

H2O-3 Open Source Custom Loss Function in Gradient Boosting Machines

Veronika Maurerová Software Engineer, H2O.ai veronika.maurerova@h2o.ai

ABOUT ME

Veronika is a techie who is interested in Machine Learning, Mathematics and Statistic, Open Source, mentoring, and knowledge sharing.

She holds a Master degree in Computer Science from Czech Technical University in Prague with specializations in **Knowledge Engineering**.

She worked as Software Engineer in **Ataccama** and **SEQENGI** before.

Veronika is currently a Software Engineer on the **H2O-3 Open Source ML library** at **H2O.ai**.

She is also a mentor in **Czechitas** project and manages cooperation H2O.ai with **Faculty of Information Technology** at CTU.

AGENDA

- What is new in H2O-3 Open Source ML library
- Gradient Boosting Quick Intro
- Loss Function meaning
- Custom Loss Function
 - Usage and definition
 - Example in H2O-3

What is new in H2O-3

Open Source ML library

H2O Release 3.26 (Yau)

H₂O.ai

LATEST STABLE

- Support-vector Machines
- 2D Partial Dependency plot
- Import MOJO with Metrics
- XGBoost Improvements
- TreeSHAP for Distributed Random Forest
- Target Encoding MOJO support
- Custom Loss Function in Gradient Boosting Machines

Gradient Boosting Machines Quick intro

Gradient Boosting Machines

QUICK INTRO

- Ensemble of either regression or classification tree models.
- Weak prediction algorithms are sequentially applied to the incrementally changed data to create a series of decision trees, producing an ensemble of weak prediction models.

More information in H2O GBM <u>Documentation</u> or <u>Booklet</u>

Loss function

Meaning, optimization

Distribution & Loss Function

MEANING, OPTIMIZATION

- Distributions in H2O-3:
 - Bernoulli
 - Quasibinomial
 - Multinomial
 - Gaussian
 - Poisson
 - Gamma
 - Laplace
 - Quantile
 - Huber
 - Tweedie

Gaussian "Normal" Distribution Normal distribution

Poisson Distribution

 Probability of 10 red lights on your way to work (if the mean is 5)

Bernoulli Distribution Bernoulli probability distribution Bernoulli loss (deviance)

Binary outcome (YES/NO)

Usage and definition

USAGE AND DEFINITION

- Sometimes an asymmetric or specific function is useful.
- Examples:
 - Flight departure prediction to miss the flight could be a worse error than to come early;
 - Sold items prediction to have a lack of items in the store could be a worse error that to have some items extra;
 - Disease prediction to die could be a worse error than to get some extra medicaments.

EXAMPLE: DATA

Store Item Demand Forecasting training dataset (source: Kaggle)

EXAMPLE: DEFINITION

- Custom Loss Function demo <u>iPython notebook</u>.
- Goal: penalize 'lack of items in the store' error.
- Use Gaussian Distribution for easy demonstration

Implementation of Gaussian Distribution

class DistributionGaussian(CustomDistributionGeneric): """ Predefined distribution class for regression problems. def link(self): return "identity" def init(self, w, o, y): return [w * (y - o), w] def gradient(self, y, f): return y - f def gamma(self, w, y, z, f): return [w * z, w]

Implementation of Custom Gaussian Distribution

EXAMPLE: RESULTS

Acceptable vs. Unacceptable Predictions

Gaussian Distribution

EXAMPLE: DEFINITION

- Custom Loss Function demo <u>iPython notebook</u>.
- Goal: penalize 'lack of items in the store' error.
- Use Gaussian Distribution for easy demonstration

Implementation of Gaussian Distribution

class DistributionGaussian(CustomDistributionGeneric): """ Predefined distribution class for regression problems. def link(self): return "identity" def init(self, w, o, y): return [w * (y - o), w] def gradient(self, y, f): return y - f def gamma(self, w, y, z, f): return [w * z, w]

Implementation of Custom Gaussian Distribution

EXAMPLE: RESULTS

Gaussian (blue) vs. Custom Gaussian (green)

CUSTOM DISTRIBUTION VS. CUSTOM METRIC

Customize loss function and stopping metric together

Implementation of Custom MSE metric

```
class CustomAsvmmetricMseFunc:
    def map(self, pred, act, w, o, model):
        error = act[0] - pred[0]
        # more predicted items is better error than the fewer predicted items
        # if residual is positive there are not enough items in the store
        # if residual is negative or zero there are enough items in the store
        # the positive error should be set as bigger error!
        error = error if error < 0 else 10 * error
        return [error * error, 1]
    def reduce(self, l, r):
        return [1[0] + r[0], 1[1] + r[1]]
    def metric(self, l):
        import java.lang.Math as math
        return math.sqrt(l[0] / l[1])
# Upload the custom metric
metric ref = h2o.upload custom metric(CustomAsymmetricMseFunc,
                                          func name="custom mse",
                                          func file="custom mse.py")
```

Gaussian (blue) vs. Custom Gaussian (green) with Custom Metric

Conclusion

Takeaways

TAKEAWAYS

- Customization of Loss Function available in H2O-3 from release 3.26 (Yau).
- Custom Loss Function could be useful when asymmetry in prediction is needed.
- Combination of Custom Distribution and Custom Metric allows more flexibility in customization of training and validation.

