MATH 405 Notes

Tyler Han

September 22, 2021

Contents

1	Fields		
	1.1	Solving Simulatenous Equations over the Reals	2
	1.2	Gaussian Elmination	3
2	Line	ear Transformation	8

1 Fields

Definition 1.1. A field is a set F such that +, * where $x, y \in F$ are defined such that $x + y \in F$ and $x * y \in F$.

The operations satisfy

- 1. x + y = y + x (commutative)
- 2. (x+y) + z = x + (y+z)
- 3. there is a 0-element where 0 + x = x
- 4. $x \in there \ exist \ (-x)]inF \ such \ that \ x + (-x) = 0$
- 5. x * y = y * x
- 6. (xy)z = x(yz)
- 7. there exists $1 \in F$ such that $\forall x \in F, 1 * x = x$
- 8. $x \in F$ $x \neq 0$ there exists $x^{-1} \in F$ such that $x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z

Lemma 1.1 (Uniqueness of One). Let F be a field. $\forall x, 1x = x$. If yx = x, then 1 = y.

Theorem 1.2. \mathbb{Q} is a field.

Proof. $\mathbb{Q} \subseteq \mathbb{R}$ so all properties hold, provided that $+, *, 1, 0, -x, x^{-1}$ are defined in \mathbb{Q} . Continue with proof of each operation acting on $x, y \in \mathbb{Q}$

Example Proof. \mathbb{C} is a field.

- 1. closed under operations +,* (obvious)
- 2. show $z, w \in \mathbb{C} \to z + w = w + z$
- 3. multiplicative inverse

1.1 Solving Simulatenous Equations over the Reals

Given $a_{11}x_1 + \ldots + a_{1nx_n} = b_1$ through $a_{m1}x_1 + \ldots + a_{mn}x_n = b_1$. Solve x_i . Homogenous if $b_1 = b_2 = \ldots = 0$. Nonhomogeneous otherwise.

1.2 Gaussian Elmination

For any matrix A

- 1. multiply row by $C \neq 0$
- 2. add multiple C(row j) to row i
- 3. switch 2 rows

A is in reduced row echelon form if

$$\begin{bmatrix}
1 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$
(1)

The first non-zero entry in each row is 1, called "pivots". All entries above/below pivots are 0. Pivots go down left to right. All rows which are 0's at bottom.

Theorem 1.3. A is any $m \times n$ real matrix. Then, row operations $\rightarrow E$ in row echelon form. Then, E is unique.

Proof. By Gaussian Elimination:

- 1. Beginning from top-left, scale for pivot
- 2. Add a multiple of the previous row to next row to null entry below pivot. Repeat for the remainder of the rows.
- 3. Repeat steps 1 and 2 for the remainder of rows.

Example 1.1 (Solving Homoegeneous Equations). Given $A\mathbf{x} = \mathbf{0}$

- 1. Use Gaussian Elimination to convert $A \rightarrow E$ (RREF)
- 2. $\begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ Denote coumns with pivots.
- 3. Number of free variables in solution is the number of non-pivot columns.

Solution:

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \mathbf{0}$$

$$x_1 + 2x_2 + 0x_3 + 1x_4 + 0x_5 = 0$$
$$x_3 + 2x_4 + 0x_5 = 0$$
$$x_5 = 0$$

Move pivots to right hand side...

$$x_1 + 0x_3 + 0x_5 = -2x_2 + 1x_4$$
$$x_3 + 0x_5 = -2x_4$$

Choose x_2, x_4 arrbitrarly. x_1, x_2, x_3 determined.

$$x_1 = -2x_2 - x_4 \tag{2}$$

$$x_3 = -2x_4 \tag{3}$$

$$x_5 = 0 (4)$$

The general form of the solution (obtaining the basis vectors of the codomain) is obtained from choosing 1 for a single non-pivot while 0 for other non-pivot for each basis vector.

Note that the operations in Gaussian Elimination are well-defined over and field. The same process can be done in other spaces.

Example:

$$\begin{pmatrix} 1 & i & 0 & 1+i \\ 0 & 0 & 1 & 3-i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

In order to find the general solution, for each non-pivot x_i, \ldots, x_{n-r} , set the variable to 1 while the other non-pivots to 0. Every solution is a linear combination of the resulting vectors. The solution is an n-r subspace of \mathbb{R}^n .

Theorem 1.4.

$$\begin{aligned}
A\mathbf{x} &= \mathbf{y} \\
\begin{pmatrix} A| & y_1 \\ | & y_2 \end{pmatrix} & (5)
\end{aligned}$$

A augmented with RHS is the augmented matrix. Reduce to E using row operations. This has at least one solution if and only if the 0-rows have y-term also 0.

If this holds, find one solution using same algorithm from before. The set of solutions is:

 $\{x_p + x_n | x_n \text{ runs over all solutions of the associated homogeneous equation}\}$

Definition 1.2. Product of matrices. Given $A \times B$

$$c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$$

such that $c_{i,j}$ are the entries of C, the product of A and B.

Theorem 1.5.

$$(AB)C = A(BC) \tag{6}$$

$$(A+B)C = AC + BC \tag{7}$$

$$I_n = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix} \tag{8}$$

$$I_m A = A \tag{9}$$

$$AI_n = A \tag{10}$$

Corollary 1.1. A square matrix with either a left or right inverse is invertible.

Corollary 1.2. Let $A = A_1 A_2 \dots A_k$ where $A = A_1 A_2 \dots A_k$ are $n \times n$ (square) matrices. Then A is invertible \leftrightarrow each A_j is invertible.

Theorem 1.6. For an $n \times n$ matrix A, the following are equivalent:

- 1. A is invertible
- 2. A is a row-equivalent to the $n \times n$ identity matrix.

- 3. A is a product of elementary matrices
- 4. The homogeneous system AX = 0 has only the trivial solution X = 0
- 5. The system of equation AX = Y has a solution X for each $n \times 1$ matrix Y

Corollary 1.3. If A is invertible $n \times n$ matrix and if a sequence of elementary row operations reduces A to the identity, then that same sequence of operations when applied to I yields A^{-1} .

 $V, S = \{W\} = \{W_1, W_2, \dots, W_n\}$ $W_n \subset V$ set of subspaces. e.g. $\mathbb{R}^3 = \{x - axis, y - axis, z - axis, \{(x, y, z) | x + y + z = 0\}\} \leftarrow \cap W = (0, 0, 0)$

Definition 1.3.

$$\operatorname{Span}(S) = \left\{ \sum_{i=1}^{n} \alpha_i v_i | v_i \in S, a_i \in F \right\}$$

Proposition 1.1. 1. $\operatorname{Span}(S)$ is a subspace

2. $\operatorname{Span}(S) = \cap W$ where W all subspaces

Definition 1.4.

$$\{v_1,\ldots,v_n\}$$

is linearly dependent if

$$v_j = \{ \sum_{i=1,\dots,n|i\neq j} a_i v_i \}$$

(ones is a linear combination of the others) ex: $\{(1,-1,0),(1,0,-1),(0,1,-1)\}$ is linearly dependent: $v_2=v_1+v_3$

Lemma 1.7. $\{v_1, v_2, \dots, v_n\}$ is linearly dependent if and only if there is a relation $\sum_{i=1}^{n} a_i v_i = 0$ where some $a_i \neq 0$

Definition 1.5. $\{v_1, \ldots, v_n\}$ is linearly independent if not linearly dependent

Lemma 1.8. 1. $\{v_1, \ldots, v_n\}$ is linearly dependent if $\exists a_1, \ldots, a_n$ not all 0, $a_i v_i + \ldots + a_n v_n = 0$

2. $\{v_1, \ldots, v_n\}$ is linearly independent if $a_1v_1 + \ldots + a_1v_n = 0 \rightarrow a_i = 0 \,\forall i$

Definition 1.6. Given vector space V and $\{v_1, \ldots, v_n\} = S$. S is a basis of V if:

1. $\operatorname{Span}(S) = V$ i.e. every vector $v \in V$ can be written as a linear combination of vectors in S. (Enough vectors)

2. S is linearly independent (Not too many vectors)

Lemma 1.9. V, S. S is a basis $\Leftrightarrow v \in V \Rightarrow v = \sum_{i=1}^{n} a_i v_i$ uniquely

Theorem 1.10. V vector space. B_1, B_2 are bases of V.

$$|B_1| = |B_2| \tag{11}$$

(Also applies to $|\cdot| = \infty$)

Definition 1.7. V, B=basis. Then dimension of V is |B|. This is well-defined by the previous theorem.

Theorem 1.11. V spanned by v_1, \ldots, v_n . Suppose $\{w_1, \ldots, w_n\}$. If w_1, \ldots, w_n linearly independent, then $n \leq m$. Equivalently, if n > m then $\{w_1, \ldots, w_n\}$ is linearly dependent.

Theorem 1.12. $V, B_1, B_2 \text{ bases, finite } |B_1| = |B_2|.$

Proof. B_1 spans, B_2 linearly independent $\Longrightarrow |B_2| \le |B_1|$ B_2 spans, B_1 linearly independent $\Longrightarrow |B_1| \le |B_2|$

$$\dim(\mathbb{C}^n, \mathbb{C}) = n$$
$$\dim(\mathbb{C}^n, \mathbb{R}) = 2n$$

Theorem 1.13.

- 1. $\{v_1, \ldots, v_n\}$ finite, linearly dependent. Then $\exists v_{m+1} \in V \text{ s.t. } \{v_1, \ldots, v_m, v_{m+1}\}$ is linearly independent.
- 2. $\{v_1, \ldots, v_m\}$ linearly dependent $\exists \text{subset} S \subset v_1, \ldots, v_m \text{ s.t. } S \text{ is linearly independent and } \text{Span}(\{v_1, \ldots, v_m\}) = S$

Corollary 1.4. $\{v_1, v_2, \ldots, v_m\}$ finite, lin. ind, V finite dim. then $\exists w_1, \ldots, w_r$ s.t. $\{v_1, v_2, \ldots, v_m\} \cup \{w_1, w_2, \ldots, w_r\}$ is a basis.

Lemma 1.14. V/F, $B = \{v_1, v_2, \dots, v_n\}$ is bijective with F^n

This bijection requires a choice of basis.

Definition 1.8. (V, B), V vector space over F, $B = \{v_1, v_2, \ldots, v_n\}$. $v \in V$ can be written as a coordinate of V, (a_1, \ldots, a_n) where

$$\sum a_i v_i = v$$

2 Linear Transformation

Definition 2.1. V, W vector spaces over field F. A linear transformation T from V to W is a function (mapping) $T: V \to W$.

Such a linear transformation preserves:

1.
$$v, w \in V \implies T(v+w) = Tv + Tw$$

2.
$$c \in F, v \in V \implies T(cv) = cT(v)$$

Definition 2.2. A homomorphism from V to W is a linear transformation from V to W.

Definition 2.3. An isomorphism is a homomorphism that is both 1-1 and onto.

Lemma 2.1. Vector space V, basis $B = \{v_1, v_2, \dots, v_n\}$, another vector space W and map $T: V \to W$. Then, T is a unique transformation such that $T(v_1), T(v_2), \dots, T(v_n)$.