1 Funktionsundersökning

Givet: en funktion f(x)

Mål: undersök de väsentliga aspekterna av f:s beteende och rita grafen y = f(x)

- 1. Bestäm definitionsmängden D_f (om den inte redan är given): man måste undvika division med noll, roten ur negativa tal, etc. Se up med skillnaden mellan $ln(\cdots)$ och $ln|\cdots|$.
- 2. Innan du börjar räkna, tänk efter om det finns några uppenbara egenskaper som man kan se direkt. (Är funktionen alltid positiv? Jämn/udda (potenser)? Kan man se var den har nollställen? Approximationer $f(x) = (???), x \approx 0$ eller då |x| är stort?) Räkna eventuellt ut några funktionsvärden.
- 3. Undersök relevanta gränsvärden för att avgöra om kurva y=f(x) har några asymptoter:
 - Linjen x=a är en lodrät asymptot om $f(x)\to\infty$ eller $f(x)\to-\infty$ då $x\to a^+$ och/eller $x\to a^{-1}$. T.ex.

(Kan bara hända om f är diskontinuerlig eller odefinerad i punkten a.)

• Linjen y=k är en vågrät asymptot om $f(x)\to k, x\to\infty$ och/eller då $x\to-\infty$ T.ex.

• (Överkurs) y = kx + m är en <u>sned asymptot</u> om $f(x) - (kx + m) \rightarrow 0, x \rightarrow infty$ och/eller $x \rightarrow -\infty$ T.ex.

(Undersök lim $\frac{f(x)}{x}$ för att hitta k
, sedan lim (f(x)-kx) för att hitta m.)

- 4. Räkna ut derivatan f'(x), faktorisera så långt som möjligt, och gör sedan en <u>teckentabell</u> för att avgöra var f' är positiv/negativ/noll/(odef.) (så att man ser var f är växande/avtagande respektive har lokal max/min eller terrasspunkter).
- 5. (Överkurs) Gör en funktionsundersökning av f' för att avgöra var funktionen f är konvex eller konkav.

f är konvex på ett intervall $I \Leftrightarrow$ varje sekand i I ligger ovanför grafen \Leftrightarrow f' är växande på $I \Leftrightarrow f'' \geq 0$ på I. (Konkav: tvärtom (f' avtagande))

- 6. Rita grafen y = f(x) med hjälp av ovanstående information. (Tänk tillbaka på vad D_f var, så att du inte glömmer att rita någon del av grafen, eller ritar någonting där f är odefinerad.)
- 7. MYCKET VIKTIGT: Kontrollera att allt hänger ihop! (Inga motsägelser får finnas.)
- 8. Skriv ett svar där det som efterfrågas i uppgiften klart framgår. (Det kan gälla asymptoter, lokala extrempunkter, antalet lösningar till ekvationen f(x) = 0, värdemängden för f, etc)

2 Exempel

Undersök $f(x) = \frac{x-1}{x+1}e^{-1/x}$

$$D_f = \{x \in \mathbb{R} : x \neq -1, x \neq 0\}$$

 $f{:}\mathrm{s}$ enda nollställe är x=1, och man kan se $f{:}\mathrm{s}$ tecken med en teckentabell.

x		-1		0		1	
x-1	-		-		-	0	+
$ \begin{array}{c} x + 1 \\ e^{-1/x} \end{array} $	-	0	+		+		+
$e^{-1/x}$	+		+		+		+
f(x)	+		-		-	0	+

2.1 Relevanta gränsvärden

- $f(x)=\frac{1-1/x}{1+1/x}e^{-1/x}\to \frac{1}{1}e^0=1, x\to \pm\infty$ så linjen y=1 är en vågrät asymptot.
- $f(x) = \frac{1-x}{1+x}e^{-1/x} \to 0, x \to 0^+$
- $f(x) = \frac{1-x}{1+x}e^{-1/x} \to -\infty, x \to 0^-$, så linjen x=0 är en lodrät asymptot.
- $f(x) = \frac{1}{x+1}(x-1)e^{-1/x} \to \pm \infty, x \to (-1)^{\pm}$, så linjen x=0 är en lodrät asymptot.

2.2 Derivata

$$f'(x) = \frac{2}{(x+1)^2} e^{-1/x} + \frac{x-1}{x+1} e^{-1/x} \frac{1}{x^2} = \frac{2x^2 + (x-1)(x+1)}{x^2(x+1)^2} e^{-1/x} = \frac{3x^2 - 1}{x^2(x+1)^2} e^{-1/x} = \frac{3(x + \frac{1}{\sqrt{3}})(x - \frac{1}{\sqrt{3}})}{x^2(x+1)^2} e^{-1/x}$$

2.3 Teckentabell över derivatan

x		-1		$\frac{-1}{\sqrt{3}}$		0		$\frac{-1}{\sqrt{3}}$	
$3e^{-1/x}$	+		+		+	∄	+		+
$x + \frac{1}{\sqrt{3}}$	-		-	0	+		+		+
$x-\frac{1}{\sqrt{3}}$	-		-		-		-	0	+
$x^2(x+1)^2$	+	0	+		+	0	+		+
f(x)	+	∄	+	0	-	∄	-	0	+
f'(x)	7	∄	7	lok.	\searrow	∄	V	lok.	7
				max				\min	

2.4 Lokalt maximum

$$f(\frac{-1}{\sqrt{3}}) = \frac{\sqrt{3}+1}{-\sqrt{3}-1}e^{\sqrt{3}} \approx 21.09$$

2.5 Lokalt minimum

$$f(\frac{1}{\sqrt{3}}) = \frac{\sqrt{3}+1}{\sqrt{3}-1}e^{-\sqrt{3}} \approx -0.047$$

2.6 Graf

