תכנון וניתוח אלגוריתמים הרצאה 8

הבעיה הדואלית The Dual problem

<u>הבעיה הדואלית</u>

♦לכל בעיית תכנות ליניארי קיימת בעיה הקשורה בה ונבנית ממנה, וזוהי הבעיה הדואלית. הבעיה המקורית תיקרא הבעיה הפרימאלית.

נתונה הבעיה הפרימאלית הבאה:

$$Max{Z = C_1x_1 + C_2x_2 + ... + C_nx_n}$$

•תחת האילוצים:

:אילוצים

$$a_{11}x_1 + a_{12}x_2 + ...a_{1n}x_n \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + ...a_{2n}x_n \le b_2$

$$a_{m1}x_1 + a_{m2}x_2 + ...a_{mn}x_n \le b_m$$

$$x_j \ge 0....(j = 1, 2, ..., n)$$
Algorithms © Dr Reuven Hotoveli, 2016

- ⇒הבעיה הדואלית לבעיה פרימאלית זו מתקבלת כך:
 - לכל אילוץ בבעיה הפרימאלית מתאימים משתנה (i = 1, 2, ... m) או \mathcal{Y}_i דואלי \mathcal{Y}_i
- ◆הבעיה הדואלית לבעיית מקסימום היא בעיית מינימום על סכום המשתנים הדואליים, שמחיריהם הם האילוצים המתאימים בבעיה הפרימאלית.

- ◊ מערכת האילוצים נבנית ממטריצה הפוכה של מטריצת מקדמי הבעיה הפרימאלית;
- ⇒האילוצים משנים את כיוונם וצידם הימני שלהאילוצים הופכים למחירי הבעיה הפרימאלית.
 - : אדהיינו. הבעיה הדואלית לבעיה הנתונה היא כ

$$Min{V = b_1y_1 + b_2y_2 + ...b_my_m}$$

ים: מחת האילוצים:

$$a_{11}y_1 + a_{22}y_2 + ... a_{m1}y_m \ge c_1$$

$$a_{12}y_1 + a_{22}y_2 + ... a_{m2}y_m \ge c_2$$

$$a_{1n}y_1 + a_{2n}y_2 + ... a_{mn}y_m \ge c_n$$

$$y_i \ge 0$$
 (i = 1,2,....m)

:סבהצגה מטריציאלית הבעיות הנ"ל תראינה כך ♦

$$Min\{v = \underline{Yb}\}$$
 $Max\{Z = \underline{CX}\}$ $Max\{Z = \underline{CX}\}$ $Y^TA \ge C^T$ $A\underline{X} \le b$ $\underline{Y} \ge 0$ Algorithms © Dr Reuven Hotoveli, 2016 $\underline{X} \ge 0$

16.01.2016

$$Max\{Z = 3x_1 + 2x_2 + 4x_3 + x_4\}$$

$$5X_1 + 4X_2 + 3X_3 + 2X_4 \le 20$$

$$y_2 \quad x_1 + 2x_2 - x_3 - x_4 \le 10$$

$$y_3 \quad 2X_1 - 3X_2 + 4X_3 - 2X_4 \le 15$$

$$y_4$$
 X_1 + X_2 + X_3 + X_4 ≤ 8

$$x_{j} \ge 0$$
 $j = 1,2,3,4.$

:הינה זו הינה אלית לבעיה זו הינה

$$Min\{V = 20y_1 + 10y_2 + 15y_3 + 8y_4\}$$

$$5y_1 + y_2 + 2y_3 + y_4^{2} \stackrel{:}{\geq} 3^{-1}$$

$$4y_1 + 2y_2 - 3y_3 + y_4 \ge 2$$

$$3y_1 - y_2 + 4y_3 + y_4 \ge 4$$

$$2y_1 - y_2 - 2y_3 + y_4 \ge 1$$

$$y_i \ge 0$$
 $j = 1,2,3,4$.

- ⇒הבעיה הדואלית מהווה כלי עזר חשוב, לפיתרוןבעיות בתכנות ליניארי ולביצוע ניתוח רגישות עבור הפתרונות המתקבלים לבעיה.
- הבעיה הדואלית אינה מוגבלת לצורה הקלאסית של בעיית התכנות הליניארי;□
- ◊ תמיד אפשר למצוא בעיה דואלית למערכת המורכבת משוויונים, אי-שוויונים, משתנים אי-שליליים ומשתנים בלתי מוגבלים בסימן.

$$\max\{Z = x_1 + x_2 + x_3\}$$
 דוגמה נתונה הבעיה: $x_1 - 3 x_2 + 4 x_3 = 5$ תחת האילוצים: $x_1 - 2 x_2$ ≤ 3 $2x_2 - x_3 \geq 4$ $x_1, x_2 \geq 0$

אינו מוגבל בסימנו 🔊

: נגדיר:
$$x_3^{\parallel}$$
' $x_3^{\parallel} \ge 0$ כאשר $x_3 = x_3^{\parallel} - x_3^{\parallel}$ ונקבל:

$$x_1 - 3x_2 + 4x_3^{\parallel} - 4x_3^{\parallel} = 5$$

$$x_1 - 2x_2 \leq 3$$

$$2x_2 - x_3^{\parallel} + x_3^{\parallel} \ge 4$$

(1)
$$x_1 - 3 x_2 + 4 x_3 - 4 x_3 \ge 5$$

$$^{(2)}$$
 x $_1 - 3$ x $_2 + 4$ x $_3 - 4$ x $_3 \le 5$

$$^{(3)} x_1 - 2 x_2 \leq 3$$

$$2 x_{2} - x_{3}^{1} + x_{3}^{1} \ge 4$$

 $Max\{Z = x_1 + x_2 + x_3^{\parallel} - x_3^{\parallel}\}$: ונקבל (4) – ונקבל (1)

משתנים דואלים:

משתני
$$y_1^{|} -x_1 + 3x_2 - 4x_3^{|} + 4x_3^{|} \le -5$$

$$y_1^{\parallel}$$
 $x_1 - 3x_2 + 4x_3^{\parallel} - 4x_3^{\parallel} \le 5$

$$y_2 \quad x_1 - 2x_2 \leq 3$$

$$y_3 -2x_2 + x_3^{\parallel} - x_3^{\parallel} \le -4$$

Algorithms © Dr Reven Hotove (2016
$$(j=1,23^{\parallel},3^{\parallel})$$
 14

: הבעיה הדואלית המתאימה לה

$$\begin{array}{lll} \text{Min} & \{V = -5\,y_1^{\, |} + 5\,y_1^{\, |} + 3\,y_2 - 4\,y_3\} \\ & -y_1^{\, |} + y_1^{\, |} + y_2 & \geq 1 & \geq 1 \\ & 3y_1^{\, |} - 3y_1^{\, |} - 2y_2 - 2y_3 & \geq 1 \\ & -4y_1^{\, |} + 4y_1^{\, |} & +y_3 & \geq 1 \end{array}$$

 $-y_3 \ge -1$

$$y_1^{\parallel},y_1^{\parallel},y_2^{ ext{Algorithms}}$$
 $\stackrel{ ext{\tiny Lept}}{=}$ Replyen Hotoveli, 2016

 $4y_1^{\parallel} - 4y_1^{\parallel}$

תכונות הבעיה הדואלית ♦

א. הבעיה הדואלית של הבעיה הדואלית היא הבעיה הפרימאלית.

בהנחה שקיימים פתרונות אפשריים סופיים לשתי בעיות, אזי קיים פיתרון אופטימאלי סופי לשתיהן והוא זהה, דהיינו:

 $Min V = V^* = Z^* = Max Z$

- ג. כל פיתרון בסיסי אפשרי בבעיה הפרימאלית נותן ערך לפונקצית המטרה, הנמוך יותר מכל ערך של פונקצית המטרה בבעיה הדואלית לגבי כל פיתרון אפשרי של הבעיה הדואלית.
 - ▶דהיינו, פיתרון בסיסי אפשרי של הבעיה הפרימאלית מהווה חסם תחתון לאופטימום של הדואלית ולהיפך.

- ▶ד. אם לאחת הבעיות (הדואלית או הפרימאלית)
 פיתרון לא חסום, אזי לבעיה המשלימה אין פיתרון
 אפשרי.
 - שיטת הסימפלקס פותרת את שתי הבעיות -הפרימלית והדואלית יחד. □
- ו. הערך האופטימאלי של המשתנה הדואלי ה i-י שווה למקדם של המשתנה החוסר או העודף i- שווה לאילוץ i- i בטבלה הסופית. i- i-

דוגמה 3

$$Max\{Z = 20x_1 + 6x_2 + 8x_3\}$$
 פרימאלית:

משתנים דואליים

$$y_{1}$$
 $8x_{1} + 2x_{2} + 3x_{3} \le 160$
 y_{2} $4x_{1} + 3x_{2} \le 100$
 y_{3} $2x_{1}$ $+ x_{3} \le 50$
 y_{4} $x_{3} \le 20$

$$x_1, x_2, x_3 \ge 0$$

$$Min\{V = 160y_1 + 100y_2 + 50y_3 + 20y_4\}$$

$$8y_1 + 4y_2 + 2y_3$$
 ≥ 20 ≥ 20

$$2y_1 + 3y_2 \geq 6$$

$$3y_1 + y_3 + y_4 \ge 8$$

$$y_1, y_2, y_3, y_4 \ge 0$$

 $Max{Z = 20x_1 + 6x_2 + 8x_3}$ בצורה הבאה:

• תחת האילוצים:

$$8x_{1} + 2x_{2} + 3x_{3} + x_{4} = 160$$

$$4x_{1} + 3x_{2} + x_{5} = 100$$

$$2x_{1} + x_{3} + x_{6} = 50$$

$$x_{3} + x_{7} = 20$$

$$x_{16.01.2016}$$

$$x_{16.01.2016} = 1, ..., 7$$

הטבלה <mark>הסופית</mark> בפתרון הבעיה הפרימאלית בשיטת הסימפלקס היא כדלקמן:

מחירים מקוריים	20	6	8	0	0	0	0	
משתנים בבסיס	aı	a 2	a 3	24	a 5	a 6	ат	b
X1		0	0	3/16	- 1/8	0	-9/16	25/4
X2	0	1	0	- 1/4	1/2	0	3/4	25
X 6	0	0	0	- 3/8	1/4	1	1/8	70/4
X 3	0	0	1	0	0	0	1	20
C ₁	0	0	O Algorithms	9/4 © Dr Reuven He		0	5/4	Z=435

$$x_1^* = 25/4$$
 $x_2^* = 25$ $x_3^* = 20$ $x_6^* = 70/4$

$$x_4^* = x_5^* = x_7^* = 0$$
 $Z^* = 435$

הפיתרון האופטימאלי של הבעיה הדואלית מתקבל אף הוא מטבלה זו.

א. ערר פונקצית המטרה זהה בשני הפתרונות

$$V^* = Z^* = 435$$
 : האופטימאליים. ולכן

- של C_J^l ב. ערכי המשתנים הדואליים שווים למקדמים >
- $\mathbf{C}_{\mathbf{J}}^{\mathsf{I}}$ מתאים למקדם \mathbf{Y}_{1} ארינו, ערכו של המשתנה הדואלי \mathbf{Y}_{1} מתאים למקדם לאילוץ בטבלה האחרונה של משתנה החוסר, המתאים לאילוץ $\mathbf{Y}_{1}^{*} = \mathbf{C}_{4}^{\mathsf{I}} = 9/4$ ולכן \mathbf{X}_{4} ולכן \mathbf{X}_{4}

יבצורה דומה:

$$y_1^* = 9/4$$
; $y_2^* = 4/8$; $y_3^* = 0$; $y_4^* = 5/4$

 $\{x_1, x_2, x_6, x_3\}$ לכן: $\{x_1, x_2, x_6, x_3\}$ לכן: $[x_1, x_2, x_6, x_3]$ $[x_4, x_5, x_6, x_7]$

$$[x_1, x_2, x_6, x_3]$$

$$B = \begin{bmatrix} 8 & 2 & 0 & 3 \\ 4 & 3 & 0 & 0 \\ 2 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$[x_4, x_5, x_6, x_7]$$

$$B^{-1} = \begin{bmatrix} \frac{3}{16} & -\frac{1}{8} & 0 & -\frac{9}{16} \\ -\frac{1}{4} & \frac{1}{2} & 0 & \frac{3}{4} \\ -\frac{3}{8} & \frac{1}{4} & 1 & \frac{1}{8} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

מסקנות

מסקנות

$$\underline{x_B} = B^{-1} \cdot \underline{b}$$
 אר $\underline{Y}^T = \underline{c_B} \cdot B^{-1}$

⇒ בדוגמה שלנו:

$$c_B = [c_1, c_2, c_6, c_3] = [20, 6, 0, 8]$$

המשך

$$\underline{Y}^{T} = [c_1, c_2, c_6, c_3] \cdot B^{-1} =$$

$$\begin{bmatrix}
3 & -\frac{1}{8} & 0 & -\frac{9}{16} \\
-\frac{1}{4} & \frac{1}{2} & 0 & \frac{3}{4} \\
-\frac{3}{8} & \frac{1}{4} & 1 & \frac{1}{8} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$= \left[\frac{9}{4}, \frac{1}{2}, 0, \frac{5}{4}\right]$$

- The Complementary Slackness Theory
 - ♦החוק המשלים מציין קשר בין הבעיה הדואלית לפרימאלית.
 - קשר זה מאפשר לנו מעבר מפיתרון אופטימאלי של בעיה אחת לפיתרון אופטימאלי של הבעיה של בעיה.

: הדואליות הבאות

$$y^{t}A - \underline{s} = \underline{c} \Leftrightarrow$$

$$y, \underline{s} \ge 0$$

$$\underline{y}$$
, $\underline{s} \ge 0$

s.t

$$Ax+t=b$$

פתרונות לבעיות

$$\underline{x},\underline{t} \ge 0$$

$$y_{i}^{0} t_{i}^{0} = 0$$
 $s_{i}^{0} x_{i}^{0} = 0$

$$i = 1,...,m$$
 (***)
 $j = 1,...,n$ (22)

אז מתקיים: ♦

סבמילים אחרות,

- ♦ אם בפתרון האופטימאלי של הבעיה הפרימאלית מתקיים
 אילוץ כשוויון, דהיינו משתנה העודף או החוסר שלו שווה
 □ לאפס, המשתנה הדואלי המתאים לו נמצא בבסיס בפתרון
 - האופטימאלי של הבעיה הדואלית ויכול לקבל ערך חיובי או אפס.
 - ❖ אם אילוץ מסוים מתקיים כאי-שוויון בפיתרון
 האופטימאלי של הבעיה הפרימאלית, המשתנה הדואלי
 המתאים לו מקבל ערך אפס ואינו נמצא בבסיס
 האופטימאלי של הבעיה הדואלית.

<u> 4 דוגמה</u>

- ער בבעיה בדוגמה הקודמת ראינו שאילוצים 1,2 בבעיה הפרימאלית התקיימו כשוויון, היות ומשתני החוסר הפרימאלית התקיימו כשוויון, היות ומשתני החוסר המתאימים להם \mathbf{X}_7 , \mathbf{X}_5 , \mathbf{X}_4 קבלו ערך אפס בפתרון אופטימאלי.
- לכן המשתנים הדואליים המתאימים לאילוצים אלו, \mathbf{y}_4 לכן המשתנים \mathbf{y}_4 , ו- \mathbf{y}_4 , נמצאו בבסיס וקבלו ערך חיובי הם חייבים להימצא בבסיס אולם ערכם יכול להיות אפס) בפיתרון האופטימאלי של הבעיה הדואלית:

$$y_1^* = 9/4$$
 ; $y_1^* = 4/8$; $y_4^* = 5/4$

- לעומת זאת, האילוץ השלישי בבעיה הפרימאלית התקיים באופטימום כאי-שוויון, היות ומשתנה החוסר שלו \mathbf{X}_6 קיבל ערך חיובי בפיתרון $\mathbf{x}_6^* = 70/4$.
- y_3 על כן המשתנה הדואלי המתאים לאילוץ השלישי, ϕ קיבל בפתרון האופטימאלי של הבעיה ערך אפס, $y_3^*=0$ ולא היה בבסיס האופטימאלי.

:תחת האילוצים ♦

$$-x_{1} + x_{2} + 2x_{3} + 3x_{4} + 5x_{5} \le 19$$

$$-x_{1} + 4x_{2} + 3x_{3} + 2x_{4} + x_{5} \le 57$$

$$x_{j} \ge 0 j = 1,...,5$$

פתרון

כאשר נתונה בעיה תכנות ליניארי עם הרבה משתנים ושני אילוצים,כדאי לעבור תמיד לבעיה הדואלית,כי בה יהיו שני משתנים בלבד.

- ◆הבעיה הדואלית שתתקבל תהיה, כאמור, בעיית תכנות ליניארי בעלת שני משתנים,הניתנת לפתרון גרפי קל יחסית.
 - לאחר מכן,מפיתרון הבעיה הדואלית נעבור לפי החוק המשלים לפיתרון הבעיה הפרימאלית.
 - :איה הדואלית לבעיה הנתונה היא:

$Min{V = 19y_1 + 57y_2}$

X 🔷

$$(1)$$
 - y_1 - y_2 \geq - 10

(2)
$$y_1 + 4y_2 \ge 24$$

(3)
$$2y_1 + 3y_2 \ge 20$$

$$(4) 3y_1 + 2y_2 \ge 20$$

(5)
$$5y_1 + y_2 \ge 25$$

(2) ו- (5) ו- (5) מפגש האילוצים (5) ו- (2) אנקודה (2) אנקודה (3) $y_1 + 4y_2 = 24$ $5y_1 + y_2 = 25$ $y_2 = 5$ $y_1 = 4$ $V = 19y_1 + 57y_2 = 361$

(1) -ו (2) ו- (2) מפגש האילוצים (2) ו- ($\frac{\mathbf{B}}{y_1}$

$$y_2 = 14/3$$
 $y_1 = 16/3$ $V = 367\frac{1}{3}$

$$y_1 + y_2 = 10$$
 $5y_1 + y_2 = 25$

$$y_1 = 15/4$$
 $y_2 = 25/4$ $V = 427.5$

♦ האופטימום של הבעיה הדואלית מתקבל בנקודה A,מפגש האילוצים(5) ו-(2), והוא:

$$y_2^* = 5$$
, $y_1^* = 4$, $V^* = 361$

- ◆דהיינו, אילוצים (5) ו- (2) מתקיימים כשוויון
 באופטימום של הבעיה הדואלית ושאר האילוצים
 מתקיימים כאי-שוויון.

לכן ניתן לפתור את שני האילוצים של הבעיה הפרימאלית, המתקיימים כשוויון, היות והמשתנים הפרימאלית המתאימים להם y_2, y_1 מקבלים ערך הדואליים המתאימים להב x_2, y_1 ושאר חיובי ונמצאים בבסיס, לגבי x_2 ובסים.

$$x_2 + 5x_5 = 19$$
 מכאן נפתור:
$$4x_2 + x_5 = 57$$

♦ לכן נקבל:

$$19x_5 = 19 \rightarrow x_5 = 1 \rightarrow x_2 = 14$$

◊ ומכאן, פתרון האופטימאלי של הבעיה הפרימאלית,שהתקבל בעזרת החוק המשלים, הוא:

$$Z^* = 361$$

$$x_2^* = 14 \quad x_5^* = 1$$

$$x_1^* = 0$$
; $x_3^* = 0$; $x_4^* = 0$

- הגדרה: בעיית תכנון לינארי היא קנונית אם היא: ♦
 - בעיית מקסימום תחת אילוצי קטן שווה
 - י אר
 - בעיית מינימום תחת אילוצי גדול שווה

- ובכל מקרה אילוצי אי שליליות על כל המשתנים.
- <u>הערה</u>: הבעיה הדואלית של הבעיה הקנונית היא גם בעיה קנונית.

- שבור בעיית תכנון לינארי של מקסימום
 - אילוץ קטן או שווה הוא קנוני -
- אילוץ גדול או שווה הוא אנטי קנוני
 - אילוץ שוויון הוא גיטראלי
 - עבור בעיית תכנון לינארי של מינימום ♦
- אילוץ קטן או שווה הוא אנטי קנוני
 - אילוץ גדול או שווה הוא קנוני
 - אילוץ שוויון הוא ניטראלי

בעיה קנונית

- עבור בעיית תכנון לינארי של מקסימום וגם של מינימום 🍣 משתנה הוא:
 - קנוני אם הוא מוגדר להיות אי שלילי.
 - אנטי קנוני אם הוא מוגדר להיות אי חיובי.
 - ביטראלי אם הוא חופשי.

בעיה קנונית

Max
$${Z = 2x_1 + 3x_2 + 6x_3}^{*}$$

S.t.

$$x_1 + x_2 + x_3 \le 5$$

 $-x_1 + 2x_2 + x_3 = 4$

$$x_1 - x_3 \geq 0$$

$$x_1 \ge 0$$

$$x_2$$
 is free

$$x_3 \leq 0$$

משתנה
$$x_1$$
 קנוני

משתנה
$$x_2$$
 ניטראלי

משתנה
$$\chi_3$$
 אנטי קנוני

בעיה קנונית

S.t.

$$x_1 + x_2 + x_3 \le 5$$

 $-x_1 + 2x_2 + x_3 = 4$

$$x_1 - x_3 \geq 0$$

$$x_1 \ge 0$$

$$x_2$$
 is free

$$x_3 \leq 0$$

משתנה
$$x_1$$
 קנוני

משתנה
$$x_2$$
 ניטראלי

משתנה
$$\chi_3$$
 אנטי קנוני

דוגמה 1 - מעבר מפרימלי לדואלי

$$\min\{V = 7y_1 + y_2 + 5y_3\}$$

s.t.

$$(1) \quad y_1 - y_2 + 3y_3 \ge 10$$

$$(2) 5y_1 + 2y_2 - y_3 \ge 6$$

(3)
$$y_1 \ge 0$$

(4)
$$y_2 \ge 0$$

(5)
$$y_3 \ge 0$$

$$\max\{Z = 10x_1 + 6x_2\}$$

(1)
$$x_1 + 5x_2 \le 7 \leftarrow y_1$$

$$(2)-x_1+2x_2 \le 1 \leftarrow y_2$$

(3)
$$3x_1 - x_2 \le 5 \leftarrow y_3$$

(4)
$$x_1 \ge 0 \leftarrow y_1 - y_2 + 3y_3 \ge 10$$

(5)
$$x_2 \ge 0 \leftarrow 5y_1 + 2y_2 - y_3 \ge 6$$

דוגמה 2 - מעבר מפרימלי אנטי קנונית לדואלי בגלל אילוץ גדול שווה

ס הצגת הבעיה הפרימלית כקנונית ♦

▶ הבעיה הפרימלית אנטי קנונית

$$\max\{Z = 10x_1 + 6x_2\}$$

S.t.

$$(1) -x_1 - 5x_2 \le -7 \leftarrow y_1$$

$$(2) - x_1 + 2x_2 \le 1 \qquad \leftarrow y_2$$

(3)
$$3x_1 - x_2 \le 5 \leftarrow y_3$$

(4)
$$x_1 \ge 0$$

$$(5) x_2 \ge 0$$

$$\max\{Z = 10x_1 + 6x_2\}$$

(1)
$$x_1 + 5x_2 \ge 7$$

$$(2)-x_1+2x_2 \le 1$$

(3)
$$3x_1 - x_2 \le 5$$

(4)
$$x_1 \ge 0$$

$$(5) x_2 \ge 0$$

המשך דוגמה 2

s.t.

(1)
$$y_1' - y_2 + 3y_3 \ge 10$$

(2)
$$5y_1' + 2y_2 - y_3 \ge 6$$

$$(3) \ y_1 \leq 0$$

(4)
$$y_2 \ge 0$$

$$(5) y_3 \ge 0$$

$$\min\{V = -7y_1 + y_2 + 5y_3\}$$

$$(1) -y_1 - y_2 + 3y_3 \ge 10$$

$$(2) - 5y_1 + 2y_2 - y_3 \ge 6$$

(3)
$$y_1 \ge 0$$

(4)
$$y_2 \ge 0$$

(5)
$$y_3 \ge 0$$

סיכום - מעבר מפרימלי לדואלי

$$\min\{V = 7y_1 + y_2 + 5y_3\}$$

s.t.

$$(1) y_1' - y_2 + 3y_3 \ge 10$$

$$(2) \quad 5y_1' + 2y_2 - y_3 \ge 6$$

(3)
$$y_1 \le 0$$

(4)
$$y_2 \ge 0$$

$$(5) y_3 \ge 0$$

▶ הבעיה הפרימלית אנטי קנונית

$$\max\{Z = 10x_1 + 6x_2\}$$

(1)
$$x_1 + 5x_2 \ge 7 \leftarrow y_1$$

$$(2)-x_1+2x_2 \le 1 \leftarrow y_2$$

(3)
$$3x_1 - x_2 \le 5 \leftarrow y_3$$

$$(4) x_1 \ge 0$$

(5)
$$x_2 \ge 0$$

מעבר מפרימלי לדואלי

◊ מסקנה: המשתנה הדואלי המתאים לאילוץ האנטי
קנוני הוא משתנה אנטי קנוני.

דוגמה 3 - מעבר מפרימלי אנטי קנונית לדואלי בגלל אילוץ שוויון

ס הצגת הבעיה הפרימלית כקנונית ♦

ס הבעיה הפרימלית אנטי קנונית ♦

$$\max\{Z = 10x_1 + 6x_2\}$$

s.t.

$$(1) \quad x_1 + 5x_2 \le 7 \quad \leftarrow y_1^+$$

$$(2) -x_1 -5x_2 \le -7 \leftarrow y_1^-$$

$$(3) - x_1 + 2x_2 \le 1 \qquad \leftarrow y_2$$

(4)
$$3x_1 - x_2 \le 5 \leftarrow y_3$$

(5)
$$x_1 \ge 0$$

(6)
$$x_2 \ge 0$$

$$\max\{Z = 10x_1 + 6x_2\}$$

$$(1) \quad x_1 + 5x_2 = 7$$

$$(2)-x_1+2x_2 \le 1$$

(3)
$$3x_1 - x_2 \le 5$$

(4)
$$x_1 \ge 0$$

$$(5) x_2 \ge 0$$

המשך דוגמה 3

$$\min\{V = 7y_1^+ - 7y_1^- + y_2 + 5y_3\}$$

s.t.

(1)
$$y_1^+ - y_1^- - y_2 + 3y_3 \ge 10$$

$$(2)5y_1^+ - 5y_1^- + 2y_2 - y_3 \ge 6$$

$$y_1^+ \ge 0 \quad y_1^- \ge 0$$

$$y_2 \ge 0$$
 $y_3 \ge 0$

$$\max\{Z = 10x_1 + 6x_2\}$$

$$(1) \quad x_1 + 5x_2 \le 7 \quad \leftarrow y_1^+$$

$$(2) -x_1 -5x_2 \le -7 \leftarrow y_1^-$$

$$(3) - x_1 + 2x_2 \le 1 \leftarrow y_2$$

(4)
$$3x_1 - x_2 \le 5 \leftarrow y_3$$

$$(5) x_1 \ge 0$$

(6)
$$x_2 \ge 0$$

המשך דוגמה 3

:הבעיה הדואלית הינה

$$\min\{V = 7y_1 + y_2 + 5y_3\}$$

s.t.

$$(1) \quad y_1 - y_2 + 3y_3 \ge 10$$

$$(2)5y_1 + 2y_2 - y_3 \ge 6$$

$$y_1$$
 is free, $y_2 \ge 0$ $y_3 \ge 0$

 $\min\{V = 7y_1^+ - 7y_1^- + y_2 + 5y_3\}$

(1)
$$y_1^+ - y_1^- - y_2 + 3y_3 \ge 10$$

$$(2)5y_1^+ - 5y_1^- + 2y_2 - y_3 \ge 6$$

$$y_1^+ \ge 0 \quad y_1^- \ge 0$$

$$y_2 \ge 0$$
 $y_3 \ge 0$

סיכום - מעבר מפרימלי לדואלי

$$\min\{V = 7y_1 + y_2 + 5y_3\}$$

s.t.

$$(1) \quad y_1 - y_2 + 3y_3 \ge 10$$

$$(2)5y_1 + 2y_2 - y_3 \ge 6$$

$$y_1$$
 is free, $y_2 \ge 0$ $y_3 \ge 0$

$$\max\{Z = 10x_1 + 6x_2\}$$

$$(1) \quad x_1 + 5x_2 = 7$$

$$(2) - x_1 + 2x_2 \le 1$$

(3)
$$3x_1 - x_2 \le 5$$

$$(4) x_1 \ge 0$$

$$(5) x_2 \ge 0$$

מעבר מפרימלי לדואלי

◊מסקנה: המשתנה הדואלי המתאים לאילוץ ניטראלי הוא משתנה ניטראלי .

דוגמה 4 - מעבר מפרימלי אנטי קנונית לדואלי בגלל משתנה אי חיובי

:ונקבל $x_1^{'}=-x_1$ בעיה הפרימלית אנטי קנונית \diamond עתה נציב הפרימלית אנטי

$$\max\{Z = -10x_1 + 6x_2\}$$

s.t.

$$(1) -x_1 + 5x_2 \le 7 \leftarrow y_1$$

(2)
$$x_1 + 2x_2 \le 1 \leftarrow y_2$$

$$(3)-3x_1 - x_2 \le 5 \leftarrow y_3$$

$$(5) x_1 \ge 0$$

(6)
$$x_2 \ge 0$$

$$\max\{Z = 10x_1 + 6x_2\}$$

$$(1) \quad x_1 + 5x_2 \le 7$$

$$(2)-x_1+2x_2 \le 1$$

(3)
$$3x_1 - x_2 \le 5$$

(4)
$$x_1 \le 0$$

$$(5) x_2 \ge 0$$

4 המשך דוגמה

ס הבעיה הפרימלית הקנונית ◆

$$\max\{Z = -10x_1' + 6x_2\}$$

s.t.

$$(1) -x_1' + 5x_2 \le 7 \quad \leftarrow y_1$$

(2)
$$x_1 + 2x_2 \le 1 \leftarrow y_2$$

$$(3) - 3x_1' - x_2 \le 5 \leftarrow y_3$$

$$(5) \ x_1 \ge 0$$

(6)
$$x_2 \ge 0$$

$$\min\{V = 7y_1 + y_2 + 5y_3\}$$

$$(1) - y_1 + y_2 - 3y_3 \ge -10$$

$$(2)5y_1 + 2y_2 - y_3 \ge 6$$

$$y_1 \ge 0 \quad y_2 \ge 0 \quad y_3 \ge 0$$

4 המשך דוגמה

$$\min\{V = 7y_1 + y_2 + 5y_3\}$$
s.t.

(1)
$$y_1 - y_2 + 3y_3 \le 10$$

$$(2)5y_1 + 2y_2 - y_3 \ge 6$$

$$y_1 \ge 0 \quad y_2 \ge 0 \quad y_3 \ge 0$$

$$\min\{V = 7y_1 + y_2 + 5y_3\}$$

$$(1) - y_1 + y_2 - 3y_3 \ge -10$$

$$(2)$$
 5 $y_1 + 2y_2 - y_3 \ge 6$

$$y_1 \ge 0$$
 $y_2 \ge 0$ $y_3 \ge 0$

סיכום - מעבר מפרימלי לדואלי

$$\min\{V = 7y_1 + y_2 + 5y_3\}$$

s.t.

(1)
$$y_1 - y_2 + 3y_3 \le 10$$

$$(2)5y_1 + 2y_2 - y_3 \ge 6$$

$$y_1 \ge 0$$
 $y_2 \ge 0$ $y_3 \ge 0$

$$\max\{Z = 10x_1 + 6x_2\}$$

$$(1) \quad x_1 + 5x_2 \le 7$$

$$(2) - x_1 + 2x_2 \le 1$$

(3)
$$3x_1 - x_2 \le 5$$

$$(4) x_1 \leq 0$$

$$(5) x_2 \ge 0$$

מעבר מפרימלי לדואלי

מסקנה: משתנה אנטי קנוני בבעיה הפרימלית מתאים לאילוץ אנטי קנוני בבעיה הדואלית .

דוגמה 5 - מעבר מפרימלי ,בה משתנה לא מאולץ סימן, לדואלי

:הבעיה הדואלית הינה

$$\min\{V = 7y_1 + y_2 + 5y_3\}$$

s.t.

(1)
$$y_1 - y_2 + 3y_3 = 10$$

$$(2)5y_1 + 2y_2 - y_3 \ge 6$$

$$y_1 \ge 0$$
 $y_2 \ge 0$ $y_3 \ge 0$

:איה הפרימלית היא

$$(1) \quad x_1 + 5x_2 \le 7$$

$$(2)-x_1+2x_2 \le 1$$

(3)
$$3x_1 - x_2 \le 5$$

(4)
$$x_1$$
 is free

$$(5) x_2 \ge 0$$

מסקנה ממשפט הדואליות החלש

♦אם קיימים פתרונות אפשריים לבעיה הפרימאלית והבעיה הדואלית שערכי פונקציות המטרה שלהם זהים, אזי שני הפתרונות הם אופטימאליים לבעיותיהם.