Метод штрафов. ADMM Методы оптимизации

Александр Безносиков

Московский физико-технический институт

9 ноября 2023

• Рассмотрим следующую задачу с ограничениями:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $h_i(x) = 0, i = 1, \dots m.$

• Рассмотрим следующую задачу с ограничениями:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $h_i(x) = 0, i = 1, \dots m.$

• Возьмем некоторое ho > 0 и немного модифицируем нашу задачу:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\mathbf{x}),$$
s.t. $h_i(\mathbf{x}) = 0, i = 1, \dots m.$

Вопрос: что можно сказать о новой задаче?

• Рассмотрим следующую задачу с ограничениями:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $h_i(x) = 0, i = 1, \dots m.$

• Возьмем некоторое ho > 0 и немного модифицируем нашу задачу:

$$\min_{x \in \mathbb{R}^d} f(x) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(x),$$

s.t. $h_i(x) = 0, i = 1, \dots m.$

Вопрос: что можно сказать о новой задаче? она эквивалентна старой, так как «добавка» равна 0 для x, удовлетворяющих ограничениям.

А теперь сделаем вот так:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = \left| f(\mathbf{x}) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\mathbf{x}) \right| \right].$$

А теперь сделаем вот так:

$$\min_{\mathbf{x}\in\mathbb{R}^d}\left[f_{\rho}(\mathbf{x})=f(\mathbf{x})+\rho\cdot\frac{1}{2}\sum_{i=1}^m h_i^2(\mathbf{x})\right].$$

А теперь сделаем вот так:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\mathbf{x}) \right].$$

А теперь сделаем вот так:

$$\min_{x \in \mathbb{R}^d} \left[f_{\rho}(x) = f(x) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(x) \right].$$

- $\dot{f}_{
 ho}$ называют штрафной функцией, а ho параметром штрафа.
- Задача с ограничениями стала задачей без ограничений.

А теперь сделаем вот так:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\mathbf{x}) \right].$$

- $f_{
 ho}$ называют штрафной функцией, а ho параметром штрафа.
- Задача с ограничениями стала задачей без ограничений.
- Решая новую задачу, можно выйти за пределы множества ограничений.

А теперь сделаем вот так:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\mathbf{x}) \right].$$

- ullet $f_{
 ho}$ называют штрафной функцией, а ho параметром штрафа.
- Задача с ограничениями стала задачей без ограничений.
- Решая новую задачу, можно выйти за пределы множества ограничений.
- Предельное ρ :

$$\lim_{
ho o +\infty} f_{
ho} = \left\{ egin{array}{ll} f(\chi) & \chi & \text{yyolin orp} \\ \downarrow & & \text{where} \end{array}
ight.$$

А теперь сделаем вот так:

$$\min_{x \in \mathbb{R}^d} \left[f_{\rho}(x) = f(x) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(x) \right].$$

- $f_{
 ho}$ называют штрафной функцией, а ho параметром штрафа.
- Задача с ограничениями стала задачей без ограничений.
- Решая новую задачу, можно выйти за пределы множества ограничений.
- Предельное ρ :

$$\lim_{
ho o +\infty} f_
ho = egin{cases} f(x), & x \ \text{удовлетворяет ограничениям исходной задачи} \ +\infty, & \text{иначе} \end{cases}$$

А теперь сделаем вот так:

$$\min_{x \in \mathbb{R}^d} \left[f_{\rho}(x) = f(x) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(x) \right].$$

Вопрос: осталась ли задача эквивалента исходной? нет!

- $f_{
 ho}$ называют штрафной функцией, а ho параметром штрафа.
- Задача с ограничениями стала задачей без ограничений.
- Решая новую задачу, можно выйти за пределы множества ограничений.
- ullet Предельное ho:

$$\lim_{
ho o +\infty} f_
ho = egin{cases} f(x), & x \ ext{ удовлетворяет ограничениям исходной задачи} \ +\infty, & ext{ иначе} \end{cases}$$

• Есть надежда, что минимизируя f_{ρ} (решая штрафную задачу) для достаточно большого ρ , мы получим неплохое решение и для исходной задачи.

Штрафная функция: ограничения вида неравенств

• Добавим еще ограничения вида неравенств:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $h_i(x) = 0, i = 1, \dots m,$

$$g_i(x) \leq 0, j = 1, \dots n.$$

Штрафная функция: ограничения вида неравенств

• Добавим еще ограничения вида неравенств:

$$\min_{x \in \mathbb{R}^d} f(x),$$
 $\text{s.t.} \ h_i(x) = 0, \ i = 1, \dots m,$
 $g_i(x) \leq 0, \ j = 1, \dots n.$

Вопрос: как их запихать в штраф?

+
$$S \max \left(g^2(x); 0\right)$$

Штрафная функция: ограничения вида неравенств

• Добавим еще ограничения вида неравенств:

$$\min_{x \in \mathbb{R}^d} f(x),$$
 $\text{s.t.} \ h_i(x) = 0, \ i = 1, \dots m,$
 $g_i(x) \leq 0, \ j = 1, \dots n.$

Вопрос: как их запихать в штраф?

• С помощью «срезки»:

$$f_{\rho}(x) = f(x) + \rho \cdot \frac{1}{2} \sum_{i=1}^{m} h_{i}^{2}(x) + \rho \cdot \frac{1}{2} \sum_{j=1}^{n} (g_{j}^{+})^{2}(x),$$

где $y^+ = \max\{y, 0\}$. Активируем штраф только, когда нарушено неравенство.

Свойства решений штрафной задачи

Пусть x^* – решение исходной задачи, а x_ρ^* – решение соотвествующей штрафной задачи с $\rho>0$, тогда

$$f(x^*) \geq f(x_\rho^*).$$

$$f(x^*) = f_{\rho}(x^*) \ge \min_{x \in \mathbb{R}^d} f_{\rho}(x) = f_{\rho}(x_{\rho}^*) \ge f(x_{\rho}^*).$$

Предыдущий результат говорит о том, что либо нарушаем ограничения, либо $f(x^*) = f(x_\rho^*)$. Но за счет ρ с этим можно бороться. Следующие два свойства про это.

Предыдущий результат говорит о том, что либо нарушаем ограничения, либо $f(x^*) = f(x_\rho^*)$. Но за счет ρ с этим можно бороться. Следующие два свойства про это.

Свойства решений штрафной задачи

С увеличение ρ решения штрафной задачи (если существует) гарантировано не ухудшает степень нарушения ограничений, т.е. для $\rho_1>\rho_2$ следует, что

$$\sum_{i=1}^{m} h_i^2(x_{\rho_2}^*) \ge \sum_{i=1}^{m} h_i^2(x_{\rho_1}^*),$$

где $x_{\rho_1}^*$ и $x_{\rho_2}^*$ – решения соответствующих штрафных задач.

$$S(x) + S_{2} \sum_{i=1}^{2} h_{i}^{2}(x)$$

$$X_{S_{2}}^{*} - perneune$$

$$S(x) + S_{2} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*}) > S(x_{S_{2}}^{*}) + S_{2} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{2}}^{*})$$

$$S_{2} \leftrightarrow S_{1}$$

$$S(x_{S_{2}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*}) > S(x_{S_{1}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*})$$

$$S(x_{S_{2}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*}) > S(x_{S_{1}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*})$$

$$S(x_{S_{2}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*}) > S(x_{S_{1}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*})$$

$$S(x_{S_{1}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*}) > S(x_{S_{1}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*})$$

$$S(x_{S_{1}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*}) > S(x_{S_{1}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*})$$

$$S(x_{S_{1}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*}) > S(x_{S_{1}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*})$$

$$S(x_{S_{1}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*}) > S(x_{S_{1}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*})$$

$$S(x_{S_{1}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*}) > S(x_{S_{1}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*})$$

$$S(x_{S_{1}}^{*}) + S_{1} \sum_{i=1}^{2} h_{i}^{2}(x_{S_{1}}^{*}) > S(x_{S_{1}}^{*}) > S(x_{S_{1}}^{*}) > S(x_{S_{1}}^{*})$$

• Пользуясь тем, что $x_{\rho_1}^*$ и $x_{\rho_2}^*$ – решения соответствующих штрафных задач:

$$f(x_{\rho_2}^*) + \rho_1 \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(x_{\rho_2}^*) \ge f(x_{\rho_1}^*) + \rho_1 \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(x_{\rho_1}^*)$$

И

$$f(x_{\rho_1}^*) + \rho_2 \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(x_{\rho_1}^*) \ge f(x_{\rho_2}^*) + \rho_2 \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(x_{\rho_2}^*)$$

• Складываем и делим на $(\rho_1 - \rho_2) > 0$:

$$\sum_{i=1}^m h_i^2(x_{\rho_2}^*) \ge \sum_{i=1}^m h_i^2(x_{\rho_1}^*).$$

Свойства решений штрафной задачи

Пусть функция f и все функции $\underline{h_i}$ $(i=1,\ldots m)$ являются непрерывными. Пусть X^* множество решений исходной условной задачи оптимизации и для $x^* \in X^*$ множество

$$U = \{x \in \mathbb{R}^d \mid f(x) \le f(x^*)\}$$

ограничено. Тогда для любого e>0 существует ho(e)>0 такое, что множество решений штрафной задачи $X_{
ho}^*$ для любых $ho\geq
ho(e)$ содержится в

$$X_e^* = \{ x \in \mathbb{R}^d \mid \exists x^* \in X^* : \|x - x^*\|_2 \le e \}.$$

Свойства решений штрафной задачи

Пусть функция f и все функции h_i ($i=1,\ldots m$) являются непрерывными. Пусть X^* множество решений исходной условной задачи оптимизации и для $x^*\in X^*$ множество

$$U = \{x \in \mathbb{R}^d \mid f(x) \le f(x^*)\}$$

ограничено. Тогда для любого e>0 существует $\rho(e)>0$ такое, что множество решений штрафной задачи X_{ρ}^* для любых $\rho \geq \rho(e)$ содержится в

$$X_e^* = \{x \in \mathbb{R}^d \mid \exists x^* \in X^* : \|x - x^*\|_2 \le e\}.$$

Ограниченность U нужно для того, чтобы гарантировать, что вне ограничений функция f ведет себя «адекватно» и штрафная функция просто не улетит в $-\infty$. По факту это и гарантирует существование и непустоту X_{ρ}^* .

• От противного:
$$3g(\varepsilon) \hookrightarrow 4g \ge g(\varepsilon)$$
 $X_0 \le X_0^*$
 $7\{g_i\} \to \emptyset$
 $Y_0 = X_0^*$
 $Y_0 = X_0^*$

• От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\}\to\infty$, что $X^*(\rho_i)$ не содержится как минимум не полностью в X_e^* , т.е. существуют $x_i^*\in X^*(\rho_i)$.

- От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится как минимум не полностью в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$.
- Мы уже знаем, что $f(x^*) \ge f(x_\rho^*)$, а значит все x_i^* лежат в ограниченном множестве.

- От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится как минимум не полностью в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$.
- Мы уже знаем, что $f(x^*) \ge f(x_\rho^*)$, а значит все x_i^* лежат в ограниченном множестве.
- По теореме Больцана-Вейрштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .

- От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится как минимум не полностью в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$.
- Мы уже знаем, что $f(x^*) \ge f(x_\rho^*)$, а значит все x_i^* лежат в ограниченном множестве.
- По теореме Больцана-Вейрштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .
- Опять же по известному факту, что $f(x^*) \ge f(\tilde{x}_i^*)$, можно перейти к пределу сделать вывод, что $f(x^*) \ge f(\tilde{x}^*)$. Вопрос: почему переход к пределу валиден?

- От противного: пусть существует некоторое e > 0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится как минимум не полностью в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$.
- Мы уже знаем, что $f(x^*) \ge f(x_\rho^*)$, а значит все x_i^* лежат в ограниченном множестве.
- По теореме Больцана-Вейрштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .
- Опять же по известному факту, что $f(x^*) \ge f(\tilde{x}_i^*)$, можно перейти к пределу сделать вывод, что $f(x^*) \ge f(\tilde{x}^*)$. Вопрос: почему переход к пределу валиден? в силу непрерывности f.

• Уже получили, что $f(x^*) \ge f(\tilde{x}^*)$. Покажем, что дополнительно \tilde{x}^* удовлетворяет исходным ограничениям h. От противного: пусть для какого-то $k=1,\ldots m$, ограничение h_k не выполняется:

$$h_{k}(\tilde{\mathbf{x}}^{*}) \neq 0.$$
 $\left| h_{k}(\tilde{\mathbf{x}}^{*}) \neq 0. \right| \times \text{ good open. } h$
 $\left| h_{k}(\tilde{\mathbf{x}}^{*}) \right| \geq \frac{1}{2} \left| h(\tilde{\mathbf{x}}^{*}) \right| \neq 0 \quad \text{good denote } i^{\circ}$
 $\left| h_{k}(\tilde{\mathbf{x}}) \right| \geq \frac{1}{2} \left| h(\tilde{\mathbf{x}}^{*}) \right| \neq 0 \quad \text{good denote } i^{\circ}$
 $\left| h_{k}(\tilde{\mathbf{x}}) \right| = \int (\tilde{\mathbf{x}}^{*}) + \int \tilde{\mathbf{x}}^{*} \left| \tilde{\mathbf{x}}^{*} \right| \times \int h_{k}(\tilde{\mathbf{x}}^{*}) \times \int \frac{1}{2} \left| h(\tilde{\mathbf{x}}^{*}) \right| = \int (\tilde{\mathbf{x}}^{*}) + \int \tilde{\mathbf{x}}^{*} \left| h(\tilde{\mathbf{x}}^{*}) \right| \times \int \frac{1}{2} \left| h(\tilde{\mathbf{x}}^{*}) \right| = \int (\tilde{\mathbf{x}}^{*}) + \int \tilde{\mathbf{x}}^{*} \left| h(\tilde{\mathbf{x}}^{*}) \right| \times \int \frac{1}{2} \left| h(\tilde{\mathbf{x}}^{*}) \right| = \int (\tilde{\mathbf{x}}^{*}) + \int \tilde{\mathbf{x}}^{*} \left| h(\tilde{\mathbf{x}}^{*}) \right| \times \int \frac{1}{2} \left| h(\tilde{\mathbf{x}}^{*}) \right| = \int (\tilde{\mathbf{x}}^{*}) + \int \tilde{\mathbf{x}}^{*} \left| h(\tilde{\mathbf{x}}^{*}) \right| \times \int \frac{1}{2} \left| h(\tilde{\mathbf{x}}^{*}) \right| = \int \frac{1}{2} \left| h(\tilde{\mathbf{x}}^{*}) \right| \times \int \frac{1}{2} \left| h(\tilde{\mathbf{x}}^{$

- Уже получили, что $f(x^*) \geq f(\tilde{x}^*)$. Покажем, что дополнительно \tilde{x}^* удовлетворяет исходным ограничениям h. От противного: пусть для какого-то $k=1,\ldots m$, ограничение h_k не выполняется: $h_k(\tilde{x}^*) \neq 0$.
- В силу непрерывности h_k : можно заметить, что начиная с достаточно большого номера i, выполнено

$$|h_k(\tilde{x}_i^*)| \geq \frac{1}{2}|h_k(\tilde{x}^*)| > 0.$$

- Уже получили, что $f(x^*) \geq f(\tilde{x}^*)$. Покажем, что дополнительно \tilde{x}^* удовлетворяет исходным ограничениям h. От противного: пусть для какого-то $k=1,\ldots m$, ограничение h_k не выполняется: $h_k(\tilde{x}^*) \neq 0$.
- В силу непрерывности h_k : можно заметить, что начиная с достаточно большого номера i, выполнено

$$|h_k(\tilde{x}_i^*)| \geq \frac{1}{2}|h_k(\tilde{x}^*)| > 0.$$

ullet Вопрос: что в пределе $ilde
ho_i o +\infty$ с

$$f_{\tilde{\rho}_i}(\tilde{x}_i^*) = f(\tilde{x}_i^*) + \tilde{\rho}_i \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\tilde{x}_i^*)?$$

- Уже получили, что $f(x^*) \ge f(\tilde{x}^*)$. Покажем, что дополнительно \tilde{x}^* удовлетворяет исходным ограничениям h. От противного: пусть для какого-то $k=1,\ldots m$, ограничение h_k не выполняется: $h_k(\tilde{x}^*) \neq 0$.
- ullet В силу непрерывности h_k : можно заметить, что начиная с достаточно большого номера i, выполнено

$$|h_k(\tilde{x}_i^*)| \geq \frac{1}{2}|h_k(\tilde{x}^*)| > 0.$$

Вопрос: что в пределе $\tilde{\rho}_i \to +\infty$ с

$$f_{\tilde{\rho}_i}(\tilde{x}_i^*) = f(\tilde{x}_i^*) + \tilde{\rho}_i \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(\tilde{x}_i^*)?$$

Улетает в бесконечность. Пришли к противоречию, так как $f_{\widetilde{\rho}_i}(\widetilde{x}_i^*) \leq f(x^*)$, а значит \widetilde{x}^* удовлетворяет ограничениям.

• Получили, что $\underline{f(x^*)} \ge f(\tilde{x}^*)$ и \tilde{x}^* удовлетворяет ограничениям. Вопрос: что это значит? \swarrow — решение шлегу учучи

• Получили, что $f(x^*) \ge f(\tilde{x}^*)$ и \tilde{x}^* удовлетворяет ограничениям. Вопрос: что это значит? $\tilde{x}^* \in X^*$.

- Получили, что $f(x^*) \ge f(\tilde{x}^*)$ и \tilde{x}^* удовлетворяет ограничениям. Вопрос: что это значит? $\tilde{x}^* \in X^*$.
- Но раз $\tilde{x}^* \in X^*$, то начиная с некоторого номера i элементы \tilde{x}_i^* будут лежать в X_e^* финальное противоречие, которое завершает доказательство.

Итог по классической штрафной функции

- Условная задача превращена в безусловную.
- Увеличение ρ приближает к исходной задаче.

Итог по классической штрафной функции

- Условная задача превращена в безусловную.
- Увеличение ρ приближает к исходной задаче.
- НО даже при большом ρ будет наблюдаться нарушение ограничений, что подходит не для всех задач.

Итог по классической штрафной функции

 $h = A \times b$

• Условная задача превращена в безусловную. 9×10^{-4} • Увеличение ρ приближает к мочетией —

• НО даже при большом ρ будет наблюдаться нарушение ограничений, что подходит не для всех задач.

• И увеличение ρ влечет за собой увеличение обусловленности задачи (как будет расти константа Липшица градиента?). А значит задачу будет сложнее решать.

• Рассмотрим

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $Ax = b,$

где
$$A \in \mathbb{R}^{n \times d}$$
, $b \in \mathbb{R}^n$.

• Рассмотрим

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $Ax = b,$

где
$$A \in \mathbb{R}^{n \times d}$$
, $b \in \mathbb{R}^n$.

• Лагранжиан:

$$L(x, \lambda) = f(x) + \lambda^{T}(Ax - b).$$

• Рассмотрим

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $Ax = b,$

где $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^n$.

• Лагранжиан:

$$L(x,\lambda) = f(x) + \lambda^{T}(Ax - b).$$

• Идея запустить градиентный подъем с шагом α для максимазации двойственной функции $g(\lambda) = \min_{x \in \mathbb{R}^d} L(x, \lambda)$:

$$\lambda^{k+1} = \lambda^k + \alpha \nabla \left(\min_{x \in \mathbb{R}^d} \left[f(x) + \lambda_k^T (Ax - b) \right] \right)$$

• Двойственный подъем:

$$\lambda^{k+1} = \lambda^k + \alpha \nabla \left(\min_{x \in \mathbb{R}^d} \left[f(x) + \lambda_k^T (Ax - b) \right] \right)$$

• Двойственный подъем:

$$\lambda^{k+1} = \lambda^k + \alpha \nabla \left(\min_{\mathbf{x} \in \mathbb{R}^d} \left[f(\mathbf{x}) + \lambda_k^T (A\mathbf{x} - b) \right] \right)$$

• Чуть-чуть по другому:

$$\widehat{x^{k+1}} = \arg\min_{x \in \mathbb{R}^d} \left[f(x) + \lambda_k^T (Ax - b) \right] = \arg\min_{x \in \mathbb{R}^d} L(x, \lambda^k)$$

$$\lambda^{k+1} = \lambda^k + \alpha \nabla \left(f(x^{k+1}) + \lambda_k^T (Ax^{k+1} - b) \right)$$

• Двойственный подъем:

$$\lambda^{k+1} = \lambda^k + \alpha \nabla \left(\min_{x \in \mathbb{R}^d} \left[f(x) + \lambda_k^T (Ax - b) \right] \right)$$

• Чуть-чуть по другому:

$$\overbrace{x^{k+1}} = \arg\min_{x \in \mathbb{R}^d} \left[f(x) + \lambda_k^T (Ax - b) \right] = \arg\min_{x \in \mathbb{R}^d} L(x, \lambda^k)$$

$$\lambda^{k+1} = \lambda^k + \alpha \nabla \left(\sqrt{(\lambda \lambda^{k+1})} + \lambda_k^T (Ax^{k+1} - b) \right)$$

ИЛИ

$$\lambda^{k+1} = \lambda^k + \alpha(Ax^{k+1} - b)$$

Аугментация

• Уже знаем, что такая «добавка» не меняет задачу:

$$\min_{x \in \mathbb{R}^d} f(x) + \frac{\rho}{2} ||Ax - b||_2^2,$$

s.t. $Ax = b$,

Улучшают физику задачу за счет «регуляризации», в первую очередь трюк для практики.

• Лагранжиан:

$$L_{\rho}(x,\lambda) = f(x) + \lambda^{T}(Ax - b) + \frac{\rho}{2}||Ax - b||_{2}^{2}.$$

Аугментация

• Уже знаем, что такая «добавка» не меняет задачу:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) + \frac{\rho}{2} ||A\mathbf{x} - b||_2^2,$$

s.t. $A\mathbf{x} = b$,

Улучшают физику задачу за счет «регуляризации», в первую очередь трюк для практики.

• Лагранжиан:

$$L_{\rho}(x,\lambda) = f(x) + \lambda^{T}(Ax - b) + \frac{\rho}{2} ||Ax - b||_{2}^{2}.$$

• Двойственный подъем:

$$x^{k+1} = \arg\min_{x \in \mathbb{R}^d} \widehat{L_{
ho}(x, \lambda^k)}, \quad \lambda^{k+1} = \lambda^k + \widehat{
ho}(Ax^{k+1} - b)$$

Шаг специально заменен на ρ , чтобы подбирать один параметр для метода.

• Чуть более общая задача:

$$\min_{x \in \mathbb{R}^{d_x}, y \in \mathbb{R}^{d_y}} \underbrace{f(x) + g(y)}_{s.t. \quad Ax + By = c},$$
(1)

где $A \in \mathbb{R}^{n \times d_{x}}$, $B \in \mathbb{R}^{n \times d_{y}}$, $c \in \mathbb{R}^{n}$.

min
$$L(AX) + V(X)$$
 $X \in \mathbb{R}^d$
 $L(Y) + V(X)$
 $L(Y) + V(X)$

• Чуть более общая задача:

$$\min_{\substack{x \in \mathbb{R}^{d_x}, y \in \mathbb{R}^{d_y} \\ \text{s.t. } Ax + By = c,}} f(x) + g(y), \tag{1}$$

где
$$A \in \mathbb{R}^{n \times d_{\chi}}$$
, $B \in \mathbb{R}^{n \times d_{y}}$, $c \in \mathbb{R}^{n}$.

• Аугментация

$$\min_{x \in \mathbb{R}^{d_x}, y \in \mathbb{R}^{d_y}} f(x) + g(y) + \frac{\rho}{2} ||Ax + By - c||_2^2,$$
s.t. $Ax + By = c$,

• Чуть более общая задача:

$$\min_{x \in \mathbb{R}^{d_x}, y \in \mathbb{R}^{d_y}} f(x) + g(y),$$
s.t. $Ax + By = c$,
$$(1)$$

где $A \in \mathbb{R}^{n \times d_{\chi}}$, $B \in \mathbb{R}^{n \times d_{y}}$, $c \in \mathbb{R}^{n}$.

• Аугментация

$$\min_{x \in \mathbb{R}^{d_x}, y \in \mathbb{R}^{d_y}} f(x) + g(y) + \frac{\rho}{2} ||Ax + By - c||_2^2,$$

s.t. $Ax + By = c$,

• Лагранжиан:

$$L_{\rho}(x, y, \lambda) = f(x) + g(y) + \lambda^{T}(Ax + By - c) + \frac{\rho}{2}||Ax + By - c||_{2}^{2}$$

Легко видеть, что такой Лагранжиан порождает выпукло-вогнутую седловую задачу.

 Двойственный подъем, он же Alternating Direction Method of Multipliers (ADMM):

Алгоритм 1 ADMM

Вход: стартовая точка $x^0 \in \mathbb{R}^{d_x}, y^0 \in \mathbb{R}^{d_y}, \lambda^0 \in \mathbb{R}^n$, количество итераций K

1: **for**
$$k = 0, 1, ..., K - 1$$
 do

2:
$$x^{k+1} = \underset{x \in \mathbb{R}^{d_x}}{\operatorname{arg min}_{x \in \mathbb{R}^{d_x}}} L_{\rho}(x, y^k, \lambda^k)$$
3:
$$y^{k+1} = \underset{y \in \mathbb{R}^{d_y}}{\operatorname{arg min}_{y \in \mathbb{R}^{d_y}}} L_{\rho}(x^{k+1}, y, \lambda^k)$$

3:
$$y^{k+1} = \operatorname{arg\,min}_{v \in \mathbb{R}^{d_y}} L_{\rho}(x^{k+1}, y, \lambda^k)$$

4:
$$\lambda^{k+1} = \lambda^k + \rho \left(Ax^{k+1} + By^{k+1} - c \right)$$

5: end for

Выход:
$$\frac{1}{K} \sum_{k=1}^{K} x^k, \frac{1}{K} \sum_{k=1}^{K} y^k, \frac{1}{K} \sum_{k=1}^{K} \lambda^k$$

 Двойственный подъем, он же Alternating Direction Method of Multipliers (ADMM):

Алгоритм 2 ADMM

Вход: стартовая точка $x^0 \in \mathbb{R}^{d_x}, y^0 \in \mathbb{R}^{d_y}, \lambda^0 \in \mathbb{R}^n$, количество итераций K 1: for $k=0,1,\ldots,K-1$ do 2: $x^{k+1}=\arg\min_{x\in\mathbb{R}^{d_x}}L_{\rho}(x,y^k,\lambda^k)$ 3: $y^{k+1}=\arg\min_{y\in\mathbb{R}^{d_y}}L_{\rho}(x^{k+1},y,\lambda^k)$ 4: $\lambda^{k+1}=\lambda^k+\rho\left(Ax^{k+1}+By^{k+1}-c\right)$ 5: end for Выход: $\frac{1}{K}\sum_{k=1}^K x^k, \frac{1}{K}\sum_{k=1}^K y^k, \frac{1}{K}\sum_{k=1}^K \lambda^k$

- Alternating Direction минимизация по x и y происходит не одновременно, а альтерированно: одна за другой.
- ullet Multipliers наличие двойственных множителей Лагранжа λ

• В доказательстве будем использовать немного измененную версию:

Алгоритм 3 ADMM

Вход: стартовая точка $x^0 \in \mathbb{R}^{d_x}, y^0 \in \mathbb{R}^{d_y}, \lambda^0 \in \mathbb{R}^n$, количество итераций K

1: **for**
$$k = 0, 1, ..., K - 1$$
 do

2:
$$extstyle y^{k+1} = \operatorname{\mathsf{arg}} \min_{y \in \mathbb{R}^{d_y}} L_{
ho}(x^k, y, \lambda^k)$$

3:
$$\lambda^{k+1} = \lambda^k + \rho (Ax^k + By^{k+1} - c) \leftarrow$$

2:
$$y^{k+1} = \operatorname{arg\,min}_{y \in \mathbb{R}^{d_y}} L_{\rho}(x^k, y, \lambda^k)$$
3:
$$\lambda^{k+1} = \lambda^k + \rho \left(Ax^k + By^{k+1} - c\right)$$
4:
$$x^{k+1} = \operatorname{arg\,min}_{x \in \mathbb{R}^{d_x}} L_{\rho}(x, y^{k+1}, \lambda^{k+1})$$

5: end for

Выход:
$$\frac{1}{K} \sum_{k=1}^{K} x^k, \frac{1}{K} \sum_{k=1}^{K} y^k, \frac{1}{K} \sum_{k=1}^{K} \lambda^k$$

Вид Лагранжиана для удобства:

$$L_{\rho}(x, y, \lambda) = f(x) + g(y) + \lambda^{T}(Ax + By - c) + \frac{\rho}{2}||Ax + By - c||_{2}^{2}$$

$$= -L\left(x,\lambda\right), z^{k} - z >$$

$$= -L\left(x,\lambda\right), x^{k} - \lambda$$

$$= -L\left(x,\lambda\right) + L\left(x,\lambda\right)$$

$$= -L\left(x,\lambda\right) + L\left(x,\lambda\right)$$

$$= -L\left(x,\lambda\right) + L\left(x,\lambda\right)$$

$$= -L\left(x,\lambda\right) + L\left(x,\lambda\right)$$

Сходимость ADMM

Сходимость ADMM

Если в задаче (1) функции f и g являются выпуклыми и дружественными с точки зрения вычислений arg min, то ADMM имеет следующую оценку сходимости для любого $x \in \mathbb{R}^{d_x}$, $y \in \mathbb{R}^{d_y}$, $\lambda \in \mathbb{R}^n$

$$\underbrace{L_0}\left(\frac{1}{K}\sum_{k=1}^K x^k, \frac{1}{K}\sum_{k=1}^K y^k, \lambda\right) - L_0\left(x, y, \frac{1}{K}\sum_{k=1}^K \lambda^k\right) \leq \underbrace{\frac{1}{2K}\|z^0 - z\|_{P}^2},$$

где
$$L_0$$
 – Лагранжиан без аугментации, $P = \left(\begin{array}{cccc} \rho A'A & 0 & -A' \\ 0 & 0 & 0 \\ -A & 0 & \frac{1}{\rho}I \end{array} \right)$,

$$z^0 = \left(\begin{array}{c} x^0 \\ y^0 \\ z^0 \end{array}\right)$$

• ADMM является одним из ключевых и популярных методов оптимизации.

- ADMM является одним из ключевых и популярных методов оптимизации.
- Реализован во многих солверах и часто используется, как метод по умолчанию.

- ADMM является одним из ключевых и популярных методов оптимизации.
- Реализован во многих солверах и часто используется, как метод по умолчанию.
- Нестандартная формулировка самой задачи, для которой придуман ADMM оказывается вбирает в себя много важных частных случаев. «Непривычная» переменная у часто играет роль вспомогательной переменной.

- ADMM является одним из ключевых и популярных методов оптимизации.
- Реализован во многих солверах и часто используется, как метод по умолчанию.
- Нестандартная формулировка самой задачи, для которой придуман ADMM оказывается вбирает в себя много важных частных случаев. «Непривычная» переменная у часто играет роль вспомогательной переменной.
- Здесь штраф дополнительная модификация для стабилизации и ускорения сходимости. При этом не требуется брать ρ обязательно очень большим.