Estructuras Algebraicas Primer examen parcial	1 ^{er} Apellido:	3 de abril de 2019 Tiempo 1 h 30'
Depto. Matemática Aplicada T.I.C. E.T.S. de Ingenieros Informáticos Universidad Politécnica de Madrid	Nombre: Número de matrícula:	Calificación:

Para que sean consideradas como válidas, todas las respuestas deben estar adecuadamente justificadas.

- 1. (2 puntos) En el conjunto $G = \mathbb{Z} \times \mathbb{Z}$ se define la siguiente operación: $(a,b)*(c,d) = (a+(-1)^bc,b+d)$. Estudiar si (G,*) es un grupo. En caso afirmativo estudiar si es abeliano y si es isomorfo a $(\mathbb{Z} \times \mathbb{Z}, +)$.
- 2. (2 puntos) En el grupo (S_6, \circ) , se considera el elemento: $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 1 & 3 & 6 & 5 \end{pmatrix}$.
 - a) Obtener, en forma de producto de ciclos disjuntos, todos los elementos del subgrupo $K = \langle \alpha \rangle$ e indicar el inverso de cada uno de los elementos de K.
 - b) Estudiar si el conjunto $\alpha A_6 \alpha^{-1}$ es un subgrupo de (S_6, \circ) , y en caso afirmativo, estudiar si se trata de un subgrupo normal. $(A_6$ es el subgrupo arternado de S_6)
- 3. (2 puntos)
 - a) Sean (G,\cdot) un grupo y $a\in G$. Estudiar si la aplicación $f:G\to G$ definida por $f(x)=axa^{-1}$ es un homomorfismo de grupos, en caso afirmativo calcular la imagen.
 - b) Si |G|=8 y $g:G\to D_2$ es un homomorfismo suprayectivo, obtener, salvo isomorfismos, el núcleo de g.

4. (2 puntos)

- a) En el grupo $(U_9 \times \mathbb{Z}_4 , \cdot_9 \times +_4)$, se considera el subgrupo $H = \langle 4 \rangle \times \langle 2 \rangle$. Obtener el grupo cociente $U_9 \times \mathbb{Z}_4/H$ y sus factores invariantes.
- b) Sea (G,*) un grupo abeliano tal que $G=A\times B\times C$ siendo |A|=15, |B|=10 y |C|=4. Obtener todos los posibles los factores invariantes de G. Estudiar en qué casos el grupo (G,*) contiene al menos un elemento de orden 8 o al menos uno de orden 4.

5. (2 puntos)

- a) En (S_6, \circ) , se consideran los elementos $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 2 & 5 & 4 & 6 \end{pmatrix}$, $\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 1 & 6 & 5 \end{pmatrix}$. Calcular $\beta^{41} \circ \gamma^{42}$.
- b) Encontrar todos los homomorfismos que existen del grupo $(\mathbb{Z}_{10}, +_{10})$ en el grupo $(\mathbb{Z}_6, +_6)$. Para los casos no triviales obtener el núcleo, la imagen y establecer el isomorfismo dado por el primer teorema de isomorfía.

Soluciones

- 1. Es grupo: La operación está claramente bien definida.
 - a) Es asociativa: $((a,b)*(c,d))*(e,f) = (a+(-1)^b+(-1)^{b+d}c,b+d+f) = (a,b)*((c,d)*(e,f))$
 - b) Tiene elemento neutro: e = (0, 0)
 - c) Todo elemento tiene un opuesto: $(a, b)^{-1} = ((-1)^{1-b}a, -b)$

El grupo no es abeliano: $(1,2)*(4,3)=(5,5)\neq (3,5)=(4,3)*(1,2)$ $(\mathbb{Z}\times\mathbb{Z},+)$ es un grupo abeliano, por tanto no es isomorfo a (G,*).

- 2. a) $\alpha = (1,4,3)(5,6) \Rightarrow$ $K = \{e = (1), a_1 = (1,4,3)(5,6), a_2 = (1,3,4), a_3 = (5,6), a_4 = (1,4,3), a_5 = (1,3,4)(5,6)\},$ $a_1^{-1} = a_5, a_5^{-1} = a_1, a_2^{-1} = a_4, a_4^{-1} = a_2, a_3^{-1} = a_3, e^{-1} = e.$
 - b) $\alpha A_6 \alpha^{-1} \subseteq A_6$ y $|A_6| = |\alpha A_6 \alpha^{-1}|$ por ser $g: A_6 \to \alpha A_6 \alpha^{-1}$ definida por $g(h) = \alpha h \alpha^{-1}$ una aplicación biyectiva $\Rightarrow \alpha A_6 \alpha^{-1} = A_6 \Rightarrow \alpha A_6 \alpha^{-1} \le S_6$
- 3. a) La aplicación está bien definida, ya que si $a,x\in G\Rightarrow a^{-1}\in G$ y $axa^{-1}\in G$. Es un homomorfismo de grupos: $f(x)f(y)=(axa^{-1})(aya^{-1})=a(xy)a^{-1}=f(xy)$. Además, para todo $h\in G$, se verifica que $a^{-1}ha\in G$ y se tiene que $f(a^{-1}ha)=h\Rightarrow f$ es suprayectiva $\Rightarrow \operatorname{im}(f)=G$.
 - b) Por el primer teorema de isomorfía: $G/\ker(g) \approx D_2 \Rightarrow |\ker(g)| = 2 \Rightarrow \ker(g) \approx \mathbb{Z}_2$
- 4. a) $U_9 \times \mathbb{Z}_4/H = \{(1,0)H, (1,1)H, (2,0)H, (2,1)H\}$, siendo: $(1,0)H = \{(1,0), (1,2), (4,0), (4,2), (7,0), (7,2)\}$, $(1,1)H = \{(1,1), (1,3), (4,1), (4,3), (7,1), (7,3)\}$, $(2,0)H = \{(2,0), (2,2), (8,0), (8,2), (5,0), (5,2)\}$, $(2,1)H = \{(2,1), (2,3), (8,1), (8,3), (5,1), (5,3)\}$. $U_9 \times \mathbb{Z}_4/H \approx \mathbb{Z}_2 \times \mathbb{Z}_2$
 - b) G puede ser isomorfo a uno de los siguientes grupos: $\mathbb{Z}_{60} \times \mathbb{Z}_{10}$ que sí tiene elementos de orden 4, pero no tiene de orden 8. $\mathbb{Z}_{30} \times \mathbb{Z}_{10} \times \mathbb{Z}_2$ que no tiene elementos de orden 4 ni de orden 8.
- 5. a) $\beta = (2,3)(4,5), \gamma = (1,2,3,4)(5,6).$ $\beta^{41} \circ \gamma^{42} = \beta \circ \gamma^2 = (1,2,5,4,3)$
 - b) $\varphi: \mathbb{Z}_{10} \to \mathbb{Z}_{6}$, definida por $\varphi([a]_{10}) = [ka]_{6}$, siendo $k \in \{0, 3\}$. Para $k = 3 \Rightarrow \ker(\varphi) = \langle [2]_{10} \rangle = \{[0]_{10}, [2]_{10}, [4]_{10}, [6]_{10}, [8]_{10} \}$ y $\mathbb{Z}_{10}/\langle [2]_{10} \rangle \approx \operatorname{im}(\varphi) = \langle [3]_{6} \rangle$, mediante el isomorfismo: $\phi: \mathbb{Z}_{10}/\ker(\varphi) \to \langle [3]_{6} \rangle$ definido por: $\phi([a]_{10}\ker(\varphi)) = [3a]_{6}$