Глава 3 – Многочлены над полем

Билет 1: Сложение и умножение многочленов. Степень многочлена. Свойства.

Определение

Пусть K — коммутативное кольцо.

Алгебра. Глава 3. Многочлены.

Д.В.Карпов

Коммутативное кольцо - кольцо с коммутативностью умножения (ассоциативность +*, коммутативность +*, 0, обратный элемент по +, дистрибутивность)

- 1) Кольцо многочленов над K состоит из бесконечных последовательностей $(a_0, \ldots, a_n, \ldots)$ с коэффициентами из K, в которых лишь конечное число ненулевых коэффициентов.
- 2) Сложение многочленов покоэффициентное:

$$(a_0,\ldots,a_n,\ldots)+(b_0,\ldots,b_n,\ldots):=(a_0+b_0,\ldots,a_n+b_n,\ldots).$$

3) Определим умножение многочленов:

$$(a_0,\ldots,a_n,\ldots)\cdot (b_0,\ldots,b_n,\ldots)=(c_0,\ldots,c_n,\ldots)$$
, где $c_n=\sum\limits_{i=0}^n a_ib_{n-i}.$

$$a_0 * b_n + a_1 * b_{n-1} + a_2 * b_{n-2} + ... + a_n * b_0 = c_n$$

Пример:

$$(a_0, a_1, a_2, a_3) \text{ }_{\mathsf{H}} (b_0, b_1, b_2) \implies (c_0, c_1, c_2, c_3)$$

$$c_0 = a0 * b0$$

$$c1 = a_0 * b_1 + a_1 * b_0$$

$$c2 = a_0 * b_2 + a_1 * b_1 + a_2 * b_0$$

$$c3 = a_0 * b_3 + a_1 * b_2 + a_2 * b_1 + a_3 * b_0$$

- 4) Степень многочлена $f = (a_0, \ldots, a_n, \ldots)$ это максимальный номер ненулевого коэффициента (обозначение: $\deg(f)$). Отдельно определим степень многочлена $0 := (0, \ldots, 0, \ldots)$: положим $\deg(0) := -\infty$. Если $\deg(f) = n \in \mathbb{N}_0$, то a_n называется старшим коэффициентом f.
- Если $f = (a_0, \ldots, a_n, \ldots)$ и $\deg(f) \leq n$, часто применяется запись $f(t) = a_n t^n + \cdots + a_1 t + a_0$, где $t \phi$ ормальная переменная. Кольцо многочленов над кольцом K обозначается через K[t], где t переменная.

ullet Пусть K — коммутативное кольцо, $f,g\in K[t]$.

Свойство 1

 $\deg(fg) \leq \deg(f) + \deg(g)$. Если K — кольцо без делителей 0, то $\deg(fg) = \deg(f) + \deg(g)$.

Доказательство. • Если один из многочленов f и g равен 0, то несложно проверить, что произведение также равно 0. Тогда $\deg(fg) = -\infty = \deg(f) + \deg(g)$ (так как $-\infty$ при сложении с любой возможной степенью даст $-\infty$.

- ullet Пусть $\deg(f)=n$, $\deg(g)=m$, где $m,n\in\mathbb{N}_0$, $f=(a_1,\ldots,a_s,\ldots)$, $g=(b_1,\ldots,b_s,\ldots)$ и $fg=(c_1,\ldots,c_s,\ldots)$.
- ullet При k>n+m имеем $c_k=ig(\sum\limits_{i=0}^{n-1}a_ib_{k-i}ig)+ig(\sum\limits_{i=n}^ka_ib_{k-i}ig)=0.$

(В первой сумме k-i>m, поэтому $b_{k-i}=0$. Во второй сумме i>n, поэтому $a_i=0$.)

• Значит, $\deg(fg) \leq \deg(f) + \deg(g)$.

(k>n+m: k-n>m и при i от 0 до n-1 k-i>m => $b_{k-i}=0$) (при i от n до k i>n => $a_i=0$)

• $c_{n+m} = (\sum_{i=0}^{n-1} a_i b_{n+m-i}) + a_n b_m + (\sum_{i=n+1}^{n+m} a_i b_{n+m-i}) = a_n b_m \neq 0,$

если K — без делителей 0. В этом случае $\deg(fg) = m + n$.

ullet (В первой сумме n+m-i>m, поэтому $b_{n+m-i}=0$. Во второй сумме i>n, поэтому $a_i=0$.)

Д.В.Карпов

Алгебра. Гла 3. Многочлен

Свойство 2

 $\deg(f+g) \leq \max(\deg(f),\deg(g))$. Если $\deg(f) \neq \deg(g)$, то $\deg(f+g) = \max(\deg(f),\deg(g))$.

Доказательство. • $f = (a_1, ..., a_n, ...), g = (b_1, ..., b_n, ...).$

- ullet При $k > \max(\deg(f), \deg(g))$ имеем $a_k = b_k = 0$, а значит и $a_k + b_k = 0$. Следовательно, $\deg(f + g) \leq \max(\deg(f), \deg(g))$.
- ullet Пусть НУО $\deg(f)=n>\deg(g)$. Тогда $a_n+b_n=a_n+0
 eq 0$, а значит, в этом случае $\deg(f+g)=n$.

Пример:

$$(x^3 + x^2 + x) + (-x^3 + x^2 + x) = 2x^2 + 2x$$

 $(x^3 + x^2 + x) + (x^2 + 1) = (x^3 + 2x^2 + x + 1)$

Алгебра. Глава 3. Многочлены.

Д.В. Карпов

Теорема 1

Пусть K — коммутативное кольцо. Тогда K[t] — тоже коммутативное кольцо. Если при этом K — кольцо c 1, то K[t] — тоже c 1.

Доказательство. Ассоциативность и коммутативность сложения в K[t] следуют из ассоциативности и коммутативности сложения в K (так как сложение покоэффициентное).

Ноль. Несложно проверить, что многочлен 0 будет нолем в K[t].

Обратный элемент по сложению. Для $f = (a_0, \ldots, a_n, \ldots)$ положим $-f := (-a_0, \ldots, -a_n, \ldots)$.

Алгебра. Глава 3. Многочлены.

Д.В.Карпов

Коммутативность умножения. Пусть
$$f=(a_0,\ldots,a_n,\ldots,)$$
 и $g=(b_0,\ldots,b_n,\ldots,)$, $fg=(d_0,\ldots,d_n,\ldots)$ и $gf=(d_0',\ldots,d_n',\ldots)$. Тогда $d_n=\sum_{i=0}^n a_ib_{n-i}=\sum_{j=0}^n b_ja_{n-j}=d_n'$.

Дистрибутивность. Пусть
$$h=(c_0,\ldots,c_n,\ldots,),$$
 $(f+g)h=(d_o,\ldots,d_n,\ldots,),$ $fh=(p_0,\ldots,p_n,\ldots,)$ и $gh=(q_0,\ldots,q_n,\ldots,).$ Тогда $d_n=\sum\limits_{i=0}^n(a_i+b_i)c_{n-i}=(\sum\limits_{i=0}^na_ic_{n-i})+(\sum\limits_{i=0}^nb_ic_{n-i})=p_n+q_n,$ а это коэффициент многочлена $fh+gh.$

Ассоциативность умножения. Пусть $fg=(d_0,\ldots,d_n,\ldots)$ и $(fg)h=(p_0,\ldots,p_n,\ldots)$. Тогда

$$p_{n} = \sum_{k=0}^{n} d_{k} c_{n-k} = \sum_{k=0}^{n} \left(\sum_{i=0}^{k} a_{i} b_{k-i} \right) c_{n-k} = \sum_{i,j,\ell \in \mathbb{N}_{0}, i+j+\ell=n} a_{i} b_{j} c_{\ell}.$$

При другом порядке скобок, очевидно, получится то же самое.

Единица. Если существует $1 \in K$, то несложно проверить, что $1 := (1,0,\ldots,0,\ldots)$ — единица в K[t].

Теорема о делении с остатком в кольце многочленов над полем.

Алгебра. Глава 3. Многочлены.

Д.В.Карпов

Теорема 2

Пусть K — поле, $f, g \in K[t]$, причем $g \neq 0$. Тогда существуют единственные такие $q, r \in K[t]$, что f = gq + r и $\deg(r) < \deg(g)$.

• Многочлен r из этого представления называется остатком от деления f на g.

Доказательство. Пусть $\deg(f) = n$, $\deg(g) = m$, $f(t) = a_n t^n + \cdots + a_0$ и $g(t) = b_m t^m + \cdots + b_0$.

 \exists . • Индукция по $\deg(f)$. База для случая n < m: тогда подходит q = 0 и r = f.

Переход.

 Пусть $n \ge m$ и для многочленов степени менее n утверждение доказано.

- ullet Так как $f_1(t)=f(t)-rac{a_n}{b_m}t^{n-m}\cdot g(t)$ имеет степень $\deg(f_1)< n$, по индукционному предположению, $f_1=q_1g+r$, где $\deg(r)< m$.
- ullet Тогда $f(t) = (q_1(t) + rac{a_n}{b_m} t^{n-m}) \cdot g(t) + r(t)$ искомое представление для f .

! Пусть $f = q_1g + r_1 = q_2g + r_2$, где $\deg(r_1) < m$ и $\deg(r_2) < m$. Тогда $r_1 - r_2 = g(q_2 - q_1)$.

ullet Пусть $q_1
eq q_2$. Тогда $\deg(q_2-q_1) \in \mathbb{N}_0$ и $\deg((q_2-q_1)g) = \deg(q_2-q_1) + \deg(g) \geq m$. С другой стороны, $\deg(r_1-r_2) \leq \max(\deg(r_1),\deg(r_2)) < m$, противоречие.

$$ullet$$
 Значит, $q_1=q_2$, тогда и $r_1=r_2$.

Алгебра. Глава 3. Многочлены.

Д.В.Карпов

Делимость многочленов

Определение

Пусть K — поле, $f,g \in K[t]$, $g \neq 0$. Говорят, что f делится на g (обозначение $f \in g$), если существует такой $h \in K[t]$, что f = gh.

Свойство 1

 $Если f \cdot g u g \cdot h$, то $f \cdot h$.

Доказательство. Тогда f=pg и g=qh, где $p,q\in K[t]$, откуда следует f=(pq)h.

Свойство 2

Пусть $f,g \in h$, а $p,q \in K[t]$. Тогда $fp + gq \in h$.

Доказательство. Тогда f=ah и g=bh, где $a,b\in K[t]$, откуда следует fp+gq=(ap+bq)h.

Свойство 3

Пусть $f,g\in K[t],\,f\neq 0,\,f$ g . Тогда $\deg(f)\geq \deg(g)$.

Доказательство. Тогда f=gh, где $h\in K[t]$, причем понятно, что $h\neq 0$. Следовательно, $\deg(f)=\deg(g)+\deg(h)\geq\deg(g)$.

Свойство 4

Пусть $f,g\in K[t]$, $f,g\neq 0$, $f\nmid g$ и $\deg(f)=\deg(g)$. Тогда $f\sim g$.

Доказательство. \bullet Тогда f=gh, где $h\in K[t]$, и $\deg(g)=\deg(f)=\deg(g)+\deg(h)$.

ullet Следовательно, $\deg(h)=0$, значит, $h\in K$, h
eq 0, то есть, $f\sim g$.

Свойство 5

Пусть $f,g\in K[t]$, $f,g\neq 0$, $f\mid g$ и $g\mid f$. Тогда $f\sim g$.

Доказательство. Тогда $\deg(f) \geq \deg(g)$ и $\deg(g) \geq \deg(f)$. Следовательно, $\deg(f) = \deg(g)$. По Свойству 4, $f \sim g$.

Алгебра. Глава 3. Многочлены.

Д. В. Карпов

Алгебра. Глава 3. Многочлены.

Д. В. Карпов

Идеалы в кольце многочленов над полем.

Теорема 3

Пусть K — поле, а I — Идеал в K[t]. Тогда I = dK[t] для некоторого $d \in K[t]$.

Доказательство. • Если $I = \{0\}$, то подойдет d = 0.

- Пусть $I \neq \{0\}$. Тогда рассмотрим все ненулевые многочлены из I и найдем из них многочлен наименьшей степени d.
- ullet Докажем, что все многочлены из I делятся на d (тогда I=dK[t]).
- ullet Пусть $f \not \mid d$, тогда поделим f на d с остатком: f = qd + r, $\deg(r) < \deg(d)$, $r \neq 0$.
- ullet Так как $f,d\in I$, мы имеем $r=f-dq\in I$. Противоречие с минимальностью $\deg(d)$.