UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

ANÁLISIS DE ALGORITMOS I

SEMESTRE: Quinto o Sexto

CLAVE: **0414**

HORAS A LA SEMANA/SEMESTRE			
TEÓRICAS	PRÁCTICAS	CRÉDITOS	
4/64	2/32	10	

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Introducción a Ciencias de la Com-

putación II, Probabilidad I.

SERIACIÓN INDICATIVA SUBSECUENTE: Teoría de la Computación.

OBJETIVO(S): El alumno conocerá los conceptos de complejidad, justificación, análisis y diseño de algoritmos. Para desarrollar estos temas se revisan algoritmos de búsqueda, ordenamiento y algoritmos que involucran gráficas. Se discuten clases de complejidad, revisando con detalle la Clase de los Problemas NP.

NUM. HORAS	UNIDADES TEMÁTICAS
15	1. Conceptos básicos
	1.1 Problemas y algoritmos.
	1.2 Tipos de problemas.
	1.3 Complejidad.
	1.4 Módelos de cómputo.
15	2. Justificación de algoritmod
	2.1 Introducción matemática.
	2.2 Algoritmos iterativos.
	2.3 Algoritmos recursivos.
12	3. Diseño de algoritmos
24	4. Algoritmos que involucran secuencias y conjuntos
	4.1 Árboles binarios.
	4.2 Búsquedas.
	4.3 Ordenamientos.
	4.4 Cota mínima de ordenamiento.

15	5. Algoritmos para teoría de gráficas	
	5.1 Árboles generadores.	
	5.2 Árboles generadores de peso mínimo.	
	5.3 Ruta más corta.	
	5.4 Teoría de redes.	
15	6. La clase de los problemas NP-completos	
	6.1 Introducción.	
	6.2 Algoritmos determinísticos y algoritmos no determinísticos.	
	6.3 Teoría de los problemas NP-completos.	
	6.4 Teorema de Cook.	
	6.5 Técnicas para determinar problemas NP-C.	
	6.6 Ejemplos de problemas NP-completos.	
	6.7 Algoritmos de aproximación.	

BIBLIOGRAFÍA BÁSICA:

- 1. Chartran, G., Oellermannd, O. R., Applied and Algorithmic Graph Theory, Singapore: McGraw-Hill, Inc., 1993.
- 2. Cormen, T. H., Leierson, C. E., Riverst, R. L., *Introduction to Algorithms*, New York: McGraw-Hill Book Co., 1990.
- 3. Flamig, B., Practical Algorithms in C++, New York: J. Wiley, 1995.
- 4. Hoare, C. A. R., "An Axiomatic Basis for Computer Programming", Comm. of the ACM, No. 12, 1969: 576–583.
- 5. Knuth, D. E., The Art of Computer Programing, Vol. I: Fundamental Algorithms, Reading, Mass.: Addison Wesley, 1973.
- 6. Kingston, J., Algorithms and Data Structures: Design, Correctness and Analysis, Australia: Addison Wesley Co., 1990.
- 7. Manber, U., *Introduction to Algorithms. A Creative Approach*, Reading, Mass.: Addison-Wesley Publishing Co., USA, 1989.
- 8. Mehlhorn, K., *Data Structures and Algorithms. Vol I Sorting and Searching*, Berlin: Springer-Verlag, Monographs on Theorical Computer Science, 1984.
- 9. Neapolitan, R., Naimipour, K., Foundations of Algorithms, Sudbury, Mass.: Jones and Bartlett, 1998.

- 10. Rawlins, G. J. E., Compared to What? An Introduction to the Analysis of Algorithms, New York: Computer Science Press, USA 1991.
- 11. Skeina, S. S., The Algorithms Design Manual, New York: Springer Verlag, 1998.
- 12. Weiss, M. A., *Data Structures and Algorithms Analysis in C++*, Reading, Mass.: Addison-Wesley, 1999.

BIBLIOGRAFÍA COMPLEMENTARIA:

1. Collins, W. J., *Data Structures. An Object Oriented Approach*, Reading, Mass.: Addison Wesley Co, 1992.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.