

哈尔滨工业大学(深圳) 机械设计大作业设计说明书

设计题目: V带传动设计 院 系: 机电工程与自动化学院 机械二班 级: 班 设 计 者: 杨敬轩 学号: SZ160310217 指导教师: 胡泓 设计日期: 2018年11月3日

哈尔滨工业大学(深圳) 机械设计大作业设计任务书

题目: <u>V 带传动设计</u>

带式运输机的传动方案如下图所示,机器工作平稳、单向回转、成批生产, 其他数据见下表。

带式运输机的传动方案示意图

带式运输机中V带传动的已知数据

方案	电动机工作	电动机满载转	工作机的转	第一级	轴承座中	最短工作	工作
	功率 P _d /kW	速 n _m /(r/min)	速 nw/(r/min)	传动比 i1	心高 H/mm	年限	环境
5.1.4	2.2	940	80	2.1	160	5年2班	室内
							清洁

目 录

目	录	I
-,	选择电动机	1
二、	确定设计功率	1
三、	选择带的型号	1
四、	确定带轮的基准直径	1
五、	验算带的速度	2
六、	确定中心距和 V 带基准长度	2
七、	计算小轮包角	3
八、	确定 V 带根数	3
九、	计算初拉力	3
+,	计算作用在轴上的压力	4
+-	-、小 V 带轮设计	4
+=	L、设计参数总表	5
十三	. 参考文献	6

一、选择电动机

根据额定功率为 2.2 kW,满载转速为 940 r/min,查参考文献[2]表 14.1—Y 系列三相异步电动机的型号及相关数据,选择 Y112M-6。

查参考文献[2]表 14.2 可知电动机的轴径为 $D=28\,\mathrm{mm}$, 轴径长为 $E=60\,\mathrm{mm}$ 。

二、确定设计功率

设计功率是根据需要传递的名义功率及考虑载荷性质、原动机类型和每天连续工作的时间长短等因素共同确定的,表达式如下:

$$P_{\rm d} = K_{\rm A} P \tag{1}$$

式中: P——需要传递的名义功率, kW:

 K_{A} ——工况系数,按参考文献[1]表 7.6 选取。

根据 V 带运动时载荷变动小,5 年 2 班为每天工作 2 班 16 小时,查参考文献 [1]表 5.7 得工作情况系数 $K_A = 1.2$,则

$$P_{\rm d} = K_{\rm A} P = 1.2 \times 2.2 \text{ kW} = 2.64 \text{ kW}$$
 (2)

三、选择带的型号

根据设计功率 $P_{\rm d}=2.64~{\rm kW}$, 小带轮转速 $n_{\rm l}=n_{\rm w}=940~{\rm r/min}$, 查看参考文献[1]图 7.11 可选取 A 型带。

四、确定带轮的基准直径

根据参考文献[1]表 7.7 推荐的带轮最小基准直径,可选小带轮直径为 $d_{d1} = 100 \text{ mm}$,则大带轮直径为

$$d_{d2} = i_1 d_{d1} = 2.1 \times 100 \text{ mm} = 210 \text{ mm}$$
 (3)

查参考文献[1]表 7.3 中 "注"可知,取大带轮基准直径 $d_{\rm d2} = 200~{
m mm}$,其传

动比误差
$$\frac{\Delta i}{i} = \frac{2.1 - \frac{200}{100}}{2.1} \times 100\% = 4.76\% < 5\%$$
 ,故可用。

五、验算带的速度

V 带的速度为:

$$v = \frac{\pi d_{d1} n_1}{60 \times 1000} = \frac{\pi \times 100 \times 940}{60 \times 1000} \text{ m/s} = 4.92 \text{ m/s} < 25 \text{ m/s} = v_{\text{max}}$$
 (4)

式中: n_1 ——电动机转速;

 d_{d1} ——小带轮基准直径;

 v_{max} ——查参考文献[1]第 104 页正文可知 $v_{\text{max}} = 25 \text{ m/s}$; 故带的速度符合要求。

六、确定中心距和 V 带基准长度

根据 $0.7(d_{d1}+d_{d2}) \leq a_0 \leq 2(d_{d1}+d_{d2})$ 初步确定中心距:

 $0.7 \times (100 + 200) \text{ mm} = 210 \text{ mm} \leq a_0 \leq 2 \times (100 + 200) \text{ mm} = 600 \text{ mm}$ (5) 考虑到应使结构紧凑,取偏小值 $a_0 = 300 \text{ mm}$ 。

计算带的基准长度:

$$L'_{d} = 2a_{0} + \frac{\pi}{2} (d_{d1} + d_{d2}) + \frac{(d_{d2} - d_{d1})^{2}}{4a_{0}}$$

$$= \left[2 \times 300 + \frac{\pi}{2} \times (100 + 200) + \frac{(200 - 100)^{2}}{4 \times 400} \right] \text{ mm}$$

$$= 1077.49 \text{ mm}$$
(6)

式中: L'_{d} ——带的标准基准长度;

 a_0 ——初选中心距;

查参考文献[1]表 7.2, 选取 V 带基准长度 $L_{\rm d}=1120~{
m mm}$ 。

近似计算实际中心距为:

$$a \approx a_0 + \frac{L_d - L'_d}{2}$$

$$= \left(300 + \frac{1120 - 1077.49}{2}\right) \text{ mm}$$

$$= 321.26 \text{ mm}$$
(7)

七、计算小轮包角

$$\alpha_{1} = 180^{\circ} - \frac{d_{d1} - d_{d2}}{a} \times 57.3^{\circ}$$

$$= 180^{\circ} - \frac{200 - 100}{321.26} \times 57.3^{\circ}$$

$$= 162.16^{\circ}$$
(8)

八、确定V带根数

由参考文献[1]表 7.3 查得 $d_{d1}=100$ mm, $n_1=940$ r/min 近似取 950 r/min 时单根 V 带所能传递的功率为 $P_0=0.95$ kW,由参考文献[1]表 7.4 查得 A 型带的弯曲影响系数 $K_b=0.7725\times 10^{-3}$,由参考文献[1]表 7.5 查得传动比 $i=2.1\geq 2$ 时传动比系数 $K_i=1.1373$,所以功率增量为:

$$\Delta P_0 = K_b n_1 \left(1 - \frac{1}{K_i} \right)$$
= 0.7725 × 10⁻³ × 940 × $\left(1 - \frac{1}{1.1373} \right)$ kW
= 0.09 kW

由参考文献[1]表 7.8 查得 α_1 = 162.16° 近似取160° 时包角修正系数 K_α = 0.96,由参考文献[1]表 7.2 查得长度系数 K_L = 0.91,则带的根数为:

$$z = \frac{P_{d}}{(P_{0} + \Delta P_{0}) K_{\alpha} K_{L}}$$

$$= \frac{2.64}{(0.95 + 0.09) \times 0.96 \times 0.91}$$

$$= 2.91$$
(10)

取z=3根。

九、计算初拉力

 F_0 是保证带传动正常工作的重要因素,它影响带的传动能力和寿命。由参考文献[1]表 7.1 查得 A 型带单位长度的质量m=0.1 kg/m,所以,初拉力为:

$$F_{0} = 500 \cdot \frac{P_{d}}{zv} \cdot \left(\frac{2.5 - K_{\alpha}}{K_{\alpha}}\right) + mv^{2}$$

$$= \left[500 \times \frac{2.64}{3 \times 4.92} \times \left(\frac{2.5 - 0.96}{0.96}\right) + 0.1 \times 4.92^{2}\right] N$$

$$= 145.9 \text{ N}$$
(11)

十、计算作用在轴上的压力

为了求得对张紧装置应加的力及计算轴和轴承的需要,应计算传动带作用在轴上的压力Q。压力Q等于松边和紧边拉力的向量和,如果不考虑两边的拉力差,可以近似地按带两边所受初拉力的合力来计算:

$$Q = 2zF_0\cos\frac{\beta}{2} = 2zF_0\sin\frac{\alpha_1}{2} = 2 \times 3 \times 145.9 \times \sin\frac{162.16^{\circ}}{2} \text{ N}$$
= 864.81 N

十一、小 V 带轮设计

本设计中转速要求不高,材料选用 HT200。

因为300 mm $> d_{d1} = 100$ mm $> 3D = 3 \times 28$ mm = 84 mm ,本方案中带轮属于中小尺寸,故应选用腹板式带轮。

图 1 带轮结构尺寸示意图

查参考文献[1]表 7.9 得

$$\begin{cases} h_{\rm e} = 12 \text{ mm}; & h_{\rm a min} = 2.75 \text{ mm}; & e = (15 \pm 0.3) \text{ mm}; \\ f = 10^{+2}_{-1} \text{ mm}; & b_{\rm d} = 11 \text{ mm}; & \delta = 6 \text{ mm}; & \varphi_0 = 34^{\circ} \pm 30'; \\ B = (z - 1)e + 2f = [(3 - 1) \times 15 + 2 \times 10] \text{ mm} = 50 \text{ mm}; \end{cases}$$
(13)

各个符号的含义参见图 1。

查参考文献[1]图 7.13,得

$$d_{\rm k} = (1.8 \sim 2) d_{\rm d1} = (1.8 \sim 2) \times 28 \ {
m mm} = (50.4 \sim 56) \ {
m mm}$$
,取 $d_{\rm k} = 54 \ {
m mm}$; $L = (1.5 \sim 2) d_{\rm d1} = (1.5 \sim 2) \times 28 \ {
m mm} = (42 \sim 56) \ {
m mm}$,取 $L = 44 \ {
m mm}$; $C = \left(\frac{1}{7} \sim \frac{1}{4}\right) B = \left(\frac{1}{7} \sim \frac{1}{4}\right) \times 50 \ {
m mm} = (7.14 \sim 12.5) \ {
m mm}$,取 $C = 10 \ {
m mm}$ 。

十二、设计参数总表

表1 V 带传动设计参数表

WI CHIMANI SAM										
序号	符号/单位	数值	序号	符号/单位	数值					
1	P/kW	2.2	19	$n_{\rm m}/({\rm r/min})$	940					
2	$n_{\rm w}/({\rm r/min})$	80	20	i_1	2.1					
3	H/mm	160	21	D/mm	28					
4	E/mm	60	22	$P_{ m d}/{ m kW}$	2.64					
5	$n_1/(r/min)$	940	23	$d_{ m d1}/ m mm$	100					
6	$d_{ m d2}/ m mm$	200	24	v/(m/s)	4.92					
7	$L_{ m d}/ m mm$	1120	25	а	321.26					
8	<i>α</i> 1/°	162.16	26	P_0/kW	0.95					
9	K_{b}	0.7725×10 ⁻³	27	K_i	1.1373					
10	K_{α}	0.96	28	$K_{ m L}$	0.91					
11	Z	3	29	m/(kg/m)	0.1					
12	F_0/N	145.9	30	Q/N	864.81					
13	he/mm	12	31	h _{amin} /mm	2.75					
14	e/mm	15±0.3	32	<i>f</i> /mm	10^{+2}_{-1}					
15	$b_{ m d}/{ m mm}$	11	33	δ /mm	6					
16	B/mm	50	34	φ_0	34°±30′					
17	$d_{ m k}$ /mm	54	35	L/mm	44					
18	C/mm	10								

十三、参考文献

- [1] 王黎钦, 陈铁鸣. 机械设计[M]. 哈尔滨:哈尔滨工业大学出版社, 2015
- [2] 宋宝玉. 机械设计课程设计指导书[M]. 北京:高等教育出版社, 2016
- [3] 张锋, 宋宝玉. 机械设计大作业指导书[M]. 北京:高等教育出版社, 2009
- [4] 王熙宁, 袭建军. 画法几何及机械制图[M]. 北京:高等教育出版社, 2015