Lecture 7: Coloring

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Motivation: Scheduling and coloring

- University examination timetabling
 - Two courses linked by an edge if they have the same students
- Meeting scheduling
 - Two meetings are linked if they have same member

Definitions

- Given a graph G and a positive integer k, a k-coloring is a function $K:V(G) \longrightarrow \{1,...,k\}$ from the vertex set into the set of positive integers less than or equal to k. If we think of the latter set as a set of k "colors," then K is an assignment of one color to each vertex.
- We say that K is a proper k-coloring of G if for every pair u, v of adjacent vertices, $K(u) \neq K(v)$ that is, if adjacent vertices are colored differently. If such a coloring exists for a graph G, we say that G is k-colorable
- In a proper coloring, each color class is an independent set. Then G is k-colorable $\iff V(G)$ is the union of k independent sets

Chromatic number

- Given a graph G, the chromatic number of G, denoted by $\chi(G)$, is the smallest integer k such that G is k-colorable
- Examples

$$\chi(C_n) = \left\{egin{array}{ll} 2 & ext{if n is even,} \\ 3 & ext{if n is odd,} \end{array}
ight. \ \chi(P_n) = \left\{egin{array}{ll} 2 & ext{if $n \geq 2$,} \\ 1 & ext{if $n = 1$,} \end{array}
ight. \ \chi(K_n) = 1, \ \chi(E_n) = 1, \ \leftarrow \text{Empty graph} \ \chi(K_{m,n}) = 2. \end{array}
ight.$$

• (Ex5, S1.6.1, H) A graph G of order at least two is bipartite \iff it is 2-colorable

Theorem (1.2.18, W, Kőnig 1936)
A graph is bipartite ⇔ it contains no odd cycle

Bounds on Chromatic number

- Theorem (1.41, H) For any graph G of order $n, \chi(G) \leq n$
- It is tight since $\chi(K_n) = n$
- $\chi(G) = n \Leftrightarrow G = K_n$

Greedy algorithm

- First label the vertices in some order—call them $v_1, v_2, ..., v_n$
- Next, order the available colors (1,2,...,n) in some way
 - Start coloring by assigning color 1 to vertex v_1
 - If v_1 and v_2 are adjacent, assign color 2 to vertex v_2 ; otherwise, use color 1
 - To color vertex v_i , use the first available color that has not been used for any of v_i 's previously colored neighbors

Examples: Different orders result in different number of colors

Bound of the greedy algorithm

• Theorem (1.42, H) For any graph G, $\chi(G) \leq \Delta(G) + 1$ The equality is obtained for complete graphs and odd cycles

Brooks's theorem

• Theorem (1.43, H; 5.1.22, W; 5.2.4, D; Brooks 1941) If G is a connected graph that is neither an odd cycle or a complete graph, then $\chi(G) \leq \Delta(G)$

• ⇒The Petersen graph is 3-colorable

Chromatic number and clique number

- The clique number $\omega(G)$ of a graph is defined as the order of the largest complete graph that is a subgraph of G
- Example: $\omega(G_1) = 3$, $\omega(G_2) = 4$

- Theorem (1.44, H; 5.1.7, W) For any graph G, $\chi(G) \ge \omega(G)$
- Example (5.1.8, W) For $G = C_{2r+1} \vee K_S$, $\chi(G) > \omega(G)$

Chromatic number and independence number

• Theorem (1.45, H; 5.1.7, W; Ex6, S1.6.2, H) For any graph G of order n,

$$\frac{n}{\alpha(G)} \le \chi(G) \le n + 1 - \alpha(G)$$

The independence number of a graph G, denoted as $\alpha(G)$, is the largest size of an independent set

In a proper coloring, each color class is an independent set. Then G is k-colorable $\Leftrightarrow V(G)$ is the union of k independent sets

Summary

Coloring

Shuai Li

https://shuaili8.github.io

Questions?