

II.3. Sovella rotaatiosymmetristä ratkaisua kuvan mukaisen tasaisen reunapaineen p kuormittaman ohuen ympyrälevyn tapaukseen.

Ratkaisu:

Säteittäisjännityksen lauseke on muotoa: $\sigma_r = A + \frac{B}{r^2}$

Reunaehdot ovat: $\sigma_r(0) \neq \infty$ $\sigma_r(R) = -p$ \Rightarrow B = 0 A = -p

 \Rightarrow $\sigma_r = -p$

Kehäjännitys saadaan tasapainoyhtälöstä ($f_r = 0$) $\sigma_{\theta} = -r \sigma_{r,r} + \sigma_r$

 \Rightarrow $\sigma_{\theta} = -p$

Kehän suuntainen venymä ratkeaa materiaaliyhtälöstä $\varepsilon_{\theta} = \frac{1}{F} (\sigma_{\theta} - v \sigma_{r})$

 $\Rightarrow \qquad \epsilon_{\theta} = \frac{1}{E}[-p - \nu(-p)] \qquad \Rightarrow \qquad \epsilon_{\theta} = -\frac{1 - \nu}{E}p$

Säteittäisvenymä on $\epsilon_r = \frac{1}{E}(\sigma_r - \nu \sigma_\theta) \qquad \Rightarrow \qquad \frac{\epsilon_r = -\frac{1-\nu}{E}p}{E}$

Säteittäissiirtymä ratkeaa kinemaattisesta yhtälöstä $u_r = r \epsilon_{\theta}$

 \Rightarrow $u_r = -\frac{1-v}{E}pr$

Säteen muutos $\Delta R = u_r(R)$ \Rightarrow $\Delta R = -\frac{1-\nu}{E}pR$