

✓
15
LMSC

F225968

FINAL REPORT

DUCT FLOW NONUNIFORMITIES FOR SPACE SHUTTLE MAIN ENGINE (SSME)

30 June 1988

Contract NAS8-34507

(NASA-CR-183595) DUCT FLOW NONUNIFORMITIES
FOR SPACE SHUTTLE MAIN ENGINE (SSME) Final
Report (Lockheed Missiles and Space Co.)
155 p

N89-19367

CSCL 21H

Unclass

G3/20 0146661

REPAILED TO:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MARSHALL SPACE FLIGHT CENTER, AL 35812

By

 Lockheed
Missiles & Space Company, Inc.
Huntsville Engineering Center
4800 Bradford Blvd., Huntsville, AL 35807

FOREWORD

This report was prepared by personnel of the Computational Mechanics Section of Lockheed's Huntsville Engineering Center. It constitutes final documentation of efforts performed under Contract NAS8-34507 for NASA-Marshall Space Flight Center.

The NASA-MSFC Contracting Officer's Representative for this research study was Dr. P.K. McConaughey, ED32.

CONTENTS

<u>Section</u>		<u>Page</u>
1	INTRODUCTION	1-1
2	TECHNICAL APPROACH	2-1
	2.1 General	2-1
	2.2 Elliptical Two-Duct Manifold Code	2-2
	2.3 Strut in Annulus	2-7
3	RESULTS	3-1
	3.1 Manifold Grid Code	3-1
	3.1.1 Geometry and Grid	3-1
	3.1.2 Computer Code	3-10
	3.1.3 Code Implementation	3-13
	3.2 Strut Laminar Computation	3-14
4	CONCLUDING REMARKS	4-1
5	REFERENCES	5-1

Appendices

A	HGM Grid Code Input Guide	A-1
B	HGM Grid Code Input Listing	B-1
C	HGM Grid Code Listing	C-1
D	HGM Output Rewrite Listing	D-1

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
2-1	Hexahedral Element Showing Local Intrinsic Coordinates	2-2
3-1	Schematic Showing Outer Wall of HGM Geometry that has been Modeled	3-1
3-2	Schematic Showing First Two Zones (Zone 1 Left; Zone 2, Right) into Which the Two-Duct HGM was Subdivided	3-3
3-3	Schematic Showing Zones 3, Top, and 4, Middle, and 5 of the Two-Duct HGM Model	3-4

CONTENTS (Concluded)

<u>Figure</u>		<u>Page</u>
3-4	Cartesian Coordinate System Relative to Which Positions of All Nodes are Referred	3-5
3-5	Grid Plots for Inner and Outer Surfaces of Zones 1 and 2 as Well as Internal Grid at the Common Place of Intersection	3-6
3-6	Grid Plots of TAD Internal Grid (Bottom) and Grid Distribution of Inner and Outer Surfaces	3-7
3-7	Surface and Cross-Section Node Distribution for Transfer Duct	3-8
3-8	Grid Plot Showing Node Distribution on Outer Wall of Zones 1, 2, and 3 Displaying Continuity of Grid Lines from One Zone to Another	3-9
3-9	Primary Calling Sequence for Two-Duct HGM Grid Code	3-11
3-10	Secondary Calling Sequences for Two-Duct HGM Grid Code	3-12
3-11	Grid Plots Showing C-Grid Used in each of the 31 Circumferential Planes (Top) and Partial Surface Grids of Strut and Inner Outer Wall	3-15
3-12	Static Pressure Contours (Top) and Velocity Magnitude Contours for Strut in Annular Channel near Inner Wall	3-17
3-13	Static Pressure Contours (Top) and Velocity Magnitude Contours for Strut in Annular Channel at Mid-Channel	3-18
3-14	Static Pressure Contours (Top) and Velocity Magnitude Contours for Strut in Annular Channel near Upper Wall	3-19
3-15	Static Pressure Contours (Top) and Velocity Magnitude Contours for Entire Length of Computational Circum- ferential Plane at Mid-Channel	3-20
3-16	Velocity Vectors in near Wake Region in a Central Plane for Case of Strut in Annular Channel (Mean Flow is from Left to Right)	3-21
3-17	Velocity Vectors (Top) and Velocity Magnitude Contours in Central Radial Plane in near Wake Region Behind Strut in Annular Channel (Mean Flow is from Left to Right)	3-22
3-18	Particle Traces for Flow Past Strut in Annular Channel Showing Paths of Particles Released near Front of Strut in a Plane near the Inner Wall (Top), one Quarter Channel Height Above Inner Wall (Bottom Left) and Mid-Channel	3-23
3-19	Particle Traces of Particles Released near Rear Surface of Strut	3-24
3-20	Particle Traces of Particles Released near Centrl Radial Plane but just Downstream of Strut Rear Surface	3-25
3-21	Surface Pressure Contours on Strut Front Surface (Left, Flow into Page) and Side Surface (Right, Flow Left to Right)	3-26

1. INTRODUCTION

This report describes results of efforts by personnel of the Computational Mechanics Section at the Lockheed-Huntsville Engineering Center to assist the computational staff of NASA-MSFC in developing analytical capabilities for modeling hot gas flow on the fuel side of the SSME. The report specifically details work completed subsequent to the interim technical report submitted in August 1985 (Ref. 1). Computational and experimental results reported in Ref. 1 will not be reiterated here, and the reader is referred to that earlier document for those details.

Emphasis in this final report is placed on construction and documentation of a computational grid code for modeling an elliptical two-duct version of the Space Shuttle Main Engine (SSEM) fuel side hot gas manifold (HGM). Also computational results for flow past a support strut in an annular channel. These three-dimensional results constitute the initial phase of a more detailed study of flow through the SSME/HGM strut region being completed by Lockheed under contract NAS8-37359 (Ref. 2).

The approach for both of the aforementioned tasks is presented in Section 2. Sample results are contained in Section 3. Included in Appendixes A, B, and C are a brief input guide for the two-duct HGM code, a listing of the code input file, and a source listing of the grid code itself.

2. TECHNICAL APPROACH

2.1 GENERAL

The two-duct HGM grid generation uses as its fundamental building block the flexible algebraic techniques coded by the Lockheed Computational Mechanics Section into its own in-house geometry code. These techniques employ vector algebra, analytical geometry and transfinite interpolation to perform the computations in local curvilinear coordinates and generate the grid of discrete points in Cartesian coordinates. With this as a foundation, special subroutines were constructed for describing particular surface shapes for this complicated structure such as the hold in the bowl and the fairing for the transfer duct. The combination of these codings was assembled, debugged, streamlined, and well commented for use by NASA-MSFC computational engineers.

Early computational fluid dynamics results, reported in the interim report for this contract (Ref. 1) were performed with a finite difference code employing an explicit solution algorithm. Steady state was obtained from a trial initialization by performing successive iterations in time until all transients have involved away. The size of the time step used in this procedure is a strong function of the density of points in the grid. The higher the density, the smaller the allowable time step. For this reason, relatively coarse grids were used, even for regions near the solid walls.

Experience has dictated that much larger nodal densities near the walls are desirable for more accurate computational predictions. This precludes using an explicit code because of the unnecessarily large number of time steps required to obtain a steady state solution. The implicit code INS3D, developed at NASA-Ames (Ref. 3), was then chosen for additional SSME related computations. The implicit solution algorithm incorporated into this code allows for

much larger time steps even for grids of large nodal densities. The results reported in Section 3.2 were obtained with INS3D. A brief description of this code, and how it was applied, is contained in Section 2.3.

2.2 ELLIPTICAL TWO-DUCT MANIFOLD CODE

Nearly all computational codes which are available to numerically solve the three-dimensional fluid flow equations are designed to be applied to a well structured grid model of the flow region. To perform the calculations, generalized independent variables are introduced which transform the physical coordinates, (x, y, z), into general curvilinear coordinates, (η_1, η_2, η_3). Thus, the physical domain must be gridded as a single or series of hexahedral zones described by eight corner points, 12 edges, and six surfaces. Such an arbitrary zone is shown in Fig. 2-1.

Fig. 2-1 Hexahedral Element Showing Local Intrinsic Coordinates

The approach used in the current study was to provide an algebraic grid generation code which would produce the Cartesian coordinates (x, y, z), for points along the lines of constant (η_1, η_2, η_3). Basic mathematical techniques taken from analytic geometry and vector algebra were employed to describe a hexahedral zone in terms of piecewise continuous analytic functions which represent the zonal edges and surfaces.

An intrinsic curvilinear coordinate system can be produced by mapping a unit cube onto the simply connected hexahedral zone. What is needed is a transformation function that will map a unit cube in (η_1, η_2, η_3) space univalently onto the hexahedral volume of interest thus producing the required intrinsic coordinate system. A procedure which produces the desired result is referred to as either the method of transfinite interpolation or multivariate blending function interpolation (Ref. 1). A brief description of this method follows.

Let $F(\eta_1, \eta_2, \eta_3)$ be a vector-valued functional representing the region R of interest in curvilinear space. Then as (η_1, η_2, η_3) range over R , F traces out the region in Euclidean space (x, y, z). Also let ϕ, ψ , and λ be blending functions which obey the cardinality conditions:

$$\begin{aligned}\phi_i(\eta_1=1) &= \begin{cases} 1 & \text{if } i = 1 \\ 0 & \text{if } i \neq 1 \end{cases} \\ \psi_j(\eta_2=m) &= \begin{cases} 1 & \text{if } j = m \\ 0 & \text{if } j \neq m \end{cases} \\ \lambda_k(\eta_3=n) &= \begin{cases} 1 & \text{if } k = n \\ 0 & \text{if } k \neq n \end{cases}\end{aligned}$$

The simplest form of blending functions meeting these conditions are

$$\begin{array}{ll} \phi_o(\eta_1) = 1 - \eta_1 & \phi_1(\eta_1) = \eta_1 \\ \psi_o(\eta_2) = 1 - \eta_2 & \psi_1(\eta_2) = \eta_2 \\ \lambda_o(\eta_3) = 1 - \eta_3 & \lambda_1(\eta_3) = \eta_3 \end{array}$$

Then a trilinearly blended interpolant of F , which will map a unit cube onto the region R is given by

$$\begin{aligned}
 U(\eta_1, \eta_2, \eta_3) &= \begin{bmatrix} x(\eta_1, \eta_2, \eta_3) \\ y(\eta_1, \eta_2, \eta_3) \\ z(\eta_1, \eta_2, \eta_3) \end{bmatrix} \\
 &= (1-\eta_1)F(0, \eta_2, \eta_3) + \eta_1 F(1, \eta_2, \eta_3) \\
 &\quad + (1-\eta_2)F(\eta_1, 0, \eta_3) + \eta_2 F(\eta_1, 1, \eta_3) \\
 &\quad + (1-\eta_3)F(\eta_1, \eta_2, 0) + \eta_3 F(\eta_1, \eta_2, 1) \\
 &\quad - (1-\eta_1)(1-\eta_2)F(0, 0, \eta_3) - (1-\eta_1)\eta_2 F(0, 1, \eta_3) \\
 &\quad - \eta_1(1-\eta_2)F(1, 0, \eta_3) - \eta_1\eta_2 F(1, 1, \eta_3) \\
 &\quad - (1-\eta_1)\eta_3 F(0, \eta_2, 0) - (1-\eta_1)\eta_3 F(0, \eta_2, 1) \\
 &\quad - \eta_1(1-\eta_3)F(1, \eta_2, 0) - \eta_1\eta_3 F(1, \eta_2, 1) \\
 &\quad - (1-\eta_2)(1-\eta_3)F(\eta_1, 0, 0) - (1-\eta_2)\eta_3 F(\eta_1, 0, 1) \\
 &\quad - \eta_2(1-\eta_3)F(\eta_1, 1, 0) - \eta_2\eta_3 F(\eta_1, 1, 1) \\
 &\quad + (1-\eta_1)(1-\eta_2)(1-\eta_3)F(0, 0, 0) + (1-\eta_1)(1-\eta_2)\eta_3 F(0, 0, 1) \\
 &\quad + (1-\eta_1)\eta_2(1-\eta_3)F(0, 1, 0) + (1-\eta_1)\eta_2\eta_3 F(0, 1, 1) \\
 &\quad + \eta_1(1-\eta_2)(1-\eta_3)F(1, 0, 0) + \eta_1(1-\eta_2)\eta_3 F(1, 0, 1) \\
 &\quad + \eta_1\eta_2(1-\eta_3)F(1, 1, 0) + \eta_1\eta_2\eta_3 F(1, 1, 1)
 \end{aligned}$$

where

$F(0, \eta_2, \eta_3)$ represents a surface with $\eta_1=0$, etc.

$F(0, 0, \eta_3)$ represents an edge with $\eta_1=\eta_2=0$, etc.

$F(0, 0, 0)$ represents a point with $\eta_1=\eta_2=\eta_3=0$, etc.

In two dimensions this equation performs a bilinear interpolation over an arbitrary region consisting of four distinct corners simply connected by four edges, where

$$F(0, \eta_2) = \begin{bmatrix} x \\ y \end{bmatrix} \text{ along EDGE}_4$$

$$F(0,0) = \begin{bmatrix} x \\ y \end{bmatrix} \text{ at POINT}_1$$

$$F(1, \eta_2) = \begin{bmatrix} x \\ y \end{bmatrix} \text{ along EDGE}_2$$

$$F(0,1) = \begin{bmatrix} x \\ y \end{bmatrix} \text{ at POINT}_4$$

$$F(\eta_1, 0) = \begin{bmatrix} x \\ y \end{bmatrix} \text{ along EDGE}_1$$

$$F(1,0) = \begin{bmatrix} x \\ y \end{bmatrix} \text{ at POINT}_2$$

$$F(\eta_1, 1) = \begin{bmatrix} x \\ y \end{bmatrix} \text{ along EDGE}_3$$

$$F(1,1) = \begin{bmatrix} x \\ y \end{bmatrix} \text{ at POINT}_3$$

and the interpolation equation for F could be rewritten as

$$\begin{aligned} U = \begin{bmatrix} x \\ y \end{bmatrix} &= (1-\eta_1)\text{EDGE}_4 + \eta_1\text{EDGE}_2 + (1-\eta_2)\text{EDGE}_1 + \eta_2\text{EDGE}_3 \\ &\quad - (1-\eta_1)(1-\eta_2)\text{POINT}_1 - (1-\eta_1)\eta_2\text{POINT}_4 \\ &\quad - \eta_1(1-\eta_2)\text{POINT}_2 - \eta_1\eta_2\text{POINT}_3 \end{aligned}$$

In this equation EDGE_4 represents a vector-valued functional along edge four, etc. Examination of this equation shows that it performs linear interpolations between EDGE_1 and EDGE_3 and between EDGE_2 and EDGE_4 , hence the term bilinear interpolation. Hence, if the functional for each edge can be derived and is analytic, a grid or mesh of node points can be generated by substituting values of η_1 and η_2 into the equation.

In three dimensions the general equation above performs trilinearly blended interpolation over an arbitrary region consisting of eight distinct corner points simply connected by 12 edges, where

$$F(0, \eta_2, \eta_3) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ on } SIDE_5, \text{ etc.}$$

$$F(0, 0, \eta_3) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ along } EDGE_5, \text{ etc.}$$

$$F(0, 0, 0) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ at } POINT_1, \text{ etc.}$$

and which can be rewritten as

$$\begin{aligned} U &= \begin{bmatrix} x \\ y \\ z \end{bmatrix} \\ &= (1-\eta_1)SIDE_5 + \eta_1SIDE_6 + (1-\eta_2)SIDE_2 + \eta_2SIDE_4 + (1-\eta_3)SIDE_1 + \eta_3SIDE_3 \\ &\quad - (1-\eta_1)(1-\eta_2)EDGE_5 - (1-\eta_1)\eta_2EDGE_8 - \eta_1(1-\eta_2)EDGE_6 - \eta_1\eta_2EDGE_7 \\ &\quad - (1-\eta_1)(1-\eta_3)EDGE_4 - (1-\eta_1)\eta_3EDGE_{12} - \eta_1(1-\eta_3)EDGE_2 - \eta_1\eta_3EDGE_{10} \\ &\quad - (1-\eta_1)(1-\eta_3)EDGE_1 - (1-\eta_2)\eta_3EDGE_9 - \eta_2(1-\eta_3)EDGE_3 - \eta_2\eta_3EDGE_{11} \\ &\quad + (1-\eta_1)(1-\eta_2)(1-\eta_3)POINT_1 + (1-\eta_1)(1-\eta_2)\eta_3POINT_5 + (1-\eta_1)\eta_2(1-\eta_3)POINT_4 \\ &\quad + (1-\eta_1)\eta_2\eta_3POINT_8 + \eta_1(1-\eta_2)(1-\eta_3)POINT_2 + \eta_1(1-\eta_2)\eta_3POINT_6 \\ &\quad + \eta_1\eta_2(1-\eta_3)POINT_3 + \eta_1\eta_2\eta_3POINT_7 \end{aligned}$$

where $SIDE_i$, $EDGE_j$, $POINT_k$ represent vector-valued functionals on the surfaces, along the edges, and at the corner points, respectively.

This equation reduces to the previous two-dimensional analog along any flat surface or along any surface in which a straight line can be drawn between any two opposing edges such that the line lies entirely within the surface.

With the general transformation, any point in local coordinates η_1 , η_2 , η_3 can be related to the physical Cartesian coordinates x , y , z . The entire grid of discrete points is generated in the HGM code using this concept. This general interpolant can accommodate any stretching function for concentrating points near walls or regions of large gradients. Furthermore, the edges of the hexahedral can be segmented allowing another means of grid spacing control.

2.3 STRUT IN ANNULUS

Previous SSME/HGM computations reported earlier by Lockheed (Refs. 1 and 4) and other investigations (Ref. 5) have either not modeled the support strut region in the manifold or poorly approximated its influence on the flowfield environment. It was for this reason that NASA requested an additional computations be made which accurately included these obstacles in the flow path at the entrance to the fuel bowl of the manifold. Initial work on this task was performed under this contract and is being reported here. Results of follow-on work are presented in the final report for NAS8-37359 (Ref. 2).

The approach was to generate a computational grid consisting of a single strut in an annular channel with the dimensions of the strut size, channel width, and channel curvature being approximately the same as those in the actual SSME/HGM. Numerical experiments were then to be performed using a three-dimensional incompressible Navier-Stokes code which employed an implicit solution algorithm. The Lockheed in-house algebraic grid code was used to model the geometry and INS3D was used to obtain flowfield solutions.

The INS3D code solves the three-dimensional incompressible Navier-Stokes equations in primitive variables. An implicit finite difference operator is used in a general curvilinear coordinate system. The solution procedure uses the standard approximate factorization scheme. The pressure field solution is based on the concept of adding a time-like pressure term into the continuity equation via an artificial compressibility factor. This approach was first introduced by Chorin (Ref. 6) and later adopted by Steger and Kutler (Ref. 7) using an implicit approximate factorization scheme by Beam and Warming (Ref. 8). It is from these earlier developments that INS3D evolved (Ref. 3).

Values of the artificial compressibility factor are bounded in order not to influence the steady state mass conservation. In the INS3D methodology mass conservation is of crucial importance if a stable solution is to result. Since the continuity equation is modified to obtain a hyperbolic-type equation, pressure waves of finite speed will be introduced. The speed of propagation of these pressure waves depends on the magnitude of the compressibility parameter. When the pressure waves travel through a given location a pressure gradient is created there. Near boundaries, the viscous boundary layer must respond to this pressure fluctuation. To accelerate convergence and avoid slow fluctuations it is desirable that the time required for pressure waves to propagate through the region of interest be much less than the time needed for the boundary layer to fully adjust itself. This condition provides for a lower bound on the artificial compressibility factor. The upper bound on this factor comes not from the physics but from the effects of the approximate factorization of the governing equations. When the finite difference form of the equation is factored, higher order cross-differencing terms are added to the left-hand side of the equation. These added terms must be made smaller than the original terms everywhere in the computational domain. This condition results in an upper bound on the compressibility factor.

It is well known in the computational fluid dynamics community that the approximate factorization schemes which employ alternating direction type implicit methods have stability problems in three dimensions (Refs. 9 through 12). The INS3D code satisfactorily overcomes this difficulty by providing second and fourth order smoothing terms to the algorithm to ensure stability without adversely affecting mass conservation.

Currently, the Computational Mechanics Section at Lockheed-Huntsville has the INS3D code operational on the Cray-XMP at NASA-MSFC and NASA-Ames as well as on its own VAX 11/785.

ORIGINAL PAGE IS
OF POOR QUALITY

3. RESULTS

3.1 MANIFOLD GRID CODE

3.1.1 Geometry and Grid

A schematic representation showing the construction of the geometry which has been modeled is presented in Fig. 3-1. Only the outer wall is displayed and two perspectives are shown. These solid surface plots were generated with the actual output from the grid code. Only half of the manifold is represented since, due to the plane of symmetry which divides the two transfer ducts, only half need be computationally modeled.

Fig. 3-1 Schematic Showing Outer Wall of HGM Geometry that has been Modeled

The geometry is generated in five separate pieces or zones. The five zones are shown in Figs. 3-2 and 3-3. Each zone has a general hexahedral shape, and in these figures all of the eight corner points of each are clearly indicated. Figure 3-4 shows the Cartesian coordinate system relative to which the position of each node in the grid is referenced. Except for the hole perimeters in the outer wall of Zone 2 and the fairing at the entrances to Zone 3, the edges of each zone can be described as piecewise continuous segments composed of either straight lines, circular arcs, or elliptical arcs. In addition, excluding the two special regions previously mentioned, the surfaces of each zone can be generated by rotating an edge about an appropriate axis. For Zones 1, 2, 4, and 5, the X axis is the axis of revolution.

Zones 1 and 2 make up the bowl section of the manifold and contain 58 nodes in the x-direction, from bowl entrance to rear of the bowl, 109 nodes in the circumferential direction and 21 nodes between the inner and outer surfaces. Distribution of nodes in the bowl is presented in Fig. 3-5.

Zones 4 and 5, the turnaround duct (TAD), are composed of 71 nodes in the streamwise direction, 109 nodes in the circumferential direction (0 to 180 deg), and 21 nodes across the duct between inner and outer surfaces. Two perspectives showing this nodal distribution are shown in Fig. 3-6.

Zone 3 is the elliptical transfer duct portion. This duct has been generated with 59 nodes along the duct axis and 44 x 30 nodes in a cross section. Surface and cross-section grids for this zone are given in Fig. 3-7. Figure 3-8 displays a view of the manifold outer wall grid to show grid continuity from one zone to another. To summarize, each zone contains the following number of nodal points:

- Zones 1 and 2 (Bowl): 132,762
- Zones 3 (Transfer Duct): 77,880
- Zones 4 and 5 (TAD): 162,519
- Manifold total Nodes: 373,161

ORIGINAL PAGE IS
OF POOR QUALITY

Fig. 3-2 Schematic Showing First Two Zones (Zone 1 Left; Zone 2, Right) into Which the Two-Duct HGM was Subdivided

ORIGINAL PAGE IS
OF POOR QUALITY

LMSC-HEC TR F225968

Fig. 3-3 Schematic Showing Zones 3, Top, and 4, Middle,
and 5 of the Two-Duct HGM Model

Fig. 3-4 Cartesian Coordinate System Relative to
Which Positions of All Nodes are Referred

ORIGINAL PAGE IS
OF POOR QUALITY

Fig. 3-5 Grid Plots for Inner and Outer Surfaces of Zones 1 and 2
as Well as Internal Grid at the Common Place of Intersection

ORIGINAL PAGE IS
OF POOR QUALITY

Fig. 3-6 Grid Plots of TAD Internal Grid (Bottom) and Grid Distribution on Inner and Outer Surfaces

ORIGINAL PAGE IS
OF POOR QUALITY

Fig. 3-7 Surface and Cross-Section Node Distribution
for Transfer Duct

ORIGINAL PAGE IS
OF POOR QUALITY

Fig. 3-8 Grid Plot Showing Node Distribution on Outer Wall of Zones 1, 2, and 3 Displaying Continuity of Grid Lines from One Zone to Another

The internal grid resolution presented in the previous figures is adequate for a laminar viscous computation but would need to be modified for application to a turbulent computation. The procedure for doing this will be described in Section 3.1.4.

3.1.2 Computer Code

A concise input guide and an input listing for the grids displayed in Figs. 3-4 through 3-8 is also included in Appendixes A and B, respectively. A source listing of the two-duct HGM geometry code is provided in Appendix C.

Figure 3-9 shows the primary calling sequence. For completeness, secondary calling sequences are given in Fig. 3-10. A brief explanation of the function of the major subroutines in the primary calling sequence follows:

- INITIAL Reads the first two lines of the input file, initializes coefficient arrays, and defines logical unit numbers and counters.
- INPUT Reads the remainder of the input file and sets all parameters to be used in remaining subroutines.
- MESH The controlling subroutine for the generation of the spatial coordinates of each node in each zone.
- ETABC Calculates the values of η_1 , η_2 , η_3 along the I, J, and K directions for each hexahedral shaped section of each zone.
- EDGES Determines the Cartesian coordinates for nodes along each edge of each side of each section of each zone using the bilinear/trilinear interpolation scheme.
- SURFACE Determines the Cartesian coordinates of nodes on a three-dimensional surface using the trilinear interpolation scheme. Here, all outer and internal surface nodes are calculated from the previously determined edge distributions.
- OUTPUT Provides printed output and stores geometry in File 20 for use in plotting or as input to an integration code.

The output to File 20 is in the format to be input as a multi-grid geometry file to the PLOT3D plotting code.

Fig. 3-9 Primary Calling Sequence for Two-Duct HGM Grid Code

Fig. 3-10 Secondary Calling Sequences for Two-Duct HGM Grid Code

The grid code is written in standard FORTRAN. However, the listing provided in Appendix C is a VAX 11/785 version and could contain some generic VAX statements which would have to be translated if used on a different machine.

3.1.3 Code Implementation

To implement the HGM geometry code as it appears in the listing of Appendix C, the input listing of Appendix B must correspond to logical Unit 5. Unit 6 must be assigned to the written output and Unit 20 to the geometry file which will contain the x, y, z coordinates for each node in each zone.

The input file is labeled on the card image which begins each zone input to indicate the zone being described by the succeeding card images. These zone labels correspond to those shown in Figs. 3-2 and 3-3. The input file, as listed in Appendix B, will create a multi-grid file containing all five zones. Using this input is, of course, possible only if run on a computer with sufficient CPU and/or disk storage. Alternatively the bowl, transfer duct, and TAD can be run separately by changing the second parameter on card image two, of the input, from a 6 to a 1, 3, and 4, respectively.

A detailed description of the input file to the code is provided in Appendix A. Modifications to the geometry can be facilitated by studying the input guide while observing both the input file and the detailed grid pictures presented in Figs. 3-3 through 3-8. Redistributions of nodes can be accomplished by making minor modifications to the input files. For example, for a turbulent computation if the nodes in Zone 4 near the wall require redistribution closer to the wall then a change would need to be made to card type 9 on the last line of the input for that zone. The 6.0 appearing in the n_2 position could be changed to 10.0 (see page A-10).

Dimensioning in the program has been kept to a minimum. The largest dimensioned array in the bulk of the code is NODENUM(5000). At the very end of all computations the PLOT3D file can be generated by employing the program in Appendix D.

In this subroutine the x, y, z coordinate arrays are each dimensioned to 200,000. The 5,000 corresponds to twice the maximum number of nodes in a plane perpendicular to the marching direction (η direction input on card 7) for creating the geometry. The 200,000 must be equal to or greater than the number of nodes in the largest zone, which is zone 5, the second half of the TAD. In Zones 1, 2, 4, and 5, the direction of η_1 is from TAD entrance to bowl back wall; the η_2 direction is from inner to outer wall; and η_3 is directed from side opposite transfer duct circumferentially. In zone 3, η_2 increases in the streamwise direction from bowl outward, and $\eta_1 \times \eta_3$ form the cross planes in the duct.

Note that the code is designed to output each zone of the manifold so that each has one cross plane in common with the preceding zone(s). This must be remembered for incorporating the grid into a flowfield solver code. The geometry must be integrated in a multi-block or multi-zone fashion. If the computer available has large enough core memory or if it is a large virtual machine then Zones 1 and 2, and 4 and 5 can easily be combined into two larger zones since at all common planes the nodal positions match exactly. It is not recommended that zones 1, 2, 4, and 5 be combined into one zone. This could easily be accomplished, since continuity in all three η directions would be maintained, but the total number of nodes would be untenable on all but a Cray II or an ETA 10 machine.

3.2 STRUT LAMINAR COMPUTATION

The Lockheed-Huntsville algebraic computational grid generation code was employed to generate a model for a single support strut in an annular channel. A C-type grid was selected for nodal distribution in parallel annular surfaces and is shown in Fig. 3-11. This is a 26 x 201 node structure with stretching toward the strut surface. The three-dimensional model consisted of 31 such surfaces in concentric cylindrical fashion with stretching toward inner and outer surfaces. Figure 3-11 also shows part of the solid surfaces in the model. The total number of grid points in the computational domain was 162,006.

ORIGINAL PAGE IS
OF POOR QUALITY

Fig. 3-11 Grid Plots Showing C-Grid Used in Each of the 31 Circumferential Planes (Top) and Partial Surface Grids of Strut and Inner Outer Wall

The basic INS3D code was modified for treating the sides of the computational domain as periodic boundaries and for special treatment of the common grid plane at the center of the grid behind the strut. At the entrance plane, the velocity components were initialized for fully developed laminar channel flow at zero degree incidence to the strut. Velocity and pressure were then held fixed throughout the computation. A nondimensional time step of 0.025 was used and a steady solution for Reynolds number of 500 was obtained in 800 iterations. Figures 3-12 to 3-21 present various characteristics of this steady laminar solution. Velocity magnitude contours and static pressure contours in the region surrounding the strut in concentric cylindrical surfaces near the inner wall, center of annulus, and near outer wall are shown in Figs. 3-12, 3-13, and 3-14, respectively. An expanded view of the same information for the central annular surface appears in Fig. 3-15. The velocity contours in the figure clearly shows the extension of the strut wake region several strut lengths downstream. In the SSME/HGM the support struts are at the entrance to the bowl (exit of the TAD). Even though these current results are laminar and steady, the influence of the strut wake is shown to be significant and could cause a significant difference in the predicted flow through the transfer ducts.

More details of the strut near wake region for a central circumferential surface and central radial surface are given in Figs. 3-16 and 3.17. The influence of the wake flow pattern on flow particles originating upstream of the wake is indicated by the particle traces shown in Fig. 3-18. To further illustrate the three-dimensional character of this region of the wake Fig. 3-19 and 3-20 trace particle paths beginning at positions in the wake itself. Clearly, if the wake were unsteady, as it is in the actual HGM, these complicated flow patterns will move into the bowl, interact, and exit through the transfer ducts.

For completeness, surface pressure distribution on the strut itself is presented in Fig. 3-21.

Fig. 3-12 Static Pressure Contours (Top) and Velocity Magnitude Contours for Strut in Annular Channel near Inner Wall

Fig. 3-13 Static Pressure Contours (Top) and Velocity Magnitude Contours for Strut in Annular Channel at Mid-Channel

Fig. 3-14 Static Pressure Contours (Top) and Velocity Magnitude Contours for Strut in Annular Channel near Upper Wall

Fig. 3-15 Static Pressure Contours (Top) and Velocity Magnitude Contours for Entire Length of Computational Circumferential Plane at Mid-Channel

Fig. 3-16 Velocity Vectors in near Wake Region in a Central Plane for Case of Strut in Annular Channel (Mean Flow is from Left to Right)

Fig. 3-17 Velocity Vectors (Top) and Velocity Magnitude Contours in Central Radial Plane in near Wake Region Behind Strut in Annular Channel (Mean Flow is from Left to Right)

Fig. 3-18 Particle Traces for Flow Past Strut in Annular Channel
Showing Paths of Particles Released near Front of Strut
in a Plane near the Inner Wall (Top), one Quarter Channel
Height Above Inner Wall (Bottom Left) and Mid-Channel

Fig. 3-19 Particle Traces of Particles Released near Rear Surface of Strut

Fig. 3-20 Particle Traces of Particles Released near Central Radial Plane but just Downstream of Strut Rear Surface

Fig. 3-21 Surface Pressure Contours on Strut Front Surface
(Left, Flow into Page) and Side Surface (Right,
Flow Left to Right)

4. CONCLUDING REMARKS

An elliptical two-duct SSME fuel side hot gas manifold geometry code has been developed for use by the Computational Fluid Dynamics Staff of NASA-MSFC. This report describes the methodology of the program, makes recommendations on the implementation, and provides an input guide, input deck listing, and source code listing for the code. The listing is well commented in order to assist the user in following its development and logic. A magnetic tape containing the source deck will be provided, upon request, to NASA-MSFC for use on its EADS network.

The NASA-Ames three-dimensional incompressible Navier-Stokes computational fluid dynamics code, INS3D, was obtained and implemented on the MSFC IBM/Cray computer facility. A low Reynolds number laminar calculation was performed with this code on a 162,006 node model of a strut in an annular channel. The dimensions were approximately those of the SSME/HGM fuel bowl entrance region which contains 12 such support struts circumferentially distributed in hot gas flow path. The computation was made as an initial step in a thorough numerical investigation of the influence of these obstacles on the flow exiting the manifold and impinging on the main injector LOX posts.

Results of this steady laminar computation indicate that a complete three-dimensional analysis of the whole manifold would require a "strut zone" for reliable predictions of the transfer duct exit plane flow structure. This is especially evident since flow visualization results have shown that the duct flow is largely unsteady (Ref. 13).

5. REFERENCES

1. Thoenes, J., "Duct Flow Nonuniformities Study for Space Shuttle Main Engine," LMSC-HEC TR F042555, Lockheed Missiles & Space Company, Huntsville, Ala., August 1985.
2. Burke, R.W., "Duct Flow Nonuniformities - Effect of Struts in SSME HGM II+," LMSC-HEC TR F225961, Lockheed Missiles & Space Company, Huntsville, Ala., July 1988.
3. Kwak, D., J.L.C. Chang, S.P. Shanks, and S.R. Chakravarthy, "A Three-Dimensional Incompressible Navier-Stokes Flow Solver Using Primitive Variable," AIAA J., Vol. 24, No. 3, march 1986.
4. Roger, R.P., "Viscous Flow Computations for Elliptical Two-Duct Version of the SSME Hot Gas Manifold," LMSC-HEC TR D065161, Lockheed Missiles & Space Company, Huntsville, Ala., March 1986.
5. McConnaughey, P.K., "Comparison of Hot Gas Manifold Calculations, "Fifth SSME CFD Working Group Meeting, NASA-Marshall Space Flight Center, April 1987.
6. Chorin, A.J., "A Numerical Method for Solving Incompressible Viscous Flow Problems," J. Comp. Physics, Vol. 2, 1967, pp. 12-26.
7. Steger, J.L., and P. Kutler, "Implicit Finite-Difference Procedures for the Computation of Vortex Wakes," AIAA J., Vol. 15, No. 4, 1977, pp. 581-590.
8. Beam, R.M., and R.F. Warming, "An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation Law Form," J. Comp. Physics, Vol. 22, September 1976, pp. 87-110.
9. Warming, R.F., and R.M. Beam, "An Extension of A-Stability to Alternating Direction Implicit Methods," BIT, Vol. 19, 1979, p. 395.
10. Dwyer, D.L., and F.C. Thames, "Accuracy and Stability of Time-Split Finite-Difference Schemes," AIAA Paper 81-1005, 1984.
11. South, J.C., "Recent Advances in Computational Transonic Aerodynamics," AIAA Paper 85-0366, 1985.

12. Briley, W.R., and R.C. Buggeln, and H. McDonald, "Solution of the Three-Dimensional Navier-Stokes Equations for a Steady Laminar Horseshoe Vortex Flow," AIAA Paper 85-1520, 1985.
13. Wiegman, B., J. Heaman, and P. Ramsey, "Water Flow Visualization Results on a phase III, One-Half Scale, SSME Hot Gas Manifold (HGM) with Sharp Corner Transfer Duct Inlets," CFD Workshop, NASA-Marshall Space Flight Center, November 1984.

Appendix A
HGM GRID CODE INPUT GUIDE

Appendix A

INTRODUCTION

This geometry input guide is presented in two sections: (1) a definition of terminology commonly used for inputting and describing the geometry, and (2) a summary of card types used to input the geometry and a detailed description of the associated parameters and their input values.

We begin with an overview of how to apply the program. The flowfield domain is divided into zones in order to simplify the input necessary to describe the complicated geometry. Each zone contains its own internal coordinate system, and is described using points, edges, and surfaces. An edge may consist of from one to ten segments. A segment or a surface may require special input depending on its type. This is the case for zones 2 and 3 of this two-duct HGM model.

The second section of this appendix presents a detailed description of the input parameters. Each card type is listed in the order of input with its associated parameters. Each parameter is identified as to its usage in the program with the options of each shown. Reference to Fig. A-1 or Table A-1 may be necessary to explain some of the input parameters and their order of input. All of the card types are not necessarily input for a specific zone, but may be set in specific subroutines in the program itself.

Card type 9 may be used when other than an equal distribution of nodes is desired, etc. Whereas card type 13 is necessary if there will be more than one segment per edge. And cards type 10 and 11 are used if additional information is needed to describe a segment or a surface. Certain of the input parameters on early cards dictate which of the later cards are read in.

Fig. A-1 General Hexahedral: Numbering of Points, Edges, and Surfaces

DEFINITION OF TERMINOLOGY

Edge	An edge consists of from one to five segments. Twelve edges are used to describe a 3D zone.
Map	The geometry maps a point from η space into real space. When describing a surface mapping one could say that setting map = 2 refers to a planar η space surface being mapped onto a cylindrical surface in real space.
Node	At each intersection of η coordinates a node is generated by the program forming the grid which will describe the flowfield domain.
Point	The corners of a section are called "points." The location and initial flow directions are input for each point. There are eight points.
Segment	An edge is subdivided into as many as five segments. A segment may be a straight line, a circular arc, a helical coil, a trigonometric function of angle or length, a cubic spline, or user defined.
Surface	A three-dimensional section will consist of six surfaces which form a generalized hexahedron. A surface may be planar, cylindrical, an edge of revolution, or user defined.
Zone	The flowfield domain may be subdivided into zones. Zones are generated independently and are the fundamental building block. Each zone contains its own η coordinate system.
η_1, η_2, η_3	Localized coordinate directions within a zone. These coordinates describe a cube in η space. $0 \leq \eta_i \leq 1$

SUMMARY OF CARDS

<u>Card Type</u>	<u>Parameter List/Format</u>
<u>Flowfield Parameters</u>	
1	ITITLE(I), I=1,80 (20A4)
2	NZONE, IZINDEX, MAPTEN, INCHES (8I5)
3	DCT1(I), DCT2(I), DCT3(I), I=1,37 (8F10.3)
<u>Zone Parameter</u>	
4	NSECT (I5)
<u>Section Parameters</u>	
5	MAPEDGE(I), I=1,12 (12I5) or (3(4I10))
6	MAPSIDE(I), I=1,6 (6I5)
7	MARCH (I5)
8	(NMBRNDS(I), I=1,3), (ISTRCH(I), I=1,3) (6I5)
9	STRETCH(I), I=1,3 (3E10.4)
10	[(COEFE(I,K,J), I=1,8), K=1,5], J=1,4(2D) OR 12(3D) (8E10.4)
11	[COEFS(I,J), I=1,8], J=1,6 (8E10.4)
12	(POINT(I,J), I=1,3), J=1, 8 (8E10.4)
13	[(SEGMAX(I,K,J), I=1,3), ETAMAX(K,J), K=1,4] J=1, 12 (6E10.4)

CARD AND VARIABLE DESCRIPTIONS

Flowfield Parameters

CARD TYPE 1 Problem Identification Label Format(20A4)

ITITLE Alphanumeric information used for identifying the flowfield geometry. Columns 1-80 are read and printed only.

CARD TYPE 2 Problem Option Controls Flags Format(5I5)

NZONE The number of zones into which the flowfield geometry is divided. The maximum number of zones is 99.

IZINDEX Zone index for selecting individual components of the manifold to be computed.

- = 1 zones 1 and 2 of Bowl
- = 3, Transfer Duct
- = 4 zones 4 and 5 of Turnaround Duct
- = 6 all five zones

MAPTEN This option determines the maximum number of segments which will be input per edge.

- = 0 Five segments per edge Format(12I5)
- = 1 Ten segments per edge Format(3(4I10))

INCHES This option specifies the dimensions of the coordinates being input. The output data will be written in feet for compatibility with the INTEGRATION program.

- = 0 Dimensions in feet
- = 1 Dimensions in inches

Bowl Hole Parameters

- CARDS TYPE 3a Angles, in degrees, about the axis of the transfer duct, measured counterclockwise from the x, z-plane as viewed down the z-axis.
- CARDS TYPE 3b Radial distance difference (in inches) between transfer duct ellipse and hole perimeter along angular directions specified on cards 3a.
- CARDS TYPE 3c Radius of curvature (in inches) at each angular distance, specified on cards 3a, for describing the transfer duct weld or fairing.

Zone Parameter

- CARD TYPE 4 Index dividing zone data Format(I5)
- NSECT Integer must be 1 and is used for separating data for each zone on the input file.

Section Parameters

- CARD TYPE 5 Edge Shape Function Indicators Format(12I5) or 3(I10)

MAPEDGE(I), I=1, 12

These are packed integer flags that specify which edge shape functions will be used for the current section. The edges are input in numerical order. The edge numbers are defined according to Fig. A-1. The user should study this figure before inputting the geometry.

Each of the edges may consist of up to ten segments with each of these segments having its own shape function. The value of MAPEDGE(I) can consist of up to ten integers packed into one word MAPEDGE(I). MAPTEN specifies the maximum number of segments per edge. The edge shape function indicators for each segment are input in chronological order of increasing n for each edge with the final packed integer being right adjusted. For example, if MAPEDGE(4) = 112, then edge 4 consists of three segments: the first segment is type 1; the second segment is type 1; and the third segment is type 2. If only one segment describes an edge, then only one indicator is used, right adjusted.

A library of edge shape functions indicators for the HGM GEOMETRY program follow. If any edge shape function other than a linear segment is specified, then edge coefficients (COEFE(I)) must be input. Card type 1 is used to define the analytical function describing a segment.

= 1	Linear segment	
= 2	Circular arc	(input COEFE(I))
= 3	Conics	(input COEFE(I))
= 4	Edge of revolution	(input COEFE(I))
= 5	Special segment	(input COEFE(I))
= 6	Special segment	(input COEFE(I))
= 7	Special segment	(input COEFE(I))

CARD TYPE 6 Surface Shape Function Indicators Format(6I5)

MAPSIDE(I), I=1,6

These are integer flags that specify which surface shape functions will be used for the current section. These flags are input only for three-dimensional problems since two-dimensional geometries are defined completely by the edge functions. The surfaces are input in numerical order. The surface numbers are defined in Fig. A-1. The user should study this figure before inputting the geometry. An edge of revolution requires the input of surface coefficients (COEFS(I)) on card type 15 to define a relative origin on the axis, the axis of revolution, and the direction of revolution.

= 1	Planar surface	
= 2	Cylindrical surface	
= 3	Special surface	(user defined)
= 4	Edge of revolution	(input COEFS(I))
= 5	Hole in bowl surface	
= 6	Duct surface at bowl	
= 7	Duct fairing surface	

CARD TYPE 7 Node Numbering Sequence Specs Format(6I5)

MARCH(I5) The value of MARCH determines the node generation and hence the node numbering sequence. (default = 1)

The numbering sequence corresponding to follows.

- = 1 η_3, η_2, η_1 (default)
- = 2 η_1, η_3, η_2
- = 3 η_2, η_1, η_3

CARD TYPE 8 Node Distribution Parameters Format(6I5)

NMBRNDS(I), I=1 3

NMBRNDS(I) is the number of nodes in the η_I direction for the current section. The limit is 200 nodes in any coordinate direction. This may be changed in the program by respecifying the ETAS(3,200) array.

IISTRCH(I), I=1 3

This option gives the user control over the node distribution in each of the coordinate directions.

- = 0 Uniform spacing
- = 1 Input actual η_I values for NMBRNDS(I) nodes
(input ETAS(I))
- = 2 Decrease spacing in η_I direction. Input a stretching factor greater than 0.0 in STRETCH(I).
- = 3 Increase spacing in η_I direction. Input a stretching factor greater than 0.0 in STRETCH(I).
- = 4 Double stretching. Input a stretching factor greater than 0.0 in STRETCH(I). Use an odd number of nodes.
- = 5 Decrease spacing in η_I direction. Input minimum grid spacing as a percentage of the total length in STRETCH(I).
- = 6 Increase spacing in η_I direction. Input minimum grid spacing as a percentage of the total length in STRETCH(I).
- = 7 Double stretching. Input minimum grid spacing as a percentage of the total length in STRETCH(I). Use an odd number of nodes.

If IISTRCH(I) = 1, input a set of cards type 13 for each η direction to be input.

If IISTRCH(I) \geq 2, input card type 12.

CARD TYPE 9 Option for Stretching Function
 (input when ISTRTCH(I) ≥ 2)

Format(3E10.4)

STRETCH(I), I=1, 3

This parameter is input for each coordinate direction designated for stretching by ISTRTCH(I) ≥ 2 .

Example: Several stretching functions will be demonstrated using 21 points for comparison. Note, that total length = 10.0 for ISTRTCH = 6 and 7.

ISTRTCH = 3

STRETCH = 2.0

STRETCH = 4.0

STRETCH = 6.0

STRETCH = 8.0

STRETCH = 10.0

ISTRTCH = 4

STRETCH = 2.0

STRETCH = 4.0

STRETCH = 6.0

STRETCH = 8.0

STRETCH = 10.0

ISTRCH = 6

STRETCH = .002

STRETCH = .004

STRETCH = .006

STRETCH = .008

STRETCH = .010

ISTRTH = 7

STRETCH = .002

STRETCH = .004

STRETCH = .006

STRETCH = .008

STRETCH = .010

CARD TYPE 14 Coefficients for Edge Shape Functions Format(8E10.4)
 (input for each segment in MAPEDGE(I) > 1)

COEFE(I), I=1,8

These coefficients are used to describe the edge shape functions for each segment of the current section. The coefficients for each segment are input on separate cards in the same order as the indicators on card type 5.

<u>Map</u>	<u>Type</u>	<u>Input Parameters</u>
2	Circular Arc	COEFE(I), I=1,3 are the x, y, and z coordinates of the center of the arc.
3	Edge of Revolution	COEFE(I), I=1,3 are coordinates of the center of the arc. COEFE(I), I=4,6 are components of the unit vector along the axis. Direction according to right hand rule when a vector is revolved from point 1 to point 2.

CARD TYPE 15 Coefficients for Surface Shape Functions Format(8E10.4)
 (input when MAPSIDE(I) = 4 and IDIM = 3)

COEFS(I), I=1,8

These are the coefficients defining the surface shape functions for each surface formed by an edge of revolution in the current section. Each surface which has MAPSIDE(I) = 4 on card type 8 is input on a separate card in the same order as they occur on card type 8.

<u>Map</u>	<u>Type</u>	<u>Input Parameters</u>
4	Surface of Revolution	Surface formed by revolving an edge about an axis. COEFS(I), I=1,3 a point on the axis of revolution which becomes the origin of a local coordinate system. This point must lie outside of the projection of the edge onto the axis of revolution. COEFS(I), I=4,6 are components of the unit vector along the axis of revolution in the direction of increasing n. COEFS(7) indicates the η_1 direction in which the edge will revolve.

CARD TYPE 16 Coordinates of Points Format(5E10.4)

POINT(I,J), J = Point number

These parameters are the coordinates and flow direction at each corner of a general hexahedral(3D). Figure A-1 shows this configuration with the points numbered from 1 to 8. There are eight cards of type 16 to be input.

POINT(1,J) - the x coordinate of point J

POINT(2,J) - the y coordinate of point J

POINT(3,J) - the z coordinate of point J

Important Note: All cards type 12 are not input consecutively. They are grouped with cards type 13. See Table A-1 for the exact sequence of card types 11 and 13.

CARD TYPE 17 Segment Extremals for Edges Format(6E10.4)

SEGMAX(I,K,J), K = Segment Number, J = Edge Number

Each edge may be segmented up to five times. Therefore, cards type 13 are repeated for each successive segment of edge J. Each segment must be input on a separate card type 13. The extremal for the final segment of an edge is not to be input since this point is already defined by the POINT(I) input. The number of cards type 13 for each edge will thus be one less than the number of segments on that edge. In particular, if an edge consists of only one segment, no cards of type 13 are input for that edge.

See Table 1 for the input order of card types 12 and 13. Each POINT(I) is input on a single card, followed by up to five cards containing the extremals.

- SEGMAX(1,K,J) - The extremal x coordinate for the Kth segment of edge J.
- SEGMAX(2,K,J) - The extremal y coordinate for the Kth segment of edge J.
- SEGMAX(3,K,J) - The extremal z coordinate for the Kth segment of edge J.

ETAMAX(K,J), K= Segment Number, J= Edge Number

The maximum value of the n_I coordinate on the Kth segment of edge J. Input a negative value when defining a fold line.

Appendix B
HGM GRID CODE INPUT LISTING

TWO DUCT HGM II+									
2	1	0	1						
0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0		
80.0	90.0	100.0	110.0	120.0	130.0	140.0	150.0		
160.0	170.0	180.0	190.0	200.0	210.0	220.0	230.0		
240.0	250.0	260.0	270.0	280.0	290.0	298.0	310.0		
320.0	330.0	340.0	350.0	360.0				ANGLE	
0.30	0.29	0.28	0.25	0.23	0.20	0.16	0.12		
0.06	0.05	0.06	0.12	0.20	0.28	0.37	0.46		
0.55	0.66	0.76	0.90	1.25	1.85	2.45	2.35		
1.85	1.32	1.00	0.95	1.05	1.30	1.649	1.00		
0.75	0.55	0.43	0.35	0.30			DIFFERENCE		
2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
2.0	2.0	2.0	2.535	3.069	3.604	4.139	4.673		
4.673	4.673	4.673	3.81	3.151	2.744	2.684	2.801		
3.055	3.596	4.2	4.253	3.509	2.54	1.942	2.0		
2.0	2.0	2.0	2.0	2.0			CURVATURE		
							BOWL		ZONE 1
1	1	113	1	4	4	4	111	111333	1
1	4	1	4	1	4				
3									
58	21	36	0	4	0				
	0.0	6.0		0.0					
							BOWL WITH HOLE		ZONE 2
1	1	111333	1	4	4	444	444	111	111113
1	4	1	5	1	1			1	1
3									
58	21	74	0	4	0				
	0.0	6.0		0.0					
							DUCT		ZONE 3
1	7	91	8	91	7	7	8	8	91
7	6	7	1	7	7				
2									
30	59	44	4	0	4				
	6.0	0.0		4.0					
							TAD # 1		ZONE 4
1	12	12	1	22	22	2222	2222	12	1
1	2	1	2	1	2			12	1
1									
30	21	109	0	0	0				
1							TAD # 2		ZONE 5
211	1	211	1	22	22	2222	2222	211	1
1	2	1	2	2	1			211	1
1									
42	21	109	0	0	0				

/EOR

/EOR

Appendix C
HGM GRID CODE LISTING

```

C*****
C*****MAIN*****
C*****
C      PROGRAM HGM2DUCT(INPUT,OUTPUT,FILE20,TAPE5,TAPE6=OUTPUT,
C      &           TAPE20=FILE20)
C
C      PROGRAM HGM2DUCT
C-----
C      ELLIPTICAL TWO-DUCT HOT GAS MANIFOLD GRID CODE
C      DEVELOPED BY THE COMPUTATIONAL MECHANICS SECTION
C      LOCKHEED ENGINEERING CENTER, HUNTSVILLE, ALABAMA.
C      TAPE20 GEOMETRY DATA
C-----
C      COMMON /COUNTER/ NODESAV, NODETOT, NBNODES, NPLANE
C      COMMON /INITA/   IZINDEX, MAPTEN, INCHES
C      COMMON /ZONING/  IZONE, ISECT, NZINDEX, NMBRND(3)
C      COMMON /UNITS/   NU5, NU6, NU20
C
C      C---INITIALIZE PROGRAM
C
C          CALL INITIAL(NZONE)
C
C-----ZONE
C-----DO 300 IZONE=1,NZONE
C      READ(NU5,1000) NZINDEX
C
C-----READ INPUT FOR EACH ZONE
C
C          CALL INPUT
C
C-----GENERATE MESH FOR EACH ZONE
C
C          CALL MESH
C
C      300 CONTINUE
C
C-----PRINT FILE STATUS
C
C          CALL STATUS(0)
C
C          STOP
C
C-----FORMAT STATEMENTS
C
C      1000 FORMAT(I5)
C
C          END
C
C*****INPUT*****
C*****SUBROUTINE INITIAL(NZONE)
C
C      COMMON /COEFF/   COEFE(8,10,12), COEFS(8,6), NMBRSEG(12)
C      COMMON /COUNTER/ NODESAV, NODETOT, NBNODES, NPLANE

```

```

COMMON /HEADER/ ITITLE(20),LINE
COMMON /INITA/ IZINDEX,MAPTEN,INCHES
COMMON /INITB/ IBOX(4,6),IRAY(4,3),NRAY,IPT1(12),IPT2(12)
COMMON /INITC/ PI,RADDEG
COMMON /NODNMBR/ NODENUM(4000),TOL(3)
COMMON /UNITS/ NU5,NU6,NU20
C
C      DIMENSION NAME(20)
C
C      DATA PI      /3.141592654/
C      DATA RADDEG /57.29577951/
C      DATA IPT1   /1,2,4,1,1,2,3,4,5,6,8,5/
C      DATA IPT2   /2,3,3,4,5,6,7,8,6,7,7,8/
C      DATA IRAY   /1,3,9,11,4,2,12,10,5,6,8,7/
C      DATA IBOX   /4,1,2,3,5,1,6,9,12,9,10,11,8,3,7,11,5,4,8,12,6,2,7,10/
C
C-----C
C      INITIALIZE
C-----C
C
C      NU5    = 5
C      NU6    = 6
C      NU20   = 20
C      MUNIT  = 20
C
C      NPLANE = 0
C      NBNODES = 0
C      NINODES = 0
C      NODETOT = 0
C      NODESAV = 0
C
C---COEFFICIENTS
C
C      DO 20 I=1,8
C
C          DO 10 J=1,6
C          10 COEFS(I,J) = 0.0
C
C          DO 20 J=1,10
C          DO 20 K=1,12
C          20 COEFE(I,J,K) = 0.0
C
C-----C
C      NZONE    = NUMBER OF ZONES TO BE USED TO GENERATE MESH
C      IZINDEX  = NO OF THE ZONE TO BE COMPUTED
C              = 1 DO ZONES 1 & 2
C              = 3 DO ZONE 3
C              = 4 DO ZONES 4 & 5
C              = 6 DO ALL FIVE ZONES
C      MAPTEN   = 0 FIVE SEGMENTS PER EDGE
C              = 1 TEN SEGMENTS PER EDGE
C      INCHES   = 0 COORDINATES INPUT IN FEET
C              = 1 COORDINATES INPUT IN INCHES
C-----C
C---ECHO INPUT
C
C      WRITE(NU6,1100)
C
C      DO 90 I=1,500

```

```

        READ(NU5,1000,END=100) NAME
        90 WRITE(NU6,1110) NAME
C
        100 REWIND NU5
C
C---PRINT HEADER
C
        WRITE(NU6,1120)
C
C---READ PROBLEM DEFINITION
C
        READ(NU5,1000) ITITLE
        READ(NU5,1010) NZONE,IZINDEX,
        &                 MAPTEN,INCHES
C
C---WRITE PROBLEM DEFINITION
C
        NRAY = 4
C
        WRITE(NU6,1130) ITITLE
        WRITE(NU6,1140) NZONE,IZINDEX,
        &                 MAPTEN,INCHES
C
        CALL RWIND(NU20)
C
C---DRAW PICTURE
C
        IDIM = 3
        CALL PICTURE(IDIM)
C
C---HGM TWO DUCT DATA
C
        CALL DCTDAT
C
        RETURN
C
        1000 FORMAT(20A4)
        1010 FORMAT(16I5)
        1100 FORMAT(1H1,25X,17H INPUT DATA IMAGE // )
        1110 FORMAT(5X,20A4)
        1120 FORMAT(1H1
            3      / 40X,34H          LOCKHEED-HUNTSVILLE
            4      / 40X,34H          VAX 11/785 VERSION
            5      / 40X,38H          2-DUCT HGM GEOMETRY MODULE  )
        1130 FORMAT(/ 12H CASE TITLE: // 5X,20A4 )
        1140 FORMAT(/ 21H GEOMETRY PARAMETERS:
            1      // 23H      NZONE      IZINDEX,
            2      22H      MAPTEN      INCHES ,// 6I10 )
C
        END
C
C*****INPUT*****
C*****SUBROUTINE INPUT
C
        COMMON /COEFF/ COEFE(8,10,12),COEFS(8,6),NMBRSEG(12)
        COMMON /COUNTER/ NODESAV,NODETOT,NBNODES,NPLANE
        COMMON /HEADER/ ITITLE(20),LINE

```

```

COMMON /INITA/   IZINDEX,MAPTEN,INCHES
COMMON /INITB/   IBOX(4,6),IRAY(4,3),NRAY,IPT1(12),IPT2(12)
COMMON /INPUTA/  EDGE(3,12),POINT(3,8),SIDE(3,6)
COMMON /MAPING/  MAPSIDE(6),MAPSEG(10,12)
COMMON /MARCHS/  MARCH,INDEX(3)
COMMON /MAXIMUM/ ETAMAX(10,12),SEGMAX(3,10,12)
COMMON /NODNMBR/ NODENUM(4000),TOL(3)
COMMON /SPACING/ ISTRTCH(3),STRETCH(3),ETAS(3,200),ETA(3),DETA(3)
COMMON /UNITS/   NU5,NU6,NU20
COMMON /ZONING/  IZONE,ISECT,NZINDEX,NMBRND(3)

C
DIMENSION IFLAGP(8),IFLAGE(12),IFLAGS(6)
DIMENSION LSTRTCH(3),LBCINPT(6),LMAPS(6)
DIMENSION MAPEDGE(12),STRTCH(3),LNMBRND(3)
C-----
C-----MAPEDGE(I)    INDICATES TYPE OF GEOMETRY FOR EDGE I
C-----= 1 LINEAR
C-----= 2 CIRCULAR ARC
C-----= 3 CONIC(PARABOLA, ELLIPSE, HYPERBOLA)
C-----= 4 HELICAL ARC
C-----= 5 TRIG FUNCTION OF X
C-----= 6 TRIG FUNCTION OF ANGLE
C-----= 7 CUBIC POLYNOMIAL
C
C-----MAPSIDE(I)   TYPE OF GEOMETRY FOR SURFACE I
C-----= 1 FLAT SURFACE
C-----= 2 CYLINDRICAL SURFACE
C-----= 4 EDGE OF REVOLUTION
C
C-----MARCH        ETA DIRECTION IN WHICH COMPUTATION IS TO ADVANCE
C
C-----NMBRND(1)    NUMBER OF NODES IN EACH ETA(I) DIRECTION
C
C-----ISTRRTCH(I) = 0 NO STRETCHING IN ETA(I) DIRECTION
C-----= 1 INPUT VALUES OF ETA(I) (N)
C-----= 2 DECREASE SPACING IN ETA(I) DIRECTION (INPUT FACTOR)
C-----= 3 INCREASE SPACING IN ETA(I) DIRECTION (INPUT FACTOR)
C-----= 4 DOUBLE STRETCHING (INPUT FACTOR)
C-----= 5 DECREASING SPACING IN ETA(I) DIRECTION (MINIMUM)
C-----= 6 INCREASING SPACING IN ETA(I) DIRECTION (MINIMUM)
C-----= 7 DOUBLE STRETCHING (MINIMUM SPACING)
C-----= 8 ORIGINAL DECREASING STRETCHING FUNCTION
C-----= 9 ORIGINAL INCREASING STRETCHING FUNCTION
C-----=10 USER INPUT STRETCHING FUNCTION
C-----
C-----WRITE(NU6,1100) ITITLE,IZONE
C-----
C-----READ INPUT PARAMETERS
C-----
100 IF(MAPTEN.EQ.0) THEN
C
          READ(NU5,1000) MAPEDGE
C
          END IF
C
          READ(NU5,1000) MAPSIDE
          READ(NU5,1000) MARCH
C
          IF(MARCH.LT.1 .OR. MARCH.GT.3) MARCH = 1
C

```

```

READ(NU5,1000) NMBRNDS,ISTRTCH
C
C---PRINT OUT INPUT VARIABLES
C
        WRITE(NU6,3000) MAPEDGE
        WRITE(NU6,3010) MAPSIDE
        WRITE(NU6,3020) MARCH
C
        WRITE(NU6,3040) NMBRNDS,ISTRTCH
C
C---INITIALIZE FLAGS TO CHECK IF POINT, EDGE, OR SURFACE HAS BEEN INPUT
C
        DO 130 I=1,8
130  IFLAGP(I) = 0
C
        DO 140 I=1,12
140  IFLAGE(I) = 0
C
        DO 150 I=1,6
150  IFLAGS(I) = 0
C
C---SET ORDER OF EXECUTION
C
        INDEX(1) = MARCH
        INDEX(3) = 3
C
        DO 160 I=2,3
            INDEX(I) = INDEX(I-1) + 1
160  IF(INDEX(I).GT.3) INDEX(I) = 1
C
C---INITIALIZE ETA
C
        ETA(1) = 0.0
        ETA(2) = 0.0
        ETA(3) = 0.0
C
C-----READ STRETCHING PARAMETERS
C-----300 DO 310 I=1,3
C
        STRETCH(I) = 0.0
C
        IF(ISTRTCH(I).LE.1) GO TO 310
C
        READ(NU5,1020) STRETCH
C
        GO TO 320
C
310  CONTINUE
C-----320 DO 370 I=1,3
C
        B = STRETCH(I)
        DS = B
        TNODE = REAL(NMBRNDS(I))
C

```

```

C---DECREASING OR INCREASING SPACING (INPUT MINIMUM SPACING)
C      IF(ISTRITCH(I).EQ.5 .OR. ISTRITCH(I).EQ.6) THEN
C          B = SQRT(1.0 - (TNODE - 1.0)*DS)/(TNODE - 1.0)
C          DO 330 ITER=1,10
C
C              ARG1 = B*(TNODE - 1.)
C              ARG2 = B*(TNODE - 2.)
C
C              EXPA1 = EXP(ARG1)
C              EXPA2 = EXP(ARG2)
C
C              TANH1 = (EXPA1 - 1./EXPA1)/(EXPA1 + 1./EXPA1)
C              TANH2 = (EXPA2 - 1./EXPA2)/(EXPA2 + 1./EXPA2)
C
C              PSI = DS - (1.0 - TANH2/TANH1)
C
C              TANHP1 = 1.0 - TANH1**2
C              TANHP2 = 1.0 - TANH2**2
C
C              PSIP = (1.0/TANH1)*(TANHP2*(TNODE - 2.))
C                      - (TANH2/TANH1)* TANHP1*(TNODE - 1.))
C
C              &
C              IF(PSIP.EQ.0.) THEN
C                  WRITE(NU6,5100)
C                  STOP
C              END IF
C
C              B0 = B
C              B = B0 - PSI/PSIP
C              DBF = (B - B0)/B0
C
C              WRITE(NU6,5200) I,PSI,PSIP,B,DBF
C
C              330          IF(ABS(DBF).LE.0.001) GO TO 340
C
C              340          END IF
C
C---DOUBLE STRETCHING (INPUT MINIMUM SPACING)
C      IF(ISTRITCH(I).EQ.7) THEN
C          B = SQRT(1.0 - (TNODE - 1.0)*DS)/(TNODE - 1.0)
C          DO 350 ITER=1,10
C
C              ARG1 = B*(TNODE - 1.)
C              ARG3 = B*(TNODE - 3.)
C
C              EXPA1 = EXP(ARG1)
C              EXPA3 = EXP(ARG3)
C
C              TANH1 = (EXPA1 - 1./EXPA1)/(EXPA1 + 1./EXPA1)
C              TANH3 = (EXPA3 - 1./EXPA3)/(EXPA3 + 1./EXPA3)

```

```

C PSI = DS - 0.5*(1.0 - TANH3/TANH1)
C
C TANHP1 = 1.0 - TANH1**2
C TANHP3 = 1.0 - TANH3**2
C
C PSIP = (0.5/TANH1)*(TANHP3*(TNODE - 3.0)
C & - (TANH3/TANH1)* TANHP1*(TNODE - 1.0))
C
C IF(PSIP.EQ.0.) THEN
C
C           WRITE(NU6,5000)
C
C           STOP
C
C           END IF
C
C           B0 = B
C           B = B0 - PSI/PSIP
C           DBF = (B - B0)/B0
C
C           WRITE(NU6,5200) I,PSI,PSIP,B,DBF
C
C 350           IF(ABS(DBF).LE.0.001) GO TO 360
C
C 360           END IF
C
C 370 STRETCH(I) = B
C
C
C---WRITE STRETCHING PARAMETERS
C
C       DO 390 I=1,3
C
C       IF(ISTRTCH(I).LE.1) GO TO 390
C
C           WRITE(NU6,3050) STRETCH
C
C           GO TO 400
C
C 390 CONTINUE
C-----READ INPUT PARAMETERS FOR ARBITRARY GRID SPACING (ETAS)
C-----400 DO 410 I=1,3
C
C       IF(ISTRTCH(I).NE.1)          GO TO 410
C       IF(ISECT.GT.1 .AND. I.NE.MARCH) GO TO 410
C
C       READ(NU5,1020)    (ETAS(I,J),J=1,NMBRND(I))
C       WRITE(NU6,1110) I,(ETAS(I,J),J=1,NMBRND(I))
C
C 410 CONTINUE
C-----C   HGM TWO DUCT INPUT DATA
C-----CALL HGMIN
C-----C   INPUT PARAMETERS FOR EDGE COEFFICIENTS
C-----WRITE(NU6,1100) ITITLE,IZONE
C-----WRITE(NU6,2040)

```

```

C
      LINE = 6
      II = 0
C
C----TOTAL NUMBER OF EDGES
C
      NEDGES = 8*3 - 12
C
      DO 540 I=1,NEDGES
C
      IF(IFLAGE(I).EQ.1) GO TO 540
C
      ITOTAL = 1
      MAP = MAPEDGE(I)
C
C----DETERMINE THE NUMBER OF SEGMENTS ON AN EDGE
C
      DO 500 J=1,10
C
      NMBRSEG(I) = J
      MAP = MAP/10
C
      IF(MAP.EQ.0) GO TO 510
C
      500      ITOTAL = ITOTAL*10
C
      510      MAP = MAPEDGE(I)
C
      DO 530 J=1,NMBRSEG(I)
C
C----DETERMINE THE MAPPING FOR EACH SEGMENT
C
      MAPSEG(J,I) = MAP/ITOTAL
      MAP = MAP - MAPSEG(J,I)*ITOTAL
C
C----EDGE COEFFICIENTS FOR EACH SEGMENT
C
      IF(MAPSEG(J,I).LE.1) GO TO 530
C
      IF(I.NE.II) THEN
C
          LINE = LINE + 2
C
          IF(LINE.GE.60) THEN
C
              WRITE(NU6,1100) ITITLE,IZONE
              WRITE(NU6,2040)
C
              LINE = 8
C
              END IF
C
              WRITE(NU6,2050) I,J,(COEFE(K,J,I),K=1,8)
C
              ELSE
C
              LINE = LINE + 2
C
              IF(LINE.GE.60) THEN
C

```

```
        WRITE(NU6,1100) ITITLE,IZONE
        WRITE(NU6,2040)
C               LINE = 8
C               END IF
C
        WRITE(NU6,2060) J,(COEFE(K,J,I),K=1,8)
C               END IF
C
        II = I
C
      530   ITOTAL = ITOTAL/10
C
      540 CONTINUE
C-----  
C   INPUT PARAMETERS FOR SURFACE COEFFICIENTS
C-----  

C               LINE = LINE + 5
C
        IF(LINE.GE.60) THEN
C
                WRITE(NU6,1100) ITITLE,IZONE
C
                LINE = 6
C
                END IF
C
                WRITE(NU6,3060)
C
        DO 610 I=1,6
C
        IF(IFLAGS(I).EQ.1) GO TO 610
C
        IF(MAPSIDE(I).LE.2) GO TO 610
C
                LINE = LINE + 2
C
                IF(LINE.GE.60) THEN
C
                        WRITE(NU6,1100) ITITLE,IZONE
                        WRITE(NU6,3060)
C
                        LINE = 8
C
                        END IF
C
                WRITE(NU6,3065) I,(COEFS(J,I),J=1,8)
C
      610 CONTINUE
C-----  
C   INPUT DATA FOR CORNER POINTS AND SEGMENT END POINTS
C-----  

C               LINE = LINE + 5
C
        IF(LINE.GE.60) THEN
C
                WRITE(NU6,1100) ITITLE,IZONE
```

```

C               LINE = 6
C               END IF
C
C               WRITE(NU6,3070)
C
C               DO 750 I=1,NEDGES
C
C               IF(I.GT.8)          GO TO 700
C
C--- CORNER POINTS
C
C               LINE = LINE + 2
C
C               IF(LINE.GE.60) THEN
C
C                   WRITE(NU6,1100) ITITLE,IZONE
C                   WRITE(NU6,3070)
C
C               LINE = 8
C
C               END IF
C
C               WRITE(NU6,3080) I,(POINT(J,I),J=1,3)
C
C
C               700 IF(NMBRSEG(I).EQ.1) GO TO 750
C
C--- SEGMENT MAXIMUMS
C
C               DO 740 J=1,NMBRSEG(I) - 1
C
C               LINE = LINE + 2
C
C               IF(LINE.GE.60) THEN
C
C                   WRITE(NU6,1100) ITITLE,IZONE
C                   WRITE(NU6,3070)
C
C               LINE = 8
C
C               END IF
C
C               IF(IFLAGE(I).EQ.1) ETAMAX(J,I) =
C               &           ETAMAX(J,I)*(NMBRNDS(N) - 1.0) + 1.0
C
C               WRITE(NU6,3090)I,J,(SEGMAX(K,J,I),K=1,5),ETAMAX(J,I)
C
C               DO 720 N=1,3
C               DO 720 L=1,4
C
C               720          IF(IRAY(L,N).EQ.I) GO TO 730
C
C               730          CONTINUE
C
C---CONVERT NODE NUMBER TO ETA VALUE
C
C               ETAMAX(J,I) = (ETAMAX(J,I) - 1.0)/(NMBRNDS(N) - 1.0)
C

```

```

740 CONTINUE
750 CONTINUE
C      DO 930 I=1,3
C      DETA(I) = 1.0/(NMBRNDS(I) - 1.0)
C      FACTOR = NMBRNDS(I)*10.0
C      IF(ISTRRTCH(I).GT.0) FACTOR = NMBRNDS(I)*20.0
C      DO 920 J=1,NRAY
C      L = IRAY(J,I)
C
C---COMPARE X, Y, AND Z BETWEEN END POINTS OF AN EDGE
C      DO 920 K=1,3
C      DELTA = ABS(POINT(K,IPT1(L)) - POINT(K,IPT2(L)))/FACTOR
C      IF(DELTA.LE.0.0)      GO TO 920
C      IF(DELTA.LT.TOL(K)) TOL(K) = DELTA
C
C      920 CONTINUE
C      930 CONTINUE
C-----+
C      PRINT TITLE
C-----+
      WRITE(NU6,1100) ITITLE,IZONE
C      LINE = 1
C      WRITE(NU6,1140)
C      LINE = 3
C
      RETURN
C---FORMAT STATEMENTS
C
      1000 FORMAT(16I5)
      1010 FORMAT(6I10)
      1020 FORMAT(8E10.0)
      1030 FORMAT((4I10))
C
      1100 FORMAT(1H1,10X,20A4,13X,6H ZONE,I3)
      1110 FORMAT(// 11H FIXED ETA_,I1,8H VALUES: // (10(3X,F10.7)) )
      1140 FORMAT( / 44H NODE      X          Y          Z   )
C
      2000 FORMAT(// 32H EDGE SHAPE FUNCTION INDICATORS:
      &           // 40H EDGE_1    EDGE_2    EDGE_3    EDGE_4 / 4I10 )
      2010 FORMAT(// 26H BOUNDARY CONDITION FLAGS:
      1           // 40H EDGE_1    EDGE_2    EDGE_3    EDGE_4 / 4I10
      2           // 26H MARCHING DIRECTION = ETA_,IT)
      2020 FORMAT(// 17H NUMBER OF NODES:
      1           // 20H ETA_1     ETA_2 / 2I10
      2           // 22H STRETCHING FUNCTIONS:
      3           // 20H ETA_1     ETA_2 / 2I10 )
      2030 FORMAT(// 32H STRETCHING FUNCTION PARAMETERS:

```

```

&           // 30H          ETA_1          ETA_2 / 2(2X,F13.7) )
2040 FORMAT(// 25H EDGE SHAPE COEFFICIENTS:
1           // 42H EDGE SEGMENT      COEFF_1        COEFF_2,
2           42H COEFF_3       COEFF_4        COEFF_5,
3           42H COEFF_6       COEFF_7        COEFF_8 )
2050 FORMAT(/   2X,I2,6X,I1,3X,8(1X,F13.7))
2060 FORMAT(/   10X,I1,3X,8(1X,F13.7))
2080 FORMAT(/   7H POINT ,I2,1H:,12X,2(7X,F13.7),9X,F7.2)
2090 FORMAT(/   7H EDGE ,I2,1H:,7X,I3,2X,2(7X,F13.7),9X,F7.2,9X,F9.2)
C
3000 FORMAT(// 32H EDGE SHAPE FUNCTION INDICATORS:
1           // 40H EDGE_1     EDGE_2     EDGE_3     EDGE_4,
2           40H EDGE_5     EDGE_6     EDGE_7     EDGE_8,
3           40H EDGE_9     EDGE_10    EDGE_11    EDGE_12 / 12I10 )
3010 FORMAT(// 35H SURFACE SHAPE FUNCTION INDICATORS:
1           // 45H SURFACE_1   SURFACE_2   SURFACE_3,
2           45H SURFACE_4   SURFACE_5   SURFACE_6
3           /   6(10X,I5))
3020 FORMAT(// 26H MARCHING DIRECTION = ETA_,I1)
3040 FORMAT(// 17H NUMBER OF NODES:
1           // 30H ETA_1     ETA_2     ETA_3 / 3I10
2           // 22H STRETCHING FUNCTIONS:
3           // 30H ETA_1     ETA_2     ETA_3 / 3I10 )
3050 FORMAT(// 32H STRETCHING FUNCTION PARAMETERS:
1           // 45H ETA_1     ETA_2     ETA_3
2           /   3(2X,F13.7) )
3060 FORMAT(// 28H SURFACE SHAPE COEFFICIENTS:
1           // 42H SURFACE      COEFF_1        COEFF_2,
2           42H COEFF_3       COEFF_4        COEFF_5,
3           42H COEFF_6       COEFF_7        COEFF_8 )
3065 FORMAT(// 4X,I1,9X,8(1X,F13.7))
3070 FORMAT(// 29H COORDINATES AND ETAMAXES:
1           // 10X,39H SEGMENT      X          Y,
2           41H Z             ETAMAX      )
3080 FORMAT(/   7H POINT ,I2,1H:,8X,3(6X,F13.7),2(8X,F7.2))
3090 FORMAT(/   7H EDGE ,I2,1H:,3X,I3,2X,3(6X,F13.7),2(8X,F7.2),
&                           ,7X,F9.2)
C
5000 FORMAT(1H0,43H SINGULARITY IN TWO-END STRETCHING FUNCTION,
&           10H PARAMETER)
5100 FORMAT(1H0,43H SINGULARITY IN ONE-END STRETCHING FUNCTION,
&           10H PARAMETER)
5200 FORMAT(1H0,4H I =,I2,7H PSI =,E12.4,8H PSIP =,E12.4,
&           5H B =,E12.4,7H DBF =,E12.4)
C
      END
C*****
C*****MAPPING*****
C*****
C
      SUBROUTINE MESH
C-----
C   MESH CONTROLS THE GENERATION OF THE SPATIAL COORDINATES OF EACH NODE
C   IN THE MESH.
C-----
C
      COMMON /COUNTER/ NODESAV, NODETOT, NBNODES, NPLANE
      COMMON /HEADER/ ITITLE(20), LINE
      COMMON /INITA/ IZINDEX, MAPTEN, INCHES

```

```

COMMON /INITB/    IBOX(4,6),IRAY(4,3),NRAY,IPT1(12),IPT2(12)
COMMON /INPUTA/   EDGE(3,12),POINT(3,8),SIDE(3,6)
COMMON /INPUTBC/  INODEBC(3),ISIDE(3)
COMMON /MAPING/   MAPSIDE(6),MAPSEG(10,12)
COMMON /MARCHS/   MARCH,INDEX(3)
COMMON /NODNMBR/  NODENUM(4000),TOL(3)
COMMON /OUT/       NODE(3,4000)
COMMON /PARTIAL/  DEDN(3,12),DSDN(3,2),SNORMAL(3,6)
COMMON /SPACING/  ISTRTCH(3),STRETCH(3),ETAS(3,200),ETA(3),DETA(3)
COMMON /UNITS/    NU5,NU6,NU20
COMMON /ZONING/   IZONE,ISECT,NZINDEX,NMBRNDS(3)

C
C      DIMENSION E(26)
C      DIMENSION IFACE1(3,3),IFACE2(3,3),ISIDES(6)
C      DIMENSION TANGENT(3),VECTOR(3),DIRECT(3)
C
C      DATA IFACE1 /0,1,2,1,0,5,2,5,0/
C      DATA IFACE2 /0,3,4,3,0,6,4,6,0/
C      DATA ISIDES /3,4,1,2,6,5/
C
C      INIT = 1
C
C      FOLD = 0
C
C---DETERMINE SURFACES
C
C      ISIDE1 = IFACE1(MARCH,INDEX(2))
C      ISIDE2 = IFACE2(MARCH,INDEX(2))
C      ISIDE3 = IFACE1(MARCH,INDEX(3))
C      ISIDE4 = IFACE2(MARCH,INDEX(3))
C      ISIDE5 = IFACE1(INDEX(2),INDEX(3))
C      ISIDE6 = IFACE2(INDEX(2),INDEX(3))
C
C---MAXIMUM NUMBER OF NODES IN A PLANE
C
C      MAXPL = NMBRNDS(INDEX(2))*NMBRNDS(INDEX(3))
C
C      INDEX(1) = MARCH
C-----
C      AXIS
C-----
C      DO 700 IAXIS=1,NMBRNDS(INDEX(1))
C      IF(IAXIS.EQ.1 .AND. ISECT.GT.1) GO TO 700
C
C---SEPERATE BOUNDARY CONDITIONS AND DETERMINE ETA
C
C      CALL ETABC(MARCH,INDEX(1),IAXIS)
C
C---CALCULATE COORDINATES AND DERIVATIVES FOR POINTS ON EDGES
C
C      CALL EDGES(INIT,INDEX(1),ETA(INDEX(1)),FOLD)
C
C---NUMBER OF NODES TO BE STORED
C
C      NODSTOR = NODESAV
C
C-----ROW
C-----
```

```

DO 500 JAXIS=1,NMBRND$(INDEX(2))
C
C---SEPERATE BOUNDARY CONDITIONS AND DETERMINE ETA
C
CALL ETABC(MARCH,INDEX(2),JAXIS)
C
C---CALCULATE COORDINATES AND DERIVATIVES FOR POINTS ON EDGES
C
CALL EDGES(INIT,INDEX(2),ETA(INDEX(2)),FOLD)
C
C---CALCULATE COORDINATES AND SURFACE NORMAL FOR POINTS ON SURFACES-----
C
CALL SURFACE(INIT,ISIDE1)
C
CALL SURFACE(INIT,ISIDE2)
C-----
C-----COLUMN
C-----
DO 400 KAXIS=1,NMBRND$(INDEX(3))
C
C---SEPERATE BOUNDARY CONDITIONS AND DETERMINE ETA
C
CALL ETABC(MARCH,INDEX(3),KAXIS)
C
C---CALCULATE COORDINATES AND DERIVATIVES FOR POINTS ON EDGES
C
CALL EDGES(INIT,INDEX(3),ETA(INDEX(3)),FOLD)
C
C---CALCULATE COORDINATES AND SURFACE NORMAL FOR POINTS ON SURFACES
C
CALL SURFACE(INIT,ISIDE3)
C
CALL SURFACE(INIT,ISIDE4)
C
CALL SURFACE(INIT,ISIDE5)
C
CALL SURFACE(INIT,ISIDE6)
C
C---ETA COEFFICIENTS FOR TRI-LINEAR INTERPOLATION
C
      E(1) = 1.0 - ETA(3)
      E(2) =      ETA(3)
      E(3) = 1.0 - ETA(2)
      E(4) =      ETA(2)
      E(5) = 1.0 - ETA(1)
      E(6) =      ETA(1)
      E(7) = E(5)*E(3)
      E(8) = E(5)*ETA(2)
      E(9) = ETA(1)*E(3)
     E(10) = ETA(1)*ETA(2)
      E(11) = E(5)*E(1)
      E(12) = E(5)*ETA(3)
      E(13) = ETA(1)*E(1)
      E(14) = ETA(1)*ETA(3)
      E(15) = E(3)*E(1)
      E(16) = E(3)*ETA(3)
      E(17) = ETA(2)*E(1)
      E(18) = ETA(2)*ETA(3)
      E(19) = E(5)*E(3) *E(1)
     E(20) = E(5)*E(3) *ETA(3)

```

```

E(21) = E(5)*ETA(2)*E(1)
E(22) = E(5)*ETA(2)*ETA(3)
E(23) = ETA(1)*E(3) *E(1)
E(24) = ETA(1)*E(3) *ETA(3)
E(25) = ETA(1)*ETA(2)*E(1)
E(26) = ETA(1)*ETA(2)*ETA(3)

C
C---INCREMENT NODE COUNTERS
C
      INIT = 0
C
      NODESAV = NODESAV + 1
      NODNUM = NODESAV + NODETOT
C
C---CALCULATE THE COORDINATES
C
      DO 340 L=1,3
 340  NODE(L,NODESAV) = E(1)*SIDE(L,1) + E(2)*SIDE(L,3)
      1           + E(3)*SIDE(L,2) + E(4)*SIDE(L,4)
      2           + E(5)*SIDE(L,5) + E(6)*SIDE(L,6)
      3-E( 7)*EDGE(L,5)-E( 8)*EDGE(L, 8)-E( 9)*EDGE(L,6)-E(10)*EDGE(L, 7)
      4-E(11)*EDGE(L,4)-E(12)*EDGE(L,12)-E(13)*EDGE(L,2)-E(14)*EDGE(L,10)
      5-E(15)*EDGE(L,1)-E(16)*EDGE(L, 9)-E(17)*EDGE(L,3)-E(18)*EDGE(L,11)
      6           + E(19)*POINT(L,1) + E(20)*POINT(L,5)
      7           + E(21)*POINT(L,4) + E(22)*POINT(L,8)
      8           + E(23)*POINT(L,2) + E(24)*POINT(L,6)
      9           + E(25)*POINT(L,3) + E(26)*POINT(L,7)

C
      350 CONTINUE
C
      400 CONTINUE
      500 CONTINUE
C-----
C-----PLANE OUTPUT
C-----
      IF(IAXIS.EQ.1) GO TO 700
C
C---PRINT AND STORE DATA-----
C
      IF(NODSTOR.NE.0) THEN
C
          CALL OUTPUT(NU20,NODSTOR)
C
C---TRANSFER DATA SECOND PLANE TO FIRST PLANE
C
          DO 630 I=1,NODESAV
C
          DO 600 J=1,5
              600 NODE(J,I) = NODE(J,I + NODSTOR)
C
              630 CONTINUE
C
          END IF
C
C---TRANSFER NODE NUMBERS FROM SECOND PLANE TO FIRST PLANE-----
C
          DO 650 L=1,MAXPL
              650 NODENUM(L) = NODENUM(L + MAXPL)
C
      700 CONTINUE

```

```

C-----  

C      OUTPUT  

C-----  

C  

C---PRINT AND STORE DATA  

      NODSTOR = NODESAV  

C  

      IF(NODESAV.NE.0) CALL OUTPUT(NU20,NODSTOR)  

C  

      NODESAV = 0  

C  

      RETURN  

C  

C---FORMAT STATEMENTS  

C  

  1100 FORMAT(1H1,10X,20A4,13X,8H SECTION,I2,3H OF,I3,9H FOR ZONE,I3)  

C  

  1110 FORMAT( 8H NODE =,I10
    1      / 41X,2H X,13X,2H Y,12X,2H Z
    2      / 8H E( 1) =,F13.7,15H      SIDE(1) =,6(1X,F13.7)
    3      / 8H E( 3) =,F13.7,15H      SIDE(2) =,6(1X,F13.7)
    4      / 8H E( 2) =,F13.7,15H      SIDE(3) =,6(1X,F13.7)
    5      / 8H E( 4) =,F13.7,15H      SIDE(4) =,6(1X,F13.7)
    6      / 8H E( 5) =,F13.7,15H      SIDE(5) =,6(1X,F13.7)
    7      / 8H E( 6) =,F13.7,15H      SIDE(6) =,6(1X,F13.7))  

C  

  1120 FORMAT( 8H E(15) =,F13.7,15H      EDGE( 1) =,6(1X,F13.7)
    1      / 8H E(13) =,F13.7,15H      EDGE( 2) =,6(1X,F13.7)
    2      / 8H E(17) =,F13.7,15H      EDGE( 3) =,6(1X,F13.7)
    3      / 8H E(11) =,F13.7,15H      EDGE( 4) =,6(1X,F13.7)
    4      / 8H E( 7) =,F13.7,15H      EDGE( 5) =,6(1X,F13.7)
    5      / 8H E( 9) =,F13.7,15H      EDGE( 6) =,6(1X,F13.7))  

C  

  1130 FORMAT( 8H E(10) =,F13.7,15H      EDGE( 7) =,6(1X,F13.7)
    1      / 8H E( 8) =,F13.7,15H      EDGE( 8) =,6(1X,F13.7)
    2      / 8H E(16) =,F13.7,15H      EDGE( 9) =,6(1X,F13.7)
    3      / 8H E(14) =,F13.7,15H      EDGE(10) =,6(1X,F13.7)
    4      / 8H E(18) =,F13.7,15H      EDGE(11) =,6(1X,F13.7)
    5      / 8H E(12) =,F13.7,15H      EDGE(12) =,6(1X,F13.7))  

C  

  1140 FORMAT( 8H E(19) =,F13.7,15H      POINT(1) =,6(1X,F13.7)
    1      / 8H E(23) =,F13.7,15H      POINT(2) =,6(1X,F13.7)
    2      / 8H E(25) =,F13.7,15H      POINT(3) =,6(1X,F13.7)
    3      / 8H E(21) =,F13.7,15H      POINT(4) =,6(1X,F13.7)
    4      / 8H E(20) =,F13.7,15H      POINT(5) =,6(1X,F13.7)
    5      / 8H E(24) =,F13.7,15H      POINT(6) =,6(1X,F13.7)
    6      / 8H E(26) =,F13.7,15H      POINT(7) =,6(1X,F13.7)
    7      / 8H E(22) =,F13.7,15H      POINT(8) =,6(1X,F13.7))  

C  

      END  

C*****  

C*****MAPPING*****  

C*****  

C  

      SUBROUTINE EDGES(INIT, IDIR, ETA, FOLD)  

C-----  

C      INTERPOLATES ALONG EACH EDGE OF EACH SIDE OF ZONE AS PART OF THE  

C      BI/TRI-LINEAR INTERPOLATION SCHEME  

C-----  


```

```

COMMON /COEFF/ COEFE(8,10,12),COEFS(8,6),NMBRSEG(12)
COMMON /COUNTER/ NODESAV,NODETOT,NBNODES,NPLANE
COMMON /HEADER/ ITITLE(20),LINE
COMMON /INITA/ IZINDEX,MAPTEN,INCHES
COMMON /INITB/ IBOX(4,6),IRAY(4,3),NRAY,IPT1(12),IPT2(12)
COMMON /INPUTA/ EDGE(3,12),POINT(3,8),SIDE(3,6)
COMMON /MAPED/ KSEG(12),UAXIS(3,6),IEDGE1(6),IEDGE2(6),GAMMA
COMMON /MAXIMUM/ ETAMAX(10,12),SEGMAX(3,10,12)
COMMON /PARTIAL/ DEDN(3,12),DSDN(3,2),SNORMAL(3,6)
COMMON /SEGMENT/ PT1(6,10,12),PT2(6,10,12),ETA1(10,12),ETA2(10,12)
COMMON /UNITS/ NU5,NU6,NU20
COMMON /ZONING/ IZONE,ISECT,NZINDEX,NMBRND(3)

C-----
C     INTERMEDIATE PRINT
C-----
C----- NODNUM = NODESAV + NODETOT + 1
C
C----- C     CALCULATE EDGE COORDINATES AND DERIVATIVE
C-----
C----- 20 DO 200 I=1,NRAY
C
C---DETERMINE WHICH EDGE
C
C----- IEDGE = IRAY(I,DIR)
C
C---EDGE INITIALIZATION
C
C----- IF(INIT.EQ.1) CALL EMAPI(IEDGE,FOLD,DIR,I)
C
C---DETERMINE WHICH SEGMENT
C
C----- DO 100 JSEG=1,NMBRSEG(IEDGE)
C
C----- ISEG = JSEG
C
C----- 100 IF(ETA.GE.ETA1(ISEG,IEDGE) .AND. ETA.LE.ETA2(ISEG,IEDGE)) GOTO 110
C
C----- 110 KSEG(IEDGE) = ISEG
C
C---DETERMINE WHERE ALONG THE SEGMENT
C
C----- DENOM = ETA2(ISEG,IEDGE) - ETA1(ISEG,IEDGE)
C----- IF(DENOM.EQ.0.0) DENOM = 1.0
C
C----- RATIO = (ETA - ETA1(ISEG,IEDGE))/DENOM
C
C---CALCULATE THE COORDINATES AND DERIVATIVE
C
C----- CALL EMAP(IEDGE,ISEG,RATIO,EDGE(1,IEDGE),DEDN(1,IEDGE))
C
C----- C     INTERMEDIATE PRINT
C----- C
C----- 200 CONTINUE
C
C----- RETURN
C
C---FORMAT STATEMENTS

```

```

C
1100 FORMAT(1H1,10X,20A4,13X,8H SECTION,I2,3H OF,I3,9H FOR ZONE,I3)
1110 FORMAT(/ 41H NODE . EDGE      X          Y,
1           43H             Z          TANGENT: THETA,
2           36H     PHI     ETA     RATIO   ETAMAX)
1120 FORMAT(1X,I6,4X,I2,3X,3(3X,F13.7),11X,2(2X,F7.2),3(2X,F7.5))
C
      END
C
C*****MAPPING*****
C*****SUBROUTINE EMAPI(IEDGE,FOLD,DIR,NMBREDG)
C-----  

C      EDGE MAPPING INITIALIZATION
C-----  

      COMMON /COEFF/ COEFE(8,10,12),COEFS(8,6),NMBRSEG(12)
      COMMON /COUNTER/ NODESAV,NODETOT,NBNODES,NPLANE
      COMMON /EDGE0/ UI(3,10,12),UJ(3,10,12),UK(3,10,12),
&                   RI(3,10,12),R2(3,10,12),THETA(10,12)
&                   ARC(10,12),ARC1(10,12),XLENGTH(10,12),
&                   RA(10,12),RC(10,12),RE(10,12),THETAI(10,12)
&                   RM1(10,12),RM2(10,12),RPA1(10,12),RPA2(10,12)
      COMMON /HEADER/ ITITLE(20),LINE
      COMMON /INITA/ IZINDEX,MAPTEN,INCHES
      COMMON /INITB/ IBOX(4,6),IRAY(4,3),NRAY,IPT1(12),IPT2(12)
      COMMON /INITC/ PI,RADDEG
      COMMON /INPUTA/ EDGE(3,12),POINT(3,8),SIDE(3,6)
      COMMON /MAPED/ KSEG(12),UAXIS(3,6),IEDGE1(6),IEDGE2(6),GAMMA
      COMMON /MAPING/ MAPSIDE(6),MAPSEG(10,12)
      COMMON /MARCHS/ MARCH,INDEX(3)
      COMMON /MAXIMUM/ ETAMAX(10,12),SEGMAX(3,10,12)
      COMMON /PARTIAL/ DEDN(3,12),DSDN(3,2),SNORMAL(3,6)
      COMMON /SEGMENT/ PT1(6,10,12),PT2(6,10,12),ETA1(10,12),ETA2(10,12)
C
      DIMENSION ETAMX(10,12),VECTER(3)
C
C---INITIALIZE
C
      KSEG(IEDGE) = 1
C
      DO 10 N=1,NMBRSEG(IEDGE)
10    ETAMX(N,IEDGE) = ETAMAX(N,IEDGE)
C
      40    ETAMX(NMBRSEG(IEDGE),IEDGE) = 1.0
C
      ETA1(1,IEDGE) = 0.0
      ETAMAX(NMBRSEG(IEDGE),IEDGE) = 1.0
C-----  

C      INITIALIZE SEGMENTS
C-----  

      DO 1000 ISEG=1,NMBRSEG(IEDGE)
C
C---DETERMINE THE COORDINATES AT THE END POINTS
C
      IF(ISEG.EQ.1) THEN
C
      DO 50 J=1,3
          PT1(J, 1,IEDGE) = POINT(J,IPT1(IEDGE))

```

```

      SEGMAX(J,NMBRSEG(IEDGE),IEDGE) = POINT(J,IPT2(IEDGE))
50      PT2(J,ISEG,IEDGE) = SEGMAX(J,ISEG,IEDGE)
C      ELSE
C      DO 60 J=1,3
          PT1(J,ISEG,IEDGE) = SEGMAX(J,(ISEG-1),IEDGE)
60      PT2(J,ISEG,IEDGE) = SEGMAX(J,ISEG,IEDGE)
C      END IF
C---ETA VALUE AT THE END OF EACH SEGMENT
C      IF(ISEG.GT.1) ETA1(ISEG,IEDGE) = ETA2(ISEG-1,IEDGE)
C                      ETA2(ISEG,IEDGE) = ETAMX(ISEG,IEDGE)
C---VECTORS FROM ORIGIN TO END POINTS
C      DO 80 J=1,3
          R1(J,ISEG,IEDGE) = PT1(J,ISEG,IEDGE) - COEFE(J,ISEG,IEDGE)
80      R2(J,ISEG,IEDGE) = PT2(J,ISEG,IEDGE) - COEFE(J,ISEG,IEDGE)
C      CALL VMAG(R1(1,ISEG,IEDGE),RMAG1)
C      CALL VMAG(R2(1,ISEG,IEDGE),RMAG2)
C-----CHOOSE MAPPING FUNCTION
C-----MAP = MAPSEG(ISEG,IEDGE)

      GO TO (1000,200,300,400,500,600,700) MAP
C-----CIRCULAR ARC
C-----MAP = 2
C-----SWEEP ANGLE
C      200 CALL VDOT(R1(1,ISEG,IEDGE),R2(1,ISEG,IEDGE),R1DOTR2)
C          ARG = R1DOTR2/(RMAG1*RMAG2)
C      IF(ABS(ARG).GT.1.0) ARG = ARG/ABS(ARG)
C          THETA(ISEG,IEDGE) = ACOS(ARG)
C      GO TO 1000
C-----CONICS
C-----MAP = 3
C-----PROJECTION ONTO CONIC AXIS
C      300 IF(COEFE(7,ISEG,IEDGE).GT.0.0) THEN
C          DO 305 I=1,3
              TEMP = R1(I,ISEG,IEDGE)
              R1(I,ISEG,IEDGE) = R2(I,ISEG,IEDGE)
              R2(I,ISEG,IEDGE) = TEMP
C          TEMP = RMAG1
C          RMAG1 = RMAG2
C          RMAG2 = TEMP

```

```

C
C               END IF
C
C       CALL VDOT(R1(1,ISEG,IEDGE),COEFE(4,ISEG,IEDGE),A1)
C
C       CALL VDOT(R2(1,ISEG,IEDGE),COEFE(4,ISEG,IEDGE),A2)
C
C---RECIPROCAL OF ECCENTRICITY (RE = 1/E)
C
C               ECT = ABS((A1-A2)/(RMAG1-RMAG2))
C
C       IF(ECT.GT.0.9999.AND.ECT.LT.1.0001) ECT = 1.0
C
C               RE(ISEG,IEDGE) = ECT
C
C---DISTANCE FROM DIRECTRIX TO FOCUS
C
C               RC(ISEG,IEDGE) = RMAG1*RE(ISEG,IEDGE) - A1
C
C---THETA1: ANGLE BETWEEN NEGATIVE OF CONIC AXIS AND R1
C
C               ARG = A1/RMAG1
C               IF(ABS(ARG).GT.1.0) ARG = ARG/ABS(ARG)
C
C               THETA1(ISEG,IEDGE) = ACOS(-ARG)
C
C---THETA2: ANGLE BETWEEN NEGATIVE OF CONIC AXIS AND R2
C
C               ARG = A2/RMAG2
C               IF(ABS(ARG).GT.1.0) ARG = ARG/ABS(ARG)
C
C               THETA2 = ACOS(-ARG)
C
C---SWEEP ANGLE: THETA2 - THETA1
C
C               THETA(ISEG,IEDGE) = THETA2 - THETA1(ISEG,IEDGE)
C
C---LOCAL COORDINATE SYSTEM
C
C       DO 310 J=1,3
C               UJ(J,ISEG,IEDGE) = R1(J,ISEG,IEDGE)/RMAG1
C               310      UI(J,ISEG,IEDGE) = R2(J,ISEG,IEDGE)/RMAG2
C
C       CALL CROSS(UI(1,ISEG,IEDGE),UJ(1,ISEG,IEDGE),UK(1,ISEG,IEDGE),10)
C
C---INTEGRATION CONSTANTS
C
C               RA(ISEG,IEDGE) = SQRT(ABS(RE(ISEG,IEDGE)**2 - 1.0))
C               T = TAN(THETA1(ISEG,IEDGE)*0.5)
C
C---ELLIPSE-----
C
C       IF(RE(ISEG,IEDGE).LT.1.0001) GO TO 320
C
C---ARC LENGTH INTEGRAL (CRC EQN. 341) EVALUATED AT THETA1
C
C               ARG = RA(ISEG,IEDGE)*T/(RE(ISEG,IEDGE) + 1.0)
C               ARC1(ISEG,IEDGE) = 2.*RC(ISEG,IEDGE)*ATAN(ARG)/RA(ISEG,IEDGE)
C
C---ARC LENGTH INTEGRAL (CRC EQN. 341) EVALUATED AT THETA2

```

```

C
      T = TAN(THETA2*0.5)
      ARG = RA(ISEG,IEDGE)*T/(RE(ISEG,IEDGE) + 1.0)
      ARC2 = 2.*RC(ISEG,IEDGE)*ATAN(ARG)/RA(ISEG,IEDGE)

C
C---TOTAL ARC LENGTH
C
      ARC(ISEG,IEDGE) = ARC2 - ARC1(ISEG,IEDGE)

C
C---TANGENT CONSTANT
C
      XLENGTH(ISEG,IEDGE) = ARC(ISEG,IEDGE)*(RE(ISEG,IEDGE) + 1.0)
      &                               /(THETA(ISEG,IEDGE)*RC(ISEG,IEDGE))

C
      GO TO 1000

C
C---HYPERBOLA-----
C
      320 IF(RE(ISEG,IEDGE).GT.0.9999) GO TO 330
C
C---ARC LENGTH INTEGRAL EVALUATED AT THETA1
C
      ARG = (RA(ISEG,IEDGE)*T + RE(ISEG,IEDGE) + 1.)
      &                               /(RA(ISEG,IEDGE)*T - RE(ISEG,IEDGE) - 1.)
      ARG = ABS(ARG)
      ARC1(ISEG,IEDGE) = RC(ISEG,IEDGE)*LOG(ARG)/RA(ISEG,IEDGE)

C
C---ARC LENGTH INTEGRAL EVALUATED AT THETA2
C
      T = TAN(THETA2*0.5)
      ARG = (RA(ISEG,IEDGE)*T + RE(ISEG,IEDGE) + 1.)
      &                               /(RA(ISEG,IEDGE)*T - RE(ISEG,IEDGE) - 1.)
      ARG = ABS(ARG)
      ARC2 = RC(ISEG,IEDGE)*LOG(ARG)/RA(ISEG,IEDGE)

C
C---TOTAL ARC LENGTH
C
      ARC(ISEG,IEDGE) = ARC2 - ARC1(ISEG,IEDGE)

C
C---TANGENT CONSTANT
C
      XLENGTH(ISEG,IEDGE) = -4.0*(1.0 + RE(ISEG,IEDGE))
      &                               *ARC(ISEG,IEDGE)/(THETA(ISEG,IEDGE)*RC(ISEG,M))

C
      GO TO 1000

C
C---PARABOLA-----
C
C---ARC LENGTH INTEGRAL EVALUATED AT THETA1
C
      330    ARC1(ISEG,IEDGE) = RC(ISEG,IEDGE)*T

C
C---ARC LENGTH INTEGRAL EVALUATED AT THETA2
C
      T = TAN(THETA2*0.5)

C
C---TOTAL ARC LENGTH
C
      ARC(ISEG,IEDGE) = RC(ISEG,IEDGE)*T - ARC1(ISEG,IEDGE)

```

```

C---TANGENT CONSTANT
C
C      XLENGTH(ISEG,IEDGE) = 2.0*ARC(ISEG,IEDGE)
C          &           /(THETA(ISEG,IEDGE)*RC(ISEG,IEDGE))
C
C      GO TO 1000
C-----
C      EDGE OF REVOLUTION                               MAP = 4
C-----
C      400 CONTINUE
C
C      C---UK: NORMALIZED VECTOR ALONG AXIS OF REVOLUTION
C
C          CALL VMAG(COFE(4,ISEG,IEDGE),UKM)
C
C          DO 410 I=1,3
C
C          410 UK(I,ISEG,IEDGE) = COFE(I + 3,ISEG,IEDGE)/UKM
C
C      C---UJ: NORMALIZED VECTOR FROM AXIS TOWARD EDGE
C
C          CALL CROSS(UK(1,ISEG,IEDGE),R1(1,ISEG,IEDGE),UJ(1,ISEG,IEDGE),20)
C
C      C---UI: NORMALIZED VECTOR FROM AXIS TO FIRST POINT
C
C          CALL CROSS(UJ(1,ISEG,IEDGE),UK(1,ISEG,IEDGE),UI(1,ISEG,IEDGE),21)
C
C      C---R1: VECTOR FROM AXIS TO FIRST POINT-----
C
C          CALL VDOT(R1(1,ISEG,IEDGE),UK(1,ISEG,IEDGE),RPA1(ISEG,IEDGE))
C
C          CALL VADD(1.0,R1(1,ISEG,IEDGE),-RPA1(ISEG,IEDGE),UK(1,ISEG,IEDGE),
C          &                   R1(1,ISEG,IEDGE),VECTER)
C
C          CALL VMAG(R1(1,ISEG,IEDGE),RM1(ISEG,IEDGE))
C
C      C---R2: VECTOR FROM AXIS TO SECOND POINT-----
C
C          CALL VDOT(R2(1,ISEG,IEDGE),UK(1,ISEG,IEDGE),RPA2(ISEG,IEDGE))
C
C          CALL VADD(1.0,R2(1,ISEG,IEDGE),-RPA2(ISEG,IEDGE),UK(1,ISEG,IEDGE),
C          &                   R2(1,ISEG,IEDGE),VECTER)
C
C          CALL VMAG(R2(1,ISEG,IEDGE),RM2(ISEG,IEDGE))
C
C      C---SWEEP ANGLE-----
C
C          CALL VDOT(R1(1,ISEG,IEDGE),R2(1,ISEG,IEDGE),R1DTR2)
C
C          ARG = R1DTR2/(RM1(ISEG,IEDGE)*RM2(ISEG,IEDGE))
C
C          IF(ABS(ARG).GT.1.) ARG = ARG/ABS(ARG)
C
C          THETA(ISEG,IEDGE) = ACOS(ARG)
C
C          GO TO 1000
C-----
C      C      USER SUPPLIED SPECIAL EDGE INITIALIZATION          MAP = 5
C-----
C      500 CONTINUE

```

```

C-----  

C   USER SUPPLIED SPECIAL EDGE INITIALIZATION           MAP = 6  

C-----  

C       600 CONTINUE  

C-----  

C   USER SUPPLIED SPECIAL EDGE INITIALIZATION           MAP = 7  

C-----  

C       700 CONTINUE  

C-----  

C       1000 CONTINUE  

C-----  

C           RETURN  

C           END  

C-----  

C*****MAPPING*****  

C*****  

C-----  

C           SUBROUTINE EMAP(IEDGE,ISEG,RATIO,POINT,TANGENT)  

C-----  

C   THIS ROUTINE CALCULATES THE COORDINATES, AND TANGENT  

C   OF A POINT ON AN EDGE.  

C-----  

C           COMMON /COEFF/    COEFE(8,10,12),COEFS(8,6),NMBRSEG(12)  

C           COMMON /EDGE0/    UI(3,10,12),UJ(3,10,12),UK(3,10,12),  

C                               R1(3,10,12),R2(3,10,12),THETA(10,12)  

C           & COMMON /EDGE3/    ARC(10,12),ARC1(10,12),XLENGTH(10,12),  

C                               RA(10,12),RC(10,12),RE(10,12),THETAI(10,12)  

C           & COMMON /EDGE8/    RM1(10,12),RM2(10,12),RPA1(10,12),RPA2(10,12)  

C           COMMON /MAPING/   MAPSIDE(6),MAPSEG(10,12)  

C           COMMON /SEGMENT/  PT1(6,10,12),PT2(6,10,12),ETA1(10,12),ETA2(10,12)  

C-----  

C           COMMON /DFN1/    DU1(3),DU2(3),DU3(3),DFNB,DFND,DFNF  

C           COMMON /DFN2/    AE,BE,DFNR,ZSTAR,AGL,BETA1,BETA2,BETA3,BETA4  

C           COMMON /DFN3/    AD,BD,BETA(37),DELRHO(37),RADOC(37)  

C           COMMON /DFN5/    CE,CQ,ABOT,ATOP  

C-----  

C           DIMENSION XN(3),XR(3),XP(3),VDUM(3)  

C-----  

C           DIMENSION POINT(6),TANGENT(3)  

C           DIMENSION VECTOR(3)  

C-----  

C           MAP = MAPSEG(ISEG,IEDGE)  

C-----  

C           GO TO (100,200,300,400,500,600,700) MAP  

C-----  

C           LINEAR EDGE           MAP = 1  

C-----  

C           100 DO 110 I=1,3  

C                 POINT(I) = (1. - RATIO)*R1(I,ISEG,IEDGE) + RATIO*R2(I,ISEG,IEDGE)  

C-----  

C           110 VECTOR(I) = R2(I,ISEG,IEDGE) - R1(I,ISEG,IEDGE)  

C-----  

C           CALL VMAG(VECTOR,RMAG)  

C-----  

C           IF(RMAG.EQ.0.0) RMAG = 1.0  

C-----  

C           DO 120 I=1,3  

C           120 TANGENT(I) = (R2(I,ISEG,IEDGE) - R1(I,ISEG,IEDGE))/RMAG

```

```

GO TO 1000
C-----  

C CIRCULAR ARC MAP = 2  

C-----  

200      PHI1 = (1.0 - RATIO)*THETA(ISEG,IEDGE)  

         PHI2 =           RATIO*THETA(ISEG,IEDGE)  

C  

DO 210 I=1,3  

      POINT(I) = COEFE(I,ISEG,IEDGE) +  

1          (SIN(PHI1)*R1(I,ISEG,IEDGE) + SIN(PHI2)*R2(I,ISEG,IEDGE))  

2          /SIN(THETA(ISEG,IEDGE))  

C  

210 TANGENT(I) = THETA(ISEG,IEDGE)*  

1          (COS(PHI2)*R2(I,ISEG,IEDGE) - COS(PHI1)*R1(I,ISEG,IEDGE))  

2          /SIN(THETA(ISEG,IEDGE))  

C  

GO TO 1000
C-----  

C CONICS MAP = 3  

C-----  

300      DARC =           RATIO*ARC(ISEG,IEDGE)  

         IF(COEFE(7,ISEG,IEDGE).GT.0.0) DARC = (1. - RATIO)*ARC(ISEG,IEDGE)  

C  

C---RE = 1/E  

C  

IF(RE(ISEG,IEDGE).LT.0.9999) GO TO 310  

IF(RE(ISEG,IEDGE).GT.1.0001) GO TO 320  

         GO TO 330  

C  

C---HYPERBOLA-----  

C  

C---CALCULATE ANGLE CORRESPONDING TO ARC LENGTH  

C  

310      ARG1 = (DARC + ARCL(ISEG,IEDGE))*RA(ISEG,IEDGE)  

&           /RC(ISEG,IEDGE)  

&           ARG2 = (EXP(ARG1) - 1.0)*(RE(ISEG,IEDGE) + 1.0)  

&           /(RA(ISEG,IEDGE)*(EXP(ARG1) + 1.0))  

         ALPHA = 2.0*ATAN(ARG2)  

C  

C---DERIVATIVE  

C  

      DEDN = XLENGTH(ISEG,IEDGE)*EXP(ARG1)  

&           /((1.0 + ARG2**2)*(1.0 - EXP(ARG1))**2)  

         GO TO 340  

C  

C---ELLIPSE-----  

C  

C---CALCULATE ANGLE CORRESPONDING TO ARC LENGTH  

C  

320      ARG1 = (DARC + ARCL(ISEG,IEDGE))*RA(ISEG,IEDGE)*0.5  

&           /RC(ISEG,IEDGE)  

&           ARG2 = (RE(ISEG,IEDGE) + 1.0)*TAN(ARG1)/RA(ISEG,IEDGE)  

         ALPHA = 2.0*ATAN(ARG2)  

C  

C---DERIVATIVE  

C  

      DEDN = XLENGTH(ISEG,IEDGE)*(1.0 + TAN(ARG1)**2)/(1. + ARG2**2)  

C  

IF(COEFE(7,ISEG,IEDGE).GT.0.0) DEDN = -DEDN  

C

```

```

GO TO 340
C
C---PARABOLA-----
C
C---CALCULATE ANGLE CORRESPONDING TO ARC LENGTH
C
330     ARG = -(DARC + ARCL(ISEG,IEDGE))/RC(ISEG,IEDGE)
        ALPHA = 2.0*ATAN(ARG)
C
C---DERIVATIVE
C
        DEDN = XLENGTH(ISEG,IEDGE)/(1.0 + ARG**2)
C
C-----MAGNITUDE OF POSITION VECTOR
C
340     R = RC(ISEG,IEDGE)/(RE(ISEG,IEDGE) + COS(ALPHA))
C
C---RATIO USING ANGLES
C
        ESP = (ALPHA - THETA1(ISEG,IEDGE))/THETA(ISEG,IEDGE)
C
        PHI1 = (1.0 - ESP)*THETA(ISEG,IEDGE)
        PHI2 = ESP*THETA(ISEG,IEDGE)
C
C---POSITION AND TANGENT
C
DO 350 I=1,3
    POINT(I) = COEFE(I,ISEG,IEDGE) +
1      R*(SIN(PHI1)*UJ(I,ISEG,IEDGE) + SIN(PHI2)*UI(I,ISEG,IEDGE))
2      /SIN(THETA(ISEG,IEDGE))
C
    TANGENT(I) = (POINT(I) - COEFE(I,ISEG,IEDGE))
1      *THETA(ISEG,IEDGE)*R*SIN(ALPHA)/RC(ISEG,IEDGE)
2      + THETA(ISEG,IEDGE)*R
3      *(-COS(PHI1)*UJ(I,ISEG,IEDGE) + COS(PHI2)*UI(I,ISEG,IEDGE))
4      /SIN(THETA(ISEG,IEDGE))
C
350 TANGENT(I) = TANGENT(I)*DEDN
C
GO TO 1000
C-----MAP = 4
C   EDGE OF REVOLUTION
C-----C---PROJECTION ALONG AXIS AND RADIUS
C
400 RP = (RPA2(ISEG,IEDGE)-RPA1(ISEG,IEDGE))*RATIO + RPA1(ISEG,IEDGE)
        RM = (RM2(ISEG,IEDGE)-RM1(ISEG,IEDGE))*RATIO + RM1(ISEG,IEDGE)
C
C---ANGLE
C
        GAMMA = THETA(ISEG,IEDGE)*RATIO
C
C---CALCULATE THE POSITION AND TANGENT-----
C
DO 410 I=1,3
C
        UR = COS(GAMMA)*UI(I,ISEG,IEDGE)
&           + SIN(GAMMA)*UJ(I,ISEG,IEDGE)

```

```

C      POINT(I) = COEFE(I,ISEG,IEDGE) + RP*UK(I,ISEG,IEDGE) + RM*UR
C
C 410 TANGENT(I) = COS(GAMMA)*UJ(I,ISEG,IEDGE)
C           &          - SIN(GAMMA)*UI(I,ISEG,IEDGE)
C
C      GO TO 1000
C-----MAP = 5
C      HGM HOLE (EDGES 1,6,9,5)
C-----C---ANGULAR LOCATION (B)
C
C      500      BETAI = COEFE(1,1,IEDGE)
C                  BETAF = COEFE(2,1,IEDGE)
C
C      DBTA = BETAF - BETAI
C              B = BETAI + RATIO*DBTA
C
C-----C---CALCULATE HOLE RADIUS (RHO)
C
C      CALL DELRAD(B,RHO,DRHO,RHOD,RDOC)
C-----C---CALCULATE AXIAL DISTANCE (CP)
C
C      CALL CAXIS(B,RHO,CP)
C
C-----C---CALCULATE COORDINATES OF POINT ON HOLE
C
C      CALL HOLE(B,POINT,VDUM)
C
C-----C---TANGENT
C
C      CB = COS(B)
C      SB = SIN(B)
C
C-----C---RADIAL UNIT VECTOR
C
C      XR(1) = CB*DU2(1) + SB*DU3(1)
C      XR(2) = CB*DU2(2) + SB*DU3(2)
C      XR(3) = CB*DU2(3) + SB*DU3(3)
C
C      CALL DERIV(B,RHO,CP,DRDB,DCDB)
C
C      CALL VADD(DCDB,DU1,DRDB,XR,TANGENT,VDUM)
C
C-----C---TANGENT
C
C      TANGENT(1) = (RHO*(-SB*DU2(1) + CB*DU3(1)) + TANGENT(1))*DBTA
C      TANGENT(2) = (RHO*(-SB*DU2(2) + CB*DU3(2)) + TANGENT(2))*DBTA
C      TANGENT(3) = (RHO*(-SB*DU2(3) + CB*DU3(3)) + TANGENT(3))*DBTA
C
C      GO TO 1000
C-----MAP = 6
C      DUCT EXIT PLANE (EDGES 3,7,8,11)
C-----C---ANGULAR LOCATION (B)
C
C      600      BETAI = COEFE(1,1,IEDGE)
C                  BETAF = COEFE(2,1,IEDGE)
C

```

```

DBTA = BETAF - BETAI
      B = BETAI + RATIO*DBTA
C
C---CALCULATE COORDINATES OF POINTS ON THE EXIT PLANE
C
      CALL DEXIT(B,POINT,VDUM)
C
C---TANGENT-----
C
      CB = COS(B)
      SB = SIN(B)
C
C---DUCT RADIUS (RHOD)
C
      EX1 = (AD*SB)**2 + (BD*CB)**2
      EX2 = BD**2 - AD**2
C
      RHOD = AD*BD/SQRT(EX1)
C
      DRDDB = RHOD*SB*CB*EX2/EX1
      DCDB = (RHOD*CB + SB*DRDDB)*DFNB/(CQ - CE)
C
      CALL VADD(CB,DU2,SB,DU3,XR,VDUM)
C
      CALL VADD(DCDB,DU1,DRDDB,XR,XP,VDUM)
C
      CALL VADD(-SB,DU2,CB,DU3,XN,VDUM)
C
C---TANGENT
C
      TANGENT(1) = (XP(1) + RHOD*XN(1))*DBTA
      TANGENT(2) = (XP(2) + RHOD*XN(2))*DBTA
      TANGENT(3) = (XP(3) + RHOD*XN(3))*DBTA
C
      GO TO 1000
C-----MAP = 7
C      WELD (EDGES 2,4,10,12)
C-----ANGULAR LOCATION (BB)
C
      700          PI2 = 1.57079633
C
      BB = COEFE(1,1,IEDGE)
      IF(RATIO.LT.0.0) BB = POINT(1)
C
      RATIO = ABS(RATIO)
C
C---WELD RADIUS (RDOC) & DIFFERENCE BETWEEN HOLE AND DUCT RADIUS (DRHO)
C
      CALL DELRAD(BB,RHO,DRHO,RHOD,RDOC)
C
C---CALCULATE AXIAL DISTANCE (CP)
C
      CALL CAXIS(BB,RHO,CP)
C
      Y = RDOC - DRHO
C
      AAD = 0.5*((ABOT + ATOP) + (ATOP - ABOT)*COS(BB - PI2))
      X = SQRT(DRHO*(2.0*RDOC - DRHO))
C

```

```

C---WELD ANGLE
C
TH2 = ATAN(X/Y)
TH1 = PI2 - TH2
C
XX = AAD - X
C
TH3 = ATAN(XX/RDOC)
C
ANGL = RATIO*(TH2 + TH3) + TH1
C
C---POINT & TANGENT-----
C
IF(ANGL.GE.PI2) THEN
C
C---DUCT-----
C
PSI = (ANGL - PI2)/TH3
C---AXIAL DISTANCE
CS = CP + X + PSI*XX
C---RADIUS
RS = RHOD
C---COORDINATES
CALL DUCT(BB,RS,CS,POINT)
C---TANGENT
TANGENT(1) = DU1(1)
TANGENT(2) = DU1(2)
TANGENT(3) = DU1(3)
C
RETURN
C---WELD-----
ELSE
C
XS = RDOC*COS(ANGL)
YS = RDOC*SIN(ANGL)
C---AXIAL DISTANCE
CS = CP + X - XS
C---RADIUS
RS = RHOD + RDOC - YS
C---COORDINATES
CALL DUCT(BB,RS,CS,POINT)
C---TANGENT
DXDN = TAN(ANGL)
C
CB = COS(BB)
SB = SIN(BB)
C
CALL VADD(CB,DU2,SB,DU3,VDUM,TANGENT)
C
CALL VADD(DXDN,DU1,-1.0,VDUM,C,TANGENT)
C
RETURN
C
END IF
C
1000 CONTINUE
C
RETURN
C

```

```

1100 DO 1110 I=4,6
1110 POINT(I) = PT1(I,ISEG,IEDGE)
C
      RETURN
      END
C
C*****MAPPING*****
C*****SUBROUTINE SURFACE(INIT,ISIDE)
C-----THIS ROUTINE DETERMINES THE COORDINATES AND NORMAL OF A
C     POINT ON A SURFACE.
C-----
COMMON /COEFF/    COEFE(8,10,12),COEFS(8,6),NMBRSEG(12)
COMMON /COORD/    UA(3,6),UE(3,6),UN(3,6)
COMMON /COUNTER/  NODESAV,NODETOT,NBNODES,NPLANE
COMMON /HEADER/   ITITLE(20),LINE
COMMON /INITA/    IZINDEX,MAPTEN,INCHES
COMMON /INITB/    IBOX(4,6),IRAY(4,3),NRAY,IPT1(12),IPT2(12)
COMMON /INITC/    PI,RADDEG
COMMON /INPUTA/   EDGE(3,12),POINT(3,8),SIDE(3,6)
COMMON /MARCHS/   MARCH,INDEX(3)
COMMON /MAPED/    KSEG(12),UAXIS(3,6),IEDGE1(6),IEDGE2(6),GAMMA
COMMON /MAPING/   MAPSIDE(6),MAPSEG(10,12)
COMMON /MAXIMUM/  ETAMAX(10,12),SEGMAX(3,10,12)
COMMON /PARTIAL/  DEDN(3,12),DSDN(3,2),SNORMAL(3,6)
COMMON /SPACING/  ISTRITCH(3),STRETCH(3),ETAS(3,200),ETA(3),DETA(3)
COMMON /UNITS/    NU5,NU6,NU20
COMMON /ZONING/   IZONE,ISECT,NZINDEX,NMBRNDS(3)
C
COMMON /DFN1/    DU1(3),DU2(3),DU3(3),DFNB,DFND,DFNF
COMMON /DFN2/    AE,BE,DFNR,ZSTAR,AGL,BETA1,BETA2,BETA3,BETA4
COMMON /DFN3/    AD,BD,BETA(37),DELRHO(37),RADOC(37)
COMMON /DFN4/    IHOLE,PL(6,6,4),PA(2,6,4)
COMMON /DFN5/    CE,CQ,ABOT,ATOP
C
DIMENSION RAM(3),SAC(3)
DIMENSION R1(6),R2(6),R3(6),R4(6)
DIMENSION E1(6),E2(6),E3(6),E4(6)
C
DIMENSION F(8)
DIMENSION NMBRPT(4,6),SPOINT(3,4,6),SEDGE(3,4),SWEEP(3)
DIMENSION UNORMAL(3,6),URADIAL(3,6)
DIMENSION ZERO(3),VECTOR(3)
DIMENSION IETA1(6),IETA2(6),SIGNS(6)
DIMENSION UNITRAD(3)
C
DATA IETA1 /1,1,1,1,2,2/
DATA IETA2 /2,3,2,3,3,3/
DATA SIGNS /1.0,-1.0,-1.0,1.0,1.0,-1.0/
DATA ZERO /0.,0.,0./
C
NODNUM = NODESAV + NODETOT + 1
C
C---ETA COEFFICIENTS FOR BI-LINEAR INTERPOLATION
C
      F(1) = 1.0 - ETA(IETA1(ISIDE))
      F(2) =      ETA(IETA1(ISIDE))}
```

```

F(3) = 1.0 - ETA(IETA2(ISIDE))
F(4) =     ETA(IETA2(ISIDE))
F(5) = F(1)*F(3)
F(6) = F(1)*F(4)
F(7) = F(2)*F(3)
F(8) = F(2)*F(4)
C
C---DETERMINE THE EDGES OF THE SURFACE
C
LINE1 = IBOX(1,ISIDE)
LINE2 = IBOX(2,ISIDE)
LINE3 = IBOX(3,ISIDE)
LINE4 = IBOX(4,ISIDE)
C
C---DETERMINE THE CORNER POINTS OF THE SURFACE
C
LPT1 = IPT1(LINE1)
LPT2 = IPT1(LINE3)
LPT3 = IPT2(LINE3)
LPT4 = IPT2(LINE1)
C
MAP = MAPSIDE(ISIDE)
C
GO TO (100,100,300,400,500,600,700) MAP
C-----  

C   FLAT OR CYLINDRICAL SURFACE           MAP = 1 OR 2
C-----  

C---CALCULATE POSITION
C
100 DO 110 J=1,3
C
SIDE(J,ISIDE) = F(1)*EDGE(J,LINE1) - F(5)*POINT(J,LPT1)
1             + F(2)*EDGE(J,LINE3) - F(6)*POINT(J,LPT4)
2             + F(3)*EDGE(J,LINE2) - F(7)*POINT(J,LPT2)
3             + F(4)*EDGE(J,LINE4) - F(8)*POINT(J,LPT3)
C
DSDN(J,1) =      EDGE(J,LINE3) + F(3)*POINT(J,LPT1)
1             - EDGE(J,LINE1) + F(4)*POINT(J,LPT4)
2             + F(3)*DEDN(J,LINE2) - F(3)*POINT(J,LPT2)
3             + F(4)*DEDN(J,LINE4) - F(4)*POINT(J,LPT3)
C
110      DSDN(J,2) =      EDGE(J,LINE4) + F(1)*POINT(J,LPT1)
1             - EDGE(J,LINE2) + F(2)*POINT(J,LPT2)
2             + F(1)*DEDN(J,LINE1) - F(1)*POINT(J,LPT4)
3             + F(2)*DEDN(J,LINE3) - F(2)*POINT(J,LPT3)
C
CALL CROSS(DSDN(1,1),DSDN(1,2),SNORMAL(1,ISIDE),41)
C
GO TO 1000
C-----  

C   SPECIAL SURFACE                      MAP = 3
C-----  

300 GO TO 1000
C-----  

C   EDGE OF REVOLUTION                  MAP = 4
C-----  

400 IF(INIT.EQ.1) THEN
C
C---ETA DIRECTION OF REVOLUTION
C

```

```

IONETWO = 1
IF(COEFS(7,ISIDE).EQ.IETA2(ISIDE)) IONETWO = 2
C
C---EDGE 1
C
        IEDGE1(ISIDE) = IBOX(IONETWO,ISIDE)
C
C---EDGE 2
C
        IEDGE2(ISIDE) = IBOX(IONETWO + 2,ISIDE)
C
C---UA: NORMALIZED VECTOR ALONG AXIS OF REVOLUTION
C
        CALL VADD(1.0,COEFS(4,ISIDE),1.0,ZERO,VECTOR,UA(1,ISIDE))
C
C---UN: NORMALIZED VECTOR FROM AXIS TOWARD SURFACE
C
        CALL VADD(1.0,EDGE(1,IEDGE1(ISIDE)), -1.0,COEFS(1,ISIDE),E1,VECTOR)
C
        CALL CROSS(UA(1,ISIDE),E1,UN(1,ISIDE),42)
C
C---UE: NORMALIZED VECTOR FROM AXIS TO FIRST EDGE
C
        CALL CROSS(UN(1,ISIDE),UA(1,ISIDE),UE(1,ISIDE),43)
C
        END IF
C
C---R1: VECTOR FROM AXIS TO FIRST EDGE-----
C
        CALL VADD(1.0,EDGE(1,IEDGE1(ISIDE)), -1.0,COEFS(1,ISIDE),E1,VECTOR)
C
        CALL VDOT(E1,UA(1,ISIDE),EPA1)
C
        CALL VADD(1.0,E1,-EPA1,UA(1,ISIDE),R1,VECTOR)
C
        CALL VMAG(R1,RM1)
C
C---DERIVATIVE
C
        CALL VDOT(DEDN(1,IEDGE1(ISIDE)),UA(1,ISIDE),DA1)
C
        CALL VDOT(DEDN(1,IEDGE1(ISIDE)),VECTOR,DR1)
C
        CALL VMAG(DEDN(1,IEDGE1(ISIDE)),DM1)
C
C---R2: VECTOR FROM AXIS TO SECOND EDGE-----
C
        CALL VADD(1.0,EDGE(1,IEDGE2(ISIDE)), -1.0,COEFS(1,ISIDE),E2,VECTOR)
C
        CALL VDOT(E2,UA(1,ISIDE),EPA2)
C
        CALL VADD(1.0,E2,-EPA2,UA(1,ISIDE),R2,VECTOR)
C
        CALL VMAG(R2,RM2)
C
C---DERIVATIVE
C
        CALL VDOT(DEDN(1,IEDGE2(ISIDE)),UA(1,ISIDE),DA2)
C
        CALL VDOT(DEDN(1,IEDGE2(ISIDE)),VECTOR,DR2)

```

```

C          CALL VMAG(DEDN(1,IEDGE2(ISIDE)),DM2)
C---SWEEP ANGLE-----
C          CALL VDOT(R1,R2,R1DOTR2)
C          ARG = R1DOTR2/(RM1*RM2)
C          IF(ABS(ARG).GT.1.0) ARG = ARG/ABS(ARG)
C          THETA = ACOS(ARG)
C---CALCULATE RADIUS-----
C          N = COEFS(7,ISIDE)
C---POSITION
C          EP = (EPA2 - EPA1)*ETA(N) + EPA1
C          RM = (RM2 - RM1)*ETA(N) + RM1
C---DERIVATIVE
C          DA = (DA2 - DA1)*ETA(N) + DA1
C          DR = (DR2 - DR1)*ETA(N) + DR1
C          DM = (DM2 - DM1)*ETA(N) + DM1
C---ANGLE
C          GAMMA = THETA*ETA(N)
C---CALCULATE THE POSITION AND SURFACE NORMAL-----
C          DO 410 I=1,3
C          UR = COS(GAMMA)*UE(I,ISIDE) + SIN(GAMMA)*UN(I,ISIDE)
C          SIDE(I,ISIDE) = COEFS(I,ISIDE) + EP*UA(I,ISIDE) + RM*UR
C          DSDN(I,1) = (DR*UR + DA*UA(I,ISIDE))/DM
C 410      DSDN(I,2) = COS(GAMMA)*UN(I,ISIDE) - SIN(GAMMA)*UE(I,ISIDE)
C---ORIENT SURFACE NORMAL DEPENDING ON DIRECTION OF EDGE REVOLUTION
C          IF(COEFS(7,ISIDE).EQ.IETA2(ISIDE)) THEN
C          CALL CROSS(DSDN(1,1),DSDN(1,2),SNORMAL(1,ISIDE),44)
C          ELSE
C          CALL CROSS(DSDN(1,2),DSDN(1,1),SNORMAL(1,ISIDE),45)
C          END IF
C          GO TO 1000
C-----BOWL SURFACE WITH HOLE                               MAP = 5
C-----500 IHOLE = 0

```

```

C
      IET1 = 1
IF(ETA(1).GE.ETAMAX(1,3)) IET1 = 2
IF(ETA(1).GE.ETAMAX(2,3)) IET1 = 3
IF(ETA(1).GE.ETAMAX(3,3)) IET1 = 4
IF(ETA(1).GE.ETAMAX(4,3)) IET1 = 5
C
      STR11 = 2.0
      STR12 = 6.0
      STR13 = 2.0
C
      EPS1 = ETA(1)/ETAMAX(1,3)
C
      IF(IET1.EQ.2 .OR. IET1.EQ.3) THEN
C
          RATIO1 = (ETA(1) - ETAMAX(1,3)) / (ETAMAX(3,3) - ETAMAX(1,3))
C
          X1 = RATIO1*STR11/2.0
          ETAX1 = (EXP(X1) - EXP(-X1))/(EXP(X1) + EXP(-X1))
C
          X2 = STR11/2.0
          ETAX2 = (EXP(X2) - EXP(-X2))/(EXP(X2) + EXP(-X2))
C
          EPX1 = ETAX1/ETAX2
C
          END IF
C
      IF(IET1.EQ.4) THEN
C
          RATIO1 = (ETA(1) - ETAMAX(3,3)) / (ETAMAX(4,3) - ETAMAX(3,3))
C
          X1 = (STR12/2.0)/2.0
          ETAMID = (EXP(X1) - EXP(-X1))/(EXP(X1) + EXP(-X1))
C
          X2 = (RATIO1 - 0.5)*STR12/2.0
          ETAMX = (EXP(X2) - EXP(-X2))/(EXP(X2) + EXP(-X2))
C
          EPS1 = (ETAMX + ETAMID)/(2.0*ETAMID)
C
          END IF
C
      IF(IET1.EQ.5) THEN
C
          RATIO1 = (ETA(1) - ETAMAX(4,3)) / (1.0 - ETAMAX(4,3))
C
          X1 = (STR13/2.0)/2.0
          ETAMID = (EXP(X1) - EXP(-X1))/(EXP(X1) + EXP(-X1))
C
          X2 = (RATIO1 - 0.5)*STR13/2.0
          ETAMX = (EXP(X2) - EXP(-X2))/(EXP(X2) + EXP(-X2))
C
          EPS1 = (ETAMX + ETAMID)/(2.0*ETAMID)
C
          END IF
C
      IET3 = 1
IF(ETA(3).GE.ETAMAX(1,8)) IET3 = 2
IF(ETA(3).GT.ETAMAX(2,8)) IET3 = 3
C
      STR31 = 2.0

```

```

STR32 = 4.0
STR33 = 2.0
C      IF(IET3.EQ.1) THEN
C          RATIO3 = ETA(3)/ETAMAX(1,8)
C          X1 = RATIO3*STR31/2.0
C          ETAX1 = (EXP(X1) - EXP(-X1))/(EXP(X1) + EXP(-X1))
C          X2 = STR31/2.0
C          ETAX2 = (EXP(X2) - EXP(-X2))/(EXP(X2) + EXP(-X2))
C          EPS3 = ETAX1/ETAX2
C          END IF
C      IF(IET3.EQ.2) THEN
C          RATIO3 = (ETA(3) - ETAMAX(1,8))/(ETAMAX(2,8) - ETAMAX(1,8))
C          X1 = (STR32/2.0)/2.0
C          ETAMID = (EXP(X1) - EXP(-X1))/(EXP(X1) + EXP(-X1))
C          X2 = (RATIO3 - 0.5)*STR32/2.0
C          ETAMX = (EXP(X2) - EXP(-X2))/(EXP(X2) + EXP(-X2))
C          EPS3 = (ETAMX + ETAMID)/(2.0*ETAMID)
C          END IF
C      IF(IET3.EQ.3) THEN
C          RATIO3 = 1.0 - (ETA(3) - ETAMAX(2,8))/(1.0 - ETAMAX(2,8))
C          X1 = RATIO3*STR33/2.0
C          ETAX1 = (EXP(X1) - EXP(-X1))/(EXP(X1) + EXP(-X1))
C          X2 = STR33/2.0
C          ETAX2 = (EXP(X2) - EXP(-X2))/(EXP(X2) + EXP(-X2))
C          EPS3 = 1.0 - ETAX1/ETAX2
C          END IF
C
C---BOWL AXIS
C      UAXIS(1,ISIDE) = 1.0
C      UAXIS(2,ISIDE) = 0.0
C      UAXIS(3,ISIDE) = 0.0
C
C---ARC CENTER ON AXIS
C      SAC(2) = 0.0
C      SAC(3) = 0.0
C      DO 510 J=1,6
C
C---SUB-SURFACE CORNER POINTS
C

```

```

      R1(J) = PL(J,IET1 ,IET3)
      R2(J) = PL(J,IET1+1,IET3)
      R3(J) = PL(J,IET1+1,IET3+1)
      R4(J) = PL(J,IET1 ,IET3+1)

C
C---SUB-SURFACE EDGE POINTS
C
      E1(J) = R1(J) + EPS1*(R2(J) - R1(J))
      E2(J) = R2(J) + EPS3*(R3(J) - R2(J))
      E3(J) = R4(J) + EPS1*(R3(J) - R4(J))
      510   E4(J) = R1(J) + EPS3*(R4(J) - R1(J))

C
      GO TO (520,540,560) IET3
C----- IET3 = 1
C----- 520 GO TO (522,524,524,528,530) IET1
C
C---IET1 = 1-----
C
      522 DO 523 J=1,6
          E1(J) = EDGE(J,3)
      523   E4(J) = EDGE(J,8)
C
          SAC(1) = SEGMAX(1,1,3)
C
          CALL SPEDGE(R2,R3,EPS3,SAC,E2)
C
          GO TO 580
C
C---IET1 = 2-----
C
      524       R2(1) = PL(1,4,IET3)
                  R3(1) = PL(1,4,IET3+1)
C
                  E2(1) = R2(1) + EPS3*(R3(1) - R2(1))
C
                  EXM = SEGMAX(1,1,3) + EPX1*(E2(1) - SEGMAX(1,1,3))
C
                  IF(EXM.GT.SEGMAX(1,2,3)) GO TO 526
C
C---INTERIOR
C
          EPS1 = (EXM - SEGMAX(1,1,3))/(SEGMAX(1,2,3) - SEGMAX(1,1,3))

C---SUB-SURFACE EDGE POINTS
C
          IET1 = 2
C
          DO 525 J=1,6
C
          R1(J) = PL(J,IET1 ,IET3)
          R2(J) = PL(J,IET1+1,IET3)
          R3(J) = PL(J,IET1+1,IET3+1)
          R4(J) = PL(J,IET1 ,IET3+1)

C
          E1(J) = EDGE(J,3)
      525   E3(J) = R4(J) + EPS1*(R3(J) - R4(J))
C
          SAC(1) = SEGMAX(1,2,3)

```

```

C
C      CALL SPEDGE(R2,R3,EPS3,SAC,E2)
C
C          SAC(1) = SEGMAX(1,1,3)
C
C      CALL SPEDGE(R1,R4,EPS3,SAC,E4)
C
C      GO TO 580
C
C---IET1 = 3-----
C
C      526      EPS1 = (EXM - SEGMAX(1,2,3))/(E2(1) - SEGMAX(1,2,3))
C
C---SUB-SURFACE EDGE POINTS
C
C          IET1 = 3
C
C          DO 527 J=1,6
C
C              R1(J) = PL(J,IET1 ,IET3)
C              R2(J) = PL(J,IET1+1,IET3)
C              R3(J) = PL(J,IET1+1,IET3+1)
C              R4(J) = PL(J,IET1 ,IET3+1)
C
C              E1(J) = EDGE(J,3)
C      527      E3(J) = R4(J) + EPS1*(R3(J) - R4(J))
C
C          SAC(1) = SEGMAX(1,3,3)
C
C          CALL SPEDGE(R2,R3,EPS3,SAC,E2)
C
C          SAC(1) = SEGMAX(1,2,3)
C
C          CALL SPEDGE(R1,R4,EPS3,SAC,E4)
C
C          GO TO 580
C
C---IET1 = 4-----
C
C      528 DO 529 J=1,6
C
C      529      E1(J) = EDGE(J,3)
C
C          SAC(1) = SEGMAX(1,4,3)
C
C          CALL SPEDGE(R2,R3,EPS3,SAC,E2)
C
C          SAC(1) = SEGMAX(1,3,3)
C
C          CALL SPEDGE(R1,R4,EPS3,SAC,E4)
C
C          B = BETAL + EPS1*(BETA2 - BETAL)
C
C          CALL HOLE(B,E3,VECTOR)
C
C          GO TO 580
C
C---IET1 = 5-----
C
C      530 DO 531 J=1,6

```

```

C
      E1(J) = EDGE(J,3)
  531      E2(J) = EDGE(J,7)
C
      SAC(1) = SEGMAX(1,4,3)
C
      CALL SPEDGE(R1,R4,EPS3,SAC,E4)
C
      GO TO 580
C-----  

C                                         IET3 = 2
C-----  

C
      540 GO TO (542,544,544,548,550) IET1
C
C---IET1 = 1-----  

C
      542 DO 543 J=1,6
C
      543      E4(J) = EDGE(J,8)
C
      SAC(1) = SEGMAX(1,1,3)
C
      CALL SPEDGE(R2,R3,EPS3,SAC,E2)
C
      GO TO 580
C
C---IET1 = 2-----  

C
      544          B = BETA1 + EPS3*(BETA4 - BETA1)
C
      CALL HOLE(B,E2,VECTOR)
C
      EXM = SEGMAX(1,1,3) + EPX1*(E2(1) - SEGMAX(1,1,3))
C
      IF(EXM.GT.SEGMAX(1,2,3)) GO TO 546
C
C---INTERIOR
C
      EPS1 = (EXM - SEGMAX(1,1,3))/(SEGMAX(1,2,3) - SEGMAX(1,1,3))
C
C---SUB-SURFACE EDGE POINTS
C
      IET1 = 2
C
      DO 545 J=1,6
C
      R1(J) = PL(J,IET1 ,IET3)
      R2(J) = PL(J,IET1+1,IET3)
      R3(J) = PL(J,IET1+1,IET3+1)
      R4(J) = PL(J,IET1 ,IET3+1)
C
      E1(J) = R1(J) + EPS1*(R2(J) - R1(J))
  545      E3(J) = R4(J) + EPS1*(R3(J) - R4(J))
C
      SAC(1) = SEGMAX(1,2,3)
C
      CALL SPEDGE(R2,R3,EPS3,SAC,E2)
C
      SAC(1) = SEGMAX(1,1,3)

```

```

CALL SPEDGE(R1,R4,EPS3,SAC,E4)
C
C      GO TO 580
C
C---IET1 = 3-----
C
546      EPS1 = (EXM - SEGMAX(1,2,3))/(E2(1) - SEGMAX(1,2,3))
C
C---SUB-SURFACE EDGE POINTS
C
C      IET1 = 3
C
C      DO 547 J=1,6
C
C          R1(J) = PL(J,IET1 ,IET3)
C          R2(J) = PL(J,IET1+1,IET3)
C          R3(J) = PL(J,IET1+1,IET3+1)
C          R4(J) = PL(J,IET1 ,IET3+1)
C
C          E1(J) = R1(J) + EPS1*(R2(J) - R1(J))
547      E3(J) = R4(J) + EPS1*(R3(J) - R4(J))
C
C          SAC(1) = SEGMAX(1,2,3)
C
C      CALL SPEDGE(R1,R4,EPS3,SAC,E4)
C
C          B = BETA1 + EPS3*(BETA4 - BETA1)
C
C      CALL HOLE(B,E2,VECTOR)
C
C      GO TO 580
C
C---IET1 = 4-----
C
548      IHOLE = 1
C
C          B = BETA1 + EPS1*(BETA2 - BETA1)
C
C      CALL HOLE(B,E1,VECTOR)
C
C          B = BETA2 + EPS3*(BETA3 - BETA2 - 2.*PI)
C
C      CALL HOLE(B,E2,VECTOR)
C
C          B = BETA4 + EPS1*(BETA3 - BETA4)
C
C      CALL HOLE(B,E3,VECTOR)
C
C          B = BETA1 + EPS3*(BETA4 - BETA1)
C
C      CALL HOLE(B,E4,VECTOR)
C
C      GO TO 580
C
C---IET1 = 5-----
C
550 DO 551 J=1,6
C
551      E2(J) = EDGE(J,7)

```

```

B = BETA2 + EPS3*(BETA3 - BETA2 - 2.*PI)
C      CALL HOLE(B,E4,VECTOR)
C      GO TO 580
C-----
C----- IET3 = 3
C----- 560 GO TO (562,564,564,568,570) IET1
C----- IET1 = 1
C----- 562 DO 563 J=1,6
C           E3(J) = EDGE(J,11)
C           E4(J) = EDGE(J,8)
C           SAC(1) = SEGMAX(1,1,3)
C           CALL SPEDGE(R2,R3,EPS3,SAC,E2)
C           GO TO 580
C----- IET1 = 2
C----- 564     R2(1) = PL(1,4,IET3)
C                 R3(1) = PL(1,4,IET3+1)
C                 E2(1) = R2(1) + EPS3*(R3(1) - R2(1))
C                 EXM = SEGMAX(1,1,3) + EPX1*(E2(1) - SEGMAX(1,1,3))
C                 IF(EXM.GT.SEGMAX(1,2,3)) GO TO 566
C----- INTERIOR
C           EPS1 = (EXM - SEGMAX(1,1,3))/(SEGMAX(1,2,3) - SEGMAX(1,1,3))
C           IET1 = 2
C           DO 565 J=1,6
C             R1(J) = PL(J,IET1 ,IET3)
C             R2(J) = PL(J,IET1+1,IET3)
C             R3(J) = PL(J,IET1+1,IET3+1)
C             R4(J) = PL(J,IET1 ,IET3+1)
C             E1(J) = R1(J) + EPS1*(R2(J) - R1(J))
C             E3(J) = EDGE(J,11)
C             SAC(1) = SEGMAX(1,2,3)
C             CALL SPEDGE(R2,R3,EPS3,SAC,E2)
C             SAC(1) = SEGMAX(1,1,3)
C             CALL SPEDGE(R1,R4,EPS3,SAC,E4)
C             GO TO 580

```

```

C---IET1 = 3-----
C
      566      EPS1 = (EXM - SEGMAX(1,2,3))/(E2(1) - SEGMAX(1,2,3))
C
      IET1 = 3
C
      DO 567 J=1,6
C
      R1(J) = PL(J,IET1 ,IET3)
      R2(J) = PL(J,IET1+1,IET3)
      R3(J) = PL(J,IET1+1,IET3+1)
      R4(J) = PL(J,IET1 ,IET3+1)
C
      E1(J) = R1(J) + EPS1*(R2(J) - R1(J))
      E2(J) = R2(J) + EPS3*(R3(J) - R2(J))
      567      E3(J) = EDGE(J,11)
C
      SAC(1) = SEGMAX(1,2,3)
C
      CALL SPEDGE(R1,R4,EPS3,SAC,E4)
C
      GO TO 580
C
C---IET1 = 4-----
C
      568 DO 569 J=1,6
C
      569      E3(J) = R4(J) + EPS1*(R3(J) - R4(J))
C
      B = BETA4 + EPS1*(BETA3 - BETA4)
C
      CALL HOLE(B,E1,VECTOR)
C
      GO TO 580
C
C---IET1 = 5-----
C
      570 DO 571 J=1,6
C
      571      E3(J) = EDGE(J,11)
      E2(J) = EDGE(J,7)
C
C-----INTERPOLATION
C-----POSITION
C
      580 DO 582 J=1,3
C
      582 RAM(J) = (1. - EPS1)*(E4(J) - (1. - EPS3)*R1(J) - EPS3*R4(J))
      1      + EPS1*(E2(J) - (1. - EPS3)*R2(J) - EPS3*R3(J)) + E1(J)
      2      + EPS3*(E3(J) - E1(J))
C
C-----RADIUS AND TANGENT
C-----AXIAL DISTANCE
C
      RAX = RAM(1)
C

```

```

C---REGION 1-----
C
C       IF(RAX.GT.SEGMAX(1,1,3)) GO TO 586
C
C---RADIUS
C
C       PSI = RAX/SEGMAX(1,1,3)
C
C       RAD1 = SQRT( POINT(2,4)**2 + POINT(3,4)**2)
C       RAD2 = SQRT(SEGMAX(2,1,3)**2 + SEGMAX(3,1,3)**2)
C
C       RAD = RAD1 + PSI*(RAD2 - RAD1)
C
C---TANGENT
C
C       DSDN(1,1) = SEGMAX(1,1,3) - POINT(1,4)
C       DSDN(2,1) = RAD2 - RAD1
C       DSDN(3,1) = 0.
C
C       GO TO 590
C
C---REGION 2-----
C
C       586 IF(RAX.GT.SEGMAX(1,2,3)) GO TO 588
C
C---RADIUS
C
C       PSI = (RAX - SEGMAX(1,1,3))/(SEGMAX(1,2,3) - SEGMAX(1,1,3))
C
C       RAD1 = SQRT(SEGMAX(2,1,3)**2 + SEGMAX(3,1,3)**2)
C       RAD2 = SQRT(SEGMAX(2,2,3)**2 + SEGMAX(3,2,3)**2)
C
C       RAD = RAD1 + PSI*(RAD2 - RAD1)
C
C---TANGENT
C
C       DSDN(1,1) = SEGMAX(1,2,3) - SEGMAX(1,1,3)
C       DSDN(2,1) = RAD2 - RAD1
C       DSDN(3,1) = 0.
C
C       GO TO 590
C
C---REGION 3-----
C
C---ELLIPTIC REGION OF BOWL
C
C---RADIUS
C
C       588      RAD = DFNR + BE*SQRT(1.0 - ((RAX - DFND)/AE)**2)
C
C---TANGENT
C
C       DRDX = -((BE/AE)**2)*(RAX - DFND)/(RAD - DFNR)
C
C       TH = ATAN(DRDX)
C
C       DSDN(1,1) = COS(TH)
C       DSDN(2,1) = SIN(TH)
C       DSDN(3,1) = 0.0
C

```

```

C---INSIDE HOLE
C
C      IF(IET3.EQ.2 .AND. IET1.EQ.4) THEN
C
C          I = 0
C          THETA = ATAN( RAM(2) / RAM(3) )
C
C          DO 587 J=1,36
C
C          CALL HOLE(BETA(J),E1,VECTOR)
C
C          THETA1 = ATAN( E1(2) / E1(3) )
C
C          CALL HOLE(BETA(J+1),E2,VECTOR)
C
C          THETA2 = ATAN( E2(2) / E2(3) )
C
C
C          MATCH = 0
C          IF(THETA.GT.THETA1 .AND. THETA.LT.THETA2) MATCH = 1
C          IF(THETA.GT.THETA2 .AND. THETA.LT.THETA1) MATCH = 2
C
C          IF(MATCH.GT.0) THEN
C
C              I = I + 1
C
C          IF(MATCH.EQ.1) THEN
C
C              RATIO = (THETA - THETA1) / (THETA2 - THETA1)
C
C              B = RATIO*(BETA(J+1) - BETA(J)) + BETA(J)
C
C          ELSE
C
C              RATIO = (THETA - THETA2) / (THETA1 - THETA2)
C
C              B = RATIO*(BETA(J) - BETA(J+1)) + BETA(J+1)
C
C          END IF
C
C          IF(I.EQ.1) THEN
C
C              CALL HOLE(B,E3,VECTOR)
C
C              RAD1 = SQRT( E3(2)**2 + E3(3)**2 )
C
C              GO TO 587
C
C          ELSE
C
C              CALL HOLE(B,E4,VECTOR)
C
C              RAD2 = SQRT( E4(2)**2 + E4(3)**2 )
C
C              GO TO 589
C
C          END IF
C
C      END IF
C
C
587 CONTINUE
589 CONTINUE

```

```

C
C           IF(E3(1).LT.E4(1)) THEN
C
C                   RATIO = (RAM(1) - E3(1)) / (E4(1) - E3(1))
C
C                   RAD = RATIO*(RAD2 - RAD1) + RAD1
C
C                   ELSE
C
C                   RATIO = (RAM(1) - E4(1)) / (E3(1) - E4(1))
C
C                   RAD = RATIO*(RAD1 - RAD2) + RAD2
C
C                   END IF
C
C                   DSDN(1,1) = 1.0
C                   DSDN(2,1) = 0.0
C                   DSDN(3,1) = 0.0
C
C                   END IF
C---BELOW HOLE
C
C           IF(IET3.EQ.3 .AND. RAX.LE.SEGMAX(1,4,11)) THEN
C
C                   RAD = SQRT(RAM(2)**2 + RAM(3)**2)
C
C                   DSDN(1,1) = 1.0
C                   DSDN(2,1) = 0.0
C                   DSDN(3,1) = 0.0
C
C                   END IF
C-----
C-----OUTPUT POSITION AND NORMAL
C-----AXIAL COMPONENT OF THE TANGENT
C
C           590 CALL VDOT(DSDN(1,1),UAXIS(1,ISIDE),DA)
C
C-----NORMAL COMPONENT OF THE TANGENT
C
C           DN = DSDN(2,1)
C
C-----INTERPOLATED RADIUS
C
C           RADX = SQRT(RAM(2)**2 + RAM(3)**2)
C
C-----ANGULAR LOCATION
C
C           ANG = ASIN(RAM(3)/RADX)
C
C           CANG = COS(ANG)
C           SANG = SIN(ANG)
C
C-----TANGENT 1 (AXIAL DIRECTION)
C
C           DSDN(1,1) = DA
C           DSDN(2,1) = DN*CANG
C           DSDN(3,1) = DN*SANG
C
C-----TANGENT 2 (CIRCUMFERENTIAL DIRECTION)

```

```

C
DSDN(1,2) = 0.0
DSDN(2,2) = -SANG
DSDN(3,2) = CANG
C
C---NORMAL
C
CALL CROSS(DSDN(1,1),DSDN(1,2),SNORMAL(1,ISIDE),45)
C
C---POSITION
C
          SIDE(1,ISIDE) = RAX
          SIDE(2,ISIDE) = RAD*CANG
          SIDE(3,ISIDE) = RAD*SANG
C
IF(EPS3.EQ.1.0) THEN
C
          SIDE(1,ISIDE) = E3(1)
          SIDE(2,ISIDE) = E3(2)
          SIDE(3,ISIDE) = E3(3)
C
END IF
C
GO TO 1000
C-----  

C      MATED DUCT SURFACE                                MAP = 6
C-----  

C      600          IHOLE = 1
C
          EPS1 = ETA(1)
          EPS3 = ETA(3)
C
C---SUB-SURFACE CORNER POINTS
C
DO 610 J=1,6
C
          R1(J) = PL(J,4,2)
          R2(J) = PL(J,5,2)
          R3(J) = PL(J,5,3)
          R4(J) = PL(J,4,3)
C
610
C---SUB-SURFACE EDGES
C
          B = BETA1 + EPS1*(BETA2 - BETA1)
C
          CALL HOLE(B,E1,VECTOR)
C
          B = BETA2 + EPS3*(BETA3 - BETA2 - 2.*PI)
C
          CALL HOLE(B,E2,VECTOR)
C
          B = BETA4 + EPS1*(BETA3 - BETA4)
C
          CALL HOLE(B,E3,VECTOR)
C
          B = BETA1 + EPS3*(BETA4 - BETA1)
C
          CALL HOLE(B,E4,VECTOR)
C-----  

C      INTERPOLATION

```

```

C-----
C---POSITION
C
DO 620 J=1,3
620 RAM(J) = (1. - EPS1)*(E4(J) - (1. - EPS3)*R1(J) - EPS3*R4(J))
      1     + EPS1*(E2(J) - (1. - EPS3)*R2(J) - EPS3*R3(J)) + E1(J)
      2     + EPS3*(E3(J) - E1(J))
C
C-----RADIUS AND TANGENT
C
C---AXIAL DISTANCE
C
      RAX = RAM(1)
C
C---RADIUS
C
      IF(EPS1.EQ.0. .OR.EPS1.EQ.1. .OR.EPS3.EQ.0. .OR.EPS3.EQ.1.) THEN
C
      RAD = DFNR + BE*SQRT(1.0 - ((RAX - DFND)/AE)**2)
      RAD = SQRT(RAM(2)**2 + RAM(3)**2)
C
      ELSE
      I = 0
      THETA = ATAN( RAM(2) / RAM(3) )
C
DO 640 J=1,36
C
      CALL HOLE(BETA(J),E1,VECTOR)
C
      THETA1 = ATAN( E1(2) / E1(3) )
C
      CALL HOLE(BETA(J+1),E2,VECTOR)
C
      THETA2 = ATAN( E2(2) / E2(3) )
C
      MATCH = 0
      IF(THETA.GT.THETA1 .AND. THETA.LT.THETA2) MATCH = 1
      IF(THETA.GT.THETA2 .AND. THETA.LT.THETA1) MATCH = 2
C
      IF(MATCH.GT.0) THEN
C
          I = I + 1
C
      IF(MATCH.EQ.1) THEN
C
          RATIO = (THETA - THETA1) / (THETA2 - THETA1)
          B = RATIO*(BETA(J+1) - BETA(J)) + BETA(J)
C
          ELSE
C
          RATIO = (THETA - THETA2) / (THETA1 - THETA2)
          B = RATIO*(BETA(J) - BETA(J+1)) + BETA(J+1)
C
          END IF
C
      IF(I.EQ.1) THEN
C
          CALL HOLE(B,E3,VECTOR)

```

```

C
C           RAD1 = SQRT( E3(2)**2 + E3(3)**2)
C           GO TO 640
C
C           ELSE
C
C           CALL HOLE(B,E4,VECTOR)
C
C           RAD2 = SQRT( E4(2)**2 + E4(3)**2)
C
C           GO TO 650
C
C           END IF
C
C           END IF
640 CONTINUE
650 CONTINUE
C
C           IF(E3(1).LT.E4(1)) THEN
C
C               RATIO = (RAM(1) - E3(1)) / (E4(1) - E3(1))
C
C               RAD = RATIO*(RAD2 - RAD1) + RAD1
C
C           ELSE
C
C               RATIO = (RAM(1) - E4(1)) / (E3(1) - E4(1))
C
C               RAD = RATIO*(RAD1 - RAD2) + RAD2
C
C           END IF
C
C           END IF
C
C---TANGENT
C
C           DRDX = -((BE/AE)**2)*(RAX - DFND)/(RAD - DFNR)
C           TH = ATAN(DRDX)
C
C           DSDN(1,1) = COS(TH)
C           DSDN(2,1) = SIN(TH)
C           DSDN(3,1) = 0.0
C-----
C           OUTPUT POSITION AND NORMAL
C-----
C---AXIAL COMPONENT OF TANGENT
C
C           DA = DSDN(1,1)
C
C---NORMAL COMPONENT OF TANGENT
C
C           DN = DSDN(2,1)
C
C---ANGULAR LOCATION
C
C           RADX = SQRT(RAM(2)**2 + RAM(3)**2)
C           ANG = ASIN(RAM(3)/RADX)
C
C           CANG = COS(ANG)
C           SANG = SIN(ANG)

```

```

C
C---TANGENT 1 (AXIAL DIRECTION)
C
DSDN(1,1) = DA
DSDN(2,1) = DN*CANG
DSDN(3,1) = DN*SANG
C
C---TANGENT 2 (CIRCUMFERENTIAL DIRECTION)
C
DSDN(1,2) = 0.0
DSDN(2,2) = -SANG
DSDN(3,2) = CANG
C
C---NORMAL
C
CALL CROSS(DSDN(1,1),DSDN(1,2),SNORMAL(1,ISIDE),46)
C
C---POSITION
C
SIDE(1,ISIDE) = RAX
SIDE(2,ISIDE) = RAD*CANG
SIDE(3,ISIDE) = RAD*SANG
C
IF(EPS3.EQ.1.0) THEN
C
SIDE(1,ISIDE) = E3(1)
SIDE(2,ISIDE) = E3(2)
SIDE(3,ISIDE) = E3(3)
C
END IF
C
GO TO 1000
C-----  

C      DUCT SURFACE NEAR INLET          MAP = 7
C-----  

700 IF(ISIDE.LT.4) THEN
C
C---SURFACE 1 AND 3
IEDG2 = LINE4
C
EPS1 = ETA(1)
EPS2 = ETA(2)
C
ELSE
C
C---SURFACE 5 AND 6
IEDG2 = LINE3
C
EPS1 = ETA(3)
EPS2 = ETA(2)
C
END IF
C
C---WELD REGION-----  

C
PI2 = 1.57079633
C
B = COEFS(1,ISIDE) + EPS1*(COEFS(2,ISIDE) - COEFS(1,ISIDE))
C
EPS3 = (COEFS(3,ISIDE) - 1.0)/(NMBRND(2) - 1.0)

```

```

C          RATIO = EPS2/EPS3
C          IF(RATIO.GT.1.0) RATIO = 1.0
C
C---WELD RADIUS (RDOC) & DIFFERENCE BETWEEN HOLE AND DUCT RADIUS (DRHO)
C
C          CALL DELRAD(B,RHO,DRHO,RHOD,RDOC)
C
C---CALCULATE AXIAL DISTANCE (CP)
C
C          CALL CAXIS(B,RHO,CP)
C
C          Y = RDOC - DRHO
C
C          AAD = 0.5*((ABOT + ATOP) + (ATOP - ABOT)*COS(B - PI2))
C          X = SQRT(DRHO*(2.0*RDOC - DRHO))
C
C---WELD ANGLE
C
C          TH2 = ATAN(X/Y)
C          TH1 = PI2 - TH2
C
C          XX = AAD - X
C
C          TH3 = ATAN(XX/RDOC)
C
C          ANGL = RATIO*(TH2 + TH3) + TH1
C
C---POSITION AND TANGENT 1 (AXIAL DIRECTION)-----
C
C          IF(ANGL.GE.PI2) THEN
C
C---DUCT-----
C          PSI = (ANGL - PI2)/TH3
C
C---AXIAL DISTANCE
C          CS = CP + X + PSI*XX
C
C---RADIUS
C          RS = RHOD
C
C---COORDINATES
C          CALL DUCT(B,RS,CS,SIDE(1,ISIDE))
C
C---TANGENT
C          DSDN(1,1) = DU1(1)
C          DSDN(2,1) = DU1(2)
C          DSDN(3,1) = DU1(3)
C
C---WELD-----
C          ELSE
C
C          XS = RDOC*COS(ANGL)
C          YS = RDOC*SIN(ANGL)
C
C---AXIAL DISTANCE
C          CS = CP + X - XS
C
C---RADIUS
C          RS = RHOD + RDOC - YS
C
C---COORDINATES
C          CALL DUCT(B,RS,CS,SIDE(1,ISIDE))
C
C---TANGENT
C          DXDN = TAN(ANGL)
C
C          CB = COS(B)
C          SB = SIN(B)

```

```

C
C           CALL VADD(CB,DU2,SB,DU3,VECTOR,DSDN(1,1))
C           ONE = 1.0
C
C           CALL VADD(DXDN,DU1,-ONE,VECTOR,C,DSDN(1,1))
C
C           END IF
C
C---DUCT REGION-----
C
C           IF(RATIO.EQ.1.0) THEN
C
C---POSITION
C           PSI = (EPS2 - EPS3)/(1. - EPS3)
C           PSIL = 1.0 - PSI
C
C           CALL VADD(PSIL,SIDE(1,ISIDE),
C                      &          PSI,EDGE(1,IEDG2),SIDE(1,ISIDE),VECTOR)
C
C---TANGENT 1 (AXIAL DIRECTION) : INPUT
C
C           DSDN(1,1) = DU1(1)
C           DSDN(2,1) = DU1(2)
C           DSDN(3,1) = DU1(3)
C
C           END IF
C
C---TANGENT 2 (CIRCUMFERENTIAL DIRECTION)-----
C
C           CB = COS(B)
C           SB = SIN(B)
C
C           CALL VADD(CB,DU2,SB,DU3,VECTOR,R1)
C
C           CALL CROSS(DSDN(1,1),VECTOR,DSDN(1,2),47)
C
C---NORMAL
C
C           CALL CROSS(DSDN(1,1),DSDN(1,2),SNORMAL(1,ISIDE),48)
C
C-----DIRECT SURFACE NORMAL INTO FLOW DOMAIN
C-----1000 DO 1010 I=1,3
C           SNORMAL(I,ISIDE) = SNORMAL(I,ISIDE)*SIGNS(ISIDE)
C
C           RETURN
C
C---FORMAT STATEMENTS
C
C           1100 FORMAT(1H1,10X,20A4,13X,8H SECTION,I2,3H OF,I3,9H FOR ZONE,I3)
C
C           END
C
C*****OUTPUT*****
C*****SUBROUTINE BLKOUT(NUNIT,NODSTOR)

```

```

C-----  

C   WRITES THE FORMATTED BLOCKED GEOMETRY FILE (NUNIT)  

C-----  

C      COMMON /INITA/   IZINDEX,MAPTEN,INCHES  

C      COMMON /IOCOUNT/ IREWIND(40),NREAD(40),NWRITE(40)  

C      COMMON /MARCHS/  MARCH,INDEX(3)  

C      COMMON /OUT/     NODE(3,4000)  

C      COMMON /ZONING/  IZONE,ISECT,NZINDEX,NMBRNDS(3)  

C  

C      IPLANE = NWRITE(NUNIT) + 1  

C  

C          WRITE(NUNIT,1000) NODSTOR,IPLANE,  

C          &      NMBRNDS(1),NMBRNDS(2),NMBRNDS(3),MARCH  

C          WRITE(NUNIT,1010) (NODE(1,I),I=1,NODSTOR)  

C          WRITE(NUNIT,1010) (NODE(2,I),I=1,NODSTOR)  

C          WRITE(NUNIT,1010) (NODE(3,I),I=1,NODSTOR)  

C  

C      10 CONTINUE  

C  

C      40 NWRITE(NUNIT) = NWRITE(NUNIT) + 1  

C  

C      RETURN  

C  

C---FORMAT STATEMENTS  

C  

C      1000 FORMAT(24I5)  

C      1010 FORMAT(6E22.14)  

C      1020 FORMAT(22I6)  

C  

C      END  

C*****UTILITY*****  

C*****SUBROUTINE CROSS(A,B,C,N)  

C-----  

C      C = CROSS PRODUCT OF A AND B (UNIT VECTOR)  

C-----  

C      COMMON /COUNTER/ NODESAV,NOSETOT,NBNODES,NPLANE  

C      COMMON /HEADER/  ITITLE(20),LINE  

C      COMMON /INITA/   IZINDEX,MAPTEN,INCHES  

C      COMMON /UNITS/   NU5,NU6,NU20  

C      COMMON /ZONING/  IZONE,ISECT,NZINDEX,NMBRNDS(3)  

C  

C      DIMENSION A(3),B(3),C(3)  

C  

C---CROSS PRODUCT  

C  

C      C(1) = A(2)*B(3) - A(3)*B(2)  

C      C(2) = A(3)*B(1) - A(1)*B(3)  

C      C(3) = A(1)*B(2) - A(2)*B(1)  

C  

C---MAGNITUDE  

C  

C      CALL VMAG(C,CMAG)  

C  

C      IF(CMAG.GT.0.0) THEN  

C  

C---NORMALIZE

```

```

C
C(1) = C(1)/CMAG
C(2) = C(2)/CMAG
C(3) = C(3)/CMAG
C
C           ELSE
C(1) = 0.0
C(2) = 0.0
C(3) = 0.0
C
C           END IF
C           RETURN
C
C---FORMAT STATEMENTS
C
1000 FORMAT(1H1,10X,20A4,13X,8H SECTION,I2,3H OF,I3,9H FOR ZONE,I3)
1010 FORMAT(9H LOCATION,I3,36H: CROSS PRODUCT EQUALS ZERO FOR NODE,I6)
C
C           END
C
C*****GRID SPACING*****
C*****SUBROUTINE ETABC(MARCH,INDEX,NODE)
C-----
C THIS ROUTINE SEPERATES THE BOUNDARY CONDITIONS AND
C CALCULATES THE VALUE OF ETA.
C-----
COMMON /INITA/   IZINDEX,MAPTEN,INCHES
COMMON /INITC/   PI,RADDEG
COMMON /INPUTA/  EDGE(3,12),POINT(3,8),SIDE(3,6)
COMMON /INPUTBC/ INODEBC(3),ISIDE(3)
COMMON /SPACING/ ISTRTCH(3),STRETCH(3),ETAS(3,200),ETA(3),DETA(3)
COMMON /ZONING/  IZONE,ISECT,NZINDEX,NMBRNDS(3)
C-----
C FIRST NODE
C-----
IF(NODE.EQ.1) THEN
C
    ETA(INDEX) = 0.0
C
C---DETERMINE SIDE
C
    ISIDE(INDEX) = 10 + (INDEX - 6)*INDEX
C
C---STORE SPACING
C
    ETAS(INDEX,1) = 0.0
C
    RETURN
C
    END IF
C-----
C LAST NODE
C-----
IF(NODE.EQ.NMBRNDS(INDEX)) THEN
C
    ETA(INDEX) = 1.0
C

```

```

C---DETERMINE SIDE
C
C           ISIDE(INDEX) = 9 + (INDEX - 7)*INDEX/2
C
C---STORE SPACING
C
C           ETAS(INDEX,NODE) = 1.0
C
C           RETURN
C
C           END IF
C-----INTERIOR NODES
C-----INODEBC(INDEX) = 9
C
C       IF(ISECT.GT.1 .AND. INDEX.NE.MARCH) GO TO 310
C
C---CALCULATE ETA
C
C           ISTR = ISTRTCH(INDEX) + 1
C
C       GO TO (100,110,120,130,140,150,160,170,180,190,200) ISTR
C
C---EQUAL SPACING----- (0)
C
C   100 ETA(INDEX) = ETA(INDEX) + DETA(INDEX)
C
C   GO TO 300
C
C---INPUT ETA SPACING----- (1)
C
C   110 ETA(INDEX) = ETAS(INDEX,NODE)
C
C   GO TO 300
C
C---DECREASING SPACING; INPUT STRETCHING FACTOR----- (2)
C
C   120      RATIO = REAL(NODE - 1)/REAL(NMBRNDS(INDEX) - 1)
C
C           X1 = RATIO*STRETCH(INDEX)/2.0
C           ETA1 = (EXP(X1) - EXP(-X1))/(EXP(X1) + EXP(-X1))
C
C           X2 = STRETCH(INDEX)/2.0
C           ETA2 = (EXP(X2) - EXP(-X2))/(EXP(X2) + EXP(-X2))
C
C           ETA(INDEX) = ETA1/ETA2
C
C   GO TO 300
C
C---INCREASING SPACING; INPUT STRETCHING FACTOR----- (3)
C
C   130      RATIO = REAL(NMBRNDS(INDEX) - NODE)/REAL(NMBRNDS(INDEX) - 1)
C
C           X1 = RATIO*STRETCH(INDEX)/2.0
C           ETA1 = (EXP(X1) - EXP(-X1))/(EXP(X1) + EXP(-X1))
C
C           X2 = STRETCH(INDEX)/2.0
C           ETA2 = (EXP(X2) - EXP(-X2))/(EXP(X2) + EXP(-X2))
C

```

```

      ETA(INDEX) = 1.0 - ETAl/ETA2
C
C      GO TO 300
C
C---DOUBLE STRETCHING; INPUT STRETCHING FACTOR----- (4)
C
  140      X1 = (STRETCH(INDEX)/2.0)/2.0
            ETAMID = (EXP(X1) - EXP(-X1))/(EXP(X1) + EXP(-X1))
C
            RATIO = REAL(NODE - 1)/REAL(NMBRNDS(INDEX) - 1)
C
            X2 = (RATIO - 0.5)*STRETCH(INDEX)/2.0
            ETAMAX = (EXP(X2) - EXP(-X2))/(EXP(X2) + EXP(-X2))
C
            ETA(INDEX) = (ETAMAX + ETAMID)/(2.0*ETAMID)
C
            GO TO 300
C
C---DECREASING SPACING; INPUT MINIMUM SPACING----- (5)
C
  150      ARG1 = STRETCH(INDEX)*REAL(NODE - 1)
            EXPI = EXP(ARG1)
            EXPII = 1.0/EXPI
            TANHI = (EXPI - EXPII)/(EXPI + EXPII)
C
            ARGN = STRETCH(INDEX)*REAL(NMBRNDS(INDEX) - 1)
            EXPN = EXP(ARGN)
            EXPNI = 1.0/EXPN
            TANHN = (EXPN - EXPNI)/(EXPN + EXPNI)
C
            ETA(INDEX) = TANHI/TANHN
C
            GO TO 300
C
C---INCREASING SPACING; INPUT MINIMUM SPACING----- (6)
C
  160      ARG1 = STRETCH(INDEX)*REAL(NMBRNDS(INDEX) - NODE)
            EXPI = EXP(ARG1)
            EXPII = 1.0/EXPI
            TANHI = (EXPI - EXPII)/(EXPI + EXPII)
C
            ARGN = STRETCH(INDEX)*REAL(NMBRNDS(INDEX) - 1)
            EXPN = EXP(ARGN)
            EXPNI = 1.0/EXPN
            TANHN = (EXPN - EXPNI)/(EXPN + EXPNI)
C
            ETA(INDEX) = 1.0 - TANHI/TANHN
C
            GO TO 300
C
C---DOUBLE STRETCHING; INPUT MINIMUM SPACING----- (7)
C
  170      ARG1 = STRETCH(INDEX)*REAL(2*NODE - NMBRNDS(INDEX) - 1)
            EXPI = EXP(ARG1)
            EXPII = 1.0/EXPI
            TANHI = (EXPI - EXPII)/(EXPI + EXPII)
C
            ARGN = STRETCH(INDEX)*REAL(NMBRNDS(INDEX) - 1)
            EXPN = EXP(ARGN)
            EXPNI = 1.0/EXPN

```

```

TANHN = (EXPN - EXPNI)/(EXPN + EXPNI)
C
C      ETA(INDEX) = 0.5*(1.0 + TANHI/TANHN)
C
C      GO TO 300
C
C---DECREASING SPACING; INPUT STRETCHING FACTOR----- (8)
C
180      PIDN = PI/(STRETCH(INDEX)*NMBRNDS(INDEX))
C
C      ETA(INDEX) = 1.0 - TAN(PIDN*(NMBRNDS(INDEX) - NODE))
C      &           /TAN(PIDN*(NMBRNDS(INDEX) - 1))
C
C      GO TO 300
C
C---INCREASING SPACING; INPUT STRETCHING FACTOR----- (9)
C
190      PIDN = PI/(STRETCH(INDEX)*NMBRNDS(INDEX))
C
C      ETA(INDEX) = TAN(PIDN*(      NODE      - 1))
C      &           /TAN(PIDN*(NMBRNDS(INDEX) - 1))
C
C      GO TO 300
C
C---USER INPUT STRETCHING FUNCTION----- (10)
C
200 CONTINUE
C
C---STORE SPACING-----
C
300 ETAS(INDEX,NODE) = ETA(INDEX)
C
310      ETA(INDEX) = ETAS(INDEX,NODE)
C
      RETURN
      END
C
C*****OUTPUT*****
C
C      SUBROUTINE IOPACK(NUNIT)
C
C-----GENERAL PURPOSE FORTRAN I/O PACKAGE FOR UNITS 1 -> 40
C-----COMMON /IOCOUNT/ IREWIND(40),NREAD(40),NWRITE(40)
C-----COMMON /UNITS/   NU5,NU6,NU20
C
C      DATA IREWIND,NREAD,NWRITE /120*0/
C
C-----ENTRY RWIND: REWIND FILE ON NUNIT
C-----ENTRY RWIND(NUNIT)
C
C      IREWIND(NUNIT) = 1
C
C      REWIND NUNIT
C
C      RETURN
C

```

```

C   ENTRY STATUS: PRINT STATUS OF I/O OPERATIONS ON ALL UNITS
C-----
C       ENTRY STATUS(NUNIT)
C
C       WRITE(NU6,1000)
C
C       DO 10 NU=1,40
10 IF(IREWIND(NU).EQ.1) WRITE(NU6,1010) NU,NREAD(NU),NWRITE(NU)
C
C       RETURN
C
C---FORMAT STATEMENTS
C
1000 FORMAT(//42X,38H STATUS OF I/O OPERATIONS ON ALL UNITS
      1    //42X,32H     UNIT    NO. OF    NO. OF .
      2    /42X,32H     NUMBER   READS    WRITES / )
1010 FORMAT(42X,3I10)
C
C       END
C
C*****OUTPUT*****
C*****SUBROUTINE OUTPUT(NUNIT,NODSTOR)
C-----
C   PRINTOUT AND STORE DATA
C-----
C
COMMON /COUNTER/ NODESAV, NODETOT, NBNODES, NPLANE
COMMON /HEADER/ ITITLE(20), LINE
COMMON /INITA/ IZINDEX, MAPTEN, INCHES
COMMON /OUT/ NODE(3,4000)
COMMON /UNITS/ NU5, NU6, NU20
COMMON /ZONING/ IZONE, ISECT, NZINDEX, NMBRNDS(3)
C
C---TOTAL NUMBER OF PLANES
C
NPLANE = NPLANE + 1
C
C---PRINT NODAL INFORMATION
C
IPRINT = 1
C
NODETOT = NODSTOR + NODETOT
NODESAV = NODESAV - NODSTOR
C
C---PRINT TOTAL NUMBER OF POINTS STORED
C
LINE = LINE + 3
C
IF(LINE.GE.60) THEN
C
        WRITE(NU6,1000) ITITLE, IZONE
        WRITE(NU6,1030)
C
        LINE = 7
C
END IF

```

```

      WRITE(NU6,1060) NODSTOR,NPLANE,NUNIT,NODETOT
C
C-----STORE OUTPUT
C-----FORMAT STATEMENTS
C
      200 CALL BLKOUT(NUNIT,NODSTOR)
C
      RETURN
C
C---FORMAT STATEMENTS
C
      1000 FORMAT(1H1,10X,20A4,13X,8H SECTION,I2,3H OF,I3,9H FOR ZONE,I3)
      1020 FORMAT(1X,I6,2(1X,F13.7),5X,F7.2,6X,F7.2,5X,I2)
      1030 FORMAT( / 44H NODE X Y Z )
      1040 FORMAT(1X,I6,3(1X,F13.7),2X,2(2X,F7.2),F11.3,3X,2(2X,F7.2),5X,I2)
      1050 FORMAT(/ 5X,I5,18H POINTS FROM PLANE,I4,15H STORED ON UNIT,I3,
      &                                23H: TOTAL POINTS STORED =,I6 / )
      1060 FORMAT(/ 10X,I5,18H POINTS FROM PLANE,I4,15H STORED ON UNIT,I3,
      &                                23H: TOTAL POINTS STORED =,I6 / )
C
      END
C
C*****OUTPUT*****
C
C-----SUBROUTINE PICTURE(IDRAW)
C
C-----THIS ROUTINE DESCRIBES THE NOMENCLATURE
C
      COMMON /UNITS/    NU5,NU6,NU20
C
      WRITE(NU6,300)
      WRITE(NU6,310)
      WRITE(NU6,320)
      WRITE(NU6,330)
C
      RETURN
C
C---FORMAT STATEMENTS
C
      300 FORMAT( 40X,37H
      1      /40X,19H          IE
      2      /40X,19H          IT
      3      /40X,34H          IA
      4      /40X,32H          I2
      5      /40X,50H          POINT 4 I
      6      /40X,42H          O-----POINT 3
      7      /40X,42H          8/I
      8      /40X,50H          E/ I
      310 FORMAT( 40X,50H          G/ I
      1      /40X,50H          D/ I
      2      /40X,50H          E/ EI
      3      /40X,50H          POINT 8 O-----POINT 7
      4      /40X,50H          I
      5      /40X,50H          S   I
      6      /40X,46H          U   E   I
      7      /40X,50H          R   D   I
      8      /40X,42H          F   G   I
      9      /40X,50H          A   E   I
      10     /40X,50H          O
      11     /40X,50H          4I
      12     /40X,50H          5I
      13     /40X,50H          6I
      14     /40X,50H          7I
      15     /40X,50H          8I
      16     /40X,50H          9I
      17     /40X,50H          10I
      18     /40X,50H          11I
      19     /40X,50H          12I
      20     /40X,50H          13I
      21     /40X,50H          14I
      22     /40X,50H          15I
      23     /40X,50H          16I
      24     /40X,50H          17I
      25     /40X,50H          18I
      26     /40X,50H          19I
      27     /40X,50H          20I
      28     /40X,50H          21I
      29     /40X,50H          22I
      30     /40X,50H          23I
      31     /40X,50H          24I
      32     /40X,50H          25I
      33     /40X,50H          26I
      34     /40X,50H          27I
      35     /40X,50H          28I
      36     /40X,50H          29I
      37     /40X,50H          30I
      38     /40X,50H          31I
      39     /40X,50H          32I
      40     /40X,50H          33I
      41     /40X,50H          34I
      42     /40X,50H          35I
      43     /40X,50H          36I
      44     /40X,50H          37I
      45     /40X,50H          38I
      46     /40X,50H          39I
      47     /40X,50H          40I
      48     /40X,50H          41I
      49     /40X,50H          42I
      50     /40X,50H          43I
      51     /40X,50H          44I
      52     /40X,50H          45I
      53     /40X,50H          46I
      54     /40X,50H          47I
      55     /40X,50H          48I
      56     /40X,50H          49I
      57     /40X,50H          50I
      58     /40X,50H          51I
      59     /40X,50H          52I
      60     /40X,50H          53I
      61     /40X,50H          54I
      62     /40X,50H          55I
      63     /40X,50H          56I
      64     /40X,50H          57I
      65     /40X,50H          58I
      66     /40X,50H          59I
      67     /40X,50H          60I
      68     /40X,50H          61I
      69     /40X,50H          62I
      70     /40X,50H          63I
      71     /40X,50H          64I
      72     /40X,50H          65I
      73     /40X,50H          66I
      74     /40X,50H          67I
      75     /40X,50H          68I
      76     /40X,50H          69I
      77     /40X,50H          70I
      78     /40X,50H          71I
      79     /40X,50H          72I
      80     /40X,50H          73I
      81     /40X,50H          74I
      82     /40X,50H          75I
      83     /40X,50H          76I
      84     /40X,50H          77I
      85     /40X,50H          78I
      86     /40X,50H          79I
      87     /40X,50H          80I
      88     /40X,50H          81I
      89     /40X,50H          82I
      90     /40X,50H          83I
      91     /40X,50H          84I
      92     /40X,50H          85I
      93     /40X,50H          86I
      94     /40X,50H          87I
      95     /40X,50H          88I
      96     /40X,50H          89I
      97     /40X,50H          90I
      98     /40X,50H          91I
      99     /40X,50H          92I
      100    /40X,50H          93I
      101    /40X,50H          94I
      102    /40X,50H          95I
      103    /40X,50H          96I
      104    /40X,50H          97I
      105    /40X,50H          98I
      106    /40X,50H          99I
      107    /40X,50H          100I
      108    /40X,50H          101I
      109    /40X,50H          102I
      110    /40X,50H          103I
      111    /40X,50H          104I
      112    /40X,50H          105I
      113    /40X,50H          106I
      114    /40X,50H          107I
      115    /40X,50H          108I
      116    /40X,50H          109I
      117    /40X,50H          110I
      118    /40X,50H          111I
      119    /40X,50H          112I
      120    /40X,50H          113I
      121    /40X,50H          114I
      122    /40X,50H          115I
      123    /40X,50H          116I
      124    /40X,50H          117I
      125    /40X,50H          118I
      126    /40X,50H          119I
      127    /40X,50H          120I
      128    /40X,50H          121I
      129    /40X,50H          122I
      130    /40X,50H          123I
      131    /40X,50H          124I
      132    /40X,50H          125I
      133    /40X,50H          126I
      134    /40X,50H          127I
      135    /40X,50H          128I
      136    /40X,50H          129I
      137    /40X,50H          130I
      138    /40X,50H          131I
      139    /40X,50H          132I
      140    /40X,50H          133I
      141    /40X,50H          134I
      142    /40X,50H          135I
      143    /40X,50H          136I
      144    /40X,50H          137I
      145    /40X,50H          138I
      146    /40X,50H          139I
      147    /40X,50H          140I
      148    /40X,50H          141I
      149    /40X,50H          142I
      150    /40X,50H          143I
      151    /40X,50H          144I
      152    /40X,50H          145I
      153    /40X,50H          146I
      154    /40X,50H          147I
      155    /40X,50H          148I
      156    /40X,50H          149I
      157    /40X,50H          150I
      158    /40X,50H          151I
      159    /40X,50H          152I
      160    /40X,50H          153I
      161    /40X,50H          154I
      162    /40X,50H          155I
      163    /40X,50H          156I
      164    /40X,50H          157I
      165    /40X,50H          158I
      166    /40X,50H          159I
      167    /40X,50H          160I
      168    /40X,50H          161I
      169    /40X,50H          162I
      170    /40X,50H          163I
      171    /40X,50H          164I
      172    /40X,50H          165I
      173    /40X,50H          166I
      174    /40X,50H          167I
      175    /40X,50H          168I
      176    /40X,50H          169I
      177    /40X,50H          170I
      178    /40X,50H          171I
      179    /40X,50H          172I
      180    /40X,50H          173I
      181    /40X,50H          174I
      182    /40X,50H          175I
      183    /40X,50H          176I
      184    /40X,50H          177I
      185    /40X,50H          178I
      186    /40X,50H          179I
      187    /40X,50H          180I
      188    /40X,50H          181I
      189    /40X,50H          182I
      190    /40X,50H          183I
      191    /40X,50H          184I
      192    /40X,50H          185I
      193    /40X,50H          186I
      194    /40X,50H          187I
      195    /40X,50H          188I
      196    /40X,50H          189I
      197    /40X,50H          190I
      198    /40X,50H          191I
      199    /40X,50H          192I
      200    /40X,50H          193I
      201    /40X,50H          194I
      202    /40X,50H          195I
      203    /40X,50H          196I
      204    /40X,50H          197I
      205    /40X,50H          198I
      206    /40X,50H          199I
      207    /40X,50H          200I
      208    /40X,50H          201I
      209    /40X,50H          202I
      210    /40X,50H          203I
      211    /40X,50H          204I
      212    /40X,50H          205I
      213    /40X,50H          206I
      214    /40X,50H          207I
      215    /40X,50H          208I
      216    /40X,50H          209I
      217    /40X,50H          210I
      218    /40X,50H          211I
      219    /40X,50H          212I
      220    /40X,50H          213I
      221    /40X,50H          214I
      222    /40X,50H          215I
      223    /40X,50H          216I
      224    /40X,50H          217I
      225    /40X,50H          218I
      226    /40X,50H          219I
      227    /40X,50H          220I
      228    /40X,50H          221I
      229    /40X,50H          222I
      230    /40X,50H          223I
      231    /40X,50H          224I
      232    /40X,50H          225I
      233    /40X,50H          226I
      234    /40X,50H          227I
      235    /40X,50H          228I
      236    /40X,50H          229I
      237    /40X,50H          230I
      238    /40X,50H          231I
      239    /40X,50H          232I
      240    /40X,50H          233I
      241    /40X,50H          234I
      242    /40X,50H          235I
      243    /40X,50H          236I
      244    /40X,50H          237I
      245    /40X,50H          238I
      246    /40X,50H          239I
      247    /40X,50H          240I
      248    /40X,50H          241I
      249    /40X,50H          242I
      250    /40X,50H          243I
      251    /40X,50H          244I
      252    /40X,50H          245I
      253    /40X,50H          246I
      254    /40X,50H          247I
      255    /40X,50H          248I
      256    /40X,50H          249I
      257    /40X,50H          250I
      258    /40X,50H          251I
      259    /40X,50H          252I
      260    /40X,50H          253I
      261    /40X,50H          254I
      262    /40X,50H          255I
      263    /40X,50H          256I
      264    /40X,50H          257I
      265    /40X,50H          258I
      266    /40X,50H          259I
      267    /40X,50H          260I
      268    /40X,50H          261I
      269    /40X,50H          262I
      270    /40X,50H          263I
      271    /40X,50H          264I
      272    /40X,50H          265I
      273    /40X,50H          266I
      274    /40X,50H          267I
      275    /40X,50H          268I
      276    /40X,50H          269I
      277    /40X,50H          270I
      278    /40X,50H          271I
      279    /40X,50H          272I
      280    /40X,50H          273I
      281    /40X,50H          274I
      282    /40X,50H          275I
      283    /40X,50H          276I
      284    /40X,50H          277I
      285    /40X,50H          278I
      286    /40X,50H          279I
      287    /40X,50H          280I
      288    /40X,50H          281I
      289    /40X,50H          282I
      290    /40X,50H          283I
      291    /40X,50H          284I
      292    /40X,50H          285I
      293    /40X,50H          286I
      294    /40X,50H          287I
      295    /40X,50H          288I
      296    /40X,50H          289I
      297    /40X,50H          290I
      298    /40X,50H          291I
      299    /40X,50H          292I
      300    /40X,50H          293I
      301    /40X,50H          294I
      302    /40X,50H          295I
      303    /40X,50H          296I
      304    /40X,50H          297I
      305    /40X,50H          298I
      306    /40X,50H          299I
      307    /40X,50H          300I
      308    /40X,50H          301I
      309    /40X,50H          302I
      310    /40X,50H          303I
      311    /40X,50H          304I
      312    /40X,50H          305I
      313    /40X,50H          306I
      314    /40X,50H          307I
      315    /40X,50H          308I
      316    /40X,50H          309I
      317    /40X,50H          310I
      318    /40X,50H          311I
      319    /40X,50H          312I
      320    /40X,50H          313I
      321    /40X,50H          314I
      322    /40X,50H          315I
      323    /40X,50H          316I
      324    /40X,50H          317I
      325    /40X,50H          318I
      326    /40X,50H          319I
      327    /40X,50H          320I
      328    /40X,50H          321I
      329    /40X,50H          322I
      330    /40X,50H          323I
      331    /40X,50H          324I
      332    /40X,50H          325I
      333    /40X,50H          326I
      334    /40X,50H          327I
      335    /40X,50H          328I
      336    /40X,50H          329I
      337    /40X,50H          330I
      338    /40X,50H          331I
      339    /40X,50H          332I
      340    /40X,50H          333I
      341    /40X,50H          334I
      342    /40X,50H          335I
      343    /40X,50H          336I
      344    /40X,50H          337I
      345    /40X,50H          338I
      346    /40X,50H          339I
      347    /40X,50H          340I
      348    /40X,50H          341I
      349    /40X,50H          342I
      350    /40X,50H          343I
      351    /40X,50H          344I
      352    /40X,50H          345I
      353    /40X,50H          346I
      354    /40X,50H          347I
      355    /40X,50H          348I
      356    /40X,50H          349I
      357    /40X,50H          350I
      358    /40X,50H          351I
      359    /40X,50H          352I
      360    /40X,50H          353I
      361    /40X,50H          354I
      362    /40X,50H          355I
      363    /40X,50H          356I
      364    /40X,50H          357I
      365    /40X,50H          358I
      366    /40X,50H          359I
      367    /40X,50H          360I
      368    /40X,50H          361I
      369    /40X,50H          362I
      370    /40X,50H          363I
      371    /40X,50H          364I
      372    /40X,50H          365I
      373    /40X,50H          366I
      374    /40X,50H          367I
      375    /40X,50H          368I
      376    /40X,50H          369I
      377    /40X,50H          370I
      378    /40X,50H          371I
      379    /40X,50H          372I
      380    /40X,50H          373I
      381    /40X,50H          374I
      382    /40X,50H          375I
      383    /40X,50H          376I
      384    /40X,50H          377I
      385    /40X,50H          378I
      386    /40X,50H          379I
      387    /40X,50H          380I
      388    /40X,50H          381I
      389    /40X,50H          382I
      390    /40X,50H          383I
      391    /40X,50H          384I
      392    /40X,50H          385I
      393    /40X,50H          386I
      394    /40X,50H          387I
      395    /40X,50H          388I
      396    /40X,50H          389I
      397    /40X,50H          390I
      398    /40X,50H          391I
      399    /40X,50H          392I
      400    /40X,50H          393I
      401    /40X,50H          394I
      402    /40X,50H          395I
      403    /40X,50H          396I
      404    /40X,50H          397I
      405    /40X,50H          398I
      406    /40X,50H          399I
      407    /40X,50H          400I
      408    /40X,50H          401I
      409    /40X,50H          402I
      410    /40X,50H          403I
      411    /40X,50H          404I
      412    /40X,50H          405I
      413    /40X,50H          406I
      414    /40X,50H          407I
      415    /40X,50H          408I
      416    /40X,50H          409I
      417    /40X,50H          410I
      418    /40X,50H          411I
      419    /40X,50H          412I
      420    /40X,50H          413I
      421    /40X,50H          414I
      422    /40X,50H          415I
      423    /40X,50H          416I
      424    /40X,50H          417I
      425    /40X,50H          418I
      426    /40X,50H          419I
      427    /40X,50H          420I
      428    /40X,50H          421I
      429    /40X,50H          422I
      430    /40X,50H          423I
      431    /40X,50H          424I
      432    /40X,50H          425I
      433    /40X,50H          426I
      434    /40X,50H          427I
      435    /40X,50H          428I
      436    /40X,50H          429I
      437    /40X,50H          430I
      438    /40X,50H          431I
      439    /40X,50H          432I
      440    /40X,50H          433I
      441    /40X,50H          434I
      442    /40X,50H          435I
      443    /40X,50H          436I
      444    /40X,50H          437I
      445    /40X,50H          438I
      446    /40X,50H          439I
      447    /40X,50H          440I
      448    /40X,50H          441I
      449    /40X,50H          442I
      450    /40X,50H          443I
      451    /40X,50H          444I
      452    /40X,50H          445I
      453    /40X,50H          446I
      454    /40X,50H          447I
      455    /40X,50H          448I
      456    /40X,50H          449I
      457    /40X,50H          450I
      458    /40X,50H          451I
      459    /40X,50H          452I
      460    /40X,50H          453I
      461    /40X,50H          454I
      462    /40X,50H          455I
      463    /40X,50H          456I
      464    /40X,50H          457I
      465    /40X,50H          458I
      466    /40X,50H          459I
      467    /40X,50H          460I
      468    /40X,50H          461I
      469    /40X,50H          462I
      470    /40X,50H          463I
      471    /40X,50H          464I
      472    /40X,50H          465I
      473    /40X,50H          466I
      474    /40X,50H          467I
      475    /40X,50H          468I
      476    /40X,50H          469I
      477    /40X,50H          470I
      478    /40X,50H          471I
      479    /40X,50H          472I
      480    /40X,50H          473I
      481    /40X,50H          474I
      482    /40X,50H          475I
      483    /40X,50H          476I
      484    /40X,50H          477I
      485    /40X,50H          478I
      486    /40X,50H          479I
      487    /40X,50H          480I
      488    /40X,50H          481I
      489    /40X,50H          482I
      490    /40X,50H          483I
      491    /40X,50H          484I
      492    /40X,50H          485I
      493    /40X,50H          486I
      494    /40X,50H          487I
      495    /40X,50H          488I
      496    /40X,50H          489I
      497    /40X,50H          490I
      498    /40X,50H          491I
      499    /40X,50H          492I
      500    /40X,50H          493I
      501    /40X,50H          494I
      502    /40X,50H          495I
      503    /40X,50H          496I
      504    /40X,50H          497I
      505    /40X,50H          498I
      506    /40X,50H          499I
      507    /40X,50H          500I
      508    /40X,50H          501I
      509    /40X,50H          502I
      510    /40X,50H          503I
      511    /40X,50H          504I
      512    /40X,50H          505I
      513    /40X,50H          506I
      514    /40X,50H          507I
      515    /40X,50H          508I
      516    /40X,50H          509I
      517    /40X,50H          510I
      518    /40X,50H          511I
      519    /40X,50H          512I
      520    /40X,50H          513I
      521    /40X,50H          514I
      522    /40X,50H          515I
      523    /40X,50H          516I
      524    /40X,50H          517I
      525    /40X,50H          518I
      526    /40X,50H          519I
      527    /40X,50H          520I
      528    /40X,50H          521I
      529    /40X,50H          522I
      530    /40X,50H          523I
      531    /40X,50H          524I
      532    /40X,50H          525I
      533    /40X,50H          526I
      534    /40X,50H          527I
      535    /40X,50H          528I
      536    /40X,50H          529I
      537    /40X,50H          530I
      538    /40X,50H          531I
      539    /40X,50H          532I
      540    /40X,50H          533I
      541    /40X,50H          534I
      542    /40X,50H          535I
      543    /40X,50H          536I
      544    /40X,50H          537I
      545    /40X,50H          538I
      546    /40X,50H          539I
      547    /40X,50H          540I
      548    /40X,50H          541I
      549    /40X,50H          542I
      550    /40X,50H          543I
      551    /40X,50H          544I
      552    /40X,50H          545I
      553    /40X,50H          546I
      554    /40X,50H          547I
      555    /40X,50H          548I
      556    /40X,50H          549I
      557    /40X,50H          550I
      558    /40X,50H          551I
      559    /40X,50H          552I
      560    /40X,50H          553I
      561    /40X,50H          554I
      562    /40X,50H          555I
      563    /40X,50H          556I
      564    /40X,50H          557I
      565    /40X,50H          558I
      566    /40X,50H          559I
      567    /40X,50H          560I
      568    /40X,50H          561I
      569    /40X,50H          562
```

```

320 FORMAT( 40X,51H      C      POINT 1 /5          EDGE 1      I1      /  POINT 2
      1      /40X,42H    E      1  I   /E
      2      /40X,41H    2  I   /G
      3      /40X,40H    5  I   /D
      4      /40X,39H    I   /E
      5      /40X,38H    O/
      6      /40X,44H    POINT 5      EDGE 9      I0      /6
      7      /40X,10H    /
      8      /40X,26H    /3      SURFACE 2
      9      /40X,25H    /A      (BOTTOM)      )
330 FORMAT( 40X, 8H      /T
      &      /40X, 7H    /E      )
C-----123456789012345678901234567890123456789012345678901
C
C      END
C
C*****UTILITY*****
C*****SUBROUTINE VADD(CA,A,CB,B,C,UC)
C-----  

C      VADD COMPUTES C, THE SUM OF VECTORS CA*A AND CB*B, WHERE CA AND  

C      CB ARE SCALARS. UC IS A UNIT VECTOR DIRECTED ALONG C.
C-----  

C
C      DIMENSION A(3),B(3),C(3),UC(3)
C
C      SUM = 0.0
C
C      DO 10 I=1,3
C(I) = CA*A(I) + CB*B(I)
10   SUM = SUM + C(I)*C(I)
C
C      CMAG = SQRT(SUM)
C
C      RMAG = 0.0
IF(CMAG.GT.0.0) RMAG = 1.0/CMAG
C
C      UC(1) = C(1)*RMAG
C      UC(2) = C(2)*RMAG
C      UC(3) = C(3)*RMAG
C
C      RETURN
C
C*****UTILITY*****
C*****SUBROUTINE VDOT(A,B,C)
C-----  

C      VDOT COMPUTES C, THE DOT PRODUCT OF VECTORS A AND B.
C-----  

C
C      DIMENSION A(3),B(3)
C
C      C = 0.0
C

```

```

DO 10 I=1,3
10 C = C + A(I)*B(I)
C
      RETURN
      END
C
C*****UTILITY*****
C
C
      SUBROUTINE VMAG(VECTOR,VECMAG)
C-----
C      VMAG DETERMINES THE MAGNITUDE OF A VECTOR
C-----
C
      DIMENSION VECTOR(3)
C
      VECMAG = SQRT(VECTOR(1)**2 + VECTOR(2)**2 + VECTOR(3)**2)
C
      IF(VECMAG.LT.0.0000001) VECMAG = 0.0
C
      RETURN
      END
C
C*****HGM_2*****
C
C
      SUBROUTINE CAXIS(B,RHO,C)
C-----
C      CALCULATE AXIAL DISTANCE CORRESPONDING TO A POINT ON THE HOLE.
C
C          B      ANGULAR LOCATION OF POINT ON THE HOLE
C          C      AXIAL DISTANCE
C          RHO   HOLE RADIUS
C-----
C
      COMMON /DFN1/  DU1(3),DU2(3),DU3(3),DFNB,DFND,DPNF
      COMMON /DFN2/  AE,BE,DFNR,ZSTAR,AGL,BETA1,BETA2,BETA3,BETA4
      COMMON /INITC/ PI,RADDEG
C
C---TOLERANCE FOR NEWTON-RAPHSON ITERATION
C
      FEPS = 1.0E-07
C
C---ANGLE OF DUCT AXIS
C
      SA = SIN(AGL)
      CA = COS(AGL)
C
C---ANGLULAR LOCATION OF A POINT ON THE HOLE
C
      SB = SIN(B)
      CB = COS(B)
C
C---AXIAL DISTANCE ALONG LOWER EDGE OF DUCT
C
      DELTA = 0.0/RADDEG
C
      IF((B.GE.(BETA4 - DELTA)) .AND. (B.LE.BETA3)) THEN

```

```

C
C           C = (ZSTAR + RHO*SA*CB)/CA
C
C           RETURN
C
C           END IF
C
C---DISTANCE ALONG MAJOR AXIS OF BOWL ELLIPSE
C
C           XT = DFNF - DFND + RHO*CB
C           IF(ABS(XT).GT.AE) XT = AE
C
C---VERTICAL DISTANCE TO HOLE
C
C           YT = DFNB + RHO*SB
C
C---DISTANCE ALONG MINOR AXIS OF BOWL ELLIPSE
C
C           DR = SQRT(AE**2 - XT**2)*BE/AE
C
C---INITIAL DUCT AXIAL DISTANCE
C
C           C = SQRT((DFNR + DR)**2 - YT**2)
C
C---NEWTON-RAPHSON ITERATION-----
C
      10   XTT = DFNF - DFND + C*SA + RHO*CA*CB
            YTT = YT
            ZTT = C*CA - RHO*SA*CB
C
C---FUNCTION
C
C           DR = SQRT(AE**2 - XTT**2)*BE/AE
C           FC = (DFNR + DR)**2 - YTT**2 - ZTT**2
C
C---DERIVATIVE
C
C           DFDC1 = XTT*SA*(DFNR + DR)*BE/AE
C           DFDC2 = DR*AE/BE
C           DFDC3 = ZTT*CA
C           DFDC = -2.* (DFDC1/DFDC2 + DFDC3)
C
C---DUCT AXIAL DISTANCE
C
C           C = C - FC/DFDC
C
C           IF(ABS(FC).GT.FEPS) GO TO 10
C
C           RETURN
C           END
C
C*****HGM_2*****
C*****W*****
C
C           SUBROUTINE DCTDAT
C
C---DATA DESCRIBING HOLE AND WELD RADIUS
C

```

```

COMMON /DFN3/ AD,BD,BETA(37),DELRHO(37),RADOC(37)
C
C      DIMENSION DCT1(37),DCT2(37),DCT3(37)
C
C      DATA RADDEG/57.29577951/
C
C---ANGULAR INCREMENT AROUND HOLE
C
C
C---DIFFERENCE IN RADIUS BETWEEN DUCT AND HOLE
C
C
C---RADIUS OF CURVATURE OF FAIRING
C
C
C---READ DUCT DATA
C
C      READ(5,1000) (DCT1(I),I=1,37)
C
C      READ(5,1000) (DCT2(I),I=1,37)
C
C      READ(5,1000) (DCT3(I),I=1,37)
C
C---CONVERT DEGREES TO RADIANS AND INCHES TO FEET
C
C      DO 10 I = 1,37
C
C          BETA(I) = DCT1(I) / RADDEG
C          DELRHO(I) = DCT2(I)
C          10 RADOC(I) = DCT3(I)
C
C---FORMAT STATEMENT
C
C      1000 FORMAT((8F10.3))
C
C      RETURN
C      END
C
C*****HGM 2*****
C*****T*****
C
C      SUBROUTINE DELRAD(B,RHO,DRHO,RHOD,RDOC)
C-----
C      INTERPOLATES HOLE RADIUS, WELD RADIUS, DUCT RADIUS, AND DIFFERENCE
C      BETWEEN HOLE AND DUCT RADIUS FOR POINTS BETWEEN ANGULAR INCREMENTS.
C
C          B      ANGULAR LOCATION OF POINT ON HOLE
C          RHO    HOLE RADIUS
C          RHOD   DUCT RADIUS
C          RDOC   WELD RADIUS
C          DRHO   DIFFERENCE BETWEEN HOLE AND DUCT RADIUS
C-----
C
C      COMMON /DFN3/ AD,BD,BETA(37),DELRHO(37),RADOC(37)
C
C---ANGULAR LOCATION OF A POINT ON THE DUCT
C
C          BB = B
C          IF(B.LT.0.0) BB = 6.283185308 + B

```

```

C
C---BRACKET ANGULAR INCREMENT
C
C      DO 10 I = 1,36
C
C          DBK = BETA(I+1) - BETA(I)
C          DB = BB - BETA(I)
C
C          IF(DB.LE.DBK) THEN
C
C---INTERPOLATE-----
C
C---SEGMENT RATIO
C
C          PSI = DB/DBK
C
C---DIFFERENCE IN RADIUS BETWEEN DUCT AND HOLE
C
C          DRHO = DELRHO(I)*(1. - PSI) + DELRHO(I+1)*PSI
C
C---RADIUS OF WELD
C
C          RDOC = RADOC(I)*(1. - PSI) + RADOC(I+1)*PSI
C
C---RADIUS OF DUCT ELLIPSE
C
C          CBSQ = COS(B)**2
C          SBSQ = SIN(B)**2
C
C          RADX = SQRT(SBSQ*AD*AD + CBSQ*BD*BD)
C          RHOD = AD*BD/RADX
C
C---HOLE RADIUS
C
C          RHO = RHOD + DRHO
C
C          RETURN
C
C          END IF
10 CONTINUE
C
C          RETURN
C
C
C*****HGM 2*****
C*****SUBROUTINE DERIV(B,RHO,C,DRDB,DCDB)
C-----+
C      COMPUTE DRDB,DCDB
C-----+
C
C      COMMON /DFN1/ DU1(3),DU2(3),DU3(3),DFNB,DFND,DFNF
C      COMMON /DFN2/ AE,BE,DFNR,ZSTAR,AGL,BETA1,BETA2,BETA3,BETA4
C      COMMON /DFN3/ AD,BD,BETA(37),DELRHO(37),RADOC(37)
C
C---POINT ANGLE
C
C          CB = COS(B)
C          SB = SIN(B)

```

```

C
      EX1 = BD**2 - AD**2
      EX2 = ((AD*SB)**2 + (BD*CB)**2)**1.5
      DRDDB = EX1*AD*BD*SB*CB/EX2
C
C---BRACKET BETA
C
      DO 10 I = 1,36
C
      DBI = BETA(I+1) - BETA(I)
      DB = B - BETA(I)
      IB = I
C
      IF(DB.LE.DBI) GO TO 20
C
      10 CONTINUE
      20 CONTINUE
C
      DDRO = (DELRHO(IB+1) - DELRHO(IB))/(BETA(IB+1) - BETA(IB))
C
      DRDB = DRDDB + DDRO
C
C---FOR BETA BETWEEN BETA4 AND BETA3
C
      IF((B.GE.BETA4).AND.(B.LE.BETA3)) THEN
C
          DCDB = (DRDB*CB-RHO*SB)*TAN(AGL)
C
          RETURN
C
          END IF
C
C---AXIS ANGLE
C
      CA = COS(AGL)
      SA = SIN(AGL)
C
      XMD = DFNF - DFND + C*SA + RHO*CA*CB
      EXR1 = BE/AE
      EXR2 = SQRT(AE**2 - XMD**2)
      EXR = (DFNR + EXR1*EXR2)*XMD*EXR1/EXR2
C
      EXC1 = C*CA - RHO*SA*CB
      EXC2 = RHO*CB + DRDB*SB
      EXC3 = DRDB*CB - RHO*SB
      EXC4 = DFNB + RHO*SB
      EXCN = (EXC1*SA - EXR*CA)*EXC3 - EXC2*EXC4
      EXCD = EXR*SA + EXC1*CA
      DCDB = EXCN/EXCD
C
      RETURN
      END
C*****
C*****HGM 2*****
C*****
C
      SUBROUTINE DEXIT(B,POINT,DE)
C-----
C      COMPUTE POINT COORDINATES ON DUCT EXIT PLANE

```

```

C
C      AGL    ANGLE OF DUCT AXIS
C      B     ANGLE OF POINT
C      AD    ELLIPSE MINOR AXIS (HORIZONTAL)
C      BD    ELLIPSE MAJOR AXIS (VERTICAL)
C      CQ    AXIAL DISTANCE TO POINT ON DUCT EXIT NORMAL IN X_Z PLANE
C      CE    AXIAL DISTANCE TO POINT ON AXIS OF DUCT EXIT
C      DFNB   VERTICAL DISTANCE TO AXIS ORIGIN
C      DFNF   AXIAL DISTANCE TO AXIS ORIGIN
C-----
C
C      COMMON /DFN1/ DU1(3),DU2(3),DU3(3),DFNB,DFND,DFNF
C      COMMON /DFN2/ AE,BE,DFNR,ZSTAR,AGL,BETA1,BETA2,BETA3,BETA4
C      COMMON /DFN3/ AD,BD,BETA(37),DELRHO(37),RADOC(37)
C      COMMON /DFN5/ CE,CQ,ABOT,ATOP
C
C      DIMENSION POINT(6)
C
C----AXIS ANGLE
C
C          COA = COS(AGL)
C          SIA = SIN(AGL)
C
C----POINT ANGLE
C
C          COB = COS(B)
C          SIB = SIN(B)
C
C----RADIUS OF ELLIPTIC DUCT
C
C          RADX = SQRT((AD*SIB)**2 + (BD*COB)**2)
C          RHOD = AD*BD/RADX
C
C----AXIAL DISTANCE
C
C          C = CE + RHOD*SIB*DFNB/(CQ - CE)
C
C----COORDINATES
C
C          POINT(1) = DFNF + C*SIA + RHOD*COA*COB
C          POINT(2) = DFNB           + RHOD*SIB
C          POINT(3) =           C*COA - RHOD*SIA*COB
C
C      RETURN
C      END
C*****
C*****HGM 2*****
C*****W*****
C
C      SUBROUTINE HGMIN
C-----
C      INPUT FOR TWO DUCT HGM WITH TURN AROUND DUCT
C-----
C
C      COMMON /COEFF/ COEFE(8,10,12),COEFS(8,6),NMBRSEG(12)
C      COMMON /INITA/ IZINDEX,MAPTEN,INCHES
C      COMMON /INITC/ PI,RADDEG
C      COMMON /INPUTA/ EDGE(3,12),POINT(3,8),SIDE(3,6)
C      COMMON /MAPING/ MAPSIDE(6),MAPSEG(10,12)

```

```

COMMON /MAXIMUM/ ETAMAX(10,12),SEGMAX(3,10,12)
COMMON /ZONING/ IZONE,ISECT,NZINDEX,NMBRND(3)

C
COMMON /DFN1/ DU1(3),DU2(3),DU3(3),DFNB,DFND,DFNF
COMMON /DFN2/ AE,BE,DFNR,ZSTAR,AGL,BETA1,BETA2,BETA3,BETA4
COMMON /DFN3/ AD,BD,BETA(37),DELRHO(37),RADOC(37)
COMMON /DFN4/ IHOLE,PL(6,6,4),PA(2,6,4),EDG(6,4)
COMMON /DFN5/ CE,CQ,ABOT,ATOP
COMMON /DFN6/ RTADI,RTADO,RCI,RDI,RDO,XCI,XCO,XTADI,XTADO
COMMON /DFN7/ RWO21,XWO21,RADII,RADIO

C
DIMENSION CADD(3),VEC(3),VDUM(3),UE(3)

C-----GENERAL CONSTANTS-----
C-----IHOLE = 0
C-----BOWL ELLIPSE-----
C
AE = 4.5
BE = 2.85776
C-----ORIGIN OF BOWL ELLIPSE
C
DFND = 5.5
DFNR = 6.02472
C-----BOWL ELLIPSE FOCI
C
FE = SORT(AE*AE - BE*BE)
C-----FIRST BOWL ELLIPSE FOCI AXIAL DISTANCE
C
XFE = DFND - FE
C-----ANGLES OF POINTS ON HOLE-----
C
BETA1 = 130./RADDEG
BETA2 = 50./RADDEG
BETA3 = 298./RADDEG
BETA4 = 220./RADDEG
C-----ORIGIN OF DUCT AXIS-----
C
DFNB = 5.0
DFNF = 5.2
C-----ANGLE OF DUCT
C
AGL = 10.0/RADDEG
C-----UNIT VECTORS OF DUCT COORDINATE SYSTEM
C
DU1(1) = SIN(AGL)
DU1(2) = 0.
DU1(3) = COS(AGL)
C
DU2(1) = COS(AGL)
DU2(2) = 0.
DU2(3) = -SIN(AGL)

```

C
DU3(1) = 0.
DU3(2) = 1.
DU3(3) = 0.
C
C---DUCT ELLIPSE
C
AD = 2.98
BD = 3.55
C
C---AXIAL LENGTH TO DUCT EXIT PLANE .
C
CE = 16.2
C
C---AXIAL LENGTH TO POINT ON EXIT PLANE NORMAL IN X-Z PLANE
C
CQ = 25.206
C
C---UNKNOWN
C
ATOP = 7.
ABOT = 3.
C
C---POINT 1: BOWL ENTRANCE - INNER-----
C
RADII = 6.6
C
C---POINT 2: END OF BOWL - INNER
C
XLI = 9.810
C
RADOI = 6.029
C
C---POINT 3: END OF BOWL - OUTER
C
XLO = 9.830
C
CXL = ((XLO - DFND)/AE)**2
C
RADOO = DFNR + BE*SQRT(1.0 - CXL)
C
C---POINT 4: BOWL ENTRANCE - OUTER
C
RADIO = 7.5
C
C---EDGE 1: SEGMAX 1-----
C
XMAX11 = 2.450
C
C---EDGE 1: SEGMAX 3
C
XMAX31 = 7.912
RMAX31 = 6.380
C
C---EDGE 3: SEGMAX 1
C
XMAX13 = 1.0
RMAX13 = 7.815
C
ZSTAR = RMAX13

```

C
C---EDGE 3: SEGMAX 2
C
C           CR23 = ((RMAX13 - DFNR)/BE)**2
C
C           XMAX23 = DFND - AE*SQRT(1.0 - CR23)
C
C---EDGE 3: SEGMAX 3
C
C           XMAX33 = 3.0
C           XMAX33 = 2.35
C
C---EDGE 3: SEGMAX 4
C
C           XMAX43 = DFND + AE*SQRT(1.0 - CR23)
C
C---EDGE 11: SEGMAX 3
C
C           XMAX311 = 3.4
C
C           CX311 = ((XMAX311 - DFND)/AE)**2
C
C           RMAX311 = DFNR + BE*SQRT(1.0 - CX311)
C
C---EDGE 11: SEGMAX 4
C
C           XMAX411 = 8.5
C
C           CX411 = ((XMAX411 - DFND)/AE)**2
C
C           RMAX411 = DFNR + BE*SQRT(1.0 - CX411)
C
C---ANGLE OF INTERSECTION BETWEEN SECTION 1 AND SECTION 2-----
C
C           THETAD = 75.0
C
C           TH = THETAD/RADDEG
C           CTH = COS(TH)
C           STH = SIN(TH)
C
C---ANGLE OF INTERSECTION FOR SEGMENT 1 & 2 AND SEGMENT 2 & 3-----
C
C           THETAD2 = 18.0
C
C           THE2 = THETAD2/RADDEG
C           CTHE2 = COS(THE2)
C           STHE2 = SIN(THE2)
C
C           THETAD3 = 82.0
C
C           THE3 = THETAD3/RADDEG
C           CTHE3 = COS(THE3)
C           STHE3 = SIN(THE3)
C
C           IF(IZONE.EQ.1.AND.IZINDEX.GT.1)THEN
C               GO TO 40
C           ELSE
C               GO TO 50
C           END IF
C

```

```

40 GO TO (50,50,200,300,300,50) IZINDEX
C
      50 IF(IZONE.GT.1) GO TO 100
C
C*****ZONE 1 - (SIDE OF BOWL WITHOUT HOLE)
C*****-----*
C---EDGE COEFFICIENTS-----
C
C---EDGE 3: ELLIPSE
C
      COEFE(1,3,3) = XFE
      COEFE(3,3,3) = -DFNR
      COEFE(4,3,3) = 1.0
C
C---EDGE 5: CIRCULAR ARC
C
      COEFE(1,1,5) = 0.0
      COEFE(4,1,5) = 1.0
C
C---EDGE 6: CIRCULAR ARC
C
      COEFE(1,1,6) = XLI
      COEFE(4,1,6) = 1.0
C
C---EDGE 7: CIRCULAR ARC
C
      COEFE(1,1,7) = XLO
      COEFE(4,1,7) = 1.0
C
C---EDGE 8: CIRCULAR ARC
C
      COEFE(1,1,8) = 0.0
      COEFE(4,1,8) = 1.0
C
C---EDGE 11: ELLIPSE
C
      DO 10 K = 3,5
C
      COEFE(1,K,11) = XFE
      COEFE(2,K,11) = DFNR*STH
      COEFE(3,K,11) = -DFNR*CTH
      10 COEFE(4,K,11) = 1.0
C
C---SURFACE COEFFICIENTS-----
C
      COEFS(4,2) = 1.0
      COEFS(7,2) = 3.0
C
      COEFS(4,4) = 1.0
      COEFS(7,4) = 3.0
C
      COEFS(4,6) = 1.0
      COEFS(7,6) = 3.0
C
C---CORNER POINT COORDINATES -----
C
      POINT(1,1) = 0.0
      POINT(2,1) = 0.0
      POINT(3,1) = -RADII

```

```

C
POINT(1,2) = XLI
POINT(2,2) = 0.0
POINT(3,2) = -RADOI
C
POINT(1,3) = XLO
POINT(2,3) = 0.0
POINT(3,3) = -RADOO
C
POINT(1,4) = 0.0
POINT(2,4) = 0.0
POINT(3,4) = -RADIO
C
POINT(1,5) = 0.0
POINT(2,5) = RADII*STH
POINT(3,5) = -RADII*CTH
C
POINT(1,6) = XLI
POINT(2,6) = RADOI*STH
POINT(3,6) = -RADOI*CTH
C
POINT(1,7) = XLO
POINT(2,7) = RADOO*STH
POINT(3,7) = -RADOO*CTH
C
POINT(1,8) = 0.0
POINT(2,8) = RADIO*STH
POINT(3,8) = -RADIO*CTH
C
C---EDGE SEGMENT COORDINATES -----
C
SEGMAX(1,1, 1) = XMAX11
SEGMAX(3,1, 1) = -RADII
C
SEGMAX(1,2, 1) = XMAX31
SEGMAX(3,2, 1) = -RMAX31
C
SEGMAX(1,1, 3) = XMAX13
SEGMAX(3,1, 3) = -RMAX13
C
SEGMAX(1,2, 3) = XMAX23
SEGMAX(3,2, 3) = -RMAX13
C
SEGMAX(1,1, 9) = XMAX11
SEGMAX(2,1, 9) = RADII*STH
SEGMAX(3,1, 9) = -RADII*CTH
C
SEGMAX(1,2, 9) = XMAX31
SEGMAX(2,2, 9) = RMAX31*STH
SEGMAX(3,2, 9) = -RMAX31*CTH
C
SEGMAX(1,1,11) = XMAX13
SEGMAX(2,1,11) = RMAX13*STH
SEGMAX(3,1,11) = -RMAX13*CTH
C
SEGMAX(1,2,11) = XMAX23
SEGMAX(2,2,11) = RMAX13*STH
SEGMAX(3,2,11) = -RMAX13*CTH
C
SEGMAX(1,3,11) = XMAX311

```

```

SEGMAX(2,3,11) = RMAX311*STH
SEGMAX(3,3,11) = -RMAX311*CTH
C
SEGMAX(1,4,11) = XMAX411
SEGMAX(2,4,11) = RMAX411*STH
SEGMAX(3,4,11) = -RMAX411*CTH
C
C---EDGE NODE DISTRIBUTION-----
C
ETAMAX(1, 1) = 12.0
ETAMAX(2, 1) = 44.0
C
ETAMAX(1, 3) = 5.0
ETAMAX(2, 3) = 10.0
C
ETAMAX(1, 9) = 12.0
ETAMAX(2, 9) = 44.0
C
ETAMAX(1,11) = 5.0
ETAMAX(2,11) = 10.0
ETAMAX(3,11) = 19.0
ETAMAX(4,11) = 48.0
C
RETURN
C*****
C      ZONE 2 - (SIDE OF BOWL WITH HOLE)
C*****
100 IF(IZONE.GT.2)GO TO 200
C
C---EDGE COEFFICIENTS-----
C
C---EDGE 3: ELLIPSE
C
DO 110 K = 3,5
C
COEFE(1,K, 3) = XFE
COEFE(2,K, 3) = DFNR*STH
COEFE(3,K, 3) = -DFNR*CTH
110 COEFE(4,K, 3) = 1.0
C
C---EDGE 5: CIRCULAR ARC
C
COEFE(1,1, 5) = 0.0
COEFE(4,1, 5) = 1.0
C
COEFE(1,2, 5) = 0.0
COEFE(4,2, 5) = 1.0
C
COEFE(1,3, 5) = 0.0
COEFE(4,3, 5) = 1.0
C
C---EDGE 6: CIRCULAR ARC
C
COEFE(1,1, 6) = XLI
COEFE(4,1, 6) = 1.0
C
COEFE(1,2, 6) = XLI
COEFE(4,2, 6) = 1.0
C

```

```

C      COEFE(1,3, 6) = XLI
C      COEFE(4,3, 6) = 1.0
C
C---EDGE 7: CIRCULAR ARC
C
C      COEFE(1,1, 7) = XLO
C      COEFE(4,1, 7) = 1.0
C
C      COEFE(1,2, 7) = XLO
C      COEFE(4,2, 7) = 1.0
C
C      COEFE(1,3, 7) = XLO
C      COEFE(4,3, 7) = 1.0
C
C---EDGE 8: CIRCULAR ARC
C
C      COEFE(1,1, 8) = 0.0
C      COEFE(4,1, 8) = 1.0
C
C      COEFE(4,2, 8) = 1.0
C      COEFE(4,3, 8) = 1.0
C
C---EDGE 11: ELLIPSE
C
C      COEFE(1,3,11) = 0.0
C      COEFE(2,3,11) = 0.0
C      COEFE(3,3,11) = 0.0
C      COEFE(4,3,11) = 0.0
C
C      COEFE(1,4,11) = 0.0
C      COEFE(2,4,11) = 0.0
C      COEFE(3,4,11) = 0.0
C      COEFE(4,4,11) = 0.0
C
C      COEFE(1,5,11) = XFE
C      COEFE(2,5,11) = 0.0
C      COEFE(3,5,11) = DFNR
C      COEFE(4,5,11) = 1.0
C
C---SURFACE COEFFICIENTS-----
C
C      COEFS(4,2) = 1.0
C      COEFS(7,2) = 3.0
C
C      COEFS(4,6) = 1.0
C      COEFS(7,6) = 3.0
C
C---CORNER POINT COORDINATES-----
C
C      POINT(1,1) = 0.0
C      POINT(2,1) = RADIIS*STH
C      POINT(3,1) = -RADIIS*CTH
C      POINT(4,1) = 0.0
C      POINT(5,1) = 0.0
C
C      POINT(1,2) = XLI
C      POINT(2,2) = RADOI*STH
C      POINT(3,2) = -RADOI*CTH
C      POINT(4,2) = THETAIF
C      POINT(5,2) = 90.0

```

```

C
POINT(1,3) = XLO
POINT(2,3) = RADO0*STH
POINT(3,3) = -RADO0*CTH
POINT(4,3) = THETAF
POINT(5,3) = 90.0

C
POINT(1,4) = 0.0
POINT(2,4) = RADIO*STH
POINT(3,4) = -RADIO*CTH
POINT(4,4) = 12.831
POINT(5,4) = -7.491

C
POINT(1,5) = 0.0
POINT(2,5) = 0.0
POINT(3,5) = RADII
POINT(4,5) = 0.0
POINT(5,5) = 0.0

C
POINT(1,6) = XLI
POINT(2,6) = 0.0
POINT(3,6) = RADOI
POINT(4,6) = 0.0
POINT(5,6) = 0.0

C
POINT(1,7) = XLO
POINT(2,7) = 0.0
POINT(3,7) = RADO0
POINT(4,7) = 0.0
POINT(5,7) = -50.0

C
POINT(1,8) = 0.0
POINT(2,8) = 0.0
POINT(3,8) = RADIO
POINT(4,8) = 0.0
POINT(5,8) = 14.7

C
C---UPPER LEFT CORNER ON HOLE-----
C
CALL HOLE(BETA1,EDG(1,1),VDUM)
C
RAD1 = SQRT(EDG(2,1)**2 + EDG(3,1)**2)
ANG1 = ACOS(EDG(2,1)/RAD1)

C
C---UPPER RIGHT CORNER ON HOLE
C
CALL HOLE(BETA2,EDG(1,2),VDUM)
C
RAD2 = SQRT(EDG(2,2)**2 + EDG(3,2)**2)
ANG2 = ACOS(EDG(2,2)/RAD2)

C
C---LOWER RIGHT CORNER ON HOLE
C
CALL RHOS(BETA(31),DELRHO(31))
C
CALL HOLE(BETA3,EDG(1,3),VDUM)
C
RAD3 = SQRT(EDG(2,3)**2 + EDG(3,3)**2)
ANG3 = ACOS(EDG(2,3)/RAD3)

```

```

C---LOWER LEFT CORNER ON HOLE
C
C      CALL RHOS(BETA(23),DELRHO(23))
C
C      CALL HOLE(BETA4,EDG(1,4),VDUM)
C
C          RAD4 = SQRT(EDG(2,4)**2 + EDG(3,4)**2)
C          ANG4 = ACOS(EDG(2,4)/RAD4)
C
C---EDGE SEGMENT COORDINATES -----
C
C      SEGMAX(1,1, 1) = XMAX11
C      SEGMAX(2,1, 1) = RADII*STH
C      SEGMAX(3,1, 1) = -RADII*CTH
C
C      SEGMAX(1,2, 1) = XMAX31
C      SEGMAX(2,2, 1) = RMAX31*STH
C      SEGMAX(3,2, 1) = -RMAX31*CTH
C
C      SEGMAX(1,1, 3) = XMAX13
C      SEGMAX(2,1, 3) = RMAX13*STH
C      SEGMAX(3,1, 3) = -RMAX13*CTH
C
C      SEGMAX(1,2, 3) = XMAX23
C      SEGMAX(2,2, 3) = RMAX13*STH
C      SEGMAX(3,2, 3) = -RMAX13*CTH
C
C      SEGMAX(1,3, 3) = XMAX311
C      SEGMAX(2,3, 3) = RMAX311*STH
C      SEGMAX(3,3, 3) = -RMAX311*CTH
C
C      SEGMAX(1,4, 3) = XMAX411
C      SEGMAX(2,4, 3) = RMAX411*STH
C      SEGMAX(3,4, 3) = -RMAX411*CTH
C
C
C      SEGMAX(1,1, 7) = XLO
C      SEGMAX(2,1, 7) = RADOO*CTHE2
C      SEGMAX(3,1, 7) = RADOO*STHE2
C
C      SEGMAX(1,2, 7) = XLO
C      SEGMAX(2,2, 7) = RADOO*COS(ANG3)
C      SEGMAX(3,2, 7) = RADOO*SIN(ANG3)
C
C      SEGMAX(1,1, 8) = 0.0
C      SEGMAX(2,1, 8) = RADIO*CTHE2
C      SEGMAX(3,1, 8) = RADIO*STHE2
C
C
C      SEGMAX(1,2, 8) = 0.0
C      SEGMAX(2,2, 8) = RADIO*CTHE3
C      SEGMAX(3,2, 8) = RADIO*STHE3
C
C      SEGMAX(1,1, 9) = XMAX11
C      SEGMAX(2,1, 9) = 0.0
C      SEGMAX(3,1, 9) = RADII
C
C      SEGMAX(1,2, 9) = XMAX31
C      SEGMAX(2,2, 9) = 0.0
C      SEGMAX(3,2, 9) = RMAX31

```

```

C
SEGMAX(1,1,11) = XMAX13
SEGMAX(2,1,11) = 0.0
SEGMAX(3,1,11) = RMAX13
C
SEGMAX(1,2,11) = XMAX23
SEGMAX(2,2,11) = 0.0
SEGMAX(3,2,11) = RMAX13
C
SEGMAX(1,3,11) = XMAX33
SEGMAX(2,3,11) = 0.0
SEGMAX(3,3,11) = RMAX13
C
SEGMAX(1,4,11) = XMAX43
SEGMAX(2,4,11) = 0.0
SEGMAX(3,4,11) = RMAX13
C
C---DESCRIPTION OF COORDINATES ON SURFACE WITH HOLE (SIDE 4)-----
C
DO 130 J = 1,3
C
PL(J,1,1) = POINT(J,4)
PL(J,2,1) = SEGMAX(J,1,3)
PL(J,3,1) = SEGMAX(J,2,3)
PL(J,4,1) = SEGMAX(J,3,3)
PL(J,5,1) = SEGMAX(J,4,3)
PL(J,6,1) = POINT(J,3)
C
PL(J,1,2) = SEGMAX(J,1,8)
PL(J,4,2) = EDG(J,1)
PL(J,5,2) = EDG(J,2)
PL(J,6,2) = SEGMAX(J,1,7)
C
PL(J,1,3) = SEGMAX(J,2,8)
PL(J,4,3) = EDG(J,4)
PL(J,5,3) = EDG(J,3)
PL(J,6,3) = SEGMAX(J,2,7)
C
PL(J,1,4) = POINT(J,8)
PL(J,2,4) = SEGMAX(J,1,11)
PL(J,3,4) = SEGMAX(J,2,11)
PL(J,4,4) = SEGMAX(J,3,11)
PL(J,5,4) = SEGMAX(J,4,11)
130      PL(J,6,4) = POINT(J,7)
C
PL(1,2,2) = XMAX13
PL(2,2,2) = RMAX13*CTHE2
PL(3,2,2) = RMAX13*STHE2
C
PL(1,3,2) = XMAX23
PL(2,3,2) = RMAX13*CTHE2
PL(3,3,2) = RMAX13*STHE2
C
PL(1,2,3) = XMAX13
PL(2,2,3) = RMAX13*CTHE3
PL(3,2,3) = RMAX13*STHE3
C
PL(1,3,3) = XMAX23
PL(2,3,3) = RMAX13*CTHE3
PL(3,3,3) = RMAX13*STHE3

```

```

C
C
C----EDGE NODE DISTRIBUTION-----
C
C           ETAMAX(1, 1) = 12.0
C           ETAMAX(2, 1) = 44.0
C
C           ETAMAX(1, 3) = 5.0
C           ETAMAX(2, 3) = 10.0
C           ETAMAX(3, 3) = 19.0
C           ETAMAX(4, 3) = 48.0
C
C           ETAMAX(1, 9) = 12.0
C           ETAMAX(2, 9) = 44.0
C
C           ETAMAX(1,11) = 5.0
C           ETAMAX(2,11) = 13.0
C           ETAMAX(3,11) = 19.0
C           ETAMAX(4,11) = 48.0
C
C           DO 140 K = 7,8
C
C           ETAMAX(1, K) = 25.0
C 140       ETAMAX(2, K) = 68.0
C
C
C           RETURN
C*****ZONE 3 (DUCT)
C*****200 CONTINUE
C           GO TO (500,500,201,300,300,201) IZINDEX
C
C           201 CONTINUE
C
C           IF(IZONE.GT.3) GO TO 300
C
C           DO 205 I=1,8
C           DO 205 J=1,6
C           COEFS(I,J) = 0.0
C
C           DO 205 K=1,12
C 205       COEFE(I,J,K) = 0.0
C
C----CORNER POINT COORDINATES ON HOLE-----
C
C           DO 210 J=1,3
C
C           POINT(J,1) = PL(J,4,2)
C           POINT(J,2) = PL(J,5,2)
C           POINT(J,6) = PL(J,5,3)
C 210       POINT(J,5) = PL(J,4,3)
C
C----CORNER POINT COORDINATES ON EXIT PLANE-----
C
C           CALL DEXIT(BETA1,POINT(1,4),VDUM)
C
C           CALL DEXIT(BETA2,POINT(1,3),VDUM)
C

```

```

CALL DEXIT(BETA3,POINT(1,7),VDUM)
C
CALL DEXIT(BETA4,POINT(1,8),VDUM)
C
C---EDGE COEFFICIENTS ALONG HOLE (MAP = 7)-----
C
COEFE(1,1, 1) = BETA1
COEFE(2,1, 1) = BETA2
C
COEFE(1,1, 5) = BETA1
COEFE(2,1, 5) = BETA4
C
COEFE(1,1, 6) = BETA2
COEFE(2,1, 6) = BETA3 - 2.0*PI
C
COEFE(1,1, 9) = BETA4
COEFE(2,1, 9) = BETA3
C
C---EDGE COEFFICIENTS ALONG DUCT (MAP = 9)-----
C
COEFE(1,1, 2) = BETA2
C
COEFE(1,1, 4) = BETA1
C
COEFE(1,1,10) = BETA3
C
COEFE(1,1,12) = BETA4
C
C---EDGE COEFFICIENTS ALONG EXIT ELLIPSE (MAP = 8)-----
C
COEFE(1,1, 3) = BETA1
COEFE(2,1, 3) = BETA2
C
COEFE(1,1, 7) = BETA2
COEFE(2,1, 7) = BETA3 - 2.0*PI
C
COEFE(1,1, 8) = BETA1
COEFE(2,1, 8) = BETA4
C
COEFE(1,1,11) = BETA4
COEFE(2,1,11) = BETA3
C
C---SEGMENT MAXIMUMS ALONG DUCT (CIRCULAR ARCS)-----
C
        ISEG = 1
        RATIO = -1.0
C
DO 250 J=1,4
        IEDGE = 4
        IF(J.EQ.2) IEDGE = 2
        IF(J.EQ.3) IEDGE = 10
        IF(J.EQ.4) IEDGE = 12
C
        EDG(1,J) = COEFE(1,ISEG,IEDGE)
        MAPSEG(ISEG,IEDGE) = 9
C
        CALL EMAP(IEDGE,ISEG,RATIO,EDG(1,J),VDUM)
C
DO 240 I=1,3
240 SEGMAX(I,ISEG,IEDGE) = EDG(I,J)

```

```

C           MAXETA = 0.65*NMBRNDS(2)
C           ETAMAX(ISEG,IEDGE) = MAXETA
C
C           SEGMAX(4,ISEG,IEDGE) = TXY
C           250 SEGMAX(5,ISEG,IEDGE) = TXZ
C
C---SURFACE COEFFICIENTS-----
C
C           COEFS(1,1) = BETA1
C           COEFS(2,1) = BETA2
C           COEFS(3,1) = ETAMAX(1,2)
C
C           COEFS(1,3) = BETA4
C           COEFS(2,3) = BETA3
C           COEFS(3,3) = ETAMAX(1,12)
C
C           COEFS(1,5) = BETA1
C           COEFS(2,5) = BETA4
C           COEFS(3,5) = ETAMAX(1,4)
C
C           COEFS(1,6) = BETA2
C           COEFS(2,6) = BETA3 - 2.*PI
C           COEFS(3,6) = ETAMAX(1,10)
C
C           RETURN
C*****ZONE 4 & 5 (TURN AROUND DUCT)*****
C*****300 CONTINUE
C           GO TO (500,500,500,301,301,301) IZINDEX
C
C           301 CONTINUE
C           IF(IZINDEX.GE.4.AND.IZONE.EQ.2)GO TO 350
C           IF(IZONE.GT.4) GO TO 350
C
C---INITIALIZE INPUT FOR ZONE 3 TO ZERO-----
C
C           DO 325 N = 1,8
C
C           DO 310 M = 1,5
C           310   POINT(M,N) = 0.0
C
C           DO 325 M = 1,6
C           325   COEFS(N,M) = 0.0
C
C           DO 340 N = 1,12
C           DO 340 M = 1,5
C
C           DO 330 J = 1,5
C           330   SEGMAX(J,M,N) = 0.0
C
C           DO 335 J = 1,8
C           335   COEFE(J,M,N) = 0.0
C
C           340   ETAMAX(M,N) = 0.0

```

```
C
C---INITIALIZE CONSTANTS-----
C
C---POINT 1: ENTRANCE
C
    350      XTADI = -2.76
C
        RDO = 5.6
C
C---POINT 4: ENTRANCE
C
        RDI = 4.56
C
C---INNER CIRCULAR ARC
C
        RTADI = 0.4570
C
        XCI = -4.331
C
        RCI = RDO + RTADI
C
        RWI21 = RDO + 2.0*RTADI
C
C---OUTER CIRCULAR ARC
C
        RTADO = 1.36
C
        XCO = -4.35
C
        RCO = RDI + RTADO
C
C---TAD EXIT
C
        XTADO = 0.0
C
C---TANGENCY POINT ON OUTER SURFACE
C
        CALL TADWALL
C
C---ANGLE 1
C
        THETAX = 15.0
C
        THX = THETAX/RADDEG
        CTH = COS(THX)
        STH = SIN(THX)
C
C---ANGLE 2
C
        CTH1 = COS(THE2)
        STH1 = SIN(THE2)
C
C---ANGLE 3
C
        CTH4 = COS(THE3)
        STH4 = SIN(THE3)
C
        THETAC = 90.0 - THETAX
C
        ANG1C = 90.0 - THETAD2
```

```

ANG4C = 90.0 - THETAD3
C*****
C      ZONE 4 (TURN AROUND DUCT)
C*****
C
C      IF(IZONE.GE.4.AND.IZONE.EQ.2)GO TO 400
C
C      IF(IZONE.GT.4) GO TO 400
C
C---EDGE COEFFICIENTS-----
C
C---EDGE 1: CIRCULAR ARC
C
C          COEFE(1,2, 1) = XCI
C          COEFE(3,2, 1) = -RCI
C
C---EDGE 3: CIRCULAR ARC
C
C          COEFE(1,2, 3) = XCO
C          COEFE(3,2, 3) = -RCO
C
C---EDGE 9: CIRCULAR ARC
C
C          COEFE(1,2, 9) = XCI
C          COEFE(3,2, 9) = RCI
C
C---EDGE 11: CIRCULAR ARC
C
C          COEFE(1,2,11) = XCO
C          COEFE(3,2,11) = RCO
C
C---EDGE : CIRCULAR ARC
C
C      DO 360 J = 1,4
C
C          COEFE(1,J, 5) = XTADI
C          COEFE(1,J, 8) = XTADI
C          COEFE(1,J, 6) = XCI - RTADI
C      360 COEFE(1,J, 7) = XCO - RTADO
C
C---SURFACE COEFFICIENTS-----
C
C          COEFS(4,2) = 1.0
C          COEFS(7,2) = 3.0
C
C          COEFS(4,4) = 1.0
C          COEFS(7,4) = 3.0
C
C          COEFS(4,6) = 1.0
C          COEFS(7,6) = 3.0
C
C---CORNER POINT COORDINATES-----
C
C          POINT(1,1) = XTADI
C          POINT(2,1) = 0.0
C          POINT(3,1) = -RDO
C
C          POINT(1,2) = XCI - RTADI
C          POINT(2,2) = 0.0
C          POINT(3,2) = -RCI

```

```

C      SEGMAX(2,2, 7) = RCO*CTH1
C      SEGMAX(3,2, 7) = RCO*STH1
C      SEGMAX(2,3, 7) = RCO*CTH4
C      SEGMAX(3,3, 7) = RCO*STH4
C      SEGMAX(2,1, 8) = RDI*CTH
C      SEGMAX(3,1, 8) = -RDI*STH
C      SEGMAX(2,2, 8) = RDI*CTH1
C      SEGMAX(3,2, 8) = RDI*STH1
C      SEGMAX(2,3, 8) = RDI*CTH4
C      SEGMAX(3,3, 8) = RDI*STH4
C      SEGMAX(1,1, 9) = XCI
C      SEGMAX(3,1, 9) = RDO
C      SEGMAX(1,1,11) = XCO
C      SEGMAX(3,1,11) = RDI
C      C---EDGE NODE DISTRIBUTION-----
C      ETAMAX(1, 1) = 13.0
C      ETAMAX(1, 3) = 13.0
C      ETAMAX(1, 9) = 13.0
C      ETAMAX(1,11) = 13.0
C      DO 380 J = 7,8
C      ETAMAX(1, J) = 36.0
C      ETAMAX(2, J) = 60.0
380    ETAMAX(3, J) = 103.0
C      ETAMAX(1,5) = 36
C      ETAMAX(1,6) = 36
C      RETURN
C***** DATA FOR ZONE 5 (TURN AROUND DUCT)
C***** C---INITIALIZE EDGE COEFFICIENTS-----
C      400  COEFE(1,2, 1) = 0.0
C      COEFE(3,2, 1) = 0.0
C      COEFE(1,2, 3) = 0.0
C      COEFE(3,2, 3) = 0.0
C      COEFE(1,2, 9) = 0.0
C      COEFE(2,2, 9) = 0.0
C      COEFE(3,2, 9) = 0.0
C      COEFE(1,2,11) = 0.0
C      COEFE(2,2,11) = 0.0
C      COEFE(3,2,11) = 0.0
C      C---EDGE COEFFICIENTS-----
C

```

PRECEDING PAGE BLANK NOT FILMED

```

C---EDGE 1: CIRCULAR ARC
C
COEFE(1,1, 1) = XCI
COEFE(3,1, 1) = -RCI
C
C---EDGE 3: CIRCULAR ARC
C
COEFE(1,1, 3) = XCO
COEFE(3,1, 3) = -RCO
C
C---EDGE 9: CIRCULAR ARC
C
COEFE(1,1, 9) = XCI
COEFE(3,1, 9) = RCI
C
C---EDGE 11: CIRCULAR ARC
C
COEFE(1,1,11) = XCO
COEFE(3,1,11) = RCO
C
C---EDGE : CIRCULAR ARC
C
DO 410 J = 1,4
C
COEFE(1,J,5) = XCI - RTADI
COEFE(1,J,8) = XCO - RTADO
COEFE(1,J,6) = XTADO
410 COEFE(1,J,7) = XTADO
C
C---SURFACE COEFFICIENTS-----
C
COEFS(1,2) = 0.0
COEFS(4,2) = 1.0
COEFS(7,2) = 3.0
C
COEFS(1,4) = 0.0
COEFS(4,4) = 1.0
COEFS(7,4) = 3.0
C
COEFS(1,5) = 0.0
COEFS(4,5) = 1.0
COEFS(7,5) = 3.0
C
COEFS(1,6) = 0.0
COEFS(4,6) = 0.0
COEFS(7,6) = 0.0
C
C---CORNER NODE COORDINATES-----
C
POINT(1,1) = XCI - RTADI
POINT(3,1) = -RCI
C
POINT(1,2) = XTADO
POINT(3,2) = -RADII
C
POINT(1,3) = XTADO
POINT(3,3) = -RADIO
C
POINT(1,4) = XCO - RTADO
POINT(3,4) = -RCO

```

```

C
POINT(1,5) = XCI - RTADI
POINT(3,5) = RCI
C
POINT(1,6) = XTADO
POINT(3,6) = RADII
C
POINT(1,7) = XTADO
POINT(3,7) = RADIO
C
POINT(1,8) = XCO - RTADO
POINT(3,8) = RCO
C
C---EDGE SEGMENT COORDINATES-----
C
SEGMAX(1,1, 1) = XCI
SEGMAX(3,1, 1) = -RWI21
C
SEGMAX(1,2, 1) = -2.128
SEGMAX(3,2, 1) = -6.514
C
SEGMAX(1,1, 3) = XWO21
SEGMAX(3,1, 3) = -RWO21
C
SEGMAX(1,2, 3) = -2.2
SEGMAX(3,2, 3) = -7.5
C
DO 420 J = 1,3
C
SEGMAX(1,J, 5) = XCI - RTADI
420 SEGMAX(1,J, 8) = XCO - RTADO
C
SEGMAX(2,1, 5) = RCI*CTH
SEGMAX(3,1, 5) = -RCI*STH
C
SEGMAX(2,2, 5) = RCI*CTH1
SEGMAX(3,2, 5) = RCI*STH1
C
SEGMAX(2,3, 5) = RCI*CTH4
SEGMAX(3,3, 5) = RCI*STH4
C
DO 440 J = 1,3
C
SEGMAX(1,J, 6) = 0.0
440 SEGMAX(1,J, 7) = 0.0
C
SEGMAX(2,1, 6) = RADII*CTH
SEGMAX(3,1, 6) = -RADII*STH
C
SEGMAX(2,2, 6) = RADII*CTH1
SEGMAX(3,2, 6) = RADII*STH1
C
SEGMAX(2,3, 6) = RADII*CTH4
SEGMAX(3,3, 6) = RADII*STH4
C
SEGMAX(2,1, 7) = RADIO*CTH
SEGMAX(3,1, 7) = -RADIO*STH
C
SEGMAX(2,2, 7) = RADIO*CTH1
SEGMAX(3,2, 7) = RADIO*STH1

```

```

C
SEGMAX(2,3, 7) = RADIO*CTH4
SEGMAX(3,3, 7) = RADIO*STH4
C
SEGMAX(2,1, 8) = RCO*CTH
SEGMAX(3,1, 8) = -RCO*STH
C
SEGMAX(2,2, 8) = RCO*CTH1
SEGMAX(3,2, 8) = RCO*STH1
C
SEGMAX(2,3, 8) = RCO*CTH4
SEGMAX(3,3, 8) = RCO*STH4
C
SEGMAX(1,1, 9) = XCI
SEGMAX(3,1, 9) = RWI21
C
SEGMAX(1,2, 9) = -2.128
SEGMAX(3,2, 9) = 6.514
C
SEGMAX(1,1,11) = XWO21
SEGMAX(3,1,11) = RW021
C
SEGMAX(1,2,11) = -2.2
SEGMAX(3,2,11) = 7.5
C
C---EDGE NODE DISTRIBUTION-----
C
ETAMAX(1, 1) = 13.0
ETAMAX(1, 3) = 13.0
ETAMAX(1, 9) = 13.0
ETAMAX(1,11) = 13.0
C
ETAMAX(2, 1) = 31.0
ETAMAX(2, 9) = 31.0
ETAMAX(2, 3) = 31.0
ETAMAX(2,11) = 31.0
C
C
DO 388 J = 7,8
C
ETAMAX(1, J) = 36.0
ETAMAX(2, J) = 60.0
388 ETAMAX(3, J) = 103.0
C
ETAMAX(1,5) = 36
ETAMAX(1,6) = 36
C
C
500 CONTINUE
C
RETURN
END
C
C*****HGM_2*****
C*****T*****
C
SUBROUTINE HOLE(B,POINT,TANGENT)
C
C----- COMPUTE COORDINATES AND DERIVATIVE FOR A POINT ON THE HOLE.

```

```

C      B      ANGULAR LOCATION OF A POINT ON THE HOLE
C      POINT   COORDINATES AT THE POINT
C      TANGENT DERIVATIVE AT THE POINT
C-----
C
C      COMMON /DFN1/ DU1(3),DU2(3),DU3(3),DFNB,DFND,DFNF
C
C      DIMENSION POINT(6),TANGENT(3),BC(3),US(3)
C
C----CALCULATE HOLE RADIUS
C
C      CALL DELRAD(B,RHO,DRHO,RHOD,RDOC)
C
C----CALCULATE DUCT AXIAL DISTANCE
C
C      CALL CAXIS(B,RHO,C)
C
C----ANGLULAR LOCATION OF A POINT ON THE HOLE
C
C      SB = SIN(B)
C      CB = COS(B)
C
C----UNIT VECTOR PERPENDICULAR FROM DUCT AXIS TO A POINT ON THE HOLE
C
C      BC(1) = CB*DU2(1) + SB*DU3(1)
C      BC(2) = CB*DU2(2) + SB*DU3(2)
C      BC(3) = CB*DU2(3) + SB*DU3(3)
C
C----VECTOR FROM BOWL CENTER TO A POINT ON THE HOLE
C
C      XD = DFNF - DFND + C*DU1(1) + RHO*BC(1)
C      YD = DFNB           + C*DU1(2) + RHO*BC(2)
C      ZD =             C*DU1(3) + RHO*BC(3)
C
C----COORDINATES OF A POINT ON THE HOLE
C
C      POINT(1) = XD + DFND
C      POINT(2) = YD
C      POINT(3) = ZD
C
C----UNIT VECTOR FROM BOWL CENTER TO A POINT ON THE HOLE
C
C      PMAG = SQRT(XD*XD + YD*YD + ZD*ZD)
C
C      US(1) = XD/PMAG
C      US(2) = YD/PMAG
C      US(3) = ZD/PMAG
C
C      RETURN
C      END
C*****
C*****HGM 2*****
C*****
C      SUBROUTINE DUCT(B,RHO,CAXIS,POINT)
C-----
C      COMPUTE DUCT POINT = X,Y,Z FOR GIVEN B,RHO,C
C-----

```

```

C
C      COMMON /DFN1/ DU1(3),DU2(3),DU3(3),DFNB,DFND,DFNF
C
C      DIMENSION POINT(6),BC(3)
C
C---POINT ANGLE
C
C          CB = COS(B)
C          SB = SIN(B)
C
C---RADIAL UNIT VECTOR
C
C          BC(1) = CB*DU2(1) + SB*DU3(1)
C          BC(2) = CB*DU2(2) + SB*DU3(2)
C          BC(3) = CB*DU2(3) + SB*DU3(3)
C
C---COORDINATES
C
C          POINT(1) = DFNF + CAXIS*DU1(1) + RHO*BC(1)
C          POINT(2) = DFNB + CAXIS*DU1(2) + RHO*BC(2)
C          POINT(3) =           CAXIS*DU1(3) + RHO*BC(3)
C
C          RETURN
C          END
C
C*****HGM 2*****
C*****T*****
C
C      SUBROUTINE RHOS(B,DRHO)
C-----
C      COMPUTE THE DIFFERENCE IN RADIUS BETWEEN DUCT AND HOLE FOR THE
C      LOWER CORNER POINTS ON THE HOLE.
C
C      B      ANGULAR LOCATION OF A POINT ON THE HOLE
C      DRHO   DIFFERENCE BETWEEN HOLE AND DUCT RADIUS
C-----
C
C      COMMON /DFN1/ DU1(3),DU2(3),DU3(3),DFNB,DFND,DFNF
C      COMMON /DFN2/ AE,BE,DFNR,ZSTAR,AGL,BETA1,BETA2,BETA3,BETA4
C      COMMON /DFN3/ AD,BD,BETA(37),DELRHO(37),RADOC(37)
C
C---TOLERANCE FOR NEWTON-RAPHSON ITERATION
C
C      FEPS = 1.0E-07
C
C---ANGLE OF DUCT AXIS
C
C          SA = SIN(AGL)
C          CA = COS(AGL)
C
C---ANGLULAR LOCATION OF A POINT ON THE HOLE
C
C          SB = SIN(B)
C          CB = COS(B)
C
C---RADIUS OF ELLIPTIC DUCT
C
C          FD = SQRT((AD*SB)**2 + (BD*CB)**2)
C          RHOD = AD*BD/FD

```

```

C
C---INITIAL HOLE RADIUS
C
      RHO = RHOD + DRHO
C
C---DISTANCE ALONG MAJOR AXIS OF BOWL ELLIPSE-----
C
      10 XMD = DFNF - DFND + ZSTAR*SA/CA + RHO*CB/CA
C
C---ELLIPSE RATIO OF BOWL
C
      BOA = BE/AE
C
C---DISTANCE ALONG MINOR AXIS OF BOWL ELLIPSE
C
      F1 = SQRT(AE**2 - XMD**2)
C
C---RADIAL DISTANCE TO HOLE
C
      F2 = DFNR + BOA*F1
C
C---VERTICAL DISTANCE TO HOLE
C
      F3 = DFNB + RHO*SB
C
C---HORIZONTAL DISTANCE TO HOLE - ZSTAR**2
C
      FR = F2**2 - F3**2 - ZSTAR**2
C
C---DERIVATIVE
C
      DF1 = BOA*XMD*CB*F2/(F1*CA)
      DF2 = F3*SB
      DFDR = -2.* (DF1 + DF2)
C
C---HOLE RADIUS
C
      RHO = RHO - FR/DFDR
C
      IF(ABS(FR).GT.FEPS) GO TO 10
C
C---DIFFERENCE IN RADIUS BETWEEN HOLE AND DUCT-----
C
      DRHO = RHO - RHOD
C
      RETURN
      END
C
C*****UTILITY*****
C*****SUBROUTINE ANGLES(VECTOR,THETA,PHI)
C-----CONVERTS FROM VECTOR TO ANGLES
C      THETA = THE ANGLE BETWEEN THE VECTOR
C              AND ITS PROJECTION IN THE XZ PLANE
C      PHI = THE ANGLE IN THE XZ PLANE
C-----C

```

```

COMMON /INITA/  MAPTEN,INCHES
COMMON /INITC/  PI,RADDEG
C
C      DIMENSION VECTOR(3)
C
C      ONE = 1.0
C
C      DO 10  I=1,3
10 IF(ABS(VECTOR(I)).LT.0.00001) VECTOR(I) = 0.0
C
C          THETA = 0.0
C          PHI = 0.0
C
C          CALL VMAG(VECTOR,VECMAG)
C
C          IF(VECMAG.EQ.0.0) RETURN
C
20          VNORM2 = VECTOR(2)/VECMAG
          IF(ABS(VNORM2).GT.1.0) VNORM2 = SIGN(ONE,VNORM2)
C
C          THETA = ASIN(VNORM2)*RADDEG
C          XZPLANE = SQRT(VECTOR(1)**2 + VECTOR(3)**2)
C
C          IF(XZPLANE.LT.ABS(VECTOR(2))/1000.) RETURN
C
C          VNORM3 = VECTOR(1)/XZPLANE
C          IF(ABS(VNORM3).GT.1.0) VNORM3 = SIGN(ONE,VNORM3)
C
C          PHI = ACOS(VNORM3)*RADDEG
C          IF(VECTOR(3).LT.0.0) PHI = -PHI
C
C          RETURN
END
C
C
C*****HGM 2*****
C*****F*****
C
C      SUBROUTINE SPEDGE(SRI,SRF,EPS,SAC,SEDGE)
C-----
C      CIRCULAR SUB-EDGE COORD., SIDE 4 OF BOWL
C-----
C
DIMENSION SRI(6),SRF(6),SEDGE(6),SAC(3),VDUM(3)
DIMENSION PC1(6),PC2(6),PVEC1(3),PVEC2(3)
DIMENSION UN(3),UP(3),UR(3),XN(3),XP(3),XR(3)
C
DATA PI /3.141592654/
C
DO 10 J=1,6
PC1(J) = SRI(J)
10 PC2(J) = SRF(J)
C
DO 20 J=1,3
PVEC1(J) = PC1(J) - SAC(J)
20 PVEC2(J) = PC2(J) - SAC(J)
C
CALL VMAG(PVEC1,RM1)
C

```

```

CALL VMAG(PVEC2,RM2)
C
C   CALL CROSS(PVEC2,PVEC1,UN,71)
C
C   CALL CROSS(PVEC1,UN,UP,72)
C
C   CALL CROSS(UN,UP,UR,73)
C
C   RCC = RM1*RM2
C
C   CALL VDOT(PVEC1,PVEC2,RR)
C
C           THETA = PI
C   IF(ABS(RR).LE.RCC) THETA = ACOS(RR/RCC)
C
C           RC = 1.0/SIN(THETA)
C
C   THETAL = THETA
C
C           ANG1 = (1.0 - EPS)*THETA
C           ANG2 =           EPS*THETA
C
C           CANG1 = COS(ANG1)
C           SANG1 = SIN(ANG1)
C
C           CANG2 = COS(ANG2)
C           SANG2 = SIN(ANG2)
C
C           DO 40 J=1,3
40 SEDGE(J) = SAC(J) + RC*(SANG1*PVEC1(J) + SANG2*PVEC2(J))
C
C           CALL VDOT(PC1(4),PC2(4),RR)
C
C           IF(RR.GT.0.9999) GO TO 70
C
C           CALL CROSS(PC2(4),PC1(4),XN,74)
C
C           CALL CROSS(PC1(4),XN,XP,75)
C
C           CALL CROSS(XN,XP,XR,76)
C
C           THET = ACOS(RR)
C           ALPH = EPS*THET
C
C           CANG = COS(ALPH)
C           SANG = SIN(ALPH)
C
C           CALL VADD(CANG,XR,SANG,XP,VDUM,SEdge(4))
C
C           RETURN
C
C           70 CONTINUE
C
C           DO 80 J=1,3
80 SEDGE(J+3) = PC1(J+3)
C
C           RETURN
C
C           END
C

```

```
C
C*****HGM 2*****
C*****TADWALL*****
C
C      SUBROUTINE TADWALL
C-----
C      COMPUTE TANGENT POINT ON OUTER TAD WALL
C-----
C
C      COMMON /DFN6/ RTADI,RTADO,RCI,RCO,RDI,RDO,XCI,XCO,XTADI,XTADO
C      COMMON /DFN7/ RWO21,XWO21,RADII,RADIO
C
C      TASQ = (XTADO - XCO)**2 + (RADIO - RCO)**2 - RTADO**2
C      TAL = SQRT(TASQ)
C      ETA = TAL/RTADO
C      ETASQ = ETA**2
C
C      A = 1.0 + ETASQ
C      B = RADIO + ETASQ*RCO
C      BSQ = B**2
C
C      C = TASQ - RADIO**2 - ETASQ*RCO**2
C      DSQ = 1.0 + (A*C/BSQ)
C
C      D = SQRT(DSQ)
C
C      RWO21 = B*(1.0 + D)/A
C      XWO21 = XTADO - (RWO21 - RCO)*ETA
C
C      RETURN
C      END
C
```

**Appendix D
HGM OUTPUT REWRITE LISTING**

```

C
C      SUBROUTINE REWRITE
C-----
C
C      THIS PROGRAM CONVERTS HGM2DUCT CODE GEOMETRY FILES TO
C      PLOT3D GEOMETRY FILES
C
C-----
C      DIMENSION IDIM(110),JDIM(110),KDIM(110)
C      DIMENSION XBUF(200000),YBUF(200000),ZBUF(200000)
C
C      MATE = 0
C
C---ASSIGN UNITS
C
C      DATA I20,INPUT,ISCR,IP3D /1,2,3,4/
C
C      OPEN(UNIT=I20,FILE='HGM2DUCT.DAT',STATUS='OLD')
C      OPEN(UNIT=INPUT,FILE='REWRITE.OUT',STATUS='NEW')
C      OPEN(UNIT=ISCR,STATUS='SCRATCH',FORM='UNFORMATTED')
C
C---COUNTERS
C
C      I2 = 0
C      NGRID = 0
C
C---READ PARAMETERS FROM GEOMETRY
C
C      IERR = 1
C
C      READ(I20,1000,END=200) NSTORE,IPLN,
C      &                      INOD2,JNOD2,KNOD2,MARCH2
C
C---WRITE DATA RANGE
C
C      I1 = I2 + 1
C      I2 = I2 + NSTORE
C
C      WRITE(INPUT,1210)
C      WRITE(INPUT,1220) NSTORE, IDYN, IPLN, INOD2, JNOD2, KNOD2,
C      &                  MARCH2, I1, I2
C
C-----READ X,Y & Z FROM GEOMETRY
C-----IERR = 2
C
C      READ(I20,1010,ERR=400) (XBUF(I),I=I1,I2)
C
C      IERR = 3
C
C      READ(I20,1010,ERR=400) (YBUF(I),I=I1,I2)
C
C      IERR = 4
C
C      READ(I20,1010,ERR=400) (ZBUF(I),I=I1,I2)
C
C      IERR = 5
C
C      IPLANE = 1
C

```

```

C---READ NEXT SET OF PARAMETERS FROM GEOMETRY
C
C      100 READ(I20,1000,END=200) NSTORE,IPLN,INOD,JNOD,KNOD,MATE,MARCH
C
C---CHECK FOR NEW ZONE-----
C
C      IF(INOD.NE.INOD2 .OR. JNOD.NE.JNOD2 .OR. KNOD.NE.KNOD2) THEN
C
C          IF(MARCH2.EQ.1 .AND. JNOD.EQ.JNOD2 .AND. KNOD.EQ.KNOD2) GO TO 110
C          IF(MARCH2.EQ.2 .AND. INOD.EQ.INOD2 .AND. KNOD.EQ.KNOD2) GO TO 110
C          IF(MARCH2.EQ.3 .AND. JNOD.EQ.JNOD2 .AND. INOD.EQ.INOD2) GO TO 110
C
C          NGRID = NGRID + 1
C
C          IF(MARCH2.EQ.1) THEN
C
C              INOD2 = IPLANE
C              IDIM(NGRID) = KNOD2
C              JDIM(NGRID) = JNOD2
C              KDIM(NGRID) = INOD2
C
C              END IF
C
C          IF(MARCH2.EQ.2) THEN
C
C              JNOD2 = IPLANE
C              IDIM(NGRID) = INOD2
C              JDIM(NGRID) = KNOD2
C              KDIM(NGRID) = JNOD2
C
C              END IF
C
C          IF(MARCH2.EQ.3) THEN
C
C              KNOD2 = IPLANE
C              IDIM(NGRID) = JNOD2
C              JDIM(NGRID) = INOD2
C              KDIM(NGRID) = KNOD2
C
C              END IF
C
C          WRITE(INPUT,1230)
C          WRITE(INPUT,1220) NGRID, IDIM(NGRID), JDIM(NGRID), KDIM(NGRID)
C
C          IERR = 6
C
C          WRITE(ISCR,ERR=411)
C
C          1          (XBUF(I),I=1,I2),
C          2          (YBUF(I),I=1,I2),
C          3          (ZBUF(I),I=1,I2)
C
C          WRITE(INPUT,1250)
C
C          INOD2 = INOD
C          JNOD2 = JNOD
C          KNOD2 = KNOD
C
C          MARCH2 = MARCH
C
C          WRITE(INPUT,1210)

```

```

C
I2 = 0
IPLANE = 0
END IF

C
C---WRITE DATA RANGE-----
C
110 CONTINUE
C
I1 = I2 + 1
I2 = I2 + NSTORE
C
WRITE(INPUT,1220) NSTORE, IDYN, IPLN, INOD, JNOD, KNOD, MARCH, I1, I2
C
C---READ X,Y & Z FROM GEOMETRY
C
IERR = 7
C
READ(I20,1010,ERR=400) (XBUF(I),I=I1,I2)
C
IERR = 8
C
READ(I20,1010,ERR=400) (YBUF(I),I=I1,I2)
C
IERR = 1
C
READ(I20,1010,ERR=400) (ZBUF(I),I=I1,I2)
C
IPLANE = IPLANE + 1
C
GO TO 100
C
C---END OF GEOMETRY DATA-----
C
200 CONTINUE
C
NGRID = NGRID + 1
C
IF(MARCH2.EQ.1) THEN
C
INOD2 = IPLANE
IDIM(NGRID) = KNOD2
JDIM(NGRID) = JNOD2
KDIM(NGRID) = INOD2
C
END IF
C
IF(MARCH2.EQ.2) THEN
C
JNOD2 = IPLANE
IDIM(NGRID) = INOD2
JDIM(NGRID) = KNOD2
KDIM(NGRID) = JNOD2
C
END IF
C
IF(MARCH2.EQ.3) THEN
C
KNOD2 = IPLANE
IDIM(NGRID) = JNOD2

```

```

        JDIM(NGRID) = INOD2
        KDIM(NGRID) = KNOD2
C
        END IF
C
        WRITE(INPUT,1230)
        WRITE(INPUT,1220) NGRID, IDIM(NGRID), JDIM(NGRID), KDIM(NGRID)
        WRITE(INPUT,1240)
C---WRITE X,Y & Z ON SCRATCH FILE
C
        IERR = 10
C
        WRITE(ISCR,ERR=411)
        1          (XBUF(I),I=1,I2),
        2          (YBUF(I),I=1,I2),
        3          (ZBUF(I),I=1,I2)
C
        WRITE(INPUT,1250)
C
        CLOSE(UNIT=I20)
C
        WRITE(INPUT,1260)
C
        REWIND(UNIT=ISCR)
C
        WRITE(INPUT,1270)
C-----+
C---WRITE BINARY FILE
C-----+
        OPEN(UNIT=IP3D,FILE='PLT3D.BIN',STATUS='NEW',FORM='UNFORMATTED')
C
        WRITE(INPUT,1300)
C
        IF(NGRID.GT.1) THEN
C
            IERR = 11
C
            WRITE(INPUT,1310)    NGRID
            WRITE(IP3D,ERR=420)  NGRID
C
            END IF
C
            IERR = 11
C
            WRITE(INPUT,1320)
            WRITE(INPUT,1330)    (IDIM(N),JDIM(N),KDIM(N),N=1,NGRID)
C
            WRITE(IP3D,ERR=420)  (IDIM(N),JDIM(N),KDIM(N),N=1,NGRID)
C
C---WRITE BINARY PLT3D FILE
C
C
        DO 300 N=1,NGRID
C
        IERR = 12
C
        I2 = IDIM(N)*JDIM(N)*KDIM(N)
C

```

```

READ(ISCR,ERR=410)
1          (XBUF(I),I=1,I2),
2          (YBUF(I),I=1,I2),
3          (ZBUF(I),I=1,I2)

C     IERR = 13

C     WRITE(IP3D,ERR=420)
1          (XBUF(I),I=1,I2),
2          (YBUF(I),I=1,I2),
3          (ZBUF(I),I=1,I2)

C     WRITE(INPUT,1340) N
C
300 CONTINUE
C---WRITE GRID NUMBER
C     WRITE(INPUT,1350) NGRID
C
GO TO 500
C-----
C     ERRORS
C-----
C---ERROR READING GEOMETRY DATA FROM FILE20
C
400 WRITE(INPUT,1400) IERR
C
GO TO 500
C
C---ERROR READING SCRATCH FILE
C
410 WRITE(INPUT,1410) IERR
411 WRITE(INPUT,1411) IERR
C
GO TO 500
C
C---ERROR WRITING TO PLOT3D BINARY FILE
C
420 WRITE(INPUT,1420) IERR
C-----
C     END OF PROGRAM
C-----
500 CONTINUE
C
CLOSE(UNIT=ISCR)
CLOSE(UNIT=IP3D)
CLOSE(UNIT=INPUT)

C
C---FORMAT STATEMENTS
C
1000 FORMAT(9I5)
1010 FORMAT(6E22.14)
C
1200 FORMAT(/' *** ERROR: RERUN GEOMN WITH MATE SET TO 0 ***')
1210 FORMAT(/'NSTORE IDYN IPLN INOD JNOD KNODE MARCH    I1    I2')
1220 FORMAT(1X,7I5,2I6)
1230 FORMAT(/' NGRID IDIM JDIM KDIM ')
1240 FORMAT(/' END OF FILE REACHED ON I20')
1250 FORMAT(/' GRID WRITTEN TO ISCR ')

```

```
1260 FORMAT(/' I20 CLOSED')
1270 FORMAT(/' ISCR REWIND')
C
1300 FORMAT(/' IP3D OPENED')
1310 FORMAT(/' NGRID =',I3)
1320 FORMAT(/' IDIM JDIM KDIM ')
1330 FORMAT(/ 3I5)
1340 FORMAT(/' GRID ',I2,' WRITTEN TO PLT3D.BIN')
1350 FORMAT(/' THERE ARE ',I2,' GRIDS WRITTEN TO PLT3D.BIN')
C
1400 FORMAT(/' ERROR READING GEOMETRY DATA FROM FILE20 ON UNIT I20',I2)
1410 FORMAT(/' ERROR READING SCRATCH FILE ON UNIT ISCR',I2)
1411 FORMAT(/' ERROR WRITING SCRATCH FILE TO UNIT ISCR',I2)
1420 FORMAT(/' ERROR WRITING TO PLOT3D BINARY FILE ON UNIT IP3D',I2)
C
STOP
END
C
```