Variables aléatoires : loi et espérance (suite).

- 1. Soit X une variable aléatoire. Déterminer pour quelles valeurs de $\lambda \in \mathbb{R}$ la variable $e^{\lambda X}$ est intégrable et calculer $\mathbb{E}[e^{\lambda X}]$ dans chacun des cas suivants :
 - a. X suit la loi uniforme sur un intervalle [a, b],
 - b. X suit la loi exponentielle de paramètre $\theta > 0$,
 - c. X suit la loi normale $\mathcal{N}(0,1)$.
- **2.** a. Soit X une variable aléatoire à valeurs dans \mathbb{N} . Montrer que si X^2 est intégrable, alors X est intégrable. Ce résultat reste-t-il vrai si l'on suppose que la loi de X admet une densité?
- b. Soit $m \geq 1$ un entier. Donner un exemple d'une variable aléatoire X à valeurs dans \mathbb{N} telle que X^k soit intégrable pour tout k compris entre 1 et m et $\mathbb{E}[X^{m+1}] = +\infty$.
 - **3.** On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(t) = \frac{1}{\pi} \frac{1}{1+t^2}$.
 - a) Montrer que f est la densité d'une mesure de probabilités sur \mathbb{R} . Soit X une variable aléatoire dont la loi admet la densité f.
 - b) La variable aléatoire X est-elle intégrable?
 - c) Calculer la fonction de répartition de X.
 - d) Calculer la loi de $Y = \arctan(X)$.

La loi considérée dans cet exercice s'appelle la loi de Cauchy standard.

- 4. Soit X une variable aléatoire qui suit la loi normale $\mathcal{N}(0,1)$. Montrer que pour tout $n \in \mathbb{N}$, la variable aléatoire X^n est intégrable et calculer $\mathbb{E}[X^n]$. Vérifier que pour tout $n \geq 0$, $\mathbb{E}[X^n]$ est le nombre de manières d'apparier n points, c'est-à-dire le nombre de partitions de l'ensemble $\{1,\ldots,n\}$ par des paires.
- 5. Soit $\theta > 0$ un réel. Soit X une variable aléatoire de loi exponentielle de paramètre θ . Montrer que pour tout entier $n \geq 1$, la variable aléatoire X^n est intégrable et calculer $\mathbb{E}[X^n]$. Donner une interprétation combinatoire de ce nombre lorsque $\theta = 1$.
- **6.** Soit $\lambda > 0$ un réel. Soit X une variable aléatoire de loi de Poisson de paramètre λ . Montrer que pour tout entier $k \geq 1$, la variable aléatoire $X(X-1) \dots (X-k+1)$ est intégrable et calculer son espérance. Calculer $\mathbb{E}[X^m]$ pour $m = \{1, 2, 3, 4\}$ lorsque $\lambda = 1$ et vérifier que pour chacune de ces valeurs de m, $\mathbb{E}[X^m]$ est le nombre de partitions d'un

ensemble à m éléments. On peut démontrer que cette assertion est vraie pour tout $m \geq 1$.

- 7. Montrer qu'une variable aléatoire positive dont l'espérance est nulle est nulle presque sûrement. On pourra montrer, par contraposition, que si X est une variable aléatoire positive telle que $\mathbb{P}(X>0)>0$, alors $\mathbb{E}[X]>0$.
- 8. Soient $\lambda, \mu > 0$ deux réels. On considère l'ensemble $\Omega = \mathbb{N}^2$, la tribu $\mathscr{F} = \mathscr{P}(\mathbb{N}^2)$ et, sur l'espace mesurable (Ω, \mathscr{F}) , la probabilité \mathbb{P} caractérisée par

$$\forall (n,m) \in \mathbb{N}^2, \ \mathbb{P}(\{(n,m)\}) = e^{-(\lambda+\mu)} \frac{\lambda^n}{n!} \frac{\mu^m}{m!}.$$

Enfin, sur $(\Omega, \mathscr{F}, \mathbb{P})$, on définit les deux variables aléatoires X(n, m) = n et Y(n, m) = m.

- a) Vérifier que $\mathbb{P}(\Omega) = 1$.
- b) Déterminer la loi de X et la loi de Y.
- c) Déterminer la loi de X + Y.
- 9. Soient $\lambda > 0$ et $p \in [0,1]$ deux réels. On considère l'ensemble $\Omega = \mathbb{N}^2$, la tribu $\mathscr{F} = \mathscr{P}(\mathbb{N}^2)$ et, sur l'espace mesurable (Ω, \mathscr{F}) , la probabilité \mathbb{P} caractérisée par

$$\forall (n,k) \in \mathbb{N}^2, \ \mathbb{P}(\{(n,k)\}) = e^{-\lambda} \frac{\lambda^n}{n!} \binom{n}{k} p^k (1-p)^{n-k} \mathbb{1}_{k \le n}.$$

Enfin, sur $(\Omega, \mathcal{F}, \mathbb{P})$, on définit les deux variables aléatoires X(n, k) = n et Y(n, k) = k.

- a) Vérifier que $\mathbb{P}(\Omega) = 1$.
- b) Déterminer la loi de X et la loi de Y.