RAJALAKSHMI ENGINEERING COLLEGE

RAJALAKSHMINAGAR, THANDALAM-602105

Name: Dharshan.B
Year / Branch / Section : 2 nd Year / AIML / A
Register No. : 231501036
Semester : 3 rd Semester
Academic Year :

INDEX

REG.NO:231501036		
NAME: DHARSHAN .B		
YEAR:IIYEAR	BRANCH:AIML	SEC:A

I EAR:II	I LAN	DNA	NCH:AIML	SEC.A
S. NO.	DATE	TITLE	PAGE NO.	TEACHER'S SIGNATURE / REMARKS
		WEEK01-BASICCPROGRAMS		
1.1		SWAPPINGOFTWONUMBERS		
1.2		ELIGIBILITYCRITERIA		
1.3		GROCERYITEMS		
1.4		BABA'SGIVINGPATTERN		
1.5		PUNCTUALITYINCENTIVE		
1.6		DIVISIBILITYFINDER		
1.7		QUOTIENTANDREMAINDER		
1.8		GREATESTOFALLNUMBERS		
1.9		EVENORODD		
1.10		FACTORIALOFANUMBER		
1.11		SUMOFNNATURALNUMBERS		
1.11		FIBONACCISERIES		
1.12		POWEROFINTEGERS		
1.13		PRIMEORNONPRIME		
1.14		REVERSEOFANINTEGER		
WEEK02-FINDINGTIMECOMPLEXITYOFALGORITHMS				
2.1		COUNTERMETHOD-WHILELOOP		
2.2		COUNTERMETHOD-FORLOOP		
2.3		COUNTERMETHOD-FACTORS		
2.4		COUNTERMETHOD-FUNCTION		
2.5		COUNTERMETHOD-REVERSE		

	WEEK03-DIVIDEANDCONQUER	
3.1	NUMBEROFZEROSINANARRAY	
3.2	MAJORITYELEMENT	
3.3	FINDINGFLOORVALUE	
3.4	TWOELEMENTSSUMTOX	
3.5	IMPLEMENTATIONOFQUICKSORT	
	WEEK04-GREEDYALGORITHMS	
4.1	COIN PROBLEM	
4.2	COOKIESPROBLEM	
4.3	BURGERPROBLEM	
4.4	ARRAYSUMMAXPROBLEM	
4.5	PRODCUTOFARRAYELEMENTS-MIN	
	WEEK05-DYNAMICPROGRAMMING	
5.1	PLAYINGWITHNUMBERS	
5.2	PLAYINGWITHCHESSBOARD	
5.3	LONGESTCOMMONSUBSEQUENCE	
5.4	LONGESTNON-DECREASING	
	SUBSEQUENCE	
	WEEK06-COMPETITIVEPROGRAMMING	;
6.1	FINDING DUPLICATES-O(N^2) TIME COMPLEXITY,O(1)SPACECOMPLEXITY	
6.2	FINDINGDUPLICATES-O(N)TIME COMPLEXITY,O(1)SPACECOMPLEXITY	
6.3	PRINT INTERSECTION OF 2 SORTED ARRAYS-O(M*N)TIMECOMPLEXITY,O(1) SPACE COMPLEXITY	
6.4	PRINT INTERSECTION OF 2 SORTED ARRAYS-O(M+N)TIMECOMPLEXITY,O(1) SPACE COMPLEXITY	
6.5	PAIRWITHDIFFERENCE-O(N^2)TIME COMPLEXITY,O(1)SPACECOMPLEXITY	
6.6	PAIR WITH DIFFERENCE -O(N) TIME COMPLEXITY,O(1)SPACECOMPLEXITY	

WEEK01-BASICC PROGRAMS

EXPERIMENTNO: 1.1

DATE:

SWAPPINGOFTWONUMBERS

GIVENTWONUMBERS, WRITEACPROGRAMTOSWAPTHENUMBERS.

FOREXAMPLE

Input	Result
10 20	20 10

PROGRAM

ELIGIBILITYCRITERIA

WRITEACPROGRAMTOFINDTHEELIGIBILITYOFADMISSIONFORAPROFESSIONAL COURSE BASED ON THE FOLLOWING CRITERIA:

MARKS IN MATHS >= 65

MARKS IN PHYSICS >= 55

MARKSINCHEMISTRY>=50 OR

TOTALINALLTHREESUBJECTS>=180

SAMPLETESTCASES:T

EST CASE 1:

INPUT

706080

OUTPUT

THECANDIDATEISELIGIBLE

TESTCASE2:

INPUT

508080

OUTPUT

THECANDIDATEISELIGIBLE

TESTCAS

E3INPUT

OUTPUT

THECANDIDATEISNOTELIGIBLE

PROGRAM

```
#include<stdio.h>in
      Input
                   Expected
                                               Got
  t main()
      70
                80 The candidate is eligible The candidate is eligible
                   The candidate is eligible | The candidate is eligible
      5fh€Ma₽R1;
      intmark2;
Passed all tests!

Passed int total;
      scanf("%d%d%d",&mark1,&mark2,&mark3);
      total=mark1+mark2+mark3;
      if(mark1>=65 &&mark2>=55 &&mark3>=50 &&total>=180)
          printf("The candidate is eligible");
      else if(total>=180)
          printf("The candidate is eligible");
      }
      else{
          printf("The candidate is not eligible");
  }
```

EXPERIMENTNO:1.3 DATE:

GROCERYITEMS

MALINI GOES TO BESTSAVE HYPER MARKET TO BUY GROCERY ITEMS. BESTSAVE HYPERMARKETPROVIDES10%DISCOUNTONTHEBILLAMOUNTBWHENEVERTHE BILL AMOUNT B IS MORE THAN RS.2000.

THEBILLAMOUNTBISPASSEDASTHEINPUTTOTHEPROGRAM.THEPROGRAM MUST PRINT THE FINAL AMOUNT A PAYABLE BY MALINI.

INPUTFORMAT:

THEFIRSTLINEDENOTESTHEVALUEOFB.

OUTPUTFORMAT:

THEFIRSTLINECONTAINSTHEVALUEOFTHEFINALPAYABLEAMOUNT A.

EXAMPLEINPUT/OUTPUT1:I

NPUT:

1900

OUTPUT:

1900

EXAMPLEINPUT/OUTPUT2:I

NPUT:

3000

```
#include despected Got t main()
      1900
              1900
                         1900
     int b;
     3000
            2700
                         2700
     int discount;
scanf("%d",&b);
Passedfall,tents)
         discount=b*0.10;
         printf("%d",b-discount);
     }
     else
     printf("%d",b);
}
```

EXPERIMENTNO:	1.4	DATE:

BABA'SGIVINGPATTERN

BABA IS VERY KIND TO BEGGARS AND EVERY DAY BABA DONATES HALF OF THE

AMOUNTHEHASWHENEVERABEGGARREQUESTSHIM.THEMONEYMLEFTINBABA'S HAND IS PASSED AS THE INPUT AND THE NUMBER OF BEGGARS B WHO RECEIVED THE

ALMSAREPASSEDASTHEINPUT.THEPROGRAMMUSTPRINTTHEMONEYBABAHADI N THE BEGINNING OF THE DAY.

INPUTFORMAT:

THE FIRST LINE DENOTES THE VALUE OF M.

THESECONDLINEDENOTESTHEVALUEOFB.

OUTPUTFORMAT:

THEFIRSTLINEDENOTESTHEVALUEOFMONEYWITHBABAINTHEBEGINNINGOFTH E DAY.

EXAMPLEINPUT/OUTPUT:

INPUT:

100

2

OUTPUT:

400

EXPLANATION:

Babadonatedtotwobeggars.Sowhenheencounteredsecondbeggarhehad100*2=Rs.200andwhenheencountered1sthehad200*2=Rs.400.

EXPERIMENTNO: 1.5 DATE:

PUNCTUALITYINCENTIVE

THECEOOFCOMPANYABCINCWANTEDTOENCOURAGETHEEMPLOYEESCOMING ON TIME TO THE OFFICE. SO HE ANNOUNCED THAT FOR EVERY CONSECUTIVE DAY AN EMPLOYEE COMES ON TIME IN A WEEK (STARTING FROM MONDAY TO SATURDAY), HE WILL BE AWARDED RS.200 MORE THAN THE PREVIOUS DAY AS "PUNCTUALITY INCENTIVE". THE INCENTIVE I FOR THE STARTING DAY (IE ON MONDAY) IS PASSED AS THE INPUT TO THE PROGRAM. THE NUMBER OF DAYS N AN EMPLOYEE CAME ON TIME CONSECUTIVELY STARTING FROM MONDAY IS ALSO PASSED AS THE INPUT. THE PROGRAM MUST CALCULATE AND PRINT THE "PUNCTUALITY INCENTIVE" P OF THE EMPLOYEE.

INPUTFORMAT:

THE FIRST LINE DENOTES THE VALUE OF I. THESECONDLINEDENOTESTHEVALUEOFN.

OUTPUTFORMAT:

THEFIRSTLINEDENOTESTHEVALUEOFP.

EXAMPLEINPUT/OUTPUT:

INPUT:

500

3

OUTPUT:

2100

EXPLANATION:

ONMONDAYTHEEMPLOYEERECEIVESRS. 500, ONTUESDAYRS. 700, ONWEDNESDAYRS. 900

SOTOTAL=RS.2100

DIVISIBILITYFINDER

TWONUMBERSMANDNAREPASSEDASTHEINPUT.ANUMBERXISALSOPASSEDAS THE INPUT. THE PROGRAM MUST PRINTTHENUMBERSDIVISIBLEBYXFROMNTOM (INCLUSIVE OF M AND N).

INPUTFORMAT:

THE FIRST LINE DENOTES THE VALUE OF M THESECONDLINEDENOTESTHEVALUEOFN THE THIRD LINE DENOTES THE VALUE OF X

OUTPUTFORMAT:

NUMBERSDIVISIBLEBYXFROMNTOM, WITHEACHNUMBERSEPARATEDBYA SPACE.

BOUNDARY CONDITIONS:

1<=M<=9999999 M < N <= 9999999 1 <= X <= 9999

EXAMPLEINPUT/OUTPUT1:

INPUT:

2

40 7

OUTPUT: 352821147

EXAMPLEINPUT/OUTPUT2:

INPUT:

66

121

11

OUTPUT:

12111099887766

QUOTIENT&REMAINDER

WRITEACPROGRAMTOFINDTHEQUOTIENT&REMAINDEROFGIVEN INTEGERS

FOREXAMPLE

Input	Result
12	4
3	0

PROGRAM

```
#includarytdiExpected
                           Got
t main()
              4
                           4
              0
                           0
  intdd;
  int dr;
Passed all tests!dd);
scanf("%d",&dr);
  int q;
  intrem;
  q=dd/dr;
  printf("%d\n",q);
  rem=dd%dr;
  printf("%d\n",rem);
}
```

EXPERIMENTNO: 1.8 DATE:

GREATESTOFALLNUMBERS

WRITEACPROGRAMTOFINDTHEGREATESTNUMBERSOF3INTEGERS.

FOREXAMPLE

Input		Result	
10	20	30	30

PROGRAM

```
#include<stdio.h>in
t main()
{
    inta;
    intb;
    int c;
    scanf("%d %d %d",&a,&b,&c);

    if(a>b &&a>c){
        printf("%d",a);
    }
    elseif(b>c&&b>a){ pr
        intf("%d",b);
    }
    else
    printf("%d",c);
}
```

	Input	Expected	Got	
~	10 20 30	30	30	~
Passe	d all tests!	~		

EVENORODD

WRITEACPROGRAMTOFINDTHENUMBERISODDOREVEN?

FOREXAMPLE

PROGRAM

DATE:

FACTORIALOFANUMBER

WRITEAPROGRAMTOFINDTHEFACTORIALOFANUMBER

FOREXAMPLE

PROGRAM

```
#include<stdio.h>in
                       Got
 ţ main()
            120
                       120
     intfactorial;
Passedfallttests!1₹;
     int n;
     scanf("%d",&n);
     for(inti=1;i<=n;i++)</pre>
          factorial=factorial*i;
     printf("%d",factorial);
 }
```

Input	Result
5	120

SUM OF N NATURAL

NUMBERSWRITEACPROGRAMTOFINDTHESUMOFNNATURALNUM

BERS FOR EXAMPLE

PROGRAM

Input	Result
3	6

EXPERIMENTNO: 1.12 DATE:

Input	Result
0	0
1	1
4	3

FIBONACCISERIES

WRITEACPROGRAMTOFINDTHENTHTERMOFFIBONACCISERIES

FOREXAMPLE

PROGRAM

```
#include<stdio.h>in
t main()
{
inta;
intb;
int c;
intsum;
b=0;
c=1;
sum=0;
scanf("%d",&a);
for(inti=0;i<a-</pre>
     1;i++){ sum=b+c;
     b=c;
    c=sum;
if(a==1){
    printf("1");
 }else{
     printf("%d",sum);
 }
 }
```

EXPERIMENTNO: 1.13 DATE:

POWEROFINTEGERS

WRITEACPROGRAMTOFINDTHEPOWEROFINTEGERS.

INPUT:

AB

OUTPUT:

A^BVALUE

FOREXAMPLE

PROGRAM

```
#include<math.h>int
main() 5 32 32 32

inta;
Passedial tests!
scanf("%d %d",&a,&b);

int power;
power=pow(a,b);
printf("%d",power);
}

OUTPUT

Input Result
2 5 32
```

EXPERIMENTNO: 1.14

PRIMEORNONPRIME

DATE:

WRITEACPROGRAMTOFINDWHETHERNUMBERISPRIMEORNOT?

FOREXAMPLE

PROGRAM

```
#include<stdio.h
imputirResult
{
7   int Prumber;
9   scanf("%d", & number);

   if(number%2==0){
      printf("No Prime");
   }
   else if(number%3==0){
      printf("No Prime");
   }
   elseif(number%number==0&&number/number==1){      printf("Prime");
   }
   else
   printf("Prime");
}</pre>
```

	Input	Expected	Got				
~	7	Prime	Prime	~			
~	9	No Prime	No Prime	~			
Passed all tests!							

REVERSEOFANINTEGER

WRITEACPROGRAMTOFINDTHEREVERSEOFANINTEGER.

PROGRAM

WEEK 02 - FINDING TIME COMPLEXITYOFALGORITHMS

EXPERIMENTNO: 2.1 DATE:

COUNTERMETHOD-WHILELOOP

CONVERTTHEFOLLOWINGALGORITHMINTOAPROGRAMANDFINDITSTIME COMPLEXITY USING THE COUNTER METHOD.

NOTE:NONEEDOFCOUNTERINCREMENTFORDECLARATIONSANDSCANF()AND COUNT VARIABLE PRINTF() STATEMENTS.

INPUT:

APOSITIVEINTEGERN

OUTPUT:

PRINTTHEVALUEOFTHECOUNTERVARIABLE FOREXAMPLE:

INPUT	RESULT
-------	--------

```
#include<stdio.h>in
t main() Expected Got
intcount=0;
int n;
                                   ~
                             12
scanf("%d",&n);
int i=1;
                             9
count++;
ipassed all tests! ✓
count++;
while(s<=n){ count+</pre>
Correct
Marks for this submission: 1.00/1.00.
count++;
s+=1;
count++;
count++;
printf("%d",count);
```

EXPERIMENTNO: 2.2 DATE:

COUNTERMETHOD-FORLOOP

CONVERTTHEFOLLOWINGALGORITHMINTOAPROGRAMANDFINDITSTIME COMPLEXITY USING THE COUNTER METHOD.

```
voidfunc(intn)
{
    if(n==1)
      printf("*");
    }
    else
     for(inti=1;i<=n;i++)</pre>
        for(intj=1;j<=n;j++)</pre>
        {
           printf("*");
           printf("*");
           break;
       }
     }
   }
 }
```

NOTE:

 $NONEEDOFCOUNTERINCREMENTFORDECLARATIONS AND SCANF() AND COUNT\ VARIABLE\ PRINTF()\ STATEMENTS.$

INPUT:

APOSITIVEINTEGERN

OUTPUT:

PRINTTHEVALUEOFTHECOUNTERVARIABLE

PROGRAM

```
#include<stdio.h>in
t main()
{
        int count=0;
        int n;
        scanf("%d",&n);
        if(n==1){
             count++;
            //printf("*");
        }
        //count++;
        else{
             count++;
             for(inti=1;i<=n;i++)</pre>
             {
                 count++;
                 for(intj=1;j<=n;j++)</pre>
                     count++;
                     //printf("*");
                     count++;
                     //printf("*");
                     count++;
                     break;
                     count++;
                 }
                 count++;
             }count++;
        printf("%d",count);
    }
```

	Input	Expected	Got				
~	2	12	12	~			
~	1000	5002	5002	~			
~	143	717	717	~			
Passed all tests! 🗸							

EXPERIMENTNO: 2.3 DATE:

COUNTERMETHOD-FACTORS

CONVERTTHEFOLLOWINGALGORITHMINTOAPROGRAMANDFINDITSTIME COMPLEXITY USING COUNTER METHOD.

NOTE:

 $NONEEDOF COUNTERINCREMENTFORDECLARATIONS AND SCANF () AND COUNTER \\VARIABLE PRINTF() STATEMENT.$

INPUT:

APOSITIVEINTEGERN

OUTPUT:

PRINTTHEVALUEOFTHECOUNTERVARIABLE

```
Input Expected
#include<stdio.h>in
                       Got
 ⋞ ma12()
            31
                       31
      25t num54
                       54
      scanf("%d",&num);
      4nt couht=0;
                       12
      int i;
Passed all tests!
          count++;
          if(num%i==0)
              count++;
              //printf("%d ",i);
              //count++;
          }count++;
      }count++;
      printf("%d",count);
  }
```

EXPERIMENTNO: 2.4 DATE:

COUNTERMETHOD-FUNCTION

 ${\tt CONVERTTHEFOLLOWINGALGORITHMINTOAPROGRAMANDFINDITSTIME\ COMPLEXITY\ USING\ COUNTER\ METHOD.}$

```
voidfunction(intn)
{
  intc=0;
  for(int i=n/2; i<n; i++)
    for(intj=1;j<n;j=2*j)
    for(intk=1;k<n;k=k*2) c++;
}</pre>
```

NOTE:

NONEEDOFCOUNTERINCREMENTFORDECLARATIONSANDSCANF()ANDCOUNT VARIABLE PRINTF() STATEMENTS.

INPUT:

APOSITIVEINTEGERN

OUTPUT:

PRINTTHEVALUEOFTHECOUNTERVARIABLE

```
#include<stdio.h>in
t main() Expected
                          Got
    int n;
              30
                           30
    scanf("%d",&n);
int count=0;
                           212
     intc=0;
Passe@\u11\tests! 🗸
    for(inti=n/2;i<n;i++){ count++</pre>
         for(intj=1;j< n;j=2*j) \{ count++
              for(intk=1;k< n;k=k*2) \{ cou
                   nt++;
                   c++;
                   count++;
              count++;
         }
         count++;
    count++;
    printf("%d",count);
}
```

EXPERIMENTNO: 2.5 DATE:

COUNTERMETHOD-REVERSE

CONVERTTHEFOLLOWINGALGORITHMINTOAPROGRAMANDFINDITSTIME COMPLEXITY USING COUNTER METHOD.

```
void reverse(int n)

{
  intrev=0,remainder;
  while (n != 0)

  {
    remainder = n % 10;
    rev=rev*10+remainder;
    n/= 10;
  }
  print(rev);
}
```

NOTE:

 $NONEEDOFCOUNTERINCREMENTFORDECLARATIONS AND SCANF() AND COUNT\ VARIABLE\ PRINTF()\ STATEMENTS.$

INPUT:

APOSITIVEINTEGERN

OUTPUT:

PRINTTHEVALUEOFTHECOUNTERVARIABLE

```
#include<stdio.h>in
t main()
    int n;
    scanf("%d",&n);
    int count=0;
    intc=0;
    count++;
    for(inti=n/2;i<n;i++){ count++</pre>
        for(intj=1;j<n;j=2*j){ cou</pre>
             nt++;
             for(intk=1;k<n;k=k*2){</pre>
                 count++;
                 C++;
                 count++;
             }
            count++;
        }
        count++;
    count++;
    printf("%d",count);
}
```

OUTPUT

	Input	Expected	Got	
~	12	11	11	~
~	1234	19	19	~

Passed all tests! 🗸

WEEK03-DIVIDE AND CONQUER

EXPERIMENTNO: 3.1 DATE:

NUMBEROFZEROSINANARRAY

PROBLEMSTATEMENT

GIVENANARRAYOF1SAND0STHISHASALL1SFIRSTFOLLOWEDBYALL0S.AIMIS TO FIND THE NUMBER OF 0S. WRITE A PROGRAM USING DIVIDE AND CONQUER TO COUNT THE NUMBER OF ZEROES IN THE GIVEN ARRAY.

INPUTFORMAT

FIRSTLINECONTAINSINTEGERM-SIZEOFARRAY

NEXTMLINESCONTAINSMNUMBERS-ELEMENTSOFANARRAY

OUTPUTFORMAT

FIRSTLINECONTAINSINTEGER-NUMBEROFZEROESPRESENTINTHEGIVEN ARRAY.

```
#include<stdio.h>in
t main()
{
    int n;
    scanf("%d",&n);
    int arr[n];
    for(int
        i=0;i<n;i++){ scanf("%d",&arr[i]);
    }
    inti;
    int count=0;
    for(i=0;i<n;i++)</pre>
```


EXPERIMENTNO: 3.2 DATE:

Input	Result
3 3 2 3	3
7 2 2 1 1 1 2 2	2

MAJORITYELEMENT

OFSIZEN, RETURNTHEMAJORITYELEMENT.

THEMAJORITYELEMENTISTHEELEMENTTHATAPPEARSMORETHAN[N/2] TIMES. YOUMAYASSUMETHATTHEMAJORITYELEMENTALWAYSEXISTSINTHEARRAY.

EXAMPLE1:

INPUT:NUMS=[3,2,3]

OUTPUT:3

EXAMPLE2:

INPUT:NUMS=[2,2,1,1,1,2,2]

OUTPUT:2

CONSTRAINTS:

N==NUMS.LENGTH 1

<= N <= 5 * 104

-231<=NUMS[I]<=231-1

FOREXAMPLE:

```
#inclinplats thip eated
                       Got
 t main(){
     1nt n; 3
     3c2nf("%d",&n);
      int a[n];
Passed all tests! scanf
          ("%d",&a[i]);
      for(inti=0;i<n;i++){ in</pre>
          t count=0;
          for(intj=0;j<n;j++){ if(a[i</pre>
              ]==a[j]){
                  count++;
              }
          }
          if(count>n/2){
              printf("%d",a[i]);
              break;
          }
     }
  }
```

EXPERIMENTNO: 3.3 DATE:

FINDINGFLOORVALUE

PROBLEMSTATEMENT:

GIVEN A SORTED ARRAY AND A VALUE X, THE FLOOR OF X IS THE LARGEST ELEMENTINARRAYSMALLERTHANOREQUALTOX.WRITEDIVIDEANDCONQUER ALGORITHM TO FIND FLOOR OF X.

INPUTFORMAT

- FIRSTLINECONTAINSINTEGERN-SIZEOFARRAY
- NEXTNLINESCONTAINSNNUMBERS-ELEMENTSOFANARRAY
- LASTLINECONTAINSINTEGERX-VALUEFORX

OUTPUTFORMAT

FIRSTLINECONTAINSINTEGER-FLOORVALUEFOR X

```
#include<stdio.h>in
t main()
{
    int n;
    scanf("%d",&n);
    int arr[n];
    for(int i=0;i<n;i++)
    {
        scanf("%d",&arr[i]);
    }
    int key=0;
    scanf("%d",&key);
    int floor=arr[0];
    for(int j=1;j<n;j++)
    {
        if(arr[j]>floor &&arr[j]<key)</pre>
```

```
floor=arr[j];
}
printf("%d",floor);
}
```

	Input	Expected	Got	
~	6 1 2 8 10 12 19 5	2	2	*
*	5 10 22 85 108 129 100	85	85	*
~	7 3 5 7 9 11 13 15	9	9	*

EXPERIMENTNO: 3.4 DATE:

TWOELEMENTSSUMTOX

PROBLEMSTATEMENT:

GIVEN A SORTED ARRAY OF INTEGERS SAY ARR[] AND A NUMBER X. WRITE A RECURSIVEPROGRAMUSINGDIVIDEANDCONQUERSTRATEGYTOCHECKIFTHERE EXIST TWO ELEMENTS IN THE ARRAY WHOSE SUM = X. IF THERE EXIST SUCH TWO ELEMENTS THEN RETURN THE NUMBERS, OTHERWISE PRINT AS "NO".

NOTE:WRITEADIVIDEANDCONQUERSOLUTION

INPUTFORMAT

- FIRSTLINECONTAINSINTEGERN-SIZEOFARRAY
- NEXTNLINESCONTAINSNNUMBERS-ELEMENTSOFANARRAY
- LASTLINECONTAINSINTEGERX-SUMVALUE

OUTPUTFORMAT

- FIRSTLINECONTAINSINTEGER-ELEMENT1
- SECONDLINECONTAINSINTEGER-ELEMENT2(ELEMENT1ANDELEMENTS2 TOGETHER SUMS TO VALUE "X")

```
#include<stdio.h>in
t main()
{
    int n;
    scanf("%d",&n);
    int arr[n];

    for(int
        i=0;i<n;i++){ scanf("%d",&arr[i]);
    }
    inti,j;</pre>
```

	Input	Expected	Got	
~	4	4	4	~
	2	10	10	
	4			
	8			
	10			
	14			
~	5	No	No	~
	2			
	4			
	6			
	8			
	10			
	100			

EXPERIMENTNO: 3.5 DATE:

Input	Result	
5 67 34 12 98 78	12 34 67 78 98	MENTATIONOFQUICKSOR

WRITEAPROGRAMTOIMPLEMENTTHEQUICKSORTALGORITHM

INPUTFORMAT:

- THEFIRSTLINECONTAINSTHENOOFELEMENTSINTHELIST-N
- THENEXTNLINESCONTAINTHEELEMENTS.

OUTPUT:

SORTEDLISTOFELEMENTS

FOREXAMPLE:	

```
#include<stdio.h>in
t main() {
    int n;
    scanf("%d",&n);
    int arr[n];

    for(inti=0;i<n;i++){ scanf("%d",
        &arr[i]);
    }

    for(inti=0;i<n-1;i++){</pre>
```

```
for(intj=0;j<n-i-1;j++)
{
        if(arr[j]>arr[j+1]){ int
            temp = arr[j]; arr[j]
            = arr[j+1]; arr[j+1]
            = temp;
        }
    }
}

for(inti=0;i<n;i++)
    printf("%d",arr[i]);
}

return0;
}</pre>
```

	Input	Expected	Got	
~	5 67 34 12 98 78	12 34 67 78 98	12 34 67 78 98	~
~	10 1 56 78 90 32 56 11 10 90 114	1 10 11 32 56 56 78 90 90 114	1 10 11 32 56 56 78 90 90 114	~
~	12 9 8 7 6 5 4 3 2 1 10 11 90	1 2 3 4 5 6 7 8 9 10 11 90	1 2 3 4 5 6 7 8 9 10 11 90	~

WEEK04-GREEDY ALGORITHMS

EXPERIMENTNO:	4.1	DATE:
WRITEAPROGRAMTO		IN PROBLEM JEVANDWEWANTTOMAKECHANGEFORVRS, AND WE
HAVE INFINITE SUPP I.E., WE HAVE INFINIT	LY OF EACH TE SUPPLY (IS THE MIN	H OF THE DENOMINATIONS IN INDIAN CURRENCY, OF { 1, 2, 5, 10, 20, 50, 100, 500, 1000} VALUED NIMUM NUMBER OF COINS AND/OR NOTES NEEDED
INPUTFORMAT:		
TAKEANINTEGERFRO	OMSTDIN.	
OUTPUTFORMAT:		NGE OFTWENT OF D
PRINTTHEINTEGERW	HICHISCHA	ANGEOFTHENUMBER.
EXAMPLEINPUT:		
64		
OUTPUT:		
4		

WENEEDA50RSNOTEANDA10RSNOTEANDTWO2RUPEE COINS.

EXPLANATON:

```
#incloperts t Expected
                       Got
 t main()
                       5
     49
 *
     int value;
Passed all tests! &value);
     int currency[]={1000,500,100,50,20,10,5,2,1};
     int totalcurrency;
     totalcurrency=sizeof(currency)/sizeof(currency[0]);
     int count=0;
     for(int i=0;i<totalcurrency;i++)</pre>
          if(value==0)
              break;
          count=count+(value/currency[i]);
          value=value%currency[i];
     printf("%d",count);
 }
```

EXPERIMENTNO: 4.2 DATE:

COOKIESPROBLEM

ASSUMEYOUAREANAWESOMEPARENTANDWANTTOGIVEYOURCHILDRENSOME COOKIES. BUT, YOU SHOULD GIVE EACH CHILD AT MOST ONE COOKIE.

EACHCHILDIHASAGREEDFACTORG[I],WHICHISTHEMINIMUMSIZEOFACOOKIE THAT THE CHILD WILL BE CONTENT WITH; AND EACH COOKIE J HAS A SIZE S[J]. IF S[J]>=G[I],WECANASSIGNTHECOOKIEJTOTHECHILDI,ANDTHECHILDIWILLBE CONTENT.YOURGOALISTOMAXIMIZETHENUMBEROFYOURCONTENTCHILDREN AND OUTPUT THE MAXIMUM NUMBER.

EXAMPLE1:

INPUT:

3

123

2

11

OUTPUT:

1

EXPLANATION:

- YOUHAVE3CHILDRENAND2COOKIES.THEGREEDFACTORSOF3CHILDREN ARE 1, 2, 3,
- ANDEVENTHOUGHYOUHAVE2COOKIES, SINCETHEIRSIZEISBOTH1, YOU COULD ONLY MAKE THE CHILD WHOSE GREED FACTOR IS 1 CONTENT.
- YOUNEEDTOOUTPUT1.

CONSTRAINTS:

1<=G.LENGTH<=3*10^4 0<=S.LENGTH<=3*10^4

1<=G[I],S[J]<=2^31-1

```
#include<stdio.h>int
main() {
    int n;
    scanf("%d",&n);
    intgreedfactor[n];
    for (int i = 0; i <n; i++)</pre>
        { scanf("%d", &greedfactor[i]);
    intm;scanf("%d",
    &m);
    intcookiesize[m];
    for (int j = 0; j < m; j++)
        { scanf("%d", &cookiesize[j]);
    for(inti=0;i<n-1;i++){</pre>
        for(intj=0;j<n-i-1;j++){</pre>
             if(greedfactor[j]>greedfactor[j+1]){ int
                 temp = greedfactor[j]; greedfactor[j] =
                 greedfactor[j + 1]; greedfactor[j + 1]
                 = temp;
             }
        }
    for(inti=0;i<m-1;i++){</pre>
        for(intj=0;j<m-i-1;j++){</pre>
             if(cookiesize[j]>cookiesize[j+1]){ int
                 temp = cookiesize[j]; cookiesize[j]
                 = cookiesize[j + 1]; cookiesize[j +
                 1] = temp;
             }
        }
    inti=0;
    intj=0;
    intcontents=0;
    while(i<n&&j<m){</pre>
        if(cookiesize[j]>=greedfactor[i]){ contents++;
        }
        j++;
    printf("%d\n",contents);
    return 0;
}
OUTPUT
```

Expected	Got	
2	2	~
		2

EXPERIMENTNO: 4.3 DATE:

Test	Input	Result
Test Case 1	3	18
	1 3 2	

BURGERPROBLEM

APERSONNEEDS TOEATBURGERS. EACHBURGERCONTAINS ACOUNT OF CALORIE. AFTEREATING THE BURGER, THE PERSONNEEDS TOR UNADISTANCE TO BURNOUT HIS CALORIES. IF HE HAS EATEN I BURGERS WITH C CALORIES EACH, THEN HE HAS TOR UNATLEAST 31*CKILOMETERS TO BURNOUT THE CALORIES. FOR EXAMPLE, IF HE ATE 3 BURGERS WITH THE COUNT OF CALORIE IN THE ORDER: [1, 3, 2], THE KILOMETERS HE NEEDS TO RUN ARE (30*1)+(31*3)+(32*2)=1+9+18=28. BUT THIS IS NOT THE MINIMUM, SONEED TO TRYOUT OTHER ORDERS OF CONSUMPTION AND CHOOSE THE MINIMUM VALUE. DETERMINE THE MINIMUM DISTANCE. HE NEEDS TO RUN. NOTE: HE CAN EAT BURGER IN ANY ORDER AND USE AN EFFICIENT SORTING ALGORITHM. APPLY GREEDY APPROACH TO SOLVE THE PROBLEM.

INPUTFORMAT

- FIRSTLINECONTAINSTHENUMBEROFBURGERS
- SECONDLINECONTAINSCALORIESOFEACHBURGERWHICHISN SPACE-SEPARATE INTEGERS

OUTPUTFORMAT

• PRINT:MINIMUMNUMBEROFKILOMETERSNEEDEDTORUNTOBURNOUT THE CALORIES

SAMPLEINPUT

3

5107

SAMPLEOUTPUT

76

<u>FOREXAMPLE</u>	
_	

```
#include<stdio.n>#
                          Expected
                                    Got
 ✓include<math, h>int
                          18
                                    18
  main(){
                 1 3 2
      int n=0;
     Teseanf("%d"_4&n);
                          389
                                    389
      int a[n]; 7 4 9 6
      for(int
     Test Case; i++){ 36anf("%d", 6&
           a[i]); 5 10 7
Passed all tests!
1;i++){ for(intj=0;j<n-i-
           1;j++){
               if(a[j]>a[j+1]){ i
                   nttemp=a[j];
                   a[j]=a[j+1];
                   a[j+1]=temp;
               }
           }
       intj=n-1;
      intsum=0;
       for(int
           i=0;i<n;i++){ sum=sum+((po
           w(n,i))*a[j]); j--;
      printf("%d",sum);
  }
```

ARRAYSUMMAXPROBLEM

GIVENANARRAYOFNINTEGER, WEHAVETOMAXIMIZETHESUMOFARR[I]*I, WHERE I IS THE INDEX OF THE ELEMENT (I = 0, 1, 2, ..., N). WRITE AN ALGORITHM BASED ON GREEDY TECHNIQUE WITH A COMPLEXITY O(NLOGN).

INPUTFORMAT:

- FIRSTLINESPECIFIESTHENUMBEROFELEMENTS-N
- THENEXTNLINESCONTAINTHEARRAYELEMENTS.

OUTPUTFORMAT:

MAXIMUMARRAYSUMTOBEPRINTED.

SAMPLEINPUT:

5

25340

SAMPLEOUTPUT:

40

```
#include<stdio.h>in
t main(){
    int n;
    scanf("%d",&n);
    int arr[n];
    for(int i=0;i<n;i++)
    {
        scanf("%d ",&arr[i]);
    }
    for(int i=0;i<n-1;i++)
    {</pre>
```

	Input	Expected	Got	
~	5	40	40	~
	2			
	5			
	3			
	4			
	0			
~	10	191	191	~
	2			
	2			
	2			
	4			
	4			
	3			
	3			
	5			
	5			
	5			
~	2	45	45	~
	45			
	3			

EXPERIMENTNO: 4.5 DATE:

Input	Result
3	28
1	
2	
3	
4	
5	
6	

PRODCUTOFARRAYELEMENTS-MIN

AYSARRAY_ONE[]ANDARRAY_TWO[]OFSAMESIZEN.WENEEDTO
GE THE ARRAYS SUCH THAT THE SUM OF THE PRODUCT OF PAIRS(1
EACH)ISMINIMUM.THATISSUM(A[I]*B[I])FORALLIISMINIMUM.

```
#include
<stdio.h>#include<std
lib.h>int main() {
    int n;
    scanf("%d",&n);
    intarrayOne[n];
    int arrayTwo[n];
    for (int i=0;i<n;i++) {</pre>
         scanf("%d",&arrayOne[i]);
    for (int i=0;i<n;i++) {</pre>
         scanf("%d",&arrayTwo[i]);
    for (int i=0;i<n-1;i++) {</pre>
        for (int j=0;j<n-i-1;j++) {</pre>
             if(arrayOne[j]>arrayOne[j+1]){ int
                 temp = arrayOne[j];
                 arrayOne[j]=arrayOne[j+1];
                 arrayOne[j+1]=temp;
             }
    for (int i=0;i<n-1;i++) {</pre>
        for (int j=0;j<n-i-1;j++) {</pre>
             if (arrayTwo[j]<arrayTwo[j+1]) {</pre>
```

```
int temp=arrayTwo[j];
    arrayTwo[j]=arrayTwo[j+1];
    arrayTwo[j+1]=temp;
}

int minimumsum = 0;
for (int i = 0; i <n; i++) {
    minimumsum=minimumsum+arrayOne[i]*arrayTwo[i];
}
printf("%d\n", minimumsum);
}</pre>
```

	Input	Expected	Got	
~	3	28	28	~
	1			
	2			
	3			
	4			
	5			
	6			
~	4	22	22	~
	7			
	5			
	1			
	2			
	1			
	3			
	4			
	1			
~	5	590	590	~
	20			
	10			
	30			
	10			
	40			
	8			
	9			
	3			
	10			
	10			

WEEK – 05 PLAYINGWITHNUMBERS

EXPERIMENTNO: 5.1 **DATE:**

PLAYINGWITHNUMBERS

PLAYINGWITHNUMBERS:

RAM AND SITA ARE PLAYING WITH NUMBERS BY GIVING PUZZLES TO EACH TEGER'N'AND AYSBYWHICH THE NY EFFICIENT

OTHER.NOWITWASRAMTERM,SOHEGAVESITAAPOSITIVEIN TWONUMBERS1AND3.HEASKEDHERTOFINDTHEPOSSIBLEW
NUMBER N CAN BE REPRESENTED USING 1 AND 3.WRITE AN
ALGORITHM TO FIND THE POSSIBLE WAYS.
EXAMPLE1:
INPUT:
6
OUTPUT:
6
EXPLANATION:
THEREARE6WAYSTO6REPRESENTNUMBERWITH1AND3
1+1+1+1+1+1
3+3 1+1+1+3
1+1+3+1
1+3+1+1
3+1+1+1
INPUTFORMAT
FIRSTLINECONTAINSTHENUMBERN
OUTPUTFORMA

T PRINT:

THENUMBEROFPOSSIBLEWAYS'N'CANBEREPRESENTEDUSING1AND3

SAMPLEINPUT

6

SAMPLEOUTPUT

```
#includents texpectedt
                              Got
 main() {
    Long n;6
     scanf("%ld",&n);
     ½€ (n <80)41{
                              8641
        return 0;
           24382819596721629 24382819596721629
     longarray[n+1];
     array[0] = 1;
Passed all tests 1;
     array[2] = 1;
     array[3] = 2;
     for (long i = 4; i <= n; i++) {
         array[i] = array[i - 1] + array[i - 3];
     printf("%ld\n",array[n]);
     return 0;
 }
```

EXPERIMENTNO: 5.2 DATE:

PLAYINGWITHCHESSBOARDPL

AYING WITH CHESSBOARD:

RAM IS GIVEN WITH AN N*N CHESSBOARD WITH EACH CELL WITH A MONETARY VALUE. RAM STANDS AT THE (0,0), THAT THE POSITION OF THE TOP LEFT WHITE ROOK. HE IS BEEN GIVEN A TASK TO REACH THE BOTTOM RIGHT BLACK ROOK POSITION (N-1, N-1) CONSTRAINED THAT HE NEEDS TO REACH THE POSITION BY TRAVELINGTHEMAXIMUMMONETARYPATHUNDERTHECONDITIONTHATHECAN ONLY TRAVEL ONE STEP RIGHT OR ONE STEP DOWN THE BOARD. HELP RAM TO ACHIEVE IT BY PROVIDING AN EFFICIENT DP ALGORITHM.

EXAMPLE:

INPUT

3

124

234

871

OUTPUT:

19

EXPLANATION:

TOTALLYTHEREWILLBE6PATHSAMONGTHATTHEOPTIMALIS OPTIMAL

PATH VALUE:1+2+8+7+1=19

INPUTFORMAT

- FIRSTLINECONTAINSTHEINTEGERN
- THENEXTNLINESCONTAINTHEN*NCHESSBOARDVALUES

OUTPUTFORMAT

PRINTMAXIMUMMONETARYVALUEOFTHE PATH

```
#include<stdio.h>
intmaxMonetaryPath(intn,intboard[n][n])
    intdp[n][n];
    dp[0][0]=board[0][0];
    for(intj=1;j<n;j++){</pre>
        dp[0][j]=dp[0][j-1]+board[0][j];
    }
    for(inti=1;i<n;i++){</pre>
        dp[i][0]=dp[i-1][0]+board[i][0];
    }
    for(inti=1;i<n;i++){for(intj=1;j</pre>
        n;j++){
            dp[i][j]=board[i][j]+(dp[i-1][j]>dp[i][j-1]?dp[i-1][j] :
dp[i][j - 1]);
        }
    returndp[n-1][n-1];
}
intmain(){
    int n;
    scanf("%d",&n);
    intboard[n][n];
    for(inti=0;i<n;i++){for(intj=0;j</pre>
        n; j++){
            scanf("%d",&board[i][j]);
        }
    }
    intmaxValue=maxMonetaryPath(n,board);
    printf("%d\n", maxValue);
    return0;
}
```

	Input	Expected	Got	
~	3	19	19	~
	1 2 4			
	2 3 4			
	8 7 1			
~	3	12	12	~
	1 3 1			
	1 5 1			
	4 2 1			
~	4	28	28	~
	1 1 3 4			
	1 5 7 8			
	2 3 4 6			
	1 6 9 0			

EXPERIMENTNO: 5.3 DATE:

Input	Result
aab	2
azb	

LONGESTCOMMONSUBSEQUENCE

GIVENTWOSTRINGSFINDTHELENGTHOFTHECOMMONLONGEST SUBSEQUENCE(NEED NOT BE CONTIGUOUS) BETWEEN THE TWO.

EXAMPLE:

S1:GGTABE

S2:TGATASB

S1: A G G T A B

S2: G X T X A Y B

THELENGTHIS4

SOLVINGITUSINGDYNAMICPROGRAMMING

FOREXAMPLE:

```
#include
<stdio.h>#include<string.
intlongestCommonSubsequence(char*s1,char*s2){ int m
    = strlen(s1);
    int n = strlen(s2);
    intdp[m+1][n+1];
    for(inti=0;i<=m;i++){for(intj=0;j</pre>
        =n;j++){}
            if(i=0||j=0){dp[i][j]} =
            }elseif(s1[i-1]==s2[j-1]){
                dp[i][j]=dp[i-1][j-1]+1;
            }else{
                dp[i][j]=(dp[i-1][j]>dp[i][j-1])?dp[i-1][j]:
  dp[i][j-1];
        }
    }
    returndp[m][n];
}
intmain(){
    chars1[100],s2[100];
    fgets(s1,sizeof(s1),stdin);
    s1[strcspn(s1,"\n")]='\0';
    fgets(s2,sizeof(s2),stdin);
    s2[strcspn(s2,"\n")]='\0';
    intlength=longestCommonSubsequence(s1,s2);
    printf("%d\n", length);
   return0;
}
```

	Input	Expected	Got	
~	aab azb	2	2	*
~	ABCD ABCD	4	4	~
asse	d all tes	ts! 🗸		

LONGESTNON-DECREASINGSUBSEQUENCE

PROBLEMSTATEMENT:

FINDTHELENGTHOFTHELONGESTNON-DECREASINGSUBSEQUENCEINAGIVEN SEQUENCE.

EXAMPLE:

INPUT:

9

SEQUENCE:[-1,3,4,5,2,2,2,2,3]

THESUBSEQUENCEIS[-1,2,2,2,2,3]

OUTPUT:

6

```
}
    int maximumlength=0;
    for(inti=0;i<n;i++){</pre>
        if(dp[i]>maximumlength){ maximum
             length=dp[i];
        }
    returnmaximumlength;
    intmain()
{
    int n;
    scanf("%d",&n);
    intarr[n];
    for(inti=0;i<n;i++)</pre>
        scanf("%d",&arr[i]);
    }
    intlength=longseq(arr,n);
    printf("%d\n",length);
    return0;
}
```

	Input	Expected	Got	
~	9 -1 3 4 5 2 2 2 2 3	6	6	~
~	7 1 2 2 4 5 7 6	6	6	~
Passed all tests! 🗸				

EXPERIMENT NO: 6.1 DATE:

Input	Result
5	1
1 1 2 3 4	

LICATES-O(N^2)TIMECOMPLEXITY,O(1)SPACECOMPLEXITY

FINDDUPLICATEINARRAY.

• GIVENAREADONLYARRAYOFNINTEGERSBETWEEN1ANDN,FINDONE NUMBER THAT REPEATS.

INPUTFORMAT:

- FIRSTLINE-NUMBEROFELEMENTS
- NLINES-N ELEMENTS

OUTPUTFORMAT:

ELEMENTX-THATISREPEATED

FOREXAMPLE:

```
#include<stdio.h>in
t main()
{
   int n,i,count;
   scanf("%d",&n);
   int arr[n];
```

```
for(i=0;i<n;i++)
```

*	11 10 9 7 6 5 1 2 3 8 4 7	7	7	~
*	5 1 2 3 4 4	4	4	~
>	5 1 1 2 3 4	1	1	~

EXPERIMENTNO: 6.2 DATE:

lr	ıpı	ut			Result
5					1
1	1	2	3	4	

PLICATES-O(N)TIMECOMPLEXITY,O(1)SPACECOMPLEXITY

FINDDUPLICATEINARRAY.

• GIVENAREADONLYARRAYOFNINTEGERSBETWEEN1ANDN,FINDONE NUMBER THAT REPEATS.

INPUTFORMAT:

- FIRSTLINE-NUMBEROFELEMENTS
- NLINES-N ELEMENTS

OUTPUTFORMAT:

• ELEMENTX-THATISREPEATED

FOREXAMPLE:

```
#include<stdio.h>in
t main()
{
    int n,i,count;
    scanf("%d",&n);
    int arr[n];
    for(i=0;i<n;i++)
    {
        scanf("%d",&arr[i]);
    }
}</pre>
```

OUTPUT

	Input	Expected	Got	
~	11 10 9 7 6 5 1 2 3 8 4 7	7	7	*
~	5 1 2 3 4 4	4	4	~
~	5 1 1 2 3 4	1	1	*
Dacco	d all tests! 🗸			

EXPERIMENTNO: 6.3 DATE:

PRINTINTERSECTIONOF2SORTEDARRAYSO(M*N)TIMECOMPLEXITY,O(1)SPACE COMPLEXITY

FINDTHEINTERSECTIONOFTWOSORTEDARRAYSORINOTHERWORDS.

• GIVEN2SORTEDARRAYS,FINDALLTHEELEMENTSWHICHOCCURINBOTH THE ARRAYS.

INPUTFORMAT

- \cdot THE FIRSTLINECONTAINST,THENUMBEROFTESTCASES.FOLLOWINGTLINES CONTAIN:
- 1. LINE1CONTAINSN1,FOLLOWEDBYN1INTEGERSOFTHEFIRSTARRAY
- 2. LINE2CONTAINSN2,FOLLOWEDBYN2INTEGERSOFTHESECONDARRAY

OUTPUTFORMAT

• THEINTERSECTIONOFTHEARRAYSINASINGLELINE

EXAMPLE

INPUT:

1

3101757

627101557246

OUTPUT:

1057

INPUT:

1

6123456

216

OUTPUT:

16

FOREXAMPLE:

```
Input
                Result
                              PROGRAM
               10 57
3 10 17 57
#include<stdio.h>
while(i<v1&&j<v2){if(arr1[i]=</pre>
       =arr2[j]){
           printf("%d",arr1[i]); i++;
       }elseif(arr1[i]<arr2[j]){ i++;</pre>
       }else{
           j++;
   }
   printf("\n");
intmain(){
   int T;
   scanf("%d",&T);
   while(T--){
       int v1;
       scanf("%d",&v1);
       int arr1[v1];
       for(inti=0;i<v1;i++){ scanf("%</pre>
           d", &arr1[i]);
       int v2;
       scanf("%d",&v2);
       int arr2[v2];
       for(inti=0;i<v2;i++){ scanf("%</pre>
           d", &arr2[i]);
       findIntersection(arr1,v1,arr2,v2);
   }
   return0;
OUTPUT
```

	Input	Expected	Got	
*	1 3 10 17 57 6 2 7 10 15 57 246	10 57	10 57	~
*	1 6 1 2 3 4 5 6 2 1 6	1 6	1 6	~

EXPERIMENTNO: 6.4 DATE:

PRINTINTERSECTIONOF2SORTEDARRAYSO(M+N)TIMECOMPLEXITY,O(1)SPACE COMPLEXITY

FINDTHEINTERSECTIONOFTWOSORTEDARRAYSORINOTHERWORDS,

• GIVEN2SORTEDARRAYS,FINDALLTHEELEMENTSWHICHOCCURINBOTH THE ARRAYS.

INPUTFORMAT

- \cdot THE FIRSTLINECONTAINST,THENUMBEROFTESTCASES.FOLLOWINGTLINES CONTAIN:
- 1. LINE1CONTAINSN1,FOLLOWEDBYN1INTEGERSOFTHEFIRSTARRAY
- 2. LINE2CONTAINSN2,FOLLOWEDBYN2INTEGERSOFTHESECONDARRAY

OUTPUTFORMAT

THEINTERSECTIONOFTHEARRAYSINASINGLELINE

EXAMPLE

INPUT:

1

3101757

627101557246

OUTPUT:

1057

INPUT:

1

6123456

216

OUTPUT:

FOREXAMPLE:

Input	Result
1	10 57
3 10 17 57	
6	
2 7 10 15 57 246	

```
#include <stdio.h>
voidfindIntersection(intarr1[],intn1,intarr2[],intn2){ int i = 0,
    j = 0;
    while (i <n1 &&j <n2) {
        if (arr1[i] == arr2[j]) {
            printf("%d",arr1[i]);
            i++;
            j++;
        }elseif(arr1[i]<arr2[j]){ i++;</pre>
        } else {
            j++;
        }
    printf("\n");
int main() {
    int T;
    scanf("%d",&T);
    while (T--) {
        int n1;
        scanf("%d",&n1);
        int arr1[n1];
        for(inti=0;i<n1;i++){ scanf("%d",</pre>
            &arr1[i]);
        }
        int n2;
        scanf("%d",&n2);
        int arr2[n2];
        for(inti=0;i<n2;i++){ scanf("%d",</pre>
            &arr2[i]);
        findIntersection(arr1, n1, arr2, n2);
    return 0;
}
OUTPUT
```

	Input	Expected	Got	
~	1 3 10 17 57 6 2 7 10 15 57 246	10 57	10 57	~
~	1 6 1 2 3 4 5 6 2 1 6	1 6	1 6	~

EXPERIMENTNO: 6.5 DATE:

Input	Result	
3	1	HEEEDENGE ONIA)TIMECOMDI EVITY O(1)CDA CECOMDI EVIT
1 3 5)IFFERENCE-O(N^2)TIMECOMPLEXITY,O(1)SPACECOMPLEXIT
4		AND A SECONDED DIFFERENCE AND ANOTHER NOVEMBER ATTUE

UIVELVAN ARKAY A OF SORTED INTEGERS AND ANOTHER NON NEGATIVE INTEGERK, FINDIFTHEREEXISTS 2 INDICES IAND JSUCHTHATA [J]-A [I]=K, I!=J.

INPUTFORMAT:

- FIRSTLINEN-NUMBEROFELEMENTSINANARRAY
- NEXTNLINES-NELEMENTSINTHEARRAY
- K-NON-NEGATIVEINTEGER

OUTPUTFORMAT:

- 1-IFPAIREXISTS
- 0-IFNOPAIREXISTS

EXPLANATIONFORTHEGIVENSAMPLETESTCASE:

YESAS5-1=4 SORETURN1.

FOREXAMPLE

```
#include<stdio.h>in
t main()
{
```

```
int n;
    scanf("%d",&n);
    int array[n];
    for(inti=0;i<n;i++)</pre>
        scanf("%d",&array[i]);
    }
    int d;
    scanf("%d",&d);
    int count=0;
    for(int
         i=0;i<n;i++){ for(intj</pre>
         =0;j<n;j++){
             if(i!=j){
                  if(array[j]-
                      array[i]==d){ count=count+1;
                  }
              }
        }
    }
    if(count==0){
        printf("0");
    }else
     printf("1");
}
```

OUTPUT

	Input	Expected	Got	
~	3 1 3 5 4	1	1	*
~	10 1 4 6 8 12 14 15 20 21 25 1	1	1	*
~	10 1 2 3 5 11 14 16 24 28 29 0	0	0	~
~	10 0 2 3 7 13 14 15 20 24 25 10	1	1	~

EXPERIMENTNO: 6.6 DATE:

Input	Result	
3	1	DIFFERENCE-O(N)TIMECOMPLEXITY,O(1)SPACECOMPLEX
1 3 5		

YAOFSORTEDINTEGERSANDANOTHERNONNEGATIVEINTEGERK, FIND IF THERE EXISTS 2 INDICES I AND J SUCH THAT A[J] - A[I] = K, I!= J.

INPUTFORMAT:

- FIRSTLINEN-NUMBEROFELEMENTSINANARRAY
- NEXTNLINES-NELEMENTSINTHEARRAY
- K-NON-NEGATIVEINTEGER

OUTPUTFORMAT

- 1-IFPAIREXISTS
- 0-IFNOPAIREXISTS

EXPLANATIONFORTHEGIVENSAMPLETESTCASE: YES

AS 5 - 1 = 4

SORETURN1.

FOREXAMPLE

```
#include<stdio.h>
int main()
{
    int n;
    scanf("%d",&n);
    int array[n];
    for(inti=0;i<n;i++)</pre>
        scanf("%d",&array[i]);
    int d;
    scanf("%d",&d);
    int count=0;
    for(int
         i=0;i<n;i++){ for(intj</pre>
         =0;j<n;j++){
             if(i!=j){
                  if(array[j]-array[i]==d){
                      count=count+1;
                  }
             }
        }
    }
    if(count==0)
{
       printf("0");
    }
      else
            printf("1");
}
```

OUTPUT

	Input	Expected	Got	
~	3 1 3 5 4	1	1	*
~	10 1 4 6 8 12 14 15 20 21 25 1	1	1	*
~	10 1 2 3 5 11 14 16 24 28 29 0	0	0	*
~	10 0 2 3 7 13 14 15 20 24 25 10	1	1	~