

Теория вероятностей, вероятностные процессы и математическая статистика

РАЗДЕЛ 1 Случайные события

Структура курса

РАЗДЕЛ 1. Случайные события

- •Тема 1.1. Основные понятия теории вероятностей.
- •Тема 1.2. Основные теоремы теории вероятностей.
- •Тема 1.3. Повторные независимые испытания.

РАЗДЕЛ 2. Случайные величины

- •Тема 2.1. Понятие случайной величины. Числовые характеристики случайных величин.
- •Тема 2.2. Законы распределения.
- •Тема 2.3. Системы случайных величин.

РАЗДЕЛ 3. Основы математической статистики

- •Тема 3.1. Предельные теоремы теории вероятностей.
- •Тема 3.2. Анализ вариационных рядов.
- •Тема 3.3. Анализ и построение зависимостей.

Лекции Практические занятия проверочные работы Лабораторные занятия

Трудоемкость – 4 ЗЕ Вид контроля - экзамен Теория вероятностей по своей сути есть не более чем здравый смысл, сведённый к исчислению: эта теория позволяет нам оценить с точностью то, что точные умы чувствуют своим инстинктом, который часто не осознают.

П. Лаплас

Ценность теории вероятностей основана на том факте, что случайные явления, рассмотренные совокупно и в больших масштабах, создают неслучайный порядок.

А.Н. Колмогоров

Тема 1. Основные понятия теории вероятностей

Тема 1. Основные понятия теории вероятностей

- Теорией вероятностей называется математическая наука, изучающая закономерности в случайных явлениях.
- Вероятностный процесс (случайный, или стохастический) меняющийся во времени процесс, течение которого может быть различным в зависимости от случая и для которого существует ве роятность того или иного его течения
- Математическая статистика раздел математики, изучающий математические методы сбора, систематизации, обработки и интерпретации результатов наблюдений с целью выявления статистических закономерностей. Математическая статистика опирается на теорию вероятностей.

Исторически зарождение и развитие теории вероятностей связано с азартными играми, в которых требовалось обосновать то или иное решение

- Французский каноник XIII века Ришар де Фурниваль правильно <u>подсчитал все</u> возможные суммы очков после броска трёх костей и указал число способов, которыми может получиться каждая из этих сумм.
- В математической энциклопедии «Сумма арифметики, геометрии, отношений и пропорций» итальянца Луки Пачоли (1494) содержатся оригинальные задачи на тему: как разделить ставку между двумя игроками, если серия игр прервана досрочно.
- Крупный алгебраист XVI века Джероламо Кардано посвятил анализу игры содержательную монографию «Книга об игре в кости» (1526 год).
- Исследованием данной темы занимались итальянский алгебраист, Никколо Тарталья, Галилео Галилей (трактат «О выходе очков при игре в кости», 1718 год), математик-любитель шевалье де Мере, Блез Паскаль и Пьер Ферма (переписка) и др.

Распределение суммы очков после бросания двух костей

Этапы развития теории вероятностей

- **1. Предыстория теории вероятностей** зарождение основные понятий теории вероятностей XVI-XVII вв.
- (Д. Кардано, Л. Пачоли, Н. Тарталья и др.) первые попытки создания теории азартных игр с целью дать рекомендации игрокам.
- 2. Возникновение теории вероятностей как науки XVII начало XVIII в.
- (Б. Паскаль, П. Ферма, Х. Гюйгенс)
- **3.** Появление предельных теорем. Формирование приложений теории вероятностей XVII-XIX вв
- (работы А. Муавра, П. Лапласа, К. Гаусса, С. Пуассона и др.)
- 4. Совершенствование математического аппарата. Развитие приложений и распространение идей ТВ. Возникновение и развитие русской школы XIX начало XX в.
- (работы П.Л. Чебышева, А.М. Ляпунова и А.А. Маркова и других)
- **5.** Современный период развития. Построение аксиоматики. Развитие математической статистики (труды академика А.Н. Колмогорова)

Универсальные и специализированные статистические пакеты:

отечественные STADIA, Эвриста, Статистик-консультант, Олимп: СтатЭксперт американские STATGRAPHICS, SPSS, SYSTAT, STATISTICA и др.

Широкому внедрению математико-статистических методов исследования способствовало появление во второй половине XX в. ЭВМ (ПК), статистических программных пакетов и пр.

Где сейчас в IT применяется теория вероятностей и математическая статистика?

- Data Mining, машинное обучение
- Компьютерное зрение
- Нейросети и системы принятия решений
- Биржевые торговые роботы
- Крипто-анализ и алгоритмы шифрования данных
- Системы моделирования физ. и хим. процессов
- Анализ пространственных данных, геомаркетинг
- Системы прогнозирования, системы поддержи принятия решений
- Распределенные вычислительные системы и анализ их производительности для конкретных задач
- Анализ экономических, финансовых или технических рисков
- Обработка сигналов: изображения, радиолокация, звук
- и др.

Случайные события

- Опыт, эксперимент, наблюдение явления называют испытанием.
- Результат, исход испытания называется событием.
- Два события называются совместимыми (совместными), если появление одного из них не исключает появление другого в одном и том же испытании.
- Два события называются *несовместимыми*, если появление одного из них исключает появление другого в одном и том же испытании.
- Два события *А* и *В* называются *противоположными*, если в данном испытании они несовместны и одно из них обязательно происходит.
- Событие называется *достоверным*, если в данном испытании оно является единственно возможным его исходом, и невозможным, если в данном испытании оно заведомо не может произойти.
- Событие А называется случайным, если оно объективно может наступить или не наступить в данном испытании.

В теории вероятностей есть неопределяемые понятия: элементарные события (исходы) (ω_i) и пространство элементарных событий (Ω={ω_i}).

• *Определение*. Говорят, что совокупность событий образует *полную группу событий* для данного испытания, если его результатом обязательно становится хотя бы одно из них.

Примеры полных групп событий: выпадение герба и выпадение цифры при одном бросании монеты; попадание в цель и промах при одном выстреле; выпадение одного, двух, трех, четырех, пяти и шести очков при одном бросании игральной кости.

- Рассмотрим полную группу попарно несовместимых событий U_1 , U_2 , ..., U_n , связанную с некоторым испытанием. Предположим, что в этом испытании осуществление каждого из событий U_i (i=1,2,...,n) равновозможно, т. е. условия испытания не создают преимуществ в появлении какого-либо события перед другими возможными.
- *Определение*. События $U_1, U_2, ..., U_n$, образующие полную группу попарно несовместимых и равновозможных событий, называют элементарными событиями.

Алгебра событий

- *Суммой* событий A и B называется событие C = A + B, состоящее в наступлении по крайней мере одного из событий A или B.
- Аналогично суммой конечного числа событий A_1 A_2 , ..., A_{κ} называется событие $A = A_1 + A_2 + ... + A_{\kappa}$, состоящее в наступлении хотя бы одного из событий A_i , i=1, ..., κ .

Из определения непосредственно следует, что A + B = B + A. Справедливо также и сочетательное свойство. Однако A + A = A (а не 2A, как в алгебре).

- Произведением событий A и B называется событие C=AB (или $A \cap B$), состоящее в том, что в результате испытания произошли и событие A, и событие B.
- Аналогично *произведением конечного числа событий* A_1 A_2 , ..., A_k называется событие A = A1 A2... Ak, состоящее в том, что в результате испытания произошли все указанные события.

Из определения непосредственно следует, что AB=BA. Справедливы также сочетательный и дистрибутивный законы. Однако AA = A (а не A^2).

A-B

Алгебра событий

• *Отрицанием* события A называется событие \overline{A} (не A), заключающееся в ненаступлении события A ($\overline{A} + \overline{A} = \Omega$, $A \cdot \overline{A} = \overline{\Omega}$). Причём, если в результате опыта может произойти событие A, то может произойти и обратное ему событие \overline{A} .

Если наступление события A приводит к наступлению события B и наоборот (наступление B влечет наступление A), то события A и B равны (A=B).

- *Разностью* событий A-B называется событие C, состоящее из всех элементарных событий, входящих в A, но не входящих в B.
- Событие A называется **частным случаем** B (событие A влечет за собой событие B), если при наступлении события A наступает и событие B. Обозначение $A \subset B$

Алгебра событий

Свойства операций над событиями

1.
$$A + B = B + A$$
, $A \cdot B = B \cdot A$.

2.
$$(A+B) \cdot C = AC + BC$$
.

3.
$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$
.

4.
$$A + A = A$$
, $A \cdot A = A$.

5.
$$A + \Omega = \Omega$$
, $A \cdot \Omega = A$.

$$\Omega$$
 - *достоверное событие*, если оно всегда происходит при данном комплексе S ;

6.
$$A + \overline{A} = \Omega$$
, $A \cdot \overline{A} = \emptyset$.

7.
$$\overline{\varnothing} = \Omega$$
, $\overline{\Omega} = \varnothing$, $\overline{\overline{A}} = A$.

8.
$$A - B = A \cdot \overline{B}$$
.

9.
$$\overline{A+B}=\overline{A}\cdot\overline{B}$$
, $\overline{A\cdot B}=\overline{A}+\overline{B}$ (законы де Моргана).

Пусть S - множество всех подмножеств Ω , для которого выполняются следующие свойства:

- 1) если $A \in S$ и $B \in S$, то $A + B = A \cup B \in S$,
- 2) если $A \in S$ и $B \in S$, то $A \cdot B = A \cap B \in S$,
- 3) если $A \in S$, то $\bar{A} \in S$,

тогда множество S называется алгеброй событий.

Классическое определение вероятности

Определение. Событие А называется благоприятствующим событию В, если наступление события А влечет за собой наступление события В.

Определение (классическое определение вероятности). Вероятность события А равна отношению числа случаев, благоприятствующих появлению события А, к числу всех возможных случаев, т.е.

$$P(A) = \frac{m}{n},$$

способ *непосредственного вычисления вероятности*

где n — число всех возможных случаев, а m — число случаев, способствующих появлению события A.

Непосредственное вычисление вероятности - для симметричных и одинаково возможных последствий испытаний, подразумевает конечное число несовместных, единственно возможных результатов.

13

Свойства вероятности (вытекают из классического определения вероятности)

1. Вероятность достоверного события равна единице.

Действительно, достоверному событию должны благоприятствовать все n элементарных событий, т.е. m = n и, следовательно,

$$P(A) = \frac{m}{n} = \frac{n}{n} = 1$$

2. Вероятность невозможного события равна нулю.

В самом деле, невозможному событию не может благоприятствовать ни одно из элементарных событий, т.е. m=0, откуда

$$P(A) = \frac{m}{n} = \frac{0}{n} = 0$$

3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных событий. Поэтому в этом случае 0 < m < n и, значит, 0 < m / n < 1. Следовательно, 0 < P(A) < 1.

Таким образом, вероятность любого события удовлетворяет двойному неравенству $0 \le P(A) \le 1$.

Замечание. Из определения вероятности следует, что элементарные события являются равновероятными, т. е. обладают одной и той же вероятностью.

• *Определение*. *Перестановками* из n различных элементов называются размещения из этих n элементов по n.

Перестановки можно рассматривать как частный случай размещений при m=n

- *Или*, любое произвольное упорядоченное множество, состоящее из *n* элементов, называется *перестановкой* из *n* элементов.
- Формула для вычисления числа перестановок из *п* элементов:

$$P_n = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-1) \cdot n = n!$$

Пример 1. Для множества {A,B,C} указать все перестановки

Решение. ABC, ACB, BAC, BCA, CAB, CBA. Как видно, всего перестановок: $P_3 = 3! = 6$

Пример 2. Сколько существует способов расстановки 10 книг на полке?

Решение. Общее число способов расстановки определяется как число перестановок из 10 элементов и равно $P_{10} = 10! = 3\,628\,800$.

Обычно в комбинаторике рассматривается идеализированный эксперимент по выбору наудачу m элементов из n.

При этом элементы:

- а) не возвращаются обратно (схема выбора без возвращений);
- б) возвращаются обратно (схема выбора с возвращением).

Схема выбора без возвращений

- **Определение.** Размещениями из n различных элементов по m элементов ($m \le n$) называются комбинации, составленные из данных n элементов по m элементов, которые отличаются либо самими элементами, либо порядком элементов.
- Или, произвольное упорядоченное подмножество из n элементов данного множества M, содержащего m элементов, где $m \le n$, называется размещением из n элементов по m

$$A_n^m = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-(m-1)) = n(n-1)(n-2) \dots (n-m+1) = \frac{n!}{(n-m)!}$$

Схема выбора с возвращением

Если при выборе κ элементов из n - элементы возвращаются обратно и упорядочиваются, то говорят, что это размещения с повторениями.

Число размещений с повторениями $\overline{A_n^k} = n^k$.

Схема выбора без возвращений

• *Определение*. Сочетаниями из *n* различных элементов по *m* элементов называются комбинации, составленные из данных *n* элементов по *m* элементов, которые отличаются хотя бы одним элементом.

Отметим разницу между сочетаниями и размещениями: в первых не учитывается порядок элементов.

- Произвольное подмножество из m элементов данного множества M, состоящего из n элементов, называется сочетанием из n элементов $no\ m$.
- Рассмотрим все допустимые сочетания элементов $a_{\alpha 1}, a_{\alpha 2}, ..., a_{\alpha m}$. Делая в каждом из них m! возможных перестановок их элементов, очевидно, получим общее число размещений из n элементов по m.
- Таким образом, отсюда

$$C_n^m = A_n^m / m!$$
 или

$$C_n^m = \frac{n!}{m!(n-m)!}$$

Свойства сочетаний:

1.
$$C_n^m = C_n^{n-m}$$

2.
$$C_n^{m+1} = \frac{n-m}{m+1} \cdot C_n^m$$
. из т элементов, равно 2^m

3.
$$C_n^m + C_n^{m+1} = C_{n+1}^{m+1}$$
.

Число всех подмножеств множества A, состоящего из m элементов, равно 2^m

Числа C_n^m являются коэффициентами в формуле бинома Ньютона

Схема выбора с возвращением

Если при выборе к элементов из n элементы возвращаются обратно без последующего упорядочивания, то говорят, что это *сочетания с повторениями*.

Число сочетаний с повторениями из n элементов по κ

$$\overline{C_n^k} = C_{n+k-1}^k = \frac{(n+k-1)!}{(n-1)! \cdot k!}$$

Пример 3. В магазине продается 10 видов тортов. Очередной покупатель выбил чек на три торта. Считая, что любой набор товаров равновозможен, определить число возможных заказов.

Решение. Число равновозможных заказов равно
$$C_{10+3-1}^3 = C_{12}^3 = \frac{12!}{(12-3)!3!} = \frac{9! \cdot 10 \cdot 11 \cdot 12}{9! \cdot 3!} = 220$$

При решении задач комбинаторики можно использовать следующие правила:

- **Правило суммы**. Если некоторый элемент A может быть выбран из совокупности элементов m способами, а другой элемент B-n способами, то выбрать либо A, либо B можно m+n способами.
- *Правило произведения*. Если элемент A можно выбрать из совокупности элементов *m* способами и после каждого такого выбора элемент B можно выбрать *n* способами, то пара элементов (A, B) в указанном порядке может быть выбрана *m n* способами.
- Эти правила справедливы и для любого конечного числа элементов.
- **Пример 4.** Сколько существует наборов, состоящих из одной буквы или одной цифры, если буква выбирается из множества {A,B,C,D}, а цифра из множества {1,2,3}?
- Решение. По правилу сложения всего наборов: 4 + 3 = 7 (A,B,C,D, 1,2,3).
- **Пример 5.** Сколько существует наборов, состоящих из одной буквы и одной цифры, если буква выбирается из множества {A,B,C,D}, а цифра из множества {1,2,3}?
- Решение. Букву (первый объект) можно выбрать 4 способами, а после выбора буквы цифру (второй объект) можно выбрать 3 способами. По правилу умножения всего наборов $4 \cdot 3 = 12$ (A1, A2, A3, B1, B2, B3, C1, C2, C3, D1, D2, D3)

Примеры применения формул комбинаторики к нахождению вероятностей событий

Пример 6. Набирая номер телефона, абонент забыл две последние цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Какова вероятность того, что номер набран правильно?

Пример 7. Партия из 10 деталей содержит одну нестандартную. Какова вероятность, что при случайной выборке 5 деталей из этой партии все они будут стандартными (событие A)?

Геометрическая вероятность

- В двумерном случае (на плоскости) может оказаться, что при геометрической интерпретации получится такая картина: имеется фигура площадью *s*, и на нее наудачу ставится точка.
- Тогда вероятность попадания точки на часть этой фигуры, имеющую площадь q, оказывается равной q/s.
- В трехмерном случае (в пространстве) здесь берется отношение соответствующих объемов.
- Определение. Геометрической вероятностью события А называется отношение меры области, благоприятствующей появлению события А, к мере всей области.

Относительная частота. Статистическое определение вероятности.

Пусть произведено n испытаний, при этом некоторое событие A наступило m раз. Определение. Число т называется абсолютной частотой (или просто частотой) события А, а отношение

$$P*(A) = \frac{m}{n},$$

 $P*(A) = \frac{m}{n}$, называется относительной частотой события А.

Определение (статистическое определение вероятности). Вероятностью события А в данном испытании называется число P(A), около которого группируются значения относительной частоты при больших n.

Таким образом, относительная частота события приближенно совпадает с его вероятностью в статистическом смысле, если число испытаний достаточно велико.

C этой точки зрения величина m=np представляет собой среднее значение числа появления события А при п испытаниях.

При широких предположениях доказывается, что вероятности события в классическом и статистическом смысле совпадают между собой.

Аксиоматическое определение вероятности

Вероятность события - это численная мера объективной возможности его появления.

Аксиомы вероятности

•Каждому событию A ставится в соответствие неотрицательное число p, которое называется вероятностью события A:

$$P(A) = p \ge 0$$
, где A \in S, S $\subseteq \Omega$

•Если события $A_1, A_2, ..., A_n$ несовместны, то верно равенство:

$$P(A_1 + A_2 + ... + A_n) = P(A_1) + P(A_2) + ... + P(A_n)$$
, где $A_i \in S$ ($i = 1, 2, ..., n$), $S \subseteq Q$.

- • $P(\Omega)$ =1, где Ω истинное (достоверное) событие.
- •Пространство элементарных событий Ω с заданной в нем алгеброй S (или σ -алгеброй) и определенной на S вероятностью неотрицательной мерой P(A), $A \in S$ называется вероятностным пространством и обозначается (Ω , S, P). Вероятностное пространство служит математической моделью любого случайного явления в теории вероятностей.
- •Аксиоматический подход не указывает, как конкретно находить вероятность, поэтому для решения задач целесообразно использовать подходы к определению вероятности, которые перечислены ниже.