Diagramas de Decisão Binária (BDDs)

Aula 2

Luiz Carlos Vieira

7 de outubro de 2015

MAC0239 - Introdução à Lógica e Verificação de Programas

Conteúdo

- BDDs ordenados e reduzidos (ROBDDs)
- Algoritmos para ROBDDs
 - algoritmo reduzir
 - algoritmo aplicar
 - algoritmo restringir
 - algoritmo existe

Relembrando: múltiplas ocorrências

- A definição de BDDs não impede uma variável de ocorrer mais de uma vez em um caminho
- Mas tal representação pode incorrer em desperdícios
 - linha sólida do $m{p}$ à esquerda (colorida) jamais será percorrida

Esse é um resultado comum após as operações discutidas na aula anterior

Relembrando: comparação de BDDs

Além de tornar um BDD menos eficiente, ocorrências múltiplas de uma variável também dificultam a comparação de BDDs

 \bullet [p,q,p]

- ullet [p,q,p]
- [p]

ullet [p,q]

- \bullet [p,q]
- ullet [p]

- $\bullet \quad [p,q]$
- ullet [p,r]

- \bullet [p,q]
- ullet [p,r,q]

- \bullet [p,q]
- [p, r, q]
- ullet [p]

- \bullet [p,q,p]
- \bullet [p,q]
- [p, r, q]
- ullet [p,r]

- \bullet [p,q]
- [p, r, q]
- ullet [p,r,p]

- \bullet [p,q]
- \bullet [p, r, q]
- \bullet [p,r,p]

• [p]

- \bullet [p,q]
- \bullet [p, r, q]
- \bullet [p,r,p]

 \bullet [p,q]

- \bullet [p,q]
- \bullet [p,r,q]
- ullet [p,r,p]

- ullet [p,q]
- ullet [p]

- \bullet [p,q]
- \bullet [p,r,q]
- ullet [p,r,p]

- \bullet [p,q]
- ullet [p,q]

- [p,q]
- \bullet [p,r,q]
- ullet [p,r,p]

- \bullet [p,q]
- \bullet [p,q,r]

- ullet [p,q]
- \bullet [p,r,q]
- ullet [p,r,p]

- \bullet [p,q]
- \bullet [p,q,r]
- [p]

- \bullet [p,q]
- \bullet [p,r,q]
- ullet [p,r,p]

- \bullet [p,q]
- $\bullet \quad [p,q,r]$
- \bullet [p,q]

- \bullet [p,q]
- \bullet [p,r,q]
- ullet [p,r,p]

- \bullet [p,q]
- \bullet [p,q,r]
- \bullet [p,q]

BDDs ordenados

Quando a ordem das variáveis em qualquer caminho é sempre a mesma, o BDD passa a ser chamado Diagrama de Busca Binária Ordenado (OBDD)

Definição: OBDDs

Definição 6.6

Seja $[p_1, p_2, ..., p_n]$ uma lista ordenada de variáveis sem duplicação e seja B um BDD tal que todas as suas variáveis aparecem em algum lugar da lista. Dizemos que B tem a ordem $[p_1, p_2, ..., p_n]$ se todos os nós de variáveis de $oldsymbol{B}$ ocorrem na lista, e, para toda ocorrência de p_i seguido de p_i ao longo de qualquer caminho em B (ou seja, $p_i \prec p_i$), temos i < j

Exemplo de BDD ordenado

Ordem: [p,q,r] (em qualquer caminho)

Exemplo de BDD não ordenado

Sem ordem única ([p,q,r] à esquerda e [p,r,q] à direita)

OBDDs reduzidos

Quando são reduzidos, OBDDs passam a ser chamados de Diagramas de Busca Binária Ordenados Reduzidos (ROBDD)

Vantagens da ordenação de BDDs

- Reduções em um OBDDs mantêm ordem original
 - C1: compartilha nós terminais
 - C2: elimina nós não-terminais redundantes
 - C2: compartilha sub-diagramas idênticos
- Compromisso com ordem e redução produzem representação única de funções booleanas
 - chamada de forma canônica
- Comparação de ROBDDs de ordens compatíveis é imediata
 - basta verificar se suas estruturas são idênticas

Teorema: ROBDDs são únicos

Teorema 6.7

A representação em ROBDD de uma função dada ϕ é unica. Isto é, sejam B e B' dois ROBDDs com ordens compatíveis; se B e B' representam a mesma função booleana, então eles têm estruturas idênticas.

 Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo-os e comparando sua estrutura;

- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo-os e comparando sua estrutura;
- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então o ROBDD que a representa não contém tal variável;

- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo-os e comparando sua estrutura;
- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então o ROBDD que a representa não contém tal variável;
- Teste de validade. Se uma função booleana é válida, seu ROBDD é igual a B₁;

- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo-os e comparando sua estrutura;
- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então o ROBDD que a representa não contém tal variável;
- Teste de validade. Se uma função booleana é válida, seu ROBDD é igual a B₁;
- ullet Teste de satisfação. Se uma função booleana é satisfeita, então seu ROBDD não é igual a B_0 ;

- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo-os e comparando sua estrutura;
- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então o ROBDD que a representa não contém tal variável;
- Teste de validade. Se uma função booleana é válida, seu ROBDD é igual a B₁;
- Teste de satisfação. Se uma função booleana é satisfeita, então seu ROBDD não é igual a B_0 ;
- Teste de implicação. Pode-se testar se uma função ϕ implica em outra ψ calculando o ROBDD para $\phi \land \neg \psi$; a implicação é verdadeira se e somente se este ROBDD é igual a B_0 .

Impacto da escolha da ordenação

Considere a escolha da ordem de variáveis para a seguinte função booleana em CNF:

$$\phi \equiv (p_1 \lor p_2) \land (p_3 \lor p_4) \land ... \land (p_{2n-1} \lor p_{2n})$$

- Se a escolha for a "ordem natural de ocorrência na fórmula" $([p_1,p_2,p_3,...,p_{2n-1},p_{2n}])$, o ROBDD terá 2n+2 nós
- Se a escolha for "indices impares antes de indices pares" $([p_1,p_3,p_5,...,p_{2n-1},p_2,p_4,p_6,...,p_{2n}]), \text{ o ROBDD}$ terá 2^{n+1} nós

Ordem "natural" para n=3

ROBDD para $\phi\equiv(p_1\vee p_2)\wedge(p_3\vee p_4)\wedge(p_5\wedge p_6)$ com a ordem de variáveis $[p_1,p_2,p_3,p_4,p_5,p_6]$

Ordem "ímpares \prec pares" para n=3

ROBDD para $\phi \equiv (p_1 \lor p_2) \land (p_3 \lor p_4) \land (p_5 \land p_6)$ com a ordem de variáveis $[p_1, p_3, p_5, p_2, p_4, p_6]$

Escolha da ordenação

- A sensibilidade do tamanho de um ROBDD à ordem escolhida é o preço pago pelas facilidades obtidas
- Encontrar a ordem ótima também é um problema computacional caro
 - mas há heurísticas para ordens razoavelmente boas
 - tipicamente, agrupa-se as variáveis com interações mais fortes

ROBDDs como representação

- RODDBs permitem representações compactas de certas classes de funções booleanas
 - que seriam exponenciais em outros formatos/representações
- Por outro lado, não se pode realizar as operações ∧ e ∨ da forma anteriormente estudada
 - elas podem introduzir ocorrências múltiplas de variáveis

Operações eficientes com ROBDDs

Utilizando ROBDDs, é possível fazer operações de forma eficiente:

- Redução. A redução é o cerne da utilização séria de ROBDDs
 - consistindo da aplicação eficiente das simplificações C1-C3
- Aplicação. A aplicação permite realizar as operações lógicas \land , \lor , \oplus e \neg (via $\phi \oplus 1$)
 - mantendo o BDD ordenado e reduzido

Estrutura de dados

Os algoritmos das operações com ROBDDs utilizam como estrutura de dados uma tabela

$$T:\langle v,i_l,i_h
angle\mapsto i_v$$
, tal que:

- ullet $\langle v, i_l, i_r
 angle$ representa um nó qualquer no ROBDD
 - com uma variável $oldsymbol{v}$
 - e identificadores de seus nós-filhos i_l (low, pela linha pontilhada) e i_h (high, pela linha sólida)
- $oldsymbol{i}_v$ representa um inteiro positivo que serve como identificador único do nó da variável v

llustração dessa estrutura de dados

Tabela $T: \langle v, i_l, i_h
angle \mapsto i_v$

n	T(n)
$\langle 0, \text{NULL}, \text{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2
$\langle r,0,1 angle$	3
$\langle q,3,1 angle$	4
$\langle p,2,4 angle$	5

Observações

Nos algoritmos apresentados a seguir, assume-se que:

- ullet A tabela T é uma variável global e |T| é o número de linhas existentes nessa tabela
- ullet $T(\langle v,i_l,i_h
 angle)=$ NULL quando $(i_v,\langle v,i_l,i_h
 angle)
 otin T$
- LO e HI acessam os nós-filhos de um nó
- ID acessa o identificador de um nó

Algoritmo de redução

- ullet Percorre os níveis de B de baixo para cima
 - isto é, com busca em profundidade
- Atribui o mesmo identificador a nós que denotam a mesma função
 - compartilhando subdiagramas (simplificações C1/C3)
- Atribui o identificador dos filhos um nó se eles forem os mesmos
 - ignorando nós redundantes (simplificação C2)

Pseudocódigo de GETNODE

```
precondição: v, i_l, i_h
                                             > recebe uma variável e os IDs de seus filhos
pós-condição: i
                                                    > devolve o ID único do nó da variável
 1: função GETNODE(v,i_l,i_h)
        se v \neq 0 \land v \neq 1 então
 2:
           se i_l = i_h então

⊳ simplificação C2

 3:
                devolva i_1
 4.
           fim se
 5:
       fim se
 7: i \leftarrow T(\langle v, i_l, i_h \rangle)
       se i = NULL então
                                                                    i = |T|
           T \leftarrow T \cup \{(i, \langle v, i_l, i_h \rangle)\}
10.
11:
       fim se
        devolva i
12.
13: fim função
```

Pseudocódigo de REDUCE

```
precondição: n
                                                                 > recebe o nó a ser reduzido
pós-condição: i_n
                                                  1: função REDUCE(n)
        se n=0 \lor n=1 então

⊳ simplificação C1

 2.
            devolva GETNODE(n, NULL, NULL)
 3:
 4.
        fim se
       i_n \leftarrow T(\langle n, \text{ID}(\text{LO}(n)), \text{ID}(\text{HI}(n)) \rangle)
 5:
        se i_n = \text{NULL} então
 6.
            i_l \leftarrow \text{REDUCE}(\text{LO}(n))
 7.
            i_h \leftarrow \text{REDUCE}(\text{HI}(n))
 8:
            i_n = \text{GETNODE}(n, i_l, i_h)
                                                                            ⊳ simplificação C3
 g.
        fim se
10:
        devolva i_n
11.
12: fim função
```


n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0

n	T(n)
$\langle 0, \text{NULL}, \text{NULL} \rangle$	0

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0

Tabela $T:\langle v,i_l,i_h
angle\mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1

Tabela $T: \langle v, i_l, i_h
angle \mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1

Tabela $T:\langle v,i_l,i_h
angle\mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T: \langle v, i_l, i_h
angle \mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T:\langle v,i_l,i_h
angle\mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T: \langle v, i_l, i_h
angle \mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T:\langle v,i_l,i_h
angle\mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T:\langle v,i_l,i_h
angle\mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T:\langle v,i_l,i_h
angle\mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T: \langle v, i_l, i_h
angle \mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T: \langle v, i_l, i_h
angle \mapsto i_v$

n	T(n)
$\langle 0, \text{NULL}, \text{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T:\langle v,i_l,i_h
angle\mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Tabela $T: \langle v, i_l, i_h
angle \mapsto i_v$

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} angle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

n	T(n)
$\langle 0, ext{NULL}, ext{NULL} \rangle$	0
$\langle 1, ext{NULL}, ext{NULL} angle$	1
$\langle q,0,1 angle$	2

Definição: restrições

Definição 6.9

Sejam ϕ uma expressão booleana e p uma variável. Denotamos por $\phi[0/p]$ a expressão booleana obtida substituindo-se todas as ocorrências de p em ϕ por 0. A expressão $\phi[1/p]$ é definida de maneira semelhante. As expressões $\phi[0/p]$ e $\phi[1/p]$ são chamadas de <u>restrições</u> em ϕ com relação à variável p.

Exemplos de restrições

Para $\phi \equiv p \wedge (q \vee \neg p)$ tem-se:

- ullet $\phi[0/p]$ é igual a $0 \wedge (q \vee \neg 0)$
 - que é semanticamente equivalente a $\mathbf{0}$
- ullet $\phi[1/p]$ é igual a $1 \wedge (q \vee \neg 1)$
 - que é semanticamente equivalente a $oldsymbol{q}$
- ullet $\phi[0/q]$ é igual a $p \wedge (0 \vee \neg p)$
 - que é semanticamente equivalente a \perp
- $\phi[1/q]$ é igual a $p \wedge (1 \vee \neg p)$
 - que é semanticamente equivalente a $oldsymbol{p}$

Uso das restrições

- As restrições permitem executar recorrências em expressões booleanas decompondo-as em expressões mais simples
- Se p é uma variável em ϕ , então ϕ é equivalente a $\neg p \land \phi[0/p] \lor p \land \phi[1/p]$
 - facilmente verificável
 - fazendo p=0 resulta em $\phi[0/p]$
 - fazendo p=1 resulta em $\phi[1/p]$

Lema: Expansão de Shannon

Lema 6.10

Para todas as expressões booleanas ϕ e todas as variáveis p (mesmo as que não ocorrem em ϕ), temse a chamada Expansão de Shannon:

$$\phi \equiv \neg p \wedge \phi[0/p] \vee p \wedge \phi[1/p]$$