Set Code: **EE-101/2019/Q2-PRS** Max. Time: **45 min** Max. Marks: **10**

Tutorial Group: T- Roll no.: Name:

Invigilator's Signature:

Instructions

- Write answers neatly with appropriate SI units in the spaces provided
- All answers should be rounded up to the third decimal point.
- Exchange of Calculators or any other material is not allowed.
- Mobile phones are not allowed inside the examination hall.
- 1. In the balanced three-phase system of Fig. 1, the load impedance $Z_P = 8+j5 \Omega$. Assume positive (+) phase sequence and $W_1 > W_2$. If the source is operating with a power factor of **0.98** and $W_1 = 15$ kW, find the values of (a) R_W , (b) W_2 , (c) total real power absorbed by the load and (d) the reactive power supplied to the load. [2+1+1+1]

Solution: (a) $R_W = 16.631 \Omega$

(b) $W_2 = 7.044 \text{ kW}$

(c) Total real power = 22.044 kW

(d) Total reactive power = 13.780 kVAR

Let $f_1(A,B,C,D) = \sum m(1,3,5,6,8,10,11,12,13)$, $f_2(A,B,C,D) = \sum m(0,3,5,8,9,11,13,15)$ f(A,B,C,D) is obtained by performing logical AND operation between $f_1(A,B,C,D)$ and $f_2(A,B,C,D)$ as $f(A,B,C,D) = f_1(A,B,C,D)$ $f_2(A,B,C,D)$. (a) Express f(A,B,C,D) as sum of minterms. (b) Given $g(A,B,C,D) = f(A,B,C,D) + \sum d(7,10,15)$. Where d represents don't-care conditions. Find a minimal sum-of-products expression. [2+3]

Solution: (a) $f(A, B, C, D) = \sum m(3,5,8,11,13)$

(b)
$$g(A,B,C,D) = CD + BD + A\overline{B}\overline{D}$$

Set Code: **EE-101/2019/Q2-RIC** Max. Time: **45 min** Max. Marks: **10**

Tutorial Group: T- Roll no.: Name:

Invigilator's Signature:

Instructions

- Write answers neatly with appropriate SI units in the spaces provided
- All answers should be rounded up to the third decimal point.
- Exchange of Calculators or any other material is not allowed.
- Mobile phones are not allowed inside the examination hall.
- 1. In the balanced three-phase system of Fig. 1, the load impedance $Z_P = 8+j5 \Omega$. Assume positive (+) phase sequence and $W_2 > W_1$. If the source is operating with a power factor of **0.95** and $W_1 = 15$ kW, find the values of (a) R_W , (b) W_2 , (c) total real power absorbed by the load and (d) the reactive power supplied to the load. [2+1+1+1]

Solution: (a) $R_W = 7.205 \Omega$

- (b) $W_2 = 31.945 \text{ kW}$
- (c) Total real power = 46.945 kW

(d) Total reactive power = 29.350 kVAR

2. Let $f_1(A,B,C,D) = \sum m(1,3,5,7,9,13,14,15)$, $f_2(A,B,C,D) = \sum m(0,3,4,7,8,9,13,15)$. f(A,B,C,D) is obtained by performing logical AND operation between $f_1(A,B,C,D)$ and $f_2(A,B,C,D)$ as $f(A,B,C,D) = f_1(A,B,C,D)f_2(A,B,C,D)$. (a) Express f(A,B,C,D) as sum of minterms. (b) Given $g(A,B,C,D) = f(A,B,C,D) + \sum d(0,5,12)$. Where d represents don't-care conditions. Find a minimal sum-of-products expression. [2+3]

Solution: (a) $f(A, B, C, D) = \sum m(3,7,9,13,15)$

(b)
$$g(A,B,C,D) = \overline{ACD} + A\overline{CD} + BD$$

Set Code: **EE-101/2019/Q2-KBD** Max. Time: **45 min** Max. Marks: **10**

Tutorial Group: T- Roll no.: Name:

Invigilator's Signature:

Instructions

- Write answers neatly with appropriate SI units in the spaces provided
- All answers should be rounded up to the third decimal point.
- Exchange of Calculators or any other material is not allowed.
- Mobile phones are not allowed inside the examination hall.
- 1. In the balanced three-phase system of Fig. 1, the load impedance $Z_P = 10 + j8 \Omega$. Assume positive (+) phase sequence and $W_1 > W_2$. If the source is operating with a power factor of 0.98 and $W_1 = 15 \ kW$, find the values of (a) R_W , (b) W_2 , (c) total real power absorbed by the load and (d) the reactive power supplied to the load. [2+1+1+1]

Solution: (a) $R_W = 29.409 \Omega$

- (b) $W_2 = 5.521 \text{ kW}$
- (c) Total real power = 20.521 kW

(d) Total reactive power = 16.418 kVAR

2. Let $f_1(A,B,C,D) = \sum m(0,1,4,8,10,11,12,14)$, $f_2(A,B,C,D) = \sum m(0,1,2,4,10,12,13,14,15)$. f(A,B,C,D) is obtained by performing logical AND operation between $f_1(A,B,C,D)$ and $f_2(A,B,C,D)$ as $f(A,B,C,D) = f_1(A,B,C,D)f_2(A,B,C,D)$. (a) Express f(A,B,C,D) as sum of minterms. (b) Given $g(A,B,C,D) = f(A,B,C,D) + \sum d(5,8,11)$. Where d represents don't-care conditions. Find a minimal sum-of-products expression. [2+3]

Solution: (a) $f(A, B, C, D) = \sum m(0, 1, 4, 10, 12, 14)$

(b)
$$g(A,B,C,D) = \overline{A}\overline{C} + A\overline{D}$$

Set Code: EE-101/2019/Q2-ROH Max. Time: 45 min Max. Marks: 10

Tutorial Group: T-Roll no.: Name:

Invigilator's Signature:

Instructions

- Write answers neatly with appropriate SI units in the spaces provided
- All answers should be rounded up to the third decimal point.
- **Exchange** of Calculators or any other material is not allowed.
- **Mobile phones** are not allowed inside the examination hall.
- 1. In the balanced three-phase system of Fig. 1, the load impedance $Z_P = 10 + j8 \Omega$. Assume positive (+) phase sequence and $W_2 > W_1$. If the source is operating with a power factor of **0.95** and $W_1 = 15$ **kW**, find the values of (a) R_{W} , (b) W_{2} , (c) total real power absorbed by the load and (d) the reactive power supplied to the load. [2+1+1+1]

Solution: (a) $R_W = 14.316 \Omega$

(b) $W_2 = 40.759 \text{ kW}$

(c) Total real power = 55.759 kW

(d) Total reactive power = 44.616 kVAR

Let $f_1(A, B, C, D) = \sum m(0, 2, 4, 5, 7, 11, 12, 13), f_2(A, B, C, D) = \sum m(1, 5, 6, 8, 11, 12, 13, 15).$ 2. f(A,B,C,D) is obtained by performing logical AND operation between $f_1(A,B,C,D)$ and $f_2(A,B,C,D)$ as $f(A,B,C,D) = f_1(A,B,C,D)f_2(A,B,C,D)$. (a) Express f(A,B,C,D) as sum of minterms. (b) Given $g(A, B, C, D) = f(A, B, C, D) + \sum_{i=0}^{\infty} d(0,10)$. Where d represents don'tcare conditions. Find a minimal sum-of-products expression. [2+3]

 $f(A, B, C, D) = \sum m(5,11,12,13)$ Solution: (a)

(b)
$$g(A,B,C,D) = AB\overline{C} + A\overline{B}C + B\overline{C}D$$