AUTOVETTORI E AUTOVALORI

Diagonalizzazione di un endomorfismo

Sia V sia un **K**-spazio vettoriale di dimensione finita n

Definizione. Un endomorfismo $f: V \to V$ si dice diagonalizzabile o semplice se esiste una base $\mathcal{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ di V rispetto alla quale la matrice di f è diagonale, ossia una matrice avente elementi tutti nulli tranne eventualmente sulla diagonale principale. In altri termini la matrice di f è diagonalizzabile se è simile a una matrice diagonale.

Se f è diagonalizzabile, sia $\mathcal{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ una base rispetto alla quale la matrice di f è la matrice diagonale

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

allora abbiamo $f(\mathbf{v}_1) = \lambda_1 \mathbf{v}_1, f(\mathbf{v}_2) = \lambda_2 \mathbf{v}_2, \dots, f(\mathbf{v}_n) = \lambda_n \mathbf{v}_n$, cioè ciascun vettore della base viene trasformato dall'endomorfismo f in un multiplo di se stesso; viceversa, se ciascun vettore della base \mathcal{B} viene trasformato dall'endomorfismo f in un multiplo di se stesso, la matrice di f rispetto a \mathcal{B} è diagonale.

Definizione. Un vettore non nullo $\mathbf{v} \in V$ si dice autovettore di f se esiste un numero $\lambda \in \mathbf{K}$ tale che

$$f(\mathbf{v}) = \lambda \mathbf{v}$$

In questo caso λ si dice autovalore di f associato a \mathbf{v} .

Segue quindi che:

Proposizione. Un endomorfismo $f:V\to V$ è diagonalizzabile se e solo se esiste una base di V formata da autovettori di f.

Esempi. 1) Sia f l'identità, cioè $f(\mathbf{v}) = \mathbf{v}$ per ogni $v \in V$, allora ogni vettore non nullo è un autovettore relativo all'autovalore 1. Fissata una qualsiasi base, la matrice di f rispetto al tale base è la matrice identità.

2) Sia $V = \mathbf{R}^2$, sia $(\mathbf{e}_1, \mathbf{e}_2)$ la base canonica e $f : \mathbf{R}^2 \to \mathbf{R}^2$ l'endomorfismo definito da $f(\mathbf{e}_1) = \mathbf{e}_1$, $f(\mathbf{e}_2) = -\mathbf{e}_2$, allora \mathbf{e}_1 e \mathbf{e}_2 sono autovettori relativi agli autovalori rispettivamente 1, -1. La matrice di f rispetto alla base $(\mathbf{e}_1, \mathbf{e}_2)$ è diagonale. Qual è l'interpretazione geometrica di f?

Definizione. Si dice autospazio relativo all'autovalore λ l'insieme

$$V_{\lambda} = \{ \mathbf{v} \in V | f(\mathbf{v}) = \lambda \mathbf{v} \}$$

È facile verificare che V_{λ} è sottospazio di V. In particolare il vettore nullo appartiene a V_{λ} , infatti un autovettore è per definizione non nullo, ma

$$f(\mathbf{0}) = \mathbf{0} = \lambda \mathbf{0}$$

Esempio. Sia $V = \mathbb{R}^2$, sia $(\mathbf{e}_1, \mathbf{e}_2)$ la base canonica e $f : \mathbb{R}^2 \to \mathbb{R}^2$ l'endomorfismo definito da $f(\mathbf{e}_1) = \mathbf{e}_1$, $f(\mathbf{e}_2) = -\mathbf{e}_2$, allora tutti i vettori del tipo $k\mathbf{e}_2$ sono autovettori relativi all' autovalore -1.

Osservazione. 1) Per definizione di nucleo, per ogni $\mathbf{v} \in Ker f$, $f(\mathbf{v}) = \mathbf{0} = 0\mathbf{v}$; dunque, se f non è iniettivo, Ker f è l'autospazio relativo all'autovalore 0 e viceversa se 0 è autovalore di f, allora f non è iniettivo.

2) Nella definizione di autovettore si richiede che \mathbf{v} sia non nullo, infatti il vettore nullo non si può considerare autovettore (anche se, come è noto, si ha sempre $f(\mathbf{0}) = \mathbf{0}$), in quanto per il vettore nullo l'autovalore associato sarebbe indeterminato.

Proposizione. Ad autovalori distinti corrispondono autovettori linearmente indipendenti.

Dimostrazione. Per dare un'idea trattiamo il caso in cui siano dati 3 autovettori. Siano per cominciare $\mathbf{v}_1, \mathbf{v}_2$ due autovettori di f relativi agli autovalori rispettivamente λ_1 e λ_2 , con $\lambda_1 \neq \lambda_2$. La relazione $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 = \mathbf{0}$ nelle incognite x_1, x_2 ammette la sola soluzione $x_1 = x_2 = 0$; infatti applicando f alla relazione si ha

$$f(x_1\mathbf{v}_1 + x_2\mathbf{v}_2) = x_1f(\mathbf{v}_1) + x_2f(\mathbf{v}_2) = x_1\lambda_1\mathbf{v}_1 + x_2\lambda_2\mathbf{v}_2 = \mathbf{0}$$

moltiplicando la relazione per λ_2 si ha

$$x_1\lambda_2\mathbf{v}_1 + x_2\lambda_2\mathbf{v}_2 = \mathbf{0}$$

sottraendo membro a membro si ottiene $x_1(\lambda_1 - \lambda_2)\mathbf{v}_1 = \mathbf{0}$. Ma $\lambda_1 \neq \lambda_2$ e $\mathbf{v}_1 \neq \mathbf{0}$, poichè \mathbf{v}_1 è autovettore, perciò $x_1 = 0$, di conseguenza $x_2\mathbf{v}_2 = \mathbf{0}$ ossia, per lo stesso motivo, $x_2 = 0$.

Siano ora $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ tre autovettori di f relativi agli autovalori distinti rispettivamente $\lambda_1, \lambda_2, \lambda_3$; applicando f alla relazione $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{0}$ si ottiene

$$f(x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3) = \mathbf{0}$$

mentre moltiplicandola per λ_3 si ha

$$x_1\lambda_3\mathbf{v}_1 + x_2\lambda_3\mathbf{v}_2 + x_3\lambda_3\mathbf{v}_3 = \mathbf{0}$$

sottraendo membro a membro si ottiene $x_1(\lambda_1 - \lambda_3)\mathbf{v}_1 + x_2(\lambda_2 - \lambda_3)\mathbf{v}_2 = \mathbf{0}$. Ora $\mathbf{v}_1, \mathbf{v}_2$ sono linearmente indipendenti e, per ipotesi, $\lambda_1 \neq \lambda_3$, $\lambda_2 \neq \lambda_3$, perciò $x_1 = 0$, $x_2 = 0$ e quindi $x_3\mathbf{v}_2 = \mathbf{0}$ cioè $x_3 = 0$. Per quattro o più autovettori corrispondenti ad autovalori tra loro diversi la dimostrazione è analoga.

Ricerca analitica degli autovettori

Sia d'ora in avanti V uno spazio vettoriale reale di dimensione n. Fissata una base di V, possiamo identificare V con lo spazio \mathbf{R}^n e gli endomorfismi $f: \mathbf{R}^n \to \mathbf{R}^n$ con le matrici $M \in \mathbf{R}^{n,n}$. In questi termini un autovettore di f è un vettore colonna non nullo \mathbf{v} tale che

$$M\mathbf{v} = \lambda \mathbf{v}$$

Lemma. Se \mathbf{v} è un autovettore di M con autovalore λ , allora $det(M-\lambda I)=0$; viceversa, se $det(M-\lambda I)=0$, allora esiste un autovettore di M con autovalore λ .

Dimostrazione. La relazione $M\mathbf{v} = \lambda \mathbf{v}$ si può riscrivere come

$$(M - \lambda I)\mathbf{v} = \mathbf{0}$$

che equivale a dire che $\mathbf{v} \in Ker(M-\lambda I)$, ossia il vettore non nullo \mathbf{v} è soluzione del sistema omogeneo avente matrice dei coefficienti $(M-\lambda I)$; per il teorema di Rouchè-Capelli il sistema ha soluzioni non nulle se e solo se $rg(M-\lambda I) < n$; visto che $(M-\lambda I)$ è una matrice quadrata, ciò equivale alla condizione $det(M-\lambda I) = 0$.

Definizione. Il polinomio $p(\lambda) = det(M - \lambda I)$ si dice **polinomio caratteristico** della matrice M. Si tratta di un polinomio di grado n in λ . L'equazione $det(M - \lambda I) = 0$ si dice equazione caratteristica.

Visto che il grado di $p(\lambda)$ è n, l'equazione caratteristica ha al più n radici, quindi f ha al più n autovalori distinti, ma possono essere di meno, dal momento che le radici di un polinomio possono essere ripetute con molteplicità e può anche succedere che compaiano come radici coppie di numeri complessi. Osserviamo inoltre

che per ogni matrice quadrata M, il termine costante di $p(\lambda)$ è dato da $p(0) = det(M - 0\lambda) = det(M)$, mentre è facile verificare che il termine di grado n è $(-\lambda)^n = (-1)^n(\lambda)^n$ e il coefficiente di $(\lambda)^{n-1}$ è $(-1)^{n-1}tr(M)$, dove tr(M) (traccia di M) denota la somma dei coefficienti della diagonale principale.

Trovato un autovalore λ_1 , l'autospazio V_{λ_1} corrispondente è lo spazio delle soluzioni del sistema omogeneo di matrice dei coefficienti $(M-\lambda_1 I)$; tale sistema ammette, come è noto, soluzioni non banali, perciò è sempre $dim(V_{\lambda_1}) \geq 1$; in particolare $dim(V_{\lambda_1}) = n - rg(M-\lambda_1 I)$.

Esempio. Troviamo gli autovalori e gli autovettori di

$$A = \begin{pmatrix} 7 & -3 \\ -3 & 7 \end{pmatrix}$$

Il polinomio caratteristico è $det(A-\lambda I)=(7-\lambda)^2+9$, quindi gli autovalori sono 4 e 10. L'autospazio V_4 è l'insieme delle soluzioni del sistema omogeneo avente matrice dei coefficienti $\begin{pmatrix} 7-4 & -3 \\ -3 & 7-4 \end{pmatrix}$, dunque $V_4=\{\begin{pmatrix} x \\ x \end{pmatrix}\}$, al variare di $x\in \mathbf{R}$. Analogamente l'autospazio V_{10} è l'insieme delle soluzioni del sistema omogeneo avente matrice dei coefficienti $\begin{pmatrix} 7-10 & -3 \\ -3 & 7-10 \end{pmatrix}$, dunque $V_{10}=\{\begin{pmatrix} x \\ -x \end{pmatrix}\}$, al variare di $x\in \mathbf{R}$.

Diagonalizzabilita' di un endomorfismo

Definizione. Si dice **molteplicità** $(molt(\lambda_1))$ di una radice λ_1 del polinomio caratteristico di $M \in \mathbf{R}^{n,n}$, l'esponente del fattore $(\lambda - \lambda_1)$ che compare nella decomposizione di $p(\lambda)$ come prodotto di polinomi di primo grado.

Teorema. Se λ_1 è un autovalore di f, $1 \leq dim(V_{\lambda_1}) \leq molt(\lambda_1)$

Proposizione. Se l'endomorfismo f di \mathbb{R}^n ha n autovalori distinti (tutti di molteplicità1) allora è diagonalizzabile.

Dimostrazione. Basta prendere un autovettore in ciascuno degli n autospazi per costruire una base di \mathbb{R}^n .

Non tutti gli endomorfismi sono diagonalizzabili, vale infatti la seguente condizione necessaria e sufficiente:

Teorema. L'endomorfismo f di \mathbb{R}^n è diagonalizzabile se e solo se

- -tutte le radici del suo polinomio caratteristico sono reali
- -per ogni autovalore λ si ha $dim(V_{\lambda}) = molt(\lambda)$.

In pratica, dato un endomorfismo f di \mathbf{R}^n diagonalizzabile di autovalori $\lambda_1, \dots, \lambda_h$ con rispettive molteplicità μ_1, \dots, μ_h , per costruire una base di \mathbf{R}^n rispetto alla quale f ha matrice diagonale, basta scegliere una base per ogni autospazio V_{λ_i} e fare l'unione di tutte le basi cosi' ottenute. Infatti se f è diagonalizzabile, l'unione di tutte le basi degli autospazi di f è una base di \mathbf{R}^n e (in analogia con il caso h=2), $V_{\lambda_1}+\dots+V_{\lambda_h}=V_{\lambda_1}\oplus\dots\oplus V_{\lambda_h}$, perchè ad autovalori distinti corrispondono autovettori linearmente indipendenti, cioè si tratta di una somma diretta .

Esempio. Nell'esempio precedente l'endomorfismo associato alla matrice

$$A = \begin{pmatrix} 7 & -3 \\ -3 & 7 \end{pmatrix}$$

è diagonalizzabile, infatti le due radici del polinomio caratteristico (4,10) sono reali e $dimV_4 = dimV_{10} = 1$. Una base di V_4 è per esempio il vettore $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$; analogamente una base dell'autospazio V_{10} è per esempio il vettore $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Ne segue che una base di \mathbf{R}^2 formata da autovettori è per esempio $\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}$); rispetto a questa base l'endomorfismo è rappresentato dalla matrice (diagonale) $\begin{pmatrix} 4 & 0 \\ 0 & 10 \end{pmatrix}$.