S.
lobium
.9064 N
$A_{\rm r} = 92$

Nb₁(ref)

STATE	
ENCE	
REFERI	
ш.	

REFERENCE STATE	to 2750 K crystal to 5130.824 K liquid 5130.824 K ideal monatomic ga
	0 2750 above

Refer to the individual tables for details.

Enthalpy Reference	Ë	Temperature	= T, = 298.15 K		Standard State Pressur	ate Pressure =	p* = 0.1 MPa
7/K	 	S -[G	-H'(T,)]T	$H^{\bullet}-H^{\bullet}(T_t)$	 • H ¹ √	P _i C•	log Kr
٥ ۽	9		INFINITE	-5.241	Ö	o' c	Ö
28	23.091	26.878	38.685	-2361	jo	ó	ာ်ဝံ
250	24.154		36.867	-1.17	o' (o o	o' (
238.13	4.074	30.404	30.404	0	.	o o	ď
888	25,393	43.826	37.442	2553	တ် တ	ಶರರ	o o o
8	26.347	\$4,309	41.424	1.731	Ö	Ö	; oʻ
88	26.769	58.403 59.004	43.564	10.387	o' c	ဝင	oʻ c
88	27.593	65.230	47.648	15.823	ide	óc	ide
001	28.405	70.846	51.370	21.423	်ဝံ	် ဝံ	်ဝံ
85	28.78 27.08	73.334	53.098	24.284	o' c	o' c	o' c
<u>\$</u>	29.589	77.831	56.317	30.120	óc	ರರ	6
08	30.606	81.846	59.261	36.135	ó	ď	id
929	31.221	83.719	60.64S	39.226 42.381	o' o	ರ ರ	o' o
2002	32.639	87.267 88.961	63.263 64.506	45.608	60	00	. ರ ರ
2100	34.275	90.612	65.710	\$2.2%	Ö	ó	o'
2200	35.187	92.228	68.015	59.336	ರಂ	o' c	oʻ c
250	37.317	95.377	69.123	63.010	ide	do	i ci c
360	40,233	98.471	71.261	70.745	; o	် ဝံ	jo
2750.000	43.423	100.813	72.809	77.011	Gys.	YSTAL <> LIQUID	; and
2750.000	33.472	110.5%	72.809	103.914	,	TRANSITION	
7800 7800 7800	33.472 33.472	112.374	74.810	108.935	ರ ರ	ಶರ	ತ ರ
3000	33.472	113.508	16.081	112.282	ဝံဝ	ರ ೧	ರಂ
3200	33.472	115.669	78.489	118.976	ာ် ဝံ	ာ် ဝ	ာ်ဝံ
3400	33.472 33.472	116.699	79.631 80.736	125.571 125.671	ರ ರ	ರ ರ	ರ ರ
3200	33.472	118.668	81.806	129.018	ö	ö	ó
3600 3700	33.472 33.472	119.611	82.843 83.849	132.365	ರ ರ	ರರ	o o
3800	33.472	121.421	84.826 85.776	139.059	o' c	o c	o c
4000	33.472	123.138	86.699	145.754	ö	ď	ó
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	33.472	123.84 124.71	87.598 88.474	149.101 152.448	ರ ರ	ರ ರ	ರ ರ
4400	33.472	125.558	89.327 90.159	155.795	00	ರ ರ	ರ ರ
4500	33.472	127.080	17506	162.490	၁ ၀	ರ	ာ်င
86	33.472	128.536	92.539	169.184	ಶರಣ	ಶರಣ	o o
8 4 5	33.472	129.930	94.037	175.879	ರ ರ	ರ ರ ೧	್ ರ
2000	33.472	131.270	94.762	182.573	င် င	ံ ဝံ	ာ် က
5130.824	33.472	131.471	95.687	183.605	IIION —	> (DE	AL GAS
2130.824	44.00	260.042	93080	6/4.004	2	74411 - 1	5
2888	36.943 37.115	267.232	101.143	880.271 883.923	ಶರರ	ಶರರ	ಶರರ
2600	37.678	269.274	110.095	891.403	o'	oʻ.	oʻ.
2800	38.251 38.839	270.606 271.913	115.607 120.795	898.995 906.704	ರರ	ರ ರ	ರರ
PREVIOUS: 1	December 1	1973 (1 atm)			5	CURRENT: December 1973 (1 bar	ber 1973 (1 bar)

CURRENT. December 1973

Ar = 92.9064 Niobium (Nb)

 $\Delta_{\rm f}H^{\circ}(0 \text{ K}) = 0 \text{ kJ·mol}^{-1}$ $\Delta_{\rm f}H^{\circ}(298.15 \text{ K}) = 0 \text{ kJ·mol}^{-1}$ $\Delta_{\rm los}H^{\circ} = 26.90 \pm 0.8 \text{ kJ·mol}^{-1}$ $S^{\circ}(298.15 \text{ K}) = 36.46 \pm 0.4 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ fts = 2750 ± 10 K

Niobium (Nb)

Enthalpy of Formation

Zero by definition.

Heat Capacity and Entropy

capacity of annealed and unannealed niobium wires in magnetic fields supports this choice. Clusius et al 4 measured the heat capacity (61 pts.) in the region 11–274 K. This data is smoothed graphically and is constrained to join smoothly with the C_p values for $T \le 10$ K. Deviations The heat capacity values for T < 10 are chosen to be the same as those adopted by Hultgren et al. A graphical integration of these C_p^* data up to 4% occur between the observed and adopted C_0^* values for T < 80 K. The deviations here parallel the deviations obtained in our analysis of the heat capacity for Ta^5 The deviations decrease steadily with increasing temperature up to 274 K. yields 5°(10 K) = 0.029 J·K -1. mol -1 and H°(10 K) = 0.19 cal-mol -1. The work by DaSilva et al. 13 on the low temperature (1-10 K) heat

There are numerous high temperature heat capacity and enthalpy measurements for Nbcr). The various studies are listed below.

Method	qup	drop	drop	modul	modul	quo	- Go	quo	pulse	pulse	dup
T/K	273-1873	454-1882	433-1840	1400-2350	1300-2700	358-1415	900-2600	1273-2593	1100-2400	1500-2700	1650-2707
Source	•		•• •	• :	e :	= :	22	= :	z :	2	2

The adopted C, values for T > 298.15 K are obtained by a combination of graphical and polynomial curve fitting techniques. A polynomial curve fit procedure is used on the enthalpy data of Hawkins and Orr" with the constraint that it join smoothly in the 298.15 K region with the enthalpy derived from the Clusius et al. heat capacity data. Above 1300 K, a heat capacity curve is adopted through graphical procedures. The adopted curve is chosen so as to be intermediate between the C° values of Cezairliyan is and the higher C° values implied from the enthalpy data of Kirillin et al. 12 and Sheindlin et al. 16 In general there is good agreement between the various sets of data.

1100-2400 K whereas the adopted C_s^s values are nonlinear, the C_s^s -T curve being concave upward in this region. The C_s^s values of Makarenko et al. "are within -0.4% to +0.8% of the adopted values in the region 1400-2100 K but drift to -3% at 1100 K and 2400 K. In comparing enthalpies, Kirillin et al. "Is reported smoothed values? which are 15 cal-mol⁻¹ or 0.8% lower than our tabulated values at 600 K and drift to 1400 K in the region 1400-2700 K (82 cal-mol⁻¹ at 1700 K and 181 cal-mol⁻¹ at 1700 K, and 181 cal-mol⁻¹ at 1700 K). Cezairliyan's smoothed data lies low by 1.9% at 1500 K with the difference steadily decreasing to zero at 2600 K. The smoothed results of Cezairliyan are used for extrapolation to 3200 K. The C, values reported by Makarenko and Trukhanov are linear in the region The heat capacity values near The are the smoothed values suggested by Cezairliyan. Is In comparison with the adopted C, values,

Fusion Data

Refer to the liquid table for details.

Sublimation Data

 $\Delta_{ab}H'(298.15 \text{ K})$ for Nb(ct) = Nb(g) is simply $\Delta_f H'(298.15 \text{ K})$ for Nb(g). Refer to the ideal gas table for details

References

¹R. Hultgren, R. L. Orr, and K. K. Kelley, Supplement to Selected Values of Thermodynamic Properties of Metals and Alloys, Nb table, (January 1966).

F. DaSilva, N. W. J. van Duykeren, and Z. Dokoupil. Physica 32, 1253 (1966).

. Clusius, P. Franzosini, and U. Piesbergen, Z. Naturforsch. 15, 728 (1960). F. DaSilva, E. A. Burgemeister, and Z. Dokoupil. Physica 41, 409 (1969).

JANAF Thermochemical Tables: Ta(cr), 12-31-72.

M. Jaeger and W. A. Veenstra, Rec. Trav. Chem. 53, 677 (1934); Proc. Roy. Acad. Amsterdam 37, 61 (1934).
 B. Fieldhouse, J. C. Hedge, and J. I. Lang, WADC TR 58-274, 1958 [AD 206 892].

Continued on page 1693

PREVIOUS: June 1972

CURRENT: December 1973

Niobium (Nb)

PREVIOUS June 1972

A, = 92,9064 Niobium (Nb) LIQUID

Niobium (Nb)

Nb₁(I)

 $S^{\circ}(298.15 \text{ K}) = [47.302] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ 7tm = 2750 ± 10 K

Enthalpy of Formation

The enthalpy of formation of Nb(I) at 298.15 K is calculated from that of the crystal by adding $\Delta_{la}H^{\circ}$ and the difference in enthalf H°(2750 K)-H°(298.15 K), between the crystal and liquid.

Heat Capacity and Entropy

a heat capacity value could be derived. Therefore, the heat capacity for Nb(l) is estimated as 8.0 cal·K⁻¹·mol⁻¹ by analogy with oth monatomic metals. The entropy at 298.15 K is calculated in a manner analogous to that used in calculating the enthalpy of formation. A gla The enthalpy measurements on Nb(1) by Sheindlin et al. 7 and Margrave* do not extend over a sufficiently wide temperature range such the ransition is assumed at 1750 K. The heat capacity values used below 1750 K are those of Nb(cr).

effects have been documented by Schofield¹ and Pernsler.² The value chosen is 2750 ± 10 K as reported by Cezairliyan³ using a subseco Melting point determinations for Nb have been numerous, with most reported values in the range 2680-2795 K (IPTS-68 scale). A prin cause for diversity in the results is that the melting point is quite sensitive to impurities, especially gases such as oxygen and nitrogen. The pulse heating method. This value is consistent with the heat capacity values near T_{fus} which are also based on related work by Cezairliya Other values in this range (corrected to IPTS-68 scale) are 2746 K by Schofield, 2745 K by Pemsler, and 2738 K by Buehler. Kocherzh

skii and Kobzenko⁶ have reported a T_{rar} value of 2793 K, using a sample purified by electron zone fusion.

The value chosen for $\Delta_{las}H^9$ is 6.43 ± 0.20 kcal·mol⁻¹ as determined by Cezarliyan³ using a pulse beating technique. Adopting this val gives consistency between the C_g values near T_{las}, $\Delta_{las}H^9$, and T_{las} as all these values are dependent upon the same heating technique. Sheindl techniques. In the vicinity of T_{ms} , the adopted enthalpy vlaues for Nb(cr) and Nb(l) lie roughly 200 cal·mol⁻¹ lower than those reported Sheindlin et al. Margrave, also using levitation techniques, reported a value $\Delta_{tss}H^o = 7.9$ kcal·mol⁻¹. It is felt that Margrave's value w calculated from a measured enthalpy of Nb(f) at T_{tm} and the enthalpy of Nb(cr) at T_{tm} as suggested by Hultgren et al. 3 Our enthalpy vlau et al. Treported $\Delta_{hu}H^{\circ}=6.597\pm0.170$ kcal·mol⁻¹ based on enthalpy measurements on Nb(cr) and Nb(l) obtained from levitation calorime

at T_{tes} for Nb(cr) would reduce Margrave's value to roughly 7.4 kcal·mol⁻¹ for Δ_{tes}H.

Martynyuk and Tsapkov¹⁰ measured the enthalpies of Nb(cr) and Nb(l) at the melting point using the method of pulse heating. They report enthalpy of melting value of 7.98 kcal·mol⁻¹ for an Nb sample which was reported to be 99.94% pure. No T_{in} value was reported.

Vaporization Data

 T_{top} is the temperature at which the Gibbs energy change for the reaction Nb(t) = Nb(g) is zero. The difference between $\Delta_t H^0$ (Nb, g) a $\Delta_t H^0$ (Nb, 1) at T_{top} is $\Delta_t H^0$. The uncertainty in the boiling point is probably of the order of \pm 100 K. Also refer to Nb(g) table.

References ¹T. H. Schofield, J. Inst. Metals 85, 372 (1956).

²J. P. Pemsler, J. Electrochem. Soc. 108, 744 (1961).

¹A. Cezairliyan, U. S. Nat. Bur. Stand. Report. 10904, (July 1972), Ch. 8 and 9.
 ²A. Cezairliyan, U. S. Nat. Bur. Stand. 75A, 565 (1971).
 ³E. Buehler, Trans. AIME 212, 694 (1958).
 ⁴Y. A. Kocherzhinskii and G. F. Kobzenko, FTD-TT-65-1883, 1 (1966); as reported by J. H. Charlesworth, Melting Points of Metall

Elements and Selected Compounds, AFML-TR-70-137, (October, 1970).

A. E. Sheindlin, B. Ya. Berezin, and V. Ya. Chekhovskoi, High Temperatures-High Pressures 4, 611 (1972).

¹J. L. Margrave, High Temperatures-High Pressures 2, 583 (1970).

Pt. Hultgren, R. L. Orr, and K. K. Kelley, Supplement to Selected Values of Thermodynamic Properties of Metals and Alloys, Nb tab (January, 1966).

^oM. M. Martynyuk and V. I. Tsapkov, Russ. J. Phys. Chem. 47, 741 (1973)

$\Delta_t H^{\circ}(298.15 \text{ K}) = [29.647] \text{ kJ·mol}^{-1}$ $\Delta_{n} H^{\circ} = 26.90 + 0.8 \text{ kJ·mol}^{-1}$	Enthalpy R	eference T	emperature	Enthalpy Reference Temperature = $T_t = 298.15 \text{ K}$ $1 \cdot \text{K}^{-1} \text{mol}^{-1}$	<u>.</u>	Standard State	Standard State Pressure = p^{\bullet} = 0.1 MPa k1·mol ⁻¹	- 0.1 MPa
	τÆ	ខ	S{G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$	Δ _r H*	Φ_{iG}	log K _r
$\lambda_{ta}H^{\circ}$ and the difference in enthalpy,	0 0 0 0 5 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0							
ntly wide temperature range such that cal-K-'mol-' by analogy with other into the enthaltw of formation & olses	298.15 300 350 400 450	24.694 24.711 25.088 25.393 25.653	47.302 47.455 51.293 54.664 57.670	47.302 47.605 48.281 49.160	0. 0.046 1.291 2.553 3.830	23.647 23.647 23.647 23.647	26.415 26.395 25.853 25.311 24.770	-4.628 -4.596 -3.858 -3.305 -2.875
	8 8888	26.347 26.347 26.769 27.183	65.148 65.148 72.842 76.068	50.149 52.263 56.487 58.486	5 118 7.731 10.387 13.084 15.823	82 82 82 72 72 82 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 7	24.228 23.144 20.976 19.892	-2.015 -2.015 -1.646 -1.370
880–2795 K (IPTS–68 scale). A prime as such as oxygen and nitrogen. These ted by Cezairliyan¹ using a subsecond assed on related work by Cezairliyan. "And 7738 k hv. Brashlas 5 k cakarshim and 7738 k hv. Brashlas 5 k cakarshim."	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23.405 28.738 29.179 29.589	8.1.684 84.172 86.492 88.669	60.393 62.208 63.936 65.583 67.135	18.603 21.423 24.284 27.182 30.120	83.83 83.83 84.84 84 84 84 84 84 84 84 84 84 84 84 84 8	18.808 17.725 16.641 15.557 14.473	-0.982 -0.842 -0.625 -0.625
usion. Eating technique. Adopting this value the same heating technique. Sheindlin	1700 1700 1750.000		92.684 94.557 95.467	70.099	36.135 39.226 40.795	¥.	V	-0.402 -0.345 D
I) obtained from levitation calorimetry al mol 1 lower than those reported by It is felt that Margrave's value was	1800 2000 2000 2000		96.410 98.220 99.937	72.816 74.106 75.355	42.469 45.816 49.163		10.137 9.044 7.948	-0.249 -0.249
y Hullgren et al.'. Our enthalpy vlaues nethod of pulse heating. They reported ure. No T _{fas} value was reported.	2200 2200 2200 2200 2200 2200 2200 220		103.127 104.615 106.039 107.406 108.718	71.737 78.874 79.976 81.046 83.095	52.25 52.26 52.205 62.899 62.89 62.46 72.593	29.736 29.515 29.518 29.188 28.740 28.148	2.557 3.557 2.557 2.541 2.541 0.494	-0.137 -0.106 -0.053 -0.030
e difference between ΔH° (Nh, g) and K. Also refer to Nb(g) table.	2750.000 2800 2900 3000 3100		110.596 111.199 112.374 113.508 114.606	83.590 84.077 85.033 85.963 86.870 87.753	74.267 - 75.941 79.288 82.635 85.982 89.329	CRYSTAI 0. 0. 0. 0.	Ų	•
rlesworth, Melting Points of Metallic	6 3 3 3 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	888 88888 666 66666	11,698 117,698 118,668 120,528 122,290 122,290	88.615 89.456 90.276 91.078 92.628 93.377	92.677 96.024 99.371 102.718 109.413 112.760	ರವರ ದರದರರ (ರಿರೆಲೆ ಲಿಲಿಲಿಲಿಲೆ	ರೆರೆರೆ ರೆರೆರೆರೆರೆ
II (1972). erties of Metals and Alloys, Nb table,	4468 430 4400 4400 4400 4400 4400 4400 4400	33.472	123.384 124.711 125.538 126.328	94823 95.532 96.221 97.8897 97.8897	12.801 12.801 126.149 129.496 132.843	ರಂಧರರ -	ರಂದರ ಪ	ರರ್ಧರ
	4680 4700 4800 4800 5100 5100 5300 5400 5600 6000	555555 5 5 555 555 55555 5 5 5 5 5 5 5	127.816 129.236 129.231 130.607 131.270 131.257 132.557 134.400 135.735 136.705	98.209 98.209 99.473 100.087 101.284 101.465 103.004 103.004 105.103	136,190 142,887 142,837 149,579 151,958 153,958 162,968 163,968 163,968 163,968 163,968 163,968 163,968 163,968	ଅନ୍ତର ଜଣଣ ।	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.00.00.00.00.00.00.00.00.00.00.00.00.0

Nb₁(cr,l)

Enthalpy Reference	Temperature = J·K ⁻¹ mol ⁻¹	nof" -[G*-H*(T,)]T	H*-H*(T,)	LJ-mol-1	A.H. A.G.	p = u.i mira log K,
, (;			i '	r T	
7.439 12.558 23.091 26.878		57.153 38.685	-3.241 -4.460 -2.361	-	တ်ဝင	ಶರಂ
		36.867	-1.17	.	id d	ರ
		36.464	0.046	ံဝံ	ံဝ	3 C
		36.766	123	0,0	00	oʻc
25.653 46.832 25.899 49.548		38,322	3.830	ೆರೆರ	်ဝင	်ဝင
		41.424	7.731	ರ	Ö	ರ
		45.649	13.084	်ဝံ	ö	ಕರ
27.593 65.230 27.599 68.158		47.648 49.555	15.823 18.603	ರರ	ರರ	ರರ
		51.370 53.098	21.423	ರರ	ರೆದ	66
29.179 75.654 29.589 77.831		54.745 56.317 57.820	27.182 30.182	ರರಂ	ರೆರೆ	ರರಂ
		59.261	36.135	ံဝံ	ံဝံ	ံ ဝံ
		60.645 61.977	39.226 42.381	ರ ರ	00	ರ ರ
32.639 87.267 33.430 88.961		63.263 64.506	45.608	00	00	60
		65.710	\$2.2% \$5.768	ರರ	oo	ø
36.192 93.813		68.015	59.336	öc	ioic	6
		70.204	66.805	ೆರೆ	်ဝံ	်ဝ
40.233 98.471 42.283 100.027		71.261	70.745	ರರ		ರರ
13.423 100.813 13.472 110.596		72.809 72.809	77.011	CRYSTAL	FAL <> LIQUID TRANSITION	ding
3.472 111.199 3.472 112.374 3.472 113.508		73.489 74.810 76.081	108.587 108.935 112.282	ೆ ೆ ೆ	ರರರ	ರರ ರ
		73.306	115.629	ರರ	oʻc	00
3.472 116.699		79.631 80.736	122,323 125,671	ರರ	ರರ	ರರಂ
		82.843	132,365	öö	် ဝံ	
472 121.421		85.776 85.776	132.059	್ರಂ	idd	ಶರರ
		87.598	149.101	ာ် ဝံ	တ် ဝ	ံ ဝံ
13.472 125.558 13.472 126.328 13.477 177.080		89.327 90.159 90.931	155.795	ಶರರ	ಶರರ	ಶರರಂ
		91.764	165.837	ide	်ဝင်	de
33.472 129.240		93.29	172.531	óóc	တ်ဝင	ಶರಂ
		94.762	179.226	ó	ံဝံ	ံဝံ
33.472 131.270		95.471	182.573	0.	0. FIIGACTITY = 1 hs	0.
		98.166	185.920	-690.672	9310	-0.094
		96.846 97.513	189.267 192.615	-691.004 -691.309	22.774 36.240	-0224 -0351
472 134.400 472 135.575 472 136.709		98.809 100.057 101.260	199.309 206.003 212.698	-692.094 -692.992 -694.007	63.200 90.191 117.214	-0.590 -0.812 -1.020
					CURRENT	December 1973
	ı					

A_r = 92.9064 Niobium (Nb)

CRYSTAL-LIQUID

Refer to the individual tables for details.

0 to 2750 K crystal above 2750 K liquid

Niobium (Nb)

J. Phys. Chem. Ref. Data, Monograph 9

Niobium (Nb)

CURRENT December

ರರರರ ರರರರರ

ರದದರ ರದದದ

ರರದರ ದರದದರ

143.555 147.234 150.887 154.612 158.366 162.148 165.359 173.667

238.925 239.452 239.972 240.486 241.496 241.493 242.483 242.483

266.531 267.232 267.914 268.598

2300

Niobium (Nb)

PREVIOUS: December

Niobium (Nb)			IDEAL GAS			A, = 92.9064 Niobium (Nb)	Niobium (Np)						Nb ₁ (g)	~
IP(Nb, g) = 55511 \pm 1 cm ⁻¹ S'(298.15 K) = 186.26 \pm 0.4 J·K ⁻¹ ·mol ⁻¹	ı 4 J·K⁻¹·mol⁻¹				Δ_{H^0}	$\Delta_i H^{\circ}(0 \text{ K}) = 729.9 \pm 8 \text{ kJ·mol}^{-1}$ $\Delta_i H^{\circ}(798 \text{ 15 K}) = 733.0 \pm 8 \text{ kJ·mol}^{-1}$	L	eference To	mperature I·K -1mol-1	Enthalpy Reference Temperature = T, = 298.15 K		Standard State Pressure = p^* k I-mol ⁻¹	Pressure = p	- 0.1 MPa	<u> </u>
							τĸ	ះ	S -[G	$S^* - [G^* - H^*(T_*)]T$	H*-H*(T,)	Δ,Η*	₽ ′C•	log K,	
		Electronic L State	Electronic Levels and Quantum Wei State ε, cm ⁻¹	m Weights			°888	0. 28.819 29.932	0. 153.823 174.240	112.891 189.016	-8.354 -5.907 -2.955	729.923 731.590 732.443	729.923	-374.764 -183.597	
		² D _{μ2}	00'0	2			238.15	30.159		186.259	-1.433	733.037	688.375	-145,330	
		D _{XZ}	154.19	4			300	30.155	186.446	186.260	0.056	733.047	688.098	-119.809	
		ង្គីវ	391.99	9				29.969 29.646	191.082	186.626	3050	733.305	673 039	-101.572	
		ٷۣػ	1050.26	∞			888	29.253 28.840	198.534	188.482	4.523 5.975	733.730	665.464	-71.245	
Enthalpy of Formation A 2nd and 3rd law analysis of six reported vapor pressure studies is tabulated below. method while one study ⁶ used the mtegral variation of the Knudsen method.	is of six reported v ed the mtegral vari	apor pressure st	udies is tabulated idsen method.	below. Five str	ıdies'∸³ used the	Five studies ¹⁻³ used the Langmuir free evaporation	_	28.050 27.365 26.785 26.294 25.880	206.781 211.052 214.668 217.793 220.542	192.083 194.497 196.798 198.961 200.984	8.819 11.589 14.296 16.949 19.557	734.125 734.238 734.162 734.162	642.642 627.384 612.117 596.855 581.607	-55.947 -46.816 -39.967 -34.641 -30.380	
	7/K	Pats	V 4°0098 15	A Hº(798 15 K) kral·mol-1	ji.	A.H° (708 15 K)	1200	25.533 25.248	225.200	202.876 204.646	22.127	733.741	566.380 551.179	-26.895 -23.992	
Source Reaction	(IPTS-68)	Points	2nd law	3rd law	cal·K ⁻¹ ·mol ⁻¹	kcal·mol ⁻¹	<u>8</u>	25.023 24.857	227.212 229.060	206.305 207.866	27.179 279.672	733.033	536.008 520.869	-21.537 -19.434	
¥	2744-3146	15*	146.2	168 4	75±15	175.5	8 5	24.748	230.71	209.336	32.152	732.087	505.763	-17.612	
B 2	2307-2600	14**	175.8	172.5	1+1	172.5	38	24.700	233.863	212.044	37.093	730,904	475.659	-14.615	
<u>м</u>	2456-2691	∞	182.8	175.7	-2.8 ± 5.3	175.7	88	24.759	235.276	213.296	39.566	730.221	460.664	-13.368	
• •	2253-260	edu	183.4	174.8	-3.6	174.8	2002	25.034	237.898	215.627	44.542	728.667	430.794	-11251	
m m	2553-2684	4	143.1	191.4	184 + 48	191.4	2100 2200	25.24 25.44 25.496	239.124	216.717	49.592	726.860	415.922	-10.345	
,							2,300 2,400 2,400 2,400	26.115	242.548	218.767	52.156 54.751	725.856	386.307	-8.773	
* 2939.9 K point	2939.9 K point deleted due to a statistical test.	tistical test.	1	A = vaporization	ation		2500	26.472	243.621	220.669	57.380	723.611	356.873	-7.456	
** 2301, 2328, 23	2301, 2328, 2384 K points deleted due to a statistical test.	due to a statisti	cal test.	B = Sublim	ition			26.854	245.688 245.688	221.572	62.046	722.338	342.229	-6.875	
We adopt Δ _t H*(298.15 K) = 175.2 kcal·mol ⁻¹ for Nb(g) which is a rounded average	= 175.2 kcal·mol	for Nb(g) wh	ich is a rounded a	verage of four	results. 2-5 With a	of four results. 2-5 With a drift of 7.5 cal·K ⁻¹ ·mol ⁻¹		28.105	246.686	224.118	65.498	692.947 692.389	313.582	-5.850 -5.404	
in that data, Shorthwater & all reported an enthalpy of subinitation of NACH, determined at $L249-L293$ K, of 112 ± 5 Kezi-mol . Our	<i>at.</i> . reponed an en	inaipy or subin	mation of No(cr)	, determined at	2243-2393 K,0	1 1 / 2 ± 5 kcal-moi . Our		28.544	248.625	224.919	71.119	691.874	286.523	-4.989	
analysis of Nb ⁺ ion currents at temperatures above 2573 K.	A temperatures ab	ove 2573 K	WOLKETS LAICT TEP	Med days	5.15k) = 1/3 kG	11-THOL DASED ON A ZHO IAW		28,386	249.568 250.496	25.63	75.995	690.977	259.530	-4236	
Heat Capacity and Entropy	, ,						3400	29.871 30.309	251.408 252.306 252.306	227,202 227,927 23,635	79.881 82.890 85.943	690.595 690.257 680.963	232.588	-3.895	
The electronic levels and	quantum weights a	re obtained fro	m Moore. Only	a few of the lev	rels are listed ab	The electronic levels and quantum weights are obtained from Moore. Only a few of the levels are listed above. All levels reported by		31.162	254.063	229.330	89.038	689.710	205.683	-2.984	
Moore are considered in the calculation. There are predicted electronic levels which have not beenobserved. These levels are assumed to	e calculation. There	are predicted e	lectronic levels v	which have not	beenobserved.* 7	These levels are assumed to		31.576	254,922	230,010	92.175	689.500	192.241	-2.714	
lie above 20,000 cm ⁻¹ and thus will not significantly affect the entropy attemperatures below 3000 K. The heat capacity and entropy values is a proper solution of the state of the stat	hus will not signific	antly affect the	entropy attemper	atures below 30	00 K. The heat	below 3000 K. The heat capacity and entropy values		32.371	256.606	231331	98.570	689.201	165.370	-2215	
at the smiller to those at	pred by mangress	i de, cents us	. Salikal £70:13	A directing	oy owy can in	inoi iii Cp di 3300 fx.	4100	33.120	258.243	232604	105.120	689.056	138.512	-1.765	
References							4200	33.479	259.046	233,224	108.450	689.039	125.084	-1.556	
¹ R. K. Koch, W. E. Anable, and R. A. Beall, U.S. Bur. Mines RI-7125, (1968).	and R. A. Beall, L	J.S. Bur. Mines	RI-7125, (1968)	, ég			35	34.164	260.619	234.434	115.215	689.110	98.228	1.166	
 Kaufman, Semi-Annual Report No. 2, Manlabs, Inc., Cambridge, Mass., (April 1963). 	Report No. 2, Man	J. Electifocherin. llabs, Inc., Cam	bridge, Mass., (A	pril 1963).			4600	34.814	262.152	235.606	122.114	689.313	71.365	-0.810	
⁴ P. F. Woemer and G. F. Wakefield, Rev. Sci. Instr. 33, 1456 (1982).	akefield, Rev. Sci.	Instr. 33, 1456	(1982).				6 8	35.127 35.436	262.904 263.647	236.179 236.743	125.611	689.463 689.644	57.930 44.492	-0.644 -0.484	
 L. Reimann and C. K. Grant, Phil. Mag. 22, 34 (1936). V. N. Vlasov, Dissertation, Deet. of Chemistry, Moscow University, as quoted by An. 	Jrant, Phil. Mag. Z.	2, 34 (1936). Moccow Univ	persity as quoted	hv An N. Nesi	nevanov, "Van	N. Nesmeyanov, "Vanor Pressure of the Chemical	200	35.740 36.041	264.381	237,300	132.698	689.856 690.098	31.049	-0.331	
Elements", R. Gary (ed.), Elsevier Publishing Co., New York (1963).	Elsevier Publishing	Co., New York	k (1963).	6				36,342	265.823	238.390	139,906	690.370	4 149	-0.042	
⁷ S A. Shchukarev, G A. S	menov, and K. E. I	Frantseva, Izv.	Vysshikh Uchebn	. Zavendenii, K	him. i Khim. Te	khnol. 5, 691 (1962); Russ.	5130.824	36.434	266.042	238.556	141.028	FUG/	- FUGACITY - 1 bar		

	Drift A.H. (298.15 K)	kcal·mol-1
	Drift	3rd law cal·K ⁻¹ ·mol ⁻¹ kcal·mol ⁻¹
	Δ,H°(298.15 K), kcal·mol ⁻¹	3rd law
	Δ,Η*(298.15	2nd law
	Data	Points
	T/K	(IPTS-68)
,		Reaction
		Source

		T/K	Data	A.H°(298.15	K), kcal·mol-1		∆H° (298.15 K)
Source	Reaction	(IPTS-68)	Points	2nd law	2nd law 3rd law	cal·K ⁻¹ ·mol ⁻¹ kcal·mol ⁻¹	kcal·mol-1
_	¥	2744-3146	15*	146.2	168 4	75±15	175.5
~	В	2307-2600	14**	175.8	172.5	-1.3 ± 1.6	172.5
~	Ф	2456-2691	œ	182.8	175.7	-2.8 ± 5.3	175.7
•	æ	2253-260	edu	183.4	174.8	-3.6	174.8
~	89	2370-2685	ega.	175.0	177.7		1.77.1
٠	В	2553-2684	4	143.1	191.4	18.4 ± 4.8	191.4
* 2935	9.9 K point de	939.9 K point deleted due to a statistical	stical test.		A = vapori	zation	

Heat Capacity and Entropy

References

1. R. Koch, W. E. Anable, and R. A. Beall, U.S. Bur. Mines RI-7125, (1968).

2. R. Speiser, P. Blackburn, and H. L. Johnston, J. Electrochem. Soc. 106, 52 (1959).

2. L. Kaufman, Semi-Annual Report No. 2, Manlabs, Inc., Cambridge, Mass., (April 1963).

3. P. Woemer and G. F. Wakefield, Rev. Sci. Inst. 33, 1456 (1982).

3. L. Reimann and C. K. Grant, Phil. Mag. 22, 34 (1936).

4. N. Vlasov, Dissertation, Dept. of Chemistry, Moscow University, as quoted by An. N. Nesmeyanov, "Vapor Pressure of the Chemical Elements", R. Gary (ed.), Elsevier Publishing Co., New York (1963). S. A. Shchukarev, G. A. Semenov, and K. E. Frantseva, Izv. Vysshikh Uchebn. Zavendenii, Khim. i Khim. Tekhnol. 5, 691 (1962); Russ.

Inorg. Chem. 11, 129 (1966).
 E. Moore, U.S. Nat. Bur. Stand., NSRDS-NBS 35, Volume II, 1970 [Reprint of NBS Circular 467, Volume II, 1952].
 R. Hultgren, R. L. Orr, and K. K. Kelley, Supplement to Selected Values of Thermodynamic Properties of Metals and Alloys, Nb table,

(January 1966)

Niobium, Ion (Nb*)

CURRENT. March 1984 (1 bar)

M _. = 92.90585 Niobium, Ion (Nb*)
IDEAL GAS
bium, lon (Nb*)

IP(Nb⁺, g) = 115500 \pm 100 cm⁻¹ S°(298 15 K) = 183.333 \pm 0.4 J·K⁻¹·mol⁻¹ Niob

 $\Delta_t H^0(0 \text{ K}) = 1394.0 \pm 8 \text{ kJ mol}$ $\Gamma(298.15 \text{ K}) = [1402.954] \text{ kJ·mol}$

Α'n						
	Weights 8,	-	3	2	7	6
	Electronic Levels and Quantum Weights State \$\epsilon\$, cm^-1	000	158.38	438.99	80138	1224.87
	Electronic State	ద్దీ	کِّ	Ď	Ğ	Ď,

Enthalpy of Formation

 $\Delta_t H^2(Nb^*, g. 0 \text{ K})$ is calculated from $\Delta_t H^2(Nb, g. 0 \text{ K})^1$ using the spectroscopic value of IP(Nb) = 55511 \pm 1 cm⁻¹ (664.059 \pm 0.0 KJ-mol⁻¹) from Moore.² The ionization limit is converted from cm⁻¹ to kJ mol⁻¹ using the factor, 1 cm⁻¹ = 0.01196266 kJ-mol⁻¹, which i derived from the 1973 CODATA fundamental constants.³ Rosenstock *et al.*⁴ and Levin and Lias³ have summarized additional ionization an appearance potential data.

 $\Delta_H^2(Nb^2, g, 298.15 \, K)$ is calculated from $\Delta_H^2(Nb, g, 0 \, K)$ by using IP(Nb) with JANAF¹ entralpies, $H^2(0 \, K) + H^2(298.15 \, K)$, for Nb(g), and e 2 (ref). $\Delta_H^2(Nb \to Nb^2 + e^-$, 298.15 K) differs from a room temperature threshold energy due to inclusion of these enthalpie and to threshold effects discussed by Rosenstock et al. $^4\Delta_H^2(298.15 \, K)$ should be changed by $^-6.197 \, kJ \cdot mol^{-1}$ if it is to be used in the to convention that excludes the enthalpy of the electron.

Heat Capacity and Entropy

missing levels (for n = 4, 5), the cut-off procedure, and the inclusion of n = 5 levels up to 6000 K; the Gibbs energy function showing variations of 0.2% at this temperature. The reported uncertainty in $S^{*}(298.15 \text{ K})$ is due to uncertainties in the relative ionic mass, and the fundamental constants. Extension of these calculations above 6000 K may require consideration of the higher excited states (n > 5), and us levels have not been observed. Although we have listed only the ground, the first excited state, the highest observed excited state, and th ionization potential for Nb*(g), all levels listed by Moore* as well as estimated levels, are used in the calculation. The observed levels at The information on electronic energy levels and quantum weights, given by Moore, 6 is incomplete because many theoretically predicte too numerous to list completely. The calculations indicate that for Nb*(g), the thermodynamic functions are independent of the estimate of different fill and cut-off procedures

¹JANAF Thermochemical Tables: Nb(g), 3-31-84; e⁻(ref), 3-31-82.

²C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-34, (1970).
 ³E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).
 ⁴H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1 783 pp. (1977).
 ⁵R. D. Levin and S. G. Lias, U. S. Natl. Bur. Stand. NSRDS-NBS-71, 634 pp. (1982).
 ⁶C. E. Moore, U. S. Nat. Bur. Stand. 35, Volume II, (1970) [Reprint of NBS Circular 497, Volume II, 1952].
 ⁷I. R. Downey, Jr., The Dow Chemical Company, AFOSR-TR-78-0960, Comtract No. F44620-75-1-0048, (1978).

. I	ביאושה אל עבובובועב	בונובואב זו	J.K. 'mol'	= 1; = 470.13 A		kl-mol-	c rressure = p	- U.I MF2
	7/K	ະ	S° -[G	-[G*-H*(T,)]T	$H^{\bullet}-H^{\bullet}(T_{r})$	Δ,Η.	₽ .C•	log Kr
	٥	o	o	INFINITE	-8.015	1393.983		
	388	28.85 28.785 28.785 28.785	171.684	209,002 186,012	-5.665 -2.866			
	298.15	29.421	183,333	183,333	; ; ;	1402.954	1352.911	-237.024
	88	29.423	183.515	183,333	0.054	1403.002	1352 600	-235.509
	8	29.059	191947	184.485	2.985	1405.503	1335.419	-174388
	38	28.373	198.353	186.645	5.854	1407.886	137,620	-133.986
	88	27.316	203.458	189,036	8.653	1410.151	1299.353	-113.119
	008	27.143	211.330	193.676	14.123	1414.425	1261.768	-82.385
10	88	77.118	214.524	195,819	16.835	1416.476 1418.485	1242,562	-72.116 -63.890
.s.	0011	27.159	219.966	199.731	22.259	1420.457	1203,499	-57.149
p n	200	27,203	224.510	203.203	24.977	1422.394	1183.690	-\$1.525
<u></u>	0.65	77.281	226.530	204.798	30.426	1426.163	1143.606	-42.668
<u>.</u> 2	0091	27.378	230.179	207.747	35.891	1429.771	1102.993	-36.009
ē	1700	27.48	23.841	209.116	38.632	1431,500	1082.516	-33.262
	2061	71.647	234.904	211.672	44.140	1434.782	1041,339	-30.817 -28.627
	2000	27.780	236.325	212,870	46.911	1436.329	1020,519	-26.653
8	2200	28.108	238.988	214.019	49.697 52.499	1437,809	999.692 978.796	-24.866
iş.	2300	28.300	240.242	216.190	55.319	1440.548	957.838	-21.753
are	2500	28,726	242.618	218210	58.159 61.021	1442.938	936.823	-20389
훵.	2600	28.956	243.750	219.171	63.905	1443.961	894.651	-17.974
e 4	2800	29.437	245.913	221.004	69.744	1419,114	852.819	-15.910
is is	3000	29.686	246.950	221,881	007.27	1420.802	832.564	-14.996
	3100	30.196	248.947	223.563	78.688	1424.252	791.880	-13343
	3200	30.457	250.851	224.372	81.720	1426.016	771.453	-12.593
	2400	30.9%	251.772	225.929	87.865	1429.624	730.433	-11.222
	3600	31.566	253.560	227.415	94 121	1433 343	680 107	100001
	3700	31.868	254.479	228.133	257.53	1435.246	668.500	-9.438
	388	32.513	256.123	229.525	103.729	1439.145	626.952	18.397
	4100	33,229	257.766	230,863	110.302	1443.181	585.200	-7.456
	4200	33 617	258.571	231,513	113.644	1445.255	564.248	-7.017
	948	34.461	260.154	22.73	120.451	1449.524	\$22.196	619
	4600	35.398	261.707	234,003	127.435	1453.971	479.946	-5.450
	4100	35.902	262.473	234.601	131,000	1456.267	458.747	-5.098
	906	36.97	263.991	235.73	138.286	1461.016	416.200	-4.437 -4.437
	\$100	38.133	265.493	236,906	145.796	1465.989	373.456	-3.825
	2500	38.737	266.240	237,463	149.639	7892	361318	-3.629
	\$500 \$500	39,985	267.725	238.556	157.511	782.589	345.204	-3339
	2000	41.268	269.202	239.624	165.636	787.392	328.917	-3.068
	5700	41.915	269.938	240.150	169.795	789.847	320.708	-2.939
	288	43,203	271.406	241.184	178.307	794.866	304.160	-2.693
	9009	43.839	272.137	241.094	182.659	191.428	295.822	-2.575

Nb ₇ (g)	
M, = 92.90695 Niobium, Ion (Nb ⁻)	
IDEAL GAS	
ım, lon (Nb ⁻)	

	e Pressu	Δ_{rG}					602	89	596	289	583	STL
	Standard State Pressu k I-mol ⁻¹	$\Delta_t H^{\bullet}$	643.763				640.978	640.948	640.085	639.158	638,172	637.135
		$H^{\bullet}-H^{\bullet}(T_i)$	-8.654	-5.954	-2.918	-1.414	ó	0.054	1.475	2.850	4.180	5.471
	Enthalpy Reference Temperature = T_t = 298.15 K 1·K ⁻¹ mol ⁻¹	$S^{\bullet} - [G^{\bullet} - H^{\circ}(T_t)]T$					186.095					
ر	emperature	٦ د د	oʻ	153.166	174.205	180.915	186.095	186.274	190.65	194,331	197.465	200.187
qN) uo	ference To	ಚ	ó	30.251	30,317	29.768	28.948	28.913	27.956	27.029	26.196	25.474
Niobium, I	Enthalpy Re	τÆ	0	8	200	250	298.15	300	320	9	450	200
M _r = 92.90695 Niobium, Ion (Nb ⁻)	$\Delta_t H^0(0 \text{ K}) = 643.763 \pm 4.5 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = [640.9781 \text{ kJ} \cdot \text{mol}^{-1}]$											
			Weighte	II WEIGHTS	š		-	m	S	7	٠.	χ.
IDEAL GAS			Flectonic I eyels and Organism Weight	ביבונים מנות ביבונים	£, CIII.	,	0	011	310	260	8 8	9/0
			Flectonic		State	٤	ຊູ	ָם קֿ	ģ	ڿ	ĵ	3
Niobium, Ion (Nb ⁻)	EA(Nb, g) = $0.893 \pm 0.025 \text{ eV}$ $S'(298.15 \text{ K}) = 186.095 \pm 0.002 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$											

Enthalpy of Formation

 $\Delta H^{*}(Nb^{-}, g, 0 \text{ K})$ is calculated from $\Delta_H^{*}(Nb, g, 0 \text{ K})^{*}$ using the adopted electron affinity of EA(Nb) = 0.893 \pm 0.025 eV (86.161 \pm 2.412 kJ·mol⁻¹). This value, recommended by Hotop and Lineberger, is based on a laser photodetachment electron spectrometry study. Additional information on Nb (g) may be obtained in the critical discussions of Hotop and Lineberger, ² * Rosenstock et al. ³ and Massey.⁶

 $\Delta_t H^2(Nb^-$, ϵ , 298.15 K) is obtained from $\Delta_t H^2(Nb, \epsilon_t, 0 \text{ K})$ by using EA(Mb) with ANAF enthalpres, $H^2(0 \text{ K}) + H^2(298.15 \text{ K})$, or Nb⁻(ϵ_t). Nb(g), and e⁻(ref). $\Delta_t H^2(Nb^- \to Nb + e^-$, 298.15 K) differs from a room-temperature threshold energy due to inclusion of these enthalpies and to threshold effects discussed by Rosenstock *et al.*³ $\Delta_t H^2(298.15 \text{ K})$ should be changed by $+\epsilon_t.197 \text{ kJ} \cdot mol^{-1}$ if it is to be used in the ion convention that excludes the enthalpy of the electron.

Heat Capacity and Entropy

The ground state electronic configuration for Nb [g) is given by Hotop and Lineberger, "Rosenstock et al.," and Massey, The fine structure separation has been calculated by an isoelectronic extrapolation of ratios of fine structure separations and is that recommended by Hotop and Lineberger.2

References

JANAF Thermochemical Tables: Nb(g), 12–31–73, e⁻(ref), 3–31–82.

H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data, 14, 731 (1985).
C. S. Feigerle, R. R. Cordemann, S. V. Bobashev and W. C. Lineberger, J. Chem. Phys. 74, 1580 (1981).
H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975).
H. M. Rosenstock, K. Draxl et al. J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp. (1977).
H. S. W. Massey, "Negative lons," 3rd ed., Cambridge University Press, Cambringe, 741 pp. (1976).

	Enthalpy Reference Temperature	ference Te		- T, = 298.15 K		Standard State Pressure k1-mol ⁻¹		$p^* = 0.1 \text{ MPa}$
	7.K	ະ	S[G	-[G*-H"(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{r})$	Δ'Η•	$\Phi'G$	log Kr
	2885°	0. 30.251 30.317 29.768	10100	INFINITE 212.710 188.796 186.576	-8.654 -5.954 -2.918 -1.414	643.763		
	298.15	28.948		186.095	oʻ	640.978	602.621	-105.577
	300	28.913	186.274	186.095	0.054	640.948	602.383	-104.884
	8	27.029	194.331	187.207	7,820	639.158	589.790	-77.019
	88	25.474	200.187	189.245	5.471	637.135	577.678 ST7.678	-67.752 -60.350
	88	24.342	204.725	191.461	7.959	634.932	565.991	-49.274
	88	22.962	211.517	195.675	12.674	630.136	543.722	-35.501
	88	22.541 22.27	214.196	197.587	14.948 17.186	627.593 624.972	533,072 522,709	-30.939
	001	21 988	218.661	201.028	19.396	622.284	512.613	-24.342
	88	21.656	222,305	204.030	23.758	616.729	493.146	-21.885
	1500	21.539	223.905 225.388	205.393	25.917	613.872	483.746	- 18.049
	0091	21,364	226.769	207.890	30.206	607.990	465.556	-15.199
	88	21.243	229.278	209.039	34.466	601.846	448.117	-13.004
	2000	21.197	230.425	211.168	36.588	598.663	439.663	-12.087
	2100	21.12	232.543	213.105	40.820	592.049	423.260	-10.528
	2220	21.092	233.525	214.011	42.931	588.609	415.303	-9.861
	500	21.043	235.358	215.715	47.14	581.423	399.862	-8.703
	2600	21.005	237.041	217.291	51.349	573.736	385.039	-7.736
	2700	20.989	237.833	218.038	53.448	569.634	377.859	-7310
	2002	20.962	239,332	219.455	57.643	535.605	365.391	1859-
	3000	20.950	240.043	220.130	59.739	532.275	359.579	-6.261
	3200	20.940	241.394	220.783	63.927	528.944	353.877	-5.963
	3400	20.972	242.662	222.032	66.019	522.278 518.944	342.793	-5.426
	3000	20.906	243.268	223211	70.202	515.609	332.113	-4.957
	3700	20.894	244.430	224.327	74.382	512.274	326.918	4743
	380	20.883	245.530	225.386	78.560	502.264 502.264	311.877	-4.177 -4.177
	4100	20.874	246.574	226.394	82,735	495.588	302.282	-3.851
	4300 4300	20.869	247.077	226.881	84.823 86.900	492.249	297.608	-3.701
	84 86 86 86	20.862	248.047	227.821	88.996	485.570	288.496	-3.425
	4600	20.855	248.974	128.721	93.167	478.891	279.687	-3.176
	4700	20.853	249.423	229.156	95.253	475.550	275.393	-3.061
	64 % 000 %	20.847	250.292	230.001	99.423	468.869	267.016	-2.846
	2100	20.842	251.126	230.814	103.592	462.186	258.911	-2652
	2300	20.840	251.530	231.208	105.676	-231.828	264.268	-2.655
	\$ \$60 \$200 \$200 \$200	20.836	252.317	231.349	109.844	-239.149	283.483	-2.742
	2009	20.833	253.075	232,716	114.010	-246.618	302,977	-2.826
	5700 5800	20.831	253.806	233.430	116.094	-250.396	312.824	-2.867
	8000 8000	20.828	254.162	233.779	120,260	-258.037	332.718	-2946
	PREVIOUS:					5	RRENT. Marc	CURRENT: March 1984 (1 bar)
1	1					3		TOTAL

4973 4236 3911 3511 3323

-194.689 -186.644 -178.131

-404.165 -403.604 -429.560

107.954 114.329 120.794 127.347 133.990 140.722

149.391 154.743 154.743 159.820 159.820

98.251 00.384 00.593 02.454 04.466 06.425 10.194 12.010

diu0u1 <-->

- CRYST

-235.349

407.140

95.471 101.668 102.293

143.714 146.596 146.880

52.418 53.359 54.287 55.208 56.117 57.024 57.929 58.831 58.831 60.626 61.526 62.413

282.15 28

\$8.663 \$9.0948 \$1.709 \$1.700 \$

-319.866 -311.181 -302.551 -293.976 -285.455

414,376

4350 13501 18280 18280 23.173 23.173 23.173 24.134 49.134 49.134 49.134 49.134 49.134 49.134 49.134 49.134 49.134 89.135 89.363

46.024 88.555 88.555 88.556 84.429 96.846 96.846 96.020 96

-276.986 -268.566 -260.195 -251.870

410.456 409.624 408.791 -412.091

-364224 -355216 -346281 -337.414 -328.610

418.501 417.485 416.929 416.342

Np'O'(cr)

Standard State Pressure = p = 0.1 MPa

Enthalpy Reference Temperature = 7, = 298.15 K

J.K-'mol-'

log K

δĄ

kl-mol

 $H^{\bullet}-H^{\bullet}(T_{\epsilon})$ $\Delta_{\epsilon}H^{\bullet}$

 $S^{*} - [G^{*} - H^{*}(T_{*})]T$

CURRENT December 1973

Niobium Oxide (NbO)

M_t = 108.9058 Niobium Oxide (NbO) $S^{(298.15 \text{ K})} = [46.024 \pm 8.4] \text{ J-K}^{-1} \cdot \text{mol}^{-1}$ Tas = 2210 ± 15 K

CRYSTAL

 $\Delta_{\rm rH}^{\circ}$ (298.15 K) = -419.66 ± 12.6 kJ·mol⁻¹ $\Delta_{\rm rm}^{\circ}$ H° = 85.354 ± 20.9 kJ·mol⁻¹ Δ_tH°(0 K) = Unknown Jan H° (298.15 K) = 618.395 ± 20.9 kJ·mol-1

Enthalpy of Formation

Using auxiliary data, we calculate AH"(298.15 K) = -99.5 and -95.4 kcal-mol-1 for NbO(cr). Schaefer and Liedmeier, using Cl, bomb incomplete combustion to Nb₂O₂(cr), and the possible nonstoichiometry of the reactants and products. Morozova and Getskinal reported $\Delta_b H^0(291 \text{ K}) = 255.0 \text{ kcal-mol}^{-1} \text{ while Kusenko and Gel'd}^2 \text{ reported } \Delta_b H^0(298.15 \text{ K}) = 263.2 \text{ kcal-mol}^{-1} \text{ for the combustion of NbO(cr)}.$ There are two reported oxygen bomb calorimetric studies for NbO(cr). The results must be interpreted in light of impure samples calorimetry, reported a value of -97 ± 1 kcal·mol⁻¹, based on $\Delta_1 H^0$ (NbOCl), α , 298.15 K) = -210.2 kcal·mol⁻¹.

agreement within the equilibrium data; the 3rd law Δ_H (298.15 K) values average -100.3 kcal·mol⁻¹ with a spread of only 1.8 kcal·mol⁻¹. We adopt Δ_H (298.15 K) = 100.3 \pm 3.0 kcal·mol⁻¹ based on an average of the equilibrium studies. ⁵⁻¹¹ The reason for the discrepancy between the equilbrium and combustion results is not known at this time. A 2nd and 3rd law analysis of the majority of the reported smoothed emf data is tabulated below. Note that the enthalpy of formation for NbO(cr) calculated from the 3rd law A,H° values are roughly 3 kcal·mol - i more negative than the adopted value. There is, however, excellent

)°H.Δ	Δ,H°(298.15 K), kcal·mol-1	Drift	∆H°(298.15 K)
Source	7/K	Reaction	2nd law	3rd law	cal·K-1·mol-1	kcal·mol-1
	1245-1379	V	-35.56		-0.63	١.
	1115-1347	∢	-35,34	-37.60	-1.80	-101.24
	1123-1323	∢	-38.62	-36.20	1.98	-99.84
	1030-1300	В	-11.17	3.19	6.62	-10039
	1000-1400	4	-37.82	-35.91	1.60	-99.55
0	1073-1373	∢	-36.95	-36.46	0.40	-100.10
_	1177-1388	ပ	-9.69	-9.72	-0.03	-100.12
	A) Nb(cr)	+ Feaso =	ψb(α) + Fe _{α55} O = NbO(α) + 0.95 Fe(α)	.95 Fe(cr)		
	B) ND(cr)	10.2 12.0	s(cr) = 0.4 T	$\sqrt{2}(cr) + 0.2 \text{ Ta}_2O_3(cr) = 0.4 \text{ Ta}(cr) + \text{NbO}(cr)$		
	C 2000	2) 2 2 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(a) + 1/3 (20 (d) - NeO (d) + 7/3 (2 d)		

Heat Capacity and Entropy

type equation is used to represent the data. The average deviation between the data and calculated values is 0.31%, the maximum deviation Gel'd and Kusenko¹² measured the enthalpy of NbO(cr) and reported fourteen data points in the range 420-1702 K (IPTS-68). A Shomate of 0.62% occurs at 1518 K. This equation is used to obtain extrapolated values of C, up to T_{lus}.

data agree with the combustion data, an entropy value of the order of 13-14 cal·K⁻¹·mol⁻¹ would be necessary. At this point, however, the 3rd law drifts would be all positive. S°(298.15 K) = 10.2 cal·K⁻¹·mol⁻¹ would lead to a more satisfying variation in the 3rd law drifts for the condensed phase equilibrium data but an intermediate value S°(298.15 K) = 11.0 cal·K⁻¹·mol⁻¹ gives better consistency with the vapor There is no low temperature heat capacity data reported in the literature for T < 298 K. In order to have the 3rd law results of the equilibrium pressure data. For more details refer to the NbO(g) and NbO₂(g) tables.³

Phase Data

Brauer¹³ reported a homogeneity range of x = 0.89-1.04 for NbO₂. NbO(cr) has a cubic structure, a NaCl type with ordered vacancies. 1314 Further information may be found in the review of the Nb-O system by Elliott. 15

Fusion Data

Refer to the liquid table for details.

Sublimation Data

The mass spectrometric study by Shchukarev et al. ¹⁶ indicated that NbO(cr) at elevated temperatures yields NbO(g) and NbO₂(g). In the range 1873–2473 K, the concentration of NbO in the vapor phase over NbO(cr, I) varied in the range 5-30%. ¹⁶ $\Delta_{aab}H^{o}(298.15 \text{ K}) = 147.8 \pm 5.0 \text{ kcal·mol}^{-1}$ is calculated as the difference between the $\Delta_{ab}H^{o}(298.15 \text{ K})$ values for NbO(g) and NbO(cr).

M. P. Morozova and L. L. Getskina, J Gen. Chem. USSR 29, 1019 (1959).

²F. G. Kusenko and P. V. Gel'd, Izv. Sibir. Oddel. Akad. Nauk SSSR, No. 2, 46 (1960), Chem. Abstr. 54, 16160 (1960).
³IANAF Thermochemical Tables: Nb₂O₅(cr), 6–30–72; O₂(g), 9–30–65, NbO(g) and NbO₂(g), 12–31–73.

'H. Schaefer and F. Liedmeier, Z. Anorg. Chem. 329, 225 (1964).

Continued on page 1693

Nioblum Oxide (NbO)

PREVIOUS.

Nb,O,(I)

Niobium Oxide (NbO)

PREVIOUS:

CURRENT: December 1973

Nb₁O₁(I)

M_r = 108.9058 Niobium Oxide (NbO)

LIQUID

Niobium Oxide (NbO)

Heat Capacity and Entropy

Fusion Data

Vaporization Data

Nb,O,(cr,I)

7	•
Ī	3
3	
Ç	
٤	į
2	

Niobium Oxide (NbO)

Enthainy R	ference T	Enthaine Reference Termographics - T	7 - 308 15 V		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
2		J·K-'mol-'	-		_KI-mol-1		ביוו שונג
χ	ប	S -{G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{\epsilon})$	$\Delta_t H^{ullet}$	Δ_{iG}	log K,
2000 o 2000 o 2000 o							
298.15	41.112	46.024	46.024	ó	-419.655	-391.923	68.663
8 8 8	41.187	46.279	46.025	0.076	-419.652	-391.751	68.210
8	45.827	68.584	50.888	8.848	-418.968	-373.313	39,000
88	48,369	7.064 4.064	54.562	13.501	-418.507	-364.224	31.709
8	49.467	80.960	61.994	23.173	-417.485	-346281	22,610
88	50.481 51.467	96.845 102.215	65.545 68.947	33.268	-416.929	-337.414	19.583
8	52.418	107.165	72.199	38.462	-415.722	-319,866	15.189
200	53,359	11.766	75,307	43.751	-415.068	-311.181	13.545
6	55.208	120.131	81.125	54.608	-414.376	-302331 -293.976	12.157
200	56.117	123.971	83.855	60.175	-412.882	-285.455	9.940
86	57.024 57.929	131.106	86.477 89.000	65.832	-412.091	-276.986	9.043
1800	58.831	134.443	91.433	77.417	-410.456	-260.195	1557
8 <u>8</u>	59.730 60.626	137.647	93.781 96.052	83.345 89.363	-409.624 -408.791	-251.870	6.92
2100	61.526	143,714	98.251	95.471	-407.960	-235.349	5.854
2200	62.413	146.596	100,384	101.668		-227.148	5.393
2210,000	62.501 62.760	146.880	100.593	102.293	CRYSTAI	FAL <> LIQUID	Old
2300	62,760	88.006	103 965	307 101		-777.461	6063
250 250 250 250	62,760	190,677	10,523	199.571	-320.321	-218.192	4.749
2600	62.760	195.701	114 115	212 123	-110 180	-20073	1713
2700	62.760	198.070	117.181	218.399	-319.195	-205.510	3.976
2002	92.760	200.352	120.111	224 675	-345.607	-200.815	3746
3000	62.760	204.682	125.606	122.752	-343.717	-190,539	3318
PREVIOUS:						CURRENT D	CURRENT December 1973

 $M_r = 108.9058$ Niobium Oxide (NbO)

CRYSTAL-LIQUID

Refer to the individual tables for details.

Niobium Oxide (NbO)

J. Phys. Chem. Ref. Data, Monograph 9

Nb,0,(g)

⋖
ш
Ω
_

Niobium Oxide (NbO)

GAS

108.9058 Niobium Oxide (NbO) 1

)	
=	
3	
ā	
0	
Z	
n	
õ	
3	
ó	
Š	
Ξ.	
ű.	
έ	

20.9 kJ·mc	20.9 kJ·mc
= 199.54 ± 20.9 kJ	- 198.74 ±
$\Delta_{\rho}H^{\circ}(0 \text{ K})$	Δ _t H°(298.15 K)

Δ _t H*(0 K) = 199.54 = Δ _t H*(298.15 K) = 198.74 :			σ=1 re=1.691 Å
	Weights 8,	4 & 4	- E
	Electronic Levels and Quantum Weights State	0 15000 21316.2	$\omega_c x_c = 3.83 \text{ cm}^{-1}$ $\alpha_c = 2.1 \times 10^{-3} \text{ cm}^{-1}$
	Electronic State	C E E	- EB - II - III - II - II - II - II - II
S'(298.15 K) = 238.976 ± 3.56 J·K ⁻¹ ·mol ⁻¹			$\omega_e = 989.03 \text{ cm}^{-1}$ $B_e = 0.432 \text{ cm}^{-1}$

Enthalpy of Formation

Using the adopted vibrational constants [ω_s and $\omega_s \chi_1$], we calculate $D_0^0 = 7.855$ eV as the dissociation energy of NbO(g) based on the Birge-Sponer extrapolation of the ground state. Applying a correction for the ionicity in the Nb-O bond as suggested by Hildenbrank Murad,¹ we recalculate $D_0^0 = 8.032$ eV. This latter value corresponds to $\Delta_1 H^0(\text{NbO}, g, 298.15 \text{ K}) = 48.03$ kcal-mol⁻¹, assuming dissoci to normal atoms, while the former yields 52.11 kcal mol

Shchukarev et al. $^{2.3}$ have investigated mass spectrometrically the composition of the vapors over NbO(cr, I) and NbO₂(cr, I). In thei work, 2 the authors reported that, besides NbO sublimation at 1773–1923 K, the reaction 2 NbO(cr) = Nb(cr) + NbO₂(g) occurs. A 2n we calculate $\Delta_t H^0(Nb)$ Δ₂₀H° = 138 ± 3 kcal·mol⁻¹ was reported for the range 1773-1923 K. Using auxiliary data,⁵

Shchukarev et al.³ measured the vapor pressures of NbO and NbO2(cr, I) and NbO2(cr, I) by the effusion method coupled with a 298.15 K) = 47.2 \pm 3.0 kcal-mol⁻¹, assuming the $\Delta_{mb}H^o$ reported value refers to 1900 K. spectrometer. The results are summarized in the following table.

	,	Δ,H°(298.15 K), kcal·mol ⁻¹	cal·mol ⁻¹	Drift	Δ ₀ H°(298.15 K	http://www.l5K), kcal-mol ⁻¹ nd law 3rd law
Keaction	41	ZIIO IAW	Jiu law	TOTAL TIMES		
NbO(cr) = NbO(g)	1773-2210	148.0	147.5	-0.24	47.7	47.2
NbO(1) = NbO(g)	2210-2473	128.1	128.0	-0.04	47.6	47.5

tabulated above. It is interesting to note that the adjusted Birgs–Sponer result shows excellent agreement with the adopted $\Delta_t H^0$ (298.) The adopted $\Delta_t H^0$ (298.15 K) leads to a dissociation energy $D_0^0 = 8.05 \text{ eV}$. We adopt $\Delta_t H'(298.15 \text{ K}) \approx 47.5 \pm 5.0 \text{ kcal-mol}^{-1}$ for NbO(g). The adopted value is an average value based on the 2nd and 3rd law

Heat Capacity and Entropy

favor a $^{1}\Delta$ ground state. Using a $^{1}\Delta$ ground state and $^{1}\Delta^{-2}\Delta$ transition at 21316.2 cm $^{-1}$ produces the same thermodynamic functions at a $^{2}\Sigma^{-}$ ground state and a $^{2}\Sigma^{-}$ transition at 21316.2 cm $^{-1}$. Green et al. studied the infrared absorption spectra of isotopic NbO isola an Ar matrix. Green et al. reported that a partial analysis of the observed bands supported the assignment of a $^{2}\Sigma^{-}$ electronic ground The spectroscopic work involving NbO(g) has been reviewed and referenced by Rosen." The adopted vibrational and rotational con as well as the electronic levels are those tabulated by Rosen.* As indicated in Rosen,* the data suggest a *2 ground state as in V However, a possible ground state 2d as in TaO(g) is not definitely excluded. The recent reviews by Cheetham and Barrow⁶ and Wo

The Gibbs energy functions used here are approximately 0.85 cal·K⁻¹·mol⁻¹ at 298 K and 2.90 cal·K⁻¹·mol⁻¹ at 3000 K lower than proposed by Brewer and Rosenblatt approximated the NbO electronic by using Nb** electronic levels (which included low lying levels) whereas we have used the observed NbO electronic levels.

D. L. Hildenbrand and E. Murad, J. Chem. Phys. 51, 807 (1969).

2s. A. Shchukarev, G. A. Semenov and K. E. Frantseva, Izv. Vyssh Ucheb. Zavend, Khim. i Khim. Tekhnol. 5, 691 (1962).

S. Shchukarev, G. A. Semenov and K. E. Frantseva, Russ. J. Inorg. Chem. 11, 129 (1966).
 Rosen, Ed., "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, New York, 515 pp. (1970).

¹JANAF Thermochemical Tables: VO(g), TaO(g), and NbO(cr), 12-31-73.
⁶C. J. Cheetham and R. F. Barrow in "Advances in High Temperature Chemistry," Vol. 1, L. Eyring, Ed., Academic Press, New Yo

74. Weltner, Jr., in "Advances in High Temperature Chemistry," Vol. 2, L. Eyring, Ed., Academic Press, New York, pp. 85–105, (1967).

1. Brewer and G. M. Rosenblatt, in "Advances in High Temperature Chemistry," Vol. 2, L. Eyring, Ed., Academic Press, New York, pp. PREVIOUS: December 1973 (1 atm) 7-42, (1967).

1–83, (1967). P. W. Green, W. Korfmacher and D. M. Gruen, J. Chem. Phys. 58, 404 (1973).

L							1	
-lom-	Enthalpy R	Enthalpy Reference Temperature I.K -'mol-'	mperature	= T, = 298.15 K		Standard State Pressure kJ·mol ⁻¹		p' = 0.1 MPa
2	7.K	ប	S -{G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$	$\Delta_c H^{\bullet}$	Φ_iG^{ullet}	log K.
	0 8	0.		INFINITE	-8.781	199.541	199.541	INFINITE
	385	29.467	226.986	241.744	-2.952 -1.464	199.584	178.910	-46.727
	298.15	30.788		238.976		198.740	168.943	-29.598
	8	30.818	239.166	238.976	0.057	198.724	168.758	-29.383
	¥	32,364	248.248	240,204	3.218	168.761	158.897	-20.750
	2 8	33.613	252.099 255.610	241.315 242.572	4.853 6.519	197.492	154,047	-17.881
	009	34.531	261.824	245.276	9.929	196.316	139.742	-12.166
	38	35.687	271.934	250.730	16.963	194.700	121.125	-7.90
linear	88	36.054	276.159	253,325	20.550 24.171	193.847	111 979	-5.377
nd and	001	36.557	283.447	258.160	27.816	192.026	93.972	-4.462
ciation	36.5	36.880	289.582	262.535	35,161	190.041	76.312	-3066
sir first	2.00 2.00 2.00 2.00	37.002 37.106	292.320	264.566 266.502	38.856 42.561	188.997	58.969 58.969	-2522 -2053
nd law	0091	37.196	297.274	268.351	46.277	186.749	50.411	-1.646
Ŏ,	8 8 8 8	37.277	299.531 301.664	270.120 271.813	50.000 53.732	185.536	33.515	-0.973
a mass	986	37.423	303.686	273.438	57 471	182.896	25.177 16.913	-0 692 -0.442
	2100	37.564	307.438	276.500	64.969	179.933	8.723	-0.217
	22 K	37.638	309.187	271.947	68.729 72.497	178.316	0.608	-0.014
	2400	37.802	312,469	280.689	76.273	174.776	-15.394	0.335
	2600	37.997	315.502	283.251	83.852	170.735	-31.082	0.624
	2800 2800 2800	38.230	318,326	285.657	91.474	139.587	-45.948	0.857
	8 8 8 8 8 8 8	38.362 38.506	319.670 320.973	286.80 7 287.924	95.303 99.147	138.091	-52.549	1.029
results .15 K).	3100	38.660	322.238	289.011	103.005	135.111	-65.595	1.105
	3300	39,000 39,185	324.665	291.099	110.770	132.160	-78.451 -84.811	1742
	3500	39,380	326,971	293,083	118.607	127.247	-91.128	1413
onstants	3700	39.794	329.171	294.975	126.524	126.383	-103.641	545
Veltner,	888	40236	331.277	296.783	134.527	123.576	-115.999	1.554
as does	4100	40.700	333,301	298.515	142.620	120.833	-128,216	1.633
nd state	\$ \$ \$ \$	40.937	335.284	300.179	146.702	119.487	-134.2/4	1.704
	654 0654	41.418	336.200	300.987	154.938	116.848	-146.296	1.737
in those	600	41.903	338.052	302.558	163.270	114.281	-158.199	1.796
	\$ \$ \$	5538 538 538 538 538 538 538 538 538 538	339 845	304.075	171.699	787		1.850
	868 800 800 800	42.856	341.585	305.540	180.223	109.363	-181.683	1.898
	5100	43.087	342,436	306.256	184.520	108.175 583.668	-187.492 -183.969	1.920
	230	43.535	344.102	307.652	193.182	-585.156		1.737
	888 888	45.72	345.722	• • •	201.933	-588.110	-160.788	1.527
	2809	44.168	346,516	309.670	206.339	-589.633	-153,004	1.427
ork, pp.	2800	44.559	348.073		215.212	- 592.731	-137.356	1237
(1)	889	44.922	349.590	312.230	224.161	- 595.909	-121.600	1.059
ork, pp.	PREVIOUS	PREVIOUS: December 1973 (1 atm)	1973 (1 atm	-		S	RENT. Decem	CURRENT. December 1973 (1 bar)

M _r = 124.9052 Niobium Oxide (NbO ₂)	
$M_r = 124.9052$	
CRYSTAL (I-II-II)	
xide (NbO ₂)	

Niobium Ox

	$\Delta_s H^0(0 \text{ K}) = -790 31 + 8.4 \text{ kJ·mol}$
$(298.15 \text{ K}) = 54.506 \pm 0.29 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$	$\Delta_0 H^2(298.15 \text{ K}) = -794.96 \pm 8.4 \text{ kJ-mol}$
$_{\rm BH} = 1090 \pm 20 \rm K$	$\Delta_{\rm rr}/H^{\circ} = 3.423 \text{ kJ·mol}$
₁₀₂ = 1200 K	lon-14 0.000 = 0.000 kJ·mol
i = 2175 ± 15 K	A. H° = 97 048 + 20 9 k1.mol

Enthalpy of Formation

There are three oxygen bomb calorimetric studies for NbO₄(cr) As with NbO(cr), the combustion results must be interpreted inlight impure samples, possible incomplete combustion, and possible nonstoichiometry. The following $\Delta_t H^o$ results have been reported for loxygen combustion of one mole of NbO₂(cr) to yield Nb₂O₃(cr) 37.0 \pm 0.4 kcal·mol⁻¹ (291 K) by Morozova and Getskina, 37.6 \pm 37.6 \pm kcal·mol⁻¹ (298 K) by Kusenko and Gel'd, and 36.67 \pm 0.10 kcal·mol⁻¹ (298 K) by Mah. Using the value $\Delta_c H^2$ (298.15 K) = 37.0 \pm kcal mol-1 and JANAF auxiliary data, we calculate and adopt \(\textit{D}_t \textsup (NbO_2, cr, 298.15 K) = -190.0 \div 2.0 kcal mol-

There are numerous equilibrium studies involving NbO₂. Early work involved the reduction of niobium oxides with hydrogen by Gru et al., Sue, and Schaefer and Breil, and the carbon reduction of Nb2O, by Sue. The more recent emf equilbrium studies are analyzed as tabulated in the following table.

Source T/K	7/K	Reaction	Δ,H°(298.15 2nd law	L.H°(298.15 K), kcal·mol ⁻¹ nd law 3rd law	Drift cal·K ⁻¹ ·mol ⁻¹	Δ _t H°(298.15 K) kcal·mol ⁻¹
,			10,70			
•	10/3-1823	NBO3(C)+H3(C=NBO(C)+H3O(C)	36.35	32.30	-2.3	-190.4
2	1100-1300	NbO ₂ (cr)+Nb(cr)=2 NbO(cr)	-11.96	-9.59	2.0	-187.8
=	1074-1175	Nb ₂ O ₅ (α')+C(α)=2 NbO ₂ (cr) + CO(g)	38.43	45.87	9.9	-190.9
27	1177-1361	NbO(cr)+1/3 Cr ₂ O ₃ (cr)=NbO ₂ (cr)+2/3 Cr(cr)	2.32	1.78	-0.4	-1889

Heat Capacity and Entropy

for the ranges 1090–1200 K and 1200–1800 K. The latter equation is extrapolated to T_{las} . For the region 298–1090 K, we use a five ter polynomial to fit the enthalpy data of King and Christensen¹⁵ with constraints to join smoothly with the enthalpy derived from the King data the deviations are +0.34 to -0.67% in this range 298–1090 K. In the same range, the Gel'd and Kusenko data¹⁴ lies approximately 2-3 King (53-296 K)¹³ measured the heat capacity of NbO₄cr). Using the combination of Debye and Einstein functions suggested by King we calculate S°(51 K) = 0.616 cal·K⁻¹·mol⁻¹ and H°(51 K)-H°(0 K) = 23 cal·K⁻¹·mol⁻¹. The enthalpy data of Gel'd and Kusenko, ¹⁴ a King and Christensen, 1s indicated a transition in the region 1000–1200 K. We adopt the reported enthalpy equations of King and Christenses higher, for T > 1200 K, it is 0.6-2.5% high

Phase Data

Brauer¹⁶ reported a homogeneity range of x = 1.95 to 2.05 for NbO₂. A recent study by Janninck and Whitmore, ¹⁷ using isopiestic reducti

techniques at 1373 K, reported x = 1.9975 to 2.003.

Brauer, ¹⁶ Magneli et al., ¹⁷ Terao, ¹⁹ and Marnder²⁰ have shown that at room temperature NbO₂ has a deformed rutile structure. NbO₂

similar to V2O4 in terms of crystal structure.

TransitionData

Electric conductivity and thermoelectric power measurements and a DTA and x-ray diffraction study indicated a phase transition in t region 1068-1173 K. ^{1721.22} In this region, the structure of NbO3 transforms from a deformed rutile to a rutile structure. The evidence suggest that the transition is not sharp but is actually spread over at least 50° 21

The enthalpy data of King and Christensen's and Gel'd and Kusenko¹⁴ are consistent with the above interpretation. We treat this transiti as first order with $T_{m1} = 1090 \pm 20$ K and add an artificial transition $T_{m2} = 1200$ K as in King and Christensen. ¹³ This combination reduc the reported enthalpy data. ¹⁵ The value $\Delta_{cm}H^{\circ} = 0.818$ kcal·mol⁻¹ is calculated as the difference between the enthalpies of the two 'phase at 1090 K associated with the transition at Tu1.

Fusion Data

Refer to the liquid table for details.

Sublimation Data

M. P. Morozova and L. Getskina, Russ. J. Gen. Chem. 29, 1019 (1959).

 $\Delta_{ab}H^{2}(298.15 \text{ K}) = 142.1 \pm 5.0 \text{ kcal·mol}^{-1}$ is calculated as the $\Delta_{t}H^{2}(298.15 \text{ K})$ differences for NbO₂(g) and NbO₂(cr).

²F. G. Kusenko and P. V. Gel'd, Izvest. Sibir. Otdel. Akad. Nauk SSSR, No. 2, 46 (1960).

JANAF Thermochemical Tables: Nb₂O₅(cr), 12-31-72, NbO(cr), 12-31-73. Mah, J. Amer. Chem. Soc. 80, 3872 (1958).

Continued on page 1693

Ţ	Cuthefan D.	1		Total and the factor of the second se	١	100		
	Edulately No.	וכו כווער זי	J·K-'mol-'	C1067 = 11	4	-KI-mol-1	Limitary State Freship = p = u.i Mrs	EJW I'm w
<u></u> :	τÆ	ប	S•[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{\tau})$	$\Delta_c H^{\bullet}$	Φ'C•	log Kr
- -	°88	0. 21.143 44.918	0. 11.275 33.967	NFINITE 96.297 59.417	-9.271 -8.502 -5.090	-790,308 -793,224 -794,821	-790.308 -775.765 -757.542	405.218 197.850
	298.15	57.452	54.506	54.506	ď	-794.960	-739.175	129.500
jo ,	88	57.605	54.862	54.507	90.0	-794.954	-738.829	128.642
9 °	8	61.739	86.967	61.447	12,760	-793.403	-701.766	73.313
70	8 6	71.651	99.665	66.781 70. CT	19.730	-792.205	-683.547	59.508 40.664
	888	79.496	121.348	267.77	34.843	-789.037	-641.776	42.295
a de	88	87.500	139.945	88.405	51.540	- 784.726 - 784.726	-612.934	32.016 32.016
3	1090 000	91.144	147.640	92.980	. 100.69		I <> II	
1	1200	92.885	151.628	93.510	63.930	-778.665	-595.911 -579.475	28.297
	1200.000	92.885	159.710	98.694	73.219		III <> III	
1	1200.000	83.052	159.710	98.694	73.219		~	
	<u>8</u> 9	83.052 83.052	172.513	103.647	81.524 89.829	-713.962	-563.136	20.408
	1500	83.052	178.243	112.820	98.135	-770.526	-530.956	18.490
	200	83.052	183.603	117.078	106.440	-768.921	-515.038	16,814
	000	83.052	193.385	125.024	123.050	-765.965	-483.484	14,030
=	200 200 200 200 200 200 200 200 200 200	83.052	197.875	128.741	131,355	-764.626	-467.827 -452.239	12.861
و د	2100	83.052	206.188	135.728	147.966	-762.251	-436.710	10,863
3 5	2175.000	83.052	209.102	138,208	154.195	11	v	ŀ
. [2200	83.052	210.051	139.019	156.271	-761.226	-421.232	100'01
. H	7300 7400 7400	83.052 83.052	213.743	142.188	164.576	-760.320	- 405.799	9.216 8.497
-3%	2500	83.052	220.668	148.193	181.187	-758.906	-375.035	7.836
	790 700 700	83.052 83.052	223.925	151.044	189.492	-758.437 -758.172	-359,690	7.226 6.662
	2800	83.052	230.080	156.472	206.103	-784.523	-328.549	6.129
tion								
٠.								
2								
- 1								
ig ig								
E S								
: :								
	PREVIOUS:						CURRENT	CURRENT December 1973

Nb₁O₂(cr)

Nb₁O₂(I)

CURRENT: December 1973

-
C
3
Ξ,
€
•
đ
ž
÷
-
c
Ξ
۶
-
7
-
C

PREVIOUS:

Niobium, Oxide (NbO ₂)	rianid W.	M, = 108.9058 Niobium Oxide (NbO ₂)	iobium Oy	ide (Nb	02)					Nb ₁ O ₂ (I)	ē
$S^{\circ}(298.15 \text{ K}) = [92,835] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{L}} = 2175 \pm 15 \text{ K}$	$\Delta_t H^{\circ}(298.15 \text{ K}) = [-710.872] \text{ kJ} \cdot \text{mol}^{-1}$.872] kJ·mol ⁻¹	Enthalpy Reference Temperature = T, = 298.15 K	rence Tem	emperature =	T, = 298.15 1		Standard St	Standard State Pressure = p* = 0.1 MPa	p - 0.1 MI	a.
	- 0+0.77 = 13 ^{ca)} C	1011.72 6:07	T.K. C	ย	S° -[G°-H'(T,)]/T	H'(T,)]T	H°-H*(T.)	1	A.G.	log Kr	
Entraipy of Formation $\Delta_t H^*(\text{NbO}_t, 1, 298.15 \text{K})$ is calculated from $\Delta_t H^*(\text{NbO}_t)$ $H(298.15 \text{K})$, between the crystal and the liquid.	intally of Formation $\Delta_H^a(NbO_2, cr, 298.15 K)$ by adding $\Delta_{ha}H^a$ and the difference in enthalpy, $H^a(2175 K)$ (298.15 K), between the crystal and the liquid.	, H°(2175 K)-	0000 5000								
				57.450	92.835	92.835	ö	-710.872	-666.514	116.771	
eat capacity and emuopy. There is no data reported in the literature concerning the heat capacity or enthalpy of	theat capacity or enthalpy of NbO ₂ (1). We estimate a constant value of $C_{\bullet}^{\circ} = 7.5$	lue of C 7.5	88	57.605	93.191	92.836 95.177	0.106 6.191	-710.865 -710.259	-666.239 -651.442	116.003 85.070	
ntom " or 22.5 cal·K" -mol" for the liquid phas	cal·K-1-8-atom-1 or 22.5 cal·K-1-mol-1 for the liquid phase. A glass transition is assumed at 1000 K below which the $C_{\rm e}^{\rm p}$ values of the crystal	s of the crystal		57.739	125,296	99.776	12.760	-709,314	-636.842	66.530	
he entropy at 298.15 K is calculated in a mann	are used. The entropy at 298.15 K is calculated in a manner analogous to that used in calculating the enthalpy of formation.	,	888	75.555 75.555 79.4%	137.993 149.331 159.677	105.109 110.631 116.124	19.730 27.090 34.843	-708.116 -706.667 -704.949	-622,456 -608,290 -594,351	54.190 45.391	
Fusion Data				3.479	69.270	121.502	42.991	-702.945	-580.643	33.700	
ported the melting point of NbO ₂ (cr) as $T_{tat} = 21$ ady on NbO ₂ (cr, I) by Shchukarev <i>et al.</i> ² gave 7	Ellioft reported the melting point of NbO ₂ (cr) as $T_{tas} = 2191$ K (IP1S-68) and stated that NbO ₂ (cr) melts without decomposition. The vapor pressure study on NbO ₂ (cr, I) by Shchukarev <i>et al.</i> 2 gave $T_{tas} = 2173$ K (IPTS-68) with congruent melting. We adopt $T_{tas} = 2175 \pm 15$ K in	tion. The vapor	22	87.500	273	126.733	25.5	dia	GLASS <> LIQUID		
intain good consistency with the vapor pressure	data. A value of $T_{ths} = 2357$ K reported by Kolchin and Sumarokov	va³ appears too			187.246	131.833	60.954	-697.553	-553 978		
figh. The vapor pressure data of Shchukarev <i>et al.</i> ² suggests $\Delta_{tas}H^{\circ} = 22.0$ kcal·mol ⁻¹ cal·K ⁻¹ ·mol ⁻¹ .	sts $\Delta_{tot}H^{\circ}$ = 22.0 kcal·mol ⁻¹ which we adopt. This leads to $\Delta_{tot}S^{\circ}$ = 10.11	Δ _{fur} S° = 10.11	2400 2400 2000 2000 2000	94.14 94.145 94.145	195.437 202.972 209.949 216.444	136.797 141.602 146.237 150.704	70.368 79.782 89.196 98.610	-694.548 -691.616 -688.753 -685.962	-541,059 -528,388 -515,940 -503,694	22.23 19.23 15.23 15.80 15.80	
Vaporization Data The vapors over NbO ₂ (I) have been shown by Shchuka	aporization Data The vapors over NDO ₂ (I) have been shown by Shchukarev et al.2 to be NDO(g), NDO ₂ (g), and O(g). At 2300 K, the ratio of the vapor	o of the vapor			222.520 228.227 233.608	155.005 159.146 163.134	108.024	-683.248 -680.617 -678.075	-491.632 -479.737 -467.994	14.741	
pressures NbO ₂ (g):NbO(g) is 1.00:0.07.					243.526	170,686	145.680	-673.278	-444.913	11.620	
References			8		248.119 251.423	174,265 176,869	155.094	-671.034	-433.550 I <> LIQUED	10.784 ID	
 F. F. Elliott, Halls, Amer. Soc. Metals 24, 950 (1960). A. Shchukarev, G. A. Semenov, and K. E. Frantseva, Russ. J. Inorg. Chem. 11, 129 	Russ. J. Inorg. Chem. 11, 129 (1966).			94.140	252.499 256.683	177.722	164.508	-668.901 -666.886	-422.291	10.026	
³ O. Kolchin and N. Sumarokova, Atomnaya Energ. 10, 168 (1961).	8 (1961) .				260.690 264.533	184,300 187,433	183,336	-664.998 -663.254	-400.049	8.129	
				94.140	268.225	190.470	202.164	-661.676	-378.109	7.596	
					275.202	196.276 199.055	230.406	-683.546	-355.912	6.640	
					181.697	201.757	239.820	-681.347	-332.514	5.790	
		-									

Nb₁O₂(cr,l)

Niobium Oxide (NbO ₂)	
$M_{\rm r} = 124.9052$	
CRYSTAL(I-II-III)-LIQUID	

Niobium Oxide (NbO₂)

		crystal, II		liquid
	1000 K	1200 K	2175 K	2175 K
	2	2	2	
•	0	1090	1200	above

Refer to the individual tables for details.

Enthalpy Re	ference Te	emperature	Enthalpy Reference Temperature = T, = 29&15	×	Standard St	Standard State Pressure = 1	= p° = 0.1 MPa
T/K	ម	J·K-'mol-' S* -[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{\epsilon})$		Δ.	log K.
0	. 0	ď	INFINITE	-9.271	-790.308	- 790.308	INFINITE
88	21.143	33 967	96.297	-8.502 -5.090	-793.224	-775.765	405218 197.850
298.15	57.452		54,506	o'	-794.960	-739.175	129.500
8	57.605 63.547	54.862 72.327	\$4.507 \$6.848	0.106 6.191	-794.954 -794.348	-738.829	128.642 94.048
200	61.739	86.967	61.447	12.760	-793,403	-701.766	73.313
88	71.651	99.665 111.003	66.781 72.302	19.730	-792.205	-683.547	59.508 49.664
88	79.496	121.348	267.77	34.843	-789.037	-647.776 25.0.32	42.295
88	87.500	139.945	88.405	51.540	- 784.726	-612.934	32.016
1090 000	91.144	147.640	92.980 92.980	59.579 63.001		I <> II	
1200	92.885	151.628	93.510 98.694	63.930	-778.665 -775.786	-595.911	28.297
1200.000	92.885	159.710	98.694	73.219		III <> III	
1300	83.052	166.358	103.647	81.524	-773.962	-563.136	
1400	83.052 83.052	172.513	108.349	89.829 98.135	-772.208	-546.984	20.408
0091	83.052	183.603	117.078	106.440	-768.921	-515.038	16.814
8081	83.052	193.385	125.024	123.050	-765.965	-483.484	14.030
1900 2000	83.052 83.052	202.135	128.741	131.355	-764.626	-467.827 -452.239	12.861
2100	83.052	206.188	135.728	147.966	-762.251	-436.710	10.863
2175.000	83.052	209.102	138.208	154.195	E	> LIQUID	
2200	24.145	252.499	139.500	248.596		-422.291	_
2300	94.140	256.683	144.505	258.010	-666.886	-411.128	9.337
2200	94.146	264.533	153.798	276.838	-663.254	-389.046	8.129
2600	94.140	268.225	158.128	286.252	-661.676	-378.109	7.5%
7800	4.4.5 4.4.5 4.4.5	275.202	166.245	305.080	-685.546	-355.912	0.60
886 888	94.140 94.140	278.205 281.697	170.059	323.908	-683 437 -681 347	-344.177	6.199 5.790
PREVIOUS						CIRRENT:	CHRRENT: December 1973
2001							December 1715

-251.194 -252.544 -253.817 -255.012 -256.123 -256.655 -256.655 -256.655

-225.013 -227.272 -256.144 -257.662 -257.662

10.625 110.625 110.625 1122.172 127.951 133.773 145.304 151.093 151.09

388.827 391.009 393.113 395.144 397.106

57.804 57.832 57.838 57.881 57.881

-256.480 -256.318 -256.107 -255.846 -255.846

-262.317 -262.317 -263.901 -265.500

339.616 341.479 343.286 345.039 345.039 351.036 351.03 354.69 356.043 356.043 356.196 361.916

399.005 400.845 402.628 404.358 406.038

57.921 57.938 57.953 57.961 57.981

-255.185 -254.787 -254.342 -253.854 -253.325

-268.741 -270.382 -272.037 -273.705 -275.385

185.864 191.664 197.465 203.266 209.069

409.261 410.808 412.315 413.784

57.992 58.004 58.023 58.032

407.672

NFINITE
105.556
105.556
105.556
105.556
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.567
105.56

-248,277

99.095

360.893 364.362 367.640 370.744 376.503 379.183 381.747 386.561

57.175 57.288 57.384 57.366 57.536 57.649 57.736 57.736

216.157 -217.675 -219.306 -221.062 -221.062

329.314 331.521 333.649 335.705 337.692

-239.788 -241.617 -243.382 -245.081 -246.713

70.388 76.112 81.846 87.588 93.338

316.900 319.591 322.170 324.645 327.025

210,007

213.428

CURRENT: December 1973 (1 bar)

2,630 2,630 2,630 2,630

-249.283 -248.472 -247.623 -246.737

-285.713 289.250 291.036 292.835

243,901

368.876 370.017 371.137 372.236 373.314

421.898 423.147 424.370 425.567 426.741

58.073 58.083 58.083 58.083 58.092

-252.752 -252.138 -251.483 -250.789

277.077 278.781 280.497 282.224 283.963

214.873 220.677 226.482 232.288 238.094

362.809 364.074 365.312 366.524 367.712

415.217 416.616 417.982 419.317 420.622

58.040 58.047 58.055 58.061

2508 2356 2169 1988 1814

374.373 375.413 376.435 377.439

427.891 429.020 430.126 431.212

58.097 58.101 58.104 58.108 58.108

244.856 234.553 205.529 -176.337

M _t = 124.9052 Niobium Oxide (NbO ₂)	
IDEAL GAS	

Niobium Oxide (NbO₂)

 $^{1}D_{1}O_{2}(g)$

rd State Pressure = p° = 0.1 MPa

log Kr

202.080 206.055 206.055 207.779 209.330

199 995 200.014 200.488 200.905 201.280 201.625

220,338 220,338 222,789 225,159

202.266 202.886 203.517 204.176 204.872

306.649 314.801 322.015 328.475 334.317

52.201 53.531 54.485 55 184 55 708

14.705 25.398 30.884 36.429 42.021 47.649 53.304 58.982 54.678

209.388 210.912 212.373 213.783

0. 2.330 4.669 7.088 9.573

-229.676 -231.829 -23.916 -235.937 -237.895

205.609 206.391 207.217 208.091 209.018

339.647 344.543 349.070 353.277 357.207

56.110 56.424 56.674 56.875 57.039

	$\Delta_4 H^{\circ}(0 \text{ K}) = -197.33 \pm 20.9 \text{ kJ} \cdot \text{mol}^{-1}$	$\Delta_t H^0(0 \text{ K}) = -197.33 \pm 20.9 \text{ kJ} \cdot \text{mol}^{-1}$ Enthalpy Reference Temperature = $T_t = 298.15 \text{ K}$	K Standard
$S^{0}(298.15 \text{ K}) = (272.921 \pm 8.41 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$	Δ _r H*(298.15 K) = -200.00 ± 20.9 kJ·mol ⁻¹	J·K ⁻¹ mol ⁻¹	kf-mol
		TIK C_r^* $S^* - [G^* - H^*(T_r)]T$ $H^* - H^*(T_r)$ $\Delta_r H^*$	$H^{\bullet}-H^{\bullet}(T_t)$ $\Delta_t H^{\bullet}$

7.K.'.mol''	$\Delta_i H^*(298.15 \text{ K}) = -200.00 \pm 20$
Vibrational Frequencies and Degeneracies v, cm ⁻¹ [970](1)	
(1)[0:6]	
Ground State Quantum Weight: [2] Point Group: [C ₂ ,] Bond Distance: Nb-O = [1.691] Å	σ = [2]
Bond Angle: O-Nb-O = [110]° Product of the Moments of Inertia: $I_A I_B I_C = [5.274350 \times 10^{-115}] \text{ g}^3 \text{ cm}^6$	115] g³.cm°

Enthalpy of Formation

Shchukarev et al. 1-4 measured the vapor pressures of NbO and NbO; over NbO(cr. I) and NbO₂(cr. I) by the effusion method coupled with a mass spectrometer. An analysis of the reported smoothed results is presented in the following table.

		Δ,H°(298.15	K), kcal·mol-	Drift	$\Delta_{\rm r}H^{\circ}(298.15$	λ _t H*(298.15 K), kcal·mol ⁻¹
Reaction	ТЖ	2nd law	2nd law 3rd law	cal·K ⁻¹ ·mol ⁻¹	2nd law	3rd law
NbO ₂ (cr) = NbO ₂ (g)	1773-2175	142.0	143.4	69'0	-48.0	-46.6
NbO ₂ (I) = NbO ₂ (g)	2175-2473	124.2	123.7	-0.22	-46.8	-46.3
2 NbO(cr) = NbO ₂ (g) + Nb(cr)	1773-2210	147.8	149.9	1.03	-52.8	-50.7
$2 \text{ NbO(I)} = \text{NbO}_2(g) + \text{Nb(cr)}$	2210-2473	119.7	1111	-3.73	-41.3	-49.9

We adopt ∆H"(NbO₂, g. 298.15 K) = -47.8 ± 5.0 kcal·mol⁻¹. This value is an average value of the 2nd and 3rd law results for the sublimation and vaporization of NbO₂. This adopted $\Delta_4 H^0$ (298.15 K) value leads to $D_0^2 = 14.73$ eV for the process NbO₂(g) = Nb(g) + 2 O(g). The $\Delta_4 H^0$ (0 K) value is 1.83 times as great as the dissociation energy of NbO(g) (D_0^2 +8.05 eV).

obtained in the more complete study. Golubtsov et al. 3 also measured the vapor pressure of NbO₂(g) over NbO₂(cr) in the range 1489-1905 K by using labelled atoms in a Knudsen cell. The same authors also studied the dissociation of Nb₂O₃ in vacuo in the range 1432-1756 K, the The earlier less complete studies by Shchukarev et al. - are in fair agreement with the above conclusions. Using a platinum strip to vaporize NbO₄(τ) in a mass spectrometer at temperatures of 1500 to 1880 K, Shchukarev et al. 1 reported a 2nd law sublimation heat, Δ₂₀H°(1700 K) = 142 ± 3 kcal·mol⁻¹. Using auxiliary data, we calculate Δ₄H°(NbO₂, g, 298.15 K) = -38.8 kcal·mol⁻¹. The mass spectrometric investigation of the NbO(α) evaporation by Shchukarev et al. 2 led to a reported value $\Delta H^{4}(1800 \, \mathrm{K}) = 140 \pm 3 \, \mathrm{kcal \cdot mol^{-1}}$ for the process 2 Nb $\tilde{O}(cr)$ = Nb(cr) + NbO₂(g). Using auxiliary data, ⁶ we calculate $\Delta_t H^2(NbO_3$, g, 298.15 K) = -53.3 kcal-mol⁻¹. NbO₂ pressures were obtained (1938–2122 K) by the differential effusion method using the radioactive tracer ²⁸Nb.³ The pressures agree within 5% of those process being Nb₂O₃(cr) → 2 NbO₂(g) + 1/2 O₂(g). These latter data are not considered.

Heat Capacity and Entropy

The vibrational frequencies and geometry of NbO₂(g) are estimated based on existing and estimated data for related metal dioxides such as TiO₂(g), TaO₂(g), and WO₂(g). The Nb-O bond distance is assumed to be the same as in NbO(g). The ground state quantum weight of 2 is adopted so as to be consistent with TaO₂(g). The principal moments of inertia are calculated as $I_A = 3.7181 \times 10^{-39}$, $I_B = 10.1954 \times 10^{-39}$, and $I_C = 13.9136 \times 10^{-39}$ g·cm².

References

V. Golubssov, A. V. Lapitskii, and V. K. Shiryaev, Izv. Vyssh. Uchebn. Zavend. Khim. i Khim. Tekhnol. 3, 571 (1960); Chem. Abstr. 55, A. Shchukarev, G. A. Semenov, and K. E. Frantseva, Russ. J. Inorg. Chem. 4, 1217 (1959).
 A. Shchukarev, G. A. Semenov, and K. E. Frantseva, Izv. Vyssh. Uchebn. Zaved. Khim. i Khim. Tekhnol. 5, 691 (1962).
 A. Shchukarev, G. A. Semenov, and K. E. Frantseva, Dokl. Akad. Nauk SSSR 145, 119 (1962).
 A. Shchukarev, G. A. Semenov, and K. E. Frantseva, Russ. J. Inorg. Chem. 11, 129 (1966).
 V. Golutssov, A. V. Lapitskii, and V. K. Shiryaev, Izv. Vyssh. Uchebn. Zavend. Khim. i Khim. Tekhnol. 3, 571 (1960): Chem. 11166 (1961).

JANAF Themochemical Tables. NbO₂(cr), NbO(cr, g), Nb(cr), TaO₂(g) and TiO₂(g), 12-31-73; WO₂(g), 9-30-66.

3	
(Nbo,)	
Oxide	
Jum	
Nio	

PREVIOUS. December 1973 (1 atm)

Nb2Os(cr)

Niobium Oxide (Nb₂O₅)

Niobium Oxide (Nb₂O₅)

CURRENT December 1972

7K C	$\Delta_{\text{tot}} = 1093.550 \pm 4.2 \text{ M}^{-1} \text{ M}^{-1}$	Tin = 1785 ± 30 K
Enthalpy Reference Temp	$\Delta_t H^*(2K) = -1889.616 \pm 4.2 \text{kJ·mol}^{-1}$ Enthalpy Reference Temp $\Delta_t H^*(298.15 \text{K}) = -1899.536 \pm 4.2 \text{kJ·mol}^{-1}$	$S^{\circ}(298.15 \text{ K}) = 137.30 \pm 1.3 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Source	Nb(cr) purity, %	& competion*	A.Hº(798 15 K) kral.mol-1
2 m 4		manual-man ar	1011 may /41 (1.0/4) 1101
m *			-442.8
•	98.8	96.34-96.94	-459.9 ± 0.7**
	69:66	97.63-99.38	$-454.0 \pm 0.6**$
•			-472.6 ± 1.0
•	99.49		-454.8 ± 0.8
			-458.6 ± 5.0
	10:66	99.1-99.33	-455.1 ± 0.5
•	99.45	98.78-100	-454.4 ± 1.6
2	98.47-99.35	99.48-99.96	-453.5 ± 0.4
=	98.47-99.35	99.48-99.96	-453.5 ± 0.4
12			-4560

Percent completion refers to extent of reaction 2 Nb(cr) + 2.5 O₂(g) = Nb₂O₃(cr).

The value chosen for $\Delta_t H^0(Nb_2O_s, cr, 298.15 \, K)$ is $454.0 \pm 1 \, kcal·mol^{-1}$. This value is representative of the work by Humphrey, ⁴ Komilov et al., ¹⁰ Rusenko and Gel'd* and Morozova and Stolyarova. ⁴ These works have discussed sample purity and have percentage conversions of Nb(cr) to Nb₂O₅(cr) of the order of 97% or better. Based on the discussion by Reisman and Holtzberg, ¹ this $\Delta_t H^0(298.15 \, K)$ value is for the high temperature α-phase of Nb₂O₃(cr). The heat capacity and enthalpy work, also dealing with Nb₂O₃(cr, α), indicated no phase changes for 53-297 K and 381-1785 K. 14, 16

 $\Delta_i G^{\alpha}$ values for Nb₂O₃(α) in the range 1050 1300 K were calculated from measured emf values in an oxygen concentration cell and the known $\Delta_i G^{\alpha}$ values of Cr_2O_3 . The reported smoothed $\Delta_i G^{\alpha}$ values were treated by a 3rd law analysis, yielding $\Delta_i H^{\alpha}(Nb_2O_3, \alpha)$ cr. 298.15 K) = 451.6 kcal·mol⁻¹ with a drift equivalent to an entropy error of 4.8 cal·K⁻¹·mol⁻¹.

Heat Capacity and Entropy

King 4 measured the heat capacity of the high temperature α-phase Nb₂O₃ from 53.24 to 296.64 K and fitted the data (29 data points) wit a combination of Debye and Einstein functions. These functions fit the data over the entire measured temperature range with a maximur deviation of 0.6% and are used to calculate S°(50 K) = 2.42 cal·K-1·mol

Orr¹³ using the same material as King, ¹⁴ measured the enthalpy from 381.4 to 1809.2 K. Gel'd and Kusenko ¹⁶ also measured the enthalpy from 461 to 1828 K. Combining these data¹⁵¹⁶ with a portion of the King data (a C_p fit, then integrated), a six term polynomial fit is uso data. Two points (644 K, 734 K) of the Gel'd and Kusenko data are not used as they deviate from the polynomial fitted values by 2-3% Entahlpy values corresponding to temperatures greater than 1750 K but less than $T_{\rm lm}$ are considered to be involved in premelting. ¹³ Enthalpy to represent the enthalpy data, yielding a deviation of 0.99% to +0.81% for the Ort data and 0.64% to + 1.10% for the Gel'd and Kusenk values for 1785 ≤ T ≤ 2300 K are obtained by extrapolating the values obtained from the polynomial fit. The chosen heat capacity value are obtained by differentiating the enthalpy polynomial fit for the range 298-2300 K. For temperatures 50 298 K, the King data were fit a six term polynomial.

The existing experimental data 14316 did not indicate any transitions other than a crystal liquid transition. Lacking thermodynami information for the other crystal phases of Nb2O," we assume that there is little difference in the heat capacity and enthalpy values for th various crystal phases. Thus the values tabulated here apply to all crystal Nb₂O₃ phases. The data for Ta₂O₃(cr) presented in these tables at treated in the same manner as discussed here so as to maintain consistency between Nb₂O₃(cr, I) and Ta₂O₃(cr, I).

Fusion Data

Refer to the liquid table for details.

References

Reisman and F. Holtzberg, High Temp. Oxides 2, 217 (1970).
 W. Muthmann, L. Weiss, and R. Reidelbauch, Ann. Chem. 355, 67, 82 (1907).
 Becker and W. A. Roth, Z. Physik. Chem. 167A, 16 (1933).

Continued on page 1693

7	Enthalpy F	leference Te	emperature	Enthalpy Reference Temperature = T, = 298.15 K	<u></u>	Standard St	Standard State Pressure = p = 0.1 MPa	p = 0.1 MPa
7 7	¥,7	٤		nol-'	H*-H*T	_kind-1	100	log K.
	•	\$		14(4)	7		}	Ju Soi
2	° 200	0. 54.455 105.922	0. 34317 89529	135 233 135 233 148,666	-22.287 -20.092 -11.827	-1889.634 -1896.262 -1899.472	-1889,634 -1853,855 -1809,884	NFINITE 968.355 472.693
 8	298.15	131.988		137.298	ď	-1899.536	-1765.817	309.364
	8	132,320	138.115	137.300	0244	-1899.519	-1764.987	307.312
	88	153,841	211.441	153.178	29.131	-1895.852	-1676.159	175.107
	86	166.737	240.126	165,334	44.875	-1893,233	-1632.460	142.118
	200	170.038	287.760	190,216	78.035	-1887 259	-1546.418	100971
	88	175.502	326,340	213.706	112.634	- 1884.086 - 1880.865	-1504,003	87.290 76.364
	011	177,360	343.157	224.720	130,280	-1877.632	-1420.207	67.440
	2002	179.928	338.634	235.244	148.092	-1874.413	-1378.766	60.016
	9	180.920	386.390	254.902	184.082	-1868.087	-1296.661	48.379
	2005	00,181	396.898	204.090	202.213	-1865,024	-125.953	43.730
	92	182,745	421.707	281,318	238.661	-1862.060	-1215.445	39.080 36.107
	1785,000	_	430.631	288.217	254,209	CRYSTAL	AL <> LIQUID	OID
	1800	183.129	432,163	289.410	256.956	-1856.527	-1134.957	32.936
	200	183.435	442.073	304 668	275.284	-1854,000	-1094.939	30.102
	2100	183 862	460.455	311.875	312.018	-1849 517	-1015 273	25.254
	2200	184.004	469.012	318.825	330,411	-1847.584	-975.592	23.164
_								
. 9.								
2								
 2								
<u>.</u> 2								
Ę.								
. <u></u>								
Ē								
2								
2.8								
8 :								
ş <u>2</u>								
2 8								
2								
, ji								
Pe Pe								
일								

^{**} Values adjusted by Kubaschewski and Catterall¹³ to more satisfactorily correct for incomplete reaction.

Nioblum Oxide (Nb₂O₅)

CURRENT: December 1972

	ND ₂ O ₅)
	Oxide (
:	Niopica

LIQUID

Nb₂O₅(I)

M = 265.8098 Niobium Oxide (Nb₂O₅)

 $S^{\circ}(298.15 \text{ K}) = [171.488] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{tot}} = 1785 \pm 30 \text{ K}$

Enthalpy of Formation

Δ_tH*(Nb₂O₃, 1, 298.15 K) is calculated from that of the crystal by adding Δ_{tur}H* and the difference in H*(1785 K)-H*(298.15 K), betwe

Orr¹ and Gel'd and Kusenko² reported enthalpy measurements at temperatures greater than T_{ss}. The work of Orr¹ indicates a C² value of 57.90 cal·K⁻¹ mol⁻¹ based on two enthalpy points in the liquid region. The three enthalpy points of Gel'd and Kusenko² devia by +0.06%, -0.86%, and -0.37% from the linear representation of the Orr data. Thus, the constant C² value of 57.90 cal·K⁻¹ mol⁻¹ is chose for the liquid phase. A glass transition is also chosen at 1200 K so as to ensure the proper thermodynamic relationship between crystal value and extrapolated liquid value. At temperatures below 1200 K, the heat capacity values of the crystal are used. The entropy at 298.15 K calculated in a manner analogous to that used in calculating the entralpy of formation. Heat Capacity and Entropy the crystal and liquid

The enthalpy work of Ort and Gel'd and Kusenko² provide information as to the hear of fusion. The hear capacity discussion for ND₂O₃(c $\Delta_{tu}H^{o} = 24.31 \pm 0.5$ kcal·mol⁻¹ at a melting point of 1785 K [H^{o} (1785 K)- H^{o} (298.15 K) = -60.759 kcal·mol⁻¹ for the crystall. The melting point, although it is consistent with the enthalpy work, ¹² is 21 K greater than the value reported by Holtzberg *et al.*³ and is great The melting point, T_{ins}, is chosen to be 1785 K strictly on the basis of being consistent with the two sets of enthalpy data. More data a necessary to accurately define consistent values for T_{ins}, A_{ins}H* and enthalpy values in the liquid and crystal regions. than most Tra values cited by Charlesworth* and Schneider. Reisman and Holtzberg* attributed this high value of 1785 K to an impure samp and Nb₂O₃(I) provide details as to the fitting of the data in the crystal and liquid regions. The heat of fusion is then calculated to

¹R. L. Orr, J. Amer. Chem. Soc. 75, 2808 (1953).
²P. V. Gel'd and F. G. Kusenko, Izvest. Akad. Nauk SSSR O.T.N. Met. i Top. 1960 (2), 79 (1960); Chem. Abstr. 55, 16117 (1961), dal extracted from the following: Ya. I. Gerasimov, A. N. Kustovnikov, and A. S. Shakhov, "Chemical Thermodynamics in Nonferro. Metallurgy," Vol. III, Israel Program for Scientific Translations, Jerusalem, (1965).

³F. Holtzberg, A. Reisman, M. Berry, and M. Berkenblit, J. Amer. Chem. Soc. 79, 2039 (1957)

1. H. Charlesworth, AFML-TR-70-137; (October 1970).

J. Schneider, U.S. Nat. Bur. Stand. Monograph 68, 31 pp. (1963).
 Reisman and F. Holtzberg, High Temp. Oxides 2, 217 (1970).

Δ _t H°(298.15 K) = [-1830.873] kJ·mol ⁻¹	Enthalpy R	eference To	mperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard St	Standard State Pressure = p* = 0.1 MPa	- 0.1 MPa
Δ _{ru} H° = 104.265 ± 2.1 kJ·mol ⁻¹			J·K-'mol'				· 	
	¥	ູ່ບໍ	S• -[G	-[G*-H*(T,)]T	$H^{\bullet}-H^{\bullet}(T_t)$	Δ.Η.	Φ.	log Kr
ice in H°(1785 K)-H°(298.15 K), between	0 0 0 0 0 0 0 0							
	298.15	131.988	171.488	171.488	ö	-1830.873	-1707,347	299.120
. The work of Ort indicates a C, value of	888	132,320	212.286	171.491	0.244	-1830.856	-1706.581 -1665.354 -1674.501	297.142
points of Gel'd and Kusenko' deviate	8	160.737	274.316	199.524	44.875	-1824 \$69	-1584 311	147.601
C, value of 37.90 cal·K ·mol · is chosen mamic relationship between crustal values	88	166.013	299.509	212.045	61.225	-1821.668	-1544.495	115.252
rstal are used. The entropy at 298.15 K is	888	173.117	342.162	236.386	95.199	-1815.423	-1466.111	160.28
	8 1	177.360	377.347	258.910	130,280	-1808.969	-1427,470	85.963
	1200		392.845	269.434	148.093	-1805.749	-1351,131	58.813
The heat capacity discussion for Nb ₂ O ₅ (cr)	1200.000	178.828 242.254	392.845 392.845	269.434 269.434	148.093	1	GLASS <> LIQUID TRANSITION	 e
e heat of fusion is then calculated to be	000	242.254	412236	279.683	172.318	-1796.279	-1313.631	
60.759 kcal·mol for the crystall. This	8 <u>8</u> 8	25225	446.902	289.800 299.723	136.54 220.769	-1786,963	-1276.855	43.2640 20.640
high value of 1785 K to an impure sample.	91	242.254	462.537	309.416	244.994	-1768.813	-1205.229	39.347
two sets of enthalpy data. More data are	1785.000		489.043	326.684	289.811	CRYST	- CRYSTAL <> LIOUID	OI
f and crystal regions.	081	242.254	491.070	328.045	293.445	-1751.374	-1135,837	32.961
	2002	242.254	516.594	345.646	341.896	-1734.738	-1101.8/1	205.72
	2200	242.254 242.254	528.414 539.684	354,071 362,253	366.121	-1726.746	-1035.221	23.802
ov); Criem. Acstr. 55, 10117 (1901), data Themical Thermodynamics in Nonferrous	2300 2400	242.254	550.452	370,204	414.572	-1711.473	-937 006	22.031
	2200	242.254	570.652	385.443	463.023	-1697.280	-906.214	18.934
	2,00	242.254	580.153 589.296	392.750 399.861	487.248	-1690.674	-874.703	17.573
	280	242.254	598.106	406.785	535.699	-1731.546	-811.424	15.137
	88	247.24	614.820	413530	584.149	-1723.909	-746.234	12.993
	3100	242.254	622.763	426.513	508.375	-1708.778	-714.021	12.031
	3300	242.254	637.909	438.871	656.826	-1693.829	-650,319	10.294
	3,400 0,000 0,000 0,000	24224 242254	645.141 652.163	444.832	681.051 705.276	-1686.417 -1679.046	-618.807 -587.515	8.768
	3800	242.254	658.988	456.349	729.502	-1671.713	-556.432	8.074
	3800	242.254	665.625 672.086	461.915 467.362	753.77 771.952	-1664.417	-525.554	7.419 6.802
	3300	242.254	678.379	472.692	802.178	-1649.932	-464.376	85.23
	4100	242.254	690.494	483.023	820.628	-1635.580	-403.942	5.146
	85	242.254	696.331	488,033	874.854	-1628.452	-373.988	4.651
	8	242.25	707.601	497.759	923.304	-1614.289	-314.585	3.735
	4600	20.254	718 370	\$07.119	971.75	-1600 748	-255.874	595
	8	242.254	723.580	\$11.669	995.981	-1593.273	-226.671	2519
	8 6	242.254	733.675	520 526	1020,206	-1586.330	-197,668	2.151
	2005	242.254	738.569	524.838	1068,657	-1572.540	-140.089	1.464

Nb₂O₅(cr,I)

Niobium Oxide (Nb ₂ O ₅)	
M _r = 265.8098 Niobi	
CRYSTAL-LIQUID	

Niobium Oxide (Nb₂O₅)

0.1 MPa	log Kr	INFINITE 968.355 472.693	309.364	307.312 224.653	175.107	118.589	87.290	76.364 67.440	60.016	48.379 43.736	39.680 36.107	an	32.961 30.293 27.902	25.750	22.031	18.934	17.573	14.026	12.031	10.294	8.768	8.074 7.419	6.802 6.220 5.668	5.146	4.18	3.735 3.310	2.905	272 180 180	1.464			CURRENT, December 1972
the Pressure = p*	Φ.	-1889.634 -1853.855 -1809.884	-1765.817	-1764.987	-1676.159	-1589.225	-1546.418	-1461.944	-1378.766	-1296.661 -1255.953	-1215.445	AL <> LIQUID	-1135,837 -1101,871 -1068,343	-1035.221	-970.074	-906.214	-874.703 -843.437	-778.699 -778.699 -746.734	-714.021	-682,033	-587.515	-556,432 -525,554	-494869 -464376 -434.070	-403.942	-344.203	-314 <i>5</i> 85 -285.126	-255.824	-197.668	-140.089			CURRENT. I
Standard State Pressure	ı	-1889.634 -1896.262 -1899.472	-1899.536	-1899.519 -1898.035	-1895.852	-1890.331	-1887.259 -1884.086	-1880.865	-1874,413	-1868.087 -1865.024	-1862,060 -1859,220	CRYSTAI	-1751.374 -1742.951 -1734.738	-1726.746	-1711.473	-1697.280	-1690.674 -1684.489	-1723.909 -1716.320	-1708.778	-1693.829	-1679.046	-1671.713 -1664417	-1657.157 -1649.932 -1642.740	-1635.580	-1028 432 -1621 355	-1614.289 -1607.253	-1600.248	-1586.330 -1586.330 -1579.418	-1572.540			
×	H*-H*(T,)	-22.287 -20.092 -11.827	oʻ	0.244	29.131	61.225	78.035 95.199	112.634	148.092	184.082	220.410	254.209	362.108 386.334 410.559	434.784	483.235 507.461	531.686	555.911 580.137	628.587	677.038	725.489	773.940	798.165 822.390	846.616 870.841 895.066	919.292	967.742	991.968 1016.193	1040.418	1088.869	1137.320			
Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ 1.8^{-1}	-[G*-IF(T,)]T	INFINITE 235.233 148.666	137,298	137,300	153.178	17.855	202.195	224.720	235.244	254.902	272.886 281.318	288.217 288.217	289.899 300.835 311.315	321.374	340.350 349.321	357.977	374.430	389.853 397.216	404.364	418.064	431.038	437.275	449.292 455.086 460.745	466.276	476.975	482.154 487.225	492.192	501.832 506.513	511.105			
emperature 1.V - 1mol-1	S• -[G	0. 34.317 89.529		138.115	211.441	265.318	307.972	343.157	358.654	386.390	410.642	430.631	491.070 504.168 516.594	528.414	550.452 560.762	570.652	580.153 589.296 508 106	606.607	622.763	637.909	632.163	658.988 665.625	678.379 678.379 684.512	690.494	702.032	707.601	718.370	728.680	738.569			
ference T	ะ	0. 54.455 105.922	131.988	132,320	153.841	166.013	173.117	177.360	178.828	180.920				242.254	242.254 242.254	242.254	242.254	242.254	242.254	242.254	242.254	242.254	25.254 25.254 25.254	242.254	242.254	242.254 242.254	242.254	22.25	242.254			
Enthalpy R.	τÆ	°88°	298.15	88	& £	388	288	8 2	200	640 80 80 80 80 80	1600 1700	1785.000	2000 2000 2000	2200	2300 2400	2500	2200	3000	3100	3300	3200	3600	3900 3900 4000	4100	4300	2 1 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4600	4800 4800 4900	2000			PREVIOUS:

Continuation of discussions of selected Nb species

Niobium

Continued from page 1676

P. V. Gel'd and F. G. Kusenko, Izv. Akad. Nauk SSSR, Otdel. Tekh. Nauk, Met. i Toplivv, No. 2, 79 (1960). ⁶G. C. Lowenthal, Aust. J. Phys. 16, 47 (1963)

10Ya. A. Kraftmakher, Solid State (USSR) 5, 696 (1963).

¹D. T. Hawkins and R. L. Orr, J. Chem. Eng. Data 9, 505 (1964).
¹D. T. Kirillin, A. E. Sheindlin, V. Ya. Chekhovskoi, and I. A. Zhukova, High Temp. 3, 357 (1965); High Temp. 3,

¹³I. B. Conway and R. A. Hein, in "Avances in Thermophysical Properties at Extreme Temperatures and Pressures,"

¹⁶A. E. Sheindlin, B. Ya. Berezin, and V. Ya. Chekhovskoi, High Temp.-High Press. 4, 611 (1972). S. Gratch, Ed., ASME, New York, p. 131, (1965).

11. N. Makarenko, L. N. Trukhanov, and L. P. Filippov, High Temp. 8, 667 (1970). ¹⁵A. Cezairliyan, J. Res. Nat. Bur. Stand. 75A, 565 (1971).

Continued from page 1682

V. N. Drobyshev and T. N. Rezukhina, Russ. J. Phys. Chem. 39, 75 (1965).
 V. L. Lavrent'ev, Ya. I. Genasimov, and T. N. Rezukhina, Dokl. Akad. Nauk SSSR 136, 1372 (1960).
 B. C. H. Steel and C. B. Alcock, Trans. AIME 233, 800 (1968).
 W. L. Worrell, Thermodynamics, IAEA, Vienna, pp. 131, (1966).
 G. B. Barbi, Z. Natuforsch. A23, 800 (1968).
 S. Jenatowicz and M. W. Davies, J. Less Common Metals 15, 100 (1968).
 T. Hiraoka, N. Sano, and Y. Matsushita, Trans. Iron Steel Inst. Jap. 11, 102 (1971).
 P. V. Gel'd and F. G. Kusenko, Izv. Akad. Nauk SSSR, Otdel Tekh. Nauk, Met. i Toplivo, No. 2, 79 (1960).
 G. Bruet, Z. Anorg. Chem. 248, 1 (1941).
 Adler, Solid State Phys. 21, 1 (1968).
 R. Elliott, Trans. Amer. Soc. Metals 52, 990 (1960).
 S. A. Shchukarev, G. A. Semenov, and K. E. Frantseva, Russ. J. Inorg. Chem. 11, 129 (1966).

Continued from page 1686

Grube, O. Kubaschewski, and K. Zwiauer, Z. Elektrochem. 45, 885 (1939).
 Sue, Comp. rend. 208, 1088 (1939).
 Ribaefer and G. Breil, Z. Anorg, Chem. 267, 265 (1952).
 Sue, J. Chim. Phys. 36, 280 (1939).
 Lurent'ev, Ya. I. Gerasimov, and T. N. Rezukhina, Dokl. Akad. Nauk SSSR 136, 1372 (1961).

L. Worrell, Thermodynamics, IAEA, Vienna, p. 131, (1966) ¹¹W. L. Worrell, J. Phys. Chem. 68, 952 (1964).

P. L. Woller, J. P. Lis, Caller B. A. Matsushia, 1979.
 P. F. Hiracka, N. Sano, and Y. Matsushia, 1979.
 E. G. King, J. Amer. Chem. Soc. 80, 1799 (1958).
 P. V. Gel'd and F. G. Kusenko, Izvest. Akad. Nauk. SSSR, Ordel. Tekh. Nauk. Met. i Toplivo, No. 2, 79 (1960).
 P. V. Gel'd and F. G. Kusenko, Izvest. Akad. Nauk. SSSR, Ordel. Tekh. Nauk. Met. i Toplivo, No. 2, 79 (1960).
 E. G. King and A. U. Christonen, U. S. Bur. Mines RI 5789, 6 pp. (1961).
 R. E. Janninck and D. H. Whitmore, J. Phys. Chem. Solids 27, 1183 (1966).
 R. A. Magneli, G. Anderson and G. Sundkvist, Acta Chem. Scand. 9, 1402 (1955).
 P. A. Marinder, Acta Chem. Scand. 15, 707 (1961).
 R. Sakara, J. Phys. Soc. Japan 26, 582 (1969).
 P. Sakara, R. Sakara, and I. Nishida, Phys. Status Solidi 20, KI55 (1967).

Continued from page 1690

G. L. Humphrey, J. Amer. Chem. Soc. 76, 978 (1954).

P. G. Kusenko and P. V. Gel'd, Izvest. Sib. Otdel. Akad. Nauk SSSR, No. 2, 46 (1960); cited by H. L. Shick, M. P. Morozova and T. A. Stolyarova, Zhur. Obshchei Khim. 30, 3848 (1960); J. Gen. Chem. USSR 30, 3808 (1960). ⁴M. P. Morozova and L. L. Getskina, Zhur. Obshchei Khim. 29, 1049 (1959); J. Gen. Chem. USSR 29, 1019 (1959)

"Thermodynamics of Certain Refractory Compounds," Vol. 1, Academic Press, New York, (1966).

G. Kusenko and P. V. Gel'd, Zhur. Obshchei Kliim. 30, 3847 (1960); J. Gen. Chem. USSR 30, 3806 (1960).
 E. J. Huber, Jr., E. L. Head, C. E. Holley, Jr., E. K. Storms, and N. H. Krikorian, J. Phys. Chem. 65, 1846 (1961).
 N. Kornilov, V. Ya. Leonidov, and S. M. Skuratov, Vest. Moskov Univ. Kliim., No. 6, 48 (1962); cited by H.

11A. N. Kornilov, U. Ya. Leonidov, and S. M. Skuratov, Dokl. Akad. Nauk SSSR 144, 355 (1962); Proc. Acad. Sci. USSR 144, 427 (1962). L. Shick (7).

¹²V. I. Lavrent'ev, Y. I. Gerasimov, and J. N. Rezukhina, Dokl. Akad. Nauk SSSR 136, 1372 (1961).

19. Kubaschewsti and A. A. Catterall, "Themochemical Data of Alloys," Pergamon Press, New York (1956).
 19. G. King, J. Amer. Chem. Soc. 75, 2808 (1954).
 19. L. Ont, J. Amer. Chem. Soc. 75, 2808 (1953).
 19. V. Gel'd and F. G. Kusenko, Izvest. Akad. Nauk SSSR O. T. N. Met. i Top. 1960 (2), 79 (1960); C.A. 55, 16114

(1961), data extracted from the following: Ya. I. Gerasimov, A. N. Krestovnikov and A. S. Shakhov, "Chemical Thermodynamics in Nonferrous Metallurgy," Vol. III, Israel Program for Scientific Translations, Jerusalem (1965).

¹T. Hiraoka, N. Sano, and Y. Matsushita, Trans. Iron Steel Inst. Jap. 11, 102 (1971); C.A. 75, 81056w (1971).