Rob J Hyndman George Athanasopoulos

# FORECASTING PRINCIPLES AND PRACTICE



## 8. Exponential smoothing

8.5 Innovations state space models
OTexts.org/fpp3/

#### Models and methods

#### **Methods**

Algorithms that return point forecasts.

#### Models

- Generate same point forecasts but can also generate forecast distributions.
- A stochastic (or random) data generating process that can generate an entire forecast distribution.
- Allow for "proper" model selection.

#### **Component form**

Forecast equation

Smoothing equation

$$\hat{y}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

#### **Component form**

Forecast equation

$$\hat{\mathbf{y}}_{t+h|t} = \ell_t$$

Smoothing equation

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

Forecast error:  $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$ .

#### **Component form**

$$\hat{y}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha \mathbf{y}_t + (1 - \alpha)\ell_{t-1}$$

Forecast error: 
$$e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$$
.

#### **Error correction form**

$$y_t = \ell_{t-1} + e_t$$
  
 $\ell_t = \ell_{t-1} + \alpha (y_t - \ell_{t-1})$ 

$$= \ell_{t-1} + \alpha e_t$$

#### **Component form**

Forecast equation  $\hat{y}_{t+h|t} = \ell_t$ Smoothing equation  $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$ 

Forecast error:  $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$ .

#### **Error correction form**

$$y_t = \ell_{t-1} + e_t$$

$$\ell_t = \ell_{t-1} + \alpha (y_t - \ell_{t-1})$$

$$= \ell_{t-1} + \alpha e_t$$

Specify probability distribution for  $e_t$ , we assume  $e_t = \varepsilon_t \sim \text{NID}(0, \sigma^2)$ .

Measurement equation 
$$y_t = \ell_{t-1} + \varepsilon_t$$
 State equation 
$$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$$

where  $\varepsilon_t \sim \text{NID}(0, \sigma^2)$ .

- "innovations" or "single source of error" because equations have the same error process,  $\varepsilon_t$ .
- Measurement equation: relationship between observations and states.
- State equation(s): evolution of the state(s) through time.

## ETS(M,N,N): SES with multiplicative errors.

- Specify relative errors  $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting  $\hat{y}_{t|t-1} = \ell_{t-1}$  gives:

## ETS(M,N,N): SES with multiplicative errors.

- Specify relative errors  $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting  $\hat{y}_{t|t-1} = \ell_{t-1}$  gives:

  - $\qquad \bullet \ e_t = \mathsf{y}_t \hat{\mathsf{y}}_{t|t-1} = \ell_{t-1} \varepsilon_t$

Measurement equation 
$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$
  
State equation  $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$ 

## ETS(M,N,N): SES with multiplicative errors.

- Specify relative errors  $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting  $\hat{y}_{t|t-1} = \ell_{t-1}$  gives:

  - $\qquad \bullet \ e_t = \mathsf{y}_t \hat{\mathsf{y}}_{t|t-1} = \ell_{t-1} \varepsilon_t$

Measurement equation 
$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$
  
State equation  $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$ 

Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.

## Specifying the model

```
ETS(y ~ error("A") + trend("N") + season("N"))
ETS(y ~ error("M") + trend("N") + season("N"))
```

By default, an optimal value for  $\alpha$  and  $\ell_0$  is used.

 $\alpha$  can be chosen manually in trend().

```
trend("N", alpha = 0.5)
trend("N", alpha_range = c(0.2, 0.8))
```

#### ETS(A,A,N)

Holt's linear method with additive errors.

- Assume  $\varepsilon_t = \mathsf{y}_t \ell_{t-1} b_{t-1} \sim \mathsf{NID}(0, \sigma^2)$ .
- Substituting into the error correction equations for Holt's linear method

$$y_{t} = \ell_{t-1} + b_{t-1} + \varepsilon_{t}$$
$$\ell_{t} = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_{t}$$
$$b_{t} = b_{t-1} + \alpha \beta^{*} \varepsilon_{t}$$

For simplicity, set  $\beta = \alpha \beta^*$ .

#### ETS(M,A,N)

Holt's linear method with multiplicative errors.

- Assume  $\varepsilon_t = \frac{y_t (\ell_{t-1} + b_{t-1})}{(\ell_{t-1} + b_{t-1})}$
- Following a similar approach as above, the innovations state space model underlying Holt's linear method with multiplicative errors is specified as

where again  $\beta = \alpha \beta^*$  and  $\varepsilon_t \sim \text{NID}(0, \sigma^2)$ .

## Specifying the model

```
ETS(y ~ error("A") + trend("A") + season("N"))
ETS(y ~ error("M") + trend("A") + season("N"))
```

By default, optimal values for  $\beta$  and  $b_0$  are used.

 $\beta$  can be chosen manually in trend().

```
trend("A", beta = 0.004)
trend("A", beta_range = c(0, 0.1))
```

#### ETS(A,A,A)

Holt-Winters additive method with additive errors.

Forecast equation 
$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t+h-m(k+1)}$$
 Observation equation 
$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$
 State equations 
$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$$
 
$$b_t = b_{t-1} + \beta \varepsilon_t$$
 
$$s_t = s_{t-m} + \gamma \varepsilon_t$$

- Forecast errors:  $\varepsilon_t = y_t \hat{y}_{t|t-1}$
- $\blacksquare$  k is integer part of (h-1)/m.

#### ETS(M,A,M)

Holt-Winters multiplicative method with multiplicative errors.

Forecast equation 
$$\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t+h-m(k+1)}$$
 Observation equation 
$$y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$$
 State equations 
$$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$$
 
$$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$$
 
$$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$$

- Forecast errors:  $\varepsilon_t = (y_t \hat{y}_{t|t-1})/\hat{y}_{t|t-1}$
- $\blacksquare$  k is integer part of (h-1)/m.

## Specifying the model

```
ETS(y ~ error("A") + trend("A") + season("A"))
ETS(y ~ error("M") + trend("A") + season("M"))
```

By default, optimal values for  $\gamma$  and  $s_0, s_{-1}, \ldots, s_{-m+1}$  are used.

 $\gamma$  can be chosen manually in season().

```
season("A", gamma = 0.004)
season("A", gamma_range = c(0, 0.1))
```

## **ETS models**

| Additive Error |                   | Seasonal Component |            |                  |
|----------------|-------------------|--------------------|------------|------------------|
|                | Trend             | N                  | Α          | М                |
|                | Component         | (None)             | (Additive) | (Multiplicative) |
| Ν              | (None)            | A,N,N              | A,N,A      | A,N,M            |
| Α              | (Additive)        | A,A,N              | A,A,A      | A,A,M            |
| $A_d$          | (Additive damped) | $A,A_d,N$          | $A,A_d,A$  | $A,A_d,M$        |

| <b>Multiplicative Error</b> |                   | Seasonal Component  |            |                  |  |
|-----------------------------|-------------------|---------------------|------------|------------------|--|
|                             | Trend             | N                   | Α          | М                |  |
|                             | Component         | (None)              | (Additive) | (Multiplicative) |  |
| Ν                           | (None)            | M,N,N               | M,N,A      | M,N,M            |  |
| Α                           | (Additive)        | M,A,N               | M,A,A      | M,A,M            |  |
| $A_d$                       | (Additive damped) | M,A <sub>d</sub> ,N | $M,A_d,A$  | $M,A_d,M$        |  |

## **Additive error models**

| Trend          |                                                             | Seasonal                                                    |                                                                       |
|----------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|
|                | N                                                           | A                                                           | M                                                                     |
| N              | $y_t = \ell_{t-1} + \varepsilon_t$                          | $y_t = \ell_{t-1} + s_{t-m} + \varepsilon_t$                | $y_t = \ell_{t-1} s_{t-m} + \varepsilon_t$                            |
|                | $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$                | $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$                | $\ell_t = \ell_{t-1} + \alpha \varepsilon_t / s_{t-m}$                |
|                |                                                             | $s_t = s_{t-m} + \gamma \varepsilon_t$                      | $s_t = s_{t-m} + \gamma \varepsilon_t / \ell_{t-1}$                   |
|                | $y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$                | $y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$      | $y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$                 |
| A              | $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$      | $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$      | $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t / s_{t-m}$      |
|                | $b_t = b_{t-1} + \beta \varepsilon_t$                       | $b_t = b_{t-1} + \beta \varepsilon_t$                       | $b_t = b_{t-1} + \beta \varepsilon_t / s_{t-m}$                       |
|                |                                                             | $s_t = s_{t-m} + \gamma \varepsilon_t$                      | $s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + b_{t-1})$       |
|                | $y_t = \ell_{t-1} + \phi b_{t-1} + \varepsilon_t$           | $y_t = \ell_{t-1} + \phi b_{t-1} + s_{t-m} + \varepsilon_t$ | $y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} + \varepsilon_t$           |
| $\mathbf{A_d}$ | $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$ | $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$ | $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t / s_{t-m}$ |
|                | $b_t = \phi b_{t-1} + \beta \varepsilon_t$                  | $b_t = \phi b_{t-1} + \beta \varepsilon_t$                  | $b_t = \phi b_{t-1} + \beta \varepsilon_t / s_{t-m}$                  |
|                |                                                             | $s_t = s_{t-m} + \gamma \varepsilon_t$                      | $s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + \phi b_{t-1})$  |

# **Multiplicative error models**

| Trend          |                                                                        |                                                                                                   |                                                                        |
|----------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                | N                                                                      | Α                                                                                                 | M                                                                      |
| N              | $y_t = \ell_{t-1}(1 + \varepsilon_t)$                                  | $y_t = (\ell_{t-1} + s_{t-m})(1 + \varepsilon_t)$                                                 | $y_t = \ell_{t-1} s_{t-m} (1 + \varepsilon_t)$                         |
|                | $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$                        | $\ell_t = \ell_{t-1} + \alpha(\ell_{t-1} + s_{t-m})\varepsilon_t$                                 | $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$                        |
|                |                                                                        | $s_t = s_{t-m} + \gamma (\ell_{t-1} + s_{t-m}) \varepsilon_t$                                     | $s_t = s_{t-m}(1 + \gamma \varepsilon_t)$                              |
|                | $y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$                      | $y_t = (\ell_{t-1} + b_{t-1} + s_{t-m})(1 + \varepsilon_t)$                                       | $y_t = (\ell_{t-1} + b_{t-1}) s_{t-m} (1 + \varepsilon_t)$             |
| Α              | $\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$            | $\ell_t = \ell_{t-1} + b_{t-1} + \alpha(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$             | $\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$            |
|                | $b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$             | $b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$                              | $b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$             |
|                |                                                                        | $s_t = s_{t-m} + \gamma (\ell_{t-1} + b_{t-1} + s_{t-m}) \varepsilon_t$                           | $s_t = s_{t-m}(1 + \gamma \varepsilon_t)$                              |
|                | $y_t = (\ell_{t-1} + \phi b_{t-1})(1 + \varepsilon_t)$                 | $y_t = (\ell_{t-1} + \phi b_{t-1} + s_{t-m})(1 + \varepsilon_t)$                                  | $y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} (1 + \varepsilon_t)$        |
| $\mathbf{A_d}$ | $\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$       | $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$ | $\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$       |
|                | $b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$ | $b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$                  | $b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$ |
|                |                                                                        | $s_t = s_{t-m} + \gamma (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$                      | $s_t = s_{t-m}(1 + \gamma \varepsilon_t)$                              |