

MATH521: Numerical Analysis of Partial Differential Equations

Winter 2018/19, Term 2

Due Date: Thursday, 31 January 2019

Timm Treskatis

Homework Assignment 4: Analytical Flavour

Please submit the following files as indicated below: 🗗 source code 🚨 PDF file 🚨 image file 📦 video file

Question 1 | **1 mark** | \triangle Let $u \in C^3(\overline{\Omega})$ with a bounded domain Ω . For simplicity and with no real loss of generality we assume that $\Omega \subset \mathbb{R}$ (because even in higher dimensions the partial derivatives are just ordinary 1D directional derivatives).

In Lemma 2.2.6 we showed that the one-sided difference quotients

$$\partial^{+h}u(x) = \frac{u(x+h) - u(x)}{h}$$
 and $\partial^{-h}u(x) = \frac{u(x) - u(x-h)}{h}$

are a first-order consistent approximation of u'(x). Use the same Taylor-series technique to show that these difference quotients actually approximate u'(x) - Du''(x) "better", namely with second-order consistency, than they approximate u'(x). Here $D \in \mathbb{R}$ is a certain number which may depend on h.

Question 2 | 4 marks | \triangle Let $\Omega \subset \mathbb{R}^d$ be a bounded domain and $L: C^2(\Omega) \cap C(\bar{\Omega}) \to C(\Omega)$ a linear second-order elliptic operator. If—using the notation from the notes—its zeroth-order coefficient $c \geq 0$, then the operator is nonnegativity-preserving

$$Lu \ge 0 \text{ in } \Omega \quad \wedge \quad u \ge 0 \text{ on } \partial\Omega \qquad \Rightarrow \qquad u \ge 0 \text{ in } \Omega$$
 (1)

(in class we only discussed the case c = 0).

For a matrix $A \in \mathbb{R}^{n \times n}$, we have shown that the analogous algebraic property, namely monotonicity

$$Ax \ge 0 \qquad \Rightarrow \qquad x \ge 0,$$
 (2)

is equivalent to A being nonsingular and inverse-nonnegative. We then proved the (sufficient) monotonicity criterion that every weakly chained diagonally dominant L-matrix is monotone. Hence, a discretisation scheme that turns operators L with the property (1) into weakly chained diagonally dominant L-matrices preserves very important structure of the problem.

In this assignment, I would like you to refine these results to highlight another characteristic feature of elliptic operators¹. In fact, elliptic operators of the above form have strictly positive Green's functions in the interior of Ω , so in addition to (1) they also have the property

$$Lu \ge 0 \text{ in } \Omega \quad \wedge \quad \exists x \in \Omega : (Lu)(x) > 0 \quad \wedge \quad u \ge 0 \text{ on } \partial\Omega \quad \Rightarrow \quad u > 0 \text{ in } \Omega.$$

(a) Formulate the corresponding stronger monotonicity property of matrices and show that it is equivalent to nonsingularity and inverse-positivity.

¹Even a hyperbolic operator like $L = a \cdot \nabla$ preserves nonnegativity and also satisfies a similar maximum principle. What we look at in this question is a feature of elliptic operators only, but not of hyperbolic operators.

(b)	Can you also this stronger	o find and prove a sufficient form of monotonicity?	t criterion in	n the style of the	M-criterion from	om Lemma	2.2.19 that implies

Your Learning Progress 0 marks, but -1 mark if unanswered D V you have learnt from this assignment?	What is the one most important thing that
What is the most substantial new insight that you have gained from thi	s course this week? Any aha moment?