2. Verkette Funktionen

Wiederholung:

Gegeben: $u(x)=x^2+1$ und v(x)=3x Mit Hilfe der Addtion, Subtraktion, Multiplikation und Divison lassen sich neue Funktionen konstruieren.

	Funktionsname	Funktionsterm
Summe	u+v	
Differenz	u-v	
Multiplikation	$u \cdot v$	
Division	$\frac{u}{v}$	

Neues Beispiel:

Abbildung 1:

	x	2x	
	-1	-2	
	0	0	
$\frac{1}{2}$		1	
$\sqrt{3}$		$2\sqrt{3}$	

Abbildung 2:

	x	x^2	
	-2		4
	0		0
	1		1
$2\sqrt{3}$? ? ?	

Zuerst Abbildung 1 dann Abbildung 2:

х	???
-1	
0	

???

```
\frac{1}{2}
\sqrt{3}
```

Х

```
In [25]: import numpy as np
         import matplotlib.pyplot as plt
         from matplotlib.ticker import AutoMinorLocator, MultipleLocator, FuncFormatt
         # Defintionsmenge und Funktion
         a= -5.1 # untere x-Intervallgrenze
         b= 5.1 # obere x-Intervallgrenze
         c = -5.1# untere y-Intervallgrenze
         d = 5.1 # obere y-Intervallgrenze
         x = np.linspace(a, b, 1000)
         y1 = 2 * x
         y2= x*x
         # Einstellung des Graphen
         fig=plt.figure(figsize=(12,12))
         ax = fig.add_subplot(1,2,1, aspect =1)
         ax1 = fig.add_subplot(1,2,2, aspect =1)
         # Definiton der Haupteinheiten, reele Zahlen ohne die 0
         def major_tick(x, pos):
             if x==0:
                 return ""
             return int(x)
         # Achsenskalierung
         ax.xaxis.set_major_locator(MultipleLocator(1))
         ax.xaxis.set minor locator(AutoMinorLocator(2))
         ax.yaxis.set_major_locator(MultipleLocator(1))
         ax.yaxis.set_minor_locator(AutoMinorLocator(2))
         ax.xaxis.set_major_formatter(FuncFormatter(major_tick))
         ax.yaxis.set_major_formatter(FuncFormatter(major_tick))
         ax1.xaxis.set_major_locator(MultipleLocator(1))
         ax1.xaxis.set_minor_locator(AutoMinorLocator(2))
         ax1.yaxis.set_major_locator(MultipleLocator(1))
         ax1.yaxis.set_minor_locator(AutoMinorLocator(2))
         ax1.xaxis.set_major_formatter(FuncFormatter(major_tick))
         ax1.yaxis.set_major_formatter(FuncFormatter(major_tick))
         # Position der Achsen im Schaubild
         ax.spines[['top','right']].set_visible(False)
         ax.spines[['bottom','left']].set_position('zero')
         ax1.spines[['top','right']].set visible(False)
         ax1.spines[['bottom','left']].set_position('zero')
         # Pfeile für die Achsen
```

```
ax.plot((1),(0), ls="", marker= ">", ms=7, color="k", transform=ax.get_yaxis
ax.plot((0),(1), ls="", marker= "^", ms=7, color="k", transform=ax.get_xaxis
ax1.plot((1),(0), ls="", marker= ">", ms=7, color="k", transform=ax1.get_yax
ax1.plot((0),(1), ls="", marker= "^", ms=7, color="k", transform=ax1.get_xax
# Achsenlänge und Beschriftung
ax.set_xlim(a,b)
ax.set ylim(c, d)
ax.set_xlabel("x", loc="right")
ax.set_ylabel("f(x)", loc="top", rotation=0)
ax1.set_xlim(a,b)
ax1.set_ylim(c, d)
ax1.set_xlabel("x", loc="right")
ax1.set_ylabel("f(x)", loc="top", rotation=0)
# Kästchen
ax.grid(linestyle="-", which="major", linewidth=0.7, zorder=-10)
ax.grid(linestyle="-", which="minor", linewidth=0.5, zorder=-10)
ax1.grid(linestyle="-", which="major", linewidth=0.7, zorder=-10)
ax1.grid(linestyle="-", which="minor", linewidth=0.5, zorder=-10)
# Plot der Funktion
plt.subplot(121)
plt.plot(x,y1, zorder=10)
plt.subplot(122)
plt.plot(x,y2, zorder = 10)
#plt.show()
```

Out[25]: [<matplotlib.lines.Line2D at 0x130ad57d0>]


```
In [7]: import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import AutoMinorLocator, MultipleLocator, FuncFormatt
```

```
# Defintionsmenge und Funktion
a= -5.1 # untere x-Intervallgrenze
b= 5.1 # obere x-Intervallgrenze
c = -5.1# untere y-Intervallgrenze
d = 5.1 # obere y-Intervallgrenze
x = np.linspace(a, b, 1000)
y1=(2*x)**2
#y2 = x * x
# ---
# Einstellung des Graphen
fig=plt.figure(figsize=(8,8))
ax = fig.add_subplot(1,1,1, aspect =1)
# Definiton der Haupteinheiten, reele Zahlen ohne die 0
def major_tick(x, pos):
   if x==0:
        return ""
    return int(x)
# Achsenskalierung
ax.xaxis.set_major_locator(MultipleLocator(1))
ax.xaxis.set_minor_locator(AutoMinorLocator(2))
ax.yaxis.set_major_locator(MultipleLocator(1))
ax.yaxis.set_minor_locator(AutoMinorLocator(2))
ax.xaxis.set_major_formatter(FuncFormatter(major_tick))
ax.yaxis.set_major_formatter(FuncFormatter(major_tick))
# Position der Achsen im Schaubild
ax.spines[['top','right']].set_visible(False)
ax.spines[['bottom','left']].set_position('zero')
# Pfeile für die Achsen
ax.plot((1),(0), ls="", marker= ">", ms=7, color="k", transform=ax.get_yaxis
ax.plot((0),(1), ls="", marker= "^", ms=7, color="k", transform=ax.get_xaxis
# Achsenlänge und Beschriftung
ax.set_xlim(a,b)
ax.set_ylim(c, d)
ax.set_xlabel("x", loc="right")
ax.set_ylabel("f(x)", loc="top", rotation=0)
# Kästchen
ax.grid(linestyle="-", which="major", linewidth=0.7, zorder=-10)
ax.grid(linestyle="-", which="minor", linewidth=0.5, zorder=-10)
# Plot der Funktion
ax.plot(x,y1, zorder=10)
\#ax.plot(x,y2, zorder = 0)
#plt.show()
```


Definition:

Gegeben:

- ullet Funktion $v:x\mapsto v(x),\quad x\in D_1$
- ullet Funktion $u:x\mapsto u(x),\quad x\in D_2$

Die Funktion $u\circ v:x\mapsto u(v(x))$ (lies u nach v) heißt **Verkettung der Funktionen u** und v. v ist die innere Funktion und u ist die äußere Funktion.

Für die Defintionsmenge von $u\circ v$ gilt: $D=\{x|x\in D_v ext{ und } v(x)\in D_u\}$

Bemerkung:

- Die Verkettung von Funktionen ist nich kommutativ, d.h. $v(u(x)) \neq u(v(x))$
- ullet Beispiel: $u(x)=\sqrt{x},\quad v(x)=2x^2,\qquad u(v(x)=\sqrt{2x^2}n
 eq v(u(x)=2\sqrt{x}^2)$

- Die Zerlegung von Teilfunktinen ist nicht immer eindeutig.
- Überlegen Sie sich dazu Beispiele.

Problem: Wie lautet die Ableitungsfunktionen zum Beispiel von der Funktion $f(x) = \left(2x+2\right)^3$?

Überlegung:

Gegeben:

- f(x) = u(v(x))
- ullet $x_0\in D_v$ und $v(x_0)$ differenzierbar
- $ullet v(x_0) \in D_u$ und $v(v(x_0))$ differenzierbar

Idee: Stelle den allgemeinen Differenzenquotient auf.

$$m(x)=rac{f(x)-f(x_0)}{x-x_0}$$

$$\stackrel{f(x)=u(v(x))}{=}\frac{u(v(x))-u(v(x_0))}{x-x_0}$$

Idee: Mutlipliziere mit 1

$$=rac{u(v(x))-u(v(x_0))}{x-x_0}\cdotrac{v(x)-v(x_0)}{v(x)-v(x_0)}$$

$$=rac{u(v(x))-u(v(x_0))}{v(x)-v(x_0)}\cdotrac{v(x)-v(x_0)}{x-x_0}$$

$$\stackrel{v=v(x),v_0=v(x_0)}{=}\frac{u(v)-u(v_0)}{v-v_0}\cdot\frac{v(x)-v(x_0)}{x-x_0}$$

Idee: Wende nun den Limes an

 $\$ \lim \limits_{x \to x_0}\frac{u(v)-u(v_0)}{v-v_0} \cdot \frac{v(x)-v(x_0)}{x-x_0}

$$\stackrel{v \text{ diffbar} \Rightarrow v \text{ stetig in } x_0}{=} u'(v_0) \cdot v'(x_0)$$

$$$$$
 = u'(v(x_0)) \cdot v'(x_0)

Satz: Kettenregel

Seien u und v differenzierbare Funktionen und $f=u\circ v$, so ist auch f differenzeirbar und es gilt:

$$f'(x) = u'(v(x)) \cdot v'(x)$$

Merkrege: "Äußere Ableitung mal innere Ableitung"

Bemerkung:

Die Herleitung gilt nur für Funktionen, bei denen $v(x)-v(x_0)\neq 0$ für eine hinreichend kleine Umgebung. Die Verallgemeinerung lässt sich aber auch zeigen.

Übungen:

- Buch Seite 18 Nr. und 3
- Buch Seite 18 Nr. 6