

Writing to re-writable memory e.g. memory card, smart card or non-contact card

Patent number: FR2742893
Publication date: 1997-06-27
Inventor: DETURCHE JEAN CLAUDE
Applicant: SCHLUMBERGER IND SA (FR)
Classification:
 - international: G06F12/02; G11C8/00; G11C16/02
 - european: G07F7/10D12; G11C16/10E
Application number: FR19950015186 19951220
Priority number(s): FR19950015186 19951220

[Report a data error here](#)

Abstract of FR2742893

The method of writing to EPROM consists of writing current data successively to different zones of memory, and programming flags to designate zones containing the most recent data written to memory. The memory is decomposed to N zones, each zone having a first space for the flags and a second space for the data. The current zone is indicated either by a discontinuity in the sequence of flags or by the last zone number in the absence of discontinuity. A new data set is indicated in the zone indicated by the next flag identifier in the sequence. The flag is updated when the data is written.

	I(k)	D(k)
k=1	1	D(1)
k=2	1	D(2)
	⋮	⋮
k	1	D(k)
k+1	0	D(k+1)
	⋮	⋮
k=N	0	D(N)

← ko

Data supplied from the **esp@cenet** database - Worldwide

(19) RÉPUBLIQUE FRANÇAISE
 INSTITUT NATIONAL
 DE LA PROPRIÉTÉ INDUSTRIELLE
 PARIS

(11) N° de publication :
 (à n'utiliser que pour les
 commandes de reproduction)

2 742 893

(21) N° d'enregistrement national : 95 15186

(51) Int Cl^e : G 06 F 12/02, G 11 C 8/00, 16/02

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 20.12.95.

(30) Priorité :

(71) Demandeur(s) : SCHLUMBERGER INDUSTRIES SA
 SOCIETE ANONYME — FR.

(72) Inventeur(s) : DETURCHE JEAN CLAUDE.

(43) Date de la mise à disposition du public de la
 demande : 27.06.97 Bulletin 97/26.

(56) Liste des documents cités dans le rapport de
 recherche préliminaire : Se reporter à la fin du
 présent fascicule.

(60) Références à d'autres documents nationaux
 apparentés :

(73) Titulaire(s) :

(74) Mandataire : SCHLUMBERGER INDUSTRIES.

(54) PROCÉDÉ D'INSCRIPTION D'UNE DONNÉE DANS UNE MÉMOIRE REINSCRIPTIBLE.

(57) Procédé d'inscription de valeurs courantes successives d'une donnée D dans une mémoire réinscriptible, consistant à inscrire lesdites valeurs courantes successivement en différentes zones de la mémoire et à programmer des indicateurs aptes à désigner celles desdites zones contenant la dernière valeur courante inscrite de la donnée D.

Selon l'invention, ladite mémoire est décomposée en N zones k ($k=1, \dots, N$), chaque zone k comprenant un premier espace-mémoire affecté à un indicateur I(k) et un deuxième espace-mémoire affecté à une valeur courante D(k) de la donnée D, la zone ko contenant la dernière valeur courante D(ko) inscrite étant définie, soit par une discontinuité dans la suite des indicateurs I(k), soit par la dernière zone N ($ko=N$) en l'absence de discontinuité, et en ce qu'une nouvelle valeur courante de la donnée D est inscrite dans la zone suivante ko+1 avec mise à jour de l'indicateur I (ko + 1).

Application aux cartes à mémoire électronique telles que les cartes à mémoire simple, les cartes à microprocesseur et les cartes sans contact.

	I(k)	D(k)
k=1	1	D(1)
k=2	1	D(2)
	⋮	⋮
k	1	D(k)
k+1	0	D(k+1)
	⋮	⋮
k=N	0	D(N)

← ko

FR 2 742 893 - A1

PROCEDE D'INSCRIPTION D'UNE DONNEE DANS UNE MEMOIRE REINSCRIPTIBLE

La présente invention concerne un procédé d'inscription de
5 valeurs courantes successives d'une donnée D dans une mémoire
réinscriptible.

L'invention trouve une application particulièrement avantageuse
dans le domaine des cartes à mémoire électronique telles que les
cartes à mémoire simple, les cartes à microprocesseur et les cartes
10 sans contact.

D'une manière générale, les cartes à mémoire électronique
précitées utilisent des mémoires du type EEPROM ou flash EPROM
qui ont le double avantage d'être non volatiles et électriquement
effaçables, donc réinscriptibles. En revanche, elles ne peuvent être
15 reprogrammées qu'un nombre limité de fois et leur temps de
programmation est long. Dans certaines applications, il arrive que ces
mémoires soient corrompues pour l'une ou l'autre des raisons
suivantes :

- nombre de réinscriptions trop important, entraînant une usure
20 des cellules-mémoire,
- programmation effectuée dans un temps trop court, entraînant
une charge insuffisante des cellules-mémoire,
- interruption accidentelle de l'alimentation électrique en cours de
programmation, entraînant le même effet, voire l'effacement des
25 valeurs antérieures sans programmation de valeurs nouvelles.

Ce dernier risque est particulièrement important dans les
applications, telles que les cartes à mémoire électronique, où ladite
mémoire est embarquée dans un objet dépendant d'une source
d'alimentation extérieure dont il peut être séparé à tout moment.

30 Des solutions à ce problème ont déjà été décrites. Elles consistent
généralement, lorsque l'on veut modifier les valeurs d'une donnée D, à
inscrire les valeurs courantes successives de ladite donnée dans des
zones différentes de la mémoire. En conséquence, il est nécessaire de
programmer le pointeur servant d'indicateur de manière à ce qu'il

puisse désigner la zone dans laquelle est inscrite la dernière valeur courante de la donnée D.

L'inconvénient de ce type de procédé est qu'il nécessite plusieurs opérations d'inscription qui peuvent, chacune, être le siège d'une 5 corruption. Le logiciel gérant les inscriptions dans la mémoire doit donc être complexe et, de là, consommateur de temps et d'espace-mémoire.

Aussi, le problème technique à résoudre par l'objet de la présente invention est de proposer un procédé d'inscription de valeurs 10 courantes successives d'une donnée D dans une mémoire réinscriptible, consistant à inscrire lesdites valeurs courantes successivement en différentes zones de la mémoire et à programmer des indicateurs aptes à désigner celle desdites zones contenant la dernière valeur courante inscrite de la donnée D, procédé qui 15 permettrait de simplifier la gestion des opérations d'inscription tant en assurant l'augmentation de la durée de vie des cellules de la mémoire ainsi que l'intégrité de la donnée D au moment de l'inscription de la dernière valeur courante.

La solution au problème technique posé consiste, selon la 20 présente invention, ce que ladite mémoire est décomposée en N zones k ($k = 1, \dots, N$), chaque zone k comprenant un premier espace-mémoire affecté à un indicateur I(k) et un deuxième espace-mémoire affecté à une valeur courante D(k) de la donnée D, la zone ko 25 contenant la dernière valeur courante D(ko) inscrite étant définie, soit par une discontinuité dans la suite des indicateurs I(k), soit par la dernière zone N (ko = N) en l'absence de discontinuité, et en ce qu'une nouvelle valeur courante de la donnée D est inscrite dans la zone suivante ko + 1 avec mise à jour de l'indicateur I(ko + 1).

Le procédé de l'invention présente plusieurs avantages.

30 En premier lieu, le gestionnaire de mémoire se trouve simplifié puisqu'après avoir inscrit dans un premier temps la dernière valeur courante de la donnée D et vérifié que cette inscription est correcte, il suffit de mettre à jour l'indicateur correspondant. Sinon, l'indicateur n'est pas mis à jour et la valeur courante précédente reste "active". Il

n'est donc pas nécessaire de contrôler la bonne inscription à plusieurs adresses.

En deuxième lieu, le mécanisme de récupération d'erreur est très simple. Comme les indicateurs ne peuvent avoir que deux valeurs faciles à déterminer, à savoir celle avant mise à jour ou celle après mise à jour si celle-ci a été effectuée suite à la validation de l'inscription de la nouvelle valeur courante de la donnée D, l'absence de mise à jour d'un indicateur entraîne que la valeur courante précédente reste "active". Donc, dans tous les cas, une corruption dans l'inscription de la donnée D n'entraîne pas la perte de cette dernière.

En troisième lieu, le nombre maximum d'inscriptions d'une donnée est multiplié par N, N n'étant limité que par l'espace-mémoire total disponible.

Selon un mode de réalisation particulier de l'invention, ladite discontinuité consiste dans le fait que pour ladite zone zo une relation $I(k+1) = f[I(k), k]$ entre l'indicateur $I(k+1)$ et l'indicateur précédent $I(k)$ n'est pas vérifiée : $I(ko + 1) \neq f[I(ko), ko]$.

A titre d'exemple, la fonction f est définie par $I(k+1) = I(k)$. Dans ce cas, l'indicateur $I(ko)$ de la zone ko de la dernière valeur courante est celui pour lequel l'indicateur $I(ko+1)$ de la zone $ko + 1$ suivante est différent : $I(ko + 1) \neq I(ko)$.

Une variante du procédé conforme à l'invention consiste en ce que la fonction f est définie par $I(k+1) = I(k) + g(k)$. En particulier, on peut prendre $g(k) = 1$, auquel cas on a $I(k+1) = I(k) + 1$. L'indicateur $I(ko)$ de la zone ko de la dernière valeur courante est celui pour lequel l'indicateur $I(ko + 1)$ de la zone $ko + 1$ suivante est tel que $I(ko + 1) \neq I(ko) + 1$. On verra plus loin un exemple où $I(ko + 1) = I(ko)$.

Enfin, il y a avantage à ce qu'un gestionnaire de mémoire contrôle la cohérence de la suite des indicateurs $I(k)$. Dans ce cas, on peut même prévoir que chaque zone k de la mémoire est complétée par une information de contrôle de cohérence.

La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.

Les figures 1a à 1c représentent une mémoire réinscriptible à différents stades d'inscription selon un premier procédé conforme à l'invention.

5 La figure 1d représente la mémoire réinscriptible des figures 1a et 1c inscrites selon une variante du premier procédé d'inscription.

Les figures 2a à 2d représentent une mémoire réinscriptible à différents stades d'inscription selon un deuxième procédé conforme à l'invention.

10 La figure 3 représente une mémoire réinscriptible analogue à celle des figures 1a à 1c, complétée par une information de contrôle de cohérence.

La mémoire réinscriptible montrée sur les figures 1a à 1c est destinée à recevoir N valeurs courantes successives $D(k)$ ($k=1, \dots, N$) d'une donnée D selon un procédé d'inscription qui consiste 15 notamment à décomposer ladite mémoire en N zones k comprenant, chacune, un premier espace mémoire affecté à un indicateur $Z(k)$ et un deuxième espace-mémoire, contigu à la première, dans laquelle est inscrite une valeur courante $D(k)$, de la donnée D. Le rôle des indicateurs $I(k)$ est de pouvoir désigner à un moment donné celle 20 desdites zones, notée ko , contenant la dernière valeur courante $D(ko)$ inscrite dans la mémoire, et, par voie de conséquence, à repérer la zone dans laquelle devra être inscrite une nouvelle valeur courante de la donnée D.

25 Comme on peut le voir sur la figure 1a qui décrit un stade quelconque d'inscription de la mémoire, les valeurs courantes $D(k)$ de la donnée D sont inscrites successivement, dans l'ordre, dans les différentes zones k correspondantes de la mémoire, c'est-à-dire la valeur $D(1)$ en zone $z=1$, la valeur $D(2)$ en zone $z=2$, etc... La zone ko contenant la dernière valeur courante $D(k=ko)$ inscrite est définie par 30 une discontinuité dans la suite des indicateurs $I(k)$.

D'une manière générale, pour repérer ladite discontinuité, et donc la zone ko , on définit une relation $I(k+1) = f[I(k), k]$ qui doit être normalement vérifiée entre l'indicateur $I(k+1)$ et l'indicateur précédent $I(k)$, la discontinuité apparaissant précisément à la zone ko pour 35 laquelle la relation précitée n'est pas vérifiée : $I(ko + 1) = f(I(ko), ko)$.

Dans les exemples des figures 1a à 1c, la fonction f est définie par $I(k+1) = I(k)$, les indicateurs pouvant prendre l'une des valeurs binaires 0 ou 1. On voit sur la figure 1 que jusqu'à $k = ko$ on a $I(k+1) = I(k) = 1$ tandis que $I(ko + 1) \neq I(ko)$, indiquant que la dernière valeur inscrite est $D(k=ko)$. Une nouvelle valeur courante de la donnée D sera inscrite dans la zone suivante $ko + 1$. Après validation de l'inscription, l'indicateur $I(ko+1)$ est mis à jour par passage de la valeur binaire 0 à la valeur binaire 1, faisant ainsi entrer la zone $ko + 1$ dans la régularité de la relation $I(k+1) = I(k)$ et transportant la discontinuité un rang plus loin.

En l'absence de discontinuité, comme sur la figure 1b, la zone ko contenant la dernière valeur courante de la donnée D est la dernière zone $ko = N$. Ainsi que le montre la figure 1c, la valeur courante suivante $D(1)$ est inscrite en zone $z = 1$ avec passage de l'indicateur $I(1)$ de 1 à 0.

L'état de la mémoire de la figure 1a est obtenue à partir d'une mémoire vierge $D(k) = \emptyset$, et d'indicateurs $I(k)$ tous égaux à 0, par exemple. Conformément à la règle énoncée plus haut, la première valeur courante de D sera inscrite dans la zone $z = 1$, la mise à jour de $I(1)$ se faisant par passage de la valeur binaire 1 à la valeur 0. Puis, les valeurs courantes suivantes seront inscrites successivement dans les zones $k=2,3$ jusqu'à N avec chaque fois mise à jour, après validation, de l'indicateur correspondant par changement d'état binaire.

De manière à connaître le nombre total d'inscriptions portées successivement dans une zone k de la mémoire, on peut prévoir par exemple que le nombre des valeurs courantes $D(1)$ ayant été inscrites dans la zone $z = 1$ est stocké dans un compteur, non représenté. Lorsque ce nombre atteint une valeur prédéterminée, le gestionnaire de la mémoire initie des actions particulières appropriées.

La figure 1d illustre une variante du procédé d'inscription décrit en référence aux figures 1a à 1c. Selon cette variante, la mise à jour de l'indicateur $I(ko + 1)$ de la zone $ko + 1$ dans laquelle est inscrite la nouvelle valeur courante de la donnée D , est réalisée par incrémentation d'une unité, la nouvelle valeur de $I(ko + 1)$ étant I

$(k_0+1)+1$. Dans ce cas, l'indicateur $I(k)$, outre sa fonction d'indication, représente le nombre de valeurs courantes $D(k)$ ayant été inscrites dans la zone k . Il n'est alors plus besoin de compteur spécifique.

Sur les figures 2a à 2d est représenté un deuxième procédé
 5 d'inscription conforme à l'invention caractérisé par le fait que, d'une façon générale, la fonction f de régularité est définie par $I(k+1)=I(k)+g(k)$, $g(k)$ étant égal à 1 dans l'exemple proposé. Dans la suite normale des indicateurs $I(k)$, un indicateur donné se déduit de l'indicateur précédent par incrémentation d'une unité, la discontinuité
 10 apparaît lorsque deux indicateurs consécutifs ne satisfont pas cette condition, en pratique cette situation se produit pour l'égalité de deux indicateurs consécutifs. Comme pour le premier procédé précédemment décrit, en l'absence de discontinuité, la zone k_0 de la dernière inscription sera la dernière zone $k_0 = N$.

15 La figure 2a montre l'état initial de la mémoire : aucune inscription n'y est portée et les indicateurs ne présentent aucune discontinuité vérifiant tous la relation de régularité. Par conséquent, en vertu de la règle énoncée plus haut, la première valeur courante est inscrite dans la zone $k=1$, l'indicateur $I(1)$ étant mis à jour par
 20 incrémentation d'une unité en passant de 0 à 1. Cette opération, illustrée sur la figure 2b, fait apparaître une discontinuité entre les indicateurs $I(1)$ et $I(2)$ permettant de repérer la zone $k_0 = 1$ comme celle contenant la dernière valeur courante $D(1)$ de la donnée D .

Il en résulte qu'une nouvelle valeur courante sera inscrite dans la
 25 zone $k=2$ avec mise à jour de l'indicateur $I(2)$ par passage de la valeur 1 à la valeur 2 et apparition d'une discontinuité entre les indicateurs $I(2)$ et $I(3)$, et ainsi de suite jusqu'à aboutir à la situation de la figure 2c où la mémoire est complètement remplie.

Si une nouvelle valeur courante doit alors être inscrite, elle le
 30 sera en zone $k=1$, la nouvelle valeur $D'(1)$ remplaçant l'ancienne valeur $D(1)$. Cette substitution s'accompagne d'une mise à jour de l'indicateur $I(1)$ qui passe de 1 à 2, comme on peut le voir sur la figure 2d.

On notera qu'avec ce procédé, il est très facile d'établir le nombre de valeurs courantes $D(k)$ ayant été inscrites dans la zone k , ce
 35 nombre étant donné par $I(k) - k+1$.

Généralement, les mémoires sont organisées en octets et en mots. Il peut être avantageux, dans le dernier exemple décrit, de compléter l'indicateur par une information CRC de contrôle de cohérence (code correcteur d'erreur, valeur d'authentification, etc.) gérée par le 5 gestionnaire de mémoire et permettant de contrôler à la fois la bonne écriture et le maintien de l'intégrité de la donnée dans le temps. La mémoire a alors la structure montrée sur la figure 3.

REVENDICATIONS

1. Procédé d'inscription de valeurs courantes successives d'une donnée D dans une mémoire réinscriptible, consistant à inscrire lesdites valeurs courantes successivement en différentes zones de la mémoire et à programmer des indicateurs aptes à désigner celle desdites zones contenant la dernière valeur courante inscrite de la donnée D, caractérisé en ce que ladite mémoire est décomposée en N zones k ($k=1, \dots, N$), chaque zone k comprenant un premier espace-mémoire affecté à un indicateur $I(k)$ et un deuxième espace-mémoire affecté à une valeur courante $D(k)$ de la donnée D, la zone k_0 contenant la dernière valeur courante $D(k_0)$ inscrite étant définie, soit par une discontinuité dans la suite des indicateurs $I(k)$, soit par la dernière zone $N(k_0=N)$ en l'absence de discontinuité, et en ce qu'une nouvelle valeur courante de la donnée D est inscrite dans la zone suivante k_0+1 avec mise à jour de l'indicateur $I(k_0 + 1)$.
2. Procédé selon la revendication 1, caractérisé en ce que ladite discontinuité consiste dans le fait que pour ladite zone z_0 une relation $I(k+1) = f[I(k), k]$ entre l'indicateur $I(k+1)$ et l'indicateur précédent $I(k)$ n'est pas vérifiée : $I(k_0 + 1) = f[I(k_0), k_0]$.
3. Procédé selon la revendication 2, caractérisé en ce que la fonction f est définie par $I(k+1)=I(k)$.
4. Procédé selon la revendication 3, caractérisé en ce que la mise à jour de l'indicateur $I(k_0+1)$ est réalisée par le passage d'un nombre binaire 0 ou 1 à l'autre : $I(k_0+1) = I(k_0+1)$.
5. Procédé selon la revendication 4, caractérisé en ce que le nombre de valeurs courantes $D(1)$ ayant été inscrites dans la zone $z=1$ est stocké dans un compteur.
6. Procédé selon la revendication 3, caractérisé en ce que ladite mise à jour d'indicateur $I(k_0+1)$ est réalisée par incrémentation d'une unité : $I(k_0 + 1) = I(k_0 + 1) + 1$, $I(k)$ représentant le nombre de valeurs courantes $D(k)$ ayant été inscrites dans la zone k .
7. Procédé selon la revendication 2, caractérisé en ce que la fonction f est définie par $I(k+1) = I(k) + g(k)$.

8. Procédé selon la revendication 7, caractérisé en ce que $g(k) = 1$.
9. Procédé selon la revendication 8, caractérisé en ce que ladite mise à jour de l'indicateur $I(ko+1)$ est réalisée par incrémentation d'une unité : $I'(ko+1) = I(ko + 1)+1$, $I(k) - k+1$ représentant le nombre de valeurs courantes $D(k)$ ayant été inscrites dans la zone k .
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que dans chaque zone k lesdits premier et deuxième espaces-mémoire sont contigus.
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'un gestionnaire de mémoire contrôle la cohérence de ladite suite des indicateurs $I(k)$.
12. Procédé selon la revendication 11, caractérisé en ce que chaque zone k de la mémoire est complétée par une information de contrôle de cohérence.
13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que ladite mémoire est embarquée dans un objet dépendant d'une source d'alimentation extérieure.

1/3

	I(k)	D(k)
k=1	1	D(1)
k=2	1	D(2)
	⋮	⋮
k	1	D(k)
k+1	0	D(k+1)
	⋮	⋮
k=N	0	D(N)

← ko

	I(k)	D(k)
	1	D(1)
	1	D(2)
	⋮	⋮
	1	D(k)
	1	D(k+1)
	⋮	⋮
	1	D(N)

← ko

FIG. 1a

FIG. 1b

k=1	0	D'(1)
k=2	1	D(2)
	⋮	⋮
k	1	D(k)
k+1	1	D(k+1)
	⋮	⋮
k=N	1	D(N)

← ko

7	D(1)
6	D(2)
⋮	⋮
6	D(k)
6	D(k+1)
⋮	⋮
6	D(N)

← ko

FIG. 1c

FIG. 1d

2/3

	I(k)	D(k)
k=1	0	-
k=2	1	-
k	k-1	-
k+1	k	-
k=N	N-1	-

FIG. 2a

	I(k)	D(k)
	1	D(1)
	1	-
	k-1	-
	k	-
	N-1	-

FIG. 2b

	1	D(1)
k=2	2	D(2)
k	k	D(k)
k+1	k+1	D(k+1)
k=N	N	D(N)

FIG. 2c

	2	D'(1)
	2	D(2)
	k	D(k)
	k+1	D(k+1)
	N	D(N)

FIG. 2d

3/3

I(k)	D(k)	CRC(D(k))
1	D(1)	CRC(D(1))
1	D(2)	CRC(D(2))
0	D(3)	CRC(D(3))
	⋮	⋮
0	D(N)	CRC(D(N))

FIG. 3

INSTITUT NATIONAL
de la
PROPRIETE INDUSTRIELLE

RAPPORT DE RECHERCHE
PRELIMINAIRE

établi sur la base des dernières revendications
déposées avant le commencement de la recherche

FA 522213
FR 9515186

DOCUMENTS CONSIDERES COMME PERTINENTS		Revendications concernées de la demande examinée
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	
X	GB-A-2 243 230 (NEC CORPORATION)	1-3,6,10
Y	* page 6, ligne 20 - page 13, ligne 11; figures 2-6 *	4,11-13
X	EP-A-0 340 981 (SONY CORPORATION)	1,2,7,8
A	* colonne 2, ligne 23 - colonne 4, ligne 50; figures 1-4 *	9-11,13
X	EP-A-0 398 545 (DELCO ELECTRONICS CORP.)	1,2
Y	* colonne 3, ligne 1 - colonne 5, ligne 8; figure 1 *	4
X	EP-A-0 686 976 (FUJITSU LIMITED)	11-13
A	* colonne 5, ligne 11 - colonne 7, ligne 50; figures 3,4,6,7 *	1,5

		DOMAINES TECHNIQUES RECHERCHES (Int.CI)
		G11C
1	Date d'achèvement de la recherche	Examinateur
	11 Septembre 1996	Cummings, A
CATEGORIE DES DOCUMENTS CITES		T : théorie ou principe à la base de l'invention
X : particulièrement pertinent à lui seul		E : document de brevet bénéficiant d'une date antérieure
Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie		à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure.
A : pertinent à l'encontre d'au moins une revendication ou arrière-plan technologique général		D : cité dans la demande
O : divulgation non écrite		L : cité pour d'autres raisons
P : document intercalaire		& : membre de la même famille, document correspondant