HW2 – DS for Mechanical Systems

Sachin Francis Dsouza

UNI: sfd2121 October/19/2021

Homework #2

0.1 Problem 1 (20 points)

Given the data in this dataset, it consists of 2 columns and 200 rows. If we treat the first columns as x, and the second column as y, we want to build a simple linear regression model: $y = \beta_0 + \beta_1 x$ to fit the data:

- 1. What is the point estimate of the intercept β_0 and the slope β_1 , respectively?
 - Point Estimate: Intercept $\beta_0 = -31.8043$ and the slope $\beta_1 = 16.2056$.
- 2. What is the standard error for the intercept and the slope, respectively?
 - Standard Error: Intercept $\beta_0 = 5.7635$ and the slope $\beta_1 = 0.5484$.
- 3. Is the result significant, i.e., the slope is significantly different from zero?

```
OLS Regression Results
_____
Dep. Variable: y R-squared: 0.814
Model: OLS Adj. R-squared:

Method: Least Squares F-statistic:

Date: Mon, 18 Oct 2021 Prob (F-statistic):

Time: 07:07:48 Log-Likelihood:

No. Observations: 200 AIC:

Df Residuals: 198 BIC:
                                                 0.813
864.6
                                                3.61e-74
                                                 -1157.0
                     198 BIC:
                                                   2318.
                                                    2325.
Df Model:
                        1
Df Model: 1
Covariance Type: nonrobust
______
           coef std err t P>|t| [0.025 0.975]
Intercept -31.8043 5.764 -5.518 0.000 -43.170 -20.438 x 16.2056 0.551 29.404 0.000 15.119 17.292
______
                     2.158 Durbin-Watson:
                     0.340 Jarque-Bera (JB):
0.071 Prob(JB):
Prob(Omnibus):
                                                   1.747
Skew:
                      2.565 Cond. No.
______
```

- From the OLS Regression results, the 95% Confidence Interval for β_0 = [-43.170, -20.438] and 95% Confidence Interval for β_1 = [15.119, 17.292]. The P-Value for both the Intercept and Independent variable is tending to 0, and this means the null hypothesis can be rejected. Since the Class Intervals do not have zero, the correlation between the two doesn't exist. Thus, we can conclude that the slope β_1 is significantly different from Zero.

- 4. What is the R^2 of your model?
 - $-R^2=0.8137.$
- 5. For a new x value of 10, with your fitted model, what is the predicted y, and its 95% confidence interval?
 - Predicted y-value for x = 10: 130.2520

- From Code: Y min = 116.6153533 & Y max = 143.888859

0.2 Problem 2 (20 points)

Using the same dataset, now we want to build a different linear regression model as: $y = \beta_0 + \beta_1 x + \beta_2 x^2$ to fit the data:

- 1. What is the point estimate of the β_0 , β_1 , and β_2 , respectively?
 - Point Estimate: $\beta_0 = -18.0505$, $\beta_1 = 16.9156$ and $\beta_2 = -0.1420$.
- 2. What is the standard error for the three coefficients, respectively?
 - Standard Error: $\beta_0 = 8.138$, $\beta_1 = 0.622$ and $\beta_2 = 0.060$.
- 3. Are β_1 and β_2 significantly different from zero?
 - From the OLS Regression results, the 95% Confidence Interval for β_0 = [-34.100, -2.001], 95% Confidence Interval for β_1 = [15.689, 18.142] and the 95% Confidence Interval for β_2 = [-0.260, -0.024]. The P-Value for β_0 , β_1 and β_2 are 0.028, 0.000 and 0.019, and since the P-Values are < (less than) 0.05, means the null hypothesis can be rejected. Since the Class Intervals do not have zero, the correlation between the three doesn't exist. Thus, we can conclude that β_1 and β_2 are significantly different from Zero.

- 4. What is the R^2 of your model?
 - $R^2 = 0.8188.$

0.3 Problem 3 (10 bonus points)

Show that, for the simple linear regression $y = \beta_0 + \beta_1 x + \epsilon$, if the error term ϵ is assumed to follow a normal distribution of $N(0, \sigma^2)$, then maximizing the likelihood leads to minimizing the mean squared error of $\sum_{i=1}^{\infty} (y_i - \hat{y}_i)^2$, where $\hat{y}_i = \beta_0 + \beta_1 x_i$.

(Hint: what is the likelihood of observing an error of particular error ϵ_i ?)

L(0, 50, E1, E2, En)=1 Likelihood function = -) 1 = 000 1=1 -) 1 = 000 1=1 -) 1 EE; Log likelihood function: $\frac{1}{2} - n \ln(2\pi) - n \ln(6^2) - 1 \frac{n}{2} \in 2^2$ $\frac{1}{2} - n \ln(2\pi) - n \ln(6^2) - 1 \frac{n}{2} \in 2^2$

· Simple linear regussion y= B+B, 2+E, if the contract term 6 & assumed to normal distribution of N(0,00), then squared ever of S. (40-4) 2, where $\hat{y}_i = \beta + \beta \cdot \alpha$; Lineau regression: $y = \beta + \beta + \epsilon = f(x)$ E -> 10000 toum. € → N(0,00) - assumed to normal distribution Prove that a) (Mariniging M.L.E = minimizes Mean squared everor. We have 3 unknown parameters B, B, and 5 and they nud to be utimated by lasing a given sample MEAN SQUARE ERROR = E (y-y) q · ŷ. = po+p. I; For any input (2: 4:) = = 4: - (3+8,2) -E:= 4:-4: ~N(0,02) The state of the state of

For any input (xi, yi) = E: = y:- (B+B,2) For a fined X_i , the distribution of Y_i is equal to $N(I(X_i), S_i)$ with $P \cdot d \cdot f$ f(y) = 1 $e^{-\frac{y}{2S_i}} = \frac{(y - I(X_i))^2}{2S_i}$ and deal with grandowness from the every E. The manenum tekelihood function? manenize
To manenize the likelihood, we need to commissing the manimum
lekelihood utimates of B, B, and 6.

	Page
	Monemum likelihood function: Forom equation (4)
	$f(x), \dots, y_n)^2 \left(\frac{1}{\sqrt{2^{n-1}}}\right)^n = \frac{1}{2^n} \left(\frac{1}{2^n} \left(\frac{1}{2^n} - \beta_0 - \beta_1 \times \frac{1}{2^n}\right)^n\right)$
	Loom equation Q.
	From equation G . $ \frac{\mathcal{G}_{1}}{\mathcal{G}_{1}} \left(\begin{array}{ccc} Y_{1} - \beta & -\beta & X_{1} \end{array} \right)^{2} - G $ $ i = 1 $
	belause of 1) n - constant
,	-1 → constant.
	: & From equation (8) =) $\sum_{i=1}^{n} (Y_i - \beta_0 - \beta_i X_i)^2$
	ne nud to minimize it
	Menemizeng equation (6) => 2 (Y; - B-B, X;)
	Forom equation @ joz B + Bx; put in 6

To numinizerg it -> Il derwatere should be equated to zoo. B d (MSE) =0 -) 1 d & (y. - (p + B, 2;)) =0 $\frac{\mathcal{E}}{\mathcal{E}} \frac{d}{d\eta} \left(y_i - \left(\beta_0 + \beta_i \chi_i \right) \right)^{\alpha} = 0 - 0$ Equation (1 (1 - 1) = (1 - 1 + 1 + 1 + 1) l = -n w(2) - n ln (-2) - 1 5 (4) - B+BX From 6 Residual sum of squares: $RSS(B) = \begin{cases} (y, -f(G))^2 \\ i=1 \end{cases}$ ν (y:-β- ε zijβj)²
| [1] (y:-β- ε zijβj)²

	the Late of the Control of the Contr
	2 to So geometry of legal
	Dinding in towns of matrices . The geometry of least squares fitting in the IRP+1 dinumion. space.
	soughts fitting in the 18th ainumon. Space.
й	now and input nector and similarly let y be then
	grow and mounting set.
	vidor of outputs in the totaining set.
,	
ı	Ruidual & RSS (B) = (y - xp) T (y - xp)
	sum of squares
	(RSS) $\partial RSS = -2 \times T(y - xp)$
	$\partial \beta$
, , , , , , , , , , , , , , , , , , ,	
	OB 2BT
- 1	
	Assumeng that x has a full column rank, huse
	X T X is a position definite, un set derivative to
	$200^{-3} \times (y - \times \beta) = 0$
	3. unique solond p = (xTx)-1 xTy
	or angue solve p (xx) x y
4	
	The training inputs =) $\hat{y} = x \hat{p}^2 \times (x^T x)^{-1} \times^T y$.
_	Thus the minimizing MSE hads to maximize
	11.7


```
%matplotlib notebook
from typing import List
from typing import Tuple
from typing import Union
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import statsmodels.formula.api as smf
from tqdm import tqdm
sns.set(font scale=1.5)
sns.set_style("whitegrid", {'grid.linestyle':'--'})
from google.colab import drive
drive.mount('/content/drive')
data = pd.read_csv("/content/drive/MyDrive/simple_linear_regression.csv")
data.head()
%matplotlib inline
# distribution of the dependent variable
plt.scatter(x="x", y ='y', data = data)
plt.tight layout()
plt.show()
# correlations
continuous_variables = [
         "x",
for variable in continuous_variables:
        plt.figure()
        sns.scatterplot(x=variable, y="y", data=data)
        plt.tight layout()
y = data["y"]
x = data["x"]
{\tt def} simple_linear_regression(
        x: Union[List, np.ndarray, pd.Series],
         y: Union[List, np.ndarray, pd.Series]) -> Tuple[float, float]:
         """Return the intercept and slope of a simple linear regression."""
        beta_1 = np.cov(x, y)[0][1] / np.cov(x, x)[0][1]
beta_0 = np.mean(y) - beta_1 * np.mean(x)
         return beta 0, beta 1
beta 0, beta 1 = simple linear regression(x=x, y=y)
# calculate R^2
y pred = beta 0 + beta 1 * x
\overline{SST} = np.sum(np.square(y - np.mean(y)))
residual = y - y pred
SSE = np.sum(np.square(residual))
r2 = 1 - SSE / SST
print(f"beta_0 is: {beta_0:5.4f}")
print(f"beta_1 is: {beta_1:5.4f}")
print(f"R-square is: {r2:5.4f}")
plt.figure()
x_{range} = np.linspace(start=np.min(x), stop=np.max(x), num=100)
sns.scatterplot(x="x", y="y", data=data)
sns.lineplot(x=x_range, y=(beta_0 + beta_1 * x_range), color="red")
plt.tight layout()
# confidence intervals
SE beta 0 = (np.var(residual, ddof=2) * (1. / len(x) + (np.mean(x))**2 / np.sum((x - np.mean(x)))**2 / np.sum((x - np.mean(x
))**2)))**0.5
SE\_beta\_1 = (np.var(residual) / np.sum((x - np.mean(x))**2))**0.5
print(f"The standard error for beta 0 is: {SE beta 0:5.4f}")
```

```
print(f"The standard error for beta 1 is: {SE beta 1:5.4f}")
# simple linear regression with the `statsmodels` library
model_1 = smf.ols(formula='y ~ x', data=data)
result_1 = model_1.fit()
print(result_1.summary())
p2 = np.polyfit(x,y,2)
print(p2)
plt.plot(x,y,'ro',label='Measured (y)')
plt.plot(x,np.polyval(p2,x),'b-',label='Predicted (y)')
plt.legend(); plt.show()
from sklearn.metrics import r2 score
r2_score(y, y_pred)
import statsmodels.api as sm
xc = np.vstack((x**2,x,np.ones(n))).T
model = sm.OLS(y,xc).fit()
predictions = model.predict(xc)
model.summary()
```

Fig 1: Scatter Plot

Fig 3: Question 2 Linear Regression