Lab Report No 2

Digital Logic Design

Submitted By:

Abdul Ahad

22-CS-071

Muhammad Afzal

22-CS-035

Muhammad Zain Ali

22-CS-015

Faisal Khan

22-CS-039

Bilal Asghar

22-CS-107

Submitted to:

Engr. Bushra Fiaz

Dated:

Week 01

Department of Computer Science,
HITEC University, Taxila

Task 1 – 1:

A	В	C	x
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Task 1 – 2:

Solution:

В	C	A	x
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Brief description (3-5 lines)

Simplification of:

~ (A and B) and (~A or B) and (~B or B)

The code

~ (A and B) and (~A or B) and (~B or B)

~ (A and B) can be simplified using De Morgan's law:

 \sim (A and B) = \sim A or \sim B

So, the expression becomes:

(~A or ~B) and (~A or B) and (~B or B)

(~B or B) can be simplified using the identity law:

~B or B = 1

So, the expression becomes:

(~A or ~B) and (~A or B) and 1

We can simplify this further using the distributive law:

(~A or ~B) and (~A or B) = ~A

Therefore, the final simplified expression is:

~A and 1

Which can be further simplified to:

~A

Brief description (3-5 lines)

Simplification of:

(A or C) and ((A and D) or (A and ~D)) or (A and C) or C

The code

(A or C) and ((A and D) or (A and ~D)) or (A and C) or C

We can simplify this expression using the distributive law:

(A or C) and ((A and D) or (A and $^{\circ}$ D)) = A or (C and ((A and D) or (A and $^{\circ}$ D)))

So, the expression becomes:

A or (C and ((A and D) or (A and ~D))) or (A and C) or C

We can simplify further using the absorption law:

A or (A and C) = A

So, the expression becomes:

A or (C and ((A and D) or (A and ~D))) or C

We can simplify further using the distributive law again:

(C and ((A and D) or (A and $^{\sim}$ D))) or C = C

So, the final simplified expression is:

A or C

A	C	Output
0	0	0
0	1	1
1	0	1
1	1	1

Brief description (3-5 lines)

Simplification of:

~A and (A or B) or (B or (A and A)) and (A or ~B)

The code

~A and (A or B) or (B or (A and A)) and (A or ~B)

- = (~A and A) or (~A and B) or (B or A) and (B or A) and (A or ~B)
- = contradiction or (~A and B) or (B or A) and (A or ~B)
- = $(^{A}$ and B) or (B or A) and (A or B)
- = (B and ~A) or (A and ~B) or (A or B)
- = (A or B)

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	1
1	1	1