Department of Mathematics, IIT Madras

MA1102 Series & Matrices

Solutions to Assignment-5 (Matrix Eigenvalue Problem)

- 1. Find the eigenvalues and the associated eigenvectors for the matrices given below.
 - (a) $\begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} -2 & -1 \\ 5 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} -2 & 0 & 3 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$.
 - (d) Call the matrix A. Its characteristic polynomial is -(2+t)(3-t)(5-t).

So, the eigenvalues are $\lambda = -2$, 3, 5.

For
$$\lambda = -2$$
, $A(a, b, c)^T = -2(a, b, c)^T \Rightarrow -2a + 3c = -2a$, $-2a + 3b = -2b$, $5c = -2c$.

One of the solutions for $(a, b, c)^T$ is $(5, 2, 0)^T$. It is an eigenvector for $\lambda = -2$.

For
$$\lambda = 3$$
, $A(a, b, c)^T = 3(a, b, c)^T \Rightarrow -2a + 3c = 3a$, $-2a + 3b = 3b$, $5c = 3c$.

One of the solutions for $(a, b, c)^T$ is $(0, 1, 0)^T$. It is an eigenvector for $\lambda = 3$.

For
$$\lambda = 5$$
, $A(a, b, c)^T = 5(a, b, c)^T \Rightarrow -2a + 3c = 5a$, $-2a + 3b = 5b$, $5c = 5c$.

One of the solutions for $(a, b, c)^T$ is $(3, -3, 7)^T$. It is an eigenvector for $\lambda = 5$.

Similarly, solve others.

2. Let A be an $n \times n$ matrix and α be a scalar such that each row (or each column) sums to α . Show that α is an eigenvalue of A.

If each row sums to α , then $A(1, 1, ..., 1)^T = \alpha(1, 1, ..., 1)^T$. Thus α is an eigenvalue with an eigenvector as $(1, 1, ..., 1)^T$.

If each column sums to α , then each row sums to α in A^T . Thus A^T has an eigenvalue as α . However, A^T and A have the same eigenvalues. Thus α is also an eigenvalue of A.

3. Let $A \in \mathbb{C}^{n \times n}$ be invertible. Show that $\lambda \in \mathbb{C}$ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue of A^{-1} .

Since A is invertible, its determinant is nonzero. As det(A) is the product of eigenvalues of A, no eigenvalue of A is 0.

Also, for any nonzero
$$\lambda$$
, $Av = \lambda v$ iff $\lambda^{-1}A^{-1}Av = \lambda^{-1}A^{-1}\lambda v$ iff $\lambda^{-1}v = A^{-1}v$.

This shows that λ is an eigenvalue of A iff λ^{-1} is an eigenvalue of A^{-1} .

4. Show that eigenvectors corresponding to distinct eigenvalues of a unitary (or orthogonal) matrix are orthogonal to each other.

Let α and β be distinct eigenvalues of a unitary matrix A with corresponding eigenvectors x and y. That is, we have: $A^*A = AA^* = I$, $Ax = \alpha x$, $Ay = \alpha y$, $x \neq 0$, $y \neq 0$ and $\alpha \neq \beta$. We need to show that $x \perp y$. Now,

$$(Ax)^*(Ay) = (\alpha x)^*(\beta y) \Rightarrow x^*A^*Ay = \overline{\alpha}\beta x^*y \Rightarrow (\overline{\alpha}\beta - 1)x^*y = 0.$$

Since A is unitary, any eigenvalue of A has absolute value 1.

So,
$$|\alpha|^2 = 1 \Rightarrow \alpha \overline{\alpha} = 1 \Rightarrow \overline{\alpha} = 1/\alpha$$
.

Then
$$(\overline{\alpha}\beta - 1)x^*y = 0 \Rightarrow (\beta/\alpha - 1)x^*y = 0 \Rightarrow (\beta - \alpha)x^*y = 0$$
.

Since $\alpha \neq \beta$, we get $x^*y = 0$. That is, $x \perp y$.

5. Give an example of an $n \times n$ matrix that cannot be diagonalized.

Take $A = [a_{ij}] \in \mathbb{C}^{n \times n}$ with $a_{12} = 1$ and all other entries as 0. Its eigenvalue is 0 with

1

algebraic multiplicity as n. If A is diagonalizable, then A is similar to the zero matrix. But the only matrix similar to the zero matrix is the zero matrix!

- 6. Find the matrix $A \in \mathbb{R}^{3\times 3}$ that satisfies the given condition. Diagonalize it if possible.
 - (a) $A(a, b, c)^T = (a + b + c, a + b c, a b + c)^T$ for all $a, b, c \in \mathbb{R}$.
 - (b) $Ae_1 = 0$, $Ae_2 = e_1$, $Ae_3 = e_2$.
 - (c) $Ae_1 = e_2$, $Ae_2 = e_3$, $Ae_3 = 0$.
 - (d) $Ae_1 = e_3$, $Ae_2 = e_2$, $Ae_3 = e_1$.

(a)
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$
. Its characteristic polynomial is $-(t+1)(t-2)^2$.

So, eigenvalues are -1 and 2. Solving $A(a, b, c)^T = \lambda(a, b, c)^T$ for $\lambda = -1, 2$, we have $\lambda = -1$: a + b + c = -a, a + b - c = -b, $a - b + c = -c \Rightarrow a = -c$, b = c.

Thus a corresponding eigenvector is $(-1, 1, 1)^T$.

$$\lambda = 2$$
: $a + b + c = 2a$, $a + b - c = 2b$, $a - b + c = 2c \implies a = b + c$.

Thus two linearly independent corresponding eigenvectors are $(1, 1, 0)^T$ and $(1, 0, 1)^T$.

Take the matrix $P = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$. Then verify that $P^{-1}AP = diag(-1, 2, 2)$.

- (b) The eigenvalue 0 has algebraic multiplicity 3. If it is diagonalizable, then it is similar to 0. But the only matrix similar to 0, is 0. So, A is not diagonalizable.
- (c) Similar to (b).
- (d) Proceed as in (a) to get $P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$ and verify $P^{-1}AP = diag(-1, 1, 1)$.
- 7. Which of the following matrices is/are diagonalizable? If one is diagonalizable, then diagonalize it.

$$(a) \left[\begin{array}{cccc} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{array} \right] \quad (b) \left[\begin{array}{cccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right] \quad (c) \left[\begin{array}{cccc} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right] \quad (d) \left[\begin{array}{cccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right].$$

(a) It is a real symmetric matrix; so diagonalizable. Its eigenvalues are -2, -1, 2. Also since the 3×3 matrix has three distinct eigenvalues, it is diagonalizable.

Proceed like 6(a).

- (b) 1 is an eigenvalue with algebraic multipliity 3. If it is diagonalizable, then it is similar to I. But the only matrix similar to I is I. Hence, it is not diagonalizable.
- (c) Its eigenvalues are 2, $(1 \pm \sqrt{3} i)/2$. Since three distinct eigenvalues; it is diagonalizable. Here, P will be a complex matrix. Proceed as in 6(a).
- (d) $(1,0,-1)^T$ and $(1,-1,0)^T$ are two linearly independent eigenvectors associated with the eigenvalue -1.

2

 $(1, 1, 1)^T$ is an eigenvector for the eigenvalue 2.

Hence taking
$$P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
, we have $P^{-1}AP = diag(-1, -1, 2)$.