Math 113 Midterm

Don'	t forget	to write	down	clearly	vour	Name.
DOIL	liorgei	to write	uown	Cicarry	your	Maine.

and ID number:

1. Tr	ue or False (10 points). Mark the box in front of a correct answer.
	The set $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$, with the associative law \times , is a group with 1 as the unit.
	The modular numbers $\mathbb{Z}/(5)$ is a subgroup of \mathbb{Z} .
	The integers 5 and -6 are coprime.
	If H_1 , H_2 are subgroups of G , then so is $H_1 \cup H_2$ (a subgroup of G).
	Any cyclic group is abelian.
	The matrix $\left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right)$ is an element of the group $GL(2,\mathbb{R}).$
	Under multiplication, the modular numbers without zero $\mathbb{Z}/(7)^*:=\mathbb{Z}/(7)\setminus\{\overline{0}\}$ forms an abelian group.
	The element $K \in S_3$ has order 3.
	The map $\det:GL(2,\mathbb{R})\longrightarrow\mathbb{R}^*$ is a group homomorphism.
	$\mathbb{Z}/(9)$ is a simple group.
2. Mı	ultiple choices (10 points). Mark the box in front of the correct answer.
	The partition of the set $T = \{1, 2, 3, 4, 5\} = \{1, 2, 3\} \sqcup \{4, 5\}$ defines an equivalence relation on T . Which of the following pairs of elements are not equivalent under this relation \Box 1 and 1 \Box 1 and 2 \Box 1 and 3 \Box 1 and 4
(2)	Which of the following elements (inside their groups) has infinite order?
	$\square 5 \in \mathbb{Z} \qquad \square \overline{5} \in \mathbb{Z}/(100) \qquad \square e^{\frac{2\pi i}{7}} \in \mathbb{C}^* \qquad \square \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \in GL(2)$
(3)	Consider a group of order 10^{100} . Which of the following number is not possibly the order of an element in this group? \Box 3 \Box 4 \Box 5 \Box 10
(4)	Which of the following homomorphism is not an isomorphism?
	$\Box \phi : (\mathbb{R}, +) \longrightarrow U(1) := \{ z \in \mathbb{C}^* z = 1 \}, a \mapsto e^{2\pi i a}$ $\Box \phi : (\mathbb{R}, +) \longrightarrow (\mathbb{R}, +), \ \phi(a) = -a$ $\Box \exp : (\mathbb{R}, +) \longrightarrow (\mathbb{R}^{>0}, \times), a \mapsto e^a$ $\Box \phi : (\mathbb{R}, +) \longrightarrow \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} a \in \mathbb{R} \right\}, a \mapsto \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$

- (5) The subgroup (42) + (30) of \mathbb{Z} equals which of the following groups? \Box (3) \Box (6) \Box (7) \Box (12)
- 3. Subgroups and normal subgroups (7 points).
 - (a) Explain why $SL(2,\mathbb{R})$ is a normal subgroup of $GL(2,\mathbb{R})$.

(b) Show that $H:=\left\{\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)\right\}$ is **not** a normal subgroup of $GL(2,\mathbb{R})$ by finding a $g\in GL(2,\mathbb{R})$ such that $gHg^{-1}\not\subset H$.

- **4. Homomorphisms from elements (8 points).** Let G be a group, and $\operatorname{Hom}_{\operatorname{Group}}(\mathbb{Z},G)$ be the set of all group homomorphisms from \mathbb{Z} to G.
 - (a) Show that, fixing any element $x \in G$, the assignment

$$\phi_x: \mathbb{Z} \to G, a \mapsto x^a,$$

is a group homomorphism.

(b) On the other hand, given any homomorphism $\psi \in \mathrm{Hom}_{\mathrm{Group}}(\mathbb{Z},G)$, define the element $y := \psi(1) \in G$. Show that, under the map of (a), we have

$$\phi_y = \psi \in \mathrm{Hom}_{\mathrm{Group}}(\mathbb{Z}, G),$$

that is, they agree as homomorphism of groups.