Problems in Real Analysis

Sivmeng HUN

January 24, 2022

Chapter 1

Real Numbers

Example 1.1. Let A be nonempty and bounded below. Prove that $\inf(A)$ exists.

Proof 1. Define $\mathcal{L}(A)$ to be the set of all lower bounds of A. Notice that $\mathcal{L}(A)$ is bounded above. Of course, let fix $a \in A$, therefore $b \leq a$ for all $b \in \mathcal{L}(A)$. This implies that a is an upper bound of $\mathcal{L}(A)$, and thus bounded above. By AoC, it has supremum. Let's denote it's supremum by m. Thus

$$m \leq a$$
, $\forall a \in A$.

If m_0 arbitrary lower bound of A, then $m_0 \in \mathcal{L}(A)$, then we must have $m_0 \le \sup(\mathcal{L}(A)) = m$. This implies that $m = \sup(\mathcal{L}(A))$ is the greatest lower bound of A. Moreover, $\inf(A) = \sup(\mathcal{L}(A))$.

Proof 2. Let $B:=\{-a:a\in A\}$. Let ℓ be arbitrary lower bound of A. Then $\ell \leq a \iff -\ell \geq -a$ for all $a\in A$. This implies that B is bounded above. By AoC, let $-s:=\sup B$. We conclude that

$$\begin{cases} -s \ge -a, & \forall a \in A \\ \text{if } \forall a \in A, & -s_0 \ge -a \implies -s_0 \ge s. \end{cases}$$

Muliply both eqations by -1, we obtain that s is the greatest lower bound of A. Moreover $\sup(-A) = -\inf(A)$.