Module

4

Signal Representation and Baseband Processing

Lesson 15

Orthogonality

After reading this lesson, you will learn about

- > Basic concept of orthogonality and orthonormality;
- > Strum Lion;
- > Slope overload distortion;
- > Granular Noise;
- > Condition for avoiding slope overloading:

The Issue of Orthogonality

Let $f_m(x)$ and $f_n(x)$ be two real valued functions defined over the interval $a \le x \le b$. If the product $[f_m(x) \times f_n(x)]$ exists over the interval, the two functions are called orthogonal to each other in the interval $a \le x \le b$ when the following condition holds:

$$\int_{b}^{a} f_{m}(x) f_{n}(x) dx = 0, \qquad m \neq n$$
4.15.1

A set of real valued functions $f_1(x)$, $f_2(x) \dots f_N(x)$ is called an orthogonal set over an interval $a \le x \le b$ if

- (i) all the functions exist in that interval and
- all distinct pairs of the functions are orthogonal to each other over the interval,

$$\int_{b}^{a} f_{i}(x) f_{j}(x) dx = 0 , i = 1, 2, ...; j = 1, 2, ... and i \neq j$$
4.15.2

The norm $||f_m(x)||$ of the function $f_m(x)$ is defined as,

$$||f_m(x)|| = \sqrt{\int_b^a f_m^2(x)dx}$$
 4.15.3

An orthogonal set of functions
$$f_1(x)$$
, $f_2(x)$... $f_N(x)$ is called an orthonormal set if,
$$\int_{b}^{a} f_m(x).f_n(x) = \begin{cases} 0, m \neq n \\ 1, m = n \end{cases}$$
 4.15.4

An orthonormal set can be obtained from a corresponding orthogonal set of functions by dividing each function by its norm. Now, let us consider a set of real functions $f_1(x)$, $f_2(x)$... $f_N(x)$ such that, for some non-negative weight function w(x) over the interval $a \le x$ $x \le b$

$$\int_{b}^{a} f_{m}(x).f_{n}(x).w(x)dx = 0, \quad m \neq n$$
4.15.5

Do f_i -s form an orthogonal set? We say that the f_i-s form an orthogonal set with respect to the weight function w(x) over the interval $a \le x \le b$ by defining the norm as,

$$||f_m(x)|| = \sqrt{\int_b^a f_m^2(x).w(x)dx}$$
 4.15.6

The set of f_i -s is orthonormal with respect to w(x) if the norm of each function is 1. The above extension of the idea of orthogonal set makes perfect sense. To see this, let

$$g_m(x) = \sqrt{w(x)} f_m(x)$$
, where w(x) is a non-negative function. 4.15.7

It is now easy to verify that,

$$\int_{b}^{a} f_{m}(x).f_{n}(x).w(x)dx = \int_{b}^{a} g_{m}(x).g_{n}(x)dx = 0.$$
4.15.8

This implies that if we have orthogonal f_i -s over $a \le x \le b$, with respect to a non-negative weight function w(x), then we can form an usual orthogonal set of f_i –s over the same interval $a \le x \le b$ by using the substitution,

$$g_m = \sqrt{w(x)} f_m(x)$$

Alternatively, an orthogonal set of g_i -s can be used to get an orthogonal set of f_i -s with respect to a specific non-negative weight function w(x) over $a \le x \le b$ by the following substitution (provided $\sqrt{w(x)} \ne 0$, $a \le x \le b$):

$$f_m(x) = \frac{g_m(x)}{\sqrt{w(x)}}.$$

A real orthogonal set can be generated by using the concepts of Strum-Liouville (S-L) equation. The S-L problem is a boundary value problem in the form of a second order differential equation with boundary conditions. The differential equation is of the following form:

$$\frac{d}{dx} \left[p(x) \frac{dy}{dx} \right] + \left[q(x) + \lambda \omega(x) \right] y = 0, \text{ for } a \le x \le b;$$

$$4.15.10$$

It satisfies the following boundary conditions:

i)
$$c_2 \frac{dy}{dx} + c_1 y = 0$$
; at $x = a$;

ii)
$$d_2 \frac{dy}{dx} + d_1 y = 0$$
; at $x = b$;

Here c_1 , c_2 , d_1 and d_2 are real constants such that at least one of c_1 and c_2 is non zero and at least one of d_1 and d_2 is non zero.

The solution y = 0 is a trivial solution. All other solutions of the above equation subject to specific boundary conditions are known as characteristic functions or eigenfunctions of the S-L problem. The values of the parameter ' λ ' for the non trivial solutions are known as characteristic values or eigen values. A very important property of the eigen-functions is that they are orthogonal.

Orthogonality Theorem:

Let the functions p(x), q(x) and $\omega(x)$ in the S-L equation (4.15.10) be real valued and continuous in the interval $a \le x \le b$. Let $y_m(x)$ and $y_n(x)$ be eigen functions of the S-L problem corresponding to distinct eigenvalues λ_m and λ_n respectively. Then, $y_m(x)$ and $y_n(x)$ are orthogonal over $a \le x \le b$ with respect to the weight function w(x).

Further, if p(x = a) = 0, then the boundary condition (i) may be omitted and if p(x = b) = 0, then boundary condition (ii) may be omitted from the problem. If p(x = a) = p(x = b), then the boundary condition can be simplified as,

$$y(a) = y(b)$$
 and $\frac{dy}{dx}|_{x=a} = y'(a) = y'(b) = \frac{dy}{dx}|_{x=b}$

Another useful feature is that, the eigenvalues in the S-L problem, which in general may be complex based on the forms of p(x), q(x) and w(x), are real valued when the weight function $\omega(x)$ is positive in the interval $a \le x \le b$ or always negative in the interval $a \le x \le b$

Examples of orthogonal sets:

Ex#1: We know that, for integer 'm' and 'n',

$$\int_{-\pi}^{\pi} \cos mx \cdot \cos nx dx = \begin{cases} 0, & m \neq n \\ \pi, & m = n \end{cases}$$
 E4.15.1

$$\int_{-\pi}^{\pi} \sin mx \cdot \sin nx dx = \begin{cases} 0, & m \neq n \\ \pi, & m = n \end{cases}$$
 E4.15.2

and
$$\int_{-\pi}^{\pi} \cos mx \cdot \sin nx dx = 0$$
 E4.15.3

Let us consider equation E4.15.1 and rewrite it as:

$$\int_{-1/2f}^{1/2f} (\cos 2\pi m f t) \cdot (\cos 2\pi n f t) dt = \begin{cases} 0, & m \neq n \\ \pi, & m = n \end{cases}$$
 E4.15.4

by substituting $x = 2\pi ft = \omega t$ and $dx = 2\pi fdt = \omega dt$

Note that the functions 'cosmx' and 'cosnx' are orthogonal over the range 2π of the independent variable x and its integral multiple, i.e. M. 2π , in general, where 'M' is an integer. This implies that equation (E4.15.4) is orthogonal in terms of the independent

variable 't' over the fundamental range $\frac{1}{f}$ and, in general, over $M \frac{1}{f} = M T_0$, where ' T_0 ' indicates the fundamental time interval over which $\cos 2\pi mft$ and $\cos 2\pi nft$ are orthogonal to each other. Now 'm' and 'n' can have a minimum difference '1' if

$$\int_{-T_0}^{T_0} (\cos 2\pi m f t) \cdot (\cos 2\pi n f t) dt = 0$$
 E4.15.5

i.e., mf –nf =
$$f = \frac{1}{T_0}$$

So, if two cosine signals have a frequency difference 'f', then we may say,

$$\int_{-1/2f}^{1/2f} \cos 2\pi (f_c + \frac{f}{2})t \cdot \cos 2\pi (f_c - \frac{f}{2})t \cdot dt = 0$$
 E4.15.6

Re-writing equation (E4.15.6)

$$\int_{-T_0}^{T_0} \cos 2\pi (f_c + \frac{f}{2})t \cdot \cos 2\pi (f_c - \frac{f}{2})t \cdot dt = 0 \qquad \text{where, } T_0 = \frac{1}{f}$$

Looking back at equation E4.15.5, we may write a general form for equation (E4.15.6):

$$\int_{-T_c/2}^{T_c/2} \cos 2\pi (f_c + p\frac{f}{2})t \cdot \cos 2\pi (f_c - p\frac{f}{2})t \cdot dt = 0$$
 E 4.15.7

where mf = (n+p)f and 'p' is an integer.

Following similar observations on equation E4.15.2, one can say,

$$\int_{-T_c/2}^{T_0/2} \sin 2\pi (f_c + p\frac{f}{2})t \cdot \sin 2\pi (f_c - p\frac{f}{2})t \cdot dt = 0$$
 E4.15.8

Equation E4.15.3 may also be expressed as,

$$\int_{-T_0/2}^{T_0/2} \cos 2\pi (f_c + p\frac{f}{2})t \cdot \sin 2\pi (f_c - p\frac{f}{2})t \cdot dt$$

$$= \int_{-T_0/2}^{T_0/2} \sin 2\pi (f_c + p\frac{f}{2})t \cdot \cos 2\pi (f_c - p\frac{f}{2})t \cdot dt = 0$$
E4.15.9

Let us define $s_1 = \cos 2\pi \left(f_c + p \frac{f}{2} \right) t$, $s_2 = \cos 2\pi \left(f_c - p \frac{f}{2} \right) t$, $s_3 = \sin 2\pi \left(f_c + p \frac{f}{2} \right) t$

and $s_4 = \sin 2\pi \left(f_c - p \frac{f}{2} \right) t$. Can we use the above observations on orthogonality to

distinguish among 's_i-s' over a decision interval of $T_5 = T_0 = \frac{1}{f}$?

Ex#2:
$$x_1(t) = 1.0$$
 for $0 \le t \le T/2$ and zero elsewhere, $x_2(t) = 1.0$ for $T/2 \le t \le T$ and zero elsewhere,

Ex#3: $x_1(t) = 1.0$ for $0 \le t \le T/2$ and $x_1(t) = -1.0$ for $T/2 < t \le T$, while $x_2(t) = -1.0$ for $0 \le t \le T$

Importance of the concepts of Orthogonality in Digital Communications

- a. In the design and selection of information bearing pulses, orthogonality over a symbol duration may be used to advantage for deriving efficient symbol-by-symbol demodulation scheme.
- b. Performance analysis of several modulation demodulation schemes can be carried out if the information-bearing signal waveforms are known to be orthogonal to each other.
- c. The concepts of orthogonality can be used to advantage in the design and selection of single and multiple carriers for modulation, transmission and reception.

Orthogonality in a complex domain

Let,
$$z_1(t) = x_1(t) + jy_1(t)$$
 and $z_2(t) = x_2(t) + jy_2(t)$
Now, $x_1(t) = \frac{z_1(t) + z_1^*(t)}{2}$ and $x_2(t) = \frac{z_2(t) + z_2^*(t)}{2}$

If x_1 and x_2 are orthogonal to each other over $a \le t \le b$,

$$\int_{a}^{b} x_{1}(t).x_{2}(t)dt = 0$$
i.e.,
$$\int_{a}^{b} \left[z_{1}(t) + z_{1}^{*}(t)\right] \left[z_{2}(t) + z_{2}^{*}(t)\right] dt = 0$$
or,
$$\int_{a}^{b} \left[z_{1}(t).z_{2}(t) + z_{1}(t).z_{2}^{*}(t) + z_{1}^{*}(t).z_{2}(t) + z_{1}^{*}(t).z_{2}^{*}(t)\right] dt = 0$$

Let us consider a complex function

$$z_1(t) = x(t) + jy(t), \quad a \le t \le b$$

= $r(t) [\cos \Phi(t) + j \sin \Phi(t)]$

where, $r(t) = |\tilde{z}(t)|$, a non – negative function of 't'.

$$\therefore x(t) = r(t)\cos\Phi(t) \text{ and } y(t) = r(t)\sin\Phi(t)$$
Now,
$$\int_{a}^{b} x(t).y(t)dt = \int_{a}^{b} r^{2}(t).\cos\Phi(t).\sin\Phi(t)dt$$

We know that $\cos\theta$ & $\sin\theta$ are orthogonal to each other over $-\pi \le \theta < \pi$, i.e.,

$$\int_{-\pi}^{\pi} \cos \theta . \sin \theta d\theta = 0$$

So, using a constant weight function w = r, which is non-negative, we may say

$$\int_{-\pi}^{\pi} r^2 \cos \theta . \sin \theta d\theta = 0$$

Now, $x = r \cos \theta$ and $y = r \sin \theta$ are also orthogonal over $-\pi \le \theta < \pi$.

Now, let ' θ ' be a continuous function of 't' over $-\pi \le \theta < \pi$. And,

$$\theta\big|_{t=a} = \theta_a = -\pi$$
 and $\theta\big|_{t=b} = \theta_b = \pi$

Assuming a linear relationship, let, $\theta(t) = 2\pi ft$

$$d\theta(t) = 2\pi f dt$$

Under these conditions, we see,

$$\int_{a}^{b} r^{2}(t) \cdot \cos \Phi(t) \cdot \sin \Phi(t) dt = \frac{1}{2\pi f} \int_{-\pi}^{\pi} r^{2}(t) \cdot \cos \Phi(t) \cdot \sin \Phi(t) d\Phi$$
$$= \frac{1}{2\pi f} \int_{-\pi}^{\pi} r^{2} \cdot \cos \Phi(t) \cdot \sin \Phi(t) d\Phi = 0$$

i.e., x(t) and y(t) are orthogonal over the interval $-\frac{1}{2f} \le t \le \frac{1}{2f}$ or $\frac{T}{2} \le t \le \frac{T}{2}$

So, if $\tilde{z}(t) = x(t) + jy(t)$ represents a phasor in the complex plane rotating at a uniform frequency of 'f', then x(t) and y(t) are orthogonal to each other over the interval

$$-\frac{1}{2f} \le t \le \frac{1}{2f} \text{ or, equivalently } -\frac{T}{2} \le t \le \frac{T}{2} \text{ where } T = \frac{1}{f} \text{ i.e., } \int_{-T/2}^{T/2} x(t).y(t)dt = 0$$

Now, let us consider two complex functions:

$$\tilde{z}_{1}(t) = x_{1}(t) + jy_{1}(t) = \left|\tilde{z}_{1}(t)\right| e^{j\Phi_{1}(t)}$$

and
$$\tilde{z}_2(t) = x_2(t) + jy_2(t) = |\tilde{z}_2(t)| e^{j\Phi_2(t)}$$

 $[x_1(t),y_1(t)]$ and $[x_2(t),y_2(t)]$ are orthogonal pairs over the interval $-\frac{T}{2} \le t \le \frac{T}{2}$. So, $\tilde{z}_1(t)$ and $\tilde{z}_2(t)$ may be viewed as two phasors rotating with equal speed.

Now, two static phasors are orthogonal to each other if their dot or scalar product is zero, i.e.,

$$\overline{A}.\overline{B} = |A||B|\cos \gamma = A_x.B_x + A_y.B_y = 0$$
, where ' γ is the angle between \overline{A} and \overline{B}

In general, two complex functions $\tilde{z}_1(t)$ and $\tilde{z}_2(t)$ with finite energy are said to be orthogonal to each other over an interval $a \le t \le b$, if

$$\int_{a}^{b} \tilde{z}_{1}(t).\tilde{z}_{2}^{*}(t)dt = 0$$

Problems

Q4.15.1) Verify whether two signals are orthogonal over one time period of the signal with smallest frequency signal.

i)
$$X_1(t) = \cos 2\pi ft$$
 and $X_2(t) = \sin 2\pi ft$

ii)
$$X_1(t) = \cos 2\pi f t$$
 and $X_2(t) = \cos (2\pi f t + \frac{\pi}{3})$

iii)
$$X_1(t) = \cos 2\pi ft$$
 and $X_2(t) = \cos (4\pi ft + \frac{\pi}{4})$

iv)
$$X_1(t) = \sin 4\pi f t$$
 and $X_2(t) = -\cos (\pi f t - \frac{\pi}{6})$