

MATHEMATIQUES

3ème informatique Classe:

Série: Suites réelles

Nom du Prof: Wided Dallegi

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

(5) 25 min

20 pt

 W_n une suite arithmétique de raison r = 4 telle que $W_{15} = 70$.

- 1°) Calculer W_{14} .
- **2°)** Déterminer le premier terme W_0 .
- **3°)** Exprimer W_n en function de n.
- **4°)** Trouver l'entier naturel p tel que $W_p = 402$.

Exercice 2

(\$ 25 min

20 pt

 $(U_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q

- 1°) Sachant que $U_2=4$ et $U_6=64$. Calculer q et U_0 .
- 2°) Sachant que $U_0 = q = 2$ et $\sum_{k=0}^{n-1} U_k = 62$, Calculer n.

Exercice 3

(5) 25 min

20 pt

On considère la suite u_n définie sur $\mathbb N$ par : $\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{-1}{2+u_n}, \text{ pour tout } n \in \mathbb N \end{cases}$.

Soit la suite v_n définie sur \mathbb{N} par : $v_n = \frac{1}{1+u_n}$.

- 1) Calculer u_1 , u_2 , v_1 et v_2 .
- 2) Calculer $v_{n+1}-v_n$ pour tout $n \in \mathbb{N}$, et déduire la nature de la suite v_n .
- 3) Calculer v_n en fonction de n, puis déduire u_n en fonction de n.

Exercice 4

(\$) 25 min

20 pt

Soit $(U_{\text{n} \in \text{IN}})$ la suite définie sur IN par: $\begin{cases} U_0 = 2 \\ U_{\text{n+1}} = \frac{1}{2}U_{\text{n}} + \frac{1}{2} \end{cases}$

- 1) calculer U₁ et U₂
- 2) montrer que U n'est pas ni arithmétique ni géométrique
- 3) soit la suite V définie par $V_n = U_n 1 \quad \forall n \in IN$
 - a) montrer que V est une suite géométrique que l'on précisera son premier terme et sa raison.
 - b) Exprimer V_n puis U_n en fonction de n.
 - c) Calculer $\lim_{n\to +\infty} U_n$
 - d) Calculer $S = U_3 + U_4 + + U_{20}$

Exercice 5

(5) 25 min

20 pt

Soit la suite géométrique U définie sur IN . Tels que $U_0=1$ et $U_3=27$

- 1) a) déterminer la raison de cette suite
 - b) exprimer U_n en fonction de n
 - c) calculer la somme $S_n = U_0 + U_1 + \ldots + U_{n\text{--}1}$, $n \geq 1$.
- 2) on considère la suite V définie sur IN par : $V_n = 3^n + 2$
 - a) calculer V_0 , V_1 et V_2
 - b) la suite V est-elle arithmétiques ? Géométrique ?
- 3) soit la somme $T_n = V_0 + V_1 + ... + V_{n-1}$, $n \ge 1$.
 - a) Montrer que $T_n = S_n + 2n$
 - b) en déduire l'expression de T_n en fonction de n.

Exercice 6

(5) 25 min

20 pt

On considère la suite réelle u définie sur N par : $\begin{cases} u_0 \in R \\ u_{n+1} = \frac{u_n + a}{u_n + 1} \end{cases}$

1°) Dans cette partie on prend $u_0 = 1$ et a = 0

Soit pour tout n de N : $w_n = \frac{1}{u_n}$.

- a) Montrer que w est une arithmétique dont on déterminera le premier terme et la raison
- b) Exprimer alors u_n en fonction de n.
- c) Calculer alors $\lim_{n\to+\infty} u_n$

2°)Dans cette partie on prend $u_0 = 0$ et $a = \frac{1}{4}$

Soit pour tout n de N : $v_n = \frac{2u_n + 1}{2u_n - 1}$.

- a) Montrer que v est suite une géométrique dont on déterminera le premier terme et la raison
- b) Exprimer alors u_n en fonction de n.
- c) Calculer alors $\lim_{n\to+\infty} u_n$

Exercice 7

(5) 25 min

20 pt

Soit U et V deux suites vérifiant $U_0 = 1$, $V_0 = 1$ et $\forall n \in IN$ on a :

 $U_{n+1} = 3U_n + V_n \text{ et } V_{n+1} = -2U_n$

- 1) calculer U_1 , U_2 , V_1 et V_2 .
- 2) On pose $W_n = U_n + V_n$. montrer que W est une suite constante.
- 3) On pose $T_n = U_n + \frac{1}{2} V_n$. montrer que T est une suite géométrique dont on déterminera son premier terme et sa raison
- 4) Calculer alors U_n et V_n en fonction de n. (on pourra exprimer T_n en fonction de U_n puis T_n en fonction de n)

Exercice 8

(\$\) 25 min

20 pt

Partie A

(U_n) est une suite définie sur IN par pour tout entier naturel

$$U_0 = 5 \text{ et } U_{n+1} = \frac{1}{2}U_n + 4$$

- 1- calculer U₁ et U₂ et déduire U_n est une suite ni arithmétique ni géométrique
- **2-** On pose pour tout n entier nature $V_n = U_n 8$
 - a- Montrer que V_n est une suite géo métrique de raison $q = \frac{1}{2}$
 - b- Exprimer V_n en fonction de n
 - c- Exprimer U_n en fonction de n
 - d- Trouver limite V_n puis limite U_n
- **3-** Soit $S_n = V_0 + V_1 + V_2 + ... + V_{n-1}$ et $S'_n = U_0 + U_1 + U_2 + ... + U_{n-1}$ Calculer S_n puis S'_n

Partie B

Sur le graphique ci-dessous on a construire la droite y=x

- 1- construire la deuxième la droit on donnant leur équation associe a la suite U_n définie dans la *partie A*
- 2- construire sans calcul les points A_0 ; A_1 ; A_2 ; A_3 ; A_4 de l'axe des abscisse d'abscisse respectivement U_0 ; U_1 ; U_2 ; U_3 et U_4

