UNIVERSITY OF MAURITIUS

FACULTY OF ENGINEERING

SECOND SEMESTER EXAMINATIONS

MAY 2015

PROGRAMME	BSc (Hons) Software Engineering (F/T)				
MODULE NAME	Discrete Mathematics for Software Engineering				
DATE	Wednesday 13 May 2015	MODULE CODE	CSE1014Y(1)		
TIME	9.30 – 12.30 hrs	DURATION	3 hours		
NO. OF QUESTIONS SET	5	NO. OF QUESTIONS TO BE ATTEMPTED	5		

INSTRUCTIONS TO CANDIDATES

Answer <u>ALL</u> Questions.

All Questions carry equal marks.

Normal Distribution Table is attached.

Anwer All Questions.

All Questions carry equal marks.

Question 1 [20 marks]

(a) Solve the following system (if possible) using Gaussian elimination:

$$x_1 - 2x_2 - 6x_3 = 12$$

 $2x_1 + 4x_2 + 12x_3 = -17$
 $x_1 - 4x_2 - 12x_3 = 22$.

[7 marks]

(b) Solve the following linear system making use of Cramer's rule.

$$3x_1 + x_2 2x_3 = 4$$
 $-x_1 + 2x_2 + 3x_3 = 1$
 $2x_1 + x_2 + 4x_3 = -2$

[5 marks]

(c) Find the eigenvalues and the corresponding eigenvectors of the 3X3 matrix $A = \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$.

[8 marks]

Question 2 [20 marks]

(a) Consider the following system of linear equation:

$$2x_1 - x_2 - 7x_3 = 3$$

$$5x_1 - 2x_2 + 3x_3 = -1$$

$$-3x_1 + 9x_2 + x_3 = 2$$

- (i) Check for the convergence of the given system for an iterative solution.
- (ii) Rewrite the system of equation in matrix form for an iterative solution. The equation must be in the form X = BX + C
- (iii) Starting with $x_0 = (0,0,0)$, perform 3 iterations using Jacobi's alogorithm.
- (iv) Starting with $x_0 = (0,0,0)$, perform 3 ietrations using Gauss-Siedel algorithm.
- (v) Compare your answers to part (iii) and (iv) above.

$$[1+2+3+3+1=10 \text{ marks}]$$

(b) Each student in a class of 40 plays at least one indoor game chess, carrom and scrabble. 18 play chess, 20 play scrabble and 27 play carrom. 7 play chess and scrabble, 12 play scrabble and carrom and 4 play chess, carrom and scrabble. Find the number of students who play (i) chess and carrom. (ii) chess, carrom but not scrabble.

$$[4+2 = 6 \text{ marks}]$$

(c) Regression

Consider the following data about 5 Software Engineering students:

Student #	1	2	3	4	5
Marks in Maths	95	85	80	70	60
CPA	85	95	70	65	70

- (i) Determine the regression equation in the form: $\hat{y} = b_0 + b_1x$ by writing the matrix equation about the given data or otherwise.
- (ii) Determine the coefficient of determination, r², which gives the variation in CPA that can be explained by the relationship found in part (i) above.

[4 marks]

Question 3 [20 marks]

(a) The traffic light in a town is set to blink red after 45 seconds, orange after 15 seconds and green after 60 seconds. The traffic light is switched on at 6 a.m. in the morning. At what time will the three colours blink together? (Hint: Use prime factors.)

[6 marks]

(b) Using Euclidean algorithm find the value of **s** and **t** for which GCD(270,192) = s(270) + t(192).

[4 marks]

(c) Consider the linear recurrence $a_n = 2a_{n-1} - a_{n-2}$ with initial conditions $a_1 = 3$, $a_0 = 0$. Find an explicit formula for a_n .

[5 marks]

- (d) Let $A = \{1,2,3,4\}$ and $R = \{(1,1), (1,2), (2,1), (2,2), (2,3), (2,4), (3,4), (4,1)\}$
 - (i) Show that R^2 is a subset of A X A.
 - (ii) Draw the digraph of R².
 - (iii) Calculate in degree and out degree of R²
 - (iv) Find M∞

[5 marks]

Question 4 [20 marks]

(a) Show that $P \to Q$ and $\sim P \vee Q$ are logically equivalent.

[3 marks]

(b) Prove the following using mathematical induction.

For
$$n > 1$$
, $2 + 2^2 + 2^3 + 2^4 + ... + 2^n = 2^{n+1} - 2$

[6 marks]

(c) (i) Write the chromatic polynomial for the graph shown below.

[3 marks]

(ii) Find the minimum number of colours required for proper colouring of the graph below.

[3 marks]

(d) Determine whether it is possible or not for a photographer to take photographs of each of the 11 bridges in Madison County in one go i.e. without having to re-cross any bridge twice. Note that he can start where he wants.

Justify your answer.

[5 marks]

Question 5 [20 marks]

- (a) Consider the helpline for a Computer centre. There are 20 phone lines to the helpdesk and they operate independently. The probability that a certain phone line is occupied at a certain point in time is 0.6
 - (i) Use a Binomial distribution to find an expression for the probability that 10 or more lines are occupied. Note that the value of the probability is not requested.

[4 marks]

(ii) Use a Normal distribution approximation to determine the value of the probability.

[4 marks]

(b) Suppose your company is interested in knowing the percentage of adults who read newspapers online, as part of a new content distribution strategy.

Determine the number of adults that must be surveyed in order to be 90% confident that the sample percentage differs from the population percentage by no more than two (2) percent points, in the following cases:

- (i) A recent result shows that 60% of adults read newspapers online.
- (ii) There is no prior information suggesting a possible value of the proportion.

[6+6 = 12 marks]

END OF QUESTION PAPER

/fp