Nous innovons pour votre réussite!

SERIE1 : TRAVAUX DIRIGÉS SUR LES PROPRIÉTÉS DE TRANSPORT

EXERCICE I : Prédiction de la conductivité thermique des gazes à basse densité

- 1. Calculer la conductivité thermique de l'argon à 100°C et pression atmosphérique, en utilisant la théorie de Chapman et Enskog et les constantes de Lennard-Jones.
- 2. Comparer le résultat trouvé avec la valeur expérimentale 506 107 cal/cm. s.K.
- 3. Calculer la conductivité thermique de NO et CH4 à 300K et 1 atm à partir des données suivantes :

9	$\mu \times 10^7 (g/cm \cdot s)$	Ĉ, (cal/g-mole·K)
NO	1929	7.15
CH,	1116	8.55

4. Comparer les résultats trouvés avec les valeurs expérimentales de la table suivante :

Table 9.1-2 Thermal Conductivities, Heat Capacities, and Prandtl Numbers of Some Common Gases at 1 atm Pressure*

Gas	Temperature T(K)	Thermal conductivity k (W/m·K)	Heat capacity $\hat{C}_p(J/kg\cdot K)$	Prandtl number
H ₂	100	0.06799	11,192	0.682
1.12	200	0.1282	13,667	0.724
	300	0.1779	14,316	0.720
0	100	0.00904	910	0.764
0,	200	0.01833	911	0.734
	300	0.02657	920	0.716
	200	0.01778	1015	0.781
NO		0.02590	997	0.742
	300	0.00950	734	0.783
CO ₂	200	0.01665	846	0.758
	300	0.01063	2073	0.741
CH,	100		2087	0.721
	200 300	0.02184 0.03427	2227	0.701

^o Taken from J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 2nd corrected printing (1964), Table 8.4-10. The k values are measured, the \hat{C}_μ values are calculated from spectroscopic data, and μ is calculated from Eq. 1.4-18. The values of \hat{C}_μ for H₃ represent a 3:1 ortho-para mixture.

UNIVERSITÉ INTERNATIONALE DE CASABLANCA

Nous innovons pour votre réussite!

EXERCICE II : Prédiction de la conductivité thermique d'un mélange de gazes. Calculer la conductivité thermique d'un mélange qui contient 20% de CO2 et 80% de H2 à 1 atm et 300K. Utiliser la table suivante pour vos calculs.

Gas*	$\hat{C}_p \times 10^{-3}$ $J/kg \cdot K$	$\mu \times 10^5$ Pa·s	k W/m·K
He	5.193	1.995	0.1546
Ar	0.5204	2.278	0.01784
H ₂	14.28	0.8944	0.1789
Air	1.001	1.854	0.02614
CO ₂	0.8484	1.506	0.01661
H ₂ O	1.864	1.041	0.02250

*The entries in this table were prepared from functions provided by T. E. Daubert, R. P.Danner, H. M. Sibul, C. C. Stebbins, J. L. Oscarson, R. L. Rowley, W. V. Wilding, M. E. Adams, T. L. Marshall, and N. A. Zundel, DIPPR ◆ Data Compilation of Pure Compound Properties, Design Institute for Physical Property Data ◆, AIChE, New York (2000).

EXERCICE III

Sachant que la viscosité d'un gaz monoatomique de masses molaire M est :

$$\mu = 2.6693 \times 10^{-5} \frac{\sqrt{MT}}{\sigma^2 \Omega_u}$$

1. Calculer la conductivité thermique du chlore en utilisant les valeurs de la table suivantes pour les chaleurs spécifiques :

2. Comparer les résultats trouvés avec les résultats expérimentaux du tableau suivant :

T (K)	p (mm Hg)	k×10° cal/cm·s·K
198	50	1.31 ± 0.03
275	220	1.90 ± 0.02
276	120	1.93 ± 0.01
	220	1.92 ± 0.01
363	100	2.62 ± 0.02
***	200	2.61 ± 0.02
395	210	3.04 ± 0.02
453	150	3.53 ± 0.03
	250	3.42 ± 0.02
495	250	3.72 ± 0.07
553	100	4.14 ± 0.04
583	170	4.43 ± 0.04
303	210	4.45 ± 0.08
676	150	5.07 ± 0.10
0/0	250	4.90 ± 0.03