H' Paraboloid - solutions

Paraboloidul energiei de rotatie $H'\equiv E$

Pentru reprezentarea traiectoriilor posibile ale sistemului, am abordat reprezentarea grafica a *paraboloidului* dat de expresia:

$$H_k' = \left(x_2^k
ight)^2 + u(x_3^k)^2 + 2v_0x_1^k \ ,$$

unde k reprezinta de fapt indicele axei de cuantificare (axa de moment de inertie maxim, pentru fiecare din cele trei cazuri). Pentru fiecare k avem alte expresii pentru (x_1, x_2, x_3) .

Componentele momentului cinetic sunt exprimate in coordonate sferice, deci $x_k=f_k(r,\theta,\phi)\;,\;k=1,2,3.$ Astfel, Hamiltonianul va fi exprimat ca functie de aceste trei variabile:

$$H'_k = H(r, \theta_k, \phi_k)$$
,

cu $r \in [0,I]$.

Pentru reprezentarea paraboloidului E, sunt necesari pasii urmatori:

- 1. Fixarea celor trei momente de inertie \mathcal{I}_k
- 2. In functie de ordonarea momentelor de inertie se alege cazul k de cuantificare a uneia dintre axele principale.
- 3. Din k vor rezulta expresiile pentru cele trei componente ale momentului cinetic x_1, x_2, x_3 .
- 4. Pentru functiile de inertie u si v_0 :
 - 1. se fixeaza momentul cinetic \boldsymbol{j} al particulei impare
 - 2. se fixeaza unghiul de coupling $heta_{
 m col}$
 - 3. se fixeaza un spin oarecare I

Odata avand (u, v_0) , se calculeaza solutiile ecuatiei

$$\left(x_{2}^{k}(r, heta,\phi)^{2}+u\;x_{3}^{k}(r, heta,\phi)^{2}+2v_{0}\;x_{1}^{k}(r, heta,\phi)=E\;,
ight. \ (1)$$

unde $E\in[0,E_{\max}]$ pentru r. Se obtine astfel o functie pentru r, ce deinde de coordonatele (θ,ϕ) , si parametrizata de valoarea energiei E. Aceasta functie reprezinta de fapt suprafata rotorului triaxial pentru care egalitatea de mai sus are loc. Un SphericalPlot3D pentru $r(\theta,\phi;E)$, va reprezenta rezultatul problemei paraboloidului de rotatie.

Sfera momentului cinetic

Pentru determinarea sferei, am fixat un spin I, si am facut un SphericalPlot3D -> obtinerea unei sfere de raze I pentru sistemul studiat.

Problema parametrilor (u,v_0)

Deoarece

$$u = f(A_1, A_2, A_3, I,)$$

si

$$v_0=g(A_1,A_2)$$

iar pe deasupra, cele doua functii mai depind si de spinul total al sistemului, de momentul cinetic j al particulei de valenta si de unghiul de cuplare al particulei cu miezul θ_{cpl} , obtinerea unui paraboloid este posibila doar daca acestia sunt niste constante pe intregul precedeu de reprezentare grafica.

Doar anumite valori de perechi (u, v_0) pot produce paraboloizi care au intersectie OK cu sfera de moment cinetic I.

Rezultate numerice

- Am fixat j=11/2 pentru toate cele trei cazuri.
- Am fixat I=19/2 pentru sfera de moment cinetic.
- Am ales un set de parametrii (u,v_0) pentru fiecare caz k.
- Am rezolvat ecuatia (1) pentru o anumita vloare fixa E.

Observatie: Chiar daca u,v_0 sunt fixati a priori, acestia sunt alesti astfel incat ordinea momentelor de inertie sa respecte fiecare din cele trei cazuri k, si de asemenea, $\theta \in [-\pi,\pi]$.

Axa 1 - axa de cuantificare

u	v_0
0.0895662359967604	-0.1871094491621448

Parametrii obtinuti din fitul 135 Pr functioneza pentru acest paraboloid. Deci valorile lui u,v_0 sunt de fapt cele obtinute prin inlocuirea momentelor de inertie si unghiul de coupling $\theta_{\rm cpl}$ in formulele acestora.

Rosu: Sfera de moment cinetic I=19/2. **Albastru:** Paraboloidul, calculat pentru o anumita valoare E. **Verde:** Traiectoriile sistemului. Cele trei axe sunt de asemenea reprezzenttae, cu albastru fiind reprezentata axa de cuantificare.

Axa 2 - axa de cuantificare

Pentru acest caz, avem

u	v_0
0.3	1.1

cu $A_2 < A_3 < A_1$

A_1	A_2	A_3	θ
6	0.25	4	77

Rosu: Sfera de moment cinetic I=19/2. **Albastru:** Paraboloidul, calculat pentru o anumita valoare E. **Verde:** Traiectoriile sistemului. Cele trei axe sunt de asemenea reprezzenttae, cu albastru fiind reprezentata axa de cuantificare.

Axa 3 - axa de cuantificare

Pentru acest caz, avem

u		v_0				
0.6		2.1				
cu $A_3 < A_2 < A_1$						
A_1	A_2	A_3	heta			

1.9 0.64 0.18 55

Rosu: Sfera de moment cinetic I=19/2. **Albastru:** Paraboloidul, calculat pentru o anumita valoare E. **Verde:** Traiectoriile sistemului. Cele trei axe sunt de asemenea reprezzenttae, cu albastru fiind reprezentata axa de cuantificare.