

Mathematics Specialist Units 3 & 4 Test 2 2017

Section 1 Calculator Free

Functions and Sketching Graphs

STUI	DENT'S NAMI	E:	50LUTIONS)	
DATE: Tuesday 7 th March		Aarch	TIME: 30 minutes	MARKS : 30
INST	RUCTIONS:			
		Pens, pencils, pencil sha Formula Sheet.	, pencils, pencil sharper, eraser, correction fluid/tape, ruler, high nula Sheet.	ıler, highlighters,
Questi	ions or parts of qu	nestions worth more than	2 marks require working to be show	n to receive full marks.
1.	(30 marks)			
	For the function	on $f(x) = \frac{x^2 - 2x + 1}{2(x+1)}$		
		nine $f(0)$.	$f(0) = \frac{1}{2} \sqrt{(y-1)^2}$	intercept) [1]
	(b) State to	he domain of the functi	on. \mathbb{R} , $\mathbb{Z}^{\frac{1}{2}-1}$	[1]
		nine the real roots (zero $c^2 - 2x + 1$	pos) for the equation $f(x) = 0$. f(x) = 0 when	x = 1 [2]
		(x-1)(x-1) $(x-1)^2$ nine the coordinates and		of (non-distinct) ruot ill touch the z-axis (Tangental Turning Point)
	Set: ($(2x-2)\chi(x+1)$	$-(x-1)^{2}\chi = 0$ i.e. $-(x-1) = 0$	
	⇒ (∴ ;	(x-1)(x+3) $c=1$ or $x=-3$: Min. when z=	sign test
			Confirm with 16t Derivation	sign test $= -3 \text{ i.e. at } \underbrace{(-3, -4)}_{\text{Page 1 of 3}}$ Page 1 of 3

$$\frac{1}{2x-\frac{3}{2}}$$

we asymptote:
$$y = \frac{1}{2}x - \frac{3}{2}$$

[3]

[2]

[5]

As
$$x \to \infty$$
, $f(x) \to \infty$ as $y = \frac{1}{2}z - \frac{3}{2} \to \infty$

As
$$x \to -1^+$$
, $f(x) \to \infty$ / is approaching pole from right hand side.

[2]

(i) What type of relationship is this function? [1] Many to One (m-1)

(j) Does $f^{-1}(x)$ exist? If so, why? If not, why not? [2]

(k) Graph and label $y = (f(x))^{-1}$ on the same set of axes above. [3] $= \frac{1}{f(x)} \quad \text{i.e. the reciprocal of } f(x).$

Reciprocating: Pole when x=1 and x-intercept when x = -1 y intercept \frac{1}{2} = 2

Min. at (-3, -4); Hurizontal asymptote y=0 (x-asis)

(1) Graph and label y = |f(x)| and y = f(|x|) on the set of axes below. [4]

Mathematics Specialist Units 3 & 4 Test 2 2017

Calculator Assumed ** Section 2

Functions and Sketching Graphs

	(SOLUTIONS)	
STUDENT'S NAME:		

DATE: Tuesday 7th March TIME: 20 minutes MARKS: 20

INSTRUCTIONS:

Standard Items: Pens, pencils, pencil sharper, eraser, correction fluid/tape, ruler, highlighters,

Formula Sheet retained from Section 1.

Special Items: Drawing instruments, templates, three calculators, notes on one side of a single A4 page

(these notes to be handed in with this assessment).

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

2. (4 marks)

* N.B. Use (and make sonse) of your calculater (it can't think) throughout. If $f(x) = \frac{1-x}{|x-1|}$ and $g(x) = \frac{1}{x}$, state:

The domain and range for f(x). (a)

Domain: x 71 Range: y= =1/

(b) State the necessary minimum restriction on the natural domain of g(x) so that y = f(g(x)) exists.

> Natural domain of q(x) is x70 This needs to be further restricted to $x \neq 1$ Since g(i) = 1 and $f(g(x)) = \frac{1-\frac{1}{2}}{1+\frac{1}{2}-1}$

> > f(q(1)) produces & indeterminate

[2]

[2]

3. (4 marks)

For the function $f(x) = \frac{1}{1-x} - 1$, determine the inverse function $f^{-1}(x)$.

Let:
$$y = \frac{1}{1-x} - 1$$

Total rechange x and y :

 $x = \frac{1}{1-y} - 1$

We charefined to solve for y :

 $y = \frac{x}{x+1}$

Transpose

 $y = \frac{x}{x+1}$

Transpose

 $y = \frac{x}{x+1}$
 $y = \frac{x}{x+1}$

4. (4 marks)

Given that $f(g(x)) = x^2 + 4x + 13$ and $f(x) = x^2 + 9$, determine the rule for g(x).

$$f(g(x)) = x^{2} + 4x + 4 + 9$$

$$= (x + 2)^{2} + 9$$

$$= g(x) = x + 2$$

5. (4 marks)

Given
$$f(x) = \frac{x}{x+1}$$
, solve for x if $3f(x) + f\left(\frac{1}{x}\right) = 2$

$$\Rightarrow \frac{3x}{x+1} + \frac{\frac{1}{x}}{\frac{1}{x}+1} = 2$$

$$\frac{c}{1} + \frac{1}{\frac{1}{2} + 1} = 2$$

$$\therefore 2c = 1$$
 Solve on Classical.

$$\Rightarrow \frac{3x}{x+1} + \frac{1}{1+x} = 2$$

$$\Rightarrow \frac{3x+1}{x+1} = 2$$

$$\Rightarrow$$
 $3x+1 = 2x+2$

$$\approx = 1$$
 as above.

 $\Rightarrow \frac{3\times}{x+1} + \frac{1}{1+\times} = 2$ $\Rightarrow \frac{3\times+1}{x+1} = 2$ $\Rightarrow 3\times+1 = 2\times+2$ $\Rightarrow 3\times+1 = 2\times+2$ $\Rightarrow 2\times+1 = 2\times+2$ $\Rightarrow class Pade.$

[2]

6. (4 marks)

Solve the following:

(a)
$$|2x+1| = |x-5|$$

$$x = -6, x = \frac{4}{3}$$

|2x+1|=|x-5| there are several algebraic [2] approaches, but here classical is quickest. (CAS)

$$(b) \qquad |2x-3| \ge 2$$

(D.B.) This question could easily be placed in Section 1. Whilst you could use algebra, a manual graphing approach
Would Page 3 of 3

End of Questions