

· We can create a powerful & efficient algorithm very Drs.	
· The transportion of a graph or is defined as the graph of where all	and appropriate to the force of the selection.
the edges in the graph a have been reversed, ie, if there's a	
directed edge from node A to node B an G, then at will contain an	
edge from node B to rude A.	
eg: PB B	
G G'	
Notice that G and G' have the same 2 connected components.	
· scc algorithm:	
1. Call DFS (G1) to compute the firesh times for each vertex.	
2. Compute GT.	
3. call DFS (GT), but in the main loop of DFS, explore each vertex	
in decreasing order of linish time.	
4. Each tree in the forest computed in step 3 is a Sec. Output the	L
4. Each tree in the forest computed in step 3 is a SCC. Output the vertex ids for each vertex in each tree in the forest to identify	ly.
the component.	0
AND REAL PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS OF THE PARTY.	