4.2 ELIMINATION REACTIONS

An elimination reaction is a type of organic reaction in which two substituents (two atoms or groups) are removed from a molecule

• base removes H⁺ as X⁻ leaves

HÖ:
$$R_2C$$
— CR_2 R_2C — CR_2 R_2C — CR_2 R_2C — CR_2 R_2C — R_2

E2 and E1 Mechanism

E2 Elimination Mechanism

- concerted (single step)
- all bond-breaking and bond-forming steps are concerted
- the H and X eliminated must be aligned anti to one another

E1 Elimination Mechanism

two-step mechanism

Step 1: ionization of C-X gives a carbocation intermediate

Step 2: proton transfer from the carbocation intermediate to a base (in this case, the solvent) gives the alkene

Zaitsev's Rule

- Elimination reactions almost always give mixtures of alkene products.
- Zaitsev's rule states that if more than one alkene can be formed by an elimination reaction, the more stable alkene is the major product.

more highly substituted C=C double bond is more stable due to the electron donating properties of the alkyl group.

Elimination versus Substitution

Nucleophilic substitution and elimination reactions often compete. Since bases are nucleophilic, they can undergo substitution

• **to favor elimination:** use a strong, hindered base e.g., KOtBu (Potassium *tert*-butoxide)

H₃C

CH₃

H₃C

OK

- to favor substitution: use a small, unhindered nucleophile
- reactivity Patterns

With 1° halide substitution is highly favoured

With 2° halide elimination favoured

steric effect makes substitution difficult

With 3° halide elimination highly favoured

$$H_3C - CH_3 + CH_3CH_2ONa^+$$
 $H_2C = C-CH_3$
 CH_3
 CH_3
 CH_3
 CH_3

Applications of Elimination Reactions

1. Dehydration of alcohol

$$H_3C$$
 CH_3
 H_2SO_4
 $heat$
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_2
 CH_3
 CH_2
 CH_3
 CH_3

2. Dehydrohalogination

$$H - C - C - X \longrightarrow C = C + HX$$
Alkyl halide Alkene Hydrogen halide

$$H-C-C-X + NaOCH2CH3 \longrightarrow C=C + CH3CH2OH + NaX$$

3. Elimination of vicinal dihalides

$$H_3C$$
 $-C$ $-C$ $-CH_2$ $-CH_3$ \longrightarrow H_3C $-CH$ $=$ CH $-CH_2$ $-CH_3$ + $ZnCl_2$

4.3 ADDITION REACTIONS

$$A-B + C=C \longrightarrow A-C-C-B$$

Rules for Addition Reactions

Markovnikov's Rule: addition reaction pass through the formation of more stable carbocation as an intermediate.

mechanism

$$H_2C = CH - CH_3 + H_2C - CH - CH_3 + H_2C - CH - CH_3 + H_3C - CH_3 + H_3C_3 + H_3$$

The reaction tends to pass through more stable carbocation.

Carbocation stability: $3^{\circ} > 2^{\circ} > 1^{\circ}$

Anti-Markovnikov's (Radical) addition

Addition of HX on double bond in the presence of peroxides follow anti-Markovnikov's rule

The overall reaction

$$CH_3CH_2CH=CH_2$$
 + HBr $\frac{ROOR}{}$ $CH_3CH_2CH_2 \cdot CH_2$ heat or light

Mechanism

a) Initiation

Step 1: dissociation of a peroxide in to two radicals

$$RO \longrightarrow OR \xrightarrow{light or} RO \longrightarrow + OR$$

Step 2: Hydrogen atom abstraction from hydrogen bromide by an alkoxy radical:

(b) Chain propagation

Step 3: Addition of a bromine atom to the alkene:

$$CH_3CH_2CH=CH_2$$

$$Br: \longrightarrow CH_3CH_2CHCH_2$$

$$Br$$

$$2^{\circ}$$

A secondary alkyl radical is more stable than a primary radical.

Step 4: Abstraction of a hydrogen atom from hydrogen bromide by the free radical formed in step 3:

Michael addition

Michael addition is the nucleophilic addition of a carbanions or another nucleophile to an α , β -unsaturated ketones.

$$\begin{array}{c|c}
 & C & C & \longrightarrow & \begin{bmatrix}
 & C & -\overline{C} & C & \longrightarrow & R & C & -\overline{C} & -\overline{C$$

The best Michael reaction are those that take place when a particular stable enolate ion such as derived from a β -keto ester or other 1,3-dicarbonyl compounds adds to an α , β -unsaturated ketones .

Mechanism

E.g
$$CH_3$$
 $+ H_2C = CHCCH_3$ KOH $CH_2CH_2CCH_3$ CH_3 $CH_2CH_2CCH_3$

Examples of Addition Reactions

1. Hydrogenation

$$(CH_3)_2C$$
= $CHCH_3 + H_2$ \xrightarrow{Pt} $(CH_3)_2CHCH_2CH_3$

2. Addition of Halogens

• anti-stereochemistry-two new groups are added to opposite sides of the original pi bond

The reaction intermediate is not a carbocation but is instead a bromonium ion, R_2Br^+ . Formed by addition of Br^+ to the alkene.

3. Addition of Hydrogen Halide (HX)

The major product is determined by Markovnikov's rule

$$\bigcirc$$
 -CH₃ + HCl \longrightarrow \bigcirc CH₃

4. Addition of water (Hydration)

$$C = C + HOH \xrightarrow{H^+} H - C - C - OH$$
Alkene Water Alcohol

$$H_3C-C=CH_2 + H_2O$$
 $\xrightarrow{H_2SO_4}$
 $H_3C-C-C+CH_3 + H_3C-C-C+CH_2$
 CH_3
 CH_3
 CH_3

The reaction follows Markovnikov's rule.

19

5. Halohydrin formation

$$H_2C=CH_2 + Br_2 \xrightarrow{H_2O} HOCH_2CH_2Br$$

2-Bromoethanol (70%)

Mechanism

Bromonium ion intermediate produced

$$\begin{array}{c}
Br: + \\
H_{3}C \\
H_{3}C
\end{array}$$

$$\begin{array}{c}
Br: + \\
H_{3}C
\end{array}$$

$$\begin{array}{c}
CH_{3} \\
H_{3}C
\end{array}$$

$$\begin{array}{c}
H_{3}C
\end{array}$$

N-bromosuccinimide (NBS) commonly used as a source of Br₂

NBS is a stable, easily handled compound that slowly decomposes in water to yield Br_2 . Br_2 itself can also be used in the reaction, but it is more dangerous and more difficult to handle than NBS