

Average of flx, y) over a region R is ArealR) Sflx, y) dxdy. Intuitively, this can be thought of as the total value of all the points in the region divided by the number of points in the region.

EX) Average of
$$f(x,y) = x \cos(x,y)$$
 over $0 \le x \le \pi$, $0 \le y \le 1$:

 $V = S([x\cos(x,y)] dx dy$
 $R = S(x) \times \cos(x,y) dx dy$
 $= S(x) \sin(xy) = x \cos(xy) dx dy$
 $= S(x) \sin(xy) dx dy$
 $= S(x) \cos(xy) dx dy$
 $= S(x) \cos($

Polar coordinates: (x,y) $X=r\cos\theta \Rightarrow f(x,y)=f(r\cos\theta, r\sin\theta)=f(r,\theta)$ $y=r\sin\theta \Rightarrow (x,y)=f(r\cos\theta, r\sin\theta)=f(r,\theta)$ $R=\{(r,\theta): \alpha \leq \theta \leq \beta, g(\theta) \leq r\leq g(\theta)\}$ $r=g(\theta)$ $r=g_2(\theta)$ $r=g_2(\theta)$ r=

Ex) Evaluate
$$SSXY dXdY$$
,

 $SSXY dXdY$,

 S

(0) Find the volume of the solid in the first octant bounded by the coordinate planes, the cylinder x2+y2=4, and the plane z+y=3.

$$V = SSB - y dy dx$$

62) Find the volume of the solid cut from the first octant by the surface

 $\begin{array}{l} R: \{r, \theta\}: 0 \le r \le 2, 0 \le \theta \le \frac{\pi}{2}\} \\ V = \{r^{1/2}\}: (4-r^2) r dr d\theta \\ = \{r^{1/2}\}:$

Ex.) Find the area bounded by y=2x, y=3-x, and $y=\frac{1}{2}x$. For $0 \le x \le 1$, $\frac{1}{2}x \le y \le 2x$. For $1 \le x \le 2$, $\frac{1}{2}x \le y \le 3-x$. $A = S_{3x}^{(x)} \frac{1}{2}x \frac$

Exi) Find the average value of f(x,y)= sin (x+y) in R: {(x,y): 0 < x < \frac{1}{2}, 0 < y < \frac{1}{2}}.

r=1+cosi0

11/7/14

MATH 2605-62

 $= \int_{\pi/2}^{\pi/2} (\cos \theta + \frac{1}{2} \frac{(|+\cos 2\theta|)}{2}) d\theta$ $= (\sin \theta + \frac{1}{4} \theta + \frac{1}{8} \sin 2\theta) |_{\pi/2}^{\pi/2}$ $= |-(-|) + \frac{1}{8} - (-\frac{1}{8})|_{\pi/2}^{\pi/2}$ $= 2 + \frac{1}{4}$

EX) S = (x+y) dx dy, $R : \{(r, \theta): 0 \le \theta \le \pi, 0 \le r \le 1\}$ $= C \le e^{r^2} r dr d\theta$ because $r^2 = x^2 + y^2$ $= S^2 \ge e^{r^2} |_{r=0}^r d\theta$ $= S^2 \ge (e-1) d\theta$ $= \frac{\pi}{2}(e-1)$

Ex) Find the volume of the solid region bounded above by $z=9-x^2-y^2$ and below by the unit circle in the xy-plane. (0,0,9) $V=SS(9-x^2-y^2)dxdy$, $R:\{(r,\theta): 0\leq\theta\leq 2\pi, 0\leq r\leq 1\}$ (0,3,0) $=S^{2\pi}S(9-r^2)rdrd\theta$ $=S^{2\pi}(9r^2-r^4)|_0^1d\theta$ $=\frac{7}{4}\theta |_0^{2\pi}$

Need to decide when switching from rectangular to polar coordinates is useful on a problem-by-problem basis.

Ex.) Find the area enclosed by the circle x2+y2=4, above y=1 and below

In Cartesian, this would be adding the integration from X= =4 = 1 to X=1 and the integration from X=1 to X=13. However, = 1 only one integration is needed in bolar coordinates. = 1 =For y=1: rsinθ=y=1=>r=sinθ=cscθ

=> $R: \{(r, 0): \vec{\tau} \le 0 \le \frac{1}{3}, csc\theta \le r \le \frac{1}{2}\}$ $A = SSdA = SNISGCO rdrd\theta = SNISTER = CSCO d\theta = SNISTER = CO d\theta = 20 + \frac{1}{2}cot\theta = 20$

MATH 2605-62

Triple Integrals:

Let f(x,y,z) be defined over a closed, bounded region D.

We take a partition element Δv_k and a point (x_h,y_k,z_k) in Δv_k . Then we calculate the sum $(x_k,y_k,z_k)\Delta v_k$ with the limit as the size of the system of the s