ALGORITHMIQUE: TRIS NAÏFS

INTRODUCTION DES NOTATIONS

Objectifs. — On se fixe les objectifs suivant pour ce cours

- compter le nombre d'opérations effectué par des algorithmes;
- créer des programmes conçus pour toutes les valeurs d'un certain type.

L'évaluation de complexité est asymptotique. Le nombre d'opérations est exprimé en fonction de la « taille » $^{(1\S)}$ des entrées.

```
DÉFINITION 0.0.0.1 (Notation O()). —
Soient f, g : \mathbf{N} \to \mathbf{R}^+. On dit que f = O(g) si :
\exists C \in \mathbf{R}^+, \exists n_0 \in \mathbf{N}, \forall n \geq n_0, \ f(n) \leq C \cdot g(n).
```

Dans la suite, $f: \mathbb{N} \to \mathbb{R}^+$ sera l'application qui à une entrée de taille n associe le nombre d'opérations nécessaires.

DÉFINITION 0.0.0.2 (Notation
$$\Omega()$$
). —
Soient $f, g : \mathbf{N} \to \mathbf{R}^+$. On dit que $f = \Omega(g)$ si :
 $\exists C \in \mathbf{R}^+, \exists n_0 \in \mathbf{N}, \forall n \geq n_0, \ f(n) \geq Cg(n)$.

DÉFINITION 0.0.0.3 (Notation
$$\Theta()$$
). — Soient $f, g: \mathbf{N} \to \mathbf{R}^+$. On dit que $f = \Theta(g)$ si : $f = O(g)$ et $f = \Omega(g)$.

^{1§.} Par exemple : pour un entier $x \in \mathbb{N}$ ça peut être la longueur de son expression en décimal ; pour une liste cela peut être le nombre d'éléments de la liste, si l est de longueur n alors sa taille peut être : $taille(l) = |l| = \sum_{i=0}^{n-1} taille(l[i])$

Exercice. — Montrer que f = O(g) lorsque :

- 1. $f(n) = n^d$ et $g(n) = n^{d+i}, i > 0$;
- 2. $f(n) = \log n$ et $g(n) = n^{\varepsilon}$, $\varepsilon > 0$;
- 3. $f(n) = n^k$ et $g(n) = r^n$ avec r > 1 et $k \in \mathbb{N}$.

DÉFINITION 0.0.0.4 (Opérations dans les algorithmes). —

Voici les éléments comptés :

- le nombre d'affectations;
 le nombre de comparaisons;
 le nombre de divisions :

Exemple. — Le nombre de divisions effectuées par l'algorithme d'Euclide pour a, b (avec a > b) est une fonction de $b : \Theta(\log b)$.

1. PERMUTATIONS

Objectifs. — Faire un tour d'horizon des algorithmes de tris.

Opérations. — Les opérations intéressantes pour les tris :

- comparaisons;
- affectation et échanges de variables.

Proposition 1.0.0.1 (N est totalement ordonné). —

Les propriétés suivantes indiquent que N est totalement ordonné avec <:

$$\left\{ \begin{aligned} \forall x \neq y, \, x < y \text{ ou } y < x, \\ \forall x, y, z, \, x < y \text{ et } y < z \implies < z. \end{aligned} \right.$$

DÉFINITION 1.0.0.5 (Trier). —

Trier un tableau ou une liste d'entiers : T de longueur $n \in \mathbb{N}$ c'est trouver une permutation $\sigma \in S_n$ telle que :

$$\forall i \le n-1, \ T[\sigma(i)] \le T[\sigma(i+1)].$$

Exemple. — Pour T = (10, 9, 7, 6, 8) on a:

$$\sigma = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 0 & 2 \end{pmatrix}.$$

Lemme 1.0.0.1. —

Pour tout $n \in \mathbb{N}^*$, toute permutation de S_n peut s'écrire comme un produit de transpositions.

2. TRI À BULLE

2.1. Principe

Le principe de cet algorithme est de faire « remonter » les valeurs les plus grandes vers la fin de la liste jusqu'à ce que le tableau soit $tri\acute{e}$.

```
DÉFINITION 2.1.0.6. — Soit T un tableau. On note sa longueur longueur(T) = |T| = n. On indice le tableau de 0 à n-1. Un tableau est tri\acute{e} si : \forall i \in \{0,\dots,n-2\} \ , \ T[i] \leq T[i+1].
```

On peut écrire un premier algorithme pour tester si le tableau est bien trié.

2.2. Principe détaillé du tri Bulle (Bubble sort)

On fait dans l'ordre:

- un balayage successif de T de gauche à droite;
- au k-ième balayage :
 - on parcourt les n-k valeurs les plus à gauche;
 - si une position j est telle que T[j] > T[j+1] alors on échange T[j] et T[j+1].

Écriture de l'algorithme. — Une première écriture donne :

En tenant compte du fait que si un balayage entier est effectué sans modification alors c'est que le tableau est trié, on obtient :

```
5
                     trie = true
6
                     for j from 0 to i-1 do
7
                              if T[j] > T[j+1] then
                                       T[j], T[j+1] = T[j+1], T[j]
8
                                       trie = false
9
10
                     i = i-1
            until trie = true
11
12
            return T
```

2.3. Preuve de correction

On va montrer l'existence d'invariants.

```
PROPOSITION 2.3.0.2 (Invariants). — Soit k \in \{0, ..., n-1\}. Si i = k alors :

1. T[k+1] \le T[k+2] \le ... \le T[n-1];
2. \forall i < k+1, T[i] \le T[k+1].
```

DÉMONSTRATION 2.3.0.1 (Par induction/récurrence sur n-1-k)

Si n-1-k=0 alors c'est bien vérifié.

Supposons l itérations de l'algorithme et que la propriété est vraie pour n-1-k=l. Dans ce cas, à l'itération l+1:

- La boucle interne met en position n-1-l la plus grande des valeurs v entre les positions 0 et n-1-l de T.
- Par hypothèse de récurrence, $v \leq T[k+1] \leq T[k+2] \leq \ldots \leq T[n-1]$, on a donc :

$$T[k] \le T[k+1] \le \ldots \le T[n-1] \text{ et } \forall i < k, T[i] \le T[k].$$

2.4. Analyse de complexité

On note A un algorithme, T une entrée de A (ici un tableau) et $C_A(T)$ le nombre d'opérations (2§) que l'algorithme A effectue sur l'entrée T.

Définition 2.4.0.7. —

La complexité de A dans le pire des cas est la fonction :

$$\mathcal{C}_A \colon \left\{ egin{aligned} \mathbf{N} & \mathbf{N} \\ n & \mapsto \max_{T:|T|=n} C_A(T) \end{aligned} \right.$$

C'est-à-dire le nombre d'opération maximal sur une entrée de taille n.

^{2§.} Ici: échanges, comparaisons et affectations.

Remarque. — Soit $f: \mathbf{N} \to \mathbf{N}$:

— La complexité de A est en O(f(n)) si

$$C_A(n) \leq O(f(n)).$$

— La complexité de A est en $\Omega(f(n))$ s'il existe n_0 , T de taille $n \geq n_0$ et $c \in \mathbf{R}$ tel que

$$C_A(T) \ge c \cdot f(n)$$
.

Tri Bulle. — On va essayer d'établir le nombre de comparaisons C(n):

- pour n balayages:
 - au k-ième balayage on effectue n k 1 comparaisons.

On a alors:

$$C(n) = (n-1) + (n-2) + \ldots + 1 = \sum_{i=1}^{n-1} \frac{n(n-1)}{2}.$$

Ainsi C(n) est en $O(n^2)$ et en $\Omega(n^2)$. Le nombre d'échanges, E(n) est en $\Omega(n^2)$ avec comme pire des cas un tableau trié à l'envers.

3. TRI PAR SÉLECTION

3.1. Principe

Le principe du tri par sélection est de chercher le maximum et de le placer à la fin. On itère avec T entre les indices 0 et n-2 (avec n=|T|).

L'algorithme qui trouve le maximum :

L'algorithme de tri en version itérative :

Et en version récursive :

```
function triSelectionRec(T,p,f)

if p < f then

j = posMax(T,p,f)

T[f],T[j] = T[j],T[f]

triSelectionRec(T,p,f-1)</pre>
```

3.2. Analyse de complexité (pour la version récursive)

On compte le nombre d'échanges, E(n), les affectations, A(n), et les comparaisons, C(n).

Par récurrence :

```
— Si |T| = 0, 1 alors C(0) = E(0) = A(0) = 0.

— Si |T| = 2 un appel à posMax, C(1) = A(1) = 1 et E(1) = 1.

— Si |T| = n + 1 alors :
```

- 1. un appel à posMax avec sur T:n comparaisons et n affectations (au plus);
- 2. un échange;
- 3. un appel à triSelectRec sur le sous-tableau de taille n-1.

```
On a donc C(n+1) = n + C(n), A(n+1) \le n + C(n) et E(n+1) \le 1 + E(n).
```

Au final C(n) et A(n) sont en $O(n^2)$ et en $\Omega(n^2)$ (pour un tableau trié en ordre décroissant) et E(n) est en O(n) et en $\Omega(n)$.

4. RECHERCHE DANS UN TABLEAU TRIÉ

Rechercher est une activité essentielle en informatique. L'objectif est de le faire à moindre coût. On effectue un tri pour pouvoir rechercher efficacement.

4.1. Recherche naïve

Elle consiste à essayer toutes les possibilités :

4.2. Recherche dichotomique

Principe. — On compare l'élément x à chercher avec la valeur du milieu du tableau. En fonction de la réponse on dirige la recherche suivante vers l'une des deux moitiés du tableau.

4.3. Complexité de la recherche dichotomique

On va compter le nombre de comparaisons, C(n).

- -C(0) = 0;
- C(1) = 1 (car on vérifie si c'est x ou non);
- -C(2) = 2;
- si u > l, $m l \le u m \le m l + 1$ et alors $1 + \max(m l, u m) \le \frac{u l + 1}{2}$ et donc $C(n) \le 1 + C(\lfloor \frac{n}{2} \rfloor)$.

Lemme 4.3.0.2. —

La recherche dichotomique nécessite au plus

$$C(n) \le \lfloor \log_2(n) + 1 \rfloor \le \log_2 n + 1$$

Preuve en exercice. — Par récurrence sur $k = \lfloor \log_2 n \rfloor$. Indication :

$$C(n) \le 1 + C(\lfloor n/2 \rfloor) \le 1 + (\lfloor \log_2 n/2 \rfloor + 1) \le 1 + \lfloor \log_2 n \rfloor.$$

```
Démonstration 4.3.0.2. —
```

Par récurrence sur $k = \lfloor \log_2 n \rfloor$:

- si k = 0 alors n = 1 or on sait que C(1) = 1 donc c'est vérifié;
- si k = 1 alors n = 2 et on a bien C(2) = 2;
- supposons $k \geq 2$ et la propriété vraie pour tout n tel que $k \geq \lfloor \log_2 n \rfloor$;
- soit n tel que $k < \lfloor \log_2 n \rfloor \le k + 1$,

$$C(n) \le 1 + C(\lfloor n/2 \rfloor)$$

$$C(n) \le 1 + \lfloor \log_2 \lfloor n/2 \rfloor + 1 \rfloor$$

$$C(n) \le 1 + \lfloor \log_2 \lfloor n/2 \rfloor + \log_2 \lfloor n/2 \rfloor \rfloor$$

$$C(n) \le \lfloor 1 + \log_2 (2 \times \lfloor n/2 \rfloor) \rfloor$$

$$C(n) \le \lfloor 1 + \log_2 (n) \rfloor$$

4.4. Preuve de correction

Il faut vérifier que:

- 1. l'algorithme termine toujours (i.e. la taille des tableaux diminue strictement);
- 2. l'algorithme renvoie bien la bonne position si, et seulement si, x est dans le tableau.

DÉMONSTRATION 4.4.0.3. —

Soit T un tableau, l la borne inférieure et u la borne supérieure. On fait une preuve par récurrence sur u-l.

- Si u < l alors l'algorithme est correct, puisqu'il renvoie none.
- Sinon, $l \leq m \leq u$ avec m = u si, et seulement si, $l \leq u+1$, c'est-à-dire l = u ou l = u+1. Donc u-l > (m-1)-l et u-l > u-(m+1) ce qui donne les tailles d'intervalles des appels récursifs. Ainsi les appels récursifs sont effectués sur des intervalles strictement plus petits, donc l'algorithme s'arrête.

DÉMONSTRATION 4.4.0.4. —

On le fait aussi par récurrence sur la taille du tableau trié T, n = u - l + 1, sur lequel porte la recherche dichotomique.

- Si $u l + 1 \le 0$ alors l'algorithme renvoie none et c'est la bonne valeur.
- Si u l + 1 = 1, c'est-à-dire u = l alors l'algorithme renvoie m si T[m] = x et none dans le cas contraire ce qui est dans les deux cas la bonne réponse.
- Hypothèse de récurrence : on suppose que l'algorithme renvoie la bonne réponse pour $n=u-l+1\geq 1$. On doit montrer la propriété pour n+1.
 - Puisque n + 1 > 1 on a $l \le m < u$.
 - Si la condition est vérifiée, l'algorithme renvoie bien n.
 - Sinon un appel récursif est effectué avec un sous-tableau de T de taille strictement inférieure à n+1 et par hypothèse de récurrence on conclut.