Computational Linguistics

Parsing (part 3)

Chapter 13 J&M'09

CKY (or CYK)

Named after John Cocke, Daniel Younger and Tadao Kasami.

- Passive chart parser
- ullet Very efficient (runs in polynomial time; $n^3 imes |G|$)
- Requires grammar transformation.

CKY requires grammars in Chomsky Normal Form (CNF)

In CNF, all rules must be of one of the following forms:

 $X \to YZ$

 $K \to w$ (where 'w' is a word token)

This **binarization** step is crucial for efficient parsing.

Conversion to CNF

- Copy all conforming rules to new grammar
- Eliminate unit productions:
 Rules like NP → PN and PN → Tom
 become a single rule NP → Tom
- Convert branching rules:
 Rules like VP → DTV NP NP become

```
VP \rightarrow DVP NP

DVP \rightarrow DTV NP
```

For input $w_1 \dots w_t$, build parse triangle:

Each row corresponds to a string of ascending length. Each cell corresponds to all of the possible categories for the corresponding span. For example, in

(1) Doves dove

Each cell of row 1 would be $\{N,V\}$.

Input: Tom saw a friend from Australia

Span length						
6	S					
5	_	VP				
4	S	_	NP			
3	_	VP	_	N		
2	_	_	NP	_	PP	
1	NP	TV, N	DT	N,TV	Р	NP
	Tom	saw	а	friend	from	Australia
(Ö 1	[:	2 3	3 4	ļ !	5 6

Sometimes, the chart is shown as a parse triangle:

w_1	$\underline{\hspace{1cm}} w_2$	$\underline{\hspace{1cm}} w_2$	w_4

Sometimes, the chart is rotated:

Exercise:

Show that 'b a a b a' is parsed by CKY and the following grammar.

 $S \rightarrow A B$

 $S \rightarrow B C$

 $A \rightarrow B A$

 $A \rightarrow a$

 $B \rightarrow C C$

 $\mathsf{B}\to\mathsf{b}$

 $\mathsf{C}\to\mathsf{A}\;\mathsf{B}$

 $C \rightarrow a$

Probabilistic Context-free Grammar (PCFG)

Rules are augmented with a probability:

$$\begin{array}{lll} \text{NP} \rightarrow \text{PN} & [0.35] \\ \text{NP} \rightarrow \text{PRN} & [0.30] \\ \text{NP} \rightarrow \text{DT N} & [0.20] \\ \text{NP} \rightarrow \text{N} & [0.15] \\ \text{DT} \rightarrow that & [0.10] \\ \text{DT} \rightarrow a & [0.30] \\ \text{DT} \rightarrow the & [0.60] \\ \end{array}$$

The total probability for rules with the same left-hand side is 1:

$$\sum_{\beta} P(X \to \beta) = 1$$

Where:

- β is any sequence of (terminal/non-terminal) symbols.
- $P(X \to \beta)$ = probability of rule $X \to \beta$ For example: $P(NP \to PN) = 0.35$

T is a parse tree and $S=w_1...w_n$ a token sequence. Bayes' rule:

$$P(T|w_1...w_n) = \frac{P(w_1...w_n|T) \times P(T)}{P(w_1...w_n)}$$

But since $P(w_1...w_n|T)$ is always 1, then:

$$P(T|w_1...w_n) = \frac{P(T)}{P(w_1...w_n)}$$

In particular, we are interested in the most likely T for S:

$$\hat{T} = argmax_{T:S=yield(T)} \frac{P(T)}{P(w_1...w_n)}$$

But since $P(w_1...w_n)$ is constant over all T's for a given S then:

$$\hat{T} \approx argmax_{T:S=yield(T)}P(T)$$

Rule				Rule			
$S \rightarrow NP VP$					0.3	$VP \rightarrow V NP$	0.5
$VP \to V \; NP \; NP$					0.35	$NP \rightarrow PRN$	0.3
$NP \rightarrow N$	0.15	$N \rightarrow Adj N$	0.4	$N \rightarrow \text{evening}$	0.2	$N \rightarrow flight$	0.1
$PN \to Kim$	0.15	$V \rightarrow booked$	0.4	$Adj \to last$	0.1	$DT \to the$	0.4

 $P(T) = 0.8 \times 0.35 \times 0.15 \times 0.5 \times 0.4 \times 0.2 \times 0.4 \times 0.4 \times 0.1 \times 0.1 = 2.7 \times 10^{-6}$

We can use Treebanks to estimate the probabilities for CFG rules:

$$P(X \to Y_1...Y_n) = \frac{Count(X \to Y_1...Y_n)}{Count(X)}$$

Example:

 $\begin{bmatrix} S & [NP & [DT & This] & [N & text] \end{bmatrix} & [VP & [V & is] \end{bmatrix} & [[Adv & just &] & [NP & [DT & an] & [NP & [NP & [PRN & I]] \end{bmatrix} & [NP & [PRN & I] \end{bmatrix} &$

$$P(NP \rightarrow DT N) = \frac{2}{4} = 0.5$$

Penn Treebank:

```
(S (NP-SBJ-1 Jones)
(VP followed
(NP him)
(PP-DIR into
(NP the front room))))
```

Treebanks

- Linguistic Data Consortium (LDC)
- European Language Resources Association (ELRA)
- Stanford list
- NLTK data
- Others

Or you can use a statistical parser to automatically parse a corpus you wish to use.

Stanford Parser:

```
java -cp stanford-parser.jar:stanford-parser-3.4.1-models.jar
edu.stanford.nlp.parser.lexparser.LexicalizedParser -outputFormat penn
edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz input.txt >
output.txt
```

Berkeley Parser: (demo)

```
java -jar berkeleyParser/BerkeleyParser-1.7.jar -gr
berkeleyParser/eng_sm6.gr < input.txt > output.txt
```

More here

Parsing PCFG with the CKY parser

We need:

- A CNF grammar augmented with probabilities
- A way to resolve ambiguity:
 if there are two categories of the same type in the same span,
 then discard the less likely one.

$S[.7 \times .1 \times .00001 = .0000007]$	J	<u> </u>		<u> </u>	i I	
7 7 1 V 0001 - 000007	VP[.5×.2×.0001=.00001]					'
	VP[.1x.000x.01=.000000]	,'	<u> </u>	[_] '	1	L
	VP[.5×.2×.001=.0001]	NP[.5×.4×.0009=.0001]	.l		[['
	VP[.1×.000×.072=.00004]	NF [.5x.4x.0009=.0001]		<u> </u>	<u></u>	<u> </u>
S[.7×.1×.006=.0004]	F'	NP[.5×.4×.006=.001]	$N_{[.3 \times .3 \times .01 = .0009]}$,		
	VP[.5×.2×.06=.006]	F'	N[.3×.3×.072=.006]	PP[.9×.4×.03=.01]	!	
_		$NP[.5 \times .4 \times .3 = .06]$	F	PP[.9×.4×.2=.072]	$NP[.5 \times .2 \times .3 = .03]$	
ND. a	Adj _[.1]	DT _[.4]	N _[.3]	D	DT _[.2]	TV _[.05]
NP _[.1]	TV _[.2]	D 1 [.4]	IN[.3]	P _[.4]	NP _[.2]	N _[.3]
Mary	attacked	a	farmer	with	her	axe
i	·					
C N	יר ובן חייםי	2 DVD ND !	(O1	V/D DD [1]		
$5 \rightarrow 1$	JP VP [.7] VF	$7 \to DVFNF$	3I VP → '	AL LL ITI		

Evaluating PCFGS (PARSEVAL)

How do the constituents in the hypothesis parse tree match the constituents in a hand-labeled 'gold standard' (reference) parse tree?

 $T_C=$ set of constituents for S according to reference $T_G=$ set of constituents hypothesized for S

labeled precision

$$\frac{|T_C \cap T_G|}{|T_G|} = \frac{\# \text{of correctly identified constituents}}{\# \text{of constituents hypothesized}} = \frac{t_p}{t_p + f_p}$$

labeled recall

$$\frac{|T_C \cap T_G|}{|T_C|} = \frac{\# \text{of correctly identified constituents}}{\# \text{of constituents in reference}} = \frac{t_p}{t_p + f_n}$$

Rule of thumb: as precision increases, recall drops and vice versa.

Often precision and recall are reported as a single number:

F-measure :
$$F_{\beta} = \frac{(\beta^2 + 1) \times P \times R}{\beta^2 \times P + R}$$

 $\beta > 1$ favors Recall $\beta < 1$ favors Precision

PROBLEMS WITH PCFGS

Poor independence assumption

Linguistic structures are not independent from each other. For example, the distribution of NP \rightarrow PN is unbalanced:

91% of subject phrases are pronouns 34% of object phrases are pronouns

Solution: add information about the mother node in the daughters

Parent annotation: NP^S \rightarrow PRN [.91] vs. NP^VP \rightarrow PRN [.34]

PROBLEMS WITH PCFGs (continued)

Lack of lexical conditioning

Lexical items are important to resolve attachment ambiguities.

- (2) a. * [Sam [dumped [the box into the bin]]].
 - b. [Sam [dumped [the box] [into the bin]]].
- (3) a. [Sam [dumped [the box in the bin]]].
 - b. [Sam [dumped [the box] [in the bin]]].
- (4) a. Sam likes [[green vegetables] and [music]].
 - b. *Sam likes [green [vegetables and music]].
- (5) a. *I need some [fresh [air and sunshine]].
 - b. I need some [[fresh air] and [sunshine]].

Solution: add information about the token in the mother node

Dealing with the lack of lexical conditioning

grammar lexicalizaton

