

Linear Regression Models

Segment 6 – Advanced Topics in Linear Regression

Topic 1 – Bootstrapping Regression Models

Sudarsan N.S. Acharya (sudarsan.acharya@manipal.edu)

Topics

- 1. Statistic and Sampling Distribution
- 2. Bootstrap Idea and Need
- 3. The Bootstrap Algorithm for Linear Regression
- 4. An Example Using Heteroskedastic Data
- 5. Bootstrap Applications and Limitations

 Recall the difference between a population parameter and sample statistic:

 Recall the difference between a population parameter and sample statistic: the average height of all biological females in a city is a population parameter;

 Recall the difference between a population parameter and sample statistic: the average height of all biological females in a city is a population parameter; the average height of n randomly chosen biological females from that city is a sample statistic.

- Recall the difference between a population parameter and sample statistic: the average height of all biological females in a city is a population parameter; the average height of n randomly chosen biological females from that city is a sample statistic.
- Sample statistic (or just statistic) is a *random variable* and has an associated distribution referred to as its *sampling distribution*.

- Recall the difference between a population parameter and sample statistic: the average height of all biological females in a city is a population parameter; the average height of n randomly chosen biological females from that city is a sample statistic.
- Sample statistic (or just statistic) is a *random variable* and has an associated distribution referred to as its *sampling distribution*.
- Recall that the OLS estimators $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ of the corresponding population parameters $\beta_0, \beta_1, \dots, \beta_p$ in a multiple linear regression model are also statistics.

- Recall the difference between a population parameter and sample statistic: the average height of all biological females in a city is a population parameter; the average height of n randomly chosen biological females from that city is a sample statistic.
- Sample statistic (or just statistic) is a *random variable* and has an associated distribution referred to as its *sampling distribution*.
- Recall that the OLS estimators $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ of the corresponding population parameters $\beta_0, \beta_1, \dots, \beta_p$ in a multiple linear regression model are also statistics.
- The OLS estimates have an associated variability depending on the dataset used to build them.

Bootstrap - Idea and Need

• A beautiful visual tool for understanding bootstrap: external web link

- A beautiful visual tool for understanding bootstrap: external web link
- In the bootstrap, we *resample* from the data which is already sampled from the population.

- A beautiful visual tool for understanding bootstrap: external web link
- In the bootstrap, we *resample* from the data which is already sampled from the population.
- We use the resampled data to calculate OLS estimates, associated standard errors, confidence intervals etc.

- A beautiful visual tool for understanding bootstrap: external web link
- In the bootstrap, we *resample* from the data which is already sampled from the population.
- We use the resampled data to calculate OLS estimates, associated standard errors, confidence intervals etc.
- Bootstrap is needed in situations when

- A beautiful visual tool for understanding bootstrap: external web link
- In the bootstrap, we *resample* from the data which is already sampled from the population.
- We use the resampled data to calculate OLS estimates, associated standard errors, confidence intervals etc.
- Bootstrap is needed in situations when (1) data collected is small w.r.t. sample size;

- A beautiful visual tool for understanding bootstrap: external web link
- In the bootstrap, we *resample* from the data which is already sampled from the population.
- We use the resampled data to calculate OLS estimates, associated standard errors, confidence intervals etc.
- Bootstrap is needed in situations when (1) data collected is small w.r.t. sample size; (2) assumptions we made in the population model might have been violated;

- A beautiful visual tool for understanding bootstrap: external web link
- In the bootstrap, we *resample* from the data which is already sampled from the population.
- We use the resampled data to calculate OLS estimates, associated standard errors, confidence intervals etc.
- Bootstrap is needed in situations when (1) data collected is small w.r.t. sample size; (2) assumptions we made in the population model might have been violated; (3) need sampling distributions for much more complex estimation procedures, where no closed form expressions exist.

From a dataset with n samples, draw n samples with replacement.

Population

$$\begin{array}{c} \textbf{Population} \Rightarrow \underbrace{\begin{bmatrix} x_1^{(1)} & x_2^{(1)} \\ x_1^{(2)} & x_2^{(2)} \\ x_1^{(3)} & x_2^{(3)} \end{bmatrix}}_{\textbf{Sample}}, \ \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ y^{(3)} \end{bmatrix} \end{array}$$

• Consider a dataset drawn from the population model $Y = X + \epsilon$,

An Example Using Heteroskedastic Data

• Consider a dataset drawn from the population model $Y = X + \epsilon$, where $\epsilon \sim N(\mu = 0, \sigma^2 = X^4)$.

An Example Using Heteroskedastic Data

- Consider a dataset drawn from the population model $Y = X + \epsilon$, where $\epsilon \sim N(\mu = 0, \sigma^2 = X^4)$.
- This dataset has heteroskedasticity;

- Consider a dataset drawn from the population model $Y = X + \epsilon$, where $\epsilon \sim N(\mu = 0, \sigma^2 = X^4)$.
- This dataset has heteroskedasticity; the random error variance is not constant.

- Consider a dataset drawn from the population model $Y = X + \epsilon$, where $\epsilon \sim N(\mu = 0, \sigma^2 = X^4)$.
- This dataset has heteroskedasticity; the random error variance is not constant.
- The assumptions for multiple linear regression to draw statistical inferences and for performing hypothesis tests for the coefficient estimates are violated.

An Example Using Heteroskedastic Data

- Consider a dataset drawn from the population model $Y = X + \epsilon$, where $\epsilon \sim N(\mu = 0, \sigma^2 = X^4)$.
- This dataset has heteroskedasticity; the random error variance is not constant.
- The assumptions for multiple linear regression to draw statistical inferences and for performing hypothesis tests for the coefficient estimates are violated.
- We will use bootstrap to investigate the effect on the standard error of the coefficients reported by the lm() function of R.

Bootstrap Applications and Limitations

 Bootstrap can be used to measure variability in model estimates for modeling strategies such as ridge and lasso regression.

- Bootstrap can be used to measure variability in model estimates for modeling strategies such as ridge and lasso regression.
- Bootstrap can be used to estimate test error in a prediction setting instead of cross validation.

Bootstrap Applications and Limitations

- Bootstrap can be used to measure variability in model estimates for modeling strategies such as ridge and lasso regression.
- Bootstrap can be used to estimate test error in a prediction setting instead of cross validation.
- The number of bootstrap samples should be large to dilute the effect of resampling in the estimated distribution, which is dictated by available computational power.

Bootstrap Applications and Limitations

- Bootstrap can be used to measure variability in model estimates for modeling strategies such as ridge and lasso regression.
- Bootstrap can be used to estimate test error in a prediction setting instead of cross validation.
- The number of bootstrap samples should be large to dilute the effect of resampling in the estimated distribution, which is dictated by available computational power.
- The dataset used for drawing bootstrap samples should be representative of the original population model.

• Core idea behind the bootstrap approach.

- Core idea behind the bootstrap approach.
- Bootstrap for linear regression and comparison with standard approach.

- Core idea behind the bootstrap approach.
- Bootstrap for linear regression and comparison with standard approach.
- Limitations of the bootstrap approach.