Chiral condensate as a function of the time extension

Jaime Fabián Nieto Castellanos

January 28, 2021

In previous weeks we found out that there is a symmetry of the chiral condensate obtained trough simulations on $N_s \times N_t$ lattices with Wilson fermions if one interchanges N_s with N_t , that is, the chiral condensate is the same for the lattice sizes $N_s \times N_t$ and $N_t \times N_s$. Figure 1 is an example of this.

Figure 1: Symmetry of the chiral condensate by the interchange of N_s with N_t

Taking advantage of this symmetry and regarding that most of the simulations that I have run were in the δ -regime, I was able to use the results on the 5×64, 64×6, 7×64, 8×64, 9×64, 64×10, 11×64, 64×12 and 64×16 lattices to make the following plots at finite temperature, where a comparison of the chiral condensate obtained using the prediction by Hosotani and lattice simulations is shown, together with their correlation.

Figure 2: Comparison of the chiral condensate obtained through the prediction by Hosotani and by lattice simulations using Wilson fermions. m = 0.01; L can be related to N_t in the lattice

Figure 3: Correlation between the chiral condensate calculated through the prediction by Hosotani and the one obtained through lattice simulations. The parameters are $a=1.4946\pm0.005,\ b=2.8549\pm0.4965$. Correlation coefficient r=0.9084

Figure 4: Comparison of the chiral condensate obtained through the prediction by Hosotani and by lattice simulations using Wilson fermions. m = 0.05; L can be related to N_t in the lattice

Figure 5: Correlation between the chiral condensate calculated through the prediction by Hosotani and the one obtained through lattice simulations. The parameters are $a=1.5307\pm0.0081,\ b=2.3644\pm0.1852.$ Correlation coefficient r=0.9792

Figure 6: Comparison of the chiral condensate obtained through the prediction by Hosotani and by lattice simulations using Wilson fermions. m = 0.1; L can be related to N_t in the lattice

Figure 7: Correlation between the chiral condensate calculated through the prediction by Hosotani and the one obtained through lattice simulations. The parameters are $a=1.5979\pm0.0097$, $b=1.681\pm0.1402$. Correlation coefficient r=0.9765

Figure 8: Comparison of the chiral condensate obtained through the prediction by Hosotani and by lattice simulations using Wilson fermions. m = 0.2; L can be related to N_t in the lattice

Figure 9: Correlation between the chiral condensate calculated through the prediction by Hosotani and the one obtained through lattice simulations. The parameters are $a=1.7133\pm0.0106,\ b=0.9817\pm0.1088$. Correlation coefficient r=0.9596

Figure 10: Comparison of the chiral condensate obtained through the prediction by Hosotani and by lattice simulations using Wilson fermions. m = 0.3; L can be related to N_t in the lattice

Figure 11: Correlation between the chiral condensate calculated through the prediction by Hosotani and the one obtained through lattice simulations. The parameters are $a=1.8065\pm0.0079,\ b=0.5043\pm0.068$. Correlation coefficient r=0.9574