URI Online Judge I 1488

Números Mágicos?

VII Maratona de Programacao IME-USP
Brasil

Timelimit: 3

"Os números sempre desempenharam um papel de acentuado relevo não só nos altos campos da Fé e da Verdade, como no humílimos terreiros da Superstição e do Erro." (Prof. Marão)

Malba Tahan, em seu clássico "O Homem Que Calculava", conta uma fábula de superstição envolvendo os números quadripartidos. Mal sabia ele que séculos antes, na antiga civilização Tcheca, a superstição envolvendo os números quadripartidos já se fazia presente. Na antiguidade, uma importante comunidade que vivia nos arredores de Neratovice, utilizava as propriedades dos números quadripartidos para prever o futuro, batizar as crianças e até mesmo para escolher os seus líderes.

Um número inteiro n é quadripartido se existe alguma divisão desse número em quatro parcelas inteiras ($p_1 + p_2 + p_3 + p_4 = n$) e um operador mágico (m) de modo que a primeira parcela somada ao operador mágico, a segunda diminuída dele, a terceira multiplicada por ele e a quarta dividida por ele deem o mesmo resultado ($p_1 + m = p_2 - m = p_3 * m = p_4 / m$).

Assim, 128 é quadripartido, porque podemos dividir 128 em 4 parcelas (31, 33, 32 e 32) de modo que existe um operador mágico (no caso, 1) que faz com que $p_1 + m$, $p_2 - m$, $p_3 * m$ e p_4 / m sejam iguais. De fato: 31 + 1 = 33 - 1 = 32 * 1 = 32 / 1 = 32.

Um grupo de pesquisadores de Praga está reconstruindo o passado de Neratovice, e pediu a sua ajuda. Eles querem que você faça um programa que identifique quando um número é ou não quadripartido e qual é o seu operador mágico associado.

Entrada

Cada linha da entrada contém um inteiro \mathbf{n} ($0 \le \mathbf{n} \le 500000$) que seu programa deverá analisar e classificar em quadripartido ou não. O valor $\mathbf{n} = 0$ corresponde ao final do arquivo de entrada e não deve ser processado.

Saída

Para cada valor da entrada, seu programa deve imprimir um identificador **Instancia** \mathbf{h} , em que \mathbf{h} é um número inteiro, sequencial e crescente a partir de 1. Na linha seguinte, separados por um espaço em branco, os cinco números que comprovam a condição de quadripartido, quando \mathbf{n} for quadripartido. Siga a ordem: \mathbf{m} \mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4 .

Se **n** não for quadripartido, seu programa deve imprimir a mensagem **n nao e quadripartido**. No primeiro caso, é possível que exista mais de uma sequencia que atenda às condições estabelecidas. Se isto ocorrer, seu programa deverá escolher a que apresentar o maior valor possível para **m**.

Uma linha em branco deve separar a saída de cada instância.

Exemplo de Entrada	Exemplo de Saída		
128	Instancia 1 7 7 21 2 98		
8 0	Instancia 2 1 nao e quadripartido		
	Instancia 3		