

POLITECHNIKA WARSZAWSKA

# AutoML, Praca Domowa 2

Raport

Adam Majczyk 313420, Szymon Matuszewski 313435

# Spis treści

| 1 | Sele | ekcja predyktorów                        | 2 |
|---|------|------------------------------------------|---|
|   | 1.1  | Modele 1 zmiennej - regresja logistyczna | 2 |
|   | 1.2  | Boruta                                   | 2 |
|   | 1.3  | Regresja logistyczna + Boruta            | 2 |
| 2 | Opt  | zymalizacja (model manualny)             | 3 |
| 3 | Aut  | coGluon                                  | 4 |
|   | 3.1  | Wybór pakietu                            | 4 |
|   | 3.2  | Podział na zbiór treningowy i testowy    | 4 |
|   | 3.3  | Przygotowanie zmiennych                  | 4 |
|   | 3.4  | Trenowanie modeli                        | 4 |
| 4 | Wy   | niki                                     | 5 |
|   | 4.1  | Optymalizacja (model manualny)           | 5 |
|   | 4.2  | AutoGluon                                | 5 |
|   | 4.3  | Model manualny                           | 5 |
|   | 4 4  | Withold                                  | _ |

### 1 Selekcja predyktorów

Pierwszym krokiem naszego rozwiązania było podzielenie zbioru treningowego na zbiór treningowy oraz walidacyjny w stosunku 4:1. Podzielono równomiernie względem kolumny celu (*stratify* po kolumnie **label**).

W zbiorze było 500 kolumn, zatem potrzebna była ekstrakcja cech aby zredukować liczbę wymiarów. Zdecydowaliśmy się na użycie dwóch algorytmów ekstrakcyjnych w trzech konfiguracjach:

- 1. Regresja logistyczna
- 2. Boruta
- 3. Regresja logistyczna + Boruta

### 1.1 Modele 1 zmiennej - regresja logistyczna

Uwaga - pierwotnie planowaliśmy zrobić to podejście jedynie dla modelu Regresji Logistycznej, stąd nazwa - regresja logistyczna. Finalnie użyto jednak 5 modeli, gdzie tylko 1 z nich to regresja. Dla każdej z 500 kolumn wytrenowano 5 modeli - **LogisticRegression**, **RandomForestClassifier**, **CatBoostClassifier**, **LGBMClassifier**, **XGBClassifier** na domyślnych hiperparametrach. Dla modeli, które wspierały, ustawiono parametr **eval\_metric** na **balanced\_accuracy**.

Dla każdego modelu wybrano zmienne o wartości **balanced\_accuracy** wyższej niż 0.5. Następnie znaleziono część wspólną zmiennych nieodrzuconych przez modele. Finalnie podejście to zostawiło 73 zmienne.

#### 1.2 Boruta

Na zbiorze treningowym przy 500 kolumnach zastosowaliśmy algorytm Boruta z wykorzystaniem RandomForestClassifier z parametrami:

- $n_jobs=-1$
- class\_weight='balanced',
- $max_depth=5$

Algorytm ten pozwolił na ograniczenie zbioru do 20 kolumn.

#### 1.3 Regresja logistyczna + Boruta

Przetestowaliśmy również podwójną ekstrakcję cech. Na 72 kolumny wyekstrachowane przy użyciu algorytmu opisanego w podpunkcie 1.1 nałożyliśmy ponownie algorytm Boruta o takich samych parametrach jak w podpunkcie 1.2. Pozwoliło to uzyskać zbiór treningowy składający się z 11 kolumn.

## 2 Optymalizacja (model manualny)

Modele z parametrami, które optymalizowaliśmy:

- 1. CatBoostClassifier iterations, learning\_rate, depth, l2\_leaf\_reg
- 2. LogisticRegression C, penalty
- 3. RandomForestClassifier n\_estimators, max\_depth, max\_features
- $4. \ LGBMClassifier n\_estimators, learning\_rate, max\_depth, num\_leaves$
- 5. XGBClassifier n\_estimators, learning\_rate, max\_depth, gamma

Każdy model przeprocesowaliśmy dla 3 zestawów zmiennych objaśniających na dwóch algorytmach poszukiwań hiperparametrów: **Grid Search** oraz **optuna**. W ten sposób przetestowaliśmy 6 podejść dla 5 algorytmów predykcyjnych. Te podejścia to:

- 1. Regresja logistyczna + Grid Search
- 2. Boruta + Grid Search
- 3. Regresja logistyczna + Boruta + Grid Search
- 4. Regresja logistyczna + optuna
- 5. Boruta + optuna
- 6. Regresja logistyczna + Boruta + optuna

W algorytmach optymalizujących hiperparametry używaliśmy crosswalidacji oraz metryki ewaluacji balanced\_accuracy.

## 3 AutoGluon

#### 3.1 Wybór pakietu

W celu wytrenowania modelu za pomocą pakietu automatycznego uczenia maszynowego wybrano pakiet **AutoGluon**. Skorzystano z obiektu **TabularPredictor**.

#### 3.2 Podział na zbiór treningowy i testowy

Dostarczony zbiór 2000 obserwacji podzielono na zbiór treningowy i testowy w proporcji 80-20. Upewniono się, że oba zbiory zawierają tą samą proporcję zmiennej objaśnianej (wykorzystano opcję **stratify** dla kolumny **label**).

#### 3.3 Przygotowanie zmiennych

Nie dokonywano preprocessingu zmiennych.

#### 3.4 Trenowanie modeli

Zbiór treningowy przekazano do **TabularPredictor**. Ustawiono metrykę ewaluacji na **balanced\_accuracy**. Ograniczono czas treningu do 10 minut. Wytrenowano tak przygotowany obiekt **TabularPredictor**.

### 4 Wyniki

## 4.1 Optymalizacja (model manualny)

#### 4.2 AutoGluon

Ranking modeli na zbiorze testowym przedstawiono w Tabeli 1

| model               | balanced_accuracy | czas trenowania [s] |
|---------------------|-------------------|---------------------|
| WeightedEnsemble_L2 | 0.8525            | 15.7922             |
| CatBoost            | 0.8475            | 2.6999              |
| LightGBM            | 0.8350            | 2.7573              |
| LightGBMLarge       | 0.8350            | 10.1192             |
| LightGBMXT          | 0.7700            | 2.6904              |
| KNeighborsUnif      | 0.7225            | 2.8266              |
| KNeighborsDist      | 0.7225            | 0.0261              |
| RandomForestEntr    | 0.7025            | 0.6494              |
| RandomForestGini    | 0.6525            | 0.7759              |
| ExtraTreesEntr      | 0.6425            | 0.3624              |
| ExtraTreesGini      | 0.6100            | 0.3701              |
| NeuralNetTorch      | 0.5875            | 4.7112              |
| NeuralNetFastAI     | 0.5650            | 2.4301              |

Tabela 1: Wyniki dla automatycznego uczenia maszynowego

#### 4.3 Model manualny

Najlepszym modelem pod względem metryki **balanced\_accuracy** na zbiorze walidacyjnym okazał się model o następujących parametrach:

• Algorytm: CatBoostClassifier

• Algorytm selekcji zmiennych: Boruta

• Metoda optymalizacji hiperparametrów: optuna

• 'iterations': 322

• 'learning rate': 0.15542656215841885

• 'depth': 8

• '12\_leaf\_reg': 9

Okazało się, że metryka **balanced\_accuracy** jaką udało nam się uzyskać na zbiorze walidacyjnym wynosi **0.92**. Jest to wynik aż o 6 punktów procentowych lepszy od wyniku uzyskanego przy pomocy AutoGluona.

### 4.4 Wnioski

Okazuje się, że pakiety AutoML przy prostym wywołaniu bez ustawiania złożonych parametrów nie zawsze dają lepsze wyniki od modeli ręcznie optymalizowanych metodami State-of-Art. W celu realizacji założeń takie pakiety powinny szybko dostosowywać się do coraz lepszych metod redukcji wymiarów, aby takie algorytmy jak Boruta były w nich implementowane.