Prüfungsnotizen Analysis 2

Fabian Bösiger

Contents

Common Derivativ Common Antideriv														
Ordinary Differenti	al I	Eq	ua	ti	on	S								
Differential Calculu	s i	n I	\mathbb{R}^n											
Partial Derivatives														
Jacobi Matrix	Ξ.													
Gradient			•											
Gradient $ Gradient$														

Lookup Table

Common Derivatives

Function	Derivative
$\overline{sin(x)}$	cos(x)
cos(x)	-sin(x)
tan(x)	$\frac{1}{\cos^2(x)}$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$
arctan(x)	$\frac{1}{1+x^2}$

Common Antiderivatives

Function	Antiderivative
$ \frac{\sin(x)}{\cos(x)} $ $ \frac{1}{x}$	-cos(x) + C $sin(x) + C$ $ln(x) + C$

Ordinary Differential Equations

This is a test

Differential Calculus in \mathbb{R}^n

Partial Derivatives

Jacobi Matrix

For $f(x) = (f_1(x), ..., f_m(x))$, the Jacobi matrix is defined as $J_f(x) = (\partial_{x_j})$

2

Gradient

Gradient

Hessian Matrix

$$H_f(x) = (\partial_{x_i, x_j} f)_{1 \le i, j \le n}$$

Integration in \mathbb{R}^n