3 Let X be a compact metric space and $f: X \to X$ an isometric embedding. Show that f is surjective.

Hint: Suppose not, find a point x_0 not in the image, and consider the sequence $x_0, f(x_0), f(f(x_0)), \ldots$

Proof. Let $x_0 \in X$ and inductively define a sequence $x_n = f(x_{n-1})$ for all $n \ge 1$. In other words, $x_n = f^n(x_0)$, where f^n denotes f composed with itself n times. Note that for $n, m \in \mathbb{N}$ with $n \le m$ we have

$$d(x_n, x_m) = d(f^n(x_0), f^m(x_0)) = d(x_0, f^{m-n}(x_0)).$$

Since X is a compact metric space, it is sequentially compact; let $\{x_{n_k}\}_{k\in\mathbb{N}}$ be a convergent subsequence. In particular, this sequence is Cauchy. Given $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $k, \ell \geq N$ we have $d(x_{n_k}, x_{n_\ell}) < \varepsilon$. That is, if $k < \ell$ (so $n_\ell - n_k \geq 1$) then

$$d(x_0, f^{n_\ell - n_k}(x_0)) = d(x_k, x_\ell) < \varepsilon.$$

In particular, we have found the point $x_{n_{\ell}-n_k} \in B_{\varepsilon}(x_0) \cap f(X)$. Since we can find such a point for all $\varepsilon > 0$, this means x_0 is a limit point of f(X). Since f(X) is compact, this implies $x_0 \in f(X)$, hence f is surjective.

4 Define $\mathbb{R}^{\infty} = \bigcup_{n=1}^{\infty} \mathbb{R}^n$, where the points

$$(x_1, \ldots, x_n)$$
 and $(x_1, \ldots, x_n, 0, \ldots, 0)$

are identified, for any number of zeros. We topologize \mathbb{R}^{∞} as follow: a set in \mathbb{R}^{∞} is open iff its intersection with each \mathbb{R}^n is open.

There is an obvious injection $f: \mathbb{R}^{\infty} \to \ell^{\infty}$, where $\ell^{\infty} = C_B(\mathbb{N})$ is the set of bounded sequences of real numbers with the sup norm.

For $a \in \mathbb{R}$ and r > 0 denote the interval $I_r(a) = (a - r, a + r) \subseteq \mathbb{R}$.

(a) Show f is continuous.

Proof. Note that ℓ^{∞} has a basis of open balls $B_r(x) = \prod_{k=1}^{\infty} I_r(x_k)$ for $x \in \ell^{\infty}$ and r > 0. It suffices to check the continuity of f on these basis sets.

In order for a point $a \in \mathbb{R}^n$ to be in the preimage $f^{-1}(B_r(x))$, we must have $|a_k - x_k| < r$ for k = 1, ..., n and $|x_k| < r$ for all k > n. So if it is the case that $|x_k| \ge r$ for some k > n, then we know $f^{-1}(B_r(x)) \cap \mathbb{R}^n = \emptyset$, which is open in \mathbb{R}^n .

If $|x_k| < r$ for all i > n then

$$f^{-1}(B_r(x)) \cap \mathbb{R}^n = \prod_{k=1}^n I_r(x_k).$$

If we consider $\mathbb{R}^n \subseteq \mathbb{R}^{\infty}$ with the sup norm (which generates the usual topology), this is simply the open ball of radius r centered at $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

We conclude that $f^{-1}(B_r(x)) \cap \mathbb{R}^n$ is open in \mathbb{R}^n for all n. So in fact $f^{-1}(B_r(x))$ is open in the topology on \mathbb{R}^{∞} , hence f is continuous.

(b) Is f an embedding? That is, is the subspace $f(\mathbb{R}^{\infty}) \subseteq \ell^{\infty}$ homeomorphic to \mathbb{R}^{∞} ? Justify your answer.

No.

Proof. Consider the set $U = \prod_{k=1}^{\infty} I_{1/k}(0) \subseteq \mathbb{R}^{\infty}$. Since $U \cap \mathbb{R}^n = \prod_{k=1}^n I_{1/k}(0)$ is open in \mathbb{R}^n for all $n \in \mathbb{N}$, we know that U is open in \mathbb{R}^{∞} . However, we will show that f(U) is not open in $f(\mathbb{R}^{\infty})$.

Assume for contradiction that f(U) is open in the subspace $f(\mathbb{R}^{\infty}) \subseteq \ell^{\infty}$, i.e., there is some open set $V \subseteq \ell^{\infty}$ such that $f(U) = V \cap f(\mathbb{R}^{\infty})$. Then V is an open neighborhood of $0 \in \ell^{\infty}$, so there is some $\varepsilon > 0$ such that $B_{\varepsilon}(0) \subseteq V$, implying $B_{\varepsilon}(0) \cap f(\mathbb{R}^{\infty}) \subseteq f(U)$.

Choose $n \in \mathbb{N}$ such that $1/n < \varepsilon/2$, and let $x = (0, \ldots, 0, \varepsilon/2) \in \mathbb{R}^n$. Then by construction $x \notin U$ since $x_n \notin I_{1/n}(0)$, so $f(x) \notin f(U)$. On the other hand, we have $f(x) \in B_{\varepsilon}(0) \cap f(\mathbb{R}^{\infty})$, which is a contradiction.

In particular, we conclude that f is not an open map and therefore not a homeomorphism to its image.

5 (a) Show that a set of open subsets of a topological space X is a basis if and only if it contains a neighborhood basis for every point $x \in X$.

Proof. Let \mathcal{U} be a collection of open subsets of X.

Suppose \mathcal{U} is a basis and $x \in X$ is any point. We claim that $\mathcal{U}_x = \{U \in \mathcal{U} : x \in U\}$ is a neighborhood basis for x. If $N \subseteq X$ is a neighborhood of x it contains an open neighborhood $V \subseteq N$ of x. As \mathcal{U} is a basis, we can write $V = \bigcup_{\alpha \in I} \mathcal{U}_{\alpha}$ for some $\mathcal{U}_{\alpha} \in \mathcal{U}$. Since $x \in V$, we must have $x \in \mathcal{U}_{\alpha}$ for some $\alpha \in I$. Then $\mathcal{U}_{\alpha} \in \mathcal{U}_x$ with $x \in \mathcal{U}_{\alpha} \subseteq V \subseteq N$, hence \mathcal{U}_x is a neighborhood basis for x.

Suppose \mathcal{U} contains a neighborhood basis for every point $x \in X$. Let $V \subseteq X$ be an open subset. For each point $x \in V$ we can choose some $U_x \in \mathcal{U}$ such that $x \in U_x \subseteq V$. Then we can write $V = \bigcup_{x \in V} U_x$, hence \mathcal{U} is a basis.

(b) Show that every compact totally separated space has a basis of clopen sets.

Proof. Let X be a compact totally separated space. For each pair of distinct points $a, b \in X$ choose some clopen set $A_{a,b} \subseteq X$ such that $a \in A_{a,b}$ and $b \in A_{a,b}^c$. Let \mathcal{A} be the collection of all finite intersections of such clopen sets; we claim that \mathcal{A} is a basis.

As per part (a), it suffices to show \mathcal{A} contains a neighborhood basis for each point. Let $x \in X$ and $U \subseteq X$ be an open neighborhood of x. The collection $\{A_{x,y}^c\}_{y\in U^c}$ forms a clopen cover of U^c . As a closed subset of a compact space, U^c is compact, so we can choose a finite subcover $\{A_i^c\}_{i=1}^n$. Then $U^c \subseteq \bigcup_{i=1}^n A_i^c$, which implies

$$A = \bigcap_{i=1}^{n} A_i \subseteq (\bigcup_{i=1}^{n} A_i^c)^c \subseteq U.$$

And since $x \in A_i$ for i = 1, ..., n, we know that $x \in A$. With $A \in \mathcal{A}$, we conclude that \mathcal{A} contains a neighborhood basis for x and is therefore a basis (of clopen sets).

- **6** Prove or disprove:
- (a) The arbitrary product of path-connected spaces is path-connected.

Yes.

Proof. Let $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ be a collection of path-connected spaces and $X=\prod_{{\lambda}\in\Lambda}X_{\lambda}$ have the product topology with natural projections $\pi_{\lambda}:X\to X_{\lambda}$. (Write $x_{\lambda}=\pi_{\lambda}(x)$ for each $x\in X$.) Given $x,y\in X$, let γ_{λ} be a path from x_{λ} to y_{λ} in X_{λ} , i.e., a continuous map $[0,1]\to X_{\lambda}$ with $\gamma_{\lambda}(0)=x_{\lambda}$ and $\gamma_{\lambda}(1)=y_{\lambda}$. By the universal property of topological products, there is a continuous map $\gamma:[0,1]\to X$ such that $\pi_{\lambda}\circ\gamma=\gamma_{\lambda}$. The fact that $\pi_{\lambda}(\gamma(0))=x_{\lambda}$ and $\pi_{\lambda}(\gamma(1))=y_{\lambda}$ for all $\lambda\in\Lambda$ implies $\gamma(0)=x$ and $\gamma(1)=y$. That is, γ is a path from x to y in X, hence X is path-connected.

(b) The arbitrary product of locally path-connected spaces is locally path-connected.

No.

With the discrete topology, $\{0,1\}$ is disconnected—and therefore path-disconnected—since each singleton is clopen. However, $\{0,1\}$ is locally path-connected since each singleton is path-connected.

Consider $X = \{0, 1\}^{\mathbb{N}}$ with the product topology.

We claim X is totally path-disconnected, i.e., no two distinct points in X have a path between them. If $x, y \in X$ are distinct, we must have $x_n \neq y_n$ for some $n \in \mathbb{N}$; assume $x_n = 0$ and $y_n = 1$. If $\gamma : [0,1] \to X$ were a path from x to y, then $\pi_n \circ \gamma$ would be a path from 0 to 1 in $\{0,1\}$, which is not possible. Therefore, no path from x to y exists in X.

Since no singleton of X is open, every open set must contain at least two points. Thus, no open subset of X is path-connected, so X is not locally path-connected.