Class14: RNAseq mini project

Hanhee Jo (PID# 59017994)

Table of contents

Background	1
Data Import Tidy and verify data	
PCA quality control	4
DESeq analysis Setup the DESeq input object Run DESeq Extract results	. 6
Volcano plot	7
Add gene annotation	8
Save results	10
Pathway analysis KEGG	. 14
Reactome	. 14

Background

The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

The authors report on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1.

Data Import

Reading in the counts and the metadata

```
counts <- read.csv("GSE37704_featurecounts.csv", row.names = 1)
metadata <- read.csv("GSE37704_metadata.csv")
head(counts)</pre>
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				

ENSG00000186092 0 ENSG00000279928 0 ENSG00000279457 46 ENSG00000278566 0 ENSG00000273547 0 ENSG00000187634 258

metadata

id condition
1 SRR493366 control_sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369 hoxa1_kd
5 SRR493370 hoxa1_kd
6 SRR493371 hoxa1_kd

Tidy and verify data

```
Q. How many genes are in this dataset?
  nrow(counts)
[1] 19808
     Q. How many control and knockdown experiments are there?
  table (metadata$condition)
control_sirna
                    hoxa1_kd
     Q. Does the metadata match to the countdata
  all (colnames(counts) == metadata$id)
Warning in colnames(counts) == metadata$id: longer object length is not a
multiple of shorter object length
[1] FALSE
  colnames(counts)
                 "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370"
[1] "length"
[7] "SRR493371"
  metadata$id
[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"
###Fix countdata to match the coldata/metadata
  newcounts <- counts[, -1]</pre>
  dim(newcounts)
[1] 19808
              6
```

```
all (colnames(newcounts) == metadata$id)
```

[1] TRUE

Remove zero count genes

```
to.keep <- rowSums(newcounts) != 0
countData <- newcounts[to.keep, ]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

PCA quality control

We can use prcomp() function.

```
pc <- prcomp( t(countData), scale = T)
summary(pc)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4 PC5 PC6 Standard deviation 87.7211 73.3196 32.89604 31.15094 29.18417 7.387e-13 Proportion of Variance 0.4817 0.3365 0.06774 0.06074 0.05332 0.000e+00 Cumulative Proportion 0.4817 0.8182 0.88594 0.94668 1.00000 1.000e+00
```

metadata\$condition

```
[1] "control_sirna" "control_sirna" "hoxa1_kd"
```

```
mycols <- c( rep("blue", 3), rep("red", 3) )
Color by "control" (blue) or "kd" (red)
library(ggplot2)

ggplot(pc$x) +
   aes(PC1, PC2) +
   geom_point(col = mycols)</pre>
```


Q. How many genes do we have left after filtering?

```
nrow(countData)
```

[1] 15975

DESeq analysis

```
library(DESeq2)
Warning: package 'DESeq2' was built under R version 4.3.3
Warning: package 'S4Vectors' was built under R version 4.3.2
Warning: package 'GenomeInfoDb' was built under R version 4.3.3
Warning: package 'SummarizedExperiment' was built under R version 4.3.2
Warning: package 'matrixStats' was built under R version 4.3.3
```

Setup the DESeq input object

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq

```
dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing</pre>
```

Extract results

```
res <- results(dds)
  head(res)
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 6 columns
                baseMean log2FoldChange
                                            lfcSE
                                                        stat
                                                                  pvalue
                <numeric>
                              <numeric> <numeric> <numeric>
                                                               <numeric>
ENSG00000279457
                 29.9136
                              0.1792571 0.3248216
                                                    0.551863 5.81042e-01
ENSG00000187634 183.2296
                              0.4264571 0.1402658
                                                    3.040350 2.36304e-03
ENSG00000188976 1651.1881
                             -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000187961 209.6379
                              0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187583 47.2551
                              0.0405765 0.2718928 0.149237 8.81366e-01
                              0.5428105 0.5215599 1.040744 2.97994e-01
ENSG00000187642
                11.9798
                      padj
                  <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

Volcano plot

```
mycols <- rep("gray", nrow(res))
mycols[ abs(res$log2FoldChange) > 2 ] <- "blue"
mycols[ res$padj > 0.005] <- "gray"

ggplot(res) +
  aes(log2FoldChange, -log(padj)) +
  geom_point(col=mycols) +
  geom_vline(xintercept = c(-2, 2), col="red") +
  geom_hline(yintercept = -log(0.005), col="red")</pre>
```

Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`) .

Add gene annotation

We want to add gene SYMBOL and ENTREZID values to our results object. $\,$

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
```

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"MIMO"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	"UNIPROT"				

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

head(res)

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 8 columns

	baseMean l	.og2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43989e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215599	1.040744	2.97994e-01
	padj	symbol	entrez		
	<numeric></numeric>	<pre><character></character></pre>	<character></character>		
ENSG00000279457	6.86555e-01	. NA	NA		
ENSG00000187634	5.15718e-03	SAMD11	148398		
ENSG00000188976	1.76549e-35	NOC2L	26155		
ENSG00000187961	1.13413e-07	KLHL17	339451		
ENSG00000187583	9.19031e-01	PLEKHN1	84069		
ENSG00000187642	4.03379e-01	PERM1	84808		

Save results

```
write.csv(res, file="myresults.csv")
```

Pathway analysis

```
library(gage)
library(gageData)
library(pathview)
```

KEGG

```
data(kegg.sets.hs)
head(kegg.sets.hs, 1)

$`hsa00232 Caffeine metabolism`
[1] "10" "1544" "1548" "1549" "1553" "7498" "9"
```

Make an input vector for gage() called foldchanges that has names() attribute set to ENTREZIDs

```
foldchanges <- res$log2FoldChange
names(foldchanges) <- res$entrez

keggres <- gage(foldchanges, gsets = kegg.sets.hs)

attributes(keggres)</pre>
```

\$names

```
[1] "greater" "less" "stats"
```

```
head(keggres$less, 2)
```

```
p.geomean stat.mean p.val
                                                                  q.val
hsa04110 Cell cycle
                        8.995727e-06 -4.378644 8.995727e-06 0.001889103
hsa03030 DNA replication 9.424076e-05 -3.951803 9.424076e-05 0.009841047
                         set.size
                                          exp1
hsa04110 Cell cycle
                             121 8.995727e-06
hsa03030 DNA replication
                              36 9.424076e-05
  pathview(gene.data=foldchanges, pathway.id="hsa04110")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/hanheejo/Desktop/1. UCSD/1. Class/7. Winter 2025/BGGN213/C
Info: Writing image file hsa04110.pathview.png
  pathview(gene.data=foldchanges, pathway.id="hsa03030")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/hanheejo/Desktop/1. UCSD/1. Class/7. Winter 2025/BGGN213/C
Info: Writing image file hsa03030.pathview.png
```


Figure 1: Cell cycle is affected

Gene Ontology (GO)

```
data(go.sets.hs)
data(go.subs.hs)

# Focus just on GO Biological Process (BP)

gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets)

head(gobpres$less)
```

```
p.val
                                           p.geomean stat.mean
GO:0048285 organelle fission
                                        1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.729553e-10 -6.695966 1.729553e-10
                                               q.val set.size
GO:0048285 organelle fission
                                        5.843127e-12
                                                         376 1.536227e-15
GO:0000280 nuclear division
                                        5.843127e-12
                                                         352 4.286961e-15
GO:0007067 mitosis
                                                         352 4.286961e-15
                                        5.843127e-12
GO:0000087 M phase of mitotic cell cycle 1.195965e-11
                                                         362 1.169934e-14
GO:0007059 chromosome segregation 1.659009e-08
                                                         142 2.028624e-11
                                       1.178690e-07
GO:0000236 mitotic prometaphase
                                                          84 1.729553e-10
```

Reactome

We can use reatome via R or via their fancy new website interface. The web interface wants a set of ENTREZ ID values for your genes of interest. Let's generate that.

```
inds <- abs(res$log2FoldChange) >= 2 & res$padj <=0.05
top.genes <- res$entrez[inds]

write.table(top.genes, file="top_genes.txt", row.names=FALSE, col.names=FALSE, quote=FALSE)</pre>
```