Analiza matematyczna 2

dr Joanna Jureczko

Zestaw 8 Transformata Fouriera. Transformata odwrotna Fouriera. Szereg Fouriera. Kryterium Diniego.

ZADANIA

a)
$$f(x) = \begin{cases} 1 & \text{dla } |x| \le 1 \\ 0 & \text{dla } |x| > 1 \end{cases}$$
, b) $f(x) = \begin{cases} 1 & \text{dla } 0 \le x \le 1 \\ 0 & \text{dla pozostalych } x \end{cases}$, c) $f(x) = \begin{cases} e^{-x} & \text{dla } x \ge 0 \\ 0 & \text{dla } x < 0 \end{cases}$, d) $f(x) = \begin{cases} 1 & \text{dla } |x| \le \pi \\ 0 & \text{dla } |x| > \pi \end{cases}$, e) $f(x) = \begin{cases} \sin x & \text{dla } |x| \le \pi \\ 0 & \text{gdy } |x| > \pi \end{cases}$, f) $f(x) = \begin{cases} 1 & \text{dla } 0 \le x \le \pi \\ -1 & \text{dla } \pi < x < 2\pi \end{cases}$, g) $f(x) = e^{-|x|}$, h) $f(x) = \frac{1}{x^2+1}$.

8.2. Korzystając z własności transformaty Fouriera wyznaczyć F(u) dla podanych funk-

a)
$$f(x) = \begin{cases} 3 + 2\sin x & \text{dla } |x| \leq \pi \\ 0 & \text{dla } |x| > \pi \end{cases}$$
, b) $f(x) = \begin{cases} 1 & \text{dla } |x - 4| \leq \pi \\ 0 & \text{dla } |x - 4| > \pi \end{cases}$, c) $f(x) = \begin{cases} e^{-2(x+1)} & \text{dla } x \geq -1 \\ 0 & \text{dla } x < -1 \end{cases}$, d) $f(x) = \begin{cases} xe^{-x} & \text{dla } x \geq 0 \\ 0 & \text{dla } x < 0 \end{cases}$, e) $f(x) = e^{-5|x|}$, f) $f(x) = -2xe^{-x^2}$, g)* $f(x) = e^{-x^2}$.

8.3. Podać funkcję f(x), jeśli jej transformata Fouriera ma postać

a)
$$F(u) = \frac{2}{1+2iu}$$
, b) $F(u) =\begin{cases} \frac{8\sin(u/4)}{u} & \text{dla } u \neq 0\\ 2 & \text{gdy } u = 0 \end{cases}$

8.4. Wyznaczyć transformaty Fouriera funkcji
$$h(x) = f * g(x)$$
 dla podanych funkcji a) $f(x) = \begin{cases} 4 \text{ dla } 0 \leqslant x \leqslant 1 \\ 0 \text{ dla pozostałych } x \end{cases}$, $g(x) = e^{-|x|}$, b) $f(x) = g(x) = \begin{cases} e^{-x} \text{ dla } x \geqslant 0 \\ 0 \text{ dla } x < 0 \end{cases}$, c) $f(x) = g(x) = e^{-x^2}$, d) $f(x) = g(x) = \frac{1}{1+4x^2}$.

8.5. Wyznaczyć szeregi Fouriera na przedziale $[-\pi, \pi]$ funkcji

a)
$$f(x) = x$$
, b) $f(x) = |x|$, c) $f(x) = x^2$, d) $f(x) = x^3$, e) $f(x) = \sin(ax)$.

ODPOWIEDZI 8.1. a)
$$F(u) = \begin{cases} \frac{2\sin u}{u} & u \neq 0 \\ F(u) = 2 & u = 0 \end{cases}$$
, b) $F(u) = \begin{cases} \frac{\sin u}{u} - i\frac{1-\cos u}{u} & \text{dla } u \neq 0 \\ 1 & \text{dla } u = 0 \end{cases}$, c) $F(u) = \begin{cases} \frac{1}{1+u^2} - i\frac{u}{1+u^2}, \text{dla } u = 0 \end{cases}$, e) $F(u) = \begin{cases} \frac{-i(\frac{\sin(1-u)\pi}{1-u} - \frac{\sin(1+u)\pi}{1+u})}{1-u} & \text{dla } u = 1 \\ i\pi & \text{dla } u = -1 \end{cases}$, dla $u = -1$

f)
$$F(u) = \begin{cases} \frac{4}{iu} & \text{dla } u \text{ nieparzystych} \\ 0 & \text{dla } u \text{ parzystych} \end{cases}$$
, g) $F(u) = \frac{2}{1+u^2}$, h) $F(u) = \pi e^{-|u|}$.

8.2. a) wsk. f(x) = 3g(x) + 2h(x) i skorzystać z zadania 10.1 d) i e). b) wsk. f(x) =g(x-4) i skorzystać z zadania 10.1 d). c) wsk. f(x) = g(2(x+1)) i skorzystać z zadania 10.1 c). d) wsk. f(x) = xg(x) i skorzystać z zadania 10.1 c). e) wsk. f(x) = g(5x) i skorzystać z zadania 10.1 g). f) wsk. f(x) = g'(x) i skorzystać z zadania 10.2 g). g) $F(u) = \pi e^{-\frac{u^2}{4}}.$

8.3. a)
$$f(x) = \begin{cases} e^{-x/2} & \text{dla } x \ge 0 \\ 0 & \text{dla } x < 0 \end{cases}$$
 b) $f(x) = \begin{cases} 4 & \text{dla } |x| \le 1/4 \\ 0 & \text{gdy } |x| > 1/4 \end{cases}$

$$F(u) = \pi e^{-\frac{\pi}{4}}.$$
8.3. a) $f(x) = \begin{cases} e^{-x/2} & \text{dla } x \ge 0 \\ 0 & \text{dla } x < 0 \end{cases}$ b) $f(x) = \begin{cases} 4 & \text{dla } |x| \le 1/4 \\ 0 & \text{gdy } |x| > 1/4 \end{cases}$
8.4. a) $H(u) = \begin{cases} 4(\frac{\sin u}{u} - i\frac{1-\cos u}{u})\frac{2}{1+u^2} & \text{dla } u \ne 0 \\ 8 & \text{dla } u = 0 \end{cases}$ b) $H(u) = (\frac{1}{1+iu})^2$. c) $H(u) = \sqrt{\pi/2}(\sqrt{2\pi}e^{-(\sqrt{2}u)^2/4})$ d) $H(u) = \pi/(\pi e^{-|u|})$

$$\sqrt{\pi/2}(\sqrt{2\pi}e^{-(\sqrt{2}u)^2/4})$$
. d) $H(u) = \frac{\pi}{4}(\pi e^{-|u|})$.

8.5. a)
$$2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)$$
, b) $\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos(2n-1)x$, c) $\frac{\pi^2}{3} - 4\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \cos(nx)$, d) $\sum_{n=1}^{\infty} (-1)^n (\frac{1^2}{n^3} \frac{2n^2}{n} \sin(nx))$, e) $\frac{2\sin(a\pi)}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{(3n+1)^2 - a^2} \sin(nx)$.