Package 'MMDai'

October 12, 2022

Type Package

Title Multivariate Multinomial Distribution Approximation and Imputation for Incomplete Categorical Data	
Version 2.0.0	
Author Chaojie Wang	
Maintainer Chaojie Wang <wang910930@163.com></wang910930@163.com>	
Description A method to impute the missingness in categorical data. Details see the paper <doi:10.4310 sii.2020.v13.n1.a2="">.</doi:10.4310>	
License GPL (>= 2)	
Encoding UTF-8	
LazyData true	
Depends stats	
RoxygenNote 7.0.2	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2020-05-02 04:10:02 UTC	
R topics documented:	
GenerateData Imputation InitialPsi kIdentifier MovieRate ParEst rdirichlet	2 3 3 4 5 6
Index	7

2 GenerateData

_				_			
Gei	nΔi	ra.	tΔ	ı١	Э.	•	2

Generate random dataset

Description

This function is used to generate random datasets following mixture of product multinomial distribution

Usage

```
GenerateData(
   n,
   p,
   d,
   k = 3,
   theta = rdirichlet(1, rep(10, k)),
   psi = InitialPsi(p, d, k)
)
```

Arguments

```
n - number of samples
p - number of variables
d - a vector which denotes the number of categories for each variable. It could be distinct among variables.
k - number of latent classes
theta - probability for latent class
psi - probability for specific category
```

Value

data - generated random dataset, a matrix with n rows and p columns.

Examples

```
# dimension parameters
n<-200; p<-5; d<-rep(2,p);
# generate complete data
Complete<-GenerateData(n, p, d, k = 3)</pre>
```

Imputation 3

Description

This function is used to perform multiple imputation for missing data given the joint distribution.

Usage

```
Imputation(data, theta, psi)
```

Arguments

data - incomplete dataset

theta - vector of probability for each component

psi - specific probability for each variable in each component

Value

ImputedData - dataset has been imputated.

|--|--|

Description

This function creates a psi list in that each component has equal weight

Usage

```
InitialPsi(p, d, k)
```

Arguments

p - number of variables

d - a vector which denotes the number of categories for each variable. It could be

distinct among variables.

k - number of components

Value

psi - a list in that each component has equal weight

4 kIdentifier

1.T -	۔. ـ ا	:	ு.	• -	
kIc	ıen	I T. I	IT:	ı e	r

Identify the suitable number of components k

Description

This function is used to find the suitable number of components k.

Usage

```
kIdentifier(data, d, TT = 1000, alpha = 0.25)
```

Arguments

data - data in matrix formation with n rows and p columns

d - number of categories for each variable

TT - number of iterations in Gibbs sampler, default value is 1000. T should be an

even number for 'burn-in'.

alpha - hyperparameter that could be regarded as the pseudo-count of the number of

samples in the new component

Value

```
k_est - posterior estimation of k
```

k_track - track of k in the iteration process

Examples

```
# dimension parameters
n<-200; p<-5; d<-rep(2,p);
# generate complete data
Complete<-GenerateData(n, p, d, k = 3)
# mask percentage of data at MCAR
Incomplete<-Complete
Incomplete[sample(1:n*p,0.2*n*p,replace = FALSE)]<-NA
# k identify
K<-kIdentifier(data = Incomplete, d, TT = 10)</pre>
```

MovieRate 5

MovieRate	Real application dataset

Description

This is a real application dataset. The source of original data is the ratings dataset in (Harper and Konstan (2016) <DOI:10.1145/2827872>). This dataset is used to evaluate the performance of package in real applications.

Author(s)

Chaojie Wang

ParEst	Estimate theta and psi in multinomial mixture model

Description

This function is used to estimate theta and psi in multinomial mixture model given the number of components k.

Usage

```
ParEst(data, d, k, TT = 1000)
```

Arguments

data — data in matrix formation with n rows and p columns

d - number of categories for each variable

k - number of components

- number of iterations in Gibbs sampler, default value is 1000. T should be an

even number for 'burn-in'.

Value

theta - vector of probability for each component

psi - specific probability for each variable in each component

6 rdirichlet

Examples

```
# dimension parameters
n<-200; p<-5; d<-rep(2,p);
# generate complete data
Complete<-GenerateData(n, p, d, k = 3)
# mask percentage of data at MCAR
Incomplete<-Complete
Incomplete[sample(1:n*p,0.2*n*p,replace = FALSE)]<-NA
# k identify
K<-kIdentifier(data = Incomplete, d, TT = 10)
Par<-ParEst(data = Incomplete, d, k = K$k_est, TT = 10)</pre>
```

rdirichlet

Estimate theta and psi in multinomial mixture model

Description

This function is generate random sample from Dirichlet distribution

Usage

```
rdirichlet(n = 1, alpha = c(1, 1))
```

Arguments

```
n - sample size
alpha - parameters in Dirichlet distribution
```

Value

```
out - generated data
```

Examples

```
# dimension parameters
rdirichlet(n=10,alpha=c(1,1,1))
```

Index

```
* data
MovieRate, 5

GenerateData, 2

Imputation, 3
InitialPsi, 3

kIdentifier, 4

MovieRate, 5

ParEst, 5

rdirichlet, 6
```