See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/245757347

Computing the Minimum Fill-In is NP-Complete

Article	in SIAM Journal on Algebraic 7/0602010	and Discrete Methods · Mar	ch 1981
CITATIONS		READS	
501		379	
1 autho	r:		
	Mihalis Yannakakis Columbia University		

267 PUBLICATIONS 25,496 CITATIONS

SEE PROFILE

COMPUTING THE MINIMUM FILL-IN IS NP-COMPLETE

MIHALIS YANNAKAKIS†

Abstract. We show that the following problem is NP-complete. Given a graph, find the minimum number of edges (fill-in) whose addition makes the graph chordal. This problem arises in the solution of sparse symmetric positive definite systems of linear equations by Gaussian elimination.

1. Introduction and terminology. A graph is a pair G = (N, E), where N is a finite set of nodes and E, a set of unordered pairs (u, v) of distinct nodes, is a set of edges. Two nodes u and v are adjacent if $(u, v) \in E$. The neighborhood $\Gamma(v)$ of a node v is the set of nodes that are adjacent to v. The degree d(v) of v is the number of nodes adjacent to v. A graph is a clique if every two nodes are adjacent. A set of nodes is independent if no two of them are adjacent.

If $S \subseteq N$ is a subset of nodes, the *subgraph* of G induced by S, denoted as $\langle S \rangle$, is the graph (S, E_S) , where $E_S = \{(u, v) \in E | u, v \in S\}$. The graph G - S, formed by deleting a subset $S \subseteq N$ of nodes from G, is $\langle N - S \rangle$. A graph G = (N, E) is bipartite if N can be partitioned into two sets P, Q of independent nodes; we will write the bipartite graph as (P, Q, E). The bipartite graph (P, Q, E) is a chain graph if the neighborhoods of the nodes in P form a chain; i.e., there is a bijection $\pi:\{1, 2, \dots, |P|\} \leftrightarrow P$ (an ordering of P) such that $\Gamma(\pi(1)) \supseteq \Gamma(\pi(2)) \supseteq \dots \supseteq \Gamma(\pi(|P|))$. It is easy to see [Y] that then the neighborhoods of the nodes in Q form also a chain, and thus the definition is unambiguous.

A graph is *chordal* (or *triangulated*) if every cycle of length ≥ 4 has a *chord*, i.e., an edge connecting two nonconsecutive nodes of the cycle. Chordal graphs are important in connection with the solution of sparse symmetric positive definite systems of linear equations by Gaussian elimination [R]. From the symmetric $n \times n$ matrix $M = (m_{ij})$ of coefficients of such a system we can construct a graph G = (N, E) with n nodes, where node v_i corresponds to the *i*th row and column of M and $(v_i, v_i) \in E$ iff $m_{ii} \neq 0$. The elimination of node v_i from G is performed by (1) adding edges so that $\Gamma(v_i)$ becomes a clique, and (2) deleting v_i from the augmented graph. The added edges correspond to the new nonzero elements that are created when we eliminate the ith variable, assuming no lucky cancellations. (See [R] for a detailed exposition of this graph-theoretic modeling.) If π is an ordering of N, the fill-in $F(\pi)$ produced by π is the set of new edges that are added when we eliminate $\pi(1)$ from G, then eliminate $\pi(2)$ from the resulting graph, $\pi(3)$ from the new graph, etc. The ordering π is a perfect elimination ordering if $F(\pi) = \emptyset$. Chordal graphs come into the picture because of the following two properties [R]. (1) A graph has a perfect elimination ordering if and only if it is chordal. Thus, "chordal" is a hereditary property (i.e., deleting nodes from a chordal graph does not violate the property), and every chordal graph has a node v such that $\langle \Gamma(v) \rangle$ is a clique; v is called a *simplicial* node. (2) If π is an elimination ordering of a graph G = (N, E), then the augmented graph $G_{\pi} = (N, E \cup F(\pi))$ is chordal: π is a perfect elimination ordering of G_{π} .

In this paper we examine the problem of finding an elimination ordering which produces a minimum fill-in, or equivalently, finding the minimum set of edges whose addition renders the graph chordal. We shall show that this problem is NP-complete.

^{*} Received by the editors June 26, 1980.

[†] Bell Laboratories, Murray Hill, New Jersey 07974.

(For an exposition of NP-completeness see [GJ].) The NP-completeness of the minimum fill-in problem was conjectured in [RTL] and [RT], but a proof had not been found, and it is one of the open problems in [GJ]. The version of the problem on directed graphs was shown to be NP-complete in [RT].

2. The reduction. We will make use of chain graphs. Two edges (u, v), (x, y) are said to be *independent* in a graph G if the nodes u, v, x, y are distinct and the subgraph of G induced by them consists of exactly these two edges. The following lemma from [Y] is easy to prove.

LEMMA 1. A bipartite graph is a chain graph if and only if it does not contain a pair of independent edges.

Let G = (P, Q, E) be a bipartite graph. From G we construct another graph C(G) = (N, E') by making P and Q cliques; i.e., $E' = E \cup \{(u, v) | u, v \in P\} \times \cup \{(u, v) | u, v \in Q\}$.

LEMMA 2. Let G be a bipartite graph. C(G) is chordal if and only if G is a chain graph.

Proof (only if). Suppose that G is not a chain graph. Then it has two independent edges (u, v) and (x, y) by Lemma 1. Suppose without loss of generality that $u, x \in P$ and $v, y \in Q$. Then these two edges together with (u, x) and (v, y) form a chordless cycle of length 4 in C(G).

(if). Suppose that G is a chain graph, and let π be an ordering of P such that $\Gamma(\pi(1)) \supseteq \Gamma(\pi(2)) \supseteq \cdots \supseteq \Gamma(\pi(p))$, where p = |P|. Since the property of being a chain graph is hereditary, it suffices to show that C(G) has a simplicial node. The neighborhood of $\pi(p)$ in C(G) is $\Gamma'(\pi(p)) = \Gamma(\pi(p)) \cup [P - \pi(p)]$. In C(G) the subgraphs $\langle P - \pi(p) \rangle$ and $\langle \Gamma(\pi(p)) \rangle$ are cliques, the latter because $\Gamma(\pi(p)) \subseteq Q$ and $\langle Q \rangle$ is a clique. Also, since $\Gamma(\pi(p)) \subseteq \Gamma(v)$ for every $v \in P$, all nodes of P are adjacent to all nodes of $\Gamma(\pi(p))$. Therefore $\langle \Gamma'(\pi(p)) \rangle$ is a clique, and $\pi(p)$ is a simplicial node of C(G).

LEMMA 3. It is NP-complete to find the minimum number of edges whose addition to a bipartite graph G = (P, Q, E) gives a chain graph.

Proof. The reduction is from the Optimal Linear Arrangement Problem. A linear arrangement of a graph G = (N, E) is an ordering π of N. For an edge e = (u, v) of G, let $\delta(e, \pi) = |\pi^{-1}(u) - \pi^{-1}(v)|$. The cost $c(\pi)$ of the linear arrangement π is $c(\pi) = \sum_{e \in E} \delta(e, \pi)$. The optimal linear arrangement problem is to decide, given a graph G and an integer k, whether there exists a linear arrangement π of G with cost $c(\pi) \le k$. This problem was shown to be NP-complete in [GJS].

Let (G = (N, E); k) be an instance of the optimal linear arrangement problem. We construct a bipartite graph G' = (P, Q, E') as follows. P has one node for every node of G (i.e., P = N); Q has two nodes e_1 , e_2 for every edge e of G, and a set R(v) of n - d(v) nodes for every node v of N, where n = |N| and d(v) is the degree of v in G. If e = (u, v) is an edge of G, then the nodes e_1 , e_2 that correspond to e are adjacent to e and e and e and e are nodes in e0 are adjacent to e1. In Fig. 1 we show an example of this construction.

Let l(G) be the minimum cost of a linear arrangement of G, and h(G') the minimum number of edges whose addition to G' gives a chain graph. We claim that

(1)
$$h(G') = l(G) + \frac{n^2(n-1)}{2} - 2m,$$

where n, m are respectively the numbers of nodes and edges of G. Thus, $l(G) \le k$ iff $h(G') \le k + (n^2(n-1)/2) - 2m$.

First observe that an ordering π of N specifies uniquely a minimal set $H(\pi)$ of edges whose addition makes G' a chain graph with the neighborhoods of the nodes in P(=N) ordered according to π . For every node x in Q, let $\sigma(x) = \max{\{i | (x, \pi(i)) \in E'\}}$. Then $H(\pi) = \{(x, \pi(j)) | x \in Q, j < \sigma(x)\} - E'$. Conversely, suppose that F is a set of edges such that $G'(F) = (P, Q, E' \cup F)$ is a chain graph and let π be an ordering of the nodes in P according to their neighborhoods in G'(F). It is easy to see that $F \supseteq H(\pi)$, and therefore if F is a minimal augmentation then $F = H(\pi)$. Let $h(\pi) = |H(\pi)|$. In order to show (1), it suffices thus to show that for every ordering π of N, $h(\pi) = c(\pi) + (n^2(n-1)/2) - 2m$, where $c(\pi)$ is the cost of the linear arrangement π of G.

Let π be an ordering of N. For every $v \in N$ and $x \in R(v)$, $H(\pi)$ contains $\pi^{-1}(v) - 1$ edges incident to x. Let e = (u, v) be an edge of G, and suppose without loss of generality that $\pi^{-1}(u) < \pi^{-1}(v)$. The number of edges of $H(\pi)$ incident to each of the two nodes e_1 , e_2 that correspond to e is $\pi^{-1}(v) - 2 = \pi^{-1}(u) + [\pi^{-1}(v) - \pi^{-1}(u)] - 2 = \pi^{-1}(u) + \delta(e, \pi) - 2$; thus, the number of edges of $H(\pi)$ incident to e_1 and e_2 is $\pi^{-1}(v) + \pi^{-1}(u) + \delta(e, \pi) - 4$. Consequently,

$$\begin{split} h(\pi) &= \sum_{v \in N} \sum_{x \in R(v)} \left[\pi^{-1}(v) - 1 \right] + \sum_{e = (u, v) \in E} \left[\pi^{-1}(v) + \pi^{-1}(u) + \delta(e, \pi) - 4 \right] \\ &= \sum_{v \in N} (n - d(v)) (\pi^{-1}(v) - 1) + \sum_{v \in N} d(v) \pi^{-1}(v) + \sum_{e \in E} \delta(e, \pi) - 4m \\ &= \sum_{v \in N} n \left[\pi^{-1}(v) - 1 \right] + \sum_{v \in N} d(v) + c(\pi) - 4m \\ &= c(\pi) + \frac{n^2(n-1)}{2} - 2m, \end{split}$$

since $\sum_{v \in N} d(v) = 2m$, and

$$\sum_{v \in N} \left[\pi^{-1}(v) - 1 \right] = 0 + 1 + 2 + \dots + (n - 1) = \frac{n(n - 1)}{2}.$$

THEOREM 1. The minimum fill-in problem is NP-complete.

Proof. Follows from Lemmas 2 and 3.

REFERENCES

- [GJ] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-completeness, W. H. Freeman, San Francisco, 1979.
- [GJS] M. R. GAREY, D. S. JOHNSON AND L. STOCKMEYER, Some simplified NP-complete graph problems, Theoret. Comp. Sci., 1 (1976), pp. 237–267.
- [R] D. J. Rose, A graph- theoretic study of the numerical solution of sparse positive definite systems of linear equations, in Graph Theory and Computing, R. Read, ed., Academic Press, New York, 1973, pp. 183-217.
- [RT] D. J. ROSE AND R. E. TARJAN, Algorithmic aspects of vertex elimination on directed graphs, SIAM J. Appl. Math., 34 (1978), pp. 176-197.
- [RTL] D. J. ROSE, R. E. TARJAN AND G. S. LUEKER, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., 5 (1976), pp. 266–283.
- [Y] M. YANNAKAKIS, Node-deletion problems on bipartite graphs, SIAM J. Comput., 10 (1981).