

Comparação de Agrupamento da Mortalidade Infantil entre indígenas e não-indígenas - 2019

Nahari Terena

Pós-graduação Lato Sensu em Ciência de Dados e Big Data

Abril, 2023.

Por quê?

ODS 3:
 Assegurar uma vida saudável e promover o bem-estar para todos, em todas as idades

Quem?

- Dados oficiais do Ministério da Saúde divulgados pela Coordenação-Geral de Informações e Análises Epidemiológicas (CGIAE)
- Sistema de Informação sobre Mortalidade (SIM)
- Sistema de Informação sobre Nascidos Vivos (Sinasc)

O que?

- Existem padrões nos óbitos infantis?
- Há distinção significativa entre indígenas e nãoindígenas?
 - Quais as diferenças entre os padrões em cada grupo?

Onde?

 Óbitos de crianças de até 1 ano de vida registrados no Brasil.

Quando?

 Óbitos infantis registrados no período de em 2019.

Coleta de dados

- União das bases do SIM de crianças de até 1 ano de idade e o Sinasc a fim de obter os recém-nascidos para o ano de 2019 que vieram a óbito no mesmo período.
- Para realização, foi necessário agendamento na sala segura do Ministério da Saúde e depois do linkage entre as bases, anonimização e tratamentos de segurança.

Sistemas de Informação	ID	Variáveis para Pareamento	ID	Variáveis para Revisão Manual
SIM	a	Nome	1	Idade da mãe
	b	Sobrenome	2	Sexo
	С	Data de nascimento	3	Município de Ocorrência
	d	Munícipio de Residência	4	Nome da mãe
Sinasc	a	Nome	1	Idade da mãe
	b	Sobrenome	2	Sexo
	С	Data de nascimento	3	Município de Ocorrência
	d	Municipio de Residência	4	Nome da mãe

Processamento de Dados

- ▶ A base liberada pela CGIAE/MS apresentou 35.293 registros com 59 variáveis.
- Para informações repetidas, considerou-se prioritariamente as informações do SIM.
- Números de DN inválida foram retirados.
- A idade foi separada em três grupos: Neonatal precoce (até 6 dias de vida); Neonatal tardio (até 27 dias de vida); pós-neonatal (até 1 ano de idade).
- A cor/raça foi alterada para dois grupos: indígenas e não-indígenas.
- A base para a aplicação de componentes principais registrou 26.738 com 36 variáveis.
- Para aplicar o PCA, retirou-se as colunas com mais de 10% de dados nulos: Fonte de investigação, TPPOS, mês de início do pré-natal. Após a retirada dessas colunas, foram excluídos os registros com alguma informação faltante.

Análise de Componentes Principais

- A base registrava 19.506 com 32 variáveis.
- Quantidade de gestações, quantidade de filho vivo e morto, peso ao nascer, TPRobson são as variáveis que mais contribuem para as duas dimensões.
- Possibilidade de 4 grupos.

Análise e Exploração de Dados

Informações relativas à mãe

Variável	N	(%)
Raça/cor		
Parda	12.972	57,80%
Branca	6.876	30,64%
Preta	1.712	7,63%
Indígena	316	1,41%
Amarela	80	0,36%
Não informado	486	2,17%
Estado Civil		
Solteiro	11.285	50,29%
Casado	6.074	27,07%
União estável	4.531	20,19%
Separado judicialmente/divorciado	314	1,40%
Viúvo	46	0,20%
Não informado	192	0,86%
Escolaridade		
Superior Incompleto	12.334	54,96%
Médio	4.209	18,76%
Superior Completo	3.543	15,79%
Fundamental II	803	3,58%
Fundamental I	520	2,32%
Não informado	1.033	4,60%

Análise e Exploração de Dados

Informações infantis

Teste de Hipóteses

- Hipótese nula: Há independência entre cor/raça e grupo etário
- Hipótese alternativa: Não há independência entre cor/raça e grupo etário
- $ightharpoonup O X^2 ext{ \'e de 38,07.}$
- ▶ O p-valor é menor que 0,01.
- Comparando as frequências esperadas e observadas de acordo com a raça/cor, o grupo indígena tem diferença significativa entre os valores.

Modelagem DBSCAN

EPS	Samples	Silhouette Score
0.2	0 7	-0.45
0.2	0 8	-0.43
0.3	0 7	-0.40
0.3	0 8	-0.39
0.4	0 7	-0.33
0.4	0 8	-0.34

Modelagem Gaussian Mixture Model

Número Componentes	GMM Score
2	4.53
3	4.53
4	1.87
5	1.86
6	7.04
7	2.65
8	6.87

Modelagem Hierárquico

Número de Clusters	Silhouette Score
2	0.37
3	0.36
4	0.33
5	0.32
6	0.32
7	0.36

Modelagem K-Means

Número Clusters		Silhouette Score
	2	0.68
	3	0.62
	4	0.58
	5	0.56
	6	0.54
	7	0.53
	8	0.53

Davis Bouldin Score: 0.51

Conclusão

Grupo 0

Recém-nascidos com mais gramas ao nascer, mães mais velhas, outras gestações, pré-natal aquém do esperado e primeiros grupos de Robson.

Crianças com maior peso ao nascer, mães mais novas, maior quantidade de cesáreas, pré-natal adequado e grupos intermediários de Robson.

Grupo 1

Crianças com peso mediano, mães mais nnovas, menor quantidade de gestações, grupos de Robson intermediários e prénatal aquém.

Crianças com baixo peso ao nascer, mães de idade mediana, grupos finais de Robson e pré-natal aquém.

Grupo 2

Crianças com baixo peso ao nascer, mães com idade mediana, maior número de cesáreas, grupos finais de Robson e pré-natal aquém.

Crianças com poucos gramas aos nascer, mães mais velhas, pré-natal adequado, grupos intermediários de Robson.

Obrigada

Referências

- Victora CG, Barros FC. Infant mortality due to perinatal causes in Brazil: trends, regional patterns and possible interventions. Sao Paulo Med J. 2001;119:33-42.
- JOHNSON, R. A.; WICHERN, D. W. Applied multivariate statistical analysis. 4th ed. Upper Saddle River, New Jersey: Prentice-Hall, 1999, 815 p.World Health Organization, UNICEF, United Nations Population Fund and The
- World Bank, Trends in Maternal Mortality: 2000 to 2017 WHO, Geneva, 2019.