ДОКЛАД

1) Тема дипломного проекта: «Модернизация средствами автоматизированного проектирования технологического процесса механической обработки детали «Корпус левый 0605202» с разработкой автоматизированной технологической оснастки с анализом формирования свойств материала и размерных связей в процессе изготовления деталей».

Деталь корпус левый КИС 0605202В является основным элементом питающего аппарата КИС 0605000Г, который в свою очередь входит в состав редуктора самоходного комбайна КСК-100А.

Материалом детали является ковкий чугун марки КЧ35-10. Отливки из ковкого чугуна получают путем графитизирующего отжига отливок из белого чугуна. Отливки характеризуются повышенным временным сопротивлением при растяжении и относительным удлинением при разрыве вследствие образовавшегося при отжиме хлопьевидного графита. Ковкий чугун маркируют буквами КЧ и цифрами. Первые две цифры указывают временное сопротивление при растяжении, а вторые —

относительное удлинение при разрыве.

н	юсительное удлинение при разрыве.										
	Углерод	Марганец Мп		Кремний		Cepa	Фосфор		Хром	икель	
	C			Si S, не бо		, не более	Р, не более		Cr	Ni	
	2,5-2,8	0,3-0),6	1,1-1,3		0,2	0,12		0,06	0,3	
Предел прочности нПредел прочности н Твердость Твердость								ость			
	растяжение		изгибе			сжатии					
	$\sigma_{\rm b}$, kh/mm ²		$\sigma_{\rm u}$, kh/mm ²			о _{сж} , кн/мм ²			НВ		
23		35			70			163-210			
L											

объем выпуска N, шт/год – 15000

В качестве заготовки для изготовления детали используется отливка, получаемая литьем в песчано-глинистые формы методом машинной формовки по металлическим моделям, из серого чугуна марки СЧ 20, который обладает хорошими литейными свойствами.

Данный метод получения заготовки является оптимальным для получения отливки в условиях среднесерийного производства. Для сравнения методов получения заготовок рассмотрим второй способ получения – литье в оболочковые формы по выплавляемым моделям.

Для обоснования выбранного метода получения заготовок произведем расчет стоимости заготовки, полученной **литьем в песчаные формы и литьем в кокиль** (для сравнения).

Наименование показателей	Базовый	Проектируемый	
паименование показателеи	вариант	вариант	
	Отливка	Отливка	
Вид заготовки	(литье в песчаные	(литье в кокиль)	
	формы)		
Масса заготовки	10,2	10,0	
Масса детали	8,2	8,2	
Стоимость 1 т. заготовок, руб.	1,07-2.53=2707	1,2.2.53=3036	
Стоимость 1т отходов Sотх, руб.	0,075·2.53=189,8	0,075·2.53=189,8	
$k_{\scriptscriptstyle T}, k_{\scriptscriptstyle C}, k_{\scriptscriptstyle B}, k_{\scriptscriptstyle M}, k_{\scriptscriptstyle \Pi}$	1,05 · 1 · 0,91 · 1,08 · 1	1 · 1 · 0,9 · 1,06 · 1	

 $\theta_{\phi} = (S_{3ar_2} - S_{3ar_1}) \cdot N = (28,62 - 28,11) \cdot 15000 = 7650$ py6.

2-6) Как показывают проведенные расчеты стоимость заготовки по базовому варианту ниже, чем по предлагаемому, поэтому принимаем заготовку – отливку,

получаемую литьем в песчаную форму.

Наименование		Оборудо-		Оборудо-				
	операций	вание		вание				
Базовый вариант				Предлагаемый вариант				
010	Карусельно-фрезерная	6M23	010	Фрезерно-сверлильно-расточная	ГДМ630			
020	Горизонтально-фрезерная	6H82	020	Сверлильная с ЧПУ	2С150ПМФ4			
030	Агрегатная	АБ1133						
040	Вертикально-сверлильная	2H125						
050	Агрегатная	АБ1133						
060	Агрегатная	АБ1133						
070	Радиально-сверлильная	2H53						
080	Радиально-сверлильная	2H53						
090	Радиально-сверлильная	2H53						
100	Алмазно-расточная	KK-1130						

Рассмотрев технологический процесс можно предложить следующие изменения:

Сверлильные операции для получения резьбовых отверстий заменить на одну сверлильную с ЧПУ, выполняемую на станке 2С150Ф3.

Фрезерные и агрегатные операции объединить в одну Фрезерно-сверлильно-расточную выполняемую на станке ГДМ630.

- 010 Фрезерная оправка; фреза (в т.ч. дисковая);штангенциркуль;
- Расточная оправка, зенкер, втулка, резец спец., калибры угл. и пробка, нутромер
- Сверлильная втулка, сверло, штангенциркуль(020+зенкеровка, метчик)

- **7)** Приспособление для сверления (1-основание; 2-опора; 3-плита; 4-шпонка; 5-корпус; 6-шток; 7-гайка; 8-болт М5х 16; 9-пружина тарельчатая; 10-гайка; 11-винт; кольцо резин.)
- **8)** Прибор для измерения неперпендикулярности корпуса левого в пределах 0,5 мм (1-плита,2-уголок,3-Втулка,4-винт,5-опора,7,8-винт,9-гайка,10-индикатор,11-шайба)

Для контроля параметра в паз уголка вставляется обработанная деталь. Индикатор установить на торце проверяемой детали так, чтобы показатель был равен нулю. Повернуть деталь противоположным торцом вверх и установить в приспособление с индикатором на торце. Снять показания индикатора. Разность показаний индикатора должна не превышать 0,4 мм.

- 9) ЭК. По результатам расчета видно, что реализация проектного варианта технологического процесса по сравнению с базовым обеспечивает создание условий для:
 - снижения трудоемкости изготовления единицы продукции на 51.675 мин;
 - снижения амортизационных отчислений на 311.603 руб.;
 - уменьшения себестоимости единицы продукции на 9.078 руб.;
 - увеличения чистой прибыли на 111657.051 руб.;
 - увеличения рентабельности, которая составила 33.723 %;

Простой срок окупаемости инвестиций в проектном варианте технологического процесса составил 31.55 года. ЧДС на конец 10 года составил 397045.684 руб. и динамический коэффициент рентабельности инвестиций в данном проекте составил 31.55, что говорит о целесообразности вложения инвестиций в данный проект.

10) AII

- 1. Для добавления операции необходимо выбрать «Типовая технологическая операция».
- 2. В окне свойств операции заполняются такие параметры как: номер, код, наименование, эскиз, оснащение, инструкции, исполнители, материалы.
- 3. Далее в операции создаётся «Типовой технологический переход», где заполняются такие параметры как: операционное и вспомогательное время, текст перехода, режимы, оснащение.
- 4. На панели свойств выбирается «изменить», далее нажимается «эскиз» добавляется из папки эскиз из T-Flex CAD.
 - 5. Все остальные операции заполняются аналогичным способом.

На заключительном этапе проектирования получается готовый комплект документов, состоящий из: титульного листа, маршрутной карты, операционных карт и карт эскизов. Для получения комплекта документов необходимо воспользоваться вкладкой «Документация».