ChechTalk: Machine Learning

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Que es Machine Learning?

Aprendemos de experiencias pasadas

Se programa para realizar una tarea

Es posible hacer que una maquina aprenda de experiencias pasadas?

Que es Machine Learning?

Aprendemos de experiencias pasadas

Se programa para realizar una tarea

Es posible hacer que una maquina aprenda de experiencias pasadas?

Machine learning se trata de enseñarle a las computadoras a realizar tareas en base a experiencias pasadas

Experiencias pasadas = datos

Algunos aplicaciones del Machine Learning

Autos Autónomos

Asistentes personales

Juegos

Tratamiento y diagnostico de enfermedades

Predicciones financieras

Reconocimiento de facial, reconocimiento de voz

Detección de spam

Sistemas de recomendación

Observar un grupo de ejemplos: training data

Llegar a inferir algo sobre esa data que me ayude a formar un modelo para predecir futuros valores

Usar ese modelo para datos no cargados anteriormente: test data

Tipos de Aprendizaje

•<u>Aprendizaje Supervisado</u>: Genera modelos predictivos, con datos clasificados llega a clasificar datos que no fueron vistos anteriormente

- •<u>Aprendizaje No Supervisado</u>: Dado un grupo de datos sin clasificar, buscar la forma de agruparlos
- •Aprendizaje por Refuerzos: Se usa una función de recompensa y el objetivo del modelo va a ser maximizar la recompensa, se busca generar comportamiento

Gradiente descendente y regresion lineal

Gradiente descendente

Error_(m,b) =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - (mx_i + b))^2$$

$$\frac{\partial}{\partial \mathbf{m}} = \frac{2}{N} \sum_{i=1}^{N} -x_i (y_i - (mx_i + b))$$

$$\frac{\partial}{\partial \mathbf{b}} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (mx_i + b))$$

Overfit and Underfit

High bias (underfit)

"Just right"

Feature Engineering

El feauture engineer es la clave del machine learning

Features innecesarios nos pueden llevar al overfitting

Features necesarios no incluidos nos pueden llevar al underfitting

Los features ayudan al modelo a volverse mas complejo

Redes Neuronales

Redes Neuronales

Redes Neuronales

PEROOOOOOO

Oye chico pero jaimico no sabe que numero usar como K, como puede ayudar a jaimico?

SOY LA COMADREJA!

HIERARCHICAL CLUSTERING!!!

De nada!!

GRACIAS CHICO!

Aprendizaje por refuerzos

Refuerzo Negativo

Aprendizaje por refuerzos

REFUERZO POSITIVO

Thats all folks!

Eso es todo espero que les haya gustado! Chaauuu! Protip: como evitar el casamiento:

MY HOBBY: EXTRAPOLATING

Gracias a Udacity, Sci-kit learning, stack overflow, mulesoft, MIT opencoursware, xkcd y demás fuentes de las que se haya usado material para la presentación.