. Show the due used on wreal · Quases hipefully Mon b

. Project int on Monday

09: UNCERTAINTY INTERVALS

Larsen & Marx 5.3, 5.9 Prof Amanda Luby

Up until this point, our focus has been on point estimation: if we have a parameter, what's the single "best guess" for that parameter, and how do we evaluate how good of a guess it is?

Consider two estimators A and B that both have large-sample normal sampling distributions.

Χ

1 Confidence Intervals

Since we know the *shape* and *parameters* of the *sampling distribution*, we know that:

$$Z = \frac{B-\theta}{.25} \sim N(0,1)$$

$$P(-2 \le \frac{B-\theta}{.25} \le 2) = .95$$

By inverting the terms in the probability statement, this is equivalent to:
$$P(-2 \cdot .25 \le B - \theta \le 2 \cdot .25) = .95$$

$$P(-2 \cdot .25 - B \le -\theta \le 2 \cdot .25 - B) = .95$$

$$P(B-2 \cdot .25 \le \theta \le B + 2 \cdot .25) = .95$$

-> A is widor -> more we use a compared to B

From ULT:
$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \rightarrow N(\mu, \frac{\sigma^2}{100}) \rightarrow N(\mu, \frac{56.38^3}{100})$$

Example: Among a random sample of 100 recent college graduates, the average monthly student loan payment was \$287, with a standard deviation of \$56.33. Construct a 95% confidence interval for μ , the average monthly student loan payment among the population. 174,400]

[275,297]

$$P(\bar{x} - 2.56.33) \leq \mu \leq \bar{x} + 2.56.33$$

Caution: What can we conclude?

- (a) 95% of recent college grads have monthly student loan payments in this range
- (b) There is a .95 probability that \bar{X} falls in this range \Rightarrow 100% change
- (c) 95% of samples with n = 100 would fall in this range \rightarrow ND Carry

(d) There is a .95 probability that μ falls within this range 0.00 - 0.00 with 0.00 mercual, 0.00 (e) 95% of samples with 0.00 would give an interval that contains 0.00 with 0.00 mercual. **Example:** Below are the CI's from 100 samples where each $X_i \sim N(300, 60)$.

Example: Find a 90% confidence interval for μ .

Example: Suppose we want to precisely estimate μ such that our confidence interval is no wider than \$15.

they played video games. Let θ be the true proportion of adults who play video games. Give (a) the <i>exact</i> sampling distribution of X , (b) the approximate sampling distributions for X and X/n . Use your answer from (b) to set up 95% CI's for X and X/n .
A conservative CI for X/n :

2 Bayesian Intervals

In the Bayesian estimation framework, uncertainty intervals are no longer based on long-term *coverage* but are instead based on *uncertainty in the posterior*.

Recall from Notes03 that if $X_1,...,X_n \sim \mathrm{Bernoulli}(p)$ and $p \sim \mathrm{Beta}(\alpha,\beta)$, then $p|\sum X \sim \mathrm{Beta}(\sum X_i + \alpha, n - \sum X_i + \beta)$.

Example: Using the Pew Research sample above, what is the resulting posterior distribution $p|\sum X_i$? Assume a uniform prior distribution: $p \sim Beta(1,1)$. How could we construct a 95% posterior probability interval?

Recall from Notes03 that if $X_1,...,X_n \sim N(\theta,\sigma^2)$ (σ^2 known) and $\theta \sim N(a,b^2)$, then $\theta|X \sim N(\frac{b^2\sum X_i+\sigma^2a}{nb^2+\sigma^2},\frac{\sigma^2b^2}{nb^2+\sigma^2})$.

Example: From our student loan payment example, $\sum X_i = \$287, n = 100$ and we'll assume $\sigma^2 = 60^2 = 3600$. Let's also assume a "flat" prior: $\theta \sim N(250, 100^2)$. What's the resulting posterior distribution? What's a 95% posterior probability interval?

3 Z Tables

2.5%. 2.5%.

 Table A.1
 Cumulative Areas under the Standard Normal Distribution

								面			
								4			
				/	0	z	_				
	0	1	2	3	4	5	6	7	8	9	
-3.	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010	
-2.9	0.0019	0.0018	0.0017	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014	
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019	
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026	
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036	
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048	
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064	- ATT CORRECTION
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084	75 Berum
-2.2	0.0139	0.0136	0.0132	0.0129	0.0126	0.0122	0.0119	0.0116	0.0113	0.0110	2.50 percunt
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143	~ 7 = -101
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183	F=-1:10
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0238	0.0233	
-1.8	0.0359	0.0352	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0300	0.0294	
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367	
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455	
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0570	0.0559	
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0722	0.0708	0.0694	0.0681	ST purc
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823	_ 0 1
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985	
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170	2=-1.645
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379	1.01
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611	
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867	
-0.7	0.2420	0.2389	0.2358	0.2327	0.2297	0.2266	0.2236	0.2206	0.2177	0.2148	
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451	
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776	
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121	
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557 0.3936	0.3520	0.3483	
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052 0.4443	0.4013	0.3974	0.3936	0.3897	0.3839	
$-0.1 \\ -0.0$	0.4602 0.5000	0.4562 0.4960	0.4522 0.4920	0.4483	0.4443	0.4404	0.4364	0.4323	0.4681	0.4641	
-0.0	0.5000	0.4900	0.4920	0.4000	0.4040	0.4001	0.4701	0.4721	0.4001	0.1071	

(cont.)

Table A.I	Cumulative Areas	under the Standard	Normal Distribution ((cont.)
-----------	------------------	--------------------	-----------------------	---------

z	0	1	2	3	4	5	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9648	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9874	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Source: From Samuels/Witmer, Statistics for Life Sciences, Table 3, p. 675, © 2003 Pearson Education, Inc. Reproduced by permission of Pearson Education, Inc.

4 Alternative to a z-table

COMMON Z-SCORES

```
qnorm(.005)

[1] -2.575829
    qnorm(.025)

[1] -1.959964
    qnorm(.05)

[1] -1.644854
    qnorm(.0975)

[1] -1.295929
    qnorm(.095)
```