Your Document Title

Your Name

March 19, 2024

Contents

1	Axioms		:
	1.0.1	Axiom 1.1	
	1.0.2	Axiom 1.2	:
	1.0.3	Axiom 1.3	
	1.0.4	Axiom 1.4	
	1.0.5	Axiom 1.5	
2	Definitions		
	2.0.1	Definition: Varmint 1	
	2.0.2	Definition: Varmint 2	
3	Propositions		
	3.0.1	Proposition 1.1	
		Proof of Proposition 1.1	

Chapter 1

Axioms

1.0.1 Axiom 1.1

Closure under addition: For all $X, Y \in \mathbb{Z}$, the sum X + Y is also in \mathbb{Z} .

1.0.2 Axiom 1.2

Existence of an additive identity: There exists an element $0 \in \mathbb{Z}$, such that for every $X \in \mathbb{Z}$, X + 0 = X.

1.0.3 Axiom 1.3

Existence of additive inverses: For every $X \in \mathbb{Z}$, there exists an element $-X \in \mathbb{Z}$ such that X + (-X) = 0.

1.0.4 Axiom 1.4

Commutativity of addition: For all $X, Y \in \mathbb{Z}$, X + Y = Y + X.

1.0.5 Axiom 1.5

Associativity of addition: For all $X, Y, Z \in \mathbb{Z}$, (X + Y) + Z = X + (Y + Z).

Chapter 2

Definitions

2.0.1 Definition: Varmint 1

Definition for Varmint 1 goes here.

2.0.2 Definition: Varmint 2

Definition for Varmint 2 goes here.

Chapter 3

Propositions

3.0.1 Proposition 1.1

Let X, Y, and Z be elements of the set of integers \mathbb{Z} . This proposition demonstrates several foundational algebraic properties of integers:

- 3.0.1 part i Commutativity of addition: X + Y = Y + X.
- 3.0.1 part ii Associativity of addition: (X + Y) + Z = X + (Y + Z).
- 3.0.1 part iii Existence of additive identity: X + 0 = X.
- 3.0.1 part iv Existence of additive inverse: For every X, there exists an integer -X such that X + (-X) = 0.

3.0.2 Proof of Proposition 1.1

We now prove each part of Proposition 1.1:

Proof of part (3.0.1 part i). We prove the commutativity of addition. Let $X,Y \in \mathbb{Z}$. Consider:

(1) X + Y = Y + X by the definition of commutative property in \mathbb{Z}

This concludes the proof of commutativity of addition.

Proof of part (3.0.1 part ii). We prove the associativity of addition. Let $X,Y,Z\in\mathbb{Z}.$ Consider:

(1) (X + Y) + Z = X + (Y + Z) by the definition of associative property in \mathbb{Z}

This concludes the proof of associativity of addition.