AML3

jtrincado

2022-02-08 11:30:14

${\bf Contents}$

	1. Put together both 34 and 38 libraries. Apply QC and dimensionality reduction									
	4. Project the predictions from Velten onto our UMAP									
1. Put together both 34 and 38 libraries. Apply QC and dimensionality reduction.										
## ##	Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 8522 Number of edges: 279946									
## ## ## ##	Running Louvain algorithm Maximum modularity in 10 random starts: 0.8667 Number of communities: 9									
## ## ## ##	Elapsed time: 1 seconds CD34_AAACCCAGTCCAATCA CD34_AAACCCAGTGGTATGG CD34_AAACCCATCCAGTGTA 0 0 0 CD34_AAACGAAAGCTGTGCC CD34_AAACGAAGTAAGGTCG 0 3 Levels: 0 1 2 3 4 5 6 7 8									
##	Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation' This message will be shown once per session									

2. Get the LSC6 score

[1] "CD34" "SPINK2" "SOCS2" "FAM30A" "ADGRG1" "DNMT3B"

3. Predict the class of the cells using the markers and the expression of the BM cells form Van_Galen paper

- ## Performing PCA on the provided reference using 1821 features as input.
- ## Projecting cell embeddings
- ## Finding neighborhoods
- ## Finding anchors
- ## Found 3059 anchors
- ## Filtering anchors
- ## Retained 1475 anchors
- ## Finding integration vectors
- ## Finding integration vector weights
- ## Predicting cell labels

##													
##		HSC	Prog	GMP	${\tt ProMono}$	${\tt Mono}$	cDC	pDC	${\tt earlyEry}$	lateEry	${\tt ProB}$	В	${\tt Plasma}$
##	CD34	139	2941	901	19	7	15	0	0	0	0	0	0
##	CD38	11	154	1607	1039	1640	40	0	0	2	0	1	0

4. Project the predictions from Velten onto our UMAP

Cluster 0 seems the most likely to be enriched in LSC