

Digital response of the p53 to DNA damage: A tale of limiting resources, negative feedback and time delays

IBM Systems Biology

Group

IBM Research

Institute for Advanced

Study

Jeremy Rice

Lan Ma

John Wagner

Gus Stolovitzky

Arnie Levine

Wenwei Hu

Computational Biology Center
Thomas J. Watson Research Center
gustavo@us.ibm.com

Roles of P53

- Transcription factor
- Central role in defending genomic stability
- Decides on DNA repair and possibly apoptosis
- Implicated in over 50% of cancers
- Highly regulated in positive and negative feedback circuits

p53 – MDM2 auto-regulation

Protein level after irradiation (IR)

Bar-Or et al., PNAS, 2000

Reflects population but not single cells

Digital Clock: individual cells

Oscillations are not damped at single cell level

Digital Clock: individual cells

Fraction of cells with zero, one, two or more pulses as a function of γ -IR dose:

Lahav et al., Nature Genetics, 2004

Pulse width and height as a function of γ-IR dose:

Digital behavior at single cell level: mean <u>number</u> of pulses but not the amplitude or frequency depends on input signal.

Modeling digital behavior

Basic structure of the model

Repair of double strand breaks (DSBs)

- Distribution of initial DSBs ~ Poisson Distribution
- Mean of number of DSBs proportional to IR dose (30-40 Gy⁻¹ cell ⁻¹)

Rothkamm & Löbrich, PNAS, 2003

Two-Lesion-Kinetics (TLK)

- Biphasic repair process: rapid repair of simple lesions + slower repair of complex lesions
- Two repair mechanisms: NHEJ (Non-Homologous End-Joining) & HR (Homologous Recombination)

Löbrich et al., PNAS, 1995

Rothkamm et al., MCB, 2003

Model: stochastic TLK of DSB repair

- Limiting pool of repair proteins
- DSB-enzyme complexes necessary for DNA damage repair

Pathway 1: fast DSB lesion repair

$$D_1 \xrightarrow{RP*(k_{fbI}+k_{cross}*(D_1+D_2))} C_1 \xrightarrow{k_{fixI}} F$$

Pathway 2: slow DSB lesion repair:

$$D_2 \xrightarrow{RP * (k_{fb2} + k_{cross} * (D_1 + D_2))} C_2 \xrightarrow{k_{fix2}} F_2$$

RP: repair protein (Mre11/Rad50/Nbs1 cmplx)

D: intact DSB

C: DSB-enzyme complex

F: fixed DSB

Simulation: DNA repair process

Implemented using Monte-Carlo method:

Basic structure of model

Ataxia telangiectasia mutated (ATM): mutated in disease AT, a human genetic disorder characterized by neural degeneration, immunodeficiency, sterility, cancer predisposition, etc.

ATM activation

Bakkenist & Kastan, Nature 2003

- Dimer in normal cells
- Intermolecular autophosphorylation
- Direct activation by DSBs
- Nucleation formed by DSB and ATM*

Model: ATM activation

ATM_D: ATM dimer

ATM: inactive ATM monomer

ATM*: active ATM monomer

 $2ATM_D + ATM + ATM^* = ATM^T$

$$\begin{split} \frac{d\text{ATM}_{\text{D}}}{dt} &= \frac{1}{2} k_{\text{dim}} \text{ATM}^2 - k_{\text{undim}} \text{ATM}_{\text{D}} \\ \frac{d\text{ATM}}{dt} &= 2 k_{\text{undim}} \text{ATM}_{\text{D}} - k_{\text{dim}} \text{ATM}^2 - k_{\text{af}} f(\text{C, ATM}^*) \text{ATM} + k_{\text{ar}} \text{ATM}^* \\ \frac{d\text{ATM}^*}{dt} &= k_{\text{af}} f(\text{C, ATM}^*) \text{ATM} - k_{\text{ar}} \text{ATM}^* \end{split}$$

Where $f(C, ATM^*) = (\alpha_1 C + \alpha_2 C * ATM^* + \alpha_3 ATM^*)$ and C is DSB complex

Simulation: Switch like behavior of ATM*

Normalized by ATM^T

Bakkenist & Kastan, Nature 2003

Time response: ON-to-OFF signal

Basic structure of model

The p53-MDM2 Negative Feedback Loop

Signal transduction to oscillator

Accelerated autodegradation of MDM2 by DNA damage kinase is necessary for p53 activation

ATM* directly activates MDM2 auto-degradation

Modified p53 – Mdm2 oscillator

p53 – Mdm2 oscillator: equations

$$\frac{dp53}{dt} = s_{p53} - \delta_{p53}p53$$

$$\frac{dmdm2}{dt} = s_{mdm2} + k_{mdm2} \frac{[TP53^*(t-\tau)]^n}{[TP53^*(t-\tau)]^n + K^n} - \delta_{mdm2}mdm2$$

$$\frac{dTP53}{dt} = r_{TP53}p53 - \mu_{TP53}TP53 - \nu_{TP53}MDM2 \frac{TP53}{TP53 + K_d} + k_{rp}TP53^* - k_{fp}ATM^* \frac{TP53}{TP53 + K_p}$$

$$\frac{dTP53^*}{dt} = k_{fp}ATM^* \frac{TP53}{TP53 + K_p} - k_{rp}TP53^* - \nu_{TP53^*}MDM2 \frac{TP53^*}{TP53^* + K_d^*}$$

$$\frac{dMDM2}{dt} = r_{MDM2}mdm2 - [\mu_{MDM2} + (\nu_{MDM2} - \mu_{MDM2}) \frac{ATM^*}{ATM^* + K_a}]MDM2$$

$$n=4$$

mRNA: p53, mdm2

Protein: TP53 (inactive), TP53* (active / phosphorylated), MDM2

Complete Model Results

Predict drop of MDM2 at the beginning of time course

Experiment

Lahav et al., Nature Genetics 2004

200

400 600 Time (min)

800

1,000

Fluorescence (AU)

0 15'30'1h 2h 3h 4h 5h 6h 7h 8h 10h

MDM2

Complete Model Results

Stochasticity in oscillation: IR of 5 Gy induces one, two or three oscillations

Complete Model Results

Lahav et al., Nature Genetics 2004

- Number of pulses increases as IR dose increases
- Less stochasticity than experiment

Digital behavior

Period as function of IR dose:

Pulse height as function of IR dose:

Simulating a cell population

Experiment

0 15'30'1h 2h 3h 4h 5h 6h 7h 8h 10h

Smarter simulation of cell populations

Hopf Bifurcation

Dimensionless oscillator

Phase plane: reduced 2D oscillator

Bifurcation diagram w.r.t. ATM*

System as highly sensitive switch

ATM*: normalized to total concentration TP53: normalized to basal concentration

Stability analysis

With DNA damage induced degradation of MDM2 by ATM*

- improves the robustness of oscillation
- Time delay not required
- But time delay helps to set period of oscillation

Conclusion

- Propose model for digital behavior of p53-mdm2 system to replicate "digital behavior"
- Stable oscillator results from negative feedback loop with time delay
- Initial number and repair process are stochastic processes – sets number of pulses
- ATM is cooperative sensor
- Future work to verify model and extend to apoptosis