Matemáticas

Roberto Cadena Vega

22 de diciembre de 2014

Índice general

1. Álgebra abstracta

2. Álgebra lineal

Ecuaciones diferenciales

1.2.	Anillos	15
	Definiciones	15
	Homomorfismos de anillo	15
	Ideales	15
1.3.	Dominios Enteros	16
	Definiciones	16
	Máximo Común Divisor	16
	mínimo común multiplo	16
	Algoritmo de la división de Fuclides	

9

10

14

14

17

19

Todo list

Falta escribir ejemplo																		8
Falta escribir apunte																		14
Falta escribir apunte																		14
Falta escribir apunte																		15
Falta escribir apunte																		15
Falta escribir apunte																		15
Falta escribir apunte																		16
Falta escribir apunte																		16
Falta escribir apunte																		16
Falta escribir apunte																		16

Capítulo 1

Álgebra abstracta

1.1. Grupos

Definiciones

Definición 1.1.1. Un grupo es un conjunto no vacio G en el que esta definida la operacion \star , tal que:

$$\begin{array}{ccc} \star \colon \mathsf{G},\mathsf{G} & \to & \mathsf{G} \\ (\mathfrak{a},\mathfrak{b}) & \to & (\mathfrak{a}\star\mathfrak{b}) \end{array} \tag{1.1.1}$$

Existen definiciones parciales de grupo dependiendo de las propiedades que cumple su operación:

Cerradura $a \star b \in G \quad \forall a, b \in G$

Asociatividad $a \star (b \star c) = (a \star b) \star c \quad \forall a, b, c, \in G$

Identidad $\exists e \in G \ni a \star e = e \star a = a \quad \forall a \in G$ **Inverso** $\exists b \in G \ni a \star b = b \star a = e \quad \forall a \in G$

Cuando se cumplen las propiedades de *cerradura* y *asociatividad* se le llama *semigrupo*; si adicionalmente se cumple la propiedad de *existencia de identidad* se le llama *monoide*; si adicionalmente se cumple la propiedad de *existencia de inverso* se le llama *grupo*.

Ejercicio 1.1.1. Demostrar que el grupo cimpuesto por las matrices de la forma:

$$\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, \quad \forall\, \theta \in \mathbb{R}$$

es un grupo.

(1.1.2)

Ejemplo 1.1.1. El conjunto $\mathbb{Z}/n\mathbb{Z}$

denota por |G|.

Ejercicio 1.1.2. Consideremos a \mathbb{Z} con el producto usual ¿Es este un grupo?

Ejercicio 1.1.3. Consideremos a \mathbb{Z}^+ con el producto usual ¿Es este un grupo? **Ejercicio 1.1.4.** Sea $G = \mathbb{R} \setminus \{0\}$. Si definimos $a \star b = a^2b$ ¿G es un grupo?

Definición 1.1.3. Orden de un grupo es el numero de elementos que tiene dicho grupo y se

Ejemplo 1.1.3. El orden del conjunto de numeros reales es infinito $|\mathbb{R}| = \infty$.

Un grupo G será finito si tiene orden finito, de lo contrario será infinito.

Ejemplo 1.1.2. Si $G = \{e\}$, su orden será $|G = \{e\}| = 1$

Proposición 1.1.1. *Si* G *es un grupo, entonces:*

- 1. El elemento identidad es único.
- 2. El elemento inverso $a^{-1} \quad \forall a \in G$ es único.
- 3. El elemento inverso del inverso del un elemento del grupo es el mismo elemento $(a^{-1})^{-1} = a \quad \forall a \in G.$
- 4. El elemento inverso de la operación de dos elementos del grupo es la operacion de los inversos de los elementos en orden inverso $(a \star b)^{-1} = b^{-1} \star a^{-1}$
- 5. En general lo anterior se cumple para cualquier numero de elementos $(a_1 \star a_2 \star ... \star$ $(a_n)^{-1} = a_n^{-1} \star \ldots \star a_2^{-1} \star a_1^{-1}$.

Demostración.

1. Dados e_1 y e_2 identidades del grupo, son identicos. Si aplicamos la identidad e_2 a e_1 , tenemos como resultado e_1 , y si aplicamos la identidad e_1 a e_2 obtenemos como resultado e₂:

$$e_1 = e_2 \star e_1 = e_1 \star e_2 = e_2$$

por lo que podemos ver que ambas identidades son la misma.

2. Sean b, c inversos de a, entonces:

$$b \star a = e$$

 $a \star c = e$

por lo que podemos ver que:

$$b = b \star e = b \star (a \star c) = (b \star a) \star c = e \star c = c$$

3. Sabemos que existe un inverso a^{-1} tal que:

$$a \star a^{-1} = a^{-1} \star a = e \quad \forall a \in G$$

asi pues, se sigue que:

$$\left(\alpha^{-1}\right)^{-1} \star \alpha^{-1} = e$$

y como sabemos que el elemento que operado con el inverso sea la identidad es el elemento mismo tenemos que:

$$\left(a^{-1}\right)^{-1} = a$$

4. Si operamos por la izquierda el termino $b^{-1} \star a^{-1}$ con $a \star b$:

$$(b^{-1} \star a^{-1}) \star (a \star b) = b^{-1} \star (a^{-1} \star a) b = b^{-1} \star e \star b = b^{-1} \star b = e$$

de la misma manera si operamos por la derecha:

$$(a \star b) \star \left(b^{-1} \star a^{-1}\right) = a^{-1} \star \left(b^{-1} \star b\right) a = a^{-1} \star e \star a = a^{-1} \star a = e$$

por lo tanto:

$$b^{-1} \star a^{-1} = (a \star b)^{-1}$$

Reglas de cancelación

Proposición 1.1.2. Sea G un grupo y a, b, $c \in G$, tendremos que:

$$a \star b = a \star c \implies b = c$$

 $b \star a = c \star a \implies b = c$

Demostración. Si tomamos en cuenta que $a \star b = a \star c$:

$$b = e \star b = \left(a^{-1} \star a\right) \star b = a^{-1} \star (a \star b) = a^{-1} \star (a \star c) = \left(a^{-1} \star a\right) \star c = e \star c = c$$
 de la misma manera para $b \star a = c \star a$:

$$b = b \star e = b \star \left(a \star a^{-1}\right) = (b \star a) \star a^{-1} = (c \star a) \star a^{-1} = c \star \left(a \star a^{-1}\right) = c \star e = c$$

Subgrupos

Definición 1.1.4. Un subconjunto no vacio H de un grupo G se llama subgrupo si H mismo forma un grupo respecto a la operación de G. Cuando H es subgrupo de G se denota H < G o G > H.

Observación 1.1.1. Todo grupo G tiene automaticamente dos subconjuntos triviales, el mismo G y la identidad {e}.

Proposición 1.1.3. *Un subconjunto no vacio* H ⊂ G *es un subgrupo de* G *si y solo si* H *es* cerrado respecto a la operación de G y $a \in H \implies a^{-1} \in H$.

debido a que H es cerrado. Ademas para $a,b,c \in H$ sabemos que $a \star (b \star c) = (a \star b) \star c$ debido a que se cumple en G y H hereda esta propiedad. Por lo que H es un grupo, y por lo tanto subgrupo de G.

Demostración. Teniendo que H es un subgrupo de G tenemos que H es un grupo, por lo que automaticamente se cumple la cerradura y la existencia del inverso dentro del subgrupo.

Teniendo que H es cerrado, no vacio y $a^{-1} \in H$ $\forall a \in H$. Sabemos que $a^{-1} \star a = e \in H$

Ejemplo 1.1.4. Sea $G = \mathbb{Z}$ con la suma usual y sea H el conjunto de los enteros pares, es decir:

$$\mathsf{H} = \{2\mathsf{n} | \mathsf{n} \in \mathbb{Z}\}$$

¿Es H un subgrupo de G? Emperemos con dos elementos $a, b \in H$, por lo que tenemos que:

$$egin{array}{lll} \mathfrak{a} &=& 2\mathfrak{q} & \mathfrak{q} \in \mathbb{Z} \ \mathfrak{b} &=& 2\mathfrak{q}' & \mathfrak{q}' \in \mathbb{Z} \end{array}$$

y al sumarlos tenemos que:

$$a+b=2q+2q'=2(q+q')=2q''\quad q''\in\mathbb{Z}$$

por lo que $a + b \in H$.

Por otro lado, para $a \in H$ existe un $q \in \mathbb{Z}$ tal que a = 2q. Su inverso será:

por lo que existe $q' = -q \in \mathbb{Z}$ tal que:

$$2a' = -a \in H$$

y por lo tanto $H < \mathbb{Z}$.

Ejemplo 1.1.5. Consideremos $G = \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ con el producto usual, y un subconjunto \mathcal{U}

-a = -2q = 2(-q)

$$\mathcal{U} = \{z \in \mathbb{C}^* \mid |z| = 1\}$$
¿Es \mathcal{U} un subgrupo de G?

Dados dos elementos $z_1, z_2 \in \mathcal{U}$ sabemos que $|z_1| = |z_2| = 1$, por lo tanto:

$$|z_1 z_2| = |z_1||z_2| = 1$$

por lo que $z_1z_2 \in \mathcal{U}$. Por otro lado, para $z \in \mathcal{U}$ tenemos que |z| = 1, y por lo tanto:

$$|z^{-1}| = |z|^{-1} = \frac{\alpha}{|z|} = 1$$

por lo que
$$z^{-1} \in \mathcal{U}$$
 y $\mathcal{U} < \mathbb{C}^*$

Ejemplo 1.1.6. Sea G un grupo, a un elemento del grupo y $C(a) = \{g \in G \mid g \star a = a \star g\}$ ¿Es C(a) subgrupo de G?

Primero notamos que C(a) es no vacio debido a que al menos tiene a la identidad.

$$e \star a = a \star e \implies e \in C(a)$$

Ahora tomemos dos elementos $g_1, g_2 \in C(a)$, para los cuales:

$$g_1 \star a = a \star g_1$$

$$g_2 \star a = a \star g_2$$

Ahora, si operamos estos dos elementos tendremos:

por lo que $g_1 \star g_2 \in C(\mathfrak{a})$.

Por ultimo, podemos ver que:

$$a = a \star e = a \star (g \star g^{-1}) = (g \star a) \star g^{-1}$$

En donde para que el elemento inverso exista en C(a), se debe de cumplir que $g^{-1} \star a =$ $a \star g^{-1}$:

 $(g_1 \star g_2) \star a = g_1 \star (g_2 \star a) = g_1 \star (a \star g_2) = (g_1 \star a) \star g_2 = (a \star g_1) \star g_2 = a \star (g_1 \star g_2)$

$$g^{-1}\star\alpha=g^{-1}\star\left((g\star\alpha)\star g^{-1}\right)=g^{-1}\star(g\star\alpha)\star g^{-1}=g^{-1}\star g\star\alpha\star g^{-1}=e\star\alpha\star g^{-1}=\alpha\star g^{-1}$$

Por lo que C(a) < G.

Ejercicio 1.1.5. Sea X un conjunto no vacio. Consideremos $G = \delta X$. Sea $\alpha \in X$, $H(\alpha) = \delta X$ $\{f \in \delta X \mid f(\alpha) = \alpha\}$. Verificar que $H \subset G$ es un subgrupo bajo la composición de funciones. Note que H(a) es no vacio, debido a que $id_X \in H(a)$.

Definición 1.1.5. Sea G un grupo y $a \in G$. El conjunto

$$A = \langle \mathfrak{a} \rangle = \left\{ \mathfrak{a}^{\mathfrak{i}} \mid \mathfrak{i} \in \mathbb{Z} \right\}$$

(1.1.4)

es un subgrupo de G.

A es no vacio, puesto que $a^0 = e \in A$. Por otro lado, para dos elementos a^i , $a^j \in A$ tenemos que:

$$a^{i}a^{j} = a^{i+j} \in A$$

y para un elemento $a^i \in A$, tenemos que:

 $a^{-i} = \left(a^{i}\right)^{-1} = \left(a^{-1}\right)^{i} \in A$

por lo que
$$\langle a \rangle$$
 es un subgrupo. A este se le llama subgrupo cíclico de G generado por a.

Definición 1.1.6. Sea G un grupo, decimos que G es cíclico si $G = \langle a \rangle$ para algun $a \in G$.

Ejemplo 1.1.7. Dado el grupo $G = \{e\}$, tenemos que el subgrupo cíclico generador de G es:

$$\langle e \rangle = \left\{ e^{\mathfrak{i}} \in G \mid \mathfrak{i} \in \mathbb{Z} \right\}$$
 al operar este subgrupo tenemos:

 $e^1 = e$ $e^2 = e \star e = e$ $e^3 = e \star e \star e = e$

$$e \star e = e$$

por lo que obtenemos todos los elementos del grupo.

Ejemplo 1.1.8. Dado el grupo $G = \{a, e\}$, y la siguiente tabla para la operación del grupo: * e a e a

 $\langle \alpha \rangle = \left\{ \alpha^{\mathfrak{i}} \in G \mid \mathfrak{i} \in \mathbb{Z} \right\}$

$$a^1 = a$$
 $a^2 = a + a = a$

y obtenemos todos los elementos del grupo.

Ejercicio 1.1.6. Dado el grupo $G = \{e, a, b\}$ y la operación:

*	e	a	b								
e	e	a	b								
a	a	b	e								
b	b	e	a								
erado	erador.										

Encontrar el subgrupo cíclico generador.

Ejercicio 1.1.7. Dado el grupo $\mathbb{Z}/2\mathbb{Z} = \mathbb{Z}_2 = \{[0], [1]\}$ con la operación [a] + [b]; encontrar el subgrupo cíclico generador.

Ejercicio 1.1.8. Sea G un grupo en el que $x^2 = e$ para todo $x \in G$. Verificar que G es abeliano,

es decir $a \star b = b \star a$.

Definición 1.1.7. Sea G un grupo, H un subgrupo de G (H < G), para $a, b \in G$, decimos que a es congruente con b mód H, denotado por:

si

Ejercicio 1.1.9. Demostrar que \cong es una relación de equivalencia.

Definición 1.1.8. Si H es un subgrupo de G y $a \in G$, entonces

 $Ha = \{ha \mid h \in H\}$ se llama clase lateral derecha de H en G.

Lema 1.1.1. *Para todo* $a \in G$ *se tiene que:*

con $(ha)^{-1}$ y verificamos que esta en H, podemos decir que $a \cong ha$ mód H:

(1.1.8)

(1.1.5)

(1.1.6)

(1.1.7)

Demostración. Sea un conjunto definido como [a] = $\{x \in G \mid a \cong x \mod H\}$, por verificar que Ha = [a]. Para verficar esto, tenemos que verificar que $Ha \subseteq [a]$ y despues que $[a] \subseteq Ha$.

ha es un elemento arbitrario de Ha, tenemos que:

 $Ha = \{x \in G \mid a \cong x \mod H\}$

Para verificar que $Ha \subseteq [a]$ definimos un elemento $h \in H$ y $ha \in Ha$, si ahora operamos a

por lo que podemos concluir que $a \cong ha$ mód H, lo que implica que $ha \in [a]$; pero como

 $a(ha)^{-1} = a(a^{-1}h^{-1}) = (aa^{-1})h^{-1} = h^{-1} \in H$

 $a \cong b \mod H$

 $a \star b^{-1} \in H$

$$H\mathfrak{a}\subseteq [\mathfrak{a}]$$

Para verificar que $[a] \subseteq Ha$ empezamos con un elemento $x \in [a]$, es decir $a \cong x \mod H$, lo cual implica $ax^{-1} \in H$, en particular nos interesa:

$$(ax^{-1})^{-1} = xa^{-1} \in H$$

Por otro lado, sea $h = xa^{-1} \in H$, entonces tenemos que:

$$ha = (xa^{-1})a = x(a^{-1}a) = x \in Ha$$

por lo que podemos decir que:

 $[a] \subseteq Ha$

y por lo tanto

[a] = Ha

Teorema 1.1.1. Sea G un grupo finito y $H \subset G$, entonces el orden de H divide al orden de G

$$|H|/|G|$$
 (1.1.9)

y esto implica que existe una $k \in \mathbb{Z}$ tal que:

$$|\mathsf{G}| = \mathsf{k}|\mathsf{H}| \tag{1.1.10}$$

Subgrupo Normal

Homomorfismos de grupo

1.2.	Anillos			
Defir	niciones			
Hom	omorfismos de anil	lo		
Ideal	es			
				L

1.3. Dominios Enteros

Definiciones

Máximo Común Divisor

mínimo común multiplo

Algoritmo de la división de Euclides

Álgebra lineal

Capítulo 2

Capítulo 3

Ecuaciones diferenciales