Hoja de trabajo No.4

Sébastien Escobar

August 30, 2018

Informatica 1

Ejercicio No.1

A continuación se le presentara una serie de definiciones de conjuntos pertenecientes al conjunto $2^{\mathbb{N}}$. Indicar que definiciones corresponden al mismo conjunto, es decir que definiciones definen conjuntos que tienen los mismos elementos.

- 1. $a := \{1, 2, 4, 8, 16/, 32, 64\}$ Si pertenece al conjunto $2^{\mathbb{N}}$
- 2. $b := \{n \in \mathbb{N} \mid \exists x \in \mathbb{N} : x = n/5\}$ No pertenece al conjunto $2^{\mathbb{N}}$
- 3. $c := \{ n \in \mathbb{N} \mid \exists x \in \mathbb{N} : n = x * x \}$ No pertenece al conjunto $2^{\mathbb{N}}$
- 4. $d := \{n \in \mathbb{N} \mid \exists i \in \mathbb{N} : n = 2^i \land n < 100\}$ No pertenece al conjunto $2^{\mathbb{N}}$
- 5. $e := \{ n \in \mathbb{N} \mid \exists x \in \mathbb{N} : x = \sqrt{n} \}$ No pertenece al conjunto $2^{\mathbb{N}}$
- 6. $f:=\{n\in\mathbb{N}\mid\exists x\in\mathbb{N}:n=x+x+x+x+x+x+x\}$ No pertenece al conjunto $2^{\mathbb{N}}$

Ejercicio No.2

1. El conjunto de todos los naturales divisibles dentro de 5

Existen dos soluciones para encontrar el conjunto que cumpla con estos terminos: El primero de ellos es saber si un numero es divisible entre otro

Para la divisibilidad entre 5, se debe tener que n, tiene que terminar en 5 o 0 Ya que de esta manera el residuo sera de 0, y esto demuestra que es divisible

Ya que tenemos estas reglas para los números divisibles dentro de 5, expresamos el conjunto como

$$A := \{ n \in \mathbb{N} \mid \exists x \in \mathbb{N} : n = x/5 \}$$

Donde i es el residuo de la división anterior. Si i es 0, el numero n es divisible entre su divisor 5, y por lo tanto pertenece al conjunto.

2. El conjunto de todos los naturales divisibles dentro de 4 y 5

Aplicando la misma definición de divisibilidad todo número que sea divisible entre 4 y 5 simultáneamente pertenece al conjunto.

Con un pequeño grado de conocimiento podemos concordar en que el primer numero divisible entre 4 y 5 es la multiplicación de estos, lo que da como resultado 20, por lo tanto, todo múltiplo de 20 cumple con el conjunto antes definido.

$$A := \{ n \in \mathbb{N} \mid x \in N.n = x/4 \}$$

 $B := \{ n \in \mathbb{N} \mid x \in N.n = x/5 \}$

Sea i el residuo de la división del conjunto A, y u el residuo de la división del conjunto B

Si, i = 0, y, simultáneamente u = 0, entonces el numero x es perteneciente al conjunto de todos los naturales divisibles dentro de 4 v 5

3. El conjunto de todos los naturales que son primos

Definimos a un numero primo, como aquel numero natural que es divisible únicamente entre 1 y el mismo. Por lo tanto, para conocer si un numero es primo se debe de dividir el numero entre todos sus antecesores.

$$A:=\{n\in\mathbb{N}\mid\exists x\in\mathbb{N}:n=\text{como resultado}\;x/[(x),(x-1),((x-1)-1)\dots1]\}$$

Sea i el residuo de la operación ante- numero que queremos llegar en todos sus rior, si existe una operación donde el i es 0, dicho numero x no pertenece al conjunto de los números primos.

Por el contrario, si se efectúa la operación anterior y en ningún momento

$$i = 0$$
, y $n = 1$ cuando x/x , y $n=x$

cuando x/1, entonces dicho numero x es perteneciente al conjunto de los primos.

4. El conjunto de números naturales que contienen un numero divisible dentro de 15

Regresando con nuestra definición de divisible, conoceremos que todo numero con un residuo 0 al ser dividido entre 15, es $B := \{n \in \mathbb{N} \mid \exists x \in \mathbb{N} : n = 42/x\}$ perteneciente a nuestro conjunto.

Por consiguiente, todo número natural multiplicado por 15, es perteneciente ha dicho conjunto, por lo que se puede definir de dos maneras.

$$A := \{ n \in \mathbb{N} \mid \exists x \in \mathbb{N} : n = x/15 \}$$

Sea i el residuo de la operación anterior, si i = 0, el numero x es perteneciente a nuestro conjunto.

Por otro lado, podemos conocer los números que pertenecen a dicho conjunto si multiplicamos los números naturales enteros (1,2,3,4,5,6...) * 15, lo que nos daría (15, 30, 45, 60...) los cuales son pertenecientes a nuestro conjunto.

El conjunto de números natu-**5**. rales que al ser sumados producen 42

Podemos empezar descomponiendo al predecesores, siendo estos $(1,2,3,4,5,6,\ldots)$ 40.41)

Para nuestro primer conjunto podríamos definir n = 1 y m = 41, la suma de n +m=42. Si a n le sumamos 1 y m le restamos 1.

Nuestra expresión quedaría intacta, y el resultado seguiría siendo 42.

$$A:=\{n\in\mathbb{N}\mid \exists m\in\mathbb{N}: [(n+1)+(m-1)]\}$$
 Donde n =1 y m = 41.

Nuestro siguiente conjunto será relacionado con los números que pueden conformar al 42, siendo estos (42,21,14,7,6,3,2,1), para obtener estos números se aplicó,

donde i es el residuo y si este es 0, entonces

n es parte del conjunto.

La suma de n veces del primer número 1. $f: \mathbb{N} \to \mathbb{N}$; f(x) = x + xde dicho conjunto es igual a 42, donde n es el ultimo número si u es la posición en dicho conjunto podemos definir u1 = 1 como 42 y u2 = 8 como 1.

$$C := \{ n \in \mathbb{N} \mid \exists m \in \mathbb{N} : 42 = [(u1+1) + ((u2vecesu1) - 1)] \}$$

Ejercicio No.3

Definimos un número semi primo como aquel numero el cual es el producto de dos números primos y que tienen la peculiaridad de ser divisible únicamente por dichos primos que se multiplicaron y uno.

 $N30 := \{n \in \mathbb{N} \mid n \leq 30\} \text{ es la ex-}$ presión que relaciona a todos los números semi-primos menores a 30 con los números primos que lo forman.

Por ello hay que definir a todos los números primos menores a 30, siendo estos:

Por consiguiente, empezamos crear nuestros números semi primos $\langle 2, 3, 6 \rangle \langle 2, 5, 10 \rangle \langle 2, 7, 14 \rangle \langle 2, 11, 22 \rangle \langle 2, 13, 26 \rangle$ $\langle 3, 5, 15 \rangle \langle 3, 7, 21 \rangle$

Siendo estos tripletes donde los primeros dos números, son primos, lo cuales al multiplicar dan como resultado el 3 número siendo estos los semi primos

Ejercicio No.4

los conjuntos a los que corresponden conjunto B.

las siguientes funciones:

1.
$$f: \mathbb{N} \to \mathbb{N}$$
; $f(x) = x + x$

Sea f una función donde entra un numero natural y sale como resultado otro número natural.

 $C := \{ n \in \mathbb{N} \mid \exists m \in \mathbb{N} : 42 = \text{Por lo tanto, x es un numero perteneciente} \}$ al conjunto de N, y f(x) de la misma manera es perteneciente.

> Nuestro caso base podría ser f (1) = 1 + 1, dando como resultado 2, todos pertenecientes a N

> 2. $g: \mathbb{N} \to \mathbb{B}; g(x)$ es verdadero si x es divisible dentro de 5, falso en caso Nota: $\mathbb{B} = \{\text{true}, \text{false}\},\$ contrario. puede definir dos conjuntos separados y definir la función como la union de ambos conjuntos.

> Sea A un conjunto de números para los cuales, g(x) como resultado de true, lo cual corresponde a todos los números que sean divisibles dentro de 5.

> Esto puede expresarse como todos los múltiplos de 5, o como todos aquellos números que terminen en 5 o en 0.

> Por lo tanto, A: 5, 10, 15, 20, 25, 30, $35, 40 \dots \text{ etc.}$

> Los cuales dan como resultado de g(x) = true

Por otro lado, sea B un conjunto de números para los cuales, g(x) como resultado de false, lo cual corresponde a todos los números que no sean divisibles dentro de 5.

Para lo cual se podría tomar un conjunto universo de todos los N, y sustraer Utilicé la jerga matemática para definir el conjunto A, lo que nos daría nuestro De otra manera podría ser B, todos aquellos números que no terminen en 5 o 0, lo que daría nuestro conjunto.

Por consiguiente, el conjunto que corresponde a la función anterior es la unión de los conjuntos A y B.

3. Indicar el conjunto al que pertenece la función $f\circ q$

f o g pertenece al conjunto N

4. Definir el conjunto que corresponde a la función $f\circ g$

Ejercicio No.5

 $f(x) = x^2$ es surjetiva

 $g(x) = \frac{1}{\cos(x-1)}$ es injectiva

h(x) = 2x es bijectiva

w(x) = x + 1 es bijectiva

Ejercicio No.6

A continuación se definira una bijección entre los numeros naturales (\mathbb{N}) y los numeros enteros (\mathbb{Z}) . Se utilizaran varios conjuntos intermediariarios para facilitar el proceso.

Definir el conjunto $B_1 \in \mathbb{N} \times \mathbb{N}$ el cula empareja a los numeros naturales pares con todos los naturales mayores a 0. Eg. $B_1 = \{\langle 2, 1 \rangle, \langle 4, 2 \rangle, \langle 6, 3 \rangle \dots \}$

Definir el conjunto $B_{2a} \in \mathbb{N} \times \mathbb{N}$ el cula empareja a los numeros naturales *impares* con todos los naturales mayores a 0. Eg.

$$B_{2a} = \{\langle 1, 1 \rangle, \langle 3, 2 \rangle, \langle 5, 3 \rangle \dots \}$$

Definir el conjunto $B_2 \in \mathbb{N} \times \mathbb{Z}$ el cual se definie exactamente igual al conjunto B_{2a} excepto que los valores en el contradominio son negativos

El conjutno $B := \{\langle 0, 0 \rangle\} \cup B_1 \cup B_2$ es la bijección que se intenta definir.