IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

TITLE OF THE INVENTION

INTEGRAL MIXER AND OSCILLATOR DEVICE

Inventor

Samuel Alfred Tiller

Assignee

Research In Motion Limited

INTEGRAL MIXER AND OSCILLATOR DEVICE

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of United States Application Serial No. 10/254,332, filed September 25, 2002 and entitled "Integral Mixer and Oscillator Device," which claimed priority from United States Provisional Application Serial No. 60/328,411, filed October 12, 2001. The entire specifications of these applications, including the drawing figures, are hereby incorporated into the present application by reference.

BACKGROUND

1. TECHNICAL FIELD

5

10

15

20

This invention relates generally to the fields of Radio Frequency (RF) mixers and oscillators. More particularly, the invention relates to the integration of mixers and oscillators.

2. DESCRIPTION OF THE RELATED ART

Oscillators are used to provide a time varying signal in electronic circuits and are well known to those of skill in the art. Fig. 1 illustrates a typical oscillator known in the art. This oscillator is a negative resistance cell 10. A simple differential pair of transistors Q_1 and Q_2 is shown. The emitters of both devices, e_1 and e_2 , are connected, either by a short circuit or other connection, thereby defining a common node n_1 . Current source I_1 is connected to the common node n_1 . In the most basic case the current source I_1 is a direct current (DC) source, as shown.

CLI-1133566v1

CN₁ and CN₂ are symmetric coupling networks, which may consist of short circuits, capacitors, transistors, or other circuit elements alone or in combination. For instance, if CN₁ is an RC network, then CN₂ is preferably an identical RC network. Connecting coupling networks CN₁ between b₁ and c₂, and CN₂ between b₂ and c₁, as shown, generates a differential negative resistance between nodes a and a', or between any other two symmetric differential points in circuit 10 such as between bases b₁ and b₂, or even between corresponding differential points inside networks CN₁ and CN₂. For instance, if CN₁ has a first resistor, then by symmetry CN₂ preferably has a corresponding second resistor, and a differential negative resistance can be found between one node of the first resistor in CN₁ and another corresponding symmetric nod of the second resistor in CN₂.

If a connection is made between a and a', such that the connection provides an impedance with a real component greater than or equal to the real value of the negative resistance, circuit 10 will oscillate. The frequency of the oscillation will be determined by the impedance connected between a and a'. The oscillating output signal is produced over the connection between a and a'. In frequency conversion applications, the desired output signal is typically used as a signal source for another circuit.

Fig. 2 illustrates a single balanced mixer **20**, which is known in the art. A differential pair of transistors Q_3 and Q_4 is shown. The emitters e_3 and e_4 are connected in the same manner as those in Fig. 1, thereby defining common node n_7 . A current source l_2 is connected to the common node n_7 . In this instance, the current source l_2 has both a DC component (l_{dc}) and a frequency component (l_{RF}) at frequency l_{RF} .

Unlike the negative resistance cell **10**, there is no cross coupling. Instead a frequency source, S₁, providing an LO (Local Oscillator) signal at frequency f_{LO}, is connected between bases b₃ and b₄. This LO signal varies the amount of current flowing through each

CLI-1133566v1 2

5

10

15

transistor Q_3 and Q_4 such that the differential component of the current, provided by collectors c_3 and c_4 when a load is connected between nodes d and d', has frequency components at DC, f_{LO} , and $f_{LO}\pm f_{RF}$. In frequency conversion applications, the desired output signal is typically one of the frequency translated components of I_{RF} , at either f_{LO} - f_{RF} (down-converter) or $f_{LO} + f_{RF}$ (up-converter).

Although known oscillators and mixers can be combined, as they are in frequency conversion applications, the result is often far from ideal. In most applications, the mixer and oscillator are separate circuits. This results in an increase in both component area and power consumption, which results in a device that is costly to manufacture and operate. Furthermore, the physical distance between oscillator and mixer circuits often results in leakage of the local oscillator signal to other circuits, which is disadvantageous, as one of skill in the art will appreciate.

It is, therefore, desirable to provide a device that provides the functionality of both an oscillator and a mixer, which decreases the required power and area required to implement. Additionally, it would be desirable to provide a device that reduces the leakage of the oscillator signal to other circuits.

SUMMARY

It is an object of the present invention to obviate or mitigate at least one disadvantage of previous mixer-oscillator arrangements. It is a further object of the present invention to provide a device with integral oscillation and mixing functionality.

In a first aspect, the present invention provides a device, which has a plurality of nodes, for generating both an oscillating output signal and a mixed output signal based on a time varying input signal. The mixed output signal represents a translation of the input signal by the oscillating output signal. The device has a differential pair of transistors for

CLI-1133566v1 3

5

10

15

receiving the time varying input signals and for generating a differential pair output signal having a time varying input component and other components, and a first filter network that is connected to the differential pair for receiving the varying input signal component from the differential pair. The first filter network selectively generates a negative resistance at the desired oscillating frequency across two nodes connected to the first filter network, and selectively provides the oscillating output signal by providing an impedance across the two nodes. Once the oscillating signal is established, the outputs of the differential pair contain frequency components of both the oscillating signal and signal components caused by the mixing of the input signal with the oscillating signal in the differential pair. Connected to the first filter network and the differential pair is a second filter network. The second filter network receives the oscillating output signal, and receives the other signal components, generates, and selectively passes the mixed output signal.

In a further embodiment, the time varying input signal has both time varying and constant components. In other embodiments, the negative resistance is generated across nodes connected to the collectors of the differential pair, and the magnitude of the resistance is proportional to the magnitude and frequency of the time varying input signal. Alternate embodiments include means for generating the mixed output signal by translating the oscillating output signal by the frequency of the time varying signal, this translation can be both positive and negative.

In a further embodiment of the present invention, the device has a second differential pair of transistors for receiving a second time varying input. The second differential pair provides this input to the first and second filter networks. The first filter network generates a negative resistance across two pairs of nodes in parallel with each other and the second filter network cancels output signals that have the frequency of the

CLI-1133566v1 4

5

10

15

oscillating output signal. In alternate embodiments the time varying signals are out of phase with each other, and the overall negative resistance is substantially constant. In various embodiments, the first and second networks can be either high or low pass filters, either of which can be tuneable. In yet another embodiment, there is an input circuit that generates the out of phase time varying input signals using a differential pair of transistors connected to a constant signal, and a time varying signal and a biasing signal.

In a further aspect, the present invention provides a device for receiving a time varying input signal and for generating both an oscillating output signal, and a mixed output signal, the mixed output signal representing a translation of the oscillating output signal, the device having a plurality of nodes. The device has first and second differential pairs of transistors, each pair receiving a time varying input signal. A first filter network is operatively connected to the differential pairs and receives from them the two time varying input signals. These input signals are used to generate a negative resistance across two pairs of nodes connected in parallel to the first filter network. The first filter network selectively provides the oscillating output signal by providing an impedance across the parallel negative resistance. A second filter network is operatively connected to the two pairs of nodes, for receiving the oscillating output signal, and is also operatively connected to the differential pairs for receiving the time varying signals. The second filter network selectively passes the mixed output signal. In alternate embodiments of the present invention the time varying input signals are out of phase, the first filter network is a tuneable high pass filter, and the second filter network is a low pass filter.

Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures.

CLI-1133566v1 5

5

10

15

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be described, by way of example only, with reference to the attached figures, wherein:

- Fig. 1 is a schematic diagram showing an oscillator of the prior art;
- Fig. 2 is a schematic diagram showing a mixer of the prior art;
- Fig. 3 is a schematic diagram showing an exemplary single balanced mixillator, according to an embodiment of the claimed invention;
- Fig. 4 is a schematic diagram showing an exemplary dual balanced mixillator according to a further embodiment of the claimed invention;
- Fig. 5 is a schematic diagram showing an exemplary HPF (High Pass Filter) suitable for use as a filter network in a frequency down conversion application of the mixillator of Fig. 4;
- Fig. 6 is a schematic diagram showing an exemplary LPF (Low Pass Filter) suitable for use as a filter network in a frequency down conversion application of the mixillator of Fig. 4; and
- Fig. 7 is a schematic diagram showing an exemplary input stage suitable for use as the two current sources for the dual balanced mixillator of Fig. 4.

Same reference numerals are used in different figures to denote similar elements.

DETAILED DESCRIPTION OF THE DRAWINGS

Generally, the present invention provides a system for generating a mixed output signal and an oscillating output signal based on a time varying input signal. The mixed output signal is the oscillating signal translated by a time varying factor of the input signal. A dual balanced embodiment of the device that makes use of a differential pair to provide out of phase input signals is also disclosed. The device provides the functionality of both

5

10

15

an oscillator and a mixer, which decreases the required power and area required to implement. Additionally it reduces the leakage of the oscillator signal to other circuits.

Fig. 3 illustrates an embodiment of the present invention. The device **30** comprises a circuit with both oscillator and mixer functionality. Device **30**, which is preferably referred to as a "mixillator", includes a simple differential pair of transistors Q₅ and Q₆, as well as two filter networks FN₁ and FN₂, for generating an oscillating output signal, LO, and mixing LO with an external input signal to produce an output mixed signal

As with the separate oscillator **10** and mixer **20** of Figs. 1 and 2, circuit **30** has a differential pair of transistors, Q_5 and Q_6 , connected at the emitters e_5 and e_6 thereby defining common node n_{11} . A current source I_3 , which has both DC (I_{dc}) and time varying or RF (I_{RF}) components is connected to the common node n_{11} . Connected to the collectors e_5 and e_6 of e_5 and e_6 are two filter networks, FN₁ and FN₂. FN₁ is further connected to bases e_5 and e_6 of e_5

To understand the operation of device 30, consider the circuit of Fig. 3 in the absence of FN₂, where I_{RF}=0. Under these conditions, FN₁ connects b_5 and b_6 to c_5 and c_6 . Thus FN₁ is analogous to a combination of CN₁ and CN₂ of Fig. 1, which connect b_1 to c_2 and c_1 to b_2 respectively. In this configuration, it is apparent that FN₁ must provide a negative resistance across two nodes connected to FN₁. These nodes can be internal to FN₁, as were the nodes in the prior art example, or external nodes such as n_{12} and n_{13} or n_{14} and n_{15} . In the presently illustrated embodiment, FN₁ provides a negative resistance across nodes n_{14} and n_{15} . A negative resistance must also be seen at n_{12} and n_{13} , although it has a different value.

CLI-1133566v1 7

5

10

15

To further understand FN₁, consider the circuit of Fig. 3 in the absence of FN₂ and where I_{RF} is non-zero. The single balanced mixer 20 of Fig. 2, provides current at the output d/d' of the circuit 20, the current having components at DC, fLO, and fLO±fRF. Therefore, in the presence of an RF component, it is no longer sufficient for FN₁ to simply generate a negative resistance at the LO frequency, as was done in the prior art. In the embodiment of Fig. 3, FN₁ still generates a negative resistance at the desired oscillator frequency fLO, but FN1 preferably does not generate a negative resistance at the desired mixer output frequencies, f_{LO} - f_{RF} or f_{LO} + f_{RF}. FN₁ provides negative resistance, and thus an oscillating output, between b₅ and b₆ at f_{LO}, but does not provide an oscillating output at the mixer output frequencies of f_{LO} - f_{RF} or f_{LO} + f_{RF}. This frequency selectivity in FN₁ provides oscillator functionality in the presence of an RF component in the source current. If the f_{LO} signal is to be used by other components, such as a PLL (Phase Locked Loop), the circuit should not be heavily loaded, and should be buffered by use of signal followers or other known techniques to isolate the circuit from the PLL. If it is desired, a pure oscillator signal can be obtained across nodes n₁₄ and n₁₅. This signal can be provided to other circuits in addition to the use described below.

The role of FN_2 in circuit **30** is now considered. FN_2 is complimentary to FN_1 to integrate the mixer functionality. FN_2 selectively passes the desired mixer output components, f_{LO} - f_{RF} or f_{LO} + f_{RF} , to the differential output between f and f'. Additionally, FN_2 blocks the oscillation of the input components, at the desired oscillator frequency f_{LO} , from transmission by the differential output. In this manner FN_2 allows device **30** to provide mixer functionality integral with oscillator functionality in a single circuit.

Advantageously, in device 30, the same DC current, I_{dc} , provides a bias for both the mixer and oscillator functions, which provides power, cost, and component area savings.

CLI-1133566v1 8

5

10

15

Furthermore, the proximity between oscillator function and mixer function achieved via integration of these functions reduces leakage of the local oscillator signal to other circuits.

The concepts taught by example in Fig. 3 are adapted for use in a double balanced circuit **40** in Fig. 4. In this embodiment, the device **40** consists of two differential pairs, the pair formed by Q_7 and Q_8 , and the pair formed by Q_9 and Q_{10} . The emitters of Q_7 and Q_8 , e_7 and e_8 respectively, are connected to common emitter e_{11} , which is connected to current source e_{12} . The emitters of e_{13} and e_{14} and e_{15} are connected to common emitter e_{123} , which is connected to current source e_{15} . The current source e_{14} for the e_{15} and e_{15} and e_{15} and e_{15} for the e_{15} and e_{15} and e_{15} for the e_{15} and e_{15} and e_{15} for the e_{15} for the e_{15} and e_{15} for the $e_$

FN₃, a filter network analogous to FN₁ of device **30**, connects the collectors (c_7 , c_8 , c_9 , and c_{10}) in pairs so as to generate a frequency selective negative resistance, analogous to the one described above in reference to Fig. 3. This frequency selective negative resistance is used in the oscillator function of device **40**. Collectors c_7 , c_8 , c_9 and c_{10} are connected to nodes n_{28} , n_{26} , n_{27} and n_{29} of FN₃ respectively. Bases b_7 and b_{10} are connected to the common connection point n_{25} whereas bases b_8 and b_9 are connected to the common connection point n_{24} , both n_{25} and n_{24} are connected to FN₃.

FN₃ preferably connects nodes n_{28} and n_{29} with node n_{24} thereby connecting collectors c_7 and c_{10} with bases b_8 and b_9 respectively, as well as preferably connecting nodes n_{26} and n_{27} with node n_{25} thereby connecting collectors c_8 and c_9 with bases b_7 and b_{10} respectively. In so doing, FN₃ provides two negative resistance cells in parallel. The first negative resistance cell is provided by connecting collectors c_8 and c_7 of transistors c_8 and c_7 to bases c_7 and c_8 respectively. This connection provides a first cell impedance between bases c_7 and c_8 . The second negative resistance cell is provided by connecting

CLI-1133566v1 9

5

10

15

collectors c_9 and c_{10} of transistors Q_9 and Q_{10} to bases b_{10} and b_9 respectively. This second connection creates a second cell impedance between bases b_9 and b_{10} . The two negative resistance cells are connected in parallel because bases b_7 and b_8 of the first negative resistance cell are connected to bases b_{10} and b_9 respectively of the second negative resistance cell.

A connection between any of n_{28} and n_{26} , n_{29} and n_{27} , n_{24} and n_{25} , and various nodes internal to the FN₃ network, that has an impedance with a real component larger than the effective negative resistance provided by the parallel arrangement of the negative resistance cells causes circuit 40 to oscillate. As before the frequency of the oscillation is determined by the impedance of the connection. By selecting the impedance of the connection appropriately, circuit 40 provides an oscillating signal with the desired frequency. FN₃ is connected to the rest of circuit **40** via nodes n₂₄, n₂₅, n₂₆, n₂₇, n₂₈ and n₂₉. The value of the negative resistance created by FN₃ is dependant upon the source current. In device 40, FN₃ is driven by I_4 and I_5 , whereas circuit 30 is driven by only I_3 . $I_4=I_{dc}+I_{RF}$, while $I_5=I_{dc}-I_{RF}$, so the net current provided, I_4+I_5 , is $(I_{dc}+I_{RF})+(I_{dc}-I_{RF})$ or $2I_{dc}$. Because the negative resistance is dependent upon the source current, the overall negative resistance provided by the parallel negative resistance cells remains substantially constant over variations in I_{RF}. This is an advance over the novel device **30** as illustrated in Fig. 3. Knowing that the impedance of the parallel negative resistance cells is substantially constant, all that must be done to provide oscillator functionality to circuit 40 is to have FN₃ provide an impedance that has a real component greater than the real component of the parallel negative resistance cells.

CLI-1133566v1 10

5

10

15

Advantageously, circuit **40** retains features of a traditional oscillator function as the oscillator output can be taken between bases b_7 and b_8 , bases b_9 and b_{10} , or nodes n_{24} and n_{25} .

FN₄, a filter network analogous to FN₂ of Fig. 3, is used to selectively pass the desired output frequencies to the mixer output between g and g', while rejecting components at the desired oscillator frequency. FN₄ is connected to circuit **40** via nodes n_{30} , n_{31} , n_{32} , n_{33} , n_{34} , and n_{35} which are connected to collectors c_7 , c_8 , c_9 and c_{10} , and mixer outputs g and g', respectively.

Advantageously, the circuit **40** retains features of a traditional double balanced mixer function, with the mixer output available between nodes g and g'.

With a double balanced topology such as that shown in Fig. 4, FN₄ can be designed such that the components at the LO frequency cancel, thereby rejecting the component at the LO frequency, to facilitate selectively passing the desired output components, as will be described in greater detail below in reference to Fig. 6.

Fig. 5 shows an exemplary HPF (High Pass Filter) **50a** suitable for use as a filter network in a frequency down conversion application of the device **40** as illustrated in Fig. 4. Capacitors X_1 , and X_2 are connected in series and are arranged to define node n_{28} connected to the first capacitor X_1 , node n_{24} common to capacitors X_1 and X_2 and node n_{29} connected to capacitor X_2 . Capacitors X_3 , and X_4 are connected in an analogous fashion defining node n_{26} connected to capacitor X_3 , node n_{25} common to capacitors X_3 and X_4 , and node n_{27} connected to capacitor X_4 . Variable capacitor X_5 and inductor L_1 are connected in parallel between nodes n_{25} and n_{24} .

Capacitors X₁, X₂, X₃ and X₄, when connected as described herein and depicted in Fig. 5, provide cross coupling to generate a negative resistance necessary for oscillator

CLI-1133566v1 11

5

10

15

functionality in device **40**. The capacitive coupling creates a high pass network and ensures that the generated negative resistance is seen only at high frequencies, which is desirable for frequency down-conversion applications. The combination of X_5 and L_1 form an exemplary tank circuit that can be used to generate sufficient real impedance to support oscillation. Additionally, the variable nature of X_5 provides means for tuning the oscillator frequency.

Fig. 6 shows an exemplary LPF (Low Pass Filter) **60a** suitable for use as a filter network in a frequency down conversion application of the circuit **40** as illustrated in Fig. 4. Inductors L_2 and L_4 are connected in series and are arranged to define node n_{30} connected to inductor L_2 , node n_{34} common to inductors L_2 and L_4 and node n_{32} connected to inductor L_4 . Inductors L_3 , and L_5 are connected in an analogous fashion defining node n_{31} connected to inductor L_3 , node n_{35} common to inductors L_3 and L_5 , and node n_{33} connected to inductor L_5 .

At low frequencies LPF **60** operates to connect c_7 to c_9 and c_8 to c_{10} as typically found in a double balanced mixer. These connections allow LPF **60** to cancel the RF and LO frequency components at the output, while selectively passing the RF - LO frequency component.

Referring to Fig. 7, an input stage circuit **70** is illustrated. Input stage circuit **70** is used, in one embodiment, to provide input currents for the double balanced device **40** of Fig. 4. A differential pair of transistors Q_{11} and Q_{12} is shown. An RF signal source S_2 drives a radio frequency signal $I_7 \propto I_{RF}$ between bases b_{11} and b_{12} , with output at nodes h and h'.

To reduce the noise contributions of the input differential pair biasing for Q_{11} and Q_{12} is provided in this embodiment. The biasing is such that at low frequencies it presents low impedance, in order to minimize noise appearing at b_{11} and b_{12} . This noise, if unimpeded,

CLI-1133566v1 12

5

10

15

modulates the oscillator and appears as phase noise at the oscillating nodes (bases b_7 and b_8 , bases b_9 and b_{10} , or other nodes internal to FN3).

Inductors L_6 and L_7 are connected in series between bases b_{11} and b_{12} to provide at low frequencies, typically from DC to 5 or 10 MHz, low impedance which reduces phase noise. At high frequencies, typically near RF, L_6 and L_7 provide high impedance to avoid shunting the desired RF signal away from the bases. A bias voltage V_{bias} is provided between inductors L_6 and L_7 to satisfy the biasing requirements of both Q_{11} and Q_{12} .

If linearity requirements are such that degenerative impedance is suggested, inductors L_8 and L_9 connected in series between emitters e_{11} and e_{12} are used for the same reasons as L_6 and L_7 above. However, if degenerative impedance is not suggested, then inductors L_8 and L_9 can be replaced by short circuits. A DC source, $I_8 = 2*I_{dc}$, is connected between inductors L_8 and L_9 .

The two output signals, $I_9 = I_{dc} + I_{RF}$ and $I_{10} = I_{dc} - I_{RF}$, are provided by collectors c_{11} and c_{12} of transistors Q_{11} and Q_{12} , at nodes h and h' respectively. Circuit **70** is therefore used in a presently preferred embodiment to provide source I_4 and I_5 for device **40** by connecting nodes h and h' of input stage circuit **70** to nodes n_{21} and n_{23} of device **40**, respectively.

Although not expressly shown in the drawings, any type of transistor can be used, including but not limited to Field Effect Transistors (FET's), GaAs devices, PHemt, and the like. Furthermore, although NPN transistors are used in the drawings, it would be obvious to a person skilled in the art to use complementary devices and invert the structure illustrated, or to use both non-complementary and complementary devices. Further still, current sources can be realized in different ways such as by using resistors and inductors and substitution of one current source for another will be obvious to a person skilled in the

CLI-1133566v1 13

5

10

15

art. Also, although the drawings illustrate using a HPF for FN₃ and a LPF for FN₄ in a frequency down conversion application, it would be obvious to a person skilled in the art to invert their roles and use a LPF for FN₃ and a HPF for FN₄ in a frequency up conversion application. It would be obvious as well to a person skilled in the art to use voltage signals instead of or in conjunction with the current signals illustrated. Other types of filter structures can be used, and the use of alternate filter structures will also be obvious to a person skilled in the art. Other types of filters can lead to other applications, which are also considered to be within the scope of the invention.

The above-described embodiments of the present invention are intended to be examples only. Those of skill in the art may effect alterations, modifications and variations to the particular embodiments without departing from the scope of the invention, which is defined solely by the claims appended hereto.

5