Modelos Supervisados

Certificación en Ciencia de Datos

Andrés Martínez

28 Junio 2024

Contenido

- Introducción.
- Definición.
- Importancia.
- Métodos.
- Validación cruzada k-fold.
- Validación cruzada Leave-One-Out.
- Comparación de métodos.
- Implementación.
- Aplicaciones.
- Conclusión.

Introducción

- La validación cruzada es una técnica utilizada para evaluar el desempeño de un modelo.
- Ayuda a asegurar que el modelo no esté sobreajustado y que generalice bien a datos nuevos.
- La validación cruzada implica dividir el conjunto de datos en múltiples subconjuntos.
- Un subconjunto se utiliza para entrenar el modelo y otro para evaluarlo.
- Este proceso se repite varias veces para obtener una medida de desempeño más robusta.
- Ayuda a detectar problemas de sobreajuste.
- Proporciona una estimación más precisa del desempeño del modelo.
- Facilita la selección del mejor modelo y ajuste de hiperparámetros.

Validación cruzada simple

- Se divide el conjunto de datos en dos partes: entrenamiento y prueba.
- El modelo se entrena con la parte de entrenamiento y se evalúa con la parte de prueba.

Error =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 (1)

Hold Out

Train Data set

Test Data Set

Figure 1: Hold Out

Validación cruzada k-fold

- Divide los datos en k subconjuntos (folds).
- Se entrena el modelo k veces, cada vez utilizando un fold diferente como conjunto de prueba y los restantes como conjunto de entrenamiento.
- El desempeño del modelo se promedia sobre los k experimentos.

Error_{k-fold} =
$$\frac{1}{k} \sum_{i=1}^{k} \left(\frac{1}{n_i} \sum_{j=1}^{n_i} (y_{ij} - \hat{y}_{ij})^2 \right)$$

Cross Validation

Train	Train	Train	Train	Train	Test
Train	Train	Train	Train	Test	Train
Train	Train	Train	Test	Train	Train
Train	Train	Test	Train	Train	Train
Train	Test	Train	Train	Train	Train
Test	Train	Train	Train	Train	Train

Figure 2: k-fold cross-validation

Validación cruzada Leave-One-Out

- Caso especial de la validación cruzada k-fold donde k es igual al número de observaciones.
- Cada observación es utilizada una vez como conjunto de prueba mientras el resto se utiliza para entrenar.
- Proporciona una evaluación muy precisa pero es computacionalmente costosa.

Error_{LOO} =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 (3)

Comparación de métodos

- La validación cruzada k-fold es un buen equilibrio entre sesgo y varianza.
- Leave-One-Out es útil para conjuntos de datos pequeños pero puede ser ineficiente para grandes conjuntos de datos.

Método	Ventajas	Desventajas
k-fold	Buen equilibrio	Computacionalmente caro
Leave-One-Out	Evaluación precisa	Muy caro para grandes datos

Implementación

- La mayoría de las bibliotecas de aprendizaje automático proporcionan funciones para implementar validación cruzada.
- Por ejemplo, en scikit-learn en Python se puede usar cross_val_score.
- Evaluación de modelos predictivos.
- Selección de modelos y ajuste de hiperparámetros.
- Estimación de la precisión de modelos en datos no vistos.