Complex Analysis, Final Oral Exam Questions Spring 2017

Problem 1. Define a function $\eta(s)$ by the series

$$\eta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s}.$$

- (a) Show that $\eta(s)$ converges locally uniformly for Re s>0 and defines a holomorphic function.
- (b) Show that in the region Re s > 1, $\eta(s)$ and $\zeta(s)$ are related by

$$\eta(s) = (1 - 2^{1-s})\zeta(s).$$

- (c) Show that $\eta(s)$ has no zeros for $s \in \mathbb{R}$, 0 < s < 1 (Hint: alternating series have many lower bounds). Extend this to s = 0 by the functional equation for ζ .
- (d) Show that $\zeta(s) \in \mathbb{R}$ for all $s \in \mathbb{R} \setminus \{1\}$.

Problem 2. Prove the fudamental theorem of algebra using Rouché's theorem. More precisely, if $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0$ with $a_n \neq 0$, prove that p has n roots (counted with multiplicity) in \mathbb{C} .

Problem 3. Compute

$$\frac{1}{2\pi i} \oint_{|z|=3/2} \frac{1}{(z-2)(z^5-1)} \, dz.$$

(Hint: Show that $\oint_{|z|=R} \frac{1}{(z-2)(z^5-1)} dz = 0$ for large R. Why?)

Problem 4. Let $L = \mathbb{Z} \langle \omega_1, \omega_2 \rangle \subset \mathbb{C}$ be a nondegenerate lattice. Construct a meromorphic function having poles of order 1 precisely at each lattice point, with all residues equal to 1. Is this function an elliptic function? What is its derivative?

Problem 5. Suppose f(z) is an entire function which is periodic along the real and imaginary axes: f(x+1) = f(x) for all $x \in \mathbb{R}$, and f(iy+i) = f(iy) for all $y \in \mathbb{R}$. Prove that f is constant. (Hint: show that f(z+1) = f(z+i) = f(z) for all z.)

Problem 6. For a fixed nondegenerate lattice $L \subset \mathbb{C}$, and $k \geq 3$ let

$$G_k(L) = \sum_{\omega \in L \setminus 0} \omega^{-k}$$

denote the Eisenstein series.

- (a) Prove that $G_k(L) = 0$ for odd k.
- (b) Prove the recursion formula

$$(2m+1)(m-3)(2m-1)G_{2m} = 3\sum_{j=2}^{m-2} (2j-1)(2m-2j-1)G_{2j}G_{2m-2j}$$

by expressing $\wp''(z)$ as a polynomial in $\wp'(z)$ and $\wp(z)$ and equating Laurent coefficients. (If the full recursion formula proves to be too much, just find expressions for G_8 and G_10 in terms of G_4 and G_6 .)

Problem 7. Let D be the open unit disk in \mathbb{C} . Prove that there exists an analytic function $f:D\longrightarrow\mathbb{C}$ which admits no analytic extension to any strictly larger connected open domain $D\cup\Omega$. (Hint: Show that there exists f analytic which vanishes on a countable discrete set $S\subset D$ for which every point in ∂D is an accumulation point.)