

Queremos dephir un nuevo tipo de maquina
capat de saber si un string w n'eve o no
de aplicar las reglas de un CFG.
Como vinos es facil aear {0 ⁿ 1 ⁿ :neIN} = [
mediate CFG (S → 0S1 , S→ E)
lo que sugiere que necesitamos "memoia" para
poder recordar el número de ceros y poder
Compaalo en el de I's pou poder reconocer L.
Un PUSHDOWN AUTOMATA es ma maquina
no determinista con finitos estados y un
Stack de memoria
con operaciones abbA
push y pop b
en la porte de <u>b</u> modificaciones de lectro y
arriba A escritura solo
esubur un Por la izquierda.
String de un consto de un rijo.
rijo Mas formalmente tenemos
,
Des: Un PDA es una 6-tupla
Def: Un PDA es un 6-topla (K, Z, I), A, s, F)
nvevol
K — Conjunto funto de estados
Z — Carjento prito de símbolos
Conjuto huito de simbolos del Stack
△ relación de transición; subcajunto queto de
$\triangle \subseteq K \times (\Sigma \cup \{\epsilon\}) \times \Gamma^* \times K \times \Gamma^*$
Nulva silvación
S — Estado inicial S E K

F - Conjute de estados de aceptación F & K

```
La interpretución de elementos en A es así:
   ((q, a, r), (r, \beta)) \in \Delta
 Estando en estado q, leo símbolo a y los prineros ITI símb.
 del stack son P entorces paso al estado r y reemplato
  I por B en el stack
         Stade-anter = TS >>> stade-dispres = BS
  Caso especial P = E "push P"

Caso especial B = E "pop N"
Par representa el estado actual de un cálculo necesstamo,
          Into gurdada en el

stado

símbolos que

stack

quedan en

cl. input
Deg: (p, x, L) | (q, y, 7) (=>
      \exists ((p, \alpha, \gamma), (q, \beta)) \in \Delta \quad \text{tal que}
       x=ay , d= 88 , 3= 88
          Nuestos automatas son NO DETERMINISTAS
          y podra haben muchas reglas € △
          que aphica es cada institu.
        - := Reflixive histoire dosne de
Def: M a cepta w \in \mathbb{Z}^* si

\exists r \in \mathcal{F} tal que

(s, w, \varepsilon) \vdash (r, \varepsilon, \varepsilon)
```

Ejercicio: Constrya un PDA que capture expesiones balanceadas en préntesis Ejecuro: L = { wowr: we {a,b}"} = {a,b,c}" "Acumulo w en el stack y lugo la leo al nevés abbbab en stock babbba $K = \{S, f\}$ $\{(S, a, \epsilon), (S, a)\}$ escabe [(S, b, E), (S,b)] escribe la palaha atis di un c [(S,C, E), (f, E)] } canbia al estudo "compra" [(f, a, a), (f, E)] compra leta po leta y va [(f, b, b), (f, E)] Koonado Ejercias Carstrya un automata que captre el lenguaje L de palabas en la mina catadad de a's y b's. (El stack dibe recorde de cual hay mas Teorema: Para todo CFG G existe in PDA M con L(G) = L(M)<u>Dem:</u> El automata intenten veirica que la palaba dada w preda obtenerse mediate un "Left-most drivation" del símbolo inicial usando el NO-determinismo para adivinar cuól regla de sustituión utilizar. El uso de leftmost demations es para hacerlas compatibles con la estretra de Stacle pres la méquina debe in haciendo sustituciones y comprado.

 $M = \{p,q\}, \sum_{i,j} V_{i,j} A_{i,j} p_{i,j} \{q\}\}$ $\stackrel{\text{initial diduction posiendo } S$ $[(p, \epsilon, \epsilon), (q, S)] \text{ en el stack}$

$$[(q, a, a), (q, E)] \xrightarrow{\text{Si a es terminal}} \\ \text{Ia borro.} \\ \text{Va} \in \Sigma.$$

$$[(q, E, A), (q, W)] \xrightarrow{\text{Si }} A \longrightarrow W \in \mathbb{R}$$

Ejemplo: Canadre $G = \mathbb{Z} = \{S \rightarrow aSa, S \rightarrow bSb, S \rightarrow c\}$ con $V = \{S, a, b, c\}$ ear $L(q) = \{w \in w^{R} : w \in \{a, b\}^{*}\}$

Que hau en abbcbba?

si dc (V-Σ) V*υ (ε)

Dem: Moshenos que $5 \stackrel{*}{=} \text{ was} (q, w, S) \vdash_{\mathsf{H}} (q, \varepsilon, \mathsf{A})$

"=) Inducción en la longitud de una "LEFTMONT DERIVATION"

pura WA

" = number of uses of trustions coming from the who The