OSCAR v3.1

Manual

Basic simulation

Essentially, to make a basic simulation one must:

- 1. import the OSCAR object from core_fct.fct_process;
- 2. define the Ini (initial state), For (forcing data) and Par (parameters) arguments;
- 3. call OSCAR with these arguments (and possibly other optional arguments).

The run_model function found in core_fct.fct_wrap is a wrapper that does all that and more, using internal data for forcings and parameters. However, this function may not be adequate for advanced usage of OSCAR, in which case it should be used as inspiration for defining one's own run scripts. To further help with this, the run_scripts folder contains a few basic examples.

Core structure

Here is a quick overview of the files contained in the core_fct folder and their content.

File	Content
cls_main	definition of the Model and Process classes upon which OSCAR v3 is based
fct_calib	functions to calibrate some of the model's parameters
fct_genD	functions to generate consistent timeseries of drivers
fct_genMC	functions to generate the Monte Carlo setup
fct_loadD	functions to load the primary drivers
fct_loadP	functions to load the primary parameters, some of them being loaded from files and others manually written there
fct_misc	a bunch of useful functions, notably including the solving schemes, a generic loading function called <pre>load_data</pre> , and a function to regionally aggregate datasets called <pre>aggreg_region</pre>
fct_process	equations for the physical processes constituting OSCAR; also contains OSCAR and submodels
fct_wrap	wrapper function to run the model in a not-so-flexible standard mode

Dimensions, drivers, variables and parameters

Dimensions

Here is a table summerizing the various dimensions over which OSCAR's input, internal and output data may be defined. Additional dimensions can be added freely to the Ini, For and/or Par arguments, in which case

they will be conserved throughout the run, which allows easily parallelizing experiments (e.g. scenarios). This can be heavy on the memory, however.

Dims	Description
year	time axis
config	Monte Carlo elements
spc_halo	species of halogenated compounds
box_osurf	pools for the surface ocean carbon cycling
reg_land	land carbon-cycle regions
bio_land	land carbon-cycle biomes
bio_from	origine biomes of the land-use perturbations
bio_to	destination biomes of the land-use perturbations
box_hwp	pools of harvested wood products
reg_pf	regions specific to the permafrost module
box_thaw	pools of thawed permafrost
spc_bb	species from biomass burning
reg_slcf	regions specific to SLCF regional saturation effects
reg_bcsnow	regions specific to BC deposition on snow

Drivers

Drivers are the forcing data that need to be prescribed to the model for it to be able to run. They must be prescribed using the For argument when calling a Model object. The model automatically connects the various processes it is made of, and deduces what input data are required, so that it will display an error message if some drivers are missing in For. Assuming OSCAR has been imported, a list of the model's drivers can be displayed with OSCAR.var_in. More information on the drivers is available in core_fct.fct_loadD.

In code	In papers	Units	Dims
Eff	E_{FF}	PgC yr ⁻¹	year, reg_land
E_CH4	$E_{\mathrm{CH_4}}$	TgC yr ⁻¹	year, reg_land
E_N20	$E_{ m N_2O}$	TgN yr ⁻¹	year, reg_land
E_Xhalo	$E_{\rm X}$	Gg yr ⁻¹	year, reg_land, spc_halo
E_NOX	$E_{ m NO_x}$	TgN yr ⁻¹	year, reg_land
E_CO	$E_{\rm CO}$	TgC yr ⁻¹	year, reg_land
E_VOC	$E_{\rm VOC}$	Tg yr ⁻¹	year, reg_land
			0.140

In code	In papers	Units	Dims
E_S02	E_{SO_2}	TgS yr ⁻¹	year, reg_land
E_NH3	$E_{ m NH_3}$	TgN yr ⁻¹	year, reg_land
E_OC	$E_{\rm OC}$	TgC yr ⁻¹	year, reg_land
E_BC	E_{BC}	TgC yr ⁻¹	year, reg_land
d_Acover	δA	Mha yr ⁻¹	year, reg_land, bio_from, bio_to
d_Hwood	δH	PgC yr ⁻¹	year, reg_land, bio_land
d_Ashift	δS	Mha yr ⁻¹	year, reg_land, bio_from, bio_to
RF_contr	$\mathrm{RF}_{\mathrm{con}}$	W m ⁻²	year
RF_volc	$\mathrm{RF}_{\mathrm{volc}}$	W m ⁻²	year
RF_solar	$\mathrm{RF}_{\mathrm{solar}}$	W m ⁻²	year

Variables

Each of the model's variable is defined through a Process object; and a Model object is essentially a collection of connected processes. Prognostic variables (i.e. state variables) are those defined through a time-differential equation, while diagnostic variables are defined at any time t as a function of prognostic variables and/or other diagnostic variables at that same time t. When solving, at every single timestep, the model first solves all prognostic variables, and only then calculates the diagnostic variables. Assuming OSCAR has been imported, a list of the model's variables can be displayed with OSCAR.proc_all, or somewhat equivalently with OSCAR.var_mid | OSCAR.var_out. Prognostic and diagnostic variables can be displayed with OSCAR.var_prog and OSCAR.var_diag, respectively. More information on each variable/process is available in core_fct.fct_process.

In code	In papers	Units	Dims	Prog?
D_pCO2	$\mathcal{F}_{\mathrm{pCO}_2}$	ppm	-	
D_mld	$\Delta h_{ m mld}$	m	-	
D_dic	$\Delta { m dic}$	μmol kg ⁻¹	-	
D_Fin	$\Delta F_{ m in}$	PgC yr ⁻¹	box_osurf	
D_Fout	ΔF_{out}	PgC yr ⁻¹	box_osurf	
D_Fcirc	$\Delta F_{ m circ}$	PgC yr ⁻¹	box_osurf	
D_Focean	$\Delta F_{\downarrow m ocean}$	PgC yr ⁻¹	-	
D_Cosurf	ΔC_{surf}	PgC	-	yes
	_	<u> </u>	0.140	<u> </u>

In code	In papers	Units	Dims	Prog?
f_fert	$\mathcal{F}_{ ext{fert}}$	1	reg_land, bio_land	
D_npp	Δnpp	PgC Mha ⁻¹ yr ⁻ 1	reg_land, bio_land	
f_igni	$\mathcal{F}_{ ext{igni}}$	1	reg_land, bio_land	
D_efire	Δe_{fire}	PgC Mha ⁻¹ yr ⁻ 1	reg_land, bio_land	
D_eharv	$\Delta e_{ m harv}$	PgC Mha ⁻¹ yr ⁻	reg_land, bio_land	
D_egraz	$\Delta e_{ m graz}$	PgC Mha ⁻¹ yr ⁻	reg_land, bio_land	
D_fmort1	$\Delta f_{\mathrm{mort}1}$	PgC Mha ⁻¹ yr ⁻ 1	reg_land, bio_land	
D_fmort2	$\Delta f_{\mathrm{mort2}}$	PgC Mha ⁻¹ yr ⁻ 1	reg_land, bio_land	
f_resp	$\mathcal{F}_{ ext{resp}}$	1	reg_land, bio_land	
D_rh1	$\Delta r h_1$	PgC Mha ⁻¹ yr ⁻ 1	reg_land, bio_land	
D_fmet	$\Delta f_{ m met}$	PgC Mha ⁻¹ yr ⁻ 1	reg_land, bio_land	
D_rh2	$\Delta \mathrm{rh}_2$	PgC Mha ⁻¹ yr ⁻	reg_land, bio_land	
D_nbp	-	PgC Mha ⁻¹ yr ⁻ 1	reg_land, bio_land	
D_cveg	Δc_{veg}	PgC Mha ⁻¹	reg_land, bio_land	yes
D_csoil1	$\Delta c_{\mathrm{soil1}}$	PgC Mha ⁻¹	reg_land, bio_land	yes
D_csoil2	$\Delta c_{\mathrm{soil2}}$	PgC Mha ⁻¹	reg_land, bio_land	yes
D_Fveg_bk	$\delta C_{\mathrm{veg,bk}}$	PgC yr ⁻¹	reg_land, bio_from, bio_to	
D_Fsoil1_bk	$\delta C_{\rm soil1,bk}$	PgC yr ⁻¹	reg_land, bio_from, bio_to	

In code	In papers	Units	Dims	Prog?
D_Fsoil2_bk	$\delta C_{\mathrm{soil2,bk}}$	PgC yr ⁻¹	reg_land, bio_from, bio_to	
D_Fslash	-	PgC yr ⁻¹	reg_land, bio_from, bio_to	
D_Fslash1	$\Delta F_{\mathrm{slash1}}$	PgC yr ⁻¹	reg_land, bio_from, bio_to	
D_Fslash2	$\Delta F_{\mathrm{slash2}}$	PgC yr ⁻¹	reg_land, bio_from, bio_to	
D_Fhwp	ΔF_{hwp}	PgC yr ⁻¹	reg_land, bio_from, bio_to, box_hwp	
D_NPP_bk	ΔNPP_{bk}	PgC yr ⁻¹	reg_land, bio_from, bio_to	
D_Efire_bk	$\Delta E_{\rm fire,bk}$	PgC yr ⁻¹	reg_land, bio_from, bio_to	
D_Eharv_bk	$\Delta E_{\mathrm{harv,bk}}$	PgC yr ⁻¹	reg_land, bio_from, bio_to	
D_Egraz_bk	$\Delta E_{\rm graz,bk}$	PgC yr ⁻¹	reg_land, bio_from, bio_to	
D_Fmort1_bk	$\Delta F_{\rm mort1,bk}$	PgC yr ⁻¹	reg_land, bio_from, bio_to	
D_Fmort2_bk	$\Delta F_{\rm mort2,bk}$	PgC yr ⁻¹	reg_land, bio_from, bio_to	
D_Rh1_bk	$\Delta Rh_{1,bk}$	PgC yr ⁻¹	reg_land, bio_from, bio_to	
D_Fmet_bk	$\Delta F_{\rm met,bk}$	PgC yr ⁻¹	reg_land, bio_from, bio_to	
D_Rh2_bk	$\Delta Rh_{2,bk}$	PgC yr ⁻¹	reg_land, bio_from, bio_to	
D_Ehwp	ΔE_{hwp}	PgC yr ⁻¹	reg_land, bio_from, bio_to, box_hwp	
D_NBP_bk	-	PgC yr ⁻¹	reg_land, bio_from, bio_to	
D_Eluc	$\Delta E_{ m LUC}$	PgC yr ⁻¹	-	
D_Fland	$\Delta F_{\downarrow \mathrm{land}}$	PgC yr ⁻¹	-	
D_Aland	ΔA	Mha	reg_land, bio_land	yes
D_Cveg_bk	$\Delta C_{\mathrm{veg,bk}}$	PgC	reg_land, bio_from, bio_to	yes
D_Csoil1_bk	$\Delta C_{\rm soil1,bk}$	PgC	reg_land, bio_from, bio_to	yes
D_Csoil2_bk	$\Delta C_{ m soil2,bk}$	PgC	reg_land, bio_from, bio_to	yes
D_Chwp	ΔC_{hwp}	PgC	reg_land, bio_from, bio_to, box_hwp	yes
f_resp_pf	-	1	reg_pf	
D_pthaw_bar	$\Delta \bar{p}_{\mathrm{thaw}}$	1	reg_pf	
d_pthaw	$\frac{\mathrm{d}}{\mathrm{d}t}p_{\mathrm{thaw}}$	yr ⁻¹	reg_pf	

In code	In papers	Units	Dims	Prog?
D_pthaw	Δp_{thaw}	1	reg_pf	yes
D_Fthaw	$\Delta F_{ m thaw}$	PgC yr ⁻¹	reg_pf	
D_Ethaw	-	PgC yr ⁻¹	reg_pf, box_thaw	
D_Epf	$\Delta E_{ m pf}$	PgC yr ⁻¹	reg_pf	
D_Epf_CO2	-	PgC yr ⁻¹	reg_pf	
D_Epf_CH4	-	TgC yr ⁻¹	reg_pf	
D_Cfroz	ΔC_{froz}	PgC	reg_pf	yes
D_Cthaw	ΔC_{thaw}	PgC	reg_pf, box_thaw	yes
D_C02	$\Delta \mathrm{CO}_2$	ppm	-	yes
AF	-	1	-	
kS	-	yr ⁻¹	-	
RF_CO2	ΔRF^{CO_2}	W m ⁻²	-	
D_Efire	ΔE_{fire}	PgC yr ⁻¹	reg_land, bio_land	
D_Ebb_nat	-	TgX yr ⁻¹	reg_land, bio_land, spc_bb	
D_Ebb_ant	-	TgX yr ⁻¹	reg_land, bio_land, spc_bb	
D_Ebb	$\Delta E_{ m bb}$	TgX yr ⁻¹	reg_land, bio_land, spc_bb	
D_CH4_lag	$\Delta \mathrm{CH}_{4\mathrm{lag}}$	ppb	-	yes
D_N2O_lag	$\Delta N_2 O_{lag}$	ppb	-	yes
D_Xhalo_lag	ΔX_{lag}	ppt	spc_halo	yes
D_Ta	ΔT_A	K		
D_f_Qa	$\frac{\Delta Q_A}{Q_{A,0}}$	1	-	
f_k0H	$\mathcal{F}_{\mathrm{OH}}$	1	-	
D_Foh_CH4	-	TgC yr ⁻¹	-	
D_Fhv_CH4	-	TgC yr ⁻¹	-	
D_Fsoil_CH4	-	TgC yr ⁻¹	-	

In code	In papers	Units	Dims	Prog?
D_Focean_CH4	-	TgC yr ⁻¹	-	
D_Fsink_CH4	$\Delta F_{\downarrow}^{\mathrm{CH_{4}}}$	TgC yr ⁻¹	-	
D_Foxi_CH4	-	PgC yr ⁻¹	-	
D_ewet	Δe_{wet}	TgC Mha ⁻¹ yr ⁻¹	reg_land	
D_Awet	ΔA_{wet}	Mha	reg_land	
D_Ewet	ΔE_{wet}	TgC yr ⁻¹	reg_land	
D_CH4	$\Delta \mathrm{CH_4}$	ppb	-	yes
tau_CH4	-	yr	-	
RF_CH4	ΔRF^{CH_4}	$W m^{-2}$	-	
RF_H2Os	ΔRF^{H_2Os}	W m ⁻²	-	
D_f_ageair	-	1	-	
f_hv	$\mathcal{F}_{\mathrm{h} u}$	1	-	
D_Fhv_N20	-	TgN yr ⁻¹	-	
D_Fsink_N20	$\Delta F_{\downarrow}^{\rm N_2O}$	TgN yr ⁻¹	-	
D_N20	$\Delta N_2 O$	ppb	-	yes
tau_N2O	-	yr	-	
RF_N20	ΔRF^{N_2O}	W m ⁻²	-	
D_Foh_Xhalo		Gg yr ⁻¹	spc_halo	
D_Fhv_CH4	-	Gg yr ⁻¹	spc_halo	
D_Fother_CH4	-	Gg yr ⁻¹	spc_halo	
D_Fsink_CH4	$\Delta F_{\downarrow}^{X}$	Gg yr ⁻¹	spc_halo	
D_Xhalo	ΔX	ppt	spc_halo	yes
RF_Xhalo	$\Delta \mathrm{RF}^X$	W m ⁻²	spc_halo	
RF_halo	ΔRF^{halo}	W m ⁻²	-	
D_03t	$\Delta O_3 t$	DU	-	

In code	In papers	Units	Dims	Prog?
RF_03t	ΔRF^{O_3t}	W m ⁻²	-	
D_EESC	ΔEESC	ppt	-	
D_03s	$\Delta O_3 s$	DU	=	
RF_03s	$\Delta RF^{O_{3}s}$	W m ⁻²	-	
D_Edms	$\Delta E_{ m DMS}$	TgS yr ⁻¹	-	
D_Ebvoc	ΔE_{BVOC}	Tg yr ⁻¹	-	
D_Edust	-	Tg yr ⁻¹	-	
D_Esalt	-	Tg yr ⁻¹	-	
D_S04	$\Delta \mathrm{SO}_4$	Тд	-	
D_POA	$\Delta \mathrm{POA}$	Tg	-	
D_BC	ΔBC	Tg	-	
D_N03	ΔNO_3	Tg	-	
D_SOA	$\Delta { m SOA}$	Tg	-	
D_Mdust	-	Tg	-	
D_Msalt	-	Tg	-	
RF_S04	ΔRF^{SO_4}	W m ⁻²	-	
RF_POA	ΔRF^{POA}	W m ⁻²	-	
RF_BC	$\Delta \mathrm{RF^{BC}}$	W m ⁻²	-	
RF_NO3	ΔRF^{NO_3}	W m ⁻²	-	
RF_SOA	ΔRF^{SOA}	W m ⁻²	-	
RF_dust	-	W m ⁻²	-	
RF_salt	-	W m ⁻²	-	
D_AERsol	ΔAER_{sol}	Тд	-	
RF_cloud1	-	W m ⁻²	-	
RF_cloud2	-	W m ⁻²	-	
RF_cloud	ΔRF^{cloud}	W m ⁻²	-	

In code	In papers	Units	Dims	Prog?
RF_BCsnow	$\Delta \mathrm{RF}^{\mathrm{BCsnow}}$	W m ⁻²	-	
RF_lcc	$\Delta \mathrm{RF}^{\mathrm{LCC}}$	W m ⁻²	-	
RF_nonCO2	-	W m ⁻²	-	
RF_wmghg	-	W m ⁻²	-	
RF_strat	-	W m ⁻²	-	
RF_scatter	-	W m ⁻²	-	
RF_absorb	-	W m ⁻²	-	
RF_AERtot	-	W m ⁻²	-	
RF_slcf	-	W m ⁻²	-	
RF_alb	-	W m ⁻²	-	
RF	$\Delta \mathrm{RF}$	W m ⁻²	-	
RF_warm	ΔRF_{warm}	W m ⁻²	-	
RF_atm	$\Delta RF_{\rm atm}$	W m ⁻²	-	
D_Tg	ΔT_G	K	-	yes
D_Td	ΔT_D	K	-	yes
d_Tg	$\frac{\mathrm{d}}{\mathrm{d}t}T_G$	K yr ⁻¹	-	
D_T1	ΔT_L	K	reg_land	
D_To	ΔT_S	K	-	
D_Pg	ΔP_G	mm yr ⁻¹	-	yes
D_P1	ΔP_L	mm yr ⁻¹	reg_land	
D_OHC	$\Delta \mathrm{OHC}$	ZJ	-	yes
D_pH	-	1	-	

Parameters

Parameters are implicitly defined when creating a model's processes. When OSCAR is run, it does not check whether the needed parameters are actually provided in the Par argument. Primary parameters can be loaded with the <code>load_all_param</code> function defined in <code>core_fct.fct_loadP</code>. Many parameters have several possible

values, and these different configurations are defined along the various mod_ dimensions of the dataset containing the primary parameters. Sets of randomly drawn parameters for Monte Carlo runs can be generated using the generate_config function defined in core_fct.fct_genMC. More information on each parameter is available in core_fct.fct_loadP.

In code	In papers	Units	Dims	Mods
a_dic	$\alpha_{ m sol}$	µmol kg ⁻¹ [ppm m ⁻³] ⁻¹	-	-
mld_0	$h_{ m mld,0}$	m	-	mod_Focean_struct
A_ocean	$A_{ m ocean}$	m ²	-	mod_Focean_struct
To_0	$T_{S,0}$	К	-	mod_Focean_struct
v_fg	$ u_{ m fg}$	yr ⁻¹	-	mod_Focean_struct
p_circ	π_{circ}	1	box_osurf	mod_Focean_struct
t_circ	$\tau_{ m circ}$	yr	box_osurf	mod_Focean_struct
pCO2_is_Pade	-	bool	-	mod_Focean_chem
p_mld	π_{mld}	1	-	mod_Focean_trans
g_mld	γ_{mld}	K ⁻¹	-	mod_Focean_trans
fert_is_Log	-	bool	-	mod_Fland_fert
t_shift	τ_{shift}	yr	-	-
npp_0	η	PgC Mha ⁻¹ yr ⁻¹	reg_land, bio_land	mod_Fland_preind
igni_0	ι	yr ⁻¹	reg_land, bio_land	mod_Efire_preind
harv_0	$\epsilon_{ m harv}$	yr ⁻¹	reg_land, bio_land	mod_Eharv_preind
graz_0	$\epsilon_{ m graz}$	yr ⁻¹	reg_land, bio_land	mod_Egraz_preind
mu1_0	μ_1	yr ⁻¹	reg_land, bio_land	mod_Fland_preind
mu2_0	μ_2	yr ⁻¹	reg_land, bio_land	mod_Fland_preind
muM_0	$\mu_{ m met}$	yr ⁻¹	reg_land, bio_land	mod_Fland_preind

In code	In papers	Units	Dims	Mods
rho1_0	$ ho_1$	yr ⁻¹	reg_land, bio_land	mod_Fland_preind
rho2_0	$ ho_2$	yr ⁻¹	reg_land, bio_land	mod_Fland_preind
p_agb	π_{agb}	1	reg_land, bio_land	mod_Eluc_agb
b_npp	$eta_{ m npp}$	1	reg_land, bio_land	mod_Fland_trans
b2_npp	$\tilde{eta}_{ m npp}$	1	reg_land, bio_land	mod_Fland_trans
CO2_cp	$\mathrm{CO}_{\mathrm{2cp}}$	ppm	reg_land, bio_land	mod_Fland_trans
g_nppT	$\gamma_{\mathrm{npp},T}$	K ⁻¹	reg_land, bio_land	<pre>mod_Fland_trans, mod_Fland_fert</pre>
g_nppP	$\gamma_{\mathrm{npp},P}$	[mm yr ⁻¹] ⁻¹	reg_land, bio_land	<pre>mod_Fland_trans, mod_Fland_fert</pre>
g_rhoT	$\gamma_{{\rm resp},T}$	K ⁻¹	reg_land, bio_land	<pre>mod_Fland_trans, mod_Fland_resp</pre>
g_rhoT1	$\gamma_{{\rm resp},T_1}$	K ⁻¹	reg_land, bio_land	<pre>mod_Fland_trans, mod_Fland_resp</pre>
g_rhoT2	$\gamma_{{\rm resp},T_2}$	K ⁻²	reg_land, bio_land	<pre>mod_Fland_trans, mod_Fland_resp</pre>
g_rhoP	$\gamma_{{\rm resp},P}$	[mm yr ⁻¹] ⁻¹	reg_land, bio_land	mod_Fland_trans
g_igniC	$\gamma_{\mathrm{igni},C}$	ppm ⁻¹	reg_land, bio_land	mod_Efire_trans
g_igniT	$\gamma_{\mathrm{igni},T}$	K ⁻¹	reg_land, bio_land	mod_Efire_trans
g_igniP	$\gamma_{\mathrm{igni},P}$	[mm yr ⁻¹] ⁻¹	reg_land, bio_land	mod_Efire_trans
t_hwp	$\tau_{\rm hwp}$	yr	box_hwp	mod_Ehwp_tau
w_t_hwp	-	1	-	mod_Ehwp_speed
p_hwp_bb	-	1	box_hwp	-

In code	In papers	Units	Dims	Mods
p_hwp	π_{hwp}	1	reg_land, bio_land, box_hwp	mod_Ehwp_bb
a_bb	$lpha_{ m bb}$	TgX PgC ⁻¹	reg_land, bio_land, spc_bb	-
Cfroz_0	$C_{\mathrm{froz},0}$	PgC	reg_pf	mod_Epf_main
w_clim_pf	$\omega_{T_{ m pf}}$	1	reg_pf	mod_Epf_main
g_respT_pf	$\gamma_{\mathrm{pf},T_{1}}$	K ⁻¹	reg_pf	mod_Epf_main
g_respT2_pf	γ_{pf,T_2}	K ⁻²	reg_pf	mod_Epf_main
k_resp_pf	$\kappa_{\mathrm{resp,pf}}$	1	reg_pf	mod_Epf_main
pthaw_min	$p_{ m thaw,min}$	1	reg_pf	mod_Epf_main
g_pthaw	$\gamma_{p_{\rm thaw}}$	K ⁻¹	reg_pf	mod_Epf_main
k_pthaw	$\kappa_{p_{\rm thaw}}$	1	reg_pf	mod_Epf_main
v_thaw	$ u_{\mathrm{thaw}}$	yr ⁻¹	reg_pf	mod_Epf_main
v_froz	$\nu_{ m froz}$	yr ⁻¹	reg_pf	mod_Epf_main
p_pf_thaw	π_{thaw}	1	reg_pf, box_thaw	mod_Epf_main
t_pf_thaw	$ au_{ m thaw}$	yr	reg_pf, box_thaw	mod_Epf_main
p_pf_inst	-	1	-	-
p_pf_CH4	-	1	-	mod_Epf_CH4
ewet_0	$e_{\mathrm{wet},0}$	TgC yr ⁻¹	reg_land	mod_Ewet_preind
Awet_0	$A_{ m wet,0}$	Mha	reg_land	mod_Ewet_preind
p_wet	π_{wet}	1	reg_land, bio_land	mod_Ewet_preind
g_wetC	$\gamma_{\mathrm{wet},C}$	ppm ⁻¹	reg_land	mod_Awet_trans
g_wetT	$\gamma_{\mathrm{wet},T}$	K ⁻¹	reg_land	mod_Awet_trans
g_wetP	$\gamma_{\mathrm{wet},P}$	[mm yr ⁻¹] ⁻¹	reg_land	mod_Awet_trans

In code	In papers	Units	Dims	Mods
a_C02	$\alpha_{ m atm}^{ m CO_2}$	PgC ppm ⁻¹	-	-
a_CH4	$lpha_{ m atm}^{ m CH_4}$	TgC ppb ⁻¹	-	-
a_N20	$\alpha_{\rm atm}^{\rm N_2O}$	TgC ppb ⁻¹	-	-
a_Xhalo	$\alpha_{\mathrm{atm}}^{X}$	Gg ppt ⁻¹	spc_halo	-
a_S04	-	Tg TgS ⁻¹	-	-
a_POM	$\alpha_{\mathrm{OM}}^{\mathrm{OC}}$	Tg TgC ⁻¹	-	mod_POA_conv
a_N03	-	Tg TgN ⁻¹	-	-
C02_0	CO_{20}	ppm	-	-
CH4_0	$\mathrm{CH_{40}}$	ppb	-	-
N20_0	N_2O_0	ppb	-	-
Xhalo_0	X_0	ppt	spc_halo	-
p_CH4geo	-	1	-	-
g_ageair	$\gamma_{\rm age}$	K ⁻¹	-	mod_Fhv_ageair
w_t_OH	-	1	-	-
w_t_hv	-	1	-	-
t_OH_CH4	$ au_{ m OH}^{ m CH_4}$	yr	-	mod_Foh_tau
t_hv_CH4	$ au_{\mathrm{h} u}^{\mathrm{CH_4}}$	yr	-	-
t_soil_CH4	$ au_{ m soil}^{ m CH_4}$	yr	-	-
t_ocean_CH4	$ au_{ m ocean}^{ m CH_4}$	yr	-	-
x_OH_Ta	$\chi_{\mathrm{T_A}}^{\mathrm{OH}}$	1	-	mod_Foh_trans
x_OH_Qa	$\chi_{\mathrm{Q_A}}^{\mathrm{OH}}$	1	-	mod_Foh_trans
x_0H_03s	$\chi_{\mathrm{O_3s}}^{\mathrm{OH}}$	1	-	mod_Foh_trans
x_OH_CH4	$\chi_{\mathrm{CH4}}^{\mathrm{OH}}$	1	-	mod_Foh_trans
	$\tilde{\chi}_{\mathrm{NO_{x}}}^{\mathrm{OH}}$			

In code	In papers	Units	Dims	Mods
x_OH_CO	$\tilde{\chi}_{\mathrm{CO}}^{\mathrm{OH}}$	1	-	mod_Foh_trans
x_OH_VOC	$\tilde{\chi}_{\mathrm{VOC}}^{\mathrm{OH}}$	1	-	mod_Foh_trans
x2_OH_NOX	$\chi_{ m NO_x}^{ m OH}$	[TgN yr ⁻¹] ⁻¹	-	mod_Foh_trans
x2_0H_C0	$\chi_{\rm CO}^{\rm OH}$	[TgC yr ⁻¹] ⁻¹	-	mod_Foh_trans
x2_0H_V0C	$\chi_{ m VOC}^{ m OH}$	[Tg yr ⁻¹] ⁻¹	-	mod_Foh_trans
w_clim_Ta	$\kappa_{\mathrm{T_A}}$	1	-	-
k_Qa	$\kappa_{\mathrm{Q_A}}$	1	-	-
Ta_0	$T_{A,0}$	K	-	-
k_svp	κ_{svp}	1	-	-
T_svp	T_{svp}	K	-	-
03s_0	O_3s_0	DU	-	-
Enat_NOX	$E_{\mathrm{nat}}^{\mathrm{NO_{x}}}$	TgN yr ⁻¹	-	-
Enat_CO	$E_{\mathrm{nat}}^{\mathrm{CO}}$	TgC yr ⁻¹	-	-
Enat_VOC	$E_{\mathrm{nat}}^{\mathrm{VOC}}$	Tg yr ⁻¹	-	-
kOH_is_Log	-	bool	-	mod_Foh_fct
t_hv_N2O	$\tau_{h\nu}^{N_2O}$	yr	-	mod_Fhv_tau
x_hv_N20	$\chi_{ m N2O}^{ m h u}$	1	-	mod_Fhv_trans
x_hv_EESC	$\chi_{\mathrm{EESC}}^{\mathrm{h}\nu}$	1	-	mod_Fhv_trans
x_hv_age	$\chi_{\rm age}^{{ m h} u}$	1	-	mod_Fhv_trans
t_OH_Xhalo	$ au_{\mathrm{OH}}^{X}$	yr	spc_halo	-
t_hv_Xhalo	$\tau^X_{\mathrm{h}\nu}$	yr	spc_halo	-
t_other_Xhalo	$ au_{ m othr}^X$	yr	spc_halo	-
p_reg_slcf	π_{reg}	1	reg_land, reg_slcf	-
w_reg_NOX	$\omega_{ m NO_x}$	1	reg_slcf	mod_03t_regsat

In code	In papers	Units	Dims	Mods
w_reg_CO	ω_{CO}	1	reg_slcf	mod_03t_regsat
w_reg_VOC	$\omega_{ m VOC}$	1	reg_slcf	mod_03t_regsat
x_03t_CH4	$\chi^{\rm O_3t}_{\rm CH_4}$	DU	-	mod_O3t_emis
x_03t_NOX	$\chi_{ m NO_x}^{ m O_3 t}$	DU [TgN yr ⁻¹] ⁻¹	-	mod_O3t_emis
x_03t_C0	$\chi_{\mathrm{CO}}^{\mathrm{O_3t}}$	DU [TgC yr ⁻¹] ⁻¹	-	mod_03t_emis
x_03t_V0C	$\chi_{ m VOC}^{ m O_3t}$	DU [Tg yr ⁻¹] ⁻¹	-	mod_03t_emis
G_03t	$\Gamma_{\rm O_3t}$	DU K ⁻¹	-	mod_O3t_clim
t_lag	$ au_{ ext{lag}}$	yr	-	-
p_fracrel	π^X_{rel}	1	spc_halo	mod_03s_fracrel
k_Br_Cl	$\alpha_{\mathrm{Cl}}^{\mathrm{Br}}$	1	-	-
n_Cl	n_{Cl}^{X}	1	spc_halo	-
n_Br	n_{Br}^{X}	1	spc_halo	-
EESC_x	EESC_{\times}	ppt	-	-
k_EESC_N20	$\frac{\chi_{\rm N2O}^{\rm O_{3S}}}{\chi_{\rm EESC}^{\rm O_{3S}}}$	ppt ppb ⁻¹	-	<pre>mod_03s_nitrous, mod_03s_fracrel</pre>
x_03s_EESC	$\chi_{ m EESC}^{ m O_3s}$	DU ppt ⁻¹	-	mod_03s_trans
G_03s	$\Gamma_{\rm O_3s}$	DU K ⁻¹	-	mod_03s_trans
w_reg_S02	ω_{SO_2}	1	reg_slcf	mod_SO4_regsat
w_reg_OC	ω_{OC}	1	reg_slcf	mod_POA_regsat
w_reg_BC	ω_{BC}	1	reg_slcf	mod_BC_regsat
t_S02	τ_{SO_2}	yr	-	mod_S04_load
t_DMS	τ_{DMS}	yr	-	mod_SO4_load
G_S04	$\Gamma_{\mathrm{SO_4}}$	Tg K ⁻¹	-	mod_S04_load
t_OMff	$\tau_{\rm OM,ff}$	yr	-	mod_POA_load
t_OMbb	$\tau_{\rm OM,bb}$	yr	-	mod_POA_load

In code	In papers	Units	Dims	Mods
G_POA	$\Gamma_{\rm POA}$	Tg K ⁻¹	-	mod_POA_load
t_BCff	$\tau_{\rm BC,ff}$	yr	-	mod_BC_load
t_BCbb	$\tau_{\rm BC,bb}$	yr	-	mod_BC_load
G_BC	Γ_{BC}	Tg K ⁻¹	-	mod_BC_load
t_NOX	$\tau_{\rm NO_x}$	yr	-	mod_NO3_load
t_NH3	$\tau_{\rm NH_3}$	yr	-	mod_NO3_load
G_N03	$\Gamma_{\mathrm{NO_3}}$	Tg K ⁻¹	-	mod_NO3_load
t_VOC	τ_{VOC}	yr	-	mod_SOA_load
t_BVOC	τ_{BVOC}	yr	-	mod_SOA_load
G_SOA	$\Gamma_{\rm SOA}$	Tg K ⁻¹	-	mod_SOA_load
t_dust	-	yr	-	mod_Mdust_load
G_dust	-	Tg K ⁻¹	-	mod_Mdust_load
t_salt	-	yr	-	mod_Msalt_load
G_salt	-	Tg K ⁻¹	-	mod_Msalt_load
p_sol_SO4	$\pi_{\mathrm{sol}}^{\mathrm{SO}_4}$	1	-	mod_RFcloud_solub
p_sol_POA	$\pi_{\mathrm{sol}}^{\mathrm{POA}}$	1	-	mod_RFcloud_solub
p_sol_BC	$\pi_{ m sol}^{ m BC}$	1	-	mod_RFcloud_solub
p_sol_NO3	$\pi_{ m sol}^{ m NO_3}$	1	-	mod_RFcloud_solub
p_sol_SOA	$\pi_{\mathrm{sol}}^{\mathrm{SOA}}$	1	-	mod_RFcloud_solub
p_sol_dust	-	1	-	mod_RFcloud_solub
p_sol_salt	-	1	-	mod_RFcloud_solub
rf_C02	$\alpha_{ m rf}^{ m CO_2}$	W m ⁻²	-	-
rf_CH4	$lpha_{ m rf}^{ m CH_4}$	W m ⁻² ppb ^{-0.5}	-	-
rf_N20	$\alpha_{\rm rf}^{\rm N_2O}$	W m ⁻² ppb ^{-0.5}		
k_rf_H2Os	$\frac{\alpha_{\rm rf}^{\rm H_2Os}}{\alpha_{\rm rf}^{\rm CH_4}}$	1	-	-

In code	In papers	Units	Dims	Mods
rf_Xhalo	α_{rf}^{X}	W m ⁻² ppt ⁻¹	spc_halo	-
rf_03t	$\alpha_{ m rf}^{ m O_3 t}$	W m ⁻² DU ⁻¹	-	mod_03t_radeff
rf_03s	$lpha_{ m rf}^{ m O_3 s}$	W m ⁻² DU ⁻¹	-	mod_03s_radeff
rf_S04	$\alpha_{ m rf}^{ m SO_4}$	W m ⁻² Tg ⁻¹	-	mod_SO4_radeff
rf_POA	$lpha_{ m rf}^{ m POA}$	W m ⁻² Tg ⁻¹	-	mod_POA_radeff
rf_BC	$\alpha_{ m rf}^{ m BC}$	W m ⁻² Tg ⁻¹	-	mod_BC_radeff
rf_NO3	$lpha_{ m rf}^{ m NO_3}$	W m ⁻² Tg ⁻¹	-	mod_NO3_radeff
rf_SOA	$lpha_{ m rf}^{ m SOA}$	W m ⁻² Tg ⁻¹	-	mod_SOA_radeff
rf_dust	-	W m ⁻² Tg ⁻¹	-	-
rf_salt	-	W m ⁻² Tg ⁻¹	-	-
k_adj_BC	$\kappa_{ m adj}^{ m BC}$	1	-	mod_BC_adjust
Phi_0	Φ	W m ⁻²	-	<pre>mod_RFcloud_erf, mod_RFcloud_solub</pre>
AERsol_0	$AER_{sol,0}$	Tg	-	<pre>mod_RFcloud_solub, mod_RFcloud_erf, mod_RFcloud_preind</pre>
p_reg_bcsnow	π_{reg}	1	reg_land, reg_bcsnow	-
w_reg_bcsnow	$\omega_{ m BCsnow}$	1	reg_bcsnow	mod_RFbcsnow_reg
rf_bcsnow	$lpha_{ m rf}^{ m BCsnow}$	W m ⁻² [TgC yr ⁻¹] ⁻¹	-	mod_RFbcsnow_rf
p_trans	π_{trans}	1		-
alpha_alb	$lpha_{ m alb}$	1	reg_land, bio_land	<pre>mod_RFlcc_alb, mod_RFlcc_flux, mod_RFlcc_cover</pre>
F_rsds	ϕ_{rsds}	W m ⁻²	reg_land	mod_RFlcc_flux
w_warm_volc	$\kappa_{ m warm}^{ m volc}$	1	-	-

In code	In papers	Units	Dims	Mods
w_warm_bcsnow	$\kappa_{ m warm}^{ m BCsnow}$	1	-	mod_RFbcsnow_warmeff
w_warm_lcc	$\kappa_{\mathrm{warm}}^{\mathrm{LCC}}$	1	-	mod_RFlcc_warmeff
p_atm_CO2	$\pi_{ m atm}^{ m CO_2}$	1	-	mod_Pg_radfact
p_atm_nonCO2	$\pi_{\mathrm{atm}}^{\mathrm{noCO_2}}$	1	-	mod_Pg_radfact
p_atm_03t	$\pi_{ m atm}^{ m O_3 t}$	1	-	mod_Pg_radfact
p_atm_strat	$\pi_{ m atm}^{ m strat}$	1	-	mod_Pg_radfact
p_atm_scatter	$\pi_{\mathrm{atm}}^{\mathrm{scatter}}$	1	-	mod_Pg_radfact
p_atm_absorb	$\pi_{\rm atm}^{\rm absorb}$	1	-	mod_Pg_radfact
p_atm_cloud	$\pi_{ m atm}^{ m cloud}$	1	-	mod_Pg_radfact
p_atm_alb	$\pi_{ m atm}^{ m alb}$	1	-	mod_Pg_radfact
p_atm_solar	$\pi_{ m atm}^{ m solar}$	1	-	mod_Pg_radfact
lambda_0	λ	K [W m ⁻²] ⁻¹	-	mod_Tg_resp
Th_g	$\frac{\tau_{T_G}}{\lambda}$	yr W m ⁻² K ⁻¹	-	mod_Tg_resp
Th_d	$\frac{\tau_{T_D}}{\lambda}$	yr W m ⁻² K ⁻¹	-	mod_Tg_resp
th_0	$\frac{\theta}{\lambda}$	W m ⁻² K ⁻¹	-	mod_Tg_resp
w_clim_Tl	ω_{T_L}	1	reg_land	<pre>mod_Tl_pattern, mod_Tg_resp</pre>
w_clim_To	ω_{T_S}	1	-	<pre>mod_Tl_pattern, mod_Tg_resp</pre>
a_prec	α_{P_G}	mm yr ⁻¹ K ⁻¹	-	mod_Pg_resp
b_prec	β_{P_G}	mm yr ⁻¹ [W m ⁻²] ⁻¹	-	mod_Pg_resp
w_clim_Pl	ω_{P_L}	1	reg_land	<pre>mod_Pl_pattern, mod_Pg_resp</pre>
p_ohc	$\pi_{ m ohc}$	1	-	-
pH_is_Log	-	bool	-	mod_pH_fct