full trajectory in file T md = md num steps*md time stepblock 0 block 1 block 2 block 4 block 3 split trajectory into "blocks" num trajectory blocks = 5 $trajectory_blocks = [0,3,4]$ num_block_steps = md_num_steps/num_trajectory_blocks *T_block* = num_block_steps*md_time_step block 0 block 3 block 4 calcuate S(Q,w) calcuate S(Q,w) calcuate S(Q,w) averaged S(Q,w) block 0 block 0 block 0 average S(Q,w) over the chosen blocks sqw_avg = array([num_Qpts,num_frequencies]) for block in trajectory_blocks: sqw avg = sqw avg + calculate sqw on block(block ind) sqw_avg = sqw_avg / num_trajectory_blocks write averaged S(Q,w) to file md_time_step energy_step energy_max -energy_max num_block_steps num_energy block_n time grid energy grid energy grid energy_max = h / (2 * md_time_step) = 4.135 [meV*ps] / (2 * md_time_step [ps]) num_energy = num_block_steps energy step = 2 * energy max / num energy = 4.135 * num_trajectory_blocks / (md_time_step * md_num_steps)