OF AN

INVERSE ELEMENT MAT240: Zk

SET F WITH AT LEAST TWO DISTINCT ELEMENTS

O A 1 AND TWO OPERATIONS ON THEM:

+: FxF -> F, .: FxF -> F SUCH THAT Ya, b, c & F:

•

F, α€0 = b⊕a a0b = b0a

Fz $(a \oplus b) \oplus c = a \oplus (b \oplus e)$ a(bc) = (ab)e

EXISTENCE

OF A

NEUTRAL F3

ELEMENT

 $a \cdot 1 = a$

F4 Ya 3b: a0 b=0

∀a, a + 0] b = a b = 1

F5 a (boe) = aboac

$$Z_{k} = \{0, 1, ..., k-1\} \sim Z_{k} = \{[0], [1], ..., [k-1]\}$$

WHERE [a] $\forall a \in \mathbb{Z}$: [a] = [a'] $\rightleftharpoons \forall \exists n \in \mathbb{Z}$: a'.a=nk

PROPERTIES OF [] :: [a] + [b] = [a+b]

[a] [b] = [ab]

EXAMPLE :: FOR Z_{ii}

[5] [6] = [30] = [7]

:: Z_{23}

[21] [37] = [10]

:: 1, SINCE 31 IS ODD

THEOREMS

- 1. Zp 18 A FIELD IFF PE I
- 2. IF k= L.m with I< L< k, THEN [L] E Z/E HAS
- 3. If q EIN, THERE EXISTS A FINITE FIELD WITH q ELEMENTS IFF q=pm, meN, pe1

THEOREM 2

UNIQUENESS OF A NEUTRAL ELEMENT

- (i) IF O'EF: a+O'= a FaEF => 0'=0
- (ii) IF 1'EF WITH a.1'=a]aeF, a=0 => 1'=1

PROOF

(i) I.IF a+0'=a, THEN a+0'=a=a+0. => 2. 0'+a=0+a by Fl

EXERCLSE: (ii) SIMILAR.

THEOREM 3 UNIQUENESS OF THE INVERSE ELEMENT

- (i) Yae F 3 | beF: a+b=0
- (ii) VaeF]! beF: ab=1

PROOF

- (i) Suppose 3 b, b'eF: D+b=0 1 a+b=0

 BY CANCELLATION THEOREM, b'= b
- (u) SIMILAR.

EXAMPLES OF FIELDS

THEOREM! CANCELLATION PROPERTY

LET F BE A FIELD.

- (i) $\forall a,b,c \in F: a+b = c+b => a=c$
- (ii) ∀a,b,c ∈ F, b≠0; a.b=c.b => a=c.

PROOF

- (i) Suppose a+b=c+b. By F4, $\exists d \in F : b+d=0$ Thus (a+b)+d=(c+b)+d $\Rightarrow a+(b+d)=c+(b+d) \mid by F2$ $\Rightarrow a+0=c+0$ by choice of d $\Rightarrow a=c$ by F_3
- (ii) ExERCISE.

DEFINITION:

THEOREM3

(i) FOR $a \in F$, DENOTE BY $-a \in F$ THE UNIQUE ELEMENT SUCH THAT a+(-a)=0.

FOR a, bef, DEFINE a-b := a+ (-b)

(ii) FOR $a \in F$, $a \neq 0$ DENOTE BY $a^{-1} \in F$ THE VNIQUE ELEMENT SUCH THAT $a \cdot a^{-1} = 1$.

FOR $a, b \in F$, $b \neq 0$ DEFINE $\frac{a}{b} = a \cdot b^{-1}$

EX AMPLE: [2] IN 2/7

THEOREM 4 FOR ACF, a.O=0

PROOF

1. a.0 = a.(0+0). By F3.

2- = a.0+a.0 By F5.

3. But ALSO a.0 = a.0+0 By F3.

213. => a.0+a.0 = a.0+0

=> a.0=0 (BY CANCELLATION THM.

THEOREM 5: FOR $a,b \in F$: $a.b=0 = > a=0 \quad V \cdot b=0$

? PROVE :

- (-a) = a