MA502 Fall 2019 – Homework 6. Due October 31st, 2019

Write down detailed proofs of every statement you make

- 1. A 4×4 matrix A has eigenvalues $\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = 2, \lambda_4 = -1$.
 - Is A invertible? Why or why not?
 - Is A diagonalizable? Why or why not?
 - Find the characteristic polynomial, the trace and determinant of A.
- 2. Find a relation between the eigenvalues of a non-singular matrix A and those of its inverse A^{-1}
- 3. Find a relation between the eigenvalues of a matrix A and those of its square $A^2 = AA$
- 4. For the following either find an example or prove that such example cannot exist:
 - (a) A 4×4 matrix with eigenvalues $\lambda_1 = 1$ with algebraic multiplicity 2 and geometric multiplicity 1; $\lambda_2 = 2$ with algebraic multiplicity 1 and geometric multiplicity 1 and $\lambda_3 = 3$ with algebraic multiplicity 1 and geometric multiplicity 1.
 - (b) A 4×4 matrix with eigenvalues $\lambda_1 = 1$ with algebraic multiplicity 1 and geometric multiplicity 2; $\lambda_2 = 2$ with algebraic multiplicity 2 and geometric multiplicity 1 and $\lambda_3 = 3$ with algebraic multiplicity 1 and geometric multiplicity 1.
 - (c) A 4×4 matrix with eigenvalues $\lambda_1 = 1$ with algebraic multiplicity 2 and geometric multiplicity 1; $\lambda_2 = 2$ with algebraic multiplicity 2 and geometric multiplicity 1 and $\lambda_3 = 3$ with algebraic multiplicity 1 and geometric multiplicity 1.
 - (d) A 4×4 matrix with one eigenvalue $\lambda_1 = \pi$ with algebraic multiplicity 4 and geometric multiplicity 1;
- 5. Construct a 3×3 matrix A with eigenvalues π , π^2 , π^3 and corresponding eigenvectors (1,0,1), (1,1,0), (0,0,1). Is such matrix unique?