Unidad Nº 4

Recta y plano

Ecuación del plano

Dado un vector $\vec{n} \in \mathbb{R}^3$, existen infinitos planos perpendiculares a él:

Pero si, además de \vec{n} , conocemos un punto P_0 del plano, éste quedará perfectamente identificado, dado que existe un único plano perpendicular a \vec{n} que contiene al punto P_0

Ecuación vectorial del plano

Buscamos la ecuación de un plano π , (los planos se nombran con letras griegas minúsculas) que es perpendicular a $\vec{n} = (n_x; n_y; n_z)$ y que contiene al punto $P_0(x_0; y_0; z_0)$

Si un punto P(x; y; z) pertenece al plano, el vector $\overrightarrow{P_0P}$ es paralelo al plano, y, por lo tanto, $\overrightarrow{P_0P}$ es perpendicular a \overrightarrow{n} . Si ambos vectores son perpendiculares, el producto escalar entre ellos es nulo. En símbolos:

$$P(x; y; z) \in \pi \Leftrightarrow \overrightarrow{P_0P} \perp \overrightarrow{n} \Leftrightarrow \overrightarrow{P_0P} \cdot \overrightarrow{n} = 0$$

Ecuación vectorial del plano: $\overrightarrow{P_0P}$. $\overrightarrow{n} = 0$

Por ser perpendicular al plano, \vec{n} se denomina vector normal

Ecuación general o implícita o cartesiana del plano

Consideramos: $P_0(x_0; y_0; z_0)$; P(x; y; z); $\vec{n} = (n_x; n_y; n_z)$

Partimos de la ecuación vectorial del plano,

$$\overrightarrow{P_0P}$$
. $\overrightarrow{n}=0$

Reemplazamos a cada vector por sus componentes:

$$(x - x_0; y - y_0; z - z_0). (n_x; n_y; n_z) = 0$$

Por definición de producto escalar:

$$n_x (x - x_0) + n_y (y - y_0) + n_z (z - z_0) = 0$$

Aplicamos propiedad distributiva:

$$n_x x - n_x x_0 + n_y y - n_y y_0 + n_z z - n_z z_0 = 0$$

Agrupamos los términos numéricos (sin variables):

$$n_x x + n_y y + n_z z + (-n_x x_0 - n_y y_0 - n_z z_0) = 0$$

Llamamos: $n_x = A$; $n_y = B$; $n_z = C$; $\left(-n_x x_0 - n_y y_0 - n_z z_0\right) = D$, obtenemos:

$$Ax + By + Cz + D = 0$$

Que es la ecuación cartesiana del plano

Ecuación general o implícita o cartesiana del plano

Si conocemos la ecuación general o implícita de un plano,

$$Ax + By + Cz + D = 0$$

entonces conocemos las componentes de un vector normal del plano,

$$\vec{n} = (A, B, C)$$

Ejemplo 1:
$$\pi_1$$
: $3x - 5y + 8z - 16 = 0$
 $\vec{n} = (3, -5, 8)$

Ejemplo 2:
$$\pi_2$$
: $3x - 4z - 1 = 0$
 $\vec{n} = (3; 0; -4)$

Ejemplo 3:
$$\pi_3$$
: $-x - 7y + z = 0$
 $\vec{n} = (-1; -7; 1)$

Resolvemos ejercicios de la guía de actividades

Encontrar la ecuación del plano sabiendo que contiene al punto P y es perpendicular a \vec{n} :

A)
$$P=(0;0;0); \vec{n}=i$$

B) P=(1;2;3);
$$\vec{n}$$
= \vec{i} + \vec{k}

C) P=(2;-1;6);
$$\vec{n}$$
=3 $\check{i} - \check{j} + 2\check{k}$

Plano que pasa por tres puntos

Como tres puntos no alineados determinan un plano, es posible averiguar la ecuación del plano que los contiene.

Vamos a obtenerla siguiendo dos procedimientos distintos

Hallar la ecuación del plano que pasa por los puntos A(0; 1; 2); B(3; 0; 5) y C(4; 0; 1)

Procedimiento 1

Figura de análisis

Para obtener la ecuación del plano, necesitamos un vector normal. Dicho vector deberá ser simultáneamente perpendicular a \overrightarrow{AB} y \overrightarrow{AC} . Mediante el producto vectorial, encontraremos el vector que cumple los requisitos establecidos

Plano que pasa por tres puntos

Procedimiento 1 (continuación)

$$\overrightarrow{AB} = (3; 0; 5) - (0; 1; 2) = (3; -1; 3)$$

$$\overrightarrow{AC} = (4; 0; 1) - (0; 1; 2) = (4; -1; -1)$$

$$\vec{n} = \overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & -1 & 3 \\ 4 & -1 & -1 \end{vmatrix} = 4\vec{i} + 15\vec{j} + \vec{k}$$

La ecuación implícita del plano será de la forma Ax + By + Cz + D = 0

$$4x + 15y + z + D = 0$$

Como cualquier punto que pertenece al plano verifica su ecuación, para hallar D reemplazamos las variables por las coordenadas de cualquiera de los tres puntos dados. Por ejemplo, (0; 1; 2). Queda 4.0 + 15.1 + 2 + D = 0, resultando entonces D = -17. Por lo tanto, una ecuación del plano buscado es:

$$4x + 15y + z - 17 = 0$$

Plano que pasa por tres puntos

Procedimiento 2

Si tres vectores son coplanares, su producto mixto se anula Además de los puntos cuyas coordenadas conocemos por dato, consideramos un punto P(x; y; z), y trabajamos con los vectores \overrightarrow{AP} , \overrightarrow{AB} y \overrightarrow{AC}

Figura de análisis

Tenemos $\overrightarrow{AP} = (x; y; z) - (0; 1; 2) = (x; y - 1; z - 2); \overrightarrow{AB} y \overrightarrow{AC}$ calculados antes

$$\overrightarrow{AP} \cdot (\overrightarrow{AB} \wedge \overrightarrow{AC}) = \begin{vmatrix} x & y-1 & z-2 \\ 3 & -1 & 3 \\ 4 & -1 & -1 \end{vmatrix} = 4x - (y-1)(-15) + (z-2) \cdot 1 = 0$$

Operando, obtenemos:

$$4x + 15y + z - 17 = 0$$

Ángulo entre dos planos

Ángulo entre dos planos

El ángulo entre dos planos es el ángulo entre sus respectivos vectores normales áng $(\pi_1, \pi_2) =$ áng $(\overrightarrow{n_1}; \overrightarrow{n_2})$

Recordamos que $cos\theta = \frac{\overrightarrow{n_1}.\overrightarrow{n_2}}{|\overrightarrow{n_1}|.|\overrightarrow{n_2}|}$, donde θ es alguno de los dos ángulos suplementarios que determinan los planos. Para considerar el menor de los dos ángulos posibles, conviene agregar valor absoluto en la fórmula anterior. Entonces:

$$cos\theta = \frac{|\overrightarrow{n_1}.\overrightarrow{n_2}|}{|\overrightarrow{n_1}|.|\overrightarrow{n_2}|}$$

Resolvemos ejercicios de la guía de actividades

Encontrar el ángulo entre cada par de planos:

A)
$$\pi_1$$
:-x+y+z=3 y π_2 :-4x+2y=0 B) α_1 :-4x+6y+8z=12 y α_2 : 2x-3y-4z=5

Posiciones relativas de dos planos

Consideramos π_1 : $A_1x + B_1y + C_1z + D_1 = 0$ y π_2 : $A_2x + B_2y + C_2z + D_2 = 0$ cuyos vectores normales son, respectivamente, $\overrightarrow{n_1}$ y $\overrightarrow{n_2}$

Condición de perpendicularidad:

$$\pi_1 \perp \pi_2 \Leftrightarrow \overrightarrow{n_1} \perp \overrightarrow{n_2} \Leftrightarrow \overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0$$

Posiciones relativas de dos planos

Consideramos π_1 : $A_1x + B_1y + C_1z + D_1 = 0$ y π_2 : $A_2x + B_2y + C_2z + D_2 = 0$ cuyos vectores normales son, respectivamente, $\overrightarrow{n_1}$ y $\overrightarrow{n_2}$

Condición de paralelismo:

$$\pi_1//\pi_2 \Leftrightarrow \overrightarrow{n_1}//\overrightarrow{n_2} \Leftrightarrow \overrightarrow{n_1} = k\overrightarrow{n_2}$$

Recordamos que dos vectores son paralelos si la razón entre sus componentes da un valor constante, es decir:

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = k$$

Posiciones relativas de dos planos

Consideramos π_1 : $A_1x + B_1y + C_1z + D_1 = 0$ y π_2 : $A_2x + B_2y + C_2z + D_2 = 0$ cuyos vectores normales son, respectivamente, $\overrightarrow{n_1}$ y $\overrightarrow{n_2}$

Condición de coincidencia

Los planos son coicidentes si se verifica que:

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2} = k$$

Resolvemos ejercicios de la guía de actividades

Decir si los siguientes planos son paralelos, ortogonales o coincidentes:

A) π₁:x+y+z=2; π₂:2x+2y+2z=4

B) π_3 :x-y+z=3; π_4 :-3x+3y-3z=-9

C) $\pi_5:2x-y+z=3;\pi_6:x+y-z=7$

Distancia de punto a plano

La distancia de P a π es la longitud del segmento dSi $\pi = Ax + By + Cz + D = 0$ y $P(x_0; y_0; z_0)$

$$dist (P, \pi) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

Distancia de punto a plano: ejemplo

Hallar la distancia del punto P(2; -3; 2) al plano $\pi = x + 2y + 2z - 4 = 0$

$$dist (P, \pi) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

$$dist (P,\pi) = \frac{|1.2 + 2.(-3) + 2.2 + (-4)|}{\sqrt{1^2 + 2^2 + 2^2}}$$

$$dist (P,\pi) = \frac{|-4|}{\sqrt{9}}$$

$$dist (P,\pi) = \frac{4}{3}$$

Distancia de punto a plano: ejemplo

Resolvemos ejercicios de la guía de actividades

Determinar la distancia entre el punto P y el plano π A)P=(4;0;1); π :2x-y+8z=2

Distancia entre planos paralelos

Todos los puntos de π_1 están a la misma distancia de π_2 , por lo tanto, podemos elegir un punto cualquiera de π_1 y calcular su distancia a π_2

Vista de los planos π_1 : 2x - 3y + 4z - 5 = 0 y π_2 : 2x - 3y + 4z + 3 = 0

Distancia entre planos paralelos

Distancia de entre planos paralelos

Trabajamos con los planos π_1 : 2x - 3y + 4z - 5 = 0 y π_2 : 2x - 3y + 4z + 3 = 0 Para calcular la distancia, elegimos un punto cualquiera de π_1 . Por ejemplo, $P_0 = (1; -1; 0) \in \pi_1$, porque verifica su ecuación: 2.1 - 3(-1) + 4.0 - 5 = 0

dist
$$(\pi_1; \pi_2)$$
 = dist $(P_0; \pi_2) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$

$$dist (\pi_1; \pi_2) = \frac{|2.1 - 3.(-1) + 4.0 + 3|}{\sqrt{2^2 + (-3)^2 + 4^2}} = \frac{8}{\sqrt{29}} = \frac{8\sqrt{29}}{29}$$

Resolvemos ejercicios de la guía de actividades

Dados los planos:
$$\pi_1=x+2y-2z-5=0$$
 ; $\pi_2=3x-6y+3z-2=0$; $\pi_3=2x+y+2z+1=0$ y $\pi_4=x-2y+z-7=0$

- A) probar que dos de ellos son paralelos y los otros dos son perpendiculares
- B) hallar la distancia entre los dos planos paralelos
- C) determinar el ángulo que forman π_2 y π_3

La recta en el espacio

Una recta en \mathbb{R}^3 , queda determinada por un punto y una dirección. La dirección se define mediante un vector libre, llamado *vector director* que es un vector paralelo a la recta.

Dados $\vec{v} = (v_1, v_2, v_3)$ y un punto P_0 (x_0, y_0, z_0) , buscamos la ecuación de la recta r que pasa por el punto P_0 y es paralela a \vec{v} .

Consideramos un punto P(x,y,z) perteneciente a la recta r. El vector $\overrightarrow{P_0P}$ es paralelo a l vector director \overrightarrow{v} ; por lo tanto, podemos afirmar que

$$\overrightarrow{P_0P} = \lambda \vec{v}$$

$$(x-x_0,y-y_0,z-z_0) = \lambda (v_1,v_2,v_3)$$

$$(x,y,z) - (x_0,y_0,z_0) = \lambda (v_1,v_2,v_3)$$

$$(x,y,z)=(x_0,y_0,z_0)+\lambda (v_1,v_2,v_3)$$

es la ecuación vectorial de la recta

La recta en el espacio

La recta en el espacio: ejemplo

Hallar la ecuación de la recta r que pasa por los puntos A(2,-1;4) y B(5;-2;10)

Según vimos en la diapositiva anterior, necesitamos un vector director paralelo a la recta. El vector \overrightarrow{AB} cumple con esa condición. Lo calculamos:

$$\overrightarrow{AB} = (5; -2; 10) - \overrightarrow{AB} = (3; -1)$$

Además, para escribir la ecuación, necesitamos un punto que pertenezca a la recta. Como dato, nos dan dos puntos; podemos elegir cualquiera de los dos para completar la ecuación de la recta:

$$r: (x; y; z) = (2, -1; 4) + \lambda(3; -1; 6)$$

La recta como intersección de planos

Dos planos no paralelos π_1 : $A_1x + B_1y + C_1z + D_1 = 0$ y π_2 : $A_2x + B_2y + C_2z + D_2 = 0$ determinan al cortarse una recta en \mathbb{R}^3 que queda expresada mediante un sistema de ecuaciones lineales: $\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$

Para encontrar la ecuación de la recta, necesitamos un vector paralelo a ella y un punto que pertenezca a la recta

El vector director de la recta debe ser simultáneamente perpendicular a los vectores normales a π_1 y π_2 .

Para encontrarlo, calculamos el producto vectorial entre los vectores normales a los planos dados

El punto, lo obtenemos a partir del sistema planteado

En la próxima diapositiva, el ejemplo

La recta como intersección de planos: ejemplo

Hallar la ecuación de la recta determinada por la intersección de los planos π_1 : 2x + 3y - 3z - 4 = 0 y π_2 : x - 3y + 5z - 2 = 0

Buscamos el vector director de la recta:

$$\vec{v} = \overrightarrow{n_1} \wedge \overrightarrow{n_2} = \begin{vmatrix} i & j & k \\ 2 & 3 & -3 \\ 1 & -3 & 5 \end{vmatrix} = 6i - 13j - 9k$$

Buscamos un punto que pertenece a la recta.
 Ese punto debe verificar las ecuaciones de ambos planos.
 Por eso, planteamos:

$$\begin{cases} 2x + 3y - 3z = 4 \\ x - 3y + 5z = 2 \end{cases}$$

Resolvemos (en este caso, por Gauss Jordan) el sistema: $\begin{cases} 2x + 3y - 3z = 4 \\ x - 3y + 5z = 2 \end{cases}$

$$\begin{pmatrix} 2 & 3 & -3 & | & 4 \\ 1 & -3 & 5 & | & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 0 & | & 9 \\ 1 & -3 & 5 & | & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 & -13/9 & | & 0 \\ 1 & 0 & 2/3 & | & 2 \end{pmatrix} \Rightarrow \begin{cases} y - \frac{13}{9}z = 0 \\ x + \frac{2}{3}z = 2 \end{cases}$$

Despejando

x de la segunda ecuación: $x = 2 - \frac{2}{3}z$;

y de la primera ecuación: $y = \frac{13}{9}z$

Obtenemos como solución, puntos de la forma $\left(2-\frac{2}{3}z;\frac{13}{9}z;z\right)$ donde z es cualquier número real. Para encontrar las coordenadas de un punto en particular, le asignamos un valor a z (cualquier valor real).

Por ejemplo, si z = 0, el punto que se obtiene es (2; 0; 0).

La ecuación de la recta queda:

$$r: (x; y; z) = (2; 0; 0) + \lambda(6; -13; -9)$$

Donde $\vec{v} = (6; -13; -9)$ es el vector director y P=(2; 0; 0) un punto de la recta

Resolvemos ejercicios de la guía de actividades

Hallar la ecuación que corresponde a todos los puntos de intersección de los planos:

A)
$$\pi_1:x - y + z = 2;$$
 $\pi_2:2x - 3y + 4z = 7$

B)
$$\pi_1$$
: $3x - y + 4z = 3$; π_2 : $4x - 2y + 7z = 8$

Guía Nº 4

Completar la Segunda Parte

De la Guía Nº 4