Chapter 1: Introduction

Our goal:

- learn basic network terminologies
- more depth, detail later in course
- □ approach:
 - use Internet as example

Chapter 1: Introduction

- 1 What is the Internet?
- 2 Network edge
- 3 Network core
- 4 Internet structure and ISPs
- 5 Protocol layers, service models
- 6 Delay & loss in packet-switched networks

What's the Internet: a "service" view

- communication infrastructure enables distributed apps:
 - Enables apps to communicate
 - Web, email, games, ecommerce, file sharing
- communication services provided to apps:
 - Offers services

What's the Internet: "nuts and bolts" view

- millions of connected computing devices: called hosts or end systems
 - e.g., Laptops, workstations
 - running network apps
- routers & switches:
 - forward packets (chunks of data)
- communication links
 - e.g., fiber, copper, radio, satellite

What's the Internet: "nuts and bolts" view

- Internet standards
 - IETF(Internet Eng. Task Force)
 - RFC: Request for comments
 - ❖ IEEE: for links/hardware E.g., Ethernet
- network protocols
 - control sending/receiving of messages
 - e.g., TCP, IP, HTTP, FTP, PPP

company P

What's a protocol?

a computer network protocol:

What's a protocol?

<u>human protocols:</u>

- □ "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define (1) format, order of msgs sent and received among network entities, and (2) actions taken on msg transmission, receipt

Chapter 1: Introduction

- 1 What is the Internet?
- 2 Network edge
- 3 Network core
- 4 Internet structure and ISPs
- 5 Protocol layers, service models
- 6 Delay & loss in packet-switched networks

A closer look at network structure:

- network edge: applications and hosts
- □ network core:
 - * routers
 - network of networks
- access networks, physical media: communication links

The network edge: service models

end systems (hosts):

- run application programs
- * e.g. Web, email
- at "edge of network"

client/server model

- client host requests, receives service from always-on server
- e.g. Web browser/server;email client/server

peer-to-peer model:

- minimal (or no) use of dedicated servers
- * e.g. Skype, BitTorrent, KaZaA

Chapter 1: Introduction

- 1 What is the Internet?
- 2 Network edge
- 3 Network core
- 4 Network access and physical media
- 5 Internet structure and ISPs
- 6 Protocol layers, service models
 - 7 Delay & loss in packet-switched networks

The Network Core

- mesh of interconnected routers
- <u>the</u> fundamental question: how is data transferred through net?
 - circuit switching: dedicated circuit per call: telephone net
 - packet-switching: data sent thru net in discrete "chunks"

Network Core: Circuit Switching

End-end resources reserved for "call"

- dedicated resources: no sharing
- call setup required
- circuit-like (guaranteed)performance
- □ same path for all chunks

Network Core: Circuit Switching

network resources (e.g., bandwidth) divided into "pieces"

- allocated pieces per call
- no sharing
 resource piece idle if
 not used by owning call

Network Core: Circuit Switching

- □ Two ways of dividing bandwidth into "pieces"
 - frequency division
 - * time division

Circuit Switching: FDM and TDM

Time Division Multiplx. (TDM)

Network Core: Packet Switching

each end-to-end data stream is divided into packets

- no dedication/reservation: all streams share resources
- no setup is required
- resources used as needed
- each packet uses full link bandwidth
- aggregate resource demand can exceed capacity
- no guarantee

Network Core: statistical multiplexing

Sequence of A & B packets does not have fixed pattern, shared on demand \rightarrow statistical multiplexing.

Whereas in TDM, each host gets same slot (periodically)

- 2 circuits (use TDM)
- · A reserves 1 circuit
- B reserves 1 circuit

Utilization = 50% only = 1 Mb/s

B: has no packets to send

- statistical multiplex.
- B uses full link since
 A is not using it

Utilization = 100% = 2 Mb/s

	Packet-switching	Circuit-switching
Resources	sharing	dedicated
Congestion	may lead to it	admission control
Overhead	less overhead; no connection setup	more overhead; reserve resources 1st
□ Guarantee	Best-effort no guarantee	provide guarantee good for multimedia

Numerical example

- □ How long does it take to send a file of 640,000 bits from host A to host B over a circuit-switched network?
 - The link's transmission rate = 0.64 Mbps
 - Each link uses TDM with 10 slots/sec
 - 0.5 sec to establish end-to-end circuit

Let's work it out! You have few minutes!

□ Solution:

- ❖ Bandwidth of circuit (in kbps)= .64x1000/10 = 64 kbps
- * Time to send: 640 kbits/64 kbps + 0.5s = 10.5s

	Packet-switching	Circuit-switching
Resources	sharing	dedicated
Congestion	may lead to it	admission control
Overhead	less overhead; no connection setup	more overhead; reserve resources 1st
□ Guarantee	Best-effort no guarantee	provide guarantee good for multimedia

Packet switching allows more users to use network!

- each user:
 - ❖ 1 Mb/s when "active"
 - active 1/3 of time
- circuit-switching:
 - 3 users
- packet switching:
 - With N=4 users, what are the chances that a user won't get 1 Mb/s?
 I.e., what is the prob. that more than 3 (strictly) users are active?
 - With N=5 users, what are the chances that a user won't get 1 Mb/s?
 - With N=6 users, what are the chances that a user won't get 1 Mb/s?

Board ...

Chapter 1: Introduction

- 1 What is the Internet?
- 2 Network edge
- 3 Network core
- 4 Internet structure and ISPs
- 5 Protocol layers, service models
 - 6 Delay & loss in packet-switched networks

- roughly hierarchical: tier 1, tier 2, and tier 3
- □ at center: "tier-1" ISPs
 - e.g., MCI, Sprint, AT&T, Cable and Wireless,
 - national/international coverage

Tier-1 ISP: e.g., Sprint

- □ "Tier-2" ISPs: smaller (often regional) ISPs
 - * Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

□ "Tier-3" ISPs and local ISPs

last hop ("access") network (closest to end systems)

□ a packet passes through many networks!

Chapter 1: Introduction

- 1 What is the Internet?
- 2 Network edge
- 3 Network core
- 4 Internet structure and ISPs
- 5 Protocol layers, service models
- 6 Delay & loss in packet-switched networks

Protocol "Layers"

Networks are complex!

- □ many "pieces":
 - * hosts
 - * routers
 - links of various media
 - * applications
 - protocols
 - hardware, software

Question:

Is there any hope of an organizing structure of network?

Why layering?

Dealing with complex systems:

- Easing assignment of tasks
 - identify relationship among pieces of complex systems
- Easing maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system

Internet protocol stack

- application: supporting network applications
 - * FTP, SMTP, HTTP
- transport: process-process data transfer
 - * TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - PPP, Ethernet
- physical: bits "on the wire"

application

transport

network

link

physical

ISO/OSI Model: late 70's

7-layer ISO/OSI model (OSI: open system interconnections)

Chapter 1: Introduction

- 1 What is the Internet?
- 2 Network edge
- 3 Network core
- 4 Internet structure and ISPs
- 5 Protocol layers, service models
- 6 Delay & loss in packet-switched networks

Sources of packet delay

- □ 1. processing:
 - check bit errors
 - determine output link
- 2. queueing
 - time waiting at output link for transmission
 - depends on congestion level of router

Sources of packet delay

- 3. Transmission delay:
- R=link bandwidth (bps)
- L=packet length (bits)
- 💶 trans. delay = L/R

- 4. Propagation delay:
- d = length of physical link
- s = propagation speed in medium (~2x10⁸ m/sec)
- propagation delay = d/s

Note: s and R are very different quantities!

Caravan analogy

- Cars run at 100 km/hr (speed of propagation)
- Booth takes 12 sec to service a car (transmission time)
- □ Car ~ bit; caravan ~ packet
- Q: How long until caravan is lined up before 2nd toll booth?

- □ Time to "push" entire caravan through toll booth = 12*10 = 120 sec = 2 mns
- □ Time for last car to propagate from 1st to 2nd toll both: =100km/(100km/hr)= 1 hr
- □ A: 1 hr 2 minutes

Caravan analogy (more)

- □ Cars now "propagate" at 1000 km/hr
- □ Toll booth now takes 1 min to service a car
- Q: Will cars arrive to 2nd booth before all cars serviced at 1st booth?

- Yes! After 7 min, 1st car at 2nd booth and 8th car still at 1st booth.
- □ 1st bit of packet can arrive at 2nd router before packet is fully transmitted at 1st router!

Packet length = L bits trans. rate R = 1 Mbps

Host A Host B

distance = 1 km, speed =
$$2 \times 10^8$$
 m/s

Question:

□ Which bit is being transmitted at the time the first bit arrives at Host B for

Answer:

First bit arrives after $1/R + d/s = 1/10^6 + 10^3/(2 \times 10^8) = 10^{-6} + 5 \times 10^{-6} = 6 \times 10^{-6} = 6 \text{ µsec}$

After 6 μ sec 6 bits are already transmitted; so 7^{th} bit is being transmitted

Transmission vs. propagation

Question:

☐ At what rate (bandwidth) R would the propagation delay equal the transmission delay?

Answer:

- \square Propagation delay = 2×10^3 (m)/ 2×10^8 (m/s) = 10^{-5} sec
- \Box Transmission delay = 100×8 (bits)/R
- \square Prop. delay = trans. delay => R=10⁵x100x8 = 80 Mbps

Voice over IP

- ☐ Host A
 - converts analog to digital at a=64Kbps
 - groups bits into L=48Byte packets
 - * sends packet to Host B as soon it gathers a packet
- ☐ Host B
 - * As soon as it receives the whole pckt, it converts it to analog
- Question:
 - ❖ How much time elapses from the 1st bit of 1st packet is created until the last bit of the 1st packet arrives at Host B?

Voice over IP

Answer:

- \square Time to gather 1st pkt: 48x8 (bits)/64x1000 (b/s) = 6 msec
- \Box Time to push 1st pkt to link: 48x8 (bits)/1x10⁶ (b/s) = 0.384 msec
- ☐ Time to propagate: 2 msec
- \Box Total delay = 6 + 0.384 + 2 = 8.384 msec

Nodal delay

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- \Box d_{proc} = processing delay
 - typically a few microsecs or less
- d_{queue} = queuing delay
 - depends on congestion
- \Box d_{trans} = transmission delay
 - = L/R, significant for low-speed links
- \Box d_{prop} = propagation delay
 - * a few microsecs to hundreds of msecs

Queueing delay (more insight)

- □ Every second: aL bits arrive to queue
- Every second: R bits leave the router
- \square Question: what happens if aL > R?
- Answer: queue will fill up, and packets will get dropped!!

aL/R is called traffic intensity

Queueing delay: illustration

1 packet arrives
every L/R seconds

Queue

Packet length L bits

Arrival rate: a = 1/(L/R) = R/L (packet/second)

Traffic intensity = aL/R = (R/L) (L/R) = 1

Average queueing delay = 0 (queue is initially empty)

Queueing delay: illustration

Arrival rate: a = N/(LN/R) = R/L packet/second

Traffic intensity = aL/R = (R/L) (L/R) = 1

Average queueing delay (queue is empty @ time 0)?

 $\{0 + L/R + 2L/R + ... + (N-1)L/R\}/N = L/(RN)\{1+2+...+(N-1)\} = L(N-1)/(2R)$

Note: traffic intensity is same as previous scenario, but queueing delay is different

Queueing delay: behavior

- □ La/R ~ 0: avg. queuing delay small
- □ La/R -> 1: delays become large
- La/R > 1: more "work" than can be serviced, average delay infinite! (this is when a is random!)

Packet-switching: store-and-forward

Entire packet must arrive at router before it can be transmitted on next link: store and forward

- Takes L/R seconds to transmit (push out) packet of L bits on to link of R bps
- delay = 3L/R (assuming zero propagation delay)
 more on this next...

Store-and-forward: illustration

- distance = d meters; speed of propagation = s m/sec
- transmission rate of link = R bits/s

□ delay (one packet only) = L/R + d/s

□ delay (one packet only) = $L/R + \frac{1}{2}d/s + L/R + \frac{1}{2}d/s$

= 2L/R + d/s

Example:

 $\Box d/s = 0.5 sec$

□L = 10 Mbits

□R = 1 Mbps

□delay = 10.5 sec

Example:

 \Box d/s = 0.5 sec

□L = 10 Mbits

□R = 1 Mbps

□delay = 20.5 sec

Store-and-forward & queuing delay

- distance = d meters; speed of propagation = s m/sec
- transmission rate of link = R1 and R2 bits/s
- Consider sending two packets A and B back to back

□ Case 1: Assume R1 < R2

□ Case 2: Assume R1 > R2

Q: is there a queuing delay? how much is this delay?

Answer (queue is empty initially):

Time for last bit of 2^{nd} pkt to arrive at router: d1=L/R1+L/R1+d/(2s)Time for last bit of 1^{st} pkt to leave router: d2=L/R1+d/(2s)+L/R2Queueing delay = d2-d1=L/R2-L/R1 if positive, otherwise 0. Hence: when R1 < R2, queueing delay = d2-d1=0when R1 > R2, queueing delay = d2-d1=L/R2-L/R1

Throughput analysis

- Suppose: Host A has huge file of size F bits to send to Host B
- □ File is split into N packets, each of length L bits (i.e., N=F/L)
- Ignore propagation delay for now
 - Question 1: how long it takes to send the file? A: (N+2)L/R = (F+2L)/R
 - Question 2: what is the average throughput achieved when sending the file?

A: NL/[(N+2)L/R]=NR/(N+2) = FR/(F+2L) = R/(1+2L/F)

Note: throughput = number of total bits sent / total time taken

Throughput analysis

- Suppose: Host A has huge file of size F bits to send to Host B
- □ File is split into N packets, each of length L bits (i.e., N=F/L)
- Do NOT ignore propagation delay (assume prop. speed = s m/s)
- Question 1: how long it takes to send the file? A: (N+2)L/R + d/s = (F+2L)/R + d/s
- Question 2: what is the average throughput achieved when sending the file?

A: NL/[(N+2)L/R + d/s] = FR/[(N+2)L + dR/s] = FR/[F+2L+dR/s]

Introduction: Summary

Covered a "ton" of material!

- □ Internet overview
- Network protocol
- □ Network edge, core, access network
- Packet-switching versus circuit-switching
- □ Internet/ISP structure
- layering and service models
- performance: delay and throughput analysis