Workshop Gruppenbildung

Wie verteile ich die Leute immer wieder anders?

Günter Jantzen

18. Juli 2022

- 2 n^2 -Workshops
 - Symmetrien in n^2 -Workshops

Definitionen

Workshop, Runden, Teams Ein Workshop findet in mehreren Runden statt und wird aufgeteilt in kleinere Workshop-Gruppen (auch kurz Teams). Ein Workshop mit k Teilnehmern heisst k-Workshop

Workshop-Bedingung

In keiner Runde darf ein Teilnehmer der gleichen Person ein zweites Mal begegnen.

Teilnahme-Bedingung

In jeder Runde ist die Anwesenheit aller Teilnehmer obligatorisch.

Definitionen 2

ausgeglichener k-Workshop Es werden in jeder Runde möglichst gleich große Teams gebildet, also z.B. Teamgrössen 3,3,4,4 bei einem 14-Workshop.

Ausgeglichenheit

Im folgenden sind alle Workshops ausgeglichen, auch wenn dies nicht erwähnt wird.

Beispiele für einen 14-Workshop mit 3 Runden

1	2	3	4	5	6	7	8	9	10	11	12	13	14
8	7	11	1	9	4	12	2	5	13	3	10	6	14
5	12	3	8	13	1	6	7	9	14	11	2	4	10

Maximalität und Vollständigkeit

maximaler k-Workshop Ein k-Workshop, bei dem sich keine weitere Runde hinzufügen lässt, entweder, weil dies überhaupt nicht mehr möglich ist, oder weil sonst die Ausgeglichenheit verlorengeht heisst maximaler k-Workshop.

vollständiger k-Workshop Ein vollständiger k-Workshop ist ein k-Workshop, bei dem alle Teilnehmer in irgendeiner Runde einmal aufeinander treffen.

n^2 -Workshop

Fragen ans Publikum

Alle Fragen beziehen sich auf einen n^2 -Workshop,

Frage 1

Wie viele Paare von Teilnehmern treffen in einem Team aufeinander?

Frage 2

Wie viele Paare von Teilnehmern treffen sich in einer Runde?

Frage 3

Der Workshop sei vollständig. Wie viele Paare von Teilnehmern treffen sich in dem Workshop?

Frage 4

Wie viele Runden hat also ein vollständiger n^2 -Workshop?

n^2 -Workshops

Frage 1

Frage

Wie viele Paare von Teilnehmern treffen in einem Team aufeinander?

Antwort

In einem Team von 3 Personen $\{1,2,3\}$ gibt es die Paare $\{1,2\},\{1,3\}$ und $\{2,3\}$, Nach der *Gaußschen* Regel für Dreieckssummen sind es bei n Personen

$$\sum_{i=1}^{n-1} i = \frac{(n-1) \cdot n}{2}$$

Paare.

n^2 -Workshop

Frage 2

Frage

Wie viele Paare von Teilnehmern treffen sich in einer Runde?

Antwort

$$\sum_{i=1}^{n-1} i \cdot n = \frac{(n-1) \cdot n^2}{2}$$

n^2 -Workshops

Frage 3

Frage

Der Workshop sei vollständig. Wie viele Paare von Teilnehmern treffen sich in dem Workshop?

Antwort

In einem vollständigen Workshop von $3\cdot 3$ Personen gibt es $1+2+3+\cdots +8$ Paare. In einem vollständigen Workshop von n^2

Personen sind es

$$\sum_{i=1}^{n^2-1} i = \frac{(n^2-1) \cdot n^2}{2}$$

Personen.

n^2 -Workshops

Frage 4

Frage

Wie viele Runden hat also ein vollständiger n^2 -Workshop Workshop?

Antwort

$$\frac{\frac{(n^2-1)\cdot n^2}{2}}{\frac{(n-1)\cdot n^2}{2}} = \frac{n^2-1}{n-1} = n+1$$

Gliederung

- n^2 -Workshops
 - ullet Symmetrien in n^2 -Workshops

Einleitung

- Im folgenden wird versucht die kombinatorischen Möglichkeiten abzuschätzen, Symmetrien zu erkennen, und diese so auszunutzen, dass deutlich weniger Möglichkeiten zu betrachten sind.
- Es ist gar nicht so wichtig, alle Rechnungen nachzuvollziehen, sondern eher die Begriffsbildungen, die dazu führen, dass nur noch typische Repräsentanten aus Äquivalenzklassen betrachtet werden.
- Das ist nur der Anfang. In den Workshops steckt noch viel mehr Symmetrie, als hier angesprochen wird.

Allererste Runde

Frage

Wie viele Möglichkeiten gibt es für die allererste Runde in einem n^2 -Workshop?

Antwort

 $n^2!$

Für n=3 sind das schon $9 \cdot 8 \cdot 7 \cdots 2 \cdot 1$. Das ist zu viel. Ab sofort werden Teams aufsteigend sortiert angegeben.

Sortierte Teams

Frage

Wie viele Möglichkeiten gibt es jetzt für die allererste Runde?

Antwort

$$\frac{n^2!}{n!^n}$$

Definition lexikalisch sortiert

lexikalisch sortierter n^2 -Workshop In einem n^2 -Workshop haben alle Teams die Größe n. Die Teams lassen sich als geordnete Integer-Tupel auffassen. Eine Runde ist *lexikalisch sortiert*, wenn die Team-Tupel von links nach rechts aufsteigend angeordnet sind. Der Workshop ist *lexikalisch sortiert*, wenn die lexikalisch sortierten Runden aufsteigend angeordnet sind (Ausschlaggebend ist hier das erste Team einer Runde).

Beispiele lexikalisch sortiert

0	1	2	3
0	2	1	3
0	3	1	2

0	1	2	3	4	8	5	6	7
0	3	6	1	4	7	2	8	5
0	4	5	1	8	6	2	3	7
0	8	7	1	3	5	2	4	6

Allererste Runde festlegen

Wir legen die allererste Runde als *Einheitsrunde* $0, 1, \cdots n^2$ fest und können diese Titelrunde in der Darstellung manchmal weglassen. Die verbleibenden Runden werden nullbasiert nummeriert.

0	1	2	3
0	2	1	3
0	3	1	2

0	1	2	3	4	5	6	7	8
0	3	6	1	4	7	2	5	8
0	4	8	1	5	6	2	3	7
0	5	7	1	3	8	2	4	6

Allererste Runde festlegen

Wir legen die allererste Runde als *Einheitsrunde* $0, 1, \cdots n^2$ fest und können diese Titelrunde in der Darstellung manchmal weglassen. Die verbleibenden Runden werden nullbasiert nummeriert.

0	3	6	1	4	7	2	5	8
0	4	8	1	5	6	2	3	7
0	5	7	1	3	8	2	4	6

Runde 0

Wie viele Möglichkeiten gibt es in einem nicht lexikalisch sortierten n^2 -Workshop mit Einheitsrunde, Zeile 0 korrekt zu füllen?

0	1	2	3	4	5	6	7	8
*	*	*	*	*	*	*	*	*

 $n!^n$

Runde 0 im sortierten Workshop

Wie viele Möglichkeiten gibt es in einem lexikalisch sortierten n^2 -Workshop mit Einheitsrunde, Zeile 0 korrekt zu füllen?

0	1	2	3	4	5	6	7	8
0	*	*	1	*	*	2	*	*

$$n!^{n-1}$$

Runde 0 im vollständigen sortierten Workshop

Wie viele Möglichkeiten gibt es in einem vollständigen lexikalisch sortierten n^2 -Workshop mit Einheitsrunde, Zeile 0 korrekt zu füllen?

0	1	2	3	4	5	6	7	8
0	3	*	1	*	*	2	*	*
0	4	*	1	*	*	2	*	*
0	5	*	1	*	*	2	*	*

$$\frac{n!^{n-1}}{n}$$

Definition normaler Workshop

normaler n^2 -Workshop In einem lexikalisch sortierten n^2 -Workshop mit Einheitsrunde, sei Runde 0 mit der kleinstmöglichen Belegung gewählt. Fortlaufend von 0 aufsteigend nummeriert, wird zuerst der erste Platz jedes Teams, dann der zweite jedes Teams, usw. belegt. Diese Darstellung heißt normaler n^2 -Workshop.

0	1	2	3	4	5	6	7	8
0	3	6	1	4	7	2	5	8

Anzahl lexikalisch sortierter vollständiger n^2 -Workshops

Sei c die Anzahl der Möglichkeiten, einen normalen n^2 -Workshop korrekt zu vervollständigen, dann ist die Anzahl lexikalisch sortierter vollständiger n^2 -Workshops

$$c \cdot \frac{n!^{n-1}}{n}$$

Rechts steht die Anzahl der korrekten Möglichkeiten zur Auswahl von Runde 0, links die Anzahl der Möglichkeiten, diese Auswahl in weiteren Runden korrekt zu vervollständigen.