4. Advanced Data Structures

Rot-Schwarz-Bäume (RS-Bäume)

Anwendung: Linux Completely Fair Scheduling

Verwendet RS-Bäume. um Worst-Case-Laufzeit $(\log n)$ zu erreichen key : virtual run time eines Prozesses in Sekunden

- 1. Nächsten Prozess holen
- 2. Addiere zugewiesene Zeit
- 3. Füge mit aktualisierter Zeit wieder ein

Baumkunde

Ein RS-Baum ist ein binärer Suchbaum, sodass gilt:

- 1. Jeder Knoten ist rot oder schwarz (x.color=red/black)
- 2. Die Wurzel ist schwarz, wenn der Baum nicht leer ist
- 3. Wenn ein Knoten rot ist, sind seine Kinder schwarz (Nicht-Rot-Rot-Regel)
- 4. Für jeden Knoten hat jeder Pfad im Teilbaum zu einem Blatt/Halbblatt die gleiche Anzahl an schwarzen Knoten

Halbblätter

Halbblätter sind Knoten mit nur einem Kind Halbblätter im RS-Baum sind schwarz, sonst wird direkt mindestens eine Regel verletzt

Schwarzhöhe eines Knoten

Die Schwarzhöhe eines Knoten \propto ist die eindeutige Anzahl an schwarzen Knoten auf dem Weg zu einem Blatt/Halbblatt im Teilbaum des Knoten Für leeren Baum setzt man SH(nil)=0

Höhe eines RS-Baums

Ein RS-Baum mit n Knoten hat maximale Höhe $h \le 2 \cdot \log_2(n+1)$ Intuition:

- 1. In jedem Unterteilbaum gleiche Anzahl schwarzer Knoten auf jedem Pfad
- 2. Maximal zusätzlich gleiche Anzahl roter Knoten auf diesem Pfad
- 3. Daher einigermaßen ausbalanciert und Höhe $O(\log n)$

Implementierungen mittels Sentinel

- T.root.parent = T.sent
- T.sent.key=nil; T.sent.color=black;
- T.sent.parent = T.sent, T.sent.left=T.sent; T.sent.right=T.sent;
- Alles immer wohldefiniert dank Einführuing von T.sent (Sentinel des Baumes T)

Rotation

- Rot-Schwarz-Baum-Bedingungen sind nach Rotation eventuell verletzt
- Laufzeit = $\Theta(1)$

Einfügen

- 1. Finde Elternknoten v wie im BST
- 2. Färbe neuen Knoten z rot
- 3. Stelle RS-Baum-Bedingung wieder her

```
insert(T,z) // z.left==z.right==nil;
        x=T.root; px=T.sent;
        WHILE x != nil DO
                px=x;
                IF x.key > z.key THEN
                       x=x.left
                ELSE
                        x=x.right;
        z.parent=px;
       IF px==T.sent THEN
               T.root=z
        ELSE
                IF px.key > z.key THEN
                       px.left=z
                ELSE
                        px.right=z;
        z.color=red;
        fixColorsAfterInsertion(T,z);
```

Funktioniert wie beim BST mit Sentinel

Aufräumen

```
fixColorsAfterInsertion(T,z)
        WHILE z.parent.color==red DO
                IF z.parent==z.parent.parent.left THEN
                        y=z.parent.parent.right;
                        IF y!=nil AND y.color==red THEN
                                z.parent.color=black;
                                y.color=black;
                                z.parent.parent.color=red;
                                z=z.parent.parent;
                        ELSE
                                IF z==z.parent.right THEN
                                        z=z.parent;
                                        rotateLeft(T,z);
                                z.parent.color=black;
                                z.parent.parent.color=red;
                                rotateRight(T,z.parent.parent);
                ELSE
                // do the same, but exchange left and right
       T.root.color=black;
```

Löschen

- Größtenteils analog zum BST
- Sei z der entfernte Knoten und y der Knoten, der z ersetzt.
 Dann erbt y die Farbe von z, wenn y schwarz war, müssen Farben angepasst werden

Fixup bei y.color==black

 $\Delta SH:=SH(ext{linker Teilbaum})-SH(ext{rechter Teilbaum})$ f.a. Knoten Beim Löschen kann die Schwarzhöhe nur sinken

Fall $\Delta SH=1$ in a ist analog

Wenn \overline{x} rot ist, setze \overline{x} schwarz und fertig, somit nur schwarzer Fall zu betrachten

Fallunterscheidung:

Wird zu allen Fällen außer 2b)

2. a) a rot, b schwarz, c,d nicht rot

- b auf schwarz setzen, um ursprüngliche SH zu erreichen
- 3. b) a schwarz, b schwarz, c,d nicht rot

Wenn a schwarz ist, dann gilt für Elternknoten $\Delta SH=\pm 1.$

Verfahre also rekursiv mit a als neuem x

Ursprüngliche SH von vor der Entfernung wieder hergestellt

Algorithmus

В

```
u.parent.right=v;
       IF v != nil THEN
                v.parent=u.parent;
delete(T,z)
       a=z.parent; dsh=nil;
       IF z.left==z.right==nil THEN // z leaf
                IF z.color==black AND z!=T.root THEN
                        IF z.parent.left==z THEN dsh=right ELSE dsh=left;
                transplant(T,z,nil);
        ELSE IF z.left==nil THEN // z half leaf
                y=z.right;
                transplant(T,z,z.right);
                y.color=z.color;
        ELSE IF z.right==nil THEN // z half leaf
                y=z.left;
                transplant(T,z,z.left);
                y.color=z.color;
        ELSE // z has two children
                y=z.right; a=y; wentleft=false;
                WHILE y.left != nil DO
                        a=y; y=y.left; wentleft=true;
                IF y.parent != z THEN
                        transplant(T,y,y.right);
                        y.right=z.right;
                        y.right.parent=y;
                transplant(T,z,y);
                y.left=z.left;
                y.left.parent=y;
                IF y.color==black THEN
                        IF wentleft THEN dsh=right ELSE dsh=left;
                y.color=z.color;
        IF dsh!=nil THEN fixColorsAfterDeletion(T,a,dsh);
```

- a ist ein Zeiger auf den Knoten, in dem die tiefste Imbalance entstehen könnte
- dsh = ΔSH für Knoten a: nil = 0, left = 1, right = -1
- In den Fällen, in denen z ein Halbblatt ist, muss y.color==red sein, da sonst die SH-Regel verletzt wäre.
 - Dann kann man einfach y umhängen und die Farbe von z kopieren
- In den Fällen, in denen z kein (Halb-)Blatt ist, muss eine Fallunterscheidung stattfinden, je nachdem, ob y rechtes oder linkes Kind ist, davon ist dann auch die eventuelle Imbalance abhängig

```
fixColorsAfterDeletion(T,a,dsh)
    IF dsh==right THEN // extra black node on the right
```

```
x=a.left; b=a.right; c=b.left; d=b.right;
                IF x!=nil AND x.color==red THEN // x is red, easy to solve
                        x.color=black;
                ELSE IF a.color==black AND b.color==red THEN // case 1
                        rotateLeft(T,a);
                        a.color=red; b.color=black;
                        fixColorsAfterDeletion(T,a,dsh);
                ELSE IF a.color==red AND b.color==black // case 2a
                                AND (c==nil OR c.color=black)
                                AND (d==nil OR d.color=black) THEN
                        a.color=black; b.color=red;
                ELSE IF a.color==black AND b.color==black // case 2b
                                AND (c==nil OR c.color==black)
                                AND (d==nil OR d.color==black) THEN
                        b.color=red;
                        IF a==a.parent.left THEN dsh=left
                        ELSE IF a==a.parent.right THEN dsh=right ELSE dsh=nil;
                        fixColorsAfterDeletion(T,a.parent,dsh);
                ELSE IF b.color==black AND c!=nil AND c.color==red // case 3
                                AND (d==nil OR d.color==black) THEN
                        rotateRight(T,b);
                        c.color=black; b.color=black;
                        fixColorsAfterDeletion(T,a,dsh);
                ELSE IF b.color==black AND d!=nil AND d.color==red THEN // case
4
                        rotateLeft(T,a);
                        b.color=a.color; a.color=black; d.color=black;
        ELSE // dsh==left, extra black node on the left
                // do the same, but exchange left and right
```

- dsh=right impliziert b!=nil
- Der letzte ELSE -branch ist für den linkslastigen Fall
- Außer in Fall 2b) führen rekursive Aufrufe im nächsten Schritt zum Rekursionsende

Laufzeiten

y suchen hat wie beim BST Laufzeit $O(h) = O(\log n)$ Falls Rekursion in Fixup eintritt, ist die Laufzeit konstant \rightarrow Gesamtlaufzeit Löschen = $O(h) = O(\log n)$

Worst-Case-Laufzeiten RSB

Einfügen: Θ(log n)
Löschen: Θ(log n)
Suchen: Θ(log n)

AVL-Bäume

Optimierte Konstanten:

```
• RS-Bäume: h \leq 2 \cdot \log n
```

• AVL-Bäume: $h \leq 1.441 \cdot \log n$

Balance in Knoten x mit angehängtem rechtem und linkem Teilbaum:

```
B(x) = height(rechter Teilbaum) - height(linker Teilbaum)
```

Konvention: height(leerer Baum) = -1

Ein AVL-Baum ist ein binärer Suchbaum, sodass für die Balance B(x) in jedem

Knoten *x* gilt: $B(x) \in \{-1, 0, +1\}$

Höhe

Ein AVL-Baum mit n Knoten hat die maximale Höhe $h \leq 1.441 \cdot \log_2 n$

AVL-Baum vs. RS-Baum

AVL-Baum:

Differenz von rechtem und linkem Teilbaum desselben Knotens ≤ 1 Einfügen und Löschen verletzen in der Regel öfter die Baum-Bedingung, mehr Aufwand zum Rebalancieren

RS-Baum:

Höhenfaktor von rechtem und linkem Teilbaum desselben Knotens ≤ 2 Suchen dauert eventuell länger

AVL-Bäume geeigneter, wenn mehr Such-Operationen und weniger Einfüge- und Lösch-Operationen

$AVL \subset RS$, $AVL \neq RS$

Jeder nicht-leere AVL-Baum der Höhe h lässt sich als RS-Baum mit Schwarzhöhe $\left\lceil \frac{h+1}{2} \right\rceil$ darstellen.

Für gerade h gibt es sogar einen Baum mit roter Wurzel, Schwarzhöhe $\frac{h}{2}$, der alle anderen RS-Baumbedingungen erfüllt.

Für jede Höhe $h \ge 3$ gibt es einen RS-Baum, der kein AVL-Baum ist.

Einfügen

Funktioniert wie beim BST mit Sentinel, zuzüglich eventuellem Rebalancieren

Rebalacieren

- Da immer in Blättern eingefügt wird, werden nur die Knoten direkt darüber eventuell nicht mehr balanciert
- Das Einfügen muss nicht immer dazu führen, dass die Balance nicht mehr vorhanden ist
- Unterscheide 4 Fälle:

1. Einfache Rotation:

Nach dem Einfügen und Rotieren ist die Höhe gleich der Höhe vor dem Einfügen

2. Hier finden zwei Rotationen statt:

Höhe ist auch hier unverändert

3. Fall 3 und 4 sind spiegelverkehrt und analog zu den Fällen 1 und 2

Laufzeit

Gesamtlaufzeit $O(h) = O(\log n)$ Suche hat Laufzeit O(h), Rebalancieren ist nur einmal nötig, also ist das konstant

Löschen

Analog zum BST, aber Rebalacierung eventuell bis in die Wurzel nötig Gesamtlaufzeit $O(h) = O(\log n)$

Worst-Case-Laufzeiten

• Einfügen: $\Theta(\log n)$

• Löschen: $\Theta(\log n)$

• Suchen: $\Theta(\log n)$

AVL-Bäume haben bessere theoretische Konstanten als Rot-Schwarz-Bäume, sind je nach Daten und Operationen aber in der Praxis nur unwesentlich schneller.

Splay-Bäume

Selbst-organisierende Datenstrukturen

Selbst-Organisierende Listen

Ansatz: einmal angefragte Werte werden voraussichtlich noch öfter angefragt Variante für Bäume: Splay trees

Anwendung: SQUID

- Web-Cache-Proxy
- Speichert Access Control Listen (ACL) für http-Zugriffe als Splay-Tree

Splay-Operationen

- Splay-Bäume bilden Untermenge der BST
- Spüle gesuchten oder neu eingefügten Knoten an die Wurzel
- splay(T,z) = Folge von Zig-, Zig-Zig und Zig-Zag-Operationen

Zig-Zag-Operation

Rechts-Links- oder Links-Rechts-Rotation

Zig-Zig-Operation

Zig-Operation

Einfache Links- oder Rechts-Rotation
Wird verwendet, falls z direkt unter Wurzel hängt

Splay-Operation

```
IF z==z.parent.parent.left.left OR
z==z.parent.parent.right.right THEN
                                zigZig(T,z);
                        ELSE
                                zigZag(T,z);
zigZig(T,z)
        IF z==z.parent.left THEN
                rotateRight(T,z.parent.parent);
                rotateRight(T,z.parent);
        ELSE
                rotateLeft(T,z.parent.parent);
                rotateLeft(T,z.parent);
zigZag(T,z) // disclaimer: Not official, I wrote this!
        IF z==z.parent.left THEN
                rotateRight(T,z.parent);
                rotateLeft(T,z.parent);
        ELSE
                rotateLeft(T,z.parent);
                rotateRight(T,z.parent);
zig(T,z) // disclaimer: Not official, I wrote this!
        IF z==z.parent.left THEN
                rotateRight(T,z.parent);
        ELSE
                rotateLeft(T,z.parent);
```

Gesamtlaufzeit O(h)

Suchen

Suche und Splayen haben Laufzeit $O(h) \leadsto Gesamtlaufzeit \ O(h)$ Alternative: Bei erfolgloser Suche letzten besuchten Knoten nach oben splayen

Einfügen

- 1. Suche analog zum Einfügen bei BST Einfügepunkt
- 2. Spüle eingefügten Knoten x per Splay-Operation nach oben

Laufzeit

- 1. Position im BST suchen: O(h)
- 2. $\operatorname{splay}(T,x)$: O(h)
 - \rightsquigarrow Gesamtlaufzeit O(h)

Löschen

- 1. Spüle gesuchten Knoten x per Splay-Operation nach oben
- 2. Lösche x

Wenn einer der beiden Teilbäume leer ist, fertig

- 3. Spüle den "größten" Knoten y im linken Teilbaum per Splay-Operation nach oben y kann keinen rechtes Kind haben, da größter Wert im linken Teilbaum
- 4. Hänge rechten Teilbaum an y an

Laufzeit

- 1. $\operatorname{splay}(\mathsf{T},\mathsf{x})$: O(h)
- 2. \times löschen: O(1)
- 3. y im linken Teilbaum L finden, splay (L,y): O(h) + O(h) = O(h)
- 4. Anhängen: O(1)
 - \rightsquigarrow Gesamtlaufzeit O(h)

Laufzeit Splay-Bäume

- Amortisierte Laufzeit:
 - Laufzeit pro Operation über mehrere Operationen hinweg
- Für $m \ge n$ Operationen auf einem Splay-Baum mit maximal n Knoten ist die Worst-Case-Laufzeit $O(m \cdot \log_2 n)$, also $O(\log_2 n)$ pro Operation.
- Zusätzlich: Oft gesuchte Elemente werden sehr schnell gefunden

(Binäre Max-)Heaps

Ein binärer Max-Heap ist ein binärer Baum, der

- 1. bis auf das unterste Level vollständig und im untersten Level von links gefüllt ist
- 2. Für alle Knoten $x \neq T$. root gilt: x. parent. $key \geq x$. key

- Heaps sind keine BSTs, linke Kinder können größere Werte als rechte Kinder haben!
- Bei Min-Heaps sind die Werte in Elternknoten jeweils kleiner

Eigenschaften

- Da Baum (fast) vollständig ist, gilt $h \leq \log n$
- Maximum des Heaps steht in der Wurzel

Heaps durch Arrays

- speichere Anzahl Knoten in H.length (leerer Heap H.length==0)
- Duale Sichtweise als Pointer oder als Array (*j* ist Index im Array):

```
• j. parent = \left\lceil \frac{j}{2} \right\rceil - 1
• j. left = 2(j+1) - 1
• j. right = 2(j+1)
```

Einfügen

- · Position durch Baumstruktur vorgegeben
- · Vertausche nach oben, bis Max-Eigenschaft wieder erfüllt

Laufzeit $O(h) = O(\log n)$

Lösche Maximum

- 1. Ersetze Maximum durch "letztes" Blatt
- 2. Stelle Max-Eigenschaften wieder her, indem Knoten nach unten gegen das Maximum der beiden Kinder getauscht wird (heapify)

Laufzeit beider Algorithmen $O(h) = O(\log n)$

Heap-Konstruktion aus Array

```
Blätterindizes: \left\lceil \frac{n-1}{2} \right\rceil, \dots, n-1
Blätter sind für sich triviale Max-Heaps
Baue rekursiv per heapify Max-Heaps für Teilbäume
```

```
buildHeap(H) // array A has already been copied to H.A
H.length=A.length;
FOR i = ceil((H.length-1)/2)-1 DOWNTO 0 DO
heapify(H,i);
```

Laufzeit $O(n \cdot h) = O(n \log n)$

Heap-Sort

Gibt Einträge in Array A in absteigender Größe aus

```
heapSort(H) // array A has already been copied to H.A
  buildHeap(H);
  WHILE !isEmpty(H) DO PRINT extract-max(H);
```

```
Laufzeit O(n \cdot h) = O(n \log n)
Alternativ: speichere in jeder WHILE-Iteration max=extract-max(H) in H.A[H.length]=max, um sortierte Liste am Ende aufsteigend im Array A zu haben.
```

Abstrakter Datentyp Priority Queue

- new(Q): erzeugt neue, leere Priority Queue namens Q
- isEmpty(Q): gibt an, ob Queue Q leer
- max(Q): gibt "größtes" Element aus Queue Q zurück, Fehler wenn leer

- extract-max(Q): gibt "größtes" Element aus Q zurück, löscht es aus Q, Fehler wenn leer
- insert(Q,k): fügt Wert k zu Queue Q hinzu
 Implementation kann Priority Heap verwenden (Java)

B-Bäume

Ein B-Baum von Grad t ist ein Baum, bei dem

- 1. jeder Knoten außer der Wurzel zwischen t-1 und 2t-1 Werte key[0], key[1], ... hat, die Wurzel hat zwischen 1 und 2t-1 Werte
- 2. die Werte innerhalb eines Knoten aufsteigend geordnet sind
- 3. die Blätter alle die gleiche Höhe haben
- 4. jeder innerer Knoten mit n Werten n+1 Kinder hat, sodass für alle Werte k_j aus dem j-ten Kind gilt: $k_0 \le key[0] \le k_1 \le key[1] \le \cdots \le k_{n-1} \le key[n-1] \le k_n$

Darstellung

```
    x.n: Anzahl Werte des Knotens x
```

- x.key[0], ..., x.key[x.n-1]: Geordnete Werte in Knoten x
- x.child[0], ..., x.child[x.n]: Zeiger auf Kinder in Knoten x

Höhe

- Mindestens 1 Wert in Wurzel
- Mindestens 2 Knoten in Tiefe 1 mit jeweils mindestens t Kindern
- Mindestens 2t Knoten in nächster Tiefe mit jeweils mindestens t Kindern
- Mindestens $2t^2$ Knoten in nächster Tiefe mit jeweils mindestens t Kindern, usw.
- In jedem Knoten außer Wurzel mindestens t-1 Werte
- Anzahl Werte n im B-Baum im Vergleich zur Höhe h: $n \ge 2t^h 1$, also $log_t \frac{n+1}{2} \ge h$
- \leadsto Ein B-Baum vom Grad t mit n Werten hat maximale Höhe $h \leq \log_t \frac{n+1}{2}$
- Für größere t also flacher als vollständiger Binärbaum

Anwendung

- MySQL speichert Werte in B-Bäumen
- Lesen/Schreiben in Blöcken: mehrere Werte (z.B. Index-Einträge) auf einmal

Suche

```
search(x,k)
WHILE x != nil D0
i=0;
WHILE i < x.n AND x.key[i] < k D0 i=i+1;
IF i < x.n AND x.key[i]==k THEN</pre>
```

```
return (x,i);

ELSE

x=x.child[i];

return nil;
```

\2. While-Schleife: Maximal $2t \in O(1)$ Iterationen Laufzeit $O(t \cdot h) = O(\log_t n)$

Baumkunde

- B-Baum vom Grad t: max. 2t, min. t Kinder pro Knoten \neq Wurzel Alternative Definition: max. t, min. $\frac{t}{2}$ Kinder pro Knoten \neq Wurzel
- 2-3-4-Baum/(2,4)-Baum: B-Baum mit t = 2
- B+-Baum: alle Werte in Blättern, innerer Knoten enthalten Werte erneut Vorteil: innere Knoten speichern nur kurzen Schlüssel, nicht auch noch Daten(zeiger)

Nachteil: Findet Werte erst im Blatt

Alternativer Name: B*-Baum

• Alternative Bedeutung B*-Baum: B-Baum mit Füllgrad min. $\frac{2}{3}$ pro Knoten \neq Wurzel

Einfügen

Idee

- Einfügen erfolgt immer in einem Blatt
- Wenn Blatt weniger als 2t-1 Werte hat, dann einfügen und fertig
- Wenn nicht:

Splitten

- Wenn Blatt bereits 2t-1 Werte, dann teile es in zwei Blätter mit je t-1 Werten, füge mittleren Wert im Elternknoten ein
- Wenn dadurch Elternknoten mehr als 2t-1 Werte hat, rekursiv nach oben
- Splitten an der Wurzel: Neue Wurzel wird erzeugt, Höhe des Baumes wächst um 1
 B-Baum-Einfügen splittet beim Suchen und läuft nur einmal hinab, sonst werden
 teure Disk-Operationen zweimal ausgeführt, einmal beim ab-, einmal beim
 aufsteigen.

Informeller Algorithmus

Laufzeit $O(t \cdot h) = O(\log_t n)$

Schleifeninvariante:

Bei der Suche hat der aktuelle Knoten immer weniger als 2t-1 Werte, da sonst vorher gesplitted.

Eventuelles Splitten ist also problemlos möglich.

Auch das Blatt hat am Ende weniger als 2t-1 Werte.

Löschen

Löschen im Blatt

- Wenn Blatt noch mehr als t-1 Werte hat, dann einfach entfernen
- Wenn t-1 Werte im Blatt mit zu löschendem Wert sind, linker oder rechter Geschwisterknoten hat mind. t Werte, dann rotiere Werte von Geschwisterknoten und Elternknoten:

• Wenn t-1 Werte im Blatt mit zu löschendem Wert sind, linker oder rechter Geschwisterknoten haben auch t-1 Werte, dann verschmelze einen Geschwisterknoten mit Wert aus Elternknoten, dieser hat nun eventuell zu wenig

Werte:

maximal t - 2 + t - 1 + 1 = 2t - 2 Werte

Löschen im inneren Knoten

• Verschieben:

Wenn sich mehr als t-1 Werte in einem der beiden Kindknoten befinden, dann größten Wert (vom linken Kind) bzw. kleinsten Wert (vom rechten Kind) nach oben kopieren

• Verschmelzen:

Wenn sich jeweils t-1 Werte in beiden Kindknoten befinden, dann Kindknoten verschmelzen, eventuell hat Elternknoten nun zu wenig Werte:

B-Baum-Löschen läuft auch nur einmal hinab, stelle dazu sicher, dass zu besuchendes Kind mindestens t Werte hat.

Allgemeines Verschmelzen ohne Löschen

Zu besuchendes Kind, rechter, linker Geschwisterknoten (sofern existent) haben nur t-1 Werte.

Dann ist Verschmelzen ohne weitere Änderungen möglich, wenn der Elternknoten vorher mindestens t Werte hat.

Allgemeines Rotieren/Verschieben ohne Löschen

Zu besuchendes Kind hat nur t-1 Werte, aber ein Geschwisterknoten hat mehr als t-1 Werte, dann kann man dies ohne Änderungen oberhalb tun

Informeller Algorithmus

```
delete(T,k)

Wenn Wurzel nur 1 Wert und beide Kinder t-1 Werte haben, verschmelze

Wurzel und Kinder (reduziert Höhe um 1)

Suche rekursiv Löschposition:

Wenn zu besuchendes Kind nur t-1 Werte hat, verschmelze es oder
```

rotiere/verschiebe

Entferne Wert k in inneren Knoten/Blatt

Laufzeit $O(t \cdot h) = O(\log_t n)$

Schleifeninvariante:

Aktueller Knoten hat zu diesem Zeitpunkt mindestens t Werte, sonst wäre er vorher verschmolzen worden oder es wäre rotiert worden.

Beim Verschmelzen/Verschieben des Kindes kann die Anzahl der Werte im aktuellen Knoten nicht unter t-1 fallen.

Entfernen aus Blatt problemlos möglich, da mindestens t Werte vorhanden.

Entfernen im inneren Knoten durch Verschieben oder Verschmelzen.

Worst-Case-Laufzeiten

• Einfügen: $\Theta(\log_t n)$

• Löschen: $\Theta(\log_t n)$

• Suchen: $\Theta(\log_t n)$

• O-Notation versteckt konstanten Faktor t für Suche innerhalb eine Knoten: $t \cdot \log_t n = t \cdot \frac{\log_2 n}{\log_2 t}$ ist in der Regel größer als $\log_2 n$, also nur vorteilhaft, wenn Daten blockweise eingelesen werden.