Who Let the Dogs Out?

Project 6: Brandon Griffin

Problem Statement

This project aims to automate the task of object detection, and specifically classify dogs.

Missing Dog Detection: SF Animal Care & Control Lost Missing Dogs San Francisco What

does

an

Atomic

Physicist's

dog do

with

bones?

Photo by <u>Channey</u> on <u>Unsplash</u>

Is it a dog...?

@teenybiscuit/Twitter

Base Model

- ImageNet
 - o 14 million images
 - o 20,000 classes
- ILSVRC
 - 1 million images
 - o 1,000 classes
 - o 1,000 images
- VGG-16
 - Multiclass Target

VGG-16 Block	Name (Type)	Kernel Size	Nodes	Params #	Stride/Pool	Output (h x w x depth)
00-First	input1 (Input)	No Filter	None	0	None	(Batch, 224, 224, 3-RGB)
01-Block 01	conv1 (Conv2D)	(3x3)	64	1,792	(1x1)	(Batch, 224, 224, 64)
02-Block 01	conv2 (Conv2D)	(3x3)	64	36,928	(1x1)	(Batch, 224, 224, 64)
03-Block 01	pool1 (MaxPooling2D)	(2x2)	None	0	(2x2)	(Batch, 112, 112, 64)
04-Block 02	conv1 (Conv2D)	(3x3)	128	73,856	(1x1)	(Batch, 112, 112, 128)
05-Block 02	conv2 (Conv2D)	(3x3)	128	147,584	(1x1)	(Batch, 112, 112, 128)
06-Block 02	pool2 (MaxPooling2D)	(2x2)	None	0	(2x2)	(Batch, 56, 56, 128)
07-Block 03	conv1 (Conv2D)	(3x3)	256	295,168	(1x1)	(Batch, 56, 56, 256)
08-Block 03	conv2 (Conv2D)	(3x3)	256	590,080	(1x1)	(Batch, 56, 56, 256)
09-Block 03	conv3 (Conv2D)	(3x3)	256	590,080	(1x1)	(Batch, 56, 56, 256)
10-Block 03	pool3 (MaxPooling2D)	(2x2)	None	0	(2x2)	(Batch, 28, 28, 256)
11-Block 04	conv1 (Conv2D)	(3x3)	512	1,180,160	(1x1)	(Batch, 28, 28, 512)
12-Block 04	conv2 (Conv2D)	(3x3)	512	2,359,808	(1x1)	(Batch, 28, 28, 512)
13-Block 04	conv3 (Conv2D)	(3x3)	512	2,359,808	(1x1)	(Batch, 28, 28, 512)
14-Block 04	pool4 (MaxPooling2D)	(2x2)	None	0	(2x2)	(Batch, 14, 14, 512)
15-Block 05	conv1 (Conv2D)	(3x3)	512	2,359,808	(1x1)	(Batch, 14, 14, 512)
16-Block 05	conv2 (Conv2D)	(3x3)	512	2,359,808	(1x1)	(Batch, 14, 14, 512)
17-Block 05	conv3 (Conv2D)	(3x3)	512	2,359,808	(1x1)	(Batch, 14, 14, 512)
18-Block 05	pool5 (MaxPooling2D)	(2x2)	None	0	(2x2)	(Batch, 7, 7, 512)
19 4D> 2D	flatten (Flatten)	No Filter	None	0	None	(Batch, 25,088)
20-Fully Connected	fcon1 (Dense)	No Filter	4,096	102,764,544	None	(Batch, 4,096)
21-Fully Connected	fcon2 (Dense)	No Filter	4,096	16,781,312	None	(Batch, 4,096)
22-Last Layer	Output (Dense)	No Filter	1,000	4,097,000	None	(Batch, 1,000)

Visual Genome

- Vision:
 - Complete understanding of visual scenes

- ▶ 108K + images
 - Not professional photography

- Average per image:
 - o 35 objects
 - Breeds of dogs not labeled
 - o 26 attributes
 - 21 pairwise relationships

Filters: 64 x (3 x 3 x 3)

1st Conv2D Layer

Model Performance:

• Loss: 0.0995

• Accuracy: 97.52%

- 10 epochs
- Best epoch: 2
- No augmentation

Dog Images	Training Set	Validation Set		
3,235	1,995 Images	1,240 Images		
3%	62%	38%		

Next Steps

- Batch Generator
 - a. Augmentation as regularization
 - b. Batch size flexibility

- 2. Consider similarity of images
 - a. ImageNet vs Visual Genome

- 3. Label breeds in VG dataset
 - a. Crowd source
 - b. Build breed app

Language bias deteriorate CV task performance ex. Hot Dogs

References:

Images:

https://barkpost.com/humor/doodle-or-fried-chicken-twitter/

Papers:

https://machinelearningmastery.com/introduction-to-the-image net-large-scale-visual-recognition-challenge-ilsvrc/

Very Deep Convolutional Networks For Large-Scale Image Recognition` (arXiv): https://arxiv.org/pdf/1409.1556.pdf

Photo by Clay Banks on Unsplash