Data Mining (Week 1)

MSc Data Mining

Outline

1. Logistic Regression	2
1.1. Linear Probability Model	3
1.2. Conversion to Logistic Regression	8
1.3. Logistic Regression Outputs	11

Linear Regression

Dataset

Take the IRIS dataset (4 features, target discrete with 3 levels [0, 1, 2]) and simplify it by* taking only the first feature, and merging class 1 ('versicolor') and class 2 ('virginica').

```
X, y, target_names = iris.data[:,:1], iris.target, iris.target_names
y[y>1] = 1
target_names = np.array([target_names[0], 'other'])
```

So we have target

^{*}Python for Data Science — Cheat Sheet Numpy Basics

```
plt.figure(figsize=(12,6))
sns.scatterplot(x=X_test.T[0],y=y_test, label="actual")
plt.xlabel(iris.feature_names[0])
plt.title("IRIS - 1D (setosa=0, other=1)")
plt.legend(loc="lower right")
plt.show()
```


Following standard procedure we split data ...

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.6, random_state=666)
```

\ldots import and create instance of model (LinearRegression) \ldots

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
```

\dots fit model (using training data — feature(s) and target) \dots

```
model.fit(X_train, y_train)
```

... predict (using feature(s) in test data) ...

```
y_pred = model.predict(X_test)
```

```
Following standard procedure we split data ...
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.6, random_state=666)
```

 \dots import and create instance of model (LinearRegression) \dots

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
```

... fit model (using training data — feature(s) and target) ...

```
model.fit(X_train, y_train)
```

... predict (using feature(s) in test data) ...

```
y_pred = model.predict(X_test)
```

```
Following standard procedure we split data ...
```

- from sklearn.model_selection import train_test_split
 X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.6, random_state=666)
- \dots import and create instance of model (LinearRegression) \dots
- from sklearn.linear_model import LinearRegression
 model = LinearRegression()
- \dots fit model (using training data feature(s) and target) \dots
- model.fit(X_train, y_train)
 - ... predict (using feature(s) in test data) ...
- y_pred = model.predict(X_test)

```
Following standard procedure we split data ...
```

- from sklearn.model_selection import train_test_split
 X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.6, random_state=666)
- ...import and create instance of model (LinearRegression) ...
- from sklearn.linear_model import LinearRegression
 model = LinearRegression()
- ... fit model (using training data feature(s) and target) ...
- model.fit(X_train, y_train)
 - ... predict (using feature(s) in test data) ...
 - y_pred = model.predict(X_test)

```
Following standard procedure we split data ...
```

- from sklearn.model_selection import train_test_split
 X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.6, random_state=666)
- \dots import and create instance of model (LinearRegression) \dots
- from sklearn.linear_model import LinearRegression
 model = LinearRegression()
 - ... fit model (using training data feature(s) and target) ...
- model.fit(X_train, y_train)
 - ... predict (using feature(s) in test data) ...
- y_pred = model.predict(X_test)

```
plt.figure(figsize=(12,6))
sns.scatterplot(x=X_test.T[0],y=y_test, label="actual")
sns.lineplot(x=X_test.T[0], y=y_pred, color='red', label="model (pred)")
plt.xlabel(iris.feature_names[0])
plt.title("IRIS - 1D (setosa=0, other=1) Linear regression fit (test)")
plt.legend(loc="lower right")
plt.show()
```


This is called a linear probability model. It has the advantages that much of the regression statistical theory can be applied to it.

But output is in range $(-\infty, \infty)$, we want 0 or 1

```
plt.figure(figsize=(12,6))
sns.scatterplot(x=X_test.T[0], y=y_test, label="actual")
sns.lineplot(x=X_test.T[0], y=y_pred, color='red', label="model (pred)")
plt.xlabel(iris.feature_names[0])
plt.title("IRIS - ID (setosa=0, other=1) Linear regression fit (test)")
plt.legend(loc="lower right")
plt.show()
```


...it would be nice

Can we replace map the infinite interval $(-\infty, \infty)$ to a finite interval, say to (0, 1)?

A Sigmoid function[†] is any function that has a stretched S-shaped curve. One example of a sigmoid function is the

Logistic function, σ

$$\sigma(x) = \frac{1}{1 + \exp(-x)} = \frac{1}{1 + e^{-x}} = \frac{e^x}{1 + e}$$

[†]Sigmoid function (Wikipedia), and Logistic function (Wikipedia),

... it would be nice

Can we replace map the infinite interval $(-\infty, \infty)$ to a finite interval, say to (0,1)?

A Sigmoid function[†] is any function that has a stretched S-shaped curve. One example of a sigmoid function is the

Logistic function, σ

$$\sigma(x) = \frac{1}{1 + \exp(-x)} = \frac{1}{1 + e^{-x}} = \frac{e^x}{1 + e^x}$$
 $e = 2.71828 \dots$

[†]Sigmoid function (Wikipedia), and Logistic function (Wikipedia),

Linear Regression vs Logistic Regression

Linear Regression Model y = mx + c

Aside: The function linking, z, the output of linear step, to y, the model output is called a link function.

First a little bit of mathematical manipulation ...

$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$
 definition of $\sigma(z)$

$$y + ye^{-z} = 1$$
 multiply both sides by $(1 + e^{-z})$

$$e^{-z} = \frac{1 - y}{y}$$
 solve for e^{-z}

$$e^{z} = \frac{y}{1 - y}$$
 invert both sides

$$z = \ln\left(\frac{y}{1 - y}\right)$$
 apply logs

So we have

$$y = \frac{1}{1 + e^{-z}}$$
 \iff $z = \ln\left(\frac{y}{1 - y}\right)$

Aside: Of all the Sigmoid functions, why pick Logistic?

• If y represents a probability, then

$$\frac{y}{1-y}$$

represent the odds — an alternative measure of the likelihood of a particular outcome[‡].

Then

$$z = \ln\left(\frac{y}{1 - y}\right)$$

is the log-odds, or the logit.

This implies that increasing one of the independent variables multiplicatively scales the odds of the
given outcome at a constant rate, with each independent variable having its own parameter. So the
feature coefficients in a logistic regression have a similar interpretation (but not the same!) as in
linear regression.

[‡]Odds are defined as the ratio of the number of events that produce that outcome relative to the number that do not.

Logistic Regression — Probability of being in Predicted Class

Unlike some classifiers, the LogisticRegression classifier can also report on the probability of an observation being in the predicted class§.

```
v prob = model.predict proba(X test)
v prob
array([[0.36106274, 0.63893726],
      [0.24038055. 0.75961945].
      [0.76292166, 0.23707834].
      Γ0.24038055. 0.75961945].
      Γ0.91120554, 0.08879446].
      [0.43024916, 0.56975084],
      [0.29719846, 0.70280154],
      Γ0.03992405. 0.960075951.
      Γ0.06912596. 0.930874041.
      Γ0.43024916. 0.569750841.
      [0.02275676, 0.97724324].
      [0.93203415. 0.06796585].
```

```
v_log_prob = model.predict_log_proba(X_test)
v log prob
array([[-1.01870355e+00, -4.47949007e-01],
      [-1.42553199e+00. -2.74937692e-01].
      [-2.70599925e-01. -1.43936465e+00].
      [-1.42553199e+00. -2.74937692e-01].
      [-9.29867864e-02.-2.42143102e+00].
      [-8.43390801e-01, -5.62556133e-01],
      [-1.21335515e+00, -3.52680729e-01],
      [-3.22077634e+00.-4.07428849e-02].
      [-2.67182500e+00, -7.16313014e-02],
      [-8.43390801e-01.-5.62556133e-01].
      [-3.78289290e+00.-2.30196948e-02].
      [-7.03858210e-02.-2.68874994e+00].
```

[§]This is a big deal as it allows us to punish learners when they miss-classify based on how confident the classifier was — cross entropy loss functions (week 6 & 7).

Logistic Regression

Predicted other setosa

Actual		
other	38	3
setosa	0	19

