Principaux domaines abordés: Fonction logarithme; dérivation.

Partie I : Étude d'une fonction auxiliaire

Soit g la fonction définie sur]0; $+\infty[$ par :

$$g(x) = \ln(x) + 2x - 2$$
.

- 1) Déterminer les limites de g en $+\infty$ et 0.
- 2) Déterminer le sens de variation de la fonction g sur]0; $+\infty[$.
- 3) Démontrer que l'équation g(x) = 0 admet une unique solution α sur]0; $+\infty[$.
- **4)** Calculer g(1) puis déterminer le signe de g sur]0; $+\infty[$.

Partie II : Étude d'une fonction f

On considère la fonction f, définie sur]0; $+\infty[$ par :

$$f(x) = \left(2 - \frac{1}{x}\right) (\ln(x) - 1).$$

1) **a)** On admet que la fonction f est dérivable sur]0; $+\infty[$ et on note f' sa dérivée. Démontrer que, pour tout x de]0; $+\infty[$, on a :

$$f'(x) = \frac{g(x)}{x^2}.$$

- **b)** Dresser le tableau de variation de la fonction f sur]0; $+\infty[$. Le calcul des limites n'est pas demandé.
- 2) Résoudre l'équation f(x) = 0 sur]0; $+\infty[$ puis dresser le tableau de signes de f sur l'intervalle]0; $+\infty[$.

Partie III : Étude d'une fonction F admettant pour dérivée la fonction f

On admet qu'il existe une fonction F dérivable sur]0; $+\infty[$ dont la dérivée F' est la fonction f. Ainsi, on a : F' = f.

On note \mathscr{C}_F la courbe représentative de la fonction F dans un repère orthonormé $\left(0;\overrightarrow{\iota},\overrightarrow{\jmath}\right)$. On ne cherchera pas à déterminer une expression de F(x).

- 1) Étudier les variations de F sur]0; $+\infty[$.
- 2) La courbe \mathscr{C}_F représentative de F admet-elle des tangentes parallèles à l'axe des abscisses? Justifier la réponse.

Exercice B

Principaux domaines abordés: Fonction logarithme; dérivation.

Partie I: étude d'une fonction auxiliaire

Soit *g* la fonction définie sur]0; $+\infty$ [par : $g(x) = \ln(x) + 2x - 2$.

1) On détermine les limites de g en $+\infty$ et 0.

$$\lim_{x \to +\infty} \ln(x) = +\infty$$

$$\lim_{x \to +\infty} 2x - 2 = +\infty$$

$$\lim_{x \to 0} \ln(x) = -\infty$$

$$\lim_{x \to 0} \ln(x) = -\infty$$

$$\lim_{x \to 0} 2x - 2 = -2$$

$$\lim_{x \to 0} 2x - 2 = -2$$

$$\implies \lim_{x \to 0} g(x) = -\infty$$

- 2) La fonction g est dérivable sur]0; $+\infty[$, et $g'(x) = \frac{1}{x} + 2 > 0$; donc la fonction g est strictement croissante sur]0; $+\infty[$.
- **3)** On établit le tableau des variations de la fonction *g* :

D'après ce tableau de variations, on peut dire que l'équation g(x) = 0 admet une unique solution α sur]0; $+\infty[$.

4) g(1) = 0 donc $\alpha = 1$.

On en déduit que g(x) < 0 sur]0; 1[, et que g(x) > 0 sur]1; $+\infty$ [.

Partie II : étude d'une fonction f

On considère la fonction f, définie sur]0; $+\infty[par: f(x) = \left(2 - \frac{1}{x}\right)[ln(x) - 1].$

1) a) On admet que la fonction f est dérivable sur]0; $+\infty$ [et on note f' sa dérivée.

Pour tout x de]0; $+\infty[$, on a:

$$f'(x) = \left(\frac{1}{x^2}\right)(\ln(x) - 1) + \left(2 - \frac{1}{x}\right)\left(\frac{1}{x}\right) = \frac{\ln(x) - 1 + 2x - 1}{x^2} = \frac{\ln(x) + 2x - 2}{x^2} = \frac{g(x)}{x^2}$$

b) Sur]0; $+\infty[$, $x^2 > 0$ donc f'(x) est du signe de g(x) qui s'annule pour x = 1.

$$f(1) = \left(2 - \frac{1}{1}\right)(\ln(1) - 1) = -1$$

On dresse le tableau de variations de f:

х	0	1		+∞
g(x)	_	•	+	
f'(x)	_	ø	+	
f(x)		` -1 ^		A

2)
$$f(x) = 0 \iff \left(2 - \frac{1}{x}\right)(\ln(x) - 1) = 0 \iff 2 - \frac{1}{x} = 0 \text{ ou } \ln(x) - 1 = 0$$

$$\iff 2 = \frac{1}{x} \text{ ou } \ln(x) = 1 \iff x = \frac{1}{2} \text{ ou } x = e$$

L'équation f(x) = 0 admet donc deux solutions sur]0; $+\infty[: x = \frac{1}{2}$ et x = e.

On complète le tableau de variations de f en intégrant les solutions de l'équation f(x) = 0:

On en déduit le tableau de signes de la fonction f sur]0; $+\infty[$:

х	0		$\frac{1}{2}$		e		+∞
f(x)		+	ф	-	ф	+	

Partie III : étude d'une fonction F admettant pour dérivée la fonction f

On admet qu'il existe une fonction F dérivable sur]0; $+\infty[$ dont la dérivée F' est la fonction f. Ainsi, on a : F' = f. On note \mathscr{C}_F la courbe représentative de la fonction F dans un repère orthonormé $\Big(0; \overrightarrow{t}, \overrightarrow{f}\Big)$.

1) Par définition F' = f, donc le signe de F'(x) est celui de f(x). On en déduit les variations de la fonction F sur]0; $+\infty[$:

x	()	1 2		e		+∞
F'(x) = f(x)		+ ()	-	0	+	
F		F croissante		F décroissante		F croissante	

2) Le coefficient directeur de la tangente en x = a à la courbe \mathscr{C}_F représentative de F est F'(a) soit f(a). Pour que \mathscr{C}_F admette des tangentes parallèles à l'axe des abscisses, il faut trouver des valeurs de x pour lesquelles F'(x) = 0 c'est-à -dire f(x) = 0.

D'après les questions précédentes, on peut dire \mathscr{C}_F admet deux tangentes parallèles à l'axe des abscisses, en $x = \frac{1}{2}$ et en x = e.