High-Bandwidth Memory Interface Design

Chulwoo Kim
ckim@korea.ac.kr
Dept. of Electrical Engineering
Korea University, Seoul, Korea

February 17, 2013

Outline

- □ Introduction
- Clock Generation and Distribution
- Transceiver Design
- ☐ TSV Interface for DRAM
- □ Summary
- References

Outline

- Introduction
 - DRAM 101
 - Simplified DRAM Architecture and Operation
 - Differences of DRAM (DDRx, GDDRx, LPDDRx)
 - Trend
 - Memory Interface: Differences and Issues
- Clock Generation and Distribution
- □ Transceiver Design
- TSV Interface for DRAM
- Summary
- References

Chulwoo Kim 3 of 86

DRAM 101

DRAM DDR4 Die Photo

Bank 0	Ba 1		Bank 2	Bank 3	Bank 8	Bank 9	Bank 10	Bank 11
		Sup	ply Voltag	ge	VDD=1.2	V, VPP=2.	5V	
	<u> </u>	Process			38nm CMOS /3-metal			
Dools		Ban	ks		4-Bank Group, 16 Bank			Dant
Bank		Data Rate			2400 Mbps K			Bank
4		Nun	nber of IC)'s	X4 / X8			15

[1] K. B. Koo et al., ISSCC 2012, pp. 40-41

Simplified DRAM Architecture

* BLSA: Bit line sense amplifier

Concept of DRAM operation

Pre-fetch Timing(DDR1,BL*=2)

□ Number of GIO channel=Np \times Ndq=2 \times 8=16 (DDR1 x8)

* tCCD : CAS to CAS delay

[2] JEDEC, JESD79F, pp. 24-29

* CL : CAS latency

* BL: Burst length

Pre-fetch Diagram(DDR1)

- Pre-fetch operation
 - 2-bit pre-fetch
 - [2×Ndq] data access

(If the output data rate is **400Mbps**, the internal data rate is **200Mbps**)

Pre-fetch Timing(DDR2,BL=4)

 \square Number of GIO channel=Np×Ndq=4×8=32 (DDR2 x8)

* RL: READ latency

[3] JEDEC, JESD79-2F, pp. 35

Pre-fetch Diagram(DDR2)

- □ Pre-fetch operation
 - 4-bit pre-fetch
 - [4 × Ndq] data access

(If the output data rate is **800Mbps**, the internal data rate is **200Mbps**, same as **DDR1**)

Pre-fetch Timing(DDR3,BL=8)

□ Number of GIO channel=Np × Ndq=8 × 8=64 (DDR3 x8)

[4] JEDEC, JESD79-3F, pp. 62

Pre-fetch Diagram(DDR3)

- Pre-fetch operation
 - 8-bit pre-fetch
 - [8 × Ndq] data access

(If the output data rate is **1.6Gbps**, the internal data rate is **200Mbps**, same as **DDR1**)

Bank Grouping Timing(DDR4,BL=8)

Number of GIO channel= $Np \times Ndq \times Ngroup=8 \times 8 \times 4 = 256(DDR4 \times 8)$

[5] JEDEC, JESD79-4, pp. 77-78

[6] T. Y. Oh et al., ISSCC 2010, pp. 434-435

Pre-fetch & Bank Grouping(DDR4)

- Pre-fetch operation
 - 8-bit pre-fetch
 - Bank grouping

[1] K. B. Koo et al., ISSCC 2012, pp. 40-41

Differences of DDRx,GDDRx,LPDDRx

	DDRx	GDDRx	LPDDRx	
Architecture	Bank Bank PAD Bank Bank	Bank Bank PAD Bank Bank	PAD Bank Bank Bank PAD	
Application	PC/Server	Graphic card	Mobile/Consumer	
Socket	DIMM	On board	MCP*/PoP*/SiP*	
IO	×4/×8	×16/×32	×16/×32	
Unique Function		Single uni-directional WDQS, RDQSVDDQ terminationCRC, DBIABI	■No DLL ■DPD* ■PASR* ■TCSR*	

* MCP: Multi chip package

* PoP: Package on package

* SiP: System in package

* DPD: Deep power down

* PASR : Partial array self refresh

* TCSR: Temperature compensated self refresh

DDR Comparison

	DDR1	DDR2	DDR3	DDR4	
VDD [V]	2.5	1.8	1.5	1.2	
Data Rate [bps/pin]	200M~400M	400M~800M	800M~2.1G	1.6G~3.2G	
Pre-Fetch	2 bit	4 bit	8 bit	8 bit	
STROBE	Single DQS	Differential DQS, DQSB			
Interface	SSTL_2	SSTL_18	SSTL_15	POD_12	
New Feature		■OCD calibration ■ODT	Dynamic ODTZQ calibrationWrite leveling	 CA parity DBI*, CRC* Gear down CAL* · PDA* FGREF * · TCAR* Bank grouping 	

* DBI: Data bus inversion

* CRC: Cyclic redundancy check

* CAL: Command address latency

* PDA: Per DRAM addressability

* FGREF: Fine granularity refresh

* TCAR: Temperature controlled array refresh

GDDR Comparison

	GDDR1	gDDR2	GDDR3	GDDR4	GDDR5
VDD [V]	2.5	1.8	1.5	1.5	1.5/1.35
Data Rate [bps/pin]	300~900M	800M~1G	700M~2.6G	2.0G~3.0G	3.6G~7.0G
Pre-Fetch	2 bit	4 bit	4 bit	8 bit	8 bit
STROBE	Single DQS	Differential Bi-direction DQS*, DQSB	Single Uni-direction WDQS, RDQS		
Interface	SSTL_2	SSTL_2	POD-18	POD-15	POD-15
New Feature		■OCD* calibration ■ODT*	■ ZQ	■DBI ■Parity(opt)	No DLLPLL(option)WCK, WCKBCRC · ABI*RDQS(option)Bank grouping

^{*} DQS: DQ strobe signal, DQ is dada I/O Pin * ODT: On die termination

Chulwoo Kim

^{*} OCD: Off chip driver * ABI: Address bus inversion

LPDDR Comparison

	LPDDR1	LPDDR2	LPDDR3
VDD [V]	1.8	1.2	1.2
Data Rate [bps/pin]	200M~400M	200M~1066M	333M~1600M
Pre-Fetch	2 bit	4 bit	8 bit
STROBE	DQS	DQS_T, DQS_C	DQS_T, DQS_C
Interface	SSTL_18*	HSUL_12*	HSUL_12*
DLL	X	X	X
New Feature		■CA pin	ODT (High tapped termination)

^{*} SSTL: Stub series terminated logic

^{*} HSUL: High speed un-terminated logic

Trend

Memory Interface

- □ System Feature
 - Single-ended/high speed
 - Many channel (weak for coupling effect)
 - DDR: multi-drop (multi rank, multi DIMM) GDDR: point to point
 - Impedance discontinuities (stubs, connector, via, etc.)

- □ Issue
 - Reflection
 - Inter-symbol interference
 - Simultaneous switching output noise
 - Pin to pin skew
 - Poor transistor performance

Outline

- Introduction
- Clock Generation and Distribution
 - Delay-locked loop (DLL)
 - Duty cycle corrector (DCC)
 - Clock distribution
- □ Transceiver Design
- TSV
- Conclusions
- References

Chulwoo Kim 22 of 86

Basic DLL Architecture

Replica Delay Mismatch

Locking Range Considerations

[7] H.-W. Lee et al., submitted to TVLSI

Synchronous Mirror Delay (SMD)

Disadvantages of SMD

- Disadvantages
 - Mismatch between replica delay and input buffer & clock distribution
 - Coarse resolution

Register Controlled DLL

- □ Locking information is stored digitally in register
- Vernier type delay line increases resolution

[9] A. Hatakeyama et al., ISSCC 1997, pp. 72-73

Single Register Controlled Delay Line

Boundary Switching Problem

Seamless Boundary Switching

[10] J.-T. Kwak et al., VLSI 2003, pp. 283-284

Adaptive Bandwidth DLL w/ SDVS*

Duty Cycle Corrector (DCC)

- - Reduces duty cycle error
 - Enlarges valid data window for DDR
 - Needs to correct ±15% duty error at max speed
 - Can be implemented either in analog or digital type
- □ DCC Design Issues
 - Location of DCC (before/after DLL)
 - Embedded in DLL or not
 - Power consumption
 - Area
 - Operating frequency range
 - Locking time in case of digital DCC
 - Offset of duty cycle detector

Digital DCC

DCC in GDDR5

DLL-related Parameters & Reference

	DDR1	DDR2	DDR3/DDR3L	GDDR3	GDDR4
VDD	2.5V	1.8V	1.5V/1.35V	1.8V	1.5V
Lock time	200 cycles	200 cycles	512 cycles	2~5K cycles	2~20K cycles
Max. tDQSCK	600ps	300ps	225ps	180ps	140ps
Nominal speed	166MHz	333MHz	333MHz~ 800MHz	600MHz~ 1.37GHz	1.6GHz
Max. tCK	12ns	8ns	3.3n	3.3n	2.5ns
tXPDLL*(tXARD)	1×tCK	2×tCK	10×tCK	7×tCK+tIS	9×tCK+tIS

tXPDLL*(tXARD) - Timing for exit precharge power-down to any non-READ command

RELATED AREA	REFERENCE	Type
DCC block	[13][14][15]**[16][17]**[18][19]**[20][21]**	[]
Variable Delay Line	[14][18][19]**[20][22][23]**[24][25]*[26] [27][28]** [29] [30]	digital
Delay Control Logic	[13][14][15]**[16][18][20][21]**[23]*[25]*[26][28]** [29][30]**[31][32]*[33]**[34]*[35]*	[]* mixed
Replica	[27][28]**[30]**[32]	[]**
Low Jitter	[14][15]**[16][17]**[19]**[24][26][27][32]*[36]*	analog

Clock Distribution

[37] S.-J. Bae, et al., ISSCC, 2011, pp. 498-500

CML to CMOS Converter

- □ Global Clock Buffer
 - Current logic mode : high-speed clock
- ☐ CML to CMOS Converter Issue
 - Susceptible to noise
 - Jitter

Outline

- Introduction
- Clock Generation and Distribution
- □ Transceiver Design
 - Channel
 - Pre-emphasis
 - Equalizer
 - Crosstalk and skew
 - Training
 - Input buffer
 - Output driver
 - DBI/CRC
- TSV Interface for DRAM
- Summary
- References

Chulwoo Kim 39 of 86

Channel Characteristics

- DDRx
 - Multidrop
 - Performance and power
 - Many reflection components
 - PCB VIAS, DIMM connector....

□ GDDRx

- Point to point connection
- Performance target
 - High data rate
- Few reflection components
 - PCB VIAS

Emphasis for Channel Compensation

Pre-emphasis vs. De-emphasis

- Pre-emphasis: Transition Bit Boosting
- De-emphasis: Non-transition Bit Suppression

Basic De-emphasis Circuit

- ☐ The Number of Taps
 - Depends on the channel quality and bit rate
 - Usually from one to three taps

Pre-emphasis Circuit[1/2]

- Cascaded Pre-emphasis
 - Internal node ISI due to limited TR performance at high speed
 - Internal node pre-emphasis ratio would not be affected by the channel
- Less sensitive to the system environment or channel variations [38] K.-H. Kim *et al.*, JSSC, Jan 2006, pp. 127-134

Pre-emphasis Circuit[2/2]

Equivalent Linear Model

Din R_T Dout

CP R_T

CL

- □ Voltage Mode Driver Pre-emphasis
 - Additional zero by Cc
 - Time continuous pre-emphasis

[39] H. Partovi et al., ISSCC, 2009, pp.136-137

Decision Feedback Equalization (DFE)

- □ DFE cancels ISI without noise amplification
- ☐ Clock must be provided by DLL or PLL
- Critical path (feedback path) is important

[40] Y. Hidaka, CMOS Emerging Technologies Workshop, May 2010

Fast Feedback 1-tap DFE

Crosstalk

Timing	Effect	
<mark>\$</mark> \	Timing Jitter	
ф ДЧ	Signal Integrity	

Crosstalk is coupling of energy from one line to another

Staggered Memory Bus

- □ No discrepancy of propagation delay due to the crosstalk
 - Difference of transition point is $\tau/2$
 - Distance between channels with the same transition is increased
 - Jitter due to coupling from the adjacent channel is reduced

[42] K.-I. Oh et al., JSSC, Aug. 2009, pp. 2222-2232

Glitch Canceller

- ☐ Compensation for glitch by adding or subtracting current
 - \blacksquare Rise : I_{COMP} is added to the main driver
 - Fall: I_{COMP} is subtracted from the main driver

[42] K.-I. Oh et al., JSSC, Aug. 2009, pp. 2222-2232

Crosstalk Equalizer (TX)

- Crosstalk equalization at transmitter
- ☐ Cancel the crosstalk by the impedance calibration [37] S.-J. Bae *et al.*, ISSCC, Feb. 2011, pp. 498-500

Skew

- □ Differences of flight time between signals
- Skew can cause timing errors
- Key design criterion in high-speed systems

Pre/De-skew with Preamble Signal

- Skew cancellation circuit is put in each DRAM
- With estimated skew information
 - De-skew the data during write mode
- Pre-skew the data during read mode[43] S. H. Wang et al., JSSC, Apr. 2001, pp. 648-657

Fly-by Topology for DDR3

- T-branch Topology
 - CLK/CMD/Address are applied to each DRAM in parallel
 - Small skew bw. CLK and DQS
- □ Fly-by Topology
 - Better signal integrity to reduce the number of stubs and stub length
 - Easy to apply a single termination at the end of signal
 - DQ and DQS are applied to each DRAM at the same time
 - Large skew bw. CLK and DQS
 - Need to calibrate skew

[4] JEDEC, JESD79-3E, pp. 56-59

Write Leveling for DDR3

- Write Leveling
 - Timing mismatch compensation between CLK and DQS
 - Write leveling is applied to all DRAMs, respectively

[4] JEDEC, JESD79-3F, pp. 56-59

Training for GDDR5

- Adaptive Interface Training
- Ensure the Widest Timing Margins for All Signals
- Controlled by MCU

[44] W. Hubert et al., ATS, 2008, pp. 24-27

Training Sequence for GDDR5

Chulwoo Kim Transceiver Design 57 of 86

Training Example: Write Training

[44] W. Hubert *et al.*, ATS, 2008, pp. 24-27

Input Buffer

* m: The number of address channels which are depend on kinds of memory or its density

- Convert attenuated external signal to rail-to-rail signal
- Trade-off between high speed operation and power consumption

Input Buffer Comparison

- Differential Type
 - Complex circuit
 - High-speed input
 - Robust to noise
 - Stable threshold
 - Commonly used

- CMOS Type
 - Simple circuit
 - Low-speed input (CKE)
 - Susceptible to noise
 - Unstable threshold

DDR4 Input Buffer

- Gain Enhanced Buffer
 - Signal transition detector is added
 - \blacksquare The bias level (I) is controlled
 - Sensitivity can be enhanced at higher frequencies

□ Wide Common-Mode Range DQ Buffer

- Delivers stable inputs to the second stage Amp.
- Feedback network reduces the output common-mode variation

* CMFB: Common-mode feedback [46] K. Sohn *et al.*, ISSCC, 2012, pp. 38-40

Pseudo Open Drain (POD)

- □ Impedance Calibration
- Manual vs. Automatic
- External Resistor

Impedance Calibration

☐ Thermometer Code Control [47] C. Park *et al.*, JSSC, Apr. 2006, pp. 831-838

Multi Slew-rate Output Driver

☐ Binary-weighted Code Control [48] D. U. Lee *et al.*, ISSCC, 2008, pp. 280-613

Global ZQ Calibration

- ☐ Global Impedance Mismatch Error < 1%
 - PVT variation sensor

[49] J. Koo et al., CICC, 2009, pp. 717-720

Data Bus Inversion (DBI)

<Read operation>

- Power reduction technique independent of data pattern
- Dominant power (I/O Buffer)
 - P=a X C_{PCB} X V_{DD}^2 \rightarrow a < 0.5
- For high-BW memory, inversion time +CRC can be a bottle neck

[50] S.-S. Yoon et al., ASSCC 2008, pp.249-252

Cyclic Redundancy Check (CRC)

<Write operation>

Error type	Detection rate	
random single bit	100%	
random double bit	100%	
random odd count	100%	
burst ≤ 8	100%	

- □ Data error check for every unit interval (64 bits data only)
 - Redundancy bit : 1 bit/byte
- Speed bottleneck for high-BW
 - Time (READ DBI + READ CRC + CRC calculator) < 9 periods</p>

[50] S.-S. Yoon *et al.*, ASSCC 2008, pp.249-252

CRC (cont'd)

<64bit data shown in this figure>

 $CRC0 = D[0] \oplus D[6] \oplus D[7] \oplus D[8]$ $\oplus D[12] \oplus D[14] \oplus D[16]$ $\oplus D[18] \oplus D[19] \oplus D[21]$ $\oplus D[23] \oplus D[28] \oplus D[30]$ $\oplus D[31] \oplus D[34] \oplus D[35]$ $\oplus D[39] \oplus D[40] \oplus D[43]$ $\oplus D[45] \oplus D[48] \oplus D[49]$ $\oplus D[50] \oplus D[52] \oplus D[53]$ $\oplus D[54] \oplus D[56] \oplus D[60]$ $\oplus D[63] \oplus D[64] \oplus D[66]$ $\oplus D[67] \oplus D[68] \oplus D[69]$

- \square X⁸+X²+X¹+1 with an initial value of '0'
 - Algorithm for GDDR5 ATM-0M83
- Logic for algorithm takes a long time
 - To increase CRC speed → XOR logic optimization
 - CRC calculation time < T_{CRC}

Outline

- ☐ Introduction
- Clock Generation and Distribution
- □ Transceiver Design
- TSV Interface for DRAM
 - Bandwidth requirement
 - DRAM with TSV
 - TSV DRAM type
 - DRAM stacking type
 - Data confliction issue & solution
 - Failed TSV issue & solution
- Summary
- References

Chulwoo Kim 69 of 86

Bandwidth Requirements

	Gb/s/chip	Gb/s/pin
GDDR1	32	1
GDDR3	51.2	1.6
GDDR4	102.4	3.2
GDDR5	224	7
GDDR?	448 (?)	14 (?)

- Requirement
 - Next GDDR will require over 10Gb/s/pin data rate
- Restrictions
 - Very difficult over 10Gb/s/pin
 - Cost for performance improvements
 - Power consumption

DRAM with TSV

- Advantages of DRAM with TSV
 - Higher density per area

Chulwoo Kim

- Shorter interconnection: lower power, faster flight time
- Higher bandwidth with wide I/O
- ☐ Wide I/O easily achieves 448 Gb/s/chip at next GDDR (Example : 800 Mb/s/pin \times 512 I/O \approx 448 Gb/s/chip)

71 of 86

TSV DRAM Type

Туре	Main Memory	Mobile	Graphics
Architecture	Package	Controller	GPU Interposer
No. of TSV	500~1000 EA	1000~1500 EA	2000~3000 EA
Feature	Low powerHigh speed	Low powerMulti channelWide I/O	Max bandwidthMulti channel

Stacking Type

Туре	Homogeneous	Heterogeneous
Architecture		Slave Slave Slave Master
Feature	Same chipsLow cost	Slave : only cellsMaster : with peripheral

Data Confliction Issue

[51] H.-W. Lee et al., ISSCC, 2012, pp. 48-50

Separate Data Bus per Group

- Separate Data Bus per Bank Group
 - Less dependent on the PVT variation

[52] U. Kang et al., ISSCC, 2009, pp. 130-131

DLL-Based Self-Aligner

 Data alignment to external clock or clock of the slowest chip

[51] H.-W. Lee et al., ISSCC, 2012, pp. 48-50

Failed TSV Issue

Failed TSV

- a. TSV plating defect b. pinch-off
- Decreasing the assembly yield
- Increasing the total cost

[53] D. Malta et al., ECTC, 2010, pp. 1779-1775

TSV Check

A TSV connectivity check by using the internal circuit

[54] A.-C. Hsieh et al., TVLSI, Apr. 2012, pp. 711-722

TSV Repair

- Redundant TSVs for Failed TSV
 - Conventional: redundant TSVs are dedicated and fixed
 - Proposed : failed TSV is repaired with a neighboring TSV

[52] U. Kang et al., ISSCC, 2009, pp. 130-131

Outline

- ☐ Introduction
- □ Clock Generation and Distribution
- □ Transceiver Design
- TSV Interface for DRAM
- □ Summary
- References

Chulwoo Kim 80 of 86

Summary

- Although all types of DRAMs are reaching their limits in supply voltage, the demand of high-bandwidth memory is keep increasing
- For synchronization of external clock and output of DRAM, low power, small area, and low skew are important design parameters
- To achieve high-BW memory, many design techniques have been and will be adopted from other high-speed wireline transceivers
- □ TSV interface for DRAM might be a good solution to achieve high bandwidth and low power

Suggested Papers to See

- □ 17.1 "A 6.4Gb/s near-ground single-ended transceiver for dual-rank DIMM memory interface systems"
- □ 17.2 "A 27% reduction in transceiver power for singleended point-to-point DRAM interface with the termination resistance of $4 \times Z_0$ at both TX and RX"
- 17.3 "A 5.7mW/Gb/s 24-to-240Ω 1.6Gb/s thin-oxide DDR transmitter with 1.9-to-7.6V/ns clock-feathering slew-rate control in 22nm CMOS"
- □ 17.4 "An adaptive-bandwidth PLL for avoiding noise interference and DFE-less fast precharge sampling for over 10Gb/s/pin graphics DRAM interface"

- [1] K. Koo et al., "A 1.2V 38nm 2.4Gb/s/pin 2Gb DDR4 SDRAM with bank group and ×4 half-page architecture", in *IEEE ISSCC Dig. Tech. Papers*, pp. 40–41, 2012.
- [2] JEDEC, JESD79F.
- [3] JEDEC, JESD79-2F.
- [4] JEDEC, JESD79-3F.
- [5] JEDEC, JESD79-4.
- [6] T.-Y. Oh et al., "A 7Gb/s/pin GDDR5 SDRAM with 2.5ns bank-to-bank active time and no bank-group restriction", in *IEEE ISSCC Dig. Tech. Papers*, pp. 434–435, 2010.
- [7] H.-W. Lee et al., "Survey and analysis of delay-locked loops used in DRAM interfaces", submitted to IEEE Trans. VLSI Syst.
- [8] T. Saeki *et al.*, "A 2.5 ns clock access 250 MHz 256 Mb SDRAM with a synchronous mirror delay", in *IEEE ISSCC Dig. Tech. Papers*, pp. 374-375, 1996.
- [9] A. Hatakeyama *et al.*, "A 256 Mb SDRAM using a register-controlled digital DLL", in *IEEE ISSCC Dig. Tech. Papers*, pp. 72-73, 1997.
- [10] J.-T. Kwak *et al.*, "A low cost high performance register-controlled digital DLL for 1Gbps x32 DDR SDRAM", in *IEEE Symp. VLSI Circuits Dig. Tech. Papers*, pp. 283-284, 2003.
- [11] H.-W. Lee *et al.*, "A 1.6V 1.4Gb/s/pin consumer DRAM with self-dynamic voltage-scaling technique in 44nm CMOS technology", in *IEEE ISSCC Dig. Tech. Papers*, pp. 502-504, 2011.
- [12] D. Shin *et al.*, "Wide-range fast-lock duty-cycle corrector with offset-tolerant duty-cycle detection scheme for 54nm 7Gb/s GDDR5 DRAM interface", in *IEEE Symp. VLSI Circuits Dig. Tech. Papers*, pp. 138-139, 2009.
- [13] W.-J. Yun et al., "A 3.57 Gb/s/pin low jitter all-digital DLL with dual DCC circuit for GDDR3 DRAM in 54-nm CMOS technology," IEEE Trans. VLSI Sys., vol. 19, no. 9, pp. 1718-1722, Nov. 2011.
- [14] H.-W. Lee et al., "A 7.7mW/1.0ns/1.35V delay locked loop with racing mode and OA-DCC for DRAM interface," in *Proc. of Int. Symp. Circuits and Syst.*, pp. 3861-3864, 2010.
- [15] B.-G. Kim *et al.*, "A DLL with jitter reduction techniques and quadrature phase generation for DRAM interfaces," *IEEE J. Solid-State Circuits, vol. 44, no. 5*, pp. 1522-1530, May 2009.

- [16] W.–J. Yun et al., "A 0.1-to-1.5GHz 4.2mW all-digital DLL with dual duty-cycle correction circuit and update gear circuit for DRAM in 66nm CMOS Technology," in *IEEE ISSCC Dig. Tech. Papers*, pp. 282-283, 2008.
- [17] S. Kim *et al.*, "A low jitter, fast recoverable, fully analog DLL using tracking ADC for high speed and low stand-by power DDR I/O interface" in *IEEE Symp. VLSI Circuits Dig. Tech. Papers*, pp. 285-286, 2003.
- [18] T. Matano *et al.*, "A 1-Gb/s/pin 512-Mb DDRII SDRAM using a digital DLL and a slew-rate-controlled output buffer," *IEEE J. Solid-State Circuits*, vol. 38, no. 5, pp. 762-768, May 2003.
- [19] K.-H. Kim *et al.*, "Built-in duty cycle corrector using coded phase blending scheme for DDR/DDR2 synchronous DRAM application" in *IEEE Symp. VLSI Circuits Dig. Tech. Papers*, pp. 287-288, 2003.
- [20] J.-T. Kwak *et al.*, "A low cost high performance register-controlled digital DLL for 1 Gbps x32 DDR SDRAM" in *IEEE Symp. VLSI Circuits Dig. Tech. Papers*, pp. 283-284, 2003.
- [21] O. Okuda *et al.*, "A 66-400 MHz, adaptive-lock-mode DLL circuit with duty-cycle error correction [for SDRAMs]" in *IEEE Symp. VLSI Circuits Dig. Tech. Papers*, pp. 37-38, 2001.
- [22] F. Lin *et al.*, "A wide-range mixed-mode DLL for a combination 512 Mb 2.0 Gb/s/pin GDDR3 and 2.5 Gb/s/pin GDDR4 SDRAM," *IEEE J. Solid-State Circuits*, vol. 43, no. 3, pp. 631-641, Mar. 2008.
- [23] K.-W. Kim *et al.*, "A 1.5-V 3.2 Gb/s/pin Graphic DDR4 SDRAM With dual-clock system, four-phase input strobing, and low-jitter fully analog DLL," *IEEE J. Solid-State Circuits*, vol. 42, no. 11, pp. 2369-2377, Nov. 2007.
- [24] D.–U. Lee *et al.*, "A 2.5Gb/s/pin 256Mb GDDR3 SDRAM with series pipelined CAS latency control and dual-loop digital DLL," *in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers*, pp. 547-548, 2006.
- [25] S.–J. Bae *et al.*, "A 3Gb/s 8b single-ended transceiver for 4-drop DRAM interface with digital calibration of equalization skew and offset coefficients," *in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers*, pp. 520-521, 2005.
- [26] Y.-J. Jeon *et al.*, "A 66-333-MHz 12-mW register-controlled DLL with a single delay line and adaptive-duty-cycle clock dividers for production DDR SDRAMs," *IEEE J. Solid-State Circuits*, vol. 39, no. 11, pp. 2087-2092, Nov. 2004.
- [27] T. Hamamoto *et al.*, "A 667-Mb/s operating digital DLL architecture for 512-Mb DDR," *IEEE J. Solid-State Circuits*, vol. 39, no. 1, pp. 194-206, Jan. 2004.

- [28] S. Kim *et al.*, "A low-jitter wide-range skew-calibrated dual-loop DLL using antifuse circuitry for high-speed DRAM," *IEEE J. Solid-State Circuits*, vol. 37, no. 6, pp. 726-734, Jun. 2002.
- [29] J.-B. Lee et al., "Digitally-controlled DLL and I/O circuits for 500 Mb/s/pin x16 DDR SDRAM," in IEEE ISSCC Dig. Tech. Papers, pp. 68-69, 2001.
- [30] S. Kuge *et al.*, "A 0.18um 256-Mb DDR-SDRAM with low-cost post-mold tuning method for DLL replica," *IEEE J. Solid-State Circuits*, vol. 35, no. 11, pp. 726-734, Nov. 2000.
- [31] H.-W. Lee *et al.*, "A 1.6V 1.4Gb/s/pin consumer DRAM with self-dynamic voltage-scaling technique in 44nm CMOS technology," *IEEE J. Solid-State Circuits*. vol. 47, no. 1, pp. 131-140, Jan. 2012.
- [32] Y. K. Kim *et al.*, "A 1.5V, 1.6Gb/s/pin, 1Gb DDR3 SDRAM with an address queuing scheme and bang-bang jitter reduced DLL scheme" in *IEEE Symp. VLSI Dig. Tech. Papers*, pp. 182-183, 2007.
- [33] K.-H. Kim *et al.*, "A 1.4 Gb/s DLL using 2nd order charge-pump scheme with low phase/duty error for high-speed DRAM application," in *IEEE ISSCC Dig. Tech. Papers*, pp. 213-214, 2004.
- [34] J.-H. Lee *et al.*, "A 330 MHz low-jitter and fast-locking direct skew compensation DLL," in *IEEE ISSCC Dig. Tech. Papers*, pp. 352-353, 2000.
- [35] J. Kim *et al.*, "A low-jitter mixed-mode DLL for high-speed DRAM applications," *IEEE J. Solid-State Circuits*, vol. 35, no. 10, pp. 1430-1436, Oct. 2000.
- [36] H.-W. Lee *et al.*, "A 1.6V 3.3Gb/s GDDR3 DRAM with dual-mode phase- and delay-locked loop using power-noise management with unregulated power supply in 54nm CMOS," in *IEEE ISSCC Dig. Tech. Papers*, 2009, pp. 140-141.
- [37] S.-J. Bae et al., "A 40nm 2Gb 7Gb/s/pin GDDR5 SDRAM with a Programmable DQ Ordering Crosstalk Equalizer and Adjustable clock-Tracing BW," in *IEEE ISSCC Dig. Tech. Papers*, pp. 498-500, 2011.
- [38] K.-h. Kim *et al.*, "A 20-Gb/s 256-Mb DRAM with an inductorless quadrature PLL and a cascaded preemphasis transmitter," *IEEE J. Solid-State Circuits*, vol.41, no. 1, pp. 127-134, Jan. 2006.
- [39] H. Partovi *et al.*, "Single-ended transceiver design techniques for 5.33Gb/s graphics applications," in *IEEE ISSCC Dig. Tech. Papers*, pp. 136-137, 2009.
- [40] Y. Hidaka, "Sign-based-Zero-Forcing Adaptive Equalizer Control," in *CMOS Emerging Technologies Workshop*, May 2010.

- [41] S.-J. Bae *et al.*, "A 60nm 6Gb/s/pin GDDR5 graphics DRAM with multifaceted clocking and ISI/SSN-reduction techniques," in *IEEE ISSCC Dig. Tech. Papers*, pp. 278-279, 2008.
- [42] K.-I. Oh et al., "A 5-Gb/s/pin transceiver for DDR memory interface with a crosstalk suppression scheme," *IEEE J. Solid-State Circuits*, vol. 44, no. 8, pp. 2222-2232, Aug. 2009.
- [43] S. H. Wang *et al.*, "A 500-Mb/s quadruple data rate SDRAM interface using a skew cancellation technique," *IEEE J. Solid-State Circuits*, vol. 36, no. 4, pp. 648-657, Apr. 2001.
- [44] W. Hubert *et al.*, "GDDR5 training-challenges and solution for ATE-based test," in *Asian Test Symposium*, pp. 24-27, Nov. 2008.
- [45] JEDEC, JESD212.
- [46] K. Sohn *et al.*, "A 1.2V 30nm 3.2Gb/s/pin 4Gb DDR4 SDRAM with dual-error detection and PVT-tolerant data-fetch scheme," in *IEEE ISSCC Dig. Tech. Papers*, pp. 38-40, 2012.
- [47] C. Park et al., "A 512-mb DDR3 SDRAM prototype with CIO minimization and self-calibration techniques," *IEEE J. Solid-State Circuits*, vol. 41, no. 4, pp. 831-838, Apr. 2006.
- [48] D. Lee *et al.*, "Multi-slew-rate output driver and optimized impedance-calibration circuit for 66nm 3.0Gb/s/pin DRAM interface," in *IEEE ISSCC Dig. Tech. Papers*, pp. 280-613, 2008.
- [49] J. Koo *et al.*, "Small-area high-accuracy ODT/OCD by calibration of global on-chip for 512M GDDR5 application," in *Proc. IEEE CICC*, pp. 717-720, Sep. 2009.
- [50] S.-S. Yoon et al., "A fast GDDR5 read CRC calculation circuit with read DBI operation," *IEEE Asian Solid-State Circuits Conference*, pp. 249-252, 2008
- [51] H.-W. Lee *et al.*, "A 283.2µW 800Mbp/s/pin DLL-based data self-aligner for through silicon via (TSV) interface," in *IEEE ISSCC Dig. Tech. Papers*, pp. 48-50, 2012.
- [52] U. Kang et al., "8Gb 3D DDR3 DRAM using through-silicon-via technology," in *IEEE ISSCC Dig. Tech. Papers*, pp. 130-131, 2009.
- [53] D. Malta *et al.*, "Integrated process for defect-free copper plating and chemical-mechanical polishing of through-silicon vias for 3D interconnects," in *ECTC*, pp. 1769-1775, 2010.
- [54] A.-C. Hsieh *et al.*, "TSV redundancy: architecture and design issues in 3-D IC," *IEEE Trans. VLSI Systems*, pp. 711-722, Apr. 2012.