CHM 1001 General Chemistry

Assignment 4

- 20 multiple-choice questions + 4 short answer questions.
- There is only one correct answer for each multiple-choice question.
- Please write your answers in the Assignment Answers Template, which is uploaded with the assignment.
- Upload your answer into Blackboard before the deadline, you can write directly in the template, or by hand and scan it into an electronic version.
- No late submission is allowed.

Deadline: 11:59 pm, Nov 15st (UTC+8)

Chapter13:
1. Which of the following aqueous solutions will have the highest boiling point?
A) 0.10 m Na ₂ SO ₄
B) 0.20 m glucose
C) 0.25 m sucrose
D) 0.10 m NaCl
E) 0.10 m SrSO4
2. In a saturated solution of a salt in water,
A) the rate of crystallization > the rate of dissolution
B) the rate of dissolution > the rate of crystallization
C) seed crystal addition may cause massive crystallization
D) the rate of crystallization = the rate of dissolution
E) addition of more water causes massive crystallization
3. A solution with a concentration higher than the solubility is
A) not possible
B) unsaturated
C) supercritical
D) saturated
E) supersaturated
4. Calculate the molarity of phosphoric acid (H ₃ PO ₄) in a 22.1% (by mass) aqueous solution.
A) 0.0522 m
B) 0.0992 m
C) 0.0248 m
D) 0.0496 m
E) The density of the solution is needed to solve the problem.
5. A solution is prepared by dissolving 0.60 g of nicotine (a nonelectrolyte) in water to make
12 mL of solution. The osmotic pressure of the solution is 7.55 atm $$ at 25 °C. The molecular
weight of nicotine is g/mol.
A) 28
B) 43
C) 50
D) 160
E) 0.60

Cha	pter	1	4
Ona	\mathcal{O}_{L}	_	. –

6. The reaction

$$CH_3-N\equiv C \rightarrow CH_3-C\equiv N$$

is a first-order reaction. At 230.3 °C, $k = 6.29 \times 10^{-4} \text{s}^{-1}$. If $[CH_3 - N = C]$ is 1.00×10^{-3} initially,

[CH₃-N \equiv C] is _____ after 1.000 × 10³ s.

- A) 5.33×10^{-4}
- B) 2.34×10^{-4}
- C) 1.88×10^{-3}
- D) 4.27×10^{-3}
- E) 1.00×10^{-6}

7. As the temperature of a reaction is increased, the rate of the reaction increases because the

- A) reactant molecules collide less frequently
- B) reactant molecules collide more frequently and with greater energy per collision
- C) activation energy is lowered
- D) reactant molecules collide less frequently <u>and</u> with greater energy per collision
- E) reactant molecules collide more frequently with less energy per collision
- 8. A catalyst can increase the rate of a reaction _____
- A) by changing the value of the frequency factor (A)
- B) by increasing the overall activation energy (E_a) of the reaction
- C) by lowering the activation energy of the reverse reaction
- D) by providing an alternative pathway with a lower activation energy
- E) All of these are ways that a catalyst might act to increase the rate of reaction.
- 9. The kinetics of the reaction below were studied and it was determined that the reaction rate did not change when the concentration of B was tripled. The reaction is _____ order in B.

$$A + B \rightarrow P$$

- A) zero
- B) first
- C) second
- D) third
- E) one-half
- 10. At elevated temperatures, methylisonitrile (CH₃NC) isomerizes to acetonitrile (CH₃CN):

$$CH_3NC(g) \rightarrow CH_3CN(g)$$

At the start of an experiment, there are 0.200 mol of reactant and 0 mol of product in the reaction vessel. After 25 min, 0.121 mol of reactant (CH₃NC) remain. There are _____ mol of product (CH₃CN) in the reaction vessel.

- A) 0.022
- B) 0.121
- C) 0.200
- D) 0.321
- E) 0.079

Chapter 15

- 11. At equilibrium, _____.
- A) all chemical reactions have ceased
- B) the rates of the forward and reverse reactions are equal
- C) the rate constants of the forward and reverse reactions are equal
- D) the value of the equilibrium constant is 1
- E) the limiting reagent has been consumed

12 The K_{eq} for the equilibrium below is 7.52×10^{-2} at 480.0 °C.

2Cl₂(g) + 2H₂O(g)
$$\rightleftharpoons$$
 4HCl(g) + O₂(g)

What is the value of $K_{\mbox{eq}}$ at this temperature for the following reaction?

2HCl (g) +
$$\frac{1}{2}$$
O₂ (g) \rightleftharpoons Cl₂ (g) + H₂O (g)

- A) 13.3
- B) 3.65
- C) -0.0376
- D) 5.66×10^{-3}
- E) 0.274

13 The equilibrium constant for the gas phase reaction

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

is
$$K_{eq} = 2.80 \times 10^2$$
 at 999 K. At equilibrium, _____.

- A) products predominate
- B) reactants predominate
- C) roughly equal amounts of products and reactants are present
- D) only products are present

E) only reactants are present

14 Of the following equilibria, only _____ will shift to the right in response to a decrease in volume.

A)
$$H_2(g) + Cl_2(g) \rightleftharpoons 2 HCl(g)$$

B)
$$2 SO_3(g) \implies 2 SO_2(g) + O_2(g)$$

C)
$$N_2(g) + 3H_2(g) \implies 2NH_3(g)$$

D)
$$2 \text{ Fe}_2\text{O}_3$$
 (s) \implies 4 Fe (s) + 3O_2 (g)

E) 2HI (g)
$$\implies$$
 H₂ (g) + I₂ (g)

15 The equilibrium constant (K_p) for the interconversion of PCl_5 and PCl_3 is 0.0121:

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

A vessel is charged with PCl₅ giving an initial pressure of 0.123 atm. At equilibrium, the partial pressure of PCl₃ is _____ atm.

- A) 0.0782
- B) 0.0455
- C) 0.0908
- D) 0.0330
- E) 0.123

16 A solution is prepared by dissolving 10.0 g of benzene (C_6H_6) in 282 g of carbon tetrachloride (CCl_4). The concentration of benzene in this solution is _____ molal. The molar masses of C_6H_6 and CCl_4 are 78.1 g/mol and 154 g/mol, respectively.

A)
$$4.54 \times 10^{-4}$$

- B) 0.454
- C) 0.0654
- D) 0.0342
- E) 3.42

17. Calculate the freezing point of a 0.09500 m aqueous solution of glucose. The molal
freezing-point-depression constant of water is 1.86 °C/m.
A) 0.0475
B) 0.106
C) -0.0562
D) -0.177
E) -0.354
18.The elementary reaction
$2NO_2(g) \rightarrow 2NO(g) + O_2(g)$
is second order in NO_2 and the rate constant at 660 K is 5.23 $M^{-1}s^{-1}$. The reaction half-life at
dia a la DIO 1 0 45 Mi
this temperature when $[NO_2]_0 = 0.45 \text{ M}$ is s.
A) 2.4
B) 7.6
C) 0.19
D) 0.13
E) 0.42
2) 0.12
19. The reaction
17. The reaction
$2NOBr(g) \rightarrow 2NO(g) + Br_2(g)$
is a second-order reaction with a rate constant of 0.80 M ⁻¹ s ⁻¹ at 11 °C. If the initial
concentration of NOBr is 0.0440 M, the concentration of NOBr after 6.0 seconds is
A) 0.0276 M
B) 0.0324 M
C) 0.0363 M
D) 0.0348 M
E) 0.0402 M
20 Capaidar the following chamical reaction:
20.Consider the following chemical reaction:
$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$
$CO(g) + 2\Pi_2(g) \leftarrow C\Pi_3O\Pi(g)$
At equilibrium in a particular experiment, the concentrations of CO and $\rm H_{2}$ were 0.15 M and
0.36, M respectively. What is the equilibrium concentration of CH ₃ OH? The value of $K_{\mbox{eq}}$ for
one, in respectively. What is the equilibrium concentration of engori. The value of Req 101

B) 7.61×10^{-3}

A) 14.5

this reaction is 14.5 at the temperature of the experiment.

C)
$$2.82 \times 10^{-1}$$

D)
$$3.72 \times 10^{-3}$$

E)
$$1.34 \times 10^{-3}$$

Short questions for assignment 4

- (1) The solubility of NaCl in water is 35.7 g NaCl/100 g H₂O. Suppose that you have 500.0 g of NaCl. What is the minimum volume of water you would need to dissolve it all? (Given: the density of water is 1.0 g/ml.
- (2) The followings are the experimental data for studying the kinetics for the reaction below. Determine the rate law and rate constant for the reaction.

$$NO_2+O_3 \rightarrow NO_3+O_2$$

Experime	Initial [NO ₂] (mol	Initial [O ₃] (mol	Initial Rate of Reaction (mol L
nt	L-1)	L-1)	$^{1}s^{-1}$)
1	2.3 x 10 ⁻⁵	3.0 x 10 ⁻⁵	1.0 x 10 ⁻⁵
2	4.6 x 10 ⁻⁵	3.0 x 10 ⁻⁵	2.1 x 10 ⁻⁵
3	4.6 x 10 ⁻⁵	6.0 x 10 ⁻⁵	4.2 x 10 ⁻⁵

(3) The decomposition of N_2O_5 is given by the following equation:

$$2 \text{ N}_2\text{O}_5(g) \rightarrow 4 \text{ NO}_2(g) + \text{O}_2$$

The following mechanism is proposed for the above reaction:

Step 1:
$$N_2O_5 \rightarrow NO_2 + NO_3$$

Step 2: $NO_2 + NO_3 \rightarrow NO_2 + NO + O_2$
Step 3: $NO + NO_3 \rightarrow 2 NO_2$

- (a) Does this mechanism plausible as written and provide the correct stoichiometry?
 - (b) Identify all intermediates in the mechanism
 - (c) Identify the molecularity of each step in the mechanism

(4) The equilibrium constant for the reaction of Chlorine gas (Cl₂) with phosphorus trichloride (PCl₃) to form phosphorus pentachloride (PCl₅) is 33 at 250°C. If an experiment started with concentrations of 0.050 M PCl₃ and 0.015 M Cl₂, what are the equilibrium concentrations of all three gases? Given:

$$Cl_2(g)+PCl_3(g) \rightleftharpoons PCl_5(g)$$