Champ magnétique

Champ magnétique

vecteur défini en tout point de l'espace (champ de vecteurs)

Lignes de champ parallèles zone de champ magnétique

Lignes de champ éloignées zone de champ faible

Sources de champ magnétique

aimant permanent

courant électrique

forces de laplace sur un fil

Force subie par un petit morceau de fil:

$$\mathrm{d}\vec{F} = i\mathrm{d}\vec{\ell} \wedge \vec{B}$$

Application au rail de Laplace

$$\vec{F} = iL(-\vec{e}_u) \wedge (-B\vec{e}_z) = iLB\vec{e}_x$$

Aspect énergétique

Puissance fournie par la force de Laplace

$$\parallel P_L = \vec{F} \cdot \vec{v} = iLB \vec{e}_x \cdot v \vec{e}_x = iLBv$$
 vitesse de la barre

Puissance fournie par le générateur

$$P_G = Ui$$

Conservation de l'énergie $P_G = P_L$

$$U = LBv$$

La tension aux bornes du générateur dépend de la vitesse de la barre.

Moment magnétique

Boucle de courant parcourue par une intensité I

par analogie, on associe aussi un moment magnétique à un aimant permanent

forces de laplace sur un moment

Résultante

$$\vec{F} = \vec{0}$$

La force subie par un moment magnétique dans un champ magnétique uniforme

Couple

$$\overbrace{\vec{\Gamma}_L = \vec{\mu} \wedge \vec{B}}$$

Le moment est un couple de force

Énergie potentielle

$$E_p = -\vec{\mu} \cdot \vec{B} = -\mu B \cos(\theta)$$

Champ magnétique tournant

Un aimant est entraîné par le champ tournant à la même vitesse de rotation