Who Suffers from the COVID-19 Shock? Labor Market Heterogeneity and Welfare Consequences in Japan

July, 2020

Shinnosuke Kikuchi
MIT

Sagiri Kitao UTokyo Minamo Mikoshiba UTokyo

Intro: COVID-19 Shock and Labor Market in Japan

- Aggregate impacts: Not as large as in the US or others
 - Decline in employment in Mar.- Apr. 2020 : US (14%) v.s. Japan (1%)
- Even with that aggregate magnitude (not as large as for the US),
 we expected large heterogeneity in vulnerability
 - Employment type (contingent workers)
 - Sector (with face-to-face services)
 - Occupation (without flexibility in teleworking)
 - Demographics (gender, age,...)

- This paper: Short-run heterogeneous impacts during the initial months after the onset of the COVID-19 crisis

Notes: FRED, LFS

What we do: Descriptive Evidence + Welfare Consequences

- Empirical facts about the COVID-19 shock in labor market
 - Changes in employment by employment types, gender, sector, occupation, age
 - Changes in earnings by employment types and sector
- Quantitative life-cycle model for welfare consequences
 - **Heterogeneity** by age, gender, employment type, education level, occupation, and sector
 - Household type distribution **exogenously fixed** to match to data
- Preview of the results: Shocks are amplified for those who earned less prior to the crisis
 - Contingent, (young), female workers in social sectors and nonflexible occupations

Related Literature (never exhaustive)

- Heterogeneous impacts of COVID-19 shock (Inequality and COVID-19 shock):
 - US: Dingel and Neiman (2020), Alon, Doepke, Olmstead-Rumsey, and Tertilt (2020), ...
 - **UK:** Blundell, Costa Dias, Joyce, and Xu (2020)
 - **Germany:** Irlacher and Koch (2020)
 - Italy: Brunori, Maitino, Ravagli, and Sciclone (2020)
 - Canada: Gallacher and Hossain (2020)
 - China: Qiana and Fan (2020)
- → This paper: Japan

- COVID-19 shock to Japanese economy:

- Consumption response: Watanabe and Omori (2020)
- Job vacancy: Fukui, Kikuchi, and Goalist (2020), Kawata (2020)
- SMEs: Kawaguchi, Kodama, and Tanaka (2020)
- Entry/exit: Miyakawa, Oikawa, Ueda (2020)
- → This paper: Heterogeneous impacts in labor market

- 1. Empirical Facts
- 2. Quantitative Analysis
- 3. Conclusion

Data Source

- Employment from Labor Force Survey (LFS, 労働力調査)
 - By Age / Employment type
 - By Sector / Occupation
- Earnings from Monthly Labor Survey (MLS, 毎月勤労統計調査)
 - Contractual Monthly Earnings (決まって支給する給与)
 - By Employment type / Sector
- Joint distribution of many dimensions from Employment Status Survey conducted in 2017 (ESS, 就業構造基本調査)

Classification in Sector: Ordinary or Social

- Follow Kaplan, Moll, and Violante (2020)
- Classify 2 digit JSIC industries as Ordinary or Social

Ordinary (emp. share 48%)

- Agriculture, forestry and fishing
- Mining
- Construction
- Mining
- Manufacturing
- Utilities
- Information and communication
- Wholesale Trade
- Finance and Insurance

Social (emp. share 52%)

- Transport (except for commercial transport)
- Retail service
- Accommodations, eating, drinking services
- Educational Services
- Living-related services
- Medical, healthcare and welfare services

Classification in Occupation: Flexible or Non-flexible

- Follow Mongey, Pilossoph, and Weinberg (2020)
- Classify 1 digit JSOC occupations as Flexible or Non-flexible

Flexible (emp. share 60%)

- Management
- Office
- Professional and technical
- Sales

Non-flexible (emp. share 40%)

- Agriculture
- Services
- Transport and machine operators
- Carrying, cleaning, and packaging
- Security
- Manufacturing
- Construction and mining

Change in Employment

Employment Declines More for Contingent Worker

Changes in Employment by Employment Type

Jan 2020 = 100, not seasonally adjusted

Source: LFS 10

Employment Declines More for Social/Non-Flex workers

Changes in Employment by Sector and Occupation Type

Jan 2020 = 100, not seasonally adjusted

Source: LFS

Employment Declines More for Female Workers ...

Changes in Employment by Gender

Jan 2020 = 100, not seasonally adjusted

Source: LFS

... because Females are More in Contingent

Employment Type Distribution by Gender

%, 2017

Source: ESS 2017

... and because Females are More in Social/Non-Flex

Sector and Occupation Distribution by Gender

%, 2017

Source: ESS 2017 14

Younger generations experienced larger decline in employment

Change in Employment by Age and Employment Type

%, 2020 Q1 v.s. 2020 Q2, seasonally adjusted

Source: LFS and Authors' calibration

Change in Earnings

Earnings for Regular Workers Declined Uniformly

Changes in Earnings for Regular Workers by Sector

%, YOY for contractual earnings

Source: MLS

Declines for Contingent Workers are Large and Heterogeneous

Changes in Earnings for Contingent Workers by Sector

%, YOY for contractual earnings

Source: MLS 18

Summary of Facts

- Employment declined for most workers and more for
 - Contingent workers
 - Social sectors
 - Non-flex occupations
 - **Female** workers
 - Younger workers
- Earnings declined particularly for **contingent** workers
 - Larger decline for workers in **social** sectors

- 1. Empirical Facts
- 2. Quantitative Analysis
- 3. Conclusion

Overview: Quantitative Analysis

- Quantitative macroeconomic model with heterogeneity in age, gender, employment type, education level, occupation, and sector
 - Individual type distribution exogenously fixed to match to data
- Various MIT, COVID-19 shocks, which depends on types, from data
 - Employment and Earnings shock
 - [Extension] Add preference shock (share and inter-temporal)
 - [Extension] Change duration of shocks (decay in 6, 12, or 18 months)
- Examine short-run welfare consequences
 - Measure in present valued of consumption equivalent variation (PV-CEV, explained later)
 - [Extension] Add household types (Marriage pattern)

- Our focus: Short-run welfare consequences with **fixed types**
 - Feed observed changes in employment and earnings as given
 - Assume the economy goes back to the original steady-state

We do NOT

- Model production + occupational choice (structural change)
- Labor supply intensive margin (changes in hours worked, absentees)
- Heterogeneous MPC due to binding constraint
- Heterogeneous health risk (e.g. multi-risk SIR)

- Our focus: Short-run welfare consequences with **fixed types**
 - Feed observed changes in employment and earnings as given
 - Assume the economy goes back to the original steady-state
- We do **NOT**
 - Model production + occupational choice (structural change)
 - Does not change results much if still assuming that steady-state does not change
 - Focus is short-run = not to project future industrial structure with/after COVID-19
 - To generate these decline, we need decline in price, which we do not observe
 - Labor supply intensive margin (changes in hours worked, absentees)
 - Heterogeneous MPC due to binding constraint
 - Heterogeneous health risk (e.g. multi-risk SIR)

- Our focus: Short-run welfare consequences with fixed types
 - Feed observed changes in employment and earnings as given
 - Assume the economy goes back to the original steady-state
- We do NOT
 - Model production + occupational choice (structural change)
 - Labor supply intensive margin (changes in hours worked, absentees)
 - We capture # of employment and avg. earnings of remaining
 - Effects of hours worked (also absentees) included in avg. earnings
 - No data on types of absentees (and assume they get paid)
 - Larger layoff (future) risk for absentees = beyond our scope
 - Heterogeneous MPC due to binding constraint
 - Heterogeneous health risk (e.g. multi-risk SIR)

- Our focus: Short-run welfare consequences with fixed types
 - Feed observed changes in employment and earnings as given
 - Assume the economy goes back to the original steady-state
- We do NOT
 - Model production + occupational choice (structural change)
 - Labor supply intensive margin (changes in hours worked, absentees)
 - Heterogeneous MPC due to binding constraint
 - Data limitation (who's borrowing, mobility, ...)
 - Heterogeneous health risk (e.g. multi-risk SIR)

- Our focus: Short-run welfare consequences with fixed types
 - Feed observed changes in employment and earnings as given
 - Assume the economy goes back to the original steady-state
- We do NOT
 - Model production + occupational choice (structural change)
 - Labor supply intensive margin (changes in hours worked, absentees)
 - Heterogeneous MPC due to binding constraint
 - Heterogeneous health risk (e.g. multi-risk SIR)
 - Beyond our scope

Demographics and Types

- Type vector of individuals: $x = \{j, g, s, e, o, d\}$
 - $j = \{1,...,J\}$: Age. Born at j = 1, retire at $j = j^R$, live up to j = J.
 - $g = \{M, F\}$: Gender
 - $s = \{H, L\}$: Skill (education) type
 - $e = \{R, C\}$: Employment type. Regular and Contingent
 - $o = \{o_1, o_2\}$: Occupation type. Flexible and Not-flexible
 - $d = \{d_1, d_2\}$: Sector type. Ordinary and Social
- Population share of type : μ_{χ}
 - Exogenously given from data (ESS, 2017)
- Survival rate S_j (exogeneous)
- Accidental bequest, b, equally distributed

Earnings and Preferences

- Earnings of an individual in state *x* at time *t*:

$$y_{x,t} = \lambda_{x,t} \eta_x w_t$$

- $\lambda_{x,t}$: Shocks that affect earnings of type x at time t
- η_x : Efficiency unit of labor type x, Embed life-cycle and skill profiles
- w_t : Market wage per efficiency unit (no role)
- Per-period preference: consume ordinary goods and social goods

$$U(c_1, c_2) = \xi_t \frac{[c_1^{\gamma_t} c_2^{1 - \gamma_t}]^{1 - \sigma}}{1 - \sigma}$$

- ξ_t : Inter-temporal preference shifter (=1 before shock)
- γ_t : Weight on ordinary goods

Life-cycle Problem

Inter-temporal preference ordering of an individual of type x born at time t

$$U(\lbrace c_{1,t+j-1}, c_{2,t+j-1} \rbrace_{j=1}^{J}) = \sum_{j=1}^{J} \beta^{j-1} S_{j} \xi_{t+j-1} \frac{\left[c_{1,t+j-1}^{\gamma_{t+j-1}} c_{2,t+j-1}^{1-\gamma_{t+j-1}}\right]^{1-\sigma}}{1-\sigma}$$

subject to

$$(1 + \tau_{c,t})(c_{1,t} + c_{2,t}) + a_{t+1} = (1 - \tau_{l,t})\lambda_{x,t}\eta_x w_t + R_t(a_t + b_t) + \tau_{ls,t} : j < j^R$$

$$(1 + \tau_{c,t})(c_{1,t} + c_{2,t}) + a_{t+1} = p_t + R_t(a_t + b_t) + \tau_{ls,t}$$

$$: j \ge j^R$$

where

- $\{a, b, p\}$: asset, bequest, pension benefit
- $R = 1 + (1 \tau_a)r$: net-of-tax gross interest rate
- $\{\tau_c, \tau_l, \tau_a, \tau_{ls}\}$: tax of consumption, labor, asset, and lump-sum transfer

Calibration of Initial Economy (before COVID-19)

Parameter	Description	Value			
Demograph	Demographics				
J^R	retirement age	65 years old			
J	maximum age	100 years old			
$\mu_{j,g,s,e,o,d}$	population share	ESS data			
Preference					
β	subjective discount factor	1.0215 (annual)			
σ	risk aversion parameter	2.0			
γ	expenditure share on regular goods	0.789 (FIES)			
ξ	intertemporal weight	1 (before shock)			
Human Cap	pital				
$\eta_{j,g,s,e,o,d}$	life-cycle human capital	ESS data			
λ	shocks to earnings	1 (before shock)			
Government					
$ au_c$	consumption tax rate	10%			
η	labor income tax rate	13%			
$ au_a$	capital income tax rate	20%			
$ au_s$	lump-sum tax/transfer	4.8% of avg. earn			
p	social security benefit	30% of avg. earn			
Other Parameters					
r	interest rate	0%			
w	wage rate	normalization			

- β: match average growth of consumption (growth b/w 25-50)
- $\{\tau_l, \tau_a\}$: Imrohoroglu et al (2019)
- τ_{ls} : Balanced budget (equilibrium object)

Age Profiles of Earnings in the Initial Economy

Earnings in the Initial Economy

In model units, average earnings = 1

(b) By Age, Gender and Emp. Type

Source: Authors' calibration 31

COVID-19 Shock

Baseline: COVID-19 Shock in Quantitative Model (1)

- Baseline: Shocks to earnings = avg. earnings per worker and employment

 $\omega_{e,d,t}$: Earnings shock, specific to employment and sector types %, 2020Q1-Q2

	Ordinary	Social
Reg.	0.0	-0.1
Cont.	- 1.0	- 5.4

 $\phi_{o,d,t}$: Emp. shock, specific to occupation/sector types %, 2020Q1-Q2

	Ordinary	Social	
Flex	+ 0.3	-0.4	
Non-flex	- 1.0	- 4.4	

Baseline: COVID-19 Shock in Quantitative Model (2)

 $\nu_{j,e,t}$: Employment shock, specific to age and employment types

%, 2020 Q1 v.s. Q2, seasonally adjusted

Normalize average of regular workers to 0 when feeding to the model

Source: LFS and Authors' calibration

Duration: Changes in Earnings in Different Scenarios

Changes in Average Earnings in Different Scenarios

%, 2020Q1-Q2

Welfare Measure: PV-CEV

- CEV: Adjustment in consumption (in percentage points) for the rest of your entire life, which makes you indifferent, for each type $x = \{j, g, s, e, o, d\}$

$$\sum_{j=k}^{J} \beta^{j-1} S_{j} U(c_{1,x}^{**}, c_{2,x}^{**}) = \sum_{j=k}^{J} \beta^{j-1} S_{j} U((1 + \pi_{x}) c_{1,x}^{*}, (1 + \pi_{x}) c_{2,x}^{*})$$
With Shock

Without Shock

- "- 1%" for age-20: "- 1%" consumption change for 80 years to go
- "- 1%" for age-90: "- 1%" consumption change for 10 years to go
- **PV-CEV**: PV of adjustment of consumption in terms of average earnings of own types (to account for age differences)

PV-CEV =
$$\frac{\sum_{j=k}^{J} \left(\frac{\beta}{R}\right)^{j-1} S_{j} \, \pi_{x}(c_{1,x}^{*} + c_{2,x}^{*})}{y_{x}}$$

Quantitative Result

Baseline: Quantitative Results (1) Employment Type

Welfare Effects by Employment Type

%, in PV-CEV, aged 25-64

- On average, workers suffer by **1.87%**
- Contingent workers suffer 10x more (=9.05/0.92)
- Female workers suffer 3x more (=3.44/1.14)

Baseline: Quantitative Results (2) Sector and Occupation

Welfare Effects by Sector and Occupation

%, in PV-CEV, aged 25-64

	Ord	Ordinary		Social	
	Flex	Non-flex	Flex	Non-flex	
All	- 0.16	- 1.75	- 1.82	- 6.83	
Male	+ 0.05	- 1.44	- 0.83	- 5.16	
Female	- 0.85	- 3.90	- 2.90	- 9.75	

- Ordinary and flexible jobs suffer the least (0.16%)
- Social and non-flexible jobs suffer the most (6.83%)
- Female workers suffer more within sectors/ occupations

Baseline: Quantitative Results (3) Age and Gender

Welfare Effects by Age and Gender

%, in PV-CEV

- In all age groups,
 female workers
 suffer more
- The gender gap is larger for younger workers

Baseline: Quantitative Results (4) Age and Employment Type

Welfare Effects by Age and Employment Types

%, in PV-CEV

- In all age groups, contingent workers suffer more
- The gap is larger for younger workers

41

Robustness Checks and Extension

1. Welfare effects with preference shock

- Add preference shock matched to realized decline in expenditure
- Similar patterns of heterogeneous impacts

2. Welfare effects with different shock duration

Extension 2

- Change durations from 12 months to 6 months or 18 months
- More persistent shocks give larger welfare loss
- Similar patterns of heterogeneous impacts

3. Welfare effects across household types

Extension 3

Extension 1

- Construct hypothetical pairs of earners
- Compare different pairs and singles
- Hardest: Contingent, low-skilled females with same-type spouses

- Empirical Facts
 Quantitative Analysis
- 3. Conclusion

Conclusion

- Document **heterogeneous responses** toward the COVID-19 shock
 - Scope: Short-run during the initial months after the onset of the crisis
 - Method: Data and Quantitative macro model
- Negative effects in the labor market significantly vary across groups, and are amplified for those who earn less prior to the crisis
 - Contingent than regular workers
 - Younger than older workers
 - Female than male workers
 - Social sectors than ordinary sectors
 - Not-flexible occupations than flexible occupations

Back-ups

Baseline: Changes in Earnings (2)

Change in Average Earnings by Gender and Employment Type

%, relative to the initial economy

Robustness: Quantitative Results (1) Preference Shock

Welfare Effects by Employment Type

%, in PV-CEV, aged 25-64

		Employment Type		
	All	Regular	Cont.	
All	- 0.43	0.45	- 7.09	
Male	+ 0.23	0.45	- 5.90	
Female	- 1.85	0.45	- 7.40	

- CEV evaluated using pre-shock utility = caution interpretation to numbers
- Contingent workers suffer more
- Female workers suffer more

Back

Robustness: Quantitative Results (2) Shock Persistence

Welfare Effects by Shock Persistence

%, in PV-CEV, aged 25-64

	6 mo.	12 mo.	18 mo.
All	- 0.94	- 1.87	- 2.78
Male	- 0.58	- 1.14	- 1.71
Female	- 1.74	- 3.44	- 5.11

- Baseline = 12 months
- More persistent shocks generate larger welfare loss
- A pattern of heterogeneity remains the same

Back

Robustness: Quantitative Results (3) Household Type

Welfare Effects by Age and Household Type (married couples)

%, in PV-CEV

- Contingent-contingent couples suffer the most
- The gap is larger for younger workers

Back