WHAT IS CLAIMED IS:

(I)

wherein:

1. A compound comprising the formula:

 $R_{1} = \left\{ \begin{array}{c} R_{2} \\ C \\ R_{3} \end{array} \right\}_{m} \left\{ \begin{array}{c} Y_{1} \\ M \\ A \end{array} \right\}_{a} \left\{ \begin{array}{c} E_{1} \\ C \\ C \end{array} \right\}_{a} = E_{2}$

R₁ is a polymeric residue;

Y₁ is O, S or NR₄;

M is O, S or NR₅;

E₁ is

$$\begin{array}{c|c}
 & Y_2 \\
 & \downarrow \\
 & C \\
 & \downarrow \\
 & R_6
\end{array}$$

 E_{2-4} are independently H, E_1 or

- (a) is zero or one;
- (m) is zero or a positive integer;
- (n) and (p) are independently 0 or a positive integer;

 Y_{2-3} are independently O, S or NR_{10} ;

 $R_{2\text{--}10}$ are independently selected from the group consisting of hydrogen, $C_{1\text{--}6}$ alkyls, $C_{3\text{--}12}$ branched alkyls, $C_{3\text{--}8}$ cycloalkyls, $C_{1\text{--}6}$ substituted alkyls, $C_{3\text{--}8}$ substituted cycloalkyls, aryls, substituted aryls, aralkyls, $C_{1\text{--}6}$ heteroalkyls, substituted $C_{1\text{--}6}$ heteroalkyls, $C_{1\text{--}6}$ alkoxy, phenoxy and $C_{1\text{--}6}$ heteroalkoxy;

D₁ and D₂ are independently OH,

or a terminal branching group;

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

J is
$$NR_{12}$$
 or

L₁ and L₂ are independently selected bifunctional linkers;

Y₄₋₇ are independently selected from the group consisting of O, S and NR₁₄;

 R_{11-14} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

 B_1 and B_2 are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties.

2. The compound of claim 1, wherein R_1 further comprises a capping group A, selected from the group consisting of hydrogen, NH₂, OH, CO₂H, C₁₋₆ moieties and

$$E_{2} \xrightarrow{\begin{array}{c} E_{1} \\ \\ \\ \\ E_{2} \end{array}} \xrightarrow{\begin{array}{c} E_{1} \\ \\ \\ \\ \\ E_{3} \end{array}} \xrightarrow{\begin{array}{c} Y_{1} \\ \\ \\ \\ E_{4} \end{array}} \xrightarrow{\begin{array}{c} Y_{1} \\ \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} C \\ \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} R_{2} \\ \\ \end{array}} \xrightarrow{\begin{array}{c}$$

3. A compound of claim 2, comprising the formula:

$$E_{2} = \begin{bmatrix} E_{1} & Y_{1} & E_{2} \\ C & N & C \end{bmatrix} = \begin{bmatrix} R_{2} \\ M \end{bmatrix}_{a} \begin{bmatrix} R_{2} \\ C \\ R_{3} \end{bmatrix}_{m} \begin{bmatrix} R_{2} \\ C \\ R_{3} \end{bmatrix}_{m} \begin{bmatrix} R_{2} \\ M \end{bmatrix}_{a} \begin{bmatrix} R_{2} \\ M \end{bmatrix}_{a} \begin{bmatrix} R_{2} \\ M \end{bmatrix}_{a} \begin{bmatrix} R_{2} \\ C \\ R_{3} \end{bmatrix}_{a} \begin{bmatrix} R_{2} \\ M \end{bmatrix}_{a} \begin{bmatrix} R_{2} \\ M \end{bmatrix}_{a} \begin{bmatrix} R_{2} \\ R_{3} \end{bmatrix}_{a} \begin{bmatrix} R_{$$

4. The compound of claim 1, wherein said terminal branching group comprises the formula:

$$E_{35}$$
 C
 E_{36}
 E_{38}
 E_{37}

wherein

$$E_{35}$$
 is
$$\frac{\begin{pmatrix} R_7 \\ C \end{pmatrix} \prod_{C=0}^{Y_2} C}{C}$$

E₃₆₋₃₈ are independently H, E₃₅ or

(n) and (p) are independently 0 or a positive integer;

Y_{2.3} are independently O, S or NR₁₀;

 R_{6-10} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} hetero-

alkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

D'1 and D'2 are independently OH,

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

 L_1 and L_2 are independently selected bifunctional linkers;

Y₄₋₇ are independently selected from the group consisting of O, S and NR₁₄;

 R_{11-14} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

B₁ and B₂ are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties;

$$\begin{array}{c|c} & & & & & & & \\ & & & & & \\ E_{45} \text{ is} & & & & & \\ & & & & \\ E_{6} & n & & & \\ \end{array}$$

E₄₆₋₄₈ are independently H, E₄₅ or

wherein

D", and D", are independently OH,

or

- 5. The compound of claim 3, Y_1 is O.
- 6. The compound of claim 1, wherein R_1 comprises a polyalkylene oxide residue.
- 7. The compound of claim 6, wherein R_1 comprises a polyethylene glycol residue.
- 8. The compound of claim 3, wherein R₁ comprises a polyethylene glycol residue.
- 9. The compound of claim 6, wherein R_1 is selected from the group consisting of

 $-C(=Y_6)-(CH_2)_f-O-(CH_2CH_2O)_x-A,$

 $-C(=Y_6)-Y_7-(CH_2)_f-O-(CH_2CH_2O)_x-A$,

 $-C(=Y_6)-NR_{23}-(CH_2)_f-O-(CH_2CH_2O)_x-A,$

 $-(CR_{24}R_{25})_e$ -O- $(CH_2)_f$ -O- $(CH_2CH_2O)_x$ -A,

-NR₂₃-(CH₂)_f-O-(CH₂CH₂O)_x-A,

 $-C(=Y_6)-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-C(=Y_6)-$

 $-C(=Y_6)-Y_7-(CH_2)_{f'}O-(CH_2CH_2O)_{x}-(CH_2)_{f'}Y_7-C(=Y_6)_{-x}$

 $-C(=Y_6)-NR_{23}-(CH_2)_{f}-O-(CH_2CH_2O)_{x}-(CH_2)_{f}-NR_{23}-C(=Y_6)_{-x}$

 $-(CR_{24}R_{25})_e$ -O- $(CH_2)_f$ -O- $(CH_2CH_2O)_x$ - $(CH_2)_f$ -O- $(CR_{24}R_{25})_e$ -, and

 $-NR_{23}-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-NR_{23}-$

wherein: Y₆ and Y₇ are independently O, S or NR₂₃;

x is the degree of polymerization;

 R_{23} , R_{24} and R_{25} are independently selected from among H, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

e and f are independently zero, one or two; and A is a capping group.

10. The compound of claim 9, wherein R_1 comprises -O-(CH_2CH_2O)_x and x is a positive integer so that the weight average molecular weight is at least about 20,000.

- 11. The compound of claim 3, wherein R_1 has a weight average molecular weight of from about 20,000 to about 100,000.
- 12. The compound of claim 3, wherein R_1 has a weight average molecular weight of from about 25,000 to about 60,000.
- 13. A compound of claim 3, comprising the formula

14. The compound of claim 13, wherein D_1 is

15. The compound of claim 13, wherein D_1 is

$$E_{35}$$
 $C - E_{36}$
 E_{38}
 E_{37}

- 16. The compound of claim 1, wherein L_1 is $(CH_2CH_2O)_2$.
- 17. The compound of claim 1, wherein L_2 is selected from the group consisting of -CH₂-, -CH(CH₃)-, -CH₂C(O)NHCH(CH₃)-, -(CH₂)₂-, -CH₂C(O)NHCH₂-, -(CH₂)₂-NH-, -(CH₂)₂-NH-C(O)(CH₂)₂NH- and -CH₂C(O)NHCH(CH₂CH(CH₃)₂)-.
- 18. A compound of claim 1, selected from the group consisting of:

wherein R₁ is a PEG residue and D is selected from the group consisting of:

where B is a residue of an amine or a hydroxyl-containing drug.

- 19. A compound of claim 18, wherein B is a residue of a member of the group consisting of: daunorubicin, doxorubicin; *p*-aminoaniline mustard, melphalan, Ara-C (cytosine arabinoside), leucine-Ara-C, and gemcitabine
- 20. A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 1, wherein D_1 is a residue of a biologically active moiety.
- 21. A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 18.

22. The compound of claim 1, wherein Ar comprises the formula:

wherein R_{11} and R_{18-20} are individually selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy.

- 23. The compound of claim 22, wherein R_{11} and R_{18-20} are each H or CH_3 .
- 24. A method of preparing a polymer conjugate, comprising: reacting a compound of the formula (VIII):

$$H-J \longrightarrow L_{1} \longrightarrow L_{2} \longrightarrow L_{2}$$

wherein

(v) and (t) are independently 0 or a positive integer up to about 6;

J is NR₁₂ or

L₁ and L₂ are independently selected bifunctional linkers;

 $Y_{4.5}$ are independently selected from the group consisting of O, S and NR_{17} ;

 R_{11-17} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group; and

B'₁ is a residue of a hydroxyl- or an amine-containing moiety; with a compound of the formula (IX):

$$R_{1} = \begin{cases} R_{2} \\ C \\ R_{3} \end{cases} m \begin{cases} Y_{1} \\ X_{2} \\ X_{3} \end{cases} = \begin{cases} Y_{1} \\ X_{4} \\ X_{5} \\ X_{6} \end{cases} = \begin{cases} E_{5} \\ C \\ X_{7} \end{cases}$$

wherein

$$E_{s} \text{ is } \frac{\begin{pmatrix} R_{7} \\ 1 \\ C \end{pmatrix} \prod_{R_{6}}^{Y_{2}} C - D_{3}}{R_{6}}$$

E₆₋₈ are independently H, E₅ or

$$\begin{array}{c|c}
 & & Y_3 \\
 & & & \\
C & & & \\
 & & & \\
R_9 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

D₃ and D₄ are independently OH, a leaving group which is capable of reacting with an unprotected amine or hydroxyl or a terminal branching group;

 R_1 is a polymeric residue;

 Y_1 is O, S or NR_4 ;

M is O, S or NR₅;

- (a) is zero or one;
- (m) is 0 or a positive integer;
- (n) and (p) are independently 0 or a positive integer;

Y₂₋₃ are independently O, S or NR₁₀; and

 $R_{2\text{-}10} \ are \ independently \ selected \ from \ the \ group \ consisting \ of \ hydrogen,$ $C_{1\text{-}6} \ alkyls, \ C_{3\text{-}12} \ branched \ alkyls, \ C_{3\text{-}8} \ cycloalkyls, \ C_{1\text{-}6} \ substituted \ alkyls, \ C_{3\text{-}8} \ substituted \ cycloalkyls, \ aryls, \ substituted \ aryls, \ aralkyls, \ C_{1\text{-}6} \ heteroalkyls, \ substituted \ C_{1\text{-}6} \ heteroalkyls, \ cycloalkyls, \ aryls, \ aryls, \ aryls, \ aralkyls, \ beta \ beta \ cycloalkyls, \ aryls, \ beta \ beta \ cycloalkyls, \ aryls, \ aryls$

under conditions sufficient to cause a polymeric conjugate to be formed.