中国科学技术大学

RGB 三基色配色研究

姓名: 王晨沣

学号: PB22061204

班级: 信息学院 2202 班

时间: 2023年4月27日

RGB 三基色配色研究

1 实验目的

- 1. 了解 LED 原理与特性。
- 2. 掌握 RGB 三基色原理。

2 实验原理

2.1 RGB 颜色模型

- 自然界中的大多数颜色可以由三种相互独立的基本颜色(红、绿、蓝)按一定比例混合得到,而一种颜色也可以被分解为不同比例的三种基色。
- 国际照明委员会 CIE 建立了一套测量色彩的技术标准,规定了红、绿、蓝三基色的波长和相对视敏函数。
- 在 RGB 颜色模型中,红绿蓝三基色按照不同比例相加合成混色称为相加混色,混合比例直接决定混合色的色调和饱和度。
- CIE 色度图采用 x、y、z 作为假想的三基色相对强度系数,并绘制以 x 和 y 为坐标的二维图形,包含了所有的颜色数值。

2.2 LED 配色原理

- LED 是一种半导体发光二极管,可以通过控制红、绿、蓝 LED 的强度混合出全彩色的可见光。
- LED 的伏安特性表现为非线性和单向导电性,其特性曲线包括正向死区、工作区、反向死区和击穿区。此外,LED 的发光波长与其材料的禁带宽度 E_g 有关,利用不同材料的禁带宽度可以制成发出不同波长的 LED。

3 实验仪器

- 1. 直流电源(取 3.0V)
- 2. 三色 LED (负极管脚公用)
- 3. 毫安表
- 4. 数字万用表(只用电压档、欧姆档、二极管检测档)
- 5. 硅光电池
- 6. 电阻箱
- 7. 白板
- 8. 开关
- 9. 导线
- 10. 分压盒

4 实验步骤与数据处理

4.1 LED 的伏安特性测量

4.1.1实验步骤

如图 1 接线,在I < 100mA内,测量20组I - U数据,并绘制出发光二极管正向I - U曲线。

图 1 LED 的伏安特性测量电路图

4.1.2实验数据

表 1 LED 的伏安特性测量原始数据

I/mA	U_R/mV	U_G/mV	U_B/mV
5	1751	2218	2534
10	1779	2266	2565
15	1795	2298	2586
20	1809	2325	2605
25	1820	2350	2622
30	1829	2371	2637
35	1837	2391	2650
40	1845	2409	2664
45	1852	2426	2679
50	1860	2443	2689

I/mA	U_R/mV	U_G/mV	U_B/mV
55	1867	2459	2702
60	1873	2476	2715
65	1879	2491	2726
70	1883	2507	2736
75	1891	2520	2747
80	1895	2534	2756
85	1900	2548	2766
90	1906	2562	2779
95	1910	2576	2789
100	1916	2588	2801

4.1.3数据处理

利用 origin 软件,将实验数据整理可得红、绿、蓝 LED 的伏安特性曲线,如图 2 所示。

图 2 LED 的伏安特性测量I - U曲线

由图像可以看出,LED电流I与电压U成正相关,且增加到一定程度后,I与U呈现线性关系。通过对I>25mA的实验数据进行拟合,可以发现I与U确实有着很强的线性关系,拟合数据如表 2 所示。

表 2 LED 的伏安特性测量I > 25mA数据拟合结果

	U_R-I	U_G-I	U_B-I
Intercept	1796.946	2286.719	2573.039
Slope	1.21929	3.07714	2.29786
Pearson 's r	0.99609	0.99836	0.99859

4.2 LED 的发光波长测量

4.2.1数据处理

利用公式

$$E = hv = eU$$
$$\lambda = c/v$$
$$E_g = eU$$

可以得到发光波长 λ 与禁带宽度 E_g 关系:

$$\lambda = \frac{hc}{eU} = \frac{1239.82}{E_g} \approx \frac{1240}{E_g} (nm)$$

取实验 4.1 中对 I > 25 mA数据的拟合结果,可以得到如下数据:对于红色 LED,拟合结果如图 3 所示。

图 3 红色 LED 伏安特性曲线I > 25mA数据线性拟合

拟合结果为

$$I = -1461.77 + 0.813756 U \quad (mA)$$

横轴截距为

$$U_F = \frac{1461.77}{0.813756} = 1796.32 \, mV$$

 $E_g = eU_F = 1.79632 \, eV$

故计算得到红光波长约为

$$\lambda = \frac{1240}{E_g} = 690.30 \ nm$$

同理,对于绿色 LED,拟合结果如图 4 所示。

图 4 绿色 LED 伏安特性曲线 I > 25 m A 数据线性拟合

拟合结果为

$$I = -740.49 + 0.323915 U (mA)$$

横轴截距为

$$U_F = \frac{740.49}{0.323915} = 2286.06 \, mV$$
$$E_g = eU_F = 2.28606 \, eV$$

故计算得到绿光波长约为

$$\lambda = \frac{1240}{E_g} = 542.41 \, nm$$

同理,对于蓝色 LED,拟合结果如图 5 所示。 拟合结果为

$$I = -1116.41 + 0.43396 U (mA)$$

横轴截距为

$$U_F = \frac{1116.41}{0.43396} = 2572.61 \, mV$$

 $E_g = eU_F = 2.57261 \, eV$

故计算得到蓝光波长约为

$$\lambda = \frac{1240}{E_g} = 482.00 \ nm$$

图 5 蓝色 LED 伏安特性曲线I > 25mA数据线性拟合

4.3 LED 的发光强度特性

4.3.1实验步骤

按图 6 接线,在工作电流 $I < 100 \, mA$ 内, 测量 20 组 绿色LED 相对光强 L 与工作电流 I 数据,绘制 LED 的 L-I 特性曲线。

将L定义为LED 到光电池距离约为 20 cm 时,光电池的输出电压值。

图 6 LED 的发光强度特性测量电路图

4.3.2实验数据

表 3 LED 的发光强度特性测量原始数据

I/mA	L_G/mV	I/mA	L_G/mV
5	2.39	55	29.56
10	5.52	60	31.90
15	8.38	65	34.20
20	11.23	70	36.89
25	13.98	75	39.09
30	16.89	80	41.20
35	19.50	85	43.21
40	22.08	90	45.80
45	24.41	95	47.96
50	27.06	100	50.22

4.3.3数据处理

利用 origin 软件,对实验数据进行处理,绘制出绿色LED的L-I特性曲线,如图 7 所示。注意到曲线近似成线性,故对实验数据进行线性拟合,可知LED相对光强L与工作电流I成正相关并且线性增长。

图 7 绿色 LED 的L-I特性曲线及线性拟合结果

4.4 RGB 配色实验

4.4.1实验步骤

调整白屏, 使三个 LED 光斑在白屏上呈同心圆, 按图 8 接线。

- (i) 分别采用两个 LED, 在 $I < 100 \, mA$ 内,配出标准色卡的黄色、青色、紫色;
- (ii) 采用三个 LED, 在 $I < 100 \, mA$ 内, 配出标准色卡的白色;

将光电池放置于白屏处,测量每个LED以及配色的相对光强 L,给出各个基色的光强比。

图 8 RGB 配色实验电路图

4.4.2实验数据

表 4 RGB 配色实验原始数据

配色	$L_{ ot\!$	$L_{\underline{\mathscr{L}}}/mV$	$L_{ ot\!\!/}mV$	$L_{\underline{x}}/mV$
青色	38.57	_	19.82	19.70
紫色	23.38	19.84	_	3.62
黄色	50.22	28.34	21.65	
白色	54.33	16.31	19.55	19.01

另外测得背景光强为0.04mV

4.4.3数据处理

扣除背景光强后计算结果如下:

青色: $L_G: L_B = 1.006:1$

紫色: $L_R: L_B = 5.530:1$

黄色: $L_R:L_G=1.310:1$

白色: $L_R:L_G:L_B=0.858:1.028:1$

5 实验讨论与思考题

5.1 实验讨论

关于本实验的误差,可以从以下几个角度来定性分析:

- 1. 光照强度:
- (1) 由于无法准确判断硅光电池受光面与 LED 发射源的位置, 硅光电池与 LED 间的距离与 20cm 有偏差;
- (2) 导轨与电源、硅光电池、光线可能不垂直;
- (3) 环境中的背景光强变化较大,只测量一次背景光强可能并不准确。

2. 电路:

- (1) 通过滑动变阻器调节电流误差较大,电流不稳定导致电流测量误差大;
- (2) 测量中发现存在电阻箱误差的情况;
- (3) 导线、接线柱等电阻的影响;
- (4) 在暗伏安特性测量时,电流表采用外接法,由于分压会导致电流测量值偏大。

3. 配色:

- (1) 配色过程中依靠人的主观感受,因此存在较大的偏差。
- (2) 标准色卡自身不发光,导致人眼看到标准色卡的颜色受环境光影响很大。
- (3) 人对不同颜色的敏感程度不同也会带来一定的偏差。

5.2 思考题

- 1. 什么叫人眼的视敏特性? 用什么函数度量?
 - 答:人眼的视敏特性是指在不同波长光照射下,人眼对光的敏感程度不同。人眼对绿色光的敏感度最高,对红光和蓝光的敏感度较低。这个特性通常用相对视敏度函数 $V(\lambda)$ 来度量, $V(\lambda)$ 函数显示了不同波长的光的相对亮度,即人眼对不同波长的光的敏感程度。该函数以标准观察者的平均数据为基础,以勒克斯(lx)为单位,描述了人眼对不同波长的光的相对亮度。
- 2. 甲光 R: G: B 为 1: 2: 3; 乙光 R: G: B 为 2: 4: 6, 甲光和乙光有什么区别? 答: 甲光和乙光的 RGB 之比相同,意味着甲乙两光的色调相同,而乙光各基色亮度更
 - 高,整体的亮度也将更高。故甲乙两光的区别在于乙光的亮度是甲光的二倍。