

- o La durée de l'épreuve est de 4 heures.
- o L'épreuve comporte 5 exercices indépendants.
- Les exercices peuvent être traités selon l'ordre choisi par le candidat.

L'usage de la calculatrice n'est pas autorisé

L'usage de la couleur rouge n'est pas autorisé

NS 25

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

EXERCICE 1: (3points)

1-On considère dans l'ensemble ☐ l'équation suivante:

(E):
$$z^2 - (5 + i\sqrt{3})z + 4 + 4i\sqrt{3} = 0$$

- 0.25 a) Vérifier que $(3 i\sqrt{3})^2$ est le discriminant de l'équation (E).
- 0.5 b) Déterminer a et b les deux solutions de l'équation (E) (sachant que : $b \dot{z}$ ')
- 0.25 c) Vérifier que: $b = (1 i\sqrt{3})a$
 - 2- Le plan complexe est muni d'un repère orthonormé direct. Soit A le point d'affixe a et B le point d'affixe b.
- 0.5 a) Déterminer b_1 l'affixe du point B_1 image du point O par la rotation de centre A et d'angle $\frac{p}{2}$
- 0.5 b) Montrer que B est l'image de B_1 par l'homothétie de centre A et de rapport $\sqrt{3}$
- 0.5 c) Vérifier que : $arg\left(\frac{b}{b-a}\right) \equiv \frac{\pi}{6} \left[2\pi\right]$
- 0.5 d) Soit C un point, d'affixe c, appartenant au cercle circonscrit au triangle OAB et différent de
 - O et de A. Déterminer un argument du nombre complexe $\frac{c}{c-a}$

EXERCICE 2: (3points)

Soit x un nombre entier relatif tel que: x^{1439} : 1436 [2015]

- 0.25 | 1-Sachant que: 1436' 1051- 2015' 749= 1, montrer que 1436 et 2015 sont premiers entre eux.
 - 2- Soit d un diviseur commun de x et de 2015
- 0.5 a) Montrer que d divise 1436
- 0.5 b) En déduire que x et 2015 sont premiers entre eux.
- 0.75 3-a) En utilisant le théorème de FERMAT, montrer que:

$$x^{1440} \equiv 1$$
 [5] et $x^{1440} \equiv 1$ [13] et $x^{1440} \equiv 1$ [31] (remarquer que: 2015 = 5.13.31)

- 0.5 b) Montrer que : $x^{1440} \equiv 1$ [65] et en déduire que : $x^{1440} \equiv 1$ [2015]
- 0.5 4-Montrer que: x : 1051 [2015]

EXERCICE 3: (4 points)

On rappelle que $(M_2(\cdot),+,')$ est un anneau unitaire dont l'unité est $I=\xi_0^1$ 0: et que

 $(\Box,+)$ est un groupe commutatif. Pour tout nombre réel x, on pose M(x)= $\begin{cases} 1-x & x \\ \frac{1}{x} & \frac{1}{x} \end{cases}$

et on considère l'ensemble $E = \{M(x)/x\dot{\tau}, \}$

On munit E de la loi de composition interne T définie par:

$$("(x,y)\dot{z}^{(2)}) M(x)TM(y) = M(x+y+1)$$

NS 25

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

- 1- Soit j l'application de 'dans E définie par : ("x
 otive c') j(x) = M(x-1)
- a)Montrer que j est un homomorphisme de $(\cdot, +)$ vers (E,T)
- 0.5 b) Montrer que (E,T) est un groupe commutatif.
- 0.5 2- a) Montrer que: (" $(x, y) \dot{z}^{(3)}$ M(x)' M(y) = M(x + y + xy)
- b) En déduire que E est une partie stable de $(M_2(`),`)$ et que la loi « ` » est commutative dans E.
- 0.5 c) Montrer que la loi « \times » est distributive par rapport à la loi « T » dans E.
- d) Vérifier que: M (- 1) est l'élément neutre dans (E,T) et que I est l'élément neutre dans (E, T).
- 0.25 | 3- a) Vérifier que : $("x \dot{z} \cdot \{-1\})$ $M(x)' M \dot{g}^{-\frac{x}{2}} \dot{z} = \dot{I}'$.
- 0.75 b) Montrer que (E,T,') est un corps commutatif.

EXERCICE 4: (6.5points)

Première partie: Soit f la fonction numérique définie sur l'intervalle $[0, +\infty[$ par:

$$f(0) = 0$$
 et $f(x) = x(1 + \ln^2 x)$ pour $x > 0$

Soit (C) la courbe représentative de la fonction f dans le plan rapporté à un repère orthonormé (O,i,j).

- 0.5 1- Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$ puis interpréter graphiquement le résultat obtenu.
- 0.25 2-a)Montrer que la fonction f est continue à droite en 0.
- 0.5 b) Calculer $\lim_{x\to 0^+} \frac{f(x)}{x}$ puis interpréter graphiquement le résultat obtenu.
- 0.5 c) Calculer f'(x) pour x > 0, en déduire que f est strictement croissante sur $[0, +\infty[$
- 0.25 3-a) Montrer que la courbe (C) admet un point d'inflexion I d'abscisse e^{-1} .
- 0.25 b) Etudier la position relative de la courbe (C) par rapport à la droite d'équation: y = x
- 0.5 c) Tracer la courbe (C). (On prendra $e^{-1} = 0.4$)

<u>Deuxième partie</u>: On considère la suite numérique $(u_n)_{n^3 \ 0}$ définie par:

- 1-Montrer par récurrence que: $("n \dot{z} \ \ \)$ $e^{-1} \pounds u_n < 1$
- 0.5 2- Montrer que la suite $(u_n)_{n=0}$ est strictement croissante, en déduire qu'elle est convergente.
 - 3- On pose: $\lim_{n\to+\infty} u_n = l$

الصفحة	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع NS 25
4	 مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)
0.25	
0.25	a) Montrer que: $e^{-1} \le l \le 1$
0.5	b) Déterminer la valeur de <i>l</i>
	<u>Troisième partie</u> : Soit F la fonction numérique définie sur l'intervalle $[0,+\infty[$ par:
	$F(x) = \int_{1}^{x} f(t) dt$
0.25	1-a) Montrer que la fonction $H: x$ a $-\frac{1}{4}x^2 + \frac{1}{2}x^2 \ln x$ est une primitive de la fonction
	$h: x \text{ a } x \ln x \text{ sur l'intervalle } D,+ Y$
0.5	b) Montrer que: $(\forall x > 0)$ $\int_{a}^{x} t \ln^{2}(t) dt = \frac{x^{2}}{2} \ln^{2}(x) - \int_{1}^{x} t \ln(t) dt$
0.5	c) En déduire que: $(\forall x > 0)$ $F(x) = -\frac{3}{4} + \frac{3x^2}{4} - \frac{x^2}{2}ln(x) + \frac{x^2}{2}ln^2(x)$
0.25	2-a) Montrer que la fonction F est continue sur l'intervalle $[0, +\infty[$
0.5	b) Calculer $\lim_{x\to 0^+} F(x)$ en déduire la valeur de l'intégrale $\int_0^1 f(x) dx$
	EXERCICE5:(3.5points)
	On considère la fonction numérique g définie sur l'intervalle $[0,+\infty[$ par:
	$g(0) = \ln 2$ et $g(x) = \int_{x}^{2x} \frac{e^{-t}}{t} dt$ pour $x > 0$
0.5	1-a) Montrer que: $(\forall x > 0)$ $(\forall t \in [x, 2x])$ $e^{-2x} \le e^{-t} \le e^{-x}$
0.5	b) Montrer que: $(\forall x > 0)$ $e^{-2x} \ln 2 \le g(x) \le e^{-x} \ln 2$
0.25	c) En déduire que la fonction g est continue à droite en 0 .
0.75	2- Montrer que la fonction g est dérivable sur l'intervalle $]0,+\infty[$, puis calculer $g'(x)$ pour $x>0$
0.5	3-a) Montrer que: $(\forall t > 0)$ $-1 \le \frac{e^{-t} - 1}{t} \le -e^{-t}$
	(On pourra utiliser le théorème des accroissements finis)
0.5	b) Montrer que: $(\forall x > 0)$ $-1 \le \frac{g(x) - \ln 2}{x} \le \frac{e^{-2x} - e^{-x}}{x}$
0.5	c) En déduire que la fonction g est dérivable à droite en 0 .

FIN

0.5