Classification Performance Metrics

• Туре	Lecture Notes
☑ Reviewed	
😤 Available Summary?	Done
# Week	3

▼ Metrics for classifier performance

		actual class	
		class 1	class 2
		(positive)	(negative)
predicted	class 1 (positive)	21 (<i>TP</i>)	6 (FP)
class	class 2 (negative)	7 (FN)	41 (TN)

TN: true negatives

FN: false negatives

FP: false positives

TP: true positives

▼ Accuracy

the percentage of all the observations the system labeled correctly

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

▼ limitations:

- in a binary classification; if model predicts everything to be class 1, but model never will correctly predict any sample in class 0
- in imbalanced classification problems case accuracy is misleading and does not give a good picture of model quality

▼ Misclassification rate

the percentage of all the observations the system labeled wrong $Misclassification_rate = \frac{\mathit{FP+FN}}{\mathit{TP+TN+FP+FN}}$

▼ confusion matrix

▼ types of errors:

False positives: False negatives:

the system predicted TRUE but the value was FALSE (aka False Alarms or Type I Error) the system predicted FALSE but the value was TRUE (aka Misses or Type II Error)

▼ Precision

how many predicted labels were true aka. positive predictive value (PPV)

$$Precision = rac{TP}{TP+FP}$$

▼ Recall

how many of the true events are

identified

aka true positive rate (TPR) or sensitivity

 $Recall = \frac{TP}{TP+FN}$

▼ F-measure

harmonic mean of precision and recall $F-measure=rac{2.P.R}{P+R}$

can be wighted to favor precision or recall

$$F_{eta} = rac{(1+eta).P.R}{eta^2 P + R}$$

beta> 1 favors recall

beta<1 favors precision

▼ Matthew's correlation coefficient

MCC can be understood as a specific case of a linear correlation coefficient Pearson r for a binary classification setting and is considered as especially useful in unbalanced class settings

The previous metrics take values in the range between -1 (worst) and 1 (best) whereas the MCC is bounded between the range 1 (perfect correlation between ground truth and predicted outcome) and -1 (inverse or negative correlation) value of 0 denotes a random prediction

$$MCC = \frac{\mathit{TP.TN-FP.FN}}{\sqrt{(\mathit{TP+FP})(\mathit{TP+FN})(\mathit{TN+FP})(\mathit{TN+FN})}}$$

▼ Knob (threshold)

Most classifiers have a knob or threshold that you can adjust

▼ ROC (Receiver Operating Characteristic)

• ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)

 $TPR = \frac{TP}{TP + FN}$ (recall)

• Fraction of positive instances predicted correctly

• Performance of a classifier represented as a point on the ROC curve

• Changing some parameter of the algorithm changes the location of the point

 $FPR = \frac{FP}{FP + TN}$

Fraction of negative instances predicted correctly

blue dominates red and green neither red nor green dominate the other

Area under the ROC curve: AUC

Ideal: Area = 1

Random Guess: Area = 0.5

▼ Precision Recall Curves

▼ False discovery rate

 $FDR = \frac{TP}{TP + FP}$

▼ Negative predictive value **▼** Specificity $NPV = \frac{TN}{FN + TN}$

 $SPC = \frac{TN}{FP + TN}$

▼ Micro vs Macro Averaging

the size of the classes is different between micro and macro avg

▼ Macro-avg

• compute performance for each class then average

▼ Micro-avg

• collect decisions for all classes, compute contingency table, evaluate

• dominated by score on common classes

Class 1

Class 2

Micro Ave. Table

	Truth: yes	Truth: no	
Classifier: yes	10	10	
Classifier: no	10	970	

0.0.00 _		
	Truth: yes	Truth:
Classifier: yes	90	10
Classifier: no	10	890

	Truth: yes	Truth: no
Classifier: yes	100	20
Classifier: no	20	1860

• Macroaveraged precision: (0.5 + 0.9)/2 = 0.7

• Microaveraged precision: 100/120 = .83

▼ Hit @k performance metrics

consider the top K predictions and count it as TP positive if correct class is in the top K prediction