Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2018 EE3CO05/EX3CO05 Electro-Magnetic Theory

Programme: B.Tech. Branch/Specialisation: EE/EX

Duration: 3 Hrs. Maximum Marks: 60

	_		ernal choices, if any, are indicated. Answer	ers o
Q.1 (N	ACQs)	should be written in full ins	tead of only a, b, c or d.	
Q.1	i.	The divergence of a field is zero, indicates the field is		
		(a) Irrotational	(b) Solenoidal	
		(c) Scalar	(d) Vector	
	ii.	0?	1	
		(a) Grad div A	(b) Div Gradient V	
		(c) Div curl A	(d) Curl curl A	
	iii.	A metal sphere with 1 m	radius and surface charge density of 10	1
		Coulombs/m ² is enclosed	d in a cube of 10 m side. The total	
		outward electric displacem	nent normal to the surface of the cube is	
		(a) 40π Coulombs	(b) 10π Coulombs	
		(c) 5 π Coulombs	(d) None of these	
	iv. A field line and an equipotential surface are			1
		(a) Always parallel	(b) Always at 90°	
		(c) Inclined at any angle	(d) None of these	
	v.	Changing the magnetic fi	eld intensity in a closed loop of wires	1
		induces		
		(a) Current	(b) Voltage	
		(c) Both (a) and (b)	(d) Neither of these	
	vi. If a current element is z-directed, vector magnetic potential i			
		(a) x-directed	(b) y-directed	
		(c) xy-directed	(d) z-directed	
	vii.	The magnetic field intensi	ty (in mA) at the centre of a circular coil	1
		of diameter 1 metre and c	arrying a current of 2 A is	
		(a) 8 (b) 4	(c) 3 (d) 2	
			יח י	тО

P.T.O.

	viii.	In a travelling electromagnetic wave, E and H vector fields are	1
		(a) Perpendicular in space	
		(b) Parallel in space	
		(c) E is in the direction of wave travel	
		(d) H is in the direction of wave travel	
	ix.	Polarization of a wave is	1
		(a) Direction of electric field	
		(b) Direction of magnetic field at some fixed point in space	
		(c) Either (a) or (b)	
		(d) None of these	
	х.	A plane electromagnetic wave travelling along the + z direction,	1
		has its electric field given by $E_x = 2 \cos(\omega t)$ and	
		$E_y = 2\cos(\omega + 90^0)$ the wave is	
		(a) Linearly polarized (b) Right circularly polarized	
		(c) Left circularly polarized (d) Elliptically polarized	
Q.2	i.	Discuss the concept of differential surface vector.	2
	ii.	Transform vector $A = ya_x - xa_y + za_z$ into cylindrical coordinates.	3
	iii.	Verify that the vector field $A = yza_x + zxa_y + xya_z$ is both	5
		irrotational and solenoid.	
OR	iv.	State and explain with physical significance:	5
		(a) Divergence theorem, (b) Stoke's theorem.	
Q.3	i.	State and prove continuity equation.	4
	ii.	Explain Poisson's and Laplace equation. Show that it has unique	6
		solution.	
OR	iii.	Using Gauss law in differential form, obtain the electric field	6
		intensity at different points due to the following charge	
		distribution in spherical coordinates,	
		$\rho_0(r/a), \qquad o < r < a$	
		$\rho (r, \theta, \Phi) =$	
		0, a <r <="" td="" ∞<=""><td></td></r>	
Q.4	i.	Write short note on vector magnetic potential.	3

	ii.	Derive the expressions for boundary relations for magnetic field for (a) Tangential components (b) Normal components.	7
		Assume the two different media having constants μ_1 , ϵ_1 and μ_2 , ϵ_2 .	
		The common boundary has surface current density of K_s A/m.	
OR	iii.	A filamentary current of 10 A is directed in from infinity to the origin on the positive <i>x</i> axis, and then back out to infinity along	7
		the positive y axis. Use the Biot-Savart law to find field intensity	
		H at P $(0, 0, 1)$.	
Q.5	i.	Explain the terms	3
		(a) Intrinsic Impedance (b) Skin depth.	
	ii.	Define and derive for Poynting Vector.	7
OR	iii.	A 9375 MHz uniform plane wave is propagating in polystyrene. If	7
		the amplitude of the electric field intensity is 20 V/m and the	
		material is assumed to be lossless, find:	
		(a) Attenuation constant (α)	
		(b) Phase constant (β)	
		(c) Wavelength in polystyrene	
		(d) Velocity of propagation	
		(e) Intrinsic Impedance	
		(f) Propagation constant	
		(g) Amplitude of the magnetic field intensity.	
Q.6		Attempt any two:	
	i.	Explain polarization and derive the equation,	5
		$D = \varepsilon_0 E + P$	
		where D is electric flux density, E is electric field intensity and P	
		is polarization.	
	ii.	Write short note on:	5
		(a) Standing wave ratio (b) Brewster angle	
	iii.	Explain and derive reflection of uniform plane waves.	5

Marking Scheme

EE3CO05/EX3CO05 Electro-Magnetic Theory

Q .1	i.	The divergence of a field is zero, indicates the field is	1
		(b) Solenoidal	
	ii.	Which of following is zero?	1
		(c) div curl A	
	iii.	A metal sphere with 1 m radius and surface charge density of 10 Coulombs/m ² is enclosed in a cube of 10 m side. The total outward electric displacement normal to the surface of the cube is (a) 40π Coulombs	1
	iv.	A field line and an equipotential surface are (b) always at 90°	1
	V.	Changing the magnetic field intensity in a closed loop of wires induces (c) Both (a) and (b)	
	vi.	If a current element is z-directed, vector magnetic potential is (d) z-directed	
	vii.	The magnetic field intensity (in mA) at the centre of a circular coil of diameter 1 metre and carrying a current of 2 A is (a) 8	
	viii.	In a travelling electromagnetic wave, E and H vector fields are (c) E is in the direction of wave travel	1
	ix.	Polarization of a wave is (a) Direction of electric field	1
	х.	A plane electromagnetic wave travelling along the + z direction, has its electric field given by $E_x = 2\cos(\omega t)$ and $E_y = 2\cos(\omega + 90^0)$ the wave is (c) Left circularly polarized	1
2.2	i.	Discuss the concept of differential surface vector. Equation 1 mark Explanation 1 mark	2
	ii.	Transform vector $A = ya_x - xa_y + za_z$ into cylindrical coordinates. r, Φ , z components 1 mark for each components (1 mark *3)	3
	iii.	Verify that the vector field $A = yza_x + zxa_y + xya_z$ is both Irrotational 2.5 marks	5

		Solenoid.	2.5 marks	
OR	iv.	State and explain with physical significance:		5
		(a) Divergence theorem,	2.5 marks	
		(b) Stoke's theorem.	2.5 marks	
Q.3	i.	State and prove continuity equation.		4
		Statement	1 mark	
		Equations	1 mark	
		Proof	2 marks	
	ii.	Explain Poisson's and Laplace equation. Show that	at it has unique	6
		solution.		
		Poisson's equation	3 marks	
		Laplace equation	3 marks	
OR	iii.	Using Gauss law in differential form, obtain the	e electric field	6
		intensity at different points due to the foll	owing charge	
		distribution in spherical coordinates,		
		Solution for $o < r < a$	3 marks	
		Solution for a $\leq r \leq \infty$	3 marks	
				_
Q.4	i.	Write short note on vector magnetic potential.		3
Q.4	i.	Equation	1 mark	3
Q.4		Equation Explanation	2 marks	
Q.4	i. ii.	Equation Explanation Derive the expressions for boundary relations for	2 marks magnetic field	3 7
Q.4		Equation Explanation Derive the expressions for boundary relations for for (a) tangential components and (b) normal comp	2 marks magnetic field conents.	
Q.4		Equation Explanation Derive the expressions for boundary relations for for (a) tangential components and (b) normal comp Diagram	2 marks magnetic field conents. 2 marks	
Q.4		Equation Explanation Derive the expressions for boundary relations for for (a) tangential components and (b) normal components Diagram Tangential components	2 marks magnetic field conents. 2 marks 2.5 marks	
	ii.	Equation Explanation Derive the expressions for boundary relations for for (a) tangential components and (b) normal components Tangential components Normal components	2 marks magnetic field conents. 2 marks 2.5 marks 2.5 marks	7
Q.4 OR		Equation Explanation Derive the expressions for boundary relations for for (a) tangential components and (b) normal components Tangential components Normal components Use the Biot-Savart law to find field intensity H at	2 marks magnetic field conents. 2 marks 2.5 marks 2.5 marks P(0, 0, 1).	
	ii.	Equation Explanation Derive the expressions for boundary relations for for (a) tangential components and (b) normal components Diagram Tangential components Normal components Use the Biot-Savart law to find field intensity H at Hx component	2 marks magnetic field conents. 2 marks 2.5 marks 2.5 marks P(0, 0, 1). 3.5 marks	7
	ii.	Equation Explanation Derive the expressions for boundary relations for for (a) tangential components and (b) normal components Tangential components Normal components Use the Biot-Savart law to find field intensity H at	2 marks magnetic field conents. 2 marks 2.5 marks 2.5 marks P(0, 0, 1).	7
OR	ii. iii.	Equation Explanation Derive the expressions for boundary relations for for (a) tangential components and (b) normal components Tangential components Normal components Use the Biot-Savart law to find field intensity H at Hx component Hx component	2 marks magnetic field conents. 2 marks 2.5 marks 2.5 marks P(0, 0, 1). 3.5 marks	7
	ii.	Equation Explanation Derive the expressions for boundary relations for for (a) tangential components and (b) normal components Tangential components Normal components Use the Biot-Savart law to find field intensity H at Hx component Hx component Explain the terms	2 marks magnetic field conents. 2 marks 2.5 marks 2.5 marks P(0, 0, 1). 3.5 marks 3.5 marks	7
OR	ii. iii.	Equation Explanation Derive the expressions for boundary relations for for (a) tangential components and (b) normal components Diagram Tangential components Normal components Use the Biot-Savart law to find field intensity H at Hx component Hx component Explain the terms (a) Intrinsic Impedance,	2 marks magnetic field conents. 2 marks 2.5 marks 2.5 marks P(0, 0, 1). 3.5 marks 3.5 marks	7
OR	ii. iii.	Equation Explanation Derive the expressions for boundary relations for for (a) tangential components and (b) normal components Diagram Tangential components Normal components Use the Biot-Savart law to find field intensity H at Hx component Hx component Explain the terms (a) Intrinsic Impedance, (b) Skin depth.	2 marks magnetic field conents. 2 marks 2.5 marks 2.5 marks P(0, 0, 1). 3.5 marks 3.5 marks	7 7 3
OR	ii. iii.	Equation Explanation Derive the expressions for boundary relations for for (a) tangential components and (b) normal components Diagram Tangential components Normal components Use the Biot-Savart law to find field intensity H at Hx component Hx component Explain the terms (a) Intrinsic Impedance,	2 marks magnetic field conents. 2 marks 2.5 marks 2.5 marks P(0, 0, 1). 3.5 marks 3.5 marks	7

		(b) phase constant (β),	1 mark	
		(c) wavelength in polystyrene,	1 mark	
		(d) Velocity of propagation,	1 mark	
		(e) Intrinsic Impedance,	1 mark	
		(f) Propagation constant,	1 mark	
		(g) Amplitude of the magnetic field intensity.	1 mark	
Q.6		Attempt any two:		
	i.	Polarization	2 marks	5
		Derive the equation $D = \varepsilon_0 E + P$.	3 marks	
	ii.	(a) Standing wave ratio,	2.5 marks	5
		(b) Brewster angle	2.5 marks	
	iii.	Plane waves at normal incidence		5
		Diagram	1 mark	
		Equation	1 mark	
		Explanation	3 marks	
