In [67]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.formula.api as smf
```

In [68]:

```
boston_data = pd.read_csv('Boston House.zip')
boston_data
```

Out[68]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273.0	21.0	391.99
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273.0	21.0	396.90
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273.0	21.0	396.90
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273.0	21.0	393.45
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273.0	21.0	396.90

506 rows × 14 columns

→

In [33]:

boston_data.shape

Out[33]:

(506, 14)

In [34]:

boston_data.head()

Out[34]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS	
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90		
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4	
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	1	
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	ţ	

In [35]:

boston_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 14 columns): # Column Non-Null Count Dtype ----_____ -----CRIM 506 non-null float64 0 1 ΖN 506 non-null float64 float64 2 **INDUS** 506 non-null 3 506 non-null int64 CHAS 4 NOX 506 non-null float64 5 float64 RM506 non-null 6 506 non-null float64 AGE 7 DIS 506 non-null float64 int64 8 RAD 506 non-null 9 TAX 506 non-null float64 10 PTRATIO 506 non-null float64 float64 11 В 506 non-null float64 12 LSTAT 506 non-null

506 non-null

float64

dtypes: float64(12), int64(2)

memory usage: 55.5 KB

MEDV

13

In [36]:

```
boston_data.isna().sum()
```

Out[36]:

CRIM 0 ZN 0 **INDUS** 0 CHAS 0 0 NOX RM0 0 AGE DIS 0 0 RAD 0 TAX **PTRATIO** 0 0 В 0 LSTAT MEDV 0 dtype: int64

In [41]:

boston_data.dtypes

Out[41]:

CRIM float64 float64 ΖN **INDUS** float64 CHAS int64 NOX float64 float64 RMAGE float64 float64 DIS RAD int64 TAX float64 **PTRATIO** float64 В float64 float64 **LSTAT** MEDV float64 dtype: object

In [42]:

boston_data

Out[42]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273.0	21.0	391.99
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273.0	21.0	396.90
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273.0	21.0	396.90
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273.0	21.0	393.45
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273.0	21.0	396.90

506 rows × 14 columns

Have a glance at the dependent and independent variables

In [46]:

```
boston_data_2 = boston_data.loc[:,['LSTAT','MEDV']]
boston_data_2.head(5)
```

Out[46]:

	LSTAT	MEDV
0	4.98	24.0
1	9.14	21.6
2	4.03	34.7
3	2.94	33.4
4	5.33	36.2

Visualize the change in the variables

In [47]:

```
import matplotlib.pyplot as plt
boston_data_2.plot(x='LSTAT', y='MEDV',style='o')
plt.xlabel('LSTAT')
plt.ylabel('MEDV')
plt.show()
```


In [62]:

```
# correlation analysis
boston_data_2.corr()
```

Out[62]:

	LSTAT	MEDV
LSTAT	1.000000	-0.737663
MEDV	-0.737663	1.000000

In [64]:

```
sns.regplot(x='LSTAT',y='MEDV',data=boston_data_2)
plt.show()
```


Divide the data into independent and dependent variables

In [48]:

```
x = pd.DataFrame(boston_data_2['LSTAT'])
y = pd.DataFrame(boston_data_2['MEDV'])
```

Split the data into train and test sets

In [49]:

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=1)
```

Shape of the train and test sets

In [50]:

```
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
```

```
(404, 1)
(102, 1)
```

(404, 1)

(102, 1)

Train the algorithm

```
In [51]:
```

```
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x_train, y_train)
```

Out[51]:

LinearRegression()

Retrieve the intercept

```
In [52]:
```

```
print(regressor.intercept_)
```

[34.33497839]

Retrieve the slope

```
In [58]:
```

```
print(regressor.coef_)
```

[[-0.92441715]]

Predicted value

In [59]:

y_train

Out[59]:

	MEDV
42	25.3
58	23.3
385	7.2
78	21.2
424	11.7
255	20.9
72	22.8
396	12.5
235	24.0
37	21.0

404 rows × 1 columns

Actual value

```
In [56]:
```

```
y_test
```

Out[56]:

	MEDV
307	28.2
343	23.9
47	16.6
67	22.0
362	20.8
92	22.9
224	44.8
110	21.7
426	10.2
443	15.4

102 rows × 1 columns

In [65]:

```
data_pred = pd.DataFrame(boston_data_2,columns = ['LSTAT'])
data_pred
```

Out[65]:

	LSTAT
0	4.98
1	9.14
2	4.03
3	2.94
4	5.33
501	9.67
502	9.08
503	5.64
504	6.48
505	7.88

506 rows × 1 columns

1/20/22. 1	1:18	3 AM
------------	------	------

In []:			