Sistemas integrables y caóticos

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

30 de agosto de 2024

Agenda

- 1 Integrales del movimiento
- Sistemas Integrables
- Integrabilidad
- 4 Ejemplo

• Las cantidades conservadas, $I_k(q_j, \dot{q}_j) = C_k$, donde C_k = constante, y k = 1, ..., n, son primeras integrales del movimiento de un sistema.

- Las cantidades conservadas, $I_k(q_j, \dot{q}_j) = C_k$, donde $C_k =$ constante, y $k = 1, \ldots, n$, son primeras integrales del movimiento de un sistema.
- Un sistema con s grados de libertad es integrable si posee s cantidades conservadas; es decir, si n = s.

- Las cantidades conservadas, $I_k(q_j, \dot{q}_j) = C_k$, donde C_k = constante, y k = 1, ..., n, son primeras integrales del movimiento de un sistema.
- Un sistema con s grados de libertad es integrable si posee s cantidades conservadas; es decir, si n = s.
- A partir de esa integración las demás coordenadas pueden, en principio, ser integradas.

- Las cantidades conservadas, $I_k(q_j, \dot{q}_j) = C_k$, donde $C_k =$ constante, y $k = 1, \ldots, n$, son primeras integrales del movimiento de un sistema.
- Un sistema con s grados de libertad es integrable si posee s cantidades conservadas; es decir, si n = s.
- A partir de esa integración las demás coordenadas pueden, en principio, ser integradas.
- Un sistema para el cual existen más cantidades conservadas que grados de libertad (n > s) se llama superintegrable.

- Las cantidades conservadas, $I_k(q_j, \dot{q}_j) = C_k$, donde $C_k =$ constante, y $k = 1, \ldots, n$, son primeras integrales del movimiento de un sistema.
- Un sistema con s grados de libertad es integrable si posee s cantidades conservadas; es decir, si n = s.
- A partir de esa integración las demás coordenadas pueden, en principio, ser integradas.
- Un sistema para el cual existen más cantidades conservadas que grados de libertad (n > s) se llama superintegrable.
- El ejemplo más simple de sistema superintegrable es una partícula libre. Otro ejemplo es el problema de dos cuerpos sujetos a interacción gravitacional.

- Las cantidades conservadas, $I_k(q_j, \dot{q}_j) = C_k$, donde $C_k =$ constante, y $k = 1, \ldots, n$, son primeras integrales del movimiento de un sistema.
- Un sistema con s grados de libertad es integrable si posee s cantidades conservadas; es decir, si n = s.
- A partir de esa integración las demás coordenadas pueden, en principio, ser integradas.
- Un sistema para el cual existen más cantidades conservadas que grados de libertad (n > s) se llama superintegrable.
- El ejemplo más simple de sistema superintegrable es una partícula libre. Otro ejemplo es el problema de dos cuerpos sujetos a interacción gravitacional.
- Si un sistema con s grados de libertad tiene menos de s cantidades conservadas (n < s), se denomina no integrable.

Sistemas Integrables

- Ejemplos de sistemas integrables
 - Oscilador armónico simple: s = 1; $C_1 = E = \text{cte}$, n = 1; es integrable.
 - Péndulo simple: s = 1; $C_1 = E = \text{cte}$, n = 1; es integrable.
 - Partícula sobre un cono: s = 2, $C_1 = I_z = \text{cte}$, $C_2 = E = \text{cte}$, n = 2; es integrable.
 - Péndulo doble: s = 2; $C_1 = E = \text{cte}$, n = 1; no es integrable.
 - Péndulo cuyo soporte gira en un círculo en plano vertical con velocidad angular constante: s = 1, n = 0; no es integrable.
 - Péndulo de resorte: s = 2; $C_1 = E = \text{cte}$, n = 1; no es integrable.
 - Péndulo paramétrico cuya longitud varía en el tiempo: s = 1, n = 0; no es integrable.
 - Partícula libre es superintegrable: s = 3; n = 4: $C_1 = E = \text{cte}$, $C_2 = p_x = \text{cte}$, $C_2 = p_y = \text{cte}$, $C_2 = p_z = \text{cte}$.

Sistemas Integrables

- Ejemplos de sistemas integrables
 - Oscilador armónico simple: s = 1; $C_1 = E = \text{cte}$, n = 1; es integrable.
 - Péndulo simple: s = 1; $C_1 = E = \text{cte}$, n = 1; es integrable.
 - Partícula sobre un cono: s = 2, $C_1 = I_z = \text{cte}$, $C_2 = E = \text{cte}$, n = 2; es integrable.
 - Péndulo doble: s = 2; $C_1 = E = \text{cte}$, n = 1; no es integrable.
 - Péndulo cuyo soporte gira en un círculo en plano vertical con velocidad angular constante: s = 1, n = 0; no es integrable.
 - Péndulo de resorte: s = 2; $C_1 = E = \text{cte}$, n = 1; no es integrable.
 - Péndulo paramétrico cuya longitud varía en el tiempo: s=1, n=0; no es integrable.
 - Partícula libre es superintegrable: s = 3; n = 4: $C_1 = E = \text{cte}$, $C_2 = p_x = \text{cte}$, $C_2 = p_y = \text{cte}$, $C_2 = p_z = \text{cte}$.
- La integrabilidad es un tipo de simetría presente en varios sistemas dinámicos, y que conduce a una evolución regular (periódica o estacionaria) de las variables del sistema en el tiempo

• El Lagrangiano de un sistema unidimensional con coordenada q tiene la forma general $L=T\left(\dot{q}^2\right)-V_{\rm ef}(q)=\frac{1}{2}a\dot{q}^2-V_{\rm ef}(q)$, donde a representa masa, longitud, etc., y $V_{\rm ef}\left(q\right)$ es un potencial efectivo que depende de la coordenada q,

- El Lagrangiano de un sistema unidimensional con coordenada q tiene la forma general $L=T\left(\dot{q}^2\right)-V_{ef}(q)=\frac{1}{2}a\dot{q}^2-V_{ef}(q)$, donde a representa masa, longitud, etc., y $V_{ef}\left(q\right)$ es un potencial efectivo que depende de la coordenada q,
- Como $\frac{\partial L}{\partial t} = 0$, la función de energía se conserva

- El Lagrangiano de un sistema unidimensional con coordenada q tiene la forma general $L=T\left(\dot{q}^2\right)-V_{ef}(q)=\frac{1}{2}a\dot{q}^2-V_{ef}(q)$, donde a representa masa, longitud, etc., y $V_{ef}\left(q\right)$ es un potencial efectivo que depende de la coordenada q,
- Como $\frac{\partial L}{\partial t} = 0$, la función de energía se conserva
- Hay un grado de libertad y una cantidad conservada; el sistema es integrable.

- El Lagrangiano de un sistema unidimensional con coordenada q tiene la forma general $L=T\left(\dot{q}^2\right)-V_{ef}(q)=\frac{1}{2}a\dot{q}^2-V_{ef}(q)$, donde a representa masa, longitud, etc., y $V_{ef}\left(q\right)$ es un potencial efectivo que depende de la coordenada q,
- Como $\frac{\partial L}{\partial t} = 0$, la función de energía se conserva
- Hay un grado de libertad y una cantidad conservada; el sistema es integrable.
- Como E = cte, se determina t(q) en términos de una integral explícita,

$$\dot{q}=rac{dq}{dt}=\sqrt{rac{2}{a}\left(E-V_{
m ef}(q)
ight)}\Rightarrow t(q)=\int\sqrt{rac{a}{2}}rac{dq}{\sqrt{E-V_{
m ef}(q)}}+{
m cte}.$$

- El Lagrangiano de un sistema unidimensional con coordenada q tiene la forma general $L=T\left(\dot{q}^2\right)-V_{ef}(q)=\frac{1}{2}a\dot{q}^2-V_{ef}(q)$, donde a representa masa, longitud, etc., y $V_{ef}\left(q\right)$ es un potencial efectivo que depende de la coordenada q,
- Como $\frac{\partial L}{\partial t} = 0$, la función de energía se conserva
- Hay un grado de libertad y una cantidad conservada; el sistema es integrable.
- Como E = cte, se determina t(q) en términos de una integral explícita,

$$\dot{q}=rac{dq}{dt}=\sqrt{rac{2}{a}\left(E-V_{
m ef}(q)
ight)}\Rightarrow t(q)=\int\sqrt{rac{a}{2}}rac{dq}{\sqrt{E-V_{
m ef}(q)}}+ {
m cte.}$$

• En principio, se puede invertir t(q) para obtener q(t).

- El Lagrangiano de un sistema unidimensional con coordenada q tiene la forma general $L=T\left(\dot{q}^2\right)-V_{ef}(q)=\frac{1}{2}a\dot{q}^2-V_{ef}(q)$, donde a representa masa, longitud, etc., y $V_{ef}\left(q\right)$ es un potencial efectivo que depende de la coordenada q,
- Como $\frac{\partial L}{\partial t} = 0$, la función de energía se conserva
- Hay un grado de libertad y una cantidad conservada; el sistema es integrable.
- Como E = cte, se determina t(q) en términos de una integral explícita,

$$\dot{q} = rac{dq}{dt} = \sqrt{rac{2}{a}} \left(E - V_{
m ef}(q) \right) \Rightarrow t(q) = \int \sqrt{rac{a}{2}} rac{dq}{\sqrt{E - V_{
m ef}(q)}} + {
m cte.}$$

- En principio, se puede invertir t(q) para obtener q(t).
- Para que la solución q(t) sea real, el movimiento puede ocurrir solamente para valores de q tales que $E \ge V_{\rm ef}(q)$.

- El Lagrangiano de un sistema unidimensional con coordenada q tiene la forma general $L=T\left(\dot{q}^2\right)-V_{ef}(q)=\frac{1}{2}a\dot{q}^2-V_{ef}(q)$, donde a representa masa, longitud, etc., y $V_{ef}\left(q\right)$ es un potencial efectivo que depende de la coordenada q,
- Como $\frac{\partial L}{\partial t} = 0$, la función de energía se conserva
- Hay un grado de libertad y una cantidad conservada; el sistema es integrable.
- Como E = cte, se determina t(q) en términos de una integral explícita,

$$\dot{q} = rac{dq}{dt} = \sqrt{rac{2}{a}} \left(E - V_{
m ef}(q) \right) \Rightarrow t(q) = \int \sqrt{rac{a}{2}} rac{dq}{\sqrt{E - V_{
m ef}(q)}} + {
m cte.}$$

- En principio, se puede invertir t(q) para obtener q(t).
- Para que la solución q(t) sea real, el movimiento puede ocurrir solamente para valores de q tales que $E \ge V_{\rm ef}(q)$.
- La condición de integrabilidad de sistemas unidimensionales permite calcular el período de movimientos oscilatorios en esos sistemas.

• Consideremos un sistema descrito por el Lagrangiano $L=T-V=\frac{1}{2}m\dot{x}^2-V(x)$, con la ecuación de movimiento $m\ddot{x}=-\frac{dV}{dx}$

- Consideremos un sistema descrito por el Lagrangiano $L = T V = \frac{1}{2}m\dot{x}^2 V(x)$, con la ecuación de movimiento $m\ddot{x} = -\frac{dV}{dx}$
- La energía total constante es $E=\frac{1}{2}m\dot{x}^2+V(x)$ y podemos integrar $t(x)=\sqrt{\frac{m}{2}}\int\frac{dq}{\sqrt{E-V(x)}}$

- Consideremos un sistema descrito por el Lagrangiano $L = T V = \frac{1}{2}m\dot{x}^2 V(x)$, con la ecuación de movimiento $m\ddot{x} = -\frac{dV}{dx}$
- La energía total constante es $E=\frac{1}{2}m\dot{x}^2+V(x)$ y podemos integrar $t(x)=\sqrt{\frac{m}{2}}\int\frac{dq}{\sqrt{E-V(x)}}$
- Como $\frac{1}{2}m\dot{x}^2 = E V(x) \ge 0$, el movimiento sólo puede ocurrir para $E \ge V(x)$.

- Consideremos un sistema descrito por el Lagrangiano $L = T V = \frac{1}{2}m\dot{x}^2 V(x)$, con la ecuación de movimiento $m\ddot{x} = -\frac{dV}{dx}$
- La energía total constante es $E=\frac{1}{2}m\dot{x}^2+V(x)$ y podemos integrar $t(x)=\sqrt{\frac{m}{2}}\int\frac{dq}{\sqrt{E-V(x)}}$
- Como $\frac{1}{2}m\dot{x}^2 = E V(x) \ge 0$, el movimiento sólo puede ocurrir para $E \ge V(x)$.
- Los puntos de retorno son aquellos para V(x) = E. Es decir, x_1, x_2 y x_3 son puntos de retorno $V(x_1) = E$, $V(x_2) = E$, $V(x_3) = E$

• Los puntos de equilibrio $x = x_o$ son aquellos donde la fuerza instantánea se anula: $f(x_o) = 0 \Rightarrow \frac{dV}{dx}\Big|_{x_o} = 0$

- Los puntos de equilibrio $x = x_o$ son aquellos donde la fuerza instantánea se anula: $f(x_o) = 0 \Rightarrow \frac{dV}{dx}\Big|_{x_o} = 0$
- Un punto estático velocidad y aceleración se anulan: $\ddot{x} = 0, \dot{x} = 0$.

- Los puntos de equilibrio $x = x_o$ son aquellos donde la fuerza instantánea se anula: $f(x_o) = 0 \Rightarrow \frac{dV}{dx}\Big|_{x_o} = 0$
- Un punto estático velocidad y aceleración se anulan: $\ddot{x} = 0, \dot{x} = 0$.
- Un punto de equilibrio x_o es estable si $x=x_o+\eta$, donde η es un pequeño desplazamiento, tiende a $x=x_o$ al aumentar el tiempo y corresponde a un mímino del potencial V(x). Es decir $\frac{d^2V}{dx^2}\Big|_{x_o}>0$, x_o es un punto de equilibrio estable

- Los puntos de equilibrio $x = x_o$ son aquellos donde la fuerza instantánea se anula: $f(x_o) = 0 \Rightarrow \frac{dV}{dx}\Big|_{x_o} = 0$
- Un punto estático velocidad y aceleración se anulan: $\ddot{x} = 0, \dot{x} = 0$.
- Un punto de equilibrio x_o es estable si $x=x_o+\eta$, donde η es un pequeño desplazamiento, tiende a $x=x_o$ al aumentar el tiempo y corresponde a un mímino del potencial V(x). Es decir $\frac{d^2V}{dx^2}\Big|_{x_o}>0$, x_o es un punto de equilibrio estable
- Un punto de equilibrio es inestable si el potencial V(x) presenta un máximo en ese punto. Entonces $\left. \frac{d^2 V}{dx^2} \right|_{x_o} < 0, \quad x_o$ es un punto de equilibrio inestable.

- Los puntos de equilibrio $x = x_o$ son aquellos donde la fuerza instantánea se anula: $f(x_o) = 0 \Rightarrow \frac{dV}{dx}\Big|_{x_o} = 0$
- Un punto estático velocidad y aceleración se anulan: $\ddot{x} = 0, \dot{x} = 0$.
- Un punto de equilibrio x_o es estable si $x=x_o+\eta$, donde η es un pequeño desplazamiento, tiende a $x=x_o$ al aumentar el tiempo y corresponde a un mímino del potencial V(x). Es decir $\frac{d^2V}{dx^2}\Big|_{x_o}>0$, x_o es un punto de equilibrio estable
- Un punto de equilibrio es inestable si el potencial V(x) presenta un máximo en ese punto. Entonces $\frac{d^2V}{dx^2}\Big|_{x_o} < 0$, x_o es un punto de equilibrio inestable.
- El período de oscilación entre los puntos de retorno x_1 y x_2 es dos veces el intervalo de tiempo del movimiento entre esos puntos, $\tau_p(E) = 2\sqrt{\frac{m}{2}} \int_{x_1}^{x_2} \frac{dx}{\sqrt{E-V(x)}}$

• Para un valor de x cerca de un punto de equilibrio estable x_0 , el potencial V(x) puede expresarse mediante una expansión de Taylor alrededor de $x=x_0$. Esto es

$$V(x) = V(x_0) + \frac{dV}{dx} \Big|_{x_0} (x - x_0) + \frac{1}{2} \frac{d^2 V}{dx^2} \Big|_{x_0} (x - x_0)^2 + \cdots$$
, donde

 $V(x_o)$ es un valor constante y el segundo término se anula debido a la condición de equilibrio.