

MITB B.9 Applied Machine Learning

Instructor:

Asst. Prof. DAI Bing Tian (Education)

btdai@smu.edu.sg SIS bldg. room 0430

Teaching Assistant:

Ms. YANG Cheng

cheng.yang.2016@mitb.smu.edu.sg

Recap

- Machine learning framework
 - **—** ?
 - **—** ?
 - **—** ?

Agenda

- Regression
- Linear Regression
- Polynomial Regression
- Gradient Descent

Wedding Ang Pow Rate

Hotel	Lunch or Dinner	W/day or W/end	Rate
3-star	Dinner	Weekday	80
3-star	Lunch	Weekend	90
4-star	Lunch	Weekend	100
4-star	Dinner	Weekend	120
5-star	Lunch	Weekend	130
5-star	Dinner	Weekend	160
5-star	Dinner	Weekday	140

Supervised Learning

Formalization

– Input:

 $\mathbf{x} \in \mathcal{X} \mathbb{R}^n$

– Output:

 $y \in \mathcal{Y} \left\{ egin{array}{ll} \mathbb{R} & ext{regression} \ \{+1,-1\} & ext{binary classification} \ \{1,2,\ldots,K\} & ext{multi-class classification} \end{array}
ight.$

– Target function: $f:\mathcal{X} \to \mathcal{Y}$

$$f: \mathcal{X} \to \mathfrak{I}$$

(unknown)

- Training Data:
$$D = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_m, y_m)\}$$

- Hypothesis:

$$h: \mathcal{X} \to \mathcal{Y} \quad h \approx f$$

$$h \approx f$$

– Hypothesis space: $h \in \mathcal{H}$

$$h \in \mathcal{F}$$

Explanatory and Target Variables

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

- x = input variable / explanatory variable
- y = output variable / target variable

Target Functions

Price (in 1000s of dollars)

A Learning Problem

Hypothesis Spaces

Linear models

$$h(x) = ax + b \approx f(x)$$

- Infinite possible hypotheses!
- Any choices of coefficient a and b will result in a possible hypothesis
- Polynomial models

$$h(x) = ax^2 + bx + c \approx f(x)$$

Any nonlinear models

$$h(x) = g(x) \approx f(x)$$

Model Representation

How do we represent h?

$$h(x) = w_0 + w_1 x$$

Linear regression with one variable. "Univariate Linear Regression"

How to choose parameters w_0, w_1 ?

Formulation: Cost Function

Hypothesis:

$$h(x) = w_0 + w_1 x$$

Parameters:

$$w_0, w_1$$

Cost Function:

Mean Squared Error (MSE)

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x_i) - y_i)^2$$

$$\min_{w_0,w_1} J(w_0,w_1)$$

Normal Equation

$$\frac{\partial J(w_0, w_1)}{\partial w_0} = \frac{1}{m} \sum_{i=1}^{m} (w_0 + w_1 x_i - y_i) = 0$$

$$\frac{\partial J(w_0, w_1)}{\partial w_1} = \frac{1}{m} \sum_{i=1}^m x_i (w_0 + w_1 x_i - y_i) = 0$$

$$w_0 = \frac{\sum_{i=1}^m x_i^2 \sum_{i=1}^m y_i - (\sum_{i=1}^m x_i)(\sum_{i=1}^m x_i y_i)}{m \sum_{i=1}^m x_i^2 - (\sum_{i=1}^m x_i)^2}$$

$$w_1 = \frac{m \sum_{i=1}^m x_i y_i - (\sum_{i=1}^m x_i)(\sum_{i=1}^m y_i)}{m \sum_{i=1}^m x_i^2 - (\sum_{i=1}^m x_i)^2}$$

Univariate Linear Regression

- Identify explanatory variable as x
- Identify target variable as y

```
import pandas as pd
import numpy as np

data_house = pd.read_csv('house_price.tsv', sep='\t')

x = data_house.as_matrix(['size'])
y = data_house.as_matrix(['price'])

from sklearn import linear_model

regr = linear_model.LinearRegression()
regr.fit(x, y)
```

Multivariate Linear Regression

Multiple features (variables).

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
• • •	•••			

Notation:

n = number of features

 \mathbf{X}_i = input (features) of i^{th} training example.

 \mathcal{X}_{ij} = value of feature j in i^{th} training example.

Multivariate Linear Regression

Hypothesis:

Previously: $h(x) = w_0 + w_1 x$

$$\mathbf{x} \in \mathbb{R}^n$$
 $h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_n x_n$

For convenience of notation, define $x_0 = 1$

$$h(\mathbf{x}) = \sum_{j=0}^{n} w_j x_j = \mathbf{w}^T \mathbf{x} = \langle \mathbf{w}, \mathbf{x} \rangle$$
$$\mathbf{x} \in \mathbb{R}^{n+1} \ \mathbf{w} \in \mathbb{R}^{n+1}$$

Normal Equation

$$J(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (\mathbf{w}^T \mathbf{x}_i - y_i)^2 = \frac{1}{2m} (X\mathbf{w} - \mathbf{y})^T (X\mathbf{w} - \mathbf{y})$$

$$(\mathbf{w}^T\mathbf{x}_1 - y_1)$$

$$X\mathbf{w} - \mathbf{y} = \begin{pmatrix} x_{10} & x_{11} & \dots & x_{1n} \\ x_{20} & x_{21} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m0} & x_{n1} & \dots & x_{mn} \end{pmatrix} \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} - \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

 $m \times (n+1)$

$$\begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} - \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

$$(n+1) \times 1$$
 $m \times 1$

Normal Equation

Matrix-vector formulation

$$J(\mathbf{w}) = \frac{1}{2m} (X\mathbf{w} - \mathbf{y})^T (X\mathbf{w} - \mathbf{y})$$
$$\nabla J(\mathbf{w}) = \nabla_{\mathbf{w}} \left(\frac{1}{2m} (X\mathbf{w} - \mathbf{y})^T (X\mathbf{w} - \mathbf{y}) \right)$$
$$= X^T X \mathbf{w} - X^T \mathbf{y} = \mathbf{0}$$
$$X^T X \mathbf{w} = X^T \mathbf{y}$$

Analytical solution

$$\mathbf{w} = ((X^T X)^{-1} X^T) \mathbf{y} = X^{\dagger} \mathbf{y}$$
$$X^{\dagger} = (X^T X)^{-1} X^T$$

Model Parameters

- Print model parameters:
 - Coefficients
 - intercept

```
x = data_house.as_matrix(['size', 'Taxes'])
y = data_house.as_matrix(['price'])

regr = linear_model.LinearRegression()
regr.fit(x, y)

print('Coefficients:', regr.coef_)
print('Intercept:', regr.intercept_)
```

Sum of Squares

• In statistical linear models, the total sum of squares (SS_{tot}) can be partitioned into explained sum of squares (a.k.a. SS_{reg} = Sum of Squares due to Regression) and residual sum of squares (a.k.a. SS_{res} = Sum of Squares of Errors)

$$SS_{tot} = SS_{reg} + SS_{res}$$

$$SS_{tot} = \sum_{i} (y_i - \bar{y})^2$$

$$SS_{reg} = \sum_{i} (\hat{y}_i - \bar{y})^2$$

$$SS_{res} = \sum_{i} (\hat{y}_i - y_i)^2$$

 \bar{y} : mean of y_i

 \hat{y}_i : prediction of y_i

Mean Squared Error

How to evaluate the regression model?

Cost Function:

Mean Squared Error (MSE)

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x_i) - y_i)^2$$

Goal:

Coefficient of Determination

Calculate R² score

$$\forall i, \ \hat{y}_i = h(x_i), \ SS_{res} = \sum_{i=1}^m (\hat{y}_i - y_i)^2$$

$$SS_{tot} = \sum_{i=1}^{m} (y_i - \bar{y})^2$$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Calculation of R² Score

- Calculate from score() function
- Calculate from SS_{reg} and SS_{tot}

```
sst = sum((y - np.mean(y)) ** 2)
ssr = sum((regr.predict(x) - np.mean(y)) ** 2)
sse = sum((regr.predict(x) - y) ** 2)

print('Total sum of squares:', sst)
print('Explained sum of squares:', ssr)
print('Residual sum of squares:', sse)
print('R^2 score computed from score function:', regr.score(x, y))
print('R^2 score computed from ssr / sst:', ssr / sst)
```

Training Data and Test Data

- It is not recommended to train and test a model with the set of data
- Split data into training data and test data
- Train the model using training data
- Test the model with test data

```
train = np.random.choice([True, False], len(x), replace=True, p=[0.9,0.1])
x_train = x[train,:]
y_train = y[train]
x_test = x[~train,:]
y_test = y[~train]
regr.fit(x_train, y_train)
print('R^2 score: %.2f' % regr.score(x_test, y_test))
```

```
>>> train[:20]
array([False, True, True
```


More Evaluation Metrics

- from sklearn import metrics
 - explained_variance_score
 - mean_absolute_error
 - **–** ...

$$1 - \frac{cov(y, \hat{y})}{var(y)}$$

$$\frac{1}{m} \sum_{i=1}^{m} |\hat{y}_i - y_i|$$

```
from sklearn import metrics

y_pred = regr.predict(x_test)
metrics.explained_variance_score(y_test, y_pred)
metrics.mean_absolute_error(y_test, y_pred)
metrics.mean_squared_error(y_test, y_pred)
```

Hypothesis Spaces

Linear models

$$h(x) = ax + b \approx f(x)$$

- Infinite possible hypotheses!
- Any choices of coefficient a and b will result in a possible hypothesis
- Polynomial models

$$h(x) = ax^2 + bx + c \approx f(x)$$

Any nonlinear models

$$h(x) = g(x) \approx f(x)$$

Polynomial Models

$$h(x) = ax^{2} + bx + c = (a, b)(x^{2}, x)^{T} + c$$

- Map each explanatory variable to a higher order space
- Fit a linear model in the higher order space

Polynomial Models

$$h(x) = ax_1^2 + bx_2^2 + cx_1x_2 + dx_1 + ex_2 + f$$

```
from sklearn import preprocessing
poly2 = preprocessing.PolynomialFeatures(2)
poly3 = preprocessing.PolynomialFeatures(3)
x2 = poly2.fit transform(x)
x3 = poly3.fit transform(x)
x train = x2[train,:]
x test = x2[~train,:]
regr.fit(x train, y train)
print('R^2 score: %.2f' % regr.score(x test, y test))
x train = x3[train,:]
x test = x3[~train,:]
regr.fit(x train, y train)
print('R^2 score: %.2f' % regr.score(x test, y test))
```

Regression without Intercept

- If there exists constant term, the coefficient of the constant term is actually the intercept
- No intercept model can be achieved by polynomial models

```
regr_no_intercept = linear_model.LinearRegression(fit_intercept=False)
x_train = x2[train,:]
x_test = x2[~train,:]
regr.fit(x_train, y_train)
regr_no_intercept.fit(x_train, y_train)

print('Coefficients:', regr.coef_)
print('Intercept:', regr.intercept_)

print('Coefficients:', regr_no_intercept.coef_)
print('Intercept:', regr_no_intercept.intercept_)
```

Polynomial Models

$$X\mathbf{w} - \mathbf{y} = \begin{pmatrix} x_{10} & x_{11} & \dots & x_{1n} \\ x_{20} & x_{21} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m0} & x_{n1} & \dots & x_{mn} \end{pmatrix} \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_n \end{pmatrix} - \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

$$m \times (n+1) \qquad (n+1) \times 1 \qquad m \times 1$$

$$\mathbf{w} = ((X^T X)^{-1} X^T) \mathbf{y} = X^{\dagger} \mathbf{y}$$

• $x_{10}, x_{20}, \dots, x_{m0}$ are 1, the intercept is represented by w_0

Customized Mapping Function

 Map each tuple x by terms into a higher dimensional space defined by "terms"

Customized Mapping Function

- Only quadratic terms
- No linear terms

```
terms = [{0:2}, {1:2}, {0:1,1:1}]
x_mapped = map_to_higher_dim(x, terms)
x_train = x_mapped[train,:]
x_test = x_mapped[~train,:]
regr.fit(x_train, y_train)
print('R^2 score: %.2f' % regr.score(x_test, y_test))
```

Outline

- Linear Regression: Analytical Solutions
- Polynomial Models
- Gradient Descent
- Regression Visualization

Hypothesis Spaces

Linear models

$$h(x) = ax + b \approx f(x)$$

- Infinite possible hypotheses!
- Any choices of coefficient a and b will result in a possible hypothesis
- Polynomial models

$$h(x) = ax^2 + bx + c \approx f(x)$$

Any nonlinear models

$$h(x) = g(x) \approx f(x)$$

Gradient Descent

Given some objective function $J(w_0,w_1)$ Want to optimize $\min_{w_0,w_1}J(w_0,w_1)$

Outline:

- Start with some w_0, w_1
- Keep changing w_0, w_1 to reduce $J(w_0, w_1)$ until we hopefully end up at a minimum

Gradient Descent

Gradient Descent

Gradient Descent Algorithm

Gradient descent algorithm

```
 \begin{array}{ll} \text{initialize} & w_j & j=0,1 \\ \text{repeat until convergence } \{ \\ w_j := w_j - \alpha \frac{\partial}{\partial w_j} J(w_0,w_1) & \text{(simultaneously update } \\ \} & j=0 \text{ and } j=1) \\ \\ \text{learning rate parameter } \\ \text{(rule of thumb: 0.1)} \end{array}
```

Convex Function

A real-valued function f is convex if

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) \quad \forall 0 \le \theta \le 1$$

- Function is below a linear interpolation from x to y.
- The negative of a convex function is a concave function
- Convex: Implies that all local minima are global minima.

Non-Convex Function

$$w_1 := w_1 - \alpha \frac{\partial}{\partial w_1} J(w_1)$$

Global minima

The final solution is sensitive to initialization

Gradient Descent for Linear Models

Gradient descent algorithm

Stochastic Gradient Descent

- Evaluating the sum of gradient may be expensive
- To save the cost at each iteration, stochastic gradient descent samples a subset of summand gradient at each iteration

$$\mathbf{w} := \mathbf{w} - \alpha \frac{\partial}{\partial \mathbf{w}} J(\mathbf{w})$$

$$:= \mathbf{w} - \alpha \frac{\partial}{\partial \mathbf{w}} \sum_{i=1}^{m} g(x_i, y_i, \mathbf{w})$$

$$:= \mathbf{w} - \alpha \sum_{i=1}^{m} \frac{\partial g(x_i, y_i, \mathbf{w})}{\partial \mathbf{w}}$$

Gradient Descent for Linear Regression

Gradient descent algorithm

repeat until convergence { $w_j := w_j - \alpha \frac{\partial}{\partial w_j} J(w_0, w_1)$ (for j=1 and j=0) $\begin{pmatrix} h(x) = w_0 + w_1 x \\ J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^m \left(h(x_i) - y_i\right)^2 \\ \frac{\partial}{\partial w_j} J(w_0, w_1) = \frac{\partial}{\partial w_j} \left(\frac{1}{2m} \sum_{i=1}^m \left((w_0 + w_1 x_i) - y_i\right)^2\right)$

Linear Regression Model

$$h(x) = w_0 + w_1 x$$

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x_i) - y_i)^2$$

$$\frac{\partial}{\partial w_j} J(w_0, w_1) = \frac{\partial}{\partial w_j} \left(\frac{1}{2m} \sum_{i=1}^m \left((w_0 + w_1 x_i) - y_i \right)^2 \right)$$

$$\frac{\partial}{\partial w_0} J(w_0, w_1) = \frac{1}{m} \sum_{i=1}^m (h(x_i) - y_i)$$

$$\frac{\partial}{\partial w_1} J(w_0, w_1) = \frac{1}{m} \sum_{i=1}^m (h(x_i) - y_i) \cdot x_i$$

$$\left| rac{\partial}{\partial w_1} J(w_0, w_1) = rac{1}{m} \sum_{i=1}^m (h(x_i) - y_i) \cdot x_i \right|$$

Convergence and Learning Rate

$$\mathbf{w} := \mathbf{w} - \alpha \nabla J(\mathbf{w})$$

Example automatic convergence test:

Declare convergence if $J(\mathbf{w})$ decreases by less than 10^{-3} in one iteration.

For sufficiently small α , $J(\mathbf{w})$ should decrease on every iteration. But if α is too small, gradient descent can be slow to converge. If α is too large: $J(\mathbf{w})$ may not decrease on every iteration; may not converge.

Learning Rate

too small constant

too large

gradually decreased $\alpha_t = \frac{\alpha}{t}$

Gradient Descent Regression

```
from sklearn import datasets
diabetes = datasets.load_diabetes()
x = diabetes.data[:,:4]
y = diabetes.target
regr = linear_model.LinearRegression()
regr.fit(x, y)
sgd = linear_model.SGDRegressor(n_iter=100000, penalty='none')
sgd.fit(x, y)
regr.score(x, y)
sgd.score(x, y)
print(regr.coef_, regr.intercept_)
print(sgd.coef_, sgd.intercept_)
```

```
diabetes = datasets.load_diabetes()
x = diabetes.data[:,np.newaxis,2]
y = diabetes.target
regr.fit(x, y)

import matplotlib.pyplot as plt
plt.scatter(x, y, color='red')
lx = np.arange(min(x), max(x), (max(x) - min(x)) / 200).reshape(200,1)
plt.plot(lx, regr.predict(lx), color='blue', linewidth=3)
plt.show()
```



```
import numpy as np
import matplotlib.pyplot as plt
from mpl toolkits.mplot3d import Axes3D
diabetes = datasets.load diabetes()
x = diabetes.data[:,[2,8]]
v = diabetes.target
regr = linear model.LinearRegression()
regr.fit(x, y)
steps = 40
lx0 = np.arange(min(x[:,0]), max(x[:,0]), (max(x[:,0]) - min(x[:,0])) / steps).r
eshape(steps,1)
lx1 = np.arange(min(x[:,1]), max(x[:,1]), (max(x[:,1]) - min(x[:,1])) / steps).r
eshape(steps,1)
xx0, xx1 = np.meshgrid(lx0, lx1)
xx = np.zeros(shape = (steps, steps, 2))
xx[:,:,0] = xx0
xx[:,:,1] = xx1
x stack = xx.reshape(steps ** 2, 2)
y stack = regr.predict(x stack)
yy = y stack.reshape(steps, steps)
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.scatter(x[:,0], x[:,1], y, color = 'red')
ax.plot surface(xx0, xx1, yy, rstride=1, cstride=1)
plt.show()
```


QUESTIONS?!

