数据结构与算法设计-分治

教材:

- [1][殷] 数据结构(C语言版第2版),殷人昆编,清华大学出版社.
- [2][王] 王晓东,计算机算法设计与分析(第5版),电子工业.
- [3][S] 唐常杰等译, Sipser著, 计算理论导引, 机械工业.

参考资料:

- [4][C]潘金贵等译, Cormen等著, 算法导论, 机械工业.
- [5][M] 黄林鹏等译, Manber著, 算法引论-一种创造性方法, 电子.
- [6][L] Lewis等著, 计算理论基础, 清华大学.

分治算法

主要内容:

- 1. 分治原理, 主定理, 二分法
- 2. 线性时间选择
- 3. 最大子段和
- 4. 最接近点对问题

快速排序

❖基本思想:

- 通过一趟排序将待排序记录分割成两个部分
- 一部分记录的关键字比另一部分的小。
- 选择一个关键字作为分割标准,称为pivot

❖基本操作:

- 选定一记录R(pivot),将所有其他记录关键字k' 与该记录关键字k比较
 - 若 k'<k则将记录换至R之前;
 - 若k'>k 则将记录换至R之后;
- 继续对R前后两部分记录进行快速排序,直至排序范围为1;

快速排序

时间复杂度分析

最坏情况分析:每次分成大小为1和n-1的两段

$$T(n) = \begin{cases} O(1) & n \le 1 \\ T(n-1) + O(n) & n > 1 \end{cases}$$

$$\mathbf{T}(\mathbf{n}) = \mathbf{O}(\mathbf{n}^2)$$

最好情况分析:每次分成大小为n/2的两段

$$T(n) = \begin{cases} O(1) & n \le 2 \\ 2T(n/2) + O(n) & n > 2 \end{cases}$$

$$T(n) = O(n \log n)$$

快速排序

- ❖快速排序的基本思想是基于分治策略的。对于输入 的子序列L[p..r],分三步处理:
- **※1、分解(Divide):** 将待排序列L[p..r]划分为两个非空子序列L[p..q]和L[q+1..r],使前面任一元素的值不大于后面元素的值。
- ❖途径实现:在序列L[p..r]中选择数据元素L[q],经比较和移动后,L[q]将处于L[p..r]中间的适当位置,使得数据元素L[q]的值小于L[q+1..r]中任一元素的值。

快速排序

- *2、递归求解(Conquer):通过递归调用快速排序算法,分别对L[p..q]和L[q+1..r]进行排序。
- *3、合并(Merge):由于对分解出的两个子序列的排序是就地进行的,所以在L[p..q]和L[q+1..r]都排好序后不需要执行任何计算L[p..r]就已排好序,即自然合并。
- ❖这个解决流程是符合分治法的基本步骤的。因此, 快速排序法是分治法的经典应用实例之一。

- ❖ 归并:
 - 将两个或两个以上有序表组合成一个新的有序表。
- ❖ 2-路归并排序:
 - 设初始序列含有n个记录,则可看成n个有序的子序列,每个子序列长度为1。
 - 两两合并,得到 $\left[\frac{n}{2}\right]$ 个长度为 2 或1的有序子序列。
 - 再两两合并,如此重复,直至得到一个长度 为 n 的有序序列为止。

例

```
初始关键字:
                     [<u>49</u>]
                             [<u>38</u>]
                                    [<u>65</u>] [<u>97</u>] [<u>76</u>] [<u>13</u>]
一趟归并后:
                     [38]
                                    [<u>65</u>
                              49]
                                            97]
                                                           76]
                                                   [13]
                                                                  [<u>27</u>]
二趟归并后:
                     [38]
                              49
                                    65
                                             97]
                                                                   76]
                                                   [13]
                                                            27
三趟归并后:
                     [13
                              27
                                    38
                                             49
                                                    65
                                                            76
                                                                  <u>97]</u>
```

A: 1 3 8 9 11

B: 2 5 7 10 13

C: 1 2 3 5 7 8 9 10 11 13

```
void Merge(TA[], int Alen, TB[], int Blen, TC[]){
   int i=0, j=0, k=0;
   while (i < Alen &  j < Blen)
        if(A[i] < B[j])
               C[k++] = A[i++];
           else
               C[k++] = B[j++];
   while(i < Alen)
            C[k++] = A[i++];
   while(j < Blen)
            C[k++] = B[j++];
```

- ❖时间复杂度:
 - 共进行 $\lceil \log_2 n \rceil$ 趟归并,每趟对n个记录进行归并
 - 所以时间复杂度是O(nlogn)
- *空间复杂度:
 - -O(n)
- ❖稳定性:
 - 稳定

分治基本过程

分:将问题分解成若干个子问题

治: 递归求解子问题

合:由子问题解合并得到原问题解

```
divide-and-conquer(P)
                                //解决小规模的问题
\{ if (|P| \le n0) adhoc(P); \}
  else
                                  //分解问题
     divide P into P_1, P_2, ..., P_n;
     for (i=1,i<=a,i++)
       y<sub>i</sub>=divide-and-conquer(P<sub>i</sub>); //递归的解各子问题
                                 //合并出原问题的解
     return merge(y_1,...,y_a);
```

分治过程图示

分治的原则

- 子问题相互独立(为什么), 无重复 若有大量重复子问题, 改用动态规划
- 子问题规模(n/b)大致相等(平衡思想)
- 子问题和原问题类似,可递归求解
- 子问题解合并能得到原问题解

设分解出的子问题有a个,时间复杂度T(n),分解+

合并时间f(n):

$$T(n) = \begin{cases} O(1) & n \le n_0 \\ aT(n/b) + f(n) & n > n_0 \end{cases}$$

分治中经常出现的递推关系

设a≥1, b≥2, 分治中经常出现

$$T(n) = \begin{cases} O(1) & n \le n_0 \\ aT(n/b) + f(n) & n > n_0 \end{cases}$$

教材中的公式 (Page 17)

$$T(n) = n^{\log_b a} + \sum_{j=0}^{\log_b n/n_0} a^j f(n/b^j)$$

这个公式有时使用不是很方便,介绍分治主定理

分治主定理([M]Page37)

设a≥1, b≥2

$$T(n) = \begin{cases} O(1) & n \le n_0 \\ aT(n/b) + cn^k & n > n_0 \end{cases}$$

则

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & a > b^k \text{ or } k < \log_b a \\ \Theta(n^{\log_b a} \log n) & a = b^k \text{ or } k = \log_b a \\ \Theta(n^k) & a < b^k \text{ or } k > \log_b a \end{cases}$$

注:[M]中为大O记号, 无详细证明. 证明见附录.

分治主定理([C]第4章)

设a≥1, b≥2

$$T(n) = \begin{cases} O(1) & n \le n_0 \\ aT(n/b) + f(n) & n > n_0 \end{cases}$$

则

注:[C]中有详细证明.

推广

$$T(n) = \begin{cases} b & n = 1 \\ T(\lfloor c_1 n \rfloor) + T(\lfloor c_2 n \rfloor) + bn & n > 1 \end{cases}$$

$$T(n) = \begin{cases} \Theta(nlogn) & c_1 + c_2 = 1 \\ \Theta(n) & c_1 + c_2 < 1 \end{cases}$$

特别地,当
$$c_1+c_2<1$$
时,有
$$T(n) \leq bn/(1-c_1-c_2) = O(n)$$

二分法

输入: 实数序列 a_1,\ldots,a_n , 性质P(关于序列单调)

输出: 满足性质P的临界点位置

例1: 输入序列 $(a_1 < ... < a_n)$ 和m, 判断m是否在序列中

枚举: 时间复杂度为O(n)

二分法:运算1次,解范围缩小一半

$$T(n) = T(n/2) + 1$$

$$T(n) = \Theta(\log n)$$

条件: 性质P满足单调性

分治法求n元集最大最小元素

```
•假设n=2m。要求每次平分成2个子集。
void maxmin(int A[], int &e_max, int &e_min, int low, int high)
2. {
                               9. else {
3.
       int mid, x1, y1, x2, y2;
                               10.
                                       e_{max} = A[low];
       if ((high-low <= 1)) {
4.
                               11.
                                       e_min = A[high];
5.
          if (A[high]>A[low]) {
                               12. }
6.
            e_{max} = A[high];
                               13.}
            e_min = A[low];
7.
8.
```

分治法求n元集最大最小元素

```
14.
         else {
15.
             mid = (low + high) / 2;
             maxmin(A,x1,y1,low,mid);
16.
             maxmin(A,x2,y2,mid+1,high);
17.
             e_{max} = max(x1,x2);
18.
             e_{min} = min(y1,y2);
19.
20.
21.}
                                     n=2
        T(n) = \begin{cases} 1 & n=2 \\ 2T(n/2) + 2 & n>2 \end{cases}
```

迭代法

$$T(n)=2T(n/2)+2$$

$$=2[2T(n/2^{2})+2]+2$$

$$=2^{2}T(n/2^{2})+2(1+2)$$

$$=2^{3}T(n/2^{3})+2(1+2+2^{2})=\dots$$

$$=2^{m-1}T(2)+2(1+2+\dots+2^{m-2})$$

$$=2^{m-1}+2[1(1-2^{m-1})/(1-2)]$$

$$=2^{m-1}+2^{m}-2$$

$$=3n/2-2$$

课堂练习

$$T(n)=3T(n/2)$$
 $T(1)=1$ $n=2^{m}$

$$T(n)=3^{\log_2 n}$$

答案

$$T(n)=3T(n/2) T(1)=1$$

$$n=2^{k} = 3T(2^{k-1})$$

$$= 3^{2}T(2^{k-2})$$

$$= ...$$

$$= 3^{k}T(2^{k-k})$$

$$= 3^{k}T(1)$$

$$= 3^{k}$$

$$k=log_{2}n$$

课堂练习

用分治法求n个元素集合S中的最大、最小元素。写出算法,并分析时间复杂性(比较次数)。

假设n=3m。要求每次平分成3个子集。

$$T(n) =$$
 $\begin{cases} 3 & n=3 \\ 3T(n/3) + 4 & n>3 \end{cases}$ $T(n) = 5n/3 - 2$ 平分成2个子集 $T(n) = 3n/2 - 2$

求n元集最大最小元素

思考题

不用(递归的)分治法求n个元素集合S中的最大、最小元素,使得

T(n)仍为 3n/2-2。

这里假设n=2^m。

求最小元素

```
算法
int FindMin( Array[], int Len)
{
   int MinIndex = 1;
   for(int i = 2; i <= Len; i++) {
      if(Array[MinIndex] > Array[i]) MaxIndex = i;
   }
   return MinIndex;
}
```

2023/11/28 29 of 158

求最小元素

●東小问题

问题下界:假设集合中元素是互不相同的。则n-1个元素不是最小元素。

对某一个元素,只有它在某一次比较中失败了,才能确定它不是最小元素。因此,有**n-1**个元素在某次失败

每一次比较只能确定一个失败者,确定N-1个在某次比较中的失败者需要N-1次比较

确定最小元素至少需要n-1次比较,n-1次比较是最小问题的下界

●前面算法的比较次数是N-1次,达到问题的下界,因此它是最优算法

2023/11/28

求第2小的元素

●一般情况下2n-3次比较

●第2小元素一定存在于同最小元素

比较过的元素之中

2023/11/28

31 of 158

引例

•在中国的古代,25匹马通过赛跑来决出前3名,每5匹马一组,问最少需要几组?

由快到慢

E B 到

线性时间选择算法

线性时间选择算法Select:

- 1. 将n个数划分成[n/5]组,取出每组中位数(共[n/5]个),
- 2. 使用Select找这[n/5]个数的中位数
- 3. 以这个数为基准划分
- 4. 选一个部分继续执行Select

else if $(|S_1| + |S_2| \ge k)$ return(x);

else return(Select(k- $|S_1|$ - $|S_2|$, S_3))

线性时间选择

按递增顺序,找出下面29个元素的第18小元素:

8,31,60,33,17,4,51,57,49,35,11,43,37,3,13, 52,6,19,25,32,54,16,5,41,7,23, 22,46,29。

线性时间选择的一种实现方式

```
29个元素第18小: 8,31,60,33,17,4,51,57,49,35,11,43,
37,3,13,52,6,19,25,32,54,16,5,41,7,23, 22,46,29.
前面25个元素划分为5组: (8,31,60,33,17),
(4,51,57,49,35), (11,43,37,3,13), (52,6,19,25,32),
(54,16,5,41,7), 其余4个元素暂不处理;
提取每一组的中值构成集合: (31,49,13,25,16)
 递归求得x=25:
\{8, 17, 4, 11, 3, 13, 6, 19, 16, 5, 7, 23, 22\}, 13
 \{25\}, 1
{31, 60, 33, 51, 57, 49, 35, 43, 37, 52, 32, 54, 41, 46,
29}:
```

线性时间选择程序

```
1 template < class Type>
2 Type Select(Type a[], int p, int r, int k)
    if(r-p<75){直接对数组a[p:r]排序; return a[p+k-1];}
    for(int i = 0; i <= (r - p - 4) / 5; i++) //分 n/5 组, 取各组中位数
4
       将a[p+5*i]至a[p+5*i+4]的第3小元素与a[p+i]交换位置;
5
    Type x = Select(a,p,p+(r-p-4)/5,(r-p-4)/10); //取中位数的中位数, T(n/5)
6
    int i = Partition(a,p,r,x), j = i - p + 1;
8
    if (k == j) return a[i];
                                          //选择左片递归, 最多T(3n/4)
9
    elseif (k < j) return Select(a,p,i-1,k);
                                          //选择右片递归, 最多T(3n/4)
10
    else return Select(a,i+1,r,k-j);
11 }
```

$$T(n) = \begin{cases} O(1) & n < 75 \\ T(n/5) + T(3n/4) + O(n) & n \ge 75 \end{cases} = O(n)$$

29个元素第18小: 8,31,60,33,17,4,51,57,49,35,11,43,37,3,13,52,6,19,25,32,54,16,5,41,7,23,22,46,29。

31

```
for(int i = 0; i <= (r - p - 4) / 5; i++) //分 n/5 组, 取各组中位数
{ 将a[p+5*i]至a[p+5*i+4]的各组分别排序;
将a[p+5*i]至a[p+5*i+4]的第3小元素与a[p+i]交换位置;}
```

31

8

					31 -
31	17	17	17 51	17 35	49 35
60	31	8	8 57	8 49	8 17
33	33	33	33 49	33 51	33 51
17	60	60	60 35	60 57	60 57

31 4

29个元素第18小:

```
for(int i = 0; i <= (r - p - 4) / 5; i++) //分 n/5 组, 取各组中位数
{ 将a[p+5*i]至a[p+5*i+4]的各组分别排序;
将a[p+5*i]至a[p+5*i+4]的第3小元素与a[p+i]交换位置;}
```

```
    31
    4
    3
    6
    5

    49
    35
    11
    19
    7

    13
    17
    8
    33
    60

    25
    51
    37
    32
    41

    16
    57
    43
    52
    54
```

```
29个元素第18小: 8,31,...,,41,7,23,22,46,29。
x=Select(a,p,p+(r-p-4)/5, (r-p-4)/10);//取中位数的中位数
              31 4 3 6 5
              49 35 11 19 7
              13 17 8 33 60
              25 51 37 32 41
 x = 25
              16 57 43 52 54
```

a[29]={31,49,13,25,16,4,35,17,51,57,3,11,8,37, 43,6,19,33,32,52,5,7,60,41,54,23,22,46,29}

```
int i = Partition(a,p,r,x), j = i - p + 1;
                                       x = 25
a[29] = {31,49,13,25,16,4,35,17,51,57,3,11,8,37,}
43,6,19,33,32,52,5,7,60,41,54,23,22,46,29}
a[29] = \{22,23,13,7,16,4,5,17,19,6,3,11,8,
       25a[13],43,37,57,33,32,52,51,35,
       60,41,54,49,31,46,29}
                                    i = 13
```

29个元素第18小: $a[29] = \{22,23,13,7,16,4,5,17,19,6,3,11,8,$ 25a[13],43,37,57,33,32,52,51,35,60,41,54,49,3 1,46,29 x = 25 i = 13j = i - p + 1;if (k == j) return a[i]; else if (k < j) return Select(a,p,i-1,k); else return Select(a,i+1,r,k-j); {43,37,57,33,32,52,51,35,60,41,54,49,31,46,29}

线性时间选择程序

$$T(n) = 3T(n/4) + cn^2$$

$$T(n) = 3[3T(n/4/4) + c(n/4)^2] + cn^2$$

$$T(n) = 3^2T(n/4^2) + 3c(n/4)^2 + cn^2$$

$$T(n) = 3^3T(n/4^3) + 3^2c(n/16)^2 + 3c(n/4)^2 + cn^2$$

2023/11/28

Total: (24.9")

$$T(n) = T(n/3) + T(2n/3) + cn$$

$$T(n) = [T(n/3/3) + T(2n/3/3) + c(n/3)] + [T(2n/3/3) + T(4n/3/3) + c(2n/3)] + cn$$

$$T(n) = [T(n/9) + T(2n/9) + T(2n/9) + T(4n/9)] + [c(n/3) + c(2n/3)] + cn$$

$$c(\frac{n}{3}) + c(\frac{2n}{3}) + cn$$

$$c(\frac{2n}{3}) + cn$$

2023/11/28 Total: $O(n \lg n)$ 44 of 158

引例

Day	0	1	2	3	4
Price	10	11	7	10	6
Change		1	-4	3	-4

Day																	
Price	100	113	110	85	105	102	86	63	81	101	94	106	101	79	94	90	97
Change																	

maximum subarray

最大子段和

•给定整数序列 $a_1,a_2,...,a_n$,求形如 $\sum_{k=1}^{k}a_k$ 的子段和的最大值。规定子段和为负整数时,定义其最大子段和为0,即

$$\max\left\{0, \quad \max_{1 \le i \le j \le n} \sum_{k=i}^{j} a_k\right\}$$

●例如, (a₁,a₂,a₃,a₄,a₅,a₆)=(-2,11,-4,13,-5,-2) 最大子段和为

$$\sum_{k=2}^{4} a_k = 20$$

- 1可以把所有的子段和计算出来,找到最小的
- 2 找到所有子段算法: 每个子段有一个起点i和一个终点j 把起点位置i从左到右进行扫描 确定起点后,把终点位置j,左到右 进行扫描,确定起点终点后,把这个子 段中所元素相加 (i,i+1,...,i),

```
int MaxSubSum1(int n, int a[], int &besti, int &bestj)
{//数组a[]存储ai,返回最大子段和,保存起止位置到
Besti, Bbestj中
   int sum=0:
   for(int i=1; i<=n; i++)
     for(int j=i; j<=n; j++) {
        int thissum=0;
        for(int k=i; k<=j; k++)
           thissum += a[k];
        if(thissum>sum) {
          sum=thissum:
          besti=i; bestj=j;
                    算法: T(n)=O(n<sup>3</sup>);
   return sum:
```

```
int MaxSubSum2(int n, int a[], int &besti, int &bestj)
{//数组a[]存储ai,返回最大子段和,保存起止位置到
Besti, Bbestj中
   int sum=0:
   for(int i=1; i<=n; i++){
         int thissum=0:
     for(int j=i; j<=n; j++) {
               thissum += a[j];
        if(thissum>sum) {
          sum=thissum;
                             改进算法: T(n)=O(n²);
          besti=i; bestj=j;
   return sum;
```

最大子段和: 分治算法

●基本思想

将A[1..n]分为a[1..n/2]和a[n/2+1..n],分别对两区段求最大子段和,这时有三种情形:

Case 1: a[1..n]的最大子段和的子段落在a[1..n/2];

Case 2: a[1..n]的最大子段和的子段落在a[n/2..n];

Case 3: a[1..n]的最大子段和的子段跨在a[1..n/2]和a[n/2..n]之间;

●对Case 1和Case 2可递归求解;

对Case 3,可知a[n/2]和a[n/2+1]一定在最大和的子段中,因此

在a[1..n/2]中计算:
$$S_1 = \max_{1 \le i \le n/2} \sum_{k=i}^{n/2} a_k$$

在a[n/2..n]中计算:
$$S_2 = \max_{n/2+1 \le i \le n} \sum_{k=n/2+1}^i a_k$$

易知: S₁+S₂是Case 3的最大值

```
int MaxSubSum3(int a[], int left, int right)
{ //返回最大子段和
    int sum=0:
    if(left==right)
      sum=a[left]>0?a[left]:0;
    else {
       int center=(left+right)/2;
      int leftsum=
               MaxSubSum3(a, left, center);
       int rightsum=
               MaxSubSum3(a, center+1, right);
       int s1=0; int leftmidsum=0;
       for(int i=center; i>=left; i--) {
           leftmidsum += a[i];
           if(leftmidsum>s1) s1=leftmidsum;
```

```
int s2=0; int rightmidsum=0;
      for(int i=center+1; i<=right; i++) {</pre>
           rightminsum += a[i];
           if(rightmidsum>s2)
                 s2=rightmidsum;
       int sum=s1+s2;
       if(sum < leftsum) sum = leftsum;
       if(sum < rightsum) sum = rightsum;
   }//end if
                               T(n) = \begin{cases} O(1) & n=1\\ 2T(n/2) + O(n) & n>1 \end{cases}
   return sum;
}//end
                                  \Rightarrow T(n) = O(n \log n)
```

2023/11/28 54 of 158

最接近点对问题

- 输入: 平面上点集 $P = \{p_1, p_2, ..., p_n\}$
- 输出: (s, t) 使得

$$d(p_s, p_t) = \min \{ d(u,v) \mid u \neq v \in \mathbf{P} \}$$

其中设
$$u = (x_1, y_1), v = (x_2, y_2),$$

$$d(u,v) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

算法设计分析过程:

直接法--一维--排序--分治--二维--改进--改进

最近点对-逐对求距离

- 输入: 平面上点集 $P = \{p_1, p_2, ..., p_n\}$
- 输出: (s,t) 使得 $d(p_s,p_t)$ 是最小点间距
- O(1) 1. 初始化: $min = d(p_1,p_2)$; s=1; t=2;

6. 输出(s,t)

总时间 $O(C(n,2)) = O(n^2)$

最近点对--一维方法一

排序再逐个计算距离:

O(n logn) 1. 排序:
$$p_{i_1} \le p_{i_2} \le ... \le p_{i_n}$$
.

2. 初始化:
$$min = d(p_{i_1}, p_{i_2})$$
; $s = i_1$; $t = i_2$;

4. 若 min > d(
$$p_{i_k}, p_{i_{k+1}}$$
)

- 总时间 O(nlogn)
- 不能推广到二维

最近点对--一维分治

问题1: 设点集合为S, 如何分成两个部分 S_L 和 S_R ?

- 取中点 m = (min S + max S)/2 划分,可能不平衡
- 取中位数划分(解决了平衡问题)

问题2: 如何合并?

- 最小距离 = $\min \{ d_L, d_R, \min S_R \max S_L \}$
 - O(n) 1. 分: 取S中位数, 划分为 $S_L < S_R$.
 - 2T(n/2) 2. 治: 递归求 $S_L(S_R)$ 的最近点对距离 $d_L(d_R)$
 - O(n) 3. 合: 取SL最大点p, SR最小点q
 - **O(1)** 4. $\delta = \min \{ d_L, d_R, q-p \}$

$$T(n) = \begin{cases} O(1) & n \le 3 \\ 2T(n/2) + O(n) & n > 3 \end{cases} = O(n \log n)$$

最近点对—二维分治尝试

设点集合为S,

- 1. 分: 取S横坐标中位数mid, 划分为 $S_L <_x S_R$.
- 2. 治: 递归求 $S_L(S_R)$ 的最近点对距离 $d_L(d_R)$
- 3. 合: $d = min \{ d_L, d_R \}$
- 5. 逐对求Q中最近点对的距离d.

分O(n), 治2T(n/2), 合O(n²)

根据分治主定理 $T(n) = O(n^2)$

$$T(n) = \begin{cases} O(1) & n \leq 3 \text{ s}_{L} \\ 2T(n/2) + O(n^2) & n > 3 \end{cases} \cdot \begin{array}{c} \cdot \\ \cdot \\ \cdot \\ \cdot \end{array}$$

鸽巢(抽屉)原理的简单应用

任取一个 $d \times d$ 正方形内的点集A,若A中任意两点距离都 $\geq d$,则A中点数 ≤ 4 .

任取一个 $d \times 2d$ 矩形内点集A,若A中任意两点距离都 $\geq d$,则A中点数 ≤ 6 .

$$\sqrt{\left(\frac{d}{2}\right)^2 + \left(\frac{2d}{3}\right)^2} = \frac{5d}{6}$$

方案一: Q左右分开

Q右侧中与p距离 < d 的点数 ≤ 6

方案二: 检查p下方的点

● 定义窗口

 $R(p,d) = \{(x,y) : |x-mid| < min\{d_L,d_R\}, 0 \le y(p) - y \le d\}$

● Q中p下方与p距离 \leq d 的点一定在R(p,d)中

而且点数≤7=4+3

最近点对--合并时间改进一

- 1. 分: 取S横坐标中位数mid, 划分为 $S_L \leq_x S_R$.
- 2. 治: 递归求 $S_L(S_R)$ 的最近点对距离 $d_L(d_R)$
- 3. $d = min \{ d_L, d_R \}$
- 4. Q = { p∈S | |x(p) mid| < d } 按纵坐标升序
- 5. 对 i = 1 到 |Q|-1,
- 6. j=i+1,
- 7. while(y(j)-y(i) < d)
- 8. {若d(pi,pj)<d, 更新d; j=j+1}

步4: O(nlogn), 步78循环至多7次, 步5-8循环至多n次

 $T(n) = O(n \log^2 n)$, 进一步改进?

$$T(n) = \begin{cases} O(1) & n \leq 3\\ 2T(n/2) + O(n\log n) & n > 3 \end{cases}$$

称5--8过程为: 对Q中每个点p, 检查窗口R(p,d), 更新最短距离d

最近点对--合并时间改进二

排序放到分治前:

设有平面点集S, 按y坐标升序(预处理)

- 1. 分: 取S横坐标中位数mid, 划分为 $S_L <_x S_R$.
- 2. 治: 递归求 $S_L(S_R)$ 的最近点对距离 $d_L(d_R)$
- 3. 合: $d = min \{ d_L, d_R \}$
- 4. 从 S_L , S_R 中归并取 $Q = \{ p \in S \mid |x(p) mid| < d \}$
- 5. 对Q中每个点p,检查窗口R(p,d),更新最短距离d

$$T(n) = \begin{cases} O(1) & n \le 3 \\ 2T(n/2) + O(n) & n > 3 \end{cases}$$
 O(nlogn)

算法图示--初始

设有平面点集S 按y坐标递减(预处理) 1. 分: 取S横坐标中位数mid, 划分 SL,SR. 2. 治: 递归求 $S_{L}(S_{R})$ 最近点对距离 $d_{L}(d_{R})$ 3. 合: $d = min \{ d_L, d_R \}$ 由SL、SR按纵坐标大小归并得Q 4. 对Q中每个点p, **5.** 检查窗口R(p,d) **6.** 更新最短距离 7.

算法图示--预处理

设有平面点集S

按y坐标递减(预处理)

- 1. 分: 取S横坐标中位数mid, 划分 S_L , S_R .
- 2. 治: 递归求 $S_L(S_R)$ 最近点对距离 $d_L(d_R)$
- 3. 合: $d = min \{ d_L, d_R \}$
- 4. 由 S_L , S_R 按纵坐标大小归并得 Q
- 5. 对Q中每个点p,
- 6. 检查窗口R(p,d)
- 7. 更新最短距离

算法图示--分

算法图示--治

设有平面点集S

按y坐标递减(预处理)

- 1. 分: 取S横坐标中位数mid, 划分 S_L , S_R .
- 2. 治: 递归求 $S_L(S_R)$ 最近点对距离 $d_L(d_R)$
- 3. 合: $d = min \{ d_L, d_R \}$
- 4. 由 S_L , S_R 按纵坐标大小归并得 Q
- 5. 对Q中每个点p,
- 6. 检查窗口R(p,d)
- 7. 更新最短距离

算法图示--合3

设有平面点集S

按y坐标递减(预处理)

1. 分: 取S横坐标中位数mid, 划分 S_L , S_R .

2. 治: 递归求 $S_L(S_R)$ 最近点对距离 $d_L(d_R)$

3. 合: $d = min \{ d_L, d_R \}$

4. 由 S_L , S_R 按纵坐标大小归并得 Q

5. 对Q中每个点p,

6. 检查窗口R(p,d)

7. 更新最短距离

算法图示--合4

设有平面点集S

按y坐标递减(预处理)

- 1. 分: 取S横坐标中位数mid, 划分 S_L , S_R .
- 2. 治: 递归求 $S_L(S_R)$ 最近点对距离 $d_L(d_R)$
- 3. 合: $d = min \{ d_L, d_R \}$
- 4. 由 S_L , S_R 按纵坐标大小归并得 Q
- 5. 对Q中每个点p,
- 6. 检查窗口R(p,d)
- 7. 更新最短距离

算法图示--合67:p3

设有平面点集S

按y坐标递减(预处理)

1. 分: 取S横坐标中位数mid, 划分 S_L , S_R .

2. 治: 递归求 $S_L(S_R)$ 最近点对距离 $d_L(d_R)$

- 3. 合: $d = min \{ d_L, d_R \}$
- 4. 由 S_L , S_R 按纵坐标大小归并得 Q
- 5. 对Q中每个点p,
- 6. 检查窗口R(p,d)
- 7. 更新最短距离

算法图示--合67:p4

设有平面点集S

按y坐标递减(预处理)

- 1. 分: 取S横坐标中位数mid, 划分 S_L , S_R .
- 2. 治: 递归求 $S_L(S_R)$ 最近点对距离 $d_L(d_R)$
- 3. 合: $d = min \{ d_L, d_R \}$
- 4. 由 S_L , S_R 按纵坐标大小归并得 Q
- 5. 对Q中每个点p,
- 6. 检查窗口R(p,d)
- 7. 更新最短距离

算法图示--合67:p₆

设有平面点集S

- 1. 分: 取S横坐标中位数mid, 划分 S_L , S_R .
- 2. 治: 递归求 $S_L(S_R)$ 最近点对距离 $d_L(d_R)$
- 3. 合: $d = min \{ d_L, d_R \}$
- 4. 由 S_L , S_R 按纵坐标大小归并得 Q
- 5. 对Q中每个点p,
- 6. 检查窗口R(p,d)
- 7. 更新最短距离

算法图示--合6:p₁₁

设有平面点集S

- 1. 分: 取S横坐标中位数mid, 划分 S_L , S_R .
- 2. 治: 递归求 $S_L(S_R)$ 最近点对距离 $d_L(d_R)$
- 3. 合: $d = min \{ d_L, d_R \}$
- 4. 由 S_L , S_R 按纵坐标大小归并得 Q
- 5. 对Q中每个点p,
- 6. 检查窗口R(p,d)
- 7. 更新最短距离

算法图示--合7:p₁₁

设有平面点集S

- 1. 分: 取S横坐标中位数mid, 划分 S_L , S_R .
- 2. 治: 递归求 $S_L(S_R)$ 最近点对距离 $d_L(d_R)$
- 3. 合: $d = min \{ d_L, d_R \}$
- 4. 由 S_L , S_R 按纵坐标大小归并得 Q
- 5. 对Q中每个点p,
- 6. 检查窗口R(p,d)
- 7. 更新最短距离

算法图示--合67:p₁₂

设有平面点集S

- 1. 分: 取S横坐标中位数mid, 划分 S_L , S_R .
- 2. 治: 递归求 $S_L(S_R)$ 最近点对距离 $d_L(d_R)$
- 3. 合: $d = min \{ d_L, d_R \}$
- 4. 由 S_L , S_R 按纵坐标大小归并得 Q
- 5. 对Q中每个点p,
- 6. 检查窗口R(p,d)
- 7. 更新最短距离

最近点对程序-定义

```
class PointX
   public:
    int operator<=(PointX a) const
    {return(x<=a.x);}
   private:
    int ID; //点编号
    float x,y;//点坐标
};
class PointY
  public:
    int operator<=(PointX a) const
    {return(y<=a.y);}
   private:
    int p; //同一点在数组X中的编号
    float x,y;//点坐标
};
```

最近点对程序-预排序

```
bool Cpair2(PointX X[], int n, PointX& a, PointX& b, float& d)
  if(n<2)return false;
                             // X按横坐标排序
  MergeSort(X,n);
  PointY *Y = new PointY [n];
  for(int i = 0; i < n; i++) //将数组X中的点复制到数组Y中
    { Y[i].p = i; }
      Y[i].x = X[i].x;
      Y[i].y = Y[i].y;
                            //Y按纵坐标排序
  MergeSort(Y,n);
  PointY *Z = new PointY [n];
  closest(X,Y,Z,0,n-1,a,b,d); //求最近点对
  delete [] Y;
  delete [] Z;
  return true;
```

最近点对程序-输入

```
int main()
  int n;
  scanf("%d",&n);
  PointX *X = new PointX [n];
  float xx,yy;
  for(int i = 0; i < n; i++) //输入数组X
       scanf("%f %f",&xx,&yy);
       X[i].ID = i; X[i].x = xx; X[i].y = yy;
  PointX& a; PointX& b; float& d;
  Cpair2(X, n, a, b, d);
  printf("%d, %d, %.2f\n",a,b,d); //输出a,b,d.
```

最近点对程序

```
void closest(PointX X[], PointY Y[], PointY Z[], int l,
             int r, PointX& a, PointX& b, float& d)
{ if(r-l<= 2) {直接计算; return;} //2点和3点的情形
  int m = (l + r)/2; int f = l, g = m + 1; //多于3点的情形,用分治法
  for(int i = l; i <= r; i++) if(Y[i].p > m) Z[g++] = Y[i]; else Z[f++] = Y[i]; //\%
                                                     //治: 左边
  closest(X,Z,Y,l,m,a,b,d);
  float dr; PointX ar, br; closest(X,Z,Y,m+1,r,ar,br,dr); //治: 右边
                                                     //合: d
  if (dr < d)  { a = ar; b = br; d = dr; }
                    //Z的两个有序段合并到数组Y
  Merge(Z,Y,l,m,r);
  int k = l; for(int i = l; i <= r; i++) //合: 从Y中取d矩形条内的点置于Z中
            if (fabs(X[m].x - Y[i].x) < d) Z[k++] = Y[i];
  for(int i = 1; i < k; i++) //合: 对d矩形条中的每点(Z[l:k-1])
  { for(int j = i+1; j < k && Z[j].y - Z[i].y < d; j++) //合: 检查R(p,d)中的点
    { float dp = distance( Z[i], Z[j]);
      if(dp < d){ d = dp; a = X[Z[i].p]; b = X[Z[j].p]; } //合: 更新最小距离
```

分治附录

附录:中位数原理

某公司有五个分公司依次设置在同一条铁路线的沿线A、B、C、D、E站。现在该公司希望在该铁路沿线设立一个仓库,要求该仓库离这五个站的火车行驶距离之和最小。如用数轴表示该铁路线,A、B、C、D、E各站的坐标依次为a、b、c、d、e(a<b<c<d>(a<b<c>d<e),则经过数学计算,该仓库大致应设置在坐标(1)处。

(1) A. c B. (a+b+c+d+e)/5 C. (a+2b+3c+2d+e)/9 D. (a+4b+6c+4d+e)/16

附录:中位数原理

• 中位数原理

X轴上有n个点,由左至右依次排列为

找一个点 x_p (不一定是n个点之一),使 x_p 到各点距离和最小,解为:

$$x_p = \begin{cases} x_{(n+1)/2} & \exists n \text{为奇数时} \\ + \text{间两点的闭区间上} & \exists n \text{为偶数时} \end{cases}$$

附录: 棋盘覆盖

L型骨牌

2k×2k棋盘

输入: k, 代表2k×2k棋盘

输出: 用L型骨牌覆盖棋盘的方案

说明:有很多方案,

构造出一种方案即可

分治: 递归构造

分治: 递归构造

附录: 循环赛日程表

n=2k球员循环赛,设计满足以下要求的比赛日程表:

- (1) 每个选手必须与其他n-1个选手各赛一次
- (2) 每个选手一天只能赛一次
- (3) 循环赛一共进行n-1天

球员	第1天
1	2
2	1

球员	第1天	第2天	第3天	
1	2	3	4	
2	1	4	3	
3	4	1	2	
4	3	2	1	

循环赛日程表

	加2
/	M
	\bigvee

1	2
2	1

(a) 2k(k=1)个选手比赛

1 2	3 4
2 1	4 3
3 4	1 2
4 3	2 1

加4

(c) 2^k(k=3)个选手比赛

循环赛日程表的推广

设计一个满足以下要求的比赛日程表:

- (1)每个选手必须与其他n-1个选手各赛一次;
- (2)每个选手一天只能赛一次;
- (3)n为偶数时,循环赛一共进行n-1天。 n为奇数时,循环赛一共进行n天。

	1	2	3	4
第1天				
第2天				
第3天				

2023/11/28

循环赛日程表的推广

	1	2	3	4
第1天				
第2天				
第3天				

	1	2	3
第1天			
第2天			
第3天			

2023/11/28 91 of 158

	1	2	3
第1天	2	1	-
第2天	3	-	1
第3天	-	3	2

		1	2	3	4	5	6
	第1天						
	第2天						
	第3天						
	第4天						
2023/	第5天 11/28						

92 of 158

循环赛日程表的推广

	1	2	3	4	5
第1天	2	1	-	5	4
第2天	3	5	1	-	2
第3天	4	3	2	1	-
第4天	5	-	4	3	1
第5天	-	4	5	2	3

2023/11/28 93 of 158

						•				
	1	2	3	4	5	6	7	8	9	10
第1天	2	1	8	5	4	7	6	3	10	9
第2天	3	5	1	9	2	8	10	6	4	7
第3天	4	3	2	1	10	9	8	7	6	5
第4天	5	7	4	3	1	10	2	9	8	6
第5天	6	4	5	2	3	1	9	10	7	8
第6天	7	8	9	10	6	5	1	2	3	4
第7天	8	9	10	6	7	4	5	1	2	3
第8天	9	10	6	7	8	3	4	5	1	2
第9天	10	6	7	8	9	2	3	4	5	1
2023/11	2023/11/28 94 of 158									

练习

甲手中有1张A,2张2,3张3,4张4,5张5,6张6,7张7,8张8,9张9共45张牌,现甲从中任取一张牌,然后乙开始提问来猜出这张牌。请给出乙提问的平均最少次数。

注意:甲只能回答"是"或者"否"。

2023/11/28

• 2 对数

log
$$n = \log_2 n$$
, lg $n = \log_{10} n$ lg $2 = 0.301$
log k $n = (\log n)^k$
log log $n = \log(\log n)$
性质:
$$a^{\log_b n} = n^{\log_b a}$$
log k $n = c \log_k n$

证明:

$$a^{\log_b n} = b^{\log_b a^{\log_b n}}$$

$$= b^{\log_b n \cdot \log_b a}$$

$$= (b^{\log_b n})^{\log_b a}$$

$$= n^{\log_b a}$$

2023/11/28

- $\log_b N = \log_a N / \log_a b$
- $\log_e N = \ln N$
- e = 2.71828
- $\log_a b = 1/\log_b a$

2023/11/28

二、阶乘

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

$$n! = o(n^n)$$

$$n! = \omega(2^n)$$

$$\log n! = \Theta(n \log n)$$

• 三、求和等比级数的求和公式

$$\sum_{k=0}^{n} x^{k} = \frac{x^{n+1} - 1}{x - 1}$$