# AURIX 2G AD Converter Overview

Hansen Chen IFCN ATV SMD GC SAE MC 2018/5/2



## AD Converters in AURIX™ - TC3xx Overview



#### Four ADC types:

- **Primary SAR**: 12 bit,  $\leq$  2.5Msamples/s

Secondary SAR: 12 bit,  $\leq 1.4$ Msamples/s

- **Fast Compare**: 10 bit, ≤ 5Msamples/s

DS-ADC: 13 ENOB, ≤ 200Ksamples/s

- Two ADCs on every analog input improved equidistant and parallel sampling:
  - primary and secondary
  - primary & delta sigma or fast compare
  - secondary & delta sigma or fast compare

#### **ADC Improvements in AURIX™ - TC3xx**

SAR ADCs: Reduced capacitive load on SARs' analog inputs 0.3 / 3 pF (with / without buffer option)

- DS-ADC:
  - 50% less power consumption (versus AURIX)
  - automatic gain and offset calibration (no CPU load)
  - improved analog input impedance: 850KΩ (was 100KΩ for Gain=1)
  - increased pass-band frequency range (724Hz 100KHz)





#### **ADC Cluster Architecture**



# AURIX™ - TC3xx

# infineon

#### EVADC/EDSADC - Device Overview and Package Pin Count

|                                                           | TC39x<br>(16MB)                   | TC38x<br>(10MB)                   | TC37x<br>(6MB)                   | TC36x<br>(4MB)                   | TC33x<br>(2MB)                   |
|-----------------------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Total # of independent<br>Sampling Stages                 | 12                                | 12                                | 8                                | 6                                | 4                                |
| Secondary ADC                                             | 4×SAR                             | 4×SAR                             | 4×SAR                            | 2×SAR                            | 2×SAR                            |
| Primary -ADC sub cluster                                  | 8×SAR                             | 8×SAR                             | 4×SAR                            | 4×SAR                            | 2×SAR                            |
| # of Fast Compare sub channels                            | 8ch                               | 4ch                               | 2ch                              | 2ch                              | 0ch                              |
| # of DSADC                                                | 14                                | 10                                | 6                                | 4                                | 0                                |
| # of analog inputs  (AURIX Comparison) In Package Variant | 74+28<br>(=102)<br>(84)<br>BGA516 | 72+28<br>(=100)<br>(84)<br>BGA516 | 48+28<br>(=76)<br>(60)<br>BGA292 | 48+12<br>(=60)<br>(48)<br>QFP176 | 24+10<br>(=34)<br>(24)<br>QFP144 |

# Preliminary Subject to Change

#### Highlights:

- up to 16 additional overlaid GPIO and analog Pins
  - note that TUE ≤  $\pm$ 4LSB for GPIO overlaid will increase by  $\pm$ 3LSB
- leakage for non-overlaid GPIO with max 2 connected
   Primary/Secondary/fast Compare/DSADC ≤ ±150nA
  - overlaid GPIO leakage strongly dependent on driver class for slow GPIO (e.g.LP) expectation: ±250nA (Tj=150) → ±400nA



# Clock Concept of ADC Cluster: Introducing of Converter Control Module



Clock and synchronization concept of ADC cluster



- Synchronization of the different ADC instances will minimize supply, ground and reference related crosstalk
- Phase synchronizer generates a clock enable signal for every ADC instance
- Synchronization signal is derived from the peripheral clock  $f_{PER}$  and can be divided by 2/4/6/.../16
- Deterministic phase shift between the ADCs can be configured individually
- Synchronization can be disabled by configuration bit as well

Clock and synchronization concept of VADC



Clock and synchronization concept of DS-ADC





### Proposed Converter Clock Configurations

- The frequency  $(f_{sync})$  of the synchronization signal has to be equivalent to the frequency of the DS-modulator  $(f_{mod})$
- > The clock of the DS-modulator requires 50% duty cycle
  - Generally DS-modulator frequencies ( $f_{mod}$ ) of 160MHz/2·n are possible
- > The analog clock frequency ( $f_{ADCI}$ ) of the VADC has to equal or  $2 \cdot n$  higher as the DS-modulator frequency ( $f_{mod}$ )

| f <sub>sync</sub> | <b>f</b> <sub>mod</sub> | f <sub>ADCI</sub>           |
|-------------------|-------------------------|-----------------------------|
| 16 MHz            | 16 MHz                  | 16 MHz or 32 MHz            |
| (160 MHz/10)      | (160MHz/10)             | (160 MHz/10) or (160 MHz/5) |
| 20 MHz            | 20 MHz                  | 20 MHz or 40 MHz            |
| (160 MHz/8)       | (160 MHz/8)             | (160 MHz/8) or (160 MHz/4)  |
| 26.67 MHz         | 26.67 MHz               | 26.67 MHz or 53.33 MHz      |
| (160 MHz/6)       | (160 MHz/6)             | (160 MHz/6) or (160 MHz/3)  |
| 40 MHz            | 40 MHz                  | 40 MHz                      |
| (160 MHz/4)       | (160 MHz/4)             | (160 MHz/4)                 |



# Converter Synchronization Concept

Phase Synchronizer Signal





Part of your life. Part of tomorrow.

