The regularity number of a finite group

Marina Anagnostopoulou-Merkouri

Joint work with Tim Burness

Postgraduate Group Theory Conference University of Birmingham

 Ω - finite set,

 Ω - finite set, $G \leq \operatorname{Sym}(\Omega)$ transitive with point stabiliser H.

 Ω - finite set, $G \leq \operatorname{Sym}(\Omega)$ transitive with point stabiliser H.

A base for G is a subset $\mathcal{B} \subseteq \Omega$ such that $G_{(\mathcal{B})} = \bigcap_{\beta \in \mathcal{B}} G_{\beta} = 1$.

 Ω - finite set, $G \leq \operatorname{Sym}(\Omega)$ transitive with point stabiliser H.

A base for G is a subset $\mathcal{B} \subseteq \Omega$ such that $G_{(\mathcal{B})} = \bigcap_{\beta \in \mathcal{B}} G_{\beta} = 1$.

The **base size** of G, denoted by $b(G, \Omega)$, is the minimal size of a base for G.

 Ω - finite set, $G \leq \operatorname{Sym}(\Omega)$ transitive with point stabiliser H.

A base for G is a subset $\mathcal{B} \subseteq \Omega$ such that $G_{(\mathcal{B})} = \bigcap_{\beta \in \mathcal{B}} G_{\beta} = 1$.

The **base size** of G, denoted by $b(G, \Omega)$, is the minimal size of a base for G.

Example: $b(GL(V), V \setminus \{0\}) = dim(V)$

 Ω - finite set, $G \leq \operatorname{Sym}(\Omega)$ transitive with point stabiliser H.

A base for G is a subset $\mathcal{B} \subseteq \Omega$ such that $G_{(\mathcal{B})} = \bigcap_{\beta \in \mathcal{B}} G_{\beta} = 1$.

The base size of G, denoted by $b(G, \Omega)$, is the minimal size of a base for G.

Example: $b(GL(V), V \setminus \{o\}) = dim(V)$

Note: In general, computing $b(G, \Omega)$ is **hard**.

 Ω - finite set, $G \leq \operatorname{Sym}(\Omega)$ transitive with point stabiliser H.

A base for G is a subset $\mathcal{B} \subseteq \Omega$ such that $G_{(\mathcal{B})} = \bigcap_{\beta \in \mathcal{B}} G_{\beta} = 1$.

The **base size** of G, denoted by $b(G, \Omega)$, is the minimal size of a base for G.

Example: $b(GL(V), V \setminus \{o\}) = dim(V)$

Note: In general, computing $b(G, \Omega)$ is **hard**.

Remark: $b(G,\Omega)$ is the smallest k for which there exist $g_1,\ldots,g_k\in G$ such that $\bigcap_{i=1}^k H^{g_i}=1$ (i.e. G has a regular orbit on $(G/H)^k$).

 Ω - finite set, $G \leq \operatorname{Sym}(\Omega)$ transitive with point stabiliser H.

A base for G is a subset $\mathcal{B} \subseteq \Omega$ such that $G_{(\mathcal{B})} = \bigcap_{\beta \in \mathcal{B}} G_{\beta} = 1$.

The base size of G, denoted by $b(G, \Omega)$, is the minimal size of a base for G.

Example: $b(GL(V), V \setminus \{o\}) = dim(V)$

Note: In general, computing $b(G, \Omega)$ is **hard**.

Remark: $b(G,\Omega)$ is the smallest k for which there exist $g_1,\ldots,g_k\in G$ such that $\bigcap_{i=1}^k H^{g_i}=1$ (i.e. G has a regular orbit on $(G/H)^k$).

The **base number** of G, denoted by B(G), is the maximum base size over all transitive faithful permutation representations of G.

G has a reg orbit on $(G/H)^k \iff H$ has a reg orbit on $(G/H)^{k-1}$

G has a reg orbit on $(G/H)^k \iff H$ has a reg orbit on $(G/H)^{k-1}$

Question: When does H have a regular orbit on $(G/K)^k$ for some $K \leq G$ core-free?

G has a reg orbit on $(G/H)^k \iff H$ has a reg orbit on $(G/H)^{k-1}$

Question: When does H have a regular orbit on $(G/K)^k$ for some $K \leq G$ core-free?

For example, if H is a stabiliser of a k-set in S_n , then what is its base size when it acts on partitions of $\{1, \ldots, n\}$?

A tuple $\tau = (H_1, \dots, H_k)$ of core-free subgroups of G is **regular** if there exist $g_1, \dots, g_k \in G$ such that

$$\bigcap_{i=1}^k H_i^{g_i} = 1$$

A tuple $\tau = (H_1, \dots, H_k)$ of core-free subgroups of G is **regular** if there exist $g_1, \dots, g_k \in G$ such that

$$\bigcap_{i=1}^k H_i^{g_i} = 1$$

or equivalently if G has a regular orbit on

$$G/H_1 \times \cdots \times G/H_k$$

A tuple $\tau = (H_1, \dots, H_k)$ of core-free subgroups of G is **regular** if there exist $g_1, \dots, g_k \in G$ such that

$$\bigcap_{i=1}^k H_i^{g_i} = 1$$

or equivalently if G has a regular orbit on

$$G/H_1 \times \cdots \times G/H_k$$

We say that τ is **conjugate** if all its entries are conjugate.

A tuple $\tau = (H_1, \dots, H_k)$ of core-free subgroups of G is **regular** if there exist $g_1, \dots, g_k \in G$ such that

$$\bigcap_{i=1}^k H_i^{g_i} = 1$$

or equivalently if G has a regular orbit on

$$G/H_1 \times \cdots \times G/H_k$$

We say that τ is **conjugate** if all its entries are conjugate.

Remark: $b(G,\Omega) \leqslant k \iff (\underbrace{H,\ldots,H})$ is regular.

The regularity number

The **regularity number** of G, denoted by R(G), is the smallest k such that all core-free k-tuples of G are regular.

Remark: B(G) is the smallest k such that all core-free **conjugate** k-tuples of G are regular.

If $\mathcal{S}=\{\textit{H}\leqslant\textit{G}\,:\,\textit{H}\;\text{core-free}\}$ and $\mathcal{P}\subseteq\mathcal{S}\text{, then we define:}$

- \circ $R_{\mathcal{P}}(G) = \min\{k : \text{ every tuple in } \mathcal{P}^k \text{ is regular}\}$
- \circ $B_{\mathcal{P}}(G) = \min\{k : \text{ every conj. tuple in } \mathcal{P}^k \text{ is regular}\}$

The regularity number

The **regularity number** of G, denoted by R(G), is the smallest k such that all core-free k-tuples of G are regular.

Remark: B(G) is the smallest k such that all core-free **conjugate** k-tuples of G are regular.

If $\mathcal{S}=\{\textit{H}\leqslant\textit{G}\,:\,\textit{H}\,\,\text{core-free}\}$ and $\mathcal{P}\subseteq\mathcal{S}$, then we define:

- \circ $R_{\mathcal{P}}(G) = \min\{k : \text{ every tuple in } \mathcal{P}^k \text{ is regular}\}$
- \circ $B_{\mathcal{P}}(G) = \min\{k : \text{ every conj. tuple in } \mathcal{P}^k \text{ is regular}\}$

$$b(G,\Omega)\leqslant B(G)\leqslant R(G)$$

$$\circ G = GL_n(2), n \geqslant 5, V = F_2^n.$$

- $G = GL_n(2), n \ge 5, V = F_2^n$.
- ∘ If $\Omega = V$, then $b(G, \Omega) = n$, and so $B(G) \ge n$.

- $G = GL_n(2), n \ge 5, V = F_2^n$.
- ∘ If $\Omega = V$, then $b(G, \Omega) = n$, and so $B(G) \ge n$.
- ∘ If $G \curvearrowright \Omega$ is not subspace, then $b(G, \Omega) \leqslant 4$ (Burness, 2007)

- $G = GL_n(2), n \ge 5, V = F_2^n$.
- If $\Omega = V$, then $b(G, \Omega) = n$, and so $B(G) \ge n$.
- ∘ If $G \curvearrowright \Omega$ is not subspace, then $b(G, \Omega) \leqslant 4$ (Burness, 2007)
- If Ω is a set of k-spaces and e_1, \ldots, e_n is a basis for V, then

$$\mathcal{B} = \{\langle e_i, e_{i+1}, \dots, e_{k-i+1} \rangle \ : \ 1 \leqslant i \leqslant n\}$$

is a base, so B(G) = n.

- $G = GL_n(2), n \ge 5, V = F_2^n$.
- If $\Omega = V$, then $b(G, \Omega) = n$, and so $B(G) \ge n$.
- ∘ If $G \curvearrowright \Omega$ is not subspace, then $b(G, \Omega) \leq 4$ (Burness, 2007)
- If Ω is a set of *k*-spaces and e_1, \ldots, e_n is a basis for *V*, then

$$\mathcal{B} = \{ \langle e_i, e_{i+1}, \dots, e_{k-i+1} \rangle : 1 \leqslant i \leqslant n \}$$

is a base, so B(G) = n.

• H - stabiliser of a 1-space, K - stabiliser of a (n-1)-space.

- $G = GL_n(2), n \ge 5, V = F_2^n$.
- ∘ If $\Omega = V$, then $b(G, \Omega) = n$, and so $B(G) \ge n$.
- ∘ If $G \curvearrowright \Omega$ is not subspace, then $b(G, \Omega) \leqslant 4$ (Burness, 2007)
- If Ω is a set of k-spaces and e_1, \ldots, e_n is a basis for V, then

$$\mathcal{B} = \{\langle e_i, e_{i+1}, \dots, e_{k-i+1} \rangle : 1 \leqslant i \leqslant n\}$$

is a base, so B(G) = n.

- \circ *H* stabiliser of a 1-space, *K* stabiliser of a (n-1)-space.
- ∘ $(\underbrace{H, \dots, H}_{n-1}, \underbrace{K, \dots, K}_{n-2})$ is not regular, so $R(G) \ge 2(n-1)$

- $G = GL_n(2), n \ge 5, V = F_2^n$.
- If $\Omega = V$, then $b(G, \Omega) = n$, and so $B(G) \geqslant n$.
- ∘ If $G \curvearrowright \Omega$ is not subspace, then $b(G, \Omega) \leqslant 4$ (Burness, 2007)
- If Ω is a set of *k*-spaces and e_1, \ldots, e_n is a basis for *V*, then

$$\mathcal{B} = \{\langle e_i, e_{i+1}, \dots, e_{k-i+1} \rangle \ : \ 1 \leqslant i \leqslant n\}$$

is a base, so B(G) = n.

- o H stabiliser of a 1-space, K stabiliser of a (n-1)-space.
- $\circ \ (\underbrace{H,\ldots,H}_{n-1},\underbrace{K,\ldots,K}_{n-2}) \text{ is not regular, so } R(G) \geqslant 2(n-1)$
- R(G) B(G) can be arbitrarily large!

Some conjectures that have attracted a lot of attention in recent years are the following:

Some conjectures that have attracted a lot of attention in recent years are the following:

(1) **Cameron's conjecture:** If G is an almost simple group, then $B_{ns}(G) \leq 7$.

Some conjectures that have attracted a lot of attention in recent years are the following:

(1) **Cameron's conjecture:** If G is an almost simple group, then $B_{ns}(G) \leq 7$.

Burness et al.: Cameron's conjecture is true.

Some conjectures that have attracted a lot of attention in recent years are the following:

(1) **Cameron's conjecture:** If G is an almost simple group, then $B_{ns}(G) \leq 7$.

Burness et al.: Cameron's conjecture is true.

(2) **Vdovin's conjecture:** $B_{\rm sol}(G) \leqslant 5$ for every finite group.

Base conjectures

Some conjectures that have attracted a lot of attention in recent years are the following:

(1) **Cameron's conjecture:** If G is an almost simple group, then $B_{ns}(G) \leq 7$.

Burness et al.: Cameron's conjecture is true.

- (2) **Vdovin's conjecture:** $B_{sol}(G) \leq 5$ for every finite group.
 - Vdovin: reduction to almost simple groups
 - **Burness:** $R_{\text{sol max}}(G) \leq 5$ & sporadic socle
 - Baykalov: alternating socle & current work on classical groups

Generalised base conjectures

In view of the previous conjectures, we propose the following **generalised base conjectures**:

Generalised base conjectures

In view of the previous conjectures, we propose the following **generalised base conjectures**:

Conjecture 1: If G is almost simple, then $R_{ns}(G) \leq 7$ with equality if and only if $G = M_{24}$.

Generalised base conjectures

In view of the previous conjectures, we propose the following **generalised base conjectures**:

Conjecture 1: If G is almost simple, then $R_{ns}(G) \leq 7$ with equality if and only if $G = M_{24}$.

Conjecture 2: $R_{sol}(G) \leq 5$ for every finite group G.

Results

Results

Theorem A (A-M & Burness | 2024+)

Let G be almost simple with socle A_n . Then

- If $G \in \{S_n, A_n\}$, then $R(G) = n |S_n : G|$
- $R_{ns}(G) \leqslant 6$, with $R_{ns}(G) = 2$ if $n \geqslant 13$
- $R_{\text{sol max}}(G) \leqslant 5$, with $R_{\text{sol max}}(G) = 2$ if $n \geqslant 17$

Results

Theorem A (A-M & Burness | 2024+)

Let G be almost simple with socle A_n . Then

- $\quad \text{o If } G \in \{S_n,A_n\} \text{, then } R(G) = n |S_n:G|$
- \circ $R_{ns}(G) \leqslant 6$, with $R_{ns}(G) = 2$ if $n \geqslant 13$
- ∘ $R_{sol max}(G) \leq 5$, with $R_{sol max}(G) = 2$ if $n \geq 17$

Theorem B (A-M & Burness | 2024+)

Let G be almost simple with sporadic socle. Then

- ∘ R(G) ≤ 7 with equality if and only if $G = M_{24}$
- $R_{sol}(G) \leq 3$

Theorem C (A-M | 2024+)

Let G be almost simple with classical socle and natural module V.

- If dim $V \geqslant 11$, then $R_{ns}(G) \leqslant 4$
- If G is symplectic and dimV \geqslant 6, then $R_{ns}(G) \leqslant 4$

Theorem C (A-M | 2024+)

Let *G* be almost simple with classical socle and natural module *V*.

- If dim $V \geqslant 11$, then $R_{ns}(G) \leqslant 4$
- ∘ If G is symplectic and dimV \geqslant 6, then $R_{ns}(G) \leqslant 4$

Methods: probabilistic, computational, combinatorial.

Theorem C (A-M | 2024+)

Let G be almost simple with classical socle and natural module V.

- If dim $V \geqslant 11$, then $R_{ns}(G) \leqslant 4$
- If G is symplectic and dim $V \ge 6$, then $R_{ns}(G) \le 4$

Methods: probabilistic, computational, combinatorial.

Future goals:

- Prove Conjecture 1 for all almost simple groups of Lie type
- Prove that R_{sol max}(G) ≤ 5 for all almost simple groups of Lie type
- **3.** Prove Conjecture 2 for S_n and A_n