31-07-2023

In []: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [390]: a=pd.read_csv(r"C:\Users\user\Downloads\19_nuclear_explosions.csv")
a

Out[390]:

	WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Longitude	D٤
0	USA	Alamogordo	DOE	32.54	-105.57	
1	USA	Hiroshima	DOE	34.23	132.27	
2	USA	Nagasaki	DOE	32.45	129.52	
3	USA	Bikini	DOE	11.35	165.20	
4	USA	Bikini	DOE	11.35	165.20	
•••						
2041	CHINA	Lop Nor	HFS	41.69	88.35	
2042	INDIA	Pokhran	HFS	27.07	71.70	
2043	INDIA	Pokhran	NRD	27.07	71.70	
2044	PAKIST	Chagai	HFS	28.90	64.89	
2045	PAKIST	Kharan	HFS	28.49	63.78	

2046 rows × 16 columns

```
In [391]: a=a.head(10) a
```

Out[391]:

Latitude	Location.Cordinates.Longitude	Data.Magnitude.Body	Data.Magnitude.Surface	Location.Cordinates.Dept
32.54	-105.57	0.0	0.0	-0.1
34.23	132.27	0.0	0.0	-0.6
32.45	129.52	0.0	0.0	-0.6
11.35	165.20	0.0	0.0	-0.2
11.35	165.20	0.0	0.0	0.0
11.30	162.15	0.0	0.0	-0.0
11.30	162.15	0.0	0.0	-0.0
11.30	162.15	0.0	0.0	-0.0
48.00	76.00	0.0	0.0	0.0
37.00	-116.00	0.0	0.0	-0.3
4				

In [392]: a.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	WEAPON SOURCE COUNTRY	10 non-null	object
1	WEAPON DEPLOYMENT LOCATION	10 non-null	object
2	Data.Source	10 non-null	object
3	Location.Cordinates.Latitude	10 non-null	float64
4	Location.Cordinates.Longitude	10 non-null	float64
5	Data.Magnitude.Body	10 non-null	float64
6	Data.Magnitude.Surface	10 non-null	float64
7	Location.Cordinates.Depth	10 non-null	float64
8	Data.Yeild.Lower	10 non-null	float64
9	Data.Yeild.Upper	10 non-null	float64
10	Data.Purpose	10 non-null	object
11	Data.Name	10 non-null	object
12	Data.Type	10 non-null	object
13	Date.Day	10 non-null	int64
14	Date.Month	10 non-null	int64
15	Date.Year	10 non-null	int64
dtvn	es: float64(7), int64(3), object	t(6)	

dtypes: float64(7), int64(3), object(6)

memory usage: 1.4+ KB

```
In [393]: a.columns
```

Out[394]:

	WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Longitude	Data.I
0	USA	Alamogordo	DOE	32.54	-105.57	
1	USA	Hiroshima	DOE	34.23	132.27	
2	USA	Nagasaki	DOE	32.45	129.52	
3	USA	Bikini	DOE	11.35	165.20	
4	USA	Bikini	DOE	11.35	165.20	
5	USA	Enewetak	DOE	11.30	162.15	
6	USA	Enewetak	DOE	11.30	162.15	
7	USA	Enewetak	DOE	11.30	162.15	
8	USSR	Semi Kazakh	DOE	48.00	76.00	
9	USA	Nts	DOE	37.00	-116.00	
4						•

In [395]: d.describe()

Out[395]:

	Location.Cordinates.Latitude	Location.Cordinates.Longitude	Data.Magnitude.Body	Data.Magnitude.Surfa
count	10.000000	10.000000	10.0	1
mean	24.082000	93.307000	0.0	
std	14.133627	111.078447	0.0	
min	11.300000	-116.000000	0.0	
25%	11.312500	89.380000	0.0	
50%	21.900000	147.210000	0.0	
75%	33.807500	162.150000	0.0	
max	48.000000	165.200000	0.0	
4				

In [397]: sns.distplot(a['Data.Yeild.Lower'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Please
adapt your code to use either `displot` (a figure-level function with similar flexibil
ity) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[397]: <AxesSubplot:xlabel='Data.Yeild.Lower', ylabel='Density'>


```
sns.heatmap(x1.corr())
In [405]:
Out[405]: <AxesSubplot:>
                                                                                       - 1.0
               Location.Cordinates.Latitude
                                                                                        - 0.8
                                                                                       - 0.6
                                                                                       - 0.4
              Location.Cordinates.Longitude -
                                                                                       - 0.2
                                                                                        0.0
                     Data.Magnitude.Body -
                                                                                         -0.2
                   Data.Magnitude.Surface -
                                                                                         -0.4
                                                                                         -0.6
                                                                             Data.Magnitude.Surface
                                            Location.Cordinates.Latitude
                                                       Location.Cordinates.Longitude
                                                                  Data. Magnitude. Body
In [406]: x=a[['Location.Cordinates.Latitude', 'Location.Cordinates.Longitude',
                      'Data.Magnitude.Body', 'Data.Magnitude.Surface']]
            y=a['Data.Yeild.Lower']
In [407]: | from sklearn.model_selection import train_test_split
            x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [408]: | from sklearn.linear_model import LinearRegression
            lr=LinearRegression()
            lr.fit(x_train,y_train)
Out[408]: LinearRegression()
In [409]:
            print(lr.intercept_)
             24.08485018600524
            coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [410]:
            coeff
Out[410]:
                                            Co-efficient
               Location.Cordinates.Latitude
                                              -0.234774
             Location Cordinates Longitude
                                               0.040521
                      Data.Magnitude.Body
                                               0.000000
                                               0.000000
                    Data Magnitude Surface
```

```
prediction=lr.predict(x_test)
In [411]:
          plt.scatter(y_test,prediction)
Out[411]: <matplotlib.collections.PathCollection at 0x190c53e6220>
           28.10
           28.08
           28.06
           28.04
           28.02
           28.00
                          25
                                 30
                                        35
                                              40
                    20
                                                     45
In [412]: print(lr.score(x_test,y_test))
          -0.011790784384103636
In [413]:
         from sklearn.linear_model import Ridge,Lasso
In [414]: rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[414]: Ridge(alpha=10)
In [415]: |rr.score(x_test,y_test)
Out[415]: -0.012285783192243382
In [416]: la=Lasso(alpha=10)
          la.fit(x_train,y_train)
Out[416]: Lasso(alpha=10)
In [417]: la.score(x_test,y_test)
Out[417]: -0.03278531441016108
In [418]: from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[418]: ElasticNet()
In [419]: print(en.coef_)
          [-0.22993566 0.04073522 0.
```

```
In [420]: print(en.intercept_)
          23.92826707308187
In [421]: print(en.predict(x test))
          [28.04795525 27.93520962 27.93520962]
In [422]: en.score(x_test,y_test)
Out[422]: -0.012726551515849005
In [423]: from sklearn import metrics
In [424]: | print("Mean Absolute Error", metrics.mean_absolute_error(y_test, prediction))
          Mean Absolute Error 12.704724310837811
In [425]: print("Mean Squared Error", metrics.mean squared error(y test, prediction))
          Mean Squared Error 197.18678175663533
In [426]: | print(" Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction))
           Root Mean Squared Error 14.042321095767441
In [427]:
          import pickle
          filename="prediction"
In [428]:
          pickle.dump(lr,open(filename,'wb'))
In [429]:
          import pandas as pd
          import pickle
In [430]:
          filename="prediction"
          model=pickle.load(open(filename, "rb"))
In [434]:
          real=[[10,20,24,25],[15,30,36,40]]
          result=model.predict(real)
In [435]: result
Out[435]: array([22.54752329, 21.77885984])
```