

明細書

ドプラ速度検出装置及びそれを用いた超音波診断装置

技術分野

5 本発明は、超音波を生体に対して送受信することにより、生体内部の血流など運動する反射物を検出し、速度の分布や速度の空間分布を表示する医療診断用の超音波ドプラ血流計や血流描画装置等の超音波診断技術に関する。

10 背景技術

パルス・ドプラ装置では、対象物に対してパルス状の超音波や電磁波などの波を複数回送受信し、受信された図1のような複数のエコー信号について、各々のパルス送信時刻からの経過時間の等しい着目時刻の信号を、送信時刻の順番にならべた時系列信号を解析することにより、運動する物体に関する速度などの情報を得る。最も一般的な信号処理方法としては、これらの受信信号を直交検波し、複素時系列信号として解析する。このようなパルス・ドプラ装置は、生体内部の血流などを検出・描画する超音波診断装置、雨雲などを検出・描画する気象レーダー、飛行物体を検出する航空レーダーなどとして広く用いられている。

もし、反射物が1つしか存在しない場合には、上記の時系列信号の位相回転速度 $\lambda \Delta \Phi / \Delta t$ すなわち符合つき角周波数から、反射物が送受信器に近づく、あるいは遠ざかる運動速度 v を、次式のように容易に求めることができる。

$$v = \lambda \Delta \Phi / \Delta t / 2\pi$$

..... (1)

ここで、 λ は波長、 Δt はパルス送信の時間間隔、 $\Delta \Phi$ は位相回転角である。近づく場合には、vの符号が正、遠ざかる場合が負となる。

ところが、上記のような実際のパルス・ドプラ装置の受信エコー中
5 では、静止反射物によるエコー信号、いわゆるクラッタ信号の強度が、
着目する運動反射物によるエコー信号の強度よりも、一般に、数桁以
上大きい。このため、上記の時系列信号に単純に(1)式の処理を適
用しただけでは、運動反射物を検出することはできない。そこで、実
際のパルス・ドプラ装置は、静止反射物によるエコー信号を抑圧し、
10 運動反射物によるエコー信号を相対的に強調するMTI(Moving
Target Indicator)処理とよばれる信号処理を行つ
た後に、速度の検出あるいは分析を行うよう構成されている。

また、IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, Vol. 42, 927-937頁(1995年)には、Polynomial
15 Regression Filter(多項式フィット・フィルタ)が提案されている。
これは、時系列信号に、0次式(定数)、1次式、2次式、・・・、M
次式を順次最小2乗フィットし、フィットした成分を引き去ることに
より、元の時系列信号のもつドリフト成分を除去する処理である。

20 発明の開示

MTI処理として最もよく知られているのは、時間領域において畳
み込み積和で表現される通常の低域遮断フィルタを用いる処理であ
る。この処理には次の欠点がある。

1) N_1 個の時系列データ点を入力とする低域遮断フィルタを用いる場
合、後段の速度検出・分析処理部に入力されるデータ点が(N_1-1)個
25 目減りする。

2) 急峻な遮断特性のフィルタを得にくい。

静止反射物によるエコー信号も、実際には、時間軸上で完全に静止しているわけではなく、途中の媒質のゆらぎや、医療用超音波診断装置の場合には、血流以外の静止臓器の遅い動きのために、ドリフトする。
5 従って、静止反射物によるエコー信号の周波数成分は、位相回転速度ゼロの直流成分だけでなく、位相回転速度がゼロでない低周波成分を有しており、運動反射物によるエコー信号を保ちながら、これを除去する遮断特性が必要で、上記2) が問題となる。N回の送受信により得られるN点の時系列信号から速度検出・分析処理をするとき、
10 上記1) は、この種類のフィルタを用いると、実際に速度検出・分析演算に用い得るデータ点が $(N-N_1+1)$ 点に減ってしまうことを意味する。これは、医療診断用超音波血流描画装置のように実時間性が重要な応用では、望ましいことではない。

この問題を解決する処理としては、上述した Polynomial
15 Regression Filter (多項式フィット・フィルタ) が提案されている。この処理は、N点の入力時系列信号に $N \times N$ の行列を掛けることで表現される。従って、出力信号として同じN点の時系列信号が得られ、

1) データ点の目減りがない。

また、その低域遮断特性は、フィットする最大次数Mの大きさによる
20 が、

2) 同等の遮断周波数をもつ上記の従来型フィルタと比較すると、はあるかに急峻な遮断特性をもつ。

ところが、この多項式フィット・フィルタによる処理の後段において、上記(1)式に表現される種類の従来方式により、運動物体の速度の検出・分析を行うと、遮断周波数の近くで、速度演算誤差が、従来型フィルタと比較しても大きくなってしまうという問題点がある。

このため、検出・分析結果としての速度の精度がある程度要求される場合、多項式フィット・フィルタの急峻な遮断特性により、低域まで伸ばした部分の周波数帯域にある運動物体の信号を、結局、使うことができなくなってしまう。すなわち、この場合には、上記特長の 2)
5 を充分に活かすことができない。

そこで、本発明は、現状のパルス・ドプラ装置が抱える上述のような問題に鑑み、クラッタ信号をよく峻別しながらも、誤差を抑えた速度検出・分析を可能とするドプラ速度検出技術を実現し、また、それを用いた超音波診断装置を提供することを目的とする。

10 本発明による上記課題の本質的解決を目指し、まず、クラッタ信号を遮断するMTI フィルタの機能とその必要性について、考察を深めてみる。具体例としては、N 点の時系列複素信号から速度分析を行う場合を考える。このような、パルス・ドプラ速度分析用として典型的な時系列複素信号は、受信されたエコー信号に 90° 位相の異なる 2
15 つ搬送周波数信号を乗じて得られる 1 組の信号を、虚数単位を係数として線型結合して複素信号とし、この信号の、各々のパルス送信時刻を基準とする時相の等しい部分を、送信時刻の順番にならべることにより得られる。

20 このような離散的時系列信号のもつ周波数あるいは位相の分析における常套手段は、離散的フーリエ展開である。具体的には、 $n=1, \dots, N$ となる時系列信号を、周波数を表す指數 $k=-N/2, \dots, 0, \dots, N/2$ の複素正弦波系

$$Cs(n, k) = \cos [k\pi(2n-N-1)/N] + j \sin [k\pi(2n-N-1)/N]$$

..... (2)

25 で展開する。 j は虚数単位である。負の k は遠ざかる向きの速度、正の

k は近づく向きの速度に対応する。 $k = \pm N/2$ はナイキスト限界であり、従って、正負が区別されないので、(2)により表される $(N+1)$ 個の複素正弦波関数のうち独立なものは N 個であり、これらは、直交関数系を形成している。

5 反射物が 1 つしか存在せず、それがナイキスト限界範囲の一定速度で運動している場合を想定し、運動速度の関数として、上記展開により得られる離散的フーリエ展開係数を計算し、 $N=8$ の場合について、その絶対値を図 2 にプロットした。横軸は、運動速度に対応する位相回転速度を、パルス送信の時間間隔の逆数 P R F (Pulse Repetition Frequency) の 2π 倍を単位として表示した。図 2 では、展開係数を表す 8 個の関数を重ねて図示したが、そのうち 4 個ずつをそれぞれ見分けやすい線により、図 3 および図 4 に示した。

送信時間間隔の N 倍の時間で、位相が整数回回転するような運動速度では、ゼロでない展開係数はただ 1 つ、他の展開係数はすべてゼロとなり、きれいに速度分析されている。ところが、それ以外の位相回転が整数回とならない一般の運動速度では、それぞれの展開係数が、横軸上ピークからはるかに離れた運動速度においても、ピークの $1/10$ 程度の大きさの絶対値をもっている。これは、速度分析計として -20 dB 程度の遠隔的クロストークをもつことを意味する。検出・分析対象である運動反射物エコーに比べて桁違いに大きな振幅をもつクラッタ信号が、ドリフトするとき、これは重大な問題を生ずる。

この問題は、 N 個の時系列信号に、ハニング関数のような緩やかに立ち上がって下がる窓関数による重みをかけることにより、かなり抑圧できるが、本質的には解決しない。また、この方法は、時系列信号の数が大幅に目減りしたのと同様の、望ましくない効果を生じ、特に、時系列信号の数が元々少ない場合には適さない方法である。

具体例として、ナイキスト限界の 2 / 3 の一定速度で運動する検出・分析対象である運動反射物があり、その 1 0 0 0 倍のエコー信号振幅をもつクラッタ信号が、ナイキスト限界速度の 1 / 1 0 0 でドリフトしている場合を考える。図 5 には、このときの上記速度分析計の
5 出力である速度スペクトルを示す。検出・分析対象である運動反射物のスペクトルは、速度ゼロ付近にピークをもつクラッタ信号からのクロストーク成分に覆いかぶされてしまい、この出力スペクトルの中では検出不可能である。

このことが、まさに、クラッタ信号を遮断する M T I フィルタが必要な最も本質的な理由である。M T I 処理として最もよく知られている、時間領域において畳み込み積和で表現される通常の低域遮断フィルタについて、その通過振幅特性の典型例を、図 6 中に実線で示す。このようなフィルタに $n_1 = 1, \dots, N+M-1$ とならんだ時系列信号 $S_1(n_1)$ を、入力すると、出力として $n_0 = 1, \dots, N$ とならんだ時系列
15 信号 $S_0(n_0)$ が得られる。

$$S_0(n_0) = \sum F(m) S_1(n_0+m-1)$$

..... (3)

ここで、Sは、 $m=1, \dots, M$ の和を表す。図 6 では、低域遮断フィルタとして最も簡単な $M=3$ 、 $F(1)=-1$ 、 $F(2)=2$ 、 $F(3)=-1$ の場合について実線で示した。図 5 と同様の入力信号を、この低域遮断フィルタを通した後、図 5 と同様に速度分析すると、図 7 中の実線のようになる。低域遮断フィルタのはたらきによりクラッタ信号の振幅が 1 / 2 0 0 0 倍程度に抑圧された結果、ナイキスト限界の 0.3 ~ 0.4 倍の速度にピークをもつ運動反射物のスペクトルが見えるようになつ
25 ている。

同じ目的のM T I フィルタとして、前記の多項式フィット・フィルタを設計したときの通過振幅特性の典型例を、図 6 中に破線で示す。この例では、0~3次式までをフィットして引き去った。上記の畳み込み型フィルタによりも急峻な低域遮断特性が見てとれる。また、図 5
5 と同様の入力信号を、この低域遮断フィルタを通した後、図 5 と同様に速度分析した結果を、図 7 中に破線で示した。低域遮断特性の急峻さのために、クラック信号が完全に抑圧されている。多項式フィット・フィルタ特有の急峻な低域遮断特性は、以下のように理解することができる。

10 狹義ルジャンドル多項式については、例えば、「岩波数学公式III」（特殊関数、82-85頁）に記述されている。これを一般化すると、偶数 ($2n$) 次ルジャンドル多項式は $2n$ より低い次数のルジャンドル多項式すべてと直交する最高次数 $2n$ の偶関数、奇数 ($2n+1$) 次ルジャンドル多項式は $2n+1$ より低い次数のルジャンドル多項式すべてと直交する最高次数 $2n+1$ の奇関数と定義することができる。例として、一連の
15 8 点からなる時系列信号について、0から7次までの離散的ルジャンドル関数を計算し、偶数次を図 8 に、奇数次を図 9 に示した。0次・1 次を実線、2次・3次を破線、4次・5次を 1 点鎖線、6次・7次を点線にて示した。振幅は、R M S (2乗平均の平方根) 値が 1 となるよう規格化した。符号は、最低次項の符号が正となるよう、すなわち、偶数
20 次多項式については定数項、奇数次多項式については 1 次項の符号が正となるよう定めた。

図 10 には、その周波数スペクトルをプロットした。周波数成分の振幅の絶対値を、個々のルジャンドル展開係数の最大値で規格化して
25 示した。図 10 では 8 個の関数を重ねて図示したが、そのうち 4 個ずつを見分けやすい線により、図 11 および図 12 に示した。図において

て、0次、7次のルジャンドル展開係数 $A(0)$ 、 $A(7)$ を実線、1次、6次のルジャンドル展開係数 $A(1)$ 、 $A(6)$ を破線、2次、5次のルジャンドル展開係数 $A(2)$ 、 $A(5)$ を1点鎖線、3次、4次のルジャンドル展開係数 $A(3)$ 、 $A(4)$ を点線にて示した。

5 図10～12を、図2～4と同様、入力複素正弦波に対する周波数応答として眺めてみる。ピークを主応答、それ以外を副応答とみる。ルジャンドル関数は、図2～4のフーリエ展開系に比べ、主応答より高周波側の副応答は大きいが、低周波側には副応答をもたず、次数が大きいほど周波数原点付近で急速にゼロに収束する。ここでは解析的
10 証明は省略するが、周波数の関数としての m 次ルジャンドル関数は、周波数原点において0次から $m-1$ 次導関数まですべてが0となる。

前記の多項式フィット・フィルタは、入力信号を、この離散的ルジャンドル関数を基底として展開し、0から M 次までを除き、 $M+1$ 次以上の成分の和を出力信号とするフィルタであるということができる。従
15 って、出力信号は、周波数原点付近で周波数の $M+1$ 乗に比例する挙動でゼロに収束していく。図6および図7中に破線で示された例のように、多項式フィット・フィルタの低域遮断特性が優れているのは、この
20 ようなルジャンドル関数の本質的な特性に由来するものである。このように考えると、クラッタという周波数原点付近に桁違いに大きな振幅をもつ妨害成分の影響を抑えて、着目する運動物体を検出したり、その速度を分析しなければならないドプラ速度検出には、多項式フィット・フィルタやルジャンドル関数展開を利用する方式は、本質的に適しているという結論に到達する。

フーリエ展開系では、複素正弦波を基底とすることにより、図2～
25 5や図7に示したように符合つきの速度分析が可能であることは広く知られており、そのような分析方法が広く用いられている。ところ

が、ルジヤンドル展開系は、上記のように、ドプラ速度検出に極めて適した性質をもつものの、このまま用いたのでは、図10～12から見てとれるように、絶対値が等しいが符号の異なる速度に対して等しい応答を示し、符合つきの速度分析は不可能である。

そこで、本発明では、次数が1つだけ異なる偶数次と奇数次のルジヤンドル関数を虚数単位 j を係数として線型結合して、複素ルジヤンドル関数を形成し、これにより符合つきの速度分析を可能とする。これは、偶数次のルジヤンドル関数が余弦波に、奇数次のルジヤンドル関数が正弦波に似た変化を示すことに着目し、余弦関数と正弦関数を虚数単位 j を係数として線型結合することにより、位相角の j 倍の指數関数、すなわち複素正弦関数が得られ、この位相角の増減から符合つき速度が得られるのと同様に、複素ルジヤンドル関数から符合つき速度を得ようとするものである。具体的には、一連のN点からなる時系列信号を、まず、0次からN-1次の離散的ルジヤンドル関数を基底として展開して、 $A(0)$ から $A(N-1)$ までの展開係数を得て、これをもとに、一連の複素ルジヤンドル展開係数は、次式で示されるように、

$$\begin{aligned} C(\pm(2n-1)) &= A(2n-2) \pm j A(2n-1) \quad (1 \leq 2n-1 \leq N-1) \\ C(\pm 2n) &= A(2n) \pm j A(2n-1) \quad (2 \leq 2n \leq N-1; n: \text{自然数}, \text{複号同順}) \end{aligned}$$

..... (4)

を算出し、この係数の相対的な大きさにより符合つき速度分析を行う。

図13には、図10～12と同様 $N=8$ の場合について、複素正弦波入力に対する出力としての複素ルジヤンドル展開係数の絶対値を、符号つき速度に対応する位相回転速度の関数として示した。複素ルジヤンドル係数の絶対値は、それぞれの最大値で規格化してプロットした。図13では14個の関数を重ねて図示したが、見分けやすい線に

選り分けて、図14～17に示した。複素ルジヤンドル展開係数 $C(1) \cdot C(3) \cdot C(5) \cdot C(7)$ を実線、 $C(2) \cdot C(4) \cdot C(6)$ を破線、 $C(-2) \cdot C(-4) \cdot C(-6)$ を1点鎖線、 $C(-1) \cdot C(-3) \cdot C(-5) \cdot C(-7)$ を点線にて示した。2N-2個の複素ルジヤンドル展開係数が、速度に対し正負を区別して応答していることがわかる。このような応答をもつ複素ルジヤンドル系は $N \leq 35$ の範囲で構築できることを確認した。

図18には、2N-2個の複素ルジヤンドル展開係数を構成する偶数次・奇数次ルジヤンドル係数の絶対値比により決まる位相角を、符号つき速度に対応する位相回転速度の関数として示した。図中、内側から、 $C(\pm 1)$ 、 $C(\pm 2)$ 、 $C(\pm 3)$ 、 $C(\pm 4)$ 、 $C(\pm 5)$ 、 $C(\pm 6)$ 、 $C(\pm 7)$ の偶奇位相角である。個々の複素ルジヤンドル展開係数の偶奇位相角は、速度の関数として単調な変化をするので、これを利用すれば、比較的小数の複素ルジヤンドル展開係数を用いたとしても、連続関数としての速度検出・分析が可能である。

検出・分析対象である運動反射物エコーに比べて桁違いに大きな振幅をもつクラッタ信号が存在し、それがドリフトするときには、そのドリフトの程度が大きくなるに応じて、 $C(\pm 1)$ 、 $C(\pm 2)$ 、……と、次数の小さな係数を順次除いた複素ルジヤンドル展開係数系を用いて、速度検出・分析を行えばよい。このようにルジヤンドル展開係数の遮断次数を制御することにより、クラッタ信号の影響を抑圧しながら、運動反射物の速度検出・分析を行うことができる。

以下、本発明の代表的な構成例について述べる。

(1) 本発明は、速度計測対象物に対しパルス波を複数回送受信し、受信エコー信号をもとに前記速度計測対象物に関する速度分析を行うドップラ速度検出装置において、各々のパルス送信時刻からの経過時間の等しい受信エコー信号を送信時刻の順番にならべた受信エコー

時系列信号を、ルジャンドル多項式の各成分として展開し、各展開係数の大きさから、前記速度計測対象物に関する速度信号を得るよう構成したことを特徴とする。

(2) 前記(1)に記載のドプラ速度検出装置において、前記受信
5 エコー時系列信号を0次から始まるルジャンドル多項式の各成分と
して展開したときの偶数次項の展開係数と、それと次数が1つ異なる
奇数次項の展開係数とを虚数単位を係数として線形結合して、複素展
開係数を得て、各複素展開係数の大きさおよび各複素展開係数間の大
きさの比から、符合つき速度信号を得るよう構成したことを特徴とす
10 る。

(3) 本発明は、被検体に対してパルス波を複数回送受信する手段
と、受信エコー信号をもとに前記被検体内の運動反射物に関する速度
分析を行う手段とを備えたドプラ速度検出装置において、前記速度分
析手段は、各々のパルス送信時刻からの経過時間の等しい受信エコー
15 信号を送信時刻の順番にならべた受信エコー時系列信号を、0次から
始まるルジャンドル多項式の各成分として展開したときの偶数次項
の展開係数と、それと次数が1つ異なる奇数次項の展開係数とを虚数
単位を係数として線形結合して、複素展開係数を得て、各複素展開係
数の大きさおよび各複素展開係数間の大きさの比から、前記被検体内
20 の運動反射物に関して符合つき速度信号を得るよう構成されている
ことを特徴とする。

(4) 前記(3)に記載のドプラ速度検出装置において、前記運動
反射物に関する速度信号を前記被検体内の静止反射物からのエコー
信号と共に2次元もしくは3次元的に表示する表示手段を設けてな
25 ることを特徴とする。

(5) 本発明は、超音波探触子と、前記超音波探触子から被検体に

対し超音波パルス波を複数回送受信する手段と、前記被検体からの受信エコー信号をもとに前記被検体内の運動反射物の速度分析を行う手段とを備えた超音波診断装置において、前記速度分析手段は、前記超音波パルス各々の送信時刻からの経過時間の等しい受信エコー信号を送信時刻の順番にならべた受信エコー時系列信号を、ルジャンドル多項式の各成分として展開し、各展開係数の大きさから、前記被検体内の運動反射物に関する速度信号を得るよう構成されていることを特徴とする。

(6) 前記(5)に記載の超音波診断装置において、前記速度分析手段は、前記受信エコー時系列信号を0次から始まるルジャンドル多項式の各成分として展開したときの偶数次項の展開係数と、それと次数が1つ異なる奇数次項の展開係数とを虚数単位を係数として線形結合して、複素展開係数を得て、各複素展開係数の大きさおよび各複素展開係数間の大きさの比から、符合つき速度信号を得るよう構成されていることを特徴とする。

(7) 本発明は、超音波探触子と、前記超音波探触子から被検体に対し超音波パルス波を複数回送受信する手段と、前記被検体からの受信エコー信号をもとに前記被検体内の運動する臓器の中を流れる血流の速度分析を行う手段とを備えた超音波診断装置において、前記速度分析手段は、前記超音波パルス各々の送信時刻からの経過時間の等しい受信エコー信号を送信時刻の順番にならべた受信エコー時系列信号を、0次から始まるルジャンドル多項式の各成分として展開したときの偶数次項の展開係数と、それと次数が1つ異なる奇数次項の展開係数とを虚数単位を係数として線形結合して、複素展開係数を得て、各複素展開係数の大きさおよび各複素展開係数間の大きさの比から、前記被検体内の血流に関して符合つき速度信号を得るよう構成され

ていることを特徴とする。

(8) 前記(7)に記載の超音波診断装置において、前記臓器の運動速度またはその空間変化の分布像と同時に取得した血流分布像とを重畠もしくは並べて表示する表示手段を設けてなることを特徴とする。
5

(9) 本発明の超音波診断装置は、複数の超音波探触子から被検体に対して超音波パルスを複数回送受信する超音波送受波手段と、前記被検体内での超音波パルスの送信焦点位置を制御する送波ビームフォーマと、前記被検体内の受信焦点位置を制御する受波ビームフォームと、前記超音波送受波手段、前記送波ビームフォーマおよび前記受波ビームフォーマを制御する制御系と、前記被検体からの受信エコー信号をもとに前記被検体内の運動反射物の速度分析を行う速度分析手段とを有し、かつ、前記速度分析手段を、各々のパルス送信時刻からの経過時間の等しい受信エコー信号を送信時刻の順番にならべた受信エコー時系列信号を、0次から始まるルジャンドル多項式の各成分として展開したときの偶数次項の展開係数と、それと次数が1つ異なる奇数次項の展開係数とを虚数単位を係数として線形結合して、複素展開係数を得て、各複素展開係数の大きさおよび各複素展開係数間の大きさの比から、前記被検体内の運動反射物に関して符合つき速度
10
15
20

図面の簡単な説明

図1は、N回のパルス送信による受信信号を並べて示した図、図2は、離散的フーリエ展開係数の絶対値を、速度に対応する符号つき周波数の関数として示す図、図3は、図2における4個の離散的フーリエ展開係数の絶対値を、速度に対応する符号つき周波数の関数として

示す図、図 4 は、図 2 における他の 4 個の離散的フーリエ展開係数の絶対値を、速度に対応する符号つき周波数の関数として示す図、図 5 は、離散的フーリエ展開を用いた速度分析による速度スペクトル係数の例を示す図、図 6 は、従来の低域遮断型 MTI フィルタ（実線）と多項式フィット・フィルタ（破線）のもつ通過振幅特性の典型例を示す図、図 7 は、従来の低域遮断型 MTI フィルタ（実線）と多項式フィット・フィルタ（破線）をそれぞれ通した後、離散的フーリエ展開を用いた速度分析を行った場合に得られる速度スペクトル係数の例を示す図、図 8 は、一連の 8 点からなる信号に関する離散的ルジャンドル関数の偶数次を示す図、図 9 は、一連の 8 点からなる信号に関する離散的ルジャンドル関数の奇数次を示す図、図 10 は、ルジャンドル展開係数の規格化絶対値を、速度に対応する符号つき周波数の関数として示す図、図 11 は、図 10 における 4 個のルジャンドル展開係数の規格化絶対値を、速度に対応する符号つき周波数の関数として示す図、図 12 は、図 10 における他の 4 個のルジャンドル展開係数の規格化絶対値を、速度に対応する符号つき周波数の関数として示す図、図 13 は、複素ルジャンドル展開係数の規格化絶対値を、速度に対応する符号つき周波数の関数として示す図、図 14 は、図 13 における ±6 次、±7 次の複素ルジャンドル展開係数の規格化絶対値を、速度に対応する符号つき周波数の関数として示す図、図 15 は、図 13 における ±4 次、±5 次の複素ルジャンドル展開係数の規格化絶対値を、速度に対応する符号つき周波数の関数として示す図、図 16 は、図 13 における ±2 次、±3 次の複素ルジャンドル展開係数の規格化絶対値を、速度に対応する符号つき周波数の関数として示す図、図 17 は、図 13 における ±1 次の複素ルジャンドル展開係数の規格化絶対値を、速度に対応する符号つき周波数の関数として示す図、図 18 は、

複素ルジヤンドル展開係数の偶奇位相角を、速度に対応する符号つき周波数の関数として示す図、図 19 は、本発明の実施例になる血流検出・描画機能つき超音波診断装置の構成を示すブロック図、図 20 は、複数の複素ルジヤンドル係数絶対値間の比を用いて形成した速度校正曲線を速度に対応する符号つき周波数の関数として示す図、図 21 は、原点付近を修正した複素ルジヤンドル展開係数の位相と速度との間の校正曲線を示す図、図 22 は、本発明のドプラ速度検出アルゴリズムの例を示す図、図 23 は、本発明の方式による速度検出結果の例 (1) を示す図、図 24 は、従来方式による速度検出結果の例 (1) を示す図、図 25 は、多項式フィット・フィルタ方式による速度検出結果の例 (1) を示す図、図 26 は、本発明の方式による速度検出結果の例 (2) を示す図、図 27 は、従来方式による速度検出結果の例 (2) を示す図、図 28 は、多項式フィット・フィルタ方式による速度検出結果の例 (2) を示す図、図 29 は、本発明の方式による速度検出結果の例 (3) を示す図、図 30 は、従来方式による速度検出結果の例 (3) を示す図、図 31 は、多項式フィット・フィルタ方式による速度検出結果の例 (3) を示す図である。

発明を実施するための最良の形態

以下、本発明の実施例について、図面を参照して詳述する。

図 19 は、本発明を実施すべく構成された血流描画機能の付いた超音波診断装置ブロック図の典型例である。超音波探触子 1 を構成する各素子は、切り替えスイッチ群 2 を介して、送波ビームフォーマ 3 と受波ビームフォーマ 10 に接続されている。送波ビームフォーマ 3 では、送受信シークエンス制御部 6 による制御に従って、送信波形メモリ 5 から送信波形選択部 4 により選択されて読み出された波形を用

い、各素子を通じて送信されたときに指向性を持つ超音波パルスとなるような信号が生成される。この信号が、超音波探触子1の各素子により超音波パルスに変換されて生体に送信される。生体中で反射あるいは散乱されて超音波探触子1に戻ってきた超音波エコー信号は、各
 5 素子に受信されて、電気信号に変換される。受波ビームフォーマ10では、送受信シークエンス制御部6による制御に従って、指向性を持つ受信感度を生成すべく、各受波信号に遅延時間を与えて互いに加算する。遅延加算により得られた時系列信号は、やはり送受信シークエンス制御部6による制御に従って、受波メモリ選択部11により選択
 10 された受波信号メモリ12中の1つのバンクへ一旦書き込まれ、ドップラ信号分析すべきN個の時系列信号がそろったのちに読み出されて、
 13-16において速度を検出・分析すべく信号処理される。

読み出されたN個の時系列受信信号は、各々を得るために行われたパルス送信の時刻を基準とする時相の等しい部分を、送信時刻の順番
 15 にならべたのちに処理される。まず、位相回転検出器13では、クラッタ信号を含んだままの時系列信号から位相回転を求める。位相回転量Pnを検出する最も典型的な方法は、 $n = 1, \dots, N$ とならん複素時系列信号S(n)をもとに、

$$P(n) = S(n+1) \cdot S(n)^* / ||S(n+1)|| / ||S(n)|| \quad (n = 1, \dots, N-1)$$

20 (5)

を計算し、P(n)の平均値Paの位相から平均位相回転速度を求める。ここで、 S^* はSの複素共役、 $||S||$ はSの絶対値である。一般に、クラッタ・エコー信号は血流エコー信号より桁違いに信号振幅が大きいので、Paは、概ねクラッタ・エコー信号の位相回転平均値と考えてよい。ダ
 25 ウン・ミキシング器14では、ここで求めたPaまたはPaの周辺領域に

おける空間平均値を用い、エコー信号の位相回転平均値がゼロとなるよう、いいかえれば、クラッタ信号の中心周波数が、概ねゼロとなるようなミキシング処理を行う。すなわち、 $S(n)$ と P_a より、次式を得る。

$$S_d(n) = S(n) \cdot P_a * ^n \quad (n = 1, \dots, N)$$

5

..... (6)

ここで、 $P_a *$ は、 P_a の複素共役である。

このダウン・ミキシング処理を行うことにより、クラッタ信号を抑圧する後段の処理をより効果的に行うことができる。得られた複素時系列信号 $S_d(n)$ をもとに、位相回転検出器 15 では、13 と同様に、
10 ダウン・ミキシング処理後の位相回転量 $P_d(n)$ を、次式より計算し、その位相の絶対値の最大値を求める。

$$P_d(n) = S_d(n+1) \cdot S_d(n) * / ||S_d(n+1)|| / ||S_d(n)|| \quad (n=1, \dots, N-1)$$

..... (7)

この位相回転最大値の大きさに応じて、血流信号検出・分析部 16 の遮断特性を制御する。すなわち、位相回転最大値が大きいときには、小さいときに比べ、ルジャンドル係数の遮断次数 M を、より高く設定する制御を行うことにより、クラッタ成分を効果的に抑圧する。
15

ここで、本発明の核心に相当する血流信号検出・分析部 16 の動作について、もう少し詳しく述べる。入力された時系列信号 $S_d(1), \dots, S_d(N)$ は、まず、図 8 および図 9 の例のような 0 から $N-1$ 次のルジャンドル関数に展開され、その展開係数 $A(0), \dots, A(N-1)$ が求められる。この計算は、次のような行列演算により容易に行うことができる。
20 n 次ルジャンドル関数を行ベクトル $L(n)$ で表し、これを $n=0$ から $N-1$ までならべて $N \times N$ 行列 LL を生成すると、 $S_d(1), \dots, S_d(N)$ を要素

とする列ベクトル S_d から $A(0), \dots, A(N-1)$ を要素とする列ベクトル A を得るために行列は、

$$FF = (LL \cdot {}^t LL)^{-1} LL$$

..... (8)

5 と求めることができる。ここで、 ${}^t LL$ は LL の転置行列、 LL^{-1} は LL の逆行列を表す。この行列を予め準備しておけば、次式に示す行列演算によって迅速に、ルジャンドル展開係数を求めることができる。

$$A = FF \cdot S_d$$

..... (9)

10 この展開係数 $A(0), \dots, A(N-1)$ から、式 (4) に従って、複素ルジャンドル展開係數 $C(\pm 1), \dots, C(\pm (N-1))$ を得て、このうち、位相回転最大値に応じて遮断次数 M を決定し、 $C(\pm 1)$ から $C(\pm (M+1))$ までの低次数複素ルジャンドル係數を棄却する。次に、各々の複素ルジャンドル係數の絶対値を求め、これを校正したのち、最大係數の複15 素ルジャンドル展開係數を選択する。図 13-17 に例を示したように、予め、一定振幅の複素正弦波を入力したときの出力としての複素ルジャンドル係數絶対値について、符号つき速度に対応する周波数を掃引したときの最大値を求めておき、これを用いて係數の絶対値を校正する。選択された複素ルジャンドル係數の偶奇位相角から、血流速20 度に対応する周波数を求める。偶奇位相角についても、図 18 に例を示したように、予め、一定振幅の複素正弦波を入力したときの出力としての複素ルジャンドル係數の偶奇位相角について、符号つき速度に対応する位相回転速度を掃引して、速度校正曲線を求めておく。

速度校正のための曲線としては、図 18 のような個々の複素ルジャ

ンドル展開係数の偶奇位相角を用いる他に、複数の複素ルジャンドル展開係数絶対値間の比を用いることもできる。その例を、図20に示した。これは、複素ルジャンドル展開係数の絶対値のなかで $\| C(n) \|$ が最大であるとき、校正曲線として $\| C(n+1)/C(n-1) \|$ または $\| C(n-1)/C(n+1) \|$ の逆正接関数を用いるための例である。 $\| C(\pm 7) \|$ が最大のときには、図18と同様、それぞれ $C(\pm 7)$ の偶奇位相角を用いる。また、 $\| C(\pm 1) \|$ が最大のときには、 $\| C(\pm 2)/C(\pm 1) \|$ (複号同順) の逆正接関数を用いる。

得られた血流信号は、エコー振幅検出器17およびエコー振幅圧縮器18により得られる静止臓器からのエコー信号と共に、スキャンコンバータ19に入力される。スキャンコンバータ19では、入力された複数の信号を適宜重畠して表示部20にて2ないし3次元表示すべく、信号の生成・制御を行う。上記のように $C(\pm 1)$ から $C(\pm (M+1))$ までの低次数複素ルジャンドル展開係数を棄却し、 $C(\pm (M+2))$ から $C(\pm (N-1))$ までの複素ルジャンドル展開係数により速度分析を行うと、ルジャンドル係数 $A(M)$ を最大とする速度と絶対値を比較して小さな速度に対しては、正確な速度分析が困難になるので、何らかの対策が必要となる。

次に、本発明のドップラ速度検出・分析装置の動作例を従来方式と比較して示す。クラッタ・エコー信号の振幅は、血流エコー信号の振幅の300倍とし、クラッタ速度については、初期値がゼロで一定の加速度で立ち上がる場合を想定した。時系列信号数 $N=8$ の場合について、数値計算シミュレーションを行って比較した。従来方式としては、MTIフィルタとして図6の場合の低域遮断フィルタを用い、その後段において、式(5)を用いて位相回転量平均値 P_a を得たのと同様の方法で、速度を算出する処理を血流信号検出・分析部16において行

う例を選んだ。さらに、MTI フィルタを、やはり図 5 に例を示したような多項式フィット・フィルタに置き換えた場合とも、比較した。この場合、遮断次数Mは、本発明の方法と同様、位相回転検出器 15 の出力信号に応じて制御した。

5 A(M)を最大とする速度より絶対値の小さな速度範囲における上記の問題に対しては、この範囲の速度出力がすべてゼロになるよう、図 20 に例を示した速度校正曲線の原点付近を修正し、この校正曲線を用いて速度検出・分析を行った。図 21 には、例として、M=3 の場合の修正された校正曲線を示した。C(±3) は棄却してしまうので、 $\| C(\pm 4) \|$ が最大のときに用いる校正曲線は、 $\| C(\pm 5)/C(\pm 3) \|$ ではなく $\| C(\pm 5)/C(\pm 4) \|$ の逆正接関数に書き換えられている。ここでは、C(±(M+2))から C(±(N-1))の絶対値の最大値が、想定される血流エコー信号による絶対値の 1/100 に満たない場合、速度出力がゼロとなるよう制御した。従来方式と多項式フィット・フィルタの場合も、それぞれの MTI フィルタの出力としての信号振幅が、想定される血流エコー信号振幅の 1/100 に満たない場合、速度出力がゼロとなるよう制御した。

以上説明した速度検出アルゴリズムを図 22 にまとめた。この図では、絶対値最大の複素ルジャンドル係数の位相を用いて速度を検出す 20 るアルゴリズムを記したが、さらに安定した速度検出を行うため、絶対値最大係数の位相だけでなく、複数係数の位相から求められる速度に係数絶対値の重みをつけた平均値を用いる方法もある。例えば、 n_m (> 0) 次の複素ルジャンドル係数の絶対値が最大のとき、 $n_m - 1$ 次から N-1 次の係数の位相から求められる速度に係数絶対値の重みをつけ 25 た平均値を用い、 $-n_m$ (< 0) 次の複素ルジャンドル係数の絶対値が最大のとき、 $-n_m + 1$ 次から -N+1 次の係数の位相から求められる速度に係

数絶対値の重みをつけた平均値を用いる。

図23、24、25には、クラッタの最終到達速度がナイキスト限界速度の0.8%である場合について、それぞれ、本発明の方式、従来方式、多項式フィット・フィルタ方式による速度検出結果を示した。

5 横軸に入力としての血流速度、縦軸に出力として検出された速度をとり、有効速度検出範囲を実線、範囲外を点線によりプロットした。また、理想的な場合を1点鎖線により示した。このように、クラッタ速度が低い場合には、いずれの方式も、ほぼ正確な速度分析結果を与えており、本発明の方式による誤差が最も小さい。

10 図26、27、28には、同様に、クラッタの最終到達速度がナイキスト限界速度の3%である場合について、それぞれ、本発明の方式、従来方式、多項式フィット・フィルタ方式による速度検出結果を示した。このクラッタ速度域では、従来方式による速度検出は、ほぼ破綻に至っている。

15 また、多項式フィット・フィルタ方式は、有効速度検出範囲における誤差は大きくないものの、血流速度がそれより小さい場合の誤差が大きく、何らかの対策を加えない限り、使いものにならない。これに対し、本発明の方式は、有効速度検出範囲において正確な速度検出結果を与えるだけでなく、血流速度がそれより小さい場合、素直に検出速度ゼロを出力している。

20 このように、有効速度検出範囲において正確な速度検出結果を出力し、かつ、血流速度がそれより小さい場合、素直に、検出速度ゼロを出力するか、あるいは速度検出不能であることを表示することは、本発明を実施したドプラ速度検出装置の特徴であるということができる。

25 図29、30、31には、さらに、クラッタの最終到達速度がナイキスト限界速度の20%である場合について、それぞれ、本発明の方式、

従来方式、多項式フィット・フィルタ方式による速度検出結果を示した。ここまでクラッタ速度が大きくなると、従来方式による速度検出は、完全に破綻している。また、多項式フィット・フィルタ方式は、有効速度検出範囲における誤差が大きくなると同時に、血流速度がそれより小さい場合の誤差も著しく大きくなってしまっている。これに対し、本発明の方式は、有効速度検出範囲がやや狭くなるものの、血流速度がナイキスト限界速度の60%以上の範囲で、ほぼ正確な速度検出結果を与えるだけでなく、血流速度がそれより未満の場合の動作が、やはり素直である。

これを、呼吸などによって軟部組織が運動する肝臓や腎臓の中を流れる低速血流を描画する場合について具体的に述べると、本発明によれば、臓器の超音波探触子への方向の運動速度が、 1 mm/s 変化するなか、超音波探触子への方向の速度成分 3 mm/s 以上の血流をリアルタイムに描画できる。これは、従来方式では、到底達成できない血流速度検出性能である。

このように本発明によれば、血流を、臓器の運動と峻別して描画することができる。この特長をさらに生かして、図20の超音波診断装置では、位相回転検出器13により検出されたクラッタ信号すなわち臓器エコーの位相回転速度の信号をスキャンコンバータ19に入力し、臓器の運動速度あるいはその空間微分の分布を示す像を血流像と重畳あるいは並べて表示可能としている。この構成の有用性を、肝腫瘍の場合を例として述べる。肝腫瘍の辺縁部は新生血管が発達し、血流动態が周辺の正常肝とは異なる。また、周辺の正常肝とは固さが異なるため組織の運動も周辺とは異なる。従って、血流像に加えて臓器の運動速度の場所による変化を表示することは、肝腫瘍の診断にきわめて有用な画像を提供することになる。

以上述べたように、本発明によれば、生体内部の血流など運動する反射物の速度を、そのエコー信号に比べ桁違いに振幅が大きいクラッタ・エコー信号の影響を除いて、正確に検出することができる。具体的にいえば、臓器の超音波探触子への方向の運動速度が、1 mm/s 5 変化するなか、超音波探触子への方向の速度成分3 mm/s 以上の血流をリアルタイムに描画できる。

このように、本発明によれば、正負の速度を区別できる複素ルジャンドル展開系により、血流に比べ振幅が2～3桁大きい体動によるクラッタを抑圧して血流速度を検出し得る新方式を提供するものであり、また、的確な医療診断を可能とする血流検出・描画機能付き超音波診断装置を提供することが可能となる。すなわち、本発明を実施した装置の医用診断上の有用性はきわめて大きく、従って、医用診断を支える工業における本発明の意義も、また、大きい。

さらに、本発明の方法は、電磁波を送受信することにより、雨雲など運動する反射物を検出して描画する気象レーダーや、飛行物体を検出する航空レーダー、あるいは、近づく物体を検出する衝突防止レーダーなどのパルス・ドプラ・レーダー装置など、他のパルス・ドプラ装置の運動反射体検出能力をも飛躍的に向上させることができ、本発明の工業的ならびに社会的意義は、その意味でもきわめて大である。

20

産業上の利用可能性

本発明によれば、生体内部の血流など運動する反射物の速度を、そのエコー信号に比べ桁違いに振幅が大きいクラッタ・エコー信号の影響を抑圧して、正確に検出することができる。

25

請求の範囲

1. 速度計測対象物に対しパルス波を複数回送受信し、受信エコー信号をもとに前記速度計測対象物に関する速度分析を行うドプラ速度検出装置において、各々のパルス送信時刻からの経過時間の等しい受信
5 エコー信号を送信時刻の順番にならべた受信エコー時系列信号を、ルジャンドル多項式の各成分として展開し、各展開係数の大きさから、前記速度計測対象物に関する速度信号を得るよう構成したことを特徴とするドプラ速度検出装置。
2. 前記受信エコー時系列信号を0次から始まるルジャンドル多項式
10 の各成分として展開したときの偶数次項の展開係数と、それと次数が1つ異なる奇数次項の展開係数とを虚数単位を係数として線形結合して、複素展開係数を得て、各複素展開係数の大きさおよび各複素展開係数間の大きさの比から、符合つき速度信号を得るよう構成したこと
15 を特徴とする請求項1に記載のドプラ速度検出装置。
3. 被検体に対してパルス波を複数回送受信する手段と、受信エコー信号をもとに前記被検体内の運動反射物に関する速度分析を行う速度分析手段とを備えたドプラ速度検出装置において、前記速度分析手段は、各々のパルス送信時刻からの経過時間の等しい受信エコー信号を送信時刻の順番にならべた受信エコー時系列信号を、0次から始まるルジャンドル多項式の各成分として展開したときの偶数次項の展
20 開係数と、それと次数が1つ異なる奇数次項の展開係数とを虚数単位を係数として線形結合して、複素展開係数を得て、各複素展開係数の大きさおよび各複素展開係数間の大きさの比から、前記被検体内の運動反射物に関する速度信号を得るよう構成されていること
25 を特徴とするドプラ速度検出装置。
4. 前記運動反射物に関する速度信号を前記被検体内の静止反射物か

らのエコー信号と共に2次元もしくは3次元的に表示する表示手段を設けてなることを特徴とする請求項3に記載のドップラ速度検出装置。

5. 超音波探触子と、前記超音波探触子から被検体に対し超音波パルス波を複数回送受信する手段と、前記被検体からの受信エコー信号をもとに前記被検体内の運動反射物の速度分析を行う速度分析手段とを備えた超音波診断装置において、前記速度分析手段は、前記超音波パルス各々の送信時刻からの経過時間の等しい受信エコー信号を送信時刻の順番にならべた受信エコー時系列信号を、ルジャンドル多項式の各成分として展開し、各展開係数の大きさから、前記被検体内の運動反射物に関する速度信号を得るよう構成されていることを特徴とする超音波診断装置。

6. 前記速度分析手段は、前記受信エコー時系列信号を0次から始まるルジャンドル多項式の各成分として展開したときの偶数次項の展開係数と、それと次数が1つ異なる奇数次項の展開係数とを虚数単位を係数として線形結合して、複素展開係数を得て、各複素展開係数の大きさおよび各複素展開係数間の大きさの比から、符合つき速度信号を得るよう構成していることを特徴とする請求項5に記載の超音波診断装置。

20 7. 超音波探触子と、前記超音波探触子から被検体に対し超音波パルス波を複数回送受信する手段と、前記被検体からの受信エコー信号をもとに前記被検体内の運動する臓器の中を流れる血流の速度分析を行う速度分析手段とを備えた超音波診断装置において、前記速度分析手段は、前記超音波パルス各々の送信時刻からの経過時間の等しい受信エコー信号を送信時刻の順番にならべた受信エコー時系列信号を、
25 0次から始まるルジャンドル多項式の各成分として展開したときの

偶数次項の展開係数と、それと次数が 1 つ異なる奇数次項の展開係数とを虚数単位を係数として線形結合して、複素展開係数を得て、各複素展開係数の大きさおよび各複素展開係数間の大きさの比から、前記被検体内の血流に関して符合つき速度信号を得るよう構成されてい
5 ることを特徴とする超音波診断装置。

8 . 前記臓器の運動速度またはその空間変化の分布像と同時に取得した血流分布像とを重畳もしくは並べて表示する表示手段を設けてなることを特徴とする請求項 7 に記載の超音波診断装置。

9 . 前記臓器の前記超音波探触子への方向の運動速度が、 1 m m /秒
10 変化するなか、前記超音波探触子への方向の速度成分 3 m m /秒以上の血流を検出し表示するよう構成したことを特徴とする請求項 7 又は 8 に記載の超音波診断装置。

10 . 複数の超音波探触子から被検体に対して超音波パルスを複数回送受信する超音波送受波手段と、前記被検体内での超音波パルスの送
15 信焦点位置を制御する送波ビームフォーマと、前記被検体内の受信焦点位置を制御する受波ビームフォーマと、前記超音波送受波手段、前記送波ビームフォーマおよび前記受波ビームフォーマを制御する制御系と、前記被検体からの受信エコー信号をもとに前記被検体内の運動反射物の速度分析を行う速度分析手段とを有し、かつ、前記速度分析手段を、各々のパルス送信時刻からの経過時間の等しい受信エコー信号を送信時刻の順番にならべた受信エコー時系列信号を、0 次から始まるルジャンドル多項式の各成分として展開したときの偶数次項の展開係数と、それと次数が 1 つ異なる奇数次項の展開係数とを虚数単位を係数として線形結合して、複素展開係数を得て、各複素展開係数の大きさおよび各複素展開係数間の大きさの比から、前記被検体内の運動反射物に関して符合つき速度信号を得るよう構成したことを
20
25

特徴とする超音波診断装置。

5

10

15

20

25

図 1

図 2

図 3

図 4

図 5

図 6

図 7

図 8

図 9

図 10

図 11

図 12

図 13

図 14

図 15

図 16

図 17

図 18

図 19

図 20

図 21

図 22

図 23

図 24

図 25

図 26

図 27

図 28

図 29

図 30

図 31

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/010157

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ A61B8/06, G01S15/58

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ A61B8/00, G01S15/58Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2004
Kokai Jitsuyo Shinan Koho 1971-2004 Jitsuyo Shinan Toroku Koho 1996-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Hans Torp, Clutter Rejection Filters in Color Flow Imaging: A Theoretical Approach, IEEE TRANSACTION ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, 1997 March, Vol.44, No.2, pages 417 to 424; (particularly, page 420)	1, 5
A	JP 4-84953 A (Matsushita Electric Industrial Co., Ltd.), 18 March, 1992 (18.03.92), Page 3, lower right column, line 14 to page 5, upper right column, line 2 (Family: none)	1-10

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "B" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
04 August, 2004 (04.08.04)Date of mailing of the international search report
17 August, 2004 (17.08.04)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

国際調査報告

国際出願番号 PCT/JP2004/010157

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int. Cl' A61B8/06, G01S15/58

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))

Int. Cl' A61B8/00, G01S15/58

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2004年
日本国登録実用新案公報	1994-2004年
日本国実用新案登録公報	1996-2004年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	Hans Torp, Clutter Rejection Filters in Color Flow Imaging: A Theoretical Approach, IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, 1997. 03, vol. 44, no. 2, pp. 417-424 (特に、p. 420 を参照のこと)	1, 5
A	J P 4-84953 A (松下電器産業株式会社) 1992. 03. 18 第3頁右下欄第14行目—第5頁右上欄第2行目 (ファミリーなし)	1-10

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

04. 08. 2004

国際調査報告の発送日 17. 8. 2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官 (権限のある職員)

右高 孝幸

2W 9808

電話番号 03-3581-1101 内線 3290