Feuille d'exercices Suites et limites

N'hésitez pas à m'envoyer un mail si vous avez des questions. 1

1 Suites

Exercice 1. Calculs de termes (\star)

Calculer les quatre premiers termes des suites suivantes.

$$u: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 3 \end{array} \qquad v: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 3n+1 \end{array}$$

Exercice 2. Des propriétés classiques (*)

Soit $u: \mathbb{N} \to \mathbb{R}$ une suite réelle. On dit que :

- u est croissante si pour tous entiers $n \leq m$, on a $u_n \leq u_m$,
- u est décroissante si pour tous entiers $n \leq m$, on a $u_n \geq u_m$,
- u est minorée s'il existe $m \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, on a $u_n \geq m$.
- u est majorée s'il existe $M \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, on a $u_n \leq M$.
- u n'est pas minorée si pour tout $m \in \mathbb{R}$, il existe $n \in \mathbb{N}$ tel que $u_n < m$.
- u n'est pas majorée si pour tout $M \in \mathbb{R}$, il existe $n \in \mathbb{N}$ tel que $u_n > M$.
- 1. Donner un exemple de suite croissante.
- 2. Donner un exemple de suite majorée et un de suite non majorée.
- 3. Donner un exemple de suite non majorée et non croissante.
- 4. Mêmes questions en remplaçant croissante par décroissante et majorée par minorée.
- 5. Donner un exemple de suite qui n'est ni croissante, ni décroissante.
- 6. Dire si les suites suivantes sont croissantes/décroissantes, majorées ou non, minorées ou non :

^{1.} vadim.lebovici@ens.fr

2 Limites

Exercice 3. Quelques exemples (*)

1. Montrer que la suite suivante converge et donner sa limite.

$$u: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 3 \end{array}$$

2. Montrer que la suite suivante diverge.

$$v: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 3n \end{array}$$

Exercice 4. Opérations sur les limites (*)

Soient $u: \mathbb{N} \to \mathbb{R}$ et $v: \mathbb{N} \to \mathbb{R}$ deux suites réelles convergeant respectivement vers des limites $\ell \in \mathbb{R}$ et $\ell' \in \mathbb{R}$ et soit $\lambda > 0$ un nombre réel.

- 1. Montrer que $\lambda \cdot u_n \xrightarrow[n \to +\infty]{} \lambda \cdot \ell$.
- 2. Montrer que $u_n v_n \xrightarrow[n \to +\infty]{} \ell \ell'$.

Exercice 5. Suites croissantes non majorées (**)

Soit $u: \mathbb{N} \to \mathbb{R}$ une suite telle que :

- (i) (u est croissante) pour tous entiers $n \leq m$, on a $u_n \leq u_m$,
- (ii) (u n'est pas majorée) pour tout $M \in \mathbb{R}$, il existe $n \in \mathbb{N}$ tel que $u_n > M$.

Montrer que u diverge.

Exercice 6. Toute suite convergente est bornée. (**)

Soit $u: \mathbb{N} \to \mathbb{R}$ une suite convergente.

- 1. Montrer que u est majorée, i.e qu'il existe $M \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, on a $u_n \leq M$.
- 2. En déduire ² que u est minorée, i.e qu'il existe $m \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, on a $u_n \geq m$.
- 3. Donner un exemple de suite bornée (i.e. majorée et minorée) qui ne converge pas.

Exercice 7. Suites convergentes d'entiers $(\star\star\star)$

Soit $u: \mathbb{N} \to \mathbb{R}$ une suite telle que pour tout $n \in \mathbb{N}$, on a $u_n \in \mathbb{N}$. Montrer que :

u converge si, et seulement si, u est stationnaire.

On dit qu'une suite est stationnaire si elle est constante à partir d'un certain rang, i.e s'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, on a $u_n = u_{n_0}$.

^{2.} Noter que si u converge, alors -u aussi et appliquer la question 1. Ne pas oublier que $x \leq y$ est équivalent à $-y \leq -x$.