Chapitre 4

Règle de conversions entre bases

1 Représentation entière :

BASE	2	8	10	16
	0	0	0	0
	1	1	1	1
	10	2	2	2
	11	3	3	3
N	100	4	4	4
U	101	5	5	5
${ m M}$	110	6	6	6
${ m E}$	111	7	7	7
\mathbf{R}	1000	10	8	8
A	1001	11	9	9
Τ	1010	12	10	Α
I	1011	13	11	В
O	1100	14	12	С
N	1101	15	13	D
	1110	16	14	Ε
	1111	17	15	F
	10000	20	16	10
	10001	21	17	11

2 Conversion base 16 \rightarrow base 2 :

 $\underline{\text{Remarque}}: 16 = 2^4$

Chaque chiffre hexadécimal est remplacé par la suite de 4 chiffres binaires correspondants

Ainsi, $(28F0)_{16} = (0010100011110000)_2$

3 Conversion base $2 \rightarrow \text{base } 16$:

On découpe le nombre binaire en groupe de 4 chiffres en partant de la droite et on effectue la conversion de chaque groupe.

$$101001_2 = 0010 \ 1001 = 29_{16}$$

4 Conversion base $10 \rightarrow base 16$:

On utilise les restes de la division par 16.

$$\begin{aligned} 1981 &= 16 * 123 + \underline{13} \\ 123 &= 16 * 7 + \underline{11} \\ 7 &= 16 * 0 + \underline{7} \end{aligned}$$

$$11_{10} &\rightarrow B_{16} \\ 13_{10} &\rightarrow D_{16} \end{aligned}$$

d' où 1981
$$\rightarrow$$
 (7 * 16^2 + 11 * 16^1 + 13 * 16^0)_{10} = (7BD)_{16}