Informelle Kompetenzmessung zur standardisierten kompetenzorientierten schriftlichen Reife- und Diplomprüfung

BHS

Februar 2016

Angewandte Mathematik

Teil A + Teil B (Cluster 8)

Korrekturheft

Vergnügungspark

Möglicher Lösungsweg

a)
$$4.1 = 9 - x^2$$

 $x^2 = 4.9$
 $x = \pm 2.213...$

Der Festwagen darf rund 4,42 m breit sein.

$$\int_{3}^{3} (9 - x^2) dx = 36$$

Der Flächeninhalt der benötigten Folie beträgt 36 m².

 b) Diese Polynomfunktion hat im dargestellten Intervall 2 lokale Extremstellen. Somit muss die 1. Ableitung dieser Funktion 2 Nullstellen haben, also mindestens eine Polynomfunktion 2. Grades sein. Somit muss die gegebene Polynomfunktion mindestens Grad 3 haben.

oder:

Eine Gerade parallel zur x-Achse hat 3 Schnittpunkte mit dem Graphen der Funktion. Somit muss die gegebene Polynomfunktion mindestens Grad 3 haben.

oder:

Der Graph ist keine Gerade und keine Parabel. Somit muss die gegebene Polynomfunktion mindestens Grad 3 haben.

c) rechtwinkeliges Dreieck *FPS*: $tan(\beta) = \frac{\overline{SP}}{a} \Rightarrow \overline{SP} = a \cdot tan(\beta)$

rechtwinkeliges Dreieck
$$FQS$$
: $tan(\alpha) = \frac{\overline{SQ}}{a} \Rightarrow \overline{SQ} = a \cdot tan(\alpha)$

$$h = \overline{SP} - \overline{SQ}$$

$$h = a \cdot \tan(\beta) - a \cdot \tan(\alpha) = a \cdot (\tan(\beta) - \tan(\alpha))$$

- a) 1 × B1: für die richtige Berechnung der Breite b
 - 1 × B2: für die richtige Berechnung des Flächeninhalts
- b) 1 × D: für eine richtige Erklärung
- c) 1 × A: für das richtige Erstellen der Formel

Luftdruck - Höhenformel

Möglicher Lösungsweg

a) $p(0) = p_0 \cdot e^{-\frac{0}{7991}} = p_0 \cdot 1 = p_0$

$$\frac{p_0}{2} = p_0 \cdot e^{-\frac{h}{7991}}$$

$$h = 7991 \cdot \ln(2) = 5538,9...$$

Bei einer Seehöhe von rund 5539 m beträgt der Luftdruck genau die Hälfte von p_0 .

b)
$$f(h) = 1013 - \frac{1}{10} \cdot h$$

c) Modellierung durch eine lineare Funktion g mit $g(x) = a \cdot x + b$:

$$1040 = a \cdot 990 + b$$

$$930 = a \cdot 1980 + b$$

$$g(x) = -\frac{1}{9} \cdot x + 1150$$

$$g(1\,300) = \frac{9\,050}{9} \approx 1\,006$$

Der Luftdruck in einer Höhe von 1300 m über dem Meeresspiegel beträgt rund 1006 hPa.

- a) 1 × D: für einen richtigen Nachweis
 - 1 × A: für den richtigen Lösungsansatz zur Berechnung
 - 1 × B: für die richtige Berechnung der Seehöhe
- b) 1 × A: für das richtige Aufstellen der Funktion
- c) 1 × A: für einen richtigen Ansatz (z.B. mithilfe einer linearen Funktion bzw. ähnlicher Dreiecke)
 - 1 × B: für die richtige Bestimmung des Luftdrucks

Produktion von Rucksäcken

Möglicher Lösungsweg

- a) Es wird die Wahrscheinlichkeit für das Ereignis berechnet, dass ein zufällig kontrollierter Rucksack Nahtfehler, aber keine der beiden anderen Fehlerarten aufweist.
- b) $P(\text{"mindestens 1 Fehler"}) = 1 P(\text{"kein Fehler"}) = 1 0.98 \cdot 0.97 \cdot 0.99 = 0.0589... \approx 5.9 \%$

Bei der Berechnung der Wahrscheinlichkeit, dass ein zufällig ausgewählter Rucksack mindestens 1 dieser 3 Fehler aufweist, muss bei der Verwendung der Gegenwahrscheinlichkeit nur 1 Ereignis, nämlich das Ereignis, dass kein Fehler auftritt, betrachtet werden. Bei einer direkten Berechnung müssten die Wahrscheinlichkeiten für eine Vielzahl von Ereignissen berechnet und addiert werden.

c) Berechnung mittels Binomialverteilung: n = 100 und p = 0.03 $P(X < 3) = 0.41977... \approx 41.98 \%$

- a) 1 x C: für die richtige Angabe des Ereignisses (es muss auch klar erkennbar sein, dass die beiden anderen Fehlerarten nicht auftreten)
- b) 1 × B: für die richtige Berechnung der Wahrscheinlichkeit
 - 1 x D: für die richtige Erklärung zur Gegenwahrscheinlichkeit
- c) 1 × A: für das Erkennen des richtigen Wahrscheinlichkeitsmodells (Binomialverteilung)
 - 1 × B: für die richtige Berechnung der Wahrscheinlichkeit

Tennis

Möglicher Lösungsweg

a) Aufschlaggeschwindigkeit, die von 25 % der Teilnehmer nicht übertroffen wurde: 120 km/h

Quartilsabstand: 30 km/h

b) ähnliche Dreiecke:

$$\frac{2,3}{6,4+6,4+5,5} = \frac{h}{6,4}$$

$$h = 0.80... \text{ m} \approx 0.8 \text{ m}$$

Der Ball ist beim Netz in einer Höhe von rund 0,8 m. Somit geht der Ball ins Netz.

c) $f'(0) = \frac{2}{5}$ $\arctan(\frac{2}{5}) = 21,801...^{\circ} \approx 21,80^{\circ}$

Der Ball befindet sich im Abschlagpunkt in einer Höhe von $\frac{21}{50}$ Metern.

Lösungsschlüssel

a) $1 \times C1$: für das richtige Ablesen der Aufschlaggeschwindigkeit

 $1 \times C2$: für das richtige Ablesen des Quartilsabstands

- b) 1 × D: für die richtige Überprüfung
- c) $1 \times B$: für die richtige Berechnung des Steigungswinkels

1 × C: für die richtige Interpretation der Zahl $\frac{21}{50}$

Leistung einer Solaranlage

Möglicher Lösungsweg

a)
$$P'(6) = 0$$

$$0 = \frac{7}{162} \cdot 6^3 - \frac{7}{9} \cdot 6^2 + 2 \cdot a \cdot 6$$

$$a = \frac{14}{9}$$

b)
$$\int_0^{12} (0,007 \cdot t^4 - 0,165 \cdot t^3 + 0,972 \cdot t^2 + 1,221) dt = 67,5288$$

Die Solaranlage liefert an diesem Tag rund 67,53 kWh Energie.

c) An der Wendestelle x_0 einer Funktion f gilt stets: $f''(x_0) = 0$. Die 2. Ableitung einer Polynomfunktion 3. Grades ist eine lineare Funktion, die genau 1 Nullstelle mit Vorzeichenwechsel hat. Daher hat die Polynomfunktion 3. Grades genau 1 Wendestelle.

- a) 1 × A: für den richtigen Ansatz zur Berechnung des Koeffizienten a
 - 1 × B: für die richtige Berechnung des Koeffizienten a
- b) 1 × B: für die richtige Berechnung des Integrals
- c) 1 × D: für eine richtige Begründung

Aufgabe 6 (Teil B)

Leihwagen

Möglicher Lösungsweg

a) $1 - P(A \cap B) = 1 - 0.35 = 0.65$ Die Wahrscheinlichkeit, dass mindestens ein Modell nicht verliehen ist, beträgt 0.65.

b)		А	nicht A	Summe
	В	0,35	0,05	0,40
	nicht B	0,27	0,33	0,60
	Summe	0,62	0,38	

Die hervorgehobenen Werte in der oben stehenden Tabelle sind diejenigen, die aus der Angabe übertragen wurden.

Die Wahrscheinlichkeit, dass genau einer der beiden Leihwagen verliehen ist, beträgt 0.27 + 0.05 = 0.32.

c) Sind zwei Ereignisse voneinander unabhängig, so gilt: $P(A \cap B) = P(A) \cdot P(B)$. $P(A) \cdot P(B) = 0.62 \cdot 0.4 = 0.248$ $P(A \cap B) = 0.35$

Die beiden Ereignisse sind also nicht voneinander unabhängig: 0,35 ≠ 0,248.

Die Wahrscheinlichkeit, dass Modell 1 verliehen ist, wenn man weiß, dass Modell 2 verliehen ist, beträgt 0,875.

d)
$$P(5.6 \le X \le 8.2) = 0.90$$

Aufgrund der Symmetrie gilt: $P(X \le 8.2) = 0.95$.

$$\phi(z) = 0.95 \implies z = 1.644...$$

 $\sigma = \frac{8.2 - 6.9}{z} = 0.79... \approx 0.8$

Die Standardabweichung beträgt rund 0,8 Liter pro 100 km.

Bei einer kleineren Standardabweichung wäre die Gauß'sche Glockenkurve schmäler und höher.

- a) 1 × B: für die richtige Berechnung der Wahrscheinlichkeit
- b) 1 × A: für das richtige Übertragen der Werte in die Vierfeldertafel
 - 1 × B1: für das richtige Ermitteln der fehlenden Werte
 - 1 × B2: für das richtige Bestimmen der Wahrscheinlichkeit
- c) 1 x D: für den richtigen Nachweis der Unabhängigkeit der Ereignisse
 - 1 × C: für die richtige Beschreibung
- d) 1 x B: für das richtige Ermitteln der Standardabweichung
 - 1 × A: für das richtige Einzeichnen des Graphen der Dichtefunktion (Glockenkurve mit Maximum an der Stelle μ und Wendepunkten an den Stellen $\mu \pm \sigma$ erkennbar)
 - 1 × C: für die richtige Beschreibung

Aufgabe 7 (Teil B)

Kosten

Möglicher Lösungsweg

- a) Stückkostenfunktion: $\overline{K}(x) = a \cdot x^2 + b \cdot x + c + \frac{d}{x}$

$$d = 4$$

$$2124 = 1000a + 100b + 10c + d$$

$$0 = 4a + b - \frac{d}{4}$$

(1)
$$K(0) = 4$$
: $d = 4$
(2) $K(10) = 2124$: $2124 = 1000a + 100b + 10c + d$
(3) $\overline{K}'(2) = 0$: $0 = 4a + b - \frac{d}{4}$
(4) $\overline{K}(2) = 14$: $14 = 4a + 2b + c + \frac{d}{2}$

- b) Die x-Koordinate des Berührpunktes T ist das Betriebsoptimum. Die Steigung dieser Tangente ist die langfristige Preisuntergrenze.
- c) K''(x) = 0: $0.6x 1.2 = 0 \implies x = 2$

Die Kostenkehre liegt bei 2 ME.

Der Kostenverlauf ist für x < 2 ME degressiv.

Der Kostenverlauf ist für x > 2 ME progressiv.

d) Der gegebene Funktionsgraph kann keine Grenzkostenfunktion einer ertragsgesetzlichen Kostenfunktion beschreiben, weil eine ertragsgesetzliche Kostenfunktion streng monoton wachsend ist und daher die Grenzkostenfunktion keine negativen Funktionswerte hat.

- a) 1 × A1: für das richtige Aufstellen von Gleichung (1) und (2)
 - 1 × A2: für das richtige Aufstellen von Gleichung (3)
 - 1 × A3: für das richtige Aufstellen von Gleichung (4)
- b) 1 × C: für die richtige Interpretation der x-Koordinate und der Steigung im Sachzusammenhang
- c) 1 × B: für die richtige Berechnung der Kostenkehre
 - 1 × C: für die Angabe der richtigen degressiven und progressiven Bereiche
- d) 1 × D: für die richtige Begründung

Aufgabe 8 (Teil B)

Produktionserweiterung

Möglicher Lösungsweg

a)

$$\tan(\alpha) = \frac{b-a}{x}$$

Flächeninhalt des rechtwinkeligen Dreiecks:
$$A = \frac{(b-a) \cdot x}{2} = \frac{(b-a) \cdot (b-a)}{2 \cdot \tan(\alpha)} = \frac{(b-a)^2}{2 \cdot \tan(\alpha)}$$

b) Der Zinsanteil eines Jahres berechnet sich stets basierend auf der verbleibenden Restschuld des Vorjahres. Im 5. Jahr erfolgt eine positive Tilgung. Damit ist die Restschuld am Ende des Jahres 5 geringer als am Ende Jahres 4. Trotzdem ist der Zinsanteil im Jahr 5 geringer als jener im Jahr 6. Der Zinssatz i' muss daher größer als der Zinssatz i sein.

Restschuld im Jahr 11: 3705,01 + 9472,88 = 13177,89 Zinssatz i': 527,12 = 13177,89 $\cdot i' \Rightarrow i' = 0,0400... \approx 4,0 \%$

Jahr	Zinsanteil	Tilgungsanteil	Annuität	Restschuld
10	3705,01 · i'		148,20 + 3705,01	
13	€ 148,20	€ 3.705,01	€ 3.853,21	€0

c)

Modellierung der Preisfunktion der Nachfrage p_N mithilfe der gegebenen Punkte oder durch Ablesen aus dem Funktionsgraphen: $p_N(x) = -15 \cdot x + 75$

Wenn der Preis um 1 % steigt, sinkt die Nachfrage um $\frac{2}{3}$ %.

- a) 1 × A: für das richtige Erstellen der Formel
- b) 1 × C: für die richtige Beschreibung
 - $1 \times B1$: für die richtige Berechnung des Zinssatzes i'
 - 1 × B2: für das richtige Berechnen der letzten Zeile des Tilgungsplans
- c) 1 × A1: für das richtige Einzeichnen des Funktionsgraphen der Preisfunktion der Nachfrage
 - 1 × A2: für das richtige Aufstellen der Funktionsgleichung
 - 1 x C: für die richtige Interpretation des Werts der Punktelastizität der Nachfrage bezüglich des Preises