

IIC 2333 — Sistemas Operativos y Redes **Programa de Curso**

Semestre 2/2018 - Profesor: Cristian Ruz - cruz@ing.puc.cl Horario: L-W:1, Sala E14; V:1, Sala BC22

1. Descripción del curso

Este curso aborda los conceptos fundamentales en el diseño e implementación de sistemas operativos y de sistemas de comunicación de datos.

El curso permitirá a los estudiantes familiarizarse con los conceptos básicos de diseño de los sistemas operativos y de las redes de comunicaciones de manera que puedan comprender su funcionamiento y tomar decisiones de diseño.

A través de este curso conocerán características que comparten sistemas operativos de uso común como Windows y Linux, y tendrán mejores herramientas para enfrentarlos y entender sus ventajas y desventajas. En el aspecto de redes estudiaremos el funcionamiento de redes de pequeño y gran tamaño como la Internet de manera que este conocimiento les permita construir mejores aplicaciones.

2. Objetivos del curso

Al finalizar el curso el alumno será capaz de:

- Identificar y explicar los subsistemas que conforman un sistema operativo, sus objetivos y mecanismos de implementación.
- Identificar y explicar los componentes que se utilizan en la construcción de redes de comunicación de datos.
- Describir el comportamiento y efectos de funcionamiento incorrecto de subsistemas de un sistema operativo y de nodos o componentes de red.
- Diseñar e implementar mejoras a limitaciones encontradas en implementaciones específicas de sistemas operativos y de infraestructuras de redes.
- Diseñar y modelar redes de computadores de tamaño pequeño a mediano.
- Evaluar de manera sistemática problemas de red, aislando la capa responsable y estableciendo posibles causas.
- Determinar las mejores alternativas de solución en un problema de redes de computadores dado un conjunto de criterios, tales como costo, flexibilidad y seguridad.

3. Contenido

- Estructura y funcionamiento de Sistemas Operativos
 - 0.1) Estructura de un sistema operativo
 - 0.2) Evolución de sistemas operativos
 - 0.3) Llamadas al sistema
- 1. Administración de procesos
 - 1.1) Procesos: operaciones y comunicación
 - 1.2) Threads: librerías y multithreading
 - 1.3) Sincronización: sección crítica y primitivas
 - 1.4) Planificación: algoritmos de scheduling
 - 1.5) Deadlocks: detección, evasión y prevención
- 2. Administración de memoria
 - 2.1) Asignación, direccionamiento y swapping
 - 2.2) Paginación y segmentación
 - 2.3) Memoria virtual: paginación y reemplazo
- 3. Administración de sistemas de almacenamiento
 - 3.1) Disco: Estructura, acceso y planificación
 - 3.2) Sistemas de archivos: estructuras y administración de espacio
- 4. Modelos de redes
 - 4.1) Evolución de las redes de computadores
 - 4.2) Tipos de redes y modelos de comunicación

- 4.3) Redes e Internet
- 4.4) Modelos de referencia: OSI, TCP/IP
- 5. Capa de Aplicación
 - 5.1) Comunicación de Procesos y Sockets
 - 5.2) HTTP y la Web
 - 5.3) FTP
 - 5.4) SMTP
 - 5.5) DNS
- 6. Capa de Transporte
 - 6.1) Multiplexión y Demultiplexión
 - 6.2) UDP
 - 6.3) Transmisión Confiable y TCP
- 7. Capa de Red
 - 7.1) Modos de conexión
 - 7.2) Direccionamiento IP, IPv6, NAT, ICMP
 - 7.3) Algoritmos de enrutamiento
 - 7.4) Enrutamiento en Internet
- 8. Capa de Enlace
 - 8.1) Detección y corrección de errores
 - 8.2) Protocolos de Acceso al Medio (MAC)
 - 8.3) Switches y LAN: ARP, Ethernet, VLANs

4. Metodología

Se utilizará una metodología blended en que se combinarán partes expositivas con actividades prácticas.

El material de clases estará disponible de manera *online* para que pueda ser leído y consultado antes y durante la clase expositiva. El material será complementado con videos acerca de temas específicos. En algunas clases, que serán previamente informadas, se realizarán actividades prácticas cuya asistencia será obligatoria.

5. Evaluaciones

Se efectuarán evaluaciones escritas (2), evaluaciones *online* (14), y evaluaciones prácticas (6). Sobre las evaluaciones escritas:

- Se efectuarán fechas determinadas por la Escuela.
- Un examen de medio semestre (*midterm*) evaluará los temas de sistemas operativos.
- Un examen final evaluará los temas de redes de computadores.

Sobre las evaluaciones online:

■ Se efectuarán y serán evaluadas dentro de la plataforma EdX, accesible desde la página principal del curso.

Sobre las evaluaciones prácticas:

2 tareas individuales de una semana de duración, relacionadas con temas de sistemas operativos.

- 2 tareas individuales de una semana de duración, relacionadas con temas de redes.
- 2 mini-proyectos grupales de tres semanas de duración. Uno relacionado con sistemas operativos, y uno relacionado con redes de computadores.
- Las tareas que involucren programación requerirán conocimientos del lenguaje de programación C y se desarrollarán en un ambiente Linux para la cual se les dará acceso a un servidor con este sistema operativo.

6. Bibliografía

El curso está preparado de manera que el material de clases y las referencias que se hagan durante ellas sean suficiente para comprender los contenidos. Sin embargo, aquellos que desean profundizar más en los contenidos están invitados a hacerlo. Las principales fuentes que se han utilizado para preparar el material son:

- 1. Andrew S. Tanenbaum, Herbert Bos. *Modern Operating Systems*, 4th Edition. Pearson. Dec 2012. ISBN 978-0-133-59162-0.
- 2. James F. Kurose, Keith W. Ross. *Computer Networking. A Top-Down Approach*. 6th Edition. 2013. Pearson. ISBN-13: 978-0-13-285620-1.

Las siguientes son fuentes complementarias, algunas de ellas online:

- 1. Abraham Silberschatz, Peter Galvin, Greg Gagne. *Operating Systems Concepts*, 9th Edition. John Wiley & Sons, Inc. Dec 2012. ISBN 978-1-118-06333-0. http://os-book.com/
- 2. Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau. *Operating Systems: Three easy pieces* Arpaci-Dusseau Books, July 2016. Versión 0.91. http://pages.cs.wisc.edu/~remzi/OSTEP/
- 3. Olivier Bonaventura. *Computer Networking. Principles, Protocls and Practice*, Online (*open source*, in edition) http://cnp3book.info.ucl.ac.be/secondedition.html/

IIC 2333 — Sistemas Operativos y Redes Aspectos Administrativos

Semestre 2/2018 - Profesor: Cristian Ruz - cruz@ing.puc.cl

Horario: L-W:1, Sala E14; V:1, Sala BC22

Las ayudantías y clases recuperativas serán notificadas y tendrán lugar los Viernes, módulo 2, sala E11.

1. Ayudantías

Las ayudantías se efectuarán previo aviso durante la clase o vía email con dos días de anticipación. El cuerpo de ayudantes está compuesto por:

- Germán Contreras, glcontreras@uc.cl, ayudante de sistemas operativos
- Ricardo Schilling, reschilling@uc.cl, ayudante de sistemas operativos
- Lukas Svicarovic, lsvicarovic@uc.cl, ayudante de redes
- Cristóbal Abarca, caabarca1@uc.cl, ayudante de redes

2. Sitio web y atención a alumnos

El sitio web del curso incluyendo los contenidos y tareas estará ubicada en http://iic2333.ing.puc.cl/. Los avisos, sin embargo, serán transmitidos vía SIDING. Las actividades se desarrollaran en el sitio EdX de la Escuela: http://openedx.ing.puc.cl/.

Atención de alumnos en Oficina O-9, DCC. De preferencia enviar email previamente. Para cualquier tema relacionado con el curso, favor de iniciar el subject con [iic2333]

3. Evaluación

La evaluación del curso incluye 2 evaluaciones escritas (M, E), 4 tareas de una semana (T_1, T_2, T_3, T_4) , dos proyectos de tres semanas (P_1, P_2) , y un conjunto de actividades semanales $(AC_1, \dots AC_{14})$.

Se considerará una nota de sistemas operativos N_{SO} , y una nota de redes N_R , donde cada una se calcula de la siguiente manera:

$$N_{SO} = 0.15 \times N_{A_1} + 0.3 \times P_1 + 0.15 \times T_1 + 0.15 \times T_2 + 0.25 \times M$$

$$N_R = 0.15 \times N_{A_{8,...,14}} + 0.3 \times P_2 + 0.15 \times T_3 + 0.15 \times T_4 + 0.25 \times E$$

La nota $N_{A_i,...,j}$ considera las 5 mejores notas del conjunto desde A_i hasta A_j . La nota final, N_F , se calcula como:

$$N_F = \begin{cases} 0.5 \times N_{SO} + 0.5 \times N_R & \text{si } N_{SO} \ge 4, N_R \ge 4, P_1 \ge 4 \text{ y } P_2 \ge 4 \\ \min\{N_{SO}, N_R, (3.9)\} & \text{en otro caso} \end{cases}$$

Las fechas de las evaluaciones escritas son:

Midterm (M)	Lunes 1 de Octubre 2018, 18:30
Examen (E)	Lunes 26 de Noviembre 2018, 9:00

El *midterm* contendra únicamente temas de sistemas operativos. El *examen* contendrá temas de redes y preguntas **opcionales** de sistemas operativos que podrán reemplazar a preguntas del *midterm*.

4. Código de Honor

Todo participante de este curso adscribe al Código de Honor de la Pontificia Universidad Católica de Chile, que puede ser consultado en esta dirección: http://www.uc.cl/codigodehonor

"Como miembro de la comunidad de la Pontificia Universidad Católica de Chile me comprometo a respetar los principios y normativas que la rigen. Asimismo, prometo actuar con rectitud y honestidad en las relaciones con los demás integrantes de la comunidad y en la realización de todo trabajo, particularmente en aquellas actividades vinculadas a la docencia, el aprendizaje y la creación, difusión y transferencia del conocimiento. Además, velaré por la integridad de las personas y cuidaré los bienes de la Universidad".

Cualquier falta percibida al Código de Honor será comunicada a las autoridades de la Escuela de Ingeniería de acuerdo al procedimiento regular y permitirá aplicar sanciones dentro del curso.