METRIC SPACES 2023 EXERCISES 1

Q1: Show that for any $\alpha, \beta, \gamma, \delta \in \mathbb{R}$,

$$\max\{\alpha + \beta, \gamma + \delta\} \le \max\{\alpha, \gamma\} + \max\{\beta, \delta\}.$$

Q2: Let $S \subset \mathbb{R}$ be bounded, c > 0 and

$$cS = \{cx : x \in S\}$$

Prove that $\sup(cS) = c \sup(S)$ and $\inf(cS) = c \inf(S)$. What happens if c < 0?

Let $A, B \subseteq \mathbb{R}$ be non-empty sets and define

$$A \pm B = \{x \pm y : x \in A \text{ and } y \in B\}.$$

Prove that

$$\sup(A+B) = \sup(A) + \sup(B).$$

What about

$$\inf(A-B)$$
?

Let $f:\mathbb{R}\to\mathbb{R}$ be a function. Let $A\subseteq\mathbb{R}$ be non-empty, we define $\sup_A(f)$ to be the set

$$\sup_{A}(f) = \sup\{f(x) : x \in A\},\$$

with $\inf_A(f)$ defined in similar fashion. Suppose now that f and g are functions such that $f \leq g$ on the set A, that is $f(x) \leq g(x)$ for all $x \in A$. Prove that

$$\sup_{A}(f) \le \sup_{A}(g).$$

Q3: Suppose that X is a set equipped with some metric d. Show that the function

$$\widehat{d}: X \times X \to [0,\infty)$$

such that

$$(x,y) \mapsto \frac{d(x,y)}{1+d(x,y)}$$

is also a metric on X.

Set $X = \mathbb{R}$.

- (a) Plot the graph of $y = \widehat{d}(x, 0)$ as x varies through \mathbb{R} ,
- (b) Suppose that $0 \le a < b < \infty$. Determine a formula for the 'diameter' ℓ of the interval (a,b) where

$$\ell = \sup\{\widehat{d}(t, t') : t, t' \in (a, b)\}.$$

Q4: Let (X, d_X) and (Y, d_Y) be metric spaces. Define $d_{X \times Y} : (X \times Y) \times (X \times Y) \to \mathbb{R}$ by

$$d_{X\times Y}((x_1,y_1),(x_2,y_2)) = \max\{d_X(x_1,x_2),d_Y(y_1,y_2)\}.$$

(a) Show that $(X \times Y, d_{X \times Y})$ is a metric space. (You may find Q1: helpful.)

- (b) If d_X and d_Y are the discrete metrics on X and Y, then what is the metric $d_{X\times Y}$?
- (c) If $X = \mathbb{R}$ with the standard metric, then what is the metric space $(X \times X, d_{X \times X})$?
- Q5: Multi-step triangle inequalities: show that if (X, d) is a metric space and $x_1, x_2, \ldots, x_n \in X$ (where $n \geq 3$) then

$$d(x_1, x_n) \le d(x_1, x_2) + d(x_2, x_3) + \dots + d(x_{n-1}, x_n).$$

Suppose that $x, y, u, v \in X$. Use the three-step triangle inequality

$$d(x,y) \le d(x,u) + d(u,v) + d(v,y)$$

to show that

$$|d(x,y) - d(u,v)| \le d(x,u) + d(y,v).$$

Informally, this means that if x is close to u and y is close to v, then d(x,y) is close to d(u,v).

Q6: Consider the function d^* defined on \mathbb{R}^2 by

$$d^*(x,y) = \begin{cases} 0 & x = y \\ |x| + |y| + 2|x - y| & x \neq y \end{cases}$$

- (a) Show that d^* is a metric.
- (b) Determine which points belong to the open ball B(0,r) in (\mathbb{R}, d^*) .
- Q7: Show that for $x, y \in \mathbb{R}^N$:

$$d_{\infty}(x,y) \le d_1(x,y) \le N d_{\infty}(x,y)$$

$$d_{\infty}(x,y) \le d_2(x,y) \le \sqrt{N} d_{\infty}(x,y)$$

Hence find constants A, B > 0 such that:

$$Ad_1(x,y) \le d_2(x,y) \le Bd_1(x,y).$$

Q8: Equip the set $C[0,\pi]$ of all continuous real valued functions on the interval $[0,\pi]$ with the d_2 metric

$$d_2(f,g) = \left(\int_0^{\pi} (f(t) - g(t))^2 dt\right)^{1/2}$$

For $n \in \mathbb{N}$, let $f_n(t) = \pi^{-1/2} \sin(nt)$.

Derive a formula for $d_2(f_n, f_m)$ for all $n, m \in \mathbb{N}$.

Q9: Consider now the set of all sequences of all real numbers, that is $\mathbb{R}^{\mathbb{N}}$. Show that

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \left(\frac{|x_n - y_n|}{1 + |x_n - y_n|} \right)$$

is a metric on $\mathbb{R}^{\mathbb{N}}$. Your first step should be to justify the fact that the range of this function is a subset of $[0, \infty)$.

Q10: (a) Suppose d_1, d_2 are two metrics on a space X, and that d_3 is defined by

$$d_3(x,y) = \alpha d_1(x,y) + \beta d_2(x,y)$$

where α and β are non-negative and not both zero. Show that d_3 is also a metric on X.

(b) On \mathbb{R} , let d_1 be the trivial metric,

$$d_1(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y, \end{cases}$$

 d_2 the standard metric,

$$d_2(x,y) = |x - y|$$

and

$$d_3(x,y) = d_1(x,y) + d_2(x,y).$$

In (\mathbb{R}, d_3) , find the elements of the open balls B(0,1) and B(0,2) and show that every subset of \mathbb{R} is open. Which subsets of \mathbb{R} are closed in this metric?