Correction MI – TD 4 –

Mouvement de particules chargées dans des champs électrique et magnétique, uniformes et stationnaires

I - Chambre à bulles

- 1. Questions de cours :
 - (a) $||\vec{B}|| = 50 \,\mu\text{T}.$
 - (b) On a $P=m\,\vec{g}$ et $\vec{F}_L=q\vec{v}\wedge\vec{B}$. En supposant $\vec{v}\perp\vec{B}$, on en déduit $\left|\frac{F_L}{P}=\frac{|q|vB}{mg}\right|$

A.N. : $\frac{F_L}{P} = \frac{1,6\cdot 10^{-19}\times 5\times 50\cdot 10^{-6}}{9,1\cdot 10^{-31}\times 10} \approx \frac{4}{9}10^7 \approx 10^6$. Dans la plupart des situations, le poids est donc négligeable devant la force magnétique pour un

- (c) On applique le théorème de la puissance cinétique : $\frac{\mathrm{d}E_c}{\mathrm{d}t} = \mathcal{P}(\vec{F}_L) = \vec{F}_L \cdot \vec{v} = (q\vec{v} \wedge \vec{B}) \cdot \vec{v}$. Or $(\vec{v} \wedge \vec{B}) \perp \vec{v}$ donc $\mathcal{P}(\vec{F}_L) = 0$, soit $E_c = \text{cste}$. On en déduit $v = ||\vec{v}|| = \text{cste}$: le mouvement est uniforme.
- (d) On se place dans un repère cylindrique $(\vec{e}_r, \vec{e}_\theta, \vec{e}_z)$ avec \vec{e}_z colinéaire et de même sens que $\vec{B} : \vec{B} = B\vec{e}_z$. Si le mouvement est circulaire de rayon R, on a $\overrightarrow{OM} = R\vec{e}_r$, $\vec{v} = R\dot{\theta}\vec{e}_{\theta}$ et $\vec{a} = R\ddot{\theta}\vec{e}_{\theta} - R\dot{\theta}^2\vec{e}_r$. Comme le mouvement est uniforme $v=R|t\dot{het}a|=\text{cste}=v_0$ soit $\dot{\theta}=\text{cste}$ et $\ddot{\theta}=0$. Soit $\vec{a}=-R\dot{\theta}^2\vec{e}_r=-\frac{v_0^2}{R}\vec{e}_r$. De plus $\vec{F}_L=q\vec{v}\wedge\vec{B}=qv_0\vec{e}_\theta\wedge\vec{B}\vec{e}_z=qBv_0\vec{e}_r$. En appliquant la RFD $m\vec{a}=\vec{F}_L$, on en déduit
- (e) On a $\forall t, v = R|\dot{\theta}| = v_0$ soit $|\dot{\theta}| = \frac{|q|B}{m}$. On reconnait la pulsation synchrotron ω_c . Finalement $|\dot{\theta}| = \pm \omega_c = \pm \frac{|q|B}{m}$
- 2. La concavité de la trajectoire donne l'orientation de l'accélération \vec{a} et donc de la force de Lorentz \vec{F}_L . De plus le vecteur vitesse \vec{v} est tangent à la trajectoire et orienté dans le sens du mouvement. On connait les orientations de \vec{v} et \vec{B} , on en déduit celle de $\vec{v} \wedge \vec{B}$. En comparant avec celle de \vec{F}_L , on en déduit le signe de la charge. dans notre cas:

— Trajectoire 3 : trajectoire rectiligne et uniforme. Soit $\vec{F}_L = 0$. Or $\vec{v} \wedge \vec{B} \neq \vec{0}$ donc q = 0.

3. Lors de leur passage dans le liquide les particules décélèrent. Or $R = \frac{mv_0}{|q|B}$ donc le rayon diminue progressivement.

II - Cyclotron

- 1. Mouvement dans un « dees »
 - (a) Dans le « dee », seule la composante magnétique de la force de Lorentz intervient, on a donc $\vec{F} = q\vec{v} \wedge \vec{B}$. Pour un proton q = +e > 0, la force en O est dans le plan du schéma, dirigée vers le bas.
 - (b) Démonstration identique à celle de l'exercice précédent.
 - (c) Démonstartion identique à celle de l'exercice précédent. Pour q=e, on obtient : $R_0 = \frac{mv_0}{eB}$
 - (d) Le proton parcourt un demi-cercle de rayon R_0 à la vitesse uniforme v_0 . Le temps de parcours est donc $t = \frac{\pi R_0}{v_0} = \frac{\pi m}{eB}$, qui est indépendant de v_0 . A.N: $t = \frac{\pi \times 1,67 \cdot 10^{-27}}{1,6 \cdot 10^{-19} \times 0,1} = 3,28 \cdot 10^{-7}$ s.
 - (e) Le mouvement est circulaire uniforme.
- 2. Mouvement dans l'intervalle entre les« dees »
 - (a) On veut que la force électrique de Lorentz qui s'applique sur le proton entre les « dees » soit maximale, colinéaire et de même sens que le vecteur vitesse du proton. Il faut donc que l'intensité du champ électrique soit maximale à chaque passage dans l'intervalle étroit mais change de sens selon qu'on passe du « dee 1 » au « dee 2 » ou l'inverse. Il faut donc que la demi-période de la tension alternative générant le champ électrique soit égale au temps de passage t dans un « dee » (en négligeant le temps passé dans l'intervalle). On a alors $\frac{1}{2f} = t$ soit $f = \frac{eB}{2\pi m}$. A.N: $f = 1,52\,\mathrm{MHz}$.
 - (b) On applique le théorème de l'énergie mécanique. La seule force s'appliquant dans l'intervalle étant la force de Lorentz, on a : $\Delta E_m = \Delta E_c + \Delta E_p = 0$ avec $E_p = qV$. Si on considère que la tension est constante et maximale lors du passage du proton dans l'intervalle $\Delta E_p = eU_M$. Soit $\Delta E_c = eU_M$. A.N. $\Delta E_c = 2 \text{ keV} = 1,6 \cdot 10^{-19} \times 2 \cdot 10^3 = 3,2 \cdot 10^{-16} \text{ J}$.
 - (c) Le mouvement est rectiligne uniformément accéléré.
- 3. Mouvement dans le cyclotron
 - (a) À chaque passage dans l'intervalle, l'énergie cinétique, et donc la vitesse, augmente. Comme $R = \frac{mv}{eB}$, le rayon augmente également.
 - (b) Avec une vitesse d'injection pratiquement nulle et une vitesse finale v_e , la variation totale d'énergie cinétique est $\Delta E_{c,tot} = \frac{1}{2} m v_e^2$. À chaque tour, elle augmente de $2\Delta E_c$, le nombre de tours nécessaire est donc $n = \frac{\Delta E_{c,tot}}{2\Delta E_c} = \frac{m v_e^2}{4eU_M}$. A.N. : $n = \frac{1,67\cdot 10^{-27}\times (2\cdot 10^7)^2}{4\times 3,2\cdot 10^{-16}} = 522$.
 - (c) Au moment de leur éjection, le rayon est $R_e = \frac{mv_e}{eB}$. A.N. : $R_e = \frac{1.67 \cdot 10^{-27} \times 2 \cdot 10^7}{1.6 \cdot 10^{-19} \times 0.1} = 2,09 \,\mathrm{m}$.

III - Modélisation d'un oscilloscope analogique à tube cathodique

1. Questions préliminaires :

(a)
$$\vec{F} = q\vec{E}$$

(b)
$$E_p = qV$$

(c)
$$dE_p = -\delta W = -\vec{F} \cdot d\vec{l}$$
. Pour un problème unidimensionnel selon $x \left[\vec{F} \right] = -\frac{dE_p}{dx} \vec{e}_x^{-1}$.

(d) On en déduit
$$q\vec{E} = -\frac{\mathrm{d}E_p}{\mathrm{d}x}\vec{e}_x = -\frac{\mathrm{d}(qV)}{\mathrm{d}x}\vec{e}_x$$
 soit $\left[\vec{E} = -\frac{\mathrm{d}V}{\mathrm{d}x}\vec{e}_x\right]^2$.

- 2. Pour que la particule soit accélérée par la première paire de plaques, il faut $\vec{a} \cdot \vec{e}_x > 0$ soit $\frac{\vec{F}}{m} \cdot \vec{e}_x = \frac{q\vec{E}}{m} \cdot \vec{e}_x > 0$ d'où $-\frac{q}{m} \frac{\mathrm{d}V}{\mathrm{d}x} > 0$. Comme q = -e < 0, il faut $\frac{\mathrm{d}V}{\mathrm{d}x} > 0$ et donc $U_x > 0$.
 - De même, il faut au niveau de la seconde paire de plaques $\vec{a} \cdot \vec{e}_z > 0$. On en déduit $U_z > 0$.
- 3. On applique le théorème de l'énergie mécanique à la particule entre O, point d'entre dans les plaques et H point de sortie : $\Delta_{OH}E_m = \Delta_{OH}E_c + \Delta_{OH}E_p = 0$ avec $\Delta_{OH}E_c = \frac{1}{2}mv^2(H) \frac{1}{2}mv_0^2$ et $\Delta_{OH}E_p = qv(H) qV(O) = -eU_x$. Soit $v_0 = \sqrt{\frac{2eU_x}{m}}$.
- 4. (a) Entre la deuxième paire de plaques, on a $\forall t,\, m\vec{a}=q\vec{E}=-e\frac{U_z}{d}\vec{e}_z$. On reconnait le mouvement d'un point matériel soumis à un vecteur accélération constant. En appliquant les conditions initiales $\overrightarrow{OM}(t=0)=\vec{0}$ et $\vec{v}(t=0)=v_0\vec{e}_x$, on trouve finalement $\vec{v}(t)=v_0\,\vec{e}_x+\frac{eU_z}{md}t\,\vec{e}_z$ et

$$\forall t, \left\{ \begin{array}{ll} x(t) & = & v_0 t \\ z(t) & = & \frac{1}{2} \frac{eU_z}{md} t^2 \end{array} \right.$$

(b) La particule sort des plaques pour $x=\ell$ soit en t_ℓ tel que $x(t_\ell)=\ell$ et donc $t_\ell=\frac{\ell}{v_0}$. On a alors $z_\ell=z(t_\ell)=\frac{1}{2}\frac{eU_z}{md}\frac{\ell^2}{v_0^2}$. La vitesse vaut alors $\vec{v}(t_\ell)=v_0\,\vec{e}_x+\frac{eU_z}{md}\frac{\ell}{v_0}\,\vec{e}_z$. Le vecteur vitesse, et donc la

trajectoire, fait un angle
$$\alpha$$
 avec l'horizontale tel que
$$\tan \alpha = \frac{v_z}{v_x} = \frac{eU_z\ell}{mdv_0^2}$$

(c) Après les plaques, $\vec{E} = \vec{0}$ donc $\vec{F} = \vec{0}$ et $\vec{a} = \vec{0}$. Le mouvement est rectiligne uniforme. L'équation de la trajectoire est celle d'une droite de pente $\alpha : z(x) = z(x = \ell) + \tan \alpha (x - \ell)$ d'où

$$\forall x > \ell, \ z(x) = \frac{eU_z\ell}{mdv_0^2} \left(x - \frac{\ell}{2} \right)$$

Au niveau de l'écran
$$x=D+\frac{\ell}{2},$$
 on a donc
$$\boxed{z_D=\frac{eU_z}{mdv_0^2}\ell D}$$

En remarquant que $v_0 = \sqrt{\frac{2eU_x}{m}}$, on peut écrire $\frac{mv_0^2}{e} = 2U_x$. On obtient $z_D = \frac{1}{2} \frac{U_z}{U_x} \frac{\ell D}{\ell d}$, indépendant de m et de e

5.
$$U_z = 2U_x \frac{z_D d}{\ell D}$$
. A.N. : $U_z = 2 \times 3 \cdot 10^3 \times \frac{1 \times 1}{5 \times 20} = 60 \text{ V}$.

^{1.} On obtient évidemment le même résultat en partant de $\vec{F} = -\overrightarrow{\text{grad}}E_p$

^{2.} Relation que l'on peut généraliser par $\vec{E} = -\overrightarrow{\text{grad}}V$.