Homework: Normal distributions

1a. The random variable X is normally distributed with a mean of 100. The following diagram shows the normal curve for X.

Let R be the shaded region under the curve, to the right of 107. The area of R is 0.24.

Write down P(X > 107)

[1 mark]

1b. Find P(100 < X < 107).

[3 marks]

 $_{1c. \text{ Find}} P(93 < X < 107)$

[2 marks]

 ${f 2a.}$ A random variable ${f X}$ is distributed normally with a mean of 20 and standard deviation of 4.

On the following diagram, shade the region representing $\mathrm{P}(X\leqslant25)_{.}$

[2 marks]

2b. Write down $P(X \leqslant 25)$, correct to two decimal places.

[2 marks]

 $_{\mathbf{2c.}\ \mathrm{Let}}\mathrm{P}(X\leqslant c)=0.7_{.\ \mathrm{Write\ down\ the\ value\ of\ }c.}$

[2 marks]

3a. The time taken for a student to complete a task is normally distributed with a mean of 20 minutes and a standard deviation of 1.25 minutes.

A student is selected at random. Find the probability that the student completes the task in less than $21.8 \, \text{minutes}.$

3b. The probability that a student takes between k and 21.8 minutes is 0.3. Find the value of k. [5 marks]

4a. The weights, W, of newborn babies in Australia are normally distributed with a mean 3.41 kg and standard deviation 0.57 kg. A newborn baby has a low birth weight if it weighs less than w kg.

Given that 5.3% of newborn babies have a low birth weight, find w.

[3 marks]

4b. A newborn baby has a low birth weight.

Find the probability that the baby weighs at least 2.15 kg.

[3 marks]

5a. The masses of watermelons grown on a farm are normally distributed with a mean of $10\,\mathrm{kg}$.

The watermelons are classified as small, medium or large.

A watermelon is small if its mass is less than $4\,\mathrm{kg}$. Five percent of the watermelons are classified as small.

Find the standard deviation of the masses of the watermelons.

[4 marks]

5b. The following table shows the percentages of small, medium and large watermelons grown on the farm.

small	medium	large		
5%	57%	38%		

A watermelon is large if its mass is greater than w kg.

Find the value of w.

[2 marks]

5c. All the medium and large watermelons are delivered to a grocer.

[3 marks]

The grocer selects a watermelon at random from **this** delivery. Find the probability that it is medium.

6a. The maximum temperature T, in degrees Celsius, in a park on six randomly selected days is shown in the following table. The table also shows the number of visitors, N, to the park on each of those six days.

Maximum temperature (T)	4	5	17	31	29	11
Number of visitors (N)	24	26	36	38	46	28

The relationship between the variables can be modelled by the regression equation N=aT+b.

Find the value of a and of b.

[3 marks]

6b. Write down the value of r.

[1 mark]

6c. Use the regression equation to estimate the number of visitors on a day when the maximum temperature is 15 °C. [3 marks]

7a. The price of a used car depends partly on the distance it has travelled. The following table shows the distance and the price for seven cars on 1 January 2010.

Distance, x km	11 500	7500	13 600	10800	9500	12 200	10400
Price, y dollars	15 000	21 500	12 000	16 000	19 000	14500	17 000

The relationship between x and y can be modelled by the regression equation y = ax + b.

- (i) Find the correlation coefficient.
- (ii) Write down the value of a and of b.

[4 marks]

7b. On 1 January 2010, Lina buys a car which has travelled $11\,000~\mathrm{km}$

Use the regression equation to estimate the price of Lina's car, giving your answer to the nearest 100 dollars. [3 marks]

7c. The price of a car decreases by 5% each year.

Calculate the price of Lina's car after 6 years.

[4 marks]

7d. Lina will sell her car when its price reaches $10\,000_{dollars}.$

Find the year when Lina sells her car.

[4 marks]