An Introduction to Algorithms By Hossein Rahmani

h_rahmani@iust.ac.ir http://webpages.iust.ac.ir/h_rahmani/

Substitution method

- The most general method:
 - 1. Guess the form of the solution.
 - 2. Verify (or refine) by induction.
 - 3. Solve for constants.
- **Example:** T(n) = 4T(n/2) + 100n
 - -[Assume that $T(1) = \Theta(1)$.]
 - -Guess $O(n^3)$. (Prove O and Ω separately.)
 - -Assume that $T(k) \le ck^3$ for k < n.
 - -Prove $T(n) \leq cn^3$ by induction.

Example of substitution

$$T(n) = 4T(n/2) + 100n$$

 $\leq 4c(n/2)^3 + 100n$
 $= (c/2)n^3 + 100n$
 $= cn^3 - ((c/2)n^3 - 100n)$
 $\leq cn^3 \qquad desired$ desired

whenever $(c/2)n^3 - 100n \ge 0$, for example, if $c \ge 200$ and $n \ge 1$.

A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + 100n$$

 $\leq cn^2 + 100n$
 $\leq cn^2$

for **no** choice of c > 0. Lose!

Substitution Method

- $T(n) = 2 T(\lfloor n/2 \rfloor) + n$
- Guess: O(n lgn)
- Verify
 - Inductive Hypothesis: $T(n) \le c n \lg n$ for appropriate choice of c > 0
 - Prove that $T(n) \le c n \lg n$ for appropriate choice of c > 0

Use induction:

Assume
$$T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$$
 holds

Show
$$T(n) \le c n \lg n$$

Substitution Method

$$T(n) = 2 T(\lfloor n/2 \rfloor) + n$$
 $T(n) \le 2 c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor) + n$ apply IH

 $\le c n \lg(n/2) + n$
 $= c n \lg n - c n \lg 2 + n$
 $= c n \lg n - c n + n$
 $\le c n \lg n$ when $c \ge 1$

Substitution Method – Changing Variables

- $T(n) = 2 T(\lfloor \sqrt{n} \rfloor) + \lg n$ \rightarrow a difficult recurrence
- Rename m as Ign yields $T(2^m) = 2 T(2^{m/2}) + m$
- Rename $S(m) = T(2^m)$ S(m) = 2 S(m/2) + m
- Similar to our previous recurrence
 - → O(m lgm)
- Change back S(m) to T(n) $T(n) = T(2^m) = S(m) = O(m lgm)$
 - → O(lgn lg lg n)

Recursion-tree method

- A recursion <u>tree</u> <u>models the costs (time)</u> of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method promotes intuition, however.

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

```
Solve T(n) = T(n/4) + T(n/2) + n^2:
```

T(*n*)

Appendix: geometric series

$$1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x} \quad \text{for } x \neq 1$$

$$1 + x + x^2 + \dots = \frac{1}{1 - x}$$
 for $|x| < 1$

The master method

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n),$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Idea of master theorem

Recursion tree:

Three common cases

Compare f(n) with $n^{\log_b a}$:

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$. Solution: $T(n) = \Theta(n^{\log_b a})$.

Three common cases

Compare f(n) with $n^{\log_b a}$:

```
2. If f(n) = \Theta(n^{\log_b a})
Solution: T(n) = \Theta(n^{\log_b a} \lg n).
```

Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

```
3. f(n) = \Omega(n^{\log_b a + \varepsilon}) for some constant \varepsilon > 0.

and f(n) satisfies the regularity condition that a f(n/b) \le c f(n) for some constant c < 1.

Solution: T(n) = \Theta(f(n)).
```

Master Theorem - Binary Search

$$T(n) = 1 T(n/2) + \Theta(1)$$
 work dividing and combining

$$n^{\log_b^a} = n^{\log_2^1} = n^0 = 1 = >$$

CASE 2 (k=0)
$$\rightarrow$$
 T(n) = Θ (lgn)

Powering a Number

- **Problem:** Compute a^n , where n is in N.
- Naive algorithm: $\Theta(n)$
- Divide-and-conquer algorithm:

$$\mathbf{a}^{\mathbf{n}} = \begin{cases} \mathbf{a}^{\mathbf{n}/2} \cdot \mathbf{a}^{\mathbf{n}/2} & \text{if } n \text{ is even} \\ \mathbf{a}^{(\mathbf{n}-1)/2} \cdot \mathbf{a}^{(\mathbf{n}-1)/2} \cdot \mathbf{a} & \text{if } n \text{ is odd} \end{cases}$$

$$T(n) = T(n/2) + \Theta(1) \implies T(n) = \Theta(1gn).$$

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
 $f(n) = O(n^{2-\epsilon}) \text{ for } \epsilon = 1 \implies \text{Case 1}$
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
 $f(n) = \Theta(n^2) => \text{Case 2}$
 $\therefore T(n) = \Theta(n^2 \lg n).$

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
 $f(n) = \Omega(n^{2+\epsilon}) \text{ for } \epsilon = 1 => \text{Case 3}$
 $and \ 4(cn/2)^3 \le cn^3 \text{ (reg. cond.) for } c = 1/2.$
 $\therefore T(n) = \Theta(n^3).$

Quiz

- Make the group of 2
- For each of the following recurrences, give an expression for the runtime T (n) if the recurrence can be solved with the Master Theorem. Otherwise, indicate that the Master Theorem does not apply.

1.
$$T(n) = 3T(n/2) + n^2$$

7.
$$T(n) = 2T(n/2) + n/\log n$$

2.
$$T(n) = 4T(n/2) + n^2$$

8.
$$T(n) = 2T(n/4) + n^{0.51}$$

3.
$$T(n) = T(n/2) + 2^n$$

9.
$$T(n) = 0.5T(n/2) + 1/n$$

4.
$$T(n) = 2^n T(n/2) + n^n$$

10.
$$T(n) = 16T(n/4) + n!$$

5.
$$T(n) = 16T(n/4) + n$$

11.
$$T(n) = \sqrt{2}T(n/2) + \log n$$

6.
$$T(n) = 2T(n/2) + n \log n$$

12.
$$T(n) = 3T(n/2) + n$$