Data Communication

 $\widehat{1}$

SIGNAL ENCODING TECHNIQUES

Signal Encoding Techniques

Digital Communication

- o Digital Data, Digital Signal
- Analog Data, Digital Signal

Analog Communication

- o Digital Data, Analog Signal
- Analog Data, Analog Signal

Digitizing Analog Data

Block Diagram of PCM

Pulse Code Modulation (PCM)

- sampling theorem:
 - "If a signal is sampled at regular intervals at a rate higher than twice the highest signal frequency, the samples contain all information in original signal"
 - o eg. 4000Hz voice data, requires 8000 sample per sec
- strictly have analog samples
 - Pulse Amplitude Modulation (PAM)
- so assign each a digital value

Sampling

- First stage of PCM
- Take a sample for each T_s period. And also this taken sample has a digital value
- Three types of sampling

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Amplitude Analog signal Time

a. Ideal sampling

b. Natural sampling

c. Flat-top sampling

Sampling - Nyquist Teorem

• If a signal is sampled with the twiced frequency of maximum frequency of signal, the samples hold all of the data.

Sampling Rate

- Let's digitize human voice. What is the bitrate if we encode each sample with 8 bit?
- Ans: Human voice has a frequency of o-4000 Hz (for telephone line)
 - o Sampling rate:
 - o 4000 x 2 = 8000 sample/sec
 - Bitrate = sampling
 rate x encoding bit
 numbers per sample =
 8000 x 8 = 64000 bps
 = 64 kbps

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

a. Sampling at Nyquist rate: $T_s = \frac{1}{2}T$

Samples show clock is moving forward. (12-3-6-9-12)

b. Oversampling (above Nyquist rate): $T_s = \frac{1}{4}T$

Samples show clock is moving backward. (12-9-6-3-12)

c. Undersampling (below Nyquist rate): $T_s = \frac{3}{4}T$

Quantizing

Quantized Signal

Encoding

+024	00011000	-015	10001111	+125	01111101
+038	00100110	-080	11010000	+110	01101110
+048	00110000	-050	10110010	+090	01011010
+039	00100111	+052	00110110	+088	01011000
+026	00011010	+127	01111111	+077	01001101

Sign bit + is 0 - is 1

PCM Example

PCM Block Diagram

Non-Linear Coding

Delta Modulation

- analog input is approximated by a staircase function
 - \circ can move up or down one level (δ) at each sample interval
- has binary behavior
 - since function only moves up or down at each sample interval
 - o hence can encode each sample as single bit
 - o 1 for up or 0 for down

Delta Modulation Example

Delta Modulation Operation

(a) Transmission

PCM verses Delta Modulation

- DM has simplicity compared to PCM
- but has worse SNR
- issue of bandwidth used
 - o eg. for good voice reproduction with PCM
 - want 128 levels (7 bit) & voice bandwidth 4khz
 - \times need 8000 x 7 = 56kbps
- data compression can improve on this
- still growing demand for digital signals
 - o use of repeaters, TDM, efficient switching
- PCM preferred to DM for analog signals

Analog Transmission

- Digital Data, Analog Signal
- main use is public telephone system
 - o has freq range of 300Hz to 3400Hz
 - use modem (modulator-demodulator)
- encoding techniques
 - Amplitude shift keying (ASK)
 - Frequency shift keying (FSK)
 - Phase shift keying (PSK)

Types of Modulations

Modulation Techniques

Amplitude Shift Keying

- encode o/1 by different carrier amplitudes
 - o usually have one amplitude zero
- susceptible to sudden gain changes
- inefficient
- used for
 - o up to 1200bps on voice grade lines
 - o very high speeds over optical fiber

Bandwidth for ASK

ASK Example

• For an ASK signal that has a 2000 bps transfer speed, what is the minimum bandwidth?

- Baudrate=Bitrate (for ASK)
- So minimum BW=2000 Hz

ASK Example-2

- For a 10000 Hz bandwidth (between 1000 Hz and 11000 Hz) draw the full-dublex ASK diagram. Find the carrier and bandwidth at both of two sides. Suppose that there is no gap.
- For full-dublex BW=10000/2 = 5000 Hz
- Carrier frequencies are at the center of each band, so
- fc (forward) =1000+5000/2 =3500 Hz
- fc (backward)= 11000-5000/2=8500 Hz

Binary Frequency Shift Keying

- most common is binary FSK (BFSK)
- two binary values represented by two different frequencies (near carrier)
- less susceptible to error than ASK
- used for
 - o up to 1200bps on voice grade lines
 - o high frequency radio
 - o even higher frequency on LANs using co-ax

FSK Example

- For a FSK signal that transfer data at 1000 bps, what is the minimum bandwidth? Suppose that communication is half-dublex and carriers are seperated with 2000 Hz.
- BW=baudrate +fc1-fc0
- BW= bitrate+fc1-fc0= 1000+2000
- BW=3000 Hz

Phase Shift Keying

- phase of carrier signal is shifted to represent data
- binary PSK
 - o two phases represent two binary digits
- differential PSK
 - phase shifted relative to previous transmission rather than some reference signal

Quadrature PSK

- get more efficient use if each signal element represents more than one bit
 - o eg. shifts of $\pi/2$ (90°)
 - o each element represents two bits
 - o split input data stream in two & modulate onto carrier & phase shifted carrier
- can use 8 phase angles & more than one amplitude
 - 9600bps modem uses 12 angles, four of which have two amplitudes

QPSK

QPSK

 Quadrature PSK (QPSK) is like 4QAM without amplitude modulation. QPSK uses four phase angles to represent each two bits of input; however, the amplitude remains constant.

PSK – Phase Shift Keying

- Taşıyıcı sinyalin fazı değiştirilir
- Aşağıdaki şekilde o° ve 180° faz farklı iki sinyal kullanılır. Bundan dolayı Binary PSK'da denir

 PSK sadece bir tane taşıyıcı frekans gerektirir, FSK seviye sayısı kadar gerektirir.

4 - PSK

8 – PSK Yapısı

Tribit	Phase
000 001 010 011 100 101	0 45 90 135 180 225
111	315

Tribits (3 bits)

PSK İçin Bandgenişliği

- Soru : Bir 8-PSK sinyalinin 4000 Hz'lik bir bandgenişliğinin olduğu kabul edilmektedir. Baud hızı ve bit hızı nedir?
- Cevap: PSK sinyali için baud rate = BW = 4000 Hz
 Bit Hızı baud hızının 3 katıdır
 Bit hızı = 4000 * 3 = 12000 bps

Takımyıldızı (Consellation) Diyagramı

- Sinyalin genlik ve faz değerlerini göstermek için kullanılır.
- ASK, PSK ve QAM için kullanılır. Her nokta faz ve genlik

degerlering osteridraw-Hill Companies, Inc. Permission required for reproduction or display. a. ASK (OOK) b. BPSK c. QPSK Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. a. 4-QAM b. 4-QAM c. 4-QAM d. 16-QAM

Quadrature Amplitude Modulation

- QAM used on asymmetric digital subscriber line (ADSL) and some wireless
- combination of ASK and PSK
- logical extension of QPSK
- send two different signals simultaneously on same carrier frequency
 - o use two copies of carrier, one shifted 90°
 - o each carrier is ASK modulated
 - o two independent signals over same medium
 - o demodulate and combine for original binary output

8 – QAM Sinyali

001

16 - QAM Yapısı

8-QAM

 In this 8QAM example, three bits of input generate eight different modulation states (0-7) using four phase angles on 90 degree boundaries and two amplitudes: one at 50% modulation; the other at 100% (4 phases X 2 amplitudes = 8 modulation states). QAM examples with more modulation states become extremely difficult to visualize

DIGITAL QAM (8QAM)

Note: Only four (0, 6, 1 and 7) out of the eight possible modulation states (0-7)

QAM Variants

- two level ASK
 - o each of two streams in one of two states
 - o four state system
 - o essentially QPSK
- four level ASK
 - o combined stream in one of 16 states
- have 64 and 256 state systems
- improved data rate for given bandwidth
 - but increased potential error rate

Baudrate and Bitrate Comparison

Modulation	Units	Bits/Baud	Baudrate	Bitrate
ASK, FSK, 2-FSK	Bit	1	N	N
4-PSK, 4-QAM	Dibit	2	N	2N
8-PSK, 8-QAM	Tribit	3	N	3N
16-QAM	Quadbit	4	N	4N
32-QAM	Pentabit	5	N	5N
64-QAM	Hexabit	6	N	6N
128-QAM	Septabit	7	N	7N
256-QAM	Octabit	8	N	8N

Analog Data, Analog Signals

- modulate carrier frequency with analog data
- why modulate analog signals?
 - o higher frequency can give more efficient transmission
 - o permits frequency division multiplexing (chapter 8)
- types of modulation
 - Amplitude
 - Frequency
 - Phase

Analog Modulation Techniques

- Amplitude Modulation
- Frequency Modulation
- Phase Modulation

Summary

- looked at signal encoding techniques
 - o digital data, digital signal
 - o analog data, digital signal
 - o digital data, analog signal
 - o analog data, analog signal