Intervention Analysis

Explanatory Variables

- In many cases, there are other factors (other than trend and seasonality) that are influencing our data series.
- We can sense these "signals" using analytics and measure their impact on our data to improve forecast accuracy.
 - HOWEVER, forecasting in this manner requires knowledge (or forecasts) of future values of these variables.

Interventions (Event Variable)

- An intervention variable is an indicator variable that contains discrete values that flag the occurrence of an event affecting the response series.
- Intervention variables can be used both to model and forecast the response series and also to analyze the impact of the intervention.
- Time series intervention analysis is used to ascertain the impact that one or more interventions have on a time series.
 - For example, the time series may be monthly revenues from the sale of a product with the intervention being the implementation of a sales promotion.

Improve Accuracy?

- Event variables enable the forecast model to accommodate discrete shifts, also called jumps or bangs, in time series data.
- Event variables in time series models are primarily intercept shifters.
- Intercept shifters are included in the model as **explanatory variables** and are based on columns of zeros and ones in the data set.

3 Types of Intervention Variables

- There are three common intervention variables:
 - 1. Point (or Pulse) Interventions
 - 2. Step Interventions
 - 3. Ramp Interventions

3 Types of Intervention Variables

- There are three common intervention variables:
 - 1. Point (or Pulse) Interventions
 - 2. Step Interventions
 - 3. Ramp Interventions

Each of these could be **deterministic** OR **stochastic**.

The temporary intercept shift is accomplished by adding a zero-one or dummy column to the data.

Point (Pulse) Intervention – Example

The permanent intercept shift is accomplished by adding a zero-one or dummy column to the data.

Step Intervention – Example

Ramp Intervention

The permanent intercept shift is accomplished by adding a variable that trends after a given time.

Ramp Intervention

Ramp Intervention – Example

Regional Sales

Deer Crash Data

- Deer mating season occurs each year around November.
- This results in a higher number of deer related car accidents during this time.
- Contains number of monthly deer related car wrecks from January 2003 to December 2007.

Point Intervention – Deterministic

Point Intervention – Deterministic

Deterministic vs. Stochastic

- There are many different structures each of these intervention points can take.
 - Previous examples were all deterministic the effect had no lag structure to it.
- This intervention effect could dissipate stochastic structure.
 - The intervention could have a lag structure to how it dissipates across time.

Stochastic Interventions

These models can be evaluated with different lag structures applied to the intervention itself:

$$Y_t = \beta_0 + \frac{\omega(B)}{\delta(B)} I_t + Z_t$$

• There is the numerator term, $\omega(B)$, and the denominator term, $\delta(B)$, that help to determine how the intervention point influences the data.

Numerator vs. Denominator

$$Y_t = \beta_0 + \frac{\omega(B)}{\delta(B)} I_t + Z_t$$

- The numerator term provides information on number of lags of the Intervention variable that will be used.
- The denominator term is used when there is a "decay" effect.

Point Intervention — Stochastic

Point Intervention — Stochastic

Stochastic + Seasonal AR term

```
proc arima data=Time.DEER2 plot(unpack)=(series(corr) forecast(all));
    identify var=deer nlag=24 crosscorr=(Nov);
    estimate input=( /(1)Nov) p=(12);
    forecast lead=24 id=date interval=month;
run;
quit;
```


