612 Example Sheet 6

Paul Hacking

27 April 2011

Unless otherwise stated all groups G are finite and all representations ρ are finite dimensional complex representations. We say that a representation $\rho \colon G \to \operatorname{GL}(V)$ of a group G is faithful if ρ is injective. These problems will not be graded, but representation theory will be covered on the final exam.

- (1) Show that every finite group G has a faithful representation on a finite dimensional complex vector space V.
- (2) Determine all finite groups G having a faithful representation on a real vector space of dimension 2. [Hint: We may assume that the action of G preserves an inner product, so that, choosing an orthonormal basis of V, the image of $\rho: G \to \mathrm{GL}_2(\mathbb{R})$ lies in the orthogonal group $\mathrm{O}(2)$.]
- (3) Let $\rho: G \to \operatorname{GL}(V)$ be an irreducible representation of a group G of dimension greater than 1. Let $v \in V$ be a vector. Show that $\sum_{g \in G} gv = 0$.
- (4) Compute the dimensions of the irreducible representations of the group G of rotational symmetries of the cube.
- (5) Recall that the quaternion group Q is defined by $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ with group law given by multiplication of quaternions, that is, $i^2 = j^2 = k^2 = ijk = -1$. Compute the character table of Q and compare it with the character table of D_4 .
- (6) Let $\rho: G \to \operatorname{GL}(V)$ be a representation of G of dimension d and χ its character. Let $g \in G$. Show that $|\chi(g)| \leq d$ with equality iff $\rho(g) = \zeta \cdot \operatorname{id}_V$ for some root of unity ζ .
- (7) Let $\rho: G \to \mathrm{GL}(V)$ be a representation of dimension d and χ its character. Show that

$$\ker(\rho) = \{ g \in G \mid \chi(g) = d \}.$$

- (8) Show that G is simple iff for every nontrivial irreducible character χ and element $g \in G \setminus \{e\}$ we have $\chi(g) \neq \chi(e)$.
- (9) Show that if χ and ψ are characters of G then so is the product $\chi \cdot \psi$, where $(\chi \cdot \psi)(g) := \chi(g) \cdot \psi(g)$. [Hint: Consider the action of G on a tensor product $V \otimes W$.]
- (10) The table below is part of the character table of a finite group (the conjugacy classes are all there but some of the irreducible characters are missing). The numbers in brackets indicate the number of elements in each conjugacy class, and $\omega = (-1 + \sqrt{3}i)/2$, $\gamma = (-1 + \sqrt{7}i)/2$.

	(1)	(3)	(3)	(7)	(7)
χ_1	1	1	1	ω	$\overline{\omega}$
χ_2	3	γ	$\overline{\gamma}$	0	0
χ_3	3	$ \begin{array}{c} (3) \\ 1 \\ \frac{\gamma}{\overline{\gamma}} \end{array} $	γ	0	0

- (a) Compute the order of the group and the number and dimensions of the irreducible representations.
- (b) Find the remaining characters.
- (c) Describe the group by generators and relations.