Neutrinos and Cosmic Rays at Snowmass

BNL Snowmass Retreat

December 17, 2021

Peter B. Denton

Lots of BNL Letters of Interest on Neutrinos and Astroparticle Physics

- ▶ Neutrino Non-Standard Interactions, PBD (ed.), J. Gehrlein, +many
- ▶ Direct Probes of the Matter Effect in Neutrino Oscillations, PBD (ed.), S. Parke
- ▶ Ultra-High-Energy Neutrinos, M. Bustamante (ed.), PBD (ed.), S. Wissel (ed.), +many
- ► Computing Neutrino Oscillations in Matter Efficiently, PBD (ed.), +many
- ► Cosmic Neutrino Probes of Fundamental Physics, PBD, +many
- ▶ Opportunities and signatures of non-minimal HNLs, PBD, J. Gehrlein, +many
- Neutrino Opportunities at the ORNL Second Target Station, PBD, +many
- ► CEvNS: Theoretical and experimental impact, PBD, J. Gehrlein, +many
- ► Supernova neutrinos and particle-physics opportunities, PBD, +many
- ► Synergy of astro-particle physics and collider physics, PBD, +many
- ► Studies of the Muon Excess in Cosmic Ray Air Showers, PBD, +many
- ► Forward Physics Facility, PBD, +many
- ► + others!

Whitepaper involvement

► Tau Neutrino Whitepaper (see Mary's talk next)

Significant BNL contribution

- ► Forward Physics Facility Whitepaper (see Milind's talk later)
- ▶ Beyond the Standard Model effects on Neutrino Flavor

Neutrino decay contribution

- ► Neutrino Self Interactions
- ► High-Energy and Ultra-High-Energy Neutrinos
- ▶ Ultra-High-Energy Cosmic Rays

GRAND contribution

 \triangleright + others!

Reach out if interested in contributing or signing!

Neutrino Decay

Since neutrinos have different masses, they decay

- ► Loop suppressed
- ▶ Long lifetime: $\tau \gtrsim 10^{35}$ years

Test this!

Typical Lagrangian for $\nu_i \rightarrow \nu_j + \phi$ with $m_i > m_j$

$$\mathcal{L}\supsetrac{g_{ij}}{2}ar{
u}_{j}
u_{i}\phi+rac{g_{ij}^{\prime}}{2}ar{
u}_{j}i\gamma_{5}
u_{i}\phi$$

 $\tau/m [{\rm s/eV}]$

J. Berryman, A. de Gouvea, D. Hernandez 1411.0308

Gonzalez-Garcia and M. Maltoni 0802.3699

G. Pagliaroli, et al. 1506.02624PBD, I. Tamborra 1805.05950

Kamiokande-II, PRL 58 1490 (1987)

S. Ando hep-ph/0307169

S. Hannestad, G. Raffelt hep-ph/0509278

A. Long, C. Lunardini, E. Sabancila 1405.7654

Tension

$$\Phi(E) = \Phi_0 E^{-\gamma}$$

$$\Delta \gamma = +0.54$$

"The p-value for obtaining the combined fit result and the result reported here from an unbroken powerlaw flux is 3.3σ , and is therefore in significant **tension**."

IC 1607.08006

"This [cascade] fit [is] in **tension** with previous results based on through-going muons"

IC 1808.07629

Preferred Region: Visible

Giant Radio Array for Neutrino Detection (GRAND)

1810.09994

Ultra-High Energy Cosmic Rays (UHECRs)

▶ UHECRs with $E > 5 \times 10^{10}$ GeV detected for several decades

 $\sqrt{s} > 300 \text{ TeV}$

▶ Should be coming from nearby within $\sim 50 \text{ Mpc}$

Greisen, Zatsepin, Kuzmin 1966

- ➤ Sources haven't been identified
- ► Magnetic fields are hard
- ► Composition is hard

Protons are bent less, iron is bent more

Disagreement on both flux and composition between Auger (Argentina) and Telescope Array (Utah)

GRAND will be a state-of-the-art UHECR experiment

- ► Fantastic exposure
- ► Good enough pointing
- ▶ Good enough composition measurements
- ► Full-sky coverage

Essential for understanding Auger-TA discrepancies

Preliminary arrays under construction Self-triggering technique has already been validated!

Conclusions

- ▶ Lots of Snowmass participation in neutrino and astroparticle theory at BNL
- ▶ Neutrino decay is a rich BSM scenario with a possible hint at IceCube
- ▶ Upcoming high energy neutrino experiments can also do cosmic ray physics

 Need more UHECR studies!

Backups

Why IceCube for Neutrino Decay

- ▶ DSNB and $C\nu$ B are still some time off
- ▶ The next galactic supernova could come tomorrow, or in fifty years
- ▶ If ν_1 is stable SN1987A isn't too relevant (25 events + theory uncertainties)
 - ▶ Mass ordering looks to be normal at $\sim 3 3.5 \sigma$

Less now: PBD, J. Gehrlein, R. Pestes 2008.01110

- ► Texture in the $\nu \phi$ mixing matrix
- ► Early universe constraints mostly constrain the typical decay diagram

G. Dvali and L. Funcke 1602.03191

M. Escudero and M. Fairbairn 1907.05425

- ► IceCube measures all three flavors over > 1 decade in energy
- ► Astrophysical uncertainties seem like a problem, aren't really

Uncertainties

or "How to muck it all up with astrophysics"

What doesn't work:

- ▶ Multiple classes of sources with different spectra
- $\triangleright pp \text{ vs. } p\gamma \text{ sources}$
- ▶ Different redshift evolution \Rightarrow shift the g_{ij}
- Neutron decay sources
- ► Varying the oscillation parameters
- ▶ IceCube track or cascade normalization

What could work: (other than neutrino decay)

- ▶ Muon damped $\Rightarrow \Delta \gamma \sim +0.2$
- ► Track and cascade spectra are fit over slightly different energy ranges ⇒ broken power law can help
- ► Energy misreconstruction (tracks could be susceptible to this)
- ► Dark matter?