NASA Contractor Report 178416, Part 1

SPACE SHUTTLE PHASE B WIND TUNNEL MODEL AND TEST INFORMATION

VOLUME 3 - LAUNCH CONFIGURATION

J. L. Glynn and D. E. Poucher

CHRYSLER CORPORATION
Military Public Electronic Systems
Michoud Engineering Office
New Orleans, Louisiana

Contract NAS1-18276 July 1988

(NASA-CR-178416-Vcl-3-Pt-1) SPACE SHUTTLE N89-10019
PHASE B WIND TUNNEL MCDEL AND TEST
PHASE B WIND TUNNEL MCDEL AND TEST
OF CONFIGURATION UNCLASS INFORMATION CSCL 01A
(Chrysler Corp.) 444 F G3/02 0168487

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

ABSTRACT

Archived wind tunnel test data are available for flyback booster or other alternate recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA centers for an extensive variety of configurations with an array of wing and body planforms.

All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for applying to current winged flyback or recoverable booster aerodynamic studies.

The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter and the launch vehicle.

Booster configuration types include straight and delta wings, canard, cylindrical, retro-glide and twin body.

Orbiter configuration types include straight and delta wings, lifting body, drop tanks and double delta wings.

Launch configuration types include booster and orbiter components in various stacked and tandum combinations.

The digital database consists of 220 files of data containing basic tunnel recorded data. Database structure is documented in a series of reports which include configuration sketches for the various planforms tested.

* TABLE OF CONTENTS

	PAGE NO.
ABSTRACT	
	•
INDEX OF TABLES	. 2
INDEX OF FIGURES	3
ACRONYMS FOR TEST FACILITIES AND CONTRACTORS	7
1.0 INTRODUCTION	8
1.1 SPACE SHUTTLE DEVELOPMENT PHASES	8
1.2 CHRYSLER'S TEST DATABASE AND ARCHIVE SYSTEM	_
1.3 EXTRACTING PHASE B TEST DATABASE INFORMATIO	
2.0 COMPILATION OF PHASE B DATABASE ARCHIVE CONTENTS	13
2.1 COMPILATION OUTLINE	13
2.2 SUMMARY VOLUME	14
2.3 MODEL AND TEST INFORMATION	14
2.4 DIGITAL DATABASE	16
2.5 DIRECTORY FILE	17
2.6 GUIDE TO PHASE B DATABASE USE	19
3.0 NOMENCLATURE AND AXIS SYSTEMS	25
APPENDICES	
C-1 LAUNCH AERODYNAMICS 96 THROUGH 7	771
C-2 LAUNCH AIRLOADS 772 THROUGH	82 7
	982

^{*}Pages 440-982 published under separate cover as NASA CR-178416, Part 2.

INDEX OF TABLES

	TABLE	PAGE NUMBER					
		VOL.1 BOOSTER	VOL.2 ORBITER	VOL.3 LAUNCH			
1	DATABASE SUMMARY						
	#1.1.(1→3) AERODYNAMICS 1.2.(1→3) AIRLOADS 1.3.(1→3) HEAT TRANSFER	29 34 35	30 37 38	29 35 36			
2	LISTED BY CHRYSLER DATAMAN REPORT NUMBE	R 37	40	39			
3	CHRYSLER DATAMAN REPORT TITLES						
	#3.1.(1-+3) AERODYNAMICS	55	58	57			
	3.2.(1→3) AIRLOADS	62	67	63			
	3.3.(1→3) HEAT TRANSFER	63	68	65			
4	TEST ENGINEERS AND TEST PURPOSES						
	A SECONDAIAMICS	6.5	70	67			
	#4.1.(1→3) AERODYNAMICS 4.2.(1→3) AIRLOADS	72	79	72			
	4.3.(1→3) HEAT TRANSFER	73	80	73			
5	FACILITY WIND TUNNEL SUMMARY	75	82	7 5			
6	DIGITAL DATABASE						
	6.1. BOOSTER AERODYNAMICS	90					
	6.2. ORBITER		97				
	A 2 LAUNCH AFRODYNAMICS			90 93			
	6.4. LAUNCH AIRLOADS AND HEAT TRANSFE	R		83			

^{*}FIRST CHARACTER - TABLE NUMBER: SECOND CHARACTER - TEST DISCIPLINE: THIRD CHARACTER - VOLUME/COMPONENT

INDEX OF FIGURES

LAUNCH AERODYNAMICS

						====		
BOOSTER	BOOSTER	ORBITER		TYPE	CHRYSLER			T PACE
CONFIG.	CONTRACTOR		CONTRACTO	R TEST	REPORT	VUL.	i mix	I PHUE
CODE		CODE			DMS-DR #			
B1	MDAC					=====	====:	=====
B1	MDAC	02	MDAC	FORCE	1065	3	1	96
B1	MDAC	02	MDAC	FORCE	1108	3	1	118
B1	MDAC/MMC	02	MDAC	FORCE	1118	3	1	174
Bi	MDAC/MMC	02 02	MDAC	FORCE	1117	3	1	192
B1	TBC	02	MDAC	FORCE	1190	3	1	217
B1	MDAC	03	GAC MDAC	FORCE	1148	3	1	225
B1	MDAC	0.3	MDAC	FORCE	1065	3	1	96
B1	MDAC	04	MDAC	FORCE	1099	3	1	238
B 2	GD/C	02	MSC	FORCE FORCE	1166	3	1	251
82	GD/C	02	MSC	FORCE	1204	3	1	256
B2	MDAC	02	MSC	FORCE	1210	3	1	271
B2	MSFC	02	LMSC	FORCE	1230	3	1	285
B2	MSFC	02	LMSC	FORCE	1256	3	1	340
B 2	MSFC	02	MSC	FORCE	1272 1241	3 3	1	351
B2	MSFC	02	MSC	FORCE	1249	3 3	1	362 370
B2	MSFC	02	MSC	FORCE	1251	3	1	372
B2	MSFC	02	MSC	FORCE	1265	3	1	38 3
B 2	MSFC	02	MSC	FORCE	1267	3	1	391 395
B2	NF:	02	NR	FORCE	1185	3	1	373 414
B2	TBC	02	MSC	FORCE	1227	3	1	427
B2	MSFC	04	GAC	FORCE	1181	3	1	436
B₹	GD/C	02	NR	FORCE	1052	3	2	440
B 3	GD/C	02	NR	FORCE	1127	3	2	453
B3	GD/C	02	NR	FORCE	1130	3	2	463
B3	GD/C	02	NF:	FORCE	1190	3	2	217
B3	GD/C	02	NR	FORCE	1237	3	2	480
B 3	MMC	02	MSC	FORCE	1213	3	2	485
8 3	MSC	02	MSC	FORCE	1115	3	2	495
B3	MSC/MDAC	02	MSC/MDAC	FORCE	1038	3	2	513
B 3	TBC	02	MSC	FORCE	1183	3	2	524
B3 B3	GD/C	03	NR	FORCE	1052	3	2	440
83	MDAC	03	MSC	FORCE	1047	3	2	544
83	MDAC	03	MSC	FORCE	1061	3	2	549
B 3	MSC	03	MSC	FORCE	1058	3	2	554
B3	MSC/MDAC GD/C	03	MSC/MDAC	FORCE	1038	3	2	513
B 3	GD/C	04	NR	FORCE	1119	3	2	572
B 3	TBC	04	NR	FORCE	1162	3	2	584
B4	GD/C	04	MSC	FORCE	1183	3	2	524
B4	GD/C	02 02	NR NB	FORCE	1050	3	2	595
B4	GD/C	02 02	NR	FORCE	1051	3		601
B4	GD/C	02	NR NE	FORCE	1052	3		440
B4	MSC/MDAC			FORCE	1075	3		625
B4	GD/C	02		FORCE	1038	3		513
B4	GD/C	02		FORCE	1050	3		595
		<u> </u>	NR	FORCE	1051	3	2	601

INDEX OF FIGURES
LAUNCH AERODYNAMICS

========		=======		======:		=====		====
BOOSTER CONFIG. CODE	BOOSTER CONTRACTOR	ORBITER CONFIG. CODE	ORBITER CONTRACTOR	TYPE TEST	CHRYSLER REPORT DMS-DR #	VOL.	PART	PAGE
B4	GD/C	03	ND ND			*		
B4			NR	FORCE	1075	3	2	625
	MSC	03	MSC	FORCE	1042	3	2	6 33
B4	MSC	03	MSC	FORCE	1058	3	2	554
B4	MSC	03	MSC	FORCE	1063	3	2	643
84	MSC	03	MSC	FORCE	1115	3	2	495
E4	MSC/MDAC	03	MSC/MDAC	FORCE	1038	3	2	513
B4	TBC	04	GAC	FORCE	1122	3	2	649
B4	TBC	04	GAC	FORCE	1136	3	2	819
B4	TBC	04	GAC	FORCE	1137	3	2	656
B 5	LMSC	01	LMSC	FORCE	1085	3	2	665
B 5	LARC	02	NR	FORCE	1197	3	2	671
B5	LARC	02	NR	FORCE	1198	3	2	678
85	LARC	02	NR	FORCE	1200	3	2	682
B5	TBC	02	NR	FORCE	1055	3	2	686
B5	TBC	02	NR	FORCE	1091	3	2	695
B5	TBC	03	GAC	FORCE	1044	3	2	712
85	MMC	04	GAC	FORCE	1188	3	2	725
B5	MMC	04	MMC	FORCE	1182	3	2	737
B5	TBC	04	GAC	FORCE	1140	3	2	751
B 5	TBC	04	GAC	FORCE	1187	3	2	762

INDEX OF FIGURES

LAUNCH AIRLOADS

=========	********							
BOOSTER CONFIG. CODE	BOOSTER CONTRACTOR	ORBITER CONFIG. CODE	ORBITER CONTRACTOR	TYPE TEST	CHRYSLER REPORT DMS-DR #	VOL.	PART	PAGE
D.			-========			=====	====:	
B1	MDAC	02	MDAC	PRESSURE	1174	3	2	770
B1	MDAC	02		PRESSURE		_	_	772
B2	MSFC	- -			1222	3	2	779
- -	, _	02	LMSC	PRESSURE	1255	3	2	785
B2	MSFC	02	MSFC	PRESSURE	1259	3	2	
B2	MSFC	02				_	_	791
B4	GD/C			PRESSURE	1273	3	2	796
<u> </u>	· -	02	NR I	PRESSURE	1129	3	2	803
B4	GD/C	03	NR F	PRESSURE	1129	3	_	
B4	TBC	04				_	2	803
	. 20	O.A.	GHC 1	PRESSURE	1136	.3	2	819

INDEX OF FIGURES

LAUNCH HEAT TRANSFER

******	=========		=======================================			====	=====	====
BOOSTER	BOOSTER	ORBITER	ORBITER	TYPE	CHRYSLER	VOL.	PART	PAGE
CONFIG.	CONTRACTOR	CONFIG.	CONTRACTOR	RTEST	REPORT			
CODE		CODE			DMS-DR #			
		=======				=====	=======================================	====
B1	MDAC	02	MDAC	HEATING	1170	3	2	828
B1	MDAC	02	MDAC	HEATING	1238	3	2	833
B1	MDAC	02	MDAC	HEATING	1260	3	2	845
B1	MCDAC	02	MDAC	HEATING	1262	3	2	857
B1	MCDAC	02	MDAC	HEATING	1263	3	2	864
B1	MCDAC/MMC	02	MDAC/MMC	HEATING	1036	3	2	876
B1	MCDAC/MMC	02,	MDAC/MMC	HEATING	1036	3	2	876
B 2	GAC	02	GAC	HEATING	1234	3	2	908
82	MSFC	02	MSC	HEATING	1278	3	2	917
B2	TBC	02	GAC	HEATING	1261	3	2	922
B2	TBC	04	GAC	HEATING	1178	3	2	933
B3	GD/C	02	NR	HEATING	1032	3	2	940
B3	GD/C	02	NR	HEATING	1098	3	2	946
B 3	GD/C	02	NR	HEATING	1145	3	2	952
B 3	GD/C	02	NR	HEATING	1177	3	2	958
B3	GD/C	02	NR	HEATING	1264	3	2	967
B3	GD/C	03	NR	HEATING	1032	3	2	940
B3	GD/C	03	NR	HEATING	1098	3	2	946
B 3	LARC	03	MSC	HEATING	1016	3	2	914
B4	GD/C	02	NF:	HEATING	1032	3	2	940
B4	GD/C	03	NR	HEATING	1032	3	2	940
B5	LMSC	01	LMSC	HEATING	1143	3	2	978

ACRONYMS FOR TEST FACILITIES AND CONTRACTORS

AEDC -- ARNOLD ENGINEERING DEVELOPMENT CENTER

ARC -- AMES RESEARCH CENTER

CAL -- CORNELL AERONAUTICAL LABORATORY

CCSD -- CHRYSLER CORP. SPACE DIVISION

GAC -- GRUMMAN AEROSPACE CORPORATION

GD/C -- GENERAL DYNAMICS/CONVAIR

JPL -- JET PROPULSION LABORATORY

LARC -- LANGLEY RESEARCH CENTER

LMSC -- LOCKHEED MISSILES AND SPACE COMPANY

LTV -- LING TEMCO VOUGHT

MAC -- McDONNELL AIRCRAFT COMPANY

MDAC -- McDONNELL DOUGLAS AIRCRAFT CORPORATION

MMC -- MARTIN MARIETTA CORPORATION

MSC -- MANNED SPACECRAFT CENTER

MSFC -- MARSHALL SPACE FLIGHT CENTER

NR -- NORTH AMERICAN ROCKWELL

NRLAD -- NORTH AMERICAN ROCKWELL CORP., LOS ANGELES DIVISION

NSRDC -- NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

TAM -- TEXAS A&M

TBC -- THE BOEING COMPANY

UW -- UNIVERSITY OF WASHINGTON

1.0 INTRODUCTION

1.1 Space Shuttle Development Phases

Development of the Space Transportation System (STS) encompassed the study of a large number of conceptual designs and an extensive wind tunnel testing program.

Phases of the development program are identified as:

Phase A - Concept Feasibility Studies - 1969-1970

Phase B - Preliminary Design Studies - 1970-1972

Phase C/D - Design and Development - 1972-1983

During the Phase A and B periods, completely reusable systems were studied including the "flyback" booster. However, due to the large cost of the completely reusable concept, NASA decided at the end of the Phase B period to employ an expendable booster design. Phase C/D design and development was then concentrated on a two-stage, parallel-burn booster system concept.

in the development stage (Phase B) of Space Shuttle design, extensive wind tunnel data were acquired for a variety of alternate configurations. These data were accumulated, converted into standard formats, placed in a data bank and documented. This work was performed by the Chrysler Corporation Military Public Electronic

Systems, Michoud Engineering Office under contract to NASA/MSFC.

Developmental configurations considered for early Space Shuttle studies were extremely varied. These included winged "flyback boosters." "Inline" staged launch vehicles and various "parallel staged" orbiter-booster Wind tunnel models of the various combinations. vehicles were tested both in the launch and entry Aerodynamics, airloads and heat configurations. transfer data were collected and compiled from four major contractors and parallel NASA directed studies. Results were documented individually through a series of NASA technical reports, contractor reports and test reports. The digital data and associated descriptive documentation which were archived have been maintained and are available for ongoing applications.

Current advanced launch vehicle studies are focusing on many of the approaches considered during original Space Shuttle studies. Available wind tunnel data for configurations similar to those currently being evaluated can be highly valuable to the preliminary design engineer.

The archived Phase B data is available to the technical community. Extracts of descriptive information and

configuration sketches, and digital test data have been compiled and are reported herein to facilitate use of the large data bank for booster, orbiter and launch configurations.

1.2 Chrysler's Test Database and Archive System

Extensive Chrysler involvement in wind tunnel data application on NASA programs prior to the Space Shuttle resulted in development of complex computer systems for automating these processes. These processes included automating the management and database functions in addition to automating the engineering data applications and computer graphics. These combined functions were reflected in the name DATAMAN.

The Chrysler developed Data Management System (DATAMAN) was used to develop design applicable aerodynamic data, generate extensive plots and cross plots, document, and database wind tunnel test data from the Space Shuttle Phase B test program under contract to the NASA/MSFC.

Chrysier initiated the DATAMAN project in early 1970 and continued through both the Phase B and Phase C/D test programs. Extensive management procedures were devised to effectivley identify and track the expected large volumes of data to be generated by a number of

contractors, and a variety of Phase B configurations.

Hence, a means of conveying descriptive information relative to the configurations and associated data was required.

A four digit report identifier was assigned as initial test inputs were made to the DATAMAN system to track and report activities on individual tests. For the Phase B test program, these identifiers were DMS-DR-1001 through DMS-DR-1278. Thus, approximately 278 sets of test results were processed, documented, and databased.

The assignment of identifiers was sequential and they are, therefore, chronological throughout the Phase B configuration management. Many other identifiers are associated with individual tests such as configuration type, NASA series number, test facility designations and contractor(s) involved.

Each test was documented in a DATAMAN test data report, test data were archived in standard DATAMAN formats, and salient tracking information was compiled. All these were disseminated to NASA technical and program management personnel for technical assessment of the data and managing the overall test program.

1.3 Extracting Phase B Test Database Information

The effort involved extracting and compiling Phase B test data contents and descriptive information from the archived test data bank and documentation file.

Digital database files contained a mix of basic tunnel recorded data and calculated analysis data used for graphic displays. These files were reduced to basic tunnel data and structured by configuration tested and contractor. A series of catalog reports were assembled to provide a readily accessible overview of test results available for future space transportation system studies.

These catalog reports are in increasing levels of detail. The first level consists of summary tables and selected sketches. These enable the user to scan for possible applications to his ongoing work.

For a promising or likely candidate configuration, the user can proceed to the second level of detail where all available configuration sketches and test conditions are compiled.

The third level of detail is the digital data files where tunnel recorded data resides.

2.0 COMPILATION OF PHASE B DATABASE ARCHIVE CONTENTS

2.1 Compilation Outline

Results of the Phase B database compilation are contained in the following list.

- 1) Summary catalog report, DMS-DR-01, containing an overview of database contents and availability.
- 2) A three volume catalog report, DMS-DB-02, containing configuration sketches and conditions tested. The three volumes correspond to booster, orbiter and launch test configurations.
- A series of magnetic data tapes containing available digital files. These are also structured by configuration and are described in transmittal documents DMS-TD-01 through 03, corresponding to booster, orbiter and launch test configurations, respectively.

4) A directory database information file formatted for the R-base relational database system.

Documentation of the contents of the database is contained in two reports: DMS-DB-01 and DMS-DB-02.

2.2 Summary Volume

The first document (DMS-DB-01) is a single volume summary report containing planform line drawings of the various configurations tested during the Space Shuttle Phase B program. Tabular information from the directory file is included and is divided by component (booster, orbiter and launch) and by test discipline (aerodynamics, airloads and heat transfer).

2.3 Model and Test Information

The second document (DMS-D8-02) is a three volume report containing extracts from the individual test data reports. All line drawings and collation sheets/run schedules are included. The three volumes correspond to the three component classifications; booster, orbiter and launch, respectively. A series of tabular information from the directory file provide an outline of available test information.

Structure of the tables and sketches is by component and test discipline with sorting by configuration and contractor. Each booster and each orbiter configuration tested are assigned a 2-character code for purposes of grouping and sorting.

These codes are

	General
Code	Configuration
Booster - B1	Canard
82	Cylindrical
B3	Delta Wing
B 4	Straight Wing
85	Unique
Orbiter - 01	Delta Body
02	Delta Wing
03	Straight Wing
0 4	Unique

Launch configurations tested are identified by a combination of the above codes. Test information is also sorted by individual contractors and NASA centers. Acronyms for these contractors and test facilities are presented in the frontispiece.

It should be noted that individual tests may be identified as multiple configurations. For example, booster and orbiter alone data may have been taken along with launch configurations in a single test. The test would appear in the tabular listings for all applicable classifications, but line drawings and run schedules would be included only in the launch section. Cross references are provided in the Index

of Figures for this case and also where multiple booster or orbiter configuration codes were involved in the same test.

Directory information displayed in tables 1, 3, 4 and 6 provide information only for the component documented in that individual volume. Tables 2 and 5 display information for all tests and components. An outline of the contents of the three volumes is illustrated in the index of Tables.

2.4 Digital Database

The digital database also follows the structure of table 1. Database contents represent data as received from the test facility. However, for some tests an additional, calculated, coefficient schedule is included. These additional schedules are mainly a second axis system or extract data from a multibalance test. Individual datasets within a file are encoded with the configuration code in the header information.

Test data are stored on five magnetic data tapes.

These tapes are 9-track, 6250 FPI, ASCII format.

File contents are:

						Config.
Tape#	Componer	<u>n t</u>	•	Files	<u> #Datasets</u>	Codes
1	Booster	_	Aerodynamics	53	4,216	B1-B5
2			Aerodynamics	89	4,500	01+02
3	Orbiter	-	Aerodynamics	20	1,962	03+04
4	Launch		Aerodynamics	3 4	4,034	B1-B3
5	Launch	_	Aerodynamics	19	637	B4+B5
•			Airloads	4	1,182	ALL
		-	Heat Transfer	1	2 1	ALL
				_		
			Total	220	16,552	

Specific test locations on the digital database are shown in table 6.

2.5 Directory File

The directory data file was constructed to assist in the categorization of tests and to generate tabular reports.

Information was extracted from existing administrative reports and from individual test data reports. The file was created using the R-base relational database system by Microrim. A description of the table information is as follows:

Table: DMS-OR# Read Password: NO Modify Password: NO

-		
Column definitions	1 Ab (Chamactons)	Description
# Name Type	Length (Characters)	•
1 QR# TEXT	4	DATAMAN Report Number
2 CR# TEXT	8	Contractor Report Number NASA TMX Report Number
3 THX# TEXT	12	NASA Test Series Number
4 NSN TEXT	14	
5 4VOL TEXT	1	Number of Report Volumes Report Volume Number
6 UOL\$ TEXT	1	Report Publication Date
7 PUC.DATE TEXT	13	Print Key for Tabular Report
B LINE TEXT	1	Test Discipline
9 TESTTYPE TEXT	15	•
10 COMP TEXT	7	Test Component
11 ECC TEXT	3	Booster Configuration Code
12 OCC TEXT	3	Orbiter Configuration Code
13 B-CODE TEXT	15	Booster Classification
14 8-CONTRA TEXT	10	Booster Model Contractor
15 O-CODE TEXT	15	Orbiter Classification
16 O-CONTRA TEXT	10	Orbiter Model Comtractor
17 FAC TEXT	5	Test Facility
10 TUN TEXT	6	Test Wind Tunnel
19 TEST# TEXT	15	Facility Test Number
20 FAC-TST# TEXT	26	Facility, Tunnel, Facility Test Number
21 MACH TEXT	15	Mach Number Range Model Scale
22 SCALE TEXT	12	Two Character Dataset Identifier
23 DAS-CODE TEXT	6	Booster Configuration Type
24 B-TYPE TEXT	23	Orbiter Configuration Type
25 O-TYPE TEXT	33	Description of Configurations Tested
26 CONFIG TEXT	220	
27 PURPOSE TEXT	150	Major Test Purpose Data Report Title
28 TITLE TEXT	250	Contractor/NASA Test Engineers
29 PROJ.ENG TEXT	175'	DATAMAN Cognizant Engineers
30 DMS-ENG TEXT	30	Directory File Comments/Exceptions
31 COMMENTS TEXT	150	Directory Fire Comments/Laceptions

Current number of rows: 488

2.6 Guide to Phase B Database Use

Users of the Chrysler Phase B database have varying levels of detail available for review. A typical application is to investigate similarities between current preliminary configuration designs and configurations tested during Phase B. As an example, current applications may be representative of a winged flyback booster with canards. To research this configuration the user could follow the steps illustrated below:

Step 1 - <u>DMS-DB-01</u>, <u>Summary Report</u>: This report would be reviewed to identify configurations of interest and corresponding configuration types and contractors.

	INDEX OF MUDEL	FIGURES - BOOSTER		
			PAGE NUMBER	<u> </u>
Booster Type	Contractor	<u>Aerodynamics</u>	Airloads	Heat Transfer
CANARD	MDAC	A-1-1	8-1-1	C-1-1
	MDAC/MMC	A-1-4		· · · · · · · · · · · · · · · · ·
	MSFC	A-1-5		
	ТВС	A-1-6		
CYLINDRICAL	GD/C	A-1-7		
	LMSC	A-1-8		
	MDAC	4		

Step 2 - Table 1, DMS-DB-01, Summary Report: Using the configuration type and contractors identified above, a list of applicable tests is obtained.

				Space Shuttle Be	Table 1.1.1 Phose & Ulnd Labour Summer Later Aerodynam	,	
C094	ggarig, 1.8.	001348100	940-980	MACH BANGE	FACILITY	MOSEL SCALE	COMPIGURATIONS PESTED
	SANAPR	-	1035	0.18	-	0.01	MBAC BPACE MINITLE BOOSTER
••	CARACT	WOAG	1106	8.0-0.0	ALDC	0.00666	MASTIN BOOSTER
••	CADADO	****	1130	0.16	W1886	4.016	MOAC DELTA CAMANG DEGETER
	CARAGO	MAC/MAC	1014	1 11	MAC	0.08	MOAG/MMC SPACE SMUTTLE SOUSTER
	CARAGO	MDAC/SMC	1066	0.0-8.0	ARC	0.007	MOC-IMIC BEV COMPIG14 MOSTER (SINGLE SOC CAMARD)
	540400	mass/smc	1077	0.0-0.15	-	0.02	MOAC/MAC SPACE SMOTTLE BOSSTER
••	EAST-00	MDAC/MMC	1000	7.4	ARC	4 447	MOC-OME BAY BOOGIER BINGLE BOOT CANADO
		MOAC/IME	1116 _				MIC/MOC 10C 6003761

Step 3 - DMS-DB-02, Vol. 1, Booster Configuration: Locate
the model sketches and test conditions and
parameters.

	INDEX O	F FIGURES	
	BOOSTER A	ERODYNAMICS	
BOOSTER CONFIG.	BOOSTER CONTRACTOR	DMS-DR •	PAGE NUMBER
81	MDAC	1035	A-1-1
81	MDAC	1108	SEE C-1-23
81	MOAC	1139	A-1-13
81	MDAC/MMC	1054	A-1-45
81	MDAC/MMC	1066	A-1-64
81	MDAC/MMC	1077	A-1-78
B1	MDAC/MMC	1080	A-1-96
	MDAC/MMC	1116	- Andrews

Step 4a- <u>Dataset/Run Number Collation Summary</u>: Examine collation sheets to determine test Mach range, angle of attack/sideslip ranges, configurations and control surfaces/parametric conditions.

Step 4b- Configuration Sketches: Examine configuration sketches to obtain model and aerodynamic details such as model dimensions, wing type, canard surfaces, tail surfaces, body shape, etc.

Step 5 - Table 2. DMS-DB-02. Vol.1: Refer to table to determine publication availability: data report, contractor report or NASA publication.

				Table 2		
			Test Catab:s	Phase & Wind To e Listed by Chry Report Humar	parei rsier	
\$000-000 *******	484# 69:898 8986##	game (n	EASA CR BASA	BABA The-a Busing R	PACILITY TEST NUMBER	AGHICFE AGHICFE
****	81002-61401	•	103.150	••	MOFC 14TWT 461	9001751
1401	10001	•		62.626	ARC 3. SHOT TO	****
1923						-
1031	00111		102.100		BRLAG LEWF 432	
1035	40101	,	103.101	-	MAC 12WF 138)	8002169
1030	M0401-H0402	,		-	\$44C.8VBHT 147-178.206-328	LAUNCH
					LARC GVONT 147-179.200-322	9703 TLA

Step 6 - <u>Test Documentation</u>: Refer to test documentation to obtain test procedures, model description and data presentation.

Step 7 - Digital Database, Table 2 in DMS-DB-01 (Table 6 in DMS-DB-02); the user, after determining applicability, can access the test data from the digital database files for further analysis and application.

				TABLE 2	.1		
			_	PACE SHUTTL DIGITAL DA OOSTER AERO	TABASE		
	FILE	BCC	8-CONTRA	DR#	2-CHAR. CODE	D/S's	RECORDS
П	1	B1	MDAC	1035	СС	69	967
П	2		†	1133	Ж 2	574	8037
٦	3		MDAC/MMC	1054	CE	208	2185
	4			1056	AD	86	1033
		1 i	1 [1077	СØ	96	1057

3.0 NOMENCLATURE AND AXIS SYSTEMS

A standard set of nomenclature and axis systems definitions for DATAMAN reports were established during the Phase B test period. They were compiled from inputs from the various contractors and test facilities involved in the test program and are shown on the following pages.

Additions to the standards were required for individual tests due to the many configurations investigated. These additions are documented in the individual test data reports.

Numerous reference dimensions and moment reference center locations were used by the varius contractors for the many configurations tested. Model reference dimensions and moment center locations for each configuration are described in the individual test data reports. This information is also contained in the header block of each dataset on the digital database.

NOMENCLATURE General

SYMBOL	SADSAC SYMBOL	DEFINITION
8		speed of sound; m/sec, ft/sec
$c_{\mathbf{p}}$	CP	pressure coefficient; (p ₁ - p _m)/q
м	MACH	Mach number; V/a
p		pressure; N/m², psf
Q	Q(NSM) Q(PSF)	dynamic pressure; 1/2,002, N/m2, psf
RN/L	rn/l	unit Reynolds number; per m, per ft
v		velocity; m/sec, ft/sec
α	ALPHA	angle of attack, degrees
β	BETA	angle of sideslip, degrees
$oldsymbol{\psi}$	PSI	angle of yaw, degrees
φ	PHI	angle of roll, degrees
P		mass density; kg/m ³ , slugs/ft ³
	Refe	erence & C.G. Definitions
Ab		base area; m ² , ft ²
b	EREF	wing span or reference span; m, ft
c.g.		center of gravity
L _{REF}	IREF	reference length or wing mean aerodynamic chord; m, ft
S	SREF	wing eres or reference area; m ² , ft ²
	MRP	moment reference point
	XMRP	moment reference point on X exis
	YMRP	moment reference point on Y axis
	ZMRP	moment reference point on Z axis
SUESCRIPTS b 1	1	base local
s t ss		static conditions total conditions free stream

NOMENCLATURE (Continued)

Body-Axis System

SYMBOL	SADSAC SYMBOL	DEFINITION
CN	CN	normal-force coefficient; normal force
CA	CA	exist-force coefficient; $\frac{n \times int}{qS}$
CY	CΩ	side-force coefficient; side force
c _{Ab}	CAB	base-force coefficient; base force
		-A _b (p _b - p _m)/qS
c _a t	CAF	forebody axial force coefficient, C_A - C_{A_b}
C _m	CLM	pitching-moment coefficient; pitching moment qs/REF
Cn	CYN	yaving-moment coefficient; Yaving moment qSb
c.T	CBL	rolling-moment coefficient; rolling moment qSb
		Stability-Axis System
c _L	CL	lift coefficient; lift qS
Ci	CD	drog coefficient; drog qS
c_{D_b}	CDB	base-drag coefficient; base drag
$c^{\Omega^{\mathbf{L}}}$	CDF	forebody drag coefficient; CD - CDb
$c^{\boldsymbol{\chi}}$	CY	side-force coefficient; 51de force qS
C _m	CLM	pitching-moment coefficient; pitching moment qs/REF
Ç _{II}	CIN	yaving-moment coefficient; yaving moment qSb
\mathcal{L}_{2}	ರ್ಜ	rolling-moment coefficient; rolling moment qSb
L/D	L/D	lift-to-drog ratio; C _L /C _D

Kotes:

- 1. Positive directions of force coefficients moment coefficients, and angles are indicated by arrows.
- 2. For clarity, origins of wind and stability axes have been displaced from the center of gravity.

Axis systems, showing direction and sense of force and moment coefficients, angle of attack, and sidesilp angle

Table 1.1.3
Space Shuttle Phase B Wind Tunnel Test
Database Summary
Launch Aerodynamics

CONFIGURATIONS TESTED	MONC HIGH WING BOOSTER, MONC LOW CROSS RANGE ORBITER, MOAC LOW WING BOOSTER, MOAC HIGH CROSS RANGE ORBITER	MDAC ORBITER, MARTIN BOOSTER	DELTA WING ORBITER, BODSTER WITH CANARD, AFT SWEPT WING, TIP FINS	MDAC/MMC HCR DELTA WING ORBITER, MDAC/MMC SBC BOOSTER	MDAC/MMC 256-14 BOOSTER, MDAC 0050B URBITER, NAK/GDC B-15R-1 BOOSTER, NAR 1340 URBITER	TBC AR11981-1 BOUSTER WITH GAC C3-A ORBITER, BOEING AR11981-1 BOOSTER	MDAC HIGH WING BOOSTER, MDAC LOW CROSS RANGE ORBITER, MDAC LOW WING BOOSTER, MDAC HIGH CROSS RANGE ORBITER	MDAC BOOSTER WITH 5-IVB SECOND STAGE	MDAC PARALLEL BURN LAUNCH CONFIGURATION	GD/C B198 BOOSTER WITH MSC 040A ORBITER, GD/C B198 BOOSTER	TWIN PRESSURE FED BOOSTER WITH MSC 040A OREITER, CD/C E-18E-2 BOOSTER, CD/C B-18E-3 BOOSTER	PARALLEL BURN PRESSURE FED AND SRM BODSTERS, 040A ORBITER	PARAMETRIC LAUNCH VEHICLE	PARAMETRIC LAUNCH CONFIGURATION
MODEL. SCALE	0 007	0.00556	0.007	0.007	2600.0	0.002456	0.007	0.007	0.00285	996600.0	996600.0	900.0	0.0041	0.004
FAC	ARC	AEDC	ARC	LARC	LARC	MSFC	ARC .	₽ BC	MSFC	MSFC	MSFC	HDAC	MSFC	MSFC
MACH	0.6-2.0	2.0-6.0	0.6-2.0	2.3-1.6	0.23.	0.6-5.0	0.8-2.0	0.6-2.0	0.6-4.96	0 . 6-5 . 0	0.9-4.96	0.6-4.5	96.6-4.96	0.6-4.96
DHS-	1065	:108	1116	1117	1190	11.48	1065	1099	1166	1204	1210	1230	1256	1272
CONTRA	ИВАС	MDAC	нрас	MDAC	НВАС	CAC	HDAG	MDAC	MDAC	MSC	NS C	HSC	LMSC	LMSC
OCHTIC LD	DELTA WING	DELTA WING	DELIN WING	DELTA WING	DELTA WING	DELTA WING	STRAIGHT WING	UNIQUE CONFIGS.	UNIQUE CONFIGS.	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTO WING
ORB	02	02	20	20	20	20	60	04	4	80	۵ 2	80	02	20
BOOSTER CONTRA	HDAG	MDAC	HDAC	MDAC/MMG	MDAC/MMC	TBC	MDAC	MDAC	MDAC	CD/C	2/05	MDAC	MSFC	MSFC
BUOSTER CONFIG. I.D.	CANARD	CANARD	CANARD	CANARD	CONARD	CANARD	CANARD	CANARD	CANARD	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYL. INDRICAL	CYLINDRICAL
CODE	B1	E	3 1	81	Ξ	81	81	8	18	89	c B	G B	c e	G G

Table 1.1.3 - Continued Space Shuttle Phase B Wind Tunnel Test Database Summary

Launch Aerodynamics

CONFIGURATIONS TESTED	MSC 040A CRBITER WITH EXTERNAL Tanks	MSC 0400-2/2-156 PARALLEL BURN Launch Configuration	PARALLEL BURN SRM ASCENT CONFIGURATION	040 ASCENT CONFIGURATION	040A LAUNCH CONFIGURATION	040A LAUNCH CONFIGURATION	NR-110C ORBITER	PRESSURE FED BOOSTER WITH MSC 040A ORBITER, PRESSURE FED BOOSTER	GAC H-39 ORBITER , 3 SECMENT SOLID BOOSTER	GD/C STRAIGHT WING BOOSTER (EBX), GD/C DELTA WING BOUSTER (B-9J), NAR STRAIGHT WING ORBITER (130G), NAR DELTA WING	NR DELTA WING ORBITER, GD DELTA WING BOOSTER	NR/CD DELTA WING BOOSTER, NR 1340 DELTA WING ORBITER	MDAC/MHC 236-14 BOOSTER, MDAC 0050E ORBITER, NAR/GDC B-15E-1 BOOSTER, NAR 1340 ORBITER	GD/C 89U ROOSTER WITH NR. 1340 ORBITER, CD/C 89U BOOSTER, NR 1340 ORBITER
MODEL	900 0	96600 0	0.004	0 019	0.019	0.019	0.0044	996600.0	9966000	seco o	0.0076	0 0035	0.0029	0 0056
FAC	MSFC	MSFC	MSFC	LARC	₽BC	ARC	MSFC	MSFC.	MSFC	ວ ດວ	ARC	MSFC	LARC	CARC
MACH	0 %-9 0	0.9-2.0	96.h-6.0	2.3-4.62	0.8-1.4	1.6-2.2	0.6-4.96	0 6-4.96	0.6-4.96	1.1-1.6	0.6-2.0	0.6-3.0	0.23	1.6-2.16
DM5- DR#	1241	1249	1251	1265	1267	1267	1185	1227	1181	1052	1127	1130	1190	1237
ORBITER CONTRA		MSC	MSC	MSC	HSC	MSC	ä	MSC	פטכ	<u>α</u> 2	α z	αz	α Z	ς Z
CONFIG I D	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DEL.TA WING	DELTA WING	UNIQUE CONFIGS.	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DFL TA WING
anc coot	02	ĕ0	20	20	20	02	20	05	0 4	20	OR	02	25	<i>2</i> 0
BOOSTER CONTRA	#SFC	MSFC	MSFC	MSFC	MSFC	MSFC	Œ	TBC	MSFC	SD/C	3/05	2/09	3/a5	3/05
ROOSTER CONFIG I D	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING
3003 CODE	E 2	82	8	ಜ	28	82	G.	œ œ	62	6 8	(F)	83	œ Œ	Ea

Table 1.1.3 - Continued Space Shuttle Phase B Wind Tunnel Test Database Summary

Launch Aerodynamics

CONFIGURATIONS TESTED	MMC RETRO-GLIDE BOOSTER WITH MSC 040A ORBITER, MMC RETRO-GLIDE BOOSTER	MSC 5-13A ORBITER, MSC 58-13A BOOSTER	MSC/MDAC STRAIGHT WING BOOSTER, MSC/MDAC STRAIGHT AND DELTA WING ORBITERS, MSC/MDAC DELTA WING BOOSTER	TBC R5-IC BOOSTER WITH MSC 040A ORBITER, TBC R5-IC BOOSTER	GD/C STRAIGHT WING BOOSTER (BBX), GD/C DELTA WING BOOSTER (B-9J), NAR STRAIGHT WING OHBITER (130G), NAR DELTA WING ORBITER (1348)	NASA/MSC ORBITER CLOSE TO CLIPPED DELTA WING BOOSTER	MDAC CLIPPED DELTA WING BODSTER (PHASE A)	MSC DELTA WING BOOSTER, MSC STRAIGHT WING ORBITER (MODEL 5-13A)	MSC/MDAC STRAIGHT WING BOOSTER, MSC/MDAC STRAIGHT AND DELTA WING ORBITERS, MSC/MDAC DELTA WING BOOSTER	EXPENDABLE SECOND STAGE, PAYLGAD AND DELTA WING BOOSTER (B-15B-1), G/D DELTA WING BOOSTER WITH EXPENDABLE SECOND STAGE
MODEL	0.0034	0 008105	90.0	998600.0	0.0035	0.00725	NONE	0.008810	80.0	0.0031
FAC	MSFC	5	₽ ₽.	MSFC	200	LARC	LARC	12	ARC	MSFC
MACH	0.6-4.96	0 6-1 4	0.6-2.0	0.6-4.96	1.1-1.6	10.4	10.4	1.81-4.39	0.6-R.0	0 6-4.96
0MS- 0R4	1213	1115	1038	1183	1052	1047	1061	1058	1038	1119
ORBITER CONTRA	MSC	MSC	MSC/MDAG	MSC	ŭ	H SC	HSC	MSC	MSC/MDAC	α
OFINITER CONFIG I.D.	DELTA WING	DELTA WING	DELTA WING	DELTA WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAICHT WING	UNIQUE CONFIGS.
CODE	02	02	00	20	6	60	60	03	e 0	4
BNOSTER CONTRA	Ŭ H	HSC	M5C/MDAC	180	3/05	MDAC	MDAC	T U	HSC/HDAC	57/0 5
ROOSTER CONFIG. 1.0.	DELTA WING	DELTA WING	DEL.TA WING	DELTA WING	DELTA WING	DELTA WING	DEL.TA WING	DELTA WING	DELTA WING	DELTA WING
BOOS	83	ත ත	6	n	m m	68	e O	რ დ	e 8	e B

Table 1.1.3 - Continued Space Shuttle Phase B Wind Tunnel Test Database Summary

Launch Aerodynamics

CONFIGURATIONS TESTED	NA/CD DELTA WING BOOSTER B-158-1 WITH REUSABLE NUCLEAR STACE, NAR/CD REUSABLE NUCLEAR STACE, NAR/CD B-158-1 DELTA WING BOOSTER	TBC RS-IC BOUSTER WITH MSC 040A ORBITER, TBC RS-IC BOOSTER	NAR/GD STRAIGHT WING BOOSTER WITH NAR/GD STRAIGHT WING AND DELTA WING ORBITERS, NAR/GD STRAIGHT WING BOOSTER	NAR-GD/C STRAIGHT WING BOOSTER (B-BH MODIFIED), NAR-GD/C STRAIGHT WING ORBITER (130G), NAR-GD/C DELTA WING ORBITER (1348)	GD/C STRAIGHT WING BOOSTER (BBX), GD/C DELTA WING BOOSTER (B-9J), NAR STRAIGHT WING DRBITER (130G), NAR DELTA WING ORBITER (1348)	GD/C R-811-1 BOOSTER, NAR ORBITER	MSC/MDAC STRAIGHT WING ROOSTER, MSC/MDAC STRAIGHT AND DELTA WING GRBITERS, MSC/MDAC DELTA WING BOOSTER	NAR/GD STRAIGHT WING BOOSTER WITH NAR/GD STRAIGHT WING AND DELTA WING ORBITERS, NAR/GD STRAIGHT WING BOOSTER	NAR-GD/C STRAIGHT WING BOOSTER (B-BH MODIFIED), NAR-GD/C STRAIGHT WING ORBITER (130G), NAR-GD/C DELTA WING ORBITER (1348)
KODEL	0.0031	996600.0	0.0076	0.0035	0.0000	0.0076	BO . 0	0.0076	0.0035
FAC	MSFC	MSFC	ARC	MSFC	ວ ດວ .	ARC	ARC	ARC	MSFC
MACH	0.6-4.96	0.6-4.96	0.5-6.0	0 . 6-2 0	1.1-1.6	0.6-2.0	0.6-2.0	0.5-6.0	0.6-2.0
DMS- DR#	1162	1183	1050	1031	1052	1075	1038	1050	1091
CONTRA.	α Z	HSC.	ά	α Z	α Z	č Z	MSC/MDAC	α Ž	αŽ
CONFIG. I.D.	UNIQUE CONFIGS.	DFLTA WING	DELTA WING	DELTA WING	DEI.TA WING	DELTA WING	DELTA WING	STRAIGHT WING	STRAIGHT WING
ORB	40	40	05	05	05	05	02	60	03
BOOSTER	go/c	TBC	2/05	3/05	2/05	GD/C	HSC/MDAC	2/05	2/05
BOOSTER CONFIG. 1.0.	DELTA WING	DELTA WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING
8003 CODE	e &	8	89	8	8	4	B4	8	8

Table 1.1.3 - Continued Space Shuttle Phase B Wind Tunnel Test Database Summary

CONFIGURATIONS TESTED	GD/C STRAIGHT WING BOOSTER (BBX), GD/C DELTA WING BOOSTER (B-9J), NAR STRAIGHT WING ORBITER (130G), NAR DELTA WING	GD/C 8-811-1 BOOSTER, NAR ORBITER	MSC 231 REVISION B BASELINE BOOSTER, MSC 231 REVISION B BASELINE ORBITER	MSC DELTA WING BOOSTER, MSC STRAIGHT WING ORBITER (MODEL 5-13A)	MSC STRAIGHT WING ORBITER, MSC STRAIGHT WING BOOSTER	MSC 5-13A ORBITER, MSC 58-13A BOOSTER	MSC/MDAC STRAIGHT WING BOOSTER, MSC/MDAC STRAIGHT AND DELTA WING ORBITERS, MSC/MDAC DELTA WING BOOSTER	TBC STRAIGHT WING BOOSTER, GRLMMAN ROS-NB1 DELTA WING ORBITER	GAC ROS-NB2 ORBITER, LIQUID HYDROGEN TANKS, TBC 1202 BDOSTER	GAC ROS-NB2 ORBITER, TANKS, TBC 1202 BOOSTER	LOCKHEED STAGE-AND-ONE-HALF	LARC LOW FINENESS RATIO EOUSTER WITH NAR 1340 ORBITER, NASA LOW FINENESS RATIO BOUSTER
MODEL	SE00 0	0.0076	0.01	0 0008811	800.0	0 008103	0 08	0.00667	0.00667	0.00667	0 01	0.0076
FAC.	200	ARC	ARC	LTV	ARC	7	PRC .	ARC	ARC	ARC	ARC	LARC
MACH	1.1-1.6	0.6-2.0	0.6-1.4	1.81-4.39	0.6-2.0	0.6-1.4	0.6-2.0	0.6-2.0	0.6-1.5	0.6-2.0	0.6-2.0	1.5-2.16
DMS-	1052	1075	1042	1058	1063	1115	1038	1122	1136	1137	1085	1197
ORBITER CONTRA.	α	αχ	HSC	MSC	HSC	MSC	МSC/МDAC	GAC	O P C	פאכ	LMSC	αZ
TOREITER CONFIG I D	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	UNIQUE CONFIGS.	UNIQUE CONFIGS.	UNIQUE CONFIGS.	DELTA BODY	DEL TA WING
ORB	e0	60	60	60	E 0	60	60	6	4	9	01	20
BOOSTER CUNTRA	2/05	D/QD	MSC	MSG	M 5C	MSC	MSC/MDAC	180	180	TBC	CHSC	LARC
BOOSTER CONFIG. I.D.	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	UNIQUE CONFIGS.	UNIQUE CONFIGS
ROOS CODE	g G	8	2	B	48	4	8	7	8	89	£0	e G

Table 1.1.3 - Concluded Space Shuttle Phase B Wind Tunnel Test Database Summary

CONFIGURATIONS TESTED	LARC LOW FINENESS RATIO BOOSTER WITH NAR 1340 ORBITER, LARC LOW FINENESS RATIO BOOSTER	LOW FINENESS RATIO BOOSTER WITH NAR 1340 ORBITER, LOW FINENESS RATIO BOOSTER	NR/GD DELTA WING ORBITER, SATURN V S-IC BOOSTER	S-IC/NR HCR ORBITER	S-IC BOOSTER WITH GAC C4 ORBITER	TITAN T III L BOOSTER, GAC H-33 ORBITER	MMC TITAN III L BOOSTER WITH MMC DIO-7 ORBITER, MMC DIO-7 ORBITER	S-IC/GRUMMAN G-11 (M3T) DROP TANK ORBITER	S-IC BOOSTER WITH GAC H-33 ORBITER, GAC H-33 ORBITER
MODEL	NON	0.0076	99880000	996600.0	996600.0	99880000	0.0043	0 0034	0.0034
FAC.	LARC	LARC	MSFC	MSFC	MSFC	X DFR	MSFC	MSFC.	MSFC
MACH	10.2	0 4-1.2	0.6-1.96	0.60-1.96	0.6-1.3	96 6-9 0	0.6-3.48	0.6-4.96	0 6-4 96
DHS-	1198	1200	1035	1001	1041	1188	1182	1140	1187
CONTRA.	α Z	α Z	<u>α</u> Ζ	œ	GAC	GAC	HHC	DAG.	GAC
ORBITER CONFIG. 1.D.	DELTA WING	DELTA WING	DELTA WING	DELTA WING	STRAIGHT WING	UNIQUE CONFIGS	UNIQUE CONFIGS.	UNIQUE CONFIGS	UNIQUE CONFIGS.
CODE	os	05	05	02	60	4 0	40	0.4	04
BOOSTER	LARC	LARC	1 8C	TBC	TBC	M C	Z. O.	1 BC	160
BOOSTER CONFIG I.D	UNIQUE CONFICS.	UNIQUE CONFIGS.	UNIQUE CONFIGS.	UNIQUE CONFIGS	UNIQUE CONFIGS.	UNIQUE CONFIGS	UNIQUE CONFIGS.	UNIQUE CONFIGS.	UNIQUE CONFIGS.
BOOS		83	6	80 10	83	83	en en	8	0

Table 1.2.3 Space Shuttle Phase B Wind Tunnel Test Database Summary

ų.	
<u>.</u>	
Space Shuttle Phase B Wind Tunnel Test Database Summary	Launch Airloads
Space	

CONFIGURATIONS TESTED	MDAC BOOSTER, MDAC ORBITER	MDAC CANARD BOOSTER AND DELTA Wing orbiter	DOUBLE DELTA WING ORBITER IN LAUNCH CONFIGURATION	NASA DOUBLE DELTA ORBITER WITH External tank and SAB'S, NASA Double delta wing orbiter	DOUBLE DELTA WING ORBITER IN LAUNCH CONFIGURATION	GD/C STRAIGHT WING BOOSTER, GD/C STRAIGHT WING BOOSTER WITH NR DELTA WING ORBITER, GD/C STRAIGHT WING BOOSTER WITH NR STRAIGHT WING ORBITER	GD/C STRAIGHT WING BOOSTER, GD/C STRAIGHT WING BOOSTER WITH NR DELTA WING ORBITER, GD/C STRAIGHT WING BOOSTER WITH NR STRAIGHT WING ORBITER	GAC ROS-NB2 ORBITER, LIQUID Hydrogen tanks, 18C 12O2 Booster
MODEL	0.00556	0.00556	0.004	0.004	0 . 004	0.007	0.00761	0.00667
FAC.	AEDC	AEDC	MSFC	E S	MSFC	A BC	A BC	ARC
MACH	2.0-5.0	0.6-1.3	0.8-1.96	0.6-4.96	0.8-4.96	0 . 6 - 2 . 0	0 · 6 · 2 · 0	0.6-1.6
0 M M I	1174	1222	1255	1259	1273	1129	1129	1136
CONTRA	MDAC	MDAC	LMSC	M SFC	M SFC	<u>α</u> 2	α	GAC
ORBITER CONFIG. 1.D.	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	STRAIGHT WING	UNIQUE CONFIGS.
CODE	05	05	05	03	0	00	60	0
BOOSTER CONTRA.	MDAC	MDAC	MSFC	MSFC	MSFC	3/Q5	3/05	180
BOOSTER CONFIG. 1.D.	CANARD	CANARD	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING
BOOS	5	6	8	88	85	~	₹ 60	4

Table 1.3.3
Space Shuttle Phase B Wind Tunnel Test
Database Summary
Launch Heat Transfer

CONFIGURATIONS TESTED	MDAC CANARD BOOSTER WITH MDAC DELTA WING ORBITER, MDAC DELTA WING ORBITER, MDAC CANARD BOOSTER	MDAC 256-20 BOOSTER, MDAC Internal Tank Orbiter	MDAC BOOSTER, MDAC ORBITER	MDAC CANARD BOOSTER AND DELTA WING ORBITER	MDAC BOOSTER, MDAC ORBITER	MDC/MMC PHASE B BASELINE BOOSTER, MDC/MMC PHASE B LOW CROSS RANGE ORBITER, MDC/MMC PHASE B ALTERNATE BOOSTER, MDC/MMC PHASE B HIGH CROSS RANGE ORBITER	MDC/MMC PHASE B BASELINE BOOSTER, MDC/MMC PHASE B LOW CROSS RANGE ORBITER, MDC/MMC PHASE B ALTERNATE BOOSTER, MDC/MMC PHASE B HIGH CROSS RANGE ORBITER	MDC/MMC PHASE B BASELINE BOOSTER, MDC/MMC PHASE B LOW CROSS RANGE ORBITER, MDC/MMC PHASE B ALTERNATE BOOSTER, MDC/MMC PHASE B HIGH CROSS RANGE ORBITER	MDC/MMC PHASE B BASELINE BOOSTER, MDC/MMC PHASE B LOW CROSS RANGE ORBITER, MDC/MMC PHASE B ALTERNATE BOOSTER, MDC/MMC PHASE B HIGH CROSS RANGE ORBITER
MODEL	, oo . o	0.0065	9900.0	0.011	9 00 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00325	0.00328	0.00328
FAC.	CAL	LARC	LARC	AEDC	LARC	LARC	LARC	LARC	LARC
MACH	7.6-13.0	0 •	10.0	o ·	2.3-3.7	o.	• •	• · · · · · · · · · · · · · · · · · · ·	• •
DMS-	1170	1238	1260	1262	1263	•	0.00	0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CONTRA	MDAC	MOAC	MDAC	MDAC	MOAC	MDAC/MMC	MDAC/MMC	MDAC/MMC	MDAC/MMC
ORBITER CONFIG. I.D.	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	STRAIGHT WING	STRAIGHT WING
CODE	00	05	05	07	05	05	0	°	° o
BOOSTER CONTRA.	MDAC	MDAC	MDAC	MDAC	MDAC	MDAC/MMC	MDAC/MMC	MDAC/MMC	MDAC/MMC
BOOSTER CONFIG. 1.D.	CANARD	CANARD	CANARD	CANARD	CANARD	CANARD	CANARD	CANARD	CANARD
BOOS	50	8 0	E	6	6 0	5	5	<u>-</u>	5

Table 1.3.3 - Continued
Space Shuttle Phase B Wind Tunnel Test
Database Summary
Launch Heat Transfer

CONFIGURATIONS TESTED	GRUMMAN H-33 ORBITER, H-33/HO ORBITER LAUNCH CONFIGURATION	MSC 040A ORBITER / HO DROP Tank, 2-156 inch SAM	MSC 040A ORBITER WITH CYLINDRICAL BOOSTER 979-160, CYLINDRICAL BOOSTER 979-160	BOEING 1202 BOOSTER WITH GAC H-3T DELTA WING ORBITER, GAC H-3T DELTA WING ORBITER	CONVAIR STRAIGHT WING (B-68) AND DELTA WING (B-9J) BOOSTERS. NAR STRAIGHT AND DELTA WING ORBITERS, CONVAIR B-95 BOOSTER WITH NAR DELTA WING ORBITER	GD/C DELTA WING BOOSTER (B-9J), Nar Straight Wing Orbiter, Nar Delta Wing Orbiter	GD/C BOOSTER B-9U WITH NAR Orbiter 161C, GD/C Booster B-158-2, GD/C BOOSTER B-9U	90/C B-158-2 BOOSTER, NAR 1618 ORBITER	NR DELTA WING ORBITER, GD/C Booster	CONVAIR STRAIGHT WING (B-6B) AND DELTA WING (B-9J) BOOSTERS, NAR STRAIGHT AND DELTA WING ORBITERS, CONVAIR B-95 BOOSTER WITH NAR DELTA WING ORBITER	GD/C DELTA WING BOOSTER (B-9J), NAR STRAIGHT WING ORBITER, NAR DELTA WING ORBITER	CLIPPED DELTA WING BOOSTER WITH MSC ORBITER
MODEL	900.0	900.0	0.0033	0.00667	0 . 00 3 \$	900.0	0.00	0.009	0.013	. 00 38 00 0	900.0	0.00667
FAC.	LARC	LARC	LARC	LARC	LARC	LARC	LARC	AEDC	AEDC	LARC	LARC	LARC
MACH		0 . 8	• •	10.3	o .	2.6-3.7	7.80-7.95	0.8	0.0	o	2.5-3.7	10.0
DMS-	1234	1278	1261	8 .	1032	0 0	1146	1177	1264	1032	0 0 0 0	101
ORBITER CONTRA.	0 A C	MSC	O V C	OVO	α z	E	α	Œ	Œ	Z	Œ	M SC
TER	DELTA WING	DELTA WING	DELTA WING	UNIQUE CONFIGS.	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING
ORB CODE	03	03	03	6	03	6	05	8	8	c	80	ő
BOOSTER CONTRA.	0 A C	MSFC	1BC	18C	37 Q5	2/05	2/05	2/Q5	2/05	3D / C	2/08	LARC
BOOSTER CONFIG. 1.D.	DRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING
8008 CODE	83	29	83	83	89	e 6	6	8	° 6	e 6	93	e0

Table 1.3.3 - Concluded Space Shuttle Phase B Wind Tunnel Test Database Summary

Launch Heat Transfer

CONFIGURATIONS TESTED	CONVAIR STRAIGHT WING (B-BB) AND DELTA WING (B-9J) BOOSTERS, NAR STRAIGHT AND DELTA WING ORBITERS, CONVAIR B-95 BOOSTER WITH NAR DELTA WING ORBITER	CONVAIR STRAIGHT WING (B-88) AND DELTA WING (B-9J) BOOSTERS, NAR STRAIGHT AND DELTA WING ORBITERS, CONVAIR B-95 BOOSTER WITH NAR DELTA WING ORBITER	LOCKHEED STAGE-AND-ONE-HALF. LMSC DELTA BODY ORBITER
MODEL	\$ £ 00 ° 0	0.0036	LARC 0.0077
FAC.	LARC	LARC	LARC
MACH	o	• •	o. •
M C C C C C C C C C C C C C C C C C C C	1032 8.0	1032 8.0	1143 8.0
ORBITER CONTRA.	Œ	Œ	LMSC
ORBITER CONFIG. 1.D.	DELTA WING	STRAIGHT WING	DELTA BODY
CODE	00	0	6
BOOSTER CONTRA.	3/db	3/0 9	LM3C
BOOSTER CONFIG. I.D.	STRA GHT WING	STRAIGHT WING	UNIQUE CONFIGS.
BOOS	•	6	8

Table 2
Space Shuttle Phase B Wind Tunnel
Test Database Listed by Chrysler
DATAMAN Report Number

VEHICLE	BOOSTER	ORBITER	ORBITER	0AB1 TER	0881768	BOOSTER	ORBITER	ORBITER	ORBITER	ORB11ER	ORBITER	ORBITER	ORBITER	BOOSTER	BOOSTER	LAUNCH	BOOSTER	ORBITER	BOOSTER	BOOSTER	OR81 TER	ORBITER	ORBITER
		ARC 3.5HWT 78	MSFC 14TWT 453	LARC 20HT6 6315	GAC 710SWT 280	AEDC HWTC VT0055	MAC LSWT 223	TAM 710SWT S-VI	LARC 22HT 7341-7343	NRLAD LSWT 629	ARC 665WT 465	ARC 117WF 481-1	LARC LTPT 50	MAC LSWT 132	LARC LTPT 47	LARC CFHT 50	LARC UPWT 886	LARC LTPT 49	LARC UPWT 913	LARC CFHT 52	ARC 66SWT 484	LARC 710SWT 905	LARC 20HT6 6329
NASA TM-X NUMBER		62,035	;	i i	;	;	;	;	;	:	;	;	1	!	į Į	;	;	;	!!	!	62,066	!	;
NASA CR NUMBER	103,150	!	103,152	;	103,153	103,151	103,154	103,155	;	103,156	;	1	;	103,157	;	;	;	;	;	:	:	:	1
VOLUME NUMBER	-	-	-	-	-	-	-	**	-	-	-	-	-	-	-	-		-	-	-	-	-	-
NASA SERIES NUMBER	\$1002-51801	80008	\$1802	80011-80014	81809	\$1808	80016	80008	\$1206	\$0201	60008	80036	\$1207	\$1807	\$1201	H1201	\$1204	\$1205	\$1203	H0202	31806	\$1208	\$1202
DMS-DRe	1001	1002	1003	1004	1005	1006	1001	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023

Table 2 - Continued Space Shuttle Phase B Wind Tunnel Test Database Listed by Chrysler DATAMAN Report Number

VEHICLE	BOOSTER	BOOSTER	ORBITER	ORBITER	0881TER	BOOSTER	BOOSTER	ORBITER	LAUNCH	ORBITER	BOOSTER	BOOSTER	ORBITER	BOOSTER	LAUNCH	BOOSTER	LAUNCH	BOOSTER	LAUNCH	BOOSTER	LAUNCH	ROOSTER	271 200		LAUNCH
FACILITY TEST NUMBER	LARC 8VDHT 123-136,180-188	GDC 4HSWT 291-0	ARC 665WT 503	MSFC 14TWT 468	ARC 665WT 514	GDC 18HWT 247-0	GDC 812SWT 579-0	ARC 3.5HWT 88	LARC BVDHT 137-146,189-205	LARC 6VDHT 137-146,189-205	LARC BVDHT 137-146,189-205	TAM 710SWT S-XXIV	NRLAD LSWT 632	MAC LSWT 1351	LARC 8VDHT 147-179,206-322	LARC 8VDHT 147-179,206-322	LARC CFHT 53	LARC CFHT 53	LARC 6VDHT 147-179,206-322	LARC 8VDHT 147-179,206-322	ABC CFHT 53		20	NRLAD LSWT 630	ARC 665WT 486
N N N N N N N N N N N N N N N N N N N	;	;	;	;	62,039	1	;	62,065	;	1	;	;	;	ì	F 1	;	;	;	;	;	!	;	;	:	62,069
NASA CR NUMBER	F	103,158	4 1	119,962	;	103,159	119,963	;	ì	;	;	103,164	103,160	103,161	. !	;	;	;		;		; •	!	103,193	;
VOLUME	-	. .		-	-	-	-	-	-	-	-			. •				-			4	cu	8	-	-
NASA Series Number	(H0204	50505	* 020 %	30402-30408	,	20202		n 46	1		H0203	\$0024	2022	*0*00	20401-10401	20 40H - 1040H				H0401-H0404	H0401-H0403	H0401-H0403	50201	S 0 0 6 5
DMS-DR#	1 1	1024	1025	9 6		9 6	620		50	750	1032	1032	1033	460	0.35	980	980	950	9 E O C	1036	1036	1036	1036	1037	1038

Table 2 - Continued Space Shuttle Phase B Wind Tunnel Test Database Listed by Chrysler DATAMAN Report Number

- KO - SMO	MASSA SERIES NUMBER	VOLUME NUMBER	NASA CH CH CH CH	NASA TM-X NUMBER	FACILITY TEST NUMBER	VEHICLE
1038	\$0065	-	;	62.069	ARC 66SWT 486	BOOSTER
1039	80228	-	103,162	1	GDC 8125WT 580-0	BOOSTER
1040	\$0407	-	103,163	;	MAC LSWT 235	ORBITER
1041	80429	-	103,194	;	MAC LSWT 240	ORBITER
1042	80041	-	;	;	ARC 665WT 488	LAUNCH
1043	\$0235	-	103,085	•	MSFC 14TWT 471	ORBITER
1044	\$1044	-	103,195	;	MSFC 14TWT 470	LAUNCH
1045	\$1210	-	;	;	LARC LTPT 50-2	ORBITER
1046	81401	-	;	;	ARC 665WT 522	BOOSTER
1047	\$1209	-	;	;	LARC CFHT 54	LAUNCH
1048	\$1213	-	;	;	LARC 20HT6 6355-6329	ORBITER
1049	\$0208.01	-	!	;	LARC LTPT 52	ORBITER
1050	80206	-	;	62,070	ARC 66SWT 505	LAUNCH
1050	80206	-	;	62.070	ARC 66SWT 505	BOOSTER
1051	\$0217	-	103,196	!	MSFC 14TWT 466	LAUNCH
1051	\$0217	-	103,196	;	MSFC 14TWT 466	BOOSTER
1052	50207	-	103,197	!	GDC 4HSWT 304-0	LAUNCH
1052	\$0207	-	103,197	ļ.	GDC 4HSWT 304-0	BOOSTER
1052	80207	-	103,197	!	GDC 4HSWT 304-0	ORBITER
1053	\$1803	-	103,198	;	GAC 710SWT 279	ORBITER
1054	80410-80411	-	103,199	;	MAC LSWT 239	BOOSTER
1055	\$1006	-	103,200	;	MSFC 14TWT 476	LAUNCH
1056	H0201-H0203	-	!	1	LARC CFHT 51	ORBITER
1056	H0201-H0203	-] 1	1	LARC 8VDHT 1-58	ORBITER

Table 2 - Continued Space Shuttle Phase B Wind Tunnel Test Database Listed by Chrysler DATAMAN Report Number

VEHICLE COMPONENT COMPONENT	S-18/S-35 ORBITER	B LAUNCH	69 ORBITER	-8-1 ORBITER	LAUNCH	-38 ORBITER	4 LAUNCH	S ORBITER	8 LAUNCH	8 LAUNCH	4 BOOSTER	0881168	43 B00STER	12 ORBITER	103-766 BOOSTER	111/113 ORBITER	104 ORBITER	S-39 ORBITER	BORBITER	511 BOOSTER	511 LAUNCH	511 BOOSTER	11 LAUNCH	
FACILITY	TAM 710SWT 8-	LTV HSWT S-28	LARC 22HT 7369	TAM 7105WT S-8	LARC CFHT 54	TAM 7105WT S-38	ARC 665WT 524	LARC LTPT 545	ARC 66SWT 508	ARC 66SWT 508	ARC 665WT 504	MAC LSWT 248	LARC UPWT 9143	LARC UPWT 922	LARC 8VDHT 703-768	ARC 3.5HWT 1	ARC 3.5HWT 104	TAM 710SWT S	MAC LSWT 138	ARC 66SWT 5	ARC 66SWT 5	ARC 66SWT 5	ARC 66SWT 511	
1	;	;	;	;	1	;	62,072	;	;	1	62,037	! }	;	;	;	;	;	;	:	1	;	•	:	
N N N N N N N N N N N N N N N N N N N	119,853	119,854	;	119,855	;	119,856	;	į,	:	;	;	119,857	;	;	;	;	;	119,858	119,859	;	1	:	! !	
VOLUME NUMBER	-	-	-	-	-	•-	-	-	-	8	-	-	-	-	-	-	-	-	-	-	-	7	8	
	8-50035	80028	\$1214	80 OO S	\$1211	8 0 0 S	\$0042	50244	50414	80414	50412	50423	\$1402	\$1212	H0214	50415-50434	80413	80039	80430	50219-50219.01	\$0219-\$0219.01	\$0219-\$0219.01	50219-80219.01	
DMS-DR	1057	8501	650	0 90	1901	1062	1063	1064	1065	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1075	1075	1075	,

Table 2 - Continued Space Shuttle Phase B Wind Tunnel Test Database Listed by Chrysler DATAMAN Report Number

DMS -	NASA SERIES NUMBER	VOLUME NUMBER	NASA CR NUMBER	NASA TM-X NUMBER	FACILITY TEST NUMBER	VEHICLE
1017	50419-50426	-	119.861	;	MAC LSWT 249	BOOSTER
1078	80214-50218		;	62.044	ARC 665WT 503/513	ORBITER
1079	80602	-	119,964	;	UW 8125WT 1021	BOOSTER
1080	S0416	-	į	62,038	ARC 3.5HWT 112	BOOSTER
1081	80603	-	119,862	1	GAC 710SWT 289	ORBITER
1082	50204-50218	-	1	62.045	ARC 665WT 503/513	ORBITER
1083	S0426	-	1	62.042	ARC 665WT 527	ORBITER
1084	\$0224 01	-	1 1	;	LARC CFHT 63	ORBITER
1085	50801	-	1	62.073	ARC 665WT 542	LAUNCH
1086	\$1217	-	ŧ	;	LARC 22HT 7377	ORBITER
1087	50238	-	;	;	LARC LTPT 59	BOOSTER
1088	\$1215	-	:	:	LARC 22HT 7376	ORBITER
1089	\$1401-\$1402	-	:	1	ARC 665WT 522	BOOSTER
1089	\$1401-\$1402	-	:	;	LARC UPWT 9143	BOOSTER
1090	80408	-	119,965	;	MAC LSWT 237	ORBITER
1091	\$1034	-	119,966	;	MSFC 14TWT 485	LAUNCH
1092	\$1019	-	119,967	1	AEDC PWT4T TC135	ORBITER
1093	\$0231	-	:	1	LARC CFHT 64	BOOSTER
1094	80428	-	;	62,108	ARC 3.5HWT 125	ORBITER
1095	50224	-	;	!	LARC 20HT6 6366	ORBITER
1096	50227	-		;	LARC UPWT 951	ORBITER
1097	\$1216		:	;	LARC 8TPT 574	ORBITER
1098	H0209	-	;	;	LARC UPWT 945	LAUNCH
1098	H0209	-	;	1 1	LARC UPWT 945	ORBITER

Table 2 - Continued Space Shuttle Phase B Wind Tunnel Test Database Listed by Chrysler DATAMAN Report Number

DMS - DMS	NASA SERA SERS NOMBER	VOLUME	NASA CR NUMBER	N S A S A S A S A S A S A S A S A S A S	FACILITY TEST NUMBER	VEHICLE
1008	0209	-	;	;	LARC UPWT 945	BOOSTER
1099	80433	-	1	62,059	ARC 665WT 557	LAUNCH
1100	\$0220	-	:	;	LARC LTPT 55	BOOSTER
1101	\$1219	-	:	1	LARC UPWT 944/961	ORBITER
1102	50213	-	119,992	1	MSFC 14TWT 481	BOOSTER
1103	50802	-	1	;	LARC UPWT 955	ORBITER
1104	50212	-	:	62,067	ARC 3.5HWT 109A	ORBITER
1104	\$0212	2	;	62,068	ARC 3.5HWT 109A	ORBITER
1105	80225	-	;	;	LARC 8TPT 573	ORBITER
1106	\$0221	-	:	;	LARC LTPT 57	ORBITER
1107	\$1218	-	:	;	LARC LTPT 58	ORBITER
1108	\$1023	-	119.973	!	AEDC SWTA 1163	BOOSTER
1108	\$1023	-	119,973	;	AEDC SWTA 1163	ORBITER
1108	\$1023	-	119,973	4 #	AEDC SWTA 1163	LAUNCH
1108	\$1023	8	119,972	ļ	AEDC SWTA 1163	BOOSTER
1108	\$1023	~	119,972	;	AEDC SWTA 1163	ORBITER
1108	51023	~	119,972	;	AEDC SWTA 1163	LAUNCH
1108	\$1023	က	119,971	;	AEDC SWTA 1163	BOOSTER
1108	\$1023	6	119.911	!	AEDC SWTA 1163	ORBITER
1108	\$1023	es	119,911	;	AEDC SWTA 1163	LAUNCH
1108	\$1023	4	119.968	1	AEDC SWTA 1163	BOOSTER
1108	\$1023	•	119,968	;	AEDC SWTA 1163	ORBITER
1108	\$1023	-	119,968	!	AEDC SWTA 1163	LAUNCH
1 108	\$1023	w	119,969	;	AEDC SWTA 1163	BOOSTER

Table 2 - Continued
Space Shuttle Phase B Wind Tunnel
Test Database Listed by Chrysler
DATAMAN Report Number

VEHICLE COMPONENT	ORBITER	LAUNCH	BOOSTER	ORBITER	LAUNCH	BOOSTER	ORBITER	LAUNCH	BOOSTER	BOOSTER	BOOSTER	ORBITER	ORBITER	ORBITER	LAUNCH	ORBITER	BOOSTER	BOOSTER	LAUNCH	ORBITER	BOOSTER	LAUNCH	ORBITER	BOOSTER
FACILITY TEST NUMBER	AEDC SWTA 1163	GDC 812SWT 587-0	GDC 812SWT 587-1	ARC 665WT 550	ARC 665WT 547	LARC CFHT 62	MSFC 14TWT 477	LTV HSWT S-30	LTV HSWT S-30	LTV HSWT S-30	ARC 665WT 510	LARC UPWT 963												
N A SA A T A T A T A T A T A T A T A T A	;	;	;	;	i i	1 1	;	!	1	;	62,115	62,060	;	:	!	;	;	62.049	:	;	;	;	;	;
NASA CR NUMBER	119,969	119,969	119,970	119,970	119,970	119,985	119,985	119,985	119.974	119,975	;	;	:	119.976	119,986	119,986	119,986	;	;	;	:	1	:	}
VOLUME NUMBER	v o	ĸr.	ဖ	မ	w	~	7	,	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	7
NASA SERIES NUMBER	\$1023	\$1023	\$1023	\$1023	\$1023	\$1023	\$1023	\$1023	50237	80247	80612	80908	\$1222	81018	00000	80030	80030	80431	80424	80424	80424	80424	80424	80424
OMS-08	1108	108	1108	1108	1108	108	1108	1108	1109	110	=======================================	1112	1113	1.14	1115	1115	1115	1 - 1 6	1117	1117	1117	1117	1117	1117

Table 2 - Continued
Space Shuttle Phase B Wind Tunnel
Test Database Listed by Chrysler
DATAMAN Report Number

:	1 1 1 1 1
;	
:	
:	
:	
119,977	-
819.978	-
62,048	
:	
;	
616,919	-
119,993	_
119,980	-
62,063	
120,079	_
:	
:	
:	
:	
:	
:	
:	
;	
:	

Table 2 - Continued
Space Shuttle Phase B Wind Tunnel
Test Database Listed by Chrysler
DATAMAN Report Number

VEHICLE	0310008	- C		1					ORBITER	BOOSTER	LAUNCH	HONOR	LAUNCH	BOOSTER	BOOSTER	BOOSTER	BOOSTER	BOOSTER	LAUNCH	BOOSTER	ORBITER	HONDA	ORBITER	LAUNCH
FACILITY TEST NUMBER	TWT 490	MSFC 14TWT 490		1.4.TWT	14 TWT	MSFC 14TWT 490		MSFC 14TWT 490	ARC 3.5HWT 106	ARC 3.5HWT 105	ARC 665WT 561	ARC 665WT 561	ARC 668WT 551	LARC 8VDHT 1204-1213	NSRDC 710TWT 3110	NSRDC 710TWT 3110	NSRDC 710TWT 3110	NSRDC 710TWT 3110	MSFC 14TWT 491	ARC 66SWT 563	GAC 710SWT 290	LARC 8VDHT 1075-1107	LARC UPWT 9518	LARC 8VDHT 1237-1297
A A A A A A A A A A A A A A A A A A A	;	1	;	1 4	;	;	;	;	62,078	62.077	62,062	62,062	62,061	;	;	;	l ŧ	;	;	62.118	;	;	;	;
NASA CR NUMBER	119,994	119,994	119,994	119,994	119,994	119,994	119.994	119,994	:	1	;	;	;	;	119.995	119,996	119,997	119,998	119,981	:	119,982	}	;	!
VOLUME		-	٧	rı	e	E	-	-	-	-	-	-	-	-	-	~	m	~	-	-	-	-	•	-
NASA SER-ES NUMBER	S0242-S0242, 10	50242-50242.10	80242-80242,10	S0242-S0242 10	80242-80242,10	\$0242-50242,10	\$0242-50242,10	\$0242-\$0242,10	H0207	H0206	\$1601	\$1601	50611	H0406	\$1009	81009	\$1009	\$1009	81035	80229.01	80610	H0801	50245	Н0213
DMS-DR	1130	1130	1130	1130	1130	1130	1130	1130	1131	1134	1136	1136	1137	1138	1139	1139	1139	1139	1140		1142	1143	1144	1145

Table 2 - Continued
Space Shuttle Phase B wind Tunnel
Test Database Listed by Chrysler
DATAMAN Report Number

VEHICLE COMPONENT COMPONENT	LARC 8VDHT 1237-1297 BOOSTER	LARC CFHT 66 ORBITER	LARC V/STOL 007 ORBITER	C 14TWT 492 LAUNCH	C 14TWT 492 BOOSTER	101			LARC CFMT 68/71	MSFC 14TWT 493 BOOSTER	MSFC 14TWT 494 ORBITER	GAC 36HWT 017 ORBITER	MSFC 14TWT 495 BOOSTER	LARC CFHT 70 BOOSTER	LARC LTPT 63 ORBITER	GAC 36HWT 020 BOOSTER	GAC 36HWT 019 ORBITER	BOOSTER BOOSTER			13-0000 10-13-14-1 0L03-1-14-1 0L03-1-14-1-14-1-14-1-14-1-14-1-14-1-14-1-	MSFC 14TWT 497 ORBITER	MSFC 14TWT 497	GAC 15SWT 022 ORBITER	BOOSTER 3210		
NASA TM-X NUMBER	LARC	LARC	LARC	MSFC				LAR	LAR	HSH.	MSF	GAC	MSF	LAR		GAC	240		E	CA(MSI	SW	W	4 9		1	•
A & & & & & & & & & & & & & & & & & & &	1 1	!	;	6	7 0 7 7	19,983	1	•	:	119,999	120,000	119,984	119,987	;	;			9 6 6 6	120,003	119.989	120.004	120.004	120.004) n -	120,005	
VOLUME NUMBER	-	. •	- -		-	-	-	-	-	•	-	-	-	•		- •	<u>-</u>	-	-	-	-	-	-	• ,	-	-	
NASA SERIES NUMBER		8-204	_	\$1223	30616	50616	\$1224	80230	51221	50223	\$1026	10901			S0226	\$1225	S0605	80604	20617	50607	50249	07 60	n (S0249	80908	\$1010	
OMS-DMG	1 1 1	5	1 4 6	1147	1148	1148	1149	1150	1151	1152	1153	79.	, u	66-	1156	1157	1158	1159	1160	1.6.1	1162		7 4 1	1162	1163	1164	

Table 2 - Continued
Space Shuttle Phase B Wind Tunnel
Test Database Listed by Chrysler
DATAMAN Report Number

OMS-0R	NASA SERIES NUMBER	VOLUME NUMBER	NASA CR NUMBER	N TAN-X	FACILITY TEST NUMBER	VEHICLE COMPONENT
1166	\$1040	-	119,991	:	MSFC 14TWT 501	LAUNCH
1167	50615	-	120,006	1	GAC 710SWT 292	ORBITER
168	\$1228	•	;	ł	LARC LTPT 65	OR811ER
1169	80803	-	!	}	LARC LTPT 69	ORBITER
1170	H0404	-	120,001	!	CAL 96HST H/T MDAC	LAUNCH
1170	H0404	-	120,007	1	CAL 96HST H/T MDAC	ORBITER
1170	H0404	-	120,007	;	CAL 96HST H/T MDAC	BOOSTER
1171	50437	-	;	;	LARC STPT 595	ORBITER
1171	50437	-	;	;	LARC 44SPT 438	ORBITER
1172	\$1229	-	;	!	LARC LTPT 71	ORBITER
1173	\$1227	-	;	;	LARC UPWT 942	ORBITER
1174	P 1002	-	120,008	!	AEDC SWTA 1163	LAUNCH
1174	P 1002	7	120,061	;	AEDC SWTA 1163	LAUNCH
1174	P 1002	ю	120,062	-	AEDC SWTA 1163	LAUNCH
1174	P 1002	~	120,063	1	AEDC SWTA 1163	LAUNCH
1174	P 1002	w	120.064	;	AEDC SWTA 1163	LAUNCH
1174	P 1002	v	120,065	;	AEDC SWTA 1163	LAUNCH
1175	\$1226	-	1	;	LARC 44SPT 432	ORBITER
1176	\$1237	-	:	;	LARC 22HT 7386-7390	ORBITER
1177	H1009	-	120,009	;	AEDC HWTB 1182-1	BOOSTER
1177	H1009	-	120,009	;	AEDC HWTB 1162-1	ORB I TER
1177	H1009	-	120,009	;	AEDC HWTB 1162-1	LAUNCH
1117	H1029	7	119,987	;	AEDC HWTB 1162-2	BOOSTER
1117	H1029	7	119,987	;	AEDC HWTB 1162-2	ORBITER

Table 2 - Continued Space Shuttle Phase B Wind Tunnel Test Database Listed by Chrysler DATAMAN Report Number

8 KO - 8 KO	N N N N N N N N N N N N N N N N N N N	VOLUME	N A SA A	NASA TM-X NUMBER	FACILITY TEST NUMBER	VEHICLE
1117	1029	~	119.987	;	AEDC HWTB 1162-2	LAUNCH
1117	H1022	ю	120.029	;	AEDC HWTB 1162-3	BOOSTER
1117	H1022	е	120,029	;	AEDC HWTB 1162-3	ORBITER
1177	H1022	6	120.029	1	AEDC HWTB 1162-3	LAUNCH
1178	H0603	-	ţ †	;	LARC CFHT 69	LAUNCH
1178	H0603	-	:	1	LARC CFHT 69	OR81 TER
1179	H0206	-	1	62,058	ARC 3.5HWT 105	BOOSTER
1180	H0207	-	:	62.057	ARC 3.5HWT 106	ORB! TER
1.81	\$1042	-	120.010	!	MSFC 14TWT 504	LAUNCH
1182	\$1044	-	120.011	;	MSFC 14TWT 505	LAUNCH
1182	\$1044	-	120,011	;	MSFC 14TWT 505	ORBITER
1183	80618	-	120,012	;	MSFC 14TWT 506	LAUNCH
1183	80618	-	120,012	;	MSFC 141WT 506	BOOSTER
1.84	\$1236	-	120.013	;	MSFC 14TWT 507	OABITER
1185	80080	-	120,014	:	MSFC 14TWT 509	LAUNCH
1185	80080	-	120.014	1	MSFC 14TWT 509	ORBITER
- - - - -	80065	-	120,015	1	MSFC 14TWT 510	ORBITER
1187	81043	-	120,016	1	MSFC 14TWT 502	LAUNCH
1187	81043	-	120.016	;	MSFC 14TWT 502	ORBITER
1 1 8 6	\$1041	-	120,017	:	MSFC 14TWT 503	LAUNCH
1.89	\$1230	-	:	;	LARC LTPT 75	ORBITER
1190	\$1238	-	1	1	LARC 22HT 7377-79,7380-90	LAUNCH
1190	\$1238	-	1	;	LARC 22HT 7377-79,7380-90	BOOSTER
1190	\$1238	-	;	1	LARC 22HT 7377-79,7380-90	ORBITER

Table 2 - Continued
Space Shuttle Phase B Wind Tunnel
Test Database Listed by Chrysler
DATAMAN Report Number

VEHICLE	BOOSTER	BOOSTER	BOOSTER	ORBITER	ORBITER	ORBITER	LAUNCH	BOOSTER	LAUNCH	BOOSTER	ORBITER	LAUNCH	BOOSTER	ORBITER	ORBITER	ORBITER	LAUNCH	BOOSTER	ORBITER	ORBITER	BOOSTER	ORBITER	BOOSTER	ORBITER
FACILITY TEST NUMBER	TBC BTWT 1265	NSROC 710TWT 3310	LARC LTPT 73	LARC CFHT 76	LARC BTPT 604	LARC UPWT 964	LARC UPWT 962	LARC UPWT 962	LARC CFHT 74	LARC CFHT 74	LARC 448PT 430	LARC STPT 605	LARC 8TPT 605	MSFC 14TWT 498	ARC 665WT 605	LARC 20HT6 6392	MSFC 14TWT 512	MSFC 14TWT 512	TAM 7105WT S-8-2	AEDC SWTA 1162-F00	AEDC HWTB 1162-4	AEDC HWTB 1162-4	AEDC HWTB 1162-12	AEDC HWTB 1162-12
N T W W W W W W W W W W W W W W W W W W	;	;	i	i i	;	•	;	1	;	;	;	i i	;	;	62,112	:	;	!	i i	;	!	1	1	1
NASA CR LUMBER	120,018	120,019	;	;	:	156,979	;	1	;	:	1	!	4	120.020	;	;	120.021	120,022	120,023	120.024	120,025	120,025	120,043	120.043
VOLUME NUMBER	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7	8
NASA SERIES NUMBER	80619	\$1036	\$1239	\$1231	\$1232	\$1233	\$1240	\$1240	\$1242	\$1242	\$1241	\$1243	\$1243	\$1026.10	80054	\$1234	80250	80250	80008	H1008	H1009	H1009	H1014	H1014
0 N N 1	1191	1192	1 1 9 3	7611	1195	1196	1197	1197	1198	1198	1189	1200	1200	1201	1202	1203	1204	1204	1205	1206	1207	1207	1207	1207

NASA Series Number	VOL UME NUMBER			FACILITY TEST NUMBER	VEHICLE COMPONENT
			1		BOOSTER
	-	970.021		ELS THEFT	BOOSTER
	-	120.027	:		BOOSTER
	-	120,028	1	**************************************	AUNCH
	-	120,028	i i	MSFC 14TWT 514	ORBITER
	-	;	!	LARC 22HT 7397	
	-	120.030	;	CAL 81WT 18-063	
	-	120,031	;	MSFC 14TWT 517	LAUNCH
	<u>.</u>		;	MSFC 14TWT 517	BOOSTER
	-		;	1 ARC 20HT6 6397	BOOSTER
	-	:	! !		ORBITER
	-	;	1		ORBITER
	-	:	!	LARC OPWI servers	ORBITER
	-	1	:	1 1 1 1	ORBITER
	-	1	:		BOOSTER
	-	;	1		ORBITER
	-	120,033	:	JPL ZOSWI GG!	BOOSTER
	-	120,034	1	AEDC PWT4T TC174-PC1154	200
	-	120,034	;	AEDC PWT4T TC174-PC1154	LAUNCH
	٠ ,	460	,	AEDC PWT4T TC174-PC1154	BOOSTER
	~	, , , ,		AEDC PWT4T TC174-PC1154	LAUNCH
	7	120.034	t ŧ	O TANCE CO	BOOSTER
	-	120,035	1		ORBITER
1030	-	120,036	;	2	BALTER
	74	120,045	;	AEDC HWTB 1162-5	
	-	120.037	;	AEDC HWTB 1162-5	0000
		120.037	:	AEDC HWTB 1162-5	ORBITER
	•				

Table 2 - Continued
Space Shuttle Phase B Wind Tunnel
Test Database Listed by Chrysler
DATAMAN Report Number

VEHICLE	BOOSTER	ORBITER	BOOSTER	ORBITER	BOOSTER	LAUNCH	BOOSTER	BOOSTER	BOOSTER	ORBITER	BOOSTER	ORBITER	LAUNCH	BOOSTER	ORBITER	LAUNCH	BOOSTER	ORBITER	LAUNCH	BOOSTER	OABITER	LAUNCH	BOOSTER	ORBITER
FACILITY TEST NUMBER	AEDC HWTB 1162-7	AEDC HWTB 1162-7	AEDC HWTB 1162-8	AEDC HWTB 1162-8	MSFC 14TWT 521	MSFC 14TWT 523	MSFC 14TWT 523	TBC BTWT 1273	TBC 845WT 553	LARC LTPT 72	MDAC 4TWT S-222	MDAC 41WT S-222	MDAC 4TWT S-222	MDAC 4TWT S-222	MDAC 41WT S-222	MDAC 4TWT S-222	MDAC 41WT S-222	MDAC 4TWT S-222	MDAC 4TWT S-222					
NASA TM-X NUMBER	:	1	1	1	!	1	;	i	!	;	;	;	;	;	;	;	;	;	;	;	:	1	1	;
NASA CR NUMBER	120.046	120.046	120.047	120.047	120,038	120,039	120,039	120,069	120,069	:	120,083	120,083	120.083	120,084	120.084	120.084	120,085	120,085	120,085	120,086	120,086	120,086	120,087	120,087
VOLUME	~	8	т	e	-	-	-	-	-	-	-	-	-	~	8	7	ю	m	м	-	-	•	S	w
NASA SER-ES NUMBER	P1007	P 1007	P1008	P 1008	\$1047	80625	50625	80622-50623	80622-50623	\$1245	80441	80441	80441	80441	50441	50441	50441	50441	30441	50441	50441	\$0441	S0441	80441
DMS-DRO	1225	1225	1225	1225	1226	1227	1227	1228	1228	1229	1230	1230	1230	1230	1230	1230	1230	1230	1230	1230	1230	1230	1230	1230

Table 2 - Continued Space Shuttle Phase B Wind Tunnel Test Database Listed by Chrysler DATAMAN Report Number

120.087	0 M S - 0 P P	NASA SERIES NUMBER	VOLUME NUMBER	NASA CR NUMBER	ZASA TENTE	FACILITY TEST NUMBER	VEHICLE
120.048		S0441	so.	120,087	•		LAUNCH
Colored Colo		H1028	-	120,048	:	1162-	ORBITER
S1246 1		51246	-	;	!	UPWT	ORBITER
1		\$1246	-	;	!	LTPT	OABITER
H0605 H0605 H0605 1		\$1247	-	;	;	LTPT	ORBITER
Hobos Hobo		H0605	-	;	;	LARC 8VDHT 1948-2000	LAUNCH
S1249		H0605	-	;	;	LARC 8VDHT 1948-2000	ORBITER
S1246		S1249	-	1	;	LARC UPWT 970	ORBITER
\$1248 \$1248 \$1248 \$1248 1		H0216	-	;	1	LARC 6HRNT 489	BOOSTER
\$1248 1 LARC UPWT 966 \$1248 1 LARC UPWT 966 \$1250 1 LARC LTPT 86/86 \$1250 1 120,040 MSFC 14TWT 524 \$1048 1 120,041 MSFC 14TWT 526 \$1048 1 120,042 MSFC 14TWT 526 \$1057 1 120,050 MSFC 14TWT 528 \$1054 1 120,050 MSFC 14TWT 529 \$1054 1 120,053 MSFC 14TWT 529 \$1056 1 120,053 MSFC 14TWT 529 \$1056 1 120,053 MSFC 14TWT 528 \$1058 1 120,053 MSFC 14TWT 528 \$1058 1 120,055 MSFC 14TWT 538 \$1058 1 120,055 MSFC 14TWT 538		\$1248	-	;	:	UPWT	LAUNCH
\$1248 1 LARC LPWT 966 \$1250 1 LARC LPTF 66/86 \$1048 1 120,040 MSFC 14TWT 524 \$1046 1 120,041 MSFC 14TWT 526 \$1046 1 120,042 MSFC 14TWT 526 \$1057 1 120,050 LARC 20HT6 1-20 \$1052 1 120,050 MSFC 14TWT 528 \$1054 1 120,053 MSFC 14TWT 528 \$1054 1 120,053 MSFC 14TWT 528 \$1056 1 120,053 MSFC 14TWT 528 \$1058 1 120,053 MSFC 14TWT 538 \$1058 1 120,055 MSFC 14TWT 538		S1248	-	;	;	UPWI	BOOSTER
H1032 1		\$1248	-	;	;	LARC UPWT 966	0881168
\$1250 \$1049 \$1049 \$1046 \$1046 \$107040		H1032	-	;	:	LARC 20HT6 6386-6387	LAUNCH
\$1048 1 120,040 MSFC 14TWT 524 \$1048 1 120,041 MSFC 14TWT 526 \$1048 1 120,050 MSFC 14TWT 528 \$1057 1 120,050 LARC 20HTG 1-20 \$1052 1 120,051 MSFC 14TWT 529 \$1054 1 120,053 MSFC 14TWT 534 \$1058 1 120,053 MSFC 14TWT 538 \$1058 1 120,055 MSFC 14TWT 538		\$1250	-	;	!	LARC LTPT 86/88	ORBITER
\$1048 1 120,041 MSFC 14TWT 531 \$1048 1 120,042 MSFC 14TWT 526 \$0067 1 120,050 LARC 20HT6 1-20 \$1052 1 120,051 MSFC 14TWT 529 \$1054 1 120,051 MSFC 14TWT 534 \$1056 1 120,053 MSFC 14TWT 538 \$1058 1 120,055 MSFC 14TWT 538 \$1058 1 120,055 MSFC 14TWT 538		\$1049		120,040	!		BOOSTER
\$1048 1 120,042 MSFC 14TWT 526 \$0067 1 120,050 LARC 20HT6 1-20 \$1052 1 120,051 MSFC 14TWT 529 \$1054 1 120,053 MSFC 14TWT 534 \$0066 1 62,120 ARC 11TWT 628 \$1058 1 120,055 MSFC 14TWT 538 #1601 1 120,055 MSFC 14TWT 538		80076	-	120,041	i		LAUNCH
\$0067 1 120,050 MSFC 14TWT 528 \$1052 1 120,051 MSFC 14TWT 529 \$1054 1 120,053 MSFC 14TWT 534 \$0066 1 62,120 ARC 11TWT 628 \$1058 1 120,055 MSFC 14TWT 538 \$1058 1 120,055 MSFC 14TWT 538		\$1048	-	120.042	;		BOOSTER
\$1052 1 120,051 MSFC 14TWT 529 \$1054 1 120,053 MSFC 14TWT 534 \$0066 1 62,120 ARC 11TWT 628 \$1058 1 120,055 MSFC 14TWT 538 \$1058 1 120,055 MSFC 14TWT 538		80067	-	120,050	;		ORBITER
\$1052 1 120,051 MSFC 14TWT 529 \$1054 1 120,053 MSFC 14TWT 534 \$0066 1 62,120 ARC 11TWT 628 \$1058 1 120,055 MSFC 14TWT 538 H1601 1 62,114 ARC 3.5HWT 131		H0217	-	:	;	20HT6	BOOSTER
S1054 1 120,053 MSFC 14TWT 534 S0066 1 62,120 ARC 11TWT 628 S1058 1 120,055 MSFC 14TWT 538 H1601 1 62,114 ARC 3.5HWT 131		\$1052	-	120,051	;		BOOSTER
S1058 1 120,055 62,120 ARC 11TWT 628 S1058 1 120,055 MSFC 14TWT 538 H1601 1 62,114 ARC 3.5HWT 131		\$1054	-	120,053	1	MSFC 14TWT 534	LAUNCH
S1058 1 120,055 MSFC 14TWT 538 H1601 1 62,114 ARC 3.5HWT 131		80066	-	;	62,120		ORBITER
H1601 1 62,114 ARC 3,5HWT 131		81058	-	120,055	1		LAUNCH
		1601	-	;	62,114	ARC 3.5HWT 131	ORBITER

Table 2 - Continued
Space Shuttle Phase B Wind Tunnel
Test Database Listed by Chrysler
DATAMAN Report Number

VEHICLE		BOOSIER	ORBITER	LAUNCH	LAUNCH	ORBITER	LAUNCH	OBBITE				8000 E	BOOSIER	ORBITER	LAUNCH	BOOSTER	ORBITER	LAUNCH	LAUNCH	BOOSTED			LAURCH	BOOSTER	ORBITER	LAUNCH	LAUNCH
	SFC 147WT 541			MUTC -41W 543	MSFC 14TWT 544	LARC UPWT 979	MSFC 14TWT 540	MSFC 14TWT 540	LARC CFHT 78	LARC 8VDHT 2505-2565	LARC 8VDHT 2505-2565	HWTB		-70 - 70	8 8 8	AEDC HWTB 1162-9	AEDC HWTB 1162-9	AEDC HWT8 1162-9	LARC UPWT 967	AEDC HWTB 1162	AEDC HWTB 1162	AEDC HWIR 1162		AEUC HW18 1162	AEDC HWTB 1162	AEDC HWTB 1162	LARC UPWT 981
NASA TA-X NUMBER	;	;	;		•	;	;	;	:	;	!!	;	;	;	1	;	;	!	;	;	;	\$ •	1	}	;	;	;
NASA CR NUMBER	120,056	120.057	120.058		650.021	;	120,066	120.066	;	;	;	120,067	120.067	120.067	130 061	190.03	120,067	120,067	:	120,049	120,049	120.049	120.071		120,071	120,071	;
VOLUME NUMBER	-	-	-	•	-	-	-	-	-	-	-	-	-	-	c	ŧ	N	~	-	-		-	R	•	8	7	_
NASA SER-ES NUMBER	\$1059	\$1060	P 1009	\$1055		67-9	P 10 10	P1010	H1033	H0606	9090H	н1011	H1011	H1011	H1011		H1011	H1011	H1034	H1010	н1010	H1010	H1015-H1028	4 C C C I	070	H1015-H1028	81254
DMS-DR	1253	1254	1255	1256	1258		1259	1259	1260	1261	1261	1262	1262	1262	1262		1262	1262	1263	1264	1264	1264	1264	1264		¥07	1265

3

Table 2 - Concluded Space Shuttle Phase B Wind Tunnel Test Database Listed by Chrysler DATAMAN Report Number

- S Z 0	NASA Series Number	VOLUME	NASA CR NUMBER	NASA TM-SA NUMBER	FACILITY TEST NUMBER	VEHICLE COMPONENT
t 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		100 070	1	AEDC HWTB 0288	ORBITER
1266	9- 00- 00-	- •		;	ARC 111WT 629	LAUNCH
1267	80019-80080	-	i I		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LAUNCH
1267	20079-80080	-	;	1 1		ORBITER
1268	\$1252	-	1	1	LARC LIP: 103	
1270	\$1253	-	1	!	LARC 22HT 405	OHBITEH
1270	\$1253	8	:	;	LARC 22HT 405	088 I TER
1979	\$1055.1	_	120.074	i	MSFC 14TWT 544X	LAUNCH
1273	1101	-	120,075	;	MSFC 14TWT 550	LAUNCH
	2 90 10	-	120,076	;	MSFC 14TWT 551	OR81 TER
376	30630	-	120.073	;	TBC BTWT 1282	BOOSTER
27.6	80629-80630	-	120,073	!	TBC 845WT 557	BOOSTER
2 4 61	80629-80630	-	120.078	;	TBC BTWT 1282	BOOSTER
1276	50629-50630	-	120.078	;	TBC 845WT 557	BOOSTER
1277	51256	-	:	:	LARC CFHT 85	OR8 I TER
1278	H1035	-	;	1	LARC 8VDHT 2886-2929	LAUNCH

Table 3.1.3 Space Shuttle Phase B Wind Tunnel Test Database Chrysler DATAMAN Report Titles

REPORT TITLE	AERODYNAMIC CHARACTERISTICS OF THE MSC/MDAC SPACE SHUTTLE LAUNCH Configuration - orbiter/Booster interference effects (M = 0 6 TO 2.0)	STATIC AERODYNAMIC CHARACTERISTICS OF THE MSC-PROPOSED LAUNCH VEHICLE	S-IC BOOSTER/GRUMMAN C4 ORBITER DETERMINATION OF DOWNWASH ON 900 SQ. FT., 30 Degree oriented S-IC Fins and Optimum orbiter body and Aerodynamic Surface Incidence angles	LONGITUDINAL CHARACTERISTICS OF THE NASA-MSC ORBITER IN CLOSE PROXIMITY TO BOOSTER	AERODYNAMIC CHARACTERISTICS OF THE NAR/GD SPACE SHUTTLE LAUNCH CONFIGURATION ORBITER/BOOSTER INTERFERENCE EFFECTS (M = 0.6 TO 2.0)	STATIC STABILITY AND CONTROL INVESTIGATION OF THE NAR-GD/C STRAIGHT WING BOOSTER (B-8H MODIFIED) WITH THE STRAIGHT WING ORBITER (1348)	AERODYNAMIC FORCES AND MOMENT ON ORBITER AND BOOSTER DURING SPACE SHUTTLE Abort Separation	DETERMINATION OF STATIC LONGITUDINAL AND LATERAL DIRECTIONAL STABILITY CHARACTERISTICS OF THE NR/GD DELTA WING ORBITER/SATURN V S-IC BOOSTER	EFFECTS OF ORBITER/BOOSTER PROXIMITY INTERFERENCE ON THE AERODYNAMIC CHARACTERISTICS OF THE 0.0088105-SCALE MSC LAUNCH CONFIGURATION, MSC TEST SERIES S-XXVIII	LONGITUDINAL CHARACTERISTICS OF THE MDAC CLIPPED-DELTA BOOSTER (PHASE A) IN CLOSE PROXIMITY TO ORBITER	DETERMINATION OF DRAG, STABILITY AND CONTROL CHARACTERISTICS FOR THE MSC LAUNCH CONFIGURATION (STRAIGHT WING)	AERODYNAMIC CHARACTERISTICS OF THE MDAC SPACE SHUTTLE BOOSTERS AND ORBITERS IN LAUNCH CONFIGURATIONS (M = 0.6 TO 2.0)	AERODYNAMIC CHARACTERISTICS OF THE MDAC SPACE SHUTTLE BOOSTERS AND ORBITERS IN LAUNCH CONFIGURATIONS (M = 0.6 TO 2.0)	AERODYNAMIC CHARACTERISTICS OF SPACE SHUTTLE CONFIGURATIONS CONSISTING OF A STRAIGHT WING BOOSTER WITH VEE TAIL AND ORBITERS WITH STRAIGHT AND DELTA WINGS ISOLATED BOOSTER
VOLUME	-		-	-	-	-	-	-	~	-	-	<u>س</u> م	2	-
ORBITER CONFIG. 1.D.	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	DELTA WING	STRAIGHT WING	STRAIGHT WING	DELTA WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	DELTA WING	DELTA WING	STRA GHT WING
BOOSTER CONFIG + D	STRAIGHT WING	STRAIGHT WING	UNIQUE CONFIGS.	DELTA WING	STRAIGHT WING	STRAIGHT WING	DELTA WING	UNIOUE CONFIGS.	STRAIGHT WING	DELTA WING	STRAIGHT WING	CANARD	CANARD	STRAIGHT WING
0 M S + O + O + O + O + O + O + O + O + O +	1038	1042	4 4 0 0	1047	1050	1051	1052	1055	5 0 5 8	1061	1063	1065	1065	1075

Table 3.1.3 - Continued Space Shuttle Phase B Wind Tunnel Test Database Chrysler DATAMAN Report Titles

DMS-DR*	BOOSTER CONFIG I D	ORBITER CONFIG. D.	VOLUME NUMBER	REPORT TITLE
1085	UNIQUE CONFIGS	DELTA BODY	-	STATIC AERODYNAMIC CHARACTERISTICS OF THE LMSC STAGE-AND-ONE-HALF SPACE SHUTTLE CONFIGURATION (M = .60 TO 2.0)
1601	UNIQUE CONFIGS	DELTA WING	-	STUDY TO DEVELOP A SOLUTION FOR CONFIGURATION INSTABILITY FOR THE 0.003366 SCALE S-IC/NR HCR ORBITER
1099	CANARD	UNIQUE CONFIGS.	-	AERODYNAMIC CHARACTERISTICS AND INTERFERENCE EFFECTS ON THE MDAC COMPLETE ASCENT CONFIGURATION, UPPER STAGE/PAYLOADS, AND BOOSTER
1108	CANARD	DELTA WING	-	INVESTIGATION OF THE MCDONNELL-DOUGLAS ORBITER AND BOOSTER SHUTTLE MODELS IN PROXIMITY DATA PROXIMITY DATA
1108	CANARD	DELTA WING	74	INVESTIGATION OF THE MCDONNELL-DOUGLAS ORBITER AND BOOSTER SHUTTLE MODELS IN PROXIMITY DATA
1108	CANARD	DELTA WING	က	INVESTIGATION OF THE MCDONNELL-DOUGLAS ORBITER AND BOOSTER SHUTTLE MODELS IN PROXIMITY DATA
1108	CANARD	DELTA WING	•	INVESTIGATION OF THE MCDONNELL-DOUGLAS ORBITER AND BOOSTER SHUTTLE MODELS IN PROXIMITY DATA
1108	CANARO	DELTA WING	ĸń	INVESTIGATION OF THE MCDONNELL-DOUGLAS ORBITER AND BOOSTER SHUTTLE MODELS IN PROXIMITY DATA
90-	CANARD	DELTA WING	₩	INVESTIGATION OF THE MCDONNELL-DOUGLAS ORBITER AND BOOSTER SHUTTLE MODELS IN PROXIMITY DATA
1108	CANARD	DELTA WING	•	INVESTIGATION OF THE MCDONNELL-DOUGLAS ORBITER AND BOOSTER SHUTTLE MODELS IN PROXIMITY AT MACH 4 AND 6. INTERFERENCE FREE AND LAUNCH VEHICLE DATA
1115	STRAIGHT WING	STRAIGHT WING	-	EFFECT OF ORBITER/BOOSTER PROXIMITY INTERFERENCES ON THE AERODYNAMIC CHARACTERISTICS OF THE LAUNCH CONFIGURATION DURING SEPARATION OR ABORT MANEUVERS M = 0.6 - 1.38
1117	CANARD	DELTA WING	-	SUPERSONIC AERODYNAMIC CHARACTERISTICS OF THE MDAC/MMC SBC BOOSTER. DELTA Wing orbiter, and ascent configurations
1117	CANARD	DELTA WING	~	SUPERSONIC AERODYNAMIC CHARACTERISTICS OF THE MDAC/MMC SBC BOOSTER, DELTA Wing orbiter, and ascent configurations

Table 3.1.3 - Continued Space Shuttle Phase B Wind Tunnel Test Database Chrysler DATAMAN Report Titles

AEPORT JITLE	SUPERSONIC AERODYNAMIC CHARACTERISTICS OF THE MDAC/MMC SBC BOOSTER, DELTA WING ORBITER, AND ASCENT CONFIGURATIONS	AERODYNAMIC CHARACTERISTICS OF A SPACE SHUTTLE LAUNCH CONFIGURATION CONSISTING OF A DELTA-WING ORBITER AND A BOOSTER WITH CANARD, AFT SWEPT WING, AND TIP FINS (M = 0 & TO 2.0)	AERODYNAMIC CHARACTERISTICS OF A SPACE SHUTTLE LAUNCH CONFIGURATION CONSISTING OF A DELTA-WING ORBITER AND A BOOSTER WITH CANARD, AFT SWEPT WING, AND TIP FINS (M = 0 6 TO 2.0)	STATIC AERODYNAMIC AND CONTROL INVESTIGATION OF AN EXPENDABLE SECOND STAGE WITH PAYLOAD AND WITH DELTA WING BOOSTER (B-158-1)	AERODYNAMIC CHARACTERISTICS OF A DELTA-WING ORBITER AND STRAIGHT-WING BOOSTER SPACE SHUTTLE LAUNCH VEHICLE FOR MACH NUMBERS FROM 0.25 TO 2.0	AERODYNAMIC CHARACTERISTICS OF A SPACE SHUTTLE LAUNCH CONFIGURATION CONSISTING OF A DELTA WING ORBITER AND A DELTA WING BOOSTER (M = 0.6 TO 2.0)	STATIC STABILITY AND CONTROL INVESTIGATION OF NR/GD DELTA WING BOOSTER (B-20) AND DELTA WING ORBITER (134D) DELTA WING BOOSTER	STATIC STABILITY AND CONTROL INVESTIGATION OF NR/GD DELTA WING BOOSTER (B-20) AND DELTA WING ORBITER (134D) LAUNCH CONFIGURATION PIGGYBACK BASELINE	STATIC STABILITY AND CONTROL INVESTIGATION OF NR/GD DELTA WING BOOSTER (B-20) AND DELTA WING ORBITER (134D) LAUNCH CONFIGURATIONS PIGGYBACK, BELLY TO BELLY AND INCIDENCE VARIATIONS	STATIC STABILITY AND CONTROL INVESTIGATION OF NR/GD DELTA WING BOOSTER (B-20) AND DELTA WING ORBITER (134D) LAUNCH CONFIGURATIONS COMPONENT DATA BOOSTER, ORBITER BUILD-UP	FORCES, MOMENTS AND PRESSURES ON VARIOUS EXTERNAL LIQUID HYDROGEN TANKS MOUNTED ON A BOOSTER/ORBITER MATED LAUNCH CONFIGURATION	AERODYNAMIC CHARACTERISTICS OF A SPACE SHUTTLE LAUNCH CONFIGURATION CONSISTING OF A DELTA WING ORBITER WITH EXTERNAL HYDROGEN TANKS AND A STRAIGHT WING BOOSTER (M = 0.6 TO 2.0)	EFFECT OF ORBITER INCIDENCE ANGLE ON THE AERODYNAMIC CHARACTERISTICS OF THE BOEING S-IC BOOSTER/GAC G-11 ORBITER LAUNCH CONFIGURATION (M = 0.6 - 4.96)
VOLUME NUMBER	e	-	~	-	-	-	-	۲	m	•	-	-	-
ORBITER CONFIG. 4.0	DELTA WING	DELTA WING	DELTA WING	UNIQUE CONFIGS	UNIQUE CONFIGS	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	UNIQUE CONFIGS.	UNIQUE CONFIGS.	UNIQUE CONFIGS.
BOOSTER CONF1G, 1.D.	CANARO	CANARO	CANARD	DELTA WING	STRAIGHT WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	STRAIGHT WING	STRAIGHT WING	UNIQUE CONFIGS.
DMS-084	2111		0	1119	1122	1127	1130	1130	1130	1130	1136	1137	1140

Table 3.1.3 - Continued Space Shuttle Phase B Wind Tunnel Test Database Chrysler DATAMAN Report Titles

REPORT TITLE	AERODYNAMIC STABILITY AND CONTROL CHARACTERISTICS OF A TBC SPACE SHUTTLE BOOSTER AND GAC ORBITER M = 0 6 - 4.96	A STATIC STABILITY AND CONTROL INVESTIGATION OF THE NR-GD/C DELTA WING BOOSTER (B-15B-1) AND A REUSABLE NUCLEAR STAGE (RNS) M = 0.6 - 4.96	DETERMINATION OF THE STATIC STABILITY CHARACTERISTICS OF THE 0.00285-SCALE MDAC PARALLEL BURN LAUNCH CONFIGURATION	AERODYNAMIC CHARACTERISTICS OF THE GRUMMAN H-33 ORBITER MATED TO A THREE SEGMENT SOLID PROPELLANT BOOSTER	AERODYNAMIC CHARACTERISTICS OF SEVERAL LAUNCH CONFIGURATIONS UTILIZING THE TITAN III L BOOSTER AND MMC DTO-7 ORBITER	AERODYNAMIC STABILITY AND CONTROL CHARACTERISTICS OF A 0.0036-SCALE BOEING RS-1C/MSC-040A ORBITER AT MACH NUMBERS 0.6 TO 5.0	AERODYNAMIC CHARACTERISTICS OF THE NORTH AMERICAN ROCKWELL SPACE SHUTTLE DELTA-WING ORBITER (110C) ALONE AND WITH BELLY-MOUNTED EXTERNAL OXYGEN/HYDROGEN TANKS (M = 0.6 TO 5.0)	STATIC AERODYNAMIC CHARACTERISTICS OF THE S-IC BOOSTER/GAC H-33 ORBITER Launch Vehicle configuration	AERODYNAMIC CHARACTERISTICS OF THE TITAN T 111 L (1207-4)/GAC H-33 LAUNCH Configuration	HYPERSONIC STATIC LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF PHASE B ASCENT CONFIGURATIONS	SUPERSONIC AERODYNAMIC CHARACTERISTICS OF A LOW FINENESS RATIO BOOSTER WITH DELTA WING ORBITER LAUNCH CONFIGURATION (M = 1.5 TO 2.16)	AERODYNAMIC CHARACTERISTICS OF A LOW-FINENESS-RATIO BOOSTER AND ASCENT CONFIGURATION AT HYPERSONIC SPEED M = 10.23	TRANSONIC AERODYNAMIC CHARACTERISTICS OF A LOW FINENESS RATIO BOOSTER AND DELTA WING ORBITER LAUNCH CONFIGURATION (M = 0.4 TO 1.2)	DETERMINATION OF LONGITUDINAL AND LATERAL-DIRECTIONAL AERODYNAMIC Characteristics of the B19B pressure-fed Booster and the B19B Booster/040A Orbiter Launch Configuration
VOLUME	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ORBITER CONFIG 1.D	DELTA WING	UNIQUE CONFIGS	UNIQUE CONFIGS	UNIQUE CONFIGS	UNIQUE CONFIGS	DELTA WING	DELTA WING	UNIOUE CONFIGS.	UNIQUE CONFIGS	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING
00000000000000000000000000000000000000	CANARO	DELTA WING	CANARD	CYLINDRICAL	UNIQUE CONFIGS.	DELTA WING	CYLINDRICAL	UNIQUE CONFIGS.	UNIQUE CONFIGS.	CANARD	UNIQUE CONFIGS.	UNIQUE CONFIGS.	UNIQUE CONFIGS.	CYLINDRICAL
DMS-DR#	1148	1162	1166	 60 -	1182	1183	 60 52	1187	60 60	1190	1197	1198	1200	1204

Table 3.1.3 - Continued Space Shuttle Phase B Wind Tunnel Test Database Chrysler DATAMAN Report Titles

Launch Aerodynamics

-AEPORT TITLE	HIGH ANGLE OF ATTACK TRANSITION AND LOW ANGLE OF ATTACK LAUNCH PHASE AERODYNAMIC STABILITY AND CONTROL OF GD/C B-18E-2, B-18E-3 DELTA WING BOOSTER, AND LAUNCH CONFIGURATION OF MSC-040A ORBITER AND TWIN PRESSURE FED BOOSTERS	AERODYNAMIC CHARACTERISTICS OF 0.003367 SCALE MODELS OF THE MMC RETRO-GLIDE BOOSTER ALONE AND MATED WITH THE MSC 040-A ORBITER	AERODYNAMIC CHARACTERISTICS OF A COMPOSITE BOOSTER/040A ORBITER LAUNCH CONFIGURATION WITH FIN AND BOOSTER BODY CONFIGURATION EFFECT CONTRIBUTION	AERODYNAMIC CHARACTERISTICS OF VARIOUS MDAC SPACE SHUTTLE ASCENT CONFIGURATIONS WITH PARALLEL BURN PRESSURE FED AND SRM BOOSTERS VOLUME I - ASCENT CONFIGURATION WITH HO CENTERLINE TANKS TI AND T2	AERODYNAMIC CHARACTERISTICS OF VARIOUS MDAC SPACE SHUTTLE ASCENT CONFIGURATIONS WITH PARALLEL BURN PRESSURE FED AND SRM BOOSTERS VOLUME 11 - ASCENT CONFIGURATION WITH HO CENTERLINE TANK T3	AERODYNAMIC CHARACTERISTICS OF VARIOUS MDAC SPACE SHUTTLE ASCENT CONFIGURATIONS WITH PARALLEL BURN PRESSURE FED AND SRM BOOSTERS VOLUME III - ASCENT CONFIGURATION WITH HO CENTERLINE TANK T4	AERODYNAMIC CHARACTERISTICS OF VARIOUS MDAC SPACE SHUTTLE ASCENT CONFIGURATIONS WITH PARALLEL BURN PRESSURE FED AND SRM BOOSTERS VOLUME IV - ASCENT CONFIGURATION PLUME STUDIES AND CONFIGURATION BUILDUP	AERODYNAMIC CHARACTERISTICS OF VARIOUS MDAC SPACE SHUTTLE ASCENT CONFIGURATIONS WITH PARALLEL BURN PRESSURE FED AND SRM BOOSTERS VOLUME V - ORBITER ALONE, TANKS ALONE, AND BOOSTER ALONE	STATIC AERODYNAMIC CHARACTERISTICS OF STAGE ARRANGEMENTS AT SUPERSONIC SPEEDS FOR A SPACE SHUTTLE (.0056 SCALE MODEL)	ABORT STAGING CHARACTERISTICS OF AN EXTERNAL OXYGEN TANK SEPARATING FROM THE SPACE SHUTTLE 040-A ORBITER (.006 SCALE MODEL) AT MACH NUMBERS OF 0.6, 2.0 AND 4.0	AERODYNAMIC STABILITY AND DRAG CHARACTERISTICS OF A PARALLEL BURN/SRM ASCENT CONFIGURATION AT MACH NUMBERS FROM 0.6 TO 4.96	AERODYNAMIC STABILITY AND DRAG CHARACTERISTICS OF A PARALLEL BURN/SRM ASCENT CONFIGURATION (M = 0.6 TO 4.96)	STATIC STABILITY AND CONTROL EFFECTIVENESS OF A PARAMETRIC LAUNCH VEHICLE
VOLUME NUMBER	-	-	-	-	N	ო	•	ĸ	~	-	-	-	-
ORBITER CONFIG 1.D.	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING
BOOSTER CONFIG 1.D	CYLINDRICAL	DELTA WING	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	DELTA WING	CYLINDRICAL	CYI, I NDR I CAL	CYLINDRICAL	CYLINDRICAL
DMS - DR*	1210	1213	1227	1230	1230	1230	1230	1230	1237	1241	1249	1251	1256

Table 3.1.3 - Concluded Space Shuttle Phase B Wind Tunnel Test Database Chrysler DATAMAN Report Titles

REPORT TITLE	AERODYNAMIC CHARACTERISTICS OF A SPACE SHUTTLE UAUN UNDITERTION OF MACH NUMBERS FROM 2.3 TO 4.62	AERODYNAMIC CHARACTERISTICS OF AN 040A SPACE SHUTTLE LAUNCH CONFIGURATION With Simulated Rocket Plumes at mach numbers from 0-8-TO-2.2	AERODYNAMIC CHARACTERISTICS OF AN 040A SPACE SHUTTLE LAUNCH CONFIGURATION WITH SIMULATED ROCKET PLUMES AT MACH NUMBERS FROM 0.8 TO 2.2	PERFORMANCE, STATIC STABILITY AND CONTROL EFFECTIVENESS OF A PARAMETRIC SPACE SHUTTLE LAUNCH VEHICLE
VOLUME	-	-	-	-
ORBITER CONFIG. I D	DELTA WING	DELTA WING	DELTA WING	DELTA WING
BOOSTER CONFIG. 1.D.	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL
# 40 - 8 M Q	1265	1267	1267	1272

Table 3.2.3 Space Shuttle Phase B Wind Tunnel Test Database Chrysler DATAMAN Report Titles

Launch Airloads

REPORT FILLE	PRESSURE TESTS OF MODELS OF A STRAIGHT-WING ORBITER, DELTA-WING ORBITER, AND A STRAIGHT-WING BOOSTER (MACH NUMBER 0.6 TO 2.2) STRAIGHT-WING BOOSTER	PRESSURE TESTS OF MODELS OF A STRAIGHT-WING ORBITER, DELTA-WING ORBITER, AND A STRAIGHT-WING BOOSTER (MACH NUMBER 0.6 TO 2.2) DELTA-WING ORBITER	PRESSURE TESTS OF MODELS OF A STRAIGHT-WING ORBITER, DELTA-WING ORBITER, AND A STRAIGHT-WING BOOSTER (MACH NUMBER 0.6 TO 2.2) STRAIGHT-WING ORBITER	FORCES, MOMENTS AND PRESSURES ON VARIOUS EXTERNAL LIQUID HYDROGEN TANKS MOUNTED ON A BOOSTER/ORBITER MATED LAUNCH CONFIGURATION	SPACE SHUTTLE ABORT SEPARATION PRESSURE INVESTIGATION BOOSTER DATA AT MACH 5	SPACE SHUTTLE ABORT SEPARATION PRESSURE INVESTIGATION ORBITER DATA AT MACH 5	SPACE SHUTTLE ABORT SEPARATION PRESSURE INVESTIGATION BOOSTER DATA AT MACH 3	SPACE SHUTTLE ABORT SEPARATION PRESSURE INVESTIGATION ORBITER DATA AT MACH 3	SPACE SHUTTLE ABORT SEPARATION PRESSURE INVESTIGATION BOOSTER DATA AT MACH 2	SPACE SHUTTLE ABORT SEPARATION PRESSURE INVESTIGATION ORBITER DATA AT MACH 2	PRESSURE INVESTIGATION OF A SPACE SHUTTLE LAUNCH CONFIGURATION CONSISTING OF A DELTA-WING ORBITER AND A SWEPT-WING BOOSTER WITH CANARD AND TIP FINS (M = 0.6 TO 1.3)	PRESSURE INVESTIGATION OF A SPACE SHUTTLE LAUNCH CONFIGURATION CONSISTING OF A DELTA-WING ORBITER AND A SWEPT-WING BOOSTER WITH CANARD AND TIP FINS (M = 0.6 TO 1.3)	AN INVESTIGATION OF THE LOAD DISTRIBUTION OVER THE SRB AND EXTERNAL TANK OF A 0.004 SCALE MODEL OF THE 049 SPACE SHUTTLE LAUNCH CONFIGURATION	PRELIMINARY PRESSURE DISTRIBUTIONS ON THE 049 ORBITER, ORBITER IN PRESENCE OF H/O TANK AND ORBITER IN LAUNCH CONFIGURATION
VOLUME NUMBER	-	7	က	-	-	N	ю	•	v n	ø	-	~	-	-
ORBITER CONFIG 1 D	DELTA WING	DELTA WING	DELTA WING	UNIQUE CONFIGS	DELTA WING	DELTA WING	DELTA WING	DELTA WING						
BOOSTER CONFIG I D	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	CANARD	CANARD	CYLINDRICAL	CYLINDRICAL						
• # O - S M O	1129	1129	1129	1136	1174	1174	1174	1174	1174	1174	1222	1222	1255	1259

Table 3.2.3 - Concluded Space Shuttle Phase B Wind Tunnel Test Database Chrysler DATAMAN Report Titles

Launch Airloads

ORBITER IN TH
STATIC SURFACE PRESSURES OF THE 0 004 SCALE 049 ORBITER IN THE LAUNCH CONFIGURATION
-
DELTA WING
CYLINDRICAL
1273

Table 3.3.3 Space Shuttle Phase B Wind Tunnel Test Database Chrysler DATAMAN Report Titles Launch Heat Transfer

REPORT TITLE	INTERFERENCE FLOW FIELD HEAT TRANSFER CHARACTERISTICS OF THE COMBINED DELTA WING BOOSTER AND MSC ORBITER	CONVAIR STRAIGHT WING (B-88) AND DELTA WING (B-9J) BOOSTERS WITH NAR Straight wing and Delta Wing Orbiters Interference Heat Transfer to Space Shuttle Vehicle Surfaces in Close Proximity at Hypersonic Velocity	THERMAL MAPPING INVESTIGATION MDAC/MMC PHASE B SPACE SHUTTLE VEHICLES	THERMAL MAPPING INVESTIGATION MDAC/MMC PHASE B SPACE SHUTTLE VEHICLES	THERMAL MAPPING INVESTIGATION MDAC/MMC PHASE B SPACE SHUTTLE VEHICLES CONTOUR TRACINGS	THERMAL MAPPING INVESTIGATION MDAC/MMC PHASE B SPACE SHUTTLE VEHICLES CONTOUR TRACINGS	HEAT TRANSFER RESULTS ON SPACE SHUTTLE PHASE B LAUNCH CONFIGURATION AT MACH NUMBERS OF 2.5 AND 3.7	HEAT TRANSFER TESTS OF THE LMSC DELTA-BODY ORBITER AND STAGE-AND-ONE-HALF ASCENT CONFIGURATION	HEAT TRANSFER TEST TO DETERMINE THERMAL PROTECTION SYSTEM DESIGN REQUIREMENTS FOR BOOSTERS B-9U, B-158-2, AND BOOSTER/ORBITER B-9U/161C	AERODYNAMIC HEATING TESTS OF THE MDAC DELTA WING ORBITER AND CANARD BOOSTER	HEAT TRANSFER RATE MEASUREMENTS ON CONVAIR BOOSTER (B-158-2) AND NORTH AMERICAN ROCKWELL ORBITER (1618) AT NOMINAL MACH NUMBER OF 8	HEAT TRANSFER RATE MEASUREMENTS ON CONVAIR BOOSTER (B-15B-2) AT NOMINAL MACH NUMBER OF 8	HEAT TRANSFER RATE MEASUREMENTS ON NORTH AMERICAN ROCKWELL ORBITER (1618) AT NOMINAL MACH NUMBER OF 8	DETERMINATION OF REENTRY HEAT TRANSFER TO ORBITER SURFACES AND INTERFERENCE HEATING DURING LAMINAR PORTION OF LAUNCH, BOOST, AND HIGH-ALTITUDE ABORT REENTRY FOR THE GAC H-3T DELTA-WING ORBITER WITH EXTERNAL TANKS AND BOEING 1202 BOOSTER	HEAT TRANSFER STUDY OF THE GRUMMAN H-33/HO ORBITER
VOLUME	-	-	-	-	7	~	-	-	-	-	-	~	ю	-	-
ORBITER CONFIG 1 D	STRAIGHT WING	STRAIGHT WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	STRAIGHT WING	DELTA BODY	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	UNIQUE CONFIGS.	DELTA WING
BOOSTER CONFIG. 1.D.	DELTA WING	STRAIGHT WING	CANARD	CANARD	CANARD	CANARD	DELTA WING	UNIQUE CONFIGS.	DELTA WING	CANARD	DELTA WING	DELTA WING	DELTA WING	CYLINDRICAL	CYLINDRICAL
DM9-DR	1016	1032	1036	1036	1036	1036	1098	1143	1145	1170	1177	1177	1177	1178	1234

Table 3.3.3 - Concluded Space Shuttle Phase B Wind Tunnel Test Database Chrysler DATAMAN Report Titles

Launch Heat Transfer

REPORT TITLE	ASCENT SHOCK IMPINGEMENT HEATING ON A MDAC SHUTTLE CONFIGURATION, M = 6.0	ASCENT SHOCK IMPINGEMENT HEATING ON A MDAC SHUTTLE CONFIGURATION, M = 10	AN EVALUATION OF ORBITER INDUCED INTERFERENCE MEATING ON THE BOOSTER. Orbiter tank, and interstage fairings for both low and high-alpha re-entry	HEAT TRANSFER TESTS OF THE MCDONNELL-DOUGLAS DELTA WING ORBITER MATED WITH -17A BOOSTER AT MACH NUMBER 8	HEAT TRANSFER TESTS OF THE MCDONNELL-DOUGLAS DELTA WING ORBITER AND THE -17A BOOSTER (NOT MATED) AT MACH NUMBER 8	ASCENT SHOCK IMPINGEMENT HEATING ON A MDAC SHUTTLE CONFIGURATION, M = 2.3 AND 3.7	ASCENT HEAT TRANSFER RATE DISTRIBUTION ON THE NR DELTA WING ORBITER AND THE GD/C BOOSTER AT MACH NUMBER OF 8 (MATED)	ASCENT HEAT TRANSFER RATE DISTRIBUTION ON THE NR DELTA WING ORBITER AND THE GD/C BOOSTER AT MACH NUMBER OF 8 (NOT MATED)	SHOCK IMPINGEMENT HEATING ON THE MSC 040A-2/156-INCH SRM SPACE SHUTTLE LAUNCH CONFIGURATION, M = 8.0
VOLUME NUMBER	-	-	-	-	~	-		~	-
OPBITER CONFIG I D	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING
BOOSTER CONFIG - C	CANARO	CANARD	CYLINDRICAL	CANARD	CANARD	CANARD	DELTA WING	DELTA WING	CYLINDRICAL
OMS-0R	1238	1260	1261	1262	1262	1263	1264	1264	1278

Table 4.1.3 Space Shuttle Phase B Wind Tunnel Test Database Test Engineers and Test Purposes

DMS-DR#	BOOSTER CONFIG. 1.D.	ORBITER CONFIG. 1.D	FACILITY TEST NUMBER	TEST ENGINEERS	S O O O O O O O O O O O O O O O O O O O
1038	STRAIGHT WING	STRAIGHT WING	ARC 665WT 486	J J. BROWNSON /ARC - A. M. WHITNAH /MSC	WING CONFIGURATION AND INTERFERENCE EFFECTS, LAUNCH CONFIGURATION
1038	STRAIGHT WING	DELTA WING	ARC 665WT 486	J. J. BROWNSON /ARC - A. M. WHITNAH /MSC	WING CONFIGURATION AND INTERFERENCE EFFECTS, LAUNCH CONFIGURATION
1038	DELTA WING	STRAIGHT WING	ARC 665WT 486	J. J. BROWNSON /ARC - A. M. WHITNAH /MSC	WING CONFIGURATION AND INTERFERENCE EFFECTS, LAUNCH CONFIGURATION
1038	DELTA WING	DELTA WING	ARC 665WT 486	J J. BROWNSON /ARC - A. M. WHITNAH /MSC	WING CONFIGURATION AND INTERFERENCE EFFECTS. LAUNCH CONFIGURATION
1042	STRAIGHT WING	STRAIGHT WING	ARC 665WT 488	R. C. ROBINSON, P. R. WILCOX	INTERFERENCE EFFECTS AND UNSTEADY LOADS INVESTIGATION
•	UNIQUE CONFIGS	STRAIGHT WING	MSFC 14TWT 470	L. C. SHROUT, M. Y. OIYE, R. M. MILLER / TBC	DOWNWASH ON 900 SO. FT. 30 DEG. ORIENTED FINS AND OPTIMUM BOOSTER BODY AND AERO SURFACE INCIDENCE
1047	DELTA WING	STRAIGHT WING	LARC CFHT 54	P. T. BERNOT /LARC	CLOSE-PROXIMITY EFFECTS
1050	STRAIGHT WING	DELTA WING	ARC 66SWT 505	J. J. BROWNSON /ARC - L. CLARKE /NR	INTERFERENCE EFFECTS, POSITION AND INCIDENCE ANGLE
1050	STRAIGHT WING	STRAIGHT WING	ARC 66SWT 505	J J. BROWNSON /ARC - L. CLARKE /NR	INTERFERENCE EFFECTS, POSITION AND INCIDENCE ANGLE
1051	STRAIGHT WING	STRAIGHT WING	MSFC 14TWT 466	E. C. ALLEN, J. F. HARDESTY Inr – F. W. Eder /GD/C	STATIC STABILITY AND CONTROL ABILITY
1051	STRAIGHT WING	DELTA WING	MSFC 14TWT 466	E. C. ALLEN, J. F. HARDESTY /nr - F. W. EDER /GD/C	STATIC STABILITY AND CONTROL ABILITY
1052	DELTA WING	STRAIGHT WING	GDC 4HSWT 304-0	J. M. DEBEVOISE /GD/C	ABORT SEPARATION EFFECTS
1052	DELTA WING	DELTA WING	GDC 4HSWT 304-0	J. M. DEBEVOISE /GD/C	ABORT SEPARATION EFFECTS
1052	STRAIGHT WING	STRAIGHT WING	GDC 4HSWT 304-0	J. M. DEBEVOISE /GD/C	ABORT SEPARATION EFFECTS

Table 4.1.3 - Continued Space Shuttle Phase B Wind Tunnel Test Database Test Engineers and Test Purposes

PURPOSE	ABORT SEPARATION EFFECTS	STATIC STABILITY CHARACTERISTICS, INCIDENCE ANGLE OPTIMIZATION	PROXIMITY INTERFERENCE EFFECTS	PROXIMITY INTERFERENCE EFFECTS	LONGITUDINAL CHARACTERISTICS OF BOOSTER IN CLOSE PROXIMITY TO ORBITER, POSITION AND GAPEFFECTS	DRAG, STABILITY AND CONTROL CHARACTERISTICS, CONFIGURATION	AERODYNAMIC CHARACTERISTICS. Launch Configuration	AERODYNAMIC CHARACTERISTICS. Launch Configuration	TRANSITION CHARACTERISTICS	TRANSITION CHARACTERISTICS	SUBSONIC TO SUPERSONIC AERO CHARACTERISTICS	STABILITY INVESTIGATION. GEOMETRY AND REYNOLDS NUMBER VARIATION	AERO CHARACTERISTICS AND INTERFERENCE EFFECTS	SEPARATION AERODYNAMICS
TEST ENGINEERS	J. M. DEBEVOISE /GD/C	C. H. MUHLHAUSER /MSFC	P O ROMERE, IVY H FOSSLER	P. O. ROMERE, IVY H. FOSSLER /MSC	P. T. BERNOT /LARC	J. J. BROWNSON /ARC - A. M. WHITNAH /MSC	J. J. BROWNSON /ARC - T. W. JARRETT /MDAC	J. J. BROWNSON /ARC - T. W. JARRETT /MDAC	J. J. BROWNSON /ARC	J. J. BROWNSON /ARC	J. J. BROWNSON /ARC - F. VELLIGAN, H. O. SVENDSEN /LMSC	L. WATTS /TBC	J. J. BROWNSON /ARC - D. BELL /MDAC-W	L L TRIMMER, R. H. BURT JARO - D. A. LOVE, J. M. RAMPY / LMSC - J. P. DECKER //LARC - K. L. BLACKWELL / MSFC
FACILITY TEST NUMBER	GDC 4HSWT 304-0	MSFC 14TWT 476	LTV HSWT S-28	LTV HSWI S-28	LARC CFHT 54	ARC 665WT 524	ARC 665WT 508	ARC 665WT 508	ARC 66SWT 511	ARC 665WT 511		MSFC 14TWT 485	ARC 665WT 557	AEDC SWTA 1163
ORBITER CONFIG. 1 D	0 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		STRAIGHT WING	STRA!GHT WING	STRAIGHT WING	STRAIGHT WING	DELTA WING	STRAIGHT WING	STRAIGHT WING	3 VI - 40	DELTA BODY	DELTA WING	UNIQUE CONFIGS.	DELTA WING
BOOSTER CONFIG. 1.D		STRAIGHT WING	STRAIGHT WING	DELTA WING	DELTA WING	STRA!GHT WING	CANARD	CANARD	33		UNIOUE CONFIGS	UNIQUE CONFIGS.	CANARD	CANARD
DMS-P4		1055	1058	1058	1061	1063	1065	1065		6 / 0	1075	1601	6601	

Table 4.1.3 - Continued Space Shuttle Phase B Wind Tunnel Test Database Test Engineers and Test Purposes

Launch Aerodynamics

DMS-0R*	BOOSTER CONFIG. 1.D.	CONFIG. 1.D.	FACILITY TEST NUMBER	TEST ENGINEERS	PURPOSE
1 1 5	STRAIGHT WING	STRAIGHT WING	TV HSWT S-30	P. R. R	AERO CHARACTERISTICS DURING SEPARATION OR ABORT
1115	DELTA WING	DELTA WING	LTV HSWT S-30	P. R. ROMERE, I. H. FOSSLER	AERO CHARACTERISTICS DURING SEPARATION OR ABORT
1117	CANARD	DELTA WING	LARC UPWT 963	E. B. GRAVES /LARC - G. HOLLE /MMC	AERODYNAMIC CHARACTERISTICS, Interference effects
8	CANARD	DELTA WING	ARC 665WT 512	T W JARRETT T L JENSEN /MDAC - J J BROWNSON /ARC	INTERFERENCE EFFECTS
1119	DELTA WING	UNIQUE CONFIGS.	MSFC 147WT 489	E. C. ALLEN /NR - F. W. EDER /GD/C	STATIC AERODYNAMIC STABILITY AND CONTROL CHARACTERISTICS
1122	STRAIGHT WING	UNIQUE CONFIGS.	ARC 665WT 546	J A MELLENTHIN /ARC - M QUAN, F TESSITORE /GAC	BASIC AERO FORCE DATA
1127	DELTA WING	DELTA WING	ARC 665WT 548	J. J. BROWNSON /ARC - H. ORESER /NR	AERODYNAMIC CHARACTERISTICS OF LAUNCH CONFIGURATION, INTERFERENCE EFFECTS
1130	DELTA WING	DELTA WING	MSFC 14TWT 490	E. C. ALLEN /NR - F. W. EDER	STATIC STABILITY AND CONTROL INVESTIGATION
136	STRAIGHT WING	UNIQUE CONFIGS.	ARC 665WT 561	J. BROWNSON /ARC - F. TESSITORE, M. QUAN /GAC	FORCES, MOMENTS AND PRESSURES On Various Tank Configurations
1137	STRAIGHT WING	UNIQUE CONFIGS	ARC 665WT 551	J. J. BROWNSON /ARC - F. T. TESSITORE, M. QUAN /GAC	AERODYNAMIC CHARACTERISTICS, Configurations with Tanks
140	UNIQUE CONFIGS.	UNIQUE CONFIGS.	MSFC 14TWT 491	L. WATTS /TBC	OPTIMUM INCIDENCE ANGLE AND CORRESPONDING AERODYNAMIC CHARACTERISTICS
1148	CANARD	DELTA WING	MSFC 14TWT 492	J. JOHNSON, L. L. WATTS /TBC	STABILITY AND CONTROL CHARACTERISTICS
1162	DELTA WING	UNIQUE CONFIGS.	MSFC 14TWT 497	E. C. ALLEN /NR	AERODYNAMIC FORCE AND MOMENT DATA, CONTROL EFFECTIVENESS
1166	CANARD	UNIQUE CONFIGS	MSFC 14TWT 501	K. L. BLACKWELL, D. G. LANE /MSFC	EVALUATION OF PERFORMANCE AS IN MDC E0376

Table 4.1.3 - Continued Space Shuttle Phase B Wind Tunnel Test Database Test Engineers and Test Purposes

Launch Aerodynamics

PURPOSE	AERODYNAMIC CHARACTERISTICS Of Configuration	ASCENT AND REENTRY AERODYNAMIC DATA	REENTRY AND TRANSITIONAL GLIDE AERODYNAMIC DATA	REENTRY AND TRANSITIONAL GLIDE AERODYNAMIC DATA	AERODYNAMIC FORCE AND MOMENT DATA, ORBITER ALONE AND WITH EXTERNAL TANKS	AERODYNAMIC CHARACTERISTICS	STATIC STABILITY AND DRAG Data	STATIC AERODYNAMIC Characteristics, ascent Interference effects	STATIC AERODYNAMIC Characteristics, ascent Interference effects	SUPERSONIC AERODYNAMIC Characteristics	HYPERSONIC AERODYNAMIC CHARACTERISTICS, COMPONENT BREAKDOWN DATA	LONGITUDINAL AND LATERAL-DIRECTIONAL FORCE DATA	LONGITUDINAL AND LATERAL DIRECTIONAL CHARACTERISTICS	LAUNCH-PHASE STABILITY AND CONTROL
TEST ENGINEERS	F SIMS, R OLIVE /MSFC	D. J. MICHNA /MMC	L L WATTS R AINSWORTH, S VANDERLEEST / TBC	L L WATTS, R. AINSWORTH, S. VANDERLEEST / TBC	E. C. ALLEN /NR	J. F. SIMS /MSFC - R. W. AINSWORTH / TBC	J. F. SIMS /MSFC	J. P. ARRINGTON /LARC	J. P. ARRINGTON /LARC	D. C. FREEMAN, W. A. CORLETT /lang	P. T. BERNOT /LARC	D. C. FREEMAN /LARC	R F MCGINNIS, F W EDER	J. M. DEBEVOISE, R. F. MCGINNIS /GD/C
FACILITY TEST NUMBER	MSEC 14TWT 504	MSFC 14TWT 505	MSFC 14TWT 506	MSFC 14TWT 506	MSFC 14TWT 509	MSFC 14TWT 502	MSFC 14TWT 503	LARC 22HT 7377-79,7380-90	LARC 22HT 7377-79,7380-90	LARC UPWT 962	LARC CFHT 74	LARC BTPT 605	MSFC 14TWT 512	MSFC 14TWT 514
ORBITER CONFIG. (D.	UNIQUE CONFIGS	UNIQUE CONFIGS.	DELTA WING	DELTA WING	DELTA WING	UNIQUE CONFIGS.	UNIQUE CONFIGS.	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING
BOOSTER CONFIG. 1.D	CYLINDRICAL	UNIQUE CONFIGS.	DELTA WING	DELTA WING	CYLINDRICAL	UNIQUE CONFIGS.	UNIQUE CONFIGS.	CANARD	DELTA WING	UNIQUE CONFIGS.	UNIQUE CONFIGS.	UNIQUE CONFIGS.	CYLINDRICAL	CYLINDRICAL
DMS-0Re	1 60	1182	1.83	1183	1185	1187	1.88	1190	1190	1197	6 0	1200	1204	1210

Table 4.1.3 - Concluded Space Shuttle Phase B Wind Tunnel Test Database Test Engineers and Test Purposes

Launch Aerodynamics

PURPOSE	LAUNCH CONFIGURATION AND BOOSTER REENTRY CONFIGURATION STABILITY AND CONTROL DATA	FIN CONFIGURATION AND BODY CONFIGURATION EFFECTS	AERODYNAMIC CHARACTERISTICS. INDIVIDUAL CONTRIBUTIONS DURING ASCENT, AND RELATIVE ORBITER AND BOOSTER POSITION INTERFERENCE EFFECTS	FORCES AND MOMENTS. INTERFERENCE EFFECTS, COMPONENT EFFECTS	NORMAL FORCE, PITCHING MOMENT AND AXIAL FORCE COMPONENTS FOR VARIOUS TANK POSITION, INCIDENCE ANGLE	PERFORMANCE AND STABILITY CHARACTERISTICS, CONFIGURATION BUILD-UP, VARIATIONS EFFECTS	PERFORMANCE AND STABILITY CHARACTERISTICS, EFFECTS OF COMPONENT VARIATION	STATIC AERODYNAMIC Characteristics	ASCENT CONFIGURATION PERFORMANCE AND LATERAL CONTROL CHARACTERISTICS	EFFECT OF PLUME ON AERO CHARACTERISTICS	EFFECT OF PLUME ON AERO CHARACTERISTICS	STATIC STABILITY AND CONTROL EFFECTIVENESS
TEST ENGINEERS	D J. MICHNA, D. ALLAYAUD /MMC	R. W. AINSWORTH, J. C. JOHNSON, L. L. WATTS /TBC	I. W. JARRETT /MDAC	W. I. SCALLION, R. H. FOURNIER /LARC	I. FOSSLER /MSC - P. COLE	J. F. SIMS /MSFC - T. HAMILTON /NS!	F. SIMS /MSFC	R. ELLIS, M. GAMBLE /LMSC	W. I. SCALLION, E. B. GRAVES	J. J. BROWNSON /ARC - A. M. WHITNAH /MSC	J J. BROWNSON:/ARC - A M. WHITNAH /MSC	R. E. BUCHHOLZ, M. GAMBLE
FACILITY TEST NUMBER	MSFC 14TWT 517	MSFC 14TWT 523	MDAC 4TWT S-222	LARC UPWT 966	MSFC 14TWT 531	MSFC 14TWT 534	MSFC 14TWT 538	MSFC 14TWT 544	LARC UPWT 981	ARC 111WT 629	ARC 975WT 629	MSFC 14TWT 544X
ORBITER CONFIG. 1.D.	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING
BOOSTER CONFIG 1 0	DELTA WING	CYLINDRICAL	CYLINDRICAL	DELTA WING	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL
DMS-DR#	1213	1227	1230	1237	1241	12.49	1251	1256	1265	1267	1267	1272

72

ONOTICE MARK IS OF POOR QUALITY

Table 4.2.3
Space Shuttle Phase B Wind Tunnel Test
Database Test Engineers and Test Purposes
Launch Airloads

PURPOSE	PRESSURE DATA PERTINENT TO AERODYNAMIC LOADING CHARACTERISTICS	PRESSURE DATA PERTINENT TO AERODYNAMIC LOADING CHARACTERISTICS	FORCES, MOMENTS AND PRESSURES ON VARIOUS TANK CONFIGURATIONS	SEPARATION TEST	LAUNCH CONFIGURATION PRESSURE DATA AT TRANSONIC SPEEDS	PRESSURE DISTRIBUTION ON H-O TANK AND SRM	PRESSURE DISTRIBUTIONS	PRESSURE DISTRIBUTIONS
TEST ENGINEERS	J. A. MELLENTHIN /ARC - B. W. F. CAMERON, C. R. LEEF /NR	J A MELLENTHIN /ARC - B. W I CAMERON, C. R. LEEF /NR	J BROWNSON /ARC - F TESSITORE, M. QUAN /GAC	L L TRIMMER, W. T. STRIKE /ARO - D. A LOVE /LMSC - J. M. RAMPY /NSI - J. P. DECKER /LARC - K. L. BLACKWELL /MSFC	J. M. RAMPY /NS! - K. L. BLACKWELL /MSFC - G. R. GOMILLION /ARO	R. LOTT /LMSC	J. F. SIMS /MSFC - J. T. HAMILTON, J. M. RAMPY /NSI	R E. BUCHHOLZ, M. GAMBLE //MSC-HREC
FACILITY TEST NUMBER	ARC 665WT 509	ARC 665WT 509	ARC 665WT 561	AEDC SWTA 1163	AEDC PWT4T TC174-PC1154	MSFC 14TWT 543	MSFC 14TWT 540	MSFC 14TWT 550
ORBITER CONFIG. 1.D.	DELTA WING	STRAIGHT WING	UNIQUE CONFIGS	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING
BOOSTER CONFIG. 1.D.	STRAIGHT WING	STRAIGHT WING	STRAIGHT WING	CANARD	CANARD	CYLINDRICAL	CYLINDRICAL	CYLINDRICAL
DMS-DR*	1129	1129	1136	1174	1222	1255	1259	1273

Table 4.3.3 Space Shuttle Phase B Wind Tunnel Test Database Test Engineers and Test Purposes

<u>_</u>
æ
5
Ę
<u>_</u>
2
Ŧ
_
5
2
تــ

PURPOSE	la.i	EVALUATION OF INTERFERENCE HEATING RATES	EVALUATION OF INTERFERENCE HEATING RATES	EVALUATION OF INTERFERENCE Heating rates	EVALUATION OF INTERFERENCE HEATING RATES	THERMAL MAPPING	THERMAL MAPPING	THERMAL MAPPING	THERMAL MAPPING	ASCENT HEAT TRANSFER Distributions, interference Heating information	ASCENT HEAT TRANSFER DISTRIBUTIONS, INTERFERENCE HEATING INFORMATION	HEAT TRANSFER TEST	THERMAL PROTECTION SYSTEM REGUIREMENTS
TEST ENGINEERS	D. H. CRAWFORD /LARC	W. R. GINSKY /GD/C - R. RAPARELL! /NR	W. R. GINSKY /GD/C - R. RAPARELL! /NR	W R. GINSKY /GD/C - R. RAPARELL! /NR	W R. GINSKY /GD/C - R. Raparelli /nr	P. L. CLICK, D. SCHMITT	P. L. CLICK, D. SCHMITT	P. L. CLICK, D. SCHMITT	P. L. CLICK, D. SCHMITT	R. L. STALLINGS /LARC - A. M. ROBERGE /GD/C - H. GOROWITZ /NR	R. L. STALLINGS /LARC - A. M. ROBERGE /GD/C - H. GOROWITZ /NR	H. D. SCHULTZ, K. W. MCGEE	R. O. DOUGHTY, R. C. ERICKSON /GD/C
FACILITY TEST NUMBER	LARC CFHT 50	LARC 8VDHT 137-146,189-205	LARC 8VDHT 137-146,189-205	LARC 8VOHT 137-146,189-205	LARC 8VOHT 137-146,189-205	LARC 8VOHT 147-179,206-322	LARC 8VDHT 147-179,206-322	LARC CFHT 53	LARC CFHT 53	LARC UPWT 945	LARC UPWT 945	LARC 8VDHT 1075-1107	LARC 8VDHT 1237-1297
ORBITER CONFIG. 1 D	STRAIGHT WING	STRAIGHT WING	DELTA WING	DELTA WING	STRAIGHT WING	DELTA WING	STRAIGHT WING	DELTA WING	STRAIGHT WING	STRAIGHT WING	DELTA WING	DELTA BODY	DELTA WING
BOOSTER CONFIG. 1.D	DELTA WING	STRAIGHT WING	STRAIGHT WING	DELTA WING	DELTA WING	CANARD	CANARD	CANARD	CANARD	DELTA WING	DELTA WING	UNIQUE CONFIGS	DELTA WING
DMS-DR#	6 1	1032	1032	1032	1032	1036	1036	1036	1036	1098 8	1098	1 1 4 3	1145

Table 4.3.3 - Concluded Space Shuttle Phase B Wind Tunnel Test Database Test Engineers and Test Purposes

Launch Heat Transfer

PURPOSE	THERMAL ENVIRONMENT DATA FOR THERMAL PROTECTION SYSTEM DESIGN	ASCENT AND REENTRY HEATING DATA	INTERFERENCE HEATING DURING LAUNCH, HEATING DURING REENTRY AND HIGH ALTITUDE ABORT REENTRY	HEAT TRANSFER, INTERFERENCE LAUNCH CONFIGURATION LAMINAR DATA, RE-ENTRY TURBULENT FLIGHT DATA	ASCENT SHOCK IMPINGEMENT HEATING INVESTIGATION	HEATING CHARACTERISTICS During Ascent	INTERFERENCE HEATING. Re-entry Heating	INTERFERENCE HEATING DATA	PLOTTED AND TABULATED HEAT TRANSFER DATA	INTERFERENCE HEATING DATA	SHOCK IMPINGEMENT HEATING AT M = 8
TEST ENGINEERS	T. L. ANDRESEN /MDAC-E	J D WARMBROD /MSFC - W. R. MARTINDALE, R. K. MATTHEWS /ARO	A D'ERRICO, C. SONITSCH /GAC	C OSONITSCH, A D'ERRICO /GAC - T. CREEL /LARC	J. D. WARMBROD /MSFC - J. Y PARKER /NS1 - J. E. REARDON /REMTECH	H D CRAWFORD /LARC - J D WARMBROD /MSFC - J E. REARDON / REMTECH - J Y PARKER /NS!	J. HOUSER, A. PERLBACHS /TBC - L. E. CLARK /LARC	R. K. MATTHEWS, W.R. MARTINDALE /ARO - J. D. WARMBROD /MSFC	J. D. WARMBROD /MSFC - J. Y. PARKER /NSI - J. REARDON /REMTECH	R. K. MATTHEWS, W. R. MARTINDALE /ARO - J. D. WARMBROD /MSFC	J Y. PARKER /REMTECH - J. D WARMRROD /MSFC - C. B. JOHNSON /LARC
FACILITY TEST NUMBER	CAL 96HST H/T MDAC	AFDC HWTB 1162-1	LARC CFHT 69	LARC 8VDHT 1948-2000	LARC 20HT6 6386-6387	LARC CFHT 78	LARC 8VDHT 2505-2565	AEDC HWTB 1162-9	LARC UPWT 967	AEDC HWTB 1162 .	LARC 8VDHT 2886-2929
ORBITER CONFIG I D	DELTA WING	DELTA WING	UNIONE CONFIGS	DELTA W!NG	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING	DELTA WING
BOOSTER CONFIG 1.0	CANARD	DELTA WING	CYLINDRICAL	CYLINDRICAL	CANARD	CANARD	CYLINDPICAL	CANADO	CANARD	DELTA WING	CYLINDRICAL
6	0211	1117	1178	1234	1238	1260		1262		1264	1278

Table 5

Space Shuttle Phase B Facility Wind Tunnel Summary

FAC11.1TY	SURFACILITY	FACILITY TEST NUMBER	VEHICLE	TEST DISCIPLINE	OMS-08*	PUB. DATE	DATASET
AEDC	HW18	0288	088 I TER	HEAT - TRANSFER	1266	07/72	۲ ۲
AECC	HWT B	1162	ORBITER	HEAT-TRANSFER	1264	07/72	₹ 2
AEDC	HW 1 B	1162	LAUNCH	HEAT-TRANSFER	1264	07/72	۷ / ۷
AEDC	HW18	1162	BOOSTER	HEAT-TRANSFER	1264	07/72	A / N
AEDC	HW18	1162-1	088 I TER	HEAT - TRANSFER	1177	11/71	٧ <i>/ ٧</i>
AECC	HW18	1162-1	LAUNCH	HEAT - TRANSFER	1177	11/71	۷ \ ۲
AEEC	HWT B	1462-1	BOOSTER	HEAT - TRANSFER	1177	11/71	۷ \ <u>۲</u>
AECC	HWT8	1162-4	BOOSTER	HEAT - TRANSFER	1207	08/72 REV. 01	A / N
AEDC	HW1B	1162-4	ORBITER	HEAT - TRANSFER	1207	08/72 REV. 01	A / N
AEDU	HWTB	1162-5	ORBITER	AIRLUADS	1225	01/72	V
AEDC	HWIB	1162.5	8005168	AIRLOADS	1225	91/72	4 / 2
AEDC	HWTB	1162-9	0881TER	HEAT - TRANSFER	1231	04/72	4 \ Z
AEDC	HWTB	1162-4	ORBITER	HEAT - TRANCFER	1262	06/72	4/4
AEDO	+tWTB	1162-4	LAUNCH	HEAT - TRANSFER	1262	06/72	4 \ Z
0 0 0 4	91.W+	***	BOCCTER	HEAT-TRANSFER	1262	06/72	A / A
AFLC	HWTC	~10055	BOUSTER	AFRODYNAMICS	1006	01/10	-
13.34 4	HWIF	1162-700	ORBITER	HEAT-TRANSFER	1224	04/72	4 / N
AEFC	PWT 1.5 T	7F-250	BOOSTER	AIRLOADS	1125	10/71	1.7
009व	PWT4T	10135	0881TER	AERODYNAMICS	1092	17/70	ξ.
AEDS	PWT4T	TC174-PC1154	LAUNCH	AIRLOADS	1222	02/73	27
AEDC	PWT4T	TC174-PC1154	BOOSTER	AIRLOADS	1222	02/73	JC
AEDC	SWTA	1162-F00	0A8 TER	HEAT-TRANSFER	1206	05/72	W / W

OF POOR QUALITY

Table 5 - Continued Space Shuttle Phase B Facility Wind Tunnel Summary

	YELD CARBOT	FASSIST NOWAER	VEHICLE	TEST DISCIPLINE	DMS-DR	PUB DATE	CODE
	· · · ·	4	LAUNCH	AERODYNAMICS	1108	07/71	18
, i		1163	HOMBAL	AIRLOADS	1174	06/72	α: +
		1163	BGOSTER	AERODYNAMICS	108	07/71	8.
)	- 1) (4) (4) (7	00.81769	AERODYNAMICS	1108	07/71	8
A .	64 3 6 4 5 7 6 7		0,48+10,8	AEPODYNAMICS	1012	02/60	A 5
ر ن نه	- k	- 50 : 72 : 4	វាគ្គ (ខ្លួន	AERODYNAMICS	1250	04/72	£.
 I U	F: \$		LAUNCH	AERODYNAMICS	1267	09/72	98
ί ά : •	E WIN	4 C -	0881168	AERODYNAMICS	1072	03/71	A.J
, u		105	BOOSTER	HEAT-TRANSFER	1179	10/71	۷ ۲
J.		105	8008168	HEAT - TRANSFER	1134	01/72	00
) (A		106	0881768	HEAT - TRANSFER	1131	01/72	00
: () ()		106	ORBITER	HEAT - TRANSFER	1180	10/71	∀ / Z
, (. . α		4 50 t	08811ER	AERODYNAMICS	1104	08/71	Ā
) (. . •		111/113	ORBITER	AERODYNAMICS	1071	03/71	Н
) (-12	BOOSTER	AERODYNAMICS	1080	04/71	AL
) (<u>.</u>		125	0681768	AERODYNAMICS	1094	01/72	×
) () () (CABITER	HEAT-TRANSFER	1252	04/72	4
) (82 K	ORBITER	AERODYNAMICS	1002	06/70	A 6
 		න න	ORBITER	AERODYNAMICS	1031	11/70	4
	1 (1 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4	8 65	0RB17EP	AERODYNAMICS	1011	04/60	7 A
, C	7 8 9 9 1 M	4 % 4	ORBITER	AERODYNAMICS	1021	10/70	₽ 4
984 986	1 M20 -	£ er er	8008 FEP	AERODYNAMICS	1038	09/72 REV. 01	A A
ARC	6.63WT	486	LAUNCH	AERODYNAMICS	1038	09/72 REV. 01	∢ ∢

ORIGINAL DAME IS OF POOR QUALITY

Table 5 - Continued Space Shuttle Phase B Facility Wind Tunnel Summary

DATASET CODE	1	_										•••	4.		• •										
DAT	;	2 (¥ •	¥ .	₹ 6	Q		2 4) > •	()	(<u>></u>	< c		. I	4) (n .	¥ •		() () ()	-	₹ 8	3	60)
۔		0 6 7 0 1				12/10	01/71	04/71	08/72	27.780	08/72	08/71	10/72	10/72	12/12	1 2 7 2	2 / 7 / 7 / 7		03/71	08/71	06/71	05/71	05/72	12/71	
	1040	1026	0.00	¥201	9 99	1050	1050	1065	1129	1129	1129	1116	1075	1075	1118	1028	9801	9701	1063	1121	:083	1085	1122	1112	
TEST DISCIPLINE	PODYNAMICS	AERODYNAMICS	AIRLOADS	AIRLOADS	AIRLOADS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS							
VEHICLE	LAUNCH	0881758	ORRITER	ORBITER	BONSTER	BOOSTER	LAUNCH	LAUNCH	0R8 1 TER	LAUNCH	BOOSTER	BOOSTER	LAUNCH	BOOSTER	LAUNCH	ORBITER	BOOSTER	BOOSTER	LAUNCH	BOOSTER	08817ER	HERITA	LAUNCH	ORBITER	
FACSELTY TEST NUMBER	488	503	503/513	5037513	504	505	505	508	809	509	509	510	511	511	512	514	522	522	524	528	527	ភេឌខ	546	547	
A117.001805	6 E CWT	0.6 mm	665wT	660WT	66 3WT	6.6.3WT	1W599	6.6.5WT	6 6 SWT	66SWT	665#1	66SWT	665WT	66SWT	665WT	665wT	663WT	865WT	665WT	66SWT	56.5WT	±M∪ ÷9	6.6.3WT	56 SWT	
FAC 1 L 1 TY	Ω α ∀	• ∀	ARC	ARC	POC	ARC	ARC	ARC	ARC	ARC	ARC	APC	ARC	ARC	ARC	ARÇ	ARC	AHC	ARC	CL) H	Ú 51) ()	. B.C.	

78

Table 5 - Continued Space Shuttle Phase B Facility Wind Tunnel Summary

												O)F.	er Qi	بالمرار	, 17°	·, Y									
DATASET CODE	A2	080	B C	¥	B C	90	8 A	96	9			4 2	۷ ۲	4 × Z	cs	S.	•	2	C1	č	บ	e C	g	3	& ∪	-0	60	
PUB. DATE	09/72	04/72	12/71	02/72	02/72	02/72	05/72	02/72	09/72	• !	02/72	01/72	01/72	01/72	17/60	08/71		07/71	12/60	11/11	01/71	01/10			09/71	11/71	12/70	٠
DMS-DR	1127	1111	1137	1099	1136	1136	1141	1202		1267	1212	1170	1170	1170	1163	1911	-	1154	1159	1158	1053	1005		1081	1142	1167	1029	
TEST	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AFRODYNAMICS	AIRLOADS	AFRODYNAMICS	AFBOOVNAMICS		AERODYNAMICS	AERODYNAMICS	HEAT - TRANSFER	HEAT - TRANSFER	HEAT - TRANSFER	SOMMANYCOOR		AERODYNAMICS	HEAT-TRANSFER	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	SCIMANYCOOR		AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	SOLMANYCOOR	ACKOUTE TO THE
VEHICLE COMPONENT	LAUNCH	BOOSTER	LAUNCH	AUNCH	H 2				1010	LAUNCH	BOOSTER	ORBITER	BOOSTER	HONDA		E	ORBITER	ORBITER	ORBITER	BOOSTER	ORBITER		ORBITEM	ORBITER	ORBITER	ORBITER		BOOSTER
FACILLITY		o (0 4	- P	, 66	561	561	563	605	629	18-063	H/T MDAC	H.T. MDAC		H/- MUAC	022	035	017	610	050		6 · 7	280	289	000	, ,	367	247-0
SUBFACILITY	1	- P	1MS 9 9	1 ₩ S 99	6 6 SW T	66 SWT	665WT	66SWT	66SWT	97 SWT	8 T W T		10000		18496	15SWT	26TWT	3 6 HWT	36HWT	, c		7 1 0 SW 1	7 1 0 SWT	7 1 0 SWT	1		7 1 0 SW	18HWI
FAC:LITY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	α Φ	٥ ا	> ₽	Û 64	ARC	ARC	ARC	ARC	ARC	, a C	, ,	, ;	CAL	CAL	GAC	GAC	J) () (i	و ه	0 8 C	GAC	9 ¥0		3 A 5	9 ∀ €	209

OF POOR QUALITY

Table 5 - Continued Space Shuttle Phase B Facility Wind Tunnel Summary

*	,														_		• •.								
DATASET CODE	; ; ; ; ;	•	5 6	5 6	5 6	ີ ບ	3 3	2	0	89	X X	-	; 5	. <u>.</u>		Ì	. Œ	•	05	NO	: 2	: 5	۱ ۸	77	
PUB. DATE	0//0	03.7.	03/71			12/10	08/71	08/71	04/72	05/72	03/72	07/10	11/70	01/71	06/71	08/72	03/72 REV. 01	12/71	02/72	08/72	04/60	02/71	04/71	11/90	
DMS - DRS	1025	1052	1052	1052	1030	1039	1109	1110	1223	1221	1244	1004	1023	1048	1095	1238	1203	1214	1220	1270	1009	1059	1088	1086	
TEST DISCIPLINE	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	HEAT - TRANSFER	AERODYNAMICS	AERODYNAMICS	AERODVNAMICS	AERODYNAMICS	HEAT - TRANSFER	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AFRODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	
VEHICLE	BOOSTER	LAUNCH	ORBITER	BOOSTER	BOOSTER	BOOSTER	BOOSTER	BOOSTER	BOOSTER	ORB11ER	BOOSTER	ORBITER	ORBITER	ORBITER	ORBITER	LAUNCH	0881TER	BOOSTER	BOOSTER	0881TER	ORBITER	OR8 TER	ORBITER	ORBITER	
FACILITY TEST NUMBER	291-0	304-0	304-0	304-0	579-0	580-0	587-0	587-1	603-0	681	1-20	6315	6329	6355-6329	6366	6386-6387	6392	6397	6398	405	7341-7343	7369	7376	7377	
SUBFACILITY	4 HSWT	4 HSWT	4 HSW1	4 HSW1	8 12 SWT	8 12 SWT	8 12 SWT	8 1 2 SWT	8 1 2 SWT	20SWT	20HT6	20HT6	20HT6	20HT6	20HT6	20416	20476	20HT6	20HT6	22HT	22HT	22HT	22HT	22HT	
FACILITY	205	205	205	205	205	205	GDC	305	205	JPL	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	3841	ABC	

80

Table 5 - Continued Space Shuttle Phase B Facility Wind Tunnel Summary

7. 	SUBFACILITY	E A	VEHICLE	TEST DISCIPLINE	MO - 0 M	PUB. DATE	DATASET CODE
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			20 1 3 4 12 2 0 0 0 0	1190	02/72	n M
LARC	22HT	7377-79,7380-90	80051EH		0	02/12	Ĭ.
LARC	2 2 H T	7377-79,7380-90	0A8 TEA	AERODYNAMICS	2		ā
0	2241	7377-79,7380-90	LAUNCH	AERODYNAMICS	1190	02//2	2
) # # J		7386-7390	ORBITER	AERODYNAMICS	1176	01/72	Z
LARC		0000	ORBITER	AERODYNAMICS	1211	02/72	S
LABC	2241	- 0 0 0 1	ORBITER	AERODYNAMICS	1218	06/72	90
LARC	2247	9 6 F .	ORBITER	AERODYNAMICS	1,99	05/72	×
LARC	44501)	CHBITER	AERODYNAMICS	1175	01/72	ኃ
LARC	44SPT	1	0881158	AERODYNAMICS	1171	12/71	7
LARC	4 S P T	α (σ	BOOSTER	HEAT-TRANSFER	1236	02/72	4 2
LARC	5HRNT	ъ н ж ч	OBBITER	AERODYNAMICS	1022	10/10	1.8
LARC	7 10 SWT	905		SOMMANYCOORA	1105	12/60	2
LARC	8191	573	ORB 1 1 E H		1001	06/71	O M
LARC	8191	574	ORBITER	AERODYNAMICS		12/71	 ≥
LARC	8 TPT	595	0881TER	AERODYNAMICS			. 3
	60 F	8 08	ORBITER	AERODYNAMICS	1195	12/71	Z E
		\$0 90	BOOSTER	AERODYNAMICS	1200	03/72	ZW
י א א רא א	. ← . O.	605	LAUNCH	AERODYNAMICS	1200	03/72	MZ
) () () () () () () () () () (. H	1 - 58	ORBITER	HEAT-TRANSFER	1056	01/71	۷ ۲
) V		1075-1107	LAUNCH	HEAT-TRANSFER	1143	12/90	4 / X
LARC	E 0 > 6		ROOSTER	HEAT-TRANSFER	1138	17/10	∀ \ Z
LARC	8 V D H T	1204-1213		TANA TITANAFER	1024	10/70	X / X
LARC	8 V D H T	123-136,180-188			4711	17/10	4 / X
LARC	8 V D H T	1237-1297	LAUNCH	HEAT-IMANSTER		27.20	2
LARC	BVDHT	1237-1297	BOOSTER	HEAT-TRANSFER	8		2
LARC	8 V D H T	137-146,189-205	S ORBITER	HEAT-TRANSFER	1032	0//11	c È

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

Table 5 - Continued Space Shuttle Phase B Facility Wind Tunnel Summary

DATASET	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 ·	¥ ;	4 ;	₹	V	d (t 4		: à		۷ : ۲ :	٠ ، 2 ;		4 ·		4	9 .	2	ב	6 2	07	ופ	۷ ۷	. .
B. DAT						7	27.70	06/72	10/72	03/71					2 / 2 / 2	12/70	01/71	02/21		2//10	07/71	08/71	05/71	17/20	17711
DMS-DR	1032	1032	1036	9 4 0 T	2 6	1234	1261	1261	1278	1070	1165	9101	5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1020	1036	1036	1047	1061			" - -	1084	1093	1146	151
TEST DISCIPLINE	RANSFER	HEAT - TRANSFER	HEAT-TRANSFER	HEAT-TRANSFER	HEAT-TRANSFER	HEAT-TRANSFER	HEAT-TRANSFER	HEAT-TRANSFER	HEAT-TRANSFER	HEAT - TRANSFER	HEAT - TRANSFER	HEAT - TRANSFER	HEAT - TRANSFER	HEAT - TRANSFER	HEAT - TRANSFER	HEAT - TRANSFER	AERODYNAMICS	AERODYNAMICS	AERODYNAMICS	AFRODYNAMICS		AERODYNAMICS	AERODYNAMICS	HEAT - TRANSFEH	AERODYNAMICS
VEHICLE	800STER	LAUNCH	BOOSTER	LAUNCH	LAUNCH	OPBITER	BOOSTER	LAUNCH	LAUNCH	BOOSTER	ORBITER	LAUNCH	ORBITER	BOOSTER	BOOSTER	LAUNCH	LAUNCH	LAUNCH	ORBITER				BOOSTER	ORBITER	ORB! TER /
FACILITY TEST NUMBER	137-146,189-205	137-146,189-205	147-179,206-322	147-179,206-322	1948-2000	1948-2000	2505-2565	2505-2565	2886-2929	703-766	823-887	50	5 1	52	53	5.3	54	\$.	61	62	63		• •	99	68/71
SUBFACILITY	8 V0H1	8 C D T	6 V D 1 T	8 V D H	8 V D H 1	8 V D H H	8 V D T T	8 V D H T	F I Q > 80	BV0H1	8 V D H T	CFHT	CFHT	CFHT	CFHT	CFHT	CFHT	CFHT	CFHT	CFHT	CFHT			CFHT	F H H
FACILITY	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	LARC	S B B) (c	LAHC	LARC

82

Table 5 - Continued Space Shuttle Phase B Facility Wind Tunnel Summary

FACILITY	SUBFACILITY	FACILITY TEST NUMBER	COMPONENT	TEST DISCIPLINE	DMS-DR#	PUB DATE	DATASET CODE
1 1 1 C	CFHT	•	LAUNCH	HEAT - TRANSFER	1178	10/11	۷ ۲
) (<u>.</u>	H H G	69	0881TER	HEAT-TRANSFER	1178	10/71	4 \ Z
) (c	H	70	BOOSTER	AERODYNAMICS	1156	12/71	M
) (H H H C	7.4	LAUNCH	AERODYNAMICS	1198	01/72	¥
) (4) -	CFHT	•	BOOSTER	AERODYNAMICS	1198	01/72	ž
) (4 T	CFHT	92	0881TER	AERODYNAMICS	1194	12/71	⊙
) Q	CFHT	7.8	LAUNCH	HEAT-TRANSFER	1260	09/72	ě
- A	CFHT	980	ORBITER	AERODYNAMICS	1219	05/72	90
LARC	CFHT	88	ORBITER	AERODYNAMICS	1277	09/72	00
LARC	1191	103	ORBITER	AERODYNAMICS	1268	08/72	10
LARC	1191	2.4	BOOSTER	AERODYNAMICS	1015	04/60	۱.6
LARC	LTPT	64	0881TER	AERODYNAMICS	1018	10/70	۲,
L A R C	1101	80	ORBITER	AERODYNAMICS	1013	09/10	۲3
7 A B	1101	50-2	ORBITER	AERODYNAMICS	1045	01/71	F.
. A	1797	5.2	ORBITER	AERODYNAMICS	1049	11/71	۲3
	LTPT	545	0881758	AERODYNAMICS	1064	03/71	10
. .	LTPT	5.5	BOOSTER	AERODYNAMICS	1100	11/10	ĹĒ
LARC	LTPT	5.7	ORBITER	AERODYNAMICS	1106	07/71	S.
9	1101	8.8	ORBITER	AERODYNAMICS	1107	06/71	ž
		59	BOOSTER	AERODYNAMICS	1087	07/71	۲s
) (6.2	ORBITER	AERODYNAMICS	1149	08/71	¥
2 4		6.3	ORBITER	AERODYNAMICS	1157	09/71	© ∑
) (d	1 TPT	•	ROOSTER	AERODYNAMICS	1150	10/71	O M
CARC	LTPT	6.5	0881768	AERODYNAMICS	1168	11/71	¥ 2

ORIGINAL PAGE IS OF POOR QUALITY

OF FOUR QUALITY

Table 5 - Continued Space Shuttle Phase B Facility Wind Tunnel Summary

\$\text{1169} \tag{04/72}\$ \$\text{1172} \tag{12/71}\$ \$\text{1193} \tag{05/72}\$ \$\text{1193} \tag{05/72}\$ \$\text{1193} \tag{05/72}\$ \$\text{1232} \tag{06/72}\$ \$\text{1232} \tag{04/72}\$ \$\text{1233} \tag{04/72}\$ \$\text{1233} \tag{04/72}\$ \$\text{1233} \tag{04/72}\$ \$\text{1019} \tag{09/70}\$ \$\text{1019} \tag{09/70}\$ \$\text{1098} \tag{06/71}\$ \$\text{1098} \tag{06/71}\$ \$\text{1098} \tag{06/71}\$ \$\text{1098} \tag{06/71}\$ \$\text{1197} \tag{03/72}\$ \$\text{1197} \tag{03/72}\$	FACILITY	SUBFACILITY	FACILITY TEST NUMBER	VEHICLE COMPONENT	TEST DISCIPLINE	DMS-DR.	B. DAT	DATASET
PT 71 ORBITER AERODVNAMICS 1172 12771 PT 72 ORBITER AERODVNAMICS 1193 05/72 PT 73 BOOSTER AERODVNAMICS 1193 05/72 PT 75 ORBITER AERODVNAMICS 1193 05/72 PT 77 ORBITER AERODVNAMICS 1235 06/72 PT 86 / 86 ORBITER AERODVNAMICS 1233 04/72 PT 87 ORBITER AERODVNAMICS 1017 10/70 L PT 913 BOOSTER AERODVNAMICS 1019 09/70 L PT 9143 BOOSTER AERODVNAMICS 1019 09/70 L PT 9143 BOOSTER AERODVNAMICS 1019 09/70 L PT 944 ORBITER AERODVNAMICS 1101 06/71 M PT 945 ORBITER AERODVNAMICS 1096 06/71 M		LTPT	63	ORBITER	•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
PT 72 ORBITER AERODYNAMICS 1229 05/72 PT 73 BOOSTER AERODYNAMICS 1193 05/72 PT 75 ORBITER AERODYNAMICS 1189 12/71 PT 85/88 ORBITER AERODYNAMICS 1232 06/72 PT 86/88 ORBITER AERODYNAMICS 1235 04/72 PT 86/88 ORBITER AERODYNAMICS 1233 04/72 PT 886 BOOSTER AERODYNAMICS 1017 10/70 VIT 9143 BOOSTER AERODYNAMICS 1017 10/70 VIT 942 ORBITER AERODYNAMICS 1103 05/71 M VIT 945 ORBITER AERO		LTPT	1.2	ORB I TER	AERODYNAMICS	20 e 0 e 	04/72	ī
PT 73 BOOSTER AERODYNAMICS 1193 05/72 PT 75 ORBITER AERODYNAMICS 1189 12/71 PT 77 ORBITER AERODYNAMICS 1232 06/72 PT 85 ORBITER AERODYNAMICS 1235 04/72 PT 87 ORBITER AERODYNAMICS 1239 04/72 PT 886 BOOSTER AERODYNAMICS 1017 10/70 VI 9143 BOOSTER AERODYNAMICS 1019 09/70 VI 942 ORBITER AERODYNAMICS 1069 05/71 M VI 942 ORBITER AERODYNAMICS 1069 05/71 M VI 942 ORBITER AERODYNAMICS 1101 06/71 M VI 942 ORBITER AERODYNAMICS 1109 06/71 M VI 944 BOOSTER HEAT-TRANSFER 1096 06/71 M V		LTPT	7.2	ORBITER	AERODYNAMICS	· · ·	12/71	ž
PT 75 ORBITER AERODYNAMICS 1189 12/71 PT 65 ORBITER AERODYNAMICS 1232 06/72 PT 65 ORBITER AERODYNAMICS 1239 04/72 PT 66/86 ORBITER AERODYNAMICS 1233 04/72 PT 686 BOOSTER AERODYNAMICS 1017 10/70 10/72 VI 9143 BOOSTER AERODYNAMICS 1019 09/70 1 VI 9143 BOOSTER AERODYNAMICS 1019 09/71 I VI 9143 BOOSTER AERODYNAMICS 1069 05/71 I VI 9143 BOOSTER AERODYNAMICS 1069 05/71 I VI 942 ORBITER AERODYNAMICS 1079 05/71 I VI 942 ORBITER AERODYNAMICS 1103 05/71 I VI 945 BOOSTER AERODYNAMICS 1104 05/7		LTPT	7.3	BOOSTER	AERODYNAMICS	677-	05/72	01
PT 77 ORBITER AERODYNAMICS 1232 06/72 PT 86 ORBITER AERODYNAMICS 1239 04/72 PT 86/88 ORBITER AERODYNAMICS 1239 04/72 PT 86 BOOSTER AERODYNAMICS 1017 10/70 VI 913 BOOSTER AERODYNAMICS 1019 09/70 VI 9143 BOOSTER AERODYNAMICS 1019 09/70 VI 9143 BOOSTER AERODYNAMICS 1068 05/71 VI 9143 BOOSTER AERODYNAMICS 1070 09/70 VI 9143 BOOSTER AERODYNAMICS 1068 05/71 N VI 942 ORBITER AERODYNAMICS 1060 03/71 N VI 945 LAUNCH HEAT-TRANSFER 1096 06/71 N VI 945 LAUNCH HEAT-TRANSFER 1096 06/71 N VI 945<		LIPT	2.5	ORB 1 TER	AERODYNAMICS	7 (h	05/72	> X
10 10 10 10 10 10 10 10		LTPT	11	ORBITER	AERODYNAMICS	981	12/71	Z Z
PT 86/88 ORBITER AERODYNAMICS 1239 04/72 VI 913 ORBITER AERODYNAMICS 1017 10/70 VI 913 BOOSTER AERODYNAMICS 1019 09/70 VI 9143 BOOSTER AERODYNAMICS 1089 05/71 1 VI 9143 BOOSTER AERODYNAMICS 1068 05/71 1 VI 942 ORBITER AERODYNAMICS 1069 05/71 1 VI 942 ORBITER AERODYNAMICS 1173 12/71 N VI 945 BOOSTER AERODYNAMICS 1173 12/71 N VI 945 BOOSTER HEAT-TRANSFER 1096 06/71 N VI 945 LAUNCH HEAT-TRANSFER 1096 06/71 N VI 945 ORBITER AERODYNAMICS 1144 09/71 M VI 9518 ORBITER AERODYNAMICS 1109		LTPT	S &	ORBITER	AERODYNAMICS	12.15	06/72	60 6
PT 87 ORBITER AERODYNAMICS 1233 04/72 VI 913 BOOSTER AERODYNAMICS 1017 10/70 VI 9143 BOOSTER AERODYNAMICS 1019 09/70 VI 9143 BOOSTER AERODYNAMICS 1068 05/71 VI 942 ORBITER AERODYNAMICS 1069 05/71 VI 942 ORBITER AERODYNAMICS 1173 12/71 VI 945 ORBITER AERODYNAMICS 1173 12/71 VI 945 BOOSTER AERODYNAMICS 1173 12/71 VI 945 BOOSTER HEAT-TRANSFER 1098 06/71 VI 945 ORBITER AERODYNAMICS 1096 05/71 VI 951 ORBITER AERODYNAMICS 1103 06/71 V 952 ORBITER AERODYNAMICS 1103 06/71 V 952 ORBITER AERODYNAMICS 1103 <td></td> <td>LTPT</td> <td>86/88</td> <td>0RB17ER</td> <td>AERODYNAMICS</td> <td>1239</td> <td>04/72</td> <td>5 6</td>		LTPT	86/88	0RB17ER	AERODYNAMICS	1239	04/72	5 6
VI 886 BOOSTER AERODYNAMICS 1017 10/70 VI 913 BOOSTER AERODYNAMICS 1019 09/70 VI 9143 BOOSTER AERODYNAMICS 1068 05/71 VI 942 ORBITER AERODYNAMICS 1173 12/71 VI 942 ORBITER AERODYNAMICS 1173 12/71 VI 945 ORBITER AERODYNAMICS 1101 06/71 VI 945 BOOSTER HEAT-TRANSFER 1098 06/71 VI 945 LAUNCH HEAT-TRANSFER 1098 06/71 VI 945 ORBITER AERODYNAMICS 1103 06/71 VI 951 ORBITER AERODYNAMICS 1103 06/71 VI 952 ORBITER AERODYNAMICS 1103 06/71 VI 952 ORBITER AERODYNAMICS 1103 06/71 VI 952 ORBITER AERODYNAMICS 1103<		LTPT	8.7	ORBITER	AERODYNAMICS	1233	04/72	ני
VI 913 BOOSTER AERODYNAMICS 1019 09/70 VI 9143 BOOSTER AERODYNAMICS 1068 05/71 VI 922 ORBITER AERODYNAMICS 1068 03/71 VI 942 ORBITER AERODYNAMICS 1173 12/71 VI 945 ORBITER AERODYNAMICS 1173 12/71 VI 945 BOOSTER HEAT-TRANSFER 1098 06/71 VI 945 LAUNCH HEAT-TRANSFER 1096 05/71 VI 945 ORBITER AERODYNAMICS 1144 09/71 VI 945 ORBITER AERODYNAMICS 11096 05/71 VI 951B ORBITER AERODYNAMICS 11144 09/71 VI 955 ORBITER AERODYNAMICS 1103 06/71 VI 955 UAUNCH AERODYNAMICS 1197 03/72		UPWI	886	BOOSTER	AERODYNAMICS	1017	10/70	} =
### 9143 BOOSTER AERODYNAMICS 1068 05/71 ####################################		UPWI	913	BOOSTER	AERODYNAMICS	91.01		.
9143 BOOSTER AERODYNAMICS 1068 03/71 942 ORBITER AERODYNAMICS 1069 03/71 942 ORBITER AERODYNAMICS 1101 06/71 945 BOOSTER HEAT-TRANSFER 1098 06/71 945 ORBITER HEAT-TRANSFER 1098 06/71 951 ORBITER AERODYNAMICS 1104 09/71 955 ORBITER AERODYNAMICS 1103 06/71 956 LAUNCH AERODYNAMICS 1103 06/71 962 BOOSTER AERODYNAMICS 1197 03/72 N		UPWT	9143	BOOSTER	AERODYNAMICS	9 6		
1 922 ORBITER AERODYNAMICS 1069 03771 1 942 ORBITER AERODYNAMICS 1173 12/71 1 945 ORBITER AERODYNAMICS 1101 06/71 1 945 BOOSTER HEAT-TRANSFER 1098 06/71 1 945 ORBITER HEAT-TRANSFER 1098 06/71 1 945 ORBITER AERODYNAMICS 1096 05/71 1 951 ORBITER AERODYNAMICS 1144 09/71 1 955 ORBITER AERODYNAMICS 1103 06/71 1 952 LAUNCH AERODYNAMICS 1197 03/72 1 962 BOOSTER AERODYNAMICS 1197 03/72		UPWT	9143	BOOSTER	AERODYNAMICS			균 ;
1 942 ORBITER AERODYNAMICS 1173 12/71 T 944/961 ORBITER AERODYNAMICS 1101 06/71 T 945 BOOSTER HEAT-TRANSFER 1098 06/71 T 945 CAUNCH HEAT-TRANSFER 1098 06/71 T 951 ORBITER HEAT-TRANSFER 1098 06/71 T 951B ORBITER AERODYNAMICS 1104 09/71 F 954B ORBITER AERODYNAMICS 1103 06/71 F 962 LAUNCH AERODYNAMICS 1103 06/71 F 962 LAUNCH AERODYNAMICS 1197 03/72 F 962 LAUNCH AERODYNAMICS 1197 03/72		UPWT	922	ORBITER	AERODYNAMICS	690		J .
944/961 ORBITER AERODYNAMICS 1101 06/71 945 BOOSTER HEAT-TRANSFER 1098 06/71 945 LAUNCH HEAT-TRANSFER 1098 06/71 951 ORBITER HEAT-TRANSFER 1098 06/71 951 ORBITER AERODYNAMICS 1144 09/71 952 LAUNCH AERODYNAMICS 1197 03/72 N		UPWT	942	ORBITER	AERODYNAMICS	1173		5 ,
### BOOSTER HEAT-TRANSFER 1098 06/71 ### PAS LAUNCH HEAT-TRANSFER 1098 06/71 #### PAS ORBITER HEAT-TRANSFER 1098 06/71 #### PAS ORBITER AERODYNAMICS 1096 05/71 #### PASS ORBITER AERODYNAMICS 1103 06/71 #### PASS ORBITER AERODYNAMICS 1197 03/72 #### PASS BOOSTER AERODYNAMICS 1197 03/72 #### PASS BOOSTER AERODYNAMICS 1197 03/72		UPWT	944/961	ORBITER	AERODYNAMICS	, ,	17/21	¥
LAUNCH HEAT-TRANSFER 1098 06/71 1 945 CABITER HEAT-TRANSFER 1098 06/71 951 ORBITER AERODYNAMICS 1104 09/71 952 CABITER AERODYNAMICS 1103 06/71 962 BOOSTER AERODYNAMICS 1197 03/72 1 945			945	BOOSTER		-	06/71	Z
T 945 ORBITER HEAT-TRANSFER 1098 06/71 T 951B ORBITER AERODYNAMICS 1096 05/71 ORBITER AERODYNAMICS 1103 06/71 F 955 ORBITER AERODYNAMICS 1103 06/71 962 LAUNCH AERODYNAMICS 1197 03/72 a			945		X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80	06/71	٧ / X
951 ORBITER HEAT-TRANSFER 1098 06/71 951 ORBITER AERODYNAMICS 1104 09/71 955 ORBITER AERODYNAMICS 1103 06/71 962 LAUNCH AERODYNAMICS 1197 03/72 a			9 4 0		HEAT - TRANSFER	1098	06/71	W / N
9518 ORBITER AERODYNAMICS 1096 05/71 7 9518 ORBITER AERODYNAMICS 1103 06/71 7 962 LAUNCH AERODYNAMICS 1197 03/72				ORBITER	HEAT - TRANSFER	8601	12/90	N/A
9518 ORBITER AERODYNAMICS 1144 09/71 955 ORBITER AERODYNAMICS 1103 06/71 962 LAUNCH AERODYNAMICS 1197 03/72 962 800STER AERODYNAMICS 1197 03/72			951	ORBITER	AERODYNAMICS	1096	05/71	<u>a</u>
955 ORBITER AERODYNAMICS 1103 06/71 962 LAUNCH AERODYNAMICS 1197 03/72 962 800STER AERODYNAMICS 1197 03/72			9518	OPBITER	AERODYNAMICS	1144	12/60	, <u>,</u>
962 LAUNCH AERODYNAMICS 1197 03/72 962 BOOSTER AERODYNAMICS 1197 03/72			955	ORBITER	AERODYNAMICS	1103	06/71	
962 BOOSTER AERODYNAMICS 1197 03/72			962	LAUNCH	AERODYNAMICS	1197	03/72	v i
			962		AERODYNAMICS	1197	03/72	

Table 5 - Continued Space Shuttle Phase B Facility Wind Tunnel Summary

FACILITY	SUBFACILITY	FACILITY TEST NUMBER	VEHICLE	TEST DISCIPLINE	DMS-DR#	PUB DATE	DATASET
1 1 1 1 1	1		ORBITER	AERODYNAMICS	1117	09/71	r,
LARC	TW9U	5 Q F	BOOSTER	AERODYNAMICS	1117	11/60	L.B.
LARC	Mdf)	ე € ₩ ₩	LAUNCH	AERODYNAMICS	1117	1 / / 60	r B
LARC	M 40	n 49	0881TER	AERODYNAMICS	1196	01/72	Z
LARC	M (1)	0,400	ORB 1 TER	AERODYNAMICS	1216	05/72	0
LARC	M40	1 1 1 1 1 1 1 1 1	LAUNCH	AERODYNAMICS	1237	05/72	90
)	* A4 60 5	99	ORBITER	AERODYNAMICS	1237	05/72	90
AR (3 10 10 10 10 10 10 10 10 10 10 10 10 10	ກ ແ ກ ຜ	BOOSTER	AERODYNAMICS	1237	05/72	90
LAHC	1 W 4 D	9967	LAUNCH	HEAT-TRANSFER	1263	09/72 REV. ▲	ช
		න ග	ORBITER	AERODYNAMICS	1232	06/72	60
ר אול	A B C C C C C C C C C C	026	ORBITER	AERODYNAMICS	1235	05/72	၁၀
LARC	3 10 11	0 0	ORBITER	AERODYNAMICS	1258	05/72	OF
LARC	- Man	n •	PONCH	AERODYNAMICS	1265	01/13	P
LARC	LW4U	- 20.56	0881188	AERODYNAMICS	1147	12/60	ME
LARC	V/STOL	, OU	HONE	AEBODYNAMICS	1058	02/71	Ŧ
۲۱ ۷	HOWI			SOLMANYCOGRA	1115	08/71	cn
110	HSWI	င က ဟ	K3-19H0	4 N N N N N N N N N N N N N N N N N N N	1115	08/71	ລວ
רוא	HSWI	8-30	BOOSIER			17/80	23
110	HSWI	8-30	LAUNCH	AERODYNAMICS	<u>c</u>		: :
MAC	LSWT	132	BOOSTER	AERODYNAMICS	- 0	0 / 0	3 8
MAC	LSWT	1351	BOOSTER	AERODYNAMICS	1035	12/70	ຍ
) (I Mo	138	ORBITER	AERODYNAMICS	1074	04/71	Z O
		e ::	ORBITER	AERODYNAMICS	1001	08/10	5
) (E 2	3 0	235	ORBITER	AERODYNAMICS	1040	12/70	63
J OK	LAS 1	237	0AB TER	AERODYNAMICS	1090	17/50	00
į							

Table 5 - Continued Space Shuttle Phase B Facility Wind Tunnel Summary

FACILITY	SUBFACILITY	FACILITY TEST NUMBER	VEHICLE	DISCIPLINE	DMS-DR	PUB. DATE	DATASET CODE
∀	LSWT	239	BOOSTER	AERODYNAMICS	1054	02/71	S S
MAC	LSWT	240	ORB 1 TER	AERODYNAMICS	1041	01/71	CF
MAC	LSWT	248	ORBITER	AERODYNAMICS	1067	03/71	CP
MAC	LSWT	549	BOOSTER	AERODYNAMICS	1017	04/71	Ç
MA C	LSWT	258	BOOSTER	AERODYNAMICS	1120	08/71	20
MDAC	4 TWT	S-122	LAUNCH	AERODYNAMICS	1230	11/72	20
MDAC	4 T.W.T	5-222	BOOSTER	AERODYNAMICS	1230	11/72	10
MDAC	4 TWT	8-222	ORBITER	AERODYNAMICS	1230	11/72	20
MSFC	14TWT	451	BOOSTER	AERODYNAMICS	1001	06/70	6
O H S M	1 4 TWT	453	ORBITER	AERODYNAMICS	1003	01/10	17
MSFC	1 4 TWT	466	LAUNCH	AERODYNAMICS	1051	03/71	2.2
MSFC	1 4 TWT	466	BOOSTER	AERODYNAMICS	1051	03/71	2.2
MSFC	14TWT	468	ORBITER	AERODYNAMICS	1027	10/70	2.1
MOFC	14 TWT	470	LAUNCH	AERODYNAMICS	1044	02/71	2.4
MSFC	14TWT	121	ORBITER	AERODYNAMICS	1043	02/71	23
O #S₽	1 4 TWT	476	LAUNCH	AERODYNAMICS	1055	02/71	2.5
MSFC	14TWT	477	ORBITER	AERODYNAMICS	1 1 4	17/60	26
S F C	14 TWT	478	ORBITER	AERODYNAMICS	1076	04/71	2.7
MSFC	1 4 TWT	481	BOOSTER	AERODYNAMICS	1102	03/72	28
MSFC	14TWT	484	ORBITER	AERODYNAMICS	1126	1 2 / 60	29
MSFC	1 4 TWT	485	LAUNCH	AERODYNAMICS	1601	05/71	30
MSFC	1 4 TW T	489	LAUNCH	AERODYNAMICS	6111	12/10	3.7
MSFC	14 TWT	490	LAUNCH	AERODYNAMICS	1130	03/72	32
MSFC	14TWT	06.	BOOSTER	AERODYNAMICS	1130	03/72	32

Table 5 - Continued Space Shuttle Phase B Facility Wind Tunnel Summary

R AERODYNAMICS 1140 R AERODYNAMICS 1148 R AERODYNAMICS 1152 R AERODYNAMICS 1153 R AERODYNAMICS 1160 R AERODYNAMICS 1162 R AERODYNAMICS 1162 R AERODYNAMICS 1162 H AERODYNAMICS 1162 H AERODYNAMICS 1187 H AERODYNAMICS 1188 H AERODYNAMICS 1182 H AERODYNAMICS 1183 ER AERODYNAMICS 1183 H AERODYNAMICS 1183 ER AERODYNAMICS 1185 ER AERODYNAMICS 1186 ER AERODYNAMICS <th>SUBFACILITY</th> <th>FACILITY VEHICLE TEST NUMBER COMPONENT</th> <th>TEST DISCIPLINE</th> <th>DMS - DR</th> <th>PUB. DATE</th>	SUBFACILITY	FACILITY VEHICLE TEST NUMBER COMPONENT	TEST DISCIPLINE	DMS - DR	PUB. DATE
AERODYNAMICS 1148 09/71 3 AERODYNAMICS 1152 09/71 3 AERODYNAMICS 1152 09/71 3 AERODYNAMICS 1153 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1187 07/72 4 AERODYNAMICS 1187 07/72 4 AERODYNAMICS 1188 02/72 AERODYNAMICS 1181 01/72 AERODYNAMICS 1182 02/72 AERODYNAMICS 1183 10/71 AERODYNAMICS 1183 10/71 AERODYNAMICS 1183 02/72 AERODYNAMICS 1183 02/72 AERODYNAMICS 1183 02/72 AERODYNAMICS 1184 06/72 AERODYNAMICS 1185	167	LAUNCH	AERODYNAMICS	1140	08/71
AERODYNAMICS 1148 09/71 3 AERODYNAMICS 1152 09/71 3 AERODYNAMICS 1153 10/71 3 AERODYNAMICS 1160 10/72 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1187 07/72 4 AERODYNAMICS 1187 07/72 4 AERODYNAMICS 1181 01/72 4 AERODYNAMICS 1182 02/72 4 AERODYNAMICS 1182 02/72 4 AERODYNAMICS 1183 10/71 4 AERODYNAMICS 1183 10/71 4 AERODYNAMICS 1183 02/72 AERODYNAMICS 1183 02/72 AERODYNAMICS 1184 06/72 AERODYNAMICS 1185	492	BOOSTER	AERODYNAMICS	1148	11/60
AERODYNAMICS 1152 09/71 3 AERODYNAMICS 1155 09/71 3 AERODYNAMICS 1160 10/72 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1166 09/71 4 AERODYNAMICS 1187 07/72 4 AERODYNAMICS 1187 07/72 4 AERODYNAMICS 1181 01/72 0 AERODYNAMICS 1182 02/72 AERODYNAMICS 1183 10/71 AERODYNAMICS 1183 10/71 AERODYNAMICS 1183 02/72 AERODYNAMICS 1183 02/72 AERODYNAMICS 1184 06/72 AERODYNAMICS 1184 06/72 AERODYNAMICS 1183 10/71 AERODYNAMICS 1185 02/72 AERODYNAMICS 1185	492	LAUNCH	AERODYNAMICS	1148	09/71
AERODYNAMICS 1153 10/71 3 AERODYNAMICS 1155 09/71 3 AERODYNAMICS 1160 10/72 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1187 07/72 4 AERODYNAMICS 1187 07/72 4 AERODYNAMICS 1182 02/72 6 AERODYNAMICS 1183 10/71 4 AERODYNAMICS 1183 10/71 6 AERODYNAMICS 1183 10/71 6 AERODYNAMICS 1183 10/71 6 AERODYNAMICS 1183 02/72 6 AERODYNAMICS 1186 02/72 6 AERODYNAMICS 1183 02/72 AERODYNAMICS 1185 02/72 AERODYNAMICS 1186 02/72 AERODYNAMICS 1186	493	BOOSTER	AERODYNAMICS	1152	09/71
AERODYNAMICS 1155 09/71 3 AERODYNAMICS 1160 10/72 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1166 09/71 4 AERODYNAMICS 1187 07/72 4 AERODYNAMICS 1188 02/72 4 AERODYNAMICS 1182 02/72 4 AERODYNAMICS 1183 10/71 4 AERODYNAMICS 1183 10/71 4 AERODYNAMICS 1183 02/72 4 AERODYNAMICS 1184 06/72 6 AERODYNAMICS 1185 02/72 6 AERODYNAMICS 1185 02/72 6 AERODYNAMICS 1185 02/72 6 AERODYNAMICS 1186 02/72 6 AERODYNAMICS 1185 02/72 6	767	ORBITER	AERODYNAMICS	1153	10/11
AERODYNAMICS 1160 10/72 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1201 03/72 4 AERODYNAMICS 1187 07/72 4 AERODYNAMICS 1187 07/72 4 AERODYNAMICS 1181 01/72 6 AERODYNAMICS 1182 02/72 6 AERODYNAMICS 1183 10/71 6 AERODYNAMICS 1183 10/71 6 AERODYNAMICS 1183 10/71 6 AERODYNAMICS 1184 06/72 AERODYNAMICS 1185 02/72	495	BOOSTER	AERODYNAMICS	1155	09/71
AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1166 09/71 4 AERODYNAMICS 1187 07/72 4 AERODYNAMICS 1181 01/72 4 AERODYNAMICS 1182 02/72 6 AERODYNAMICS 1183 10/71 6 AERODYNAMICS 1183 10/71 6 AERODYNAMICS 1183 10/71 6 AERODYNAMICS 1185 02/72 AERODYNAMICS 1185 02/72 AERODYNAMICS 1185 02/72 R AERODYNAMICS 1185 02/72 R AERODYNAMICS 1185 02/72	96♥	BOOSTER	AERODYNAMICS	1160	10/72
AERODYNAMICS 1162 10/71 3 R AERODYNAMICS 1162 10/71 3 R AERODYNAMICS 1201 03/72 4 R AERODYNAMICS 1187 07/72 4 R AERODYNAMICS 1187 07/72 4 R AERODYNAMICS 1188 02/72 4 R AERODYNAMICS 1182 02/72 4 R AERODYNAMICS 1183 10/71 6 ER AERODYNAMICS 1183 10/71 6 ER AERODYNAMICS 1183 10/71 6 ER AERODYNAMICS 1184 06/72 ER AERODYNAMICS 1185 02/72 ER AERODYNAMICS 1185 02/72 ER AERODYNAMICS 1186 11/71	264	BOOSTER	AERODYNAMICS	1162	10/71
AERODYNAMICS 1162 10/71 3 AERODYNAMICS 1201 03/72 4 AERODYNAMICS 1187 07/72 6 AERODYNAMICS 1187 07/72 6 AERODYNAMICS 1181 01/72 6 AERODYNAMICS 1182 02/72 6 AERODYNAMICS 1183 10/71 6 AERODYNAMICS 1183 10/71 6 AERODYNAMICS 1184 06/72 6 AERODYNAMICS 1185 02/72 6 AERODYNAMICS 1185 02/72 6 AERODYNAMICS 1185 02/72 6 AERODYNAMICS 1185 02/72 6 AERODYNAMICS 1186 11/71 6	164	LAUNCH	AERODYNAMICS	1162	10/11
AERODYNAMICS 1201 03/72 AERODYNAMICS 1166 09/71 AERODYNAMICS 1187 07/72 AERODYNAMICS 1188 02/72 AERODYNAMICS 1181 01/72 AERODYNAMICS 1182 02/72 AERODYNAMICS 1183 10/71 AERODYNAMICS 1183 10/71 AERODYNAMICS 1184 06/72 AERODYNAMICS 1185 02/72 AERODYNAMICS 1185 02/72 AERODYNAMICS 1185 02/72 R AERODYNAMICS 1186 11/71	164	ORBITER	AERODYNAMICS	1162	10/11
AERODYNAMICS 1166 09/71 AERODYNAMICS 1187 07/72 R AERODYNAMICS 1188 02/72 AERODYNAMICS 1181 01/72 R AERODYNAMICS 1182 02/72 R AERODYNAMICS 1183 10/71 FR AERODYNAMICS 1183 10/71 FR AERODYNAMICS 1184 06/72 FR AERODYNAMICS 1185 02/72	£ €	ORBITER	AERODYNAMICS	1201	03/72
AERODYNAMICS 1187 07/72 AERODYNAMICS 1187 07/72 AERODYNAMICS 1188 02/72 AERODYNAMICS 1181 01/72 AERODYNAMICS 1182 02/72 AERODYNAMICS 1183 10/71 AERODYNAMICS 1183 10/71 AERODYNAMICS 1184 06/72 AERODYNAMICS 1185 02/72 AERODYNAMICS 1185 02/72 AERODYNAMICS 1185 02/72	501	LAUNCH	AERODYNAMICS	1166	12/60
AERODYNAMICS 1187 07/72 AERODYNAMICS 1188 02/72 AERODYNAMICS 1181 01/72 AERODYNAMICS 1182 02/72 AERODYNAMICS 1183 10/71 AERODYNAMICS 1183 10/71 AERODYNAMICS 1185 02/72 AERODYNAMICS 1185 02/72 AERODYNAMICS 1185 02/72 AERODYNAMICS 1185 02/72 AERODYNAMICS 1186 11/71	502	LAUNCH	AERODYNAMICS	1187	07/72
AERODYNAMICS 1188 02/72 AERODYNAMICS 1181 01/72 AERODYNAMICS 1182 02/72 AERODYNAMICS 1183 10/71 R AERODYNAMICS 1183 10/71 R AERODYNAMICS 1184 06/72 R AERODYNAMICS 1185 02/72 R AERODYNAMICS 1185 02/72 R AERODYNAMICS 1185 02/72 R AERODYNAMICS 1186 11/71	505	JABITER	AERODYNAMICS	1187	07/72
AERODYNAMICS 1181 01/72 AERODYNAMICS 1182 02/72 R AERODYNAMICS 1183 10/71 R AERODYNAMICS 1183 10/71 R AERODYNAMICS 1184 06/72 R AERODYNAMICS 1185 02/72 R AERODYNAMICS 1185 02/72 R AERODYNAMICS 1186 11/71	503	LAUNCH	AERODYNAMICS	1188	02/72
AERODYNAMICS 1182 02/72 R AERODYNAMICS 1183 10/71 R AERODYNAMICS 1183 10/71 R AERODYNAMICS 1184 06/72 R AERODYNAMICS 1185 02/72 R AERODYNAMICS 1185 02/72 R AERODYNAMICS 1186 11/71	3 4 0 5	AUNCH	AERODYNAMICS	1181	01/72
R AERODYNAMICS 1182 02/72 AERODYNAMICS 1183 10/71 R AERODYNAMICS 1184 06/72 R AERODYNAMICS 1185 02/72 R AERODYNAMICS 1185 02/72 R AERODYNAMICS 1186 11/71	\$0\$	AUNCH	AERODYNAM +CS	1182	02/72
AERODYNAMICS 1183 10/71 R AERODYNAMICS 1184 06/72 R AERODYNAMICS 1185 02/72 R AERODYNAMICS 1185 02/72 R AERODYNAMICS 1185 11/71	505	ABITER	AERODYNAMICS	1182	02/72
AERODYNAMICS 1183 10/71 AERODYNAMICS 1184 06/72 AERODYNAMICS 1185 02/72 AERODYNAMICS 1186 11/71	3 908	AUNCH	AERODYNAMICS	1183	10/11
AERODYNAMICS 1184 06/72 AERODYNAMICS 1185 02/72 AERODYNAMICS 1185 02/72 AERODYNAMICS 1186 11/71	506	BOOSTER	AERODYNAMICS	1183	10/71
AERODYNAMICS 1185 02/72 AERODYNAMICS 1185 02/72 AERODYNAMICS 1186 11/71)R811ER	AERODYNAMICS	1 184	06/72
AERODYNAMICS 1185 02/72 AERODYNAMICS 1186 11/71	503	LAUNCH	AERODYNAMICS	1185	02/72
AERODYNAMICS 1186 11/71	603	ORBITER	AERODYNAMICS	1185	02/72
	510	ORBITER	AERODYNAMICS	1186	11/71

7.1

Space Shuttle Phase B Facility Wind Tunnel Summary Table 5 - Continued

FACILITY	SUBFACILITY	FACILITY TEST NUMBER	VEHICLE		DMS-DR#	PUB DATE	DATASET CODE
MSFC	1.4.T.W.T	512	BOOSTER	ERODYNAM	1 4 6		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O	14TWT	512	LAUNCH	AERODYNAMICS	1021	12//1	9 .
MSFC	1 4 TWT	513	BOOSTER	AERODYNAMICS	1001	7.77	20
MSFC	1 4 TWT	514	BOOSTER	AERODYNAMICS	0101		e (
MSFC	14 TWT	514	LAUNCH	AERODYNAMICS	01.61	2//20	eo vo
MSFC	14 TWT	517	LAUNCH	AERODYNAMICS	1213	02772	ac u
MSFC	1 4 T.W.T	517	BOOSTER	AERODYNAMICS	1213	02/72	e w
MOFC.	1 4 TW T	518	BOOSTER	AERODYNAMICS	1208	01/72) u
MSF.C	14TWT	521	BOOSTER	AERODYNAMICS	1226	05/72	, v
OHOM	1 4 TWT	523	LAUNCH	AERODYNAMICS	1227		3 5
MOFC	1 4 TWT	523	BOOSTER	AERODYNAMICS	1227	2 (2)	à :
MSFC	1.4.T.W.T	524	BOOSTER	AERODYNAMICS	1240	27720	· s
MSFC	14TWT	526	BOOSTER	AERODYNAMICS	1242	21/20	n .
MSFC	14TWT	528	ORBITER	AERODYNAMICS	1 243	03770	- (
MSFC	1.4 TWT	529	BOOSTER	AERODYNAMICS	1245	27.75	70 4
MSFC	14 TWT	531	LAUNCH	AERODYNAMICS	1241	2//20	7 G
MSFC	1.4 TWT	534	LAUNCH	AERODYNAMICS	1249	04/72	; v
MOFIC C	1 A TWT	538	LAUNCH	AERODYNAMICS	1251	04/72) u
MSFC	1 4 TWT	540	LAUNCH	AIRLOADS	1259	01/73	2 6
MSFC	1 4 TWT	540	ORBITER	AIRLOADS	1259	2/10	- -
MSFC	14 TWT	541	BOOSTER	AERODYNAMICS	1253	22/60	
MSFC	14TWT	542	ORBITER	AERODYNAMICS	1254	08/72	9 g
MSFC	1 4 T W T	543	LAUNCH	AIRLOADS	1255	03/73	, c
MSFC	14 TWT	544	LAUNCH	AERODYNAMICS	1256	08/72	2 -

COMMON DAMAS IS OF FOUR QUALITY

88

Table 5 - Continued Space Shuttle Phase B Facility Wind Tunnel Summary

	SUBFACILITY	FACILITY TEST NUMBER	VEHICLE	TEST DISCIPLINE	DMS-DR*	PUBL DATE	CODE
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	AERODYNAMICS	1272	10/72	
MSFC	1 4 TWT	υ 4. Χ Χ		AIRLOADS	1273	01/73	7.3
MSFC	1.4.T.W.T	550		AFRODYNAMICS	1274	09/72	7.
MSFC	1 4 TWT	551	048118HO	AFBODYNAMICS	1010	08/10	V
NALAD	LSWT	629	0461164	A FRODYNAMICS	1037	01/71	S 2
NPLAU	LSWT	630	048 - 64	AERODYNAMICS	1034	11/70	90
NALAD	LSWT	632	CAST LES	AERODYNAMICS	1124	11/10	ដ
NALAD	LSWT	633	GASSER	AERODYNAMICS	1139	10/11	X 2
NSRDC	7 10 TWT	3110	8003-50	AERODYNAMICS	1164	02/72	E Z
NSADC	7 1 0 T W T	3210	1215000 1215000 1215000	AERODYNAMICS	1192	05/72	Z
NSRDC	7.10 TWT	3310	60031CA	AERODYNAMICS	1057	02/71	63
T A M	TIOSWI	S-18/S-35		AFRODYNAMICS	1062	02/71	67
MAT	7.10SWT	8C E - 53	ORBITER	AFBODYNAMICS	1073	04/71	62
TAM	710SWT	5-39	ORBITER	AFRODYNAMICS	1060	03/71	99
TAM	7.10SWT	5-8-1		AFBODYNAMICS	1205	10/12	
T A M	7 10 SWT	5-8-2	ORBITER	80.348	1008	08/10	
T A M	7 10 SWT	ا ا	ORBITER	SC New York	1033	12/70	
T A M	7 1 0 SWT	> : x x - S	BOOSTER	AEBODYNAMICS	1228	06/72	
180	BASWT	553	BOOSTEH	AFEODYNAMICS	1276	09/72	
18C	B 4 SW1	557	80051EH		1275	11/72	
180	BASWT	557	BOOSIER		1128	08/72	
180	BASWI	558	80031EN		1191	02/72	
18C	BTWT	1265	BOOSTER		1228	06/72	
8 0	BIWI	1273	BOOSTER		1276	09/72	
a	†w.⊤ a	1080					

OF POOR QUALITY

Space Shuttle Phase B Facility Wind Tunnel Summary Table 5 - Concluded

DATASET CODE	• • • •	8 0 O	10
DMS-DR# .PUB .DATE		7	07 / 7 1 REV 01
DMS-DR#	1275		n 5
TEST	AERODYNAMICS	AERODYNAMICS	
COMPONENT	BOOSTER	BOOSTER	
FACILITY TEST NUMBER	1282	1021	
SUBFACILITY	BTWT	8 1 2 SWT	
P - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	18 C	ΜΩ	

TABLE 6.3

SPACE SHUTTLE PHASE B DIGITAL DATABASE LAUNCH AERODYNAMICS

FILE #	всс	B-CONTRA	осс	O-CONTRA	DR#	2-CHAR CODE	# D/S's	# RECORDS
1 2	<u>B1</u>		02/03 02	MDAC	1065 1108	AB T8	132 882	1618 9691
3	Y	MDAC/MMC			1118 1117	AC LR	144 154	1837 1721
5 6	B1/B3 <u>B1</u>	₩		GAC	1190 1148	MU 34	16	225 1417
7 3	V	MDAC.	₩	MDAC	1099	43 50	24 12 41	265 145 560
9 10	B2 B2/B3	GD/C	<u>Ø2</u>	MSC.	1204 1210 1230	50 58 D7	76 1051	913 13235
11 12	<u>B2</u>	MDAC MSFC		LMSC_	1256 1272	71	88	1233 869
13 14 15				MSC	1241 1249	60 65	44 24	397 337
16					1251 1265	66 øн	26 21	365 295
18		NR NR		∀ NR	1267 1185	51	120 26	1681 313 505
20		TBC MSFC	V Ø4	MSC GAC	1227	57 46	36 16 99	193 1219
22 23	B3/B4	GD/C	Ø2/Ø3 <u>Ø2</u>	NR T	1052 1127 1130	CA AZ 32	55 140	606
24 25				MSC	1237 1213	ØB 56	26 42	365 589
26	B3/B4		<u>02/03</u>	MSC MSC/MDAC	1115	CU	104 227	1249 2569
28 29 30	<u>B3</u>	MSC/MDAC TBC MDAC	Ø2/Ø4 Ø3	MSC MSC	1183 1047	48 LB	74 10	1037 86

TABLE 6.3 (Continued)

SPACE SHUTTLE PHASE B DIGITAL DATABASE LAUNCH AERODYNAMICS

FILE #	BCC	B-CONTRA	осс	O-CONTRA	DR#	2-CHAR CODE	# D/S's	# RECORDS
31 32 33 34	B3 B3/B4 <u>B3</u>	MDAC MSC <u>GD/C</u>	Ø3 ₩ Ø4 ₩	MSC VR NR	1061 1058 1119 1162	LC CH 31 39	10 80 29 25	91 881 407 351

TABLE 6.3 (Concluded)
SPACE SHUTTLE PHASE B

SPACE SHUTTLE PHASE B DIGITAL DATABASE LAUNCH AERODYNAMICS

TABLE 6.4

SPACE SHUTTLE PHASE B
DIGITAL DATABASE
LAUNCH AIRLOADS AND HEAT TRANSFER

FILE #	BCC	B-CONTRA	осс	0-CONTRA	DR#	2-CHAR CODE	# D/S's	# RECORD:
20 21 22 23	ADS B1 ▼ B2 B4	MDAC MSFC GD/C	<u>02</u> V 02/03	MDAC ▼ MSFC NR	1174 1222 1259 1129	T8 TC 67 AX	891 113 48 130	11881 5490 1315 4959
HEAT 24	TRANSFER B1	MDAC	Ø2	MDAC	1263	ØL	21	247

(THIS PAGE INTENTIONALLY LEFT BLANK)

APPENDIX C-1

MODEL FIGURES

LAUNCH AERODYNAMICS

PRECEDING PAGE BLANK NOT FILMED

TEST

DATA SET COLLATION SHEET

M POSTTEST

O PRETEST

DELTA WING ORBITEF CANARD BOOSTER JIDPVAR(1) IDPVAR(2) NDV ALPHA MDAC MACH NUMBERS (OR ALTERNATE INDEPENDENT VARIABLE MACH 9 55 125 75 79 67 38 32 46 42 11 22 12 1.6 2.0 27 23 33 8/ 13 28 CD $\boldsymbol{\omega}$ N 4 129 126 68 76 35 #3 80 72 47 39 0,6 0.85 1.1 1.2 34 701 29 t T Ø 73 15/ 36 69 25 20 40 $\widetilde{\omega}$ 9 30 4 7831 130 74 78 70 121 37 26 9 12 17 31 ω B 4 4 B CXA ပိ C 0 O ô ŏ $\hat{\mathcal{S}}$ ő ô O Ó PARAMETERS / VALUES 3 ° ဝိ 9 2 60 ° (°) ő ő ဝိ 0 Ö Õ 0 0 O ô ° 겋 9 O #ò ô g ő ŝ ० ő ပိ ő 0 ง 9 S ô ဝိ Ö CLM 5. Ö 0 ,0 ő 50 50 o ó õ oʻ SCHD. 4 4 -8 Ø B A A B đ CAB 16 71 0 CONFIGURATION 02 O + + COEFFICIENTS: 77 2 a or B 5/7 708 607 0/7 107 607 207 DATA SET IDENTIFIER 607 107 102 107 RAB 8 N.Y

PAGE IS CHICKAL OF POUR QUALITY

8

O

S

8

-10

SCHEDULES

DR#1065

MDAC

MADERIAL PAGE IS OF FOOR QUALITY

O PRETEST

DATA SET COLLATION SHEET

508 508

TEST

M POSTTEST MACH NUMBERS (OR ALTERNATE INDEPENDENT VAHIABLE 63 1.2 1.5 2.0 58 50 54 13 121 89 12 101 801 9 25 88 201 93 66 96 55 122 8 811 29 49 5/ 0.6 0.85 1.1 65 109 103 85 52 124 123 88 09 56 116 115 120 119 100 97 16 53 23 è NO. of RUNS m m 3 3 3 'n 7 ő ó PARAMETERS/VALUES Ö Ó Ö ŏ ١ ı ١ 9 ő ô ô Ô 100 Ó 1 ı 9 Ĉ -/0,-90 g ő o Ċ ı õ ő ő ò 0 ç 35 Ö ó ò 0 50 'n Ċ B <u>'9</u> 8 o Ø ŏ SCHD. 0 A -5 3 Ø A BB BB H T A A +BZWZVIRI 24+B2W2VIRI +82VIR CONFIGURATION 0 10 + + 82 Ó BUI 3 23 15 130B1 125 DATA SET IDENTIFIER 7/9 20 £27 124 627889 132 646 117 121 727 127 187 RAB

4

8 9

4 4

q

ŗ

A: -10-8-6

0

9

HIDPVAR(1) IDPVAR(2) | NDV

MACH. ALPHA

9

55

4.9

43

37

25

יכקד

XX

KLM

048

ICA.

CN.

COEFFICIENTS:

a or B SCHEDULES

105 104

106

B

ŧ

•

õ

,0

A 13

648 133

ţ

1

Ö

101

认

6×6 TE8T 508

DATA SET COLLATION SHEET

OPRETEST OPOSTTEST

CONFIGURATION SCHO. PARAMETERS OF OF CONFIGURATION	4 3 × 10 20 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	02 HCR A 0' 0 0 0 6 31 30 29	6 0/ 1/ 2	400	6/ 1/ 5/ 1/ 2	81 61 20 16 18	36 04 17 7	76 96 66 7	87 07 11	4 0 4 43	W W W											69 55 61	13 19 25 31 37 43 C/ 1CD	MAC ICA CAB CLM CX EIN ICBE	FFICIENTS!	A = -10 -8 -6 -4 -2,0,2,4,6,6,10	MDAC	08 C=1= 3
			200	600	400	005	900		800	000	.0) DRI	IGI	NA NA		PA	\GI	E !	s						FFICIE	a or B	SCHEDOLES	
	CONFIGURATION SCHO. PARAMETERS / NAME OF SCHOOL OF SCHOO	CONFIGURATION OF B JA JE JE STONES 0.6	CONFIGURATION SCHO. PARAMETERS/ ALCO OF O O O O O O O O O O O O O O O O O	CONFIGURATION SCHO. PARAMETERS/ NAME of 8 0.6 OZ HCR A O' O' O' O' 5 5 OZ HCR A O' O' O' O' 5 5 OZ HCR A O' O' O' O' 5 5 OZ HCR A O' O' O' O' O' 5 5 OZ HCR A O' O' O' O' O' 5 5 OZ HCR A O' O' O' O' O' 5 5 OZ HCR A O' O' O' O' O' O' 5 5 OZ HCR A O' O' O' O' O' O' 5 5 OZ HCR A O'	CONFIGURATION SCHO. PARAMETERS/ ALLO OF O.	CONFIGURATION SCHO. PARAMETERS/ NAME of B SCHO. PARAMETERS/ NAME OF BUNS 0.6 OZ HCR A O'O'O'O'O'S S S S S S S S S S S S S S S	CONFIGURATION SCHO. PARAMETERS, FALL OF CONFIGURATION OF B. JA JE JE B. D. C.	CONFIGURATION SCHO. PARAMETERS) AND OF OLO OLO OLO OLO OLO OLO OLO OLO OLO	DATA SET CONFIGURATION C B JA JE JE C S JE JE JE JE JE JE JE	DATA SET CONFIGURATION SCHO. PARAMETERS) ALC CONFIGURATION CONFIGU	DATA SET CONFIGURATION SCHO. PARAMETERS) NAME CONFIGURATION CONFIG	DATA SET CONFIGURATION SCHD. PRIMETED MAN OLD	DATA SET CONFIGURATION SCHD. PARABLIES/AME OF OF OF OF OF OF OF O	DATA SET CONFIGURATION SCHD. PRIME 120/1000 SCHD. PRIME 120/1000 SCHD. PRIME 120/1000 SCHD. PRIME 120/1000 SCHD. SCHD.	DATA SET CONFIGURATION SCHD. PRIME 120/1000 SCHD. PRIME 120/1	DATA SET CONFICURATION SCHD. PARAMETERS MINS 0.6	DATA SET CONFICURATION SCHO. PARABLES MANS OF O'	DATA SET CONFICURATION SCHO. PARAMETERS NO. O. O. O. O. O. O. O	DENTIFIER CONFICURATION SCHD. PARABLED MANALLED MANALLED	DATA SET CONFIGURATION SCHO. PANAMELED MANABLED MANABLED	DATA SET CONFICURATION SCHO. PARABELER PARABEL	DATA SET CONFICURATION SCHO. PARABELIZACION O.	DATA SET CONFIGURATION SCHOL PARAMETERS TABLE TABLE SCHOL PARAMETERS TABLE SCHOL	DATE SET CONFIGURATION SCHO, PARMACHES MINS O.4 0.65 1 1.2 5 2.0	CONFIGURATION SCUD. PARAMETERS MAIN SET SCUD. PARAMETERS MINS MINS SET SCUD. PARAMETERS MINS SET SCUD. PARAMETERS MINS MINS MINS SET SCUD. PARAMETERS MINS MINS MINS MINS MINS MINS MINS MINS	DATA SET CONFIGURATION SCHD. PRIMALESCY MAN SET CONFIGURATION SCHD. S	With SET CONFIGURATION SCHO. PANAMELES MANAMELES MANAM	Nath Set Court Culanton Schol. Nature Respond Nature Schol. Nature Respond Na

ORBITE

(PARE IS

D PRETEST D POSTTES

1EST 508 DATA SET COLLATION SHEET

2

a or B Schedules

TEST

DATA SET COLLATION SHEET

O PRETEST

100		SCHD.	PARAMET	ETERS/VALUES		2			SER	N N N		7	TUDELENDENT			F	
IDENTIFIED	CONFIGURATION	0	24	156 154		RUNS	9.0	0.85	7/17	12 1.5	7.0		1	1	-		
120000	97	12.5	1	-	١	3		97	6	96 95				+	\dashv		
16.00	A) WIVIRI	0 8	Ö	0.	1	3		1/2		0// ///				7	\dashv		
3		1	°	0	1	3		901	2	105 104	q				_		
20		4	-		L				_	_	_						
	- 1								-	_	_						
		+	1	+				\dagger	+	╀	<u> </u>						
		+	1	+	_			T	\dagger	╁	ig	_		T			
		+		+				\dagger	\dagger	+	1	_					
		+		$\frac{1}{1}$				†	\dagger	+	-	_					
		·		\dashv				1	\dagger	$\frac{1}{1}$	+	\downarrow		1	\dagger	+	
				-						-					+	+	
					_												
					L	L		-			_	_					
		+		-	-				T	-	-	_					
		+		-	+			T	-	+	\vdash	ļ				-	
		1	1	+	\downarrow			\dagger	\dagger	\mid		_			\vdash	-	_
		+		+	4			1	\dagger	\dagger	+	_	-			-	
				+	\downarrow	1			T	+	+	1			1	-	
	-				_				1	\dashv	+	_	\downarrow		+	+	
										-	\dashv	1	\downarrow		1	+	
															1	-	
					_	_											_
] `	} .	┨╒		٦	£,		č,		5.5	61		59	75.76	عو
				3	ζ,		120		180	10.		10.0	71	MACH	ALPHA	118 10	_
7	ICA'C ICA	1540	4	4 1	4	$\ \ $		1					Ť	DPVAR(1) 1DPV	IDPVAR(1) IDPVAR(2) NDV	> 5
a or 8	A: -10	9-8-	4	11	0	9	19	8 10		i 1					N A D	CANARD BOOSIER MDAC	200
SCHEDULE SCH	3						٠			.					MDA	₹ •	2
							2	_							# C	OB#1065	- ပ

High Wing Booster + HCR Orbiter

High Wing Booster + LCR Orbiter

102

MICH WIND ROCATES MESE, CONTIGURATION

FIGURE 7

LCR ORBITER (01) MODEL CONFIGURATION (0.007)

Orbiter Ste. 11.520 B2 -Orbiter Sts. 0.000" W.L. 0.000'-

FIGURE 13

BOOSTER BODY (0.007)

FIGURE 9

FIGURE 10

BOOSTER AERODYKANIC CANARD (0.007)

T1 AERODYNAMIC CANARD F2 FLAP

FIGURE 11

Orbiter Sta. 3.500

Orbiter Sta.

FIGURE 14

- 12.000" -

W.L. 0.700 (Balance C)

FIGURE 15

LCR ORBITER (01) HORIZONTAL TAIL HI HORIZONTAL TAIL EI ELEVATOR

FIGURE 16

ORIGINAL PAGE IS GE POOR QUALITY

FIGURE 17

Typical Cross Section

FIGURE 19 - HCR - BASIC FUSELAGE (B1 Notes:
1. All dimensions are model scale in inches.
2. Reference Drg. CON-770-1603-MD02

Notes:

- 1. All dimensions are model scale in inches.
- 2. Reference: Dwg. CON-770-1003-MD02

FIGURE 20 -HCR - WING (W3), ELEVONS (EN1, EN3), AND BODY FLAP (FB1)

Planform View

All dimensions are model scale in inches.
 Ref: Dwg. CON-770-1603-1001

FIGURE 21-HCR-VERTICAL TAIL (V3) AND RUDDER (R3)

TEST VA 1163 DATA SET COLLATION SHEET

ORIGINAL PAGE IS

DELTA WING ORBITER

INELLAR CANARD BOOSTER

LIDEVAR(1) III MDAC

73.78

67

9

22

6

7

37

<u>.</u>

25

CYK

16%

777

154

17

ALPHADCLA

COEFFICIENTS:

SCHEDULES

23

C-1-0

DR#1108

118

DATA POLUT PER LEGREE

OWE

4=-10 to +10

MDAC

WING ORBITER C-1- 24 CANARD BOOSTER DR#1108 DELTA

O PRETEST

DATA SET COLLATION SEEET VA 1163

TEST

10.0 737 1131 — [Idpvar(1) | Idpvar(2) | Kdy NELTAN 1130 1129 1557.579 218 218 236 217 202 217 720 735 23P 239 17271220 168 1110111011 67 100/11/4/11/20 1119 1102 11171120 501 1126 721 752 215/22/23 1103 1116 1121 721 734 207 712 725 730 748 208 711 726 729 25 724 75 7.7 1/01/1110 1106 1115 1107/112 61 DELTA Z/LB 7.7 MOP 11/2 209 210 151 201 20.5 704 75,5 206 23 . 119 243 741 249 377 シジ 744 750 346 63 ONE DATA POINT PER BUILE No. Runs 1 r 40 0.0 6.3 CY# 1 Ma Sen PARAMETERS/VALUES 37 5.0 A. 0.0 0.0 - 51/10.1 49 CZ <u>.</u> Plug pugas/ 195 316: 477 243 351 20. 043 2 228 52 351 +10 16.01 25 9 SCKD. IC.A -10, BAGSTER 1, CONTIGURATION 16.11 PUPAC ALPHABCLA COEFFICIENTS: SCHEDULES IDENTIFIER 220 023 022 610 813 025 170 024 0.76 027 0.23 229 **03**¢ 035 033 035 DATA SET 05.5 031 a or s 7.

ORIGINAL PAGE IS OF POOR QUALITY

HASA-HSFC-HAP

617

A POSTTEST

TEST VA 1163 DATA SET COLLATION SHEET

O PRETEST

NASA-MSPC-HÀP | TDEVAR(1) | TDEVAR(2) | NOV 537 1511.182 220 354.598.908 10.0 401411 418 456 457 453 453 454 S POSTTEST 420 455 458 452 455 450 457 44 454 459 754 7/2 445 446 532 530 540 536 522 502 517 50 d 515 534 DELTA9 443 pri 25 3 785 507 512 525 530 421 454 439 502 511 526 529 432 433 440 452 441 2 515 522 533 519 523 507 18/2 4251430 409 410 427 4-501 516 521 5 DELTA Z/B 518 5/0 514 423 なな 426 51.5 2 50/ 504 505 605 402 417 28 403 405 406 40% 404 407 Ş DEVEE No. Of Runs 4 7 A : Ma | 600 | 60 5.0 0.0 0.0 POLNT PER KKK PARAMETERS/VALUES 37 0.0 .39/5. ייכע DWE DATA = 165-PURPOWE AX/L d 216 105 .0%3 3 X 100 1987 25 +16 0 a B SCHD. 1C.A. 19 BOOSTER 0/- = W 16.8. CONFIGURATION MAAG ALPHABCLA COEFFICIENTS: SCHEDULES a or B DATA SET IDENTIFIER 052 053 054 040 770 04/3 p 40 045 050 RT8 0.37 038 039 140 046 1.40 048 047 150

فيلمي ورازا المراج

120

DELTA WING ORBITER

CANARD BOOSTER

MDAC

c R

8011#00

MDAC

TRIGINAL PAGE IS

DELTA WING ORBITER **5** 6 CANARD BOOSTER DR#1108 MDAC MDAC

.

DATA SET COLLATION SHEET VA 1163 TEST

1511.184 221 521.579.9.1 NASA-MSFC-WAF 10:2 B POSTTEST 250 LIDPVAR(1) IDPVAR(2) (NDV O PRETEST acs 1015/02/1230 100/ 1019 1020 1052 P20 836 139 849 1609 1010 1607 1609 277 P3P 850 1001 1001 1081 823 042 848 846 247 DE1280 2 840 1028 1023 1007 1011 1007 1007 1013 1026 834 841 806 813 824 832 847 822 830 845 831844 1006 1014 Kess 1012 215 1016 828 329 5 DELTA Z/LB 200 200 1004 805 214 123 802 119 807 112 125 312 310 55 717 108 111 do2 317 305 316 611: 804 808 Pol ţ +10 DATA DOINT NER DESKEE Se Se U 1 r r 4 40 0.0 LCKA Ma Sea PARAMETERS/VALUES 37 2,0 Å -5.0 721 <u>_</u> - 39/ 22. PURPOWEAX/6 :45 :08 540. -32 . Ms iet 043 105 201 167 351 501 .351 52 120 1666 25 50. a | B SCED. -10 TO 16.1 4 MDBC RASTER CONTICULATION 16.8 11 ALPHADCLA COEFFICIENTS: a or B SCHEDULES DATA SET IDENTIFIED 056 059 0,0 063 250 0.57 650 878055 058 0,7 8.2 C6:1 223 05% 06.1 ... (071 0

121

ORIGINAL PAGE OF POOR QUALITY

? S.

TEST VA 1163 DATA SET COLLATION SHEET

O PRETEST S POSTTEST

HASA-MSFC-WAP LIDEVAR(1) IDEVAR(2) MOV 10.0 15.27 572 1205/1211/1205/229 826/126/ 010/ 906/ S 1019 4231 MELTAN 1222 527 1141 641 1202 1161 12051 152 422 1206 (213 1234 3 19 121 2/6/2 12 205/1205 11:02 1217 22 202 216 210/21 214 DELTA Z/LB 7// 7.53 \$5 306 1/2/-/5/ ; ANE DATA POINT NER DEILLE Runs . 2/4 PURPURAX/19 A: Ma Sea de 0.0 PARAMETERS/VALUES 0.0 37 -- M-10.150 יעע 0.0 31 उ 15-:143 59 9 .043 22 156 +10 100 0.0 1684 25 0.0 ġ 62 SCHD. -100 1CA MDAC HADSTER đ , IC. A CONFIGURATION ALPHADCLM COEFFICIENTS: SCHEDULES DATA SET IDENTIFIER a or s 2,0 027 078 1:00 050 180 20 500 878073 075 076 100 074 TRIGINAL PAGE IS OF POOR QUALITY

122

DELTA WING ORBITER

CANARD BOOSTER MDAC

C-1- 27

MDAC DR#1108 CANARD BOOSTER MDAC

DELTA WING ORBITER MDAC DR#1108 C-1- 28

TEST VA 1163 DATA SET COLLATION SHEET

A POSTTEST .901 10.0 1334 O PRETEST 3 -IDPVAR(1) IDPVAR(2) (NDV 227 35a 599 10 El TRA 29 130/174/1315/1322/1529 130 A 1313 1316 1527 1350 136 1309 1500 123/252 1507 1508 1321 1532 1533 150/2521/315/1112/2011 150 | 1514 | 1515 | 1534 5251 701 1851 2051 4521 1151 1151 Jast 1522 150 3/212 1517 1818 125/13/0/3/9 1324 1562 1572 1577 1509 1520 6151 0151 150R1521 9 151.182 DELTA 2/ 15.51 1506 1507 55 ://9 6 H = -10° to +10° ONE DATA POINT PER DELLE 1 20 500000 43 ICAL ICK CYN. 95 PARAMETERS/VALUES 170 37 a. 0.0 5.0 PURPURANTA 100.100.1.391 31 -143 110-797 -321 -M3 105 5/0 191 S 35 8 0 SCED. A.A. 8 크 MPAC BOSTER CONTIGURATION 77 ALPHABACLA COEFFICIENTS: SCHEDULES DENTIFIER 019 090 272 027 023 DATA SET 8T 0 16 160 200 09:1 095 211 27.1 02: 014

> URIGINAL PAGE IS OF POOR QUALITY

123

NASA-MSFC-MAP

O PRETEST

B POSTTEST

	P. 70.0	355	1	1	-		1	.>	115:24				-		-						-	77	7	לוונה אשר (בי) דוב אשר (בי) ביי	HASA-HSPC-HÀP
_	ST 12.P	-	$\frac{1}{1}$			-																59	83		3
	N.							-21	600	13/6 1827 1830		1835/831	1	3//32	2 1/23					_	_	5	DELTRO	77.70	
8.77 7.78	177	1427	1797	142	1425	4577	1450 1433	26211241	1823	182	7.11.7	727	स्या	6 1/23	1/1/22	_	-		_			١	1		
	1.183	1 1415	1413 1416	2/4/2	1/7/1	0 1419	9/45	1/47	1 1815		2 11117	11/12	. 18/	9 182	8 1821		_		\dashv			55	1		
DELTA	1/2/	1 1414	73/7	3/4/2	4 1411	0/4/5	1406 1409	147 1401	1/11/4	2 1813	1803 1312	1104 1111	1805 1410 1818 1R24	1806 1809 1820	7 1100								1		
	7//	1401	1402	1403	1404	sah/	140	146	1801	1802	1180	1/6	14.0	112.	1807							Ş	4		1 1
_l ġ'n	Runs	٧	<u>ا</u>	<u>ر</u>	الم	کہ	<u>ا</u>	کہ	9	9	7	2	ا ا	9	9								1	22772	
z`	60 R	0.0													-							1	4	PEC	
JES	500	0.0																		,		37	CXK		
WALI	170														-									72,00	
rers/	a.	0.0													-				_			=	र्घ	2224	
PARAMETERS/VALUES	2/20	100 101		6/0 -	201	// //	100	77		_	2001	700	69//	135/	3					_	_		1	DAE	
PAR	PURPURALLA	00/00	<u> -</u>			\vdash		-	9							-	-	_	_	_		25	15.81	+10,	
9	8	0	-						19	 													A		
SCHI	o					E				-	F		F									2	Ų.	100	
	3	در در مورود مدوق																				, <u></u>	7	7- 2	
	TATIO	7 7	31	_	_	-	-	\downarrow		-	-	-	-	_	١,	4							1	A	
	CONTICULATION		1 1/2/											.		'							K73		1
L		Į _	1	-		<u></u>	1	1							-	}	+	+	+	+	+-	-	HAB	COEFFICIENTS:	B VILES
DATA SET	DENTIFIER	•	7	70	,507	70/	12 /	30/	707		30,	707			7								ALPHABC.	COEFF	SCHEDULES
TAG	TOEN	1		上	\pm	\pm	土	上	1	土	1	土	土	土	上	1								•	

124

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1-29

CANARD BOOSTER MDAC

DELTA WING ORBITER MDAC DR#1108 C-1- 30

TEST VA 1163 DATA SET COLLATION SHEET

7

.901 10.0 B POSTTEST 1627 HASA-HSFC-HAP - IDPVAR(1) IDPVAR(2) INDV O PARTEST 105 1067790 6 151 W. 228 . SCA 16.24 16.25 Ked 1611 1618 1624 166 1609 1630 1623 1607 160P 1621 1622 1614/1615 1602 1613 1616 1602 1617 1605/1610/1619 61 DELTA 2/4B 130/120 1702 1713 1206 1709 1803 11712 124 1711 2007/2010 1207 1708 1100 53 125 5 16.R . 16.84 .CY . CYM . 1 Se se ONE DATA POUT DER DEGREE 4 63 PURPURALL K. ME SON GO 90 50. 50 - 391 5.0 5.0 6.0 PARAMETERS/VALUES 37 31, 143 Do. 597 17 522 £4: 351 31/ 10 20 167 25. .351 ングア 2 Ŋ A= -10 to +10 9 8 SCED. = MIDIIC BOOSTER 151 CONTICULATION ij ALPHABCLA COEFFICIENTS: a or B SCHEDULES DATA SET IDENTIFIES 119 120 122 125 RT 114 117 116 121 103 126 127 115 116 1:34

OF PURE CHAINS

DATA SET COLLATION SHEET

TEST VA 1163

O PRETEST

E POSTIEST

DATA CET		SCHD	-	PARA	PARAMETERS/VALUES	SRSA	/ALU	23				DELTA	A 2/4	la la				
IDENTIFIER	CONTIGURATION	0	_	PUR SWE SKILL	2/22	Ä	Me	-	\$ B	Egg.	1.1/9	1.151	182	122	.558	119 151 182 328 350 599 908		10.0
979 128	MDAC ROPER	100		0.0				20.	-20.	9	1661	1916	1901 1914 ALS 1928 1938	1828	1929		_	13:24
• •	II	-			. 14.3		·			7	190	5772	1902 1913 1916 1927 1930	1927	1950		1	\dashv
1,50					200:					~	190.	1913	1903 1912 1917 126	13.6				\dashv
/3/					50%				\exists	9	190	7/8/7	1904/1911 1912/1925/1931	प्रत्रा	1221			\dashv
132					77/					\ \	190	016/	1905 1910 1919 1824	7561				\dashv
/33					155.					7	7061	1909	1946 1909 1924 1925 1952	1623	13.57			
134				1	Ö					9	190	1901	1907 1908 1921 1922	1922	1933		1	4
125	•		100.	. 100.	-:31					3	2001	2019	2019 2015					
727			_		-, 643			_		3	200	2002 2013 2016	2016					
/37/					-00					2	300.	305 204	2017					
13.7					201.					٦	200	1196 4000						
627					12%					×	200	305 2010						
6,3%					138					4	200	2 mot 1008						
///	•			1	5.22	1				V	3007	12001	À					
			L															
								- 1			_							
						7	-	\dashv	\dashv	-	_							
-	7 13	13		25	Ē		7	١	7		3	×		7		6		K 2
ALPH	LPHABCLM ICA	LCA		7821	4	X	9	CXX	4	1	1	1		4	DELTAS	23		7
COEFFICIEFES:	- = 4	100	70 +	+10.	ONE	DATA		POINT	17	PER DEGREE				7	Ž	TDFVAR(1) IDPVAR(2) HDV	748(2	
a or B			, ,	1 1														
SCHEDOLES	1															1		

HASA-HEFC-HAF

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1-31

ON THE WAY THE THEFT

MDAC
DELTA WING ORBITER
MDAC
DR*1108 C-1- 32

VA 1163 DATA BET COLLATION SHEET

TEST

B POSTTEST 10.0 O PRETEST –(IDPVAR(1) | IDPVAR(2) | NDV 1311 319 330 339 354355 25E 357 302 31/ 326 350 346 349 360 205 1/4 323 333 3433 5/1552 302 326 335 331 345 350 359 309 320 327 327 347 347 36 36 325.62 202 312 320 337344353 303 316 321 336 341 353 601 61P 619 636 637 64 623 632639 040 602 617 620 63563 10647.80 29 304315132732556 12/2/22/1330344 616 621 634 427624 615 622 63 612 625 630 624 631 6-6 6-9 12. E.M. 5 DELTA 2/4B 60P 611 610 603 605 609 55 109 127 306 30/ 5 DUE DATA POINT PER DEIREE So Sun ۵, 4 40 0.0 £YK 0.0 Seat PARAMETERS/VALUES A: M. 37 0.0 5.0 -31/51 731 111 PURPURALLA -019 243 105 222 150 S -/43 -00 162 777 351 5 15A 16.84 0:0 A=-10' to +10' a B 0 7 SCED. DKKTTER 177 CONTIGURATION . ולנוס ALPHADCLA COEPTICIENTS: a or A DATA SET TRENTIFIER 8T\$ 142 143 1:7 11:5 146 14 1.3 3 11. 13 **15**8 148 V 1001 1:/ ì 191 151

HASA-KSFC-KAP

OF POOR QUALITY

_

O PRETEST

M POSTIEST

		HD. PARAMETERS/VALUES
102 103 11	10 11 11 12 12 12 12 12	_
1. 37	10 10 10 10 10 10 10 10	
105 106	10 11 11 11 11 12 12 12	1
201 4 1000 1100 1100 1100 1100 1100 1100	100 1124 1124 1124 1125 1	
31. 37	250 1 107 112	
201	25/1 1/26 1/12/1 1/2/1	$\overline{}$
201 1	201 † 108 1100 1121 1121 1121 1121 1121 1121	
-591 -4.9	-591 -4.9	
-45	-4/3 7 74.3 70.2 717 72.0 73.4 73.4 73.4 73.4 73.4 73.4 73.4 73.4 73.5 73.4 73.5 73.4 73.5 73.4 73.5 73.4 73.5 73.6	
243	-a9	
243	45 4 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
12.6 13.6 13.6 13.6 13.6 14.6 14.0	15. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13	
150 100 100 100 100 100 100 100 100 100	12.50 13.50 14.8	
31. 37 4.9 76 7.12.7 5.22 4 4 4 7 7 756 7.69 7.16 7 31. 37 4.3 5.5	31. 37 4.8 26.8 5.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	
31. 37 4.9 70.8 7.11 7. 2.2 3.1. 2.2 3.2 3.2 2.2 3.2 2.2 3.2 2.2 2.2 3.2 2.2 2	31 37 48 5648 CV CVN 1 1 1 2 756 709 710 724 729 746 31 37 43 49 55 61 67 67 729 746 CV CVN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
31 37 4 4 4 7 756 729 716 7 31 37 43 43 55	CV CVW 1 1 1 1 7 756 709 716 737 732 744 31' 37 43 55 51 57 CV CVW 1 1 1 DEVAR(1) [1]	
31. 37 43 49 55	31' 37 43 49 55 61 67 CV CVW 1 1 1 10 EL T 49 ONE DATA POLIT PER JUNE	_
31' 37 43 49 55 C.Y	31. 37 43 49 55 61 67 CYM 1 DELTAR	
31' 37 43 49 55	31' 37 43 49 55 61 67 CY CYW 1 1 1 10 ELTAB	
CK CYW . 1	ONE DATA BOLL PER DELYE	
	ONE DATA POLIT PER DENSE	

128

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1-33

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1-34

٨

O PRETEST

DATA SET COLLATION SEERT

TEST VA 1163

TOENTIFIED CONTIG																	
	CONTICUTATION	SCED.	à	Parameters/values	ETERS	ŽŽ	CUES		S _N		DEL	DELTA 2/4	/t _B				l
- -		<u>ه</u>	dand	PURPURALL K. M.	4 K	110	See 60		Runs	<i>"</i> ."	00/100, 302, 528, 525, 591, 181, 1811.	1.12	77	1,52	25.	200	ġ
179	deartik	40	20.74	20. 10059	0.0	5.0	5.00.0		~		121 -1 10 1 12 1 10 1 1 1 10 V	3/2	1		Ş	Ĭ	}
				45					~	1 20	102 419 420 456 488 1153 455	3	7 7	40%	2 5	i y	<u> </u>
//co				370-	0				4	40	25# 13# 66 p \$5h 16h 9/4 80p	42	457	133	¥	7,7	╁
1,2,1			\exists	2943	<u></u>				9	140	404 415 432 433 440	5 62.	435	440	1		╀╌
127				105					~	70	405 44 423 423 461 450 450	(42)	42	177	95%	£ 3	┝
1/83				- KZ					9	4.	406 413 424 481 442	2	127	42			╁
174				111					~	407	2 4/1	2,42	412 425 430 465	277	42/26/15	15	+
1.055				.55.					2	40,	408 411 426 429 444 447 114 804	1426	429	413	\$47	520	+-
737				ä	•				2	409	0/10	12.7	410 437 428	75.4	445 460	09/	┝╼
717				1.394	15.1				9		50/	50/518	5/9 536	23.5	23.7		12
7,1,7				5,47-			\exists		9		562	1517	W2 50 512 562 512	27.0	ž,]-
2017			\exists	6/0-					7		503	2/8	503 516 521 534	725		-	-
/93				.043					<u>ل</u>		504	1 5/18	504 519 03 522	25		Г	┼
161				- 105					9		15	15/2	5.5 5/4 (23 572	_	3	T	╁
241				.167					٧		526	12	185 65 818 308			T	╀╌
/رود			\exists	24.					٦		507	3	507 5/4 525 530	23.0		T	╁
10.5				155					5		48	13	508 511 SOL 539	530			╁
1 / 65	*	-	7	3	-	-	-		9		800	15/0	5/0 537	S	5%0		┼>
		1	+	1			-										1
			\dashv	4		1	\dashv	7		_							
7	13 19		2		-=	7		3		5	\sigma	55	19		25		75.76
ALPHABICLA	16.11.10	ICA.	7851	-}	79	Y	KYK	4	1	4	7		ā	DELTAR	B		
a or s	A= -10° +0	16		CHE DATA POINT PER	4 12	TATO	PER	11	DERREE				曹	PVAR(1	- IDPVAR(1) IDPVAR(2) NDV	AR(2)	2
SCHEDULES		Ĭ															
ł									ļ		3						•

ORIGINAL PAGE IS OF POOR QUALITY

O PRETEST

B POSTTEST

122	1	0.01	6:01	7		\exists	7	\exists	\exists	1	-	Lpa	-							-			N. N.		LIDEVAR(1) IDEVAR(2) NOV		MASA-MSPC-MAP
F0311691		.9.1										•												-	PVAE		45.4
2		572	653	1631			1230				1939	250	672			348				147			9	48	<u>a</u>		Α,
		25	1020 1650	1001	1018	(023	1005/015/024	प्रक	1024	1011 101	100 1028/099	827 23P	120 256 159 449	840	178	733 642	143	831844	870 845	346				DELTRA	ZATE(
	<u>.</u>	1:2	8101	1232 1018 1021	8601 7101 8001	1ecy 10/6 1023	1015	2501 4101 0001	1007 1013 1024	llall	100	832	236	815	834 841	733	852			803			5	4	7		
ŀ	3	183	1001	123	100 \$	1054	[005	sco)	1007	2001	1607	111	720	177	Poss	105 214 123	124	25	808 111 822	828				1			
	DELTA	12/										111	21.7	3/6	315	314	8/3	712	ŽII.	110			SS	4			
		.119					•					Pol	dos	105	804	105	806		808	809				-		•	
																							3	1]	ı
	ģì	Runs	کے	٦	4	4	۸	4	4	4	7	7	7	9	9	7	9	9	9	7			7	1	56062		
		do	0.0																	•			1	1	١٩	1	
	,UES	500	0'0																	7	•		37	XX	727		
	Z Z	Me	5.0	.																		,]	20,00		
	PARAMETERS/VALUES	a;	10.1								*	03-								+			31.	À	67.60		
	AME	77.7	165 :-	F. M.S	L.019	.043	20/-	./67	.22	.351	501	39	L.143	07	500.	.105	147	122	136	:52					16.0		
	PAR	PURPURALL	160.																		\dashv		2.5	7821	1.	1	
-		_																		-	_				10/4		
	SCHD.	9	40																	-	\exists		13	77	12		
	PATTOM		Terrange.																				13	17.4	4= -10		
	TOWN TOWN		t Shell	,												•							,	LEHABCLA	LEATS: -		1
	DATA SET	IDENTIFIER	878 195	161	361	661	200	106	202	203	poc	300	206	307	1363	3080	2/5	2//	2/2	V 213			-	ALPH	COEFFICIENTS:	a or A	
•	-																		٠		0	RIC F.	SIN PO	AL OR	PA QL	ige J al	is Yn

130

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1-35

MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1- 36

DATA SET COLLATION SHEET

TEST VA 1163

O PRETEST

DATA SET	CONTIGURATION	91	PAR	PARAMETERS/VALUES	rers,	VAL	200	Z	ż		DELTA	TA Z/	/4 _B				
1		9	PURPUR AXIL	7777	K,	11.	56.0	Le R	Runs	Ľ	151.611	1/2/	122 455 451	352	500	4.6.	0.00
82214	MODE GERTER	40	6. 100.	-101-10	ľ		0.2	0.0	ک	_	_		1201 0161 9151 1.56	1	V		5
57.2								Ľ	7		\vdash	100)	05.1 (16) 5061	200	2 7		3-
2/6				270-					7			17.3	1202 13/6 125				+
717				1700:	_	1			7		L	1204	1204 1215 LOS	787			╁
213				500	7	\dashv			٦		• .	2061	1205/21/12/201	15.3	577		-
21.3				162	1	4			4			1206	1206 (215) 224	12.2		T	\vdash
2.2				200					4			12.7	24/214/24	527			┝
12.7				1351	7				7			1001	3551 1161 5051	27	T		╀
22.5			•	द	7				ہا			1309	422/17(1) 0151 9061	12.20	22.		->
223		-	0.0 6.0	25-	0.0			Ė	7	100	12.2	209	7/6			T	1
224				-173					17	202		107 210	V		T	T	1
272				50%				4	7	20						-	
23.5		+	- - 	Ġ.		_		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7	20.4	205	3	2/2		T		
			<u> </u>						-	_					T	T	
											L				T	\vdash	
					\dashv									T			
					7	\dashv								<u> </u>		十	
		-	+		1	\dashv		\dashv									
		-	+		\dagger	+	\dashv	+	\dashv								
			+		7	\dashv	\dashv	\dashv	4	4	_				-		
	7 13	4	22		31.	=		7		•	55	2	3		67		75.76
ALPHABC.	A. 1CM	ICA	7821	7	77	9	CVA	4			1		30	MELTAR	a a		<u> </u>
a or 8	A = _	10° Te	017		DUE	DATA POINT DER DSIWE	Poss	7.558	4560	77			T	— IDPVAR(1) IDP VAR(2) IUV) roev	AR (2)	2
SCHEDULES	5																
											101	-					

ORIGINAL PAGE IS OF POOR QUALITY

O PRETEST

CONTRACTOR	SCHD.	PAR	PARAMETERS	RS/VA	VALUES	2	_ •		DELTA	A 2/4B				
	8	PLUE PURENT		K; M.	26.	do Ru	Runs .	1/19	151.	.182	7	350.599	1.90%	10.0
ر قىدۇلا	0 8	100, 100.	6.9 18	5.0	00	6,0	9	1501	13.4	130 / 13 14 /315 / 30-20	ا کینا	6021		1021
			-143				7	1306	150 1313	1316 1522	1221	/350		_
			12019			<u>د</u> ا	2	1503	1312	130 3/12/2 1317 13061	326			
			50%			/	7	1504	1504 1511 1318	13/8/	_	1331		
			79/-			3	5	1305	1310	1305/13/0/3/9 1324	30.00			
			1351			7	9	136	1309	1550/223/25	223/	55.		
			.532				9	1507	150₽	1307 1508 1321 1323 1323	720	9.3.3		<u>~</u>
			1			2			1951	KIH	15151	3051		1521
			-H3				>			525 701 8151	51 715	25		
:			6/0-			•	7		1563	1512 1517	277			
			201				-	·	1504	15041511 1518	578 15	<i>7551</i>		
			19/			6	7		1505150	10151	6157			
			155.			, ک	<u> </u>		1506	1566 1569 1520 1523	5.00 1.1	23		
•	*	*	153	-	-	7	کر		1567	1508/521		1527		
						_	_							
		-					_			1			_	
1.3	19	25	31.		ž	=		:	ž	1	3	6		7,7
A K	. ICA	1831	7.5"		EXM.	4			4		30	DELTAB		
45-10	2 +0	4/10	DAE DETA	1.1	POLNT PER	11	DELLEE				1 1 1 1 1 1 1 1 1 1		DPVAR(<u>2</u>

ORIGINAL PAGE IS OF POOR QUALITY

132

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1-37

CANARD BOOSTER MDAC

DELTA WING ORBITER

C-1- 38 MDAC

O PRETEST

DR#1108

DATA SET COLLATION SHEET TEST VA 1163

LIDEVAR(1) IDEVAR(2) NOV 4/60 1:34 B POSTTEST .9.Pl 10.0 DELTAR 15.52 17.30 1706 11909 1800 1803 1832 1807 1808 184 1 11.22 1233 Hi29 1804/111/ 11712 1125/1231 1828 1221 3 122. 1427 1404 1411 1417 1425 414 MIS 1428 409 1412 1417 1426 464/9/14/0/14/5dt 1409 1450 1433 14211422 1805 1810 1819 1824 DELTA Z/LB 9/2/ 1803 1212 1217 N. 55 10/1/291 17/3 1402 1413 181 1406 182 1401 1601 Ş +10 DAY DOTA POINT PER DESIGE No. Runs d 9 h 9 4 A : Ma | Sea | Se 0.0 CYK PARAMETERS/VALUES -. 39 0.0 5.0 יכג 31. PURPUR AVIA .43 105 167 522 -11/5 610-105 -31 Z 3 20. 0.0 100. 16.84 25 Ŕ A= -100 +0 8 0 0 SCHD. JC.A 19 DIVAL CRITTER 777 CONTIGULATION " ALPHA OCLA COEFFICIENTS: SCHEDULES DATA SET IDENTIFIES a or g 245 250 36. 21.19 346 1,50 25. 157 34/3 Pine 11/2 146 17.7 RT8,241

HASA-MSFC-HAP

133

dishmal page is OF POOR QUALITY O PRETEST

DATA SET COLLATION SHEET

TEST VA 1163

\prod	10.0	15'51					_	-														75.7	13	Acros (
	106															Γ		T						7AB (2
	23						_									<u> </u>			T			6		1
		1,24	12.25		4791		623	7751									Γ						10 ELT.R.	(Idevar(1) idevar(2) indv
	221 55	1614 1615 1626	1/2/19		_	6/19	1606 1609 1630 1623	129								\vdash	-					5	201	100
E7/2	16.7	614/11	13 /1	11/2/11	1/1/9/	1/9/019/509/	100	1608		1713	777	11121	0/2	901	1708		-	-	╁					Ī
DELTA	1.51.	1/09/	1602 11013	1603	1/ 1/04	1/20	7	1/203/		17071		1 1001		1706 1929	1707	-	-	-	├			55	4	
DE		///	9//	<i>y</i> /	1		2/	1		12	181	61	1/2	12	1/2	_	_	_	-					
	111.	_						_			-						_	-	-			5	-	
	ne		,		_		-	_									_	_	_					I. I. I
ģ	e Run	2	4	7	٠,٧	4	ک	ک	8	_								L	L			5		735730
5	8	Ø			_										컨				_				1	34
VALUES	500	0.0																		·		7	ZXX.	1. 1 1
٧Ŋ	110	5.0	\exists																				1	Linea
PARAMETERS ,	a.	5.0	1										\dashv		-							11,	¥	212
AME	PURPURAK/C	50191	143	1.07	301	17.7	1351	:52	31	-10/2	Let.	105	7.67	1351	15]	111
PAR	Smd !	50.	\exists					_	7						2							22	787	340
	pu	3							19						1							7	7	
SCED.	8	AO													*		_				_		16.8	
81				7							\dashv		+	+	+						\dashv	7	7	14
) M		73				ŀ			Ì														A	9-
CONTIGURATION		مردد		-		_	-	_	_	_	4	_	4	_	4								15	4
MIG																							7	
8		MYSIC																				7	ALZHABCL	COEFFICIENTS: a or 8 SCHEDULES
132		55	256	227	250	255	260	797	262	265	764	765	266	757	397						\dashv		EHA	COEPTICIES OCHEDULES
DATA	IDENITATE	871255	7		9			_ `]		_]				`\	1							_	4	COEFFIC

134

CANARD BOOSTER MDAC DELTA WING ORBITER MDAC

C-1- 39

DR#1108

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1- 40

TEST VA 1163 DATA SET COLLATION SEERT

O PRETEST

10.0 1934 B POSTTEST TIDES AR (1) I ROPAKR (2) INITE 182 221 550 . 599 . 908 D 7/ 78. 9 1902 1913/1916 1927/1930 1901 1901 AIS 1920 P39 1906 1909 1924 1923 1953 1907/1907/1921/1923 1935 1904/191/1925/1921 1903 1912 1917 1926 1905/1910/1919/924 5 DELTA Z/LR 200 2019 2015 2002 2013 2016 2003 2042 2017 151 55 2005 2010 2006 1008 2007 2008 201 2011 135 ...9 64 A = -10" to +10" ONE DATA POINT PER DEGREE Runs Vens m 4 6 প ત 43 Ki Ma Sea to -20. 5.0 20. PARAMETERS/VALUES ICA ICAL ICY 0:0 0:0 -:59/ 0.0 31, PLAC PURCAS/A 100 201 . W.3 .167 -99 201 12 24.5 17. 116:-.15/ 100. 23 9 0 SCED. A 2 6 PRITTER CONTICULATION 10% 13 mode ALPHABC.LA COEFFICIENTS: G OF B SCHEDULES DATA SET IDENTIFIER 222 273 1 7% BT 265 75 277 271 27 221 279 226 282 185

NASA-MSFC-MAN

ORIGINAL PAGE IS OF POOR QUALITY

DELTA WING ORBITER CANARD BOOSTER HASA-HSPC-HÀP JIDEPALA (1) | IDEPALA (2) | NOT 332 100 M POSTTEST 222 | 12 25 | 62 12 | 522 | 522 | 512 1 | 4/2 2 | 102 P O PRETEST MDAC MDAC १५०१ ५५/५५ ४० १३६५ १३ १५३ ५५५ 154.192 - 22 P. 554.59 190B 32528755/134/133483355 4309 3509 3500 3327 3327 345 346 3356 822 2528 028 128 L28 12512 922 2352 925 1251 1351 1005 323/225 42073507 5343 354 25 1230 3343 234 420 | 250 | 351 | 550 | 550 | 334 | 3357 C MELTAR 352/155 364 351 202 305 १:३६१८:३।।।ऽर्धा 3505 3574 3523 353 3423133340 4306 3506 3513 3524 3331 334 350 350 150 155 1528 ASSESSED 15231 5 H151528 386 6058 1506 DELTA Z/LB 3503 35/16 55 DATA SET COLLATION SHEET 334 113 -119 42051205 Ş ONE DATA POSUT PER DEFREE 6 0 r Seg 60 0.0 136 411 PARAMETERS/VALUES 0.0 E R 5.0 ,C/ <u>.</u> -391 20: 26 250 PURDOWRAX/6 - 59/ 220 -143 167 52 501 .35 200 5 -145 Š KGL VA 1163 +10 8 TEST A= -10 to 10 MDAC BOUSTER CONFICURATION 13 4.1.PHABCLA COEFFICIENTS: SCHEDULES DATA SET IDENTIFIER 222 398 272 300 290 292 293 tee 195 226 787 289 41.5 A 80 160 285 RT8 223

C-1- 41

DR#1108

ORIGINAL PAGE IS POOR QUALITY

MASA-MSPC-MAP

137

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1- 42

DATA SET COLLATION SEEET

TEST VA 1163

(

Minaria O Prince Minaria O O O O O O O O O	DATA SET		SCED.	<u>a</u>	ARAM	PARAMETERS		WALUES		Š.		DELTA	2	47 FB				
	DESTIFIER	CONTIGUEATION	_	,	2000	1		-		Runs	1.1/	2.12	1977	22.0	3.52	226		70,
1921 1921	978 10/		_	0.0	8 0.0			0.0	0.0	9			3501	3518	25.0	TELES.		ž
19 19 19 19 19 19 19 19	70,	11	_	_	* -					9	\vdash		180.	3817	Sizo	23.3	××	4
19 19 19 19 19 19 19 19	,					6/6				7			11/23	37%	licre	58.33		
15 19 19 19 19 19 19 19	7 2			E	.0.	187				4			3805	13815	3132			
310 310 310 310 310 310 310 310 310 310	1				<u> </u>	15,				9		•.	380	53814			237	{
15 19 15 15 15 15 15 15	1				<u> </u>	4.7				4			310	(38/3	322			┥
15 15 15 15 15 15 15 15	2.2.		-		2.	ع الم				6		\dashv	332	7.38/2	2005	3830		
	12.2				.3					7		4	38	13511	22%	323	-1	┥
15 19 25 27 27 27 27 27 27 27	;				λ,	1/0				9			380	33/10	35.77	22.25	X	ᅱ
15 19 25 21 27 27 27 27 27 27 27	1				64					~	32	137	P 1370	3736	327	37.52		77
19 19 19 19 19 19 19 19	1				-					~	13%	12 321	7 372	27735	325	1224	120	_
15 19 25 31 4 4 5773 57 15 19 25 31 37 43 68888	;); 	6/0				7	3%	312	6 322	13784	3239	320) (1	
15 19 25 31'4 572'3 3; 15 19 25 31' 37 43 5727 3718 5728 3728 3728 3728 3728 3728 3728 3728 3	1 2				9	13				9	372	4571.	5 322	2523	3740		_	5,3
15 19 25 31	77.6				 -	٠۶ :				ۍ	374	53%	45%	\$ 37.5	3241	3749	K	\dashv
15 19 25 31' 37 49 55 55 17. 37.07 37.02 37.05	1				77	123				9	37	26 37	(3,5,7,2	43231	3242			-+
15 19 25 31 4 4 6 370 3717 37 15 19 25 31 37 43 49 55 16 10 70 70 70 70 70 70 70 70 70 70 70 70 70						120				7	372	2 37.	232	5 3235	3745	3742		1
15 19 25 31' 37 43 49 55 15 19 25 31' 37 43 49 55 A = -/o To + 10° ONE DATA POLUT PREDEREE	27.2					12				7	37,	371	1/ 372	6323	3749	2747		-
13 19 25 31' 37 %3 %9 55 15 16 26 16 684 16 684 684 684 684 684 684 684 684 684 68	105				7	177		-	-	8	32	28 32	0 377	73724		3746	3226	->
13 19 25 31 37 43 49 55 1 1CN K.A IC. BL. IC. K.N. 1 1 1 A = -/0° To + 10° ONE DATA POINT PER DERKEE				1		-						-	+	4				i
A = -/0" TO + 10" ONE DATA POINT PER DERREE		7	2	7		٦] [5		25	ق ا		ٷ		ν.
A = - 10° to + 10° ONE DATA POLUT PER DERREE	AIPH			Y	.44	73		SYN.	4		1	1		q.	ELTA	37		
	COEFFI	A= -10	10 ±	.07	2770	DATA	POL	Ä	200	ESPECE				Ť	DFVAR(1) IDE	VA ² (2,	<u> </u>

OF POOR QUALITY

S POSTTEST O PRETEST

DATA SET COLLATION SHEET

TEST VA 1163

	<u> </u>	•		TER	4 3
nal page is oor quality		÷ •	BOOSTER	G ORBI	C-1-
	75.78 NR(2) NDV	SPC-MAP	ARD BOO	TA WING	1108
23.3.3.4.4.2.2.4.4.2.2.4.4.2.4.4.2.4.4.2.4.4.2.4.4.2.4.4.2.4	67 (1) IDPYAR(CAN	MDA	MD/ DR4

	3402 3417 3420 3435 3427 3450 3402 3416 345 3435 3457 3450	3404 3415 3422 5423 3440 2447 2455	3406 3412 3425 3426 3482 3447 3407 3412 3425 3426 3444 3447		5602 3617 36 20 3635 3638 3646 3603 36 16 3621 36 M 5639		360/36123623 3620 26.11 360/3612 3620 3620 2620		15 55 61 67 7578 15 55 61 67 7578	DEBREE. NASA-165C-160	CANARD
1 1 4 -	0.0 2.0 0.0 0.0			7	23/25		7777	1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16, 76	CA ICEL CY CY CY	
DATA SET CONFIGURATION a	MOJE RYCSTES A	320	323	325	32%	3.79	13.4 33.3	334	336	ALPHABCLM 1Ch COEFFICIENTS: A=-10-2	SCHEDULES

138

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1- 44

ORIGINAL PAGE IS OF POOR QUALITY

DATA SET COLLATION SHEET

TEST VA 1163

ė
o 8 PURPWRANG
A O 50.0 1000-31 10.0
zw
6/9-
<i>11/1</i>
. 728
7.52
105.1
00 00 -34
ZM-2
610-
5,00
57.
120
1.20
132
1 1 1 52
2.5
1CA 1CAL
+10 ONE DATA

DATA SET COLLATION SHEET

TEST VA 1163

O PRETEST

T	• • • • • • • • • • • • • • • • • • • •	7	\top	\prod			I		6259		I	I	T	T	\Box	I	7					73.78		3
1 1		11/1/20	(F) X 3	1	1.4.4.	+		3971		135	+	+	120	+	+	+	1297		1	1	-		6) 648	HIRVAR(I.) INFVANCE)
1 L	222	14.4 4415 4.129 4420 July which	7.67.77	27.7	1		91.4%	0407 9408 4421 4422 44:44 4.03 445	450 4518 4519 4530 7534 4553 4553	4502497 45244819 4539 4552455	द्ध	†	4554 9534 5431 1533 4536 4550 4550	1	6/5/3	1598	4509 4510 4527 4530 454 454 4557					15		
	727	7 229	4314	1	4404 4411 4418 4426 4432 WYES		1406 4409 4420 4423 4423 4436	11.11	1326	1325	123 451 451 455 156 455	135.	12/2/	4593	467 4513 4515 4530 4544 4549	8754 2424 ACS4 1124	4556						DE/7.85	XXX.
	278	45.7.	44-3 4418 4416 4421 4431	14,72	1426	7.7.7	44.25	1777	4537	452.5	द्ध	454 495452 4534 454	त्र	45645734526 4524583	4530	453	15.5					5	4	
8/Z	182 238	द्वार	1,41.6	403 4412 4417 W17	11/11/11	4405 4410 4419 41424	4430	4420	4579	255	17.57	45.2	4523	4525	405	1557	401							
DELTA	127	777	17/1/2	7/17	4411	4410	4409	4408	4518	205	456	4505	J15#	4573	457	1511	450					S S	1	
	1	1037	44.5	403	4404	4405	40%	4407	1561	4502	151	454	4505	456	157	187	4509				_	3	1	
	1																						1	31
2,8	Runs	4	م	7	ď	م	7	8	4	ď	7	9	0	q	7	7	9	L	_		_] ;		PEREE
\prod	40	-20.0															-	_	_		_			266
San	9,5	2.2										_							-	_	_	۲	777	
PARAMETERS/VALUES	. 170	0.0							-		-							_	╀	 	-	-		POTAL
TER	9	200	15	4	7	7		-		, S	16	2	201	7	,,,	1	5		╀	-	╀	∤ ≒	7	27.24
RAME	12.65/	C C - 39	5/1/2	-04	20	167	1 2	0	100-100	1 1	60-	:00	./0	67/-		1			+	-	╁	$\frac{1}{1}$	16.84	246
PA	PURPURALLE	0:0							0			-					+	+	\dagger	T	\dagger	1:	1 4	
ė	9	0		E			Ė				E		E						1		I]	A	
SCH	0	A	-		+	-	+	+	+	+	+	 				+	T	+	+	╁	+	┥	, Y	
	25	ני ק ק ב גדם																				١.		27-2
	CONFICURATION	ن برمو		<u> </u>				1	1		1	-	-	-	-	-	+	-			1		7	
	NEI CE	,																	-				# 7 ·	.4
		2000						1			1	1	_			1	+		4	\downarrow	4	4	LAGERIA	CLEM
DATA SET	DENTIFIER	2000	7 /	4	7	325	456	360	361	362	263	364	3	36.	36.7	368	362	320					1018	
DATA	IDEN	18	Z Z	1	\pm	\pm	\pm	\pm	\pm	\pm	1	\pm	\pm	\pm	\pm	\pm	\pm	1			\perp		~L_`	3

140

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1- 45

CANARD BOOSTER
MDAC

DELTA WING ORBITER MDAC
DR#1108 C-1- 46

TEST VA 1163 DATA SET COLLATION SHEET

O PRETEST

NASA-USPC-WAP 75.76 IDPVAR(1) IDPVAR(2) NOV R POSTTEST DELTAB 4 5 DELTA Z/L **\$**2 141 423 127 4201 4209 rolt 4103 4104 7/05 7375 4107 4168 4169 470.2 422 4705 del 4101 6 TO + 10" DWE DATA POENT PER DERREE Run. Ę, C.Y.M. Sea to 0.0 00 PARAMETERS/VALUES Ma 0.0 10.0 1-391 0.0 2.0 A: 7,71 . 31 115 22.8 PURE PURE AX/6 1 .063 -019 63 .351 -.019 .35/ 100 . 200 -145 16.04 25 1000 SCED. JC.B. 19 PUTAL BY 65TER 0 = -10 16% CONTIGULATION ALPHADELLA COEFFICIENTS: SCHEDULES DATA SET IDENTIFIER a or s 322 325 7 322 323 370 386 71.5 31.2 3 23 212 ATB 371 326 372 31.4 224 4000 7:

ORIGINAL TAKE TO OF POOR QUALITY

VA 1163 DATA SET COLLATION SHEET

TEST

O PRETEST

MASA-MSPC-MAP JIDEVAR(1) IDEVAR(2) HUF S POSTIEST DE1788 5 3 DELTA Z/LB 25 49.09 4906 4900 4100 424 44 400 46.7 401 42.9 4901 4902 49.5 49.4 49.5 122 472 6// 1801 Ş +10" ONE DATA POTAT PER DESCE 614 5 -20.0 Sea 60 PARAMETERS/VALUES A -32/0.0 ימן 31. -145 27.5 16. -.0H 26.3 30% 777 2 .55 522 243 167 222 100 105 .551 PLUE PURE AX/6 :/43 15.25 25 1000 SCKD. 16.4 5 10 REDSTER A= -10 L.K. CONTICURATION ALPHABICLA 0.200 COEFFICIENTS: G OF B SCHEDULES 402 405 DATA SET IDENTIFIER 50,7 404 406 395 00/5 290 35% 396 37.2 401 39.3 818 529 397 399 162 392

142

DELTA WING ORBITER

CANARD BOOSTER

MDAC

C-1- 47

DR#1108

MDAC

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1- 48

DATA SET COLLATION SHEET TEST VA 1163

O PRETEST

																	PO.	POSTTEST	181
1	DATA SET		SCED.	L	PARA	MET	ERS/	PARAMET ERS /VALUES	133	F	ŝ		DELTA	Z AT,	Z//B				
3	DENTIFIER	CONTIGULATION	9 0	_	PLIEDWR AX/G	44/4	A;	110	60,10	60 R	971	13.11	11.15	1.18	113.119.151.182.22.35.354.599.900	3.5	599	100	0.0
18	ATS 407	MONG BOSTER			0.000	- 391	0.5	300	0.00	0.0	9	10/22	152	122	3101 2201 2212 2219 2216	32.32	3257 2252 7253		2:23
$ \Box $	101	I -		_		11/3/	\exists				9 21	22.22	77770	1776	4262 1262 9256 2256 0555 165 604 5018	22.2	12.62	225	\exists
	408					00-					è 18.1	1032	25.50	16/22	3 103 20 3 22 16 7.32 1225 422 20 20 50	22.22	2250	1	7
	7/10					.043					7 12	25	2164 12060 7015	17.7	0422 3235 2240	oper.		1	7
	11/5					50%					6	25.20	25.22	177	Precite General Inch Zoes 2018	14.60		5777	7
	412					167					7 34	3106 2206	206 224	27.50	182422512242	782			7
	6/3					427.					7 5	27 22	07 32	122	1107 2207 2212 2256 2250 2242 2248	22.42	27-72		-
	did					155					P 31	5/08 23	100	1122	320 HEC 9666 4665 1166 7066	324	27.72		7
	7/7					125	->				9 5/	5/09	25/22	1170)	2209 2210 222 722 722 7226 226	STATE	2246	225	귀
	7/77					6.31/5.0	5.0				1		77	1770	TWE 7246 2249 8456 2437 2447	32416	2437		12/1/2
	417					-, 14.5					کے		24	1760	2402 1417 2420 2435 243, 2446	24.95	14.11	2446	7
	31/1					c/9					1		777	25.6	1403 2416 2421	12424	24.29		-
1_	2//					649.					9		7	147 101	2409 2415 1422 2423	242			\dashv
L	7.7					50%	•				~		14	22	2405 2414 2433 2432 2440 2445	3,7432	2.40	STATE	
	!		E			121					9		111	2000	21/06 0 di3 2424	12-77			-
1						2.17					7		134	12 24	1407 2412 245 2450 July	57450	24111		
	***					155.					7		777	Per 24/	2408 2411 2426 11/25	2000	2412		-
1	75/			-		52.7	-		-		8		3	4090	2410 2.52	27422	2/43	24/11	-
													\dashv	\dashv	-				
1_									-	7	-	\dashv	\dashv	\dashv	4				\rceil
J	-	7 13	5		25		31.	37		43		3		22		13	5		2 22
	412H	IPHABCLM ICH	L'A		7821	1	X	٦	ZX	4	1	4		1		DE7790	20		
	COEFFI	COEFFICIENTS: A= -10	10 +10		ONE	DATA	1 1	POTAT	18	PEG.	REE	١,			Ť	ATDEVACE AJ ADEVANILAZIONA		7) '14 A	
	G OF S SCHEDULES	1.ES										í							
												ŧ	143				*	NASA-ESFC-HAP	₹

ORIGINAL PAGE IS OF POOR QUALITY

DATA SET COLLATION SHEET

VA 1163

TEST

B POSTTEST

O PRETEST

CANARD BOOSTER HASA-KSPC-KLYP A = -10 to the DATA DENT PER DESERT

-tideval(1)| ideval(2)|Hav

DELTAR

75.76

C

5

22

Ş

CXN . . .

ילא 3

1686

47

77

ALPHABCLA COEFFICIENTS:

SCHEDULES a or s

37

3

443

GINAL PAGE IS POOR QUALITY

DELTA WING ORBITER

MDAC

9

C-1-

DR#1108

MDAC

144

CANARĎ BOÖSTER MDAC DELTA WING ORBITER MDAC DR#1108 C-1-50

TEST VA 1163 DATA SET COLLATION SHEET

B POSTTEST -- Inpvar(1) Idpvar(2) hdv O PRETEST 151 182 243.352 399.90P 300/250/250/200/250/250/250/250/ 1201251251251251251251 25512554 37.2 45.5 6 25.5 6.2 6 1.786 300 1000 130 1250 1350 1350 1350 1350 25.21.25.34.25.40.25.5 2562 250 250 250 250 250 3003/203/246 BEV 1254/2559/2509 3000 030 24 252 6252 254 254 300 230 230 345 230 2343 2341 252125592559 2501 2511 1256 1259 2593 1/25 655 255 255 512 6 17.56 D 54.7.20 300 603062513 2324 0531 1342 226 1275 1282 233 236 1514251 1556 4553 2550 1555 30021252128212501235 5 DELTA Z/IB 21/6 1502 15er 1563 2504 53 6//: 145 .//3 ţ A= -10" TO +10" ONE DATA POENT PER DEGREE Runs 8 0 1 1 0.0 CX CXM 66, 0.0 PARAMETERS/VALUES 17. 37 3.0 a. <u>.</u> 1/20 amd and 50-dreed-191 : 45 043 11 50 1321 90. 83 5.23 15 167 222 108 35/ 787 25 SCED. 0 6.7 WAR BENER CONTIGURATION 77 ALPHABCLA COEFFICIENTS: SCHEDULES DESTIFIER RTP 1/43 444 345 3/1/6 747 449 456 452 454 455 DATA SET 450 15% 45% 460 458 448 40 450 a or B

> OHIGHNAL PAGE IS SE POOR QUALITY

THE WIND BOOM

TEST VAl163 DATA SET COLLATION SHEET C) PRETEST EN POSTTEST	CONTIGURATION SCHD. PARAMETERS/VALUES No. DELTA ### PARAMETERS/VALUES ONTIGURATION OF PARAMETERS/VALUES ONTIGURATION O	2511	472 472 472 473 45 55 61 67 757 757 757 757 757 757 757 757 757
—	31		ORIGINAL PAGE IS OF POOR QUALITY

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1- 52

ORIGINAL PAGE IS.
OF POOR QUALITY

DATA SET COLLATION SHEET

TEST VA 1163

O PRETEST

		Ş	_			֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜													
	00)00(00)00		-	2	RAME	TER	PARAMETERS/VALUES	CUES		ģ		DE	DELTA	E//2					
		0	8	dor	7/xx and and	4.	170	60	40			<i>"16"</i>	119 151 182	1177	111	35.0	0.01 808. 892 528. 966.	1	0.0
	ADK BOOKER (NO CAMED)	7	0 5	20/6	50.0/00.0-591	0.0	3.0	0.0	0.0	1	۲	7/2	876 8318 706		-		_	-	
14/1					M.					*		200	8302 878 8830	1 2	H	\vdash	\dagger	+	J-
1					-41				E	•	1	3201 82%	X				\vdash	+-	╄
482					cya.					3	۲	22.8	1			\vdash		\vdash	┞
485					501.	7.				*	2	1	520 12.18 2028	7	-			\vdash	├-
154					197					3	<u> </u>	3206 82/3	2/3			\vdash		-	╀
5476					12.2					ๆ		525 722	7/7	 		-		}	┞
787					.35/					67	1	320 5211	17		\vdash	\vdash		-	┞
4.87					:522	P				1	**	309 3.	2015/03/2	22	-		_	-	┝
117: Was	411 MOKE BORDITER (Dame = STREA)			\exists	1.50	Ļ				20	7	20/5	1123/125/05	3/9	2,76	2695	26. 20.000	5	۲
409					1.145	_				2	\ \frac{\frac{1}{3}}{3}	120	2/7/5	220	230	A c	(302) (317) (327) (316) (327) (516)	1 a	1_
. 490					40'-	,		E		7	"	203	3/6	305 826 523 824 COS 606	7,2	2696	15.	+	╁┷
164					.043					9	<u> </u>	Q Q	- 6	070 2365 (565	3.6	37		ļ . ;	
492					50%					۵	16	305	3,45	5205 (2,4 (2,2) (2,12) (2,49)	2000	2176	67%	200	↓_
493					.167					9	٧,	306 50	3/5	CHC2 1892 here 2162 3062	2/5	7		-	
174.15					122					٦	3	207 50	2125	5207 5612 5225 5390 5343 541	3.05.	25.75	13	-	├-
495					75					7	5	2 10	3/1/5	LAS thes bres ores lies loes	29/2	3445	7	-	_
264					521	1	7	•	+	۲	200	25 601	3/0	2775	277	245	3562 JAS SHE TICS THE 0162 9063	-76	
			+	\dashv				•											
		\dashv	\dashv	\dashv	4														j
1	7 13	52	İ	. 22		31.		37	3		64		55		73		67		2,2
ALPHABCL	15.4.4 16.1.	1C.B	1	1684	1	¥	1	12.4	4	1	4	}	1	}	DE	DE/.CAN	1		7
COEFFICIENTS:	TS: Az -10° 1		+10	PAR	DAS DATA POINT PER	1 60	17		PECREE	2					Tag.	(E) (EV)	- IDPVAN(1) IDPVAR(2) NDV	R(2)	<u>Þ</u>
SCHEDULES											í								
											ı	147					MAN	SALCESTANTE	4

eragi erakûlê ew erek here

ORIGINAL PAGE IS

B POSTTEST O PRETEST

DELTA Z/B

0

CONFICURATION

DATA SET IDENTIFIER

SCED.

0

MONG RUCKER

RT 8 497 16% 484 ç

20/

DATA SET COLLATION SHEET

VA 1163

TEST

T

DELTA WING ORBITER CANARD BOOSTER HASA-MSPC-WAP LIDEVAR(1) | IDEVAR(2) | NOV 6 DELTAB 5 22 5 5/07 2015 5701 7.7 3/10 2000 502 5/03 5/05 5101 प्र 2005 5000 5006 700% 5003 A = - 10 to +10 ONE DATA POINT PER DEBELL No. of Runs 43 1CY ... 1CY/ 0.000 Sea PARAMETERS/VALUES 37 1000 0.0 - 521 0.0 13.0 PUNEDWEAX/4 R. Ma 31. :03 105 250. 167 3 -,41 22 0.0 - 591 167 .351 -. 11.2 99 .045 15.84 0.0

148

AA

16.6

ALPHABCLA COEFFICIENTS: -

5/13 513

11/2

214

50P 60 10

50

700

Ses 200 75 s or b schedues

2

C-1- 53

DR#1108

MDAC

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1- 54

O PRETEST

DATA SET COLLATION SHEET TEST VA 1163

TO TOTAL DE														
	CONTICULATION	3 -	3	PARAMETERS/VALUES	ERS	ALUE	- 1	Š		DEL	DELTA Z/LR	L _R		
		<u>-</u> ا	NO BIND	PUBPURAXIA K. M.	4.1	7. See	160	Le Runs		0		110 15 100 320 250 500	2	E
en 575	الماري فال الافرار ويلوم	0 7		50.000000000000000000000000000000000000	7000	9				-			72.5	107
1	II.	E			引- 計-	9-1	0:0	1	द	75.5	9/22/8	56/53/8/57/8/57/4/51/5	2755	535
3,7			1	5	1	+	1	7	ध	गटार-	year.	520-2 317 520- 523 540 Sec	38 85	
272				200				7	5	2521	200	Sp. 153/6 73/1 534 5310 520	1	
27.7				.043				9		0		200 5010 5010	77	
575				145	_			6	1	1			6 3	\prod
200				67/		F	Ī	ţ		75 CS2	(1313)	5765 1/45 KX 15125 KIFF 16/15 CS 05.5	725/75	
163					Ŧ	‡	I	3	3	र्षे	<u> </u>	5206 5313 53 FEST 534	3	
			+	77.7	1	+	1	7	E E	2520	2555	5107 5212 5255 5230 5343 504P	43 5048	
727			#	ZZ.	+	+		7	C	112500	1534	(Je 8.53) 53 46 53.9 53.49 5347	230	
523			+	5523	*			7	S	9/52/6	24,3	3309 1310 1373 13.10 com	100	
524				L.3%	6.0	0		,	Į.	1	7		7.7.	
255			_	177				 		72.77		2001340 3477 34 36 3437	12	
763					#	+	#	+	25	77.5	32.20	165 5145 475 245	4	
1			+	700	‡	#	#	†	7	27.22	12/20	1903 54 54 4 4 14 1629	82	
727			‡	10/3	#	+			52%	1 5415	12/25	54ch 5415 54 22 5437546	٥	
1,223			#	105					576	2 60/14	1303	54.5 (414 Tagade , GUI		
50%				79%	_				7	77				
53.0				218		E		F	1	2	1	2 45 124CH242C	3	
						+	1	+	7,2	77.27	V 3	3407 5412 5426 5450 545	5	
			#	35.4	#	+		#	13/0	गिष्टड्र	13.20	SYDE STUL SA 26 5429 5444	14	
7 7			1	223	*	4	>	4	57.60	23/20	54.77	5401 5410 5427 5421 5445	/2	
†			+	+	+	\int		+	-					
			-		4			_						
	7 13	19	25	31.		37	6.4		6,9	SS		19	5	
ALPHABCL	DC. LA	ICA	1684	73		KKK	4					DELTON	90	
COEFFICIENTS:	ENTS: 12 -10 to	0,00		77.70	1							LIDEVA	LIDPVAR(1) TIPVAR(2) (NDV	VAR(2)
a or a		j		THE PROPERTY			7500							

ORIGINAL PAGE TO

149

MASA-HSPC-HAP

r.

DATA SET COLLATION SHEET

TEST VA 1163

O PRETEST

HASA-HEPCHAP -tueras(1)| meras(2)|wr E POSTTEST 5 . WELT.88 5 DELTA Z/LB 119 . 151 10.0 550 1521 552 25 pression 550 5510 5231506 55275512 5565 5204 1055.82 315 1955 5566 5572 63 As -10" to +10" DAY DATA > 0 ENT PER DEGREE Se Se CY CXK 3 6.0 500 0.0 PARAMETERS/VALUES ma 6.0 A. 6.0 31 S 13.5 043 167 .351 PURPORE AX/6 Sc. 0 400-11 -018 3. 1666 25 8 8 SCHD. 15.4 TONE BY COTE (118 CIME) 16.16 CONFICURATION ij ALPHABELLA **WEFFICIENTS:** a or B SCHEDULES DATA SET IDENTIFIER 520 532 539 125 RT8533 5.36 323 535 534

î

150

DELTA WING ORBITER MDAC

CANARD BOOSTER

MDAC

C-1- 55

DR#1108

CANAHU BOOSIER MDAC

DELTA WING ORBITER MDAC 56 DR#1108

> DATA SET COLLATION SHEET VA 1163 TEST

O PRETEST

.217.554.594.908/00 S POSTIEST -{Idppar(1)|Idpvar(2)|Pdv 12.5 Stros 1534 | 522 | 525 2134 | 1334 9325 420412 13812 1383 1383 1383 1385 13854 339 330 3327 3327 245 346 3356 150 (2011330) 236 5521 33H 329 555 29.815V 422 550 551 5526 2529 3344 3347 352/357/352/555/35 42073307 5342 3545 2330 3343 534 . W. C. C. R. R. 2 4204 2504 3515 5222 3333 5340 364 3515 1502 3502 406 3506 3513 3524 3331 3343 1525 1525 3128 LOSS 5505 3514 3520 9526 3529 3536 567 352 3535 350 1506 2512 355 1550 550/ 3517/3519 358 35/4397 -DELTA 2/LB 151.12 35// 55 550P 151 :119 9 4309 ONE DATA POTUT PER DECREE R R R R R R 0 0 40 0.0 60,0 PARAMETERS/VALUES 00 177 a; me 2.0 0.0 -3715.0 751 Plana pura 0.0 0.0 -591 -145 50 200: 043 228 2% 043 50 155 112 .250 S 167 351 7 102 25 A= -10 to +10 9 SCED. 3 5 MUYIC DESTIFE CONTIGUALION ALPHABCLLA COEFFICIENTS: a or 8 SCHEDULES DATA SET IDENTIFIER 375 552 543 タたら 545 247 549 5 553 ナント 575 526 557 553 RIB 542 24% 757 477

MACA MIRPAIN

ORIGINAL PAGE IS OF POOR QUALITY

S POSTTEST O PRETEST

DATA SET COLLATION SHEET

TEST VA 1163

DR#1108 C-1- 57 DR#1108

CANARD BOOSTER MDAC DELTA WING ORBITER MDAC

HASA-HSPC-HÀP

a or B SCHEDULES

			ł						f			DELTA Z/la	7/2/4	و				
DATA CFT		SCHD.	_	7	AME	TEK	PARAMETERS/VALUES		1	<u> </u> !?				ŀ			ŀ	Í
	CONFIGURATION	•	7	WO 21	PURDOWRAY/	4.	110	66.01	40	Runs	-//9		197	151 187.728 355 577 800	3		7002	0.0
	;	ļ) <u> </u>	0	0.000	•	2.0	0.0	0.0	9			32c1	202 3579 2579 3834 2235	5.00	17.		3.7.2
8T8542	DHC.	4-			- 1/4	-			_	9			162	3802 3817 3120 3435 3836	505.12	25.53	20	7
26/	-		上	E	6/0					<u>ر</u> ا			रक्ष	56.82 15/6 3/72 15/12	Elicia	13.	+	7
262			+	E	000					7			3204	3804 3815 382	382	\dashv	\dashv	7
263			+	E	3					9			3805	3805 3814 3623 323	26.23		333	7
73)2			+	E	147			E		7			3606	3106 3113 3824	35.24	+	1	7
375			+		216	_				6			3201	3801 3812 2125 3330	22.53	2530	1	7
32			+	E	1 2					<u>ل</u> ا			338.8	38.8 3111 226 327	29.26	ZZZ	寸	7
562			+	E	1					7			3809	389 340 357 328 3737	34.71	N. N.	ZES.	-
20.5			‡		1207			E	F	~	370	1 3718	1372	276 3716 3717 3153 3175 3175	222	27.52	Q	22.50
56.9			+	E	*/**			E	F	م	13.74	x 3717	3720	274 3717 3720 7735 3757 3851 3254	37.57	222	22	\dashv
520			‡	\bot		1	1		F	4	370	\$ 137/6	3771	3703 3716 3721 3784 3739 3550	37.59	320	_	-
22	1		+	+	770:	#	+		F	+	1	7/60	4933	27.7 57.7 57.7 31.4	2746			
522	7		\pm	+	.043	#	+	1	1	9 6			1	101 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1774	6/2/2	3,23	F
573	33		+	\pm	307	#	\pm	1	Ŧ	0	3/2		7 2 2		1,76			
pus	7		+	+	797	7	+	1	7	<u>s</u> :	132	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200	3706 3713 3767 3737 3737		12		
575			#	\pm	777		\ddagger	\mp	-	+	24			2000	10770	2,00		
576	20			\dashv	1357	#	#	\blacksquare	-	1	3		27.5	3/2 (3/11 3/2632) 3/11 3/11 1/11 1/11 1/11 1/11 1/11 1/1		1 2	22.62	-
522	2		+	+		기	+	1	1	1	-	# 7		2	200			
			\exists	\dagger	+	+	1	I		$\frac{1}{1}$	+	\downarrow	1		ŀ		T	
				\dashv	4	4	4		}		┦;	┨	١,]		٥		7 1
	7	13 19		2		=		2	1									4
1476	PHABICLA	16.11.16.	A	787	7	Ä		KX8	1		4				INFVAR(1) IDFVAR(2) HOV		12	
COEPE	COEPFICIENTS:	1	1		37.0	2676	ı	POSENT	0 20	PER DEGREE						•		
	l	A = -/0 10	4		1						ı							

CANAHU BUUSTER MDAC DELTA WING ORBITER MDAC DR#1108 C-1- 58

DATA SET COLLATION SHEET

TEST VA 1163

O PAETEST

DATA CET		SC SC SC SC SC SC SC Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc		ARA!	PARAMETERS/VALUES	ERS	X	153	F	٦		DELTA		87/2				
IDENTIFIES	CONTIGUATION	8	Pule	PLIEDWR 1X/4	7/7	A;'	Me		20.	Runs		2.73	1.18.	306 992 528 855 581. 121. 911.	.552	.522	208	537
9-9-0	and buston	9		185-1001-398	196	0.0	2.0	0.0	0.0	7	3%	124	67/12	3401 341P 3419 3436 3450 3450	34.52	2452		37.75
000 L	11	+			EH'-					7	34	23.34	7352	3402 3417 3420 3435 3432 3451	3592	1572	25.2	\dashv
7 7 7		E			-00					7	34,	3 14/	7527	3403 3416 3451 3456 3450 3450	3477	3450		1
1 1		E		Ë	2/2					7	346	4134	2342	3404 3415 3422 8423 3440	3440			
		E		E	50%					8	34	05 341	14.342	3405 2414 3423 3432 3441 3449 3455	3441	344	3853	1
7.1.7			H	E	167					9	34	26 341	3 342	3406 3413 3424 3431 3462	1346			士
16.2		E		E	2.2					7	34	07 341	2 3%	3407 3412 3425 3436 3443 3448	346/5	314	,	
7,00					155.					7	75	25.	11 3%	94083411 3426 3429 3444 3447	2344	3447		
2 3					Ü	-				8	34	34	5 342	5409 3410 3427 3428 3445 3446 345	344.5	34%	348	1
2 (6		E		E		30				7		36	77	360/ 3618 96 19 36 36 3637 3647	36%	3637	3647	17.7
1	,	E		E						7		356	23.56	5602 3617 3620 3635 3638 3646	03635	353	3646	
ا م				E	-00					9		36	03 361	2603 36 16 3621 365 1629	1367	26.29		
					3,40.					7		35	04361	360436151223333	2 3633			
276			上	E	20%	-	F			7		56	c3 3%	3605 3619 3623 3432 3440 2445	3 26.33	3640	200	\Box
7 5		E			14.7			F		7		126.	26 36	1506 3612 3629 3631	93621			
		E	H		26.6	F			L	9		156.	£136	11.20 02 25 25 36 13 18 17 36 36 11 1	23.2	22.11		
5 %3		E	L		132	F	F			9		3,64	SF 36.	3608 3611 3626 3629 3643	6362	7 242		
284			+	-	Ĉ	-	-	-	-	2		3%,	292	31.09 36 16 5627 3622 3643	7 362	1264	2644	
275			-												_			_
														_	_			4
		d =] ::		, IE		37	7		6.4		25		- T-	6		4
ALPH	LPHABCLM ICK	15.4		16.84		KK		יכגע	1		4		1		Inches (1) Inches (2) Ki	45	A Va	
COEFFI	COEFFICIENTS: A = - 10°	10	410	9	ONE D	DATA		PODIT PER	1 1	PEGREE	ايا							
a or B											1							
CHINGARDS	3		ł								Ì						KASA-KSPC-M	Š

ORIGINAL PAGE IS OF POOR QUALITY

YELDARD WAYN WE

VA 1163 DATA SET COLLATION SHEET

TEST

O PRETEST

154

DELTA WING ORBITER

CANARD BOOSTER

MDAC

16 10 16

C-1- 59

DR#1108

MDAC

MUAC DELTA WING ORBITER MDAC DR#1108 C-1- 60

TEST VA 1163 DATA SET COLLATION SHEET

B POSTTEST O PRETEST LIMPAR(1) IDPVAR(2) NO .908 1401 1414 9415 1429 4436 4441 4415 44 5 4418 4418 4421 4140 4431 4401 4411 418 4426 41432 4433 4446 24.00 4408 4421 4422 4454 4435 4145 4502 452 452 4536 4539 455 455 456 455 4557 4537 4532 4553 455 4565451452345334590445594 4509 4510 462 1 4534 4546 454 455 . 3.52 . 577 4439 4476 <u>स्टर्ग नटा निर्मा निरम्</u> 1.52 451 455 4530 454 454 450 4511 4526 45294545454 3 DELTAN 4406 4409 4420 4423 4423 1204 4554522 4534 454 45641513145244524654 187.220 405 4412 4417 WY37 4405 44104419 4424 19 DELTA 2/4B \$3 • TO the ove DATA POINT DER DERREE Ros. A W 1 C 0 1 See 60 -30.0 63 KYK... PARAMETERS/VALUES 77.0 37 0.0 Å. -3% C.C 771 31, Transand and 167 093 351 52 K 137 105 24 532 \sim 16.84 0 8 0 SCED. KA 1 Course 15-10 CONTIGURATION ALPHABCLA ICK ON SEC COEFFICIENTS: DATA SET IDENTIFIES SCHEDULES 600 6.2 612 11.9 6/8 632 1.63 6.5 607 450 -7:29 623 a or B

HASA-KSPC-KAP

155

ORIGINAL PAGE IS OF POOR QUALITY

THE WORLD

PARAMETERS VALUES PLICE PURE ALL M. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

156

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1-61

ORIGINAL PAGE IS SE POOR QUALITY

DELTA WING ORBITER MDAC DR#1108 C-1- 62

TEST VA 1163 DATA SET COLLATION SHEET

O PRETEST

MASA-MSPC-MAP B POSTTEST -IDPVAR(1) IDPVAR(2) (NDV 67 DELTAN 9 DELTA 2/LB 55 157 47.7 40.4 Sam 48.2 422 1906 707 4801 1902 19.7 4901 49.3 49.4 4905 4905 Ş % & % THE OUR PATH POTHT PR DEFETE See 60 2.0 20.0 PARAMETERS/VALUES 37 110 4, -32/10.0 751 3 Purdowelsell 14.5 88 201 167 222 522 -148 10: .043 50% 551 .77/ 25. 167 151 15.8.5 0.0 8 0 SCED. LCA 40 CURTURE A= -10 1771 CONTIGUALION 211.110 ALPHADICLA COLPTICIENTS: a or B SCHEDULES TENTIFIER 2. 7818 652 657 559 155 نا 123 010 159 651 660 779 655 193

> ORIGINAL PAGE IS OF POOR QUALITY

### SCED. PARAMETERS/VALUES SCED. PARAMETERS/VALUES No. DELTA 2/48	
---	--

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1- 63

C-1- 63

THE STATE OF

158

MASA-KSFC-KAP

CANARU BOUSIER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1- 64

DATA SET COLLATION SHEET TEST VA 1163

																PRETEST	ST
DATA SET		E 5						İ								POSTTEST	EST
IDENTIFIED	CONFICURATION	3	2 0	FARAMETERS/VALUES	3	Ž[_l %		DE	DELTA Z/LR	H ₁ /2				
DESTA	•	-6-			4	1	30	40	Runs	-	1.1	51.18	2. 2.	119.151.18d. 220.352.599	39.9	901 100	3
ノコノ	WILLIAMS & RESTER	0 8	0.0	0.00.00		10.0 3.0	0.0	00	9		Ŀ	199	1 8	0/02			
2				577.			\exists	_	7	\vdash	\vdash	-		1262 5414 7475 2927	7	2775	<u> </u>
+ 23				1.00	-			F	大	-	+		77	210 de 11/1/12 05537 2916	22.5	2226	\pm
617	٠			170		E	+	#	╁	+	+	3,20	1600	250 126 3921 252	29.2		
505					E	E	‡	‡	,	+	+	133	5150 1050	5 8522			
617				5///	F	1	#	#	9	+	+	32	7505 3914	1 25.33	7831	757	
6.50				7	I	#	+	+	4	+	+	37	16596	3906 2913 BB24			
109			F	127	I	#	#	1	닋	\dashv	\dashv	29.	7966	290 7 29/2 352 5 730	730		-
20%			F	122/	I	+	+	1	Image: control in the	\dashv	4	230	1150 20	2902 326 1176 See	32.66		\vdash
267			I	ē	1	#	#	\pm	9	-	4	28	9 3/1	299 5193917 2928 2012	4605	21.5	-
7.67			Ŧ	726	9:-	#	\ddagger	1		26	1361	11/1/	9 263	26.1 26.18 26.19 26.36 26.57 25.52 24.59	2.63	2%	122
269		 	1	277	1	+	#	1	A	2	7967	1220	0 1635	26.2.2617263036353638 1651	12%	12071	-
100			Ŧ	500	1	#	\downarrow	1	7	3	13.56	797 3	2603 2616 2621 3634 2635	26.35	15.5		╀
000		+	+	10/2	1	#	\exists		0	76.	196/	5067	264 2615 8622 2633 2440	2640			+-
597		‡	#	50/	-	#	1	1	2	300	5 261	4.62	37.22	265 2614 2533 3632 364/21:926	27.9	18	╀
25 /		+	+	167	1	+	\exists		6	7,00	1961	6726	26-426172624 2631 2612	2/4/2		1	+
2		+	+	77	+	#	\exists	-	7	26	1261	26/62	27.73	2629 26 12 0535 2130 56 14	177		+
700		†	#	1351		\dashv			7	7	1 2/6/	114,	56 // 7	11.7. 11.7. 20 11 4 14 11 11 1/C 100 C			-
/ / / /			7	73	7	1			~	260	9 261	27.	2609 2610 21-1 16.5		015000000000000000000000000000000000000	13	Ţ,
+		1	+	I	+	+	+	-					4.444	,	1	9	+
			\dashv		7	1	-	4	-	4					-	-	Π
10000	13	61	22		16			5		5,	\$	55	61		5		2 2 2
COEFFICIENTS:	.A. 11. W.	16.8	7837	1	ZZ	772	*	1	1]			S	10 54 TAD	5		1
a or B	A= -10 to	1/3	DA'E DATA	Para	Pred	PEL	PYNT PER DE BESE	6666					1	- {IDPVAR(1) IDPVAR(2) NDV	Ži.	AR(2)	<u>ğ</u>
SCHEDULES																	
										159	_				1	7	

ORIGINAL PAGE IS OF POOR QUALITY

MASA-MSPC-HAP LIDEVAR(1) | IDPVAR(2) | NOF 250 1250 250 250 250 250 1250 1250 10.0 100 S POSTTEST O PRETEST यद्र रिव के अन्न करण 2926 0526 1552 6122 6 1726 7526 225 2325 17.428 1782 1502 1502 11522251 इन्हिट्डिट्ड तेश्टर ।। ५० मार्थ DE17.80 3000 250 350 350 Just 1500 350 350 450 6 251/25/1254 255 125 Les 125 Les 125 Les 300 1 23 0 125 245 245 245 245 245 245 245 24 525 2015/22/201 A17.352 233 1526 1252 1252 1253 3001:30/ 03/ 1/3/ 2/3/ 336 21/2 3006 03062111232 4324 ASSA 2337 236 156 025 1356 5 1224 DELTA Z/B 1500 57/5/222 32 \$ 1563 2501 DATA SET COLLATION SHEET 1305/2314 300175021287 3003 7303 236 114 1110 Ş 3002 3005 1/3 ONE DATA POLUT PER DEGREE No. Runs ۵ 1 C r 3 0.0 Sea 60 ZXX PARAMETERS/VALUES 37 K A 6 CK 3 5.13 -391 8 167 730 :/(3 35/ 100 943 910 PURDOWRAX/S 50 cvcc 0- 35/ 1684 VA 1163 +10. 0 SCHD. CA 2 TEST 13 o R A= -10 MONE CIREKTER ICK CONFICURATION A. L. P. H. A. B. C. L. A. COEFFICIENTS: a or 8 Schedules 6/4 712 3/6 202 20F 228 216 714 215 11.6 17.6 100 200 0/0 (DENTIFIER RT8 722 116 406 DATA SET 703

ीक्रीलि**श**हरू.

PAGE

MOUR QUALITY

IS

3

DELTA WING ORBITER

CANARD BOOSTER

MDAC

C-1- 65

DR#1108

MDAC

7

75 76

DELTA WING ORBITER MDAC C-1- 66 CANARD BOUSTER DR#1108

> DATA SET COLLATION SHEET TEST VA 1163

O PRETEST

NASA-RIFC-LIND 1119 1.151 1.182 1.420 1.384 .591 .908 1.0.0 = |IDEVAR(1) | IDPVAR(2) | NOV B POSTTEST 220 1211 12119 200 120 2737 220/2218/2719/2136/2227/232/253 255 2256 102 2117 2120 2787 2396 885 855 7010 0176 8556 2005 2019 222 223 2241 224 9 2055 MELERB. 2108 2210 2227 2220 2245 2046 202 1116 2111 2050 mospartans 22071712 305 stars 2017-21 1126 1239 1210 4720 2235 2234 2751 27.06 2000 19706 1975 1750 1700 600 2 1705 2716 2721 7734 2759 20042715 2722 2723 2740 בנלבן אוויב אינה testissist sost 22662212224123213242 3 DELTA Z/LB 25 161 7702 6 As -10 to +10 DUS DATA POSUT PUR DEPREE 4 S C 99 899 PARAMETERS/VALUES XX21 77.0 4: -5.0 10.04 - 30/ PLICOUR LILL 73. 370 107 777 351 195 -145 119 04.3 सर 522 127 56.2 /10.3 0 SCHD. A.A. MONY GRETTER 16.1 CONTIGUALTION ALPHABCLA COEFFICIENTS: a or B SCHEDULES DATA SET EDENTLYLER 7.32 7.5 2.6 228 734 735 7.37 222 223 1127 1.29 230 731 7=7 22/2 724 RTP 720 221

> PAGE IS St. Comment DOR QUALITY

DATA SET COLLATION SHEET

VA 1163 TEST O PRETEST

5256 119 151 162 201 350 500 500 100 S POSTTEST 520 523 5256 5201 521 1222 1232 1241 1249 5209 5210 5227 5227 5245 5246 20 (Sall 5219 | 526 | 5217 525 5208 5216 5221 5334 5259 5250 5001 524 522 4520 5241 521 <u> १३०१ ५३५। ५३४५ १८५८ १८५५ १५५८</u> 5225 5725 5.45 Care Sear Here's less 1805 3 DELTA Z/LA 320/ 3218 5219 3.70.21 5717 122.20 5205 321/1421 509 52/0322 \$5 1201 3 1/6 3206 5213 3207 3212 1122 5062 5204 4504 • Runs. 4 1 M ŋ 7 3 Seg 60 0.0 0.0 PARAMETERS/VALUES Me 0.0 3.0 A 31. PLAR DWR AXIS 50.0/00.0-591 -0/9 167 122 80: U I . X. 043 17.7 .58 .043 167 22 3.51 521 155 2 0 SCED. 0 * 1.9 MAK ORBETTE (MASSES יונישם הצבידה לוח יריוני CONFIGURATION 13 7 DATA SET IDENTIFIER 242 01:10 242 245 750 254 RT8 72," 243 170 2. 252 ググ 255 141 74.1 251 1716

MASA-MSPC-MAP

LIDEVAR(1) IDEVAR(2) NDV

TO +10" DINE DATA POLUT PER BEGREE

4= -10

157.4

CK

16.84

CA

16.

A LPHA 30C.L.M COEFFICIENTS:

DELEAS.

DELTA WING ORBITER CANARD BOOSTER MDAC MDAC

DR#1108 C-1- 67

162

a or B SCHEDULES

CANARD BOUSIER MDAC

DELTA WING ORBITER 68 DR#1108 MDAC

> DATA SET COLLATION SEEET VA 1163 TEST

B POSTTEST HIDPVAR(1) IDPVAR(2) HOG O PRETEST DELTAR 5 5 DELTA 2/4 163 .113 50.2 5003 500\$ 5005 5002 50od 5009 1005 5006 5002 5/03 6 5101 564 5105 5/06 5607 5107 5101 TO HIG ONE DATA POINT PER DEREE ICXN . . 60, 60 43 PARAMETERS/VALUES 7 100d 0.01-57110.0 13.0 16.84 31, PURPOWELY! -11/3 .012 .045 105 167 523 .351 -143 -1991 -07 :043 167 6 75 0.0 25 0.0 0 SCED. 168 45-10 MARC GUETTER ICK. CONTIGURATION 13 ALPHABCLA COLFFICIENTS: a or B SCHEDULES DATA SET IDENTIFIES 258 2% RT 0 25% 256 162 250 177 1/2 3 74.4 26.2 1:1 2%.9 5000 2:0 1:0:1 20% 200 2:6

HASA-MSFC-WAP

CRESTAL A FOR 10

But the state of the IN MARK GRALIES

DATA SET COLLATION SHEET

TEST VA 1163

CI PHETEST

		e sewer	TA POSIT PER DELET	+10 0 0 00 0054	A= -10 to	coeppicients: a or b
NO COL	DEVAR(2) IDEVAR(1)		21.	A 16.6.5	A 15. K	ALPHA
7	KO-1/9 4.					•
XX	69 61 67	£.43	37	;		1
4	1401 SAIO SET (बस 5445		20 1 1	**************************************		164
Ŧ	1400 5241 1926 5429 5444		357	- "."		293
Ŧ	डर्ट यस डर्ट डर्ट व्यक्त		748			24.0
Ŧ	डबेल्डडबार डबेल्डडबा उपरे		12/	* 		7,r.r
Ŧ	5405 5414 5405 1602 5441		105	/ 		249
T	544 545 5432 5735 5460		240	<i>*</i> :		25%
7	1403 541 5424 5434 5439		70-	77		21%
1	5702 5417 54.20 5415 545P		1443	-1		4.86
		9	3% 6.0	1		285
4	5309 510 5325 5245 5745 5745	7	52.2	5		27.72
Ŧ	130 PM 13 PM 1329 13 PM		155	۶		156
7	5307 5712 5735 GU 348	2	127			280
1	C112 125 125 12995	9	/67	/·		5/00
1	520 5314 522 532 534/ 534	2	45	7		366
7	5204 S115532 5333 5240	9	243	0'		1166
7	572 182 916 52 1 5339 531 5TE	7	-019			200
7	13.2 3.25 5.20 5.25 25.6 53.51	7	-/43			-
į.	5.815348 53.18 5336,531.55.53	00.00	-31004000	0 50.0 1000 -	A SETTING SAIN	plil
10.0	. 119 . 151 . 182. 226. 352.527. 908	See So Rune	a, Ma	8 purpowe ax/1	CUNFICURALIUM	LDENTIFIER
7	DELTA Z/B	_ 1	Parameters/values	HD. PARAN	ઝ	DATA SET

164

CANARD BOOSTER
MDAC
DELTA WING ORBITE
MDAC
DR#1108 C-1-69

ORIGINAL PAGE IS OF POOR QUALITY

DELTA WING ORBITER MDAC CANARU BUUSIER MDAC

C-1- 70

DR#1108

ORIGINAL PAGE IS POOR QUALITY

DATA SET COLLATION SHEET TEST VA 1163

E POSTTEST MASA-MSFC-MÀP O PRETEST LIDEVAR(1) IDPVAR(2) | NOV 6 9 DELTA Z/LB . 151 10.0 55e/5212529 523500 5.64 5515 562501 5565 5504 552755 5569 5500 5566 5373 23 १/इइस्य -/// 165 • JCKK I As -10 to +10 DAG DATA POSUT PER DESERT PURPORALA CO. M. 608 60 60 64 PARAMETERS/VALUES 0.0 Sopen-11/40 60 37 1686 31, 7 110-043 -167 165 7.00 3 151 25 9 0 0 7 SCHD. 15.4 DIAC FITTE NO CONTIN CONTICULATION 7 13 ALPHABCLA COEFFICIENTS: a or A SCHEDULES DATA SET IDENTIFIES 400 292 RT8 172 294 me 298 79.1 800 3,2%

Sec. 56. 50 46.1

C PRETEST S POSTTEST

H
SHEET
=
_
-
7.
COLLATION
\simeq
-
3
3
Ħ
0
Ç
8 E T
00
⋖
H
4
DATA
_
1163
9
_

DATE CET		SCE.	4	TOTAL PROPERTY OF THE PROPERTY	ì			1					-	-		
DENTIFIER	CONFIGURATION	8	PURPONE SX/1	18 45/6	4:	Me	500 6	e Runs	ns	*	157	797	226.252	22.52	800. 3	1
	astrono occur	7	0.0 0.0	0 - 591	0.0		0.0 0.0		\$ 33.5	3356	355	33.52	318 318 318	म् च	23.5	
7070	MURI 0:30=150	+	+		5.0	-	-			3544 3514 354	3544	32.1	2544 3564	34 124	1327	
707		E			0.01	Ë		0	3/2	37.23 3832	23.25	3.22 S.22		Jezz 1212	13637	
2.67		E		+	0.0		T -	1,0,7	1117	5 4445	1443	2445 4445 4443 2445 4465		24/2	3477	
607					0.0			-	39.5	39.8 38.6	25.55	385 385		37.6 23.6	325	
965			200	6.001	, ,			0.0	242	37/5	30,50	2456	146 248 34C		25/56 35/50	
30,5		E	3::7		1,		_	0	7000	12.41	3:44	36.44	P. 44 300	7.7	12.7	
502					2000	Ť	+		40.5	4058 4638			4.58 4.31 Jess	37176	Se-35	
1/28					,			47	/S	م مردد	1652	-/552	1 50 USD 1859 - 1557 4559 1557 4557	5, 633	7 1557	
4:1			6	- 6	3 5		_	0.0	3756	375	375 375	3756	37.56 3	3756 3756	2562 2	
SIC			τ	<u> </u>		3	1		2.144		11/2.6	Tinhe	2/4/16	44.124	Fig. Die pe lipte lipte lipte liles tope	
7//2		E							1 2		1376 35.56 75.51	1220	2521 2	75.1 12	A18 283	
6/2				-	;	E	-		17	216 2	316 216 238	23.56	13:00-352		2356	
6//3		E	30.00	-					1.000	WSC W	1 2504	136	294		preso spec	
4/4		1	F	E	00		 	E	18	27.20	N. 21 27 275 273	7536	Jere		2635 2031	
31.5		土	‡	1	3 3	F			100	20.5	226 320 396	236	326 326 326	25 228	52 2256	
3/,7		E	+	+,		E	-	E	270	75/5	277	366 316 376	216	25 36 25 75	E 25.15	
11.1			_		3:0	Ė	+			1	100	7	00	200	C:52 22 50	
37.7	mai DeRreellantisher	1	8	1000	0.0	1	+	}	1	7 2 2	7	300000000000000000000000000000000000000				
				+			\dagger	-	+	-				H	\sqcup	
		<u> </u>	┤ ;	-] -] "	1	3		53		55	5		29	2
AIPHANC	. W.	1 4	7851	3.7	뉳		CXA				1		4	DELTAD	IN ELTAB	
COEFFI	COEFFICIENTS: As -/0 +	0 + 10	3/10	PATA		POCUL	797	PERCE	186							
C OF SCHEDULES	251											•			7	PARTIE TO THE PA

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1-71

ORIGINAL PAGE IS OF POOR QUALITY

NASA-MSFC-MAP

–|IDPVAR(1)|IDPVAR(2)|NEV

TO TIO ONE DATA POENT PER DERREE

1C81 1CY CYN . 1

15.4

ICK.

ALPHAOCLA

COEFFICIENTS:

a or B SCHEDULES

A= -10

--- 10 E/242

G

3

22

6

3

33

31

25

346

24.5 54.45 54.15 54.45 54.45

0.0

10.0

57.0

134

CANAMU BUOSTER MDAC DELTA WING OBBITER

DELTA WING ORBITER MDAC DR#1108 C-1- 72

TEST VAILES DATA SET COLLATION SHEET

.

> ORIGINAL PAGE IS OF POOR QUALITY

167

- PRETEST

CANARD BOOSTER
MDAC
DELTA WING ORBITE
MDAC
DR#1108 C-1-73

		CHD	٦	ABA	MET	PARAMETERS WALTES		N.	F	وا		3.5	DELTA	2//2		2	POSTT	LEST
CONFIGURATION		o B	Pula	PURPURATE	7/7	Z : /	7	. 1—1	4.	Runs	-113.1	1.1911.	1.11.21	182.220	28.92	12 572	908.19	8
MDAC BOOSTER		O H	0:0	0.0		6.00	2.0		0.0	8	23.53.82.8	18 251	1153	33.53	ES 23.53	53 5355	55 835	
	i. i	_						\vdash										
	l					0.01]	35.35.385	घडा	3755 3455	353	37.15 37.55	15 3535	25.25	5
	l		-	7		-5.0					5215 5255 5256 1325	25 52	25.	55.22	575 3753	53 3753	3 3753	
	1		2.0	6:5		0.0					\$454 345¥	15/ 38	37.54 34	3451 3	P2115 1211E		2454 24.54	3
	1			4	~	5.0		\exists			3647 56+7	14.7 36	3647 36	3647 54	5647 5647	7.5.5.	17 3647	7
	1			-		10.0				7	4055 4035 4035 4035 4035	155 40	35,6	755	35 /23	15 1/03	1035 4035	M
	. 1		2.0	0.0	\exists	0.0					395- 395-	25.	27.55 37.55	53	3755 4155 3950 3955	25 395	295	10
	- 1		-	-		0.0	N	20.05	200		5.14. 5.44. 31.42 - 141. 5.44	14.5	7.77	47	17	17.17	- 142 4442 -446	-,
	- 1		200	1200		000	7	9	20.02-		1524 4534 4534 4524 4554	इस स्ट	<u> </u>	克	37 753	27 4/55	450 450	<u> </u>
	1		0.0	0.0		0.0	3.0 6	20.0	0.0		525 224 224 (25) (25) (25) (25)	25.2	25.2	35:2	22.22	टर	55 55	<u></u>
•	. 1		\exists	7		5.0					2447 3447 2445 7445	47.72	1777		247 342		14.7.24	7
	1					0.0					2935 255 355 2815 2815 2815	25.5	25 25	25.	375 39	35 25	55 773	Ŋ
•				7		-50			·		3655	2553 245: 265	2.	253	2653 26	53.265	2653 2453 2653	77
	1		3.0	6:67		0.0	\exists				352	255	335 335		FT5: 23	2352 23	2352 235	7
	- 6		-	#	7	5.0	\dashv	\exists			7.456 TUSE (125C	547 23	17.75	2547	350.25	7.55 (1.15%	Zrs c Zr	N
	- 1				门	10.0					2352	2135 22.5	25 25	235 2	2835	2835 287	72.7.7.2	4
				7	1	ॶ	士				2562 2562 2562	22.2		S	2.52 22	27.53	2000	<u> 5</u> ,
OF MERC BOOSTERINGCANDS	· . !			7		0.0	士	\dashv			22.33	3223 3225 3225	<u> </u>		22.28 8.25	5000 55	72.5	<u> </u>
ADIV BOSTOPRIESE.	.1			习	ᅱ	5.5	닠	⇉		二	25 52 8 52 8 52 8 52 8 52 8 52 8 52 8 5	25.55	3 52	25.25	25/52	S S	5253 5253 5353	151
7 13		81	2		Ñ	31.	2		7		3		25	١	5	29		, 2% (%)
ALPHADICLM ICH		15.8	7	785	7	Z	4	LXX.	4	}	4		4	1	06/7/20	7.40		7
COEFFICIENTS: As -/o		10 +10		OWE	DATA	11	POSKT	777	1 1	PERREE				Ī			IDPVA.	
	-								ŀ		1							
										ı	1						3	HASA-USFC-HÀJ

ORIGINAL PAGE IS

MDAC

DELTA WING ORBITE MDAC
DR#1108 C-1- 74

TEST VA 1163 DATA SET COLLATION SHEET

OPRETEST

B POSTTEST HIDPVAR(1) IDPVAR(2) [NDV 806 737 750 1032 150 1131 537 1331 101/101/251 1627 535 554 555 555 5579 <u> 1334 | 1374 | 1334 | 1534 | 1534 | 1334 | 1334 | </u> 1954 Kid 1032 182 .228.352 .577 527 355 355 737 737 1231 754 \$50 1254 1254 1627 1627 5519 67 10667.00 7.2.7 537 1032/032 1181 1131 1131 850 125/ 125/ 125/ 125/ 1954 1954 55:9 55.9 55.19 55.19 355 637 637 637 737 737 737 454 527 250 1527152 1627/562 4534 4534 19 DELTA Z/LB 355 454 1052 537 PSO 150 1981 1252 151 355 1131 454 537 25725 72.77 1035 1032 16.22 16.22 1934 55 55 355 637 1/3/ 454 537 1834 169 53.19 ç No. Runs ONE DATA POTAT PER DEGNEE Ma 600 60 PARAMETERS/VALUES 77.5 4.0 6.0 A; 0.0 -5.0 0.0 30 10.0 0.0 5.0 1C.A. 1C.B. 1C.Y. 31, -.39/ PWR PWR 4X/L 0.0 10.0 0.00 50.0 150 0.0 50.0 10.3 10 +10 SCED. 0 "DA BOOSTE (10 CAME!) BODSTER 4 = -10° COMPLGURATION 16.11. ALPHADCL.A CIPAC COEFFICIENTS: a or \$ SCHEDULES CONTINE ATA 855 3, 157 863 165 167 16 1 DATA SET 15% 859 662 167 130 4 :00 125

NASA-MSPC-MAP

ORIGINAL PAGE IS

्रक्षा अस्ति अस

TDENTIFIER CONTIGURATION 873 NDA: ALMINICAL CAMES 174 NDAC CAMES CAMES 575 NDAC CAMES CAMES 577 NDAC CAMES CAMES 677 NDAC CAMESTEC (SKET ON) 679 NDAC CRESTEC (SKET ON) 675 NDAC CRESTEC (SKET		1.00 0.0	7/37	ğ	500 5	7/21	5									
673 mak idua id loke Eduario 173 mak idua idua idua eduario 173 maga idua eduario (1800 carres) 174 mada idua eduario (1800 carres) 175 mada oriente (1800 carres) 1879 mada oriente (1800 carres) 1879 mada oriente (1800 carres) 1879 mada oriente (1800 carres) 1879 mada oriente (1800 carres) 1879 mada oriente (1800 carres) 1873 mada oriente (1800 carres) 1883 mada oriente (1800 carres) 1883 mada oriente (1800 carres)	9					1	Runa	2.03	3.05	5.0	-	_		1	3	
573 575 575 878 878 878 878 878 878 878 878				0.0	5.00.	0.0.40	7		3/25	5,01	+	_			_	
الألال الألا الألا الأرب الإلا ألال الألا الألا الألا الألا الألا الألا الألا الألا الأراب							2	1701	5703 5	56.5	\dashv	-			T	•
التا الألكة الأثلثة الأثلاث الأنتية والمنت والمنت والمنت والمنت والمنت والمنت والمنت والمنت والمنت						_	`	1925	-	+	\dashv	4		1	7	
الأكالة الأثلثة الأثلاث تأكث أعلنت والبية عبيك بكيف يصبه بسبه			_	_	*			570.2	\dashv	\dashv	\dashv	4			T	
لتلا اثناكا بالبخال بانتكار فيست بسبب مست مست مست مست			-	ı	Ö	0	7		102	50	\dashv	_			T	
الأرائك الأنال بالناك ينبيه بمبير حميم مبير			1	١	-	0.0	7	7	770	501	\dashv	_				
لل الکا اثاث ایک ایک ایک بید جور جور			1	1	-	0.0			7	901	_	_				
الأرائي أأفاؤ أنبي في نبيب عبد جب			- (1	- 0	- 00	/		7	24	-				T	
الأراقي تتفق فيها فيها بينها ويها		\sqcup	1	1	0.0	1	2		120	50	-	_			_	
			١	١	0.0	1	7		101	105	\dashv				_	
		00	-)		-	/		`	106		-			_	
		- 0.0	7	1	Ľ	1	/			201		_			\neg	
												-				
					_											
											-		_		Ī	
											_	_	_			
											\dashv	_			1	
											\dashv	_			1	
												4				
											_	4	\Box		7	
1 2 13	19	25		31,	37		6.4	6.4		25		5	6		×1.	
N. ICA	16.44	וכג		611	4		1	4		4	1		4		9	
CIENTS		Ц,									1	TOTAL		- IDFVAR(1) IDFVAR(2) KDV		
A = -10	77	+10 01+	DA BRO	777	POSNE	207	DECECE	1	•							
SCHEDULES													_	HASA-HSFC-HAF	Caire	
													•		•	
			•	•										CANARD	0	BOOSTER
					140									MDAC	3	G ORBITE!
		•			;									MDAC		

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 2 - Separation Nomenclature and Moment Reference Points

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1108 C-1-77

172

Sta. 223

Fig. 5 - Modifications to Booster Model

	•	Attachment 1	7576 (2) NDV. BOOSTER 11 NG ORB
I, PREIEST		0 1/0 0	1, PH PEVAR NRD TA W
_ X	11 12 1 2 2 2 W V W OO Y OO - 79 IO	5 9 9 7 2	AR(1) III CAN MDAC DEL1 MDAC DER1
ج م م ج	5 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 × × × × × × × × × × × × × × × × × × ×	MACH IDPVAR
M = 1. T = 3. POSITION		ma vozn	e m
. 30 M		10 10 10 10 10 10 10 10 10 10 10 10 10 1	25. 27. 29. 3
4 × 1 × 0 0 × 1 × 1 × 1 × 1 × 1	1 0 0 0 7 7	-> - \s ->	A 6,2,
	POS NA O O O O O O O O O O O O O O O O O O		2000
DAIA SET COLLATION SHEET SS witever	Pos.		1000
71 71			12 P
# cor	CON 20 1 -> 0 1 -> 1 ->	0 + + +	28 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -
DAIA SEI COLLA BS walever	BO (%) 1 > 0 - 1 >	0	N J &
₩ 11	E H		EX. 0 2.
1,481.E		++++	1 1 1 1
·		7	2017
RCC X		020020	1 3 10 100
TESTARCE X JC FYVC RC JC FYVO R7 JC FYVC RC	S 8 C	→ Ø Œ →	10 ELM1
22.2	85 1/85 1/85 1/85 1/85 1/01 101 101 101 101		13 EAB = -/0 = -23
B3 N12 W5E3 B3 N12 W5E3 B4 N12 W5E3	B3M12 BS B3M12 BS B3M12 WSE3/BS B3M12 WSE3/BS WILE O O	0 10	13 B = B = C
63 × 12 51 × 18 51 × 18	2 WSE 3 VLR WSE	57	4 1 24
	B3M12 BS WIE B3M12 WSE3/BS B3M12 WSE3/BS WIE B3M12 WSE3 VEKY BS WIE B3M12 WSE3 VEKY BS WIE W		CIENTS:
77,4		717 617 718 718 718 718 718 718 718 718 718 7	CM. CA.
	DATA SET IDENTIFIED 102 103 105 105 105 105 105 105 105 105 105 105		

ORIGINAL PAGE IS OF POOR QUALITY

CANARD BOOSTER
MDAC
DELTA WING ORBITER
MDAC
DR#1118 C-1-80

-							•					_					,	Atta	Chm	ent	: 1		7576	10	MDV		
TTEST																-					. !			AL PHA	IDPVAR(1) IDPVAR(2) NDV		
POSTTEST		2.0	·	10	114	124	109	138	143	841	70		25/	153	245	340	235	220	225	230	×		19	7.4	1) 110	3.	3")
	NUMBERS	١,5	130	+	12	521	110	139	441	149	X	4	159	154			1	221	77.7	131				MACH	PVAR(1	+
	MACH NU			12	1/6	136	111	140	145	150	8/	1	09/	25/	+		23.7	222	27	232			61	W	H	=(Nom	= (Non
	×	28.		_	<u> </u>	127	7	14]	146	151	101	<u> </u>	13	156	24%		23	223	228	233	/		2	11/2		FWD	AFT:
		9	133	(13)	8//	128	113	147	147	152	200	4	19/	123	2473	7.F	2	तिहर	12.9	3	767		55	7		NoTE:	
	SI NO.			_						Ý	4	5	_	_						>	_		9	CPF		ž	
	ORB. POS.	3 10 6										>	7	7		<u> ~</u>	4	0	7	4	i						
	ا ا	Pos		_			_							>	# T	- -	>	AFT		>	Non		13	75			
	N. DEFL	9	0			! 	_	5	ما											->	0!		į	- -			
	ORB. CCN	4 60	0 0			-	>	-15	+15	1	0	_								>	0	_	H	£84			
	—	7	3						>		0	-	N ₁							>	0			N.			
	N. DEFL	٤	0					_												_	0	-	R	6.Y.K			
	OSTER CON	مو	01-	0	2	0				1			-						\dashv	~	0	-		777			
	요	4	0		>	20	40	0												>	0		8	2			
	동	<u>छ</u>	BOB	#		1					>	5	0						-	-	0	\exists	8	E41			
					-					•											기	=	23	1			
		ATTON	0							'6 RC		.											13	E4.8			
		CONFIGURATION	12/0	+	\dashv	-	\dashv	+	>	BSWIIVERE	10/17	→	2/01	+			\dashv	\dashv		-	10/			1	i		
		3								75/8	7		7								757		-	15A	2	' :	١.
}	E L		+	71	 	>	<u>را</u>	و	7	4	9	2	+	_	~	3	\ \	<u> </u>	7	001	0	4]	COEFFICIENTS:	0	OLESS ULESS
	DATA SET	IDENTIFIE	145771	777	723	427	577	727	77	778	627	730	181	727	133	757	732	736	77	738	734		_	2	COEFF	A OR P	SCHEDULES
ł		□ '	4	1		1	1			1	!	.	j	ı	ļ	į	ł	1	1	1	1	İ	_				
				7	11.27		أير أأر	િમ્}	f i	સ્યુ																	

ORIGINAL PAGE IS OF POOR QUALITY

175

TABLE I (Continued)
TABLE I (Continued)
TABLE I (CONTINUED)

POSTTEST . PRETEST

		¥.			•				1719		e, e Verigi	ξ,	τ <		.) (ltt	ach	me	nt	1		7576			2) indv	E	WING ORBITER		C-1- 81
		:																				-				4	66.7	IDPVAR(1) IDPVAR(2);MDV	CANARD BOOSTER	ON I	, } =	
	2.0		50,	_	205	×	185		170		28	195	210			2	134	250	_	1	-	_		_	67	1	- ا د	R(1) I	IARD	MDAC	; ; ;	DR#1118
SURE	1.5	/4/	23		3	X	186		121	_	18/		3	• 1	_	22	\times	×	╀	-	-			<u> </u>	5		776 11	IDPVA	S	Ž Ū	Z (OR
MACH NUMBERS	1.2			708	101	×	187	_	172		+	-	+-	-	-	1 23	<u> </u>	1251		+	_			-			1					
×	.85	_	ca	203	3	×	188			+	+-		+	<u>+</u> -	9/7/	7 24	7 132	×	-	+			_	<u></u>	- 2	2	1/10					
	9	-	6	202	48	169	183	19.1	7	170	Z.	199	1 70	\{\bar{\chi}{\chi}\}	777	52	53	×	_	+					4		.]					
NO.	RUKS	\ 	<u>-</u>	_	>	_	7	-				+	‡	‡	7	>	4	17	1	+		_	<u> </u>	<u> </u>	ءِ إ	₽	IC P.F.					
203	3	,	2	 			-		Ļ	丰	 	=		4	1	_	E	>	1	1		_	-	-	-		1					
100	Se Pos Inch	1:	ZON.	1			-	-	+	+	1		╅╴	7 200	AFI	₹ ♦ 2	MON	T	1	$\frac{1}{1}$		-	-	+	- .	=	2					
13.3%	م اد	! 1 ! 1	0	 			-	+	 >	- 5	2 1	1) -	‡		>	1	-) -			-	!	1	-		4-1-4					
1			0	_			 	1	1	1	1	#	‡	#			 -		+	1		_	+	-	-	Ħ	CB4					
	-			_			<u> </u>	1	+	+		-	-	+				1	- -	_	-==	<u> </u>		1	=	Ì	X					176
		V.	<u>M</u>	_		+	+	+	+	+		+	#	1	>	3	╁╴	1	+	-	 .	-	<u> </u>	+	\dashv	H	CYN	1				
	BOOSTER CON.	3	0			+	+	+			0 -	\pm	\pm		<u>-</u>	0	╁	+	2	-		+	+	+	\dashv							
	OSTER	a	0					\mp	$oxed{\bot}$			1		\dashv	<u> </u>	0		+	0			+	+	i	1	35	Ú	1				
	E E	ᆀ	V V		->	Q)	<u> </u>	+	+	+	+	-		>	—	10	+	0				İ	\uparrow			CLM	1				
=		6	0	5-	٧,	, (۱-						-	-	>	٧		c .	1			+	+	+	=	57	0					
		CONFIGURATION	10/57			,	•	10/97	*	10/51	>	5/85W11EV6	10/57			>	1		15/01 + PLUME							7 13		1304	NTS:			
	DATA SET	IDENTIFIER	RAC 140	1#7	-	747	243	A47	5/17	947	247	7 847	647	057 .	141		436	153	1-57							1	7.0	EN.	COEPFICIENTS:	A OR B	SCHEDULES	

ORIGINAL PAGE IS

POSITEST DE POSITEST

							0	RIG F I	11N/ POC	IL IR	PA(QU)	GE ALI	IS TY				A	tta	chm	ent	1		7576	01	MDV.		47,	
17711001		0	ک	0	2	- 9	1.0		0	١,					ما		2				,	9	7	ALPHA	IDPVAR(1) IDPVAR(2) NDV			
	SRS	1.5 2.	6 5	1 50	/	× 46	21 37	32 31	1 70	37 36	08 %	7 26	-	10 16	59 5	42 41	190	0	X	6 95	11	100	67		AR(1)			
	NUMBERS	/ 2.	7 5	5 2	7	47 ×	2	33 3	12 71	38 3	82 8/	28 27			99 4	43 4	7	20	×	7 7	1 5	107 101	61	MACH	IDPV			
	MACH	80.	58 5	53 5	63 6	-	7.8 7	34	73 1	39	83 8	29	83	,	9 89	44	73 9	0	χ	98 9	14 1	103 /10		DF		m		
		9 .	59	1 45	64	49	19	35	141	40	84	_	89 8	30.	69		_	ó	63	99	17	401	55	15.1		20, 2,	`	
	0.0	RUNS	8		>	+	7	COMPLETE OF THE PERSON NAMED IN COLUMN TWO I										→	-	ح		→		7		١	\ \ 4 .	
	Pos	JW(ı	1																		→	611	Ų		4 16	7	1
	ORB	83	NON																			^	43	16.84	o,	12,1	, ~	
	DEFL	9,	١	_								→	0	_								>	~	4	1	,	,	
	CON	ع د	١			→	0							→	1	→	0					→	37	CY.W.	7	۵	7	1
	L. ORB	-8	,	-		>	0	_						>	١	→	0		-			>			2	1	9-8	
	i DEFL	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	→	٢				0	→		·										*	æ	S	0	N	197	\
	ER CON	٥٠	1	→	0				9		_				0						→	100		C.A.M.	1 -2	╁╁	1-12	•
	BOOST	8	١	→	0																	→	25	C	}	1	16 -11	•
	SCHD.	a B	BO	5	0	٨	0	5	0	5	0	7	0	5	0	5	0	1	9 %	OA	4	10	6,	CAB.	7- 4	1 1	-11-	`
							31		BILL		JIIE												19		0	1 1	-23-20	\
		MTION	ا		185		185W	·	44/85		F4/851		101	\	B5 V6 R6								13	CAF	2 - 10	1 1	=-23	,
		CONFIGURATION	12/85	→	WSE3	→	1563	->	SEBU	>	56336				5/8	>	15/0	\dashv	→	10/9	\rightarrow	0/57		<u>.</u> د	₹		Ü	
	•	8	B3.W12		B3.W12W5E3 / BS		83N12W5E3/85W11E		BINIZWSEBUKLUBSWIE		Banawstaub F4/BSWIIE				7		1			7		7	7	וכ'א'כ'	į	N.15:	•	
	DATA SET	IDENTIFIER	RACOOL	200	003 B	000	005 B	200	000	OCF	009 83	010	110	012	0/3	210	510	210	017	0.0	010	070	H	c.v.		COEFFICIENTS:	SCHEDULES	!

The state of the s

TABLE I (Continued)

DATA SET COLLATION SHEET TEST ARCCXC - 512

POSTTEST | PRETEST

											<i>21</i>	•	1.	1:			A	tta	ıch	mer	ıt	1		7576	9/]-	IDPVAR(1) IDPVAR(2) NDV		TFB	; !	83
																						<u> </u>			700	2011	PVAR(BOOSTER	WING OBBITER	, i	C-1-
	2.0	129	611	11	124	109	138	143	148	105		80	3 8	22	x									1.9	l	2			2 2) : -	
BERS	1.5	130	02/	53	न्त्र	110	139	HAI	149	X	~	L		7	×						_			_ ا		7445	DPVAR	CANARD	4	•	#1118
MACH NUMBERS	1.2	/3/	121	1/6	72	==	140	341	50	90/	E	123	3	১	×									3		1		CA	MDAC	MDAC	ä
MAC	ż	132	277	117	127	711	141	146	121	107	4	1	9	3	X								<u> </u>	2] '	762					
	9.	123	123	115	871	113	TH7	147	152	3	4	\ \{\int \}	6	5	164				1					\	Ì	Ĭ					
NO.	RUNS	5							>	4	1	上		>	`			$oldsymbol{\perp}$	1					١,	2	15					
Pos			-								>		7	7	0		L		1				_			1					
ORB	•				_							\pm		>	Non				1			_			13	CBL					
DEFIL	Sr P05	0						-				1		>	0				-			1			-	•	i				
NO			-			 >	-15	+15	١	0	٠ -	+		->	0	İ									H	CXX					178
390	.⊢	!!	-				F	-	. ,	1	3]-	\pm		>	0										١		1				
133	3 4	M	-						-	. (2) -	>	3	→	B						_		_	_	쥐	\ V					
1	5	Ti -	_	E	-			\pm	\pm	\pm	+	+		^	0		1	1	_		<u> </u>	_	+	4		7	1				
	¥ 3	+	0	20		4	1	‡	+	+	‡	#		>	0	+-	-	4	_			\downarrow	+	\dashv	2	7 1 5					
		C	╄	 -	2	7 5	2	s -	#		+	_		>	0	<u> </u>	+	-		-	-	-	+	4		C	1				
	SC 20	1 0	-	E	E	Ī	1	1	1	Ŧ		\ <u>\</u>	0	→	0	+-	+	1		\vdash	+	+	1	_	67	1	1				
F	`				Ť	+	1	\dagger	1	3	1				T		T				T			·			1				
	200	IN .								76 K															13	1	57				
		CONFIGURATION	0/67	\vdash	+	+	\downarrow		•	135 W 11 V6 K	17/01	→	5/01	د	1												1				
			4						- 1	5/13	4		5 7	1	7										7		277	ä	•	٠.	
		-	_	\downarrow			_	1		1		6	_	,	7 0	+	+			\vdash	+	+	+	_			1	COEFFICIENTS:	Ø.	ULES	
	DATA SET	IDENTIFIE	K#4 02 1	770	073	024	025	20	03	250	020	030	180		75.3	5			•						1		<u></u>	COEFF	k or	SCHEDULES	
	DAT		ž				1			-		.													,	_		~			

ORIGINAL PAGE IS OF POOR QUALITY

	CHEET
Concluded)	COLLATION
2000	SET
_ 	DATA
7	.1

			· ·	•				Ċ	DRIC DF	GIN PO:	AL OR	P/ Ql	RGE Jal	: #: :fT	5 ′			. Д	itta	cha	en t	: 1		1576	10	NDV			', '
POSTTEST																							:		7.4	IDPVAR(1) IDPVAR(2) NDV			
E S		2.0	765	88	205	X	185	190	170	175	180	195	21	134										67	BETA	Tal(T)			
	NATE ERES	1.5	_	201		_	186	16/2		176	18/	-	┼	X			4			<u> </u>			<u> </u>	61	MACH	DPVAR			
	MACH NUMBERS	5 /12	167	_	_	_	8 187	3 19	3 172	3 177	3 /82	197	1 23	╀-	_	-		_				-		9					
		8:	_	204 203	+			61 461	174 173	179 178	181 183	199 198	25 24	:-	<u>ا</u>	 	-				-		<u>}</u>	55	1921				
	Ç.	RUNS . 6		C3	7	1 16	5	1/8			2	2	2	1	 	+	<u> </u>												
	Pos										→	7	0	0		-	 						•	약	751		į	! !	ŀ
	OKB.	80	NOW	_										<u> </u>		Ť	j				<u> </u>	<u> </u>		_	26				
	1.434	0.		_					→	01	١	0	0	!		i		i				i		13	:				
	3	٥	0	_										_		-								31	S.K.K.				
	S S	4	0	_									. 1.2 TE												4				
	I DEFL	H.	3					0	→	0				1	_	+	+	\dashv	_					æ	75				
	ER CON	مد م		_				10					_	,	L	+	+	-							125.4				
	BOOSTER	ષ્	0										>	ı								-		25	এ				
	SCHD.	8	0 A	5-	> 5	9	A					<u>></u> ▶	A	0	_	1	1	4						19	CAB				
											ž					İ	1	1							1				
		CONFIGURATION	10				0		10		/BSWIIEVE			BSWILE										13	75				
		ONFIGU	12/01	7		→	197	→	10/57	→		10/57	>	BBNIZ/										٠.	5	ſ			
		3									57			83										۲	5//2	PW4C.		γ	•
	DATA SET	IDENTIFIER	RAC040	140	240	043	440	540	240	240	840	640	. 052	620										7	CK	- SENGTOT GRACE.	A CR B		

ORBITER SHOWN IN AFT (NCMINAL +3") BOLTED DOWN POSITION WITH NOMINAL AND FORWARD (NCMINAL -3") POSITIONS INDICATED

Figure B.- Space Shuttle Ascent Configuration

MDAC DELTA WING ORBITER MDAC

C-1- 85

DR#1118

(a) Three View Figure E- Space Shuttle Booster (L5)

(b) Booster Body (B3)

Figure E.- continued

182

(c) Booster Nozzle Plate H12 Nozzles

Figure E.- continued

(d) Booster Wing (W5), Elevon (E3) Figure E.- continued

(e) Booster Jet Flap Canard (J6), Jet Flap (F4) Figure E .- continued

Model dimensions in inches

(f) Booster Wing Tip Vertical V6, Rudder R6

Figure E.- Continued

NOTE: All Dimensions are Model Scale in Inches

(g) Booster Wing Tip Vertical V7, Rudder R7
Figure E.- concluded

C-1-93

(b) Orbiter Body, B5
Figure F.- continued

2.54" (MAX)

MODE: WING ORBITTER SCATE IN INCHES

MODE

MODAC

C-1-- 96

C-1-- 96

MODAC

C-1-- 96

C-1-- 96

MODAC

C-1-- 96

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

MODE

(d) Orbiter Center Line Vertical (V6), Rudder (R6)
Figure F.- concluded

CANARD BOOSTER
MDAC/MMC
DELTA WING ORBITER
MDAC
DR#1117 C-1-98

· SHEET
COLLATION
SET
TEST LRC-4-UPWT K3DATA
PRITER

	MACH NUMBERS
	CONTROL DEFLECTION NO.
DATA SET CONFICUATION	8 5 8
IDENTIFIER	
PIR 701 BS W, V.	45/ (3/ 03/ 6
_	1,000
103	, c, 7
204	-30 4 (31 (6) (84
22.5	
502	-15
206	-
207	7
208	104 186 188
209	15 0 10
210	4 -15 0 10 4 100 100
116.	36, 72, 62,
100	11-15 + 1 + 1 + 161 (11 113
3	
SCHEDULE	C: «= -10, -6, -4, -2, -1, 0, 1, 2, 4
SCHEDULE	8: 3= -4-2
s or b SCHEDULES	l .
COEFFICIENTS:	CN CA CLM CBL CYN CY CAB MACH ALPHA
	-

SCHD. CONTROL DEFLECTION a		OPPLIES IN PRESENCE OF PROSECULARY	TEST 4	40	UPWI	23 D	DATA	COL	COLLATION	•	.	SHEET	, H		•			
Section Sect				}				DELTA	King King		7 A A	λί Ν 	7 7 8	, , , , ,	5E3 V ₆ 1	. *		
### CONTIGNATION Schip Control Deflection Trick Trick Control Deflection Trick Trick Control Deflection Trick T	DATA SET			Boos	TER (LS		Ч	ORB	ITER	07						•		
## ## ## ## ## ## ## ## ## ## ## ## ##	DENTIFIER		SCHD.		C DEFLE	Z O		ONTRO	1 F	בנים	NO		È		UMBE	2		_
## ## ## ## ## ## ## ## ## ## ## ## ##	RK DOI		┪—	و د	40	Sec In	<u></u> -		رها	ري			2.96	ıvo	4.6	-	-	Τ-
S S N N N N N N N N	Д Ф02	J [+-	-	1	iF	+	\dashv	0	0		3	5	8	- -	_	-	11
1	ф03	B3 Niz Ws.E.	1	10	1,	+	4		1			#	9	6		\vdash	+	. 1
1	<i>\$0₽</i>		2 3	3	I	+	4,	+	#			14	9/	_	23	-		,
1 1-5 / 6 2 27 2 27 2 27 2 27 2 2 27 2 2 2 2 2	\$00	B, N. W. E, V. R.	,		- 9	+	4	+	\downarrow			15	11	-	24	\vdash	-	1
1			7		<u>s</u>	┿	9. 1	+	\dashv	\exists		23	3/.	-	27	-	-	1
	400	1.5	10		Ŧ	+		1	1	7	7	30	32	i -	82	 	-	1
1 L3 Pa Wu 1 L3 Pa Wu 1 L3 Pa Wu 1 L3 Pa Wu 1 P P P P P P P P P P P P P P P P P P	808		7		Ŧ	+		<u>!</u>	1	IJ	1	2	76	_	93	-	-	1
SCHEDULE D: CX = -4'-2'-1'0'.'2'-4'6'.0' SAMEDULE B: Qx = -4'-2'-1'0'.0''-1'0'.'2'-4'6'.0' SAMEDULE B: Qx = -4'-2'-1'0'.0''-1'0'.'2'-4'6'.0' SAMEDULE B: Qx = -4'-2'-1'0'.0''-1'0'.'2'-1'0'.'2'-1'0'.'2'-1'0'.'2'-1'0'.'2'-1'0'.'2'-1'0'.'2'-	909		0	F	 	+	+	╬	\pm	-	7	22	13		7.	-	-	1
SCHEDULE D: \$\infty\$ = -\frac{4}{2} \cdot \frac{4}{2} \cdot	410		7	+	#	1	+	+			0			_		-	_	ı
SCHEDULE D: CK = -0'-0'-0'-0'-0'-0'-0'-0'-0'-0'-0'-0'-0'-			10			1	<u> </u>	#	-	*	7	99	89	├	2	\vdash	1	OR OF
SCHEDULE D: CX = -10' -6' -6' -6' -6' -6' -6' -6' -6' -6' -6	_		7 7	Ŧ	-	+	1	+	0	0		34	-		67	-	_	liGi P
SCHEDULE D: X=-10-12-1-0-1-2-4-6-10 SCHEDULE B: B=-4-2-1-0-1-2-4-6-10 SCHEDULE B: B=-4-2-2-1-0-1-2-4-6-10 SCHEDULE B: B=-4-2-1-0-1-2-4-6-10 SCHEDULE B: B=-4-2-2-1-0-1-2-4-6-10 0-1-2-4-6-10 SCHEDULE B: B=-4-2-2-1-0-1-2-4-6-10 SCHEDULE B: B=-4-2-2-1-0-1-2-4-6-10 SCHEDULE B: B=-4-2-2-1-0-1-2-4-1-2-1-0-1-2-4-1-2-1-0-1-2-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	φ/3		1	1		-		#				35	-	-	0	╀.	_	NA OO
SCHEDULE D: CX = -10; -6; -4; -2; -1; 0; 1; 2; 4; 6; 10; SCHEDULE B: B = -4; -2; -1; 0; 1; 2; 4; 6; 10; SCHEDULE B: B = -4; -2; -1; 0; 1; 2; 4; 6; 10; SAMPRID BOOSTER MOAC/MMC DELTA WING ORBITER DERTA	710			1		+		+		7				 	*	 	_	L F
SCHEDULE D: $\alpha = -\mu - \epsilon - \epsilon - \epsilon - \epsilon - \epsilon - \epsilon - \epsilon - \epsilon - \epsilon $	Ø 15		7		_	1	#	+	\pm	7	7	<u>—</u> į	\vdash		15	_	_	VIC NU
SCHEDULE D: $\alpha = -\mu^{2} - 6 - 4^{2} - 2^{2} - 7^{2} - $	Φ20				-	+	+	+		7	1		-	_	9	-	_	E LIT
SCHEDULE D: $\alpha = -\rho' - \zeta - 4' - 2' - 1' \circ 1' 2' 4' \zeta' \delta'$ SCHEDULE B: $\beta = -4' - 2' - 1' \circ 1' 2' 4' \zeta' \delta'$ ES CANARD BOOS MDAC/MMC DELTA WING DR# 1117	1 021	J	-	ļ,	4-	-	+	1	1	7	7	-+						is Y
SCHEDULE D: $\alpha = -0^{-} - 6^{-} - 4^{-} - 2^{-} - 7^{-$				1		1	1	-	-	4	7		-+		7			
SCHEDULE D: $\alpha = -\mu^{2} - \zeta^{2$				-		_	_			†	\dagger	\dashv	\dashv	+				
-SCHEDULE D: $\alpha = -n^2 - 6 - 4^2 - 2^2 - 7^2 - 7^2 - 6^2 - 6^2$ SCHEDULE B: $\beta = -4^2 - 2^2 - 7^2 - 7^2 - 6^2 - 6^2$ CANARD BOOS MDAC/MMC DELTA WING MDAC DR#1117				<u> </u>		<u> </u>		I	1	+	+	\dagger	+	\dashv	-		<u>. </u>	
SCHEDULE B: 8 = -4 - 2 - 7 0 / 2 4 6 10 CANARD BOOS MDAC/MMC DELTA WING MDAC DR# 1117		SCHEDULE D	1		∰`	41,	٠,			٦,	٦.	\dashv	\dashv	\dashv	4			
CANARD BOOS MDAC/MMC DELTA WING MDAC DR#1117		SCHEDULE B	8		* [*	77.	1		• •	اه								
CANARD BOOS MDAC/MMC DELTA WING MDAC DR#1117 C	a or g					1				1	•					,	•	
CANARD BOOS MDAC/MMC DELTA WING MDAC	SCHEDULES									1 1						: .		
DELTA WING MDAC DR#1117 C										1				CAN	IRD B	00871	Œ	
Č							193							DEL 1	Z		18 I T	<u>e</u>
														08	117	,		

-	-		Τ	T	T	7	T	T	T		\neg	Ī	\prod							L		1	
-			†	†	\dagger	+	+	1												_		\perp	
}			\dagger	†	1																		
}		-	\dagger	†	7	-		1															
ŀ			\dagger	1	7	1	7	1															
		-	\dagger	+	1	. د. ا	1	7															
BERS			\dagger	+	+	1	7	1														T	
HACH HUMBERS		╁	\dagger	1		1	_	1	٦														
HA	4.6		1	1/8	77/	128	/35	136	139	140	46	95	104	119	02/	96							
	395	_	13	***	77/	127	133	13%	137	138	16	92	103	511	9//	93							
	296	_81	100/	0)/	HZ/	97/	131	132	143	##/	88	89	_	///	Z//	96							
	23 /	п	105/	901	/23 /	125	129	130	/#/	/#2	85	98	_	101	80/	83		T	T	T			
	۳.	-	*	#	7 7	#	4	4	#	#	*	#	*	*	*	7							
ZOL	7,5	~~	9							-	0/-	_	-	0)	-	1	1						
123 15	t	-#-	0						0/-	-	0	-	0/-	0				ŀ					
CONTEG! DEE! ECTION NO.		-}-	0			-	0/	-	0		E					Ŀ	1		1	1			
1		ò	0	_ >	0/	-20	0					上					+	<u> </u>	\downarrow	1	_		_
Γ	. 0	4	0	7	0		-	*	0	*	2	3	0	200	1	3 5	2	+	+	+	\dashv		_
۲	<i>'.</i> '		٧			F							+	1	7	T	T	\dagger	+	7			<u> </u>
	Į.		, K	1						1	4 6		\prod	1 × 8		0 7 7							
	CONFICURATION		NSE.										$\ $										
	NFICU		J. F.							\prod													
	8		B. N. J. F. WSE, V. R.												<u> </u>							_	_
	SEI	1		1	2 2	3 2	2 2		97	7 5	200		٦		9//	711	78						
	DATA SET	וחבעודנונע	RIR 101		-	1	+	+	+	+	+	+	+	+	+	+	$\left\ \cdot \right\ $						

SCHED. A: K = -10 -6-4-2 0 2 4 6 10 15 20 25, 30 35 SCHED, B.

a or B SCHEDULES

ORIGINAL PARK (**
OF POOR QUALITY

ğ

195

CANARD BOOSTER
MDAC/MMC
DELTA WING ORBITER
MDAC
DR#1117 C-1- 101

C-1- 101

	• .				1		_		_		_				İ	1	1	1	1		1	1	ı	ı			
•			-	-	_	-	_	_	_	_	_	$oldsymbol{\perp}$	1														
COLLATION SHEET BODY CAMARD BOOSTER, LS = B, N ₁₂ J, F4 W ₅ E3 V, R, DELTA WING ORBITER, O ₂ = B ₅ W ₄₁ V,		NUMBERS	9	-2		-	1 2	-	-	- M	-		<u> </u>		_	<u> </u>	_	_		_		_	L				
F WsE				00	+	19 23	-	25 27	26 28	79 83	┼—	 	╂—	+-	 	├──	1 55	-		 -							
_ 'Y' 'X' 'X' 'X'		MACH	2.96 3	5	╁	/ 9/	17 2	31 2	32 2	76. 7	77 80	69 29	┼	├	 	2 63	9 53		0 45	24			L				
SIEET LS=B,1 Oz=Bs			2.3 2.	!	 	/4/	151	29 3	30 3	74 7	75 7	9 59	_	34 38	35 39	7 62	65 2	8 60	04 9	7 41	4	_					
SII 302	Γ	z	See 2			1						0 6	99	3	3	19	52	58	36	37	\dashv	_					•
ooste Roite	13	ECTIO	ر می				\dashv	\dashv	 				_	0				1			\dashv	4	_	la •			•
TION ARD B	ORBITER (O)	DEFLECTION	٠			\dashv	1	 	+	i	4		-	0	1		1	1			+	\dashv	_	01.9			
COLLATION OF CANARD	RBIT	1 F	امی	0	-	7	7	7	+	Ť	7	0	7	#	#	+	#	\pm	1		+	+	-	18 4	0		
8.4	3		اف	0	7	7	7	+	+	1	7	0	#	#	#	#	+	+	#	1	+	+	\dashv	1	W		
DATA		NO.	RUNS	4	4	4	4.	4 6	٠,	4.	4	4	4	4	4	4,	4,	4/2	,	4	+	+	7	1. 1	24		
	5)	CONTROL DEFLECTION NO.	عد	H	1		+ (9	I	1	1			+	+	+	+	‡	+	>	\dagger	 			0/1		
, IMU	ER (L	DEFLI	ᆌ	<u> </u>	$\frac{+}{+}$	#	1	<u>> -</u>	+	+	+	+	1	1	£	- \$		7	3	4			-	A	7		
18C-4-UPWT 983	BCOSTER (LS,	NTROL	١٥٥	土	-{-	9 -	1	\pm	+	+	+	+	‡	#	15	3 6	十	‡	‡	1		-		9	2		
-	ſ			0 :	*	2 3	1	2 2	10	2 3	1 0	7 2	1	 	10	70	2 4	1~		7	-		$\left \cdot \right $	0/-=			
TEST	j	SCE			#	1	İ	F			E						E	0 3	_			<u> </u>	-	ς α μ	۱ ٦.		
ASCENT TEST (COMPOSITE)		CONFIGURATION	. 0/ N	03Ni2/ 02	B.N.W.F.	277.2	B3 N12W5E3 V. R. 10	10,10	185	, ,	Ls/8¢ W.	-	10	47					T					SCUEDULE D.	1 1		
	-		-1	- ¦		1	<u> </u>		15	-			157						H							ĸ	
	DATA CET	IDENTIFIER	RIR I D	F	103	104	- 105	.406	. 107	108	109	7/0	//7	7/7	2/7	7/7	5/7	7.20	127	;	-	1			0 10	SCHEDULES	
•.			•		,		٠.٠	01) (Dia.													J				

ORIGINAL PAGE IS OF POOR QUALITY

BOUNDARY LAYER TRANSITION TRIPS FOR 0.7% SCALE SPACE SHUTTLE AT 2.3 & M & 4.6

- MODEL &

GIVEN #45 SAND GRIT $d = 0.0152 \pm .0014 \text{ in. dia}$ $E_0 = 0.40 \text{ in.}$ $VHERE \lambda = 0.060 \text{ in.}$

TRIP GEOMETRY RELATIONS

$$\epsilon = \epsilon_0 \cos \lambda$$

FIGURE 4. BOUNDRY LAYER
TRANSITION TRIPS

CANARD BOOSTER
MDAC/MMC
DELTA WING ORBITER
MDAC
DR#1117 C-1- 103

FIGURE 6 BOOSTER BODY (0.007)

B3 B007

FIGURE 7 JET FLAP CANARD ~ J6 F4

FIGURE 8. DETAILS OF WING W5 E3

LEFT ELEVON

RIGHT ELEVON

AILERON Sa=+10°

FIGURE 10. SINGLE BODY CANARD BOOSTER
PLAIN ELEVONS (E) FOR LATERAL CONTROL

SINGLE BODY CANARD BOOSTER ASCENT CONFIGURATION (PRESENCE OF THE ORBITER)

PLAIN RUDDER SETTINGS FOR V6 R6

BOOSTER (ASCENT) ORIGINAL POSITION ERTICAL POSITION BOOSTER (ASCENT)

RUDDERS FOR DIRECTIONAL CONTROL SR=-10°

LEFT RUDDER

RIGHT RUDDER

NOTE: ALL DIMENSIONS ARE MODEL SCALE IN INCHES -

0.00

BP 1.13

FIGURE 15. DELTA WING ORBITER BODY, B5

FIGURE 16. DELTA WING ORBITER BODY FLAP

NOTE: ALL DIMENSIONS ARE MODEL SCALE IN INCHES

PICURE 17
DELTA HING ORBITER

VING (HTT)

MOTES: 1. ALL DIMENSIONS ARE MODEL SCALE IN INCHES.

FIGURE 18

DELTA WING ORBITER
PLAIN ELEVON FOR WING (WII)

NOTES: ALL DIMENSIONS ARE MODEL SCALE IN INCHES

FIGURE 19

DELTA WING ORBITER

PLAIN ELEVONS FOR LATERAL CONTROL

LEFT ELEVON

RIGHT ELEVON

FIGURE 20

DELTA WING ORBITER

VERTICAL TAIL V6 AND PLAIN RUDDER

FIGURE 20.

NOTE: ALL DIMENSIONS ARE MODEL SCALE IN INCHES

MRP FS 3088 (21.616)

SPACE SHUTTLE ASCENT CONFIGURATION (0.007)
OCULTER INDICATED IN NUMBER POSITION AT 0° INCIDENCE

PIGURE 27 SPACE SHUTTLE NOGINAL ASCENT CONFIGURATION (ORBITER INSTALLED WITH $\delta_{ ext{Tol}} = 0^{\circ}$)

- Ascent configuration
 - △ Booster alone

NOTE: All dimensions are model scale in inches Nose at FS 1030 Full Scale

BASE NIZ GEOMETRY AND BASE PRESSURE INSTRUMENTATION - BASE NIZ GEOMETRY AND BASE PRESSURE INSTRUMENTATION -FIGURE 28

ORBITER BASE GEOMETRY AND BASE PRESSURE INSTRUMENTATION FIGURE. 29

ORIGINAL PAGE IS OF POOR QUALITY

				م	-										GE AL							•	•	•				BOOSTER	ORBITER		G-1- 123
		1		Ţ								TES	I R	אט	NUM	BER	5			_				90	~	-		00			,
	H	87	Т	٦				T		T		T	- 1	7						١	1			73.7	91 PHA 10	LIDEVAR(1) IDEVAR(2) INDV		8	MDAC/MMC DELTA WI	MDAC)
	C PRETEST	D POSTTEST	 		\dashv	-	+	十	\dashv	+	+	+	1	1	寸	1	7	7	7	T	1				BHC	2		CANARD	AC/ LTA	• ¥ •	
	M	081	3	\dashv	-	\dashv	+	+	\dashv	╫	+	╌┼	\dashv	+	\dashv	\dashv	┪	┪	\dashv	+	╅	+		29	170	201		Š	M	3 6	5
	٥	٥	VARIABLE			\bot	\downarrow	_	4	4	4	4	_	4	4	4	4	4	+	\dashv	+	+	+		. 1	KDI	٠				
							1	ı																	HOCH	PVA					
	_	_								T		П					Ĭ							13	1	7	•	•			
	7257	38		33		┪	-	十	+	十	+	7	寸	7	\dashv	J	1	Q	3	7		\top			70						
		<u>/</u>	MACH MUMBERS (OR ALTERNATE INDEPENDENT	$\overline{\Sigma}$	\vdash	-		-	-	\dashv	+	+	\dashv	+	\dashv	+	\exists	\dashv	\dashv	7	\dashv	+	十	2	1						
	34	73%	Ž,		Ц	_		_	_	4	_	4	\dashv	_	_	4	_	4	_	4	4	+	+-		١, ١						
	1,3	1		5.3		١							7	3	\$					ightharpoonup		\perp		;	ia	11					
	_	_	S														-	Ì		- 1	İ	١		1	-	11	11				
	53	1379	8	20.5	Н		一	7	Ź	7	3	3	寸	\dashv	7						\cdot	\top	T	1	L						
>	_	<u> </u>	氢	20	Н			\dashv	긤	Ĥ	-	귀		╌╢		-		-		┪	\dashv	+	╁	3	1					217	į
1 A R	7257	1327	इ		Ц				_	_	_	_	_									\bot	\bot	4] [
SUMMARY	15	5		20.3	Ľ	11	172] ;	1		7	İ	•		
20 20			Ş.	RUNS	1					_									_	7							Ø.				
<u>5</u>		-200	E	<u>~</u>	Н					\dashv													1	۱.	[3		1/				
LAI			PARAMETERS/VALUES	\vdash	H	_			ᅱ	\dashv	_												十	17		1	P	M			
70:			SEE/	L					\dashv		_			\dashv	\mathbb{H}	0				0			╁	┨]	المراد	۱ ا			
32	215	:00 <u>C</u>		3/6	•	1	-	0				0		•	_)	-	\dashv	╬	+-	┨:	28/		90				
2	211	230	1 2	19	-5	ار.	-5	١	1	_	ا-ج	.5.	0	0	0	-	1	'	0	0		+	+	┥	7		ያ	1			
ļi			SCED.	8	0								3	5	3					00			+	┨.	2/2		5				
			3	8	\leq							. A	(7)		3	7			1	_	_	\dashv	+	1	7] [1				
					Š			B			7	3							See S	Ascen!			Ì	ı	1700		7/0.				
				COMPICURATION	00,000			13			ASPENT	450007	9			3-88-			1	3					7	4	10				
		•	ł	5	g			256			H	,	N			8			007	X			İ	İ		11	412				
					à	4		MOAL			26	0	9	1		2				4 ~)	}		Ì		1	12		•			
				_	JOAN			M			200/1/09	34111100	30K NAP			47	_		JOIN POP	19.61					-	WETT CLEATS:		3			
			ij	115	2,7	10	177	10%	1/2	213	3	17	200	34/	3/1/2	101	117	416	pan	177					ć	WICKE CONTROLLE	a or	SCHOOLES			
			DATA SET	DESTIFIER	PMUOIT	1	 	 - °	1	-	١,,	1.0	Ľ	-	-	-	\vdash	\vdash	\mathbb{H}	DWG					عا۔	₹ <u>8</u>		3			
			L	ā	13	1_	<u>L</u>		<u></u>	L.	<u></u>	<u> </u>	L		_	L_	L	_	<u>. '</u>	1,5	1	1_1		_					•		

TEST. 72. 27 1/2 CANAL DATA SET/RUN NUMBER

FIGURE 3. MDAC/MMC ASCENT CONFIGURATION. CENTER OF GRAVITY NOTED FOR DIFFERENT CONDITIONS.

FIGURE 4. NAR 134D ORBITZR. FULL-SCALE DIMENSIONS SHOWN

CHORD (BL 241.80)
0009-64 SERIES AIRFOIL

5.

TIP CHORD (BL 546.07)
0012-64 SERIES AIRFOIL

FIGURE 5. NAR WING W_{17} 9992-134 D CONFIGURATION

FIGURE 6. VERTICAL STABILIZER V₁₇ (NAR ORBITER)

FIGURE 7. GDC B-15B-1 BOOSTER (.0076 SCALE)

FIGURE 8. MDAC 0050B ORBITER MODEL SKETCH. ALL DIMENSIONS ARE IN TERMS OF BODY LENGTH

FIGURE 9. MIAC 256-14 BOOSTER WITH FULL SCALE DEGRISIONS

. KASA WSPG SAT.

SCHEDULES

ORIGINAL PAGE IS OF POOR QUALITY

OPRETEST

TEST TWT # 492 DATA SET COLLATION SHEET

DATA SET		SCHO.		E E	PARAMETERS/WALUES		2	*	N U	NEE	5	ALI		<u>-</u>	-	1		-
IDENTIFIER	CONFIGURATION	73	 	26 85	عوا		Sin	0.6	0.8	0.9	2.95			1,2,1	. 6. J	ρ. Δ.		; ;
K3403A	82 We	A	_				4	300	002	%	200 %	200	8	00/20	20%27%		ار	-
K14.01A	8.	A			1.		2						_		× -	; }?) () ()	_
REGIONE		10	u	F	F		-					\vdash	-	_	-	256.	ું	
210763			<u> </u>	F			7					-	_	302	29/20	9632		
03/015		0 6		F	-		2					-	-	16.	2 1/202	1197		
134015		┥╼		F	F		\		П	П			$\mid \cdot \mid$	2	2		-	
				F											-			
834026	B. C.	9/1		0	E		5	%20		1320			0	7/270	2 %37	25.2		
£3402H	-	15/13		-			-	370							_	l	-	
2.0013		0	-	F	E		-						-	_	ēi.	1255		
7.07.0						L	-			Γ			\vdash		 	7	25%	
736.02 4	-	-	_	L			-						-		203%			
2000	A 14.0 E	+	!	. 0	0		Ø	å,	3%	2/50	032/	033		12/20	30	27%		
20000	75 75			1_			1	5	1	380		30	0	03%	1	16.50		
3.00				+		1		3				; -	T			 	-	-
163404 N				\pm	+	1	. ~	1	T		Γ	T	T		3	132/901/002		_
K3404I		- •		\pm	+	1	<u>√</u>					T	T	+		?	26.6	╀
13404J				\exists		4	<u> </u>	•				1	†	1	†	1		+
R3405H	B. W.C. W.	- II -	4	\pm			2	30					†	+	+	+	<u>\</u>	- -
			+	+	+	-							1		十	-		-
].		ء ا	-	┧᠄	$\frac{1}{2}$	[1,] ;	3		15		=		5	
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	NA.	>		797	-	73		873	Ų	AF	Ų	CP 81	<i>Q</i> 2	6	-		_	

CONTICURATION SCHO. FAMORTER ALDER NO. A SET COLLATION CONTICURATION SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDERS CR. ALG. SCHOOL FAMORTER ALDER ALDER ALDER ALDER ALDER ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDER ALDER ALG. ALG. ALG. SCHOOL FAMORTER ALDER NO. ANG. ALDER ALG. ALG. ALG. ALG. ALG. ALG. ALG. ALG.	CANARD BOOSTER TBC DELTA WING ORBITER GAC DR#1148 C-1- 132	TRUESTER :	27 /7	060/15/2:35/			074	0/0/0/	087	2000	193, 2227	102/192/1826/	0 00 00	2,62,07	0000	1157 100 410	10	0				135/136			7001(2) EAST (1) (1) VAN (2)
CONFIGURATION SCHOL FARWERTE MUDE IN EACH LE CONFIGURATION SCHOL FARWERTE MUDE IN EACH LE CONFIGURATION SCHOL FARWERTE MUDE IN EACH LE CONFIGURATION SCHOL FARWERTE MUDE IN EACH LE CONFIGURATION SCHOL FARWERTE MUDE IN EACH LE CONFIGURATION SCHOL FARWERTE MUDE IN EACH LE CONFIGURATION SCHOL FARWERTE MUDE IN EACH LE CONFIGURATION SCHOL FARWERTE MUDE IN EACH LE CONFIGURATION AND EACH	SET COLLATION	SACE TUBERS	0.6 0.3 0.9 0.95	2000 Sec. 1	2770	16.3	310 /210	0/ 0/	7160	2	056	100/ 100/ 100/	0		100/	0/ 111/ 112/ 113/	10 10 10 10	125/0		25.	33	9	;	AB ICAF CP	-14 -16 -18 -20
CONFIGURATION Salve C. V. 2 V. C. V. 2 V. C. V. 2 V. C. V. 2 V. C. V. 2 V. C. V. 3 V. V. 5 V. C. V. 6 C. 13 C. 13 C. 13 C. 13 C. 13 C. 13 C. 13 C. 13 C. 13 C. 13 C. 13 C. 14 C. 15 C. 16 C. 17 C. 18 C.	TWT # 492	FAROGREE ALDES	3,56 36	00-	120	F + 20 + 4	0 0	0 - 1/0 - 3	7 -20 7	0 -20	F 0 3	7	F		7	0	2	1-	0 -30	0 0	0	1	35	787 67	-469-10
6 = 646 BAIA SEI IDENTIFIER R34056 R34056 R34056 R34056 R34057		CO:FIGURATION					7	7	A	A	82 V'2C, 7/1 0	0/4	OC#	165	35			Y	7	82 1/6 1/2 O' A	β	2	13	CYN	2-0-EX

NACA-BSFC-LAF

Highwar (1), idpyar (2) (ydy

3

S,

5

3

37

60

1812

CAB CAF

77

785

. F.Y.

וכאא

ر ا

CLM

COEFFICIENTS: SCHEDULES

AD = 0.2 * + 4 * + 6 * + 10 * + 12 * + 14 * + 16 * + 10 * + 20 * AE = 0 - 2 * - 4 * - 6 * - 6 * - 10 * - 12 * - 14 * - 16 * - 10 * - 20 * AK = + 40 + 42 * - 44 * + 46 * 50 * 52 * 54 * 56 *

C-1- 133

M POTTTEST O PRETEST 1.96 35 496 28% 178/17% 145/13% 145% 166 1.2 NACH NUMBERS (OR ALTERNATE IND DA.A SET COLLATION SHEET ?; 0.9 0.95 1.0 0.8 143/ 0,6 283% 1/25: 2/2/2 12/ of RUNS 7 2 3 N PARN'ETERS/VALUES TEST TWT # 492 0 0 0 0 (Se.) -30 0 0 AO 0 L SCHD. 0 4/5 F 0 0 ¥ ų ų 0 0 0 0 0 v CONFIGURATION R3417C B. W. V.C. CO. 52 W'6 V2 0, R3418F B2 W6 1.0, R3419F B2 W6 0," BING V DATA SET IDENTIFIER R3415E R3414K R3415F R3415D F34/6.4 £34166 R3416F R3415H 53414J

ć	п . Ж 4	,			•								•			٠,		-					P(QU		TY
	OHBIER 0-1- 134	TTEST	111111111111111111111111111111111111111	1	7	-	1	1	T	-	7	-		1,	` -		T	-	Ţ	Ŧ	T	F		1 2	70	3(2) 357		NASA-MSFC-MAT
CANARD TBC	GAC DR#1148	8		+	- - - -	-	+	 		 -	+		_				 	+	+	 	 -			53	-	HIEPVAR(1) IDPVAR(2) SON		. %451
		THECHEL		1	1	 	†	 	†	†	+	+					-		-					61		- Fice V.		
SHEET		RWATE IN		+		-	+	+	+	1	$\frac{1}{1}$	+	-	_		_	_		-	-	-			55	421			
COLLATION S		MACH MURBERS (OR ALTERNATE		-	1			1			1	+												64	1692		,	1
	λi	ACH MURBER	4%	-		1500	1500	7/2es			180	1005	0	2/2	77									7	CAE	8-5,-40-2,00,+2,44, +6,48,+10.		
DA.A SET	STUDY		7.96 7.96	25.0	1	7 (2.3/	2 2%	-												·				37	CAB	20 +63		
1	STRIP	(E)	Se. 6.	-				4			0 +/6	ī		 		 	_	! !				+	-	=	25	77.7.		
TWT#492	7816	SET.	25 0	╁╌				1			+30 0	-				+	1		-		+	+		25	787	0 21		
TEST 7		9	2 O	=				- -			0 0	_		1	+	 	+		+		\dagger	+		19	2	7-69-		
H		CCNFICURATION	B2 1 16 V2C, 2+75,	+752	+753	(157219)	+75%	+755		·	+755	+756	445-	(1,17)	(NO/VI)									1	EYW	8-601-= 5 10		
		DATA SET IDENTIFIER CCI	050 821	05.5	0.57	050	برخ	OSW			<i>06</i> 0	×50	34	7.60		 -	1	+	+	+	+	 	'		CEEF CEEFE	a cr 9	Saraca	
		LINE	234055								ŏ	ŏ	O	1								İ	-	Ŀ	1 1 2 2	3 8	SCH	

228

FIGURE 5. 0.002456 SCALE AR1198I-1 BOOSTER NOISEL

FIGURE 6. GRATAN GS-A OBSITER RODY

FIGURE 7. BOOSTER ORBITER CONFIGURATION

.

FIGURE 8. AR-1198 BCDY B2

FIGURE 10. WING TIP FINS, V2

ORIGINAL PAGE IS

0.0607 (REF)

FIGURE 11. VERTICAL TAIL VI CENTERLINE

FIGURE 12. CWWD, C1

ORB! TER		_	•	•		. د	ž	m			*!																
0 R B	144 87	Н		-				Γ	<u> </u>	Γ	TE	ST	RUN	טוא	MBE	RS	Τ	Г	_			1	- K	-	à		Ì
BOOSTER CONFIGS.	9 C-1- 14	ABLE)																 - 					- K	LPHA	(IDPVAR(2)	OR BETA	NASA-MBPC-MAP
CANARD E MDAC UNIQUE C	6	MACH NUMBERS (OR ALTERNATE INDEPENDENT VARIABLE)																						3	IDPVAR(1)		
•		NATE INDEP	2.00	-	7	13	58	100	161	52	23	41	35	95	29								\$5	_			
x		R ALTER	1650	2	8	†/	59	65	i	53	24	-	36	47	30	-							 :				
HRC 646-551 DATA SET/RUN NUMBER COLLATION SUMMARY		OBERS (C	0.40 0.85 0.92 11.20 150 2.00	4 3		16 15	09 19	99 19		55 54			-		32 31	_		_				+	$\frac{1}{1}$				
/RUN	ٯ	MACH RO	0.850	5	11	12	62 6	99	_	56	27	44	39	50	33 3];			01	
A SET Sumb	۷6 ه		S	9 9	6 12	6 18	6 63	69	1 22	, 57	, 28	5 45	6 40		6 34					_	_	-]	CBL		6,8	21 48
אלב- <u>551</u> DATA SET/RUN COLLATION SUMMARY	л 4	INES NO	. S)	,	9	"	•	4	9	9	5	9	9	9	-				-		-	<u> </u>	CYN		4	2,4,6,8,10
1700 25-970	35.0	PARAMETERS/VALUES NO.	ا کار	۰,																	4	,	7			0, 2,	1
3	W 5 E	PARAME	کا کخ	°											-					-	+	+	%	کر		-4,-2,	9
TEST A	B3NI2 W5 E3 J6 F4 V6 R6	SCED.	a B	<u>ئ</u> ا	A 5°	0° A	AO®	A 5°	0° A	A Co	O° B	A O.	0° 8	A 0°	0° B								֓֞֟֟֝֟֝֟֝֟֝֟ ֓֞֓֞֓֞֜֞֜֓֞֜֞֜֜֞֜֜֜֜֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	CLM		9	1-62-
	8=57.	WORLD TO THE	TOTAL TOTAL TOTAL	L5+ Q65P1		-	L5+QP1			45 + QP2		b5+ QP3		L5+ OP4									7 13	CAF CAB		A= -10, -8,	B= -6, -4,
		DATA SET	IDENTIFIES	PAYLO! 1	. Lo2	103	100	105	907	107	100	017	717	_	1712]-	3	COEPTICIENTS	C OT B	

The sale of the sale of

ORIGINAL PAGE IS OF POOR QUALITY

TABLE I. (Concluded)
TEST ARC 616-551 DATA SET/RUN NUMBER COLLATION SUMMARY

9τ

O PRETEST

٠,	(,				•				•		OR OF							IS TY		•	(OBBITER		
																						_			-				. -	
		F		— Т		_	T	Т	┪	TES	T R	אט	טא	4BE	RS		Γ	Γ	Γ			П	2	7	<u><u>a</u></u>		A T P C C A	9019900	C-1-0	
POSTTEST	_	1	1	+	+	+	+	+	-	\dashv	-	-			-	╁╴	-	-	╁╴	╁	-	T		¥	(Z)	BETA				
OST	<u>-</u>	1	+	+	\dashv	+	+	+	-	-	-	-			-	╁	+	╁	十	+	\vdash	-	23	ALPHA	Top	, W		ַ יַ	MDAC DR#1099))
	RIAB	1	_	+	\dashv	+	4	+	-	\dashv	-	\dashv		-	-	+	+	+	╁	+	╁	\vdash		1	3			MDAC	MDAC DR#109	:
) 	1	\downarrow	\downarrow	4	4	-	-	_					-	-	╀	╀	+	+	+	+	╁	5	MACH	ă		•			
	OR ALTERNATE INDEPENDENT VARIABLE	1	\perp	_	_	\downarrow	-	\dashv			-		_	\vdash	\vdash	+	╀	+	╁	+	+	+	┨		\prod					
			_	1	_	1		_	~	~	_	10			-	╁	+	+	+	+	+	╁	d ₹	-]					
	HOLT	2.00		7	13	58	64	19	52	-	_	-	-	-		+	+	+	+	+	+	+	┨							
	ALT	इ	7	8	1	53	65	_	53	-		1	_	_	200	+	+	+	+	+	+	+	┤;		4					
		22	9	4	15	60	8	1	₩-	+-	+		-	_	2	+	+	$\frac{1}{1}$	\dashv	+	+	+	$\frac{1}{2}$							
	MACH NUMBERS	0.85 0.92 1.20	7	0	9	19	-		₩-	+	_	+-	+	+-	32	+	+	4	+	\dashv	+	+	- :	7	4	9	1 7		940	Þ
,	S E	0.35	5	Ξ	=	9	_	+	┿	-	-			-+-	133	4	1	\dashv	4	4	+	+	4	١.	1	æ	1 1			•
;	A V6 RG	0.60	9	12	8	63	3	22	L U		07	0 5	7	2	34	1	_	4	4	4	4	+	┥		707		५ व			
	띠일	RUNS	9	9	9	ی	9	13	1	٥ .	ا او	n .	9	٥	٥	_	_	_	_	_	4	\dashv	4		2	176	I r	1		
	J 6 WES				L			\downarrow	1	\downarrow	1	\downarrow	\downarrow	4	4	\dashv	-			_	+	\dashv	\dashv	٦ ١	XX Y	11	17			
	2 W S E 3 J 6 PARAMETERS/VALUES		Ĺ	_	_	_	-	-	\downarrow	+	+	+	+	+	-	-	-	_			\dashv	\dashv	\dashv				1,0,1-)		
	2 W 5	150			+	+	+	+	+	\pm	\pm	\pm	-	-		\dashv	-				1	+	┥	25	격		# 4			
		1	3			1 9	\ \ \ \	,,	4	င်	C C	ő	<u>a</u>	ځا	<u></u>									١	크		2 - 12			
	B3 N SCED.	0			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				_		_		ଧ	4	ۍ									7	य		8 7	Į.		
																									CAB		0 4			
	L5	TION	į	7				١				6		77										11	C		\mathbf{d}_{2}		•	
		CONTICURATION		1 1 1 1 1 1			100+			29		OP3		+ OP4	_												40	1	-	
	$\cdot \mid$	8		+21			+57			15+ QP2		15+		SI				١						١-	[ই	Ë	11			
	-	, 5	+	╈	+	_	_	5	و	-	ē	-	2	_	-	1	+	t	+	†	1	1	Γ	1		COEFFICIENTS:	a or 6 Scattories	•		
		DATA SEL		RAYPOL	P02	P03	Pod	PO5	P06	POI	POG	PIO	219	٥	10	4			ļ					-	12	8	. 5			
				\$	L	1] .	1.	L	1_				_لـ		_	L.	Ţ				•	•	

Figure B.- General Arrangement of Booster with Expendable Second Stage Plus Various Payloads

(a) Three View

Mgure D.- Space Shuttle Booster (LS)

CANARD BOOSTER
MDAC
UNIQUE CONFIGS. ORBITER
MDAC
DR#1099 C-1- 147

(b) Booster Body (B3)

Figure D.- continued

NOTE: ALL DIMENSIONS ARE MODEL SCALE IN INCHES

(c) Booster Nozzle Plate N12 Nozzles

Figure D.- continued

(d) Booster Wing (W5), Elevon (E3)
Figure D.- continued

NOTE: ALL DIMENSIONS ARE MODEL SCALE IN INCHES

(c) Booster Nozzle Plate N12 Nozzles

Figure D.- continued

(d) Booster Wing (W5), Elevon (E3) Figure D.- continued

(e) Booster Jet Flap Canard (J6), Jet Flap (F4) Figure D.- continued

Model dimensions in inches

Pigure B.- S-IVB Stage and Six SRM's (Q6S)

Model dimensions in inches

(

Figure F.-Skylab (P1)

CANARD BOOSTER
MDAC
UNIQUE CONFIGS ORBITER
MDAC
DR#1099 C-1- 153

77.

Model dimensions in inches

Figure G.- Experimental Payload (P2)

Ę

Model dimensions in inches

CANARD BOOSTER
MDAC
UNIQUE CONFIGS. ORBITER
MDAC
DR#1099 C-1- 155

Figure H.- Space Tug (P3)

Model dimensions in inches

Figure I.- Space Station (P4)

TEST MSFC 501 DATA SET/RUN NUMBER COLLATION SUMMARY

	_	1		_					_	ī	ES1	R	תט ד	NUM	BEI	s		_		_			\exists		31	5		ORBITER	
TEST	L	1	_	4			_	_	_	-	+	+	$\frac{1}{1}$	+	-	-	\dashv	+	$\frac{1}{1}$	\dashv	+	+	- '			AR(2) 8	TER		
FOSTTEST	1	$\frac{1}{1}$	-	\dashv			_	-	-	+	$\frac{1}{1}$	+	1	\dashv	\dashv	1	7	\dashv	1	1	+	1	1		4	LIDEVAR(1) IDPVAR(2) INDV	CANARD BOOSTER	CONFIG.	,
POS DE		4.76	%	9/2	4/0	ž Ž	25%																	=		IDEVAL(NARD	MDAC	
		2.714.004.72	\$	2	*	34%	24/0			1	\downarrow	_	_	_			_	_	4		4	4	_		1	7	ે	¥ 5	,
	101		2		446	3//6	%55		\downarrow	+	\downarrow	4	4	_	_				4		-	\dashv	4	ا	CA				
	TE HOWA T	7./ /./		%	٥.	0	%50	1/2/2	-	+	+	-	-									\dashv	\dashv		16721				
	OR AL	1.0 1.1	0/5 0/4	6 160	0/20	6/2/0	16.7%	260	<u>}</u>	+	+	-										+	-	7	3		1 1	1	
	MACH MUMBERS OR ALTERNATE		1/4 0/2	130 140 150	34/0 37/0	7/2	11/2/11	5,75		\dagger	+	-											7	ŀ	6180				
		18.9	80/2	170%	E %	3/2	3	5/2	9	†	1													7	V		9		
	Ī	'n	1/0/1	12%	346	3	100	125	9															2	585		6,8		
		RUNS	6			Ø		ì	٥								_	_	_	L					M		2.4		
	VALUES		_	_	_	╀	1	\downarrow	+	4	4		-	-	_	-	-	_	_	-	-			=	CAE		17		
	PARAMETERS/VALUES	-	\vdash	-		+	+	+	+	+	\dashv	_	\vdash	┢	\vdash	-	-	-	\vdash	\vdash					CYN		-2,-1,0,1,2,4,6,	4	
	PARAM	\vdash				1	1																	25	7		1-4	4	
	SCHD.	9 0	-	+	-		-+-	-	20	_			-	-	-	-	+	-	+	+	-		-	19	4,86		14	ot	
	۲		f				Ì	1	Ĭ			Γ	T	T		T										11	9-01-	4	
		T10H																						=	کِ				
	İ	COMPIGURATION	į	i :	; -	; -	7	0	8					1.											,			8 B	
		8									L										1			١,	J. C.	- SEE		1	
•	1 200	DESTITIES	T	2420.2	75355	K420CC	12054	R43001	R43002																3	COPPLETERITS:	a or B		
			13	7 2		\$	3	\mathfrak{F}	S				1						1	-				'	₹	7	,	-	

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3: Launch Configuration Madel Geometry (L.)

į

ORIGINAL PAGE IS OF POOR QUALITY

5

BOOSTER	ORBITER	162	П		1	Ţ	1	Ţ	}	1	1	T	T	T		T	i	Τ	1	Т	Т	Τ	T	T-] <u>K</u>		}	•	•
80	ORB	C-1-	П		ļ	ī	'	: —	-	╀	╁	╀	╀	+	╀	+	+	+	 	┼-	+	╄	╀	╀	`		Ē		
CAL		Ö			_		- .		i	<u> </u>	上	\perp	_	L	$oldsymbol{\perp}$			ı			.	i	١,		i	1	FVAR		
CYL INDRICAL	N I N	40	GUD L'ELLUPIT VARABLE		.; . <u>:</u>				1	i						•	:							1	3	-	HIPVAR(1) IDPVAR(2) HUV		
Z (DELTA	DR#1204	3			i	ļ			I				Τ	-	ı	_	_			1			T		ı	MAC		
CYL I	DEL	OR	15	8	700	2	\$. 3	3	3	E	7/150	3	1	* *	7	-	-	7	<u> </u>	13		19		3		11.00		
			빏	<u>4</u> 5	9	. <u>∕</u>	70/2/2	<u>\$</u>	\$	18	100	6	9	9	2	. 9	<u> </u>	-	0456,044	-	01/0 010		4280/50		1		Ì		
E T				5 2.1	8	5	2	3	100	\vdash	150	_	8	8	100	8			<u> </u>	3	3		8		%	XCP			
1332			NE L	<u>.9</u>	023	76	3	हु	120	L	770		027/	28	023	13/		!		122			•		~		-		
			OR ALTERNATE	1.46 1.96 2.74 5.00	001/0 002/0 003/0 004/d 04/0 023/0 041/0 040/0	14/0 167/0168/0169/0151/0179/0158/0157/0	152/0177/01157/01606	0156 0246 047/0 046/6	0166025605260496		017/0 026/0056/0055/	1	018/0 027/0 0526 0516	013/0028/tosy/0058/	00860096010/0011/60126027/005460536	153/0173/0 MX/0 156			azoh	165/0 164/0 163/0 162/0 150/8 172/0 161/0	***	200	45/	*		CAC			
A C10 N			[S	1.2	F	100						Γ		Ī	3					10/2	096/6 097/6 098/6 099/6 149/6	101/0 100/0/426	095/6 094/0 092/0 093/0 145/0	125/0 1266 127/0 138/0	;	Ş	1	1 .4	
			NUNBERS	-	\$	<u>-</u> ≅	 	İΤ	-	-	H	\vdash	┢	\vdash	3	 -	007/0 006/0 005/0	13	2	100	3	0	100	3		L	Des	+40 DEP.	ğ
CO 1.				1:1	8	2	\vdash	-	<u> </u>	_	_		 	-	90	-	8	032/0031/0 030/0	033/034/0356	5	088	è	20	9776	ç	CAF	4	9	9
1.3 S			5	0.9	8	129		L					L		8		82//	180	180	1/9/	1160		120	125/			10	٤	TO + 10
				90	8	2							93.0		28			1326	125	65/0	79.6	1	1356			EVB	11+	+26	
DATA			δ.	RUNS											l										37	7	+	+	-10
_							<u> </u>				_		-		<u> </u>	_	<u> </u>	<u> </u>	 	-	30		<u></u>				===	L	۵
2/2			/VAL	8				-			-	H	\vdash				-	├	_		4				31	€	A E	AF	BD
TEST MSFC TWT 5/2			TERS.	NESES NEOCE PARTY									-					-	_			_					H		
77			SVE.	٤												_					7	7	7	7	2.5	CYN	3		3
3			K	4	0	45	45	0	0	0	0	٥	0	0	45	45	0	0	0	45	0	45	0	0		-	TO +10 DEG.	TO +14 DEG.	+60 05
7			SCIID.	В	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	0		0	0		185	7	+	
TES			Š	B	8	J	25	8	8	8	8	8	8	80	8	<u>ပ</u>	E	8	8	7	A	T	0	9		প্	15	5	5
																					3			3			0	7	7
			CONFICURATION		9	7					.			2			1				627			91.		깋			
			ממצי		B34R6T/0	571		5T/I	713	7.7	715	1/6	717	53			710	710	710	712	7/0			710		1	98	_	8
			ONFI		46	9 RE	*	4 RE	186	18	186	186	1861	36	26	*	186	98	86	8	8	•	-	186		z		i	ı
			ိ	` 	83	B34R6T		B34 RGT 11	834	B	83	834	83	B34R6S3	834R6		B34R6T10	833	836	B34R6T12	8			B34R6T10 d1	~	र्	ENTS	w	
			135				30		R50050 B34R6T13	R50060 B34R6T14	R50070 B34R6T15	8	R50090 B34R6T17	_	_		2	R50140 B35R6T10	R50150 B36R6T10	_	R50170 B34 R6T10621	0	0	1		}	CVEFFICIENTS:	SCHEDULES	
			DATA SET	IDENTIFIER	P50010	R50020	R50030	A50040	3	ğ	200	2003	Š	R50100	RS0110	R50120	R50130	2/2	015	R50160	211	R50180	P50190	R50200		Z Z	CUEF	SCHE	
			à	į	Ø	\$	ď,	Ø.	æ	હ	ď,	₹,	₹	B	\$	\$	&	र	\$	જ	\$	જ	\mathfrak{F}	\$	(2	- '		

ORIGINAL PAGE IS

### ### ### ### ### ### #### #### ######	834 R6 T10 4 834 R6 T12 4 834 R6 T12 4 834 R6 T12 4 834 R6 T12 4						1.YCI	I RUYBERS	(S)	ALTERNATE		THREPHERIE		UTARTE	WIANTU)
######################################	항함 [] [경 [취곡] 4	-	4			RUMS		11/6	3	177		7.			ſ
R4 10 277 -6 D 0 0 0 0 0 0 0 0 0	경 [시 [광 [설보] 4	4	0	>	5.			3	L	Ž				İ	†
			0	>	-		+			15	1	1	\prod		-
	<u>'' </u>		34	>	F		+		2	1	+	╁	1	÷	
	1211-44-44-14		0	>	F		<u>\$</u>	1	7	1	İ	<u> </u>	1	İ	i
	<u> </u>	_	0	>		Ì	\$	1 <u>5</u> ,	1		\dagger	+	 	1	+
	210 BJ4R6T/043T7 210 BJ4R6T/044T3 100 BJ4C6T1044T3	-	0	>	F		1	1	3	之	\dagger	+	1	+	7
	290 B34 R4 T/0 4 TT 300 B34 B4 T/0 4 TT	_	0	>			+	\downarrow	1	李	\dagger	+	1	1	1
	100 BJ4 R6 T/0 64 T3	-	0	>	+	İ	121	1	春		†	+		7	7
	100 R 24'DL T10 Lo		0	>	F		15/	*	100	1	\dagger	+		7	+
	\$ 10 R 24 Dt TIE La To	-	C		-	İ	有	1/3	1	4	+	+			-
		-	1	╎	15	T	1	1	1		\dashv	\dashv			
	290 R74 D4 T10 T1	+	,	+		1		1		!	\dashv	_			L.
	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	+	3	+	1		V		10	10				<u>ا۔</u> ا	:
	3.10 5.14 R6 T3.	_	0	4			./.	<u>[</u>	2000	7	\vdash	<u></u>	† †		+
14 TIE 42 T 3 A O O V O O O O O O O O O O O O O O O O	140 BJ4 R6 T10 42 T3		5	3	-3.0		-	2		<u> </u>	+	ļ	1	Ť	÷
16 To 6 2 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B34 86 710	_	0	>	0	197	10			Z	1	7	Ţ	-	+
14 Tre 42 T T T T T T T T T T T T T T T T T T	160	-	0	3	0	127	7	7	Ī	Ż	100	18	+	i	- .
14 13 42 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_	9	7	-3.0	18	7	Ż		t	/3		+	_'	
14 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-	,	}	-30	 2	\$ 12 m	1	1		4	1	-: -:		4
11 13 23 11 11 12 11 11 11 11 11 11 11 11 11 11		•	\- \		S	<u>Y</u>	7	1	1	<u>.</u>	7	10	.,.	_	
22 10 10 11 11 12 11 11 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13		+	+	13) 0	\dagger	10		1	+	7	9	. 4		
13 13 15 15 15 15] -	┥.	7		2	1	Y		N	_	7	7			-
		=	\$		=	7			3		z	7		١,	┨′
	SEPTCIFICATION.	1	4	1	1	1	1					-			1
												-			
	SCHEDILFE								ı	l				T TOLAY	

TEST ASEC TUT SIL DATA SET COLLATION SHEET

ORIGINAL PAGE IS

. 258

FIGURE 12. DRBITER 01

CYLINDRICAL BOOSTER GD/C DELTA WING ORBITER MSC DR#1204 C-1- 167

ORBITER 03

ORBITER 04

FIGURE 13. OR BITER 02,03,04

FIGURE 4. ROCKET ENGINE RG

CYLINDRICAL BOOSTER GD/C DELTA WING ORBITER MSC DR#1204 C-1- 170

FIGURE 5. TAILS TID AND TIL

FIGURE 6. TAIL TI3

FIGURE 7. TAIL T14

CYLINDRICAL BOOSTER GD/C DELTA WING ORBITER MSC DR#1204 C-1- 173

FIGURE & TAIL TIS

FIGURE 9. TAIL TIT

FIGURE 11 . DRAG SKIRT S3

FIGURE 10. TANK T3

TEST MC. 516 DATA SET/RUN NUMBER

COLLATION SUMMARY

O PRETEST

G POSTTEST	(378)	4.05.9		- 7.	47	118	9//	47	43		ST	RUI		LXS						**		HIDEVAR(1) IDEVAR(2) NDV	
। ड	COR ALTERNATE INDEPENDENT VARIABLE	2.2304															·					1 1	
	MIE DO	15 2.0	7 5	6 3	5150	52 49	.3% 39	37/40	35 16	36 41				_	\vdash	_		\dashv	+	┤≈		1 1.	
	OR ALTER	11/1/3/	1/3	8 7	4 13	-	23 24	_	33	13.3	25	17 CX							#	 ;	CAK1.	NC 1/2 34	
	MUPGREYS (~	'	•	·				2	-							$\frac{1}{1}$;	15/*	17.	
	MACH		0/	6	57	91	22	121	25.5	15				-		<u>.</u> -			_	$\left\{ \right.$."AE.	, F.D.	
•	S 100	_	7)	9	૭	J	7	ટ	9	2	2							1	-		17.7	
	PARAMETERS/VALUES	H	•			•												+	+	<u>-</u> آھ	10	375.4	
3000 F.S.C	PARAMETE							-											+] =	1.51		
650	SCID.	9	AC	i	40	25	10	7 3	0	5	シェ	0								_ 	184		
Town PRESSURE		CONFICURATION	0254		837870274	7	227271196874		35727197d	7	8328711905Td	7	•							7 13	1.77	XA - 12 75 /	
X	DATA SET	1	485-302		_]	:00:	() S	.,	CV. 3:	0.0		(53.40)									17. K	CIE	SCHEDULES

PITATISE PAGE IS * POOR QUALITY

British Andre Re

CYLINDRICAL BOOSTER GD/C DELTA WING ORBITER MSC DR#1210 C-1- 178

TABLE II. (CONTINUED)

TEST MSR. S. L DATA SET/RUN NUMBER

COLLATION SUMMARY

COLUMN SOMETHIS CONTRACTOR OF PRETEST		SALLACE INC. NUNS . 6 . 9 1.0 1.1 1.2 1.5 0.0 2.1 3.3 3.3	0 0 0 0 0 6 77 76 55 54 83 22	ا ١٠/١ ع ا ا ا ا ا ا ا ا	011 1111	25 25 27 27 5 0 02.02.	2 / / / 86	1 1 2 1 1/3	40.40 0 2 73 72	7 2	10,000 3 70 21 56	0 0 30 3 65 64 57	3 1/4 88 29	108 108 101 z	8	1 1 2 1 102 105	[2] [2]			67 6K	1 2 64 CK	
		ē =	0	\ 	\	Ė		`											/	0 7	- 0	0
	8-186-3 Pica Pus	DATA SET CONFIGURATION SC	258110 R30W33010 A	R30W23C1		350W.33C.O		5	3 30W2360	,	8304133C10	0	0		24 R30W33610 B		831 W. 2.3 P.O	0	,	1 832W13610	1 832W13210 832W13210	00

ORIGINAL PAGE IS POOR QUALITY

CYLINDRICAL BOOSTER GD/C DELTA WING ORBITER MSC C-1- 179 TEST RUN NUMBERS LIDEVAR(1) IDEVAR(2) HOU MCB RAGGES (OR ALTERNATE INDEPENDENT WALKBLE) DR# 1210 110 118 22 195 103 12d 200 Ş . 273 18 8 01 29 2 60 6 - 7 - 5 - 60 2 4 6 0 10 CHD. PARMETERS/VALUES NO. 04 25 0 Ö M 0 0 180 SCED. 9 530W23C10 VNL R30W13EDVIC CONFICURATION 3-186-3 COEFFICIENTS: 7 a or 8 Schedules DATA SET IDENTIFIED 310 82.30 8332

TABLE II. (CONTINUE)

TEST MOR- 51 L DATA SET/RUN NUMBER COLLATION SUMMARY

A POSTTEST O PRETEST

TEST MS-374 DATA SET/RUN NUMBER

COLLATION SUMMARY

							=			T	EST	RUN	N	MBI	ERS										_
POSTTEST																	1.				!		73.78	7	IDPVAR(1) IDPVAR(2) I D O
B POSTIES		2.0		11	CO		36	5							Π		Γ								/AR(2
P 0	VARIABLE	0			Γ					T	Γ				Γ		T						29	1	IDE
N		5.012.13.014.015.0		26	27	1	55	2		t	T			-			\vdash			\dashv	_				AR(1)
	INDEPENDENT	XB	-	5			10		-	┝	┝	H		-	├	-	╀		H		_		6.1	1	IDPV
	EP E	0.2	3	-	-	0	╁	\vdash	ļ	_	-	Н		-	-	├	-			\dashv	_		1		1
			85		_	53	-	_		_	_			_	_	_							55	CN	
	OR ALTERIATE	۶./			L	Ļ	L			ŀ	L	Ц				L							~	1	
	N.	7.0	29			00																		15.50	1
	5	1.1																					\$	٦	
	WACH RUMBERS	101								Γ	<u> </u>	П						П						32	
•	3	6	62		\vdash	19		\vdash		-	\vdash					-	\vdash	Н		\dashv	-	\dashv	3	1/28	
	¥	6	9	H		2	┡	H	_	-	-	Н			_	H	H		\dashv		\dashv		-		
	Н	·			_	_		_	10	. 7	7				_					4		4	2	1017	
•	<u>Š</u>	RUNS	3	2	7	3	2	6																1	
•	PARAMETERS/VALUES	Ц								L	L									ŀ				17	
	/X	Ц											٠										١		
		CLR	0	,	1	1.20			9	\	\													1,7	25.7
	PAR	101	0	7	7	07-	\	\	0	\	`												25	٦	114
	SCED.	늬	S							Ш	0									\cdot			1	13	53
	18	٥	7	8	V	A	ß	2	V	5	2		_						_	4	4	_	7	Ħ	191
α	1.																							\mathbf{J}	08
7.			13	3		15	12		12	1										١		İ	4	ঐ	111
3-185			833WJ	B33W2	١	B33W2	E33W35		B334135	333W25	\			٠					:	ļ				1	*
B			33	333	,	33	33	1	33	334	,								I	l		İ		3	i N
	L		-	_	_					ĸ		Ц												7	a or 6
	SET	DESTIFIE	23.30	ريز	350	.360	370	258380																7	G OF B
	DATA SET	5	$\tilde{\mathcal{L}}$	4	, D	-:0	_	38													١		_	7	8 - 5

274

ORIGINAL PAGE IS OF POOR QUALITY

FIG 2. POSITIONS OF MOMENT REFERENCE POINTS

CYLINDRICAL BOOSTER GD/C DELTA WING ORBITER MSC DR#1210 C-1- 182

54515 B-18E-2 = B30 W23 -13 14

BASIC 3-18E-3 = B33 W25 VIG B32 WITHOUT THIS SECTION -B30, B33

B-18E-2 AND B-18E-3, 3-VIEWS AND MODEL COMPONENT F16 3.

340A ORBITER

OR B37 R7 T19 05 T4

イセー

-WINDSHIELD AROUND BALANCE

. R7

CONTLETE CONTIGE BATRATIODETA

OF POOR QUALITY

AND TWIN PRESSURE FED BOOSTENS

LAUNCH PHASE CONFIGURATION

F16

FIG 7. BODY B37 AND ROCKETS R.

FIG & TAIL FIN TIP

FIG 9. CANARD CIO

FIG II. WINGS WZ3 AND W 25

CYLINDRICAL BOOSTER GD/C DELTA WING ORBITER MSC DR#1210 C-1- 190

File. 13. TANK T4

ORIGINAL PAGE IS

BX - BOTH LEFT ORICHT BOISTIERS - |IDPVAR(1)|IDPVAR(2)|NDV POSTTEST PRETEST MACH. 18 2. 14 BKR . RICHT BOOSTER BXL- LEFT Bustien 240 1,42 243 264 45.0 265 4.5 243 245 266 tri-25 15 2.2 2.25 (BAX) BUSTER ISOLATED W. THOUT M. BALAWE. (AI) ORBITER ISO-ATED ON SEPARATE GALANCE. <u>-</u> 230 422 215 255 955 227 226 752 22% 151 25.2 255 221 7.74 255 202 205 306 254 5.5 MACH NUMBERS DATA SET COLLATION SHEET 375 375 300 35% 343 343 3.5 37.7 6.98 394 39.4 0.45 1.05 1.1 CYLINDRICAL BOOSTER DELTA WING ORBITER C-1- 191 S 34.2 392 396 340 0.6 6.9 374 18% 387 395 395 37.4 37// 2 396 394 341 373 168 DR#1230 FIN MDAC 0.4 37 RUNS 9 m 0 ų 7 3 M 11 7 M N m 4 И M 7 2 640 CONTROL DEFLECTION = 0 S 0 0 0 Ö 0 0 0 'n 0 0 0 O 3 0 0 0 0 10.84 7-10°0 -100 A 200 5-225 3 100 0 ٥ 0 0 Ġ Ċ 0 O Ó 0 0 ٥ 0 ٥ .7 Ċ o ORBITER & ORBITER MAC Ò 0 C| 0 20 0 0 0 0 Ö 0 0 0 0 ٥ ٥ 0 0 0 0 3 KAF 40 OD 7 90 8 A V 0 A ويا 0 J 9 L v 01-0 U P SCHD. TEST T ¢ स 0 T **ヤ** 0 T 0 ₹ A O 7 T (P1) T1 (83L) B3R (41) TI BZL (BZR) (¢1) 71 B3L (B3K) (41)T1 (BZL)BZR (BIR) 10 (4) TI (81L) BIR م کا TABLE 2. UA Ø CONFICURATION (41) 71 83 7182 B (41) TI BIL F COMPFICIENTS: -(j 7 É SCHEDULES 120 77 501 2 or 8 108 113 ? 162 107 601 163 631 73/ DENTIFIER KD7101 6// 111 DATA SET -

FIFE CONFICURATION Sculp. Control Distriction Fife Fig. Confidence Fife	(\$\phi_1 \tau \text{CONFICURATION} \\ \frac{\alpha}{\alpha} \text{ (\$\phi_1 \text{T} \text{ B4} \text{ B4} \text{ B4} \text{ B4} \text{ CONTROL} \\ \frac{\chi}{\chi} \text{ CONTROL} \\ \frac{\chi}	2 2 2 2 4 3 3 - 6 RUNS	370	37. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13	5. 22. 70	3.25	PRETEST POSTTEST	
(\$\rho\$) 7.1 84. (84\$\rho\$) 4 \rho 0 \cdot 0 \	(\$\phi_1\tau_1\triangle \text{SCHU.} \text{CONFITGOL} \\ \phi_1\tau_1\triangle \text{BYL} \\ \phi_1\triangle \text{BYL} \\ \phi_1\tau_1\triangle \text{BYL} \\ \phi_1\tau_1\triangle \text{BYL} \\ \phi_1\tau_1\triangle \text{BYL} \\ \phi_1\tau_1\triangle \text{BYL} \\ \phi_1\tau_1\triangle \text{BYL} \\ \phi_1\tau_1\triangle \text{BYL} \\ \phi_1\triangle \text{BYL} \\ \phi_1\triangle \text{BYL} \\ \phi_1\triangle \text{BYL} \\ \phi_1\triangle \text{BYL} \\ \phi_1\triangle \text{BYL} \\ \phi_1\triangle \text{BYL} \\ \phi_1\triangle \text{BYL} \\ \phi_1\triangle \text{BYL} \\ \phi_1\triangle \text{BYL}	Con 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	370 370	MACII NUNIII 137 37 37 37 37 37 37 37 37 37 37 37 37 3	5. 22. 70	3.25	POSTTEST	. [
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(\$\phi)\tau\text{T}(\text{BY}) \tau\text{T}(\text{BY}) \tau\text{T}(\text{BY}) \tau\text{T}(\text{BY}) \tau\text{T}(\text{SYR}) \tau\text{T}(\text{C}) \tau\text{C}(\text{C}) \tau\text{C}(\text{C}) \tau\text{C}(\text{C}) \tau\text{C}(\text{C}) \tau\text{C}(\text{C}) \text{C}(\tex	RUNS PART AND - 6	37.7 37.7 37.7 37.7 37.7	37/25 // 37/2 33/2 33/2 33/2 33/2 33/2 33/2 3	5. 22. 10	3.25		
77 894 A 0 0 0 0 0 0 0 0 0	(\$\phi)\tau\) \(\phi\		37.7 37.7 37.7 37.7 37.7	5/1	202 201 201	3.25		-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(\$\psi_1\triangle \text{A} \tau \text{C} C	- 20 10 10 te 20 20 - 6		37 37 37	272			
Tight (84R) A C C C C A A B A C C C C C A A B A C C C C C C A A B A C C C C C C C C C A A B A C C C C C C C C C C C C C C C C C C	(\$\phi_1\tau_1\text{84R}\text{84R}\text{A}\tau_2	- E E 3 W N N Z Z J		32 32	272		8 W 2 C	
	(\$\phi_1\tau_1\text{B4k}(\text{B4k})\tau_1\text{C} \text{C}	E E D N N Z Z Z		37 37	102		- N 2 - C	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(\$\phi\$)\(\tau\)\(\phi	W 7 N N N Z 7		37 37	102		8 6 V V	
77 84 84 84 84 84 84 84	(\$\phi_1\tau_1\text{84R}\text{R4R}\text{R4R}\text{R4R}\text{R6C}\text{C}	7 7 7 7 7 7	370	37	2		5 6 2 6	
	(\$\phi)\tau(\beta)\tau(\phi)\tau(\beta)\tau(\phi)\tau(\p	7 2 2 7	370	18	of it		0 2 0	
7 (854) 848	(\$\phi\)\7\(8\\alpha\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N N N 7	370	(E)	0,10		9 0	
T(84L) 84R A C C C C C C C C C	(\$\phi\$) \(T \cdot (842) \) 848 \(A \cdot C	22			2,0		2	·
77 85	(\$\phi)\tau' \(\beta'\)\tag{\phi}\tag{\phi}\p	2			7		//	
T S S S S S S S S S	(\$\phi)\tau'\ (\phi)\tau'\) \(\phi'\	1		-		77.		
7.1 854 858 A 6 0 0 0 1	(\$\phi)\tau \(\beta \)\tau \(_	27.7	+		
\(\tau\)	(\$1)71(851)85R A C 0 0 (\$1\times1)71\85 A 0 0 0	_	_		202		1	
V) \(\tau \)	(4/VI) 71 85 A O O O		-	-	1	24.		
O D O O O O 3 384/382 383 236 255			384 382	2.0	200			
VI) 77 85 L(85R) A O O C C C 4 39L 35S 220 VI) 77 (85 L) 85 R A G O O O O 7 13 19 25 31 37 49 55 61 07 25/8/10 PVAR(2) 10 PVAR(2)	00000		384 282	20.	2	7		
V1) 71 854 (858) A C C C 4 372 355 247 262 V A C C C 4 372 355 247 262 V A C C C C 1 1 374 375 247 262 V A C C C C 1 1 374 375 247 262 V A C C C C 1 1 374 375 277	9600							
V1) 77 85 L (85 R) A O O C C C 4 3PL 3F5 2L/ 2C 2 O D O O O 2 3F6 2L/ 2C 2 V A C O O O I P 2 3F6 2L/ 2L/ 2L/ 2L/ 2L/ 2L/ 2L/ 2L/ 2L/ 2L/	CA 0 C	-				50		ŀ
1) T1(BSL)BSR A 6 0 0 0 0 1 1 37 43 49 55 61 67 67 67 67 67 61 67 67 67 67 67 67 67 67 67 67 67 67 67	(\$171) 71 854 (85R) A O O C.	7	38.5	35.5		1		
13 19 25 31 37 43 49 55 61 67 67 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 61 61 67 61 61 67 61 61 61 61 61 61 61 61 61 61 61 61 61	00000	21	376	385		;	<u> </u>	
(P / Y) 7 (B S +) B S R A 6 0 0 0 0 0 7 1 1 1 217 1 27 1 27 1 27 1 27 1 27 1 27 1 27 1 27 1 27 27	AGOO	_				7		٠,
13 19 25 31 37 49 55 61 67	(P1 11)T1(B54)B5R A 6 0 0	7			12			
I DPVAR(1) IDPVAR(2)	19 25	37		2	5		1	
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			_			$\overline{}$	
	CLENIS					IDPVAR(1) ID	PVAR(2) NDV	

Ori	GINAL	PAGE	18
OF	POOR	QUALI	ΪÝ

DATA SET COLLATION SHEET (CONTINUED)

5-222

TABLE 2. TEST

								0	Ric F	gin Po	ΛL OR	. P	'AC	E L	IS TY			١			,	1						BOOSTER	18 I TER		5A1 -1
H	ST						T														-		:	25.76 	-	2) ND		AL F	0 5		-1-3
PRETES	T-FOSTTE	 	14.5							263		235												29	L. L. L. L.	≥ IDPVAR(1) IDPVAR(2) NDV		CYLINDRICAL BOOSTER	MDAC DELTA WING ORBITER	MSC	DR#1230
			2,2 2,25	-			-			350	_	234	•		223	214			-		-			19		IDPVA			•		
			ż	1											207		405	203			2002	222		ړ	1						
		MACH NUMBERS	7	347	347	400	4.00	403	403	398	365		214	417					413	418			406	25	1		•				
		VCII N								364	344									\perp		\downarrow	_	61	-						
		X.	0.45 1.05							363	363											1		3	3						
	<u>.</u> .		6.0	398	39.5	402	40.	424	404	362	362		416	411					419	4.19			407	5.3							
	٠		2.0	349	349	104	10%	405	40:	36/	361		415	415					430	450			408					İ			•
			0.4							360	360												_	37	1						
	,	NO.	of RUNS	Э	3	Μ	(*;	3	2	٥	9	7	3	М	2	`	_	<u>`</u>	M	٣	_	<u>\</u>	m						İ		
	•									:												<u> </u>	_	=	-			Ì			
		DEFI ECTION	36		٥	0	2	9/	10	0	0	0	0	c	0	٥	0	0	0	0	٥	0	0						!		
		TOUT'NO.			0	0	0	0	0	ن	0	0	0	0	0	0	0	0	0	00	0	0 0	0	2.5	-						
		1		0	0	0 20	_	_	10	0			0	1	-	 	_	 		D	7	9	v						į		
		1.1.70	0 0 0 0	<u> </u>	1	↓	+						+		4	7	4	7	iŧ	0	A	4	7	5	-	1					
			CONFIGURATION	12 (1/4)	4				-	(4) 71	7	7	161) 7281	-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(4) TZ BIL (BIR)	(A) 77 R2	(6.) 72	(0) 72		>	19 (6) T2 (81L) BIR	<u> </u>				COEFFICIENTS:	8	SCHEDULES		
	• •		DATA SET DENTIFIER	171. 600	C#1	27	7	7,7	///	CIII		DL7	77	3	2/2		7	7	7	1	"	 ×					COEFF	G OF S	SCRE		

BOOSTER	¥ •				(5 T	(5 ¢)	· ,		14 .	• • •	2										:		
C		•	TEST		L		T					<u> </u>	 			T					Ť		I			7 %			(Z)INDV	•	,	
CYLINDRICAL MDAC DELTA WING	MSC DR#1230	OPRETEST	TOSTTES		14.5		-									-	<u> </u>		35	2/2	3.6	280		3//	314	- 19			S-41 DEVAR(2) NDV			
			<i>!</i>		2 2.25	1			211			2/0	216	2,2	1				27.0		30.3					19	İ		ר אעגריז			
	r (contr		•	S	1.5.	₩	+	+	101		-	369 2		1 5		-	+	-	277 5		309 3	+	-	3/2	3,3			1				
	SIEET (CONTINUED)			MACH NUNIBERS	111/2	100		1		4/2	4/2	+			13%	1/2	369	672		-		33%	7:2		327	55	-		-			
				MACH	20.1 24.05		<u> </u> -		-	_			-	-	L	-			-							64	<u> </u>					
	COLLATION				0.9 0.	407				413	4/3		-	_	27.2	37.7	3.5	368	22.0	330		335	335		328							
	SET O		ĺ		4 0.6	408	469	406		FIF	414								333	- -	-					14 3	-					288
	DATA 8			NO.	0	3	m	8)		8	3	7	_		?	~	2	2	1	M	M		~			37	-				-	•
	<u> </u>			CLION	2							:										h	Ŋ	2	7	31			İ	$\ \ $	'	
(222			L DEFLECTION	2f 3 f	0 0	3	0 0	0 0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	٥	0	Ç.	٥	0	9		1					
•	2			CONTROL	<u>र</u> ्ग	0	0/	0	7 3	0	0	0	٥	0	٥	0	0	0	0	0	0		0	0	3	25	1					
!	TEST			SCHD.	a B	0 7	AO	00	6 4	40	0	46	AS	46	AO	OD	0	0	40	Q	7		00	7	2	. 61						
				-		70	85						(BIR)	BIR								818)			B/R /		1					
	TABLE 2.	,		COMFIGURATION		7.2 B	72A 1		T24 B				A 816	\sim	72		72A		3 81			814 (6			(8,4)	-	4					
				COMFIC		(411)	(411)	>	(6,)7		1	r	(¢1)72A	(41) TZA (BIL	<i>(4)</i>	-	(61)		(91/73		.—	61/13			6113	7	1	TS:	1	. !		
•	•	• -		DATA SET		RP7161	162 (163	/51	/65	97)	167	168) 691	027	101	172	173	HL1	13	777	ユ	821		1) 1051	-		COEFFICIENTS:	a or B	SCHEDURES.		

MACH NUMBERS 501 540 1 1. 355 354 359 0.0 354 35/ 354 350 351 356 355 356 350 0.6 : 70 NO. of RUNS J W 5 01 19 N 7 1 7 CONTROL DEFLECTION

0 0 0

V

787

358

358

319 320

3/8 285

E-TOSTTEST' PRETEST

DATA SET COLLATION SHEET (CONTINUED)

5-222

TEST

TABLE 2.

4.5

2.2 2.25

ر. ج ا

1.1

296

352 353 353

٥ Ĵ

0

(41) 73 83 01)T3 (B1L)

7 1 1 W

9

4

BIR

CONFICURATION

DATA SET DENTIFIER

٥

0 0 0 ٥

Ġ

₹ 0 T ₹

(61) 13 RZL (BZR)

134

185

0

326

29.8

299

302 2.4.2

303

282

287

357

٥

0

0 ۵

A

40

٥

Ų O

Ø1) 73 (824)82R

187

٥

0 ٥

64 b 35.

301

300

CYLINDRICAL BOOSTER

- IDPVAR(1) IDPVAR(2) NDV

282

337 337

8

N M

G 0

0

0

0

0

0

0

O

(d1) T3 B4

0

0

4

77

(d1)73 (B3L)B3R

0

0

0

S

4

(41)73 B3L (B3R,

191 267 193 767 195 9

55

DELTA WING ORBITER MSC

C-1- 195

DR#1230

189 00

188

C- 4

NOCH NUMBERS NOCH	NO NACII NUSBERS NACII NACII NUSBERS NACII NACII NUSBERS NACII NACII NUSBERS NACII NACII NUSBERS NACII NACII NUSBERS NACII NACII NUSBERS NACII NACII NACII NUSBERS NACII N	NO NO NO NO NO NO NO NO NO NO	100, R0 10 10 10 10 10 10 10 10 10 10 10 10 10
No. No.	No. No.	No. No.	N
30.4 0.6 0.9 0.95 1.05 1.1 1.5 2.2 2.25 4.5	2 30.4 0.6 0.9 0.95 1.05 1.1 1.5 2.2 2.25 4.5 2 32 32.2 2.25 4.5 3 34 335 340 26.2 26.1 24.3 2 34.3 34 342 34.3 32.3 32.1 2 34.3 342 342 34.3 32.2 32.1 2 34.5 34.7 34.2 34.5 34.4 3 34.5 34.7 34.2 34.5 34.4 3 34.5 34.7 34.2 34.5 34.4 3 34.6 34.7 34.2 34.5 34.4 3 34.6 34.7 34.2 34.5 34.4 3 34.6 34.7 34.2 34.5 34.4 3 34.6 34.7 34.2 34.5 34.4 3 35.7 56.2 56.2 3 44.6 74.4 3 49.6 74.4 3 49.6 74.4 3 49.6 74.4 3 55.7 56.2 56.2 3 75.8	Wilks Ory 0.6 0.9 0.45 1.05 1.1 1.5 2.2 2.25 4.5	KUNS O. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 34 34 35 34 34 35 35 35 35 35 35 35 35 35 35 35 35 35	2 307 306	2 34 336 340 262 267 263 27 306 2 3 340 265 267 264 263 264 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3.7 3.6 3.7 3.6 3.7 3.7 3.8 3.7 3.6 3.7 3.7 3.6 3.7 3.7 3.7 3.8 3.7 3.7 3.4 3.4 3.4 3.2 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.2 3.4 3.4 3.4 3.2 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.2 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.5 3.4 3.4 3.5 5.2 4.6 4.6 5.2 5.2 4.6 4.6 5.4 5.4 4.6 4	2 34 335	2 34 334 340 6 7 243 345 340 342 352 327 244 345 345 340 342 343 343 345 340 342 343 343 345 344 345 344 345 344 345 344 345 345	11 11 12 12 12 12 12 12 12 12 12 12 12 1
340 340 242 243 341 346 340 242 243 341 342 340 322 321 342 343 322 321 343 343 322 321 344 342 343 325 344 348 347 343 344 348 344 325 346 347 344 345 346 347 344 345 346 348 344 345 346 347 345 344 346 347 345 344 346 347 345 344 346 347 345 344 346 347 345 344 346 347 345 346 346 347 345 346 346 348 347 346 346 348 347 347 346 348 356 567	2 34/ 334 340 24/2 24/3 24/3 24/3 34/3 34/3 24/2 24/2	2 340 242 240 243 244 244 244 244 245 247 244 244 244 244 244 244 244 244 244	いるとことをこれをいい
2 34/ 335	34() 335	6 34/1 334 340 242 243 2 34/1 336 340 242 243 2 34/2 34/3 245 244 2 34/2 34/3 245 244 1 34/2 34/3 24/3 24/3 1 34/2 34/3 24/3 24/3 2 34/2 34/3 32/3 24/3 4 34/2 34/3 24/3 24/3 5 34/2 34/2 34/3 24/3 24/3 6 34/2 34/2 34/3 32/3 24/3 6 34/2 34/2 34/3 34/3 34/3 2 34/2 34/2 34/3 34/3 34/3 3 44/2 34/2 34/3 34/3 34/3 3 44/2 44/3 55/2 56/2 56/3 2 44/2 44/3 55/2 56/3 56/3 3 44/2 44/3 55/2 56/3 56/3 3 44/2 44/3 55/2 56/3 56/3 3 44/4 44/3 55/4 56/4 56/4 <t< td=""><td>13 m m 10 e 20 - 10 t m m 6</td></t<>	13 m m 10 e 20 - 10 t m m 6
346 346 340 4632 321 4 342 343 295 284 2 343 295 284 2 343 342 343 295 284 3 322 321 3 323 295 284 3 324 284 285 344 285 344 285 285 3 346 347 346 345 344 285 285 285 3 346 347 346 345 344 285 285 285 3 346 347 346 345 349 255 282 285 4 4 6 6 7 4 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 34/ 339 340 1 292 321 4 342 343 295 244 247 242 247 247 247 247 247 247 247	347 339 340 1 322 327	344
2 342 322 321	2 342 321 321 284 284 284 284 284 284 285 324 285 284 285 284 285 284 285 284 285 284 285 284 285 284 285 285 285 285 285 285 285 285 285 285	2 342 321 321 284 284 284 285 324 325 321 325 321 322 321 322 321 322 321 322 322 321 322 322	344
342 343 295 244 342 343 295 244 343 343 324 324 349 342 343 324 349 347 346 347 242 349 347 344 345 344 346 347 344 345 345 346 347 346 557 562 446 557 557 562 446 557 557 564 446 443 555 557 37 43 556 564 37 43 556 564	295 294 294 294 294 295 294 295 294 294 295 294 295 294 295 294 295 294 295 294 295 294 295 295 294 295 295 295 295 295 295 295 295 295 295	2 342 343 295 264 343 346 247 346 345 344 240 240 247 346 348 347 346 345 344 240 240 247 346 348 347 346 345 344 240 240 240 240 240 240 240 240 240 2	344
342 343 324 324 324 324 325 324 325 324 325 325 325 325 325 325 325 325 325 325	349 342 343 324 325 324 325 324 325 324 325 324 325 324 325 325 325 325 325 325 325 325 325 325	342 343 324 325 349 348 347 346 349 240 240 247 346 348 347 346 349 260 247 346 348 355 562 562 562 567 496 550 550 560 560 560 560 560 550 560 56	344
349 348 347 346 344 240 252 349 348 347 342 344 240 252 346 348 347 342 344 315 346 348 347 342 344 315 346 348 347 342 345 315 257 562 542 547 316 257 562 547 317 496 348 349 557 562 567 318 496 349 351 562 564 315 318 496 349 351 562 564 315 319 496 349 349 351 562 564 315 310 496 349 349 351 562 564 315 311 496 349 349 351 562 564 315 312 496 349 349 351 562 364 315 313 496 349 349 351 562 364 315 314 496 349 349 351 562 364 315 315 496 349 349 351 562 364 315 316 496 349 349 351 562 364 315 317 496 349 349 351 562 364 315 318 496 349 349 349 351 562 364 315 318 496 349 349 349 351 562 364 315 318 496 349 349 349 351 562 364 315 318 496 349 349 349 349 351 562 364 315 318 496 349 349 349 349 351 362 364 364 364 364 364 364 364 364 364 364	349 348 347 346 344 290 237 349 348 347 346 349 290 237 346 348 347 346 349 290 237 346 348 347 346 349 290 237 346 348 347 346 346 366 267 37 496 550 550 560 567 496 550 550 560 567 37 496 550 550 560 560 560 560 560 560 560 56	349 348 347 346 344 290 2537 349 348 347 342 344 290 2537 349 348 347 342 344 290 2537 346 348 347 342 344 290 254 256 496 557 562 567 496 6 557 562 567 37 43 49 555 557 37 43 49 555 557 37 43 49 55 557 37 13 49 55 61 57 38 61 57 38 88	344
349 348 347 346 345 344 240 240 244 349 348 347 346 344 346 346 346 346 346 346 346 346	349 348 342 346 349 240 240 242 242 349 349 349 349 349 349 345 349 349 346 345 349 346 345 349 346 346 346 346 346 346 346 346 346 346	349 348 347 346 345 344 240 240 242 242 242 242 242 242 242 2	344
349 348 347 346 349 290 253 349 348 347 346 349 290 253 346 315 315 350 562 562 550 562 567 550 562 567 550 562 567 550 562 567 550 562 567 550 562 567 550 563 567 550 563 567 550 563 567 550 563 567 550 563 564 550 563 564	349 348 347 346 344 295 237 346 348 347 346 344 315 346 348 347 315 346 348 347 315 346 348 346 315 347 315 348 349 349 349 340 348 349 349 349 340 348 349 349 349 349 349 349 349 349 349 349	349 348 347 346 344 240 240 247 349 348 347 346 344 240 240 247 346 348 347 346 344 240 240 247 346 357 562 562 567 557 562 567 557 562 567 557 562 567 758 496 556 557 569 37 446 556 557 569 37 496 556 557 569 37 497 569 550	346
344 348 347 344 345 344 345 346 346 346 346 346 346 346 346 346 346	346 348 347 344 345 344 315 315 315 315 316 315 316 316 316 316 316 316 316 316 316 316	344 348 347 344 345 344 315 315 316 315 316 315 316 315 316 315 316 316 316 316 316 316 316 316 316 316	349
315 315 316 315 317 315 318 315 327 322 327 322 327 327 328 324 329 324 320 325 320 326 320 326 320 326 320 326 33 49 33 49 35 55 37 49 38 55 40 40 37 49 37 49 37 49 38 55 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 <	315 315 315 315 315 315 315 315 315 315	312 315 315 315 315 315 315 315 315 315 315	71 M M M
496 557 562 567 496 557 562 567 496 559 567 496 550 567 497 550 567 496 550 569 37 493 555 37 493 55 37 493 55		496 557 562 567	m m m
496 557 562 567 496 559 554 562 496 556 556 497 556 567 496 556 569 37 49 556 37 49 556 37 49 556 37 49 55 37 49 55	496	496 557 562 567 567 100 10	m n
492 559 562 56.7 494 556 495 556 496 556 37 43 55 37 43 55 37 43 55	492 557 562 56.7	492 559 562 562 563 564 565	ກ
492 559 494 550 495 550 495 493 37 43 49 55 55 56	496 559 564 565 496 556 569 569 570 569 570 570 569 570 57	17 496 556 567 565 1496 556 550 569 569 569 569 569 569 569 61 67 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 61 61 61 61 61 61 61 61 61 61 61 61 61	
496 556 496 55c 37 49 37 49 55 61 57 56,9	17 496 556 556 569 37 497 555 557 56.9 61 67	1496 556 564 564 37 449 555 554 56.9 1 10PVAR(1) IDPVAR(2)	7
37 445 444 443 554 564 37 445 49 55 61 67	37 44 556 557 56.9 37 49 55 61 57	37 495 49 55 557 56.9 37 49 55 61 67	
37 445 443 555 557 56.9 37 49 55 61 57	37 497 493 555 557 56.9 37 37 49 55.9 55 61 56.9 57 56.9 55 61 56.9 57 56.9 55 61 56.9 57 56.9	37 497 493 555 557 56.9 37 37 37 36.9 49 55 61 1,7 49 49 55 61 1,7 49 49 55 61 1,7 49 49 49 61 61 61 61 61 61 61 61 61 61 61 61 61	
49 55 61 67	13 49 55 61 67	13 49 55 61 67	
		IDPVAR(1) IDPVAR(2) NDV	37
	- IDPVAR(1) IDPVAR(2) NDV	- IDPVAR(1) IDPVAR(2) NDV	The Land

182

181

SW

183

184

DATA SET DUNTIFIER

RPZIAZ

164

196 1A.7 8

18:31

72 162 COEFFICIENTS: a or B SCHEDULES

(\$1V1) T185

186

185

187

IRP

Γ																						75 76		2) NDV	AL BOOSTER
	5 4.5	529		566	5.39	539	527	538	537	255	5:37	537	525			536	5:36	534	53/	5.40	256	1.9		IDPVAR(1) IDPVAR(2) NDV	CYL I NDR I CAL MDAC
	2.2 2.25	55.4		563	542	57.2	520	543	543	25/	44	244	522			242	54.2			545	545	19	1	→ IDPVA	
	.5.	523		553	544	3.7%	212	550	550	516		55/	5/5	_		545	575			555	476 552	55			٠
	1 11/50 11/1/50				475	475	504	480	480	509	181	481	514	487	487	492	492			284	11/2	8	1		
	6.95 1.05																					61			
	0.40	464			7/2/2	726	507	474	47	Sop	26	7.84	513	687	485	49!	1441			1435	484 475	43			
	4 0.6	495			47.7	477	705	478	418	211	483	483	5,2	489	459	490	490			hSh	47.		,		
514	of RUNS C	9		М	3	9	9	9	9	9	7	9	9	w	3	S	9	/	_	9	U	37			
	Crion							:														31	-		
- 1	1 100	2		0	Ċ	0	0	0 0	0	٥	0/0	0/0	0/0	0	0	0	0	i o	0	0	0			o	
	CONT.	20		٥	0	0	0	20	20	20	_	0	٥	0	٥	0	C	0	0		S	25	-	300	
	SClib.	0		0	0		A	OF	0	A	DA	Q O	A	40	0	4	0 0	EO	Ē 6	OA	0	. 61		1 5	
, A	CONFIGURATION	(\$\phi\) \(\tau\) \(\phi\) (\(\phi\))		(\$141) TIBS	1 1-17-18 FT (14)								•	(61) TY B7-4	->	F-1 (14)			>	(4) TYB1A1-5	->	7 13		7 2 2	
	DATA SET DENTIFIER	RZZICY	105	72/	16.71	100	631	14	701	103	701	105	70'	101	801	8	IEI	162	Ö	184	(2)			COEFFICIENTS	a or B SCHEDULES

KLITYTO MAN F

DATA SET COLLATION SHEET (CONTINUED)

2-22-5

TABLE 2. TEST

CYLINDRICAL BOOSTER DATA SET COLLATION SHEET (CONTINUED, MSC.) 1 (E FOSTTEST - PRETEST 525 52.8 SCE MDAC 525 2.25 4.5 175 075 0.40 0.45 1.05 1.1 1.5 2.2 5,9 520 561 49-513 MACII NUMBERS 499 498 CONTROL DEFLECTION NO. Q 'n m m 0 0 ن 0 0 5-225 S 0 0 0 0 Ċ 0 Ġ Ċ 9 00 SCilb. 9 0 9 TEST Ö 4 (\$ 1) TY B7A1-5 172A BS (divi) 72 85 TABLE 2. CONFICURATION

(3/ 1/)

129

IFI

168

DATA SET IDENTIFIER

RD7 1EC 167

ORIGINAL PAGE 1S OF POOR QUALITY

LDPVAR(1) IDPVAR(2) NDV

292

67

9

55

6

31

COEFFICIENTS:

a or B SCHEDULES

*830-528

5-222 TEST

O FOSTIEST O PRETEST DATA SET COLLATION SHEET (CONTINUED) MACH NUMBERS SCHD. CONTROL DEFLECTION NO. TANK & BOSTERS @ TANK MRC. NOTE: SAME AS TABLE 2. DATA SETS CONFIGURATION RD71XX DATA SET IDENTIFIER 202 202 203 205 202 204 210 213 217 252 RP7201 707 266 212 215 218 17 214 214 712

CYLINDRICAL BOOSTER MDAC DELTA WING ORBITER MSC DR#1230 C-1- 199 200

IDPVAR(1) IDPVAR(2) NDV

61 67 ALPHA

4

43

EYN

K75

FB4

CAF

FA

7

COEFFICIENTS: <u>C.Y.</u> C.Y.

a or b SCHEDULES

5-2-2 TEST

ORBITER @ TANK MRC

TABLE 2.

•830-528

DATA SET COLLATION SHEET (CONTINUE MSC

200 DR#1230 C-1-

- PRETEST

& POSTTEST - IDPVAR(1) IDPVAR(2) NDV MACH BETH MACH NUMBERS 6 3 EYK 37 CONTROL DEFLECTION OF OF RUNS CLM 31 16,87 2.5 SCIID. EAF NOTE: SAMEAS DATA SEIS CONFIGURATION RD71XX Z/V 10/ COEFFICIENTS: a or 6 SCHEDULES DATA SET IDENTIFIER 303 305 306 307 308 RP1301 363 304 309 310 320 312 313 314 315 \$10 317 312 319 3//

***830-528**

5-222 TABLE 2. TEST

COMPUSITE @ TANK MRC.

DATA SET COLLATION SHEET (CONTINUED)

ET-OSTTEST PRETEST

CYLINDRICAL BOOSTER MDAC - IDPVAR(1) IDPVAR(2) NDV MACH BETA MACH NUMBERS 22 4 -EXM 37 CONTROL DEFLECTION NO. FLM 3 16.84 CAE SCIID. 8 NOTE. Sume AS DATA SETS Q. CONFICURATION RD71XX COEFFICIENTS: SCHEDULES DATA SET IDENTIFIER 720 a or b 413 403 427 408 469 410 4/2 414 514 111 404 405 407 11/4 416 413 416 RD7401 **≯**

DELTA WING ORBITER MSC DR#1230 C-1- 201

	COMPOSITE @		Tann	K MRC	RC													OR#1230 C-1-	O E T ES	-1 -7:	202
7,77		}							į									1 PO	POSTTEST	ST	
IDENTIFIER	CONFIGURATION	ઝ	≘.	CONTROL		DEFLECTION	KOIT:	Š.					AACH	MACH NUMBERS	RS						
		8	_	V3	35	36		RUNS	0.4	20	0.9	0.55	50%	/:	1.5	2.2	2.25	14.5	-		ĺ
RP7 501	Ø1 T1 B1	7	0	٥	٥	Ç		7		77.	77		_	7	1	`	127	[╁		
502		7	<u>v</u>	0	0	0		7		20	20			0	1	┿			\dagger	T	
503		4	-	0	2	ù		-		1	†			7	1	1		22	+	T	
504		0	R	C	0	0		1		27	1.0				1:	<u>}</u>			\dagger		
505		0	9	0	19	3	$\overline{1}$	4.		T	2				3	1	\perp		+	\top	
356	<u> </u>	Ü	1	3	. 0	, (,	T	T							77		+	\exists	
507	\$17181+Puzels	٠,		9		·Ţ	\dagger	,		T				ઢ		_	\perp				
Son	1	-		•	٠,	2	\dagger	,	1							1.85	422				
3 1		₹ 	_	9	0	c		7	1							361			-		
200		V	0	20	0	0		7								781	423		-	Γ	
2/6	-	4		٥	0	०		2							L	1	+-		-	T	
2//5		0	Ü	C	0	٥		_									+-		\dagger	T	
2/5		0	D	9	0	0	_	-									;		+	T	
513	,	0	A	O	0	01	\vdash	-	1	T							(;)		+	\top	
514	\$1.71.82	4	_	0	٥	0	\dagger		\dagger	+-	0]		434		+	T	
5/5	\	4		C	1	0	+	J .	\dagger	+	2 8			2.8	15	12		23	\dashv	T	
215	6,71825	, '		9)	0	+	1	\dagger	-	Ž	T		63	24	2.2		32	-		
5,7	1	1		9	1	10	\dagger	1	+	+	200		T	12	1,	/3			1		
21,2	617387	\$ 5		2 6	2 0	3 6	+	1	+	26	16			20	23	7.		3/			
900		١		٠ ر٠	2	5	+	7	+	1	1				49						
	1	4		0	2	2	7	~		\exists					84	39		33			(
350	411364	V	0	ં	ij	2	4	7	\exists	. 12	72.			23	5,	75		89	-	T	
	7 1.3	2		~		31		37		۲.		64		2		ءَ		5	1] ;	
COFFERCTENTS.	EY CA	CAE	الا	थ	78	Y	ELM	Ä	EY#							Ž	MACH	ALDHA			
a or b														.		H	PVAR(IDPVAR(1) IDPVAR(2) NDV	AR(2)	NDV	İ
SCHEDULES					i	l						l									

in the second second

DAT
5-225
TEST
BLE 2
Ä

A SET COLLATION SHEET (CONTINUED)

a or à SCHEDULES

CYLINDRICAL BOOSTER

DELTA WING ORBITER MSC DR#1230 C-1- 203

*830-528

i

DATA SET COLLATION SHEET (CONTINUED) MSC C-1- 204 E TOST TEST 75 76 -IDPVAR(1) IDPVAR(2) NDV O PRETEST DR#1230 0,4 0.6 0.9 0.85 1.05 1.1 1.5 7.2 2.35 4.5 67 433 438 441 440 4+1 44c 443 443 444 447 784 584 435 430 439 443 448 442 434 444 447 74.7 445 444 446 5 445 444 455 755 75.7 454 453 MACH NUMBERS 55 **.** CONTROL DEFLECTION NO. N 212 Ν ? N N 01 0 9 10 0 10 1 9 Ĵ 0 0 0 5-22 2 0 Э 0 9 C ù 0 Ċ 'n 3 Ċ 0 Ō 20 20 0 20 O i ç. 0 (C Ċ ·J 2 Ó 0 A è Ü 0 O 0 0 0 0 0 0 A SCHD. 0 0 0 O S Ċ t, A Ü TEST 0 ٥ ₹ Ö T 7 ८ ₹ Ö ٥ さ \$17386+Purile (1.5) 41 TIBIT RUME (1.5) ď CONFICURATION TABLE 7386 T3 RZ 73 85 é COEFFICIENTS: **830-528** a or b SCHEDULES DATA SET IDENTIFIER 543 RD7541 542 545 576 547 545 549 550 552 544 553 556 5,00 554 558 555 557 559 5.51

CYLINDRICAL BOOSTER

(

₽830-528

DATA SET			ļ												_	O PRETEST	ST
IDENTIFIER CONFICURATION		≔⊢	CONTR	OL DE	CONTROL DEFLECTION	ON NO	Ц			3	MACH NUMBERS	MRFRC			[E POSTTEST	ES
RD7561 4, 73 BL+PLUME (15)		-4-			38	RUN	200	2.0	0.9	0 95	1.05	177	3	2.2 2.	77 77		L
7		7 0	00	0 0	9	1	_	1						#		-	
_		+_	+-	+	3 0	1			_					450	+	\downarrow	
564		+-	+-	+) 0	1	1	1	1	1	\dashv		7	450	\vdash	igg	
545	,	-		_	10	1		1	+	+	+	\vdash	1	451	-		
775		0 17	0	0	0	1		1	\dagger	+	\dashv	\dashv	7	451			
	0		0	0	0/	1		1	\dagger	\dagger	+	+	7	254			
568 7135	A	0	1		 	1			+	+	\dashv	\dashv	3	452			
	0	D	1		-	1		+	\dagger	+	+	1	457 43	457	_		
570 7186	4	_	1	 	+.	1		_	+	\dashv	\dashv	4	457 45	454	_		1
!	0	2	1		+	1		_	4720	+	7	469 4	654 754	10	200		
9174 B7A1-	4	0	0	0	+	: او		47/17	470		419	_		10	207		
_		A	+	╁	1	7		7	460	-	194		597 57	2			
574 \$17487A1-4+ PLUYE/1.5	Cons (1.9) A	0	┿	+	+	7	1	7	460	\dashv	17,1	_	18 572	7	_		
		A	╁	+-	+	1	1	+	+	+	-	586	9,	_			
5 76	A	O	30	0	-	,	†	+	+	+	+	255	,9		<u> </u>		
57.2	0	_	Ļ	┿	_	1	\dagger	\dagger	+	\dashv	+	5.00	3			\mid	
578	A	0	_	+	_	1	+	+	+	\dashv	\dashv	580	1				
579	0	_	0	 `	L	-	+	+	+	+	\dashv	5.8.7	1				1
580 \$1748:41-4+ Pune (2.2)	ME(2.2) A	0	O	1		1	\dagger	+	+	+	4	5,7.7	7.1				l
7 13	61		:	1] =]	┨.	\dashv	\dashv	4	4		577				
	-		╢.							6,7		55	19	_	3		֓֞֝֟֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֡֝֓֓֓֓֡֝֡֓֓֓֡֡֡֡֓֓֡֡֡֓֓֡֡֡֡֡
COEFFICIENTS:		1	1		1	1	1	+	•	_					,		1
a or b										$\ \ $		11	节	DPVAR	IDPVAR(1) IDPVAR(2) NDV	/AR(2)	$\bigcap_{i \in I} \hat{\mathbf{z}}_i$
												•			•		
													•	υ Σ̄	CYLINDRICAL BOOSTER Mdac	3 I CAL	80
														٥	DELTA 1	WING.	ORBITER

of Pour Quality

CYLINDRICAL BOOSTEF MDAC

DATA SET COLLATION SHEET (CONTINUED MSC

C-1- 206 DR#1230

5-225

TEST

ď

TABLE

830-528

- PRETEST

PPOSTTEST 6 403 604 2.2 2.25 4.5 -9 14.5 46.5 596 589 596 589 545 590 595 54 599 594 593 592 1576 600 573 570 600 573 543 542 14.531 575 76.5 575 597 570 577 र्भ दे 547 1.5 55 3 MACH NUMBERS 462 462 646 646 - : 0.95 1.05 64 463 645 644 474 463 645 644 0.7 0.6 0.4 474 of RUNS N e 7 7 N S N 20 10 5 0 CONTROL DEFLECTION JR JRF ٥ ٥ د: Ġ Ċ ١ l 0 Ö Ġ 0 0 3 01 0 5 9 Ġ 10 0 01 Ó O 0 0 0 ٥ ٥ Ċ O 0 0 ٥ 136 0 Ò 0 O O 0 0 O Û 0 O Ü ٥ 0 0 30 Э ٥ ٥ 0 P 0 e, 0 A ر2 り 0 A 0 0 0 A Ó A 0 A Ü CO Ċ 2 0 40 0 ₹ 0 = Þ o ₹ Z ₹ 0 4 0 ত 5A1 \$ WITHBIA: -4+PLINE/1. 6, 74 BTA1-4+ PLUME (2.2 \$1V17487A1-4 TYF187A1-4 4174F1 87A1-4 8741-4 CONFICURATION 7.7 592 547 598 595 543 596 580 594 DATA SET IDENTIFIER 586 537 554 585 587 165 51.3 584 582 RD2551

30

8

COEFFICIENTS:

a or b SCHEDULES

(

LIDPVAR(1) IDPVAR(2) NDV

*830-528

TABLE 2. TEST S-222

(a	562 623 624 625 625 626 627 627 627 627 627 627 627	
FION SHEET (CONTINUED)	MACH NUMBERS SP2 S	
DATA SET COLLATION		
5-22-5	10. CONTROL DEFLECTION NO. CONTROL DEFLECTION	
Malk 2. TEST	DENTIFIER CONFIGURATION SCIILU.	
DATA SET	EPISAZE SAS SAS SAS SAS SAS SAS SAS	

208		
(CONTINUED) MSC DR#1230 C-1- DPRETEST TO PRETEST	107 1.5 2.6 1.93 107 1.90 1.92 111 1.90 1.92 128 1.81 1.80 1.82 128 1.81 1.80 1.82 1.29 1.75 1.65 1.29 1.75 1.63 1.29 1.75 1.63 1.29 1.75 1.63 1.29 1.75 1.63 1.29 1.75 1.63 1.29 1.75 1.63 1.29 1.75 1.83 1.34 1.77 1.63 1.35 1.75 1.75 1.63 1.35 1.75 1.75 1.63 1.35 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.7	
S-222 DATA SET COLLATIO	SCIIIU. CONTROL DEFLECTION NO. 94 O. 45 1.05 A O 4 A O 4 A O 4 A O O O O O C C O O O O O O O O O O O O	
*830-528 TABLE 2. TEST	77 77 77 77 77 77 77 77 77 77 77 77 77	SCHEDULES

TABLE 2. TEST S-222 DATA SET COLLATION SHEET (CONTINUED) BOOSTER & BUNSTER MAC PITCH FLANE

•										,	11	بأجرائي	(N	3	rí:	iO.	;	*											
																											E 29	œ	•
H 10	П		7	Т	7	_	7	_				γ	_	_					i								OST	TE	209
D PRETEST B FOSTTEST	11	_#	\perp	\perp	\perp	\perp									-					Γ				75.76	P	ΩΛ	CYLINDRICAL BOOSTER	ORBITER	C-1-
ET	П	I			-		T	T					T	†	\dagger	\dashv		\vdash	_	 -	\vdash	-		7	4	(2) IN	, AL	<u>o</u>	ပ
4 b		1,5	63	1	167	6	5	1	ᅱ	2	7		Ļ	Ļ	+	4	_	_				- 1		1	ă	VAR (R .	SN I	
口的	,		*	77	3	3		709	607	603	625		617	13	2	- [- 1		- 1		T		\exists	6	ALPHA	100	Q.	. <u> </u>	23
		7:5						18	623	620	779	62/	6119			+	7	+	+	+	\dashv	+	\dashv		\int	3	ZYL.	MSC MSC	DR#1230
		y .	3 !	1 5		1 2		+	7	7	7	-	-	1	1	+	4	4	\downarrow	\bot	\perp			1	HOTE	HIDPVAR(1) IDPVAR(2) NDV	•	202	0
ĺ	—	-#-	7.	+	+	+	工	1	١,	\perp	\perp				L		1						7	<u>-</u>	2	a T	•		
	2						613		3 3	3			610	119		T	T	T	\top	7	十	+	4		1	Î			
	O.S. C.	: :	3 (100	1	()		077			1	-			-	╀	╀	+	+	+	\downarrow	\downarrow	ړ ∤	,					
	Z V			1	-	-	-			. 1			63	636		L	\perp						"	Ί΄	11	•			
2	260		L		L	L	638	149	(1)		13	20	53	635				Γ	T	\top	\top	+	1	l	$\parallel \parallel$				
	0.0	1	120	123	110	1/3						\dagger	1	٦		\vdash	+	+	╁	╀	+	┼-	3	l	$\parallel \parallel$				
	0.7					_	~	7	3	-	╀	+	+	1	_	<u> </u>	igspace	ot	L	\perp	L				11	1	11		
	\vdash	-	\vdash	_		_	63	142	929	L	L			6.34											11	1	П		
	0.6				-		-						Τ	T					\vdash	+	-	-	F		Ш				
	0.4		\exists	7	\exists	7	7	7	\neg		-	-	+	╀	\dashv	\dashv		_	_	<u> </u>				i		П		303	
-		-	+	+	+	-	4	4	_															žŽ		П		•••	
CONTROL DEFLECTION NO.	25	7	7	2	7	1	9	9	0	N	m	v	0		T	\exists	\neg					٦	3	4		П			
TIO					T	T	Ŧ	T	7	7		_	-	\dagger	+	+	+	+	-	-	-	4		2		П			
FLE			1	T	†	\dagger	+	+	+	+	\dashv	\dashv		├	+	+	4	4	4	\downarrow	\downarrow	╛	<u>.</u>	EFW	П		1		
1 2	1	+	+	+	+	+	+	+	+	4	4	4			\perp	\perp			-	-	1	1		7	П				
15 E	1	+	+	_	\downarrow	\downarrow	\perp	\downarrow	\perp	\perp							T	T	T	7	1	7		7	١				
ğ	9	111	1	l	1	1	1	1	12	5 3	45	2	75		T	T	\top	\top	+	+	+	\dashv	: F	701	9				
156	<u> </u>	2/	ه د	6	0	(0	_	_		_	Т	0	_	╁	+	+	+	+	+	4	4			N	1	1		
SC	5	\$ 4	1	₹	व	L	1 4	u	J u	_	_	_	7		╁	╁	╁	+	+	+	+	↲	246			1	1		
		1						Π		T	1	Ť	Ť	_	_	╁	+	+	+	+	+	-		41	300				
ě	1																							1 4	"	1			
Z ITA			10			-	7,	27	2	12	2	1	1] =	2	11	4				
ICU.	18	82	825	83	84	1518	8152	81 22	8122	8102	B1 D6	R1 27										-		11		П			
CONFIGURATION	ı							~	Ċ	3	9	1	3													11			
																						~	7.3	ß:		•			
SET	108	802	803	FOR	7.5	302	202	ख	29	510	-	12	+	+	4				_	<u> </u>	_		1	COEFFICIENTS;	5	S			
DATA SET IDENTIFIER	RD7801	00	ᆁ	3	مد	4	3	4	809	4	11.5	812	ĺ										1	FFIC	8 1				
I DE	V				-				-													_[V	COE	a or g	ב ה			
					•	•	•	•	'	•	,	1	•	1	1	1	1	· i	I	' !	ı								

		ORIGINAL OF POOR	QUALITY	(
MDAC DELTA WING ORBITER MSC DR#1230 C-1-210 DRETEST ZTOSTIEST	· -			 	NDV
MDAC MDAC DELTA WING ORBITER SHEET (CONTINUED MSC DR#1230 C-1- 210 DPRETEST DTOSTIEST		 		+++-	61 67 75.76 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SC SC SC SC SC SC SC SC SC SC SC SC SC S		 	+++++	+++	67 10PV
MDAC DELTA W MSC DR#1230 DR#1230	 	++++	╎ ┼┼┼┼┼┼	+++	PVAR()
		++++	++++++		1= 1=
CONTE	$\frac{1}{1}$	++++			
) Ta		++++			
3 H S					
¥ .	163 163	56	169 169 169	1 1 1 1	
SET COLLAT P, TCH PLANE P, TCH PLANE	2.2 170 170 170 170 170 170 170 170 170 170	1.83°	175 173 171 173 178	++++	49411
00. 1	1.1/1/1/6/1/2/1/5/1/5/1/5/1/5/1/5/1/5/1/5/1/5/1/5	7//5	/// /// //// //// //// //// //// //// ////	++++	-
P, TCH P, TCH P, TCH	0.9 117 120 123 123	//3	120 123 119 119	+++	
DATA MRC MRC.	NO. OF RUNS 4 4 4 4	7	27777		<u> </u>
122	ECTIO	- 	+++++++	1111	
. 1	CONTROL DEFLECTION NO.	++++			- 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
ω, ·	S D	1	1 1 1 1 1		\vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash
	3 0 0 0 5		7 4 4 4	1	
BOOSTER (B)	3020				
α	NOI				
TABLE RD78AX RD78BX	CONFICURATION B1 B2 R2S	83	825 83 83 84		
RDI	CONFI				COEFFICIENTS:
*830-528	SET IFIER 5641 8A3	SAS SAU	883 8883 8884 8884		COEFFICIEN
₩ •	DATA SET IDENTIFIER RD 7541 8A2 8A3	9 *			- "

CARROLL FOR THE DATE OF BOOK COMMENT

O PRETEST	G FOSTIEST																:					67 757;	ETA	IDPVAR(1) IDPVAR(2) NDV		CYLINDRICAL BOOSTEF	MDAC Delta Wing Orbiter	MSC DR#1230 C-1- 211	
CONCLUDED)																						61	MACH	IDPVAR(1			2 0	2 -	•
SHEET (CONCLIDED)	MACH NUMBERS	_																				55			•				
COLLATION PLANE PLANE		2.2 4.5	170 169	172 166			18 195		170 169	172 166	1	891 121	182 195			671 061	172 166	173 167	871 16	1811 195		64							
A SET XAX XAX	.	1.1 6.0	9//	/2/	/22	3 (77// 5//		9//	127	123 122 /	118 11	113 113 11	+		_	/3/	122	119 119	113 112 11		1,3	Ex"					308	
ER MRC TI MRC T3 MRC	LECTION NO.	RUNS	7	7	7	1	1	; 	7	7	7	7	4		\top	十	\top	7-	5	7	4		Etw E		\				
S-222 @ BOOSTER! # TANK TI	IZI	6P	1 1	1					-		+					1 1		+		-		25	707						
Booster Booster Booster	اڃا	-4-		t 0		_		04			0 0	_	2		0		2 0	_1_		Ţ ,	֓֞֟֝֟֝֟֝֟֝֓֓֓֟֟֝֓֓֓֓֟֟֝֓֓֓֟֟	2 5	777						
TABLE 2. **RP79*** **RP79*** **RP79*** **RP79*** **RP79***	CONFIGURATION	, c	82	825	<i>B</i> :3	RY		81	8.2	825	83	Ru			81	8.	Bis	83	184		-								
630-528	DATA SET IDENTIFIER	Posessi	902	903	404	905		146	9.82	943	440	945			196	983	983	484	585		1	آر د	E	a or b	SCHEDULES				

Figure 4. General Arrangement-Ascent Configuration OrTrB1

B2 AND B2S BOOSTERS LOCATION

DIMENSION T1 & T2 T3 A 1,060 -1,522 B 1,290 1,483 C 1,072 1,080		TEIK	73	1-1,522	1.080	
DIMERSIAN			T1 & T2	1.060		
			DIMENSION	< ∞	Ü	
	77	+			The state of the s	7
						/
/ \ i /			\			T V

Figure 6. General Arrangement-Ascent Configuration with Booster B2 or B28

BA BOOSTER LOCATION

ORIGINAL PAGE 18
SE POOR QUALITY

ORIGINAL PAGE TO

r†

Figure 11. General Arrangement-Ascent Configuration OlT4B7-4 (Rear View)

Orbiter Nose x (200) 1.200

Figure 12. Centerline HO Tank Locations

GENERAL ARRANGEMENT 040A 098TTER

OF SOME WALK

.. Figure 22. Wing and Elevon, W1

ELEVON DEFLECTIONS

RUDDER FLARE AT A TYPICAL SECTION

NOTES:

1. DIMENSIONS ARE IN INCHES

2. Cp. IS RUDDER LOCAL

3. CHORD.

3. MODEL VALUES SHOWN IN PROSPECTE

Note: Additional rudder flare angle of ±17.5° was tested at 12: .6, .9, 1.2 for lateral-directional data

Figure 23. Elevon Deflections and Rudder Flare

MDAC DELTA WING ORBITER MSC DR*1230 C-1- 225 CYLINDRICAL BOOSTER 23.7 270 (1.620) 183 (1,038) - 659-- 43.8 X1553 \$ - 115 NOTES: 1. ALL DIMENSIONS ARE IN INCHES. 2. MODE VALUES ARE SHOWN IN PARENTHESIS. - (221) -X 1265

Figure 2^{4} . Vertical Fin and Rudder, V₁

$$B_V = 2.514 \text{ in}^2$$
 $C_R = 1.728 \text{ in}$
 $C_T = 0.542 \text{ in}$
 $\bar{c} = 1.239 \text{ in}$
 $AR = 1.95$
 $C_R = 1.728 \text{ in}$
 $AR = 45^\circ$

Note: All dimensions are model scale in inches.

Figure 25. Vertical Fin and Rudder, V2

AIGUANNELL DOUGLAS CORPORATION

Figure 26. ACPS Engine Pod, Pl and OMS Engine Pod, Ml

HO TANK, T

All dimensions are model scale, in inches.

Figure 27. Centerline HO Tank, TJ

All dimensions are model scale, in inches.

Figure 28. Centerline HO Tank, T2

HO TANK, T

All dimensions are model scale, in inches.

Figure 29. Centerline HO Tank, T3

CYLINDRICAL BOOSTER MDAC DELTA WING ORBITER MSC DR#1230 C-1-232

TANK VENTRAL FIN, F

All dimensions are model scale, in inches

Figure 31. Centerline Ventral Fin, F_1

All dimensions are model scale, in inches.

^

Figure 32. Boosters, B, and B5

CYLINDRICAL BOOSTER MDAC DELTA WING ORBITER MSC DR#1230 C-1-233

Figure 33. Booster, B₁S₁

Hgure 34. Booster, B1S2

All dimensions are model scale, in inches

Figure 35. Booster, B₁D₂

0.132 RAD.

Figure 35. (Continued)

All dimensions are model scale, in inches

Figure 36. Booster, B₁D₆

Figure 37. Booster, BlD7

- All dimensions are model scale, in inches

BOOSTERS, B2 & B2S & B6

Hgure 38. Boosters, B2, B2S & B6

All dimensions are model scale, in inches.

Figure 39. Booster, B3

BOOSTER. B4

Figure 40. Booster, B4

0.6% SCALE MODEL 120 INCH, 7 SEGMENT SEM

BTAI

HRM 012078

Figure 42. Booster, ByA1

Street a steam of the 12

CONT. FULL

M 2.2 PUME - By BOOSTER

MIS PLUME-87 BOOSTEE

Figure 46. Sketch of Plume for Booster Br

CYLINDRICAL BOOSTER MSFC DELTA WING ORBITER LMSC

C-1- 246

DR#1256

TEST MAPE TWI 544 DATA BET COLLATION SHEET

•

T POSTTEST O PRETEST FULL TO TAIL OF STEPLING SOE DO PROSE TO THE TOTAL TO STEPLING TO THE TOTAL TO STEPLING TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOT 1.50 1.50 3.48 MAGI MINGERS (OR ALTERNATE INDEPENDENT VARIABLE) 3 1 OF 5 1.2 1.3 19 EABI ICABA KABA ICAF 1:1 0.0 0.9 3 20 20 ×* 0 3 NO. 37 7 4 4 PARAMETERS/VALUES 0 13 4 5 2 6.4 × 31 0 3 0 75 80 135 75 5 Ŕ S 80 SS 75 LYN 1. 1. 6 = -10 No. 40 + 10 1... Ke to G Establish District 0 -1.5 J. B + A F - 13 4 2 3 4 13 4 0 5 ? 0 ٠. د. ķ SCHD. 0 8 AOA 4 0 4 0 0 ∢ 4 0 ∢ PY GRE 0 < 0 ~ 0 **~** 0 V 0 -CONFIGURATION T10151 T10153 CLM CN COEFFICIENTS: DATA SET IDENTIFIER a or B SCHEDULES 7 5 CO 200 100115 200 SIL 00 38 600 010 100 3 111 3/3 510 0//6 5/0 0:0 2/3 210

《子宫》以《代》的 《唐·孙·冯·公元》的

ORIGINAL PAGE IS OF POOR QUALITY

	COTPVIION SHEET
	3 E T
TABLE 11. (CONTINUED)	TEST MSFC TWT 544 DATA

							Ċ	F	P	00	R	Ç	U	\L	'n	, /					٠								TER		ш Ж	247	
	u [Т	٠٠١	•	9	1,2	. •	ī	Т	Ţ	•	<u>.</u> ल	7	٦	\neg	٦	%	ž	100	2/	Γ				1 × ×] §		CVI INDBICAL BOOSTER))	ORBITER		
7 es 7	G POSTTEST	- 1	- 1	193	2/		2/	╀-	+) Su	$\frac{1}{2}$	ज	\dashv	\dashv	\dashv		/•	10	10	ية ميرا		十	\vdash	十	1				- C) !	8	C-1-	
ET	F		3		<u> </u>	-	3/2/2		+				-	-			(V)	3/	[<u>.</u>]	<u> </u> 0	├	\dagger	╁	\vdash	١,	١.	٤	1	7016		Ž	6	
O PRETEST	2	TABL	٦.	0 672	2,4	6.	10.2		\perp	- 1	N			_		_	25.	188	3	ñ	╀	╀	╀	╀	{			1	2	် ပ	¥.	C 125	
		INDEPENDENT VARIABLE	1.40							_					_	_	_	igert	_	┞-	_	╀	1	╀	┨;		I Theorem (2) INDV		5	MSFC	DEL	LMSC DR#1256 C-	
	4	EQUE:	1.3												_		_	\downarrow			L		+	$\frac{1}{2}$	$\frac{1}{2}$								
	307	MOEP	1.2	7	Ţ	1				20	/-	<u>~</u>	200	3/	3/	120	3	1	17	19/	15	7. . [7.			V	2	1						
	7	E	= = = = = = = = = = = = = = = = = = = =	<u> </u>	T	+	Ť	1			<u>., .</u>]		1						
		ALTERNATE	<u>ر</u>	╁	\dagger	\dagger	\dagger	†	1				T	T	T	1		1	1	T		T					1						
•		S S		1	+	+	+	+			7	7	70	16	1	†	T	1	T	T	1	T	5			3	1						
				+	+	+	+	\dashv		-	2	(e)	1 <u>E</u>	0	╁	\dagger	\dagger	\dagger	十	†	†	1	1		٦	۱	1						
		SHAPPING TO ALL		1	+	+	+	-	0	-		+	+	+	+	+	+	5	1	士	+		1	1		7	4						
1			5 > E -	1	아	#	7		3	-	0	-	- 5	1	Ŧ	Ŧ	+	+	+	+	+		\exists		1	1	1			֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓			
 		L	١	٠,	<u> </u>	1	1			L	<u> </u>	丰	+	#	丰	+	+	_	4	7	1		7	_	\dashv	7	1						•
		5		SE SE									<u> </u>	1	<u> </u>	$\frac{1}{2}$	1	1	4	4	+	-	_		\dashv		- 1						•
a H				\$	0	+		_		L	1	\pm	\pm	#	#	#	#	4	\dashv	#	7			4	,	=							
Š.		-		习	0	\dashv				上	\pm	1	\pm	#	#	1	#	_	4	_	7		H										
			PARAMETERS/VALUES	बं	75		_		L	\pm	1	\pm	\pm	#	+	_	+		4	7						\$2	-	$\ $	1		1		
MSFC			PARA	1:	1.5			_	1	\pm	1	1	+	+	_	4	4			0		1			4			$\ $	١		1		
-			SCHD.	۵]	0	4	0	4	-	<u>۱</u>	-	0 4	4	0	<u>ধ</u>	0 ₹	4	0	4	4	O	0	10	0	_	۽ ا		4	1				
TEST			ဗ	٥	<	0	۷	10			1	<u> </u>			Ť											1			7:				
•			١,				1			١							'			_						1		1	ĕ				
				CONFIGURATION	60		A S					25			_	1510	_	_	-	130151	-	-	+	T40/5/	-	-		1			-		
				ricu	T1 0153	-	T10154		1			7101				120				1				4	-	١		1	; ;;	•	•		
				N O	۲		1	-				-				ľ	İ											7	CLENT	90.	3		
			+	ă.	1:	1:	1	02.2	긼	25.20	0.5	130	520	620	5			1 3			550	3	037	033	639	30		1	COEFFICIENTS:	S OF B	SCREENOLES		
			TAY AFT	IDENTIFIER		K110-1	١	9		0	3	"				`	1										-L	اـ	8	5	ñ		
			Ž	1 2	Ŀ	Y	_				L_	_	L_	<u> </u>								بل_		_Ļ	_								

CYLINDRICAL BOOSTER	DELTA WING ORBITER		
	TABLE II. (CONTINUED)		COLLATION SHEE
	•		_ DATA SET
	II. (CONTINUED)	MARK THE	10 m
	TABLE	TEGT	1

110N 0 1 1 1 1 1 1 1 1 1	Taranta and a said				ŀ)	7	è	900	
Taols A o 15 75 3 o 0 o 3 1 12 13 14 14 15 15 14 15 15 15	LUCALIFIER	CONFIGURATION	붓	PARAME	TENS/W		٠ ک	¥			A AT	F Day A Co			-	FOST	TEST
THOUSIE A O H I I I I I I I I I I I I I I I I I I	120		-	_	_	1	RIINS	┝				E LUCK I		TE CONT	VARIA	9LE)	
TOUSIE	471041	T40151	┝	▙	ı	7,-		╁	:	ö	-	-1	1.2			ت	_
TIOISIE A O A A O B O B O B O B O B O B O B O B	SVE	-	 -	-	4	٥].	1	0	0	1/2	_	L	1/2		[:`	ш-	
TCOISI A O A O O O O O O O O O O O O O O O O	2 00	10101	+-		+	-				;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			I	\dagger	1	V	÷
TSO1S1 A O A 1 1 1 1 1 1 1 1 1						_	_	_	L	3	130		1	†	Y		_
TSO151 A O A O O O O O O O O O O O O O O O O	200		_		E	Ė		+	1					_	<u>[i,</u>	/ 0	<u>~</u>
TGOISI A O A O O O O O O O O O O O O O O O O	025		┼	-	-	İ	\dagger	$^{+}$	-	1/2			12/2	-			惊
TSOISI A O A O B O B O B O B O B O B O B O B O	2,50		+-	#	1	+	+		0		$\overline{}$		20	T	+	-	4
TCOISI	047	T50151	+-	+	+	+	+	\exists			15/2		20	\dagger	+	1	1
TGOI SI	340		+-	#	#	#	+	1		3	<u>ē/</u>		100	\dagger	1	100	_
TIOLSS A O B SO 135 1 135 1 135 1 1 137 1 13 1 13	5%	760151	_	+	1	+	+	\exists		32	1			\dagger	15	1	
TIOLSS A O A O O BOO O O O O O O O O O O O O O	200		+-	#	#	+	+			<u>.</u> ,	3,		1	\dagger		- F	1/3
TIOISI A 0 90 77 77 77 77 77 77 77 77 77 77 77 77 77	150	710135	 -	+	#	$\frac{1}{1}$	+	3			3			+	1	15	
TIOISI A O 135 1 12 200 120 120 120 120 120 120 120 12	250		+	#	#	+					Ŀ		1,0	+			V
TIOISI A O 135 1 79 70 70 200 200 200 200 200 200 200 200 2	053		+	-10	1	\pm	+			2/2			1	+			
TIOISI A 0 135 11 17 10 190 190 190 190 190 190 190 190 190	250		+	<u>ا</u>	1	<u> </u>				7.		ľ	182	+			
10 5 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 10	1		+	135		_			L			Ť	0	+			3
A	37	181011	-	25	-	0	$\frac{\Gamma}{\Gamma}$	<u> </u>	1		0.0	7		\dashv	, o		
13 19 25 31 37 43 46 67 67 67 67 67 67 67 67 67 67 67 67 67	925					_	Ŧ	+	+	<u>•</u>	١.		\ 1				
13 19 25 31 37 49 55 61 67 67 67 67 67 67 67 67 67 67 67 67 67	057		 	E	+	+	+	#	\downarrow	10		١٠٠		-	_		
A O 90	250		+-	F	+	1	7	7	1		7,3	4/		\vdash			
13 19 25 31 37 43 49 55 61 67 55 55 56 57 55 55 56 57 55 55 55 57 55 55 55 55 55 55 55 55	650		+-	- 6	+	_	7	+		10		<u> </u>	100	+	1	I	
13 19 25 31 37 43 49 55 61 67 50 55 61 67 55 56 61 67 55 61 67 55 61 67 55 61 67 55 61 67 55 61 67 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 67 61 67 67 61 67 67 61 67 67 67 67 67 67 67 67 67 67 67 67 67	070		+	! -	7	4	7		_	70	50	12)	5	+	-		T
55 61 67 67 67 68 68 68 68 68 68 68 68 68 68 68 68 68			-1			6				10		1	1/2	\downarrow	$oxed{I}$		T
5εε 5Η 1			2	25	<u>-</u>		7		6.4	3		3	J	┨:	\rfloor	7	7
) Hs 235	DEFETCIEN	26.		1	4		-	•							2		2
		568	-							1		1			4		_
	CHEDITOR												T	IDPVAS	401 (I)	VAR(2)	NDV

3

NASA-MSFC-MAP

TEST MSFC TWT 544 DATA SET COLLATION SHEET TAME II. (CONTINUED)

O PRETEST

DATA SET		SCHD.	-	ARM	188	PARAMETERS/VALUES	153 NO.	Ц	Ā	MUMBERS	S OR	ALTE	ALTERNATE		TYGENEYOR		VARIABLE)	1	
DENTIFIER	CONFICURALIUM	0	8	زغ	à	×	Se RUNS	5 8-	- ک		5.6	0.9	-:	2	.3	1.46	1.5: 2	2.48 4	49.
591001	TIOISI	A	0	-1.5	135	0	01-	0	0		ائد	0		3/					
2,70						+	01+				1.3	5/50		2.69	П				
0.63	T10251				22									3/2/		+4 3	12/1	1.	25.50
770							-10							\ ;{\		2	127 %	0	3
60	-					,	-30							3		~ `	2002	3962	0/2
17/0	151017	_	-				0	30			\$1 	·//		\ \ \ \ \			20,05	2	218
2		0	4					_			\$ <u></u>			10/2		رتا	10	~ \) 317
25	T10351	٧	0		1	-	-	0				22.0	2,1,6	0	2602				
000	1	¥	0	·	1		1	1	<u> </u>		•	70		200					
070	1514	-	0	4	8	0	1		0		30	340		100		-	\$ 2. 4.	12/2	3
1/20	-	ļi	4	_	-			-	-		<u>"</u>	·		0.53			_		215/2
27.0	1017	4	0	-1.5	· 1	1	0		1		,;;\ \frac{1}{2}	02.20		370		47	_	30	13.50
073	-	0	4		_		-				30			27.70		* `	تر عر	 `	50
460	75		0		_				-		00.70	1050		9,00	П	1	2 0 20	1007	3
21.0	1551	4	٥		5	0			٥		<u>'</u>	0330		100		-	101 06.65	10	101
07%	~	0	٧	-	-	-	-	_			0350			36.0		647	24.6.5		200
077	TSOI	∢	0	-1.5	-	j	0	0	1		<u> </u>	200		1083		-1)	11 % T	100	70
200		0	٨			7					<u></u>			2010		11	30		3
210	152011	٨	٥	•	2	0	-	<u>-</u>	0					64.70		4,	_	\ 0	<u>, 1</u>
050	11	٧	0	ij				Щ	1		<u>"</u>	0360		15/2		54)	191 0591	10	3
-	7 13	13		2.5		3.		37		3		64	55		3		67		75.76
		-		4	1	4		4	1	}	1		4		4		4	į	_
COEFFICIENTS:	IENTS: SEG	341													7	I DPVAR (1) I DPVAR (2) NDV) ropy	AR(2)	<u>\$</u>
SCHEDULES											11				Ċ	CYLINDRICAL	RICA		BOOSTER
											1		•	•	X 0 .	MSFC DELTA	WING	ORBITER	Ξ
																Ç			

ORIGINAL PAGE IS OF POOR QUALITY

TEST TWIT SUFE DATA SET COLLATION SHEET

OPRETEST OF SOUTHERST

														~1	8 OF	4		De E	POSTTEST	EST
DATA SET		SG	SCED.	F. F.	FEE	PARAMETERS/VALUES	MES		Ш	MACH MINGERS (OR ALTERNATE DIDEPERDENT VARIABLE	MER	E E	ALTE	EX TE		MOLE	T W	TIBY		
IDENTIFIER	CONFIGURATION	5	В	اد ا	Φ,	χ,	Se	OF RUNS	3	77		0.0	0.9	1:1	1.2	1.3	₹.	1.40 1.96 3.49	Ş	4.92
271081	150151	4	9	S'I-	56	0	0		0	30		100			10/2					
210	_	0	<	_		-				-		50			<u>'</u>					
083	710151	4	٥			285				0		12/2			32			10		70
780	4	0	٧		-							70			1/3			<u>}</u> -		<u>~</u>
580		₹	٥		96							10/10			70			<u>%</u>		10
020		0	-		-							2007			3.5 3.6			<i>"</i>		70
130		∢	-		135							74.			<u>"</u>			3		10
00		0	₹		_	-	-		-	1		2/52			3			, <u>3</u>		30
		-			L															
		\vdash			<u> </u>															
		-		L.																
		_	_	_	L															
		╀																		
		╀	_	L																
		┝	_	L		L														
		-	L		_															
		-																		
		_												_]						
		H	_		_															
	,	┨╕			2		31		37	3		6.4		55		5		25	١	7
]	-]			1		1	4	-	4	į	4	-	1	}	4	1	4
COEFFICIENTS:	# 1 × 1	17.														Ŧ	– IDPVAR(1) IDPVAR(2) NDV	<u> </u>	PVAR(2 <u>K</u>
8 OT 6																				
SCHEDULES	1																			
MATC . PR	MBFG - Form 382-3 (Potentry 1911)											Ì	,	ļ						

Note: All dimensions in inches (model scale)

F-1:00:1-

One-body diameter removable section

- 6.012 -

- 7.637 -

1.00.17

Z.024R

Engine Noszle

Fig. 4- 156-Inch Solid Rocket Motor with Standard and Skewed Noses and One-Body Diameter Extension

Note: All dimensions in inches (model scale)

Fig. 5 - 178-Inch Solid Rocket Motor

Fig. 6- 346-Inch HO Tank with Three Alternate Noses and One-Body Diameter Extension

9.481

2.145 -

1.384

5.952

Fig. 7 - 400-Inch HO Tank with Two Alternate Noses

CYLINDRICAL BOOSTER MSFC DELTA WING ORBITER LMSC DR#1256 C-1- 255

Note: All dimensions in inches (model scale)

Fig. 8- HO Tank Ventral Fin

ORIGINAL PAGE IS OF POOR QUALITY

SHEET
COLLATION
DATA SET
IWT 544x
EST

			-													PA()U/							•					BOOSTER	ORBITER	.1- 257
EST	DIABLE)			\perp													Γ	Π				T	T] ;		Ē		CAL	WING	C-1
O PRETEST	ISO	1	Ţ	1	1				1										Γ		T			1		VAR(2		CYLINDRICAL Msec	•	272
5	O TO A TO AV				-	-		=	17					383	. e.c.						Γ			5	-	là E		CYLLI	DELTA	LMSC DR#1272
	AV TAX					_	<u>'</u>	3	<u> </u>					224	385	39.0	386							1		IDPVAR(1) IDPVAR(2) NDV	•	_		
	TWDEPENDENT			L		_	_			\perp				+37	439	440	527							=	-	F		•		
	a di	Ĺ			_		-		55.7					555	558	560	125								1 1:					
	NUMBERS (OR ALTERNATE	L		; ;	+-	707		284			370	212	517	571	570	563	262	50.6	569	461	447	475	37.8	S	151	1				
	R ALT	Ŀ	Ŀ	_	+	L	\perp	\perp	_	_		487	482					47.5	451						A 8 3					
	85	2	L	_	+	L			Ŀ		_	4.5%	6					477	420					6.9	$\mathcal{L}_{\mathbf{q}}$		1	1 1		
	MUMBE	٥		+		L							576					<u> </u>	568	460	30F	474	469		3					
	Ę ¥	3					L		9				484					478	475	462	465	473	470	7	넴					
	Ц	3	339	250							3	2 16	575					735	73	463	454	226	477		CABI					351
	5		2	و	જ	'n	٧	V	,	ی	·	١.	3	v	5	S	n	و	4	4	V	7	7		٦			1		
	PARAMETERS/VALUES	<u>۲</u>	_					E			E	Ŧ	\pm	$\frac{1}{1}$	7		7	\pm	>	57.0	Ċ	123	153	=	EAT			ı		
	VSP3	١٠	0.0	_				L				1	1	\pm	\pm	1	1	\pm	\pm		$\frac{1}{2}$	\exists	3		1	2				
	RAME	کم کم ام	0			_	3	-	F	<u> </u>	9	+	‡	‡	‡	+	#	#	#	\downarrow	#	_	1	25	777	000	۷ , ۲	.		
	Н	۶ ا	0	4	٥	•	0	4		.	٥	+	+		-	양	‡	#	<u>*</u>	9	+	1	*		٦	4	4			
	SCHD.	0	₹	٥	Q	0	€	├	0	3	9 6	+-	+	+-	┵-	—	-		9		0	0	0	5	187	. / v	;			
	CONFIGURATION		736151		736251	•			T3Ø151			•	734264	1.0000				1 22121					Å	13	CX	1: H : N	S	MSPC - Form 263-2 (Pobruszy 1972)		
	DATA SET		A71029	010	10	092	043	044	250	260	1 097	A 20			2	o i	20/		3 0/	10.5	307	707	4 /05		CL.4	COEFFICIENTS:	SCHEDULES	MSPC - Pers		

्राह्म स्था इतिस्था

CYLINDRICAL BOOSTER MSFC DELTA WING ORBITER LMSC DR#1272 C-1- 258

TABLE II (CONTINUED)

DATA SET COLLATION SHEET TEST INT 544x

DENTIFIER CONTROLLOR	SCHD.		A RAME	rers/v	PARAMETERS/VALUES			Ą	MABER	MACH NUMBERS (OR ALTEIGNATE	VLTE		INDEP	INDEPENDENT VARIABLE	VAR.		
	8	8	de de	97	۲.	RUNS	૭	S.	5	۱. ه		7.7	126, 1.95	:	3.5	3 6 7	
R 71109 T36151	А	0	0	0.0	1223	4	449	448	447		?—	 -				-	_
1 011	٥	A			1223	4	450	157	452			55				-	-
111 134251	A	0			.67:	2							4	428	Ť	Į Ž	_
1, 12, 1	0	þ			.07	2				-			<u> </u>	127		392	_
113	Й	C			.122	1				┢	_		Ì	425	<u> </u>	₹ 52	_
114	O	ď			. 11	2							Ť	724		593	_
115	Ø	٥			.22:	2								47.4		572	
29	0	€				2								430		277	L
117 736256	J	0			:02;	2							255	432	\vdash	_	_
118	0	Q				2							55.3	1,7,4	┢	-	<u> </u>
119 136136	Ā	0				2			457			456		 		ŀ	_
120	٥	Ø		*		2			458		Ť	459			┢	\vdash	L
121 786151	Œ	0		7		٩	315	316	317	320	319	318					
122 4	r	Q		\dashv		૭	326	325	\$24	321	322	203				_	_
123 T 542.51	Œ	9				4					7	_	352	360 3	366 3	365	
124	٥	Q		\exists		ک					,	5:5	356	3841 3		368	
125 110 4251	Ø	0				S					Ť	445 3	353	36.1	362 =	572	
120 +	0	₹	\exists	4		5						3.46	354	357 :	271	370	
127 110 \$151	Q	9				S	338	337	7) 2 %	333	33.5	33.5					
Y 126, ↓	٥	U			1	9	327	22.6	+25	332	231	000					
1 7 13	19		25		31		37			6.9		5.5		6.1		67	75.76
CLM CN CY	16.BL	7	CYN		247	1	CA 81	1	CA 82	C A	183	16.01	L			1	10
COEFFICIENTS:	-10 1.	5		A 14 7 7 .									Ī	Tip	/AR(1)	(IDPVAR(1) IDPVAR(2) NDV	(2) ND

352

MSPC - Porm 363-3 (February 1973)

ORIGINAL PAGE IS OF POOR QUALITY

C-1- 259

DR#1272

353

MSPC - Form 365-3 (Potentry 1972)

DATA SET COLLATION SHEET EABLE II (CONTINUED) TEST INIGHA

O PRETEST

CYLINDRICAL BOOSTER MSFC	DELTA WING ORBITER LMSC	DR#1272 C-1- 280
		DATA SET COLLATION SHEET
		DATA -

TABLE II (CONTINUED)

TEST TUTS44x

	H		1	_	Т-	_	_	_	_	_		_									
O PRETERT	E POSTTEST	11		1	L	L	L	L	L								Γ	T	T	T	_
RET	OST			L						T	T					-	\vdash	t	+	+	
0	Ŝ	. S . 9 L.O. L.J. L.Z. [A. L.J. S.C. A. a.		36.9						T	+	7	7	\exists			-	-	╁	+	_
	_	W U		П					-	\dagger	+	\dagger	+	\dashv	\dashv	-	-	L	-	\vdash	_
		200	359	852	\dashv	7	\dashv	\dashv	_	├	╀	+	+	4	4	4	4		L	L	_
		INDEPENDE		-7	\dashv	+	\dashv	\dashv		\vdash	╀	+	4	4	4	\downarrow	4	_		L	
				+	+	+	4	\dashv	_	L	L	L	1	\downarrow	1	\perp					I
		1. 2 1. 2		+	\downarrow	4	4	4	_			L		1		1		7	7		T
			\downarrow	\downarrow	\downarrow	1	\perp	\perp						\int	T	T	T	1	7	_	r
	8	9	\perp	\perp	\perp	\perp							T	T	T	†	1	†	+	٦	-
	2	o,				Γ	Γ	T	7	7		_	1	\dagger	\dagger	\dagger	\dagger	+	+	\dashv	_
	ğ	Ø		T	T	Γ	T	T	T	†	7		-	\vdash	┝	╀	+	╀	+	+	_
			T	1	T	\vdash	 	\dagger	\dagger	+	+	\dashv	_	-	-	\vdash	-	1	+	4	_
	6	3	10				-	-	╀	+	+	4	_				_	Ŀ	\perp	1	_
	San	रों :	3 8	1		-		_	L	+	4	4	4	_						L	
	/WAE	رده	51.	H	+	\dashv	\dashv	-	L	∤-	4	1	4	4	_	\rfloor				\prod	
		10	0	\vdash	+	4	4	4		L	1	1	4	4	\downarrow	\perp				\prod	
	\$; 0	-	\dashv	\dashv	+	4	4	_	<u> </u>	L	1	1	4	\downarrow	\perp					1
-	اَۃ	0	đ	+	+	+	+	4	4	_	L	L	1	4	1						I
	SCED.	_	a	+	+	\dagger	+	+	+		L	L	+	\downarrow	4	\downarrow	\downarrow	1			Ī
1		П		T	T	T	T	Ť	7			-	t	+	+	+	+	+	4		F
1	TON					1			1										-		
1	CONFIGURATION	11		1															1		
1	ONVI	110251	520								1					l	1				
			710231	1																	
DATA SET	FIER	149	05	T				+	\dagger	+	+	+		<u> </u>	-	-	-	\vdash	+	+	_
PATA	ENT	글;	1									1								1	

61 67 7378 CASS CAF	c IDPVAR(1) IDPVAR(2) HDV	
CYN CAT FAB1 CAS2	by AREZ.	
COEFFICIENTS:	SCHEDULES G. A10" J. In-	MSPC - Perm 243-3 (Pobragy 1973)

- 6.012 -

6

Note: All dimensions in inches (model scale)

Engine Nozzle

Fig. 4 - Baseline Solid Rocket Motor

CYLINDRICAL BOOSTER MSFC DELTA WING ORBITER LMSC DR#1272 C-1- 264

NOTE: All dimensions in inches (model scale)

ز

Fig. 5 - 346-Inch Diameter HO Tank with 17-Degree Nosecone

Figure 6 - 78 346 Inch HO Tank Nose Cone

CYLINDRICAL BOOSTER MSFC DELTA WING ORBITER LMSC DR#1272 C-1-265

C-1- 265

Figure 7 - T9, 346 Inch Diameter HO Tank

All dimensions in inches

Figure 8 - T10 346 Inch HO Tank Nose Conc

CYLINDRICAL BOOSTER MSFC DELTA WING ORBITER LMSC DR#1272 C-1- 267

CYLINDRICAL BOOSTER
MSFC
DELTA WING ORBITER
MSC
DR#1241 C-1-268
SMC# Lef?
CPRETEST TEST MSK 531 DATA SET/RUN NUMBER COLLATION SUMMARY TABLE I.

SCHO. PAINWETTES/VALUES NO. o 1 M of 10 Mer. o 1 M of 10 Mer. o 1 M of 10 Mer. o 1 M of 10 Mer. o 1 M	3
New CTBS / Values No. Vertical Servication Districts Aug 11 15 16 16 17 16 17 17 17 17	HASA-MEPC-MAF
New CTBS / Values No. Vertical Servication Districts Aug 11 15 16 16 17 16 17 17 17 17	Ĭ
New Wet 16 New Year 1 can Service and New Ye	_
New Wet 16 New Year 1 can Service and New Ye	
New GTESS / Values No. Vertical Semeation	
New GTESS / Values No. Vertical Semeation	
New GTESS / Values No. Vertical Semeation	
A C	
A C	
A C	THE C
A C	9
A C	3
A	DES ANCIE OF ATTREE
A 4: 6% A 6: 6% A 6: 6% A 6: 6% A 7 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	19
	2
	2 4 6 8 10 12 14 M. 18 20
	13
	2
	2
810 41-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
	5
ES (In Page) of Thomas) of Thomas)	15
EK (In the last of	ব
	a or B
MILLS ST. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• or b

			(OF OF	ecys Po	SEL NOR	ı Q	i (Si UA	g 1 LIT	rs Y					.1		• 1	, - -			BOOSTER BOOSTER	A WING ORBITER	241 C-1- 269
をかる一年	O PRETEST W POSTTEST	00 444				6	П	TEST	T.	NO NO			7	1	s			23.73	Trievan(1) IDEVAN(2) MOV		HASA-MIPC-MAP	3	MSFC DELTA	MSC DR#1241
\$	O 18 7	SEPACATION DISTANCE AZ/Z	02 62 62 50	-			1 7 1	6)	1/2	131	28.2	8	3,	45	+++++++++++++++++++++++++++++++++++++++	to) 60								
DATA SET/RUN NUMBER		VERTICAL SEPARATION DISTANCE	3119 - 9525 . 640 . 6312				+	31 41	1	43.36	+			77	97 99 102	100 101		196 197			des Ames of ATRES			363
	COLLATION SUBBANE	DIS/VALUES NO.	AVE RUNS	22			2775			600	9%. 0	0 100		-4-	2 24	0 1.05	1	5 1058	31 37		HIL 18 20 (MES AN	•	•	
TEST MARC 531	ŏ	PARAMET	O B M K	- A 0	V O V	+	1	正		٦ :									1 n		A -5-3 02 4 6,8 10 12			
			CONFIGURATION					J TANK (IN MESONE)		90	20	78	100	8 8	10	"	13	2	14		ONETTICIDADE			
		•	DATA SET	20 621	22009			RESTOL	+	-	H	1	土	1		廿	土]	נו	8 • •	•	i	

NUMBER	-
SET/RUN	SUMMARY
DATA	COLLATION 8
MSFC 531	100
TEST	

TABLE 1.

	Γ		T				_		-	_	_	_																		
H	. ŀ	т-	╀	_	_	_	_	-	_	_	T.	E57	R	UN .	M	HB										7				
M POSTTEST		L	L			\perp	L						1						T	T				Γ		1	ž.]	Ē	
817	l	8	1			1	Γ	T	1			Γ	1	1		_	T	†	†	十	7	_		┝	╁	1	Γ	7	<u> </u>	
Õ	ĺ	E.	┢	T	t	十	t	\dagger	+	٦	_	┝	+	+	4	_	┝	╀	╀	+	4	4		L	L				Ē	
耳	l	1	-	┼-	╂	╀	-	+	4	_		L	1	1	_		L	L	\perp	\perp						۱	ì	4	<u> </u>	
	2	13	L	L	Ŀ	L	77	,	9			L										1				1	ı		3	
	12/27	1056	i	R	62		*7		4	89			Γ	T	1				T	T	†	7	1		-	5	: .]	+: NEVAR(1) IDEVAR(2) NEV	
	ين	Ę		25	3	8	$\overline{}$	+	+	3		-	t	t	†	٦	_	-	╁	十	+	+	\dashv	\dashv				1		
	NSIN.	43			_		58	7	7	7	\dashv	_	\vdash	╀	+	\dashv	_	-	H	╀	ļ	4	4	4	_	55				
	WENTICAL SEPTEMENTION DISTANCE.	-377 -525 - 916 -6312 -7493 -787 - 9056 A1855 1.3754		55	25	56		Ľ	7	+	4		L	╀	+	4		_		L	\perp	\downarrow	\downarrow				.	11		
	Ş	-		~	-	5		L	Ļ	4	4		_	L	1	4	_			L	L							11		
	\$	<u> </u>	4	\dashv	_	4			L	\perp	\perp												T	T			-	11	1	
	췽	ě	46							l	1				T	1	٦				T	Ť	†	†	┪			11		
		H	T	I		T				Ť	1				t	†	7	7	٦	_	╁	╁	╁	+	┥	3	4	П	l	į
ľ	1	7	7	\dagger	1	+	7	٦	┝	\dagger	+	\dashv	\dashv	_	├.	+	+	+	\dashv		L	╀	\downarrow	4	4		- 1		ľ	3
ŀ		S S	+	+	+	+	+	-	-	Ļ	+	4	4	_	Ļ	ļ	4	4	4	_	L	L		1		7	3		-5-3.02.4.6 B.10.12 M. 11. 18 20 (ORB Aucie - 17	ž
9	7	4	4	4	4	1	4		_	L	L												Ī	T			7		13	J
		1	1	1	\perp		1	\perp			L					Γ	T	T	T					T	٦.	1	1		ě	
Ž.		Ķ.	7/12		187	Ş	1	<u>58.2.</u>	430		Γ	T	T				T	T	1	7	_	┢	T	\dagger	7	7	1		3	l
	Jo	ž '	ماد	n	9 .	9	9		15		Γ	T	T	7			Ť	Ť	†	7	_	-	\vdash	╁	┨		1		7	ŀ
1	:	ş ;	3	Ŧ	\mp	Ŧ	7	7			Γ	T	1	7		┢	Ť	†	†	+	7		┝	┝	┨	4	4		2	Ì
SCHO		4	۱۱	I	I	F	Ŧ	ļ			T	T	†	†	_	-	+	╁	+	+	+	-	_	┞	┥	I	1	1	9	ŀ
S	٥	4	d-		E	E	Ξ	ŀ						1			\dagger	+	\dagger	+	+	_	-	┝	┨,		1		3	-
		;	4	1				Π				Γ	T					T	Ť	T	7				1	1	1		7	
}	5	In Because		$\ \cdot \ $				l													1						1		3	
	Ş	3	3	╠	┝	┝	┾	╞	\forall					1	ı			l	1	1	1	-			=	1	-		7	,
į		12	A CARTER	-				l	1						1				l		ı	۱					1		नं	
۲	5	TANK	*				l		1	1				1							1	1			_		1	•	•	
Ŀ	3	دِ	11	. 87	19.	20	1	1:	1	+	٦	ــ	+	╀	+	_	_	-	╀	╀	4	4	4	-			COEFFICIENTS		3	
DATA SET	THE RELLEVIE	REOTIL	L		_	_		Ľ								i					1								SCHEDULES	
4		8							L	\perp															-	L	8 [, 5	
																			_	-			_	نــ	l					

CYLINDRICAL BOOSTER MSFC DELTA WING ORBITER MSC DR#1241 C-1- 272 C-1- 272

PIGUE 3 - B, BASELING FUSELAGE

FIGURE 4 - WING, FLAP AND ELEVON - WIN

Notes: All dimensions are model scale in inches. Surface flaps shown in undeflected position.

Hotes: All dimensions are model scale in inches. Vertical tail attached at B.L. 0.00.

All dimensions are model scale, in inches.

Figure 7 .- Separation Variable Grid.

FIGURE 8. BASE AND CAVITY PRESSURE LOCATIONS

DELTA WING ORBITER MSFC

C-1- 278

DR#1249

MSC

TABLE II.

TEST MSEC 534 DATA BET/RUN NUMBER

COLLATION SUMMARY

M POSTTEST

CHEST 1 of 2

(

> ORIGINAL PAGE IS POOR QUALITY

de -10 to 10 das 2.

s or 6 scappuls

HASA-MSPC-MAP

TEST MSR 534 DATA SET/RUN NUMBER COLLATION SUMMARY

SHET & JE

	1						T	EST	RU	ו זמו	NUM	BER	S						_	4	اير	_	8	BOOSTER	RALIER	2,40
T	T	1.		T	T	T		T	T	T		7									2	ㅓ	(Z)			
\vdash	╁	+	-	+	\top	\dagger	+	T	†	1	7	\top									1	1	PVAR	Š		9 Z Z
	╁	+		\dashv	+	\dagger	\dagger	†	†	†	7	7									5	-	1)(1	CYLINDRICAL	U	DELIA W
INDEPENDENT VARIABLE	1	}_	821	92/	+	\dagger	\dagger	\dagger	†	†	7	+											IDEVAR(1) IDEVAR(2) NO	2	MSFC	DELIA
1		47/2	_	7	\dashv	+	+	\dagger	\dagger	\dashv	1	+									61	-	十			
	2	92/2	_	6	\dashv	+	\dashv	+	+	\dashv	\dashv	\dashv		┢			-		Г				1			
		211	+	\vdash	\dashv	+	-	+	\dashv	\dashv	-	\vdash		-	-	-	╁╴	+	-	\vdash	2	-	11			
ALTERNATE	7:/	45 5	_	-	_	_	+	+	4	_		\vdash	_	-	\vdash	╁	╁╴	╁	\vdash		1	İ	$\ \ $			
	3	277	12	+-			_	4	_		-	\vdash	-	╀	-	╀	╁	+	\vdash	\vdash	2		41	1		
MUMBERS (OR	3	25 .	1	3				_		<u> </u>	_	├-	-	\vdash	┼-	+-	╀	╀	╀	\vdash	┨		11			
S S S S S S S S S S S S S S S S S S S	0.0	53	2					_		_	_	Ļ	igert	\downarrow	1	╀	╀	+	╀	╀	 		41			
E E	9.0	9	3 6	3	_							L	L		\downarrow	1	\downarrow	1	\downarrow	\downarrow	4		11			l
3	1		T	T								<u> </u>					1	1	1	1	4	2	4	1		
9	RUNS			T															\downarrow	1	4	١				
		十	十		T	T					brack					1	1	_	1	1	4		4			
S/VAL	П			1									1	1	1	\downarrow	4	4	\downarrow	4	4	1	1			
PARAMETERS/VALUES	9	1	77	1_	77						\downarrow	\perp	\downarrow	1	1	\downarrow	4	+	4	+	4	#	4			
PARA	7.7	57-	31-	7.5	Ŷ.			L	L	1	1	4	1	4	+	4	4	\dashv	4	+	\dashv		1		1	
S. S. S. S. S. S. S. S. S. S. S. S. S. S	1 -	8			9	+	╀	╀	╀	+	+	+	+	\dashv	\dashv	+	+	+	+	+	1	뒥	4	11		
٤	3 0	0	7	4	7	+	+	t	十	\dagger	\dagger	十	+										1	11		
	*		1		1								-	ļ		١						13	1			
١	CONTIGURATION		N	53	2			1	1		١															
1		7201	720,51	1.0153	730,51	-		-	1		١	-												33		•
Ì	8	12	12	7	H																	\ `		COEPTICIENTS:	1	
.	<u> </u>	12	22	23	24		7	7	7						1									E	a or 6 scremines	
- 1	DATA SET	PLSOZI			-			-	-			1						-				1] 2	8 W	•

373

OF POOR QUALITY

: 4.

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

← 0.165 (9.165)

20° 24' (20° 11')

Pigure 4. B-0 TARK Ti (T2)

Pigure 6. SOLID MOCKET HOTOR LOCATIONS TI and (TZ)

0.470

Figure 8. FIN (F1) 2 EACH, (F2) and (F3) 1 EACH

ORIGINAL PAGE IS OF POOR QUALITY

CYLINDRICAL BOOSTER MSFC DELTA WING ORBITER MSC DR#1251 __C-1-_ 289

TEST MSR TWY 538 DATA SET COLLATION SHEET

52, 77/ 52, 775/ 723 723 720/ 720/			PARAMETERS, VALUES NO	KAN						POST	USITEST
20.7	8	- 1		6	٠,		LTERIA	IND I	OR ALTERNATE INDEPENDENT	VARIABLE	١,
	7	+	1	0	0.0 0.0	1.7	1.2 1.36	27.74	1.75	_	
	_			3/2		1	V		į	-	
				20/10/10	X		13	\downarrow	1	+	
	08	1		1/2		12/2	*	1		4	
	0 4	1,5		10		7		_	١,	-	
537	á	75	1	1	1	N S	(%)	3/	25		
:6 T10/SI)	1	+	V		12 10	1	_	1		I
123	70	1			18 S	(i)	1/2/2/2	N.	Ź		
CALVIOLEID	0 0	1000		25/33	33	1/2/20	1	100	P	T	1
	2 2	75		8/1/2	100	3	13			+	1
	\mathcal{C}	-1.5	_	3 3	300	14	1	_			
0/:	_	-3		15	N	J			Į,		-
1116	à	-3		-	3/	16	(2)		N. S. S. S. S. S. S. S. S. S. S. S. S. S.		
5/2	10	100	5	-		8/	1		100		\dagger
9/3	1		5		200	34	1/2/2		1/20	1	\dagger
01017/010	0,0	0		2	2 st	8	Ex		189	1	\dagger
	/ A 0	45		3	1/2/	100			1		1
	08	5%	1	1	10	T	1		N	_	
216 T20151R	0 4	1,5		3/130	$oldsymbol{\Gamma}$			*	Ed.		\vdash
210	a	7/2	2	3/2	abla	abla	13	2/	St.		\vdash
518 720/528	000	1	B			8	1/2/	8	12 m		╁
	000	7) 1,	5		N N	3	2/	15.	3	1	\dagger
71017	200		4		£3	36	3	15,	3		+
			७	N	1/2/1/2	1/2	18	18V	7		+
		25 31		37	7	;	:	Y			1
	CX C81	0. 7%	7	ARUA	2000		1		=	5	73
COEFFICIENTS:	11	1/			3	1750	ď	200	1		
Sor B	K=-10° m 10°	1 100 20						Ī	IDPVAR(IDPVAR(1) IDPVAR(2) NDV	<u> </u>
à	801 - EV	42,7				1 1					

ORIGINAL PAGE IS OF POOR QUALITY

SHEET
COLLATION
SET
DATA
NV 538
MSEC
TEST

DATA SET CONFIGURATION SCOPE PANAGENES COLLATION SHEET DELTA WING ORBITER	CONFIGURATION CO	TYOUR NEW SECTION OF THE SECTION OF	13 8 ₹ 9 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	ATION 8 S OR ALTH	HEET INDE		FC LITA WIN 1 T T E BIE
TEST AND THAT SEE COLLATION SHEET DEST OF SEE COLLATION SHEET	CONFIGURATION SCHD. PARAME 7.00/S3R/ 0 8 75 7.02 S/R/ 4 0 75 7.01 S/R/ (GF)* 4 0 74 A D 74 A D 74 A D 75 / (GF)* A D 74 A D 75 / (GF)* A D 74 A D 75 / (GF)* A D 75 / (GF)* A D 76 A D 77 A D 77 A D 77 A D 78 A D 79 A	DATE NUMS	13 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A TION 8 (OR ALTER S CO S C C C C C C C C C C C C C C C C	HEET 1002	>	< 20
STATE CONFIGURATION SCHO. PARMETERS /ALUES DO. PAGE KYREES (OR ALTERENTE HOLDSDOTY WELLSE)	CONFIGURATION SCHD. 7.00/53R/ 0 B 7.025/R/ 4 0 7.015/R/(GF)* 4 0 7.5/ (GF)* 4 0 7.5/ (GF)* 4 0 7.5/ (GF)* 4 0 7.5/ (GF)* 4 0 7.5/ (GF)* 6 0	TAN O C C C RUNS	1	S (08 A ALTERIAL STATES AND A S	ENATE HODE		2011
CONFICUALIUM Scho PRONUTTES 'VALUE IN. W.C. NORTES CONFICUALIUM Scho PRONUTTES 'VALUE IN. W.C. NORTES CONFICUALIUM Scho Sch	CONFIGURATION SCHD. 7.00/53R/ 0 B 7.00/51R/ 0 C 7.01/51/(0 E)* 4 C 7.51/(0 E)* 4 C 7.51/(0 E)* 4 C 7.51/(0 E)* 4 C 7.51/(0 E)* 7 C 7.51/(0 E)	TAN O C C C RUNS	10 1 10 10 10 10 10 10 	S (08 ALTERNATION OF	EDATE HODE		STT
Section Sect	CONFIGURATION SCHD. 7.00/53R/ 0 B 7.0025/R/ A 0 7.015/R/(GF)* A 0 7.5/ (GF)* A 0 7.5/ (GF)* A 0 7.5/ (GF)* A 0 7.5/ (GF)* A 0 7.5/ (GF)* A 0	A N N C C C NIS	1 1 1 1 1 1 1 1 1 1	S (08 ALTHOUGH 19 19 19 19 19 19 19 19 19 19 19 19 19	ENATE HODE	>	
	7.02.53.R/ 0.8 7.02.51.R/ 4.0 7.01.51.R/ (GF)* 4.0 7.51 (GF)* 4.0 74 A.0		30 3		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	*	
\$\frac{\text{52}}{\text{52}} \	7.01.53R/ 0 B 7.02.51R/ 4 0 7.01.51R/(GF) 4 0 7.51 (GF) 4 0 74 A 0						
\$\frac{1}{2} \frac{1}{100} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{10} \frac{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{	7102 S/R/ 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			33333			
\$\frac{\pi}{\pi} \frac{\pi}{\p	7.01 S./R/(GE)* 4 0 7.15/ (GE)* 4 0 74 4 0						
\$\tau \pi \triangle	7:01.S1.R1(GF); 4 0 7:S1 (GF)* 4 0 74 0			N N N I I I I I			
\$\frac{17}{12} (\text{GE})^2 & \frac{1}{4} \text{D} \\ \text{G4OS} = \frac{14}{4} \text{D} \\ \text{G4OS} = \frac{11}{12} \\ \text{S-S-MOCUCOMPH} \\ \	77.S/ (GE)* A O						
\$ -74	7 7						
S-SHACKLED S-SHACKLED							
\$-\$400ucaday \$-\$400ucaday \$-\$400ucaday \$-\$13 13 13 13 13 13 13 13 13 13 13 13 13 1							
\$-\$400ucaday \$-\$400ucaday \$-\$400ucaday \$-\$11							
\$ -5-40\text{cut} \text{CADS} \text{FULEO} \\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
\$ -S-HACKWC34AH. \$ -S-HACKWC34AH. \$ -S-HACKWC34AH. \$ - 111				+		++	+
\$-5-400usadar 5-5-400usadar 7 13 19 25 31 37 43 85 CIENTS: 4: $\lambda = -10^{-70}$ 10° $\Delta n = 2^{0}$				_		+	
CADS FILLED S-S-4400LGARA S-S-440					_		+
3-5-400000000000000000000000000000000000				†		+	
S-S-40000030491 7 13 19 23 31 37 13 35 141 167 1682 1671 648 1683 1648 GIENTS: 4: $\lambda = -10^{\circ}$ 70 0 $\Delta \alpha = 2^{\circ}$	* CADS EULED			+		+	
2-SHACKESCHAL 7 13 19 23 31 37 43 45 CIEMTS: 43 42 -10 TO 10 40 = 20		 					
1 13 25 31 37 43 55 15EMTS:	S-SHADWGAAM						
1 13 19 25 31 37 4.3 4.9 55 1CEMTS: CLEMTS:							
7 13 19 25 31 37 43 85 1CEMTS: 44 42 10° TO 10° 40 = 2°						_	
13 13 13 13 15 15 15 15							_
7 13 19 25 31 37 43 55 55 55 55 55 55 55 55 55 55 55 55 55							
1 13 13 33 31 37 43 55 55 55 55 55 55 55 55 55 55 55 55 55					1		
CLEBITS: 4: \$\alpha = -10^{\text{to}} \tau 0^{\text		-	\downarrow	- - ;		1	
(CIENTS: 4: \$\alpha = 10^{\tau 0} \tau 10^{\tau 10} \tau 10^{\tau	100 00 100	ļ	13 77 77	-	2		
A: K=-10° TO 10° DA=2°	7001 701 705	1	200	1	528	1	,
A: 4=-10 to 10 DA=20	PICIENTS:					IDPVAR(1)	DPVAR(2)
	4: 4=-10 m 10.	20		1		•	

CONCENSE PAGE 15 OF POOR QUALITY

pace of all the poor of the po

8

FIGURE 2. Orbiter Configuration With 156 SRM Perellel

C-3

FIGURE 5. HYDROGEN - OXICEN TANKS II, IZ, and IN

디

- 0.115 Rad.

리

FIGURE 6. SOLID ROCKET HOTORS SI and S2

FIGURE 7. ABORT ROCKET MOTOR RI

TEST UPWT 981 DATA SET/RUN NUMBER TABLE II.

COLLATION SUMMARY

	PRETEST M POSTTEST	INDEPENDENT VARIABLE									T	EST	RU	N N	UMB	ERS									IDPVAR(1) IDPVAR(2) NDV	CYLINDRICAL BOOSTER	MSFC DFITA WING ODBITED	4
SET/RUN NUMBER SUMMARY		MACH NUMBERS (OR ALTERNATE INDE		2	 	\vdash	19 31		25 27 29 31	28 30	35 37	36 38	43 44	45	50 52	5, 53	53	60 6/ 62 63	27 77	65 67 69 71	72 74 76 73	73 75 77 79	80 82 84 86	8/ 83 85 87				391
TEST UPWT 981 DATA COLLATION S		SCHD. PARAMETERS/VALUES NO.	a B Let See SR	0 8	A o o o o	A -3 0 0 0	A 0 0 -10 0	A -3 0 -10 0	A o o -20 O	A -3 0 -20 0	_	A -3 10 -20 0	A 0 10 -10 0	T		A -3 10 -10 0	A 0 10-10 10	+	+	-3 10 -20	0 -20	╧┼	-	A F 3 0 0 0	 -2.0.2.4, 6, 8, 10 days	-8-6-4-20 3.46		
TABLE II.		DATA SET TOENTIETED CONFIGURATION		ROHOOIB,COMPWITK	20	03	700	95	90	07	00	60	0)		12 B.C. D.M.P.W.Y.T.R	(3	<i>b1</i>	(5	9/	13	(8	6)	20	1 1/2 1	a or 6	8	ŀ	
: 21. s. 10.			•	·	·	4	f		•	ı	ı		Č,			i i		a de la composição de l		1	•	ľ	1	•				

OF LOOK CHATLA

Figure 2. - Complete launch vehicle model, BiClDiMiPlWlTR. Dimensions are in inches.

- 0.333

Figure 3.- HO tank, T . Dimensions are in inches.

Figure 4. - SRM model, R. Dimensions are in inches.

CYLINDRICAL BOOSTER MSFC DELTA WING ORBITER MSC DR#1267 C-1- 301 TEST RUN NUMBERS |IDPVAR(1)|IDPVAR(2)|NDV O POSTTEST O PRETEST MACH NUMBERS (OR ALTERNATE INDEPENDENT VARIABLE) 3 61 55 2 = 2 4 64 DATA SET/RUN NUMBER 15 17 18 19 20 13 395 COLLATION SUMMARY TABLE III 4.0 PARAMETERS/VALUES 31 10 0 • Se Sa SR 2 9 x 7-629 TEST 11 - 629 91 0 B ø 0 m 0 Ø 8 0 SCHD. ø ø -5 13 2 0 < CONFIGURATION 0, To S1 COEFFICIENTS: a or B SCHEDULES DATA SET IDENTIFIEB 010 910 017 018 의 함 015 900 800 50 010 110 012 900 000 003 RBC001 005

ORIGINAL PAGE IS

÷. .

CYLINDRICAL BOOSTER DELTA WING ORBITER MSC DR#1267 C-1- 302 TEST RUN NUMBERS O PRETEST O POSTTEST NASA-MSPC-MAP -IDPVAR(1) IDPVAR(2) NDV MACH NUMBERS (OR ALTERNATE INDEPENDENT VARIABLE) 6 . 61 55 21 22 23 DATA SET/RUN NUMBER 5 25 26 27 28 29 30 표 32 33 34 35 36 37 38 39 COLLATION SUMMARY 0.8 1.2 TAME III(Continued) PARAMETERS/VALUES NO. 4.0 4.0 4.0 4.0 .01 2 10 TEST SCHD. 8 0 **@ PQ** æ = 0 0 m 8 0 ø 四 ۷ 5 -5 -5 5 Y 0 4 0 -5 ~ 0 -5 S 2 O1 To S1 + PLUMES CONFIGURATION OI To S1 COEPTICIENTS: a or A Schedules DATA SET IDENTIFIER 021 025 022 023 . 024 027 028 029 031 032 030 033 034 035 036 038 039

OF POOR QUALITY

TABLE III Continued)

DATA SET/RUN NUMBER

TEST

COLLATION SUMMARY

O PRETEST

CYLINDRICAL BOOSTER MSFC DELTA WING ORBITER MSC TEST RUN NUMBERS LIDEVAR(1) IDEVAR(2) | NOV O POSTTEST MACH NUMBERS (OR ALTERNATE INDEPENDENT VARIABLE) 6 19 53 61 4 94 47 87 64 ያ 51 25 42 43 7 45 0.8 1.2 1.4 1.6 2.2 4 43 37 PARAMETERS/VALUES NO. H -4 _ 2.4 4.0 4.0 1.2 10 4.0 <u>.</u> 0 0 10 0 0 21 0 SCHD. -5 B 0 -5 B 0 m æ 0 0 0 4 -5 0 Ol To SI PLUMES CONFIGURATION COEFFICIENTS: a or B SCHEDULES DATA SET EDENTIFIER 053 046 020 051 052 049 040 045 .043 770 045 047 048

CENTRY PROPERTY

397

C-1- 303

DR#1267

CYLINDRICAL BOOSTER MSFC DELTA WING ORBITER MSC DR#1267 C-1- 304

O PRETEST

TABLE IIIContinued)
DATA SET/RUN NUMBER

TEST

COLLATION SUMMARY

	Γ	4	_		-					T	EST	RU	N N	UMB	ers						(١.		. ~		
T 8		Γ	Ī			Γ		T					Τ	Γ			1						1 % 2 %		Ē		*
O POSTIES	l	H	T	t	T	t	1	\dagger	t	t	\dagger	╁	t	T		T	+	T	 	\vdash			1		IDPVAR(1) IDPVAR(2) NDV		NASA-MSFC-MAF
P08	(E)	┝	-	╁	╀	╁	\vdash	╀	+-	╀	\vdash	+	╀	┝	├	╁	├	├	-	\vdash		L	┨、		2		NAS
	VARIABLE	_	L	\perp	\vdash	lacksquare	_	\downarrow	_	\downarrow	<u> </u>	\perp	L	igspace	L	L	-	_	<u> </u>	_	<u> </u>	_	۵	-	ĮΞ		
				L			L			L		L	L			L] ·		M		
	ENDE															İ							ءَ ا	-	埥		•
	DODE								Ī	Γ													1		11		
	(OR ALTERNATE INDEPENDENT	\vdash						T	T	T		T	\vdash	1	T	T		T			\vdash		S S	-	1		
	TER	2.2	H	\vdash	 	\vdash	\vdash	+	\vdash		\vdash	\vdash	├	-		-	├		-	<u> </u>	<u> </u>	-			11		
	OR AI	6 2	-	\vdash	├-	-	_	├	-	┝	┝	H	-	\vdash	_		-			<u> </u>		_	ç		1		
		_	ļ	_			Ļ	_	<u> </u>	Ļ	_	L	L			L	_	_	<u> </u>								
	NUMBERS	1.4	24	25	8	L			8						99	29	8								11		
	MAGH	1.2				2	88	59						23				69	70	71			£4	-			
	Z	0.8								13	62	63	3							П							
		RUNS	1			-	1	1	_		1				-	-							37				
		RW/L R	5.5	3.6		6.5	3.9	2	5.5	7.0	7.0	3.2	2.1 1	7	.5	.5	.5	7 1	5 1	7 1							
	PARAMETERS/VALUES		•	3	2	9	3	9	-	7	1	3	12	2	۶.	5,	2.	2.	9	2.	_		31	-			
	TERS/	ړو. او	0					-						Ť	0					→	_						
	RAME	٥	0											•	10					→	_	_	25			П	
		Q	0	_										^	٥					→	_						
	SCED.	g B	0 Y	A 0	0 V	0 V	0 V	-5 C	-5 C	0	-5 c	0	0	0	0	-5 C	0	٥	٥	<u>ئ</u>	-	_	61				
j		٦				7	_			Y		A	A	Y	٧		٧	۷	V	┪	7	_		1			
	2																							-			
	CONFIGURATION																						13	4			
	FICH		To S1		_								_		_	_		_		>				1			
.	S		9			Ì													İ				7		TS:		
}	H		\dashv	\dashv	-	\dashv				\dashv	\dashv	\dashv	_	_	_	\dashv	\dashv	-	_	4	-	-		1	NZ IO	8 1]
	DATA SET		30	055	056	.057	058	059	8	190	062	963	90	065	990	067	990	89	070	5				}	COEFFICIENTS:	G OF B	
L	ă																						-	_]	O	5 ¥	•

TABLE III(Continued)

TEST

DATA SET/RUN NUMBER

COLLATION SUMMARY

O PRETEST

CYLINDRICAL BOOSTER MSFC DELTA WING ORBITER MSC TEST RUN NUMBERS LIDPVAR(1) IDPVAR(2) NDV ☐ POSTTEST MACH NUMBERS (OR ALTERNATE INDEPENDENT VARIABLE) 29 6.1 55 1.6 2.2 6 4 1.4 75 76 82 83 E, 89 85 **8**6 87 88 8 16 0.8 1.2 77 78 79 8 81 8 72 73 7. 37 PARAMETERS/VALLIES NO. 3.9 7.0 2.5 7.0 6.5 2.7 2.7 6.5 2.7 2.5 6.5 2.7 2.1 **E** 10 0 ន 2 91 SCHD. 0 ပ ပ 0 0 ပ ò 0 0 ပ 0 0 ပ 0 0 0 0 0 -5 -5 -5 -5 5--5 -5 ¥ Ol To S1 + PLUMES CONFIGURATION 01 To S1 COEPTICIENTS: a or B SCHEDULES DATA SET IDENTIFIER 060 920 0.78 079 080 083 085 980 087 680 160 072 074 .075 077 081 082

38

C-1- 305

DR#1267

CYLINDRICAL BOOSTER

DELTA WING ORBITER MSC DR#1267 C-1- 306

O PRETEST

COLLATION SUMMARY

DATA SET/RUN NUMBER

TEST

TABLE III Continued)

TEST RUN NUMBERS O POSTTEST MACH NUMBERS (OR ALTERNATE INDEPENDENT VARIABLE) 29 61 55 1.2 1.4 1.6 2.2 4 109 111 107 43 106 35 2 2 95 81 101 102 103 104 105 8.0 96 97 86 66 37 PARAMETERS/VALUES NO. 7.0 7.0 2.5 10 6.5 6.5 5.5 3.6 2.5 2.7 2.7 3.2 6.5 6.5 0 0 2 0 0 25 21 0 0 SCHD. υ 0 0 0 0 ပ 0 ပ ပ 0 0 0 ပ 0 0 0 0 0 0 0 -5 V S -5 -5 -5 5 < ٧ ٧ ⋖ ¥ 4 4 < ~ ~ < 0, To S,+(M,=0.8) PLUM 01To 1+(M.=1.4) PLUMES 0, T, S, +(M, =0.8) PLUMES To S1 + PLUMES Ol To S1 + PLLINGES CONFIGURATION 01ToS1 + PLUMES 0 DATA SET IDENTIFIES 111 .095 110 092 093 960 101 105 106 107 109 960 001 103 104 108 960

CHANGE OF SOME

COEFFICIENTS:

a or 6 Schedules

8

MASA-MSPC-MAF

TABLE III (Concluded)

DATA SET/RUN NUMBER

COLLATION SUMMARY

O PRETEST

CYLINDRICAL BOOSTER MSFC TEST RUN NUMBERS D POSTTEST - IDPVAR(1) IDPVAR(2) | NDV NO. MACH NUMBERS (OR ALTERNATE INDEPENDENT VARIABLE)
of RUNS 0.8 1.2 1.4 1.6 2.2 29 19 25 4 112 113 114 116 117 118 119 121 122 115 120 6.5 PARAMETERS/VALUES Se Sa SR RN/L 6.5 Ξ 2 91 0 2 0 ပ 0 0 SCHD. 0 0 ပ æ 0 0 -5 0 V 01ToS1+(M.=1.4)Puffer 01 ToS1+(M=1.4) PLUMES 0, To S, + PLUMES CONFIGURATION O1To S1 + PLUMES COEFFICIENTS: a or B SCHEDULES DATA SET IDENTIFIER 116 120 115 113 114 118 117 15 121 122

401

DELTA WING ORBITER MSC DR#1267 C-1- 307

Note: All dimensions are model scale in inches.

Note: All dimensions are model scale in inches.

(1) Hydrogen/Oxygen tank, To

Figure 2. - Continued.

Note: All dimensions are model scale in inches.

√ 0.318

(k) Solid rocket motor, Sı

Figure 2.- Continued.

Note: All dimensions are model scale in inches.

(c) Orbiter body, Bı

Figure 2. - Continued.

$8_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$ $S_{V} = .175 \text{ ft.}^{2}$		MS		$AR = 1.95 \qquad \Lambda_{L.E.}$	-	45°
8y = .175 ft. 2	Z	< −		τ - 3.922 (0.327 st.) λ	-	0.31
$\frac{1}{3}$ $\frac{1}$	8 C/	N N	7	b = 7.014 (0.585 ft.) CT	-	1.717
8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -	_		C-1	8y = .175 ft.2 CR	•	5.472
#	BOOSTER	176	- 314			

Note: All dimensions are model scale in inches.

(e) Orbiter vertical tail, V₂
Figure 2.- Continued.

(f) Canopy, C1

Figure 2.- Continued.

হল হৈ এক প্ৰাক্ত ইটি কৌঠিল কৰে তেন্ত্ৰ

ORIGINAL PAGE IS OF POOR QUALITY

×

Inches	0 0.0352 0.0430 0.0556 0.0779 0.1331 0.1522 0.2018 0.2257 0.2257	0.0460
Inches	0 0.0109 0.0163 0.0271 0.0543 0.1629 0.2171 0.3257 0.4343 0.5429 0.6514	L.E.Rad.

(h) Vertical tail ACPS pods, Plv

Figure 2. - Continued.

CYLINDRICAL BOOSTER
MSFC
DELTA WING ORBITER
MSC
DR#1267 C-1- 317

(i) Manipulator arm housing, D_1

Figure 2.- Continued.

(1) Rocket plumes

Figure 2.- Concluded.

Note: All dimens! s are model scale in inches.

CYLINDRICAL BOOSTER DELTA WING ORBITER C-1- 320 DR#1185

A POSTTEST O PRETEST

Force - 110C ORIBITED ALONE AND ORBITER + BELLY TANK DATA SET COLLATION SHEET TEST TWT- 509 0.0044 - SCALE OTABLE I.

MACH NUMBERS 04460436 21/601/0013/6010/6011/6011/6 0456046 6/12cb/25db/72cb/25db/22db/22db/22db 066/0064/0556053605460546 0100 6/200 6/20 6/250 6/250 6/20 045/0476 24602602460396010/609/6 0.6 a9 1.2 1.96 2.99 4.96 206 0.96 pr36 p276 pos6 pod6 015/6 014/6 013/6 04/6 013/6 012/6 013/6 043605(4),049/6050/0 326 336 026 0416 0066 Wes 6/180 3000 FINS 9 2 و و 9 s او او 3 9 SCHO. CONTROL DEFLECTION P 0 0 آھ J 4 4 4 00! J A 4 PLY WILE ILV 36+T2 ELAK SWIGEILV36 CONFICURATION OL WALE ILUSE BISWIGE ILWIG 480 BA ΔLO DATA SET IDENTIFIER 03A 02B 200 **ASO** 02C 5101A <u>ه</u> ا **ATO** S S OIB

JIDPVAR(1) IDPVAR(2) INDV 3 J 기 25 1292 4 Z L 717 X C = 45 11 4 14 14 15 12 12 24 56 15 60 37 01 8 9 p 2 0 2 - 4 - 7 - 8 - 01 - 2 X 15r KDB C.D. ž . KLM COEFFICIENTS: a or s

717

SCHEDULES

Figure D. LOCATION OF MOMENT REFERENCE POINT $1) \quad \text{Configuration B_{12}}^{\text{W}} 26^{E_{1}} 6^{V} 36$

SSV CONFIG. BIS WEE EIG V36

FIGURE D. LOCATION OF MOMENT REFERENCE POINT (Continued) $2) \quad \text{Configuration $B_{13}^{\text{M}}_{26}} E_{16}^{\text{M}}_{36}$

FIGURE D. LOCATION OF MOMENT REFERENCE POINT (Continued) 3) Configuration ${\rm B}_{14}{\rm K}_3{\rm H}_2{\rm e}_{16}{\rm V}_3{\rm e}$

į

SSV CONFIG. BIZ WZG E16 V36 + TZ

FIGURE D. LOCATION OF MOMENT REFERENCE POINT (Continued) 4) Configuration ${\rm B}_{12}{}^{\rm M}_{26}{\rm E}_{16}{}^{\rm V}_{36}{}^{+\rm T}_{2}$

FIGURE E. BODY - B12

FIGURE F. BODY - B13

FIGURE G. BODY - B14

FIGURE H. BODY - B14 + K3

FIGURE I. WING - W26

FIGURE J. ELEVON - E16

FIGURE K. VERTICAL TAIL - V36

FIGURE L. TANK - T2

12

CYLINDRICAL BOOSTER TBC DELTA WING ORBITER MSC DR#1227 C-1- 333

WEEFICIENTS; a or A SCHEDULES

	Ş		+		-	-	+	-	+			١٨٥	-	<u> </u>	<u> </u>		\perp	_	ig	\perp	_	Ž
VARIABLE		1	\dagger	1	1		+	+	+	4	15/	19	+	25	14	3	+	\vdash	+	\vdash	\vdash	5
				Ž						50	\$	Ź		\$	7.	13		T	\dagger	H		
THOORSESSEE													L									3
	•	ź	1	1		15/	-	_	-	Ę,	Ş	6		48/	20	a)°	3	100	3/0	70		\$\$
(OR ALTERNATE	//	7,25	1/2	3/3	1078		100		+	2,	200	70	-	300	70	· 0 ₹		200	100	Z'o		
																						4.9
I TOTALETS	10.2	7560	5	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	120		8	8	<u> </u>	3	8	3,		12.50	3	4	3	2	200	12.		6.3
Ð¥.	36	_	-	7	18	-		-		30	250	200		0	10.51	200						
	RUNS										0/			0	C	0/					┪	=
																					\exists	=
PARWETERS/VALUES																	-			-	\dashv	
FAR	77.7	ኍ	_																			٦
SCHD.	2	<u>م</u>	o c	> >	ن. و	>	o, B	>	4 0.	A 0.	U Ö	>	ر د	o.	o°	40	>	ι O	>	40.	\exists	1
NO.							7	7		4												1
CONFICURATION	ŀ	3/7		17/6.2		67	۲	-2 16.3		-21/6.4	- 1	7	9	,					27			
	_	Brd.	,	850,2V	^	Er 6.	1359	Br.6	^	850		850	B 5 Q	1550.	>	Br	35 16		35 162	>		-
DAIA SET		85705.1	OSC	0/0	07.4			8	03A		_		Zic	0.32	030	4/0	134	/30	/4C	IAA		

TABLE 1

TEST TWT #522 DATA SET COLLATION SHEET

CYLINDRICAL BOOSTER DELTA WING ORBITER MSC C-1- 334 DR#1227 TABLE 1 (Continued)

TEST TWEET DATA SET COLLATION SHEET

D PRETEST D POSTIEST LEDPVAR(1) IDPVAR(2) NOV OR ALTERNATE INDEPENDENT VARIABLE, 5 Ġ, 25 MACH MUNDERS 333 00 37 PA:RAMETERS/VALUESS NO. SCHD. Ç) 0 إرة 41 000000 5/37 > 16. CONFICURATION 85 Vz 85 472 85-4-242 85-6,-2462 Be 4,-2 13.3 Ba 4,-4/5 1:543.12 Bc dr-2 V5 135 Va. 4 135 17.2 COEFFICIENTS: O OF B SCHEDULES DATA SET IDENTIFIER 187 199 18 C 357153 /7.c /3c /2C 225 19.0 079 2cc 2/c 12A

> aragana para ba ALLEND RAM

S = 5.1478 sq.in. (3155.3 sq.ft.) tLONG = 4.426 in. (109.58 ft) blAT = 2.969 in. (73.5 ft)

FIGURE 2 - PRESSARE FED BOOSTER/040A ORBITER 0.003366 SCALE AX 1233 MODE.

FIGURE 3 - NSC-040A ORBITEP 0.003366 Scale Model

13

FIGURE 7 - PETAL DETAILS
0.003366 SCALE AX 12331-1 MODEL

..)

FIGURE 8 - TWIP STRIP CHAPT 0.005366 SCALF WOOFL AN 12551-1

CYLINDRICAL BOOSTER TBC DELTA WING ORBITER MSC DR#1227 C-1-341

CONTROL TORRER

HASA-MSFC-MAF

3

CYLINDRICAL BOOSTER
MSFC
UNIQUE CONFIGS. ORBITER
GAC
DR#1181 C-1- 342

TEST MICH THE DATA SET/RUN NUMBER COLLATION SUMMARY

O POSTTEST C PRETEST

(

		TEST RUN MUMBERS									_															
T	٦									•												7 X		<u>S</u>		
ŀ	1			_							Γ				·								}	VAR (2		
1	1												Г									29	4	<u>201</u>		
ARTABLE	70	53	E	53				54	3/1	_	T		Т		Γ		T							LIDEVAR(1) IDEVAR(2) INDA		
OR ALTERNATE INDEPENDENT	1.211.41.9.13504.9	57 5	50	54				190	1/20	\vdash		-				H	┢					13	4	Î		
	92.3	60 3	57	3.	Н			44	43 (┢╌	H	-	-			-			_		_		16485	Ī		
	7	9 /9	تح يحن	6358							╁	_	-			-	-		-			55	100			
	7	5 6	9		کر	7	376	£5.	_	-	\vdash		\vdash	\vdash	\vdash	-		\vdash	\vdash	_	\vdash		2			
¥ Ho		⊢	1	1/6	/ 7/	242	_	36			╁	-	\vdash	<u> </u>	┝	-	\vdash	-	-	_	-	6,4	760		ı	
	01.1	7			13/	<u> </u>	8 27		_		┞	H	\vdash	┝	\vdash	-	├	_		┝	-		8			
MACH NUMBERS	7/1.0	3	00	1.1		2 23			_	-	┞	-	\vdash	-	╀	\vdash	\vdash	\vdash	-		-	ç	118			
ë ≸	0.6 0.9	.2	⊢	61 6		7	29	1 36	┥	_	igdash	_	┡	L	\vdash	┞	-	-	_		_		u			
		/]	0/	3	-	7	8	-	36		_	L	Ļ	_	_	<u> </u>	Ļ	_	_	_		7.	300		5	?
	RUNS	6	6	6	10	13	2	9	9	1_	ļ_	<u> </u>	Ļ	<u> </u>	Ļ	L	L		_		_		1		6	2.0
NUES	Ц		L	_	_		_		_		Ļ	Ļ	Ļ	-	Ļ		-	L	L	_	_	 	100			3
PARAMETERS/VALUES	Ц	_	_	_	L	_				<u> </u>	╀	L	L	<u> </u>	-	_	-	L	L	_	_					
RET	H	L	L	-	-	_	-	L	Ļ	┞	┼-	┞	╀	-	-	-	╀	-	L	-	L	۱ ۱	3			×.
_	-	Ļ	(2 2		Ø	_	8	0	ſκ		-	┝	╀	╀	 	\vdash	\vdash	+-	-		-	$\left\{ \right.$]		
SCED.	-	40		+	╅═		0	\ \		+-	\dagger	\dagger			t	L	T	T				ءِ [18.5			ケーク・ペー
					Γ	3		77					T				Γ	Γ		İ		1		1	ſ	ץ
	5					Con		TAN GACO						l								:	5		ľ	7 410 - x -e - c
	JUKI	0	C	16	6	3].	1/91			-													1	ŀ	7
	CONTIGURAT	ľ	1	1	1	1		129/2011/10/															10.			•
Ľ		L	L	_		162/				\perp	\downarrow	_	\perp	\perp	\downarrow	$oldsymbol{\perp}$	\downarrow	$oldsymbol{\downarrow}$	Ļ	$oldsymbol{\downarrow}$	igspace	┨]	1	
SET	DESTITIES	1/6	0,12012	720	015022	790	27.07	23/	2// 022	3													71/2		CEPTICIENIS:	
DATA SET		11090	9.17	Pullor	100	10	ż	15.03.4	100	3												٠	-12	.	5 6	; (

Figure 5. Side and Planview Sketch of the Grumman H-33 Orbiter With Drop Tanks Installed

CYLINDRICAL BOOSTER
MSFC
UNIQUE CONFIGS. ORBITER
GAC
DR#1181 C-1-343

CYLINDRICAL BOOSTER
MSFC
UNIQUE CONFIGS. ORBITER
GAC
DR#1181 C-1- 344

Figure 6. Side and Planview Sketch of the Grumman H-33 Orbiter With Drop Tanks and Three Solid Propellant Booster Motors Installed

Figure 7. Base Pressure Measurements

Standard Bibliographic Page

1. Report No. NASA CR-178416, Part 1	2. Government	Accession No.	3. Recipient's Cat	talog No.						
4. Title and Subtitle SPACE SHUTTLE PHASE B WIND TUNNEL TEST INFORMATION, VOLUME 3 - LAUR	RATION	5. Report Date July 1988 6. Performing Organization Code								
7. Author(s) J. L. Glynn and D. E. Poucher	8. Performing Organization Report No. DMS-DB-02, Vol. 3									
9. Performing Organization Name and Address Chrysler Corporation Military-Pul Michoud Engineering Office P.O. Box 29200	onic Systems	506-40-11-08 11. Contract or Grant No. NAS1-18276								
New Orleans, Louisiana 70189 12. Sponsoring Agency Name and Address National Aeronautics and Space A	.on	13. Type of Report and Period Covered Contractor Report								
Langley Research Center Hampton, VA 23665-5225 15. Supplementary Notes			14. Sponsoring A	ELLY COLL						
Langley Technical Monitor: Jame Volume 1 - NASA CR-178414; Volum		CR-178415								
booster or other aite as reusable orbiter (Phase B) of the Space data was acquired by centers for an exten array of wing and bod All contractor and NA Phase B development h are available for recoverable booster a The Space Shuttle Pha	Archived wind tunker test data are available for typack booster or other alternate recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for applying to current winged flyback or recoverable booster serodynamic studies.									
canard, cylindrical,	Booster configuration types include straight and delta wings, canard, cylindrical, retro-glide and twin body.									
Orbiter configuration types include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configuration types include booster and orbiter components in various stacked and tandum combinations.										
17. Key Words (Suggested by Authors(s)) Space Shuttle Phase B Wind Tunnel Tests Digital Database Aerodynamics Recoverable Booster	18	Distribution Statem Unclassified	- Unlimited Subject Cate	egory 02						
19. Security Classif.(of this report) Unclassified	20. Security Cl Unclas	assif.(of this page) ssified	21. No. of Pages	A19						

_		
•		
-		
•.		

J