Stanford University

AA228/CS238: Decision Making Under Uncertainty Fall 2023

Liam Kruse • Bishop Auditorium • email: Ikruse@stanford.edu

PROBLEM SESSION 4: EXACT SOLUTION METHODS

October 18, 2023 4:00pm PT

Topic 1. MDP Overview

- a) Markov Decision Process (MDP): defined by the tuple (S, A, T, R, γ)
 - \bullet S State Space: the environment, the *minimum information set* required to make a decision

• A - Action Space: what the agent can do

 \bullet T - Transition model: system dynamics (how the system evolves)

Figure 1: Simple MDP

Figure 2: Transition Model

• R - Reward Function: expected reward from taking action a in state s and transitioning to state s'

• γ - Discount factor: used to weight future rewards

- b) Utility: a discounted sequence of rewards
 - Utility of a sequence of states without discounting: why is this problematic?

$$U([s_1, s_2, \dots, s_n)]) = \sum_{t=1}^{n} r_t$$

• Thought exercise: would an agent want to collect rewards in the blue cell (bricks) or the red cell (crosshatch) forever?

Is there a preference for $10 + 10 + 10 + \dots$ or $1 + 1 + 1 + \dots$ as $n \to \infty$ ("infinite horizon")?

• Solution: discount with $\gamma!$

c) Policy π : a function of the state that tells you what to do in every state

Figure 3: Optimal Path

Figure 4: Optimal Policy

- $U^{\pi}(s) \to \text{utility from executing policy } \pi \text{ from state } s \text{ (the value function)}$
- $\pi^*(s) = \arg\max_{\pi} U^{\pi}(s)$

d) Bellman Equation: "The expected utility of a state is the reward at that state plus the discounted sum of expected future rewards."

e) A Note On Expectation

An expected value is a weighted average

What is the expected utility when transitioning out of s_1 ?

Topic 2. Value Iteration Example

Algorithm 1 The Value Iteration Algorithm

```
1: procedure Value Iteration(\mathcal{P} :: MDP, k_{\max})
2: U(s) \leftarrow 0 for all s \in \mathcal{S}
3: for k \leftarrow 1, k_{\max} do
4: for all s \in \mathcal{P}.\mathcal{S} do
5: U_{k+1}(s) = \max_a \left(R(s,a) + \gamma \sum_{s'} T(s' \mid s,a) U_k(s')\right)
6: end for
7: end for
8: end procedure
```


a) Define the tuple for this MDP

b)	Perform two iterations of value iteration:
c)	What is our policy after two rounds of value iteration?
d)	What is the time complexity of value iteration?