Лабораторная работа № 4.3.2(А)

Дифракция света на ультразвуковой волне в жидкости

установка с вертикальной щелью

выполнила студентка группы Б03-303 Мария Шишкарёва

Долгопрудный, 2025 г.

1 Цель работы:

изучение дифракции света на синусоидальной акустической решетке и наблюдение фазовой решетки методом темного поля.

2 В работе используются:

оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

3 Теория:

В данной работе исследовано явление $\partial u\phi pakuuu$ — отклонений в распространении света от законов геометрической оптики — на фазовой решётке, то есть в среде, осуществляющей периодическую модуляцию падающей волны света по фазе засчёт периодического изменения толщины и/или показателя преломления. В нашей работе рассмотрена дифракция на синусоидальной фазовой решётке в воде. При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, и таким образом создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления n изменяется по закону:

$$n = n_0(1 + m\cos\Omega x)$$

Здесь $\Omega=2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n ($m\ll 1$).

Положим фазу φ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\varphi = knL = \varphi_0(1 + m\cos\Omega x)$$

Здесь L — толщина жидкости в кювете, $k=2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ_m , соответствующими максимумам в

дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{1}$$

Этот эффект проиллюстрирован на рисунке 1.

Рис. 1: Дифракция световых волн на акустической решетке

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin \theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{2}$$

Скорость ультразвуковых волн в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu \tag{3}$$

Стоит сформулировать качественный критерий, при выполнении которого можно считать акустическую решётку чисто фазовой, т. е. рассматривать её как тонкий фазовый экран. Для нашей задачи условие тонкого транспаранта можно записать в виде

$$m \ll \frac{\Lambda}{L} \sqrt{\frac{\lambda}{L}}.$$

В настоящей работе помимо дифракционного метода определения длины волны ультразвука используется способ получения видимого изображения акустической решётки — метод тёмного поля, основанный на устранении центрального дифракционного максимума с помощью специального экрана. Как нетрудно показать, в поле зрения микроскопа будут наблюдаться чередующиеся светлые и тёмные полосы, причём расстояние между тёмными полосами соответствует смещению в плоскости кюветы на $\Lambda/2$. Таким образом, должно наблюдаться характерное для метода тёмного поля удвоение числа деталей рассматриваемой структуры.

4 Схема установки:

Схема установки приведена на рисунке 2. Источник света Π через светофильтр Φ и конденсор K освещает вертикальную щель S, находящуюся в фокусе объектива O_1 . После объектива параллельный световой пучок проходит через кювету C перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива O_2 , наблюдается при помощи микроскопа M.

Предварительную настройку установки произведем в соответствии с инструкцией с зеленым фильтром, далее в работе используется красный.

Рис. 2: Схема для наблюдения дифракции на акустической решетке

Рис. 3. Наблюдение акустической решётки методом тёмного поля

Рис. 3: Схема для наблюдения дифракции методом тёмного поля

5 Результаты измерений:

5.1 Определение скорости ультразвука по дифракционной картине

	$ u_1=1.19\ \mathrm{M}\Gamma$ ц	$ u_2=3.97\ \mathrm{M}\Gamma$ ц	$ u_3=1.59 { m M}\Gamma$ ц	$ u_4=1.83~\mathrm{M}$ Гц
m	x_m , MKM	x_m , MKM	x_m , MKM	x_m , MKM
-3	1188			
-2	1044	1336	1120	1192
-1	892	828	916	928
0	752	712	696	696
1	584	256	625	464
2	440	-520	284	240
3	268			

5.2 Определение скорости ультразвука методом тёмного поля

Опытным путём определили цену деления окулярной шкалы: 1 дел $=\frac{1}{6}$ мм

$ u_1, \mathrm{M}\Gamma$ ц	1.17	1.6	1.83	1.48
x_1 , дел	101	72	62	90
x_1 , дел	11	21	0	0
N	24	22	37	28

6 обработка результатов:

6.1 Определение скорости ультразвука по дифракционной картине

По результатам измерений построим графики зависимоти $x_m(\mathbf{m})$ для всех частот

По коэффициенту наклона для каждой частоты найдём Λ по формуле (2) По формуле (3) находим значение скорости ультразвука.

Результаты заносим в таблицу

ν , МГц	Λ , mm	σ_{Λ} , mm	v, m/c	σ_v , м/с
1.19	1.32	0.17	1571.6	198.4
3.97	0.43	0.05	1732.6	218.3
1.59	0.97	0.12	1540.6	194.4
1.83	0.85	0.17	1557.0	305.1

6.2 Определение скорости ультразвука методом тёмного поля

Рассчитаем длину УЗ-волны с учётом удвоением числа деталей, наблюдаемых методом тёмного поля.

Определим скорость УЗ в воде Результаты занесём в таблицу

ν , М Γ ц	Λ , mm	σ_{Λ} , mm	v, м/с	σ_v , м/с
1.17	1.250	0.007	1462.5	10.3
1.6	0.772	0.008	1236.3	12.7
1.83	0.559	0.004	1022.2	8.7
1.43	1.071	0.006	1532.1	10.0

7 Вывод:

В работе изучена дифракция света на акустической решетки, рассчитаны длина волны ультразвука и скорость его распространения в воде. Решетка наблюдалась методом темного поля.