Formularium Wiskunde

Ian Claesen

$15~{\rm september}~2025$

Inhoudsopgave

1	Algebra 1.1 Volgorde van Bewerking 1.2 Absolute Waarde
2	Machten en wortels 2.1 Machten met Gehele Exponenten 2.2 Vierkantswortel in \mathbb{R} 2.3 N-de machtswortel in \mathbb{R} 2.4 $\frac{m}{n}$ -de machtswortel in \mathbb{R}
3	Veeltermen 3.1 Vierkantsvergelijking 3.2 Merkwaardige Producten en Ontbinding in Factoren 3.3 Euclidische Deling 3.4 Schema van Horner
4	Complexe getallen 4.1 Rechthoekige coordinaten
5	Goniometrie 5.1 De Goniometrische Cirkel 5.2 formules uit de goniometrie 5.3 Verwante hoeken 5.4 Belangrijke goniometrische waarden 5.5 Radiaal 5.5 Goniometrische formules 10 5.7 Omgekeerde formules van Simpson 10 5.8 Formules van Simpson 10 5.9 Cyclometrische formules 1
6	Matrices 1 6.1 Symbolen 1 6.2 Rekenregels 1 6.3 Cofactor-tekenpatroon $(-1)^{i+j}$ 1 6.3 Cofactor-tekenpatroon $(-1)^{i+j}$ 1
7	Determinanten 1
8	Stelsels oplossen8.1 n vergelijkingen met n onbekenden, $ A \neq 0$ (Cramer)18.2 Homogene 2×3 -stelsels18.3 $n+1$ vergelijkingen met n onbekenden18.4 n vergelijkingen met n onbekenden1
9	Meetkunde 16 9.1 De cirkel 16 9.2 De parabool 16 9.3 De ellips 16 9.4 De hyperbool 17 9.5 Oppervlakte Formules 17 9.6 Volume Formules 1

	18
10.1 Relatie tussen twee vlakken α, β in \mathbb{R}^3	18
10.2 Basis reële functies	19
<i>y</i>	20
11.1 Limieten van rijen)	20
11.2 Limieten van functies	20
	20
	21
11.5 Afgeleiden - differentialen	23
11.6 Afgeleiden - fundamentele integralen	24
11.7 Partiële integratie	24
12 Statistiek	25
12.1 Test van een hypothese over het gemiddelde van een normaalverdeling	25
12.2 Test van een hypothese over een populatieproportie	25
12.3 Test van een hypothese over het gemiddelde van een normaalverdeling via de P-waarde	26
12.4 Test van een hypothese over een populatieproportie via de P-waarde	26
	27
13.1 Wiskundige Symbolen (ISO 31/XI)	27
13.2 Logische symbolen	27

1 Algebra

1.1 Volgorde van Bewerking

Haakjes wegwerken, machtsverheffen, worteltrekken, vermenigvuldigen en delen, optellen en aftrekken.

1.2 Absolute Waarde

De absolute waarde van een getal a wordt genoteerd als |a| en is altijd positief.

$$|a| = \begin{cases} a & \text{if } a \ge 0\\ -a & \text{if } a < 0 \end{cases}$$

2 Machten en wortels

2.1 Machten met Gehele Exponenten

$$\forall a \in \forall n \in \mathbb{N}_0 : a^n = \underbrace{a.a. \dots .a}_{n \text{ factoren}}$$

$$\forall a \in \mathbb{R} : a^1 = a$$

$$\forall a \in \mathbb{R}_0 : a^0 = 1$$

$$\forall a \in \mathbb{R}_0, \forall n \in \mathbb{N} : a^{-n} = \frac{1}{a^n}$$

$$(a.b)^n = a^n$$

2.2 Vierkantswortel in \mathbb{R}

$$\forall a \in \mathbb{R}^+, \forall b \in \mathbb{R} :$$

$$b = \sqrt{a} \Leftrightarrow b^2 = a \land (b \ge 0)$$

$$\forall a, b \in \mathbb{R}^+ :$$

$$\sqrt{a^2} = a$$

$$(\sqrt{a})^2 = a$$

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}.$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} \land b \ne 0$$

$$\forall a \in \mathbb{R} :$$

$$\sqrt{a^2} = |a| \implies \begin{cases} \sqrt{a^2} = a & \text{als } a \ge 0, \\ \sqrt{a^2} = -a & \text{als } a \le 0. \end{cases}$$

2.3 N-de machtswortel in \mathbb{R}

$$n \ even \Rightarrow \sqrt[n]{a^n} = |a| \to \begin{cases} \sqrt[n]{a^n} = a & \land a \ge 0 \\ \sqrt[n]{a^n} = -a & \land a \le 0 \end{cases}$$

$$n \ oneven \Rightarrow \sqrt[n]{a^n} = a$$

$$n \ oneven \Rightarrow \sqrt[n]{a^n} = a$$

$$\sqrt[n]{a^n} =$$

2.4 $\frac{m}{n}$ -de machtswortel in \mathbb{R}

$\forall a \in \mathbb{R}_0^+, \forall m \in \mathbb{Z}, \forall n \in \mathbb{N}_0 : a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\forall a, b \in \mathbb{R}_0^+, \forall m, n \in \mathbb{Q} :$ $a^m.a^n = a^{m+n}$ $\frac{a^m}{a^n} = a^{m-n}$ $(a^m)^n = a^m.n$ $(a.b)^m = a^m.b^m$ $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$
	$(a.b)^m = a^m.b^m$ $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$

3 Veeltermen

3.1 Vierkantsvergelijking

Een vierkantsvergelijking is van de vorm: $ax^2 + bx + c = 0$, $met D = b^2 - 4ac$

$x \in \mathbb{R}$	$x \in \mathbb{C}$
$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$	$x_{1,2} = \frac{-b \pm i\sqrt{-D}}{2a}$
$P = \frac{c}{a} = x_1 \cdot x_2 , S = -\frac{b}{a} = x_1 + x_2$	
$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}) = a(x^{2} - Sx + P)$	

3.2 Merkwaardige Producten en Ontbinding in Factoren

$$(a \pm b)^{2} = a^{2} \pm 2ab + b^{2}$$

$$(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}$$

$$(a + b)^{n} = a^{n} + C_{n}^{1}a^{n-1}b + C_{n}^{2}a^{n-2}b^{2} + \dots + C_{n}^{n-1}a^{2}b^{n-1} + b^{n} \quad \land \quad C_{n}^{p} = \frac{n!}{(n-p)!p!}$$

$$a^{2} - b^{2} = (a + b)(a - b)$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + ab^{n-2} + b^{n-1})$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

$$a^{2n+1} + b^{2n+1} = (a + b)(a^{2n} - a^{2n-1}b + a^{2n-2}b^{2} - a^{2n-3}b^{3} + \dots - ab^{2n-1} + b^{2n})$$

3.3 Euclidische Deling

We gaan de derdegraadsveelter
m $2x^3+3x^2-4x+5$ delen door de eerstegraadsveelter
mx+2met behulp van de praktische werkwijze van lange de
ling.

$$\begin{array}{c|ccccc}
2x^3 + 3x^2 - 4x + 5 & x + 2 \\
\hline
-2x^3 - 4x^2 + 0x + 0 & 2x^2 \\
\hline
-1x^2 - 4x + 5 & \\
+1x^2 + 2x + 0 & -x \\
\hline
-2x + 5 & \\
2x + 4 & -2 \\
\hline
9 & \\
\end{array}$$

We kunnen de deling als volgt uitdrukken:

$$2x^3 + 3x^2 - 4x + 5 = (x+2)(2x^2 - x - 2) + 9$$

De rest is 9, wat een graad heeft die kleiner is dan de graad van de deler x + 2.

3.4 Schema van Horner

$$\frac{(3x^3 - 5x^2 + 10x - 5)}{(x-2)}$$

4 Complexe getallen

4.1 Rechthoekige coordinaten

Bewerking	Formule
Optelling/Aftrekking	$(a+j.b) \pm (c+j.d) = (a+c) \pm j(b+d)$
Vermenigvuldiging	$(a+j.b) \cdot (c+j.d) = (ac-bd) + j(ad+bc)$
Deling	$\frac{(a+j.b)}{(c+j.d)} = \frac{(a+j.b)\cdot(c-j.d)}{(c+j.d)\cdot(c-j.d)} = \left(\frac{ac+bd}{c^2+d^2}\right) + j\left(\frac{bc-ad}{c^2+d^2}\right)$
Toegevoegde van	$\overline{(a+j.b)} = (a-j.b)$
	$\overline{Z_1 + Z_2} = \overline{Z_1} + \overline{Z_2}, \overline{Z_1 \cdot Z_2} = \overline{Z_1} \cdot \overline{Z_2}$
Inverse	$z = a + bi \implies z^{-1} = \frac{a - bi}{a^2 + b^2}$
Wortel	$\sqrt{a} \wedge a < 0 \implies \sqrt{a} = \pm i\sqrt{-a}$
	$\sqrt{a+bi} = x+yi \iff (x+yi)^2 = a+bi$
Macht	$(a+bi)^0=1 \forall n \in \mathbb{N}_0:$
	$(a+bi)^n = (a+bi) \cdot (a+bi) \cdots (a+bi)$
Machten of i	$i^1 = i, i^2 = -1, i^3 = -i, i^4 = 1$

4.2 Poolcoördinaten

$$z = a + i.b = r\left(\cos(\varphi) + i.\sin(\varphi)\right) = r\angle\varphi, \quad \tan(\varphi) = \frac{b}{a}, \quad r = \sqrt{a^2 + b^2}$$

Bewerking	Formule			
Vermenigvuldiging	$z_1 \cdot z_2 = r_1 \cdot r_2 \angle \varphi_1 + \varphi_2$			
Deling	$\frac{z_1}{z_2} = \frac{r_1 \angle \varphi_1}{r_2 \angle \varphi_2} = \frac{r_1}{r_2} \angle \varphi_1 - \varphi_2$			
Inverse	$z^{-1} = \frac{1}{r} \angle - \varphi$			
Macht	$z^n = r^n \left[\cos \left(n \cdot \varphi \right) + i \sin \left(n \cdot \varphi \right) \right] n \in \mathbb{N}$			
Wortel	$\sqrt{r(\cos\varphi + i\sin\varphi)} = \pm\sqrt{r}\left(\cos\frac{\varphi}{2} + i\sin\frac{\varphi}{2}\right)$			
$\sqrt[n]{r(\cos\varphi + i\sin\varphi)} = \sqrt[n]{r}\left(\cos\frac{\varphi + k \cdot 2\pi}{n} + i\sin\frac{\varphi + k \cdot 2\pi}{n}\right) \land k = 0, 1, \dots, n - 1$				

5 Goniometrie

5.1 De Goniometrische Cirkel

5.2 formules uit de goniometrie

$\sin \beta = \frac{b}{a}$	$\cos \beta = \frac{c}{a}$	$\tan \beta = \frac{b}{c}$
$\csc \beta = \frac{a}{b}$	$\sec \beta = \frac{a}{c}$	$\cot \beta = \frac{c}{b}$
$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$	$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$	$\cot \alpha = \frac{1}{\tan \alpha}$
$\sec \alpha =$	$=\frac{1}{\cos\alpha}$ $\csc\alpha$	$=\frac{1}{\sin \alpha}$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\tan^2 \alpha + 1 = \sec^2 \alpha$$

$$1 + \cot^2 \alpha = \csc^2 \alpha$$

5.3 Verwante hoeken

gelijkehoeken	supplementairehoeken	complementairehoeken
$\sin\left(\alpha + k2\pi\right) = \sin\alpha$	$\sin(\pi - \alpha) = \sin\alpha$	$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$
$\cos\left(\alpha + k2\pi\right) = \cos\alpha$	$\cos(\pi - \alpha) = -\cos\alpha$	$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$
$\tan\left(\alpha + k2\pi\right) = \tan\alpha$	$\tan (\pi - \alpha) = -\tan \alpha$	$\tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha$
$\cot\left(\alpha + k2\pi\right) = \cot\alpha$	$\cot(\pi - \alpha) = -\cot\alpha$	$\cot\left(\frac{\pi}{2} - \alpha\right) = \tan\alpha$
$\sec\left(\alpha + k2\pi\right) = \sec\alpha$	$\sec(\pi - \alpha) = -\sec\alpha$	$\sec\left(\frac{\pi}{2} - \alpha\right) = \csc\alpha$
$\csc\left(\alpha + k2\pi\right) = \csc\alpha$	$\csc(\pi - \alpha) = \csc\alpha$	$\csc\left(\frac{\pi}{2} - \alpha\right) = \sec\alpha$

tegengesteldehoeken	antisupplementairehoeken	anticomplementairehoeken
$\sin\left(-\alpha\right) = -\sin\alpha$	$\sin\left(\pi + \alpha\right) = -\sin\alpha$	$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$
$\cos\left(-\alpha\right) = \cos\alpha$	$\cos(\pi + \alpha) = -\cos\alpha$	$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$
$\tan\left(-\alpha\right) = -\tan\alpha$	$\tan\left(\pi + \alpha\right) = \tan\alpha$	$\tan\left(\frac{\pi}{2} + \alpha\right) = -\cot\alpha$
$\cot(-\alpha) = -\cot\alpha$	$\cot\left(\pi + \alpha\right) = \cot\alpha$	$\cot\left(\frac{\pi}{2} + \alpha\right) = -\tan\alpha$
$\sec\left(-\alpha\right) = \sec\alpha$	$\sec\left(\pi + \alpha\right) = -\sec\alpha$	$\sec\left(\frac{\pi}{2} + \alpha\right) = -\csc\alpha$
$\csc\left(-\alpha\right) = -\csc\alpha$	$\csc\left(\pi + \alpha\right) = -\csc\alpha$	$\csc\left(\frac{\pi}{2} + \alpha\right) = \sec\alpha$

5.4 Belangrijke goniometrische waarden

Angle	0°	30°	45°	60°	90°	180°	270°	360°
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
$\tan \alpha$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	/	0	/	0

θ	$\sin \theta$	$\cos \theta$
30°	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{3}}{2}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
60°	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{1}}{2}$

5.5 Radiaal

5.6 Goniometrische formules

Sinusregel:
$$\frac{a}{\sin \widehat{A}} = \frac{b}{\sin \widehat{B}} = \frac{c}{\sin \widehat{C}}$$
 Cosinusregel:
$$\begin{cases} a^2 = b^2 + c^2 - 2bc \cos \widehat{A} \\ b^2 = c^2 + a^2 - 2ca \cos \widehat{B} \\ c^2 = a^2 + b^2 - 2ab \cos \widehat{C} \end{cases}$$

Som - en verschilformules	Verdubbelings formules
$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta \ (hetero's)$	$\sin 2\alpha = 2\sin \alpha \cos \alpha$
	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$
$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta \ (homo's)$	$=1-2\sin^2\alpha (*)$
	$= 2\cos^2\alpha - 1 (**)$
$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$	$\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}$

$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2} (*)$	Verdubbelingsformules $f(\tan \alpha)$	$\sin \alpha = \frac{2t}{1+t^2},$	$\tan\frac{\alpha}{2} = t$
$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2} (**)$	$\sin 2\alpha = \frac{2\tan \alpha}{1 + \tan^2 \alpha}$	$\cos \alpha = \frac{1 - t^2}{1 + t^2}$	
Halverings formules	$\cos 2\alpha = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha}$	$\cos \alpha = \frac{1 - t^2}{1 + t^2}$	
$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$	$\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}$	$\tan \alpha = \frac{2t}{1 - t^2}$	
$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$			

5.7 Omgekeerde formules van Simpson

$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$	$\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta$
	$\sin(\alpha + \beta) - \sin(\alpha - \beta) = 2\cos\alpha\sin\beta$
$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$	$\cos(\alpha + \beta) + \cos(\alpha - \beta) = 2\cos\alpha\cos\beta$
	$\cos(\alpha + \beta) - \cos(\alpha - \beta) = -2\sin\alpha\sin\beta$

5.8 Formules van Simpson

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right) \left|\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)\right|$$
$$\sin \alpha - \sin \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right) \left|\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)\right|$$

5.9 Cyclometrische formules

$$y = \operatorname{Bgsin} x \Leftrightarrow \left(x = \sin y \ \land y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \ x \in [-1, 1] \right)$$
$$y = \operatorname{Bgcos} x \Leftrightarrow \left(x = \cos y \ \land y \in [0, \pi], \ x \in [-1, 1] \right)$$
$$y = \operatorname{Bgtan} x \Leftrightarrow \left(x = \tan y \ \land y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \ x \in \mathbb{R} \right)$$

6 Matrices

6.1 Symbolen

A = matrix A

 a_{ij} het element op rij i en in kolom j

 A_{ij} cofactor van het element op rij i en in kolom j

I de eenheidsmatrix

 A^{-1} de inverse matrix

 A^T de getransponeerde matrix

 $\det A$ determinant van de vierkante matrix A

6.2 Rekenregels

Opgelet: onderstaande regels gelden enkel onder de juiste voorwaarden.

$$A + B = B + A$$

$$A + (B+C) = (A+B) + C$$

$$A \cdot I = A = I \cdot A$$

$$A(BC) = (AB)C$$

$$A(B+C) = AB + AC$$

$$(B+C)A = BA + CA$$

$$AB \neq BA$$

$$(A+B)^T = A^T + B^T$$

$$(cA)^T = cA^T$$

$$(AC)^T = C^T A^T$$

$$(A^T)^T = A$$

$$I^T = I$$

$$A \cdot A^{-1} = I = A^{-1} \cdot A$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$B = C \Rightarrow AB = AC$$
 en $BA = CA$ A regulier

6.3 Cofactor-tekenpatroon $(-1)^{i+1}$

commutativiteit van de optelling

associativiteit van de optelling

eenheidsmatrix

associativiteit van de vermenigvuldiging

 $linker\ distributivite it$

rechter distributiviteit

niet-commutatief in het algemeen

7 Determinanten

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \qquad \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} - > \qquad sarrus$$

$$\begin{vmatrix} \cdots & \cdots & \cdots \\ \cdots & a_{ij} & \cdots \\ \cdots & \cdots & \cdots \end{vmatrix} \Rightarrow cofactor \ a_{ij} = A_{ij} = \begin{vmatrix} \cdots & \cdots & \cdots & \cdots \\ (-1)^i \dot{a}_{ij}^j & \times \\ \times & \times & \times \end{vmatrix} \Rightarrow adj A = \begin{vmatrix} \cdots & \cdots & \cdots & \cdots \\ (-1)^i \dot{a}_{ij}^j & \times \\ \vdots & \ddots & \ddots & \cdots \end{vmatrix}$$

laplace:

$$\det(A) = \sum_{k=1}^{n} a_{ik} A_{ik} = \sum_{r=1}^{n} a_{rj} A_{rj}, \qquad A \in \mathbb{R}^{n \times n}.$$

Dat wil zeggen: som van de producten van de drie "dalende" diagonalen *minus* de som van de producten van de drie "stijgende" diagonalen.

Minor en cofactor. Laat M_{ij} de minor van a_{ij} zijn (rij i en kolom j weggelaten). De cofactor is

$$A_{ij} = (-1)^{i+j} M_{ij}, \quad \text{adj } A = (A_{ij})^T.$$

Laplace-expansie. Voor $A \in \mathbb{R}^{n \times n}$ en om het even welke vaste rij i of kolom j:

$$\det(A) = \sum_{k=1}^{n} a_{ik} A_{ik} = \sum_{r=1}^{n} a_{rj} A_{rj}.$$

Rekenregels voor determinanten.

$$\det(I_n) = 1, \qquad \det(A^T) =$$

Rij-/kolombewerkingen (analoog voor kolommen):

- (i) vermenigvuldig rij i met $k \Rightarrow$ det vermenigvuldigt met k,
 - (ii) wissel twee rijen \Rightarrow det verandert van teken,
- (iii) voeg een veelvoud van een rij bij een andere \Rightarrow det blijft gelijk,

(iv) een gelijke of nulrij
$$\Rightarrow$$
 det = 0.

Adjugaatrelatie.

$$A \operatorname{adj} A = \operatorname{adj} A A = \operatorname{det}(A) I.$$

Invertibiliteit. $\det(A) \neq 0 \ \Rightarrow \ A$ is inverteerbaar en

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj} A.$$

8 Stelsels oplossen

8.1 n vergelijkingen met n onbekenden, $|A| \neq 0$ (Cramer)

Voor AX = B met $A \in \mathbb{R}^{n \times n}$ en $\det(A) \neq 0$ geldt

$$x_j = \frac{\det(A_j)}{\det(A)}$$
 $(j = 1, \dots, n),$

waar A_i ontstaat uit A door de j-de kolom te vervangen door de vector B.

8.2 Homogene 2×3 -stelsels

$$a_1x + b_1y + c_1z = 0,$$

 $a_2x + b_2y + c_2z = 0.$

Indien $\det \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \neq 0$, dan is de oplossingsruimte

$$V = \{ \lambda \cdot (\det \begin{pmatrix} b_1 & c_1 \\ b_2 & c_2 \end{pmatrix}, -\det \begin{pmatrix} a_1 & c_1 \\ a_2 & c_2 \end{pmatrix}, \det \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}) \mid \lambda \in \mathbb{R} \}.$$

8.3 n+1 vergelijkingen met n onbekenden

Een stelsel van de vorm

$$a_1x + b_1y + c_1 = 0,$$

 $a_2x + b_2y + c_2 = 0,$
 $a_3x + b_3y + c_3 = 0$

heeft een oplossing \Leftrightarrow

$$\det \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} = 0.$$

8.4 n vergelijkingen met n onbekenden

Meer in het algemeen geldt: AX = B met $A \in \mathbb{R}^{m \times n}$ heeft een oplossing als en slechts als rang(A) = rang(A|B) (Stelling van Kronecker–Capelli).

9 Meetkunde

Afstand 2 punten	$ P_1(x_1, y_1), P_2(x_2, y_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
	$ P_1(x_1, y_1, z_1), P_2(x_2, y_2, z_2) =$
	$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$
Midden v/e lijnstuk	$co(M) = (\frac{(x_1+x_2)}{2}, \frac{(y_1+y_2)}{2})$
Zwaartepunt v/e driehoek	$co(Z) = (\frac{(x_1 + x_2 + x_3)}{3}, \frac{(y_1 + y_2 + y_3)}{3})$

Vergelijking v/e rechte dr punt met rico m	$y - y_1 = m(x - x_1)$
Vergelijking v/e rechte dr punt met rico m	$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$
Vergelijking v/e rechte dr snijpunt met x-as $(r,0)$ en y-as $(0,s)$	$\frac{x}{r} + \frac{y}{s} = 1$
Hoek tussen twee rechten a,b met rico m1,m2	$\cos(\hat{ab}) = \frac{ 1+m_1m_2 }{\sqrt{1+m_1^2}\sqrt{1+m_2^2}}$
Afstand tussen rechte a-¿ux+vy+w=0 en P(x1,y1)	$d(P,a) = \frac{ ux_1 + vy_1 + w }{\sqrt{u^2 + v^2}}$

9.1 De cirkel

Cartesiaanse vergelijking	$(x - x_1)^2 + (y - y_1)^2 = r^2$
Algemene vergelijking	$x^{2} + y^{2} + 2ax + 2by + c = 0$ \wedge $a^{2} + b^{2} - c \ge 0$
Parameter vergelijking	$\begin{cases} x = x_M + r \cdot \cos t \\ y = y_M + r \cdot \sin t \end{cases} met \ t \in [0, 2\pi[$

9.2 De parabool

-		
Top vergelijking	$y^2 = 2px$	
Parameter vergelijking	$x = 2p\lambda^2$	$met \ \lambda \in \mathbb{R}$
r arameter vergenjanig	$y = 2p\lambda$	

9.3 De ellips

$$\begin{aligned} &Cartesia ansevgl.: \frac{x^2}{a^2} + \frac{y}{b^2}^2 = 1 \\ &Parametervgl.: \\ &\left\{ \begin{array}{l} x = a.\cos t \\ y = b.\sin t \end{array} \right. \end{aligned} met \ t \in [0, 2\pi[$$

9.4 De hyperbool

$$\begin{aligned} &Cartesia ansev gl.: \frac{x^2}{a^2} - \frac{y}{b^2}^2 = 1 \\ &Parameter vgl.: \\ &\left\{ \begin{array}{l} x = a. \sec t \\ y = b. \tan t \end{array} \right. \end{aligned} met \ t \in \left] \frac{-\pi}{2}, \frac{3\pi}{2} \right[\setminus \left\{ \frac{\pi}{2} \right\} \end{aligned}$$

9.5 Oppervlakte Formules

Vorm	Formule	Variabelen
Vierkant	$A = s^2$	s: zijlengte
Rechthoek	A = l.w	l: lengte, w: breedte
Driehoek	$A = \frac{1}{2}b.h$	b: basis, h: hoogte
Cirkel	$A = \pi r^2$	r: straal
Parallellogram	A = b.h	b: basis, h: hoogte
Trapezium	$A = \frac{1}{2}(b_1 + b_2).h$	b_1, b_2 : bases, h : hoogte
Ellips	$A = \pi a.b$	a, b: halve grote en halve kleine as
Regelmatig Veelhoek	$A = \frac{1}{2}P.a$	P: omtrek, a: apothema

9.6 Volume Formules

Vorm	Formule	Variabelen
Kubus	$V = s^3$	s: zijlengte
Rechthoekig Prisma	$V = l \times w \times h$	l: lengte, w: breedte, h: hoogte
Bol	$V = \frac{4}{3}\pi r^3$	r: straal
Cilinder	$V = \pi r^2 h$	r: straal, h: hoogte
Kegel	$V = \frac{1}{3}\pi r^2 h$	r: straal, h: hoogte
Piramide	$V = \frac{1}{3}B \times h$	B: basisoppervlakte, h: hoogte
Ellipsoïde	$V = \frac{4}{3}\pi abc$	a, b, c: halve hoofdaslengtes
Prisma	$V = B \times h$	B: basisoppervlakte, h: hoogte

10 Ruimte meetkunde

10.1 Relatie tussen twee vlakken α, β in \mathbb{R}^3

$$\alpha: u_1x + v_1y + w_1z + t_1 = 0$$
 $\beta: u_2x + v_2y + w_2z + t_2 = 0$

$$\alpha_0: u_1x + v_1y + w_1z = 0$$
 $\beta_0: u_2x + v_2y + w_2z = 0$ (vlakken door O)

Samenvallend

Snijdend (lijn)

 $RREF(\alpha \cap \beta)$

$$\alpha_0 \cap \beta_0 \quad \Rightarrow \quad \begin{bmatrix} u_1 & v_1 & w_1 & \vdots \\ u_2 & v_2 & w_2 & \vdots \end{bmatrix} \quad \alpha_0$$

$$\alpha \cap \beta \quad \Rightarrow \quad \begin{bmatrix} u_1 & v_1 & w_1 & t_1 & \vdots \\ u_2 & v_2 & w_2 & t_2 & \vdots \end{bmatrix} \quad \alpha$$

 $RREF(\alpha_0 \cap \beta_0)$

 $RREF(\alpha \cap \beta)$

$$\begin{bmatrix} u' & v' & w' & t' & \vdots \\ 0 & 0 & 0 & 0 & \vdots \end{bmatrix} \Rightarrow \alpha = \beta$$

RREF
$$(\alpha_0 \cap \beta_0)$$

$$\begin{bmatrix} u' & v' & w' & \vdots \\ 0 & v" & w" & \vdots \end{bmatrix} \Rightarrow \alpha_0 \cap \beta_0 = d_0$$

 $RREF(\alpha \cap \beta)$

$$\begin{bmatrix} u' & v' & w' & t' & \vdots \\ 0 & 0 & 0 & t'' & \vdots \end{bmatrix} \Rightarrow \alpha \cap \beta = \emptyset$$

$$\begin{bmatrix} u' & v' & w' & t' & \vdots \\ 0 & v'' & w'' & t'' & \vdots \end{bmatrix} \Rightarrow \alpha \cap \beta = \alpha$$

10.2 Basis reële functies

Functie	Definitie
Identiteitsfunctie	f(x) = x
Constante functie	$f(x) = c, \ c \in \mathbb{R}$
Lineaire functie	$f(x) = mx + b, \ m, b \in \mathbb{R}$
Kwadratische functie	$f(x) = ax^2 + bx + c, \ a, b, c \in \mathbb{R}, \ a \neq 0$
Cubische functie	$f(x) = ax^3 + bx^2 + cx + d, \ a, b, c, d \in \mathbb{R}, \ a \neq 0$
Polynoomfunctie	$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \ a_i \in \mathbb{R}$ $a_n \neq 0$
Rationale functie	$f(x) = \frac{P(x)}{Q(x)}, \ P(x), Q(x)$ zijn polynomen, $Q(x) \neq 0$
Exponentiële functie	$f(x) = a^x, \ a > 0, \ a \neq 1$
Logaritmische functie	$f(x) = \log_a(x), \ a > 0, \ a \neq 1, \ x > 0$
Absolute-waarde functie	$f(x) = x = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$
Goniometrische functies	$f(x) = \sin(x)$ $f(x) = \cos(x)$ $f(x) = \tan(x) \ x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$
Inverse goniometrische functies	$f(x) = \arcsin(x), \ x \in [-1, 1]$ $f(x) = \arccos(x), \ x \in [-1, 1]$ $f(x) = \arctan(x), \ x \in \mathbb{R}$
Hyperbolische functies	$f(x) = \sinh(x) = \frac{e^x - e^{-x}}{2}$ $f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2}$ $f(x) = \tanh(x) = \frac{\sinh(x)}{\cosh(x)}, \ x \in \mathbb{R}$
Stukjesfunctie	$f(x) = \begin{cases} x^2, & x < 0 \\ x + 1, & x \ge 0 \end{cases}$

11 Analyse

11.1 Limieten van rijen)

$$\lim_{n \to \pm \infty} \left(a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0 \right) = \lim_{n \to \pm \infty} a_m n^m$$

$$\lim_{n \to \pm \infty} \frac{\left(a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0 \right)}{\left(b_q n^p + b_{q-1} n^{p-1} + \dots + b_1 n + b_0 \right)} = \lim_{n \to \pm \infty} \frac{a_m n^m}{b_q n^p}$$

11.2 Limieten van functies

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n \quad (n \in _0)$$

$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

$$\lim_{x \to \pm \infty} \left(a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0\right) = \lim_{x \to \pm \infty} a_n x^n$$

$$\lim_{x \to \pm \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m}$$

11.3 Limieten van goniometrische

$$\lim_{x \to a} \sin(x) = \sin(a) \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1$$
$$\lim_{x \to a} \cos(x) = \cos(a) \qquad \lim_{x \to 0} \frac{\tan x}{x} = 1$$

11.4 Methodes bij het berekenen van limieten van functies

<u>Veeltermfunctie</u>: $\lim_{x \to a} f(x) = \text{Eindige a limiet} = \text{functiewaarde}$

Oneindige a limiet = limiet van de hoogstegraadsterm

Gebroken rationale functie:

Eindige a

$a \in \operatorname{dom} f(x)$	limiet = functiewaarde
geval $\frac{r}{0} \wedge r \in \mathbb{R}$	linker- en rechterlimiet zijn ∞ ; teken afleiden uit het teken van r en de noemer
geval $\frac{0}{0}$	deel teller en noemer door $(x-a)$, bereken de limiet van de bekomen functie

One indige a

limiet = limiet van quotiënt hoogste graadstermen

<u>Irrationale functie</u>:

Eindige a

$a \in \operatorname{dom} f(x)$	limiet = functiewaarde
$a \in \operatorname{adh} \operatorname{dom} f(x)$ $\frac{r}{0} \wedge r \in \mathbb{R}$	linker- en rechterlimiet zijn ∞ ; teken afleiden uit het teken van r en de noemer
$a \in \operatorname{adh} \operatorname{dom} f(x)$ $\frac{0}{0} \wedge r \in \mathbb{R}$	vermenigvuldig teller en noemer met de toegevoegde wortelvorm, deel teller en noemer door $(x-a)$, bereken de limiet van de bekomen functie
$a \notin \operatorname{adh} \operatorname{dom} f(x)$	geen limiet

One indige a

Onemaige a	
$\pm \infty \in \operatorname{adh} \operatorname{dom} f(x)$ en $f(\pm \infty)$ is te berekenen	limiet = resultaat berekening
$\pm \infty \in \operatorname{adh} \operatorname{dom} f(x)$ geval $\frac{\infty}{\infty}$	zet in de teller en de noemer de hoogste macht van \boldsymbol{x} voorop, vereenvoudig en bereken de limiet van de bekomen functie
$\pm \infty \in \operatorname{adh} \operatorname{dom} f(x)$ geval $\infty - \infty$	herleid tot het vorige geval door teller en noemer te vermenigvuldigen met de toegevoegde wortelvorm
$a \notin \operatorname{adh} \operatorname{dom} f(x)$	geen limiet

Regel l'Hôptal:

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \quad \forall \quad \pm \infty$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Bewerkingen met oneindig en onbepaalde vormen:

Bewerkingen	Geen betekenis
$x + (-\infty) = -\infty + x = (-\infty) + x$	$(+\infty) + (-\infty)$
$x + (+\infty) = +\infty + x = (+\infty) + x$	$(-\infty) + (+\infty)$
$x \cdot (+\infty) = (+\infty) \cdot x = +\infty \text{ als } x > 0$	$0 \cdot (+\infty), (+\infty) \cdot 0$
$x \cdot (+\infty) = (+\infty) \cdot x = -\infty \text{ als } x < 0$	$0 \cdot (-\infty), (-\infty) \cdot 0$
$x \cdot (-\infty) = (-\infty) \cdot x = -\infty \text{ als } x > 0$	$\frac{1}{0}$
$x \cdot (-\infty) = (-\infty) \cdot x = +\infty \text{ als } x < 0$	1 ^{+∞}
$(+\infty) + (+\infty) = +\infty$	0_0
$(-\infty) + (-\infty) = -\infty$	$(+\infty)^0$
$(+\infty)\cdot(+\infty)=(-\infty)\cdot(-\infty)=+\infty$	
$(+\infty) \cdot (-\infty) = (-\infty) \cdot (+\infty) = -\infty$	
$(+\infty)^n = +\infty$ als n even is	
$(-\infty)^n = -\infty$ als n oneven is	
$\frac{1}{+\infty} = \frac{1}{-\infty} = 0$	
$\sqrt[n]{+\infty} = +\infty$	
$\sqrt[n]{-\infty} = -\infty$ als n oneven is	

11.5 Afgeleiden - differentialen

11.5 Afgeleiden - differentialen	
Dc = 0	
$D\left(c.f\right) = c.Df$	dc = 0
$D(f \pm g) = Df \pm Dg$	$dx^n = nx^{n-1}dx$
D(f.g) = fDg + gDf	$dx^{-1} = -1.x^{-2}dx$
$D\left(\frac{f}{g}\right) = \frac{gDf - fDg}{g^2}$	$d\sin x = \cos x dx$
$Dx^n = nx^{n-1}$	$d\cos x = -\sin x dx$
$Dx^{-1} = -1.x^{-2}$	$d\tan x = \sec^2 x dx = \frac{1}{\cos^2 x} dx$
$D\sin x = \cos x$	$\int d\cot x = -\csc^2 x dx = \frac{-1}{\sin^2 x} dx$
$D\cos x = -\sin x$	$dBgsin x = \frac{dx}{\sqrt{1-x^2}}$
$D\tan x = \sec^2 x = \frac{1}{\cos^2 x}$	$d \operatorname{Bgcos} x = \frac{-dx}{\sqrt{1-x^2}}$
$D\cot x = -csc^2x = \frac{-1}{\sin^2 x}$	$dBgtan x = \frac{dx}{1+x^2}$
$DBgsin x = \frac{1}{\sqrt{1-x^2}}$	dshx = chxdx
$D \operatorname{Bgcos} x = \frac{-1}{\sqrt{1-x^2}}$	dchx = shxdx
$DBgtan x = \frac{1}{1+x^2}$	$dthx = \frac{dx}{ch^2x}$
$D \operatorname{sh} x = \operatorname{ch} x$	$\int d^a \log x = \frac{dx}{x \ln a}$
$D \operatorname{ch} x = \operatorname{sh} x$	$d \ln x = \frac{dx}{x}$
$Dthx = \frac{1}{ch^2x}$	$da^x = a^x \ln a dx$
$De^x = e^x$	$de^x = e^x dx$
$Da^x = a^x \ln a$	$\left d \ln \left x + \sqrt{x^2 + k} \right = \frac{dx}{\sqrt{x^2 + k}} \right $
$D \ln x = \frac{1}{x} D \ln x = \frac{1}{x}$	d(f+g) = df + dg
$D^a \log x = \frac{1}{x \ln a}$	d(f.g) = fdg + gdf
$\left D \ln \left x + \sqrt{x^2 + k} \right = \frac{1}{\sqrt{x^2 + k}}$	$d\left(\frac{f}{g}\right) = \frac{gdf - fdg}{g^2}$
$Du^v = vu^{v-1}Du + u^v \ln uDv$. ,

11.6 Afgeleiden - fundamentele integralen

Bg = arc

Afgeleiden	Integraal
D[c] = 0	$\int dx = x + C$
$D[x^n] = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C (n \neq -1)$
$D[\sin x] = \cos x$	$\int \cos x dx = \sin x + C$
$D[\cos x] = -\sin x$	$\int \sin x dx = -\cos x + C$
$D[\tan x] = \sec^2 x = \frac{1}{\cos^2 x}$	$\int \frac{1}{\cos^2 x} dx = \tan x + C$
$D[\cot x] = -\csc^2 x = \frac{-1}{\sin^2 x}$	$\int \frac{1}{\sin^2 x} dx = -\cot x + C$
$D[\arcsin x] = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$
$D[\arccos x] = \frac{-1}{\sqrt{1-x^2}}$	$\int \frac{dx}{\sqrt{1-x^2}} = -\arccos x + C$
$D[\arctan x] = \frac{1}{1+x^2}$	$\int \frac{dx}{1+x^2} = \arctan x + C$
$D[e^x] = e^x$	$\int e^x dx = e^x + C$
$D[a^x] = a^x \ln a$	$\int a^x dx = \frac{a^x}{\ln a} + C$
$D[\ln x] = \frac{1}{x}$	$\int \frac{dx}{x} = \ln x + C$
$\boxed{D\left[\ln\left x+\sqrt{x^2+k}\right \right] = \frac{1}{\sqrt{x^2+k}}}$	$\int \frac{dx}{\sqrt{x^2 + k}} = \ln\left x + \sqrt{x^2 + k}\right + C$
$D^a \log x = \frac{1}{x \ln a}$	*

11.7 Partiële integratie

$$\int f(x) d(g(x)) = f(x).g(x) - \int g(x) d(f(x))$$
$$\int u dv = u.v - \int v du$$

12 Statistiek

12.1 Test van een hypothese over het gemiddelde van een normaalverdeling

Dit is een test van een steekproefgemiddelde \bar{x} volgens steekproefgemiddeldeverdeling $X \approx \mathcal{N}(\mu_{\bar{x}}, \sigma_{\bar{x}}) \approx \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$ in de populatie $\mathcal{N}(\mu, \sigma)$. Gebruikmakend van significantieniveau α .

Twee-zijdige test	Links-zijdige test	Rechts-zijdige test
$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$
$H_A: \mu \neq \mu_0$	$H_A: \mu < \mu_0$	$H_A: \mu > \mu_0$
$\mathcal{N}(\mu_{\overline{x}}, \sigma_{\overline{x}})$ $\alpha/2$ g g_+	$\mathcal{N}(\mu_{\bar{x}}, \sigma_{\bar{x}})$	$\mathcal{N}(\mu_{\overline{x}}, \sigma_{\overline{x}})$ g_+
$H_A: z_{\bar{x}} \le g \ \lor \ \bar{x} \ge g_+$	$H_A: z_{\bar{x}} \le g$	$H_A: z_{\bar{x}} \ge g_+$

12.2 Test van een hypothese over een populatieproportie Dit is een test op een populatieproportie \hat{p} volgens een binomiaalverdeling $X \approx \mathcal{B}(n,p) \approx \mathcal{N}(np,\sqrt{n}.\sqrt{p(1-p)})$. Gebruikmakend van significantieniveau α .

Twee-zijdige test	Links-zijdige test	Rechts-zijdige test
$H_0: p = p_0$	$H_0: p = p_0$	$H_0: p = p_0$
$H_A: p \neq p_0$	$H_A: p < p_0$	$H_A: p > p_0$
$\alpha/2$ g g_+	α g_{-}	g_+
$H_A: \hat{p} \leq g \ \lor \ \hat{p} \geq g_+$	$H_A: \hat{p} \leq g$	$H_A: \hat{p} \geq g_+$

12.3 Test van een hypothese over het gemiddelde van een normaalverdeling via de P-waarde

Twee-zijdige toets	Links éénzijdige toets	Rechts éénzijdige toets
$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$
$H_1: \mu \neq \mu_0$	$H_1: \mu < \mu_0$	$H_1: \mu > \mu_0$
Als $\bar{x} < \mu \to P = 2 \cdot P(X \le \bar{x})$	$P = P(X \le \bar{x})$	$P = P(X \ge \bar{x})$
Als $\bar{x} > \mu \to P = 2 \cdot P(X \ge \bar{x})$	$I = I (X \leq x)$	$I - I (A \ge x)$
$P \leq \alpha$	$P \le \alpha$	$P \le \alpha$

12.4 Test van een hypothese over een populatieproportie via de P-waarde

Twee-zijdige toets	Linkszijdige toets	Rechtszijdige toets
$H_0: p = p_0$	$H_0: p = p_0$	$H_0: p = p_0$
$H_1: p \neq p_0$	$H_1: p < p_0$	$H_1: p > p_0$
Als \hat{p}	$P = P(X \le \hat{p})$	$P = P(X \ge \hat{p})$
Als $\hat{p} > p \to P = 2 \cdot P(X \ge \hat{p})$	$ I - I(A \leq p) $	$I - I (\Lambda \leq p)$
Vergelijk: $P \leq \alpha$	Vergelijk: $P \leq \alpha$	Vergelijk: $P \leq \alpha$

13 Diversen

13.1 Wiskundige Symbolen (ISO 31/XI)

	120 01/111)
$x \in A$	is een element van de verzameling
$x \not\in A$	is geen element van de verzameling
$ \begin{cases} \{x_1, x_2, \dots, x_n\} \end{cases} $	de verzameling door opsomming
$\{x \in A p(x)\}$	de verzameling waar de elementen voldoen aan de eigenschap $p(x)$
Ø	de lege verzameling
N	de natuurlijke getallen $(0,1,2,\dots)$
\mathbb{Z}	de gehele getallen $(\ldots, -2, -1, 0, 1, 2, \ldots)$
Q	de rationale getallen (breuken van \mathbb{Z})
\mathbb{R}	de reële getallen
\mathbb{C}	de complexe getallen
$B \subseteq A$	B behoort tot A (kan er mee samenvallen)
$B \subset A$	B behoort strikt tot A
$A \cup B$	samenvoeging van A en B (unie)
$A \cap B$	doorsnede van A en B (de gemeenschappelijke elementen)
$A \setminus B$	A verschilt B , wat tot A behoort en niet tot B
$C_U A$	het complement van A in het universum U
(a,b)	het geordend paar
(a_1, a_2, \ldots, a_n)	een geordend n -tal
$A \times B$	de productverzameling van A en B
#	rangnummer of aantal

13.2 Logische symbolen

$p \wedge q$	conjunctie, de beweringen p en q zijn geldig
$p \lor q$	disjunctie, de bewering p of q is geldig
$\neg p$	negatie, de bewering p is niet geldig
$p \Rightarrow q$	implicatie, als p dan q
$p \Leftrightarrow q$	equivalentie, de beweringen p en q zijn gelijkwaardig
$\forall x$	universele kwantor, voor alle elementen geldt
$\exists x$	existentiële kwantor, er zijn elementen die voldoen aan