SPAMta

Miguel Mendes Jéssica Aparecida Ricardo Luiz

- Introdução
- Objetivos
- Descrição dos Dados e Modelagem
- Resultados
- Conclusão
- Referências

- Introdução
- Objetivos
- Descrição dos Dados e Modelagem
- Resultados
- Conclusão
- Referências

Introdução

- SPAM: Stupid Pointless Annoying Messages
- HAM: Não-spam
- Motivação: separar bons e-mails de e-mails, que não oferecem nenhum valor, automaticamente.

- Introdução
- Objetivos
- Descrição dos Dados e Modelagem
- Resultados
- Conclusão
- Referências

Objetivos

- Apresentar um classificador de SPAM.
- Filtrar e-mails automaticamente.
- Construir um classificador capaz de detectar SPAM sem ser explicitamente programado.
- Aplicar um conceito visto em aula em um problema real.
- Comparar o desempenho entre duas das principais técnicas de aprendizado supervisionado.

- Introdução
- Objetivos
- Descrição dos Dados e Modelagem
- Resultados
- Conclusão
- Referências

- Datasets obtidos no projeto SpamAssassin.
- 3900 emails rotulados como não-spam (ham).
- 1896 emails rotulados como spam.
- Emails obtidos entre os anos 1999-2004.
- Todos os emails estão em formato bruto.

- Contém cabeçalhos, links e tags HTML.
- Todas as palavras foram postas em lowercase.
- Foram removidos todas as tags HTML.
- Números foram substituídos por "number".
- Urls removidas e substituídas por "httpaddr".

- Endereços de emails substituídos por "emailaddr"
- Substituição de \$ por "dollar".
- Remoção de todas as pontuações.
- Dados tokenizados e submetidos ao processo de stemming.
- Contagem das palavras realizada no dataset de spams.
- Bag-of-word com as 2000 palavras mais frequentes no dataset spam.

- Foram utilizadas duas técnicas:
 - o SVM
 - o Redes Neurais
- SVM com kernel linear.
- Rede Neural com 25 neurônios na camada escondida.

- Divisão dos dados:
 - o 70% dos dados para treinamento
 - o 15% dos dados para cross-validation
 - 15% dos dados para teste
- Como são apenas duas classes não foi necessário usar one-vs-all.

- Introdução
- Objetivos
- Descrição dos Dados e Modelagem
- Resultados
- Conclusão
- Referências

Métricas Utilizadas:

o Acurácia =
$$\frac{VP + VN}{P + N}$$

$$\circ \quad \text{Recall} = \frac{\text{VP}}{\text{VP} + \text{FN}}$$

o Precisão =
$$\frac{VP}{VP + FP}$$

- VP = Verdadeiro Positivo
- FN = Falso Negativo
- FP = Falso Positivo
- P = Total de positivos
- N = Total de negativos

- Usando SVM foram obtidos os seguintes resultados:
 - o Treinamento:
 - Acurácia: 100%
 - o Cross-validation:
 - Acurácia: 99.65%
 - o Teste:
 - Acurácia: 99.19%

Matriz de Confusão no Training Set (SVM)

Previsto		
Atual	2706	0
	0	1351

Acurácia: 100%

Recall: 100%

• Precisão: 100%

Matriz de Confusão no Cross-Validation

(SVM)

Previsto		
Atual	590	0
	3	276

Acurácia: 99.65%

Recall: 100%

Precisão: 99.49%

Matriz de Confusão no Test Set (SVM)

Previsto		
Atual	600	4
	3	263

Acurácia: 99.19%

Recall: 99.33%

Precisão: 99.50%

- Usando SVM foram obtidos os seguintes resultados:
 - o Treinamento
 - Acurácia: 100%
 - Cross-validation
 - Acurácia: 100%
 - o Teste
 - Acurácia: 99.80%

Matriz de Confusão no Training Set (Rede

Neural)

Previsto		
Atual	2703	0
	0	1355

Acurácia: 100%

Recall: 100%

Precisão: 100%

 Matriz de Confusão no Cross-Validation (Rede Neural)

Previsto		
Atual	620	0
	0	249

Acurácia: 100%

Recall: 100%

Precisão: 100%

Matriz de Confusão no Test Set (Rede

Neural)

Previsto		
Atual	577	0
	2	290

Acurácia: 99.8%

Recall: 100%

Precisão: 99.70%

- Introdução
- Objetivos
- Descrição dos Dados e Modelagem
- Resultados
- Conclusão
- Referências

Conclusão

- Embora os resultados sejam parecidos, a Rede Neural teve uma ligeira vantagem sobre o SVM.
- E-mails "antigos" são facilmente classificados em comparação com spam disseminados atualmente.
- Pre-processar os e-mails foi a tarefa mais complexa e que tomou mais tempo.

- Introdução
- Objetos
- Descrição dos Dados e Modelagem
- Resultados
- Conclusão
- Referências

Referências

- Slides vistos em aula.
- Han, J.; Kamber, M.; Pei J. Data Mining: Concepts and Techniques, 3rd Edition;
- BEZERRA, E.; GOLDSCHMIDT, R. R. A Tarefa de Classificação em Text Mining. Revista de Sistemas de Informação da FSMA n. 5, pp. 42-62, 2010.
- The Apache SpamAssassin Project. Disponível em: http://spamassassin.apache.org/publiccorpus/.
 Acesso em: 23/09/2013 às 19:26)