EduElevators with Standard Bank

Advertise with Us!

Your Brand, Front and Center –

Right Here on Page 1!

.Contact us today to secure

your spotlight!"

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

FEBRUARY/MARCH/FEBRUARIE/MAART 2018

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 22 pages./ Hierdie nasienriglyne bestaan uit 20 bladsye.

DBE/Feb.-Mar./Feb.-Mrt. 2018

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking guidelines. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, merk slegs die EERSTE poging.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, merk die doodgetrekte poging.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.

Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

	GEOMETRY					
S	A mark for a correct statement (A statement mark is independent of a reason.)					
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede.)					
D.	A mark for a correct reason (A reason mark may only be awarded if the statement is correct.)					
R	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is.)					
C/D	Award a mark if the statement AND reason are both correct.					
S/R	Ken 'n punt toe as beide die bewering EN rede korrek is.					

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/Feb.-Mar./Feb.-Mrt. 2018

Days/Dae	1	2	3	4	5	6	7	8	9	10
Units of blood/ Eenhede bloed	45	59	65	73	79	82	91	99	101	106

1.1.1	800		✓ 800 (addition of units)
1.1.1	$\overline{x} = \frac{800}{10}$ $= 80$	Answer only: full marks	✓ answer (CA if ÷ 10) (2)
1.1.2	$\sigma = 18,83$	No penalty for rounding	✓✓ answer (A) (2)
1.1.3	(61,17;98,83)		✓ mean – 1 SD
		nd 10 lie outside 1 standard deviation from the	✓ mean + 1 SD
	mean ∴5 days	Correct answer only: full marks provided that 1.1.1. & 1.1.2 both correct	✓ answer (3)
1.2.1	Skewed to the let	ft or negatively skewed/	✓ answer
	Skeef na links of	negatief skeef	
			(1)
1.2.2	A = 65		✓ answer
	$\mathbf{B} = 99$	Answers without labelling: 1/2	✓ answer
			(2)
1.3	New total = $95 \times$	10 = 950	
	∴ Units not coun	ted = 950 - 800 = 150	✓ answer (CA from 1.1.1)
			(1)
			[11]

NSC/NSS – Marking Guidelines/Nasienriglyne

Number of hours Aantal uur	30	50	80	100	120	150	190	220	260
Value of sales (in thousands of rands) Waarde van verkope (in duisend rand)	270	275	376	100	420	602	684	800	820

2.1	Outlier/Uitskieter: (100; 100)	accept: 100 as answer	✓ answer (1)
2.2	a = 94,50273 b = 2,913729	Integral values: max 2/3	✓ value of a ✓ value of b
	$\hat{y} = 94,50 + 2,91x$	Swopped a and b: 2/3	✓ equation (3)
2.3	$\hat{y} = 2.91(240) + 94.50$ (CA fr = 792.90	rom 2.1)	✓ substitution
	Value = R793 000		✓ answer in thousands
	OR/OF		of Rands (2)
	$\hat{y} = 793,7978142$ (calculator) Value = R794 000	Penalise 1 mark if answer not in thousands of Rands	✓✓ answer in thousands of Rands
2.4	b = 2,913729 $\therefore R2 914 \text{ OR/OF} R2 910 \text{ (call)}$	culator) Answer only: full marks	✓ value of b ✓ answer (2) [8]

3.1	x=3	✓ answer
3.2	$m_{\rm QP} = \tan 71,57^{\circ}$ = 3 Answer only: full marks	$ \begin{array}{c c} & (1) \\ & \checkmark m_{QP} = \tan 71,57^{\circ} \\ & \checkmark \text{ answer} \end{array} $
3.3	$y = mx + c$ $y - y_1 = m(x - x_1)$ -2 = 3(-7) + c or $y + 2 = 3(x + 7)y = 3x + 19$	(m CA from 3.2 if > 0) \checkmark substitution of m & Q \checkmark equation (2)
3.4	R(3; 0) QR = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(-7 - 3)^2 + (-2 - 0)^2}$ = $\sqrt{104}$ or $2\sqrt{26}$	(wrong R: CA if $x > 0$) substitution answer (in surd form)

0.7		
3.5	$\tan(90^{\circ} - \theta) = m_{QR}$	(wrong R: CA if $x > 0$) \checkmark gradient of QR/RN/QN
	$= \frac{0 - (-2)}{3 - (-7)}$ Answer only: full	· gradient of QN/NN/QN
	`	✓ substitution of Q & R
	$=\frac{1}{5} \qquad \tan \theta = \frac{1}{5} : 1/3$	d anamar
	5	✓ answer (3)
3.6	DN 1 2 /26 /26	
	$RN = \frac{1}{2}.2\sqrt{26} = \sqrt{26}$	✓ RN
	SR = 6	✓ SR
	$ \theta$	
	$\sqrt{26}$	(diamon (5 % /26)
		\checkmark diagram (5 & $\sqrt{26}$)
	<u> </u>	
	5	
	Area $\Delta RSN = \frac{1}{2}SR \cdot RN \cdot \sin \theta$	✓ use of correct area rule
	\mathcal{L}	· use of coffeet area fulc
	$=\frac{1}{2}\times 6\times \sqrt{26}\times \frac{5}{\sqrt{26}}$	✓ substitution of $\sin \theta$
	$ \begin{array}{ll} 2 & \sqrt{26} \\ = 15 \text{ square units} \end{array} $	✓ answer
S	= 13 square units	(6)
culator: max 4 marks	OR/OF	
4	$RN = \frac{1}{2}.2\sqrt{26} = \sqrt{26}$	
nax	SR = 6	✓ RN
	$\beta R = 0$	✓ SR
	$\sqrt{26}$	
	1	
	000 0	✓ diagram
using cal	<u>∕90°− θ</u>	
	1	
	Area $\triangle RSN = \frac{1}{2}SR \cdot RN \cdot \sin \theta$	✓ use of correct area rule
	<u> </u>	
	$=\frac{1}{2}(6)(\frac{1}{2}QP).\sin\theta$	
	$=\frac{3}{2}(\sqrt{104}).\sin\theta$	
	$m{\mathcal{L}}$	
	$=\frac{3}{2}(\sqrt{104})\left(\frac{5}{\sqrt{26}}\right)$	
	(\ 20)	✓ substitution of $\sin \theta$
	= 15 square units	✓ answer
		(6)
	sarvad/Kaniaraa vaarhahau	Places turn over/Rlagi om ass

7 NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/Feb.-Mar./Feb.-Mrt. 2018

OR/OF

SR = 6 \perp height = 5

$$A = \frac{1}{2} SR \times \perp h$$
$$= \frac{1}{2} (6)(5)$$

= 30 square units

Using $A = \frac{1}{2}b \times \perp h$ incorrectly: max 1/6

✓ SR

 $\checkmark\checkmark$ \bot height

- ✓ use of correct area formula
- ✓ substitution of $\sin \theta$
- ✓ answer

[16]

(6)

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/Feb.-Mar./Feb.-Mrt. 2018

4.1	$OK = \sqrt{180} \text{or} 6\sqrt{5}$	✓ answer	(1)
4.2	$a^2 + b^2 = 180$		(1)
	$b = \frac{1}{2}a$	\checkmark b in terms of a	
	$a^{2} + \left(\frac{1}{2}a\right)^{2} = 180$ No penalty if x and y are not converted to a and b	✓ substitution	
	$a^2 + \frac{1}{4}a^2 = 180$	2 111	
	$a^2 = 144 \therefore a = -12$	$\checkmark a^2 = 144$	
	$b = \frac{1}{2}(-12)$ Error in simplification: max 2/4	✓ substitution	
	K (-12; -6) (given)		(4)
	OR/OF		
	$\begin{vmatrix} a^2 + b^2 = 180 \\ a = 2b \end{vmatrix}$	$\checkmark a \text{ in terms of } b$	
	$(2b)^2 + b^2 = 180$	✓ substitution	
	$5b^2 = 180$ $b^2 = 36$	✓ $b^2 = 36$ ✓ substitution	
			(4)

Q

DBE/Feb.-Mar./Feb.-Mrt. 2018

Mathen	natics P2/Wiskunde V2 9	DBE/Feb.–Mar./Feb.–Mrt.
4.3.1	NSC/NSS – Marking Guidelines/Nasienright	lyne
	$m_{\text{OK}} = \frac{1}{2} \qquad [y = \frac{1}{2}x]$	
	$m_{\rm PT} = -2$ [radius \perp tangent/raaklyn]	$\checkmark m_{\rm PT} = -2$
	$y = mx + c$ OR/OF $y - y_1 = m(x - x_1)$	
	-6 = -2(-12) + c $y - (-6) = -2(x - (-12))$	✓ substitution of <i>m</i> &
	c = -30 $c = -30$	K(-12; -6)
	$y = -2x - 30$ Using $m = \frac{1}{2} : 0/3$	✓ equation
	Using $m = -\frac{1}{2} \text{ or } 2:2/3$	
		(3)
4.3.2	3MK = OK	✓ 3MK = OK
	\Rightarrow OM = $\frac{4}{3}$ OK	\checkmark OM = $\frac{4}{3}$ OK
	$M = \frac{4}{3}(-12; -6)$ Answer only: 0/6	$\checkmark M = \frac{4}{3}(-12; -6)$
	M(-16; -8)	✓ x-coordinate ✓ y-coordinate
	OR/OF	(6)
	$3MK = OK$ $9MK^2 = OK^2 = 180$	✓ 3MK = OK
	$\therefore MK^2 = 20$	\checkmark MK ² = 20
	Let $M(x; y)$, then:	V WIK = 20
	$(x+12)^2 + (y+6)^2 = 20$	
	$(n+12)^2 + (1+16)^2$ 20	✓ equation
	$(x+12)^2 + \left(\frac{1}{2}x+6\right)^2 = 20$	✓ substitution
	$x^2 + 24x + 144 + \frac{1}{4}x^2 + 6x + 36 = 20$	
	$\frac{5}{4}x^2 + 30x + 160 = 0$	
	$x^2 + 24x + 128 = 0$	
	(x+16)(x+8) = 0	
	$x = -16$ $x \neq -8$ [since M is outside the large circle]	
	y = -8	✓ x-coordinate
	M(-16; -8)	✓ y-coordinate (6)
	OR/OF	
	$\frac{4}{2}$ $\frac{12}{0}$	✓ 3MK = OK
	$\begin{vmatrix} 8 & 6 & 3r \end{vmatrix}$	✓ ✓ ✓ diagram with
	K(-12;-6)	values OR valid explanation
	M	✓ x-coordinate
	M(-16; -8)	✓ y-coordinate (6)
	OR/OF	(0)

	2) (1)	(2) MIZ O IZ
	$3MK = OK$ $9MK^2 = OK^2 = 180$	\checkmark 3MK = OK
	$9MK = OK = 180$ $\therefore MK^2 = 20$	\checkmark MK ² = 20
	1	V WIK - 20
	Let M(x; y), then $y = \frac{1}{2}x$:	
	$(x+12)^2 + (y+6)^2 = 20$	✓ equation
	$(x+12)^2 + \left(\frac{1}{2}x+6\right)^2 = 20$	✓ substitution
	$4(x+12)^2 + (x+12)^2 = 80$	
	$(x+12)^2 = 16$	
	$x+12 = \pm 4$ $x = -16$ $x \ne -8$ [since M is outside the large circle] y = -8	✓ x-coordinate ✓ y-coordinate
	M(-16; -8)	(6)
4.3.3	(1)2	(0)
1.3.3	$(x - (-16))^{2} + (y - (-8))^{2} = \left(\frac{1}{3}\sqrt{180}\right)^{2}$	✓ LHS (CA from 4.3.2) ✓ RHS (CA from 4.1)
	$(x+16)^2 + (y+8)^2 = 20$	KIIS (CA IIOIII 4.1)
		(2)
4.4	OK < r < OK + 2KM	
	$\sqrt{180} < r < \sqrt{180} + \frac{2}{3}\sqrt{180}$ Answer only: full marks (No need to simplify)	✓ ✓ values ✓ inequality
	$6\sqrt{5} < r < 10\sqrt{5}$	(3)
4.5	$x^{2} + 32x + (16)^{2} + y^{2} + 16y + (8)^{2} = 256 + 64 - 240$	
	$(x+16)^2 + (y+8)^2 = 80$	✓ equation in centre, radius form
	New circle/nuwe sirkel:	
	Centre/middelpt $(-16; -8)$ &	(Contract (16, 9)
	$r = 4\sqrt{5}$	✓ Centre: (-16; -8)
	Original circle/oorspronklike sirkel:	$\checkmark r = 4\sqrt{5} \text{ (new)}$
	$M(-16;-8) \& r = 2\sqrt{5}$	
	π(10, 0) α 1 – 2ν3	$\checkmark r = 2\sqrt{5}$ (original)
	This circle will never cut the circle with centre M as they have the same centre (concentric circles) but unequal radii/Hierdie sirkel sal nooit die sirkel met middelpt M sny nie, want hulle is konsentries, want het dieselfde	✓ conclusion ("concentric" must be stated) (5)
	middelpunt met verskillende radii.	[24]
	1	

NSC/NSS – Marking Guidelines/Nasienriglyne

5.1.1	$\cos 2\theta = -\frac{5}{6}$, where $2\theta \in [180^\circ; 270^\circ]$	
	$ \begin{array}{c} & \downarrow y \\ & \downarrow 2\theta \\ & \downarrow 6 \\ & \downarrow 6 \end{array} $	✓ diagram (3 rd quadrant only)
	$y^2 = 6^2 - (-5)^2$ [Pythagoras]	✓ using Pythagoras
	$y = \pm \sqrt{11}$ (5; y) is in 3rd quadrant:	
	$y = -\sqrt{11}$	✓ y – value
in 5.1	$\sin 2\theta = -\frac{\sqrt{11}}{6}$	✓ answer (4)
no calculator in 5.1	OR/OF Getting to $\sin 2\theta = \frac{\sqrt{11}}{6}$: 3/4	
10 ca	$\sin^2 2\theta = 1 - \cos^2 2\theta$	$\checkmark \sin^2 2\theta = 1 - \cos^2 2\theta$
	$=1-\left(-\frac{5}{6}\right)^2$	✓ substitution
	$=1-\frac{25}{36}$	
	$=\frac{11}{36}$	✓ value of $\sin^2 2\theta$
	$\sin 2\theta = -\frac{\sqrt{11}}{6}$	✓ answer (4)
5.1.2	$\cos 2\theta = 1 - 2\sin^2 \theta$	$\checkmark \cos 2\theta = 1 - 2\sin^2 \theta$
	$2\sin^2\theta = 1 - \cos 2\theta$	
	$\sin^2 \theta = \frac{1 - \left(-\frac{5}{6}\right)}{2}$	✓ substitution
	$=\frac{11}{6}\times\frac{1}{2}$	
	$=\frac{11}{12}$	✓ answer (3)
		(3)

NSC/NSS – Marking Guidelines/Nasienriglyne

5.2	$\sin(180^{\circ} - x).\cos(-x) + \cos(90^{\circ} + x).\cos(x - 180^{\circ})$	
3.2		$\checkmark \sin x \checkmark \cos x$ $\checkmark -\sin x \checkmark -\cos x$
	$= \sin x \cdot \cos x - \sin x(-c)$ Second line written as $= 2 \sin x \cdot \cos x$ Sinx cos x + sinx cos x:	\checkmark - sin x \checkmark - cos x \checkmark simplification
	$= \sin 2x$ $= \sin 2x$ $\sin x \cos x + \sin x \cos x$ $= \sin 2x$	✓ answer
	max 5/0	(6)
5.3	$\sin 3x.\cos y + \cos 3x.\sin y$	(0)
3.3	$\sin(3x + y)$	✓ compound angle
	$= \sin 270^{\circ}$	
	$\begin{vmatrix} -\sin 270 \\ = -1 \end{vmatrix}$	✓ answer
		(2)
5.4.1	$2\cos x = 3\tan x$	
	$2\cos x = \frac{3\sin x}{\cos x}$	$\checkmark \tan x = \frac{\sin x}{\cos x}$
	COS A	$\cos x$
	$2\cos^2 x = 3\sin x$	✓ multiplying by $\cos \theta$
	$2(1-\sin^2 x) = 3\sin x$	$\checkmark \cos^2 x = 1 - \sin^2 x$
	$2 - 2\sin^2 x = 3\sin x$	
	$2\sin^2 x + 3\sin x - 2 = 0$	(3)
5.4.2	$2\sin^2 x + 3\sin x - 2 = 0$	
	$(2\sin x - 1)(\sin x + 2) = 0$	✓ factors
	$\sin x = \frac{1}{2}$ or $\sin x = -2$ (no solution)	
	$\sin x = \frac{1}{2}$ or $\sin x = -2$ (no solution)	✓ both values of $\sin x$ ✓ no solution
		✓ 30°+k.360°
	$x = 30^{\circ} + k.360^{\circ}$ or $x = 150^{\circ} + k.360^{\circ}$; $k \in \mathbb{Z}$	\checkmark 150°+k.360°; k ∈ Z
		(5)
5.4.3	$5y = 30^{\circ} + k.360^{\circ}$ or $5y = 150^{\circ} + k.360^{\circ}$. ,
3.4.3		$\checkmark y = 6^{\circ} + k.72^{\circ}$
	$y = 6^{\circ} + k.72^{\circ}$ or $y = 30^{\circ} + k.72^{\circ}$	$\checkmark y = 30^{\circ} + k.72^{\circ}$
	$y = 144^{\circ} + 6^{\circ}$ or $y = 144^{\circ} + 30^{\circ}$ $y = 150^{\circ}$ or $y = 174^{\circ}$	✓ 150° ✓ 174°
	y = 130 Of $y = 174$	
		(4)
	OR/OF	
	$144^{\circ} \le y \le 216^{\circ}$	
	$720^{\circ} \le 5y \le 1080^{\circ}$ $5y = 750^{\circ}$ or $5y = 870^{\circ}$	$\checkmark 5y = 750^{\circ} \checkmark 5y = 870^{\circ}$
	$5y = 750^{\circ}$ or $5y = 870^{\circ}$ $y = 150^{\circ}$ or $y = 174^{\circ}$	✓ 150° ✓ 174°
	y = 1/7	(4)
5.5.1	$g(x) = -4\cos(x+30^{\circ})$	(1)
	maximum value = 4	✓ answer
		(1)
		1 (1)

13 NSC/*NSS* – Marking Guidelines/*Nasienriglyne* DBE/Feb.-Mar./Feb.-Mrt. 2018

	Answer only: full marks	
	A 1 C 11 1	
	$\therefore h(x) = -4\sin x$	\checkmark equation of h (3)
	$=4\sin x$	✓ reduction
	$= -4\cos(x + 90^\circ)$	
	shifted to the left/skuif na links: $y = -4\cos(x + 30^{\circ} + 60^{\circ})$	✓ shift of 60° to the left
5.5.3	$y = -4\cos(x + 30^\circ)$	
	Answer only: full marks	
	$-3 \le y \le 5$ OR/OF $y \in [-3; 5]$	✓ answer (2)
	∴ range of/waardeversameling van $g(x) + 1$:	
5.5.2	range of/waardeversameling van $g(x)$: $-4 \le y \le 4$ OR/OF $y \in [-4; 4]$	\checkmark range of $g(x)$

NSC/NSS – Marking Guidelines/Nasienriglyne

6.1.1	$\tan \theta = \frac{PQ}{QR} = \frac{PQ}{x}$ $\therefore PQ = x \tan \theta$ Answer only: full marks OR/OF	✓ trig ratio ✓ answer (2)
	$\frac{QR}{\sin P} = \frac{PQ}{\sin P\hat{R}Q}$ $\therefore PQ = \frac{x.\sin \theta}{\sin(90^{\circ} - \theta)}$	✓ trig ratio ✓ answer (2)
6.1.2	$\frac{AR}{\sin A\hat{Q}R} = \frac{QR}{\sin Q\hat{A}R}$ $AR = \frac{x\sin(90^{\circ} + \theta)}{\sin \theta}$ Answer only: full marks	✓ use of sine rule ✓ substitution into sine rule correctly (2)

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/Feb.-Mar./Feb.-Mrt. 2018

6.2	$\sin 2\theta = \frac{AB}{AR}$ $AB = AR \sin 2\theta$ $= \frac{x \sin(90^\circ + \theta) \cdot \sin 2\theta}{\sin \theta}$ $= \frac{x \cos \theta \cdot \sin 2\theta}{\sin \theta}$ $= \frac{x \cos \theta \cdot 2 \sin \theta \cos \theta}{\sin \theta}$ $= 2x \cos^2 \theta$	 ✓ substitution into trig ratio and AB as subject ✓ substitution of AR ✓ co-ratio ✓ sin 2θ = 2 sin θ cos θ
		(4)
6.3	$\frac{AB}{QP} = \frac{2x\cos^2 12^\circ}{x \tan 12^\circ}$ $= 9$	✓ substitution CA from 6.1.1) ✓ answer
		(2)
		F4.07
		[10]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/Feb.-Mar./Feb.-Mrt. 2018

7.1.1	$\hat{T}_1 = 70^{\circ}$	[ext \angle of cyclic quad/buite \angle van koordevh]	✓ S ✓ R
			(2)
7.1.2	$\hat{Q}_1 = \hat{Q}_2 = 35^{\circ}$	[equal chords;equal \(\s/gelyke \) koorde; gelyke \(\alpha e \)]	✓ S ✓ R
			(2)
7.2.1	$\hat{T}_2 = \hat{Q}_1 = 35^{\circ}$	[alt \angle s/verwiss \angle e; PQ TR]	✓ S ✓ R
			(2)
7.2.2	$\frac{PT}{TS} = \frac{QR}{RS}$	[prop theorem/eweredighst; PQ TR]	✓ S ✓ R
	$\therefore \frac{TR}{TS} = \frac{QR}{RS}$	[PT = TR]	
			(2)
			[8]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/Feb.-Mar./Feb.-Mrt. 2018

PTR = 90°	[∠ in semi-circle/halfsirkel]	✓ S/R
$x = 90^{\circ} + \hat{R}$	$[ext/buite \angle of/van \Delta]$	✓ S/R
$ \therefore \hat{R} = x - 90^{\circ} $ $ \hat{STP} = x - 90^{\circ} $ $ x + x - 90^{\circ} + y = 180^{\circ} $ $ \therefore y = 270^{\circ} - 2x $	[tan chord theorem/raakl koordstelling] [sum of/som van \angle s/e in Δ]	✓ S ✓ R ✓ S ✓ answer

9.1	equiangular Δs/gelykhoekige Δe	OR/OF ($\angle\angle\angle$)	✓ answer (1)
9.2	$\therefore \frac{GE}{GF} = \frac{DE}{GE}$ $GE^{2} = 45 \times 80$ $GE = 60$	[\(\Delta s \)]	✓ proportion ✓ substitution ✓ answer (3)
9.3	In ΔDEH and ΔFGH: DĤE = FĤG DÊH = FĜH EDH = GFH ∴ ΔDEH ΔFGH	[vert opp \angle s =/regoorst \angle e =] [$ \Delta$ s] [sum of/som van \angle s/e in Δ]	✓ S/R ✓ S/R ✓ S (3)
	OR/OF In ΔDEH and ΔFGH: DĤE = FĤG DÊH = FĜH ∴ ΔDEH ΔFGH	[vert opp \angle s =/regoorst \angle e =] [$ \Delta$ s] [$\angle \angle \angle$]	✓ S/R ✓ S/R ✓ R (3)

Need an amazing tutor? www.teachme2.com/matric

Mathematics P2/Wiskunde V2

19 NSC/*NSS* – Marking Guidelines/*Nasienriglyne* DBE/Feb.-Mar./Feb.-Mrt. 2018

9.4	$\frac{GH}{EH} = \frac{FG}{DE}$	[Δs]	√S
	$\frac{\text{GH}}{60 - \text{GH}} = \frac{80}{45}$	[EH = 60 - GH]	✓ substitution
	45 GH = 80(60 - GH)		
	45 GH = 4800 – 80 GH 125 GH = 4800		
	GH = 38,4		✓ answer
			(3)
			[10]

10.1	Construction:	
	AO is drawn and produced to M	✓ Constr
	$\hat{O}_1 = \hat{A}_1 + \hat{B}$ [ext \angle of \triangle /buite \angle van \triangle]	✓ S/R
	But $\hat{A}_1 = \hat{B}$ [$\angle s \text{ opp} = \text{radii}/\angle e \text{ teenoor} = radii$]	✓ S/R
	$\therefore \hat{O}_1 = 2\hat{A}_1$	✓ S
	Similarly/Netso: $\hat{O}_2 = 2\hat{A}_2$	
	$\therefore \hat{O}_1 + \hat{O}_2 = 2\hat{A}_1 + 2\hat{A}_2$	✓ S
	$=2(\hat{A}_1+\hat{A}_2)$	
	$\hat{BOC} = 2\hat{BAC}$	
		(5)

 $\frac{21}{\text{NSC/NSS}-\text{Marking Guidelines/Nasienriglyne}}$

DBE/Feb.-Mar./Feb.-Mrt. 2018

10.2

10.2.1(a)	$\hat{\mathbf{F}}_{1} = 2x$	$[\angle \text{ centre} = 2\angle \text{ at circum}/midpts \angle = 2omtreks \angle]$	✓ S ✓ R	(2)
				(2)
10.2.1(b)	$\hat{\mathbf{C}} = \mathbf{x}$	[∠s in the same seg/∠e in dieselfde segment]	✓ S ✓ R	
				(2)
	OR/OF			
	$\hat{\mathbf{C}} = \mathbf{x}$	$[\angle \text{centre} = 2\angle \text{ at circum/} midpts \angle = 2omtreks \angle]$	✓ S ✓ R	(2)
10.2.2	$\hat{\mathbf{D}}_3 = x$	$[\angle s \text{ opp equal sides}/\angle e \text{ teenoor} = sye]$	✓ S/R	
	$\hat{\mathbf{E}}_3 = 2x$	[ext \angle of \triangle /buite \angle van \triangle]	✓ S/R	
	$\therefore \hat{\mathbf{F}}_1 = \hat{\mathbf{E}}_3 = 2x$		✓ S	
	∴ AFED is a cyc	clic quadrilateral [converse ∠s in the same seg]/	✓ R	
	Is 'n ko	oordevierhoek [omgekeerde ∠e in dieselfde segm]		
				(4)

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/Feb.-Mar./Feb.-Mrt. 2018

10.2.3	$\hat{A}_2 + \hat{A}_3 + \hat{D}_1 + \hat{F}_1 = 180^{\circ}$ [sum of		✓ S
	$\hat{A}_2 + \hat{A}_3 = D_1 \qquad [\angle s \text{ or}]$	$pp = sides/\angle e \ teenoor = sye$	
	$\therefore \hat{\mathbf{A}}_2 + \hat{\mathbf{A}}_3 = 90^{\circ} - x$		✓ S
	$\hat{E}_1 = \hat{A}_2 + \hat{A}_3 \qquad [ext \angle c]$ $= 90^{\circ} - x$	of cyclic quad/buite∠v koordevh]	✓ R ✓ S
	[lyn va	om centre bisects chord]/ on midpt halveer koord]	✓ S ✓ R
	$\hat{F}_3 = x$ [sum c	of \angle s in \triangle /som van \angle e in \triangle]	
			(6)
10.2.4	$\hat{BAC} = \hat{D}_3$ [\(\sigma \) s in the s	same $seg/\angle e$ in dieselfde $segm$]	✓ S
	AE = BE [sides opp	equal $\angle s/sye\ teenoor = \angle e$]	✓ S
	$\frac{\text{area } \Delta AEB}{\text{area } \Delta DEC} = \frac{\frac{1}{2} (BE)(AE).\sin A\hat{E}}{\frac{1}{2} (EC)(ED).\sin D\hat{E}}$ $6,25 = \frac{AE^2}{ED^2}$ $\therefore \frac{AE}{ED} = 2,5$	EB CC	✓ substitution into area rule ✓ simplification of RHS ✓ answer (5) [24]

TOTAL/TOTAAL: 150