КЗ-свойства языков. МГА, атрибутные грамматики и типизация

N.

Теория формальных языков $2023 \ z$.

Кодирование LZ

- Встретилось слово из одной буквы ⇒ добавляем его в словарь и создаём на него ссылку.
- Встретилось слово, максимально длинное и такое, что его префикс без последней буквы уже в словаре ⇒ добавляем его вместе с последней буквой в словарь и создаём на него ссылку.

В отличие от кодов Хаффмана, не разбираются с помощью конечных автоматов. Необходимо понятие обратных ссылок (backreferences) — актуальное в современных REGEX библиотеках. Языки, распознаваемые регулярными выражениями с backref-ами, обычно называют REGEX-языками (не «регулярными», т.к. они представляют собой более широкий класс).

Общие соглашения про языки с обратными ссылками

- Если ссылка инициализируется внутри итерации, то активной считается только последняя её инициализация. Например, выражение $((a^*)b)^+ \setminus 2$ описывает язык $\{(a^*b)^*a^nba^nb\}$, а не $\{a^nb(a^*b)^*a^nb\}$ и не $\{a^nba^nb...a^nb\}$.
 - Принято в стандарте PCRE2 и всех формализациях.
- Неинициализированные ссылки либо считаются читающими пустое слово (ε -семантика), либо недопустимы (\varnothing -семантика). Например, в ε -семантике ($(\mathfrak{a}^*) \mid b$)\2 распознаёт язык { \mathfrak{a}^{2n} , b}; в \varnothing -семантике { \mathfrak{a}^{2n} }.
 - В стандарте PCRE2 Ø-семантика.
 - В различных формализациях семантика неинициализированных ссылок варьирует.

Первая формализация языков с обратными ссылками

Формализация Кампеану–Саломаа–Ю (CSY): только безымянные группы захвата в память, Ø-семантика.

- Каждая скобочная группа (τ) считается группой захвата в память и автоматически нумеруется по очерёдности вхождений открывающих скобок.
- Ссылка \k на скобочную группу с номером k может появиться, только если скобочная группа уже закрыта (это условие не выполняется в регулярках, принятых стандартом PCRE2).

Например, выражение $((a^*)b^*)\2\1$ описывает язык $\{a^nb^na^{2n}b^n\}$. Выражение $((a^*)b^*|\1)^*\2$ некорректно в CSY: ссылка на первую скобочную группу осуществляется внутри неё самой. По стандарту PCRE2, оно корректно.

Свойства CSY-REGEX

```
Если \mathscr{L} – CSY-язык, тогда \exists N \in \mathbb{N} \forall \omega \in \mathscr{L}(|\omega| > N \Rightarrow \omega = x_0 y x_1 y \dots y x_m \& |x_0 y| < N \& |y| > 0 & <math>\forall i \in \mathbb{N} (i > 0 \Rightarrow x_0 y^i x_1 y^i \dots y^i x_m \in \mathscr{L})).
```

Например, с помощью леммы о накачке для CSY-языков легко доказать, что $a^n b^n$ не описывается CSY-регуляркой.

- Описывают более узкий класс языков, чем PCRE2 выражения с обратными ссылками.
- Но задача сопоставления слова с CSY-REGEX уже NP-сложна (теорема Англуин).

Ref-words (Shmid, 2014)

Специальные символы — $[i, j_i, x_i$. Вхождения x_i и скобки с индексом i не могут встречаться внутри $[i, ...]_i$, однако разные скобочные блоки могут быть перепутаны:

$$[{}_{1}a[{}_{2}b]{}_{1}x_{1}]{}_{2}x_{2}$$

Значение в скобках $[k\ldots]_k$ сохраняется в ячейку памяти с номером k и затем может быть прочитано из входной строки при чтении в backref-REGEX переменной x_k . К примеру, слово, описанное выше, определяет значение $x_1=ab$, после чего можно вычислить, что $x_2=bab$, и вся строка, которая сопоставляется с таким выражением, есть ababbab.

Memory Finite Automata (MFA)

k-MFA $\mathscr A$ имеет функцию перехода из $Q \times \Sigma \cup \{\epsilon\} \cup \{1,\ldots,k\}$ в подмножество $Q \times \langle o,c,\diamond \rangle^k$, где флаги управления памятью o,c,\diamond означают:

- c «закрыть» ячейку памяти;
- о «открыть» ячейку памяти;
- — не менять состояние ячейки.

Из состояния $\langle q, \nu \omega, \langle u_i, r_i \rangle \rangle$ в состояние $\langle q', \omega, \langle u_i', r_i' \rangle \rangle$ ($u_i \in \Sigma^*, r_i \in \{o, c\}$) переходит по правилу $\delta(q, b) \rightarrow \rangle q', s_1, \ldots, s_k \rangle$ следующим образом:

- если $b \in \Sigma \cup \{\epsilon\}$, то $\nu = b$;
- ullet если $b\in\{1,\ldots,k\}$ и $r_k'=c$, то $u=u_b;$
- $\mathbf{r}_{i}' = \mathbf{r}_{i}$, если $\mathbf{s}_{i} = \diamond$, и \mathbf{s}_{i} в противном случае;
- $\mathfrak{u}_i' = \mathfrak{u}_i \nu$, если $\mathfrak{r}_i' = \mathfrak{r}_i = \mathfrak{o}$; $\mathfrak{u}_i' = \nu$, если $\mathfrak{r}_i' = \mathfrak{o}$ и $\mathfrak{r}_i = \mathfrak{c}$; и не меняется, если $\mathfrak{r}_i' = \mathfrak{c}$.

Memory Finite Automata (MFA)

k-MFA $\mathscr A$ имеет функцию перехода из $Q \times \Sigma \cup \{\epsilon\} \cup \{1,\ldots,k\}$ в подмножество $Q \times \langle o,c,\diamond \rangle^k$, где флаги управления памятью o,c,\diamond означают:

- c «закрыть» ячейку памяти;
- о «открыть» ячейку памяти;
- — не менять состояние ячейки.

Начальная конфигурация памяти: $\langle\langle \epsilon, c \rangle, \dots, \langle \epsilon, c \rangle\rangle$. То есть все ячейки закрыты для записи и содержат пустое слово. Заметим, что запись в ячейку слова, считанного с ленты по переходу, осуществляется не исходя из флагов памяти в предыдущем состоянии, а исходя из флагов памяти в состоянии, куда осуществляется переход. То есть мы сначала открываем (или закрываем) память, а уже потом читаем с ленты и пишем в открытые ячейки.

Васкгеf-REGEX для этого языка: $([_1x_2]_1[_2x_1a]_2)^+$. Здесь важно, что неинициализированная переменная (первое вхождение x_2) получает значение ε .

Посмотрим на 2-MFA, построенный по этому выражению:

Поскольку открытие и закрытие памяти происходит перед чтением с ленты (и, соответственно, записью в память), то на первом переходе в открытую память первой ячейки записывается пустое слово и оно же читается с ленты (т.к. начальная конфигурация второй ячейки памяти есть ε).

MFA для $\{a^{n^2}\}$

Поскольку открытие и закрытие памяти происходит перед чтением с ленты (и, соответственно, записью в память), то на первом переходе в открытую память первой ячейки записывается пустое слово и оно же читается с ленты (т.к. начальная конфигурация второй ячейки памяти есть є). Затем память первой ячейки закрывается, и во вторую записывается содержимое первой ячейки (заодно оно же считывается с ленты). Затем считывается ещё одна буква а и также записывается во вторую ячейку.

Как итог, после достижения состояния q_3 в первый раз память выглядит так: $\langle \langle \varepsilon, c \rangle, \langle \alpha, o \rangle \rangle$

MFA для $\{a^{n^2}\}$

Как итог, после достижения состояния q_3 в первый раз память выглядит так: $\langle \langle \varepsilon, \ c \rangle, \langle \alpha, \ o \rangle \rangle$

После следующей итерации (на которой мы считаем с ленты слово a^3 дополнительно к ранее прочитанному a) получим конфигурацию памяти $\langle\langle \alpha, \ c \rangle, \langle \alpha \alpha, \ o \rangle\rangle$. И вообще, каждый раз при k-ом посещении q_3 получим состояние памяти вида $\langle\langle \alpha^{k-1}, \ c \rangle, \langle \alpha^k, \ o \rangle\rangle$.

DMFA и Jumping Lemma

k-MFA детерминированный, если $\forall q\in Q, b\in \Sigma(|\bigcup_{i=1}^k\delta(q,i)|+|\delta(q,b)|\leqslant 1).$ DMFL — такой язык, для которого существует DMFA.

- $[_{x}(a|b)^{*}]_{x}$ сх определяет DMFL;
- $([_xy]_x[_yxa]_y)^*$ определяет DMFL;
- $1^+[_x0^*]_x(1^+x)^*1^+$ тоже DMFL (эквивалентен регулярке $1(1^+|0[_x0^*]_x1^+(0x1^+)^*)$).
- Замкнуты относительно пересечения с регулярным языком, а также относительно дополнения, но только если разрешается вводить неудачные переходы по обратным ссылкам;
- Не замкнуты относительно объединения (и даже объединения с регулярными языками), и относительно пересечения друг с другом.

DMFA и Jumping Lemma

k-MFA детерминированный, если $\forall q\in Q, b\in \Sigma(|\bigcup_{i=1}^k\delta(q,i)|+|\delta(q,b)|\leqslant 1).$ DMFL — такой язык, для которого существует DMFA.

Язык $\mathscr{L} \in$ REGEX детерминированный, если либо он является регулярным, либо \forall m \exists n, p_n , v_n такие, что $n \geqslant m$, p_n , $v_n \in \Sigma^+$, причём:

- $|v_n| = n$;
- ν_n подслово p_n ;
- $p_n \nu_n$ префикс какого-то слова из \mathscr{L} ;
- $\forall \mathfrak{u} \in \Sigma^+(\mathfrak{p}_n \mathfrak{u} \in \mathscr{L} \Rightarrow \mathfrak{v}_n$ префикс \mathfrak{u}).

Пример применения JL

Язык $\mathscr{L} = \{a^n w b^n h(w) \mid w \in a, b^* \& h(a) = aa \& h(b) = ab\}$ не является DMFL.

- Пересечём \mathscr{L} с $\mathfrak{a}^*\mathfrak{b}^+$. Получим язык $\mathscr{L}' = \{\mathfrak{a}^n\mathfrak{b}^n\}$.
- Предположим, что выполнены условия JL. Рассмотрим возможные значения v_n .
 - Первое v_n , для которого выполняется требуемое условие, обязано иметь вид a^n . Действительно, в противном случае при чтении префикса, состоящего из букв a, автомат мог бы принимать лишь конечное число состояний, однако классов эквивалентности по Майхиллу-Нероуду относительно языка $a^n b^n$ в языке a^* бесконечно много.
 - $v_n = a^n$. Тогда $p_n = a^{n+k}$. Слово $a^{n+k}b^{n+k} \in \mathcal{L}'$, но его суффикс b^{n+k} не начинается с v_n . Что доказывает непринадлежность \mathcal{L}' (а значит, и \mathcal{L}) к DMFL.

Расширенная JL

Условия стандартной JL при применении её для опровержения DMFL-свойства очень жёсткие: они требуют, чтобы для всех слов ν_n длины больше m и для всех возможных префиксов p_n , их содержащих, находилось опровергающее продолжение слова u, не начинающееся с ν_n . Можно ослабить их, если учесть теорему Майхилла—Нероуда и тот факт, что любая нерегулярность в DMFA языках связана с чтением из памяти.

• Если число классов эквивалентности вида $q_1 = a_1$, $q_2 = a_1 a_2$, $q_n = a_1 \dots a_n$ в языке $\mathscr L$ бесконечно, то достаточно рассмотреть случай, когда v_n — подслово q_i . Поскольку без использования памяти, обращающейся к фрагментам p_i , язык $\mathscr L$ описать невозможно.

•

Расширенная JL

- Если число классов эквивалентности вида $q_1 = a_1$, $q_2 = a_1 a_2$, $q_n = a_1 \dots a_n$ в языке $\mathscr L$ бесконечно, то достаточно рассмотреть случай, когда v_n подслово q_i . Поскольку без использования памяти, обращающейся к фрагментам p_i , язык $\mathscr L$ описать невозможно.
- При рассмотрении префиксов p_n , после которых обязано идти чтение v_n , можно учесть, что если в p_n ни разу не читалась память, то p_n обязаны описываться конечным автоматом. Если удалось найти язык префиксов \mathcal{L}_p , не являющийся регулярным, и такой, что $\exists R_1, R_2(\mathcal{L} \subseteq \mathcal{L}(R_1R_2) \& \mathcal{L}_p \subseteq R_1 \& \text{ Deterministic}(\text{Glushkov}(R_1R_2)))$ (R_1 , R_2 классические регулярки) (то есть такой, что переход от распознавания \mathcal{L}_p к распознаванию остальной части слова детерминирован), то можно рассуждать об отсутствии DMFA-свойства уже в терминах языка \mathcal{L}_p .

Расширенная JL

- Если число классов эквивалентности вида $q_1 = a_1$, $q_2 = a_1 a_2$, $q_n = a_1 \dots a_n$ в языке $\mathscr L$ бесконечно, то достаточно рассмотреть случай, когда v_n подслово q_i . Поскольку без использования памяти, обращающейся к фрагментам p_i , язык $\mathscr L$ описать невозможно.
- Если удалось найти язык префиксов \mathcal{L}_p , не являющийся регулярным, и такой, что $\exists R_1, R_2(\mathcal{L} \subseteq \mathcal{L}(R_1R_2) \& \mathcal{L}_p \subseteq R_1 \& Deterministic(Glushkov(R_1R_2))) (R_1, R_2 классические регулярки), то можно рассуждать об отсутствии DMFA-свойства уже в терминах языка <math>\mathcal{L}_p$.
- При комбинированном использовании двух допущений можно рассматривать только такие q_i , которые определяют бесконечное число классов эквивалентности именно в \mathcal{L}_p , а не в исходном языке \mathcal{L} .

Иллюстрация расширенной JL

- Рассмотрим язык $\{a^{k+m}ba^k\}$. На префиксе a^{k+m} обязательно должна быть запись в память, поэтому можно положить $v_n = a^n$. После чего рассмотреть две ситуации возможного чтения: $p_n = a^{t+n}$ и $p_n = a^{t+n}ba^r$. Для первой контрпримером будет продолжение u = b, для второй $u = \varepsilon$.
- Рассмотрим язык $\{a^kb^ka^{2k}\}$. На префиксах a^kb^k обязательно должно быть чтение из памяти. При этом число классов эквивалентности вида a^i бесконечно относительно языка префиксов $\{a^kb^k\}$, поэтому можно положить, что $v_n = a^n$. Тогда $p_n = a^{t+n}$, $u = b^{t+n}a^{2\cdot(t+n)}$.

Иллюстрация расширенной JL

• Некорректное применение смешанной техники: например, рассмотрим язык $\{a^nb^mcb^ma^n\}$. На префиксе $a^nb^mcb^m$ обязано произойти чтение из памяти, поскольку он определяет нерегулярный язык. При этом число классов эквивалентности вида a^i бесконечно. Возьмём $v_n = a^n$, тогда $p_n = a^{t+n}$, $u = ca^{t+n}$, и язык — не DMFA (что, разумеется, неверно). Здесь ошибка — в том, что относительно языка префиксов $a^nb^mcb^m$ число классов эквивалентности a^i как раз конечно (он один — число букв а вообще никак не связано с остальной частью префикса). Поэтому они не обязаны читаться из памяти именно внутри этих префиксов.

Иллюстрация расширенной JL

• Ещё одно некорректное применение смешанной техники: возьмём $\{a^nba^n\}$. Язык префиксов $\mathcal{L}_p = \{a^{n+m}ba^n\}$ нерегулярен, поэтому будем анализировать его на DMFA свойство. То, что он недетерминирован, мы знаем. Значит, исходный язык тоже не детерминирован. Здесь ошибка — в том, что от префиксов \mathcal{L}_p нет детерминированных переходов к суффиксам, поэтому такой язык рассматривать в качестве сужения исходного языка нельзя.

Отделение семантики и синтаксиса

- Все предыдущие примеры КЗ-языков выражали семантические свойства (повторения, синхронизации по аргументам, и т.д.) посредством синтаксических конструкций. В большинстве случаев это даёт выигрыш в скорости их проверки за счёт локальности алгоритмов (см. МFA или автоматы Треллиса). Но ограничивает в выразительных свойствах.
- Универсальный способ проверки семантических свойств обход того же самого синтаксического дерева с дополнительными действиями.

Атрибутные грамматики

Пусть $A_0 \to A_1 \dots A_n$ — правило КС-грамматики. Припишем к нему конечное число атрибутных свойств.

- Синтетические атрибуты вычисляются для A_0 по атрибутам A_1, \ldots, A_n ;
- Наследуемые атрибуты вычисляются для A_i по атрибутам $A_0, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n$. Обычно по атрибутам A_0 и A_1, \ldots, A_{i-1} (левосторонние атрибутные грамматики).

Повторные нетерминалы при присвоении атрибутов индексируются по вхождениям в правило слева направо. Т.е., например, если дано правило $N \to N-N$, тогда уравнение на атрибуты $N_0.attr=N_1.attr-N_2.attr$ будет означать, что атрибут родителя есть атрибут левого потомка минус атрибут правого потомка, помеченных нетерминалами N. Неповторные нетерминалы в уравнениях на атрибуты обычно не индексируются.

Пример А Γ для $\{a^nb^nc^n\}$

Атрибут нетерминала iter семантически означает число итераций. Чтобы не смешивать синтетические и наследуемые атрибуты, введём также атрибут inh_iter, означающий то же самое, но наследуемый сверху вниз по дереву разбора, а не снизу вверх. Здесь == — предикат; := — операция присваивания.

 $S \rightarrow AT$; T.iter == A.iter

 $A \rightarrow \alpha A$; $A_0.iter := A_1.iter + 1$

Синтетический вариант: $A \to \epsilon$; A.iter := 0

 $T \rightarrow bTc \quad ; \quad T_0.iter := T_1.iter + 1$

 $T \rightarrow \epsilon \qquad ; \quad T.iter := 0$

Вариант с наследованием:

 $S \to AT \hspace{5mm} ; \hspace{5mm} B.inh_iter := A.iter$

 $A \rightarrow \alpha A \quad \; ; \quad A_0.iter := A_1.iter + 1$

 $A \to \epsilon \qquad ; \quad A.iter := 0$

 $T \rightarrow bTc \quad ; \quad T_1.inh_iter := T_0.inh_iter - 1$

 $T \rightarrow \epsilon \hspace{1cm} ; \hspace{1cm} T.inh_iter == 0$

Определение типа

Понятие типа ограничивает возможные операции над его сущностями \Rightarrow исключает парадоксы (неожиданное/неприемлемое поведение программ).

Система типов — гибко управляемый синтаксический метод доказательства отсутствия в программе определенных видов поведения при помощи классификации выражений языка по разновидностям вычисляемых ими значений.

Б.Пирс

Определение типа

Система типов — гибко управляемый синтаксический метод доказательства отсутствия в программе определенных видов поведения при помощи классификации выражений языка по разновидностям вычисляемых ими значений.

Б.Пирс

Описание утверждения о типах — *логическая спецификация*.

Записывается: $\Gamma \vdash M$: σ , где Γ — это перечисление x_i : τ_i — ака контекст.

Читается: «в контексте Γ терм M имеет тип σ ». Понимается: «если придать переменным x_i типы τ_i , тогда можно установить, что тип выражения M есть σ ».

Таблица связывания

КЗ-свойства имён вынуждают использовать таблицы связывания (имён и функций) с двумя базовыми операциями:

- bind :: ([таблица], [имя], [тип]) → [таблица];
- lookup :: ([таблица], [имя]) → [тип].

- Сорта (простые типы): Bool, Int.
- Операторы: =, +, условный, вызов функции.

```
• Синтаксис:
```

```
[Prog] ::= [Fs] [Fs] ::= [F] | [Fs]

[F] ::= [TypeId] ([TIds]) = [Exp]

[Exps] ::= [Exp] | [Exp], [Exps]

[TypeId] ::= (Bool | Int) id [TIds] ::= [TypeId], [TIds] | [TypeId]

[Exp] ::= num | id | [Exp] + [Exp] | [Exp] = [Exp] | id ([Exps])

| if [Exp] then [Exp] else [Exp] | let id = [Exp] in [Exp]
```



```
[Prog] ::= [Fs] [Fs] ::= [F] | [Fs] | [Fs] | [Fs] | [Fs] | [Fs] | [Fs] | [Exp] | [Tlds] | [
```



```
[Prog] ::= [Fs] [Fs] ::= [F] | [Fs] | [Fs] | [Fs] ::= [TypeId] ([TIds]) = [Exp] | [Exps] ::= [Exp] | [Exp], [Exps] | [TypeId] ::= [TypeId], [TIds] | [TypeId] | [Exp] ::= num | id | [Exp] + [Exp] | [Exp] = [Exp] | id ([Exps]) | if [Exp] then [Exp] else [Exp] | let id = [Exp] in [Exp]
```

tchExp(Exp, vtable, ftable) = case Exp of

num	int
id	t == undef = err; int
	l otherwise = t
	where $t = lookup(vtable, id)$
Exp ₁ +Exp ₂	$ t_1 \neq \text{int } t_2 \neq \text{int = err; int}$
	otherwise = int
	where t_1 =tchExp(Exp ₁ ,vtable,ftable),
	t_2 =tchExp(Exp ₂ ,vtable,ftable)

tchExp(Exp, vtable, ftable) = case Exp of

num	int
id	t == undef = err; int
	l otherwise = t
	where $t = lookup(vtable, id)$
Exp ₁ +Exp ₂	$ t_1 \neq \text{int } t_2 \neq \text{int = err; int}$
	otherwise = int
	where t_1 =tchExp(Exp ₁ ,vtable,ftable),
	t_2 =tchExp(Exp ₂ ,vtable,ftable)
Exp ₁ =Exp ₂	$ t_1 == t_2 = bool$
	l otherwise = err; bool
	where t_1 =tchExp(Exp ₁ ,vtable,ftable),
	t_2 =tchExp(Exp ₂ ,vtable,ftable)

Правила типизации в форме вывода

$$\frac{\Gamma \vdash \mathbf{t}_1 : \operatorname{int}, \Gamma \vdash \mathbf{t}_2 : \operatorname{int}}{\Gamma \vdash \mathbf{t}_1 + \mathbf{t}_2 : \operatorname{int}}$$

$$\frac{\Gamma \vdash \mathbf{t}_1 : \sigma, \Gamma \vdash \mathbf{t}_2 : \sigma}{\Gamma \vdash \mathbf{t}_1 : \sigma, \Gamma \vdash \mathbf{t}_2 : \sigma}$$

$$\frac{\Gamma \vdash \mathbf{t}_1 : \operatorname{bool}, \Gamma \vdash \mathbf{t}_2 : \sigma}{\Gamma \vdash \operatorname{if} \mathbf{t}_1 : \operatorname{bool}}$$

$$\frac{\Gamma \vdash \mathbf{t}_1 : \operatorname{bool}, \Gamma \vdash \mathbf{t}_2 : \sigma, \Gamma \vdash \mathbf{t}_3 : \sigma}{\Gamma \vdash \operatorname{if} \mathbf{t}_1 : \operatorname{then} \mathbf{t}_2 : \operatorname{else} \mathbf{t}_3 : \sigma}$$

$$\frac{\Gamma, \mathbf{f_id} : (\tau_1, \dots, \tau_n) \to \tau_0 \vdash \mathbf{t}_i : \tau_i}{\Gamma, \mathbf{f_id} : (\tau_1, \dots, \tau_n) \to \tau_0 \vdash \mathbf{f_id}(\mathbf{t}_1, \dots, \mathbf{t}_n) : \tau_0}$$

$$\frac{\Gamma, \operatorname{id} : \tau \vdash \mathbf{s} : \sigma, \Gamma \vdash \mathbf{t} : \tau}{\Gamma \vdash M, \operatorname{let} \operatorname{id} = \mathbf{t} : \sigma}$$

Пробное задание на РК-2

 Язык, описывающийся следующей атрибутной грамматикой:

```
S \rightarrow AT ; T.rng > A.iter
```

$$A \rightarrow \alpha A$$
 ; $A_0.iter := A_1.iter + 1$

$$A \rightarrow \epsilon$$
 ; $A.iter := 0$

$$T \rightarrow TcT \quad ; \quad T_0.rng := max(T_1.rng, T_2.rng)$$

$$T \rightarrow K \hspace{1cm} ; \hspace{1cm} T.rng := K.rng$$

$$K \rightarrow \alpha K \quad ; \quad K_0.rng := K_1.rng + 1$$

$$K \rightarrow bK$$
 ; $K_0.rng := 0$
 $K \rightarrow \varepsilon$; $K.rng := 0$

9 Язык $\{wcvw_{pref}zw_{suff} \mid w, z \in \{a, b\}^* \& v \in \{a, b, c\}^*\}$. Здесь w_{pref} — непустой префикс слова w; w_{suff} — непустой суффикс слова w.

Продолжение (третье задание)

Язык, описывающийся следующей атрибутной грамматикой:

```
S \rightarrow SbS; S_0.iter := 2 \cdot S_1.iter, S_1.iter == S_2.iter
```

 $S \rightarrow \alpha \qquad ; \quad S.iter := 1$

Классы задач

- Атрибутные грамматики: переводим в свёрточную форму или (мысленно) в неформальное описание.
 Далее действуем так же, как в других случаях.
- Языки SRS: определяем фрагменты разбиения на подслова, пытаемся выявить структуру подслов, при подозрении на выход из КС-языков или DCFL пересекаем с регулярными языками.
- Языки с соотношением между частями слов: стараемся представить в более свёрточной форме через степенные соотношения над регулярками. Если не получается, то возможна не КС-структура (повторяемость подслов).

Языки SRS

- bb \to aa, ab \to aba, носитель b*. Регулярен: правило ab \to aba влечёт правило ab \to aba⁺. Далее разбиваем на подходящие подслова и итерируем их чередование.
- $oldsymbol{a}$ ab o baa, носитель ab^+ . Не КС: пересечём $c\ b^+a^+$.
 - Кратчайшее слово: baa. Поскольку все b только перемещаются влево, можно предположить, что каждое очередное слово получается максимальным передвижением b c самой правой позиции на самую левую.
 - Рассмотрим цепочку превращений baab. Получаем baab o babaa o bbaaaa.
 - Аналогично из слова ba^nb получается слово $bba^{2\cdot n}$.
 - Полученный язык $\{b^n a^{2^n}\}$ известен, как не КС.

Языки SRS

- $oldsymbol{a}$ ab o baa, носитель ab^+ . Не КС: пересечём с b^+a^+ .
 - Кратчайшее слово: baa. Поскольку все b только перемещаются влево, можно предположить, что каждое очередное слово получается максимальным передвижением b с самой правой позиции на самую левую.
 - Рассмотрим цепочку превращений baab. Получаем baab o babaa o bbaaaa.
 - Аналогично из слова ba^nb получается слово $bba^{2\cdot n}$.
 - Полученный язык $\{b^n a^{2^n}\}$ известен, как не КС. Также не DFML: достаточно взять $\nu_n = b^n$, $p_n = b^{n+k}$. $b^{n+k}b^n a^{2^{2n+k}}$ лежит в языке, но не всякое слово с префиксом p_n , лежащее в этом языке, продолжается на ν_n (см. слово $b^{n+k}a^{2^{n+k}}$).

 \mathbb{A}

Языки соотношений

- Язык $\{w_1w_2 \mid w_i = z_{i,1}az_{i,2} \& |z_{i,1}| = |z_{i,2}|\}.$
- Частный случай: bⁿab^{n+m}ab^m. Похож на палиндромный, однако разница в том, что гораздо больше возможностей для выбора "середины палиндрома". Нужно их ограничить.
- Возьмём слова $b^{p+1}ab^pba$ и $b^{p+1}ab^pbab^{2p+3}a$. Из-за невозможности взять во втором слове первую по счёту букву а за середину подслова, невозможно накачивать только префикс $b^{p+1}ab^p$.
- 2-исправляемый: вставляем букву с перед каждой центральной буквой а и получаем DCFL.

Пробное-2

- Язык SRS с правилами $a \to bab$, $ba \to ab$ над базисным словом aa (единственным). Подсказка: сначала решить задачу над базисным словом a.
- Э Язык $\{w_1 u u^R w_2 \mid |u| > 1 \& w_i \neq z_1 u z_2\}$. Т.е. подслово и не содержится нигде больше в слове, при любом выборе и таком, что $u u^R$ входит в слово языка и притом |u| > 1. Подсказка: сначала рассмотреть |u| > 0.

 $[Name] \rightarrow a[Name]$

Продолжение (третье задание)

Язык, описывающийся следующей атрибутной грамматикой (lookup — поиск по таблице значений Table, т.е. возвращает по [Name].id такое [Val].val, что

 $([Name].id = [Val].val) \in Table)$:

 $[S] \rightarrow \{[Decl]\}[Exp]$; [Exp].vars ⊂ [Decl].vars,

 $[Exp].val == 1, [Exp].inh_table := [Decl].table$ $[Decl] \rightarrow$; [Name].id ∉ [Decl]₁.vars,

([Name] = [Val])[Decl] $[Decl]_0.table := [Decl]_1.table \cup \{[Name].id = [Val].val\}$ $[Decl]_0.vars := [Decl]_1.vars \cup \{[Name].id\}$

 $[Decl] \rightarrow \epsilon$ $[Decl].vars := \emptyset, [Decl].table := \emptyset$

 $[Exp] \rightarrow [Name]$ $[Exp].val := lookup([Name].id, [Exp].inh_table)$

 $[Exp] \rightarrow [Exp] \& [Exp]$ $[\mathsf{Exp}]_0.\mathsf{val} := \min([\mathsf{Exp}]_1.\mathsf{val}, [\mathsf{Exp}]_2.\mathsf{val}),$ $[Exp]_1.inh_table := [Exp]_0.inh_table,$

> $[Exp]_2.inh_table := [Exp]_0.inh_table$ $[Name]_0.id := a ++ [Name]_1.id$

 $[Name] \rightarrow \varepsilon$ [Name].id := ε $[Val] \rightarrow 0$ [Val].val := 0

 $[Val] \rightarrow 1$ [Val].val := 1