時系列分析 ハンズオン#1

進行予定

第1回「時系列データをみる」

- ・時系列分析の考え方
- ・時系列データの構成要素
- (自己相関, 周期的変動, トレンド, 外因性, ホワイトノイズ)
- ・定常過程とは何か、定常過程だと何がうれしいのか
- ・時系列データの変換
- ・時系列データをみる[ハンズオン]
- ・ホワイトノイズ, ランダムウォークなどを書いてみる[ハンズオン]

講師自己紹介

• 氏名:大久保 亮介

• 現在薬学部4年

• 研究予定例:シミュレーションによる漢方薬理の推定,時空間統計解析による「証」の分布推定 など

• 担当講義:基礎統計→CNN,高校数学

時系列分析の考え方

時系列分析とは?

過去のデータから、 将来のデータ変化を 予測する

時系列データ

ebina_tuki

ebiria_taiti	
Month	kion
1997/1	4.8
1997/2	5.8
1997/3	9.7
1997/4	14.3
1997/5	18.5
1997/6	21.9
1997/7	26
1997/8	26.6
1997/9	22.3
1997/10	17
1997/11	13.1
1997/12	7.8
1998/1	3.8
1998/2	6.1
1998/3	9.3
1998/4	15.7
1998/5	20.2
1998/6	21.2

例:海老名市の平均気温

時系列データ

AirPassengers

Month	#Passengers
1949-01	112
1949-02	118
1949-03	132
1949-04	129
1949-05	121
1949-06	135
1949-07	148
1949-08	148
1949-09	136
1949-10	119
1949-11	104
1949-12	118
1950-01	115
1950-02	126
1950-03	141
1950-04	135
1950-05	125
1950-06	149

例: AirPassengers.csv

時系列データの特徴

観測される順序に 意味がある

1日のデータは, 1日に一回しか手に入らない

→何が母集団?

確率分布

確率分布からの抽出

モデリングの考え方

時系列データの構成要素

基本的なパラメータ

もしt地点が無数に あったときの平均と考える

期待值

$$\mu_t = E(y_t)$$

t地点におけるデータの期待値

分散

$$V(y_t) = E[(y_t - \mu_t)^2]$$

t地点におけるデータの分散

標準偏差(ボラティリティ): 分散の平方根

構成要素

- ・自己相関
- 周期的変動
- ・トレンド
- ・外因性
- ・ホワイトノイズ

構成要素ごとに分解

構成要素ごとに分解

自己相関

データの前後に、関係がある

→データ同士が独立でない

・正の相関:昨日が高いと、今日も高い

・負の相関:昨日が高いと、今日は低い

コレログラム:

何地点前と自己相関を起こしているか

パラメータ

$$\gamma_{kt} = Cov(y_t, y_{t-k})$$
 k次の自己共分散
$$= E[(y_t - \mu_t)(y_{t-k} - \mu_{t-k})]$$

自己相関

$$\rho_{kt} = Corr(y_t, y_{t-k})$$
 k次の自己相関

$$=\frac{Cov(y_t, y_{t-k})}{\sqrt{V(y_t)V(y_{t-k})}}$$

パラメータ

偏自己相関

$$P_{tk} = \frac{Cov(y_t - \hat{y}_t, y_{t-k} - \hat{y}_{t-k})}{\sqrt{V(y_t - \hat{y}_t)V(y_{t-k} - \hat{y}_{t-k})}}$$

k次の偏自己相関

→k-1地点までの 影響が除かれた 自己相関

コレログラムの例

例:海老名市の平均気温

自己相関

偏自己相関

コレログラムの例

例: AirPassengers.csv

自己相関

偏自己相関

周期的変動

- ・気温の変化
- →夏は高く, 冬は低い

トレンド

- ・売り上げが毎月右肩上がり
- →正のトレンドがある

外因性

・近くでイベントがあって売り上げが上がった

ホワイトノイズ

将来を予測する情報がない雑音

t地点のホワイトノイズ: E_t

$$E(\epsilon_t) = 0$$

・期待値は0
$$E(\epsilon_t)=0$$
 ・分散は一定 $Cov(\epsilon_t,\epsilon_{t-k})=\sigma^2, k=0$

$$0, k \neq 0$$

ホワイトノイズの例

実用的には正規分布に したがうものを用いる

$$\epsilon_t \sim N(0, \sigma^2)$$

iid系列:

データが独立

ランダムウォーク

iid系列の累積和

$$y_t = y_{t-1} + \epsilon_t$$

$$\epsilon_t = -1 \ or \ 1$$

$$\epsilon_t \sim N(0, \sigma^2)$$

ランダムウォーク

ドリフト率 δ \rightarrow トレンドを表せる

$$y_t = \delta + y_{t-1} + \epsilon_t$$

$$\delta = 0.5$$

定常過程とは何か, 定常過程だと何がうれしいのか

定常過程の定義

期待値は時点によらず一定 $E(y_t) = \mu$

$$E(y_t) = \mu$$

自己共分散は 時点によらず 時間差のみに依存

$$Cov(y_t, y_{t-k}) = E[(y_t - \mu)(y_{t-k} - \mu)]$$

$$= \gamma_k$$

定常過程の例

定常過程

非定常過程

補足:定常過程の利点

パラメータが時点に依存せず一定

$$\bar{y} = \frac{1}{T} \sum_{t=1}^{I} y_t$$

$$\hat{\gamma}_k = \frac{1}{T} \sum_{t=1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})$$

自己相関

$$\hat{\rho}_k = \frac{\hat{\gamma}_k}{\hat{\gamma}_0}$$

推定値が 簡単に得られる 時系列データの変換

原系列

- ・分散が一定でない
- ・非定常過程

など

→予測しにくい

- ・対数
- ・差分
- ・対数差分

に変換

対数系列

 $\log y_t$

差分系列

$$\Delta y_t = y_t - y_{t-1}$$

対数差分系列

 $\Delta \log y_t$ 変化率に近似できる

- ・分散が一定
- ・定常過程 かもしれない →直近なら 予測できそう
 - (本当か?)

補足: 単位根過程

もとの系列が非定常過程で、 差分系列が定常過程のもの

例:ランダムウォーク

時系列データをみる[ハンズオン]

ホワイトノイズ, ランダムウォークなどを書 いてみる[ハンズオン]

補足:見せかけの回帰

ホワイトノイズ

ランダムウォーク

回帰係数

-0.083 ~ 0.040

-0.436 ~ -0.314

なぜ?

回帰分析の前提

- 1.系列無相関
- 2.分散均一性
- 3.説明変数との無相関
- 4.正規性

時系列データには 自己相関がある

→係数に意味がない

確認:

Ljung-Box検定