Self-study: Information Geometry Basis

Tianpei Xie

Nov. 6th., 2022

Contents

1	Geometry of $\mathcal{P}(\mathcal{X})$			
	1.1	Definitions	2	
	1.2	$\mathcal{P}(\mathcal{X})$ as Embedded Submanifold	3	
	1.3	Fisher Information Metrics	4	
	1.4	α -Connections	4	
	1.5	Dual Connections	6	
	1.6	Embedding Associated with α -Connections	7	
2	Diff	erential Geometry vs. Information Geometry	9	

1 Geometry of $\mathcal{P}(\mathcal{X})$

1.1 Definitions

• Let $\mathcal{P}(\mathcal{X})$ be the set of <u>probability density functions</u> on \mathcal{X} with respect to base measure μ

$$\mathcal{P}(\mathcal{X}) := \left\{ p : \mathcal{X} \to \mathbb{R} : \int_{\mathcal{X}} p(x) d\mu(x) = 1, \ p(x) > 0 \ (\forall x \in \mathcal{X}). \right\}$$

In general, $p = \frac{dP}{d\mu}$ is **the Radon-Nikodym derivative** where μ is σ -finite measure on a measurable set $(\mathcal{X}, \mathcal{B})$ with \mathcal{B} being the Borel field consisting of \mathcal{X} and its subsets. P is **the probability measure** that is absolutely continuous with respect to μ . We also assume that **the support of** p **covers** \mathcal{X} so that p(x) > 0 for all $x \in \mathcal{X}$.

• Define $S \subseteq \mathcal{P}(\mathcal{X})$ as a family of probability densities on \mathcal{X} . Suppose for each probability function can be parameterized as $p_{\xi} = p(x; \xi) \in S$, where $\xi = (\xi^1, \dots, \xi^n) \in \Xi \subseteq \mathbb{R}^n$. Thus

$$S := \{ p_{\xi} = p(x; \xi) : \xi \in \Xi \subseteq \mathbb{R}^n \}$$

and $\xi \mapsto p_{\xi}$ is injective. We call S as an n-dimensional statistical model, a parametric model, simply a model on \mathcal{X} .

- Define the space of all real-valued measurable functions on \mathcal{X} as $\mathbb{R}^{\mathcal{X}} := \{f : \mathcal{X} \to \mathbb{R}\}$. $\mathbb{R}^{\mathcal{X}}$ is an *infinite-dimensional vector space* under function addition and scalar multiplication. We see that $\mathcal{P}(\mathcal{X}) \subseteq \mathbb{R}^{\mathcal{X}}$, is an *affine subspace* of $\mathbb{R}^{\mathcal{X}}$. Moreover, since $\mathbb{R}^{\mathcal{X}}$ is a metric space, with metric topology, we assume that $\mathcal{P}(\mathcal{X})$ has *subspace topology*.
- Assume that the statistical model $S = \{p(x;\xi) : \xi \in \Xi\}$ is **a topological manifold** equipped with **smooth structure** $\{(U_{\alpha}, \varphi_{\alpha})\}$ where each smooth chart (U, φ) is defined and $\varphi : U \to \widehat{U} \subseteq \mathbb{R}^n$ is defined by $\varphi(p_{\xi}) = \xi := (\xi^1, \dots, \xi^n)$. For any $(U_{\alpha}, \varphi_{\alpha})$ and $(U_{\beta}, \varphi_{\beta})$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$, we have $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ being a diffeomorphism. That is, S is a n-dimensional smooth manifold. We may call S a statistical manifold.
- Define $\ell: \mathcal{P} \to \mathbb{R}^{\mathcal{X}}$ as $\ell(p) = \log(p)$. ℓ is the **log-likelihood function**. Under the subspace topology in \mathcal{P} , ℓ is **continous** mapping, and is **injective**. It is a **homemorphism** onto its image $\ell: \mathcal{P} \to \ell(\mathcal{P}) \subseteq \mathbb{R}^{\mathcal{X}}$ with its inverse being $(\ell)^{-1}(f) = \exp(f)$ for $f \in \ell(\mathcal{P})$. The **restriction** of ℓ on statistical manifold S is a **smooth injection** since the differential of ℓ at p as $d\ell_p = p^{-1}dp = p_{\xi}^{-1}(\partial_i p_{\xi})d\xi^i \neq 0$ for all $\xi \in \Xi$. Moreover, $d\ell_p$ is also **injective**, thus ℓ is **an injective immersion**. Since ℓ is also a homemorphism onto its image, the log-likelihood ℓ is **a smooth embedding**.
- The *Fisher Information matrix* for $p_{\xi} \in S$ is defined as

$$g_{i,j}(\xi) = \mathbb{E}_p \left[\frac{\partial}{\partial \xi^i} \ell_{\xi} \frac{\partial}{\partial \xi^j} \ell_{\xi} \right] := \int_{\mathcal{X}} \frac{\partial}{\partial \xi^i} \log p(x;\xi) \frac{\partial}{\partial \xi^j} \log p(x;\xi) d\mu$$

$$= -\mathbb{E}_p \left[\frac{\partial^2}{\partial \xi^i \xi^j} \ell_{\xi} \right], \quad \forall i, j = 1, \dots, n$$

$$G(\xi) = [g_{i,j}(\xi)] \succeq 0$$

$$(1)$$

since $\partial_i \int_{\mathcal{X}} p_{\xi} d\mu = \int_{\mathcal{X}} \partial_i p_{\xi} d\mu = 0$, thus $\mathbb{E}_p \left[\partial_i \ell_{\xi} \right] = \int \partial_i \ell_{\xi} = \int p_{\xi}^{-1} \partial_i p_{\xi} = 0$.

Let us assume that the Fisher Information matrix is positive definite for all $\xi \in \Xi$. This is equivalent to say that the n-tuple

$$\left(\frac{\partial}{\partial \xi^1}\ell_{\xi},\ldots,\frac{\partial}{\partial \xi^n}\ell_{\xi}\right)\subset\mathbb{R}^{\mathcal{X}}$$
 are linearly independent.

1.2 $\mathcal{P}(\mathcal{X})$ as Embedded Submanifold

- As discussed above, $\mathcal{P}(\mathcal{X}) \subseteq \mathbb{R}^{\mathcal{X}}$ is a subspace in $\mathbb{R}^{\mathcal{X}}$. In fact, it is an open subset of **the** affine subspace $A_0 := \{A : \int_{\mathcal{X}} A(x) = 1\}$.
- Given $|\mathcal{X}| < \infty$, $\mathcal{P}(\mathcal{X})$ is <u>an embedded submanifold of $\mathbb{R}^{\mathcal{X}}$ </u> under two different embeddings:
 - 1. The *natural inclusion map* $\iota : \mathcal{P} \hookrightarrow \mathbb{R}^{\mathcal{X}}$ is an *embedding*. If we assume that the probability density function is smooth, then ι is a *smooth embedding* as well. We call it *the mixture embedding*.

The tangent space $T_p^{(m)}\mathcal{P}$ under this embedding is the subspace of $T_p\mathbb{R}^{\mathcal{X}} \simeq \mathbb{R}^{\mathcal{X}}$. In particular,

$$T_p^{(m)}\mathcal{P} = \mathcal{A}_0 = \left\{ A \in \mathbb{R}^{\mathcal{X}} : \int_{\mathcal{X}} A(x) d\mu = 0 \right\}$$

Denote the tangent vector under this embedding as $X^{(m)} = d\iota_p(X)$. That is, $X^{(m)}$ is a representation of the tangent vector $X \in T_p\mathcal{P}$ when considered as an element of \mathcal{A}_0 , It is called <u>the mixture representation</u> of the tangent vector $X \in T_p\mathcal{P}$ [Amari and Nagaoka, 2007]. Thus the tangent space under the mixture embedding is

$$T_p^{(m)}\mathcal{P} := \left\{ X^{(m)} : X \in T_p \mathcal{P} \right\} = \mathcal{A}_0 = \left\{ A \in \mathbb{R}^{\mathcal{X}} : \int_{\mathcal{X}} A(x) d\mu = 0 \right\}. \tag{2}$$

Note that the basis tangent vector under this embedding is still

$$\left(\frac{\partial}{\partial \xi^i}\Big|_p\right)^{(m)} = \frac{\partial}{\partial \xi^i}\Big|_{\iota(p)} = \frac{\partial}{\partial \xi^i}\Big|_p. \tag{3}$$

2. The log-likelihood function $\ell: \mathcal{P} \to \ell(\mathcal{P}) \subset \mathbb{R}^{\mathcal{X}}$ is also a smooth embedding as shown above. It is called the exponential embedding. Note that $\ell(\mathcal{P}) = \{\log(p) : p \in \mathcal{P}\}$. A tangent vector $X \in T_p\mathcal{P}$ under this embedding is then represented by the result of mapping $p \mapsto \log(p)$, which is denoted as $X^{(e)}$ and call the exponential representation [Amari and Nagaoka, 2007]. Note that

$$X^{(e)} = d\ell_n(X) = X\ell = p(x;\xi)^{-1}X^{(m)}(x).$$

Thus the basis tangent vector under the exponential embedding

$$\left(\frac{\partial}{\partial \xi^{i}}\Big|_{p}\right)^{(e)} = \frac{\partial}{\partial \xi^{i}}\Big|_{\ell(p)} = \frac{\partial \ell}{\partial \xi^{i}}\Big|_{p}.$$
(4)

Denote the **tangent space** under this embedding as $T_p^{(e)}\mathcal{P}$. We can verify that

$$T_p^{(e)}\mathcal{P} = \left\{ X^{(e)} : X \in T_p \mathcal{P} \right\} = \left\{ A \in \mathbb{R}^{\mathcal{X}} : \int_{\mathcal{X}} A(x) p(x) d\mu = \mathbb{E}_p \left[A \right] = 0 \right\}.$$
 (5)

• Remark $\mathcal{P}(\mathcal{X})$ is $|\mathcal{X}|$ -dimensional submanifold if the domain \mathcal{X} is finite. Otherwise, $\mathcal{P}(\mathcal{X})$ is **not seen as a manifold itself**. However, the above discussion is still valid if we restrict our attention to the *n*-dimensional statistical manifold $S \subseteq \mathcal{P}(\mathcal{X})$. We just need to replace \mathcal{P} with S above. Without noticing, we will focus on S instead of \mathcal{P} for our discussion.

1.3 Fisher Information Metrics

• Remark For probabilty models, the ambient space $L^2(\mathcal{X}, \mu) \subseteq \mathbb{R}^{\mathcal{X}}$ denotes the set of all random variables on \mathcal{X} . Moreover, it has a natural definition of inner product as

$$\langle f, g \rangle = \int_{\mathcal{X}} f(x) g(x) d\mu(x).$$

The inner product induced by the embedding map ι in $T_p^{(m)}S$ is formulated as

$$\langle d\iota_p(X) \,,\, d\iota_p(Y) \rangle := \langle X^{(m)} \,,\, Y^{(m)} \rangle := \int_{\mathcal{X}} X^{(m)}(s) \, Y^{(m)}(s) d\mu(s)$$
 (6)

Similarly, the inner product induced by the embedding map ℓ in $T_p^{(e)}S$ becomes

$$\langle d\ell_p(X), d\ell_p(Y) \rangle := \langle X^{(e)}, Y^{(e)} \rangle_p := \mathbb{E}_p \left[X^{(e)} Y^{(e)} \right] = \int \left[X^{(e)}(s) Y^{(e)}(s) \right] p(s) d\mu(s)$$
 (7)

where the additional p(s) comes from the **Jacobian** for the **inverse** of the log-likelihood.

• By definition, the Riemannian metric on S under the exponential representation is defined as

$$\begin{split} \hat{g}_{i,j} &:= \left\langle \left(\frac{\partial}{\partial \xi^i} \Big|_p \right)^{(e)}, \left(\frac{\partial}{\partial \xi^j} \Big|_p \right)^{(e)} \right\rangle_p \\ &= \mathbb{E}_p \left[\frac{\partial}{\partial \xi^i} \ell(p) \, \frac{\partial}{\partial \xi^i} \ell(p) \right] := \text{Fisher information } g_{i,j}. \end{split}$$

 $g_{i,j}$ is called <u>the Fisher metric</u> or <u>the Information metric</u> [Amari and Nagaoka, 2007]. It is seen that the Fisher metric is a Riemannian metric on S.

Thus, S is a n-dimensional Riemannian submanifold.

1.4 α -Connections

• [Amari and Nagaoka, 2007] proposed <u>the α -connections</u> $\nabla^{(\alpha)}$ as a family of affine connections on the tangent bundle TS, for $\alpha \in [-1,1]$. The <u>coefficient of the α -connection</u> under the Fisher metric is formulated as

$$\Gamma_{i,j;k}^{(\alpha)} = \mathbb{E}_{\xi} \left[\left(\frac{\partial}{\partial \xi^{i}} \frac{\partial}{\partial \xi^{j}} \ell_{\xi} + \frac{1 - \alpha}{2} \frac{\partial}{\partial \xi^{i}} \ell_{\xi} \frac{\partial}{\partial \xi^{j}} \ell_{\xi} \right) \left(\frac{\partial}{\partial \xi^{k}} \ell_{\xi} \right) \right]$$
(8)

where

$$\Gamma_{i,j;k}^{(\alpha)} := \left\langle \nabla_{\partial_i}^{(\alpha)} \partial_j , \partial_k \right\rangle,$$

where $g = \langle \cdot, \cdot \rangle_p$ is **the Fisher metric**.

We see that for $\alpha = 0$, the coefficient for 0-connection

$$\Gamma_{i,j;k}^{(0)} = \mathbb{E}_{\xi} \left[\left(\frac{\partial}{\partial \xi^{i}} \frac{\partial}{\partial \xi^{j}} \ell_{\xi} \right) \left(\frac{\partial}{\partial \xi^{k}} \ell_{\xi} \right) \right] + \frac{1}{2} \mathbb{E}_{\xi} \left[\left(\frac{\partial}{\partial \xi^{i}} \ell_{\xi} \frac{\partial}{\partial \xi^{j}} \ell_{\xi} \right) \left(\frac{\partial}{\partial \xi^{k}} \ell_{\xi} \right) \right]$$

Thus

$$\partial_k g_{i,j} = \partial_k \mathbb{E}_p \left[(\partial_i \ell)(\partial_j \ell) \right] = \mathbb{E}_p \left[(\partial_k \partial_i \ell)(\partial_j \ell) \right] + \mathbb{E}_p \left[(\partial_i \ell)(\partial_k \partial_j \ell) \right] + \mathbb{E}_p \left[(\partial_i \ell)(\partial_j \ell)(\partial_k \ell) \right]$$

The last terms from ∂_k acting on the expectation function $\mathbb{E}_p[\cdot]$. Thus

$$\partial_k g_{i,j} = \mathbb{E}_p \left[(\partial_k \partial_i \ell)(\partial_j \ell) \right] + \mathbb{E}_p \left[(\partial_i \ell)(\partial_k \partial_j \ell) \right] + \mathbb{E}_p \left[(\partial_i \ell)(\partial_j \ell)(\partial_k \ell) \right]$$
$$= \Gamma_{k,i;j}^{(0)} + \Gamma_{k,j;i}^{(0)}$$

 Note that for Levi-Civita connection (i.e. connection that is both metric and symmetric), the relationship between the Riemannian metric and the coefficients of connection under the metric is

$$\frac{\partial}{\partial \xi^k} g_{i,j} = \Gamma_{k,i;j} + \Gamma_{k,j;i}$$
where $\Gamma_{i,j;k} := \langle \nabla_{\partial_i} \partial_j, \partial_k \rangle$,

Thus the α -connection is the Levi-Civita connection with respect to the Fisher metric if and only if $\alpha = 0$.

• The family of α -connections forms an affine space itself, i.e.

$$\nabla^{(\alpha)} = \frac{1+\alpha}{2} \nabla^{(1)} + \frac{1-\alpha}{2} \nabla^{(-1)}$$
$$= (1-\alpha) \nabla^{(0)} + \alpha \nabla^{(1)}$$

Also since $\nabla^{(0)}$ is the Levi-Civita connection (Riemannian connections) on S and also that this connection is unique, we see that $\nabla^{(\alpha)}$ is not the Levi-Civita connection for all $\alpha \neq 0$. In fact, $\nabla^{(\alpha)}$ is not a metric connection for all $\alpha \neq 0$

- There are two special α -connections:
 - 1. When $\alpha = -1$, the $\nabla^{(-1)}$ is called <u>the mixture connection</u> and is denoted as $\nabla^{(m)}$.

The mixture family of distributions is seen as a <u>m-affine subspaces</u> since it is considered flat (i.e. $\Gamma_{i,j;k}^{(-1)} = 0$) under the mixture connections $\nabla^{(m)}$.

$$p(x;\xi) = \sum_{i=1}^{n} \xi^{i} \phi_{i}(x) + C(x)$$
(9)

2. When $\alpha = 1$, the $\nabla^{(1)}$ is called **the exponential connection** and is denoted as $\nabla^{(e)}$.

The exponential family of distributions is seen as an <u>e-affine subspaces</u> since it is considered flat (i.e. $\Gamma_{i,j;k}^{(1)} = 0$) under the exponential connections $\nabla^{(e)}$.

$$p(x;\xi) = \exp\left\{\sum_{i=1}^{n} \xi^{i} \phi_{i}(x) - A(\xi)\right\} C(x)$$
 (10)

1.5 Dual Connections

• **Definition** Let (S, g) be a Riemannian manifold and ∇ and ∇^* are two connections on TS. If for all vector fields $X, Y, Z \in \mathfrak{X}(S)$,

$$Z\langle X, Y\rangle = \langle \nabla_Z X, Y\rangle + \langle X, \nabla_Z^*(Y)\rangle \tag{11}$$

holds, then we say that ∇ and ∇^* are **duals** to each other with respect to the Riemannian metric g. We call one either **the dual connection** or **the conjugate connection**.

We call the triple (g, ∇, ∇^*) <u>a dualistic structure</u> on S.

• We see that the coefficients $\Gamma_{i,j;k}$ and $\Gamma_{i,j;k}^*$ for ∇ and ∇^* have the relationship:

$$\partial_k g_{i,j} = \Gamma_{k,i;j} + \Gamma_{k,j;i}^*$$

• Similarly, define the covariant derivative of vector field along curve with respect to ∇ and its dual connection ∇^* as D_t and D_t^* , then

$$\frac{d}{dt} \langle X(t), Y(t) \rangle = \langle D_t X(t), Y(t) \rangle + \langle X(t), D_t^* Y(t) \rangle$$

• For the parallel transport map Π_{γ} and Π_{γ}^* along the curve γ (from t_0 to t_1) with respect to ∇ and its dual ∇^* , we have

$$\langle \Pi_{\gamma}(X), \Pi_{\gamma}^{*}(Y) \rangle_{q} = \langle X, Y \rangle_{p}.$$

where $p = \gamma(t_0)$ and $q = \gamma(t_1)$. This is a generalization of "the <u>invariance</u> of the inner product under parallel translation with respect to <u>metric connections</u>."

• Also the Riemannian curvature tensor with respect to ∇ and its dual ∇^* has the relationship

$$\langle R(X,Y)Z, W \rangle = -\langle R^*(X,Y)Z, W \rangle.$$

Thus $Rm = -Rm^*$, so $R = 0 \Leftrightarrow R^* = 0$.

In other word, a Riemannian manifold S with dualistic structure (g, ∇, ∇^*) is <u>flat</u> in ∇ if and only if it is flat in its dual connection ∇^* .

- It is clear that if ∇ is a metric connection, then $\nabla = \nabla^*$. The concept of dual connections (∇, ∇^*) is a generalization of the metric connection. Moreover, $\frac{1}{2}(\nabla + \nabla^*)$ becomes a metric connection.
- Within α -connections, $(\nabla^{(-\alpha)}, \nabla^{(\alpha)})$ are **duals** to each other with respect to the Fisher metric. Specifically, $(\nabla^{(m)}, \nabla^{(e)})$, i.e. the mixture connection and the exponential connection are duals to each other.

From above statement, we see that

$$S \text{ is } (\alpha)\text{-flat } \Leftrightarrow S \text{ is } (-\alpha)\text{-flat}$$
 (12)

That (S, g, ∇, ∇^*) is called **a** dually flat space

• Remark The exponential family is a dually flat space since it is both 1-flat and (-1)-flat. The former corresponds to the natural parameterization (ξ^i) which is $\nabla^{(e)}$ -affine and the latter corresponds to the mean parameterization (μ_i) which is $\nabla^{(m)}$ -affine. It has two mutually dual coordinate systems.

1.6 Embedding Associated with α -Connections

- We have seen the mixture embeddings and the exponential embeddings and their associated definition of inner product. In this section, we see the embedding associated with α -connections, which includes both embeddings above as its special cases.
- Consider the extension of $\mathcal{P}(\mathcal{X})$ by dropping the normalization constraint:

$$\widetilde{\mathcal{P}} := \left\{ p : \mathcal{X} \to \mathbb{R} : \int_{\mathcal{X}} p(x) d\mu(x) < \infty, \ p(x) > 0 \ (\forall x \in \mathcal{X}). \right\}$$

• **Definition** For each $\alpha \in \mathbb{R}$, define the following α -likelihood function:

$$L^{(\alpha)}(x) := \begin{cases} \frac{2}{(1-\alpha)} x^{\frac{(1-\alpha)}{2}} & \text{if } \alpha \neq 1, \\ \log(x), & \text{if } \alpha = 1. \end{cases}$$
 (13)

$$\ell^{(\alpha)}(x;\xi) := L^{(\alpha)}(p(x;\xi)) \tag{14}$$

Note in particular that $\ell^{(1)}(x;\xi) = \ell(x;\xi)$ and that $\ell^{(-1)}(x;\xi) = p(x;\xi)$.

• **Definition** For a tangent vector $X \in T_p(S)$, we call

$$X^{(\alpha)}(x) := X \ell^{(\alpha)}(x;\xi) \tag{15}$$

as a function of x the α -representation of X. The e-representation and m-representation correspond to $\alpha = 1$ and $\alpha = -1$.

• **Definition** With the α -representation, we have **the induced inner product** by the α -likelihood function $\ell^{(\alpha)}$:

$$\langle X, Y \rangle_g^{(\alpha)} := \left\langle X^{(\alpha)}, Y^{(-\alpha)} \right\rangle = \int_{\mathcal{X}} \left(X \ell^{(\alpha)}(x; \xi) \right) \left(Y \ell^{(-\alpha)}(x; \xi) \right) d\mu(x) \tag{16}$$

• We can compute the first and second order partial derivatives of the α -likelihood as

$$\frac{\partial}{\partial \xi^i} \ell^{(\alpha)} = p^{(1-\alpha)/2} \frac{\partial}{\partial \xi^i} \ell \tag{17}$$

$$\frac{\partial}{\partial \xi^i} \frac{\partial}{\partial \xi^j} \ell^{(\alpha)} = p^{(1-\alpha)/2} \left(\frac{\partial}{\partial \xi^i} \frac{\partial}{\partial \xi^j} \ell + \frac{1-\alpha}{2} \frac{\partial}{\partial \xi^i} \ell \frac{\partial}{\partial \xi^j} \ell \right)$$
(18)

• We may rewrite the Fisher metric and the Christoffel symbol of α -connection as

$$g_{i,j}(\xi) = \int_{\mathcal{X}} \frac{\partial}{\partial \xi^i} \ell^{(\alpha)}(x;\xi) \frac{\partial}{\partial \xi^j} \ell^{(-\alpha)}(x;\xi) d\mu(x)$$
 (19)

$$\Gamma_{i,j;k}^{(\alpha)} = \int_{\mathcal{X}} \frac{\partial}{\partial \xi^{i}} \frac{\partial}{\partial \xi^{j}} \ell^{(\alpha)}(x;\xi) \frac{\partial}{\partial \xi^{k}} \ell^{(-\alpha)}(x;\xi) d\mu(x)$$
 (20)

• Remark From (20), we see that the α -likelihood defines an *embedding* $\ell^{(\alpha)} : \widetilde{\mathcal{P}} \to \mathbb{R}^{\mathcal{X}}$. And the α -connection on $S \subset \widetilde{\mathcal{P}}$ is *the induced connection* from *the affine structure* of the space $\mathbb{R}^{\mathcal{X}}$ of functions on \mathcal{X} through the embedding $\ell^{(\alpha)}$.

• **Remark** For probability distribution, since $\int \partial_i p = 0$, we have

$$\int p(x;\xi)^{\frac{1+\alpha}{2}} \partial_i \ell^{(\alpha)}(x;\xi) dx = 0$$
$$\frac{1+\alpha}{2} g_{i,j}(\xi) = -\int_{\mathcal{X}} p(x;\xi)^{\frac{1+\alpha}{2}} \partial_i \partial_j \ell^{\alpha}(x;\xi) dx$$

• **Definition** For given α , if under some coordinate system (ξ^i) of S,

$$\frac{\partial}{\partial \xi^i} \frac{\partial}{\partial \xi^j} \ell^{(\alpha)}(x;\xi) = 0, \tag{21}$$

then it is seen from (20) that $\Gamma_{i,j;k}^{(\alpha)} = 0$. Thus S is $\underline{\alpha\text{-flat}}$.

We call (ξ^i) an α -affine coordinate system, and such an S an α -affine manifold.

- Remark Thus we can say that:
 - 1. A mixture family is a (-1)-affine manifold,
 - 2. An exponential family is <u>not</u> a 1-affine manifold.
 - 3. For finite \mathcal{X} , $\mathcal{P}(\mathcal{X})$ is an α -affine manifold for every $\alpha \in \mathbb{R}$
- **Definition** We can also extend $S \subset \mathcal{P}$ by varying the sum of mass:

$$\widetilde{S} := \{ \tau p_{\xi} : \xi \in \Xi, \tau > 0 \} \subset \widetilde{\mathcal{P}}$$

We see that \widetilde{S} is a manifold of dimension dim S+1 which contains S. We call \widetilde{S} a **denormalization** of S. The adopted coordinate system of \widetilde{S} is $(\xi^1,\ldots,\xi^n,\tau)$. We can extend our definition of ℓ^{α} as $\widetilde{\ell}^{(\alpha)}:=\ell^{(\alpha)}(x;\xi,\tau):=L^{(\alpha)}(\tau\,p(x;\xi))$. We then extend computation of derivatives with τ added.

• The following is the relation between \widetilde{S} and S:

Proposition 1.1 S is (-1)-autoparallel in \widetilde{S} .

- Proposition 1.2 Let M be a submanifold of S and \widetilde{M} be its denormalization. For every $\alpha \in \mathbb{R}$, the following conditions (1) and (2) are equivalent.
 - 1. M is α -autoparallel in S.
 - 2. \widetilde{M} is α -autoparallel in \widetilde{S} .
- **Definition** We call a statistical model $S = \{p(x;\xi)\}$ whose **denormalization** \widetilde{S} is an α -affine manifold an α -family.
- Remark We have the following results
 - 1. An exponential family is a 1-family; and conversely, every 1-family is exponential family.
 - 2. A mixture family is a (-1)-family; and conversely, every (-1)-family is mixture family.
 - 3. For *finite* \mathcal{X} , $\mathcal{P}(\mathcal{X})$ is an α -family for *every* $\alpha \in \mathbb{R}$

2 Differential Geometry vs. Information Geometry

Table 1: Comparison between differential geometry and information geometry

base	$smooth \ manifold \ M$	$egin{aligned} statistical \ manifold \ S \subseteq \mathcal{P}. \end{aligned}$
embeddings	$M \subseteq \mathcal{R}$ with smooth embedding $\iota: M \hookrightarrow \mathcal{R}$	$\mathcal{P} \subset \mathbb{R}^{\mathcal{X}}$ with a smooth embedding as $ extbf{the log-likelihood}$ $\ell: \mathcal{P} \to \mathbb{R}^{\mathcal{X}}: \ell(p) = \log(p).$
element	a point $p \in M$	a parametric model $p(x;\xi) \in S, \ \xi \in \Xi$
coordinate map	$\varphi(p) = (x^1, \dots, x^n)$	$\varphi(p_{\xi}) = (\xi^1, \dots, \xi^n)$
smooth map	$f:M\to\mathbb{R}$	e.g. $\kappa: \mathcal{P} \to \mathbb{R}, \ \kappa(p) := \mathbb{E}_p[f] \ \text{for some}$ $random \ variable \ f \in \mathbb{R}^{\mathcal{X}}.$
space of smooth maps	$\mathcal{C}^\infty(M)$	$\mathcal{C}^{\infty}(\mathcal{S})\subseteq\mathcal{C}^{\infty}(\mathcal{P})$
tangent vector at p	a derivation operator at p : $v: \mathcal{C}^{\infty}(M) \to \mathbb{R}$	a derivation operator at p : $X: \mathcal{C}^{\infty}(S) \to \mathbb{R}$
tangent space at p	tangent space T_pM	$\mathbf{tangent} \mathbf{space} T_p S \subseteq T_p \mathcal{P}$
embedding	$\{\widetilde{v} := d\iota_p(v) : v \in T_pM\} \subseteq T_p\mathcal{R}$	$exponential \hbox{-} representation$
representation of		$T_p^{(e)}\mathcal{P} = \left\{ X^{(e)} := X\ell : X \in T_p \mathcal{P} \right\}$
$T_p\mathcal{P}$		$= \left\{ f \in \mathbb{R}^{\mathcal{X}} : \mathbb{E}_p[f] = 0 \right\} \subseteq T_p \mathbb{R}^{\mathcal{X}} \simeq \mathbb{R}^{\mathcal{X}}$
$\dim T_p M$	n	$n = \dim T_p S < \dim T_p \mathcal{P} = +\infty$
basis of tangent space	$\left(\frac{\partial}{\partial x^1}\Big _p, \dots, \frac{\partial}{\partial x^n}\Big _p\right)$	$\left(\frac{\partial}{\partial \xi^1}\Big _p, \dots, \frac{\partial}{\partial \xi^n}\Big _p\right)$
basis of embedding tangent space	$\left(\frac{\partial}{\partial x^1}\Big _{\iota(p)}, \dots, \frac{\partial}{\partial x^n}\Big _{\iota(p)}\right)$	$\left(\frac{\partial}{\partial \xi^1}\Big _{\ell(p)}, \dots, \frac{\partial}{\partial \xi^n}\Big _{\ell(p)}\right)$
inner product on tangent space	$\langle v,w\rangle_g:=g(v,w)$	The <i>cross correlation</i> $\langle X, Y \rangle_p := \mathbb{E}_p \left[(X\ell) (Y\ell) \right]$
Riemanian metric	The Riemanian metric $g = g_{i,j} dx^{i} dx^{j} \text{ where}$ $g_{i,j} = \left\langle \frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}} \right\rangle_{g}$	The Fisher information metric $g = g_{i,j} d\xi^{i} d\xi^{j} \text{ where}$ $g_{i,j} = \mathbb{E}_{p} \left[\partial_{i} \ell \partial_{j} \ell \right] := \left\langle \partial_{i} , \partial_{j} \right\rangle_{p}, \text{ and}$ $\partial_{i} \equiv \frac{\partial}{\partial \xi^{i}}$
Riemanian matrix	$(g_{i,j})\in\mathcal{S}^n_+$	The <i>Fisher information matrix</i> I where $(g_{i,j}(\xi)) \in \mathcal{S}^n_+$
connections / Christoffel symbols	$egin{aligned} Riemannian \ connection \ &\Gamma_{i,j;k} := \left\langle abla_{\partial_i} \partial_j \ , \ \partial_k ight angle_g \ &= rac{1}{2} \left(\partial_i g_{j,k} + \partial_j g_{k,i} - \partial_k g_{i,j} ight) \ &\Rightarrow \partial_k g_{i,j} = \Gamma_{k,i;j} + \Gamma_{k,j;i} \end{aligned}$	$ \alpha\text{-connection} $ $ \Gamma_{i,j;k}^{(\alpha)} := \langle \nabla_{(\partial_i)^{(e)}}^{(\alpha)} (\partial_j)^{(e)}, (\partial_k)^{(e)} \rangle_p $ $ = \mathbb{E}_{\xi} \left[\left(\partial_i \partial_j \ell_{\xi} + \frac{1 - \alpha}{2} \partial_i \ell_{\xi} \partial_j \ell_{\xi} \right) \partial_k \ell_{\xi} \right] $ $ \Rightarrow \partial_k g_{i,j} = \Gamma_{k,i;j}^{(0)} + \Gamma_{k,j;i}^{(0)} $

References

Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191. American Mathematical Soc., 2007.