DTC	P0171	SYSTEM TOO LEAN (FUEL TRIM) (BANK 1)
DTC	P0172	SYSTEM TOO RICH (FUEL TRIM) (BANK 1)
	•	
DTC	P0174	SYSTEM TOO LEAN (BANK 2)
	•	
DTC	P0175	SYSTEM TOO RICH (BANK 2)

CIRCUIT DESCRIPTION

The fuel trim is related to the feedback compensation value, not to the basic injection time. The fuel trim includes the short–term fuel trim and the long–term fuel trim.

The short–term fuel trim is the short–term fuel compensation used to maintain the air–fuel ratio at stoichiometric air–fuel ratio. The signal from the Heated Oxygen Sensor (HO2S) indicates whether the air–fuel ratio is RICH or LEAN compared to the stoichiometric air–fuel ratio. This variance triggers a reduction in the fuel volume if the air–fuel ratio is RICH, and an increase in the fuel volume if it is LEAN.

The short-term fuel trim varies from the central value due to individual engine differences, wear over time and changes in the operating environment. The long-term fuel trim, which controls overall fuel compensation, steadies long-term deviations of the short-term fuel trim from the central value.

If both the short-term fuel trim and the long-term fuel trim are LEAN or RICH beyond a certain value, it is detected as a malfunction, the MIL is illuminated and a DTC is set.

DTC No.	DTC Detection Condition	Trouble Area
P0171 P0174	When air-fuel ratio feedback is stable after warming up engine, fuel trim is considerably in error on LEAN side (2 trip detection logic)	Air induction system Injector blockage Mass Air Flow (MAF) Meter Engine Coolant Temperature (ECT) sensor Fuel pressure Gas leakage in exhaust system HO2S (bank 1 sensor 1) HO2S heater (bank 1 sensor 1) EFI MAIN relay PCV valve and hose ECM
P0172 P0175	When air-fuel ratio feedback is stable after warming up engine, fuel trim is considerably in error on RICH side (2 trip detection logic)	Injector leak or blockage MAF meter ECT sensor Ignition system Fuel pressure Gas leakage in exhaust system HO2S (bank 2 sensor 1) HO2S heater (bank 2 sensor 1) EFI MAIN relay ECM

HINT:

- When DTC P0171 or P0174 is recorded, the actual air-fuel ratio is on the LEAN side. When DTC P0172 or P0175 is recorded, the actual air-fuel ratio is on the RICH side.
- If the vehicle runs out of fuel, the air–fuel ratio is LEAN and DTC P0171 or P0174 may be recorded. The MIL then turns on.
- If the total of the short-term fuel trim value and long-term fuel trim value is within the malfunction threshold (ECT is more than 75°C (167°F)), the system is functioning normally.

MONITOR DESCRIPTION

Under closed—loop fluel control, fluel injection amounts flhat deviate from the ECM's estimated fluel amount will cause a change in the long—term fluel frim compensation value. This long—term fluel frim is adjusted when there are persistent deviations in the short—term fluel frim values. And the deviation from a simulated fluel injection amount by the ECM affects the moothed fluel frim learning value. The moothed fluel frim learning value is the combination of moothed short term fluel frim fluel fleed back compensation value) and moothed long flerm fluel frim fluel fluel frim fluel fluel frim fluel fluel

Example:

The smoothed flue firm leaning value is above 40% or below -35%. The ECM interprets this as a flailure in the fuel system.

WIRING DIAGRAM

Refer[]0[]DTC[]P0031[]pn[]page[]05-54.

INSPECTION PROCEDURE

HINT:

It is possible the malfunctioning area can be found using the active test "Control the injection volume A/F sensor" operation. The active test can determine if the HO2S or othe potential trouble areas are malfunctioning or not.

The injection volume can be switched to -12.5 % (decrease) or +25 % (increase) by the active test.

The active test procedure enables a technician to check and graph the voltage outputs of the HO2Ss.

Procedure:

- (a) Connect the Intelligent Tester II to the DLC3 on the vehicle.
- (b) Turn the ignition switch ON.
- (c) Warm up the engine by running the engine at 2,500 rpm for approximately 90 seconds.
- (d) Enter the following menus: Active Test/ Control the injection volume A/F sensor.
- (e) Perform the active test at the engine idling.

Standard:

The HO2S reacts in accordance with increase and decrease of injection volume +25 % \rightarrow Rich output: more than 0.55 V

-12.5 % → Lean output: Less than 0.4 V

NOTICE:

The HO2S (sensor 1) output has a few seconds of delay and the HO2S (sensor 2) output has a maximum of 20 seconds of delay.

If the vehicle is short of fuel, the air-fuel ratio becomes LEAN and the DTCs will be recorded.

Case	HO2S Voltage (Sensor 1)	HO2S Voltage (Sensor 2)	Main Suspected Trouble Area
1	Injection Volume +25 % -12.5 % HO2S Voltage 0.55 V or more Below 0.4 V OK	Injection Volume +25 % -12.5 % HO2S Voltage 0.5 V or more Below 0.4 V OK	_
2	Injection Volume +25 % -12.5 % HO2S Voltage Almost no reaction NG	Injection Volume +25 % -12.5 % HO2S Voltage 0.5 V or more Below 0.4 V OK	HO2S (sensor 1) HO2S heater (sensor 1)
3	Injection Volume +25 % -12.5 % HO2S Voltage 0.55 V or more Below 0.4 V OK	Injection Volume +25 % -12.5 % HO2S Voltage Almost no reaction NG	HO2S (sensor 2) HO2S heater (sensor 2)
4	Injection Volume +25 % -12.5 % HO2S Voltage Almost no reaction NG	Injection Volume +25 % -12.5 % HO2S Voltage Almost no reaction NG	Injector Fuel Pressure Exhaust Gas Leak etc. (Air-Fuel ratio is extremely Lean or Rich)

HINT:

A[high[HO2S[sensor 1[voltage]](0.55[v[pr[more)]]ndicates[Rich[air]]uel[ratio.

Allow[HO2S[\$ensor 1[Voltage]](0.4[V[ort]]ess)[indicates[Lean[air]]]uel[ratio.

1 | CHECK OTHER DTC OUTPUT

Display[[DTC[output)	Proceed[<u>f</u> lo
P0171, P0172,[P0174[]or[P0175	A
P0171, P0172,[P0174[pr[P0175[and[other]]DTCs	В

GO[TO[RELEVANT[DTC[CHART (See[page[05-36)

Α

2 | CHECK CONNECTION OF PCV HOSE

OK: [PCV[hose]is[connected[correctly[and[is[not[damaged.

NGD REPAIR OR REPLACE PCV HOSE

OK

3 | CHECK[AIR[INDUCTION[\$YSTEM[See[page 13-3]

Check the air induction system for vacuum leaks.

NG > REPAIR OR REPLACE AIR INDUCTION SYSTEM

OK

4 PERFORM ACTIVE TEST

Perform the Active test "Control the injection volume A/F sensor" with Intelligent Tester II and check the HO2S status.

Standard:

The HO2S reacts in accordance with increase and decrease of injection +25 % volume \rightarrow Rich output: More than 0.55 V

-12.5 % → Lean output: Less than 0.4 V

Related	HO2S Status				A/F Condition and	Misfire	Main Suspected	Go to
DTCs	B1S1	B1S2	B2S1	B2S2	S2 HO2S Condition		Trouble Area	Step
N/A	L/R	L/R	L/R	L/R	Normal	None	None	N/A
P0171 P0174	L	L	L	L	Actual A/F is Lean at all cylinders	May Occur	PCV hose Air induction system Fuel pressure, MAF or ECT	E
P0172 P0175	R	R	R	R	Actual A/F is Rich at all cylinders	None	Fuel pressure, MAF or ECT	5
P0171	L	L	L/R	L/R	Actual A/F is Lean at bank 1	May Occur	Spark plug, ignition system,	8
P0174	L/R	L/R	L	L	Actual A/F is Lean at bank 2	May Occur	Injector or exhaust gas leak	O
P0172	R	R	L/R	L/R	Actual A/F is Rich at bank 1	None	Spark plug, ignition sys-	10
P0175	L/R	L/R	R	R	Actual A/F is Rich at bank 2	None	tem or Injector	
P0171	L	R	L/R	L/R	HO2S (bank 1 sensor 1) malfunction	None	HO2S (bank 1 sensor 1)	
P0174	L/R	L/R	L	R	HO2S (bank 2 sensor 1) malfunction	None	HO2S (bank 2 sensor 1)	- 11
P0172	R	L	L/R	L/R	HO2S (bank 1 sensor 1) malfunction	None	HO2S (bank 1 sensor 1)	
P0175	L/R	L/R	R	L	HO2S (bank 2 sensor 1) malfunction	None	HO2S (bank 2 sensor 1)	

L: During the Active Test, the HO2S voltage almost always indicates 0.4 V or less (LEAN).

R: During the Active Test, the HO2S voltage almost always indicates 0.5 V or more (RICH).

5 | READ[VALUE[OF[HANDE[HELD[TESTER](COOLANT[TEMP)

- (a) Connect the Intelligent Tester I to the DLC3.
- (b) Enter[the[following[menus:[Enter/[Diagnosis/[DBD·MOBD/[Power[train/[Engine[and[ECT/[Data[List/All[Data/[Coolant[Temp.
- (c) Measure[the[Coolant[Temp[when[the[engine[is[cold[and[warmed[up.

Standard:

ECT when the engine is cold: same as ambient temperature.

ECT[when[the[engine[is]warming-up:[75[to[95°C (167[to[203°F)

NG∏>

REPLACE/ECT/SENSOR

OK

6 | READ[VALUE[OF[INTELLIGENT[TESTER]]][MAF]

- (a) Enter[the[following[menus:[Enter/[Diagnosis/[DBD·MOBD/[Power[train/[Engine[and[ECT/[Data[List/All[Data/[MAF.
- (b) Allow the regine to idle funtil the ECT reaches 75°C (167°F).
- (c) Measure MAF at Idle mpm and 3,000 mm.

Standard:

MAF[at[]dle[]pm:[3[]to[6]]/s[[shift[]position:[N[]and[]A/C:[OFF])
MAF[at[]3,000[]pm: 11[]to[]23[]/s[[shift[]position:[N[]and[]A/C:[OFF])

NG∏

REPLACE[MAF]METER

OK

7 | CHECK[FUEL[PRESSURE[See]page 11-9)

NG□

REPAIR OR REPLACE FUEL SYSTEM

OK

8 | CHECK[FOR[EXHAUST[GAS[LEAKAGE

NG[

REPAIR OR REPLACE EXHAUST SYSTEM (See page 15-1)

OK

9 | CHECK[FOR[\$PARK[AND[]GNITION[[See]page 18-4]

HINT:

If the spark plugs or ignition system malfunction, engine misfires may occur. The misfire counter can be read with the Intelligent Tester II. Enter the following menus: Enter/ Diagnosis/ OBD·MOBD/ Power train/ Engine and ECT/ Data List/ All Data/ Cylinder #1 (to #8) Misfire Rate.

NG

REPAIR OR REPLACE IGNITION SYSTEM

OK

10 | INSPECT[FUEL[INJECTOR[ASSY[See[page 11-9]]

HINT:

If the injectors malfunction, engine misfire may occur. The misfire counter can be read with the Intelligent Tester II. Enter the following menus: Enter/ Diagnosis/ OBD·MOBD/ Power train/ Engine and ECT/ Data List/ All Data/ Cylinder #1 (to #8) Misfire Rate.

NG REPLACE FUEL INJECTOR ASSY (See page 11-15)

OK

11 INSPECT HEATED OXYGEN SENSOR (SENSOR 1)

- (a) Disconnect the H9 or H10 HO2S connector.
- (b) Measure the resistance between the terminals of the HO2S.

Standard:

Tester Connection	Specified Condition
H9-1 (HT) - H9-2 (+B)	5 to 10 Ω at 20°C (68°F)
H9-1 (HT) - H9-4 (E1)	10 k Ω or higher
H10-1 (HT) - H10-2 (+B)	5 to 10 Ω at 20°C (68°F)
H10-1 (HT) - H10-4 (E1)	10 k Ω or higher

NG REPLACE HEATED OXYGEN SENSOR

OK

12 INSPECT EFI MAIN RELAY

- (a) Remove the EFI MAIN relay from the engine room Relay Block (R/B).
- (b) Measure the resistance of the EFI MAIN relay.

Standard:

Tester Connection	Specified Condition
3 – 5	10 k Ω or higher
3 – 5	Below 1 Ω (apply battery voltage to terminals 1 and 2)

NG > RE

REPLACE EFI MAIN RELAY

OK

13 CHECK WIRE HARNESS (FRONT HO2S – ECM)

- (a) Disconnect the H9 and H10 HO2S connector.
- (b) Disconnect the E4 and E5 ECM connectors.
- (c) Measure the resistance between the wire harness side connectors.

Standard:

Tester Connection	Specified Condition
H9-1 (HT) - E6-24 (HT1A)	Below 1 Ω
H9-3 (OX) - E6-30 (OX1A)	Below 1 Ω
H10-1 (HT) - E5-5 (HT2A)	Below 1 Ω
H10-3 (OX) - E5-28 (OX2A)	Below 1 Ω
H9-1 (HT) or E6-24 (HT1A) - Body ground	10 k Ω or higher
H9-3 (OX) or E6-30 (OX1A) - Body ground	10 k Ω or higher
H10-1 (HT) or E5-5 (HT2A) - Body ground	10 kΩ or higher
H10-3 (OX) or E5-28 (OX2A) - Body ground	10 k Ω or higher

NG REPAIR OR REPLACE HARNESS AND CONNECTOR

OK

14 REPLACE HEATED OXYGEN SENSOR

NEXT

15 PERFORM CONFIRMATION DRIVING PATTERN

- (a) Connect the Intelligent Tester II to the DLC3.
- (b) Switch from normal mode to check mode.
- (c) Warm up the engine until the Engine Coolant Temperature (ECT) reaches to 75°C (167°F).
- (d) Drive the vehicle at 31 mph (50 km/h) or more for 3 to 5 minutes.
- (e) Allow the engine to idle for 2 minutes.
- (f) Perform procedure (d) and (e) at least 3 times.
- (g) Confirm that no DTC occurs.

NEXT

END