

ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE CIENCIAS ESTADÍSTICA MATEMÁTICA DEBER 02

Fecha entrega: 2015/05/22

EJERCICIOS

1. Se
a $\hat{\theta}_n$ un estimador insesgado de $\theta,$ prue
be que si

$$\lim_{n \to \infty} Var_{\theta}(\hat{\theta}_n) = 0$$

entoncces $\hat{\theta}_n$ es un estimador consistente de θ .

Sugerencia: Utilice la designaldad de Chebyshev

2. Sean X_1, X_2, \ldots, X_n variables aleatorias independientes con:

$$E_{\beta}(X_i) = \beta t_i \quad y \quad Var_{\beta}(X_i) = \sigma^2$$

donde t_1, t_2, \dots, t_n constantes conocidas, $\beta, \, \sigma^2$ parámetros desconocidos. Sea

$$\hat{\beta}_n = \frac{\sum_{i=1}^n t_i X_i}{\sum_{i=1}^n t_i^2}$$

pruebe que:

- **a.** $\hat{\beta}_n$ es un estimador insesgado de β para cada n.
- **b.** $\hat{\beta}_n$ es consistente.
- **3.** Sean X_1, X_2, \ldots, X_n variables aleatorias i.i.d de distribución de Pareto, con función de densidad:

$$f(x; \beta) = \frac{\beta}{x^{\beta+1}}, \quad x > 1$$

utilice el método de momentos para probar que

$$\hat{\beta} = \frac{\overline{X}}{\overline{X} - 1}$$

es un estimador de β .

- **4.** Sean X_1, X_2, \ldots, X_n variables aleatorias *i.i.d.* de distribución $Gamma(\alpha, \lambda)$ con α, λ desconocidos. Encuentre los estimadores para α, λ utilizando el método de momentos.
- 5. Suponga que X_1, \ldots, X_n son variables aleatorias i.i.d. Exponenciales con parámetro λ . Pruebe que $\hat{\lambda} = \frac{1}{X}$.
 - **a.** Es el estimador de momentos de λ .
 - b. Encuentre su error estándar aproximado.