

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra.)

END Semester Examination

Semester: III

Max Marks: 60

Course Name: Foundation of Physics

Academic Year: 2022-23

Programme: B.Tech / M.Tech

Course Code: PH-20001

Branch: All

Duration: 3 Hours

Student PRN No.

Instructions:

1. Figures to the right indicate the full marks.

2. Mobile phones and programmable calculators are strictly prohibited.

3. Writing anything on question paper is not allowed.

4. Exchange/Sharing of stationery, calculator etc. not allowed.

5. Write your PRN Number on Question Paper.

			Marks	CO
Q1		Solve any Five of the following:		
	a	Discuss: The formation of stationary waves when the two identical waves going in opposite direction superimposes.	3	1
	b	Find an Electric field $E(x)$ if potential is given by, $V(x) = e^{kx}$ where 'k' is any constant.	3	3
	c	State and Explain any THREE properties of Nuclear force.	3	2
	d	Write Short notes: I) Core of Optical fibre II) Path difference.	3	1
	e	Discuss: Physical significance of the parameter - 'Entropy' of a thermodynamic system.	3	4
	ſ	Find De-Broglie wavelength λ of a proton accelarated through potential difference of 1000 Volts. $(M_P = 1.6726 \times 10^{-27} kg, h = 6.64 \times 10^{-34} J - S$ Charge on Proton = $1.6 \times 10^{-19} C$)	3	5
Q2		Solve any Five of the following:		
	a	Derive an expression for critical propagation angle θ_c of an optical fibre using Snell's Law with neat labelled diagram	4	1
	b	Derive the expression for a path difference condition for an interference pattern of uniform thickness thin-film with labelled diagram with Maxima and Minima conditions.	4	1

COLLEGE OF ENGINEERING, PUNE (An Autonomous Institute of Government of Maharashtra.)

	G	Discuss: Three important parts of a heat engine with neat and labelled diagram.	4	4
	d	A gas (n moles) expands isothermally from volume V_1 to V_2 . The temperature of a gas is T. Find the work done by the gas, heat absorbed and change in internal energy during this process.	4	4
- 1	e	For a Fission of Uranium-235 Nucleus we have following data:	4	2
		Mass of U-235 nucleus = 235.125 amu		
		Mass of the neutron = 1.009 amu Total mass = 236.134 amu		
		Mass of Ba-141 nucleus = 140.958 amu Mass of Kr-92 nucleus = 91.926 amu		
	-	Mass of three neutrons = 3.027 amu Total mass = 235.911 amu.		
		Write the Nuclear reaction and Find energy from Fission of one Uranium-235 atom.		
	ſ	Derive an expression for Thermal efficiency in terms of absolute temperatures T_1 and T_2 of Carnot engine with labelled diagram.	4	4
Q3		Solve any Five of the following:		
	a	Using Ampere's Law, find the magnetic field 'B' at a point P which is at a distance 'r' from a straight long wire carrying a steady current 'I'.	5	3
	b	Define- decay constant' λ' . Derive an expression for a half-life $T_{1/2}$ of a Radioactive sample in terms of' λ' .	5	2
	C	What is a System? Give at least two examples. Discuss different types of system depending on the interaction with surrounding.	5	4
-04	d	What is a wave function ' ψ '. Discuss its Properties.	5	5
	е	Two travelling waves of equal amplitudes and equal frequencies move in opposite directions along a string. These waves interfere to produce a standing wave having the equation, $y = A\cos kx \sin wt$	5	1
		In which $A = 1.0mm$ $k = 1.57cm^{-1} w = 78.5s^{-1}$		
		Find a) the node closest to the origin in the region $x > 0$		
		b) The node closest to the origin in the region $x > 0$		
		c) The amplitude of the particle at $x = 2.33 \ mm$		
	ſ	State: Gauss's Law in Electrostatics & Faraday law in Electrodynamics.	5	3
			3 -	