Report and summary of the project Data Augmentation for cnn models

This report summarizes the implementation and results of applying data augmentation techniques to a Convolutional Neural Network (CNN) for image classification. The objective was to improve model generalization and accuracy by artificially expanding the training dataset.

1. Augmentation Techniques Used

The augmentation pipeline was implemented using TensorFlow/Keras's ImageDataGenerator class. The following transformations were applied to the training images:

- **Rotation:** rotation_range=40 Randomly rotated images by up to 40 degrees. This helps the model recognize objects regardless of their orientation.
- **Horizontal Flip:** horizontal_flip=True Randomly flipped images horizontally. This is effective for objects where a horizontal flip doesn't change their classification (e.g., a cat is still a cat when flipped).
- **Zoom:** zoom_range=0.2 Randomly zoomed into images by up to 20%. This forces the model to learn features at different scales.

Shifts:

- o width_shift_range=0.2
- height_shift_range=0.2 Randomly shifted images horizontally and vertically by up to 20% of their total width and height. This makes the model less sensitive to the precise position of an object within the frame.
- **Brightness Adjustment:** brightness_range=[0.5, 1.5] Randomly adjusted the brightness of images. This helps the model generalize to different lighting conditions.

2. Results and Insights

Two identical CNN models were trained on the Cats vs. Dogs dataset: a **Baseline Model** (without augmentation) and an **Augmented Model** (with the transformations listed above). The final performance was compared based on their validation accuracy and loss curves.

Model	Final Validation Accuracy	
Baseline Model	0.689	
Augmented Model	0.7	

Insights:

Overfitting Reduction: The baseline model exhibited classic signs of overfitting. Its training
accuracy reached nearly 100%, indicating it had memorized the training data. However, its
validation accuracy plateaued at a lower value, and the gap between training and validation
accuracy grew significantly.

- Improved Generalization: The augmented model showed a different training pattern. Its training accuracy was lower and more volatile, as the model was forced to learn more robust features from the constantly changing images. This led to a higher final validation accuracy and a smaller gap between training and validation performance. The model generalized better to new, unseen data because it was trained on a more diverse dataset.
- **Conclusion:** The data augmentation techniques successfully improved the model's ability to generalize, leading to a small but meaningful **increase in validation accuracy**. The results demonstrate that augmenting the training data is an effective strategy for creating more robust and accurate CNNs, especially when the initial dataset is limited.