SC2001/CX2101 Algorithm Design and Analysis

Tutorial 3 Analysis Techniques (Week 9)

This tutorial helps you develop skills in the learning outcome of the course: "Able to conduct complexity analysis of recursive algorithms: solve recurrences using the substitution method, the iteration method, the master theorem, the characteristic equation."

Question 1 (1)

$$T(1) = 1$$
, and for $n \ge 2$, $T(n) = 3T(n-1) + 2$

Question 1 (1)

Solve the following recurrence by the iteration method T(1) = 1, and for $n \ge 2$, T(n) = 3T(n-1) + 2

$$T(n) = 3T(n-1) + 2$$

$$= 3(3T(n-2) + 2) + 2$$

$$= 3^{2}T(n-2) + 3*2 + 2$$

$$= 3^{2}(3T(n-3) + 2) + 3*2 + 2$$

$$= 3^{3}T(n-3) + 3^{2}*2 + 3*2 + 2$$

$$= 3^{n-1}T(n-(n-1)) + 3^{(n-1)-1}*2 + ... + 3^{2}*2 + 3*2 + 2$$

$$= 3^{n-1}T(1) + 3^{n-2}*2 + ... + 3^{2}*2 + 3*2 + 2$$

Question 1 (1)

```
= 3^{n-1} + 2(3^{n-2} + ... + 3^{2} + 3 + 1)
= 3^{n-1} + 2(3^{n-2} + ... + 3^{2} + 3 + 1)
= 3^{n-1} + 2(3^{n-1} - 1)/(3-1)
= 3^{n-1} + 3^{n-1} - 1
\leq 2^{*} 3^{n-1} // drop - 1
\leq 3^{n} // change 2 to 3
```

So
$$T(n) = O(3^n)$$

Solve the following recurrence by the iteration method

T(1) = 1, and for $n \ge 2$, a power of 2, T(n) = 2T(n/2) + 6n

Solve the following recurrence by the iteration method T(1) = 1, and for $n \ge 2$, a power of 2, T(n) = 2T(n/2) + 6n

Solve the following recurrence by the substitution method

$$T(1) = 1$$
, and for $n \ge 2$, $T(n) = 3T(n-1) + 2$

Solve the following recurrence by the substitution method

$$T(1) = 1$$
, and for $n \ge 2$, $T(n) = 3T(n-1) + 2$

Guess that $T(n) = O(3^n)$

Proof: We try to prove $T(n) \le 3^n$ for $n \ge 1$

- (a) Base case: $T(1) = 1 \le 3^1$.
- (b) Inductive step: assume that $T(k) \le 3^k$, prove that $T(k+1) \le 3^{k+1}$.

$$T(k+1) = 3T(k) + 2$$

 $\leq 3*3^k + 2$
 $\leq 3^{k+1} + 2$
 $\leq 3^{k+1}$

Note that in the proof, the expressions (those in red) we try to prove have to be the same

we only managed to prove $T(K+1) \le 3^{k+1} + 2$, not $T(K+1) \le 3^{k+1}$. We need to get rid of the "+2"

Proof: We will prove $T(n) \le 3^n - 2$ for $n \ge 1$

- (a) Base case: $T(1) = 1 \le 3^1 2$.
- (b) Inductive step: assume that $T(k) \le 3^k 2$, prove that $T(k+1) \le 3^{k+1} 2$.

$$T(k+1) = 3T(k) + 2$$

$$\leq 3(3^k - 2) + 2$$

$$\leq 3^{k+1} - 6 + 2$$

$$\leq 3^{k+1} - 2$$
Note that in the proof, the expressions (those in red) we try to prove have to be the same
$$\leq 3^{k+1} - 6 + 2$$

Solve the following recurrence by the substitution method

T(1) = 1, and for $n \ge 2$, a power of 2, T(n) = 2T(n/2) + 6n

Solve the following recurrence by the substitution method

$$T(1) = 1$$
, and for $n \ge 2$, a power of 2, $T(n) = 2T(n/2) + 6n$
 $T(1) = 1$, and for $n \ge 2$, a power of 2, $T(n) = 2T(n/2) + 6n$
We use c=1 for simplicity

We choose n=2 because when n=1, $lgn = 0$

Proof: we try to prove $T(n) \le n \lg n$ for any $n \ge 2$

a) Base case:

$$T(2) = 2*1+6*2 = 14$$
, $n \lg n = 2$, So c=1 will not have $T(2) \le 2 \lg 2$ so we try c=8 then $T(2) \le 8*2 \lg 2$ so we try to prove $T(n) \le 8 n \lg n$ for any $n \ge 2$

Solve the following recurrence by the substitution method

$$T(1) = 1$$
, and for $n \ge 2$, a power of 2, $T(n) = 2T(n/2) + 6n$
Guess $T(n) = O(n \lg n)$

Proof: we show that $T(n) \le 8 n \lg n$ for any $n \ge 2$

a) Base case:

$$T(2) = 2*1+6*2 = 14$$
, $8nlgn = 16$, so $T(n) \le 8 nlgn$ for $n=2$

b) Inductive step: Assume that $T(2^k) \le 8 k 2^k$ Prove $T(2^{k+1}) \le 8 (k+1) 2^{k+1}$

$$T(2^{k+1}) = 2 T(2^{k}) + 6* 2^{k+1}$$

$$\leq 2* 8 k 2^{k} + 6* 2^{k+1}$$

$$= (8 k + 6)* 2^{k+1}$$

$$\leq 8 (k + 1)* 2^{k+1}$$

$$T(n) = O(n \lg n)$$

Question 3(1)

$$W(n) = W(n/3) + 5$$

Question 3(1)

$$W(n) = W(n/3) + 5$$

$$n^{log}b^a = n^{log}3^1 = n^0$$
, $f(n) = 5 = \theta(1) = \theta(n^0)$
So,
 $W(n) = \theta(n^0|gn)$

Question 3(2)

$$T(n) = 2T(n/2) + n/4$$

Question 3(2)

$$T(n) = 2T(n/2) + n/4$$

$$n^{log}b^a = n^{log}2^2 = n^1$$
, $f(n) = n/4 = \theta(n) = \theta(n^1)$
So,
 $W(n) = \theta(n \log n)$

Question 3(3)

$$W(n) = 2W(n/4) + \sqrt{n^3}$$

Question 3(3)

$$W(n) = 2W(n/4) + \sqrt{n^3}$$

$$\begin{split} & n^{log}{_b}{^a} = n^{log}{_4}{^2} = n^{0.5}, \ f(n) = \sqrt{n^3} = n^{3/2} = \Omega(n^{-0.5+0.1}) \\ & \text{And a*}f(n/b) = 2f(n/4) = 2*(n/4)^{3/2} = 2*n^{3/2}(1/4)^{3/2} \\ & = (1/4)*n^{3/2} \leq (1/4)*n^{3/2} = c*f(n) \qquad c = 1/4 \\ & \text{So,} \\ & \text{W(n)} = \theta(n^{1.5}) \end{split}$$

Question 4

Determine which of the following are linear homogeneous recurrence relations with constant coefficients. Also find the degree of those that are.

1)
$$a_n = 4a_{n-2} + 5a_{n-3}$$

2)
$$a_n = 2na_{n-1} + a_{n-2}$$

3)
$$a_n = a_{n-1} + a_{n-4}$$

4)
$$a_n = a_{n-1}^2 + a_{n-2}$$

5)
$$a_n = a_{n-2} + n$$

Degree 3

Not constant coefficient

Degree 4

Not linear

Not homogeneous

Question 5 (no need to cover all parts if running out of time)

(1) Solve the following recurrence relation together with the initial conditions given.

$$a_n = 7a_{n-1} - 10a_{n-2}$$
 for $n \ge 2$, $a_0 = 1$, $a_1 = 0$

Question 5(1)

Solve the following recurrence relation together with the initial conditions given.

$$a_n = 7a_{n-1} - 10a_{n-2}$$
 for $n \ge 2$, $a_0 = 1$, $a_1 = 0$

The characteristic equation:

$$t^2 - 7t + 10 = 0 = (t - 2)(t - 5) = 0$$

Solution: two distinct roots: $t_1 = 2$, $t_2 = 5$

Thus
$$a_n = 2^nC + 5^nD$$

Question 5(1)

Substitute the initial conditions into $a_n = 2^nC + 5^nD$ to find C and D:

$$a_0 = 1 = C + D$$
, => 2 = 2C + 2D

$$a_1 = 0 = 2C + 5D$$

Thus
$$2 = -3D$$
, i.e. $D = -2/3$ then $C = 5/3$

So we have
$$a_n = (5/3)*2^n - (2/3)*5^n$$

Question 5(2)

Solve the following recurrence relation together with the initial conditions given.

$$a_n = 4a_{n-2}$$
 for $n \ge 2$, $a_0 = 6$, $a_1 = 8$

Question 5(2)

Solve the following recurrence relation together with the initial conditions given.

$$a_n = 4a_{n-2}$$
 for $n \ge 2$, $a_0 = 6$, $a_1 = 8$

The characteristic equation:

$$t^2 - 4 = 0 = (t)^2 = 4$$

Solution: two distinct roots: $t_1 = 2$, $t_2 = -2$

Thus
$$a_n = 2^nC + (-2)^nD$$

Question 5(2)

Substitute the initial conditions into $a_n = 2^nC + (-2)^nD$ to find C and D:

$$a_0 = 6 = C + D$$
, => 12 = 2C + 2D

$$a_1 = 8 = 2C - 2D$$

Thus 20 = 4C, i.e. C = 5 then D = 1

So we have $a_n = 5*2^n + (-2)^n$

Question 5(3)

Solve the following recurrence relations together with the initial conditions given.

$$a_n = 2a_{n-1} - a_{n-2}$$
 for all $n \ge 2$, $a_0 = 1$, $a_1 = 3$

Question 5(3)

Solve the following recurrence relations together with the initial conditions given.

$$a_n = 2a_{n-1} - a_{n-2}$$
 for all $n \ge 2$, $a_0 = 1$, $a_1 = 3$

The characteristic equation:

$$t^2 - 2t + 1 = 0 = (t-1)^2 = 0$$

Solution: single root: t = 1,

Thus $a_n = C + nD$, we have

$$1 = C, D = 2$$

$$a_n = 1 + 2n$$