Tablero / Mis cursos / FISICA 2 Sección B- / Exámenes Parciales y Examen Final / Primer Examen Parcial

	ERVIN HUMBERTO LÓPEZ DE LEÓN
Comenzado en	Saturday, 26 de February de 2022, 13:30
Estado	Terminados
Finalizado en	Saturday, 26 de February de 2022, 15:20
Tiempo empleado	1 hora 49 mins
Calificación	94.00 de un total de 100.00

Correcta

Puntúa 20.00 sobre 20.00

Cuatro partículas cargadas están colocadas en las esquinas de un cuadrado de longitud a = 20.0 cm como lo muestra la figura:

a) Calcular la magnitud del campo eléctrico resultante (en 10⁶ N/C) en el centro del cuadrado

9.55

~

b) Si ahora se retira la carga de +10.0 µC, calcular el potencial eléctrico en el punto inferior derecho, donde estaría la carga retirada (en kV)

-384.1

c) Si la carga $+10.0 \,\mu\text{C}$ se mantiene retirada ¿cuál es la energía potencial mutua del sistema de partículas? (en J)

-0.466

d) Calcular la fuerza en magnitud (en N) sobre una carga $\mathbf{Q} = -6.00 \,\mu\text{C}$ que sería colocada en el centro del cuadrado, con las cuatro cargas mostradas inicialmente

57.3

Historial de respuestas				
Paso	Hora	Acción	Estado	Puntos
1	26/02/22, 13:30	Iniciado/a	Sin responder aún	
2	26/02/22, 14:01	Guardada: parte 1: 9.55; parte 2: -384.1; parte 3: -0.466; parte 4: 57.3	Respuesta guardada	
3	26/02/22, 15:20	Intento terminado	Correcta	20.00

Correcta

Puntúa 15.00 sobre 15.00

Un dipolo con tamaño de cargas $\mathbf{q} = 4.50 \times 10^{-3} \text{ C}$ separadas por 6.00 cm, se encuentra en un campo eléctrico externo de magnitud 5.75 x 10 5 N/C. De acuerdo a la posición mostrada en la figura:

a) Calcular la componente y su signo, del momento dipolar en dirección "i" (en μCm)

-233.83

~

b) Calcular la componente y su signo, del momento dipolar en dirección "j" (en μCm)

-135

~

c) ¿Cuál es la magnitud (en Nm) del torque eléctrico inicial que experimenta el dipolo? (3 puntos)

77.6

~

d) ¿Cuál es la energía potencial (en J) que experimenta el dipolo? (4 puntos)

-134.45

~

Historial de respuestas				
Paso	Hora	Acción	Estado	Puntos
1	26/02/22, 13:30	Iniciado/a	Sin responder aún	
<u>2</u>	26/02/22, 14:14	Guardada: parte 1: -233.83; parte 2: -135; parte 3: 77.6; parte 4: -134.45	Respuesta guardada	
3	26/02/22, 15:20	Intento terminado	Correcta	15.00

Correcta

Puntúa 10.00 sobre 10.00

Un protón es lanzado en un campo eléctrico uniforme con una rapidez Vo = 6.00 x 10 6 m/s y a un ángulo $\theta=40^o$. Se observa que sale exactamente a la mitad de la separación de las placas y en una dirección de velocidad horizontal. La longitud de las placas es L= 7.00 cm y la separación de placas es L= 3.00 cm.

a) ¿Cuál es la magnitud del campo eléctrico entre las placas? (en 10⁶ N/C) *(5 puntos)*

2.64

~

b) Cual es el signo y magnitud de la aceleración del protón, (en 10 ¹⁴ m/s²). (5 puntos)

-2.53

~

Historial de respuestas				
Paso	Hora	Acción	Estado	Puntos
1	26/02/22, 13:30	Iniciado/a	Sin responder aún	
2	26/02/22, 14:34	Guardada: parte 1: 2.64; parte 2: -2.53	Respuesta guardada	
3	26/02/22, 15:20	Intento terminado	Correcta	10.00

Correcta

Puntúa 15.00 sobre 15.00

Una carga de 12.0 nC está distribuida uniformemente en una longitud *L* de 8.00 m la cual se encuentra sobre un plano horizontal.

a) Calcular el campo eléctrico (en N/C) producido por la carga distribuida en un punto "p" situado a una distancia x= 1.50 m (10 puntos)

7.58

V

b) Que tamaño de carga **Q** (en mC) se deberá colocar en el punto "p" para que se experimente una fuerza de magnitud 1.50 N (5 puntos)

198

Historial de respuestas

Historial de respuestas				
Paso	Hora	Acción	Estado	Puntos
1	26/02/22, 13:30	Iniciado/a	Sin responder aún	
2	26/02/22, 14:43	Guardada: parte 1: 7.58; parte 2: 198	Respuesta guardada	
3	26/02/22, 15:20	Intento terminado	Correcta	15.00

Parcialmente correcta

Puntúa 14.00 sobre 20.00

Una esfera centrada en el origen tiene una distribución de carga volumétrica de 120 nC/m³ y un radio de 12.0 cm. La esfera está centrada dentro de una corteza esférica conductora con radio interno de 30.0 cm y radio externo de 50.0 cm. La carga sobre la corteza esférica es – 2.00 nC. Calcular la magnitud del campo eléctrico en cada una de las siguientes distancias del origen:

b) En **r** = 20.0 cm (7 **puntos**)

195.25

c) En r = 80.0 cm (6 puntos)

correcta

respuesta correcta es: 15.9 intúa 0.00 sobre 6.00

Historia	Historial de respuestas				
Paso	Hora	Acción	Estado	Puntos	
1	26/02/22, 13:30	Iniciado/a	Sin responder aún		
2	26/02/22, 15:02	Guardada: parte 1: 452; parte 2: 195.25; parte 3: -28.1	Respuesta guardada		
3	26/02/22, 15:20	Intento terminado	Parcialmente correcta	14.00	

Correcta

Puntúa 10.00 sobre 10.00

Dos láminas de carga infinitas están separadas por una distancia de 10.0 cm, como lo muestra la figura. La lámina 1 tiene una distribución de carga superficial $\sigma_1=3.00 \mu C/m^2\,$ y la lámina 2 tiene una distribución de carga superficial $\sigma_2=-5.00 \mu C/m^2\,$.

a) Calcular la magnitud del campo eléctrico resultante (en kN/C) en el punto "p", situado a 6.00 cm a la derecha de la lámina 1. (5 puntos)

451.98

~

b) Calcular la magnitud del campo eléctrico resultante (en kN/C) en el punto "p_o", situado a 6.00 cm a la izquierda de la lámina 1. (5 puntos)

113

~

Historial de respuestas				
Paso	Hora	Acción	Estado	Puntos
1	26/02/22, 13:30	Iniciado/a	Sin responder aún	
<u>2</u>	26/02/22, 15:13	Guardada: parte 1: 451.98; parte 2: 113	Respuesta guardada	
3	26/02/22, 15:20	Intento terminado	Correcta	10.00

Pregunta 7	
Correcta	
Puntúa 10.00 sobre 10.00	

Una línea de carga uniforme e infinita tiene una densidad de 9.00 nC/m y está distribuida a lo largo del eje "x".

Intento terminado

a) Considere una superficie esférica de radio 5.00 cm centrada en el origen. ¿Cuál es el flujo eléctrico (en Nm²/C) a través de esta superficie esférica?

b) Utilizando la Ley de Gauss calcular el valor del campo eléctrico (en kN/C), producido por la línea de carga infinita de densidad 9.00 nC/m en un punto localizado a una distancia **y**= 6.00 cm, perpendicular al eje "**x**"

2.70

Historial de respuestas				
Paso	Hora	Acción	Estado	Puntos
1	26/02/22, 13:30	Iniciado/a	Sin responder aún	
2	26/02/22, 15:20	Guardada: parte 1: 102; parte 2: 2.70	Respuesta guardada	

■ 4 Mayo - Faraday Ejemplos - 2

26/02/22, 15:20

Ir a...

3

Solucionario 1er Parcial

10.00

Correcta