CROP ANALYSIS AND PREDICTION

By Sruti Lakshmi Narasimhan

About the Dataset

This dataset was build by augmenting datasets of rainfall, climate and fertilizer data available for India.

Data fields

N - ratio of Nitrogen content in soil

P - ratio of Phosphorous content in soil

K - ratio of Potassium content in soil

temperature - temperature in degree Celsius

humidity - relative humidity in %

ph - ph value of the soil

rainfall - rainfall in mm

label- suitable crop

There are 22 different crops and they are rice, maize, chickpea, kidneybeans, pigeonpeas, mothbeans, mungbean, blackgram, lentil, pomegranate, banana, mango, grapes, watermelon, muskmelon, apple, orange, papaya, coconut, cotton, jute, coffee

Here is a pair plot of this dataset it is a pairwise relationships in a dataset.

Here is a specfic case of pairplot between 'humidity' and 'K' (potassium levels in the soil.)

sns.jointplot() can be used for bivariate analysis to plot between humidity and K levels based on Label type. It further generates frequency distribution of classes with respect to features

The graph in the right depicts the rainfall and humidity required for a crop and the left graph correlates with average potassium (K) and average nitrogen (N) value (both>50).

These soil ingredients directly affects nutrition value of the food. Fruits which have high nutrients typically has consistent potassium values.

The ph values are critical when it comes to soil. A stability between 6 and 7 is preffered.

We can see most of the crops have ph between this range.

Another interesting analysis where Phosphorous levels are quite differentiable when it rains heavily (above 150 mm).

We can see most of the crops have ph between this range.

Correlation visualization between features. We can see how Phosphorous levels and Potassium levels are highly correlated.

ML model: KNN

To find different values of n_neighbors to fine tune and get better results

ML model: Decision tree

Here we are visualizing the import features which are taken into consideration by decision trees.

Other ML models used:

- SVC
 - Linear
 - Rbf
 - Polly
- Random Forest
- Gradient boosting

Accuracy

KNN

SVC (poly kernel)

Decision Tree

Random Forest

Gradient Boosting

0.9781818

0.9890909

0.9872727

0.97

0.9945454

Confusion Matrix

Apply page animations and transitions to emphasize ideas and make them even more memorable. Find the magic and fun in presenting, too, by pressing C for confetti, D for a drumroll, and O for bubbles.

Classification Report

We are using yellowbrick for classification report as they are great for visualizing in a tabular format

watermelon rice pomegranate pigeonpeas papaya orange	1.000 0.842 1.000 1.000	1.000 0.889 1.000	er Classification Re 1.000 0.865	25	1
rice pomegranate pigeonpeas papaya	0.842 1.000	0.889			
pomegranate pigeonpeas papaya	1.000			18	
pigeonpeas papaya			1.000	28	
papaya	1.000	1.000	1.000	23	
	1.000	1.000	1.000	15	
	1.000	1.000	1.000	19	
muskmelon	1.000	1.000	1.000	33	
mungbean	1.000	1.000	1.000	26	
mothbeans	1.000	0.655	0.792	29	
mango	1.000	1.000	1.000	23	
maize	1.000	1.000	1.000	24	
lentil	0.920	1.000	0.958	23	
kidneybeans	1.000	1.000	1.000	27	
jute	0.923	0.889	0.906	27	1
grapes	1.000	1.000	1.000	37	
cotton	1.000	1.000	1.000	30	
coffee	1.000	1.000	1.000	21	
coconut	1.000	1.000	1.000	23	
chickpea	1.000	1.000	1.000	23	
blackgram	0.778	1.000	0.875	28	
banana	1.000	1.000	1.000	24	
apple	1.000	1.000	1.000	24	
	2	de	4	۸	
	Gardision	RECAIL	,	augrost.	

THANK YOU