Universidade de Aveiro Departamento de Matemática

Cálculo I - Agrupamento II

2014/2015

Soluções da 1ª Prova de Avaliação Discreta (5/11/2014)

- 1. (a) —-
 - (b) f é diferenciável em x = 0 se e só se $\alpha = 1$.
- 2. (a) $D_g = \mathbb{R} \setminus \{0\}$.
 - (b) g é estritamente crescente em $]-\infty,-1[$ e em $]1,+\infty[;$ g é estritamente decrescente em]-1,0[e em]0,1[. Pela continuidade de g conclui-se que $g(-1)=-1-\frac{\pi}{2}$ é máximo local e $g(1)=1+\frac{\pi}{2}$ é mínimo local.
 - (c) Não há assíntotas verticais. A reta de equação y=x é assíntota não vertical à direita e à esquerda.
 - (d) Sugestão: use o Teorema de Lagrange.
- 3. (a) $D_h =]-\infty, \ln 2]$
 - (b) h não tem zeros.
 - (c) $y = x + \frac{\pi}{2}$.
 - (d) $D_{h^{-1}} = CD_h =]0, \pi], CD_{h^{-1}} = D_h =]-\infty, \ln 2], h^{-1}(x) = \ln(1 + \sin(y \frac{\pi}{2})).$
- 4. 1
- 5. $F(x) = -\ln|\cos x| + 3$.
- 6. $\frac{1}{3}$ sen $(x^3 + 1) 2e^{-2x} + C$, $C \in \mathbb{R}$.
- 7. —