¿Como comprobar nuestras respuestas?

Fundamentos de Circuitos Analógicos Prof. Javier Ardila Universidad Industrial de Santander

Recordando....

Para comprobar nuestras respuestas, primero tenemos que tener claro algunos conceptos.

Modelo en pequeña señal

Entonces para nuestro análisis

El elemento "G"

Ahora comprobemos un ejercicio que ya todos hicimos

El resultado teórico del ejercicio es el siguiente

C.G

Ganancia de Tensión Av = gm1/gm2

> gm1=0.7 mS gm2=0.6 mS

Av= 1.16667 [V/V]

Ahora simulemos el ejercicio con el elemento "G"

¿Cómo configurar la simulación?

¿Cómo configurar la simulación?

General Analysis Configuration Analysis type:	Files Options Data Collect AC Sweep Type	ion Probe Window	
AC Sweep/Noise ∨	C Linear	Start Frequency: 1m	
Options:	Logarithmic	End Frequency: 1meg	
General Settings Monte Carlo/Worst Case	Decade V	Points/Decade: 100	
Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Noise Analysis Enabled Output Voltage: I/V Source:		
	Interva		
	- Output File Options		
		point information for nonlinear d semiconductors (.OP)	

Mediremos la tensión Vout/Vin

Miramos Vout/Vin Vs Frecuencia

Como Vin = 1v

Entonces Vout/Vin = Vout

Inicio de la simulación

Al graficar Vout estamos hallando nuestra Ganancia de Tensión.

iAhora ya no hay excusa!

Los resultados obtenidos son los mismos, de esta manera se pueden comprobar los ejercicios del taller y de igual desarrollar forma habilidad en el simulador para realizar el proyecto.

