0.1 Filtration

Imagine that a random experiment has been performed and the outcome is a particular ω in the set of outcomes Ω . We are given some information, not enough to know the precise ω but to narrow down the possibilities. For example, the true ω may be the outcome of three coin tosses and we are told the outcome of only the first toss. Then we can make a list of sets which for sure contain it and those that do not contain it. These are the sets that are *resolved* by the first toss. Let

$$A_H = \{HHH, HHT, HTH, HTT\}, A_T = \{THH, TTH, THT, TTT\}.$$

It is easy to see these sets are resolved. But $A_{HH} = \{HHT, HHH\}$ is not resolved. Define $\mathcal{F}_1 = \{\phi, \Omega, A_H, A_T\}$. Then this the "information gained by observing the first toss". Similarly define

 $\mathcal{F}_2 = \{\text{sets resolved by knowing the first and second tosses}\}.$

Check that $\mathcal{F}_2 = \sigma\{A_{HH}, A_{HT}, A_{TH}, A_{TT}\}$ (List the sets), where

$$A_{HH} = \{HHT, HHH\}, A_{HT} = \{HTT, HTH\}, A_{TH} = \{THT, THH\}, A_{TT} = \{TTT, TTH\}.$$

Once we are told all the three coin tosses we know the precise ω and all the sets are resolved. Thus $\mathcal{F}_3 = \mathcal{P}(\Omega)$. Notice that $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$ is an increasing sequence of σ -algebras.

Definition 0.1. Let Ω be a non-empty set. Let T be a fixed positive number. Assume that for each $t \in [0,T]$ there is a σ -algebra \mathcal{F}_t such that for s < t, $\mathcal{F}_s \subset \mathcal{F}_t$. Then we call this collection of σ -algebras \mathcal{F}_t , $t \in [0,T]$ a filtration.

Example: Suppose $\Omega = C_0[0,T]$, continuous functions on [0,T], with value 0 at the point 0. Then let \mathcal{F}_t be the σ -algebra of all those sets which are resolved by observing the function upto time t. So the random experiment is choosing an element of $C_0[0,T]$. Let $\bar{\omega}$ be the true outcome. Suppose we know the value of $\bar{\omega}$ for $0 \le s \le t$, then the set $\{\omega \in \Omega : \sup_{0 \le s \le t} \omega(s) \le 1\}$ is resolved whereas the set $\{\omega \in \Omega : \omega(T) > 0\}$ is not resolved. The first set belongs to \mathcal{F}_t whereas the second does not.

Definition 0.2. Let X be a random variable. Then the σ -algebra generated by X, denoted by $\sigma(X)$ is the collection of all subsets of Ω of the form $X^{-1}(B)$ where B ranges over all Borel subsets of \mathbb{R} .

Definition 0.3. Let X be a random variable on (Ω, \mathcal{F}) . Let \mathcal{G} be a σ -algebra on Ω . Then X is said to be \mathcal{G} measurable if $\sigma(X) \subset \mathcal{G}$. Thus X is also a random variable on (Ω, \mathcal{G}) .

Thus $\sigma(X)$ is the smallest σ -algebra with respect to which X is measurable.

Example: Suppose $S_2(HHH) = S_2(HHT) = 10$, $S_2(TTH) = S_2(TTT) = 1$ and $S_2(HTH) = S_2(THT) = S_2(THH) = S_2(THH)$

$$S_2^{-1}(A) = \begin{cases} \phi & \text{if } A = \phi \\ \Omega & \text{if } A = \mathbb{R} \\ A_{HH} & \text{if } A = \{10\} \\ A_{TT} & \text{if } A = \{1\} \\ A_{HT} \cup A_{TH} & \text{if } A = \{5\}. \end{cases}$$

Therefore S_2 is \mathcal{F}_2 measurable.

Exercise: Suppose X is a constant random variable. Then write down $\sigma(X)$.

Definition 0.4. Let Ω be a non-empty sample space with a filtration \mathcal{F}_t , $0 \le t \le T$. A sequence of random variables $\{X(t)\}$ indexed by $t \in [0,T]$ is said to be an adapted stochastic process, if for each t, X(t) is \mathcal{F}_t measurable.

0.2 Independence

Definition 0.5. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let \mathcal{G}_1 and \mathcal{G}_2 be two sub- σ -algebras of \mathcal{F} . We say that these two σ -algebras are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ for all $A \in \mathcal{G}_1$ and $B \in \mathcal{G}_2$. Let X and Y be two random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. We say that X and Y are independent if $\sigma(X)$ and $\sigma(Y)$ are independent. We say that the random variable X is independent of the sub- σ -algebra \mathcal{G} if $\sigma(X)$ and \mathcal{G} are independent.

Definition 0.6. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{G}_1, \mathcal{G}_2, \ldots$ be a sequence of sub- σ -algebras of \mathcal{F} . For a fixed n, we say that the n σ -algebras $\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_n$ are independent if $\mathbb{P}(A_1 \cap A_2 \cap \ldots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2) \cdots \mathbb{P}(A_n)$ for all $A_1 \in \mathcal{G}_1, A_2 \in \mathcal{G}_2, \ldots, A_n \in \mathcal{G}_n$. We say that the full sequence of σ -algebras $\mathcal{G}_1, \mathcal{G}_2, \ldots$ is independent if for any positive integer n, $\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_n$ are independent. Similarly, a sequence of random variables X_1, X_2, \ldots is independent if $\sigma(X_1), \sigma(X_2), \ldots$ is independent.

Theorem 0.7. Let X and Y be two independent random variables, and let f and g be two Borel measurable functions. Then f(X) and g(Y) are also independent.

Proof: We need to show that $\sigma(f(X))$ and $\sigma(g(Y))$ are independent. Let $A \in \sigma(f(X))$. Then there exists a Borel set C such that $A = \{\omega \in \Omega : f(X(\omega)) \in C\}$. Let $D = \{x \in \mathbb{R} : f(x) \in C\}$. Then

$$A = \{\omega \in \Omega : f(X(\omega)) \in C\} = \{\omega \in \Omega : X(\omega) \in D\}.$$

Thus $A \in \sigma(X)$. Similarly, if we take any $B \in \sigma(g(Y))$, then we can show that $B \in \sigma(Y)$. Since X and Y are independent, therefore we have $\sigma(X)$ and $\sigma(Y)$ are also independent. Hence the result follows.

Definition 0.8. A set $A \in \mathbb{R}^n$ is said to be a measurable rectangle if there exist Borel sets A_1, A_2, \dots, A_n such that $A = A_1 \times A_2 \times \dots \times A_n$. The sigma-algebra on \mathbb{R}^n generated by measurable rectangles is called the Borel σ -algebra on \mathbb{R}^n and denoted by $\mathcal{B}(\mathbb{R}^n)$.

Definition 0.9. Let X and Y be two random variables. The pair (X,Y) takes values in \mathbb{R}^2 . The joint distribution measure of (X,Y) is given by

$$\mu_{X,Y}(C) = \mathbb{P}((X,Y) \in C) \ \forall \ C \in \mathcal{B}(\mathbb{R}^2).$$

The joint distribution function of (X, Y) is given by

$$F_{X,Y}(a,b) = \mu_{X,Y}((-\infty,a] \times (-\infty,b]) = \mathbb{P}(X \le a, Y \le b), \ \forall \ a,b \in \mathbb{R}.$$

We say that a non-negative, Borel measurable function $f_{X,Y}(\cdot)$ is a joint density for the pair of random variables (X,Y) if

$$\mu_{X,Y}(C) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} 1_C(x,y) f_{X,Y}(x,y) dx dy \ \forall \ C \in \mathcal{B}(\mathbb{R}^2).$$

The above condition holds iff

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dx dy.$$

The distribution measures of X and Y can be recovered from the joint distribution in the following way.

$$\mu_X(A) = \mu_{XY}(A \times \mathbb{R}), \ \mu_Y(B) = \mu_{XY}(\mathbb{R} \times B).$$

 μ_X and μ_Y are called the marginal distributions of $\mu_{X,Y}$. If joint densities exist then marginal densities exist as well.

$$\mu_X(A) = \mu_{X,Y}(A \times \mathbb{R}) = \int_A \left(\int_{-\infty}^\infty f_{X,Y}(x,y) dy \right) dx,$$

$$\mu_Y(B) = \mu_{X,Y}(\mathbb{R} \times B) = \int_B \left(\int_{-\infty}^\infty f_{X,Y}(x,y) dx \right) dy.$$

But the converse is not true.

Counter Example: Let $X \sim N(0,1)$ and $Z \sim Bernoulli(1/2)$ independent of X. Define Y = XZ. Now

$$\begin{split} F_Y(b) &= \mathbb{P}(Y \le b) \\ &= \mathbb{P}(Y \le b \text{ and } Z = 1) + \mathbb{P}(Y \le b \text{ and } Z = -1) \\ &= \mathbb{P}(X \le b \text{ and } Z = 1) + \mathbb{P}(-X \le b \text{ and } Z = -1) \\ &= (1/2)\mathbb{P}(X \le b) + (1/2)\mathbb{P}(-X \le b) \\ &= (1/2) \bigg[\int_{-\infty}^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx + \int_{-b}^\infty \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx \bigg] \\ &= \int_{-\infty}^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx \,. \end{split}$$

Thus Y is again N(0,1). Thus both X and Y have densities. But note that |X|=|Y|. So if we define $C=\{(x,y)\in\mathbb{R}^2:y=\pm x\}$. Then $\mu_{X,Y}(C)=\mathbb{P}((X,Y)\in C)=1$. But since C has area zero in \mathbb{R}^2 , $\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}1_C(x,y)f_{X,Y}(x,y)dxdy=0$ for any f. Hence (X,Y) can not have a joint density.

Theorem 0.10. Let X and Y be two random variables. The following conditions are equivalent.

- 1. X and Y are independent.
- 2. The joint distribution measure is the product of marginal distributional measures, i.e.,

$$\mu_{XY}(A \times B) = \mu_X(A)\mu_Y(B) \ \forall \ A, B \in \mathcal{B}(\mathbb{R}).$$

3. The joint distribution function factors, i.e.,

$$F_{X,Y}(a,b) = F_X(a)F_Y(b) \ \forall \ a,b \in \mathbb{R}.$$

4. The joint moment generating function factors, i.e.,

$$\mathbb{E}\left(e^{uX+vY}\right) = \mathbb{E}\left(e^{uX}\right)\mathbb{E}\left(e^{vY}\right) \ \forall \ u,v \in \mathbb{R},$$

for which the expectations are finite.

If there is a joint density then each of the above conditions are equivalent to the following:

5. The joint density factors, i.e.,

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Proof: $(1 \Rightarrow 2)$ Assume that X and Y are independent. Then

$$\mu_{X,Y}(A \times B) = \mathbb{P}(X \in A, Y \in B)$$
$$= \mathbb{P}(X \in A)\mathbb{P}(Y \in B) = \mu_X(A)\mu_Y(B).$$

$$(2 \Rightarrow 3)$$

$$F_{X,Y}(a,b) = \mu_{X,Y}((-\infty,a] \times (-\infty,b]) = \mu_X((-\infty,a])\mu_Y((-\infty,b]) = F_X(a)F_Y(b)$$
.

 $(3 \Rightarrow 5)$ Rewriting the splitting of distribution function in terms of density we get,

$$\int_{-\infty}^{b} \int_{-\infty}^{a} f_{X,Y}(x,y) dx dy = \int_{-\infty}^{b} f_{Y}(y) dy \int_{-\infty}^{a} f_{X}(x) dx$$

Differentiating with respect to y we get,

$$\int_{-\infty}^{a} f_{X,Y}(x,b)dx = f_{Y}(b) \int_{-\infty}^{a} f_{X}(x)dx.$$

Further differentiating with respect to x we get,

$$f_{XY}(a,b) = f_X(a) f_Y(b)$$
.

$$(5 \Rightarrow 1)$$

$$\begin{split} \mathbb{P}(X \in A, Y \in B) &= \int_A \int_B f_{X,Y}(x,y) dx dy \\ &= \int_A \int_B f_X(x) f_Y(y) dx dy \\ &= \int_A f_X(x) dx \int_B f_Y(y) dy \\ &= \mathbb{P}(X \in A) \mathbb{P}(Y \in B) \,. \end{split}$$

Corollary 0.11. If X and Y are independent then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$, provided $\mathbb{E}|XY| < \infty$.

Definition 0.12. Let X be a random variable such that $\mathbb{E}(X^2) < \infty$. Then the variance of X, denoted by Var(X) is given by

$$Var(X) = \mathbb{E}(X - \mathbb{E}(X))^2$$
.

The standard deviation of X is given by $\sqrt{Var(X)}$.

Exercise: Show that Var(X) = 0 if and only if there exists a constant c such that $\mathbb{P}(X = c) = 1$.

Definition 0.13. Let X and Y be two random variables such that Var(X) and Var(Y) are finite. Then the covariance of X and Y is given by

$$Cov(X, Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$$
.

Suppose X and Y are not constant random variables, then the correlation co-efficient of X and Y is given by

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}.$$

X and Y are said to be uncorrelated if Cov(X, Y) = 0.

Note that, if X and Y are independent then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ and thus X and Y are uncorrelated. But the converse is not true. For a counter example consider the counter example given to show that joint density may not

exist even if marginal densities exist. In that example, we have, $\mathbb{E}(X) = \mathbb{E}(Y) = 0$. Also $\mathbb{E}(XY) = \mathbb{E}(X^2Z) = \mathbb{E}(X^2)\mathbb{E}(Z) = 0$. Thus X and Y are uncorrelated but clearly not independent.

Definition: Two random variables X and Y are said to be jointly normal if they have the joint density

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

where $\sigma_1 > 0$, $\sigma_2 > 0$, $|\rho| < 1$, and μ_1 , μ_2 are real numbers. More generally a random vector $X = (X_1, \dots, X_n)$ is jointly normal if it has joint density

$$f_{\bar{X}}(x) = \frac{1}{\sqrt{(2\pi)^n det(C)}} \exp\left\{-\frac{1}{2}(\bar{x} - \bar{\mu})C^{-1}(\bar{x} - \bar{\mu})^{\text{tr}}\right\}$$

where $\bar{X}=(X_1,X_2,\cdots,X_n), \ \bar{\mu}=(\mu_1,\mu_2,\cdots,\mu_n)$ and C is a positive definite matrix, called the covariance matrix.

Exercise:- Calculate the marginal densities of X and Y where (X,Y) are jointly normal. Find the covariance of X and Y. Finally show that X and Y are independent iff $\rho = 0$.

Important fact abot jointly normal random vector:- If $\bar{X} = (X_1, X_2, \cdots, X_n)$ is jointly normal then $\bar{Y} = A\bar{X}^t$ is also jointly normal where A is a constant $k \times n$ matrix.

0.3 Few Important Inequalities

Holder's Inequality Let $1 \le p < \infty$ and $1 \le q < \infty$ be such that 1/p + 1/q = 1. Further assume that $\mathbb{E}(|X|^p)$ and $\mathbb{E}(|Y|^q)$ are finite. Then

$$\mathbb{E}(|XY|) \le (\mathbb{E}(|X|^p))^{\frac{1}{p}} \left(\mathbb{E}(|Y|^q)\right)^{\frac{1}{q}}.$$

with equality if and only if X = cY for some constant c. The special case where p = q = 2 is known as Cauchy Schwartz inequality.

Exercise: Use Cauchy-Schwartz inequality to show that $-1 \le \rho \le 1$. Also show that $\rho = \pm 1$ if and only if there exist constants a and b such that Y = aX + b.

Jensen's Inequality Let X be a random variable such that $\mathbb{E}|X| < \infty$. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a convex function, i.e.,

$$\varphi(\lambda x_1 + (1-\lambda)x_2) < \lambda \varphi(x_1) + (1-\lambda)\varphi(x_2)$$
.

for all $x_1, x_2 \in \mathbb{R}$ and for all $0 \le \lambda \le 1$. Also assume that $\mathbb{E}[\varphi(X)] < \infty$. Then

$$\varphi(\mathbb{E}(X)) \leq \mathbb{E}(\varphi(X))$$
.

Equality occurs if and only if φ is linear.

Proof: We will give the proof under the additional assumption that φ is differentiable at $x = \mathbb{E}(X)$. In this case the tangent at $x = \mathbb{E}(X)$ lies completely below the graph of the function. Let l(x) = ax + b be the equation of the tangent to φ at $x = \mathbb{E}(X)$. Then $\varphi(x) \geq l(x)$ for all x. So

$$\mathbb{E}(\varphi(X)) > \mathbb{E}(l(X)) = a\mathbb{E}(X) + b = l(\mathbb{E}(X)) = \varphi(\mathbb{E}(X)).$$