Deleterious genetic loads and their contributions to heterosis in genomic selection

Jinliang Yang*, 1, Sofiane Mezmouk*, 1, 2, Andy Baumgarten[†], Rita H. Mumm[‡] and Jeffrey Ross-Ibarra*, §, 3

*Department of Plant Sciences, University of California, Davis, CA 95616, USA, §Center for Population Biology and Genome Center, University of California, Davis, CA 95616, USA, †DuPont Pioneer, Johnston, IA 50131, USA, †Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

ABTRACT Complementation of the deleterious alleles carried by the inbred parents may contribute to the vigorous performance, or heterosis, of the hybrid progenies. The detection of deleterious alleles was previous limited to the protein-coding regions. With the genomic evolutionary rate profiling (GERP), we extended the definition of deleterious alleles to the genome-wide. In total, about 86 million base-pairs, which make up 4.2% of the maize genome, were detected as evolutionary conserved sequences in both genic and non-genic regions. Here we take advantage of evolutionary measures of sequence conservation to ask whether sites with prior evidence of functionality can inform genomic selection (GS) models. We tested this idea using a partial diallel cross of 12 maize inbred lines. We sequenced the genomes of the parents and phenotyped both parents and hybrids for seven phenotypic traits across one environment in three years. We made use of an identity-by-decent analysis of the parents to identify haplotype blocks, and scored blocks in hybrids using a weighted sum of the GERP conservation score. We find that incorporating sequence conservation improves prediction accuracies in a five-fold cross-validation experiment for several traits *per se* as well as heterosis for those traits. Because most variation at conserved sites is deleterious, we interpret these results as consistent with the simple complementation model for heterosis. Overall, this work demonstrates the importance of incorporating evolutionary information in GS and its potential usage in plant breeding.

KEYWORDS heterosis; deleterious; genomic selection; diallel; GERP; maize

The phenomenon of heterosis or hybrid vigor has been observed across many species, from yeast (Shapira et al. 2014) to plants (Shull 1908) and vertebrates (Gama et al. 2013). A number of hypotheses have been put forth to explain the phenomenon, including gene dosage (Birchler et al. 2003), overdominance (East 1936; Schwartz 1973; Krieger et al. 2010) or pseudoverdomiance (Graham et al. 1997; McMullen et al. 2009), and epistasis (Minvielle 1987; Schnell and Cockerham 1992). Complementation of recessive deleterious alleles, however, remains the simplest genetic explanation (Charlesworth and Willis 2009), and is supported by considerable empirical evidences (Xiao et al.

Copyright © 2015 by the Genetics Society of America doi: 10.1534/genetics.XXX.XXXXXX

Manuscript compiled: Monday 22nd June, 2015%

1995; Frascaroli et al. 2007; Huang et al. 2015).

Deleterious alleles were arisen from new mutations during meiosis. In maize, about 90 new mutations were generated per meiosis (Clark *et al.* 2005), majority of which were deleterious according to empirical estimates (Joseph and Hall 2004). In a natural outcross population, the negative effects on fitness of these deleterious alleles make them subject to be selection against, which lead the deleterious alleles to be maintained in a low frequency (Eyre-Walker and Keightley 2007). But the deleterious alleles could not be completely purged.

In maize, the total number of mildly deleterious mutations is substantial because of the exponential growth of population size after domestication. The modern breeding probably aims to remove these deleterious mutations and pyramiding beneficial alleles for agronomical purposes. In practice, the relatively homogeneous maize germplasm pool was artificially divided into different heterotic groups (van Heerwaarden *et al.* 2012). It

¹Department of Plant Sciences, University of California, Davis, CA 95616, USA. Email: rossibarra@ucdavis.edu

²These authors contributed equally to this work

³Current address: KWS SAAT AG, Grimsehlstr. 31, 37555 Einbeck, Germany

enabled the improvement of germplasm pools to be conducted in a parallel fashion, and therefore, facilitated the breeding efficiency. Using this hybrid breeding approach, the maize yield has been steadily improved since the early 20th century (Duvick 2001). However, removing deleterious mutations in low recombination regions or in tightly linked regions become less effective. Studies indicated that residual heterozygosity correlates negatively with recombination (Gore et al. 2009; McMullen et al. 2009) and the low recombination is effective over long period of time (Haddrill et al. 2007). As a consequence, the deleterious alleles would be accumulated in the low recombination regions, such as the pericentromeric regions in maize, and the vigorous performance could be realized by combining two sets of nondeleterious or beneficial alleles in repulsion state, thus lead to pesudo-overdominance. A recent QTL study identified loci controlling for heterosis are enriched in centromeric regions (Larièpe et al. 2012), which partly support this pesudo-overdominance hypothesis

Despite the importance of deleterious alleles in contributing to heterosis, they have not been systematically investigated probably because of their low frequencies in the population and mostly exhibiting minor effects. Here, we employed a genomic selection (GS) approach to simultaneously estimate genomewide deleterious variants in a half diallel population. The diallel population was composed of a set of hybrids, which enabled us to explore different modes of inheritance of the deleterious variants. And the study can be conducted with millions of variants but using relative little sequencing efforts. In our previous study, deleterious SNPs were found to be enriched in a SNP set identified by GWAS (Mezmouk and Ross-Ibarra 2014). The deleterious variants in the study were defined as non-synonymous mutations in the coding regions. Clearly, deleterious variants are not limited to coding regions. Here, we expanded the characterization of deleterious variants to genome-wide using genomic evolutionary rate profiling (GERP) (Cooper et al. 2005). By incorporating GERP information in GS models, we demonstrated the prediction accuracies were significantly improved not only for some traits per se, but aslo for some heterosis transformations (especially for traits exhibiting high levels of hereosis). Further studies indicated that joint effects of deleterious alleles with additive and dominant modes of inheritance may contribute to heterosis.

Materials and Methods

Plant materials and phenotypic data

We selected 12 maize inbred lines, broadly representative of corn belt maize germplasm (Mikel and Dudley 2006), as parents of a partial diallel population. Each parent in a cross was used as both male and female and the resulting seed was bulked. We evaluated the 66 F1 hybrids, 12 inbred parents and two current commercial check hybrids in the field in Urbana, IL over three years (2009-2011) in an incomplete block design with three replicates each year. Plots consisted of four rows, with all observations taken from the inside two rows to minimize effects of shading and maturity differences from adjacent plots. We measured plant height (PHT, in cm), ear height (EHT, in cm), days to 50% silking (DTS), days to 50% pollen shed (DTP), anthesis-silking interval (ASI, in days), grain yield adjusted to 15.5% moisture (adj GY, in bu/A), and test weight (TW, in pounds). Overall mean phenotypic values for each cross can be found at (CITE).

We estimated Best Linear Unbiased Estimates (BLUEs) of

the genetic effects in ASReml-R (Gilmour *et al.* 2009) with the following linear model:

$$Y_{ijkl} = \mu + \varsigma_i + \delta_{ij} + \beta_{jk} + \alpha_l + \varsigma_i \cdot \alpha_l + \varepsilon$$

where Y_{ijkl} is the phenotypic value of the l^{th} genotype evaluated in the k^{th} block of the j^{th} replicate within the i^{th} year; μ , the overall mean; ς_i , the fixed effect of the i^{th} year; δ_{ij} , the fixed effect of the j^{th} replicate nested in the i^{th} year; β_{jk} , the random effect of the k^{th} block nested in the j^{th} replicate; α_l , the the fixed genetic effect of the l^{th} individual; $\varsigma_i \cdot \alpha_l$, the interaction effect of the l^{th} individual with the i^{th} year; ε , the model residuals.

We estimated best-parent heterosis (BPH) as:

$$BPH_{min,ij} = \hat{G}_{ij} - min(\hat{G}_i, \hat{G}_j)$$

$$BPH_{max,ij} = \hat{G}_{ij} - max(\hat{G}_i, \hat{G}_j)$$

where \hat{G}_{ij} , \hat{G}_i and \hat{G}_j are the genetic values of the hybrid and its two parents i and j. BPH_{min} was used instead of BPH_{max} for ASI. what about ear height and DTS? Did you mean plant height? We need to discuss about this.

Sequencing and Genotyping

We extracted DNA from the 12 inbred lines following Doyle and Doyle (1987) and sheared the DNA on a Covaris (Woburn, Massachusetts) for library preparation. do we need details on library prep? at least a citation? Libraries were then sequenced where? what length reads? insert size?

We trimmed raw sequence reads for adapter contamination with Scythe (https://github.com/vsbuffalo/scythe) and for quality and sequence length (≥ 20 nucleotides) with Sickle (https://github.com/najoshi/sickle). We mapped filtered reads to the maize B73 reference genome (AGPv2) with bwa-mem (Li and Durbin 2009), keeping reads with mapping quality (MAPQ) higher than 10 and with a best alignment score higher than the second best one for further analyses. We called single nucleotide polymorphisms (SNPs) using the *mpileup* function from samtools utilities (Li et al. 2009). To deal with known issues with paralogy in maize (Chia et al. 2012), SNPs were filtered to be heterozygote in less than 3 inbred lines, have a mean minor allele depth of at least 4, have a mean depth over all individuals lower than 30 and have missing/heterozygote alleles in fewer than 6 inbred lines.

We used the fastIBD method implemented in BEAGLE (Browning and Browning 2009) to impute missing data and identify regions of identity by descent (IBD) between the 12 inbred lines. We then defined haplotype blocks as contiguous regions within which there were no IBD break points across all pairwise comparisons of the parental lines (Figure S2).

Genomic selection using IBD blocks incorporated with GERP scores

We used genome-wide estimates of evolutionary constraint (GERP Davydov *et al.* 2010) estimated by Rodgers-Melnick *et al.* (2015). Haplotype blocks were weighted by the summed GERP scores of all deleterious (GERP score > 0) SNPs. This estimation was calculated under both additive and dominant modes of inheritance using a custom python script available at (https://github.com/yangjl/zmSNPtools). For a particular SNP with a GERP score *g*, the non-reference homozygote was assigned a value of 2*g*, the heterozygote a value of *g*, and the reference homozygote a value of 0. Under the dominant model, both the heterozygote and the non-reference homozygote were assigned a

value of *g*, with the reference homozygote again assigned a value of 0. To conduct prediction, a 5-fold cross-validation method was used, dividing the diallel population randomly into training (80%) and validation sets (20%) 10 times. The BayesC option from GenSel4 (Habier *et al.* 2011) was used for model training, using 41,000 iterations and removing the first 1,000 as burn-in. *this said chains but I think you mean iterations?* yes, sometimes, people say chains in MCMC. After model training, prediction accuracies were obtained by comparing the predicted breeding values with the observed phenotypes in the corresponding validation sets. For comparison, GERP scores were circularly shuffled by 50k SNPs windows (> 100Mb) 10 times to estimate a null conservation score for each IBD blocks. Cross-validation experiments using the circularly shuffled data were conducted on the same training and validation sets.

Results

Genetic values, heritability and heterosis

A partial diallel population was created using 12 maize inbred lines (Figure S1a). Two of them are important public inbreds, B73 and Mo17. And the other ten of proprietary inbreds (LH1, LH123HT, LH82, PH207, 4676A, PHG39, PHG47, PHG84, PHJ40, and PHZ51) that have expired from Plant Variety Protection (PVP) and represent much of the lineage of key heterotic germplasm pools used in present-day commercial corn hybrids. From this population, phenotypic data were collected for seven traits of interest during 2009-2011: anthesis-silking interval (ASI, in days), days to 50% pollen shed (DTP), days to 50% silking (DTS), ear height (EHT, in cm), grain yield adjusted to 15.5% moisture (GY, in bu/A), plant height (PHT, in cm), and test weight (TW, in pounds).

Best linear unbiased estimators (BLUEs) for genotypes of the seven traits were derived from mixed linear models (Table S1). In the models, all fixed effects were significant (Wald test *P* value < 0.05) for all traits except ASI, for which the effect of replicates within environments were not significant. As shown in Figure S1b, BLUE values were normally distributed (normality test *P* values > 0.05). Broad sense heritability for these traits ranged from 0.65 for ASI to 0.95 for PHT. Using the parental phenotypic data, we then estimated best-parent heterosis (BPH) for each trait. Because the selected inbred lines are commercially relevant and fairly elite in performance, hybrids in this population exhibit relatively low hybrid vigor (overall mean percent BPH = 0.3% \pm 0.4%) for most traits except GY (mean percent BPH = 95% \pm 16%, Figure S3). Finally, general and specific combining ability (GCA and SCA) were estimated following (Falconer and Mackay 1996). GCA and SCA varied among traits (Table S2) please add ref to actual table see text, but B73, PHG47 and PHG39 showed the greatest GCA or should this say SCA? for grain yield.

Evolutionary constraint information for genomic variants

All twelve inbreds were sequenced to an average depth of ~10X, resulting in a filtered set of 13.8 million SNPs. We estimated the allelic error rate using three independent data sets: for all individuals using 41,292 overlapping SNPs on the maize SNP50 bead chip (van Heerwaarden *et al.* 2012); for all individuals using 180,313 overlapping SNPs identified through genotyping by sequencing (GBS) (Romay *et al.* 2013); and for B73 and Mo17 using the 10,426,715 SNP from the HapMap2 project (Chia *et al.* 2012). *add a sentence or two describing the error rates!* The SNP calling concordance rate was 99.1% compared to corresponding SNPs previously identified.

More than 86 million bp of the genome were annotated as conserved, with GERP scores > 0 (Figure 1A and S4). Nonetheless, 506,898 of these sites were found to segregate among the 12 inbred parents of our diallel. The minor allele frequency of SNPs at conserved sites was negatively correlated with GERP score (Figure 1B; P value < 0.05, r = -0.8), consistent with the idea that variants at sites with more positive GERP scores are more deleterious and more strongly impacted by purifying selection.

Figure 1 Distribution of GERP scores and relationship between GERP scores and MAFs. **(A)** GERP scores extracted from \sim 1.2 million SNPs of the diallel population. **1.2M** is just the sites where GERP scores were available, correct? **(B)** Mean GERP scores were calculated for each bin (bin size = 0.01) of minor allele frequency (MAF). The red and grey lines define the regression and its 95% confidence interval.

Incorporation of GERP information improved prediction accuracies

Genomic variants occurred at the evolutionary constraint sites were potentially deleterious. The phenotypic effects of these genetic loads and their contributions to heterosis become an interesting area to explore. However, the population size in this study is relative small and SNPs detected at sites containing high GERP scores are generally in low frequencies. The statistical power to detect the separate effects of these putative deleterious alleles becomes very low. To alleviate the statistical limitations, we conceived a haplotype-based approach for GS, which could add up individual effects of deleterious alleles in IBD blocks and estimate these IBD blocks simultaneously. To conduct the analysis, first of all, 55,000 IBD blocks were identified, which had an average size of 44,980 bp (ranged from 36 to 10,320,000 bp). IBD blocks having > 1-kb in size and containing > 1 deleterious alleles (SNPs at sites with GERP scores >0) were kept for further analysis. Secondly, the GERP scores of SNPs in an IBD block were summed under both additive and dominant models. Those summed GERP scores on IBD blocks were considered as the measurements of the conservation of the haplotypes. More details of this procedure were illustrated in Figure S5.

A Bayesian-based statistical method (BayesC) (Habier *et al.* 2011) was employed for model training. Using a 5-fold cross-validation approach, the prediction accuracies of the real data and cicularly shuffled data were compared. As shown in Figure 2, for traits *per se*, prediction accuracies were significantly (FDR < 0.05) improved for ASI and PHT when incorporating GERP information in the IBD blocks under the additive model; prediction accuracy was significantly improved for ASI under the dominant model. For heterosis transformation traits (BPH),

incorporation of GERP scores improved BPH of GY under the additive model and improved BPH of DTP, DTS and TW under the dominant model (Figure 2 C and D, Supplementary table 3). In general, the average prediction accuracis were higher using the additive model (mean r = 0.81 and 0.49 for traits *per se* and BPH) than the dominant model (mean r = 0.70 and 0.42). And the prediction accuracies decreased for predicting heterosis transformations (BPH) as compared to the predictions for traits *per se*.

It was argued that SNPs in genic regions might have higher GERP scores than those in non-genic regions. The circular shuffling permutations may shift the high GERP scores to non-genic regions. If that is the case, the approach tended to weigh more on genic SNPs. To rule out this possibility, we elected SNPs with GERP scores >0 in genic regions only and did the circular shuffling to assign GERP scores to the same set of the selected SNPs. By doing this, the method will not take advantage of genomic positional information any more. Noted that in this study less number of SNPs was selected (N = 316, 983). Nevertheless, model prediction accuracies were significantly improved for traits per se of GY under the additive model. For heterosis transformations, prediction accuracies were significantly improved for BPH of GY and PHT under the additive model and the prediction accuracy was significantly improved for pBPH of GY (Figure S6 and Table S4).

Figure 2 Beanplots of cross-validation accuracies using SNPs with positive GERP score. Cross-validation experiments were conducted using selected SNPs and circular shuffled data from the same set of SNPs for traits *per se* (**A**, **B**), BPH (**C**, **D**) and pBPH (**E**, **F**) under additive (**A**, **C**, **E**) and dominant (**B**, **D**, **F**) models. Accuraries from the real data were plotted on the left side of the bean (blue) and permutation results plotted on the right (grey). Horizotal bars on beans indicate mean accuracies. The grey dashed lines indicate the overall average accuracies. Stars indicate significantly improved cross-validation accuracies with FDR < 0.05.

Posterior phenotypic variance explained and model comparisons

To learn why the prediction performace varied among traits *per se* and heterosis transformations, we obtained the posterior

variance explained by our models using the complete set of data. As shown in Figure 3, additive models explained more phenotypic variance for traits *per se* of DTP, DTS, EHT and PHT; but explained less phenotypic variance for heterosis transformations (BPH) of ASI, GY and TW. On the contrary, lager proportions of the phenotypic variance could be explained by the dominant models for heterosis transformations (BPH) of ASI, GY and TW. For the GY in particular, 50% of the heterosis could be explained by dominant model.

Heterosis transformations were largely determined by the accuracies of the parental phenotypes. To take the uncertainty of the parental phenotypes into consideration, we estimated the combining abilities from the hybrid population itself to investigate which modes of inheritance perform better than the null models. We extracted the breeding values estimated with both additive and dominant models using the genome-wide IBD blocks incorporated with the GERP scores. Consistent with above analysis, IBD blocks coded with dominant mode of inheritance significantly (equation 1 vs. equation 2, ANOVA P value < 0.05) improved model fitting for ASI and GY. We also compared model 3 and model 4, ANOVA results indicated that 4 performed almost as good as 3, indicating that specific combining ability captured most of the parental interactions and the current method could not detect higher order of interactions.

$$Y_{ij} = \mu + GCA_i + GCA_j + \varepsilon \tag{1}$$

$$Y_{ij} = \mu + GCA_i + GCA_j + G_{ij} + \varepsilon \tag{2}$$

$$Y_{ij} = \mu + GCA_i + GCA_j + SCA_{ij} + \varepsilon \tag{3}$$

$$Y_{ij} = \mu + GCA_i + GCA_j + SCA_{ij} + G_{ij} + \varepsilon \tag{4}$$

where Y_{ij} is the BLUE value of the hybrid crossed between the i^{th} inbred and j^{th} inbred; μ , the overall mean; GCA_i , the general combining ability of the i^{th} inbred; GCA_j , the general combining ability of the j^{th} inbred; SCA_{ij} , the specific combining ability of between the i^{th} and j^{th} inbreds; ε , the model residuals.

Figure 3 Barplots of the phenotypic variance explained by IBD blocks incorporated with GERP scores.

Discussion

- how do results match with heritability and heterosis?
- do we support deleterious model of Mezmouk et al.?

In this study, more than 500,000 deleterious SNPs were identified in elite maize lines including in non-coding regions of the genome. Majority of them were maintained in a low frequency, which consistent with the previous observation

(Rodgers-Melnick *et al.* 2015) and indicated the deleteriousness of the variants in the conserved sites. To estimate the joint effects of the potentical deleterious alleles for the phenotype, a genomic selection pipeline was developed, which utilized evolutionary conservation information in the IBD blocks as explainatroy variables. After model training, cross-validation results suggested prediction accuracies for some traits *per se* and heterosis transformations could be significantly improved by incorporating GERP scores.

Paritally, with dominant model, up to 20% of the phenotypic variance could be explained for the heterosis traits. Theoritically, BPH transformation subtracts the joint effects of the additive and dominant alleles in the best parents as residule, the substantiall variance of these redidules explained by the additive or dominant models in our studies indicated that genetic components controlling for heterosis might in linked state. Note that the current model simply assume the traits were simply determined by complete additive or complete dominant. In the real case, the phenotype most likely be controlled by some degree of mixture of additive and dominant complenents.

Schmitt: How to explain the prediction difference? The variation of the prediction accuacies were relative large in this study. First of all, broad sense heritability of the traits are different. Second, from the simulation we learned that different traits may controlled by different proportion of additive, dominant and even recessive gene actions. Our naive model only built the pure additive and pure dominant effects in. For the more complicated cases, the models may not work very well.

Literature Cited

- Birchler, J. A., D. L. Auger, and N. C. Riddle, 2003 In search of the molecular basis of heterosis. The Plant Cell 15: 2236–2239.
- Browning, B. L. and S. R. Browning, 2009 A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84: 210–23.
- Charlesworth, D. and J. H. Willis, 2009 The genetics of inbreeding depression. Nature reviews. Genetics 10: 783–96.
- Chia, J.-M., C. Song, P. J. Bradbury, D. Costich, N. de Leon, J. Doebley, R. J. Elshire, B. Gaut, L. Geller, J. C. Glaubitz, M. Gore, K. E. Guill, J. Holland, M. B. Hufford, J. Lai, M. Li, X. Liu, Y. Lu, R. McCombie, R. Nelson, J. Poland, B. M. Prasanna, T. Pyhäjärvi, T. Rong, R. S. Sekhon, Q. Sun, M. I. Tenaillon, F. Tian, J. Wang, X. Xu, Z. Zhang, S. M. Kaeppler, J. Ross-Ibarra, M. D. McMullen, E. S. Buckler, G. Zhang, Y. Xu, and D. Ware, 2012 Maize hapmap2 identifies extant variation from a genome in flux. Nat Genet 44: 803–7.
- Clark, R. M., S. Tavaré, and J. Doebley, 2005 Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus. Molecular Biology and Evolution 22: 2304–2312.
- Cooper, G. M., E. a. Stone, G. Asimenos, E. D. Green, S. Batzoglou, and A. Sidow, 2005 Distribution and intensity of constraint in mammalian genomic sequence. Genome research 15: 901–13.
- Davydov, E. V., D. L. Goode, M. Sirota, G. M. Cooper, A. Sidow, and S. Batzoglou, 2010 Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS computational biology 6: e1001025.
- Doyle, J. J. and J. Doyle, 1987 Genomic plant dna preparation from fresh tissue-ctab method. Phytochem Bull 19: 11–15.
- Duvick, D. N., 2001 Biotechnology in the 1930s: the development of hybrid maize. Nature Reviews Genetics **2**: 69–74.
- East, E. M., 1936 Heterosis. Genetics 21: 375.
- Eyre-Walker, A. and P. D. Keightley, 2007 The distribution of fitness effects of new mutations. Nature reviews. Genetics 8: 610–618.
- Falconer, D. and T. Mackay, 1996 Introduction to Quantitative Genetics. Longman.
- Frascaroli, E., M. A. Cane, P. Landi, G. Pea, L. Gianfranceschi, M. Villa, M. Morgante, and M. E. Pè, 2007 Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics 176: 625–644.
- Gama, L. T., M. C. Bressan, E. C. Rodrigues, L. V. Rossato, O. C. Moreira, S. P. Alves, and R. J. B. Bessa, 2013 Heterosis for meat quality and fatty acid profiles in crosses among Bos indicus and Bos taurus finished on pasture or grain. Meat Science 93: 98–104.
- Gilmour, A. R., B. Gogel, B. Cullis, and R. Thompson, 2009 Asreml user guide release 3.0. VSN International Ltd, Hemel Hempstead, UK.
- Gore, M. a., J.-M. Chia, R. J. Elshire, Q. Sun, E. S. Ersoz, B. L. Hurwitz, J. a. Peiffer, M. D. McMullen, G. S. Grills, J. Ross-Ibarra, D. H. Ware, and E. S. Buckler, 2009 A first-generation haplotype map of maize. Science (New York, N.Y.) 326: 1115– 7.
- Graham, G. I., D. W. Wolff, and C. W. Stuber, 1997 Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Science 37: 1601–1610.
- Habier, D., R. L. Fernando, K. Kizilkaya, and D. J. Garrick, 2011 Extension of the bayesian alphabet for genomic selec-

- tion. BMC bioinformatics 12: 186.
- Haddrill, P. R., D. L. Halligan, D. Tomaras, and B. Charlesworth, 2007 Reduced efficacy of selection in regions of the Drosophila genome that lack crossing over. Genome biology 8: R18.
- Huang, X., S. Yang, J. Gong, Y. Zhao, Q. Feng, H. Gong, W. Li, Q. Zhan, B. Cheng, J. Xia, *et al.*, 2015 Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature communications **6**.
- Joseph, S. B. and D. W. Hall, 2004 Spontaneous mutations in diploid Saccharomyces cerevisiae: More beneficial than expected. Genetics 168: 1817–1825.
- Krieger, U., Z. B. Lippman, and D. Zamir, 2010 The flowering gene single flower truss drives heterosis for yield in tomato. Nature genetics **42**: 459–463.
- Larièpe, a., B. Mangin, S. Jasson, V. Combes, F. Dumas, P. Jamin, C. Lariagon, D. Jolivot, D. Madur, J. Fiévet, A. Gallais, P. Dubreuil, A. Charcosset, and L. Moreau, 2012 The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics 190: 795–811.
- Li, H. and R. Durbin, 2009 Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics **25**: 1754–60.
- Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, and 1000 Genome Project Data Processing Subgroup, 2009 The sequence alignment/map format and samtools. Bioinformatics 25: 2078–9.
- McMullen, M. D., S. Kresovich, H. S. Villeda, P. Bradbury, H. Li, Q. Sun, S. Flint-Garcia, J. Thornsberry, C. Acharya, C. Bottoms, P. Brown, C. Browne, M. Eller, K. Guill, C. Harjes, D. Kroon, N. Lepak, S. E. Mitchell, B. Peterson, G. Pressoir, S. Romero, M. Oropeza Rosas, S. Salvo, H. Yates, M. Hanson, E. Jones, S. Smith, J. C. Glaubitz, M. Goodman, D. Ware, J. B. Holland, and E. S. Buckler, 2009 Genetic properties of the maize nested association mapping population. Science (New York, N.Y.) 325: 737–40.
- Mezmouk, S. and J. Ross-Ibarra, 2014 The pattern and distribution of deleterious mutations in maize. G3 (Bethesda, Md.) 4: 163–71
- Mikel, M. A. and J. W. Dudley, 2006 Evolution of north american dent corn from public to proprietary germplasm. Crop science 46: 1193–1205.
- Minvielle, F., 1987 Dominance is not necessary for heterosis: a two-locus model. Genetical research **49**: 245–247.
- Rodgers-Melnick, E., P. J. Bradbury, R. J. Elshire, J. C. Glaubitz, C. B. Acharya, S. E. Mitchell, C. Li, Y. Li, and E. S. Buckler, 2015 Recombination in diverse maize is stable, predictable, and associated with genetic load. Proceedings of the National Academy of Sciences 112: 3823–3828.
- Romay, M. C., M. J. Millard, J. C. Glaubitz, J. A. Peiffer, K. L. Swarts, T. M. Casstevens, R. J. Elshire, C. B. Acharya, S. E. Mitchell, S. A. Flint-Garcia, M. D. McMullen, J. B. Holland, E. S. Buckler, and C. A. Gardner, 2013 Comprehensive genotyping of the usa national maize inbred seed bank. Genome Biol 14: R55.
- Schnell, F. and C. Cockerham, 1992 Multiplicative vs. arbitrary gene action in heterosis. Genetics **131**: 461–469.
- Schwartz, D., 1973 Single gene heterosis for alcohol dehydrogenase in maize: the nature of the subunit interaction. Theoretical and Applied Genetics **43**: 117–120.
- Shapira, R., T. Levy, S. Shaked, E. Fridman, and L. David, 2014

- Extensive heterosis in growth of yeast hybrids is explained by a combination of genetic models. Heredity **113**: 1–11.
- Shull, G. H., 1908 The composition of a field of maize. Journal of Heredity pp. 296–301.
- van Heerwaarden, J., M. B. Hufford, and J. Ross-Ibarra, 2012 Historical genomics of north american maize. Proc Natl Acad Sci U S A **109**: 12420–5.
- Xiao, J., J. Li, L. Yuan, and S. D. Tanksley, 1995 Dominance is the major genetic basis of heterosis in rice as revealed by qtl analysis using molecular markers. Genetics **140**: 745–754.

Supporting Information

Figure S1 Diallel experimental design and distribution of phenotypic data. (A) Twelve maize inbred lines were selected and crossed in a partial diallel. *do we need to modify this diagram now that we now reciprocal crosses were pooled?* (B) Density plots of the phenotypic distributions.

Figure S2 Haplotype block identification using an IBD approach. In the upper panel, regions in red are IBD blocks identified by pairwise comparison of the two parental lines of a hybrid. The vertical dashed lines define haplotype blocks. In the lower panel, hybrid genotypes at each block are coded as heterozygotes (0) or homozygotes (1).

Percentage of Better Parental Heterosis

Figure S3 Boxplot of percent best parent heterosis (pBPH). In the plot, ASI was calculated using pBPHmin and the other six traits were calculated using pBPHmax.

Figure S4 GERP score distribution across the genome. Shown are mean GERP scores in a 1-Mb bin region.

Figure S5 Incoporation of conservation information into IBD blocks. Regions of the genome that are identical by descent (IBD) among the 12 inbreds were identified using Beagle (Browning and Browning 2009). The GERP scores of SNPs in an IBD block were summed under both additive and dominant models. For a particular SNP with GERP score g, the homozygous non-reference genotype was assigned a value of 2g, the heterozygote assigned a value of g, and the reference homozygote a value of g, with the reference homozygote again assigned a value of g.

Figure S6 Cross-validation accuracies using genic SNPs. Cross-validation experiments were conducted using genic SNPs and compared to circular-shuffled data for traits *per se* (**A**, **B**) and pBPH (**C**, **D**) under additive (**A**, **C**) and dominant (**B**, **D**) models. Distirbutions show accuracty of prediction from real data (blue) and permutations (grey), with horizontal bars to indicate mean accuracy. Stars indicate significantly higher cross-validation accuracy for the real data. The average accuracy across all traits is shown with the grey dotted line.