

TEST REPORT

FCC Part 22 Subpart H / Part 24 Subpart E

Report Refer	ence No	: CTL1	70215650	1-WF01
--------------	---------	--------	----------	--------

Compiled by: Allen Wang (position+printed name+signature) (File administrators)

Tested by:

(position+printed name+signature)

Approved by: (position+printed name+signature)

Nice Nong (Test Engineer)

> Ivan Xie (Manager)

Allen Wang
Nice Nong

1. man Nie

Product Name 8 inch 4G Tablet

Model/Type reference: TT800Q

List Model(s)..... N/A

Trade Mark.....: N/A

FCC ID...... 2AGCDJACS800Q

Applicant's name JACS SOLUTIONS LLC

Address of applicant.....: 8808 Centre Park Drive Suite 305 Columbia, MD 21045, USA

Test Firm...... Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Address of Test Firm

Nanshan District, Shenzhen, China 518055

Test specification:

Standard FCC CFR Title 47 Part 2, Part 22H and Part 24E

EIA/TIA 603-D: 2010 KDB 971168 D01

TRF Originator.....: Shenzhen CTL Testing Technology Co., Ltd.

Master TRF.....: Dated 2011-01

Date of Receipt...... Jun. 15, 2017

Date of Test Date Jun. 16, 2017–Jul. 11, 2017

Data of Issue...... Jul. 12, 2017

Result..... Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. :	CTL1702156501-WF01	Jul. 12, 2017	
rest Report No	C1L1702130301-WF01	Date of issue	

Equipment under Test : 8 inch 4G Tablet

Model /Type : TT800Q

Listed Models : N/A

Applicant : JACS SOLUTIONS LLC

Address : 8808 Centre Park Drive Suite 305 Columbia, MD

21045, USA

Manufacturer : SHENZHEN JIZHAO INFORMATION

TECHNOLOGY CO., LTD.

Address : BUILDING NO.1 ZHONGKENUO INDUSTRIAL

PARK HEZHOU ROAD XIXIANG STREET BAOAN

DISTRICT SHENZHEN, CHINA

Test result	Pass *
rest result	1 833

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

** Modified History **

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2017-07-12	CTL1702156501-WF01	Tracy Qi

Contents

1	SU	MMARY	!
	1.1	TEST STANDARDS	ı
	1.2	Test Description.	
	1.3	Test Facility	
	1.4	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2	GE	NERAL INFORMATION	
	2.1	ENVIRONMENTAL CONDITIONS	-
	2.2	GENERAL DESCRIPTION OF EUT	
	2.3	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	
	2.4	EQUIPMENTS USED DURING THE TEST	
	2.5	RELATED SUBMITTAL(S) / GRANT (S)	
	2.6	Modifications	
_	-		
3	TES	ST CONDITIONS AND RESULTS	10
	3.1	OUTPUT POWER	10
	3.2	Occupied Bandwidth	
	3.3	Band Edge compliance	
	3.4	Spurious Emission	1
	3.5	FREQUENCY STABILITY UNDER TEMPERATURE & VOLTAGE VARIATIONS	
4	TEC	ST SETUP PHOTOS OF THE EUT	21
4			
5	PH	IOTOS OF THE FUT	20

V1.0 Page 5 of 30 Report No.: CTL1702156501-WF01

1 SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 22: PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24: PUBLIC MOBILE SERVICES

TIA/EIA 603 D June 2010: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

KDB971168 D01:v02r02 MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

ANSI C63.10-2013 Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

1.2 **Test Description**

Test Item	Section in CFR 47	Result
RF Output Power	Part 2.1046 Part 22.913 (a)(2) Part 24.232 (c)	Pass
Peak-to-Average Ratio	Part 24.232 (d)	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 22.917 Part 24.238	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 22.917 (a) Part 24.238 (a)	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 22.917 (a) Part 24.238 (a)	Pass
Out of band emission, Band Edge	Part 22.917 (a) Part 24.238 (a)	Pass
Frequency stability	Part 2.1055 Part 22.355 Part 24.235	Pass

V1.0 Page 6 of 30 Report No.: CTL1702156501-WF01

1.3 Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

1.4 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 GENERAL INFORMATION

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C	
Relative Humidity:	55 %	
Air Pressure:	101 kPa	

2.2 General Description of EUT

Product Name:	8 inch 4G Tablet		
Model/Type reference:	TT800Q		
Power supply:	DC 3.7V from battery		
WCDMA			
Operation Band:	FDD Band II & Band V		
Power Class:	Power Class 3		
Modulation Type:	QPSK for WCDMA/HSUPA/HSDPA		
WCDMA Release Version:	R99		
HSDPA Release Version:	Release 7, CAT14		
HSUPA Release Version:	Release 6, CAT6		
Antenna type:	PIFA antenna		

Testing Technology

Note: For more details, refer to the user's manual of the EUT.

V1.0 Page 8 of 30 Report No.: CTL1702156501-WF01

2.3 Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The CUM200 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest middle and highest frequency of channel were selected to perform the test, then shown on this report.

Test Frequency:

FDD Band II		FDD Band V		
Channel Frequency (MHz)		Channel	Frequency (MHz)	
9262 1852.4		4132	826.40	
9400	1880.0	4182	836.60	
9538	1907.6	4233	846.60	

Test Modes:

The test mode(s) are selected according to relevant radio technology specifications.

Test Mode	Test Modes Description		
Mode 1	WCDMA system, QPSK modulation		
Mode 2	HSDPA system, QPSK modulation		
Mode 3	HSUPA system, QPSK modulation		

Note:

1. As WCDMA, HSDPA and HSUPA with the same emission designator, test result recorded in this report at the worst case Mode 1 only after exploratory scan.

2.4 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2017/06/02	2018/06/01
Bilog Antenna	Sunol Sciences Corp.	JB1	A061714	2017/06/02	2018/06/01
EMI Test Receiver	R&S	ESCI	103710	2017/06/02	2018/06/01
Spectrum Analyzer	Agilent	E4407B	MY41440676	2017/05/21	2018/05/20
Spectrum Analyzer	Agilent	N9020	US46220290	2017/01/16	2018/01/17
Controller	EM Electronics	Controller EM 1000	N/A	2017/05/21	2018/05/20
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2017/05/19	2018/05/18
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062014	2017/05/19	2018/05/18
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2017/05/19	2018/05/18
Amplifier	Agilent	8349B	3008A02306	2017/05/19	2018/05/18
Amplifier	Agilent	8447D	2944A10176	2017/05/19	2018/05/18
Temperature/Humi dity Meter	Gangxing	CTH-608	02	2017/05/20	2018/05/19
Radio Communication Tester	R&S	CMU200	115419	2016/10/17	2017/10/16
High-Pass Filter	K&L	9SH10-2700/X1 2750-O/O	N/A_	2017/05/20	2018/05/19
High-Pass Filter	K&L	41H10-1375/U1 2750-O/O	N/A	2017/05/20	2018/05/19
RF Cable	HUBER+SUHN ER	RG214	N/A	2017/06/02	2018/06/01
Climate Chamber	ESPEC	EL-10KA	A20120523	2017/05/19	2018/05/18
SIGNAL GENERATOR	Agilent	E4421B	US40051744	2017/05/19	2018/05/18
Directional Coupler	Agilent	87300B	3116A03638	2017/05/19	2018/05/18

2.5 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID:2AGCDJACS800Q filing to comply with of the FCC Part 22 and Part 24 Rules.

2.6 Modifications

No modifications were implemented to meet testing criteria.

3 TEST CONDITIONS AND RESULTS

3.1 Output Power

LIMIT

GSM850/WCDMA Band V: 7W PCS1900/WCDMA Band II: 2W

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

Conducted Power Measurement

Radiated Power Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603C

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- c) EUT Communicate with CMU200 then selects a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter

- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- i) The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.

TEST RESULTS

Conducted Measurement:

Ooridacted Meast	ai Cilicili.					
EUT Mode	Channel	Frequency (MHz)	Avg.Burst Power (dBm)	Peak-to-Average Ratio (dB)	Limit (dBm)	Result
WCDMA Band II	9262	1852.40	23.27	3.15		
(QPSK)	9400	1880.00	23.36	3.42	33.01	Pass
(QT OIT)	9538	1907.60	23.31	3.25		
WCDMA Band V	4132	826.40	23.12	/		
(QPSK)	4183	836.60	23.41	/	38.45	Pass
(&1 011)	4233	846.60	23.29	/		

Note: 1.Peak-to-Average Ratio= maximum PK burst power-maximum Avg. burst power.

V1.0 Page 12 of 30 Report No.: CTL1702156501-WF01

Radiated Measurement:

Note: 1. The field strength of radiation emission was measured in the following position: EUT stand-up position (Zaxis), lie-down position (X, Y axis). The data show in this report only with the worst case setup. After exploratory measurement the worst case of Z axis was reported.

Note: 2. We test the H direction and V direction and V direction is worse.

WCDMA BAND II

Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
9262	-19.01	3.42	10.24	33.6	21.41	33.01	11.60	V
9400	-18.30	3.49	10.24	33.6	22.05	33.01	10.96	V
9538	-18.75	3.54	10.23	33.6	21.54	33.01	11.47	V

WCDMA BAND V

Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
4132	-18.68	2.43	8.45	2.15	36.82	22.01	38.45	16.44	V
4183	-18.81	2.46	8.45	2.15	36.82	21.85	38.45	16.60	V
4233	-18.72	2.52	8.36	2.15	36.82	21.79	38.45	16.66	V

Remark:

1. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_a(dBi)$

2. ERP = EIRP - 2.15dBi as EIRP by subtracting the gain of the dipole.

V1.0 Page 13 of 30 Report No.: CTL1702156501-WF01

3.2 Occupied Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBW was set to about 1% of emission BW, VBW≥3 times RBW.
- 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (KHz)	-26dB bandwidth (KHz)
WCDMA Band II	9262	1852.4	4162.60	4671.00
(QPSK)	9400	1880.0	4159.20	4675.00
(QI OIL)	9538	1907.6	4152.30	4661.00
	4132	826.4	4166.40	4673.00
WCDMA Band V (QPSK)	4183	836.6	4175.60	4685.00
	4233	846.6	4157.00	4669.00

Test plots as follow:

3.3 Band Edge compliance

LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log (P) dB.

TEST CONFIGURATION

TEST PROCEDURE

In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions.

TEST RESULTS

		WCDMA	A Band II		
Channel	Frequency	Measureme	ent Results	Limit	
Number	(MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Verdict
9262	1852.4	1849.9950	-24.97	-13.00	Pass
9538	1907.6	1910.0025	-23.47	-13.00	Pass
Agilent Ref 34 dBm Atte	Mkr1 n 30 dB	R T 1.8499950 GHz -24.97 dBm	Ref 34 dBm Atten 30		R T Freq/Channel
Peak Log	11 JO UD	Center Freq 1.84950000 GHz	Peak Log	uD	Center Freq 1.91050000 GHz
dB/ Offst		Start Freq 1.84900000 GHz	dB/ Offst		Start Freq 1.91000000 GHz
dB DI -13.0		Stop Freq 1.85000000 GHz	dB DI -13.0		Stop Freq 1.91100000 GHz
dBm		CF Step 100.000000 kHz Auto Man	dBm		CF Ste 100.000000 kHz Auto Mi
M1 S2 S3 FC AA	and the second second second	Freq Offset 0.00000000 Hz	M1 S2 S3 FC AA	Market Company of the	Freq Offset 0.00000000 Hz
		Signal Track On Off			Signal Track
Start 1.849 GHz #Res BW 30 kHz	#VBW 100 kHz #Sweep 1	Stop 1.85 GHz 0 ms (401 pts)	Start 1.91 GHz #Res BW 30 kHz		Stop 1.911 GHz O ms (401 pts)

V1.0

			WCDMA	ABand V				
Channel	Fraguenay	N	<i>d</i> easureme	ent Results	Limit			
Number	Frequency (MHz)		quency MHz)	Values (dBm)	(dBm)	V	erdict	
4132	826.4	823	3.9000	-26.08	-13.00		Pass	
4233	846.6	849	9.0125	-27.61	-13.00		Pass	
∰ Agilenf		RT	Freg/Channel	₩ Agilenf		RT	Peak Search	
Ref 34 dBm Peak Log	Atten 30 dB	r1 823.9000 MHz -26.08 dBm	Center Freq 823.500000 MHz	Ref 34 dBm Atten 30 Peak Log		349.0125 MHz -27.61 dBm	Meas Tools	
10 dB/ Offst			Start Freq 823.000000 MHz	10 dB/ Offst			Next Peak	
dB DI -13.0 dBm			Stop Freq 824.000000 MHz	dB DI -13.0 dBm			Next Pk Right	
			CF Step 100.000000 kHz <u>Auto Man</u>	1			Next Pk Left	
M1 S2 MAN	and the second second of the second	and the second	Freq Offset 0.00000000 Hz	M1 S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mary many many market	and the second	Min Search	
			Signal Track On <u>Off</u>				Pk-Pk Search	
Start 823 MHz #Res BW 30 kHz	#VBW 100 kHz Swee	Stop 824 MHz p 5 ms (401 pts)		Start 849 MHz #Res BW 30 kHz		Stop 850 MHz ms (401 pts)	More 1 of 2	

3.4 Spurious Emission

LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log (P) dB.

TEST CONFIGURATION

Conducted Spurious Measurement:

Radiated Spurious Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603C

Conducted Spurious Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- c) EUT Communicate with CMU200 then selects a channel for testing.

- d) Add a correction factor to the display of spectrum, and then test.
- e) The resolution bandwidth of the spectrum analyzer was set at 1MHz for Part 22 and 1MHz for Part 24, sufficient scans were taken to show the out of band Emission if any up to 10th harmonic.

Radiated Spurious Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- i) The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q) The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.

TEST RESULTS

Conducted Measurement:

WCDMA Band II

Report No.: CTL1702156501-WF01

WCDMA Band V

Radiated Measurement:

WCDMA Band II

WODINA Bana II									
Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	3704.80	-40.59	4.27	3.00	12.34	-32.52	-13.00	19.52	Н
0262	5557.20	-44.03	4.99	3.00	13.52	-35.50	-13.00	22.50	Н
9262	3704.80	-39.48	4.27	3.00	12.34	-31.41	-13.00	18.41	V
	5557.20	-42.95	4.99	3.00	13.52	-34.42	-13.00	21.42	V
	3760.00	-40.65	4.38	3.00	12.34	-32.69	-13.00	19.69	Н
9400	5640.00	-44.07	5.01	3.00	13.58	-35.50	-13.00	22.50	Н
9400	3760.00	-39.20	4.38	3.00	12.34	-31.24	-13.00	18.24	V
	5640.00	-43.09	5.01	3.00	13.58	-34.52	-13.00	21.52	V
	3815.20	-40.16	4.47	3.00	12.45	-32.18	-13.00	19.18	Н
9538	5722.80	-44.32	5.23	3.00	13.66	-35.89	-13.00	22.89	Н
9000	3815.20	-39.76	4.47	3.00	12.45	-31.78	-13.00	18.78	V
	5722.80	-42.94	5.23	3.00	13.66	-34.51	-13.00	21.51	V

WCDMA Band V

	WODINA Bund V								
Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1652.80	-37.06	3.02	3.00	9.58	-30.50	-13.00	17.50	Н
9262	2479.20	-41.69	3.51	3.00	10.72	-34.48	-13.00	21.48	Н
9202	1652.80	-36.31	3.02	3.00	9.68	-29.65	-13.00	16.65	V
	2479.20	-39.74	3.51	3.00	10.72	-32.53	-13.00	19.53	V
	1673.20	-36.59	3.14	3.00	9.61	-30.12	-13.00	17.12	Н
9400	2509.80	-41.70	3.59	3.00	10.77	-34.52	-13.00	21.52	Н
9400	1673.20	-36.25	3.14	3.00	9.61	-29.78	-13.00	16.78	V
	2509.80	-39.44	3.59	3.00	10.77	-32.26	-13.00	19.26	V
	1693.20	-36.98	3.24	3.00	9.77	-30.45	-13.00	17.45	Н
9538	2539.80	-41.57	3.65	3.00	10.89	-34.33	-13.00	21.33	Н
9030	1693.20	-36.22	3.24	3.00	9.77	-29.69	-13.00	16.69	V
	2539.80	-39.96	3.65	3.00	10.89	-32.72	-13.00	19.72	V

Remark:

- 1. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+G_a(dBi)$ 2. We were not recorded other points as values lower than limits. 3. Margin = Limit EIRP

3.5 Frequency Stability under Temperature & Voltage Variations

LIMIT

Cellular Band: ±2.5ppm PCS Band: Within the authorized frequency block

TEST CONFIGURATION

Temperature Chamber

Variable Power Supply

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603C

Frequency Stability under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

Frequency Stability under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

TEST RESULTS

Reference	Reference Frequency: WCDMA Band II Middle channel=9400 channel=1880MHz								
Voltage (V)	Temperature	Frequer	ncy error	Limit (ppm)	Result				
voltage (v)	(℃)	Hz	ppm	сини (ррии)	Result				
	-30	67.23	0.036						
	-20	52.25	0.028						
	-10	54.79	0.029						
	0	49.97	0.027						
3.80	10	88.37	0.047	Within the					
	20	56.19	0.030	authorized frequency	Pass				
	30	91.29	0.049	block					
	40	57.38	0.031						
	50	44.51	0.024]					
4.37	25	86.87	0.046						
End point 3.15	25	66.22	0.035						

Reference I	Reference Frequency: WCDMA Band V Middle channel=4182 channel=836.6MHz								
\/oltogo (\/\)	Temperature	Frequer	ncy error	Limit (nnm)	Result				
Voltage (V)	(℃)	Hz	ppm	Limit (ppm)	Result				
	-30	88.43	0.106						
	-20	74.32	0.089						
	(C) -10	34.77	0.042	0					
	5 0	64.39	0.077						
3.70	10	32.53	0.039						
	20	33.25	0.040	2.5	Pass				
	30	78.26	0.094						
	40	50.88	0.061	4					
	50	43.50	0.052	9					
4.26	25	64.34	0.077	3					
End point 3.15	25	92.02	0.110						

4 Test Setup Photos of the EUT

Photos of the EUT

Internal photos

WIFI/BT Antenna

WCDMA/LTE Main Antenna

LTE Diversity Antenna

