1. Klausur _{09.08.2017}

Dr. Gerhard Baur Erik Hintz

Gesamtpunktzahl: 100 Punkte.

Diese Klausur ist beidseitig bedruckt.

1. Zeige durch vollständige Induktion, dass für $n \in \mathbb{N}_0$ gilt, dass

[12]

$$\sum_{k=0}^{n} \frac{k}{(k+1)!} = 1 - \frac{1}{(n+1)!}$$

2. Bestimme die Lösung $x \in \mathbb{R}$ der Gleichung

[10]

$$2^{2x} \cdot 5^{-x+1} = 7^x$$

3. Gegeben sei die Folge $(a_n)_{n\in\mathbb{N}}$ mit

[3+9=12]

$$a_n := \frac{4n^2 + 9}{2n^2 + 2n + 3}$$

für $n \in \mathbb{N}$.

- (a) Bestimme $a = \lim_{n \to \infty} a_n$ mithilfe der Grenzwertsätze.
- (b) Zeige den Grenzwert aus (a) mithilfe der Definition, finde also für alle $\varepsilon > 0$ ein N, sodass $|a_n a| < \varepsilon$ für alle n > N gilt.
- 4. Zeige oder widerlege:

 $[4 \times 3 = 12]$

- (a) Die Summe divergenter Folgen ist divergent.
- (b) Es sei b>1. Dann konvergiert die Folge $(a_n)_{n\in\mathbb{N}}$ mit $a_n:=\sum_{k=1}^n b^{-k}$.
- (c) Ist eine Funktion f in a stetig, so ist f in a auch differenzierbar.
- (d) Es sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar und f'(a) = 0. Dann hat f an der Stelle a ein lokales Maximum oder ein lokales Minimum.
- 5. (a) Es seien $f, g: I \to \mathbb{R}$ in $a \in I$ differenzierbar. [2×5=10] Zeige mit der Definition der Ableitung, dass dann auch f+g in a differenzierbar ist mit (f+g)'(a) = f'(a) + g'(a).
 - (b) Für eine differenzierbare, positive Funktion $f:I\to\mathbb{R}$ betrachten wir die logarithmische Ableitung, also die Funktion

$$L(f): I \to \mathbb{R} \text{ mit } L(f) := \frac{f'}{f}$$

Zeige, dass für zwei differenzierbare, positive Funktionen $f,g:I\to\mathbb{R}$ die Gleichheit

$$L(f \cdot g) = L(f) + L(g)$$

gilt.

6. Bestimme, falls existent, den Grenzwert

[10]

$$\lim_{x \to 0} \frac{1 - \cos(2x)}{x \sin(x)}$$

7. Wir betrachten die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = e^x + e^{-x}$

[3+7+4=14]

- (a) Begründe ohne Rechnung, warum die Funktion f im Intervall I = [-1, 1] ein globales Maximum und ein globales Minimum annimmt.
- (b) Bestimme das globale Maximum und das globale Minimum aus (a) (also auf dem Intervall I = [-1, 1]).
- (c) Zeige, dass das Taylorpolynom dritten Grades mit Entwicklungspunkt a=0 gegeben ist durch

$$P_3(x) = 2 + x^2$$

8. (a) Bestimme folgende unbestimmten Integrale:

[4+4+7+5=20]

i.
$$\int 3x^2 \ln(x) dx$$

ii.
$$\int \frac{2xe^{\sqrt{x^2+1}}}{\sqrt{x^2+1}} dx$$

iii.
$$\int \frac{2x+1}{x^2-9} dx$$

(b) Berechne

$$\int_0^1 \sqrt[4]{x} \ dx$$

Viel Erfolg!