Page Rank Algorithm

PageRank of E denoted by PR(E)

PageRank of E denoted by PR(E)

Stationary distribution $x^* = (x^*)^T P$

L(v) - the number of vertex v outbound links

L(v) - the number of vertex v outbound links $\Gamma(v)$ - the set containing all pages linking to page v

L(v) - the number of vertex v outbound links $\Gamma(v)$ - the set containing all pages linking to page v

$$PR(u) = \sum_{v \in \Gamma(u)} \frac{PR(v)}{L(v)}$$

Stationary distribution $x^* = (x^*)^T P$

Stationary distribution

$$x^* = (x^*)^T P$$

Theorem

asserting that if a stochastic graph satisfies two conditions:

- 1. there is a path from every node to every node
- 2. the greatest common divider of all the cycle lengths id 1 then there is a unique stationary probability distribution

Stationary distribution $x^* = (x^*)^T P$

The probability, at any step, that the person will continue surfing is a damping factor d

d = 0.85

$$PR(A) = \frac{PR(B)}{L(B)} + \frac{PR(C)}{L(C)} + \frac{PR(D)}{L(D)} + \cdots$$

$$PR(A) = \frac{1-d}{N} + d\left(\frac{PR(B)}{L(B)} + \frac{PR(C)}{L(C)} + \frac{PR(D)}{L(D)} + \cdots\right)$$

$$PR(p_i) = \frac{1-d}{N} + d \sum_{p_i \in \Gamma(p_i)} \frac{PR(p_j)}{L(p_j)}$$

where $p_1, p_2, ..., p_N$ are the pages under consideration

Γ(p_i) is the set of pages that link p_i

L(p_i) is the number of outbound links on page p_i

and N is the total number of pages

At each time step
$$PR(p_i;t+1) = \frac{1-d}{N} + d \sum_{p_j \in \Gamma(p_i)} \frac{PR(p_j;t)}{L(p_j)}$$

At each time step
$$PR(p_i;t+1) = \frac{1-d}{N} + d \sum_{p_j \in \Gamma(p_i)} \frac{PR(p_j;t)}{L(p_j)}$$

The computation ends:

1. After fixed number of iterations

At each time step PR(p_i;t+1) =
$$\frac{1-d}{N}$$
 + $d\sum_{p_i \in \Gamma(p_i)} \frac{PR(p_j;t)}{L(p_j)}$

The computation ends:

- 1. After fixed number of iterations
- 2. When convergence is assumed

$$\left(\sum_{i=0}^{N} |PR(p_i, t+1) - PR(p_i, t)|\right) < \epsilon$$

At each time step PR(p_i;t+1) =
$$\frac{1-d}{N} + d \sum_{p_j \in \Gamma(p_i)} \frac{PR(p_j;t)}{L(p_j)}$$

The computation ends:

- 1. After fixed number of iterations
- 2. When convergence is assumed

$$\left(\sum_{i=0}^{N}|PR(p_i,t+1)-PR(p_i,t)|\right)<\epsilon$$

$$PR(p_i; t+1) \xrightarrow[t\to\infty]{} x^*(p_i)$$

Summary

• You have known what is PageRank (PR) - a first algorithm by Google Search to rank websites in their search engine results.

Summary

- You have known what is PageRank (PR) a first algorithm by Google Search to rank websites in their search engine results.
- You have learned how to calculate iteratively PageRank for every vertex in our graph.