CS 171: Intro to ML and DM

Christian Shelton

UC Riverside

Slide Set 4: Linear Regression, II

Slides from CS 171

- From UC Riverside
 - ► CS 171: Introduction to Machine Learning and Data Mining
 - Professor Christian Shelton
- DO NOT REDISTRIBUTE
 - ► These slides contain copyrighted material (used with permission) from
 - ► Elements of Statistical Learning (Hastie, et al.)
 - Pattern Recognition and Machine Learning (Bishop)
 - An Introduction to Machine Learning (Kubat)
 - Machine Learning: A Probabilistic Perspective (Murphy)
 - ▶ For use only by enrolled students in the course

Desired:
$$f(x) = c + bx + ax^2$$

Desired:
$$f(x) = c + bx + ax^2$$

Can be written as $f(x) = w_0 \times 1 + w_1 \times x + w_2 \times x^2$

Desired:
$$f(x) = c + bx + ax^2$$

Can be written as $f(x) = w_0 \times 1 + w_1 \times x + w_2 \times x^2$

So instead of just adding the "0th" attribute (always 1) also add other attributes that can be calculated from the given attributes.

Feature Mapping

The function that takes the raw attributes and creates features from them is often written $\phi(x)$. For instance

$$\phi(x) = \begin{bmatrix} 1 & x_1 & x_2 \end{bmatrix} \qquad \phi(x) = \begin{bmatrix} 1 & x_1 & x_2 & x_1^2 & x_2^2 & x_1 x_2 \end{bmatrix}$$

$$\phi(x) = \begin{bmatrix} 1 & x_1 & x_2^2 \end{bmatrix} \qquad \phi(x) = \begin{bmatrix} 1 & x_1 & x_2 & \sin(x_1) & \sin(x_2) \end{bmatrix}$$

Feature Mapping

The function that takes the raw attributes and creates features from them is often written $\phi(x)$. For instance

$$\phi(x) = \begin{bmatrix} 1 & x_1 & x_2 \end{bmatrix}$$

$$\phi(x) = \begin{bmatrix} 1 & x_1 & x_2 & x_1^2 & x_2^2 & x_1 x_2 \end{bmatrix}$$

$$\phi(x) = \begin{bmatrix} 1 & x_1 & x_2 & \sin(x_1) & \sin(x_2) \end{bmatrix}$$

Instead of X, we sometimes call the new matrix Φ :

$$X = \begin{bmatrix} -x_1 - \\ -x_2 - \\ \vdots \\ -x_m - \end{bmatrix} \qquad \Phi = \begin{bmatrix} -\phi(x_1) - \\ -\phi(x_2) - \\ \vdots \\ -\phi(x_m) - \end{bmatrix}$$

Feature Mapping

The function that takes the raw attributes and creates features from them is often written $\phi(x)$. For instance

$$\begin{array}{llll} \phi(x) = \begin{bmatrix} 1 & x_1 & x_2 \end{bmatrix} & \phi(x) = \begin{bmatrix} 1 & x_1 & x_2 & x_1^2 & x_2^2 & x_1 x_2 \end{bmatrix} \\ \phi(x) = \begin{bmatrix} 1 & x_1 & x_1^2 \end{bmatrix} & \phi(x) = \begin{bmatrix} 1 & x_1 & x_2 & \sin(x_1) & \sin(x_2) \end{bmatrix} \end{array}$$

Instead of X, we sometimes call the new matrix Φ :

$$X = \begin{bmatrix} --x_1 - - \\ --x_2 - - \\ \vdots \\ --x_m - - \end{bmatrix} \qquad \Phi = \begin{bmatrix} --\phi(x_1) - - \\ --\phi(x_2) - - \\ \vdots \\ --\phi(x_m) - - \end{bmatrix}$$

The learning equation correspondingly changes notation:

$$\hat{w} = (X^{\top} X)^{-1} (X^{\top} Y)$$
 $\hat{w} = (\Phi^{\top} \Phi)^{-1} (\Phi^{\top} Y)$

And of course the resulting function changes equation too:

$$f(x) = x^{\top} \hat{w} \qquad \qquad f(x) = \phi(x)^{\top} \hat{w}$$

2nd order:
$$\phi(x)=\begin{bmatrix}1&x_1&x_2&x_1^2&x_1x_2&x_2^2\end{bmatrix}$$
 sq. error = 2.4689

$$\text{3rd order: } \phi(x) = \begin{bmatrix} 1 & x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 & x_1^3 & x_1^2x_2 & x_1x_2^2 & x_2^3 \end{bmatrix}$$

 $\text{4th order: } \phi(x) = \begin{bmatrix} 1 & x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 & x_1^3 & x_1^2x_2 & x_1x_2^2 & x_2^3 & x_1^4 & x_1^3x_2 & x_1^2x_2^2 & x_1x_2^3 & x_2^4 \end{bmatrix}$

5th order:
$$\phi(x) = \begin{bmatrix} 1 & x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 & x_1^3 & x_1^2x_2 & \dots & x_2^5 \end{bmatrix}$$

"correct":
$$\phi(x) = \begin{bmatrix} 1 & \sin(x_1) & \sin(x_2) & x_1^2 \end{bmatrix}$$

sq. error = 2.3717

really "correct":
$$\phi(x) = [3 + \sin(x_1) + \sin(x_2) + x_1^2]$$

2nd order:
$$\phi(x)=\begin{bmatrix}1&x_1&x_2&x_1^2&x_1x_2&x_2^2\end{bmatrix}$$
 sq. error = 2.4689

some 5th order:
$$\phi(x)=\begin{bmatrix}1&x_1&x_2&x_1^2x_2&x_1^3x_2^2&x_1^2x_2^2\end{bmatrix}$$

Need a way to discourage the learning algorithm from using all of the features.

Need a way to discourage the learning algorithm from using all of the features. Or at least using them "as much."

Need a way to discourage the learning algorithm from using all of the features. Or at least using them "as much."

$$L = \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} w_j x_{i,j} \right)^2$$

Need a way to discourage the learning algorithm from using all of the features. Or at least using them "as much."

$$L = \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} w_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{n} w_j^2$$

Need a way to discourage the learning algorithm from using all of the features. Or at least using them "as much."

$$L = \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} w_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{n} w_j^2$$

This is called "ridge regression" or "LLS with L_2 regularization."

Need a way to discourage the learning algorithm from using all of the features. Or at least using them "as much."

$$L = \sum_{i=1}^{m} \left(y_i - \sum_{j=0}^{n} w_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{n} w_j^2$$

This is called "ridge regression" or "LLS with L_2 regularization." If we have a constant feature, we generally do not include it in the regularization.

$$L = \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} w_j x_{i,j} \right)^2$$

$$L = \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} w_j x_{i,j} \right)^2$$

$$w = \left(X^{\top}X\right)^{-1}X^{\top}Y$$

$$L = \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} w_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{n} w_j^2$$

$$w = \left(X^{\top}X + \lambda I\right)^{-1} X^{\top}Y$$

$$L = \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} w_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{n} w_j^2$$

$$w = \begin{pmatrix} X^{\top}X + \lambda \begin{bmatrix} 1 & 0 & & & 0 \\ 0 & 1 & & & 0 \\ & & \ddots & \\ 0 & 0 & & & 1 \end{bmatrix} \end{pmatrix}^{-1} X^{\top}Y$$

$$L = \sum_{i=1}^{m} \left(y_i - \sum_{j=0}^{n} w_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{n} w_j^2$$

$$w = \begin{pmatrix} X^{\top}X + \lambda \begin{bmatrix} 0 & 0 & & & 0 \\ 0 & 1 & & & 0 \\ & & \ddots & \\ 0 & 0 & & & 1 \end{bmatrix} \end{pmatrix}^{-1} X^{\top}Y$$

Regularization

5th order polynomial

Regularization

5th order polynomial

 $\lambda = 0.02$

$\lambda = 0.02$

$\lambda = 0.02$

