Fizikai tervek (folytatás)

- Paraméterek, költségek
- Fizikai fájlszervezés,
 - szekvenciális (kupac), hasító indexek (statikus, dinamikus (kiterjeszthető, lineáris)
 - Rendezett állomány, elsődleges, másodlagos indexek, többszintű indexek, B+-fák, B*-fák
- Műveletek megvalósítása, kiszámítási költség, outputméret
- Optimális fizikai terv meghatározása

 Az optimális logikai lekérdező terv egy relációs algebrai kifejezés. Műveletekből áll. Ha minden műveletnek ismerjük a költségét, akkor a fának megfelelő költséget is ki tudjuk számolni.

 Hogyan végezzük el az egyes műveletek?
 Adott inputméret esetén mekkora a várható output méret.

Műveletek:

- kiválasztás: σ (szekvenciális, index, rendezés)
- vetítés: π
- unió: ∪
- különbség: -
- szorzat: x
- átnevezés: ρ (ezzel nem foglalkozunk, mert méretet nem változtat, költsége nincs)
- összekapcsolás: ⋈ (származtatott, de fontos művelet)

- SELECT * FROM student WHERE name=Paul
 - $-\sigma_{name=Paul}(student)$
- $\pi_{\text{name}}(\sigma_{\text{cid}<00112235}(\text{student}))$
- $\pi_{\text{name}}(\sigma_{\text{coursename}=\text{Advanced DBs}}((\text{student} \bowtie_{\text{cid}} \text{takes}) \bowtie_{\text{courseid}} \text{course}))$
- Sokféle lehetőségünk van egy lekérdezés kiértékelésére
 π_{name}(σ_{coursename=Advanced DBs}((student ⋈_{cid} takes) ⋈_{courseid} course))
 - π_{name} ((student \bowtie_{cid} takes) $\bowtie_{\text{courseid}} \sigma_{\text{coursename=Advanced DBs}}$ (course)))
 - (relációs algebrai optimalizálás várhatóan jobb költség heurisztika)

Most viszont számokkal kifejezett költséget tudunk összehasonlítani.

student			
<u>cid</u>	name		
00112233	Paul		
00112238	Rob		
00112235	Matt		

takes			
<u>cid</u>	courseid		
00112233	312		
00112233	395		
00112235	312		

course		
courseid	<u>coursename</u>	
312	Advanced DBs	
395	Machine Learning	

Műveletek kiértékelésének meghatározása

- Több lehetőség egy művelet elvégzésére
 - $-\sigma_{name=Paul}(student)$
 - fájlban szekvenciális keresés
 - másodlagos index a student.name mezőn
- Több elérési útvonal
 - elérési útvonal: mely módon érhetjük el a rekordokat (például a name_idx index alapján)

$\pi_{\text{name}}(\sigma_{\text{coursename=Advanced DBs}}((\text{student} \bowtie_{\text{cid}} \text{takes}) \bowtie_{\text{courseid}} \text{course}))$

Adjuk meg, melyik elérési útvonalat használjuk

 Adjuk meg, milyen algoritmussal értékeljük ki a műveleteket

Adjuk meg, hogyan következnek a műveletek

• INPUT: T_s,T_t,T_c, bf_s,bf_t,bf_c, I_{s.cid}, I_{t.courseid}

K₁,O₁

K₂,O₂
 Számítási költség, outputméret

- K_3, O_3
- K₄,O₄
- OUTPUT: $\mathbf{K} = K_1 + K_2 + K_3 + K_4 + O_4$
- Optimalizáció:
 - becsüljük meg a tervek költségét (nem mindet)
 - válasszuk a legalacsonyabb becsült költségűt

Ocoursename=Advanced DBs
Cname_idx index I

Courseid; index-

skatulyázott ciklus

course

összekapcsolás

takes

[⊠]çid; *hasításos*

Költségbecslés

- Mit kell számításba venni:
 - Lemez I/O
 - szekvenciális
 - Indexelt elérés
 - CPU idő (elhanyagolható)
 - Hálózati kommunikáció (csak osztott adatbázisok esetén)
- Mit fogunk figyelembe venni:
 - Lemez I/O
 - Lapok (blokkok) olvasása, írása
 - Elhanyagoljuk a végeredmény kiírásának költségét (mivel amiket összehasonlítunk, azoknál mindnél ugyanaz a végeredmény mérete) az előző példában K=K₁+K₂+K₃+K₄+O₄ helyett
 K=K₁+K₂+K₃+K₄ –t elég vizsgálnunk a fizikai tervek összehasonlításánál.

Műveletek és költségek

SQL 0.052 seconds					
OPERATION	OBJECT_NAME	CARDINALITY	COST		
SELECT STATEMENT SELECT STATEMENT		106	6		
		106	6		
TABLE ACCESS (BY INDEX ROWID)	DEPARTMENTS	27	2		
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	DEPT_ID_PK	27	1		
i SORT (JOIN)		107	4		
E.DEPARTMENT_ID=D.DEPARTMENT_ID					
☐ ∙∙ ে তি					
E.DEPARTMENT_ID=D.DEPARTMENT_ID					
TABLE ACCESS (FULL)	EMPLOYEES	107	3		

Műveletek és költségek

- Műveletek: σ, π, ∪, -, x, ⋈, ∩,
- Költségek:
 - N_R: R rekordjainak száma (ezt korábban T_R-rel jelöltük)
 - L_R: R egy rekordjának mérete (ezt korábban l_R-rel jelöltük)
 - F_R: blokkolási tényező (ezt korábban bf_R-rel jelöltük)
 - egy lapon, blokkban levő rekordok száma
 - B_R: az R reláció tárolásához szükséges lapok, blokkok száma
 - V(A,R): az A mező különböző értékeinek száma R-ben (Képméret) (ezt korábban I_{R.A}-val jelöltük)
 - SC(A,R): az A mező kiválasztási számossága R-ben
 Szelektivitás hány darab A=a értékű rekord van (egyenletességi feltétel esetén)
 - A kulcs: SC(A,R)=1
 - A nem kulcs: SC(A,R)= N_R / V(A,R)
 - HT_i: az *i* index szintjeinek száma
 - a törteket és logaritmusokat felfelé kerekítjük

Kiválasztás σ

- Lineáris keresés
 - olvassunk be minden lapot és keressük az egyezéseket (egyenlőség vizsgálata esetén)
 - átlagos költség:
 - nem kulcs esetén B_R, kulcs esetén 0.5*B_R
- Logaritmikus keresés
 - rendezett mező esetén $\log_2 B_R + m$
 - átlagos költség:
 - m további lapot kell beolvasni
 - $m = [SC(A,R)/F_R] 1$
- Elsődleges/cluster index
 - átlagos költség:
 - egyetlen rekord HT_i + 1
 - több rekord $HT_i + \int SC(A,R)/F_R$

Kiválasztás σ

- Másodlagos index
 - átlagos költség:
 - kulcs mező HT_i + 1
 - nem kulcs mező
 - legrosszabb esetHT_i + SC(A,R)
 - a lineáris keresés kedvezőbb, ha sok a megfelelő rekord

Összetett kiválasztás okif

- konjunkciós kiválasztás: $\sigma_{ heta_1 \wedge heta_2 \dots \wedge heta_n}$
 - végezzünk egyszerű kiválasztást a legkisebb költségű θ_i-re
 - pl. a θ_i-hez tartozó index felhasználásával
 - a fennmaradó θ feltételek szerint szűrjük az eredményt
 - $\sigma_{cid>00112233\land courseid=312}(takes)$
 - költség: az egyszerű kiválasztás költsége a kiválasztott θ-ra
 - több index
 - válasszuk ki a θ_i-khez tartozó indexeket
 - keressünk az indexekben és adjuk vissza a RID-ket
 - válasz: RID-k metszete
 - költség: a költségek összege + rekordok beolvasása
- diszjunkciós kiválasztás: $\sigma_{\theta_1 \lor \theta_2 ... \lor \theta_n}$
 - több index
 - RID-k uniója
 - költség: a költségek összege + rekordok beolvasása
 - lineáris keresés

Méretbecslés - kiválasztás

- $\sigma_{A=v}(R)$
 - Sorok száma: SC(A,R)

Blokkok száma: SC(A,R)/F_R

- $\sigma_{A\leq v}(R)$
 - Sorok száma: $N_R * \frac{v \min(A, R)}{\max(A, R) \min(A, R)}$ Blokkok száma: Sorok száma/ F_R
- $\sigma_{\theta_1 \wedge \theta_2 \wedge ... \wedge \theta_n}(R)$
 - szorzódó valószínűségek (s_i az i-ik feltétel szelektivitása:hány rekord elégíti ki)
 - Sorok száma: $N_R * [(s_1/N_R)*(s_2/N_R)*...(s_n/N_R)]$ Blokkok száma: Sorok száma/ F_R
- $\sigma_{\theta_1 \vee \theta_2 v \dots \vee \theta_n}(R)$
 - annak valószínűsége, hogy egy rekordra egy θ se igaz:
 - $[(1-s_1/N_R)*(1-s_2/N_R)*...*(1-s_n/N_R)]$ s_i az i-ik feltétel szelektivitása
 - Sorok száma: $N_R * (1 [(1 s_1/N_R) * (1 s_2/N_R) * ... * (1 s_n/N_R)])$

Blokkok száma: Sorok száma/ F_R

A keresési feltételekre, azaz a bennük szereplő oszlopokra függetlenségi feltételt tettünk fel. Ezzel felső korlátokat kaptunk. Ha nem teljesülne a függetlenség, akkor több egybeesés lehetne, kisebb lenne a méret.

Vetítés és halmazműveletek visszavezetése rendezésre

- SELECT DISTINCT cid FROM takes
 - π-hez szükséges a duplikált értékek kiszűrése
 - Rendezéssel tudjuk a duplikátumokat kiszűrni
- Halmazműveletek
 - R ∩ S ki kell szűrni a duplikált értékeket
 - R ∪ S ki kell szűrni a duplikált értékeket
 - R S (ha mindkét tábla rendezett, akkor elég egyszerre végigolvasni mindkét táblát.)
 - Mindegyikhez kell a rendezés

Rendezés

- sok művelet hatékony kiértékelése
- a lekérdezés is igényelheti:
 - SELECT cid,name FROM student ORDER BY name
- megvalósítás
 - belső rendezés (ha a rekordok beférnek a memóriába)

betöltjük: B_R művelet,

memóriában rendezzük: 0 művelet

kiírjuk: B_R művelet

összesen 2*B_R

 külső rendezés (ha nem fér be a teljes tábla memóriába):

SORT-MERGE

Külső összefésüléses rendezés (1/3)

Rendező lépés: rendezett futamok létrehozása

M // a memória mérete blokkokban

```
i=0; ismétlés M lap beolvasása az R relációból a memóriába
```

az *M* lap rendezése
kiírás az R_i fájlba (futamba)
i növelése
amíg el nem fogynak a lapok
N = i // futamok száma

Külső összefésüléses rendezés (2/3)

 Összevonási lépés: rendezett futamok összefésülése

//feltéve, hogy **N < M**minden R_i fájlhoz egy lap lefoglalása
// N lap lefoglalása
minden R_i-ből egy-egy P_i lap
beolvasása
ismétlés
az N lap közül a (rendezés
szerint) első rekord kiválasztása,
legyen ez a P_j lapon
a rekord kiírása a kimenetre és
törlése a P_j lapról
ha üres a lap, a következő P_j'
beolvasása R_j-ből
amíg minden lap ki nem ürül

Külső összefésüléses rendezés (3/3)

- Összevonási lépés: rendezett futamok összefésülése
- Mi van, ha N > M?
 - több menet
 - minden menet M-1 futamot von össze, amíg nincs feldolgozva a reláció
 - a következő menetben a futamok száma kisebb és az összevonást ismételjük rekurzívan
 - a végső *menet*ben keletkezik a végső kimenet

Osszefésüléses rendezés - példa

Osszefésüléses rendezés költsége

- B_R: R lapjainak száma
- Rendezési lépés (rendezett futamok előállítása): 2 * B_R
 - reláció olvasása/írása
- Összevonási lépés (rendezett futamból M-1 darab összefésülése):
 - Hány futamot hajtunk végre?
 - kezdetben $\left| \frac{B_R}{M} \right|$ összevonandó futam
 - minden menet M-1 futamot rendez, vagyis a futamok számát mindig M-1-gyel kell osztani $\left|\log_{M-1}\left(\frac{B_R}{M}\right)\right|$
 - tehát az összes menet száma:
 - minden menetben 2 * B_R lapot olvasunk
 - reláció olvasása/írása
 - kivéve az utolsó kiírást
- Teljes számolási költség (az utolsó lépés, vagyis a rendezett tábla kiírása nélkül)

$$-2*B_R + 2*B_R* \left[\log_{M-1}\left(\frac{B_R}{M}\right)\right] - B_R$$

Vetítés

- $\pi_{A1.A2...}(R)$
- felesleges mezők törlése
 - Végigolvassuk a táblát és a felesleges mezőket elhagyjuk, így kapjuk az R₁ táblát
 - Műveletigény: B_R + B_{R1}
- duplikált rekordok törlése
 - az R1 rendezése az összes mező alapján
 - Műveletigény kiírással együtt: (például külső összefésülés esetén): $2 * B_{R1} + 2 * B_{R1} * \left| log_{M-l} \left(\frac{B_{R1}}{M} \right) \right|$

 - a rendezett eredményt egyszér végigolvassuk, duplikált (szomszédos) rekordokat töröljük, így kapjuk az R2 táblát, azaz végeredményt
 - Műveletigény: B_{R1} + B_{R2}
- Teljes számítási költség

$$- B_{R} + B_{R1} + 2 * B_{R1} + 2 * B_{R1} * \left| \log_{M-1} \left(\frac{B_{R1}}{M} \right) \right| + B_{R1} + B_{R2}$$

Felső becslés: 6*
$$B_R$$
 + 2* B_R * $\left\lceil \log_{M-1} \left(\frac{B_R}{M} \right) \right\rceil$

Méretbecslés - Vetítés

- S:= $\pi_{A1,A2...Ak}$ (R)
- Felső becslés: B_R
- Ha csak egy A oszlopra vetítünk, akkor V(A,R) sor van a vetületben
 - Sorok száma: V(A,R)

Blokkok száma: V(A,R)/F_S

- Több oszlop esetén különböző értékekből
 - kapható különböző sorok maximális száma:
 - V(A1,R) * V(A2,R) * ... * V(Ak,R)
 - A vetületben nem lehet több sor mint a táblában:
 - Sorok száma:

Min (
$$V(A1,R) * V(A2,R) * ... * V(Ak,R) , N_R$$
)

Blokkok száma:

Min (
$$V(A1,R) * V(A2,R) * ... * V(Ak,R) , N_R) / F_S$$

Unió

- P:= R ∪ S
- P esetén felső becslés: sorok száma: N_R+N_S blokkok száma: B_R+B_S
- duplikált rekordok törlése
 - az P rendezése az összes mező alapján
 - Műveletigény szerint kiírással együtt: (például külső összefésülés esetén):
 - $-2*B_P + 2*B_P* | log_{M-1}(B_P/M) |$
 - a rendezett eredményt egyszer végigolvassuk, duplikált (szomszédos) rekordokat töröljük, így kapjuk az P1 táblát, azaz végeredményt
 - Műveletigény: B_P + B_{P1}
- Teljes számítási költség
 - $-2*B_P + 2*B_P* | log_{M-1}(B_P/M) | + B_P + B_{P1}$

Felső becslés

$$4*(B_R+B_S) + 2*(B_R+B_S)*|log_{M-1}((B_R+B_S)/M)|$$

Különbség, Metszet, Szorzat visszavezetése az összekapcsolásra

 P:= R X S (= R ⋈ S speciális esete, ahol az R és S sémáknak nincs közös attribútuma)

```
sorok száma: N<sub>R</sub> X N<sub>S</sub> blokkok száma: B<sub>R</sub> * N<sub>S</sub> + B<sub>S</sub> * N<sub>R</sub>
```

 P:= R ∩ S (= R ⋈ S speciális esete, ahol az R és S sémák teljesen megegyeznek)

```
sorok száma: min( N<sub>R</sub>, N<sub>S</sub>) blokkok száma: min( B<sub>R</sub>, B<sub>S</sub>)
```

• P:= R - S

sorok száma: N_R blokkok száma: B_R

A kiszámítást visszavezetjük a rendezéses-összefésüléses összekapcsolás kiszámítására, mivel az összes (t_R,t_S) sorpárnak egyszer be kell kerülni a memóriába, ahogy az összekapcsolások esetén is. (2 blokkot nyitunk a rendezett R és rendezett S számára. Ha R-beli sorhoz találunk S-beli sort, akkor kihagyjuk. Ha feldolgoztunk egy blokkpárt, akkor annak a helyére tölzünk be új blokkot, amelyiknek kisebb volt a legnagyobb értéke, mint a másik blok legnagyobb értéke.

Összekapcsolás

- $\pi_{\text{name}}(\sigma_{\text{coursename}=\text{Advanced DBs}}((\text{student} \bowtie_{\text{cid}} \text{takes}) \bowtie_{\text{courseid}} \text{course}))$
- megvalósítások
 - skatulyázott ciklusos összekapcsolás (nested loop join)
 - blokk-skatulyázott ciklusos összekapcsolás (block-nested loop join)
 - indexelt skatulyázott ciklusos összekapcsolás (index nested loop join)
 - összefésüléses rendező összekapcsolás (sort-merge join)
 - hasításos összekapcsolás (hash join)

Skatulyázott ciklusos összekapcsolás(1/2)

R ⋈ S

```
R minden t_R rekordján 
S minden t_S rekordján 
ha (t_R t_S illeszkedik) t_R\bowtie t_S kiírása 
vége 
vége
```

- Bármilyen összekapcsolási feltételnél működik
 - Ha nincs illesztési feltétel, akkor a direkt szorzatot adja vissza
- S belső reláció
- R külső reláció

Skatulyázott ciklusos összekapcsolás(2/2)

- Költség:
 - legjobb eset, ha a kisebb reláció elfér a memóriában
 - ezt használjuk belső relációnak
 - $B_R + B_S$
 - legrosszabb eset, ha mindkét relációból csak 1-1 lap fér bele a memóriába
 - S-t minden R-beli rekordnál végig kell olvasni
 - $N_R * B_s + B_R$

Blokk-skatulyázott ciklusos összekapcsolás (1/2)

Blokk-skatulyázott ciklusos összekapcsolás (2/2)

- Költség:
 - legjobb eset, ha a kisebb reláció elfér a memóriában
 - ezt használjuk belső relációnak
 - B_R+B_S
 - legrosszabb eset, ha mindkét relációból csak 1-1 lap fér bele a memóriába
 - S-t minden R-beli lapnál végig kell olvasni
 - B_R * B_s + B_R az előző esetben nagyobb volt: N_R * B_s + B_R

Indexelt skatulyázott ciklusos összekapcsolás

- R ⋈ S
- Index a belső reláción (S) lehetőleg klaszterindex
- a külső reláció (R) minden rekordjánál keresünk a belső reláció indexe alapján illeszkedő sorokat az S-ből.
- Költség:
 - $-B_R + N_R * c$
 - c a belső relációból index szerinti kiválasztás költsége
 - c = indexelt keresési költség + találat mérete blokkokban
 - Klaszterindex esetén c = HTi + [SC(A,R)/F_S] =
 - = log (index méret) + $[(N_S/V(A,S))/F_S]$ =
 - = log (index méret) + $[(B_S/V(A,S)] \approx [(B_S/V(A,S)]]$ mert a logaritmusos tag sokkal kisebb
 - B_R + N_R * B_S / V(A,S) klaszterindex és egyenletességi feltétel esetén
 - a kevesebb rekordot tartalmazó reláció legyen a külső

Összefésüléses rendező összekapcsolás

- R ⋈ S
- A relációk rendezettek az összekapcsolási mezők szerint
- Összefésüljük a rendezett relációkat
 - mutatók az első rekordra mindkét relációban
 - beolvasunk S-ből egy rekordcsoportot, ahol az összekapcsolási attribútum értéke megegyezik
 - beolvasunk rekordokat R-ből és feldolgozzuk
- A rendezett relációkat csak egyszer kell végigolvasni
- Költség:
 - rendezés költsége + B_S + B_R

Hasításos összekapcsolás

- R ⋈ S
- R Is S-ben alkalmazzuk ugyanazt a h hasító függvényt az összekapcsolási mezőre és felosztjuk a rekordokat a memóriában elférő részekre (R_i és S_i férjen be a memóriába egyszerre)
 - R rekordjainak felosztása R₀... R_{n-1}
 - S rekordjainak felosztása S₀... S_{n-1}
- az egymáshoz illő, ugyanolyan indexű partíciók (kosarak) rekordjait összekapcsoljuk (mert ha két érték megegyezik, akkor a hasítófüggvény értékük is megegyezik, tehát csak azonos indexű partícióban lehetnek)
 - hasítófüggvény alapján indexelt blokkskatulyázott ciklusos összekapcsolással
- Költség: $2*(B_R+B_S) + (B_R+B_S)$

Méretbecslés - összekapcsolás

- R ⋈ S
 - $-R \cap S = \emptyset$ esetén R ⋈ S = R x S

sorok száma: $N_R * N_S$ blokkok száma: $B_R * N_S + B_S * N_R$

- $-R \cap S = \{A\}$, sem R-nek, sem S-nek nem kulcsa
 - N_R*N_S / V(A,S) mert minden R-beli sorhoz N_S / V(A,S) különböző érték illeszkedhet
 - N_S*N_R / V(A,R) mert minden S-beli sorhoz N_R / V(A,R) különböző érték illeszkedhet

```
sorok száma: N<sub>S</sub>*N<sub>R</sub> / Max (V(A,R), V(A,S))
```

blokkok száma: $(B_R * N_S + B_S * N_R) / Max (V(A,R), V(A,S))$

Speciálisan például, ha R.A ⊆ S.A

sorok száma: N_S*N_R / V(A,S)

blokkok száma: $(B_R * N_S + B_S * N_R) / V(A,S)$

R ∩ S kulcs R-en esetén (S-nek idegen kulcsa)

sorok száma: N_S blokkok száma: $(B_R * N_S + B_S * N_R) / N_R$

Összefoglalás

- Minden egyes művelet költségét és az eredmény méretét megadtuk
- A lekérdezési terv költségének becslését a költségek összegeként értelmeztük.
- Tovább lehetne javítani a költségeken materializálással, csövezetékesítés (pipeline), kommutatív, asszociatív egymás utáni műveletek optimális sorrendben történő elvégzésével, párhuzamos kiértékeléssel.

Köszönöm a figyelmet!

