COMPUTER SCIENCE & IT

Lecture No. 07

Combinational Circuit

Question	Discussion	1 4 4 4	
			*

K-Map Con	nt.	
,		

$$\begin{array}{c} BC \\ 0 \mid 1 \rightarrow 3 \\ 1 \mid 1 \mid 7 \end{array}$$

$$f(A,B,C) = A\bar{C} + A\bar{B}C + BC = 2(3,45,6,7) = \bar{A}BC + \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}\bar{C}$$

Then its minimized expression will be

(a)
$$(A + B) (A + C)$$

(b)
$$A \odot C + BC$$

(c)
$$\bar{A} + BC$$

(d) None of these

$$= A + BC$$
$$= (A+B)(A+C)$$

$$f(A, B, C, D) = \overline{A} \, \overline{D} + BC\overline{D} + AC$$

Then its minimized expression will be

(a)
$$\bar{A} \bar{D} + AC$$

(b)
$$\bar{A} \bar{D} + BC$$

(c)
$$BC + AC$$

(d)
$$\bar{A}\bar{D} + C\bar{D}$$

$$=\overline{B}\overline{D}+\overline{A}B+BD$$

A K-map is given as:

1	$\overline{A}\overline{B}$	ĀB	AB	$A\overline{B}$	
$\overline{C}\overline{D}$	1	1		1	
СD	X	1	1	X	
CD		1	1		
СD	1	1	X	X	

Then which of the following is/are minimized form of above K-map?

(a)
$$\bar{A}B + C\bar{D} + BD + \bar{B}\bar{D}$$

$$BD + \bar{A} \, \bar{D} + \bar{B} \bar{D}$$

(c)
$$\bar{A}\bar{D} + BD + \bar{B}\bar{C}$$

$$(d)\times$$

$$\bar{B}\bar{C} + \bar{A}B + C\bar{D}$$

$$f(A, B, C) = \overline{AC} + B\overline{C} + AB\overline{C} = (A+\overline{C}) \cdot (B+C)$$

$$= \overline{f_1} + AB\overline{C}$$

$$= \overline{f_1} + AB\overline{C}$$

$$f_1 = \overline{AC+B\overline{C}}$$

Then its minimized expression will be

(a)
$$(A + \overline{B})(A + \overline{C}) = A + \overline{B}\overline{C}$$

(b)
$$A\bar{C} + \bar{B}C$$
 $\bar{f}_1 + AB\bar{C}$

(c)
$$\bar{A}\bar{B} + A\bar{C}$$

(d) None of these A

1			
	1	١	1
3			

_		
2 -	1 1	
BC	TA	_

BC	BC	BC	BC
	1	1	1
			1

1	BC	BC	BC	BE
A				
A	1	١		
_ }	++7		•	

$$f(A,B,C,D) = \overline{CD} + A\overline{B}D + AC + \overline{A}\overline{B}C$$

Then its minimized solution will be

(a)
$$\bar{A}\bar{C}D + \bar{B}\bar{D}$$

(b)
$$\bar{C} \, \bar{D} + \bar{A} C$$

(c)
$$\bar{A}\bar{B} + \bar{A}\bar{D} + \bar{C}D$$

(d) None of these

f (A1B) = S(1,2) $=\overline{A}B$ $+A\overline{B}$ f(0,1)= 1

A K-map is given as:

$$f(A,B,C)$$

$$= \overline{A}\overline{B} \cdot \overline{C} + A\overline{B} \cdot \overline{I}$$

= AB.O+AB.1 + AB.1+ AB.0 = AB+AB

The solution of the K-map will be:

+ AB.C

(a)
$$\bar{B}\bar{C} + AC$$

(b)
$$\bar{A}\bar{B} + AC$$

00

(c)
$$\bar{A}B + B\bar{C}$$

(d)

None of these

$$f(0,0,c) = \bar{c} + 0 + 0 = \bar{c}$$

 $f(1,0,c) = 1$
 $f(0,1,c) = 0$
 $f(1,1,c) = 0$

A K-map is given as:

	Ā	A	
B	1	1-	<u></u>
В	X		- <u>y</u> B

C = 1

Or

The solution of the K-map will be:

(a)
$$\bar{A}\bar{C} + \bar{B}\bar{C}$$

$$\langle c \rangle \bar{A}\bar{C} + \bar{B}C$$

(b)
$$AC + \bar{B}\bar{C} = \bar{C} \cdot \bar{A} + \bar{C} \cdot \bar{B}$$

$$= \overline{C}\overline{D} \cdot \overline{B} + \overline{C}D(\overline{A}+\overline{B}) + C\overline{D} \cdot A + CD.$$

$$= \overline{B}\overline{C}\overline{D} + \overline{A}\overline{C}D + \overline{B}\overline{C}D + AC\overline{D} + ACD + ACD + BCD$$

$$f(A, B, C) = A\bar{B} + BC + \bar{A}\bar{C}$$

Then the K-map implementing above logical function will be:

(a)
$$\overline{A}$$
 \overline{A} \overline{B} \overline{C} \overline{C} \overline{C}

$$\frac{\overline{A}}{\overline{C}} = 1$$

$$f(1,0,c) = 1$$

$$f(1,1,c) = c$$

$$\begin{array}{c|c}
\hline
(c) & \overline{A} & A \\
\hline
\overline{B} & \overline{C} & 1 \\
\hline
B & 1 & \overline{C}
\end{array}$$

(d)
$$\sqrt{\frac{\overline{A}}{\overline{A}}} A$$
 \overline{B}
 $\overline{\overline{C}}$
 \overline{C}
 \overline{C}

K-map of f(A, B, C, D) is given as:

Solve by both methods

\f		
1	\overline{A}	Α
$\overline{\mathrm{B}}$	1	С
В	$\overline{\mathrm{D}}$	

Then f(A, B, C, D) will be :

(a)
$$\bar{A}\bar{C}\bar{D} + \bar{A}C\bar{D} + \bar{B}C\bar{D}$$

(b)
$$\bar{A}\bar{B} + \bar{A}\bar{D} + \bar{B}C$$

(c)
$$\bar{A}\bar{C} + \bar{B}\bar{D} + BC$$

(d)
$$\bar{A}\bar{B} + \bar{B}\bar{D} + BC$$

If the function W, X, Y, Z are as:

$$W = R + \bar{P}Q + \bar{R}S$$

$$W = R + \bar{P}Q + \bar{R}S \qquad X = PQ\bar{R}\bar{S} + P\bar{Q}\bar{R}\bar{S} + \bar{P}\bar{Q}\bar{R}\bar{S}$$

$$Y = RS + \overline{PR + P\bar{Q} + \bar{P}\bar{Q}}$$

$$Z = R + S + \overline{PQ + PQR} + PQS$$

Then which of the following is/are correct?

(a)
$$W = \bar{X}$$

(b)
$$W = \bar{Z}$$

(c)
$$\overline{W} = \overline{Z}$$

(d)
$$\bar{X} = Z$$

2 Minute Summary

→ K-Mab

Thank you

Seldiers!

