

Funções vetoriais de uma variável

Limites, derivada e vetor tangente

Objetivos:

- Cálculo de limite de uma função vetorial em um ponto;
- Continuidade e diferenciabilidade. Propriedades da derivada;
- Cálculo e interpretação geométrica da derivada; equação paramétrica da reta tangente.

Seja $\vec{r}:I\subset\mathbb{R}\longrightarrow\mathbb{R}^n$, com $\vec{r}(t)=(x_1(t),\ldots,x_n(t))$, uma função vetorial de uma variável.

Limite: Seja $t_0 \in I \subset \mathbb{R}$ ou um extremo de algum dos intervalos em I. Dizemos que $L = (L_1, ..., L_n) \in \mathbb{R}^n$ é limite de \vec{r} , quando $t \to t_0$, i.e., $\lim_{t \to t_0} \vec{r}(t) = L$, se para todo $\varepsilon > 0$ existe um $\delta > 0$ tal que $||\vec{r}(t) - L|| < \varepsilon$, sempre que $t \in I$ e $|t - t_0| < \delta$.

Teorema:

$$\lim_{t \to t_0} \vec{r}(t) = L \iff \lim_{t \to t_0} x_i(t) = L_i, \quad \forall i = 1, \dots, n$$

Observe que cada coordenada $x_i(t)$, $i=1,\ldots,n$, é uma função escalar de uma variável, portanto seu limite será calculado com em Cálculo IA. Por exemplo:

$$\lim_{t \to 2} (t^2, t) = (4, 2).$$

Caso um dos limites $\lim_{t \to t_0} x_i(t)$, $i=1,\dots,n$, não existir, diremos que o limite $\lim_{t \to t_0} \vec{r}(t)$ não existe. Por exemplo, $\lim_{t \to 0} (t, \operatorname{sen} \frac{1}{t})$.

Caso algum dos limites $\lim_{t \to t_0} x_i(t)$, $i=1,\dots,n$, for infinito e os restantes existirem, diremos que $\lim_{t \to t_0} ||\vec{r}(t)|| = \infty$. Por exemplo, $\lim_{t \to 1} (t, \frac{1}{t-1})$.

Continuidade. Seja $t_0 \in I \subset \mathbb{R}$. Dizemos que \vec{r} é contínua em t_0 se $\lim_{t \to t_0} \vec{r}(t) = \vec{r}(t_0)$.

Dizemos que \vec{r} é contínua se \vec{r} for contínua em cada $t \in I$.

Teorema:

 \vec{r} é contínua em $t_0 \iff x_i(t)$ é contínua em $t_0, \forall i = 1, \dots, n$.

De novo, como cada coordenada $x_i(t)$, $i=1,\ldots,n$, é uma função escalar de uma variável, devemos estudar a continuidade das n funções, isto é, verificar que $\lim_{t\to t_0} x_i(t) = L_i$, para cada $i=1,\ldots,n$.

Caso alguma das funções coordenadas não for contínua em t_0 , diremos que $\vec{r}(t)$ não é contínua em t_0 . Por exemplo, $\vec{r}(t)=(\cos t,\frac{\sin t}{t})$ não é contínua em 0 (o ponto não pertence ao domínio) e sim é contínua em π (as duas funções coordenada são contínuas no ponto).

Derivada Seja $t_0 \in I$, não sendo extremo de nenhum dos intervalos de I. Definimos a derivada de \vec{r} no ponto t_0 como sendo

$$\vec{r}'(t_0) = \frac{d\vec{r}}{dt}(t_0) = \lim_{h \to 0} \frac{\vec{r}(t_0 + h) - \vec{r}(t_0)}{h},$$

desde que o limite exista.

Dizemos que \vec{r} é diferenciável em t_0 se existir a derivada em t_0 . Dizemos que \vec{r} é diferenciável se \vec{r} for diferenciável em cada t de seu domínio I.

Teorema:

 \vec{r} é diferenciável em $t_0 \iff x_i(t)$ for diferenciável em $t_0, i = 1, \ldots, n$ e

$$\vec{r}'(t_0) = (x_1'(t_0), \dots, x_n'(t_0)).$$

Caso uma das derivadas $x_i'(t_0)$, $i=1,\ldots,n$, não existir, diremos que a derivada $\vec{r}'(t_0)$ não existe e portanto a função vetorial não é diferenciável em t_0 . Por exemplo, $\lim_{t\to 0} (\sqrt{t},1-t)$.

Observação: Como a continuidade e a diferenciabilidade se dão coordenada a coordenada, é facil provar que:

Se \vec{r} é diferenciável em $t_0 \implies \vec{r}$ é contínua em t_0 .

Assim, se uma das funções coordenadas $x_i(t)$, $i=1,\ldots,n$ não for contínua em t_0 , então a função vetorial \vec{r} não seria contínua em t_0 e também não diferenciável em t_0 .

Propriedades da derivada: Sejam $\vec{r}, \vec{s}: I \subset \mathbb{R} \to \mathbb{R}^n$ funções vetoriais e $f: I \subset \mathbb{R} \to \mathbb{R}$ função escalar, todas elas diferenciáveis em I aberto. Então

- 1. $f\vec{r}$ é diferenciável e $(f\vec{r})'(t) = f'(t)\vec{r}(t) + f(t)\vec{r}'(t)$
- 2. $\vec{r} \cdot \vec{s}$ é diferenciável e $(\vec{r} \cdot \vec{s})'(t) = \vec{r}'(t) \cdot \vec{s}(t) + \vec{r}(t) \cdot \vec{s}'(t)$
- 3. Se n=3, $\vec{r}\times\vec{s}$ é diferenciável e $(\vec{r}\times\vec{s})'(t)=\vec{r}'(t)\times\vec{s}(t)+\vec{r}(t)\times\vec{s}'(t)$.

Observação: Seja $\vec{r}:I\subset\mathbb{R}\longrightarrow\mathbb{R}^n$ um caminho (I intervalo) derivável até a 2^a ordem. Se $\vec{r}(t)$ denota o vetor posição no instante t de uma partícula ρ que se move em \mathbb{R}^n , n=2,3, definimos o vetor velocidade $\vec{v}(t)$ e o vetor aceleração $\vec{a}(t)$ por

$$\vec{v}(t) = \vec{r}'(t) = \frac{d\vec{r}}{dt}(t)$$
 e $\vec{a}(t) = \vec{r}''(t) = \frac{d^2\vec{r}}{dt^2}(t)$

Definimos a velocidade escalar e a aceleração escalar por:

$$v(t) = \|\vec{v}(t)\| = \|\vec{r}'(t)\|$$
 e $a(t) = \|\vec{a}(t)\| = \|\vec{r}''(t)\| = \|\vec{v}'(t)\|$.

Interpretação geométrica de $\vec{r}'(t_0) \neq \overrightarrow{0}$. Observe que o vetor $\frac{\vec{r}(t_0+h)-\vec{r}(t_0)}{h}$ é paralelo ao vetor $\vec{r}(t_0+h)-\vec{r}(t_0)$. Fazendo h cada vez menor, tem-se que o vetor $\frac{\vec{r}(t_0+h)-\vec{r}(t_0)}{h}$ é cada vez mais próximo do vetor tangente à curva imagem no ponto $\vec{r}(t_0)$.

Figure 1: Interpretação geométrica de $\vec{r}'(t_0) \neq \overrightarrow{0}$

Portanto, podemos dizer que $\vec{r}'(t_0)$, ou vetor velocidade do caminho \vec{r} no instante t_0 , é o vetor tangente à curva $C: \vec{r}(I)$ no ponto $\vec{r}(t_0)$. Portanto, uma equação paramétrica da reta tangente à curva C no ponto $\vec{r}(t_0)$ seria

$$(x_1,\ldots,x_n)=\vec{r}(t_0)+\lambda\vec{r}'(t_0),\lambda\in\mathbb{R}$$

Exemplos

1. Determine a equação da reta tangente à trajetória de $\vec{r}(t)=(\cos t, \sin t, 1)$ no ponto $\vec{r}(\frac{\pi}{3})$.

Solução Temos $\vec{r}(\frac{\pi}{3})=(\frac{1}{2},\frac{\sqrt{3}}{2},1)$, $\vec{r}'(t)=(-\sin t,\cos t,0)$, portanto $\vec{r}'(\frac{-3}{2},\frac{1}{2},0)$. A equação da reta tangente é:

$$(x, y, z) = \vec{r}(\frac{\pi}{3}) + \lambda \vec{r}'(\frac{\pi}{3}), \lambda \in \mathbb{R}$$

Ou seja,

$$(x, y, z) = (\frac{1}{2}, \frac{\sqrt{3}}{2}, 1) + \lambda(-\frac{3}{2}, \frac{1}{2}, 0), \lambda \in \mathbb{R}.$$

2. Seja $\vec{r}(t)=a\cos(wt)\vec{i}+b\sin(wt)\vec{j}$, onde a,b,w são constantes. Mostre que $\frac{d^2\vec{r}}{dt^2}=-w^2\vec{r}$.

$$\frac{d^2\vec{r}}{dt^2} = -w^2\vec{r},$$

Como queríamos mostrar.

3. Um ponto se move no espaço de modo que $||\vec{v}(t)|| = k$, para todo t, onde k > 0 é uma constante. Prove que $\vec{v}(t) \cdot \vec{a}(t) = 0$, para todo t.

Solução Temos $||\vec{v}(t)||^2 = \vec{v}(t) \cdot \vec{v}(t)$, para todo t, donde $\vec{v}(t) \cdot \vec{v}(t) = k^2$, para todo t. Derivando os dois lados em relação a t, temos $\vec{v}'(t) \cdot \vec{v}(k) + \vec{v}(t) \cdot \vec{v}'(t) = 0$, para todo t.

Como o produto escalar é comutativo, temos $2\vec{v}(t) \cdot \vec{v}'(t) = 0$, para todo t,

Ou seja, $\vec{v}(t) \cdot \vec{a}(t) = 0$, para todo t, como queríamos provar.

Exercícios

- 1. Considere a curva definida por $\vec{r}(t)=(1+2\in(1+t),1+(1+t)^2),\,t>-1.$
 - (a) Determine uma equação cartesiana da reta tangente à curva no ponto (1,2)
 - (b) Dê uma equação cartesiana da curva.
- 2. Um objeto inicia seu movimento no ponto (0,-4) e se move as longo da parábola $y=x^2-4$, com velocidade horizontal $\frac{dx}{dt}=2t-1$. Encontre o vetor posição do objeto, os vetores velocidade e aceleração no instante t=2.

3. Seja $\vec{r}:I\longrightarrow\mathbb{R}^3$, I intervalo, derivável até a 2^a ordem em I. Suponha que existe um real λ , tal que, para todo $t\in I, \vec{r}''(t)=\lambda\vec{r}(t)$. Prove que $\vec{r}(t)\times\vec{r}'(t)$ é constante em I.

Respostas

- 1. (a) y x = 1
 - (b) $y = 1 + e^{x-1}, x \in \mathbb{R}$
- 2. $\vec{r}(2) = (2,0)$, $\vec{v}(2) = (3,12)$, $\vec{a}(2) = (2,26)$.

