

2A STEP DOWN SWITCHING REGULATOR

- UP TO 2A STEP DOWN CONVERTER
- OPERATING INPUT VOLTAGE FROM 8V TO 55V
- PRECISE 3.3V (±1%) INTERNAL REFER-ENCE VOLTAGE
- OUTPUT VOLTAGE ADJUSTABLE FROM 3.3V TO 50V
- SWITCHING FREQUENCY ADJUSTABLE UP TO 300KHz
- VOLTAGE FEEDFORWARD
- ZERO LOAD CURRENT OPERATION
- INTERNAL CURRENT LIMITING (PULSE-BY-PULSE AND HICCUP MODE)
- INHIBIT FOR ZERO CURRENT CONSUMP-TION
- PROTECTION AGAINST FEEDBACK DIS-CONNECTION
- THERMAL SHUTDOWN
- SOFT START FUNCTION

DESCRIPTION

The L4978 is a step down monolithic power switching regulator delivering 2A at a voltage between 3.3V and 50V (selected by a simple external divider). Realized in BCD mixed technology, the device uses an internal power D-MOS transistor (with a typical Rdson of 0.25 Ω) to obtain very high efficency and high switching speed.

A switching frequency up to 300KHz is achievable (the maximum power dissipation of the packages must be observed).

A wide input voltage range between 8V to 55V and output voltages regulated from 3.3V to 50V cover the majority of today's applications.

Features of this new generations of DC-DC converter include pulse-by-pulse current limit, hiccup mode for short circuit protection, voltage feedforward regulation, soft-start, protection against feedback loop disconnection, inhibit for zero current consumption and thermal shutdown.

The device is available in plastic dual in line, MINIDIP 8 for standard assembly, and SO16W for SMD assembly.

TYPICAL APPLICATION CIRCUIT

October 2001 1/12

BLOCK DIAGRAM

PIN CONNECTIONS

PIN FUNCTIONS

DIP	SO (*)	Name	Function
1	2	GND	Ground
2	3	SS_INH	A logic signal (active low) disables the device (sleep mode operation). A capacitor connected between this pin and ground determines the soft start time. When this pin is grounded disables the device (driven by open collector/drain).
3	4	OSC	An external resistor connected between the unregulated input voltage and this pin and a capacitor connected from this pin to ground fix the switching frequency. (Line feed forward is automatically obtained)
4	5, 6	OUT	Stepdown regulator output
5	11	Vcc	Unregulated DC input voltage
6	12	воот	A capacitor connected between this pin and OUT allows to drive the internal DMOS Transistors
7	13	COMP	E/A output to be used for frequency compensation
8	14	FB	Stepdown feedback input. Connecting directly to this pin results in an output voltage of 3.3V. An external resistive divider is required for higher output voltages.

(*) Pins 1, 7, 8, 9, 10, 15 and 16 are not internally, electrically connected to the die.

THERMAL DATA

Symbol	Parameter	Minidip	SO16	Unit
R _{th(j-amb)}	Thermal Resistance Junction to ambient Max.	90 (*)	110 (*)	°C/W

^(*) Package mounted on board.

ABSOLUTE MAXIMUM RATINGS

Symbol		Parameter	Value	Unit	
Minidip	S016	r al ameter	value	Offic	
V_5	V ₁₁	Input voltage	58	V	
V ₄	V ₅ ,V ₆	Output DC voltage Output peak voltage at t = 0.1µs f=200KHz		-1 -5	V
14	I ₅ ,I ₆	Maximum output current		int. limit.	
V ₆ -V ₅	V12-V ₁₁		14	V	
V ₆	V ₁₂	Bootstrap voltage	70	V	
V ₇	V ₁₃	Analogs input voltage (V _{CC} = 24V)	12	V	
V ₂	V3	Analogs input voltage (V _{CC} = 24V)		13	V
V ₈	V ₁₄	(V _{CC} = 20V)	6 -0.3	V V	
Р	tot	Power dissipation a T _{amb} ≤ 60°C	Minidip	1	W
			SO16	0.8	W
T_{j}, T_{stg}		Junction and storage temperature		-40 to 150	°C

ELECTRICAL CHARACTERISTICS ($T_j = 25$ °C, $C_{osc} = 2.7nF$, $Rosc = 20k\Omega$, $V_{CC} = 24V$, unless otherwise specified.) * Specification Refered to T_j from 0 to 125°C

Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Unit
Dynamic C	Characteristic						
Vı	Operating input voltage range	$V_0 = 3.3 \text{ to } 50V; I_0 = 2A$	•	8		55	V
Vo	Output voltage	I _o = 0.5A		3.33	3.36	3.39	V
		I _o = 0.2 to 2A		3.292	3.36	3.427	V
		Vcc = 8 to 55V	•	3.22	3.36	3.5	V
Vd	Dropout voltage	Vcc = 10V; Io = 2A			0.58	0.733	V
			•			1.173	V
lı	Maximum limiting current	Vcc = 8 to 55V	•	2.5	3	3.5	Α
	Efficiency	$V_0 = 3.3V$; $I_0 = 2A$			87		%
fs	Switching frequency		•	90	100	110	KHz
SVRR	Supply voltage ripple rejection	$V_i = V_{cc}+2V_{RMS}; V_o = V_{ref};$ $I_0 = 2.5A; f_{ripple} = 100Hz$		60			dB
	Switching Frequency Stability vs. V _{cc}	Vcc = 8 to 55V			3	6	%
	Temp. stability of switching frequency	T _j = 0 to 125°C			4		%
Soft Start							
	Soft start charge current			30	40	50	μΑ
	Soft start discharge current			6	10	14	μА
Inhibit							
VLL	Low level voltage		•			0.9	V
lsLL	Isource Low level		•		5	15	μΑ

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Unit
DC Charac	cteristics						
Iqop	Total operating quiescent current				4	6	mA
Iq	Quiescent current	Duty Cycle = 0; V _{FB} = 3.8V			2.5	3.5	mA
I _{qst-by}	Total stand-by quiescent	V _{inh} <0.9V			100	200	μА
	current	$Vcc = 55V; V_{inh} < 0.9V$			150	300	μА
Error Amp	lifier						
V_{FB}	Voltage Feedback Input			3.33	3.36	3.39	V
RL	Line regulation	Vcc = 8 to 55V			5	10	mV
	Ref. voltage stability vs temperature		•		0.4		mV/°C
VoH	High level output voltage	V _{FB} = 2.5V		10.3			V
VoL	Low level output voltage	$V_{FB} = 3.8V$				0.65	V
lo source	Source output current	$V_{comp} = 6V; V_{FB} = 2.5V$		180	220		μА
lo sink	Sink output current	$V_{comp} = 6V; V_{FB} = 3.8V$		200	300		μΑ
lb	Source bias current				2	3	μА
SVRR E/A	Supply voltage ripple rejection	$V_{comp} = V_{fb}$; $Vcc = 8 \text{ to } 55V$		60	80		dB
	DC open loop gain	R _L = ∞		50	57		dB
gm	Transconductance	$I_{comp} = -0.1 \text{ to } 0.1 \text{mA}$ $V_{comp} = 6V$			2.5		mS
Oscillator	Section						
	Ramp Valley			0.78	0.85	0.92	V
	Ramp peak	Vcc = 8V		2	2.15	2.3	V
		Vcc = 55V		9	9.6	10.2	V
	Maximum duty cycle			95	97		%
	Maximum Frequency	Duty Cycle = 0% R _{osc} = $13k\Omega$, C _{osc} = $820pF$				300	kHz

Figure 1. Test and evaluation board circuit.

Figure 2. PCB and component layout of the figure 1.

Figure 3. Quiescent drain current vs. input voltage.

Figure 5. Stand by drain current vs. input voltage

Figure 7. Load regulation

Figure 4. Quiescent current vs. junction temperature

Figure 6. Line Regulation

Figure 8. Switching frquency vs. R1 and C2

6/12

Figure 9. Switching Frequency vs. input voltage.

Figure 11. Dropout voltage between pin 5 and 4.

Figure 13. Efficiency vs. output current.

Figure 10. Switching frequency vs. junction temperature.

Figure 12. Efficiency vs output voltage.

Figure 14. Efficiency vs. output current.

Figure 15. Efficiency vs. output current.

Figure 17. Efficiency vs. Vcc.

Figure 19. Device Power dissipation vs. Vo

Figure 16. Efficiency vs. output current.

Figure 18. Power dissipation vs. Vcc.

Figure 20. Pulse by pulse limiting current vs. junction temperature.

Figure 21. Load transient.

Figure 23. Soft start capacitor selection Vs inductor and Vccmax.

Figure 25. Open loop frequency and phase of error amplifier

Figure 22. Line transient.

Figure 24. Soft start capacitor selection vs. Inductor and Vccmax.

DIM.	mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
E	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			6.6			0.260	
I			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Z			1.52			0.060	

OUTLINE AND MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	2.35		2.65	0.093		0.104	
A1	0.1		0.3	0.004		0.012	
В	0.33		0.51	0.013		0.020	
С	0.23		0.32	0.009		0.013	
D	10.1		10.5	0.398		0.413	
Е	7.4		7.6	0.291		0.299	
е		1.27			0.050		
Н	10		10.65	0.394		0.419	
h	0.25		0.75	0.010		0.030	
L	0.4		1.27	0.016		0.050	
K	0° (min.)8° (max.)						

OUTLINE AND MECHANICAL DATA

47/

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics – Printed in Italy – All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

