Centrality of the London Underground Network following Random and Targeted Attacks

Before Attack:

Important nodes are those that are extensively linked with other nodes, with high centrality generally indicating high importance. This analysis uses two centrality measures: Degree Centrality (DC) and Betweenness Centrality (BC).

The network comprises 266 stations, with 73% having a DC of 0.00755 (Figures 1, 2). The station with the highest DC value, 0.02642, is Baker Street, which has a degree value of 7. Additionally, Baker Street has the highest BC value, 0.34222. Green Park and King's Cross St. Pancras also have high BC (Figure 4).

Figure 2: Histogram of Degree Centrality Values on the London Underground Network. Created using Networkx and Pandas in Python.

Figure 1: London Underground Network, created using Networkx in Python.

Stations with high centrality, like Waterloo, act as connectors between different lines (Figure 3). Notably, Bethnal Green and Stratford have high BC, indicating their importance despite their low degree of direct connections, with values of 2 and 3 respectively (Figure 4).

Figure 3: Centrality Graphs of the London Underground Network, created using Networkx in Python.

	name	degree	betw_centrality	degree_centrality		name	degree	betw_centrality	d
0	Baker Street	7	0.34222	0.02642	0	Baker Street	7	0.34222	
92	King's Cross St. Pancras	7	0.20009	0.02642	14	Green Park	6	0.33773	
4	Oxford Circus	6	0.14634	0.02264	48	Liverpool Street	5	0.27736	
22	Waterloo	6	0.27436	0.02264	22	Waterloo	6	0.27436	
115	Earl's Court	6	0.20716	0.02264	23	Bank	5	0.25450	
14	Green Park	6	0.33773	0.02264	27	Westminster	4	0.25367	
23	Bank	5	0.25450	0.01887	49	Bethnal Green	2	0.23785	
137	Turnham Green	5	0.12984	0.01887	63	Mile End	4	0.23748	
48	Liverpool Street	5	0.27736	0.01887	8	Bond Street	4	0.23554	
17	Paddington	5	0.18005	0.01887	99	Stratford	3	0.22668	

Figure 4: Tables displaying the ten highest stations base on Degree Centrality (left) and Betweenness Centrality (right).

Created using Networkx and Pandas in Python.

Random attack:

While nearly all stations retained their degree value following a random attack, DC increases slightly due to the reduction in the total number of nodes; 263 compared to 266 (Figure 5). For instance, Baker Street's DC increased from 0.02642 to 0.02672. The top ten stations with the highest BC, although now in a different order, remained unchanged (Figure 6). These findings suggest that the removal of random stations has minimal impact on the importance of key stations within the network.

Figure 5: Centrality Graphs of the London Underground Network following a random attack and the removal of three stations: Blackhorse Road, Golders Green, and Hounslow West. Created using Networkx in Python.

	name	degree	betw_centrality	degree_centrality		name	degree	betw_centrality	degree_cent
0	Baker Street	7	0.33104	0.02672	0	Baker Street	7	0.33104	0.0
92	King's Cross St. Pancras	7	0.17029	0.02672	14	Green Park	6	0.32177	0.0
22	Waterloo	6	0.27197	0.02290	22	Waterloo	6	0.27197	0.0
4	Oxford Circus	6	0.11956	0.02290	48	Liverpool Street	5	0.26789	0.0
115	Earl's Court	6	0.18211	0.02290	23	Bank	5	0.25203	0.0
14	Green Park	6	0.32177	0.02290	27	Westminster	4	0.25010	0.0
48	Liverpool Street	5	0.26789	0.01908	8	Bond Street	4	0.23395	0.0
17	Paddington	5	0.17363	0.01908	49	Bethnal Green	2	0.22991	0.0
23	Bank	5	0.25203	0.01908	63	Mile End	4	0.22987	0.0
137	Turnham Green	5	0.10482	0.01908	99	Stratford	3	0.22006	0.0

Figure 6: Tables displaying the top ten stations base on Degree Centrality (left) and Betweenness Centrality (right) following a random attack. Created using Networkx and Pandas in Python.

Targeted Attack:

Following a targeted attack and the removal of three stations based on passenger entry counts, there is a shift in the locations of important nodes based on centrality values (Figure 7). Furthermore, the most significant stations based on BC changed, with the appearance of stations such as Tottenham Court Road, Finchley Road, Holborn, London Bridge and Earl's Court (Figure 8).

BC values of the most important stations decreased. For example, Baker Street on the original network has a BC of 0.34222 and following a random attack a value of 0.33104. However, following a targeted attack, BC is 0.29993.

Figure 7: Centrality Graphs of the London Underground Network following a targeted attack and the removal of three stations: King's Cross St. Pancras, Liverpool Street and Waterloo. Created using Networkx in Python.

	name	degree	betw_centrality	degree_centrality		name	degree	betw_centrality	degree_cent
0	Baker Street	7	0.29993	0.02672	0	Baker Street	7	0.29993	0.0
14	Green Park	6	0.23046	0.02290	4	Oxford Circus	6	0.29727	0.0
112	Earl's Court	6	0.19188	0.02290	14	Green Park	6	0.23046	0.0
4	Oxford Circus	6	0.29727	0.02290	8	Bond Street	4	0.21693	0.0
134	Turnham Green	5	0.12187	0.01908	41	Tottenham Court Road	4	0.19631	0.0
17	Paddington	5	0.15618	0.01908	10	Finchley Road	4	0.19554	0.0
61	Mile End	4	0.07761	0.01527	42	Holborn	4	0.19403	0.0
172	Wembley Park	4	0.17604	0.01527	52	London Bridge	4	0.19245	0.0
220	Stockwell	4	0.10056	0.01527	112	Earl's Court	6	0.19188	0.0
210	Camden Town	4	0.13451	0.01527	22	Bank	3	0.18735	0.0

Figure 8: Tables displaying the top ten stations base on Degree Centrality (left) and Betweenness Centrality (right) following a targeted attack. Created using Networkx and Pandas in Python.

Discussion:

The median BC is lowest following a random attack. Additionally, low centrality nodes increased, with a greater number of stations having a BC less than 0.04 (Figure 9). This is partly due to the positioning of the randomly removed stations, which resulted in isolating sections of the network, visible in the north and southwest (Figure 5).

Figure 9: Histogram and Boxplot comparing Betweenness Centrality Values Before an Attack, After a Random Attack and After a Targeted Attack. Created using Networkx, Pandas and Seaborn in Python.

Overall, a targeted attack would be the most damaging, with station removal causing major disruption. When random stations are removed, particularly if they have low centrality, it has little effect on the network, and stations with high centrality remain the most important. However, when a targeted attack is conducted, there is a greater impact on the network's makeup, and the locations of high centrality shifts.

Future analysis may wish to investigate other network measures, such as closeness centrality, to determine the most damaging attack strategy.