MODULE - 5

Memory organization

-> Word lines are used to select one particular row (or word) in memory.

-> While read operation, the contents of selected word will be available on bitlines.

Read Only Memory (ROM)

Implementation using diode cell

WL Logic 1

WL BL Logice

(pulled low to GND uning)
resistor.

BL is resistively clamped to ground,

NL 4 BL are not interconnected

Then

BL is low (Logic O).

-> If diode is present, then when WL is activated with It high voltage VWL, then diode turns on & VWL-VD(on) appears at BL. Thus BL becomes high (Logic).

These logic values can be read out using bit lines. -> Du In ROM, during manufacturing itself locations of diodes are designed a depending upon whether a lor 0 is needed at a cell. Such ROMs with fixed programs are useful for applications like washing machines, calculators, etc.

Jone Disadvantage of diode cell:

-> Current required to charge bit line capacitance has to be provided by word line drivers.

So it is of practical only for small memories, where bit line capacitance is small.

ROM cell implementation using MOSPETs

WL VOD BL Logict

-> If a word is selected, WL turns high, which turns on nMOS & thus BL becomes high. (Logic 1).

-> If mos is not present, BL is O, since it is pulled low to ground through a resistor by default.

-> Advantage: -Bit lines are charged from Voo line instead of WL drivers.

remain linear re- has faither in the

the hor spectore is sould.

More chip area required to provide additional von lines for each southeell.

Option 2: BL Logicl WL IE Logic O WL J -> BL is pulled up to Vop by default. So if me n Mos is absent, then BL is logic 1 Don activating nMOS, BL gets connected to ground through nMOS & becomes legic O. > Options 1 & 2 have similar advantages 4 disadvantages. 4x4 OR ROM cell array -> 4 word lines & 4 bit lines.

→ 4 word lines & 4 bit lines.

→ nMOS ix connected to VDD to represent

logic lin a cell.

→ Absence of nMOS represents logic O.

→ Bit lines are pulled down by default.

Contents of memory cell (MSB at left):

Word 0:- 0010 Word 1:- 1001 Word 2:- 1010 Word 3:- 0000

-> Vpp lines are shared by two words.

-> It is called OR ROM because if any nmos in a bit line is on, the the whole bit lines becomes 1.

tree one pulled from to default

Scanned with CamScanner

NOR ROM cell array

-> Bit lines are pulled up by default.

Presence of nMos indicate Logiz O.

Absence of n Mos indicate Logic 1

-> nMOS are connected to GND lines

Contents (MSB at left):-

Word 0:

> It is called NOR ROM because if any nmos on a bit line is ON, then entire bit line becomes O.

4×4 NAND ROM

No VDD or GND lines required for each cell. So chip size can be reduced considerably

- -> All n MOS on a bitline are connected in series -> Pull-up is given to bit lines.
- -> For a bit line to become of all transistors on the bit line must be ON. So this configuration is called as NAND ROM.
- -> Word lines are operated in reverse logic. ce selected word line will be O & others will
- -> If no nMos is present in the a cell, then Value will be logic O. (Since all other transistors in non-selected words on that bit line will be on due to default high values given).
- -> If nMOS is present, then due to word line value of 0, nMOS is off. So bit line value is I (due to pull-up).

Contents (MSB at left): Word 0: 0010

" 2: 1 0 1 0 " 3: 0 0 0 0