対称多項式の基本定理

箱 (@o_ccah)

2023年3月10日

概要

対称多項式の基本定理を証明する. 関連して, 冪和対称多項式を用いた対称多項式の基本定理の類似や, 交代多項式と対称多項式との関係についても触れる.

目次

1	辞書式順序	1
2	対称多項式	3
3	対称多項式の基本定理	4
4	幂和対称多項式	5
5	交代多項式	7

記号と用語

- 自然数,整数,有理数全体の集合を、それぞれ \mathbb{N} , \mathbb{Z} , \mathbb{Q} と書く.0 は自然数に含める.
- A を可換環とするとき, $\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}^n$ に対して,多項式環の元 $X_1^{\alpha_1}\cdots X_n^{\alpha_n}\in A[X_1,\ldots,X_n]$ を X^{α} と書く.

1 辞書式順序

定義 1.1 (辞書式順序) \mathbb{N}^n 上の関係 \prec および \preceq を、次のように定める:

 \mathbb{N}^n の 2 元 $\alpha=(\alpha_1,\ldots,\alpha_n),\ \beta=(\beta_1,\ldots,\beta_n)$ に対して、関係 $\alpha\prec\beta$ を「ある $1\leq i\leq n$ が存在して、すべての j< i に対して $\alpha_j=\beta_j$ かつ $\alpha_i<\beta_i$ である」と定め、これを用いて関係 $\alpha\preceq\beta$ を「 $\alpha=\beta$ または $\alpha\prec\beta$ 」と定める.

関係 \preceq を, \mathbb{N}^n 上の辞書式順序という. $\alpha \prec \beta$ の代わりに $\beta \succ \alpha$ とも書き, $\alpha \preceq \beta$ の代わりに $\beta \succeq \alpha$ とも書く.

辞書式順序 \leq は \mathbb{N}^n 上の整列順序であり、 \mathbb{N}^n の加法と整合する(すなわち、 α , β , $\gamma \in \mathbb{N}^n$ に対して、 $\alpha \leq \beta$

定義 1.2(辞書式順序に関する次数) A を可換環とする. $f \in A[X_1,\ldots,X_n]$ を

$$f = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} X^{\alpha}$$

と表すとき, $a_{\alpha}\neq 0$ となる $\alpha\in\mathbb{N}^n$ のうち辞書式順序に関して最大のものを,f の辞書式順序に関する次数という. ただし,f=0 の辞書式順序に関する次数は $-\infty$ とし,任意の $\alpha\in\mathbb{N}^n$ に対して $-\infty\prec\alpha$ であると約束する.

命題 1.3 A を可換環とする. $f_1, \ldots, f_k \in A[X_1, \ldots, X_n]$ とし、各 j に対して、 f_j は辞書式順序に関してたかだか α_j 次であり、その α_j 次の係数は a_j であるとする. このとき、積 $f_0 \cdots f_{k-1}$ は辞書式順序に関してたかだか $\alpha_1 + \cdots + \alpha_k$ 次であり、その $\alpha_1 + \cdots + \alpha_n$ 次の係数は $a_1 \cdots a_k$ である.

証明 辞書式順序が \mathbb{N}^n の加法と整合することから明らかである.

辞書式順序とは関係ないが、後で必要になるので、多項式環の零因子に関する命題を示しておく、

命題 1.4 A を可換環とする. $f \in A[X]$ に対して、次の 2 条件は同値である.

- (a) f は A[X] において零因子である.
- (b) ある $c \in A \setminus \{0\}$ が存在して, cf = 0 となる.

証明 $(b) \Longrightarrow (a)$ 明らかである.

(a) \Longrightarrow (b) $f=\sum_{k=0}^d a_k X^k$ ($a_k\in A,\ a_d\neq 0$) が A[X] において零因子であるとすると,ある $g\in A[X]\setminus\{0\}$ が存在して fg=0 となる.このような g の中で次数が最小のものをとり,その最高次の係数 を $c\in A\setminus\{0\}$ と置く.すべての $0\leq k\leq d$ に対して $a_kg=0$ であることを,k に関する降順の帰納法で示す. $0\leq k\leq d$ とし, $k< j\leq d$ に対しては $a_jg=0$ が示されたとする.このとき,

$$0 = fg = \sum_{j=0}^{d} a_j X^j \cdot g = \sum_{j=0}^{k} a_j X^j \cdot g$$

だから,両辺の $k+\deg g$ 次の係数を比較することで $a_kc=0$ を得る.したがって,g を a_k 倍すると最高次の係数が消えるから, a_kg は g よりも次数が真に小さくなる.一方で, $f\cdot a_jg=a_jfg=0$ である.よって,g の次数の最小性より $a_kg=0$ である.これで,帰納法が完成した.いま示したことから特に,任意の $0\leq k\leq d$ に対して $a_kc=0$ であり,したがって cf=0 である.これで,主張が示された.

系 1.5 A を可換環とする. $f \in A[X_1,\ldots,X_n]$ が零因子ならば、そのすべての係数は A における零因子である.

証明 n に関する帰納法で示す。n=0 のときは明らかである。 $n\geq 1$ として,n-1 のときには主張は正しいとする。 $f\in A[X_1,\ldots,X_n]$ が零因子であるとして,f を X_n について整理して $f=\sum_{k\in\mathbb{N}}f_kX_n^k$ ($f_k\in A[X_1,\ldots,X_{n-1}]$) と書く。すると,命題 1.4 より各 f_k は $A[X_1,\ldots,X_{n-1}]$ における零因子だから,帰納法の仮定より f_k のすべての係数は A における零因子である。よって,f のすべての係数は A における零因子である。これで,帰納法が完成した.

2 対称多項式

多重指数の空間 \mathbb{N}^n には,n 次対称群 \mathfrak{S}_n が

$$\sigma(\alpha_1,\ldots,\alpha_n)=(\alpha_{\sigma^{-1}(1)},\ldots,\alpha_{\sigma^{-1}(n)})$$

によって左から作用する. 対応して、可換環 A 上の n 変数多項式環 $A[X_1,\dots,X_n]$ には、 \mathfrak{S}_n が

$$\sigma\left(\sum_{\alpha\in\mathbb{N}^n}a_{\alpha}X^{\alpha}\right)=\sum_{\alpha\in\mathbb{N}^n}a_{\alpha}X^{\sigma\alpha},$$

すなわち

$$(\sigma f)(X_1,\ldots,X_n) = f(X_{\sigma(1)},\ldots,X_{\sigma(n)})$$

によって左から作用する.各 $\sigma\in\mathfrak{S}_n$ に対して,その作用 $f\mapsto\sigma f$ は単位的 A-代数 $A[X_1,\dots,X_n]$ の自己同型である.

定義 2.1(対称多項式) A を可換環とする. A 上の n 変数多項式 f であって,任意の $\sigma \in \mathfrak{S}_n$ に対して $\sigma f = f$ を満たすものを,A 上の n 変数対称多項式という. A 上の n 変数対称多項式の全体は, $A[X_1,\ldots,X_n]$ の部分単位的 A-代数をなす.この部分単位的 A-代数を, $A[X_1,\ldots,X_n]^{\mathrm{sym}}$ と書く.

定義 2.2(軌道和対称多項式) A を可換環とする. $\alpha \in \mathbb{N}^n$ に対して、指数 α の軌道和対称多項式 m_{α} を、

$$m_{\alpha} = \sum_{\beta \in \mathfrak{S}_{m}, \alpha} X^{\beta} \in A[X_{1}, \dots, X_{n}]^{\text{sym}}$$

と定める.

 \mathbb{N}^n の部分集合 \mathbb{N}^n_{\perp} を

$$\mathbb{N}^n_{\downarrow} = \{(\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n \mid \alpha_1 \ge \dots \ge \alpha_n\}$$

と定めると、 $\mathbb{N}^n_{\downarrow}$ は \mathfrak{S}_n の \mathbb{N}^n への作用が定める同値関係に関する完全代表系である.よって、 $\alpha\in\mathbb{N}^n_{\downarrow}$ に対する軌道和対称多項式 m_{α} の全体は、 $A[X_1,\ldots,X_n]^{\mathrm{sym}}$ の A-加群としての基底をなす.

命題 2.3 A を可換環とする. $\alpha_1,\ldots,\alpha_k\in\mathbb{N}^n_{\downarrow}$ に対して、軌道和対称多項式の積 $m_{\alpha_1}\cdots m_{\alpha_k}$ は

$$m_{\alpha_1} \cdots m_{\alpha_k} = m_{\alpha_1 + \dots + \alpha_k} + \sum_{\gamma \in \mathbb{N}_+^n, \ \gamma \prec \alpha_1 + \dots + \alpha_k} a_{\gamma} m_{\gamma} \qquad (a_{\gamma} \in \mathbb{Z})$$

という形に書ける.

証明 各jに対して、 m_{α_j} は辞書式順序に関してたかだか α_j 次であり *1 、その α_j 次の係数は1 である。したがって、命題1.3 より、 $m_{\alpha_1}\cdots m_{\alpha_k}$ は辞書式順序に関してたかだか $\alpha_1+\cdots+\alpha_k$ 次であり、その $\alpha_1+\cdots+\alpha_k$ 次の係数は1 である。また、各 m_{α_j} は整数係数だから、それらの積 $m_{\alpha_1}\cdots m_{\alpha_k}$ も整数係数である。よって、 $m_{\alpha_1}\cdots m_{\alpha_k}$ を m_{γ} ($\gamma\in\mathbb{N}^n$) の線型結合として書くと、主張の形になる。

^{*1} A が零環でなければ, m_{α_j} の辞書式順序に関する次数はちょうど α_j である.A が零環の場合は $m_{\alpha_j}=0$ であり,その辞書式順序に関する次数は $-\infty$ である.

3 対称多項式の基本定理

定義 3.1 (基本対称多項式) A を可換環とする. $k \in \mathbb{N}$ に対して, k 次基本対称多項式 e_k を,

$$e_k = \sum_{1 \le i_1 < \dots < i_k \le n} X_{i_1} \cdots X_{i_k} \in A[X_1, \dots, X_n]^{\text{sym}}$$

と定める.変数の個数を明示する必要がある場合には, e_k の代わりに $e_k^{(n)}$ と書く.

k 次基本対称多項式 e_k は、 $0 \le k \le n$ ならば指数 $(1,\ldots,1,0,\ldots,0)$ (1 が k 個、0 が n-k 個並ぶ)の軌道和対称多項式であり、k>n ならば 0 である.

定理 3.2(対称多項式の基本定理) 可換環 A に対して,1 次から n 次までの基本対称多項式 e_1, \ldots, e_n は, $A[X_1, \ldots, X_n]^{\text{sym}}$ の単位的 A-代数としての基底である. すなわち,写像

$$\phi: A[E_1, \dots, E_n] \to A[X_1, \dots, X_n]^{\text{sym}}, \quad f \mapsto f(e_1, \dots, e_n)$$

は、単位的 A-代数の同型である.

証明 まず、 ϕ の全射性を示す。そのためには、任意の $\alpha \in \mathbb{N}^n_{\downarrow}$ に対して、軌道和対称多項式 m_{α} が ϕ の像に属することを示せばよい。これを、辞書式順序(これは $\mathbb{N}^n_{\downarrow}$ 上の整列順序である)に関する帰納法で示す。 $\alpha \in \mathbb{N}^n_{\downarrow}$ とし、任意の $\gamma \in \mathbb{N}^n_{\downarrow}$ 、 $\gamma \prec \alpha$ に対して $m_{\gamma} \in \operatorname{Im} \phi$ が示されたとする。 $1 \leq k \leq n$ に対して $\epsilon_k = (1, \dots, 1, 0, \dots, 0)$ (1 が k 個、0 が n - k 個並ぶ)と置くと、 $\alpha \in \mathbb{N}^n_{\downarrow}$ より、 $\nu_1, \dots, \nu_n \in \mathbb{N}$ が存在して

$$\alpha = \nu_1 \epsilon_1 + \dots + \nu_n \epsilon_n$$

を満たす.この ν_1,\ldots,ν_n について,命題 2.3 より,基本対称式の積 $e_1^{\nu_1}\cdots e_n^{\nu_n}$ は

$$e_1^{\nu_1} \cdots e_n^{\nu_n} = m_{\epsilon_1}^{\nu_1} \cdots m_{\epsilon_n}^{\nu_n} = m_{\alpha} + \sum_{\gamma \in \mathbb{N}_+^n, \ \gamma \prec \alpha} a_{\gamma} m_{\gamma} \qquad (a_{\gamma} \in \mathbb{Z})$$

と書ける. $e_1^{\nu_1}\cdots e_n^{\nu_n}\in {\rm Im}\,\phi$ であり、帰納法の仮定より $\gamma\in\mathbb{N}_+^n$ 、 $\gamma\prec\alpha$ に対して $a_\gamma\in {\rm Im}\,\phi$ だから、 $m_\alpha\in {\rm Im}\,\phi$ である. これで、帰納法が完成し、 ϕ の全射性が示された.

次に、 ϕ の単射性を、n に関する帰納法で示す。 n=0 のときは明らかである。 $n\geq 1$ として、n-1 のときには主張は正しいとする。 $f\in A[E_1,\ldots,E_n],\ f(e_1,\ldots,e_n)=0$ とすると、特に

$$f(e_1(X_1,\ldots,X_{n-1},0),\ldots,e_{n-1}(X_1,\ldots,X_{n-1},0),0)=0$$

である. $1 \leq k \leq n-1$ に対して $e_k(X_1,\ldots,X_{n-1},0)$ は n-1 変数の k 次基本対称多項式だから,帰納法の仮定より, $f(E_1,\ldots,E_{n-1},0)=0$ である.よって,因子定理(f を $A[E_1,\ldots,E_{n-1}]$ 上の E_n を不定元とする多項式と見て適用する)より,f は E_n で割り切れる.そこで, $g \in A[E_1,\ldots,E_n]$ を用いて $f=E_ng$ と書くと,

$$0 = f(e_1, \dots, e_n) = e_n g(e_1, \dots, e_n)$$

だが、 $e_n = X_1 \cdots X_n$ は零因子ではないから*2 $g(e_1, \dots, e_n) = 0$ である.よって、f の次数に関する無限降下法より、 $f(e_1, \dots, e_n) = 0$ を満たす $f \in A[E_1, \dots, E_n]$ は f = 0 以外に存在しない.これで、帰納法が完成し、 ϕ の単射性が示された.

 $^{*^2}$ 系 1.5 から従うといってもよいが、直接考えても明らかである.

4 冪和対称多項式

定義 4.1 (冪和対称多項式) A を可換環とする. $k \in \mathbb{N}$ に対して, k 次冪和対称多項式 p_k を,

$$p_k = X_1^k + \dots + X_n^k \in A[X_1, \dots, X_n]^{\text{sym}}$$

と定める.変数の個数を明示する必要がある場合には, p_k の代わりに $p_k^{(n)}$ と書く.

k 次冪和対称多項式 p_k は、指数 $(k,0,\ldots,0)$ の軌道和対称多項式である.

命題 4.2(Newton の恒等式) A を可換環とする. $k \in \mathbb{N}$ に対して,基本対称多項式と冪和対称多項式の間の等式

$$\sum_{j=0}^{k} (-1)^{j} e_{k-j} p_{j} = (n-k)e_{k}$$

が成り立つ.

証明 まず、k=n の場合に示す. 多項式環 $A[X_1,\ldots,X_n][T]$ において

$$(T - X_1) \cdots (T - X_n) = \sum_{j=0}^{n} (-1)^{n-j} e_{n-j}^{(n)} (X_1, \dots, X_n) T^j$$

であり、これに $T = X_i$ を代入すると

$$0 = \sum_{i=0}^{n} (-1)^{n-j} e_{n-j}^{(n)}(X_1, \dots, X_n) X_i^j$$

となる.この式の $1 \leq i \leq n$ にわたる総和をとって両辺を $(-1)^k$ 倍することにより,k=n の場合の Newton の恒等式

$$\sum_{j=0}^{n} (-1)^{j} e_{n-j}^{(n)}(X_1, \dots, X_n) p_j^{(n)}(X_1, \dots, X_n) = 0$$
 (*)

を得る.

次に、k > n の場合を示す. (*) において n を k に置き換え、 X_{n+1}, \ldots, X_k に 0 を代入すると、

$$\sum_{j=0}^{k} (-1)^{j} e_{k-j}^{(k)}(X_1, \dots, X_n, 0, \dots, 0) p_j^{(k)}(X_1, \dots, X_n, 0, \dots, 0) = 0$$

となる.上式の各項について, $e_{k-j}^{(k)}(X_1,\ldots,X_n,0,\ldots,0)=e_{k-j}^{(n)}(X_1,\ldots,X_n)$ であり, $j\geq 1$ ならば $p_j^{(k)}(X_1,\ldots,X_n,0,\ldots,0)=p_j^{(n)}(X_1,\ldots,X_n)$ である.また,j=0 については $p_0^{(k)}=k$, $p_0^{(n)}=n$ だが, $e_k^{(k)}(X_1,\ldots,X_n,0,\ldots,0)=0$ だから,この違いは式に影響しない.よって,上式は,k>n の場合の Newton の恒等式

$$\sum_{i=0}^{k} (-1)^{j} e_{k-j}^{(n)}(X_{1}, \dots, X_{n}) p_{j}^{(n)}(X_{1}, \dots, X_{n}) = 0$$

に他ならない.

最後に、k < n の場合の Newton の恒等式

$$\sum_{j=0}^{k} (-1)^{j} e_{k-j}^{(n)}(X_1, \dots, X_n) p_j^{(n)}(X_1, \dots, X_n) = (n-k) e_k^{(n)}(X_1, \dots, X_n)$$
(**)

を示す.上式の両辺は斉 k 次の対称多項式だから, $\alpha \in \mathbb{N}^n_{\downarrow}$, $|\alpha| = k$ に対して,上式の両辺の α 次の係数が等しいことを示せばよい.このとき, α は $(\alpha_1,\ldots,\alpha_k,0,\ldots,0)$ という形である.さて,(*) において n を k に置き換えると,

$$\sum_{j=0}^{n} (-1)^{j} e_{k-j}^{(k)}(X_{1}, \dots, X_{k}) p_{j}^{(k)}(X_{1}, \dots, X_{k}) = 0$$

となる。 $e_{k-j}^{(k)}(X_1,\ldots,X_k)=e_{k-j}^{(n)}(X_1,\ldots,X_k,0,\ldots,0)$ であり, $j\geq 1$ ならば $p_j^{(k)}(X_1,\ldots,X_k)=p_j^{(n)}(X_1,\ldots,X_k,0,\ldots,0)$ である。また,j=0 については, $p_0^{(k)}=k$, $p_0^{(n)}=n$ である。よって,上式は

$$\sum_{i=0}^{k} (-1)^{j} e_{k-j}^{(n)}(X_1, \dots, X_k, 0, \dots, 0) p_j^{(n)}(X_1, \dots, X_k, 0, \dots, 0) = (n-k) e_k^{(n)}(X_1, \dots, X_k, 0, \dots, 0) \quad (***)$$

と書き直せる. (***) は (**) において X_{k+1} , ..., X_n に 0 を代入したものだが, α は $(\alpha_1, \ldots, \alpha_k, 0, \ldots, 0)$ という形だから,(**) と (***) の対応する辺の α 次の係数はそれぞれ等しい.よって,(***) が成り立つことより,(**) の両辺の α 次の係数は等しい.これで,主張が示された.

系 4.3 A を可換環とする.

- (1) $k \in \mathbb{N}$ に対して、 p_k は $(-1)^{k-1}ke_k$ と $\lceil e_1,\ldots,e_{k-1}$ の A-係数多項式」の和として書ける.
- (2) A が $\mathbb Q$ と同型な部分環をもつとする.このとき, $k\geq 1$ に対して, e_k は $(-1)^{k-1}k^{-1}p_k$ と「 p_1,\ldots,p_{k-1} の A-係数多項式」の和として書ける.

証明 (1) $k \in \mathbb{N}$ に対して、Newton の恒等式(命題 4.2)は

$$p_k = e_1 p_{k-1} - e_2 p_{k-2} + \dots + (-1)^{k-2} e_{k-1} p_1 + (-1)^{k-1} k e_k$$

と書き直せる. これを用いれば、k に関して帰納的に主張が示せる.

(2) A が $\mathbb Q$ と同型な部分環をもつ場合, $k \ge 1$ に対して、Newton の恒等式(命題 4.2)は

$$e_k = k^{-1}(e_{k-1}p_1 - e_{k-2}p_2 + \dots + (-1)^{k-1}e_0p_k)$$

と書き直せる. これを用いれば、k に関して帰納的に主張が示せる.

定理 4.4 A は可換環であり、 $\mathbb Q$ と同型な部分環をもつとする.このとき、1 次から n 次までの冪和対称多項式 p_1,\ldots,p_n は、 $A[X_1,\ldots,X_n]^{\mathrm{sym}}$ の単位的 A-代数としての基底である.すなわち、写像

$$\psi \colon A[P_1, \dots, P_n] \to A[X_1, \dots, X_n]^{\text{sym}}, \quad f \mapsto f(p_1, \dots, p_n)$$

は、単位的 A-代数の同型である.

証明 ψ の全射性は,対称多項式の基本定理(定理 3.2)における ϕ の全射性と,基本対称多項式 e_k が ψ の像に属すること(系 4.3 (2))から従う.

 ψ の単射性を示す。 $f \in A[P_1,\ldots,P_n]\setminus\{0\}$ を任意にとり, $f=\sum_{\alpha\in\mathbb{N}^n}a_\alpha P^\alpha$ と表す。各 p_k を, $F_k\in A[E_1,\ldots,E_n]$ を用いて $p_k=F_k(e_1,\ldots,e_n)$ と表すと,

$$f(p_1, \ldots, p_n) = f(F_1(e_1, \ldots, e_n), \ldots, F_n(e_1, \ldots, e_n))$$

である.対称多項式の基本定理(定理 3.2)における ϕ の単射性より, $f(p_1,\ldots,p_n)\in A[X_1,\ldots,X_n]$ が 0 でないことを示すためには,上式の右辺で e_k を不定元 E_k に置き換えて得られる $A[E_1,\ldots,E_n]$ の元

$$f(F_1(E_1,\ldots,E_n),\ldots,F_n(E_1,\ldots,E_n)) = \sum_{\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}^n} a_\alpha F_1(E_1,\ldots,E_n)^{\alpha_1}\cdots F_n(E_1,\ldots,E_n)^{\alpha_n}$$

が0でないことをいえばよい.

「 $n,n-1,\ldots,1$ -成分の優先順位で比較する \mathbb{N}^n 上の辞書式順序」を \preceq' と書き,「 \preceq' に関する次数」を定義 1.2 と同様に定義する。系 4.3 (1) より, $1 \leq k \leq n$ に対して, F_k の \preceq' に関する次数は $\delta_k = (0,\ldots,1,\ldots,0)$ (k-成分のみが 1 で,他は 0) であり,その δ_k 次の係数は $(-1)^{k-1}k$ である.したがって,命題 1.3 (に対応する \preceq' に関する次数についての結果)より,各 $\alpha = (\alpha_1,\ldots,\alpha_n) \in \mathbb{N}^n$ に対して, $F_1^{\alpha_1}\cdots F_n^{\alpha_n}$ の \preceq' に関する次数は α であり,その α 次の係数は $\prod_{k=1}^n((-1)^{k-1}k)^{\alpha_k}$ である.よって,f の \preceq' に関する次数を β とすれば, $f(F_1,\ldots,F_n)$ の β 次の係数は $a_\beta\prod_{k=1}^n((-1)^{k-1}k)^{\alpha_k}\neq 0$ だから(A において 0 以外の整数が零因子でないことを用いた), $f(F_1,\ldots,F_n)\neq 0$ である.これで, ψ の単射性が示された.

注意 4.5 証明からわかるように、定理 4.4 における ψ の単射性は、A において 0 以外の整数(正確には、0 以外の整数の一意な環準同型 $\mathbb{Z} \to A$ による像)が零因子でないと仮定するだけでも成り立つ.

注意 4.6 一般の可換環 A に対しては、定理 4.4 は成り立たない. たとえば、 $\mathbb{Q}[X,Y]$ において

$$XY = 2^{-1}((X+Y)^2 - (X^2 + Y^2)),$$

すなわち

$$e_2(X,Y) = 2^{-1}(p_1(X,Y)^2 - p_2(X,Y))$$

であり、定理 4.4 より、これ以外の方法で e_2 を p_1 、 p_2 の \mathbb{Q} -係数多項式として表すことはできない. 特に、 e_2 を p_1 、 p_2 の \mathbb{Z} -係数多項式として表すことはできないから、 $A=\mathbb{Z}$ に対しては定理 4.4 における ψ の全射性は成り立たない. また、p を素数とすると*3、 $\mathbb{F}_p[X,Y]$ においては

$$(X+Y)^p = X^p + Y^p,$$

すなわち

$$p_1(X,Y)^p = p_p(X,Y)$$

だから, $A = \mathbb{F}_p$ に対しては定理 4.4 における ψ の単射性は成り立たない.

5 交代多項式

定義 5.1 (差積) A を可換環とする、差積 Δ を、

$$\Delta = \prod_{1 \le i < j \le n} (X_i - X_j) \in A[X_1, \dots, X_n]^{\text{alt}}$$

^{*3} 対称冪和多項式を表す記号と衝突するが、許してほしい.

と定める. 変数の個数を明示する必要がある場合には、 Δ の代わりに $\Delta^{(n)}$ と書く.

補題 5.2 A を可換環とする. $f \in A[X]$ が $a_1, \ldots, a_k \in A$ を根にもち、すべての $1 \le i < j \le k$ に対して $a_i - a_j$ が零因子でなければ、f は $(X - a_1) \cdots (X - a_k)$ で割り切れる.

証明 k に関する帰納法で示す。 k=0 のときは明らかである。 $k\geq 1$ として,k-1 のときには主張は正しいとする。 f が a_1,\ldots,a_k を根にもつとすると,因子定理より f は $X-a_n$ で割り切れるから,ある $g\in A[X]$ が存在して $f=(X-a_k)g$ と書ける。すべての $1\leq i\leq k-1$ に対して,f は a_i を根にもち, a_i-a_k は零因子でないから,g も a_i を根にもつ。よって,帰納法の仮定より g は $(X-a_1)\cdots(X-a_{k-1})$ で割り切れるから,f は $(X-a_1)\cdots(X-a_k)$ で割り切れる。これで,帰納法が完成した.

命題 5.3 A を可換環とする. $f \in A[X_1, ..., X_n]$ に対して、次の 2 条件は同値である.

- (a) 任意の $1 \leq i < j \leq n$ に対して、f において X_j を X_i に置き換えて得られる多項式 $f(X_1,\ldots,X_i,\ldots,X_i,\ldots,X_n)$ は 0 である.
- (b) f は差積 Δ で割り切れる.

証明 $(a) \Longrightarrow (b)$ 明らかである.

 $(b)\Longrightarrow (a)$ n に関する帰納法で示す。 n=0 のときは明らかである。 $n\geq 1$ として,n-1 のときには主張は正しいとする。 $f\in A[X_1,\ldots,X_n]$ が (a) を満たすとすると,f は $A[X_1,\ldots,X_{n-1}]$ 上の X_n を不定元とする多項式として X_1,\ldots,X_{n-1} を根にもち,系 1.5 より X_i-X_j $(1\leq i< j\leq n-1)$ は零因子ではないから*4,補題 5.2 より f は $(X_1-X_n)\cdots(X_{n-1}-X_n)$ で割り切れる。したがって,ある $g\in A[X_1,\ldots,X_n]$ が存在して

$$f = (X_1 - X_n) \cdots (X_{n-1} - X_n)g$$

と書ける. 各 $1 \le i < j \le n-1$ に対して、上式において X_i を X_i に置き換えると

$$0 = (X_1 - X_n) \cdots (X_i - X_n) \cdots (X_i - X_n) \cdots (X_{n-1} - X_n) g(X_1, \dots, X_i, \dots, X_i, \dots, X_{n-1}, X_n)$$

となるが、 $X_1.5$ より $(X_1 - X_n) \cdots (X_i - X_n) \cdots (X_i - X_n) \cdots (X_{n-1} - X_n)$ は零因子ではないから

$$g(X_1, \ldots, X_i, \ldots, X_i, \ldots, X_{n-1}, X_n) = 0$$

である.すなわち,g は $A[X_n]$ 上の X_1,\ldots,X_{n-1} を不定元とする n-1 変数多項式として条件 (a) を満たす.よって,帰納法の仮定より g は差積

$$\Delta^{(n-1)}(X_1, \dots, X_{n-1}) = \prod_{1 \le i < j \le n-1} (X_i - X_j)$$

で割り切れるから、fは

$$(X_1 - X_n) \cdots (X_{n-1} - X_n) \Delta^{(n-1)}(X_1, \dots, X_{n-1}) = \Delta^{(n)}(X_1, \dots, X_n)$$

で割り切れる. これで、帰納法が完成した.

定義 5.4(交代多項式) A を可換環とする. A 上の n 変数多項式 f であって,任意の $\sigma \in \mathfrak{S}_n$ に対して $\sigma f = (\operatorname{sgn} \sigma) f$ を満たすものを,A 上の n 変数交代多項式という。A 上の n 変数交代多項式の全体は, $A[X_1,\ldots,X_n]$ の部分 A-加群をなす.この部分 A-加群を, $A[X_1,\ldots,X_n]$ と書く.

命題 5.5 A を可換環とし、 $2 \in A$ は零因子ではないとする.このとき、任意の $f \in A[X_1,\dots,X_n]^{\rm alt}$ と $1 \le i < j \le n$ に対して、f において X_j を X_i に置き換えて得られる多項式 $f(X_1,\dots,X_i,\dots,X_i,\dots,X_n)$ は 0 である.

証明 $\tau \in \mathfrak{S}_n$ を i と j の互換とすると, f の交代性より

$$f(X_1, \dots, X_i, \dots, X_i, \dots, X_n) = -\tau f(X_1, \dots, X_i, \dots, X_i, \dots, X_n)$$
$$= -f(X_1, \dots, X_i, \dots, X_i, \dots, X_n),$$

すなわち

$$2f(X_1,\ldots,X_i,\ldots,X_i,\ldots,X_n)=0$$

だから、 $2 \in A$ が零因子でないことより $f(X_1, \ldots, X_i, \ldots, X_i, \ldots, X_n) = 0$ である.

定理 5.6 A を可換環とし、 $2 \in A$ は零因子ではないとする. このとき、写像

$$\delta \colon A[X_1, \dots, X_n]^{\text{sym}} \to A[X_1, \dots, X_n]^{\text{alt}}, \quad f \mapsto \Delta \cdot f$$

は、A-加群の同型である.

証明 対称多項式と交代多項式との積は交代多項式になるから, δ は確かに $A[X_1,\ldots,X_n]^{\mathrm{sym}}$ から $A[X_1,\ldots,X_n]^{\mathrm{alt}}$ への A-加群の準同型を定める.系 1.5 より差積 Δ は零因子ではないから, δ は単射である. δ の全射性を示す. $2\in A$ が零因子でないことと命題 5.5,命題 5.3 より,任意の $f\in A[X_1,\ldots,X_n]^{\mathrm{alt}}$ に対してある $g\in A[X_1,\ldots,X_n]$ が存在して $f=\Delta\cdot g$ となる.この g について,任意の $\sigma\in\mathfrak{S}_n$ に対して

$$(\operatorname{sgn} \sigma)\Delta \cdot q = (\operatorname{sgn} \sigma)f = \sigma f = \sigma \Delta \cdot \sigma q = (\operatorname{sgn} \sigma)\Delta \cdot \sigma q$$

だから, Δ が零因子でないことより $g=\sigma g$ である.すなわち,g は対称多項式である.これで, δ の全射性が示された.

参考文献

- [1] 本間泰史、「有限群の表現、対称群の表現の基礎」. (2023年3月10日アクセス) http://www.f.waseda.jp/homma_yasushi/homma2/download/representation.pdf
- [2] マスオ,「ニュートンの恒等式とその証明」. (2023 年 3 月 10 日アクセス) https://manabitimes.jp/math/1304