# Week 1 Lecture 1: What is Data Analytics?

Daryl DeFord

Data 115: Introduction to Data Analytics Fall 2020



## Outline

- 1 Introduction and Welcome
- Course Overview
- Break
- What is Data Analytics?
- 6 Initial Examples
- **6** The Data Science Process



#### Course Overview

- Introduction to methods and tools for modern data analysis
- Lots of hands-on experience with exposure to Python and other common data analytics tools
- Critical analysis of published data projects
- Ethics and professional development
- Read the full syllabus (on Blackboard) for more complete details

#### Course Resources

 Blackboard will be the main repository for material related to the course.

Lecture videos will be uploaded weekly

- · Readings and discussion materials will also be posted weekly
- Data and computational examples will be handled through the CoCalc platform

#### Course Material

 New content will be communicated during the Tuesday course meeting

Group discussions and labs will occur on Thursdays

Weekly topics are listed in the syllabus

• Discussions through Blackboard forums



## Assignments and Grades





## Assignments and Grades



#### In-Class Work

- Reading discussion questions (groups in breakout rooms)
- Responses need not be unanimous but should be well-justified
- Data lab examples (groups in breakout rooms)
- 15 minute quizzes (individual)



## Assignments and Grades





Weekly Assignments

## Weekly Assignments

- Posted to Blackboard by Tuesday each week
- Written problems and data analysis tasks
- Due Wednesday of the next week at midnight
- No late homework accepted (lowest two assignments dropped)



## Assignments and Grades



## Midterm Exam

- In-class on Thursday (10/15)
- Five 15-minute questions
- · Covers material from first seven weeks of class



## Assignments and Grades

#### **Final Project**





## Final Project

- Groups of four(ish)
- End-to-end analysis project on the topic of your choice
- More details week 12
- Writeup describing data collection, cleaning, and analysis
- 12-15 minute presentation



## Assignments and Grades



#### Personal Dataset

- Collect, prepare, and present a personally meaningful dataset
- Useful for later courses
- Also an excellent job interview topic



## Keys to success

- Engage with the course and material
  - Attend class
  - Do the reading
  - Participate in discussions
  - Come to office hours
- Communicate effectively
  - Your written work should be complete and grammatical
  - Discussions should be respectful
- Professional behavior
  - Be resourceful
  - Follow the Academic Integrity Policy



# Big Data



# **Epidemiology**







## Time Series







# Community Detection





## Classification

Figure Source Wikipedia: https://en.wikipedia.org/wiki/MNIST-database

## **Dimension Reduction**







## Recommendation Systems

'userid' '01ec1a320ffded6b2dd47833f2c8e4fb',

'timestamp' '2013-12-28',

'reviewsentences' [[0, 'First, be aware that this book is not for ...,

'rating' 5, 'hasspoiler' False.

'bookid' '18398089',

'reviewid' '4b3ffeaf14310ac6854f140188e191cd'

From: Fine-grained spoiler detection from large-scale review corpora, Mengting Wan, Rishabh Misra, Ndapa Nakashole, Julian McAuley ACL, 2019.



## Common Features

- Storytelling
- Modeling/Abstraction
- Simplification
- Metrics





## Other Processes

https://lmgtfy.com/?q=the+data+science+process















## <u>'Th</u>e Process'











Based on: Doing Data Science (O'Neil and Schutt)





