

Recommended reading

- Parameter estimation
 - http://ciml.info/dl/v0 99/ciml-v0 99-ch09.pdf

Looking into the features, we can find distribution

 From data -> get parameters of the density function

 E.g. Multivariant normal density - > find parameters

Ref: https://geostatisticslessons.com/lessons/errorellipses

Density (Parameter) Estimation

- Learn the model representing the features in the data
- Given the data $D = \{D_1, D_2, \dots, D_n\}, \quad D_i = X_i$
- P features of data sample i, $X_i = \{x_{i1}, x_{i2}, \dots, x_{ip}\}$
- Density estimation Learn the probability distribution P(X) from the data

Assumptions

- Data points are independent and identically distributed (iid)
 - Samples are independent of each other, and they are drawn from identical distribution
- Parametric model:
 - Model the probability distribution based on set of parameters Θ
 - Find the parameters that describe the data → Parameter estimation

Simple example of a density estimation – Tossing a biased coin example - the ML estimate

• Tossing a coin - let the P(head) = β

- Experiment conducted several times we got
 - H H T H T (H = head, T = tail)
 - $P(D|\beta) = \beta \beta (1-\beta) \beta (1-\beta) \dots = (\beta^{Nh} (1-\beta)^{Nt})$
- The parameter is $\Theta = \beta$
 - \rightarrow estimate $\hat{\beta}$ = arg max P(D| β) = $\frac{Nh}{Nh+Nt}$

Maximum Likelihood Parameter Estimation

• Find the parameters Θ using the Data $D = \{D_1, D_2, \dots, D_n\}$

- Maximum Likelihood (ML) : Find Θ that maximizes P(D) given Θ
 - $\Theta_{ML} = \arg \max_{\Theta} P(D)$
 - $P(D) = \prod_{i=1}^{n} P(D_i)$ Key assumption : data is drawn independently
 - Log $P(D) = \sum_{i=1}^{n} \log[P(D_i)]$

Gaussian Distribution

- Suppose samples are drawn from Gaussian distribution with mean μ and variance σ^2
- Find ML estimate of the parameters

Recall - Gaussian Distribution

1-Dimensional Gaussian

$$p(x|\mu,\sigma) = \frac{1}{(2\pi\sigma^2)^{1/2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

2-Dimensional Gaussian

$$p(\mathbf{x}|\boldsymbol{\mu}, \mathbf{\Sigma}) = \frac{1}{2\pi |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

d-Dimensional Gaussian

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

Gaussian Distribution

- Suppose samples are drawn from Gaussian distribution with mean μ and variance σ^2
- The ML estimate of the parameters are

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$
 Biased estimate (its expected value over n is (n-1) σ^2/n)

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{\mu})^2$$
 Unbiased estimate (its expected value over n is σ^2)

Samples from multiple classes — each has Gaussian distribution

- Suppose K classes and each has a prior Π_k -
 - Sample *i* has $y_i = k$, k = 1, 2, 3 ... K
 - Π_k =P(sample is from class k) = P($y_i = k$),
 - Features from class k are independent, and have Gaussian distribution with:

```
Mean \mu_k = \{\mu_{k,1}, \mu_{k,2}, \dots, \mu_{k,p} \}, and variance of feature \sigma_k^2 = \{\sigma_{k,1}^2, \sigma_{k,2}^2, \dots, \sigma_{k,p}^2 \}
```

Samples from multiple classes — each has Gaussian distribution

- Suppose K classes and each has a prior Π_k -
 - Sample *i* has $y_i = k$, k = 1, 2, 3 ... K
 - Π_k =P(sample is from class k) = P($y_i = k$),
 - Features from class k are independent, and have Gaussian distribution with:

Mean
$$\mu_k = \{\mu_{k,1}, \mu_{k,2}, \dots, \mu_{k,p}\}$$
, and variance of feature $\sigma_k^2 = \{\sigma_{k,1}^2, \sigma_{k,2}^2, \dots, \sigma_{k,p}^2\}$ for each example
$$p(D) = \prod_i \prod_{\substack{y_i \\ \text{choose label}}} \frac{1}{\sqrt{2\pi\sigma_{y_i,d}^2}} \exp\left[-\frac{1}{2\sigma_{y_i,d}^2}(x_{i,d} - \mu_{y_i,d})^2\right]$$
 choose feature value

Formulating using Lagrange to minimize objective under constraint

•
$$J(\Theta) = -\ln P(D) + \lambda (\sum_{j=1}^{K} \Pi_j - 1)$$
, $\lambda = \text{Lagrange multiplier}$

Constraint that sum probability is to 1

•
$$\frac{\partial J(\Theta)}{\partial \Pi_k} = 0$$
, $\frac{\partial J(\Theta)}{\partial \mu_{k,f}} = 0$, $\frac{\partial J(\Theta)}{\partial \sigma_{k,f}^2} = 0$

ML estimates of parameters of classes can be obtained from data

• Taking the \log_e and the derivative w.r.t (with respect to) each of the parameters (priors, means, variances)

- We get
 - $\bullet \quad \prod_{k} = \frac{n_k}{\sum_{k=1}^{K} n_k} = \frac{n_k}{n}$

The total no. of samples: $n = \sum_{k=1}^{K} n_k$

- n_k is the number of samples from class k
- $\mu_{k,f} = \frac{\sum_{i:y_i=k} x_{i,f}}{n_k}$, mean of class k feature f
- $\sigma_{k,f}^2 = \frac{\sum_{i:y_i=k}(x_{i,f}-\mu_{k,d})^2}{n_k}$, variance of class k feature f