

Machine learning

Naive Bayes & Natural Language Processing

Wouter Gevaert & Marie Dewitte

Inhoud

Discriminative vs generative classification

Bayes rule

Naive Bayes - tekstclassificatie

Tekstclassificatie in de praktijk

-> Maire Boyes -> 7=3/10.~

Discriminative vs generative classification

Discriminative vs generative classification

Discriminative classifiers leren de grens tussen twee klasses.

Generative classifiers leren de distributie van de verschillende klasses.

Discriminative vs generative classification

Generative classifier: leert p(x|y) en ook p(y)

Zoekt naar hoe de features van een bepaalde klasse er uit zien.

p(y) noemt men de prior

Voorbeeld - kanker

De kans dat iemand kanker heeft bedraagt $1\% \Rightarrow P(kanker) = 0,01$ Van een test is geweten dat:

- In 90% van de gevallen is de test positief als je effectief kanker hebt (sensitiviteit). 40%.
- In 90% van de gevallen is de test negatief als je geen kanker hebt (specificiteit).

VRAAG: Als de test positief blijkt, wat is de kans dat je kanker hebt?

Voorbeeld - kanker

$$P(kanker|positief) = \frac{P(positief|kanker) \times P(kanker)}{\frac{1}{P(positief)}}$$

$$P(kanker|positief) = \frac{0.9 \times 0.01}{0.01 \times 0.90 + 0.1 \times 0.99} = 0.0833$$

Prior: P(kanker): Zonder de testresultaten te kennen, hoe waarschijnlijk is het dat iemand kanker heeft?

Likelihood: P(positief | kanker) hoe waarschijnlijk is het dat de test positief is wanneer de persoon effectief kanker heeft?

Marginal: *P*(*positief*) Hoe waarschijnlijk is het dat de test positief is?

Posterior: P(kanker|positief): Wat is de kans dat iemand effectief kanker heeft als de test positief blijkt?

Likelihood

How probable is the evidence given that our hypothesis is true?

Prior

How probable was our hypothesis before observing the evidence?

$$P(H \mid e) = \frac{P(e \mid H) P(H)}{P(e)}$$

Posterior

How probable is our hypothesis given the observed evidence? (Not directly computable)

Marginal

How probable is the new evidence under all possible hypotheses? $P(e) = \sum P(e \mid H_i) P(H_i)$

Spamdetectie

$$p(H|e) = \frac{p(e|H).p(H)}{p(e)}$$
 Rous dot ear be shift for the point of the point o

H = hypothese (het bericht is spam) e = evidence (de tekst in het bericht)

p(H|e): de kans dat een bericht spam is gegeven de tekst van het bericht.

p(e|H): de kans dat we deze tekst vinden in een spam bericht.

p(H): de kans dat een willekeurig bericht spam is.

p(e): de kans dat we deze tekst tegenkomen / waarnemen. De tekst moet worden weergegeven als meerdere stukken evidence, namelijk de woorden w_1, w_2, \dots, w_n .

Spamdetectie

$$p(Spam|w_1,\ldots,w_n) = \frac{p(w_1|w_2,\ldots,w_n,Spam).p(w_2|w_3,\ldots,w_n,Spam).\ldots.p(Spam)}{p(w_1,\ldots,w_n)}$$

 $p(w_1|w_2,\ldots,w_n,Spam)$ is de kans om het eerste woord te vinden gegeven alle

andere woorden en gegeven dat het bericht spam is.

Lastig te berekenen \Rightarrow Naive Bayes veronderstelling.

> Verenuacol, pole veronoustell; inj.

Naive Bayes: beschouw elk woord onafhankelijk van de andere woorden.

Spamdetectie

Spamdetectie
$$p(Spam|w_1,...,w_n) = \frac{p(w_1|Spam).p(w_2|Spam).p(w_3|Spam)....p(w_n|Spam).p(Spam)}{p(W_1|Spam) = de kans dat w_1 in een spambericht voorkomt.}$$

$$\frac{y}{p(Spam|w_1,\ldots,w_n)} = \frac{p(Spam)\prod_{i=1}^n p(w_i|Spam)}{p(w_1,\ldots,w_n)}$$

Spamdetectie

Vereenvoudigen: kies spam of ham op basis van welke van deze klasses de grootste kans heeft.

We hebben geen kansen nodig. \Rightarrow laat de noemer (marginal) vallen.

$$p(Spam|w_1,\ldots,w_n) \propto p(Spam) \prod_{i=1}^n p(w_i|Spam)$$

Spamdetectie - voorbeeld

aantal spam berichten: 280

30	= 0	32
280		10

aantal ham berichten: 930

WOORD	SPAM		HAM		
	frequentie	ka	ns	frequentie	kans
free	90	0,:	32	200	0,21
Viagra	60	0,21		55	0,059
buy	120	0,43		290	0,31
advice	50	0,:	18	380	0,41
get	180	0,0	64	510	0,55

$$p(Spam) = \frac{280}{280 + 930} = \frac{280}{1210} = 0,23 = \boxed{23\%}$$

$$p(Ham) = \frac{930}{280 + 930} = \frac{930}{1210} = 0,77 = \boxed{77\%}$$

Spamdetectie - voorbeeld

Classificeer de zin: "Get free advice"

 $p(spam|qet free advice) \propto p(spam).p(qet|spam).p(free|spam).p(advice|spam)$

p(ham|get free advice) \propto p(ham).p(get|ham).p(free|ham).p(advice|ham)

$$= 0.77 \cdot 0.55 \cdot 0.21 \cdot 0.41 = 0.0365$$
 $0.0365 > 0.085 \Rightarrow \text{bericht is ham}$

 $0.0365 > 0.0085 \Rightarrow \text{bericht is ham}$

Laplacian smoothing

Classificeer de zin: Get free Valium"

= P(Volin / span) = 0 p(Volin / bom) = 0

Valium behoort niet tot de trainingset \Rightarrow p(Valium|spam) = 0 en p(Valium|ham) = 0 p(spam|get free Valium) = 0 en p(ham|get free Valium) = 0

— Oplossing: Laplacian smoothing (= add-one smoothing): kent niet geziene woorden toch een zekere kans van voorkomen toe.

Laplacian smoothing

$$P(w_s) = \frac{C(w_s) + \alpha}{N + \alpha V}$$

P(w) is de kans op het woord w

C(w) het aantal keer dat het woord w voorkomt

N is het totaal aantal woorden

V is het aantal verschillende woorden (vocabulair grootte)

Laplacian smoothing - voorbeeld met $\overline{lpha=1}$

WOORD	SPAM		НАМ		
	freq.	Laplacian smoothing	freq.	Laplacian smoothing	
free	90	$\frac{90 + 1}{280 + 1 \times 6} = \frac{91}{286} = 0.318$	200	$\frac{200 + 1}{930 + 1 \times 6} = \frac{201}{936} = 0.215$	
Viagra	60	$\frac{60+1}{280+1\times6} = \frac{61}{286} = 0.213$	55	$\frac{55+1}{930+1\times 6} = \frac{56}{936} = 0.060$	
buy	120	$\frac{120 + 1}{280 + 1 \times 6} = \frac{121}{286} = 0.423$	290	$\frac{290 + 1}{930 + 1 \times 6} = \frac{291}{936} = 0.311$	
advice	50	$\frac{50+1}{280+1\times 6} = \frac{51}{286} = 0.0.178$	380	$\frac{380 + 1}{930 + 1 \times 6} = \frac{381}{936} = 0.407$	
get	180	$\frac{180 + \cancel{1}}{280 + 1 \times 6} = \frac{181}{286} = 0.633$	510	$\frac{510+1}{930+1\times 6} = \frac{511}{936} = 0.546$	
Valium	0	$\frac{0+1}{280+1\times 6} = \frac{1}{286} = 0.003$	0	$\frac{0+1}{930+1\times 6} = \frac{\cancel{1}}{936} = 0.001$	

Laplacian smoothing - voorbeeld met $\overline{lpha}=1$

Classificeer de zin: "Get free Valium"

 $p(spam|get\ free\ Valium) \propto\ p(spam).p(get|spam).p(free|spam).p(Valium|spam)$

 $p(ham|get\ free\ advice) \propto\ p(ham).p(get|ham).p(free|ham).p(Valium|ham)$

$$0,0001389 > 0,00009 \Rightarrow bericht is spam$$

Laplacian smoothing

Invloed van α

$$P(w_s) = \frac{C(w_s) + \alpha}{N + \alpha V}$$

- Kleine α : neiging tot overfitting
- Grote α : neiging underfitting

Log likelihood

Vermenigvuldigen van veel kansen kan resulteren in een floating-point underflow.

log likelihood - Classificeer de zin: "Get free Valium"

```
p(spam|get free Valium) \propto p(spam).p(get|spam).p(free|spam).p(Valium|spam)
```

 $\log(p(\operatorname{spam}|\operatorname{get}|\operatorname{free}\operatorname{Valium})) \propto \log(p(\operatorname{spam})) + \log(p(\operatorname{get}|\operatorname{spam})) + \log(p(\operatorname{free}|\operatorname{spam})) + \log(p(\operatorname{Valium}|\operatorname{spam})) + \log(p(\operatorname{Valium}|\operatorname{spam})) + \log(\operatorname{Valium}|\operatorname{spam})) + \log(\operatorname{Valium}|\operatorname{spam})) + \log(\operatorname{Valium}|\operatorname{spam}) + \log(\operatorname{Valium}|\operatorname{sp$

$$= \log (0, 23) + \log (0, 633) + \log (0, 318) + \log (0, 003) = -3,857$$

 $p(ham|get free advice) \propto p(ham).p(get|ham).p(free|ham).p(Valium|ham)$

 $\log(p(ham|get\ free\ Valium)) \propto \log(p(ham)) + \log(p(get|ham)) + \log\left(p(free|ham)) + \log(p(Valium|ham))$

$$= \log (0,77) + \log (0,546) + \log (0,215) + \log (0,001) = -4,044$$

$$-3,857 > -4,044 \Rightarrow$$
 beright is spam

Preprocessing - opkuisen van de tekst

→ Verwijder html

```
from bs4 import BeautifulSoup
text_no_html = BeautifulSoup(str(text), "html.parser" ).get_text()
```

Verwijder niet-letters

```
import re #regular expressions
text_alpha_chars = re.sub("[^a-zA-Z']", "_", str(text_no_html))
```

Converteer naar lowercase

```
text_lower = text_alpha_chars.lower()
```

Preprocessing - opkuisen van de tekst (vervolg)

Verwijder stopwoorden

```
of the phin
```

```
from nltk.corpus import stopwords
stops = set(stopwords.words(language))
text_no_stop_words = '_'
for w in text_lower.split():
if w not in stops:
text_no_stop_words = text_no_stop_words + w + '_'
```

Preprocessing - Herleiden van woorden tot de stam

Stemming

Tekstclassificatie in de praktijk _ BA6 OF UDROS

Preprocessing - Verwijder te korte woorden

Verwijder korte woorden na stemming

```
text_no_short_words = '_'
for w in text_stemmer.split():
if len(w) >= minWordSize:
text_no_short_words = text_no_short_words + w + '_''
```

X- poil below. GREAT T 0000 353 503 MCT 7 300 208 GREATT 355 - GREER 503 20000

Opbouwen van feature vectors - bag of words

Bag of words = collectie van unieke woorden die voorkomen in de volledige trainingset. De uiteindelijke feature vector heeft dezelfde dimensie als de bag of words.

Multi-variate Bernoulli Naive Bayes: er wordt enkel bijgehouden of een woord in de bag of words al dan niet voorkomt in een document (0 of 1) en dus niet de frequentie van voorkomen.

Multinomial Naive Bayes: de frequentie (aantal keer) waarmee een woord uit de bag of words voorkomt in het document wordt bijgehouden.

In Scikit-learn: CountVectorizer

Opbouwen van feature vectors - bag of words

tf-idf: term frequency-inverse document frequency.

Sommige woorden die veel voorkomen in documenten zijn minder belangrijk.

$$tfidf_{i,j} = tf_{i,j} \times \log \frac{N}{df_i} \tag{1}$$

 $tf_{i,j}$ = het aantal keer dat woord i voorkomt in document j df_i = het aantal documenten waar woord i in voorkomt N = totaal aantal documenten

In Scikit-learn: TfidfTransformer

Opbouwen van feature vectors - bag of words

```
count_vect = CountVectorizer()
X_train_bag_of_words = count_vect.fit(X_train)
X_train_bag_of_words = count_vect.transform(X_train)

tfidf_transformer = TfidfTransformer()
tf_transformer = TfidfTransformer().fit(X_train)
X_train_tf = tf_transformer.transform(X_train_bag_of_words)
```