目次

1	Int	roduction	1
2	加法	は手的圏とアーベル圏	1
3	単射的対象		1
	3.1	単射的対象	1
	3.2	単射的分解が R-mod の場合に存在すること	1
	3.3	導来関手の定義	2
	3.4	導来関手が一意である条件?	2
4	導来関手の存在証明		2
	4.1	$f:A \rightarrow B$ が単射的分解同士の射に拡張できること \dots	2
	4.2	上で拡張した射同士が chain homotopy となること	2
	4.3	$T_0F = F$	2
	4.4	コホモロジー長完全系列 (δ functor) の存在の証明 \ldots	2
	4.5	コホモロジー長完全列同士の射の自然性	2
	4.6	単射的対象に対するコホモロジーが消滅すること	2
	4.7	subsection name	2
5	abelian category における Kernel の随伴関手		2
	5.1	<i>C</i> * の定義	2
	5.2	Kernel とその随伴関手の定義	3
		5.2.1 随伴関手になることの確認	3

1 Introduction

アーベル圏の導来関手について自分なりに理解をまとめる. 最終的に導来 関手の存在と一意性を示す. 可能であれば群 cohomology 等で確認をしたい.

2 加法手的圏とアーベル圏

additive category, abelian category を定義し, その性質をみる. ========TBD======

3 単射的対象

以降では圏Cはアーベル圏と仮定して議論する.

3.1 単射的対象

単射的対象を定義し、単射的対象の性質を述べる.特に、単射的対象が存在すれば、単射的分解が存在することを示す.

Definition 3.1. 以下が成り立つ時, I は単射的対象という.

3.2 単射的分解が R-mod の場合に存在すること

======TBD==========

- 3.3 導来関手の定義
- 3.4 導来関手が一意である条件?
- 4 導来関手の存在証明
- 4.1 $f: A \rightarrow B$ が単射的分解同士の射に拡張できること
- 4.2 上で拡張した射同士が chain homotopy となること
- **4.3** $T_0F = F$
- 4.4 コホモロジー長完全系列 (δ functor) の存在の証明
- 4.5 コホモロジー長完全列同士の射の自然性
- 4.6 単射的対象に対するコホモロジーが消滅すること
- 4.7 subsection name

5 abelian category における Kernel の随伴関手

Kernel の随伴関手を定義する。以下の順序にて説明する。

- 1. abelian category C に対し、随伴で移り合う category C^* を定義する。
- 2. Kernel とその随伴になる関手を定義する。
- 3. 実際に随伴となっていることを確認する。

5.1 \mathcal{C}^* の定義

C を abelian category とする。 C^* を以下で定義する。

- 1. $Obj(\mathcal{C}^*)$ はある $Y, Z \in \mathcal{C}$ が存在し、 $f \in Hom_{\mathcal{C}}(Y, Z)$ となる f 全体
- 2. $f: Y \to Z, g: Y' \to Z'$ に対し、 $\tau \in \operatorname{Hom}(f,g)$ は $\tau_Y: Y \to Y', \tau_Z: Z \to Z'$ であって、 $g \circ \tau_Y = \tau_Z \circ f$ を満たすもの全体

Remark. C^* は abelian category(のはず)。

5.2 Kernel とその随伴関手の定義

(コホモロジーのこころの Ker の定義がよくわからなかったので)C の射 $f:Y\to Z$ の Kernel を以下で定義する。任意の $f\circ g=0$ となる $g:X\to Y$ に対し、以下が可換になる射 $X\to \operatorname{Ker} f$ がただ一つ存在するような $(\operatorname{Ker} f,i)$ の組のことを f の Kernel という。

Remark. TeX力がないので、いい可換図式がかけません。 TeXGod がいたら、教えてください。

これは、 $\operatorname{Hom}_{\mathcal{C}}(X,\operatorname{Ker} f)$ と f が誘導する準同型 $f^*:\operatorname{Hom}_{\mathcal{C}}(X,Y)\to\operatorname{Hom}_{\mathcal{C}}(X,Z)$ の Kernel の間に自然な同型があることを意味している。

functor Ker : $\mathcal{C}^* \to \mathcal{C}$ を以下で定義する。 $f: Y \to Z$ に対し、関手 Ker の f の像を abelian category \mathcal{C} の Ker f とする。 \mathcal{C}^* 上の $f: Y \to Z, g: Y' \to Z'$ に対する射 (τ_Y, τ_Z) に対し、Ker f から Ker g への射を以下で定める。

これは $f\circ i_f$ が 0 射になり、図式の可換性から、 $g\circ \tau_Y\circ i_f$ が 0 射となる。よって、Kernel の universality から Kerf から Kerg の射がただひとつ定まるので、Well-defined となる。

Kernel の随伴関手 $F: \mathcal{C} \to \mathcal{C}^*$ を定義する。 $X \in \mathcal{C}$ に対し、 $F(X) = 0_X: X \to 0$ で定める。 $f: Y \to Z$ に対し、 $F(f) = (f, \tau_0)$ と定める。

$$Y \xrightarrow{0} 0$$

$$\downarrow f \quad \circlearrowleft \quad \downarrow \tau_0$$

$$Z \xrightarrow{0} 0$$

5.2.1 随伴関手になることの確認

 $\operatorname{Hom}(X,\operatorname{Ker} f) \sim \operatorname{Hom}(F(X),f)$ を示す。 $g \in \operatorname{Hom}(X,Y)$ を、 $(g.0) \in \operatorname{Hom}(F(X),f)$ となるようにとる。すると、Kernel の universality より以下の可換図式が成りたつような射 $g':X \to \operatorname{Ker} f$ がただひとつ存在する。よって、示された。

$$\begin{array}{ccc} X \xrightarrow{i_X} X \xrightarrow{0} 0 \\ & & \downarrow g & \downarrow \tau_0 \\ & & \downarrow g & \downarrow & \downarrow \tau_0 \\ \text{Ker} f \xrightarrow{i_f} Y \xrightarrow{f} Z \end{array}$$

Remark. 自然性はエクササイズでお願いします。燃え尽きました。