Hash Functions

Hash Function Motivation

- Suppose Alice signs M
 - Alice sends M and $S = [M]_{Alice}$ to Bob
 - o Bob verifies that $M = \{S\}_{Alice}$
 - o Aside: Is it OK to just send S?
- □ If M is big, [M]_{Alice} is costly to compute
- - Alice sends M and $S = [h(M)]_{Alice}$ to Bob
 - o Bob verifies that $h(M) = \{S\}_{Alice}$

Crypto Hash Function

- \Box Crypto hash function h(x) must provide
 - o Compression output length is small
 - o Efficiency h(x) easy to computer for any x
 - o One-way given a value y it is infeasible to find an x such that h(x) = y
 - o Weak collision resistance given x and h(x), infeasible to find $y \neq x$ such that h(y) = h(x)
 - o Strong collision resistance infeasible to find any x and y, with $x \neq y$ such that h(x) = h(y)
 - o Lots of collisions exist, but hard to find one

Pre-Birthday Problem

- Suppose N people in a room
- □ How large must N be before the probability someone has same birthday as me is $\geq 1/2$
 - o Solve: $1/2 = 1 (364/365)^N$ for N
 - \circ Find N = 253

Birthday Problem

- □ How many people must be in a room before probability is $\geq 1/2$ that two or more have same birthday?
 - o $1 365/365 \cdot 364/365 \cdot \cdot \cdot (365-N+1)/365$
 - Set equal to 1/2 and solve: N = 23
- Surprising? A paradox?
- Maybe not: "Should be" about sqrt(365) since we compare all pairs x and y

 $N!/((2!)(N-2!)) = N(N-1)/2 \approx N^2 \le 365, N \approx 19$

Of Hashes and Birthdays

- $lue{}$ If h(x) is N bits, then 2^N different hash values are possible
- \square sqrt(2^N) = 2^{N/2}
- $\hfill\Box$ Therefore, hash about $2^{N/2}$ random values and you expect to find a collision
- □ Implication: secure N bit symmetric key requires 2^{N-1} work to "break" while secure N bit hash requires $2^{N/2}$ work to "break"

Non-crypto Hash (1)

- \square Data $X = (X_0, X_1, X_2, ..., X_{n-1})$, each X_i is a byte
- \square hash(X) = $X_0 + X_1 + X_2 + ... + X_{n-1}$ mod 256
- □ Is this secure?
- \square Example: X = (10101010,000011111)
- □ Hash is 10111001
- \square But so is hash of Y = (00001111,10101010)
- Easy to find collisions, so not secure...

Non-crypto Hash (2)

- □ Data $X = (X_0, X_1, X_2, ..., X_{n-1})$
- Suppose hash is
 - o $h(X) = nX_0 + (n-1)X_1 + (n-2)X_2 + ... + 1 \cdot X_{n-1}$
- □ Is this hash secure?
- At least
 - o $h(10101010,00001111) \neq h(00001111,10101010)$
- □ But hash of (00000001,00001111) is same as hash of (00000000,00010001)
- This hash is used in the (non-crypto) application.

Non-crypto Hash (3)

- Cyclic Redundancy Check (CRC)
- Essentially, CRC is the remainder in a long division problem
- Good for detecting burst errors
- But easy to construct collisions
- CRC sometimes mistakenly used in crypto applications (WEP)

Popular Crypto Hashes

- □ MD5 invented by Rivest
 - o 128 bit output
 - Note: MD5 collision recently found
- □ SHA-1 A US government standard (similar to MD5)
 - 180 bit output
- Many others hashes, but MD5 and SHA-1 most widely used
- Hashes work by hashing message in blocks

Crypto Hash Design

- □ Desired property: avalanche effect
 - Change to 1 bit of input should affect about half of output bits
- Crypto hash functions consist of some number of rounds
- Want security and speed
 - o Avalanche effect after few rounds
 - But simple rounds
- Analogous to design of block ciphers

HMAC

- □ Can compute a MAC of M with key K using a "hashed MAC" or HMAC
- HMAC is an example of a keyed hash
 - Why do we need a key?
- □ How to compute HMAC?
- Two obvious choices
 - oh(K,M)
 - oh(M,K)

HMAC

- \Box Should we compute HMAC as h(K,M)?
- Hashes computed in blocks
 - o $h(B_1,B_2) = F(F(A,B_1),B_2)$ for some F and constant A
 - Then $h(B_1,B_2) = F(h(B_1),B_2)$
- \Box Let M' = (M,X)
 - Then h(K,M') = F(h(K,M),X)
 - o Attacker can compute HMAC of M' without K
- □ Is h(M,K) better?
 - o Yes, but... if h(M') = h(M) then we might have h(M,K)=F(h(M),K)=F(h(M'),K)=h(M',K)

The Right Way to HMAC

- Described in RFC 2104
- □ Let B be the block length of hash, in bytes
 - $_{
 m O}$ B = 64 for MD5 and SHA-1 and Tiger
- \square ipad = 0x36 repeated B times
- \bigcirc opad = 0x5C repeated B times
- □ Then

 $HMAC(M,K) = H(K \oplus \text{opad}, H(K \oplus \text{ipad}, M))$

Hash Uses

- Authentication (HMAC)
- Message integrity (HMAC)
- Message fingerprint
- Data corruption detection
- Digital signature efficiency
- Anything you can do with symmetric crypto

Online Auction

- Suppose Alice, Bob and Charlie are bidders
- □ Alice plans to bid A, Bob B and Charlie C
- They don't trust that bids will stay secret
- Solution?
 - o Alice, Bob, Charlie submit hashes h(A), h(B), h(C)
 - o All hashes received and posted online
 - o Then bids A, B and C revealed
- Hashes don't reveal bids (one way)
- Can't change bid after hash sent (collision)

Spam Reduction

- Spam reduction
- Before I accept an email from you, I want proof that you spent "effort" (e.g., CPU cycles) to create the email
- Limit amount of email that can be sent
- □ Make spam much more costly to send

Spam Reduction

- □ Let M = email message
- □ Let R = value to be determined
- □ Let T = current time
- Sender must find R such that
 - o hash(M, R, T) = (00...0, X), where
 - o N initial bits of hash are all zero
- \square Sender then sends (M,R,T)
- Recipient accepts email, provided
 - o hash(M,R,T) begins with N zeros

Spam Reduction

- □ Sender: hash(M,R,T) begins with N zeros
- □ Recipient: verify that hash(M,R,T) begins with N zeros
- Work for sender: about 2^N hashes
- Work for recipient: 1 hash
- Sender's work increases exponentially in N
- □ Same work for recipient regardless of N
- Choose N so that
 - Work acceptable for normal email users
 - Work unacceptably high for spammers!

Secret Sharing

Shamir's Secret Sharing

- □ Two points determine a line
- \Box Give (X_0, Y_0) to Alice
- \Box Give (X_1,Y_1) to Bob
- Then Alice and Bob must cooperate to find secret S
- Also works in discrete case
- \square Easy to make "m out of n" scheme for any $m \le n$

Shamir's Secret Sharing

- \Box Give (X_0,Y_0) to Alice
- \Box Give (X_1,Y_1) to Bob
- \Box Give (X_2,Y_2) to Charlie
- □ Then any two of Alice, Bob and Charlie can cooperate to find secret S
- But no one can find secret S
- □ A "2 out of 3" scheme

Shamir's Secret Sharing

- \Box Give (X_0,Y_0) to Alice
- \Box Give (X_1,Y_1) to Bob
- \Box Give (X_2,Y_2) to Charlie
- 3 points determine a parabola
- □ Alice, Bob and Charlie must cooperate to find secret S
- □ A "3 out of 3" scheme
- □ Can you make a "3 out of 4"?

Secret Sharing Example

- Key escrow required that your key be stored somewhere
- Key can be used with court order
- But you don't trust FBI to store keys
- We can use secret sharing
 - o Say, three different government agencies
 - Two must cooperate to recover the key

Secret Sharing Example

- Your symmetric key is K
- \square Point (X_0, Y_0) to FBI
- \square Point (X_1,Y_1) to DoJ
- \square Point (X_2,Y_2) to DoC
- □ To recover your key K, two of the three agencies must cooperate
- No one agency can get K

Lagrange Interpolation Formula

Polynomial: $f(x) = s + a_1x + ... + a_{t-1}x^{t-1}$

Point: *n* pairs (x_i, y_i) 's

At least *t* pairs can use Lagrange interpolation formula to reconstruct unique polynomial as follows:

$$f(x) = \sum_{i=1}^{t} y_i \prod_{1 \le j \le t, j \ne i} \frac{x - x_j}{x_i - x_j}$$
$$f(0) = \sum_{i=1}^{t} y_i \prod_{1 \le j \le t, j \ne i} \frac{0 - x_j}{x_i - x_j} = s$$

Example 1:

Polynomial: $f(x) = s + a_1x + a_2x^2$

Point: 3 points (1, 4), (2, 5), (3, 10)

Use Lagrange interpolation formula to reconstruct the polynomial.

$$f(x) = \sum_{i=1}^{t} y_i \prod_{1 \le j \le t, j \ne i} \frac{x - x_j}{x_i - x_j}$$

$$f(x) = 4\frac{(x-2)(x-3)}{(1-2)(1-3)} + 5\frac{(x-1)(x-3)}{(2-1)(2-3)} + 10\frac{(x-1)(x-2)}{(3-1)(3-2)}$$
$$= 2(x^2 - 5x + 6) - 5(x^2 - 4x + 3) + 5(x^2 - 3x + 2)$$
$$= 2x^2 - 5x + 7$$

Example 2:

Polynomial: $f(x) = s + a_1x + a_2x^2$

Point: 3 points (0, -9), (1, 2), (2, 21)

Use Lagrange interpolation formula to reconstruct the polynomial.

$$f(x) = \sum_{i=1}^{t} y_i \prod_{1 \le j \le t, j \ne i} \frac{x - x_j}{x_i - x_j}$$

$$f(x) =$$

Example 2:

Polynomial: $f(x) = s + a_1x + a_2x^2$

Point: 3 points (0, -9), (1, 2), (2, 21)

Use Lagrange interpolation formula to reconstruct the polynomial.

$$f(x) = \sum_{i=1}^{t} y_i \prod_{1 \le j \le t, j \ne i} \frac{x - x_j}{x_i - x_j}$$

$$f(x) = (-9)\frac{(x-1)(x-2)}{(0-1)(0-2)} + 2\frac{(x-0)(x-2)}{(1-0)(1-2)} + 21\frac{(x-0)(x-1)}{(2-0)(2-1)}$$
$$= (-9)(x^2 - 3x + 2)/9 - 2(x^2 - 2x) + 6(x^2 - x)/2$$
$$= 4x^2 + 7x - 9$$

Random Numbers in Cryptography

Random Numbers

- Random numbers used to generate keys
 - Symmetric keys
 - o RSA: Prime numbers
 - o Diffie Hellman: secret values
- Random numbers used for nonces
 - Sometimes a sequence is OK
 - o But sometimes nonces must be random
- Random numbers also used in simulations, statistics, etc., where numbers only need to be "statistically" random

Random Numbers

- Cryptographic random numbers must be statistically random and unpredictable
- Suppose server generates symmetric keys
 - o Alice: K_A
 - o Bob: K_B
 - o Charlie: K_C
 - o Dave: K_D
- Spse Alice, Bob and Charlie don't like Dave
- □ Alice, Bob and Charlie working together must not be able to determine K_D

Bad Random Number Example

Online version of Texas Hold 'em Poker
 ASF Software, Inc.

Player's hand

Community cards in center of the table

- Random numbers used to shuffle the deck
- Program did not produce a random shuffle
- Could determine the shuffle in real time!

Card Shuffle

- \Box There are $52! > 2^{225}$ possible shuffles
- □ The poker program used "random" 32-bit integer to determine the shuffle
 - Only 2³² distinct shuffles could occur
- Used Pascal pseudo-random number generator (PRNG): Randomize()
- Seed value for PRNG was function of number of milliseconds since midnight
- \Box Less than 2^{27} milliseconds in a day
 - o Therefore, less than 2^{27} possible shuffles

Poker Example

- □ Poker program is an extreme example
 - But common PRNGs are predictable
 - Only a question of how many outputs must be observed before determining the sequence
- Crypto random sequence is not predictable
 - o For example, keystream from RC4 cipher
- But "seed" (or key) selection is still an issue!
- How to generate initial random values?
 - Applies to both keys and seeds

Randomness

- □ True randomness is hard to define
- □ Entropy is a measure of randomness
- □ Good sources of "true" randomness
 - Radioactive decay though radioactive computers are not too popular
 - Hardware devices many good ones on the market
 - o <u>Lava lamp</u> relies on chaotic behavior

Information Hiding

Information Hiding

- Digital Watermarks
 - Example: Add "invisible" identifier to data
 - Defense against music or software piracy
- Steganography
 - Secret communication channel
 - o A kind of covert channel
 - Example: Hide data in image or music file

Watermark

- Add a "mark" to data
- Several types of watermarks
 - o Invisible Not obvious the mark exists
 - Visible Such as TOP SECRET
 - o Robust Readable even if attacked
 - Fragile Mark destroyed if attacked

Watermark

- Add robust invisible mark to digital music
 - If pirated music appears on Internet, can trace it back to original source
- Add fragile invisible mark to audio file
 - If watermark is unreadable, recipient knows that audio has been tampered (integrity)
- Combinations of several types are sometimes used
 - o E.g., visible plus robust invisible watermarks

Watermark Example (1)

US currency includes watermark

- □ Image embedded in paper on rhs
 - o Hold bill to light to see embedded info

Watermark Example (2)

- Add invisible watermark to photo print
- □ It is claimed that 1 square inch can contain enough info to reconstruct entire photo
- □ If photo is damaged, watermark can be read from an undamaged section and entire photo can be reconstructed!

Steganography

- According to Herodotus (Greece 440BC)
 - Shaved slave's head
 - Wrote message on head
 - Let hair grow back
 - Send slave to deliver message
 - Shave slave's head to expose message (warning of Persian invasion)
- Historically, steganography has been used more than cryptography!

Images and Steganography

- □ Images use 24 bits for color: RGB
 - o 8 bits for red, 8 for green, 8 for blue
- For example
 - o 0x7E 0x52 0x90 is this color
 - o 0xFE 0x52 0x90 is this color
- While
 - o 0xAB 0x33 0xF0 is this color
 - o 0xAB 0x33 0xF1 is this color
- Low-order bits are unimportant!

Images and Stego

- Given an uncompressed image file
 - For example, BMP format
- Then we can insert any information into loworder RGB bits
- Since low-order RGB bits don't matter, result will be "invisible" to human eye
- □ But a computer program can "see" the bits

Stego Example 1

- □ Left side: plain Alice image
- Right side: Alice with entire Alice in Wonderland (pdf) "hidden" in image

Non-Stego Example

Walrus.html in web browser

```
"The time has come," the Walrus said,
"To talk of many things:
Of shoes and ships and sealing wax
Of cabbages and kings
And why the sea is boiling hot
And whether pigs have wings."
```

□ View source

```
<font color="#000000">"The time has come," the Walrus said,</font>dr>
<font color="#000000">"To talk of many things:</font>dr>
<font color="#000000">Of shoes and ships and sealing wax</font>dr>
<font color="#000000">Of cabbages and kings</font>dr>
<font color="#000000">And why the sea is boiling hot</font>dr>
<font color="#000000">And whether pigs have wings."</font>dr>
```

Stego Example 2

stegoWalrus.html in web browser

```
"The time has come," the Walrus said,
"To talk of many things:
Of shoes and ships and sealing wax
Of cabbages and kings
And why the sea is boiling hot
And whether pigs have wings."
```

□ View source

```
<font color="#010100">"The time has come," the Walrus said,</font>br>
<font color="#000100">"To talk of many things:</font>br>
<font color="#010100">Of shoes and ships and sealing wax</font>br>
<font color="#000101">Of cabbages and kings</font>br>
<font color="#000000">And why the sea is boiling hot</font>br>
<font color="#010001">And whether pigs have wings."</font>br>
```

"Hidden" message: 110 010 110 011 000 101

Steganography

- Some formats (jpg, gif, wav, etc.) are more difficult (than html) for humans to read
- Easy to hide information in unimportant bits
- Easy to destroy or remove info stored in unimportant bits!
- To be robust, information must be stored in important bits
- But stored information must not damage data!
- Collusion attacks also a major concern
- Robust steganography is trickier than it seems

Information Hiding The Bottom Line

- Surprisingly difficult to hide digital information: "obvious" approach not robust
 - Stirmark makes most watermarks in jpg images unreadable — without damaging the image
 - o Watermarking is very active research area
- □ If information hiding is suspected
 - Attacker can probably make information/watermark unreadable
 - Attacker may be able to read the information, given the original document (image, audio, etc.)