

GCSE

Edexcel GCE

Core Mathematics C4 (6666)

Summer 2005

advancing learning, changing lives

Mark Scheme (Results)

Final Version

June 2005 6666 Core C4 Mark Scheme

Question Number	Scheme	Marks
1.	$\left(4 - 9x\right)^{\frac{1}{2}} = 2\left(1 - \frac{9x}{4}\right)^{\frac{1}{2}}$	B1
	$= 2\left(1 + \frac{\frac{1}{2}}{1}\left(-\frac{9x}{4}\right) + \frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{1.2}\left(-\frac{9x}{4}\right)^2 + \frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{1.2.3}\left(-\frac{9x}{4}\right)^3 + \dots\right)$	M1
	$=2\left(1-\frac{9}{8}x-\frac{81}{128}x^2-\frac{729}{1024}x^3+\ldots\right)$	
	$=2-\frac{9}{4}x, -\frac{81}{64}x^2, -\frac{729}{512}x^3 + \dots$	A1, A1, A1
		[5]
	Note The M1 is gained for $\frac{\frac{1}{2}(-\frac{1}{2})}{1.2}(\dots)^2$ or $\frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})}{1.2.3}(\dots)^3$	
	Special Case	
	If the candidate reaches $= 2\left(1 - \frac{9}{8}x - \frac{81}{128}x^2 - \frac{729}{1024}x^3 + \dots\right)$ and goes no further	
	allow A1 A0 A0	

Question Number	Scheme	Marks
2.	$2x + \left(2x\frac{dy}{dx} + 2y\right) - 6y\frac{dy}{dx} = 0$ $\frac{dy}{dx} = 0 \implies x + y = 0 \qquad \text{or equivalent}$	M1 (A1) A1
	$\frac{dy}{dx} = 0 \implies x + y = 0 \qquad \text{or equivalent } \bot$	M1
	Eliminating either variable and solving for at least one value of x or y. $y^2 - 2y^2 - 3y^2 + 16 = 0$ or the same equation in x	M1
	$y = \pm 2 \qquad \text{or } x = \pm 2$	A1
	(2,-2),(-2,2)	A1
	Note: $\frac{dy}{dx} = \frac{x+y}{3y-x}$	[7]
	Alternative	
	$3y^2 - 2xy - (x^2 + 16) = 0$	
	$y = \frac{2x \pm \sqrt{(16x^2 + 192)}}{6}$	
	U	
	$\frac{dy}{dx} = \frac{1}{3} \pm \frac{1}{3} \cdot \frac{8x}{\sqrt{(16x^2 + 192)}}$	M1 A1± A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \frac{8x}{\sqrt{\left(16x^2 + 192\right)}} = \pm 1$	M1
	$64x^2 = 16x^2 + 192$ $x = +2$	3.71 4.1
	$x = \pm 2$ (2,-2), (-2, 2)	M1 A1 A1
	(-, -), (-, -)	[7]
		_ -

Question Number	Scheme	Marks
3.	(a) $\frac{5x+3}{(2x-3)(x+2)} = \frac{A}{2x-3} + \frac{B}{x+2}$	
	5x+3 = A(x+2) + B(2x-3)	
	Substituting $x = -2$ or $x = \frac{3}{2}$ and obtaining A or B; or equating coefficients and solving a pair of simultaneous equations to obtain A or B.	M1
	A = 3, B = 1	A1, A1
	If the cover-up rule is used, give M1 A1 for the first of A or B found, A1 for the second.	(3)
	(b) $\int \frac{5x+3}{(2x-3)(x+2)} dx = \frac{3}{2} \ln(2x-3) + \ln(x+2)$	M1 A1ft
	$\left[\ \dots \ \right]_2^6 = \frac{3}{2} \ln 9 + \ln 2$	M1 A1
	$= \ln 54$ cao	A1 (5) [8]

Question Number	Scheme	Marks
4.	$\int \frac{1}{\left(1 - x^2\right)^{\frac{1}{2}}} dx = \int \frac{1}{\left(1 - \sin^2 \theta\right)^{\frac{3}{2}}} \cos \theta d\theta \qquad \text{Use of } x = \sin \theta \text{ and } \frac{dx}{d\theta} = \cos \theta$ $= \int \frac{1}{\cos^2 \theta} d\theta$ $= \int \sec^2 \theta d\theta = \tan \theta$	M1 M1 A1 M1 A1
	Using the limits 0 and $\frac{\pi}{6}$ to evaluate integral	M1
	$\left[\tan\theta\right]_0^{\frac{\pi}{6}} = \frac{1}{\sqrt{3}} \left(=\frac{\sqrt{3}}{3}\right)$ cao	A1
	V3 (3)	[7]
	Alternative for final M1 A1	
	Returning to the variable x and using the limits 0 and $\frac{1}{2}$ to evaluate integral	M1
	$\left[\frac{x}{\sqrt{(1-x^2)}}\right]_0^{\frac{1}{2}} = \frac{1}{\sqrt{3}} \left(=\frac{\sqrt{3}}{3}\right)$ cao	A1

Question Number	Scheme	Marks
5.	(a) $\int x e^{2x} dx = \frac{1}{2} x e^{2x} - \frac{1}{2} \int e^{2x} dx$ Attempting parts in the right direction $= \frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x}$	M1 A1
	$\left[\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x}\right]_0^1 = \frac{1}{4} + \frac{1}{4}e^2$	M1 A1
	(b) $x = 0.4 \implies y \approx 0.89022$ $x = 0.8 \implies y \approx 3.96243$ Both are required to 5 d.p	(5) B1 (1)
	(c) $I \approx \frac{1}{2} \times 0.2 \times [\dots]$ $\approx \dots \times [0+7.38906+2(0.29836+.89022+1.99207+3.96243)]$	B1 M1 A1ft
	ft their answers to (b) $\approx 0.1 \times 21.67522$ ≈ 2.168 cao	A1 (4) [10]
	Note $\frac{1}{4} + \frac{1}{4}e^2 \approx 2.097$	

Question Number	Scheme	Marks
6.	(a) $\frac{dx}{dt} = -2\csc^2 t, \frac{dy}{dt} = 4\sin t \cos t$ both $\frac{dy}{dx} = \frac{-2\sin t \cos t}{\csc^2 t} (= -2\sin^3 t \cos t)$	M1 A1
	(b) At $t = \frac{\pi}{4}$, $x = 2$, $y = 1$ both x and y Substitutes $t = \frac{\pi}{4}$ into an attempt at $\frac{dy}{dx}$ to obtain gradient $\left(-\frac{1}{2}\right)$ Equation of tangent is $y - 1 = -\frac{1}{2}(x - 2)$	(4) B1 M1 M1 A1
	Accept $x + 2y = 4$ or any correct equivalent (c) Uses $1 + \cot^2 t = \csc^2 t$, or equivalent, to eliminate t $1 + \left(\frac{x}{2}\right)^2 = \frac{2}{y}$ correctly eliminates t $y = \frac{8}{4 + x^2}$ cao	(4) M1 A1 A1
	The domain is $x 0$ An alternative in (c) $\sin t = \left(y\right)^{\frac{1}{2}} \cdot \cos t = \frac{x}{\sin t} = \frac{x}{2} \left(y\right)^{\frac{1}{2}}$	B1 (4) [12]
	$\sin t = \left(\frac{y}{2}\right)^{\frac{1}{2}}; \cos t = \frac{x}{2}\sin t = \frac{x}{2}\left(\frac{y}{2}\right)^{\frac{1}{2}}$ $\sin^2 t + \cos^2 t = 1 \implies \frac{y}{2} + \frac{x^2}{4} \times \frac{y}{2} = 1$ Leading to $y = \frac{8}{4 + x^2}$	M1 A1

Question Number	Scheme	Marks
7.	(a) k component $2+4\lambda=-2 \implies \lambda=-1$	M1 A1
	Note $\mu = 2$ Substituting their λ (or μ) into equation of line and obtaining B	M1
	B: $(2, 2, -2)$ Accept vector forms	A1
	(b) $ \begin{vmatrix} 1 \\ -1 \\ 4 \end{vmatrix} = \sqrt{18}; \begin{vmatrix} 1 \\ -1 \\ 0 \end{vmatrix} = \sqrt{2} $ both	(4) B1
	$\begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = 1 + 1 + 0 (= 2)$	B1
	$\cos\theta = \frac{2}{\sqrt{18}\sqrt{2}} = \frac{1}{3}$ cao	M1 A1
	(c) $\overrightarrow{AB} = -\mathbf{i} + \mathbf{j} - 4\mathbf{k} \Rightarrow \left \overrightarrow{AB} \right ^2 = 18$ or $\left \overrightarrow{AB} \right = \sqrt{18}$ ignore direction of vector	(4) M1
	$\overrightarrow{BC} = 3\mathbf{i} - 3\mathbf{j} \Rightarrow \left \overrightarrow{BC} \right ^2 = 18$ or $\left \overrightarrow{BC} \right = \sqrt{18}$ ignore direction of vector	M1
	Hence $\left \overrightarrow{AB} \right = \left \overrightarrow{BC} \right $	A1 (3)
	(d) $\overrightarrow{OD} = 6\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ Allow first B1 for any two correct Accept column form or coordinates	B1 B1 (2) [13]

Question Number	Scheme	Marks	
8.	(a) $\frac{dV}{dt}$ is the rate of increase of volume (with respect to time)	B1	
	$-kV$: k is constant of proportionality and the negative shows decrease (or loss) giving $\frac{dV}{dt} = 20 - kV$ * These Bs are to be awarded independently	B1	_,
	(b) $\int \frac{1}{20 - kV} dV = \int 1 dt$ separating variables	M1	2)
	$-\frac{1}{k}\ln(20-kV) = t (+C)$	M1 A1	
	Using $V = 0$, $t = 0$ to evaluate the constant of integration	M1	
	$c = -\frac{1}{k} \ln 20$ $t = \frac{1}{k} \ln \left(\frac{20}{20 - kV} \right)$		
	Obtaining answer in the form $V = A + Be^{-kt}$	M1	
	$V = \frac{20}{k} - \frac{20}{k} e^{-kt}$ Accept $\frac{20}{k} (1 - e^{-kt})$	A1 ((6)
	(c) $\frac{dV}{dt} = 20e^{-kt}$ Can be implied	M1	
	$\frac{dV}{dt} = 10, t = 5 \implies 10 = 20 e^{-kt} \implies k = \frac{1}{5} \ln 2 \approx 0.139$	M1 A1	
	At $t = 10$, $V = \frac{75}{\ln 2}$ awrt 108		(5) 13]
	Alternative to (b)		10]
	Using printed answer and differentiating $\frac{dV}{dt} = -kB e^{-kt}$	M1	
	Substituting into differential equation $-kBe^{-kt} = 20 - kA - kBe^{-kt}$ 20	M1	
	$A = \frac{20}{k}$ Using W = 0, to 0 in printed engage to obtain $A + B = 0$	M1 A1	
	Using $V = 0$, $t = 0$ in printed answer to obtain $A + B = 0$ $B = -\frac{20}{k}$	M1 A1 (6)