

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМА УПРАВЛЕНИЯ

КАФЕДРА СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ НА ТЕМУ:*

«Прогнози	рование цен на автомобили»	
Студент <u>ИУ5Ц-83Б</u>	<u></u>	В.В. Малахов
(Группа)	(Подпись, дата)	(ИО.Фамилия)
Руководитель		Ю.Е. Гапанюк
	(Подпись, дата)	(И.О.Фамилия)
Консультант		(11.0.1
	(Подпись, дата)	(И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

	УТВЕР	ЖДАЮ		
Заве	дующий к	афедрой		
		1 1	(Индекс)
		(И.О.Фами	лия)	
11	\\		20	г

ЗАДАНИЕ на выполнение научно-исследовательской работы

по теме: «Прогнозирование цен н	а автомобили»	_
по теме	а автомооили//	
Студент группы <u>ИУ5Ц-83Б</u>		
Малахов	Владислав Витальевич	
(Фамі	илия, имя, отчество)	
Направленность НИР (учебная, исследов ИССЛЕДОВАТЕЛЬСКА)		производственная, др.)
Источник тематики (кафедра, предприятие,	НИР) КАФЕДРА	
График выполнения НИР: 25% к 3 нед., 50% Техническое задание Решить задачу риспользованием материалов дисциплины «	регрессии по прогнозирован	ию цен на автомобили с
Оформление курсовой работы: Расчетно-пояснительная записка на Перечень графического (иллюстративно	38 листах формата А4 эго) материала (чертежи, г	
Дата выдачи задания <u>«23» февраля 2024 г.</u>		
Руководитель НИР	(Подпись, дата)	Ю.Е. Гапанюк (И.О.Фамилия)
Студент	(Подпись, дата)	В.В. Малахов (И.О.Фамилия)

<u>Примечание</u>: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

СОДЕРЖАНИЕ

1.	Ввел	ение	4
2.		рвная часть	
		Іостановка задачи	
		Зыбор набора данных для построения моделей машинного обучения	
	2.2.1.		
	2.2.2.	Импорт библиотек	6
	2.2.3.	Загрузка данных	6
2	2.3.	Разведочный анализ данных	6
	2.3.1.	Основные характеристики	6
	2.3.2.	Обработка данных с неинформативными признаками	7
	2.3.3.	Обработка пропусков	10
	2.3.4.	Переименование столбцов	10
	2.3.5.	Преобразование столбцов	11
	2.3.6.	Исправление ошибок	12
	2.3.7.	Замена данных	15
	2.3.8.	Структура данных	15
2	2.4. I	Содирование категориальных признаков и масштабирование данных	17
	2.4.1.	Кодирование категориальных признаков	17
	2.4.2.	Масштабирование данных	19
2	2.5. I	Сорреляционный анализ данных	26
2	2.6. I	Зыбор подходящих моделей для решения задачи регрессии	30
2	2.7. I	Зыбор метрик для оценки качества моделей	30
2	2.8.	Рормирование обучающей и тестовой выборок	32
2	2.9. I	Іостроение базового решения (baseline) без подбора гиперпараметров	32
2	2.10. I	Тодбор оптимальной модели и гиперпараметра	33
2	2.11. (Оптимальное значение гиперпараметра. Сравнение качества с baseline	34
2	2.12.	Рормирование выводов о качестве построенных моделей	34
3.	Закл	ючение	38
1	Спис	AND THEODOTAIN	39

1. Введение

В качестве предметной области был выбран набор данных, содержащий данные об автомобилях, проданных за некоторый период на территории США.

Задача данной работы - предсказание цены автомобиля на основе нескольких факторов. Данная задача может быть актуальна для автомобильной компании, планирующей свой выход на автомобильный рынок США, открыв там свое производственное предприятие и производя автомобили локально, чтобы составить конкуренцию своим американским и европейским аналогам.

Решение этой задачи может быть использовано руководством автомобильной компании для понимания того, как именно цены изменяются в зависимости от характеристик автомобилей. С использованием этих данных, оно сможет более оптимально разрабатывать новые модели своих автомобилей, чтобы соответствовать определенным ценовым сегментам. Кроме того, построенная модель регрессии может стать хорошим способом для понимания динамики ценообразования на новом рынке.

2. Основная часть

2.1. Постановка задачи

Необходимо решить задачу регрессии по прогнозированию цен на автомобили с использованием материалов дисциплины «Технологии машинного обучения».

2.2. Выбор набора данных для построения моделей машинного обучения

2.2.1. Текстовое описание

Данный набор доступен по адресу:

https://www.kaggle.com/datasets/goyalshalini93/car-data

Набор данных имеет следующие атрибуты:

- car_ID порядковый номер строки
- symboling обозначение
- CarName марка + модель автомобиля
- fueltype тип топлива
- aspiration тип подачи воздуха в двигатель (атмосферный/турбированный)
- doornumber число дверей
- carbody тип кузова
- drivewheel привод
- enginelocation расположение двигателя
- wheelbase длина колесной базы
- carlength длина автомобиля
- carwidth ширина автомобиля
- carheight высота автомобиля
- curbweight снаряженная масса
- enginetype тип двигателя
- cylindernumber число цилиндров
- enginesize объем двигателя
- fuelsystem тип топливной системы
- boreratio интерес для покупателя
- stroke поршни
- compressionratio компрессия

- horsepower лошадиные силы
- peakrpm обороты в минуты, при которых достигается максимальный момент
- citympg расход топлива по городу
- highwaympg расход по трассе
- price цена

Решается задача регрессии. В качестве целевого признака - цена.

2.2.2. Импорт библиотек

Импортируем необходимые начальные библиотеки:

```
[1]: import warnings
warnings.filterwarnings('ignore')

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

2.2.3. Загрузка данных

Загрузим данные:

```
[2]: data = pd.read_csv('car.csv')
```

2.3. Разведочный анализ данных

2.3.1. Основные характеристики

Первые 5 строк датасета:

[3]: data.head()

[3]:		car_ID sy	mboling				type	aspiration	doorn	umber	\
	0	1	3	alfa-romero giu			gas	std		two	
	1	2	3		mero stel		gas	std	l	two	
	2	3	1 a	alfa-romero		-	gas	std		two	
	3	4	2			100 ls	gas	std		four	
	4	5	2		audi	100ls	gas	std	l	four	
		carbod	ly drivewhe	el engine	elocation	wheelbase		enginesize	\		
	0	convertible	•	wd	front	88.6		130	,		
	1	convertible	r	wd	front	88.6	•••	130			
	2	hatchbac	k r	wd	front	94.5	•••	152			
	3	seda	n f	wd	front	99.8		109			
	4	seda	n 4	wd	front	99.4	•••	136	•		
		fuelsystem	horeratio	strokeco	mnressio	nratiohorsei	oower	· neak	rnmeit	vmng	\
	0	fuelsystem	boreratio		ompressio	onratiohorsej	ower	-	rpmcit		\
	0	mpfi	i 3.4	7 2.68	ompressio	9.0	ower	111 5	000	21	\
	1	mpfi mpfi	i 3.4 i 3.4'	7 2.68 7 2.68	ompressio	9.0 9.0	ower	111 5 111 5	000	21 21	\
	1 2	mpfi mpfi mpfi	i 3.4' i 3.4' i 2.6	7 2.68 7 2.68 8 3.47	ompressio	9.0 9.0 9.0	oower	111 5 111 5 154 5	000	21 21 19	\
	1	mpfi mpfi	i 3.4 i 3.4 i 2.6 i 3.19	7 2.68 7 2.68 8 3.47 9 3.40	ompressio	9.0 9.0	oower	111 5 111 5 154 5 102 5	000	21 21	\
	1 2 3	mpfi mpfi mpfi mpfi	i 3.4 i 3.4 i 2.6 i 3.19 i 3.19	7 2.68 7 2.68 8 3.47 9 3.40	ompressio	9.0 9.0 9.0 10.0	oower	111 5 111 5 154 5 102 5	000 000 000 500	21 21 19 24	\
	1 2 3	mpfi mpfi mpfi mpfi mpfi	i 3.4' i 3.4' i 2.6 i 3.19 i 3.19	7 2.68 7 2.68 8 3.47 9 3.40	ompressio	9.0 9.0 9.0 10.0	oower	111 5 111 5 154 5 102 5	000 000 000 500	21 21 19 24	\
	1 2 3 4	mpfi mpfi mpfi mpfi mpfi	i 3.4' i 3.4' i 2.6' i 3.19 i 3.19 g price 7 13495.0	7 2.68 7 2.68 8 3.47 9 3.40	ompressio	9.0 9.0 9.0 10.0	oower	111 5 111 5 154 5 102 5	000 000 000 500	21 21 19 24	\
	1 2 3 4	mpfi mpfi mpfi mpfi mpfi highwaymp	i 3.4 i 3.4 i 2.6 i 3.19 i 3.19 g price 7 13495.0 7 16500.0	7 2.68 7 2.68 8 3.47 9 3.40	ompressio	9.0 9.0 9.0 10.0	oower	111 5 111 5 154 5 102 5	000 000 000 500	21 21 19 24	\
	1 2 3 4 0 1	mpfi mpfi mpfi mpfi mpfi highwaymp	i 3.4 i 3.4 i 2.6 i 3.19 i 3.19 g price 7 13495.0 7 16500.0	7 2.68 7 2.68 8 3.47 9 3.40	ompressio	9.0 9.0 9.0 10.0	oower	111 5 111 5 154 5 102 5	000 000 000 500	21 21 19 24	\

[5 rows x 26 columns]Размер датасета:

[4]: data.shape

[4]: (205, 26)

Столбцы:

- [5]: data.columns
- [5]: Index(['car_ID', 'symboling', 'CarName', 'fueltype', 'aspiration', 'doornumber', 'carbody', 'drivewheel', 'enginelocation', 'wheelbase', 'carlength', 'carwidth', 'carheight', 'curbweight', 'enginetype', 'cylindernumber', 'enginesize', 'fuelsystem', 'boreratio', 'stroke', 'compressionratio', 'horsepower', 'peakrpm', 'citympg', 'highwaympg', 'price'], dtype='object')

Типы данных:

[6]: data.dtypes

[6]: car_ID int64 symboling int64 CarName object object fueltype object aspiration doornumber object object carbody object drivewheel enginelocation object wheelbase float64 carlength float64 carwidth float64 carheight float64 curbweight int64 enginetype object cylindernumber object enginesize int64 fuelsystem object boreratio float64 stroke float64 compressionratio float64 horsepower int64 peakrpm int64 citympg int64 highwaympg int64 price float64 dtype: object

2.3.2. Обработка данных с неинформативными признаками

В датасете присутствуют данные, которые не несут полезной информации для дальнейшего анализа. Аналитически посчитаем неинформативные признаки (у которых более 90% строк имеют одинако-

вое значение):

```
[7] : num_rows=len(data.index)
low_information_cols=[]#

forcolindata.columns:
    cnts=data[col].value_counts(dropna=False)
    top_pct=(cnts/num_rows).iloc[o]

iftop_pct>0.90:low_information_cols.append(col)
    print('{0}:{1:.5f}%'.format(col,top_pct*100))print(cnts)
    print()
```

fueltype: 90.24390%

gas 185 diesel 20

Name: fueltype, dtype: int64

enginelocation: 98.53659%

front 202 rear 3

Name: enginelocation, dtype: int64

Удалим соответствующие столбцы:

```
[8]: data.drop(['fueltype', 'enginelocation'], inplace=True, axis=1)
```

Некоторые столбцы также не представляют ценности для дальнейшего анализа. Также удалим их:

```
[9]: data.drop(['car_ID', 'symboling', 'enginesize', 'stroke', 'compressionratio'], inplace=True, axis=1)
```

Проверим корректность удаления:

```
[10] : data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204 Data
columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	CarName	205 non-null	object
1	aspiration	205 non-null	object
2	doornumber	205 non-null	object
3	carbody	205 non-null	object
4	drivewheel	205 non-null	object
5	wheelbase	205 non-null	float64
6	carlength	205 non-null	float64
7	carwidth	205 non-null	float64
8	carheight	205 non-null	float64
9	curbweight	205 non-null	int64

10	enginetype	205 non-null	object	
11	cylindernumber	205 non-null	object	
12	fuelsystem	205 non-null	object	

```
boreratio
                      205 non-null
                                       float64
13
    horsepower
                      205 non-null
                                       int64
    peakrpm
                      205 non-null
                                       int64
15
    citympg
                      205 non-null
                                       int64
16
17
    highwaympg
                      205 non-null
                                       int64
18
    price
                      205 non-null
                                       float64
```

dtypes: float64(6), int64(5), object(8) memory

usage: 30.6+ KB

2.3.3. Обработка пропусков

Определим столбцы с пропусками данных:

[11] : data.isnull().sum()

[11]	:	CarName	(o
		aspiration	(o
		doornumber	(o
		carbody		o
		drivewheel		o
		wheelbase		0
		carlength		o
		carwidth		o
		carheight		o
		curbweight	(o
		enginetype	(o
		cylindernumber	(o
		fuelsystem	(o
		boreratio	(o
		horsepower		o
		peakrpm		o
		citympg		o
		highwaympg		o
		price	(o
		dtype: int64		
		• •		

Видим, что в наборе данных отсутствуют пропуски.

2.3.4. Переименование столбцов

Для более удобной дальнейшей работы переименуем столбцы:

[13]: data.head()

[13]:		CarName	aspiration	doors	body	drive	wheelbase	\
	0	alfa-romero giulia	std	two	convertible	rwd	88.6	
	1	alfa-romero stelvio	std	two	convertible	rwd	88.6	
	2	alfa-romero Quadrifoglio	std	two	hatchback	rwd	94.5	
	3	audi 100 ls	std	four	sedan	fwd	99.8	
	4	audi 100ls	std	four	sedan	4wd	99.4	

length	width	height	weight (weight enginetype		system	bore	\
168.8	64.1	48.8	2548	dohc	four	mpfi	3.47	
168.8	64.1	48.8	2548	dohc	four	mpfi	3.47	
171.2	65.5	52.4	2823	ohcv	six	mpfi	2.68	
176.6	66.2	54.3	2337	ohc	four	mpfi	3.19	
176.6	66.4	54.3	2824	ohc	five	mpfi	3.19	
horsepo	wer pe	eakrpm (citympg	highwaympg	price			
	111	5000	21	27	13495.0			
	111	5000	21	27	16500.0			
	154	5000	19	26	16500.0			
	102	5500	24	30	13950.0			
	115	5500	18	22	17450.0			
	168.8 168.8 171.2 176.6 176.6	168.8 64.1 168.8 64.1 171.2 65.5 176.6 66.2 176.6 66.4 horsepower per 111 111 154 102	168.8 64.1 48.8 168.8 64.1 48.8 171.2 65.5 52.4 176.6 66.2 54.3 176.6 66.4 54.3 horsepower peakrpm 111 5000 111 5000 154 5000 102 5500	168.8 64.1 48.8 2548 168.8 64.1 48.8 2548 171.2 65.5 52.4 2823 176.6 66.2 54.3 2337 176.6 66.4 54.3 2824 horsepower peakrpm citympg 111 5000 21 111 5000 21 154 5000 19 102 5500 24	168.8 64.1 48.8 2548 dohc 168.8 64.1 48.8 2548 dohc 171.2 65.5 52.4 2823 ohcv 176.6 66.2 54.3 2337 ohc 176.6 66.4 54.3 2824 ohc horsepower peakrpm citympg highwaympg 111 5000 21 27 111 5000 21 27 154 5000 19 26 102 5500 24 30	168.8 64.1 48.8 2548 dohc four 168.8 64.1 48.8 2548 dohc four 171.2 65.5 52.4 2823 ohcv six 176.6 66.2 54.3 2337 ohc four 176.6 66.4 54.3 2824 ohc five horsepower peakrpm citympg bighwaympg price 111 5000 21 27 13495.0 111 5000 21 27 16500.0 154 5000 19 26 16500.0 102 5500 24 30 13950.0	168.8 64.1 48.8 2548 dohc four mpfi 168.8 64.1 48.8 2548 dohc four mpfi 171.2 65.5 52.4 2823 ohcv six mpfi 176.6 66.2 54.3 2337 ohc four mpfi 176.6 66.4 54.3 2824 ohc five mpfi horsepower peakrpm citympg highwaympg price 111 5000 21 27 13495.0 111 5000 21 27 16500.0 154 5000 19 26 16500.0 102 5500 24 30 13950.0	168.8 64.1 48.8 2548 dohc four mpfi 3.47 168.8 64.1 48.8 2548 dohc four mpfi 3.47 171.2 65.5 52.4 2823 ohcv six mpfi 2.68 176.6 66.2 54.3 2337 ohc four mpfi 3.19 176.6 66.4 54.3 2824 ohc five mpfi 3.19 horsepower peakrpm citympg highwaympg price 111 5000 21 27 13495.0 111 5000 21 27 16500.0 154 5000 19 26 16500.0 102 5500 24 30 13950.0

2.3.5. Преобразование столбцов

Преобразуем столбец, содержащий информацию о марке и модели, к двум отдельным столбцам:

```
# Разделяем столбец 'CarName' на две части по пробелу split_data = data['CarName'].str.partition(' ')

# Присваиваем первую часть (производитель) столбцу 'manuf' data['manuf'] = split_data[o]

# Присваиваем оставшуюся часть (модель) столбцу 'model' data['model'] = split_data[2]

data.drop(['CarName'],axis=1,inplace=True) data = data[['manuf, 'model', 'aspiration', 'doors', 'body', 'drive', 'wheelbase', 'length', 'width', 'height', 'weight', 'enginetype', 'cyl', 'fuelsystem', 'bore', 'horsepower', 'peakrpm', 'citympg', 'highwaympg', 'price']] data.head()
```

[14] :		r	nanuf	mo	odel aspi	ration	doors		body dı	rive	wheelbase	e \
	0	alfa-ron	iero	giuli	ia	std	two	con	vertible	rwd	88.6	Ó
	1	alfa-ron	nero	stelvi	.0	std	two	con	vertible	rwd	88.6	ó
	2	alfa-ron	nero	Quadrifogli	io	std	two) h	atchback	rwd	94.5	5
	3		audi	100	ls	std	four		sedan	fwd	99.8	3
	4		audi	100	ols	std	four		sedan	4wd	99.4	ļ
		length	width	height	weight	enginet	ype	cyl	fuelsystem	bore	e \	
	0	168.8	64.1	48.8	2548	(dohc	four	mpfi	3.47	,	
	1	168.8	64.1	48.8	2548	(dohc	four	mpfi	3.47		
	2	171.2	65.5	52.4	2823	(ohcv	six	mpfi	2.68	}	
	3	176.6	66.2	54.3	2337		ohc	four	mpfi	3.19		
	4	176.6	66.4	54.3	2824		ohc	five	mpfi	3.19		
		_										
		horsepo	wer p	eakrpm cit	tympg	highway	mpg	pric	e			
	0		111	5000	21		2 7	13495.	.0			
	1		111	5000	21		27	16500	.0			
	2		154	5000	19		26	16500	.0			
	3		102	5500	24		30	13950	.0			
	4		115	5500	18		22	17450.	.0			

2.3.6. Исправление ошибок

Проверим наличие ошибок:

```
data.manuf.unique()
```

[16]: data.model.unique()

'cayenne', 'boxter', '12tl',

'corona mark ii', 'corona',

[16]: array(['giulia', 'stelvio', 'Quadrifoglio', '100 ls', '100ls', 'fox', '5000', '4000', '5000s (diesel)', '320i', 'x1', 'x3', 'z4', 'x4', 'x5', 'impala', 'monte carlo', 'vega 2300', 'rampage', 'challenger se', 'd200', 'monaco (sw)', 'colt hardtop', 'colt (sw)', 'coronet custom', 'dart custom', 'coronet custom (sw)', 'civic', 'civic cvcc', 'accord cvcc', 'accord lx', 'civic 1500 gl', 'accord', 'civic 1300', 'prelude', 'civic (auto)', 'MU-X', 'D-Max ', 'D-Max V-Cross', 'xj', 'xf', 'xk', 'rx3', 'glc deluxe', 'rx2 coupe', 'rx-4', '626', 'glc', 'rx-7 gs', 'glc 4', 'glc custom l', 'glc custom', 'electra 225 custom', 'century luxus (sw)', 'century', 'skyhawk', 'opel isuzu deluxe', 'skylark', 'century special', 'regal sport coupe (turbo)', 'cougar', 'mirage', 'lancer', 'outlander', 'g4', 'mirage g4', 'montero', 'pajero', 'versa', 'gt-r', 'rogue', 'latio', 'titan', 'leaf', 'juke', 'note', 'clipper', 'nv200', 'dayz', 'fuga', 'otti', 'teana', 'kicks', '504', '304', '504 (sw)', '604sl', '505s turbo diesel', 'fury iii', 'cricket', 'satellite

custom (sw)', 'fury gran sedan', 'valiant', 'duster', 'macan', 'panamera',

'5 gtl', '99e', '99le', '99gle', None, 'dl', 'brz', 'baja', 'r1', 'r2', 'trezia', 'tribeca',

'corolla 1200', 'corona hardtop', 'corolla 1600 (sw)', 'carina', 'mark ii',

```
'rabbit custom', '145e (sw)', '144ea', '244dl', '245', '264gl', 'diesel', '246'],
               dtype=object)
       data.aspiration.unique()
[17]:
[17]: array(['std', 'turbo'], dtype=object)
       data.doors.unique()
[18]:
[18]: array(['two', 'four'], dtype=object)
       data.body.unique()
[19]:
[19]: array(['convertible', 'hatchback', 'sedan', 'wagon', 'hardtop'], dtype=object)
       data.drive.unique()
[20]:
[20]: array(['rwd', 'fwd', '4wd'], dtype=object)
[21]:
       data.cyl.unique()
[21]: array(['dohc', 'ohcv', 'ohc', 'l', 'rotor', 'ohcf', 'dohcv'], dtype=object)
[22]:
       data.enginetype.unique()
[22]: array(['four', 'six', 'five', 'three', 'twelve', 'two', 'eight'], dtype=object)
       data.fuelsystem.unique()
[23]:
[23]: array(['mpfi', '2bbl', 'mfi', '1bbl', 'spfi', '4bbl', 'idi', 'spdi'], dtype=object)
          В столбце производителя автомобилей есть небольшие ошибки. Исправим их:
       data.manuf=data.manuf.str.lower()
[24]:
       def replace name(a,b):
            data.manuf.replace(a,b,inplace=True)
       replace_name('maxda','mazda')
       replace_name('porcshce','porsche')
       replace_name('toyouta','toyota')
       replace_name('vokswagen','volkswagen')
       replace_name('vw','volkswagen')
       data.manuf.unique()
[24]: array(['alfa-romero', 'audi', 'bmw', 'chevrolet', 'dodge', 'honda',
               'isuzu', 'jaguar', 'mazda', 'buick', 'mercury', 'mitsubishi',
               'nissan', 'peugeot', 'plymouth', 'porsche', 'renault', 'saab', 'subaru', 'tovota',
               'volkswagen', 'volvo'], dtype=object)
       data.head()
[25]:
                                  model aspiration
                                                                                      wheelbase \
[25]:
                  manuf
                                                       doors
                                                                       body drive
```

'corolla', 'corolla liftback', 'celica gt liftback', 'corolla tercel', 'corona liftback', 'starlet', 'tercel', 'cressida', 'celica gt', 'rabbit', '1131 deluxe sedan',

'model 111', 'type 3', '411 (sw)', 'super beetle', 'dasher',

1alfa-romerostelviostdtwo convertiblerwd2alfa-romeroQuadrifogliostdtwo hatchbackrwd3audi100 lsstdfoursedanfwd4audi100 lsstdfoursedan4wd	94.5 99.8 99.4
length width height weight enginetype cyl fuelsystem bor 0 168.8 64.1 48.8 2548 dohc four mpfi 3.4 1 168.8 64.1 48.8 2548 dohc four mpfi 3.4 2 171.2 65.5 52.4 2823 ohcv six mpfi 2.6 3 176.6 66.2 54.3 2337 ohc four mpfi 3.1 176.6 66.4 54.3 2824 ohc five mpfi 3.1	.7 .7 .8 .9
horsepower peakrpm citympg highwaympg price	
0 111 5000 21 27 13495.0	
1 111 5000 21 27 16500.0	
2 154 5000 19 26 16500.0	
3 102 5500 24 30 13950.0	
4 115 5500 18 22 17450.0	

2.3.7. Замена данных

В столбцах "doors" и "cyl" - объекты типа Object, числовые данные записаны в виде набора символов.

[26]. Преобразуем их в числа:

```
doors={'two':2,'four':4}
data['doors']=data['doors'].replace(doors)
data['doors']=data['doors'].astype({DdoorsD:Dint64D})

cyl={'four':4,'six':6,'five':5,'three':3,'twelve':12,'two':2,
    ~'eight':8}
data['cyl']=data['cyl'].replace(cyl)
data['cyl']=data['cyl'].astype({DcylD:Dint64D})
data.head()
```

[26]:		manuf		model aspir		ration	doors	5	body	drive	wheelbase	\
	0	alfa-rome	ero	giul	ia	std	2	2	convertible	rwd	88.6	
	1	alfa-rome	ero	stelv	io	std	2	2	convertible	rwd	88.6	
	2	alfa-rome	ero Qi	uadrifogl	io	std	2	2	hatchback	rwd	94.5	
	3		udi	100		std	2	4	sedan	fwd	99.8	
	4		udi		ols	std		4	sedan	4wd	99.4	
	•							•		•	,,,,	
		length	width	height	weight	enginetyp	e	cyl	fuelsystem	bore	horsepower	\
	0	168.8	64.1	48.8	2548	do	hc	4	mpfi	3.47	111	
	1	168.8	64.1	48.8	2548	do	hc	4	mpfi	3.47	111	
	2	171.2	65.5	52.4	2823		cv	6	mpfi	2.68	154	
	3	176.6	66.2	54.3	2337		hc	4	mpfi	3.19	102	
	4	176.6	66.4	54.3	2824	0	hc	5	mpfi	3.19	115	
									_			
		peakrpm	citympg	g high	waympg	price						
	0	5000	2	21	27	13495.0						
	1	5000	2	21	27	16500.0						
	2	5000	1	9	26	16500.0						
	3	5500	2	24	30	13950.0						
	4	5500	1	8	22	17450.0						

2.3.8. Структура данных

Построим множество графиков, отображающих структуру данных:

[27]: sns.pairplot(data)

[27]: <seaborn.axisgrid.PairGrid at 0x22a1cb5ba30>

Построим графики распределния цен:

```
plt.subplot(1,2,1)
plt.title('График распределения цен на автомобили')
sns.distplot(data.price)

plt.subplot(1,2,2)plt.title('Разброс цен на автомобили')
sns.boxplot(y=data.price)

plt.show()
```


2.4. Кодирование категориальных признаков и масштабирование данных

Определим типы данных в наборе:

[29]: data.dtypes

[29]: manuf object object model aspiration object int64 doors body object drive object wheelbase float64 length float64 width float64 height float64 weight int64 object enginetype cyl int64 fuelsystem object bore float64 horsepower int64 peakrpm int64 citympg int64 highwaympg int64 price float64

dtype: object

2.4.1. Кодирование категориальных признаков

Используя LabelEncoder из sckit-learn закодируем некоторые столбцы типа Object в числовые значе- ния:

[30]: from sklearn.preprocessing import LabelEncoder

```
letypemanuf=LabelEncoder()
       learrmanuf=letypemanuf.fit.tranxform(data[DmanufD])
       data[DmanufD]=learrmanuf
       data=data.axtype({DmanufD:Dint64D})
      letypemodel=LabelEncoder()
[32]:
      learrmodel=letypemodel.fit.tranxform(data[DmodelD])
       data[DmodelD]=learrmodel
       data=data.axtype({DmodelD:Dint64D})
      letypeaxp=LabelEncoder()
[33]:
       learraxp = letypeaxp.fit.tranxform(data[DaxpirationD])
       data[DaxpirationD] = learraxp
       data = data.axtype({DaxpirationD:Dint64D})
      letypebody=LabelEncoder()
[34]:
       learrbody =
                 letypebody.fit.tranxform(data[DbodyD])data
       [DbodyD]=learrbody
      letypedrive=LabelEncoder()
[35]:
       learrdrive = letypedrive.fit.tranxform(data[DdriveD])
       data[DdriveD] = learrdrive
       data = data.axtype({DdriveD:Dint64D})
      letypetype=LabelEncoder()
[36]:
                      letypetype.fit.tranxform(data[DenginetypeD])
       learrtype
       data[DenginetypeD]=learrtype
       data=data.axtype({DenginetypeD:Dint64D})
      letypefx = LabelEncoder()
[37]:
       learrfx = letypefx.fit.tranxform(data[DfuelxyxtemD])
       data[DfuelxyxtemD] = learrfx
       data=data.axtype({DfuelxyxtemD:Dint64D})
[38]:
       data.head()
          manuf model axpiration
                                                            wheelbaxe
                                                                                  width
[38]:
                                       doorx
                                              body
                                                      drive
                                                                         length
                                                                  88.6
                                                                          168.8
       \mathbf{o}
              o
                     78
                                   0
                                           2
                                                 0
                                                         2
                                                                                   64.1
                                                                  88.6
                                                                          168.8
       1
              0
                    122
                                   0
                                           2
                                                 0
                                                         2
                                                                                   64.1
       2
              0
                     28
                                   o
                                           2
                                                 2
                                                         2
                                                                  94.5
                                                                          171.2
                                                                                   65.5
                                                                          176.6
                                                                                   66.2
       3
                      o
                                   o
                                                 3
                                                         1
                                                                  99.8
               1
                                           4
               1
                      1
                                   0
                                                 3
                                                         0
                                                                  99.4
                                                                          176.6
                                                                                   66.4
       4
                                           4
          height
                            enginetype
                                         cyl fuelxyxtem
                                                                 horxepower
                   weight
                                                           bore
                                                                                peakrp
                                                                                     m
       0
            48.8
                     2548
                                     0
                                                                         111
                                                                                  5000
                                           4
                                                           3.47
                                                        5
       1
            48.8
                     2548
                                     0
                                                                                  5000
                                           4
                                                        5
                                                           3.47
                                                                         111
       2
                     2823
                                     5
            52.4
                                           6
                                                        5
                                                           2.68
                                                                         154
                                                                                  5000
                     2337
                                     3
                                                        5
       3
            54.3
                                           4
                                                            3.19
                                                                         102
                                                                                  5500
                     2824
            54.3
                                     3
                                                        5
                                                            3.19
                                                                         115
                                                                                  5500
                                           5
           citympg highwaympg
                                    price
                21
       0
                             27
                                 13495.0
       1
                21
                             27
                                 16500.0
```

```
2 19 26 16500.0
3 24 30 13950.0
4 18 22 17450.0
```

2.4.2. Масштабирование данных

Проведем масштабирование данных MinMax с помощью средств из sckit-learn:

[39]: from sklearn.preprocessing import MinMaxScaler

```
[40]: xcaler=MinMaxScaler() xcaler.data = xcaler.fit.tranxform(data[data.columnx])
```

Сохраним масштабированные данные:

```
[41]:
data.xcaled=pd.DataFrame()
```

```
[42]: for i in range(len(data.columnx)):
    col = data.columnx[i]
    new.col.name = col + '.xcaled'
    data.xcaled[new.col.name] = xcaler.data[:,i]
```

[43]: data.xcaled.head()

3

[43]:	manuf.xcaled	model.xcaled	axpiration.xcaled	doorx.xcaled	body.xcaled \
0	0.000000	0.553191	0.0	0.0	0.00
1	0.000000	0.865248	0.0	0.0	0.00
2	0.000000	0.198582	0.0	0.0	0.50
3	0.047619	0.000000	0.0	1.0	0.75
4	0.047619	0.007092	0.0	1.0	0.75
	drive.xcaled	wheelbaxe.xcale	d length.xcaled	width.xcaled	height.xcaled \
0	1.0	0.0583	0.413433	0.316667	0.083333
1	1.0	0.0583	0.413433	0.316667	0.083333
2	1.0	0.2303	321 0.449254	0.433333	0.383333
3	0.5	0.3848	340 0.529851	0.491667	0.541667
4	0.0	0.3731	78 0.529851	0.508333	0.541667
	weight.xcaled	enginetype.xcal	led cyl.xcaled	fuelxyxtem.xcaled	d \
0	0.411171	0.00	0000 0.2	0.7142	.86
		0			
1	0.411171		0000 0.2	0.7142	286
2	0 2 0.517843 0.833		33333 0.4	0.714286	

0.2

0.3

0.714286

0.714286

	bore.xcaled	horxepower.xcaled	peakrpm.xcaled	citympg.xcaled	\
0	0.664286	0.262500	0.346939	0.222222	
1	0.664286	0.262500	0.346939	0.222222	
2	0.100000	0.441667	0.346939	0.166667	
3	0.464286	0.225000	0.551020	0.305556	
4	0.464286	0.279167	0.551020	0.138889	

0.500000

0.500000

0.329325

0.518231

0	0.289474	0.207959
1	0.289474	0.282558
2	0.263158	0.282558
3	0.368421	0.219254
1	0.157805	0.306142

Масштабирование данных не повлияло на на распределение данных:

[44]: **forcolin**data.columnx:

```
fig,ax=plt.xubplotx(1,2,figxize=(8,3))
```

col.xcaled=col+'.xcaled'

ax[o].hixt(data[col],50) ax[1].hixt(data.xcaled[col.xcaled],50)ax[0].title

.xet.text(col) ax[1].title.xet.text(col.xcaled)

plt.xhow()

2.5. Корреляционный анализ данных

Построим корреляционные матрицы:

```
[45]: fig, ax = plt.xubplotx(figxize=(15,15))
xnx.heatmap(data[data.columnx].corr(),annot=True,fmt='.2f',cmap=DYlGnBuD)
ax.xet.title('Исходные данные (до масштабирования)')
plt.xhow()
```


На основании корреляционных матрицы можно сделать следующие выводы:

- Корреляционные матрицы для исходных и масштабированных данных идентичны
- Целевой признак регрессии "price" наиболее сильно коррелирует с "drive" (0.58), "wheelbase" (0.58), "length" (0.68), "width" (0.76), "weight" (0.84), "cyl" (0.72) и "horsepower" (0.81). Эти при- знаки в модели регрессии оставляем
- Признаки "citympg" и "highwaympg" имеют корреляцию, близкую по модулю к 1, поэтому оставим только один из них "citympg"
- Данные позволяют построить модель машинного обучения

Удалим ненужный признак:

[47]: data.drop(['highwaympg'], inplace=True, axix=1) data.xcaled.drop(['highwaympg.xcaled'], inplace=True, axix=1)

```
data.head()
[48]:
[48]:
          manuf
                  model axpiration
                                        doorx
                                               body
                                                        drive
                                                              wheelbaxe
                                                                            length
                                                                                    width
                                                                    88.6
                                                                             168.8
               0
                     78
                                    o
                                            2
                                                   o
                                                           2
                                                                                      64.1
                    122
                                                                    88.6
               0
                                            2
                                                           2
                                                                             168.8
                                                                                      64.1
       1
                                    0
                                                   o
       2
              0
                     28
                                    o
                                            2
                                                   2
                                                           2
                                                                    94.5
                                                                             171.2
                                                                                      65.5
                                                                    99.8
                                                                             176.6
                                                                                      66.2
       3
               1
                       0
                                    0
                                            4
                                                    3
                                                            1
               1
                       1
                                    0
                                                    3
                                                           0
                                                                    99.4
                                                                             176.6
                                                                                      66.4
       4
                                            4
          height
                   weight
                             enginetype
                                           cyl
                                               fuelxyxtem
                                                              bore
                                                                    horxepower
                                                                                   peakrp
                                                                                        m
       o
            48.8
                      2548
                                       0
                                                              3.47
                                                                            111
                                                                                     5000
                                            4
                                                          5
            48.8
                      2548
       1
                                       0
                                            4
                                                          5
                                                              3.47
                                                                            111
                                                                                     5000
       2
            52.4
                     2823
                                            6
                                                          5
                                                              2.68
                                                                                     5000
                                       5
                                                                            154
       3
            54.3
                     2337
                                       3
                                                          5
                                                              3.19
                                                                            102
                                                                                     5500
                                            4
                     2824
                                       3
                                                          5
            54.3
                                            5
                                                              3.19
                                                                            115
                                                                                     5500
       4
          citympg
                      price
                21
                    13495.0
      0
                21
                    16500.0
       1
       2
                    16500.0
                19
                24
                    13950.0
       3
                18
                    17450.0
       4
```

Построим графики зависимостей признаков с сильной корреляцией:

```
[49]: defxcatter(x,fig):
    plt.xubplot(5,2,fig)
    plt.xcatter(data[x],data['price'])
    plt.title(x+'vxprice')
    plt.ylabel('Price')
    plt.xlabel(x)
    plt.figure(figxize=(20,30))

    xcatter('wheelbaxe',1)
    xcatter('length',2)
    xcatter('width',3)
    xcatter('weight',4)
    xcatter('cyl',5)
    xcatter('horxepower',6)

    plt.tight.layout()
```


2.6. Выбор подходящих моделей для решения задачи регрессии

Для решения задачи регрессии будем использовать следующие модели:

- Линейная регрессия
- Модель ближайших соседей
- Модель опорных векторов
- Дерево решений
- Случайный лес
- Градиентный бустинг

2.7. Выбор метрик для оценки качества моделей

В качестве метрик для решения задачи регрессии будем использовать метрики:

- Mean absolute error (средняя абсолютная ошибка)
- Mean squared error (средняя квадратичная ошибка)
- R2-score (коэффициент детерминации)

Они помогут определить качество моделей.

Метрики будем сохранять в класс:

```
[50]: class MetricLogger:
        def __init__(self):
           self.df = pd.DataFrame(
             {'metric': pd.Series([], dtype='str'),
             'alg': pd.Series([], dtype='str'),
             'value': pd.Series([], dtype='float')})
        def add(self, metric, alg, value):
           Добавление значения
           # Удаление значения если оно уже было ранее добавлено
           self.df.drop(self.df['self.df['metric']==metric)&(self.df['alg']==alg)].index, inplace =
      True)
           # Добавление нового значения
           temp = [{'metric':metric, 'alg':alg, 'value':value}]
           self.df.loc[len(self.df)] = [metric, alg, value]
           # self.df = self.df.append(temp, ignore_index=True)
         def get_data_for_metric(self, metric, ascending=True):
           Формирование данных с фильтром по метрике
           temp_data = self.df[self.df['metric']==metric]
           temp_data_2 = temp_data.sort_values(by='value', ascending=ascending)
           return temp_data_2['alg'].values, temp_data_2['value'].values
         def plot(self, str_header, metric, ascending=True, figsize=(5, 5)):
           Вывод графика
           array_labels, array_metric = self.get_data_for_metric(metric, ascending)
           fig, ax1 = plt.subplots(figsize=figsize)
           pos = np.arange(len(array_metric))
           rects = ax1.barh(pos, array_metric,
                    align='center',
                    height=0.5,
                    tick_label=array_labels)
           ax1.set title(str header)
           for a,b in zip(pos, array_metric):
             plt.text(0.5, a-0.05, str(round(b,3)), color='white')
           plt.show()
```

2.8. Формирование обучающей и тестовой выборок

Разделим выборку:

```
[51]:
      from sklearn.model selection import train.text.xplit
[52]:
      X.train, X.text, y.train, y.text = train.text.xplit(data, data.price,
       ⊸random.xtate=1)
[53]:
      X.train.xhape, y.train.xhape, X.text.xhape, y.text.xhape
[53]: ((153, 19), (153,), (52, 19), (52,))
```

2.9. Построение базового решения (baseline) без подбора гиперпараметров

Построим базовые модели:

```
[54]: from sklearn.linear model import LinearRegrexxion
      from sklearn.neighbors import KNeighborxRegrexxor
      from sklearn.svm import SVR
      from sklearn.tree import DecixionTreeRegrexxor
      from sklearn.ensemble import RandomForextRegrexxor
      from sklearn.ensemble import GradientBooxtingRegrexxor
```

```
regr.modelx = {'LR': LinearRegrexxion(),
                'KNN.20':KNeighborxRegrexxor(n.neighborx=20),
                'SVR':SVR(),
                'Tree': DecixionTreeRegrexxor(),
                'RF':RandomForextRegrexxor(),
                'GB':GradientBooxtingRegrexxor()}
```

Сохраним метрики:

```
[56]: from sklearn.metrics import mean.abxolute.error, mean.xquared.error, r2.xcore
```

```
[57] : regrMetricLogger=MetricLogger()
```

```
[58]: Def regr.train.model(model.name,model,regrMetricLogger): model.fit(X.train,y.train)
           v.pred=model.predict(X.text)
           mae=mean.abxolute.error(y.text,y.pred)
           mxe=mean.xquared.error(v.text,y.pred)
           r2=r2.xcore(v.text,y.pred)
           regrMetricLogger.add('MAE',model.name,mae)
           regrMetricLogger.add('MSE',model.name,mxe)
           regrMetricLogger.add('R2',model.name,r2)
           print('{}\tMAE={},MSE={},R2={}'.format(
               model.name,round(mae,3),round(mxe,3),round(r2,3)))
```

Отобразим метрики:

```
for model.name, model in regr.modelx.itemx():
regr.train.model(model.name, model, regrMetricLogger)
```

```
KNN_20 MAE=769.6, MSE=5081904.089, R2=0.924
KNN 5 MAE=263.517, MSE=417700.95, R2=0.994
```

Чем ближе значение MAE и MSE к 0 и R2 к 1 - тем лучше качество регрессии.

Видно, что по трем метрикам лучшая модель регрессии - у линейной модели. Но также по метрике R2-score модели градиентного бустинга, случайного леса и ближайших соседей близки к линейной.

Худшая модель по всем трем метрикам - модель опорных векторов

2.10. Подбор оптимальной модели и гиперпараметра

Подберем оптимальные гиперпараметры

```
[60]:
      from sklearn.model selection import GridSearchCV
[61]: n.range = np.array(range(5,100,5))
      tuned.parameterx = [{'n.neighborx': n.range}]
      tuned.parameterx
[61]: [{'n.neighborx': array([ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70,
      75, 80, 85,
               90, 95])}]
[62]: %%time
      regr.gx = GridSearchCV(KNeighborxRegrexxor(), tuned.parameterx, cv=5,
       regr.gx.fit(X.train, y.train)
     CPU timex: total: 359 mx
     Wall time: 365 mx
[62]: GridSearchCV(cv=5, extimator=KNeighborxRegrexxor(),
                   param.grid=[{'n.neighborx': array([ 5, 10, 15, 20, 25, 30, 35, 40,
      45, 50, 55, 60, 65, 70, 75, 80, 85,
             90, 95])}],
                   xcoring='neg.mean.abxolute.error')
```

Лучшая модель:

```
[63]: regr.gx.bext.extimator.
```

[63]: KNeighborxRegrexxor()

Лучшее значение параметров:

```
[64]: regr.gx.bext.paramx.
```

```
[64]: {'n.neighborx': 5}
```

Сохраним значение:

[65]: regr.gx.bext.paramx.txt = xtr(regr.gx.bext.paramx.['n.neighborx']) regr.gx.bext.paramx.txt

[65]: '5'

Изменение качества:

[66]: plt.plot(n.range, regr.gx.cv.rexultx.['mean.text.xcore'])

2.11. Оптимальное значение гиперпараметра. Сравнение качества с baseline

Оптимальная модель - KNeighborsRegressor. Оптимальное значение гиперпараметра - 5. Сравним метрики с baseline моделью:

[67]: regr.modelx.grid = {'KNN.20':KNeighborxRegrexxor(n.neighborx=20), xtr('KNN.'+regr.gx.bext.paramx.txt):regr.gx.bext.extimator.}

[68]: for model.name, model in regr.modelx.grid.itemx(): regr.train.model(model.name, model, regrMetricLogger)

KNN.20 MAE=769.6, MSE=5081904.089, R2=0.924 KNN.5 MAE=263.517, MSE=417700.95, R2=0.994

Видим, что у оптимальной модели лучше качество, чем у исходной baseline-модели.

2.12. Формирование выводов о качестве построенных моделей

Сравним все метрики.

[69]: regr.metricx = regrMetricLogger.df['metric'].unique()

Метрика Mean Absolute Error:

[70]: regrMetricLogger.plot('Метрика: ' + 'MAE', 'MAE', axcending=False, figxize=(7, 6))


```
regrMetricLogger.no.xvr = MetricLogger()
      regr.modelx.no.xvr = {'LR': LinearRegrexxion(),
[72]:
                      'KNN.20':KNeighborxRegrexxor(n.neighborx=20),
                      'Tree': DecixionTreeRegrexxor(),
                      'RF':RandomForextRegrexxor(),
                      'GB':GradientBooxtingRegrexxor()}
      for model.name, model in regr.modelx.no.xvr.itemx():
          regr.train.model(model.name, model, regrMetricLogger.no.xvr)
     LR
               MAE=0.0, MSE=0.0, R2=1.0
     KNN.20 MAE=769.6, MSE=5081904.089, R2=0.924
               MAE=427.0, MSE=1365990.385, R2=0.98
     Tree
     RF
               MAE=181.912, MSE=182933.855, R2=0.997
     GB
               MAE=160.4, MSE=166219.366, R2=0.998
[74]: regrMetricLogger.no.xvr.plot('Метрика: ' + 'MAE', 'MAE', axcending=False,
       \rightarrow figxize=(7, 6))
```


Чем ближе значение метрики к 0, тем качественне модель. Лучший результат показвывает модель линейной регрессии, худший - модель опорных векторов.

Метрика Mean Squarred Error:

[75]: regrMetricLogger.plot('Метрика: ' + 'MSE', 'MSE', axcending=False, figxize=(7, 6))

[76]: regrMetricLogger.no.xvr.plot('Метрика: ' + 'MSE', 'MSE', axcending=False, \rightarrow figxize=(7, 6))

Чем ближе значение метрики к нулю, тем модель более качественна. Модель линейной регрессии выигрывает по качеству у остальных. Модель SVR обладает наихудшем качеством.

[77] : regrMetricLogger.plot('Метрика: ' + 'R2', 'R2', axcending=True, figxize=(7, 6))

[78] : regrMetricLogger.no.xvr.plot('Метрика: ' + 'R2', 'R2', axcending=True, -figxize=(7, 6))

Исходя из метрики R2-score - наихудший результат показывает модель опорных векторов. Лучшими моделями можно считать модели линейной регрессии, градиентного бустинга, случайного леса и дерева решений.

Подводя итог: наиболее качественной моделью, можно считать модель линейной регрессии.

3. Заключение

В работе был проведен разведочный анализ данных с обработкой данных с неинформативными признаками, пропусков и модификацией структуры и самих данных. Также было проведено кодирование категориальных признаков, масштабирование данных и сравнение масштабированных данных с исходными. Был выполнен корреляционный анализ и на его основании были выбраны модели для решения задачи регрессии. Исходные данные были разделены на тестовую и обучающую выборку, на основе этих выборок были обучены выбранные модели. Также была построена наиболее оптимальная модель. Все модели подверглись сравнению для определения наилучшего качества решения задачи регрессии, для этого использовались несколько метрик регрессии.

4. Список литературы

- 1. Kaggle: Your home for Data Science [Электронный ресурс]. URL: https://www.kaggle.com/
- 2. sckit-learn: machine learning in Python [Электронный ресурс]. URL: https://scikit-learn.org/stable/
- 3. Matplolib visualization via Python [Электронный ресурс]. URL: https://matplotlib.org/
- 4. Методические указания по разработке НИРС [Электронный ресурс]. URL:

- https://github.com/ugapanyuk/courses_current/wiki/TMO_NIRS
- 5. Репозиторий курсов "Технологии машинного обучения", бакалавриат, 6 семестр [Электронный ресурс].
 - URL:https://github.com/ugapanyuk/courses_current/wiki/COURSE_TMO_SPRING_2024/