

Rapport Ouverture Scientifique et Technique

Auteur

Dubois Louan Maachi Kaoutar Techer Luc

STI, 4A

Année Universitaire 2020 - 2021

version: 25 mars 2021

Encadrant: Toinard Christian

TABLE DES MATIÈRES

Table des matières

Ta	able des matières	1
1	Contexte	1
2	Problématique 2.1 Une première sous-partie	4 4
3	Apports scientifiques principaux de l'article 3.1 Le concept des micro-noyaux	6 6
4	Impacts de l'article	7
5	Analyse critique du travail proposé	8
Conclusion		9
Références		10
Annexes		11
\mathbf{A}	Algorithme qui fait quelque chose	11
В	Une autre annexe	12

1 Contexte

Les processeurs, dont l'évolution a été caractérisée par une augmentation continue de la fréquence de fonctionnement, suivent depuis quelques années une nouvelle voie, celle du multi-coeur. Les limites acceptables étant atteintes, la multiplication des processeurs dans un même système offre une autre possibilité d'augmentation de la puissance de calcul. Un système d'exploitation est principalement composé d'un noyau. Celui-ci est une couche d'abstraction entre le matériel (processeur, mémoire) et le logiciel (application, user space), et permet leur communication. Il peut être monolithique, c'est-à-dire un programme qui est tel qu'il est et ne peut pas être modifié, pas d'ajout de fonctionnalités possible sans le recompiler. Il peut également être modulaire, qui signifie que l'on peut lui ajouter des programmes qui étendent ses fonctionnalités, et aussi les supprimer.

d'autre part le microkernel est un logiciel ou un code qui contient le minimum requis de fonctions, de données et de fonctionnalités pour implémenter un système d'exploitation. Il fournit un nombre minimal de mécanismes, ce qui est assez bon pour exécuter les fonctions les plus élémentaires d'un système d'exploitation. Il permet à d'autres parties du système d'exploitation d'être implémentées car il n'impose pas beaucoup de politiques.

Un Microkernel est la partie la plus importante pour une implémentation correcte d'un système d'exploitation, on peut voir dans le diagramme ci-dessous, que Microkernel accomplit des opérations de base comme la mémoire, les mécanismes de planification de processus et la communication inter-processus.

Figure 1 – Microkernel Based Operating System

Distributed computing est une technologie beaucoup plus large qui existe depuis plus de trois décennies de maintenant. En termes simples, il est un calcul sur des ordinateurs autonomes distribués qui ne communiquent que sur un réseau, ces systèmes sont généralement traités différemment des systèmes informatiques parallèles ou des systèmes à mémoire partagée, où plusieurs ordinateurs partagent un pool de mémoire commun utilisé pour la communication entre les processeurs. Les systèmes de mémoire distribuée utilisent plusieurs ordinateurs pour résoudre un problème commun, le calcul étant réparti entre les ordinateurs connectés (nœuds) et utilisant la transmission de messages pour communiquer entre les nœuds. Par exemple, le calcul en grille est une forme de calcul distribué où les nœuds peuvent appartenir à différents domaines administratifs. Un autre exemple est la solution de virtualisation du stockage en réseau qui utilise le calcul distribué entre des serveurs de données et de métadonnées.

Figure 2 – A distributed computing system

Voici une première section. Vous pouvez faire des citations en utilisant la commande \cite. Par exemple [1].

Les informations de publication concernant le papier cité sont à placer dans un fichier .bib. Dans ce template, il s'agit du fichier bibliographie.bib.

Ces informations peuvent être obtenues sur le web, notamment ici :

https://scholar.google.fr/

Pour ce faire:

- 1. chercher le nom de l'article,
- 2. cliquez sur les guillemets,
- 3. puis sur BibTeX,
- 4. copier l'intégralité du texte dans le fichier bibliographie.bib,
- 5. modifier la clé.
- 6. dans votre fichier rapport.tex, utilisez cette clé pour citer le papier.

Exemple: New directions in Cryptography, de Diffie et Hellman

- 1. La recherche: https://scholar.google.fr/scholar?hl=fr&as_sdt=0%2C5&q=new+directions+in+cryptography&btnG=&oq=New+directions+in+cryptography
- 2. L'entrée BibTeX : https://scholar.googleusercontent.com/scholar.bib?q= info:zhumlNGssTEJ:scholar.google.com/&output=citation&scisig=AAGBfmOAAAAXJH2ZyV scisf=4&ct=citation&cd=-1&hl=fr&scfhb=1
- 3. Ici, la clé par défaut est diffie1976new, que je modifie en DH76.
- 4. Pour citer ce papier, dans rapport.tex, j'utilise la commande \cite{DH76}

Vous pouvez aussi mettre des références en URL en pied de page ¹ (mais c'est moins propre que \cite).

Attention, les compilations La Texte BibTeX peuvent être... "capricieuses". Je vous recommande de suivre cet ordre :

^{1.} Il suffit d'utiliser la commande \footnote et d'inclure votre URL à l'aide de \footnote : https://www.latex-project.org/ ou de \href : même lien.

1 CONTEXTE

- $1. \ \ Compilation \ I\!\!/ T\!\!\!/ E\!\!\!/ X: \texttt{pdflatex -synctex=1 -shell-escape -interaction=nonstopmode rapport.tex}$
- $2. \ Compilation \ BibTeX: \verb+bibtex rapport.aux+$
- 3. Compilation LATEX
- 4. Compilation LATEX

Ou plus simplement, utilisez le Makefile fourni.

2 Problématique

Dans les années 1990, tous les systèmes d'exploitation étaient basés sur des noyaux monolithiques ce qui limitait grandement les possibilités de développement de systèmes en rendant compliqué l'intégration de tels noyaux sur des architectures matérielles complexes. Les développeurs avaient alors besoin d'un système d'exploitation fiable, sécurisé et modulable afin de pouvoir l'exploiter au mieux dans leurs applications.

De plus, un noyau monolithique limite la compatibilité et l'optimisation vis-à-vis d'architectures variées. A l'époque, les ordinateurs hautes performances et les super-ordinateurs possaidaient plusieurs processeurs tandis que les ordinateurs grand-public n'en possaidaient qu'un. L'objectif de cette recherche était donc de créer un noyau modulaire qui pouvait être facilement adapté à différentes architectures plus ou moins complexes.

2.1 Une première sous-partie

Un premier paragraphe...

Un second...

2.2Une seconde sous-partie

Inclusion d'images/screenshot \leftarrow on peut donner des titres aux paragraphes :) Dans ce paragraphe, on va inclure une petite image (centrée):

FIGURE 3 – Avec une légende :)

Et plus loin on peut même faire (et simplement) référence à la Figure 3 page 4. Les formules de maths sont entre \$ comme ceci $\exp^{i\pi} + 1 = 0$ ou encore entre \$\$ pour les centrer:

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

On peut également utiliser un environnement dédié :

$$\mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\} \tag{1}$$

Et même aligner les équations simplement et proprement avec un autre environnement :

$$t = a + b + c \tag{2}$$

$$= d + e$$

$$= z^{x \times y}$$

$$(4)$$

$$= z^{x \times y} \tag{4}$$

$$= \left(\frac{\delta + \omega}{\tau}\right) \tag{5}$$

2 PROBLÉMATIQUE

Et faire références à ces équations (1) et (4).

3 Apports scientifiques principaux de l'article

3.1 Le concept des micro-noyaux

Dans cet article, le concept des micro-noyaux est introduit. Il s'agit d'une solution qui consiste à réduire au plus possible le noyau (aussi appelé Nucleus) afin que celui-ci ne puisse effectuer que des tâches élémentaires. Les autres fonctionnalités seront quant à elles effectuées par des serveurs modulaires. Ces serveurs sont en réalité des sous-systèmes qui pourront échanger des informations entre-eux en utilisant des Communications Inter-Processus (IPC). Ces différents sous-systèmes pourront alors être répartis sur un seul ou plusieurs processeurs ou machines. Afin de faciliter les communications entre les différents serveurs, l'article propose aussi la mise en place de Remote Procedure Call (RPC) qui est un protocole qui permet d'exécuter des commandes sur un serveur à distance.

La mise en place de micro-noyaux permettrait de faciliter grandement la répartition et l'isolations de différentes parties du systèmes sur des processeurs ou machines différentes tout en restant compatible avec des architectures plus simples. Ceci permettrait aussi aux développeur de pouvoir créer, tester et implémenter de nouvelles fonctionnalités beaucoup plus simplement.

3.2 Présentation de Chorus

4 Impacts de l'article

5 Analyse critique du travail proposé

Conclusion

Références

[1] Whitfield Diffie and Martin Hellman. New directions in cryptography. $IEEE\ transactions\ on\ Information\ Theory,\ 22(6):644-654,\ 1976.$

Annexes

A Algorithme qui fait quelque chose

```
#include <stdio.h>
int main()
{
    printf("Hello World !\n);
    return 0;
}
```

B Une autre annexe