Package 'FinCovRegularization'

October 12, 2022

Title Covariance Matrix Estimation and Regularization for Finance

Type Package

Version 1.1.0
Description Estimation and regularization for covariance matrix of asset returns. For covariance matrix estimation, three major types of factor models are included: macroeconomic factor model, fundamental factor model and statistical factor model. For covariance matrix regularization, four regularized estimators are included: banding, tapering, hard-thresholding and soft-thresholding. The tuning parameters of these regularized estimators are selected via cross-validation.
URL http://github.com/yanyachen/FinCovRegularization
<pre>BugReports http://github.com/yanyachen/FinCovRegularization/issues Depends R (>= 2.10)</pre>
Imports stats, graphics, quadprog
License GPL-2
LazyData true
RoxygenNote 5.0.1
NeedsCompilation no
Author YaChen Yan [aut, cre], FangZhu Lin [aut]
Maintainer YaChen Yan <yanyachen21@gmail.com></yanyachen21@gmail.com>
Repository CRAN
Date/Publication 2016-04-25 15:32:07
R topics documented:
banding

2 banding

	_
FundamentalFactor.Cov	5
GMVP	5
hard.thresholding	6
Ind.Cov	7
m.excess.c10sp9003	7
MacroFactor.Cov	8
O.norm2	8
RiskParity	9
soft.thresholding	9
StatFactor.Cov	10
tapering	11
tapering.cv	11
threshold.cv	13
	4.5
	15

banding

Index

Banding Opreator on Covariance Matrix

Description

Apply banding operator on a covariance matrix with a banding parameter.

Usage

```
banding(sigma, k = 0)
```

Arguments

sigma a p*p covariance matrix k banding parameter

Value

a regularized covariance matrix after banding operation

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

```
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
banding(cov.SAM, 7)</pre>
```

banding.cv 3

banding.cv	Select Tuning Parameter for Banding Covariance Matrix by CV	

Description

Apply K-fold cross-validation for selecting tuning parameters for banding covariance matrix using grid search strategy

Usage

```
banding.cv(matrix, n.cv = 10, norm = "F", seed = 142857)
```

Arguments

matrix	a N*p matrix, N indicates sample size and p indicates the dimension
n.cv	times that cross-validation repeated, the default number is 10
norm	the norms used to measure the cross-validation errors, which can be the Frobenius norm "F" or the operator norm "O" $^{\prime\prime}$
seed	random seed, the default value is 142857

Details

For cross-validation, this function split the sample randomly into two pieces of size $n1 = n-n/\log(n)$ and $n2 = n/\log(n)$, and repeat this k times

Value

An object of class "CovCv" containing the cross-validation's result for covariance matrix regularization, including:

```
regularization regularization method, which is "Banding"

parameter.opt selected optimal parameter by cross-validation

cv.error the corresponding cross-validation errors

n.cv times that cross-validation repeated

norm the norm used to measure the cross-validation error

seed random seed
```

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

Examples

F.norm2

The Squared Frobenius Norm

Description

Calculate the squared Frobenius norm of a matrix

Usage

```
F.norm2(matrix)
```

Arguments

matrix a matrix

Value

a scalar of the squared Frobenius norm

Examples

```
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
F.norm2(cov.SAM)</pre>
```

FinCovRegularization

FinCovRegularization: Covariance Matrix Estimation and Regularization for Finance

Description

Estimation and regularization for covariance matrix of asset returns. For covariance matrix estimation, three major types of factor models are included: macroeconomic factor model, fundamental factor model and statistical factor model. For covariance matrix regularization, four regularized estimators are included: banding, tapering, hard-thresholding and soft-thresholding. The tuning parameters of these regularized estimators are selected via cross-validation.

FundamentalFactor.Cov 5

FundamentalFactor.Cov Covariance Matrix Estimation by Fundamental Factor Model

Description

Estimate covariance matrix by fitting a fundamental factor model using OLS or WLS regression

Usage

```
FundamentalFactor.Cov(assets, exposure, method = "WLS")
```

Arguments

assets a N*p matrix of asset returns, N indicates sample size and p indicates the di-

mension of asset returns

exposure a p*q matrix of exposure indicator for the fundamental factor model, p corre-

sponds to the dimension of asset returns, q indicates the number of fundamental

industries

method a character, indicating regression method: "OLS" or "WLS"

Value

an estimated p*p covariance matrix

Examples

```
data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]
Indicator <- matrix(0,10,3)
dimnames(Indicator) <- list(colnames(assets),c("Drug","Auto","0il"))
Indicator[c("ABT","LLY","MRK","PFE"),"Drug"] <- 1
Indicator[c("F","GM"),"Auto"] <- 1
Indicator[c("BP","CVX","RD","XOM"),"0il"] <- 1
FundamentalFactor.Cov(assets,exposure=Indicator,method="WLS")</pre>
```

GMVP

Global Minimum Variance Portfolio

Description

Computing a global minimum variance portfolio weights from the estimated covariance matrix of return series.

Usage

```
GMVP(cov.mat, short = TRUE)
```

6 hard.thresholding

Arguments

cov.mat an estimated p*p covariance matrix

short logical flag, indicating whether shortsales on the risky assets are allowed

Value

a numerical vector containing the estimated portfolio weights

Examples

```
data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]
GMVP(cov(assets), short=TRUE)
GMVP(cov(assets), short=FALSE)</pre>
```

hard.thresholding

Hard-Thresholding Opreator on Covariance Matrix

Description

Apply hard-thresholding operator on a covariance matrix with a hard-thresholding parameter.

Usage

```
hard.thresholding(sigma, threshold = 0.5)
```

Arguments

sigma a p*p covariance matrix threshold hard-thresholding parameter

Value

a regularized covariance matrix after hard-thresholding operation

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

```
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
hard.thresholding(cov.SAM, threshold = 0.001)</pre>
```

Ind.Cov 7

Ind.Cov

Independence opreator on Covariance Matrix

Description

Apply independence model on a covariance matrix.

Usage

```
Ind.Cov(sigma)
```

Arguments

sigma

a covariance matrix

Value

a regularized covariance matrix after applying independence model

Examples

```
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
Ind.Cov(cov.SAM)</pre>
```

m.excess.c10sp9003

10 stock and S&P 500 excess returns

Description

A dataset containing monthly excess returns of 10 stocks and S\$P 500 index return from January 1990 to December 2003

Usage

```
data(m.excess.c10sp9003)
```

Format

A matrix with 168 rows and 11 variables

8 O.norm2

MacroFactor.Cov

Covariance Matrix Estimation by Macroeconomic Factor Model

Description

Estimate covariance matrix by fitting a macroeconomic factor model using time series regression

Usage

```
MacroFactor.Cov(assets, factor)
```

Arguments

assets a N*p matrix of asset returns, N indicates sample size and p indicates the di-

mension of asset returns

factor a numerical vector of length N, or a N*q matrix of macroeconomic factor(s), q

indicates the dimension of factors

Value

an estimated p*p covariance matrix

Examples

```
data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]
factor <- m.excess.c10sp9003[,11]
MacroFactor.Cov(assets, factor)</pre>
```

0.norm2

The Squared Operator Norm

Description

Calculate the squared Operator norm of a matrix

Usage

```
0.norm2(matrix)
```

Arguments

matrix a matrix

Value

a scalar of the squared Operator norm

RiskParity 9

Examples

```
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
0.norm2(cov.SAM)</pre>
```

RiskParity

Risk Parity Portfolio

Description

Computing a Risk Parity portfolio weights from the estimated covariance matrix of return series.

Usage

```
RiskParity(cov.mat)
```

Arguments

cov.mat

an estimated p*p covariance matrix

Value

a numerical vector containing the estimated portfolio weights

Examples

```
data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]
RiskParity(cov(assets))</pre>
```

soft.thresholding

Soft-Thresholding Opreator on Covariance Matrix

Description

Apply soft-thresholding operator on a covariance matrix with a soft-thresholding parameter.

Usage

```
soft.thresholding(sigma, threshold = 0.5)
```

Arguments

sigma a covariance matrix

threshold soft-thresholding parameter

10 StatFactor.Cov

Value

a regularized covariance matrix after soft-thresholding operation

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

Examples

```
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
soft.thresholding(cov.SAM, threshold = 0.001)</pre>
```

StatFactor.Cov

Covariance Matrix Estimation by Statistical Factor Model

Description

Estimate covariance matrix by fitting a statistical factor model using principle components analysis

Usage

```
StatFactor.Cov(assets, k = 0)
```

Arguments

assets a matrix of asset returns

k numbers of factors, if k = 0, automatically estimating by Kaiser method

Value

an estimated p*p covariance matrix

```
data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]
StatFactor.Cov(assets, 3)</pre>
```

tapering 11

ta	nΔ	rı	na	i
uа	\sim			

Tapering Opreator on Covariance Matrix

Description

Apply tapering operator on a covariance matrix with tapering parameters.

Usage

```
tapering(sigma, l, h = 1/2)
```

Arguments

sigma a p*p covariance matrix
1 tapering parameter

h the ratio between taper l_h and parameter l

Value

a regularized covariance matrix after tapering operation

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

Examples

```
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
tapering(cov.SAM, l=7, h = 1/2)</pre>
```

tapering.cv

Select Tuning Parameter for Tapering Covariance Matrix by CV

Description

Apply K-fold cross-validation for selecting tuning parameters for tapering covariance matrix using grid search strategy

Usage

```
tapering.cv(matrix, h = 1/2, n.cv = 10, norm = "F", seed = 142857)
```

12 tapering.cv

Arguments

matrix	a N*p matrix, N indicates sample size and p indicates the dimension
h	the ratio between taper l_h and parameter l
n.cv	times that cross-validation repeated, the default number is 10
norm	the norms used to measure the cross-validation errors, which can be the Frobenius norm "F" or the operator norm "O" $^{\prime\prime}$
seed	random seed, the default value is 142857

Details

For cross-validation, this function split the sample randomly into two pieces of size $n1 = n-n/\log(n)$ and $n2 = n/\log(n)$, and repeat this k times

Value

An object of class "CovCv" containing the cross-validation's result for covariance matrix regularization, including:

```
regularization regularization method, which is "Tapering"

parameter.opt selected optimal parameter by cross-validation

cv.error the corresponding cross-validation errors

n.cv times that cross-validation repeated

norm the norm used to measure the cross-validation error

seed random seed
```

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

threshold.cv 13

threshold.cv	Select Tuning Parameter for Thresholding Covariance Matrix by CV

Description

Apply K-fold cross-validation for selecting tuning parameters for thresholding covariance matrix using grid search strategy

Usage

```
threshold.cv(matrix, method = "hard", thresh.len = 20, n.cv = 10,
  norm = "F", seed = 142857)
```

Arguments

matrix	a N*p matrix, N indicates sample size and p indicates the dimension
method	thresholding method, "hard" or "soft"
thresh.len	the number of thresholding values tested in cross-validation, the thresholding values will be a sequence of thresh.len equally spaced values from minimum threshold constant to largest covariance in sample covariance matrix
n.cv	times that cross-validation repeated, the default number is 10
norm	the norms used to measure the cross-validation errors, which can be the Frobenius norm "F" or the operator norm "O" $^{\circ}$
seed	random seed, the default value is 142857

Details

For cross-validation, this function split the sample randomly into two pieces of size $n1 = n-n/\log(n)$ and $n2 = n/\log(n)$, and repeat this k times

Value

An object of class "CovCv" containing the cross-validation's result for covariance matrix regularization, including:

regularization regularization method, which is "Hard Thresholding" or "Soft Thresholding"

parameter.opt selected optimal parameter by cross-validation

cv.error the corresponding cross-validation errors

n.cv times that cross-validation repeated

norm the norm used to measure the cross-validation error

seed random seed

threshold.grid thresholding values tested in cross-validation

14 threshold.cv

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

Index

```
* datasets
    m.excess.c10sp9003, 7
banding, 2
{\tt banding.cv, 3}
F.norm2, 4
FinCovRegularization, 4
{\tt Fin Cov Regularization-package}
        (FinCovRegularization), 4
FundamentalFactor.Cov, 5
GMVP, 5
hard.thresholding, 6
Ind.Cov, 7
m.excess.c10sp9003,7
MacroFactor.Cov, 8
0.norm2, 8
RiskParity, 9
soft.thresholding,9
StatFactor.Cov, 10
tapering, 11
tapering.cv, 11
threshold.cv, 13
```