

A new variational family for Bayesian phylogenetics

Lloyd T. Elliott¹, Evan Sidrow¹, Alexandre Bouchard-Côté²

¹Simon Fraser University, ²University of British Columbia

MC Workshop, Vancouver, August 2025

Genetics

- COVID-19 RNA genome:
 - AUUAAAGGUUUAUACCUUCC ...

SNP: Single Nucleotide Polymorphism (basepair substitution)

- Human DNA genome:
 - TAACCCTAACCCTA...

At what time did two observed genetic sequences coalesce?

(We observe N genetic sequences)

Related problems:

- Infer mutation rates
- Discover variants of interest/variants of concern (clade emergence)
- Impute missing or ancestral sequences

Phylogenetics

- Leaf nodes: Observed RNA sequences
- Interior nodes: Unobserved
- Goal: Infer tree topology and branch lengths

Bayesian phylogenetics

- Place a prior on trees (Kingman's coalescent), develop proposals (generalized stepping-stone sampling), perform MCMC (BEAST)
 - Largest dataset studied with BEAST: ~25k taxa (L. Lyu et al. PNAS 2025)

- Construct a variational family, perform variational Bayes (vB: more scalable?)
 - vB is an iterative inference algorithm that approximates the posterior using a family of functions (in contrast, MCMC approximates with a set of samples)

 Note: These methods both require a likelihood function to link the tree topology and branch lengths to the observed sequences (JC, K2P, GTR)

Single-linkage clustering

Construct a rooted tree topology from a distance matrix:

- 1: **Input:** Distances $T \in \mathbb{R}_{>0}^{\binom{N}{2}}$ and taxa set $\mathcal{X} = \{\{x_1\}, \{x_2\}, \dots, \{x_N\}\}.$
- 2: **for** n = 1, ..., N 1 **do**
- 3: $w^*, z^* \leftarrow \arg\min_{w,z} \{t^{\{w,z\}} : w,z \text{ have not coalesced by the } (n-1)\text{-st event}\}$
- 4: Set $W_n \in \mathcal{X}$ to be the set containing w^*
- 5: Set $Z_n \in \mathcal{X}$ to be the set containing z^*
- 6: $t_n \leftarrow t^{\{w^*,z^*\}}$
- 7: Remove W_n , Z_n from $\mathcal X$ and add $W_n \cup Z_n$ to $\mathcal X$
- 8: end for
- 9: $\tau \leftarrow \{\{W_n, Z_n\}\}_{n=1}^{N-1}$
- 10: $t \leftarrow \{t_n\}_{n=1}^{N-1}$
- 11: Return (τ, t)

Notation

- $\{W_n, Z_n\}$ is a bipartition (a.k.a. subsplit)
 - This means the *n*-th coalescent event involves a clade with leaves W_n , and a clade with leaves Z_n . $(W_n, Z_n \subseteq \{x_1, \dots x_N\}, W_n \cap Z_n = \emptyset)$

- $\{\{W_n, Z_n\}\}_{n=1}^{N-1}$ is a sequence of bipartitions
 - \circ The topology of a tree with N leaves can be uniquely described by N-1 bipartitions
 - $\circ \#W_1 = \#Z_1 = 1, W_{N-1} \bigcup Z_{N-1} = \{x_1, \ldots, x_n\}$

• For $n \leq N-1$, w and z have coalesced by the n-th event if there is a bipartition W_m, Z_m with $w \in W_m, z \in Z_m$ and $m \leq n$

Single-linkage clustering (cont)

$$T = \begin{pmatrix} A & B & C & D \\ A & * & 2 & 8 & 4 \\ * & * & 4.5 & 7 \\ C & * & * & * & 3 \\ D & * & * & * & * \end{pmatrix}, \quad T = \begin{pmatrix} A & B & C & D \\ * & 2 & 5 & 6 \\ * & * & 4 & 7 \\ * & * & * & 3 \\ * & * & * & * \end{pmatrix},$$

Example: Two matrices T result in the same phylogenetic tree after running single-linkage clustering. Entries of T that trigger coalescence are bolded

VIPR: Variational inference with products ...

... over bipartitions

- We consider single-linkage clustering to map from distance matrices to a tree
- We place the variational family as a distribution directly on the distance matrix (each off diagonal entry of the upper triangle is log normal)
- We derive the distribution of a tree implied by the variational family
- This distribution has a closed form as a sum over bipartitions (subsplits)

— E. Sidrow, A. Bouchard-Côté and L.T. Elliott. ICML 2025

The probability of a tree has a closed form ...

 \dots in terms of the distribution of the distance matrix T

Proposition. If the random variables $t^{\{u,v\}}$ are mutually independent, and all $q_{\phi}^{\{u,v\}}$ are continuous in ϕ and t for all $\{u,v\}$ with $u,v\in\mathcal{X}$, and $Q_{\phi}^{\{u,v\}}$ is the survival function of $t^{\{u,v\}}$, then $q_{\phi}(\tau,t)$ has the following form:

$$q_{\phi}(au,t) = \prod_{n=1}^{N-1} \left(\left(\sum_{\substack{w \in W_n \ z \in Z_n}} \frac{q_{\phi}^{\{w,z\}}(t_n)}{Q_{\phi}^{\{w,z\}}(t_n)} \right) \prod_{\substack{w \in W_n \ z \in Z_n}} Q_{\phi}^{\{w,z\}}(t_n) \right).$$

Here W_n, Z_n is the bipartition induced by the *n*-th coalescent, τ is the tree topology, and t are the coalescent times

Intuition

- If two clades coalesce at time t_n , one pair (with one taxa from one clade, the other taxa from the other clade) must coalesce at time t_n in the distance matrix. And all other such pairs must coalesce after time t_n in the distance matrix (survival function $Q(\cdot) = \Pr(rv \ge \cdot)$). This marginalizes which pair coalesced
- Since entries in the distance matrix are independent, the above marginalization is summed over coalescent events

Complexity

$$\prod_{n=1}^{N-1} \left(\left(\sum_{\substack{w \in W_n \\ z \in Z_n}} \frac{q_{\phi}^{\{w,z\}}(t_n)}{Q_{\phi}^{\{w,z\}}(t_n)} \right) \prod_{\substack{w \in W_n \\ z \in Z_n}} Q_{\phi}^{\{w,z\}}(t_n) \right).$$

- Each pair w,z occurs once in one of the inner sums, and once in one of the inner products: $\mathcal{O}(N^2)$ operations. There are N-1 terms in total, so an additional $\mathcal{O}(N)$ operations
- Total complexity for evaluating q or derivatives of q: $\mathcal{O}(N^2 + N) = \mathcal{O}(N)$

Inference

 Derivatives of the sum product in the proposition are found using automatic differentiation (torch/autodiff)

- ELBO optimization is done using:
 - o VIMCO (Mnih, Rezende 2016)
 - LOOR
 - $\circ\,$ or the reparameterization-trick

Results: DS1 (N = 27, M = 1949)

Thank You!

	4	,	
	н	h	١

Related work: GeoPhy

- Associate *i*-th taxa with a point x_i in k-dimensional space
- The variational family is a distribution q on $X \in \mathbb{R}^{N \times D}$
- Given a draw X, the corresponding tree is found by forming the distance matrix T such that $t^{(i,\ j)}$ is the Euclidean distance between x_i and x_j , and then running single-linkage clustering
- It is difficult to find a closed form for the distribution on tree topologies induced by q, so the variational family is represented by samples
- The method is generalized to points on a hyper-sphere, with distances given by geodesics

Related work: VBPI

... Variational Bayesian Phylogenetic Inference

- Run an initializing MCMC in BEAST
- Record all subsplits (bipartitions) appearing in the initializing MCMC run
- Form subsplit Bayesian network (SBN) from these subsplits
- The variational family is a distribution on the SBNs
- Excellent accuracy in likelihood estimation
- May not be scalable, as number of subsplits in the MCMC run is large

Results: COV (N = 72, M = 3101)

COVID-19 Dataset

Table 3. Number of tree structure parameters versus number of taxa (NTAXA) on simulated data with 1,000 sites.

NTAXA	VBPI	VIPR
8	4	56
16	44	240
32	55	992
64	3,826	4,032
128	29,939	16,256
256	127,217	65,280
512	319,533	261,632