CPSC 511 — Midterm Test November 12, 2014

Name:		

Please **DO NOT** write your ID number on this page.

Instructions:

- 1. Answer all questions in Part A and any TWO questions in Part B.
- 2. Answer questions in the space provided. You should not need more space than this, but you may continue an answer on pages for unanswered questions in Part B or the back of the last page if you need to.
- 3. Point form answers are acceptable if complete enough to be understood.
- 4. No aids are allowed.
- 5. This test is out of 45.

Duration: 75 minutes

ID Number:	
------------	--

Part A: Answer ALL Questions.

Question	Score	Available
1		5
2		10
3		10
Total:		25

Part B: Answer TWO Questions.

Question	Score	Available
4		10
5		10
6		10
7		10
Total:		20

Total:

Question	Score	Available
Part A		25
Part B		20
Total:		45

D Number:	
D Number:	

Part A: Answer ALL Questions.

(5 marks)

- 1. Consider the following complexity classes:
 - DTIME (n^3) : The class of languages $L\subseteq \Sigma^\star$ that can be decided by a **one-tape** deterministic Turing machine using a number of steps that is in $O(|x|^3)$ on input $x\in \Sigma^\star$ in the worst case.
 - DTIME-2(n): The class of languages $L\subseteq \Sigma^\star$ that can be decided by a **two-tape** deterministic Turing machine using a number of steps that is in O(|x|) on input $x\in \Sigma^\star$ in the worst case.

Say **as precisely as you can** how these complexity classes are related. Mention any results that have been presented in class that help to explain why your answer is correct and say **briefly** how these results are used to do this.

ID Number:

(10 marks)

2. Let G=(V,E) be an undirected graph. Recall that a subset $S\subseteq V$ of the vertices in G is a *clique* if there is an edge between u and v for *every* pair of distinct vertices $u,v\in S$.

Now consider the following decision problems.

k-Clique

Instance: An undirected graph G = (V, E) and a positive integer k such

that $k \leq |V|$

Question: Does there exist a clique with size at least k in G?

Half-Clique

Instance: An undirected graph G=(V,E) such that |V|=2n for some

positive integer n

Question: Does there exist a clique with size at least n = |V|/2 in G?

Use the fact that the k-Clique problem is \mathcal{NP} -complete to prove that the **Half-Clique** problem is \mathcal{NP} -complete as well.

Note: Please state and use **reasonable** assumptions about the encodings of undirected graphs, and the operations on graphs that are carried out efficiently, that are needed to solve this problem.

Hint: Consider some process that *doubles* the number of vertices in a graph in a useful way. *If you get stuck and cannot see how to do this* then, for part marks, you should solve the following easier problem instead: Use the fact that the *Half-Clique* problem is \mathcal{NP} -complete to prove that the *k-Clique* problem is \mathcal{NP} -complete.

ID Number:	
------------	--

ID Number:

- 3. Consider log-space mapping reductions.
- (3 marks)
- (a) Give the definition of a log-space mapping reduction.

- (7 marks)
- (b) Sketch a proof that log-space mapping reductions are *transitive:* That is, if $L_1\subseteq \Sigma_1^\star$, $L_2\subseteq \Sigma_2^\star$ and $L_3\subseteq \Sigma_3^\star$, then **if**
 - ullet L_1 is log-space mapping reducible to L_2 , and
 - ullet L_2 is log-space mapping-reducible to L_3 ,

then \mathcal{L}_1 is log-space mapping reducible to \mathcal{L}_3 as well.

ID Number:	
------------	--

Part B: Answer Any TWO Questions.

 $(10 \; \mathrm{marks}) \qquad \qquad \text{4. Prove that } \mathcal{NP} \subseteq \mathsf{EXPTIME}.$

ID Number:	
------------	--

(10 marks)	5. State and prove <i>Savitch's Theorem</i> . Then explain how this implies that
	PSPACE = NPSPACE.

ID Number:

ID Number:	
------------	--

(10 marks)

6. Recall that PATH is the language of encodings of a directed graph G=(V,E) and pair of vertices $s,t\in V$ such that there is a path from s to t in G.

Sketch a proof that PATH is \mathcal{NL} -complete (with respect to log-space mapping reductions).

(10 marks)

- 7. Give the definition of a *space-constructible function*. Then sketch a proof that if S(n) is a space-constructible function and ϵ is any *positive* constant, then *if*
 - there is a deterministic Turing machine deciding a language $L\subseteq \Sigma^{\star}$ using space at most S(|x|), on input $x\in \Sigma^{\star}$, in the worst case

then

• there is a deterministic Turing machine deciding L using space at most $\lceil \epsilon \cdot S(|x|) \rceil$ on input $x \in \Sigma^*$, in the worst case, as well.

ID Number:				
D Number:				