Motif Finding

CMSC 423

Motivation

MicroArray analysis of whole genome gene expression

Clustering of genes based on their expression pattern

Searching for conserved sequence motifs regulating the expression

Doug Brutlag 2010

DNA -> mRNA -> Protein

Finding transcription factor binding sites can tell us about the cell's regulatory network.

Finding Transcription Factor Binding Sites

Upstream Regions

Co-expressed Genes

GATGGCTGCACCACGTGTATGC...ACG
Pho 5

CACATCGCATCACGTGACCAGT...GAC
Pho 8

GCCTCGCACGTGGTGCACCAGT...AAC
Pho 81

TCTCGTTAGGACCATCACGTGA...ACA
Pho 84

CGCTAGCCCACGTGGATCTTGA...AGA

Finding Transcription Factor Binding Sites

Upstream Regions

Co-expressed Genes

GATGGCTGCACCACGTGTATGC...ACGATGTCTCGC

CACATCGCATCACGTGACCAGT...GACATGGACGGC

GCCTCGCACGTGGTGGTACAGT...AACATGACTAAA

TCTCGTTAGGACCATCACGTGA...ACAATGAGAGCG

CGCTAGCCCACGTGGATCTTGT...AGAATGGCCTAT

Finding Transcription Factor Binding Sites

Upstream Regions

Co-expressed Genes

ATGGCTGCACCACGTTTATGC...ACGATGTCTCGC

CACATCGCATCACGTGACCAGT...GACATGGACGGC

GCCTCGCACGTGGTGGTACAGT...AACATGACTAAA

TTAGGACCATCACGTGA...ACAATGAGAGCG

CGCTAGCCCACGTTGATCTTGT...AGAATGGCCTAT

Pho4 binding

Motif Finding

Transcription factor

- 1. ttgccacaaaataatccgccttcgcaaattgaccTACCTCAATAGCGGTAgaaaaacgcaccactgcctgacag
- 2. gtaagtacctgaaagttacggtctgcgaacgctattccacTGCTCCTTTATAGGTAcaacagtatagtctgatgga
- 3. ccacacggcaaataaggagTAACTCTTTCCGGGTAtgggtatacttcagccaatagccgagaatactgccattccag
- 4. ccatacccggaaagagttactccttatttgccgtgtggttagtcgcttTACATCGGTAAGGGTAgggattttacagca
- 5. aaactattaagatttttatgcagatgggtattaaggaGTATTCCCCATGGGTAacatattaatggctctta
- 6. ttacagtctgttatgtggtggctgttaaTTATCCTAAAGGGGTAtcttaggaatttactt

Given t sequences of length n, find most mutually similar set of k-mers (one from each)

Problem: We don't know what the correct motif is!

Example:

10-mer with at most 4 mismatches

Correct 10-mer is AAAAAGGGGGG

AgAAtGaGGc cAAtAGGatG

10-mers have 8 mismatches from each other although they have only 4 mismatches between the correct motif

Solution: Scoring Motifs

- Scoring the individual instance of motifs depending on how similar they are to the "ideal" motif.
- BUT WE DON'T KNOW THE IDEAL MOTIF!
- Solution: select motifs from each string and score them depending on how similar they are to each other.

If we knew the starting point of the motif in each sequence, we could construct a Sequence Profile (PSSM) for the motif:

- 3. ccacacggcaaataaggagTAACTCTTTCCGGGTAtgggtatacttcagccaatagccgagaatactgccatt
- 4. ccatacccggaaagagttactccttatttgccgtgtggttagtcgcttTACATCGGTAAGGGTAgggatttt
- 5. aaactattaagatttttatgcagatgggtattaaggaGTATTCCCCATGGGTAacatattaatggctctta
- 6. ttacagtctgttatgtggtggctgttaaTTATCCTAAAGGGGTAtcttaggaatttactt

\mathbf{T}	C	G	G	G	G	a	\mathbf{T}	\mathbf{T}	\mathbf{T}	t	t
C	C	G	G	t	G	A	C	\mathbf{T}	\mathbf{T}	a	C
a	C	G	G	G	G	A	\mathbf{T}	\mathbf{T}	T	t.	C
\mathbf{T}	t.	G	G	G	G	A	С	\mathbf{T}	T	t.	t
a	a	G	G	G	G	A	C	\mathbf{T}	\mathbf{T}	C	C
\mathbf{T}	t.	G	G	G	G	A	C	\mathbf{T}	\mathbf{T}	C	C
\mathbf{T}	C	G	G	G	G	A	\mathbf{T}	\mathbf{T}	С	a	t
\mathbf{T}	C	G	G	G	G	A	\mathbf{T}	\mathbf{T}	C	C	t
\mathbf{T}	a	G	G	G	G	A	a	C	\mathbf{T}	a	C
\mathbf{T}	C	G	G	G	t.	A	\mathbf{T}	a	a	C	C

Motifs

```
\mathbf{T}
                                                               G
                                                                                                  ţ,
                                                               G
                                                                                                  C
                                                                                                  C
                Motifs
                                                               G
                                  т
                                             Ġ
                                                   G
                                                               G
                                  \mathbf{T}
                                                         G
                                             G
                                                   G
                                                         G
                                                               G
                                                                           \mathbf{T}
                                  \mathbf{T}
                                  т
                                                                                                  C
                                  \mathbf{T}
      SCORE(Motifs)
                            A:
     COUNT(Motifs)
                                            10
                                        2
                            T:
                                                                                                 .6
     PROFILE(Motifs)
                            G:
Consensus (Motifs)
```


Sequence Profiles (PSSM)

Motif Position

Color \approx Probability that the ith position has the given amino acid = $e_i(x)$.

Sequence Logos

Height of letter ≈ fraction of time that letter is observed at that position.

(Height of all the letters in a column ≈ to how conserved the column is)

Motif Position

Motif Finding Problem:

Given a collection of string, find the set of k-mers, one from each string that minimizes score of the resulting motif.

INPUT: A collection of strings Dna and integer k.

OUTPUT: A collection motifs of k-mers, one from each string in the Dna, minimizing SCORE(Motifs)

among all possible choices of k-mers

What is most simple solution this problem?

Brute Force algorithm

BruteForceMotifSearch(Dna,k)

consider each possible choice of k-mers Motifs from Dna and return the collection Motifs having minimum score.

What is the complexity of this algorithm?

Same Motif Finding Problem:

Given a collection of string, find the set of k-mers, one from each string that minimizes score of the resulting motif.

INPUT: A collection of strings Dna and integer k.

OUTPUT: The starting position vector [x1,..,xt] which

minimizes SCORE([x1,..,xt]) over all possible

vectors.

What is probability Pr(ACGGGGATTACC|Profile)?

Scoring a Sequence

Score of a string according to profile M = Product of the probabilities you would observe the given letters.

```
Profile  \begin{array}{c} \textbf{A: .2 .2 .0 .0 .0 .0 .0 .9 .1 .1 .1 .3 .0} \\ \textbf{C: .1 .6 .0 .0 .0 .0 .0 .0 .4 .1 .2 .4 .6} \\ \textbf{G: .0 .0 1 1 .9 .9 .1 .0 .0 .0 .0 .0} \\ \textbf{T: .7 .2 .0 .0 .1 .1 .0 .5 .8 .7 .3 .4} \\ \textbf{Pr(ACGGGGATTACC|Profile)} = .2 \cdot .6 \cdot 1 \cdot 1 \cdot .9 \cdot .9 \cdot .9 \cdot .5 \cdot .8 \cdot .1 \cdot .4 \cdot .6 = 0.000839808 \end{array}
```

Profile Probability Distribution

Instead of choosing the position with the best match, choose a position randomly such that:

Probability of choosing position
$$j = \frac{A_j}{\sum_i A_i}$$

(Lawrence, et al., Science, 1994)

Profile-most Probable k-mer Problem:

Given a profile matrix, we can evaluate the probability of every k-mer in a string Text and find a Profile-most probable k-mer in text.

Input: A string text, an integer k and 4xk profile matrix.

Output: A Profile-most probable k-mer in text.

Proposed Greedy Algorithm

The basic idea of the greedy motif search algorithm is to find the set of motifs across a number of DNA sequences that match each other most closely. To do this we:

- Run through each possible k-mer in our first dna string
- Identify the best matches for this initial k-mer within each of the following dna strings thus creating a set of motifs at each step
- Score each set of motifs to find and return the best scoring set.

GREEDYMOTIFSEARCH(Dna, k, t)

```
BestMotifs ← motif matrix formed by first k-mers in each string from

Dna

for each k-mer Motif in the first string from Dna

Motif1 ← Motif

for i = 2 to t

form Profile from motifs Motif1, ..., Motifi - 1

Motifi ← Profile-most probable k-mer in the i-th string

in Dna

Motifs ← (Motif1, ..., Motift)

if Score(Motifs) < Score(BestMotifs)

BestMotifs ← Motifs

output BestMotifs
```

Example

GreedyMotifSearch Example

What if we want the index of best Motifs?

GREEDYMOTIFSEARCH(Dna, k, t)

```
\label{eq:bestVector} \begin{aligned} &\text{BestVector} \leftarrow [1,1,.....,1] \\ &\text{for } j = 1 \text{ ............, } n\text{-k+1} \\ &\text{CurrentVector} \leftarrow [j] \\ &\text{for } i = 2 \text{ to } t \\ &\text{form Profile from CurrentVector} \\ &\text{u} \leftarrow \text{Position of Profile-most probable k-mer in the } i\text{-th string in Dna} \\ &\text{CurrentVector} \leftarrow &\text{CurrentVector} + [u] \\ &\text{if Score}(\text{CurrentVector}) < \text{Score}(\text{BestVector}) \\ &\text{BestVector} \leftarrow &\text{CurrentVector} \\ &\text{output BestVector} \end{aligned}
```

Problem with GREEDYMOTIFSEARCH

```
Motifs:
T A A A
G T C T
A C T A
A G G T
```

```
Count(Motifs):

A: 2 1 1 2

C: 0 1 1 0

G: 1 1 1 0

T: 1 1 1 2

Profile(Motifs):

A: 2/4 1/4 1/4 2/4

C: 0 1/4 1/4 0

G: 1/4 1/4 1/4 0

T: 1/4 1/4 1/4 2/4
```

What is probability Pr(CAGT|Profile)?

And Pr(CAGC|Profile)?

Solution: Laplace's Rule of Succession (Add 1 to each element to avoid zeros)

Motifs: T A A C G T C T A C T A A G G T

```
Count(Motifs):
                           Profile(Motifs):
A: 2+1
       1+1
             1+1
                2+1
                            A: 3/8
                                   2/8
                                         2/8
                                              3/8
C: 0+1 1+1
            1+1 0+1
                            C: 1/8 2/8
                                         2/8 1/8
G: 1+1 1+1
            1+1 0+1
                           G: 2/8 2/8 2/8 1/8
                  2+1
T: 1+1 1+1
             1+1
                            T: 2/8 2/8
                                         2/8
                                              3/8
```

What is probability Pr(CAGT|Profile)?

And Pr(CAGC|Profile)?