1. OSNOVI MATEMATIKE

1.1. OSNOVNI POJMOVI MATEMATIČKE LOGIKE

- Pod sudom (ili iskazom) podrazumijevamo suvislu deklarativnu izjavu, koja se u pogledu istinitosti podvrgava principu isključenja trećeg i kontradikcije, tj. koja (izjava) ima jednu i samo jednu vrijednost istinitosti; sud je, dakle, ili istinit ili neistinit.
- 2. Operacija sa sudovima:
 - 2.1. Konjunkcija. Ako su p i q sudovi, tada je $p \wedge q$ oznaka za sud "p i q".
 - 2.2. Disjunkcija. Ako su p i q sudovi, tada je $p \lor q$ oznaka za sud "p ili q".
 - 2.3. Implikacija. Ako su p i q sudovi, tada je p⇒q oznaka za sud "Ako je p, onda je q", tj. "p je dovoljan (uslov) za q" ili, pak, "q je potreban (uslov) za p". Znak ⇒ čitat ćemo "implicira" ili "povlači".
 - 2.4. Ekvivalencija. Ako su p i q sudovi, tada je $p \Leftrightarrow q$ oznaka za sud "p je onda i samo onda ako je q", tj. "p je potreban i dovoljan (uslov) za q" ili "p je ekvivalentno sa q".

Tablica istinitosti gornjih operacija sa sudovima:

p	q	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	0	1	1	0
0	0	0	0	1	1

gdje p=1, tj. q=0 znači da je p istinit, tj. q neistinit sud.

- 2.5. Negacija. Ako je p sud, onda ¬p označava sud "nije p" ili "ne p". Znak ¬ čitat ćemo kao "non" (latinski non=ne). U literaturi ćemo za negaciju suda p susresti još oznake: non p, p̄, p′.

 Sud non p biće istinit (neistinit) onda i samo onda ako je p neistinit (istinit).
- 3. Neka je p nekâ formula algebre sudova koja zavisi od parametra (varijable) x, tada (∀x) p znači "za svaki x je p". Simbol ∀ se zove univerzalni kvantifikator i podsjeća na prvo slovo "A" od njemačkog alle=svi ili engleskog all=svi. Slično (∃x) p označava "postoji x tako da je p", a ∃ predstavlja egzistencijalni kvantifikator (potiče od njemačkog "es gibt"="ima" ili engleskog "exists"="postoji").

Isto tako $(\exists!x)$ p označava "postoji samo jedno x takvo da je p", tj. x je vezano sa kvantifikatorom \exists .

ZADACI

- 1. Dokazati da su tačne formule:
 - a) $(p \Rightarrow q) \Leftrightarrow (q' \Rightarrow p');$ b) $((p \land q) \Leftrightarrow q) \Leftrightarrow (q \Rightarrow p);$ c) $(p \Rightarrow (q \Rightarrow r)) \Leftrightarrow (q \Rightarrow (p \Rightarrow r)).$
- 2. Ispitaj tok istinitosti formula:
 - a) $(p \lor q) \land (r \lor p)$; b) $(p \Rightarrow q) \Rightarrow q$; c) $(p \Leftrightarrow q) \lor (r' \Rightarrow s)$.
- 3. Dokaži ove jednakosti:
 - a) $p \land q = q \land p$, $p \lor q = q \lor p$, $p \Leftrightarrow q = q \Leftrightarrow p$ (komutativnost konjunkcije, disjunkcije i ekvivalencije);
 - b) $(p \land q) \land r = p \land (q \land r), (p \lor q) \lor r = p \lor (q \lor r), (p \Leftrightarrow q) \Leftrightarrow r = p \Leftrightarrow (q \Leftrightarrow r)$ (asocijativnost konjunkcije, disjunkcije i ekvivalencije);
 - c) $p \land p = p$, $p \lor p = p$ (konjunkcija i disjunkcija su idempotentne);
 - d) $p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$, $p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$ (distributivnost konjunkcije prema disjunkciji i obrnuto);
 - e) $\neg \neg p = p$ (involutivnost negacije);
 - f) $p \wedge 1 = p$, $p \Leftrightarrow 1 = p$, $p \vee 0 = p$ (1 je neutralni elemenat za konjunkciju i ekvivalenciju, a 0 disjunkciju);
 - g) $p \lor 1 = 1$, $p \land 0 = 0$ (1 je nulti elemenat za disjunkciju, a 0 za konjunkciju).
- 4. Provjeri ove jednakosti:
 - a) non $(\forall x) P(x) = (\exists x) \text{ non } P(x)$; b) non $(\exists x) P(x) = (\forall x) \text{ non } P(x)$;
 - c) non $((\forall x) \text{ non } P(x)) = (\exists x) P(x)$; d) non $((\exists x) \text{ non } P(x)) = (\forall x) P(x)$.
- Neka N označava skup prirodnih brojeva. Koja je od navedenih tvrdnji istinita, a koja nije:
 - a) $(\forall x \in N) (\exists y \in N) x < y$; b) $(\exists y \in N) (\forall x \in N) x < y$;
 - c) $(\forall x \in N) (\forall y \in N) (\exists z \in N) x + y = z;$ d) $(\forall x \in N) (\forall z \in N) (\exists y \in N) x + y = z?$
- Ispitaj istinitost tvrdnji iz prethodnog zadatka ako tamo umjesto N stavimo skup Z cijelih brojeva.
- 7. Dokazati De Morganove formule:
 - a) $(p \land q)' = p' \lor q'$; b) $(p \lor q)' = p' \land q'$.
- 8. Pomoću tablice istinitosti pokazati da su slijedeći sudovi identički istiniti (tautologije):
 - 8.1. $(p\Rightarrow q)\Leftrightarrow (p'\vee q);$ 8.2. $(p\vee q)\Leftrightarrow (p'\wedge q');$ 8.3. $p\Rightarrow (q\Rightarrow (p\wedge q));$
 - 8.4. $(p \Rightarrow q) \Leftrightarrow [(p \Rightarrow q) \land (q \Rightarrow p)];$ 8.5. $(p \Rightarrow q) \Rightarrow (p \Rightarrow p);$
 - 8.6. $(p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r));$ 8.7. $(p_1 \Rightarrow p_2) \land \dots \land (p_{n-1} \Rightarrow p_n) \land (p_n \Rightarrow p_1) \Leftrightarrow \Leftrightarrow (p_1 \land \dots \land p_n) \lor (p'_1 \land \dots \land p'_n).$

- 9. Ispitaj tôk istinitosti formule: $A \equiv (p \Rightarrow q) \Rightarrow (((p \Rightarrow q) \Rightarrow r) \Rightarrow (p \Rightarrow r)).$
- 10. Ispitati da li su formule A i B istovrijedne, tj. da li je A = B u slučaju kad je: a) $A = p \Rightarrow (q \Rightarrow r)$, $B = q \Rightarrow (p \Rightarrow r)$; b) $A = p \land (p \Rightarrow q)$, B = q.
- 11. Dokazati da je implikacija tranzitivna, tj. da je slijedeća formula tautologija: $A \equiv ((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$.

RJEŠENJA

1. Dokaz ćemo provesti na osnovu tablice istinitosti za datu formulu:

a)	p	q	p'	q'	$p \Rightarrow q$	$q' \Rightarrow p'$	$(p \Rightarrow q) \Leftrightarrow (q' \Rightarrow p')$
	1	1	0	0	1	1	1
	1	0	0	1	0	0	1
	0	1	1	0	1	1	1
	0	0	1	1	1	1	1

b) p	q	$p \wedge q$	$(p \land q) \Leftrightarrow q$	$q \Rightarrow p$	$((p \land q) \Leftrightarrow q) \Leftrightarrow (q \Rightarrow p)$
-1	1	1	1	1	1
1	0	0	1	1	1
(1	0	0	0	1
0	0	0	1	1	1

c)	p	q	r	$q \Rightarrow r$	$p \Rightarrow r$	$(p \Rightarrow (q \Rightarrow r))$	$(q \Rightarrow (p \Rightarrow r))$
	1	1	1	1	1	1	1
	1	1	0	0	0	0	0
	1	0	1	1	1	1	1
	1	0	0	1	0	1	1
	0	1	1	1	1	1	1
	0	1	0	0	1	1	1
	0	0	1	1	1	1	1
	0	0	0	1	1	1	1

- 2. Formule a) i c) nisu ni identički istinite ni neistinite; b) Formula $(p \Rightarrow q) \Rightarrow q$ je tautologija.
- 4. a) Ako za svako x ne vrijedi P(x), onda postoji bar jedan x za koji nije P(x) i obratno (ako postoji x za koji nije P(x), onda ne vrijedi da za svako x vrijedi P(x)).
- b), c) i d) provjeravaju se analogno.
- 5. a) i c) su istinite, dok su b) i d) neistinite.
- 6. a), c) i d) istinite, b) neistinita.
- 7. Dokaz De Morganovih formula možemo "pročitati" iz tablice istinitosti:

p	q	p'	q'	$p \wedge q$	$(p \wedge q)'$	$p' \lor q'$	$p \lor q$	$(p \lor q)'$	$p' \wedge q'$
1	1	0	0	1	0	0	1	0	0
1	0	0	1	0	1	1	1	0	0
0	1	1	0	0	1	1	1	0	0
0	0	1	1	0	1	1	0	1	1

Formula a) slijedi iz jednakosti 6. i 7. kolone, a formula b) iz jednakosti 9. i 10. kolone.

9. Tôk istinitosti formule A proizlazi iz tabele:

p	q	r	$p \Rightarrow q$	$(p \Rightarrow q) \Rightarrow r$	$p \Rightarrow r$	$((p \Rightarrow q) \Rightarrow r) \Rightarrow (p \Rightarrow r)$	A
1	1	1	1	1	1	1	1
1	1	0	1	0	0	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	0	0	1
0	1	1	1	1	1	1	1
0	1	0	1	0	1	1	1
0	0	1	1	1	1	1	1
0	0	0	1	0	1	1	1

- tj. A je tautologija.
- 10. a) Implikacija $p\Rightarrow (q\Rightarrow r)$ je netačna ako i samo ako je p=1 i $(q\Rightarrow r)=0$, tj. formula $A=p\Rightarrow (q\Rightarrow r)$ je netačna ako i samo ako je p=q=1 $\land r=0$. Na isti način (prostom zamjenom slova p i q) dobije se da je $B=q\Rightarrow (p\Rightarrow r)$ netačno ako i samo ako je q=p=1 $\land r=0$. Dakle, A=B je tačno za sve vrijednosti istinitosti sudova p, q, r.
 - b) Za $p=q=1:A=1 \land (1\Rightarrow 1)=1 \land 1=1$, B=q=1, tj. A=B. Za p=0, q=1 je $A=0 \land (0\Rightarrow 1)=0 \land 1=0$, B=q=1, tj. $A\neq B$. Prema tome, A i B nisu istovrijedne formule.
- 11. Dokaz proizlazi iz tablice istinitosti:

p	q	r	$p \Rightarrow q$	$q \Rightarrow r$	$(p \Rightarrow q) \land (q \Rightarrow r)$	$p \Rightarrow r$	A
1	1	1	1	1	1	1	1
1	1	0	1	0	0	0	1
1	0	1	0	1	0	1	1
1	0	0	0	1	0	0	1
0	1	1	1	1	1	1	1
0	1	0	1	0	0	1	1
0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	1

1.2. SKUP, RELACIJA, FUNKCIJA, OPERACIJA

- Kantor*, osnivač teorije skupova, pojam skupa objašnjava na sljedeći način: "Izvjesni, jasno odvojeni i individualizirani objekti naše intuicije ujedinjeni u jednu cjelinu čine skup".
 - Skup prihvatamo kao osnovni pojam.**
- 2. Ako je x elemenat skupa S, onda ćemo pisati x∈S; u suprotnom, x∉S ili x non∈S. U tom smislu S={x|x∈S}, što čitamo kao "S je skup elemenata x koji imaju osobinu da x pripada skupu S". Uopštavajući takav pristup, kažemo da skup S sadrži one elemente x koji imaju svojstvo P(x) (⇔x∈S), tj. S={x|P(x)}, što treba da znači "S je skup svih elemenata x koji imaju svojstvo P(x)".

3. Ako svaki elemenat skupa A pripada i skupu B, tada se kaže da je A podskup od B (ili da je B nadskup od A), što se zapisuje kao $A \subset B$ (ili $B \supset A$), tj. prema simbolima matematičke logike

$$A \subset B \stackrel{\mathsf{Df}}{\Leftrightarrow} (\forall x) (x \in A \Rightarrow x \in B).$$

4. Jednakost skupova definiše se na sljedeći način:

$$A = B \stackrel{\text{Df}}{\Leftrightarrow} (\forall x) (x \in A \Leftrightarrow x \in B).$$

Ova definicija je u skladu sa $S = \{x | x \in S\}$.

5. Ø je oznaka za prazan skup, tj. skup koji nema nijednog elementa. Na primjer, Ø je skup realnih brojeva koji su rješenja jednačine $x^2 + 1 = 0$. Osim toga, za svaki skup A je $\emptyset \subset A$.

Vodeći računa o definiciji inkluzije i operacija ekvivalencije i implikacije, lako je dokazati:

$$A = B \Leftrightarrow A \subset B \land B \subset A$$
.

- 6. Neka su A i B skupovi; tada definišemo operacije nad skupovima:
 - 6.1. Unija skupova A i B:

$$A \cup B \stackrel{\text{Df}}{=} \{x | x \in A \lor x \in B\}.$$

6.2. Presjek skupova A i B:

$$A \cap B \stackrel{\text{Df}}{=} \{x | x \in A \land x \in B\}.$$

6.3. Razlika (diferencija) skupova A i B:

$$A \setminus B \stackrel{\text{Df}}{=} \{x | x \in A \land x \notin B\}.$$

6.4. Ako je $A \subset I$, skup

$$A' \stackrel{\mathrm{Df}}{=} \{ x | x \notin A \land x \in I \}$$

nazivamo komplementom skupa A u odnosu na skup I.

7. Partitivni skup P(A) skupa A je skup svih podskupova od A, tj.

$$P(A) \stackrel{\mathrm{Df}}{=} \{B | B \subset A\}.$$

Primjer: Neka je $A = \{1, 2, 3\}$, tada je:

$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}, A\}.$$

8. Uređen par elemenata a i b je

$$(a, b) \stackrel{\mathrm{Df}}{=} \{ \{a\}, \{a, b\} \},\$$

^{*} Georg Cantor (1845-1918), njemački matematičar, osnivač moderne teorije skupova.

^{**} Teorija skupova neće ovdje biti tretirana kao formalizirana deduktivna teorija, već samo neformalno kao takozvana "klasična" ili "naivna" teorija skupova. Vidjeti o tome: Đuro Kurepa, Teorija skupova, Školska knjiga, Zagreb, 1951.

gdje se a naziva prva koordinata (komponenta ili projekcija) i b druga koordinata uređenog para (a, b).

Na osnovu ove definicije dokazuje se da je

$$(a, b) = (c, d) \Leftrightarrow (a = c) \land (b = d).$$

Analogno se definiše uređena n-torka

 (a_1, \ldots, a_n) koja se označava, takođe, sa $\langle a_1, \ldots, a_n \rangle$.

9. Neka su A i B skupovi, tada je Dekartov (Kartezijev)* proizvod tih skupova

$$A \times B \stackrel{\text{Df}}{=} \{(a, b) | a \in A \land b \in B\}, \text{ tj.}$$

$$(\forall a \in A) (\forall b \in B) (a, b) \in A \times B.$$

Analogno, za kakav god konačan broj (ne nužno različitih skupova)

$$A_1, A_2, \ldots, A_n \text{ je } A_1 \times A_2 \times \ldots \times A_n \stackrel{\text{Df}}{=} \{(a_1, a_2, \ldots, a_n) | a_1 \in A_1 \land a_2 \in A_2 \land \ldots \land a_n \in A_n\}.$$

Ako je $A_1 = A_2 = \dots = A_n = A$, umjesto $A \times A \times \dots \times A$ pišemo A^n .

- 10. Neka je $\varrho \subset A \times B$, tada je ϱ (binarna) relacija u skupu $A \times B$. Ako je A = B, onda se kaže da je ϱ relacija u skupu A. Umjesto $(x, y) \in \varrho$ uobičajeno je pisati $x \varrho y$. Slično $(x, y) \notin \varrho \Leftrightarrow x \operatorname{non} \varrho y$.
- 11. Neka je $\varrho \subset S \times S$, tada su moguća svojstva relacije ϱ , na primjer:
 - 11.1. refleksivnost: $(\forall a \in S)$ aga;
 - 11.2. simetričnost: $(\forall a, b \in S) a \varrho b \Rightarrow b \varrho a;$
 - 11.3. antisimetričnost: $(\forall a, b \in S) a \varrho b \land b \varrho a \Rightarrow a = b;$
 - 11.4. tranzitivnost: $(\forall a, b, c \in S) a \varrho b \land b \varrho c \Rightarrow a \varrho c$.
- Binarna relacija Q u S je relacija ekvivalencije ako je refleksivna, simetrična i tranzitivna. Takva relacija se često označava sa ~.
- 13. Binarna relacija koja je refleksivna, antisimetrična i tranzitivna zove se relacija (djelimičnog, parcijalnog) uređenja. Relacija uređenja najčešće se označava sa ≤ ili sa ≥ . Za skup S u kome je definisana relacija ≤ (parcijalnog) uređenja kaže se da je (parcijalno) uređen tom relacijom.

Ako je skup S uređen relacijom \leq koja ima osobinu

$$(\forall a, b \in S) (a \leq b) \lor (b \leq a),$$

kaže se da je S tom relacijom totalno (potpuno) uređen.

14. Neka su X i Y dva neprazna skupa. Preslikavnje ili funkcija f skupa X u skup Y je pravilo prema kome se svakom $x \in X$ pridružuje jedno i samo jedno $y \in Y$. Tu činjenicu zapisujemo na jedan od slijedećih načina:

$$f: X \to Y; f: (x, y), x \in X, y \in Y; X \xrightarrow{f} Y; x \mapsto f(x), x \in X, f(x) = y \in Y,$$

gdje se x naziva original (nezavisno promjenljiva),

y = f(x) slika (zavisno promjenljiva), a

X se naziva definicioni skup (ili domen) preslikavanja.

Gornja definicija funkcije može se kraće zapisati:

$$f: X \to Y \stackrel{\mathsf{Df}}{\Leftrightarrow} (\forall x \in X) (\exists! \ y \in Y) f(x) = y.$$

Moguća je slijedeća veza između funkcije i relacije:

Relacija $f \subset X \times Y$ je funkcija $f: X \to Y$ ako i samo ako su ispunjeni uslovi:

- (1) $(x, y) \in f \land (x, z) \in f \Rightarrow y = z$;
- (2) $\cup \{x | (x, y) \in f\} = X$.
- 15. Neka je $f: X \to Y \land A \subset X$, tada je $f(A) = \{y | (\exists x \in A) y = f(x) \}$.
- 16. Neka je $f: X \to Y$. Ako je f(X) = Y, tada kažemo da je f preslikavanje skupa X na skup Y ili da je f surjekcija (ili preslikavanje na).
- 17. Ako važi implikacija

 $f(a)=f(b)\Rightarrow a=b$, onda se f naziva uzajamno jednoznačno (preslikavanje) ili injekcija, ili 1-1 preslikavanje (sa X u Y).

- 18. Preslikavanje f koje je 1-1 i *na* zove se *bijekcija*. Ako su X i Y konačni, onda se za bijekciju $f:X \to Y$ kaže da je *permutacija*.
- 19. Ako je $f:A \rightarrow B$ i $g:B \rightarrow C$, onda je složeno preslikavanje $gf:A \rightarrow C$ (ili kompozicija preslikavanja f i g) definisana sa

$$(\forall x \in A) (gf) (x) = g (f (x)).$$

- 20. Preslikavanje $f: X \to X$ definisano sa f(x) = x za svako $x \in X$ naziva se identičkim preslikavanjem skupa X.
- 21. Ako je $f:X\to X$ i ako postoji preslikavanje $f^{-1}:f(X)\to X$ takvo da su složena preslikavanja ff^{-1} i $f^{-1}f$ identička preslikavanja, tj. takva da je

$$(\forall y \in f(X)) f(f^{-1}(y)) = y \land (\forall x \in X) f^{-1}(f(x)) = x,$$

tada preslikavanje f^{-1} nazivamo inverznim preslikavanjem preslikavanja f.

22. Ako je $f:X \to Y$ obostrano jednoznačno preslikavanje, tada postoji inverzno preslikavanje $f^{-1}:f(X) \to X$ i ono je jedinstveno.

^{*} Renatus Cartesius je latinsko ime i prezime francuskog matematičara i filozofa Dekarta (René Descartes, 1596-1650).

23. Neka je $S \neq \emptyset$. Tada preslikavanje $f: S \times S \rightarrow S$ nazivamo binarnom operacijom f u S. Prema definiciji preslikavanja (vidi 14) izlazi:

$$(\forall a, b \in S) (\exists! c \in S) f(a, b) = c,$$

što zapisujemo u obliku afb=c, gdje je a lijevi operand, b desni operand, c rezultat operacije sa operatorom f. Skup S sa operacijom f nazivamo grupoidom i označavamo sa (S, f).

- 24. Grupoid (S, o) naziva se grupa ako vrijede osobine:
 - 1° internost: $(\forall a, b \in S) (\exists! c \in S) a \circ b = c;$
 - 2° asocijativnost: $(\forall a, b, c \in S)(a \circ b) \circ c = a \circ (b \circ c)$;
 - 3° egzistencija neutralnog ili jediničnog elementa:

$$(\exists e \in S) (\forall a \in S) e \circ a = a = a \circ e$$

(e se naziva neutralnim ili jediničnim elementom);

4° egzistencija inverznog (simetričkog) elementa:

$$(\forall a \in S) (\exists \overline{a} \in S) a \circ \overline{a} = e = \overline{a} \circ a,$$

gdje je e jedinični element u S. Elemenat \overline{a} (označava se sa a^{-1} ili -a) naziva se inverznim ili simetričnim elementom elementa a.

Ako pored osobina $1^{\circ}-4^{\circ}$ u grupi (S, \circ) vrijedi:

- 5° komutativnost: (∀a, b∈S) a∘b=b∘a, tada se kaže da je grupa komutativna ili Abelova.*
- Neka je (T, \circ) grupa i $T \subset S$, tada grupu (T, \circ) nazivamo podgrupom grupe (S, \circ) .
- 25. Struktura (S, o, *) gdje su o i * dvije binarne interne operacije u S naziva se prsten ako je:
 - 1° (S, o) Abelova grupa;
 - 2° operacija * je asocijativna;
 - 3° za sve $a, b, c \in S$ vrijedi

$$a*(b\circ c)=(a*b)\circ (a*c);$$

$$(b \circ c)*a = (b*a) \circ (c*a),$$

- tj. lijeva i desna distributivnost operacije * prema operaciji o.
- 26. Prsten $(S, \circ, *)$ je tijelo ako je $(S \setminus \{0\}, *)$ grupa, gdje je 0 neutralni element za operaciju \circ .

16

27. Komutativno tijelo je polje.

Uobičajene su oznake (G, \cdot) za grupu, $(R, +, \cdot)$ za prsten, $(\Phi, +, \cdot)$ za tijelo, "0" je neutralni elemenat za adiciju $+, \dots, 1$ " je neutralni elemenat za multiplikaciju.

28. Vektorskim prostorom ili linearnim prostorom nad tijelom $(\Phi, +, \cdot)$ nazivamo Abelovu grupu $X = \{x, y, \ldots\}$, u kojoj je definisano množenje s elementima iz Φ , tj.

$$(\forall x \in X) (\forall \alpha \in \Phi) \alpha x \in X.$$

Pri tome vrijedi:

 1° $\alpha(x+y)=\alpha x+\alpha y;$ 2° $(\alpha+\beta)x=\alpha x+\beta x;$ 3° $\alpha(\beta x)=(\alpha\cdot\beta)x;$ 4° 1x=x za sve elemente α , $\beta\in\Phi$, x, $y\in X$. Sa 1 je označen neutralni element multiplikacije u polju Φ . Elemente iz X zovemo vektorima, elemente iz Φ skalarima, operaciju + skupa X vektorsko sabiranje, operacija $(\alpha, x)\rightarrow\alpha x$ množenja vektora $x\in X$ skalarom $\alpha\in\Phi$.

29. Neka su (A, \circ) i (B, *) grupoidi. Ako postoji bijekcija (preslikavanje 1-1 i na) $f: A \rightarrow B$ tako da vrijedi

$$(\forall x, y \in A) f(x \circ y) = f(x) * f(y),$$

kaže se da su grupoidi (A, \circ) i (B, *) izomorfni, a za preslikavanje f kaže se da je izomorfizam od A na B.

Ako je A = B, f se zove automorfizam.

ZADACI

- 1. Dokazati da za operacije ∪, ∩ nad skupovima vrijedi:
 - a) $A \cup A = A$, $A \cap A = A$ (idempotentnost \cup i \cap);
 - b) $A \cup B = B \cup A$, $A \cap B = B \cap A$ (komutativnost);
 - c) $(A \cup B) \cup C = A \cup (B \cup C)$, $(A \cap B) \cap C = A \cap (B \cap C)$ (asocijativnost);
 - d) $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$ (apsorptivnost);
 - e) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (distributivnost \cup prema \cap , tj. obratno, \cap prema \cup);
 - f) zapisati distributivnost ∩ prema ∩, tj. ∪ prema ∪ i dokazati da odgovarajuće formule vrijede.
- 2. Dokazati De Morganove* formule:

$$(A \cup B)' = A' \cap B', (A \cap B)' = A' \cup B'.$$

- 3. Ako su $A, B \subset S$ i $A' = C_s A, B' = C_s A$, dokazati:
 - a) $\emptyset = S$, $S' = \emptyset$; b) (A')' = A; c) $A \cup A' = S$, $A \cap A' = \emptyset$;

^{*} Nils Abel (1802 – 1829), norveški matematičar.

^{*} Augustus de Morgan (1806-1871), engleski matematičar i logičar.

² Zbirka riješenih zadataka

- d) $A \subset B \Leftrightarrow A' \supset B' \Leftrightarrow A \cup B = B \Leftrightarrow A \cap B = A$;
- e) $A \cap B = \emptyset \Leftrightarrow A \subset B' \Leftrightarrow B \subset A'$; f) $A \cup B = S \Leftrightarrow A' \subset B \Leftrightarrow B' \subset A$.
- 4. Dokazati (Dedekind)*:

 $(A \cup B) \cap (B \cup C) \cap (C \cup A) = (A \cap B) \cup (B \cap C) \cup (C \cap A).$

5. Neka je simetrična razlika skupova $A \triangle B \stackrel{\text{Df}}{=} (A \setminus B) \cup (B \setminus A)$.

Dokazati da vrijedi:

- a) $A \triangle B = B \triangle A$; b) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$;
- c) $(A \triangle B) \triangle C = A \triangle (B \triangle C)$; d) $A \triangle \emptyset = A$, $A \triangle A = \emptyset$;
- e) $A \triangle B = (A \cup B) \setminus (A \cap B)$; f) $A \triangle B = [A \setminus (A \cap B)] \cup [B \setminus (A \cap B)]$;
- g) Ako je A, B, $C \subset S$, vrijedi

$$(A \triangle B \triangle C)' = [(A \cup B) \cap (B \cup C) \cap (C \cup A)] \setminus (A \cap B \cap C),$$

= [(A \cap B) \cup (B \cap C) \cup (C \cap A)] \sqrt{(A \cap B \cap C)},

(vidi prethodni zadatak).

- 6. Ako su A, B, C, D skupovi, dokazati da je:
 - a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$;
 - b) $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$;
 - c) $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$;
 - d) $(A \times B) \setminus (C \times D) = ((A \setminus C) \times B) \cup (A \times (B \setminus D));$
 - e) $(A \times B) \cup (C \times D) \subset (A \cup C) \times (B \cup D)$.
- 7. Iz $A \triangle X = A \Rightarrow X = \emptyset$. Dokazati.
- 8. Ispitati osobine binarnih relacija:
 - a) =, <, >, \leq , \geq na skupu realnih brojeva;
 - b) inkluzije \subset na P(S), tj. na partitivnom skupu skupa S;
 - c) = u skupu brojeva $A \subset R$;
 - d) paralelnost || u skupu pravih u Euklidovoj** ravni R²;
 - e) okomitost \(\perp \) u skupu pravih u R^2 ;
 - f) (N, |), gdje je N skup prirodnih brojeva i $a|b \stackrel{\text{Df}}{\Leftrightarrow} (3k \in N) b = ka(a, b \in N).$
 - g) "a je relativno prosto prema b", tj. kraće (a, b) = 1, gdje su $a, b \in N$;
 - h) relacije kongruentnosti, koja se definiše na sljedeći način:

$$a \equiv b \pmod{m} \stackrel{\text{Df}}{\Leftrightarrow} (\exists k \in \mathbb{Z}) a - b = km, (a, b, m \in \mathbb{Z}, m \neq 0).$$

(Ako a, b nisu kongruentni (mod m), to se zapisuje kao $a \not\equiv b \pmod{m}$).

- 9. Neka je $f:x\mapsto \frac{2x-a-b}{b-a}$, $(x\in[a, b], a, b\in R)$. Dokazati da je f bijekcija sa [a, b] na [-1, 1].
- 10. Odrediti sve funkcije $f: A \rightarrow B$ ako je:
 - a) $A = \{1, 2, 3\}, B = \{a, b\};$ b) $A = \{1, 2, 3\}, B = \{a, b, c\};$
 - c) $A = \{1, 2\}, B = \{a, b, c\}.$

Uoči preslikavanja koja su sirjekcija, injekcija ili bijekcija!

11. Ako su A, $B \subset X$, gdje je X domen funkcije f, dokazati da je:

$$f(A \cup B) = f(A) \cup f(B), \quad f(A \cap B) \subset f(A) \cap f(B).$$

- 12. Ispitati da li su slijedeće strukture grupe:
 - a) $S = \{1, -1, i, -i\}$ u odnosu na obično sabiranje;
 - b) isti skup u odnosu na množenje brojeva $(i^2 = -1)$;
 - c) $S = \{f_i(x) | i = 1, 2, 3, 4\}$, gdje je

$$f_1(x) = x$$
, $f_2(x) = \frac{1}{x}$, $f_3(x) = -x$, $f_4(x) = -\frac{1}{x}$ uz operaciju $f_i \circ f_j = f_i(f_j(x))$, i , $j = \overline{1, 4}$ (tj. $i, j \in \{1, 2, 3, 4\}$).

- d) $(N, \cdot), (Z, \cdot), (Q, \cdot), (R, \cdot);$ e) (N, +), (Z, +), (Q, +), (R, +);
- f) $S = \left\{ \frac{1+2m}{1+2n} \middle| m, n \in \mathbb{Z} \right\}$ u odnosu na obično množenje;
- g) $S = \left\{ f: x \mapsto \frac{ax+b}{cx+d} \middle| a, b, c, d, x \in R, ad-bc = 1 \right\};$ f(x) * g(x) = f(g(x));
- h) $(R^+, *)$, $a*b = a^b$; i) (R^+, \odot) , $a \odot b = a^2b^2$.
- 13. $S = \{f: X \rightarrow X | f \text{ je bijekcija} \} i$

 $(\forall f, g \in S) f(x) \circ g(x) = f(g(x))$. Dokazati da je (S, \circ) grupa.

14. a) Neka je $nZ = \{n \cdot z | z \in Z\}$ $(n \in N)$. Ispitati da li je struktura $(nZ, +, \cdot)$ prsten, tijelo ili polje.

Isto pitanje važi i za strukture:

- b) $(Q, +, \cdot), (R, +, \cdot), (C, +, \cdot);$ c) $(\{a+b\sqrt{2}|a, b\in Z\}, +, \cdot);$
- d) (S, +, ·), gdje je S skup polinoma sa cijelim (realnim) koeficijentima
- 15. Neka je (G, \cdot) grupa. Dokazati da je:
 - a) $(ab)^{-1} = b^{-1}a^{-1}$; b) $(a^n)^{-1} = (a^{-1})^n$, $a^n \cdot a^m = a^{n+m}$; c) $xa = xb \Rightarrow a = b$;
 - d) $ax = bx \Rightarrow a = b$; e) $ax = b \Rightarrow x = a^{-1}b$; f) $xa = b \Rightarrow x = ba^{-1}$, gdje su $a, b, x \in G$; $m, n \in Z$.

^{*} Richard Dedekind (1831 - 1916), njemački matematičar.

^{**} Euklid (oko 330 - oko 275), starogrčki matematičar.

16. Dokazati da brojevi oblika $a+b\sqrt[3]{2}+c\sqrt[3]{4}$, gdje $a,b,c\in Q$, obrazuju polje u odnosu na operacije + i \cdot .

Naći inverzni elemenat elementa $x = 1 - \sqrt[3]{2} + 2\sqrt[3]{4}$.

17. U prstenu $(Z, +, \cdot)$ definisane su operacije:

$$a \oplus b : \stackrel{\text{Df}}{=} a + b + 1;$$

$$a \odot b : \stackrel{\text{Df}}{=} ab + a + b$$

Pokazati da su (Z, +, ·) i (Z, ⊕, ⊙) izomorfni prsteni.

- 18. Pokazati da je X vektorski prostor nad poljem Φ ako je:
 - a) X = R, $\Phi = R$ ili $X = R^n$, $\Phi = R$ $(n \in N)$ i vrijedi $(\forall x, y \in R^n) x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \land \lambda x = (\lambda x_1, \lambda x_2, \dots, \lambda x_n),$ $\lambda \in R$, $x = (x_1, x_2, \dots, x_n) \in R^n$.
 - b) $\Phi = C$, X = C, c) X = C, $\Phi = R$,
 - d) X je skup svih polinoma stepena $\leq n$, $\Phi = R$.
- 19. Skup G čine funkcije

$$f_1(x) = x$$
, $f_2(x) = 1/x$, $f_3(x) = 1 - x$, $f_4(x) = 1/(1 - x)$, $f_5(x) = (x - 1)/x$, $f_6(x) = x/(x - 1)$,

a operacija o definisana je kao u zadatku 12. c).

Napišite Kelijevu* tablicu kompozicije za grupoid (G, \circ) i dokažite da je to grupa!

- **20.** Neka je P(S) partitivni skup skupa S i \triangle simetrična razlika skupova. Dokazati da je $(P(S), \triangle)$ grupa.
- 21. Pokazati da su (R, +), (R^+, \cdot) grupe koje su izomorfne. (Primjedba: $f: R \rightarrow R^+$ definisati sa $f(x) = 2^x$.)
- 22. Dokazati da u komutativnoj grupi G vrijedi:

$$(\forall a, b \in G) (\forall n \in Z) (ab)^n = a^n b^n$$
.

RJEŠENJA

 Sve formule se na osnovu definicija jednakosti skupova i operacija ∩, ∪ svode na dokazivanje analognih formula u algebri sudova.

Npr.:

- d) $x \in A \cup (A \cap B) \Leftrightarrow x \in A \lor (x \in A \land x \in B) \Leftrightarrow x \in A$;
- e) $x \in A \cup (B \cap C) \Leftrightarrow x \in A \lor (x \in B \land x \in C) \Leftrightarrow$

 $\Leftrightarrow (x \in A \lor x \in B) \land (x \in A \lor x \in C) \Leftrightarrow x \in (A \cup B) \cap (A \cup C)$

Primjedba: Uporedite ovaj zadatak sa zadatkom 1.1.3!

2. Niz ekvivalencija

 $x \in (A \cup B)' \Leftrightarrow x \notin A \cup B \Leftrightarrow (x \in A \lor x \in B)' \Leftrightarrow (x \notin A \land x \notin B) \Leftrightarrow x \in A' \land x \in B' \Leftrightarrow x \in A' \cap B'$ proizlazi na slijedeći način: prve dvije na osnovu definicije komplementa i unije, treća na osnovu De Morganove formule za sudove, četvrta, opet, prema definiciji komplementa i posljednja prema definiciji presjeka. Sad je, na osnovu tranzitivnosti ekvivalencije: $x \in (A \cup B)' \Leftrightarrow x \in A' \cap B'$, što prema definiciji jednakosti znači da je $(A \cup B)' = A' \cap B'$. Druga De Morganova formula dokazuje se analogno.

- 3. a) $x \in \emptyset' \Leftrightarrow x \in S \ (\land x \notin \emptyset), x \in S' \Leftrightarrow x \notin S \Leftrightarrow x \in \emptyset$;
- b) $x \in (A')' \Leftrightarrow (x \in A')' \Leftrightarrow ((x \in A)')' \Leftrightarrow x \in A;$
- c) $x \in A \cup A' \Leftrightarrow x \in A \lor x \notin A \Leftrightarrow x \in S (A, A' \subset S),$ $x \in A \cap A' \Leftrightarrow x \in A \land x \notin A \Leftrightarrow x \in \emptyset;$
- d) $A \subset B \Leftrightarrow (x \in A \Rightarrow x \in B) \Leftrightarrow (x \notin B \Rightarrow x \notin A) \Leftrightarrow (x \in B' \Rightarrow x \in A') \Leftrightarrow B' \subset A'$;
- e) $A \cap B = \emptyset \Leftrightarrow (x \in A \Rightarrow x \notin B) \Leftrightarrow A \subset B' \Leftrightarrow B \subset A' \Leftrightarrow A \subset B'$:
- f) $A \cup B = S \Leftrightarrow A' \cap B' = \emptyset \Leftrightarrow A' \subset B \Leftrightarrow B' \subset A$.
- **4.** Neka je $a = x \in A$, $b = x \in B$, $c = x \in C$ i formule $\alpha = (a \lor b) \land (b \lor c) \land (c \lor a)$, $\beta = (a \land b) \lor (b \land c) \lor (c \land a)$. Tada je Dedekindova formula, prema definiciji jednakosti skupova, ekvivalentna sa formulom $\alpha = \beta$ u algebri sudova.
- 5. a) Proizlazi iz definicije simetrične razlike na osnovu komutativnosti unije.
 - b) Dokažimo prvo A∩(B\C)=(A∩B)\(A∩C).
 Postupak nastaviti kao u prethodnom zadatku.
- 6. a) $(x, y) \in (A \cup B) \times C \Leftrightarrow x \in A \cup B \land y \in C \Leftrightarrow \Leftrightarrow (x \in A \lor x \in B) \land y \in C \Leftrightarrow (x \in A \land y \in C) \lor (x \in B \land y \in C)$

 \Leftrightarrow $(x, y) \in A \times C \vee (x, y) \in B \times C \Leftrightarrow (x, y) \in (A \times C) \cup (B \times C)$, gdje niz ekvivalencija slijedi na osnovu: definicije Dekartovog proizvoda, definicije unije, distribucije \land prema \lor , definicije Dekartovog proizvoda i definicije unije, respektivno. Slično se dokazuju i ostale formule.

- 7. Pretpostavimo da je $X \neq \emptyset$, tj. neka postoji $x \in X$. Tada postoje dvije mogućnosti:
 - $1^{\circ} x \in X \land x \in A \Rightarrow x \notin A\Delta X$
 - $2^{\circ} x \in X \land x \notin A \Rightarrow x \in A \Delta X$

što je kontradiktorno sa $A\Delta X = A$, te pretpostavka $X \neq \emptyset$ otpada. Dakle, $X = \emptyset$.

- 8. a) = je relacija ekvivalencije na skupu relanih brojeva, <, >, ≤, ≥ su relacije poretka;
- b) \subset je relacija poretka na P(S); c) = je relacija ekvivalencije u skupu brojeva $A \subset R$;
- d) || u skupu pravih iz R² je relacija ekvivalencije; e) ⊥ je simetrična;
- f) relacija poretka; g) $(a, b) = 1 \Rightarrow (b, a) = 1$; h) relacija ekvivalencije;
- 9. $f^{-1}: y \mapsto \frac{1}{2} [(b-a)y + a + b] (y \in [-1, 1]^{f^{-1}} [a, b])$
- 10. a) Skup svih preslikavanja $\{f:A\mapsto B\}=\{(a, a, a), (a, a, b), (a, b, a), (a, b, b), (b, a, a), (b, b, b)\}$, gdje je svaka uređena trojka, u stvari, (f(1), f(2), f(3)). Sva preslikavanja, osim (a, a, a) i (b, b, b), jesu surjekcije, nema injekcija ni bijekcija;
 - b) u ovom slučaju ima $3^3 = 27$ preslikavanja. Preslikavanja $(f(1), f(2), f(3)) \in \{(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a)\}$ su surjektivna i injektivna, tj. bijektivna;
 - c) ima $3^2 = 9$ preslikavanja. Nema surjekcija, injekcije su $(f(1), f(2)) \in \{(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)\}.$
- 11. $y \in f(A \cup B) \Leftrightarrow (\exists x \in A \cup B) \ y = f(x) \Leftrightarrow (\exists x \in A) \lor (\exists x \in B)$

 $y = f(x) \Leftrightarrow ((\exists x \in A) \ y = f(x)) \lor ((\exists x \in B) \ y = f(x)) \Leftrightarrow (y \in f(A)) \lor (y \in f(B)) \Leftrightarrow y \in f(A) \cup f(B);$ $y \in f(A \cap B) \Leftarrow (\exists x \in A \cap B) \ y = f(x) \Leftarrow ((\exists x \in A) \land (\exists x \in B)) \ y = f(x) \Leftarrow ((\exists x \in A) \ y = f(x)) \land ((\exists x \in B) \ y = f(x)) \Leftrightarrow (y \in f(A)) \land (y \in f(B)) \Leftrightarrow y \in f(A) \cap f(B).$

^{*} Arthur Cayley (1821 - 1895), engleski matematičar.

Obrnuta inkluzija ne vrijedi u opštem slučaju, može npr. biti $A, B \neq \emptyset, f(A) = f(B), A \cap B = \emptyset$, pa je $f(A \cap B) = \emptyset \neq f(A) \cap f(B) = f(A)$.

- 12. a) Ne; b) da; c) da; d) (N, \cdot) , (Z, \cdot) nisu, (Q, \cdot) i (R, \cdot) su grupe; e) (N, +) nije grupa; f) da; g) da; h) ne; i) ne.
- 14. a), c) i d) prsten; b) polje.
- 15. a) Kako je

$$(a \cdot b) \cdot (b^{-1}a^{-1}) = a \cdot (b \cdot b^{-1}) a^{-1}$$
 (asocijativnost)
= $a \cdot a^{-1}$ ($bb^{-1} = e$)
= e

- b) dokaż indukcijom;
- c) $xa = xb \Rightarrow x^{-1}(xa) = x^{-1}(xb) \Rightarrow a = b$, pošto je $x^{-1}x = e$ za svako $x \in G$;

to je
$$(ab)^{-1} = b^{-1}a^{-1}$$
;

e)
$$ax = b \Rightarrow a^{-1}(ax) = a^{-1}b \Rightarrow x = a^{-1}b$$

16.
$$x^{-1} = \frac{1}{43} (5 + 9\sqrt[3]{2} - \sqrt[3]{4}).$$

- 17. Lako se provjerava da su $(Z, +, \cdot)$ i (Z, \oplus, \odot) prsteni. Ako je $f: x \mapsto x 1$, $(x \in Z)$, tada nije teško provjeriti da je
 - $(\forall x, y \in Z) f(x+y) = f(x) \oplus f(y), f(x \cdot y) = f(x) \odot f(y)$ (i da je f bijekcija), tj. dati prsteni su izomorfni.
- 19. Kelijeva tablica operacije o je:

0	f_1	f_2	f_3	f_4	f_5	f_6
f_1	f ₁ f ₂ f ₃ f ₄ f ₅ f ₆	f_2	f_3	f ₄	f_5	f_6
f_2	f_2	f_1	f_4	f_3	f_6	f_5
f_3	f_3	f_5	f_1	f_6	f_2	f_4
f_4	f ₄	f_6	f_2	f_5	f_1	f_3
f_5	f_5	f_3	f_6	f_1	f_4	f_2
f_6	f_6	f_4	f_5	f_2	f_3	f_1

Koristeći tu tablicu, lako se provjerava:

(i) operacija o je interna, tj.

$$(\forall i, j = \overline{1, 6}) f_i \circ f_i = f_i(f_i(x)) \in \{f_k | k = \overline{1, 6}\};$$

(ii) $f_i \circ f_1 = f_1 \circ f_i = f_i$ za svako $i = \overline{1, 6}$, tj.

f₁ je neutralni elemenat operacije o;

- (iii) $f_i \circ f_i = f_1$, za i = 1, 2, 3, 6, dok je $f_4 \circ f_5 = f_5 \circ f_4 = f_1$, tj. $f_i^{-1} = f_i$ za i = 1, 2, 3, 6 dok je $f_4^{-1} = f_5$ i $f_5^{-1} = f_4$;
- (iv) lako se provjerava asocijativnost, tako npr. $(f_2 \circ f_3) \circ f_6 = f_4 \circ f_6 = f_3$, $f_2 \circ (f_3 \circ f_6) = f_2 \circ f_4 = f_3$ itd. Da li je ovo Abelova grupa?

1.3. OSNOVNE OSOBINE SKUPA REALNIH BROJEVA I NJEGOVIH PODSKUPOVA

- 1. Struktura $(R, +, \cdot)$ je polje, tj.:
 - 1.1. (R, +) je Abelova grupa;
 - 1.2. $(R \setminus \{0\}, \cdot)$ je Abelova grupa gdje je 0 neutralni elemenat u odnosu na operaciju sabiranja;
 - 1.3. vrijedi distributivnost $(\forall x, y, z \in R) \times (y+z) = xy + xz$.

2. U skupu R definisana je binarna relacija

 $\leq (\subset R^2)$, za koju vrijedi:

- 2.1. ≤ je relacija totalnog poretka;
- 2.2. $x \le y \Rightarrow x + z \le y + z$ za svako $z \in R$;
- 2.3. $0 \le x$, $0 \le y \Rightarrow 0 \le x \cdot y$.
- 3. Neka je R ⊃ A ≠ Ø. Kaže se da je A ograničen odozgo (odozdo) ako postoji M ∈ R (tj. m∈R) takav da je x ≤ M (m≤x) za svako x ∈ A. Pri tome se M (tj. m) naziva majoranta, (minoranta) skupa A. Skup je ograničen ako je ograničen i odozgo i odzdo.
- 4. Ako u skupu svih majoranti (minoranti) skupa A postoji najmanji (najveći) elemenat, on se naziva supremum (infimum) skupa A i označava sup A (inf A). Ako je još sup $A = a \in A$ (inf $A = b \in A$), onda je a maksimum (b minimum) skupa A i pišemo $a = \max A$ ($b = \min A$).
- 5. Svaki neprazan odozgo ograničen podskup skupa realnih brojeva ima supremum u R (aksiom supremuma).
- 6. Skup realnih brojeva R potpuno je okarakterisan sa 1, 2. i 5. tj. skup realnih brojeva je totalno uređeno polje na kome vrijedi aksiom supremuma. Ostala svojstva realnih brojeva mogu se izvesti iz ovih svojstava.
- 7. U skupu racionalnih brojeva

$$Q = \left\{ \frac{p}{q} \middle| p \in \mathbb{Z}, \ q \in \mathbb{N} \right\} \text{ vrijede sve osobine 1. i 2, ali ne vrijedi princip supremuma.}$$

8. Apsolutna vrijednost realnog broja je preslikavanje $||:R \rightarrow R_0^+$ koje je definisano formulom:

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0. \end{cases}$$

Važe slijedeće relacije:

(i) |-x| = |x|;

(iv) $||x| - |y|| \le |x - y|$;

(ii) |xy| = |x| |y|;

- (v) $(\forall a > 0)|x| \le a \Leftrightarrow -a \le x \le a;$
- (iii) $|x+y| \le |x| + |y|$;
- (vi) $(\forall a > 0) |x| > a \Leftrightarrow x > a \lor x < -a$.
- 9. Neki jednostavni podskupovi u R.

Neka je $a, b \in R$, a < b, tada uvodimo slijedeće oznake:

- $(a, b) = \{x | a < x < b\} = I;$
- $[a, b] = \{x | a \leq x \leq b\} = \overline{I};$
- $(a, b] = [a, b] \setminus \{a\} = (a, b) \cup \{b\};$
- $[a, b) = [a, b] \setminus \{b\} = (a, b) \cup \{a\}.$

Skup I se naziva zatvoreni interval ili segment, a I se naziva otvoreni interval ili samo interval.