

TITEL

Frederik Beuth, Fred. H. Hamker

Gliederung

Professur Künstliche Intelligenz Prof. Dr. Fred Hamker

Einführung Clusteranalyse

Aufgabe: Erkennung von Gruppen oder Mustern in

beliebigen Daten (Mustererkennung)

Beispiel: Durchführung einer Umfrage über den TV-Konsum

Erkennung von Konsumentengrupper

Personennummer	1	2	3	4	5
Sport	3	2	8	9	8
Entertainment	1	2	1	0	8

in h pro Woche

Einführung Clusteranalyse

Aufgabe: Erkennung von Gruppen oder Mustern in

beliebigen Daten (Mustererkennung)

Beispiel: Durchführung einer Umfrage über den TV-Konsum

Erkennung von Konsumentengruppen

Personennummer	1	2	3	4	5
Sport	3	2	8	9	8
Entertainment	1	2	1	0	8

in h pro Woche

Warum Clusteranalyse?

- Analyseverfahren zur Mustererkennung
- Breites Anwendungssprektrum für Clusteranalyseverfahren,
 - z. B. Bilderkennung, Datamining, Information-Retrieval,
 - . . .
- Existenz sehr vieler Algorithmen, aber kein perfekter
- Bedarf nach neuen Algorithmen gegeben

Warum Clusteranalyse?

- Analyseverfahren zur Mustererkennung
- Breites Anwendungssprektrum für Clusteranalyseverfahren,
 - z. B. Bilderkennung, Datamining, Information-Retrieval,

. . .

- Existenz sehr vieler Algorithmen, aber kein perfekter
- Bedarf nach neuen Algorithmen gegeben

Warum Clusteranalyse?

- Analyseverfahren zur Mustererkennung
- Breites Anwendungssprektrum für Clusteranalyseverfahren,
 - z. B. Bilderkennung, Datamining, Information-Retrieval,

. . .

- Existenz sehr vieler Algorithmen, aber kein perfekter
- Bedarf nach neuen Algorithmen gegeben

Warum Default-Artmap?

- Default Artmap: Adaptive Resonanztheorie mit überwachtes Clustering (map), Standardverfahren
- Schnelligkeit, gute Resultate, Transparenz, Adaptive Clusteranzahl
- Entwicklelt von Gail A. Carpenter an der University of Boston, 2003
- Neuheit (2003) verursacht ein Problem:
 Wenig Kenntnisse bezüglich praktischen Einsatzes und Nachteilen des Algorithmus

Warum Default-Artmap?

- Default Artmap: Adaptive Resonanztheorie mit überwachtes Clustering (map), Standardverfahren
- Schnelligkeit, gute Resultate, Transparenz, Adaptive Clusteranzahl
- Entwicklelt von Gail A. Carpenter an der University of Boston, 2003
- Neuheit (2003) verursacht ein Problem:
 Wenig Kenntnisse bezüglich praktischen Einsatzes und Nachteilen des Algorithmus

Warum Default-Artmap?

- Default Artmap: Adaptive Resonanztheorie mit überwachtes Clustering (map), Standardverfahren
- Schnelligkeit, gute Resultate, Transparenz, Adaptive Clusteranzahl
- Entwicklelt von Gail A. Carpenter an der University of Boston, 2003
- Neuheit (2003) verursacht ein Problem:
 Wenig Kenntnisse bezüglich praktischen Einsatzes und Nachteilen des Algorithmus

Ziele der Diplomarbeit

- Aufbereitung des Algorithmus für künftige Forschung
- Evalutblendetion des Default Artmap-Verfahrens
- Nachteile herausarbeiten.

Ziele der Diplomarbeit

- Aufbereitung des Algorithmus für künftige Forschung
- Evalutblendetion des Default Artmap-Verfahrens
- Nachteile herausarbeiten

Ziele der Diplomarbeit

- Aufbereitung des Algorithmus für künftige Forschung
- Evalutblendetion des Default Artmap-Verfahrens
- Nachteile herausarbeiten

Beispiel Clusteranalyse

Aufgabe Erkennung von Konsumentengruppen

Datensatz

Patterns Nr.	1	2	3	4	5	
Sport in h	3			2	9	
Entert. in h	1	1		2		
Merkmal a _{sport}	0.3			0.2	0.9	
Merkmal a _{entert}	0.1	0.1		0.2		
Zielklasse K			2			
Datenmengen	Trainingsmenge			Testmenge		

Beispiel Clusteranalyse

Aufgabe Erkennung von Konsumentengruppen

Datensatz

Patterns Nr.	1	2	3	4	5	
Sport in h	3	8	8	2	9	
Entert. in h	1	1	8	2	0	
Merkmal a _{sport}	0.3	0.8	0.8	0.2	0.9	
Merkmal a _{entert}	0.1	0.1	0.8	0.2	0.0	
Zielklasse K	0	1	2	-	-	
Datenmengen	Trainingsmenge			Testmenge		

Definitionen für die Clusteranalyse

Aufgabe Erkennung von Gruppen oder Mustern in beliebigen Daten

Rohdaten Datenquelle aus der realen Welt

Merkmale M Vorverarbeiteten Rohdaten, erzeugen einen M-dim. Merkmalsraum

Datensatz Zusammenfassung von Merkmalen zu Patterns, Patterns zu Datensätzen

KI2010

Definitionen für die Clusteranalyse

Aufgabe Erkennung von Gruppen oder Mustern in beliebigen Daten

Rohdaten Datenquelle aus der realen Welt

Merkmale M Vorverarbeiteten Rohdaten, erzeugen einen M-dim.

Merkmalsraum

Datensatz Zusammenfassung von Merkmalen zu Patterns, Patterns zu Datensätzen

Cluster C Gruppe von Patterns mit ähnlichen Merkmalen

Klasse L Clustername, mehrere Cluster pro Klasse möglich

Gliederung

Professur Künstliche Intelligenz Prof. Dr. Fred Hamker

Prof. Dr. Fred Hamker

Trainingsalgorithmus

- Initialisierung: Erstelle aus dem ersten Pattern den ersten Cluster
- Füge sequentiell Patterns dem jeweils ähnlichsten Cluster hinzu
 Pattern einem Cluster hinzufügen

Prof. Dr. Fred Hamker

Trainingsalgorithmus

(1) Clusterauswahl

Trainingsalgorithmus

Professur Künstliche Intelligenz Prof. Dr. Fred Hamker

- (1) Clusterauswahl
- (2) Kontrolle der Clustergröße

Trainingsalgorithmus

Künstliche Intelligenz Prof. Dr. Frad Hambar Zielklasse 0 (1) Clusterauswahl 0=0 OK⇒Resonanz Klassenvergleich (3)(2) Kontrolle der Clustergröße Klasse (3) Klassenvorhersage (4) Resonanz (Lernen) Mapfield 0.1 0.0 0.0 / 0.4 0.3 Cluster Clustereckpunkte 0.7 0.0 / 1.0 0.2 (1)(2)0.0 0.0 / 0.4 0.3 Clustereckpunkte 0.0 0.0 0.4 0.3 Prototyp X 0.7 0.0 / 1.0 0.3 Vigilance $(|A \text{ und } X|/2) \leq 1-\rho$ Eingabe A 0.1 0.4 0.4 ≤ 0.5 OK ⇒ Schritt 3 Vergleich Eingabe I (1 4) (1h Sport, 4h Entert.) Vigilance-Parameter ρ=0.5

Gliederung

Professur Künstliche Intelligenz Prof. Dr. Fred Hamker

- Generischer 2d3c Verwendung für Clustervisualisierung
- Iris Schwertlilien
- Glass Chemische Elemente von Glas

Trainiert mit

- Default Artmap
- Künstliches Neuronales Netz (KNN) / Backpropagation Learning

- Klassifizierungsrate $K = \frac{Korrekte\ Patterns}{Gesamtanzahl}$
- Struktur des Netzes #C (Anzahl Cluster bzw. Hidden-Neuronen)

- Generischer 2d3c Verwendung für Clustervisualisierung
- Iris Schwertlilien
- Glass Chemische Elemente von Glas

Trainiert mit

- Default Artmap
- Künstliches Neuronales Netz (KNN) / Backpropagation Learning

- Klassifizierungsrate $K = \frac{Korrekte\ Patterns}{Gesamtanzahl}$
- Struktur des Netzes #C (Anzahl Cluster bzw. Hidden-Neuronen)

- Generischer 2d3c Verwendung für Clustervisualisierung
- Iris Schwertlilien
- Glass Chemische Elemente von Glas

Trainiert mit

- Default Artmap
- Künstliches Neuronales Netz (KNN) / Backpropagation Learning

- Klassifizierungsrate $K = \frac{Korrekte\ Patterns}{Gesamtanzahl}$
- Struktur des Netzes #C (Anzahl Cluster bzw. Hidden-Neuronen)

- Generischer 2d3c Verwendung für Clustervisualisierung
- Iris Schwertlilien
- Glass Chemische Elemente von Glas

Trainiert mit

- Default Artmap
- Künstliches Neuronales Netz (KNN) / Backpropagation Learning

- Klassifizierungsrate $K = \frac{Korrekte\ Patterns}{Gesamtanzahl}$
- Struktur des Netzes #C (Anzahl Cluster bzw. Hidden-Neuronen)

Gliederung

Professur Künstliche Intelligenz Prof. Dr. Fred Hamker

- Geringer Nutzen der Parameteroptimierung
- Klassifizierungsrate K ist sehr stark von der Reihenfolge der Patterns im Training abhängig (bis zu 20%)
 Lösung: Eine oder mehrere randomisierte
 Trainingsmengen, aber dadurch Black-Box Verfahren

- + Bessere Laufzeit als ein KNN
- + Adaptive Clusteranzahl
- + Kategorisierungsraten sind gut und vergleichbar mit denen eines KNN

Zusammenfassung

- Evaluation: Verfahren ist praktisch einsetzbar
- Forschung: Beheben des Problems der Eingabedatenabhängigkeit

Danksagung: Diese Arbeit wurde im Rahmen des europäische Projektes "Self Constructing Hyper Wavelet Algorithms For Extrapolating Linguistics (SCHWAFEL)" gefördert.