STA2001 Probability and Statistics (I)

Lecture 6

Tianshi Chen

The Chinese University of Hong Kong, Shenzhen

Review

Definition[Special mathematical expectation] $E[g(X)] = \sum_{x \in \overline{S}} g(x)f(x)$

$$g(X) = \begin{cases} X \to \text{Mean} = \mathcal{U} \\ (X - E[X])^2 \to \text{Variance} \quad E \left[(X - \mathcal{U})^2 \right] \\ X^r \to \text{Moment} \end{cases}$$

$$e^{tX}, \text{ for } |t| < h, \to \text{Mgf:} M(t) = \begin{cases} M(0) = 1 \\ M'(0) = E[X] \\ M''(0) = E[X^2] \end{cases}$$

Review

We are interested in the number of successes in n Bernoulli trials.

Definition[Binomial distribution]

A RV X is said to have a binomial distribution with n Bernoulli trials and the probability of success p, if the range space $\overline{S} = \{0, 1, \dots, n\}$ and the pmf f(x) is in the form of

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \dots, n.$$

We can simply denote it by $X \sim b(n, p)$.

x2p (n.p)

Mgf of Binomial Distribution

Let $X \sim b(n, p)$. Then by definition,

$$M(t) = E[e^{tX}] = \sum_{x=0}^{n} e^{tx} \binom{n}{x} p^{x} (1-p)^{n-x}$$
$$= \sum_{x=0}^{n} \binom{n}{x} (pe^{t})^{x} (1-p)^{n-x}$$
$$= [(1-p) + pe^{t}]^{n} - \infty < t < \infty$$

From the expansion of

$$(a+b)^n = \sum_{x=0}^n \binom{n}{x} a^x b^{n-x}$$
 with $a = pe^t$, $b = 1-p$

Mgf of Binomial Distribution

Question

What is the use of mgf?

Mgf of Binomial Distribution

Question

What is the use of mgf?

$$Proof \\ M'(t) = n[(1-p) + pe^t]^{n-1}pe^t \Rightarrow M'(0) = E[X] = np$$

$$M''(t) = n(n-1)[(1-p) + pe^{t}]^{n-2}p^{2}e^{2t} + n[(1-p) + pe^{t}]^{n-1}pe^{t}$$

$$M''(0) = E[X^2] = n(n-1)p^2 + np$$

$$Var[X] = E[X^2] - (E[X])^2 = n^2p^2 - np^2 + np - n^2p^2 = np(1-p)$$

By the way, when n = 1 in b(n, p), the binomial distribution reduces to Bernoulli distribution denoted by b(1, p).

cdf of Binomial Distribution

$$F(x) = P(X \le x) = \sum_{y \in \{X \le x\}} f(y) = \sum_{y=0}^{[x]} \binom{n}{y} p^y (1-p)^{n-y},$$

where $x \in (-\infty, \infty)$ and [x] is the largest integer $\leq x$.

Example 3

A kind of chicken are raised for laying eggs. Let p=0.5 be the probability that the newly hacked chick is a female. Assuming independence, let X be the number of female chicken out of 10 newly hatched chicks selected at random.

$$P(X ≤ 5)$$
?

$$P(X = 6)$$
?

$$P(X ≥ 6)$$
?

Example 3

Then $X \sim b(10, 0.5)$

$$P(X \le 5) = \sum_{x=0}^{5} {10 \choose x} 0.5^{x} 0.5^{5-x}$$

$$P(X = 6) = {10 \choose 6} 0.5^6 0.5^4 = P(X \le 6) - P(X \le 5)$$

$$P(X \ge 6) = 1 - P(X \le 5)$$

Section 2.5 Negative Binomial Distribution

Description: We are interested in the number of Bernoulli trials until exactly r successes occur, where r is a fixed positive integer.

Description: We are interested in the number of Bernoulli trials until exactly r successes occur, where r is a fixed positive integer.

Define a RV X to denote the trial number at which the rth success

is observed. Then X has the range $\overline{S} = \{r, r+1, \cdots\}$.

Let f(x) denote the pmf of X. Then recall f(x) = P(X = x)

第城来验成功次

- $f(x) = P(\{\text{at the } x \text{th trial, the } r \text{th success is observed}\})$ $= P(\{\text{for the first } x 1 \text{ trials, } r 1 \text{ success have been observed}\})$ $\cap \{\text{at the } x \text{th trial, the outcome is a success}\})$
 - $= P(A \cap B) = P(A)P(B)$ (because A and B are independent)

有一些书里的负二项分布的公式定义可能和这里的有一些小区别。最常见的变化就是:

X是实验总次数,得到r个失败的尝试。不仅仅是成功的次数。因此,实验总次数等于失败数加成功数,这个不同于这里定义的X。^[3]

为了把公式换这种定义进行转换,把k用k-r代替,并且从均值、中位数,或者众数中减去r。为了将按本节定义的负二项分布的公式转换成本文里的公式,需要用k+r代替k,并且在均值,中位数,众数中加上r。

$$f(k;r,p) \equiv Pr(X=k) = inom{k-1}{k-r} p^{k-r} (1-p)^r, k=r,r+1,r+2...$$

这个可能比上面的版本看起来更像二项分布,注意二项分布的参数是按顺序减少的:最后一个失败必然在最后发生,所以其它的事件有更少的可利用的位置,在计算顺序可能性时。

注意这里的负二项分布的定义没有推广到正实数r。

P表示失败的概率,不是成功的。为了把公式进行转换,每个地方用1-p代替p。X定义为失败次数,而不是成功的,这里的定义X为失败的,但P是成功的,和前面X表示成功但P表示失败概率的情况用同样的公式。但是失败和成功的描述是一致的,并且和前面的进行替换。

这两个替代公式可能会同时使用,比如X表示总次数,P表示失败次数。

负二项回归、分布是在均值m项里就定义了、并且和线性回归或者其它的一般线性回归的解释变量相关。概率密度函数变为

$$Pr(X = k) = \left(\frac{r}{r+m}\right)^r \frac{(k+r)!}{k!r!} \left(\frac{m}{r+m}\right)^k, k = 0, 1, 2...$$

$$M(t) = \sum_{x=r}^{\infty} e^{tx} {x-1 \choose r-1} p^r (1-p)^{x-r}$$

$$= \left(pe^t\right)^r \sum_{x=r}^{\infty} {x-1 \choose r-1} \left[(1-p)e^t \right]^{x-r}$$

$$= \frac{(pe^t)^r}{[1-(1-p)e^t]^r}, \quad \text{where } (1-p)e^t < 1$$

(or, equivalently, when $t < -\ln(1-p)$). Thus,

$$M'(t) = (pe^t)^r (-r)[1 - (1-p)e^t]^{-r-1}[-(1-p)e^t]$$
$$+ r(pe^t)^{r-1}(pe^t)[1 - (1-p)e^t]^{-r}$$
$$= r(pe^t)^r [1 - (1-p)e^t]^{-r-1}$$

and

$$M''(t) = r(pe^t)^r(-r-1)[1 - (1-p)e^t]^{-r-2}[-(1-p)e^t]$$
$$+ r^2(pe^t)^{r-1}(pe^t)[1 - (1-p)e^t]^{-r-1}.$$

Accordingly,

$$M'(0) = rp^{r}p^{-r-1} = rp^{-1}$$

and

$$M''(0) = r(r+1)p^{r}p^{-r-2}(1-p) + r^{2}p^{r}p^{-r-1}$$
$$= rp^{-2}[(1-p)(r+1) + rp] = rp^{-2}(r+1-p).$$

Hence, we have

$$\mu = \frac{r}{p}$$
 and $\sigma^2 = \frac{r(r+1-p)}{p^2} - \frac{r^2}{p^2} = \frac{r(1-p)}{p^2}$.

Even these calculations are a little messy, so a somewhat easier way is given in Exercises 2.5-5 and 2.5-6.

$$f(x) = P(\{\text{at the } x \text{th trial, the } r \text{th success is observed}\})$$

$$= P(\{\text{for the first } x - 1 \text{ trials, } r - 1 \text{ success have been observed}\})$$

$$\cap \{\text{at the } x \text{th trial, the outcome is a success}\})$$

$$= P(A \cap B) = P(A)P(B)(\text{because } A \text{ and } B \text{ are independent})$$

$$P(A) = \binom{x-1}{r-1}p^{r-1}(1-p)^{x-r}, \quad P(B) = p$$

Definition[Negative Binomial Distribution]

A RV X is said to have a negative binomial distribution with the probability of success p and the number of successes r we are interested in, if the range $\overline{S} = \{r, r+1, \cdots\}$ and the pmf f(x) is in the form of

$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \quad x = r, r+1, \cdots$$

This distribution get its name due to the negative binomial series

$$(1-w)^{-r} = \sum_{x=r}^{\infty} {x-1 \choose r-1} w^{x-r}$$

Geometric Distribution

Definition[Geometric Distribution]

A RV X is said to have a geometric distribution with the probability of success p, if the range $\overline{S} = \{1, 2, \cdots\}$ and the pmf f(x) is in the form of

$$f(x) = p(1-p)^{x-1}, \quad x = 1, 2, \cdots.$$

For a positive integer k,

$$P(X > k) = \sum_{x=k+1}^{\infty} p(1-p)^{x-1} = \frac{(1-p)^k p}{1-(1-p)} = (1-p)^k$$

$$P(X \le k) = \sum_{x=1}^k p(1-p)^{x-1} = 1 - P(X > k) = 1 - (1-p)^k$$

Biology students are checking eye color of fruit flies. For each fly,

$$P(\text{white}) = \frac{1}{4}, \quad P(\text{red}) = \frac{3}{4}.$$

Assume the observations are independent Bernoulli trials.

To observe 1 white fly, what's the probability one has to check

at least 4 flies?

at most 4 flies?

4 flies?

We define X to be the number of fruit flies one has to check until the first white-eye fly is observed.

Then X has the geometric distribution with probability of success 1/4. So the probability one has to check

at least 4 flies?
$$\longrightarrow P(X \ge 4) = P(X > 3) = (1 - \frac{1}{4})^3 = (\frac{3}{4})^3$$

at most 4 flies? $\longrightarrow P(X \le 4) = 1 - (1 - \frac{1}{4})^4$
4 flies? $\longrightarrow P(X = 4) = \frac{1}{4} \cdot (\frac{3}{4})^3$

Mathematical Expectations of Negative Binomial

Distribution

Mean and Variance 2229

Mean:
$$E[X] = \frac{r}{p}$$
 $f = 1$ $U = \frac{1-p}{p}$ $f = \frac{1-p}{p^2}$

Variance :
$$Var[X] = E[X^2] - (E[X])^2 = \frac{r(1-p)}{p^2}$$

can be calculated by using the mgf

Mgf:
$$M(t) = E[e^{tX}] = \frac{(pe^t)^r}{[1 - (1 - p)e^t]^r}$$
, for $(1 - p)e^t < 1$

which can be obtained by using the negative binomial series

$$(1-w)^{-r} = \sum_{x=r}^{\infty} \begin{pmatrix} x-1 \\ r-1 \end{pmatrix} w^{x-r}$$

Section 2.6 Poisson Distribution

Motivation

Description: There are experiments that result in counting the number of times that particular events occur within a given period or for a given physical object:

- the number of flaws in a 100 feet long wire.
- between 7:00-8:00 pm.

Counting such events can be seen as observations of a RV associated with an approximate Poisson process (APP).

Approximate Poisson Process (APP)

Definition[Approximate Poisson Process (APP)]

Let the number of occurrences of some event in a given continuous interval be counted. Then we have an APP with parameter $\lambda>0$ if

- (a) The number of occurrences in non-overlapping subintervals are independent.
- (b) The probability of exactly one occurrence in a sufficiently short subinterval of length h is approximately $\underline{\lambda h}$. $P = \lambda h$
- (c) The probability of two or more occurrences in a sufficiently short subinterval is essentially $\underline{0}$.

Consider a random experiment described by APP. Let X denote the number of occurrences in **an interval with length 1**. We aim to find an approximation for f(x) = P(X = x) with $x = 0, 1, 2, \cdots$.

To this goal,

1. Partition the unit interval into *n* equally spaced subintervals.

$$\frac{1}{n} \frac{1}{n}$$

$$\frac{1}{n}$$

$$\frac{1}{n}$$

2. If n is sufficiently large (n >> x), P(X = x) can be approximated by the probability that exactly x of these n subintervals each has one occurrence.

- 2.1 By condition (c), the probability of two or more occurrences in any sufficiently short subinterval is 0. [n Bernoulli experiments.]
- 2.2 By condition (b), the probability of one occurrence in any subinterval (with length $\frac{1}{n}$) is approximately $\lambda \frac{1}{n}$. [Same probability of success $\lambda \frac{1}{n}$.]
- 2.3 By condition (a), the *n* Bernoulli experiments are independent. [*n* Bernoulli trials with probability of success $\lambda \frac{1}{n}$.]

Therefore occurrence and nonoccurrence in the n subintervals are n Bernoulli trials with probability of success $\frac{\lambda}{n}$

$$P = \frac{\lambda}{n}$$

3. Therefore, P(X = x) can be approximated by the probability of x successes for $b(n, p = \frac{\lambda}{n})$

$$\frac{n!}{x!(n-x)!}(\frac{\lambda}{n})^{x}(1-\frac{\lambda}{n})^{n-x}$$

4. Let $n \to \infty$. Then

$$b(n,\frac{\lambda}{n})$$

$$\lim_{n\to\infty}\frac{n!}{x!(n-x)!}(\frac{\lambda}{n})^x(1-\frac{\lambda}{n})^{n-x}$$

$$= \lim_{n \to \infty} \frac{n!}{(n-x)! n^x} \cdot \frac{\lambda^x}{x!} (1 - \frac{\lambda}{n})^n (1 - \frac{\lambda}{n})^{-x}$$

Noting
$$\lim_{n\to\infty} \frac{n!}{\chi! (n-x)!} (\frac{\lambda}{n})^{\chi} (j-\frac{\lambda}{n})^{n-\chi}$$

$$= \lim_{n\to\infty} \frac{n!}{n!} (n-x)! (n-x)$$

$$P(X=x) = \lim_{n \to \infty} \frac{n!}{(n-x)! n^x} \cdot \frac{\lambda^x}{x!} (1-\frac{\lambda}{n})^n (1-\frac{\lambda}{n})^{-x} = \frac{\lambda^x e^{-\lambda}}{x!}$$

$$P(X=X) = \frac{X^{2}e^{-\lambda}}{X!}$$

It can be verified

$$f(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x = 0, 1, \dots$$
is a well-defined pmf.
$$f(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}$$

Definition[Poisson Distribution]

A RV X is said to have a Poisson distribution with the parameter λ , if the range $\overline{S}=\{0,1,\cdots,\}$ and the pmf f(x) is in the form of

$$f(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x = 0, 1, \dots$$

We can simply denote it by $X \sim \text{Poisson}(\lambda)$.

It can be verified

$$f(x) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, \dots$$

is a well-defined pmf.

Definition[Poisson Distribution]

A RV X is said to have a Poisson distribution with the parameter λ , if the range $\overline{S} = \{0, 1, \dots, \}$ and the pmf f(x) is in the form of

$$f(x) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, \dots.$$
 We can simply denote it by $X \sim \text{Poisson}(\lambda)$.

Question

What's the implication of λ ?

Mean and Variance

The mgf of a Poisson distributed RV X is

The mgf of a Poisson distributed RV
$$X$$
 is
$$M(t) = E[e^{tX}] = \sum_{x=0}^{\infty} e^{tx} \frac{\lambda^{x} e^{-\lambda}}{x!} \stackrel{\text{ge}}{=} e^{-\lambda} \stackrel{\text{ge}}{=} e^{\lambda(e^{t}-1)}$$

$$= e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^{t})^{x}}{x!} = e^{-\lambda} \cdot e^{\lambda e^{t}} = e^{\lambda(e^{t}-1)}$$

$$M'(t) = \lambda e^{t} e^{\lambda(e^{t}-1)} \Rightarrow M'(0) = \lambda$$

$$M''(t) = \lambda e^{t} e^{\lambda(e^{t}-1)} + \lambda^{2} e^{2t} e^{\lambda(e^{t}-1)} \Rightarrow M''(0) = \lambda + \lambda^{2} = E[X^{2}]$$

$$E[X] = M'(0) = \lambda$$

$$Var[X] = E[X^2] - (E[X])^2 = \lambda + \lambda^2 - \lambda^2 = \lambda$$

 λ is the mean and variance of $X \sim \text{Poisson}(\lambda)$: the average

number of occurrences in the unit interval!

avg occurrences in unit internues in unit internues in unit

Question

In SZ, telephone calls to 110 come on the average of 2 calls every 3 minutes. If one models with APP, what's the probability of 5 or more calls arrive in a 9-minute period?

Question

In SZ, telephone calls to 110 come on the average of 2 calls every 3 minutes. If one models with APP, what's the probability of 5 or more calls arrive in a 9-minute period?

Let X denote the number of calls in a 9-minute period, which is the unit interval for the problem. Then $X \sim \text{Poisson}(\lambda)$.

We need to determine λ .

Question

In SZ, telephone calls to 110 come on the average of 2 calls every 3 minutes. If one models with APP, what's the probability of 5 or more calls arrive in a 9-minute period?

Let X denote the number of calls in a 9-minute period, which is the unit interval for the problem. Then $X \sim \text{Poisson}(\lambda)$.

We need to determine
$$\lambda$$
. $E[X] = 6 = \lambda$

$$f[X] = \frac{6^{x}e^{-6}}{x!}$$

$$E[X] = 6 = \lambda \implies f(x) = \frac{6^{x}e^{-6}}{x!}$$

Therefore,

$$P(X \ge 5) = 1 - P(X \le 4) = 1 - \sum_{\substack{x=0 \ x = 1}}^{4} \frac{6^x e^{-6}}{x!}$$