Programación Competitiva

Alex Josué Flórez Farfán Magister en Ciencias de la Computación

Ciencia de la Computación - UNSA Segundo semestre 2021

Primera Nota

- Examen de entrada 15%
- Repositorio Github 25%
- Primer Examen 60%
- Puntos extra en clase

GitHub

- Identificación
- readme
- License
- .gitignore
- Directorios para cada aula
- Nombres de archivos
- Message on commit

Difference Array

Haybale Stacking

http://www.usaco.org/index.php?page=viewproblem2&cp id=104

Starts with N (1 <= N <= 1,000,000, N odd) empty stacks, Bessie is given a sequence of K instructions (1 <= K <= 25,000), each of the form "A B", meaning that Bessie should add one new haybale to the top of each stack in the range A..B.

Compute the median height afterwards

Haybale Stacking

N stacks, K instructions of form "A B"

Input:

7 4

5 5

2 4

4 6

3 5

Output: 1

Haybale Stacking

Heights sorted 0 0 1 1 2 3 3 Median (output): 1

- Updates are ranges.
- Instead of directly maintaining the stack heights, we can maintain the differences of adjacent heights.
- ► Given an array A[0..n-1], its difference array is defined as
 - D[0] = A[0]
 - D[k] = A[k] A[k-1] when 0 < k < n
- One range update on A (which update all elements in one continuous range by a constant) corresponds to 2 updates on D
- ▶ Given the difference array D, reconstructing A takes linear time

$$D[0] = A[0]$$

$$D[k] = A[k] - A[k-1]$$
 when 0 < k < n

N stacks, K instructions of form "A B"

Input:

7 4

5 5

2 4

4 6

3 5

Output: 1

	1	2	3	4	5	6	7
5 5					+1	-1	
2 4		+1			-1		
4 6				+1			-1
3 5			+1			-1	

Final Difference Array	0	1	1	1	0	-2	-1
Final height	0	1	2	3	3	1	0

Disastrous Downtime

https://open.kattis.com/problems/downtime

Given the starting times of N ($1 \le N \le 100,000$) requests, each of which lasts 1000 milliseconds, and K ($1 \le K \le 100,000$), the maximum number of requests a server can handle concurrently, compute the minimum number of servers needed to process all requests.

Disastrous Downtime

Input: N=7 K=2

1000 1010 1500 1999 2000 2010 2999

Output: 2

Explanation: Request 1 starts at 1000 and ends at 2000. At time 1999, there are 4 requests.

Disastrous Downtime. Difference Array

We just need to keep track of the active number of requests at any time, which can be changed by two kinds of events:

- (1) starting of a request (+1 event), and
- (2) ending of a request (-1 event).

Sorting events based on time, and we have a difference array.

Disastrous Downtime. Difference Array

Input: N=7 K=2

1000 1010 1500 1999 2000 2010 2999

Time						
Diff						
Acc						