Параллельная реализация метода эллипсоидов для задач оптимизации большой размерности

Безбородов В.А.

Научный руководитель, к.ф.-м.н., доцент Голодов В.А.

ФГБОУ ВПО ЮУрГУ г. Челябинск

10 июня 2015 г.

- 1 Метод эллипсоидов
 - Кратко об истории
 - Геометрия метода
 - Алгоритм метода
- 2 Параллельная реализация МЗ
 - Распараллеливание матричных операций
 - Достигнутое ускорение

Метод эллипсоидов предложили

- 1976 **Юдин Д.Б. и Немировский А.С.** как метод последовательных отсечений.
- **Шор Н.З.** как вариант метода с растяжением пространства в направлении субградиента.
- 1979 **Хачиян Л.** построил первый полиномиальный алгоритм решения задачи ЛП с рациональными коэффициентами.

- 1 Метод эллипсоидов
 - Кратко об истории
 - Геометрия метода
 - Алгоритм метода
- 2 Параллельная реализация МЗ
 - Распараллеливание матричных операций
 - Достигнутое ускорение

1-d эллипсоид и его свойства

Эллипсоид ε_n , содержащий полушар в E_n , имеет параметры

$$b=\left(lpha+rac{1}{lpha}
ight)rac{r}{2},\quad h=\left(1-rac{1}{lpha^2}
ight)rac{r}{2},$$
 где $lpha=rac{b}{a}$ и r – радиус шара $S_n.$

Если пространство «растянуть» с коэффициентом α в направлении полуоси a, то ε_n станет шаром в преобразованном пространстве.

Отношение объема эллипсоида $arepsilon_n$ к объему шара S_n равно

$$q(n) = \frac{vol(\varepsilon_n)}{vol(S_n)} = \frac{1}{\alpha} \left(\frac{b}{r}\right)^n = \frac{1}{\alpha} \left(\frac{1}{2} \left(\alpha + \frac{1}{\alpha}\right)\right)^n.$$

- 1 Метод эллипсоидов
 - Кратко об истории
 - Геометрия метода
 - Алгоритм метода
- Параллельная реализация МЗ
 - Распараллеливание матричных операций
 - Достигнутое ускорение

Использование метода эллипсоидов

Для решения задачи $\min f_0(x)$ при ограничениях

$$f_i(x) \leq 0, \quad i = 1, \ldots, m, \quad x \in E_n,$$

где E_n – евклидово пространство размерности n>1, $f_{\nu}(x)$ – выпуклые функции; $g_{\nu}(x)$ – субградиенты функций, $\nu=\overline{0,m}$. Предполагается, что оптимальная точка $x^*\in E_n$ существует и находится в шаре радиуса r_0 с центром в точке x_0 .

К такой задаче сводятся:

- задача безусловной минимизации выпуклой функции,
- общая задача выпуклого программирования,
- **з**адача о седловой точке выпукло-вогнутых функций.

Алгоритм

Выбрать $x_k:=x_0\in E^n$ и радиус R, такие что $||x_0-x^*||\leq R$. Положить $h_k=\frac{R}{n+1},\ B_k:=E$, где E – единичная матрица. Для перехода к (k+1)-й итерации выполнить:

- Шаг 1. Вычислить $g(x_k)$. Если $g(x_k) = 0$, то **ОСТАНОВ** $(x^* = x_k)$.
- Шаг 2. Вычислить очередную точку $x_{k+1}=x_k-h_kB_k\xi_k$, где $\xi_k=rac{B_k^Tg(x_k)}{||B_k^Tg(x_k)||}.$
- Шаг 3. Пересчитать шаг $h_{k+1}=h_k r$ и матрицу B_{k+1} $B_{k+1}=B_k+(\beta-1)(B_k\xi_k)\xi_k^T, \quad \beta=\sqrt{\frac{n-1}{n+1}}.$
- Шаг 4. Перейти к (k+1)-й итерации с x_{k+1} , h_{k+1} и B_{k+1} .

О сходимости метода эллипсоидов

Теорема (О скорости сходимости)

Для всех итераций метода эллипсоидов коэффициент уменьшения объема эллипсоида, локализующего x^* , есть величина постоянная и равная

$$q(n) = \frac{vol(\varepsilon_{k+1})}{vol(\varepsilon_k)} = \frac{1}{\alpha} \left(\frac{1}{2} \left(\alpha + \frac{1}{\alpha} \right) \right)^n < 1, \quad k = 0, 1, 2, \dots$$

Оптимальный коэффициент растяжения пространства

$$\beta = \sqrt{\frac{n-1}{n+1}} \Rightarrow q(n) = \sqrt{\frac{n-1}{n+1}} \left(\frac{n}{\sqrt{n^2-1}} \right)^n < 1.$$

- 1 Метод эллипсоидов
 - Кратко об истории
 - Геометрия метода
 - Алгоритм метода
- 2 Параллельная реализация МЭ
 - Распараллеливание матричных операций
 - Достигнутое ускорение

Модель Fork-Join

Способы разбиения матриц

Ускорение матричных операций

Каждому потоку выделяется некоторое подмножество элементов матрицы для обработки. Вид подмножества определяется способом разбиения.

Горизонтальный

Вертикальный

Блочный

- 1 Метод эллипсоидов
 - Кратко об истории
 - Геометрия метода
 - Алгоритм метода
- 2 Параллельная реализация МЭ
 - Распараллеливание матричных операций
 - Достигнутое ускорение

Сложение матриц

Вопросы?

СПАСИБО ЗА ВНИМАНИЕ!