目录

第5章aylor 级数		1
5.1	幂级数	3
5.2	全纯函数的 Taylor 展开	5

第5章 Taylor级数

內容提要

- □ 局部-致收敛 ⇔ 紧-致收敛
- □ 局部一致收敛解析函数列满足

- 1. 解析函数列的极限解析
- 2. 导数列一致收敛到极限函数导数

定义 5.1

- 1. 称函数 $f: \mathbb{Z}_{>1} \to \mathbb{C}$ 或 $f: \mathbb{Z}_{>0} \to \mathbb{C}$ 为一个复序列. 记 $z_k := f(k)$.
- 2. 称形式和 $z_1+z_2+z_3+\cdots$,或 $z_{-n}+z_{-n-1}+\cdots+z_{-1}+z_0+z_1+\cdots$ 为一个复级数.

命题 5.1

- 1. 设 $(z_k)_k = (a_k + ib_k)_k$, 则 $z_k \to a + bi$, 当且仅当 $a_k \to a$, $b_k \to b$.
- 2. Cauchy 准则: $\sum_{k=1}^{\infty} z_k$ 收敛, 当且仅当 $\forall \varepsilon > 0$, $\exists N > 0$, s.t. $\forall n \geq N, p \geq 1$, 都有

$$|z_{n+1} + \cdots + z_{n+p}| < \varepsilon$$

- 3. 绝对收敛: $\sum_{k=1}^{\infty} z_k$ 绝对收敛, 当且仅当 $(|a_k|)_k$, $(|b_k|)_k$ 均绝对收敛.
- 4. Cauchy 乘积: 设 $\sum_{n=1}^\infty z_n', \sum_{n=1}^\infty z_n''$ 分别绝对收敛到 σ', σ'' . 则

$$\sum_{n=1}^{\infty} \sum_{i+j=n} z_i' z_j''$$

绝对收敛到 σ', σ'' . ^a

"事实上,一个绝对收敛即可.

定义 5.2 (函数项级数)

设 $E\subseteq\mathbb{C}$ 是一个子集, 设 $\forall n\geq 1$, $f_n:E\to\mathbb{C}$ 是函数. 若 $\forall z_0\in E$, $f_n(z_0)\to f(z_0)$, $n\to\infty$. 则称 $(f_n)_{n\geq 1}$ 是 (逐点) 收敛到 $f:E\to C$ 的. 此时 f 为极限函数或和函数.

定义 5.3

设 $\sum_{k=1}^{\infty}f_k\left(z\right)$ 是 E 上的函数项级数. 若 $\varepsilon>0$, 存在 $N=N\left(\varepsilon,E\right)>0$, 使得对于所有的 $n\geq N$, 以及 $z\in E$, 均与

$$\left| \sum_{k=1}^{n} f_k(z) - f(z) \right| < \varepsilon$$

则称 $\sum_{k=1}^{\infty} f_k(z)$ 一致收敛到 f.

定理 5.1 (Cauchy 一致收敛原理)

 $E,\sum_{k=1}^\infty f_k$ 同上,则 $\sum_{k=1}^\infty f_k$ 在 E 上一致收敛,当且仅当 orall arepsilon>0,存在 N>0,使得 $orall n\ge N, p\ge 1$,都有

$$|f_{n+1}(z) + \cdots + f_{n+p}(z)| < \varepsilon$$

对于所有的 n 成立.

定理 5.2 (Weierstrass 判別法)

设 $f_k:E o\mathbb{C}$ 是函数, $\forall z\in E$, 都有 $|f_k(z)|\leq a_k$. 若非负项数项级数 $\sum_{k=1}^\infty a_k$ 收敛, 则 $\sum_{k=1}^\infty f_k$ 在 E 上一致收敛.

Example 5.1 考虑

$$\sum_{k=1}^{\infty} \frac{\cos kz}{k^2}$$

若 E=R, 容易看出级数收敛.

当 $E = \mathbb{C}$ 时, 是否仍一致收敛?

定理 5.3 (一致收敛保持连续性)

设 $f_k:E o\mathbb{C}\ \forall k\geq 1$ 均连续, 且 $\sum_{k=1}^n f_k$ 在 E 上一致收敛到 f, 则 $f\in C(E)$.

定理 5.4 (级数的逐项积分)

设 $\gamma\subseteq\mathbb{C}$ 是分段光滑的 Jordan 曲线. $\forall k\geq 1$, $f_k:\gamma\to\mathbb{C}$ 是连续函数 . $\sum_{k=1}^n f_k$ 在 γ 上局部一致收敛到 f. 则

$$\int_{\gamma} f(z) dz = \sum_{k=1}^{\infty} \int_{\gamma} f(z) dz$$

°保证积分存在

Idea 注意到曲线像是紧集,故 $\sum f_k$ 在其上一致收敛,故我们有误差的一致性. 利用曲线弧长的上界估计,给出积分列的一致逼近.

定义 5.4

设 $D\subseteq\mathbb{C}$ 是区域. $f_k:D\to\mathbb{C}. \forall k\geq 1$. 若 $\forall K\subseteq D$ 是紧的, 都有 $\sum_{k=1}^n f_k$ 在 K 上一致收敛到 f, 则称 $\sum_{k=1}^\infty f_k$ 在 D 上是紧一致收敛到 f 的 (内闭一致收敛).

定理 5.5

 D, f_n 同上. $f_n \in \mathcal{H}(D), \forall n \geq 1$. 且 $\sum_{n=1}^m f_n$ 在 D 上紧一致收敛到 f ,则 $f \in \mathcal{H}(D)$,且 $\forall k \geq 1$,都有

$$f^{(k)}(z) = \sum_{n=1}^{\infty} f_n^{(k)}(z)$$

且 $\sum_{n=1}^m f_n^{(k)}$ 在 D 上紧一致收敛到 $f^{(k)}$.

 \Diamond

Proof $\forall z_0 \in D$, 取 K 为 z_0 的一个紧邻域,则 $\sum f_n$ 在 K 上一致收敛到 f. 故 $f \in C(K)$, 进而 $f \in C(D)$.

 $\forall z_0 \in D$, 取 r>0, 使得 $\overline{U}:=\overline{U}(z_0,r)\subseteq D$. 任取 $\gamma\subseteq U:=U(z_0,t)$ 是分段光滑的 Jordan 闭合曲线. 由于 $\sum f_n$ 在 \overline{U} 上一致收敛到 f, 进而在 γ 上亦然, 我们要

$$\int_{\gamma} f(z) dz = \sum_{k=1}^{\infty} \int_{\gamma} f_k(z) dz = \sum_{k=1}^{\infty} 0 = 0$$

由 Morera 定理, $f \in \mathcal{H}(U)$, 进而 $f \in \mathcal{H}(D)$.

任取紧集 K, 它含于更大的紧集 \overline{G} , 其中 G 是开集. 由于开集内部每一点都含于一个与边界有正距离的圆盘, 利用紧性, 只需要说明在任一点的落在 G 的紧圆盘上, 一致收敛性成立即可. 我们有 Cauchy 不等式

$$\sup \left\{ \left| S_n^{(k)}\left(z\right) - f^{(k)}\left(z\right) \right| \right\} \le C \sup \left\{ \left| S_n\left(z\right) - f\left(z\right) \right| \right\}$$

在任意—个合适圆盘内成立,其中 C 是与 z 无关的常数. 由 Cauchy 准则,得到—致收敛性. \Box

阅读 P61-68

预习 P68-76

作业 P87 2.3.5.

5.1 幂级数

內容提要

□ 收敛半径的存在性

定义 5.5

称形式和

$$\sum_{n=0}^{\infty} \alpha_n (z-z_0)^n . \quad z_0 \in \mathbb{C}, \alpha_n \in \mathbb{C}$$
 (*)

为一个幂级数.

4

定理 5.6 (Abel 第一定理)

若 (*) 在 $z_1 \neq z_0$) 处收敛, 则幂级数在 $\{z \in \mathbb{C} : |z - z_0| < |z_1 - z_0|\}$ 上绝对收敛.

က

Proof 通项 \rightarrow 0, 故存在 M > 0, 使得

$$\left|\alpha_n \left(z_1 - z_0\right)^n\right| < M, \quad \forall n \ge 0$$

令

$$k := \left| \frac{z - z_0}{z_1 - z_0} \right| < 1$$

$$\sum_{n=1}^{\infty} \alpha_n (z - z_0)^n = \sum_{n=1}^{\infty} (\alpha_n (z_1 - z_0)^n) \left(\frac{z - z_0}{z_1 - z_0}\right)^n$$

通项模长最终 $\leq Mk^n$

由比较判别法,绝对收敛.

定理 5.7

若下列成立其-

1.
$$l = \lim_{n \to \infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right|$$

2.
$$l = \lim_{n \to \infty} \sqrt[n]{|\alpha_n|}$$

3.
$$l = \limsup_{n \to \infty} \sqrt[n]{|\alpha_n|}$$

则称 $R=\frac{1}{l}$ 为幂级数的收敛半径. 约定 l=0 时, $R=+\infty$, $l=+\infty$ 时, R=0.

此时, $|z-z_0| > R$ 时, 幂级数发散. $|z-z_0| < R$ 时, 幂级数收敛.

引理 5.1

若 $K_1, K_2 \subseteq \mathbb{R}^n$ 是两个闭集, 且至少其中一个有界, 且 $K_1 \cap K_2 = \emptyset$, 则

$$\mathrm{dist}\left(K_{1},K_{2}\right)>0$$

定理 5.8

设 R>0,则 $\sum_{n=1}^m \alpha_n (z-z_0)^n$ 在 $U(z_0,R)$ 上紧一致收敛到 f(z). 且和函数 $f(z)\in\mathcal{H}(U(z_0,R))$,且对于任意的 $k\geq 1$,有

$$f^{(k)}(z) = k!\alpha_k + \frac{(k+1)!}{1!}\alpha_{k+1}(z-z_0) + \frac{(k+2)!}{2!}\alpha_{k+2}(z-z_0)^2 + \cdots$$

特别地,

$$\alpha_k = \frac{f^{(k)}(z_0)}{k!}$$

阅读 67-74

预习 75-81

作业第四节 6,7,9,11

5.2 全纯函数的 Taylor 展开

定理 5.9

若 $f \in \mathcal{H}(B(z_0,R))$, 则 f 可以在 $B(z_0,R)$ 上展开为幂级数

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n, \quad z \in B(z_0, R)$$

定理 5.10

f 在 z_0 处全纯,当且仅当 f 在 z_0 的邻域内可以展开成幂级数:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)(z_0)}}{n!} (z - z_0)^n$$

 $^{\circ}$

定义 5.6

设 f 在 z_0 处全纯且不恒为零, 如果

$$f(z_0) = 0, f'(z_0) = 0, \dots, f^{(m-1)}(z_0) = 0, f^{(m)}(z_0) \neq 0$$

则称 z_0 为 f 的 m 阶零点.

4

定理 5.11

 z_0 为 f 的 m 阶零点, 当且仅当 f 在 z_0 的邻域内表为

$$f(z) = (z - z_0)^m g(z)$$

其中 g 在 z_0 处全纯, 且 $g(z_0) \neq 0$

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)(z_0)}}{n!} (z - z_0)^n$$

$$= \sum_{n=m}^{\infty} \frac{f^{(n)(z_0)}}{n!} (z - z_0)^n$$

$$= (z - z_0)^m \left(\frac{f^{(m)}(z_0)}{m!} + \cdots \right)$$

$$= (z - z_0)^m g(z)$$

其中 g(z) 为括号中的幂级数. 它在 z_0 处全纯, 且

$$g(z_0) = \frac{f^{(m)}(z_0)}{m!} \neq 0$$

反之, 若存在 g 使得 $f=(z-z_0)^m\,g\,(z)$, 显然 f 在 z_0 处全纯, 且直接计算容易得到 z_0 是 f 的 m 阶零点.

命题 5.2

设 D 是 $\mathbb C$ 上的区域, $f\in\mathcal H$ (D), 如果 f 在 D 中的小圆盘 $B(z_0,\varepsilon)$ 上恒为零, 则 f 在 D 上恒为零.

Proof 一方面, 全纯函数的泰勒系数在一个邻域内相等, 泰勒系数恒为零是一个开的条件. 另一方面, 任意阶导数的连续性给出泰勒系数不全为零是闭的条件. 又泰勒系数恒为零的点存在, 故 $D \perp f$ 的泰勒系数恒为零.

命题 5.3

设 D 是 $\mathbb C$ 上的区域, $f\in\mathcal H(D)$, f(z) 不恒为零. 则 f 在 D 中的零点是孤立的. 即若 z_0 为 f 的零点, 则必存在 z_0 的邻域 $B(z_0,\varepsilon)$, 使得 f 在 $B(z_0,\varepsilon)$ 零点只有 z_0 .

Proof f 在 z_0 的邻域上不恒为零. 设 z_0 是 f 的 m 阶零点, 则 f 在 z_0 的一个邻域上表为 $f(z)=(z-z_0)^m f(z)$, $g(z_0)\neq 0$, 故 g 在 z_0 的一个邻域 $B(z_0,\varepsilon)$ 上恒不为零, 从而 f 在其上没有 z_0 以外的零点.

定理 5.12 (解析函数的唯一性)

设 D 是 $\mathbb C$ 上的区域, $f_1, f_2 \in \mathcal H(D)$, 若存在 D 上的点列 $\{z_n\}$, 使得 $f_1(z_n) = f_2(z_n)$, $\neq 1, \cdots$, 且 $\lim_{n \to \infty} z_n = a \in D$, 则在 D 上 $f_1(z) \equiv f_2(z)$.

Proof 令 $g(z) = f_1(z) - f_2(z)$,则 $g(z_n) = 0, n = 1, \cdots$,. 由于 $g \in \mathcal{H}(D)$,故 $g(a) = \lim_{n \to \infty} g(z_n) = 0$. 但是 $\{z_n\}$ 也都是 g 的零点,这表明 g 的零点不孤立,只能有 $g(z) \equiv 0$.

命题 5.4 (常用展开)

1.

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad z \in \mathbb{C}$$

2.

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \quad \sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \quad z \in \mathbb{C}$$

3.

$$-\log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n}, \quad |z| < 1$$

$$\log(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n}, \quad |z| < 1$$

4.

$$(1+z)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} z^n, \quad |z| < 1$$

Proof 利用幂级数的全纯性,泰勒级数在实轴上的一致性,解析函数的唯一性,可以将实函数的泰勒展开公式推广到幂级数在复平面的收敛域上.

阅读 73-77

预习 78-84

作业 88 页 8,10