# SEG12 - Atividades - Semana 1

Francisco Marcelo, Marcelo Karam e Felipe Scarel

06-08-2018

# Introdução ao sistema operacional Linux

#### 1) Identificando bits de permissão

1. Verifique as permissões do diretório /tmp. O que você percebe de diferente em relação às permissões de *outros*?

```
$ ls -lha / | grep 'tmp$'
drwxrwxrwt 7 root root 4,0K Ago 7 01:01 tmp
```

O sticky bit está definido: t.

2. Considerando que há permissão de escrita no diretório para todos, o que o impediria de remover um arquivo de outra pessoa?

```
$ rm -f /tmp/file_root
rm: não foi possível remover "/tmp/file_root": Operação não permitida
```

Com o sticky bit definido somente o dono de um arquivo pode removê-lo.

#### 2) Identificando e entendendo hard links

O número de *links* (*link counter*) que apontam para um arquivo é mantido em seu *inode*. Esse contador é utilizado pelo sistema para controlar a liberação dos blocos do disco alocados ao arquivo quando o contador atingir o valor zero ,ou seja, quando nenhum outro arquivo estiver apontando para o *inode*.

1. Qual o número de links do seu diretório home?

```
$ ls -lha /home/ | egrep ' aluno$'
drwxr-xr-x 2 aluno aluno 4,0K Ago 7 01:45 aluno
```

Como visto acima, 2. Esse número não é fixo, mas depende do conteúdo do diretório. Um diretório recém criado, que não tenha nenhum conteúdo possui dois *links* (um referente ao próprio diretório e outro referente à entrada especial ".").

2. Crie o arquivo arqses1ex3 no seu diretório home. Utilize o comando touch.

```
$ touch ~/arqses1ex3
$ ls /home/aluno
arqses1ex3
```

3. Verifique o número de links do arquivo arqses1ex3 e anote o resultado. Você pode utilizar o

redirecionamento de saída para registrar esse resultado no próprio arquivo criado. Essa informação será necessária para uma atividade posterior.

```
$ mytemp=$(mktemp) && ls -lha ~/arqses1ex3 | tee nlinks && awk '{print $2}' nlinks
> $mytemp && mv $mytemp nlinks
-rw-r--r-- 1 aluno aluno 0 Ago 7 01:52 /home/aluno/arqses1ex3
$ cat nlinks
1
```

O arquivo arqses1ex3 possui apenas um link.

4. Verifique se mudou o número de links do seu diretório home.

```
$ ls -lha /home/ | egrep ' aluno$'
drwxr-xr-x 2 aluno aluno 4,0K Ago 7 02:05 aluno
```

O número de links continuou o mesmo.

5. Crie um diretório com o nome de dirses1ex3, também no seu diretório *home*.

```
$ mkdir /home/aluno/dirses1ex3
$ ls ~
arqses1ex3 dirses1ex3 nlinks
```

6. Mais uma vez, verifique o número de *links* do seu diretório *home*. Ele mudou? Você saberia dizer por quê?

```
$ ls -lha /home/ | egrep ' aluno$'
drwxr-xr-x 3 aluno aluno 4,0K Ago 7 02:11 aluno
```

O número de *links* aumentou em uma unidade, por conta de entrada especial ".." presente no diretório /home/aluno/dirses1ex3, que aponta para o diretório /home/aluno.

7. Qual o número de links do diretório dirses1ex3?

```
$ ls -lha ~ | egrep ' dirses1ex3$'
drwxr-xr-x 2 aluno aluno 4,0K Ago 7 02:11 dirses1ex3
```

Como visto acima, 2.

8. Verifique qual opção deve ser passada ao comando ls para que ele liste as informações do diretório direselex3 e não o seu conteúdo.

```
$ ls -dl ~/dirses1ex3/
drwxr-xr-x 2 aluno aluno 4096 Ago 7 02:11 /home/aluno/dirses1ex3/
```

Devem ser passadas as opções -d e -l.

9. Você saberia explicar por que o número de links do diretório dirses1ex3 é maior que um?

Os dois *links* são relativos ao próprio diretório. Um aponta o caminho direto /home/aluno → /home/aluno/dirses1ex3 e o outro corresponde à entrada especial ".", presente no próprio diretório /home/aluno/dirses1ex3.

# 3) Conhecendo diferenças entre *hard link* e *symbolic link*

Foi explicada a importância dos *links* criados com o comando ln. Para criar um *symbolic link*, a opção -s deve ser informada na linha de comando. Consulte as páginas do manual para conhecer outras opções.

1. No seu diretório de trabalho, crie um *hard link* para o arquivo arqses1ex3. O nome do arquivo criado deverá ser hosts.hard.

```
$ ln /home/aluno/arqses1ex3 /home/aluno/hosts.hard
$ ls ~
arqses1ex3 dirses1ex3 hosts.hard nlinks
```

2. Verifique agora o número de links do arquivo arqses1ex3 e compare com aquele obtido na atividade 2. Explique a diferença.

```
$ ls -lha /home/aluno/arqses1ex3 | awk '{print $2}'
2
$ cat nlinks
1
```

O número de links foi aumentado de 1 para 2 devido à criação do link hosts.hard.

3. Crie um symbolic link para o arquivo arqses1ex3, que deverá se chamar hosts.symbolic.

```
$ ln -s /home/aluno/arqses1ex3 /home/aluno/hosts.symbolic
$ ls
arqses1ex3 dirses1ex3 hosts.hard hosts.symbolic nlinks
```

4. O número de *links* do arquivo arqses1ex3 aumentou?

```
$ ls -lha /home/aluno/arqses1ex3
-rw-r--r- 2 aluno aluno 0 Ago 7 01:52 /home/aluno/arqses1ex3
```

Não, não aumentou.

5. Caso não tenha aumentado, por que isso aconteceu, considerando que foi criado um *link* para ele?

Porque o symbolic link aponta para outro inode.

6. Qual o tamanho do arquivo hosts.symbolic?

```
$ du -sb ~/hosts.symbolic
22 /home/aluno/hosts.symbolic
```

Como mostrado acima, 22 bytes.

7. Você percebe alguma correlação entre o tamanho e o arquivo para o qual ele aponta?

```
$ ls -d /home/aluno/arqses1ex3 | tr -d '\n' | wc -c
22
```

Esse tamanho representa o número de caracteres presentes no *path* completo do arquivo original linkado, sendo cada caractere representado por 1 byte.

#### 4) Trabalhando com hard link e symbolic link

1. Se o arquivo original arqses1ex3 fosse removido, o que aconteceria se tentássemos acessá-lo pelo *hard link*? E pelo *symbolic link*?

Pelo *hard link* conseguiríamos acessar o conteúdo do arquivo normalmente. Já pelo *symbolic link* não conseguiríamos acessar o conteúdo do arquivo, uma vez que o mesmo é somente uma referência para o arquivo original.

2. Depois de responder a essas questões, remova o arquivo criado (arqses1ex3) e verifique se as suas respostas estão corretas.

```
$ rm arqses1ex3

$ ls -l hosts.hard
-rw-r--r-- 1 aluno aluno 0 Ago 7 01:52 hosts.hard
$ ls -l hosts.symbolic
lrwxrwxrwx 1 aluno aluno 22 Ago 7 02:38 hosts.symbolic -> /home/aluno/arqses1ex3

$ cat hosts.hard
$ cat hosts.symbolic
cat: hosts.symbolic: Arquivo ou diretório não encontrado
```

As respostas acima estão corretas.

# 5) Conhecendo algumas limitações do hard link

1. Crie um arquivo chamado arqses1ex6. Em seguida, crie um *hard link* para esse arquivo com o nome link-arqses1ex6 no diretório /tmp. O que aconteceu? Por quê? Como resolver esse problema?

**Observação:** Para que esta atividade tenha efeito, o diretório /tmp deverá ter sido criado numa partição diferente da partição onde se encontra o *home* do usuário. Caso essa situação não ocorra, verifique se existe o diretório /var/tmp e veja se ele está em outra partição. Se for o caso, use este último para fazer o exercício.

```
$ touch ~/arqses1ex6
$ ln ~/arqses1ex6 /tmp/link-arqses1ex6
ln: failed to create hard link "/tmp/link-arqses1ex6" => "/home/aluno/arqses1ex6":
Link entre dispositivos inválido

$ df -h | sed -n '1!p' | egrep -v '^tmpfs |^udev ' | awk '{printf "%s\t mounted on:
%s\n", $6, $1}'
/ mounted on: /dev/sda6
/tmp mounted on: /dev/sda6
```

Não foi possível criar o hard link, porque o diretório /tmp está em outra partição.

#### 6) Criando links para diretórios

Crie, no seu diretório *home*, um *link* simbólico para o diretório /usr/bin com o nome de link-bin. Com o *link* criado, execute o seguinte:

1. Mude para o diretório link-bin.

```
$ ln -s /usr/bin /home/aluno/link-bin ; cd link-bin
$ pwd
/home/aluno/link-bin
```

2. Agora, vá para o diretório pai (utilize a notação ".."). Você saberia explicar por que se encontra no seu diretório *home* e não no diretório /usr?

```
$ cd ..
$ pwd
/home/aluno
```

Porque o *link* simbólico é apenas uma referência para o diretório.

# 7) Alterando permissões de arquivos e diretórios

O comando chmod é utilizado para modificar as permissões de um arquivo. Utilizando a notação octal, execute a seguinte sequência:

1. Modifique a permissão do seu diretório *home* de modo a retirar a permissão de escrita do seu dono.

```
$ chmod 555 /home/aluno
$ ls -ld /home/aluno
dr-xr-xr-x 3 aluno aluno 4096 Ago 7 03:38 /home/aluno
```

2. Verifique as permissões associadas ao arquivo arqses1ex6. Você tem permissão para escrever nesse arquivo? O grupo tem?

```
$ ls -lha ~/arqses1ex6
-rw-r--r-- 1 aluno aluno 0 Ago 7 02:55 /home/aluno/arqses1ex6
```

Somente o dono do arquivo tem permissão para escrever no mesmo.

3. Tente remover o arquivo arqses1ex6. Você conseguiu? Em caso negativo, você sabe explicar o motivo?

```
$ rm ~/arqses1ex6
rm: não foi possível remover "/home/aluno/arqses1ex6": Permissão negada
```

Não, porque o diretório /home/aluno está sem permissão de escrita para o dono.

4. Modifique as permissões do arquivo arqses1ex6 de forma a retirar a permissão de escrita para o dono e colocá-la para o grupo.

```
$ chmod 464 ~/arqses1ex6
$ ls -ld ~/arqses1ex6
-r--rw-r-- 1 aluno aluno 0 Ago 7 02:55 /home/aluno/arqses1ex6
```

5. Com o uso de redirecionamento, tente copiar o conteúdo do seu diretório *home* para dentro do arquivo arqses1ex6.

```
$ ls -lha /home/aluno > /home/aluno/arqses1ex6
-bash: /home/aluno/arqses1ex6: Permissão negada
```

Apresentou erro de permissão de gravação no diretório por parte do dono.

6. Torne a colocar a permissão para escrita no seu diretório home para o dono.

```
$ chmod 755 /home/aluno
$ ls -ld ~
drwxr-xr-x 3 aluno aluno 4096 Ago 7 03:38 /home/aluno
```

#### 8) Atribuindo as permissões padrão

1. Crie arquivos (arq1ses1ex9, arq2ses1ex9, etc.) e diretórios (dir1ses1ex9, dir2ses1ex9, etc.) em seu diretório *home*, após definir cada uma das seguintes *umasks*: 000; 002; 003; 023; 222; 022. Em seguida, observe as permissões que foram associadas a cada um dos arquivos e diretórios.

```
$ umask 000 ; touch arg1ses1ex9 ; mkdir dir1ses1ex9
$ umask 002 ; touch arq2ses1ex9 ; mkdir dir2ses1ex9
$ umask 003 ; touch arg3ses1ex9 ; mkdir dir3ses1ex9
$ umask 023 ; touch arq4ses1ex9 ; mkdir dir4ses1ex9
$ umask 222 ; touch arq5ses1ex9 ; mkdir dir5ses1ex9
$ umask 022 ; touch arq6ses1ex9 ; mkdir dir6ses1ex9
$ ls -lha /home/aluno | egrep 'arq[1-6]ses1ex9|dir[1-6]ses1ex9'
                           0 Ago 7 03:50 arq1ses1ex9
-rw-rw-rw- 1 aluno aluno
-rw-rw-r-- 1 aluno aluno
                           0 Ago 7 03:50 arg2ses1ex9
-rw-rw-r-- 1 aluno aluno
                           0 Ago 7 03:50 arq3ses1ex9
-rw-r--r-- 1 aluno aluno
                           0 Ago 7 03:52 arg4ses1ex9
-r--r--r-- 1 aluno aluno
                           0 Ago 7 03:52 arg5ses1ex9
-rw-r--r-- 1 aluno aluno
                           0 Ago 7 03:52 arq6ses1ex9
drwxrwxrwx 2 aluno aluno 4,0K Ago 7 03:50 dir1ses1ex9
drwxrwxr-x 2 aluno aluno 4,0K Ago 7 03:50 dir2ses1ex9
drwxrwxr-- 2 aluno aluno 4,0K Ago 7 03:50 dir3ses1ex9
drwxr-xr-- 2 aluno aluno 4,0K Ago 7 03:52 dir4ses1ex9
dr-xr-xr-x 2 aluno aluno 4,0K Ago 7 03:52 dir5ses1ex9
drwxr-xr-x 2 aluno aluno 4,0K Ago 7 03:52 dir6ses1ex9
```

# 9) Entendendo as permissões padrões

1. Na execução do exercício anterior, você saberia explicar por que, ainda que utilizando a mesma *umask*, as permissões associadas ao arquivo criado diferem das do diretório?

O comando umask trabalha de forma diferente com arquivos e diretórios. Por motivos de segurança um um novo arquivo nunca recebe a permissão de execução quando da sua criação.

# Usuários e grupos

#### 1) Criando contas de usuários

Uma das atividades que fazem parte da rotina diária de um administrador de sistemas é o gerenciamento de contas de usuários. Frequentemente, usuários são criados, modificados, desabilitados ou excluídos do sistema

1. Descubra se o sistema faz uso de *shadow passwords* ou se ainda utiliza o esquema tradicional.

```
$ ls -ld /etc/gshadow /etc/shadow
-rw-r---- 1 root shadow 666 Ago 5 16:52 /etc/gshadow
-rw-r---- 1 root shadow 1125 Ago 5 16:51 /etc/shadow
```

O aluno deve verificar se os arquivos /etc/shadow e /etc/gshadow existem.

- 2. Crie uma conta para você no sistema, seguindo os passos descritos na aula teórica e no material didático.
  - Editar o arquivo /etc/group e inserir uma nova linha com os parâmetros relativos ao grupo do novo usuário:
    - Nome do grupo;
    - Senha ("x");
    - GID;
    - Membros do grupo.

```
marcelo:x:1001:
```

- Editar o arquivo /etc/gshadow e inserir uma nova linha com os parâmetros relativos ao grupo do novo usuário:
  - Nome do grupo;
  - Senha criptografada do grupo ("!");
  - Administradores do grupo;
  - Membros do grupo.

```
marcelo:!::
```

- Editar o arquivo /etc/passwd e inserir uma nova linha com os parâmetros relativos à conta do novo usuário:
  - Nome do usuário:
  - Senha ("x");

- UID;
- GID;
- GECOS: campo com comentários informativos do usuário;
- Diretório *home*:
- Shell de login.

```
marcelo:x:1001:1001:,,,:/home/marcelo:/bin/bash
```

- Editar o arquivo /etc/shadow e inserir uma nova linha os parâmetros relativos à conta do novo usuário:
  - Nome do usuário;
  - Senha criptografada: inserir valor "\*", que será alterado a seguir;
  - last\_change: número de dias desde a última alteração de senha;
  - minimum: número mínimo de dias até que senha possa ser alterada novamente;
  - maximum: número máximo de dias até que a senha deva ser alterada;
  - warning: número de dias para aviso de expiração de senha;
  - inactive: número de dias após expiração em que a senha será aceita;
  - expire: data para expiração da senha.

```
marcelo:*:16846:0:99999:7:::
```

• Definir uma senha para a nova conta, utilizando o comando passwd:

```
# passwd marcelo
```

 Copiar os arquivos de inicialização contidos no diretório /etc/skel para o diretório home do usuário.

```
# cp -r /etc/skel /home/marcelo
```

· Alterar o usuário e grupo donos dos arquivos na pasta home do novo usuário:

```
# chown -R marcelo /home/marcelo
```

- · Configurar a *quota* de disco para o usuário, se o sistema utilizar *quotas*.
- Testar se a conta foi criada corretamente, fazendo login no sistema e verificando se o diretório corrente é o diretório home do usuário, definido no arquivo /etc/passwd.
- o O script shell abaixo mostra uma maneira como os comandos executados manualmente

nesta atividade poderiam ser automatizados por um administrador de sistemas:

```
#!/bin/bash
usage() {
echo " Usage: $0 -u USER -p PASSWORD"
 exit 1
}
if [[ $EUID -ne 0 ]]; then
echo " [*] Not root!" 1>82
 exit 1
fi
while getopts ":u:p:" opt; do
 case "$opt" in
   u)
     user=${OPTARG}
     ;;
   p)
     pass=${OPTARG}
    *)
     usage
     ;;
 esac
done
[ -z $user ] && { echo " [*] No user?"; usage; }
[ -z $pass ] && { echo " [*] No password?"; usage; }
if egrep "^${user}:" /etc/passwd &> /dev/null; then
 echo " [*] User exists!"
 exit 1
fi
lastgid=$( getent group | grep -v 'nogroup' | cut -d':' -f3 | sort -n | tail -n1
)
((lastgid++))
echo "$user:x:$lastgid:" >> /etc/group
echo "$user:!::" >> /etc/gshadow
lastuid=$( getent passwd | grep -v 'nobody' | cut -d':' -f3 | sort -n | tail -n1
((lastuid++))
echo "$user:x:$lastuid:$lastqid:,,,:/home/$user:/bin/bash" >> /etc/passwd
```

```
salt="$( cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 8 | head -n 1 )"
hpass="$( mkpasswd -m sha-512 -S $salt -s <<< $pass )"
echo "$user:$hpass:16842:0:999999:7:::" >> /etc/shadow

cp -r /etc/skel /home/$user
chown -R ${user}.${user} /home/$user
```