- TD N°3 : Mécanique du point -

Dynamique du point matériel

Exercice 1 : Mesure du champ de pesanteur.

Un ressort de constante de raideur k>0, de longueur à vide ℓ_0 et de masse m_0 négligeable est suspendu verticalement par son extrémité A. A l'autre extrémité B du ressort, on attache une masse quasi-ponctuelle m. Le ressort s'allonge alors de la quantité BO=h, pour parvenir à une longueur totale dans ℓ_0 la nouvelle position d'équilibre $AO=\ell$. On choisit pour référentiel d'étude le référentiel terrestre \mathcal{R} , que nous supposerons galiléen, et nous utiliserons comme repère d'espace le système des coordonnées cartésiennes.

1. Etude statique

- (a) Exprimer le champ de pesanteur terrestre g en fonction des données du problème.
- (b) Application numérique : pour m=200 g, on mesure h=59,5 mm. \rightarrow Déterminer g .

2. Étude dynamique

A partir de la position d'équilibre O précédente, on écarte la masse m d'une quantité x_0 et on la lâche sans vitesse initiale au temps t=0.

(a) Écrire l'équation du mouvement de la masse m. Montrer que l'équation du mouvement est celle d'un oscillateur harmonique non hamorti donnée par :

$$\ddot{x} + \omega_0^2 x = 0$$

et de pulsation dite propre, notée ω_0 que l'on déterminera en fonctions des paramètres du problème.

- (b) En tenant compte des conditions initiales déterminer x(t).
- (c) Exprimer g en fonction de h et ω_0 .
- (d) Application numérique : pour $m=200~{\rm g},$ on compte 113 oscillations par minute. Déterminer g et commenter le résultat.

Données numériques : $k=33~\mathrm{N.m^{-1}}, l_0=0,35~\mathrm{m}$ et $m_0=105~\mathrm{g}$.

Exercice 2 : Tir d'un projectile.

Un projectile de forme sphérique est lancé à la date t=0 depuis un point origine O, suivant la verticale ascendante (Oz) et avec une vitesse initiale $v_0=50~\mathrm{m}\cdot\mathrm{s}^{-1}$. Le référentiel d'étude est le référentiel terrestre $\mathcal R$ supposé galiléen dans les conditions de l'expérience. On note $\overrightarrow{g}=-g\overrightarrow{e}_z$, le champ de pesanteur, supposé uniforme dans la zone d'espace

décrite par le projectile avec $g=9,8m\cdot s^{-2}$. La résistance de l'air est modélisée par une force de frottements d'intensité $F=k\pi r_0^2 v^2$ où k est une constante positive, $r_0=2,0$ cm le rayon du projectile et v sa vitesse instantanée. On donne k=0,25 U.S.I. Le projectile est en plomb, de masse volumique $\rho=11,3$ g.cm⁻³.

- 1. Quelle est l'unité S.I. de la constante k?
- 2. Comparer la force de frottements au poids. Commenter.
- 3. Montrer que, dans la phase ascendante de la trajectoire, on a $\frac{du}{dz} = -2g 2\frac{k\pi}{m}r_0^2u$, en posant $u = v^2$.
- 4. En déduire l'expression de la fonction z(u) au cours de la phase ascendante. On posera $d = \frac{m}{2k\pi r_0^2}$.
- 5. Calculer l'altitude maximale H atteinte par le projectile.

Exercice 3: Coulissement sur une tige en rotation.

Une tige T horizontal passant par O tourne autour de l'axe vertical Oz à la vitesse angulaire $\dot{\theta} = \omega$. Un anneau M(m) peut coulisser sans frottement sur la tige. Il sera repéré par ses coordonnées polaires (r, θ) dans le plan (xOy).

A l'instant initial, le point M est abandonné à la distance $r(t=0)=r_0$ sans vitesse par rapport à la tige $\dot{r}=0$.

On suppose qu'à ce même instant la tige est confondue avec l'axe $(Ox)(\theta(t=0)=0)$.

- 1. Écrire la PFD en projection dans la base cylindrique $(\overrightarrow{u}_r, \overrightarrow{u}_\theta, \overrightarrow{u}_z)$.
- 2. Montrer que le mouvement de l'anneau est donné par : $\ddot{r} \omega^2 r = 0$.
- 3. Montrer qu'une solution de la forme $r(t) = A \exp(\omega t) + B \exp(-\omega t)$ convient, les constantes A et B devront être déterminées à l'aide des conditions initiales.

Exercice 4: Anneau coulissant sur un cercle en rotation.

On considère un anneau coulissant sur un cercle en rotation.

Une circonférence de centre O et de rayon a située dans un plan vertical tourne autour d'un de ses diamètres d'un mouvement uniforme défini par sa vitesse angulaire $\dot{\varphi}=\omega$.

Un anneau M de masse m assimilable à un point matériel est mobile sans frottement sur cette circonférence. On désigne par θ l'angle que fait OM avec la verticale ascendante.

- 1. Écrire le PFD dans le référentiel \mathcal{R}' (O', x', y', z') lié au cercle et en rotation autour de l'axe Oz lié au référentiel galiléen $\mathcal{R}(O,x,y,z)$. On notera \overrightarrow{F}_{ie} et \overrightarrow{F}_{ic} les forces d'inertie d'entraı̂nement et de Coriolis.
- 2. Montrer que \overrightarrow{F}_{ie} est colinéaire à $\overrightarrow{e}_{x'}$, en donnant son expression en fonction de a,m,θ et ω .
- 3. Montrer que \overrightarrow{F}_{ic} est colinéaire à $\overrightarrow{e}_{y'}$, en donnant son expression en fonction de $a, m, \theta, \dot{\theta}$ et ω .
- 4. Projeter le PFD sur $\overrightarrow{c}_{\theta}$ et en déduire l'équation différentielle vérifiée par θ . Montrer que l'équation obtenue peut se mettre sous la forme :

$$\frac{d^2\theta}{dt^2} = f(\theta) \quad \text{où } f(\theta) \text{ une fonction à déterminer.}$$

- 5. On veut étudier l'équilibre relatif de M.
 - (a) Écrire la relation $f(\theta) = 0$ donnant les positions d'équilibre dans \mathcal{R} .
 - (b) Déterminer les positions d'équilibre.
- 6. En examinant les directions et les sens des trois forces mises en jeu dans cet équilibre, déterminer quels sont les intervalles possibles pour θ correspondant aux positions d'équilibre parmi les quatre suivants :

$$\left[0, \frac{\pi}{2}\right]; \quad \left[\frac{\pi}{2}, \pi\right]; \quad \left[\pi, \frac{3\pi}{2}\right] \text{ et } \left[\frac{3\pi}{2}, 2\pi\right]$$

Exercice 5 : Anneau élastiquement lié.

Soit $\mathcal{R}(O,x,y,z)$ un référentiel galiléen (Considéré ici comme repère absolu) muni de la base $(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$ et $\mathcal{R}_1(O_1,x_1,y_1,z_1)$ muni de la base $(\overrightarrow{e_\rho},\overrightarrow{e_\varphi},\overrightarrow{k})$. La tige (T) (Confondue avec l'axe (O_1x_1) tourne autour de l'axe Oz avec une vitesse angulaire de rotation ω constante et positive.

L'extrémité O_1 de la tige, se déplace sur l'axe Oz avec une vitesse V_0 constante. A l'instant t=0. Le point O_1 est confondu avec O.

Un petit anneau M de masse m se déplace sans frottement sur la tige (T). Il est attaché à l'extrémité d'un ressort de raideur k et de longueur à vide ℓ_0 .

A) Étude cinématique :

- 1. Exprimer le vecteur instantané de rotation $\overrightarrow{\Omega}_{\mathcal{R}/\mathcal{R}_{4}}$.
- 2. Exprimer le vecteur \overrightarrow{OM} en fonction de ρ , V_0 et t.
- 3. Déterminer par la méthode directe l'expression de la vitesse absolue \overrightarrow{v}_a et de l'accélération absolue de \overrightarrow{a}_a .
- 4. Déterminer l'expression de la vitesse relative de $\overrightarrow{v_r}$ et d'entrainement de $\overrightarrow{v_e}$.
- 5. Déterminer l'expression de l'accélération relative de a_r , de l'accélération d'entrainement \overrightarrow{a}_e et de l'accélération de Coriolis \overrightarrow{a}_C .
- 6. Les lois de composition des vitesses et des accélérations sont-elles vérifiées?

B) Étude dynamique :

- 1. Donner les expressions de toutes les forces qui s'appliquent à M dans \mathcal{R}_1
- 2. Appliquer à M le principe fondamental de la dynamique dans le repère relatif \mathcal{R}_1 .
- 3. En projetant l'équation vectorielle obtenue de PFD dans la base $(\overrightarrow{e_{\rho}}, \overrightarrow{e_{\varphi}}, \overrightarrow{k})$, déduire :
 - (a) L'équation différentielle du mouvement de M le long de la tige (T).
 - (b) Les composantes de la réaction \overrightarrow{R} .