

HSGS High School for Gifted Students

HSGS

Unknown, Socpite, SanguineChameleon

ACM-ICPC Vietnam National Round 2023 Nov 5, 2023

1	Geometry	2		SCC.h	9		CRT.h	16	į
	Point.h	2		BiconnectedComponents.h	9		Bézout's identity	16	j
	lineDistance.h	2		2sat.h	9		phiFunction.h	16	j
	SegmentDistance.h	2		EulerWalk.h	9		ContinuedFractions.h		j
	SegmentIntersection.h	2		EdgeColoring.h	9		FracBinarySearch.h		
	lineIntersection.h	2		MaximalCliques.h	10		Pythagorean Triples		
	sideOf.h	$\frac{1}{2}$		MaximumClique.h	10		Primes		
	OnSegment.h	$\frac{1}{2}$		MaximumIndependentSet.h	10		Mobius Function	17	
	linearTransformation.h	$\frac{2}{2}$		BinaryLifting.h	10		Trioblas I allowolf		
	LineProjectionReflection.h	$\frac{2}{2}$		LCA.h	10	5	Data structures	17	,
	Angle.h	$\frac{2}{2}$		CompressTree.h	10		OrderStatisticTree.h		
	CircleIntersection.h	3		HLD.h	11		HashMap.h		
	CircleTangents.h	3		LinkCutTree.h	11		UnionFindRollback.h		
	Circle Line.h	$\frac{3}{3}$		DirectedMST.h	11		Matrix.h		
	CirclePolygonIntersection.h	$\frac{3}{3}$		Number of Spanning Trees	12		ConvexHullTrick.h	17	
	circumcircle.h	$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$		Erdős-Gallai theorem	12		Treap.h		
	MinimumEnclosingCircle.h	$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$		Erdos-Ganar meorem	12		MoQueries.h		
		- 1	1	Numerical	10		MoQueries.n	10	
	InsidePolygon.h)		12	c	Ctuin as	10	,
	PolygonArea.h	3		Polynomial.h	12	6	Strings	18	
	PolygonCenter.h	3		PolyRoots.h	12		KMP.h		
	PolygonCut.h	3		PolyInterpolate.h	12		Zfunc.h	18	
	PolygonUnion.h	3		BerlekampMassey.h	12		Manacher.h	18	
	ConvexHull.h	4		LinearRecurrence.h	12		MinRotation.h	18	
	HullDiameter.h	4		GoldenSectionSearch.h	12		SuffixArray.h	18	
	PointInsideHull.h	4		HillClimbing.h	12		SuffixTree.h		
	LineHullIntersection.h	4		Integrate.h	13		Hashing.h		
	ClosestPair.h	4		IntegrateAdaptive.h	13		AhoCorasick.h	19	J
	ManhattanMST.h	4		Simplex.h	13	_			
	kdTree.h	4		Determinant.h	13	7	Various	19	
	DelaunayTriangulation.h	5		IntDeterminant.h	13		IntervalContainer.h	20	
	FastDelaunay.h	5		SolveLinear.h	13		IntervalCover.h		
	PolyhedronVolume.h	5		SolveLinear2.h	14		$Constant Intervals.h \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	20	
	Point3D.h	5		SolveLinearBinary.h	14		TernarySearch.h	20	
	3dHull.h	6		MatrixInverse.h	14		$\operatorname{LIS.h}$	20	
	sphericalDistance.h	6		$MatrixInverse-mod.h\ \dots\dots\dots\dots\dots\dots\dots$	14		KnuthDP.h	20	
				Tridiagonal.h	14		DivideAndConquerDP.h	20	
2	Graph	6		FastFourierTransform.h	14		$FastMod.h \dots \dots$		
	BellmanFord.h	6		$FastFourierTransformMod.h \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	15		FastInput.h	20	j
	FloydWarshall.h	6		NumberTheoreticTransform.h	15				
	TopoSort.h	6		FastSubsetTransform.h	15	8	Others	20	j
	PushRelabel.h	6					$\mathrm{CDQ.h}\ldots\ldots\ldots\ldots\ldots\ldots$	21	
	MinCostMaxFlow.h	7	4	Number theory	15		Gauss.h	21	
	EdmondsKarp.h	7		ModularArithmetic.h	15		Hungarian.h	21	
	Dinic.h	7		ModLog.h	15		JobScheduling.h	21	
	GlobalMinCut.h	7		ModSum.h	15		MOTree.h	21	
	GomoryHu.h	8		ModMulLL.h	15		PersistentSegmentTree.h	21	
	hopcroftKarp.h	8		ModSqrt.h	16		SegmentTreeBeats.h	21	
	DFSMatching.h	8		FastEratosthenes.h	16		SOSDP.h	23	į
	MinimumVertexCover.h	8		MillerRabin.h	16		XorBasis.h	23	į
	WeightedMatching.h	8		Factor.h	16		NimProduct.h	23	į
	GeneralMatching.h	8		euclid.h	16		PalindromeTree.h	23	į
	<u> </u>								

Geometry (1)

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template \langle class T \rangle int sqn(T x) \{ return (x > 0) - (x < 0); \}
template < class T>
struct Point {
  typedef Point P;
 T x, v;
  explicit Point (T x=0, T y=0) : x(x), y(y) {}
  bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }</pre>
 bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
  P operator+(P p) const { return P(x+p.x, y+p.y); }
  P operator-(P p) const { return P(x-p.x, y-p.y); }
  P operator*(T d) const { return P(x*d, y*d); }
  P operator/(T d) const { return P(x/d, y/d); }
 T dot(P p) const { return x*p.x + y*p.y; }
  T cross(P p) const { return x*p.y - y*p.x; }
 T cross(P a, P b) const { return (a-*this).cross(b-*this); }
  T dist2() const { return x*x + y*y; }
  double dist() const { return sgrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
  double angle() const { return atan2(y, x); }
  P unit() const { return *this/dist(); } // makes dist()=1
  P perp() const { return P(-y, x); } // rotates +90 degrees
  P normal() const { return perp().unit(); }
  // returns point rotated 'a' radians ccw around the origin
  P rotate(double a) const {
   return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
  friend ostream& operator<<(ostream& os, P p) {</pre>
    return os << "(" << p.x << "," << p.y << ")"; }
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance. For Point3D, call .dist on the result of the cross product.

4 lines

template < class P>
double lineDist(const P& a, const P& b, const P& p) {
 return (double) (b-a).cross(p-a)/(b-a).dist();
}

SegmentDistance.h

Description:

Returns the shortest distance between point p and the line segment from point s to e.

```
Usage: Point<double> a, b(2,2), p(1,1);
bool onSegment = segDist(a,b,p) < 1e-10;
"Point.h"</pre>
```

typedef Point<double> P;
double segDist(P& s, P& e, P& p) {
 if (s==e) return (p-s).dist();
 auto d = (e-s).dist2(), t = min(d,max(.0,(p-s).dot(e-s)));
 return ((p-s)*d-(e-s)*t).dist()/d;

SegmentIntersection.h

Description:

If a unique intersection point between the line segments going from s1 to e1 and from s2 to e2 exists then it is returned. If no intersection point exists an empty vector is returned. If infinitely many exist a vector with 2 elements is returned, containing the endpoints of the common line segment. The wrong position will be returned if P is Point<|1> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long.

```
tersection point does not have integer coordinates. Products
of three coordinates are used in intermediate steps so watch
out for overflow if using int or long long.
Usage: vector<P> inter = segInter(s1,e1,s2,e2);
if (sz(inter)==1)
cout << "segments intersect at " << inter[0] << endl;</pre>
```

```
"Point.h", "OnSegment.h"

template < class P > vector < P > segInter(P a, P b, P c, P d) {
   auto oa = c.cross(d, a), ob = c.cross(d, b),
        oc = a.cross(b, c), od = a.cross(b, d);
   // Checks if intersection is single non-endpoint point.
   if (sgn(oa) * sgn(ob) < 0 && sgn(oc) * sgn(od) < 0)
        return {(a * ob - b * oa) / (ob - oa)};
        set < P > s;
   if (onSegment(c, d, a)) s.insert(a);
   if (onSegment(c, d, b)) s.insert(b);
   if (onSegment(a, b, c)) s.insert(c);
   if (onSegment(a, b, d)) s.insert(d);
   return {all(s)};
}
```

lineIntersection.h

Description:

```
interface steps so watch out for overhow it using int or it.
Usage: auto res = lineInter(s1,e1,s2,e2);
if (res.first == 1)
cout << "intersection point at " << res.second << endl;
"Point.h"</pre>
81
```

```
template<class P>
pair<int, P> lineInter(P s1, P e1, P s2, P e2) {
   auto d = (e1 - s1).cross(e2 - s2);
   if (d == 0) // if parallel
      return {-(s1.cross(e1, s2) == 0), P(0, 0)};
   auto p = s2.cross(e1, e2), q = s2.cross(e2, s1);
   return {1, (s1 * p + e1 * q) / d};
}
```

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow \text{left/on}$ line/right. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

```
overflow if using int or long long.

Usage: bool left = sideOf(p1,p2,q) ==1;

"Point.h"

9 lines
```

```
template<class P>
int sideOf(P s, P e, P p) { return sgn(s.cross(e, p)); }

template<class P>
int sideOf(const P& s, const P& e, const P& p, double eps) {
   auto a = (e-s).cross(p-s);
   double 1 = (e-s).dist()*eps;
   return (a > 1) - (a < -1);
}</pre>
```

OnSegment.h

"Point.h"

Description: Returns true iff p lies on the line segment from s to e. Use (segDist(s,e,p) <=epsilon) instead when using Point <double>.

```
"Point.h" 3 lin
template<class P> bool onSegment(P s, P e, P p) {
  return p.cross(s, e) == 0 && (s - p).dot(e - p) <= 0;
}</pre>
```

linearTransformation.h Description:

Apply the linear transformation (translation, rotation and scaling) which takes line p0-p1 to line q0-q1 to point r.


```
typedef Point<double> P;
P linearTransformation(const P& p0, const P& p1,
    const P& q0, const P& q1, const P& r) {
    P dp = p1-p0, dq = q1-q0, num(dp.cross(dq), dp.dot(dq));
    return q0 + P((r-p0).cross(num), (r-p0).dot(num))/dp.dist2();
}
```

LineProjectionReflection.h

Description: Projects point p onto line ab. Set refl=true to get reflection of point p across line ab insted. The wrong point will be returned if P is an integer point and the desired point doesn't have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow.

Point.h

5 lines

```
template<class P>
P lineProj(P a, P b, P p, bool refl=false) {
  P v = b - a;
  return p - v.perp()*(1+refl)*v.cross(p-a)/v.dist2();
}
```

Angle.h

Description: A class for ordering angles (as represented by int points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors.

Usage: vector<Angle> $v = \{w[0], w[0].t360()...\};$ // sorted int j = 0; rep(i,0,n) $\{$ while (v[j] < v[i].t180()) ++j; $\}$ // sweeps j such that (j-i) represents the number of positively oriented triangles with vertices at 0 and i

```
struct Angle {
  int x, y;
  int t:
  Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
  Angle operator-(Angle b) const { return {x-b.x, y-b.y, t}; }
  int half() const {
    assert(x || y);
    return y < 0 || (y == 0 && x < 0);
  Angle t90() const { return \{-y, x, t + (half() \&\& x >= 0)\}; \}
  Angle t180() const { return {-x, -y, t + half()}; }
  Angle t360() const { return {x, y, t + 1}; }
bool operator<(Angle a, Angle b) {</pre>
  // add a.dist2() and b.dist2() to also compare distances
  return make_tuple(a.t, a.half(), a.y * (ll)b.x) <</pre>
         make_tuple(b.t, b.half(), a.x * (ll)b.y);
// Given two points, this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
  if (b < a) swap(a, b);
  return (b < a.t180() ?
```

make_pair(a, b) : make_pair(b, a.t360()));

```
Angle operator+(Angle a, Angle b) { // point a + vector b
 Angle r(a.x + b.x, a.y + b.y, a.t);
 if (a.t180() < r) r.t--;
 return r.t180() < a ? r.t360() : r;
Angle angleDiff(Angle a, Angle b) { // angle b- angle a
 int tu = b.t - a.t; a.t = b.t;
 return {a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a)};
```

CircleIntersection.h

Description: Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

```
"Point.h"
typedef Point <double > P;
bool circleInter(P a,P b,double r1,double r2,pair<P, P>* out) {
 if (a == b) { assert(r1 != r2); return false; }
 P \text{ vec} = b - a:
  double d2 = vec.dist2(), sum = r1+r2, dif = r1-r2,
         p = (d2 + r1*r1 - r2*r2)/(d2*2), h2 = r1*r1 - p*p*d2;
  if (sum*sum < d2 || dif*dif > d2) return false;
  P mid = a + \text{vec*p}, per = \text{vec.perp}() * \text{sqrt}(\text{fmax}(0, h2) / d2);
  *out = {mid + per, mid - per};
  return true;
```

CircleTangents.h

Description: Finds the external tangents of two circles, or internal if r2 is negated. Can return 0, 1, or 2 tangents – 0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same): 1 if the circles are tangent to each other (in which case .first = .second and the tangent line is perpendicular to the line between the centers). first and .second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

```
"Point.h"
template<class P>
vector<pair<P, P>> tangents(P c1, double r1, P c2, double r2) {
 P d = c2 - c1;
  double dr = r1 - r2, d2 = d.dist2(), h2 = d2 - dr * dr;
  if (d2 == 0 || h2 < 0) return {};</pre>
  vector<pair<P, P>> out;
  for (double sign : {-1, 1}) {
   P v = (d * dr + d.perp() * sqrt(h2) * sign) / d2;
   out.push_back(\{c1 + v * r1, c2 + v * r2\});
 if (h2 == 0) out.pop_back();
 return out;
```

CircleLine.h

Description: Finds the intersection between a circle and a line. Returns a vector of either 0, 1, or 2 intersection points. P is intended to be Point<double>.

```
"Point.h"
template<class P>
vector<P> circleLine(P c, double r, P a, P b) {
 P \ ab = b - a, \ p = a + ab * (c-a).dot(ab) / ab.dist2();
  double s = a.cross(b, c), h2 = r*r - s*s / ab.dist2();
 if (h2 < 0) return {};
 if (h2 == 0) return {p};
 P h = ab.unit() * sqrt(h2);
 return {p - h, p + h};
```

CirclePolygonIntersection.h

Description: Returns the area of the intersection of a circle with a ccw polygon.

```
Time: \mathcal{O}(n)
"../../content/geometry/Point.h"
```

```
typedef Point < double > P;
#define arg(p, g) atan2(p.cross(g), p.dot(g))
double circlePoly(P c, double r, vector<P> ps) {
  auto tri = [&](P p, P q) {
    auto r2 = r * r / 2;
   P d = q - p;
    auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
    auto det = a * a - b;
    if (det <= 0) return arg(p, q) * r2;</pre>
    auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
    if (t < 0 || 1 <= s) return arg(p, q) * r2;</pre>
   P u = p + d * s, v = p + d * t;
    return arg(p,u) * r2 + u.cross(v)/2 + arg(v,g) * r2;
 auto sum = 0.0;
  rep(i, 0, sz(ps))
   sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);
  return sum;
```

circumcircle.h Description:

of the same circle.

"Point.h"

The circumcirle of a triangle is the circle intersecting all three vertices, ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center


```
typedef Point <double > P:
double ccRadius(const P& A, const P& B, const P& C) {
  return (B-A).dist() * (C-B).dist() * (A-C).dist() /
      abs((B-A).cross(C-A))/2;
P ccCenter(const P& A, const P& B, const P& C) {
 P b = C-A, c = B-A;
  return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points. **Time:** expected $\mathcal{O}(n)$

```
"circumcircle.h"
pair<P, double> mec(vector<P> ps) {
 shuffle(all(ps), mt19937(time(0)));
 P \circ = ps[0];
 double r = 0, EPS = 1 + 1e-8;
 rep(i, 0, sz(ps)) if ((o - ps[i]).dist() > r * EPS) {
   o = ps[i], r = 0;
   rep(j, 0, i) if ((o - ps[j]).dist() > r * EPS) {
     o = (ps[i] + ps[j]) / 2;
     r = (o - ps[i]).dist();
     rep(k, 0, j) if ((o - ps[k]).dist() > r * EPS) {
       o = ccCenter(ps[i], ps[j], ps[k]);
        r = (o - ps[i]).dist();
 return {o, r};
```

InsidePolygon.h

Description: Returns true if p lies within the polygon. If strict is true, it returns false for points on the boundary. The algorithm uses products in intermediate steps so watch out for overflow.

```
Usage: vector\langle P \rangle v = \{P\{4,4\}, P\{1,2\}, P\{2,1\}\};
bool in = inPolygon(v, P{3, 3}, false);
```

```
Time: \mathcal{O}(n)
```

19 lines

```
"Point.h", "OnSegment.h", "SegmentDistance.h"
                                                             11 lines
template<class P>
bool inPolygon(vector<P> &p, P a, bool strict = true) {
  int cnt = 0, n = sz(p);
  rep(i,0,n) {
    P q = p[(i + 1) % n];
    if (onSegment(p[i], q, a)) return !strict;
    //or: if (segDist(p[i], q, a) \le eps) return !strict;
    cnt ^= ((a.y<p[i].y) - (a.y<q.y)) * a.cross(p[i], q) > 0;
  return cnt;
```

PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T!

```
template<class T>
T polygonArea2(vector<Point<T>>& v) {
 T = v.back().cross(v[0]);
 rep(i,0,sz(v)-1) a += v[i].cross(v[i+1]);
```

```
return a;
```

PolygonCenter.h

Description: Returns the center of mass for a polygon.

Time: $\mathcal{O}(n)$ "Point.h"

"Point.h"

```
typedef Point<double> P;
P polygonCenter(const vector<P>& v) {
 P res(0, 0); double A = 0;
 for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {
   res = res + (v[i] + v[j]) * v[j].cross(v[i]);
   A += v[j].cross(v[i]);
 return res / A / 3;
```

PolygonCut.h

Description:

Returns a vector with the vertices of a polygon with every-

```
thing to the left of the line going from s to e cut away.
Usage: vector<P> p = ...;
p = polygonCut(p, P(0,0), P(1,0));
"Point.h", "lineIntersection.h"
```



```
typedef Point<double> P;
vector<P> polygonCut(const vector<P>& poly, P s, P e) {
 vector<P> res:
 rep(i, 0, sz(poly)) {
    P cur = polv[i], prev = i ? polv[i-1] : polv.back();
    bool side = s.cross(e, cur) < 0;</pre>
    if (side != (s.cross(e, prev) < 0))
     res.push_back(lineInter(s, e, cur, prev).second);
    if (side)
      res.push back(cur);
 return res;
```

PolygonUnion.h

Description: Calculates the area of the union of n polygons (not necessarily convex). The points within each polygon must be given in CCW order. (Epsilon checks may optionally be added to sideOf/sgn, but shouldn't be needed.)

Time: $\mathcal{O}(N^2)$, where N is the total number of points "Point.h", "sideOf.h"

33 lines

17 lines

```
typedef Point < double > P;
double rat(P a, P b) { return sqn(b.x) ? a.x/b.x : a.y/b.y; }
double polyUnion(vector<vector<P>>& poly) {
  double ret = 0;
  rep(i, 0, sz(polv)) rep(v, 0, sz(polv[i])) {
   P A = poly[i][v], B = poly[i][(v + 1) % sz(poly[i])];
    vector<pair<double, int>> segs = {{0, 0}, {1, 0}};
    rep(j,0,sz(poly)) if (i != j) {
     rep(u,0,sz(poly[j])) {
       P C = poly[j][u], D = poly[j][(u + 1) % sz(poly[j])];
       int sc = sideOf(A, B, C), sd = sideOf(A, B, D);
       if (sc != sd) {
          double sa = C.cross(D, A), sb = C.cross(D, B);
         if (\min(sc. sd) < 0)
            segs.emplace_back(sa / (sa - sb), sgn(sc - sd));
       } else if (!sc && !sd && j<i && sgn((B-A).dot(D-C))>0){
          segs.emplace_back(rat(C - A, B - A), 1);
          segs.emplace_back(rat(D - A, B - A), -1);
    sort (all (segs));
   for (auto& s : segs) s.first = min(max(s.first, 0.0), 1.0);
   double sum = 0;
   int cnt = segs[0].second;
   rep(j,1,sz(segs)) {
     if (!cnt) sum += segs[j].first - segs[j - 1].first;
     cnt += seqs[j].second;
    ret += A.cross(B) * sum;
  return ret / 2;
```

ConvexHull.h

Time: $\mathcal{O}(n \log n)$

Description:

"Point.h"

Returns a vector of the points of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull.

typedef Point<ll> P; vector<P> convexHull(vector<P> pts) { if (sz(pts) <= 1) return pts;</pre> sort(all(pts)); vector<P> h(sz(pts)+1); **int** s = 0, t = 0; for (int it = 2; it--; s = --t, reverse(all(pts))) for (P p : pts) { while (t >= s + 2 && h[t-2].cross(h[t-1], p) <= 0) t--;h[t++] = p;return {h.begin(), h.begin() + t - (t == 2 && h[0] == h[1])};

HullDiameter.h

Description: Returns the two points with max distance on a convex hull (ccw, no duplicate/collinear points).

```
Time: \mathcal{O}(n)
```

```
"Point.h"
typedef Point<11> P;
array<P, 2> hullDiameter(vector<P> S) {
 int n = sz(S), j = n < 2 ? 0 : 1;
  pair<11, array<P, 2>> res({0, {S[0], S[0]}});
  rep(i,0,j)
    for (;; j = (j + 1) % n) {
      res = \max(\text{res}, \{(S[i] - S[j]).dist2(), \{S[i], S[j]\}\});
```

```
if ((S[(j+1) % n] - S[j]).cross(S[i+1] - S[i]) >= 0)
     break:
return res.second;
```

PointInsideHull.h

Description: Determine whether a point t lies inside a convex hull (CCW order, with no collinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.

Time: $\mathcal{O}(\log N)$

```
"Point.h", "sideOf.h", "OnSegment.h"
                                                              14 lines
typedef Point<11> P;
bool inHull(const vector<P>& 1, P p, bool strict = true) {
 int a = 1, b = sz(1) - 1, r = !strict;
 if (sz(1) < 3) return r && onSegment(1[0], 1.back(), p);</pre>
 if (sideOf(1[0], 1[a], 1[b]) > 0) swap(a, b);
 if (sideOf(1[0], 1[a], p) >= r || sideOf(1[0], 1[b], p) <= -r)</pre>
  while (abs(a - b) > 1) {
    int c = (a + b) / 2;
    (sideOf(1[0], 1[c], p) > 0 ? b : a) = c;
 return sqn(l[a].cross(l[b], p)) < r;</pre>
```

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw and have no collinear points. lineHull(line, poly) returns a pair describing the intersection of a line with the polygon: \bullet (-1,-1) if no collision, \bullet (i,-1)if touching the corner i, \bullet (i, i) if along side (i, i+1), \bullet (i, j) if crossing sides (i, i+1) and (j, j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i, i + 1). The points are returned in the same order as the line hits the polygon, extryertex returns the point of a hull with the max projection onto a line.

Time: $\mathcal{O}(\log n)$

```
"Point.h"
#define cmp(i,j) sgn(dir.perp().cross(poly[(i)%n]-poly[(j)%n]))
#define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0
template <class P> int extrVertex(vector<P>& poly, P dir) {
 int n = sz(poly), lo = 0, hi = n;
 if (extr(0)) return 0;
 while (lo + 1 < hi) {
   int m = (lo + hi) / 2;
   if (extr(m)) return m;
   int 1s = cmp(1o + 1, 1o), ms = cmp(m + 1, m);
    (1s < ms \mid | (1s == ms \&\& 1s == cmp(1o, m)) ? hi : 1o) = m;
 return lo:
#define cmpL(i) sgn(a.cross(poly[i], b))
template <class P>
array<int, 2> lineHull(P a, P b, vector<P>& poly) {
 int endA = extrVertex(poly, (a - b).perp());
 int endB = extrVertex(poly, (b - a).perp());
 if (cmpL(endA) < 0 \mid | cmpL(endB) > 0)
   return {-1, -1};
 array<int, 2> res;
 rep(i, 0, 2) {
   int lo = endB, hi = endA, n = sz(poly);
    while ((lo + 1) % n != hi) {
     int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;</pre>
      (cmpL(m) == cmpL(endB) ? lo : hi) = m;
    res[i] = (lo + !cmpL(hi)) % n;
   swap (endA, endB);
```

```
if (res[0] == res[1]) return {res[0], -1};
if (!cmpL(res[0]) && !cmpL(res[1]))
  switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
    case 0: return {res[0], res[0]};
    case 2: return {res[1], res[1]};
return res;
```

ClosestPair.h

Description: Finds the closest pair of points.

```
Time: \mathcal{O}(n \log n)
"Point.h"
```

typedef Point<ll> P; pair<P, P> closest (vector<P> v) { assert(sz(v) > 1); sort(all(v), [](P a, P b) { return a.y < b.y; });</pre> pair<ll, pair<P, P>> ret{LLONG MAX, {P(), P()}}; int j = 0;**for** (P p : v) { P d{1 + (ll)sqrt(ret.first), 0}; while $(v[j].y \le p.y - d.x)$ S.erase(v[j++]);auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d); for (; lo != hi; ++lo)

ret = $min(ret, \{(*lo - p).dist2(), \{*lo, p\}\});$

ManhattanMST.h

S.insert(p);

return ret.second;

Description: Given N points, returns up to 4*N edges, which are guaranteed to contain a minimum spanning tree for the graph with edge weights w(p, q) = -p.x - q.x - + -p.y - q.y. Edges are in the form (distance, src, dst). Use a standard MST algorithm on the result to find the final MST. Time: $\mathcal{O}(N \log N)$

```
"Point.h"
typedef Point<int> P;
vector<array<int, 3>> manhattanMST(vector<P> ps) {
 vi id(sz(ps));
 iota(all(id), 0);
 vector<array<int, 3>> edges;
  rep(k, 0, 4) {
    sort(all(id), [&](int i, int j) {
         return (ps[i]-ps[j]).x < (ps[j]-ps[i]).y;});
    map<int, int> sweep;
    for (int i : id) {
      for (auto it = sweep.lower bound(-ps[i].y);
                it != sweep.end(); sweep.erase(it++)) {
        int j = it->second;
        P d = ps[i] - ps[i];
        if (d.y > d.x) break;
        edges.push_back(\{d.y + d.x, i, j\});
      sweep[-ps[i].y] = i;
    for (P& p : ps) if (k & 1) p.x = -p.x; else swap(p.x, p.y);
 return edges;
```

kdTree.h

"Point.h"

Description: KD-tree (2d, can be extended to 3d)

typedef long long T;

63 lines

```
typedef Point<T> P;
const T INF = numeric limits<T>::max();
bool on_x(const P& a, const P& b) { return a.x < b.x; }</pre>
bool on_y(const P& a, const P& b) { return a.y < b.y; }</pre>
struct Node {
  P pt; // if this is a leaf, the single point in it
  T x0 = INF, x1 = -INF, y0 = INF, y1 = -INF; // bounds
  Node *first = 0, *second = 0;
  T distance (const P& p) { // min squared distance to a point
    T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
    T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
    return (P(x,y) - p).dist2();
  Node (vector<P>&& vp) : pt(vp[0]) {
    for (P p : vp) {
     x0 = min(x0, p.x); x1 = max(x1, p.x);
      y0 = min(y0, p.y); y1 = max(y1, p.y);
    if (vp.size() > 1) {
      // split on x if width >= height (not ideal...)
      sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
      // divide by taking half the array for each child (not
      // best performance with many duplicates in the middle)
      int half = sz(vp)/2;
      first = new Node({vp.begin(), vp.begin() + half});
      second = new Node({vp.begin() + half, vp.end()});
struct KDTree {
  Node* root;
  KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}
  pair<T, P> search (Node *node, const P& p) {
    if (!node->first) {
      // uncomment if we should not find the point itself:
      // if (p = node > pt) return {INF, P()};
      return make_pair((p - node->pt).dist2(), node->pt);
    Node *f = node \rightarrow first, *s = node \rightarrow second;
    T bfirst = f->distance(p), bsec = s->distance(p);
    if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
    // search closest side first, other side if needed
    auto best = search(f, p);
    if (bsec < best.first)</pre>
     best = min(best, search(s, p));
    return best:
  // find nearest point to a point, and its squared distance
  // (requires an arbitrary operator< for Point)
  pair<T, P> nearest (const P& p) {
    return search (root, p);
};
```

Delaunay Triangulation.h

Description: Computes the Delaunay triangulation of a set of points. Each circumcircle contains none of the input points. If any three points are collinear or any four are on the same circle, behavior is undefined.

Time: $\mathcal{O}\left(n^2\right)$

"Point.h", "3dHull.h" 10 lines

```
template<class P, class F>
void delaunay(vector<P>& ps, F trifun) {
 if (sz(ps) == 3)  { int d = (ps[0].cross(ps[1], ps[2]) < 0);
    trifun(0,1+d,2-d); }
  vector<P3> p3;
  for (P p : ps) p3.emplace_back(p.x, p.y, p.dist2());
  if (sz(ps) > 3) for (auto t:hull3d(p3)) if ((p3[t.b]-p3[t.a]).
      cross(p3[t.c]-p3[t.a]).dot(P3(0,0,1)) < 0)
    trifun(t.a, t.c, t.b);
FastDelaunav.h
Description: Fast Delaunay triangulation. Each circumcircle contains none
of the input points. There must be no duplicate points. If all points are on a
line, no triangles will be returned. Should work for doubles as well, though
there may be precision issues in 'circ'. Returns triangles in order {t[0][0],
t[0][1], t[0][2], t[1][0], \dots, all counter-clockwise.
```

Time: $\mathcal{O}(n \log n)$

"Point.h"

return r:

Q A, B, ra, rb;

int half = sz(s) / 2;

```
typedef Point<11> P;
typedef struct Quad* Q;
typedef int128 t 111; // (can be ll if coords are < 2e4)
P arb(LLONG_MAX, LLONG_MAX); // not equal to any other point
struct Ouad {
 Q rot, o; P p = arb; bool mark;
 P& F() { return r()->p; }
  O& r() { return rot->rot; }
 O prev() { return rot->o->rot; }
 Q next() { return r()->prev(); }
bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
 111 p2 = p.dist2(), A = a.dist2()-p2,
      B = b.dist2()-p2, C = c.dist2()-p2;
  return p.cross(a,b)*C + p.cross(b,c)*A + p.cross(c,a)*B > 0;
O makeEdge(P orig, P dest) {
  Q r = H ? H : new Quad{new Quad{new Quad{new Quad{0}}}};
  H = r -> 0; r -> r() -> r() = r;
  rep(i,0,4) r = r - rot, r - p = arb, r - o = i & 1 ? <math>r : r - r();
  r->p = orig; r->F() = dest;
```

```
void splice(Q a, Q b) {
  swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
Q connect(Q a, Q b) {
 Q = makeEdge(a->F(), b->p);
 splice(q, a->next());
  splice(q->r(), b);
 return q;
pair<Q,Q> rec(const vector<P>& s) {
 if (sz(s) <= 3) {
    Q = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.back());
    if (sz(s) == 2) return { a, a->r() };
    splice(a->r(), b);
    auto side = s[0].cross(s[1], s[2]);
   Q c = side ? connect(b, a) : 0;
    return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
#define H(e) e->F(), e->p
```

#define valid(e) (e->F().cross(H(base)) > 0)

```
tie(ra, A) = rec({all(s) - half});
  tie(B, rb) = rec({sz(s) - half + all(s)});
  while ((B->p.cross(H(A)) < 0 && (A = A->next())) | |
         (A->p.cross(H(B)) > 0 && (B = B->r()->o)));
  O base = connect(B->r(), A);
 if (A->p == ra->p) ra = base->r();
 if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
    while (circ(e->dir->F(), H(base), e->F())) {
      0 t = e->dir; \setminus
      splice(e, e->prev()); \
      splice(e->r(), e->r()->prev()); \
      e->o = H; H = e; e = t; \setminus
  for (;;) {
    DEL(LC, base->r(), o); DEL(RC, base, prev());
    if (!valid(LC) && !valid(RC)) break;
    if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
     base = connect(RC, base->r());
      base = connect(base->r(), LC->r());
 return { ra, rb };
vector<P> triangulate(vector<P> pts) {
 sort(all(pts)); assert(unique(all(pts)) == pts.end());
 if (sz(pts) < 2) return {};
 Q e = rec(pts).first;
 vector<Q> q = \{e\};
 int qi = 0;
 while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;
#define ADD { Q c = e; do { c->mark = 1; pts.push_back(c->p); \
 q.push\_back(c->r()); c = c->next(); } while (c != e); }
 ADD; pts.clear();
  while (qi < sz(q)) if (!(e = q[qi++]) -> mark) ADD;
  return pts;
```

PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point outwards.

```
template<class V, class L>
double signedPolyVolume(const V& p, const L& trilist) {
 double v = 0;
 for (auto i : trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
 return v / 6;
```

Point3D.h

Description: Class to handle points in 3D space. T can be e.g. double or long long.

```
template<class T> struct Point3D {
 typedef Point3D P;
  typedef const P& R;
  T x, v, z;
 explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
 bool operator<(R p) const {</pre>
    return tie(x, y, z) < tie(p.x, p.y, p.z); }</pre>
 bool operator==(R p) const {
    return tie(x, y, z) == tie(p.x, p.y, p.z); }
  P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
  P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
  P operator*(T d) const { return P(x*d, y*d, z*d); }
 P operator/(T d) const { return P(x/d, y/d, z/d); }
  T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
```

```
P cross(R p) const {
    return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
  T dist2() const { return x*x + y*y + z*z; }
  double dist() const { return sqrt((double)dist2()); }
  //Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
  double phi() const { return atan2(y, x); }
  //Zenith angle (latitude) to the z-axis in interval [0, pi]
  double theta() const { return atan2(sqrt(x*x+y*y),z); }
  P unit() const { return *this/(T)dist(); } //makes dist()=1
  //returns unit vector normal to *this and p
  P normal(P p) const { return cross(p).unit(); }
  //returns point rotated 'angle' radians ccw around axis
  P rotate (double angle, P axis) const {
   double s = sin(angle), c = cos(angle); P u = axis.unit();
   return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
};
```

3dHull.h

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point outwards.

Time: $\mathcal{O}\left(n^2\right)$ "Point3D.h"

```
typedef Point3D<double> P3;
struct PR {
  void ins(int x) { (a == -1 ? a : b) = x; }
  void rem(int x) { (a == x ? a : b) = -1; }
 int cnt() { return (a !=-1) + (b !=-1); }
 int a, b;
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert (sz(A) >= 4);
  vector<vector<PR>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
  vector<F> FS;
  auto mf = [&](int i, int j, int k, int l) {
   P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
   if (q.dot(A[1]) > q.dot(A[i]))
     q = q * -1;
   F f{q, i, j, k};
   E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
   FS.push_back(f);
  };
  rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
   mf(i, j, k, 6 - i - j - k);
  rep(i,4,sz(A)) {
    rep(j, 0, sz(FS)) {
     F f = FS[j];
     if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
       E(a,c).rem(f.b);
       E(b,c).rem(f.a);
       swap(FS[j--], FS.back());
       FS.pop_back();
   int nw = sz(FS);
   rep(j,0,nw) {
     F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
```

C(a, b, c); C(a, c, b); C(b, c, a);

```
for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
   A[it.c] - A[it.a]).dot(it.g) <= 0) swap(it.c, it.b);
 return FS;
};
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis (0 =north pole). All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points.

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
 double dx = \sin(t2) \cdot \cos(f2) - \sin(t1) \cdot \cos(f1);
 double dy = sin(t2) * sin(f2) - sin(t1) * sin(f1);
 double dz = cos(t2) - cos(t1);
 double d = sgrt(dx*dx + dy*dy + dz*dz);
 return radius*2*asin(d/2);
```

Graph (2)

BellmanFord.h

Description: Calculates shortest paths from s in a graph that might have negative edge weights. Unreachable nodes get dist = inf; nodes reachable through negative-weight cycles get dist = -inf. Assumes $V^2 \max |w_i| < \sim 2^{63}$ Time: $\mathcal{O}(VE)$

```
const ll inf = LLONG_MAX;
struct Ed { int a, b, w, s() { return a < b ? a : -a; }};
struct Node { ll dist = inf; int prev = -1; };
void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, int s) {
 nodes[s].dist = 0;
  sort(all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });</pre>
  int lim = sz(nodes) / 2 + 2; // /3+100 with shuffled vertices
  rep(i,0,lim) for (Ed ed : eds) {
   Node cur = nodes[ed.a], &dest = nodes[ed.b];
    if (abs(cur.dist) == inf) continue;
    11 d = cur.dist + ed.w;
    if (d < dest.dist) {</pre>
     dest.prev = ed.a;
     dest.dist = (i < lim-1 ? d : -inf);
 rep(i,0,lim) for (Ed e : eds) {
    if (nodes[e.a].dist == -inf)
     nodes[e.b].dist = -inf;
```

FlovdWarshall.h

Description: Calculates all-pairs shortest path in a directed graph that might have negative edge weights. Input is an distance matrix m, where $m[i][j] = \inf if i$ and j are not adjacent. As output, m[i][j] is set to the shortest distance between i and j, inf if no path, or -inf if the path goes through a negative-weight cycle.

```
Time: \mathcal{O}(N^3)
```

```
const 11 inf = 1LL << 62;</pre>
void floydWarshall(vector<vector<ll>>& m) {
 int n = sz(m);
```

```
rep(i, 0, n) m[i][i] = min(m[i][i], OLL);
rep(k, 0, n) rep(i, 0, n) rep(j, 0, n)
 if (m[i][k] != inf && m[k][j] != inf) {
    auto newDist = max(m[i][k] + m[k][j], -inf);
    m[i][j] = min(m[i][j], newDist);
rep(k, 0, n) if (m[k][k] < 0) rep(i, 0, n) rep(j, 0, n)
  if (m[i][k] != inf && m[k][j] != inf) m[i][j] = -inf;
```

TopoSort.h

Description: Topological sorting. Given is an oriented graph. Output is an ordering of vertices, such that there are edges only from left to right. If there are cycles, the returned list will have size smaller than n – nodes reachable from cycles will not be returned.

```
Time: \mathcal{O}(|V| + |E|)
```

```
vi topoSort(const vector<vi>& gr) {
 vi indeg(sz(gr)), ret;
  for (auto& li : gr) for (int x : li) indeg[x]++;
  queue < int > q; // use priority_queue for lexic. largest ans.
  rep(i, 0, sz(qr)) if (indeq[i] == 0) q.push(i);
  while (!q.empty()) {
   int i = q.front(); // top() for priority queue
    ret.push back(i);
    q.pop();
    for (int x : qr[i])
      if (--indeg[x] == 0) q.push(x);
 return ret;
```

PushRelabel.h

Description: Push-relabel using the highest label selection rule and the gap heuristic. Quite fast in practice. To obtain the actual flow, look at positive values only.

```
Time: \mathcal{O}\left(V^2\sqrt{E}\right)
struct PushRelabel {
   };
```

```
struct Edge {
  int dest, back;
  11 f, c;
vector<vector<Edge>> g;
vector<11> ec;
vector<Edge*> cur;
vector<vi> hs; vi H;
PushRelabel(int n) : g(n), ec(n), cur(n), hs(2*n), H(n) {}
void addEdge(int s, int t, ll cap, ll rcap=0) {
 if (s == t) return;
  g[s].push_back({t, sz(g[t]), 0, cap});
  g[t].push_back({s, sz(g[s])-1, 0, rcap});
void addFlow(Edge& e, ll f) {
  Edge &back = q[e.dest][e.back];
  if (!ec[e.dest] && f) hs[H[e.dest]].push_back(e.dest);
  e.f += f; e.c -= f; ec[e.dest] += f;
  back.f -= f; back.c += f; ec[back.dest] -= f;
11 calc(int s, int t) {
  int v = sz(q); H[s] = v; ec[t] = 1;
  vi co(2*v); co[0] = v-1;
  rep(i, 0, v) cur[i] = q[i].data();
  for (Edge& e : g[s]) addFlow(e, e.c);
  for (int hi = 0;;) {
    while (hs[hi].empty()) if (!hi--) return -ec[s];
```

MinCostMaxFlow.h

Description: Min-cost max-flow. cap[i][j] != cap[j][i] is allowed; double edges are not. If costs can be negative, call setpi before maxflow, but note that negative cost cycles are not supported. To obtain the actual flow, look at positive values only.

Time: Approximately $\mathcal{O}\left(E^2\right)$

81 lines

```
#include <bits/extc++.h>
const 11 INF = numeric limits<11>::max() / 4;
typedef vector<ll> VL;
struct MCMF {
  int N:
  vector<vi> ed. red:
  vector<VL> cap, flow, cost;
 vi seen;
 VL dist, pi;
  vector<pii> par;
  MCMF (int N) :
   N(N), ed(N), red(N), cap(N, VL(N)), flow(cap), cost(cap),
   seen(N), dist(N), pi(N), par(N) {}
  void addEdge(int from, int to, ll cap, ll cost) {
   this->cap[from][to] = cap;
   this->cost[from][to] = cost;
   ed[from].push_back(to);
   red[to].push_back(from);
  void path(int s) {
    fill(all(seen), 0);
    fill(all(dist), INF);
   dist[s] = 0; ll di;
    __gnu_pbds::priority_queue<pair<11, int>> q;
   vector<decltype(q)::point_iterator> its(N);
   q.push(\{0, s\});
    auto relax = [&] (int i, ll cap, ll cost, int dir) {
     ll val = di - pi[i] + cost;
     if (cap && val < dist[i]) {
       dist[i] = val;
       par[i] = \{s, dir\};
       if (its[i] == q.end()) its[i] = q.push({-dist[i], i});
       else q.modify(its[i], {-dist[i], i});
    };
    while (!q.empty()) {
```

```
s = q.top().second; q.pop();
      seen[s] = 1; di = dist[s] + pi[s];
      for (int i : ed[s]) if (!seen[i])
       relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);
      for (int i : red[s]) if (!seen[i])
       relax(i, flow[i][s], -cost[i][s], 0);
   rep(i, 0, N) pi[i] = min(pi[i] + dist[i], INF);
 pair<11, 11> maxflow(int s, int t) {
   11 \text{ totflow} = 0, totcost = 0;
   while (path(s), seen[t]) {
     11 fl = INF;
     for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
       fl = min(fl, r ? cap[p][x] - flow[p][x] : flow[x][p]);
      for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
       if (r) flow[p][x] += fl;
       else flow[x][p] -= fl;
   rep(i, 0, N) rep(j, 0, N) totcost += cost[i][j] * flow[i][j];
   return {totflow, totcost};
 // If some costs can be negative, call this before maxflow:
 void setpi(int s) { // (otherwise, leave this out)
   fill(all(pi), INF); pi[s] = 0;
   int it = N, ch = 1; 11 v;
   while (ch-- && it--)
     rep(i,0,N) if (pi[i] != INF)
       for (int to : ed[i]) if (cap[i][to])
         if ((v = pi[i] + cost[i][to]) < pi[to])</pre>
           pi[to] = v, ch = 1;
    assert(it >= 0); // negative cost cycle
};
```

EdmondsKarp.h

Description: Flow algorithm with guaranteed complexity $O(VE^2)$. To get edge flow values, compare capacities before and after, and take the positive values only.

```
template<class T> T edmondsKarp(vector<unordered_map<int, T>>&
    graph, int source, int sink) {
 assert (source != sink);
 T flow = 0:
 vi par(sz(graph)), q = par;
 for (::) {
   fill(all(par), -1);
   par[source] = 0;
   int ptr = 1;
   q[0] = source;
    rep(i,0,ptr) {
     int x = q[i];
     for (auto e : graph[x]) {
       if (par[e.first] == -1 && e.second > 0) {
         par[e.first] = x;
         q[ptr++] = e.first;
         if (e.first == sink) goto out;
    return flow;
    T inc = numeric_limits<T>::max();
    for (int y = sink; y != source; y = par[y])
```

```
inc = min(inc, graph[par[y]][y]);

flow += inc;
  for (int y = sink; y != source; y = par[y]) {
    int p = par[y];
    if ((graph[p][y] -= inc) <= 0) graph[p].erase(y);
      graph[y][p] += inc;
    }
}</pre>
```

Dinic.h

Description: Flow algorithm with complexity $O(VE \log U)$ where $U = \max |\text{cap}|$. $O(\min(E^{1/2}, V^{2/3})E)$ if U = 1; $O(\sqrt{V}E)$ for bipartite matching.

```
struct Dinic {
 struct Edge {
    int to, rev:
    11 c, oc;
    11 flow() { return max(oc - c, OLL); } // if you need flows
 vi lvl, ptr, q;
  vector<vector<Edge>> adi;
  Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) {}
  void addEdge(int a, int b, ll c, ll rcap = 0) {
    adj[a].push_back({b, sz(adj[b]), c, c});
    adj[b].push back({a, sz(adj[a]) - 1, rcap, rcap});
 ll dfs(int v, int t, ll f) {
   if (v == t || !f) return f;
    for (int& i = ptr[v]; i < sz(adj[v]); i++) {</pre>
     Edge& e = adj[v][i];
     if (lvl[e.to] == lvl[v] + 1)
       if (ll p = dfs(e.to, t, min(f, e.c))) {
          e.c -= p, adj[e.to][e.rev].c += p;
          return p;
    return 0:
 11 calc(int s, int t) {
    11 flow = 0; q[0] = s;
    rep(L,0,31) do { // 'int L=30' maybe faster for random data
      lvl = ptr = vi(sz(q));
      int qi = 0, qe = lvl[s] = 1;
      while (qi < qe && !lvl[t]) {</pre>
       int v = q[qi++];
        for (Edge e : adj[v])
         if (!lvl[e.to] && e.c >> (30 - L))
            q[qe++] = e.to, lvl[e.to] = lvl[v] + 1;
      while (ll p = dfs(s, t, LLONG_MAX)) flow += p;
    } while (lvl[t]);
    return flow;
 bool leftOfMinCut(int a) { return lvl[a] != 0; }
```

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

Time: $\mathcal{O}\left(V^3\right)$

pair<int, vi> globalMinCut (vector<vi> mat) {
 pair<int, vi> best = {INT_MAX, {}};
 int n = sz(mat);
 vector<vi> co(n);
 rep(i,0,n) co[i] = {i};

```
rep(ph,1,n) {
    vi w = mat[0];
    size_t s = 0, t = 0;
    rep(it,0,n-ph) { // O(V^2) -> O(E log V) with prio. queue
        w[t] = INT_MIN;
        s = t, t = max_element(all(w)) - w.begin();
        rep(i,0,n) w[i] += mat[t][i];
    }
    best = min(best, {w[t] - mat[t][t], co[t]});
    co[s].insert(co[s].end(), all(co[t]));
    rep(i,0,n) mat[s][i] += mat[t][i];
    rep(i,0,n) mat[i][s] = mat[s][i];
    mat[0][t] = INT_MIN;
}
return best;
}
```

GomoryHu.h

Description: Given a list of edges representing an undirected flow graph, returns edges of the Gomory-Hu tree. The max flow between any pair of vertices is given by minimum edge weight along the Gomory-Hu tree path. **Time:** $\mathcal{O}(V)$ Flow Computations

```
"PushRelabel.h" 13 lines
```

```
typedef array<11, 3> Edge;
vector<Edge> gomoryHu(int N, vector<Edge> ed) {
  vector<Edge> tree;
  vi par(N);
  rep(i,1,N) {
    PushRelabel D(N); // Dinic also works
    for (Edge t : ed) D.addEdge(t[0], t[1], t[2], t[2]);
    tree.push_back({i, par[i], D.calc(i, par[i])});
    rep(j,i+1,N)
        if (par[j] == par[i] && D.leftOfMinCut(j)) par[j] = i;
  }
  return tree;
}
```

hopcroftKarp.h

Description: Fast bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched. Usage: vi btoa (m, -1); hoperoftKarp(q, btoa);

Time: $\mathcal{O}\left(\sqrt{V}E\right)$

```
bool dfs(int a, int L, vector<vi>& g, vi& btoa, vi& A, vi& B) {
  if (A[a] != L) return 0;
  A[a] = -1;
  for (int b : g[a]) if (B[b] == L + 1) {
   if (btoa[b] == -1 || dfs(btoa[b], L + 1, q, btoa, A, B))
      return btoa[b] = a, 1;
  return 0;
int hopcroftKarp(vector<vi>& g, vi& btoa) {
  int res = 0;
  vi A(g.size()), B(btoa.size()), cur, next;
  for (;;) {
    fill(all(A), 0);
    fill(all(B), 0);
    cur.clear();
    for (int a : btoa) if (a != -1) A[a] = -1;
    rep(a,0,sz(g)) if(A[a] == 0) cur.push_back(a);
    for (int lay = 1;; lay++) {
     bool islast = 0;
     next.clear();
```

```
for (int a : cur) for (int b : g[a]) {
    if (btoa[b] == -1) {
        B[b] = lay;
        islast = 1;
    }
    else if (btoa[b] != a && !B[b]) {
        B[b] = lay;
        next.push_back(btoa[b]);
    }
} if (islast) break;
    if (next.empty()) return res;
    for (int a : next) A[a] = lay;
        cur.swap(next);
}
rep(a,0,sz(g))
    res += dfs(a, 0, g, btoa, A, B);
}
```

DFSMatching.h

Description: Simple bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched. Usage: vi btoa (m, -1); dfsMatching (g, btoa);

```
Time: \mathcal{O}(VE)
                                                           22 lines
bool find(int j, vector<vi>& g, vi& btoa, vi& vis) {
 if (btoa[j] == -1) return 1;
  vis[j] = 1; int di = btoa[j];
  for (int e : q[di])
    if (!vis[e] && find(e, g, btoa, vis)) {
      btoa[e] = di;
      return 1;
  return 0;
int dfsMatching(vector<vi>& q, vi& btoa) {
  rep(i,0,sz(g)) {
    vis.assign(sz(btoa), 0);
    for (int j : g[i])
      if (find(j, g, btoa, vis)) {
        btoa[j] = i;
        break;
  return sz(btoa) - (int)count(all(btoa), -1);
```

MinimumVertexCover.h

Description: Finds a minimum vertex cover in a bipartite graph. The size is the same as the size of a maximum matching, and the complement is a maximum independent set.

```
"DFSMatching.h" 20 lines
vi cover(vector<vi>& g, int n, int m) {
  vi match(m, -1);
  int res = dfsMatching(g, match);
  vector<bool> lfound(n, true), seen(m);
  for (int it : match) if (it != -1) lfound[it] = false;
  vi q, cover;
  rep(i,0,n) if (lfound[i]) q.push_back(i);
  while (!q.empty()) {
    int i = q.back(); q.pop_back();
    lfound[i] = 1;
    for (int e : g[i]) if (!seen[e] && match[e] != -1) {
        seen[e] = true;
        q.push_back(match[e]);
```

```
}
rep(i,0,n) if (!lfound[i]) cover.push_back(i);
rep(i,0,m) if (seen[i]) cover.push_back(n+i);
assert(sz(cover) == res);
return cover;
}
```

WeightedMatching.h

Description: Given a weighted bipartite graph, matches every node on the left with a node on the right such that no nodes are in two matchings and the sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = cost for L[i] to be matched with R[j] and returns (min cost, match), where L[i] is matched with R[match[i]]. Negate costs for max cost. Requires $N \leq M$. **Time:** $\mathcal{O}(N^2M)$

 ^{2}M) 31 lines

```
pair<int, vi> hungarian(const vector<vi> &a) {
 if (a.empty()) return {0, {}};
 int n = sz(a) + 1, m = sz(a[0]) + 1;
 vi u(n), v(m), p(m), ans(n - 1);
 rep(i,1,n) {
   p[0] = i;
    int j0 = 0; // add "dummy" worker 0
   vi dist(m, INT_MAX), pre(m, -1);
   vector<bool> done(m + 1);
    do { // dijkstra
     done[j0] = true;
     int i0 = p[j0], j1, delta = INT_MAX;
      rep(j,1,m) if (!done[j]) {
       auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
       if (cur < dist[j]) dist[j] = cur, pre[j] = j0;
       if (dist[j] < delta) delta = dist[j], j1 = j;</pre>
      rep(j,0,m) {
       if (done[j]) u[p[j]] += delta, v[j] -= delta;
        else dist[j] -= delta;
     i0 = i1;
    } while (p[j0]);
    while (j0) { // update alternating path
     int j1 = pre[j0];
     p[j0] = p[j1], j0 = j1;
 rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
 return {-v[0], ans}; // min cost
```

GeneralMatching.h

Description: Matching for general graphs. Fails with probability N/mod. **Time:** $\mathcal{O}(N^3)$

```
".../numerical/MatrixInverse-mod.h"

vector<pii> generalMatching(int N, vector<pii>& ed) {
  vector<vector<ll>> mat(N, vector<ll>> (N)), A;
  for (pii pa : ed) {
    int a = pa.first, b = pa.second, r = rand() % mod;
    mat[a][b] = r, mat[b][a] = (mod - r) % mod;
}

int r = matInv(A = mat), M = 2*N - r, fi, fj;
  assert(r % 2 == 0);

if (M != N) do {
  mat.resize(M, vector<ll>> (M));
  rep(i,0,N) {
    mat[i].resize(M);
  rep(j,N,M) {
    int r = rand() % mod;
    mat[i][j] = r, mat[j][i] = (mod - r) % mod;
}
```

```
} while (matInv(A = mat) != M);
vi has(M, 1); vector<pii> ret;
rep(it,0,M/2) {
 rep(i,0,M) if (has[i])
   rep(j,i+1,M) if (A[i][j] && mat[i][j]) {
      fi = i; fj = j; goto done;
  } assert(0); done:
  if (fj < N) ret.emplace_back(fi, fj);</pre>
 has[fi] = has[fj] = 0;
  rep(sw,0,2) {
   ll a = modpow(A[fi][fj], mod-2);
   rep(i,0,M) if (has[i] && A[i][fj]) {
     ll b = A[i][fj] * a % mod;
     rep(j, 0, M) A[i][j] = (A[i][j] - A[fi][j] * b) % mod;
    swap(fi,fj);
return ret;
```

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u, v belong to the same component, we can reach u from v and vice

Usage: $scc(graph, [\&](vi\& v) \{ ... \})$ visits all components in reverse topological order. comp[i] holds the component index of a node (a component only has edges to components with lower index). ncomps will contain the number of components. Time: $\mathcal{O}\left(E+V\right)$ 24 lines

```
vi val, comp, z, cont;
int Time, ncomps;
template<class G, class F> int dfs(int j, G& g, F& f) {
  int low = val[j] = ++Time, x; z.push_back(j);
  for (auto e : q[j]) if (comp[e] < 0)</pre>
    low = min(low, val[e] ?: dfs(e,g,f));
  if (low == val[j]) {
    do {
     x = z.back(); z.pop_back();
     comp[x] = ncomps;
     cont.push back(x);
    } while (x != j);
    f(cont); cont.clear();
   ncomps++;
  return val[j] = low;
template < class G, class F> void scc(G& g, F f) {
  int n = sz(q);
  val.assign(n, 0); comp.assign(n, -1);
 Time = ncomps = 0;
  rep(i,0,n) if (comp[i] < 0) dfs(i, q, f);
```

BiconnectedComponents.h

Description: Finds all biconnected components in an undirected graph, and runs a callback for the edges in each. In a biconnected component there are at least two distinct paths between any two nodes. Note that a node can be in several components. An edge which is not in a component is a bridge, i.e., not part of any cycle.

```
Usage: int eid = 0; ed.resize(N);
for each edge (a,b) {
ed[a].emplace_back(b, eid);
ed[b].emplace_back(a, eid++); }
bicomps([&](const vi& edgelist) {...});
Time: \mathcal{O}\left(E+V\right)
                                                            33 lines
vi num, st:
vector<vector<pii>> ed;
int Time;
template<class F>
int dfs(int at, int par, F& f) {
 int me = num[at] = ++Time, e, y, top = me;
  for (auto pa : ed[at]) if (pa.second != par) {
    tie(v, e) = pa;
    if (num[y]) {
      top = min(top, num[v]);
      if (num[y] < me)
        st.push back(e);
    } else {
      int si = sz(st);
      int up = dfs(v, e, f);
      top = min(top, up);
      if (up == me) {
        st.push back(e);
        f(vi(st.begin() + si, st.end()));
        st.resize(si);
      else if (up < me) st.push_back(e);</pre>
      else { /* e is a bridge */ }
 return top;
template<class F>
void bicomps(F f) {
 num.assign(sz(ed), 0);
 rep(i,0,sz(ed)) if (!num[i]) dfs(i, -1, f);
```

2sat.h

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a|||b)&&(!a|||c)&&(d|||!b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions ($\sim x$).

```
Usage: TwoSat ts(number of boolean variables);
ts.either(0, \sim3); // Var 0 is true or var 3 is false
ts.setValue(2); // Var 2 is true
ts.atMostOne(\{0, \sim 1, 2\}); // <= 1 of vars 0, \sim 1 and 2 are true
ts.solve(); // Returns true iff it is solvable
ts.values[0..N-1] holds the assigned values to the vars
```

Time: $\mathcal{O}(N+E)$, where N is the number of boolean variables, and E is the number of clauses.

```
struct TwoSat {
 int N:
 vector<vi> ar:
 vi values; // 0 = false, 1 = true
 TwoSat(int n = 0) : N(n), gr(2*n) {}
 int addVar() { // (optional)
   gr.emplace_back();
   gr.emplace back();
   return N++;
 void either(int f, int j) {
   f = \max(2 * f, -1 - 2 * f);
```

```
j = \max(2*j, -1-2*j);
    gr[f].push_back(j^1);
    gr[j].push_back(f^1);
  void setValue(int x) { either(x, x); }
  void atMostOne(const vi& li) { // (optional)
    if (sz(li) <= 1) return;
    int cur = ~li[0];
    rep(i,2,sz(li)) {
      int next = addVar();
      either(cur, ~li[i]);
      either(cur, next);
      either(~li[i], next);
      cur = ~next;
    either(cur, ~li[1]);
  vi val, comp, z; int time = 0;
  int dfs(int i) {
    int low = val[i] = ++time, x; z.push_back(i);
    for(int e : gr[i]) if (!comp[e])
     low = min(low, val[e] ?: dfs(e));
    if (low == val[i]) do {
     x = z.back(); z.pop_back();
      comp[x] = low;
      if (values[x>>1] == -1)
        values[x>>1] = x&1;
    } while (x != i);
    return val[i] = low;
  bool solve() {
    values.assign(N_{\star} -1);
    val.assign(2*N, 0); comp = val;
    rep(i,0,2*N) if (!comp[i]) dfs(i);
    rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
    return 1;
};
```

EulerWalk.h

Description: Eulerian undirected/directed path/cycle algorithm. Input should be a vector of (dest, global edge index), where for undirected graphs, forward/backward edges have the same index. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, add .second to s and ret. Time: $\mathcal{O}(V+E)$

```
vi eulerWalk(vector<vector<pii>>& gr, int nedges, int src=0) {
 int n = sz(ar):
 vi D(n), its(n), eu(nedges), ret, s = {src};
 D[src]++; // to allow Euler paths, not just cycles
  while (!s.empty()) {
   int x = s.back(), y, e, &it = its[x], end = sz(qr[x]);
    if (it == end) { ret.push_back(x); s.pop_back(); continue; }
    tie(y, e) = gr[x][it++];
   if (!eu[e]) {
     D[x]--, D[y]++;
      eu[e] = 1; s.push_back(y);
 for (int x : D) if (x < 0 \mid \mid sz(ret) != nedges+1) return \{\};
 return {ret.rbegin(), ret.rend()};
```

EdgeColoring.h

Description: Given a simple, undirected graph with max degree D, computes a (D+1)-coloring of the edges such that no neighboring edges share a color. (D-coloring is NP-hard, but can be done for bipartite graphs by repeated matchings of max-degree nodes.)

Time: $\mathcal{O}(NM)$

```
vi edgeColoring(int N, vector<pii> eds) {
 vi cc(N + 1), ret(sz(eds)), fan(N), free(N), loc;
 for (pii e : eds) ++cc[e.first], ++cc[e.second];
 int u, v, ncols = *max_element(all(cc)) + 1;
  vector<vi> adj(N, vi(ncols, -1));
  for (pii e : eds) {
   tie(u, v) = e;
   fan[0] = v;
   loc.assign(ncols, 0);
   int at = u, end = u, d, c = free[u], ind = 0, i = 0;
   while (d = free[v], !loc[d] && (v = adj[u][d]) != -1)
     loc[d] = ++ind, cc[ind] = d, fan[ind] = v;
    cc[loc[d]] = c;
    for (int cd = d; at != -1; cd ^= c ^ d, at = adj[at][cd])
     swap(adj[at][cd], adj[end = at][cd ^ c ^ d]);
    while (adj[fan[i]][d] != -1) {
     int left = fan[i], right = fan[++i], e = cc[i];
     adj[u][e] = left;
     adj[left][e] = u;
     adj[right][e] = -1;
     free[right] = e;
   adj[u][d] = fan[i];
   adi[fan[i]][d] = u;
   for (int y : {fan[0], u, end})
     for (int & z = free[y] = 0; adj[y][z] != -1; z++);
  rep(i,0,sz(eds))
   for (tie(u, v) = eds[i]; adj[u][ret[i]] != v;) ++ret[i];
 return ret:
```

MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a symmetric bitset matrix; self-edges not allowed). Callback is given a bitset representing the maximal clique.

Time: $\mathcal{O}\left(3^{n/3}\right)$, much faster for sparse graphs

12 lines

```
typedef bitset<128> B;
template<class F>
void cliques (vector < B > & eds, F f, B P = \sim B(), B X={}, B R={}) {
 if (!P.any()) { if (!X.any()) f(R); return; }
 auto q = (P | X)._Find_first();
  auto cands = P & ~eds[q];
  rep(i,0,sz(eds)) if (cands[i]) {
   R[i] = 1;
   cliques(eds, f, P & eds[i], X & eds[i], R);
   R[i] = P[i] = 0; X[i] = 1;
```

MaximumClique.h

Description: Quickly finds a maximum clique of a graph (given as symmetric bitset matrix; self-edges not allowed). Can be used to find a maximum independent set by finding a clique of the complement graph.

Time: Runs in about 1s for n=155 and worst case random graphs (p=.90). Runs faster for sparse graphs.

```
typedef vector<br/>bitset<200>> vb;
struct Maxclique {
 double limit=0.025, pk=0;
  struct Vertex { int i, d=0; };
```

```
typedef vector<Vertex> vv;
 wh e:
 vv V;
 vector<vi> C;
 vi qmax, q, S, old;
 void init(vv& r) {
   for (auto& v : r) v.d = 0;
    for (auto& v : r) for (auto j : r) v.d += e[v.i][j.i];
   sort(all(r), [](auto a, auto b) { return a.d > b.d; });
   int mxD = r[0].d;
   rep(i, 0, sz(r)) r[i].d = min(i, mxD) + 1;
 void expand(vv& R, int lev = 1) {
   S[lev] += S[lev - 1] - old[lev];
   old[lev] = S[lev - 1];
    while (sz(R)) {
     if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
     q.push_back(R.back().i);
     vv T:
      for(auto v:R) if (e[R.back().i][v.i]) T.push_back({v.i});
      if (sz(T)) {
       if (S[lev]++ / ++pk < limit) init(T);</pre>
       int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1, 1);
       C[1].clear(), C[2].clear();
        for (auto v : T) {
         int k = 1;
         auto f = [&](int i) { return e[v.i][i]; };
         while (any_of(all(C[k]), f)) k++;
         if (k > mxk) mxk = k, C[mxk + 1].clear();
         if (k < mnk) T[j++].i = v.i;
         C[k].push_back(v.i);
       if (j > 0) T[j - 1].d = 0;
       rep(k, mnk, mxk + 1) for (int i : C[k])
         T[j].i = i, T[j++].d = k;
        expand(T, lev + 1);
     } else if (sz(q) > sz(qmax)) qmax = q;
     q.pop_back(), R.pop_back();
 vi maxClique() { init(V), expand(V); return qmax; }
 Maxclique(vb conn): e(conn), C(sz(e)+1), S(sz(C)), old(S) {
    rep(i,0,sz(e)) V.push_back({i});
};
```

MaximumIndependentSet.h

Description: To obtain a maximum independent set of a graph, find a max clique of the complement. If the graph is bipartite, see MinimumVertex-Cover.

BinaryLifting.h

Description: Calculate power of two jumps in a tree, to support fast upward jumps and LCAs. Assumes the root node points to itself.

Time: construction $\mathcal{O}(N \log N)$, queries $\mathcal{O}(\log N)$

```
vector<vi> treeJump(vi& P){
 int on = 1, d = 1;
 while (on < sz(P)) on *= 2, d++;
 vector<vi> jmp(d, P);
 rep(i,1,d) rep(j,0,sz(P))
    jmp[i][j] = jmp[i-1][jmp[i-1][j]];
 return jmp;
int jmp(vector<vi>& tbl, int nod, int steps){
 rep(i, 0, sz(tbl))
   if(steps&(1<<i)) nod = tbl[i][nod];
```

```
return nod;
int lca(vector<vi>& tbl, vi& depth, int a, int b) {
 if (depth[a] < depth[b]) swap(a, b);</pre>
 a = jmp(tbl, a, depth[a] - depth[b]);
 if (a == b) return a;
  for (int i = sz(tbl); i--;) {
    int c = tbl[i][a], d = tbl[i][b];
    if (c != d) a = c, b = d;
 return tbl[0][a];
```

LCA.h

Description: Data structure for computing lowest common ancestors in a tree (with 0 as root). C should be an adjacency list of the tree, either directed or undirected.

```
Time: \mathcal{O}(N \log N + Q)
```

"../data-structures/RMQ.h" struct LCA { int T = 0;vi time, path, ret; RMQ<int> rmq; $LCA(vector < vi > \& C) : time(sz(C)), rmq((dfs(C,0,-1), ret)) {}$ void dfs(vector<vi>& C, int v, int par) { time[v] = T++;for (int y : C[v]) if (y != par) { path.push_back(v), ret.push_back(time[v]); dfs(C, y, v); int lca(int a, int b) { if (a == b) return a; tie(a, b) = minmax(time[a], time[b]); return path[rmg.query(a, b)]; //dist(a,b){return depth[a] + depth[b] - 2*depth[lca(a,b)];}

CompressTree.h

Description: Given a rooted tree and a subset S of nodes, compute the minimal subtree that contains all the nodes by adding all (at most |S|-1) pairwise LCA's and compressing edges. Returns a list of (par, orig_index) representing a tree rooted at 0. The root points to itself.

Time: $\mathcal{O}(|S| \log |S|)$

25 lines

```
"LCA.h"
typedef vector<pair<int, int>> vpi;
vpi compressTree(LCA& lca, const vi& subset) {
 static vi rev; rev.resize(sz(lca.time));
 vi li = subset, &T = lca.time;
  auto cmp = [&](int a, int b) { return T[a] < T[b]; };</pre>
  sort(all(li), cmp);
 int m = sz(li)-1;
 rep(i,0,m) {
    int a = li[i], b = li[i+1];
    li.push_back(lca.lca(a, b));
 sort(all(li), cmp);
 li.erase(unique(all(li)), li.end());
 rep(i, 0, sz(li)) rev[li[i]] = i;
 vpi ret = {pii(0, li[0])};
 rep(i, 0, sz(li)-1) {
   int a = li[i], b = li[i+1];
    ret.emplace_back(rev[lca.lca(a, b)], b);
```

```
return ret;
```

HLD.h

Description: Decomposes a tree into vertex disjoint heavy paths and light edges such that the path from any leaf to the root contains at most log(n) light edges. Code does additive modifications and max queries, but can support commutative segtree modifications/queries on paths and subtrees. Takes as input the full adjacency list. VALS_EDGES being true means that values are stored in the edges, as opposed to the nodes. All values initialized to the segtree default. Root must be 0.

Time: $\mathcal{O}\left((\log N)^2\right)$

```
"../data-structures/LazySegmentTree.h"
template <bool VALS EDGES> struct HLD {
 int N, tim = 0;
  vector<vi> adj;
  vi par, siz, depth, rt, pos;
  Node *tree;
  HLD(vector<vi> adj_)
   : N(sz(adj_)), adj(adj_), par(N, -1), siz(N, 1), depth(N),
     rt(N),pos(N),tree(new Node(0, N)) { dfsSz(0); dfsHld(0); }
  void dfsSz(int v) {
    if (par[v] != -1) adj[v].erase(find(all(adj[v]), par[v]));
    for (int& u : adj[v]) {
     par[u] = v, depth[u] = depth[v] + 1;
     dfsSz(u);
     siz[v] += siz[u];
     if (siz[u] > siz[adj[v][0]]) swap(u, adj[v][0]);
 void dfsHld(int v) {
   pos[v] = tim++;
   for (int u : adj[v]) {
     rt[u] = (u == adi[v][0] ? rt[v] : u);
     dfsHld(u);
  template <class B> void process(int u, int v, B op) {
   for (: rt[u] != rt[v]; v = par[rt[v]]) {
     if (depth[rt[u]] > depth[rt[v]]) swap(u, v);
     op(pos[rt[v]], pos[v] + 1);
   if (depth[u] > depth[v]) swap(u, v);
   op(pos[u] + VALS_EDGES, pos[v] + 1);
  void modifyPath(int u, int v, int val) {
   process(u, v, [&] (int 1, int r) { tree->add(1, r, val); });
  int queryPath(int u, int v) { // Modify depending on problem
   int res = -1e9;
   process(u, v, [&](int l, int r) {
       res = max(res, tree->query(1, r));
    return res;
  int querySubtree(int v) { // modifySubtree is similar
   return tree->query(pos[v] + VALS_EDGES, pos[v] + siz[v]);
};
```

LinkCutTree.h

Description: Represents a forest of unrooted trees. You can add and remove edges (as long as the result is still a forest), and check whether two nodes are in the same tree.

Time: All operations take amortized $\mathcal{O}(\log N)$.

```
struct Node { // Splay tree. Root's pp contains tree's parent.
 Node *p = 0, *pp = 0, *c[2];
 bool flip = 0;
```

```
Node() { c[0] = c[1] = 0; fix(); }
 void fix() {
   if (c[0]) c[0]->p = this;
   if (c[1]) c[1]->p = this;
   // (+ update sum of subtree elements etc. if wanted)
 void pushFlip() {
   if (!flip) return;
   flip = 0; swap(c[0], c[1]);
   if (c[0]) c[0]->flip ^= 1;
    if (c[1]) c[1]->flip ^= 1;
 int up() { return p ? p->c[1] == this : -1; }
 void rot(int i, int b) {
   int h = i ^ b;
   Node *x = c[i], *y = b == 2 ? x : x -> c[h], *z = b ? y : x;
   if ((y->p = p)) p->c[up()] = y;
   c[i] = z -> c[i ^ 1];
    if (b < 2) {
     x->c[h] = y->c[h ^ 1];
     z - > c[h ^ 1] = b ? x : this;
    v - > c[i ^1] = b ? this : x;
    fix(); x->fix(); y->fix();
    if (p) p->fix();
    swap(pp, y->pp);
 void splay() {
   for (pushFlip(); p; ) {
     if (p->p) p->p->pushFlip();
     p->pushFlip(); pushFlip();
     int c1 = up(), c2 = p->up();
     if (c2 == -1) p->rot(c1, 2);
      else p->p->rot(c2, c1 != c2);
 Node* first() {
   pushFlip();
    return c[0] ? c[0]->first() : (splay(), this);
};
struct LinkCut {
 vector<Node> node;
 LinkCut(int N) : node(N) {}
 void link(int u, int v) { // add an edge (u, v)
    assert(!connected(u, v));
   makeRoot(&node[u]);
   node[u].pp = &node[v];
 void cut (int u, int v) { // remove an edge (u, v)
   Node *x = &node[u], *top = &node[v];
   makeRoot(top); x->splay();
   assert(top == (x->pp ?: x->c[0]));
    if (x->pp) x->pp = 0;
     x - > c[0] = top - > p = 0;
     x \rightarrow fix();
 bool connected (int u, int v) { // are u, v in the same tree?
   Node* nu = access(&node[u])->first();
   return nu == access(&node[v])->first();
 void makeRoot(Node* u) {
   access(u);
   u->splay();
   if(u->c[0]) {
```

```
u - > c[0] - > p = 0;
      u - c[0] - flip ^= 1;
      u - > c[0] - > pp = u;
      u - > c[0] = 0;
      u->fix();
  Node* access(Node* u) {
    u->splay();
    while (Node* pp = u->pp) {
      pp->splay(); u->pp = 0;
      if (pp->c[1]) {
        pp->c[1]->p = 0; pp->c[1]->pp = pp; }
      pp - c[1] = u; pp - fix(); u = pp;
    return u;
};
```

DirectedMST.h

Description: Finds a minimum spanning tree/arborescence of a directed graph, given a root node. If no MST exists, returns -1.

```
Time: \mathcal{O}\left(E\log V\right)
"../data-structures/UnionFindRollback.h"
                                                             60 lines
struct Edge { int a, b; ll w; };
struct Node {
  Edge key;
  Node *1, *r;
  ll delta;
  void prop() {
    kev.w += delta;
    if (1) 1->delta += delta;
    if (r) r->delta += delta;
    delta = 0;
 Edge top() { prop(); return key; }
Node *merge(Node *a, Node *b) {
  if (!a || !b) return a ?: b;
  a->prop(), b->prop();
  if (a->key.w > b->key.w) swap(a, b);
  swap(a->1, (a->r = merge(b, a->r)));
  return a:
void pop(Node*& a) { a->prop(); a = merge(a->1, a->r); }
pair<11, vi> dmst(int n, int r, vector<Edge>& g) {
  RollbackUF uf(n);
  vector<Node*> heap(n);
  for (Edge e : g) heap[e.b] = merge(heap[e.b], new Node{e});
  11 \text{ res} = 0;
  vi seen(n, -1), path(n), par(n);
  seen[r] = r;
  vector<Edge> Q(n), in(n, \{-1,-1\}), comp;
  deque<tuple<int, int, vector<Edge>>> cycs;
  rep(s,0,n) {
    int u = s, qi = 0, w;
    while (seen[u] < 0) {
      if (!heap[u]) return {-1,{}};
      Edge e = heap[u]->top();
      heap[u]->delta -= e.w, pop(heap[u]);
      Q[qi] = e, path[qi++] = u, seen[u] = s;
      res += e.w, u = uf.find(e.a);
      if (seen[u] == s) {
        Node * cyc = 0;
        int end = qi, time = uf.time();
        do cyc = merge(cyc, heap[w = path[--qi]]);
        while (uf.join(u, w));
        u = uf.find(u), heap[u] = cyc, seen[u] = -1;
```

```
cycs.push_front({u, time, {&Q[qi], &Q[end]}});
}
rep(i,0,qi) in[uf.find(Q[i].b)] = Q[i];
}

for (auto& [u,t,comp] : cycs) { // restore sol (optional)
    uf.rollback(t);
    Edge inEdge = in[u];
    for (auto& e : comp) in[uf.find(e.b)] = e;
    in[uf.find(inEdge.b)] = inEdge;
}
rep(i,0,n) par[i] = in[i].a;
return {res, par};
```

Number of Spanning Trees

Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]--, mat[b][b]++ (and mat[b][a]--, mat[a][a]++ if G is undirected). Remove the ith row and column and take the determinant; this yields the number of directed spanning trees rooted at i (if G is undirected, remove any row/column).

Erdős–Gallai theorem

A simple graph with node degrees $d_1 \ge \cdots \ge d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k).$$

Numerical (3)

Time: $\mathcal{O}\left(n^2\log(1/\epsilon)\right)$

vector<double> ret;

Poly der = p;

"Polynomial.h"

Polynomial.h

17 line

```
struct Polv {
  vector<double> a:
  double operator()(double x) const {
    double val = 0;
    for (int i = sz(a); i--;) (val *= x) += a[i];
    return val;
  void diff() {
    rep(i, 1, sz(a)) a[i-1] = i*a[i];
    a.pop_back();
  void divroot(double x0) {
    double b = a.back(), c; a.back() = 0;
    for(int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
    a.pop_back();
};
PolyRoots.h
Description: Finds the real roots to a polynomial.
```

Usage: polyRoots($\{\{2,-3,1\}\},-1e9,1e9\}$) // solve $x^2-3x+2=0$

vector<double> polyRoots(Poly p, double xmin, double xmax) {

if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }

```
der.diff();
auto dr = polyRoots(der, xmin, xmax);
dr.push_back(xmin-1);
dr.push_back(xmax+1);
sort(all(dr));
rep(i,0,sz(dr)-1) {
    double l = dr[i], h = dr[i+1];
    bool sign = p(1) > 0;
    if (sign ^ (p(h) > 0)) {
        rep(it,0,60) { // while (h - l > 1e-8)
            double m = (l + h) / 2, f = p(m);
        if ((f <= 0) ^ sign) l = m;
        else h = m;
    }
    ret.push_back((l + h) / 2);
}
return ret;</pre>
```

PolyInterpolate.h

Description: Given n points $(\mathbf{x}[\mathbf{i}], \mathbf{y}[\mathbf{i}])$, computes an n-1-degree polynomial p that passes through them: $p(x) = a[0] * x^0 + ... + a[n-1] * x^{n-1}$. For numerical precision, pick $x[k] = c * \cos(k/(n-1) * \pi), k = 0 ... n-1$. **Time:** $\mathcal{O}(n^2)$

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
  vd res(n), temp(n);
  rep(k,0,n-1) rep(i,k+1,n)
    y(i] = (y[i] - y(k]) / (x[i] - x[k]);
  double last = 0; temp[0] = 1;
  rep(k,0,n) rep(i,0,n) {
    res[i] += y(k] * temp[i];
    swap(last, temp[i]);
    temp[i] -= last * x[k];
  }
  return res;
}
```

BerlekampMassey.h

Description: Recovers any n-order linear recurrence relation from the first 2n terms of the recurrence. Useful for guessing linear recurrences after brute-forcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will have size $\leq n$.

```
Usage: berlekampMassey(\{0, 1, 1, 3, 5, 11\}) // \{1, 2\}
Time: \mathcal{O}(N^2)
".../number-theory/ModPow.h" 20 lines
vector<ll> berlekampMassey(vector<ll> s) {
```

```
vector<ll> berlekampMassey(vector<ll> s) {
 int n = sz(s), L = 0, m = 0;
 vector<ll> C(n), B(n), T;
 C[0] = B[0] = 1;
 11 b = 1;
 rep(i,0,n) { ++m;
   ll d = s[i] % mod;
   rep(j,1,L+1) d = (d + C[j] * s[i - j]) % mod;
   if (!d) continue;
   T = C; 11 coef = d * modpow(b, mod-2) % mod;
   rep(j,m,n) C[j] = (C[j] - coef * B[j - m]) % mod;
   if (2 * L > i) continue;
   L = i + 1 - L; B = T; b = d; m = 0;
 C.resize(L + 1); C.erase(C.begin());
 for (11& x : C) x = (mod - x) % mod;
 return C;
```

LinearRecurrence.h

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_j S[i-j-1]tr[j]$, given $S[0... \ge n-1]$ and tr[0...n-1]. Faster than matrix multiplication. Useful together with Berlekamp–Massey.

Usage: linearRec($\{0, 1\}$, $\{1, 1\}$, k) // k'th Fibonacci number Time: $\mathcal{O}(n^2 \log k)$

```
typedef vector<ll> Poly;
ll linearRec(Poly S, Poly tr, ll k) {
 int n = sz(tr);
 auto combine = [&] (Poly a, Poly b) {
    Poly res(n \star 2 + 1);
    rep(i, 0, n+1) rep(j, 0, n+1)
     res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
    for (int i = 2 * n; i > n; --i) rep(j,0,n)
     res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
    res.resize(n + 1);
    return res;
 };
 Poly pol(n + 1), e(pol);
  pol[0] = e[1] = 1;
  for (++k; k; k /= 2) {
   if (k % 2) pol = combine(pol, e);
    e = combine(e, e);
 11 res = 0:
 rep(i, 0, n) res = (res + pol[i + 1] * S[i]) % mod;
 return res;
```

GoldenSectionSearch.h

Description: Finds the argument minimizing the function f in the interval [a,b] assuming f is unimodal on the interval, i.e. has only one local minimum. The maximum error in the result is eps. Works equally well for maximization with a small change in the code. See TernarySearch.h in the Various chapter for a discrete version.

Usage: double func(double x) { return 4+x+.3*x*x; }

```
double xmin = gss(-1000,1000,func); 

Time: \mathcal{O}(\log((b-a)/\epsilon))

double gss(double a, double b, double (*f) (double)) {
  double r = (sqrt(5)-1)/2, eps = 1e-7;
  double x1 = b - r*(b-a), x2 = a + r*(b-a);
  double f1 = f(x1), f2 = f(x2);
  while (b-a > eps)
  if (f1 < f2) { //change to > to find maximum
    b = x2; x2 = x1; f2 = f1;
    x1 = b - r*(b-a); f1 = f(x1);
  } else {
    a = x1; x1 = x2; f1 = f2;
    x2 = a + r*(b-a); f2 = f(x2);
  }
  return a;
```

HillClimbing.h

Description: Poor man's optimization for unimodal functions.

14 lines

```
typedef array<double, 2> P;

template<class F> pair<double, P> hillClimb(P start, F f) {
  pair<double, P> cur(f(start), start);
  for (double jmp = 1e9; jmp > 1e-20; jmp /= 2) {
    rep(j,0,100) rep(dx,-1,2) rep(dy,-1,2) {
        P p = cur.second;
    }
}
```

18 lines

```
p[0] += dx*jmp;
p[1] += dy*jmp;
cur = min(cur, make_pair(f(p), p));
}
return cur;
```

Integrate.h

Description: Simple integration of a function over an interval using Simpson's rule. The error should be proportional to h^4 , although in practice you will want to verify that the result is stable to desired precision when epsilon changes.

```
template < class F >
double quad(double a, double b, F f, const int n = 1000) {
  double h = (b - a) / 2 / n, v = f(a) + f(b);
  rep(i,1,n*2)
    v += f(a + i*h) * (i&1 ? 4 : 2);
  return v * h / 3;
}
```

IntegrateAdaptive.h

Description: Fast integration using an adaptive Simpson's rule. Usage: double sphereVolume = quad(-1, 1, [](double x) { return quad(-1, 1, [&](double y) { return quad(-1, 1, [&](double z) { return $x*x + y*y + z*z < 1; \});});}$

```
typedef double d;
#define S(a,b) (f(a) + 4*f((a+b) / 2) + f(b)) * (b-a) / 6

template <class F>
d rec(F& f, d a, d b, d eps, d S) {
    d c = (a + b) / 2;
    d S1 = S(a, c), S2 = S(c, b), T = S1 + S2;
    if (abs(T - S) <= 15 * eps || b - a < 1e-10)
        return T + (T - S) / 15;
    return rec(f, a, c, eps / 2, S1) + rec(f, c, b, eps / 2, S2);
}
template < class F>
d quad(d a, d b, F f, d eps = 1e-8) {
    return rec(f, a, b, eps, S(a, b));
```

Simplex.h

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \leq b$, $x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x = 0 is viable.

```
Usage: vvd A = {{1,-1}, {-1,1}, {-1,-2}}; vd b = {1,1,-4}, c = {-1,-1}, x; T val = LPSolver(A, b, c).solve(x); Time: \mathcal{O}(NM*\#pivots), where a pivot may be e.g. an edge relaxation. \mathcal{O}(2^n) in the general case.
```

```
O(2") in the general case.

typedef double T; // long double, Rational, double + mod<P>...

typedef vector<T> vd;
typedef vector<vd> vvd;

const T eps = le-8, inf = 1/.0;
#define MP make_pair
#define ltj(X) if(s == -1 || MP(X[j],N[j]) < MP(X[s],N[s])) s=j

struct LPSolver {
  int m, n;
  vi N, B;</pre>
```

```
vvd D;
 LPSolver (const vvd& A, const vd& b, const vd& c) :
   m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
     rep(i, 0, m) rep(j, 0, n) D[i][j] = A[i][j];
     rep(i,0,m) \{ B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i]; \}
     rep(j,0,n) \{ N[j] = j; D[m][j] = -c[j]; \}
     N[n] = -1; D[m+1][n] = 1;
 void pivot(int r, int s) {
   T \star a = D[r].data(), inv = 1 / a[s];
    rep(i,0,m+2) if (i != r \&\& abs(D[i][s]) > eps) {
     T *b = D[i].data(), inv2 = b[s] * inv;
     rep(j, 0, n+2) b[j] -= a[j] * inv2;
     b[s] = a[s] * inv2;
    rep(j,0,n+2) if (j != s) D[r][j] *= inv;
    rep(i,0,m+2) if (i != r) D[i][s] *= -inv;
   D[r][s] = inv;
    swap(B[r], N[s]);
 bool simplex(int phase) {
   int x = m + phase - 1;
    for (;;) {
     int s = -1:
      rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
     if (D[x][s] >= -eps) return true;
     int r = -1;
      rep(i,0,m) {
       if (D[i][s] <= eps) continue;</pre>
       if (r == -1 \mid | MP(D[i][n+1] / D[i][s], B[i])
                     < MP(D[r][n+1] / D[r][s], B[r])) r = i;
      if (r == -1) return false;
     pivot(r, s);
 T solve(vd &x) {
   int r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
     if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
     rep(i,0,m) if (B[i] == -1) {
       int s = 0;
       rep(j,1,n+1) ltj(D[i]);
       pivot(i, s);
   bool ok = simplex(1); x = vd(n);
   rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
    return ok ? D[m][n+1] : inf;
};
```

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix. **Time:** $\mathcal{O}\left(N^3\right)$

```
double det(vector<vector<double>>& a) {
  int n = sz(a); double res = 1;
  rep(i,0,n) {
   int b = i;
  rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
  if (i != b) swap(a[i], a[b]), res *= -1;
  res *= a[i][i];
```

```
if (res == 0) return 0;
rep(j,i+1,n) {
    double v = a[j][i] / a[i][i];
    if (v != 0) rep(k,i+1,n) a[j][k] -= v * a[i][k];
}
return res;
}
```

IntDeterminant.h

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version.

Time: $\mathcal{O}(N^3)$

```
const 11 mod = 12345;
11 det(vector<vector<11>>& a) {
  int n = sz(a); 11 ans = 1;
  rep(i,0,n) {
    rep(j,i+1,n) {
    while (a[j][i] != 0) { // gcd step
        11 t = a[i][i] / a[j][i];
        if (t) rep(k,i,n)
            a[i][k] = (a[i][k] - a[j][k] * t) % mod;
        swap(a[i], a[j]);
        ans *= -1;
    }
}
ans = ans * a[i][i] % mod;
if (!ans) return 0;
}
return (ans + mod) % mod;
```

SolveLinear.h

x.assign(m, 0);

Description: Solves A * x = b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. **Time:** $O(n^2m)$

```
Time: \mathcal{O}\left(n^2m\right)
typedef vector<double> vd;
const double eps = 1e-12;
int solveLinear(vector<vd>& A, vd& b, vd& x) {
 int n = sz(A), m = sz(x), rank = 0, br, bc;
 if (n) assert(sz(A[0]) == m);
 vi col(m); iota(all(col), 0);
 rep(i,0,n) {
    double v, bv = 0;
    rep(r,i,n) rep(c,i,m)
     if ((v = fabs(A[r][c])) > bv)
       br = r, bc = c, bv = v;
    if (bv <= eps) {
      rep(j,i,n) if (fabs(b[j]) > eps) return -1;
      break:
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j,0,n) swap(A[j][i], A[j][bc]);
    bv = 1/A[i][i];
    rep(j, i+1, n) {
      double fac = A[j][i] * bv;
      b[j] = fac * b[i];
      rep(k,i+1,m) A[j][k] = fac*A[i][k];
    rank++;
```

```
for (int i = rank; i--;) {
 b[i] /= A[i][i];
 x[col[i]] = b[i];
 rep(j, 0, i) b[j] -= A[j][i] * b[i];
return rank; // (multiple solutions if rank < m)
```

SolveLinear2.h

Description: To get all uniquely determined values of x back from Solve-Linear, make the following changes:

```
"SolveLinear.h"
rep(j,0,n) if (j != i) // instead of rep(j,i+1,n)
// ... then at the end:
x.assign(m, undefined);
rep(i,0,rank) {
 rep(j,rank,m) if (fabs(A[i][j]) > eps) goto fail;
 x[col[i]] = b[i] / A[i][i];
fail:: }
```

SolveLinearBinary.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. Time: $\mathcal{O}\left(n^2m\right)$

35 lines

```
typedef bitset<1000> bs;
int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
 int n = sz(A), rank = 0, br;
  assert (m \le sz(x));
  vi col(m); iota(all(col), 0);
  rep(i,0,n) {
   for (br=i; br<n; ++br) if (A[br].any()) break;</pre>
   if (br == n) {
     rep(j,i,n) if(b[j]) return -1;
    int bc = (int)A[br]._Find_next(i-1);
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j,0,n) if (A[j][i] != A[j][bc]) {
     A[j].flip(i); A[j].flip(bc);
    rep(j,i+1,n) if (A[j][i]) {
     b[j] ^= b[i];
     A[i] ^= A[i];
    rank++;
  x = bs():
  for (int i = rank; i--;) {
   if (!b[i]) continue;
   x[col[i]] = 1;
   rep(j,0,i) b[j] ^= A[j][i];
  return rank; // (multiple solutions if rank < m)
```

MatrixInverse.h

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step. Time: $\mathcal{O}\left(n^3\right)$

```
int matInv(vector<vector<double>>& A) {
 int n = sz(A); vi col(n);
```

```
vector<vector<double>> tmp(n, vector<double>(n));
rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
rep(i,0,n) {
  int r = i, c = i;
  rep(j,i,n) rep(k,i,n)
    if (fabs(A[j][k]) > fabs(A[r][c]))
      r = j, c = k;
  if (fabs(A[r][c]) < 1e-12) return i;</pre>
  A[i].swap(A[r]); tmp[i].swap(tmp[r]);
  rep(i,0,n)
    swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
  swap(col[i], col[c]);
  double v = A[i][i];
  rep(j, i+1, n) {
    double f = A[j][i] / v;
    A[j][i] = 0;
    rep(k, i+1, n) A[j][k] -= f*A[i][k];
    rep(k,0,n) tmp[j][k] \rightarrow f*tmp[i][k];
  rep(j, i+1, n) A[i][j] /= v;
  rep(j,0,n) tmp[i][j] /= v;
  A[i][i] = 1;
for (int i = n-1; i > 0; --i) rep(j, 0, i) {
  double v = A[j][i];
  rep(k,0,n) tmp[j][k] \rightarrow v*tmp[i][k];
rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
return n;
```

MatrixInverse-mod.h

Description: Invert matrix A modulo a prime. Returns rank; result is stored in A unless singular (rank < n). For prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step.

```
Time: \mathcal{O}(n^3)
```

```
"../number-theory/ModPow.h"
int matInv(vector<vector<ll>>& A) {
 int n = sz(A); vi col(n);
 vector<vector<ll>> tmp(n, vector<ll>(n));
 rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
 rep(i,0,n) {
   int r = i, c = i;
   rep(j,i,n) rep(k,i,n) if (A[j][k]) {
    r = j; c = k; goto found;
   return i;
   A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n) swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c
        ]);
    swap(col[i], col[c]);
   11 v = modpow(A[i][i], mod - 2);
    rep(j,i+1,n) {
     11 f = A[j][i] * v % mod;
     rep(k,i+1,n) A[j][k] = (A[j][k] - f*A[i][k]) % mod;
     rep(k, 0, n) tmp[j][k] = (tmp[j][k] - f*tmp[i][k]) % mod;
    rep(j,i+1,n) A[i][j] = A[i][j] * v % mod;
   rep(j, 0, n) tmp[i][j] = tmp[i][j] * v % mod;
   A[i][i] = 1;
```

```
for (int i = n-1; i > 0; --i) rep(j, 0, i) {
  11 v = A[i][i];
  rep(k, 0, n) tmp[j][k] = (tmp[j][k] - v*tmp[i][k]) % mod;
rep(i,0,n) rep(j,0,n)
  A[col[i]][col[j]] = tmp[i][j] % mod + (tmp[i][j] < 0 ? mod
return n:
```

Tridiagonal.h

Description: x = tridiagonal(d, p, q, b) solves the equation system

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \end{pmatrix} = \begin{pmatrix} d_0 & p_0 & 0 & 0 & \cdots & 0 \\ q_0 & d_1 & p_1 & 0 & \cdots & 0 \\ 0 & q_1 & d_2 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & q_{n-3} & d_{n-2} & p_{n-2} \\ 0 & 0 & \cdots & 0 & q_{n-2} & d_{n-1} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

This is useful for solving problems on the type

$$a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, 1 \le i \le n,$$

where a_0, a_{n+1}, b_i, c_i and d_i are known. a can then be obtained from

$$\{a_i\} = \operatorname{tridiagonal}(\{1,-1,-1,\ldots,-1,1\},\{0,c_1,c_2,\ldots,c_n\},\\ \{b_1,b_2,\ldots,b_n,0\},\{a_0,d_1,d_2,\ldots,d_n,a_{n+1}\}).$$

Fails if the solution is not unique.

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed.

```
Time: \mathcal{O}(N)
```

```
typedef double T;
vector<T> tridiagonal(vector<T> diag, const vector<T>& super,
    const vector<T>& sub, vector<T> b) {
  int n = sz(b); vi tr(n);
  rep(i, 0, n-1) {
    if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] == 0
      b[i+1] -= b[i] * diag[i+1] / super[i];
      if (i+2 < n) b[i+2] -= b[i] * sub[i+1] / super[i];</pre>
      diag[i+1] = sub[i]; tr[++i] = 1;
      diag[i+1] -= super[i]*sub[i]/diag[i];
      b[i+1] = b[i] * sub[i] / diag[i];
  for (int i = n; i--;) {
    if (tr[i]) {
      swap(b[i], b[i-1]);
      diag[i-1] = diag[i];
      b[i] /= super[i-1];
    } else {
      b[i] /= diag[i];
      if (i) b[i-1] -= b[i] * super[i-1];
  return b;
```

FastFourierTransform.h

Description: fft(a) computes $\hat{f}(k) = \sum_{x} a[x] \exp(2\pi i \cdot kx/N)$ for all k. N must be a power of 2. Useful for convolution: conv(a, b) = c, where $c[x] = \sum a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum a_i^2 + \sum b_i^2) \log_2 N < 9 \cdot 10^{14}$ (in practice 10^{16}); higher for random inputs). Otherwise, use NTT/FFTMod.

Time: $O(N \log N)$ with $N = |A| + |B| (\sim 1s \text{ for } N = 2^{22})$ typedef complex<double> C; typedef vector<double> vd; void fft(vector<C>& a) { int n = sz(a), L = 31 - __builtin_clz(n); static vector<complex<long double>> R(2, 1); static vector<C> rt(2, 1); // (^ 10% faster if double) for (static int k = 2; k < n; k *= 2) { R.resize(n); rt.resize(n); auto x = polar(1.0L, acos(-1.0L) / k);rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];vi rev(n); $rep(i, 0, n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;$ rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);</pre> for (int k = 1; k < n; k *= 2) for (int i = 0; i < n; i += 2 * k) rep(j, 0, k) { Cz = rt[j+k] * a[i+j+k]; // (25% faster if hand-rolled)a[i + j + k] = a[i + j] - z;a[i + j] += z;vd conv(const vd& a, const vd& b) { if (a.empty() || b.empty()) return {}; vd res(sz(a) + sz(b) - 1);int $L = 32 - \underline{\text{builtin_clz}(\text{sz(res)})}$, n = 1 << L; vector<C> in(n), out(n); copy(all(a), begin(in)); rep(i,0,sz(b)) in[i].imag(b[i]); fft(in); for (C& x : in) x *= x; rep(i, 0, n) out[i] = in[-i & (n - 1)] - conj(in[i]);rep(i, 0, sz(res)) res[i] = imag(out[i]) / (4 * n);return res;

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as $N \log_2 N \cdot \text{mod} < 8.6 \cdot 10^{14}$ (in practice 10^{16} or higher). Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$, where N = |A| + |B| (twice as slow as NTT or FFT)

```
"FastFourierTransform.h"
typedef vector<ll> v1;
template<int M> vl convMod(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return {};
  vl res(sz(a) + sz(b) - 1);
  int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));</pre>
  vector<C> L(n), R(n), outs(n), outl(n);
  rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
  rep(i,0,sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
  fft(L), fft(R);
  rep(i,0,n) {
   int j = -i \& (n - 1);
    outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
   outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
  fft(outl), fft(outs);
  rep(i, 0, sz(res)) {
    11 \text{ av} = 11(\text{real}(\text{outl}[i]) + .5), \text{ cv} = 11(\text{imag}(\text{outs}[i]) + .5);
    11 \text{ bv} = 11(\text{imag}(\text{outl}[i]) + .5) + 11(\text{real}(\text{outs}[i]) + .5);
    res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
  return res;
```

NumberTheoreticTransform.h

Description: ntt(a) computes $\hat{f}(k) = \sum_x a[x]g^{xk}$ for all k, where $g = \operatorname{root}^{(mod-1)/N}$. N must be a power of 2. Useful for convolution modulo specific nice primes of the form 2^ab+1 , where the convolution result has size at most 2^a . For arbitrary modulo, see FFTMod. $\operatorname{conv}(a, b) = c$, where $c[x] = \sum a[i]b[x-i]$. For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$

```
"../number-theory/ModPow.h"
const 11 mod = (119 << 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
// and 483 \ll 21 (same root). The last two are > 10^9.
typedef vector<ll> v1;
void ntt(vl &a) {
 int n = sz(a), L = 31 - __builtin_clz(n);
  static v1 rt(2, 1);
  for (static int k = 2, s = 2; k < n; k *= 2, s++) {
   rt.resize(n);
   ll z[] = \{1, modpow(root, mod >> s)\};
   rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
 vi rev(n);
  rep(i, 0, n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j, 0, k) {
     11 z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
     a[i + j + k] = ai - z + (z > ai ? mod : 0);
     ai += (ai + z >= mod ? z - mod : z);
vl conv(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return {};
 int s = sz(a) + sz(b) - 1, B = 32 - builtin clz(s), n = 1
  int inv = modpow(n, mod - 2);
 vl L(a), R(b), out(n);
 L.resize(n), R.resize(n);
 ntt(L), ntt(R);
  rep(i,0,n) out[-i \& (n-1)] = (11)L[i] * R[i] % mod * inv %
  ntt(out);
  return {out.begin(), out.begin() + s};
```

FastSubsetTransform.h

Description: Transform to a basis with fast convolutions of the form $c[z] = \sum_{z=x \oplus y} a[x] \cdot b[y]$, where \oplus is one of AND, OR, XOR. The size of a must be a power of two.

Time: $\mathcal{O}(N \log N)$

Number theory (4)

Modular Arithmetic.h

Description: Operators for modular arithmetic. You need to set mod to some number first and then you can use the structure.

```
"euclid.h"
const 11 mod = 17; // change to something else
struct Mod {
 11 x:
 Mod(ll xx) : x(xx) \{ \}
 Mod operator+(Mod b) { return Mod((x + b.x) % mod); }
 Mod operator-(Mod b) { return Mod((x - b.x + mod) % mod); }
  Mod operator*(Mod b) { return Mod((x * b.x) % mod); }
  Mod operator/(Mod b) { return *this * invert(b); }
 Mod invert (Mod a) {
   ll x, y, g = euclid(a.x, mod, x, y);
    assert (g == 1); return Mod((x + mod) % mod);
 Mod operator^(11 e) {
    if (!e) return Mod(1);
   Mod r = *this ^ (e / 2); r = r * r;
    return e&1 ? *this * r : r;
};
```

$\operatorname{ModLog.h}$

Description: Returns the smallest x > 0 s.t. $a^x = b \pmod{m}$, or -1 if no such x exists. modLog(a,1,m) can be used to calculate the order of a.

Time: $\mathcal{O}\left(\sqrt{m}\right)$

```
11 modLog(ll a, ll b, ll m) {
    ll n = (ll) sqrt(m) + 1, e = 1, f = 1, j = 1;
    unordered_map<ll, ll> A;
    while (j <= n && (e = f = e * a % m) != b % m)
        A[e * b % m] = j++;
    if (e == b % m) return j;
    if (__gcd(m, e) == __gcd(m, b))
        rep(i,2,n+2) if (A.count(e = e * f % m))
        return n * i - A[e];
    return -1;
}</pre>
```

ModSum.h

Description: Sums of mod'ed arithmetic progressions.

modsum(to, c, k, m) = $\sum_{i=0}^{\rm to-1} (ki+c)\%m$. divsum is similar but for floored division.

Time: $\log(m)$, with a large constant.

16 line

15

```
typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }

ull divsum(ull to, ull c, ull k, ull m) {
    ull res = k / m * sumsq(to) + c / m * to;
    k %= m; c %= m;
    if (!k) return res;
    ull to2 = (to * k + c) / m;
    return res + (to - 1) * to2 - divsum(to2, m-1 - c, m, k);
}

ll modsum(ull to, ll c, ll k, ll m) {
    c = ((c % m) + m) % m;
    k = ((k % m) + m) % m;
    return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
}
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for $0 \le a, b \le c \le 7.2 \cdot 10^{18}$. **Time:** $\mathcal{O}(1)$ for modmul, $\mathcal{O}(\log b)$ for modpow

```
typedef unsigned long long ull:
ull modmul(ull a, ull b, ull M) {
 ll ret = a * b - M * ull(1.L / M * a * b);
 return ret + M * (ret < 0) - M * (ret >= (11)M);
ull modpow(ull b, ull e, ull mod) {
 ull ans = 1;
  for (; e; b = modmul(b, b, mod), e /= 2)
   if (e & 1) ans = modmul(ans, b, mod);
  return ans;
```

ModSart.h

Description: Tonelli-Shanks algorithm for modular square roots. Finds x s.t. $x^2 = a \pmod{p}$ (-x gives the other solution).

Time: $\mathcal{O}(\log^2 p)$ worst case, $\mathcal{O}(\log p)$ for most p

```
"ModPow.h"
                                                              24 lines
ll sgrt(ll a, ll p) {
 a \% = p; if (a < 0) a += p;
 if (a == 0) return 0;
  assert (modpow(a, (p-1)/2, p) == 1); // else no solution
 if (p % 4 == 3) return modpow(a, (p+1)/4, p);
  // a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p \% 8 == 5
  11 s = p - 1, n = 2;
  int r = 0, m;
  while (s % 2 == 0)
   ++r, s /= 2;
  while (modpow(n, (p-1) / 2, p) != p-1) ++n;
  11 x = modpow(a, (s + 1) / 2, p);
  11 b = modpow(a, s, p), q = modpow(n, s, p);
  for (;; r = m) {
   11 t = b;
   for (m = 0; m < r && t != 1; ++m)
     t = t * t % p;
    if (m == 0) return x;
   11 \text{ gs} = \text{modpow}(g, 1LL \ll (r - m - 1), p);
   q = qs * qs % p;
   x = x * qs % p;
   b = b * g % p;
```

FastEratosthenes.h

Description: Prime sieve for generating all primes smaller than LIM. Time: LIM=1e9 $\approx 1.5s$

```
20 lines
const int LIM = 1e6;
bitset<LIM> isPrime;
vi eratosthenes() {
  const int S = (int) round(sqrt(LIM)), R = LIM / 2;
  vi pr = {2}, sieve(S+1); pr.reserve(int(LIM/log(LIM)*1.1));
  vector<pii> cp;
  for (int i = 3; i <= S; i += 2) if (!sieve[i]) {</pre>
    cp.push_back(\{i, i * i / 2\});
   for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;</pre>
  for (int L = 1; L \le R; L += S) {
   array<bool, S> block{};
    for (auto &[p, idx] : cp)
     for (int i=idx; i < S+L; idx = (i+=p)) block[i-L] = 1;</pre>
    rep(i, 0, min(S, R - L))
      if (!block[i]) pr.push_back((L + i) * 2 + 1);
  for (int i : pr) isPrime[i] = 1;
 return pr;
```

MillerRabin.h

Description: Deterministic Miller-Rabin primality test. Guaranteed to work for numbers up to $7 \cdot 10^{18}$; for larger numbers, use Python and extend A randomly.

Time: 7 times the complexity of $a^b \mod c$.

```
"ModMulLL.h"
                                                              12 lines
bool isPrime(ull n) {
 if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;</pre>
  ull A[] = \{2, 325, 9375, 28178, 450775, 9780504, 1795265022\}
      s = \underline{\quad builtin\_ctzll(n-1), d = n >> s;}
  for (ull a : A) { // ^ count trailing zeroes
    ull p = modpow(a%n, d, n), i = s;
    while (p != 1 && p != n - 1 && a % n && i--)
      p = modmul(p, p, n);
    if (p != n-1 && i != s) return 0;
  return 1;
```

Factor.h

Description: Pollard-rho randomized factorization algorithm. Returns prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: $\mathcal{O}\left(n^{1/4}\right)$, less for numbers with small factors.

```
"ModMulLL.h", "MillerRabin.h"
ull pollard(ull n) {
 auto f = [n](ull x) { return modmul(x, x, n) + 1; };
 ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
 while (t++ % 40 || __gcd(prd, n) == 1) {
   if (x == y) x = ++i, y = f(x);
   if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
   x = f(x), y = f(f(y));
 return __gcd(prd, n);
vector<ull> factor(ull n) {
 if (n == 1) return {};
 if (isPrime(n)) return {n};
 ull x = pollard(n);
 auto 1 = factor(x), r = factor(n / x);
 l.insert(l.end(), all(r));
 return 1;
```

euclid.h

Description: Finds two integers x and y, such that $ax + by = \gcd(a, b)$. If you just need gcd, use the built in __gcd instead. If a and b are coprime, then x is the inverse of $a \pmod{b}$.

```
ll euclid(ll a, ll b, ll &x, ll &y) {
 if (!b) return x = 1, y = 0, a;
 ll d = euclid(b, a % b, y, x);
 return v -= a/b * x, d;
```

Description: Chinese Remainder Theorem.

crt (a, m, b, n) computes x such that $x \equiv a \pmod{m}$, $x \equiv b \pmod{n}$. If |a| < m and |b| < n, x will obey 0 < x < lcm(m, n). Assumes $mn < 2^{62}$ Time: $\log(n)$

```
"euclid.h"
11 crt(ll a, ll m, ll b, ll n) {
 if (n > m) swap(a, b), swap(m, n);
 ll x, y, q = euclid(m, n, x, y);
 assert ((a - b) % q == 0); // else no solution
 x = (b - a) % n * x % n / g * m + a;
 return x < 0 ? x + m*n/q : x;
```

Bézout's identity

For $a \neq b \neq 0$, then d = qcd(a, b) is the smallest positive integer for which there are integer solutions to

$$ax + by = d$$

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

phiFunction.h

Description: Euler's ϕ function is defined as $\phi(n) := \#$ of positive integers $\leq n$ that are coprime with n. $\phi(1) = 1$, p prime $\Rightarrow \phi(p^k) = (p-1)p^{k-1}$, $m, n \text{ coprime } \Rightarrow \phi(mn) = \phi(m)\phi(n).$ If $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ then $\phi(n) = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ $(p_1-1)p_1^{k_1-1}...(p_r-1)p_r^{k_r-1}.$ $\phi(n)=n\cdot\prod_{p\mid n}(1-1/p).$ $\sum_{d \mid n} \phi(d) = n, \ \sum_{1 < k < n, \gcd(k, n) = 1} k = n\phi(n)/2, n > 1$

Euler's thm: a, n coprime $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$.

Fermat's little thm: $p \text{ prime } \Rightarrow a^{p-1} \equiv 1 \pmod{p} \ \forall a.$

```
const int LIM = 5000000;
int phi[LIM];
void calculatePhi() {
 rep(i, 0, LIM) phi[i] = i&1 ? i : i/2;
 for (int i = 3; i < LIM; i += 2) if(phi[i] == i)</pre>
    for (int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;</pre>
```

ContinuedFractions.h

Description: Given N and a real number x > 0, finds the closest rational approximation p/q with $p, q \leq N$. It will obey $|p/q - x| \leq 1/qN$.

For consecutive convergents, $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. $(p_k/q_k$ alternates between > x and < x.) If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic. Time: $\mathcal{O}(\log N)$

```
typedef double d; // for N \sim 1e7: long double for N \sim 1e9
pair<11, 11> approximate(d x, 11 N) {
  11 LP = 0, LQ = 1, P = 1, Q = 0, inf = LLONG_MAX; d y = x;
  for (;;) {
    ll lim = min(P ? (N-LP) / P : inf, Q ? (N-LQ) / Q : inf),
       a = (ll) floor(v), b = min(a, lim),
       NP = b*P + LP, NQ = b*Q + LQ;
      // If b > a/2, we have a semi-convergent that gives us a
      // better approximation; if b = a/2, we *may* have one.
      // Return {P, Q} here for a more canonical approximation.
      return (abs(x - (d)NP / (d)NO) < abs(x - (d)P / (d)O)) ?
        make pair (NP, NO) : make pair (P, O);
    if (abs(y = 1/(y - (d)a)) > 3*N) {
      return {NP, NO};
    LP = P; P = NP;
    LO = O; O = NO;
```

FracBinarySearch.h

Description: Given f and N, finds the smallest fraction $p/q \in [0,1]$ such that f(p/q) is true, and $p, q \leq N$. You may want to throw an exception from f if it finds an exact solution, in which case N can be removed.

Usage: fracBS([](Frac f) { return f.p>=3*f.q; }, 10); // {1,3}

HSGS

Time: $\mathcal{O}(\log(N))$

5 lines

```
struct Frac { ll p, q; };
template < class F>
Frac fracBS(F f, ll N) {
  bool dir = 1, A = 1, B = 1;
  Frac lo{0, 1}, hi{1, 1}; // Set hi to 1/0 to search (0, N)
  if (f(lo)) return lo;
  assert (f(hi));
  while (A | | B) {
    11 adv = 0, step = 1; // move hi if dir, else lo
    for (int si = 0; step; (step *= 2) >>= si) {
     Frac mid{lo.p * adv + hi.p, lo.q * adv + hi.q};
     if (abs(mid.p) > N || mid.q > N || dir == !f(mid)) {
       adv -= step; si = 2;
   hi.p += lo.p * adv;
   hi.q += lo.q * adv;
   dir = !dir;
    swap(lo, hi);
   A = B; B = !!adv;
  return dir ? hi : lo;
```

Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), b = k \cdot (2mn), c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

Primes

p=962592769 is such that $2^{21}\mid p-1,$ which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than 1 000 000.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{2^a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$.

Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d)$$

Other useful formulas/forms:

$$\begin{split} & \sum_{d|n} \mu(d) = [n=1] \text{ (very useful)} \\ & g(n) = \sum_{n|d} f(d) \Leftrightarrow f(n) = \sum_{n|d} \mu(d/n) g(d) \\ & g(n) = \sum_{1 \leq m \leq n} f(\left\lfloor \frac{n}{m} \right\rfloor) \Leftrightarrow f(n) = \sum_{1 \leq m \leq n} \mu(m) g(\left\lfloor \frac{n}{m} \right\rfloor) \end{split}$$

Data structures (5)

OrderStatisticTree.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change null_type. **Time:** $\mathcal{O}(\log N)$

HashMap.h

Description: Hash map with mostly the same API as unordered_map, but ~3x faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if provided).

```
#include <bits/extc++.h>
// To use most bits rather than just the lowest ones:
struct chash { // large odd number for C
   const uint64_t C = 11(4e18 * acos(0)) | 71;
   11 operator()(11 x) const { return __builtin_bswap64(x*C); }
};
__gnu_pbds::gp_hash_table<11,int,chash> h({},{},{},{},{},{1<<16});</pre>
```

UnionFindRollback.h

Description: Disjoint-set data structure with undo. If undo is not needed, skip st, time() and rollback().

```
Usage: int t = uf.time(); ...; uf.rollback(t); Time: O(\log(N))
```

```
21 lines
struct RollbackUF
 vi e; vector<pii> st;
 RollbackUF(int n) : e(n, -1) {}
 int size(int x) { return -e[find(x)]; }
 int find(int x) { return e[x] < 0 ? x : find(e[x]); }</pre>
 int time() { return sz(st); }
 void rollback(int t) {
    for (int i = time(); i --> t;)
     e[st[i].first] = st[i].second;
    st.resize(t);
 bool join(int a, int b) {
   a = find(a), b = find(b);
   if (a == b) return false;
   if (e[a] > e[b]) swap(a, b);
   st.push_back({a, e[a]});
   st.push_back({b, e[b]});
   e[a] += e[b]; e[b] = a;
    return true;
};
```

Matrix.h

Description: Basic operations on square matrices.

```
Usage: Matrix<int, 3> A;
A.d = \{\{\{1,2,3\}\}, \{\{4,5,6\}\}, \{\{7,8,9\}\}\}\};
vector < int > vec = \{1, 2, 3\};
vec = (A^N) * vec;
                                                              26 lines
template < class T, int N> struct Matrix {
  typedef Matrix M;
  array<array<T, N>, N> d{};
 M operator*(const M& m) const {
    rep(i,0,N) rep(j,0,N)
      rep(k, 0, N) \ a.d[i][j] += d[i][k]*m.d[k][j];
  vector<T> operator*(const vector<T>& vec) const {
    vector<T> ret(N);
    rep(i, 0, N) rep(j, 0, N) ret[i] += d[i][j] * vec[j];
    return ret:
 M operator^(ll p) const {
    assert (p >= 0);
    M a, b(*this);
    rep(i, 0, N) \ a.d[i][i] = 1;
    while (p) {
      if (p&1) a = a*b;
      b = b*b;
      p >>= 1;
    return a;
};
```

17

ConvexHullTrick.h

};

Description: Container where you can add lines of the form kx+m, and query maximum values at points x. Useful for dynamic programming ("convex hull trick"). **Time:** $\mathcal{O}(\log N)$

```
30 lines
struct Line {
 mutable 11 k, m, p;
 bool operator<(const Line& o) const { return k < o.k; }</pre>
 bool operator<(ll x) const { return p < x; }</pre>
struct LineContainer : multiset<Line, less<>>> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  static const ll inf = LLONG MAX;
  ll div(ll a, ll b) { // floored division
    return a / b - ((a ^ b) < 0 && a % b); }
 bool isect(iterator x, iterator y) {
    if (y == end()) return x \rightarrow p = inf, 0;
    if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
    else x->p = div(y->m - x->m, x->k - y->k);
    return x->p >= y->p;
 void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() && (--x)->p >= y->p)
      isect(x, erase(y));
 ll query(ll x) {
   assert(!empty());
    auto 1 = *lower_bound(x);
    return l.k * x + l.m;
```

12 lines

Treap.h

Description: A short self-balancing tree. It acts as a sequential container with log-time splits/joins, and is easy to augment with additional data.

Time: $\mathcal{O}(\log N)$

```
struct Node {
 Node *1 = 0, *r = 0;
 int val, y, c = 1;
 Node (int val) : val(val), y(rand()) {}
  void recalc();
int cnt(Node* n) { return n ? n->c : 0; }
void Node::recalc() { c = cnt(1) + cnt(r) + 1; }
template < class F > void each (Node * n, F f) {
 if (n) { each(n->1, f); f(n->val); each(n->r, f); }
pair<Node*, Node*> split(Node* n, int k) {
  if (!n) return {};
  if (cnt(n->1) >= k) { // "n->val>= k" for lower_bound(k)}
    auto pa = split(n->1, k);
   n->1 = pa.second;
   n->recalc();
    return {pa.first, n};
    auto pa = split(n->r, k - cnt(n->1) - 1); // and just "k"
   n->r = pa.first;
   n->recalc();
   return {n, pa.second};
Node* merge(Node* 1, Node* r) {
 if (!1) return r;
 if (!r) return 1;
  if (1->y > r->y) {
   1->r = merge(1->r, r);
   1->recalc();
   return 1;
  } else {
    r->1 = merge(1, r->1);
   r->recalc();
   return r;
Node* ins(Node* t, Node* n, int pos) {
  auto pa = split(t, pos);
  return merge(merge(pa.first, n), pa.second);
// Example application: move the range (l, r) to index k
void move(Node*& t, int 1, int r, int k) {
 Node *a, *b, *c;
  tie(a,b) = split(t, 1); tie(b,c) = split(b, r - 1);
 if (k \le 1) t = merge(ins(a, b, k), c);
  else t = merge(a, ins(c, b, k - r));
```

MoQueries.h

Description: Answer interval or tree path queries by finding an approximate TSP through the queries, and moving from one query to the next by adding/removing points at the ends. If values are on tree edges, change step to add/remove the edge (a, c) and remove the initial add call (but keep in). Time: $\mathcal{O}\left(N\sqrt{Q}\right)$ 49 lines

```
void add(int ind, int end) { ... } // add a[ind] (end = 0 or 1)
void del(int ind, int end) { ... } // remove a[ind]
```

```
int calc() { ... } // compute current answer
vi mo(vector<pii> 0) {
 int L = 0, R = 0, blk = 350; // \sim N/sqrt(Q)
 vi s(sz(Q)), res = s;
#define K(x) pii(x.first/blk, x.second ^ -(x.first/blk & 1))
 iota(all(s), 0);
  sort(all(s), [\&](int s, int t) { return K(Q[s]) < K(Q[t]); });
  for (int qi : s) {
   pii q = Q[qi];
    while (L > q.first) add(--L, 0);
    while (R < q.second) add(R++, 1);</pre>
    while (L < q.first) del(L++, 0);
    while (R > q.second) del(--R, 1);
    res[qi] = calc();
 return res;
vi moTree(vector<array<int, 2>> Q, vector<vi>& ed, int root=0) {
 int N = sz(ed), pos[2] = {}, blk = 350; // \sim N/sqrt(Q)
 vi s(sz(Q)), res = s, I(N), L(N), R(N), in(N), par(N);
  add(0, 0), in[0] = 1;
  auto dfs = [&] (int x, int p, int dep, auto& f) -> void {
   par[x] = p;
    L[x] = N;
    if (dep) I[x] = N++;
    for (int y : ed[x]) if (y != p) f(y, x, !dep, f);
    if (!dep) I[x] = N++;
   R[x] = N;
  dfs(root, -1, 0, dfs);
#define K(x) pii(I[x[0]] / blk, I[x[1]] ^ -(I[x[0]] / blk & 1))
 iota(all(s), 0);
 sort(all(s), [\&](int s, int t) \{ return K(Q[s]) < K(Q[t]); \});
 for (int qi : s) rep(end, 0, 2) {
   int &a = pos[end], b = Q[qi][end], i = 0;
#define step(c) { if (in[c]) { del(a, end); in[a] = 0; } \
                  else { add(c, end); in[c] = 1; } a = c; }
    while (!(L[b] <= L[a] && R[a] <= R[b]))</pre>
     I[i++] = b, b = par[b];
    while (a != b) step(par[a]);
    while (i--) step(I[i]);
    if (end) res[gi] = calc();
 return res;
```

Strings (6)

KMP.h

Description: pi[x] computes the length of the longest prefix of s that ends at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all occurrences of a string.

```
Time: \mathcal{O}(n)
                                                               16 lines
vi pi(const string& s) {
 vi p(sz(s));
 rep(i,1,sz(s)) {
   int g = p[i-1];
    while (g \&\& s[i] != s[g]) g = p[g-1];
   p[i] = q + (s[i] == s[q]);
 return p;
```

vi match (const string& s, const string& pat) {

vi p = pi(pat + $' \setminus 0'$ + s), res;

```
rep(i,sz(p)-sz(s),sz(p))
 if (p[i] == sz(pat)) res.push_back(i - 2 * sz(pat));
return res;
```

Zfunc.h

Description: z[x] computes the length of the longest common prefix of s[i:]and s, except z[0] = 0. (abacaba -> 0010301) Time: $\mathcal{O}(n)$

```
vi Z(const string& S) {
 vi z(sz(S));
 int 1 = -1, r = -1;
 rep(i,1,sz(S)) {
   z[i] = i >= r ? 0 : min(r - i, z[i - 1]);
    while (i + z[i] < sz(S) \&\& S[i + z[i]] == S[z[i]])
     z[i]++;
   if (i + z[i] > r)
     l = i, r = i + z[i];
 return z;
```

Manacher.h

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, p[1][i] = longest odd (half rounded down).

```
Time: \mathcal{O}(N)
```

```
array<vi, 2> manacher(const string& s) {
 int n = sz(s);
 array < vi, 2 > p = {vi(n+1), vi(n)};
 rep(z,0,2) for (int i=0, l=0, r=0; i < n; i++) {
    int t = r-i+!z;
    if (i<r) p[z][i] = min(t, p[z][l+t]);</pre>
    int L = i - p[z][i], R = i + p[z][i] - !z;
    while (L>=1 && R+1<n && s[L-1] == s[R+1])
     p[z][i]++, L--, R++;
    if (R>r) l=L, r=R;
 return p;
```

MinRotation.h

Description: Finds the lexicographically smallest rotation of a string. Usage: rotate(v.begin(), v.begin()+minRotation(v), v.end()); Time: $\mathcal{O}(N)$

```
int minRotation(string s) {
 int a=0, N=sz(s); s += s;
 rep(b, 0, N) rep(k, 0, N) {
    if (a+k == b \mid | s[a+k] < s[b+k]) {b += max(0, k-1); break;}
    if (s[a+k] > s[b+k]) { a = b; break; }
 return a;
```

SuffixArray.h

Description: Builds suffix array for a string. sa[i] is the starting index of the suffix which is i'th in the sorted suffix array. The returned vector is of size n+1, and sa[0] = n. The lcp array contains longest common prefixes for neighbouring strings in the suffix array: lcp[i] = lcp(sa[i], sa[i-1]), lcp[0] = 0. The input string must not contain any zero bytes. Time: $\mathcal{O}(n \log n)$

```
struct SuffixArray {
 vi sa, lcp;
 SuffixArray(string& s, int lim=256) { // or basic_string<int>
   int n = sz(s) + 1, k = 0, a, b;
```

```
vi x(all(s)+1), y(n), ws(max(n, lim)), rank(n);
    sa = lcp = y, iota(all(sa), 0);
    for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
     p = j, iota(all(y), n - j);
      rep(i,0,n) if (sa[i] >= j) y[p++] = sa[i] - j;
      fill(all(ws), 0);
      rep(i,0,n) ws[x[i]]++;
      rep(i,1,lim) ws[i] += ws[i-1];
      for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
      swap(x, y), p = 1, x[sa[0]] = 0;
      rep(i,1,n) a = sa[i - 1], b = sa[i], x[b] =
        (y[a] == y[b] \&\& y[a + j] == y[b + j]) ? p - 1 : p++;
    rep(i,1,n) rank[sa[i]] = i;
    for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)</pre>
     for (k \&\& k--, j = sa[rank[i] - 1];
          s[i + k] == s[j + k]; k++);
};
```

SuffixTree.h

Description: Ukkonen's algorithm for online suffix tree construction. Each node contains indices [l,r) into the string, and a list of child nodes. Suffixes are given by traversals of this tree, joining [l,r) substrings. The root is 0 (has l=-1, r=0), non-existent children are -1. To get a complete tree, append a dummy symbol – otherwise it may contain an incomplete path (still useful for substring matching, though).

Time: $\mathcal{O}\left(26N\right)$

50 lines

```
struct SuffixTree {
  enum { N = 200010, ALPHA = 26 }; // N \sim 2*maxlen+10
  int toi(char c) { return c - 'a'; }
  string a; //v = cur \ node, q = cur \ position
  int t[N][ALPHA],1[N],r[N],p[N],s[N],v=0,q=0,m=2;
  void ukkadd(int i, int c) { suff:
    if (r[v]<=q) {
     if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
       p[m++]=v; v=s[v]; q=r[v]; goto suff; }
     v=t[v][c]; q=l[v];
    if (q==-1 || c==toi(a[q])) q++; else {
     l[m+1]=i; p[m+1]=m; l[m]=l[v]; r[m]=q;
     p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
     l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
     v=s[p[m]]; q=l[m];
     while (q<r[m]) { v=t[v][toi(a[q])]; q+=r[v]-l[v]; }</pre>
     if (q==r[m]) s[m]=v; else s[m]=m+2;
     q=r[v]-(q-r[m]); m+=2; goto suff;
  SuffixTree(string a) : a(a) {
    fill(r,r+N,sz(a));
   memset(s, 0, sizeof s);
   memset(t, -1, sizeof t);
    fill(t[1],t[1]+ALPHA,0);
   s[0] = 1; 1[0] = 1[1] = -1; r[0] = r[1] = p[0] = p[1] = 0;
   rep(i,0,sz(a)) ukkadd(i, toi(a[i]));
  // example: find longest common substring (uses ALPHA = 28)
  pii best;
  int lcs(int node, int i1, int i2, int olen) {
   if (l[node] <= i1 && i1 < r[node]) return 1;</pre>
   if (1[node] <= i2 && i2 < r[node]) return 2;</pre>
   int mask = 0, len = node ? olen + (r[node] - 1[node]) : 0;
   rep(c, 0, ALPHA) if (t[node][c] != -1)
     mask |= lcs(t[node][c], i1, i2, len);
```

```
if (mask == 3)
    best = max(best, {len, r[node] - len});
    return mask;
}
static pii LCS(string s, string t) {
    SuffixTree st(s + (char)('z' + 1) + t + (char)('z' + 2));
    st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
    return st.best;
}
};
```

Hashing.h

Description: Self-explanatory methods for string hashing.

44 lin

```
// Arithmetic mod 2^64-1. 2x slower than mod 2^64 and more
// code, but works on evil test data (e.g. Thue-Morse, where
// ABBA... and BAAB... of length 2^10 hash the same mod 2^64).
// "typedef ull H;" instead if you think test data is random,
// or work mod 10^9+7 if the Birthday paradox is not a problem.
typedef uint64_t ull;
struct H {
 ull x; H(ull x=0) : x(x) {}
  H operator+(H \circ) { return x + \circ.x + (x + \circ.x < x); }
  H operator-(H o) { return *this + ~o.x; }
 H operator * (H o) { auto m = (_uint128_t) x * o.x;
    return H((ull)m) + (ull)(m >> 64); }
  ull get() const { return x + !~x; }
 bool operator==(H o) const { return get() == o.get(); }
 bool operator<(H o) const { return get() < o.get(); }</pre>
static const H C = (11)1e11+3; // (order \sim 3e9; random \ also \ ok)
struct HashInterval {
 vector<H> ha, pw;
 HashInterval(string& str) : ha(sz(str)+1), pw(ha) {
   pw[0] = 1;
    rep(i, 0, sz(str))
     ha[i+1] = ha[i] * C + str[i],
     pw[i+1] = pw[i] * C;
 H hashInterval(int a, int b) { // hash (a, b)
    return ha[b] - ha[a] * pw[b - a];
};
vector<H> getHashes(string& str, int length) {
 if (sz(str) < length) return {};</pre>
 H h = 0, pw = 1;
 rep(i,0,length)
   h = h * C + str[i], pw = pw * C;
 vector<H> ret = {h};
 rep(i,length,sz(str)) {
   ret.push_back(h = h * C + str[i] - pw * str[i-length]);
 return ret;
H hashString(string& s){H h{}; for(char c:s) h=h*C+c;return h;}
```

AhoCorasick.h

Description: Aho-Corasick automaton, used for multiple pattern matching. Initialize with Aho-Corasick ac(patterns); the automaton start node will be at index 0. find(word) returns for each position the index of the longest word that ends there, or -1 if none. findAll(-, word) finds all words (up to $N\sqrt{N}$ many if no duplicate patterns) that start at each position (shortest first). Duplicate patterns are allowed; empty patterns are not. To find the longest words that start at each position, reverse all input. For large alphabets, split each symbol into chunks, with sentinel bits for symbol boundaries.

Time: construction takes $\mathcal{O}(26N)$, where N = sum of length of patterns. find(x) is $\mathcal{O}(N)$, where $N = \text{length of x. findAll is } \mathcal{O}(NM)$.

```
struct AhoCorasick {
 enum {alpha = 26, first = 'A'}; // change this!
 struct Node {
    // (nmatches is optional)
   int back, next[alpha], start = -1, end = -1, nmatches = 0;
   Node(int v) { memset(next, v, sizeof(next)); }
 };
 vector<Node> N;
 vi backp;
 void insert(string& s, int j) {
   assert(!s.empty());
   int n = 0;
    for (char c : s) {
     int& m = N[n].next[c - first];
     if (m == -1) { n = m = sz(N); N.emplace_back(-1); }
    if (N[n].end == -1) N[n].start = j;
   backp.push back(N[n].end);
   N[n].end = j;
   N[n].nmatches++;
 AhoCorasick(vector<string>& pat) : N(1, -1) {
    rep(i, 0, sz(pat)) insert(pat[i], i);
   N[0].back = sz(N);
   N.emplace_back(0);
    queue<int> q;
    for (q.push(0); !q.empty(); q.pop()) {
     int n = q.front(), prev = N[n].back;
     rep(i,0,alpha) {
       int &ed = N[n].next[i], y = N[prev].next[i];
       if (ed == -1) ed = y;
         N[ed].back = y;
          (N[ed].end == -1 ? N[ed].end : backp[N[ed].start])
           = N[y].end;
         N[ed].nmatches += N[y].nmatches;
         q.push(ed);
 vi find(string word) {
   int n = 0;
   vi res; // ll count = 0;
    for (char c : word) {
     n = N[n].next[c - first];
     res.push_back(N[n].end);
     // count += N[n]. nmatches;
   return res;
 vector<vi> findAll(vector<string>& pat, string word) {
   vi r = find(word);
   vector<vi> res(sz(word));
    rep(i,0,sz(word)) {
     int ind = r[i];
      while (ind !=-1) {
       res[i - sz(pat[ind]) + 1].push_back(ind);
       ind = backp[ind];
    return res;
```

Various (7)

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive). **Time:** $\mathcal{O}(\log N)$

```
23 lines
set<pii>::iterator addInterval(set<pii>& is, int L, int R) {
 if (L == R) return is.end();
  auto it = is.lower bound({L, R}), before = it;
  while (it != is.end() && it->first <= R) {
   R = max(R, it->second);
   before = it = is.erase(it);
  if (it != is.begin() && (--it)->second >= L) {
   L = min(L, it->first);
   R = max(R, it->second);
   is.erase(it);
 return is.insert(before, {L,R});
void removeInterval(set<pii>& is, int L, int R) {
 if (L == R) return;
 auto it = addInterval(is, L, R);
 auto r2 = it->second;
 if (it->first == L) is.erase(it);
 else (int&)it->second = L;
 if (R != r2) is.emplace(R, r2);
```

IntervalCover.h

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add || R.empty(). Returns empty set on failure (or if G is empty).

```
Time: \mathcal{O}(N \log N)
```

```
template<class T>
vi cover(pair<T, T> G, vector<pair<T, T>> I) {
    vi S(sz(I)), R;
    iota(all(S), 0);
    sort (all(S), [&] (int a, int b) { return I[a] < I[b]; });
    T cur = G.first;
    int at = 0;
    while (cur < G.second) { // (A)
        pair<T, int> mx = make_pair(cur, -1);
        while (at < sz(I) && I[S[at]].first <= cur) {
            mx = max(mx, make_pair(I[S[at]].second, S[at]));
            at++;
        }
        if (mx.second == -1) return {};
        cur = mx.first;
        R.push_back(mx.second);
    }
    return R;
}</pre>
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval.

```
Usage: constantIntervals(0, sz(v), [&](int x){return v[x];}, [&](int lo, int hi, T val){...});

Time: \mathcal{O}(k \log \frac{n}{k})
```

```
q(i, to, p);
    i = to; p = q;
  } else {
    int mid = (from + to) >> 1;
    rec(from, mid, f, g, i, p, f(mid));
    rec(mid+1, to, f, g, i, p, q);
template<class F, class G>
void constantIntervals(int from, int to, F f, G g) {
 if (to <= from) return;</pre>
 int i = from; auto p = f(i), q = f(to-1);
 rec(from, to-1, f, g, i, p, q);
 q(i, to, q);
TernarySearch.h
Description: Find the smallest i in [a,b] that maximizes f(i), assuming
that f(a) < \ldots < f(i) \ge \cdots \ge f(b). To reverse which of the sides allows
non-strict inequalities, change the < marked with (A) to <=, and reverse
the loop at (B). To minimize f, change it to >, also at (B).
Usage: int ind = ternSearch(0,n-1,[&](int i){return a[i];});
Time: \mathcal{O}(\log(b-a))
```

rep(i,a+1,b+1) **if** (f(a) < f(i)) a = i; // (B)

if (p == q) return;
if (from == to) {

template<class F>
int ternSearch(int a, int b, F f) {
 assert (a <= b);
 while (b - a >= 5) {
 int mid = (a + b) / 2;
 if (f(mid) < f(mid+1)) a = mid; // (A)
 else b = mid+1;
 }</pre>

LIS.h

return a:

Description: Compute indices for the longest increasing subsequence. **Time:** $\mathcal{O}(N \log N)$

```
17 lines
template < class I > vi lis(const vector < I > & S) {
 if (S.empty()) return {};
 vi prev(sz(S));
 typedef pair<I, int> p;
 vector res;
 rep(i,0,sz(S)) {
    // change 0 \Rightarrow i for longest non-decreasing subsequence
    auto it = lower_bound(all(res), p{S[i], 0});
   if (it == res.end()) res.emplace_back(), it = res.end()-1;
   *it = {S[i], i};
   prev[i] = it == res.begin() ? 0 : (it-1) -> second;
 int L = sz(res), cur = res.back().second;
 vi ans(L);
 while (L--) ans[L] = cur, cur = prev[cur];
 return ans;
```

KnuthDP.h

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + a[k][j]) + f(i,j)$, where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \le f(a,d)$ and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer (ch. Data structures), monotone queues, ternary search. **Time:** $\mathcal{O}\left(N^2\right)$

```
DivideAndConquerDP.h
```

Description: Given $a[i] = \min_{lo(i) \le k < hi(i)} (f(i, k))$ where the (minimal) optimal k increases with i, computes a[i] for i = L..R - 1.

```
Time: \mathcal{O}\left(\left(N+(hi-lo)\right)\log N\right)
```

```
18 lines
```

```
struct DP { // Modify at will:
   int lo(int ind) { return 0; }
   int hi(int ind) { return ind; }
   ll f(int ind, int k) { return dp[ind][k]; }
   void store(int ind, int k, ll v) { res[ind] = pii(k, v); }

void rec(int L, int R, int LO, int HI) {
   if (L >= R) return;
   int mid = (L + R) >> 1;
   pair<ll, int> best(LLONG_MAX, LO);
   rep(k, max(LO,lo(mid)), min(HI,hi(mid)))
      best = min(best, make_pair(f(mid, k), k));
   store(mid, best.second, best.first);
   rec(L, mid, LO, best.second+1);
   rec(mid+1, R, best.second, HI);
}

void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
};
```

FastMod.h

Description: Compute a%b about 5 times faster than usual, where b is constant but not known at compile time. Returns a value congruent to $a \pmod{b}$ in the range [0, 2b).

```
typedef unsigned long long ull;
struct FastMod {
  ull b, m;
  FastMod(ull b) : b(b), m(-1ULL / b) {}
  ull reduce(ull a) { // a % b + (0 or b)
    return a - (ull) ((_uint128_t(m) * a) >> 64) * b;
}
};
```

FastInput.h

Description: Read an integer from stdin. Usage requires your program to pipe in input from file.

```
Usage: ./a.out < input.txt
```

```
Time: About 5x as fast as cin/scanf.
inline char gc() { // like getchar()
    static char buf[1 << 16];
    static size_t bc, be;
    if (bc >= be) {
        buf[0] = 0, bc = 0;
        be = fread(buf, 1, sizeof(buf), stdin);
    }
    return buf[bc++]; // returns 0 on EOF
}

int readInt() {
    int a, c;
    while ((a = gc()) < 40);
    if (a == '-') return -readInt();
    while ((c = gc()) >= 48) a = a * 10 + c - 480;
    return a - 48;
```

Others (8)

void cdg(int 1, int r) {

if(1 + 1 == r) **return**;

int m = (1 + r) >> 1;

cdq(1, m); cdq(m, r);
int a = 1, b = m, sum = 0;

```
\mathrm{CDQ.h}
```

22 lines

```
it. The complexity will be O(N^2) if we resetting
         it brute-forcely.
    vector<int> record;
    // temporary
    //two pointer process the effect of [l \rightarrow m) to [m \rightarrow r]
    vector<Pt> tmp;
    while(a < m && b < r) {
    while (a < m)
    while(b < r)
    for(int i = 1 ; i < r ; ++i) v[i] = tmp[i - 1];</pre>
    // reset DS
    for(auto i : record) bit.update(i, -1);
    // release used memory
    vector<int> ().swap(record);
    vector<Pt> ().swap(tmp);
Gauss.h
                                                             43 lines
int gauss(vector<vector<double>> a, vector<double> &ans) {
    const double EPS = 1e-6;
    int n = (int)a.size();
    int m = (int)a[0].size() - 1;
    vector<int> where(m, -1);
    for (int col = 0, row = 0; col < m && row < n; ++col) {</pre>
        int sel = row;
        for (int i = row; i < n; ++i)</pre>
            if (abs(a[i][col]) > abs(a[sel][col]))
                sel = i;
        if (abs(a[sel][col]) < EPS)</pre>
            continue:
        for (int i = col; i <= m; ++i)</pre>
            swap(a[sel][i], a[row][i]);
        where[col] = row;
        for (int i = 0; i < n; ++i)
            if (i != row) {
                double c = a[i][col] / a[row][col];
                for (int j = col; j <= m; ++j)
                    a[i][j] -= a[row][j] * c;
        ++row;
    ans.assign(m, 0);
    for (int i = 0; i < m; ++i)
        if (where[i] != -1)
            ans[i] = a[where[i]][m] / a[where[i]][i];
    for (int i = 0; i < n; ++i) {</pre>
        double sum = 0;
        for (int j = 0; j < m; ++j)
            sum += ans[j] * a[i][j];
        if (abs(sum - a[i][m]) > EPS)
            return 0;
```

// need to record the modifications on DS in order to reset

```
for (int i = 0; i < m; ++i)
        if (where[i] == -1)
            return -1;
    return 1;
Hungarian.h
// n people, m jobs
void hungarian(int n, int m) {
    vector<int> u(n + 1), v(m + 1), p(m + 1), way(m + 1);
    for1(i,1,n) {
        p[0] = i;
        int j0 = 0;
        vector<int> minv(m + 1, INF);
        vector<char> used(m + 1, false);
            used[j0] = true;
            int i0 = p[j0], delta = INF, j1;
            for1(j,1,m) if (!used[j]) {
                int cur = a[i0][j] - u[i0] - v[j];
                if (cur < minv[j]) minv[j] = cur, way[j] = j0;</pre>
                if (minv[j] < delta) delta = minv[j], j1 = j;</pre>
            for1(j,0,m) {
                if (used[i]) u[p[i]] += delta, v[i] -= delta;
                else minv[j] -= delta;
             j0 = j1;
        } while (p[j0] != 0);
            int j1 = way[j0];
            p[j0] = p[j1];
             j0 = j1;
         } while (j0);
    vector<int> ans(n + 1);
    for1(j,1,m) ans[p[j]] = j;
JobScheduling.h
                                                            29 lines
struct Job {
    int a, b, idx;
    bool operator<(Job o) const {</pre>
        return min(a, b) < min(o.a, o.b);</pre>
};
vector<Job> johnsons_rule(vector<Job> jobs) {
    sort(jobs.begin(), jobs.end());
    vector<Job> a, b;
    for (Job j : jobs) {
        if (j.a < j.b)
            a.push_back(j);
            b.push_back(j);
    a.insert(a.end(), b.rbegin(), b.rend());
    return a;
pair<int, int> finish_times(vector<Job> const& jobs) {
    int t1 = 0, t2 = 0;
    for (Job j : jobs) {
        t1 += j.a;
        t2 = max(t2, t1) + j.b;
```

```
return make_pair(t1, t2);
MOTree.h
                                                            2 lines
- u ancestor of v: tin[u] -> tin[v]
- u not ancestor of v: tout[u] -> tin[v] + tin[lca(u, v)]
PersistentSegmentTree.h
                                                           48 lines
struct Node {
    int val;
    Node *1, *r;
    Node(ll x) : val(x), l(nullptr), r(nullptr) {}
    Node (Node *ll, Node *rr) : val(0), l(11), r(rr) {}
};
int n, a[100001]; // The initial array and its size
Node* roots[100001]; // The persistent array's roots
Node * build(int l = 0, int r = n - 1) {
    if (1 == r) return new Node(a[1]);
    int mid = (1 + r) / 2;
    return new Node(build(1, mid), build(mid + 1, r));
Node* update (Node* node, int val, int pos, int 1 = 0, int r = n
     - 1) {
    if (1 == r) return new Node(val);
    int mid = (1 + r) / 2;
    if (pos > mid) return new Node(node->1, update(node->r, val
        , pos, mid + 1, r));
    else return new Node (update (node->1, val, pos, 1, mid),
        node->r);
int query (Node* node, int pos, int 1 = 0, int r = n - 1) {
    if (1 == r) return node->val;
    int mid = (1 + r) / 2;
    if (pos > mid) return query(node->r, pos, mid + 1, r);
    return query(node->1, pos, 1, mid);
int get_item(int index, int time) {
    // Gets the array item at a given index and time
    return query(roots[time], index);
void update_item(int index, int value, int prev_time, int
    curr time) {
    // Updates the array item at a given index and time
    roots[curr time] = update(roots[prev time], index, value);
void init arr(int nn, int* init) {
    // Initializes the persistent array, given an input array
    n = nn;
    for (int i = 0; i < n; i++)</pre>
       a[i] = init[i];
    roots[0] = build();
SegmentTreeBeats.h
<br/>
<br/>
dits/stdc++.h>
using namespace std;
using 11 = long long;
```

```
const int MAXN = 200001; // 1-based
11 A[MAXN];
struct Node {
 11 sum; // Sum tag
 11 max1; // Max value
 11 max2; // Second Max value
  11 maxc: // Max value count
 ll min1; // Min value
 11 min2; // Second Min value
 11 minc; // Min value count
 11 lazy; // Lazy tag
} T[MAXN * 4];
void merge(int t) {
  // sum
 T[t].sum = T[t << 1].sum + T[t << 1 | 1].sum;
  if (T[t << 1].max1 == T[t << 1 | 1].max1) {
   T[t].max1 = T[t << 1].max1;
    T[t].max2 = max(T[t << 1].max2, T[t << 1 | 1].max2);
    T[t].maxc = T[t << 1].maxc + T[t << 1 | 1].maxc;
  } else {
    if (T[t << 1].max1 > T[t << 1 | 1].max1) {</pre>
     T[t].max1 = T[t << 1].max1;
     T[t].max2 = max(T[t << 1].max2, T[t << 1 | 1].max1);
     T[t].maxc = T[t << 1].maxc;
    } else {
     T[t].max1 = T[t << 1 | 1].max1;
     T[t].max2 = max(T[t << 1].max1, T[t << 1 | 1].max2);
     T[t].maxc = T[t << 1 | 1].maxc;
  if (T[t << 1].min1 == T[t << 1 | 1].min1) {</pre>
   T[t].min1 = T[t << 1].min1;
   T[t].min2 = min(T[t << 1].min2, T[t << 1 | 1].min2);
   T[t].minc = T[t << 1].minc + T[t << 1 | 1].minc;
    if (T[t << 1].min1 < T[t << 1 | 1].min1) {</pre>
     T[t].min1 = T[t << 1].min1;
     T[t].min2 = min(T[t << 1].min2, T[t << 1 | 1].min1);
     T[t].minc = T[t << 1].minc;
    } else {
     T[t].min1 = T[t << 1 | 1].min1;
     T[t].min2 = min(T[t << 1].min1, T[t << 1 | 1].min2);
     T[t].minc = T[t << 1 | 1].minc;
void push add(int t, int tl, int tr, ll v) {
  if (v == 0) {
   return;
 T[t].sum += (tr - tl + 1) *v;
 T[t].max1 += v;
  if (T[t].max2 != -11INF) {
   T[t].max2 += v;
 T[t].min1 += v;
  if (T[t].min2 != 11INF) {
   T[t].min2 += v;
 T[t].lazy += v;
```

```
// corresponds to a chmin update
void push max(int t, ll v, bool l) {
 if (v >= T[t].max1) {
   return:
 T[t].sum -= T[t].max1 * T[t].maxc;
 T[t].max1 = v;
 T[t].sum += T[t].max1 * T[t].maxc;
 if (1) {
   T[t].min1 = T[t].max1;
 } else {
   if (v <= T[t].min1) {</pre>
     T[t].min1 = v;
   } else if (v < T[t].min2) {</pre>
     T[t].min2 = v;
 }
// corresponds to a chmax update
void push min(int t, ll v, bool l) {
 if (v <= T[t].min1) {
    return;
 T[t].sum -= T[t].min1 * T[t].minc;
 T[t].min1 = v;
 T[t].sum += T[t].min1 * T[t].minc;
 if (1) {
    T[t].max1 = T[t].min1;
 } else {
    if (v >= T[t].max1) {
     T[t].max1 = v;
    } else if (v > T[t].max2) {
      T[t].max2 = v;
 }
void pushdown(int t, int tl, int tr) {
 if (t1 == tr)
    return;
  // sum
  int tm = (t1 + tr) >> 1;
  push_add(t << 1, t1, tm, T[t].lazy);</pre>
  push add(t \ll 1 | 1, tm + 1, tr, T[t].lazy);
  T[t].lazy = 0;
  push_max(t \ll 1, T[t].max1, tl == tm);
  push max(t << 1 | 1, T[t].max1, tm + 1 == tr);
 push_min(t << 1, T[t].min1, tl == tm);</pre>
 push min(t << 1 | 1, T[t].min1, tm + 1 == tr);
void build(int t=1, int t1=0, int tr=N-1) {
 T[t].lazv = 0;
 if (t.1 == t.r) {
   T[t].sum = T[t].max1 = T[t].min1 = A[t1];
   T[t].maxc = T[t].minc = 1;
   T[t].max2 = -11INF;
   T[t].min2 = 11INF;
    return;
  int tm = (t1 + tr) >> 1;
```

```
build(t << 1, t1, tm);
 build(t << 1 | 1, tm + 1, tr);
 merge(t);
void update add(int 1, int r, 11 v, int t=1, int t1=0, int tr=N
 if (r < tl || tr < 1) {
    return:
 if (1 <= t1 && tr <= r) {
   push add(t, tl, tr, v);
    return:
 pushdown(t, tl, tr);
 int tm = (tl + tr) >> 1;
 update_add(1, r, v, t << 1, t1, tm);
 update_add(1, r, v, t << 1 | 1, tm + 1, tr);
 merge(t);
void update chmin(int 1, int r, 11 v, int t=1, int t1=0, int tr
    =N-1) {
 if (r < tl || tr < l || v >= T[t].max1) {
    return:
 if (1 <= t1 && tr <= r && v > T[t].max2) {
   push_max(t, v, tl == tr);
    return;
 pushdown(t, tl, tr);
 int tm = (tl + tr) >> 1;
 update_chmin(1, r, v, t << 1, t1, tm);
 update_chmin(1, r, v, t << 1 | 1, tm + 1, tr);
 merge(t);
void update_chmax(int 1, int r, 11 v, int t=1, int t1=0, int tr
    =N-1) {
 if (r < tl || tr < l || v <= T[t].min1) {</pre>
    return:
 if (1 <= t1 && tr <= r && v < T[t].min2) {</pre>
    push_min(t, v, tl == tr);
    return;
 pushdown(t, tl, tr);
  int tm = (t1 + tr) >> 1;
  update chmax(1, r, v, t << 1, t1, tm);
 update chmax(1, r, v, t << 1 | 1, tm + 1, tr);
 merge(t);
11 query_sum(int 1, int r, int t=1, int t1=0, int tr=N-1) {
 if (r < tl || tr < l) {
   return 0;
 if (1 <= t1 && tr <= r) {
   return T[t].sum;
 pushdown(t, tl, tr);
 int tm = (tl + tr) >> 1;
 return query_sum(1, r, t << 1, t1, tm) + query_sum(1, r, t <<</pre>
       1 \mid 1, tm + 1, tr);
```

```
int main() {
 int 0;
  cin >> N >> Q;
  for (int i = 0; i < N; i++) {</pre>
   cin >> A[i];
 build();
 for (int q = 0; q < Q; q++) {</pre>
   int t; cin >> t;
   if (t == 0) {
     int 1, r;
     11 x;
     cin >> 1 >> r >> x;
     update_chmin(1, r - 1, x);
    } else if (t == 1) {
     int 1, r;
     11 x;
     cin >> 1 >> r >> x;
     update_chmax(1, r - 1, x);
    } else if (t == 2) {
     int 1, r;
     11 x;
     cin >> 1 >> r >> x;
     update_add(1, r - 1, x);
    } else if (t == 3) {
     int 1, r;
     cin >> 1 >> r;
     cout << query_sum(1, r - 1) << '\n';
```

SOSDP.h

```
14 lines
//sos[i] = sum \ of \ all \ submasks \ of \ i
//Time complexity: n*(2^n)
vector<ll> sos(vector<ll> A) {
    vector<11> re = A;
    for(int i = 0; i<(1<<n); ++i)re[i] = A[i];</pre>
        for(int i = 0; i < n; ++i) for(int mask = 0; mask < (1<<
             n); ++mask){
             if (mask & (1<<i)) {</pre>
             re[mask] += re[mask^(1<<ii)];
             re[mask]%=MOD;
    return re;
```

XorBasis.h

```
// Number of different xor sums: 2^(basis size)
bool insertVector(int msk) {
    for1(i,0,n - 1) if (msk & (1 << i)) {
       if (!basis[i]) {
           basis[i] = msk;
           return 1:
       msk ^= basis[i];
    return 0;
```

47 lines

NimProduct.h

typedef long long 11;

```
11 mul(11 a, 11 b);
11 P[64][64];
// Compute the nim product of 2^a and 2^b
11 mul2(11 a, 11 b) {
    if(a == 0 || b == 0) {
        return 1LL << (a + b);</pre>
    } else if(P[a][b]) {
        return P[a][b];
    } else {
        11 n = 1;
         while(2 * n <= max(a, b)) {
            n \star = 2;
        if (a >= n && b >= n) {
             return P[a][b] = mul((3ULL << (n - 1)), mul2(a - n,</pre>
                   b - n);
         } else if (a >= n) {
             return P[a][b] = mul2(a - n, b) << n;</pre>
             return P[a][b] = mul2(a, b - n) << n;</pre>
// Compute the nim product of a and b
11 mul(11 a, 11 b) {
    11 \text{ ans} = 0;
    11 A[64], B[64];
    11 \text{ sza} = 0, \text{ szb} = 0;
    for(11 i = 0; i < 64; i++) {</pre>
         if((a >> i) & 1) {
             A[sza++] = i;
        if((b >> i) & 1) {
             B[szb++] = i;
    for(11 i = 0; i < sza; i++) {</pre>
        for(11 j = 0; j < szb; j++) {
             ans ^= mul2(A[i], B[j]);
    return ans;
PalindromeTree.h
// Palindrome tree.
```

```
typedef long long 11;
const int maxn = 3e5+5;
int lnk[maxn], go[maxn][26], len[maxn];
11 dp[maxn];
// suffix link, transition, length
void init(string str){
    len[0]=-1;
    len[1]=0;
    int crr = 1, cnt = 2;
    for(int i = 1; i < str.length(); i++) {</pre>
        int id = str[i]-'a';
        while(crr && str[i] != str[i-len[crr]-1])crr = lnk[crr
        if(go[crr][id])crr = go[crr][id];
```

```
else{
    int tmp = lnk[crr];
    while(tmp && str[i] != str[i-len[tmp]-1])tmp = lnk[
         tmp];
    if(!go[tmp][id])lnk[cnt]=1;
    else lnk[cnt]=go[tmp][id];
    go[crr][id]=cnt;
    len[cnt] = len[crr] + 2;
    crr = cnt;
    cnt++;
dp[crr]++;
```