

# Universidade Federal de Minas Gerais Escola de Engenharia

Redes Neurais Artificiais: Teoria e Aplicações  ${\rm Turma~A-2021/2}$ 

## Lista de Exercícios - Adaline

Autores: Vítor Gabriel Reis Caitité  $\begin{tabular}{ll} Email: \\ vcaitite@ufmg.br \end{tabular}$ 

2 de dezembro de 2021

## Sumário

| T | Obj             | etivo                                                            | 2 |  |  |  |  |  |  |  |  |  |  |
|---|-----------------|------------------------------------------------------------------|---|--|--|--|--|--|--|--|--|--|--|
| 2 | Bas             | Base de Dados                                                    |   |  |  |  |  |  |  |  |  |  |  |
| 3 | Desenvolvimento |                                                                  |   |  |  |  |  |  |  |  |  |  |  |
|   | 3.1             | Desenvolvimento e Validação do Modelo                            | 2 |  |  |  |  |  |  |  |  |  |  |
|   | 3.2             | Geração de Modelos com Menos Variáveis                           | 5 |  |  |  |  |  |  |  |  |  |  |
|   |                 | 3.2.1 Modelo 1                                                   | 5 |  |  |  |  |  |  |  |  |  |  |
|   |                 | 3.2.2 Modelo 2                                                   | 6 |  |  |  |  |  |  |  |  |  |  |
|   |                 | 3.2.3 Modelo 3                                                   | 6 |  |  |  |  |  |  |  |  |  |  |
|   |                 |                                                                  |   |  |  |  |  |  |  |  |  |  |  |
| L | ista            | de Figuras                                                       |   |  |  |  |  |  |  |  |  |  |  |
|   | _,,             |                                                                  |   |  |  |  |  |  |  |  |  |  |  |
|   | 1               | Organização da base de dados "Boston house prices"               | 2 |  |  |  |  |  |  |  |  |  |  |
|   | 2               | Evolução do erro quadrático durante o treinamento                |   |  |  |  |  |  |  |  |  |  |  |
|   | 3               | Distribuição da variável MEDV para os dados de teste             | 4 |  |  |  |  |  |  |  |  |  |  |
|   | 4               | Distribuição encontrada pelo modelo para a variável MEDV para os |   |  |  |  |  |  |  |  |  |  |  |
|   |                 | dados de teste.                                                  | 4 |  |  |  |  |  |  |  |  |  |  |
|   | 5               | Correlação entre as variáveis do dataset                         | 5 |  |  |  |  |  |  |  |  |  |  |
|   | 6               | Comportamento das variáveis "LSTAT", "RM", "PTRATIO" com relação |   |  |  |  |  |  |  |  |  |  |  |
|   |                 | a variável MEDV.                                                 | 6 |  |  |  |  |  |  |  |  |  |  |

### 1 Objetivo

Para a base de dados Boston Housing, será resolvido o problema de regressão (13 variáveis de entrada e variável MEDV de saída) usando a rede Adaline, conforme a seção 3.4.6 das notas de aula. Além disso, tendo como base a figura 3.7 das notas de aula, será avaliado, também, o desempenho de modelos (pelo menos 3 modelos diferentes) com menos variáveis (por exemplo: as variáveis 9 e 10 apresentam alta correlação linear, logo, um dos modelos não incluirá a variável 9).

#### 2 Base de Dados

As principais características do dataset "Boston house prices" [1] são:

- Número de instâncias: 506
- Número de atributos: 13 preditivos numéricos / categóricos. O valor mediano (atributo 14) é geralmente o alvo de predição.

Na Figura 1 é possível observar as primeiras 5 instâncias dessa base de dados.

|   | CRIM    | ZN   | INDUS | CHAS | NOX   | RM    | AGE  | DIS    | RAD | TAX   | PTRATIO | В      | LSTAT | MEDV |
|---|---------|------|-------|------|-------|-------|------|--------|-----|-------|---------|--------|-------|------|
| 0 | 0.00632 | 18.0 | 2.31  | 0.0  | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3    | 396.90 | 4.98  | 24.0 |
| 1 | 0.02731 | 0.0  | 7.07  | 0.0  | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8    | 396.90 | 9.14  | 21.6 |
| 2 | 0.02729 | 0.0  | 7.07  | 0.0  | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8    | 392.83 | 4.03  | 34.7 |
| 3 | 0.03237 | 0.0  | 2.18  | 0.0  | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7    | 394.63 | 2.94  | 33.4 |
| 4 | 0.06905 | 0.0  | 2.18  | 0.0  | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7    | 396.90 | 5.33  | 36.2 |

Figura 1: Organização da base de dados "Boston house prices".

Este conjunto de dados foi obtido da biblioteca StatLib, que é mantida na Carnegie Mellon University. Além disso ele obtido pelo link: https://archive.ics.uci.edu/ml/machine-learning-databases/housing/.

#### 3 Desenvolvimento

### 3.1 Desenvolvimento e Validação do Modelo

Primeiramente o algoritmo do Adaline ser desenvolvido conforme as instruções presentes nas notas de aula. O treinamento da rede foi realizado utilizando 70% dos dados para treinamento e 30% para teste.

Na Figura 2 é possível observar a evolução do erro quadrático por época do treinamento.



Figura 2: Evolução do erro quadrático durante o treinamento.

Para avaliação do modelo a principal medida utilizada foi a RMSE (root mean squared error). Essa medida calcula "a raiz quadrática média" dos erros entre valores observados (reais) e predições (hipóteses).

$$RMSE = \sqrt{\frac{1}{N} \sum_{j=1}^{N} |y_j - \hat{y}_j|}$$
 (1)

O resultado médio obtido após 10 execuções foi:

The model performance for testing set

-----

RMSE is 5.270774704797643 R2 score is 0.7001715444096551

Nas Figuras 3 e 4 é possível observar a distribuição da variável de predição MEDV para os valores reais e para os previstos pelo modelo. Essas figuras foram geradas

para os 30% de dados separados para teste.



Figura 3: Distribuição da variável MEDV para os dados de teste.



Figura 4: Distribuição encontrada pelo modelo para a variável MEDV para os dados de teste.

Através desses resultados foi possível observar que o modelo proposto conseguiu aproximar o comportamento da variável MEDV com base nas features de entrada.

#### 3.2 Geração de Modelos com Menos Variáveis

Primeiramente foi plotado a matriz de correlação como pode ser vista na Figura 5.



Figura 5: Correlação entre as variáveis do dataset.

#### 3.2.1 Modelo 1

O modelo 1 foi gerado desconsiderando variáveis altamente correlacionadas. Como as variáveis 9 e 10 apresentam alta correlação linear, então a variável 9 (RAD) será excluída desse modelo. O mesmo ocorre para as *features* 5, 7 e 8 (por isso as variáveis 7 (AGE) e 8 (DIS) também não serão consideradas).

Utilizando as mesmas métricas apresentadas anteriormente obteve-se o seguinte resultado:

| The | ${\tt model}$ | ${\tt performance}$ | for | testing | set |
|-----|---------------|---------------------|-----|---------|-----|
|     |               |                     |     |         |     |

RMSE is 5.618691785743369 R2 score is 0.6357149989232859

#### 3.2.2 Modelo 2

O modelo 2 foi gerado considerando apenas as três variáveis mais correlacionadas com a variável de predição MEDV. Como pôde-se observar na matriz de correlações acima, estas são: "LSTAT", "RM", "PTRATIO". O comportamento de cada uma dessas variáveis com relação a variável MEDV pode ser visto na Figura 6.



Figura 6: Comportamento das variáveis "LSTAT", "RM", "PTRATIO" com relação a variável MEDV.

Pode-se observar um comportamento aproximadamente linear principalmente das variáveis "LSTAT", "RM" com relação a variável de predição.

O modelo 2, utilizando apenas as 3 variáveis citadas, obteve-se o seguinte resultado:

The model performance for testing set

RMSE is 5.350940177286979 R2 score is 0.6626069312939527

## Modelo 3

3.2.3

Por fim, para o modelo 3 foi utilizado o algoritmo de PCA para extração de features. O modelo foi testado para diferentes números de features selecionadas pelo PCA e o RMSE médio de 20 execuções para cada um dos casos pode ser visto abaixo.

#### The model performance for testing set

-----

RMSE médio para modelo considerando 1 features: 7.392 +/- 0.539

RMSE médio para modelo considerando 2 features: 6.859 +/- 0.649

RMSE médio para modelo considerando 3 features: 5.674 +/- 0.491

RMSE médio para modelo considerando 4 features: 5.480 +/- 0.671

RMSE médio para modelo considerando 5 features: 5.447 +/- 0.626

RMSE médio para modelo considerando 6 features: 5.252 +/- 0.580

RMSE médio para modelo considerando 7 features: 5.306 +/- 0.522

RMSE médio para modelo considerando 8 features: 5.267 +/- 0.590

RMSE médio para modelo considerando 9 features: 5.266 +/- 0.529

RMSE médio para modelo considerando 10 features: 5.323 +/- 0.460

RMSE médio para modelo considerando 12 features: 5.309 +/- 0.564

RMSE médio para modelo considerando 13 features: 5.179 +/- 0.507

#### Referências

[1] David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and the demand for clean air. *Journal of environmental economics and management*, 5(1):81–102, 1978.