FJFI ČVUT

Matematické metody v biologii a medicíně

Souhrn na téma

Úvod do Floquetovy teorie

Autor Vladislav Belov

1 Úvodní vztahy a definice

Floquetova teorie zkoumá lineární diferenciální rovnice tvaru $\dot{\xi} = A(t)\xi$, které se obecně objevují při řešení úloh ve variacích jak pro autonomní, tak i pro neautonomní dynamické systémy. A(t) je v tomto případě periodická s periodou T matice vyjádřující Jacobiho matici pravé strany f(x) dynamického systému $\dot{x} = f(x)$. Tato teorie poskytuje matematický aparát pro analýzu existence a stability periodických řešení.

Příklad 1.1. Lineární obyčejná diferenciální rovnice (ODR) v \mathbb{R}^1 : $\dot{\xi} = a(t)\xi$, kde a(t) je reálná funkce.

- a(t) = 1 je periodická s libovolnou periodou \implies řešení $\xi(t) = \xi_0 \cdot e^t$ není periodické.
- $a(t) = \sin t^2$ je periodická s periodou $\pi \implies$ řešení $\xi(t) = \xi_0 \cdot e^{\int_{t_0}^t \sin t^2 dt}$ není periodické.

Tedy obecně periodicita matice A(t) neimplikuje periodicitu řešení.

Definice 1.1. (Fundamentální matice)

Nechť $(y_1, y_2, \dots y_n)$ je systém řešení pro rovnici $\dot{\xi} = A(t)\xi$. Pokud $y_1, y_2, \dots y_n$ jsou lineárně nezávislá, pak matice

$$\Phi(t) = \begin{pmatrix} y_1^1(x) & y_2^1(x) & \dots & y_n^1(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^n(x) & y_2^n(x) & \dots & y_n^n(x) \end{pmatrix}$$
(1)

je fundamentální matice pro danou lineární diferenciální rovnici.

Lemma 1.1. Necht' $\Phi(t)$ je fundamentální matice a B je libovolná regulární matice. Potom $\Psi(t) = \Phi(t) \cdot B$ je také fundamentální matice.

Důkaz. Tvrzení je patrné z faktu, že lineární kombinace řešení soustavy lineárních ODR je také řešení (viz předmět 01DIFR). □

Lemma 1.2. Označíme-li W(t) Wronskián fundamentální matice $\Phi(t)$, pak $W(t) = W(t_0) \exp \left(\int_{t_0}^t \operatorname{tr}(A(s)) ds \right)$.

 $D\mathring{u}kaz$. Aplikujeme-li Taylor $\mathring{u}v$ rozvoj na $\Phi(t)$, dostaneme:

$$\Phi(t) = \Phi(t_0) + (t - t_0) \dot{\Phi}(t_0) + o(t - t_0) = \Phi(t_0) + (t - t_0) A(t_0) \Phi(t_0) + o(t - t_0) =
= (I + (t - t_0) A(t_0)) \Phi(t_0) + o(t - t_0).$$
(2)

Navíc víme, že Wronskián W(t) je podle definice roven $\det(\Phi(t))$. Potom pomocí (2) po zanedbání členů $o(t-t_0)$ asymptotického rozvoje obdržíme:

$$\det(W(t)) = \det(I + (t - t_0) A(t_0)) \cdot \det(\Phi(t_0)) = (1 + (t - t_0) \operatorname{tr}(A(t_0))) \cdot W(t_0). \tag{3}$$

Na druhou stranu, Taylorův polynom prvního řádu pro Wronskián je roven $W(t) = W(t_0) + (t - t_0) \dot{W}(t_0)$, a tedy z (3) dostaneme $\dot{W}(t_0) = \text{tr}(A(t_0)) W(t_0)$. Tato rovnost je platná pro všechny hodnoty t_0 , což implikuje

$$\dot{W}(t) = \operatorname{tr}(A(t)) W(t). \tag{4}$$

Z řešení separovatelné ODR (4) plyne tvrzení daného lemmatu.

¹Zde taky využijeme faktu, že stopa matice $A(t_0)$ je první derivace ve směru determinantu $\det(I + (t - t_0) A(t_0))$. Jinými slovy: $\det(I + (t - t_0) A(t_0)) = 1 + (t - t_0) \operatorname{tr}(A(t_0)) + o(t - t_0)$.

2 Matice monodromie a periodická řešení

Věta 2.1. Nechť matice A(t) je T-periodická. Pokud $\Phi(t)$ je fundamentální, pak $\Phi(t+T)$ je také fundamentální a navíc existuje regulární konstantní matice B taková, že platí následující dva body:

- 1. $\Phi(t+T) = \Phi(t) \cdot B$;
- 2. $det(B) = \exp\left(\int_0^T tr(A(s))ds\right)$.

 $D\mathring{u}kaz$. Nejdříve ukážeme, že $\Phi(t+T)$ je fundamentální: označíme-li $\Psi(t) \stackrel{\text{def.}}{=} \Phi(t+t)$, pak

$$\dot{\Psi}(t) = \dot{\Phi}(t+T) = A(t+T)\Phi(t+T) = A(t)\Psi(t),\tag{5}$$

což znamená, že $\Psi(t) = \Phi(t+T)$ je skutečně fundamentální.

Dále bychom chtěli ukázat existenci matice B a zbývající dva body tvrzení:

1. Ze základů lineární algebry víme, že určitě existuje regulární matice B(t), která splňuje bod 1 pro různé hodnoty t. Chceme ukázat, že $B(t) = B(t_0) \stackrel{\text{def.}}{=} B_0 = \text{const}$ pro libovolné fixní t_0 . Lemma 1.1 implikuje, že $\Psi_0(t) \stackrel{\text{def.}}{=} \Phi(t) B_0$ je fundamentální. Zároveň ale $\Psi(t_0) = \Phi(t_0) B(t_0) = \Phi(t_0) B_0 = \Psi_0(t_0)$ pro všechna t_0 . Pak z věty o existenci a jednoznačnosti řešení lineární ODR plyne, že pro všechna t platí:

$$\Phi(t)B_0 = \Psi_0(t) = \Psi(t) = \Phi(t)B(t) \implies B(t) = B_0 = \text{const.}$$
(6)

2. Z prvního bodu jednoduše vyplývá, že $B = \Phi^{-1}(t)\Phi(t+T)$. Navíc pomocí lemmatu 1.2 dostaneme:

$$W(t+T) = W(t_0) \exp\left(\int_{t_0}^t \operatorname{tr}(A(s))ds + \int_t^{t+T} \operatorname{tr}(A(s))ds\right) = W(t) \exp\left(\int_t^{t+T} \operatorname{tr}(A(s))ds\right)$$
(7)

Potom tedy platí následující:

$$\det(B) = \frac{1}{\det(\Phi(t))} \cdot \det(\Phi(t+T)) = \frac{1}{W(t)} \cdot W(t+T) = \exp\left(\int_{t}^{t+T} \operatorname{tr}(A(s))ds\right). \tag{8}$$

Uděláme-li v (8) substituci z = s - t, dostaneme tvrzení bodu 2.

Poznámka 2.1. Pro jednoduchost výpočtu matice B lze volit t=0. Potom $B=\Phi^{-1}(0)\Phi(T)$, přičemž lineární nezávislost sloupců fundamentální matice $\Phi^{-1}(0)$ umožňuje zvolit takovou bázi prostoru, ve které $\Phi^{-1}(0)=I$. Potom $B=\Phi(T)$.

Definice 2.1. (Matice monodromie)

Matice B z věty 2.1 se nazývá matice monodromie, její vlastní čísla $\rho \in \sigma(B)$ se nazývají charakteristické multiplikátory. Číslo $\lambda \in \mathbb{C}$ takové, že $\rho = e^{\lambda t}$, $\rho \in \sigma(C)$, se nazývá charakteristický exponent.

Poznámka 2.2. (Vlastnosti matice monodromie)

- 1. Za podmínky X(0) = I podle poznámky 2.1 dostáváme
 - $\det(B) = \prod_{i=1}^{n} \rho_i = \exp\left(\int_0^T \operatorname{tr}(A(s))ds\right);$

- $\operatorname{tr}(B) = \sum_{i=1}^{n} \rho_i$.
- 2. Charakteristické exponenty nejsou dány jednoznačně: pokud λ je charakteristický exponent, pak $\lambda + i\frac{2\pi m}{T}$, $m \in \mathbb{Z}$, je také charakteristický exponent.
- 3. Charakteristické multiplikátory nezávisí na výběru fundamentální matice.

 $D\mathring{u}kaz$. Nechť $\Phi(t)$ a $\hat{\Phi}(t)$ jsou dvě různé fundamentální matice. Potom podle věty 2.1 platí, že existují regulární konstantní matice B a \hat{B} takové, že $\Phi(t+T) = \Phi(t)B$ a $\hat{\Phi}(t+T) = \hat{\Phi}(t)\hat{B}$. Z důkazu té samé věty navíc vyplývá, že existuje taková regulární konstantní matice C, že $\hat{\Phi}(t) = \Phi(t)C$, pak

$$\hat{\Phi}(t+T) = \Phi(t+T)C = \Phi(t)BC \wedge \hat{\Phi}(t+T) = \hat{\Phi}(t)\hat{B} = \Phi(t)C\hat{B},$$

a tedy $\hat{B} = C^{-1}BC$, tj. matice \hat{B} a B jsou podobné, a tudíž $\sigma(\hat{B}) = \sigma(B)$.

Věta 2.2. Nechť ρ je charakteristický multiplikátor a λ je odpovídající mu charakteristický exponent. Potom existuje řešení x(t) splňující následující:

- 1. $x(t + T) = \rho x(t)$;
- 2. existuje *T*-periodická funkce p(t) taková, že $x(t) = e^{\lambda t} p(t)$.

 $D\mathring{u}kaz$. Díky větě 2.1 a definici 2.1 víme, že ρ je vlastní číslo konstantní regulární matice B - označíme pomocí $b \in \mathbb{R}^n$ odpovídající tomuto vztahu vlastní vektor, pak $x(t) \stackrel{\text{def.}}{=} \Phi(t)b$. Potom platí

$$x(t+T) = \Phi(t+T)b = \{\text{věta } 2.1\} = \Phi(t)Bb = \Phi(t)\rho b = \rho x(t),$$
 (9)

což je tvrzení prvního bodu dané věty. Pro to, abychom dostali druhý bod, označíme $p(t) \stackrel{\text{def.}}{=} x(t)e^{-\lambda t}$. Potřebujeme ukázat, že p(t) má periodu T:

$$p(t+T) = x(t+T)e^{-\lambda(t+T)} = \rho x(t)e^{-\lambda t} \underbrace{e^{-\lambda T}}_{=\frac{1}{\rho}} = x(t)e^{-\lambda t} = p(t), \tag{10}$$

tj. p(t) je T-periodická.

Poznámka 2.3. (Důsledky věty 2.2)

- 1. Necht' $N \in \mathbb{N}$, pak $x(t + NT) = \rho^N x(t)$:
 - pokud $|\rho| < 1$, tj. Re(λ) < 0, pak $x(t) \xrightarrow{t \to \infty} 0$;
 - pokud $|\rho| = 1$, tj. Re(λ) = 0, pak x(t) je pseudoperiodické řešení (je periodické $\iff \rho = \pm 1$);
 - pokud $|\rho| > 1$, tj. Re(λ) > 0, pak $x(t) \xrightarrow{t \to \infty} \infty$.
- 2. Stabilita periodického řešení:

mějme dynamický systém daný rovnicí $\dot{x} = f(x)$ s periodickým řešením $\phi(t) = \phi(t+T)$. Uděláme-li linearizaci kolem tohoto řešení, dostaneme úlohu $\dot{\xi} = A(t)\xi$, kde $A(t) = f'(\phi(t))$ je T - periodická. Navíc platí $\ddot{\phi} = f'(\phi)\dot{\phi} = A(t)\dot{\phi}$, $\dot{\phi}$ je T-periodické řešení řešení linearizované úlohy. Tedy pro nelineární f(x) vždy aspoň jeden charakteristický multiplikátor je roven 1.

- 3. Ve dvoudimenzionálním (n = 2) prostoru lze použít tzv. *Bendixsonovo kritérium*, které poskytuje více informace o periodických řešeních v \mathbb{R}^2 . Toto kritérium bude dále pouze vysloveno a dokázáno později v rámci předmětu *01MMNS*.
- **Věta 2.3.** Nechť $f: \Gamma \to \mathbb{R}^2$, $\Gamma \subset \mathbb{R}^2$ je oblast, $f \in C^{(1)}(\Gamma)$ a dom $(f) \subset \Gamma$ je jednoduše souvislá množina. Pokud výraz div(f) pro $x \in \text{dom}(f)$ není identicky roven 0 a na dom(f) nemění znaménko, nemá úloha $\dot{x} = f(x)$ pro počáteční podmínku $x(0) = x_{\text{ini}} \in \text{dom}(f)$ periodické řešení s trajektoriemi ležícími zcela v dom(f).

Příklad 2.1. Nelineární oscilátor je popsán následující rovnici:

$$\ddot{\Theta} + p(\Theta)\dot{\Theta} + q(\Theta) = 0, \tag{11}$$

kde p a q jsou hladké, p(x) > 0. Pomocí substituce $x_1 = \Theta$, $x_2 = \dot{\Theta}$ převedeme (11) na soustavu lineárních ODR:

$$\dot{x}_1 = x_2,
\dot{x}_2 = -p(x_1)x_2 - q(x_1).$$
(12)

Potom div $(f(x)) = \underbrace{\frac{\partial x_2}{\partial x_1}}_{=0} - p(x_1) < 0$. Věta 2.3 implikuje, že periodická řešení neexistují.