CS 188: Artificial Intelligence Reinforcement Learning Instructors: Dan Klein and Pieter Abbeel University of California, Berkeley [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Example: Learning to Walk

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

[Kohl and Stone, ICRA 2004]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Training [Kohl and Stone, ICRA 2004]

[Video: AIBO WALK - training]

Example: Learning to Walk

Finished

[Video: AIBO WALK - finished

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005]

[Video TODDLER - 40s]

The Crawler! The Crawler! has to figure out not only moving forward but also recetting arm (Lg?) [Demo: Crawler Bot (L10D1)] [You, in Project 3]

Model-Based Learning

Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- Step 1: Learn empirical MDP model
 - . Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s,a,s')$ i.e., $\hat{P}(s'|s\rho)$ Discover each $\hat{R}(s,a,s')$ when we experience (s,a,s')
- Step 2: Solve the learned MDP
 - · For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π

Observed Episodes (Training)

Learned Model

Assume: $\gamma = 1$

Episode 1

Episode 3

E, north, C, -1

C, east, D, -1

D, exit, x, +10

Episode 2 B, east, C, -1 B, east, C, -1

C, east, D, -1

Episode 4

 $\widehat{T}(s, a, s')$

T(B, east, C) = 1.00T(C, east, D) = 0.75T(C, east, A) = 0.25

C, east, D, -1 D, exit, x, +10 D, exit, x, +10

 $\hat{R}(s, a, s')$

E, north, C, -1 C, east, A, -1 A, exit, x, -10 R(B, east, C) = -1R(C, east, D) = -1R(D, exit, x) = +10

Without P(A), instead collect samples [a1, a2, ... aN] Unknown P(A): "Model Based" Unknown P(A): "Model Free"

Example: Expected Age

Goal: Compute expected age of cs188 students

Known P(A)

 $E[A] = \sum P(a) \cdot a = 0.35 \times 20 + \dots$

Why does this work? Because eventually you learn the right model.

Why does this work? Because samples appear with the right frequencies.

Model-Free Learning

Passive Reinforcement Learning

has a fixed policy to take
IT + just executes
IT + learne from exp.

state values

Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy π(s)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - Goal: learn the state values
- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

- \blacksquare Goal: Compute values for each state under π
- Idea: Average together observed sample values
- \blacksquare Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

Example: Direct Evaluation

Input Policy π

Observed Episodes (Training)

Output Values

Assume: y = 1

Episode 1

B. east. C. -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1

C, east, D, -1

D, exit, x, +10

B. east. C. -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Episode 2

	-10 A	
+8 B	+4 C	+10 D
	-2 E	

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values. using just sample transitions (the limit)
- What bad about it?
 - It wastes information about state connections Each state must be learned separately

So, it takes a long time to learn

+10

Output Values

If B and E both go to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$
 $s, \pi(s), s'$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?
 - · By sampling + and averaging w/ equal weight

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages: (RHS 45)

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Idea: Take samples of outcomes s' (by doing the action!) and average $sample_1 = R(s,\pi(s),s_1) + \gamma V_k^{\pi}(s_1')$

$$sample_1 = R(s, \pi(s), s_1) + \gamma V_L^{\pi}(s_2)$$

$$sample_2 = R(s, \pi(s), s_2') + \gamma V_k^{\pi}(s_2')$$

$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

· Issue is that we have no idea when we'll return to state s (if ever) ofter

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs; running average

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$
 and estimate

Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

ame update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$
 add in exection

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(\frac{sumple - V^{\pi}(s)}{s})$ add in direction of error.

Decreasing learning rate (alpha) can give converging averages

Bellman updates are not exponentially moving averages

or direct evaluation

Exponential Moving Average

- Exponential moving average
 - The running interpolation update: $\bar{x}_n = (1 \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$
 - Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)

Example: Temporal Difference Learning

$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + \alpha \left[R(s,\pi(s),s') + \gamma V^{\pi}(s')\right]$$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q(s,a) \quad \text{if we have just values} \\ Q(s,a) = \sum_{s'} T(s,a,s') \; R(s,a,s') + \gamma V(s') \quad \text{policy} \\ \text{s, a} \\ \text{s, a} \\ \text{s, a}$$

- Idea: learn Q-values, not values
- Makes action selection model-free too! -
- · Q-values are critical for c actions in RL

Active Reinforcement Learning

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now-
 - Goal: learn the optimal policy / values

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with V_c(s) = 0, which we know is right
 - Given V_k, calculate the depth k+1 values for all states:

samples be we can

 $V_k(s')$] we don't know to hax

- $V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$
- But Q-values are more useful, so compute them instead
 - Start with Q₀(s,a) = 0, which we know is right
 - Given Q_i, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right] = V_{\mathbf{k}}(s')$$
• avg, so can use samples
to update Q-values

Q-Learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right] - \text{if we had}$$

- Learn Q(s,a) values as you go have the
 - Receive a sample (s,a,s',r)
 - \blacksquare Consider your old estimate: Q(s,a) is nondete
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{s'} Q(s', a')$$

• Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

[Demo: Q-learning - gridworld (L10D2)] [Demo: Q-learning - crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

- · sample looks at only
- · Sample estima
- The only Q-value the sample estimate looks at is max over all a' in Q(s',a'), so tome suboptimal Q(s',a'), over a', dont offset Q(s,a) value over iterations

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)
 - · guessing this means convergence i.p.

the land that appear is a first the same of the same o

the street may be used to be a self-

And the second s

the semination and all the same