PRÁCTICA PROCESADORES DEL LENGUAJE

GRUPO 13 INTEGRANTES:

- Mario López Estaire
- Andrés Bravo Francos
- Grettell Umpierrez Sardiñas

Sentencias: Sentencia de Selección Múltiple (switch-case)
Técnicas de Análisis Sintáctico: Descendente con tablas
Operadores especiales: Asignación con multiplicación (*=)

Comentarios: Comentario de bloque (/**/)

Cadenas: Con comillas dobles (" ")

ANALIZADOR SINTÁCTICO

GRAMÁTICA

```
// Axioma general
     1. A \rightarrow B A
     2. A \rightarrow FA
     3. A \rightarrow eof
// Sentencias compuestas
     4. B \rightarrow if(E)S
     5. B \rightarrow let id T N
     6. B \rightarrow S
     7. B \rightarrow switch(U) \{Z\}
// Sentencias simples
     8. S \rightarrow id S';
     9. S \rightarrow print E;
     10. S \rightarrow input id;
     11. S \rightarrow return X;
     12. S' \rightarrow = E
     13. S' \to * = U
     14. S' \rightarrow (L)
// Expresiones
     15. E \rightarrow R E'
     16. E' \rightarrow \lambda
     17. E' \rightarrow \&\& R E'
                                           // Operaciones lógicas
     18. R \rightarrow U R'
     19. R' \rightarrow \lambda
```

```
20. R' \rightarrow == U R'
                                    // Operaciones relacionales
21. U \rightarrow V U'
22. U' \rightarrow \lambda
23. U' \rightarrow + V U'
                                   // Operaciones aritméticas (suma)
24. V \rightarrow P V'
25. V' \rightarrow \lambda
26. V' \rightarrow * P V'
                            // Operaciones aritméticas (producto)
// Operandos
27. P \rightarrow id P'
28. P \rightarrow (E)
29. P \rightarrow cteEntera
30. P \rightarrow cadena
31. P \rightarrow true
32. P \rightarrow false
33. P' \rightarrow \lambda
34. P' \rightarrow (L)
// Argumentos de función
35. L \rightarrow E Q
36. L \rightarrow \lambda
37. Q \rightarrow , E Q
38. Q \rightarrow \lambda
// Valor de retorno
39. X \rightarrow E
40. X \rightarrow \lambda
// Tipos de variables
41. T \rightarrow int
42. T → boolean
43. T \rightarrow string
// Declaración de funciones
44. F \rightarrow function id H(D) \{C\}
45. H → T
46. H \rightarrow \lambda
```

```
47. D \rightarrow T id K
48. D \rightarrow \lambda
49. K \rightarrow, T id K
50. K \rightarrow \lambda
51. C → B C
52. C \rightarrow \lambda
// Inicialización de identificadores
53. N \rightarrow;
54. N \rightarrow = E;
55. N \rightarrow * = E;
// Cuerpo de switch
56. Z \rightarrow case\ cteEntera: O\ Z
57. Z \rightarrow default : 0
58. O \rightarrow B O'
59. O \rightarrow break;
60. O' \rightarrow B O'
61. O' \rightarrow break;
62. O' \rightarrow \lambda
```

FIRST Y FOLLOW

	FIRST	FOLLOW
А	if let switch id print input return function eof	eof
В	if let switch id print input return	<pre>if let switch id print input return function eof } break case default</pre>
S	id print input return	<pre>if let switch id print input return function eof } break case default</pre>
S'	= *= (;
Е	id (cteEntera cadena true false) ; ,
E'	&& λ) ; ,

```
id | ( | cteEntera | cadena |
R
                                              8.8 | ) | ; | ,
      true | false
R'
      == | λ
                                              && | ) | ; | ,
      id | ( | cteEntera | cadena | true | false
                                              == | && | ) | ; | ,
U
U'
      + | λ
                                              == | && | ) | ; | ,
      id | ( | cteEntera | cadena | true | false
                                              + | == | && | ) | ; | ,
V'
      * | \lambda
                                              + | == | && | ) | ; | ,
      id | ( | cteEntera | cadena |
Р
                                              * | + | == | && | ) | ; | ,
      true | false
      ( | λ
                                              * | + | == | && | ) | ; | ,
P'
      id | ( | cteEntera | cadena | true | false | \lambda
L
                                              )
      , | λ
Q
                                              )
Χ
      id | ( | cteEntera | cadena |
                                              ;
      true | false | λ
Т
      int | boolean | string
                                              id | ( | ; | = | *=
F
      function
                                              if | let | switch | id | print | input |
                                              return | function | eof
      int | boolean | string | \lambda
Н
                                              (
D
      int | boolean | string | \lambda
                                              )
      , | λ
Κ
                                              )
      if | let | switch | id | print |
С
                                              }
      input | return | λ
      ; | = | *=
                                              if | let | switch | id | print | input |
Ν
                                              return | function | eof | } | break | case
                                              | default
Z
      case | default
                                              }
0
      if | let | switch | id | print |
                                              case | default | }
      input | return | break
O'
      if | let | switch | id | print |
                                              case | default | }
      input | return | break | λ
```

Justificación

Verificación condición LL

Las reglas de A cumplen la condición LL porque:

- $First(BA) \cap First(FA) = \emptyset$ porque $\{if \mid let \mid switch \mid id \mid print \mid input \mid return \} \cap \{function\} = \emptyset$
- $First(FA) \cap First(eof) = \emptyset$ porque $\{function\} \cap \{eof\} = \emptyset$
- $First(BA) \cap First(eof) = \emptyset$ porque $\{if \mid let \mid switch \mid id \mid print \mid input \mid return \} \cap \{eof\} = \emptyset$
- No hay regla λ por tanto no se necesitan más comprobaciones para determinar que se cumple la condición LL

Las reglas de B cumplen la condición LL porque:

- $First(if(E)S) \cap First(let\ id\ T\ N\) = \emptyset \text{ porque } \{if\} \cap \{let\} = \emptyset$
- $First(if(E)S) \cap First(S) = \emptyset$ porque $\{if\} \cap \{id \mid print \mid input \mid return\} = \emptyset$
- $First(if(E)S) \cap First(switch(U)\{Z\}) = \emptyset \text{ porque } \{if\} \cap \{switch\} = \emptyset$
- $First(let id T N) \cap First(S) = \emptyset$ porque { let } \cap { $id \mid print \mid input \mid return$ } = \emptyset
- First(let id T N) \cap First(switch (U) { Z }) = \emptyset porque { let } \cap { switch } = \emptyset
- $First(S) \cap First(switch(U) \{Z\}) = \emptyset$ porque $\{id \mid print \mid input \mid return\} \cap \{switch\} = \emptyset$
- No hay regla λ por tanto no se necesitan más comprobaciones para determinar que se cumple la condición LL

Las reglas de S cumplen la condición LL porque:

- First(id S';) \cap First(print E;) = \emptyset porque { id } \cap { print } = \emptyset
- $First(id\ S';) \cap First(input\ id\ ;) = \emptyset \text{ porque } \{id\ \} \cap \{input\ \} = \emptyset$
- $First(id\ S';) \cap First(return\ X;) = \emptyset \text{ porque } \{id\ \} \cap \{return\ \} = \emptyset$
- First(print E;) \cap First(input id;) = \emptyset porque { print } \cap { input } = \emptyset
- First(print E;) \cap First(return X;) = \emptyset porque { print } \cap { return } = \emptyset
- First(input id;) \cap First(return X;) = \emptyset porque {input} \cap {return} = \emptyset
- No hay regla λ por tanto no se necesitan más comprobaciones para determinar que se cumple la condición LL

Las reglas de S' cumplen la condición LL porque:

- $First(=E) \cap First(*=U) = \emptyset$ porque $\{=\} \cap \{*=\} = \emptyset$
- $First(=E) \cap First((L)) = \emptyset$ porque $\{=\} \cap \{(\} = \emptyset)$
- $First(*=U) \cap First((L)) = \emptyset$ porque $\{*=\} \cap \{(\} = \emptyset)$
- No hay regla λ por tanto no se necesitan más comprobaciones para determinar que se cumple la condición LL

Las reglas de E cumplen la condición LL porque:

 Solamente tiene una regla por tanto no se necesitan más comprobaciones para determinar que se cumple la condición LL Las reglas de E' cumplen la condición LL porque:

- Solamente hay dos reglas y una de ellas es λ por tanto no hay que comprobar si los first tienen símbolos terminales en común
- Como una de las reglas es λ
 - $First(\&\& R E') \cap Follow(E') = \emptyset$ porque $\{\&\&\} \cap \{\ \} \mid ; \mid , \} = \emptyset$ por tanto se cumple la condición LL.

Las reglas de R cumplen la condición LL porque:

 Solamente tiene una regla por tanto no se necesitan más comprobaciones para determinar que se cumple la condición LL

Las reglas de R' cumplen la condición LL porque:

- Solamente hay dos reglas y una de ellas es λ por tanto no hay que comprobar si los first tienen símbolos terminales en común
- Como una de las reglas es λ
 - $First(==UR') \cap Follow(R') = \emptyset$ porque $\{==\} \cap \{\&\& | \) | ; |, \} = \emptyset$ por tanto se cumple la condición LL.

Las reglas de U cumplen la condición LL porque:

 Solamente tiene una regla por tanto no se necesitan más comprobaciones para determinar que se cumple la condición LL

Las reglas de U' cumplen la condición LL porque:

- Solamente hay dos reglas y una de ellas es λ por tanto no hay que comprobar si los first tienen símbolos terminales en común
- Como una de las reglas es λ
 - First(+VU') \cap Follow(U') = \emptyset porque $\{+\}$ \cap $\{==|\&\&|)|;|,<math>\}$ = \emptyset por tanto se cumple la condición LL.

Las reglas de V cumplen la condición LL porque:

 Solamente tiene una regla por tanto no se necesitan más comprobaciones para determinar que se cumple la condición LL

Las reglas de V' cumplen la condición LL porque:

- Solamente hay dos reglas y una de ellas es λ por tanto no hay que comprobar si los first tienen símbolos terminales en común
- Como una de las reglas es λ
 - $First(*PV') \cap Follow(V') = \emptyset$ porque $\{*\} \cap \{+| ==|\&\&|)|;|,\} = \emptyset$ por tanto se cumple la condición LL.

Las reglas de P cumplen la condición LL porque:

- $First(id\ P') \cap First((E)) = \emptyset$ porque $\{id\ \} \cap \{(\} = \emptyset)$
- $First(id\ P') \cap First(cteEntera) = \emptyset$ porque $\{id\} \cap \{cteEntera\} = \emptyset$

- $First(id\ P') \cap First(true) = \emptyset$ porque $\{id\} \cap \{true\} = \emptyset$
- $First(id\ P') \cap First(false) = \emptyset \text{ porque } \{id\ \} \cap \{false\} = \emptyset$
- No hay regla λ por tanto no se necesitan más comprobaciones para determinar que se cumple la condición LL

Las reglas de P' cumplen la condición LL porque:

- Solamente hay dos reglas y una de ellas es λ por tanto no hay que comprobar si los first tienen símbolos terminales en común
- Como una de las reglas es λ
 - $First((L)) \cap Follow(P') = \emptyset$ porque $\{(\} \cap \{* | + | == | \&\& |) |; |, \} = \emptyset$ por tanto se cumple la condición LL.

Las reglas de L cumplen la condición LL porque:

- Solamente hay dos reglas y una de ellas es λ por tanto no hay que comprobar si los first tienen símbolos terminales en común
- Como una de las reglas es λ
 - First(E Q) \cap Follow(L) = \emptyset porque { $id \mid (\mid cteEntera \mid cadena \mid true \mid false \} \cap \{) \} = \emptyset$ por tanto se cumple la condición LL.

Las reglas de Q cumplen la condición LL porque:

- Solamente hay dos reglas y una de ellas es λ por tanto no hay que comprobar si los first tienen símbolos terminales en común
- Como una de las reglas es λ
 - $First(, E Q) \cap Follow(Q) = \emptyset$ porque $\{,\} \cap \{\}\} = \emptyset$ por tanto se cumple la condición LL.

Las reglas de X cumplen la condición LL porque:

- Solamente hay dos reglas y una de ellas es λ por tanto no hay que comprobar si los first tienen símbolos terminales en común
- Como una de las reglas es λ
 - $First(E) \cap Follow(X) = \emptyset$ porque $\{id \mid (|cteEntera|cadena|true|false\} \cap \{;\} = \emptyset$ por tanto se cumple la condición LL.

Las reglas de T cumplen la condición LL porque:

- $First(int) \cap First(boolean) = \emptyset \text{ porque } \{int\} \cap \{boolean\} = \emptyset$
- $First(int) \cap First(string) = \emptyset \text{ porque } \{int\} \cap \{string\} = \emptyset$
- First (boolean) \cap First (string) = \emptyset porque {boolean} \cap {string} = \emptyset
- No hay regla λ por tanto no se necesitan más comprobaciones para determinar que se cumple la condición LL

Las reglas de T cumplen la condición LL porque:

- $First(int) \cap First(boolean) = \emptyset \text{ porque } \{int\} \cap \{boolean\} = \emptyset$
- First(int) \cap First(string) = \emptyset porque {int} \cap {string} = \emptyset
- $First(boolean) \cap First(string) = \emptyset porque\{boolean\} \cap \{string\} = \emptyset$

No hay regla λ por tanto no se necesitan más comprobaciones para determinar que se cumple la condición

Las reglas de F cumplen la condición LL porque:

 Solamente tiene una regla por tanto no se necesitan más comprobaciones para determinar que se cumple la condición LL

Las reglas de H cumplen la condición LL porque:

- Solamente hay dos reglas y una de ellas es λ por tanto no hay que comprobar si los first tienen símbolos terminales en común
- Como una de las reglas es λ
 - First(T) \cap Follow(H) = \emptyset porque { int | boolean | string } \cap { ; } = \emptyset por tanto se cumple la condición LL.

Las reglas de D cumplen la condición LL porque:

- Solamente hay dos reglas y una de ellas es λ por tanto no hay que comprobar si los first tienen símbolos terminales en común
- Como una de las reglas es λ
 - First(T id K) \cap Follow(D) = \emptyset porque { $int \mid boolean \mid string$ } \cap {)} = \emptyset por tanto se cumple la condición LL.

Las reglas de K cumplen la condición LL porque:

- Solamente hay dos reglas y una de ellas es λ por tanto no hay que comprobar si los first tienen símbolos terminales en común
- Como una de las reglas es λ
 - $First(Tid K) \cap Follow(K) = \emptyset$ porque $\{T, Tid K) \cap Follow(K) = \emptyset$ por tanto se cumple la condición LL.

Las reglas de C cumplen la condición LL porque:

- Solamente hay dos reglas y una de ellas es λ por tanto no hay que comprobar si los first tienen símbolos terminales en común
- Como una de las reglas es λ
 - o $First(BC) \cap Follow(C) = \emptyset$ porque $\{if \mid let \mid switch \mid id \mid print \mid input \} \cap \{\}\} = \emptyset$ por tanto se cumple la condición LL.

Las reglas de N cumplen la condición LL porque:

- $First(;) \cap First(=E) = \emptyset$ porque $\{;\} \cap \{=\} = \emptyset$
- $First(;) \cap First(*=E) = \emptyset$ porque $\{;\} \cap \{*=\} = \emptyset$
- $First(=E) \cap First(*=E) = \emptyset$ porque $\{=\} \cap \{*=\} = \emptyset$
- No hay regla λ por tanto no se necesitan más comprobaciones para determinar que se cumple la condición LL

Las reglas de Z cumplen la condición LL porque:

- First(case cteEntera : 0 Z) \cap First(default : 0) = \emptyset porque { case } \cap { default } = \emptyset
- No hay regla λ por tanto no se necesitan más comprobaciones para determinar que se cumple la condición

Las reglas de O cumplen la condición LL porque:

- $First(BO') \cap First(break;) = \emptyset \text{ porque } \{if \mid let \mid switch \mid id \mid print \mid input \} \cap \{break\} = \emptyset$
- No hay regla λ por tanto no se necesitan más comprobaciones para determinar que se cumple la condición LL

Las reglas de O' cumplen la condición LL porque:

- $First(BO') \cap First(break;) = \emptyset$ porque $\{if \mid let \mid switch \mid id \mid print \mid input \} \cap \{break\} = \emptyset$
- Como una de las reglas es λ
 - $First(BO') \cap Follow(O') = \emptyset$ porque $\{if \mid let \mid switch \mid id \mid print \mid input \} \cap \{case \mid default \mid \}\} = \emptyset$
 - o $First(break;) \cap Follow(O') = \emptyset$ porque $\{break \} \cap \{case | default | \}\} = \emptyset$ por tanto se cumple la condición LL.

La gramática obtenida para el Analizador Sintáctico Descendente LL(1) con Tablas es LL(1) porque:

- Para cada no terminal para el que haya más de una regla de producción, dichas reglas no derivan un mismo terminal (la gramática está factorizada).
- Cumple la condición LL
- No existe recursividad por la izquierda

TABLA A.S DESCENDENTE (LL)

	if	let	switch	id	print	input	return	function	break	cteEntera	cadena	true	false	==	&&	;	,	()	{	}	+	*	=	*=	int	boolean	string	case	default	:	eof
Α	1	1	1	1	1	1	1	2	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	101	3
В	4	5	7	6	6	6	6	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102
S	103	103	103	8	9	10	11	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103	103
S'	104	104	104	104	104	104	104	104	104	104	104	104	104	104	104	104	104	14	104	104	104	104	104	12	13	104	104	104	104	104	104	104
Е	105	105	105	15	105	105	105	105	105	15	15	15	15	105	105	105	105	15	105	105	105	105	105	105	105	105	105	105	105	105	105	105
E'	106	106	106	106	106	106	106	106	106	106	106	106	106	106	17	16	16	106	16	106	106	106	106	106	106	106	106	106	106	106	106	106
R	107	107	107	18	107	107	107	107	107	18	18	18	18	107	107	107	107	18	107	107	107	107	107	107	107	107	107	107	107	107	107	107
R'	108	108	108	108	108	108	108	108	108	108	108	108	108	20	19	19	19	108	19	108	108	108	108	108	108	108	108	108	108	108	108	108
U	109	109	109	21	109	109	109	109	109	21	21	21	21	109	109	109	109	21	109	109	109	109	109	109	109	109	109	109	109	109	109	109
U'	110	110	110	110	110	110	110	110	110	110	110	110	110	22	22	22	22	110	22	110	110	23	110	110	110	110	110	110	110	110	110	110
٧	111	111	111	24	111	111	111	111	111	24	24	24	24	111	111	111	111	24	111	111	111	111	111	111	111	111	111	111	111	111	111	111
V'	112	112	112	112	112	112	112	112	112	112	112	112	112	25	25	25	25	112	25	112	112	25	26	112	112	112	112	112	112	112	112	112
Р	113	113	113	27	113	113	113	113	113	29	30	31	32	113	113	113	113	28	113	113	113	113	113	113	113	113	113	113	113	113	113	113
P,	114	114	114	114	114	114	114	114	114	114	114	114	114	33	33	33	33	34	33	114	114	33	33	114	114	114	114	114	114	114	114	114
L	115	115	115	35	115	115	115	115	115	35	35	35	35	115	115	115	115	35	36	115	115	115	115	115	115	115	115	115	115	115	115	115
Q	116	116	116	116	116	116	116	116	116	116	116	116	116	116	116	116	37	116	38	116	116	116	116	116	116	116	116	116	116	116	116	116
Х	117	117	117	39	117	117	117	117	117	39	39	39	39	117	117	40	117	39	117	117	117	117	117	117	117	117	117	117	117	117	117	117
Т	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	41	42	43	118	118	118	118
F	119	119	119	119	119	119	119	44	119	119	119	119	119	119	119	119	119	119	119	119	119	119	119	119	119	119	119	119	119	119	119	119
Н	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	46	120	120	120	120	120	120	120	45	45	45	120	120	120	120
D	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121	48	121	121	121	121	121	121	47	47	47	121	121	121	121
K	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	49	122	50	122	122	122	122	122	122	122	122	122	122	122	122	122
С	51	51	51	51	51	51	51	123	123	123	123	123	123	123	123	123	123	123	123	123	52	123	123	123	123	123	123	123	123	123	123	123
N	124	124	124	124	124	124	124	124	124	124	124	124	124	124	124	53	124	124	124	124	124	124	124	54	55	124	124	124	124	124	124	124
Z	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	56	57	125	125
0	58	58	58	58	58	58	58	126	59	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126	126
O'	60	60	60	60	60	60	60	127	61	127	127	127	127	127	127	127	127	127	127	127	62	127	127	127	127	127	127	127	62	62	127	127

Error Sintáctico

ERRORES

Sintácticos

Código 100: Token siguiente token no esperado. Se esperaba cima pila.

Código 101: El token *siguiente_token* no pertenece al primer elemento de una sentencia válida, una función o es fin de fichero.

Código 102: El token siguiente_token no pertenece al primer elemento de una sentencia válida.

Código 103: El token *siguiente_token* no pertenece al primer elemento de una sentencia simple válida.

Código 104: El token siguiente_token no es una asignación válida o la llamada a una función.

Código 105: El token siguiente_token no pertenece a una expresión válida.

Código 106: El token siguiente_token no pertenece a una expresión lógica u otra expresión válida.

Código 107: El token siguiente_token no pertenece a una expresión válida.

Código 108: El token siguiente_token no pertenece a una expresión relacional u otra expresión válida.

Código 109: El token siguiente_token no pertenece a una expresión válida.

Código 110: El token *siguiente_token* no pertenece a una expresión aritmética de suma u otra expresión válida.

Código 111: El token siguiente_token no pertenece a una expresión válida.

Código 112: El token *siguiente_token* no pertenece a una expresión aritmética de multiplicación u otra expresión válida.

Código 113: El token siguiente_token no pertenece a una expresión válida.

Código 114: El token siguiente_token no es un identificador de variable o la llamada a una función

Código 115: El token *siguiente_token* no es un argumento de función válido porque no pertenece a una expresión válida

Código 116: El token *siguiente_token* no es un argumento de función válido porque no pertenece a una expresión válida

Código 117: El token *siguiente_token* no es un valor de retorno de función válido porque no pertenece a una expresión válida

Código 118: El token siguiente token no es un tipo de variable válido

Código 119: El token siguiente_token no pertenece a una declaración válida de una función

Código 120: El token siguiente_token no es un tipo de valor de retorno de función válido

Código 121: El token siguiente_token no es una declaración válida de un argumento de una función

Código 122: El token siguiente token no es una declaración válida de un argumento de una función

Código 123: El token siguiente token no pertenece a una sentencia válida

Código 124: El token siguiente_token no es una asignación válida

Código 125: El token siguiente_token no es un cuerpo válido para la condicional múltiple switch

Código 126: El token siguiente_token no pertenece a una sentencia válida

Código 127: El token siguiente token no pertenece a una sentencia válida

- siguiente_token: último token devuelto por el Analizador Léxico
- cima_pila: último token apilado dado el algoritmo del Analizador Sintáctico Descendente por Tablas.

ANEXOS

CORRECTOS

Caso de Prueba # 1

```
Código fuente
```

```
/*
   CASO DE PRUEBA #1
*/
print "Introduce el resultado de 6+6*2: ";
let a_1 int = 0;
input a_1;
let num int = 5;
if (a_1 == 18)
   print "Bien!!";
if (a_1 == 18) input num;
switch (a_1) {
   case 24:
       print ":( es 6*2 = 12 y luego 12 + 6 = 18 no 24";
       print "Introduce un número para sumarle a 24: ";
       input num;
       break;
   default:
       print "Vaya " + a_1 + " no es correcto.";
}
function Suma int (int a, int b) {
   j=a+b;
   return j;
   /* La función finaliza y devuelve el valor entero de la expresión */
}
print a_1 + " + " + num + " = ";
```

```
print Suma(a_1,num);
```

<u>Parse</u>

Descendente													
1	6 41	9 54	15 15	18 18	21 21	24 24	30	25	22	19	16	1	5
29	25 21	22 24	19 29	16 25	1 22	6 19	10	1	5	41	54	15	18
16	1 29	4 25	15 22	18 19	21 16	24 9	27	33	25	22	20	21	24
15	18 24	21 27	24 33	30 25	25 22	22 20	19	16	1	4	15	18	21
21	24 22	29 19	25 16	22 1	19 4	16 15	9	15	18	21	24	30	25
18	21 16	24 10	27 1	33 7	25 21	22 24	20	21	24	29	25	22	19
27	33 22	25 19	22 16	56 60	58 6	6 9	9	15	18	21	24	30	25
15	18 58	21 6	24 9	30 15	25 18	22 21	19	16	60	6	10	61	57
24	30 16	25 62	23 2	24 44	27 45	33 41	25	23	24	30	25	22	19
47	41 33	49 25	41 23	50 24	51 27	6 33	8	12	15	18	21	24	27
25	22 25	19 22	16 19	51 16	6 52	11 1	39	15	18	21	24	27	33
6	9 24	15 27	18 33	21 25	24 23	27 24	33	25	23	24	30	25	23
30	25 35	22 15	19 18	16 21	1 24	6 27	9	15	18	21	24	27	34
33	25 19	22 16	19 38	16 25	37 22	15 19	18	21	24	27	33	25	22
16	3												

Árbol

```
.filetree span.Noterminales { color: Brown;}
.filetree span.terminales { color: Red;}
</style>
<script>
$(document).ready(function(){
$("#browser").treeview();
});
</script>
</head>
<body>
<h4>Árbol resultado de:</h4>
<h4>Gramática: E:\Grettell\Universidad\UPM\Segundo Curso\Primer Semestre\Procesadores de
Lenguaje\Práctica\Proyecto\Visualizador Arboles Sintacticos\GramaticaAS.txt</h4>
<h4>Parse: E:\Grettell\Universidad\UPM\Segundo Curso\Primer Semestre\Procesadores de
Lenguaje\Práctica\Proyecto\Visualizador Arboles Sintacticos\Casos de Prueba E2\Caso 1\parseC1.txt</h4>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (9)</span>
<l
<span class="terminales">print</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (30)</span>
<span class="terminales">cadena</span>
<span class="Noterminales">Vp (25)</span>
<111>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<111>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
```

```
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (5)</span>
<l
<span class="terminales">let</span>
<span class="terminales">id</span>
<span class="Noterminales">T (41)</span>
<l
<span class="terminales">int</span>
<span class="Noterminales">N (54)</span>
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (29)</span>
<span class="terminales">cteEntera</span>
<span class="Noterminales">Vp (25)</span>
<l
```

```
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (10)</span>
<l
<span class="terminales">input</span>
<span class="terminales">id</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (5)</span>
```

```
<l
<span class="terminales">let</span>
<span class="terminales">id</span>
<span class="Noterminales">T (41)</span>
<span class="terminales">int</span>
<span class="Noterminales">N (54)</span>
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (29)</span>
<l
<span class="terminales">cteEntera</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
```

```
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<span class="Noterminales">B (4)</span>
<l
<span class="terminales">if</span>
<span class="terminales">(</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Rp (20)</span>
<l
<span class="terminales">==</span>
<span class="Noterminales">U (21)</span>
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (29)</span>
<span class="terminales">cteEntera</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="Noterminales">S (9)</span>
<l
<span class="terminales">print</span>
```

```
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (30)</span>
<l
<span class="terminales">cadena</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (4)</span>
```

```
<l
<span class="terminales">if</span>
<span class="terminales">(</span>
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (27)</span>
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (20)</span>
<l
<span class="terminales">==</span>
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (29)</span>
<l
<span class="terminales">cteEntera</span>
```

```
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="Noterminales">S (9)</span>
<span class="terminales">print</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (30)</span>
<l
<span class="terminales">cadena</span>
<span class="Noterminales">Vp (25)</span>
```

```
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<span class="Noterminales">B (4)</span>
<l
<span class="terminales">if</span>
<span class="terminales">(</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
```

```
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (20)</span>
<l
<span class="terminales">==</span>
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (29)</span>
<span class="terminales">cteEntera</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="Noterminales">S (10)</span>
<l
<span class="terminales">input</span>
<span class="terminales">id</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<span class="Noterminales">B (7)</span>
<span class="terminales">switch</span>
<span class="terminales">(</span>
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="terminales">{</span>
<span class="Noterminales">Z (56)</span>
<l
<span class="terminales">case</span>
<span class="terminales">cteEntera</span>
<span class="terminales">:</span>
<span class="Noterminales">0 (58)</span>
<l
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (9)</span>
<span class="terminales">print</span>
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (30)</span>
<l
<span class="terminales">cadena</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">Op (60)</span>
<span class="Noterminales">B (6)</span>
<span class="Noterminales">S (9)</span>
<span class="terminales">print</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (30)</span>
<l
<span class="terminales">cadena</span>
```

```
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">Op (60)</span>
<l
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (10)</span>
<l
<span class="terminales">input</span>
<span class="terminales">id</span>
<span class="terminales">;</span>
```

```
<span class="Noterminales">Op (61)</span>
<l
<span class="terminales">break</span>
<span class="terminales">;</span>
<span class="Noterminales">Z (57)</span>
<span class="terminales">default</span>
<span class="terminales">:</span>
<span class="Noterminales">0 (58)</span>
<l
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (9)</span>
<l
<span class="terminales">print</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (30)</span>
<span class="terminales">cadena</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (23)</span>
<l
<span class="terminales">+</span>
```

```
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (23)</span>
<l
<span class="terminales">+</span>
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (30)</span>
<span class="terminales">cadena</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
```

```
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">Op (62)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">}</span>
<span class="Noterminales">A (2)</span>
<span class="Noterminales">F (44)</span>
<span class="terminales">function</span>
<span class="terminales">id</span>
<span class="Noterminales">H (45)</span>
<l
<span class="Noterminales">T (41)</span>
<l
<span class="terminales">int</span>
```

```
<span class="terminales">(</span>
<span class="Noterminales">D (47)</span>
<l
<span class="Noterminales">T (41)</span>
<l
<span class="terminales">int</span>
<span class="terminales">id</span>
<span class="Noterminales">K (49)</span>
<l
<span class="terminales">,</span>
<span class="Noterminales">T (41)</span>
<l
<span class="terminales">int</span>
<span class="terminales">id</span>
<span class="Noterminales">K (50)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="terminales">{</span>
<span class="Noterminales">C (51)</span>
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (8)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Sp (12)</span>
<l
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
```

```
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (23)</span>
<l
<span class="terminales">+</span>
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">C (51)</span>
<l
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (11)</span>
<l
<span class="terminales">return</span>
<span class="Noterminales">X (39)</span>
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">C (52)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">}</span>
```

```
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (9)</span>
<l
<span class="terminales">print</span>
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (23)</span>
<span class="terminales">+</span>
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (30)</span>
<l
<span class="terminales">cadena</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Up (23)</span>
<l
<span class="terminales">+</span>
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (27)</span>
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (23)</span>
<l
<span class="terminales">+</span>
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (30)</span>
<span class="terminales">cadena</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (9)</span>
<span class="terminales">print</span>
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (34)</span>
<l
<span class="terminales">(</span>
<span class="Noterminales">L (35)</span>
```

```
<l
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Q (37)</span>
<l
```

```
<span class="terminales">,</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (27)</span>
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Q (38)</span>
```

```
<l
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (3)</span>
<l
```

```
<span class="terminales">eof</span>
</body>
</html>
Caso de Prueba # 2
Código fuente
/*
   CASO DE PRUEBA #2
*/
let unaCadena64 string = "Si la vida te da limones haz limonada. Quieres limones
"????????
let _un_num_1 int = 32767; /* a una unidad del error */
let a int = _un_num_1;
let bool boolean = true;
if (a == _un_num_1 &&bool) bool = false;
function PrintRecursivo boolean (string cadena) {
```

```
print cadena;
    if(bool == false) bool = true;
    if(bool == false) PrintRecursivo(cadena);
    return true;
}
a *= a;
_un_num_1 = a * a;
switch(a){
    case _un_num_1:
        PrintRecursivo(unaCadena64);
        break;
    default:
        PrintRecursivo(unaCadena64);
}
Parse
Descendente
```

25

22

19

16

38

61

1	5 41	43 54	54 15	15 18	18 21	21	24	30	25	22	19	16	1	5
24	29 27	25 33	22 25	19 22	16 19	1 16	5	41	54	15	18	21	24	
1	5 15	42 18	54 21	15 24	18 27	21	24	31	25	22	19	16	1	4
33	25 24	22 27	20 33	21 25	24 22	27 19	33	25	22	19	17	18	21	
16	8 45	12 42	15 47	18 43	21 50	24 51	32	25	22	19	16	2	44	
6	9 1 5	15 18	18 21	21 24	24 27	27 33	33	25	22	19	16	51	4	
25	22 21	20 24	21 31	24 25	32 22	25 19	22	19	16	8	12	15	18	
16	51 32	4 25	15 22	18 19	21 16	24 8	27	33	25	22	20	21	24	
14	35 11	15 39	18 15	21 18	24 21	27	33	25	22	19	16	38	51	6
24	31 33	25 25	22 22	19 1	16 6	52 8	1	6	8	13	21	24	27	
12	15 7	18 21	21 24	24 27	27 33	33	26	27	33	25	22	19	16	1
25	22	56	58	6	8	14	35	15	18	21	24	27	33	

Árbol

```
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-</pre>
transitional.dtd'>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1"/>
<title>Arbol</title>
<link rel="stylesheet" href="http://www-lt.ls.fi.upm.es/procesadores/Software/VASt/jquery.treeview.css" />
<link rel="stylesheet" href="http://www-lt.ls.fi.upm.es/procesadores/Software/VASt/screen.css" />
<script src="http://www-lt.ls.fi.upm.es/procesadores/Software/VASt/jquery.js" type="text/javascript"></script>
<script src="http://www-lt.ls.fi.upm.es/procesadores/Software/VASt/jquery.treeview.js"</pre>
type="text/javascript"></script>
<link rel="stylesheet" type="text/css" href="CSS.css">
<style type="text/css">
.filetree span.Noterminales { color: Brown;}
.filetree span.terminales { color: Red;}
</style>
<script>
$(document).ready(function(){
$("#browser").treeview();
});
</script>
</head>
<body>
<h4>Árbol resultado de:</h4>
<h4>Gramática: E:\Grettell\Universidad\UPM\Segundo Curso\Primer Semestre\Procesadores de
Lenguaje\Práctica\Proyecto\Visualizador Arboles Sintacticos\GramaticaAS.txt</h4>
<h4>Parse: E:\Grettell\Universidad\UPM\Segundo Curso\Primer Semestre\Procesadores de
Lenguaje\Práctica\Proyecto\Visualizador Arboles Sintacticos\Casos de Prueba E2\Caso 2\parseC2.txt</h4>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (5)</span>
<u1>
<span class="terminales">let</span>
<span class="terminales">id</span>
<span class="Noterminales">T (43)</span>
<span class="terminales">string</span>
<span class="Noterminales">N (54)</span>
<u1>
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<111>
<span class="Noterminales">R (18)</span>
```

```
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (30)</span>
<span class="terminales">cadena</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (5)</span>
<l
<span class="terminales">let</span>
```

```
<span class="terminales">id</span>
<span class="Noterminales">T (41)</span>
<l
<span class="terminales">int</span>
<span class="Noterminales">N (54)</span>
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (29)</span>
<l
<span class="terminales">cteEntera</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<span class="Noterminales">B (5)</span>
<span class="terminales">let</span>
<span class="terminales">id</span>
<span class="Noterminales">T (41)</span>
<l
<span class="terminales">int</span>
<span class="Noterminales">N (54)</span>
<l
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (27)</span>
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (5)</span>
<l
<span class="terminales">let</span>
<span class="terminales">id</span>
<span class="Noterminales">T (42)</span>
<span class="terminales">boolean</span>
<span class="Noterminales">N (54)</span>
<l
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
```

```
<l
<span class="Noterminales">P (31)</span>
<l
<span class="terminales">true</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (4)</span>
<l
<span class="terminales">if</span>
<span class="terminales">(</span>
<span class="Noterminales">E (15)</span>
<l
```

```
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (20)</span>
<span class="terminales">==</span>
<span class="Noterminales">U (21)</span>
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
```

```
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (17)</span>
<l
<span class="terminales">&&</span>
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (27)</span>
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="Noterminales">S (8)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Sp (12)</span>
<l
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (32)</span>
<l
<span class="terminales">false</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (2)</span>
<span class="Noterminales">F (44)</span>
<span class="terminales">function</span>
<span class="terminales">id</span>
<span class="Noterminales">H (45)</span>
<l
<span class="Noterminales">T (42)</span>
<l
<span class="terminales">boolean</span>
<span class="terminales">(</span>
```

```
<span class="Noterminales">D (47)</span>
<l
<span class="Noterminales">T (43)</span>
<l
<span class="terminales">string</span>
<span class="terminales">id</span>
<span class="Noterminales">K (50)</span>
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="terminales">{</span>
<span class="Noterminales">C (51)</span>
<l
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (9)</span>
<l
<span class="terminales">print</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (27)</span>
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">C (51)</span>
<span class="Noterminales">B (4)</span>
<span class="terminales">if</span>
<span class="terminales">(</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
```

```
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (20)</span>
<l
<span class="terminales">==</span>
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (32)</span>
<l
<span class="terminales">false</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="Noterminales">S (8)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Sp (12)</span>
<l
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (31)</span>
<span class="terminales">true</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">C (51)</span>
<l
<span class="Noterminales">B (4)</span>
<l
<span class="terminales">if</span>
<span class="terminales">(</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<span class="Noterminales">U (21)</span>
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (20)</span>
<span class="terminales">==</span>
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (32)</span>
<l
<span class="terminales">false</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
```

```
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="Noterminales">S (8)</span>
<span class="terminales">id</span>
<span class="Noterminales">Sp (14)</span>
<span class="terminales">(</span>
<span class="Noterminales">L (35)</span>
<l
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
```

```
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Q (38)</span>
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="terminales">;</span>
<span class="Noterminales">C (51)</span>
<span class="Noterminales">B (6)</span>
<span class="Noterminales">S (11)</span>
<span class="terminales">return</span>
<span class="Noterminales">X (39)</span>
<l
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (31)</span>
<l
<span class="terminales">true</span>
```

```
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">C (52)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="terminales">}</span>
<span class="Noterminales">A (1)</span>
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (8)</span>
<span class="terminales">id</span>
<span class="Noterminales">Sp (13)</span>
<span class="terminales">*=</span>
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
```

```
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (8)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Sp (12)</span>
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (26)</span>
<span class="terminales">*</span>
<span class="Noterminales">P (27)</span>
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<span class="Noterminales">B (7)</span>
<span class="terminales">switch</span>
<span class="terminales">(</span>
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
```

```
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="terminales">{</span>
<span class="Noterminales">Z (56)</span>
<l
<span class="terminales">case</span>
<span class="terminales">cteEntera</span>
<span class="terminales">:</span>
<span class="Noterminales">0 (58)</span>
<span class="Noterminales">B (6)</span>
<span class="Noterminales">S (8)</span>
<span class="terminales">id</span>
<span class="Noterminales">Sp (14)</span>
<l
<span class="terminales">(</span>
<span class="Noterminales">L (35)</span>
<l
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
```

```
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Q (38)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">)</span>
```

```
<span class="terminales">;</span>
<span class="Noterminales">Op (61)</span>
<span class="terminales">break</span>
<span class="terminales">;</span>
<span class="Noterminales">Z (57)</span>
<span class="terminales">default</span>
<span class="terminales">:</span>
<span class="Noterminales">0 (58)</span>
<l
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (8)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Sp (14)</span>
<l
<span class="terminales">(</span>
<span class="Noterminales">L (35)</span>
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Q (38)</span>
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="terminales">;</span>
<span class="Noterminales">Op (62)</span>
<l
```

```
<span class="terminales">lambda</span>
<span class="terminales">}</span>
<span class="Noterminales">A (3)</span>
<span class="terminales">eof</span>
</body>
</html>
Caso de Prueba #3
Código fuente
/*
   CASO # 3: Probando todas las sentencias
*/
let z1
                        int *= 10 ;
let f_11
                        boolean = false ;
let _cad
                        string ;
```

```
let n2
                                  int
                                           = 5;
let 12
                                  boolean = true;
input z1;
/* Comentario de prueba */
if(z1&& 12)_cad="HELLO WORLD";
n2 *= z1 + 378;
print
                                  44
                                     *
                                    z1
                                     *
                                    n2;
/* Funcion sin valor de retorno */
function funcionMyFun (boolean var2)
{
                                  12 = var2;
                                  if (12) z1 = funcionMyFun (var2);
                                  varglobal = 1099;
                                  return;
}
if (f_11 == false)
    print varglobal;
switch (z1) {
                                  default:
                                  funcionMyFun(12);
                                  print "probando switch sin case";
}
<u>Parse</u>
Descendente
     5
1
           41
                 55
                        15
                              18
                                    21
                                           24
                                                 29
                                                       25
                                                              22
                                                                    19
                                                                          16
                                                                                 1
                                                                                       5
     42
           54
                 15
                        18
                              21
24
     32
           25
                 22
                        19
                              16
                                    1
                                           5
                                                 43
                                                       53
                                                              1
                                                                    5
                                                                          41
                                                                                 54
     15
           18
                  21
                        24
                              29
                                     25
                        5
22
     19
                  1
                              42
                                    54
                                                                                 22
           16
                                           15
                                                 18
                                                       21
                                                              24
                                                                    31
                                                                          25
     19
                        6
           16
                 1
                              10
                                    1
                        24
4
     15
           18
                 21
                              27
                                    33
                                           25
                                                 22
                                                       19
                                                              17
                                                                    18
                                                                          21
                                                                                 24
     27
           33
                 25
                        22
                              19
                                    16
8
     12
           15
                 18
                        21
                              24
                                    30
                                           25
                                                 22
                                                       19
                                                              16
                                                                    1
                                                                          6
                                                                                 8
```

	13	21	24	27	33	25							
23	24 27	29 33	25 26	22 27	1 33	6 25	9	15	18	21	24	29	26
22	19 18	16 21	2 24	44 27	46 33	47 25	42	50	51	6	8	12	15
22	19 16	16 8	51 12	4 15	15 18	18 21	21	24	27	33	25	22	19
24	27 38	34 25	35 22	15 19	18 16	21 51	24	27	33	25	22	19	16
6	8 11	12 40	15 52	18 1	21 4	24 15	29	25	22	19	16	51	6
18	21 16	24 9	27 15	33 18	25 21	22 24	20	21	24	32	25	22	19
27	33 57	25 58	22 6	19 8	16 14	1 35	7	21	24	27	33	25	22
15	18 15	21 18	24 21	27 24	33 30	25 25	22	19	16	38	60	6	9
22	19	16	62	3									

Árbol

```
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-</pre>
transitional.dtd'>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1"/>
<title>Arbol</title>
<link rel="stylesheet" href="http://www-lt.ls.fi.upm.es/procesadores/Software/VASt/jquery.treeview.css" />
<link rel="stylesheet" href="http://www-lt.ls.fi.upm.es/procesadores/Software/VASt/screen.css" />
<script src="http://www-lt.ls.fi.upm.es/procesadores/Software/VASt/jquery.js" type="text/javascript"></script>
<script src="http://www-lt.ls.fi.upm.es/procesadores/Software/VASt/jquery.treeview.js"</pre>
type="text/javascript"></script>
<link rel="stylesheet" type="text/css" href="CSS.css">
<style type="text/css">
.filetree span.Noterminales { color: Brown;}
.filetree span.terminales { color: Red;}
</style>
<script>
$(document).ready(function(){
$("#browser").treeview();
});
</script>
</head>
<body>
<h4>Árbol resultado de:</h4>
<h4>Gramática: E:\Grettell\Universidad\UPM\Segundo Curso\Primer Semestre\Procesadores de
Lenguaje\Práctica\Proyecto\Visualizador Arboles Sintacticos\GramaticaAS.txt</hd>
<h4>Parse: E:\Grettell\Universidad\UPM\Segundo Curso\Primer Semestre\Procesadores de
Lenguaje\Práctica\Proyecto\Visualizador Arboles Sintacticos\Casos de Prueba E2\Caso 3\parseC3.txt</h4>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (5)</span>
```

```
<l
<span class="terminales">let</span>
<span class="terminales">id</span>
<span class="Noterminales">T (41)</span>
<span class="terminales">int</span>
<span class="Noterminales">N (55)</span>
<span class="terminales">*=</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (29)</span>
<l
<span class="terminales">cteEntera</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
```

```
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<span class="Noterminales">B (5)</span>
<span class="terminales">let</span>
<span class="terminales">id</span>
<span class="Noterminales">T (42)</span>
<l
<span class="terminales">boolean</span>
<span class="Noterminales">N (54)</span>
<l
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (32)</span>
<span class="terminales">false</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (5)</span>
<l
<span class="terminales">let</span>
<span class="terminales">id</span>
<span class="Noterminales">T (43)</span>
<span class="terminales">string</span>
<span class="Noterminales">N (53)</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (5)</span>
<l
<span class="terminales">let</span>
```

```
<span class="terminales">id</span>
<span class="Noterminales">T (41)</span>
<l
<span class="terminales">int</span>
<span class="Noterminales">N (54)</span>
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (29)</span>
<l
<span class="terminales">cteEntera</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<span class="Noterminales">B (5)</span>
<span class="terminales">let</span>
<span class="terminales">id</span>
<span class="Noterminales">T (42)</span>
<l
<span class="terminales">boolean</span>
<span class="Noterminales">N (54)</span>
<l
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (31)</span>
<span class="terminales">true</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (10)</span>
<l
<span class="terminales">input</span>
<span class="terminales">id</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (4)</span>
<l
<span class="terminales">if</span>
<span class="terminales">(</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
```

```
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (17)</span>
<span class="terminales">&&</span>
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="Noterminales">S (8)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Sp (12)</span>
<l
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
```

```
<l
<span class="Noterminales">P (30)</span>
<l
<span class="terminales">cadena</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (8)</span>
<l
<span class="terminales">id</span>
```

```
<span class="Noterminales">Sp (13)</span>
<l
<span class="terminales">*=</span>
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (23)</span>
<l
<span class="terminales">+</span>
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (29)</span>
<span class="terminales">cteEntera</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<span class="Noterminales">B (6)</span>
<span class="Noterminales">S (9)</span>
<l
<span class="terminales">print</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (29)</span>
<l
<span class="terminales">cteEntera</span>
<span class="Noterminales">Vp (26)</span>
<span class="terminales">*</span>
<span class="Noterminales">P (27)</span>
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (26)</span>
<l
<span class="terminales">*</span>
<span class="Noterminales">P (27)</span>
<l
```

```
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">A (2)</span>
<l
<span class="Noterminales">F (44)</span>
```

```
<l
<span class="terminales">function</span>
<span class="terminales">id</span>
<span class="Noterminales">H (46)</span>
<span class="terminales">lambda</span>
<span class="terminales">(</span>
<span class="Noterminales">D (47)</span>
<span class="Noterminales">T (42)</span>
<l
<span class="terminales">boolean</span>
<span class="terminales">id</span>
<span class="Noterminales">K (50)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="terminales">{</span>
<span class="Noterminales">C (51)</span>
<span class="Noterminales">B (6)</span>
<span class="Noterminales">S (8)</span>
<span class="terminales">id</span>
<span class="Noterminales">Sp (12)</span>
<l
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
```

```
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">C (51)</span>
<l
<span class="Noterminales">B (4)</span>
```

```
<l
<span class="terminales">if</span>
<span class="terminales">(</span>
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (27)</span>
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="terminales">)</span>
<span class="Noterminales">S (8)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Sp (12)</span>
<l
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (34)</span>
<l
<span class="terminales">(</span>
<span class="Noterminales">L (35)</span>
<l
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (27)</span>
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Q (38)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">C (51)</span>
<l
<span class="Noterminales">B (6)</span>
<l
<span class="Noterminales">S (8)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Sp (12)</span>
<span class="terminales">=</span>
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (29)</span>
<l
<span class="terminales">cteEntera</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">C (51)</span>
<span class="Noterminales">B (6)</span>
<span class="Noterminales">S (11)</span>
<l
<span class="terminales">return</span>
<span class="Noterminales">X (40)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">;</span>
```

```
<span class="Noterminales">C (52)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">}</span>
<span class="Noterminales">A (1)</span>
<l
<span class="Noterminales">B (4)</span>
<l
<span class="terminales">if</span>
<span class="terminales">(</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (20)</span>
<span class="terminales">==</span>
<span class="Noterminales">U (21)</span>
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (32)</span>
<l
<span class="terminales">false</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="terminales">)</span>
<span class="Noterminales">S (9)</span>
<l
<span class="terminales">print</span>
<span class="Noterminales">E (15)</span>
<span class="Noterminales">R (18)</span>
<span class="Noterminales">U (21)</span>
<span class="Noterminales">V (24)</span>
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="terminales">;</span>
<span class="Noterminales">A (1)</span>
<span class="Noterminales">B (7)</span>
<span class="terminales">switch</span>
<span class="terminales">(</span>
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="terminales">{</span>
```

```
<span class="Noterminales">Z (57)</span>
<l
<span class="terminales">default</span>
<span class="terminales">:</span>
<span class="Noterminales">0 (58)</span>
<l
<span class="Noterminales">B (6)</span>
<span class="Noterminales">S (8)</span>
<span class="terminales">id</span>
<span class="Noterminales">Sp (14)</span>
<span class="terminales">(</span>
<span class="Noterminales">L (35)</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (27)</span>
<l
<span class="terminales">id</span>
<span class="Noterminales">Pp (33)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<l
<span class="terminales">lambda</span>
```

```
<span class="Noterminales">Rp (19)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Q (38)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">)</span>
<span class="terminales">;</span>
<span class="Noterminales">Op (60)</span>
<span class="Noterminales">B (6)</span>
<span class="Noterminales">S (9)</span>
<span class="terminales">print</span>
<span class="Noterminales">E (15)</span>
<l
<span class="Noterminales">R (18)</span>
<l
<span class="Noterminales">U (21)</span>
<l
<span class="Noterminales">V (24)</span>
<l
<span class="Noterminales">P (30)</span>
<l
<span class="terminales">cadena</span>
```

```
<span class="Noterminales">Vp (25)</span>
<l
<span class="terminales">lambda</span>
<span class="Noterminales">Up (22)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Rp (19)</span>
<span class="terminales">lambda</span>
<span class="Noterminales">Ep (16)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">;</span>
<span class="Noterminales">Op (62)</span>
<l
<span class="terminales">lambda</span>
<span class="terminales">}</span>
```

```
<span class="Noterminales">A (3)</span>
<l
<span class="terminales">eof</span>
</body>
</html>
Caso de Prueba #3
Código fuente
/*
   CASO DE PRUEBA #1
*/
print "Introduce el resultado de 6+6*2: ";
let a_1 int = 0;
input a_1;
let num int = 5;
if (a_1 == 18)
   print "Bien!!";
```

```
print "Introduce un número para sumarle a 18: ";
if (a_1 == 18)
if (a_1 == 18) input num;
switch (a_1) {
    case 24:
        print ":( es 6*2 = 12 y luego 12 + 6 = 18 no 24";
        print "Introduce un número para sumarle a 24: ";
        input num;
        break;
    default:
        print "Vaya " + a_1 + " no es correcto.";
}
function Suma int (int a, int b) {
    j=a+b;
    return j;
    /* La función finaliza y devuelve el valor entero de la expresión */
}
print a_1 + " + " + num + " = ";
print Suma(a_1,num);
INCORRECTOS
Caso de Prueba # 4
Código fuente
/*
    CASO DE PRUEBA #4: Estructura de switch incorrecta
*/
print "Introduce el resultado de 6+6*2: ";
let a_1 int = 0;
input a_1;
let num int = 5;
function funcPrint string () {
    print "Bien!!";
```

```
print "Introduce un número para sumarle a 18: ";
    input num;
}
if (a_1 == 18) funcPrint();
switch (a_1) {
    case num:
        print ":( es 6*2 = 12 y luego 12 + 6 = 18 no 24";
        print "Introduce un número para sumarle a 24: ";
        input num;
        break;
    default:
        print "Vaya " + a_1 + " no es correcto.";
}
function Suma int (int a, int b) {
    j=a+b;
    return j;
    /* La función finaliza y devuelve el valor entero de la expresión */
}
print a_1 + " + " + num + " = ";
print Suma(a_1,num);
Error
Línea 23 - Código de error 100:
        ERROR SINTÁCTICO - Token id no esperado. Se esperaba cteEntera
Caso de Prueba # 5
Código fuente
/*
    CASO DE PRUEBA #5: Estructura de funcion incorrecta
*/
```

```
print "Introduce el resultado de 6+6*2: ";
let a_1 int = 0;
input a_1;
let num int = 5;
function funcPrint string (let) {
    print "Bien!!";
    print "Introduce un número para sumarle a 18: ";
    input num;
}
if (a_1 == 18) funcPrint();
switch (a_1) {
    case 24:
        print ":( es 6*2 = 12 y luego 12 + 6 = 18 no 24";
        print "Introduce un número para sumarle a 24: ";
        input num;
        break;
    default:
        print "Vaya " + a_1 + " no es correcto.";
}
function Suma int (int a, int b) {
    j=a+b;
    return j;
    /* La función finaliza y devuelve el valor entero de la expresión */
}
print a 1 + " + " + num + " = ";
print Suma(a_1,num);
Error
Línea 14 - Código de error 121:
        ERROR SINTÁCTICO - Token let no es una declaración válida de un argumento
de una función
```

Caso de Prueba # 6

```
Código fuente
/*
    CASO DE PRUEBA #6: Declarar una función como sentencia de un if
*/
print "Introduce el resultado de 6+6*2: ";
let a_1 int = 0;
input a_1;
let num int = 5;
if (true) function funcPrint string () {
    print "Bien!!";
    print "Introduce un número para sumarle a 18: ";
    input num;
}
if (a_1 == 18) funcPrint();
switch (a_1) {
    case 24:
        print ":( es 6*2 = 12 y luego 12 + 6 = 18 no 24";
        print "Introduce un número para sumarle a 24: ";
        input num;
        break;
    default:
        print "Vaya " + a_1 + " no es correcto.";
}
function Suma int (int a, int b) {
    j=a+b;
    return j;
    /* La función finaliza y devuelve el valor entero de la expresión */
}
print a_1 + " + " + num + " = ";
```

```
print Suma(a_1,num);
```

<u>Error</u>

Línea 14 - Código de error 103:

 ${\sf ERROR}$ SINTÁCTICO - Token function no pertenece al primer elemento de una sentencia simple válida