Conversion électromécanique

On a vu précédemment quelques exemples où un mouvement mécanique créé un champ électrique, mais également l'inverse. Un peu de vocabulaire :

- ♦ On parle de circuit **moteur** lorsqu'il convertit une puissance de **électrique à mécanique**;
- ♦ On parle de circuit **générateur** lorsqu'il convertit une puissance de **mécanique à électrique**.

Figure 4.1 – Schématisation des fonctionnements moteur et générateur.

Conversion de puissance électrique en puissance mécanique

A Exemple des rails de LAPLACE moteurs

Définition

Le générateur étant dans un circuit fermé, il impose un courant i > 0. On néglige l'auto-induction, et on appelle R la résistance totale du circuit. Nous avons déjà constaté expérimentalement la mise en mouvement de la barre à l'aide de la force de LAPLACE. Quelle vitesse atteint-elle?

FIGURE 4.2 – Rails de LAPLACE moteurs.

I.A.1 Analyse qualitative

FIGURE 4.3 – Schéma de causalité des conséquences de l'induction.

Avant de se lancer dans les calculs, on peut déterminer le comportement du système avec la loi de Lenz. À l'origine de l'induction est la présence d'un champ extérieur $\overrightarrow{B}_{\rm ext}$ et d'un courant dans le circuit. Combinés ensemble, ils appliquent une action de Laplace sur le barreau, le mettant en mouvement et **déformant** le circuit. Il y a donc **variation du flux**, et d'après la loi de Faraday une f.é.m. induite y apparaît. Le circuit étant toujours fermé, il y a également un courant induit.

L'induction modérant, par ses conséquences, les causes qui lui ont donné naissance, on en conclut que ce **courant induit s'oppose au courant initial**, ce qui générera une force de LAPLACE opposée tendant à freiner l'accélération du barreau. On veut étudier ce comportement et notamment connaître la vitesse finale : est-elle infinie ? nulle ? constante ?

Attention

On étudie le mouvement de la barre de masse m dans le référentiel de la salle de classe. Avec un bilan des forces :

 \Diamond

 \Diamond

~

Ainsi,

D'où, en projetant sur $\overrightarrow{u_x}$:

Équation mécanique

(4.1)

I.A.3 Analyse électrique

La déformation du circuit entraîne une variation de sa surface. Ainsi, même avec un champ magnétique constant, le flux magnétique varie, impliquant l'apparition d'une f.é.m. induite.

Avec $\overrightarrow{S} = S\overrightarrow{u_z}$ pris dans le sens de i, on trouve pour ϕ :

D'où, avec la loi de FARADAY:

Placée en **convention générateur**. Donc, avec la loi des mailles :

Ainsi,

Equation électrique

(4.2)

I.A.4 Résolution

On cherche à éliminer i pour obtenir une équation différentielle sur v. On l'isole dans (4.2):

Et on substitue i dans l'équation mécanique (4.1) en l'absence de frottements :

On obtient donc une équation différentielle de la forme :

Qui se résout en

Ainsi, l'intensité finit par être nulle et la vitesse du rail finit par atteindre une valeur limite.

I.A.5 Résumé méthode

Méthode

1)

 \Diamond

 \Diamond

2)

a -

h -

c -

d -

3)

I.A.6 Bilan énergétique

♦ Bilan électrique :

On identifie:

▷ puissance du générateur :

- ▷ puissance dissipée par effet Joule :
- ▷ puissance reçue par la f.é.m. :

Ainsi,

♦ Bilan mécanique :

On identifie:

- ▷ dérivée de l'énergie cinétique :
- ▷ puissance des forces de LAPLACE :
- ▷ puissance perdue par frottements :

Ainsi,

On remarque notamment que

$$\mathcal{P}_e = \mathcal{P}_{\mathrm{Lap}}$$

C'est-à-dire que le **couplage électromécanique est parfait** : la puissance électrique reçue par la force électromotrice induite est égale à la puissance mécanique (motrice) des forces de LAPLACE. Ainsi, en définissant le rendement par

$$\eta = \left| \frac{\text{puissance utile}}{\text{puissance fournie}} \right|$$

on voit que **contrairement à la thermodynamique**, le **rendement théorique** de conversion électromécanique est de 1! En effet, seules les **pertes limitent le transfert**.

En combinant les résultats de puissance, on a mathématiquement puis schématiquement :

$$\mathcal{P}_g = \mathcal{P}_J + \mathcal{P}_f + \frac{\mathrm{d}\mathcal{E}_c}{\mathrm{d}t}$$

