AG21S - Algoritmos 1 Vetor 9^a Prática

Nome:	Turma:	Código:	N_{0} .
NOME.	ruma.	Courgo.	T.A. •

1. Faça um programa que leia um vetor A[100]. No final, mostre todas as posições do vetor que armazenam um valor menor ou igual a 10 e o valor armazenado em cada uma das posições.

Entrada

A entrada contém 100 valores, podendo ser inteiros, reais, positivos ou negativos.

Saída

Para cada valor do vetor menor ou igual a 10, escreva "A[i] = x", onde i é a posição do vetor e x é o valor armazenado na posição, com uma casa após o ponto decimal.

Exemplo de entrada	Exemplo de saída
0	A[0] = 0.0
-5	A[1] = -5.0
63	A[3] = -8.5
-8.5	

2. Faça um programa que leia um vetor N[20]. Troque a seguir, o primeiro elemento com o último, o segundo elemento com o penúltimo, etc., até trocar o 10° com o 11° . Mostre o vetor modificado.

Entrada

A entrada contém 20 valores inteiros, positivos ou negativos.

Saída

Para cada posição do vetor N, escreva "N[i] = Y", onde i é a posição do vetor e Y é o valor armazenado naquela posição.

Exemplo de entrada	Exemplo de saída
0	N[0] = 230
-5	N[1] = 63
63	N[18] = -5
230	N[18] = -5 N[19] = 0

3. Faça um programa que leia um valor T e preencha um vetor N[1000] com a sequência de valores de 0 até T-1 repetidas vezes, conforme exemplo abaixo. Imprima o vetor N.

Entrada

A entrada contém um valor inteiro T ($2 \le T \le 50$).

Saída

Para cada posição do vetor, escreva "N[i] = x", onde i é a posição do vetor e x é o valor armazenado naquela posição.

Exemplo de entrada	Exemplo de saída
3	N[O] = O
	N[1] = 1
	N[2] = 2
	N[3] = 0
	N[4] = 1
	N[5] = 2
	N[6] = 0
	N[7] = 1
	N[8] = 2

4. Leia um valor X. Coloque este valor na primeira posição de um vetor N[100]. Em cada posição subsequente de N (1 até 99), coloque a metade do valor armazenado na posição anterior, conforme o exemplo abaixo. Imprima o vetor N.

Entrada

A entrada contém um valor de dupla precisão com 4 casas decimais.

Saída

Para cada posição do vetor N, escreva "N[i] = Y", onde i é a posição do vetor e Y é o valor armazenado naquela posição. Cada valor do vetor deve ser apresentado com 4 casas decimais.

Exemplo de entrada	Exemplo de saída	
200.0000	N[0] = 200.0000	
	N[1] = 100.0000	
	N[2] = 50.0000	
	N[3] = 25.0000	
	N[4] = 12.5000	

5. Faça um programa que leia um valor N. Este N será o tamanho de um vetor X[N]. A seguir, leia cada um dos valores de X, encontre o menor elemento deste vetor e a sua posição dentro do vetor, mostrando esta informação.

Entrada

A primeira linha de entrada contém um único inteiro N (1 \leq N \leq 1000), indicando o número de elementos que deverão ser lidos em seguida para o vetor X[N] de inteiros. A segunda linha contém cada um dos N valores, separados por um espaço.

Saída

A primeira linha apresenta a mensagem "Menor valor:" seguida de um espaço e do menor valor lido na entrada. A segunda linha apresenta a mensagem "Posicao:" seguido de um espaço e da posição do vetor na qual se encontra o menor valor lido, lembrando que o vetor inicia na posição zero.

Exemplo de entrada	Exemplo de saída
10	Menor valor: -5
1 2 3 4 -5 6 7 8 9 10	Posicao: 4

6. Leia um valor e faça um programa que coloque o valor lido na primeira posição de um vetor N[10]. Em cada posição subsequente, coloque o dobro do valor da posição anterior. Por exemplo, se o valor lido for 1, os valores do vetor devem ser 1,2,4,8 e assim sucessivamente. Mostre o vetor em seguida.

Entrada

A entrada contém um valor inteiro $(V \le 50)$.

Saída

Para cada posição do vetor, escreva "N[i] = X", onde i é a posição do vetor e X é o valor armazenado na posição i. O primeiro número do vetor N(N[0]) irá receber o valor de V.

Exemplo de entrada	Exemplo de saída
1	N[0] = 1
	N[1] = 2
	N[2] = 4

7. Faça um programa que leia um vetor X[10]. Substitua a seguir, todos os valores nulos e negativos do vetor X por 1. Em seguida mostre o vetor X.

Entrada

A entrada contém 10 valores inteiros, podendo ser positivos ou negativos.

Saída

Para cada posição do vetor, escreva "X[i] = x", onde i é a posição do vetor e x é o valor armazenado naquela posição.

Exemplo de entrada	Exemplo de saída
0	X[0] = 1
-5	X[1] = 1
63	X[2] = 63
0	X[3] = 1