#1. Solution:

We can find r_k using the formula p = 100e and so $r_k = \frac{52}{M} \ln(\frac{100}{p})$

* For 13-week T-bill: M=13 and P=99.7. Therefore

 $\Gamma_{k} = 4 \ln \left(\frac{100}{99.7} \right) = 0.012 \Rightarrow \Gamma_{k} = 1.2 \%$

** For 25-week T-bill: M=26 and P=99.4, and so

 $r_{k} = 2 \ln \left(\frac{100}{99.4} \right) = 0.012 \text{ or } r_{k} = 1.2 \%$

*** For 52-week T-bill we have M = 52 and p = 99 and $r_k = \ln\left(\frac{\log_9 p}{99}\right) = 0.10 \Rightarrow r_k = 1 \frac{9}{6}$

New spot rates for the next week can be calculated in the Same way and we get

* For 13-week T-bill r rk = 0.0128 = 1.28%

** For 26- week T-bill r rk = 0.0122 = 1.22%

*** For 52-week T-bill, TK = 0.103 = 1.03 %