Функция f называется бесконечно малой по сравнению с функцией g в точке x_0 , если $\lim_{x\to x_0} \frac{f(x)}{g(x)} = 0$. Обозначение o(g) читается как "о-малое от g", при этом, сама точка x_0 не указывается и считается известной из контекста. Функция f такая, что $\lim_{x\to x_0} f(x) = 0$ называется бесконечно малой в точке x_0 , в таком случае используется обозначение o(1).

- 1. Проверьте следующие свойства:
 - (a) $\lim_{x \to x_0} f(x) = A \iff f(x) = A + o(1);$
 - (b) Функция f непрерывна в точке $x_0 \iff f(x) = f(x_0) + o(1);$
 - (c) Если производная $f'(x_0)$ существует, то $f(x_0 + h) = f(x_0) + f'(x_0)h + o(h)$.
 - (d) Если для некоторого $A \in \mathbb{R}$ верно равенство $f(x_0 + h) = f(x_0) + Ah + o(h)$, то производная $f'(x_0)$ существует и равна A.
- 2. Приведите пример функции, непрерывной в некоторой точке, но не имеющей в ней производной.

Результат задач 1 (c) и 1 (d) показывает, что в точке x_0 функция $f(x_0 + h)$ приращения h отличается от линейной функции $f'(x_0)h$ бесконечно мало по сравнению с h, кроме того, отсюда видно, что производная даёт наилучшее линейное приближение функции в точке.

Правила дифференцирования

 \mathcal{A} ифференцирование — это вычисление производной. Функция называется $\partial u \phi \phi$ еренцируемой в точке, если он имеет в ней производную.

- 3. Вычислите производную функций $f(x) \equiv C$ и f(x) = x.
- 4. Докажите, что, если функции f и g дифференцируемы в точке x, а $k, \ell \in \mathbb{R}$, то $kf \pm \ell g$ тоже дифференцируема в точке x, причём $(kf(x) \pm \ell g(x))' = kf'(x) \pm \ell g'(x)$.
- 5. Докажите, что, если функции f и g дифференцируемы в точке x, то $f \cdot g$ тоже дифференцируема в точке x, причём $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$.
- 6. Докажите, что, если функция f дифференцируема в точке x и $f(x) \neq 0$, то $\frac{1}{f}$ тоже дифференцируема в точке x, причём $(\frac{1}{f(x)})' = -\frac{f'(x)}{f^2(x)}$.
- 7. Выведите формулу производной отношения $\frac{f(x)}{g(x)}$ при $g(x) \neq 0$.
- 8. Докажите, что, если функция f дифференцируема в точке x, а функция g дифференцируема в точке f(x), то их композиция g(f) дифференцируема в точке x, причём $(g(f(x)))' = g'(f(x)) \cdot f'(x)$.
- 9. Докажите, что, если монотонная функция f дифференцируема в точке x и $f'(x) \neq 0$, то обратная функция $f^{-1}(x)$ дифференцируема в точке y = f(x) и верно равенство $(f^{-1}(y))' = \frac{1}{f'(x)}$. Другими словами, $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$.

Вычисление производной

- 10. Вычислите производную степенной функции x^n для показателя n вида -k и $\frac{1}{k}, k \in \mathbb{N}$. Получите формулу производной степенной функции x^n для произвольного n.
- 11. Найдите производные тригонометрических функций: sin, cos, tg, ctg.
- 12. Найдите формулы для производных обратных тригонометрических функций.
- 13. Продифференцируйте следующие функции: a) $\frac{\sqrt[4]{x}}{1+\sqrt[4]{x}}$; б) $x\sin x + \cos x$; в) $(x^2 + 3x 5)^4$; г) $\sqrt[4]{1 + \cos^2 5x}$; д) $x\arcsin x + \sqrt{1 x^2}$.
- 14. Под каким углом пересекаются графики функций $\cos x$ и $\sin x$?