

The select Clause (Cont.)

- SQL allows duplicates in relations as well as in query results.
- □ To force the elimination of duplicates, insert the keyword **distinct** after select.
- Find the names of all departments with instructor, and remove duplicates

select distinct *dept_name* **from** *instructor*

The keyword all specifies that duplicates not be removed.

select all dept_name **from** instructor

The select Clause (Cont.)

An asterisk in the select clause denotes "all attributes"

select *
from instructor

- □ The select clause can contain arithmetic expressions involving the operation, +, −, *, and /, and operating on constants or attributes of tuples.
- The query:

select *ID, name, salary/12* **from** *instructor*

would return a relation that is the same as the *instructor* relation, except that the value of the attribute *salary* is divided by 12.

The where Clause

- The where clause specifies conditions that the result must satisfy
 - Corresponds to the selection predicate of the relational algebra.
- To find all instructors in Comp. Sci. dept with salary > 80000 select name from instructor where dept_name = 'Comp. Sci.' and salary > 80000
- Comparison results can be combined using the logical connectives and, or, and not.
- Comparisons can be applied to results of arithmetic expressions.

The from Clause

- ☐ The **from** clause lists the relations involved in the query
 - Corresponds to the Cartesian product operation of the relational algebra.
- ☐ Find the Cartesian product *instructor X teaches*

select *
from instructor, teaches

- generates every possible instructor teaches pair, with all attributes from both relations
- Cartesian product not very useful directly, but useful combined with where-clause condition (selection operation in relational algebra)

Cartesian Product: instructor X teaches

instructor

teaches

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
L 224-2		731	0000

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009

inst.ID	пате	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	10101	CS-101	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	10101	CS-315	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	10101	CS-347	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	12121	FIN-201	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	15151	MU-199	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	22222	PHY-101	1	Fall	2009
12121	Wu	Finance	90000	10101	CS-101	1	Fall	2009
12121	Wu	Finance	90000	10101	CS-315	1	Spring	2010
12121	Wu	Finance	90000	10101	CS-347	1	Fall	2009
12121	Wu	Finance	90000	12121	FIN-201	1	Spring	2010
12121	Wu	Finance	90000	15151	MU-199	1	Spring	2010
12121	Wu	Finance	90000	22222	PHY-101	1	Fall	2009
							l	

Joins

☐ For all instructors who have taught some course, find their names and the course ID of the courses they taught.

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID

 Find the course ID, semester, year and title of each course offered by the Comp. Sci. department

select section.course_id, semester, year, title **from** section, course

where section.course_id = course.course_id and

Try Writing Some Queries in SQL

Suggest queries to be written.....

Natural Join

- Natural join matches tuples with the same values for all common attributes, and retains only one copy of each common column
- select * from instructor natural join teaches;

ID	name	dept_name	salary	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	CS-101	1	Fall	2009
10101		Comp. Sci.		The same was to be a series	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	CS-347	1	Fall	2009
12121	Wu	Finance	90000	FIN-201	1	Spring	2010
15151	Mozart	Music	40000	MU-199	1	Spring	2010
22222	Einstein	Physics	95000	PHY-101	1	Fall	2009
32343	El Said	History	60000	HIS-351	1	Spring	2010
45565	Katz	Comp. Sci.	75000	CS-101	1	Spring	2010
45565	Katz	Comp. Sci.	75000	CS-319	1	Spring	2010
76766	Crick	Biology	72000	BIO-101	1	Summer	2009
76766	Crick	Biology	72000	BI∩-301	1	Summer	2010

Natural Join Example

- List the names of instructors along with the course ID of the courses that they taught.
 - select name, course_id
 from instructor, teaches
 where instructor.ID = teaches.ID;
 - select name, course_idfrom instructor natural join teaches;

Natural Join (Cont.)

- Danger in natural join: beware of unrelated attributes with same name which get equated incorrectly
- List the names of instructors along with the the titles of courses that they teach
 - Incorrect version (makes course.dept_name = instructor.dept_name)
 - select name, title from instructor natural join teaches natural join course;
 - Correct version
 - select name, title from instructor natural join teaches, course where teaches.course_id = course.course_id;
 - Another correct version
 - from (instructor natural join teaches)
 join course using(course_id);

The Rename Operation

- The SQL allows renaming relations and attributes using the as clause:
 old-name as new-name
- □ E.g.
 - select ID, name, salary/12 as monthly_salary from instructor
- Find the names of all instructors who have a higher salary than some instructor in 'Comp. Sci'.
 - select distinct T. name from instructor as T, instructor as S where T.salary > S.salary and S.dept_name = 'Comp. Sci.'
- Keyword as is optional and may be omitted instructor as T ≡ instructor T
 - Keyword as must be omitted in Oracle

String Operations

- SQL includes a string-matching operator for comparisons on character strings. The operator "like" uses patterns that are described using two special characters:
 - percent (%). The % character matches any substring.
 - underscore (_). The _ character matches any character.
- Find the names of all instructors whose name includes the substring "dar".

select name
from instructor
where name like '%dar%'

Match the string "100 %"

like '100 \%' escape '\'

String Operations (Cont.)

- Patters are case sensitive.
- Pattern matching examples:
 - 'Intro%' matches any string beginning with "Intro".

 - '___' matches any string of exactly three characters.
 - '___ %' matches any string of at least three characters.
- SQL supports a variety of string operations such as
 - concatenation (using "||")
 - converting from upper to lower case (and vice versa)
 - finding string length, extracting substrings, etc.