Draft Write-Up

Michael Li

April 12, 2021

```
library(ggplot2)
library(tidyverse)
## -- Attaching packages -----
                                                ----- tidyverse 1.3.0 --
## v tibble 3.0.6
                   v dplyr 1.0.3
## v tidyr 1.1.2 v stringr 1.4.0
## v readr
          1.4.0
                   v forcats 0.5.1
           0.3.4
## v purrr
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
library(readr)
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
      group_rows
library(broom)
players <- read_csv("data/players.csv")</pre>
##
## -- Column specification -------
## cols(
##
    .default = col_character(),
##
    career_AST = col_double(),
##
    career_G = col_double(),
##
    career_PTS = col_double(),
##
    career_WS = col_double()
## )
## i Use `spec()` for the full column specifications.
## Warning: 2 parsing failures.
            col expected actual
## 2274 career_WS a double - 'data/players.csv'
## 4370 career_WS a double
                            - 'data/players.csv'
salaries <- read_csv("data/salaries_1985to2018.csv")</pre>
```

##

```
## -- Column specification -----
## cols(
     league = col character(),
##
     player_id = col_character(),
##
##
     salary = col_double(),
##
     season = col character(),
     season end = col double(),
##
##
     season start = col double(),
##
     team = col character()
## )
colnames(players)[1] <- "player_id"</pre>
teams <- salaries %>%
  group_by(player_id) %>%
  count(team) %>%
  mutate(years_with_team = max(n)) %>%
  subset(n == years_with_team) %>%
  slice(1) %>%
  select(player_id, team, years_with_team)
# df of aggregate salaries
agg_salaries <- salaries %>%
  group_by(player_id) %>%
  summarise(career_salary = sum(salary),
            career start = min(season start),
            career_end = max(season_end))
agg_salaries <- agg_salaries %>%
 merge(teams, by = "player_id")
df <- players %>%
  merge(agg_salaries, by = "player_id") %>%
  separate(col = birthDate, into = c("MonthDay", "birthYear"), sep = ", ") %>%
  separate(col = birthPlace, into = c("City", "birthPlace"), sep = ", ") %>%
  separate(col = draft_pick, into = c("draft_pick", "overall"), sep = "[thrdndst]") %>%
  separate(col = height, into = c("feet", "inches"), sep = "-") %>%
  mutate(height = as.double(feet) * 12 + as.double(inches)) %>%
  separate(col = position, into = c("primary_pos", "secondary_pos", "tertiary_pos", "quarternary_pos"),
           sep = " and ") %>%
  mutate(num_positions = if_else(is.na(primary_pos), 0, 1) +
           if_else(is.na(secondary_pos), 0, 1) +
           if_else(is.na(tertiary_pos), 0 , 1) +
           if_else(is.na(quarternary_pos), 0, 1)) %>%
  separate(col = weight, into = c("weight", "metric"), sep = "l") %>%
  select(-c(MonthDay, City, overall, draft_round, feet, inches, metric)) %>%
  mutate(years_played = career_end - career_start) %>%
  mutate(averageWS = career_WS / years_played)
#df$birthYear <- as.Date(df$birthYear, "%Y")</pre>
df$`career_FG%` <- as.double(df$`career_FG%`)</pre>
df$`career_FG3%` <- as.double(df$`career_FG3%`)</pre>
df$`career_FT%` <- as.double(df$`career_FT%`)</pre>
df$career_TRB <- as.double(df$career_TRB)</pre>
df$`career_eFG%` <- as.double(df$`career_eFG%`)</pre>
```

```
df$draft_year <- as.double(df$draft_year)
df$weight <- as.double(df$weight)
df$career_PER <- as.double(df$career_PER)
df$draft_pick <- as.integer(df$draft_pick)
#df$career_start <- as.Date(as.character(df$career_start), "%Y")
#df$career_end <- as.Date(as.character(df$career_end), "%Y")
df <- df %>%
    mutate(average_salary = (career_salary / years_played)/1000000) # salary in millions
```

Linear Model

```
lm_sal <- lm(average_salary ~ career_AST +</pre>
            + `career_G` + `career_PER` + career_PTS + career_TRB + averageWS +
              `career eFG%` + draft pick + primary pos +
              num_positions + draft_year,
            data = df
summary(lm_sal)
##
## Call:
## lm(formula = average_salary ~ career_AST + +career_G + career_PER +
##
      career_PTS + career_TRB + averageWS + `career_eFG%` + draft_pick +
##
      primary_pos + num_positions + draft_year, data = df)
##
## Residuals:
##
      Min
               10 Median
                               3Q
                                      Max
## -5.8349 -0.9665 -0.1053 0.8567 7.6585
## Coefficients:
##
                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                           -2.299e+02 7.454e+00 -30.842 < 2e-16 ***
                             1.419e-01 4.339e-02 3.270 0.001095 **
## career AST
                            2.684e-03 1.800e-04 14.913 < 2e-16 ***
## career G
## career PER
                            5.685e-02 1.495e-02 3.803 0.000148 ***
                            1.943e-01 1.618e-02 12.007 < 2e-16 ***
## career PTS
## career_TRB
                            1.860e-01 3.258e-02 5.709 1.32e-08 ***
                           -5.302e-02 6.405e-03 -8.278 2.35e-16 ***
## averageWS
## `career_eFG%`
                            -4.729e-02 7.645e-03 -6.186 7.58e-10 ***
                             2.521e-04 1.907e-03 0.132 0.894857
## draft_pick
## primary_posPoint Guard
                            -7.035e-01 1.818e-01 -3.870 0.000112 ***
## primary_posPower Forward -2.677e-01 1.172e-01 -2.284 0.022504 *
## primary_posShooting Guard -5.091e-01 1.496e-01 -3.403 0.000681 ***
## primary_posSmall Forward -4.520e-01 1.335e-01 -3.386 0.000725 ***
                             4.411e-02 7.441e-02
                                                  0.593 0.553442
## num positions
## draft year
                             1.154e-01 3.744e-03 30.833 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.626 on 1867 degrees of freedom
     (526 observations deleted due to missingness)
## Multiple R-squared: 0.6496, Adjusted R-squared: 0.647
```

```
## F-statistic: 247.2 on 14 and 1867 DF, p-value: < 2.2e-16

lm_sal_out <- tidy(lm_sal, conf.int = TRUE)

lm_sal_out$term <- c(
    "(Intercept)",
    "APG", "CareerGames", "PER", "PPG", "RPG",
    "WinShares", "eFGPercentage", "Draft Pick", "PrimaryPositionPG", "PrimaryPositionPF",
    "PrimaryPositionSG", "PrimaryPositionSF", "NumberOfPositions", "DraftYear"
)

knitr::kable(lm_sal_out, digits = 3, caption = "Average Salary OLS Model Output", col.names = c('Term', kable_styling(latex_options = "HOLD_position")</pre>
```

Table 1: Average Salary OLS Model Output

Term	Estimate	Standard Error	Statistic	P-Value	CI (low)	CI (high)
(Intercept)	-229.912	7.454	-30.842	0.000	-244.531	-215.292
APG	0.142	0.043	3.270	0.001	0.057	0.227
CareerGames	0.003	0.000	14.913	0.000	0.002	0.003
PER	0.057	0.015	3.803	0.000	0.028	0.086
PPG	0.194	0.016	12.007	0.000	0.163	0.226
RPG	0.186	0.033	5.709	0.000	0.122	0.250
WinShares	-0.053	0.006	-8.278	0.000	-0.066	-0.040
eFGPercentage	-0.047	0.008	-6.186	0.000	-0.062	-0.032
Draft Pick	0.000	0.002	0.132	0.895	-0.003	0.004
PrimaryPositionPG	-0.703	0.182	-3.870	0.000	-1.060	-0.347
PrimaryPositionPF	-0.268	0.117	-2.284	0.023	-0.498	-0.038
PrimaryPositionSG	-0.509	0.150	-3.403	0.001	-0.803	-0.216
PrimaryPositionSF	-0.452	0.133	-3.386	0.001	-0.714	-0.190
NumberOfPositions	0.044	0.074	0.593	0.553	-0.102	0.190
DraftYear	0.115	0.004	30.833	0.000	0.108	0.123

```
car::vif(lm_sal)
                    GVIF Df GVIF^(1/(2*Df))
##
## career_AST
                3.361886 1
                                   1.833545
## career G
                2.756200 1
                                   1.660181
## career_PER
                3.516675 1
                                   1.875280
## career_PTS
                4.799689 1
                                   2.190819
## career_TRB
                                   1.917775
                3.677863 1
## averageWS
                1.444584 1
                                   1.201908
## `career_eFG%` 2.009769 1
                                   1.417663
## draft_pick
                1.313078 1
                                   1.145896
## primary_pos
                                   1.165764
              3.411033 4
## num_positions 1.223556 1
                                   1.106145
## draft_year
                1.359736 1
                                   1.166077
lm_ws <- lm(averageWS ~ career_AST +</pre>
            + `career_G` + `career_PER` + career_PTS + career_TRB +
               `career_eFG%` + draft_pick + primary_pos +
              num_positions + draft_year,
             data = df)
summary(lm_ws)
```

```
## Call:
## lm(formula = averageWS ~ career_AST + +career_G + career_PER +
      career PTS + career TRB + `career eFG%` + draft pick + primary pos +
      num_positions + draft_year, data = df)
##
##
## Residuals:
               10 Median
      Min
                               30
                                      Max
   -9.751 -2.086 -0.350 1.123 136.060
##
##
## Coefficients:
##
                              Estimate Std. Error t value Pr(>|t|)
                             2.388e+02 2.636e+01 9.061 < 2e-16 ***
## (Intercept)
## career_AST
                             1.298e-01 1.567e-01 0.828
                                                           0.4077
                             3.384e-04 6.501e-04 0.521
## career_G
                                                            0.6027
## career_PER
                             8.453e-03 5.400e-02 0.157
                                                            0.8756
## career_PTS
                             4.901e-01 5.735e-02 8.545 < 2e-16 ***
                             5.717e-01 1.169e-01 4.890 1.10e-06 ***
## career_TRB
## `career eFG%`
                            5.692e-03 2.762e-02 0.206
                                                            0.8367
## draft_pick
                            4.099e-02 6.823e-03 6.007 2.27e-09 ***
## primary_posPoint Guard
                            -7.964e-01 6.564e-01 -1.213
                                                            0.2251
## primary_posPower Forward -7.679e-01 4.231e-01 -1.815
                                                            0.0697 .
## primary_posShooting Guard -4.195e-01 5.404e-01 -0.776
                                                            0.4377
## primary_posSmall Forward -6.478e-01 4.820e-01 -1.344
                                                            0.1791
## num positions
                            -2.702e-01 2.687e-01 -1.006
                                                            0.3148
## draft_year
                            -1.213e-01 1.323e-02 -9.170 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.876 on 1868 degrees of freedom
     (526 observations deleted due to missingness)
## Multiple R-squared: 0.3078, Adjusted R-squared: 0.3029
## F-statistic: 63.88 on 13 and 1868 DF, p-value: < 2.2e-16
lm_ws_out <- tidy(lm_ws, conf.int = TRUE)</pre>
lm_ws_out$term <- c(</pre>
 "(Intercept)",
 "APG", "CareerGames", "PER", "PPG", "RPG",
 "eFGPercentage", "Draft Pick", "PrimaryPositionPG", "PrimaryPositionPF",
 "PrimaryPositionSG", "PrimaryPositionSF", "NumberOfPositions", "DraftYear"
knitr::kable(lm_ws_out, digits = 3, caption = "Average Win Shares OLS Model Output", col.names = c('Terr
 kable_styling(latex_options = "HOLD_position")
```

Table 2: Average Win Shares OLS Model Output

Term	Estimate	Standard Error	Statistic	P-Value	CI (low)	CI (high)
(Intercept)	238.806	26.356	9.061	0.000	187.116	290.495
APG	0.130	0.157	0.828	0.408	-0.178	0.437
CareerGames	0.000	0.001	0.521	0.603	-0.001	0.002
PER	0.008	0.054	0.157	0.876	-0.097	0.114
PPG	0.490	0.057	8.545	0.000	0.378	0.603
RPG	0.572	0.117	4.890	0.000	0.342	0.801
eFGPercentage	0.006	0.028	0.206	0.837	-0.048	0.060
Draft Pick	0.041	0.007	6.007	0.000	0.028	0.054
PrimaryPositionPG	-0.796	0.656	-1.213	0.225	-2.084	0.491
PrimaryPositionPF	-0.768	0.423	-1.815	0.070	-1.598	0.062
PrimaryPositionSG	-0.419	0.540	-0.776	0.438	-1.479	0.640
PrimaryPositionSF	-0.648	0.482	-1.344	0.179	-1.593	0.297
NumberOfPositions	-0.270	0.269	-1.006	0.315	-0.797	0.257
DraftYear	-0.121	0.013	-9.170	0.000	-0.147	-0.095

```
car::vif(lm_sal)
##
                    GVIF Df GVIF^(1/(2*Df))
## career_AST
                3.361886 1
                                  1.833545
                2.756200 1
## career_G
                                  1.660181
## career_PER
                3.516675 1
                                  1.875280
## career_PTS
               4.799689 1
                                  2.190819
## career_TRB
                3.677863 1
                                  1.917775
## averageWS
             1.444584 1
                                  1.201908
## `career_eFG%` 2.009769 1
                                  1.417663
## draft_pick
                1.313078 1
                                  1.145896
## primary_pos
                3.411033 4
                                  1.165764
## num_positions 1.223556 1
                                  1.106145
## draft_year
                1.359736 1
                                  1.166077
temp_lm <- tibble(res = lm_sal$residuals,</pre>
              fitted = lm_sal$fitted.values)
ggplot(data = temp_lm, aes(x = fitted, y = res)) +
 geom_point() +
 labs(x = "Fitted values", y = "Residuals",
      title = "Salary Model: Highly non-constant variance") +
 geom_hline(yintercept = 0, color = "red")
```

Salary Model: Highly non-constant variance

Salary Model: Highly non-constant variance

