Computer Architecture Fall, 2019 Week 8 2019.10.28

[group8] (對抗賽)

- 1. What is the order of designing a processor?
 - A. Analyze instruction set (data path requirements)
 - B. Assemble the control logic
 - C. Select set of data path component and establish clocking methodology
 - D. Assemble data path meeting the requirements
 - E. Analyze implementation of each instruction to determine setting of control points effecting register transfer

Ans:

a -> c -> d -> e -> b

[group5] (對抗賽)

- 2. 下列以下選項哪些正確?若選項錯誤請說明原因。
 - A. 在 Branch Operation 中,target address 為 Program counter 的位置加上 Sing extend (immediate 16*4)
 - B. Instruction execution 中,執行下個 instruction 前,我們必須將 Program counter 的值加 4
 - C. Register 本身是一種 Combinational component
 - D. Clock 中的 Edged triggered 是指 Clock 從 1 變到 0 的情況
 - E. Register 的性質和 D flip flop 有點相似

Ans:

BE 正確

- A. 必須還要加 4
- **C. Sequential Component**
- D. 有分 positive edged-triggered(0 變到 1)和 negative edged-triggered(1 變到 0)

[group11] (對抗賽)

3.

What instruction(s) below may fail to run correctly if the datapath labeled A in the single-cycle CPU figure has been cut?

- 1. add
- 2. sw
- 3. lw
- 4. slt

Ans:

1 and 4

[group2]

4. 下列哪幾個時間點,可以將資料寫入?

Ans:

1、7(當 Clock edge 且 Write control=1 時,資料會被寫入。)

[group7] (對抗賽)

5.

請在上圖畫出執行 load instruction 時的路徑,並簡單解釋每個 module 所進行的動作。

Ans:

在 register module 中我們取出 rs 的數值並傳入 ALU, 而同時 instruction 中的 immediate 也經過 sign extend 被傳入 ALU。

在 ALU 中將兩者相加,並傳入 Memory。

在 memory 中取出目標,傳回 Register 中寫入 rt。

[group12] (對抗賽)

6. 請將下圖空格填寫完成,並簡單說明各空格的作用。

Ans:

(1) Data In: Input Bus

- (2) Data Out : Output Bus
- (3) Write Enable:
 - 1:將 Data In 的資料存進 Memory 中與 address 相符的地方
 - 0:從 Memory 中與 address 相符的地方讀取數值,並於 Data Out 輸出

[group1] (對抗賽)

- 7. Which of the following statements is true?
 - (A)In Memory, it is Write Operations when Write Enable is 0.
 - (B)In Register File, RW selects the register to be written via busW (data) when Write Enable is 1.
 - (C) LOAD: R[rt] <- MEM[R[rs] + sign_ext(Imm16)]; PC <- PC + 4
 - (D) STORE: MEM[R[rt] + sign_ext(Imm16)] <-R[rs]; PC <- PC + 4
 - (E) Branch Operations: if (R[rs] == R[rt]) then PC <- PC + 4 + (sign_ext(imm16)], else PC <- PC + 4

Ans: (B)(C)

- (A) In Memory, it is write operations when Write Enable is 1.
- (B) True
- (C) True
- (D) STORE: $MEM[R[rs] + sign_ext(Imm16)] < -R[rt]$; PC < -PC + 4
- (E) Branch Operations: if (R[rs] == R[rt]) then PC <- PC + 4 + (sign_ext(imm16) \parallel 00], else PC <- PC + 4