Intro to Polymer Science

王石嵘 wsr@smail.nju.edu.cn

July 9, 2019

Contents

Intre	oduction
1.1	Brief History
1.2	Classes
1.3	Molecular Weight Distribution
Poly	wer Chain Conformations
2.1	Freely Joint Chain
2.2	Real Chains
	2.2.1 Free Rotation
	2.2.2 Hindered Rotation
	2.2.3 The Kuhn Length
2.3	Scaling Laws for the SAW
Crys	stallization, Melting, and Glass Transition
3.1°	Nucleation
3.2	Thermodynamics
3.3	Melting Temperature
3.4	Glass Transition Temp.
The	rmodynamics of Polymer Phase Separation
4.1	Entropy of Mixing
4.2	Enthalpy of Mixing
	1.1 1.2 1.3 Poly 2.1 2.2 2.3 Crys 3.1 3.2 3.3 3.4 The 4.1

1 Introduction

1.1 Brief History

"gun cotton", using cellulose, 1843

Vulcanized rubber, 1844

First fully-synthetic: Bakelite, 1907

First linear fully-synthetic: Nylon, 1937, W. Carothers

H. Wieland – large mol is junk

H. Staudinger – No! (article: Über Polymerisation)

polystyrene – most difficult to recycle, (all landfill in US) substitute: polylactic acid (decompose in land)

How large is large? What's the cutoff?

1.2 Classes

- 1. Thermosets (much cross-linked, stable under heat)
- 2. Thermoplastics (no cross-linked, melt easily)
 - (a) Semi-crystalline (Note: No fully crystallized polymer)
 - (b) Amorphous
- 3. Elastomers (little cross-linked)

1.3 Molecular Weight Distribution

2 Polymer Chain Conformations

2.1 Freely Joint Chain

1D free walk of R. Feynman

$$R_1^2 = \ell^2 \tag{1}$$

$$R_N = R_{N-1} + \ell, R_{N-1} - \ell \tag{2}$$

$$\left\langle R_N^2 \right\rangle = R_{N-1}^2 + \ell^2 = \dots = N\ell^2 \tag{3}$$

$$\sqrt{\langle R_N^2 \rangle} = \ell \sqrt{N} \tag{4}$$

other ways to derive that:

1. radial Gaussian distribution function

2.2 Real Chains

def: characteristic ratio C_{∞}

$$\sqrt{R_N^2} = \ell \sqrt{C_\infty N} \tag{5}$$

2.2.1 Free Rotation

$$\sqrt{R_N^2} = \ell \sqrt{N} \sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}} \tag{6}$$

where $\theta = 180^{\circ} - 109.47^{\circ}$, thus

$$\sqrt{R_N^2} = \ell \sqrt{2N} \tag{7}$$

2.2.2 Hindered Rotation

$$\sqrt{R_N^2} = \ell \sqrt{2N} \sqrt{\frac{1 + \langle \cos \phi \rangle}{1 - \langle \cos \phi \rangle}} \tag{8}$$

$$\begin{array}{c|cccc}
\phi & \cos \phi & E_i & p(E_i) \\
\hline
-120 & & & & \\
0 & & & & \\
120 & & & & \\
\end{array}$$

$$\sqrt{\langle R_N^2 \rangle} = \ell \sqrt{6.9N} \tag{9}$$

2.2.3 The Kuhn Length

def: Kuhn segment length ℓ_k

$$\sqrt{R^2} = \ell_k \sqrt{N_k} \tag{10}$$

2.3 Scaling Laws for the SAW

$$\sqrt{\langle R^2 \rangle} = \ell (C \cdot N)^{\nu} \tag{11}$$

3 Crystallization, Melting, and Glass Transition

3.1 Nucleation

3.2 Thermodynamics

critical lamellar thickness

$$l^* = \frac{4\sigma_{face}}{\Delta g_{vol}} \propto \frac{1}{\Delta T} \tag{12}$$

where $\Delta T = T_m - T$ crystallization requires $l > l^*$.

Why polymer crystallize in a chain folding manner, rather than an extended chain? - kinetics.

3.3 Melting Temperature

Why polymers melt over a range of temerature? factors that affect T_m

- 1. backbone stiffness
- 2. non-covalent interaction VdW, dipole-dipole (PVC), H-bonding (Nylon 6)

3.4 Glass Transition Temp.

factors that affect T_g

1. molecular weight

$$T_g = T_{g\infty} - \frac{K}{M_n} \tag{13}$$

- 2. backbone stiffness
- 3. Side Chains
- 4. Non-covalent interactions

- 5. corss linking
- 6. Dilutents/Plasticizer
- 7. copolymerization and blending blend miscibility

4 Thermodynamics of Polymer Phase Separation

4.1 Entropy of Mixing

4.2 Enthalpy of Mixing

$$\Delta H_m = n_A f_B z \Delta \varepsilon_{AB} \tag{14}$$

def: interaction parameter

$$\chi = \frac{z\Delta\varepsilon_{AB}}{kT} \tag{15}$$

Flory-Huggins Eq.

$$\Delta G_m = \Delta H_m - T\Delta S_m \tag{16}$$

$$\frac{\Delta G}{kT} = n_A \Phi_B \chi + n_A \ln \Phi_A + n_B \ln \Phi_B \tag{17}$$

m = DP for an approximation.

UCST: Upper critical solution temperature

Since $\chi \sim 1/T$, we can calculate χ_c at T_c

$$\chi_c = \frac{1}{2} \left(\frac{1}{\sqrt{m_A}} + \frac{1}{\sqrt{m_B}} \right)^2 \tag{18}$$

for polymer solution

$$\chi_c = \frac{1}{2} \left(1 + \frac{1}{\sqrt{m_p}} \right)^2 \to \frac{1}{2} \tag{19}$$