Normal Forms

Dr Paolo Guagliardo

dbs-lecturer@ed.ac.uk

Fall 2018

This page is intentionally left blank

Example of bad design

BAD

Title	Director	Theatre	Address	Time	Price
Inferno	Ron Howard	Vue	Omni Centre	20:00	11.50
Inferno	Ron Howard	Vue	Omni Centre	22:30	10.50
Inferno	Ron Howard	Odeon	Lothian Rd	20:00	10.00
Inferno	Ron Howard	Cineworld	Fountain Park	18:20	9.50
Inferno	Ron Howard	Cineworld	Fountain Park	21:00	11.00
Trolls	Mike Mitchell	Vue	Omni Centre	16:10	9.50
Trolls	Mike Mitchell	Vue	Omni Centre	19:30	10.00
Trolls	Mike Mitchell	Odeon	Lothian Rd	15:00	8.50
Trolls	Mike Mitchell	Cineworld	Fountain Park	17:15	9.00

 $\{ \text{ Title} \rightarrow \text{Director}, \text{ Theatre}, \text{Title}, \text{Time} \rightarrow \text{Price}, \text{ Theatre} \rightarrow \text{Address} \}$

Why is BAD bad?

Redundancy

Many facts are repeated

- For every showing we list both director and title
- For every movie playing we repeat the address

Update anomalies

- Address must be changed for all movies and showtimes
- If a movie stops playing, association title-director is lost
- Cannot add a movie before it starts playing

Good design

Movies: Title → Director

Title	Director	
Inferno	Ron Howard	
Trolls	Mike Mitchell	

Theatres: Theatre \rightarrow Address

Theatre	Address	
Vue	Omni Centre	
Odeon	Lothian Rd	
Cineworld	Fountain Park	

Showings: Theatre, Title, Time \rightarrow Price

Theatre	Title	Time	Price	
Vue	Inferno	20:00	11.50	
Vue	Inferno	22:30	10.50	
Odeon	Inferno	20:00	10.00	
Cineworld	Inferno	18:20	9.50	
Cineworld	Inferno	21:00	11.00	
Vue	Trolls	16:10	9.50	
Vue	Trolls	19:30	10.00	
Odeon	Trolls	15:00	8.50	
Cineworld	Trolls	17:15	9.00	

Why is GOOD good?

No redundancy

Every FD defines a key

No information loss

 $\mathsf{Movies} = \, \pi_{\mathsf{Title},\mathsf{Director}}(\mathsf{BAD})$

 $\mathsf{Theatres} = \pi_{\mathsf{Theatre}, \mathsf{Address}}(\mathsf{BAD})$

 $\mathsf{Showings} = \pi_{\mathsf{Theatre},\mathsf{Title},\mathsf{Time},\mathsf{Price}}(\mathsf{BAD})$

 $\mathsf{BAD} = \mathsf{Movies} \bowtie \mathsf{Theatres} \bowtie \mathsf{Showings}$

No constraints are lost

All of the original FDs appear as constraints in the new tables

Boyce-Codd Normal Form (BCNF)

Problems with bad designs are caused by FDs $X \rightarrow Y$ where X is not a key

A relation with FDs F is in BCNF if for every $X \to Y$ in F

- ▶ $Y \subseteq X$ (the FD is trivial), or ▶ X is a key

A database is in BCNF if all relations are in BCNF

Decompositions

Given a set of attributes U and a set of FDs F, a decomposition of (U, F) is a set

$$(U_1, F_1), \ldots, (U_n, F_n)$$

such that $U = \bigcup_{i=1}^n U_i$ and F_i is a set of FDs over U_i

BCNF decomposition if each (U_i, F_i) is in BCNF

Criteria for good decompositions

Losslessness: no information is lost

Dependency preservation: no constraints are lost

Good decompositions

A decomposition of (U, F) into $(U_1, F_1), \ldots, (U_n, F_n)$ is

Lossless if for every relation R over U that satisfies F

- each $\pi_{U_i}(R)$ satisfies F_i , and
- $R = \pi_{U_1}(R) \bowtie \cdots \bowtie \pi_{U_n}(R)$

Dependency preserving if F and $\bigcup_{i=1}^{n} F_i$ are equivalent (that is, they have the same closure)

Projection of FDs

Let F be a set of FDs over attributes U

The **projection** of F on $V \subseteq U$

$$\pi_V(F) = \{X \to Y \mid X, Y \subseteq V, Y \subseteq C_F(X)\}$$

is the set of all FDs over V that are implied by F

Can be often represented compactly as a set of FDs F' over V s.t.

$$\forall X, Y \subseteq V \quad F' \models X \to Y \iff F \models X \to Y$$

BCNF decomposition algorithm

Input: A set of attributes U and a set of FDs F

Output: A database schema S

- 1. $S := \{(U, F)\}$
- 2. While there is $(U_i, F_i) \in S$ not in BCNF: Replace (U_i, F_i) by $\mathbf{decompose}(U_i, F_i)$
- 3. Remove any (U_i, F_i) for which there is (U_j, F_j) with $U_i \subseteq U_j$
- 4. Return S

Subprocedure **decompose**(U, F):

- 1. Choose $(X \to Y) \in F$ that violates BCNF
- 2. Set $V := C_F(X)$ and Z := U V
- 3. Return $(V, \pi_V(F))$ and $(XZ, \pi_{XZ}(F))$

Properties of the BCNF algorithm

- ► The decomposed schema is in **BCNF** and **lossless-join**
- ▶ The output depends on the FDs chosen to decompose
- ► Dependency preservation is **not guaranteed**

Example

Apply the BCNF algorithm to the BAD schema (blackboard)

BCNF and dependency preservation

Take the relation Lectures : Class, Professor, Time with FDs $F = \{C \to P, PT \to C\}$

(CPT, F) is **not in BCNF**: $(C \rightarrow P) \in F$, but C is not a key

If we decompose using the BCNF algorithm we get

$$(CP, C \rightarrow P)$$
 and (CT, \emptyset)

We lose the constraint $PT \rightarrow C$

Third Normal Form (3NF)

(U,F) is in 3NF if for every FD $X \to Y$ in F one of the following holds:

- $Y \subseteq X$ (the FD is trivial)
- ightharpoonup X is a key
- lacktriangle all of the attributes in Y are prime

Intuition: in 3NF FDs where the l.h.s. is not a key are allowed as long as the r.h.s. consists only of prime attributes

Every schema in BCNF is also in 3NF

3NF and redundancy

Consider again the relation Lectures : Class, Professor, Time with FDs $F = \{C \to P, PT \to C\}$

(CPT, F) is in 3NF: PT is a candidate key, so P is prime

More redundancy than in BCNF

- each time a class appears in a tuple, professor's name is repeated
- we tolerate this because there is no BCNF decomposition that preserves dependencies

Minimal covers

Let F and G be sets of FDs

G is a cover of F if $G^+ = F^+$

Minimal if

- ▶ Each FD in G has the form $X \to A$
- No proper subset of G is a cover (we cannot remove FDs without losing equivalence to F)
- ▶ For $(X \to A) \in G$ and $X' \subset X$, $A \notin C_F(X')$ (we cannot remove attributes from the LHS of FDs in G)

Intuition: G is a small representation of all FDs in F

Finding minimal covers

1. Put the FDs in standard form: only one attribute on RHS Use Armstrong's decomposition axiom

$$X \to A_1 \cdots A_n$$
 is split into n FDs: $X \to A_1, \dots, X \to A_n$

2. Minimize the LHS of each FD

Check whether attributes in the LHS can be removed

For
$$(X \to A) \in F$$
 and $X' \subset X$ check whether $A \in C_F(X')$ If yes, replace $X \to A$ by $X' \to A$ and repeat

3. Delete redundant FDs

$$(X \to A) \in F$$
, check whether $F - \{X \to A\} \models X \to A$

Finding minimal covers: Example

Consider the FDs
$$\{ABCD \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}$$

1. Already in standard form

$$\{ABCD \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}$$

2. The LHS of $ABCD \rightarrow E$ can be replaced by AC

$$\{AC \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}$$

3. The last FD is redundant (implied by the first two)

$$\{AC \rightarrow E, E \rightarrow D, A \rightarrow B\}$$

3NF synthesis algorithm

Input: A set of attributes U and a set of FDs F

Output: A database schema S

- 1. $S := \emptyset$
- 2. Find a minimal cover G of F
- 3. Replace all FDs $X \to A_1, \dots, X \to A_n$ in G by $X \to A_1 \cdots A_n$ (note that the FDs have the same l.h.s.)
- 4. For each FD $(X \to Y) \in G$, add $(XY, X \to Y)$ to S
- 5. If no (U_i, F_i) in S is such that U_i is key for (U, F), find a key K for (U, F) and add (K, \emptyset) to S
- 6. If S contains (U_i, F_i) and (U_j, F_j) with $U_i \subseteq U_j$, replace them by $(U_j, F_i \cup F_j)$
- 7. Output S

Properties of the 3NF algorithm

The synthetized schema is

- ▶ in 3NF
- ► lossless-join
- dependency-preserving

Example

Apply the 3NF algorithm to the Lectures schema (blackboard) (that schema is already in 3NF, but let's do it anyway)

3NF synthesis: another example

Example

```
Input : (ABCD, \{A \rightarrow B, C \rightarrow B, BD \rightarrow A\})
Not in 3NF (the only candidate key is CD)
```

The given set of FDs is already minimal

```
Ouput : \{ (CB, \{C \to B\}),  (ABD, \{BD \to A, A \to B\}),  (CD, \varnothing) \}
```

Schema design: Summary

Given the set of attributes U and the set of FDs F

Find a lossless, dependency-preserving decomposition into:

BCNF if it exists

3NF if BCNF decomposition cannot be found

In some cases, DBAs de-normalize tables to reduce number of joins