Boolean Algebra

Instructor Name: Engr. Rimsha

Register Transfer

- A register transfer operation involves the transfer of binary information from one set of binary registers into other set of binary registers.
- The capture and storage of information requires:
 - An input register to store the key inputs from the keyboard
 - A processor register to store the data when processed by the CPU
 - A memory register in the memory unit to store the values

Register Transfer

- Data input at keyboard
- Shifted into place
- Stored in memory

NOTE: Data input in ASCII

Fig. 1-1 Transfer of information with registers

Binary Information Processing

- The actual processing of binary information in a computer is completed by digital logic circuits which have been implemented to serve a specific purpose (i.e. addition).
 - The registers are accessed (read and write) when they are needed to complete an operation. For example we need two register sets to store two values to be added and a register set to store the result of the sum.
 - Furthermore, we need three registers in both the memory unit and in the processor.

Example Binary Information Processing

- We need processing
- We need storage
- We need communication

Fig. 1-2 Example of binary information processing

Binary Logic

- Binary logic consists of binary variables and logical operations.
 - The variables are designated by letters of the alphabet (A, B, C, x, y, z, etc.).
 - There are three basic logical operations:
 - AND
 - OR
 - NOT

Logical Operations

- AND is represented by a dot or the absence of an operator.
 - $x \cdot y = z$ or xy = z
 - Read as "x and y is equal to z"
 - Means that z=1 if and only if x=1 and y=1
- OR is represented by a plus sign.
 - x+y = z
 - Read as "x or y is equal to z"
 - Means that z=1 if x=1 or y=1 or both x=1 and y=1
- NOT is represented by a prime or an overbar.
 - x'=z or x=z
 - Read as not x is equal to z
 - Means that if x=1 then z=0 or if x=0 then z=1

Truth Tables

- Since each binary variable consists of value of 0 or 1, each combination of values for the variables involved in a binary operation has a specific result value.
- A truth table is a method of visualizing all possible combinations of the input values and the respective output values that occur due to the operation on the specified combination.

AND Truth Table

<u>AND</u>

x	y	х·у
0	0	0
0	1	0
1	0	0
1	1	1

<u>A</u>	<u>B</u>	<u>A.B</u>
0	0	0
0	1	0
1	0	0
1	1	1

OR Truth Table

<u>OR</u>

x	y	x + y
0	0	0
0	1	1
1	0	1
1	1	1

<u>A</u>	<u>B</u>	<u>A+B</u>
0	0	0
0	1	1
1	0	1
1	1	1

NOT Truth Table

x	x'
0	1
1	0

<u>NOT</u>		
<u>A</u> <u>A'</u>		
0	1	
1	0	

Binary Signal

- Two separated voltage levels represents a binary variable equal to logic 1 or logic 0
- noise margin in a standard TTL
 NAND gate are VOH= 2.4 V, VoL = 0.4V, VIH= 2V, and VIL= 0.8V.
- The high-state noise margin is
 2.4 2 = 0.4V, and the low-state
 noise margin is 0.8 0.4 = 0.4V

Logic Gates

- Logic gates are electronic circuits that operate on one or more input signals to produce an output signal.
 - The state (high-low, on-off) of electricity on a line represents each of the two states for binary representation (1 or 0).

Logic Gate Notation

AND Logic Function

Using door

 Both doors are opened to pass the light

Α	В	С
0	0	0
0	1	0
1	0	0
1	1	1

- Using Switches
 - Switches are input and LED is output
 - Both switches closed (ON) to give output

OR Logic Function

- Using door
 - Any one or both doors are opened to pass the light

Α	В	С
0	0	0
0	1	1
1	0	1
1	1	1

- Using Switches
 - Switches are input and LED is output
 - Any one switch or both closed to give output

IC Digital Logic Families

- RTL Resistor-transistor Logic
- DTL Diode Transistor Logic
- TTL Transistor-Transistor logic
- ECL Emitter-Coupled Logic
- MOS Metal-Oxide Semiconductor
- CMOS Complementary Metal-Oxide Semiconductor

Note: More information see Chapter 10

Mathematical Systems

- Mathematical systems can be defined with:
 - A set of elements containing a set of objects with common properties.
 - A set of operators that can be performed on any subset of the elements.
 - A set of axioms or postulates forming a basis from which we can deduce rules, theorems and properties of the system.

Set Notations

- The following notations are being used in this class:
 - $x \in S$ indicates that x is an element of the set S.
 - $y \notin S$ indicates that y is not an element of the set S.
 - A = {1, 2, 3, 4} indicates that set A exists with a finite number of elements (1, 2, 3, 4).

Basic Postulates

- The basic postulates of a mathematical system are:
 - Closure. A set S is closed w.r.t a binary operator if this operation only produces results that are within the set of elements defined by the system.
 - Associative Law. A binary operator is said to be associative when:

$$(x * y) * z = x * (y * z)$$

Commutative Law. A binary operator is said to be commutative when:

$$x * y = y * x$$

- Identity Element. A set is said to have an identity element with respect to a binary operation if there exists an element, e, that is a member of the set with the property:
 - » e * x = x * e = x for every element of the set
 - Additive identity is 0 and multiplicative identity is 1
- Note: * + and . are binary operators

Basic Postulates

 Inverse. For a set with an identity element with respect to a binary operation, the set is said to have an inverse if for every element of the set the following property holds:

$$x + y = e$$

- The additive inverse of element a is -a and it defines subtraction, since a + (-a) = 0. Multiplicative inverse of a is 1/a and defines division, since $a \cdot 1/a = 1$
- Distributive Law. * is said to be distributive over . when

$$x * (y \cdot z) = (x * y) \cdot (x * z)$$

 Note: * + and . are binary operators. Binary operator + defines addition and binary operator . defines multiplication

Two-Valued Boolean Algebra

- In 1854, George Boole developed an algebraic system now called Boolean algebra
- In 1938 C. E, Shannon introduced a two-valued Boolean algebra called switching algebra
- Two-value Boolean algebra is defined by the:
 - The set of two elements B={0, 1}
 - The operators of AND (·) and OR (+)
 - Huntington Postulates are satisfied

Huntington Postulates

- Boolean algebra has the following postulates:
 - 1. Closure.
 - a) with respect to the binary operation OR (+)
 - b) with respect to the binary operation AND (·)
 - 2. Identity.
 - a) with respect to OR (+) is 0:

$$x + 0 = 0 + x = x$$
, for $x = 1$ or $x = 0$

b) with respect to AND (\cdot) is 1:

$$x \cdot 1 = 1 \cdot x = x$$
, for $x = 1$ or $x = 0$

- 3. Commutative Law.
 - a) With respect to OR (+):

$$x + y = y + x$$

b) With respect to AND (·):

$$x \cdot y = y \cdot x$$

Huntington Postulates Continued...

- Boolean algebra has the following postulates:
 - 4. Distributive Law.
 - a) with respect to the binary operation OR (+):

$$x + (y \cdot z) = (x + y) \cdot (x + z)$$
 + is distributive over.

b) with respect to the binary operation AND (\cdot) :

$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$
 . is distributive over +

5. Complement.

a)
$$x + x' = 1$$
, for $x = 1$ or $x = 0$

b)
$$x \cdot x' = 0$$
, for $x = 1$ or $x = 0$

- 6. Membership.
 - **There exists at least two elements, x and y, of the set such that x \neq y.**

Notes on Huntington Postulates

- The associative law is not listed but it can be derived from the existing postulates for both operations.
- The distributive law of + over . i.e.,

$$x+(y . z) = (x + y) . (x + z)$$

is valid for Boolean algebra but not for ordinary algebra.

- Boolean algebra doesn't have inverses (additive or multiplicative) therefore there are no operations related to subtraction or division.
- Boolean algebra deals with only two elements, 0 and 1

End of Lecture