iLab

华为 iLab ● 极致体验

业务体验技术白皮书

基于视频体验的固定承载网络要求白皮书

关键词

4K、Experience、U-vMOS、承载网、通量、KQI、KPI

文档简介

本篇白皮书重点阐述了在固定网络承载视频业务,以 U-vMOS 为体验评价指标时,不同的 U-vMOS 目标值对应的网络承载 KPI 如何规划的方法论。然后结合固网常见组网情况,给出网络 KPI 如何满足 KQI 的分析方法及典型实例。最后针对 1080P/4K 视频给出了网络承载 KPI 的一些普适性结论。

内容摘要

U-vMOS 体验与"云""管""端"三者密切相关。"云+端"决定了 sQuality 值,同时也预置了 sInteraction、sView 体验的前提条件。在"云+端"确定的情况下,可以完成对"管"的 KPI 满足度分析。

点播和直播因为 U-vMOS 算法不同,另外"云+端"组合业务 KPI 也有差异,相同的 U-vMOS 目标值情况下,对"管"的 KPI 承载要求也会有差异。

对于 U-vMOS 特定目标值,如果不考虑拥塞,接入方式是主要的决定因素,如 U-vMOS ≥ 4 时,满足度上 G.Fast/FTTH>Super Vector>VDSL2。

从 1080p/4K 典型视频体验的网络 KPI 分析中可以得到如下的普适性结论:

- » 视频源质量的高低(典型如码率)决定了网络 RTT 上限的最小值,码率越低,对应 RTT 上限值越小,如 U-vMOS≥4 时,VDSL2 接入方式下要求点播视频源至少达到 1080p_8M 水平,直播点播视频源至少达到 1080p_10M 水平;
- » 特定 U-vMOS 目标值会对应一个最有效率的平均码率范围,此时对应的通量要求最低,如 U-vMOS≥4 时,Vectoring 接入方式下点播视频 4K 码率只有在 15M~30M 之间,TCP 通量要求才是较低的,VDSL2 接入方式下直播视频 4K 码率只有在 20M~35M 之间,UDP 通量要求才是比较低的;
- » U-vMOS 体验越好,越需要低时延、大容量的网络架构。U-vMOS 目标值会影响 RTT 上限、通量曲线的整体移动方向。随着 U-vMOS 目标值的增加,RTT 上限要求 越来越小,通量要求越来越大。
- » U-vMOS 体验越好,对视频源(如码率)要求越高,最有效率的平均码率范围会随之提高。以 TcpThrpmin 最大值为例,当 U-vMOS=3.8 时,1080p_10M~4K_25M 是最有效率码率范围,当 U-vMOS=4.2 时,4K_25M~4K_50M 才是最有效率码率范围。

1 华为 U-vMOS 视频体验评价标准简介

U-vMOS(User, Unified, Ubiquitous-Mean Opinion Score for Video) 华为从视频体验和网络优化角度出发,建立的视频体验标准。华为 2012 创新实验室开展针对视频的人因工程实验,通过眼动仪、生理仪等设备追踪人体在看视频时候的反应,根据测试仪器收集和测试人员报告的信息,进行分析建立数学模型,制定 U-vMOS 的评分标准,以求客观的反应用户主观视频体验。

U-vMOS 的评价模型主要分为三个部分,即视频质量(sQuality),操作体验(sInteraction)和播放体验(sView),范围覆盖视频片源分辨率、片源数量、播放屏幕尺寸、操作体验、播放流畅度等方面,得分为 1-5 分(5: 优秀; 4: 良好; 3: 一般; 2: 较差; 1: 差)。屏幕越大、内容分辨率越高、观看流畅,得分就越高。

U - vMOS = f(sQuality, sInteraction, sView)

图1-1 U-vMOS 建模方法

1.1 视频质量 sQuality

视频的显示屏幕尺寸被记为 DisplaySize,视频内容复杂度被记为 VideoComplexity,视频分辨率被记为 Resolution,码率被记为 BitRate,编码类型被记为 CodecType,帧率被记为 VideoFrameRate。

图1-2 sQuality 的影响因子

sQuality = Q(DisplaySize, VideoComplexity, Resolution, BitRate, CodecType, VideoFrameRate)

编码类型(CodecType:H.264/H.265等)	视频编码码率(BitRate)	视频内容复杂度(VideoComplexity)		
视频分辨率(Resolution)	视频编码帧率(FrameRate)	显示尺寸(DisplaySize)		

具体的典型分值如下表所示:

表1-1 典型屏幕的不同分辨率 sQuality 的最大值

				屏幕尺寸			
分辨率	4.5寸	5.5寸	7寸	9.7寸	42寸	84寸	100寸
8K	5.0	5.0	5.0	5.0	5.0	4.9	4.9
5K	4.96	4.95	4.93	4.91	4.90	4.81	4.78
4K	4.90	4.88	4.86	4.82	4.78	4.66	4.62
2K	4.77	4.73	4.69	4.63	4.53	4.31	4.25
1080P	4.62	4.58	4.52	4.44	4.25	3.96	3.87
720P	4.32	4.26	4.17	4.05	3.69	3.29	3.18
480P	3.89	3.79	3.68	3.52	2.95	2.48	2.37
360P	3.49	3.38	3.25	3.06	2.36	1.91	1.80

1.2 操作体验 sInteraction

直播被记为 Zapping time, 初始加载时长被记为 Loading time。

图1-3 sInteraction 的影响因子

直播操作

sInteraction = f(sZapping)sZapping = f(Zapping Time)

点播操作

sInteraction = f (sLoading) sLoading = f (loading Time, DisplaySize)

具体的典型分值如下表所示:

sZapping							
分值	频道切换时长时延 (ms)						
优 (5)	<=100						
良 (4)	500						
尚可 (3)	1000						
差 (2)	2000						
劣(1)	>4000						

表1-2 sZapping 典型分值与频道切换时长

表1-3 sLoading 典型分值与初始加载时长

s Loading storage stor								
分值	sLoading Time@TV	sLoading Time@phone						
优 (5)	<=100	<=100						
良 (4)	1000	1000						
尚可 (3)	2000	3000						
差 (2)	5000	5000						
劣 (1)	8000	10000						

1.3 观看体验 sView

在视频播放的中间,视频由于数据包未能按时到达而进行缓冲,造成卡顿效果,也对视频体验影响较大。视频质量变差主要跟停顿时间的长短及多次停顿之间的间隔有关,在一个长视频观看的过程中,视频质量变差主要跟卡顿次数有关。当发生视频停顿现象时,停顿的时间越长,体验越差。当停顿结束恢复正常播放时,对于视频的质量体验就逐渐的缓慢恢复。假如后续一直能持续正常播放,实时的质量体验会恢复到正常值;但是如果在质量恢复过程中又出现一次停顿,则质量体验不仅跟本次停顿时长有关,还跟前一次停顿的时间距离有关。一个具体的实时质量分数变化如下所示:

图1-4 视频中间停顿的实时质量分数图

多次停顿的平均卡顿时长被记为 Duration,相邻两次卡顿间隔的平均值被记为 Interval,卡顿事件的次数被记为 Frequency。

图1-5 sView 的影响因子

具体的典型分值如下表所示:

表1-4 卡顿典型取值及质量(统计周期 1 分钟)

手机/PAD sStalling典型质量值举例										
score	score 卡顿次数 平均卡顿间隔(秒)平均卡顿时长(秒) 卡顿时长占比									
5	0	0	0	0%						
4	1	0	2.7	5%						
3	2	>10	3	10%						
2	>2	<5	>5	15%						
1	>3	<2	>10	30%						

表1-5 卡顿典型取值及质量(统计周期 45 分钟)

TV sStalling典型质量值举例									
score	卡顿次数	平均卡顿间隔(秒))平均卡顿时长(秒)	卡顿时长占比					
5	0	0	0	0%					
4	1	0	2.7	0. 1%					
3	3	>30s	9	1%					
2	6	>30s	22.5	5%					
1	>10	>30s	>27	10%					

表1-6 花屏典型取值及质量

sBlocking典型质量值举例										
sBlocking分数	sBlocking分数 花屏时长占比 花屏面积占比 花屏次数									
5	0%	0%	0							
4	4%	35%	1							
3	10%	45%	2							
2	15%	35%	6							
1	50%	95%	12							

2 保障 U-vMOS 体验的固定网络承载 KPI 分析

2.1 基于 U-vMOS 评估网络承载 KPI 的方法论

基本原理: 视频体验是"云","管","端"E2E 共同作用的结果,那么在 U-vMOS 目标值确定的情况下,云+端决定 sQuality;"云+端"的特征 KPI 参数集确定的情况下,结合 sInteraction 和 sView 目标值可得到满足体验的 TCP/UDP 通量要求,对比"管"的实际能力,即可判断出承载网是否 Ready。

图2-1 基于 U-vMOS 进行固网 KPI 规划的基本流程

以上原理既适用于初期的 E2E 规划, 也适用于现有视频业务的 E2E 评估, 推荐按如下步骤进行:

第一步,确定 U-vMOS 体验目标值,典型如 U-vMOS≥4.0 分,并分解到三大因子要求,即 sQuality,sInteraction,sView。

第二步,根据"云+端"相关特征参数,评估 sQuality满足度。

第三步,根据 sInteraction 和 sView 要求及"云+端"已知特征 KPI 参数集,导出满足体验要求的 TCP/UDP 通量要求;结合现网或目标网络架构,提取典型网络 KPI 参数集,得到"管"的实际通量能力,对比二者完成网络 KPI 满足度评估。

第四步,给出结论,在实际网络规划时,如果点播、直播共 CDN 和网络建设,网络 KPI 参数集可以合并,否则需要按实际情况分别规划。

2.2 确定 U-vMOS 体验目标值

参考第 1 章节内容可以看出,U-vMOS=5 分对当前视频产业来说要求过高,当前合理的典型目标值可选择 U-vMOS \geq 4.0 分。三大因子存在相互牵制关系,当进行 U-vMOS目标值分解时,一般对观看体验要求最高,选择 sView=5,对交互体验要求将之,选择 sInteraction \geq 4,sQuality 对应可选择 2K/4K 视频。其他情况下,如交互体验也选择 sInteraction=5,同样 sView=5,sQuality 也可以选择 1080p/2K/4K。

2.3 评估"云+端"满足度

以 4K 视频为例,要保证 U-vMOS≥4,"云"要求点播视频的平均码率≥20Mbps (基于 H.265 当前的编码能力,可变码率 VBR),要求直播视频的平均码率≥30Mbps (基于 H.265 当前的编码能力,固定码率 CBR)。"端"要求具备流畅播放 4K 视频的硬件能力,如支持 H.265 解码。

2.4 评估"管"整体 KPI 满足度

"管"的评估重点是 E2E,即终端<->承载网<->CDN,典型固定承载网由接入、城域、骨干组成,结合 CDN 的实际部署位置,经常会有跨城域/骨干的情况。

图2-2 典型视频固定承载网络

由"云+端"可以得出满足 sInteraction 的 TCP/UDP 通量要求范围,"管" KPI 指标可以得出实际能达到的 TCP/UDP 通量的范围,后者必须满足前者。再用 sView 导出的通量要求做二次比较,最终得到网络对特定 U-vMOS 值是否 Ready 的结论。整个过程也需要区分点播和组播场景。

2.4.1 点播

理论分析

第一步,从 sInteraction (即 sLoading) 评估网络 KPI 是否达标。

图2-3 HLS 初始缓冲时长构成

初始加载时长loading time

初始缓冲主要分为: 信令交互阶段(X1)、最小解码缓冲媒体报文下载阶段(Y),以及播放器播放加载准备阶段(Z)。要保证 sloading 满足要求,则要保证 $X1+Y+Z \le T$ (对应 sloading 目标值)。

记由"云+端"决定的 TCP 通量最小值为 TcpThrpmin,则有:

$$TcpThrp_{min} = \frac{Rate_{video} * Buffer_{time} - Ds}{T - (X + S) * RTT - T_{load}}$$

从上面公式可以看出分母必须要大于0,可以导出:

$$RTT < \frac{T - T_{load}}{X + S}$$

其中 Rate_{video} 为视频平均码率,Buffer_{time} 为最小解码缓冲媒体报文时间,Ds 为 TCP 慢启动阶段的数据量,T 为目标初始缓冲时延,X*RTT 为信令交互阶段往返时延,S*RTT 为 TCP 慢启动时延,T_{load} 为播放器加载准备时延。

记由"管"的 KPI 特征决定的 TCP 通量值为 TcpThrppipe,则有:

$$TcpThrp_{pipe} \leq min(Max(BW), \frac{WSS}{RTT}, \frac{MSS}{RTT} \times \frac{1}{\sqrt{p}})$$

其中 P 为丢包率(PLR, Packet Loss Rate), BW 为物理带宽, MSS 为最小传输单元, RTT 为终端到服务器时延。

"管"即网络能够提供的 TCP 最大通量必须不小于"云+端"决定 TCP 通量最小值,考虑到 WSS/RTT 一般不是限制因素,在此可以忽略; TCP 慢启动阶段数据量较小也可以忽略。可推出以下公式:

$$min(Max(BW), \frac{MSS}{RTT} \times \frac{1}{\sqrt{p}}) \geq \frac{Rate_{video} * Buffer_{time}}{T - (X + S) * RTT - T_{load}}$$

第二步,由从 sView 评估网络 KPI 是否达标。

如前所述,sView 一般选 5 分,基于华为 iLab 测试发现,需要单 TCP 吞吐量 \geq 平均码率的 1.5 倍,即:

$$min(Max(BW), \frac{MSS}{RTT} \times \frac{1}{\sqrt{p}}) \geq 1.5 * \textit{Rate}_{\textit{video}}$$

第三步,综合可得最终判定公式为:

公式 1: 点播场景网络 KPI 是否满足体验 KQI 要求判定公式

$$\min(\text{Max}(\text{BW}), \frac{\text{MSS}}{\text{RTT}} \times \frac{1}{\sqrt{p}}) \geq \max(\frac{Rate_{video} * Buffer_{time}}{T - (X + S) * RTT - T_{load}}, 1.5 * Rate_{video})$$

且:

$$RTT < \frac{T - T_{load}}{X + S}$$

公式右边除 RTT 外基本由"云+端"决定;公式左边为"管"的 KPI ,BW 为网络物理带宽,RTT 为时延,P 为丢包率,满足以上公式即可满足 sInteraction/sView 目标值要求,加上 sQuality 已经满足要求,即可满足 U-vMOS 目标值要求。

实例分析

考虑典型的固定承载网 KPI 特征值,如下表所示:

表2-1 典型固定承载网络 KPI 值

接入	RTT	PLR	每用户带宽
VDSL2	10~20ms	10-4~-5	50M@<1000m
Vectoring	10~20ms	10-4~-5	50~120M@<800m
Super Vector	10~20ms	10 ⁻⁴⁵	100~300M@300~500m
G.Fast	2~6ms	10-4~-5	200M~1.2G@100~500m
FTTH	2~3ms	<4*10 ⁻⁷	20M~1G(常见规划)

接入	RTT	PLR	每用户带宽
VDSL2	10~20ms	10-4~-5	50M@<1000m
Vectoring	10~20ms	10 ⁻⁴⁵	50~120M@<800m
Super Vector	10~20ms	10 ⁻⁴⁵	100~300M@300~500m
城域/骨干	RTT	PLR	带宽
SDH	50~120us/跳	0/跳(无拥塞)	无拥塞
WDM	25us/跳	0/跳(无拥塞)	无拥塞
Router	30~50us/跳(无拥塞)	0/跳(无拥塞)	无拥塞
Switch	<5us/跳	0/跳(无拥塞)	无拥塞
Fiber	~5us/km	<4*10 ⁻⁷	无拥塞

每一种典型的固定承载网络,其城域/骨干的构架总是类似的,变化最多的地方在于接入网络,每一种典型接入方式下,RTT/PLR/BW 总是在一个范围内变化,但是不管如何变化,总可以求得 TcpThrppipe 的范围,即前面公式 1 的左边部分最小值和最大值。而公式 1 中右边部分除 RTT 以外都是已知条件,也可以求得最小值和最大值。比较公式两边范围就可以得出最终结论。示例如下:

目标: U-vMOS≥4, sQuality 选择视频为 4K (20Mbps), sInteraction=4 分, 即 T 为 1000ms, sView=5 分, 即无卡顿。

"云+端"条件: 平均码率即 Rate_{video}为 20Mbps,以目前业界最主流的视频流化技术 HLS(HTTP Live Streaming)为例,最小解码缓冲媒体报文即 Buffer_{time}为 2S,考虑主流 HLS 协议,信令交互时间为 X*RTT(~9 个 RTT),TCP 慢启动为 S*RTT(~6 个 RTT),播放器准备加载时间即 T_{load}为 200ms,MSS 取 1460 字节。

"管"是 满足要求 /ideoType 网络E2E 最大值(Mbps VDSL2 11.085~21.085 82.69 0.00 50.00 不满足 63.12 53.33 82.69 Vectoring 11.085~21.085 120.00 1 Switch+2 4K(点播) Super 20 53.33 63.12 82.69 11.085~21.085 300.00 Router+200k 55.28 可能满足 H.265 Vector m fiber 57.66 1174.01 53.33 53.07 3.085~7.085 164.53 满足 G.Fast 53.07 54.15 FTTH 1000.00 53.33 可能满足

表2-2 典型 4K(20M 码流) 网络 KPI 满足度分析

"管"结论 3: Vectoring/Super Vector/FTTH 时可能满足要求,因为管道 TCP 通量范围(TcpThrp_{Pipe})与播放要求 TCP 通量(TcpThrp_{min})范围有交集,具体要视实际部署时

[&]quot;管"结论 1: VDSL2 时无法满足要求,因为管道 TCP 通量(TcpThrp_{Pipe})最大值小于播放要求 TCP 通量(TcpThrp_{min})最小值。

[&]quot;管"结论 2: G.Fast 时满足要求,因为管道 TCP 通量(TcpThrp_{Pipe})最小值大于播放 要求 TCP 通量(TcpThrp_{min})最大值;此时时延满足上限要求。

接入线路的质量、长度等因素才能确定。FTTH 按照常见规划 20~1000M 也是部分满足条件,带宽必须大于 54.15M 才能满足,现网可以通过合理网络规划解决。时延均满足上限要求。

2.4.2 直播

理论分析

第一步,从 sInteraction (即 sZapping) 评估网络 KPI 是否达标。

对主流的 UDP 直播系统来说,频道切换分为:信令交互阶段(X)、1个完整的 I 帧下载阶段(Y),以及播放器播放加载准备阶段(Z)。要保证 sZapping 满足要求,则要保证 $X+Y+Z \le T$ (对应 sZapping 目标值)。

假设:I帧大小取值为平均码率的25%

为加快直播频道切换速度,一般都会部署 FCC(Fast Channel Change)方案,为保证 FCC 方案可正常工作,还需要保证每用户带宽≥平均码率的 1.3 倍。

记由"云+端"决定的 UDP 通量最小值为 UdpThrpmin,则有:

$$UdpThrp_{min} = max(\frac{\textit{Rate}_{\textit{video}} * \textit{GopTime} * \textit{IFRatio}}{T - X * \textit{RTT}_{\textit{join}} - T_{\textit{Load}}}, 1.3 * \textit{Rate}_{\textit{video}})$$

其中 Rate_{video} 为视频平均码率,GopTime 为 Gop 报文时长,T 为频道切换目标值, $X*RTT_{join}$ 为信令交互(通常为加入组播组)阶段往返时延, T_{load} 播放器加载准备时延。

由"管"决定的 UDP 通量 UdpThrppipe 理论最大值为物理带宽 BW,即:

$UdpThrp_{pipe} \leq BW$

其中BW 为物理带宽。

"管"即网络能够提供的 UDP 最大通量必须不小于"云+端"决定 UDP 通量最小值,可以推出以下公式:

$$BW \geq max(\frac{\textit{Rate}_{\textit{video}} * \textit{GopTime} * \textit{IFRatio}}{T - X * \textit{RTT}_{\textit{join}} - T_{\textit{Load}}}, 1.3 * \textit{Rate}_{\textit{video}})$$

考虑到是直播,业务本身对时延并不敏感,但是从上面公式可以看出分母必须要大于0,RTT 一般是不小于RTT_{ioin},可以导出:

$$RTT < RTT_{join} < \frac{T - T_{Load}}{X}$$

第二步,由从 sView 评估网络 KPI 是否达标。

如前所述, sView 一般选 5 分, 也就是播放全程无花屏。参考 TR-126 的标准要求, 4K 直播无花屏要求的网络丢包率<10⁻⁶。目前业界在应用层通过 RET 丢包重传等技术降低 视频对丢包率的要求,可以降到 10⁻⁴ 左右。即:

$$PLR \le 10^{-6}$$
 (不考虑RET,考虑RET为 10^{-4})

第三步,综合可得最终判定公式为:

公式 2 直播场景网络 KPI 是否满足体验 KQI 要求判定公式

$$RTT < \frac{T - T_{load}}{X}$$

$$BW \geq max(\frac{\textit{Rate}_{\textit{video}} * \textit{GopTime} * \textit{IFRatio}}{T - X * \textit{RTT}_{\textit{join}} - T_{\textit{Load}}}, 1.3 * \textit{Rate}_{\textit{video}})$$

$$PLR \le 10^{-6} \left($$
不考虑RET , 考虑RET为 $10^{-4} \right)$

实例分析

参考 2.4.1 点播实例分析章节,典型的固定承载网络,每一种典型接入方式下,RTT/PLR/BW 总是在一个范围内变化,但是不管如何变化,总可以求得 RTT/PLR 的范围,按照公式 2 判定 RTT/PLR 是否满足要求。

"云+端"确定后,RTT 范围也已知,可以导出对直播 UDP 通量要求的范围,即最小值和最大值。对比不同接入方式下的物理带宽范围,对比即可得出带宽是否满足要求。示例如下:

目标: U-vMOS≥4, sQuality 选择视频为 4K(30Mbps), sInteraction=4 分, 即 T 为 500ms, sView=5 分, 即无花屏。

"云+端"条件: 平均码率即 Rate_{video} 为 30Mbps,典型 Gop 报文即 GopTime 为 2S,I 帧占 Gop 比例即 IFRatio 为 25%,信令交互时间为 X*RTT_{join} (~1 个 RTT_{join}, RTT_{join}≈RTT),播放器准备加载时间即 T_{load} 为 200ms。

表2-3 典型 4K (30M 码流) 网络 KPI 满足度分析

VideoType	Rate _{video} (Mbps)	HT5让 上版(ms)	UdpThrp _{min} 最小值(Mbps)			丢包上限 (有RET)	网络	E2E		BW (Mbps)	PLR	"管"是否 满足要求
	30	350.00	44.26	45.60	1.00E-06	1.00E-04	VDSL2		11.085~21.085	0~50	1.04E-5~1.00E-4	无法满足
	30	350.00	44.26	45.60	1.00E-06	1.00E-04	Vectoring		11.085~21.085	50~120	1.04E-5~1.00E-4	可能满足
4K(直播) H.265	30	350.00	44.26	45.60	1.00E-06	1.00E-04	Super Vector		11.085~21.085	100~300	1.04E-5~1.00E-4	可能满足
	30	350.00	43.24	43.74	1.00E-06	1.00E-04	G.Fast	km fiber	3.085~7.085	200~1200	1.04E-5~1.00E-4	可能满足
	30	350.00	43.24	43.36	1.00E-06	1.00E-04	FTTH		3.085~4.085	20~1000	8.00E-07	基本满足

"管"结论 1: VDSL2 时管道无法满足要求,因为管道物理带宽最大值小于播放要求 Udp 通量(UdpThrp_{min})最小值。

"管"结论 2: Vectoring/Super Vector/G.Fast 时管道可能满足要求,RTT 均满足; BW 对 Vectoring 来说需要看线路质量而定,大部分情况下可满足,对 Super Vector/G.Fast 均满足; PLR 在部署 RET 时满足,不部署 RET 时不满足。

"管"结论 3: FTTH 时管道基本满足要求,RTT/PLR 均满足,带宽常见规划 20~1000M 基本满足,现网可以通过合理网络规划解决。

3 1080p/4K 视频体验网络承载 KPI 分析的普 适性结论

3.1 视频源质量的高低(典型如码率)决定了网络 RTT 上限的最小值

视频源平均码率越低,一般 sQuality 越小,对应的 sInteraction 值就要越大,此时初始缓冲时延即 T 就越小,RTT 时延上限也要求也越小,因为实际网络 RTT 是有理论范围的,不可能无限小,因此视源码率也有最低要求。

如下图所示,U-vMOS≥4时,VDSL2要求点播视频源至少达到1080p的8M水平。

图3-1 点播视频源对网络 RTT 上限的要求分析(U-vMOS≥4)

如下图所示, U-vMOS≥4 时, VDSL2 要求直播视频源平均码率要高于 1080p 的 10M 水平。

图3-2 直播视频源对网络 RTT 上限的要求分析(U-vMOS≥4)

3.2 特定 U-vMOS 目标值会对应一个最有效率的平均码率范围

视频源平均码率与通量要求并不是总是正相关的关系,而是有一个最有效率的平均码率范围存在。

参考 2.4.1 理论分析章节点播推导的公式 1,可以看出 TcpThrpmin 与平均码率成正比,与初始缓冲时间 T成反比。所以当视频码率越低时,TcpThrpmin 越小。

同时由上面 3.1 章节分析可知,视频源平均码率越低,一般 sQuality 越小,对应的 sInteraction 值就要越大,此时初始缓冲时延即 T 就越小,造成 TcpThrpmin 会越大。两种因素是相互作用的,造成视频源平均码率与通量要求并不总是正相关的关系。

可以这样理解,点播情况下当平均码率较小时,会对加载时间提出较高要求,导致对TCP通量要求较高;当平均码率较大时,加载时间条件较宽松了,但因为码率增加了导致对TCP能量要求也较高;只有在平均码率适中时,对TCP能量要求才是较低的。很显然,当TcpThrpmin最小时,对应的平均码率才是最有效率的。

以图 3-3 为例,U-vMOS≥4 时,对于 Vectoring 接入方式下,4K 码率只有在 15M~30M 之间,TCP 通量要求才是比较低的。

图3-3 点播视频源对网络带宽的要求分析(U-vMOS≥4)

参考 2.4.2 实例分析章节直播推导的公式 2,也可以有类似的结论,如下图所示,对于 VDSL2 接入方式下,4K 码率只有在 20M~35M 之间,UDP 通量要求才是比较低的。

图3-4 直播视频源对网络带宽的要求分析(U-vMOS≥4)

3.3 U-vMOS 体验越好, 越需要低时延、大容量的网络架构

U-vMOS 目标值可以影响是 RTT、通量曲线的整体移动方向。随着 U-vMOS 目标值的增加,RTT 要求越来越小,通量要求越来越大。

图 3-5 和图 3-6,针对点播 U-vMOS 的不同值给出了 RTT 和 TCP 通量要求的分析。组播情况类似,不再赘述。

图3-5 点播 U-vMOS 的不同目标值对 RTT 上限要求分析

3.4 U-vMOS 体验越好,对视频源(如码率)要求越高

U-vMOS 目标值在影响通量曲线的同时,也将最有效率码率范围不断提高。

如图 3-7 所示,以 TcpThrpmin 最大值为例:

- 1) 当 U-vMOS=3.8 时, 1080p_10M~4K_25M 是最有效率范围;
- 2) 当 U-vMOS=4.0 时,4K_15M~4K_30M 是最有效率范围;
- 3) 当 U-vMOS=4.2 时,4K_25M~4K_50M 是最有效率范围;

TcpThrpmin 最小值可以得到类似结论。

组播情况类似,不再赘述。

图3-7 点播 U-vMOS 的不同目标值对最有效率码率范围影响分析

A 附录 A: 参考文档

- 1. 《华为 U-VMOS 视频体验标准白皮书 V1.0》
- 2. iLab《OTT 视频初始加载技术白皮书》
- 3. iLab《TCP 吞吐量与网络性能白皮书》
- 4. iLab《OTT 流畅播放的带宽要求白皮书》