

grouplike elements in Hopf algebras

 ${\bf Canonical\ name} \quad {\bf Grouplike Elements In Hopf Algebras}$

Date of creation 2013-03-22 18:58:39 Last modified on 2013-03-22 18:58:39

Owner joking (16130) Last modified by joking (16130)

Numerical id 5

Author joking (16130) Entry type Definition Classification msc 16W30 Recall, that if k is a field and G is a group, then the group algebra kG can be turned into a Hopf algebra, by defining comultiplication $\Delta(g) = g \otimes g$, counit $\varepsilon(g) = 1$ and antipode $S(g) = g^{-1}$.

Now let H be a Hopf algebra over a field k, with identity 1, comultiplication Δ , counit ε and antipode S. Recall that element $g \in H$ is called grouplike iff $g \neq 0$ and $\Delta(g) = g \otimes g$. The set of all grouplike elements G(H) is nonempty, because $1 \in G(H)$. Also, since comultiplication is an algebra morphism, then G(H) is multiplicative, i.e. if $g, h \in G(H)$, then $gh \in G(H)$. Furthermore, it can be shown that for any $g \in G(H)$ we have $S(g) \in G(H)$ and S(g)g = gS(g) = 1. Thus G(H) is a group under multiplication inherited from H.

It is easy to see, that the vector subspace spanned by G(H) is a Hopf subalgebra of H isomorphic to kG(H). It can be shown that G(H) is always linearly independent, so if H is finite dimensional, then G(H) is a finite group. Also, if H is finite dimensional, then it follows from the Nichols-Zoeller Theorem, that the order of G(H) divides $\dim_k H$.

From these observations it follows that if $\dim_k H = p$ is a prime number, then G(H) is either trivial or the order of G(H) is equal to p (i.e. G(H) is cyclic of order p). The second case implies that H is isomorphic to $k\mathbb{Z}_p$ and it can be shown that the first case cannot occur.