

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики Кафедра: Теории управления и динамики систем

Направление подготовки: «Фундаментальная информатика и информационные технологии»

Профиль подготовки: «Когнитивные системы»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА МАГИСТРА

На тему: «Двухкластерные режимы в системе Курамото с инерцией»

382006-3м	
Хорькин Дмитрий Сергеевич	
подпись	
Научный руководитель:	
доцент, к.фм.н.	
Смирнов Лев Александрович	

Винолими: опущени прушни

РИПРИТОННЯ

В данной работе рассматриваются двухкластерные вращательные режимы в системе Курамото с инерцией. В частности, изучается вопрос существования и устойчивости двухкластерных вращательных режимов в зависимости от управляющий параметров. Также был реализован программный комплекс, позволяющий эффективно находить интересующие вращательные режимы в произвольных системах связанных элементов. Было разработано web-приложение, выполняющее прямое численное моделирование системы. Аналитические результаты подтверждены прямым численным моделированием.

СОДЕРЖАНИЕ

АННОТАЦИЯ ВВЕДЕНИЕ	
ГЛАВА 1. Модель Курамото. Двухкластерные вращательные режимы	5
1.1. Модель Курамото с инерцией	5
1.2. Двухкластерные вращательные режимы. Существование и типы	5
ГЛАВА 2. Устойчивость двухкластерных вращательных режимов	7
2.1. Устойчивость двухкластерных вращательных движений с постоянной	
расстройкой фаз	7
2.2. Устойчивость двухкластерных вращательных движений с периодиче-	
ской расстройкой фаз	
ЗАКЛЮЧЕНИЕ	13
СПИСОК ЛИТЕРАТУРЫ	14

ВВЕДЕНИЕ

Сети фазовых осцилляторов часто используются для моделирования совместной динамики в различных биологических и искусственных системах, начиная от нейронных сетей [1] и популяций химических осцилляторов [2] до лазерных решеток [3] и электрических сетей [4]. Система фазовых осцилляторов Курамото первого порядка [5, 6] представляет собой широко адаптированную модель сети фазовых осцилляторов, которая может демонстрировать сложную пространственно-временную динамику при переходе от некогерентности к полной синхронизации [7–14]. Когда колебания в модели Курамото имеют неоднородные частоты, этот переход обычно сопровождается частичной синхронизацией, которая возникает, когда система распадается на кластеры когерентных и некогерентных осцилляторов [7, 14, 15].

Модель Курамото второго порядка с инерцией обычно используется для описания сетей генераторов, способных регулировать свои собственные частоты, как, например, в адаптивной частотной модели синхронизации светлячков [16] и системах электросетей [17]. Включение инерции приводит к двумерной внутренней динамике осцилляторов, тем самым делая кооперативную динамику модели Курамото второго порядка существенно более сложной, по сравнению с динамикой классической модели первого порядка. Данная динамика, связанная с учетом инерции, включает сложные переходы от некогерентности к полной синхронизации [18–24], бистабильность синхронных кластеров [25], хаотическую межкластерную динамику [26], химеры [27–29] и уединенные состояния [30, 31].

В работе [25] аналитически было изучено возникновение и сосуществование устойчивых кластеров в двухпопуляционной сети идентичных осцилляторов Курамото второго порядка. Две популяции разных размеров K и M естественным образом разделяются на два кластера, внутри которых осцилляторы синхронизируются, создавая фазовый сдвиг между кластерами. Анализ, выполненный в [25], позволил получить необходимые и достаточные условия устойчивости двухкластерной синхронизации, характеризующейся постоянной разностью фаз между элементами кластеров, а также предоставил условие устойчивости для двухкластерной синхронизации с вращающейся разностью фаз.

Целью данной работы является изучение двухкластерных вращательных режимов в системе Курамото с инерцией и запаздывающей по фазе связью Курамото-Сакагути [33], для успешного достижения которой были поставлены следующие задачи:

- 1) Исследование существования и типов возникающих двухкластерных вращательных режимов в зависимости от управляющих параметров.
- 2) Исследование устойчивости двухкластерных вращательных режимов в зависимости от управляющих параметров.
- 3) Реализация программного комплекса, позволяющего эффективно находить интересующие вращательные движения, а также определять их устойчивость в произвольных системах связанных элементов.

МОДЕЛЬ КУРАМОТО. ДВУХКЛАСТЕРНЫЕ ВРАЩАТЕЛЬНЫЕ РЕЖИМЫ

1.1. Модель Курамото с инерцией

В данной работе исследуется модель Курамото второго порядка, описываемая системой уравнений:

$$m\ddot{\varphi}_i + \dot{\varphi}_i = \omega + \frac{1}{N} \sum_{j=1}^N \sin(\varphi_j - \varphi_i - \alpha), i = \overline{1, N},$$
(1.1)

где m - параметр инерции, ω - постоянный вращающий момент, α - фазовая задержка, N - общее число элементов. Предполагается, что осцилляторы являются идентичными, с идентичной частотой ω , массой m и запаздыванием по фазе $\alpha \in [0,\pi)$ [33] . В системе 1.1 имеется синфазный режим, который локально устойчив для любого $\alpha \in [0,\pi/2)$ и нестабилен для любого $\alpha \in [\pi/2,\pi)$ [7]. Поэтому принято считать связь притягивающей при $\alpha < \pi/2$ и отталкивающей при $\pi/2 \le \alpha < \pi$.

1.2. Двухкластерные вращательные режимы. Существование и типы

Заметим, что двухкластерный режим описывается системой:

$$\begin{cases}
m\ddot{\psi}_1 + \dot{\psi}_1 = \omega + \frac{N-K}{N}\sin(\psi_2 - \psi_1 - \alpha) - \frac{K}{N}\sin\alpha, \\
m\ddot{\psi}_2 + \dot{\psi}_2 = \omega + \frac{K}{N}\sin(\psi_1 - \psi_2 - \alpha) - \frac{N-K}{N}\sin\alpha,
\end{cases}$$
(1.2)

где $\psi_1,\,\psi_2$ - фазы элементов первого и второго кластера соответственно, K - количество элементов в малом кластере. Введем новую переменную $\beta=\frac{K}{N}$, характеризующую долю элементов малого кластера относительно размера N всего ансамбля. Уравнение 1.2 перепишется в виде:

$$\begin{cases}
 m\ddot{\psi}_1 + \dot{\psi}_1 = \omega + (1 - \beta)\sin(\psi_2 - \psi_1 - \alpha) - \beta\sin\alpha, \\
 m\ddot{\psi}_2 + \dot{\psi}_2 = \omega + \beta\sin(\psi_1 - \psi_2 - \alpha) - (1 - \beta)\sin\alpha.
\end{cases}$$
(1.3)

Введем величину $X=\psi_1-\psi_2$, характеризующую расстройку фаз между элементами двух кластеров. Вычитая в 1.3 из первого уравнения второе, приходим к уравнению для отстройки X:

$$m\ddot{X} + \dot{X} = (1 - 2\beta)\sin\alpha - [(1 - \beta)\sin(X + \alpha) + \beta\sin(X - \alpha)]. \tag{1.4}$$

Заметим, что решение X=0 соответствует реализации синфазного вращательного режима. Ненулевое решение $X\neq 0$ соответствует реализации двухкластерного режима.

Для дальнейшего анализа уравнения 1.4 произведем ряд замен, а именно:

$$R^{2} = (N - 2K)^{2} \sin \alpha^{2} + N^{2} \cos \alpha^{2},$$

$$\rho = \sqrt{\frac{N}{mR}}, \ t = \hat{t} \frac{N}{\rho R}, \gamma = \frac{N - 2K}{R} \sin \alpha,$$

$$\Phi = X + \delta, \ \delta = \arccos\left(\frac{N}{R}\cos\alpha\right).$$

что приводит к:

$$\frac{d^2\Phi}{d\hat{t}^2} + \rho \frac{d\Phi}{d\hat{t}} + \sin\Phi = \gamma \tag{1.5}$$

Полученное уравнение 1.5 хорошо изучено в работе [32]. В зависимости от параметров ρ и γ , в системе 1.5 могут существовать два состояния равновесия: устойчивая точка $\Phi_e = \arcsin \gamma$ и седло $\Phi_s = \pi - \arcsin \gamma$, а также некоторое устойчивое периодическое вращательное движение. Данные соотношения определяются так называемой бифуркационной кривой Трикомми [32].

Таким образом, в исходной системе могут существовать 2 типа двухкластерных вращательных режимов, первый характеризуется постоянной расстройкой фаз, второй характеризуется периодической на цилиндре расстройкой фаз.

Область существования вращательного движения в уравнении 1.5 определяется соотношением:

$$\gamma \ge T(\rho),\tag{1.6}$$

где T(.) - уравнение кривой Трикомми. В качестве аппроксимации для кривой Трикоми можно использовать выражение $T(\rho)=\rho \frac{4}{\pi}-0.305 \rho^3$ полученное в [25]. Подставляя, получаем уравнения для границы области существования двухкластерного вращательного движения с периодической расстройкой фаз в области параметров α , m:

$$m = \frac{1}{\sqrt{(1 - 2\beta)^2 \sin \alpha^2 + \cos \alpha^2} \cdot T^{-1} \left(\frac{(1 - 2\beta) \sin \alpha}{\sqrt{(1 - 2\beta)^2 \sin \alpha^2 + \cos \alpha^2}}\right)}$$
(1.7)

Заметим, что двухкластерный вращательный режим при $\beta=0.5$ не существует.

УСТОЙЧИВОСТЬ ДВУХКЛАСТЕРНЫХ ВРАЩАТЕЛЬНЫХ РЕЖИМОВ

2.1. Устойчивость двухкластерных вращательных движений с постоянной расстройкой фаз

Перепишем 1.4 в виде системы:

$$\begin{cases} \dot{x} = y, \\ \dot{y} = \frac{1}{m} \left[(1 - 2\beta) \sin \alpha (1 - \cos x) - \sin x \cos \alpha - y \right] \end{cases}$$
 (2.1)

Выполним линеаризацию системы 2.1:

$$\begin{pmatrix} \dot{\hat{x}} \\ \dot{\hat{y}} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{1}{m} \left[(1 - 2\beta) \sin \alpha \sin x_p - \cos \alpha \cos x_p \right] & -\frac{1}{m} \end{pmatrix} \begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix}$$
(2.2)

Где x_p - стационарные состояния системы 1.4. Характеристический многочлен системы 2.2:

$$\lambda^2 + \frac{1}{m}\lambda - \frac{1}{m}\left[(1 - 2\beta)\sin\alpha\sin x_p - \cos\alpha\cos x_p\right] = 0$$
 (2.3)

Из 2.3 можно заметить, что устойчивость стационарного состояния x_p определяется соотношением:

$$\cos \alpha \cos x_p - (1 - 2\beta) \sin \alpha \sin x_p > 0 \tag{2.4}$$

Несложно заметить, что стационарные состояния в уравнении 1.4 определяются выражением:

$$\sin(x_p + \varphi) = \frac{(1 - 2\beta)\sin\alpha}{\sqrt{\cos\alpha^2 + (1 - 2\beta)^2\sin\alpha^2}},$$

Откуда:

$$x_{p_1} = \begin{cases} 0, \alpha \in [-\pi/2, \pi/2) \\ 2 \arcsin \frac{(1-2\beta)\sin\alpha}{\sqrt{\cos\alpha^2 + (1-2\beta)^2\sin\alpha^2}} - \pi, \alpha \in [\pi/2, 3\pi/2) \end{cases}$$
 (2.5)

$$x_{p_2} = \begin{cases} \pi - 2\arcsin\frac{(1-2\beta)\sin\alpha}{\sqrt{\cos\alpha^2 + (1-2\beta)^2\sin\alpha^2}}, & \alpha \in [-\pi/2, \pi/2) \\ 0, & \alpha \in [\pi/2, 3\pi/2) \end{cases}$$
(2.6)

Подставляя 2.5, 2.6 в 2.4 получаем, что x_{p_1} - устойчива, x_{p_2} - неустойчива.

Заметим, что при β стремящейся к 0.5 стационарные состояния с расстройкой фаз неравной нулю стремятся к πk , $k \in \mathbb{Z}$. Стоит отметить, что в полной системе 1.1 стационарное двухкластерное состояние x_{p_1} может терять свою устойчивость. Данный эффект будет продемонстрирован ниже.

Рисунок 2.1. **Устойчивость стационарных состояний.** Синяя пунктирная линия - устойчивое состояние x_{p_1} , Красная сплошная линия - неустойчивое состояние x_{p_2} . $\beta=0.3,\ \beta=0.4$

Рисунок 2.2. **Устойчивость стационарных состояний.** Синяя пунктирная линия - устойчивое состояние x_{p_1} , Красная сплошная линия - неустойчивое состояние x_{p_2} . $\beta=0.494$

2.2. Устойчивость двухкластерных вращательных движений с периодической расстройкой фаз

Выполним линеаризацию относительно произвольного вращательного движения ψ_i с помощью замены, где вариации δ_i малы: $\varphi_i = \psi_i + \delta_i$:

$$m\ddot{\delta}_i + \dot{\delta}_i = \frac{1}{N} \sum_{j=1}^N \cos(\psi_j - \psi_i - \alpha) \cdot (\delta_j - \delta_i), \ i = \overline{1, N}$$
 (2.7)

Для случая двухкластерного режима 1.2 система 2.7 запишется в виде:

$$\begin{cases}
m\ddot{\delta}_{i} + \dot{\delta}_{i} = \frac{1}{N} \left(\cos \alpha \sum_{j=1}^{K} (\delta_{j} - \delta_{i}) + \cos (X + \alpha) \sum_{j=K+1}^{N} (\delta_{j} - \delta_{i}) \right), & i = \overline{1, K}, \\
m\ddot{\delta}_{i} + \dot{\delta}_{i} = \frac{1}{N} \left(\cos (X - \alpha) \sum_{j=1}^{K} (\delta_{j} - \delta_{i}) + \cos \alpha \sum_{j=K+1}^{N} (\delta_{j} - \delta_{i}) \right), & i = \overline{K + 1, N},
\end{cases}$$
(2.8)

Выполняя замену:

$$\eta_1 = \frac{1}{K} \sum_{i=1}^K \delta_i - \frac{1}{N-K} \sum_{i=K+1}^N \delta_i,$$

$$\eta_2 = \frac{1}{K} \sum_{i=1}^K \delta_i + \frac{1}{N-K} \sum_{i=K+1}^N \delta_i,$$

$$\xi_n = \delta_{n+1} - \delta_n, \ 1 \le n \le K - 1,$$

$$\zeta_n = \delta_{n+1} - \delta_n, \ K + 1 < n < N - 1.$$

Приходим к системе уравнений:

$$\begin{cases}
 m\ddot{\eta}_1 + \dot{\eta}_1 + (\beta\cos(X - \alpha) + (1 - \beta)\cos(X + \alpha)) \,\eta_1 = 0, \\
 m\ddot{\eta}_2 + \dot{\eta}_2 + ((1 - \beta)\cos(X + \alpha) - \beta\cos(X - \alpha)) \,\eta_1 = 0,
\end{cases}$$
(2.9)

$$\begin{cases}
m\ddot{\xi}_n + \dot{\xi}_n + ((1-\beta)\cos(X+\alpha) + \beta\cos\alpha)\,\xi_n = 0, \\
m\ddot{\zeta}_n + \dot{\zeta}_n + ((1-\beta)\cos\alpha + \beta\cos(X-\alpha))\,\zeta_n = 0.
\end{cases}$$
(2.10)

Так как X периодична, мы можем применить теорию Φ локе и найти мультипликаторы, определяющие асимптотическое поведение решений системы.

Проанализируем систему 2.9 (переменные η_1 , η_2). Из 1.4 следует, что одним из решений первого уравнения является \dot{X} . Так как X периодична, то один из мультипликаторов равен 1. Согласно формуле Лиувилля-Остроградского, второй мультипликатор первого уравнения равен $\exp\left(-\frac{T_x}{m}\right)$. Кроме того, полная система имеет решение $\eta_1=0,\,\eta_2=const,$ откуда следует, что еще один мультипликатор равен единице. Вновь применяя формулу Лиувилля-Остроградского, но уже ко всей системе, находим четвертый мультипликатор, равный $\exp\left(-\frac{T_x}{m}\right)$. Итак, рассматриваемый режим всегда внутренне устойчив.

Проанализируем систему 2.10 (переменные ξ , ζ). Переменная ξ соответствует малому кластеру, переменная ζ соответствует большому кластеру. Они не связанны между собой. Благодаря такому разделению переменных, мы можем проследить как меняется устойчивость двухкластерного режима с периодической расстройкой фаз для каждого кластера. В зависимости от X устойчивость может пропасть или появится только у одного или сразу у двухкластеров, благодаря чему мы можем понять каким образом двухкластерный режим будет разрушаться в случае потери устойчивости.

С помощью уравнений 2.10 определим устойчивость стационарного двухкластерного вращательного режима, соответствующего состоянию x_{p_1} . Уравнения запишутся в виде:

$$x_{p_1} = 0, \ \alpha \in [-\pi/2, \pi/2] : \begin{cases} m\ddot{\xi}_n + \dot{\xi}_n + \cos\alpha\xi_n = 0, \\ m\ddot{\zeta}_n + \dot{\zeta}_n + \cos\alpha\zeta_n = 0. \end{cases}$$
 (2.11)

$$x_{p_{1}} = 2 \arcsin \frac{(1 - 2\beta) \sin \alpha}{\sqrt{\cos \alpha^{2} + (1 - 2\beta)^{2} \sin \alpha^{2}}} - \pi, \alpha \in [\pi/2, 3\pi/2) :$$

$$\vdots \begin{cases} m\ddot{\xi}_{n} + \dot{\xi}_{n} + A(\alpha, \beta)\xi_{n} = 0, \\ m\ddot{\zeta}_{n} + \dot{\zeta}_{n} - A(\alpha, \beta)\zeta_{n} = 0. \end{cases}$$
(2.12)

Где A - некоторый коэффициент. Заметим, что при $\alpha \in [-\pi/2, \pi/2), x_{p_1}$ - устойчива в исходной системе, при $\alpha \in [\pi/2, 3\pi/2), x_{p_1}$ - неустойчива в исходной системе.

Получается, что в исходной системе двухкластерный вращательный режим с постоянной расстройкой фаз всегда является неустойчивым. Таким образом дальнейший анализ устойчивости мы будем проводить только для двухкластерных вращательных движений с периодической расстройкой фаз.

В результате численного моделирования были получены карты устойчивости двухкластерных вращательных режимов с периодической расстройкой фаз в области параметров α , m.

Рисунок 2.3. **Карта устойчивости двухкластерных вращательных состояний с периодической расстройкой фаз.** Область с малыми маркерами соответствует устойчивости малого кластера. Область с большими маркерами соответствует устойчивости большого кластера. На пересечении этих областей двухкластерный вращательный режим с периодической расстройкой фаз является устойчивым

Из рисунка 2.4 видно, что устойчивость двухкластерного режима разрушается из за потери устойчивости у одного из кластеров: как большого при меньших параметрах α , так и малого при больших параметрах α . Можно заметить, что внутри зоны устойчивости большого кластера появляется зона неустойчивости, которая разрастается с увеличением параметра β . При $\beta \approx 0.375$ зона устойчивости большого кластера распадается на две несвязных компоненты.

Рисунок 2.4. **Карта устойчивости двухкластерных вращательных состояний с периодической расстройкой фаз.** Область с малыми маркерами соответствует устойчивости малого кластера. Область с большими маркерами соответствует устойчивости большого кластера. На пересечении этих областей двухкластерный вращательный режим с периодической расстройкой фаз является устойчивым

Рисунок 2.5. **Карта устойчивости двухкластерных вращательных состояний с периодической расстройкой фаз.** Область с малыми маркерами соответствует устойчивости малого кластера. Область с большими маркерами соответствует устойчивости большого кластера. На пересечении этих областей двухкластерный вращательный режим с периодической расстройкой фаз является устойчивым

Рисунок 2.6. **Пространственно-временная** диаграмма. Пространственно-временные диаграммы изображены для каждого элемента, относительно первого элемента. Цвет характеризует фазу элемента. Параметры: $N=24,\ m=50,\ \omega=1,\ \alpha=0.4586$ (слева) и $\alpha=0.4946$ (справа)

Direct numerical calculation

Рисунок 2.7. **Пространственно-временная диаграмма.** Пространственно-временные диаграммы изображены для каждого элемента, относительно первого элемента. Цвет характеризует фазу элемента. Параметры: $N=24, m=50, \omega=1, \alpha=0.54$ (см. рис. 2.4)

Рисунок 2.8. Карта устойчивости двухкластерных вращательных состояний с периодической расстройкой фаз в зависимости от параметра β . Внутри синей зоны двухкластерный режим является устойчивым. $\beta=0.494$

ЗАКЛЮЧЕНИЕ

В первой главе был изучен вопрос о существовании двухкластерных вращательных движений. В частности было получено уравнение, описывающее границы областей существования интересующего вращательного движения (см. 1.7). Было показано, что существует два типа двухкластерных вращательных движений. Первый характеризуется постоянной расстройкой фаз, второй характеризуется периодической расстройкой фаз.

Во второй главе был изучен вопрос устойчивости двухкластерных вращательных движений. Было показано, что двухкластерное вращательное движение с постоянной расстройкой фаз является неустойчивым при любых значениях управляющих параметров. Также благодаря замене переменных была получена система (см. 2.10), независимо описывающая устойчивость каждого кластера. Благодаря чему были построены карты устойчивости двухкластерного режима в области параметров m, α в зависимости от параметра $\beta = K/N$. Было показано, что устойчивость двухкластерного режима часто может теряться из-за потери устойчивости у одного из кластеров, как малого, так и большого. При этом другой кластер сохраняет свою устойчивость. Результаты были подтверждены в рамках прямого численного моделирования.

СПИСОК ЛИТЕРАТУРЫ

- F. C. Hoppensteadt and E. M. Izhikevich, Weakly connected neural networks, vol. 126 (Springer Science Business Media, 2012).
- 2. M. R. Tinsley, S. Nkomo, and K. Showalter, Nature Physics 8, 662 (2012).
- 3. J. Ding, I. Belykh, A. Marandi, and M.-A. Miri, Physical Review Applied 12, 054039 (2019).
- F. Dörfler, M. Chertkov, and F. Bullo, Proceedings of the National Academy of Sciences 110, 2005 (2013).
- 5. Y. Kuramoto, in International Symposium on Mathemat- ical Problems in Theoretical Physics (Springer, 1975), pp. 420–422.
- 6. S. H. Strogatz, Physica D: Nonlinear Phenomena 143, 1 (2000).
- J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ri- tort, and R. Spigler, Reviews of Modern Physics 77, 137 (2005).
- 8. E. Barreto, B. Hunt, E. Ott, and P. So, Physical Review E 77, 036107 (2008).
- 9. E. Ott and T. M. Antonsen, Chaos: An Interdisciplinary Journal of Nonlinear Science 18, 037113 (2008).
- 10. H. Hong, H. Chaté, H. Park, and L.-H. Tang, Physical Review Letters 99, 184101 (2007).
- 11. A. Pikovsky and M. Rosenblum, Physical Review Letters 101, 264103 (2008).
- 12. Y. Maistrenko, O. Popovych, O. Burylko, and P. Tass, Physical Review Letters 93, 084102 (2004).
- 13. F. Dörfler and F. Bullo, SIAM Journal on Applied Dy- namical Systems 10, 1070 (2011).
- 14. E. A. Martens, E. Barreto, S. Strogatz, E. Ott, P. So, and T. Antonsen, Physical Review E 79, 026204 (2009).
- 15. C. R. Laing, Physica D: Nonlinear Phenomena 238, 1569 (2009).
- 16. B. Ermentrout, Journal of Mathematical Biology 29, 571 (1991).
- 17. L. Tumash, S. Olmi, and E. Schöll, Chaos 29, 123105 (2019).
- 18. H.-A. Tanaka, A. J. Lichtenberg, and S. Oishi, Physical Review Letters 78, 2104 (1997).
- 19. H.-A. Tanaka, A. J. Lichtenberg, and S. Oishi, Physica D: Nonlinear Phenomena 100, 279 (1997).
- 20. P. Ji, T. K. Peron, F. A. Rodrigues, and J. Kurths, Scientific Reports 4 (2014).
- 21. V. Munyaev, L. Smirnov, V. Kostin, G. Osipov, and A. Pikovsky, New Journal of Physics 22, 023036 (2020).
- 22. M. Komarov, S. Gupta, and A. Pikovsky, EPL (Europhysics Letters) 106, 40003 (2014).
- 23. S. Olmi, A. Navas, S. Boccaletti, and A. Torcini, Physical Review E 90, 042905 (2014).
- 24. N. V. Barabash, V. N. Belykh, G. V. Osipov, and I. V. Belykh, Chaos 31 (2021).
- 25. I. V. Belykh, B. N. Brister, and V. N. Belykh, Chaos: An Interdisciplinary Journal of Nonlinear Science 26, 094822 (2016).
- 26. B. N. Brister, V. N. Belykh, and I. V. Belykh, Physical Review E 101, 062206 (2020).
- 27. S. Olmi, Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 123125 (2015).
- 28. Y. Maistrenko, S. Brezetsky, P. Jaros, R. Levchenko, and T. Kapitaniak, Physical Review E 95, 010203 (2017).

- 29. G. S. Medvedev and M. S. Mizuhara, Journal of Statistical Physics 182, 1 (2021).
- 30. P. Jaros, Y. Maistrenko, and T. Kapitaniak, Physical Review E 91, 022907 (2015).
- 31. P. Jaros, S. Brezetsky, R. Levchenko, D. Dudkowski, T. Kapitaniak, and Y. Maistrenko, Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 011103 (2018).
- 32. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillators: Adiwes International Series in Physics, vol. 4 (Elsevier, 2013).
- 33. H. Sakaguchi, Physical Review E 73, 031907 (2006).