Statistics 202: Data Mining

© Jonathan Taylor

Statistics 202: Data Mining

K-means clustering
Based in part on slides from textbook, slides of Susan Holmes

© Jonathan Taylor

December 2, 2012

Statistics 202: Data Mining

© Jonathan Taylor

Outline

- K-means, K-medoids 中心点
- Choosing the number of clusters: Gap test, silhouette plot.
- Mixture modelling, EM algorithm.

Statistics 202: Data Mining

Figure: Simulated data in the plane, clustered into three classes (represented by red, blue and green) by the K-means clustering algorithm. From *ESL*.

Statistics 202: Data Mining

© Jonathan Taylor

Algorithm (Euclidean)

- For each data point, the closest cluster center (in Euclidean distance) is identified;
- Each cluster center is replaced by the coordinatewise average of all data points that are closest to it.
- Steps 1. and 2. are alternated until convergence. Algorithm converges to a local minimum of the within-cluster sum of squares.

Typically one uses multiple runs from random starting guesses, and chooses the solution with lowest within cluster sum of squares.

Statistics 202: Data Mining

© Jonathan Taylor

Non-Euclidean

- We can replace the Euclidean distance squared with some other dissimilarity measure d, this changes the assignment rule to minimizing d.. is identified;
- 2 Each cluster center is replaced by the point that minimizes the sum of all pairwise d's.
- Steps 1. and 2. are alternated until convergence. Algorithm converges to a local minimum of the within-cluster sum of d's.

Statistics 202: Data Mining

Statistics 202: Data Mining

Figure : Decrease in W(C), the within cluster sum of squares.

Statistics 202: Data Mining

Figure : Another example of the iterations of K-means

Statistics 202: Data Mining

The Iris data (*K*-means)

Statistics 202: Data Mining

Statistics 202: Data Mining

© Jonathan Taylor

Issues to consider

- Non-quantitative features, e.g. categorical variables, are typically coded by dummy variables, and then treated as quantitative.
- How many centroids k do we use? As k increases, both training and test error decrease!
- By test error, we mean the within-cluster sum of squares for data held-out when fitting the clusters . . .
- Possible to get empty clusters . . .

Statistics 202: Data Mining

© Jonathan Taylor

Choosing K

- Ideally, the within cluster sum of squares flattens out quickly and we might choose the value of K at this "elbow".
- We might also compare the observed within cluster sum of squares to a *null* model, like uniform on a box containing the data.
- This is the basis of the gap statistic.

Statistics 202: Data Mining

Figure : Blue curve is the W_K for uniform, green curve is for data.

Statistics 202: Data Mining

Figure: Largest gap is at 2, and the formal rule also takes into account the variability of estimating the gap.

Statistics 202: Data Mining

© Jonathan Taylor

Algorithm

- Same as K-means, except that centroid is estimated not by the average, but by the observation having minimum pairwise distance with the other cluster members.
- Advantage: centroid is one of the observations— useful, eg when features are 0 or 1. Also, one only needs pairwise distances for K-medoids rather than the raw observations.
- In R, the function pam implements this using Euclidean distance (not distance squared).

Statistics 202: Data Mining

© Jonathan Taylor

Example: Country Dissimilarities

This example comes from a study in which political science students were asked to provide pairwise dissimilarity measures for 12 countries.

	BEL	BRA	CHI	CUB	EGY	FRA	IND	ISR	USA	USS	YUG
BRA	5.58										
CHI	7.00	6.50									
CUB	7.08	7.00	3.83								
EGY	4.83	5.08	8.17	5.83							
FRA	2.17	5.75	6.67	6.92	4.92						
IND	6.42	5.00	5.58	6.00	4.67	6.42					
ISR	3.42	5.50	6.42	6.42	5.00	3.92	6.17				
USA	2.50	4.92	6.25	7.33	4.50	2.25	6.33	2.75			
USS	6.08	6.67	4.25	2.67	6.00	6.17	6.17	6.92	6.17		
YUG	5.25	6.83	4.50	3.75	5.75	5.42	6.08	5.83	6.67	3.67	
ZAI	4.75	3.00	6.08	6.67	5.00	5.58	4.83	6.17	5.67	6.50	6.92

Statistics 202: Data Mining

2 2 2 4 5 2 4 6 4 8

Reordered Dissimilarity Matrix

Figure: Left panel: dissimilarities reordered and blocked according to 3-medoid clustering. Heat map is coded from most similar (dark red) to least similar (bright red). Right panel: two-dimensional multidimensional scaling plot, with 3-medoid clusters indicated by different colors.

17 / 1

The Iris data: K-medoid (PAM)

Statistics 202: Data Mining

Statistics 202: Data Mining

© Jonathan Taylor

Silhouette

• For each case $1 \le i \le n$, and set of cases C and dissimilarity d define

$$\bar{d}(i,C) = \frac{1}{\#C} \sum_{j \in C} d(i,j).$$

• Each case $1 \le i \le n$ is assigned to a cluster $C_{l(i)}$. The silhouette width is defined for each case as

$$\mathsf{silhouette}(i) = \frac{\min_{j \neq l(i)} \bar{d}(i, C_j) - \bar{d}(i, C_{l(i)})}{\max(\bar{d}(i, C_{l(i)}), \min_{j \neq l(i)} \bar{d}(i, C_j))}.$$

- High values of silhouette indicate good clusterings.
- In R this is computable for pam objects.

The Iris data: silhouette plot for K-medoid

Statistics 202: Data Mining

The Iris data: average silhouette width

Statistics 202: Data Mining

Statistics 202: Data Mining

A soft clustering algorithm

- Imagine we actually had labels Y for the cases, then this would be a classification problem.
- For this classification problem, we might consider using a Gaussian discriminant model like LDA or QDA.
- We would then have to estimate (μ_j, Σ_j) within each "cluster." This would be easy . . .
- The next model is based on this realization . . .

Statistics 202: Data Mining

© Jonathan Taylor

EM algorithm

- The abbreviation: E=expectation, M=maximization.
- A special case of an majorization-minimization algorithm and widely used throughout statistics.
- Particularly useful for situations in which there might be some hidden data that would make the problem easy . . .

Statistics 202: Data Mining

© Jonathan Taylor

EM algorithm

• In this mixture model framework, we assume that the data were drawn from the same model as in QDA (or LDA).

$$Y \sim \mathsf{Multinomial}(1,\pi)$$
 (choose a label) $X|Y=\ell \sim \mathit{N}(\mu_\ell,\Sigma_\ell)$

- Only, we have lost our labels and only observe $X_{n \times p}$.
- The goal is still the same, to estimate π , $(\mu_{\ell}, \Sigma_{\ell})_{1 \leq \ell \leq k}$.

Statistics 202: Data Mining

© Jonathan Taylor

EM algorithm

- \bullet The algorithm keeps track of $(\mu_\ell, \Sigma_\ell)_{1 \leq l \leq k}$
- It also trackes "guesses" at Y in the form of $\Gamma_{n \times k}$.
- Alternates between "guessing" \boldsymbol{Y} and estimating $\pi, (\mu_{\ell}, \Sigma_{\ell})_{1 < \ell < k}$.

Statistics 202: Data Mining

© Jonathan Taylor

EM algorithm

Initialize Γ, μ, Σ, π .

Repeat For $1 \le t \le T$,

Estimate Γ These are called the *responsibilities*

$$\widehat{\gamma}_{i\ell}^{(t+1)} = \frac{\widehat{\pi}_{\ell}^{(t)} \phi_{\widehat{\mu}_{\ell}^{(t)}, \widehat{\Sigma}_{\ell}^{(t)}}(X_i)}{\sum_{l=1}^{K} \widehat{\pi}_{\ell}^{(t)} \phi_{\widehat{\mu}_{\ell}^{(t)}, \widehat{\Sigma}_{\ell}^{(t)}}(X_i)}$$

Estimate $\mu_{\ell}, 1 \leq k$

$$\widehat{\mu}_{\ell}^{(t+1)} = \frac{\sum_{i=1}^{n} \widehat{\gamma}_{i\ell}^{(t+1)} X_i}{\sum_{i=1}^{n} \widehat{\gamma}_{i\ell}^{(t+1)}}$$

This is just weighted average with weights $\widehat{\gamma}_{\cdot \; \ell}^{(t+1)}$.

Statistics 202: Data Mining

© Jonathan Taylor

EM algorithm

Estimate Σ_{ℓ} , $1 \leq k$

$$\widehat{\Sigma}_{\ell}^{(t+1)} = \frac{\sum_{i=1}^{n} \widehat{\gamma}_{i\ell}^{(t+1)} (X_i - \widehat{\mu}_{\ell}^{(t+1)}) (X_i - \widehat{\mu}_{\ell}^{(t+1)})^T}{\sum_{i=1}^{n} \widehat{\gamma}_{i\ell}^{(t+1)}}$$

This is just a weighted estimate of the covariance matrix with weights $\widehat{\gamma}_{I}^{(t+1)}$.

Estimate π_{ℓ}

$$\widehat{\pi}_{\ell}^{(t+1)} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\gamma}_{i\ell}^{(t+1)}$$

Statistics 202: Data Mining

© Jonathan Taylor

EM algorithm

- The quantities Γ are not really parameters, they are "estimates" of the random labels \boldsymbol{Y} which were unobserved.
- If we had observed Y then the rows of Γ would be all zero except one entry, which would be 1.
- In this case, estimation of $\pi_{\ell}, \mu_{\ell}, \Sigma_{\ell}$ is just as it would have been in QDA . . .
- ullet The EM simply replaces the unobserved $oldsymbol{Y}$ with a guess

. . .

The Iris data: Gaussian mixture modelling

Statistics 202: Data Mining

The Iris data (*K*-means)

Statistics 202: Data Mining

The Iris data: silhouette plot for K-medoid

Statistics 202: Data Mining

Statistics 202: Data Mining