Резонансные процессы в активной среде

Д.А. Румянцев*, Д.М. Шленев** А.А. Ярков*** Ярославский государственный университет им. П.Г. Демидова, Россия

В работе рассмотрены различные квантовые процессы с учетом резонанса на виртуальном фермионе.

^{*}E-mail: rda@uniyar.ac.ru

^{**}E-mail: ultrasickdoom@gmail.com

 $^{^{***}\}mbox{E-mail: a12l@mail.ru}$

1 Введение

Нейтронные звезды, обладая набором экстремальных характеристик, являются природными физическими лабораториями и одними из самых интересных объектов, известных в науке. Особое внимание ученых привлекают радиопульсары и магнитары, обладающие магнитными полями колоссальной напряженности, к которой очень сложно приблизиться в земных условиях. У магнитного поля имеется характерное значение, называемое критическим, $B_e = m^2/e \simeq 4.41 \times 10^{13}~\Gamma c^{-1}$, при приближении к которому становится необходимым учитывать квантовые эффекты при движении в нем частиц. В радиопульсарах с магнитными полями порядка $10^{12}~\Gamma c$ и магнитарах – до $10^{16}~\Gamma c$ [1–3] такие условия выполняются.

Кроме сильных магнитных полей, в магнитосфере как радиопульсаров, так и магнитаров, присутствует достаточно горячая и плотная электронпозитронная плазма [1]. Магнитное поле и плазма составляют две компоненты внешней активной среды, присутствие которой значительно изменяет
характеристики протекающих в ней микропроцессов. Во-первых, активная
среда может изменять закон дисперсии находящихся в ней частиц, что приводит к изменению кинематики процессов и вследствие чего могут открываться реакции и каналы реакций, которые запрещены в вакууме. Во-вторых,
активная среда влияет на амплитуды процессов, в результате чего они могут приобретать резонансный характер. Именно эта составляющая влияния
внешней активной среды рассматривается в данном обзоре. Вследствие резонанса вклад микропроцессов в макроскопические характеристики астрофизических процессов, такие как светимость и скорость изменения количества
частиц, может многократно увеличиваться.

В сильном магнитном поле поперечная составляющая импульса фермиона квантуется. В таком случае энергия фермиона определяется так называемым

 $^{^{1}}$ В работе используется естественная система единиц: $\hbar=c=k=1,\ m$ – масса электрона, e>0 – элементарный заряд.

уровнем Ландау n и проекцией импульса вдоль магнитного поля p_z :

$$E_n = \sqrt{m_f^2 + p_z^2 + 2|e_f|Bn},\tag{1}$$

где e_f и m_f - заряд и масса фермиона. Состояние с n=0, в котором фермион движется вдоль силовой линии магнитного поля, называется основным уровнем Ландау.

Можно выделить несколько ситуаций в иерархии параметров среды: магнитного поля, температуры T, химического потенциала μ и энергии фермионов и фотонов, участвующих в реакциях. Предел сильного поля, когда фермионы будут занимать основной уровень Ландау, осуществляется при выполнении условия [4]:

$$\frac{B^2}{8\pi} \gg \frac{\pi^2 (n_{e^-} - n_{e^+})^2}{eB} + \frac{eBT^2}{12}, \qquad (2)$$

где n_{e^-} и n_{e^+} – концентрации электронов и позитронов плазмы. Такие условия могут, в частности, реализовываться в модели вспышки источников мягких повтоярющихся гамма-всплесков (SGR) [1,5], которые, как показывают недавние наблюдения, можно отождествить с магнитарами [6–11].

Даже в магнитарных магнитных полях при значениях плотности плазмы $\rho \geqslant 10^8 \ {\rm r/cm^3}$, которые могут достигаться в границе между внешней и внутренней корой магнитара, условие 2, при котором магнитное поле является доминирующим параметром, перестает выполняться. В результате реакции, в которых имеются фермионы в промежуточном состоянии, могут приобретать резонансный характер. Это происходит вследствие того, что начинают возбуждаться высшие уровни Ландау виртуальных фермионов. Они становятся реальными с определенным законом дисперсии, садятся на массовую поверхность. В этом состоянии они являются нестабильными и распадаются за время, обратно пропорциональное вреоятности их перехода на низшие уровни Ландау. Эффективность реакции при этом заметно увеличивается, что может иметь наблюдаемые астрофизические следствия.

Резонанс на фотоне наблюдается аналогичным образом: в активной среде поляризационный оператор фотона имеет реальную часть, которую можно

рассматривать как эффективную массу фотона. В кинематической области, в которой квадрат 4-импульса виртуального фотона будет равен реальной части его поляризационного оператора, виртуальный фотон станет реальным и нестабильным.

Настоящая статья организована следующим образом. В Разделе 2 обсуждаются различные методы представления решения уравнения Дирака во внешнем магнитном поле. В разделе 3 рассматриваются радиационные поправки в магнитном поле к массовому оператору частиц в промежуточном состоянии и получается выражение для пропагатора. Раздел 4 посвящен различным двухвершинным процессам, в которых может реализовываться резонанс на виртуальном фермионе и/или фотоне. В Разделе 5 описываются сингулярности в фазовых объемах одновершинных процессов и методы их устранения.

2 Представление решений уравнения Дирака во внешнем магнитном поле

В этом разделе обсудим влияние активной среды на волновые функции присутстствующих в ней частиц: фермионов и фотонов. В случае фермионов искомые нами волновые функции являются решением уравнения Дирака в присутствии внешнего постоянного однородного магнитного поля:

$$(i\partial_{\mu}\gamma^{\mu} + e_f A_{\mu}\gamma^{\mu} - m_f)\Psi^s_{n,n}(X) = 0, \qquad (3)$$

где A_{μ} – 4-вектор потенциала электромагнитного поля, который в калибровке Ландау имеет вид $A^{\mu}=(0,0,xB,0)$. Решением этого уравнения является набор собственных функций любого оператора, который коммутирует с гамильтонианом Дирака во внешнем магнитном поле: $H=\gamma_0\left(\boldsymbol{\gamma}\boldsymbol{P}\right)+m_f\,\gamma_0+eA_0$, где $\mathbf{P}=-i\boldsymbol{\Delta}-e_f\mathbf{A}$. Существует два распространенных подхода к выбору этих операторов, подробное описание которых представлено в работах [12–17]. При первом из них, предложенным Джонсоном и Липпманом [18], решения выбираются как собственные функции оператора обобщенной спиральности,

 $T_0 = \frac{1}{m_f}(\mathbf{\Sigma}\mathbf{P})$, где $\mathbf{\Sigma} = -\gamma_0 \boldsymbol{\gamma} \gamma_5$ – трехмерный оператор спина. При этом две верхние компоненты биспиноров соответствуют состояниям фермиона с проекцией спина на направление магнитного поля, равной 1/2 и -1/2.

Другой подход предложен Соколовым и Терновым [19]. Он состоит в выборе волновых функций как собственных функций ковариантного оператора μ_z , который строится следующим образом:

$$\hat{\mu}_z = m_f \Sigma_z - i \gamma_0 \gamma_5 \left[\mathbf{\Sigma} \times \mathbf{P} \right]_z . \tag{4}$$

Его можно получить непосредственно из введенного в работе [19] обобщенного оператора спина, являющегося тензором третьего ранга, который можно записать в координатном представлении следующим образом:

$$F_{\mu\nu\lambda} = -\frac{i}{2} \left(P_{\lambda} \gamma_0 \sigma_{\mu\nu} + \gamma_0 \sigma_{\mu\nu} P_{\lambda} \right), \tag{5}$$

где $\sigma_{\mu\nu} = (\gamma_{\mu}\gamma_{\nu} - \gamma_{\nu}\gamma_{\mu})/2$, и $P_{\lambda} = \mathrm{i}\partial_{\lambda} - e_f A_{\lambda} = (\mathrm{i}\partial_0 - e_f A_0 \,, -\mathrm{i}\nabla - e_f \mathbf{A})$ – оператор обобщенного 4-импульса. Заметим, что в работе [19] ковариантные билинейные формы были построены из матриц Дирака в обкладках биспиноров ψ^{\dagger} и ψ , тогда как в современной литературе (см., например [20]) билинейные формы строятся из матриц Дирака в обкладках биспиноров $\bar{\psi}$ и ψ . Из пространственных компонент $F_{\mu\nu0}$ оператора (5) можно построить следующий векторный оператор:

$$\hat{\mu}_i = -\frac{1}{2} \,\varepsilon_{ijk} \,\mathcal{F}_{jk0} \,, \tag{6}$$

где ε_{ijk} – тензор Леви-Чивита. Построенный таким образом объект (6) имеет смысл оператора поляризации [12, 19]. Его можно представить в виде:

$$\hat{\boldsymbol{\mu}} = m_f \boldsymbol{\Sigma} + i \gamma_0 \gamma_5 [\boldsymbol{\Sigma} \times \hat{\boldsymbol{P}}]. \tag{7}$$

В нерелятивистском пределе оператор (7), отнесенный к квадрату массы фермиона: $\hat{\boldsymbol{\mu}}/m_f^2$, переходит в обычный оператор Паули для магнитного момента [21], который имеет явную физическую интерпретацию.

Решения уравнения Дирака в представлении Джонсона и Липпмана широко используются в литературе (см. например [22–27]). Однако эти функции

обладают рядом недостатков, которые проявляются при расчете конкретных характеристик процессов с двумя и более вершинами. Так, эти функции некорректно описывают спиновую зависимость конечной ширины распада промежуточного состояния, что приводит к неверным результатам вблизи резонансов, как было показано в работах [28, 29]. Кроме того, лоренцинвариантностью будет обладать только квадрат модуля амплитуды, просуммированный по всем поляризациям фермиона, а не парциальные вклады в него.

С другой стороны, использование функций, предложенных Соколовом и Терновым, правильно описывает сечение процессов вблизи резонанса, а также позволяет найти парциальные вклады в амплитуду каждого поляризационного состояния частиц в отдельности, которые будут иметь лоренц-инвариантную структуру. По этой причине далее в этом разделе приведем подробное их описание.

Уравнение для собственных функций оператора 4 имеет следующий вид:

$$\hat{\mu}_z \Psi_{n,n}^s(X) = s M_n \Psi_{n,n}^s(X) , \qquad (8)$$

где $s=\pm 1$ определяет проекцию спина вдоль магнитного поля.

Как уже упоминалось во Введении, состояния фермиона квантуются по энергетическим состояниям, которые называются уровнями Ландау:

$$E_n = \sqrt{p_z^2 + M_n^2}, \quad n = 0, 1 \dots$$
 (9)

Здесь введены обозначения $M_n = \sqrt{2\beta + m_f}$, $\beta = |e_f|B$. Каждое состояние является бесконечно вырожденным по p_z и дважды вырожденным по s, кроме состояния n=0, где возможно лишь состояние s=-1. Решения уравнения Дирака 3 могут быть представлены следующим образом

$$\Psi_{p,n}^{s}(X) = \frac{e^{-i(E_n X_0 - p_y X_2 - p_z X_3)} U_n^{s}(\xi)}{\sqrt{4E_n M_n (E_n + M_n)(M_n + m_f) L_y L_z}},$$
(10)

где

$$\xi(X_1) = \sqrt{\beta} \left(X_1 - \eta \frac{p_y}{\beta} \right) . \tag{11}$$

Далее, используя обозначение для определения знака заряда фермиона $\eta = e_f/|e_f|$, становится удобным представить биспиноры $U_n^s(\xi)$ в виде отдельной суммы биспиноров соответствующих положительным и отрицательным зарядам $U_{n,\eta}^s(\xi)$:

$$U_n^s(\xi) = \frac{1-\eta}{2} U_{n,-}^s(\xi) + \frac{1+\eta}{2} U_{n,+}^s(\xi), \qquad (12)$$

где

$$U_{n,-}^{-}(\xi) = \begin{pmatrix} -i\sqrt{2\beta n} \, p_z V_{n-1}(\xi) \\ (E_n + M_n)(M_n + m_f) V_n(\xi) \\ -i\sqrt{2\beta n} (E_n + M_n) V_{n-1}(\xi) \\ -p_z(M_n + m_f) V_n(\xi) \end{pmatrix}, \tag{13}$$

$$U_{n,-}^{+}(\xi) = \begin{pmatrix} (E_n + M_n)(M_n + m_f)V_{n-1}(\xi) \\ -i\sqrt{2\beta n} \, p_z V_n(\xi) \\ p_z(M_n + m_f)V_{n-1}(\xi) \\ i\sqrt{2\beta n} (E_n + M_n)V_n(\xi) \end{pmatrix}, \tag{14}$$

$$U_{n,+}^{-}(\xi) = \begin{pmatrix} i\sqrt{2\beta n} \, p_z V_n(\xi) \\ (E_n + M_n)(M_n + m_f) V_{n-1}(\xi) \\ i\sqrt{2\beta n} (E_n + M_n) V_n(\xi) \\ -p_z (M_n + m_f) V_{n-1}(\xi) \end{pmatrix}, \tag{15}$$

$$U_{n,+}^{+}(\xi) = \begin{pmatrix} (E_n + M_n)(M_n + m_f)V_n(\xi) \\ i\sqrt{2\beta n} \, p_z V_{n-1}(\xi) \\ p_z(M_n + m_f)V_n(\xi) \\ -i\sqrt{2\beta n}(E_n + M_n)V_{n-1}(\xi) \end{pmatrix}, \tag{16}$$

 $V_n(\xi)$ – нормированные функции гармонического осциллятора, которые следующим образом выражаются через полиномы Эрмита $H_n(\xi)$ [30]:

$$V_n(\xi) = \frac{\beta^{1/4} e^{-\xi^2/2}}{\sqrt{2^n n! \sqrt{\pi}}} H_n(\xi) .$$
 (17)

Далее эти решения уравнения Дирака (10) будут использованы для получения пропагаторов фермионов в разделе 3.

3 Представление пропагаторов с учетом мнимой части

3.1 Пропагатор фермиона

В диаграммной технике Фейнмана, которая широко применяется для расчета различных физических величин, в качестве одного из объектов выступают внутренние линии, соответствующие виртуальным частицам или промежуточным состояниям. "Виртуальность" частицы означает нарушение у этой частицы релятивистского соотношения (9). В этом разделе мы опишем представление пропагаторов фермионов во внешнем магнитном поле с учетом радиационных поправок к массовому оператору и покажем, как может реализовываться резонанс в квантовых процессах, содержащих фермионы в промежуточном состоянии.

Для анализа резонансных процессов оказывается удобным использовать представление в формализме собственного времени Фока [31]. В этом случае пропагатор фермиона находится как решение уравнения Дирака с δ -функцией в правой части, которая также называется функцией Грина для уравнения Дирака:

$$(i\partial_{\mu}\gamma^{\mu} + e_f A_{\mu}\gamma^{\mu} - m_f)S(X, X') = \delta(X - X'). \qquad (18)$$

Пропагатор, который получается из этого уравнения, имеет достаточно громоздкий вид. Поэтому удобно воспользоваться различными приближениями. Например, приближение слабого магнитного поля особенно актуально для W-бозонов, так как критическое поле для этих частиц, равное примерно $m_W^2/e \simeq 10^{24}$ Гс, значительно превышает магнитные поля, существующие в природе. Кроме того, для частиц, обладающих высоким удельным зарядом, $|e_f|/m_f$, удобно рассматривать пропагатор в виде разложения по уровням

Ландау:

$$S(X, X') = \sum_{n=0}^{\infty} \sum_{s=\pm 1} S_n^s(X, X').$$
 (19)

Для построения пропагатора можно воспользоваться полевыми операторами:

$$\Psi(X) = \sum_{n,p_u,p_z,s} (a_{n,p}^s \Psi_{n,p,+}^s(X) + b_{n,p}^{\dagger s} \Psi_{n,p,-}^s(X)), \qquad (20)$$

где a — оператор уничтожения фермиона, b^{\dagger} — оператор рождения фермиона, Ψ_{+} и Ψ_{-} соответствуют решениям уравнения Дирака с положительной и отрицательной энергией соответственно. Стандартным образом пропагатор вычисляется как разность хронологичеси упорядоченного и нормально упорядоченного произведения полевых операторов:

$$S(X, X') = T(\Psi(X)\overline{\Psi}(X')) - \mathcal{N}(\Psi(X)\overline{\Psi}(X')) \tag{21}$$

Подставляя точные решения уравнения Дирака (10) и вводя для удобства новое обозначение:

$$\phi_{p,n}^s(X_1) = \frac{U_n^s[\xi(X_1)]}{\sqrt{2M_n(E_n + M_n)(M_n + m_f)}},$$
(22)

где U_n^s определяется формулой (12), можно представить вклад в разложение пропагатора от уровня Ландау n и поляризационного состояния s следующим образом:

$$S_n^s(X, X') = \int \frac{\mathrm{d}p_0 \mathrm{d}p_y \mathrm{d}p_z}{(2\pi)^3} \frac{\mathrm{e}^{-\mathrm{i}(p(X-X'))_{\parallel} + \mathrm{i}p_y(X_2 - X_2')}}{p_{\parallel}^2 - M_n^2 - \mathcal{R}_{\Sigma}^s(p) + \mathrm{i}\mathcal{I}_{\Sigma}^s(p)} \,\phi_{p,n}^s(X_1) \bar{\phi}_{p,n}^s(X_1') \,, \tag{23}$$

где $\mathcal{R}^s_{\Sigma}(p)$ и $\mathcal{I}^s_{\Sigma}(p)$ – реальная и мнимая части массового оператора фермиона. Для их получения требуется вычислить радиационные поправки к массе фермиона в замагниченной плазме. Реальная часть массового оператора $\mathcal{R}^s_{\Sigma}(p)$ определяет изменение закона дисперсии фермиона в присутствии замагниченной плазмы. В слабых магнитных полях, $B \ll B_e$, она определяется

отношением [32]:

$$\Re_{\Sigma}^{s}(p) = \frac{4\alpha m_f}{3\pi} \varkappa^2 \left[\ln \varkappa^{-1} + C + \frac{1}{2} \ln 3 - \frac{33}{16} \right], \quad \varkappa \ll 1,$$
 (24)

где C=0.577... - постоянная Эйлера, динамический параметр \varkappa вводится следующим образом:

$$\varkappa = \frac{1}{m_f B_e} [-(F_{\mu\nu} p_{\nu})^2]^{1/2}.$$
 (25)

Для случая сильного магнитного поля $B \gtrsim B_e$ без учета плазмы лидирующий вклад в сдвиг массы фермиона, находящегося на основном уровне Ландау, описывается квадратом логарифмической функции [33]:

$$\Re_{\Sigma}^{s}(p) = \frac{\alpha}{4\pi} m_f \ln^2(2\beta/m_f^2). \tag{26}$$

Из (24) и (26) следует, что даже для достаточно больших значений магнитного поля вплоть до 10^{16} Гс эта поправка к массе фермиона имеет величину порядка постоянной тонкой структуры α [13,14] и является несущественной.

Резонанс на виртуальном фермионе будет наблюдаться, когда в знаменателе пропагатора (23) реальная часть обращается в ноль. Тогда виртуальная частица становится реальной, то есть приобретает определенный закон дисперсии $p_{\parallel}^2 - M_n^2 = 0$. При этом учет мнимой части массового оператора $\mathcal{I}_{\Sigma}^s(p)$ становится необходимым. Она может быть получена с помощью оптической теоремы и представлена в следующем виде [34,35]:

$$\mathfrak{F}_{\Sigma}^{s}(p) = -\frac{1}{2} p_0 \, \Gamma_n^s \,, \tag{27}$$

где Γ_n^s — полная ширина поглощения фермиона, находящегося в поляризационном состоянии s и занимающего n-й уровень Ландау. Мнимая часть массового оператора определяет время жизни виртуальной частицы, которое в нерезонансной области предполагается бесконечно большим. Полная ширина изменения состояния фермиона может быть выражена через ширину рождения фермиона [36]:

$$\Gamma_n^s = \Gamma_n^{(abs)s} + \Gamma_n^{(cr)s} \simeq \Gamma_n^{(cr)s} \left[1 + e^{(E_n'' - \mu)/T} \right], \qquad (28)$$

где $\Gamma_n^{(abs)\,s}$ и $\Gamma_n^{(cr)\,s}$ – ширины поглощения и рождения фермиона соответственно. Введенный таким образом пропагатор с учетом конечной ширины изменения состояния фермиона позволяет корректно рассчитывать сечения квантовых процессов в резонансной области.

3.2 Пропагатор фотона

В этом разделе кратко опишем пропагатор фотона в магнитном поле. Для этого необходимо определить поляризационный оператор фотона $\mathcal{P}_{\alpha\beta}$. Этот оператор рассматривался в ряде работ [37–40]. Для анализа свойств поляризационного оператора удобно разложить $\mathcal{P}_{\alpha\beta}$ по базису из 4-векторов [39], построенного из тензора электромагнитного поля и 4-вектора импульса фотона q_{α} :

$$b_{\mu}^{(1)} = (\varphi q)_{\mu}, \qquad b_{\mu}^{(2)} = (\tilde{\varphi} q)_{\mu}, b_{\mu}^{(3)} = q^{2} (\Lambda q)_{\mu} - q_{\mu} q_{\perp}^{2}, \qquad b_{\mu}^{(4)} = q_{\mu},$$
(29)

являющихся собственными векторами поляризационного оператора в постоянном однородном магнитном поле. При этом $(b^{(1)}b^{*(1)})=-q_{\perp}^2,\ (b^{(2)}b^{*(2)})=-q_{\parallel}^2,\ (b^{(3)}b^{*(3)})=-q^2q_{\parallel}^2q_{\perp}^2,\ (b^{(4)}b^{*(4)})=q^2.$ Собственные вектора определяют поляризационные свойства фотонов. Таким образом в магнитном поле можно выделить 3 поляризации фотона, из которых только 2 являются физическими, а третий может быть устранён с помощью калибровочных преобразований [37]. Строго говоря, поляризационный оператор фотона с учетом плазмы, построенный в виде разложения по векторам 29 уже не будет иметь диагональный вид. В базисе собственных векторов $r_{\alpha}^{(\lambda)}$, $\lambda=1,2,3$, в замагниченной плазме с собственными значениями $P_{\alpha\beta}^{(\lambda)}$ поляризационный оператор можно представить следующим образом [37,41–43]

$$\mathcal{P}_{\alpha\beta}(q) = \sum_{\lambda=1}^{3} \mathcal{P}^{\lambda}(q) \frac{r_{\alpha}^{(\lambda)}(r_{\beta}^{(\lambda)})^{*}}{(r^{(\lambda)})^{2}}, \quad r_{\beta}^{(\lambda)} = \sum_{i=1}^{3} A_{i}^{(\lambda)} b_{\beta}^{(i)}, \tag{30}$$

где $A_i^{(\lambda)}$ некоторые комплексные коэффициенты.

Однако в случае, когда магнитное поле является наибольшим параметром задачи $\beta \gg T^2, \omega^2$ (т.н. поледоминирующая среда) и присутствует зарядовосимметричная плазма, $\mu=0$, собственные вектора $r_{\alpha}^{(\lambda)}, \lambda=1,2,3$, и собственные значения оператора поляризации в плазме, состоящей из электронов и позитронов, находящихся на основном уровне Ландау, в однопетлевом приближении примут вид [37]:

$$r_{\alpha}^{(1)} = -2q_{\perp}^{2} b_{\alpha}^{(1)} + O\left(\frac{1}{\beta^{2}}\right), \quad r_{\alpha}^{(3)} = O\left(\frac{1}{\beta^{2}}\right),$$
 (31)

$$r_{\alpha}^{(2)} = b_{\alpha}^{(2)} + O\left(\frac{1}{\beta^2}\right)$$
 (32)

$$\mathcal{P}^{(1)}(q) = \frac{\alpha}{3\pi} q^2 \mathcal{V} - \frac{\alpha}{3\pi} q_{\perp}^2 + O\left(\frac{1}{\beta^2}\right), \qquad (33)$$

$$\mathcal{P}^{(2)}(q) = \frac{\alpha}{3\pi} q^2 \mathcal{V} + \frac{2\alpha}{\pi} \beta \mathcal{D} + O\left(\frac{1}{\beta}\right). \tag{34}$$

$$\mathcal{P}^{(3)}(q) = O\left(\frac{1}{\beta^2}\right) \,, \tag{35}$$

где

$$\mathcal{D} = -\mathcal{J}_1(q_{\parallel}) - H\left(\frac{q_{\parallel}^2}{4m^2}\right), \qquad (36)$$

$$\mathcal{J}_{1}(q_{\parallel}) = 2q_{\parallel}^{2} m^{2} \int_{-\infty}^{\infty} \frac{\mathrm{d}p_{z}}{E} \frac{f_{-}(p) + f_{+}(p)}{q_{\parallel}^{4} - 4(pq)_{\parallel}^{2}}, \tag{37}$$

$$H(z) = \frac{1}{\sqrt{z(1-z)}} \arctan \sqrt{\frac{z}{1-z}} - 1, \quad 0 \le z \le 1,$$
 (38)

$$H(z) = -\frac{1}{2\sqrt{z(z-1)}} \ln \frac{\sqrt{z} + \sqrt{z-1}}{\sqrt{z} - \sqrt{z-1}} - 1 + \frac{i\pi}{2\sqrt{z(z-1)}}, \quad z > 1,$$
(39)

 $f_{-}(p), (f_{+}(p))$ — функция распределения электронов (позитронов) плазмы, m — масса электрона,

$$\mathcal{V} = \ln(B/B_e) - 1.792 + \frac{3}{2} \int_0^1 dx (1 - x^2) \ln\left[1 - \frac{q^2}{4m^2} (1 - x^2)\right]. \tag{40}$$

Такие условия имеют место в большинстве моделей магнитосфер радиопульсаров и магнитаров [44].

Из выражений (31–34) следует, что фотон в пределе сильного магнитного поля, а также зарядово-симметричной плазмы будет описываться такими же векторами поляризации, как и в чистом магнитном поле. Представим их в том виде, в котором это было сделано в работе [45]:

$$\varepsilon_{\mu}^{(1)} = \frac{(q\varphi)_{\mu}}{\sqrt{q_{\perp}^2}}, \ \varepsilon_{\mu}^{(2)} = \frac{(q\tilde{\varphi})_{\mu}}{\sqrt{q_{\parallel}^2}}.$$
(41)

Эти поляризационные состояния мы будем называть как мода 1 и мода 2 соответственно. В разной литературе используются разные обозначения для этих мод. Например, в работе [46] это моды || и ⊥ в чистом магнитном поле, в работе [47] эти состояния соответствуют X- и O-модам, а в работе [2] — Е-и O-модам.

В общем случае дисперсия фотона будет определятся соотношением

$$q^2 - \mathcal{P}^{(2)}(q) = 0 \tag{42}$$

которое отличается от дисперсии в вакууме $q^2=0$. Как известно [37], закон дисперсии и для фотона моды 1, и для фотона моды 2 в пределе сильного поля незначительно отличается от вакуумного закона $q^2=0$, кроме окрестности так называемых циклотронных резонансов:

$$q_{\parallel}^2 = (M_n \pm M_{n'})^2 \,, \tag{43}$$

из-за наличия корневых сингулярностей в собственных значениях поляризационного оператора, $\mathcal{P}^{(\lambda)}(q)$, для мод $\lambda=1,2$ (за исключением точки

Рис. 1: Закон дисперсии моды 2 в зарядово-симметричной плазме в пределе сильного магнитного поля, $B \gtrsim B_e$, изображен сплошными линиями. Штриховой линией изображен вакуумный закон дисперсии, который практически соответствует дисперсии моды 1. Дисперсионные кривые следует продолжить схожим образом на область $q_{\shortparallel}^2 > (M_1 - m)^2$

 $q_{\parallel}^2=4m^2$ для моды 1). Поэтому в этих областях становится важным учет радиационных поправок к собственным значениям поляризационного оператора в замагниченной плазме. Этот учет приводит к перенормировке волновых функций фотона

$$\varepsilon_{\alpha}^{(\lambda)}(q) \to \varepsilon_{\alpha}^{(\lambda)} \sqrt{Z_{\lambda}}, \quad Z_{\lambda}^{-1} = 1 - \frac{\partial \mathcal{P}^{(\lambda)}(q)}{\partial \omega^2}.$$
 (44)

Проведенный анализ позволяет качественно изобразить дисперсию фотона моды 2 (см. рис. 1). Следует отметить, что в плазме существует область с $q^2>0$ ниже первого циклотронного резонанса. Это связано с наличием плазменной частоты у электронов и позитронов среды, которую можно определить из дисперсионного уравнения 42:

$$\omega_{pl}^2 - \mathcal{P}^{(2)}(\omega_{pl}, \mathbf{k} \to 0) = 0. \tag{45}$$

Наличие плазменной частоты приводит к возникновению процессов, которые запрещены в вакууме, например, становится возможен канал расщепления

фотона $\gamma_2 \to \gamma_1 \gamma_1$ в то время, как каналы $\gamma_1 \to \gamma_1 \gamma_2$, $\gamma_2 \to \gamma_2 \gamma_2$ в плазме подавлены [48]. Для фотона моды 1 значение ω_{pl} также присутствует, но пренебрежимо мало.

Пропагатор фотона удовлетворяет уравнению Дайсона. Исходя из этого пропагатор удобно разложить по собственным векторам поляризационного оператора:

$$G_{\alpha\beta}(x) = \int \frac{\mathrm{d}^4 q}{(2\pi)^4} G_{\alpha\beta}(q) e^{-\mathrm{i}qx}, \qquad (46)$$

где

$$G_{\alpha\beta}(q) = \sum_{\lambda=1}^{3} \frac{b_{\alpha}^{(\lambda)} b_{\beta}^{(\lambda)}}{(b^{(\lambda)})^2} \cdot \frac{1}{q^2 - \mathcal{P}^{(\lambda)}(q)}$$

$$\tag{47}$$

 фурье-образ пропагатора фотона. Таким образом пропагатор фотона определяется аналитическими свойствами поляризационного оператора.

4 Резонансные двухвершинные процессы

- 4.1 Резонанс на виртуальном фотоне.
- 4.2 Резонанс на виртуальном электроне (фермионе).
- 4.3 Резонанс на виртуальном электроне и виртуальном фотоне.
- 5 Сингулярности в фазовых объемах одновершинных процессов и методы их устранения.
- 6 Заключение

Список литературы

- [1] Thompson C., Duncan R. C. The soft gamma repeaters as very strongly magnetized neutron stars I. Radiative mechanism for outbursts // Mon. Not. Roy. Astron. Soc. 1995. Vol. 275. P. 255–300.
- [2] Thompson C., Duncan R. C. The soft gamma repeaters as very strongly magnetized neutron stars. II. Quiescent neutrino, X-Ray, and Alfven wave emission // Astrophys. J. 1996. Vol. 473. P. 322–342.
- [3] Thompson C., Lyutikov M., Kulkarni S. R. Electrodynamics of magnetars: implications for the persistent x-ray emission and spindown of the soft gamma repeaters and anomalous x-ray pulsars // Astrophys. J. 2002. Vol. 574, no. 1. P. 332–355.
- [4] Румянцев Д. А., Чистяков М. В. Влияние фотон-нейтринных процессов на остывание магнитара // ЖЭТФ. 2008. Т. 134, № 4. С. 627–636.
- [5] Бисноватый-Коган Г. С., Чечеткин В. М. Неравновесные оболочки нейтронных звезд, их роль в поддержании рентгеновского излучения и нуклеосинтезе // Усп. физ. наук. 1979. Т. 127, № 2. С. 263–296.
- [6] Kouveliotou C. et al. An X-ray pulsar with a superstrong magnetic field in the soft gamma-ray repeater SGR 1806-20. // Nature. 1998. Vol. 393. P. 235–237.
- [7] Kouveliotou C., Strohmayer T., Hurley K. et al. Discovery of a magnetar associated with the soft gamma repeater SGR 1900+14 // Astrophys. J. 1999. Vol. 510. P. L115–118.
- [8] Gavriil F. P., Kaspi V. M., Woods P. M. Magnetar like x-ray bursts from an anomalous x-ray pulsar // Nature. 2002. Vol. 419. P. 142–144.
- [9] Ibrahim A. I., Safi-Harb S., Swank J. H. et al. Discovery of cyclotron resonance features in the soft gamma repeater SGR 1806-20 // Astrophys. J. 2002. Vol. 574. P. L51–L55.

- [10] Ibrahim A. I., Swank J. H., Parke W. New evidence for proton cyclotron resonance in a magnetar strength field from SGR 1806-20 // Astrophys. J. 2003. Vol. 584. P. L17–L22.
- [11] Olausen S. A., Kaspi V. M. The McGill magnetar catalog // Astrophys. J. Suppl. 2014. Vol. 212, no. 1. P. 6.
- [12] Melrose D. B., Parle A. J. Quantum electrodynamics in strong magnetic fields. I Electron States // Aust. J. Phys. 1983. Vol. 36. P. 755–774.
- [13] Соколов А. А., Тернов И. М. Релятивистский электрон. Москва: Наука, 1983. 304 с.
- [14] Kuznetsov A. V., Mikheev N. V. Electroweak processes in external electromagnetic fields. New York: Springer-Verlag, 2003. 120 p.
- [15] Bhattacharya K., Pal P. B. Inverse beta decay of arbitrarily polarized neutrons in a magnetic field // Pramana J. Phys. 2004. Vol. 62. P. 1041–1058.
- [16] Balantsev I. A., Popov Yu. V., Studenikin A. I. On the problem of relativistic particles motion in strong magnetic field and dense matter // J. Phys. 2011. Vol. A44. P. 255301 (1–13).
- [17] Kuznetsov A., Mikheev N. Electroweak processes in external active media. 2013. Vol. 252. P. pp 1–271.
- [18] Johnson M. H., Lippmann B. A. Motion in a constant magnetic field // Physical Review. 1949. Vol. 76, no. 6. P. 828–832.
- [19] Соколов А. А., Тернов И. М. Синхротронное излучение. М.: Наука, 1966. 228 с.
- [20] Пескин М., Шредер Д. Введение в квантовую теорию поля. Ижевск: РХД, 2001. 784 с.

- [21] Ландау Л. Д., Лифшиц Е. М. Квантовая механика. Нерелятивисткая теория. Москва: Наука, 1989. 768 с.
- [22] Canuto V. Quantum processes in strong magnetic fields // Ann. N. Y. Acad. Sci. 1975. Vol. 257, no. 1. P. 108–126.
- [23] Harding A. K., Daugherty J. K. Cyclotron Resonant Scattering and Absorption // Astrophys. J. 1991. Vol. 374. P. 687–699.
- [24] Suh I.-S., Mathews G. J. Weak reaction freeze-out constraints on primordial magnetic fields // Phys. rev. D. 1999. Vol. 59, no. 12. P. 123002.
- [25] Gonthier P. L., Harding A. K., Baring M. G. et al. Compton Scattering in Ultrastrong Magnetic Fields: Numerical and Analytical Behavior in the Relativistic Regime // Astrophys. J. 2000. Vol. 540, no. 2. P. 907–922.
- [26] Jones P. B. Electron-positron bremsstrahlung and pair creation in very high magnetic fields // Mon. Not. Roy. Astron. Soc. 2010. Vol. 409, no. 4. P. 1719– 1727.
- [27] Melrose D. B. Quantum kinetic theory for unmagnetized and magnetized plasmas // Rev. Mod. Plasma Phys. 2020. Vol. 4, no. 8.
- [28] Graziani C. Strong-Field Cyclotron Scattering. I. Scattering Amplitudes and Natural Line Width // Astrophys. J. 1993. Vol. 412. P. 351–362.
- [29] Gonthier P. L., Baring M. G., Eiles M. T. et al. Compton scattering in strong magnetic fields: Spin-dependent influences at the cyclotron resonance // Phys. Rev. 2014. Vol. D90, no. 4. P. 043014.
- [30] Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. Москва: Гос. изд-во физ.-мат. лит., 1963. 1108 с.
- [31] Schwinger J. On Gauge Invariance and Vacuum Polarization // Phys. Rev. 1951. Jun. Vol. 82. P. 664–679.

- [32] Ритус В. И. Радиационные эффекты и их усиление в интенсивном электромагнитном поле // ЖЭТФ. 1969. Т. 57, № 6. С. 2176–2188.
- [33] Jancovici B. Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field // Phys. Rev. 1969. Vol. 187. P. 2275–2276.
- [34] Борисов А. В., Вшивцев А. С., Жуковский В. Ч., Эминов П. А. Фотоны и лептоны во внешних полях при конечных температуре и плотности // УФН. 1997. Т. 167, № 3. С. 241–267.
- [35] Жуковский В. Ч., Мидодашвили П. Г., Эминов П. А. Мнимая часть массового оператора электрона в постоянном поле при конечной температуре и плотности // Журн. эксперим. и теор. физ. 1994. Т. 106, № 4. С. 929–935.
- [36] Weldon H. A. Simple rules for discontinuities in finite temperature Field Theory // Phys. Rev. 1983. Vol. D28. P. 2007–2037.
- [37] Шабад А. Е. Поляризация вакуума и квантового релятивистского газа во внешнем поле // Тр. ФИАН СССР "Поляризационные эффекты во внешних калибровочных полях". 1988. Т. 192. С. 5–152.
- [38] Tsai W. Y. Vacuum polarization in homogeneous magnetic fields // Phys. Rev. 1974. Vol. D10, no. 8. P. 2699–2702.
- [39] Баталин И. А., Шабад А. Е. Функция Грина фотона в постоянном однородном электромагнитном поле общего вида // ЖЭТФ. 1971. Т. 60, № 3. С. 894–900.
- [40] Скобелев В. В. Поляризационный оператор фотона в сверхсильном магнитном поле // Изв. вузов. Физика. 1975. № 10. С. 142–143.
- [41] Перес Рохас У. Поляризационный оператор электрон-позитронного газа в постоянном внешнем магнитном поле // ЖЭТФ. 1979. Т. 76, № 1. С. 3–17.

- [42] Peres Rojas H., Shabad A. E. Absorption and dispersion of electromagnetic eigenwaves of electron-positron plasma in a strong magnetic field // Ann. Phys. (N.Y.). 1982. Vol. 138. P. 1–35.
- [43] Михеев Н. В., Румянцев Д. А., Чистяков М. В. Фоторождение нейтрино на электроне в плотной замагниченной среде // ЖЭТФ. 2014. Т. 146, № 2. С. 289–296.
- [44] Beloborodov A. M., Thompson C. Corona of magnetars // Astrophys. J. 2007. Vol. 657, no. 2. P. 967–993.
- [45] Chistyakov M. V., Rumyantsev D. A. Compton effect in strongly magnetized plasma // Int. J. Mod. Phys. 2009. Vol. A24. P. 3995–4008.
- [46] Adler S. L. Photon splitting and photon dispersion in a strong magnetic field. // Annals of Physics. 1971. Vol. 67. P. 599–647.
- [47] Mushtukov A. A., Nagirner D. I., Poutanen J. Compton scattering S-matrix and cross section in strong magnetic field // Phys. Rev. 2016. Vol. D93, no. 10. P. 105003.
- [48] Румянцев Д. А., Чистяков М. В. Влияние сильно замагниченной плазмы на процесс расщепления фотона // ЖЭТФ. 2005. Т. 128, № 4. С. 740–751.