4.函数极限与数列极限的关系

设 $f: U(x_0) \to R$, 对 $U(x_0)$ 中任何数列 $\{x_n\}$,

对应于 f(x), 有数列 $\{f(x_n)\}$, 即 $f(x_1)$, $f(x_2)$, \dots , $f(x_n)$, \dots

定理:(函数极限的归并原理一Heine定理)

$$\lim_{x \to x_0} f(x) = A \qquad \lim_{n \to \infty} f(x_n) = A.$$

$$\forall \{x_n\} \in U(x_0), \lim_{n \to \infty} x_n = x_0.$$

$$\lim_{x \to x_0} f(x) = A \Longrightarrow \forall \{x_n\} \colon x_n \neq x_0, f(x_n)$$

有定义,且
$$x_n \to x_0 (n \to \infty)$$
,有 $\lim_{n \to \infty} f(x_n) = A$.

证: "
 "设 $\lim_{x \to x_0} f(x) = A$,即 $\forall \varepsilon > 0$,当

$$0 < |x - x_0| < \delta$$
 时, 有 $|f(x) - A| < \varepsilon$.

$$\forall \{x_n\}: x_n \neq x_0, f(x_n)$$
有定义,且 $x_n \to x_0 (n \to \infty)$,

对上述
$$\delta$$
, $\exists N$, $\dot{\exists} n > N$ 时, 有 $0 < |x_n - x_0| < \delta$,

于是当
$$n > N$$
时 $|f(x_n) - A| < \varepsilon$.

故
$$\lim_{n\to\infty} f(x_n) = A$$

"一"可用反证法证明

"一"反证法: 假设 $\lim_{x\to x_0} f(x) \neq A$,则 $\exists \varepsilon_0 > 0$,对 $\forall \delta > 0$,

$$\exists x: 0<|x-x_0|<\delta$$
时,有 $|f(x)-A|\geq \varepsilon_0$.

取
$$\delta_1 = 1$$
, $\exists x_1, 0 < |x_1 - x_0| < 1$ 时,有 $|f(x_1) - A| \ge \varepsilon_0$;

取
$$\delta_2 = \min\left\{\frac{1}{2}, |x_1 - x_0|\right\}, \exists x_2, 0 < |x_2 - x_0| < \frac{1}{2}$$
时,有 $|f(x_2) - A| \ge \varepsilon_0$;

由此得数列
$$\{x_n\}$$
,因 $\delta_n < \frac{1}{n} \to 0 (n \to \infty)$,故有 $\lim_{n \to \infty} x_n = x_0$,

取 $\delta_n = \min \left\{ \frac{1}{n}, |x_{n-1} - x_0| \right\}, \exists x_n, 0 < |x_n - x_0| < \frac{1}{n}$ 时,有 $|f(x_n) - A| \ge \varepsilon_0$;

且 $x_n \neq x_0$,但 $\lim_{n\to\infty} f(x_n) \neq A$,与已知矛盾,:假设错误

归并原理一Heine定理

$$\lim_{x \to x_0} f(x) = A$$

∀数列 $\{x_n\} \in U(x_0), f(x_n)$ 有定义且 $x_n \to x_0$ 时 $(n \to \infty)$,恒有 $\lim_{n \to \infty} f(x_n) = A$.

(A为有限数或∞).

说明: 此定理常用于判断函数极限不存在

法1 找一个数列 $\{x_n\}$: 且 $x_n \to x_0 (n \to \infty)$,

使 $\lim_{n\to\infty} f(x_n)$ 不存在.

法2 找两个趋于 x_0 的不同数列 $\{x_n\}$ 及 $\{x'_n\}$,

使
$$\lim_{n \to \infty} f(x_n) \neq \lim_{n \to \infty} f(x'_n)$$

例9 证明 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

证 取
$$\{x_n\} = \left\{\frac{1}{n\pi}\right\}$$
, 则 $\lim_{n\to\infty} x_n = 0$, 且 $x_n \neq 0$;

$$\lim_{n\to\infty} \sin\frac{1}{x_n} = \lim_{n\to\infty} \sin n\pi = \mathbf{0},$$
又取 $\{x'_n\} = \left\{\frac{1}{4n+1} \frac{1}{2}\pi\right\},$

则
$$\lim_{n\to\infty} x'_n = 0$$
,且 $x'_n \neq 0$;

$$\overline{\prod} \lim_{n\to\infty} \sin\frac{1}{x'_n} = \lim_{n\to\infty} \sin\frac{4n+1}{2}\pi = \lim_{n\to\infty} 1 = 1,$$

二者不相等,故
$$\lim_{x\to 0} \sin \frac{1}{x}$$
 不存在.

函数极限的统一定义

$$\lim_{n \to \infty} f(n) = A;$$

$$\lim_{x \to \infty} f(x) = A;$$

$$\lim_{x \to +\infty} f(x) = A;$$

$$\lim_{x \to x_0} f(x) = A;$$

$$\lim_{x \to x_0^+} f(x) = A;$$

$$\lim_{x \to x_0^-} f(x) = A;$$

$$\lim_{x \to x_0^-} f(x) = A.$$

$$\lim f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists$$
时刻,从此"时刻"以后,
恒有 $|f(x) - A| < \varepsilon$.(见下表)

	过	程	$n \to \infty$	$x \to \infty$	$x \to +\infty$	$x \to -\infty$	
时刻				Λ	N		
从	此时	刻以后	n > N	x > N	x > N	x < -N	
	f(x)		$ f(x)-A <\varepsilon$				

S. S	过	程	$x \rightarrow x_0$	$x \rightarrow x_0^+$	$x \rightarrow x_0^-$		
対した。	时	时 刻 δ					
	从此时	刻以后	$\left 0 < x - x_0 < \delta \right $	$0 < x - x_0 < \delta$	$-\delta < x - x_0 < 0$		
	f(x)		$ f(x)-A <\varepsilon$				

第二部分 性质与运算法则

- 1. 有理运算法则:
- 2. 极限唯一性
- 3. 局部有界性
- 4.不等式性质
- 5. 复合运算法则:
- 6、求极限方法举例

1.有理运算法则:

设在
$$x$$
的某一变化过程中 $(x \to x_0(x_0^+, x_0^-), x \to \infty(+\infty, -\infty))$, $\lim f(x) = a, \lim g(x) = b, 则$
$$\lim \left[f(x) \pm g(x) \right] = \lim f(x) \pm \lim g(x) = a \pm b$$

$$\lim \left[f(x)g(x) \right] = \lim f(x) \lim g(x) = ab$$

$$\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)} = \frac{a}{b}, (b \neq 0)$$

(可推广到有限个函数的情形)

推论: (1)
$$\lim (kf(x)) = ka, k$$
 为常数; (2) $\lim (f(x))^m = a^m, m \in \mathbb{Z}^+$

(3)
$$\lim (k_1 f(x) + k_2 g(x)) = k_1 \lim f(x) + k_2 \lim g(x) = k_1 a + k_2 b$$

2. 极限唯一性

定理 若 $\lim_{x \to \infty} f(x)$ 存在,则极限唯一.

证 假设
$$\lim_{x \to x_0} f(x) = A$$
, $\lim_{x \to x_0} f(x) = B$.

由极限定义,对任意 $\epsilon > 0$,分别存在 正数

$$\delta_1$$
, δ_2 ,当 $0<|x-x_0|<\delta_1$ 时,有 $|f(x)-A|<\varepsilon$;

当 $0 < |x-x_0| < \delta_2$ 时,有 $|f(x)-B| < \epsilon$.

取 $\delta = \min\{\delta_1, \delta_2\}$, 当 $0 < |x - x_0| < \delta$ 时,有

$$|f(x)-A| < \varepsilon, |f(x)-B| < \varepsilon$$

同时成立. 于是,对任意 $\epsilon > 0$,总存在 $\delta > 0$,

当 $0 < |x-x_0| < \delta$ 时,有

$$|A-B| = |[f(x)-B]-[f(x)-A]|$$

$$\leq |f(x)-B|+|f(x)-A| < \varepsilon + \varepsilon = 2\varepsilon.$$

因为 2ϵ 是任意小的正数,所以 A=B,即极限值唯一.

或用归并原理也可证明

3. 局部有界性 设 $\lim_{x\to x_0} f(x) = A$.

则 $\exists M > 0, \delta > 0, \forall x \in U(x_0, \delta), \uparrow f(x) \leq M.$ f(x)在 x_0 处是局部有界的.

$$\lim_{x\to x_0} f(x) = A \Rightarrow f(x) \pm x_0$$
 处是局部有界的.

证 对 $\varepsilon=1$, $\exists \delta > 0$, $\forall x \in U(x_0, \delta)$, 有 $|f(x)-A| \le 1$. $|f(x)| = |f(x)-A+A| \le 1 + |A|.$ 取M=1+|A|即可证.

4.不等式性质

定理(局部保号性) 若 $\lim_{x\to x_0} f(x) = A$, 且A > 0(或A < 0),

则
$$\exists \delta > 0$$
, 当 $x \in U(x_0, \delta)$ 时, $f(x) \ge q > 0$ (或 $f(x) \le q < 0$).

(A>0, A/2; A<0, -A/2)

定理(局部保序性) 设 $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$.

若
$$\exists \delta > 0, \forall x \in U(x_0, \delta), \mathbf{a}f(x) \leq g(x), \mathbf{y}A \leq B.$$

(反证,设A>B,则有A-B>0,差的极限等于极限之差,局部保号性,f(x)>g(x),矛盾)

推论 若 $\lim_{x \to x_0} f(x) = A$, 且 $\exists \delta > 0$, 当 $x \in U(x_0, \delta)$ 时, $f(x) \ge 0$ (或 $f(x) \le 0$), 则 $A \ge 0$ (或 $A \le 0$).

推论

若
$$\lim_{x \to x_0} f(x) = A$$
, $\lim_{x \to x_0} g(x) = B$, 且 $A < B$

⇒
$$\exists \delta > 0, \forall x \in \overset{0}{U}(x_0, \delta), \not\exists f(x) < g(x).$$

$$\mathfrak{R}\varepsilon = \frac{B-A}{2} > 0,$$

$$\exists \delta_1, \forall x \in \overset{o}{U}(x_0, \delta_1), \overline{f}f(x) - A < \varepsilon, \mathcal{A}f(x) < \frac{A+B}{2}.$$

$$\exists \delta_2, \forall x \in \overset{\circ}{U}(x_0, \delta_2), \overline{\uparrow}g(x) - B > -\varepsilon, \overline{\uparrow}g(x) > \frac{A+B}{2}.$$

$$\diamondsuit \delta = \min\{\delta_1, \delta_2\}, 则 \forall x \in \overset{\circ}{U}(x_0, \delta), 必有f(x) < g(x)$$

定理(夹逼准则) 设 $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} h(x) = A$.

若
$$\exists \delta > 0, \forall x \in \overset{\circ}{U}(x_0, \delta), 有 f(x) \leq g(x) \leq h(x),$$
则 $\lim_{x \to x_0} g(x) = A.$

(利用函数极限定义,或归并原理一Heine定理及数列极限的夹逼准则可证)

夹逼准则 设 $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} h(x) = A$. 若 $\exists \delta > 0$, $\forall x \in U(x_0, \delta)$,

有
$$f(x) \le g(x) \le h(x)$$
,则 $\lim_{x \to x_0} g(x) = A$.

证: $\forall \varepsilon > 0$, $\because \lim_{x \to x_0} f(x) = A$, $\therefore \exists \delta_1 > 0$, 使当

$$0 < |x - x_0| < \delta_1$$
 时,有 $A - \varepsilon < f(x) < A + \varepsilon$.

又:: $\lim_{x \to x_0} h(x) = A$, :: $\exists \delta_2 > 0$, 使当 $0 < |x - x_0| < \delta_2$,

有 $A - \varepsilon < h(x) < A + \varepsilon$.

取
$$\delta' = \min\{\delta_1, \delta_2, \delta\}$$
, 于是当 $0 < |x - x_0| < \delta'$ 时,

便有 $A - \varepsilon < f(x) \le g(x) \le h(x) < A + \varepsilon$,

成立,即 $|g(x)-A| < \varepsilon$. 由此证明了 $\lim_{x \to x_0} g(x) = A$.

5.复合函数极限的运算法则:

设
$$y = (f \circ g)(x) = f(g(x)), x \in U(x_0)$$
是由 $y = f(u),$ $u = g(x)$ 复合而成。

$$\lim_{x\to x_0} f(g(x)) = \lim_{u\to u_0} f(u) = a.$$

将自变量x的极限转化为中间变量u的极限

设 $y = (f \circ g)(x) = f(g(x)), x \in U(x_0)$ 是由y = f(u), u = g(x)复合而成。

若
$$\lim_{x \to x_0} g(x) = u_0$$
, $\lim_{u \to u_0} f(u) = a$, 并且存在 δ_0 , 使得对于每个 $x \in U(x_0, \delta_0)$, 都有 $g(x) \neq u_0$

$$\lim_{x \to x_0} f(g(x)) = \lim_{u \to u_0} f(u) = a.$$

证:
$$\lim_{u \to u_0} f(u) = a \Longrightarrow \forall \varepsilon > 0, \exists \eta > 0, \stackrel{\text{if}}{=} 0 < |u - u_0| < \eta$$
 时,有 $|f(u) - a| < \varepsilon$

取
$$\delta = \min\{\delta_1, \delta_0\}$$
,则当 $0 < |x - x_0| < \delta$ 时 $0 < |g(x) - u_0| = |u - u_0| < \eta$

故 $|f[g(x)]-a|=|f(u)-a|<\varepsilon$, 得证.

例. 求 $\lim_{x\to 3} \sqrt{\frac{x-3}{x^2-9}}$.

$$\mathbf{M}: \diamondsuit u = \frac{x-3}{x^2-9}$$

$$\vdots \qquad \lim_{x\to 3} u = \frac{1}{6}$$

$$\therefore \quad \text{原式} = \lim_{u \to \frac{1}{6}} \sqrt{u} = \sqrt{\frac{1}{6}} = \frac{\sqrt{6}}{6}$$

将自变量x的极限转化为中间变量u的极限

若
$$\lim_{x\to x_0} \mathbf{g}(\mathbf{x}) = \mathbf{u}_0$$
, $\lim_{u\to u_0} f(\mathbf{u}) = \mathbf{a}$,

$$\lim_{x\to x_0} f(g(x)) = \lim_{u\to u_0} f(u) = a.$$

$$f(u) = \begin{cases} 2, u \neq 0 \\ 0, u = 0 \end{cases} \qquad g(x) = \begin{cases} 0, x \neq 0 \\ 1, x = 0 \end{cases}$$

例:

若
$$\lim_{x\to x_0} g(x) = u_0$$
, $\lim_{u\to u_0} f(u) = a$,

$$\lim_{x\to x_0} f(g(x)) = \lim_{u\to u_0} f(u) = a.$$

$$f(u) = \begin{cases} 2, u \neq 0 \\ 0, u = 0 \end{cases} \qquad g(x) = \begin{cases} 0, x \neq 0 \\ 1, x = 0 \end{cases}$$

$$f(g(x)) = \begin{cases} 0, x \neq 0 \\ 2, x = 0 \end{cases}$$

$$\lim_{x\to 0} f\left(g\left(x\right)\right) = 0. \qquad \qquad \lim_{u\to 0} f\left(u\right) = 2.$$

$$x_0=0$$
, $u_0=0$ $x\neq 0$ 时, $g(x)=u_0$.

例. 求 $\lim_{x\to 1} \frac{x-1}{\sqrt{x-1}}$.

解: 方法 1 令 $u = \sqrt{x}$, 则 $\lim_{x \to 1} u = 1$,

$$\frac{x-1}{\sqrt{x-1}} = \frac{u^2-1}{u-1} = u+1$$

... 原式 =
$$\lim_{u \to 1} (u+1) = 2$$

方法2

$$\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1} = \lim_{x \to 1} \frac{(x-1)(\sqrt{x}+1)}{x-1} = \lim_{x \to 1} (\sqrt{x}+1)$$

$$= 2$$

6、求极限方法举例

例10 求
$$\lim_{x\to 2} \frac{x^3-1}{x^2-3x+5}$$
.

$$\text{iff} :: \lim_{x \to 2} (x^2 - 3x + 5) = \lim_{x \to 2} x^2 - \lim_{x \to 2} 3x + \lim_{x \to 2} 5
 = (\lim_{x \to 2} x)^2 - 3\lim_{x \to 2} x + \lim_{x \to 2} 5
 = 2^2 - 3 \cdot 2 + 5 = 3 \neq 0,$$

$$\therefore \lim_{x\to 2} \frac{x^3 - 1}{x^2 - 3x + 5} = \frac{\lim_{x\to 2} x^3 - \lim_{x\to 2} 1}{\lim_{x\to 2} (x^2 - 3x + 5)} = \frac{2^3 - 1}{3} = \frac{7}{3}.$$

例11 求
$$\lim_{x\to 1} \frac{x^2-1}{x^2+2x-3}$$
.

 \mathbf{k} $x \to 1$ 时,分子,分母的极限都是零. $(\frac{1}{0}\mathbb{Z})$

先约去不为零的无穷小因子x-1后再求极限.

$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 + 2x - 3} = \lim_{x \to 1} \frac{(x+1)(x-1)}{(x+3)(x-1)}$$

$$= \lim_{x\to 1} \frac{x+1}{x+3} = \frac{1}{2}.$$

(消去零因子法)

例12 求
$$\lim_{x\to\infty} \frac{2x^3+3x^2+5}{7x^3+4x^2-1}$$
.

解 $x \to \infty$ 时,分子,分母的极限都是无穷大.($\frac{\infty}{\infty}$ 型)

先用x3去除分子分母,分出无穷小,再求极限.

$$\lim_{x \to \infty} \frac{2x^3 + 3x^2 + 5}{7x^3 + 4x^2 - 1} = \lim_{x \to \infty} \frac{2 + \frac{3}{x} + \frac{5}{x^3}}{7 + \frac{4}{x} - \frac{1}{x^3}} = \frac{2}{7}.$$

(无穷因子分出法)

第三部分 两个重要极限

(1)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

作单位圆的切线,得 ΔACO .

扇形OAB的圆心角为x, $\triangle OAB$ 的高为BD,

于是有 $\sin x = BD$, x =弧AB, $\tan x = AC$,

于是有
$$\sin x = BD$$
, $x = 弧 AB$, $\tan x = AC$,

$$\therefore \sin x < x < \tan x, \quad \text{即}\cos x < \frac{\sin x}{x} < 1, \quad (同除以sinx>0)$$

上式对于
$$-\frac{\pi}{2}$$
< x < 0 也成立. 当 0 < $|x|$ < $\frac{\pi}{2}$ 时,

$$0 < |\cos x - 1| = 1 - \cos x$$

$$= 2\sin^2\frac{x}{2} < 2(\frac{x}{2})^2 = \frac{x^2}{2},$$

$$\therefore \lim_{x\to 0}\frac{x^2}{2}=0, \qquad \therefore \lim_{x\to 0}(1-\cos x)=0,$$

在实际应用中,常用:

若
$$x \to x_0$$
时, $u(x) \to 0$,则

例13
$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\lim_{x \to 0} \cos x} = 1$$

$$\frac{1 - \cos x}{x^{2}} = \lim_{x \to 0} \frac{2 \sin^{2} \frac{x}{2}}{x^{2}} = \lim_{x \to 0} \frac{1}{2} \left[\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right]^{2} \Rightarrow \frac{x}{2} = t$$

$$= \frac{1}{2} \lim_{t \to 0} \left(\frac{\sin t}{t} \right)^{2} = \frac{1}{2} \lim_{t \to 0} \frac{\sin t}{t} \cdot \frac{\sin t}{t} = \frac{1}{2}$$

$$2^{t \to 0} \qquad t \qquad t \qquad 2$$

$$\text{[F]15} \quad \lim_{x \to \frac{\pi}{6}} \left[\tan 3x \cdot \tan \left(\frac{\pi}{6} - x \right) \right] = \lim_{t \to 0} \left[\tan 3 \left(\frac{\pi}{6} - t \right) \cdot \tan t \right]$$

$$= \lim_{t \to 0} \left[\cot 3t \cdot \tan t \right] = \lim_{t \to 0} \frac{\tan t}{\tan 3t}$$

$$= \lim_{t \to 0} \frac{1}{3} \cdot \frac{\tan t}{t} \cdot \frac{3t}{\tan 3t} = \frac{1}{3}$$

例. 已知圆内接正 n 边形面积为 $A_n = nR^2 \sin \frac{\pi}{n} \cos \frac{\pi}{n}$

证明:
$$\lim_{n\to\infty} A_n = \pi R^2$$
.

iii:
$$\lim_{n\to\infty} A_n = \lim_{n\to\infty} \pi R^2 \frac{\sin\frac{\pi}{n}}{\frac{\pi}{n}} \cos\frac{\pi}{n}$$

$$=\pi R^2$$

$$\lim_{\phi(x)\to 0} \frac{\sin\phi(x)}{\phi(x)} = 1$$

(2)
$$\lim_{x\to\infty} (1+\frac{1}{x})^x = e$$

当 $x \ge 1$ 时, 有 [x] ≤ $x \le [x] + 1$, 取倒数后, +1易知

$$(1+\frac{1}{[x]+1})^{[x]} \le (1+\frac{1}{x})^x \le (1+\frac{1}{[x]})^{[x]+1},$$

$$\overline{\prod} \lim_{x \to +\infty} (1 + \frac{1}{[x]})^{[x]+1} = \lim_{x \to +\infty} (1 + \frac{1}{[x]})^{[x]} \cdot \lim_{x \to +\infty} (1 + \frac{1}{[x]}) = e,$$

$$\lim_{x \to +\infty} (1 + \frac{1}{[x]+1})^{[x]} = \lim_{x \to +\infty} (1 + \frac{1}{[x]+1})^{[x]+1} \cdot \lim_{x \to +\infty} (1 + \frac{1}{[x]+1})^{-1} = e,$$

$$\therefore \lim_{x \to +\infty} (1 + \frac{1}{x})^x = e.$$

$$\lim_{x \to -\infty} (1 + \frac{1}{x})^{x} \stackrel{\text{def}(1 - x)}{= = = = =} \lim_{t \to +\infty} (1 - \frac{1}{t})^{-t} = \lim_{t \to +\infty} (1 + \frac{1}{t - 1})^{t}$$

$$= \lim_{t \to +\infty} (1 + \frac{1}{t - 1})^{t-1} (1 + \frac{1}{t - 1}) = e.$$

$$\therefore \lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$

$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} \stackrel{\text{$\frac{1}{2}$}}{====} \lim_{t\to \infty} (1+\frac{1}{t})^{t} = e.$$

$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} \stackrel{\text{$\frac{1}{2}$}}{===} \lim_{t\to \infty} (1+\frac{1}{t})^{t} = e.$$

在实际应用中,常用:

若
$$x \to x_0$$
时, $u(x) \to \infty$,则
$$\lim_{x \to x_0} \left(1 + \frac{1}{u(x)} \right)^{u(x)} = e.$$

若
$$x \to x_0$$
时, $u(x) \to 0$,则
$$\lim_{x \to x_0} (1 + u(x))^{\frac{1}{u(x)}} = e.$$

例16 求
$$\lim_{x \to \infty} (1 - \frac{1}{x})^x$$
.

解 原式 = $\lim_{x \to \infty} [(1 + \frac{1}{-x})^{-x}]^{-1} = \lim_{x \to \infty}$

牌 原式 =
$$\lim_{x \to \infty} [(1+--)^x]^x = \lim_{x \to \infty} (1+\frac{1}{-x})^{-x}$$

$$= \frac{1}{e}$$

例17 求
$$\lim_{x \to \infty} (\frac{3+x}{2+x})^{2x}$$
.

解 原式 = $\lim_{x \to \infty} [(1+\frac{1}{x+2})^{x+2}]^2 (1+\frac{1}{x+2})^{-4}$

$$= \lim_{x \to \infty} (1+\frac{1}{x+2})^{x+2} \lim_{x \to \infty} (1+\frac{1}{x+2})^{x+2} \lim_{x \to \infty} (1+\frac{1}{x+2})^{-4}$$

例18
$$\lim_{x \to +\infty} \left(1 - \frac{2}{x}\right)^{3x}$$

$$\lim_{x\to +\infty} (1+\frac{1}{x})^x = e.$$

解:
$$\mathbf{p} : \mathbf{x} = \lim_{x \to +\infty} \left(1 - \frac{2}{x} \right)^{\frac{x}{2} \cdot 3x \cdot \left(-\frac{2}{x} \right)} = \lim_{x \to +\infty} \left[\left(1 - \frac{2}{x} \right)^{\frac{x}{2}} \right]^{-6}$$

$$= \frac{1}{\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}} = \frac{1}{\mathbf{x} \cdot \mathbf{x}} =$$

$$\lim_{x \to +\infty} () \lim_{x \to +\infty} () \lim_{x \to +\infty} () \lim_{x \to +\infty} () \lim_{x \to +\infty} ()$$

$$= e^{-6}$$

连续复利问题

将本金 A_0 存入银行,年利率为 r,则一年后本息之和为 $A_0(1+r)$. 如果年利率仍为 r,但半年计一次利息,且利息不取,前期的本息之和作为下期的本金再计算以后的利息,这样利息又生利息,由于半年的利率为 $\frac{r}{2}$,故一年后的本息之和为 $A_0(1+\frac{r}{2})^2$,

如一年计息n次,利息按复式计算,则一年后本息之和为: $A_0(1+\frac{r}{r})^n$

这种计算利息的方法称为复式计息法.

 $A_0(1+\frac{r}{n})^n$ 随着n无限增大,一年后本息之和会不断增大,但不会无限增大,其极限值为:

$$\lim_{n\to\infty} A_0 (1 + \frac{r}{n})^n = \lim_{n\to\infty} A_0 (1 + \frac{r}{n})^{\frac{n}{r}} = A_0 e^r.$$

称之为连续复利。

例如,年利率为3%,则连续复利为 $A_0e^{0.03}\approx 1.03045A_0$.由于e在银行业务中的重要性,故有银行家常数之称.

2004.8.19, Google 的初次公开募股 (IPO)融资 2718 281 828 美元, 这是自然对数底数 e 的前十位。

假如以谷歌85美元的IPO发行价买入该股,并且一直持有至2017年,价值就是当初的22倍.投资4.55万美元,即成百万美元富翁。

If You Bought Google at Its IPO Price, Here's How Much Richel You'd Be

第四部分 函数极限的存在准则

1.单调有界准则

2.Cauchy收敛原理

第四部分 函数极限的存在准则

1.单调有界准则

(1)设f(x)在 $[\alpha,+\infty)(\alpha \in R)$ 上单调增(减)有上(下)界,则 $\lim_{x\to +\infty} f(x)$ 存在。

证:设f(x)在 $[\alpha,+\infty)$ 上单调增有上界,必有上确界.

$$i \mathbb{Z} A = \sup_{[\alpha, +\infty)} \{f(x)\},$$

 $\emptyset \forall \varepsilon > 0, \exists x_1 \in [\alpha, +\infty), A - \varepsilon < f(x_1) \le A < A + \varepsilon,$

故可取 $M \ge x_1, \forall x: M < x < +\infty$,

有 $A-\varepsilon < f(x_1) \le f(x) \le A < A+\varepsilon$,

即 $\forall \varepsilon > 0, \exists M, \forall x : M < x < +\infty,$ 有 $|f(x) - A| < \varepsilon$,

$$\therefore \lim_{x \to +\infty} f(x) = A = \sup_{[\alpha, +\infty)} \{f(x)\}.$$

1.单调有界准则

(2) 设函数f(x)是区间I上的单调函数,则f(x)在I内每一点的单侧极限存在.

证:设f(x)在I上单调增, $\forall x_0 \in I$, $\forall x \in (x_0 - \eta, x_0), \eta \in R$

 $f(x) \leq f(x_0)$,故f(x)在 $(x_0 - \eta, x_0)$ 上有界,必有上确界.

故可取 $\delta \leq |x_1 - x_0| < \eta, \forall x : x_0 - \delta < x < x_0,$

类似可证 $\lim_{x\to x_0^+} f(x) = B$ 存在. $B = \inf_{(x_0,x_0+\eta)} \{f(x)\}$.

2. 柯西收敛原理

设函数 f 在 $U(x_0, \delta')$ 内有定义. $\lim_{x \to x_0} f(x)$ 存在的充要条件是:

$$\forall \varepsilon > 0, \exists \delta > 0 (< \delta'),$$
使得 $\forall x', x'' \in U(x_0, \delta)$ 有: $|f(x') - f(x'')| < \varepsilon$.

证明: 必要性

设
$$\lim_{x\to x_0} f(x) = A$$
, 则对 $\forall \varepsilon > 0, \exists \delta > 0 (< \delta')$, 使得对任何

$$x \in U(x_0, \delta)$$
有 $|f(x) - A| < \frac{\varepsilon}{2}$.于是对 $\forall x', x'' \in U(x_0, \delta)$ 有

$$|f(x')-f(x'')| \le |f(x')-A|+|f(x'')-A|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

设函数 f 在 $U(x_0, \delta')$ 内有定义. $\lim_{x \to x_0} f(x)$ 存在的充要条件是:

$$\forall \varepsilon > 0, \exists \delta > 0 (< \delta'), 使得 \forall x', x'' \in U(x_0, \delta) 有: |f(x') - f(x'')| < \varepsilon.$$

有
$$x_n, x_m \in U(x_0, \delta)$$
,从而有 $|f(x_n) - f(x_m)| < \varepsilon$.

$$\therefore$$
数列 $\{f(x_n)\}$ 柯西数列,极限存在,记为 A ,即 $\lim_{n\to\infty}f(x_n)=A$.

设另一数列
$$\{y_n\}\subset \overset{o}{U}(x_0,\delta')$$
且 $\lim_{n\to\infty}y_n=x_0$,同理知,
$$\lim_{n\to\infty}f(y_n)$$
存在,记为 B .

设函数 f 在 $U(x_0,\delta')$ 内有定义. $\lim_{x\to x_0} f(x)$ 存在的充要条件是:

$$\forall \varepsilon > 0, \exists \delta > 0 (< \delta'), 使得 \forall x', x'' \in U(x_0, \delta) 有: |f(x') - f(x'')| < \varepsilon.$$

充分性: 现证B = A.为此构造数列:

 $\{z_n\}: x_1, y_1, x_2, y_2, \dots, x_n, y_n, \dots 易见\{z_n\} \subset U(x_0, \delta')$ $\underset{n \to \infty}{\text{lim}} z_n = x_0. \text{同上法可证}, \{f(z_n)\} \text{也收敛}.$

作为 $\{f(z_n)\}$ 的两个子列, $\{f(x_n)\}$ 与 $\{f(y_n)\}$ 必有相同的极限,

B = A得证.

由归并原理知: $\lim_{x\to x_0} f(x) = A$, 得证.

(柯西收敛原理)

极限 $\lim_{x\to a} f(x)$ 存在 $\Leftrightarrow \forall \varepsilon > 0$, $\exists \delta > 0$,

$$\forall x', x'' : 0 < |x' - a| < \delta = 0 < |x'' - a| < \delta,$$

有:
$$|f(x')-f(x'')|<\varepsilon$$

函数
$$f(x)$$
在点 a 发散 $\Leftrightarrow \exists \varepsilon_0 > 0$, $\forall \delta > 0$, $\exists x', x'' : 0 < |x' - a| < \delta = 0 < |x'' - a| < \delta$, 有:

$$|f(x')-f(x'')| \ge \varepsilon_0$$

例: 证明 $f(x) = \cos \frac{1}{x}$ 在点0发散

证明:
$$\exists \varepsilon_0 = 1$$
, $\forall \delta > 0$.取 $x' = \frac{1}{2k\pi}$, $x'' = \frac{1}{(2k+1)\pi}$

$$|0<|0-x'|=\frac{1}{2k\pi}<\delta,0<|0-x''|=\frac{1}{(2k+1)\pi}<\delta(只需k充分大)$$

有

$$|f(x') - f(x'')| = |\cos 2k\pi - \cos(2k+1)\pi| = 2 > \varepsilon_0 = 1$$

也可用Heine定理

