## Graph Theory Fall 2022

## Assignment 4

1. Let G be a graph without loops.

We discussed the incidence matrix M that has n rows (a row for each vertex) and m columns (a column for each edge).

Recall that the entry  $M_{ij}$  has the formula

$$M_{ij} = \begin{cases} 1 & \text{if vertex } i \text{ is an endpoint of edge } j \\ 0 & \text{otherwise} \end{cases}$$

Now consider the matrix  $MM^T$ . The results of parts A and B below let us write  $MM^T = D + A$  where D is the diagonal matrix containing the degrees of the vertices and A is the **adjacency matrix** that encodes the numbers of edges joining pairs of vertices.

- A. Explain why  $(MM^T)_{ii}$ , the diagonal entry in position i, is the degree of vertex i.
- B. Explain why for  $i \neq j$ , the entry  $(MM^T)_{ij}$  is the number of edges joining vertex i to vertex j.
- C. Determine the matrices M,  $MM^T$ , D and A for the graph drawn below (the vertices are labeled 1,2,3,4,5 and the edges are labeled 14,15,24,25,34,35 denoting the corresponding endpoints).



2. We let G = (V, E) be a connected graph. For any vertex  $v \in V$ , define its **eccentricity** by the formula

$$ecc(v) = max\{d(u, v): u \in V\}$$

where d(u, v) is the distance between u and v.

A. Let G be the graph drawn below. Label each vertex with its eccentricity. This has already been done for  $v_{10}$ ; here,  $d(v_5, v_{10}) = d(v_6, v_{10}) = d(v_{13}, v_{10}) = 3$  and no vertex is further from  $v_{10}$ .



B. The **diameter** of a graph is the maximum among the eccentricities of its vertices and the **radius** of a graph is the minimum among the eccentricities of its vertices. What is the diameter and radius of the graph in part A?

A **central vertex** is a vertex v such that ecc(v) = radius(G). Which of the vertices in the graph in part A are central vertices?

C. A **peripheral vertex** is a vertex v such that ecc(v) = diameter(G). Which of the vertices in the graph in part A are peripheral vertices?

Let u and v be vertices such that  $d(u, v) = \operatorname{diameter}(G)$ . Explain why u and v must be peripheral vertices.

- D. Suppose  $v_i$  and  $v_j$  are adjacent vertices. Explain why  $ecc(v_i)$  and  $ecc(v_j)$  differ by at most 1.
- E. Explain why for any connected graph H, radius $(H) \leq \text{diameter}(H)$ .
- F. Let w be a central vertex for the graph H in part G. Use the fact that  $d(u,v) \le d(u,w) + d(w,v)$  for any vertices u and v to explain why diameter  $(H) \le 2$  radius (H).

- 3. Let G be a graph without loops and r be a vertex of G; we will call r the "root" vertex. We will say that  $u \approx w$  if d(r, u) = d(r, w). This means u and w are the same distance from r.
  - A. Show that the relation  $\approx$  is reflexive.
  - B. Show that the relation  $\approx$  is symmetric.
  - C. Show that the relation  $\approx$  is transitive.
  - D. Describe [r], the equivalence class of r under  $\approx$ .
  - E. If ru is an edge, briefly describe [u], the equivalence class of u under  $\approx$ .