Chapitre 4 La virtualisation du stockage

By D.E. MENACER
© MDE - 2018

Sommaire

- 1. Introduction
- 2. Définitions
 - Virtualisation du stockage
 - Types de virtualisation
- 3. Types de stockage
 - NAS
 - SAN
 - iSCSI
- 4. Etude de cas: iSCSI/ESXi
- TP3: Implémentation de machines virtuelles hautement disponibles avec live migration en utilisant un réseau iSCSI et l'hyperviseur HYPERV/ESXi

1. Introduction

- La question du stockage se pose de manière différente lorsqu'on est dans un contexte de virtualisation
- Une VM se compose de 2 éléments:
 - Les ressources: CPU, RAM, cartes réseau,..etc
 - Les données: on doit stocker l'OS, les bibliothèques, les applications et leurs données dans un emplacement de stockage

Introduction

- L'hyperviseur fournit aux VMs un espace de stockage qui peut être:
 - Un fichier -> disque virtuel
 - Un volume
- On peut placer cet espace de stockage dans:
 - Un disque local
 - Un serveur (NFS, CIFS)
 - Un réseau de stockage

2. Définition

 Virtualisation du stockage (SV): Technologie qui permet une représentation logique de ressources non contraintes par des limitations

physiques

Fonctions du SV

- Masque la complexité de l'infrastructure
 - Réduction des problèmes d'interopérabilité d'un environnement hétérogène
 - Point de gestion unique et centralisé
- Introduit de la souplesse
 - Adaptation aux besoins en évolution perpétuelle
- Ajoute ou intègre de nouvelles fonctions aux services existants
 - Homogénéisation des fonctions avancées

Principe du SV

- Le principe de base de la virtualisation du stockage est de gérer une interface qui permet de dissocier la gestion physique des disques (et des baies de stockage) vis-à-vis des serveurs qui l'utilisent.
- Les systèmes de stockage fournissent soit des données en mode **bloc**, soit en mode **fichier**.

Types de virtualisation du stockage

- Virtualisation en mode bloc: Les données en mode bloc sont accédées à travers des protocoles:
 - FC
 - FCoE
 - iSCSI
 - Introduction d'un niveau d'abstraction entre le serveur et le système de stockage, ce qui donne plus de flexibilité pour les administrateurs.
- Virtualisation en mode fichier: L'accès en mode fichier se fait à travers NFS ou CIFS.
 - NAS est le protocole utilisé
 - Accès au NAS en masquant les dépendances vis-à-vis de l'emplacement où les données sont physiquement stockées.

3. Les types de stockages

Stockage local

- Dit aussi DAS (Directe Attached Storage)
- Représente tout dispositif de stockage (SSD, HDD)
 relié directement à la machine hôte (hyperviseur)
- Les disques virtuels des VMS sont stockés dans le DAS, généralement dans un disque séparé (en RAID) ou dans une partition dédiée.

Les types de stockages

- **Stockage réseau:** les hyperviseurs fonctionnent en **pool**. Ils doivent donc être capables d'exécuter des VMs réparties dans le stockage. Le stockage unifié en réseau est requis.
- Types de stockage réseau:
 - NAS (Network Attached Storage)
 - SAN (Storage Area Network)
 - FC (Fiber Channel)
 - FCoE (FC over Ethernet)
 - iSCSI (internet SCSI)

Adressage dans le stockage réseau

- Les périphériques de stockage sont identifiés de plusieurs manières:
 - SCSI ID Unique SCSI identifier
 - Canonical name The Network Address Authority ID is a unique logical unit number (LUN) identifier, guaranteed to be persistent across reboots.
 - In addition to NAA IDs, devices can also be identified with mpx or T10 identifiers.
 - Runtime name Uses the convention vmhbaN:C:T:L. This name is not persistent through reboots.

SCSI ID	Canonical Name	Runtime Name	Lun
010001000020204573785	t10.9454450000000000000000001000000	vmhba34:C0:T0:L1	1
020003000060060160eb7	naa.60060160eb7026007ef7a4b3a50adf11	vmhba0:C0:T1:L3	3
020019000060060160eb7	naa.60060160eb7026002666a802a60adf11	vmhba0:C0:T1:L25	25
0200030000600805f3001	naa.600805f30016be8000000000131700d6	vmhba0:C0:T0:L3	3

Les types de stockages

Stockage NAS:

- Serveur fournissant des fichiers à d'autres serveurs
- Standard: NFS (Network File System)
- Permet de stocker les fichiers disques virtuels d'une VM dans le stockage local du serveur ou dans le SAN relié au NAS
- Conseillé pour les environnements full virtualisation de test seulement: NFS n'est pas adapté à la lecture aléatoire dans un fichier
- Conseillé pour les isolateurs en environnement de production: il offre l'arborescence fichiers complète aux conteneurs
- Conseillé pour les FS nouvelle génération: ZFS, Hammer, BTRFS

Architecture NAS

Les types de stockages

Stockage SAN

- Réseau dans lequel circulent les données d'un système et son stockage
- Déport de tout le système de stockage interne d'une machine vers un équipement dédié
- Les SAN travaillent dans les plus basses couches du stockage: la notion de fichier y est inconnue
- Les SAN travaillent sur la notion de blocs qu'ils fournissent aux serveurs qui en sauront les utiliser

Avantages du SAN

- Architecture complète :
 - Réseau très haut débit (1 à 32 Gbit/s) en Fibre Channel
 - Équipements d'interconnexion dédiés (switch, ponts, etc.)
 - Des baies de stockage (sur HDD/SSD)
- Infrastructure de stockage simplifiée
 - Consolidation
 - Virtualisation
 - Automatisation
 - Intégration

Types de SAN

Fiber Channel

- Solution SAN haut de gamme: utilise le protocole FC sur fibres optiques et optimise la latence et le débit
- Accès via cartes Host Bus Adapter (HBA)
- Installation d'un sous-système Device Driver (SDD) sur les serveurs
- Duplication des éléments pour la haute disponibilité (HA)
- Un NAS peut être un client de FC

Architecture physique SAN FC

Architecture logique SAN FC

FC Multipathing

 Le MP permet l'accès continue aux LUNs SAN si un équipement tombe en panne. Il offre aussi l'équilibrage de charge.

Adressage SAN

FCoE

- Solution SAN FC sur cuivre (paires torsadées): utilise la même infrastructure du réseau câblé de l'entreprise.
- Permet donc des coûts moindres par rapport au FC
- Utilise les mêmes protocoles que FC
- Dispose des mêmes fonctionnalités que FC
- Un NAS peut être client de FCoE

SAN vs NAS

iSCSI

- Alternative au SAN: Protocole d'accès disque en mode blocs
- Utilise la connectique et les équipements de commutation standards
 - Utilise le réseau TCP/IP
 - Les requêtes d'E/S sont transportées dans des paquets IP
- Comme le NAS, il peut être implémenté sur une baie de stockage SAN (meilleures performances) ou sur un serveur classique disposant d'un logiciel (iSCSI Entreprise Target sous Linux)
- Un NAS peut être client de iSCSI

Architecture iSCSI

Adressage iSCSI

Découverte de target iSCSI

- 2 méthodes de découverte supportées:
 - Statique
 - Dynamique (SendTargets)
- La réponse SendTargets retourne:
 - l'IQN
 - IP disponibles

Les types de stockage

Comparaison

Stockage	Avantages	Inconvénients
LOCAL	Performances Administration facile Cout faible	Limitée en terme de fonctionnalités Pas de migration des VMs
NAS	Cout faible Administration facile/Migration des VMs	Performances moindres
SAN FC	Performances optimales Fonctionnalités très avancées Migration des VMs	Administration complexe Solution couteuse
SAN FCoE	Très bonnes performances Fonctionnalités très avancées Utilise le réseau cuivré/Migration des VMs	Administration complexe Solution moins couteuse que FC mais au dessus de NAS et DAS
iSCSI	Bonnes performances Fonctionnalités avancées Administration simplifiée/SAN Solution économique/Migration des VMs	Syntaxe adressage Nécessite des cartes LBA ou un logiciel initiateur sur les hôtes.

4. Etude de cas: stockage dans ESXi

Concepts

Comparaison des stockages

Storage protocol	Supports boot from SAN	Supports VMware vSphere® vMotion®	Supports VMware vSphere® High Availability (vSphere HA)	Supports VMware vSphere® Distributed Resource Scheduler™ (DRS)	Supports raw device mapping (RDM)
Fibre Channel	•	•	•	•	•
FCoE	•	•	•	•	•
iSCSI	•	•	•	•	•
NFS		•	•	•	
DAS		•			•

Datastore

VMFS

VMFS-5:

- Allows concurrent access to shared storage
- Can be dynamically expanded
- Uses a 1MB block size, good for storing large virtual disk files
- Uses subblock addressing, good for storing small files:
 - The subblock size is 8KB.
- Provides on-disk, block-level locking

NFS

Afficher la carte de stockage

TP3: HA avec iSCSI

- TP3: Entièrement sur Linux RH 7.2
 - Visite du SAN de l'ESI (service réseau)
 - Mise en place du stockage iSCSI virtuel
 - Stockage des disques VM et ISO sur la cible iSCSI virtuelle
 - Le SAN de l'ESI est destiné pour les étudiants seulement, il sera donc un stockage pour les travaux et projets.

Références

- Document technique VMWARE: Hyperviseur ESXi, www.vmware.com, 2018
- Document IBM: IBM system storage, Ronan Maujean, 2010
- Liens
 - http://www.01net.com/editorial/189258/virtualisation-dustockage-federer-les-volumes-en-une-unique-ressource/
 - http://searchstorage.techtarget.com/definition/storagevirtualization
 - http://www.virtualisation-news.com/2008/09/dossier-introduction-a-la-virtualisation-du-stokage.html