Curs 8-9

2021-2022 Fundamentele limbajelor de programare

Cuprins

- 1 Limbajul IMP
- Semantica programelor idei generale
- 3 Semantica denotaţională (opţional)
- 4 Semantica axiomatică

Limbajul IMP

Limbajul IMP

Vom implementa un limbaj care conţine:

- Expresii
 - Aritmetice
 - Booleene
- □ Instructiuni
 - De atribuire
 - Conditionale
 - De ciclare
- Compunerea instrutiunilor
- □ Blocuri de instrucţiuni

- x + 3
 - x >= 7
- x = 5
- if(x >= 7, x =5, x = 0) while(x >= 7, x = x - 1)
- x=7; while (x>=0, x=x-1)
- $\{x=7; while(x>=0, x=x-1)\}$

Limbajul IMP

Exemplu

Un program în limbajul IMP

□ Semantica

după executia programului, se evaluează sum

Sintaxa BNF a limbajului IMP

```
E := n \mid x
   |E+E|E-E|E*E
B := true \mid false
   | E = \langle E | E \rangle = E | E = E
   \mid not(B) \mid and(B, B) \mid or(B, B)
C := skip
   X = E
   | if(B,C,C) |
   while (B, C)
   |\{C\}|C:C
P := \{ C \}, E
```

Semantica programelor - idei generale

Ce definește un limbaj de programare?

Ce definește un limbaj de programare?

☐ Sintaxa — Simboluri de operaţie, cuvinte cheie, descriere (formală) a programelor/expresiilor bine formate

Ce definește un limbaj de programare?

- ☐ Sintaxa Simboluri de operaţie, cuvinte cheie, descriere (formală) a programelor/expresiilor bine formate
- □ Practic Un limbaj e definit de modul cum poate fi folosit
 - ☐ Manual de utilizare și exemple de bune practici
 - Implementare (compilator/interpretor)
 - Instrumente ajutătoare (analizor de sintaxă, depanator)

Ce definește un limbaj de programare?

- ☐ Sintaxa Simboluri de operaţie, cuvinte cheie, descriere (formală) a programelor/expresiilor bine formate
- □ Practic Un limbaj e definit de modul cum poate fi folosit
 - Manual de utilizare şi exemple de bune practici
 - Implementare (compilator/interpretor)
 - Instrumente ajutătoare (analizor de sintaxă, depanator)
- Semantica Ce înseamnă/care e comportamentul unei instrucţiuni?

La ce folosește semantica?

- Să înţelegem un limbaj în profunzime
 - Ca programator: pe ce mă pot baza când programez în limbajul dat
 - Ca implementator al limbajului: ce garanţii trebuie să ofer

La ce folosește semantica?

Să înţelegem un limbaj în profunzime
 Ca programator: pe ce mă pot baza când programez în limbajul dat
 Ca implementator al limbajului: ce garanţii trebuie să ofer
 Ca instrument în proiectarea unui nou limbaj/a unei extensii
 Înţelegerea componentelor şi a relaţiilor dintre ele
 Exprimarea (şi motivarea) deciziilor de proiectare

Demonstrarea unor proprietăti generice ale limbajului

La ce folosește semantica?

- Să înţelegem un limbaj în profunzime
 Ca programator: pe ce mă pot baza când programez în limbajul dat
 Ca implementator al limbajului: ce garantii trebuie să ofer
- □ Ca instrument în proiectarea unui nou limbai/a unei extensii
 - Înţelegerea componentelor şi a relaţiilor dintre ele
 - Exprimarea (şi motivarea) deciziilor de proiectare
 - Demonstrarea unor proprietăţi generice ale limbajului
- Ca bază pentru demonstrarea corectitudinii programelor

☐ Limbaj natural – descriere textuală a efectelor

- Limbaj natural descriere textuală a efectelor
- Axiomatică descrierea folosind logică a efectelor unei instrucţiuni
 - $\square \vdash \{\varphi\} cod\{\psi\}$
 - modelează un program prin formulele logice pe care le satisface
 - utilă pentru demonstrarea corectitunii

□ Limbaj natural – descriere textuală a efectelor
 □ Axiomatică – descrierea folosind logică a efectelor unei instrucţiuni
 □ ⊢ {φ}cod{ψ}
 □ modelează un program prin formulele logice pe care le satisface
 □ utilă pentru demonstrarea corectitunii
 □ Denotaţională – asocierea unui obiect matematic (denotaţie)
 □ [cod]
 □ modelează un program ca obiecte matematice
 □ utilă pentru fundamente matematice

Limbaj natural – descriere textuală a efectelor
Axiomatică – descrierea folosind logică a efectelor unei instrucţiuni $\Box \vdash \{\varphi\} cod\{\psi\}$ \Box modelează un program prin formulele logice pe care le satisface \Box utilă pentru demonstrarea corectitunii
Denotaţională – asocierea unui obiect matematic (denotaţie) □
 Operaţională – asocierea unei demonstraţii pentru execuţie □ ⟨cod, σ⟩ → ⟨cod', σ'⟩ □ modelează un program prin execuţia pe o maşină abstractă □ utilă pentru implementarea de compilatoare şi interpretoare

Limbaj natural – descriere textuală a efectelor
Axiomatică – descrierea folosind logică a efectelor unei instrucțiun $\Box \vdash \{\varphi\} cod\{\psi\}$ \Box modelează un program prin formulele logice pe care le satisface \Box utilă pentru demonstrarea corectitunii
Denotaţională – asocierea unui obiect matematic (denotaţie) □
Operaţională – asocierea unei demonstraţii pentru execuţie □ ⟨cod, σ⟩ → ⟨cod', σ'⟩ □ modelează un program prin execuţia pe o maşină abstractă □ utilă pentru implementarea de compilatoare şi interpretoare
Statică – asocierea unui sistem de tipuri care exclude programe eronate

- ☐ Introdusă de Christopher Strachey şi Dana Scott (1970)
- Semantica operaţională, ca un interpretor, descrie cum să evaluăm un program.
- Semantica denotaţională, ca un compilator, descrie o traducere a limbajului într-un limbaj diferit cu semantică cunoscută, anume matematica.
- Semantica denotaţională defineşte ce înseamnă un program ca o funcţie matematică.

Definim stările memoriei ca fiind funcţii parţiale de la mulţimea identificatorilor la mulţimea valorilor:

State =
$$Id \rightarrow \mathbb{Z}$$

- ☐ Asociem fiecărei categorii sintactice o categorie semantică.
- ☐ Fiecare construcţie sintactică va avea o denotaţie (interpretare) în categoria semantică respectivă.

Definim stările memoriei ca fiind funcţii parţiale de la mulţimea identificatorilor la mulţimea valorilor:

State =
$$Id \rightarrow \mathbb{Z}$$

- □ Asociem fiecărei categorii sintactice o categorie semantică.
- □ Fiecare construcţie sintactică va avea o denotaţie (interpretare) în categoria semantică respectivă.De exemplu:
 - denotația unei expresii aritmetice este o funcție parțială de la mulțimea stărilor memoriei la mulțimea valorilor (\mathbb{Z}):

$$[[_]]: \textit{AExp} \rightarrow (\textit{State} \rightharpoonup \mathbb{Z})$$

denotaţia unei instrucţiuni este o funcţie parţială de la mulţimea stărilor memoriei la mulţimea stărilor memoriei:

$$[[_]]: Stmt \rightarrow (State \rightarrow State)$$

```
State = Id \rightarrow \mathbb{Z}
[[_]]: AExp \rightarrow (State \rightarrow \mathbb{Z})
[[_]]: Stmt \rightarrow (State \rightarrow State)
```

Atribuirea: $x = \exp r$

□ Asociem expresiilor aritmetice funcții de la starea memoriei la valori:

 Asociem instrucțiunilor funcții de la starea memoriei la starea (următoare) a memoriei.

```
State = Id \rightarrow \mathbb{Z}
[[\_]] : AExp \rightarrow (State \rightarrow \mathbb{Z})
[[\ ]] : Stmt \rightarrow (State \rightarrow State)
```

Atribuirea: $x = \exp r$

- ☐ Asociem expresiilor aritmetice funcții de la starea memoriei la valori:
 - □ Functia constantă [[1]](s) = 1
 - Funcția care selectează valoarea unui identificator [[x]](s) = s(x)
 - \square "Morfismul de adunare" [[e1 + e2]](s) = [[e1]](s) + [[e2]](s).
- Asociem instrucțiunilor funcții de la starea memoriei la starea (următoare) a memoriei.

$$[[x = e]](s)(y) = \begin{cases} s(y), \text{ dacă } y \neq x \\ [[e]](s), \text{ dacă } y = x \end{cases}$$

Semantica denotațională: expresii

$$\mathit{State} = \mathit{Id} \rightharpoonup \mathbb{Z}$$

□ Domenii semantice:

 $[[_]]: AExp \rightarrow (State \rightarrow \mathbb{Z})$

 $[[_]]: BExp \rightarrow (State \rightarrow \{T, F\})$

 $[[_]]: \textit{Stmt} \rightarrow (\textit{State} \rightharpoonup \textit{State})$

Semantica denotațională: expresii

$$State = Id \rightharpoonup \mathbb{Z}$$

Domenii semantice:

```
[[\_]]: AExp \rightarrow (State \rightarrow \mathbb{Z})
```

$$[[_]]: BExp \rightarrow (State \rightarrow \{T, F\})$$

$$[[_]]: Stmt \rightarrow (State \rightarrow State)$$

- Semantica denotaţională este compoziţională:
 - semantica expresiilor aritmetice

$$[[n]](s) = n$$

$$[[x]](s)=s(x)$$

$$[[e1 + e2]](s) = [[e1]](s) + [[e2]](s)$$

Semantica denotațională: expresii

$$State = Id \rightarrow \mathbb{Z}$$

- Domenii semantice:
 - $[[\]]: AExp \rightarrow (State \rightarrow \mathbb{Z})$
 - $[[_]]: BExp \rightarrow (State \rightarrow \{T, F\})$
 - $[[_]]: Stmt \rightarrow (State \rightarrow State)$
 - Semantica denotaţională este compoziţională:
 - semantica expresiilor aritmetice

$$[[n]](s)=n$$

$$[[x]](s)=s(x)$$

$$[[e1 + e2]](s) = [[e1]](s) + [[e2]](s)$$

semantica expresiilor booleene

$$[[true]](s) = T, [[false]](s) = F$$

$$[[!b]](s) = \neg b$$

$$[[e1 <= e2]](s) = [[e1]](s) <= [[e2]](s)$$

Semantica denotaţională: instrucţiuni

$$State = Id \rightarrow \mathbb{Z}$$

Domenii semantice:

 $[[_]]: AExp \rightarrow (State \rightarrow \mathbb{Z})$

 $[[_]]: BExp \rightarrow (State \rightarrow \{T, F\})$

 $[[_]]: Stmt \rightarrow (State \rightarrow State)$

Semantica denotaţională: instrucţiuni

$$State = Id \rightarrow \mathbb{Z}$$

Domenii semantice:

$$[[_]]: AExp \rightarrow (State \rightarrow \mathbb{Z})$$

 $[[_]]: BExp \rightarrow (State \rightarrow \{T, F\})$
 $[[_]]: Stmt \rightarrow (State \rightarrow State)$

Semantica instrucţiunilor:

$$\begin{aligned} & [[skip]] = id \\ & [[c1;c2]] = [[c2]] \circ [[c1]] \\ & [[x = e]](s)(y) = \left\{ \begin{array}{l} s(y), \, \text{dacă } y \neq x \\ [[e]](s), \, \text{dacă } y = x \end{array} \right. \end{aligned}$$

Semantica denotaţională: instrucţiuni

State =
$$Id \rightarrow \mathbb{Z}$$

Domenii semantice:

$$[[_]]: AExp \rightarrow (State \rightarrow \mathbb{Z})$$
$$[[_]]: BExp \rightarrow (State \rightarrow \{T, F\})$$
$$[[_]]: Stmt \rightarrow (State \rightarrow State)$$

Semantica instrucţiunilor:

$$\begin{split} & [[\mathtt{skip}]] = \mathit{id} \\ & [[\mathtt{c1};\mathtt{c2}]] = [[\mathit{c2}]] \circ [[\mathtt{c1}]] \\ & [[\mathtt{x} = \mathtt{e}]](s)(y) = \left\{ \begin{array}{c} s(y), \, \mathsf{dac} \, \mathsf{i} \, y \neq x \\ [[e]](s), \, \mathsf{dac} \, \mathsf{i} \, y = x \end{array} \right. \\ & [[\mathtt{if} \ (\mathtt{b}) \ \mathtt{c1} \ \mathtt{else} \ \mathtt{c2}]](s) = \left\{ \begin{array}{c} [[c1]](s), \, \mathsf{dac} \, \mathsf{i} \, [[b]](s) = T \\ [[c2]](s), \, \mathsf{dac} \, \mathsf{i} \, [[b]](s) = F \end{array} \right. \end{split}$$

Exemplu

if (x<= y) z=x; else z=y;
$$[[pgm]](s) = \begin{cases} [[z = x;]](s), \text{dacă} [[x <= y]](s) = T \\ [[z = y;]](s), \text{dacă} [[x <= y]](s) = F \end{cases}$$

Exemplu

$$\begin{split} &\text{if } (x <= y) \ z = x; \ \text{else } z = y; \\ &[[pgm]](s) = \left\{ \begin{array}{l} [[z = x;]](s), \, \text{dacă} \, [[x <= y]](s) = T \\ [[z = y;]](s), \, \text{dacă} \, [[x <= y]](s) = F \end{array} \right. \\ &[[pgm]](s)(v) = \left\{ \begin{array}{l} s(v), \, \text{dacă} \, s(x) \leq s(y), v \neq z \\ s(x), \, \text{dacă} \, s(x) \leq s(y), v = z \\ s(v), \, \text{dacă} \, s(x) > s(y), v \neq z \\ s(y), \, \text{dacă} \, s(x) > s(y), v = z \end{array} \right. \\ \end{aligned}$$

Exemplu

if (x<= y) z=x; else z=y;
$$[[pgm]](s) = \begin{cases} [[z = x;]](s), \, \text{dacă} \, [[x <= y]](s) = T \\ [[z = y;]](s), \, \text{dacă} \, [[x <= y]](s) = F \end{cases}$$

$$[[pgm]](s)(v) = \begin{cases} s(v), \, \text{dacă} \, s(x) \le s(y), \, v \ne z \\ s(x), \, \text{dacă} \, s(x) \le s(y), \, v \ne z \\ s(y), \, \text{dacă} \, s(x) > s(y), \, v \ne z \end{cases}$$

$$s(y), \, \text{dacă} \, s(x) > s(y), \, v = z$$

Cum definim semantica denotaţională pentru while?

Mulţimea funcţiilor parţiale

Fie X şi Y două mulţimi.

- □ Pfn(X, Y) mulţimea funcţiilor parţiale de la X la Y, adică $Pfn(X, Y) = X \rightarrow Y$
- □ Pentru $f \in Pfn(X, Y)$ notăm cu dom(f) mulţimea elementelor din X pentru care funcţia este definită.
 - Atunci $dom(f) \subseteq X$ şi $f|_{dom(f)} : dom(f) \rightarrow Y$ este funcţie.

Mulţimea funcţiilor parţiale

Fie X şi Y două mulţimi.

- \square Pfn(X, Y) mulţimea funcţiilor parţiale de la X la Y, adică $Pfn(X, Y) = X \rightharpoonup Y$
- □ Pentru $f \in Pfn(X, Y)$ notăm cu dom(f) mulţimea elementelor din X pentru care funcţia este definită.
 - Atunci $dom(f) \subseteq X$ şi $f|_{dom(f)} : dom(f) \rightarrow Y$ este funcţie.
- □ Fie $\bot : X \multimap Y$ unica funcţie cu $dom(\bot) = \emptyset$ (funcţia care nu este definită în nici un punct).
- \square Definim pe Pfn(X, Y) următoarea relaţie:

 $f \sqsubseteq g$ dacă şi numai dacă $dom(f) \subseteq dom(g)$ şi $g|_{dom(f)} = f_{dom(f)}$

Mulţimea funcţiilor parţiale

Fie X şi Y două mulţimi.

- □ Pfn(X, Y) mulţimea funcţiilor parţiale de la X la Y, adică $Pfn(X, Y) = X \rightarrow Y$
- □ Pentru $f \in Pfn(X, Y)$ notăm cu dom(f) mulţimea elementelor din X pentru care funcţia este definită.
 - Atunci $dom(f) \subseteq X$ şi $f|_{dom(f)} : dom(f) \rightarrow Y$ este funcţie.
- □ Fie $\bot : X \rightharpoonup Y$ unica funcţie cu $dom(\bot) = \emptyset$ (funcţia care nu este definită în nici un punct).
- \square Definim pe Pfn(X, Y) următoarea relaţie:

$$f\sqsubseteq g$$
 dacă și numai dacă $dom(f)\subseteq dom(g)$ și $g|_{dom(f)}=f_{dom(f)}$

$$(Pfn(X, Y), \sqsubseteq, \bot)$$
 este CPO

(mulţime parţial ordonată completă în care ⊥ este cel mai mic element)

$(Pfn(X, Y), \sqsubseteq, \bot)$ este CPO

Exemplu

Definim $\mathbf{F}: Pfn(\mathbb{N}, \mathbb{N}) \to Pfn(\mathbb{N}, \mathbb{N})$ prin

$$\mathbf{F}(g)(k) = \left\{ \begin{array}{ll} 1, & \text{dacă } k = 0, \\ k*g(k-1) & \text{dacă } k > 0 \text{ și } (k-1) \in \textit{dom}(g), \\ \text{nedefinit,} & \text{altfel} \end{array} \right.$$

□ **F** este o funcție continuă,

$(Pfn(X, Y), \sqsubseteq, \bot)$ este CPO

Exemplu

Definim $\mathbf{F}: Pfn(\mathbb{N}, \mathbb{N}) \to Pfn(\mathbb{N}, \mathbb{N})$ prin

$$\mathbf{F}(g)(k) = \left\{ \begin{array}{ll} 1, & \text{dacă } k = 0, \\ k * g(k-1) & \text{dacă } k > 0 \text{ și } (k-1) \in \textit{dom}(g), \\ \text{nedefinit,} & \text{altfel} \end{array} \right.$$

- □ **F** este o funcție continuă,deci putem aplica
- □ Teorema Knaster-Tarski Fie $g_n = \mathbf{F}^n(\bot)$ şi $f = \bigvee_n g_n$. Ştim că f este cel mai mic punct fix al funcției \mathbf{F} , deci $\mathbf{F}(f) = f$.

$(Pfn(X, Y), \sqsubseteq, \bot)$ este CPO

Exemplu

Definim $\mathbf{F}: Pfn(\mathbb{N}, \mathbb{N}) \to Pfn(\mathbb{N}, \mathbb{N})$ prin

$$\mathbf{F}(g)(k) = \left\{ \begin{array}{ll} 1, & \text{dacă } k = 0, \\ k*g(k-1) & \text{dacă } k > 0 \text{ și } (k-1) \in \textit{dom}(g), \\ \text{nedefinit,} & \text{altfel} \end{array} \right.$$

- □ **F** este o funcție continuă,deci putem aplica
- □ Teorema Knaster-Tarski Fie $g_n = \mathbf{F}^n(\bot)$ şi $f = \bigvee_n g_n$. Ştim că f este cel mai mic punct fix al funcţiei \mathbf{F} , deci $\mathbf{F}(f) = f$.
- □ Demonstrăm prin inducţie după *n* că:

$$dom(g_n) = \{0, \ldots, n\}$$
 şi $g_n(k) = k!$ oricare $k \in dom(g_n)$

 \Box $f: \mathbb{N} \to \mathbb{N}$ este funcţia factorial.

Semantica denotaţională pentru while

- \square Definim **F** : $Pfn(State, State) \rightarrow Pfn(State, State)$ prin
- □ **F** este continuă
- \square Teorema Knaster-Tarski: $fix(\mathbf{F}) = \bigcup_n \mathbf{F}^n(\bot)$

Semantica denotațională pentru while

while (b) c

□ Definim F : Pfn(State, State) → Pfn(State, State) prin

- □ F este continuă
- \square Teorema Knaster-Tarski: $\mathit{fix}(\mathsf{F}) = \bigcup_n \mathsf{F}^n(\bot)$

Semantica denotațională pentru while

while (b) c

□ Definim \mathbf{F} : $Pfn(State, State) \rightarrow Pfn(State, State)$ prin

- □ F este continuă
- \square Teorema Knaster-Tarski: $\mathit{fix}(\mathsf{F}) = \bigcup_n \mathsf{F}^n(\bot)$
- Semantica denotaţională:

$$[[_]]$$
: $Stmt \rightarrow (State \rightarrow State)$
 $[[while (b) c]](s) = fix(F)(s)$

Avantaje şi dezavantaje

Semantica operațională

- + Definește precis noțiunea de pas computațional
- + Semnalează erorile, oprind execuția
- + Execuția devine uşor de urmărit şi depanat
- Regulile structurale sunt evidente şi deci plictisitor de scris
- Nemodular: adăugarea unei trăsături noi poate solicita schimbarea întregii definiții

Semantica denotatională

- + Formală, matematică, foarte precisă
- + Compoziţională (morfisme şi compuneri de funcţii)
- Domeniile devin din ce în ce mai complexe.

Semantica axiomatică

Semantica Axiomatică

	ventată de 1969 Tony Hoare în 1969 (insiprată de rezultatele lu obert Floyd).
□ Defineşte triplete (triplete Hoare) de forma	
	{Pre} S {Post}
-	nde: S este o instrucțiune (Stmt)
	Pre (precondiție), respectiv Post (postcondiție) sunt aserțiuni logice asupra stării sistemului înaintea, respectiv după execuția lui S
	Limbajul aserţiunilor este un limbaj de ordinul I.
□ Tri	pletul { <i>Pre</i> } <i>S</i> { <i>Post</i> } este (parţial) <u>corect</u> dacă: ☐ dacă programul se execută dintr-o stare iniţială care satisface <i>Pre</i> ☐ şi execuţia se termină
	atunci se ajunge într-o stare finală care satisface <i>Post</i> .

Semantica Axiomatică

Definește triplete (triplete Hoare) de forma

- ☐ Tripletul {*Pre*} *S* {*Post*} este (parţial) corect dacă:
 - □ dacă programul se execută dintr-o stare iniţială care satisface Pre
 - şi execuţia se termină
 - atunci se ajunge într-o stare finală care satisface *Post*.

Exemplu

- \square {x = 1} x = x+1 {x = 3} **nu** este corect
- \square { \top } if (x<=y) z=x; else z=y; {z = min(x,y)} este corect

Semantica Axiomatică

Definește triplete (triplete Hoare) de forma

{Pre} S {Post}

unde:

☐ S este o instrucțiune (Stmt)

□ Pre (precondiție), respectiv Post (postcondiție) sunt aserțiuni logice asupra stării sistemului înaintea, respectiv după execuția lui S

Se asociază fiecărei construcții sintactice Stmt o regulă de deducție care definește recursiv tripletele Hoare descrise mai sus.

Sistem de reguli pentru logica Floyd-Hoare

$$(\rightarrow) \quad \frac{P1 \rightarrow P2 \quad \{P2\} \ c \ \{Q2\} \quad Q2 \rightarrow Q1}{\{P1\} \ c \ \{P2\}}$$

$$(\vee) \quad \frac{\{P1\}\; c\; \{Q\} \quad \{P2\}\; c\; \{Q\}}{\{P1\; \vee\; P2\}\; c\; \{Q\}}$$

(A)
$$\frac{\{P\} \ c \ \{Q1\} \quad \{P\} \ c \ \{Q2\}}{\{P\} \ c \ \{Q1 \ \land \ Q2\}}$$

Logica Floyd-Hoare pentru IMP1

$$(S_{KIP}) \quad \frac{\cdot}{\{P\}\,\{\}\,\{P\}}$$

$$(S_{EQ}) \quad \frac{\{P\}\,c\,1\,\{Q\}\,\,\{Q\}\,c\,2\,\{R\}}{\{P\}\,c\,1;\,c\,2\,\{R\}}$$

$$(A_{SIGN}) \quad \overline{\{P[x/e]\}\,x=e;\,\{P\}}$$

$$(I_F) \quad \frac{\{b\wedge P\}\,c\,1\,\{Q\}\,\,\{\neg b\wedge P\}\,c\,2\,\{Q\}}{\{P\}\,i\,f\,(b)c\,1\,else\,c\,2\,\{Q\}}$$

$$(W_{HILE}) \quad \frac{\{b\wedge P\}\,c\,\{P\}}{\{P\}\,while\,(b)\,c\,\{\neg b\wedge P\}}$$

Logica Floyd-Hoare pentru IMP1

regula pentru atribuire

(Asign)
$$\overline{\{P[x/e]\}|x=e;|\{P\}\}}$$

Exemplu

$$\{x + y = y + 10\} \ x = x + y \ \{x = y + 10\}$$

Logica Floyd-Hoare pentru IMP1

regula pentru atribuire

(Asign)
$$\overline{\{P[x/e]\}|x=e;|\{P\}\}}$$

Exemplu

$$\{x + y = y + 10\} x = x + y \{x = y + 10\}$$

regula pentru condiţii

(IF)
$$\frac{\{b \land P\} \ c1 \ \{Q\} \quad \{\neg b \land P\} \ c2 \ \{Q\}}{\{P\} \ if \ (b)c1 \ else \ c2 \ \{Q\}}$$

Exemplu

Pentru a demonstra $\{\top\}$ if $(x \le y)$ z = x; else z = y; $\{z = min(x, y)\}$ este suficient să demonstrăm $\{x \le y\}$ z = x; $\{z = min(x, y)\}$ $\{z = min(x, y)\}$

Invarianți pentru while

Cum demonstrăm $\{P\}$ while $\{D\}$?

□ Se determină un invariant *I* și se folosește următoarea regulă:

Invarianţi pentru while

Cum demonstrăm $\{P\}$ while (b) c $\{Q\}$?

□ Se determină un invariant *l* și se folosește următoarea regulă:

Invariantul trebuie să satisfacăurmătoarele proprietăți:

- să fie adevărat iniţial
- să rămână adevărat după executarea unui ciclu
- să implice postcondiţia la ieşirea din buclă

Invarianţi pentru while

```
{x = 0 \land 0 \le n \land y = 1}
while (x < n) \{ x = x + 1; y = y * x; \}
{y = n!}
```

Invarianți pentru while

```
{x = 0 \land 0 \le n \land y = 1}
while (x < n) \{ x = x + 1; y = y * x; \}
{y = n!}
```

 \square Invariantul *I* este y = x!

Invarianţi pentru while

```
\{x = 0 \land 0 \le n \land y = 1\}
while (x < n) \{ x = x + 1; y = y * x; \}
\{y = n!\}
```

- \square Invariantul *I* este y = x!
- $\Box \{I \land (x < n)\}\ x = x + 1; y = y * x; \{I\}$

Dezvoltat la Microsoft Research
Un limbaj imperativ compilat open-source
Suportă demonstrații formale folosind precondiții, postcondiții invarianți de bucle
Demonstrează și terminarea programelor
Concepte din diferite paradigme de programare
Programare imperativa: if, while, :=,Programare funcţională: function, datatype,

```
    □ Pagina limbajului Dafny
        https://www.microsoft.com/en-us/research/project/
            dafny-a-language-and-program-verifier-for-functional-correctness/

    □ Pagina de Github
        https://github.com/dafny-lang/dafny

    □ Dafny in browser
        http://cse-212294.cse.chalmers.se/courses/tdv/dafny/

    □ Tutorial
        https://dafny-lang.github.io/dafny/OnlineTutorial/guide
```

Dafny - Hello World

Dafny - fără erori

```
method Main() {
  print "hello, Dafny";
  assert 2 < 10;
}</pre>
```

Dafny - Hello World

Dafny - fără erori

```
method Main() {
  print "hello, Dafny";
  assert 2 < 10;
}</pre>
```

Dafny - erori

```
method Main() {
  print "hello, Dafny";
  assert 10 < 2;
}</pre>
```

Următoarea metodă calculează maximul a doi întregi:

Dafny

```
method max (x : int, y : int) returns (z : int)
{
  if (x <= y) { return y; }
  return x;
}</pre>
```

Dar cum verificăm formal acest lucru?

Adăugăm postcondiţii!

```
method max (x : int, y : int) returns (z : int)
ensures (x <= z) && (y <= z)
{
  if (x <= y) { return y; }
  return x;
}</pre>
```

Adăugăm postcondiţii!

Dafny

```
method max (x : int, y : int) returns (z : int)
ensures (x <= z) && (y <= z)
{
  if (x <= y) { return y; }
  return x;
}</pre>
```

Dar este de ajuns condiţia de mai sus?

Adăugăm postcondiții!

Dafny

```
method max (x : int, y : int) returns (z : int)
ensures (x <= z) && (y <= z)
{
  if (x <= y) { return y; }
  return x;
}</pre>
```

Dar este de ajuns condiţia de mai sus?

O metodă este reprezentată prin precondiţiile şi postcondiţiile pe care le satisface, iar codul este "ignorat" ulterior.

În exemplul de mai sus, pentru x = 3 şi y = 6, z = 7 satisface postcondiția (dacă ignorăm codul) dar nu este maximul dintre x şi y.

```
method max (x : int, y : int) returns (z : int)
ensures (x <= z) && (y <= z)
ensures (x == z) || (y == z)
{
  if (x <= y) { return y; }
  return x;
}</pre>
```

Cum demonstram formal că suma primelor n numere impare este n^2 ?

- $\Box 1 = 1 = 1^2$
- \Box 1 + 3 = 4 = 2^2
- \Box 1 + 3 + 5 = 9 = 3²
- \Box 1 + 3 + 5 + 7 = 16 = 4²

Cum demonstram formal că suma primelor n numere impare este n^2 ?

```
method oddSum(n: int) returns (s: int)
{
  var i: int := 0;
  s := 0;
  while i != n
  {
    i := i + 1;
    s := s + (2*i - 1);
  }
}
```

Adăugăm postcondiția!

Dafny

```
method oddSum(n: int) returns (s: int)
ensures s == n * n
{
  var i: int := 0;
  s := 0;
  while i != n
  {
    i := i + 1;
    s := s + (2*i - 1);
  }
}
```

Dar Dafny nu reuşeşte să o demonstreze!

Adăugăm postcondiţia!

Dafny

```
method oddSum(n: int) returns (s: int)
ensures s == n * n
{
  var i: int := 0;
  s := 0;
  while i != n
  {
    i := i + 1;
    s := s + (2*i - 1);
  }
}
```

Dar Dafny nu reuşeşte să o demonstreze! Trebuie să ii spunem ce se întâmplă în buclă prin invarianți.

```
method oddSum(n: int) returns (s: int)
ensures s == n * n
var i: int := 0;
s := 0;
while i != n
 invariant s == i*i
 i := i + 1;
 s := s + (2*i - 1);
```

Dafny

```
method oddSum(n: int) returns (s: int)
ensures s == n * n
var i: int := 0;
s := 0:
 while i != n
 invariant s == i*i
 i := i + 1;
 s := s + (2*i - 1);
```

Acum Dafny se plânge că nu reuşeşte să demonstreze terminarea! Adăugăm un nou invariant care ne asigură că *i* nu depaşeşte *n*.

```
method oddSum(n: int) returns (s: int)
ensures s == n * n
var i: int := 0;
s := 0;
 while i != n
 invariant 0 <= i <= n
 invariant s == i*i
 i := i + 1;
 s := s + (2*i - 1);
```

Dafny

```
method oddSum(n: int) returns (s: int)
ensures s == n * n
var i: int := 0;
 s := 0:
 while i != n
 invariant 0 <= i <= n
 invariant s == i*i
 i := i + 1;
 s := s + (2*i - 1);
```

Totuşi Dafny nu reuşeşte să demonstreze postcondiţia! De ce?

Dafny

```
method oddSum(n: int) returns (s: int)
ensures s == n * n
var i: int := 0;
 s := 0:
 while i != n
 invariant 0 <= i <= n
 invariant s == i*i
 i := i + 1;
 s := s + (2*i - 1);
```

Totuşi Dafny nu reuşeşte să demonstreze postcondiţia! De ce? Ce se întâmplă dacă n < 0?

```
method oddSum(n: int) returns (s: int)
requires 0 <= n
ensures s == n * n
var i: int := 0;
 s := 0;
 while i != n
 invariant 0 <= i <= n
 invariant s == i*i
 i := i + 1;
 s := s + (2*i - 1);
```

Dafny - funcţia factorial

```
function factorial(n: nat): nat
{ if n==0 then 1 else n*factorial(n-1) }
method CheckFactorial(n: nat) returns (r: nat)
  ensures r == factorial(n)
 var i := 0;
  r := 1;
  while i < n
    invariant r == factorial(i)
   invariant 0 <= i <= n
   i := i + 1;
   r := r * i;
    }}
```

Pe săptămâna viitoare!