CSC384h: Intro to Artificial Intelligence

- Course Review for Final Exam
 - Search
 - Uninformed search UCS, BFS, DFS, IDS
 - □ Understand how they are implemented and their properties.
 - □ The tradeoffs between them (which one should be used in which context)
 - □ e.g., if we want shortest length paths, lowest cost paths, when we are worried about space more than time.
 - Cycle Checking—path vs. full cycle checking
 - ▶ Heuristic search, greedy and A*.
 - Properties of A* and heuristics. E.g., admissible heuristics, admissible heuristics imply that A* will find an optimal solution.
 - No proofs on the final (except for resolution refutations)

- Game Tree Search.
 - min-max strategies, and computing them with the alpha-beta algorithm
 - how alpha-beta helps to reduce the size of the search tree.
 - how alpha-beta can be used with depth-limited search and heuristics
 - Expectimax search

- CSPs and backtracking search algorithms for solving them
 - Understand the CSP representation
 - Variables, constraints.
 - intuitions about how a problems can be represented in the CSP formalism
 - Backtracking search
 - How it works.
 - How constraint propagation works in Forward Checking.
 - ▶ How constraint propagation works in GAC.
 - □ Know how to enforce GAC on a set of constraints.
 - How heuristics like MRV can be used to improve the efficiency of search
 - □ Variable and Value ordering.

- Uninformed Search, Heuristic Search, Game Tree Search, and Forward Checking were tested on the midterm. So these topics will be slightly less weighted than the topics covered after the midterm.
 - However, there will be some questions on these topics so if you want to get a good mark on the final you need to be familiar with these topics.

- Uninformed Search, Heuristic Search, Game Tree Search, and Forward Checking were tested on the midterm. So these topics will be slightly less weighted than the topics covered after the midterm.
 - However, there will be some questions on these topics so if you want to get a good mark on the final you need to be familiar with these topics.

Bayes Nets

- Understanding of the probability model
 - Atomic event are the set of instantiations to all of the variables
 - How independence and conditional independence work in this model ("variable independence" over all values of the variables).
 - Using the values of a variable in the summing out rule.
 - ▶ How probabilities can be used to compute expected utilities.
- ▶ The Bayes Net model and its product decomposition
- Using Variable elimination to compute the probability distribution of a query variable given a set of evidence (i.e., vectors of the form P(Q|E1 = a, E2= b, ...)

Bayes Nets

- How different ordering of the variables determine the complexity of VE.
 - The idea of elimination width—the complexity of the best possible ordering of the variables
 - ▶ The min-fill heuristic for selecting the variable ordering for VE
 - How multiple queries can be made more efficient by using similar variable orderings and thus reusing computed factors.
- ▶ How relevance marking can be used to improve the efficiency of VE.
- Independence in a Bayes net.
 - ▶ The fundamental independence: Every variable is independent of its nondescendants given its parents.
 - D-separation and how we can it to compute variable independencies implied by a Bayes-Net structure
 - ☐ The notion of explaining away
- How to generate samples in a Bayes net using a table of random numbers drawn from the uniform distribution over [0,1]
 - Both rejection and likelihood weighting

- Hidden Markov Models
 - ▶ The update rules and the intuition behind the update rules.
 - ▶ How particle filtering works—the elapse time and observe evidence using weighting and resampling

- Knowledge Representation
 - Intuition about the meaning of logical sentences.
 - Translating English to Logic.
 - Translating Logic to English.
 - Converting to clausal form
 - Computing MGUs
 - Doing Resolution Refutation proofs
 - ▶ With the proper notation, e.g.,
 - 4. $R[1a,2b]{X=a}$
 - → clause #4 is produced by resolving a'th literal of clause #1 against the b'th literal of clause #2 using the MGU {X=a}
 - ▶ To answer yes/no questions
 - ▶ To answer questions involving answer extraction.