J. On pair-Exploiting Diffusion Model

In this appendix, we provide more detailed explanations about the training and inference of HEGGS for the clarification.

1324 J.1. Remark:Prediction targets of diffusion model

Referring equation (2),(4),(6) and (7) of (Ho et al., 2020), the forward process $q(x_{1:T}; X)$ would be given by

$$q(x_t|x_{t-1}) = \mathcal{N}(\sqrt{1-\beta_t}x_{t-1}, \beta_t I), q(x_t|x_0) = \mathcal{N}(\sqrt{\overline{\alpha_t}}x_0, (1-\overline{\alpha_t})I).$$
(24)

and thus we have

$$x_t = \sqrt{\overline{\alpha}_t} x_0 + \sqrt{1 - \overline{\alpha}_t} \epsilon \text{ where } \epsilon \sim \mathcal{N}(0, 1).$$
 (25)

The backward process $q(x_{t-1}|x_t,x_0)$ would be

$$q(x_{t-1}|x_t, x_0) \sim \mathcal{N}(\tilde{\mu}(x_t, x_0), \tilde{\beta}_t I)$$
(26)

where

$$\tilde{\mu}_t(x_t, x_0) = \frac{\sqrt{\overline{\alpha}_{t-1}}\beta_t}{1 - \overline{\alpha_t}} x_0 + \frac{\sqrt{\alpha_t}(1 - \overline{\alpha}_{t-1})}{1 - \overline{\alpha_t}} x_t \text{ and } \tilde{\beta}_t = \frac{1 - \overline{\alpha}_{t-1}}{1 - \overline{\alpha}_t} \beta_t.$$
(27)

Algorithm 2 Generation

In implementation, it is required to find $\tilde{\mu}_t(x_t, x_0)$ term in Equation (27). There are several methods for the prediction, with replacing x_0 by estimate $x_\theta(x_t, t)$. The HEGGS directly predicts x in sample space, as it would be more natural since we want to learn the morphology between paired data, compared to the alternatives which predicts the noise ϵ (Ho et al., 2020) or \mathbf{v} -prediction(Salimans & Ho, 2022).

Algorithm 1 HEGGS training

```
Input: Seismic dataset \mathbb{D}, diffusion steps T repeat (W^{src}, W^{tgt}, \vec{c}_{tgt}) \sim \mathbb{D} convert (W^{src}, W^{tgt}) to (X^{src}, X^{tgt}) t \sim Uniform(1, \cdots, T) \epsilon \sim \mathcal{N}(0, 1) Take gradient descent step on \nabla \|X^{tgt} - \mathcal{D}_{AE}(\mathbf{m}_{\theta}(z_t^{src}, \vec{c}_{tgt}, t))\|^2 where z_t^{src} = \sqrt{\overline{\alpha}_t} \mathcal{E}_{AE}(X^{src}) + \sqrt{1 - \overline{\alpha}_t} \epsilon until converged
```

```
Input: Diffusion steps T, condition vector \vec{c}_{tgt}, source waveform W^{src} (optional)
```

if W^{src} is given then convert W^{src} to spectrogram X^{src} $z_T = \mathcal{E}_{AE}(X^{src})$

 $z_T = \mathcal{E}_{AE}(X^{STC})$ **else** sample $z_T \sim \mathcal{N}(0,1)$

end if for $t = T, \dots, 1$ do sample $\mathbf{z} \sim \mathcal{N}(0, 1)$ compute $\tilde{z} = \mathbf{m}_{\theta}(z_t, \vec{c}_{tgt}, t)$ compute $z_{t-1} = \tilde{\mu}_t(z_t, \tilde{z}) + \sqrt{\tilde{\beta}_t} \mathbf{z}$ (Eq. 27)

end for $X^{tgt}=\mathcal{D}_{AE}(z_0)$

Convert X^{tgt} to waveform W^{tgt}

Return: W^{tgt}

J.2. Training with pairs

As described in Section 3, we consider the paired data (X^{src}, X^{tgt}) with corresponding condition vector \vec{c}_{src} and \vec{c}_{tgt} . Note that \vec{c}_{src} is not in use.

Since X^{src} and X^{tgt} are the observations of same earthquake, we make assumption that there exist a morphology η which maps the latent x_t^{src} of X^{src} at time t, to x_t^{tgt} using \vec{c}_{tgt} , as a random variable. We formulate this assumption with Equation (1), as follows:

$$\eta(x_t^{src}, \vec{c}_{tat}, t) \sim q(x_t^{tgt} | X^{tgt}) \tag{1}$$

- 1375 This assumption includes the intuition that the broadband waveform signal is a combination of earthquake information,
- which is considered to be included in X^{src} , and local geological features near observatory, encoded by positional information
- 1377 from \vec{c}_{tgt} .

- For training, we aim to train the neural network \mathbf{m}_{θ} which is a composition of η and denoising model \mathbf{x}_{θ} . Precisely, \mathbf{m}_{θ}
- would be written by

$$\mathbf{m}_{\theta}(x, \vec{c}, t) = \mathbf{x}_{\theta}(\eta(x, \vec{c}, t), \vec{c}, t). \tag{28}$$

Since $\eta(x_t^{src}, \vec{c}_{tgt}, t) = x_t^{tgt}$, we have $\mathbf{m}_{\theta}(x_t^{src}, \vec{c}_{tgt}, t) = \mathbf{x}_{\theta}(x_t^{tgt}, \vec{c}_{tgt}, t)$ for the paired latents (x_t^{src}, x_t^{tgt}) , the loss function of diffusion model Equation (2) would be equivalent to Equation (3):

$$\mathcal{L}'_{DM} = \mathbb{E}_{(X^{src}, X^{tgt}, \vec{c}_{tgt}), \epsilon, t} \| X^{tgt} - \mathbf{m}_{\theta}(x_t^{src}, \vec{c}_{tgt}, t) \|^2$$

$$(29)$$

1387 After that, we consider same procedure in latent space (the z_t^{tgt} for the clarification) with autoencoder consist of the encoder 1388 \mathcal{E}_{AE} and decoder \mathcal{D}_{AE} , we obtain the loss function Equation (9), with end-to-end training.

$$\mathcal{L}_{ours} := \mathbb{E}_{(X^{src}, X^{tgt}, \vec{c}_{tot}), \epsilon, t} \| X^{tgt} - \mathcal{D}_{AE}(\mathbf{m}_{\theta}(z_t^{src}, \vec{c}_{tgt}, t)) \|^2$$

$$\tag{9}$$

In Algorithm 1, we present an training algorithm for the HEGGS training with \mathcal{L}_{ours} . The paired waveforms and corresponding condition vector of target waveform would be sampled from the dataset, and the gradient descent would update all modules \mathbf{m}_{θ} , \mathcal{E}_{AE} and \mathcal{D}_{AE} together.

Remark J.1. For the training process of diffusion model with Equation (9), several details below are considered for the loss and model design.

- 1. During the training, the noise is designed to be added to the Z^{src} instead of Z^{tgt} . This would provide robustness against site-specific noise which already included in observation W^{src} and its latent vector Z^{src} .
- 2. When t is small, z_t^{src} would be almost same to Z^{src} (this is also because X^{src} itself is already noisy) and thus the model would learn the transformation η with more attention.
- 3. Regarding the intuition that z_t^{src} and z_t^{tgt} will be identified (in distribution) when t is sufficiently large, the training loss Equation (9) would be equivalent to the conventional training loss for \mathbf{x}_{θ} training when we disregard the end-to-end training. Hence, the model learns to generate from the noise w/o W^{src} too, during the training.
- 4. Since η and \mathbf{m}_{θ} does not take \vec{c}_{src} as input. Therefore the model learns to extract common information from z_t^{src} through multiple pairs of observations of same earthquake during training, regardless the local information (encoded by location) of observatory. This makes the model can handle z_t^{tgt} as a input too, since it shares the information of earthquake.

J.3. Inference w/o W^{src}

Although the diffusion model is trained with paired data and takes W^{src} as an input, our model is capable to synthesize seismic waveform without the observation W^{src} .

Since η is defined to map the source latent z_t^{src} to target latent z_t^{tgt} , it also maps the target latent to itself, in distribution. Precisely, we can write

$$\eta(z_t^{tgt}, \vec{c}_{tqt}, t) = z_t^{tgt} \tag{30}$$

and thus the output of neural network would be

$$\mathbf{m}_{\theta}(z_t^{tgt}, \vec{c}_{tgt}, t) = \mathbf{x}_{\theta}(\eta(z_t^{tgt}, \vec{c}_{tgt}, t), \vec{c}_{tgt}, t) = \mathbf{x}_{\theta}(z_t^{tgt}, \vec{c}_{tgt}, t)$$
(31)

1423 Therefore, we can use conventional reverse process

$$z_{t-1}^{tgt} = \tilde{\mu}_t(z_t^{tgt}, \mathbf{m}_{\theta}(z_t^{tgt}, \vec{c}_{tgt}, t)) + \sigma_t \mathbf{z}, \mathbf{z} \sim N(0, I)$$
(32)

1426 even if z_T^{tgt} is the gaussian noise sampled from $\mathcal{N}(0,1)$.

In Algorithm 2, we summarize the generation process of our model. Note that the diffusion steps are equivalent to LDM(Rombach et al., 2022) when W^{src} is not given.