Spectral Atmospheric General Circulation Model in Python

Haiyang YU^1 , Linjiong $ZHOU^2$, Xin XIE^3 September 26, 2016

 $^{^1}$ haiyang.yu@stonybrook.edu

²linjiong.zhou@noaa.gov

³xin.xie@stonybrook.edu

Contents

1				5
2				7
	$2.\overline{1}$	Vertic	al Hybrid Coordinate	7
	2.2		tive Equations	7
	2.3			
		2.3.1	Hybridstatic Equation	8
		2.3.2	Vertical Advection Equation	9
		2.3.3	Omega Equation	9
	2.4	Semi-l	Implicit Time Integration	9
		2.4.1	Linear Terms in Divergence Equation	10
		2.4.2	Linear Terms in Temperature Equation	10
		2.4.3	Linear Terms in log(surface pressure) Equation	10
		2.4.4	Discrete Equations in Grid Point Space	11
		2.4.5	Discrete Equations in Spectral Space	11
3	Physical Parameterization			13
4	Test Cases			15
A Spectral Transform Method A.1 Spherical harmonic transform (from physical space to spectral space)				17
				17
	A.2 Inverse spherical harmonic transform (from spectral space to physical space)			
В	B Normalized Associated Legendre Polynomial Functions			19

4 CONTENTS

Chapter 1 Introduction

Chapter 2

Dynamical Core

2.1 Vertical Hybrid Coordinate

In the hybrid coordinate, pressure is a function of surface pressure and hybrid coefficients:

$$p(\lambda, \mu, \eta) = A(\eta)p_0 + B(\eta)p_s(\lambda, \mu) \tag{2.1}$$

Where, λ is the longitude, $\mu = \sin \varphi$ (where φ is the latitude), η varies from 0 at the top of atmosphere (TOA) to 1 at the surface; p_0 is defined as 1×10^5 Pa.

From 2.1, we can also derive the following useful relation:

$$\frac{\partial p}{\partial p_s} = B(\eta) \tag{2.2}$$

2.2Primitive Equations

The full prognostic equations over a spherical planet with topography written in the vorticitydivergence forms are:

$$\frac{\partial \zeta}{\partial t} = \frac{1}{a(1-\mu^2)} \frac{\partial n_V}{\partial \lambda} - \frac{1}{a} \frac{\partial n_U}{\partial \mu} + F_{\zeta H}$$
(2.3)

$$\frac{\partial \delta}{\partial t} = \frac{1}{a(1-\mu^2)} \frac{\partial n_U}{\partial \lambda} + \frac{1}{a} \frac{\partial n_V}{\partial \mu} - \nabla^2(E+\Phi) + F_{\delta H}$$
(2.4)

$$\frac{\partial T}{\partial t} = -\frac{1}{a(1-\mu^2)} \frac{\partial (TU)}{\partial \lambda} - \frac{1}{a} \frac{\partial (TV)}{\partial \mu} + T\delta - \dot{\eta} \frac{\partial p}{\partial \eta} \frac{\partial T}{\partial p} + \frac{RT_v}{c_p^*} \frac{\omega}{p} + Q + F_{TH} + F_{FH} \quad (2.5)$$

$$\frac{\partial q}{\partial t} = -\frac{1}{a(1-\mu^2)} \frac{\partial (qU)}{\partial \lambda} - \frac{1}{a} \frac{\partial (qV)}{\partial \mu} + q\delta - \dot{\eta} \frac{\partial p}{\partial \eta} \frac{\partial q}{\partial p} + S$$
(2.6)

$$\frac{\partial \ln p_s}{\partial t} = -\int_{(\eta_t)}^{(1)} \left(\vec{V} \cdot \nabla \ln p_s \right) d\left(\frac{\partial p}{\partial p_s} \right) - \frac{1}{p_s} \int_{p(\eta_t)}^{p(1)} \delta dp \tag{2.7}$$

Where, the prognostic variables:

 ζ — relative vorticity (s^{-1}) δ — divergence (s^{-1})

T — temperature (K)

q —— specific humidity $(kg \ kg^{-1})$

 $\ln p_s - - \log(\text{surface pressure}) (\ln(Pa))$

Parameters and other variables:

a — the planet radius;

 $R \longrightarrow gas constant;$

 $f = 2\Omega \sin \varphi$ — Coriolis parameter (where Ω is the angular velocity of the planet);

 $(U,V) = (u\cos\varphi, v\cos\varphi)$ —— latitude-scaled zonal and meridional wind components;

 $F_{\zeta H}$ — vorticity tendency due to horizontal diffusion; $F_{\delta H}$ — divergence tendency due to horizontal diffusion; F_{TH} — temperature tendency due to horizontal diffusion; F_{FH} — frictional heating due to the horizontal diffusion on momentum;

Q — temperature tendency due to physical parameterization (diabatic heating); S — moisture tendency due to physical parameterization (source);

$$E = \frac{U^2 + V^2}{2(1 - \mu^2)} - \text{kinetic energy};$$

$$\Phi = \Phi_s + R \int_{p(\eta)}^{p(1)} T_v d \ln p$$
 —— geopotential, where Φ_s is the surface geopotential;

$$T_v = \left[1 + \left(\frac{R_v}{R} - 1\right)q\right]T$$
 — virtual temperature;

$$c_p^* = \left[1 + \left(\frac{c_{pv}}{c_p} - 1\right)q\right]c_p$$
 — water vapor weighted specific heat;

$$\vec{V} \cdot \nabla \ln p_s = \frac{U \partial \ln p_s}{a(1-\mu^2)\partial \lambda} + \frac{V \partial \ln p_s}{a\partial \mu}$$
 horizontal advection of log(surface pressure)

$$n_U = (\zeta + f)V - \dot{\eta} \frac{\partial p}{\partial \eta} \frac{\partial U}{\partial p} - \frac{RT_v}{a} \frac{p_s}{p} \frac{\partial p}{\partial p_s} \frac{\partial \ln p_s}{\partial \lambda} + F_u \cos(\varphi)$$

$$T_{v} = \left[1 + \left(\frac{R_{v}}{R} - 1\right)q\right]T \quad \text{virtual temperature;}$$

$$c_{p}^{*} = \left[1 + \left(\frac{c_{pv}}{c_{p}} - 1\right)q\right]c_{p} \quad \text{water vapor weighted specific heat;}$$

$$\vec{V} \cdot \nabla \ln p_{s} = \frac{U\partial \ln p_{s}}{a(1 - \mu^{2})\partial \lambda} + \frac{V\partial \ln p_{s}}{a\partial \mu} \quad \text{horizontal advection of log(surface pressure);}$$

$$n_{U} = (\zeta + f)V - \dot{\eta}\frac{\partial p}{\partial \eta}\frac{\partial U}{\partial p} - \frac{RT_{v}}{a}\frac{p_{s}}{p}\frac{\partial p}{\partial p_{s}}\frac{\partial \ln p_{s}}{\partial \lambda} + F_{u}\cos(\varphi)$$

$$n_{V} = -(\zeta + f)U - \dot{\eta}\frac{\partial p}{\partial \eta}\frac{\partial V}{\partial p} - \frac{RT_{v}}{a}\frac{p_{s}}{p}\frac{\partial p}{\partial p_{s}}(1 - \mu^{2})\frac{\partial \ln p_{s}}{\partial \mu} + F_{v}\cos(\varphi) \text{, where } F_{u}, F_{v} \text{ are the tendency of zonal and meridional wind due to the physical parameterization.}$$

Diagnostic equations:

$$\dot{\eta} \frac{\partial p}{\partial \eta} = \frac{\partial p}{\partial p_s} \left[p_s \int_{(\eta_t)}^{(1)} \left(\vec{V} \cdot \nabla \ln p_s \right) d \left(\frac{\partial p}{\partial p_s} \right) + \int_{p(\eta_t)}^{p(1)} \delta dp \right] \\
- \left[p_s \int_{(\eta_t)}^{(\eta)} \left(\vec{V} \cdot \nabla \ln p_s \right) d \left(\frac{\partial p}{\partial p_s} \right) + \int_{p(\eta_t)}^{p(\eta)} \delta dp \right]$$
(2.8)

$$\omega = \frac{\partial p}{\partial p_s} p_s \left(\vec{V} \cdot \nabla \ln p_s \right) - p_s \int_{(\eta_t)}^{(\eta)} \left(\vec{V} \cdot \nabla \ln p_s \right) d\left(\frac{\partial p}{\partial p_s} \right) - \int_{p(\eta_t)}^{p(\eta)} \delta dp \tag{2.9}$$

Vertical Difference Method 2.3

2.3.1Hybridstatic Equation

Rewriting the multiple variables as column-vectors and the vertical integration as multiplication between a matrix and a column-vector, the hydrostatic equation becomes:

$$\underline{\Phi} = \Phi_s + R \boldsymbol{H} \underline{T_v} \tag{2.10}$$

where, the underlines represent column-vectors; \boldsymbol{H} is an upper triangular matrix:

$$H_{kl} = \begin{cases} \Delta p_l/p_l, & (k < l) \\ \Delta p_l/(2p_l), & (k = l) \end{cases}$$
 (2.11)

2.3.2 Vertical Advection Equation

To conserve the kinetic energy during vertical transport, the discrete form of the vertical advection equation of variable X should be:

$$\left(\dot{\eta}\frac{\partial p}{\partial \eta}\frac{\partial X}{\partial p}\right)_{k} = \frac{1}{2\Delta p_{k}}\left[\left(\eta\frac{\dot{\partial}p}{\partial \eta}\right)_{k+\frac{1}{2}}(X_{k+1} - X_{k}) + \left(\eta\frac{\dot{\partial}p}{\partial \eta}\right)_{k-\frac{1}{2}}(X_{k} - X_{k-1})\right]$$
(2.12)

Where, the η -coordinate vertical velocity is :

$$\left(\dot{\eta}\frac{\partial p}{\partial \eta}\right)_{k+\frac{1}{2}} = B_{k+\frac{1}{2}} \sum_{l=1}^{K} \left[\delta_{l} \Delta p_{l} + p_{s} (\vec{V}_{l} \cdot \nabla \ln p_{s}) \Delta B_{l}\right] - \sum_{l=1}^{k} \left[\delta_{l} \Delta p_{l} + p_{s} (\vec{V}_{l} \cdot \nabla \ln p_{s}) \Delta B_{l}\right]$$
(2.13)

Note:
$$\left(\dot{\eta}\frac{\partial p}{\partial \eta}\right)_{\frac{1}{2}} = \left(\dot{\eta}\frac{\partial p}{\partial \eta}\right)_{K+\frac{1}{2}} = 0.$$

2.3.3 Omega Equation

$$\omega_k = B_k p_s \vec{V_k} \cdot \nabla \ln p_s - \sum_{l=1}^k C_{kl} [\delta_l \Delta p_l + p_s (\vec{V_l} \cdot \nabla \ln p_s) \Delta B_l]$$
 (2.14)

Where, C is a lower triangular matrix:

$$C_{kl} = \begin{cases} 1, & (k > l) \\ 0.5, & (k = l) \end{cases}$$
 (2.15)

Comparing matrix C with matrix H, we can easily find their relationship:

$$H_{kl} = C_{lk} \frac{\Delta p_l}{p_l} \tag{2.16}$$

2.4 Semi-Implicit Time Integration

Basically, the idea of semi-implicit time integration is using central difference scheme for nonlinear terms (i.e. slow geostrophic evolution) and backwards difference scheme for linear terms (i.e. fast geostrophic adjusment). Mathematically, the semi-implicit time discrete equation for a variable X can be written as:

$$\frac{X^{t+\Delta t} - X^{t-\Delta t}}{2\Delta t} = \mathbf{N}(X^t) + \mathbf{L}(\frac{X^{t-\Delta t} + X^{t+\Delta t}}{2})$$

$$= \mathbf{RHS}(X^t) + \mathbf{L}(\frac{X^{t-\Delta t} + X^{t+\Delta t}}{2} - X^t)$$
(2.17)

where, $\mathbf{RHS}(X)$ represents the right-hand-side of the prognostic equation of X; $\mathbf{N}(X)$ represents the nonlinear term, and $\mathbf{L}(X)$ represents the linear term; the superscript $t, t - \Delta t, t + \Delta t$ represent the current, backwards, and forwards time step, respectively.

Define the reference temperature profile and reference pressure for linearization:

$$T(\lambda, \mu, \eta, t) = T^{r}(\eta) + T'(\lambda, \mu, \eta, t)$$

$$p(\lambda, \mu, \eta, t) = p^{r}(\eta) + p'(\lambda, \mu, \eta, t)$$

$$p^{r}(\eta) = A(\eta)p_{0} + B(\eta)p_{s}^{r}$$
(2.18)

Where, the reference surface pressure p_s^r is defined as 1×10^5 Pa.

2.4.1 Linear Terms in Divergence Equation

$$-\nabla \cdot \left(\nabla \Phi + RT_{v} \frac{p_{s}}{p} \frac{\partial p}{\partial p_{s}} \nabla \ln p_{s}\right) + \dots$$

$$\Rightarrow -R\nabla^{2} \int_{p(\eta)}^{p(1)} T_{v} d \ln p - RT_{v} \frac{p_{s}}{p} \frac{\partial p}{\partial p_{s}} \nabla^{2} \ln p_{s} + \dots$$

$$\Rightarrow -R \int_{p^{r}}^{p_{s}^{r}} \nabla^{2} T d \ln p^{r} - R \int_{p}^{p_{s}} T^{r} \nabla^{2} d \ln p - RT^{r} \frac{p_{s}^{r}}{p^{r}} \frac{\partial p}{\partial p_{s}} \nabla^{2} \ln p_{s} + \dots$$

$$\Rightarrow -R \int_{p^{r}}^{p_{s}^{r}} \nabla^{2} T d \ln p^{r} - R \int_{(\eta)}^{(1)} T^{r} \frac{p_{s}^{r}}{p^{r}} d \left(\frac{\partial p}{\partial p_{s}}\right) \nabla^{2} \ln p_{s} - RT^{r} \frac{p_{s}^{r}}{p^{r}} \frac{\partial p}{\partial p_{s}} \nabla^{2} \ln p_{s} + \dots$$

$$\Rightarrow -R \mathbf{H}^{r} \nabla^{2} \underline{T} - R \left(\underline{b}^{r} + \underline{h}^{r}\right) \nabla^{2} \ln p_{s} + \dots$$

$$(2.19)$$

Where, \mathbf{H}^r is an upper triangular matrix:

$$H_{kl}^{r} = \begin{cases} \Delta p_{l}^{r}/p_{l}^{r}, & (k < l) \\ \Delta p_{l}^{r}/(2p_{l}^{r}), & (k = l) \end{cases}$$
 (2.20)

Column vectors:

$$b_{k}^{r} = p_{s}^{r} \sum_{l=k+1}^{K} T_{l}^{r} \left[\frac{B_{l+\frac{1}{2}}}{p_{l+\frac{1}{2}}^{r}} - \frac{B_{l-\frac{1}{2}}}{p_{l-\frac{1}{2}}^{r}} \right]$$

$$h_{k}^{r} = T_{k}^{r} \frac{p_{s}^{r}}{p_{k}^{r}} B_{k}$$
(2.21)

2.4.2 Linear Terms in Temperature Equation

$$-\dot{\eta}\frac{\partial p}{\partial \eta}\frac{\partial T}{\partial p} + \frac{RT_{v}}{c_{p}^{*}}\frac{\omega}{p} + \dots$$

$$\Rightarrow -\left(\frac{\partial p}{\partial p_{s}}\int_{p(\eta_{t})}^{p(1)}\delta dp - \int_{p(\eta_{t})}^{p(\eta)}\delta dp\right)\frac{\partial T}{\partial p} - \frac{RT_{v}}{c_{p}^{*}p}\int_{p(\eta_{t})}^{p(\eta)}\delta dp + \dots$$

$$\Rightarrow -\left(\frac{\partial p}{\partial p_{s}}\int_{p^{r}(\eta_{t})}^{p^{r}}\delta dp^{r} - \int_{p^{r}(\eta_{t})}^{p^{r}}\delta dp^{r}\right)\frac{\partial T^{r}}{\partial p} - \frac{RT^{r}}{c_{p}p^{r}}\int_{p^{r}(\eta_{t})}^{p^{r}}\delta dp^{r} + \dots$$

$$\Rightarrow -\mathbf{D}^{r}\delta + \dots$$
(2.22)

Where, D^r is a full matrix:

$$D_{kl}^{r} = \frac{\Delta p_{l}^{r}}{2\Delta p_{k}^{r}} \left[(T_{k}^{r} - T_{k-1}^{r})(B_{k-\frac{1}{2}} - \epsilon_{kl}) + (T_{k+1}^{r} - T_{k}^{r})(B_{k+\frac{1}{2}} - \sigma_{kl}) \right] + \frac{RT_{k}^{r}}{c_{p}} \frac{\Delta p_{l}^{r}}{p_{k}^{r}} C_{kl}$$

$$\epsilon_{kl} = \begin{cases} 1, & (k \ge l) \\ 0, & (k \le l) \end{cases}, \quad \sigma_{kl} = \begin{cases} 1, & (k \ge l) \\ 0, & (k < l) \end{cases}$$

$$(2.23)$$

Note: if $\frac{\partial T^r}{\partial p} = 0$, the vertical advection contribution vanishes and D^r becomes a lower triangular matrix, determined by the lower triangular matrix C in previous section.

2.4.3 Linear Terms in log(surface pressure) Equation

$$-\frac{1}{p_s} \int_{p(\eta_t)}^{p(1)} \delta dp + \dots$$

$$\Rightarrow -\frac{1}{p_s^r} (\underline{\Delta p^r})^T \underline{\delta} + \dots$$
(2.24)

Where, the superscript T means transposing the column vector to a row vector.

2.4.4 Discrete Equations in Grid Point Space

$$(\underline{\zeta})^{t+\Delta t} = (\underline{\zeta})^{t-\Delta t} + \frac{2\Delta t}{a(1-\mu^2)} \left[\frac{\partial}{\partial \lambda} (\underline{n_V})^t - (1-\mu^2) \frac{\partial}{\partial \mu} (\underline{n_U})^t \right] + 2\Delta t \underline{F_{\zeta H}}$$
(2.25)

$$(\underline{\delta})^{t+\Delta t} = (\underline{\delta})^{t-\Delta t} + \frac{2\Delta t}{a(1-\mu^2)} \left[\frac{\partial}{\partial \lambda} (\underline{n_U})^t + (1-\mu^2) \frac{\partial}{\partial \mu} (\underline{n_V})^t \right] \\ -2\Delta t \nabla^2 [(\underline{E})^t + (\underline{\Phi})^t] \\ -2\Delta t R \boldsymbol{H}^r \nabla^2 \left[\frac{(\underline{T})^{t-\Delta t} + (\underline{T})^{t+\Delta t}}{2} - (\underline{T})^t \right] \\ -2\Delta t R (\underline{b}^r + \underline{h}^r) \nabla^2 \left[\frac{(\ln p_s)^{t-\Delta t} + (\ln p_s)^{t+\Delta t}}{2} - (\ln p_s)^t \right] \\ +2\Delta t F_{\delta H}$$

$$(2.26)$$

$$(\underline{T})^{t+\Delta t} = (\underline{T})^{t-\Delta t} - \frac{2\Delta t}{a(1-\mu^2)} \left[\frac{\partial}{\partial \lambda} (\underline{T}\underline{U})^t + (1-\mu^2) \frac{\partial}{\partial \mu} (\underline{T}\underline{V})^t \right]$$

$$+2\Delta t \left[(\underline{T})^t (\underline{\delta})^t + \left(\frac{RT_v}{c_p^*} \frac{\omega}{p} \right)^t + (\underline{Q})^t - (\underline{\eta} \frac{\partial p}{\partial \eta} \frac{\partial T}{\partial p})^t \right]$$

$$-2\Delta t \mathbf{D}^r \left[\frac{(\underline{\delta})^{t-\Delta t} + (\underline{\delta})^{t+\Delta t}}{2} - (\underline{\delta})^t \right]$$

$$+2\Delta t (F_{TH} + F_{FH})$$

$$(2.27)$$

$$(\ln p_s)^{t+\Delta t} = (\ln p_s)^{t-\Delta t} - 2\Delta t \left[(\underline{\vec{V}} \cdot \nabla \ln p_s)^{tT} \underline{\Delta B} + \frac{1}{(\underline{p_s})^t} (\underline{\Delta})^{tT} (\underline{\Delta p})^t \right] - \frac{2\Delta t}{p_s^r} (\underline{\Delta p^r})^T \left[\frac{(\underline{\delta})^{t-\Delta t} + (\underline{\delta})^{t+\Delta t}}{2} - (\underline{\delta})^t \right]$$
(2.28)

2.4.5 Discrete Equations in Spectral Space

$$\left(\underline{\zeta_n^m}\right)^{t+\Delta t} = \underline{VS_n^m} \tag{2.29}$$

$$(\underline{\delta_n^m})^{t+\Delta t} = \underline{DS_n^m} + \Delta t R \boldsymbol{H}^r \frac{n(n+1)}{a^2} (\underline{T_n^m})^{t+\Delta t} + \Delta t R (\underline{b^r} + \underline{h^r}) \frac{n(n+1)}{a^2} [(\ln p_s)_n^m]^{t+\Delta t}$$
(2.30)

$$(\underline{T}_{n}^{m})^{t+\Delta t} = \underline{T}S_{n}^{m} - \Delta t \mathbf{D}^{r} (\underline{\delta}_{n}^{m})^{t+\Delta t}$$
(2.31)

$$[(\ln p_s)_n^m]^{t+\Delta t} = PS_n^m - \frac{\Delta t}{p_s^r} (\underline{\Delta p^r})^T (\underline{\delta_n^m})^{t+\Delta t}$$
(2.32)

Where, the first terms on the right-hand-side of the equations are:

$$\underline{VS_n^m} = \frac{1}{2\pi} \int_{-1}^1 \int_0^{2\pi} \left\{ (\underline{\zeta})^{t-\Delta t} + \frac{2\Delta t}{a(1-\mu^2)} \left[\frac{\partial}{\partial \lambda} (\underline{n_V})^t - (1-\mu^2) \frac{\partial}{\partial \mu} (\underline{n_U})^t \right] \right\} P_n^m(\mu) e^{-im\lambda} d\lambda d\mu$$

$$= (\underline{\zeta_n^m})^{t-\Delta t} + \sum_{j=1}^J \left[im \underline{n_V^m(\mu_j)}^t P_n^m(\mu_j) + \underline{n_U^m(\mu_j)}^t H_n^m(\mu_j) \right] \frac{2\Delta t w_j}{a(1-\mu_j^2)} \tag{2.33}$$

$$\begin{split} \underline{DS_{n}^{m}} &= \frac{1}{2\pi} \int_{-1}^{1} \int_{0}^{2\pi} \left\{ (\underline{\delta})^{t-\Delta t} + \frac{2\Delta t}{a(1-\mu^{2})} \left[\frac{\partial}{\partial \lambda} (\underline{n_{U}})^{t} + (1-\mu^{2}) \frac{\partial}{\partial \mu} (\underline{n_{V}})^{t} \right] \right. \\ &\left. - 2\Delta t \nabla^{2} [(\underline{E})^{t} + (\underline{\Phi})^{t}] \right. \\ &\left. - \Delta t R \boldsymbol{H^{r}} \nabla^{2} \left[(\underline{T})^{t-\Delta t} - 2(\underline{T})^{t} \right] \right. \\ &\left. - \Delta t R (\underline{b^{r}} + \underline{h^{r}}) \nabla^{2} \left[(\ln p_{s})^{t-\Delta t} - 2(\ln p_{s})^{t} \right] \right\} P_{n}^{m}(\mu) e^{-im\lambda} d\lambda d\mu \\ &= (\underline{\delta_{n}^{m}})^{t-\Delta t} + \sum_{j=1}^{J} \left[im \underline{n_{U}^{m}(\mu_{j})^{t}} P_{n}^{m}(\mu_{j}) - \underline{n_{V}^{m}(\mu_{j})^{t}} H_{n}^{m}(\mu_{j}) \right] \frac{2\Delta t w_{j}}{a(1-\mu_{j}^{2})} \\ &\left. + \frac{n(n+1)\Delta t}{a^{2}} \left\{ 2[(\underline{E})^{t} + (\underline{\Phi})^{t}] + R \boldsymbol{H^{r}} \left[(\underline{T})^{t-\Delta t} - 2(\underline{T})^{t} \right] + R (\underline{b^{r}} + \underline{h^{r}}) \left[(\ln p_{s})^{t-\Delta t} - 2(\ln p_{s})^{t} \right] \right\}_{n}^{m} \right. \end{split}$$

$$\underline{TS_{n}^{m}} = \frac{1}{2\pi} \int_{-1}^{1} \int_{0}^{2\pi} \left\{ (\underline{T})^{t-\Delta t} - \frac{2\Delta t}{a(1-\mu^{2})} \left[\frac{\partial}{\partial \lambda} (\underline{TU})^{t} + (1-\mu^{2}) \frac{\partial}{\partial \mu} (\underline{TV})^{t} \right] \right. \\
+ 2\Delta t \left[(\underline{T})^{t} (\underline{\delta})^{t} + \left(\frac{RT_{v}}{c_{p}^{*}} \frac{\omega}{p} \right)^{t} + (\underline{Q})^{t} - (\underline{\eta} \frac{\partial p}{\partial \eta} \frac{\partial T}{\partial p})^{t} \right] \\
- \Delta t \mathbf{D}^{r} \left[(\underline{\delta})^{t-\Delta t} - 2(\underline{\delta})^{t} \right] \right\} P_{n}^{m}(\mu) e^{-im\lambda} d\lambda d\mu \\
= (\underline{T_{n}^{m}})^{t-\Delta t} - \sum_{j=1}^{J} \left[im (\underline{TU})^{m} (\mu_{j})^{t} P_{n}^{m} (\mu_{j}) - (\underline{TV})^{m} (\mu_{j})^{t} H_{n}^{m} (\mu_{j}) \right] \frac{2\Delta t w_{j}}{a(1-\mu_{j}^{2})} \\
+ \left\{ 2\Delta t \left[(\underline{T})^{t} (\underline{\delta})^{t} + \left(\underline{RT_{v}} \frac{\omega}{c_{p}^{*}} \frac{\omega}{p} \right)^{t} + (\underline{Q})^{t} - (\underline{\eta} \frac{\partial p}{\partial \eta} \frac{\partial T}{\partial p})^{t} \right] - \Delta t \mathbf{D}^{r} \left[(\underline{\delta})^{t-\Delta t} - 2(\underline{\delta})^{t} \right] \right\}_{n}^{m} (2.35)$$

$$PS_{n}^{m} = \left\{ (\ln p_{s})^{t-\Delta t} - 2\Delta t \left[(\underline{\vec{V}} \cdot \nabla \ln p_{s})^{tT} \underline{\Delta B} + \frac{1}{(\underline{p_{s}})^{t}} (\underline{\delta})^{tT} (\underline{\Delta p})^{t} \right] - \frac{\Delta t}{p_{s}^{r}} (\underline{\Delta p^{r}})^{T} \left[(\underline{\delta})^{t-\Delta t} - 2(\underline{\delta})^{t} \right] \right\}_{n}^{m}$$

$$(2.36)$$

Substituting the temperature and log(surface pressure) equation into divergence equation yields the Helmholtz equation:

$$\mathbf{A}_{n}(\underline{\delta_{n}^{m}})^{t+\Delta t} = \underline{DS_{n}^{m}} + \Delta t \frac{n(n+1)}{a^{2}} \left[R\mathbf{H}^{r} \underline{TS_{n}^{m}} + R(\underline{b^{r}} + \underline{h^{r}}) PS_{n}^{m} \right]$$
(2.37)

Where,

$$\boldsymbol{A}_{n} = \boldsymbol{I} + \Delta t^{2} \frac{n(n+1)}{a^{2}} \left[R \boldsymbol{H}^{r} \boldsymbol{D}^{r} + R(\underline{b}^{r} + \underline{h}^{r}) (\underline{\Delta p^{r}})^{T} \frac{1}{p_{s}^{r}} \right]$$
(2.38)

Note: $\delta_0^0 = 0$.

Chapter 3 Physical Parameterization

Chapter 4

Test Cases

Appendix A

Spectral Transform Method

A.1 Spherical harmonic transform (from physical space to spectral space)

The spherical harmonic transform contains two steps:

1) Fourier transform:

$$A^{m}(\mu) = \frac{1}{2\pi} \int_{0}^{2\pi} A(\lambda, \mu) e^{-im\lambda} d\lambda$$
 (A.1)

2) Legendre transform:

$$A_n^m = \int_{-1}^1 A^m(\mu) P_n^m(\mu) d\mu \tag{A.2}$$

where, $P_n^m(\mu)$ is the normalized associated Legendre polynomial. Combining step 1) and 2), the spherical harmonic transform can be written as:

$$A_n^m = \frac{1}{2\pi} \int_{-1}^1 \int_0^{2\pi} A(\lambda, \mu) Y_n^{m*}(\lambda, \mu) d\lambda d\mu$$
 (A.3)

Where, $Y_n^{m*}(\lambda,\mu) = P_n^m(\mu)e^{-im\lambda}$ is the conjugate spherical harmonic function. Practically, step 1) and 2) are performed discretely as:

$$A^{m}(\mu_{j}) = \frac{1}{2\pi} \sum_{i=1}^{I} A(\lambda_{i}, \mu_{j}) e^{-\mathbf{i}m\lambda_{i}}$$
(A.4)

$$A_n^m = \sum_{j=1}^J A^m(\mu_j) P_n^m(\mu_j) w(\mu_j)$$
 (A.5)

Where, $\mathbf{i} = \sqrt{-1}$; i and j are the indexes of longitude and latitude; $w(\mu_j)$ are the Gaussian weights.

A.2 Inverse spherical harmonic transform (from spectral space to physical space)

The spherical harmonic transform also contains two steps, but in discrete form only:

1) Inverse Legendre transform:

$$A^{m}(\mu) = \sum_{n=|m|}^{N} A_{n}^{m} P_{n}^{m}(\mu)$$
(A.6)

Note: $A^{-m}(\mu)$ is conjugate to $A^m(\mu)$.

2) Inverse Fourier transform:

$$A(\lambda, \mu) = Re \left[\sum_{m=-M}^{M} A^{m}(\mu) e^{im\lambda} \right]$$
(A.7)

Where, Re means using the real part only.

Appendix B

Normalized Associated Legendre Polynomial Functions

The normalized associated Legendre polynomial functions are generated according the following steps:

$$P_0^0 = 1/\sqrt{2} \tag{B.1}$$

$$P_m^m(x) = -\sqrt{\frac{2m+1}{2m}}\sqrt{1-x^2}P_{m-1}^{m-1}(x)$$
 (B.2)

$$P_m^{m-1}(x) = x\sqrt{2m+1}P_{m-1}^{m-1}(x)$$
(B.3)

$$\epsilon_{n+1}^{m} P_{n+1}^{m}(x) = x P_{n}^{m}(x) - \epsilon_{n}^{m} P_{n-1}^{m}(x)$$

$$\epsilon_{n}^{m} = \sqrt{\frac{n^{2} - m^{2}}{4n^{2} - 1}}$$
(B.4)

The first derivative of the normalized associated Legendre polynomial functions are generated according the following steps:

$$H_n^m = (1 - x^2) \frac{dP_n^m(x)}{dx} = (2n + 1)\epsilon_n^m P_{n-1}^m(x) - nx P_n^m(x)$$
 (B.5)

$$H_m^m = (1 - x^2) \frac{dP_m^m(x)}{dx} = -mxP_m^m(x)$$
 (B.6)