

# **Geodatenanalyse I: Räumliche Interpolation**

#### Kathrin Menberg



### Stundenplan



| Vorläufiger Stundenplan |                                                |                 |  |
|-------------------------|------------------------------------------------|-----------------|--|
| Datum                   | Thema                                          | Dozent          |  |
| 20.10.2021              | Einführung in die Programmierung mit Python    | Gabriel Rau     |  |
| 25.10.2021              | Univariate Statistik und statistisches Testen  | Kathrin Menberg |  |
| 01.11.2021              | Feiertag                                       |                 |  |
| 08.11.2021              | Umgang und Berechnung von Datensätzen          | Gabriel Rau     |  |
| 15.11.2021              | Bivariate und schließende Statistik            | Kathrin Menberg |  |
| 22.11.2021              | Datenvisualisierung mit matplotlib             | Gabriel Rau     |  |
| 29.11.2021              | Multivariate Statistik                         | Kathrin Menberg |  |
| 06.12.2021              | Datenformate, Datenspeicherung und Datenbanken | Gabriel Rau     |  |
| 13.12.2021              | Monte-Carlo Methoden                           | Kathrin Menberg |  |
| 20.12.2021              | Analyse und Visualisierung von Geodaten        | Gabriel Rau     |  |
| 27.12.2021              | Weihnachtsferien                               |                 |  |
| 03.01.2022              | Weihnachtsferien                               |                 |  |
| 10.01.2022              | Sensitivitätsanalyse                           | Kathrin Menberg |  |
| 17.01.2022              | Datenethik, Lizensierung und Entwicklungstools | Gabriel Rau     |  |
| 24.01.2022              | Räumliche Interpolation                        | Kathrin Menberg |  |
| 31.01.2022              | Fragen zur Programmierung                      | Gabriel Rau     |  |
| 07.02.2022              | Regressionsanalyse                             | Kathrin Menberg |  |

### Vorlesungsplan



| Uhrzeit       | Inhalt                         |
|---------------|--------------------------------|
| 10:00 – 10:20 | Deterministische Interpolation |
| 10:20 – 11:00 | Übung                          |
| 11:00 – 11:10 | Diskussion und Reflexion       |
| 11:10 – 11:25 | <u>Pause</u>                   |
| 11:25 – 11:45 | Kriging                        |
| 11:45 – 12:20 | Übung                          |
| 12:20 – 12:30 | Diskussion und Reflexion       |

#### Lernziele



#### Am Ende der Stunde werden die Teilnehmer:

- mit den mathematischen Grundlagen der Interpolation vertraut sein.
- verschiedene Methoden zur Interpolation voneinander abgrenzen können.
- ... in Python deterministische Methoden zur Interpolation von Datensätzen anwenden und die Ergebnisse graphisch darstellen können.

### Interpolation



- Motivation
  - $> X_i \rightarrow f(x)$
  - räumliche Interpolation





### 1D, 2D, n-dimensionale Interpolation





https://rbf.readthedocs.io/



https://datascience.stackexchange.com/



https://innolitics.com/

### Interpolation vs. Extrapolation



- Interpolation: Schätzung von Werten zwischen bekannten Datenpunkten
- Extrapolation: Schätzung von Werten außerhalb bekannter
  Datenpunkte



### **Deterministische Interpolation**



- Interpolation mittels festgelegter (z.B. linearer) Funktion
- Eindeutiges, immer gleiches Ergebnis
- Einfache Berechnung, aber keine Aussage zur Qualität der Interpolation möglich
- Beispiele:
  - Triangulation
  - Nearest Neighbour
  - Natural Neighbour
  - Spline Interpolation
  - Polynomische Interpolation
  - Inverse Distance Weighting
  - usw.

### **Nearest Neighbour**



- Verbindung jeweils dreier benachbarter Punkte mittels
   Delaunay-Triangulation
- Mittelsenkrechten der Dreiecksmaschen ergeben sog.
   Thiessen-Polygone oder auch Voronoi-Polygone
- Zuordnung des jeweils nächstgelegenen Messwertes ("nearest neighbour") für das ganze Polygon



### Radiale Basisfunktionen (RBF)



- Reelle Funktion  $\varphi$ , deren Wert nur vom Abstand zum Ursprung abhängt
- Abstand: Euklidische Distanz
- Verschiedene Funktionstypen:
  - Linear
  - Spline  $\varphi(r) = r^k$ ,  $\varphi(r) = r^k \ln(r)$
  - Multi-quadratisch  $\varphi(r) = \sqrt{1 + (ar)^2}$
  - Gauss  $\varphi(r) = e^{-(ar)^2}$
  - **.**..
- Annahme Formparameter a, bzw. k



- Interpolation
- Maschinelles Lernen (z.B. Neuronale Netze)



### **Inverse Distance Weighting**



Interpolationswert  $\hat{Z}$  an Stelle  $x_0$  wird berechnet aus den Messwerten  $Z(x_i)$  der benachbarten Punkte  $x_1...x_i$ 

$$\hat{Z}(x_0) = \sum_{i=1}^n \lambda_i \cdot Z(x_i)$$

 $\lambda_i$  ist die Gewichtung, mit dem der Wert  $x_i$  an Punkt i in die Berechnung einfließt

$$\lambda_i = \frac{d_{i0}^{-p}}{\sum_{i=1}^n d_{i0}^{-p}}$$

Mit zunehmender Entfernung d nimmt das Gewicht ab.



### **Inverse Distance Weighting**



- p "Power" ist ein Maß für Abnahme (i.d.R. >1, z.B. 2)
- Einfluss des Wertes p
- Welches der optimale p-Wert ist, kann man über
   Validierungsverfahren feststellen.



### **Inverse Distance Weighting**



Anzahl der bei der Interpolation berücksichtigten Punkte



- Welche Methode man wählt, hängt sehr stark von der Verteilung der Messpunkte ab
- Bei homogener Verteilung liefern beide Methoden das gleiche Ergebnis

### Übung 9: Interpolation 1



- Interpolation von Grundwasserdaten in Karlsruhe
  - Delauney Triangulation
  - Nearest Neighbour
  - Radiale Basisfunktionen
  - Visualisierung



Menberg et al. (2013)

Aufgaben in Jupyter Notebook:09\_Räumliche Interpolation\_1



## Pause

... bis 11:25 Uhr



### Vorlesungsplan



| Uhrzeit       | Inhalt                         |
|---------------|--------------------------------|
| 10:00 – 10:20 | Deterministische Interpolation |
| 10:20 – 11:00 | Übung                          |
| 11:00 – 11:10 | Diskussion und Reflexion       |
| 11:10 – 11:25 | <u>Pause</u>                   |
| 11:25 – 11:45 | Kriging                        |
| 11:45 – 12:20 | Übung                          |
| 12:20 – 12:30 | Diskussion und Reflexion       |

#### Lernziele



#### Am Ende der Stunde werden die Teilnehmer:

- mit den mathematischen Grundlagen der Semivariogramm Analyse vertraut sein.
- ... verschiedenen Typen von Variogrammen kennen und diese auf Datensätze anpassen können.
- ... in Python Kriging für Datensätze mit und ohne Trend durchführen können.

### **Stochastische Interpolation**



- Geostatistische Verfahren
- Ergebnis ist eine von vielen möglichen Realisationen
- Interpolation basierend auf den statistischen Eigenschaften der Daten
- Statistische Auswertung der Wahrscheinlichkeit und Unsicherheit der Interpolationsergebnisse
- Möglichkeit der Qualitätsbestimmung der Interpolation
- z.B. Kriging

### Kriging



- Motivation: Bestimmung der Wahrscheinlichkeit an einem Ort Gold zu finden, basierend auf Proben von ein paar wenigen Bohrlöchern
- Verfahren basierend auf Inverse Distance Weighting...
- ... unter Berücksichtigung der räumlichen Varianz der Daten
- Kriging gliedert sich in zwei Schritte:
  - Analyse der räumlichen Korrelation, bzw. Varianz der Daten
  - eigentliche Kriging-Interpolation

### Kriging Grundgleichung



$$\hat{Z}(x_0) = \sum_{i=1}^n \lambda_i \cdot Z(x_i), \quad mit \sum_{i=1}^n \lambda_i = 1$$

- $\triangleright$   $\hat{Z}(x_0)$  = Schätzwert am Punkt  $x_0$
- $\triangleright$  n = Anzahl Datenwerte, die zur Schätzung herangezogen werden
- $ightharpoonup Z(x_i)$  = Messwert am Punkt  $x_i$
- $\lambda_i$  = Gewichte, mit der der jeweilige Datenwert bei der Interpolation gewichtet wird
- Unterschiede zu IDW:
  - Berechnung der Gewichte
  - Annahme dass  $\hat{Z}(x_0)$  eine Zufallsgröße ist

### **Kriging Gewichtung**



- Berücksichtigung von Heterogenität der Messpunkte
  - Gewichte von Punkten innerhalb von Clustern werden gesenkt
- Bestimmung der Gewichte so, dass Varianz des Schätzfehlers möglichst gering ist
- Ermittlung der Gewichte mittels (Semi-) Variogrammanalyse



### Variogrammanalyse



Semivarianz  $\gamma(h)$ : Maß für den Grad der räumlichen Abhängigkeit von Messwerten

$$\gamma(h) = \frac{1}{2n} \sum_{i=1}^{n} (Z(x_i) - Z(x_i + h))^2$$

- $\triangleright$  n = Anzahl Datenwerte, die zur Schätzung herangezogen werden
- $ightharpoonup Z(x_i) = Messwert am Punkt xi$
- $ightharpoonup Z(x_i + h) = Messwert an einem Punkt im Abstand h$

Bivand et al. (2008)

halbe, mittlere,
 quadrierte euklidische
 Distanz zwischen zwei
 Messwerten



### **Experimentelles Variogramm**



- Auftragen der (Semi-)Varianz  $\gamma(h)$  über dem Abstand h
- ► Experimentelles Variogramm → Messwerte



#### Schwellenwert und Reichweite



 Schwellenwert (Sill): verglichene Werte haben keinen Bezug mehr zueinander, ihre quadrierten Differenzen entsprechen der Varianz um den Mittelwert

 Reichweite (Range) = Abstand, unterhalb dem die Werte als räumlich in Beziehung stehend gelten können, darüber keine räumliche Korrelation

mehr



### **Nugget-Effekt**



- Nugget (y-Achsen-Abstand): charakterisiert Variablen, deren Variabilität kleinräumiger als die geringsten Probenabstände ist.
- kann aber auch durch Fehler im Datensatz, z.B. durch aufgrund der Probenahme oder der Analyse, verursacht werden.



### **Theoretisches Variogramm**



- Anpassung des experimentellen Variogramms mit einer Funktion
- z.B. sphärische Funktion, lineare Funktion, usw.



### **Ordinary Kriging**



- ➤ Es liegt kein Trend (und keine Drift) in den Daten vor, d.h. die Differenz zwischen Schätzung und den wahren Werten soll im Mittel gleich 0 sein
- ▶ Die Varianz (Kriging-/Schätzvarianz) des Schätzfehlers soll minimal sein.
- ▶ Die Summe aller Gewichte muss 1 ergeben

$$\hat{\sigma}^2 = \sum_{i=1}^n \lambda_i \cdot \gamma_{i0} + \mu \quad \Rightarrow \text{min.}$$
 und 
$$\sum_{i=1}^n \lambda_i = 1$$

 $\hat{\sigma}^2$  = Varianz  $\lambda_i$  = Gewicht für Messpunkt i  $\gamma_{i0}$  = Semivarianz für Messpunkt i und Punkt 0  $\mu$  = Lagrange-Faktor

$$Z(s) = \mu(s) + \varepsilon(s)$$

Z(s): Vorhersagewert (an Lokalität s)

 $\mu(s)$ : deterministischer Trend (Erwartungswert)

 $\varepsilon(s)$ : autokorrelierte Zufallsfehler



### **Universal Kriging**



- Finden Anwendung, wenn Daten mit einem Trend (oder Drift) behaftet sind
- Trend: über das gesamte Gebiet (globaler Trend)
- Drift: nur lokal (lokale Drift)

$$Z(s) = \mu(s) + \varepsilon(s)$$

mit: Z(s): Vorhersagewert (an Lokalität s)

Z(s): Vorhersagewert (an Lokalität s)  $\mu(s)$ : deterministischer Trend (Erwartungswert)

 $\varepsilon(s)$ : autokorrelierte Zufallsfehler



### **Root Mean Square Error (RMSE)**



dt. Wurzel der mittleren Fehlerquadratsumme

RMSE

**y**: Beobachtungen,  $\hat{y}_i$  Vorhersagen

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$



- Maß für die Güte der Anpassung, bzw. Genauigkeit der Vorhersagen
- ▶ Perfekte Anpassung, bzw. Übereinstimmung RMSE = 0
- Je größer, desto schlechter ist die Anpassung
- Magnitude abhängig vom Maßstab der Datenwerte
  - Relatives Fehlermaß!

### Übung 10: Interpolation 2



- Kriging mit Grundwasserdaten aus Karlsruhe
  - Ordinary Kriging der
    Grundwassertemperaturen
  - Universal Kriging der Grundwasserstände
  - Analyse derVorhersagegenauigkeit
- Aufgaben in Jupyter Notebook:10\_Räumliche Interpolation\_2





Menberg et al. (2013)

#### Literatur



- Bivand, Pebesma & Gomez-Rubio (2008): Applied Spatial Data Analysis with R, Springer
- Oliver & Webster (2015): Basic Steps in Geostatistics: The Variogram and Kriging, Springer
- Menberg et al. (2013): Subsurface urban heat islands in German cities, Sci. Tot. Environ. 442 (2013) 123-133.
- Menberg et al. (2013): Long-term evolution of anthropogenic heat fluxes into a subsurface urban heat island, Environ. Sci. Technol. 47(17) (2013) 9747-9755

#### Nützliche Weblinks:

https://towardsdatascience.com/what-does-rmse-really-mean-806b65f2e48e



