Topic 11 - Wave Motion

A **progressive wave** is one that transfers energy from one point to another in the direction of wave propagation

• particles oscillate about their equilibrium positon

1 Wave terminology

- **Displacement** of a particle is the distance travelled in a specific direction from its equilibrium position
- Amplitude, A of a wave is the magnitude of maximum displacement of a particle from equiposition
- Period, T of a wave is the time taken for a particle to complete one oscillation
- Frequency, F is the number of oscillations per unit tiem made by a particle of a wave,

$$T = \frac{1}{f}$$

- Wavelength λ is the distance between two consecutive points which are in phase
- Speed, v is the distance travelled by a wave per unit time

$$v = \lambda f = \frac{\lambda}{T}$$

- Phase / Phase angle, ϕ is a measure of the fraction of a cylce that has been completed by an on oscillating particle or by a wave.
- Phase difference between two partciles in a wave or between two waves at a point is the measure of the fraction of a cycle which one is ahead of the other
 - In phase: particles exercute the same motion at the same time, $\phi = 0$
 - Out of phase: partciles that are at different stages of motion
 - Anti-phase: execute motions that are out of phase by π rad
- Wavefront is a line or surface joining points on a wave that are in phase. Wave travels in a direction perpendicular to the wavefront

1.1 graphs of waves

Displacemennt - time graph graph represents displacement of **one** particle over time

Displacement - distance graph

graph represents the displacement of $\,$ all particles at a particular instant

1.2 representation of phase difference

For a wave travelling to the right

Displacemennt - distance graph

B is on its way down and K is on its way up K is lagging B by a phase difference of ϕ or (B is ahead of K by ϕ), $0 \le \phi \pi$

$$\frac{x}{\lambda} = \frac{\phi}{2\pi}$$
$$\phi = 2\pi \frac{x}{\lambda}$$

Displacement K is

Displacemennt - time graph

K is lagging B by a phase difference of ϕ or (B is ahead of K by ϕ), $0 \le \phi \pi$

$$\frac{t}{T} = \frac{\phi}{2\pi}$$
$$\phi = 2\pi \frac{t}{T}$$

2 Wave Intensity

The **intensity** of a wave is defined as the rate of transfer of energy per unit area, where the area measured is perpendicular to the direction of energy transfer

$$I = \frac{P}{S}$$

where P is the power of the source, and S is the surface area of the wave front

$$I = kA^2$$

2.1 Point source and inverse square

for a point source emitting waves that spread out radially, with a spherical wavefront, the further away from the source, the larger the area where energy is being distributed

$$I=\frac{P}{4\pi r^2}$$

Hence for a constant power, the inverse square law is known as

$$I = \frac{k}{r^2}$$

3 Transverse and longitudinal waves

A **transverse wave** is one in which particles oscillate in a direction perpendicular to the direction of energy transfer

A longitudinal wave is one in which the particles oscillate in a direction parallel to the direction of energy transfer

3.1 EM waves

Important properties

- Do not require medium to propagate, can move through vacuum
- EM waves travel at a speed of $c = 3.00 \times 10^8 ms^{-1}$ in vacuum
- EM waves are transverse waves and can hence be polarised

Radiation type	Radio	Microwave	Infrared	Visible	Ultraviolet		Gamma ray
Wavelength (m)	10^{3}	10^{-2}	10^{-5}	0.5×10^{-6}	10^{-8}	10^{-10}	10^{-12}
Frequency(Hz)	10^{4}	10^{8}	10^{12}	10^{15}	10^{16}	10^{18}	10^{20}

3.2 Sound waves

- compression: regions where particles are compressed together, regions of high pressure
- rarefraction: regions where particles are spread apart, regions of low pressure

4 polarisation

Polarisation is a phenomenon where the oscillations of the wave particles in a transverse wave are restricted to one direction only and this direction is perpendicular to the direction of wave propagation or energy transfer

• hence does not apply to longitudinal waves

4.1 Intensity

When unpolarised light is incident on an ideal polariser,

$$I = \frac{I_0}{2}$$

4.2 Malus' Law

Malus' Law states that the intensity of a beam of plane polarised light after passing through a plane polariser varies with the square of the cosine of the angle through which the polariser is rotated from the position that gives maximum intensity

$$I = I_0 \cos^2 \theta$$

When plane polarised light passes through a second polariser with its polarising axis at an angle of θ from the first polariser, the resultant amplitude is

$$A = A_0 cos\theta$$

Since

$$I = kA^{2}$$

$$= k(A_{0}cos\theta)^{2}$$

$$= kA_{0}^{2}cos^{2}\theta$$

$$= I_{0}cos^{2}\theta$$