Paper: Operating Systems Concepts

Code: INFO3102

Chapter: Process & Thread

Full Marks: 100

1.	Differentiate process and thread. "Thread is called light weight process" – Justify.	3+2
2.	With proper code example explain the difference between Zombie and Orphan process.	5
3.	What is the difference between fork and vfork? When should we use fork and wait system call combination instead of using vfork?	2+3
4.	What is context? How context switching takes place? "Context Switching is overhead to the System" – Justify.	2+3+2
5.	Which multithreading model is best according to you and why?	5
6.	Differentiate between Kernel Level and User Level Thread.	5
7.	Draw and explain process state diagram including both active and suspended states.	5
8.	Draw the queuing diagram and state at which transition which schedular works.	5
9.	What is PCB? Why we need to have pointer in PCB? What is the purpose of storing CPU Register and Special Purpose Register values in PCB?	2+2+2
10.	What is Mid-Term Schedular? When it is required? Why the name is so?	5
11.	Why CPU schedular is called short term schedular and Job schedular is called long term schedular? State this answer after clarifying the tasks of these two types of schedulers.	5
12.	What is cooperating process and why we need them?	3
13.	State the different types of message passing architectures and which one is required when. When should we use Shared Memory to communicate between processes?	8
14.	Draw and explain the different steps that we need to follow to perform RPC.	5
15.	What is socket? How it is used?	5
16.	What is cascaded termination of processes? When it happens?	3
17.	What does execlp system call do?	3
18.	Consider the following code snippet. What will happen if it executes? Explain. [Consider the main process id is 3456 and all subsequent child processes are receiving their ids just by adding one with parent process; every process should have its own unique id] main(){ fork(); printf("%d\n",getpid()); fork(); printf("Hello\n"); return 0; }	5
19.	What do you mean by address space of a process?	4
		j

```
main(){
                                                     if(p<0){
  int p,q=20; p=fork();
                                                       printf("Fork Failed\n");exit(0);
  if(p<0){
                                                     }
    printf("Fork failure\n");
                                                     else if(p==0){
                                                       q=200;
    exit(0);
  }
                                                       printf("q=%d\n",q);
  else if(p==0){
                                                     }
    q=100;
                                                     else{
    printf("q=%d\n",q);
                                                       printf("q=%d\n",q);
  }
                                                     }
  else{
                                                  }
    wait(NULL);
                                                  return 0;
    p=vfork();
                                                }
```