Title: An Overview of DGH's Proof of Uniform Mordell. Plan?

- Statement of theorem (specificying simpliciation due to Kühne)
- Uniformity in families by working over $S = \mathbb{M}_q$ (w/symplectic level structure)
- Height Machine and Vojta's approach/relative statement (Rémond?)
- New gap principle (bounded number of balls because $\max\{1, h(s)\}$)
- non-degenerate subvarities and height bound?
 NON-DEGENERACY → line bundle big → height lower bound (away from base locus?)
- amplification/fibered powers
- Something about equidistribution?

♠♠♠ Niven: [Go fast, have people interrupt with questions.]

1 Uniformity Intro

Theorem 1 (Dimitrov-Gao-Habegger + Kühne). Let K be a number field, and let C/K be a smooth curve of genus $g \ge 2$. Then,

$$\#C(K) \le c(g, [K:\mathbb{Q}])^{1+\operatorname{rank}\operatorname{Jac}(C)(K)}$$
.

Remark 2. DGH really prove that, for $P_0 \in C(\overline{\mathbb{Q}})$ and $\Gamma \leq \operatorname{Jac}(C)(\overline{\mathbb{Q}})$ (e.g. $\Gamma = \operatorname{Jac}(C)(K)$),

$$h(\operatorname{Jac}(C)) \ge c_1(g) \implies \#(C(\overline{\mathbb{Q}}) - P_0) \cap \Gamma \le c_2(g)^{1+\operatorname{rank}\Gamma}.$$

Kühne handles curves of small modular height. $\{\Box \text{ Where the (modular) height here is the height of the corresponding point on the moduli space of abelian varieties (w.r.t to some choice of line bundle on a compactification of the coarse space) <math>\Box\}$

Remark 3. There is a different proof by Yuan-Zhang² using "adelic line bundles" of which I know nothing about.

Conjecture 4 (Unclear how many people believe this). $\#C(K) \le c(g,K)$

Remark 5. This strong uniformity conjecture would be implied by the weak Lang conjecture³ or by boundedness of ranks of Jacobians.

Remark 6. There are also some other uniformity results based on Chabauty–Coleman(–Kim). Let $\rho = \operatorname{rank} \operatorname{Jac}(C)(\mathbb{Q})$.

- Katz-Rabinoff-Zureick-Brown: $\#C(\mathbb{Q}) \leq 84g^2 98g + 28$ if $\rho \leq g 3$.
- Betts-Corwin-Leonhardt⁴: $\#C(\mathbb{Q}) \leq$ (huge, but explicit, bound depending on g, ρ , the reduction type of C (e.g. number of componets in each special fiber), and choice of prime p of good reduction) if one assumes the Tate-Shafarevich and Bloch-Kato conjectures.

¹finite rank \Rightarrow finitely generated, so also applies to $\Gamma = \operatorname{Jac}(C)(\overline{\mathbb{Q}})_{\operatorname{tors}}$.

²Xinyi Yuan, Shou-Wu Zhang

 $^{^3}$ Varieties of general type have non-Zariski dense sets of rational points. The implication weak Lang \implies strong uniform is due to Caparaso–Harris–Mazur.

⁴Alex Betts, David Corwin, Marius Leonhardt

♠♠♠ Niven: [Mention Katz-Rabinoff-Zureick-Brown and/or Betts?]

 $\{\Box \ Today, \ I \ want \ to \ focus \ on \ DGH's \ contribution \ (e.g. \ getting \ a \ uniform \ bound \ for \ curves \ of \ large \ modular \ height). \ \Box\}$

 $\{\Box$ Their approach is based on Vojta's approach to the Mordell conjecture, so the basic idea is to prove enough height inequalities to deduce that points on C "repel each other" in Jac(C) in some controlled way. This will make more sense when I state the main ingredients of Vojta's proof of Mordell. \Box

2 The Big Picture

♠♠♠ Niven: [Ask if you should recall the height machinery]

Recall 7 (Height Machinery). Let $V/\overline{\mathbb{Q}}$ be a projective variety. There is a unique homomorphism

$$h \colon \operatorname{Pic}(V) \longrightarrow \operatorname{Func}(V(\overline{\mathbb{Q}}), \mathbb{R})/O(1)$$

such that

• If $V = \mathbb{P}^N$, $\mathcal{L} = \mathcal{O}(1)$, and $P \in \mathbb{P}^N(K)$ (for some number field K), then

$$h_{\mathbb{P}^N,\mathscr{L}}(P) = \frac{1}{[K:\mathbb{Q}]} \sum_{v} \log \max\{\|P_0\|_v, \dots, \|P_N\|_v\} + O(1).$$

• If $\varphi: V \to W$ is a morphism, then

$$h_{V,\varphi^*\mathscr{L}} = h_{W,\mathscr{L}} \circ \varphi + O(1)$$

- $h_{V,\mathscr{L}} \geq O(1)$ away from the base locus⁵ of \mathscr{L} .
- Assume \mathcal{L} is ample, and let K_0 be a number field over which X is defined. Then, for any $d, B \geq 1$,

$$\# \{x \in V(K) : [K : K_0] \le d, h_{V,\mathscr{L}}(x) \le B\} < \infty.$$

If V = A is an abelian variety, then there is a canonical height machine $\widehat{h} \colon \operatorname{Pic}(A) \to \operatorname{Func}(A(\overline{\mathbb{Q}}), \mathbb{R})$, where you don't need to worry about bounded functions everywhere.

Setup 8. Fix C/K and a point $P_0 \in C(K)$. Let $C \hookrightarrow J := \operatorname{Jac}(C)$ be the associated Abel-Jacobi embedding. Let $\widehat{h} \colon J(\overline{\mathbb{Q}}) \to \mathbb{R}$ be the canonical height associated to $\Theta + [-1]^*\Theta$, where $\Theta = j(C) + \cdots + j(C) \in \operatorname{Div}(J)$. Then, \widehat{h} is a quadratic form on $J(\overline{\mathbb{Q}}) \otimes \mathbb{R}$, with associated bilinear form

$$\langle x, y \rangle := \frac{1}{2} \Big(\widehat{h}(x+y) - \widehat{h}(x) - \widehat{h}(y) \Big).$$

Given $x, y \in J(\overline{\mathbb{Q}}) \otimes \mathbb{R}$, write $\cos \theta(x, y) := \langle x, y \rangle / |x| |y|$.

Theorem 9. With notation as above, there are constants $B, \kappa \geq 1$ such that for any distinct $P, Q \in C(\overline{K})$ satisfying $|P| \geq |Q| > B$ and

$$\cos \theta(P,Q) \ge \frac{3}{4},$$

one has

Big cos means small angle

⁵points where every section vanishes

(Mumford's Gap Principle) $2|Q| \leq |P|$. { \square Repulsion: points with small angle must have a large difference in magnitude \square }

(Vojta's Inequality) $|P| \le \kappa |Q|$. { \square At the same time, large points can't be "too far" away from each other \square }

Remark 10. These both ultimately come from some bounds on an appropriate height function on $C \times C$. We'll see something similar at the end of the talk.

 $\spadesuit \spadesuit \spadesuit$ Niven: [Draw picture: (or point to it predrawn on side board?). Explain that this shows that there are at most something like $7^{\operatorname{rank} J(K)}$ large points].

 $\{\Box \ Earlier \ work \ of \ R\'{e}mond \ allows \ one \ to \ prove \ a \ relative \ version \ of \ Vojta's \ results. \ Before \ stating \ this, let \ me \ simplify \ things \ by \ fixing \ a \ particular \ choice \ of \ relative \ curve. \ \Box\}$

Notation 11. Fix integers $g \geq 2$ and $\ell \geq 3$.

- Let $S = \mathbb{M}_{g,1}$ be the (fine) moduli space of pointed smooth genus g curves with full (symplectic) level ℓ structure.
- Let $\mathcal{C} \to S$ denote the universal curve, with section $P \in \mathcal{C}(S)$ (i.e. $P: S \to \mathcal{C}$).
- Let $\mathcal{A} := \operatorname{Jac}(\mathcal{C}/S) \xrightarrow{\pi} S$, an abelian scheme of relative dimension g. Embed $\mathcal{C} \hookrightarrow \mathcal{A}$ via the universal section.
- Let \mathscr{L} be a relatively ample, symmetric line bundle on \mathcal{A} . This gives rise to a (fiberwise) canonical height $\hat{h}_{\mathscr{L}}: \mathcal{A}(\overline{\mathbb{Q}}) \to \mathbb{R}$
- Let \mathscr{M} be an ample line bundle on a compactification $\overline{S} \supset S$, with associated height function $h_{\mathscr{M}}: \overline{S}(\overline{\mathbb{Q}}) \to \mathbb{R}$.

 $\{\Box$ This notation is meant to emphasize that the results I quote really apply to more general families of curves embedded in abelian schemes. \Box

Proposition 12 (Rémond + DGH). There exists a constant $c = c(\mathcal{L}, \mathcal{M}) \ge 1$ such that for any $s \in S(\overline{\mathbb{Q}})$ and any finite rank $\Gamma \le \mathcal{A}_s(\overline{\mathbb{Q}})$:

$$\#\left\{P\in\mathcal{C}_s(\overline{\mathbb{Q}})\cap\Gamma:\widehat{h}_{\mathscr{L}}(P)>c\max\{1,h_{\overline{S},\mathscr{M}}(s)\}\right\}\leq c^{\operatorname{rank}\Gamma}.$$

 $\{\Box \ As \ s \ varies, \ \mathcal{C}_s \ covers \ every \ curve \ over \ \overline{\mathbb{Q}} \ \Box\}$

♠♠♠ Niven: [State relative version. Notion of "large" varies with modular height]

This leaves dealing with "small" points, where the notion of "small" depends on the modular height of your curve.

Theorem 13 (New Gap Principle, DGH + Kühne). There exist positive constants c_1, c_2, e_3 (depending only on $g, \mathcal{L}, \mathcal{M}$) such that for any $s \in S(\overline{\mathbb{Q}})$, we have

$$\#\left\{Q \in \mathcal{C}_s(\overline{\mathbb{Q}}) \colon \widehat{h}_{\mathscr{L}}(Q-P) \le c_1 \max\{1, h_{\overline{S},\mathscr{M}}(s)\} - c_3\right\} < c_2.$$

 $\{\Box \ Again, \ we \ have \ points \ on \ C \ repelling \ each \ other. \ Can't \ have \ too \ many \ in \ a \ tight \ radius. \ \Box\} \ \spadesuit \ \spadesuit$ Niven: [Draw more picture: something like $(\log_2 \kappa + 1)7^{\operatorname{rank} \Gamma} + c_2 \left(\frac{R}{r}\right)^{\operatorname{rank} \Gamma}$ total points]

Remark 14. Because the radius above grows at the same rate our notion of "large" does, we can cover our "small" points with a uniformly bounded number of balls.

 $\{\Box \ As \ with \ Vojta's \ theorem, \ this \ new \ gap \ principle \ will \ rely \ on \ some \ height \ inequality \ for \ (certain)$ subvarieties of A. The buzzphrase here is "non-degenerate" subvariety, and it will take a bit to define. \Box

Bit of a lie. Should let $S = \mathbb{M}_g$ instead because of quasifiniteness worries, but whatever

3 Non-degeneracy and Amplification

Slogan. Non-degeneracy of $X \subset \mathcal{A}$ more-or-less tells you that $\mathcal{L}|_X$ is 'big'. In particular, its powers have lots of sections, so points on X should have heights bounded from below.

 $\{\Box \text{ To define non-degeneracy, we first need to define the Betti map } \Box\}$

Construction 15. Let⁶ $\mathbb{A}_g^{\mathrm{an}} = [\mathbb{H}_g/\operatorname{Sp}_{2g}(\mathbb{Z})]$ be the moduli space of g-dimensional PPAVs over \mathbb{C} , and let $U_g^{\mathrm{an}} \to \mathbb{A}_g^{\mathrm{an}}$ denote the universal abelian variety. A point $\tau \in \mathbb{H}_g$ is the same data as a pair $(\mathbb{A}_{\tau}, \varphi : H_1(A_{\tau}, \mathbb{Z}) \xrightarrow{\sim} \mathbb{Z}^{2g})$ of a PPAV $A_{\tau} = U_g(\mathbb{C})_{\tau}$ and a symplectic isomorphism φ . Note

$$A_{\tau} \stackrel{\sim}{\underset{\text{exp}}{\leftarrow}} \operatorname{Lie}(A_{\tau})/H_1(A_{\tau}, \mathbb{Z}) \stackrel{\sim}{\underset{\varphi}{\leftarrow}} \mathbb{R}^{2g}/\mathbb{Z}^{2g}.$$

Define the Betti map to be

$$b^{\mathrm{univ}}: U_g(\mathbb{C}) \times_{\mathbb{A}_g(\mathbb{C})} \mathbb{H}_g \longrightarrow \mathbb{R}^{2g}/\mathbb{Z}^{2g}$$

 $(x \in A_{\tau}, \varphi) \longmapsto \varphi(x).$

More generally, given a contractible open $\Delta \subset S(\mathbb{C})^{\mathrm{an}}$, the composition $\Delta \to S(\mathbb{C})^{\mathrm{an}} \to \mathbb{A}_g^{\mathrm{an}}$ will factor through $\mathbb{H}_g \to \mathbb{A}_g^{\mathrm{an}}$ (in fancy speak, the local system $R^1\pi_*\mathbb{Z}$ will trivialize), so we can define a Betti map

$$b_{\Delta} \colon \mathcal{A}(\mathbb{C})_{\Delta} \to U_g^{\mathrm{an}} \times_{\mathbb{A}_g^{\mathrm{an}}} \mathbb{H}_g \xrightarrow{b^{\mathrm{univ}}} \mathbb{R}^{2g}/\mathbb{Z}^{2g}.$$

 \Diamond

 $\{\Box \text{ In any case, the Betti map is the (real analytic) map you get by identifying all your fibers with a fixed choice of real torus. <math>\Box\}$

Definition 16. Let $X \subset \mathcal{A}$ be an irreducible subvariety, and choose some $x \in X^{\mathrm{sm}}(\mathbb{C})$. The Betti rank of X at x is defined to be

$$\operatorname{rank}_{\operatorname{Betti}}(X, x) := \operatorname{rank}_{\mathbb{R}}(db_{\Delta}|_{X^{\operatorname{sm,an}}})_{x},$$

for any small enough open neighborhood Δ of $\pi(x) \in S^{an}$.

 $\{\Box$ Think about this as measuring, among other things, how much X varies as you move along the family. \Box

Remark 17. Consider the square

$$\begin{array}{ccc} \mathcal{A}(\mathbb{C}) & \stackrel{\iota}{\longrightarrow} U_g^{\mathrm{an}} \\ \downarrow^{\pi} & & \downarrow \\ S(\mathbb{C}) & \longrightarrow \mathbb{A}_g^{\mathrm{an}}. \end{array}$$

The Betti map b_{Δ} factors through ι , so we easily see that

$$\operatorname{rank}_{\operatorname{Betti}}(X, x) \leq \min\{2 \dim \iota(X), 2g\}.$$

 $\{\Box \text{ In particular, } X \text{ will have small Betti rank if } \dim \iota(X) \text{ is small, i.e. if it does not vary much. } \Box \}$ \Box $\{\Box \text{ We call a variety non-degenerate if it achieves this maximum } \Box \}$

Definition 18. An irreducible subvariety $X \subset \mathcal{A}$ is said to be non-degenerate if $\operatorname{rank}_{\operatorname{Betti}}(X,x) = 2 \dim X$ for some $x \in X^{\operatorname{sm}}(\mathbb{C})$. By the previous remark, this implies that $\iota|_X$ is generically finite and that $\dim X \leq g$.

 $^{{}^{6}\}mathbb{H}_{g} = \{\text{symmetric complex matrices } A \text{ with } \text{Im } A > 0\}$

Fact. There is a differential form (the Betti form) ω on $\mathbb{A}_q^{\mathrm{an}}$ so that

$$(\omega|_X^{\wedge \dim X})_x \neq 0 \iff \operatorname{rank}_{\operatorname{Betti}}(X, x) = 2 \dim X,$$

and so that $[\omega] = c_1(\mathcal{L}^{\text{univ}}) \in H^2(\mathbb{A}_q^{\text{an}}, \mathbb{Z}).$

 $\{\Box \ Think: \ if \ X \ is \ non-degenerate, \ the \ top \ intersection \ power \ of \ a \ principal \ polarization \ is \ nonzero.$ Asymptotic Riemann-Roch will tell you this means that powers of the bundle has lots of sections on X, so you should expect a height lower bound for its points. \Box

Theorem 19 (DGH, Theorem 1.6). Let $X \subset \mathcal{A}$ be non-degenerate and assume that it dominates S. There, there are constants $c_1 > 0$ and $c_2 \ge 0$ along with a dense Zariski open $U \subset X$ such that

$$\widehat{h}_{\mathscr{L}}(x) \geq c_1 h_{\mathscr{M}}(\pi(x)) - c_2 \text{ for all } x \in U(\overline{\mathbb{Q}}).$$

Remark 20. The main point here is to invoke a theorem of Siu in order to show that a certain line bundle (related, but not equal, to $\mathcal{L}|_X$) is big.

To deal with the non-example from before, one proves a theorem like the following

Theorem 21 (Poorly stated, see Theorem 6.5 in Gao's survery article). Consider an irreducible subvariety $X \subset \mathcal{A}$ which dominates S. Then, if X is "not too silly," then $X^{[M]} = X \times_S X \times_S \ldots \times_S X$ will be non-degenerate if $M \gg_{\dim S} 1$.

 $\{\Box \text{ This will tell you that } \mathcal{C}^{[M]} \text{ is eventually non-degenerate. Combined with the height inequality, this let's you prove the new gap principle⁷, at least over an open on the base. One then uses noetherian induction (restrict to family on complement of open and use same fiber-power trick) to conclude. <math>\Box$

♠♠♠ Niven: [Draw amplification picture]

⁷The basic idea is that a point of $X^{[M]}$ of large height is essentially M points Q_1, \ldots, Q_M so that $\sum \hat{h}_{\mathscr{L}}(Q_i - P) \ge c_1 h_{\mathscr{M}}(s)$. If each $\hat{h}_{\mathscr{L}}(Q_i - P)$ is small, this can't happen