Consider the map $S \rightarrow a$ segment as $(u_0)(u_2)$

Consider the open coner { Uo, U1, U2} as shown

(a,(b,c),d) (-a+b,-a+c,-b+d,-c+d). With these, we can write $E_1 = H_d \{ C^*(\pi^t U, \Omega^*) \}$ as

Leray's Construct a dz is then zero. Thus, En=Ez. i.e. H*(S')=IR@IR@O@... (#) Exercise (14.35) Use this map and Leray's construct'n to compute $H^*(S^2)$. Project S2 to D2 as [Sol]. Un Uz Consider the open coner (MI) Then $E_1 = 00 | \mathbb{R} \oplus \mathbb{R}$ (-1 10) Thus, $E_z = H_\delta(E_i) =$ IR 0 and dz=0. Thms, H*(S2)=IR@O@IR@O@O@... Exercise (14.36) Y: mtd. U: finite good cover of Y. Bp := # of nonempey (pt1) - told intersection Udo ... ap. Prone that X(Y) = \(\sum_{(1)}^{\begin{subarray}{c} \begin{subarray}{c} \lambda \ext{(Y)} = \sum_{(1)}^{\begin{subarray}{c} \ext{Bp.}} \ext{} By Leray's consernation, withis open contex, and the identity map Y-) Y. "Recall that the aleemating sum of dimensions of a diff. E = IRBO IRBI IRBZ --- complex will not vary after texing homology." Thus, $E_z = \frac{H^0(Y)}{H^1(Y)} \frac{H^1(Y)}{H^2(Y)} \frac{H^2(Y)}{H^2(Y)}$ will have $\chi(Y) = \sum (-1)^p \beta_p$. #

Exercise (14.37)

TI: X -> Y any map. U: finite good coner of Y.

X(X) = \(\sum_{\text{P'}} \sum_{\text{down}} \sum_

[Sol].

Use (#) in (14.36). I think good coner is NOT really necessary. (#)

6好像不太對。因為 EL 可能和 H*(X) 不一樣!!