Decision Tree Classifier

Dr.Manju
Venugopalan
Department of Computer Science & Engineering
Amrita School of Engineering, Bengaluru

What are Decision trees?

- A decision tree is a tree in which each branch node represents a choice between a number of alternatives, and each leaf node represents a decision.
- A type of supervised learning algorithm.

Decision Tree An Example

Whether to approve/reject a loan application?

Figure 4.4. A decision tree for the mammal classification problem.

Class

Numerical attribute

Example data

Training Examples:

	Action	Author	Thread	Length	Where
e1	skips	known	new	long	Home
e2	reads	unknown	new	short	Work
е3	skips	unknown	old	long	Work
e4	skips	known	old	long	home
e5	reads	known	new	short	home
e6	skips	known	old	long	work

New Examples:

e7	???	known	new	short	work	
e8	???	unknown	new	short	work	

Basic Algorithm for Top-Down Induction of Decision Trees

[ID3, C4.5 by Quinlan]

node = root of decision tree

Main loop:

- 1. $A \leftarrow$ the "best" decision attribute for the next node.
- 2. Assign A as decision attribute for node.
- 3. For each value of A, create a new descendant of node.
- 4. Sort training examples to leaf nodes.
- 5. If training examples are perfectly classified, stop. Else, recurse over new leaf nodes.

How do we choose which attribute is best?

Choices

- When to stop
 - no more input features
 - all examples are classified the same
 - too few examples to make an informative split
- Which test to split on
 - split gives smallest error.
 - With multi-valued features
 - split on all values or
 - split values into half.

Which Attribute is "best"? [29+,35-] $A_1=?$ [29+,35-] $A_2 = ?$ True False False True [18+, 33-] [21+, 5-] [8+, 30-] [11+, 2-]

Principled Criterion

- Selection of an attribute to test at each node choosing the most useful attribute for classifying examples.
- information gain
 - measures how well a given attribute separates the training examples according to their target classification
 - This measure is used to select among the candidate attributes at each step while growing the tree
 - Gain is measure of how much we can reduce uncertainty (Value lies between 0,1)

Entropy

- The entropy is 0 if the outcome is ``certain".
- The entropy is maximum if we have no knowledge of the system (or any outcome is equally possible).
- S is a sample of training examples
- p₊ is the proportion of positive examples
- p₋ is the proportion of negative examples
- Entropy measures the impurity of S Entropy(S) = $-p_+\log_2 p_+ - p_-\log_2 p_-$

How to choose best decision node

Which node can be described easily?

- Less impure node requires less information to describe it.
- → More impure node requires more information.

===> Information theory is a measure to define this degree of disorganization in a system known as **Entropy**.

- Entropy is 0 if all the members of S belong to the same class.
- Entropy is 1 when the collection contains an equal no. of +ve and -ve examples.
- Entropy is between 0 and 1 if the collection contains unequal no. of +ve and -ve examples.

Information Gain

Gain(S,A): expected reduction in entropy due to partitioning S on attribute A

$$Gain(S,A)=Entropy(S) - \sum_{v \in values(A)} |S_v|/|S| Entropy(S_v)$$

Information Gain

```
Entropy([21+,5-]) = 0.71

Entropy([8+,30-]) = 0.74

Gain(S,A<sub>1</sub>)=Entropy(S)

-26/64*Entropy([21+,5-])

-38/64*Entropy([8+,30-])

=0.27
```


Exampl

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Enloopy (5): -9 log 2 9 - 54 log 2 5 14 log 2 14

+Class P: buys_computer = "yes"

+Class N: buys_computer = "no"

Gain (S, Age) $Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$ = Entropy (s) - 5 Entropy ([2+,3-]) -4 Entropy [4+, 0-] -5 Entropy [(\$3+, 2-)] $= 0.94 - \frac{5}{14} \left[-\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5} \right]$ + 4 [-4 log 2 4] 1-5[-3log 2 5 - 2 log 2] = 0.94 - 5 [0.968] - 4 [0] - 5 [0.968 20.94 - 0.36 reason - 0.36 = 0.25

Gain(age) = 0.25 Gain(income) = 0.029 Gain(student) = 0.151 $Gain(credit_rating) = 0.048$

Age has maximum information gain. So age is selected as the best node to split. So age is selected as root node

Building The Tree: we choose "age" as a root

income	student	credit	class
high	no	fair	yes
low	yes	excellent	yes
medium	no	excellent	yes
high	yes	fair	yes

Building The Tree: "age" as the root

<=<u>30</u>

income	student	credit	class	
high	no	fair	no	
high	no	excellent	no	
medium	no	fair	no	
low	yes	fair	yes	
medium	yes	excellent	yes	

1	S > age <= 30 [3+, 2-]
Section 1995 to the sectio	E (Sage) = -3/5 log -3/5 - 2/5 log 2/5
i i	=0.968 =0.968
	Grain (Sage, Income) = E(Sage) - 2 E([0+,2])
1 "	-2 E([1+,1-]) - = E([1+,0-])
	-0.968-0-是(主)0g主生的92]-0
9 1	- 0.568

<=30_____

income	student	credit	class	
high	no	fair	no	
high	no	excellent	no	
medium	no	fair	no	
low	yes	fair	yes	
medium	yes	excellent	yes	

Building The Tree: we chose "student" on <=30 branch

Building The Tree: we chose "student" on <=30 branch

Building The Tree: we chose "credit" on >40 branch

Final tree

Rules extracted from the tree

The rules are:

```
IF age = "<=30" AND student = "no" THEN
  buys computer = "no"
IF age = "<=30" AND student = "yes" THEN
  buys computer = "yes"
IF age = "31...40"
                                     THEN
  buys computer = "yes"
IF age = ">40" AND credit rating = "excellent"
  buys computer = "no"
IF age = ">40" AND credit rating = "fair" THEN
  buys computer = "yes"
```

Inductive

Bias

• Shorter trees are preferred over larger trees

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - <u>Prepruning</u>: *Halt tree construction early*-do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - <u>Postpruning</u>: *Remove branches* from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Attribute Selection Measures

- Information gain:
 - biased towards multivalued attributes
- Gain ratio:

$$GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}$$

SplitInformation(S, A)
$$\equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

• tends to prefer unbalanced splits in which one partition is much smaller than the others

• Gini index:

$$gini(D) = 1 - \sum_{j=1}^{n} p_j 2$$

- where pj is the relative frequency of class j in D
- Choose attribute with low gini index
- has difficulty when # of classes is large
- tends to favor tests that result in equal-sized partitions and purity in both partitions

Decision tree suited when -

- Instances are represented by attribute-value pairs
- The target function has discrete output values
- The training data may contain errors.
- The training data may contain missing attribute values

Thank you

