Mathematical modelling of between-pathogen interactions in the human host

Application to influenza viruses and pneumococcus

Hélène Arduin

Biostatistiques, Biomathématique, Pharmacoépidémiologie et Maladies Infectieuses UMR 1181 Inserm, UVSQ, Institut Pasteur

June 26, 2019

Introduction

ightarrow possibilities of interactions during human infection

ightarrow possibilities of interactions during human infection

Presence of P_1 :

- \triangleright P_2 's growth
- \triangleright P_2 's severity
- ► P₂'s infection duration

→ possibilities of interactions during human infection

Presence of P_1 :

increases \rightarrow

- ► P2's growth
- \triangleright P_2 's severity
- ► P₂'s infection duration

 \rightarrow possibilities of interactions during human infection

Synergistic interaction

increases \rightarrow

Presence of P_1 :

- ► P2's growth
- \triangleright P_2 's severity
- P₂'s infection duration

 \rightarrow possibilities of interactions during human infection

Synergistic interaction

increases \rightarrow

Presence of P_1 :

- ► P2's growth
- \triangleright P_2 's severity
- ► P₂'s infection duration

← decreases

ightarrow possibilities of interactions during human infection

Synergistic interaction

increases \rightarrow

Presence of P_1 :

- ► P₂'s growth
- \triangleright P_2 's severity
- ► P₂'s infection duration

Antagonistic interaction

← decreases

Often suggested in the literature

Bosch et al. 2013, Mina et al. 2014, Opatowski et al. 2018

First evidence: 1918 influenza pandemic

- Majority of deaths caused by secondary bacterial infections
 - Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae

Brundage et al. 2008, Morens et al. 2008, Joseph et al. 2013

Explore, through modelling, the impact of interactions at the individual scale on infection dynamics at the population scale

Explore, through modelling, the impact of interactions at the individual scale on infection dynamics at the population scale

Assess, through a simulation study, the ability of several methods to detect an interaction from ecological data

SimFI: Simulator of Flu in Interaction

Objectif Stochastic and realistic simulator of the co-circulation of influenza and another pathogen in a virtual human population.

Objectif Stochastic and realistic simulator of the co-circulation of influenza and another pathogen in a virtual human population.

→ Agent-based model

- Precise description at the individual scale
- Emergence of a global dynamic at the population scale
- ► Study the links between these two scales

Available on the NetLogo platform

Wilensky et al. 1999

Risk	acquisition	transmission	infection
Second pathogen	Susceptible	Infected	Colonised
Influenza			
Susceptible	β	β	р
	no interaction	no interaction	no interaction
Infected	$\beta \times A$	$\beta imes \Theta$	$p \times \Pi$
	acquisition	transmission	pathogénicité
	mechanism	mechanism	mechanism

Risk	acquisition	transmission	infection
Second pathogen	Susceptible	Infected	Colonised
Influenza			
Susceptible	β	β	p
	no interaction	no interaction	no interaction
Infected	$\beta \times A$	$\beta imes \Theta$	$p \times \Pi$
	acquisition	transmission	pathogénicité
	mechanism	mechanism	mechanism

Interaction scenario

- $ightharpoonup A = \Theta = \Pi = 1 o$ baseline scenario, no interaction
- ► $A \in [2; 50]$; $\Theta = \Pi = 1$
- ▶ $\Theta \in [2; 17]$; $A = \Pi = 1$
- ▶ $\Pi \in [5; 50]$; $A = \Theta = 1$

Validation criteria

- Influenza Sentinelles
 - Annual number of cases
 - Epidemic onset
 - Peak timing
 - Epidemic duration
- Pneumococcal infections
 - Annual number of cases
 Epibac
 - Seasonality Météo France

Detection of the interaction

OpenMOLE

Numerous studies but no gold standard

- 1. Regression models
- 2. Dynamical models

Numerous studies but no gold standard

- 1. Regression models
- 2. Dynamical models

Are these methods adequate to detect such an interaction?

$$F(I_t) = a + bG_{t+i} + c\cos\frac{2\pi t}{52} + d\sin\frac{2\pi t}{52} + \epsilon_t$$

F transformation (linear, Poisson, or negative binomiale) I_t pneumococcal infections G_{t+i} influenza infections t week i time lag

$$F(I_t) = a + bG_{t+i} + c\cos\frac{2\pi t}{52} + d\sin\frac{2\pi t}{52} + \epsilon_t$$

ightarrow 1 134 000 regressions

Results comparison

Student t-test:
$$t = \frac{\hat{b}}{SE_b}$$

Softwares and computing resources

$$\begin{cases} \frac{\mathrm{d}S}{\mathrm{d}t} &= \lambda C(t) - \beta(t) \frac{S(t)C(t)}{N} \\ \frac{\mathrm{d}C}{\mathrm{d}t} &= -\lambda C(t) + \beta(t) \frac{S(t)C(t)}{N} \end{cases} \begin{cases} \beta(t) &= \beta_0(1 + \xi \times G(t)) \\ \rho(t) &= \rho_0(1 + \pi \times G(t)) \end{cases}$$

4 parameters to estimate: β_0 , ξ , p_0 et π .

 \rightarrow 36 000 estimations and their confidence intervals

Likelihood maximisation

- Poisson likelihood
- Estimation: NSGA-2 algorithm Deb et al. 2002
- ► Confidence intervals : profiled likelihood on the OpenMOLE platform Reuillon et al. 2015

Softwares and computing resources

Conclusion

SimFI model Reconstruction of multi-scales dynmaics, vetter understanding of the impact of interactions

Interaction detection Importance of the method, limits of the analysis of aggregated surveillance data

SimFI model Reconstruction of multi-scales dynmaics, vetter understanding of the impact of interactions

Interaction detection Importance of the method, limits of the analysis of aggregated surveillance data

Public Health applications

- Integrating ecological aspects of interactions
- ► Evaluate the global impact of public health policies
 - optimise drug use
 - ► fight globally against infectious diseases

Thank you for your attention!