CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-TAGUS, LERCI, LEGI E LEE – 1° SEM. 2006/07 2ª FICHA DE EXERCÍCIOS

I. Indução Matemática

- 1. Demonstre por indução as relações seguintes (entre parentesis, cada relação é escrita usando o símbolo de somatório, cf. exercícios do grupo II).
 - (a) $1+2+3+\cdots+n=n(n+1)/2$ para qualquer $n\in\mathbb{N}$. $\left(\sum_{k=1}^{n} k = n(n+1)/2\right)$

 - $\begin{array}{l} \big(\sum_{k=1}^n k = n(n+1)/2\ \big) \\ \text{(b)} \ 1+3+5+\cdots+(2n-1) = n^2 \text{ para qualquer } n \in \mathbb{N}. \\ \big(\sum_{k=1}^n (2k-1) = n^2\ \big) \\ \text{(c)} \ 1^2+2^2+3^2+\cdots+n^2 = n(n+1)(2n+1)/6 \text{ para qualquer } n \in \mathbb{N}. \\ \big(\sum_{k=1}^n k^2 = n(n+1)(2n+1)/6\ \big) \\ \text{(d)} \ 1^3+2^3+3^3+\cdots+n^3 = (1+2+3+\cdots+n)^2 \text{ para qualquer } n \in \mathbb{N}. \\ \big(\sum_{k=1}^n k^3 = (\sum_{k=1}^n k)^2\ \big) \\ \text{(e)} \ 0^3+1^3+\cdots+(n-1)^3 < n^4/4 < 1^3+2^3+\cdots+n^3 \text{ para qualquer } n \in \mathbb{N}. \\ \big(\sum_{k=1}^n (k-1)^3 < n^4/4 < \sum_{k=1}^n k^3\ \big) \\ \text{(f)} \ 1/\sqrt{1}+1/\sqrt{2}+\cdots+1/\sqrt{n} > \sqrt{n} \text{ para qualquer } n \in \mathbb{N} \text{ tal que } n \geq 2. \\ \big(\sum_{k=1}^n 1/\sqrt{k} > \sqrt{n}\ \big) \\ \end{array}$
- **2.** Seja P(n) a proposição: $n^2 + 3n + 1$ é par para todo o $n \in \mathbb{N}$.
 - (a) Mostre que se P(k) é verdadeira para um dado $k \in \mathbb{N}$, então P(k+1) também é verdadeira.
 - (b) Critique a afirmação: "Por indução fica provado que P(n) é verdadeira para todo o $n \in \mathbb{N}$ ".
 - (c) Prove que $n^2 + 3n + 1$ é impar para todo o $n \in \mathbb{N}$.
- **3.** Seja P(n) a proposição: $1+2+3+\cdots+n=(2n+1)^2/8$ para todo o $n\in\mathbb{N}$.
 - (a) Mostre que se P(k) é verdadeira para um dado $k \in \mathbb{N}$, então P(k+1) também é verdadeira.
 - (b) Critique a afirmação: "Por indução fica provado que P(n) é verdadeira para todo o $n \in \mathbb{N}$ ".
 - (c) Modifique P(n), mudando a igualdade para uma desigualdade que seja verdadeira para todo o $n \in \mathbb{N}$.
- **4.** Mostre a desigualdade de Bernoulli, i.e. $(1+x)^n \ge 1 + nx$ para qualquer $n \in \mathbb{N}$ e qualquer $x \in \mathbb{R}$ tal que $x \geq -1$.

2

II. Símbolo de Somatório

Dado $n \in \mathbb{N}$ e uma sequência de números reais $a_1, a_2, \ldots, a_n \in \mathbb{R}$, o símbolo de somatório $\sum_{k=1}^n a_k$ define-se por recorrência da seguinte forma:

$$\sum_{k=1}^{n} a_k = a_1 \text{ se } n = 1, \quad \sum_{k=1}^{n} a_k = \left(\sum_{k=1}^{n-1} a_k\right) + a_n \text{ se } n > 1.$$

Resolva os exercícios seguintes com base nesta definição.

1. Determine os valores numéricos das seguintes somas:

(a)
$$\sum_{i=1}^{8} (2i-3)$$
; (b) $\sum_{k=1}^{7} (k-4)^2$; (c) $\sum_{j=1}^{4} j(j+1)(j+2)$; (d) $\sum_{i=1}^{4} 6$; (e) $\sum_{j=1}^{3} j^{2j}$; (f) $\sum_{k=1}^{7} (-1)^k (2k-3)$; (g) $\sum_{n=1}^{5} \frac{1}{n(n+1)}$.

- 2. Demonstre as seguintes propriedades do somatório:

 - (a) $\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$ (propriedade aditiva); (b) $\sum_{k=1}^{n} (c a_k) = c \sum_{k=1}^{n} a_k$ para qualquer constante $c \in \mathbb{R}$ (homogeneidade); (c) $\sum_{k=1}^{n} (a_k a_{k-1}) = a_n a_0$ (propriedade telescópica).
- 3. Utilizando os resultados do Exercício I.1 e as propriedades anteriores do somatório, calcule:

(a)
$$\sum_{k=1}^{18} (k+1)$$
; (b) $\sum_{k=1}^{20} (2k-1)^2$; (c) $\sum_{k=1}^{15} (k-3)^3$;
(d) $\sum_{k=1}^{20} \left(\frac{1}{k+1} - \frac{1}{k}\right)$; (e) $\sum_{k=1}^{20} \left(3^k - 3^{k+2}\right)$.

4. Mostre que para qualquer $n \in \mathbb{N}$

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$

pelos seguintes dois métodos distintos:

- (a) usando indução.
- (b) observando que $\frac{1}{k(k+1)} = \frac{1}{k} \frac{1}{k+1}$ e usando as propriedades do Exercício 2.
- 5. Mostre que para qualquer $n \in \mathbb{N}$ e quaisquer números reais $a, b \in \mathbb{R}$ é válida a igualdade

$$a^{n} - b^{n} = (a - b) \sum_{k=1}^{n} a^{n-k} b^{k-1}$$
.

6. Mostre que para quaisquer $n \in \mathbb{N}$ e $r \in \mathbb{R}$ com $r \neq 1$

$$\sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}$$

pelos seguintes dois métodos distintos:

- (a) usando indução.
- (b) aplicando as propriedades do Exercício 2 a $(1-r)\sum_{k=0}^{n} r^{k}$.

A que é igual a soma quando r = 1?

Nota: por definição, $r^0 = 1$.

7. O símbolo n!, designado por n-factorial, define-se por recorrência da seguinte forma:

$$0! = 1$$
 e $n! = n \cdot (n-1)!$, para qualquer $n \in \mathbb{N}$.

Observe que $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$. Dados inteiros $0 \le k \le n$, o **coeficiente binomial** $\binom{n}{k}$ (às vezes também representado por $\binom{n}{k}$) é definido por

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

(a) Mostre que

$$\binom{n}{k} = \binom{n}{n-k} \qquad e \qquad \binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.$$

Esta última fórmula é a chamada **lei do triângulo de Pascal**, permitindo o cálculo rápido dos sucessivos coeficientes binomiais.

(b) Prove por indução a **fórmula do desenvolvimento do binómio de Newton**:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
, para quaisquer $a, b \in \mathbb{R}$ e $n \in \mathbb{N}_0$.

(c) Use a fórmula anterior para estabelecer as igualdades

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n \quad \text{e} \quad \sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0, \text{ para qualquer } n \in \mathbb{N}_0.$$

8. Usando a desigualdade triangular $(|x+y| \leq |x| + |y|)$ e o método de indução, mostre que para todo o $n \in \mathbb{N}$ e quaisquer números reais $x_1, \ldots, x_n \in \mathbb{R}$ é válida a desigualdade

$$\left| \sum_{k=1}^{n} x_k \right| \le \sum_{k=1}^{n} |x_k| \ .$$

III. Indução e Somatórios

Use indução para mostrar que, para qualquer $n \in \mathbb{N}$:

1.
$$\sum_{k=1}^{n} \frac{k}{(k+1)!} = 1 - \frac{1}{(n+1)!} .$$

2.
$$\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1} .$$

3.
$$\sum_{k=1}^{n} k(3k-1) = n^{2}(n+1) .$$

4.
$$\sum_{k=1}^{n} k(3k+1) = n(n+1)^{2}.$$

5.
$$\sum_{k=1}^{n} (k-1)(k+2) = \frac{(n-1)n(n+4)}{3}.$$

6.
$$\sum_{k=1}^{n} (k-1)(3k+2) = (n-1)n(n+2) .$$

7.
$$\sum_{k=1}^{n} (k+1)2^{k} = n2^{n+1} .$$

8.
$$\sum_{k=1}^{n} (k+1)2^{k-1} = n2^{n}.$$

9.
$$\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n} \ .$$

10.
$$\sum_{k=1}^{n} \frac{k}{2^{k+1}} = 1 - \frac{n+2}{2^{n+1}} .$$

11.
$$\sum_{k=1}^{n} k(k+3) = \frac{n(n+1)(n+5)}{3} .$$

$$\sum_{k=1}^{n} k(3k+5) = n(n+1)(n+3) .$$

$$\sum_{k=1}^{n} (2k+1)3^k = n3^{n+1} .$$

$$\sum_{k=1}^{n} (2k+1)3^{k-1} = n3^{n} .$$

$$\sum_{k=1}^{n} \frac{2k+1}{k^2(k+1)^2} = 1 - \frac{1}{(n+1)^2} .$$

$$\sum_{k=1}^{n} \frac{5-2k}{3^k} = 1 + \frac{n-1}{3^n} \ .$$

$$\sum_{k=1}^{n} \frac{2k-1}{3^k} = 1 - \frac{n+1}{3^n} \ .$$

$$\sum_{k=1}^{n} k(k+2)2^{k} = (n^{2}+1)2^{n+1} - 2.$$

$$\sum_{k=1}^{n} k(k+2)2^{k-1} = (n^2+1)2^n - 1.$$

$$\sum_{k=1}^{n} \frac{(k-2)^2}{2^k} = 2 - \frac{n^2 + 2}{2^n} .$$

$$\sum_{k=1}^{n} \frac{(k-3)^2}{2^k} = 3 - \frac{(n-1)^2 + 2}{2^n} .$$

$$\sum_{k=1}^{n} \frac{(k-2)3^{k-1}}{(k+1)!} = 1 - \frac{3^n}{(n+1)!} .$$

$$\sum_{k=1}^{n} \frac{(k-3)3^{k-1}}{k!} = 1 - \frac{3^n}{n!} .$$

IV. Funções Elementares

- 1) Esboce os gráficos dos polinómios f(x) = x e $g(x) = x^3$, assinalando de forma conveniente os seus três pontos de intersecção.
- 2) Esboce os gráficos dos polinómios $f(x) = x^2 2$ e $g(x) = 2x^2 + 4x + 1$, assinalando de forma conveniente os seus dois pontos de intersecção.
- 3) Seja $f(x) = \sum_{k=0}^{n} c_k x^k$ um polinómio de grau $n \in \mathbb{N}$. Prove cada uma das seguintes proposições.
 - (a) Se $n \ge 1$ e f(0) = 0, então f(x) = xg(x) com g um polinómio de grau n 1.
 - (b) Para cada $a \in \mathbb{R}$, a função p dada por p(x) = f(x+a) é também um polinómio de grau n.
 - (c) Se $n \ge 1$ e f(a) = 0 para um dado $a \in \mathbb{R}$, então f(x) = (x a)h(x) com h um polinómio de grau n 1. [Sugestão: considere p(x) = f(x + a).]
 - (d) Se f(x) = 0 para (n+1) valores distintos de $x \in \mathbb{R}$, então $c_k = 0$, $k = 0, \ldots, n$, e portanto f(x) = 0, $\forall x \in \mathbb{R}$.
 - (e) Seja $g(x) = \sum_{k=0}^{m} b_k x^k$ um polinómio de grau $m \in \mathbb{N}$, com $m \ge n$. Se g(x) = f(x) para (m+1) valores distintos de $x \in \mathbb{R}$, então m = n, $b_k = c_k$, $k = 0, \ldots, n$, e portanto g(x) = f(x), $\forall x \in \mathbb{R}$.
- 4) Em cada caso, determine todos os polinómios p de grau ≤ 2 satisfazendo as condições dadas.

(a)
$$p(0) = p(1) = p(2) = 1$$

(b) $p(0) = p(1) = 1$, $p(2) = 2$
(c) $p(0) = p(1) = 1$
(d) $p(0) = p(1)$

5) Em cada caso, determine todos os polinómios p de grau ≤ 2 satisfazendo as condições dadas para qualquer $x \in \mathbb{R}$.

(a)
$$p(x) = p(1-x)$$
 (b) $p(x) = p(1+x)$ (c) $p(2x) = 2p(x)$ (d) $p(3x) = p(x+3)$

- **6)** Considere as seguintes propriedades fundamentais das funções **seno**, sen : $\mathbb{R} \to \mathbb{R}$, e **coseno**, cos : $\mathbb{R} \to \mathbb{R}$:
 - 1. $\cos(0) = \sin(\pi/2) = 1 e \cos(\pi) = -1$.
 - 2. Para quaisquer $x, y \in \mathbb{R}$ tem-se que

$$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y) .$$

3. Para $0 < x < \pi/2$ tem-se que

$$0 < \cos(x) < \frac{\sin(x)}{x} < \frac{1}{\cos(x)} .$$

Prove a partir delas as seguintes propriedades importantes das funções seno e coseno. [Sugestão: Apostol, Vol. I, §2.5.]

- (a) $\operatorname{sen}^{2}(x) + \cos^{2}(x) = 1$, $\forall x \in \mathbb{R}$.
- (b) $sen(0) = cos(\pi/2) = sen(\pi) = 0.$

- (c) sen(-x) = -sen(x) e cos(-x) = cos(x), $\forall x \in \mathbb{R}$ (i.e. o seno é uma função ímpar e o coseno uma função par).
- (d) $\operatorname{sen}(x + \pi/2) = \cos(x)$ e $\cos(x + \pi/2) = -\sin(x)$, $\forall x \in \mathbb{R}$.
- (e) $\operatorname{sen}(x+2\pi) = \operatorname{sen}(x)$ e $\cos(x+2\pi) = \cos(x)$, $\forall x \in \mathbb{R}$ (i.e. o seno e o coseno são funções periódicas).
- (f) Para quaisquer $x, y \in \mathbb{R}$ tem-se que

$$cos(x + y) = cos(x)cos(y) - sen(x)sen(y),$$

$$sen(x + y) = sen(x)cos(y) + cos(x)sen(y).$$

(g) Para quaisquer $a, b \in \mathbb{R}$ tem-se que

$$\operatorname{sen}(a) - \operatorname{sen}(b) = 2 \operatorname{sen}\left(\frac{a-b}{2}\right) \cos\left(\frac{a+b}{2}\right) ,$$

$$\cos(a) - \cos(b) = -2 \operatorname{sen}\left(\frac{a-b}{2}\right) \operatorname{sen}\left(\frac{a+b}{2}\right) .$$

- (h) No intervalo $[0, \pi/2]$, o seno é estritamente crescente e o coseno é estritamente decrescente.
- 7) Com base nas propriedades das funções seno e coseno listadas no exercício anterior, mostre que:
 - (a) $sen(x) = 0 \Leftrightarrow x = k\pi \text{ com } k \in \mathbb{Z}.$
 - (b) $\cos(x) = 0 \Leftrightarrow x = k\pi + \pi/2 \text{ com } k \in \mathbb{Z}.$
 - (c) $\operatorname{sen}(x+\pi) = -\operatorname{sen}(x)$ e $\cos(x+\pi) = -\cos(x)$, $\forall x \in \mathbb{R}$.
 - (d) $\cos(2x) = \cos^2(x) \sin^2(x)$ e $\sin(2x) = 2\sin(x)\cos(x)$, $\forall x \in \mathbb{R}$.
 - (e) $2\cos(x)\cos(y) = \cos(x-y) + \cos(x+y)$, $\forall x, y \in \mathbb{R}$.
 - (f) $2\operatorname{sen}(x)\operatorname{sen}(y) = \cos(x-y) \cos(x+y), \ \forall x, y \in \mathbb{R}.$
 - (g) $2\operatorname{sen}(x)\operatorname{cos}(y) = \operatorname{sen}(x-y) + \operatorname{sen}(x+y), \ \forall x, y \in \mathbb{R}.$
 - (h) Para quaisquer $x, y \in \mathbb{R}$ e $h \neq 0$ tem-se que

$$\frac{\sin(x+h) - \sin(x)}{h} = \frac{\sin(h/2)}{h/2} \cos(x+h/2) ,$$

$$\frac{\cos(x+h) - \cos(x)}{h} = -\frac{\sin(h/2)}{h/2} \sin(x+h/2) .$$

8) Considere as funções seno hiperbólico, senh : $\mathbb{R} \to \mathbb{R}$, e coseno hiperbólico, cosh : $\mathbb{R} \to \mathbb{R}$, definidas por

$$senh(x) = \frac{e^x - e^{-x}}{2}$$
 e $cosh(x) = \frac{e^x + e^{-x}}{2}$.

Mostre que:

- (a) $\cosh^2(x) \sinh^2(x) = 1$, $\forall x \in \mathbb{R}$.
- (b) senh(0) = 0 e cosh(0) = 1.
- (c) $\operatorname{senh}(-x) = -\operatorname{senh}(x)$ e $\cosh(-x) = \cosh(x)$, $\forall x \in \mathbb{R}$.

(d) para quaisquer $x, y \in \mathbb{R}$ tem-se que

$$cosh(x + y) = cosh(x)cosh(y) + senh(x)senh(y) ,
senh(x + y) = senh(x)cosh(y) + cosh(x)senh(y) .$$

- (e) $\cosh(2x) = \cosh^2(x) + \sinh^2(x)$ e $\operatorname{senh}(2x) = 2\operatorname{senh}(x)\cosh(x)$, $\forall x \in \mathbb{R}$.
- (f) $\cosh(x) + \sinh(x) = e^x$ e $\cosh(x) \sinh(x) = e^{-x}$, $\forall x \in \mathbb{R}$.
- 9) Determine o domínio das funções definidas pelas seguintes expressões.

(a)
$$f(x) = \tan \frac{x}{2} - \cot \frac{x}{2}$$
 (b) $f(x) = \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x}$ (c) $f(x) = \frac{x}{\sqrt{4 - x^2}}$

(d)
$$f(x) = \log(\log x)$$
 (e) $f(x) = \log(1 + x^{3/2})$ (f) $f(x) = \log(1 - x^{2/3})$ (g) $f(x) = \log\left(\frac{x^2 - 1}{x^2 + 1}\right)$ (h) $f(x) = \log\left(1 + \sqrt{x + 1}\right)$

V. Limites Elementares

1) Calcule os seguintes limites.

(a)
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$
 (b) $\lim_{x \to 1} \frac{2x^2 - 3x + 1}{x - 1}$ (c) $\lim_{x \to 0^+} \frac{\sqrt{x^2}}{x}$ (d) $\lim_{x \to 0^-} \frac{\sqrt{x^2}}{x}$ (e) $\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2}$ (f) $\lim_{x \to -2} \frac{x^3 + 8}{x^2 - 4}$ (g) $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{x}$

2) Usando o caso notável

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 ,$$

mostre que:

(a)
$$\lim_{x \to 0} \frac{\sin(2x)}{x} = 2$$
 (b) $\lim_{x \to 0} \frac{\sin(5x)}{\sin x} = 5$ (c) $\lim_{x \to 0} \frac{\sin(5x) - \sin(3x)}{x} = 2$

(d)
$$\lim_{x \to a} \frac{\sin x - \sin a}{x - a} = \cos a$$
 (e) $\lim_{x \to 0} \frac{\tan(2x)}{\sin x} = 2$ (f) $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$

3) Calcule os seguintes limites.

(a)
$$\lim_{t \to 0} \frac{\operatorname{sen}(\tan t)}{\operatorname{sen}(t)}$$
 (b) $\lim_{x \to \frac{\pi}{2}} \frac{\operatorname{sen}(\cos x)}{\cos x}$ (c) $\lim_{t \to \pi} \frac{\operatorname{sen}(t - \pi)}{t - \pi}$

(d)
$$\lim_{x \to 1} \frac{\sin(x^2 - 1)}{x - 1}$$
 (e) $\lim_{x \to +\infty} x \sin \frac{1}{x}$ (f) $\lim_{x \to 0} \frac{1 - \cos(2x)}{x^2}$

4) Seja $D = [0, +\infty[\setminus \{1\}$ e considere a função $f: D \to \mathbb{R}$ definida por

$$f(x) = \frac{\sqrt{x}}{x-1}$$
 para $x \in D$.

Calcule

$$\lim_{x \to +\infty} f(x) , \qquad \lim_{x \to 1^{-}} f(x) \qquad e \qquad \lim_{x \to 1^{+}} f(x) .$$

- 5) Calcule os limites quando $x \to 0^+, x \to 0^-, x \to +\infty$ e $x \to -\infty$ das seguintes funções definidas em $\mathbb{R} \setminus \{0\}$.
 - (a) $e^{1/x}$
- (b) senh(1/x) (c) cosh(1/x)
- (d) e^{1/x^2}
- (e) $\operatorname{senh}(1/x^2)$
- (f) $\cosh(1/x^2)$
- 6) Calcule os limites quando $x \to 0$, $x \to +\infty$ e $x \to -\infty$ das funções definidas pelas seguintes expressões.

(a)
$$\frac{\operatorname{sen}(3x)}{x}$$
 (b) $x \cos\left(\frac{1}{x}\right)$ (c) $\cos\left(\frac{2x+\pi}{x^2+1}\right)$ (d) $\cos\left(\frac{2x-\pi}{x^2+1}\right)$

(e)
$$\operatorname{sen}\left(\frac{x-\pi}{x^2+2}\right)$$
 (f) $\cos\left(\frac{x+\pi}{x^2+2}\right)$ (g) $\cos\left(\frac{x+\pi}{x^2+2}\right)$ (h) $\cos\left(\frac{x-\pi}{x^2+2}\right)$

(h)
$$\cos\left(\frac{x-\pi}{x^2+2}\right)$$

(i)
$$\operatorname{sen}\left(\frac{x+\pi}{x^2+4}\right)$$
 (j) $\operatorname{sen}\left(\frac{x-\pi}{x^2+4}\right)$ (k) $\operatorname{sen}\left(\frac{\pi x}{2x-1}\right)$ (l) $\operatorname{cos}\left(\frac{\pi x}{x+1}\right)$ (m) $\operatorname{sen}\left(\frac{\pi x}{\sqrt{4x^2+1}}\right)$ (n) $\operatorname{cos}\left(\frac{\pi x}{\sqrt{4x^2+1}}\right)$

7) Calcule os limites quando $x \to 0^+$ e $x \to +\infty$ das funções definidas pelas seguintes expressões.

(a)
$$\log\left(\frac{1}{1+\sqrt{x}}\right)$$
 (b) $\log\left(\frac{\sqrt{x}}{1+x}\right)$ (c) $\log\left(\frac{\sqrt{x}}{1+\sqrt{x}}\right)$ (d) $\log\left(\frac{x}{1+\sqrt{x}}\right)$

(e)
$$\log\left(\frac{1+x}{1+\sqrt{x}}\right)$$
 (f) $\log\left(\frac{1+\sqrt{x}}{1+x}\right)$ (g) $\log\left(\frac{1}{1+x^2}\right)$ (h) $\log\left(\frac{x}{1+x^2}\right)$ (i) $\log\left(\frac{x^2}{1+x^2}\right)$ (j) $\log\left(\frac{x}{\sqrt{1+x^2}}\right)$

8) Calcule os limites quando $x \to 0^+$ e $x \to +\infty$ das funções definidas pelas seguintes expressões.

(a)
$$e^{\frac{1}{\sqrt{x}}}$$
 (b) $e^{-\frac{1}{\sqrt{x}}}$ (c) $e^{\frac{\sqrt{x}}{1+\sqrt{x}}}$ (d) $e^{\frac{1-x}{\sqrt{x}}}$ (e) $e^{\frac{x}{1+\sqrt{x}}}$

(f)
$$e^{\frac{1-\sqrt{x}}{1+\sqrt{x}}}$$
 (g) $e^{\frac{1-x^2}{x}}$ (h) $e^{\frac{x^2}{1+x}}$ (i) $e^{\frac{x^2}{1+x^2}}$ (j) $e^{\frac{x}{\sqrt{1+x^2}}}$