

Division Restore Method and Non-Restore Method(COA Unit 2)

Lecture number: 18-19, students will learn about the following:

- ❖ Division of unsigned binary integers by Restore method
- ❖ Division of unsigned binary integers by Non-Restore method

Notes Compiled By:

Himanshi Chaudhary Assistant Professor CSE

1.1 Prerequisites

- Shifting of Bits (Left or Right) -
- Addition Half Adder
- Subtraction Half Subtractor
- 2's Complement A'+1

0	1	0	1
1	0	1	?

1.2 Paper Pencil method

Example:

(Dividend)10/ (Divisor) 4 = (Quotient)2; (Remainder)2

1.3 Division of unsigned binary integers

Division of unsigned binary integers is instructive method. There are two methods:

- 1. Restore Method
- 2. Non Restore Method

1.3.1 Restore Method

It is instructive method, where numerical is solved on registers with the help of flow chart given. To solve a numerical, step wise step instructions will be followed. Table will be used to solve numerical.

NOTE: Flowchart is colored w.r.t. table to understand the flow.

Steps:

- 1. Start reading the flow chart. The first step says to initialize n as the number of bits of the divisor, M as the divisor in binary, A with zero, and Q with dividend(size of M&A register will be n+1 and size of Q register is n).
- 2. Next, shift left AQ register by one Bit.
- 3. Then subtract M register from A.
- 4. Next, MSB of A is checked if it is 1, then place 1 at Q0 and restore A, else place 1 at Q0.
- 5. Decrease the value of N by 1.
- 6. Check if the value of n is 0, if yes, then the quotient is in Q register and reminder in A register, else go to step 2 and repeat.

Flowchart for Unsigned Binary Division- Restore Method

n	M	A	Q	Operation
4	00011 (3)	00000 (0)	1011 (11)	initialize
	00011	00001	011_	shift left AQ
	00011	11110	011_	A=A-M
	00011	00001	0110	Q[0]=0 And restore A
3	00011	00010	110_	shift left AQ
	00011	11111	110_	A=A-M
	00011	00010	1100	Q[0]=0And restore A
2	00011	00101	100_	shift left AQ
	00011	00010	100_	A=A-M
	00011	00010	1001	Q[0]=1
1	00011	00101	001_	shift left AQ
	00011	00010	001_	A=A-M
	00011	00010 (2)	0011 (3)	Q[0]=1

Start n←no of bits $M \leftarrow Divisor$ A ←0 $Q \leftarrow Dividend$ Shift left AQ A= A - M MSB of A Q[0] = 1 Q[0] = 1 Restore A n = n-1 No Is n = 0 ¥Yes Quotient in Q Remainder in A Stop Flow chart

Table

1.3.2 Non-Restore Method

It is instructive method, where numerical is solved on registers with the help of flow chart given. To solve a numerical, step wise step instructions will be followed. Table will be used to solve numerical.

NOTE: Flowchart is colored w.r.t. table to understand the flow.

Steps:

- 1. Start reading the flow chart. The first step says to initialize n as the number of bits of the divisor, M as the divisor in binary, A with zero, and Q with dividend(size of M&A register will be n+1 and size of Q register is n).
- 2. After assigning bits to registers, check if A is smaller than 0; if yes, then shift left AQ and A = A + M; else if greater than zero, then shift left you AQ and A = A M.
- 3. Then, check the value of A, if smaller than zero assigns zero to Q0 else assign 1 to Q0.
- 4. Decrement n by 1
- 5. check if the value of N is zero; if yes, go to step 6; else go to step 2.
- 6. check if A is smaller than zero, then A=A+M else stop.

Flowchart for Unsigned Binary Division- Non-**Restore Method**

N	М	Α	Q	ACTION
4	00011	00000	1011	Start
		00001	011_	Left shift AQ
		1 1110	011_	A=A-M
3		1 1110	011 0	Q[0]=0
		11100	110_	Left shift AQ
		1 1111	110_	A=A+M
2		1 1111	110 0	Q[0]=0
		11111	100_	Left Shift AQ
		0 0010	100_	A=A+M
1		00010	100 1	Q[0]=1
		00101	001_	Left Shift AQ
		0 0010	001_	A=A-M
0		00010	0011	Q[0]=1

Table