Why Data Engineering?

Presenter: Gad August

The Rise of Big Data

Expansion of Data Sources

Big data growth is driven by diverse sources like social media, IoT, e-commerce, sensors, and APIs generating vast data daily.

Variety and Volume of Data

Organizations handle structured, semi-structured, and unstructured data measured in quintillions of bytes, creating integration challenges.

Importance of Real-Time Processing

Real-time data processing reduces latency, enabling immediate analysis for applications like fraud detection and personalized experiences.

What is Data Engineering?

Definition of Data Engineering

Data engineering involves designing and maintaining data pipelines and infrastructure to ensure data is accessible and reliable for analysis.

Key Responsibilities of Data Engineers

Develop scalable data architecture, streamline data acquisition from various sources, Ingestion, storage, transformation, integration, processing, orchestration, and quality governance.

The difference between a data engineer, data scientist, machine learning engineer and data analytics

Role of Data Engineer

Data engineers design and maintain data pipelines and infrastructure to ensure reliable data flow for analysis and modeling.

Role of Data Scientist

Data scientists analyze complex data, build predictive models, and generate insights to support business decisions.

Role of Machine Learning Engineer

Machine learning engineers deploy and maintain scalable ML models, bridging data science and software engineering.

Role of Data Analyst

Data analysts create reports and visualizations from structured data to help stakeholders make informed decisions.

Real-World Applications

Role of Data Engineering in Industry

Data engineering supports
major companies by enabling
efficient handling of large
data volumes and real-time
processing for personalized
customer experiences.

Examples from Leading Companies

Netflix, Amazon, and Uber use data engineering for real-time analytics, dynamic pricing, and optimized service delivery to enhance user engagement and profitability.

Importance in Modern Organizations

Data Engineering Lifecycle

Tools of the Trade (Microsoft Fabric Data Engineer)

Core Workflow Orchestration

Azure data factory is widely used for authoring, scheduling, and monitoring complex data pipelines with flexibility and scalability.

High-Performance Data Processing

Apache Spark supports batch, streaming, machine learning, and graph processing with in-memory computing for fast data computation.

Real-Time Data Streaming

Apache Kafka enables high-throughput, fault-tolerant real-time data feeds, essential for streaming analytics and event-driven architectures.

Databases: SQL vs NoSQL

ETL vs ELT

Overview of ETL and ELT

ETL extracts, transforms, then loads data, while ELT extracts, loads, then transforms data within the target system.

Advantages and Challenges

ETL ensures data quality
before loading but may cause
latency; ELT enables faster
loading and flexible
transformations but requires
strong target system
resources.

Batch vs Stream Processing

Batch Processing Overview

Batch processing handles large data volumes collected over time, processing them at scheduled intervals for complex computations and in-depth analytics.

Stream Processing Overview

Stream processing continuously ingests and analyzes data in real-time, enabling instant insights and rapid decision-making for dynamic applications.

Cloud Computing?

Definition of Cloud Computing

Cloud computing delivers computing services over the internet, enabling faster innovation and flexible resource use without owning infrastructure.

Cloud Deployment Models

Public, private, and hybrid clouds offer different levels of resource sharing and control to meet diverse business needs.

Leading Cloud Providers

AWS, Microsoft Azure, and Google Cloud Platform dominate with unique strengths in services, integration, and analytics.

Cloud Data Engineering

Cloud platforms provide scalable tools for building data pipelines, warehousing, ETL, and real-time analytics.

Major Cloud Data Engineering Providers

Leading Cloud Providers in Data Engineering

The top three cloud providers are AWS,
Microsoft Azure, and
Google Cloud Platform,
each offering specialized data services.

Amazon Web Services(AWS) Overview

AWS provides an ecosystem with services like EMR, Kinesis, Redshift, and Glue, excelling in scalability and real-time analytics.

Microsoft Azure Capabilities

Azure focuses on
enterprise and hybrid
solutions, integrating well
with Microsoft products
and offering Microsoft
fabric, and Power BI

Google Cloud Platform (GCP) Strengths

analytics and machine learning tools such as Dataproc, Dataflow, BigQuery, and Cloud Composer, with a user-friendly interface.

Infrastructure as Code & Scalability in Microsoft fabric data engineering

Role of Infrastructure as Code in Data Engineering

Infrastructure as Code (IaC) automates cloud infrastructure management, enhancing deployment efficiency and consistency in data engineering.

Tools and Techniques for IaC in Microsoft Fabric

Tools like Terraform and Azure
Resource Manager enable automated
deployment and management of data
pipelines and resources in Microsoft
Fabric.

Scalability through Automation and Autoscaling

Combining IaC with autoscaling features, such as Spark cluster scaling, ensures flexible resource adjustment to meet dynamic data workloads.

Security & Compliance Microsoft Fabric data engineering

Security Framework in Microsoft Fabric

Microsoft Fabric integrates robust security measures to protect data engineering workflows and assets.

Compliance Standards Adherence

The platform complies with industry standards and regulations to ensure data governance and privacy.

Data Protection Mechanisms

Advanced encryption, access controls, and monitoring tools safeguard data throughout its lifecycle.

Future Of Jobs Report 2025

2025 Job Market Trends

Data engineer demand grows with cloud, big data, and Al importance.

Key Skills Required

Programming in Python, SQL, Scala, Java; cloud skills in Azure, AWS.

Career Pathways

Roles include Data Engineer,
Analytics Engineer, Platform
Engineer.

2

3

5

Additional Skills

ETL/ELT pipelines,
SQL/NoSQL, real-time
streaming, infrastructure as
code.

Future Outlook

Strong growth driven by cloud computing and real-time analytics focus.

Industry Demand

High demand in finance, healthcare, retail, and tech startups.

Skills in Demand

Career Pathways

Emergence of Data Engineering

Data engineering grows rapidly due to increasing data volumes and reliance on data-driven decisions.

Entry-Level Responsibilities

Focus on building data
pipelines, ETL/ELT processes,
and designing data
architectures.

Senior and Leadership Roles

Opportunities to become Data
Architect, Lead Data Engineer,
or Chief Data Officer.

Core Roles in Data Engineering

Includes Data Engineer,
Analytics Engineer, Platform
Engineer, and Al/Machine
Learning Engineer.

Mid-Level Progression

Advance to senior roles leading scalable platform design and complex data workflows.

Skills and Qualifications

Master programming, big data tools, cloud platforms, governance, and obtain certifications.

Final Thoughts & Resources

The Role of Data Engineering

Data engineering builds robust data architectures and pipelines, enabling reliable and high-quality data for analysis and decision-making.

Links:

Future of Jobs report 2025
Uk Salary Trends Report
Future Trends for Success
Microsoft Learn

Continuous Learning and Resources

Staying current with cloud, real-time processing, and Al requires ongoing learning through MOOCs, product documentation, blogs, and professional certifications.

Q&A and Contact Information

Q&A Sessions

Contact Information

What's app: 07778419886

