Complejidad Computacional

Santiago Figueira

Departamento de Computación - FCEN - UBA

clase 5

Clase 5

Mini-configuraciones
Teorema de Cook-Levin
Problemas **NP-completos**La clase **CONP**Las clases **EXPTIME** y **NEXPTIME**

Mini-configuraciones

Clase 5

Mini-configuraciones

Teorema de Cook-Levin Problemas **NP-completos** La clase **CONP** Las clases **EXPTIME** y **NEXPTIME**

Mini-configuración

Para simplificar, consideremos una máquina determinística $M=(\Sigma,Q,\delta)$

- sin cinta de salida,
- con una cinta de entrada y
- con una sola cinta de trabajo (que funciona como salida también)

Todo lo que digamos a continuación se puede generalizar a cualquier cantidad de cintas de trabajo.

Mini-configuración

Supongamos un cómputo

$$C_0,\ldots,C_\ell$$

de M una con entrada y. La mini-configuración en el paso i es una tupla

$$z_i = (a_i, b_i, c_i) \in \Sigma \times \Sigma \times Q$$

tal que

- a_i es el símbolo leído por la cabeza de entrada en C_i
- b_i es el símbolo leído en la cinta de trabajo en C_i
- c_i es el estado de C_i

Máquina oblivious

Supongamos que, además, M es *oblivious*: podemos calcular la posición de las cabezas de entrada y trabajo en el cómputo de M(y) en función de |y| y el número de paso (pero independiente de y).

Máquina oblivious

Supongamos que, además, M es oblivious: podemos calcular la posición de las cabezas de entrada y trabajo en el cómputo de M(y) en función de |y| y el número de paso (pero independiente de y).

Estas tres funciones son computables en tiempo polinomial:

- e(i,n)= posición de la cabeza de entrada en el paso i en el cómputo de M con entrada 0^n
- t(i,n) = posición de la cabeza de trabajo en el paso i en el cómputo de M con entrada 0^n
- $prev(i,n) = máx\{j < i: t(j,n) = t(i,n)\} \cup \{1\}$, es decir prev(i,n) es el máximo paso j < i en el cómputo de M con entrada 0^n tal que la posición de la cabeza de trabajo en el paso j coincide con la posición en el paso i; o 1 si no existe tal j

Mini-configuración: del paso i-1 al paso i

Sea z_i la *i*-ésima mini-configuración en el cómputo de M con entrada x. $z_0 = (x(0), \square, q_0)$ y para i > 0 calculamos z_i con:

- el estado y los símbolos leídos en el paso i-1; esto está en z_{i-1}
- la función de transición δ de M
- el contenido de la cinta de entrada (solo lectura; no cambia a lo largo del cómputo) en la posición e(i,|x|)
- el contenido de la cinta de trabajo en la posición prev(i,|x|); esto está en $z_{prev(i,|x|)}$

La función F representa la evolución en un paso

Supongamos el cómputo C_0, \ldots, C_ℓ de $M = (\Sigma, Q, \delta)$ determinística, *oblivious*, sin cinta de salida con entrada y y la correspondiente secuencia de mini-configuraciones

$$z_0,\ldots,z_\ell$$

La función F representa la evolución en un paso

Supongamos el cómputo C_0, \ldots, C_ℓ de $M = (\Sigma, Q, \delta)$ determinística, *oblivious*, sin cinta de salida con entrada y y la correspondiente secuencia de mini-configuraciones

$$z_0,\ldots,z_\ell$$

Podemos codificar cada mini-configuración $z \in \Sigma \times \Sigma \times Q$ con $\langle z \rangle \in \{0,1\}^k$ con $k = 4 + \lceil \log |Q| \rceil$ (k depende solo de M).

- 00, 11, 01, 10 codifica cada símbolo de $\Sigma = \{0, 1, \triangleright, \square\}$.
- cada estado de Q se codifica con una cadena en $\{0,1\}^{\lceil \log |Q| \rceil}; 0 \dots 0$ codifica $q_0; 0 \dots 1$ codifica q_f

La función F representa la evolución en un paso

Supongamos el cómputo C_0, \ldots, C_ℓ de $M = (\Sigma, Q, \delta)$ determinística, *oblivious*, sin cinta de salida con entrada y y la correspondiente secuencia de mini-configuraciones

$$z_0, \ldots, z_\ell$$

Podemos codificar cada mini-configuración $z \in \Sigma \times \Sigma \times Q$ con $\langle z \rangle \in \{0,1\}^k$ con $k = 4 + \lceil \log |Q| \rceil$ (k depende solo de M).

- 00, 11, 01, 10 codifica cada símbolo de $\Sigma = \{0, 1, \triangleright, \square\}$.
- cada estado de Q se codifica con una cadena en $\{0,1\}^{\lceil \log |Q| \rceil}; 0 \dots 0$ codifica $q_0; 0 \dots 1$ codifica q_f

Para i > 0, definimos $F : \{0,1\}^k \times \{0,1\}^k \times \{0,1\}^2 \to \{0,1\}^k$:

$$F\left(\begin{array}{ccc} \underline{\langle z_{i-1} \rangle} & , & \underline{\langle z_{prev(i,|y|)} \rangle} & , & \underline{\langle x(e(i,|y|)) \rangle} \end{array}\right) = \langle z_i \rangle.$$
 configuración información codificación de la cinta de del bit actual (k variables) trabajo leído (k variables) (2 variables)

y $F(x) = 0^k$ para los otros casos (no nos importa).

La función F representada en CNF

Tenemos

$$F: \{0,1\}^k \times \{0,1\}^k \times \{0,1\}^2 \to \{0,1\}^k.$$

Existe una fórmula booleana

$$\varphi_F(\bar{p},\bar{q},\bar{r},\bar{s})$$

con variables libres

- $\bar{p} = p_1, \dots, p_k$, que codifica $\langle z_{i-1} \rangle$
- $\bar{q} = q_1, \dots, q_k$ que codifica $\langle z_{prev(i,|y|)} \rangle$
- $\bar{r} = r_1, r_2$, que codifica $\langle y(e(i, |y|)) \rangle$
- $\bar{s} = s_1, \dots, s_k$, que codifica $\langle z_i \rangle$

en CNF tal que para todo $\bar{a}, \bar{b}, \bar{d} \in \{0, 1\}^k$ y $\bar{c} \in \{0, 1\}^2$:

$$\bar{a}\bar{b}\bar{c}\bar{d} \models \varphi_F(\bar{p},\bar{q},\bar{r},\bar{s})$$
 sii $\bar{d} = F(\bar{a},\bar{b},\bar{c})$

Más aun, podemos computar φ_F a partir de $\langle F \rangle$ en tiempo polinomial y φ_F tiene tamaño $\leq (3k+2)2^{3k+2}$.

Fijada la máquina M, k es constante y luego φ_F tiene tamaño constante.

Teorema de Cook-Levin

Clase 5

Mini-configuraciones

Teorema de Cook-Levin

Problemas NP-completos

La clase coNP

Las clases **ExpTime** y **NExpTime**

SAT es NP-hard

Teorema

 $SAT \in \mathbf{NP}\text{-hard}$.

Demostración

Fijemos $\mathcal{L} \in \mathbf{NP}$ y veamos que $\mathcal{L} \leq_p \mathsf{SAT}$.

Como $\mathcal{L} \in \mathbf{NP}$, existe una máquina determinística M tal que

- M corre en tiempo t(n), con t un polinomio
- \bullet existe un polinomio p tal que

$$x \in \mathcal{L}$$
 sii $\exists u \in \{0,1\}^{p(|x|)} M(xu) = 1$

Definimos $F_x: \{0,1\}^{p(|x|)} \to \{0,1\}$ como $F_x(u) = M(xu)$. Podemos computar $\varphi_x(q_1,\ldots,q_{p(|x|)}) \in \text{CNF tal que}$

$$u \models \varphi_x$$
 sii $F_x(u) = 1$ sii $M(xu) = 1$

Luego $x \in \mathcal{L}$ sii φ_x es satisfacible sii $\varphi_x \in \mathsf{SAT}$.

SAT es NP-hard

Teorema

 $SAT \in \mathbf{NP}$ -hard.

Demostración ;incorrecta!

Fijemos $\mathcal{L} \in \mathbf{NP}$ y veamos que $\mathcal{L} \leq_p \mathsf{SAT}$.

Como $\mathcal{L} \in \mathbf{NP},$ existe una máquina determinística Mtal que

- M corre en tiempo t(n), con t un polinomio
- \bullet existe un polinomio p tal que

$$x \in \mathcal{L}$$
 sii $\exists u \in \{0,1\}^{p(|x|)} M(xu) = 1$

Definimos $F_x: \{0,1\}^{p(|x|)} \to \{0,1\}$ como $F_x(u) = M(xu)$. Podemos computar $\varphi_x(q_1, \ldots, q_{p(|x|)}) \in \text{CNF tal que}$

$$u \models \varphi_x$$
 sii $F_x(u) = 1$ sii $M(xu) = 1$

Luego $x \in \mathcal{L}$ sii φ_x es satisfacible sii $\varphi_x \in \mathsf{SAT}$. Problema: φ_x tiene tamaño exponencial: $O(p(|x|)2^{p(|x|)})$.

Demostración.

Fijemos $\mathcal{L} \in \mathbf{NP}$ y veamos que $\mathcal{L} \leq_p \mathsf{SAT}$.

Como $\mathcal{L} \in \mathbf{NP}$, existe una máquina determinística M tal que

- M corre en tiempo t(n), con t un polinomio
- M es oblivious, sin cinta de salida y con única cinta de trabajo
- existe un polinomio p tal que

$$x \in \mathcal{L}$$
 sii $\exists u \in \{0, 1\}^{p(|x|)} M(xu) = 1$

Dado x construimos $\varphi_x \in \text{CNF}$ en tiempo polinomial tal que

$$x \in \mathcal{L}$$
 sii $\varphi_x \in \mathsf{SAT}$.

La máquina M está fija; x es variable.

 $x \in \mathcal{L}$ sii $\exists u \in \{0,1\}^{p(|x|)} M(xu) = 1$ sii existe $u \in \{0,1\}^{p(|x|)}$ y existe un cómputo $C_0,\ldots,C_{t(|xu|)}$ de M a partir de la entrada xu tal que la salida en $C_{t(|xu|)}$ es 1 sii existe una codificación de la entrada $y \in \{0,1\}^{2n+4}$ con n = |x| + p(|x|) y una secuencia de mini-configuraciones $z_0, \ldots, z_m, z_i \in \{0, 1\}^k$ (k depende solo de M), con m = t(n) = t(|x| + p(|x|)), tal que: ψ_1 = "la entrada empieza con x y $u \in \{0,1\}^*$ " $\psi_2 = z_0$ es la configuración inicial" $\psi_3 = z_i$ evoluciona en z_{i+1} para $j = 0, \dots, m-1$

 $\psi_4 = z_m$ es una configuración final de M aceptadora

$$x \in \mathcal{L}$$

sii $\exists u \in \{0,1\}^{p(|x|)} M(xu) = 1$

sii existe $u \in \{0,1\}^{p(|x|)}$ y existe un cómputo $C_0,\ldots,C_{t(|xu|)}$ de M a partir de la entrada xu tal que la salida en $C_{t(|xu|)}$ es 1

sii existe una codificación de la entrada $y \in \{0, 1\}^{2n+4}$ con n = |x| + p(|x|) y una secuencia de mini-configuraciones $z_0, \ldots, z_m, z_i \in \{0, 1\}^k$ (k depende solo de M), con m = t(n) = t(|x| + p(|x|)), tal que:

$$\psi(n) = \iota(|x| + p(|x|)), \text{ tar que.}$$

 $\psi_1 = \text{``la entrada empieza con } x \text{ y } u \in \{0, 1\}^*$

$$\psi_2 = z_0$$
 es la configuración inicial"
 $\psi_3 = z_i$ evoluciona en z_{i+1} para $j = 0, \dots, m-1$

 $\psi_4 = z_m$ es una configuración final de M aceptadora

Veamos que cada una de estas condiciones se expresa con una fórmula

cantidad polinomial de variables
$$\psi_j(\underbrace{p_0, \dots, p_{2n+3}, \underbrace{q_1^0, \dots, q_k^0}_{z_0}, \dots, \underbrace{q_1^m, \dots, q_k^m}_{z_m}})$$
entrada y

 $(j = 1 \dots 4)$ en CNF computable en tiempo polinomial a partir de x.

$$\psi_1$$
 = "la entrada empieza con x y $u \in \{0, 1\}^*$ "
= y codifica la cinta con contenido " $\triangleright x$ u \square ":

• recordar que 00, 11, 01, 10 codifica cada símbolo de $\Sigma = \{0, 1, \triangleright, \square\}.$

$$\Sigma = \{0, 1, \triangleright, \sqcup\}.$$
• $y(0)y(1) = 01 \text{ (marca }\triangleright)$

• y(0)g(1) = 0 (marca ν) • y(2j+2) y y(2j+3) codifican a x(j) para $0 \le j \le |x|-1$

•
$$y(2j)$$
 y $y(2j+1)$ tienen el mismo valor para $|x|+1 \le j \le n$
• $y(2n+2)y(2n+3) = 10$ (marca \square)

se expresa con

$$\psi_1 = \neg p_0 \wedge p_1$$

$$\wedge \bigwedge_{j=0...|x|-1} \begin{cases} p_{2j+2} \wedge p_{2j+3} & \text{si } x(j) = 1 \\ \neg p_{2j+2} \wedge \neg p_{2j+3} & \text{si } x(j) = 0 \end{cases}$$

$$\wedge \bigwedge_{i=|x|+1...n} p_{2i} \leftrightarrow p_{2i+1}$$

$$\wedge p_{2n+2} \wedge \neg p_{2n+3}$$

Notar que no se especifican los valores de las variables correspondientes a u. Observar que $|\psi_1| = O(n)$.

 $\psi_2 = "z_0$ es la configuración inicial"

 $\psi_3 = \text{``}z_j$ evoluciona en z_{j+1} para $j = 0, \dots, m-1\text{''}.$ Para $0 < i \leq m$ la condición

$$\underbrace{\langle z_i \rangle}_k = F(\underbrace{\langle z_{i-1} \rangle}_k, \underbrace{\langle z_{prev(i,n)} \rangle}_k, \underbrace{\langle y(e(i,n) \rangle}_2))$$

se expresa con una $\psi_3^i \in \text{CNF}$, con ayuda la fórmula φ_F que ya analizamos,

 $\psi_3 = "z_j$ evoluciona en z_{j+1} para $j = 0, \dots, m-1$ ". Para $0 < i \leq m$ la condición

$$\underbrace{\langle z_i \rangle}_k = F(\underbrace{\langle z_{i-1} \rangle}_k, \underbrace{\langle z_{prev(i,n)} \rangle}_k, \underbrace{\langle y(e(i,n) \rangle}_2))$$

se expresa con una $\psi_3^i \in \text{CNF}$, con ayuda la fórmula φ_F que ya analizamos, en concreto $\psi_3^i =$

$$\varphi_F\left(\underbrace{q_1^{i-1},\ldots,q_k^{i-1}}_{\langle z_{i-1}\rangle},\underbrace{q_1^{prev(i,n)},\ldots,q_k^{prev(i,n)}}_{\langle z_{prev(i,n)}\rangle},\underbrace{p_{2e(i,n)},p_{2e(i,n)+1},\underbrace{q_1^i,\ldots,q_k^i}_{\langle z_i\rangle}}\right)$$

Podemos suponer que $e(i,n) \leq n+1$; primera celda de la cinta de entrada es posición 0; M con entrada xu no necesita leer más allá del primer blanco después de xu

 $\psi_3 = z_i$ evoluciona en z_{i+1} para $j = 0, \dots, m-1$. Para $0 < i \le m$ la condición

$$\underbrace{\langle z_i \rangle}_k = F(\underbrace{\langle z_{i-1} \rangle}_k, \underbrace{\langle z_{prev(i,n)} \rangle}_k, \underbrace{\langle y(e(i,n) \rangle}_2))$$

se expresa con una $\psi_3^i \in \text{CNF}$, con ayuda la fórmula φ_F que ya analizamos, en concreto $\psi_3^i =$

$$\varphi_F\left(\underbrace{q_1^{i-1},\ldots,q_k^{i-1}}_{\langle z_{i-1}\rangle},\underbrace{q_1^{prev(i,n)},\ldots,q_k^{prev(i,n)}}_{\langle z_{prev(i,n)}\rangle}, \underbrace{e(i,n)\leq n+1;}_{e(i,n)\leq n+1;} \right)$$
 primera celda de la cinta de entrada es posición 0; M con entrada xu no necesita leer más allá del primer blanco después de xu

Podemos suponer que e(i, n) < n + 1;primera celda de la cinta de entrada es posición 0; M conentrada xu no después de xu

Computamos ψ_3^i en tiempo polinomial y tiene tamaño $O(k2^{3k})$, pero k es constante.

Entonces $\psi_3 = \bigwedge_{i=1,...,m} \psi_3^i$ se construye en tiempo polinomial y expresa $(\forall i = 1,...,t(n)) z_i = F(z_{i-1},z_{prev(i,|y|)},\langle xu(e(i,n))\rangle)$

 $\begin{array}{l} \psi_4 \ = \ "z_m \ {\rm es} \ {\rm una} \ {\rm configuraci\'on} \ {\rm final} \ {\rm de} \ M \ {\rm aceptadora"} \\ = z_m \ {\rm es} \ {\rm de} \ {\rm la} \ {\rm forma} \ (*,1,q_f), \ {\rm se} \ {\rm expresa} \ {\rm con} \ \psi_4 \ {\rm an\'alogo} \ {\rm a} \ \psi_2. \\ |\psi_4| = O(1) \ (k \ {\rm depende} \ {\rm solo} \ {\rm de} \ M \ {\rm pero} \ M \ {\rm est\'a} \ {\rm fija}) \end{array}$

 $\psi_4=$ " z_m es una configuración final de M aceptadora" $=z_m \text{ es de la forma } (*,1,q_f), \text{ se expresa con } \psi_4 \text{ análogo a } \psi_2.$ $|\psi_4|=O(1)$ (k depende solo de M pero M está fija)

Finalmente,

$$\varphi_x = \psi_1 \wedge \psi_2 \wedge \psi_3 \wedge \psi_4$$

Observar que $|\varphi_x| = O(|x| + t(|x| + p(|x|))).$

- φ_x se construye en tiempo polinomial en |x| + p(|x|), o sea en tiempo polinomial en |x|
- $x \in \mathcal{L}$ sii φ_x es satisfacible sii $\varphi_x \in \mathsf{SAT}$

Ш

Corolario

 $\mathsf{SAT} \in \mathbf{NP\text{-}completo}.$

3SAT es **NP-completo**

Ya vimos que 3SAT es \mathbf{NP} . Para ver que 3SAT es \mathbf{NP} -hard probamos

Ejercicio

 $\mathsf{SAT} \leq_p \mathsf{3SAT}.$

Corolario

 $\mathsf{SAT}, \mathsf{3SAT} \in \mathbf{NP\text{-}completos}.$

Problemas NP-completos

Clase 5

Mini-configuraciones
Teorema de Cook-Levin

Problemas NP-completos

La clase CONP

Las clases **ExpTime** y **NExpTime**

Ejemplo de problema NP-completo

Proposición

 $INDSET \in \mathbf{NP-completo}$.

Demostración.

Ya vimos que INDSET es NP. Para ver que INDSET es NP-hard, probamos que 3SAT \leq_p INDSET. Supongamos una fórmula

$$\varphi = (l_{11} \lor l_{12} \lor l_{13}) \land (l_{21} \lor l_{22} \lor l_{33}) \land \cdots \land (l_{m1} \lor l_{m2} \lor l_{m3})$$

en 3CNF con m cláusulas (l_{ij} son literales) y variables x_1, \ldots, x_n .

- Definimos un grafo G_{φ} con 3m vértices. Cada vértice corresponde a cada variable de cada cláusula. Supongamos que z es un vértice de G_{φ} correspondiente a l_{ij} y que z' es un vértice de G_{φ} correspondiente a $l_{i'j'}$. Definimos una arista entre z y z' si i=i' o l_{ij} es la negación de $l_{i'j'}$ (o viceversa). G_{φ} es construible en tiempo polinomial en $|\varphi|$.
- Probamos que φ es satisfacible sii G_{φ} tiene un conjunto independiente de al menos m vértices.

$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

- Supongamos que $v \models \varphi$. Entonces para todo i = 1, ..., m tenemos $v \models l_{i1} \lor l_{i2} \lor l_{i3}$, de modo que $v \models l_{ij}$ para algún j. Sea S el conjunto de vértices $z_1, ..., z_m$ tal que z_i corresponde a l_{ij} y $v \models l_{ij}$. S es independiente: si existiera arista entre z_i y $z_{i'}$ sería porque 1) i = i' o 2) z_i corresponde a $l_{ij}, z_{i'}$ corresponde a $l_{i'j'}$ y l_{ij} es la negación de $l_{i'j'}$ (o viceversa). Ninguna puede pasar.
- Si S es un conjunto independiente en G_{φ} de m vértices, tenemos exactamente un vértice en cada "triángulo". Para cada $z \in S$:
 - si z corresponde a x_i definimos $v(x_i) = 1$
 - si z corresponde a $\neg x_i$ definimos $v(x_i) = 0$

Para todas las otras variables x para las que no está definido v, definimos v(x) de forma arbitraria. v está bien definida porque S es independiente; $v \models \varphi$.

Camino hamiltoniano

Un camino hamiltoniano en un grafo dirigido G es un camino que visita todos los vértices de G_{φ} exactamente una vez.

Problema: CAMHAM (Camino hamiltoniano)

 $\mathsf{CAMHAM} = \{ \langle G \rangle \colon G \text{ tiene un camino hamiltoniano} \}$

Proposición

 $\mathsf{CAMHAM} \in \mathbf{NP\text{-}completo}.$

Problema del viajante de comercio (travelling salesman problem)

Dadas n ciudades, representamos la distancia entre cada par de ciudades por medio de una matriz M de $n \times n$.

Problema: TSP (Problema del viajante de comercio o *Travelling Salesman Problem*)

hay una ruta de distancia $\leq k$ (de acuerdo a M) TSP = $\{\langle M, k \rangle$: que visita todas las ciudades de G exactamente $\}$ una vez y al finalizar vuelve a la ciudad de origen

Proposición

 $TSP \in \mathbf{NP\text{-}completo}.$

Problema de la mochila (knapsack problem)

Representamos una lista de n ´tems en una mochila con su valor y su peso por medio de una lista

$$M = [(v_1, p_1), (v_2, p_2), \dots, (v_n, p_n)].$$

Problema: KNAPSACK (Problema de la mochila o knapsack problem)

 $\mathsf{KNAPSACK} = \{ \langle M, v, p \rangle \colon \begin{array}{l} \text{existe un conjunto de ítems por un valor} \\ \text{total} \ge v \text{ y con un peso} \le p \end{array} \}$

Proposición

 $\mathsf{KNAPSACK} \in \mathbf{NP\text{-}completo}.$

La clase **conp**

Clase 5

Mini-configuraciones Teorema de Cook-Levin Problemas **NP-completos**

La clase **coNP**

Las clases **ExpTime** y **NExpTime**

En general: problemas C-COMPLETOS y C-HARD

La noción de **NP-hard** y **NP-completo** se aplica a otras clases de complejidad.

En general, si C es una clase de complejidad, entonces

Clase de complejidad: C-hard, C-completo

 \mathcal{L} es C-hard si $\mathcal{L}' \leq_{p} \mathcal{L}$ para todo $\mathcal{L}' \in \mathbb{C}$. \mathcal{L} es C-completo si $\mathcal{L} \in \mathbb{C}$ y \mathcal{L} es C-hard.

- En realidad, estas son nociones de completitud y hardness para la reducción \leq_p .
- Más adelante veremos clases para las que no tiene sentido usar ≤_p y necesitamos reducciones más débiles.

En general: problemas **coC**

Notación: Complemento de un lenguaje

 $\overline{\mathcal{L}} = \{0,1\}^* \setminus \mathcal{L}$ es el complemento de \mathcal{L} .

Clase de complejidad: coC

Si ${f C}$ es una clase de complejidad, definimos

$$\mathbf{coC} = \{ \mathcal{L} \colon \overline{\mathcal{L}} \in \mathbf{C} \}.$$

La clase **CONP**

Clase de complejidad: **coNP**

 $\mathbf{coNP} = \{ \mathcal{L} \colon \overline{\mathcal{L}} \in \mathbf{NP} \}.$

Es decir, \mathbf{conp} es la clase de lenguajes $\mathcal L$ tal que existe un polinomio $p:\mathbb N\to\mathbb N$ y una máquina determinística M tal que

- M corre en tiempo polinomial
- para todo x:

$$x \in \mathcal{L}$$
 sii para todo $u \in \{0,1\}^{p(|x|)} M(\langle x, u \rangle) = 1$

Relación de CONP con P y NP

Ejercicio

 $P \subseteq NP \cap coNP$.

Ejercicio

Si P = NP entonces NP = CoNP.

Ejemplo de problema CONP-completo

Problema: Tautología

$$\mathsf{TAUT} = \{ \langle \varphi \rangle \colon \varphi \in \mathsf{CNF} \text{ es una tautología} \}$$

Observar que φ es una tautología si
i $\neg \varphi$ es insatisfacible.

$$\langle \varphi \rangle \in \mathsf{TAUT}$$
 sii $\langle \neg \varphi \rangle \notin \mathsf{SAT}$

Ejercicio

 $\mathsf{TAUT} \in \mathbf{CoNP\text{-}completo}.$

Las clases **ExpTime** y **NExpTime**

Clase 5

Mini-configuraciones
Teorema de Cook-Levin
Problemas NP-completos
La clase CONP
Las clases ExpTime y NExpTime

Las clases **ExpTime** y **NExpTime**

Clase de complejidad: **ExpTime** y **NExpTime**

ExpTime =
$$\bigcup_{c>0} \mathbf{DTime}(2^{n^c})$$
.
NExpTime = $\bigcup_{c>0} \mathbf{NDTime}(2^{n^c})$.

Son los análogos de P y NP pero con tiempo exponencial.

$\mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{ExpTime} \subseteq \mathbf{NExpTime}$

Ejercicio

 $NP \subseteq ExpTime$.

Si P = NP entonces ExpTime = NExpTime.

Demostración.

Supongamos que $\mathbf{P} = \mathbf{NP}$. Tomemos $\mathcal{L} \in \mathbf{NDTIME}(2^{n^c})$ y N una máquina no-determinística que decide \mathcal{L} en tiempo $c \cdot 2^{n^c}$.

Si P = NP entonces ExpTime = NExpTime.

Demostración.

Supongamos que $\mathbf{P} = \mathbf{NP}$. Tomemos $\mathcal{L} \in \mathbf{NDTIME}(2^{n^c})$ y N una máquina no-determinística que decide \mathcal{L} en tiempo $c \cdot 2^{n^c}$.

Consideremos $\mathcal{L}_{pad} = \{\langle x, 1^{2^{|x|^c}} \rangle \colon x \in \mathcal{L}\}.$

Veamos que $\mathcal{L}_{pad} \in \mathbf{NP}$.

Si P = NP entonces ExpTime = NExpTime.

Demostración.

Supongamos que $\mathbf{P} = \mathbf{NP}$. Tomemos $\mathcal{L} \in \mathbf{NDTIME}(2^{n^c})$ y N una máquina no-determinística que decide \mathcal{L} en tiempo $c \cdot 2^{n^c}$.

Consideremos $\mathcal{L}_{\text{pad}} = \{ \langle x, 1^{2^{|x|^c}} \rangle \colon x \in \mathcal{L} \}.$

Veamos que $\mathcal{L}_{pad} \in \mathbf{NP}$. Definimos una máquina no-determinística N' tal que con entrada y hace esto:

si no existe z tal que $y = \langle z, 1^{2^{|y|^c}} \rangle$, rechazar si no, y es de la forma $\langle z, 1^{2^{|y|^c}} \rangle$ simular N con entrada z por $c \cdot 2^{|z|^c}$ pasos devolver la salida de esta simulación

Si P = NP entonces ExpTime = NExpTime.

Demostración.

Supongamos que $\mathbf{P} = \mathbf{NP}$. Tomemos $\mathcal{L} \in \mathbf{NDTIME}(2^{n^c})$ y N una máquina no-determinística que decide \mathcal{L} en tiempo $c \cdot 2^{n^c}$.

Consideremos $\mathcal{L}_{\text{pad}} = \{ \langle x, 1^{2^{|x|^c}} \rangle \colon x \in \mathcal{L} \}.$

Veamos que $\mathcal{L}_{pad} \in \mathbf{NP}$. Definimos una máquina no-determinística N' tal que con entrada y hace esto:

si no existe z tal que $y = \langle z, 1^{2^{|y|^c}} \rangle$, rechazar si no, y es de la forma $\langle z, 1^{2^{|y|^c}} \rangle$ simular N con entrada z por $c \cdot 2^{|z|^c}$ pasos devolver la salida de esta simulación

N' corre en tiempo polinomial (en |y|) y por lo tanto $\mathcal{L}_{pad} \in \mathbf{NP} = \mathbf{P}$.

Si P = NP entonces ExpTime = NExpTime.

Demostración.

Supongamos que $\mathbf{P} = \mathbf{NP}$. Tomemos $\mathcal{L} \in \mathbf{NDTIME}(2^{n^c})$ y N una máquina no-determinística que decide \mathcal{L} en tiempo $c \cdot 2^{n^c}$.

Consideremos $\mathcal{L}_{\text{pad}} = \{ \langle x, 1^{2^{|x|^c}} \rangle \colon x \in \mathcal{L} \}.$

Veamos que $\mathcal{L}_{pad} \in \mathbf{NP}$. Definimos una máquina no-determinística N' tal que con entrada y hace esto:

si no existe z tal que $y = \langle z, 1^{2^{|y|^c}} \rangle$, rechazar si no, y es de la forma $\langle z, 1^{2^{|y|^c}} \rangle$ simular N con entrada z por $c \cdot 2^{|z|^c}$ pasos devolver la salida de esta simulación

N' corre en tiempo polinomial (en |y|) y por lo tanto $\mathcal{L}_{\mathrm{pad}} \in \mathbf{NP} = \mathbf{P}$. Veamos que $\mathcal{L}_{\mathrm{pad}} \in \mathbf{DTIME}(2^{n^c})$.

Si P = NP entonces ExpTime = NExpTime.

Demostración.

Supongamos que $\mathbf{P} = \mathbf{NP}$. Tomemos $\mathcal{L} \in \mathbf{NDTIME}(2^{n^c})$ y N una máquina no-determinística que decide \mathcal{L} en tiempo $c \cdot 2^{n^c}$.

Consideremos $\mathcal{L}_{\text{pad}} = \{ \langle x, 1^{2^{|x|^c}} \rangle \colon x \in \mathcal{L} \}.$

Veamos que $\mathcal{L}_{pad} \in \mathbf{NP}$. Definimos una máquina no-determinística N' tal que con entrada y hace esto:

si no existe z tal que $y = \langle z, 1^{2^{|y|^c}} \rangle$, rechazar si no, y es de la forma $\langle z, 1^{2^{|y|^c}} \rangle$ simular N con entrada z por $c \cdot 2^{|z|^c}$ pasos devolver la salida de esta simulación

N' corre en tiempo polinomial (en |y|) y por lo tanto $\mathcal{L}_{pad} \in \mathbf{NP} = \mathbf{P}$. Veamos que $\mathcal{L}_{pad} \in \mathbf{DTIME}(2^{n^c})$. Definimos una máquina determinística M tal que dada la entrada x:

computa
$$y = \langle x, 1^{2^{|x|^c}} \rangle$$
 (tiempo $O(2^{|x|^c})$)
decide si $y \in \mathcal{L}_{pad}$ (sii $x \in \mathcal{L}$) (tiempo poli en $|y|$)

Si P = NP entonces ExpTime = NExpTime.

Demostración.

Supongamos que $\mathbf{P} = \mathbf{NP}$. Tomemos $\mathcal{L} \in \mathbf{NDTIME}(2^{n^c})$ y N una máquina no-determinística que decide \mathcal{L} en tiempo $c \cdot 2^{n^c}$.

Consideremos $\mathcal{L}_{\text{pad}} = \{ \langle x, 1^{2^{|x|^c}} \rangle \colon x \in \mathcal{L} \}.$

Veamos que $\mathcal{L}_{pad} \in \mathbf{NP}$. Definimos una máquina no-determinística N' tal que con entrada y hace esto:

si no existe z tal que $y = \langle z, 1^{2^{|y|^c}} \rangle$, rechazar si no, y es de la forma $\langle z, 1^{2^{|y|^c}} \rangle$ simular N con entrada z por $c \cdot 2^{|z|^c}$ pasos devolver la salida de esta simulación

N' corre en tiempo polinomial (en |y|) y por lo tanto

 $\mathcal{L}_{\mathrm{pad}} \in \mathbf{NP} = \mathbf{P}$. Veamos que $\mathcal{L}_{\mathrm{pad}} \in \mathbf{DTime}(2^{n^c})$. Definimos una máquina determinística M tal que dada la entrada x:

computa
$$y = \langle x, 1^{2^{|x|^c}} \rangle$$
 (tiempo $O(2^{|x|^c})$) decide si $y \in \mathcal{L}_{pad}$ (sii $x \in \mathcal{L}$) (tiempo poli en $|y|$)

M corre en tiempo $O(2^{|x|^{c+d}})$ y decide \mathcal{L} , luego $\mathcal{L} \in \mathbf{DTIME}(2^{|x|^c})$.

P vs NP

- $ightharpoonup P = \mathbf{NP} \circ \mathbf{P} \subseteq \mathbf{NP}$? Es una pregunta abierta.
- ¿Reconocer la corrección de una solución es esencialmente más fácil que generarla?
 - Por ejemplo, dado un sistema axiomático \mathcal{S} (= axiomas + reglas de inferencia) el lenguaje

 $\{\langle \varphi, 1^n \rangle \colon \varphi$ tiene una demostración en $\mathcal S$ de longitud $\leq n\}$

es \mathbf{NP} . Pero verificar que una secuencia de pasos es una demostración es \mathbf{P} .

• En algunos casos, ¿lo mejor que podemos hacer es usar la fuerza bruta para llegar a la solución?