FRIEDRICH SCHILLER UNIVERSITY JENA Institute of Applied Physics Prof. Dr. Thomas Pertsch

Anastasia Romashkina, Shreyas Ramakrishna, Mostafa Abasifard, Tina (Shiu Hei Lam), Pawan Kumar, Xiao Chen

## Series 7 FUNDAMENTALS OF MODERN OPTICS

to be returned on 15.12.2022, at the beginning of the lecture

## Task 1: Two lenses system (4+2+1 points)

Consider a system of two thin lenses with focal lengths of  $f_1$  and  $f_2$ , respectively, and a distance  $d = f_1 + f_2$  between them (see Fig. 1). Assume you have a Gaussian beam of waist  $W_0$  and wavelength  $\lambda$ , where the waist is positioned at a distance  $f_1$  before the first lens, as shown Fig. 1. This beam will be focused at a distance  $d_1$  after the first lens, with a beam waist of  $W_1$ , and again refocused at some distance  $d_2$  after the second lens, where the waist size will be  $W_2$ .



Figure 1: 2 lenses system.

- a) Calculate the ABCD matrix describing the propagation of the Gaussian beam from the waist  $W_0$  to distance  $d_1$  after the first lens. Find  $d_1$  and  $W_1$ .
- b) Find  $d_2$  and  $W_2$ .
- c) Estimate  $W_1$  and  $W_2$ , when  $f_1 = 200$  mm,  $f_2 = 150$  mm,  $W_0 = 15$  mm, and  $\lambda = 515$  nm.

## Task 2: Laser Cavity (1+2+1+1\* points)

A key element of a laser is an optical cavity. In a simplified version, it consists of two spherical mirrors separated by a distance d. In this task, consider a Gaussian beam in a symmetrical confocal cavity.

- a) Make a sketch of the symmetrical confocal cavity. Sketch the spatial profile of the beam and the position of the waist  $w_0$ . Mark the distance d and radii of mirrors  $R_1$  and  $R_2$ .
- b) Derive the equations defining the waist  $w_0$  of the Gaussian beam in the cavity. Also derive the expressions for the widths at the positions of the mirrors,  $w_1$  and  $w_2$ .
- c) Calculate the values of the beam widths:  $w_0$ ,  $w_1$  and  $w_2$ . Consider the distance between the mirrors equal to 40 cm and the use of a Argon laser with a wavelength of 515 nm.
- \*d) Is the cavity stable or unstable? Explain your answer.

## Task 3: Dispersion compensation (3+1 points)

A transform-limited Gaussian pulse with central frequency  $\omega_0$  is coupled into a fiber. Its envelope is given by

$$U(t) = A \exp(-t^2/\tau^2),$$

where the pulse duration is  $\tau = 10$  ps. The dispersion of the fiber is characterized by the frequency-dependent wavenumber k:

$$k(\omega) = k_0 + (1.5/c)(\omega - \omega_0) + (\beta_2/2)(\omega - \omega_0)^2$$
,

where the group velocity dispersion of the fiber is  $\beta_2 = 0.15 \, (ps)^2 / m$ .

- a) A second pulse with a different frequency  $\omega_1 = \omega_0 \delta \omega$  is coupled into the same fiber after a delay of  $T=20\,\mathrm{ns}$ . The detuning is  $\delta \omega=1\,\mathrm{THz}$ . Calculate the group indices  $n_{\mathrm{g}0}$  and  $n_{\mathrm{g}1}$  of both pulses. Will the second pulse overtake the first one? If so, when will it happen?
- b) Consider the scenario with just the first pulse. After  $L_1 = 5 \,\mathrm{km}$  of the fiber, we connect a second fiber with group velocity dispersion  $\beta_2 = -0.3 \,\mathrm{(ps)}^2/\mathrm{m}$  and length  $L_2$ . After which propagation distance in the second fiber will the initial pulse be restored?