Física Nuclear y de Partículas Grado en Física UNED

Tema 5: Desintegraciones α , β y γ

César Fernández Ramírez Departamento de Física Interdisciplinar Universidad Nacional de Educación a Distancia (UNED)

Contextualización dentro de la asignatura

- Bloque I. Estructura nuclear
 - Tema 1. Principales características del núcleo atómico
 - Tema 2. La interacción nuclear. El deuterón y la interacción nucleón-nucleón
 - Tema 3. Modelos nucleares
- · Bloque II. Radioactividad y desintegraciones nucleares
 - Tema 4. Desintegración nuclear
 - Tema 5. Desintegraciones α , β y γ
- · Bloque III. Reacciones nucleares e interacción radiación-materia
 - Tema 6. Reacciones nucleares
 - Tema 7. Interacción radiación-materia
- Bloque IV. Física subnuclear
 - Tema 8. El Modelo Estándar de partículas elementales
 - Tema 9. Quarks y hadrones

Cronograma

	L	М	Х	J	V	S	D
Octubre		1	2	3	4	5	6
	7	8	9	10	11	12	13
	14	15	16	17	18	19	20
	21	22	23	24	25	26	27
	28	29	30	31			
Noviembre					1	2	3
	4	5	6	7	8	9	10
	11	12	13	14	15	16	
l I	18	19	20	21	22	23	24
	25	26	27	28	29	30	
Diciembre							1
	2	3	4	5	6	7	8
	9	10	11	12	13	14	15
	16	17	18	19	20	21	22
	23	24	25	26	27	28	29
	30	31					
Enero			1	2	3	4	5
	6	7	8	9	10	11	12
	13	14	15	16	17	18	19
	20	21	22	23	24	25	26
	27	28	29	30	31		

Bloque I	
	Tema 1
	Tema 2
	Tema 3
Bloque II	
	Tema 4
	Tema 5
Bloque III	
	Tema 6
	Tema 7
Bloque IV	·
	Tema 8
	Tema 9

Apertura foros				
Apertura TE				
PEC				
Periodo vacacional				
Cierre foros				
Exámenes				
Cierre TE				

Material disponible

- · Material disponible en el repositorio Github de la asignatura
 - https://github.com/cefera/FNyP
 - Esta presentación:
 - ./Presentaciones/Tema5.pdf
 - Código en Python asociado:
 - ./Notebooks/Tema5.ipynb

Esquema

- Introducción
- Desintegración α
- Desintegración β
 - · Captura electrónica
- Desintegración γ

Objetivos específicos

- Realizar los balances energéticos para las desintegraciones α , β y γ .
- Entender por qué en determinados núcleos se produce la emisión α .
- · Describir el proceso de emisión alfa. Efecto túnel.
- Conocer los tres tipos diferentes de desintegración β .
- Estudiar la teoría de Fermi de la desintegración β.
- Entender el espectro de emisión β . Dibujar e interpretar los diagramas de Kurie.
- Entender el significado de la violación de la conservación de la paridad en la interacción débil.
- Calcular las energías de emisión γ y predecir la probabilidad de transición.
- Estudiar el concepto de isómero y conocer algunos ejemplos.

Modos de decaimiento principales

Desintegración α

Propiedades generales de la desintegración α

- La partícula α es el núcleo ⁴He
- Su masa es 3726 MeV
- La partícula α puede existir en el núcleo ⇒ modelos de clúster
- $\cdot B_{\alpha} = 28 \text{ MeV}$
- Esta gran energía de ligadura hace que la mayoría de los núcleos con A>190 sean energéticamente inestables
- Para que la desintegración α sea detectable se ha de cumplir:
 - Periodo detectable, $T_{1/2} < 10^{16}$ años
 - Que sea más probable que otros procesos

Balance energético

- La conservación de la energía en el proceso: ${}^A_Z X \to_{Z-2}^{A-4} Y + \alpha$ con el núcleo padre en reposo proporciona: $m_X c^2 = m_Y c^2 + m_\alpha c^2 + T_Y + T_\alpha$
- · Para que la desintegración sea posible: $Q=\left(m_X-m_Y-m_{\alpha}\right)c^2=T_Y+T_{\alpha}>0$
- Teniendo en cuenta la conservación del momento lineal, $p_Y=p_\alpha$, y haciendo la aproximación no relativista, $T=p^2/2m$, se obtiene

$$T_{\alpha} = \frac{Q}{1 + m_{\alpha}/m_{Y}} \approx Q\left(1 - \frac{m_{\alpha}}{m_{Y}}\right) \approx Q\left(1 - \frac{4}{A - 4}\right)$$

que para núcleos con $A \sim 200$ implica que T_{α} es el 98% de Q

- La determinación de T_{α} permite determinar Q y por lo tanto se puede utilizar para determinar masa atómicas
- \cdot A pesar de ser Q>0 la desintegración no es inmediata debido a la barrera coulombiana

Modelo de Gamow

- Primera confirmación del efecto tunel predicho por la mecánica cuántica
- Se supone que la partícula α está en el pozo de potencial del núcleo
- Para escapar ha de superar la barrera coulombiana B
- Si Z y Z' son padre e hijo con Z = Z' + z. Si z = 2

$$V_{el}(r)=rac{1}{4\piarepsilon_0}rac{zZ'e^2}{r}pproxrac{2,88Z'}{r}$$
 MeV donde r está en fm

- $\begin{array}{l} \cdot \quad B(^{234} \cup) \sim 30 \, {\rm MeV}; \\ T_{\alpha}(^{238} {\rm Pu}) = 5,\!60 \, {\rm MeV}; \, T_{1/2}(^{238} {\rm Pu}) = 89,\!6 \, {\rm a\tilde{n}os} \end{array}$
- $K_{\alpha} = T_{\alpha} \approx Q > 0$

Probabilidad de desintegración α

- En la teoría de Gamow, la probabilidad de desintegración se expresa como el producto $\lambda = p_{\alpha}fP$ donde:
 - p_{α} es la probabilidad de que la partícula α preexista como tal en el interior del núcleo padre. Empiricamente se estima $p_{\alpha}\sim 0,1$
 - . f la frecuencia de colisión contra la barrera coulombiana $f=\frac{v_{\alpha}}{2R}=\frac{\sqrt{2K_{\alpha}/m_{\alpha}}}{2a}$ siendo K_{α} la energía cinética de la partícula α dentro del pozo que se puede estimar como $K_{\alpha}=T_{\alpha}$
 - \cdot P es el ccoeficiente de transmisión por la barrera $P=\mathrm{e}^{-2G}$ donde G es el factor de

Gamow
$$G=\frac{\sqrt{2\mu}}{\hbar}\int_a^b dr \sqrt{V(r)-T_\alpha}$$
 donde $\mu=\frac{m_\alpha M_{Z'}}{m_\alpha+M_{Z'}}\sim m_\alpha$

Coeficiente de Gamow

- · Se relaciona con el coeficiente de transmisión a través de una barrera
- Para un pozo cuadrado de altura B > T:

$$P = \left[1 + \frac{B^2}{4T(B-T)} \sinh^2(kd) \right]^{-1} \cot k = \sqrt{2m(B-T)}/\hbar$$

- En el límite $kd \to \infty$ (B >> T) se obtiene: $P = e^{-2kd}$
- En el caso más general, de un potencial coulombiano:

$$kd \Rightarrow \int_{a}^{b} dr \sqrt{\frac{2\mu}{\hbar^2} \left(V_b(r) - T_a\right)} \text{ siendo } V_b(r) = \frac{2Z'\alpha\hbar c}{r} + \frac{\ell(\ell+1)\hbar^2}{2\mu r^2} \text{ el}$$

potencial coulobiana más la barrera centrífuga

Emisión de otras partículas o núcleos

 La teoría de Gamow se puede aplicar al cálculo de la probabilidad de emisión de otros núcleos. Por ejemplo

	Proceso	Q (MeV)	T _{1/2}
²²³ Ra	²⁰⁹ Po+ ¹⁴ C	31,8	2,7×10 ⁷ años
	²¹⁶ Ra+ α	11,17	11,12 días

Espectroscopía y estructura nuclear

- Las emisiones α ponen de manifiesto
 la estructura de niveles del núcleo hijo
- En concreto la estructura fina
- Se producen decaimientos con diferentes valores de T_{lpha} (y por lo tanto Q_{lpha})
- Permite estudiar la estructura nuclear y determinar los números cuánticos de los niveles del núcleo hijo

Reglas de selección

El momento angular y la paridad se conservan

$$J_X = J_{X'} + \ell_{\alpha}$$
$$P_X = P_{X'}(-1)^{\ell_{\alpha}}$$

- $\begin{array}{l} \cdot \text{ Al ser } J_{\alpha}^{P} = 0^{+} \text{, si } \mathscr{C}_{\alpha} \neq 0 \Rightarrow J_{X} \neq J_{X'} \text{ y entonces} \\ \left| J_{X} J_{X'} \right| \leq \mathscr{C}_{\alpha} \leq J_{X} + J_{X'} \end{array}$
- Las reglas de selección se clasifican en dos conjuntos:
 - Transiciones entre núcleos par-par
 - Transiciones entre núcleos con A impar

Transiciones entre núcleos par-par

- Entre estados fundamentales será un proceso $0^+ \to 0^+$, v.g. $^{242}_{96}$ Cm \to^{238}_{94} Pu + α ($T_{1/2}=162,8$ días)
- Si los valores de ℓ_{α} son pares, aparecen bandas rotacionales (0+, 2+, 4+,...) con distintas probabilidades de transición para cada estado debido a los distintos valores de Q y de barrera centrífuga
- Si los valores de ℓ_{α} son impares, la paridad de los niveles cambiará y aparecen transiciones 0+ \rightarrow 1-, 3-, 5-, ...

Transiciones entre núcleos con A impar

- · Las reglas de selección no acotan el valor de \mathscr{C}_{lpha} , pudiendo existir varios \mathscr{C}_{lpha} posibles
- Se realizan medidas de la distribución angular de las partículas α que permiten determinar los momentos angulares orbitales
- · Ejemplos:

253
Er $\rightarrow ^{249}$ Bk + α (20,5 d) $7/2^{+} \rightarrow 7/2^{+}$
 251 Fm $\rightarrow ^{247}$ Cf + α (5,3 h) $9/2^{-} \rightarrow 7/2^{+}$
 229 Pa $\rightarrow ^{225}$ Ac + α (1,5 d) $5/2^{+} \rightarrow 3/2^{-}$

Desintegración β

Introducción

- La desintegración β nuclear es una manifestación de la interación débil que se estudiará en el «Tema 8: El Modelo Estándar de partículas elementales»
- En los núcleos hay tres procesos β

•
$$\beta$$
: $n \to p + e^- + \bar{\nu}_e$; ²³Ne \to ²³Na + $e^- + \bar{\nu}_e$

•
$$\beta^+$$
: " p " $\to n + e^+ + \nu_e$; ²⁵Al \to ²⁵ Mg + $e^+ + \nu_e$

• CE:
$$p + e^- \to n + \nu_e$$
; ⁴¹Ca + $e^- \to$ ⁴¹K + ν_e

- En todos ellos se produce un neutrino o un antineutrino (masa nula y espín 1/2)
- · El espectro de energías de los electrones es continuo
- La energía cinética máxima del electrón es $T_0pprox Q$
- · La existencia del neutrino es necesaria para explicar el espectro de energías y la conservación del momento angular, e.g.:

$$^{14}{\rm C}\,(J=0) \to ^{14}{\rm N}\,(J=1) + e^-(J=1/2) + \bar{\nu}_e\,(J=1/2)$$

Balance energético

• Los valores de Q de los tres procesos β nucleares se calculan:

$$X(Z,N) \to Y(Z+1,N-1) + e^- + \bar{\nu}_e$$

$$P^-: Q_{\beta^-} = \left[M(Z,N) - M(Z+1,N-1) \right] c^2$$

$$X(Z,N) \to Y(Z-1,N+1) + e^+ + \nu_e$$

$$P^+: Q_{\beta^+} = \left[M(Z,N) - M(Z-1,N+1) \right] c^2$$

$$X(Z,N) + e^- \to Y(Z-1,N+1) + \nu_e$$

$$CE: Q_{CE} = \left[M(Z,N) - M(Z-1,N+1) \right] c^2 - B_e$$
 donde $P_e \sim 10$ eV es la energía de enlace del electrón capturado

Ejemplos

Desintegración	Tipo	Q (MeV)	T _{1/2}
23 Ne → 23 Na + e^- + $\bar{\nu}_e$	β-	4,38	38 s
99 Tc \rightarrow 99 Ru + e^- + $\bar{\nu}_e$	β-	0,29	2,1×10 ⁵ años
$^{25}\text{Al} \rightarrow^{25} \text{Mg} + e^+ + \nu_e$	β +	3,26	7,2 s
124 I \rightarrow 124 Te + e^+ + ν_e	β +	2,14	4,2 días
$^{15}\text{O} + e^- \rightarrow ^{15}\text{N} + \nu_e$	CE	2,75	1,22 s
$^{41}\text{Ca} + e^- \rightarrow ^{41}\text{K} + \nu_e$	CE	0,43	1,0×10 ⁵ años

Ejemplo núcleo impar-impar

Vida media: 1,28×10⁹ años

$$^{40}_{19}$$
K (4⁻) \rightarrow^{40}_{18} Ar (2⁺); *CE* (10,67%)
 $^{40}_{19}$ K (4⁻) \rightarrow^{40}_{18} Ar (0⁺); β^{+} (0,002%)
 $^{40}_{19}$ K (4⁻) \rightarrow^{40}_{20} Ca (0⁺); β^{-} (89,3%)

Teoría de Fermi de la desintegración β (I)

 La regla de oro de Fermi proporciona la probabilidad de desintegración por unidad de tiempo

$$\lambda = \frac{2\pi}{\hbar} |\langle f | V | i \rangle|^2 \rho(E_f)$$

donde $H=H_0+V$ donde H_0 se corresponde con el hamiltoniano de los estado nucleares estacionarios y V es una perturbación, $\rho(E_f)$ es el espacio de fases

• El estado inicial es un núcleo en estado estacionario $|i\rangle = |J_i M_i \zeta\rangle$ donde ζ es el resto de números cuánticos

Teoría de Fermi de la desintegración β (II)

Consideramos los leptones finales como estados libres: ondas planas

$$|f\rangle = \frac{1}{\sqrt{V}} e^{i\vec{k}_e \cdot \vec{r}} \frac{1}{\sqrt{V}} e^{i\vec{k}_\nu \cdot \vec{r}} |J_f M_f \xi\rangle$$

. Se puede desarrollar: $\mathrm{e}^{i\vec{k}\cdot\vec{r}}=\sum_{\ell}\sqrt{4\pi(2\ell+1)}\,j_{\ell}(kr)Y_{\ell0}(\theta,0)$ en donde

$$\vec{k} = \vec{k}_e + \vec{k}_\nu$$
 y θ es el ángulo entre \vec{k} y \vec{r}

· Dado que las energía son bajas ($Q\sim$ MeV) se puede realizar la aproximación:

$$j_{\ell}(kr) \approx \frac{(kr)^{\ell}}{(2\ell+1)!!} \text{ con lo que: } |f\rangle = \frac{1}{V} \left[1 + i\sqrt{\frac{4\pi}{3}}krY_{10}(\theta,0) + \dots \right] |J_f M_f \xi\rangle$$

Densidad de estados finales (I)

· La densidad de estados finales en el volumen V de partículas con momento (p,p+dp) en un elemento de ángulo sólido $d\Omega$ es: $\rho(E_f)=\frac{dn}{dE_f}$ con

$$dn = \frac{Vd\Omega p^2 dp}{h^3}$$

- Las energías totales de los leptones serán $E_e=T_e+m_ec^2$ y $E_{\nu}=T_{\nu}=p_{\nu}c$

Densidad de estados finales (II)

- . Para el neutrino/antineutrino: $dn_{\nu_e} = \frac{V p_{\nu_e}^2 dp_{\nu_e}}{2\pi^2 \hbar^3} = \frac{V}{2\pi^2 \hbar^3 c^3} \left(T_0 T_e\right) \ dT_e$ suponiendo que la masa del neutrino es despreciable
- . Para electrón/positrón: $dn_e=\frac{Vp_e^2dp_e}{2\pi^2\hbar^3}F(Z',p_e)$ donde $F(Z',p_e)$ es la función de Fermi que da cuenta de los efectos coulombianos del e^\pm al atravesar el núcleo. En el límite no relativista $v_e\ll c$: $F(Z',T_e)=\frac{x}{1-\mathrm{e}^{-x}}$ donde $x=\pm 2\pi\alpha Z'c/v_e$, para e^\pm

Probabilidad de transición

$$\lambda(p_e) \equiv \frac{d\lambda}{dp_e} = \frac{1}{2\pi^3 \hbar^7 c^3} |H_{fi}'|^2 F(Z', T_e) p_e^2 (T_0 - T_e)^2$$

• En el caso de transiciones nucleares «prohibidas» hay que incluir un factor de forma $S(p_e,p_
u)$

Forma del espectro β y diagrama de Kurie

- El espectro β es continuo
- Suponiendo:
 - $|V_{\it fi}|^2$ es constante e independiente de T_e
 - · La masa del neutrino es despreciable

Se puede predecir el espectro ya que: $\sqrt{\frac{\lambda(p_e)}{p^2F}} \propto \left(T_0 - T_e\right)$, luego si se representa

$$N'=\sqrt{rac{\lambda(p_e)}{p^2F}}\sim\sqrt{rac{N_{exp}(p_e)}{p^2F}}$$
, la cuál se espera que sea una recta cuyo punto final sea T_0 . Dicha

recta es el llamado diagrama de Kurie. $N_{exp}(p_e)$ es el número de desintegraciones medidas experimentalmente por cada intervalo de momento del electrón p_e .

Si las transiciones fueran «prohibidas» se tendría que tener en cuenta el factor de forma S

Regla de Sargent

· La probabilidad de desintegración por unidad de tiempo se obtiene al integrar

$$\lambda = \int_0^{p_m ax} \frac{d\lambda}{dp_e} dp_e = k_1 f(Z', T_0) |V_{fi}|^2 \text{ en donde } k_1 = \frac{m_e^5 c^4}{2\pi^3 \hbar^7}$$

- Si la masa del neutrino es despreciable y $\mid V_{fi} \mid$ constante se puede escribir:
 - $f(Z',T_0) = \frac{1}{m_e^5 c^7} \int_0^{p_{max}} F(Z',T_e) p_e^2 \left(T_0 T_e\right)^2 dp_e \text{ que se suele calcular numéricamente}$
- Si suponemos $F(Z',T_e)=1$, $T_e\gg m_ec^2$, y definimos $|V_{fi}|^2=G_V^2|M_{fi}|^2$ donde M_{fi} es el elemento de matriz nuclear, se obtiene la regla de Sargent: $\lambda=\frac{G_V^2|M|^2}{2\pi^3\hbar^7c^3}\frac{T_0^5}{30}$ que

resulta en $\lambda \propto T_0^5$, regla que se verifica bastante bien para trasiciones permitidas y superpermitidas

Periodo comparativo

Se define: $ft \equiv fT_{1/2} = f(Z', T_0)T_{1/2} = \frac{\ln 2}{k_1 |V_{fi}|^2}$ que es la cantidad más representativa para el estudio de la desintegración β al depender sólo del elemento de matriz nuclear

- El valor experimental de ft va de 10^3 a 10^{20} s y se suele emplear para clasificar las
- desintegraciones β nucleares en superpermitidas, permitidas y prohibidas:
 - Superpermitidas (0⁺ \rightarrow 0⁺): $\log_{10} ft \approx 3.1 \sim 3.6$
 - Permitidas: $\log_{10} ft \approx 2.9 \sim 10$
 - 1°-prohibidas: $\log_{10} ft \approx 5 \sim 19$
 - 2°-prohibidas: $\log_{10} ft \approx 10 \sim 18$
 - 3°-prohibidas: $\log_{10} ft \approx 17 \sim 22$
 - 4°-prohibidas: $\log_{10} ft \approx 22 \sim 24$

Captura electrónica

- Hipótesis:
 - Sólo se emite una partícula en el estado final (el neutrino): la densidad de estados finales es proporcional a $p_{\nu}^2 \propto Q_{CE}^2$
 - El elemento de matriz nuclear es idéntico al de la desintegración β
 - Hay que incorporar la probabilidad $|\Psi_{\it K}(0)|^2$ de que un e^- de la capa $\it K$ se encuentre en el núcleo, $\it r\sim 0$

Por tanto:
$$\lambda_{CE} = \frac{G_V^2}{2\pi^3} |M_{fi}|^2 \frac{2\pi m_e}{c\hbar^4} \left(\frac{Z}{a_0}\right)^3 Q_{CE}^2$$

- Comparando λ_{CE} con λ_{β} se ve que CE domina a gran Z y β a energía elevada

Tipos de transiciones

- La conservación del momento angular implica tanto a los núcleos como a los leptones
- · La interacción débil no conserva la paridad
- Sólo tiene sentido estudiar la relación de paridad entre núcleos La interacción se puede escribir: $|V_{fi}|^2 = \sum |\langle f | \mathcal{O}_{\ell,m}(\beta) | i \rangle|^2$

$$\ell$$
.m

- Donde el orden de la transición viene dada por el momento angular orbital ℓ
 - Si $\ell=0$ la transición se denomina permitida
 - Si $\ell \neq 0$ la transición se denomina prohibida

Reglas para las transiciones

- · La diferencia entre los espines de los estados nucleares $\Delta J=|J_f-J_i|$ coincide con el momento angular total de los leptones $\Delta J=s_e+s_\nu+\ell$
- La relación entre las paridades de los núcleos $P_i = P_f (-1)^\ell$ está definida por el momento angular orbital
- Por los tanto, para cada valor de ℓ se tiene:
 - · Transiciones de Fermi: $\Delta J=\ell$ ya que $s_e+s_\nu=0$. El electrón y el neutrino están en estado singlete. Hay cambio de la tercera componente de isospín.
 - Transiciones de Gamow-Teller: $\Delta J=\ell+1$ ya que $s_e+s_\nu=1$. El electrón y el neutrino están en estado triplete. Además hay cambio del isoespín total.

Transiciones de Fermi y Gamow-Teller

- Transiciones de Fermi: $\Delta J=\ell$ ya que $s_e+s_\nu=0$. $\langle f\,|\,T_\pm\,|\,i\rangle = \sqrt{T_i(T_i+1)-T_{3i}(T_{3i}\pm1)}\delta_{J_fJ_i}\delta_{M_fM_i}\delta_{T_fT_i}\delta_{T_{3f}T_{3i}\pm1}$ donde $T_\pm=\sum_{j=1}^A \tau_\pm(j)$, es el isoespín nuclear
- Transiciones de Gamow-Teller: $\Delta J=\ell+1$ ya que $s_e+s_\nu=1$.

$$\langle f \left| \sum_{j=1}^{A} \tau_{\pm}(j) \sigma(j) \right| i \rangle$$

· Para ambos tipos de transiciones hay transiciones permitidas y prohibidas

. Nota:
$$\tau_{\pm}=\mp\frac{1}{\sqrt{2}}\left(\tau_{x}\pm i\tau_{y}\right)$$
 y $\tau_{0}=\tau_{z}$

Transiciones permitidas, $\ell=0$

• Fermi: $\vec{s}_e + \vec{s}_{\nu}$ en estado singlete

$$\Delta J=0; \quad \Delta T=0; \quad T_i+T_f\neq 0; \quad |\Delta T_3|=1; \quad P_i=P_f$$

- No hay cambio de paridad entre los núcleos
- Si $0^+ \rightarrow 0^+$ se denominan superpermitidas
- Gamow-Teller: $\vec{s}_e + \vec{s}_{\nu}$ en estado triplete

$$\Delta J = 0, \pm 1; \quad \Delta T = 0,1; \quad T_i + T_f \neq 0; \quad |\Delta T_3| = 1; \quad P_i = P_f$$

- No hay cambio de paridad entre los núcleos
- La transición $T=0 \rightarrow 0$ no está permitida
- · El caso más general es en el que se dan ambas transiciones

$$|V_{fi}|^2 = G_V^2 \left[\langle F \rangle^2 + g_A^2 \langle GT \rangle^2 \right]$$

Transiciones prohibidas, $\ell \neq 0$

- En este caso los operadores $\mathcal{O}_{\ell,m}$ tienen $\ell \neq 0$.
- · Las probabilidades de transición serán pequeñas ya que al ser $\ell > 0$ habrá barreras de momento angular que dificultan la emisión de los leptones.
- Dos términos:
 - · Fermi: Induce cambios en los espines nucleares con $\Delta J=\ell$
 - · Gamow-Teller: Induce cambios en los espines nucleares con $\Delta J=\ell\pm 1$

Resumen de transiciones

Transición	ℓ	$\log_{10} ft$	$\Delta_{f c}$ Fermi	J GT	ΔT	ΔP
Superpermitida	0	3,1~3,6	$0^+ \to 0^+$	No existe	0	No
Permitida	0	2,9~10	0	(0), 1	0, 1 $0 \rightarrow 0$ prohibida	No
1°-prohibida	1	5~19	(0),1	0, 1, 2	0, 1	Sí
2°-prohibida	2	10~18	(1), 2	2, 3	0, 1	No
3°-prohibida	3	17~22	(2), 3	3, 4	0, 1	Sí
4°-prohibida	4	22~24	(3), 4	4, 5	0, 1	No

El paréntesis () indica no permitida si el estado final o el inical son cero

Desintegración doble β

- $\cdot A(Z,N) \to A(Z+2,N-2) + 2e^- + 2\bar{\nu}_e$
- Este proceso permite profundizar en la naturaleza del neutrino (Tema 8. El Modelo Estándar de partículas elementales)
 - Desintegración doble β sin neutrinos

$$^{82}_{34}$$
Se \rightarrow^{82}_{36} Kr + 2e⁻ + 2 $\bar{\nu}_e$
 $^{82}_{34}$ Br \rightarrow^{82}_{36} Kr + e⁻ + $\bar{\nu}_e$

Desintegración γ

Introducción

- Un núcleo puede estar en estados excitados, X^* .
 - Tema 3. Modelos nucleares.
- Los núcleos se pueden desexcitar:
 - Emitiendo un nucleón si su energía de excitación, E_i-E_f , es mayor que la energía de separación nucleónica, S_p o S_n . El tipo de núcleo cambia.
 - Emitiendo fotones (radiación γ). El tipo de núcleo no cambia. Interacción electromagnética. Los fotones tienen energía $E_{\gamma} \sim 0.1$ a 10 MeV (rayos X ~ 10 keV, átomos excitados \sim eV). En el modelo de capas se entienden como transiciones entre niveles
- Las medidas de transiciones γ nos proporciona información sobre los estados nucleares entre los que se produce la transición.

$$X^* \rightarrow X + \gamma$$

Desarrollo multipolar

- Recordad Electromagnetismo I y II
- Vimos algo en el Tema 1 cuando hablamos de deformación nuclear: momento cuadrupolar eléctrico
- · Los núcleos se desintegran emitiendo fotones al contener cargas en movimiento que radia energía
- La radiación emitida se clasifica según su momento angular y su paridad (buenos números cuánticos de la interacción EM)
- El orden del multipolo L es 2^L , v.g. $L=0,1,2,3,\ldots$ monopolo, dipolo, cuadrupolo, octupolo, ...
- Se distinguen dos tipos de multipolos:
 - Eléctricos (EL): asociados a la distribución de cargas y paridad $(-1)^L$. E0, E1, E2, ...
 - · Magnéticos (ML): asociados a las corrientes y al espín con paridad $(-1)^{L+1}$. M0, M1, M2, ...
- Si estado nuclear inicial es J_i y el final J_f emitiendo un fotón con multipolaridad L, dado que el fotón tiene $J_\gamma^P=1^-$, la multipolaridad L es debida al espín del fotón y al momento angular orbital ℓ entre el fotón y el núcleo residual

Conservación de la energía

- $\Delta E = E_i E_f$
- · Aplicando la conservación de la energía y del momento:
 - $\cdot E_i = E_f + E_{\gamma} + T_R$
 - $\cdot \vec{0} = \vec{p}_{\nu} + \vec{p}_{R}$
- Si consideramos al núcleo en retroceso como no relativista:

Si consideramos al núcleo en retroceso como no relativista:
$$\Delta E = E_{\gamma} + \frac{E_{\gamma}^2}{2Mc^2} \text{ donde } M \text{ es la masa del núcleo en retroceso}$$

. Se obtiene
$$E_{\gamma} = \Delta E - \frac{(\Delta E)^2}{2Mc^2}$$

Transiciones electromagnéticas

La regla de oro de Fermi proporciona la probabilidad de desintegración por unidad de tiempo

$$\lambda = \frac{2\pi}{\hbar} |\langle f|H'|i\rangle|^2 \rho(E_f) \text{ en donde } H' = H'_1 + H'_2 \text{ siendo } H'_1 = -\frac{q}{m} \overrightarrow{A} \cdot \overrightarrow{p} + \frac{q^2}{2m} \overrightarrow{A}^2 \text{ el término eléctrico y } H'_2 = -g_s^p \frac{\mu_N}{\hbar} \overrightarrow{S}_p \cdot \overrightarrow{B} = -g_s^p \frac{\mu_N}{\hbar} \overrightarrow{S}_p \cdot \left(\overrightarrow{\nabla} \times \overrightarrow{A}\right) \text{ la interacción de un dipolo (el espín del protón) con el campo magnético.}$$

Recordando la transparencia 27:
$$\rho(E_f)=\frac{dn}{dE_f}$$
 y $dn=\frac{Vd\Omega\,p^2dp}{h^3}=\frac{V\omega^2}{(2\pi)^3\hbar c^3}d\Omega dE_f$, habiendo usado

$$E_f = \hbar \omega = pc$$

$$\lambda_{fi}(EL) = \frac{2\pi}{\hbar} \sum_{u} \int \left| \langle f | \frac{e}{m} \overrightarrow{A} \cdot \overrightarrow{p} | i \rangle \right|^{2} p_{f} d\Omega$$

obteniéndose:

$$\lambda_{fi}(ML) = \frac{2\pi}{\hbar} \sum_{l} \left| \left\langle f | g_s^p \frac{\mu_N}{\hbar} \vec{S}_p \cdot \left(\overrightarrow{\nabla} \times \overrightarrow{A} \right) | i \right\rangle \right|^2 p_f d\Omega$$

Estimadores de Weisskopf

• Bajo las hipótesis de operadores entre estados de protón individual en el modelo de capas esférico y suponiendo que el momento angular orbital del protón en el estado final es $\ell=0$, se obtienen los estimadores de Weisskopf:

$$\lambda(EL) = \frac{8\pi\alpha c(L+1)}{L[(2L+1)!!]^2} \left(\frac{E_{\gamma}}{\hbar c}\right)^{2L+1} \left(\frac{3}{L+3}\right)^2 R^{2L}$$

$$\lambda(ML) = \frac{8\pi\alpha c(L+1)}{L[(2L+1)!!]^2} \left(\frac{E_{\gamma}}{\hbar c}\right)^{2L+1} \left(\frac{3}{L+2} \frac{\hbar}{m_p c}\right)^2 \left(\mu_p - \frac{1}{L+1}\right)^2 R^{2L-2}$$

que proporcionan una primera aproximación. Los estimadores siempre sobreestiman la probabilidad de transición, con desviaciones de un orden de magnitud o más respecto a las medidas experimentales. Señalando la importancia de efectos colectivos nucleares.

Reglas de selección

- Hacen referencia al espín y la paridad de los estados nucleares
 - · Momento angular: $\vec{J}_i = \vec{J}_f + \vec{L} \Rightarrow |J_f J_i| \le L \le J_f + J_i$
 - Paridad: $P_i = P_f P_L$

$$E1,M1 : \Delta J = 0, \pm 1(0 \nrightarrow 0)$$

- $E2,M2:\Delta J = 0, \pm 1, \pm 2(0 \Rightarrow 0,0 \Rightarrow 1,1/2 \Rightarrow 1/2)$
- y así sucesivamente, recordando que:
 - \cdot para transiciones eléctricas $P_L=(-1)^L$ y para magnéticas $P_L=(-1)^{L+1}$

Resumen

- Desintegración α
 - La partícula α es el núcleo ⁴He. Interacción fuerte.
 - · Muchos núcleos pesados se desintegran por este mecanismo. Efecto túnel.
 - · Reglas de selección: Se conservan el momento angular y la paridad.
- Desintegración β
 - β^+ , β^- y captura electrónica
 - Espectro continuo
 - · Producto de la interacción débil. No se conserva paridad
 - · Clasificación de las transiciones: prohibidas y permitidas
 - Desintegración doble β
- Desintegración γ
 - Transiciones nucleares
 - Interacción electromagnética
 - · Permite el estudio de la estructura nuclear