3.4 Kahan's Machine Epsilon

These statements were first given by Prof William Kahan, Berkeley.

$$a = 4/3$$
; $b = a-1$; $c = b+b+b$; $e = 1-c$;

Due: Wed 4 Oct. 2006

Mathematically we have

$$a = \frac{4}{3}$$
, $b = \frac{4}{3} - 1 = \frac{1}{3}$, $c = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$, $e = 1 - 1 = 0$.

Performing these statements in F(b, p, -, -), where b is not a multiple (power?) of 3, we get

1.
$$a = \text{fl}(4/3) = \text{fl}(1.33...33...) = \underbrace{1.33...3}_{p \text{ digits}}$$

2.
$$b = \text{fl}(\text{fl}(a) - 1) = \text{fl}(1.33...3 - 1.0) = 0.\underbrace{33...3}_{p-1}$$

3.
$$c = \text{fl}(b+b+b) = \text{fl}(0.33...3+0.33...3+0.33...3) = 0.\underbrace{99...9}_{p-1}$$

4.
$$e = \text{fl}(1-c) = \text{fl}(1.0-0.\underbrace{99...9}_{p-1}) = 0.\underbrace{00...1}_{p-1} = 1.00...0 \times b^{1-p}$$

Thus we get $e = b^{1-p} = \epsilon_m$. We have implicitly assumed that b = 10.

Notice that the only rounding error occurs in the statement a = 4/3. This rational number does not have a finite expansion in base 2 or 10 and so there will always be a rounding error, no matter how large p is.

Here is a small Fortran function that uses Kahan's ϵ_m calculation. This function was in the Eispack subroutine package, and is still part of Dongarra's Linpack benchmark program 1000d. for. Note the starred sentence at the end of the comments.

```
C-----
    double precision function epslon (x)
double precision x
C
    estimate unit roundoff in quantities of size x.
С
c
    double precision a,b,c,eps
С
c
     this program should function properly on all systems
c
    satisfying the following two assumptions,
           the base used in representing dfloating point
C
          numbers is not a power of three.
           the quantity a in statement 10 is represented to
C
          the accuracy used in dfloating point variables
C
          that are stored in memory.
С
    the statement number 10 and the go to 10 are intended to
С
    force optimizing compilers to generate code satisfying
С
    assumption 2.
    under these assumptions, it should be true that,
          a is not exactly equal to four-thirds,
          b has a zero for its last bit or digit,
          c is not exactly equal to one,
С
          eps measures the separation of 1.0 from
C
               the next larger dfloating point number.
  the developers of eispack would appreciate being informed
С
    about any systems where these assumptions do not hold.
С
С
     ******************
    this routine is one of the auxiliary routines used by eispack iii
С
     to avoid machine dependencies.
     ******************
    this version dated 4/6/83.
     a = 4.0d0/3.0d0
  10 b = a - 1.0d0
    c = b + b + b
     eps = dabs(c-1.0d0)
    if (eps .eq. 0.0d0) go to 10
     epslon = eps*dabs(x)
    return
     end
```

Due: Wed 4 Oct. 2006

3.5 Calculations with π and pi

```
We know that \sin(\pi) = 0, \cos(\pi) = -1, and \sin^2(\pi) + \cos^2(\pi) = 1. But MATLAB gives 
1. \sin(pi) = 1.224646799147353 \, e - 016
2. \cos(pi) = -1
```

```
3. \sin(pi)^2 + \cos(pi)^2 = 1
```

As we can see, 2 and 3 are correct but 1 is not. There are two sources of error here : (i) the error in representing π , a transcendental number, and (ii) the error in computing $\sin(x)$ or any other function.