TEAM SPATZENHIRN

SPATZEN-ANATOMIE

CHASSIS

High-Framerate-Kamera 656 x 490 px, max 160 fps

Xtion-Tiefenbildkamera

Gyroskop/Accelerometer

Lichttaster

High-Framerate-Kamera

Xtion-Tiefenbildkamera 3D-Bild, max. 3m Reichweite

Gyroskop/Accelerometer

Lichttaster

High-Framerate-Kamera

Xtion-Tiefenbildkamera

Gyroskop/Accelerometer jeweils 3 Achsen

Lichttaster

High-Framerate-Kamera

Xtion-Tiefenbildkamera

Gyroskop/Accelerometer

LichttasterDigitaler Wert (1 | 0)

High-Framerate-Kamera

Xtion-Tiefenbildkamera

Gyroskop/Accelerometer

Lichttaster

Inkrementalgeber magnetisch, 14 bit/U

HARDWAREARCHITEKTUR

SOFTWAREARCHITEKTUR

ADTF

Spatzenhirn
Bibliotheken und Module

CUDA, Boost, Armadillo, OpenCV, OpenNI

Ubuntu 14.04 LTS

FILTERGRAPH

Datenverarbeitung

Sensorik

Sensorverarbeitung Tracking & Fusion

Planung & Regelung

Aktorik

Filtergraph modelliert **Datenfluss modular** und schnell **anpassbar**

High-FPS-Kamera450€Xtion-Kamera130€Lichttaster200€Inkrementalgeber35€

Sensorik

815€

Rechnersystem

645€

Fahrwerk

850€

Sensorik

815€

Rechnersystem

645€

Motoren Fahrtregler Chassis 100€ 300€ 450€ Fahrwerk

850€

Sensorik

815€

Rechnersystem

645€

Fahrwerk

850€

ENERGIEBILANZ

Gesamtenergiebedarf (Rundkurs 2m/s)

~170W

Kapazität Akkus

120Wh

mögliche Fahrzeit

~40 min

DER VERGLEICH

ALTERNATIVKONZEPT

- + Kleinere ungefederte Masse
- Weniger fehleranfällig

- + Funktionen wie z.B. ABS,ESP Torquevectoring
- + Stabiler + unkomplizierter
- + Tieferer Schwerpunkt

RUNDKURS

RUNDKURS

Sensorverarbeitung Tracking & Fusion

Planung & Regelung

BILDVORVERARBEITUNG

original

vollständig auf GPU berechnet 656x490 px @ 50 fps

Strukturtensor

SPURERKENNUNG

Partikelfilter auf GPU berechnet Prädiktion anhand geschätzter Eigenbewegung Update vergleicht mit Tensor- und Gradientenbild

SPURERKENNUNG

- rechenintensiver als andere Algorithmen zur Spurerkennung
- sehr **robust** gegenüber fehlenden Markierungen, Spiegelungen und schlechten Lichtverhältnissen

TRAJEKTORIENPLANUNG

Polynome

$$ax^{5} + bx^{4} + cx^{3} + ...$$

Zielpunkt auf Ideallinie

Physikalische Prüfung

Gewichtsfunktion

Gewinnertrajektorie

FAHRDYNAMIKREGELUNG

Querführung

Lyapunovbasierter Lenkwinkelregler

Basis

Kinematisches Einspurmodell

LängsführungPI Regler pro Rad

Optimales Differential Druchdrehen minimiert

Erweiterbar ESP

RUNDKURS

MAPPING

MAPPING

MAPPING

TESTSTRECKE

TESTSTRECKE

PARKEN

PARKLÜCKENSUCHE

Lichttaster

- Scharfe Kanten
- Digitale Werte

1D Gridmap

Xtion

- Weitsicht
- Blickwinkel

PARKLÜCKENSUCHE

Lichttaster

- Scharfe Kanten
- Digitale Werte

1D Gridmap

Xtion

- Weitsicht
- Blickwinkel

PARKLÜCKENSUCHE

Lichttaster

- Scharfe Kanten
- Digitale Werte

1D Gridmap

Xtion

- Weitsicht
- Blickwinkel

EINPARKVORGANG

Position relativ zur Lücke **bestimmen**

Optimale Einparkzüge berechnen

Entlang berechneter Trajektorie **fahren**

EINPARKVORGANG

Position relativ zur Lücke **bestimmen**

Optimale Einparkzüge berechnen

Entlang berechneter Trajektorie **fahren**

HINDERNISKURS

PROBLEMSTELLUNG

Hindernisdetektion

Kollisionsvermeidung

Stoplinienerkennung

Vorfahrtsituation

HINDERNISDETEKTION

Tiefenbild

3D-Fahrzeugkoordinaten

2D-Fahrzeugkoordinaten

Detektion im Xtion-Tiefenbild bis zu 45 fps, Fehler < 4 cm (3 m Distanz)

KOLLISIONSVERMEIDUNG

Erweiterung der **Trajektorienplanung** des Rundkurses Nutzung der **Gridmap** des Einparkvorgangs

STOPLINIENERKENNUNG

Linie suchen

Linie erkannt

Linie getrackt

Suchlinien parallel zur Spur Tracking mittels **Kalman-Filter**

KREUZUNG

HIGHLIGHTS

Spurerkennung mittels Partikelfilter auf GPU

Hinderniserkennung im 3D-Tiefenbild

Vier Motoren für optimale Fahrdynamik.

Tiefer Schwerpunkt dank individuellem 3D-Druck.

DANKE FÜR IHRE AUFMERKSAMKEIT