macchina termodinamica

macchina termodinamica

sistema isolato

La macchina termodinamica è un sistema termodinamico *composto ed isolato* che, nella sua forma più semplice, è realizzato da:

due serbatoi di calore,

da un serbatoio di lavoro

e da una macchina ciclica che è in grado di produrre od assorbire con continuità lavoro interagendo con il serbatoio di lavoro ed i serbatoi di calore

Serbatoio di calore

sistema termodinamico che scambia solo calore con l'esterno senza alterare il suo stato termodinamico; gli scambi avvengono con trasformazioni quasi-statiche (internamente reversibili)

Serbatoio di lavoro

Serbatoio di lavoro

sistema termodinamico che scambia solo lavoro con l'esterno senza alterare il suo stato termodinamico; gli scambi avvengono con trasformazioni quasi-statiche (internamente reversibili) Serbatoio di calore T_c

Macchina motrice

Serbatoio di calore T_c

Macchina operatrice

Dalle equazioni di bilancio

$$\begin{cases} \Delta U_z = 0 \\ \Delta S_z = S_{irr} \end{cases} \qquad \begin{cases} \Delta U_C + \Delta U_M + \Delta U_{sl} + \Delta U_F = 0 \\ \Delta S_C + \Delta S_M + \Delta S_{sl} + \Delta S_F = S_{irr} \end{cases}$$

ma essendo

$$\begin{cases} \Delta U_C = Q_C \leftarrow \\ \Delta S_C = \frac{Q_C}{T_C} \end{cases} \begin{cases} \Delta U_M = 0 \\ \Delta S_M = 0 \end{cases} \begin{cases} \Delta U_{sl} = -L_{sl} \rightarrow \begin{cases} \Delta U_F = Q_F \leftarrow \\ \Delta S_{sl} = 0 \end{cases} \end{cases} \Delta S_F = \frac{Q_F}{T_F}$$

ne deriva

$$\begin{cases}
Q_C \leftarrow + Q_F \leftarrow -L_{sl} \rightarrow = 0 \\
Q_C \leftarrow + Q_F \leftarrow + Q_F \leftarrow -L_{sl} \rightarrow = 0
\end{cases}$$

$$-Q_C + Q_F + L_{sl} = 0$$

$$-Q_C + Q_F + L_{sl} = 0$$

$$-Q_C + Q_F + L_{sl} = 0$$

$$-Q_C + Q_F + T_{sl} = 0$$

$$-T_C + T_F \rightarrow T_F$$

$$\begin{cases} Q_F = Q_C - L \\ L = Q_C \left(1 - \frac{T_F}{T_C} \right) - T_F S_{irr} \end{cases}$$

Essendo T_C>T_F e L>0 il lavoro è massimo quando il processo è reversibile

rendimento
$$\eta = \frac{L}{Q_C}$$

Rapporto tra il risultato energetico che la macchina fornisce e la spesa energetica per raggiungere l'obiettivo

$$\eta = \frac{L}{Q_C} = 1 - \frac{T_F}{T_C} - \frac{T_F}{Q_C} S_{irr}$$

$$\eta_{rev} = 1 - \frac{T_F}{T_C}$$

(espressione del rendimento td di una macchina motrice che opera reversibilmente con serbatoi di calore a temperatura costante)

Dalle equazioni di bilancio

$$\begin{cases} \Delta U_z = 0 \\ \Delta S_z = S_{irr} \end{cases} \qquad \begin{cases} \Delta U_C + \Delta U_M + \Delta U_{sl} + \Delta U_F = 0 \\ \Delta S_C + \Delta S_M + \Delta S_{sl} + \Delta S_F = S_{irr} \end{cases}$$

ma essendo

$$\begin{cases} \Delta U_C = Q_C \leftarrow \\ \Delta S_C = \frac{Q_C \leftarrow}{T_C} \end{cases} \qquad \Delta U_M = 0 \qquad \begin{cases} \Delta U_{sl} = -L_{sl} \rightarrow \\ \Delta S_{sl} = 0 \end{cases} \qquad \Delta S_F = \frac{Q_F \leftarrow}{T_F}$$

ne deriva

$$\begin{cases}
Q_C + Q_F - L_{sl} = 0 \\
Q_C - Q_F - L = 0
\end{cases}$$

$$\frac{Q_C - Q_F - L = 0}{T_C}$$

$$\frac{Q_C - Q_F - L = 0}{T_C}$$

$$\frac{Q_C - Q_F - L = 0}{T_C}$$

Macchina operatrice

$$Q_F = Q_C - L$$

$$L = Q_C \left(1 - \frac{T_F}{T_C}\right) + T_F S_{irr}$$

$$L = Q_F \left(\frac{T_C}{T_F} - 1\right) + T_C S_{irr}$$

Essendo $T_C > T_F$ e L > 0 il lavoro ceduto è minimo quando il processo è reversibile

efficienza o C.O.P.
$$\epsilon_f = \frac{Q_F}{L}$$
 $\epsilon_P = \frac{Q_C}{L}$

Rapporto tra il risultato energetico che la macchina fornisce e la spesa energetica per raggiungere l'obiettivo

Macchina operatrice

$$\varepsilon_f = \frac{Q_F}{L} = \frac{T_F}{T_C - T_F + \frac{T_C T_F S_{irr}}{Q_F}}$$

$$\varepsilon_{frev} = \frac{T_F}{T_C - T_F}$$

$$\varepsilon_{pdc} = \frac{Q_C}{L} = \frac{T_C}{T_C - T_F + \frac{T_C T_F S_{irr}}{Q_C}}$$

$$\varepsilon_{pdcrev} = \frac{T_C}{T_C - T_F}$$

(espressioni dell'efficienza td di una macchina frigorifera e di una pompa di calore che operano reversibilmente con serbatoi di calore a temperatura costante)

$$\varepsilon_{pdc} = \frac{Q_C}{L} = \frac{Q_F + L}{L} = \varepsilon_f + 1$$

Dalle equazioni di bilancio

Macchina motrice con serbatoio caldo a massa finita contenente liquido ideale

$$\begin{cases} \Delta U_z = 0 \\ \Delta S_z = S_{irr} \end{cases} \begin{cases} \Delta U_C + \Delta U_M + \Delta U_{sl} + \Delta U_F = 0 \\ \Delta S_C + \Delta S_M + \Delta S_{sl} + \Delta S_F = S_{irr} \end{cases}$$

$$T_1 > T_2 \qquad \text{ma essendo}$$

$$T_1 > T_2 \qquad \text{ma essendo}$$

$$T_1 > T_2 \qquad \text{ma essendo}$$

$$\begin{cases} \Delta U_{C} = mc_{v}(T_{2} - T_{1}) \\ \Delta S_{C} = mc_{v} \ln \frac{T_{2}}{T_{1}} \end{cases} \begin{cases} \Delta U_{M} = 0 \\ \Delta S_{M} = 0 \end{cases} \begin{cases} \Delta U_{sl} = -L_{sl} \rightarrow \begin{cases} \Delta U_{F} = Q_{F} \leftarrow S_{sl} - L_{sl} \rightarrow S_{sl} = 0 \end{cases} \begin{cases} \Delta U_{F} = Q_{F} \leftarrow S_{sl} \rightarrow S_{sl} = 0 \end{cases} \begin{cases} \Delta S_{F} = \frac{Q_{F} \leftarrow S_{sl}}{T_{F}} \end{cases}$$

ne deriva

$$\begin{cases}
 mc_{v}(T_{2} - T_{1}) + Q_{F} \leftarrow -L_{sl} \rightarrow 0 \\
 mc_{v} \ln \frac{T_{2}}{T_{1}} + \frac{Q_{F}}{T_{E}} = S_{irr}
\end{cases} = 0 \qquad \begin{cases}
 mc_{v}(T_{2} - T_{1}) + Q_{F} + L = 0 \\
 mc_{v} \ln \frac{T_{2}}{T_{1}} + \frac{Q_{F}}{T_{E}} = S_{irr}
\end{cases}$$

$$S_{irr} = 0$$

$$Q_C^{\leftarrow} = mc_v(T_2 - T_1)$$
 negativo uscente

$$Q_C = mc_v(T_1 - T_2)$$
 (in valore assoluto)

$$Q_F^{\leftarrow} = -mc_v T_F \ln \frac{T_2}{T_1} = mc_v T_F \ln \frac{T_1}{T_2}$$
 positivo

$$Q_F = mc_v T_F \ln \frac{T_1}{T_2} \text{(in valore assoluto)}$$

$$L^{\rightarrow} = Q_C^{\leftarrow} + Q_F^{\leftarrow} = mc_v (T_2 - T_1) + mc_v T_F \ln \frac{T_1}{T_2} \text{ negativo entrante}$$

$$L = Q_C - Q_F = mc_v (T_1 - T_2) - mc_v T_F \ln \frac{T_1}{T_2} \text{ (in valore assoluto)}$$

Macchina motrice con serbatoi a massa finita

$$Q_{C} = Mc_{v}(T_{1} - T_{2})$$

$$Q_{F} = Mc_{v}T_{F}\ln\frac{T_{1}}{T_{2}}$$

$$L = Mc_{v}(T_{1} - T_{2}) - Mc_{v}T_{F}\ln\frac{T_{1}}{T_{2}}$$

rendimento
$$\eta = \frac{1}{Q}$$

Rapporto tra il risultato energetico che la macchina fornisce e la spesa energetica per raggiungere l'obiettivo

$$\eta_{rev} = \frac{L}{Q_C} = \frac{(T_1 - T_2) - T_F \ln \frac{T_1}{T_2}}{(T_1 - T_2)}$$

(espressione del rendimento td di una macchina motrice che opera reversibilmente con il serbatoio superiore a massa finita)

Enunciazioni classiche del secondo principio della termodinamica

- ✓Il calore passa spontaneamente da un corpo caldo ad uno freddo
 - ✓ Non esiste una macchina ciclica il cui unico effetto sia l'assorbimento di calore da una sorgente calda e la produzione di una equivalente quantità di calore (Lord Kelvin)
 - ✓ Non esiste una macchina ciclica che non produca altro effetto che il trasferimento di calore da una sorgente fredda ad una sorgente calda (Clausius)

"IL CALORE PASSA SPONTANEAMENTE DA UN CORPO CALDO A UNO FREDDO"

Si eseguano i bilanci di energia e di entropia per il sistema Z

$$\Delta U_Z = 0$$

$$\Delta U_1 + \Delta U_2 = 0$$

$$Q_1^{\leftarrow} + Q_2^{\leftarrow} = 0$$

Il bilancio entropico diventa:

$$\frac{Q_{1}^{\leftarrow}}{T_{1}} + \frac{Q_{2}^{\leftarrow}}{T_{2}} = S_{irr}$$

$$-\frac{Q_{1}}{T_{1}} + \frac{Q_{2}}{T_{2}} = S_{irr}$$

$$S_{irr} > 0$$

$$Q_{1} = Q_{2} = Q$$

$$Q\left(-\frac{1}{T_{1}} + \frac{1}{T_{2}}\right) = S_{irr} > 0$$

$$T_{1} > T_{2}$$

$$\Delta S_{Z} = S_{irr}$$
$$\Delta S_{1} + \Delta S_{2} = S_{irr}$$

Sistema Z

"NON ESISTE UNA MACCHINA CICLICA CHE NON PRODUCA ALTRO EFFETTO CHE IL TRASFERIMENTO DI CALORE DA UNA SORGENTE FREDDA A UNA SORGENTE CALDA" (Clausius)

"NON ESISTE UNA MACCHINA CICLICA IL CUI UNICO EFFETTO SIA L'ASSORBIMENTO DI CALORE DA UNA SORGENTE CALDA E LA PRODUZIONE DI UN'EQUIVALENTE QUANTITA' DI LAVORO" (Lord Kelvin)

$$\begin{cases} \Delta U_z = 0 \\ \Delta S_z = S_{irr} \end{cases} \qquad \begin{cases} \Delta U_{sc} + \Delta U_M + \Delta U_{sl} = 0 \\ \Delta S_{sc} + \Delta S_M + \Delta S_{sl} = S_{irr} \end{cases}$$

ma essendo

$$\begin{cases}
\Delta U_{sc} = Q_{sc} \\
\Delta S_{sc} = \frac{Q_{sc}}{T_{sc}}
\end{cases}$$

$$\Delta U_{M} = 0$$

$$\Delta U_{sl} = -L_{sl} \\
\Delta S_{M} = 0$$

$$\Delta S_{sl} = 0$$

dal bilancio entropico deriva

$$\frac{Q_{sc}}{T_{sc}} = S_{irr}$$

Ed essendo $S_{irr}>0$ e $T_{sc}>0$ si conclude che anche il calore scambiato dal serbatoio di calore debba essere positivo e quindi entrante nel serbatoio.

Ciò significa che la situazione descritta in figura viola il secondo principio della termodinamica e che quindi tale macchina sia incapace di produrre lavoro.

INTERPRETAZIONE FISICA DEL CONCETTO DI ENTROPIA

E' evidente ai nostri sensi che l'energia di un sistema termodinamico isolato può essere espressa come somma di due termini: l'energia disponibile ad essere convertita in lavoro (E_{disp}) e energia che non è possibile convertire in lavoro $(E_{nondisp})$

$$E = E_{disp} + E_{nondisp}$$

Definiamo l'entropia come proprietà di un sistema termodinamico la cui variazione dS a seguito di una trasformazione sia proporzionale alla differenza fra la variazione di energia totale dE e la variazione dell'energia disponibile per produrre lavoro dE_{disp} :

$$dS = C(dE + dE_{disp})$$

Per un sistema isolato che evolva verso una diversa situazione di equilibrio a seguito della rimozione di vincoli il principio di conservazione dell'energia consente di affermare che dE=0 mentre il principio di degradazione dell'energia consente di affermare che dE $_{\rm disp}$ <0 e quindi che dS $_{\rm is}$ \geq 0

Secondo questa interpretazione l'entropia risulta essere una misura dell'energia non disponibile