WORLD INTELLECTUAL PROPERTY ORG International Bureau

TION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: A23L 1/302, 1/304, A61K 37/48 A61K 33/00

A2

(11) International Publication Number:

WO 91/11117

(43) International Publication Date:

8 August 1991 (08.08.91)

(21) International Application Number:

PCT/US91/00719

(22) International Filing Date:

4 February 1991 (04.02.91)

(30) Priority data:

475,641

US 5 February 1990 (05.02.90)

(71) Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM [US/US]: 201 West Seventh Street, Austin, TX 78701 (US).

(72) Inventors: SLAGA, Thomas, J.; 2006 Plumbrook Drive, Austin, TX 78746 (US). DELUCA, Daryl, L.; 2306 Pebbledowne Circle, Sugarland, TX 77478 (US). SPARKS, William, S.; 5551 Huisache, Bellaire, TX 77401 (US).

(74) Agent: HODGINS, Daniel, S.: Arnold, White & Durkee, P.O. Box 4433, Houston, TX 77210 (US).

(81) Designated States: AT, AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH, CH (European patent), CM (OAPI patent), DE, DE (European patent), DK, DK (European patent), ES, ES (European patent), FI, FR (European patent), GA (OAPI patent), GB, GB (European patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU, LU (European patent), MC, MG, ML (OAPI patent), MR (OAPI patent), MW, NL, NL (European patent), NO, RO, SD, SE, SE (European patent), SN (OAPI patent), SU, TD (OAPI patent), TG (OAPI pa-

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: DIETARY SUPPLEMENTS COMPRISING VITAMINS AND MINERALS

(57) Abstract

The present invention concerns a formulation of vitamins, minerals and other beneficial supplements. It is believed that the formulations of the present invention will not only extend longevity but also protect against diseases such as certain cancers and cardiovascular disorders as well as to facilitate immunological integrity in humans. More specifically, the invention is directed to a formulation and methods of manufacturing and administering a formulation containing vitamins and minerals in association with antioxidants, fish oils, enzymes, and amino acids. The formulations of the present invention provide synergistic relationships which have not previously been reported. As a preferred embodiment, the formulations of the present invention are manufactured as a sustained-release tableted dietary supplement and are intended as daily supplements.

BNSDOCID: <WO 9111117A2 1 >

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	· JP	Japan	. SD	Sudan
CG	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
		KR	Republic of Korea	SU.	Soviet Union
CI	. Côte d'Ivoire		•		
CM	Cameroon	LI	Liechtenstein	TD	Chad
CS	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE	Germany	LU	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		

TIME RELEASE FORMULATION OF VITAMINS, MINERALS AND OTHER BENEFICIAL SUPPLEMENTS

10

Vitamins and minerals may be broadly defined as substances that are essential for the maintenance of normal metabolic function but are not synthesized in the body. These substances must be furnished from an exogenous source. A healthy individual ingesting a well-balanced diet receives adequate amounts of vitamins and minerals from food. Vitamins obtained in this manner are not generally regarded as drugs.

20

25

15

However, there are many situations in which the concentration of one or more vitamins or minerals in the body tissues may be suboptimal. When such circumstances arise or can be anticipated, it is the common practice to administer vitamins or minerals in a chemically pure form. When employed in this manner, vitamins and minerals may be regarded as drugs and a knowledge of their pharmacological properties is desirable. For example, large doses of various vitamins are frequently employed for the treatment of disorders that are not etiologically related to vitamin deficiency. The implication is that such large doses may exert pharmacodynamic actions that are useful in therapy.

35

30

It should be noted, however, that excessive administration of certain vitamins, notably vitamin A, can cause untoward toxic effects.

In today's fast paced society many physicians and dieticians believe that a daily dietary vitamin and mineral

supplement acts prophylactically to prevent pathologies associated with vitamin and mineral deficiencies. several vitamins and include typically supplements multi-vitamin to as referred are minerals, and Examples of these preparations include Oneformulations. A-Day® and Centrum® multi-vitamins. Researchers have multi-vitamins include large which that suggested quantities of vitamins and minerals are effective both for prophylactic purposes and for the treatment of an enormous variety of illnesses. Many millions of individuals living States regularly ingest multi-vitamin the United preparations.

some of these multi-vitamin preparations contain amounts of vitamins and minerals that are in excess of the RDA daily requirements. In the case of the water-soluble vitamins, there is little harm done to the body because of the low toxicity of this class of compounds. The low toxicity of the water-soluble vitamins is attributable to the fact that excess quantities of these substances are rapidly excreted in the urine. In the case of the lipid-soluble vitamins, the compounds accumulate in the body fat and can cause untoward toxic effects.

It is extremely important to distinguish between supplemental and therapeutic vitamin preparations. latter contains much larger quantities of the individual the supplemental minerals do than and vitamins directed to invention is present preparations. The supplemental preparations.

The use of dietary multi-vitamin supplements should be considered by the physician in a wide variety of situations. Such situations may result from (1) inadequate vitamin intake, (2) mal-absorption syndromes, and (3) increased tissue requirements.

5

10

15

20

25

30

WO 91/11117 PCT/US91/00719

- 3 -

Vitamin deficiency due to an inadequate intake arises in a variety of circumstances. There are still large parts of the world and even considerable areas in the United States where, owing to poverty, the population eats a diet inadequate in terms of vitamin content. Moreover, there are areas where the prevalence in the diet of particular type of food results in a relatively high incidence of vitamin deficiencies. Eccentric diets psychiatric disturbance, individual resulting from idiosyncrasies, religious beliefs, or food fads are other major causes of vitamin deficiency. A decrease in food consumption because of excess use of alcoholic beverages, poor appetite, dieting to combat obesity, or restricted diets prescribed by physicians for the management of specific diseases represents a further group of situations in which vitamin deficiency can arise.

A disturbance in absorption of vitamins is also seen in a variety of conditions. Examples are diseases of the liver and biliary tract, prolonged diarrhea from any cause, hyperthyroidism, pernicious anemia, and a variety of other disorders of the digestive system. Moreover, since a substantial proportion of certain vitamins is provided by the bacteria of the gastrointestinal tract, treatment with antimicrobials that alter the intestinal bacterial flora may lead inevitably to a decreased vitamin absorption.

Increased tissue requirements for vitamins also occur under a variety of conditions so that a nutritional deficiency may develop on a diet that had previously been adequate. Such situations can occur in both health and disease. In healthy individuals, for example, there is a greater requirement for various nutrients, including vitamins, during growth, during periods of hard physical work, exercise, during pregnancy, lactation, and menstruation. Diseases associated with an increased metabolism, such as hyperthyroidism, and conditions accompanied by fever or

5

10

15

20

25

30

tissue wasting also increase the body's requirements for vitamins. There is also good evidence that vitamin requirements increase during stress and after injury.

Multiple-vitamin therapy, using supplemental dietary multi-vitamins, is desirable in a variety of situations. Since deficiency of a single vitamin is rarely encountered clinically, it is customary practice in cases of suspected vitamin deficiency, as well as in prophylactic treatment, to recommend that multiple-vitamin therapy be administered. Typical of the multi-vitamins available are One-A-Day and Centrum multi-vitamins. (Table 1). Multi-vitamins such as these provide a great number of the essential vitamins and minerals needed by healthy individuals. Further, these preparations include electrolytes, and trace elements. Recently, it has been determined that antioxidants, and free radical scavenging agents are protective against the development of certain cancers. Although, multi-vitamin preparations currently available include many needed vitamins and minerals, they do not include the antioxidants and/or free radical scavengers which have been shown to enhance the immune system and to prevent certain cancers, cardiovascular disorders, inflammatory diseases and to slow currently available multi-vitamin Further, preparations do not include cardio-protective inositol or Omega-3 fish oils. Still further, several enzymes, amino acids, and dietary supplements which are known to be necessary and beneficial in supplementing an individual's diet are not included in presently available multi-vitamins. Accordingly, a new multi-vitamin dietary supplement is needed which incorporates many of these beneficial ingredients into a stable pharmaceutical preparation.

The present invention concerns development of a multi-vitamin dietary supplement formulation which includes several dietary supplements which are cardio- and cancer-protective as well as immunostimulatory. By including

W () 31/1111/

5

10

15

20

25

30

these cardio- and cancer-protective immunostimulatory compounds into a multi-vitamin formulation, the present invention advantageously provides the general population the benefits of recent scientific research which has discovered that several agents are, for example, cardio-and cancer-protective. Accordingly, it is believed that the inventive methods and formulations will provide the general population with an improved multi-vitamin formulation capable of reducing the incidence of diseases such as heart disease and cancer while enhancing longevity and the immune system.

The present invention is directed to a formulation and other beneficial vitamins. minerals supplements. More specifically, the invention is directed methods manufacturing formulation of and administering a formulation containing vitamins minerals in association with antioxidants, fish oils, food concentrate containing naturally occurring anti-oxidizing enzymes such as catalase and superoxide dismutase, for The formulations of the present example, and amino acids. invention exploit synergistic relationships which have not previously been reported.

One aspect of the present invention is directed to a multi-vitamin and mineral supplement which includes at least one antioxidant selected from the group consisting of BHT, BHA, propyl gallate, and sodium benzoate.

Several of the antioxidants, vitamins and minerals contained in the formulation have been shown to inhibit the induction of cancer at several stages in the multistage process. For example, B-carotene, glutathione, cysteine, BHA, BHT, Vitamins A, C and E, as well as selenium, inhibit the tumor initiation, promotion and progression stages of cancer. The synergistic effects of BHA and Vitamin E, for example, are related to the observations that BHA inhibits

10

15

20

25

30

tumor promoter-induced polyamine synthesis, and Vitamin E inhibits promoter-induced hyperplasia, thus leading to a synergistic effect. Furthermore, Vitamins A, C and E, selenium, BHA, BHT, and propyl gallate have been shown to inhibit tumor initiation by counteracting the covalent binding of carcinogen to DNA and the mutagenic effect of carcinogens.

A further aspect of the present invention is directed a multi-vitamin and mineral supplement including antioxidants in combination with certain preferred amino acids selected from the group consisting of glutathione, cysteine, methionine, glutamine, and taurine. According to a preferred embodiment, the inventive formulation further following beneficial of the includes at least one ingredients: omega-3 fish oil, para-aminobenzoic acid, superoxide dismutase, catalase (these two enzymes being food concentrates), bioflavonoids, preferably in inositol.

Preferably, the supplement of the present invention includes (but is not limited to) the following vitamins and minerals in an amount equal to or greater than the minimum daily requirement in man: vitamin C, folic acid, vitamin B_1 , vitamin B_2 , niacinamide, vitamin B_6 , vitamin B_{12} , vitamin D_3 , biotin, pantothenic acid, vitamin K_1 , calcium, iodine, potassium, iron, magnesium, copper, zinc, manganese, chromium, molybdenum, selenium, vanadium, silicon, and boron.

An important aspect of the present invention is directed to a method for preventing cancer and cardiovascular disorders as well as increasing longevity and augmenting the immune system in a human subject. The method including the step of administering daily an oral sustained release tablet including the dietary multi-

5

10

15

20

25

30

10

15

20

25

30

35

vitamin and mineral supplement including antioxidants and other beneficial substances of the present invention.

A still further aspect of the present invention is directed to the production of a sustained-release tableted dietary supplement which is intended to be administered one to three times daily.

- FIG. 1 graphically represents, as a function of % potassium released versus time, the dissolution of Centrum tablets in gastric juice.
- FIG. 2 graphically represents, as a function of % potassium released versus time, the dissolution of the sustained release tablets of the present invention in intestinal juice.
- FIG. 3 graphically represents, as a function of % ascorbic acid released versus time, the dissolution of the sustained release tablets of the present invention in intestinal juice.
- FIG. 4 graphically represents, as a function of % niacinamide released versus time, the dissolution of the sustained release tablets of the present invention in intestinal juice.
- FIG. 5 graphically represents, as a function of pyridoxine % released versus time, the dissolution of the sustained release tablets of the present invention in intestinal juice.

The present invention concerns a formulation of vitamins, minerals and other beneficial supplements. It is believed that the formulations of the present invention will not only extend longevity but also protect against certain cancers, immunological disorders and cardiovascular

disorders in humans. Generally, the invention is directed formulation and methods of manufacturing administering a formulation containing vitamins minerals in association with antioxidants, fish oils, anticontained enzymes preferably oxidizing concentrates, and amino acids. It is believed that the formulations of the present invention will be beneficial in treating or preventing several pathologies, deficiencies. certain cancers, vitamin various immunological disorders, and cardiovascular disease.

The formulations of the present invention exploit some synergistic relationships which have not previously been reported. The formulations of the present invention are particularly well adapted as a daily dietary supplement. The present invention further involves a method for administering the formulations of the present invention to a person in need thereof. The preparation of the present formulations is also a component of the present invention.

Table 1 shows the anti-cancer effects of various components of the present formulation, individually and in synergistic combination.

BNSDOCID: <WO___9111117A2_I_>

5

10

15

20

- 9 -

Table 1

Effects of antioxidants on Skin Tumor Promotion^a

Antioxidant (mg)	Tumor Response (% Inhibition)
Control (DMBA + TPA)	0
BHA (0.5)	35
BHT (0.5)	32
Propyl gallate (0.5)	40
Vitamin E (0.1)	25
Vitamin C (0.5)	30
B-carotene (0.5)	20
Selenium (0.004)	23
BHA (0.5) + BHT (0.5)	92
BHA $(0.5) + Vit E (0.1)$	86
BHA (0.5) + Vit C (0.5)	98
Vit E (0.1) + Selenium (0.004)	94
Vit E (0.1) + B-carotene (0.5)	94
BHA (0.5) + B-carotene (0.5)	87
BHA(0.1)+BHT(0.1)+Vit E(0.1)+B-carote	ne(0.1) 97
	Control (DMBA + TPA) BHA (0.5) BHT (0.5) Propyl gallate (0.5) Vitamin E (0.1) Vitamin C (0.5) B-carotene (0.5) Selenium (0.004) BHA (0.5) + BHT (0.5) BHA (0.5) + Vit E (0.1) BHA (0.5) + Vit C (0.5) Vit E (0.1) + Selenium (0.004) Vit E (0.1) + B-carotene (0.5) BHA (0.5) + B-carotene (0.5)

*30 female mice (SENCAR) per group were used. The mice were initiated with 10 nmoles of 7,12-dimethylbenzanthracene and promoted with 1 ug of TPA 2x/wk. The antioxidants were applied simultaneously with TPA for the duration of experiment (30 weeks).

Table 2 illustrates the effects of certain antioxidant components of the present formulation on all the known spontaneous tumor formations and longevity in mice.

BNSDOCID: <WO___9111117A2_I_>

30

20

25

30

- 10 -

Table 2 Effects of Antioxidants on Aging and Spontaneous Tumor Formation in Mice*

5			
•	Antioxidantsb	Spontaneous Tumor Formation (% of Control)	Increase in Lifespan (%)
10	Normal Diet	100	-

BHA 124 56 BHT

46

127 62 Propyl gallate

*100 mice (SENCAR) (50 males and 50 females) were used for each group. The groups receiving the antioxidants had them introduced in the normal laboratory chow (Wayne Research Animal Diet) at 0.5%.

132

Core ingredients in the most preferred formulation of the present invention are antioxidants and/or free radical scavenging agents of different types which protect against many kinds of free radicals and unstable molecules. synergistically with other they work cases, some antioxidants, vitamins, and minerals. The following are the Core ingredients:

bioflavonoids 35 L-glutathione (reduced) L-Cysteine Potassium sorbate/sorbic acid BHA BHT 40 Propyl gallate Sodium benzoate Taurine D L-Methionine L-glutamine 45

SOD and Catalase (preferably contained in food concentrate)

BNSDOCID: <WO___9111117A2_I_>

10

15

20

25

30

35

The significance and content of the Core ingredients may be described as follows:

Bioflavonoids are biologically active compounds that have been shown to act as antioxidants, protecting vitamin from oxidation. and other components Certain bioflavonoids have been shown to have a protective effect The dosage of the bioflavonoid against some cancers. included is from about 2 to 200 mg, more preferably, from about 25 to about 150 mg, and most preferably, about 50 mg. Preferable sources of bioflavonoid include bioflavonoid, vitamin P, vitamin P complex, rutin, orange peel bioflavonoid, grapefruit peel bioflavonoid, bioflavonoid, lime bioflavonoid, flavonoids, kaempferol, narigenin, apigenin, naringin, naringenis, myricetin, delphinidin, quercetin, phloretin, cyanic, catechin, morin, phloridzin, phloretin, 3-hydroxyflavones, 3-deoxyflavonols, isorhamnetin, luteolin, tricin, chrysoeriol, hesperitin, techtrochrysin, silybin, eriodictyon, taxifolin, pinocembrim, galangin, robinin, diosmetin, kaempferide, fisetin, rhamnetin, and 3-0-methyl catechin. preferable source is, however, citrus bioflavonoid.

It is believed that glutathione may protect normal cells against radiation, free radicals and other toxic materials, Functionally, glutathione is the and certain cancers. proton donor used by glutathione peroxidase to remove free radicals. Forms of glutathione useful in the practice of include: L-glutathione, the present invention ethylglutathione, S-butylglutathione, S-decylglutathione, S-methylglutathione, S-heptylglutathione, propylglutathione, S-pentylglutathione, S-octylglutathione However, most preferably, S-nonylglutathione. glutathione is included in the formulations of the present invention as reduced L-glutathione. The dosage glutathione included to the inventive formulation

preferably from about 1 to about 20 mg, and most preferably, about 10 mg.

L-Cysteine is an amino acid which has antioxidant properties and plays an important role in glutathione peroxidase activity. Cysteine also appears to have certain anticancer activity. Preferably, cysteine is included in the present invention as L-cysteine HCl, L-cysteine, L-acetyl cysteine, L-cysteine ethylester monohydrochloride, DL-cysteine, DL-cysteine HCl, L-cysteine methylester. However, it is most preferred, that cysteine is included as L-cysteine HCl, in a dosage of from about 5 to about 100 mg, and more preferably, about 50 mg.

Potassium sorbate and/or Sorbic acid are useful as a mold and yeast prohibitor. Sorbic acid has been shown to increase the effectiveness of antioxidant mixtures by acting synergistically with them. The sorbic acid dosage is preferably from about 10 to 500 mg as potassium sorbate, sorbic acid, or sodium sorbate. Most preferably, however, the dosage of sorbic acid is about 200 mg as potassium sorbate.

In one important aspect of the present invention, the formulation includes at least one antioxidant. The from the preferably selected antioxidant is butylated butylated hydroxyanisole, of consisting hydroxytoluene, propyl gallate, and sodium benzoate. inventive formulation may include one, or, more preferably, several of the preferred antioxidants in combination. According to one embodiment, the inventive formulation butylated hydroxyanisole butylated (BHA), includes hydroxytoluene (BHT), sodium benzoate, and propyl gallate. Sodium benzoate, BHA, BHT and propyl gallate are all antioxidants used to stabilize cosmetic, pharmaceutical, and food products. It has been reported that these agents protect normal cells against radiation, free radicals,

5

10

15

20

25

30

toxic chemicals and chemical carcinogens. It has also been reported that these agents are protective against the induction of cancer by many cancer-causing agents in almost Further, the preferred every tissue of the body. antioxidants of the present invention have been reported to protect against cardiovascular disorders, enhance immune longevity. increase The preferred function and antioxidants of the present invention work synergistically with several vitamins, minerals, amino acids, enzymes, and other antioxidants or free radial scavengers included in the formulation of the present invention as will described in detail below.

According to one embodiment, BHA is included in a daily dietary multi-vitamin and mineral formulation for humans administered on a 1-3 times daily basis. Preferably, from about 1 to amount 300 mg of BHA is included in combination with a number of vitamins and minerals. More preferably, however, the formulation includes from about 10 to about 150 mg of BHA, and most preferably, about 50 mg of BHA. BHA may be included in the inventive formulation as butylated hydroxyanisole, 3-tert-butyl-4-hydroxyanisole, or 2-tert-butyl-4-hydroxyanisole, but most preferably is butylated hydroxyanisole.

According to another preferred embodiment, BHT is included in a daily dietary multi-vitamin and mineral formulation. Preferably, from about 1 to amount 300 mg of BHT is included in combination with a number of vitamins and minerals. More preferably, however, the formulation includes from about 10 to about 150 mg of BHT, and most preferably, about 50 mg of BHT.

According to further embodiment, propyl gallate is included in the daily dietary multi-vitamin and mineral formulation. Preferably, from about 1 to amount 300 mg of propyl gallate is included in combination with a number of

10

5

15

20

25

30

vitamins and minerals. More preferably, however, the formulation includes from about 10 to about 150 mg of propyl gallate, and most preferably, about 50 mg of propyl gallate.

Sodium benzoate, an antioxidant used to stabilize food products, according to pharmaceutical embodiment, is included in a daily dietary multi-vitamin Preferably, from about 1 to and mineral formulation. amount 300 mg of sodium benzoate is included in combination with a number of vitamins and minerals. More preferably, however, the formulation includes from about 1 to about 150 mg of sodium benzoate, and most preferably, about 4 mg of sodium benzoate. As described above, one embodiment of the inventive formulation includes sodium benzoate. it has been determined that potassium benzoate, benzoic acid, calcium benzoate, cuprous benzoate, cupric benzoate, manganese benzoate, nickel benzoate, magnesium benzoate are all also useful in the practice of the present invention.

Taurine is an amino acid used by the liver for conjugation with bile acids. It has also been suggested that taurine strengthens and stabilizes cellular membranes. High concentrations of taurine are found in the brain. Taurine, it is believed, acts in concert with the preferred antioxidants of the present invention to provide increased protection against cancer and certain cardiovascular diseases. Preferably, taurine is included in the formulations of the present invention in a dosage of from about 1 to about 20 mg, and most preferably, about 10 mg.

Methionine is an essential amino acid which has antioxidant properties. Methionine is the principal source of methyl groups which are, in turn, transferred to many diverse acceptors in important physiological reactions, such as, methyl transferases. Methionine is preferably include in the formulations of the present invention as DL-methionine, L-methionine, S-adenosylmethionine, N-acetyl-

5

10

15

20

25

30

methionine, S-methyl-DL-methionine-sulfonium chlcride. However, more preferably, methionine is included as DL-methionine, in a dosage of from about 1 to about 20 mg, and most preferably, about 10 mg.

5

Glutamine is an amino acid which serves as an amino donor in many reactions. Glutamine is critical for the <u>de novo</u> synthesis of purine and pyrimidine nucleotides. These nucleotides are critical to normal cell function and replication. Preferably, glutamine is included in the formulations of the present invention as L-glutamine, DL-glutamine, or N-acetyl-L-glutamine. However, most preferably, glutamine is included as L-glutamine, in a dosage of from about 1 to about 20 mg, and most preferably, about 10 mg.

15

20

25

30

10

Superoxide dismutase (SOD) stabilizes the formulations of the present invention and is an antioxidant. SOD prevents the formation of singles oxygen, hydroxyl radicals. and other reactive oxygen species. It is believed that SOD can protect against cancer, cardiovascular disorders and increase longevity. The dosage included of SOD (superoxide dismutase) is preferably from about 20 to about 500 units, more preferably, from about 100 to about 300, and most preferably about 150 units (i.u.) (McCord/Fridovich units). Preferable sources of SOD for the formulation of the present invention include purified liver SOD, bovine SOD, intercellular SOD, bovine liver SOD, erthrocytic SOD, extracellular SOD, vegetable culture SOD, vegetable SOD, bovine lyophilized liver SOD, fractionated liver SOD, fractionated erythrocyte SOD, and bacterial SOD. preferable source of SOD is, however, vegetable SOD, particularly as a food concentrate.

35

Catalase also stabilizes the formulations of the present invention and compliments SOD. Catalase converts hydrogen peroxide into water and oxygen. It is believed that

catalase protects against diseases such as cancer and cardiovascular disorders as well as increasing longevity. The dosage of catalase included is from about 5 mg to 500 units, more preferably, from about 100 to about 300 units, and most preferably, about 150 units (i.u.) (Baker Units). Preferable sources of catalase include that purified from bovine liver, fractionated liver, bacteria, Aspergillus The most preferable source is, niger, and vegetables. however, vegetables, particularly as a food concentrate.

10

5

The core antioxidants can also interact synergistically with the following components, vitamins and minerals which are antioxidants additionally included in the preferred formulațion (Core II):

15

Vitamin A B-carotene (beta-carotene) Vitamin E Ca Ascorbate Copper Zinc Manganese Selenium omega-3 fish oil inositol PABA

20

25

Due to their importance both in the prevention of cancer and cardiovascular disorders, omega-3 fatty acid, PABA and inositol are also an important part of the Core II formulation.

30

The Core II ingredients may be described as follows:

Vitamin A is a fat soluble vitamin essential in cell differentiation, vision, immunity, healthy skin, hair, and This vitamin is also necessary for mucous membranes. 35 proper reproduction, bone growth and development of teeth. Deficiencies have been associated with a higher incidence to Vitamin A appears cancers. certain synergistically with several other vitamins, as well as minerals and antioxidants, to lower cancer rates and to

increase longevity. The dose of vitamin A preferably included is from about 1,000 to 3,000 i.u., and more preferably, about 2,000 i.u. Preferably, the vitamin A source included in the formulation is vitamin A acetate, vitamin A palmitate, retinol, and retinal. The source of vitamin A may be water soluble, fat soluble, or emulsified. Most preferably, however, the vitamin A source is emulsified vitamin A acetate.

10

15

20

25

5

Beta carotene or, provitamin A is a precursor to vitamin A. Beta carotene must be converted by the body into active retinol-type vitamin A to be utilized. Beta carotene is also a potent antioxidant and may prevent certain types of cancer. Beta carotene appears to work synergistically with several vitamins, minerals and antioxidants to lower cancer rates and to increase longevity. Although Vitamin A and other retinoids have been shown to inhibit the induction of skin cancer in mice, an unexpected result has been the lack of an inhibitory activity by B-carotene (beta carotene) in the mouse skin carcinogenesis system. However, if Bcarotene is given with low doses of vitamin E, BHA or BHT, very effectively enhances their activity synergistic manner. The dosage of beta carotene included is preferably from about 2,500 to 7,500 provitamin A units soluble beta carotene, or emulsified beta carotene, and most preferably 5,000 provitamin A units as

30

35

antioxidant protecting lipid membranes against oxidation. Deficiencies in vitamin E can increase the tendency of blood to clot. Vitamin E appears to work synergistically with several vitamins, minerals, e.g., selenium, and antioxidants to lower cancer rates and to increase longevity. The dosage of vitamin E included is preferably from about 10 to 100 units as DL-alpha tocopheryl acetate, DL-alpha tocopheryl succinate, water soluble DL-alpha

Vitamin E is a fat soluble vitamin which functions as an

emulsified beta carotene.

tocopheryl acetate or succinate, emulsified DL-alpha tocopheryl acetate, D-alpha tocopheryl acetate, D-alpha tocopheryl succinate, mixed tocopherols, emulsified D-alpha tocopheryl acetate, emulsified mixed D-tocopherols, water soluble D-alpha tocopheryl acetate, water soluble mixed D-tocopherols, D-alpha tocopherol, emulsified D-alpha tocopherol, water soluble D-alpha tocopherol, or alpha tocopheryl nicotinate. Most preferably, however, the dosage of vitamin E is about 100 units as vitamin E, DL-alpha tocopheryl acetate.

Vitamin C is a water soluble essential vitamin. critical in producing and maintaining collagen, promotes healing of wounds, aids tooth and bone formation, and is important in producing hormones that regulate basal metabolic rate and body temperature. Vitamin C also acts as an antioxidant and may counteract nitrosamines formed in the intestinal tract, and, therefore, helps reduce the rates of certain kinds of cancers. Vitamin C appears to work synergistically with several other vitamins, as well as minerals and antioxidants, to lower cancer rates and to increase longevity. The dosage of vitamin C included is preferably from about 10 to 1,000 mg as ascorbic acid, or ascorbic acid including calcium ascorbate, of magnesium ascorbate, sodium ascorbate, potassium ascorbate, esterified ascorbic acid, ascorbyl palmitate. Most preferably, however, the dosage of vitamin C is about 250 mg as calcium ascorbate.

Copper is a trace mineral essential for the formation of red blood cells and the utilization of iron. It also functions in electron transport, connective tissue metabolism and the development of the nervous system. Deficiencies have been linked to nervous system disorders, bone disorders (spontaneous fractures) and anemia. Copper may protect against certain types of cancers. Copper dosage is 0.2 to 20 mg as copper oxide, cupric acetate,

5

10

15

20

25

30

10

15

20

25

30

35

cupric butyrate, cupric subcarbonate, cupric chloride, cupric citrate, cupric formate, cupric gluconate, cupric glycinate, cupric hydroxide, cupric oxide, cupric stearate, cupric sulfate, cupric subsulfate, copper gluconate, copper amino acid chelate, copper salicylate, copper proteinate, cupric tyrosinate, copper glycerophosphate, and copper picolinate.

essential mineral to is trace Zinc a multiplication, tissue regeneration and wound healing, sexual maturity, and proper growth. Zinc is required for many enzymatic functions throughout the body, and also helps regulate the immune system and insulin metabolism. Preferably, the dosage of zinc included is from about dosage 2 to about 30 mg as zinc oxide, zinc acetate, zinc benzoate, zinc caprylate, zinc carbonate, zinc chloride, zinc citrate, zinc formate, zinc lactate, zinc selenate, sulfate, zinc picolinate, zinc zinc stearate, sulfate heptahydrate, zinc zinc monohydrate, zinc succinate, zinc amino acid chelate, zinc proteinate, zinc fumarate, zinc aspartate, zinc ascorbate, and zinc glycerophosphate. Most preferably, however, the dosage of zinc is about 15 mg as zinc oxide.

Manganese is a trace mineral essential to enzyme systems involved in bone development, insulin production as well as It is also required for the other enzyme systems. synthesis of cartilage mucopolysaccharides. Preferably, the manganese dosage is from about 0.5 to about 5 mg as manganese acetate, manganese gluconate, manganese carbonate, manganese chloride, manganese dioxide, manganese iodide, manganese silicate, manganese hypophosphite, picolinate, sulfate, manganese manganese glycerophosphate, manganese lactate, manganese amino acid proteinate, manganese manganese chelate, manganese aspartate, manganese citrate, manganese fumarate,

10

15

20

25

30

35

and manganese glycinate. More preferably, the manganese dosage is about 2.5 mg as manganese gluconate.

- 20 -

Selenium helps maintain proper immune system function. It is an essential component of glutathione peroxidase, and as an antioxidant helps protect cells from free radical certain effects of chemicals. and toxic damage Deficiencies are linked with increased risk of various cancers, along with increased risk of stroke, angina and Selenium appears to work synergistically heart attack. with several vitamins, minerals and antioxidants to lower cancer rates and to increase longevity. Preferably, the dosage of selenium included is from about 2 mcg to about 100 mcg as sodium selenate, selenous acid, potassium selenate, selenium oxide, selenomethionine, selenium yeast, selenium vegetable culture, selenium amino acid chelate, ascorbate, proteinate, selenium selenium aspartate, sodium selenite, sodium selenate, potassium selenocystine, magnesium potassium selenate, magnesium selenate, cupric selenate, cupric selenite, zinc selenite, calcium selenate, selenate, zinc selenium picolinate, selenium glycinate, and selenite, selenium glycerophosphate. Most preferably, however, the dosage of selenium is about 25 mcg as sodium selenate.

(EPA/DHA) are polyunsaturated fatty acids. Omega-3 Increased dietary levels of polyunsaturated fatty acids reduces platelet aggregation and has been linked to a lower incidence of heart disease and cancer. Omega 3 fish oils, preferably having an EPA:DHA ratio of about 18:12, are included in the supplement of the present invention in a dosage of from about 10 to about 1,000 mg, more preferably, however, the dosage is from about 50 to about 800 mg, and most preferably about 200 mg. The omega-3 fish oil is preferably included as microencapsulated omega-3 fish oils, oils, cod liver oil, salmon fish microencapsulated salmon oil, emulsified cod liver oil,

10

15

20

25

30

35

emulsified salmon oil, eicosapentaenoic acid, docosahexenoic acid, emulsified eicosapentaenopic acid, emulsified docosahexaenoic acid, fish oil, EPA, max EPA sardine oil, microencapsulated sardine oil, halibut oil, or microencapsulated halibut oil. Most preferably, however, the omega-3 fish oil is microencapsulated omega-3 fish oil.

Inositol plays a vital metabolic role at the cellular level. Inositol is a bipotropic agent and plays a role in membrane and lipoprotein function. Inositol is preferably included in a dosage of from 5 to about 100mg, and most preferably, about 50 mg.

According to one embodiment, the daily dietary multivitamin and mineral supplement of the present invention includes para-aminobenzoic acid (PABA) combination with the preferred amino acids and antioxidants of the present invention. PABA is an essential coenzyme in the metabolism of proteins and in the formation of red blood cells. PABA works synergistically with pantothenic acid. It has been reported that PABA may provide some protection against hypertension and certain cancers. preferably included in the formulations of the present invention as para-aminobenzoic acid, potassium paraaminobenzoate, sodium para-aminobenzoate, magnesium paracalcium aminobenzoate, para-aminobenzoate. preferably, however, PABA is included as the acid in a dosage of from about 10 to about 100 mg, preferably, about 40 mg.

Also, the following vitamins and minerals (Core III), although not unique, are necessary and important in this formulation because of their role in normal growth and general bodily needs. Once vitamins have crossed the intestinal walls, many function as co-enzymes essential to all cells. Because they work synergistically, or as a team, it is better to administer them together. A similar

BNSDOCID: <WO___9111117A2_I_>

10

15

20

25

30

35

40

synergism is known for many of the minerals. They are as follows:

Folic Acid Vitamin B₁ Vitamin B₂ Niacinamide Vitamin B₆ Vitamin B₁₂ Vitamin D₃ Biotin Ca Pantothenate Vitamin K₁ Calcium Iodine Potassium Iron Magnesium Chromium Molybdenum Vanadium Silicon Boron

Compositions of the Core III formulations may be described as follows.

Folic Acid is an essential water-soluble vitamin. It is necessary for the synthesis of RNA and DNA, and therefore, vital in cell growth and division. Folic acid is important in red blood cell maturation and in other metabolic processes. The dose of folic acid included is from about 40 to about 1,2000 mcg as folic acid, and most preferably, about 400 mcg.

Vitamin B₁ (thiamine) is an essential water-soluble vitamin. It is important in the metabolism of carbohydrates and critical for the transmission of high-frequency impulses in the central nervous system as well as maintaining the integrity of the central nervous system. Preferably, the dosage of vitamin B₁ included is from about 1 to about 2 mg as thiamine hydrochloride, thiamine mononitrate, thiamine chloride naphthalene-1, 5-disulfonic acid salt, thiamine triphosphoriate salt, thiamine

10

15

20

25

30

35

triphosphate ester, thiamine phosphoric acid ester phosphate salt, thiamine phosphoric acid ester chloride, and thiamine disulfide. Most preferably, however, the dosage of vitamin B_1 is about 1.50 mg as thiamine hydrochloride.

Vitamin B2 (riboflavin) is an essential water-soluble vitamin which is required for the repair and growth of tissues as well as DNA synthesis. Vitamin B2 assists in metabolizing nutrients, proteins, e.g., fats carbohydrates, and therefore, is critical in the release of energy. Preferably, the dosage of vitamin B2 is from about from 170 mcg to about 2 mg as riboflavin, riboflavin riboflavin 5 1 phosphate sodium, and tetrabutyrate, riboflavin monodiethanolamine salt dihydrate. Most preferably, however, the dosage of vitamin B2 is about 1.75. mg as riboflavin.

Niacinamide is critical in the production of energy. Niacinamide is water-soluble, and is an essential constituent of coenzymes I and II that occur in a wide variety of enzyme systems involved in the anaerobic Niacinamide is necessary for oxidation of carbohydrates. DNA formation, and important for the integrity of the Preferably, the dosage of system. nervous niacinamide included is from about 10 to about 30 mg as niacinamide, and most preferably, about 20 mg.

Vitamin B_5 is a term commonly used for a group of three vitamins: pyridoxine, pyridoxal and pyridoxamine. They are important in protein and amino acid metabolism and help to regulate blood glucose levels. These vitamins are needed to synthesize hemoglobin and are important in the proper function of the central nervous system. The dosage of vitamin B_6 is preferably from about 200 mcg to about 3 mg as pyridoxine hydrochloride, pyridoxal 5-phosphate, calcium

10

15

20

25

30

35

pyridoxine 5-phosphate, pyridoxal. Most preferably, however, the dosage of vitamin B_6 is about 2 mg.

Vitamin B_{12} is an essential water soluble vitamin. It is critical for bone growth, the integrity of the central nerve tissue, normal blood formation, and cell replication and DNA synthesis. Vitamin B_{12} deficiencies are related to certain anemias. Vitamin B_{12} is useful especially in the prevention of pernicious anemia. Preferably the dosage of Vitamin B_{12} included is from about 2 to about 1000 mcg as cyanocobalamin, cobalamin, Co-methylcyanocobalamin, zincvitamin B_{12} - tannate, resin bound vitamin B_{12} , and coenzyme B_{12} .

Vitamin D_3 is an oil-soluble vitamin. Vitamin D_3 aids both the absorption of calcium and phosphorus. The primary role of vitamin D_3 is the mineralization of bones and teeth and the regulation of blood calcium levels. Vitamin D_3 is critical for the growth and differentiation of several tissues, and, it is believed, reduces the rate of certain cancers. The dosage of vitamin D_3 included is preferably from about 40 to about 4,000 units as vitamin D_3 , water dispersable vitamin D_3 , water-soluble vitamin D_3 , and emulsified vitamin D_3 . Most preferably, however, the dose of vitamin D_3 is about 600 units.

Biotin is a water-soluble vitamin essential in metabolism. It is a coenzyme in the synthesis of fatty acids and amino acids. The dosage of biotin is preferably from 10 to 100 mcg as biotin, and most preferably, about 30 mcg.

Calcium pantothenate is a source of pantothenic acid, a water-soluble vitamin. Pantothenic acid is involved with the metabolism of proteins, fats and carbohydrates in the form of exoenzyme A, and is involved in the synthesis of sterols, hormones, porphyrins and acetylcholine. The

dosage of calcium pantothenate is preferably from about 1 to about 50mg, and most preferably, about 10mg.

Vitamin K, is an oil soluble vitamin which is necessary for the formation of prothrombinogen and other blood clotting factors. However, vitamin K-dependent protein in bone suggests a more complex role. Preferably, the dosage of Vitamin K_1 is from about 3 to 100 mcg as trans isomer of vitamin K_1 , cis-trans isomers of vitamin K_1 , emulsified trans isomer of vitamin K_1 , emulsified cis-trans isomers of vitamin K1, water soluble trans vitamin K1, water soluble cis-trans isomer of vitamin K_1 , vitamin K_1 oxide, trans vitamin K_1 oxide, emulsified cis-trans vitamin K_1 oxide, water soluble trans vitamin K1, water soluble cis-trans vitamin K_1 oxide, vitamin K_2 (2-methyl -3- all transpolyprenyl-1, 4 napthoquinone) and those compounds of vitamin K2 which may possess side chains varying in length from C_5 (n=1) to C_{65} (n=13), water soluble vitamin K_2 and water soluble compounds of compounds of K2 which may possess side chains varying in length from C_5 (n=1) to C_{65} (n=13), vitamin K_5 , dihydrovitamin K_1 , diphosphate (0¹, 0⁴ diphosphoric acid) disodium salt of dihydrovitamin K_1 , tetrasodium salt of dihydrovitamin K_1 , tetrapotassium salt of dihydrovitamin K_1 , diphosphate (0 1 , 0 4 - diphosphoric acid) dipotassium salt of dihydrovitamin K_1 , vitamin K_6 , vitamin K₇, vitamin K₇ hydrochloride, vitamin K₅ (II), emulsified vitamin K₅ (II), water soluble vitamin K₅ (II). Most preferably, however, the dose of vitamin K_1 is about 25 mcg.

30

35

5

10

15

20

25

Calcium is involved with the transmission of nerve impulses, muscle contraction and relaxation, blood clotting, structure and function of cell membranes and B_{12} absorption. Dietary deficiencies are common and have been associated with accelerated bone loss resulting in alveolar bone loss and accompanying oral health problems,

osteoporosis and hypertension. Calcium may also protect against certain type of cancer such as colon cancer. Preferably, the calcium dosage included is from about 40 to about 1,000 mg as dicalcium phosphate dihydrate, dicalcium phosphate, monobasic calcium phosphate, tricalcium phosphate, calcium carbonate, calcium chloride, calcium citrate, calcium fluoride, calcium gluconate, calcium glycerophosphate, calcium hydroxide, calcium lactate, calcium levulinate, calcium sulfate, calcium succinate, calcium ascorbate, calcium fumarate, calcium lysinate, calcium malate, calcium aspartate, calcium amino acid chelate, calcium caseinate, calcium proteinate, calcium picolinate, calcium aspartate, calcium alpha ketoglutarate, calcium caseinate, calcium hydroxide, bone meal, oyster shell, calcium glycerophosphate, calcium hypophosphite, calcium formate, ferrous citrate, hypochlorite, calcium methionate, calcium biphosphate, stearate, calcium tartrate, hydroxyapatite, dolomite, calcium sulfate dihydrate, calcium hemihydrate, dicalcium phosphate dihydrate, calcium acetate, calcium pyrophosphate, calcium gycinate. preferable sources of calcium include calcium citrate, calcium carbonate, which act as free radical scavengers, calcium pantothenate, and dicalcium phosphate dihydrate. Dicalcium phosphate dihydrate is source of calcium and phosphorus which functions in almost all aspects of metabolism, and also aids in the manufacturing (tableting) process.

Iodine is essential for proper thyroid functioning, and 30 therefore, the regulation of the basal metabolic rate. dosage of iodine included is from about 5 to 500 mcg as potassium iodide, sodium iodide, iodinated glycerol, kelp, Atlantic kelp, Pacific kelp, iodine-resublimed, potassium iodate, ferrous iodide, magnesium iodide, manganese iodide, 35 iodine

iodine

picolinate,

iodine

aspartate,

5

10

15

20

10

15

20

25

glycerophosphate. Most preferably, however, the dosage is about 150 mcg as potassium iodide.

major intracellular electrolyte. Potassium is а Potassium aids in the transmission of nerve impulses, the release of insulin, and the proper functioning of digestive Potassium works with sodium to maintain the balance of body fluids. Preferably, the dosage of 10 to about 1000 mg potassium is from about as potassium bicarbonate, acetate, potassium chloride, carbonate, potassium citrate, potassium gluconate, potassium glycerophosphate, potassium hydroxide, potassium nitrate, dipotassium phosphate, dihydrogen phosphate, tripotassium phosphate, potassium sorbate, potassium sulfate, potassium proteinate, potassium amino acid chelate, potassium fumarate, potassium alpha ketoglutarate, potassium malate, potassium ascorbate, aspartate, potassium potassium succinate, potassium/magnesium aspartate, or potassium picolinate.

Iron is an essential mineral and is needed to transport oxygen to the tissues throughout the body via hemoglobin Iron is involved in the catalysis of many and myoglobin. oxidative reactions within cells and is necessary for the proper functioning of many biochemical reactions. Iron plays a role in final steps of energy metabolism. deficiencies are widespread, especially among women and Preferably, the dosage of iron included is from about 2 to about 50 mg as ferrous fumarate, ferrous carbonate mass, ferrous carbonate saccharated, ferrous citrate, ferrous gluconate, chloride. iodide, ferrous lactate, ferrous oxide, ferrous succinate, acid ferrous ascorbate, iron amino ferrous sulfate, iron chelate, ferrous aspartate, ferrous peptonate, iron oxide proteinate, iron chloride, iron reduced. saccharated, ferric glycerophosphate, and iron picolinate.

35

Most preferred, however, the dosage of iron is about 18 mg as iron gluconate.

Magnesium is a mineral essential for every biological process including glucose metabolism, protein and nucleic acid synthesis, electrical balance of cells, and the transmission of nerve impulses. Magnesium effects the function and structure integrity and contractions of the heart and Dietary deficiencies are widespread. all other muscles. Deficiencies have been linked to cardiovascular diseases. Preferably, the dosage of magnesium included is from about 10 to about 500 mg as magnesium oxide, magnesium benzoate, magnesium carbonate hydroxide, magnesium chloride magnesium citrate, di-basic magnesium citrate, magnesium formate, magnesium hydroxide, magnesium iodide, magnesium lactate, hydrogenphosphate, peroxide, magnesium magnesium magnesium silicate, magnesium trimagnesium phosphate, stearate, magnesium sulfate, magnesium carbonate, magnesium glycerophosphate, magnesium magnesium gluconate, magnesium trisilicate, magnesium nicotinate, chelate, magnesium picolinate, acid magnesium amino magnesium proteinate, magnesium lysinate, magnesium alpha ketoglutarate, and magnesium phosphinate hexahydrate. Most preferably, however, the dosage of magnesium is about 100 mg as magnesium oxide.

Chromium is a cofactor for insulin. Chromium is involved in carbohydrate metabolism, especially the utilization of glucose. Low chromium has been linked to diabetes Low chromium has also been associated and hypoglycemia. with heart disease. Chromium deficiencies are widespread. Preferably, the dosage of chromium included is from about 2 to about 50 mcg as chromium (+3) chloride, chromic acetate, chromic carbonate, chromic formate, chromic chromic chromic oxide, chromic hydroxide, nitrate, phosphate, chromic potassium sulfate, chromic sulfate, chromic picolinate, chromium polynicotinate, chromium

5

10

15

20

25

30

10

15

20

25

30

35

soured yeast, chromium vegetable culture, chromium amino acid chelated, chromium proteinate, chromium aspartate, chromium ascorbate, chromium GTF yeast, chromium glycinate, and chromium glycerophosphate. Most preferably, the dosage of chromium is about 25 mcg as chromium (+3) chloride.

Molybdenum is considered to be an essential trace mineral. Molybdenum plays a role in iron metabolism. Preferably, the dosage of molybdenum included is from about 2 mcg to 100 mcg as sodium molybdate, molybdenum amino acid chelate, molybdenum ascorbate, molybdenum yeast, molybdenum vegetable culture, molybdenum disulfide, molybdenum sesquioxide, molybdenum trioxide, sodium phosphomolybdate, molybdenum picolinate, molybdenum glycinate, and molybdenum glycerophosphate. Most preferably, however, the dosage of molybdenum is about 25 mcg as sodium molybdate.

Vanadium is a trace mineral found in the diet. Possible biochemical and physiological functions for vanadium have been suggested as including lipid metabolism, glucose metabolism, bone, and tooth metabolism. Vanadium may serve catalytic function or may be an enzyme Preferably, the dosage of vanadium included is from about 2 mcg to about 100 mcg as sodium metavanadate, vanadium vanadium amino acid chelate, vanadium proteinate, vanadium yeast, vanadium vegetable culture, metavanadate, calcium vanadate, potassium magnesium vanadate. ammonium metavanadate, vanadyl sulfate, picolinate, oxytartarovanadate, vanadium vanadium glycinate, and vanadium glycerophosphate.

Silicon functions as a biologic cross-linking agent that contributes to the structure and resilience of connective tissues, collagen, elastin and mucopolysaccharide. Silicon may required for bone and cartilage biosynthesis apparently involved and is in calcification. Preferably, the dosage of silicon included is from about 2 mcg to about 50 mcg as sodium metasilicate, silica amino acid chelate, silicon proteinate, silicon plant source, silicon vegetable culture, silicon source trachea, silicon source tendon, silicon source aorta, silicon source mucopolysaccharide, silicon source pectin, silicon source alginic acid, silicic acid, silanolate, silicon dioxide, and silica. More preferably, the dosage of silicon is about 10 mcg as sodium metasilicate.

- 30 -

Findings suggest that boron influences the metabolism of calcium, phosphorus, magnesium and cholecalciferol. Boron may also be involved in the functional efficiency of membranes. Preferably, the dosage of boron included is from about dosage 500 mcg to about 2000 mcg as calcium borogluconate, magnesium borogluconate, sodium borate, boric acid, potassium borate, sodium metaborage, boron proteinate, boron amino acid chelate, glyceroborate, magnesium perborate, sodium perborate, calcium perborate, and potassium perborate. Most preferably, however, the dosage of boron is about 1 mg as calcium borogluconate.

With regard to the vitamins and minerals included in the inventive formulation, each (with the possible exception of vitamin A, calcium, magnesium and biotin) is included in an amount equal to or greater than the minimum daily requirement in man. Further, it is preferred that the vitamins and minerals included in the inventive formulation are similar to those included in the multi-vitamin and mineral preparations Centrum® or One-A-Day® (as shown in Table 3).

BNSDOCID: <WO___9111117A2_!_>

5

10

15

20

25

- 31 -

TABLE 3

	CENTRUM®	ONE-A-DAY				
5	<u>Vitamin</u>	Amount	%USRDA	<u>Vitamin</u>	Amount	%USRDA
10	Vitamin A (as Acetate & Beta Carotene)	5000 I.U.	100%	Vitamin A (as Beta Carotene)	5000 I.U.	100%
10				Vitamin A (as Acetate)	1500 I.U.	30%
15	Vitamin E (as DL-Alpha Tocopheryl Acetate	30 I.U.)	100%	Vitamin E	30 I.U.	100%
20	Vitamin C (as Ascorbic Acid)	60mg	100%	Vitamin C	60mg	100%
	Folic Acid	400 mcg	100%	Thiamine (B_1)	1.5mg	100%
25	Vitamin B_1 (as Thiamine	1.5mg 100%	100%	$Riboflavin(B_2)$		1.7 1 g
23	Mononitrate)					
30	Vitamin B ₂ (as Riboflavin)	1.7mg	100%	Niacin	20mg	100%
30	Niacinamide	20mg	100%	Vitamin D	400 I.U.	100%
35	Vitamin B ₆ (as Pyridoxine Hydrochloride)	2mg	100% .	Vitamin B ₆	2mg	100%
	Vitamin B ₁₂ (as Cyanocobalamin	6mcg)	100%	Folic Acid	0.4mg	100%
40	Vitamin D	400 I.U.	100%	Vitamin B ₁₂	6mcg	100%
	Biotin	30mcg	100%	Biotin	30mcg	10%
45	Pantothenic Acid	10mg	100%	Pantothenic Acid	10mg	100%
50	Calcium (as Dibasic (elemental) Calcium Phosphate)	162mg	16%	Iron	18mg	100%
	Mineral	Amount	%USRDA	Mineral	Amount	%USRDA
55	Phosphorus (as Dibasic Calcium Phosphate)	125mg	13%	Calcium	130mg	13%
60	Iodine (as Potassium Iodine)	150mcg	100%	Phosphorus	100mg	10%
	Iron (as Ferrous Fumara	18mg te)	100%	Iodine	150mcg	100%

- 32 -

					•	
	Magnesium (as Magnesium Oxide)	100mg	25%	Magnesium	100mg	25%
5	Copper (as Cupric Oxide)	2mg	100%	Copper	2mg	100%
	Zinc (as Zinc Oxide)	15mg	100%	Zinc	15mg	100%
10	Manganese	2.5mg	* '	Chromium	10mcg	*
15	Potassium (as Potassium Chloride)	40mg	*	Selenium	10mcg	*
	Chloride (as Potassium Chloride)	36.3mg	*	Molybdenum	10mcg	*
20	Chromium (as Chromium Chloride)	25mcg	*	Manganese	2.5mg	*
25	Molybdenum (as Sodium Molybdate)	25mcg	*	Potassium	37.5mg	*
30	Selenium (as Sodium Selenate)	25mcg	*	Chloride	34mg	*
	Vitamin K ₁ (as Phytonadione)	25mcg	* .			
55	Nickel (as Nickel Sulfate)	5mcg	*			

20

25

30

35

- 40

- 33 -

	Mineral	Amount	%USRDA	Mineral	Amount	%USRDA
5	Tin (as Stannous Chloride)	10mcg	*	,		
	Silicon (as Sodium Metasilicate)	10mcg	*			
10	Vanadium (as Sodium Metavanadate)	10mcg	*			
15	*No U.S. RDA est	ablished				

It is known that certain amino acids are essential for proper cellular function. However, it has been suggested by researchers that select amino acids provide some in fact. against cancer, and may, act protection synergistically with the preferred antioxidants of the present invention to protect against cancer. Thus, it is one important aspect of the present invention to provide a dietary multi-vitamin and mineral supplement including antioxidants and select amino acids. According to one embodiment of the invention, the preferred antioxidants are selected from the group consisting of BHT, BHA, propyl gallate, and sodium benzoate, and the preferred amino acids or analogs are selected from the group consisting of glutathione, cysteine, methionine, glutamine, and taurine.

Accordingly, one preferred embodiment of the present invention provides a daily dietary multi-vitamin and mineral supplement including, in combination:

- from about 10 to about 300 mg of BHT; (a)
- from about 10 to about 300 mg of BHA; (b)
- from about 1 to about 300 mg of sodium benzoate; (C) and
- from about 10 to about 300 mg of propyl gallate. (d)
- from about 1 to about 20 mg of glutathione; (e)
- from about 5 to about 100 mg of cysteine; (f)
- from about 1 to about 20 mg of methionine; (g)

BNSDOCID: <WO___9111117A2_! >

- (h) from about 1 to about 20 mg of glutamine;
- (i) from about 2 to about 200 mg of bioflavonoids;
- (j) from about 10 to 500 mg of potassium
 sorbate/sorbic acid;
- (k) from about 1 to about 20 mg of taurine;(1) from about 5 to 500 units of catalase as a
 - food concentrate; and
- (1) from about 20 to about 500 units of SOD, as a food concentrate.

More preferably, however, the supplement includes:

- (a) about 50 mg of BHT;
- (b) about 50 mg of BHA;
- (c) about 4 mg of sodium benzoate; and
- (d) about 50 mg of propyl gallate.
- (e) about 10 mg of reduced L-glutathione;
- (f) about 50 mg of L-cysteine HCl;
- (g) about 10 mg of DL-methionine;
- (h) about 10 mg of DL-glutamine; and
- (i) about 100 mg of bioflavonoids;
- (j) about 200 mg of potassium sorbate/sorbic acid;
- (k) about 10 mg of taurine;
- (1) about 150 units of catalase as a food concentrate; and
- (m) about 150 units of SOD as a food concentrate.

In addition to the antioxidants and amino acids described above, several other ingredients may be included in the formulations of the invention, including:

- (a) omega-3 fish oil;
- (b) para-aminobenzoic acid (PABA); and
- (c) inositol.

It has been demonstrated that several vitamins and minerals act synergistically in combination with several of the preferred antioxidants and amino acids of the invention; therefore, it is an important aspect of the present invention to provide formulation including these

10

5

15

20

25

30

vitamins and minerals in appropriate amounts. Accordingly, a preferred embodiment of the present invention provides a daily dietary multi-vitamin and mineral tablet including, in combination:

- (a) from about 10 to about 300 mg of BHT;
- (b) from about 10 to about 300 mg of BHA;
- (c) from about 1 to about 300 mg of sodium benzoate;
- (d) from about 10 to about 300 mg of propyl gallate.
- (e) from about 1 to about 20 mg of glutathione;
- (f) from about 5 to about 100 mg of cysteine;
- (g) from about 1 to about 20 mg of methionine;
- (h) from about 1 to about 20 mg of glutamine;
- (i) from about 1 to about 20 mg of taurine;
- (j) from about 1000 to about 3000 i.u. of vitamin A;
- (k) from about 2500 to about 7500 i.u. of beta carotene;
- (1) from about 10 to about 100 i.u. of vitamin E;
- (m) from about 10 to about 1000 mg Ca ascorbate; and
- (n) from about 10 to about 500 mg potassium sorbate or sorbic acid.

More preferably, however, the supplement includes:

- (a) about 50 mg of BHT;
- (b) about 50 mg of BHA;
- (c) about 4 mg of sodium benzoate; and
- (d) about 50 mg of propyl gallate.
- (e) about 10 mg of reduced L-glutathione;
- (f) about 50 mg of L-cysteine HCl;
- (g) about 10 mg of DL-methionine;
- (h) about 10 mg of DL-glutamine;
- (i) about 10 mg of taurine;
- (j) about 2000 i.u. of vitamin A acetate;
- (k) about 5000 i.u. of beta carotene;
- (1) about 100 i.u. of vitamin E, DL alpha tocopheryl acetate;
- (m) about 250 mg calcium ascorbate; and
- (n) about 200 mg of potassium sorbate or sorbic acid.

5

10

15

20

25

30

The inventive supplement includes many vitamins and minerals which are commonly used in commercially available multi-vitamin and mineral preparations. Preferably, the supplement of the present invention includes the following vitamins and minerals in an amount equal to or greater than the minimum daily requirement in man:

- (a) vitamin C;
- (b) folic acid;
- (c) vitamin B₁;
- (d) vitamin B₂;
- (e) niacinamide;
- (f) vitamin B₆;
- (g) vitamin B_{12} ;
- (h) vitamin D₃;
- (i) biotin;
- (j) pantothenic acid;
- (k) vitamin K₁;
- (1) calcium;
- (m) iodine;
- (n) potassium;
- (o) iron;
- (p) magnesium;
- (q) copper;
- (r) zinc;
- ('s) manganese;
- (t) chromium;
- (u) molybdenum;
- (v) selenium;
- (w) vanadium;
- (x) silicon; and
- (y) boron.

The formulations of the present invention contain a number of vitamins and minerals similar to other multivitamin formulations, e.g, Centrum®. However, the formulation

5

10

15

20

25

30

of the present invention provides those vitamins and minerals in amounts which better reflect the scientific data concerning these agents. For example, the amount of vitamin A included in the present invention is less than in other available formulations because it can be toxic to Further, the amount of beta-carotene older people. included is greater because it is nontoxic and provides improved benefits. For the above reasons the vitamins and minerals included in the present invention offer a broader base of vitamins and minerals than presently available in industry; thus, providing the public with comprehensive multivitamin useful in the prevention of heart disease and cancer.

According to one preferred embodiment, the vitamins inventive formulation included in the minerals and includes:

VITAMINS

20

5

10

15

Vitamin A acetate from about 1000 to about (a) Beta carotene from about 3000 to about 3000iu; (b) 6000iu;

25

Calcium ascorbate from about 200 to about 400mg; (d)

Vitamin E, DL alpha tocopheryl acetate from about

(e)

(C)

- Folic acid from about 200 to about 600mcg;
- Vitamin B₁ from about 1.0 to about 2mg; (f)
- Vitamin B2 from about 1.5 to about 2mg (g)
- Niacinamide from about 10 to about 30mg; (h)
- Vitamin B₆ from about 1 to about 3mg; (i)

20 to about 40 iu;

- Vitamin B_{12} from about 4 to about 8mcg; (j)
- Vitamin D₃ from about 400 to about 800iu; (k)
- Biotin from about 20 to about 40mcg; (1)
- Calcium pantothenate from about 5 to about 15mg; (m) and
- Vitamin K, from about 15 to about 35mcg. (n)

30

- 38 -

MINERALS

- (a) dicalcium phosphate from about 50 to about 150 mg;
 (b) potassium iodide sufficient to supply from about 100 to about 150 mcg of iodine;
 (c) potassium chloride sufficient to supply from
 - about 20 to about 60mg of potassium;
 (d) ferrous fumarate sufficient to supply from about
 - 16 to about 30mg of iron;(e) magnesium oxide sufficient to supply from 75 to about 120mg of magnesium;
 - (f) copper oxide sufficient to supply from about 1 to about 3mg of copper;
 - (h) zinc oxide sufficient to supply from about 10 to about 20mg of zinc;
 - (i) manganese gluconate sufficient to supply from about 1 to about 3mg of manganese;
 - (j) chromium (+3)chloride sufficient to supply from about 15 to about 35mcg of chromium;
 - (k) sodium molybdate sufficient to supply from about 15 to about 35 mcg of molybdenum;
 - (1) sodium selenate sufficient to supply from about 15 to about 35mcg of selenium;
 - (m) sodium metavanadate sufficient to supply from about to about 15mcg of vanadium;
 - (n) sodium metasilicate sufficient to supply from about 5 to about 15mcg of silicon; and
 - (o) boron from about 1 to about 3mg.

It should be noted, however, that other vitamins and minerals not listed above may be added to the formulations of the present invention without departing from the spirit of the present invention.

However, according to the most preferred embodiment, the vitamins and minerals of the present invention include:

5

10

15

20

25

30

10

15

20

25

VITAMINS about 2000 i.u. of vitamin A acetate; (a) about 5000 i.u. of beta carotene; (b) about 30 i.u. of vitamin E, DL alpha tocopheryl (C) acetate; about 250mg of calcium ascorbate; (d) about 400mcg of folic acid; (e) about 1.5mg of vitamin B_1 ; (f) about 1.75mg of vitamin B2; (g) about 20mg of niacinamide; (h) about 2mg of vitamin B6; (i) about 6mcg of vitamin B12; (j) about 600 i.u. of vitamin D3; (k) about 30mg of biotin; (1)about 10mg of calcium pantothenate; and (m) about 25mcg of vitamin K1. (n) MINERALS about 100mg of dicalcium phosphate; (a) potassium iodide sufficient to supply about 125mg (b) iodine; potassium chloride sufficient to supply about (C) 40mg of potassium; ferrous fumarate sufficient to supply about 20mg (d) of iron; magnesium oxide sufficient to supply about 100mg (e) of magnesium; copper oxide sufficient to supply about 2mg of (f) copper; zinc oxide sufficient to supply about 15mg of (h) zinc; manganese gluconate sufficient to supply about (i) 2mg of manganese;

chromium (+3)chloride sufficient to supply about

35

30

(j)

- (k) sodium molybdate sufficient to supply about 25mcg of molybdenum;
- (1) sodium selenate sufficient to supply about 25mcg of selenium;
- (m) sodium metavanadate sufficient to supply about 10mcg of vanadium;
- (n) sodium metasilicate sufficient to supply about 10mcg of silicon; and
- (o) about 2mg of boron.

15

20

25

5

The protective agents included in the inventive formulations are either already approved by the FDA or generally regarded as safe (GRAS) by the FDA or are generally thought to be safe by scientific experts. agents include antioxidants, amino acids, and enzymes, which have been shown to be effective in preventing the induction of cancer and cardiovascular disorders as well as extending the life span of experimental animals. Further, a number of the ingredients have been shown to act synergistically with other agents in the formulation. This combined effect should increase their protective effects. For example, selenium and vitamin E work synergistically against the induction of breast cancer. Further, in a number of studies, BHA when given with vitamin A, betacarotene and vitamin E was shown to provide a protection Accordingly, the present invention is against cancer. directed to a multi-vitamin dietary supplement formulation, and methods for producing and administering the same to an individual in need thereof. It is believed that the present invention provides a formulation which is cardioand cancer-protective.

35

30

A further aspect of the present invention is directed to a method for producing the formulations of the present invention. Preferably, the formulation is tableted, and most preferably, the formulation is tableted as a sustained release tablet. The sustained release tablets of the

10

15

20

25

30

35

present invention are intended to provide for the extended action of the ingredients from a single dose. Thus, the sustained released tablet is a convenient dosage form by virtue of eliminating the necessity for dosage several times during the day. Moreover, therapeutic benefits may also be obtained by the sustained release of the active ingredients of the inventive formulation. It is believed desireable that the sustained release dosage form of the present invention will provide a slow and constant supply of antioxidants, amino acids, and other beneficial dietary supplements which will provide protection against cancer and cardiovascular disease throughout the day.

In order to stabilize the preparations of the present invention, it has been determined that several of the more reactive constituents are preferably microencapsulated. The microencapsulation of select constituents prevents those constituents from reacting with other ingredients if left unchecked, which would shorten the shelf life of a commercial product embodying the inventive formulation. to one embodiment, the preferred containing amino acids and the polyunsaturated acids are microencapsulated. More specifically, glutathione, cysteine, and omega-3 fish oil are preferably microencapsulated when included in the invented formulation.

According to one preferred embodiment, hydroxypropyl methylcellulose is used as a pharmaceutical adjunct which provides a sustained release of the active constituents of the tablet. According to this preferred embodiment, based upon the physical parameters involved in formation of a tablet which is determined by the nature of the ingredients (compressibility, adhesion of particles, etc.), up to 20% of the dry weight could be required for hydroxypropyl methylcellulose to ensure proper time release tablet. Thus, according to one embodiment, a total formulation

1 017 0071700

weight range, including time released material, would have a weight range of from about 4090 mg to about 3526 mg. Because of the bulk of the formulation, the formulation is preferably produced and administered as 1-3 tablets daily.

- 42 -

5

The following examples are presented to describe specific preferred embodiments and utilities of the present invention and are not meant to limit the present invention unless otherwise stated in the claims appended hereto.

10

EXAMPLES

In vitro disintegration characteristics

15

A comparison was made between the relative disintegrations of Centrum tablets and the sustained release tablets of the present invention.

20

As a measurement of disintegration, the release of four different vitamins, potassium, vitamin C, niacinamide, and pyridoxine was measured. The results, summarized in Figs. 1-6, show that the sustained release tablet of the present invention provides for uniform disintegration over at least seven hours.

25

30

As a general procedure, gastric and intestinal juices were prepared according to the United States Pharmacopeia XVIII. The dissolution tests were conducted using the apparatus specified for such procedures in the National Formulary XIII. The apparatus generally consisted of a horizontal rotating shaft to which was attached clamps for holding round cylinders approximately 150mm long and having a diameter of approximately 30 mm wherein the tablets were contained. The apparatus then submerges the tablets in the appropriate dissolution fluid. The temperature of the dissolutions fluid was maintained at 37± 2°C throughout the study. Eight tablets were used to generate the dissolution

data. Six Centrum (UDC0005-4239-13 Lederle Laboratories Division American Cyanamid Company) and two sustained release tablets of the present invention, which were prepared as follows.

5

The following shows the content and instructions for preparing a most preferred formulation (300,000 tablets 3 tablet/dose) of the present invention.

Weight Range Per Dose

10	(dose = 1	day supply)	Grams
		Vitamins	
	5.4 mg	Vitamin A acetate 2000 iu from 500,000 iu/gm beadlets with 35% overage	540
15	40.5 mg	Beta carotene 5000 iu = 30 mg with 35% overage from 10% beadlets	405
20	231 mg	Vitamin E DL alpha tocopheryl acetate 100 iu from 50% 2.1 mg finished material with 10% overage	23,100
20	300 mg	Calcium ascorbate = 250 mg with 20% overage	30,000
25	5 mg	Folic acid as 10% trit = 400 mcg/dose with 25% overage	500
25	1.73mg	Vitamin B ₁ dose = 1.5 mg with 15% overage	173
	1.87mg	Vitamin B ₂ dose = 1.7 mg with 10% overage	187
30	22 mg	Niacinamide dose = 20 mg with 10% overage	2,200
	2.67mg	Vitamin B_6 dose = 2 mg with 10% overage	267
35	0.75mg	Vitamin B_{12} dose = 6 mcg from 1% trit on resin wit 25% overage	th 75
	8.1 mg	Vitamin D_3 dose = 600 iu from 100,000 iu/gm with 35% overage	810
40	3.3 mg	Biotin dose = 30 mcg from 1% trit with 10% overage	e 330
	14 mg	Calcium pantothenate dose = 10 mg with 30% overage	e 1,400
45	3.4 mg	Vitamin K_1 dose = 25 mcg from 1% trit with 35% overage	340
•	100 mg	Dicalcium phosphate dihydrate (use in gra	10,000 nulations)
50	0.20mg	Potassium iodide supplies 150 mcg iodine	20 ¹
	76.3 mg	Potassium chloride supplies 40 mg potassium	7,630
55	155 mg	Ferrous gluconate supplies 18 mg iron	15,550
3 3	166 mg	Magnesium oxide supplies 100 mg magnesium	16,660

	2.503mg	Copper oxide supplies 2 mg copper	250
	18.75mg	Zinc oxide supplies 15 mg zinc	1,875
5	22.7 mg	Manganese gluconate supplies 2.5 mg manganese	2,270
	0.08mg	Chromium (+3) chloride supplies 25 mcg chromium	8 ²
	0.06mg	Sodium molybdate supplies 25 mcg molybdenum	6 ³
10	0.06mg	Sodium selenate supplies 25 mcg selenium	64
. ~	0.038mg metavanad	ate supplies 10 mcg vanadium	Sodium 3.8 ⁵
15	0.044mg metasilio	ate supplies 10 mcg silicon	Sodium 4.4 ⁵
20	22.3 mg	Calcium borogluconate supplies 1 mg boron	2,230
20	100 mg	Citrus bioflavonoids from 50% material supplying 50 mg per dose	10,000
25	4 mg 250 mg	Sodium benzoate Calcium carbonate	25,000 25,000
	100 mg	Calcium citrate	10,000
30	10 mg	L-glutathione (reduced) (microencapsulated)	2,500
30	50 mg	L-cysteine HCl (microencapsulated)	5,000
	200 mg	Potassium sorbate/sorbic acid	20,000
35	40 mg	PABA	4,000
	50 mg	вна	5,000
4.0	50 mg	внт	5,000
40	571 mg	Omega 3 fish oils supplying 200 mg Omega 3 oils from microencapsulated material which is 35% Omega 3 having an EPA:DHA ratio of 18:12	57,100
45	50 mg	Inositol	5,000
	150 mg	Vegetable source SOD 200 units (mfu) Vegetable source catalase 200 units (bsu)	15,000
50	50 mg	Propyl gallate	5,000
	10 mg	Taurine	1,000
	10 mg	DL methionine	1,000
55	10 mg	L glutamine	1,000
		hydroxypropylmethylcellulose (e.g. Methocel K, Dow Chem.)	61,162
60		Magnesium Stearate	1,500
		Total weight of ingredients = 376,102	
65		Tablet Weight = 1.1667 grams	

10

15

20

25

30

35

The KI was dissolved in 50 ml H₂O with about 2000 gm of the dicalcium phosphate dihydrate. The mixture was dried at 120'F for 48 hours and then milled. The CrCl3 was also dissolved in 50 ml $\rm H_2O$ with about 2000 gms dicalcium phosphate dihydrate. This mixture was also dried at 120 F about 48 hours and was then milled. molybdate was dissolved in 50 ml H₂O with about 2000 gm of dicalcium phosphate dihydrate. The mixture was dried at 120 F for about 48 hours and then milled. The sodium selenate was dissolved in 50 ml $\rm H_2O$ with 2000 gms dicalcium phosphate dihydrate and dried at 120°F for about 48 hours The sodium metasilicate was mixed and then was milled. with 2000 gms dicalcium phosphate dihydrate and added to the sodium metavandate which was dissolved in 50 ml $\rm H_2O$. This mixture was then dried at 120°F for about 48 hours and then was milled. All of the above milled ingredients were then mixed.

All the remaining ingredients were weighed separately and added to a stainless steel ribbon blender and blended for 10 minutes. Tablets were then compressed on a rotary tablet press machine. Tablets weighed 1.2537 grams \pm 2%. The tablets were oblong measuring 0.75 inches (height) x 0.35 inches (width) x 0.30 inches (depth). The tablets were produced at 4 tons pressing force per square inch. It was determined that these tablets disintegrated uniformly over an 8 hour period. The tablets are also suitable for an aqueous film coating, such as with riboflavin, in a conventional film coating pan.

The dissolution data was collected at 1/2 hr, 1 and 1/2 hr, 2 and 1/2 hr, 3 and 1/2 hr, 4 and 1/2 hr, 5 and 1/2 hr, 6 and 1/2 hr, and 7 and 1/2 hr. Data for Centrum was obtained for 6 tablets under identical conditions. However, the total dissolution occurred for Centrum at approximately 20 minutes. Therefore, Centrum was only

10

15

20

25

30

observed in gastric test solution. This data is summarized in Fig. 1.

The release of potassium from the tablet of the present invention was monitored using a Perkin Elmer spectrophotometer. To do this monobase sodium phosphate was used in place of H_2KPO_4 in the intestinal liquid. Replacement of H_2KPO_4 with H_2NaPO_4 allowed accurate measurement of potassium from the tablet without interferences.

Measurements of potassium were made at 766.5 lambda using atomic absorption. Results:

Time %K released during observed interval

	0	-	1,	2hr	11.54
	1/2	-	2	1/2hr	14.61
	1/2	-	2	1/2hr	14.61
2	1/2	-	3	1/2hr	14.61
3	1/2	-	4	1/2hr	13.15
4	1/2	-	5	1/2hr	13.15
5	1/2	-	6	1/2hr	10.96
6	1/2	_	7	1/2hr	7.30

To obtain interval values intestinal fluid was replaced hourly. The above data is summarized in Fig. 2.

Data for ascorbic acid, niacinamide, and pyridoxine HCl were generated using a Bausch and Lomb spectrophotometer (Model 21). The wavelengths used for analysis were:

245mm	Ascorbic Acid
261mm	Niacinamide
291mm	Pyridoxine

Samples were taken from 1/2hr, 1/2hr, 2 1/2hr, 3 1/2hr, 4 1/2hr, 5 1/2hr, 6 1/2hr, 7 1/2hr periods. This data is

summarized in Figs. 3, 4, and 5 respectively. The data collected showed that the tablet of the present invention provided for the sustained release of the constituents of the inventive formulation.

5

While the invention is susceptible to various modifications and alternative forms, a specific embodiment thereof has been shown by way of example and therein was described in detail. It should be understood, however, that it is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

15

15

20

25

30

35

CLAIMS:

1. A daily dietary multivitamin and mineral supplement comprising:

bioflavonoids

L-glutathione (reduced)

L-cysteine

Potassium sorbate/sorbic acid

BHA

10 BHT

Propyl gallate

Sodium benzoate

Taurine

D, L-Methionine

L-glutamine

SOD and catalase (preferably in food concentrate).

2. The supplement of claim 1 further defined as including:

Vitamin A

B-carotene

Vitamin E

Ca Ascorbate

Copper

Zinc

Manganese,

Selenium

Omega-3 fish oil

Inositol; and

PABA

3. The supplement of claim 1 further defined as including:

Folic Acid Vitamin B₁

BNSDOCID: <WO___9111117A2_I_>

- 49 -

	VICAMIN D2
	Niacinamide
-	Vitamin B_6
	Vitamin B_{12}
5	Vitamin D_3
	Biotin
	Ca Pantothenate
	$\hbox{\tt Vitamin} \ {\tt K_1}$
	Calcium
10	Iodine
	Potassium
	Iron
	Magnesium
	Chromium
15	Molybdenum
	Vanadium
	Silicon and
	Boron.
20	 A daily dietary supplement comprising:
	bioflavonoids
	L-glutathione (reduced)
	Cysteine
25	Potassium sorbate/sorbic acid
	ВНА
	BHT
	Propyl gallate
	Sodium benzoate
30	Taurine
	D L-Methionine
	L-glutamine
_	SOD and catalase (preferably
	in food concentrate)
35	Vitamin A
	B-carotene

- 50 **-**

Vitamin E Ca Ascorbate Copper Zinc Manganese 5 Selenium Omega 3 fish oil Inositol PABA Folic Acid 10 Vitamin B₁ Vitamin B₂ Niacinamide Vitamin B₆ Vitamin B₁₂ 15 Vitamin D₃ Biotin Ca Pantothenate Vitamin K₁ Calcium 20 Iodine Potassium Iron Magnesium Chromium 25 Molybdenum Vanadium Silicon and Boron.

30

A daily dietary multi-vitamin and mineral supplement for a human including from about 10 to about 300 mg of BHT.

10

15

20

25

30

- 6. A daily dietary multi-vitamin and mineral supplement for a human including about 50 mg of BHT.
- 7. A daily dietary multi-vitamin and mineral supplement for a human including from about 10 to about 300 mg of BHA.
- 8. A daily dietary multi-vitamin and mineral supplement for a human including from about 10 to about 300 mg of propyl gallate.
- 9. A daily dietary multi-vitamin and mineral supplement for a human including from about 1 to about 300 mg of sodium benzoate.
- 10. A daily dietary multi-vitamin and mineral supplement for a human including about 4 mg of sodium benzoate.
- 11. A daily dietary multi-vitamin and mineral supplement for a human including in combination:

from about 10 to about 300 mg of BHT; from about 10 to about 300 mg of BHA; from about 1 to about 300 mg of sodium benzoate; and from about 10 to about 300 mg of propyl gallate.

12. The supplement of claim 11 wherein said supplement further includes in combination:

from about 1 to about 20 mg of glutathione; from about 5 to about 100 mg of cysteine; from about 1 to about 20 mg of methionine; from about 1 to about 20 mg of glutamine; and from about 1 to about 20 mg of taurine;

13. The supplement of claim 12 wherein said supplement further includes from about 10 to 100 mg of PABA.

14. Th	e suppler	ment of	claim	12 W	here:	in sai	d sup	pleme	ent
further	include	s from	about	10	to	about	1000	mg	of
polyuns	aturated	fatty	acids	havin	ıg an	EPA:	OHA r	atio	of
about 1	8:12.								

15. The supplement of claim 12 wherein said supplement further includes from about 100 to about 300 i.u. of superoxide dismutase.

10

16. The supplement of claim 15 wherein said supplement further includes from about 100 to about 300 i.u. of catalase.

15

17. The supplement of claim 16 wherein the superoxide dismutase or catalase is from a food concentrate.

18. The supplement of claim 11 wherein said supplement includes from about 2 to about 200 mg of a bioflavonoid.

20

19. The supplement of claim 11 wherein said supplement further includes:

from about 1000 to about 3000 i.u. of vitamin A; from about 2500 to about 7500 i.u. of beta carotene; and

25

from about 10 to about 100 i.u. of vitamin E.

20. The supplement of claim 11 wherein said supplement further includes at least the minimum daily requirement in man of:

30

vitamin C; folic acid; vitamin B₁; vitamin B₂; niacinamide; vitamin B₅;

vitamin B₁₂;

vitamin D_3 ; biotin; pantothenic acid; and vitamin K_1 .

5

10

15

21. The supplement of claim 20 wherein said supplement further includes at least the daily requirement in man of a pharmaceutically acceptable mineral salt of:

calcium;
iodine;
potassium;
iron;
magnesium;
copper;
zinc;
manganese;
chromium;
molybdenum;
selenium;
(1) vanadium;
silicon; and

boron.

20

25

30

- 22. The supplement of claim 23 wherein said supplement further includes from about 5 to about 100 mg of inositol.
- 23. A daily dietary multi-vitamin and mineral supplement for a human including about 50 mg of BHT.
- 24. A daily dietary multi-vitamin and mineral supplement for a human including about 50 mg of BHA.
- 25. A daily dietary multi-vitamin and mineral supplement for a human including about 50 mg propyl gallate.
- 26. A daily dietary multi-vitamin and mineral supplement for a human including about 4 mg of sodium benzoate.

27. A daily dietary multi-vitamin and mineral supplement for a human including in combination:

about 50 mg of BHT;

about 50 mg of BHA;

about 4 mg of sodium benzoate; and

about 50 mg of propyl gallate.

28. The dietary supplement of claim 28 wherein said supplement further includes in combination:

about 10 mg of reduced L-glutathione;

about 50 mg of L-cysteine HCl;

about 10 mg of L-methionine;

about 10 mg of L-glutamine; and

about 10 mg of taurine;

15

25

30

10

- 29. The dietary supplement of claim 27 which further includes from about 10 to 100 mg of PABA, and from about 5 to about 50 mg of calcium pantothenate.
- 30. The dietary supplement of claim 27 which further includes about 200 mg Omega-3 fish oil having an EPA:DHA ratio of about 18:12.
 - 31. The dietary supplement of claim 27 wherein said supplement further includes about 150 i.u. of superoxide dismutase.
 - 32. The dietary supplement of claim 31 wherein said supplement further includes about 150 i.u. of catalase.
 - 33. The dietary supplement of claim 32 wherein the superoxide dismutase and catalase are from a food concentrate.
- 35 34. The dietary supplement of claim 27 wherein said supplement includes about 50 mg of a bioflavonoid.

10

15

20

25

30

35

35. The dietary supplement of claim 27 wherein said supplement further includes:

about 2000 i.u. of vitamin A acetate;

about 5000 i.u. of beta carotene;

about 100 i.u. of vitamin E, DL alpha tocopheryl acetate;

about 250 mg calcium ascorbate; and about 200 mg of potassium sorbate or sorbic acid.

36. A daily dietary multi-vitamin and mineral supplement for a human including, in combination, about 50 mg of BHT, and about 2000 i.u. of vitamin A acetate.

37. A daily dietary multi-vitamin and mineral supplement for a human including, in combination, about 50 mg of BHT, and about 5000 i.u. of beta carotene.

38. A daily dietary multi-vitamin and mineral supplement for a human including, in combination:

at least one antioxidant selected from the group consisting of BHT, BHA, propyl gallate, and sodium benzoate;

vitamin A;
vitamin E; and
beta carotene.

- 39. The dietary supplement of claim 38 wherein said supplement further includes a pharmaceutically acceptable salt comprising selenium.
- 40. The dietary supplement of claim 38 wherein said supplement further includes, in combination, at least one amino acid selected from the group consisting of reduced L-glutathione, L-cysteine HCl, DL-methionine, L-glutamine, and taurine.

41. The dietary supplement of claims 21, 35, 38, or 40 wherein said supplement is prepared as a sustained release tablet.

42. A daily dietary supplement formulated as an oral sustained release tablet including, in combination:

about 2000iu of vitamin A acetate;

about 5000iu of beta carotene;

about 30iu of vitamin E, DL alpha tocopheryl acetate;

about 250mg of calcium ascorbate;

about 400mcg of folic acid;

about 1.5mg of vitamin B_1 ;

about 1.75mg of vitamin B2;

about 20mg of niacinamide;

about 2mg of vitamin B6;

about 6mcg of vitamin B12;

about 600iu of vitamin D3;

about 30mg of biotin;

about 10mg of calcium pantothenate; and

about 25mcg of vitamin K1;

about 100mg of dicalcium phosphate;

potassium iodide sufficient to supply about 125mg iodine;

potassium chloride sufficient to supply about 40mg of potassium;

ferrous fumarate sufficient to supply about 20mg of iron;

magnesium oxide sufficient to supply about 100mg of
 magnesium;

copper oxide sufficient to supply about 2mg of copper;

zinc oxide sufficient to supply about 15mg of zinc;
manganese gluconate sufficient to supply about 2mg of
 manganese;

5

10

15

20

25

30

chromium	(+3)	chloride	sufficient	to	supply	about
. 25mc	g of	chromium;				

sodium molybdate sufficient to supply about 25mcg of
 molybdenum;

sodium selenate sufficient to supply about 25mcg of
 selenium;

sodium metavanadate sufficient to supply about 10mcg
 of vanadium;

sodium metasilicate sufficient to supply about 10mcg of silicon; and

about 2mg of boron;

about 4mg of sodium benzoate;

about 250mg of calcium carbonate;

about 100mg of calcium citrate;

about 200mg of potassium sorbate or sorbic acid;

about 40mg of PABA;

about 200mg of Omega-3 fish oil;

about 50mg of inositol;

about 200iu of superoxide dismutase from a food concentrate;

about 200iu of catalase from a food concentrate;

about 50mg of BHT;

about 50mg of BHA; and

about 50mg of a bioflavonoid.

25

30

35

5

10

15

- 43. A method for preventing cancer in a human subject, the method including the step of administering daily an oral sustained release tablet including the dietary multivitamin and mineral supplement comprising from about 10 to about 300 mg of BHT.
- 44. A method for preventing cancer in a human subject, the method including the step of administering daily an oral sustained release tablet including the dietary multivitamin and mineral supplement comprising from about 10 to about 300 mg of BHA.

46. A method for preventing cancer in a human subject, the method including the step of administering daily an oral sustained release tablet to an individual including in combination:

from about 10 to about 300 mg of BHT; from about 10 to about 300 mg of BHA; from about 1 to about 300 mg of sodium benzoate; and from about 10 to about 300 mg of propyl gallate.

47. The method of claim 47 wherein said supplement further includes in combination:

from about 1 to about 20 mg of glutathione; from about 5 to about 100 mg of cysteine HCl; from about 1 to about 20 mg of methionine; from about 1 to about 20 mg of glutamine; and from about 1 to about 20 mg of taurine;

- 48. The method of claim 46 wherein said supplement further includes from about 10 to 100 mg of PABA.
- 49. The method of claim 46 wherein said supplement further includes from about 10 to about 1000 mg of polyunsaturated fatty acids having an EPA:DHA ratio of about 18:12.
- 50. The method of claim 46 wherein said supplement further includes from about 100 to about 300 i.u. of superoxide dismutase.

5

10

15

20

25

51. The method of claim 50 wherein said supplement further includes from about 100 to about 300 i.u. of catalase.

5

52. The method of claim 46 wherein said supplement includes from about 10 to about 100 mg of a bioflavonoid.

10

53. The method of claim 46 wherein said supplement further includes:

from about 1000 to about 3000 i.u. of vitamin A; from about 2500 to about 7500 i.u. of beta carotene; and

from about 10 to about 100 i.u. of vitamin E.

15

54. The method of claim 46 wherein said supplement further includes at least the minimum daily requirement in man of:

20

25

vitamin C;

folic acid;

vitamin B₁;

vitamin B2;

niacinamide;

vitamin B₆;

vitamin B₁₂;

vitamin D₃;

biotin;

pantothenic acid

vitamin K1.

30

35

55. The method of claim 54 wherein said supplement further includes at least the minimum daily requirement in man of a pharmaceutically acceptable mineral salt of:

calcium;

iodine;

potassium;

10

15

20

25

30

35

iron;
magnesium;
copper;
zinc;
manganese;
chromium;
molybdenum;
selenium;
vanadium;
silicon; and
boron.

- 56. The method of claim 54 wherein said supplement further includes from about 5 to about 100 mg of inositol.
- 57. A method for preventing cancer in a human subject, the method including the step of administering daily an oral sustained release tablet including the daily dietary multi-vitamin and mineral supplement for a human including about 50 mg of BHA.
- 58. A method for preventing cancer in a human subject, the method including the step of administering daily an oral sustained release tablet including the daily dietary multi-vitamin and mineral supplement for a human including about 50 mg propyl gallate.
- 59. A method for preventing cancer in a human subject, the method including the step of administering daily an oral sustained release tablet including the daily dietary multi-vitamin and mineral supplement for a human including in combination:

about 50 mg of BHT; about 50 mg of BHA; about 4 mg of sodium benzoate; and about 50 mg of propyl gallate. 60. The method of claim 59 wherein said supplement further includes in combination:

about 10 mg of reduced L-glutathione;

about 50 mg of L-cysteine HCl;

about 10 mg of DL-methionine;

about 10 mg of L-glutamine; and

about 10 mg of taurine;

- 61. The method of claim 59 which further includes from about 10 to 100 mg of PABA, and from about 5 to about 50 mg of calcium pantothenate.
- 62. The method of claim 59 which further includes about 500 mg Omega-3 fish oil having an EPA:DHA ratio of about 18:12.
- 63. The method of claim 59 wherein said supplement further includes about 150 i.u. of superoxide dismutase.
- 64. The method of claim 63 wherein said supplement further includes about 150 i.u. of catalase.
- 65. The method of claim 64 wherein the superoxide dismutase and catalase are from a food concentrate.
- 66. The method of claim 59 wherein said supplement includes about 50 mg a bioflavonoid.
- 67. The method of claim 59 wherein said supplement further includes:

about 2000 i.u. of vitamin A acetate;

about 5000 i.u. of beta carotene;

about 100 i.u. of vitamin E, DL alpha tocopheryl acetate;

about 250 mg calcium ascorbate; and about 200 mg of potassium sorbate.

30

25

5

10

15

20

10

15

20

25

30

35

- 68. A method for preventing cancer in a human subject, the method including the step of administering daily an oral sustained release tablet including the daily dietary multi-vitamin and mineral supplement for a human including, in combination, about 50 mg of BHT, and about 2000 i.u. of vitamin A acetate.
- 69. A method for preventing cancer in a human subject, the method including the step of administering daily an oral sustained release tablet including the daily dietary multi-vitamin and mineral supplement for a human including, in combination, about 50 mg of BHT, and about 5000 i.u. of beta carotene.
- 70. A method for preventing cancer in a human subject, the method including the step of administering daily an oral sustained release tablet including the daily dietary multi-vitamin and mineral supplement for a human including, in combination:
 - at least one antioxidant selected from the group consisting of BHT, BHA, propyl gallate, and sodium benzoate;

vitamin A; vitamin E; and beta carotene.

- 71. The method of claim 70 wherein said supplement further includes a pharmaceutically acceptable salt of selenium.
- 72. The method of claim 71 wherein said supplement further includes, in combination, at least one amino acid selected from the group consisting of reduced L-glutathione, L-cysteine HCl, DL-methionine, L-glutamine, and taurine.

73. A method for preventing cancer in a human subject, the method including the step of administering daily an oral sustained release tablet including the dietary supplement comprising, in combination:

about 2000iu of vitamin A acetate;

about 5000iu of beta carotene;

about 30iu of vitamin E, DL alpha tocopheryl acetate;

about 250mg of calcium ascorbate;

about 400mcg of folic acid;

about 1.5mg of vitamin B1;

about 1.75mg of vitamin B2;

about 20mg of niacinamide;

about 2mg of vitamin B6;

about 6mcg of vitamin B12;

about 600iu of vitamin D3;

about 30mcg of biotin;

about 10mg of calcium pantothenate; and

about 25mcg of vitamin K1;

about 100mg of dicalcium phosphate;

potassium iodide sufficient to supply about 150mcg iodine;

potassium; chloride sufficient to supply about 40mg of potassium;

ferrous fumarate sufficient to supply about 20mg of iron;

magnesium oxide sufficient to supply about 100mg of
 magnesium;

copper oxide sufficient to supply about 2mg of copper;

zinc oxide sufficient to supply about 15mg of zinc;
manganese gluconate sufficient to supply about 2mg
 of manganese;

chromium (+3) chloride sufficient to supply about 25mcg of chromium;

sodium molybdate sufficient to supply about 25mcg of
 molybdenum;

5

10

15

20

25

30

sodium selenate sufficient to supply about 25mcg of selenium; sodium metavanadate sufficient to supply about 10mcg of vanadium; sodium metasilicate sufficient to supply 5 about 10mcg of silicon; about 2mg of boron; about 4mg of sodium benzoate; about 250mg of calcium carbonate; about 100mg of calcium citrate; 10 about 200mg of potassium sorbate\sorbic acid; about 40mg of PABA; about 200mg of Omega-3 fish oil; about 50mg of inositol; about 200iu of superoxide dismutase; 15 about 200iu of catalase; about 200mg of BHT; about 200mg of BHA; and about 50mg of a flavone; and about 50mg of propyl gallate. 20

SUBSTITUTE SHEET

SUBSTITUTE SHEET

SUBSTITUTE SHEET

BNSDOCID: <WO___9111117A2_I_>