

EL PROBLEMA DE LA CONTAMINACIÓN DEL AGUA

- El consumo de agua contaminada: es la causa de muertes humanas a lo largo de la historia.
- Antes de la segunda guerra mundial: infecciones microbianas.
- Después de la segunda guerra: intoxicación por sustancias químicas.
- Se estima que causa unas 5,1 millones de muertes al año (2,4 millones la contaminación del aire).

La molécula de agua: H₂O

SUSTANCIAS CONTAMINANTES

Inorgánicas

- Metales pesados: Hg, Cd, Pb, Ni, Cr, etc.
- Sales disueltas: nitratos, nitritos, fosfatos, sales en general
- Ácidos y bases.

Orgánicas

- Hidrocarburos
- Solventes
- Pesticidas
- Compuestos orgánicos persistentes

Organismos patógenos

- Bacterias
- Virus
- Protozoarios

Ciclo del agua

Distribución del agua sobre la tierra

Uso del agua

Consumo directo

- Doméstico: urbano y rural (5%)
- Industrial (20%)
- Producción agropecuaria (75%)

Uso indirecto

- Generación de energía eléctrica
- Acuicultura
- Recreación y estética
- Navegación
- Minería y otras actividades extractivas

Problema de aprovisionamiento de agua

- Distribución heterogénea de las fuentes de agua dulce
- Distribución heterogénea de la población
- Contaminación de las fuentes de agua dulce
- Aumento del consumo per cápita de agua.

Distribución de recursos hídricos

Región	Proporción [%]	Disponibilidad 2025 [m³ hab-1 año-1]
Europa	5	4.924
Asia	23	2.178
África	10	2.861
América del sur	25	23.805
América del Norte y Centro	17	13.758
Oceanía	5	62.842
Antigua URSS	9	12.454

Características de las aguas naturales

- Agua atmosférica: Iluvia y nieve
 - Gases disueltos: O₂, NO₂, CO₂, SO₂
 - Pocas sales disueltas: 10-100 ppm
 - Contaminantes atmosféricos: H₂SO₄, HNO₃, compuestos orgánicos, partículas
- Aguas superficiales de escorrentía
 - Niveles variables de sales disueltas: cationes (Ca²⁺, Na⁺, Mg²⁺, K⁺, Fe²⁺, otros) y aniones(Cl⁻, OH⁻, HCO₃⁻, SO₄²⁻, PO₄³⁻, NO₃⁻, otros)
 - Material particulado suspendido

Características de las aguas naturales

- Aguas lacustres y embalses
 - Estructuración e los cuerpos de agua profundos
 - Composición variable en función de la profundidad
 - Epilimnion: disolución de gases de la atmósfera: O2,
 N2, CO2; presencia de formas oxidadas
 - Hipolimnion: poco oxígeno, presencia de formas reducidas

Estructura de cuerpos de agua profundos

Características de las aguas naturales

- Aguas subterráneas y edáficas
 - Procesos de disolución/adsorción de cationes, aniones y sustancias orgánicas
 - Intercambio catiónico: elimina metales pesados
 - Procesos de filtración: separación de material suspendido
 - Elevado contenido de sales por disolución de materiales con los que entra en contacto

Características de las aguas naturales

Aguas marinas:

- Acumulan todas las sales que arrastran los escurrimientos de agua: aguas salada, 35-40 g/l
- Contiene principalmente: Na⁺, Ca²⁺, Cl⁻, HCO₃⁻, SO₄²⁻ y casi todos elementos de la tabla periódica
- Estructuración por capas como en los lagos y embalses
- La mayor productividad se da en la superficie

Procesos químicos que influyen en la calidad del aqua

- Disolución de gases, sales y otras sustancias solubles
- Reacciones de hidrólisis
- Reacciones ácido-base: regulación del pH de los cuerpos de agua
- Reacciones oxi-red
- Formación de complejos solubles
- Reacciones de precipitación/solubilización
- Procesos fotoquímicos
- Procesos biológicos

Contaminación del agua

 "Consiste es una modificación de sus componentes naturales, generalmente provocada por el hombre, haciéndola impropia para el consumo humano, la industria, la agricultura, la pesca y actividades recreativa, así como para los animales domésticos y la vida natural"

(Carta del agua, Consejo de Europa, 1968)

Alcance de la contaminación del agua

- En los EEUU se clasificaron como contaminados el año 2002
 - 45% de los cursos de agua
 - 47% de la superficie de lagos y embalses
 - 32% de bahías y estuarios

Fuentes de contaminación del agua

- Aguas servidas domésticas
 - Carga orgánica
 - Nutrientes: fosfatos, nitratos, potasio
 - Micro-contaminantes: pesticidas, medicamentos, metales pesados
- Actividades industriales:
 - Productos químicos
 - Industria de los hidrocarburos
 - Siderurgias
 - Industria de alimentos
- Extracción minera
- Agricultura
 - Pesticidas
 - Fertilizantes

Tipos de fuentes de contaminación

Fuentes puntuales

 Cuando la emisión se produce en un punto específico, identificable: descarga de una industria, descarga de una planta de tratamiento

Fuentes Difusas

 Cuando la emisión se produce en forma de un gran número de pequeñas fuentes puntuales dispersas: emisión de actividades agrícolas, deposición de contaminantes atmosféricos, etc

Tipos de contaminación

Física

 Cambios en las condiciones termodinámicas del agua; temperatura, cambios de fase, presencia de radiaciones

Química

 Cambios en la composición química del agua; sustancias orgánicas e inorgánicas, bionutrientes, sustancias tóxicas

Biológica

Bacterias, virus, hongos, algas...

Contaminantes más frecuentes

- Energía térmica
- Compuestos inorgánicos
 - Sales disueltas: cationes, Ca²⁺ ,Mg²⁺, Na⁺, K⁺; aniones
 Cl⁻, SO₄²⁻, HS⁻, Br⁻
 - Acidos y bases: H₂SO₄, HNO₃, HCI; NaOH, KOH,
 Ca(OH)₂, NH₃
 - Metales pesados: Cd, Ni, Cr, Hg, Pb, Be, etc.
 - Elementos tóxicos: As, Sb, Se, B
 - Gases: H₂S, Cl₂, O₃
- Elementos radiactivos: ²²⁶Ra, ⁹⁰Sr, ¹³⁷Cs, ¹³⁰Th

Contaminantes más frecuentes

- Compuestos orgánicos
 - Residuos orgánicos: hidratos de carbono, aminoácidos, aceites y grasas
 - Hidrocarburos
 - Pesticidas, policlorobifenilos
 - Solventes orgánicos industriales
 - Detergentes y jabones
- Microorganismos patógenos: bacterias, virus, hongos.

Parámetros Físicos de calidad del agua

- Características organolépticas
 - Color
 - Olor
 - Sabor
- Turbidez y materiales en suspensión
- Temperatura
- Conductividad
- Radioactividad

Parámetros Químicos de calidad del agua

- Salinidad y Dureza
- pH
- Alcalinidad y acidez
- Oxígeno disuelto
- Presencia de materia orgánica
 - Demanda biológica de oxígeno (DBO)
 - Demanda química de oxígeno (DQO)
- Concentración de cationes y aniones disueltos

Parámetros Biológicos de calidad del agua

- Presencia de agentes patógenos: bacterias, virus, hongos
- Algas: provocan color, olores y sabores
- Indicadores de riesgo de contaminación
 - Coliformes totales y fecales
 - Estreptococos fecales
 - Clostridium sulfitoreductores
 - Salmonelas, estafilococos, enterovirus

Contaminantes específicos

- Metales y elementos tóxicos
- Bionutrientes: eutrofización
- Contaminantes orgánicos
- Pesticidas
- PCB's, dioxinas y furanos
- Hidrocarburos

Contaminación por Metales y elementos tóxicos

- Se los considera según su toxicidad
 - Modificadores de características fisicoquímicas: Ca, Mg, Na, K y Al.
 - Elementos no deseables: Fe, Mn, Cu, Zn, Co, Ba y Ag.
 - Elementos tóxicos: As, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se y V
- "La dosis hace al veneno" (Philippus Aureolus Theophrastus Bombastus von Hohenheim: Paracelso) (1493 1541)

Efectos en la salud

Metal	Efecto en la salud
Arsénico (As)	Lesiones en la piel y afecciones al sistema nervioso; posible cancerígeno
Cadmio (Cd)	Afecciones renales, cardiovasculares, hipertensión, anemia. Afecta el tejido testicular
Cromo (Cr)	Daños la sistema digestivo, riñón e hígado. Posible cancerígeno
Mercurio (Hg)	Daños agudos y crónicos al sistema nervioso, riñones y piel
Níquel (Ni)	Dermatitis, náuseas, cancerígeno en altas dosis
Plomo (Pb)	Daños al sistema nervioso, riñón. Anemia. Daños al sistema reproductivo
Selenio (Se)	Afecciones al sistema nervioso. Hemorragias

Límites admisibles en agua potable

Metal	Límite Admisible [µg/l]	Oligoelemento
Zinc (Zn)	5.000	Sí
Cobre (Cu)	2.000	Sí
Hierro (Fe)	200	Sí
Manganeso (Mn)	50	Sí
Cromo (Cr)	50	Sí
Níquel (Ni)	20	No
Plomo (Pb)	10	No
Selenio (Se)	10	No
Antimonio (Sb)	5	No
Cadmio (Cd)	5	No
Mercurio (Hg)	1	No

Fuentes de emisión

- Se debe esencialmente a fuentes antropogénicas
 - Erosión y lixiviado de rocas y suelo: Al, Ba, Fe, Mn, As,
 - Minería: As, Cd, Cu, Fe, Hg, Mn, Pb
 - Tratamiento de superficies: Ag, Cd, Cr, Cu, Ni, Pb, Zn.
 - Vertidos industriales: Cd, Cu, Fe, Hg, Mn, Mo, Ni, Pb,
 Zn.
 - Aguas residuales urbanas: Al, Cu, Fe, Ni, Pb, Zn

Evolución de metales en al agua

Contaminación por Cd

- Fuentes: descargas industriales, procesos de tratamiento superficial
- Acción tóxica: reemplaza en Zn en muchas enzimas perturbando su función
- Generalmente precipita en el fondo de los cuerpos de agua en forma de CdS
- Puede ser re-suspendido por agitación y ser adsorbido en material suspendido

Contaminación por Pb

Fuentes:

- Operaciones de extracción minera
- Contaminación natural por minerales; PbS
- Emisiones de gasolina con Pb
- Instalaciones con tubería de Pb
- Productos que contienen Pb
- En medios acuáticos el Pb²⁺ precipita fácilmente en forma de sulfatos y sulfuros.
- Puede ser redisuelto formando complejos
- Puede ser biocacumulado, compite con el Ca²⁺ en el organismo

Contaminación por Hg

Fuentes:

- Procesos industriales: producción de soda y cloro
- Aplicaciones en equipos y usos industriales
- Pesticidas y productos médicos
- Combustión e incineración
- Efecto tóxico por bioacumulación: caso de la Bahía de Minamata, Japón 1953.
- Las sales de Hg⁺ y Hg²⁺ son muy insolubles, pero pueden ser solubilizadas por microorganismos en medio anaerobio

 $HgCl_2 \rightarrow CH_3Hg^+ / (CH_3)_2Hg \rightarrow bioacumulación en peces \rightarrow Humano$

Contaminación por As

Fuentes:

- Contaminación natural de aguas subterráneas
- Pesticidas en base arseniatos
- Colas de minas
- Combustibles fósiles y carbón mineral que contienen As
- Ha provocado muchos casos de intoxicación por aguas naturalmente contaminadas
- Puede ser movilizado por la formación de compuestos metilados gracias a la mediación de microorganismos en un medio anaerobio.

Contaminación por Bionutrientes: Eutrofización

- Eutrofización: se produce cuando en un cuerpo de agua se hallan bionutrientes en exceso que facilitan un crecimiento acelerado de plantas, algas y otros organismos fotosintéticos
- Los elementos limitantes del crecimiento son: P, N y K. Los demás elementos están presentes en las aguas
- Fuentes: aguas servidas, drenaje de terrenos agrícolas, detergentes, residuos industriales
- Estos nutrientes son movilizados por la acción del hombre

Eutrofización

Ejemplos de eutrofización

Golfo de México

Niveles de eutorfización

Nivel de eutrofia	Fósforo total [μg/m³]	Producción clorofílica [mg/m³]
Ultraoligotróficos	<u> </u>	< 1
Oligotróficos	4-10	1- 2,5
Mesotróficos	10-35	2,5-8
Eutróficos	35-100	8 – 25
Hipereutróficos	> 100	> 25

Contaminantes orgánicos

Aguas servidas:

- Domésticas, comerciales, procesamiento de alimentos.
- Contienen una serie de cotaminantes: materia orgánica, bacterias, virus, detergentes, fosfatos, grasas, agentes quelantes, sólidos suspendidos, metales pesados etc.
- Las aguas domésticas generan un 70% de la carga contaminante en las aguas urbanas

Contaminación por detergentes

- Sustancias utilizadas en los procesos de lavado y limpieza, se usan grandes cantidades al año
- Composición:
 - Principios activos: jabones y surfactantes
 - Coadyuvantes: polifosfatos, zeolitas, carbonatos, silicatos, citratos
 - Reforzadores: amidas y aminas
 - Aditivos: agentes blanqueadores (perboratos), inhibidores de corrosión, colorantes, perfumes, bactericidas
 - Cargas: sulfato sódico, agua, alcohol
 - Enzimas

Contaminación por detergentes

Problemas causados

- Jabones: precipitan en forma de sales de Ca o Mg, se biodegradan con facilidad, generan demanda de oxígeno
- Surfactantes: alquil sulfatos y alquilbenceno sulfonatos (ABS, LAS); permanecen en solución se degradan lentamente, generan demanda de oxígeno
- Coadyuvantes: secuestran cationes en solución, elevan el pH. Los polifosfatos provocan problemas de eutrofización. Complejantes pueden disolver metales pesados

Contaminación por pesticidas

- Se utilizan para combatir la plagas en los cultivos y el ganado
- Se comenzaron a utilizar en los años 30 y en forma masiva después de la segunda guerra mundial (revolución verde)
- Se aplican grandes cantidades de pesticidas en los campos de cultivos y en la cría de ganado

Naturaleza de los pesticidas

Inorgánicos:

- Compuestos de As:
 Cu(AcOH)₂.3Cu(AsO₂)₂, PbHAsO₄
- Compuestos fluorados:
 Na₃AIF₆, Na₂SiF₆
- Azufre, sulfato de cobre, hidroxicloruro de cobre

Orgánicos

- Hidrocarburos clorados: DDT y análogos
- Clorofenoxiácidos: 2,4-D
- Organofosforados: Paratión
- Carbamatos: Carbaril, baygon

Problemas de Contaminación por Pesticidas

- Toxicidad directa: la concentración puede alcanzar niveles tóxicos para el ser humano y animales
- Persistencia en el ambiente: algunos pesticidas tienen una degradación muy lenta en el ambiente (varios años)
- Bioacumulación en la cadena trófica
- Desequilibrios ecológicos

Bioacumulación del DDT

Contaminación por PCBs

- PCB's policlorobifenilos
 - Empleado como dieléctrico y agente ignífugo
 - Se producen regularmente derrames que contaminan el suelo y las aguas superficiales y subterráneas
- Sustancia tóxica y persistente: causa problemas similares a los organoclorados
- Bioacumulación y toxicidad crónica

Dioxinas y furanos

- Fuentes de emisión
 - Fugas en la industria química
 - Procesos de combustión de compuestos organoclorados
- Sustancias
 extremadamente tóxicas y
 persistentes en el medio
 ambiente
- Puede bioacumularse

Contaminación por Hidrocarburos

- Fuentes:
 - Exploración y explotación de reservas
 - Derrames en el transporte y distribución
 - Accidentes
- Varios millones de toneladas ingresan al ambiente cada año
- El petróleo y sus derivados contienen una mezcla compleja de: alcanos, cicloalcanos, aromáticos, compuestos orgánicos de O, N y S

Efectos de la contaminación por hidrocarburos

- Generan una fuerte carga orgánica y demanda de oxígeno.
- Algunos de sus componentes son tóxicos
- Forma una capa en la superficie de los cuerpos de agua que disminuye la transmisión de la luz solar.
- Afecta fuertemente las características organolépticas del agua

Evolución de un vertido de hidrocarburos

Criterios de Calidad del Agua

- Depende del uso que se le dará al agua
- Podemos tener:
 - Consumo doméstico (agua potable)
 - Uso industrial (según los procesos)
 - Uso agrícola (según la aplicación
- Guías de la calidad del agua potable OMS

El agua en la minería

• El Drenaje Ácido de la Minería (DAM) es el MAYOR problema ambiental provocado por la industria minera y es también su mayor pasivo, especialmente para las corrientes de agua. Una mina generadora de ácido tiene el potencial para causar un impacto devastador a largo plazo en los ríos, arroyos y vida acuática, volviéndose en efecto, una "máquina de contaminación perpetua".

Drenaje ácido de la minería (DAM)

 Cuando las grandes cantidades de roca que contienen minerales sulfatados, son excavadas en tajo abierto o en vetas en minas subterráneas, estos materiales reaccionan con el aire o con el agua para crear ácido sulfúrico que es transportado desde la mina por el agua, las lluvias o por corrientes superficiales, y posteriormente depositado en los estanques de agua, arroyos, ríos, lagos y mantos acuíferos cercanos. El DAM degrada severamente la calidad del agua y puede aniquilar la vida acuática, así como volver el agua prácticamente inservible.

Gracias

Que tenga un maravilloso día.

