CE300 MATLAB PROGRAMMING DATA ANALYSIS

By Şevki ÖZTÜRK

OBJECTIVES

- * INTRODUCTION TO DATA ANALYSIS
- * READ/WRITE DATA
- * STATISTICAL ANALYSIS
- **X DATA VISUALIZATION**

INTRODUCTION TO DATA ANALYSIS

Up to now, keyboard has been used for data input.

- If the amount of data is large and the same data will be used repeatedly, it is difficult to use keyboard.
- * Another way of giving input data is to use a file having stored data. Matlab can read data, operate on data and write data.

INTRODUCTION TO DATA ANALYSIS

With data analysis some properties and characteristics of data can be determined,

File Opening/Closing

fileid=fopen(filename, permission): open the file according to the permission

Permission	Explanation	
'r'	Opens the file to read (if the file exists)	
'r+'	Opens the file to read and write (if the file exists)	
'w'	Opens or creates a file to write. All existing data is deleted.	
'w+'	Opens or creates a file to read and write. All existing data is deleted.	
'a'	Open or create a file to write. The data stored before is not deleted	
'a+'	Open or create a file to read and write. The before is not deleted	

File Opening/Closing

fclose (fileid): closes the file

fclose ('all') or fclose all: closes all files

```
fid=fopen('file1.txt','r')
```

```
fid=fopen('file1.txt','w')
```

fclose (fid)

Writing information to a file

fprintf (fileID,format, A): applies format to all elements of A and writes data.

```
>> fid=fopen('file1.txt','w');
>> fprintf(fid,'%25s\n','Writing Data');
>> fprintf(fid,'Writing Data\n');
>> close all

>> fid=fopen('file1.txt','w');
>> fprintf(fid,'Introduction to Matlab\n');
>> fprintf(fid,'Data Analysis\n');
```



```
no, team, point, position

1, fb , 82, 1

2, gs , 46, 8

3, bjk, 54, 5

4, ts , 82, 2
```

```
>> no=[1;2;3;4];
>> team=['fb ';'gs ';'bjk';'ts '];
>> points=[82;46;54;82];
>> position=[1;8;5;2];
>> teams=fopen('super_lig.txt','w');
>> fprintf(teams,'%7s,%7s,%9s,%10s\n','no','teams','point','position');
>> for i=1:length(no)
fprintf(teams,'%7d,%7s,%7d,%7d\n',...
no(i,:),team(i,:),points(i,:),position(i,:));
end
```


Reading information from a file

fscanf (fileID,format,size): reads "size" elements according to the format given.

Saving data save filename

```
>> x=[1,2,3,4];
>> y=[11,12,13,14];
>> save ex1
```

```
save ex2.txt
```

```
save - 'ascii' ex2.txt
```


Loading the data

load filename

```
>> load example.dat
>> example
example =
    10
                 30
                       40
                       20
          10
                 15
    30
          40
                 40
                       40
>> isnan(example)
ans =
                        0
                        0
                        0
```


Exporting Data to Excel

xlswrite ('filename',A): writes A to first excel sheet of file "filename"

xlswrite ('filename', A, sheet): writes to the specified sheet.

xlswrite ('filename', A, range): writes to the specified range of first sheet.

xlswrite ('filename', A, sheet, range): writes to the specified sheet and range


```
>> A=[1 2 3;4 5 6;7 8 9];

>> xlswrite('example',A)

>> B=A*A;

>> xlswrite('example',B,2)

>> C=A(:,1);

>> xlswrite('example',C,3,'D1:D3')
```


Importing Data from Excel

[num,txt,raw] = xlsread (filename): reads data from first excel sheet of file "filename"

[num,txt,raw] = xlsread (filename,sheet): reads data from specified sheet.

[num,txt,raw] = xlsread (filename,range): reads data from specified range of first sheet.

[num,txt,raw] = xlsread(filename,sheet,range): reads data from specified sheet an


```
>> xlsread('example')

ans =

1 2 3
4 5 6
7 8 9
```

```
>> xlsread('example',3,'D1:D3')

ans =

1
4
7
```


XIs vs. Csv

XIS

- + holds data in worksheets, charts, and macros
- + can be used in Windows

Csv (comma seperated values):

- + set of file formats used to store tabular data in which numbers and text are stored
- + more common in computer sciences
- + both Linux & Windows can operate or

Exporting / Importing Data (csv files)

csvwrite ('filename',A): writes matrix A into filename as comma-separated values

csvread('filename'): reads a comma-separated value formatted file, filename

Measures of Location

mean(x)

median(x):

mode(x)

Note that;

mean is the average of the data

median is the middle value of the data sorted by value

mode is the most common value


```
>> a=[1 2 3;1 3 4;2 2 5]

a =

1 2 3

1 3 4

2 5
```


Measures of Scale (Maximum and Minimum)

max (x): find the largest value in x

[y,k]=max(x): find y and k that are the maximum value of x, indices of first maximum.

max(x,y): compares x and y and report the minimum

min(x): find the smallest value in x

[y,k]=min(x): find y and k that are the minimum value of x, indices of first minimum.

min(x,y): compares x and y and report the minimum


```
>> a=[1 2 3;4 5 6;7 8 9];
b=[7 8 9;1 2 3;4 5 6];
```

>> max(a)

>> min(a,b)

>> max(1,5)

Measures of scale (Sum and Product)

sum (x): sum of elements

prod (x): product of elements

cumsum (x): cumulative sum of elements

cumprod (x): cumulative product of the elemensts


```
>> cumsum (A)
ans =
    12
           15
                 18
```

```
>> cumprod(A)
ans =
                   3
           10
           80
    28
```


Measures of Scale (Standard deviation and Variance)

std (x): standard deviation of x

var (x): variance of x

Note that;

standard deviation shows how much variation there is from the data average

variance shows how far a set of numbers are spread out from each other.

Histogram

hist (x): histogram of x using 10 bins

by vector y

hist (x,nbins): histogram of x using nbins bins

hist (*x*,*y*): histogram of x with bin centers specified


```
>> A=[1 2 3];
                        Divides the data to 10 bins
                                                                  Bin1
                                                                          0-1.2
>> [n,xc]=hist(A) -
                                                                          1.2-1.4
                                                                  Bin2
                   number of data corresponding to bins
                                                                  Bin3 1.4-1.6
                                                                  Bin4 1.6-1.8
    1
               0
                     0
                          1
                                0
                                                      1
                                                                  Bin5 1.8-2.0
                                                                  Bin6 2.0-2.2
                            bin centers
xc =
                                                                  Bin7 2.2-2.4
                                                                  Bin8 2.4-2.6
  Columns 1 through 7
                                                                  Bin9
                                                                          2.6-2.8
   1.1000
             1.3000
                      1.5000
                               1.7000
                                        1.9000
                                                 2.1000
                                                          2.3000
                                                                  Bin 10 2.8-3.0
  Columns 8 through 10
   2.5000
            2.7000
                      2.9000
```


>> hist(A)

>> hist(A,3)

>> A=[1 2 3;1 2 3;4 5 6]

A = 1 2 3
1 2 3
4 5 6

Bar Plot

bar (x): draws one bar for each element of x bar(x,y): draws one bar for each element of y where x is a vector defining x-axis intervals for vertical bar

bar (x,y,width): width can be assigned (default=0.8)

>> b=[3 6 9]; >> bar(b,a)

>> bar(b,a,1.5)

2-D Scatter Plot

scatter (x,y): draws in default color and size scatter (x,y,S): draws in default color with specified size.

scatter (..., 'filled'): fills the markers.

3-D Scatter Plot

scatter3 (x,y,z,...) :same as 2-D

>> c=a(:,1)	>> d=a(:,2)	>> e=a(:,3)
c =	d =	e =
1 10 8	11 15 11	3 4 9

3-D Plot

meshgrid (x,y): transforms the domain specified by vectors x and y into arrays X and Y to evaluate functions of two variables and threedimensional mesh/surface plots.


```
x =

1 2 3

>> y=10:14

y =

10 11 12 13 14
```

```
>> [X,Y]=meshgrid(x,y)
x =
                  3
Y =
           10
                 10
    10
    11
           11
                 11
    12
          12
                 12
    13
           13
                 13
    14
           14
                 14
```


plot3 (x,y,z): 3d plot of x,y and z.

mesh (x,y,z): wireframe mesh of x,y and z.

surf (x,y,z): shaded surface of x,y and z.

contour (x,y,z): contour plot of z using x and y

>> [x,y]=meshgrid(0:5); >> z=x.^2-y.^2; >> mesh(z)

SUMMARY

You should learn

How to read/write data

Working on data (statistical analysis)

Plotting Data (data visualization)

ANY QUESTIONS?

