Proposal Defense

Ingestion of Common Microplastics by

Hemigrapsus oregonensis in a Combined Diet

versus Isolated Particles

Background - MPs

- Microplastics (MPs) are small plastics (<5mm)
- UV, wave action, and wind fragment particles
- Large presence in marine environment

- Small debris enter through oral or respiratory cavities
- Induce alterations in physiology and biochemistry

Background - Physiological harm

Metabolic rate: Temperature stress additive with plastic stress in amphipods

Feeding: Blockages in invertebrate intestines

Growth rate: Reduced growth rate in amphipods

Behavior: Swimming behavior in copepods and fish social behavior after accumulation in brain

Key ecological interactions are at risk for those affected:

Leaf litter decomposition by key invertebrates was reduced in a freshwater system, altering ecosystem functions.

Background - Hemigrapsus Oregonensis

- Small (35mm x 28mm)
- Sexual dimorphism
- Interact with isopods, algae,
 pickleweed, host many parasites
- late-winter/early-spring reproduction
- Nutrient cycling
- Natural predators: Shore Birds
- Unnatural predators: European green crab

Background - European green crabs

Competing invasive species such as European green crab (*Carcinus maenas*) outcompete native species

Comparative responses to microplastic accumulation is not well understood

Diet of H. Oregonensis

Could infer green crab plastic accumulation.

Research Question

Do microplastics impact oxygen uptake in hairy shore crabs and/or accumulate in their gills and tissues?

H (0): No impact of oxygen uptake and microplastics will not accumulate

H (a): Decreased oxygen uptake and microplastic accumulation in gut and gills

Research Question & Hypotheses

- Microplastics will affect the rates of CO2 production in yellow shore crab species
- Microplastics impact the rate of digestions, causing intestinal damage
 - Polypropylene plastic caps impact the metabolic pathways of yellow shore crab species due to intestinal damage and reduced oxygen intake, resulting in a decrease in CO2 production and lowered mobility and activity rates.
- Null Hypothesis: Microplastics feature no effect on the metabolic rate of crabs

Research Question & Hypothesis

How do microplastics affect shore crabs & crab species in general in accordance with the production of CO2?

- Intestinal blockage: Debris accumulation within the digestive tract of crustaceans decrease the available surface area for nutrients absorption
- Clearance rates of MP from chronic exposure exacerbates nutrient malabsorption
- Chemical compounds can disrupt and impede metabolic functions on a cellular level

Research Question & Hypothesis

What outcomes do we expect if the Hypothesis is true?

- Primarily we should note a decrease in the overall uptake of O2 and a downstream effect of lowered CO2 production
- Decreased metabolic activities result in less energy available; this will cause an overall decrease in physiological processes
- A decrease in the available food supply, since more nutrients are needed to sustain metabolic function

Experimental Design

- Jarred crabs in two groups,
 maintained in identical conditions
- MPs in alone group "scented" with fish material before feeding

Parameters measured:

- Respirometry with Resazurin
- Microplastic particles counted
- Glucose (TBD)
- BCA protein (TBD)

Setup

- The crabs will be held at approx. 13°C in individual jars within a larger tank (10-15 gal).
- The water will be kept at a salinity of 30 ppt
- Microplastic preparation
 - Obtain blue bottle caps (mixed plastic, color: blue)
 - Shave plastic to MP with file
 - Marinate MP in mackerel juice (2hr)
- Prepare feeding samples for MP group and MP + food group
 - Group #1: 2.5g MPs + food mixture (1% plastic, 25mg)
 - Group #2: 25mg MPs (marinated plastic pieces)

Dissection Process

- At end of experiment, all crabs weighed then dissected
- Examining digestive tract, claw muscle, and gills for particles
- Use ImageJ to count plastic particles for each area examined

Questions?