ACPL-214

Data Sheet

Description

The ACPL-214 is an AC-input single channel half-pitch phototransistor optocoupler that contains two light-emitting diodes connected inversely parallel and optically coupled to a phototransistor. It is packaged in a 4-pin SO package.

The input-output isolation voltage is rated at 3750 V_{RMS} . Response time, t_r , is 2 μ s typically, while minimum CTR is 20 percent at input current of 1 mA.

ACPL-214 Pin Layout

Pin 1	Anode
Pin 2	Cathode
Pin 3	Emitter
Pin 4	Collector

Features

Current transfer ratio (CTR: 20% (min) at $I_F = \pm 1$ mA, $V_{CC} = 5V$)

High input-output isolation voltage

$$(V_{\rm ISO}=3750\,V_{\rm RMS})$$

Non-saturated response time $(t_r: 2 \mu s (typ) \text{ at } V_{CC} = 10V, I_C = 2 \text{ mA}, R_L = 100\Omega)$

- SO package
- CMR 10 kV/µs (typical)
- Safety and regulatory approvals
 - cUL
 - IEC/EN/DIN EN 60747-5-5
- Options available:
 - CTR Ranks 0, A

Applications

- I/O Interface for programmable controllers, computers
- Sequence controllers
- System appliances, measuring instruments
- Signal transmission between circuits of different potentials and impedances.

Ordering Information

ACPL-214-xxxx is UL Recognized with 3750 V_{RMS} for 1 minute per UL1577 and Canadian Component Acceptance Notice #5.

	RoHS Compliant Option							
Part Number	Rank 0 20% < CTR < 400% I _F = ±1 mA, V _{CE} = 5V	Rank A 50% < CTR < 250% I _F = ±1 mA, V _{CE} = 5V	Package	Surface Mount	Tape and Reel	IC Orientation	IEC/EN/DIN EN 60747-5-5	Quantity
ACPL-214	-500E	-50AE	SO-4	Х	Х	0°		3000 pcs per reel
	-560E	-56AE	SO-4	Х	Х	0°	Х	3000 pcs per reel
	-700E	-70AE	SO-4	Х	Х	180°		3000 pcs per reel
	-760E	-76AE	SO-4	Х	Х	180°	Х	3000 pcs per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

ACPL-214-560E to order product of SO-4 Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60767-5-5 Safety Approval, 20% < CTR < 400% and RoHS compliant.

Example 2:

ACPL-214-50AE to order product of SO-4 Surface Mount package in Tape and Reel packaging with 50% < CTR < 250% and RoHS compliant.

Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information.

Package Outline Drawings

Solder Reflow Temperature Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

Absolute Maximum Ratings

Parameter	Symbol	ACPL-214	Unit	Note		
Storage Temperature	T _S	-55~125	°C			
Operating Temperature	T _A	-55~110	°C			
Average Forward Current	I _{F(AVG)}	±50	mA			
Pulse Forward Current	I _{FSM}	±1	А			
LED Power Dissipation	P _I	65	mW			
Collector Current	I _C	50	mA			
Collector-Emitter Voltage	V _{CEO}	80	V			
Emitter-Collector Voltage	V _{ECO}	7	V			
Isolation Voltage (AC for 1 minute, R.H. 40%~60%)	V _{ISO}	3750	V _{RMS}	1 minute		
Collector Power Dissipation	P _C	150	mW			
Total Power Dissipation	P _{TOT}	200	mW			
Lead Solder Temperature		260°C for 10 seconds				

Electrical Specifications

Over recommended ambient temperature at 25 $^{\circ}\text{C}$ unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Note
Forward Voltage	V_{F}	_	1.2	1.4	V	$I_F = \pm 20 \text{ mA}$	Figure 6
Terminal Capacitance	C _t	_	60	_	рF	V = 0, f = 1 MHz	
Collector Dark Current	I _{CEO}	_	_	100	nA	$V_{CE} = 48V, I_F = 0 \text{ mA}$	Figure 12
Collector-Emitter Breakdown Voltage	BV _{CEO}	80	_	_	V	$I_C = 0.5 \text{ mA}, I_F = 0 \text{ mA}$	
Emitter-Collector Breakdown Voltage	BV _{ECO}	7	_	_	V	$I_E = 100 \mu A, I_F = 0 mA$	
Current Transfer Ratio	CTR	20	_	400	%	$I_F = \pm 1 \text{ mA}, V_{CE} = 5V$	$CTR = (I_C / I_F) \times 100\%$
Saturated CTR	CTR _(sat)	_	100	_	%	$I_F = \pm 1 \text{ mA}, V_{CE} = 0.4V$	
Collector-Emitter Saturation Voltage	V _{CE(} sat)	_	_	0.4	V	$I_F = \pm 8 \text{ mA}, I_C = 2.4 \text{ mA}$	Figure 14
Isolation Resistance	R _{iso}	5 × 10 ¹⁰	1×10 ¹¹	_	Ω	DC500V, R.H. 40%~60%	
Floating Capacitance	C _F	_	0.8	1	pF	V = 0, $f = 1$ MHz	
Cut-off Frequency (–3dB)	F _C	_	80	_	kHz	$V_{CC} = 5V$, $I_C = 2$ mA, $R_L = 100\Omega$	Figure 2, Figure 19
Response Time (Rise)	t _r	_	2	_	μs	$V_{CC} = 10V, I_C = 2 \text{ mA},$	Figure 1
Response Time (Fall)	t _f	_	3	_	μs	$R_L = 100\Omega$	
Turn-on Time	t _{on}	_	3	_	μs		
Turn-off Time	t _{off}	_	3	_	μs		ļ
Turn-ON Time	t _{ON}	_	2	_	μs	$V_{CC} = 5V, I_F = 16 \text{ mA},$	Figure 1, Figure 17
Storage Time	T _S	_	25	_	μs	R _L 1.9 kΩ	
Turn-OFF Time	t _{OFF}	_	40	_	μs		
Common Mode Rejection Voltage	CMR	_	10	_	kV/μs	$\begin{split} &T_{A} = 25^{\circ}\text{C}, R_{L} = 470\Omega, \\ &V_{CM} = 1.5 \text{kV(peak)}, \\ &I_{F} = 0 \text{mA, V}_{CC} = 9\text{V}, \\ &V_{np} = 100 \text{mV} \end{split}$	Figure 20

Figure 1 Switching Time Test Circuit

Figure 2 Frequency Response Test Circuit

Figure 3 Forward Current vs. Ambient Temperature

Figure 4 Collector Power Dissipation vs. Ambient Temperature

Figure 5 Pulse Forward Current vs. Duty Cycle Ratio

Figure 6 Forward Current vs. Forward Voltage

Figure 7 Forward Voltage Temperature Coefficient vs. Forward Current

Figure 8 Pulse Forward Current vs. Pulse Forward Voltage

Figure 9 Collector Current vs. Collector-Emitter Voltage

Figure 10 Collector Current vs. Small Collector-Emitter Voltage

Figure 11 Collector Current vs. Forward Current

Figure 12 Collector Dark Current vs. Ambient Temperature

Figure 13 Current Transfer Ratio vs. Forward Current

Figure 14 Collector-Emitter Saturation Voltage vs. Ambient Temperature

Figure 15 Collector Current vs. Ambient Temperature

Figure 16 Switching Time vs. Load Resistance

Figure 17 Switching Time vs. Ambient Temperature

Figure 18 Collector-Emitter Saturation Voltage vs. Forward Current

Figure 19 Frequency Response

Figure 20 CMR Test Circuit

For product information and a complete list of distributors, please go to our web site: www.broadcom.com.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries and/or the EU.

Copyright © 2011–2017 by Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.

Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

AV02-0469EN - June 14, 2017

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Broadcom Limited:

<u>ACPL-214-50AE</u> <u>ACPL-214-560E</u> <u>ACPL-214-500E</u> <u>ACPL-214-56AE</u>