ID: Name:

Brac University

Semester: Spring 2023 Course Code: CSE250 Circuits And Electronics

Section: 05 Faculty: SHS

Assessment: Quiz 1
Duration: 30 minutes
Date: April 18, 2023
Full Marks: 20

- ✓ No washroom breaks. Phones must be turned off. Using/carrying any notes during the exam is not allowed.
- ✓ At the end of the exam, both the **answer script** and the **question paper** must be returned to invigilator.
- ✓ All 4 questions are compulsory. Marks allotted for each question are mentioned beside each question.
- ✓ Write your answers inside the indicated boxes (where applicable). In case you run out of room for an answer, please continue on the back of the page.
- ✓ Symbols have their usual meanings.

\blacksquare Question 1 of 4 [CO1] [2 marks]

How many nodes are there in this circuit (including the ground node)? All of the nodes must be drawn and identified in the above circuit.

Solution: 4 nodes

\blacksquare Question 2 of 4 | CO2 | | 6 marks |

(a) [2 marks] What is the power of the current source (with appropriate \pm sign and unit)?

Solution: $-250\,\mathrm{mW}$

(b) [1 mark] Based on your answer in (a), is the current source supplying/consuming power?

Solution: Supplying

(c) [2 marks] What is the power of the voltage source (with appropriate \pm sign and unit)?

Solution: $+250 \,\mathrm{mW}$

(d) [1 mark] Based on your answer in (c), is the voltage source supplying/consuming power?

Solution: Consuming

\blacksquare Question 3 of 4 [CO2] [2 marks]

Which of the following circuits are illegal connection? For each of the circuits below, put a checkmark (\checkmark) on either "Legal" or "Illegal". Explain why in each case.

(a) [$\frac{1}{2}$ mark] The following connection is: $\sqrt{\text{Legal}}$ \bigcirc Illegal

Solution: Because voltage sources can be connected in series.

(b) [$\frac{1}{2}$ mark] The following connection is: \bigcirc Legal \sqrt Illegal

Solution: Because current sources can not be connected in series.

(c) [$\frac{1}{2}$ mark] The following connection is: \bigcirc Legal \sqrt Illegal

Solution: Because voltage sources can not be connected in parallel.

(d) [$\frac{1}{2}$ mark] The following connection is: $\sqrt{\text{Legal}}$ \bigcirc Illegal

Solution: Because current sources can be connected in parallel

\blacksquare Question 4 of 4 [CO3] [10 marks]

What is the value of equivalent resistance R_{eq} ? [Must show step by step procedure of finding R_{eq}]

Solution: $50 \,\mathrm{k}\Omega$

Solution:

• Given circuit:

• $50 \text{ k}\Omega$ and $10 \text{ k}\Omega$ in series $\Rightarrow (50 + 10) \text{ k}\Omega = 60 \text{ k}\Omega$:

• $60 \text{ k}\Omega$ and $30 \text{ k}\Omega$ in parallel $\Rightarrow \left(\frac{60 \times 30}{60 + 30}\right) \text{ k}\Omega = 20 \text{ k}\Omega$:

• $40 \text{ k}\Omega$ and $20 \text{ k}\Omega$ in series $\Rightarrow (40 + 20) \text{ k}\Omega = 60 \text{ k}\Omega$:

• $60 \text{ k}\Omega$ and $30 \text{ k}\Omega$ in parallel $\Rightarrow \left(\frac{60 \times 30}{60 + 30}\right) \text{ k}\Omega = 20 \text{ k}\Omega$:

• $20 \,\mathrm{k}\Omega$ and $20 \,\mathrm{k}\Omega$ in series $\Rightarrow (20 + 20) \,\mathrm{k}\Omega = 40 \,\mathrm{k}\Omega$:

• $40 \,\mathrm{k}\Omega$ and $40 \,\mathrm{k}\Omega$ in parallel $\Rightarrow \left(\frac{40 \times 40}{40 + 40}\right) \,\mathrm{k}\Omega = 20 \,\mathrm{k}\Omega$:

• $20 \,\mathrm{k}\Omega$ and $20 \,\mathrm{k}\Omega$ in series $\Rightarrow (20 + 20) \,\mathrm{k}\Omega = 40 \,\mathrm{k}\Omega$:

• $40 \,\mathrm{k}\Omega$ and $40 \,\mathrm{k}\Omega$ in parallel $\Rightarrow \left(\frac{40 \times 40}{40 + 40}\right) \,\mathrm{k}\Omega = 20 \,\mathrm{k}\Omega$:

• $20 \,\mathrm{k}\Omega$ and $30 \,\mathrm{k}\Omega$ in series $\Rightarrow (20 + 30) \,\mathrm{k}\Omega = 50 \,\mathrm{k}\Omega$:

