funNystrom 2 or

Algorithm-agnostic low-rank approximation of operator monotone matrix functions

By: Raphael A. Meyer, David Persson, Christopher Musco

Motivation

Given time series data, fit Gaussian Process to data with kernel function $K(\underline{x},\underline{x}')$ and noise of variance σ

$$A = K + \sigma^2 I$$
, $[K]_{ij} = K(x_i, x_j)$

To learn σ , maximize log-likeliood

How to compute log det(K+o2I)?

log det
$$(K+\sigma^2I) = tr(log(A))$$

Naïve Algo:

- ① Use Lanczos to approx ½→log(A)≥
- [®] Run Hutch++

Lanczos is slow. Can we do better?

Hutch++
$$\bigcirc$$
 Find $\mathcal{B} \approx (\log(A))_{K}$
Compute $\chi^{\tau}(\log(A) - \mathcal{B})\chi$ many times
We focus on \bigcirc

f(A) Low-Rank Approximation

Given
$$A \in \mathbb{R}^{n \times n}$$
, $K \in \mathbb{R}^{n \times n}$, $K \in \mathbb{R}^{n \times k}$ find matrix $C \in \mathbb{R}^{n \times k}$ with
$$||f(A) - C||_{F,2} \leq (1+\varepsilon) ||f(A) - (f(A))_{K}||_{F,2}$$

Naively: Lanczos to approximate $f(A)_{\chi}$, run Krylov

Ideally, what should C be?

Low-Rank Approx and Matrix Functions

Eigendecomposition
$$A = U \wedge U^{T}$$

$$A = U \wedge U^{T}$$

$$A_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$$

Best rank- κ approx = A_{κ} = zero out all except κ largest eigs

Matrix Function =
$$f(A) = U f(\Lambda)U^{T}$$

$$A = U f(\Lambda)U^{T}$$

$$F(\Lambda)U^{T}$$

$$F(\Lambda)U^{T}$$

Best rank-K approx = $(F(A))_K$ = zero all except K largest of F(A)= zero all except K largest of A

f(0)=0 = $f(A_K)$ $f(A_K)$ takes $O(n^2K)$ time to compute!

Meta-algo

(our result, informally: this is always a good idea)

- Since $(f(A))_K = f(A_K)$
- 1) Find low-rank $\beta \approx A_{\kappa}$
- (3) Compute C = f(B)

 $O(n^{z}K)$ time

 \Im Return C_{K}

allows f(0) +0, rank(B) >K

Avoids Lanczos! $C_K \approx (f(A))_K$ Without accessing $f(A)_k$ Problem: β must be symmetric PSD for $f(\beta)$ to exist

funNystrom [Persson Kresner]

Nystrom Approximation Given ortho $Q \in \mathbb{R}^{n \times K}$, let $B = AQ(Q^TAQ)^{-1}Q^TA$ Then, B is the best rank- κ PSD approx to A in range (AQ)

- (i) Run subpsace iteration to find good Q
 (ii) Build $\beta = AQ(Q^TAQ)^{-1}Q^TA$ (iii) Return $(F(\beta))_K$

Thm: If f is "nice" then $O(\frac{n^2}{3^{k-3}k+1}\log \frac{1}{\xi})$ time suffices

Eigengap =
$$\frac{\lambda_{K+1} - \lambda_{K}}{\lambda_{K+1}}$$

funNystrom Proof Sketch

f is Operator Monotone if

- for $A \leq B$ we have $f(A) \leq f(B)$
- * implies f is concave (unintuitive)

Proof Sketch

I) f is concave, so eigengaps of f(A) are \leq those of A f(A) Subspace iter convergest fast when eigengaps large f(A) A would need f(A) by f(A) steps of subspace iter

A needs $O(g_{\kappa \rightarrow \kappa_{+}}^{\perp} \log(\frac{1}{\xi}))$ steps for funNystrom to converge $= O(\frac{n^2}{g_{\kappa \rightarrow \kappa_{+}}} \log(\frac{1}{\xi}))$ time

Our Contribution

Their proof is specific to subspace iteration We often use other algos (Krylov, ID, Sketching, ...)

Let ortho $Q \in \mathbb{R}^{n \times \kappa + p}$ s.t. $||A - (QQTA)_{\kappa}||_{F,2,*} \leq (1+\epsilon) ||A - A_{\kappa}||_{F,2,*}$

Then $B=(AQ(Q^TAQ)^TQ^TA)_K$ has $\|A - B\|_{F,2,*} \le (1+\epsilon)\|A - A_K\|_{F,2,*}$

And
$$C = (f(B))_K$$

And
$$C = (f(B))_{K}$$
 has $||f(A) - C||_{F,a,*} \le (1+\epsilon) ||f(A) - (f(A))_{K}||_{F,a,*}$

Key points: algorithm agnostic, same value of ε !

Takeaways

If Algo produces &-good Q in time T, then funNystrom is &-good in time T+O(ntk)

Proofs: boring & short

Ready for implimentation!

Secondary motivation:

If f(A) has quickly decaying eigenvalues,
Then funNystrom(A) preserves 'all' structure of f(A) fast!

Future Directions: Beyond operator monotone (log-concave?)