

Question Paper - Report

08-Apr-2024 02:43:06 SRUJANA AKELLA . .

Logout

Back

Question Paper-

	MANIPAL ACADEMY OF HIGHER EDUCATION
	VI Sem BTech Mid-Term Examinations Data Science and Engineering
	OPERATIONS RESEACH [HUM 3252]
Marks: 30	Duration: 120 mins.
	${f A}$
Answer all t	he questions. Section Duration: 20 mins
	rect answer for the following questions if any may be suitably assumed
1)	Based on the final table of the simplex algorithm, LPP is said to have an alternate solution if in the C_j - Z_j row:
	Below a non-basic variable, there is a zero value One or more basic variable have a zero value Entering variable has a negative coefficient The optimum function value is zero
2)	While solving an LPP using the graphical approach, the solution value can be found at
	All the given options are correct the feasible region The corner points of the feasible region (0.5)
3)	Which statement characterizes a typical form of a linear programming problem?
4)	In the graphical method to solve LPP, the restriction on the number of constraints is
	None of the options are correct 2 3 Not more than 3 (0.5)
5)	While maximizing the profit using the transportation algorithm, the incoming cell is the one with
	Highest positive cell improvement index Highest negative cell improvement index Lowest negative cell improvement index Zero cell improvement index improvement index (0.5)

6)	For a maximization problem in LPP, the objective function coefficient for an artificial variable is	
		(0.5)
	<u>-M</u> +M 0 None of the options are correct	
7)	Suppose a particular route needs to be blocked while formulating a transportation problem (shipment problem), and this is done by making the cost of that particular route 'M'. To make the analysis simple, M must assume an	(0.5)
	Very high negative valueZero valueVery high positive valueNone of the options are correct	(***)
8)	The allocations made into a dummy destination in the final optimal table represent	
	Surplus at the supplying source Shortages at the receiving destination The actual demand being met at the destination Shortages at the receiving destination The actual demand being met at the destination Shortages at the options are correct.	(0.5)
9)	The number of dummy allocations € one would have to make to resolve degeneracy is	
	As many as to1 One more than the number resolve degeneracy of rows and columns number of rows and columns	(0.5)
10)	When the constraint imposed on LP is a linear equation in terms of decision variable, then, while solving the same using the simplex algorithm, we may have to add an	(0.5)
	Artificial variable Slack variable Surplus variable Decision variable	(0.5)
	В	
	I the questions. Section Duration: 100	mins
•	ng data can be assumed suitably.	(4)
11)	A solicitor's firm employs typists on an hourly piece-rate basis for their daily work. There are five typists, and their charges and speeds are different. According to an earlier understanding, only one job is given to one typist and the typist is paid for a full hour even if he works for a fraction of an hour. Find the least cost allocation for the following data. Use the assignment algorithm.	(4)

Typist	Rate per Hour	No. of pages typed per hour
Α	5	12
В	6	14
С	3	8
D	4	10
Е	4	11

Job	No. of Pages
P	199
Q	175
R	145
S	298
T	178

Three warehouses supply five stores. The table indicates the cost of shipment per unit between the warehouses and stores. However, a major bridge has been damaged preventing deliveries from Warehouse A to Store 5, Warehouse B to Store 2 and from Warehouse C to Store 4. Formulate the problem as a transportation problem and generate the basic feasible solution using the least cost method.

		W	Warehouse			
		A	В	C		
20	1	2	4	6	75	
-	2	3	8	7	345	
Stores	3	4	3	8	180	
	4	4	6	3	90	
-	5	2	6	5	210	
Supp	oly	850	300	450		

(3)

Optimize the above basic feasible solution (for the five stores and three warehouses problem) using the Modified Distribution Method.

(4)

14) A factory manufactures three products, A, B, and C, for which the data is given below. The profit per unit is Rs.32, Rs.30 and Rs.40 for products A, B and C respectively. Also given below is the final production plan (optimal solution), with reference to the same answer to the following questions:

(3)

Resource	I	roduct	Resource			
	A	В	C	Availability		
Raw Materials	5	4	3	2500		
Machine Hours	2	3	1	1275		
Labor Hours	3	2	4	2100		

Profit/	Basic	<u>C</u> i	32	30	40	0	0	0
Unit	variable	Q	\mathbf{X}_{1}	X_2	X3	Sı	S_2	S ₃
0	S_1	175	3/2	0	0	1	-1	-1/2
30	X ₂	300	1/2	1	0	0	2/5	-1/10
40	X3	375	1/2	0	1	0	-1/5	3/10
	Zi	24000	35	30	40	0	4	9
	C _j -Z _j		-3	0	0	0	-4	-9

While implementing the production plan, 500 raw materials units must be scrapped as they don't meet the quality specifications. Your regular vendor has assured you with 200 units. How many units of raw materials you will have to arrange from a new vendor to implement the pre-determined production plan?

A firm manufactures three products A, B and C. Time to manufacture A is twice that of B and thrice that of C, and if the entire labour is engaged in the production of A, 1600 units of this product can be produced. The products are to be produced in the ratio 3:4:5. The demand for at least 300, 250 and 200 units of products A, B and C and the profit earned per unit is Rs.90, Rs.40 and Rs.30 respectively. Formulate the problem as a linear programming problem.

Raw Material	20 m 14 15 15 15 15 15 15 15 15 15 15 15 15 15	uireme of produ	Total Availability (Kg)	
	A	В	C	
P	6	5	2	5000
Q	4	7	3	6000

An intermediate simplex table of an LPP profit maximization case is shown below. Check the intermediate solution for optimality and generate the optimal solution. (3)

(3)

Ci	4	3	0	0	0	0
Q	\mathbf{X}_{1}	X ₂	Sı	S ₂	S ₃	S ₄
200	0	1	1	0	-2	0
200	0	0	-1	1	1	0
400	1	0	0	0	1	0
500	0	0	-1	0	2	1

17) A firm manufactures two products, A and B, which use three resources. The unit profit generated by the products, maximum availability of the resources, and requirement of each resource to manufacture one unit of product are shown in the table. The optimal production plan (final simplex table) that maximizes the profit is also given. Based on the optimum production plan, answer the following questions. Assume that the firm operates one shift a day.

	Resource consumption per unit of		Maximum available per week
	A	В	
Raw Material	2	4	48
Labor	5	2	40
Machine Hours	4	4	52
Unit Profit (Rs)	50	60	

Profit per unit	Basis	Ci	50	60	0	0 S ₂	0
		Q	X_1	X_2	Sı		S ₃
60	X ₂	11	0	1	1/2	0	-1/4
0	S ₂	8	0	0	3/2	1	-2
50	X_1	2	1	0	-1/2	0	1/2
	Zi	760	50	60	5	0	10
			0	0	-5	0	-10

- a. If the machines break down during production, what is the maximum time the maintenance personnel can take to repair the machine?
- b. Workers are demanding a day's leave to attend a local festival. Is it possible to sanction leave for a day without altering the production plan?

(3)

18) You have reported at XYZ Ltd as an operations manager which manufactures two types of leather belts. Your predecessor had started preparing the production plan for the next planning period before he was relieved from duty. The plan is as shown below:

Profit/	Sol	Çį	4	3	0	0	0	0	
unit	Var	Q	X_1	X_2	(Time)	(Leather)	(Buckle)	(Buckle)	
2			FG 0		S ₁	S ₂	S ₃	S4	20
0	S1	1000	2	1	1	0	0	0	
0	S2	800	1	1	0	1	0	0	
0	S3	400	1	0	0	0	1	0	
0	S4	700	0	1	0	0	0	1	
2	Zi	0	0	0	0	0	0	0	
	Cj-Zj		4	3	0	0	0	0	

Before you decide on any course of action, you would like to verify if your predecessor was right in quantifying the problem. Formulate the problem as an LPP from the above set of data and describe it qualitatively.

LM Exam Suite © 2024 All rights reserved. Paperless Digital Exams $^{\wedge}$ Top

epm

IP: 45.112.144.208

epCloud 1.5