色彩科學導論與應用 3147

Assignment 10: Final Term Report

資工三 4109056001 施昶宇

目錄

圖目錄	II
表目錄	IV
HW1: 擷取影像統計特徵	1
HW2 : Basic Color Transfer	2
HW3 : Ordinary Color Transfer	3
HW4 : Automatically Weighted Color Transfer	4
HW5 : LSB Matching Revisited	6
HW6: LSB-K and OPAP-K Comparison	7
HW7 : Equilateral Arnold Transform (EAT)	10
HW8 : Image Encryption by 2D EAT and RP	12
HW9: Metrics to measure the performance of the image encryption	14
● 最感到興趣的作業	17
● 最感到困難的作業與原因	17
● 整個課程的述評	17
◎ 教師教學之優點與缺點、課程內容之優點與缺失	17
◎ 建議後續課程改進之事項	18
◎ 其他課程感想與心得	18

圖目錄

昌	1.1 寫檔格式	1
邑	1.2 mantiuk	1
邑	1.3 mantiuk 的影像特徵	1
昌	1.4 mountain	2
昌	1.5 mountain 的影像特徵	2
邑	2.1 Basic Color Transfer 公式	2
邑	2.2 source_img	2
邑	2.3 target_img	2
邑	2.4 resoult_img	2
昌	3.1 Ordinary Color Transfer	3
邑	3.2 source_img	3
昌	3.3 target_img	3
邑	3.4 resoult_img	3
昌	4.1 權重色彩轉移(WCT)公式	4
邑	4.2 source_img	5
昌	4.3 target_img	5
昌	4.4 result_img	5
昌	5.1 LSBMR 訊息嵌入演算法	6
昌	5.2 檢查加密是否正確	7
昌	5.3 cover_img	7
昌	5.4 stego_img	7
置	6.1 MSE(LSB-K)	7
置	6.2 MSE(OPAP-K)	7
昌	6.3 MSE(LSB-K)證明	8

啚	6.4	MSE(OPAP-K)證明
置	7.1	EAT 加密公式10
昌	7.2	各個影像解析度 2D EAT cycle 的數值10
圖	7.3	EAT 解密公式
置	7.4	Lena11
圖	7.5	Lena_enc
圖	7.6	Lena_dec11
昌	7.7	Lena_直方圖11
圖	7.8	Lena_enc_直方圖11
圖	8.1	座標轉換12
圖	8.2	2D-EAT 之逆轉換12
圖	8.3	Baboon
圖	8.4	Baboon_enc13
置	8.5	Baboon_dec13
圖	8.6	Baboon_直方圖
晑	8.7	Baboon enc 直方圖

表目錄

表	6.1 LSB-K 和 OPAP-K 的比較表	9
表	9.1 量測 variance of histogram (VOH)	14
表	9.2 量測 histogram 的 Chi-square test	15
表	9.3 量測水平、垂直、對角方向之 Pear correlation coefficients	15
表	9.4 量測 Global information entropy	16

HW1: 擷取影像統計特徵

- 1. 分別擷取 source、target 圖片的 RGB 平均值和標準差,並將結果依照(圖 1.1)寫入 csv 檔。
 - (1) 01 kodim17.png 影像 Red 頻道之 mean
 - (2) 01_kodim17.png 影像 Red 頻道之 standard deviation
 - (3) 01 kodim17.png 影像 Green 頻道之 mean
 - (4) 01_kodim17.png 影像 Green 頻道之 standard deviation
 - (5) 01 kodim17.png 影像 Blue 頻道之 mean
 - (6) 01_kodim17.png 影像 Blue 頻道之 standard deviation

圖 1.1 寫檔格式

2. 以 source 中的圖 1.2, target 中的圖 1.4 為例。

圖 1.2 mantiuk

	A	В
1	R_mean	84.85
2	R_std	38.36
3	G_mean	103.95
4	G_std	49.17
5	B_mean	89.36
6	B_std	64.47

圖 1.3 mantiuk 的影像特徵

	А	В
1	R_mean	82.24
2	R_std	51.64
3	G_mean	95.67
4	G_std	47.41
5	B_mean	99.04
6	B_std	57.99

圖 1.4 mountain

圖 1.5 mountain 的影像特徵

3. 可以將圖片的 RGB 分開來看,觀察每張圖片的特徵,了解 open CV 如何使用。

HW2: Basic Color Transfer

1. 計算出每個通道的平均值和標準差,並利用圖 2.1 的公式做轉換。

$$R(x,y) = \frac{d_t}{d_s} [S(x,y) - m_s] + m_t$$

圖 2.1 Basic Color Transfer 公式

2. 將 source(圖 2.2)加上 target(圖 2.3)經過圖 2.1 公式轉換後的得到的圖片(圖 2.4)。

圖 2.2 source_img

圖 2.3 target_img

圖 2.4 resoult_img

3. 學會將原始的圖片經由 Basic Color Transfer 轉換得到另一種風格的圖片, 看起來就像在不同時間所拍攝的,但實際上只是經由色彩轉換合成的。

HW3: Ordinary Color Transfer

- 1. A three steps approaches (圖 3.1)
 - Step 1: Forwardly convert pixels in the RGB color space to the lαβ color space
 - Step 2: Processing each pixel of the image in the $l\alpha\beta$ color space
 - Step 3: Reversely convert pixels in the lαβ color space to the RGB color space

圖 3.1 Ordinary Color Transfer

2. 將 source(圖 3.2)加上 target(圖 3.3)經過圖 3.1 結合圖 2.1 轉換後的得到的圖片(圖 3.4)。

圖 3.2 source_img

圖 3.3 target_img

圖 3.4 resoult_img

3. 一般的彩色轉換方法提供了一種將 source_img 的顏色特徵轉移到 target_img 的方式。儘管效果可能有限,但在某些情況下,這些方法仍然 可以產生有趣和有用的結果。在應用彩色轉換時,適當選擇 source_img 和 target_img,可以獲得更好的轉換效果。

HW4: Automatically Weighted Color Transfer

1. 使用暴力法求解三個頻道的最佳的權重,並利用此最佳權重,產出色彩轉換結果,權重色彩轉移(WCT)公式如圖 4.1。

$$R(x,y) = \frac{w\sigma_t + (1 - w)\sigma_s}{\sigma_s} [S(x,y) - \mu_s] + w\mu_t + (1 - w)\mu$$

圖 4.1 權重色彩轉移(WCT)公式

暴力法做法如下:

- i. 輸入 source image 與 target image。利用 OpenCV 內建的函數庫, 做出對應的值方圖: Hs, Ht。
- ii. 以迴圈方式,產出 101 個權重,分別是 w=0.00, 0.01, 0.02, …, 0.99,
 1.00,並利用 WCT 公式,做出 101 張中介色彩轉移影像,I0.00,
 I0.01, …,I1.00。請注意,做 101 張中介色彩轉移影像時,RGB 頻
 道都使用相同的權重。
 - (1) 每做出一張中介影像,利用 OpenCV 內建的函數庫,做 出對應的值方圖, H0.00,H0.01, ..., H1.00。
 - (2) 每做出一張中介影像,利用 OpenCV 內建的值方圖距離 函數庫(1. CorrelationDistance, 2. Chi-Square Distance, 3. Intersection Distance, 4. Bhattacharyya Distance, 4 個選 1 個)函數庫,算出(a)中介影像 Iw 與 source 影像之距離 D(S, Iw),(b)中介影像 Iw 與 target 影像之距離 D(T, Iw),(c) difference = absolute (D(S, Iw)- D(S, Iw)),absolute 代表絕對值函數。
 - (3) 將各頻道計算結果輸出成 csv 檔案,並將頻道名稱(red, green, blue)寫入 CSV 檔。

將 source(圖 4.2)和 target(圖 3.4)經由 Weighted Color Transfer 利用
 CorrelationDistance 距離函數所計算出的權重分別為 0.23、0.53、0.71 轉換出來的結果(圖 4.4)。

圖 4.2 source_img

圖 4.3 target_img

圖 4.4 result_img

3. 經由 Weighted Color Transfer 轉換出來結果可以發現,它能自動找到最適合的權重進行色彩轉移,並不用手動調整權重,可以看到原本的圖片較暗,但轉換出來有種接近傍晚黃昏的感覺。

HW5: LSB Matching Revisited

1. 利用 LSBMR 訊息嵌入演算法(圖 5.1)進行加密,使用 seed=100 產生隨機整數當成欲嵌入的秘密訊息,並且設定 Ratio 當作嵌入比例,最後依照圖 5.2 的公式進行檢查加密是否正確。

input: a pair of cover image pixels x_i , x_{i+1}

```
two message bits m_i, m_{i+1}
output: a pair of stego image pixels y_i, y_{i+1}
if m_i = LSB(x_i)
  if m_{i+1} \neq f(x_i, x_{i+1})
    y_{i+1} = x_{i+1} \pm 1
  else
     y_{i+1} = x_{i+1}
  end
  y_i = x_i
else
  if m_{i+1} = f(x_i - 1, x_{i+1})
     y_i = x_i - 1
  else
     y_i = x_i + 1
  end
   y_{i+1} = x_{i+1}
end
```

圖 5.1 LSBMR 訊息嵌入演算法

$$f(y_i, y_{i+1}) = LSB\left(\left|\frac{y_i}{2}\right| + y_{i+1}\right)$$
 $m_i = LSB(y_i), m_{i+1} = f(y_i, y_{i+1})$
圖 5.2 檢查加密是否正確

2. 以下兩張分別為加密前(圖 5.3)和加密後(圖 5.4)的圖片,Ratio=0.5,肉眼可以看出沒甚麼差別,但實際上已經加入了秘密訊息。

圖 5.3 cover_img

圖 5.4 stego_img

3. 經由 LSBMR 訊息嵌入演算法能夠簡單的嵌入秘密訊息,也可以從加密 過後的圖片還原成原始圖片,並獲得加密的訊息。

HW6: LSB-K and OPAP-K Comparison

證明以下兩個公式(圖 6.1、圖 6.2),完成 LSB-K 和 OPAP-K 的比較表,
 K=1 到 K=7(表 6.1)。

MSE(LSB-k) =
$$\frac{2^{2k-1}}{6}$$
 MSE(OPAP-k) = $\frac{2^{2k-1}+1}{6}$

圖 6.1 MSE(LSB-K)

圖 6.2 MSE(OPAP-K)

2. 證明結果如下:

得證

圖 6.3 MSE(LSB-K)證明

$$\frac{1}{2^{k}}[1^{2}+2^{2}+\cdots+(2^{k-1})^{2}+\cdots+2^{2}+1^{2}]$$

$$\frac{1}{2^{k}}[(1^{2}+2^{2}+\cdots+(2^{k-1})^{2})+(1^{2}+2^{2}+\cdots+(2^{k-1}-1)^{2})]$$

$$\biguplus \sum_{k=1}^{n}k^{2} = \frac{n(n+1)(2n+1)}{6} \biguplus \sum_{k=1}^{n}k^{2} = \frac{n(n+1)($$

得證

圖 6.4 MSE(OPAP-K)證明

表 6.1 LSB-K 和 OPAP-K 的比較表

LSB-K	embedding rate	mean square error	PSNR	embedding efficiency
K=1	1	0.5	51.14	2.0
K=2	2	2.5	44.15	0.8
K=3	3	10.5	37.92	0.285714
K=4	4	42.5	31.85	0.094118
K=5	5	170.5	25.81	0.029326
K=6	6	682.5	19.79	0.008791
K=7	7	2730.5	13.77	0.002564

OPAP-K	embedding rate	mean square error	PSNR	embedding efficiency
K=1	1	0.5	51.14	2.0
K=2	2	1.5	46.37	1.333333
K=3	3	5.5	40.73	0.545455
K=4	4	21.5	34.81	0.186047
K=5	5	85.5	28.81	0.05848
K=6	6	341.5	22.80	0.01757
K=7	7	1365.5	16.78	0.005126

3. 實際推導一次之後,讓我更了對以上兩個公式更加了解,並從表 6.1 中可以看出 OPAP-K 的效果明顯比 LSB-K 還要來的好。

HW7: Equilateral Arnold Transform (EAT)

 練習利用 2D Equilateral Arnold Transform (2D-EAT)對影像作加密處理 與解密處理。

(1) 加密程式:

使用以下矩陣做 EAT 轉換,並在程式中給定參數(a,b)之數值。只要更改(a,b)數值,即可重新購建不同的矩陣,作 EAT 轉換。例如設定(a,b)=(1,1),則轉換矩陣為 $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$,代表則座標(x,y)的像素值會被轉換至座標(x',y'),如下圖 7.1 所示。

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ab+1 & a \\ b & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \mod N$$

圖 7.1 EAT 加密公式

設定一個變數 G,代表做 2D-EAT 的次數,設定之 G 值不能是 2D EAT cycle 的數值,否則影像不能顯示加密效果。 下表為各個影像解析度 2D EAT cycle 的數值(圖 7.2)。

Cycle of 2D Arnold Transform

Table 1. Cycle of Arnold transformation

N	2	3	4	5	6	7	8	9	10	11	12
T_N	3	4	3	10	12	8	6	12	30	5	12
N	25	32	48	50	56	64	100	128	256	480	512
T_N	50	24	12	150	24	48	150	96	192	120	384

pixel dimension of image $(N \times N)$	iterations to restore image (period)
300×300	300
257×257	258
183×183	60
157×157	157
150×150	300
147×147	56
124×124	15
100×100	150

圖 7.2 各個影像解析度 2D EAT cycle 的數值

(2) 解密程式:

使用與加密影像一致的參數 (a,b,G),對影像 作解密。請注意,解密時,請使用加密處理之反矩陣 $\begin{bmatrix} 1 & -a \\ -b & ab+1 \end{bmatrix}$ 。座標(x',y')的像素值會被轉換至座標(x,y),如下圖 7.3 所示。

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & -a \\ -b & ab+1 \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} \bmod N$$

圖 7.3 EAT 解密公式

2. 以下三張分別為加密前(圖 7.4)和加密後(圖 7.5)以及解密完(圖 7.6)的圖 片,加密次數 G = 120。

圖 7.4 Lena

圖 7.5 Lena_enc

圖 7.6 Lena_dec

圖 7.7 Lena_直方圖

圖 7.8 Lena_enc_直方圖

3. 經過 EAT 轉換之後,將圖片的 pixel 互換完全看不出原始圖片的樣貌,但從直方圖來看幾乎是一樣的,利用反矩陣解密之後,才能得到原始圖片,但如過沒有反矩陣,很難解密回來。

HW8: Image Encryption by 2D EAT and RP

1. 第一個程式練習利用 2D-EAT+Durstenfeld 的 Random Permutation (RP) 對影像作加密處理。

第二個程式練習利用 2D 2D-EAT 的 反矩陣 及 Durstenfeld 的 Reverse Random Permutation (RRP)對影像作解密處理。

(1) 加密程式:

step 1: 先利用 $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ 矩陣作 EAT 轉換,並利用圖 8.1 將座標(x, y) 的像素值會被轉換至座標(x', y'), 重複 G 次。

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & a \\ b & ab+1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \mod N$$

圖 8.1 座標轉換

step 2: 根據 Durstenfeld 的 RP 演算法將各個 pixel 做隨機打亂, 得到一個新的十進位數值。

(2) 解密程式 :

step 1:使用加密反矩陣 $\begin{bmatrix} ab+1 & -a \\ -b & 1 \end{bmatrix}$ 做轉換,將座標(x',y')的像素會被轉換至座標(x,y),如下圖 8.2 所示。

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} \bmod N$$

圖 8.2 2D-EAT 之逆轉換

step 2: 根據 Reverse Random Permutation (RRP) 演算法,依照 2 進制、3 進制…、8 進制之順序,產出原先的二進制序列,將對應的 2 進制 8 個 bits 表示,如此可順利解密。

2. 以下三張分別為加密前(圖 8.3)和加密後(圖 8.4)以及解密完(圖 8.5)的圖 片,加密次數 G = 120。

圖 8.3 Baboon

圖 8.4 Baboon_enc

圖 8.5 Baboon_dec

圖 8.6 Baboon_直方圖

圖 8.7 Baboon_enc_直方圖

3. 透過加入 Random Permutation (RP),能夠改變原始圖片的直方圖,但從加密後的圖片來看,不容易看出原始的樣貌。

HW9: Metrics to measure the performance of the image encryption

1. 發展量測影像加密成效之各項標準評估方式。

程式-1:量測 variance of histogram (VOH)

程式-2:量測 histogram 的 Chi-square test (xtest 2)

程式-3:對原始、加密影像各取 8000 sample pixels,量測得出的水平、

垂直、對角方向之 Pear correlation coefficients.

程式-4:量測 Global information entropy。

2. 下表 9.1 為 VOH 的量測結果。

表 9.1 量測 variance of histogram (VOH)

	А	В	С	D	Е	F	G	Н
1	VOH		Plain			Cipher		
2	Image	Type	Red	Green	Blue	Red	Green	Blue
3	Aerial	grey	1767431			143824.4		
4	Babara	grey	1923146			477450.3		
5	Baboon	grey	715709.4			52614.52		
6	Boat	grey	1535879			81687.76		
7	house	grey	1319801			82046.58		
8	Lena	grey	569052			62439.62		
9	Peppers	grey	427682.6			57465.65		
10	Tank	grey	8103600			234121.7		
11	Truck	grey	4614265			51777.4		

下表 9.2 為 CHI 的量測結果。

表 9.2 量測 histogram 的 Chi-square test

	А	В	С	D	Е	F	G	Н	I	J
1	CHI	<u> </u>	Cipher					Results		
2	Image	Type	Red	Green	Blue	alpha	chi value	Red	Green	Blue
3	Aerial	grey				0.05	293.248	Fail		
4	Babara	grey				0.05	293.248	Fail		
5	Baboon	grey				0.05	293.248	Fail		
6	Boat	grey				0.05	293.248	Fail		
7	house	grey				0.05	293.248	Fail		
8	Lena	grey				0.05	293.248	Fail		
9	Peppers	grey				0.05	293.248	Fail		
10	Tank	grey				0.05	293.248	Fail		
11	Truck	grey				0.05	293.248	Fail		

下表 9.3 為 COR 的量測結果, Plain 的 Green、Blue 通道已隱藏。

表 9.3 量測水平、垂直、對角方向之 Pear correlation coefficients

	А	В	С	D	Е	L	M	N
1	COR		Plain			Cipher		
2	Sample	8000	red			red		
3	Image	Type	horizontal	vertical	diagonal	horizontal	vertical	diagonal
4	Aerial	grey	0.750645	0.709345	0.635454	0.003016	0.011456	0.001229
5	Babara	grey	0.814849	0.855538	0.796495	0.003937	0.007613	-0.00481
6	Baboon	grey	0.680527	0.585148	0.548948	0.003705	0.002722	0.001694
7	Boat	grey	0.760733	0.824674	0.734627	-0.01648	-0.00684	-0.0029
8	house	grey	0.862349	0.863406	0.807489	0.00015	0.004191	-0.00116
9	Lena	grey	0.882423	0.909023	0.857618	-0.018	0.0072	0.000515
10	Peppers	grey	0.901139	0.905274	0.887019	-0.00045	0.000456	0.003116
11	Tank	grey	0.761026	0.717723	0.670946	-0.00647	0.005658	0.008017
12	Truck	grey	0.841361	0.765777	0.745827	-0.0055	-0.00832	0.001283

下表 9.4 為 GIE 的量測結果。

表 9.4 量測 Global information entropy

	А	В	С	D	Е	F	G	Н
1	GIE		Plain			Cipher		
2	Image	Type	Red	Green	Blue	Red	Green	Blue
3	Aerial	grey	6.993994			7.878546		
4	Babara	grey	6.676405			7.634062		
5	Baboon	grey	7.381242			7.95474		
6	Boat	grey	7.19137			7.931536		
7	house	grey	7.236354			7.929379		
8	Lena	grey	7.493999			7.946251		
9	Peppers	grey	7.637787			7.951019		
10	Tank	grey	5.49574			7.806022		
11	Truck	grey	6.027415			7.95966		

3. 由上面幾張表的資料可以得知加密效果其實是不錯的,唯一美中不足的 是在 Chi-square test 的部分,可能是加密在隨機打亂的部分還需要改善, 像是加入 Chaotic Sequence 能夠讓加密效果更好。

● 最感到興趣的作業

整個學期下來,我覺得每份作業都非常有趣,特別是在 HW7和 HW8的部分,從 pixel 的交換到每個 pixel 的 Random Permutation (RP),讓原始圖片經過加密之後完全看不出原本的樣貌,且不管加密過程中有多複雜,都能有相對應的方式解密回來,整體來說非常得充實。

● 最感到困難的作業與原因

我覺得 HW9 的部分稍微複雜了一點,特別是在量測 histogram Chi-square test 的部分,在寫的過程中發現都不會通過,一直以為有什麼地方有寫錯,甚至上網反覆驗證自己的寫法,以及詢問同學寫出來的結果,在這部分花費了許多的時間,後來發現有可能是加密過程中要加入 Chaotic Sequence 才能讓加密效果更好。

● 整個課程的述評

◎ 教師教學之優點與缺點、課程內容之優點與缺失

老師上課內容準備得很豐富,並且會隨時詢問大家有沒有不懂的地方,都會按照課程進度教學,講課內容非常充實,希望在課程內容檢測加密效果的投影片,能夠在更詳細一點,有時上課聽懂了,但回去做練習時,想再回顧一下上課內容,但投影片在計算過程的部分沒有過多的解釋,導致複習時有些困難。

◎ 建議後續課程改進之事項

我覺得在評分方式的部分,前5個繳交作業且全對會有加分這部分, 可以改為在作業開放後的一段時間內繳交且全對的人可以加分。在作業 的部分,可以再多一點,這樣才能每個部分都確實練習到。

◎ 其他課程感想與心得

希望老師能多開幾門不同的選修課,一方面是可以有更多的選修學分,另一方面是老師教學的內容非常充實,可以學到很多東西,並且無論講課內容的難易度,老師都能用最簡單的方式讓我們了解,這門課也是我這學期修到最有收穫且最充實的一門課,能自己實現色彩轉換、影像加密等等的內容,讓我覺得很有成就感。

以下是我這學期所有作業成品以及程式碼的連結

https://github.com/chang001124/Color-Science