Euspidal functions and Lusztig sheaves for affine quivers Lucien Hennecart

> Herseminar lie Theory Borhum - 17 May 2021

I - Hall algebra (of a quiver)

I - Representation theory of affine quivers

III - Cuspidal functions for affine quivers

II- Lusztig sheaves (for affine guvers)

I - Hall algebra Hall algebra (Ringel, '90s) d Brok $I = \{i, j, k\}$ $Q = \{x, \beta, \gamma, \beta\}$ Q = (I, Q) quiver vertices arrows Ta finite field Haiting:= (T) (C.[M]

[M] E Repa(Tq)/isom = Fun (Repa (tfg)/isom, C) finitely supported Endow Haiting with the structure of (twisted) Hopf algebra. $f \times g([R]) = \frac{1/(R/M, M)}{k([R/M])g([M])} \int_{M \subset R} \frac{1/(R/M)}{k([R/M])g([M])} \int_{M$

Coproduct: $\triangle: H_{Q, T_{q}} \longrightarrow H_{Q, T_{q}} \otimes H_{Q,$ E Ext (N,M) [counit, antipode: not relevant to us.] Thm (Ringel, Green) Quithout loops. of = 72-0 JD 17+ Kac-Movoly algebra $Q: \mathcal{T}_{q}(\mathcal{T}_{+}) \longrightarrow \mathcal{H}_{Q, \mathbb{F}_{q}}$ Ei | Si] extends to an injective morphism of bialgebras. · Si = 1 dimensional rep. of a concentrated at vertex i E I . Ty (17+) = positive part of the quantum group specialized = C(Ei, i E I)/quantum Serre relations.

tacts: . If is an isomorphism if Q is of finite type . The image of Q: In $Q = : H_{Q, F_{Q}}^{sph}$ is called the spherical Hall algebra of Q

Questions: Structure of HoIFq? Character of HaIFq?

Character of HR, Fg

$$Q = (I, S)$$
 quiver

Kac polynomials

$$M_{Q}, d(q) = \# \left(\text{Rep}_{Q}(\#_{q}) [d] \right)$$
 $I_{Q}, d(q) = \# \left(\text{Rep}_{Q}(\#_{q}) [d] \right)$
 $I_{Q}, d(q) = \# \left(\text{Re$

€ N[q]

examples of Kac phynomials:

• for finite type APE quivers, Gabriel's theorem =>

Aa,d(q) =

O else • for affine quivers: $A_{Q,d}(q) = \begin{cases} 1 & \text{if } d \in \mathbb{N}^{T}, \langle d,d \rangle = 1 \\ q + n_{0} & \text{if } d \in \mathbb{N}^{T}, \langle d,d \rangle = 0 \end{cases}$ • $S_{q} = Q_{q} \text{ loops}$ $A_{S_{q},1}(q) = q^{2} \text{ if } A_{S_{q},2}(q) = q^{2} \text{ if }$

Kac polynomials enjoy remarkable combinatorial properties, but this is not the subject of today's talk.

backs the character of the Hall abelia
$M_0 J(q) Z^d$
$ \underbrace{\sum_{k \in N} I \text{ dim } H_{Q, F_{q}} [d] z^{d}}_{Krull-Shmidt} = \underbrace{\sum_{k \in N} I_{Q, d} (q) z^{d}}_{Krull-Shmidt} \underbrace{\sum_{k \in N} I_{Q, d} (q) z^{d}}_{Krull-Shmidt} = \underbrace{\sum_{k \in N} I_{Q, d} (q) z^{d}}_{Krull-Shmidt} \underbrace{\sum_{k \in N} I_{Q, d} (q) z^{d}}_{Krull-Shmidt} = \underbrace{\sum_{k \in N} I_{Q, d} (q$
plethystic exponential Galois descent arguments for quiver representations
= character of the enveloping algebra of a 12 - graded the gg algebra with character \(\le \) I ad(q) z
dent dent character of the enveloping algebra of a N×N ^I -graded lie g algebra with character $\leq A_{Q,d}(q) z^d$.

Do 7,00 exist?

More previe question: Can we find 7 Sorcherds lie algebra s-t-ch $V(\widetilde{o}_{3}^{\dagger})=\cancel{2}$? J NxN^I-graded Borcherds lie algebra st. $V(\tilde{g}) = \underbrace{KK}$? 2 3 should be some "q=1" specialization of gg.

Not easy since the number of generators of gg depends on q - below. 2) Hopefully two of Harty:

Husp = Ef E Harty | $\Delta(f) = f \otimes 1 + 1 \otimes f$ auxidal.

Husp = Ef E Harty | $\Delta(f) = f \otimes 1 + 1 \otimes f$ functions Structure of Ha, Fg: Choose (fi) jeJ homogeneous basis of HaTig.

The (Sevenheut-Van den Bergh).

HQ.Tq is isomorphic to the associative C-algebra generated by $(fi)_{j \in J}$ with the relations $dij = 0 \Rightarrow \left[fi \mid fi \right] = 0$ $|dii = 2 \Rightarrow \int_{-\infty}^{\infty} (-1)^{l} \left\{ \int_{-\infty}^{\infty} (-1)^{l} \left\{ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (-1)^{l} \left\{ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (-1)^{l} \left\{ \int_{-\infty}^{\infty} \int_{-\infty$: · ofg is the Boreherds he algebra with Cartan datum . What about of? Not clear yet since dim Ha, Fg [d] depends on 9.

Fact / Theorem (Bozec-Schiffmann) · dim $H_{Q,\overline{H}_{1}}^{usp}[d]$ is a polynomial in q $=:G_{Q,d}(q)$ If we interpret as the character of the enveloping algebra of a Borcherds hie algebra, of, then the impultiplicity of simple roots of of are given by polynomials $Ca, d(q) \in \mathbb{Z}[q]$. (midre: Cad (9) ENGJ. (=> exidence of og)

Finite type quivers. See is a simple lie algebra. $\nabla_{fg}(\pi_{+}) \longrightarrow H_{R,ffg}$ is an isomorphism $\Rightarrow G_{Q,d}[q] = G_{Q,d}[q] = \begin{cases} 1 & \text{if } d \in \mathcal{E}_{Li}, i \in I \end{cases}$ $\Rightarrow \text{ cuspidal functions} = \text{ characteristic functions of simple representations}$

Repa(k) < Repa(k) subcat of regular representations. Ringel: Reprog (k) = TT C2
2E IPk J = Dordan guvez where $C_{x} = \text{Rep}_{J}(k_{x})$ except for a finite number of points $x \in |P_{k}|$ of degree one, for which $C_{x} = \text{Rep}_{C_{p}}(k)$, Cp = 0,70% ayolic quiver of length p= pse Computation of aspidal functions of affine quivers

(I) consider the regular Hall algebra Hiring.

(2) Compute Haity: easy thanks to (2) if we know cuspidal functions of Hill (nilpotent Hall algebra) and Happer (HP=2)

3) S= indivisible root of Q.

Show Harf [728] = Harff [25] (Y271).

[analyze the support of a suspidal function].

- (4) Show the codimension is 1: dimension of r.h.s and l.h.s are explicitly known.
- (5) Find a nontrivial linear form on HaTEg [rS] vanishing on HaTEg [rS].

2 Cuspidal functions of HJ, Fig 150 morphism $Q_q: H_{J, F_q} \longrightarrow \Lambda Q C$ of bialgelras $T_{-1} = \frac{r(r_{-1})^{-1}}{r}$ $\left[I_{(1^n)}\right]$ $e_n = \sum_{i_1 < \dots < i_r} \chi_{i_1} \dots \chi_{i_r}$ $\left[\left(O_{r,n} \right) \right]$

$$P_{q}([J_{A}]) = q^{-n(A)} P_{A}(z;q^{-1})$$
 $A \in P = partitions$
 $P_{q}([J_{A}]) = q^{-n(A)} P_{A}(z;q^{-1})$
 $P_{A}(z;q^{-1})$
 $P_{A}(z;q^{$

primitive elements of
$$\Lambda$$
: $P_{z} = \sum_{i} x_{i}^{z}$ $(r 7.1)$
 $f_{q}^{-1}(P_{r}) = \sum_{|A|=r} \phi_{\ell(A)-1}(q) [T_{A}]$, $(\phi_{m}|t) = \prod_{i=1}^{m} (1-t^{i})$, $m \in \mathbb{N}$

3) Use that a representation $M = P \oplus R \oplus I$ has a unique filtration

$$0 \in F_1 \subset F_2 \subseteq M$$

$$0 \in F_1 \in F_2 \subseteq M$$
and
$$F_1 \simeq I_1, F_2 / F_1 \simeq R \cdot M / F_2 \simeq P.$$

$$\Rightarrow$$
 $f(In) = 0$ if fis uspidal, and $P \oplus I \neq 0$,

(4) Have explicit formulas.

(5) :
$$H_{Q, \pi_{q}}^{\text{res, usp}}(-s) \longrightarrow \mathbb{C}$$

$$f \longrightarrow \underbrace{f([\Pi])}_{\text{CMJ} \in \text{Rep}_{Q}(\pi_{q})/\text{isom}}$$

is such a linear form.

Tusting sheaves and geometrization of the Hall algebra $\mathcal{M}_{Q,\overline{J}}$ [Ed/Gd] moduli stack of d-dim. regs of Q. El= D Hom (Ldi, Cdj) Sii→j∈ s GL = TT GLdi (C). iEI moduli stacle of representations of the preprojective algebra. T * MQ, d = [Md (5)/GL] moment map. pd: T*Ed -> osl $E_{\overline{\alpha}, \lambda}$ $(x, x^*) \longrightarrow \sum_{i=0}^{\infty} [x_i, x_i^*]$ 0 E ma-1(0) // GL Lusgtig nilpotent stack. $M = p^{-1}(0) \subset T * Mo, d$

Pero (Ma,d, Ad) anstructible complexes whose sing. support category of perverse sheaves whose singular support is a substack of Md Htop (Nd) Ko (Perr(Ma,d,M)) = Ko(Dc (Ma,d,M)) — Kashiwara - Saito. Ko (92) Lusztig perverse sheaves on Ma, L.

DKo (Rew (MQ,1,1d)) has the induction product of Lusphig restriction $(K_0(P))$ $(K_0(P), ind, res) \simeq TZ(n_0^+)$ $(K_0(P), ind, res) \simeq TZ(n_0^+)$ $(K_0(P), ind, res) \simeq TZ(n_0^+)$

DZ[IrrAd] has the CoHA product [Schifmann-Vanerot]

CC is an algebra (and coalgebra) map.

is true for finite type quivers: we that there is a finite number of God orbits in Ed for cyclic quivers by a Fourier-transform argument. (H2020) It the geometry of Ma, d + explicit description of Pd for affine quivers (Lusztig, Li-Lin). Take 7 E Perr (Me, d, Ad) a simple perverse sheaf.
Want to show F E Pd. stratification Steps of the proof: (1) Ma, d= [] Ma, dp, dp, dp, dr, dI

dp+dr+dI=d

One of the strata intersects supp of densely. "stack bundle" ~ fiber bundle NQ,dp,dr,dI Mardex Made x Madi

Reduce to the cases where sup I intersects densely the preprojective, preinjecture or regular loci. (2) preprojective and preinjective cases: easy, finite number of orbits · regular case: study the germetry of Ma, of and Md. Vied > VI If $d \neq nS$ $(n \neq 1)$, $M_{Q,Q} = \emptyset$.

An open substack of $M_{Q,nS}$ is isomorphic to $S^{n}(\mathbb{P}^{2},\mathbb{P}^{1$ Problem: need to know what happens on the boundary. -> describe a reighbourhood of non-homogeneous tubes in No, I.

non homogeneous tube of period p => any C*- equivariant perverse sheaf on Mp, 25 is determined by its restriction to U. NG, 18 is bigger than the Luszting nilpotent wacks for the walic quiver G. 4 Desville : 1 Gp, 28 explicitly, . Per (MGP, RS)

(possibly w/loops?) What about general quivers > partial results. use the seminifestent stacks. · quivers Sg (OK.

Extension of the question to curves: Lusgtig sheaves? >>> Spherical Eigenstein perverse sheaves Displied nilpotent one of stack A
We have an algebra morphism C: Ko (P) -> C[Irr cN] Can show it is surjective product.
injectivity is tricky. Known for curves of genus & 1 only (H2021) coalgebra morphism. Coalgebra morphism. all this will be joint project with Ben Davison and Oliver Schifmann.

Thank you for your attention!