18MAB203T-Probability and Stochastic Processes

Prepared by
Dr. S. TAMILVANAN
Assistant Professor
Department of of Mathematics
Faculty of Engineering and Technology

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY Kattankulathur-603203, Kancheepuram District.

Definition

Random Variables

A Random Variable is a rule that assigns a real number to every outcome of the random experiment.

Random Process

A random process is a collection of random variables $\{X(s,t)\}$ that are functions of a real variable, namely time 't' where $s \in S(Sample\ space)$ and $t \in T(Parameter\ set\ or\ index\ set)$.

Classification of Random Process

Discrete Random Sequence

If both S and T are discrete then the random process is called Discrete Random sequence.

Eg: No of books in Library at opening time.

Continuous Random Sequence

If S is continuous and T is discrete, then the random process is called Continuous Random sequence.

Eg: Quantity of petrol in the petrol bank at opening time.

Discrete Random Process

If S is discrete and T is continuous then the random process is called Discrete Random Process.

Eg: No of phone calls recieving in (0,t).

Continuous Random Process

If both S and T are continuous then the random process is called Continuous Random Process.

Eg: Stirring sugar in coffee.

Definition

Strict Sense Stationary Process

A random process is called a Stationary Process or Strictly Stationary Process or Strict Sense Stationary Process if all its finite dimensional distributions are invariant under transition of time parameter.

Example1

If the random process X(t) takes the value -1 with probability $\frac{1}{3}$ and takes the value 1 with probability $\frac{2}{3}$, Find whether X(t) is a stationaery process or not.

Solution.

Given

GIVCII		
X(t)=n	-1	1
	1	2
p_n	3	3

To prove X(t) is a SSS process (i,e.)

- \bullet E[X(t)] = constant
- Var[X(t)]=constant

•

$$E[X(t)] = \sum_{n=-1}^{1} np_n$$

$$= (-1)(\frac{1}{3}) + (1)(\frac{2}{3}) = \frac{-1}{3}) + \frac{2}{3} = \frac{1}{3} = constant$$

2

$$E[X^{2}(t)] = \sum_{n=-1}^{1} n^{2} p_{n}$$

$$= (-1)^{2} (\frac{1}{3}) + (1)^{2} \frac{2}{3}) = \frac{1}{3}) + \frac{2}{3} = 1$$

$$Var[X(t)] = E[X^{2}(t)] - [E[X(t)]]^{2}$$

$$= 1 - (\frac{1}{3})^{2} = 1 - \frac{1}{9} = \frac{8}{9} = constant$$

Hence, X(t) is a SSS process.

Example2

Show that, If the process $X(t) = a\cos\omega t_+ b\sin\omega t$ is SSS, where a and b are independent random variables, then they are normal.

Solution.

Given
$$X(t) = acos\omega t_+ bsin\omega t$$

$$E[a] = E[b] = 0 \quad and \tag{1}$$

$$E[ab] = E[a]E[b] \quad and \tag{2}$$

$$E[a^2] = E[b^2] = \sigma^2 \tag{3}$$

$$E[X(t)] = E[acos\omega t + bsin\omega t]$$

$$= E[a]cos\omega t + E[b]sin\omega t$$

$$= (0)cos\omega t + (0)sin\omega t = 0$$

$$= constant$$

$$E[X^{2}(t)] = E[(acos\omega t + bsin\omega t)^{2}]$$

$$= E[a^{2}cos^{2}\omega t + b^{2}sin^{2}\omega t + 2abcos\omega tsin\omega t]$$

$$= E[a^{2}]cos^{2}\omega t + E[b^{2}]sin^{2}\omega t + 2E[ab]cos\omega tsin\omega t$$

$$= \sigma^{2}cos^{2}\omega t + \sigma^{2}sin^{2}\omega t + 0 \quad by \text{ (2) and (3)}$$

$$= \sigma^{2}[cos^{2}\omega t + sin^{2}\omega t = \sigma^{2}(1) = \sigma^{2}$$

$$Var[X(t)] = E[X^{2}(t)] - [E[X(t)]]^{2}$$

$$= \sigma^{2} - 0 = \sigma^{2} = constant$$

Hence, X(t) is a SSS process.

ø

Definition

Wide Sense Stationary Process

A random process is called a wide sense stationary process or weekly stationary process or covariance stationary process if it satisfies the conditions

- \bullet E[X(t)] = constant.
- $P(t_1, t_2) = E[X(t_1)X(t_2)] = R(t_1 t_2)$

Example1

The process $\{X(t)\}$, whose probability distribution under certain conditions is given by

$$P\{X(t) = n\} = \frac{(at)^{n-1}}{(1+at)^{n+1}}, n = 1, 2, 3, \dots$$
$$= \frac{at}{1+at}, n = 0$$

Show that it is not stationary.

The probability distribution of $\{X(t)\}$ is

The probability distribution of (A(t)) is							
X(t)=n:	0	1	2	3			
D .	at	1	at	$(at)^2$			
$\lceil \Gamma_n \rceil$	$\overline{1+at}$	$\overline{(1+at)^2}$	$\overline{(1+at)^3}$	$\overline{(1+at)^4}$			

$$E\{X(t)\} = \sum_{n=0}^{\infty} np_n$$

$$= \frac{1}{(1+at)^2} + \frac{2at}{(1+at)^3} + \frac{3(at)^2}{(1+at)^4} + \dots$$

$$= \frac{1}{(1+at)^2} \{1 + 2\alpha + 3\alpha^2 + \dots\}, where \alpha = \frac{at}{1+at}$$

$$= \frac{1}{(1+at)^2} (1 - \alpha^{-2}) = \frac{1}{(1+at)^2} (1+at)^2 = 1$$

$$E\{X^2(t)\} = \sum_{n=0}^{\infty} n^2 p_n = \sum_{n=1}^{\infty} n^2 \frac{(at)^{n-1}}{(1+at)^{n+1}}$$

$$= \frac{1}{(1+at)^2} \Big[\sum_{n=1}^{\infty} n(n+1) \Big(\frac{at}{1+at} \Big)^{n-1} - \sum_{n=1}^{\infty} n \Big(\frac{at}{1+at} \Big)^{n-1} \Big]$$

4□ > 4ⓓ > 4ಠ > 4ಠ > 6

$$= \frac{1}{(1+at)^2} \left[\frac{2}{(1-\frac{at}{1+at})^3} - \frac{1}{(1-\frac{at}{1+at})^2} \right]$$

$$= 1+2at$$

$$Var\{X(t)\} = 2at$$

If $\{X(t)\}$ is a stationary process, $E\{X(t)\}$ and $Var\{X(t)\}$ are constants. Since $Var\{X(t)\}$ is a function of t, the given process is not stationary.

Example2

Show that the random process $X(t) = Acos(\omega_0 t + \theta)$ is wide sense stationary, if a and ω_0 are constants and θ is a uniformly distributed RV in $(0,2\pi)$

Since θ is uniformly distributed RV in $(0,2\pi)$

$$egin{aligned} f_0(heta) &= rac{1}{2\pi}, 0 \leq heta \leq 2\pi \ E\{X(t)\} &= E\{Acos(\omega_0 t + heta)\} \ &= A \int_0^{2\pi} rac{1}{2\pi} cos(\omega_0 t + heta) d heta \ &= rac{A}{2\pi} \{sin(2\pi + \omega_0 t) - sin\omega_0 t\} \ &= 0 = a \ constant \end{aligned}$$

$$\begin{split} E\{X(t_1)\}\{X(t_2)\} &= E\{A^2 cos(\omega_0 t_1 + \theta) \times cos(\omega_0 t_2 + \theta)\} \\ &= \frac{A^2}{2} E\{cos[(t_1 + t_2)\omega_0 + 2\theta] \\ &+ cos(t_1 - t_2)\omega_0\} \\ &= \frac{A^2}{2} \int_0^{2\pi} \frac{1}{2\pi} \{cos[(t_1 + t_2)\omega_0 + 2\theta] \\ &+ cos(t_1 - t_2)\omega_0\} d\theta \\ &= \frac{A^2}{2} cos(t_1 - t_2)\omega_0 \\ R(t_1, t_2) &= a function of(t_1 - t_2) \end{split}$$

Therefore, $\{X(t)\}$ is a WSS process.

Example3

Given a RV Y with characteristic function

$$\phi(\omega) = E\{e^{i\omega Y}\}\$$
$$= E\{\cos\omega Y + i\sin\omega Y\}\$$

and a random process defined by $X(t) = cos(\lambda t + Y)$, show that $\{X(t)\}$ is stationary in the wide sense

$$If \ \phi(1) = \phi(2) = 0$$

$$E\{X(t)\} = E\{\cos(\lambda t + Y)\}$$

$$= \cos\lambda t \times E(\cos Y) - \sin\lambda t \times \cos E(\sin Y)$$
(1)

Given $\phi(1) = 0$

$$E(\cos Y) = 0 = E(\sin Y)$$

$$Using (2) in (1), we get E\{X(t)\} = 0$$

$$E\{X(t_1) \times X(t_2)\} = E\{\cos(\lambda t_1 + Y) \times \cos(\lambda t_2 + Y)\}$$

$$= \cos \lambda t_1 \cos \lambda t_2 E(\cos^2 Y) + \sin \lambda t_1 \sin \lambda t_2 E(\sin^2 Y)$$

$$- \sin \lambda (t_1 + t_2) E(\sin Y \cos Y)$$

$$= \cos \lambda t_1 \cos \lambda t_2 E\left(\frac{1}{2} + \frac{1}{2}\cos 2Y\right)$$

$$+ \sin \lambda t_1 \sin \lambda t_2 E\left(\frac{1}{2} + \frac{1}{2}\cos 2Y\right)$$

$$- \frac{1}{2}\sin \lambda (t_1 + t_2) E(\sin 2Y)$$

$$(3)$$

$$(4)$$

(i, e.) $E\{cosY + isinY\} = 0$

(2)

Given $\phi(2) = 0$

(i, e.)
$$E\{\cos 2Y + i\sin 2Y\} = 0$$

$$\therefore E(\cos 2Y) = 0 = E(\sin 2Y)$$
Using (5) in (4), we get
$$R(t_1, t_2) = E\{X(t_1) \times X(t_2)\}$$

$$= \frac{1}{2}\{\cos \lambda t_1 \cos \lambda t_2 + \sin \lambda t_1 \sin \lambda t_2\}$$

$$= \frac{1}{2}\cos \lambda(t_1 - t_2)$$
(6)

From (3) and (6) it follows that $\{X(t)\}$ is a WSS process.

Example4

Show that the process $X(t) = A\cos\lambda t + B\sin\lambda t$ (where A and B are RV) is wide sense stationary, if

- E(A) = E(B) = 0
- **2** $E(A^2) = E(B^2)$
- **③** E(AB)=0

$$E\{X(t)\} = \cos \lambda t \times E(A) + \sin \lambda t \times E(B) \tag{1}$$

If $\{X(t)\}$ is to be a WSS process. $E\{X(t)\}$ must be a constant (i.e, independent of t).

In 1 if E(A) and E(B) are any constants other than zero, $E\{X(t)\}$ will be a function of t.

$$E(A) = E(B) = 0$$

$$R(t_1, t_2) = E\{X(t_1) \times X(t_2)\}$$

$$= E\{(A\cos\lambda t_1 + B\sin\lambda t_1)(A\cos\lambda t_2 + B\sin\lambda t_2)\}$$

$$= E(A_2)\cos\lambda t_1\cos\lambda t_2 + E(B_2)\sin\lambda t_1\sin\lambda t_2$$

$$+ E(AB)\sin\lambda(t_1 + t_2)$$
(2)

If $\{X(t)\}$ is to be a WS process, $R(t_1, t_2)$ must be a function of $(t_1 - t_2)$. \therefore In 2, E(AB)=0 and $E(A^2)=E(B^2)=k$ Then $R(t_1, t_2)=kcos\lambda(t_1 - t_2)$

Example5

If $X(t) = Y cos\omega t + Z sin\omega t$, where Y and Z are two independent normal RV with E(Y) = E(Z) = 0, $E(Y^2) = E(Z^2) = \sigma^2$ and ω is a constant, prove that $\{X(t)\}$ is a SSS process of order 2.

Since $\{X(t)\}$ is a linear combination of Y and Z, that are independent, $\{X(t)\}$ follows a normal distribution with

$$E\{X(t)\}=cos\omega tE(Y)+sin\omega tE(Z)=0$$
 and $Var\{X(t)\}=cos^2\omega tE(Y^2)+sin^2\omega tE(Z^2)$ $=\sigma^2$

Since $\{X(t_1)\}$ and $\{X(t_2)\}$ are each $N(0, \sigma), X(t_1)$ and $X(t_2)$ are jointly normal with the joint pdf given by

$$f(x_1, x_2, t_1, t_2) = \frac{1}{2\pi\sigma^2\sqrt{1 - r^2}} \exp\left\{\frac{-(x_1^2 - 2rx_1x_2 + x_2^2)}{2(1 - r^2)\sigma^2}\right\}; -\infty < x_1, x_2 < x_2 < x_3$$
(1)

$$\begin{split} r &= \textit{correlation coefficient between}; \{X(t_1)\} \; \textit{and} \; \{X(t_2)\} \\ &= \frac{C(t_1, t_2)}{\sqrt{\textit{Var}\{X(t_1)\} \times \textit{Var}\{X(t_2)\}}} \\ &= \frac{1}{\sigma^2} E\{X(t_1)\} \times \{X(t_2)\} \\ &= \frac{1}{\sigma^2} E[(\textit{Y} cos\omega t_1 + \textit{Z} sin\omega t_1)(\textit{Y} cos\omega t_2 + \textit{Z} sin\omega t_2)] \\ &= \frac{1}{\sigma^2} [E(\textit{Y}^2) cos\omega t_1 cos\omega t_2 + E(\textit{Z}^2) sin\omega t_1 sin\omega t_2] \end{split}$$

[since E(YZ)=0 as Y and Z are independent]

Now, the joint pdf of $X(t_1 + h)$ and $X(t_2 + h)$ is given by a similar expressions as in 1, where

$$r = cos\omega\{(t_1 + h) - (t_1 + h)\}$$

= $cos\omega(t_1 - t_2)$

Thus, the joint pdf of $\{X(t_1), X(t_2)\}$ and $\{X(t_1 + h), X(t_2 + h)\}$ are the same.

Therefore, $\{X(t_1)\}$ is a SSS process of order 2.

Example6

Two random process $\{X(t)\}$ and $\{Y(t)\}$ are defined by $Acos(\omega_0 t + Bsin\omega_0 t)$ and $Bcos(\omega_0 t - Asin\omega_0 t)$. Show that $\{X(t)\}$ and $\{Y(t)\}$ are jointly wide-sense stationary, if A and B are uncorrelated RVs with zero means and the same variances and ω_0 is a costant.

$$E(A) = E(B) = 0; Var(A) = Var(B)$$

 $E(A^2) = E(B^2)$

Since A and B are uncorrelated, E(AB)=0.

Therefore, by Example4, $\{X(t)\}$ and $\{Y(t)\}$ are individually WSS process. Now,

$$R(t_1, t_2) = E\{X(t_1) \times X(t_2)\}$$

= $E\{(A\cos\omega_0 t_1 + B\sin\omega_0 t_1)(B\cos\omega_0 t_2 - A\sin\omega_0 t_2)\}$

$$= E(B^2) \sin \omega_0 t_1 \cos \omega_0 t_2 - E(A^2) \cos \omega_0 t_1 \sin \omega_0 t_2$$

$$= \sigma^2 \sin \omega_0 (t_1, t_2) \quad [assuming E(A^2) = E(B^2) = \sigma^2]$$

$$= a \text{ function of } (t_1 - t_2)$$

Definition

Autocorrelation Function

If the process $\{X(t)\}$ is stationary either in the strict sense or in the wide sense, $E\{X(t)\}$ $X(t-\tau)$ is a function of τ denoted by $R_{xx}(\tau)$ or $R(\tau)$ or $R_x(\tau)$. This function $R(\tau)$ is called Autocorrelation function of the process $\{X(t)\}$.

1 R(t) is an even function of τ . Proof.

$$R(\tau) = EX(t) \times X(t - \tau)$$

 $R(-\tau) = EX(t) \times X(t - \tau)$
 $= EX(t + \tau) \times X(t)$
 $= R(\tau)$

2 $R(\tau)$ is maximum at τ =**0** (i,e) $|R(\tau)| \le R(0)$. Proof.

The Cauchy-Schwarz inequlity is

$$E(XY)^2 \leq E(X)^2 \times E(Y)^2$$

Put X=X(t) and Y=X(t-au)

Then

$$[E\{X(t) \times X(t-\tau)\}]^2 \le E\{X^2(t)X^2(t-\tau)\}$$
$$\{R(\tau)\}^2 \le [E\{X^2(t)\}]^2$$

[Since $E\{X(t)\}$ and $\{X(t)\}$ are constant for a stationary process]

$$(i, e.) \quad R(\tau)^2 \le R(0)^2$$

Taking squaree root on both sides

$$|R(\tau)| \leq R(0)$$

[Since $R(0)=EX^2(t)$ is positive]

1 If the autocorrelation function R(t) of a real stationary process $\{X(t)\}$ is continuous at $\tau = 0$, it is continuous at every other point.

Proof.

Consider

$$[E\{X(t) - X(t - \tau)\}]^{2} = E\{X^{2}(t)\} + E\{X^{2}(t - \tau)\} - 2E\{X(t) \times X(t - \tau)\}$$

$$= R(0) + R(0) - 2R(\tau)$$

$$= 2[R(0) - R(\tau)]$$
(7)

Since
$$R(\tau)$$
 is continuous at $\tau=0$, $\lim_{\tau\to 0}R(\tau)=R(0)$

(i,e.)
$$\lim_{\tau \to 0} \{R.S.of7\} = 0$$

$$\lim_{\tau \to 0} \{L.S.of7\} = 0$$

$$\lim_{\tau \to 0} \{X(t-\tau)\} = X(t) \tag{8}$$

(i,e.) X(t) is continuous for all t

Consider
$$R(\tau + h) - R(\tau)$$

$$= E[\{X(t) \times X\{t - (\tau + h)]\} - E\{X(t) \times X(t - \tau)]$$

$$= E[X(t)\{X(t-\tau-h)-X(t-\tau)]$$
 (9)

Now,
$$\lim_{h\to 0} [X\{(t-\tau)-h\}-X(t-\tau)] = 0$$
, by 8
 $\lim_{h\to 0} \{R.S.of9\} = 0$

$$\lim_{h \to 0} \{L.S.of9\} = 0$$

$$\lim_{h \to 0} \{R(\tau + h)\} = 0$$

(i, e.)
$$\lim_{h\to 0} \{R(\tau+h)\} = R(\tau)$$

(i,e.) $R(\tau)$ is continuous for all τ

① If $R(\tau)$ is the autocorrelation function of a stationary process X(t) with no periodic component, then $\lim_{\tau \to \infty} R(\tau) = \mu_x^2$, provided the limit exists.

Proof.

$$R(\tau) = E\{X(t) \times X(t-\tau)\}\$$

When τ is large, X(t) and $X(t-\tau)$ are two sample functions of the process $\{X(t)\}$ observed at a very long interval of time.

Therefore, X(t) and $X(t-\tau)$ tend to become independent [X(t)] and $X(t-\tau)$ may be dependent, when X(t) contains a periodic component, which is not true].

$$\therefore \lim_{\tau \to \infty} R(\tau) = E\{X(t) \times X(t - \tau)\}$$

$$= \mu_{\mathsf{x}}^2 \quad [\mathit{SinceE}\{X(t)\} \ \mathit{is a constant}]$$

$$i, e. \qquad \mu_{\mathsf{x}} = \sqrt{\lim_{\tau \to \infty} R(\tau)}$$

Example1

Check whether the following functions are valid autocorrelation functions

2
$$R_{xx}(\tau) = \tau^3 + \tau^2$$

$$R_{xx}(\tau) = \cos(\tau) + \frac{|\tau|}{T}$$

1

$$R_{xx}(\tau) = rac{25 au^2}{4+5 au^2}$$
 $R_{xx}(- au) = rac{25- au^2}{4+5- au^2} = rac{25 au^2}{4+5 au^2}$
 $R_{xx}(au) = R_{xx}(- au)$

 \therefore $R_{xx}(\tau)$ is a autocorrelation function.

$$R_{xx}(\tau) = \tau^3 + \tau^2$$

 $R_{xx}(-\tau) = -\tau^3 + -\tau^2 = -\tau^3 + \tau^2$
 $R_{xx}(\tau) \neq R_{xx}(-\tau)$

 \therefore $R_{xx}(\tau)$ is not a autocorrelation function.

$$R_{xx}(\tau) = cos(\tau) + \frac{|\tau|}{T}$$

$$R_{xx}(-\tau) = cos(-\tau) + \frac{|-\tau|}{T}$$

$$= cos(\tau) + \frac{|\tau|}{T}$$

$$R_{xx}(\tau) = R_{xx}(-\tau)$$

 $\therefore R_{xx}(\tau)$ is a autocorrelation function.

Definition

Cross-Correlation Function

If the processes $\{X(t)\}$ and $\{Y(t)\}$ are jointly wide-sense stationary, then $E\{X(t)\times X(t-\tau)\}$ is a function of τ , denoted by $R_{xy}(\tau)$. This function is $R_{xy}(\tau)$ is called the cross-correlation function of the processes $\{X(t)\}$ and $\{Y(t)\}$.

 $R_{yx}(\tau) = R_{xy}(-\tau)$ Proof.

$$R_{xy}(au) = E[X(t)Y(t+ au)]$$
 $R_{xy}(- au) = E[X(t)Y(t- au)]$
 $substitutet_1 = t - au$
 $= E[Y(t_1)X(t_1+ au)]$
 $= R_{yx}(au)$

② $|R_{xy}(\tau)| \le \sqrt{R_{xx}(0)} \times R_{yy}(0)$ **Proof.** For any real number α , we know that $E[\alpha X(t) + Y(t+\tau)]^2 \ge 0$ $E[\alpha^2 X^2(t) + Y^2(t+\tau) + 2\alpha X(t)Y(t+\tau)] \ge 0$ $E[\alpha^2 X^2(t)] + E[Y^2(t+\tau)] + E[2\alpha X(t)Y(t+\tau)] \ge 0$ $\alpha^2 E[X^2(t)] + E[Y^2(t+\tau)] + 2\alpha E[X(t)Y(t+\tau)] \ge 0$

Since $\{X(t)\}$ and $\{Y(t)\}$ are jointly WSS, each is a WSS process Hence the second order moments are constants. But $E(X^2(t)) = R_{xx}(0)$ by the proprty of autocorrelation function and $E(Y^2(t+\tau)) = R_{yy}(0)$. $\alpha^2 R_{xx}(0) + R_{yy}(0) + 2\alpha R_{xy}(\tau) \ge 0 \quad \forall \alpha$ Since $R_{xx}(0) > 0$ and α is any real number, the discriminant is ≤ 0 .

$$4(R_{xy}(\tau))^{2} - 4R_{xx}(0)R_{yy}(0) \le 0$$
$$(R_{xy}(\tau))^{2} - R_{xx}(0)R_{yy}(0) \le 0$$
$$|R_{xy}(\tau) \le \sqrt{R_{xx}(0)R_{yy}(0)}$$

$$|R_{xy}(\tau)| \le \frac{1}{2} \{R_{xx}(0) \times R_{yy}(0)\}$$

Proof.

We know that $R_{xx}(0)$ and $R_{yy}(0)$ are positive numbers so their A.M > G.M

$$\frac{R_{xx}(0) + R_{yy}(0)}{2} \ge \sqrt{R_{xx}(0) + R_{yy}(0)}$$

By Property 2,
$$|R_{xy}(\tau)| \le \sqrt{R_{xx}(0) + R_{yy}(0)}$$

 $|R_{xy}(\tau)| \le \sqrt{R_{xx}(0) + R_{yy}(0)} \le \frac{R_{xx}(0) + R_{yy}(0)}{2}$
 $|R_{xy}(\tau)| \le \frac{R_{xx}(0) + R_{yy}(0)}{2}$

- If the process $\{X(t)\}$ and $\{X(t)\}$ are orthogonal, then $R_{xy}(\tau)=0$
- If the process $\{X(t)\}$ and $\{X(t)\}$ are independent, then $R_{xy}(\tau) = \mu_x \times \mu_y$

Example1

Consider 2 random processes $X(t) = 3cos(\omega t + \theta)$ and $Y(t) = 2cos(\omega t + \theta - \frac{\pi}{2})$ where θ is a random variable uniformly distributed in $(0, 2\pi)$ Prove that $|R_{xy}(\tau)| \leq \sqrt{R_{xx}(0) + R_{yy}(0)}$

Solution.

$$R_{xx}(t, t + \tau) = E[X(t)X(t + \tau)]$$

$$= E[3cos(\omega t + \theta).3cos(\omega t + \theta)]$$

$$= \frac{9}{2}E[cos(2\omega t + 2\theta + \omega \tau) + cos(-\omega \tau)]$$

$$= \frac{9}{2}\int_{0}^{2\pi} E[cos(2\omega t + 2\theta + \omega \tau)\frac{1}{2\pi}d\theta + \frac{9}{2}E(cos\omega \tau)]$$

$$\begin{split} &=\frac{9}{4\pi}\Big[\frac{\sin(2\omega t+2\theta+\omega\tau)}{2}\Big]_0^{2\pi}+\frac{9}{2}cos\omega\tau\\ &=\frac{9}{4\pi}\Big[\frac{\sin(2\omega t+\omega\tau)-\sin(2\omega t+\omega\tau)}{2}\Big]+\frac{9}{2}cos(\omega\tau)\\ &=\frac{9}{2}cos(\omega\tau)\\ R_{\rm XX}(\tau)&=\frac{9}{2}cos\omega\tau\\ R_{\rm XX}(0)&=\frac{9}{2}\end{split}$$

In a similar manner prove $R_{yy}(au)=2cos\omega au \implies R_{yy}(0)=2$

$$R_{xy}(t, t + \tau) = E[X(t)Y(t + \tau)]$$
$$= E[3\cos(\omega t + \theta).2\cos(\omega t + \omega \tau + \theta - \frac{\pi}{2})]$$

$$= 3E[\sin(2\omega t + 2\theta + \omega \tau) + \sin(\omega \tau)]$$

$$= 3\int_0^{2\pi} \sin(2\omega t + 2\theta + \omega \tau) \frac{1}{2\pi} d\theta + 3E(\sin\omega \tau)$$

$$= \frac{3}{2\pi} \left[\frac{\cos(2\omega t + 2\theta + \omega \tau)}{2} \right]_0^{2\pi} + 3\sin\omega \tau$$

$$= \frac{-3}{2\pi} \left[\frac{\sin(2\omega t + \omega \tau + 4\pi) - \sin(2\omega t + \omega \tau)}{2} \right] + 3\sin(\omega \tau)$$

$$R_{xy}(\tau) = 3\sin\omega \tau$$

Hence
$$\{X(t)\}$$
 and $\{X(t)\}$ are jointly WSS.
Now $R_{xx}(0)R_{yy}(0) = 9 \implies \sqrt{R_{xx}(0)R_{yy}(0)} = 3$
 $R_{xy}(\tau) = 3sin\omega\tau \implies |R_{xy}(\tau)| = |3sin\omega\tau| \le 3$
 $|R_{xy}(\tau)| \le \sqrt{R_{xx}(0)R_{yy}(0)}$

Example2

Two random processes $\{X(t)\}$ and $\{X(t)\}$ are defined by $X(t) = Acos\omega t + Bsin\omega t$ and $Y(t) = Acos\omega t - Bsin\omega t$ Show that $\{X(t)\}$ and $\{X(t)\}$ are jointly WSS if A&B are uncorrelated random variables with zero means and the same variances and ω is a constant.

Proof.

Given $X(t) = A\cos\omega t + B\sin\omega t$ and $Y(t) = A\cos\omega t - B\sin\omega t$ where A&B are uncorrelated random variables with zero means.

So
$$E(A) = 0$$
, $E(B) = 0$ and $E(AB) = E(A)E(B) = 0$
Given $Var(A) = Var(B) = \sigma^2$
Then $E(A^2) = E(B^2) = \sigma^2$
Given $X(t) = Acos\omega t + Bsin\omega t$
 $E(X(t)) = E(Acos\omega t + Bsin\omega t)$
Then $E(X(t)) = E(A)cos\omega t + E(B)sin\omega t$

= 0 as E(A) = E(B) = 0

$$R_{xx}(t,t+\tau) = E[X(t)X(t+\tau)]$$

$$= E[(Acos\omega t + Bsin\omega t) + (Acos\omega(t+\tau) + Bsin\omega(t+\tau))]$$

$$= E[A^2cos\omega tcos\omega(t+\tau)] + E[ABcos\omega tsin\omega(t+\tau)]$$

$$+ E[B^2sin\omega tsin\omega(t+\tau)] + E[ABsin\omega tcos\omega(t+\tau)]$$

$$= E(A^2)cos\omega tcos\omega(t+\tau) + E(AB)cos\omega tsin\omega(t+\tau)$$

$$+ E(B^2)sin\omega tsin\omega(t+\tau) + E(AB)sin\omega tcos\omega(t+\tau)$$
But $E(AB) = 0$ and $E(A^2) = E(B^2) = \sigma^2$

$$R_{xx}(t,t+\tau) = E(A^2)cos\omega tcos\omega(t+\tau) + E(B^2)sin\omega tsin\omega(t+\tau)$$

$$= \sigma^2cos(\omega t + \omega \tau - \omega t)$$

 $= \sigma^2 \cos(\omega \tau)$

Hence $\{X(t)\}$ is a WSS.

In a similar manner prove $\{X(t)\}$ is also a WSS. Now to show their cross correlation is a function of τ .

$$R_{xy}(t, t + \tau) = E[X(t)Y(t + \tau)]$$

$$= E[(Acos\omega t + Bsin\omega t) + (Bcos\omega(t + \tau) - Asin\omega(t + \tau))]$$

$$= E[ABcos\omega tcos\omega(t + \tau)] - E[A^2cos\omega tsin\omega(t + \tau)]$$

$$+ E[B^2sin\omega tcos\omega(t + \tau)] - E[ABsin\omega tsin\omega(t + \tau)]$$

$$= E(AB)cos\omega tcos\omega(t + \tau) - E(A^2)cos\omega tsin\omega(t + \tau)$$

$$+ E(B^2)sin\omega tcos\omega(t + \tau) - E(AB)sin\omega tsin\omega(t + \tau)$$

But
$$E(AB) = 0$$
 and $E(A^2) = E(B^2) = \sigma^2$

$$R_{xy}(t, t + \tau) = \sigma^{2} \left(sin\omega t cos\omega(t + \tau) - cos\omega t sin\omega(t + \tau) \right)$$

$$= \sigma^{2} sin(\omega t + \omega \tau - \omega t)$$

$$= \sigma^{2} sin(-\omega \tau)$$

$$= -\sigma^{2} sin(\omega \tau)$$

This is a function τ of only.

Therefore $\{X(t)\}$ and $\{X(t)\}$ are jointly WSS.

Definition

Time average

If $\{X(t)\}$ is a random process, then $\frac{1}{2T}\int_{-T}^{T}X(t)dt$ is called the time average of $\{X(t)\}$ over (-T,T) and denoted by \overline{X}_{T} .

Ergodic Process

A random process $\{X(t)\}$ is said to be ergodic, if its ensembles querages are equal to appropriate time averages.

Mean-Ergodic Process

If the random_process $\{X(t)\}$ has a constant mean $\{X(t)\}=\mu$ and if

$$\overline{X}_T = \frac{1}{2T} \int_{-T}^T X(t) dt \to \mu$$
, as $T \to \infty$, then $\{X(t)\}$ is said to be mean-ergodic.

Theorem

Mean-Ergodic Theorem

If $\{X(t)\}$ is a random process with constant mean μ and if $\overline{X}_T = \frac{1}{2T} \int_{-T}^T X(t) dt$, then $\{X(t)\}$ is mean-ergodic, provided $\lim_{T \to \infty} \{Var\overline{X}_T\} = 0$ Proof:

Proof

$$\overline{X}_{T} = \frac{1}{2T} \int_{-T}^{T} X(t)dt$$

$$E\overline{X}_{T} = \frac{1}{2T} \int_{-T}^{T} E\{X(t)\}dt$$

$$= \mu$$
(10)

By Tchebycheff's inequality,

$$P\{|\overline{X}_T - E\overline{X}_T| \le \epsilon\} \ge 1 - \frac{Var(\overline{X}_T)}{\epsilon^2}$$

Theorem

Taking Limits as $T \to \infty$ and using 10 we get

$$p\{|\lim_{T\to\infty}(\overline{X}_T)-\mu|\leq\epsilon\}\geq 1-\frac{\lim_{T\to\infty}Var(\overline{X}_T)}{\epsilon^2}$$

 \therefore when $\lim_{T \to \infty} Var(\overline{X}_T) = 0$, 11 becomes

$$p\{|\lim_{T\to\infty} (\overline{X}_T) - \mu| \le \epsilon\} \ge 1$$

(i,e.) $\lim_{T\to\infty} (\overline{X}_T) = E\{X(t)\}$ with probability 1.

Example1

Prove that the random process $\{X(t)\}$ with constant mean is mean

ergodic if
$$\lim_{T\to\infty} \left[\frac{1}{4T^2}\int_{-T}^T \int_{-T}^T C(t_1,t_2)dt_1dt_2\right] = 0$$

Proof.

By mean-ergodic theorem, the condition for the mean-ergodicity of the process $\{X(t)\}$ is $\lim_{T\to\infty} Var(\overline{X}_T)=0$

$$\overline{X}_T = rac{1}{2T} \int_{-T}^T X(t) dt$$
 and $\overline{X}_T = E(X_T)$
 $\overline{X}_T^2 = rac{1}{4T^2} \int_{-T}^T \int_{-T}^T X(t_1) X(t_2) dt_1 dt_2$

$$E\{\overline{X}_{T}^{2}\} = \frac{1}{4T^{2}} \int_{-T}^{T} \int_{-T}^{T} R(t_{1}, t_{2}) dt_{1} dt_{2}$$

$$Var(\overline{X}_{T}) = E\{\overline{X}_{T}^{2}\} - E^{2}(\overline{X}_{T}^{2})$$

$$= \frac{1}{4T^{2}} \int_{-T}^{T} \int_{-T}^{T} [R(t_{1}, t_{2}) - E\{X(t_{1})E\{X(t_{1})]dt_{1}dt_{2}]$$

$$= \frac{1}{4T^{2}} \int_{-T}^{T} \int_{-T}^{T} C(t_{1}, t_{2}) dt_{1} dt_{2}$$

Therefore, the condition $\lim_{T\to\infty} Var(\overline{X}_T)=0$ is equivalent to the condition

$$\lim_{T\to\infty} \left[\frac{1}{4T^2} \int_{-T}^{T} \int_{-T}^{T} C(t_1, t_2) dt_1 dt_2\right] = 0$$
 Hence the result.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◆○○○