1	(a) (i)	Define density.
	(ii)	State the base units in which density is measured.
		[2]

(b) The speed ν of sound in a gas is given by the expression

$$v = \sqrt{\left(\frac{\gamma p}{\rho}\right)}$$

where p is the pressure of the gas of density ρ . γ is a constant.

Given that p has the base units of $kg m^{-1} s^{-2}$, show that the constant γ has no unit. [3]

2 A student uses a metre rule to measure the length of an elastic band before and after stretching it.

The lengths are recorded as

length of band before stretching, $L_0 = 50.0 \pm 0.1$ cm

length of band after stretching, $L_{\rm S}$ = 51.6 \pm 0.1 cm.

Determine

$$(L_{S} - L_{0}) = \dots$$
 cm [1]

1	(a) (i)	Define density.
	(ii)	State the base units in which density is measured.
		[2]

(b) The speed ν of sound in a gas is given by the expression

$$v = \sqrt{\left(\frac{\gamma p}{\rho}\right)}$$

where p is the pressure of the gas of density ρ . γ is a constant.

Given that p has the base units of $kg m^{-1} s^{-2}$, show that the constant γ has no unit. [3]

2 A student uses a metre rule to measure the length of an elastic band before and after stretching it.

The lengths are recorded as

length of band before stretching, $L_0 = 50.0 \pm 0.1$ cm

length of band after stretching, $L_{\rm S}$ = 51.6 \pm 0.1 cm.

Determine

$$(L_{S} - L_{0}) = \dots$$
 cm [1]

(b) the fractional change in length, $\frac{(L_{\rm S}-L_{\rm 0})}{L_{\rm 0}}$,

fractional change = [1]

(c) the uncertainty in your answer in (b).

uncertainty =[3]

1	Mak	te reasonable estimates of the following quantities.	
	(a)	mass of an apple	
		mass = kg	[1]
	(b)	number of joules of energy in 1 kilowatt-hour	
		number =	[1]
	(c)	wavelength of red light in a vacuum	
		wavelength = m	[1]
	(d)	pressure due to a depth of 10 m of water	
		pressure =Pa	[1]
2	Δst		
		udent uses a micrometer screw gauge to measure the diameter of a wire. He fails ce that, with the gauge fully closed, the reading is not zero.	s to
	notio		
	notio	ce that, with the gauge fully closed, the reading is not zero. State and explain whether the omission introduces a random error or a systematic er	ror
	notio	ce that, with the gauge fully closed, the reading is not zero. State and explain whether the omission introduces a random error or a systematic er into the readings of the diameter.	ror
	notio	ce that, with the gauge fully closed, the reading is not zero. State and explain whether the omission introduces a random error or a systematic er into the readings of the diameter.	ror
	notio	ce that, with the gauge fully closed, the reading is not zero. State and explain whether the omission introduces a random error or a systematic er into the readings of the diameter.	ror
	notio	State and explain whether the omission introduces a random error or a systematic er into the readings of the diameter. Explain why the readings are precise but not accurate.	ror .[2]
	notio	State and explain whether the omission introduces a random error or a systematic er into the readings of the diameter. Explain why the readings are precise but not accurate.	[2]

1	(a) (i)	Define density.
	(ii)	State the base units in which density is measured.
		[2]

(b) The speed ν of sound in a gas is given by the expression

$$v = \sqrt{\left(\frac{\gamma p}{\rho}\right)}$$

where p is the pressure of the gas of density ρ . γ is a constant.

Given that p has the base units of $kg m^{-1} s^{-2}$, show that the constant γ has no unit. [3]

2 A student uses a metre rule to measure the length of an elastic band before and after stretching it.

The lengths are recorded as

length of band before stretching, $L_0 = 50.0 \pm 0.1$ cm

length of band after stretching, $L_{\rm S}$ = 51.6 \pm 0.1 cm.

Determine

$$(L_{S} - L_{0}) = \dots$$
 cm [1]

1	(a) (i)	Define density.
	(ii)	State the base units in which density is measured.
		[2]

(b) The speed ν of sound in a gas is given by the expression

$$v = \sqrt{\left(\frac{\gamma p}{\rho}\right)}$$

where p is the pressure of the gas of density ρ . γ is a constant.

Given that p has the base units of $kg m^{-1} s^{-2}$, show that the constant γ has no unit. [3]

2 A student uses a metre rule to measure the length of an elastic band before and after stretching it.

The lengths are recorded as

length of band before stretching, $L_0 = 50.0 \pm 0.1$ cm

length of band after stretching, $L_{\rm S}$ = 51.6 \pm 0.1 cm.

Determine

$$(L_{S} - L_{0}) = \dots$$
 cm [1]

(b) the fractional change in length, $\frac{(L_{\rm S}-L_{\rm 0})}{L_{\rm 0}}$,

fractional change = [1]

(c) the uncertainty in your answer in (b).

uncertainty =[3]

1	Mak	te reasonable estimates of the following quantities.	
	(a)	mass of an apple	
		mass = kg	[1]
	(b)	number of joules of energy in 1 kilowatt-hour	
		number =	[1]
	(c)	wavelength of red light in a vacuum	
		wavelength = m	[1]
	(d)	pressure due to a depth of 10 m of water	
		pressure =Pa	[1]
2	Δst		
		udent uses a micrometer screw gauge to measure the diameter of a wire. He fails ce that, with the gauge fully closed, the reading is not zero.	s to
	notio		
	notio	ce that, with the gauge fully closed, the reading is not zero. State and explain whether the omission introduces a random error or a systematic er	ror
	notio	ce that, with the gauge fully closed, the reading is not zero. State and explain whether the omission introduces a random error or a systematic er into the readings of the diameter.	ror
	notio	ce that, with the gauge fully closed, the reading is not zero. State and explain whether the omission introduces a random error or a systematic er into the readings of the diameter.	ror
	notio	ce that, with the gauge fully closed, the reading is not zero. State and explain whether the omission introduces a random error or a systematic er into the readings of the diameter.	ror
	notio	State and explain whether the omission introduces a random error or a systematic er into the readings of the diameter. Explain why the readings are precise but not accurate.	ror .[2]
	notio	State and explain whether the omission introduces a random error or a systematic er into the readings of the diameter. Explain why the readings are precise but not accurate.	[2]

1	(a) (i)	Define density.
	(ii)	State the base units in which density is measured.
		[2]

(b) The speed ν of sound in a gas is given by the expression

$$v = \sqrt{\left(\frac{\gamma p}{\rho}\right)}$$

where p is the pressure of the gas of density ρ . γ is a constant.

Given that p has the base units of $kg m^{-1} s^{-2}$, show that the constant γ has no unit. [3]

2 A student uses a metre rule to measure the length of an elastic band before and after stretching it.

The lengths are recorded as

length of band before stretching, $L_0 = 50.0 \pm 0.1$ cm

length of band after stretching, $L_{\rm S}$ = 51.6 \pm 0.1 cm.

Determine

$$(L_{S} - L_{0}) = \dots$$
 cm [1]

1	(a) (i)	Define density.
	(ii)	State the base units in which density is measured.
		[2]

(b) The speed ν of sound in a gas is given by the expression

$$v = \sqrt{\left(\frac{\gamma p}{\rho}\right)}$$

where p is the pressure of the gas of density ρ . γ is a constant.

Given that p has the base units of $kg m^{-1} s^{-2}$, show that the constant γ has no unit. [3]

2 A student uses a metre rule to measure the length of an elastic band before and after stretching it.

The lengths are recorded as

length of band before stretching, $L_0 = 50.0 \pm 0.1$ cm

length of band after stretching, $L_{\rm S}$ = 51.6 \pm 0.1 cm.

Determine

$$(L_{S} - L_{0}) = \dots$$
 cm [1]

(b) the fractional change in length, $\frac{(L_{\rm S}-L_{\rm 0})}{L_{\rm 0}}$,

fractional change = [1]

(c) the uncertainty in your answer in (b).

uncertainty =[3]

1	Mak	te reasonable estimates of the following quantities.	
	(a)	mass of an apple	
		mass = kg	[1]
	(b)	number of joules of energy in 1 kilowatt-hour	
		number =	[1]
	(c)	wavelength of red light in a vacuum	
		wavelength = m	[1]
	(d)	pressure due to a depth of 10 m of water	
		pressure =Pa	[1]
2	Δst		
		udent uses a micrometer screw gauge to measure the diameter of a wire. He fails ce that, with the gauge fully closed, the reading is not zero.	s to
	notio		
	notio	ce that, with the gauge fully closed, the reading is not zero. State and explain whether the omission introduces a random error or a systematic er	ror
	notio	ce that, with the gauge fully closed, the reading is not zero. State and explain whether the omission introduces a random error or a systematic er into the readings of the diameter.	ror
	notio	ce that, with the gauge fully closed, the reading is not zero. State and explain whether the omission introduces a random error or a systematic er into the readings of the diameter.	ror
	notio	ce that, with the gauge fully closed, the reading is not zero. State and explain whether the omission introduces a random error or a systematic er into the readings of the diameter.	ror
	notio	State and explain whether the omission introduces a random error or a systematic er into the readings of the diameter. Explain why the readings are precise but not accurate.	ror .[2]
	notio	State and explain whether the omission introduces a random error or a systematic er into the readings of the diameter. Explain why the readings are precise but not accurate.	[2]