

课程内容回顾

本课涉及数学分支

- ·微积分(极限,导数,积分)
- ·高等代数(多项式,矩阵,线性方程组)
- 常微分方程
- 数值计算方法(插值理论,数据拟合)
- 概率论与数理统计
- 最优化方法

函数的极限

- 函数的极限
- · 多变量函数的极限

数学运算	Matlab命令
$\lim_{x\to 0} f(x)$	limit(f)
$\lim_{x \to a} f(x)$	limit(f, x, a) 或 limit(f, a)
$\lim_{x \to a-} f(x)$	limit(f, x, a,' left')
$\lim_{x \to a^+} f(x)$	limit(f, x, a,' right')
$\lim_{x\to\infty} f(x)$	limit(f, x, inf)

导数及偏导

- 一阶导数、高阶导数
- 偏导数
- 雅克比矩阵
- 向量求导
- · 参数方程求导
- 隐函数求导

- 数值微分
- 极值
- 方程组的根
- Taylor 展开
- 单调性

导数及偏导

Matlab求导命令diff调用格式:

```
求 f(x)的一阶导数 f'(x);
diff(f(x)),
                         求 f(x)的n阶导数 f^{(n)}(x);
diff(f(x), n),
diff(f(x, y), x),
求f(x, y)对x的一阶偏导数
diff(f(x, y), x,n),
求f(x, y)对x的n阶偏导数 \frac{\partial^n f}{\partial x^n};
matlab求雅可比矩阵命令jacobian:
jacobian([f(x, y, z), g(x, y, z), h(x, y, z)], [x, y, z])
```

极值和最值

[x, f]=fminbnd(F, a, b):

x返回一元函数在[a, b]内的局部最小值点,f返回局部最小值,F为函数。

[x, f]=fminsearch(F, x0):

x返回一元或多元函数在x0附近的局部最小值点,f返回局部最小值,F为函数。

导数的应用

求方程(组)的根

求代数方程 f(x)=0的根,可以用Matlab命令: solve(f, x). 输出结果即 f(x)=0的所有符号解或精确解.

求函数在一定范围内的零点

求f(x)=0在点x0附近的零点: x=fzero(f, x0).

求f(x)=0在[a, b]内的零点: x=fzero(f, [a, b]).

导数的应用

指定初始点求函数零点

从x0出发求f(x)=0的零点: [x, f, h]=fsolve(f, x0).

输出结果为向量[x, f, h], x为近似零点, f为该点处函数值, h输出值大于零表示结果可靠, 否则不可靠.

求函数f(x)在x=a处的n-1阶幂级数展开式:

taylor(f, x,' Order',' ExpansionPoint')

积分计算

- · 求和 (sum)
- 不定积分 (int)
- 定积分 (int)
- 广义积分 (int)
- · 数值积分 (梯形法trapz, 自适应辛普森quad)
- · 二重积分 (int)
- · 数值计算重积分 (dblquad, tripquad)
- 曲线积分 (int)
- · 曲面积分 (int)

插值方法

- · 插值法, interp1,
- · 分段线性插值, linear
- · 三次样条插值, spline, cubic
- · 二维插值, interp2, griddata

插值法

插值命令

- ◇分段线性插值: interp1(x0, y0, x) 默认选择其中x0和y0为已知 节点数组, x为待计算的插值点数组.
- ◇分段三次多项式插值: interp1(x0, y0, x, 'cubic'), 插值效果比分段线性插值更加光滑一些(节点处可导)。
- ◆ 三次样条插值: spline(x0, y0, x)或interp1(x0, y0, x, 'spline')每个 子区间是三次多项式,光滑(节点处二阶可导)
- ❖ 最近区域插值: interp1(x0, y0, x, 'nearest')就近插值节点区域上的函数值为该点函数值

插值法

二维插值

已知二元函数z=f(x, y)在若干个点的取值.

如果这些节点分布很均匀,数据点落在由一系列平行直线组成的矩形网络的各个顶点上,可以用命令: interp2(x0, y0, z0, x, y, 'method')

其中method可选nearest(最近邻点插值)、linear(线性插值)、spline(三次样条插值)、cubic(三次插值).

如果节点分布散乱,可以用命令: griddata(x0,y0,z0,x,y,'method'). 其中method可选nearest、linear、cubic等

数据拟合

多项式拟合MATLAB命令:

格式: p=polyfit(x,y,n)

最小二乘拟合MATLAB命令:

格式: [a, jm]=lsqcurvefit(Fun,a₀,x,y)

B 样条拟合MATLAB命令:

格式: S=spapi(k,x,y)

常微分方程

- ❖ ODE的精确解—dsolve('eqn1', 'eqn2', ..., t)
 - 通解
 - 特解
- ❖ ODE的数值解─[t, y]=ode45('odefun', tspan, y0, options)
 - · Euler法
 - · Euler法的改进
 - · 龙格-库塔法

常微分方程的数值解

求常微分方程数值解的函数

求常微分方程的数值解有多种算法,因此可供使用的函数也有多个. 常用的函数有:

函数名	简介	适用对象
ode45	单步,4/5阶龙格-库塔法	大部分ODE
ode23	单步, 2/3阶龙格-库塔法	快速、精度不高的求解
ode113	多步, Adams算法	误差要求严格或计算复杂

注:上述函数仅适用于非刚性(nonstiff)方程(组),即其特征值的实部绝对值差异比较小.

常微分方程的数值解

所谓刚性方程(组),其数值解只有在步长很小时才会稳定,步长较大时解就会不稳定.在具体应用中,如果使用常用函数长时间无结果,可以考虑换用如下函数:

函数名	简介	适用对象
ode23t	采用梯形算法	具有一定的刚性特点
ode15s	多步,反向数值积分法	ode45失效时可以试用
ode23s	单步,2阶Rosebrock算法	精度设定较低时,速度快
ode23tb	采用梯形算法	精度设定较低时,速度快

常微分方程的数值解

常微分方程数值求解的命令 求常微分方程的数值解, Matlab中的命令格式为: [t, y] = solver ('odefun', tspan, y0, options) solver—选择ode45等函数名: odefun—待解方程或方程组的m文件名: tspan一自变量的区间[to, tf], to为初始点; y0一初始值; options—用于设定误差限制. 命令格式为: options=odeset('reltol', rt, 'abstol', at) rt-输入相对误差, at-输入绝对误差.

矩阵的生成

(eye, size, ones, zeros, rand, diag, compan, vander, sym)

- > 矩阵的修改 A(:,end:-1,1), diag, tril, triu, fliplr, flipud,
- 户 矩阵的运算(+, -, inv, /, \, \, ./..\.*, *)

生成特殊	生成特殊矩阵的函数	
eye(n)	n 阶单位矩阵	
zeros(n),zeros(m,n)	n 阶零矩阵,零矩阵	
ones(n),ones(m,n)	n 阶全 1 矩阵, 全 1 矩阵	
	空阵	
rand(n)	n 阶均匀分布的随机矩阵	
randn(n)	n 阶正态分布的随机矩阵	
compan(P)	伴随阵	
diag(v,k)	生成对角阵	
vander(C)	生成 Vandermonde 阵	

矩阵操作函数		
diag	提取对角元素,生成对角矩阵	
fliplr	左,右翻转	
flipud	上,下翻转	
rot90	按逆时针旋转	
tril	提取矩阵的主下三角部分	
triu	提取矩阵的主上三角部分	

基本矩阵的运算符

运算符	含义	运算符	含义
A + B	加法	A ^ n	A为方阵时,自乘n次
A - B	减法	A. ^ n	A的各元素n次方
A * B	乘法	A. ^B	A, B两矩阵对应元素乘方
A .* B	对应元素相乘	exp (A)	A的所有元素取以e为底的指数
A \ B	左除	log (A)	对A的各元素取 e为底的对数
A / B	右除	sqrt (A)	对A的各元素求平方根
A ./ B	A的元素被B的 对应元	det (A)	求A的行列式
	素除	inv (A)	求A的逆矩阵
k*A	数乘	A'	求A转置

多项式

1. 多项式表达式和根 设p为n维向量, poly2sym(p)输出以p为系数的多项式 比如p=[1 2 3 4 5], 则poly2sym(p): x⁴+2x³+3x²+4x+5 polyval(p, a)返回多项式p(x)当x=a时的值polyval(p, 4) roots(p) 返回多项式函数p(x)=0的所有复数根

conv(p1, p2)返回多项式p1(x)和p2(x)的乘积结果的系数.
[a b]=deconv(p1, p2)返回p1(x)除以p2(x)的商式a和余式b的系数.

多项式

syms x

collect(f) 对符号多项式f进行合并同类项 expand(f) 对符号多项式f进行展开 horner(f) 对符号多项式f进行嵌套分解 factor(f) 对符号多项式f进行因式分解 有理分式的分解与合并

[a b r]=residue(p, q) 将p(x)/q(x)分解为最简分式之和。
[p q]=residue(a, b, r)

将简单分式之和,合并为有理分式,即residue(p,q)的逆运算。

齐次线性方程组解的结构

B=null(A) 输出列向量B,为系数矩阵A的齐次方程组的基础解系。

B=null(A, r') 输出列向量B, 为系数矩阵A的齐次线性方程组的有理数形式的基础解系;

- 〉特征值与特征向量(eig)
- 产矩阵的相似对角化(eig)
- 一次型化标准型(schur, eig)
-)正定二次型的判定(eig, chol)

用Matlab计算特征值和特征向量的命令如下:

d=eig(A) 仅计算A的特征值(以向量形式d存放)

[V,D]=eig(A) 其中: D为由特征值构成的对角阵, V为由特征向量作为列向量构成的 矩阵。且使 *AV=VD* 成立

trace(A) 计算矩阵A的迹

Matlab中二次型化成标准形的命令为:

其中: A二次型矩阵(即实对称矩阵);

T为A的特征值所构成的对角形矩阵;

P为 正交矩阵,

P的列向量为 A的特征值所对应的特征

向量

- ---Chol(A): 矩阵A的Cholesky 分解
- ---Cholesky 分解: A=LL', 其中A是正定对阵矩阵, L 为下三角矩阵
- --[D p]=chol(A)
 - > 如果A正定,返回的p=0
 - ▶如果A不正定,则返回一个正的p, p—1为A中 正定子矩阵的阶次

概率与统计

- ⇒ 古典概率 (factorial)
- ◇随机变量、概率密度函数、分布函数的概念回顾
 - 二项分布
 - 泊松分布
 - · 均匀分布
 - · 指数分布
 - · 正态分布

随机变量与概率分布

常见分布的计算

函数名	概率密度函数
binopdf	二项分布的概率密度函数
chi2pdf	卡方分布的概率密度函数
exppdf	指数分布的概率密度函数
fpdf	f分布的概率密度函数
gampdf	伽玛分布的概率密度函数
geopdf	几何分布的概率密度函数
hygepdf	超几何分布的概率密度函数
normpdf	正态分布的概率密度函数
poisspdf	泊松分布的概率密度函数
tpdf	学生氏t分布的概率密度函数
unidpdf	离散均匀分布的概率密度函数
unifpdf	连续均匀分布的概率密度函数

	-
函数名	对应分布的分布函数
binocdf	二项分布的分布函数
chi2cdf	卡方分布的分布函数
expcdf	指数分布的分布函数
fcdf	f分布的分布函数
gamcdf	伽玛分布的分布函数
geocdf	几何分布的分布函数
hygecdf	超几何分布的分布函数
normcdf	正态分布的分布函数
poisscdf	泊松分布的分布函数
tcdf	学生氏t分布的分布函数
unidcdf	离散均匀分布的分布函数
unifedf	连续均匀分布的分布函数

随机数

生成随机数的random命令

y=random('name', A1, A2, A3, m, n)

其中, name为相应分布的名称, 比如 Poisson, normal; A1、A2、A3为该分布中的参数, m为产生随机数的行数, n为产生随机数的列数.

m=1时,输出一串n个随机数; m>1时,输出的是一个m行n列随机矩阵,矩阵中的元素服从相应分布.

随机数

直接调用

如: y=binornd(n, p, m,k)产生参数为n, p的m行k列的二项分布随机数

分布类型	随机数产生函数
二项分布B(n,p)	binornd(n,p,m,k)
泊松分布π(λ)	poissrnd(λ,m,k)
均匀分布U(a,b)	unifrnd(a,b,m,k)
指数分布E(λ)	exprnd(λ,m,k)
正态分布 $N(\mu, \sigma^2)$	normrnd(μ,σ,m,k)

随机模拟方法

随机模拟方法

随机模拟是指通过随机试验,根据所得结果的频率、平均值等情况来估计有关的规律.蒙特卡洛(Monte Carlo)方法就是一种典型的随机模拟方法.

比如要求f(x)在[a,b]上的最值,应求出函数的驻点、不可导点,然后比较这两类点与区间端点处的函数值. 若采用随机模拟方法,整个过程会简单得多.

常用统计量

在对数据进行深入分析之前,首先需要将已有数据以一定的格式读取,并利用常用的统计量进行概括性分析.

这些常用统计量包括:平均值、中位数、方差、标准差、极差、偏度、峰度等.

常用统计量

- 一平均值、中位数 (mean, median)
- 一方差,标准差,极差(var, std, range)
- > 偏度(skewness)
- 》峰度(kurtosis)
- > 直方图(hist, histfit, cdfplot)

参数估计

参数估计的命令

1. 正态总体的参数估计

点估计和区间估计可同时由以下命令获得:/

[muhat,sigmahat,muci,sigmaci] = normfit(X, alpha)

alpha为显著性水平, 1-alpha为置信水平。alpha缺省时设定为0.05.

polyfit(x, y, n)

muhat 输出正态分布均值的点估计值 sigmahat 输出标准差的点估计值 muci输出均值的区间估计 sigmaci输出标准差的区间估计 X为数据矩阵(列为变量)时,输出行变量。

一参数估计

- 2. 其它分布的参数估计
 - (1) 取容量充分大的样本(n>50), 按中心极限定理, 它近似地服从正态分布;
 - (2) 使用特定分布总体的估计命令.
 - 1⁰[muhat, muci] = expfit(X,alpha)-----在显著性水平alpha下, 求指数分布数据X的均值的点估计、区间估计.
 - 2⁰[lambdahat, lambdaci] = poissfit(X,alpha)-----在显著性水平alpha下,求泊松分布数据X的参数的点估计、区间估计.

最优化方法实验

最优化方法的应用领域

生产计划:设备数量、时间、原材料一定,如何产出尽量多/价值最高的产品?

广告营销:如何投入营销资源,以获得最佳效果?

运输管理:如何设定运输路线、运输工具达到最快/成本最低/最大价值的运输目的?

••••

最优化方法实验

- 1. 线性规划问题
- 2. 0-1规划问题
- 3. 一元函数的无约束优化问题
- 4. 多元函数的无约束优化问题
- 5. 二次规划
- 6. 一般约束非线性规划