東吳大學 資料探勘導論 期中考題目

一、假設 I 是所有購物籃 (或車) 中曾經賣過的所有商品項目 (Items) 的集合,我們以 $I = \{I_1, I_2, I_3, ..., I_m\}$ 來表示,而 資料庫 D 為所有交易 (Transaction) 資料 T 的集合, D = $\{T_1, T_2, T_3, ..., T_n\}$,如下表 14-1 所示:

◆ 表 14-1 交易資料庫 D

交易代號 (TID)	商品項目 (Items)			
T_1	飯糰、豆漿、尿布			
T_2	飯糰、尿布、啤酒、麥片			
T_3	豆漿、尿布、啤酒、綠茶			
T_4	飯糰、豆漿、尿布、啤酒			
T ₅	飯糰、豆漿、尿布、綠茶			

(定義 1)每一個項目集 X 的支持數量可以寫成 $\sigma(X)$, $\sigma(X) = |\{T_i \mid X \subseteq T_i, T_i \in D\}|$,其中 $|\cdot|$ 表示集合中元素的數量

(定義 2)每一個項目集 X 的支持度可以寫成 s(X),其定義 為

$$s(X) = \frac{\sigma(X)}{|D|}$$

,其中 |D| 為交易資料庫中的總交易資料筆數

(定義 3)令 X 與 Y 為 I 的兩個子項目集,假如 X 與 Y 產生關聯規則,則關聯規則可以表示為

X⇒Y[s,c] 的型式 X,Y⊆I, 其中 X,Y≠φ 且 X∩Y=φ

根據上述三個定義描述內容,請使用"購物車或者購物籃的 白話觀念"回答下列問題

- (A)根據上述定義 1 中的描述請舉例說明 $\sigma(X)$ 的意義為何?
- (B)根據上述定義 3 中的描述請舉例說明 X, Y ≠Φ 的意義?
- (C)根據上述定義 3 中的描述請舉例說明 $X \cap Y = \phi$ 的意義?

建議答案:

- (A)可以視為購物車或購物籃的數量
- (B)關聯規則的前後項目集都不能是空集合
- (C)關聯規則的前後項目集是不會有相同項目內容(就是不會有交集啦)

- 二、請透過表 2 中的五筆交易資料內容,並利用關聯規則 (Association Rules)中的 Apriori 方法回答下列問題:
- (A)找出滿足最小支持度(Minimum Support)為 60%的頻繁項目集(Frequent Itemsets),
- (B)以及滿足最小信賴度(Minimum Confidence)為 70%的關聯 規則,
- (C)如果(B)中的答案內有提升度(lift)>1 的規則,請標示星號 特別註明,

請注意:解題時,頻繁項目集、關聯規則的產生過程全部都需要有計算過程,並保持演算法中計算的邏輯與特性。

表 2

TID	Items Bought
100	f,a,c,d,g,i,m,p
200	a,b,c,f,l,m,o
300	b,f,h,j,o
400	b,c,k,s,p

三、請回答下列問題:

- (A)簡單貝氏分類法(Naïve Bayes Classifier)可以運作在資料的 分類的最大假設為何?請簡易舉例說明,不用證明。
- (B)商業資料經過各式各樣的分類技術確認其類別後的主要 目的為何?
- (C)承上題(B)的答案,請使用 Naïve Bayes Classifier 並回答表 3 中的兩個問號答案是?要有計算過程。

建議答案:

- (A)各個屬性之間獨立,就是各個欄位之間出現的值是不會 互相影響
- (B)就是可以做預測

(C)

ID	婚姻	年齡層	收入	是否購買不動產
1	已婚	青年	低	有
2	已婚	中年	高	無
3	單身	中年	高	無
4	單身	青年	高	有
5	已婚	中年	中	有
6	單身	中年	低	有
7	單身	青年	高	無
8	已婚	青年	高	無
9	已婚	中年	高	有
10	已婚	青年	高	有
11	已婚	中年	高	,
12	單身	青年	中	?

四、請簡單說明圖 1 的意涵

建議答案:

為了能清楚地描述類別的特性及準確地預測未知類別的資料,建立分類模型需要一個訓練資料集(過去已知類別的資料),接著透過一些學習演算法進行觀察後對不同類別的判斷,便可以得到分類模型判斷不同屬性值對應到不同類別,接著就可以使用建立的分類模型去對未知的資料進行分類,分類模型分析流程如圖所示。

透過不同的學習演算法,可以建立出不同的分類模型,而為了評估哪一個分類模型的效果比較好,會將蒐集到的已知類別資料隨機地拆成訓練資料和測試資料,利用訓練資料建立模型,再透過測試資料評估模型的效果,最後應用效果好的模型於預測未知類別的資料。

圖 1

五、請利用 K 最鄰近法(KNN)、表 4 資料集以及下列距離公式回答下列問題:

- (A)當 K=1 時的混淆矩陣(Confusion Matrix)
- (B)當 K=3 時的混淆矩陣(Confusion Matrix)
- (C)請計算說明(A)與(B)答案中不同 K 值條件下,F1-Measure 在是否還款上的差異為何?

表4

1 是 男 單身 低	否
T 4 99 9	
五	否
3 是 男 單身 高	是
4	是
訓練資料 〈 5 否 男 單身 高	是
6 是 女 單身 高	否
7 否 女 結婚 低	是
是 男 結婚 高	否
9 否 男 單身 低	是
10 是 女 結婚 低	否
测試資料 ── 11	是
12	否

六、請利用 LINE 群組上的講義,電子商務理論與實務第六章中的表 6-1、圖 6-6、圖 6-7說明何謂"過度配適 (Overfitting)"的觀念。

建議答案:

通常針對相同一組資料集,分類分析技術可以產生多個不 同分類模型,表 6-1 資料為例,如果採用決策樹分類模型的 表示法,可以得到圖 6-6 或圖 6-7 的結果,相對於圖 6-6 的 分類模型,圖 6-7 的分類模型較為精簡,而在圖 6-6 決策樹 中,每一個從根結點(root node)到葉結點(leaf node)的路徑 只表達了表 6-1 中的一筆資料,相對地,而圖 6-7 較精簡的 决策樹中,每一個從根結點(root node)到葉結點(leaf node) 的路徑可以涵蓋多筆資料,同時圖 6-7 的決策樹分類知識的 預測能力也比圖 6-6 的決策樹較好,例如,有一筆新的資料 顧客編號 15,年紀 19 歲,女性,已婚,居住於鄉鎮中,從 此顧客的資料中無法由圖 6-6 的決策樹中預測其忠誠度是高 還是低,但是由圖 6-7 的決策樹可以預測顧客編號 15 是屬 於忠誠度高的顧客。因此一個好的分類分析技術應該具有 能夠產生較為精簡且預測力佳的分類模型的特性。之所以

產生圖 6-6 的決策樹複雜狀況,即過度訓練引發的過度配適 (Overfitting)之結果。

表 6-1 分類分析之範例資料

		類別			
顧客編號	居住區域	年紀	婚姻狀況	性別	(忠誠度)
1	副市	小於 21	已婚	女	低
2	市區	小於 21	已婚	男	低
3	亦郊	小於 21	已婚	女	高
4	鄉鎮	21至30	已婚	女	高
5	鄉鎮	大於30	未婚	女	高
6	鄉鎮	大於30	未婚	男	低
7	市郊	大於 30	未婚	男	高
8	高市	21至30	已婚	女	低
9	高市	大於 30	未婚	女	高
10	鄉鎮	21至30	未婚	女	高
11	画市	21至30	未婚	男	高
12	市郊	21至30	已婚	男	高
13	市郊	小於 21	未婚	女	高
14	鄉鎮	21至30	已婚	男	低

圖 6-6 可正確描述表 6-1 中資料的複雜決策樹

圖 6-7 可正確描述表 6-1 中資料的簡單決策樹

七、ANN 技術基本上為深度學習方法的基礎,請回答下列 問題

- (A)請簡單說明 ANN 技術處理資料常見被詬病的缺點為何? (B)請簡單回答或者繪圖說明感知機(Perceptron)可以解決的 資料分類問題有哪些?
- (C)請簡單回答或者繪圖說明感知機(Perceptron)不能解決的問題為何?

建議答案:

(A)黑箱作業,而且無法解釋整個分類預測結果的來龍去脈(B)基本上線性可切割的資料問題都可以解決,例如 AND 資料問題、OR 資料問題、NOT 資料問題。(可以繪圖說明) (C)但是 XOR 資料問題無法解決,因為是屬於線性不可切割的資料問題。(可以繪圖說明)

單層感知機難以解決異或問題(截圖於周志華老師的《機器學習》)

八、假設講義中的這一題,各個參數值都不變,僅將學習 速率分別改成 0.5 與 1 之後,請重新解題,說明差異。

範例 8.1 ▶ 倒傳遞學習演算法的計算範例

圖 8.5 為一個多層前饋式類神經網路的範例,假設學習速率為 初始的權重值及偏移量顯示在表格 8.1 中。第一個餵入的訓練資料值組 為 X = (1,0,1) ,它對應的類別標籤為 1 。

此範例説明當此值組餵入網路後,倒傳遞演算法詳細的計算步驟, 首先,計算網路中每一個單元的輸入值與輸出值,這些輸入 / 輸出數 值的計算顯示在表格 8.2 中,接著,計算每一個單元的錯誤值,並將錯 誤值向後傳遞,這些錯誤值的計算顯示在表格 8.3 中,最後,進行權重 值與偏移量的更新,其計算過程顯示在表格 8.4 中。

圖 8.5 多層前饋式類神經網路的範例。

九、RFM 理論被應用在實務上已經一段時間,R 為最近購買日(Recency),指顧客最近一次購買至分析時間的天數,可視為顧客對企業活躍程度。F 為消費頻率(Frequency),指在一段期間內購買該企業商品的次數,可視為代表顧客對企業的忠誠度。M 為消費金額(Monetary),指在一段期間內顧客購買該企業商品的金額,可代表顧客對企業的貢獻度及顧客價值。請使用表 12-1、表 12-2、表 12-3 等相關資訊回答問題:

- (A)先以簡單的統計觀念大致說明表 12-3 的資料輪廓 (profile),分析時間為 2016 年 12 月。
- (B)請利用表 12-3 中的 R、F、M 三個欄位資料設計出一個"

您自認為"的總指標公式,並根據公式計算後說明顧客大致 上對公司的價值,請注意 R 欄位的方向。

(C)如果要將客戶分成兩群客戶您會如何做?請說明並選一個 方法計算出兩群結果,距離公式請自己決定並註明

◆表 12-1 顧客基本資料表

編號	姓名	性別	年齡	居住區域
1	John	男	25	北
2	Helen	女	40	南
3	Allen	男	40	北
4	Jenny	女	18	北
5	Sara	女	20	南

◆表 12-2 顧客交易記錄表

▼ 衣 12-2					
交易編號	顧客編號	交易日期	交易金額		
1	1	2016/01	10		
2	4	2016/01	20		
3	5	2016/02	5		
4	1	2016/03	5		
5	2	2016/03	20		
6	4	2016/04	20		
7	3	2016/04	200		
8	1	2016/05	10		
9	1	2016/05	10		
10	5	2016/06	100		
11	1	2016/06	10		
12	3	2016/07	30		
13	2	2016/07	10		
14	4	2016/08	10		
15	4	2016/09	5		
16	4	2016/10	5		
17	2	2016/10	10		
18	5	2016/11	15		
19	4	2016/11	5		
20	1	2016/12	10		

◆表 12-3 顧客交易資料表

	#X II ~	73241124				
顧客編號	年齡	居住區域	性別	距上次消費時間 (R)	消費頻率 (F)	消費金額 (M)
1	25	北	男	0	6	55
2	40	南	女	2	3	40
3	40	北	男	5	2	230
4	18	北	女	1	6	65
5	20	南	女	1	3	120

十、(送分題)根據圖 2 以及下列三條公式,請問該如何描述 乾淨(混亂)的程度?

圖 2

三個亂度衡量指標的定義如下

$$Gini(t) = 1 - \sum_{i=0}^{c-1} [p(i|t)]^2$$

$$Entropy(t) = -\sum_{i=0}^{c-1} p(i|t) \log_2 p(i|t)$$

 $Misclassification\ error(t) = 1 - \max_{i}[p(i|t)]$