

Using readmers and hapmers in assessing phase switching after read error correction of Oxford Nanopore Sequences

Jean P. Elbers

jean.elbers@gmail.com
Institute of Medical
Genetics, Center for
Pathobiochemistry and
Genetics, Medical
University of Vienna

Enongo I nagona

Franco Laccone
franco.laccone@meduniwien.ac.at
 Institute of Medical
 Genetics, Center for
 Pathobiochemistry and
 Genetics, Medical
 University of Vienna

Tamara Löwenstern

tamara.loewenstern

@meduniwien.ac.at Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical

University of Vienna

David Horner

david.horner@meduniwien.ac.at
Institute of Medical
Genetics, Center for
Pathobiochemistry and
Genetics, Medical
University of Vienna

Outline

- Introduction
- Methods
- Results
- Wrap up

Outline

Introduction

k-mers

readmers

hapmers

phase switching

Error correction

Why do we care? – Research Question

- DNA has no "words"
 - Can break DNA into pieces of "k-length" called k-mers k-mer length = 4

ACTGCA

- DNA has no "words"
 - Can break DNA into pieces of "k-length" called k-mers k-mer length = 4

ACTGCA

```
actg 4-mer #1
ctgc 4-mer #2
tgca 4-mer #3
```


- K-mers from sequencing reads ----
 - "Readmers"

- K-mers from sequencing reads ----
 - "Readmers"

A FASTQ read:

- 0seq1
- ACTGCATAGC
- +
- 6655EEACDC

- K-mers unique to a haplotype ----
 - "Hapmers"

using 8-mers on "+" strand

- K-mers unique to a haplotype ----
 - "Hapmers"

```
using 8-mers on "+" strand
```

```
A<mark>T</mark>TGCATA + strand maternal haplotype
```

A<mark>C</mark>TGAATA + strand paternal haplotype

- K-mers unique to a haplotype ----
 - "Hapmers"

```
using 8-mers on "+" strand
```

```
ATTGCATA "+" strand maternal haplotype attgcata
```

ACTGAATA "+" strand paternal haplotype actgaata

- K-mers unique to a haplotype ----
 - "Hapmers"

```
using 8-mers on "+" strand
```

ATTGCATA "+" strand maternal haplotype attgcata

ACTGAATA "+" strand paternal haplotype

a<mark>c</mark>tgaata

Hapmers

At the read level, read contains info of 1> haplotype

ATTGCATA "+" strand maternal haplotype

ACTGAATA "+" strand paternal haplotype

At the read level, read contains info of 1> haplotype

A<mark>T</mark>TG<mark>C</mark>ATA "+" strand maternal haplotype

A<mark>C</mark>TG<mark>A</mark>ATA "+" strand paternal haplotype

@seq1

ACTGCATA

+

CCEEDDAD

At the read level, read contains info of 1> haplotype

ATTGCATA "+" strand maternal haplotype

ACTGAATA "+" strand paternal haplotype

0seq1

ACTGCATA **Phase Switching!**

CCEEDDAD 14

At the read level, read contains info of 1> haplotype

A<mark>T</mark>TG<mark>C</mark>ATA "+" strand maternal haplotype

Allocata i Schana matchiat naptotype

aseq1

CCEEDDAD

A<mark>C</mark>TG<mark>A</mark>ATA "+" strand paternal haplotype

In this example:

ACTGCATA

If counting 8-mers, then there will be

No matching readmers to hapmers

Improve accuracy by "consensus"

1. Herro

Improve accuracy by "consensus"

1. Herro

2. Brutal Rewrite

Improve accuracy by "consensus"

1. Herro

2. Brutal Rewrite

3. Peregrine_2021

• Improve accuracy by "consensus"

1. Herro

2. Brutal Rewrite

3. Peregrine_2021

4. DeChat

Question

• Since we do not know what sequences belong to which haplotype *a priori*, can error correcting reads cause phase switching?

Question

• Since we do not know what sequences belong to which haplotype *a priori*, can error correcting reads cause phase switching?

How can we estimate phase switching at the read level?

Outline

- Introduction
- Methods
- Results
- Wrap up

Outline

Methods

error correction

read alignment

analyze alignments

k-mers

Error correct reads

- Error correct reads
 - 1. Run Herro

- Error correct reads
 - 1. Run Herro

2. Run Brutal Rewrite on Herro-corrected reads

- Error correct reads
 - 1. Run Herro

2. Run Brutal Rewrite on Herro-corrected reads

3. Run Peregrine_2021 on Brutal Rewrite-corrected reads

- Error correct reads
 - 1. Run Herro

- 2. Run Brutal Rewrite on Herro-corrected reads
- 3. Run Peregrine 2021 on Brutal Rewrite-corrected reads

4. Run DeChat on Peregrine 2021-corrected reads

- Error correct reads
- Align raw & corrected reads to each HG002 haplotype separately

- Error correct reads
- Align raw & corrected reads to each HG002 haplotype separately
- Collect alignment info

- Error correct reads
- Align raw & corrected reads to each HG002 haplotype separately
- Collect alignment info
- Filter alignments (primary alignments,

mapping quality Q60,

longest alignment block per read)

- Error correct reads
- Align raw & corrected reads to each HG002 haplotype separately
- Collect alignment info
- Filter alignments (primary alignments,

mapping quality Q60,

longest alignment block per read)

Analyze k-mers for same reads (~ 1 million)

- Error correct reads
- Align raw & corrected reads to each HG002 haplotype separately
- Collect alignment info
- Filter alignments (primary alignments,

mapping quality Q60,

longest alignment block per read)

- Analyze k-mers for same reads (~ 1 million)
- Histograms (percent matching readers to hapmers)

K-mers and hapmers

 Keep alignments with same alignment block length on mat. and pat. chrom. (query_start/stop same)

K-mers and hapmers

 Keep alignments with same alignment block length on mat. and pat. chrom. (query_start/stop same)

```
Alignments to mat. chrom.

query_start query_stop

1 1000

Alignments to pat. chrom.

query_start query_stop

1 1000
```


K-mers and hapmers

Count readmers from query_start to query_stop

```
query_start query_stop

1 1000

Alignments to pat. chrom.
query_start query_stop

1 1000
```

Alignments to mat. chrom.

 Count k-mers from each haplotype from each target start to target stop

Alignments to mat. chrom.

target start

10000

Alignments to pat. chrom.

20000

target start target stop 21001

target stop

11000

37

- Count readmers from query_start to query_stop
- Count k-mers from each haplotype from each target_start to target_stop
- Determine hapmers

Intersect readmers and hapmers

<u>read_id</u>	<pre>%match_mat_hapmers</pre>	<pre>%match_pat_hapmers</pre>
seq1	75	25
seq2	25	75
seq3	0	0
seq4	100	0

Intersect readmers and hapmers

<u>read_id</u>	<u>%mat</u>	<u>%pat</u>	calc Abs. Val of diff
seq1	75	25	75-25 = 50%
seq2	25	75	25-75 = 50%
seq3	0	0	Discard
seq4	100	0	100-0 = 100%

Outline

- Introduction
- Methods
- Results
- Wrap up

Outline

read alignments
matching hapmers
histograms
read error rates

Results

)		Total Reads	Maternal	Paternal	N50	Coverage
			Alignments	Alignments		
	Raw	15,048,314	4,029,514	3,962,042	21,268	40.3x
			(26.7772%)	(26.3288%)		
	Herro	4,578,144	1,733,156	$1,\!705,\!413$	24,437	26.3x
			(37.8572%)	(37.2512%)		
	Brutal Rewrite	4,578,144	1,733,152	1,705,385	24,437	26.3x
)			(37.8571%)	(37.2506%)		
	Peregrine_2021	4,490,689	1,724,488	1,697,130	24,152	25.7x
			(38.4014%)	(37.7922%)		
	DeChat	4,490,689	1,724,727	1,697,341	24,153	25.7x
			(38.4067%)	(37.7969%)		

Results

		Read Alignments with Readmers	Read Alignments with Readmers		
		Matching Hapmers	Matching 0 Hapmers		
)	Raw	1,009,418	136,325		
	Herro	1,009,411	136,332		
	Brutal Rewrite	1,009,411	136,332		
)	Peregrine_2021	1,007,110	138,633		
	DeChat	1,007,150	138,593		

	Identity	Identity Quality Value	Gap Compres Identity
Raw	0.980335	17.062956	0.984901
Herro	0.999637	34.396470	0.999770
Brutal Rewrite	0.999637	34.398948	0.999772
Peregrine_2021	0.999726	35.619356	0.999830
DeChat	0.999741	35.862487	0.999842

Illumina 0.994539 22.627025 0.994579

	Matches per Kbp	Mismatches per Kbp	Non-hp Inser per Kbp
Raw	985.021819	7.253553	2.826602
Herro	999.725438	0.052275	0.033748
Brutal Rewrite	999.725298	0.051433	0.033581
Peregrine_2021	999.790755	0.031596	0.024639
DeChat	999.803664	0.027125	0.023584
Illumina	994.562660	5.376677	0.01667

	Non-hp Del per Kbp	Hp Inser per Kbp	Hp Del per Kbp
Raw	3.413819	1.954716	4.310809
Herro	0.044347	0.055095	0.177940
Brutal Rewrite	0.044946	0.054916	0.178323
Peregrine_2021	0.026350	0.040332	0.151300
DeChat	0.022643	0.039365	0.146568
Illumina	0.029777	0.007443	0.030885

Outline

- Introduction
- Methods
- Results
- Wrap up

Can assess phase switching at read level

Can assess phase switching at read level

 Error-correction methods here introduce very little phase switching overall

Can assess phase switching at read level

 Error-correction methods here introduce very little phase switching overall

Peregrine-2021 may introduce more phase switching than others tested

Can assess phase switching at read level

 Error-correction methods here introduce very little phase switching overall

Peregrine-2021 may introduce more phase switching than others tested

change program settings?

Can assess phase switching at read level

 Error-correction methods here introduce very little phase switching overall

Thoughts to explore:

Can assess phase switching at read level

 Error-correction methods here introduce very little phase switching overall

Thoughts to explore:

What are reads with 0 matching hapmers?

Can assess phase switching at read level

 Error-correction methods here introduce very little phase switching overall

Thoughts to explore:

What are reads with 0 matching hapmers?

Regions without hapmers

Can assess phase switching at read level

 Error-correction methods here introduce very little phase switching overall

Thoughts to explore:

What are reads with 0 matching hapmers?

Regions without hapmers

Regions with few hapmers & phase switching so that readmers do not match hapmers

Acknowledgements

MedUni Wien High Performance Computing Cluster

Heng Li (BWA, minimap2, SAMtools developer)

Thanks for your time!

