Parallel AGV Scheduling Problem with Battery Constraints (ASP-BC)

Implementation from: "The parallel AGV scheduling problem with battery constraints: A new formulation and a matheuristic approach", European Journal of Operational Research 307 (2023)

GENERAL INTRO

ASP-BC: scheduling of resource transferring from a location to many others through Automated Guided Vehicles (AGVs)

Considering battery constrains.

"It consists in determining the scheduling of transfer jobs and charging operations of a fleet of homogeneous AGVs such that the makespan of the handling process is minimized".

TRANSFER JOBS AND CHARGING OPERATIONS

Transfer jobs consists in moving packages of material to a workstation.

- Initially positioned at the **center** of the warehouse (pickup point)
- Each package contains all and only what is needed by a workstation (atomic)
- Match 1:1 between transfer jobs and workstations
- Two parameters: duration (round trip + loading/unloading operations) and weight of the package

The main aim is to transfer the right amount of the right material to the right place at the right time.

AGVs

An AGV fleet is a part of an AGV system used for horizontal movement of materials from a pickup point to delivery ones.

- Used within a warehouse to deliver materials from the center of the warehouse (pickup points) to a set of workstations (delivery points)
- Deliver one and only package per travel
- #AGVs ≪ #workstations
- Travel at a constant speed

AGVs BATTERY

- AGVs charge in the pickup point
- Completely charged at the beginning of the transfer operations
- Battery is affected by travel time and weight carried
- Charges have a predefined duration (charges seen as special transfer jobs)
- Vehicles must be completely recharged, but never completely depleted

MAKESPAN

Defined as the time to supply a set of packages to a set of workstations

- AGVs are independent form each other and work in parallel
- Not the summation of the work duration of each AGV
- It is the work duration of the AGV that takes the longest to complete its transfer jobs

Minimizing the makespan through job and charges scheduling leads to a better management that improve the overall productivity and avoids delays in production... aka minimize costs for the manufacturer.

Outline

Exact method

Mathematical formulation

Matheuristic

Three steps matheuristic

Variant of the exact method and matheuristic

Allowing for variable charge time depending on remaining battery

Results and scalability analysis

Mathematical Formulation

SETS AND PARAMETERS

Let

- J be the set of transfer jobs,
- M the set of AGVs and
- R the set of charging jobs

Each job $j \in J$ has two parameters

- e_i which denotes the **energy consumption**
- d_j which is the job duration

Vehicles $m \in M$ have all the same **battery capacity** b and **charging time** t.

DECISION VARIABLES

 $x_{jm} \in \{0,1\}$

 $\forall j \in J$,

Transfer job j performed by AGV m

 $q_{rm} \in \{0,1\}$

 $\forall r \in R$,

 $\forall m \in M$

 $\forall m \in M$

Charging job *r* performed by AGV *m*

 $y_{jrm} \in \{0,1\}$

 $c_{\max} \in \mathbb{R}^+$

 $\forall j \in J$,

Transfer job j performed by AGV m

 $\forall r \in R$,

right after charging job r

 $\forall m \in M$

Makespan of the transfer process

OBJECTIVE FUNCTION AND CONSTRAINTS

$$z = \min c_{\max}$$

Minimize the makespan of the whole transfer process

$$c_{\max} \ge \sum_{j \in J} d_j x_{jm} + \sum_{r \in R \setminus \{1\}} t q_{rm} \qquad \forall m \in M$$
 (1)

For each vehicle m, the time spent by m to perform its jobs and the time spent to recharge between jobs must be consistent with the makespan.

Since AGVs are already charged at the beginning the first charge operation r=1 is not considered.

CONSTRAINTS

$$\sum_{m \in M} x_{jm} = 1 \qquad \forall j \in J \tag{2}$$

Each transfer job j must be assigned to a single AGV m

$$\sum_{r \in R} y_{jrm} = x_{jm} \qquad \forall j \in J, m \in M$$
(3)

If a transfer job j is performed by AGV m, it must be preceded by a charging job r on the same AGV

CONSTRAINTS

$$2y_{jrm} \le x_{jm} + q_{rm} \qquad \forall r \in R, j \in J, m \in M \tag{4}$$

Variable upper bound on variables y_{jrm} . It ensures consistency between the three variables

$$\sum_{j \in J} y_{jrm} \cdot e_j \le b \qquad \forall m \in M, r \in R \setminus \{1\}$$
 (5)

Battery constraint: the summation of all jobs performed after a charging job r must not exceed the battery limit b of the respective AGV m

CONSTRAINTS

$$q_1^m = 1 \qquad \forall m \in M \tag{6}$$

Each AGV starts fully charged

$$q_r^m \le q_{r-1}^m \quad \forall r \in R \setminus \{1\}, m \in M \tag{7}$$

Symmetry breaking constraints: charging job r on vehicle m must be preceded by charging job r-1

$$x_{jm} \in \{0,1\} \qquad \forall j \in J, \forall m \in M \tag{8}$$

$$y_{irm} \in \{0,1\} \qquad \forall j \in J, \forall r \in R, \forall m \in M \tag{9}$$

$$q_{rm} \in \{0,1\} \qquad \forall r \in R, \forall m \in M \tag{10}$$

$$c_{\max} \in \mathbb{R}^+ \tag{11}$$

Matheuristic

3 Step Matheuristic

- Bin Packing Problem: find the minimum number of charging operations required to perform all transfer jobs
- 2. Bottleneck Generalized Assignment Problem:
 - Constrained: assign transfer jobs to AGVs
 - With charges: assign charging operations to AGVs by using the solution from BPP
- 3. Local search

 Find a partition of items (transfer jobs) into bins (charging operations) such that the number of bins is minimized

VARIABLES

$$\gamma_r \in \{0,1\} \qquad \forall r \in R$$

Bins (charging operations) used

$$\chi_{rj} \in \{0,1\} \qquad \forall r \in R, j \in J$$

Assignment of item j (transfer jobs) to bin r

OBJECTIVE

$$\zeta = \min \sum_{r \in R} \gamma_r$$

Minimize the number of bins (charging operations) used

CONSTRAINTS

$$\sum_{r \in R} \chi_{rj} = 1 \qquad \forall j \in J$$

Each transfer job j is assigned once and only once

$$\sum_{i \in I} e_j \cdot \chi_{rj} \le b \cdot \gamma_r \qquad \forall r \in R$$

Transfer job assignment doesn't exceed battery capacity.

Transfer job assignment is consistent with partition

$$\gamma_r \le \gamma_{r-1} \quad \forall r \in R \setminus \{1\}$$

Symmetry breaking constraint

LOWER BOUND

The BPP solution allows to compute a lower bound for the ASP-BC:

$$LB = \max \left\{ \left\lceil \frac{\max\{0, \zeta - |M|\} \cdot t + \sum_{j} d_{j}}{|M|} \right\rceil, \left\lceil \frac{\max\{0, \zeta - |M|\}}{|M|} \right\rceil \cdot t \right\}$$

- The first part is the total time required to perform all transfer operations in parallel
- The second part takes into account the indivisibility of the charging operations

BGAP

BGAP Constrained

(BGAP-C)

- Assign all transfer jobs to AGVs without using additional charging operations, while minimizing the makespan.
- If the number of charging operations doesn't exceed the number of AGVs, that is:

$$\zeta \leq |M|$$

 A feasible solution for ASP-BC is obtained by solving a Constrained Bottleneck Generalized Assignment Problem: BGAP-C

BGAP-C VARIABLES

$$x_{jm} \in \{0,1\}$$
 $\forall j \in J, m \in M$
Transfer job j assigned to AGV m

$$c_{\max} \in \mathbb{R}^+$$

Makespan of the transfer process

BGAP - C OBJECTIVE

$$z = \min c_{\max}$$

Minimize makespan of the whole transfer process

Find the best solution without using additional charging operations

BGAP-C

CONSTRAINTS

$$c_{\max} \ge \sum_{i \in J} d_i \cdot x_{jm} \qquad \forall m \in M$$

Ensure consistency of the makespan

$$\sum_{m \in M} x_{jm} = 1 \qquad \forall j \in J$$

Jobs are assigned once and only once

$$\sum_{j \in J} e_j \cdot x_{jm} \le b \qquad \forall m \in M$$

Job assignment doesn't exceed battery limit

BGAP With Charging Operations

(BGAP-R)

- Assign charging operations to AGVs (from the solution of BPP)
- If the number of charges exceeds the number of AGVs, that is:

$$\zeta > |M|$$

 A feasible solution for ASP-BC is obtained by solving a Bottleneck Generalized Assignment Problem with Charging operations: BGAP-R

BGAP-R VARIABLES

$$\theta_{rm} \in \{0,1\} \qquad \forall r \in R, m \in M$$

Assign charge operation r to AGV m

$$c_{\max} \in \mathbb{R}^+$$

Makespan of the transfer process

BGAP-R OBJECTIVE

 $z = \min c_{\max}$

Minimize makespan of the transfer process

BGAP-R

CONSTRAINTS

$$c_{\max} \ge \sum_{r \in R} D_r \cdot \theta_{rm} - t \quad \forall m \in M$$

Ensure consistency of the makespan

where
$$D_r = \sum_{j \in J} d_j \cdot \chi_{jr} + t$$

Duration of each charge operation

$$\sum_{r \in R} \theta_{rm} = 1 \qquad \forall m \in M$$

Charging operations are assigned once and only once

Local Search

Local Search

MECHANISM

- Starting from the optimal solution of the BGAP
- Compute the saving obtained by performing one of three operations:
 - Add s_a : take job j from AGV m_1 and give it to AGV m_2 after a newly added charging operation
 - Remove s_r : take job j from AGV m_1 and give it to AGV m_2 on an available charging operation
 - Swap s_s : swap two jobs from two different AGVs

Local Search

ALGORITHM

```
1. Set the saving s^*=0 and compute c_{\max}
2. Compute each s_a. If s_a>s^* update s^* and (x,y)
3. Compute each s_r. If s_r>s^* update s^* and (x,y)
4. Compute each s_s. If s_s>s^* update s^* and (x,y)
5. If s^*>0:

apply the update,
then go back to first step,
else stop
```

Small variant

Matheuristic ALGORITHM

BPP: provides minimum number of charging operations and lower bound

Matheuristic

ALGORITHM

BPP: provides minimum number of charging operations and lower bound

Matheuristic

ALGORITHM

BPP: provides minimum number of charging operations and lower bound

Matheuristic

ALGORITHM

Matheuristic

ALGORITHM

BPP: provides minimum number of charging operations and lower bound -no → BGAP-R $\zeta \leq |M|$ ves BGAP-C —— Feasible solution Local search

Variable Charge Approach

Computational results sustain the **assumption of the fixed charging time** because when AGVs return to the pickup point to charge, the residual energy is, on average, about 5% of the battery capacity.

 Both the exact method and the matheuristic can be adapted to the case in which the charging time depends on the residual energy of a vehicle.

DIFFERENCES WITH EXACT METHOD

- Remove parameter t (charging time)
- Add parameter τ which indicates the **charging time per energy unit**
- Update makespan constraint:

$$c_{\max} \ge \sum_{j \in J} d_j x_{jm} + \tau \sum_{j \in J} \sum_{r \in R \setminus \{n\}} e_j y_{jrm} q_{r+1m} \qquad \forall m \in M$$

For each vehicle m, the time spent by m to perform its jobs and the time of each charging operation which depends on the energy expenditure must be consistent with the makespan.

- Ignore the last charging operation since AGVs are charged at night.
- Not linear.

DIFFERENCES WITH MATHEURISTIC

- Remove parameter *t* (charging time)
- Add parameter τ which indicates the **charging time per energy unit**
- New lower bound formula no longer requiring to solve BPP.
- Charge job duration has to be modified in BGAP-R to ignore the charging time of the last charging job.
- Saving expressions must be modified to consider the variable charging times.

INSTANCES AND AXIS OF ASSESSMENT

- 1080 instances
- Parameters:
 - Number of **jobs** $J \in [50,100,150,200]$
 - Number of **AGVs** $M \in [2,5,10]$
 - Transfer job time **duration** $d \in \mathbb{N}^+$
 - Transfer job **energy cost** $e \in \mathbb{R}^+, \mu_e \in [1,2,4]$

Considerations on:

- Percentage gap from optimum
- Computational time

MATHEURISTIC - % GAP FROM LOWER BOUND

AGVs/Jobs	50	100	150	200
2	0.00	0.00	0.00	0.00
5	0.92	0.01	0.00	0.00
10	5.97	0.81	0.11	0.04

- As the instance size grows, so does the matheuristic's performance.
- The number of AGVs negatively impacts results.

MATHEURISTIC - COMPUTATIONAL TIME (s)

AGVs/Jobs	50	100	150	200
2	0.12	13.60	58.97	75.39
5	5.38	15.88	55.29	80.65
10	2.96	21.21	52.76	74.16

 Computational time increases with the number of jobs, but...

MATHEURISTIC - COMPUTATIONAL TIME (s)

Average job cost/Jobs	50	100	150	200
1	0.05	0.16	0.45	3.94
2	0.05	4.83	5.86	4.89
4	9.15	48.21	162.01	220.92

- It mostly depends on the average job cost.
- This happens because more expensive jobs require more charging operations.

EXACT METHOD - % GUROBI GAP

AGVs/Jobs	50	100	150
2	0.00	0.22	1.21
5	0.06	0.88	8.01
10	0.20	2.09	15.12

- As the instance size grows, the performances of the exact method decrease.
- Opposite with respect to the matheuristic.

EXACT METHOD - COMPUTATIONAL TIME (s)

AGVs/Jobs	50	100	150
2	16.13	196.38	405.35
5	70.73	326.57	512.53
10	173.68	416.86	576.95

 Computational time increases with the number of jobs and also with the number of AGVs.

EXACT METHOD - COMPUTATIONAL TIME (s)

Average Job Cost/Jobs	50	100	150
1	3.50	80.08	364.04
2	67.66	337.35	537.32
4	213.77	515.19	573.39

• As seen for the matheuristic, computational time depends heavily on the average job cost.

Local Search

SAVE ADD

$$s_a(m_1,j,m_2) = \max\{0,c_{\max} - \max_{m \notin m_1,m_2} \{c_{m_1} - d_j,c_{m_2} + d_j + t,c_m\}\}$$

$$c_m = \sum_{j \in J} d_j \cdot x_{jm} + \sum_{r \in R \setminus \{1\}} t \cdot q_{rm}$$

Duration of the transfer process on AGV m

Local Search

SAVE REMOVE

$$s_r(m_1, j, m_2, r) = \max\{0, c_{\max} - \max_{m \notin m_1, m_2} \{c_{m_1} - d_j, c_{m_2} + d_j, c_m\}\}$$

$$\sum_{i \in J} e_i \cdot y_{rim_2} + e_j \le b$$
 If charge operation r can accommodate job j

Local Search

SAVE SWAP

$$s_s(m_1, r_1, j_1, m_2, r_2, j_r) = \max\{0, c_{\max} - \max_{m \notin m_1, m_2} \{c_{m_1} - d_{j_1} + d_{j_2}, c_{m_2} + d_{j_1} - d_{j_2}, c_m\}\}$$

$$b \ge \sum_{i \in J} e_i \cdot y_{r_1 i m_1} - e_{j1} + e_{j_2} \qquad \text{and} \qquad b \ge \sum_{i \in J} e_i \cdot y_{r_2 i m_2} + e_{j1} - e_{j_2}$$

DIFFERENCES WITH MATHEURISTIC

New lower bound formula:

$$LB = \left[\frac{\sum_{j \in J} (d_j + \tau e_j)}{|M|} - \tau b \right]$$

Charge job duration in BGAP-R

$$D_r = \sum_{j \in J} (d_j + \tau e_j) \chi_{rj}$$

CONSTRAINT LINEARIZATION

Define a new variable

$$w_{jrm} \in \{0,1\}$$

such that

$$w_{jrm} \le y_{jrm}$$

$$w_{jrm} \le q_{r+1m}$$

$$w_{jrm} \ge y_{jrm} + q_{r+1m} - 1$$

$$\forall r \in R \backslash \{n\}, j \in J, m \in M$$