TDAB01 Probability and Statistics

Maryna Prus IDA, Linköping University

Lecture 4: Families of Continuous Distributions

Overview

- Continuous random variables
- Uniform distribution
- ► Exponential distribution
- Normal distribution
- ► Gamma distribution
- ► Beta distribution
- ▶ t-distribution

Continuous random variables

- Continuous random variables can take all values on an interval (a,b), especially $(0,\infty)$, $(-\infty,\infty)$
- ► X continuous \Rightarrow P(x) = 0 for all $x \Rightarrow$ pmf **not** useful
- ► The distribution function (cdf) however works: $F(x) = P(X \le x)$
- ▶ Since P(x) = 0 for all x, then $P(X \le x) = P(X < x)$
- If X continuous random variable, F(x) continuous and

$$\lim_{x \to -\infty} F(x) = 0 \text{ and } \lim_{x \to +\infty} F(x) = 1$$

Density function

Definition. (Probability) density function f(x) of a continuous random variable X is the derivative of the cdf of X

$$f(x) = F'(x).$$

- Density function is often called pdf (probability density function)
- Cdf F(x) is antiderivative of pdf f(x)
- Interval probabilities are given by areas under the pdf

$$P(a < X < b) = \int_{a}^{b} f(x) dx = F(b) - F(a)$$

$$P(a < X < b) = P(a \le X < b) = P(a < X \le b) = P(a \le X \le b)$$

Expected value and variance

▶ Integral of pdf on $(-\infty, \infty)$ is 1:

$$\int_{-\infty}^{\infty} f(x) dx = F(\infty) - F(-\infty) = 1 - 0 = 1$$

- Values of pdf, for example f(2), are **not** a probabilities: f(2) > 1 ok But $f(x) \ge 0$ must hold
- Example: Example 4.1 in textbook
- For discrete random variables:

$$\mathbb{E}(X) = \mu = \sum_{x} x \cdot P(x) \text{ and } Var(X) = \mathbb{E}\left[\left(X - \mu\right)^{2}\right] = \sum_{x} \left(x - \mu\right)^{2} P(x)$$

For continuous random variables:

$$\mathbb{E}(X) = \mu = \int_{-\infty}^{\infty} x \cdot f(x) dx \text{ and } Var(X) = \mathbb{E}\left[(X - \mu)^2 \right] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

Joint distribution for continuous random variables

Joint distribution function

$$F_{(X,Y)}(x,y) = P(X \le x \cap Y \le y)$$

Joint density function

$$f(x,y) = f_{(X,Y)}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{(X,Y)}(x,y)$$

Kovariance between X and Y

$$Cov(X, Y) = \mathbb{E}\left[\left(X - \mu_X\right)\left(Y - \mu_Y\right)\right]$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(X - \mu_X\right)\left(Y - \mu_Y\right) f(x, y) dx dy$$

X and Y independent. Then

$$Cov(X, Y) = 0$$
 & $f_{(X,Y)}(x,y) = f_X(x)f_Y(y)$, for all x, y

Uniform distribution

Definition. A random variable X is uniformly distributed on (a,b) if pdf of X is given by

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b, \\ 0, & \text{otherwise.} \end{cases}$$

- Notation: X ~ U(a, b)
- Cdf of $X \sim U(a, b)$

$$F(x) = \begin{cases} 0, & x \le a, \\ \frac{x-a}{b-a}, & a < x < b, \\ 1, & x \ge b. \end{cases}$$

Uniform distribution

- ▶ Uniform distribution on intervals $(-\infty, \infty)$, (a, ∞) or $(-\infty, b)$ impossible
- Expected value:

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx = \frac{1}{b-a} \int_{-\infty}^{\infty} x dx = \frac{1}{b-a} \left[\frac{1}{2} x^2 \right]_a^b$$
$$= \frac{1}{2(b-a)} \left(b^2 - a^2 \right) = \frac{(b-a)(b+a)}{2(b-a)} = \frac{a+b}{2}$$

▶ Variance: $Var(X) = \mathbb{E}(X^2) - \mu^2$

$$\mathbb{E}(X^2) = \int_{-\infty}^{\infty} x^2 \cdot f(x) dx = \frac{1}{b-a} \int_{-\infty}^{\infty} x^2 dx = \frac{\left[x^3\right]_a^b}{3(b-a)} = \frac{a^2 + b^2 + ab}{3}$$

$$Var(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2 = \frac{a^2 + b^2 + ab}{3} - (\frac{a+b}{2})^2 = \frac{(b-a)^2}{12}$$

- $Y \sim U(0,1)$ Standard Uniform distribution
- ▶ For $X \sim U(a,b)$ and $Y \sim U(0,1)$ holds

$$X = a + (b - a)Y$$

Exponential distribution

Definition. A random variable X is **exponentially distributed** with parameter $\lambda > 0$, i. e. $X \sim Exp(\lambda)$, if pdf of X is given by

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

• Cdf of $X \sim Exp(\lambda)$

$$F(x) = \begin{cases} 0, & x \le 0, \\ 1 - e^{-\lambda x}, & x > 0. \end{cases}$$

Exponential distribution

- Exponential distribution usually models time
- For example
 - time between two rare events (Poisson distribution models number of rare events)
 - time until some specific event occurs
 - duration
- Expected value and variance:

$$\mathbb{E}(X) = \frac{1}{\lambda} \quad \& \quad Var(X) = \frac{1}{\lambda^2}$$

lacktriangleright λ - frequency parameter, number of events per time unit

Normal distribution

Definition. A random variable X has **normal distribution** with parameters $\mu \in \mathbb{R}$ and $\sigma^2 > 0$, i. e. $N(\mu, \sigma^2)$, if pdf of X is given by

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], -\infty < x < \infty.$$

• Expected value and variance of $X \sim N(\mu, \sigma^2)$

$$\mathbb{E}(X) = \mu$$
 & $Var(X) = \sigma^2$

- CDF has no closed form
- ▶ For *Z* ~ *N*(0,1) cdf:

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) dz$$

- ▶ Values of $\Phi(z)$ are given in tables
- $Z \sim N(0,1)$ standard normal distribution
- Normal distribution is also called Gaussian distribution

Normal distribution

$$m = \mu$$
, $s = \sigma^2$

Normal distribution

► Z standard nomally distributed: Z ~ N(0,1)

$$\Rightarrow X = \mu + \sigma Z \sim N(\mu, \sigma^2)$$

▶ **Standardization** of $X \sim N(\mu, \sigma^2)$

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

• Example: $X \sim N(\mu = 900, \sigma = 200)$

$$P(600 < X < 1200) = P\left(\frac{600 - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{1200 - \mu}{\sigma}\right)$$
$$= P(-1.5 < Z < 1.5)$$
$$= \Phi(1.5) - \Phi(-1.5) = 0.9332 - 0.0668 = 0.8664$$

See Examples 4.11 and 4.12 in textbook

Gamma distribution

Definition. A random variable X has Gamma distribution with parameters $\alpha > 0$ and $\lambda > 0$ if pdf of X is given by

$$f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, & x > 0, \\ 0, & \text{otherwise,} \end{cases}$$

where $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$ is **Gamma function**.

- ▶ Notation: $X \sim Gamma(\alpha, \lambda)$ or $X \sim Ga(\alpha, \lambda)$
- For discrete α : $\Gamma(\alpha) = \alpha$!
- lpha shape parameter, λ frequency parameter
- $Exp(\lambda) = Gamma(1, \lambda)$
- Expected value and variance of $X \sim Gamma(\alpha, \lambda)$:
 - $\mathbb{E}(X) = \frac{\alpha}{\lambda}$
 - $Var(X) = \frac{\alpha}{\lambda^2}$
- For discrete α and independent $Exp(\lambda)$ distributed $X_1, X_2, \dots, X_{\alpha}$ holds

$$Y = X_1 + X_2 + \ldots + X_{\alpha} \sim Gamma(\alpha, \lambda)$$

Gamma distribution

Poisson-Gamma formula

- ▶ $T \sim Gamma(\alpha, \lambda)$, $\alpha, \lambda > 0$, α integer
 - \Rightarrow T time before α -th rare event
 - \Rightarrow P(T > t) probability that α -th rare event occurs after time t
- $X \sim Po(t\lambda), t, \lambda > 0$
 - \Rightarrow X number of rare events that occur before time t
 - \Rightarrow $P(X < \alpha)$ probability that less than α rare events occur before time t

Poisson-Gamma formula:

$$P(T > t) = P(X < \alpha)$$

and

$$P(T \le t) = P(X \ge \alpha)$$

Beta distribution

Definition. A random variable X has Beta distribution with parameters $\alpha > 0$ and $\beta > 0$, i.e. $X \sim Beta(\alpha, \beta)$, if pdf of X is given by

$$f(x) = \begin{cases} \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}, & 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

where $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ is **Beta function**.

• Expected value and variance of $X \sim Beta(\alpha, \beta)$:

$$\mathbb{E}(X) = \frac{\alpha}{\alpha + \beta} \quad \& \quad Var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

• $X \sim Gamma(\alpha, \lambda)$ and $Y \sim Gamma(\beta, \lambda)$ independent

$$\Rightarrow$$
 $Z = X/(X + Y) \sim Beta(\alpha, \beta)$

ightharpoonup Beta distribution fits continuous variables in range [0,1], e.g. proportions

t-distribution

Definition. A random variable X has t-distribution with ν degrees of freedom if pdf of X is given by

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\pi\nu}}\left(1+\frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}\,,\, -\infty < x < \infty$$

where $\Gamma()$ is **Gamma function**.

- ▶ Notation: $X \sim t_{\nu}$ or $X \sim t(\nu)$ or $X \sim T(\nu)$
- Expected value and variance of X ~ t(v)

$$\mathbb{E}(X) = 0, \ \nu > 1$$
 & $Var(X) = \frac{\nu}{\nu - 2}, \ \nu > 2$

- ▶ Connection between *t*-distribution and normal distribution:
 - $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2), \ \sigma^2 \text{ known} \Rightarrow Z = \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$
 - $X_1,..,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2), \ \sigma^2$ unknown, estimator $s^2 \Rightarrow T = \frac{\bar{X}-\mu}{s/\sqrt{n}} \sim t_{n-1}$

t-distribution

• $t(\nu) \rightarrow N(0,1)$ if $\nu \rightarrow \infty$:

- Normal distribution has thin tails
- ► t-distribution models heavy tails

Thank you for your attention!