Zitong Lu

Address: Room 303, East China Normal University old library No. 3663 Zhongshan North Road, Putuo District Shanghai, China 200062

Email: zitonglu1996@gmail.com / zitonglu@outlook.com

Personal Homepage: <u>zitonglu1996.github.io</u> GitHub Website: <u>github.com/ZitongLu1996</u>

(Update by 12/2020)

Education Background

East China Normal University

Master of Science, Cognitive Neuroscience

Shanghai, China expected 2021

The Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science
Advised by <u>Yixuan Ku</u>, <u>Yong-di Zhou</u> & <u>Huimin Wang</u>
Memory and Emotion Lab (now in Sun Yat-sen University)

Northeastern University

Shenyang, China

Bachelor of Engineering, Software Engineering

2018

Department of Software Engineering, Software College

Research Interests

Visual working memory, Mental Imagery, Object/Face Perception, Emotion, Attention Multivariate Pattern Analysis (MVPA): Classification-based Decoding, Representational Similarity Analysis (RSA)

Machine Learning, Deep Learning.

Research Experience

Independent Projects:

Face Representations in Human Brain and Deep Convolutional Neural Network

Peng Cheng National Laboratory

09/2020 – Present

- ➤ To explore the information of faces such as famous/unfamous, normal/scrambled in perception by RSA based on EEG data.
- To use different deep neural networks (such as Face-identity network and Facial-expression network) to see how the information encodes in DCNN and explore the different representations betweenbrain and DCNN in face perception.

Cross-Temporal Representational Similarity Analysis-based E/MEG Decoding on PyCTRSA

Institute of Cognitive Neuroscience, ECNU

07/2020 - 09/2020

- ➤ Independently designed and realized a cross-temporal E/MEG decoding method based on traditional RSA.
- ➤ Independently implemented a Python toolbox for Cross-Temporal RSA (CTRSA)-based decoding, called PyCTRSA.

Wrote a document for comparing classification-based decoding and CTRSA-based decoding: https://nbviewer.jupyter.org/github/ZitongLu1996/PyCTRSA/blob/master/test/Decodin

g Classification VS CTRSA.ipynb.

Working Memory
Institute of Cognitive Neuroscience, ECNU

04/2019 - 04/2019

➤ Obtained features of each layer in a VGG-11 model and calculated representational dissimilarity matrices (RDMs) corresponding to each layer.

Dynamic Representation between Deep Neural Network and Human Brain in Visual

- ➤ Collected and analyzed EEG data independently, and calculated time series RDMs base on ERP, Theta power and Alpha power of different regions.
- ➤ Compared temporal representational similarities between deep convolutional neural network and brain activities in VWM.

Dynamic representation of features in Visual Working Memory by EEG Decoding Institute of Cognitive Neuroscience, ECNU 03/2019 - 03/2020

- ➤ Collected and analyzed EEG data independently from a VWM experiment with three different tasks.
- ➤ Applied Linear-SVM to conduct time-by-time and cross-temporal decoding for different visual features based on ERP and Alpha power to assess the representation of different features in VWM.
- ➤ Decoded for both the attended feature and the unattended feature based on data from different phase to explore the dynamic mechanism of memory storage.

NeuroRA: A Python Toolbox of Representational Analysis from Multi-modal Neural Data

Institute of Cognitive Neuroscience, ECNU

03/2019 - Present, continuously updated

- ➤ Independently designed and implemented a Python toolbox (NeuroRA) for multimode neural data (behavioral, EEG, MEG, fNIRS, fMRI, and some other neuroelectrophysiological data) representation analysis.
- ➤ Typical features in NeuroRA: calculating neural pattern similarity, calculating spatiotemporal pattern similarity (STPS), calculating inter-subject correlation (ISC), calculating representational similarity analysis (RSA), doing statistical analysis and plotting results.

Image Recognition and Object Detection of Fused Magnesium Furnace Based on Deep Learning

Department of Software Engineering, NEU

11/2017 - 05/2018

- Completed an object algorithm based on Darknet and an image classification algorithm based on Caffe.
- ➤ Independently developed a piece of software for real-time working status recognition of fused magnesium furnace based on Qt, C and C++.

Joint Projects:

The Influence of Facial Expression on Visual Working Memory

Institute of Cognitive Neuroscience, ECNU

11/2020 - Present

Participating in analyzing fMRI data and applying MVPA method to explore the differences in facial working memory under different load conditions (load 1 or load 2).

Working Memory Mechanism of Methamphetamine Addicts

Institute of Cognitive Neuroscience, ECNU

10/2020 - Present

Participating in analyzing EEG data and comparing the neural activities under different conditions.

Differences in Working Memory Mechanism between Normal and Mild Cognitive Impairment

Tongji Hospital & Institute of Cognitive Neuroscience, ECNU

09/2018 - Present

Participating in classifying the health control and the MCI patients and decoding different tasks based on EEG data.

Reward and Penalty Expectations Facilitate the Precision of Visual Working Memory through Dissociable Neural Mechanisms

Institute of Cognitive Neuroscience, ECNU

04/2019 - 06/2020

Participating in doing Searchlight RSA and ROI-based RSA among behavioral data, different decision-making coding models and fMRI data.

Decoding Different Visual Features of Visual Short-Term Memory: An EEG Study Dept of Computer Science & Institute of Cognitive Neuroscience, ECNU 09/2018 – 03/2019

Participating in designing and realizing a novel memory decoding model based on deep learning to decoding the attended feature(orientation) and unattended feature(position).

Publications

- **Lu**, **Z.**, & Ku, Y. (in press). NeuroRA: A Python toolbox of representational analysis from multi-modal neural data. *Frontiers in Neuroinformatics*. doi: 10.3389/fninf.2020.563669. (latest version: https://zitonglu1996.github.io/docs/NeuroRA Latest.pdf)
- Lu, Z., Chen, H., & Ku, Y. (submitted). Dynamic object-based encoding and automatically prioritized position encoding in visual working memory by EEG decoding. (latest manuscript: https://zitonglui996.github.io/docs/DOBE_draft.pdf)
- Sun, Y., Lu, Z., & Ku, Y. (in preparation). Reward and penalty expectations facilitate the precision of visual working memory through dissociable neural mechanisms.
- Lu, Z., Ku, Y. (in preparation). Dynamic representation between deep convolutional neural network and EEG in a visual short-term memory task.

Software & Toolboxes

NeuroRA: https://zitonglu1996.github.io/NeuroRA/ (65 stars on GitHub!)

Citation: Lu, Z., & Ku, Y. (2020). NeuroRA: A Python toolbox of representational analysis from multi-modal neural data. *Frontiers in Neuroinformatics*. https://doi.org/10.3389/fninf.2020.563669

PyCTRSA: https://github.com/ZitongLu1996/PyCTRSA (7 stars on GitHub!)

Citation: Lu, Z. (2020). PyCTRSA: A Python package for cross-temporal representational similarity analysis-based E/MEG decoding. *Zenodo*. https://doi.org/10.5281/zenodo.4273674

Programming & Experiment Skills

Computer Languages: Python, C, C++, MATLAB, Java, Julia

Software & Toolboxes: EEGLAB, MNE, SPM, Nibabel, Nilearn, NeuroRA, Tensorflow, PyTorch

Experimental Experience: EEG, fMRI, Eye tracker and TMS

Working Experience

05/2017-08/2017

Programmer (as Project Leader)

iSoftStone corporation, Shenyang, China

09/2020-Present

Research Assistant Brain-Like Memory Group, Peng Cheng Laboratory, Shenzhen, China

Honors & Awards

12/2019	Short-Term Overseas Research Scholarship (about USD 7,000, by ECNU)
12/2018	Third prize (30%, China Graduate Student Mathematical Contest in Modeling)
12/2017	Outstanding Graduate Student (3%, Department of Education of Liaoning Province)
11/2017	Second-Class Merit Scholarship (13%, by NEU)
04/2017	Meritorious Winner (13%, Mathematical Contest in Modeling, by the U.S COMAP)
12/2016	First-Class Liu Dajie & Fang Wenyu's Scholarship (<1%, USD 1500, by NEU)
11/2016	Provincial First Prize (3%, China Undergraduate Mathematical Contest in Modeling)
11/2016	First-Class Merit Scholarship (3%, by NEU)
04/2016	Honorable Mention (30%, Mathematical Contest in Modeling, by the U.S COMAP)
11/2015	Second-Class Merit Scholarship (13%, by NEU)

References

Yixuan Ku, Professor

kuyixuan@mail.sysu.edu.cn

Department of Psychology, Sun Yat-sen University

Yong-Di Zhou, Professor

ydzhou@psy.ecnu.edu.cn

NYU-ECNU Insititute of Brain and Cognitive Science, NYU-Shanghai Department of Psychology, Shenzhen University

Hui Chen, Research Professor

chenhui@zju.edu.cn

Department of Psychology and Behavior Science, Zhejiang University

Qing Cai, Professor

gcai@psy.ecnu.edu.cn

NYU-ECNU Institute of Brain and Cognitive Science, NYU-Shanghai Institute of Cognitive Neuroscience, East China Normal University