	3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	
175	3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	
176	3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	
177	3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	

178 rows × 14 columns

2. Если среди меток класса имеются пропущенные значения, то удалите записи с пропущенными метками класса. Преобразуйте категориальные признаки в числовые при помощи кодирования меток (label encoding). Если в признаках имеются пропущенные значения, то замените пропущенные значения, используя метод, указанный в индивидуальном задании. Если в признаках пропущенных значений нет, то удалите из набора данных записи, идентифицированные как выбросы при помощи метода кластеризации DBSCAN.

Среди меток класса нет пропущенных значений. Среди признаков тоже.

```
In [24]: import numpy as np
wine = wine.replace('?', np.NaN) # заменим '?' на np.NaN
print('Число пропущенных значений:')
for col in wine.columns:
    print("NaN in", col,"=", wine[col].isna().sum())
```

```
Число пропущенных значений:
NaN in Cultivar = 0
NaN in Alcohol = 0
NaN in Malic acid = 0
NaN in Ash = 0
NaN in Alcalinity of ash = 0
NaN in Magnesium = 0
NaN in Total phenols = 0
NaN in Flavanoids = 0
NaN in Nonflavanoid phenols = 0
NaN in Proanthocyanins = 0
NaN in Color intensity = 0
NaN in Hue = 0
NaN in OD280/OD315 of diluted wines = 0
NaN in Proline = 0
```

In [25]: wine.dtypes

Все признаки числовые.

```
Out[25]: Cultivar
                                            int64
         Alcohol
                                          float64
         Malic acid
                                          float64
                                         float64
                                         float64
          Alcalinity of ash
                                            int64
         Magnesium
                                         float64
         Total phenols
         Flavanoids
                                         float64
          Nonflavanoid phenols
                                         float64
          Proanthocyanins
                                         float64
          Color intensity
                                         float64
          Hue
                                         float64
          OD280/OD315 of diluted wines
                                         float64
          Proline
                                            int64
          dtype: object
```

Удалила из набора данных записи, идентифицированные как выбросы при помощи метода кластеризации DBSCAN. Решила настроить параметры так: eps = 3, min_samples=3. В принципе, можно было подобрать другие. Так же для этого метода нужно было нормализовать данные, так как у всех параметров разный диапазон (метод стандартизации)

```
In [26]: from sklearn.preprocessing import StandardScaler from sklearn.cluster import DBSCAN

features = wine.drop('Cultivar', axis=1)

# Стандартизация данных scaler = StandardScaler() features_scaled = scaler.fit_transform(features)

# Применяем DBSCAN dbscan = DBSCAN(eps=3, min_samples=3) clusters = dbscan.fit_predict(features_scaled)

wine['Cluster'] = clusters wine_new = wine[wine['Cluster'] != -1].drop(columns='Cluster') wine_new = wine_new.reset_index(drop=True) wine_new
```

	Cultivar	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proant
	0 1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
	1 1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
	2 1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
	3 1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
	4 1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
							•••			
16	6 3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	
16	7 3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	
16	8 3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	
16	9 3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	
17	0 3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	

171 rows × 14 columns

→

Подобрала такие значения для метода, чтобы выбросов было не так много. 7 строчек удалилось.

3. Используя метод снижения размерности данных, указанный в индивидуальном задании, определите и оставьте в наборе данных не более четырех признаков.

Алгоритм снижения размерности данных – рекурсивное исключение признаков (RFE)

```
In [27]: from sklearn.linear_model import LogisticRegression
    from sklearn.feature_selection import RFE

X = wine_new.drop('Cultivar', axis=1)
y = wine_new['Cultivar']

model = LogisticRegression(max_iter=5000)
rfe = RFE(estimator=model, n_features_to_select=4)
rfe.fit(X, y)
selected_features = X.columns[rfe.support_]
wine_new = wine_new[selected_features.tolist() + ['Cultivar']]
wine_new.head()
```

Out[27]:		Alcohol	Ash	Flavanoids	OD280/OD315 of diluted wines	Cultivar
	0	14.23	2.43	3.06	3.92	1
	1	13.20	2.14	2.76	3.40	1
	2	13.16	2.67	3.24	3.17	1
	3	14.37	2.50	3.49	3.45	1
	4	13 24	2 87	2 69	2 93	1

```
In [28]: # Получаем важность признаков
importance_df = pd.DataFrame({'Feature': X.columns, 'Ranking': rfe.ranking_})
importance_df = importance_df.sort_values(by='Ranking')
importance_df
```

Out[28]:

	Feature	Ranking
0	Alcohol	1
2	Ash	1
6	Flavanoids	1
11	OD280/OD315 of diluted wines	1
9	Color intensity	2
5	Total phenols	3
10	Hue	4
8	Proanthocyanins	5
1	Malic acid	6
3	Alcalinity of ash	7
7	Nonflavanoid phenols	8
4	Magnesium	9
12	Proline	10

4. Нормализуйте оставшиеся признаки набора данных методом, указанным в индивидуальном задании.

Использовала метод стандартизации.

2.007930

4 0.278778

```
In [29]: columns_to_standardize = wine_new.drop('Cultivar', axis=1).columns
    scaler = StandardScaler().fit(wine_new[columns_to_standardize])
    wine_new.loc[:, columns_to_standardize] = scaler.transform(wine_new[columns_to_standardize])
    wine_new.head()
```

Out[29]: Alcohol Ash Flavanoids OD280/OD315 of diluted wines Cultivar 0.263799 1 **0** 1.522696 1.062003 1.847887 **1** 0.228518 -0.885742 0.753452 1.111911 1 **2** 0.178259 1.215143 1.247133 0.786383 **3** 1.698603 0.541274 1.504258 1.182678 1

0.681457

5. Визуализируйте набор данных в виде точек в трехмерном пространстве, отображая точки разных классов разными цветами. При визуализации набора данных используйте три признака с наиболее высокой оценкой важности. В качестве подписей осей используйте названия признаков. В подписи рисунка укажите название набора данных. Создайте легенду набора данных.

1

0.446701

```
In [30]:
         import matplotlib.pyplot as plt
         top_features = selected_features[:3]
         X_top = wine_new[top_features]
         y = wine_new['Cultivar']
         fig = plt.figure(figsize=(13, 13))
         ax = fig.add_subplot(111, projection='3d')
         unique_classes = y.unique()
         colors = plt.cm.get_cmap('viridis', len(unique_classes))
         for i, class_label in enumerate(unique_classes):
             ax.scatter(X_top[y == class_label].iloc[:, 0],
                        X_top[y == class_label].iloc[:, 1],
                        X_top[y == class_label].iloc[:, 2],
                        label=f'Class {class_label}',
                        color=colors(i))
         ax.set_xlabel(top_features[0], fontsize=12)
         ax.set_ylabel(top_features[1], fontsize=12)
         ax.set_zlabel(top_features[2], fontsize=12)
         ax.set_title('3D Visualization of Wine Dataset', fontsize=14)
         ax.legend(title='Cultivar')
         plt.show()
        C:\Users\galin\AppData\Local\Temp\ipykernel_9248\519871044.py:11: MatplotlibDeprecationWarnin
        g: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releas
        es later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instea
        d.
```

colors = plt.cm.get_cmap('viridis', len(unique_classes))

6. Разбейте набор данных на обучающую и тестовую выборки. Создайте и обучите классификатор на основе деревьев решений с глубиной дерева не более 4, определите долю верных ответов на тестовой выборке и визуализируйте границу принятия решений и построенное дерево решений. При визуализации границы принятия решений используйте два признака с наиболее высокой оценкой важности.

Разделила данные на обучающую и тестовую выборки.

```
In [31]: from sklearn.model_selection import train_test_split

X = wine_new[top_features[:2]]
y = wine_new['Cultivar']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, strain.shape, y_train.shape, X_test.shape
```

Out[31]: ((136, 2), (136,), (35, 2), (35,))

Создала и перешла к обучению классификатора на основе деревьев решений. Оценила точности на тестовой выборке.

```
In [32]: from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier, plot_tree

dt_classifier = DecisionTreeClassifier(max_depth=4, random_state=42) dt_classifier.fit(X_train, y_train)

# Оценка точности на тестовой выборке y_pred = dt_classifier.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(f"Accuracy on test set: {accuracy:.2f}")
```

Accuracy on test set: 0.77

Визуализировала границы принятия решений.

```
In [33]:
         x_min, x_max = X[selected_features[0]].min() - 1, X[selected_features[0]].max() + 1
         y_min, y_max = X[selected_features[1]].min() - 1, X[selected_features[1]].max() + 1
         xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01))
         Z = dt_classifier.predict(np.c_[xx.ravel(), yy.ravel()])
         Z = Z.reshape(xx.shape)
         plt.figure(figsize=(10, 7))
         plt.contourf(xx, yy, Z, alpha=0.5, cmap='viridis')
         scatter = plt.scatter(X[selected_features[0]], X[selected_features[1]], c=y, edgecolors='k',
         plt.xlabel(selected_features[0])
         plt.ylabel(selected_features[1])
         plt.title('Decision Boundary and Data Points')
         plt.colorbar(scatter, label='Cultivar')
         plt.legend(*scatter.legend_elements(), title='Cultivar')
         plt.show()
        C:\Users\galin\AppData\Roaming\Python\Python312\site-packages\sklearn\base.py:493: UserWarnin
        g: X does not have valid feature names, but DecisionTreeClassifier was fitted with feature nam
         warnings.warn(
```


Визуализировала дерево решений.

```
In [34]: plt.figure(figsize=(10, 8))
    plot_tree(dt_classifier, filled=True, feature_names=top_features[:2], class_names=y.unique().or
    plt.title('Decision Tree Visualization')
    plt.show()
```

Decision Tree Visualization

7.

Дополнительные базовые классификаторы:

классификатор логистической регрессии с полиномиальной зависимостью (degree=2)

классификатор метода опорных векторов

Комбинированный классификатор: VotingClassifier

Ансамблевые классификаторы: RandomForestClassifier, GradientBoostingClassifier

Показатель качества модели – доля верных ответов (accuracy)

```
In [35]:

from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
from sklearn.svm import SVC

# Классификатор логистической регрессии с полиномиальной зависимостью
poly_classifier = make_pipeline(PolynomialFeatures(degree=2), LogisticRegression(max_iter=100)
poly_classifier.fit(X_train, y_train)

# Классификатор метода опорных векторов
svm_classifier = SVC(probability=True)
svm_classifier.fit(X_train, y_train)
```

```
classifiers = [poly_classifier, svm_classifier, dt_classifier]
         classifier_names = ['Logistic Regression (Poly)', 'SVM', 'Decision Tree']
         for clf, name in zip(classifiers, classifier_names):
             y pred = clf.predict(X_test)
             accuracy = accuracy_score(y_test, y_pred)
             print(f'Accuracy of {name}: {accuracy:.2f}')
        Accuracy of Logistic Regression (Poly): 0.86
        Accuracy of SVM: 0.80
        Accuracy of Decision Tree: 0.77
In [36]: from sklearn.ensemble import VotingClassifier, RandomForestClassifier, GradientBoostingClassi
         # Создаем VotingClassifier
         voting_classifier = VotingClassifier(
             estimators=[
                 ('log_reg_poly', poly_classifier),
                 ('svm', svm_classifier),
                 ('dt', dt_classifier),
             voting='soft'
         # Обучение комбинированного классификатора
         voting_classifier.fit(X_train, y_train)
         y_pred_voting = voting_classifier.predict(X_test)
         accuracy_voting = accuracy_score(y_test, y_pred_voting)
         print(f'Accuracy of Voting Classifier: {accuracy_voting:.2f}')
```

Accuracy of Voting Classifier: 0.83

8. Постройте и обучите пару ансамблевых классификаторов, указанных в индивидуальном задании, и сравните их производительность по показателю, указанному в индивидуальном задании.

Сравнила производительность.

```
In [37]: rf_classifier = RandomForestClassifier(random_state=42)
    rf_classifier.fit(X_train, y_train)
    y_pred_rf = rf_classifier.predict(X_test)
    accuracy_rf = accuracy_score(y_test, y_pred_rf)
    print(f'Accuracy of Random Forest Classifier: {accuracy_rf:.2f}')

    gb_classifier = GradientBoostingClassifier(random_state=42)
    gb_classifier.fit(X_train, y_train)
    y_pred_gb = gb_classifier.predict(X_test)
    accuracy_gb = accuracy_score(y_test, y_pred_gb)
    print(f'Accuracy of Gradient Boosting Classifier: {accuracy_gb:.2f}')
```

Accuracy of Random Forest Classifier: 0.74 Accuracy of Gradient Boosting Classifier: 0.69

9. Постройте границы принятия решений ансамблевых классификаторов с визуализацией точек набора данных разных классов разными цветами. Подпишите оси и рисунок.

```
In [38]: x_min, x_max = X[top_features[0]].min() - 1, X[top_features[0]].max() + 1
    y_min, y_max = X[top_features[1]].min() - 1, X[top_features[1]].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01))

Z_rf = rf_classifier.predict(np.c_[xx.ravel(), yy.ravel()])
```

```
Z_rf = Z_rf.reshape(xx.shape)
 Z_gb = gb_classifier.predict(np.c_[xx.ravel(), yy.ravel()])
 Z_gb = Z_gb.reshape(xx.shape)
 plt.figure(figsize=(10, 6))
 plt.contourf(xx, yy, Z_rf, alpha=0.5, cmap='viridis')
 scatter_rf = plt.scatter(X[top_features[0]], X[top_features[1]], c=y, edgecolors='k', cmap='v
 plt.xlabel(top_features[0])
 plt.ylabel(top_features[1])
 plt.title('Decision Boundary - Random Forest')
 plt.colorbar(scatter_rf, label='Classes')
 plt.legend(*scatter_rf.legend_elements(), title='Cultivar')
 plt.show()
 plt.figure(figsize=(10, 6))
 plt.contourf(xx, yy, Z_gb, alpha=0.5, cmap='viridis')
 scatter_gb = plt.scatter(X[top_features[0]], X[top_features[1]], c=y, edgecolors='k', cmap='v
 plt.xlabel(top_features[0])
 plt.ylabel(top_features[1])
 plt.title('Decision Boundary - Gradient Boosting')
 plt.colorbar(scatter gb, label='Classes')
 plt.legend(*scatter_gb.legend_elements(), title='Cultivar')
 plt.show()
C:\Users\galin\AppData\Roaming\Python\Python312\site-packages\sklearn\base.py:493: UserWarnin
g: X does not have valid feature names, but RandomForestClassifier was fitted with feature nam
es
 warnings.warn(
C:\Users\galin\AppData\Roaming\Python\Python312\site-packages\sklearn\base.py:493: UserWarnin
g: X does not have valid feature names, but GradientBoostingClassifier was fitted with feature
  warnings.warn(
```


