

TÖL403G GREINING REIKNIRITA

5. Endurrakning 1

Hjálmtýr Hafsteinsson Vor 2022

Í þessum fyrirlestri

Endurrakning (backtracking)

- N drottningar (n queens)
- Leikjatré (game trees)
- Hlutmengissumma (subset sum)
- Strengskipting (text segmentation)

2.1 - 2.5

Endurrakning (backtracking)

- Endurkvæm lausnaraðferð
- Brýtur verkefnið upp í smærri hlutverkefni
- Ef velja þarf á milli leiða;
 - Fara allar leiðir endurkvæmt
 - Velja svo þá með bestu útkomuna

"Ofbeldisaðferð" (brute force)

- Fáum oftast veldistíma reiknirit með endurrakningu
- Sjáum næst kvika bestun (dynamic programming)
 - Getum þá oft endurbætt þessar aðferðir með því að geyma milliniðurstöður

N drottningar

- Upphaflega sett fram fyrir 8x8 skákborð
- Setja 8 drottingar á skákborð þannig að engin þeirra ógni annari
 - þ.e. engar tvær drottingar á sömu línu, dálki eða skálínu
- Almennt: Staðsetja n drottningar á nxn skákborði
- Mikill fjöldi möguleika sem þarf að athuga
 - Fyrir 8x8 verkefnið eru *C*(64,8) = 4.426.165.368 möguleikar
 - Af þeim eru 92 löglegar lausnir
 - Fjöldi möguleika vex mjög hratt með hækkandi gildi á n
 - 10x10 verkefnið hefur C(100, 10) ~1.7*10¹³, löglegar lausnir 724
 - 20x20 verkefnið hefur C(400, 20) ~2.8*10³³, löglegar lausnir ~3 milljarðar

Ein möguleg lausn á 8x8 verkefninu

Notum fylkið Q[1..n] fyrir staðsetningu drottninganna

Q[i] er dálkanúmer drottningar í línu i

Í lausninni á síðustu glæru væri Q = [5, 7, 1, 4, 2, 8, 6, 3]

Í upphafi fallsins er viðfangið *r* númer fyrstu auðu línunnar og *Q*[1..*r*-1] inniheldur staðsetningar fyrstu *r*-1 drottninganna

Fyrir hvern mögulegan dálk (ytri lykkja) er athugað í innri lykkju hvort sá reitur ógni einhverri drottingu sem þegar er komin í línur 1 til *r*-1

Hermun fyrir 4x4 verkefni

Heildarfjöldi möguleika er

Þurfum ekki að skoða nema hluta af þeim

Leikjatré (game trees)

- Notuð til að halda utanum mögulegar stöður í tveggja manna leikjum
 - Til dæmis skák, go, mylla (tic-tac-toe), ...
- Hver <u>hnútur</u> í trénu er <u>staða leiksins</u> á tilteknum tíma
 - Ásamt því hvor leikmaðurinn á leik
- Það er ör frá hnúti x til hnútar y ef til er löglegur leikur sem breytir stöðu x yfir í stöðu y
- Rót trésins er upphafsstaða leiksins
- Sérhver vegur frá rót til laufs er löglegur kláraður leikur
- Leikjatré geta verið mjög stór
 - Fullkomið leikjatré fyrir myllu hefur hæð 9 og 255.168 hnúta

Sykurmolaleikurinn

- Skoðum tveggja manna leik sem spilaður er með "sykurmolum" á 3x3 grind
- Rauður byrjar með sína mola á vinstri hliðinni og Grænn á efri hlið
- Leikmenn mega færa einn mola um eitt skref í einu
 - Rauður alltaf til hægri og Grænn alltaf niður
- Ef næsti reitur er auður þá færist molinn um einn reit

- Ef næsti reitur er ekki auður þá hoppar molinn yfir
 - Það má þó aðeins hoppa yfir einn reit

Leikjatré fyrir sykurmolaleik

Fyrstu tvö lög leikjatrésins. Einn leikur fyrir hvorn leikmann

Góðar og slæmar stöður

- Leikjastaða (game state) er góð ef núverandi leikmaður hefur unnið leikinn, eða ef núverandi leikmaður getur fært yfir í slæma stöðu fyrir andstæðinginn
- Leikjastaða er slæm ef núverandi leikmaður hefur tapað leiknum,
 eða ef sérhver mögulegur leikur færir yfir í góða stöðu fyrir andstæðinginn
- Þá gildir:
 - Innri hnútur (ekki lauf) er góður ef hann hefur a.m.k. eitt slæmt barn
 - Ef leikmaður er í góðri stöðu þá getur hann unnið leikinn, jafnvel þó andstæðingurinn leiki fullkomlega
 - Ef leikmaður er í slæmri stöðu þá getur hann aðeins unnið ef andstæðingurinn gerir mistök

Finna gæði stöðu með endurrakningu

Djúpleit í gegnum allt leikjatréð - reiknar gæði staðanna á leið upp endurkvæmnina

Hægt að skera burt (prune) greinar trésins sem ekki geta leitt til góðrar niðurstöðu Þetta er mikilvægt fyrir leiki með stór leikjatré, eins og skák

Æfing um leikjatré

- Skoðið reikniritið PlayAnyGame á síðustu glæru. Skiptir máli í hvaða röð farið er niður greinar trésins?
 - Hvaða áhrif hefur það?
 - Hver ætti röðin að vera (ef það skiptir máli)?

Hlutmengissumma (subset sum)

- Höfum mengi X af jákvæðum heiltölum og heiltöluna T
- Er til hlutmengi í X með summuna T?

Dæmi:

$$X = \{8, 6, 7, 5, 3, 10, 9\}$$
 og $T = 15$

Þá er til hlutmengið {8, 7} með summuna 15, sömuleiðis {5, 10} og {6, 9} og svarið er **satt**

en ef
$$X = \{11, 6, 5, 1, 7, 13, 12\}$$
 og $T = 15$?

Þá er svarið <u>ósatt</u>

Manni sýnist að það þurfi að prófa alla möguleika

Endurkvæm endurrakning

Jaðartilvik:

Er til hlutmengi í *X* með summuna 0?

Ef T = 0 þá skila **satt**, því \emptyset virkar

Ef T < 0 eða ef T > 0 en X er tómt þá skila <u>ósatt</u>

Er til hlutmengi í Ø með summuna 5?

Almenn tilvik:

Skoðum stak x í X. Annað hvort <u>er x í hlutmengi</u> með summu T eða \underline{x} er ekki í hlutmengi með summu T

Ef x er í hlutmengi með summu T <u>bá</u> er til hlutmengi í $X \setminus \{x\}$ með summu T-x

Annars

er til hlutmengi í X\{x} með summu T

Reiknirit fyrir hlutmengissummu

Köllum á fallið í upphafi með SubsetSum(X, n, T)

Mengið er geymt í fylki

Mengið "minnkar" um 1 í hverju endurkvæma kalli

Tími: T(n) = 2T(n-1) + O(1)

Lausn: $T(n) = O(2^n)$

Getum notað svipað reiknirit til að <u>finna</u> hlutmengi sem passar Sömuleiðis hægt að finna <u>fjölda</u> hlutmengja sem passa

Æfing fyrir hlutmengissummu

- Við höfum X = [6, 3, 5, 9, 7], T = 10 og i = 3.
- Hvað gerist í fallinu SubsetSum(X, i, T) fyrir þessi gildi?

• En ef T = 8?

Strengskipting (text separation)

- Höfum samfelldan textastreng, viljum brjóta hann upp í orð
- Dæmi:

BOTHEARTHANDSATURNSPIN

getum skipt upp sem BOTH-EARTH-AND-SATURN-SPIN

Allt lögleg ensk orð

eða sem BOT-HEART-HANDS-AT-URNS-PIN

Höfum fallið **IsWord(w)**, sem skilar <u>true</u> ef w er löglegt enskt orð, en <u>false</u> annars

Endurrakning fyrir strengskiptingu

Prófum alla möguleika og hugsum ekki um það sem kemur á undan

Reiknirit fyrir orðskiptingu

Fáum endurkvæma reikniritið:

Látum A vera víðvært og notum bara vísinn (*index*) *i*

Vísaútgáfa af orðskiptingu

Skilgreinum Splittable(i) = satt

þþaa eftirstrengurinn (*suffix*) A[i..n] er skiptanlegur í orð


```
\langle \langle ls \ the \ suffix \ A[i .. n] \ Splittable? \rangle \rangle

SPLITTABLE(i):

if i > n

return True

for j \leftarrow i to n

if lsWord(i, j)

if Splittable(j + 1)

return True

return True
```

Reiknirit fyrir víðvært fylki A

Tími: $O(2^n)$

Afbrigði af strengskiptingu

- Oft eru til margar skiptingar á sama strengnum
- Viljum þá kannski fá bestu skiptinguna út frá einhverju stigafalli
 - Til dæmis gefa mörg stig fyrir löng orð, eða algeng orð, ...

Höfum fallið Score(w), sem skilar stigagildi orðsins w (0 ef ekki löglegt orð) Skilgreinum MaxScore(i) = hámarksstig orðskiptingar á <math>A[i..n]

$$MaxScore(i) = \begin{cases} 0 & \text{ef } i > n \\ \max_{i \le j \le n} (Score(A[i..j]) + MaxScore(j+1)) & \text{annars} \end{cases}$$

Getum notað nánast sama reikniritið til að leysa þetta verkefni

... með tímaflækjuna $O(2^n)$

Fyrirlestraæfingar

1. Finnið eina lausn fyrir 5 drottninga verkefnið:

- 2. Gefið mengið *X* = {3, 4, 7, 8, 20, 21, 34, 41}. Er til hlutmengi í því með summuna 50?
- 3. Hvaða ensk orð koma til greina sem fyrsta orðið í strengnum "WEEKLYASSIGNMENT"?