

Lecture content

Relationship between Fourier Series and Fourier Transform

Why Fourier Transform

Why Fourier Transform

EEE201 Signals and Systems, CHTan The University Of Sheffield

The Fourier Series representation is applicable to periodic signals with infinite duration but many practical signals are non-periodic (or aperiodic) and have finite duration. We shall modify the Fourier Series so that it is applicable to aperiodic signals as well. The signal x(t) in figure 1 can be expressed as

$$x(t) = \sum_{n = -\infty}^{\infty} c_n e^{jn\omega_o t}$$

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t)e^{-jn\omega_o t} dt$$

 c_n has magnitude with an envelope of $\frac{\sin \alpha}{\alpha}$ where $\alpha = n\omega_o \tau$ and a peak magnitude of $2\pi T$, as shown in figure 2.

Note that the function $\frac{\sin\alpha}{\alpha}$ is sampled every ω_o rad/s (i.e the frequency of the harmonics). The function $\frac{\sin\alpha}{\alpha}$ is a sinc function and it has a peak magnitude of 1 at $\alpha=0$.

(Use l'Hopital's rule:
$$\lim_{\alpha \to 0} \frac{\sin \alpha}{\alpha} = \lim_{\alpha \to 0} \frac{\cos \alpha}{1} = 1$$
).

Nulls of occur when $\sin \alpha = 0$, that is when $\alpha = m\pi$ where m is integer to denote the nulls. Hence, the nulls are at $\omega = m\pi/\tau$ and we have the 1st null at π/τ , the 2nd null at $2\pi/\tau$ and so on.

$$c_n = \frac{2\tau}{T} \frac{\sin(n\omega_o \tau)}{(n\omega_o \tau)}$$

Now, consider the envelope function

$$Tc_n = \frac{2\tau \sin \omega \tau}{\omega \tau} \bigg|_{\omega = n\omega_o}$$

By changing T we can investigate the changes in the magnitude spectrum.

EEE201 Signals and Systems, C H Tan The University Of Sheffield

We shall now develop the Fourier Transform of a rectangular pulse x(t). Let

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jn\omega_o t} dt$$

$$X(\omega) = Tc_n = \int_{-T/2}^{T/2} x(t)e^{-j\omega t}dt$$

We know that

$$x(t) = \frac{1}{T} \sum_{n=-\infty}^{\infty} T c_n e^{jn\omega_o t} = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} X(\omega) e^{jn\omega_o t} \omega_o$$

As $T \to \infty$, $\omega_o \to 0$ so that ω becomes a continuum and ω_o can be written as $d\omega$. The summation becomes an integration and hence we have

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega \quad \text{and} \quad X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

Inverse FT of $X(\omega)$

FT of x(t)

If the symmetry of the signal x(t) is known we can simplify the Fourier Transform integral to

$$X(\omega) = 2\int_{0}^{\infty} x(t)\cos \omega t dt$$

if x(t) has an even symmetry and

$$X(\omega) = -j2\int_{0}^{\infty} x(t)\sin \omega t dt$$

if x(t) has an odd symmetry.

1. Obtain the Fourier Transform of the rectangular window function in figure 4.

Figure 4: A rectangular window function with a duration of 2τ.

2. Compute the time function that has the magnitude spectrum (the positive half of the spectrum, $0 \le \omega \le \omega_c$, is an ideal low pass filter) shown in figure 6.

A rectangular spectrum defined by $H(\omega) = 1$ for $|\omega| \le \omega_c$ and zero otherwise.

3. Verify the Fourier Transform pair $x(t) = e^{-at}u(t) \leftrightarrow$, a > 0.