SEM-based Customer Contentment Analysis on Mass Merchandiser

Kuan Min ChenNational Chengchi UniversityWei Cheng ChenNational Chengchi University

Contents

Introduction	2
Methodology and methods	2
Presentation of results and discussion	
. Descriptive Analysis	6
. Reliability analysis and Confirmatory Factory analysis	9
. Structural equation modeling analysis	18
Summary	24
	Methodology and methods Presentation of results and discussion Descriptive Analysis Reliability analysis and Confirmatory Factory analysis

I. Introduction

Mass merchandisers need to provide the correct information about their products and services to customers. Thus, it is necessary to have the information to enable customers to meet their real needs and to discover the best way to satisfy and retain customers, as well as to follow consumer sentiment, which can provide early warnings of market conduct and performance. This study seeks to understand ways to retain customers and to identify their levels of contentment with mass merchandisers. The research also focused on helping managers assess and identify the major strengths of the critical success factors of merchandisers, so that the company can sustain and maintain the success it has achieved in the market.

II. Methodology and methods

In this research, a previously validated questionnaire was used that was the basis of the study by Wu et al. (2009), which aimed to identify critical success factors for the E-Life Mall Corporation (Taiwan). In the present study, individual characterization items were adapted for the context, to be applied to customers of merchandisers. Five topics in the present study, analyses obtained **Cronbach's** α up to 0.897 or higher, which, according to the parameters, means the reliability of the instrument was good and very good for the respective dimensions.

The main objective of the study was to identify CSFs that maximize the satisfaction of customers, as well as to observe the degree of their satisfaction. To this end, data were collected using a survey with a questionnaire composed of 2 sections, collecting **objective** and **subjective** feedbacks, respectively. The former aims at the objective perspective from customers, commenting on the building, the products of the merchandiser, the quality of the service and product, and the traffic flow in the shopping area. The later aims at the subjective perspective, where the customers comment on the level of satisfaction, contentment, and impression on collective topics. In the questionnaire, qualitative variables were measured on a Likert ordinal scale with five points: 1 – Strongly disagree, 2 – Disagree, 3 – Neither agree nor disagree, 4 – Agree and 5 – Strongly Agree. The questions designed are presented as follows.

factor		measurement					
		A 1	Staff is proactive and amicable.				
	staff	A2	Store has a sufficient number of staff.				
	(AS)	А3	Staff is energetic.				
		A4	Staff is generous in giving help.				
		A5	Products are labeled with detailed and regulated information.				
		A6	Products are appropriately displayed.				
Building	design	A7	Facilities are attractive.				
(M)	(AD)	A8	Shopping center is clean and tidy.				
		A9	Shopping center is comfortable.				
		A10	Decor is with appropriate selection of colors.				
		A11	Background music is delightful.				
	decor	A12	Store lightening is bright.				
	(AE)	A13	Air is fresh indoor.				
		A14	Store has a comfortable and pleasant atmosphere				

factor			measurement
		B1	Store offers a variety of products.
	variety (BC)	B2	Store has a wide spectrum of product type.
	(50)	В3	Store offers special and interesting products.
		В4	Store offers products released byfamous brands.
		В5	Store has enough inventory
Product (P)	placement (BW)	В6	Store offers mostly mainstream products
,	(511)	В7	Store offers new products
priv		В8	Store offers products released by internationalbrands.
	private brand	В9	Store offers a variety of products released by its own in-house brand.
	(BP)	B10	Store has a wide spectrum of product type for products from its own in-house brand.

fac	ctor		measurement
		D1	Staff treats customers with respect.
	service (DS)	D2	Staff takes good care of customers.
		D3	Staff offers high-quality service.
Quality		D4	Staff offers real time service.
(Q)		D5	Store offers high-quality products
	product	D6	Store offers durable products
	(DP)	D7	Store offers fine products
		D8	Store offers reliable products

factor		measurement				
	space (ES) Traffic Flow	E1	Store is specious.			
		E2	Store has good air flow.			
Traffic Flow		E3	Store is uncomfortably confined.			
(T) custome (EP) staff (EB)	customer (EP)	E4	Store is usually crowded with customers			
		E5	Staff is always busy.			

factor		measurement					
		C1	You feel joyful while shopping.				
	delight	C2	You feel comfortable while shopping				
	(CP)	C3	You feel excited while shopping				
Satisfaction (F)		C4	You feel stressed while shopping				
(1)	comfort (CC)	C5	You feel that you are in control of the surrounding.				
	informative (CD)	C6	The store provides you with sufficient information while looking for certain products.				
fac	tor		measurement				
		F1	Store offers an ambient atmosphere for shopping.				
	environment	F2	Store offers a clean and sanitary environment.				
	(FE)	F3	Products are appropriately displayed, and traffic flow is well designed.				
	parking (FS)	parking F4 It is easy to park					
		F5	Staff is amicable.				
Contentment	staff (FP)	F6	Staff are clean and tidy in appearance				
(S)	()	F7	Cashiers has satisfactory register speed.				
		F8	Prices are reasonable.				
		F9	Prices are clearly labeled.				
	product	F10	Product information is consistent with the advertisements.				
	(FC)	F11	Price matches the value of product.				
		F12	Price matches the staff service.				
		F13	Products offer great value for money.				
fac	tor		measurement				
		G1	Store offers a variety of products.				
	product (GP)	G2	Prices are reasonable.				
		G4	Product qualities are credible and trustworthy.				
	(01)	G5	Store offers a variety of product brands.				
		G6	Store has a good assortment of products.				
		G8	Decor is bright and fresh.				
		G9	Space is roomy and bright.				
Impression	ambience (GS)	G10	Store is well-equipped with safety facilities.				
(I)	()	G11	Staff has a good attitude in customer service.				
		G13	Store offers good after-sales service.				
		G3	Store offers mostly mainstream products.				
	service (GG)	G7	Recreational facilities are attractive.				
	(/	G12	Staff have good knowledge of products.				
		G14	Store has many taste testing activities.				
	activity (GA)	G15	Store has many promotional activities.				
	(OA)	G16	Store has many exhibitions.				

In order to meet the goals of the present study, the following analyses were carried out:

- Descriptive Analysis
 - With the background information and the behavioral research on consumers, descriptive analysis was performed on gender, education, monthly income, and so on and so forth.
 - By analyzing the averages and standard deviations of the variables among mass merchandisers, the demographics of samples were observed.
- Reliability Analysis and Confirmatory Factor Analysis
 - Reliability analysis were conducted, using Cronbach's α, where the factors with weaker reliability were removed, so to reduce dimensions.
 - 1st-order & 2nd-order confirmatory factor analysis (CFA) were proceeded for all factors.
- Structural Equation Modeling Analysis
 - Structural equation modeling (SEM) analysis was performed on the initialized model.
 - Based on the first output, weak connections were removed. Aiming at maximizing indexes, e.g. GFI and AGFI, the process was repeated to fine the best model.

III. Presentation of results and discussion

a. Descriptive Analysis

The study population was based on the customers visiting mass merchandisers, *Costco*, *Carrefour*, and *a.mart*, and all analyses were based on the responses of customers. Data were collected in 2012, from 280 customers responded to the questionnaire.

Regarding **sampling design**, mass merchandiser was our target, not individuals. Since complete random division of a limited dataset may lead to over-crowded or complete absence of customers at a certain region or merchandiser, we adopted the **stratified sampling** to avoid such inconsistency. Based on the distribution of the merchandiser, the sample sizes on different locations for each merchandiser were assigned.

Distribution of the merchandisers

location	Costco	Carrefour	a.mart
North	6	15	5
Central	1	3	1
South	3	5	0
East	0	0	0
total	9	24	6

Sample size

location	Costco	Carrefour	a.mart
North	42	110	33
Central	6	22	10
South	20	36	0
East	0	1	0
total	68	169	43

Table 1. Summary of the sample characterization

Item		Cost	tco	Carrefour		a.mart		total	
11	em	#sample	%	#sample	%	#sample	%	#sample	%
	North	42	61.8	110	65.1	33	76.7	185	66.1
Location	Central	6	8.8	22	13.0	10	23.3	38	13.6
	South	20	29.4	36	21.3	0	0.0	56	20.0
	East	0	0.0	1	0.6	0	0.0	1	0.4
gender	Male	31	45.6	82	48.5	22	51.2	135	48.2
gender	Female	37	54.4	87	51.5	21	48.8	145	51.8
	<20	7	10.3	21	12.4	2	4.7	30	10.7
age	21 to 40	29	42.6	102	60.4	20	46.5	151	53.9
age	41 to 60	30	44.1	45	26.6	21	48.8	96	34.3
	61<	2	2.9	1	0.6	0	0.0	3	1.1
	PhD	4	5.9	7	4.1	3	7.0	14	5.0
Education	Master	18	26.5	54	32.0	9	20.9	81	28.9
Eddodilon	Graduate	44	64.7	106	62.7	28	65.1	178	63.6
	High School	2	2.9	2	1.2	3	7.0	7	2.5
Marital Status	Married	36	52.9	60	35.5	23	53.5	119	42.5
- Wartar Clarao	Single	32	47.1	109	64.5	20	46.5	161	57.5
	170k<	9	13.2	16	9.5	5	11.6	30	10.7
	140k to 170k	6	8.8	11	6.5	3	7.0	20	7.1
Monthly	110k to 140k	9	13.2	20	11.8	3	7.0	32	11.4
Income	80k to 110k	16	23.5	38	22.5	9	20.9	63	22.5
	50k to 80k	15	22.1	39	23.1	10	23.3	64	22.9
	<50k	13	19.1	45	26.6	13	30.2	71	25.4
	11	0	0.0	2	1.2	0	0.0	2	0.7
	8	0	0.0	1	0.6	1	2.3	2	0.7
	7	2	2.9	2	1.2	0	0.0	4	1.4
#people	6	0	0.0	11	6.5	4	9.3	15	5.4
in a	5	15	22.1	33	19.5	9	20.9	57	20.4
Household	4	35	51.5	65	38.5	12	27.9	112	40.0
	3	4	5.9	28	16.6	10	23.3	42	15.0
	2	10	14.7	16	9.5	5	11.6	31	11.1
	1	2	2.9	11	6.5	2	4.7	15	5.4
	7<	2	2.9	2	1.2	0	0.0		1.4
#visits per Monthly	5 to 6	0	0.0	3	1.8	5	11.6		2.9
	3 to 4	17	25.0	29	17.2	11	25.6		20.4
	1 to 2	49	72.1	135	79.9		62.8		75.4
	20:00~23:00	10	14.7	41	24.3	14	32.6		23.2
Visiting	17:00~20:00	24	35.3	74	43.8	14	32.6		40.0
Time	14:00~17:00	23	33.8	45	26.6	12	27.9	80	28.6
	11:00~14:00	6	8.8	6	3.6		4.7		5.0
	08:00~11:00	5	7.4	3	1.8	1	2.3	9	3.2

Through the analysis of the results in Table 1, it can be said that:

- The largest percentage of respondents were belonging to the age group 21 to 40 years old, representing 53.9% of the respondents. It can also be noted that 98.9% of the individuals were less than or equal to 60 years old. Only 1.1% were older than 60 years. Also, comparing to Costco and a.mart, which have close ratios for group 21 to 40 years old and group 41 to 60 years old, Carrefour has 2 times higher for the former group than the later.
- The educational levels of the respondents corresponded to mostly university graduates (63.6%), for a total of 178 respondents. A large percentage of respondents also had a master's degree (28.9% or 81 respondents).
- The marital status of the respondents corresponded to mostly unmarried people for Carrefour (64.5% unmarried), while it was evenly observed in general for Costco and a.mart. Also, most customers are from a family of 4 with 40.0% of respondents, followed by a family of 5 with 20.4% of respondents.
- It can also be noted that up to 75.4% of respondents visit mass merchandisers 1 to 2 times; the most popular visiting hours were from 17:00 to 20:00 with 40.0% of respondents.

Table 2. Summary of statistics

Factor		Costco		Carrefour		a.mart		total	
Га	avg.	std.	avg.	std.	avg.	std.	avg.	std.	
	staff	2.12	0.56	1.90	0.43	2.04	0.43	1.98	0.47
Building	design	2.27	0.48	2.05	0.39	2.11	0.44	2.11	0.43
	decor	4.63	0.79	4.22	0.74	4.28	0.75	4.33	0.77
	variety	2.40	0.40	2.11	0.39	2.11	0.39	2.18	0.41
Product	placement	4.03	0.59	3.45	0.61	3.35	0.75	3.57	0.68
	private brand	1.47	0.31	1.36	0.27	1.28	0.36	1.38	0.30
Quality	service	0.72	0.16	0.67	0.15	0.66	0.19	0.68	0.16
Quality	product	0.69	0.21	0.68	0.18	0.67	0.19	0.68	0.19
	space	1.56	0.29	1.42	0.29	1.41	0.31	1.45	0.30
Traffic Flow	customer	0.74	0.20	0.74	0.19	0.81	0.25	0.77	0.22
	staff	2.07	0.56	1.87	0.42	1.91	0.49	1.92	0.47
	delight	3.21	0.44	2.51	0.52	2.52	0.57	2.68	0.59
Satisfaction	comfort	1.55	0.38	1.39	0.30	1.33	0.35	1.42	0.34
	informative	0.79	0.19	0.68	0.17	0.68	0.18	0.71	0.18
	environment	0.75	0.22	0.75	0.19	0.68	0.24	0.74	0.21
Contentment	parking	2.33	0.43	2.06	0.38	2.02	0.49	2.12	0.43
Contentinent	staff	1.46	0.35	1.36	0.28	1.34	0.32	1.38	0.31
	product	4.66	0.66	4.03	0.75	4.10	0.95	4.19	0.81
	product	3.93	0.59	3.48	0.63	3.54	0.81	3.60	0.68
Impression	ambience	2.00	0.45		0.42	1.76	0.50	1.83	0.45
impression	service	3.86	0.73	3.40	0.63	3.44	0.72	3.52	0.70
	activity	1.60	0.32	1.34	0.33	1.33	0.38	1.40	0.35

b. Reliability analysis and Confirmatory Factory analysis

Reliability Analysis were conducted and presented in Table 3. Factors as **Building**, **Product**, **Quality**, **Contentment** obtained **Cronbach's** α up to 0.897 or higher with the analysis. This indicates that the set of items in a group are closely related to each other. For example, **Cronbach's** α for group Building is above 0.9, meaning the measurements from *A1* to *A14* provided by the respondents, i.e., how good the decoration is, how good the staff is at service, and so on, are highly correlated to each other. After removing the factors with weaker reliability, the **Cronbach's** α for all topics are presented in the table.

Table 3. Reliability analysis on variable

factor		variable	factor loading	Cronbach's α	Composite Reliability (CR)	t-value
		A1	0.829			36.039
	AS	A3	0.895	_	0.898	49.634
		A4	0.863	_		42.490
		A5	0.720	_		20.826
	AD	A6	0.814		0.800	29.371
Building		A7	0.749	0.928		23.082
(M)		A8	0.802	0.920		33.018
		A9	0.826	-		37.219
	ΑE	A10	0.815	-	0.904	35.131
	AL	A12	0.720	-	0.904	22.785
		A13	0.678	-	•	19.360
		A14	0.841	-	•	40.522
		B1	0.621			14.178
	вс	B2	0.764	='	0.753	22.220
		В3	0.758	-	•	21.821
-	BW	B4	0.798	='		30.373
Product		B5	0.638	0.897	•	16.236
(P)		B6	0.748		0.863	24.497
, ,		B7	0.782	-	•	28.256
		B8	0.773	· 	•	27.192
-	- D-D	B9	0.837		0.000	24.019
	BP	B10	0.795		0.820	22.116
	DS	D1	0.815		0.899	34.715
		D3	0.951	-		65.903
		D4	0.825	-	•	36.264
Quality		D5	0.887	0.000		55.315
(Q)		D6	0.889	0.920	•	56.009
, ,	DP	D7	0.805	-	0.924	34.032
		D8	0.893	-	•	57.510
		G16	0.898	-		41.919
T ((' E) .		E1	0.832		0.007	8.388
Traffic Flow	ES	E2	0.866	0.633	0.837	8.447
(T) -	EB	E5	0.979			34.511
		C1	0.925		0.040	51.927
Satisfaction	CP	C2	0.965	0.700	0.943	57.520
(F)	CC	C5	0.871	0.782		103.500
_	CD	C6	0.980	=		150.300

factor		variable	factor loading	Cronbach's α	Composite Reliability (CR)	t-value
Traffic Flow	ES	E1	0.832		0.837	8.388
(T)		E2	0.866	0.633	0.037	8.447
(1)	EB	E5	0.979			34.511
	СР	C1	0.925	_	0.943	51.927
Satisfaction		C2	0.965	0.782	0.343	57.520
(F)	CC	C5	0.871			103.500
	CD	C6	0.980			150.300
		F1	0.845	_		40.210
	FE	F2	0.913	-	0.884	57.746
		F3	0.790		•	30.586
	FS	F4	0.997	-		138.200
	FP	F5	0.869		0.891 -	43.146
Contentment	FF.	F6	0.925	0.944	0.091	54.092
(S)		F8	0.775	0.944	-	29.953
		F9	0.756	- -		27.488
	FC	F10	0.858		0.929	47.950
	FC .	F11	0.895	-	0.929	62.576
		F12	0.905	•		67.726
		F13	0.779		•	30.544
		G1	0.751		0.917	26.537
		G2	0.817	-		36.583
	GP	G4	0.798	-		28.317
		G5	0.833	- '	•	39.982
		G6	0.865	- '	•	48.772
		G8	0.875	•		51.966
lmanuagaian		G9	0.617	-		14.738
Impression	GS	G10	0.855	0.948	0.888	44.109
(I)		G11	0.882	- '	•	52.194
		G13	0.781	<u>-</u> '	•	29.919
		G3	0.748	-		25.704
	GG	G7	0.836	='	0.800	32.603
		G12	0.677	='	•	19.341
	C ^	G15	0.902	•	0.905	42.531
	GA	G16	0.898	-	0.895	41.919

To continue, 1^{st} -order & 2^{nd} -order CFA were proceeded for all factors with path diagrams.

■ Building - 1st-order CFA

Factors to Variables	Estimated Loadings	Std.	t-values
AS→A1	0.83	0.02	36.04
AS→A3	0.90	0.02	49.63
AS→A4	0.86	0.02	42.49
AD→A5	0.72	0.03	20.83
AD→A6	0.81	0.03	29.37
AD→A7	0.75	0.03	23.08
AE→A8	0.80	0.02	33.02
AE→A9	0.83	0.02	37.22
AE→A10	0.81	0.02	35.13
AE→A12	0.72	0.03	22.78
AE→A13	0.68	0.04	19.36
AE→A14	0.84	0.02	40.52

Variables	Estimated Errors	Std.	t-values
A1	0.31	0.04	8.20
А3	0.20	0.03	6.13
A4	0.25	0.04	7.26
A5	0.48	0.05	9.66
A6	0.34	0.05	7.47
A7	0.44	0.05	9.06
A8	0.36	0.04	9.13
A9	0.32	0.04	8.70
A10	0.34	0.04	8.91
A12	0.48	0.05	10.61
A13	0.54	0.05	11.39
A14	0.29	0.03	8.39

between Factors	estimated corr coef.	Std.	t-value
AS-AD	0.69	0.04	16.27
AD-AE	0.83	0.03	27.52
AS-AE	0.68	0.04	17.45

■ Building - 2nd-order CFA

Sub Factors to Variables	Estimated Loadings	Std.	t-values
AS→A1	0.83	0.02	36.12
AS→A3	0.90	0.02	49.57
AS→A4	0.86	0.02	42.45
AD→A5	0.72	0.03	20.69
AD→A6	0.81	0.03	29.37
AD→A7	0.75	0.03	23.21
AE→A8	0.80	0.02	33.18
AE→A9	0.83	0.02	37.30
AE→A10	0.81	0.02	35.01
AE→A12	0.72	0.03	22.77
AE→A13	0.68	0.04	19.33
AE→A14	0.84	0.02	40.47

3
18
14
27
70
47
02
11
69
92
61
40
39

Factor to Sub Factors	Estimated Loadings	Std.	t-values
M→AS	0.75	0.04	20.91
M→AD	0.91	0.03	31.52
M→AE	0.91	0.02	36.93

Sub Factors	Estimated Errors	Std.	t-values
AS	0.31	0.04	8.18
AD	0.20	0.03	6.14
AE	0.26	0.04	7.27

■ Product - 1st-order CFA

Factors to Variables	Estimated Loadings	Std.	t-values
BC→B1	0.62	0.04	14.18
BC→B2	0.76	0.03	22.22
ВС→В3	0.76	0.03	21.82
BW→B4	0.80	0.03	30.37
BW→B5	0.64	0.04	16.24
BW→B6	0.75	0.03	24.50
BW→B7	0.78	0.03	28.26
BW→B8	0.77	0.03	27.19
BP→B9	0.84	0.03	24.02
BP→B10	0.79	0.04	22.12

Variables	Estimated Errors	Std.	t-values
B1	0.61	0.05	11.27
B2	0.42	0.05	7.91
В3	0.42	0.05	8.06
B4	0.36	0.04	8.66
B5	0.59	0.05	11.85
B6	0.44	0.05	9.66
B7	0.39	0.04	9.00
B8	0.40	0.04	9.17
B9	0.30	0.06	5.15
B10	0.37	0.06	6.46

between Factors	estimated corr coef.	Std.	t-value
BC-BW	0.83	0.03	23.95
BW-BP	0.73	0.04	17.36
BC-BP	0.58	0.06	10.00

■ **Product** - 2nd-order CFA

Sub Factors to Variables	Estimated Loadings	Std.	t-values
BC→B1	0.62	0.04	14.18
BC→B2	0.76	0.03	22.22
ВС→В3	0.76	0.03	21.82
BW→B4	0.80	0.03	30.37
BW→B5	0.64	0.04	16.24
BW→B6	0.75	0.03	24.50
BW→B7	0.78	0.03	28.26
BW→B8	0.77	0.03	27.19
BP→B9	0.84	0.03	24.02
BP→B10	0.79	0.04	22.12

Variables	Errors	Std.	t-values
B1	0.61	0.05	11.27
B2	0.42	0.05	7.91
В3	0.42	0.05	8.06
B4	0.36	0.04	8.66
B5	0.59	0.05	11.85
B6	0.44	0.05	9.66
B7	0.39	0.04	9.00
B8	0.40	0.04	9.17
B9	0.30	0.06	5.15
B10	0.37	0.06	6.46

Factor to Sub Factors	Estimated Loadings	Std.	t-values
P→BC	0.81	0.04	18.51
P→BW	1.02	0.04	25.67
P→BP	0.71	0.05	15.17

Sub Factors	Estimated Errors	Std.	t-values
ВС	0.34	0.07	4.80
BW	0.05	0.08	-0.58
BP	0.50	0.07	7.45

■ Quality - 1st-order CFA

Factors to Variables	Estimated Loadings	Std.	t-values
DS→D1	0.82	0.02	34.71
DS→D3	0.95	0.01	65.90
DS→D4	0.82	0.02	36.26
DP→D5	0.89	0.02	55.31
DP→D6	0.89	0.02	56.01
DP→D7	0.80	0.02	34.03
DP→D8	0.89	0.02	57.51

Variables	Estimated Errors	Std.	t-values
D1	0.34	0.04	8.75
D3	0.10	0.03	3.47
D4	0.32	0.04	8.53
D5	0.21	0.03	7.51
D6	0.21	0.03	7.46
D7	0.35	0.04	9.25
D8	0.20	0.03	7.34

between Factors	estimated corr coef.	Std.	t-value
DS-DP	0.70	0.04	19.80

■ Quality - 2nd-order CFA

Sub Factors to Variables		Std.	t-values
DS→D1	0.82	0.02	34.71
DS→D3	0.95	0.01	65.90
DS→D4	0.82	0.02	36.26
DP→D5	0.89	0.02	55.31
DP→D6	0.89	0.02	56.01
DP→D7	0.80	0.02	34.03
DP→D8	0.89	0.02	57.51

Variables	Errors	Std.	t-values
D1	0.34	0.04	8.75
D3	0.10	0.03	3.47
D4	0.32	0.04	8.53
D5	0.21	0.03	7.51
D6	0.21	0.03	7.46
D7	0.35	0.04	9.25
D8	0.20	0.03	7.34

Factor to Sub Factors		Std.	t-values
Q→DS	0.84	0.02	35.27
0-\DP	0.84	0.02	44 79

Sub Factors	Estimated Errors	Std.	t-values
DS	0.30	0.04	7.53
DP	0.30	0.03	9.54

■ Traffic Flow - 1st-order CFA

Factors to Variables	Estimated Loadings	Std.	t-values
ES→E1	0.83	0.10	8.39
ES→E2	0.87	0.10	8.45
EB→E5	0.98	0.03	34.51

Variables	Estimated Errors	Std.	t-values
E1	0.31	0.16	1.87
E2	0.25	0.18	1.41
E5	0.04	0.06	0.75

between Factors	estimated corr coef.	Std.	t-value
ES-EB	0.23	0.06	3.94

■ Traffic Flow - 2nd-order CFA

Sub Factors to Variables		Std.	t-values
ES→E1	0.83	0.10	8.39
ES→E2	0.87	0.10	8.45
EB→E5	0.93	0.01	92.48

Variables	Estimated Errors	Std.	t-values
E1	0.31	0.16	1.87
E2	0.25	0.18	1.41
E5	0.13	0.02	6.85

Factor to Sub Factors		Std.	t-values
T→ES	0.25	0.07	3.68
T→EB	0.96	0.00	1160.30

Sub Factors	Estimated Errors	Std.	t-values
ES	0.94	0.03	28.29
EB	0.08	0.00	50.36

■ Satisfaction - 1st-order CFA

Factors to Variables	Estimated Loadings	Std.	t-values
CP→C1	0.93	0.02	51.93
CP→C2	0.97	0.02	57.52
CC→C5	0.87	0.01	103.50
CD→C6	0.98	0.01	150.30

Variables	Estimated Errors	Std.	t-values
C1	0.14	0.03	4.36
C2	0.07	0.03	2.11
C5	0.24	0.01	16.49
C6	0.04	0.01	3.13

between Factors	estimated corr coef.	Std.	t-value
CP-CC	0.73	0.04	20.17
CC-CD	0.21	0.07	3.21
CP-CD	0.30	0.06	5.34

■ Satisfaction - 2nd-order CFA

Sub Factors to Variables		Std.	t-values
CP→C1	0.93	0.02	51.93
CP→C2	0.97	0.02	57.52
CC→C5	0.82	0.04	19.79
CD-\C6	0.86	0.01	94 56

Variables	Estimated Errors	Std.	t-values
C1	0.14	0.03	4.36
C2	0.07	0.03	2.11
C5	0.33	0.07	4.97
C6	0.27	0.02	17.06

Factor to Sub Factors		Std.	t-values
F→CP	1.02	0.13	8.06
F→CC	0.77	0.07	11.58
F→CD	0.34	0.07	4.62

Sub Factors	Estimated Errors	Std.	t-values
CP	-0.04	0.26	-0.17
CC	0.41	0.10	4.04
CD	0.89	0.05	18.03

■ Contentment - 1st-order CFA

Factors to Variables	Estimated Loadings	Std.	t-values
FE→F1	0.85	0.02	40.21
FE→F2	0.91	0.02	57.75
FE→F3	0.79	0.03	30.59
FS→F4	1.00	0.01	138.20
FP→F5	0.87	0.02	43.15
FP→F6	0.92	0.02	54.09
FC→F8	0.77	0.03	29.95
FC→F9	0.76	0.03	27.49
FC→F10	0.86	0.02	47.95
FC→F11	0.90	0.01	62.58
FC→F12	0.90	0.01	67.73
FC→F13	0.78	0.03	30.54

Variables	Estimated Errors	Std.	t-values
F1	0.29	0.04	8.03
F2	0.17	0.03	5.76
F3	0.38	0.04	9.20
F4	0.01	0.01	0.40
F5	0.24	0.04	6.98
F6	0.15	0.03	4.59
F8	0.40	0.04	9.99
F9	0.43	0.04	10.29
F10	0.26	0.03	8.57
F11	0.20	0.03	7.76
F12	0.18	0.02	7.49
F13	0.39	0.04	9.92

between Factors	estimated corr coef.	Std.	t-value
FE-FS	0.53	0.04	12.00
FE-FP	0.81	0.03	28.44
FE-FC	0.77	0.03	25.59
FS-FP	0.48	0.05	10.09
FS-FC	0.51	0.04	11.58
FP-FC	0.78	0.03	26.62

■ Contentment - 2nd-order CFA

Sub Factors to Variables	Estimated Loadings	Std.	t-values
FE→F1	0.85	0.02	40.16
FE→F2	0.91	0.02	57.97
FE→F3	0.79	0.03	30.46
FS→F4	1.00	0.01	83.35
FP→F5	0.87	0.02	43.17
FP→F6	0.92	0.02	53.69
FC→F8	0.77	0.03	29.79
FC→F9	0.76	0.03	27.47
FC→F10	0.86	0.02	47.82
FC→F11	0.90	0.01	62.80
FC→F12	0.91	0.01	67.93
FC→F13	0.78	0.03	30.60

Variables	Estimated Errors	Std.	t-values
F1	0.29	0.04	8.04
F2	0.16	0.03	5.72
F3	0.38	0.04	9.22
F4	0.01	0.02	0.26
F5	0.24	0.04	6.93
F6	0.15	0.03	4.62
F8	0.40	0.04	10.01
F9	0.43	0.04	10.29
F10	0.26	0.03	8.57
F11	0.20	0.03	7.75
F12	0.18	0.02	7.48
F13	0.39	0.04	9.92

JUNE 2012

Factor to Sub Factors	Estimated Loadings	Std.	t-values
S→FE	0.90	0.02	39.30
S→FS	0.57	0.04	14.82
S→FP	0.90	0.02	38.03
S→FC	0.87	0.02	36.79

Sub Factors	Estimated Errors	Std.	t-values
FE	0.19	0.04	4.65
FS	0.67	0.04	15.20
FP	0.20	0.04	4.66
FC	0.25	0.04	6.12

■ Impression - 1st-order CFA

Factors to Variables	Estimated Loadings	Std.	t-values
GP→G1	0.75	0.03	26.54
GP→G2	0.82	0.02	36.58
GG→G3	0.80	0.03	28.32
GP→G4	0.83	0.02	39.98
GP→G5	0.87	0.02	48.77
GP→G6	0.87	0.02	51.97
GG→G7	0.62	0.04	14.74
GS→G8	0.85	0.02	44.11
GS→G9	0.88	0.02	52.19
GS→G10	0.78	0.03	29.92
GS→G11	0.75	0.03	25.70
GG→G12	0.84	0.03	32.60
GS→G13	0.68	0.04	19.34
GA→G15	0.90	0.02	42.53
GA→G16	0.90	0.02	41.92

Variables	Estimated Errors	Std.	t-values
G1	0.44	0.04	10.24
G2	0.33	0.04	9.12
G3	0.36	0.05	8.06
G4	0.31	0.03	8.84
G5	0.25	0.03	8.19
G6	0.23	0.03	7.98
G7	0.62	0.05	12.00
G8	0.27	0.03	8.14
G9	0.22	0.03	7.45
G10	0.39	0.04	9.55
G11	0.44	0.04	10.14
G12	0.30	0.04	7.01
G13	0.54	0.05	11.44
G15	0.19	0.04	4.85
G16	0.19	0.04	5.05

between Factors	estimated corr coef.	Std.	t-value
GP-GS	0.86	0.02	38.37
GP-GG	0.82	0.03	26.69
GP-GA	0.74	0.03	22.04
GS-GG	0.82	0.03	26.54
GS-GA	0.69	0.04	18.26
GG-GA	0.67	0.04	15.54

■ Impression - 2nd-order CFA

Sub Factors to Variables	Estimated Loadings	Std.	t-values
GP→G1	0.75	0.03	26.50
GP→G2	0.82	0.02	36.47
GG→G3	0.81	0.03	29.06
GP→G4	0.83	0.02	40.20
GP→G5	0.87	0.02	48.83
GP→G6	0.87	0.02	51.80
GG→G7	0.62	0.04	14.73
GS→G8	0.86	0.02	46.09
GS→G9	0.89	0.02	54.81
GS→G10	0.78	0.03	29.13
GS→G11	0.74	0.03	24.98
GG→G12	0.83	0.03	31.58
GS→G13	0.67	0.04	18.95
GA→G15	0.90	0.02	42.10
GA→G16	0.90	0.02	42.23

Variables	Estimated Errors	Std.	t-values
G1	0.44	0.04	10.24
G2	0.33	0.04	9.13
G3	0.35	0.04	7.83
G4	0.30	0.03	8.82
G5	0.25	0.03	8.19
G6	0.24	0.03	7.99
G7	0.62	0.05	11.97
G8	0.26	0.03	8.00
G9	0.21	0.03	7.26
G10	0.40	0.04	9.67
G11	0.45	0.04	10.28
G12	0.31	0.04	7.20
G13	0.55	0.05	11.56
G15	0.19	0.04	4.97
G16	0.19	0.04	4.92

Factor to Sub Factors	Estimated Loadings	Std.	t-values
I→GP	0.94	0.02	54.35
l→GS	0.91	0.02	46.12
l→GG	0.88	0.03	33.15
I→GA	0.78	0.03	24.70

Sub Factors	Estimated Errors	Std.	t-values
GP	0.12	0.03	3.60
GS	0.17	0.04	4.89
GG	0.23	0.05	4.98
GA	0.40	0.05	8.14

c. Structural Equation Modeling analysis

To begin , the most complex structure is built, where we assume endogenous variables are affected by all exogenous variables. As shown previously, where **Building**, **Product**, **Quality**, and **Traffic Flow** point to **Satisfaction**, **Contentment**, and **Impression**; among endogenous variables, **Satisfaction** and **Impression** both point to **Contentment**.

latent variables					
exoge	exogenous		endogenous		
Building	staff (AS) design	Satisfaction	delight (CP) comfort		
(M)	(AD)	(F)	(CC)		
` '	décor (AE)	` ,	informative (CD)		
	variety (BC)		environment (FE)		
Product (P)	placement (BW)	Contentment	parking (FS)		
	private brand (BP)	(S)	staff (FP)		
Quality	service (DS)		product (FC)		
(Q)	product (DP)		product (GP)		
Traffic Flow (T)	space (ES)	Impression	ambience (GS)		
	customer (EP)	(I)	service (GG)		
	staff (EB)		activity (GA)		

Next.

- i. structural equation modeling (SEM) analysis is performed. The indexes from the first output, i.e., *GFI*, *AGFI*, *NFI*, and *NNFI*, are served as baselines.
- ii. links with significance below the threshold (self-defined, adjustable before reaching the final structure), and perform the analysis once more.
- iii. If the indexes improve, repeat the process based on the latest structure, which includes removing few links, performing the analysis, and inspecting the indexes. On the other hand, repeat the process based on the previous structure if the indexes worsen or sustain.

The process stops if no significant improvement is observed, and the (locally) best fitted model is attained. In our experiments, the best fitted model is presented as below.

Figure 2. SEM Structure

Table 6. Analytical Outputs

Exogenous	SEM coef.	Std.	t-value
M→AS	0.682	0.053	16.422
M→AD	0.775	0.046	21.601
M→AE	0.912	0.036	32.383
P→BC	0.758	0.048	18.604
P→BW	0.903	0.041	25.938
P→BP	0.658	0.054	14.441
Q→DS	0.724	0.048	17.453
Q→DP	0.744	0.046	18.432
T→EB	1.000	0.028	35.480

Endogenous	SEM coef.	Std.	t-value	
F→CP	0.886	0.023	44.950	
S→FE	0.813	0.037	27.046	
S→FP	0.649	0.049	17.522	
S→FC	0.734	0.042	22.168	
I→GP	0.805	0.041	24.295	
l→GS	0.824	0.039	25.517	
I→GG	0.617	0.057	14.720	
I→GA	0.568	0.061	12.833	

SEM	SEM coef.	Std.	t-value
M→F	0.912	0.024	38.691
P→F	0.287	0.036	7.384
Q→S	0.784	0.022	24.854
T→S	0.331	0.020	10.374
F→S	0.636	0.026	19.241
M→I	0.394	0.030	10.509
P→I	0.489	0.026	13.967
Q→I	0.808	0.024	24.248

Table 7. Steps for Model Fitting

analytical output	1 st step	2 nd step	3 rd step	4 th step	5 th step
Fit Function	7. 1819	6. 4412	5. 3857	4. 4317	4. 1243
Goodness of Fit Index (GFI)	0. 6272	0. 6323	0. 6476	0. 7008	0. 7013
GFI Adjusted for Degrees of Freedom (AGFI)	0. 4934	0. 4886	0. 5077	0. 57	0. 5605
Root Mean Square Residual (RMR)	0. 3763	0. 393	0. 4063	0. 3747	0. 3883
Standardized Root Mean Square Residual (SRMR)	0. 3763	0. 393	0. 4063	0. 3747	0. 3883
Parsimonious GFI (Mulaik, 1989)	0. 5077	0. 5025	0. 5151	0. 545	0. 5363
Chi-Square	2003. 7633	1797. 0898	1502. 6125	1236. 4352	1150. 6692
Chi-Square DF	170	151	136	119	104
Pr > Chi-Square	<. 0001	<. 0001	<. 0001	<. 0001	<. 0001
Independence Model Chi-Square	5671. 6	5435. 6	5032. 4	4708. 8	4463. 2
Independence Model Chi-Square DF	210	190	171	153	136
RMSEA Estimate	0. 1966	0. 1977	0. 1898	0. 1835	0. 1899
RMSEA 90% Lower Confidence Limit	0. 189	0. 1895	0. 1812	0. 1743	0. 1801
RMSEA 90% Upper Confidence Limit	0. 2044	0. 2059	0. 1985	0. 1928	0. 1999
ECVI Estimate	7. 6567	6. 8985	5. 8027	4. 8317	4. 4997
ECVI 90% Lower Confidence Limit	7. 134	6. 4051	5. 3544	4. 4277	4. 1105
ECVI 90% Upper Confidence Limit	8. 2084	7. 4209	6. 2799	5. 2644	4. 9176
Probability of Close Fit	0	0	0	0	0
Bentler's Comparative Fit Index	0. 6642	0. 6862	0. 7189	0. 7547	0. 7581
Normal Theory Reweighted LS Chi- Square	1741. 4482	1622. 3784	1442. 0575	1072. 2522	1010. 2771
Akaike's Information Criterion	1663. 7633	1495. 0898	1230. 6125	998. 4352	942. 6692
Bozdogan's (1987) CAIC	875. 849	795. 2366	600. 2811	446. 8953	460. 651
Schwarz's Bayesian Criterion	1045. 849	946. 2366	736. 2811	565. 8953	564. 651
McDonald's (1989) Centrality	0. 0378	0. 0529	0. 0871	0. 136	0. 1543
Bentler & Bonett's (1980) NNFI	0. 5852	0. 6051	0. 6465	0. 6846	0. 6837
Bentler & Bonett's (1980) NFI	0. 6467	0. 6694	0. 7014	0. 7374	0. 7422
James, Mulaik, & Brett (1982) Parsimonious NFI	0. 5235	0. 532	0. 5578	0. 5735	0. 5676
Z-Test of Wilson & Hilferty (1931)	35. 3228	33. 486	30. 401	27. 3981	26. 6183
Bollen (1986) Normed Index Rho1 (NFI)	0. 5636	0. 584	0. 6246	0. 6624	0. 6629
Bollen (1988) Non-normed Index Delta2 (NNFI)	0. 6667	0. 6885	0. 7209	0. 7565	0. 7599
Hoelter's (1983) Critical N	30	30	32	34	33

Comparing to the initial model, removed links are:

- Quality → Satisfaction
- Traffic Flow—Satisfaction
- Building → Contentment
- Product → Contentment
- <u>Traffic Flow</u>—<u>Impression</u>

The deletions mainly result from the initial model assigning Satisfaction to Contentment. Through Satisfaction, Building and Product contribute to Contentment; the links from Quality and Traffic Flow to Contentment lead to higher *GFI* and *AGFI*. Furthermore, the link from Traffic Flow to Impression were removed. Also, Impression was not significantly related to Satisfaction and Contentment.

IV. Summary

In the present work, we study the causal effects from *buildings* and *service* to *satisfaction*, *contentment* and *impression* for mass merchandisers. Based on the best fitted model, the discoveries are:

- On **Building**, <u>well display</u>, <u>fine labeling of the product information</u>, and <u>proper lighting effect</u> and <u>music</u> improve Contentment significantly.
- On **Product**, <u>plentiful product types</u> and <u>rich variety of brands</u> improve **Contentment**, especially for <u>sufficient well-known</u>, international brands resulting in sharp improvement. On the contrary, <u>wide range of products with private brands</u> has poor effects on **Contentment**.
- On Quality, staff service and quality of product have general effects on Contentment.
- On **Traffic Flow**, <u>large indoor spaces</u> and <u>less crowdedness</u> improve **Contentment** significantly.
- On Building, comparing to <u>variety of product</u>, <u>environment</u> has more effects on Satisfaction.
- <u>Staff service</u> and <u>product quality</u> generally effects <u>the level of contentment</u>, and ultimately define <u>the impression</u> of the merchandisers.

To sum up, <u>staff service</u> and <u>product quality</u> paly the most important roles in the level of Contentment and customer retention rate. <u>Building</u>, <u>environment</u>, and <u>decor come</u> next.

In the present work, individual comparisons of different mass merchandisers have not been made, and it is recommended that they can be disassembled and analyzed separately. Perhaps different retail stores will determine their contentment through different influencing factors; or different income will have different sensory effects. The above order is the direction that can be further analyzed.