Exercices de récurrence

Exercice 1

On définit la suite $(u_n)_{n\in\mathbb{N}^*}$ par $u_1=1$ et la relation valable pour tout $n\in\mathbb{N}^*$:

$$u_{n+1} = u_n + 2n + 1.$$

- 1. Calculer u_2, u_3, u_4 .
- 2. Quelle conjecture peut-on faire sur l'expression de u_n en fonction de n?
- 3. Prouver que si pour un certain $k \in \mathbb{N}^*$ on a $u_k = k^2$, alors $u_{k+1} = (k+1)^2$.
- 4. Conclure et calculer : $1 + 3 + 5 + 7 + \cdots + 2019$.

Exercice 2

Prouver par récurrence que pour tout $n \in \mathbb{N}$, l'entier $8^n - 1$ est divisible par 7.

Exercice 3

Prouver par récurrence que pour tout $n \in \mathbb{N}^*$:

$$\sigma_n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.$$

Exercice 4

- 1. Justifier que pour tout $n \in \mathbb{N}^*$, on a $\sqrt{n^2 + n} \ge n$.
- 2. En déduire par récurrence que

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \ge \sqrt{n}.$$

Exercice 5

D'après l'inégalité triangulaire :

$$\forall x, y \in \mathbb{R}, \quad |x+y| < |x| + |y|.$$

Démontrer que pour tout entier $n \geq 2$,

$$\forall x_1, \dots, x_n \in \mathbb{R}, \quad \left| \sum_{k=1}^n x_k \right| \le \sum_{k=1}^n |x_k|.$$

Exercice 6

Prouver que la suite de terme général

$$u_n = \frac{2^n}{n!}$$

est décroissante sur \mathbb{N}^* .

Exercice 7

Écrire le produit des n premiers entiers pairs non nuls avec la notation factorielle :

$$2 \times 4 \times 6 \times \cdots \times 2n = ?$$

Exercice 8

Prouver par récurrence que pour n entier assez grand,

$$2^n \ge n^2$$
.

Exercice 9

Soit n un entier naturel et $\mathcal{P}(n)$ la proposition :

$$\sum_{k=0}^{n} k = \frac{1}{2} \left(n + \frac{1}{2} \right)^2.$$

Démontrer que $\mathcal{P}(n)$ est héréditaire, c'est-à-dire

$$\forall n \in \mathbb{N}^*, \quad \mathcal{P}(n-1) \implies \mathcal{P}(n).$$

Exercice 10

Soit $n \ge 1$. On pose

$$u_n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}, \quad v_n = 1^2 + 2^2 + 3^2 + \dots + n^2, \quad q_n = \frac{v_n}{u_n}.$$

- 1. Écrire un programme qui calcule pour tout $n \ge 1$, v_n et q_n . Écrire un programme qui calcule pour tout $n \ge 1$, $q_{n+1} q_n$.
- 2. Faire tourner ce programme pour diverses valeurs de n. Que constate-t-on?
- 3. En supposant que la constatation soit générale, qu'en déduit-on pour la suite (q_n) et pour la suite (v_n) ?
- 4. Démontrer par récurrence la formule explicite trouvée pour (v_n) .