Abstract Algebra II Homework 2

Carson Connard

Section 10.3

2 Assume R is commutative. Prove that $R^n \cong R^m$ if and only if n = m, that is two free R-modules of finite rank are isomorphic if and only if they have the same rank.

Proof. (\iff) Note that if |M| = |N|, then the free modules $F(M) \cong F(N)$. So, assuming that two modules are of the same rank, then they must be isomorphic.

 (\Longrightarrow) First, we shall prove the following lemma: if $M \cong N$ as R-modules, and $I \subseteq R$, then $M/IM \cong N/IN$.

Proof. Take $\varphi: M \to N$ to be an R-module isomorphism. Also, consider the induced map $\varphi': M/IM \to N/IN$ defined as $m+IM \mapsto \varphi(m)+IN$. This is well defined since we are taking a quotient of each module by the action of I. It is surjective too: taking $n+IN \in N/IN$, the preimage is $\varphi^{-1}(n)+IM \in M/IM$. We also have that the inverse induced map, $(\varphi')^{-1}: N/IN \to M/IM$ is well defined. We see that $(\varphi')^{-1} \circ \varphi'$ acts as the identity on M/IM:

$$(\varphi')^{-1}(\varphi'(m+IM)) = (\varphi')^{-1}(\varphi(m)+IN) = \varphi^{-1}(\varphi(m)) + IM = m+IM.$$

Therefore we have that φ' is injective, and so φ' is an isomorphism as desired.

Suppose now that $R^n \cong R^m$. Also, take I to be a maximal ideal. We have from the problem statement of 10.2.12 that $(R/IR)^n \cong R^n/IR^n \cong R^m/IR^m \cong (R/IR)^m$, with the middle isomorphism being the induced isomorphism which was used in the lemma. But, this means that two modules of dimension m and n are isomorphic, which means that we must have m = n.

4 An R-module M is called a torsion module if for each $m \in M$ there is a nonzero element $r \in R$ such that rm = 0, where r may depend on m (i.e. M = Tor(M) in the notation of §1 Ex. 8). Prove that every finite abelian group is a torsion \mathbb{Z} -module. Give an example of an infinite abelian group that is a torsion \mathbb{Z} -module.

Proof. Take G to be an abelian group. Then the nonzero element $g = |G| \in \mathbb{Z}$ annihilates G, and therefore G is a torsion module.

Example: Consider the group \mathbb{Q}/\mathbb{Z} . Each element is of finite order and therefore is annihilated by some $a \in \mathbb{Z}$.

5 Let R be an integral domain. Prove that every finitely generated torsion R-module has a nonzero annihilator, that is, there is a nonzero element $r \in R$ such that rm = 0 for all $m \in M$ – here r does not depend on m. Give an example of a torsion R-module whose annihilator is the zero ideal.

Proof. Take M = RA for $A = \{a_1, ..., a_n\}$. For each a_i , take $r_i \neq 0$, such that $r_i a_i = 0$. We claim now that $r_1 r_2 \cdots r_n =: r$ is a nonzero element of $\operatorname{Ann}_R(M)$. Since R is an integral domain, we have that $r \neq 0$. Now notice that by the commutativity of R, we have that r annihilates each a_i , and therefore $r \in \operatorname{Ann}_R(M)$. Since r annihilates a generating set for M we must have that r annihilates M.

Example: Notice every element of $\bigoplus_{i\in\mathbb{N}}\mathbb{Z}_2$ has order 1 or 2, and therefore it is certainly torsion and infinite.

6 Prove that if M is a finitely generated R-module that is generated by n elements then every quotient of M may be generated by n or fewer elements. Deduce that quotients of cyclic modules are cyclic.

Proof. Take $\{a_1, \dots, a_n\}$ to be a generating set for M. We claim that $\{a_1 + N, \dots, a_n + N\}$ generates the R-module M/N. Indeed, we see that we can write any $m + N \in M/N$ as

$$m + N = \left(\sum_{i} r_i a_i\right) + N = \sum_{i} r_i (a_i + N).$$

This shows the result. Therefore we have that the quotient of cyclic module can be generated by 0 or 1 elements and still be cyclic. \Box

7 Let N be a submodule of M. Prove that if both M/N and N are finitely generated then so is M.

Proof. Take $\{a_1,...,a_n\}$ to be the finite generating set of N. Also take $\{b_1+N,...,b_m+N\}$ to be the finite generating set of M/N. We claim now that the set $S:=\{a_1,...,a_n,b_1,...,b_m\}$ generates the R-module M. Let us take $\pi:M\to M/N$ to be the projection map. Then for some arbitrary $m\in M$, take $x_1,...,x_m$ to be such that

$$m+N = \sum_{i} x_i(b_i+N) = \left(\sum_{i} x_i b_i\right) + N.$$

We see that $m - \sum x_i b_i \in \ker \pi$, therefore $m - \sum x_i b_i \in N$. So, there must exist $y_1, ..., y_n$ such that

$$m - \sum_{i} x_i b_i = \sum_{j} y_j a_j$$
, implying $m = \sum_{i} x_i b_i + \sum_{j} y_j a_j \in RA$.

Therefore RA = M and A finitely generates M.

9 An R-module M is called *irreducible* if $M \neq 0$ and if 0 and M are the only submodules of M. Show that M is irreducible if and only if $M \neq 0$ and M is a cyclic module with any nonzero element as generator. Determine all the irreducible \mathbb{Z} -modules.

Proof. (\Longrightarrow) Suppose M is irreducible. By definition, we know then that $M \neq 0$. So taking some nonzero $m \in M$, we have that Rm is a nonzero submodule of M, and therefore Rm = M since M is irreducible. Therefore M is generated by any nonzero element.

(\Leftarrow) Suppose now $M \neq 0$ and M is cyclic with a nonzero element as a generator. Take now N to be some nonzero submodule of M. Take $n \in N$ to be nonzero, and notice then $M = Rn \subset N$, and so therefore M = N. Therefore the only nonzero submodule of M is M, and so M is irreducible.

Classification: In order to classify the irreducible \mathbb{Z} -modules, consider just cyclic modules. If a cyclic module is not a torsion module then it must be isomorphic to \mathbb{Z} . However, this is not irreducible since it contains a submodule isomorphic to $n\mathbb{Z}$ for $n \in \mathbb{N}$. So we have only cyclic torsion modules of \mathbb{Z} , which in fact are just finite cyclic groups. We know that the only irreducible finite cyclic groups are those of the form \mathbb{Z}_p for p prime.

10 Assume R is commutative. Show that an R-module M is irreducible if and only if M is isomorphic (as an R-module) to R/I where I is a maximal ideal of R.

Proof. (\Longrightarrow) Suppose that M is an irreducible R-module. Fixing some nonzero $m \in M$, we know that Rm = M. Take now $\varphi : R \to M$ to be defined as $r \mapsto rm$. This is a homomorphism of R-modules, and moreover, it is surjective. So, we have that $M \cong R/\ker \varphi$. It now suffices to show that $\ker \varphi$ as a submodule is a maximal ideal of R. So, first since $\ker \varphi$ is a submodule of R, we know that $\ker \varphi$ is an ideal. Next, notice that $\ker \varphi = \operatorname{Ann}_R(m)$. Therefore any ideal I which strictly contains $\ker \varphi$ must contain some r such that $rm \neq 0$. But, this means that $IM \neq 0$, and therefore IM = M since M is irreducible. So, I must contain some element s such that sm = m, or equivalently (s-1)m = 0. Clearly then $s-1 \in \ker \varphi$, but $\ker \varphi \subset I$ and therefore we have that $s, s-1 \in I$ which gives that $s \in I$. Therefore we have that $s \in I$ and so $s \in I$ is maximal as desired.

(\iff) Suppose that $M \cong R/I$ for some maximal ideal I. We want to show that Rm = M for all nonzero $m \in M$. Indeed, we can write any $m \neq 0$ as a+I with $a \notin I$ since we assumed the above isomorphism. But, then we have R(a+I) = Ra + RI = Ra + I. Notice now that Ra + I is an ideal which strictly contains I, and therefore Ra + I = R since I was taken to be maximal. Therefore we have that R(a+I) = R/I in R/I as desired.

11 Show that if M_1 and M_2 are irreducible R-modules, then any nonzero R-module homomorphism from M_1 to M_2 is an isomorphism. Deduce that if M is irreducible then $\operatorname{End}_R(M)$ is a division ring (this result is called Schur 's lemma).

Proof. Take $\varphi: M_1 \to M_2$ to be a nonzero R-module homomorphism We know that $\ker \varphi \neq M_1$, and therefore we have that $\ker \varphi$ is trivial. However, we know that $\varphi(M_1) \neq \{0\}$, and so $\varphi(M_1) = M_2$. Therefore we have that φ is both injective and surjective, and since it is a homomorphism, we have that φ is an isomorphism.

We want to show that $\operatorname{End}_R(M)$ is a division ring, that is it is a ring which every nonzero element has an inverse such that $rr^{-1} = r^{-1}r = 1$. Notice though that the objects of $\operatorname{End}_R(M)$ are functions, and so if M is irreducible, then every element in $\operatorname{End}_R(M)$ is an isomorphism by the above result, which implies that M contains multiplicative inverses as desired.

12 Let R be a commutative ring and let A, B, M be R-modules. Prove the following isomorphisms of R-modules:

(a) $hom_R(A \times B, M) \cong hom_R(A, M) \times hom_R(B, M)$.

Proof. For brevity, let us define $H := \hom_R(A \times B, M)$, $H_A := \hom_R(A, M)$, and $H_B := \hom_R(B, M)$. Let us define a map $F : H_A \times H_B \to H$ by $(a, b) \mapsto \varphi_1(a) + \varphi_2(b)$, where $\varphi_1 \in H_A$ and $\varphi_2 \in H_B$. We must show that F is well defined: indeed, let us take $(a, b), (c, d) \in A \times B$ and take $r \in R$. Since the φ_i are homomorphisms, we have that

$$F((\varphi_1, \varphi_2))(r(a, b) - (c, d)) = \varphi_1(ra - c) + \varphi_2(rb - d)$$

$$= r\varphi_1(a) - \varphi_1(c) + r\varphi_2(b) - \varphi_2(d)$$

$$= rF((\varphi_1, \varphi_2))(a, b) - F((\varphi_1, \varphi_2))(c, d).$$

Indeed, F is well defined. We aim to show that F is an isomorphism, so first a homomorphism. Take $(\varphi_1, \varphi_2), (\psi_1, \psi_2) \in H_A \times H_B$ and let $r \in R$. Also, take some $(a, b) \in A \times B$. Then we have that

$$F(r(\varphi_1, \varphi_2) - (\psi_1, \psi_2))(a, b) = (r\varphi_1 - \psi_1)(a) + (r\varphi_2 - \psi_2)(b)$$

= $r\varphi_1(a) - \psi_1(a) + r\varphi_2(b) - \psi_2(b)$
= $rF(\varphi_1, \varphi_2) - F(\psi_1, \psi_2)$.

F is a homomorphism. Finally, we need to show that F is bijective. Injectivity is clear, as if $(\varphi_1, \varphi_2) = (0, 0)$ then we have that $F((\varphi_1, \varphi_2))(a, b) = \varphi_1(a) + \varphi_2(b) = 0$ for any $(A, b) \in A \times B$. For surjectivity, consider some $\Phi \in H$. Also, take again some $(\varphi_1, \varphi_2) \in H_A \times H_B$, such that for any $(a, b) \in A \times B$, they are defined as $\varphi_1(a) = \Phi(a, 0)$ and $\varphi_2(b) = \Phi(0, b)$. Notice that Φ is just an R-module homomorphism restricted to $A \times \{0\}$ and $\{0\} \times B$ respectively, and therefore we have that $\varphi_1(a) \in H_A$ and $\varphi_2 \in H_B$. So, we have that $F((\varphi_1, \varphi_2))(a, b) = \Phi(a, 0) + \Phi(0, b) = \Phi(a, b)$. This shows surjectivity, and therefore F is an isomorphism. The congruence has been shown. \square

(b) $hom_R(M, A \times B) \cong hom_R(M, A) \times hom_R(M, B)$.

Proof. For brevity, let us define $H := \hom_R(M, A \times B)$, $H_A := \hom_R(M, A)$, and $H_B := \hom_R(M, B)$. Let us define a map $F : H_A \times H_B \to H$ by $(\varphi_1, \varphi_2) \mapsto \varphi$, where $\varphi(m) = (\varphi_1(m), \varphi_2(m))$ for $m \in M$. We must show that F is well defined: indeed, take $m, n \in M$ and $r \in R$. Then we have that

$$\varphi(rm-n) = (\varphi_1(rm-n), \varphi_2(rm-n)) = (r\varphi_1(m) - \varphi_1(n), r\varphi_2(m) - \varphi(n)) = r\varphi(m) - \varphi(n).$$

So $\varphi \in H$ and F is well defined. We aim to show that F is an isomorphism, so first we show that it is a homomorphism. Let us take $(\varphi_1, \varphi_2), (\psi_1, \psi_2) \in H_A \times H_B$ and let $r \in R$. Then for any $m \in M$, we see

$$F(r(\varphi_1, \varphi_2))(m) = ((r\varphi_1 - \psi_1)(m), (r\varphi_2 - \psi_2)(m))$$

$$= r(\varphi_1(m) - \psi_1(m), r\varphi_2(m) - \psi_2(m))$$

$$= r(\varphi_1(m), \varphi_2(m)) - (\psi_1(m), \psi_2(m))$$

$$= rF((\varphi_1, \varphi_2))(m) - F((\psi_1, \psi_2))(m).$$

F is a homomorphism. Finally, we need to show that F is an isomorphism. If we let $F((\varphi_1, \varphi_2)) = 0$, then for any $m \in M$ we have that $(\varphi_1(m), \varphi_2(m)) = (0,0)$. Therefore we have that $\varphi_1 = \varphi_2 = 0$. Suppose now $\Phi \in H$, then for any $m \in M$ we have that $\Phi(m) = (a_m, b_m)$ for some $a_m = a(m) \in A$ and $b_m = b(m) \in B$. Let now φ_1 be defined as $m \mapsto a_m$. Then if $m, n \in M$ and $r \in R$, we have that $\varphi_1(rm - n) = a_{rm-n}$. Now since $\Phi(rm - n) = r\Phi(m) - \Phi(n)$ since Φ is a homomorphism, we have that $a_{rm-n} = ra_m - a_n$. Therefore $\varphi_1 \in H_A$. We can repeat this exact process for φ_2 mapping $m \mapsto b_m$, giving $\varphi_2 \in H_B$. Therefore, $F(\varphi_1, \varphi_2) = \Phi$, and so F is an isomorphism. The congruence has been shown.

15 An element $e \in R$ is called a *central idempotent* if $e^2 = e$ and er = re for all $r \in R$. If e is a central idempotent in R, prove that $M = eM \oplus (1 - e)M$.

Proof. Suppose first that e is a central idempotent. Define $\varphi: M \to eM \oplus (1-e)M$ by $m \mapsto (em, (1-e)m)$. We claim that φ is an R-module homomorphism. Indeed, take $r \in R$ and $m_1, m_2 \in M$. We have the following:

$$\varphi(rm_1 - m_2) = (e(rm_1 - m_2), (1 - e)(rm_1 - m_2)) = (e(rm_1), (1 - e)(rm_1)) - (em_2, (1 - e)m_2).$$

Moreover, since er = re, we have that (1 - e)r = r - er = r - re = r(1 - e), and so indeed we have that φ is an R-module homomorphism since

$$\varphi(rm_1 - m_2) = r(em_1, (1 - e)m_1) - (em_2, (1 - e)m_2) = r\varphi(m_1) - \varphi(m_2).$$

We now show that φ is an isomorphism. First note that if $\varphi(m) = 0$, we clearly have that (em, (1 - e)m) = (0,0), so (1-e)m = 0. Equivalently, we see m-em = 0, and since em = 0 we have that m = 0, giving that φ is injective. If we consider some element $(a,b) \in eM \oplus (1-e)M$, then we see a = ea' and b = (1-e)b' for $a', b' \in M$. Therefore we have that $ea' + (1-e)b' \in M$, and so applying φ yields

$$\varphi(ea' + (1-e)b') = (e(ea), (1-e)((1-e)b)) = (ea', (1-e)b').$$

This gives that φ is surjective, and therefore we have that φ is an isomorphism. This means that indeed, $M = eM \oplus (1 - e)M$ as desired.

16 For any ideal I of R, let IM be the submodule defined as

$$IM = \left\{ \sum_{\text{finite}} a_i m_i : a_i \in I, \ m_i \in M \right\}.$$

Let $A_1, ..., A_k$ be any ideals in the ring R. Prove that the map $\varphi : M \to M/A_1M \times \cdots \times M/A_kM$ defined by $m \mapsto (m + A_1M, \cdots, m + A_kM)$ is an R-module homomorphism with kernel $A_1M \cap A_2M \cap \cdots \cap A_kM$.

Proof. Notice that $\ker \varphi$ is the set of all $m \in M$ such that $m \in A_iM$ for all i by definition of quotient. By definition of intersection, this is equivalent to $A_1M \cap A_2M \cap \cdots \cap A_kM$, and we have the desired result. \square

17 In the notation of the previous exercise, assume further that the ideals A_1, \dots, A_k are pairwise comaximal, that is $A_i + A_j = R$ for all $i \neq j$. Prove that $M/(A_1 \cdots A_k)M \cong M/A_1M \times \cdots \times M/A_kM$.

Proof. We mirror the proof for the Chinese remainder theorem for rings, and modify for modules. First, we aim to show that $A_1M \cap \cdots \cap A_kM = (A_1 \times \cdots \times A_k)M$.

First let us note that the product of all $A_1 \times \cdots \times A_k$ is contained in any A_i since each A_i is an ideal, and multiplication is absorbed on both sides by definition of an ideal. Therefore we have that $A_1M \cap \cdots \cap A_kM \supset (A_1 \times \cdots \times A_k)M$.

For the reverse inclusion, we induct over k. For our base case, take k=1, and we have an obvious inclusion since we only have one ideal. For our inductive hypothesis, let us assume that $A_2M\cap\cdots\cap A_kM=(A_2\cdots A_k)M$. Certainly then we have that $A_1M\cap A_2M\cap\cdots\cap A_kM=A_1M\cap (A_2\cdots A_k)M$. Notice now that the assumption regarding comaximality in the problem statement implies that A_1 and $A_2\cdots A_k$ are comaximal due to the behavior of ideals. Therefore we can write 1=a+a' for some $a\in A_1$ and $a'\in A_2\cdots A_k$. This implies that $A_1\cap A_2\cap\cdots\cap A_k\subset A_1A_2\cdots A_k$, since for $b\in A_1\cap A_2\cap\cdots\cap A_k$ we have that $b=1\cdot b=(a+a')b=ab+a'b=ab+ba'\in A_1(A_2\cdots A_k)$. Combining everything gives the following:

$$A_1M \cap A_2M \cap \dots \cap A_kM = A_1M \cap (A_2 \dots A_k)M$$

$$\subset A_1M \cap (A_2 \cap A_3 \cap \dots \cap A_k)M$$

$$\subset A_1M \cap A_2M \cap \dots \cap A_kM.$$

We have shown both containments and therefore we have that indeed, $A_1M \cap \cdots \cap A_kM = (A_1 \times \cdots \times A_k)M$. We now need to show surjectivity of the map $\varphi: M \to M/A_1M \times \cdots \times M/A_kM$ defined by $m \mapsto (m+A_1M, \cdots, m+A_kM)$. We again induct over k. Taking a base case of k=2, we see that since A_1 and A_2 are comaximal, we have that there must exist some $a_1 \in A_1$ and some $a_2 \in A_2$ such that $a_1 + a_2 = 1$. It suffices to show then that there exists some preimage of $(m+A_1,0)$ and of $(0, m+A_2)$ for all $m \in M$ in order to show surjectivity. Indeed, notice that

$$\varphi(a_1m) = (0, a_1m + A_2) = (0, (1 - a_2)m + A_2) = (0, m - a_2m + A_2) = (0, m + A_2), \text{ and}$$

 $\varphi(a_2m) = (a_2m + A_1, 0) = ((1 - a_1)m + A_1, 0) = (m - a_1m + A_1, 0) = (m + A_1, 0).$

Indeed, the map is surjective for the base case. For the inductive step, the inductive hypothesis gives that φ is surjective on all elements of the form $(m_1 + A_1, m_2 + A_2 M \cdots, a_k + A_k M)$, where all values of m_2, \dots, m_k are acquired, but not necessarily the same for the values of m_1 . So, we must show preimages for $(m_1 + A_1, 0, \dots, 0) \ \forall m_1$. Note that since A_1 and $A_2 \cdots A_k$ are comaximal, we can say a + a' = 1 for some $a \in A_1$ and $a' \in A_2 \cdots A_k$. We have the following:

$$\varphi(a'm_1) = (a'm_1 + A_1M, a'm_1 + A_2M, \cdots, a'm_1 + A_kM)$$

= $(m_1 - am_1 + A_1M, 0 \cdots, 0)$
= $(m_1 + A_1M, 0, \cdots, 0)$.

Indeed, $\varphi(M)$ is all of $M/A_1M \times \cdots \times M/A_kM$. By the first isomorphism theorem for modules we have that $M/\ker \varphi \cong M/A_1M \times \cdots \times M/A_kM$. However, we know that $\ker \varphi = A_1M \cap \cdots \cap A_kM$, and as we showed earlier, $A_1M \cap \cdots \cap A_kM = (A_1 \times \cdots \times A_k)M$. Therefore we have that $M/(A_1 \cdots A_k)M \cong M/A_1M \times \cdots \times M/A_kM$ as desired.

18 Let R be a PID and let M be an R-module that is annihilated by the nonzero, proper ideal (a). Let $a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ be the unique factorization of a into distinct prime powers in R. Let M_i be the annihilator of $p_i^{\alpha_i}$ in M, that is M_i is the set $\{m \in M : p_i^{\alpha_i} m = 0\}$ – called the p_i -primary component of M. Prove that $M = M_1 \oplus \cdots \oplus M_k$.

Proof. We claim first that $M_1 + \cdots + M_k$ is indeed a direct sum. To do so, we aim to show that $M_i \cap (\sum_{j \neq i} M_j) = 0$ for all i. So take some $m_i \in M_i$ and let us assume that $m_i \in \sum_{j \neq i} M_j$ as well. We see that m_i is annihilated by both $p_i^{\alpha_i}$ and $\prod_{j \neq i} p_j^{\alpha_j}$ by definition of M_i . Therefore we have that $p_i^{\alpha_i}$ and $\prod_{j \neq i} p_j^{\alpha_j}$ are elements of the same ideal which annihilates m_i . This ideal must then contain $\gcd(p_i^{\alpha_i}, \prod_{j \neq i} p_j^{\alpha_j})$, which since these are coprime numbers, must be equal to 1. So, $m_i = 1m_i = 0$, and therefore indeed $M_1 + \cdots + M_k = M_1 \oplus \cdots \oplus M_k$.

We now want to show that $M = M_1 \oplus \cdots \oplus M_k$. Problem 17 gives the following congruences:

$$M \cong M/(a)M \cong M/(p_1^{\alpha_1})M \times \cdots \times M/(p_k^{\alpha_k})M.$$

This is because (a)M=0 and any two $(p_i^{\alpha_i})$ are pairwise comaximal. Recall now from Problem 17 the isomorphism $\varphi(m)=(m+p_1^{\alpha_1}M,\cdots,m+p_k^{\alpha_k}M)$. We want to show that this map restricted to $M_1\oplus\cdots\oplus M_k\subset M$ is surjective. To do so, we will show that φ^{-1} maps into $M_1\oplus\cdots\oplus M_k$. We can show this for only $x_i:=(0,\cdots,0,m+(p_i^{\alpha_i})M,0,\cdots,0)$, where the nonzero term is in the ith position. This works since elements of this form generate $M_1\oplus\cdots\oplus M_k$. Indeed, the image of x_i will be some $m'\in M$, which is congruent to $0 \bmod p_j^{\alpha_j}$ for $j\neq i$. In particular, for some $m''\in M$, we have that $m'=(a/p_i^{\alpha_i})m''$ for some other $m''\in M$. Certainly then $m'\in M_i$ since $p_i^{\alpha_i}m=p_i^{\alpha_i}(a/p_i^{\alpha_i})m''=am''=0$. Therefore we have that indeed φ^{-1} maps into $\bigoplus M_i$, and therefore $M=M_1\oplus\cdots\oplus M_k$ as desired.