# **Алгоритми в графи с тегла на ребрата. Оценки за сложност.**

Когато говорим за сложност на алгоритми в графи, ще имаме предвид два показателя – броя n на върховете и броя m на ребрата.

**Дефиниция:** Нека G(V,E) е свързан граф и  $c:E\to R$  е функция с реални стойности, дефинирана по ребрата на графа. Стойността  $c(e),e\in E$ , наричаме цена или тегло на реброто e. Нека D(V,E') е покриващо дърво на G(V,E). Цена (тегло) на дървото ще наричаме сумата  $c(D) = \sum_{e\in E'} c(e)$ . Покриващото дърво  $D_0(V,E_0)$  на G(V,E) наричаме тинимално (максимално), ако  $c(D_0) \le c(D)$  (съответно  $c(D_0) \ge c(D)$ ), за всяко друго покриващо дърво D на G(V,E).

Забележка: Понятията максимално и минимално покриващо дърво са аналогични, затова ще говорим за оптимално покриващо дърво, означавайки с това понятие кое да е от двете. Ще разглеждаме само минимално покриващо дърво. Аналогично изводи могат да се правят за максимално покриващо дърво, ако се замени min c max, и се обърнат неравенствата.

<u>Теорема:</u> Нека  $D_0(V,E_0)$  е свързан граф с ценова функция на ребрата  $c:E\to R$  и  $\varnothing\subset U\subset V$ . Нека  $e=(v_i,v_j)\in E$  е такова, че  $v_i\in U,v_j\notin V$  и e има минимално тегло измежду всички такива ребра. Тогава съществува МПД (минимално покриващо дърво)  $D_0(V,E_0)$  на  $\mathsf{G}(V,E)$ , такова че  $e\in E_0$ .

Доказателство: Допускаме, че не съществува МПД което да съдържа реброто e. Взимаме си произволно МПД D(V,E'). От допускането,  $e \notin E'$ . Образуваме графа  $G'(V,E' \cup \{e\})$ . Очевидно G' има точно 1 цикъл, който поне още един път пресича границата м/у {U} и {V\U}. Нека това да бъде реброто (u,v), но e има минимално тегло измежду всички такива ребра  $\Rightarrow c(e) \leq c(u,v)$ . Строим дървото  $D'(V,E' \cup \{e\} - \{(u,v)\})$ , което съдържа e. D' е покриващо дърво на G(V,E) и  $c(D') \leq c(D)$ . Ако допуснем, че  $c(D') < c(D) \Rightarrow$  противоречие с това, че D(V,E') е минимално покриващо дърво.

Сега ще разгледаме едни от най-популярните алгоритми за построяване на МПД, а именно алгоритъма на Прим, и алгоритъма на Крускал

**Алгоритъм на Прим:** Нека е даден G(V,E) и функция  $c:E\to R$ , задаваща теглата на ребрата му. Алгоритъмът на Прим строи минимално покриващо дърво с корен зададен връх  $r\in V$  на G.

#### Процедура:

1)  $D_0(V_0, E_0)$ ,  $V_0 = \{r\}$ ,  $E_0 = \emptyset$  in k = 0.

- 7. Алгоритми в графи с тегла на ребрата. Оценки за сложност.
- 2) Нека сме построили  $D_k(V_k, E_k)$  . Търсим реброто  $e = (v_i, v_j)$  ,  $v_i \in V_k$  , а  $v_j \notin V_k$  , което да има минимално тегло и построяваме  $D_{k+1}(V_{k+1}, E_{k+1}), V_{k+1} = V_k \cup \{v_j\}, E_{k+1} = E_k \cup \{e\}$  и k = k+1.
- 3) Ако  $V_k = V$  край и обявяваме  $D_k(V_k, E_k)$  за оптимално, иначе преминаваме към стъпка 2).

Забележка: Ако за реализацията на алгоритъма използваме матрица на съседства, сложността му ще бъде  $O(n^3)$ . Ако използваме двоична пирамида и списък на наследниците, сложността може да се сведе до  $O(m\log n)$ . С използване на пирамида на Фибоначи, можем да ускорим алгоритъма до  $O(m+n\log n)$ .

Алгоритъм на Крускал: Нека е даден G(V,E) и функция  $c:E\to R$ , задаваща теглата на ребрата му. Алгоритъмът строи минимално покриващо дърво на G (некореново МПД).

### Процедура:

- 1) Сортираме ребрата на G в нарастващ ред на цената и нека този ред е  $e_0, e_1, ..., e_m$ .
- 2) От всеки връх на графа образуваме тривиално дърво  $D_{\nu}(\{v\},\{\})$  .
- 3) За всяко ребро  $e_i = (v_{i_1}, v_{i_2}), i \in I_m$  (по реда определен в сортирането)

правим следното: ако  $v_{i_1}$  и  $v_{i_2}$  са в различни дървета D'(V',E') и D''(V'',E'') обединяваме двете дървета с реброто  $e_i$   $D(V' \cup V'',E' \cup E'' \cup \{e_i\})$ .

Забележка: Алгоритъмът на Крускал строи МПД, понеже на всяка стъпка взима най-лекото ребро (понеже обхождаме ребрата от най-леко към най-тежко), т.е. ако едно ребро е по-леко от друго то се избира по-рано за построяване на дървото. Ако двата края на едно ребро са в едно и също поддърво то второто ребро няма да се вземе (понеже вече има по-леки ребра които сме взели за свързването на двата края).

Забележка: Алгоритъмът на Крускал е със сложност  $O(m \log m)$ , което е сложността на сортиране на ребрата. Действително, сложността на стъпка 2 е O(n), а използвайки абстрактния тип "разбиване", имплементиран с гора от "повдигани" на всяка find-стъпка коренови дървета, за стъпка 3) ще получим сложност само  $O(m.\log^* n)$ .

<u>Най-къс път в граф:</u> Нека G(V,E) е свързан граф, а  $c: E \to R^+$  теглова функция на ребрата с положителни реални стойности. *Претеглена* дължина на пътя  $v_{i_0}, v_{i_1}, ..., v_{i_l}$  в графа ще наричаме  $\sum_{j=0}^{l-1} c(v_{i_j}, v_{i_{j+1}})$ . Пътят от  $v_{i_0}$  до  $v_{i_l}$  с

най-малка претеглена дължина наричаме *най-къс път* от  $v_{i_0}$  до  $v_{i_l}$ . Естесвено е да дефинираме претеглена дължина 0 за тривиален път от v до v.

Ще разгледаме следната задача: Да се намеят дължините на най-късите пътища (и самите най-къси пътища) от зададен връх  $v_0$  до всички останали върхове на свързания граф G(V,E) с теглова фунцкия  $c:E\to R^+$ .

В частния случай c(e) = 1,  $\forall e \in E$ , претеглената дължина е равна на дължината на пътя. За този частен случай решението на задачата се дава от следната:

**Теорема:** Нека G(V,E) е свързан граф с теглова функция c(e) = 1,  $\forall e \in E$  и D е покриващо дърво на G корен  $v_0$ , построено в ширина. Пътищата в D от корена  $v_0$  до останалите върхове на G са най-къси пътища от  $v_0$  до тези върхове.

*Доказателство:* Ще направим индукция по i (нивата на обхождане в ширина).

- 1) i = 0  $L_0 = \{v_0\}$  и най-късият път от  $v_0$  до  $v_0$  е тривиалният път с дължина 0.
- 2) Допускаме, че твърдението е вярно за върховете от ниво i.
- 3) Ще докажем, че дължините на най-късите пътища от  $v_0$  до върховете от  $L_{i+1}$  са равни на i+1 и значи пътищата от корена до тези върхове в дървото са най-къси. Допускаме че  $\exists v \in L_{i+1}$ , за който дължината на най-късия път от  $v_0$  до  $V\left(v_0,...,w,v\right)$  е k < i+1.  $\Rightarrow$  пътят  $v_0,...,w$  е най-къси път от  $v_0$  до w и дължината му е k-1 < i, Но съгласно индукционното предположение  $w \in L_{i+1}$ , което е противоречие с това че  $v \in L_{i+1}$  (v трябва да е от  $L_i$ ).

**Алгоритъм на Дийкстра:** Даден е свързан граф G(V,E) с теглова функция  $c:E \to R^+$  и начален връх  $v_0 \in V$ . Да се намери дърво на най-късите пътища от  $v_0$  до всички останали върхове от G.

Процедура: Нека  $V=\{v_0=0,1,2,...,n\}$ . ще използваме два масива — dist и part. dist[i] ще съдържа временно най-късият път от  $v_0$  до i, в part[i] ще пазим бащата (предшестващия връх) на i по този път. На всяка стъпка алгоритъмът ще намира най-късия път до един от върховете, образувайки множеството VISITED, от върхове за които най-късият път е намерен. В началото на алгоритъм VISITED=  $\{0\}$  ( само  $v_0$  е посетен и дължината на най-късия път е 0).

1) Разширяваме  $c: E \to R^+$  до  $c^*: V \times V \to R^+$ , където

7. Алгоритми в графи с тегла на ребрата. Оценки за сложност.

$$c^*: V \times V \to R^+ = \begin{cases} c(v_i, v_j), (v_i, v_j) \in E \\ \text{безкрайност}, (v_i, v_j) \notin E \end{cases}$$

- 2) Heкa dist[0]=0; part[0]= -1; VISITED=  $\{0\}$ , a dist[i]= $c^*(0,i)$  и part[i]=0, за i=1..n.
- 3) Потвтаряме n пъти следните стъпки 3.1) Избираме връх  $j \notin \text{VISITED}$ , за който dist[j] е минимално и го добавяме към посетените върхове VISITED = VISITED  $\cup \{j\}$ .
  - 3.2) За всеки връх  $k \notin \text{VISITED}$  пресмятаме

 $\operatorname{dist}[k] = \min(\operatorname{dist}[k], \operatorname{dist}[j] + c^*(j,k))$ . Ако min e  $\operatorname{dist}[j] + c^*(j,k)$ , тогава part[k] = j.

Както се забелязва, алгоритъмът взима първият върх с минимално временно разстояние до началният връх и обявява това разстояние за минимално. Ще докажем че това поведение на алгоритъмът на Дийкстра е основателно. За краткост в следващите твърдения вместо VISITED ще използваме U.

<u>Лема:</u> Върховете на графа влизат в U в ненамаляващ ред на дължината на най-късите си пътища (монотонно свойство)

#### Доказателство:

- 1) При  $U = \{0\}, d_0 = 0.$
- 2) Допускаме че твърдението е вярно за някакво k, т.е.  $d_0 \le d_1 \le ... \le d_k$ , където  $d_i$  е дължината на най-късия път на върха  $v_i$ , влязал в U на i-тата стъпка.
- 3) Допускаме, че  $d_0 \le d_1 \le ... \le d_k > d_{k+1}$ . Но  $d_{k+1} = \min(d_{k+1}, d_k + c^*(v_k, v_{k+1}))$ , а  $c^*(v_k, v_{k+1}) > 0 \Rightarrow d_{k+1} < d_k + c^*(k, k+1)$ , което е невъзможно понеже когато сме избирали  $d_k$ , то  $d_k < d_{k+1} \Rightarrow$  противоречие.

**Дефиниция:** Нека G(V,E) е граф,  $V=\{0,1,...,n\}$ . Нека  $U\subset V$ ,  $U\neq \emptyset$  и  $0,i_1,i_2,...,i_{k-1},i_k$  е път от 0 до  $i_k$ , такъв че  $0,i_1,i_2,...,i_{k-1}\in U$ . Такъв път наричаме специален път по отнощение на U

<u>**Теорема:**</u> Нека U ⊆ V е получено след поредна стъпка на алгоритъма на Дийкстра, тогава:

- I)  $\forall i \in U$  в dist[i] е дължината на най-късият път от 0 до i (и за  $i \neq 0$  в part[i] е бащата на i по този най-къс път).
- **II)**  $\forall k \notin U$  в dist[k] е дължината на най-късия специален път (по отношение на U) от 0 до k (в part[k] е бащата на k по този най-къс път).

Доказателство: Ще докажем паралелно I) и II) с индукция по построяването на U

- 1) Heka  $U = \{0\}$ .
- **I)** Тривиалният път е най-къс път от 0 до 0 (0 е корен на бъдещото дърво на най-късите пътища, следователно няма баща.
- **II)** Специален път до k е само реброто  $(0, \kappa)$ , тъй като U=  $\{0\}$ . В действителност, в този момент  $\operatorname{dist}[k]$  съдържа дължината на съответното ребро (безкрайност за тези които не са свързани с 0). Освен това за всеки връх k в part[k] е посочен като баща 0, което съответства на така получените временно най-къси пътища.
  - 2) Да допуснем че твърденията I) и II) са в сила за някое U.
  - 3) Нека  $U' = U \cup \{j\}$
- I) За  $\forall i \in U$  в  $\mathrm{dist}[i]$  е дължината на най-късият път съгласно индукционното предположение I). Да допуснем, че запомненето в  $\mathrm{dist}[j]$  не е дължина на най-къс път от 0 до j (съответно запомненият път в рагt не е най-къс). Но съгласно индукционното предположение II) това е най-късият специален път до j по отношение на U. Откъдето следва, че най-късият път не е специален и поне веднъж напуска U преди да стигне до j. Нека да означим с у първият връх  $\notin U$ , по този път, а с z предпоследния връх по



запомнения в рагt път. От това че специалният път 0,...,z,j не е най-къс следва, че dist[j]= $c^*(0,...,z,j)>c^*(0,...,x,y,...,j)>c^*(0,...,x,y)$ , Второто неравенство идва от това че ребрата са неотрицателни. Но 0,...,x,y е най-къс специален път до е най-къс специален път до у  $\Rightarrow$  dist[y]=  $c^*(0,...,x,y)<$  dist[j], но това е противоречие с избора на j. Алгоритъмът на Дийкстра трябваше да избере у. Следователно допускането е невярно и специалният път до j е глобално най-къс.

- **II)** Съществуват 3 възможности за  $k \notin U$  след разширяването на U с ј:
- а) dist[k] да остане най-къс специален път до k и спрямо  $U^{\prime}-$  алгоритъмът отчита тази възможност.
- б)  $\operatorname{dist}[k] = \operatorname{dist}[k] + c^*(j,k)$  да стане най-къс специален път до k спрямо U'. Алгоритъмът отчита и тази възможност.
- в) най-късият специален път до k да минава през j, но j не е предпоследен връх. Нека предпоследният връх по най-късия специален път до върха j е x от U (т.е. x е влязал в U преди



j).  $\Rightarrow c^*(0,...,j) < c^*(0,...,j,...,x)$ , защото теглата на ребрата са положителни. Но това е в противоречие с Лемата за монотонност.

Няма други случаи, понеже индукционното предположение изключва възможността да има минимален специален път, неизползващ ј, различен от запомнения

Забележка: Алгоритъмът има сложност  $O(n^2+m) = O(n^2)$ , Понеже за всеки връх се опитваме да намерим най-краткият път до останалите непосетени. Такава сложност ще получим, ако пазим дължините на временно най-късите пътища в масив. Но ако пазим най-късите пътища в приоритетна опасшка и представим графа със списък на съседите, можем да получим алгоритъм със сложност  $O((n+m)\log n) = O(m\log n)$ —добра при графи с малко ребра. Но най-добра сложност се постига с използване на пирамида на Фибоначи —  $O(m+n\log n)$ .

**Алгоитъм на Флойд:** Нека е даден граф G(V, E), алгоритъмът намира най-кратките разстояния между всяка двойка върхове от графа и то без да е необходима допълнителна памет. Ще използваме с матрица на теглата A[i][j] на графа G. В началото в A[i][j] стои стойността на реброто (i, j), ако има такова или  $\infty$  в противен случай. Нека n = |V|

## Процедура:

```
for (k = 1; k \le n; k++) {

for (i = 1; i \le n; i++) {

for (j=1; j \le n; j++) {

if (A[i][j] > A[i][k] + A[k][j]) {

A[i][j] = A[i][k] + A[k][j] }
}
}
```

Забележка: Алгоритъмът започва с реброто между м/у i и j, като временно най къс път — най-къс път не минаващ през други върхове. Да допуснем че знаем дължините на най-късите пътища от всеки връх до всеки друг връх, не минаващи през върховете k, k+1,...,n. Тогава на поредната k-та стъпка алгоритъмът проверява само дали пътят през върха k не е по-къс от текущо намереният и ако е така, запомня неговата дължина. Алгоритъмът е със сложност  $\Theta(n^3)$ , понеже има 3 вложени цикъла.