Université de Rennes 1 Licence de mathématiques Module Anneaux et arithmétique

## Solution de l'exercice 3.4

## Exercice

Soit d un entier supérieur à 2 et sans facteur carré, c'est-à-dire tel que pour tout nombre premier p,  $p^2$  ne divise pas d.

1. Montrer que  $\sqrt{d} \notin \mathbf{Q}$  et que le polynôme  $X^2 - d$  est irréductible dans  $\mathbf{Q}[X]$ .

Solution: Pour tout nombre premier p, on note  $\nu_p$  la valuation p-adique associée; rappelons que  $\nu_p(0) = +\infty$  et pour tout entier n non nul,  $\nu_p(n)$  est le plus grand entier  $\nu$  tel que  $p^{\nu}$  divise n, en d'autres termes  $\nu_p(n)$  est l'exposant de p dans la décomposition en facteurs premiers de n; rappelons aussi que pour tous  $n, m \in \mathbf{Z}$  on a  $\nu_p(nm) = \nu_p(n) + \nu_p(m)$ ; en particulier d est sans facteur carré si et seulement si pour tout nombre premier p qui divise d on a  $\nu_p(d) = 1$ . NB: au lieu de raisonner avec les valuations p-adiques, on peut raisonner directement sur les décompositions en facteurs premiers; cela ne change pas fondamentalement la nature des arguments ci-dessous; l'avantage des valuations p-adiques est qu'elles permettent d'en donner une version condensée, à la fois plus facile à écrire et plus lisible.

Raisonnons par l'absurde et supposons qu'il existe  $n,m \in \mathbf{Z} \setminus \{0\}$  tels que  $\left(\frac{n}{m}\right)^2 = d$ . On a donc  $n^2 = d.m^2$ . Soit p un facteur premier de d. Comme dest sans facteur carré, on a  $\nu_p(d) = 1$ . On a donc  $\nu_p(n^2) = \nu_p(d.m^2)$  soit  $2\nu_p(n) = \nu_p(d) + 2\nu_p(m)$ . En particulier,  $\nu_p(d) = 2(\nu_p(m) - \nu_p(n))$  est pair. Ceci contredit le fait que  $\nu_p(d) = 1$ . Donc  $\sqrt{d} \notin \mathbf{Q}$ . Ainsi on a également  $-\sqrt{d} \notin \mathbf{Q}$ . Remarque : l'argument ci-dessus montre qu'au lieu de supposer d sans facteur carré, on aurait pu adopter l'hypothèse plus faible suivante : « il existe un nombre premier p tel que  $\nu_p(d) = 1$  », voire même « il existe un nombre premier p tel que  $\nu_p(d)$  est impair » ; on pourra d'ailleurs essayer de montrer que cette dernière propriété est équivalente au fait que d n'est pas un carré dans  $\mathbf{Z}$ ; on notera que si d est un carré dans  $\mathbf{Z}$ ,  $\sqrt{d}$  est entier donc rationnel.

Les racines du polynôme  $X^2-d$  dans  $\mathbf{R}$  sont  $\sqrt{d}$  et  $-\sqrt{d}$ . Comme ces racines ne sont pas dans  $\mathbf{Q}$ , ceci montre que le polynôme  $X^2-d$  n'a pas de racine dans  $\mathbf{Q}$ . Comme c'est un polynôme de degré 2, et  $\mathbf{Q}$  est un corps, on en déduit que ce polynôme est un élément irréductible de  $\mathbf{Q}[X]$ .

2. Soit  $A = \{a + b\sqrt{d}, (a,b) \in \mathbf{Q}^2\}$ ; montrer que A est un sous-corps de  $\mathbf{R}$  isomorphe à  $\mathbf{Q}[X]/\langle X^2 - d \rangle$ . Si  $(a,b) \in \mathbf{Q}^2 \setminus \{(0,0)\}$ , montrer que  $a + b\sqrt{d}$  est inversible dans A et expliciter son inverse.

**Solution**: Remarque préliminaire: On utilise dans ce qui suit le résultat suivant, qui ne figure pas dans le cours et découle a priori facilement de l'unicité de l'inverse d'un élément inversible d'un anneau (Mea culpa : cette dernière propriété aurait pu figurer explicitement dans le cours). Soit B un anneau, A un sous-anneau de B, a un élément de A; on suppose que  $a \in B^{\times}$ ; soit a' l'inverse de a dans B; alors  $a \in A^{\times}$  si et seulement si  $a' \in A$ ; et dans ce cas l'inverse de a dans A est a'.

Soit  $\varphi \colon \mathbf{Q}[X] \to \mathbf{R}$  l'unique morphisme de  $\mathbf{Q}$ -algèbres qui envoie X sur  $\sqrt{d}$ . En d'autres termes, pour tout élément P de  $\mathbf{Q}[X]$ , on a  $\varphi(P) = P(\sqrt{d})$ .

Montrons que  $\varphi(\mathbf{Q}[X]) = A$ . Montrons d'abord l'inclusion  $A \subset \varphi(\mathbf{Q}[X])$ . Soit  $(a,b) \in \mathbf{Q}^2$ . Soit  $P = a + bX \in \mathbf{Q}[X]$ . Alors  $\varphi(P) = a + b\sqrt{d}$ , et ainsi  $a + b\sqrt{d} \in \varphi(\mathbf{Q}[X])$ . Ceci montre l'inclusion  $A \subset \varphi(\mathbf{Q}[X])$ . Montrons à présent l'inclusion réciproque. Soit  $P \in \mathbf{Q}[X]$ . Comme  $\mathbf{Q}$  est un corps et  $X^2 - d$  est non nul, la division euclidienne de P par  $X^2 - d$  existe : soit  $Q, R \in \mathbf{Q}[X]$  tels que  $P = Q \cdot (X^2 - d) + R$  et  $\deg(R) < \deg(X^2 - d) = 2$ . Comme  $\deg(R) \leq 1$ , il existe  $a, b \in \mathbf{Q}$  tels que R = a + bX. Par ailleurs l'application de  $\varphi$  à l'égalité  $P = Q \cdot (X^2 - d) + R$  donne l'égalité  $P(\sqrt{d}) = Q(\sqrt{d}) \cdot 0 + R(\sqrt{d})$  soit  $P(\sqrt{d}) = a + b\sqrt{d}$ . Ainsi  $\varphi(P) = P(\sqrt{d})$  est un élément de A. Ceci montre l'inclusion  $\varphi(\mathbf{Q}[X]) \subset A$ .

Montrons à présent l'égalité  $\operatorname{Ker}(\varphi) = \langle X^2 - d \rangle$ . On a  $\varphi(X^2 - d) = (\sqrt{d})^2 - d = 0$  donc  $X^2 - d \in \operatorname{Ker}(\varphi)$ . Comme  $\operatorname{Ker}(\varphi)$  est un idéal,  $\operatorname{Ker}(\varphi)$  contient donc aussi l'idéal engendré par  $X^2 - d$ , c'est à dire  $\langle X^2 - d \rangle$ . Ceci montre l'inclusion  $\langle X^2 - d \rangle \subset \operatorname{Ker}(\varphi)$ . Montrons l'inclusion réciproque. Soit  $P \in \operatorname{Ker}(\varphi)$ . Soit  $Q, R \in \mathbf{Q}[X]$  tels que  $P = Q \cdot (X^2 - d) + R$  et  $\deg(R) < \deg(X^2 - d) = 2$  (cf. ci-dessus). Soit  $a, b \in \mathbf{Q}$  tels que R = a + bX. L'application de  $\varphi$  à l'égalité  $P = Q \cdot (X^2 - d) + R$  donne l'égalité  $0 = Q(\sqrt{d}) \cdot 0 + R(\sqrt{d})$  soit  $a + b\sqrt{d} = 0$ . Si b était non nul, on en déduirait que  $\sqrt{d} = -\frac{a}{b}$  serait un élément de  $\mathbf{Q}$ , ce qui contredit le résultat de la question précédente. Donc b = 0 et il s'ensuit aussitôt que a = 0. Donc R = 0 et  $P = Q \cdot (X^2 - d)$ . En d'autres termes  $P \in \langle X^2 - d \rangle$ . Ceci montre l'inclusion  $\operatorname{Ker}(\varphi) \subset \langle X^2 - d \rangle$  et achève de montrer l'égalité  $\operatorname{Ker}(\varphi) = \langle X^2 - d \rangle$ .

Comme  $\varphi$  est un morphisme d'anneaux,  $A = \varphi(\mathbf{Q}[X])$  est un sous-anneau de  $\mathbf{R}$ . Par ailleurs  $\varphi$  induit par corestriction un morphisme d'anneaux surjectif  $\mathbf{Q}[X] \to A$  de même noyau que  $\varphi$ . Un tel morphisme induit donc un isomorphisme de  $\mathbf{Q}[X]/\langle X^2 - d \rangle$  sur A. Comme  $X^2 - d$  est irréductible dans  $\mathbf{Q}[X]$  (question précédente) et  $\mathbf{Q}$  est un corps,  $\langle X^2 - d \rangle$  est un idéal maximal de  $\mathbf{Q}[X]$ . Donc  $\mathbf{Q}[X]/\langle X^2 - d \rangle$  est un corps, et ainsi au vu l'isomorphisme ci-dessus A est également un corps. Finalement A est bien un sous-corps de  $\mathbf{R}$ .

Soit  $(a,b) \in \mathbf{Q}^2 \setminus \{(0,0)\}$ . Alors  $a+b\sqrt{d} \neq 0$  et  $a-b\sqrt{d} \neq 0$  (cf. argument ci-dessus) et comme A est un corps,  $a+b\sqrt{d}$  est inversible dans A. Pour calculer son inverse, il suffit de calculer son inverse dans  $\mathbf{R}$  (ici par « calculer » on entend : expliciter  $\alpha, \beta \in \mathbf{Q}$  tels que l'inverse s'écrit  $\alpha + \beta\sqrt{d}$ ). On peut écrire

$$\frac{1}{a+b\sqrt{d}} = \frac{a-b\sqrt{d}}{(a+b\sqrt{d})(a-b\sqrt{d})} = \frac{a-b\sqrt{d}}{a^2-d\cdot b^2} = \underbrace{\frac{a}{a^2-d\cdot b^2}}_{\in \mathbf{Q}} + \underbrace{\left(-\frac{b}{a^2-d\cdot b^2}\right)}_{\in \mathbf{Q}}\sqrt{d}.$$

Remarque : ce calcul redémontre en fait que pour tout  $(a,b) \in \mathbf{Q}^2 \setminus \{(0,0)\}$ ,  $a+b\sqrt{d}$  est inversible dans A; en d'autres termes il redémontre que tout élément non nul de A est inversible. Ainsi on pouvait démontrer que A est un corps sans utiliser l'isomorphisme entre A et  $\mathbf{Q}[X]/\langle X^2-d\rangle$ .

Remarque finale : la stratégie utilisée pour montrer que A et  $\mathbf{Q}[X]/\langle X^2-d\rangle$  sont isomorphes, dont la clef de voute est le fameux mantra « pour montrer que B et A/I sont isomorphes, il suffit de construire un morphisme de A vers B surjectif de noyau I », est très semblable à celle utilisée dans d'autres exercices pour montrer par exemple que  $\mathbf{Z}[i]$  et  $\mathbf{Z}[X]/\langle X^2+1\rangle$  (ou encore  $\mathbf{Z}[i\sqrt{3}]$  et  $\mathbf{Z}[X]/\langle X^2+3\rangle$ ) sont isomorphes. On notera cependant la différence fondamentale qui suit : dans le cas présent l'anneau de coefficients  $\mathbf{Q}$  est un corps ; ainsi le fait que  $X^2-d$  est unitaire ne joue pas de rôle particulier dans l'argument,

alors que c'était crucial dans le cas de  $\mathbf{Z}[i]$  et  $\mathbf{Z}[i\sqrt{3}]$ . En outre, même s'il est vrai que  $X^2+1$  et  $X^2+3$  sont des éléments irréductibles de  $\mathbf{Z}[X]$  (attention, on ne peut pas raisonner ici uniquement sur les racines;  $2(X^2+1)$  n'est pas un élément irréductible de  $\mathbf{Z}[X]$ ; on en dira un peu plus à ce sujet dans le dernier chapitre du cours), on ne peut pas en déduire que  $\mathbf{Z}[i]$  et  $\mathbf{Z}[i\sqrt{3}]$  sont des corps. De fait, ce n'en sont pas. Par exemple 2+2i est un élément non nul mais non inversible dans  $\mathbf{Z}[i]$ ; pour le montrer, il suffit de constater que son inverse dans  $\mathbf{C}$ , à savoir  $\frac{1}{2}(1-i)$ , n'est pas un élément de  $\mathbf{Z}[i]$ .