In []:

In [2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [3]: s=pd.read_csv(r"C:\Users\user\Downloads\2015 - 2015.csv")
s

Out[3]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	(Gc C
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.66557	
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.62877	
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.64938	
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.66973	
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.63297	
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	0.59201	
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	0.48450	
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	0.15684	
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	0.11850	
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	0.36453	
158 rows × 12 columns										

```
In [4]: s.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 158 entries, 0 to 157
Data columns (total 12 columns):
```

#	Column	Non-Null Count	Dtype		
0	Country	158 non-null	object		
1	Region	158 non-null	object		
2	Happiness Rank	158 non-null	int64		
3	Happiness Score	158 non-null	float64		
4	Standard Error	158 non-null	float64		
5	Economy (GDP per Capita)	158 non-null	float64		
6	Family	158 non-null	float64		
7	Health (Life Expectancy)	158 non-null	float64		
8	Freedom	158 non-null	float64		
9	Trust (Government Corruption)	158 non-null	float64		
10	Generosity	158 non-null	float64		
11	Dystopia Residual	158 non-null	float64		
dt (1 - t (4/0)					

dtypes: float64(9), int64(1), object(2)

memory usage: 14.9+ KB

In [5]: # to display summary of the statistic s.describe()

Out[5]:

	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Trust (Government Corruption)
count	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000
mean	79.493671	5.375734	0.047885	0.846137	0.991046	0.630259	0.428615	0.143422
std	45.754363	1.145010	0.017146	0.403121	0.272369	0.247078	0.150693	0.120034
min	1.000000	2.839000	0.018480	0.000000	0.000000	0.000000	0.000000	0.000000
25%	40.250000	4.526000	0.037268	0.545808	0.856823	0.439185	0.328330	0.061675
50%	79.500000	5.232500	0.043940	0.910245	1.029510	0.696705	0.435515	0.107220
75%	118.750000	6.243750	0.052300	1.158448	1.214405	0.811013	0.549092	0.180255
max	158.000000	7.587000	0.136930	1.690420	1.402230	1.025250	0.669730	0.551910
4								

```
In [6]: s.columns
```

In [7]: sns.pairplot(s)

Out[7]: <seaborn.axisgrid.PairGrid at 0x2145527eb50>

In [8]: sns.distplot(s['Family'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarni
ng: `distplot` is a deprecated function and will be removed in a future version. Plea
se adapt your code to use either `displot` (a figure-level function with similar flex
ibility) or `histplot` (an axes-level function for histograms).
warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='Family', ylabel='Density'>

In [9]: s1=s[['Happiness Rank','Happiness Score','Standard Error','Family','Freedom','Generosists.heatmap(s1.corr())

Out[9]: <AxesSubplot:>

In [10]: x=s1[['Happiness Rank','Happiness Score','Standard Error','Family','Freedom','Generosis
y=s1['Dystopia Residual']

```
In [11]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

Out[12]: LinearRegression()

```
In [13]: lr.intercept_
```

Out[13]: -4.847933341869336

```
In [14]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[14]:

	Co-efficient
Happiness Rank	0.019180
Happiness Score	1.325506
Standard Error	5.346752
Family	-1.120689
Freedom	- 1.523109
Generosity	-0.779344

```
In [15]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[15]: <matplotlib.collections.PathCollection at 0x2145bcf7a90>


```
In [16]: print(lr.score(x_test,y_test))
```

0.46003349600597077

In [17]: from sklearn.linear_model import Ridge,Lasso

```
In [18]: from sklearn.linear model import Ridge,Lasso
In [19]: | rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
         rr.score(x_test,y_test)
Out[19]: 0.4980286962945414
In [20]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
         la.score(x_test,y_test)
Out[20]: 0.05453255748535302
In [21]: from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[21]: ElasticNet()
In [22]: print(en.coef_)
                                   0.
                                                                                  1
         [-0.00504537 0.
                                               -0.
                                                           -0.
                                                                       -0.
In [23]: print(en.intercept )
         2.4954729644823126
In [24]: |print(en.predict(x_test))
         [1.85471055 1.92534577 2.2230228 2.11202459 1.71848546 1.77902994
          2.30374878 1.98084488 2.38952012 2.06661623 2.17256907 1.93039115
          1.95057264 1.74371233 1.77398457 2.374384
                                                       1.82948368 2.36933863
          2.10193384 2.01616249 2.43997386 2.19275056 1.79416607 2.25834042
          2.03634399 1.9203004 1.95561801 2.08175235 2.42988311 2.46015535
          2.42483774 1.73362158 2.01111712 1.94552727 2.27852191 1.75884845
          1.79921144 2.25329504 2.08175235 2.0716616 2.23815892 2.27347654
          1.86984667 2.20788668 2.24824967 2.34411176 1.81434756 1.72353084
In [25]: print(en.score(x_test,y_test))
         0.4053166456037285
In [26]: from sklearn import metrics
In [27]: |print("Mean Absolute Error", metrics.mean_absolute_error(y_test,prediction))
         Mean Absolute Error 0.32530238297960257
In [28]: |print("Mean squared Error", metrics.mean_squared_error(y_test,prediction))
         Mean squared Error 0.17033791032433773
```

In [29]:	<pre>print("Root Mean squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction))</pre>						
	Root Mean squared Error 0.4127201355935251						
In []:							