

Introduction to the Course Josh Tobin

Agenda

 \bigcirc

COURSE VISION

Why ML-powered products and why this course

01

WHEN TO USE ML

Should you use ML? How do you know if you're ready?

)2

LIFECYCLE

What are the steps to a ML project?

Course Vision

The course (and community) for people building *ML-powered products*

ML is becoming a mainstream technology

ML in 2018 (the first FSDL class)

Improving Language Understanding by Generative Pre-Training

Alec Radford Karthik Narasimhan Tim Salimans Ilya Sutskever
OpenAI OpenAI OpenAI OpenAI
alec@openai.com karthikn@openai.com tim@openai.com ilyasu@openai.com

ML in 2022

iOS 14 Review: It's About Time

0-+0

Software Is Eating the World, Machine Learning is Eating Software and NLP is Eating Machine Learning Jesus Rodriguez¹

Why? Commoditization of model training


```
>>> from transformers import pipeline
>>> classifier = pipeline("sentiment-analysis")
```


2020s: ?

https://www.cambridgewireless.co.uk/media/uploads/resources/AI%20Group/AIMobility-11.05.17-Cambridge_Consultants-Monty_Barlow.pdf

2020s: ?

https://www.cambridgewireless.co.uk/media/uploads/resources/AI%20Group/AIMobility-11.05.17-Cambridge_Consultants-Monty_Barlow.pdf

Conjecture: we avoid an AI winter by translating research progress to realworld products

ML-powered products require a different process

ML-powered products require a different process

This course

Our goals

- Build up generalist skills and an understanding of the components of a ML-powered product (and ML projects more generally)
- Teach you enough MLOps to get things done
- Share some best practices and explain the motivation behind them
- Learn some things that might help you with ML engineer job interviews
- Form a community to learn together and from each other

NOT our goals

- Teach you ML or SWE from scratch
- Cover the whole breadth of deep learning techniques
- Make you an expert in any single aspect of ML
- Do research in deep learning
- Cover the full spectrum of MLOps

How to refresh your prerequisites

- ML
 - Andrew Ng: https://www.coursera.org/collections/machine-learning
 - Google ML: https://developers.google.com/machine-learning/ crash-course
- Software engineering
 - The Missing Semester: https://missing.csail.mit.edu/

ML-powered products vs MLOps

About us

Charles Frye teaches people on the internet. He worked in education and growth at Weights & Biases after getting a PhD in Neuroscience at UC Berkeley.

Sergey Karayev is Co-founder of Volition. He co-founded Gradescope after getting a PhD in Computer Vision at UC Berkeley.

Josh Tobin is Co-founder and CEO of Gantry. He worked as a Research Scientist at OpenAI and received a PhD in AI at UC Berkeley.

FSDL started as a Bootcamp

Aug 2018

Mar 2019

Nov 2019

We got good feedback, so we kept going

Alexander Fred-Ojala @alexanderfo · Mar 3, 2019

I've had a wonderful weekend full of inspiration, learning, and meeting experts from industry and academia in the #DeepLearning space. Thanks @full_stack_dl for the fantastic bootcamp at @UCBerkeley! #AI #ArtificailIntelligence #MachineLearning

How likely are you to recommend the bootcamp to a friend or colleague? 73 responses

How we developed this course

- Personal experience and study
- Interviews with practitioners from these companies and more
- Posts, papers, product demos

Some logistics

- Discord
- Course project
- Labs

Labs - the problem

Labs — architecture

Summary

- ML-powered products are going mainstream thanks to the democratization of modeling
- However, building great ones requires a different process vs building models
- FSDL is here to help!

When to use Machine Learning

Key points in this section

- ML introduces complexity
 - Don't do it before you're ready
 - Exhaust your other options first
 - BUT: you don't need perfect infrastructure to start
- Prioritize projects you know are feasible and will have an impact

When to use ML at all

Lots of ML projects fail

- Commonly quoted statistic: 87%¹
 - However, 73% of all statistics are made up on the spot
- Anecdotally, probably more like 25%

Why?

- ML is still research shouldn't aim for 100% success
- But, many are doomed to fail:
 - Technically infeasible or poorly scoped
 - Never make the leap to prod
 - Unclear success criteria
 - Works, but doesn't solve a big enough problem to be worth the complexity

The value of your project must outweigh its complexity

...and ML introduces a lot of complexity

- Erodes the boundaries between systems
- Relies on expensive data dependencies
- Commonly plagued by system design anti-patterns
- Subject to the instability of the external world

Machine Learning: The High-Interest Credit Card of Technical Debt

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov,
Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young
{dsculley, gholt, dgg, edavydov}@google.com
{toddphillips, ebner, vchaudhary, mwyoung}@google.com
Google, Inc

So before starting an ML project, ask yourself:

- Are we ready to use ML?
- Do we really need ML to solve this problem?
- Is it ethical?

So before starting an ML project, ask yourself:

- Are we ready to use ML?
 - Do we have a product?
- Do we really need ML to solve this problem?
- Is it ethical?

So before starting an ML project, ask yourself:

- Are we ready to use ML?
 - Do we have a product?
 - Are we collecting data and storing it in a sane way?
- Do we really need ML to solve this problem?
- Is it ethical?

- Are we ready to use ML?
 - Do we have a product?
 - Are we collecting data and storing it in a sane way?
 - Do we have the right people?
- Do we really need ML to solve this problem?
- Is it ethical?

- Are we ready to use ML?
- Do we really need ML to solve this problem?
 - Do we need to solve the problem?
- Is it ethical?

- Are we ready to use ML?
- Do we really need ML to solve this problem?
 - Do we need to solve the problem?
 - Have we tried using rules or simple stats?
- Is it ethical?

- Are we ready to use ML?
- Do we really need ML to solve this problem?
- Is it ethical?
 - Ethics lecture!

How to pick problems to solve with ML

TL/DR: High impact, low-cost

- High impact problems are likely to be those that address
 - Friction in your product
 - Complex parts of your pipeline
 - Places where cheap prediction is valuable
 - What other people in your industry are doing
- Low-cost projects are those with data available, and where bad predictions aren't too harmful

A (general) prioritization framework

Mental models for high-impact ML projects

- Where can you take advantage of cheap prediction?
- Where is there friction in your product?
- Where can you automate complicated manual processes?
- What are other people doing?

What does ML make economically feasible?

The economics of AI (Agrawal, Gans, Goldfarb)

- Al reduces cost of prediction
- Prediction is central for decision making
- Cheap prediction means
 - Prediction will be everywhere
 - Even in problems where it was too expensive before (e.g., for most people, hiring a driver)
- Implication: Look for projects where cheap prediction will have a huge business impact

What does your product need?

"Discover Weekly removed the friction of chasing everything down yourself and instead brought the music to you in a neat little package every Monday morning."

NOTED

Three Principles for Designing ML-Powered Products

October 2019

What is ML good at?

Software 2.0 (Andrej Karpathy): https://medium.com/@karpathy/software-2-0-a64152b37c35

What are other people doing?

<u>Human-Centric Machine Learning Infrastructure @Netflix</u> (Ville Tuulos, InfoQ 2019)

What are other people doing?

Machine learning use case frequency

2020 state of enterprise machine learning (Algorithmia, 2020)

What are other people doing?

- Papers from Google, Facebook, Nvidia, Netflix, etc
- Blog posts from top earlier-stage companies (Uber, Lyft, Spotify, Stripe, etc)

Case studies

- Using Machine Learning to Predict Value of Homes On Airbnb (Robert Chang, Airbnb Engineering & Data Science, 2017)
- Using Machine Learning to Improve Streaming Quality at Netflix (Chaitanya Ekanadham, Netflix Technology Blog, 2018)
- 150 Successful Machine Learning Models: 6 Lessons Learned at Booking.com (Bernardi et al., KDD, 2019)Asdf
- How we grew from 0 to 4 million women on our fashion app, with a vertical machine learning approach (Gabriel Aldamiz, HackerNoon, 2018)
- Machine Learning-Powered Search Ranking of Airbnb Experiences (Mihajlo Grbovic, Airbnb Engineering & Data Science, 2019)
- From shallow to deep learning in fraud (Hao Yi Ong, Lyft Engineering, 2018)
- Space, Time and Groceries (Jeremy Stanley, Tech at Instacart, 2017)
- Creating a Modern OCR Pipeline Using Computer Vision and Deep Learning (Brad Neuberg, Dropbox Engineering, 2017)
- Scaling Machine Learning at Uber with Michelangelo (Jeremy Hermann and Mike Del Balso, Uber Engineering, 2019)
- Spotify's Discover Weekly: How machine learning finds your new music (Umesh .A Bhat, 2017)

A (general) prioritization framework

Assessing feasibility of ML projects

Cost drivers Problem difficulty Accuracy requirement Data availability

Main considerations

- Is the problem well-defined?
- Good published work on similar problems? (newer problems mean more risk & more technical effort)
- Compute requirements?
- Can a human do it?
- How costly are wrong predictions?
- How frequently does the system need to be right to be useful?
- Ethical implications?
- How hard is it to acquire data?
- How expensive is data labeling?
- How much data will be needed?
- How stable is the data?
- Data security requirements?

Why are accuracy requirements so important?

Why are accuracy requirements so important?

Assessing feasibility of ML projects

Cost drivers

Problem difficulty

Accuracy requirement

Data availability

Main considerations

- Is the problem well-defined?
- Good published work on similar problems? (newer problems mean more risk & more technical effort)
- Compute requirements?
- Can a human do it?
- How costly are wrong predictions?
- How frequently does the system need to be right to be useful?
- Ethical implications?
- How hard is it to acquire data?
- How expensive is data labeling?
- How much data will be needed?
- How stable is the data?
- Data security requirements?

It's hard to reason about what's feasible in ML

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

"It may be a hundred years before a computer beats humans at Go -- maybe even longer," said Dr. Piet Hut, an astrophysicist at the Institute for Advanced Study in Princeton, N.J., and a fan of the game. "If a reasonably intelligent person learned to play Go, in a few months he could beat all existing computer programs. You don't have to be a Kasparov."

New York Times, July 1997

Pretty much anything that a normal person can do in <1 sec, we can now automate with Al.

Examples

- Recognize content of images
- Understand speech
- Translate speech
- Grasp objects
- etc.

Counter-examples?

- Understand humor / sarcasm
- In-hand robotic manipulation
- Generalize to new scenarios
- etc.

- Unsupervised learning
- Reinforcement learning
- Showing promise in limited domains where tons of data and compute are available

What's still hard in supervised learning?

- Predicting video
- Real-world speech recognition
- Resisting adversarial examples
- Solving word puzzles
- Bongard problems
- Summarizing text
- Building 3D models
- Answering questions
- Doing math

What types of problems are hard?

	Instances	Examples
Output is complex	 High-dimensional output Ambiguous output 	 3D reconstruction Video prediction Dialog systems Open-ended recommender systems
Reliability is required	 High precision is required Robustness is required 	 Failing safely out-of-distribution Robustness to adversarial attacks High-precision pose estimation
Generalization is required	 Out of distribution data Reasoning, planning, causality 	Self-driving: edge casesSelf-driving: controlSmall data

How to run a ML feasibility assessment

- A. Are you sure you need ML at all?
- B. Put in the work up-front to define success criteria with all of the stakeholders
- C. Consider the ethics of using ML
- D. Do a literature review
- E. Try to rapidly build a labeled benchmark dataset
- F. Build a *minimum* viable model (e.g., manual rules)
- G. Are you sure you need ML at all?

Not all ML projects should be planned the same way

Machine learning product archetypes

Definition

Software 2.0

Taking something software does today and doing it better with ML

Human-in-theloop Helping humans do their jobs better by complementing them with ML-based tools

Autonomous systems

Taking something humans do today and automating it with ML

Machine learning product archetypes

Examples

Software 2.0

- Improve code completion in an IDE
- Build a customized recommendation system
- Build a better video game AI

Human-in-theloop

- Turn sketches into slides
- Email auto-completion
- Help a radiologist do their job faster

Autonomous systems

- Full self-driving
- Automated customer support
- Automated website design

Machine learning product archetypes

Key questions

Software 2.0

- Do your models truly improve performance?
- Does performance improvement generate business value?
- Do performance improvements lead to a data flywheel?

Human-in-theloop

- How good does the system need to be to be useful?
- How can you collect enough data to make it that good?

Autonomous systems

- What is an acceptable failure rate for the system?
- How can you guarantee that it won't exceed that failure rate?
- How inexpensively can you label data from the system?

Do better predictions make the product better?

Machine learning project archetypes

Machine learning product archetypes

Implement a data loop that allows you to improve on this task and future ones

Machine learning product archetypes

Good product design. Release a 'good enough' version

Machine learning product archetypes

Add humans in the loop. Add guardrails and/or limit initial scope.

Despite all of this: just get started!

Avoiding tool fetishization

- You don't need a perfect model to get started
- You don't need perfect infrastructure, either
 - Just because Google or Uber does it, doesn't mean you need to
 - For many use cases, just running your model every day and storing the predictions in a database is hard to beat
 - That's why FSDL is a ML-powered product class, *not* an MLOps class

MLOps at reasonable scale

The "reasonable" scale (RS)

- Computing: RS companies have a finite amount of computing budget, not an entire cloud.
- Team Size: RS companies have dozens of engineers, not hundreds.
- Revenues: RS companies make hundreds of million USD/year, not billions.
- Data: RS companies deal in terabytes-sized dataset, not petabytes.

Summary

- ML adds complexity. Consider whether you really need it
- Make sure what you're working on is high impact, or else it might get killed

Running case study - pose estimation

Xiang, Yu, et al. "PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes." arXiv preprint arXiv:1711.00199 (2017).

Full Stack Robotics works on grasping

- Collect more data
- Mine hard cases

Wrapping up

- ML is complex, so use it because you need it and it will generate value. It's not a cureall
- In spite of this, you don't need a perfect setup to get started
- Let's walk through the project lifecycle and learn how to build ML-powered products together!