1. A farmer's available owns \bar{l} acres of land. She has the option of growing crop 1 (*soya*) or crop 2 (*wheat*) on the land. For a crop i, output is denoted by y_i and land allocated to the crop is denoted by l_i . The net profit¹ per unit of output for crop i is r_i . The production function for the crops are given by

$$y_i = l_i^{a_i}$$
 $a_i \in (0, 1), i = 1, 2.$

What is the optimal land allocation?

2. A firm produces output y and pays £10 per unit for input x_1 and £8 for input x_2 used. The production function is given by

$$y = (0.4x_1^{-2} + 0.6x_2^{-2})^{-1/2}$$

What combination of inputs x_1 and x_2 should the firm use if it wants to produce one unit of output y at minimum cost?

3. Solve the following problem:

Minimise
$$(rK + wL)$$

subject to $F(K, L) = \bar{q}$.

for a production function of the form

$$F(K,L) = \left(aK^{-2} + bL^{-2}\right)^{-1/2}$$

where r is the price of capital K, w is the price of labour L and \bar{q} is a constant.

4. A consumer's utility function is given by

$$U(x_1, x_2) = b_1 \ln (x_1 - c_1) + b_2 \ln (x_2 - c_2)$$

and her income m is such that

$$p_1 c_1 + p_2 c_2 < m.$$

where p_1 and p_2 are the prices for goods x_1 and x_2 respectively and b_1 , b_2 , c_1 and c_2 are positive constants.

- (a) Interpret the constants the c_1 and c_2 .
- (b) Draw the indifference curve for the consumer

¹price minus variable costs

- (c) Obtain the demand function for x_1 and x_2 .
- 5. Obtain the demand function for goods x_1 and x_2 by solving the following problem:

Maximise
$$u = x_1^{\alpha} x_2^{1-\alpha}$$
 $0 < \alpha < 1$ subject to $\bar{m} = p_1 x_1 + p_2 x_2$

where \bar{m} is a constant denoting consumer's income and p_1 and p_2 are the price of goods x_1 and x_2 .

6. Obtain the demand function for goods x_1 and x_2 by solving the following problem:

Minimise
$$e = p_1x_1 + p_2x_2$$

subject to $\bar{u} = x_1^{\alpha}x_2^{1-\alpha}$

where e is the expenditure and \bar{u} is the constant required level of subsistence utility and p_1 and p_2 are the price of goods x_1 and x_2 .

Readings

Bradley, T., and P. Patton (2002). *Essential Mathematics for Economics and Business*. Chichester, West Sussex, England: Wiley.

Pemberton, M., and N. Rau (2007). *Mathematics For Economists: An Introductory Textbook.* Manchester University Press.

Chiang, A. C. (1984) *Fundamental Methods of Mathematical Economics*. 3rd edition. McGraw-Hill Publishing Co.