计算机学院专业必修课

计算机组成

从晶体管到运算

高小鹏

北京航空航天大学计算机学院 系统结构研究所

提纲

- 内容主要取材: CS61C的17讲、18讲
 - http://inst.eecs.berkeley.edu/~cs61c/su12
- 晶体管
- 门电路
- 运算

提纲

- 内容主要取材: CS61C的17讲、18讲
 - http://inst.eecs.berkeley.edu/~cs61c/su12
- 晶体管
- 门电路
- 运算

Design Hierarchy

Switches (1/2)

- The basic element of physical implementations
- Convention: if input is a "1," the switch is asserted

Open switch if A is "0" (unasserted) and turn OFF light bulb (Z)

Close switch if A is "1" (asserted) and turn ON light bulb (Z)

In this example, $Z \equiv A$.

Switches (2/2)

- Can compose switches into more complex ones (Boolean functions)
 - Arrows show action upon assertion (1 = close)

OR: "1" $Z \equiv A \text{ or } B$

Transistors

- High voltage (V_{dd}) represents 1, or true
- Low voltage (0 volts or Ground) represents 0, or false
- Let threshold voltage (V_{th}) decide if a 0 or a 1
 - Vth一般小于Vdd
- If switches control whether voltages can propagate through a circuit, can build a computer
- Our switches: CMOS transistors

CMOS Transistor Networks

- Modern digital systems designed in CMOS
 - MOS: Metal-Oxide on Semiconductor
 - C for complementary: use pairs of normally-open and normally-closed switches
 - Used to be called COS-MOS for complementary-symmetry -MOS
- CMOS transistors act as voltage-controlled switches
 - Similar, though easier to work with, than relay switches from earlier era (Porter computer)
 - Use energy primarily when switching

CMOS Transistors

- Three terminals: source, gate, and drain
 - Switch action: if voltage on gate terminal is (some amount) higher/lower than source terminal then conducting path established between drain and source terminals (switch is closed)

Note circle symbol Gate to indicate "NOT" or "complement" Source Drain

n-channel transitor open when voltage at Gate is low closes when:

voltage(Gate) > voltage (Threshold) (High resistance when gate voltage Low, (Low resistance when gate voltage Low,

p-channel transistor closed when voltage at Gate is low opens when:

voltage(Gate) > voltage (Threshold) Low resistance when gate voltage High) High resistance when gate voltage High)

CMOS circuit rules

要点1: 导通时应该让 source电压与 gate电压有反差

- Don't pass weak values => Use Complementary Pairs
 - χ N-type transistors pass weak 1's (V_{dd} V_{th})
 - √ − N-type transistors pass strong 0's (ground)
 - Use N-type transistors only to pass 0's (N for negative)
 - Converse for P-type transistors: Pass weak 0s, strong 1s
 - Pass weak 0's (V_{th}), strong 1's (V_{dd})
 - Use P-type transistors only to pass 1's (P for positive)
 - Use pairs of N-type and P-type to get strong values
- Never leave a wire undriven
 - Make sure there's always a path to V_{dd} or gnd
- Never create a path from V_{dd} to gnd (ground)

要点2:

避免无源驱动

要点3:

壁免短路

MOS Networks

p-channel transistor

closed when voltage at Gate is low opens when:

voltage(Gate) > voltage (Threshold)

n-channel transitor

open when voltage at Gate is low closes when:

voltage(Gate) > voltage (Threshold)

what is the relationship between x and y?

×	У
O volts	3 volts
(gnd)	(Vdd)
3 volts	0 volts
(Vdd)	(gnd)

Called an *invertor* or *not gate*

Two Input Networks

what is the relationship between x, y and z?

X	У	z
0 volts	0 volts	
0 volts	3 volts	
3 volts	0 volts	
3 volts	3 volts	
×	У	Z
	y O volts	Z
0 volts	·	Z
0 volts 0 volts	0 volts	Z

Two Input Networks: Peer Instruction

Two Input Networks

what is the	
relationship between x , y an	d z?

X	У	z
0 volts	0 volts	3 volts
0 volts	3 volts	3 volts
3 volts	0 volts	3 volts
3 volts	3 volts	0 volts

X	<u>_</u> i	Y с	alled <i>NC</i> (NOT)	
3v —	ـــــــا أـــــــا		z	
0v		-	2012	Lookiyo #1

×	У	Z
0 volts	0 volts	3 volts
	3 volts	O volts
3 volts	0 volts	O volts
3 volts	3 volts	O volts

提纲

- 内容主要取材: CS61C的17讲、18讲
 - http://inst.eecs.berkeley.edu/~cs61c/su12
- 晶体管
- 门电路
- 运算

Type of Circuits

- Synchronous Digital Systems consist of two basic types of circuits:
 - Combinational Logic (CL)
 - Output is a function of the inputs only, not the history of its execution
 - e.g. circuits to add A, B (ALUs)
 - Sequential Logic (SL)
 - Circuits that "remember" or store information
 - a.k.a. "State Elements"
 - e.g. memory and registers (Registers)

Logic Gates (1/2)

Special names and symbols:

Logic Gates (2/2)

Special names and symbols:

<u>a</u>	b	С
0	0	1 1
0 0	1	1
1	0	1
1	1	1 0
a	b	С
0 0	0	c
0	1	0
1	0	0
1	1	0
a	b	С
0 0	b	c
0	1	1
1	0	1
1 1	1	0

More Complicated Truth Tables

3-Input Majority

a	b	С	У
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2-bit Adder

Truth Table to Boolean Expression

- Read off of table
 - For 1, write variable name
 - For 0, write complement of variable
- Sum of Products (SoP)
 - Take rows with 1's in output column, sum products of inputs

$$-c = \overline{ab} + \overline{ba}$$

- Product of Sums (PoS)
 - Take rows with 0's in output column, product the sum of the complements of the inputs

$$-c = (a+b) \cdot (\overline{a} + \overline{b})$$

1.3等值演算

- 定义1.9 设A,B是公式,如果对于每个真值赋值v, v(A)=v(B),则称A和B等值,也称A与B逻辑等价,记为A⇔B。
- ■判断¬(p V q)和¬p ∧¬q是否等值。

p	q	$\mathbf{p} \vee \mathbf{q}$	$\neg (p \lor q)$	$\neg \mathbf{p}$	$\neg \mathbf{q}$	$\neg \mathbf{p} \wedge \neg \mathbf{q}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

- 零律
 - $A \lor 1 \Leftrightarrow 1 \quad A \land 0 \Leftrightarrow 0$
- ■幂等律
 - $\begin{array}{c} \bullet & A \vee A \Leftrightarrow A \\ A \wedge A \Leftrightarrow A \end{array}$
- 吸收律
 - $\begin{array}{c} \bullet \ A \lor (A \land B) \Leftrightarrow A \\ A \land (A \lor B) \Leftrightarrow A \end{array}$
- 同一律
 - $A \wedge 1 \Leftrightarrow A$
 - $A \lor 0 \Leftrightarrow A$
 - $A \oplus 0 \Leftrightarrow A$

- 双重否定
 - __A \
- 矛盾律
 - $A \land \neg A \Leftrightarrow 0$
- 排中律
 - A $\bigvee \neg A \Leftrightarrow 1$
- 假言易位
- $A \rightarrow B \Leftrightarrow B \rightarrow A$

- 德•摩根律
 - $\bullet \neg (A \lor B) \Leftrightarrow \neg A \land \neg B$
 - $\bullet \neg (A \land B) \Leftrightarrow \neg A \lor \neg B$
- 交换律
 - $A \lor B \Leftrightarrow B \lor A$
 - $A \land B \Leftrightarrow B \land A$
 - $\bullet A \oplus B \Leftrightarrow B \oplus A$

- 结合律
 - $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
 - $(A \land B) \land C \Leftrightarrow A \land (B \land C)$
 - $(A \oplus B) \oplus C \Leftrightarrow A \oplus (B \oplus C)$
- 分配律
 - $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$
 - $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$
 - $A \land (B \oplus C) \Leftrightarrow (A \land B) \oplus (A \land C)$

- $\blacksquare A \oplus A \Leftrightarrow 0$
- $\blacksquare A \oplus 1 \Leftrightarrow \neg A$
- $\blacksquare A \rightarrow B \Leftrightarrow \neg A \lor B$
- $\blacksquare A \leftrightarrow B \Leftrightarrow (A \rightarrow B) \land (B \rightarrow A)$
- $\blacksquare A \oplus B \Leftrightarrow (\neg A \land B) \lor (A \land \neg B)$
- $\blacksquare A \oplus B \Leftrightarrow \neg (A \leftrightarrow B)$

Laws of Boolean Algebra

These laws allow us to perform simplification:

$$x \cdot \overline{x} = 0$$

$$x \cdot \overline{x} = 1$$

$$x \cdot 0 = 0$$

$$x + 1 = 1$$

$$x \cdot 1 = x$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

$$(xy)z = x(yz)$$

$$x(y + z) = xy + xz$$

$$xy + x = x$$

$$\overline{x}y + x = x + y$$

$$\overline{x} \cdot \overline{y} = \overline{x} + \overline{y}$$

$$x + \overline{x} = 1$$

$$x + 0 = x$$

$$x + x = x$$

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x + yz = (x + y)(x + z)$$

$$(x + y)x = x$$

$$(\overline{x} + y)x = xy$$

$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

complementarity laws of 0's and 1's identities idempotent law commutativity associativity distribution uniting theorem uniting theorem v.2 DeMorgan's Law

Boolean Algebraic Simplification Example

$$y = ab + a + c$$

7/18/2012

Circuit Simplification

- 1) original circuit (Transistors and/or Gates)
- 2) equation derived from original circuit
- 3) algebraic simplification

4) simplified circuit

Converting Combinational Logic

Circuit Simplification Example (1/4)

Simplify the following circuit:

Options:

- 1) Test all combinations of the inputs and build the Truth Table, then use SoP or PoS
- 2) Write out expressions for signals based on gates
 - Will show this method here

Circuit Simplification Example (2/4)

Simplify the following circuit:

- Start from left, propagate signals to the right
- Arrive at D = (AB)'(A + B'C)

Circuit Simplification Example (3/4)

Simplify Expression:

DeMorgan's

Distribution

Complementarity

Idempotent Law

Distribution

Law of 1's

Distribution

Circuit Simplification Example (4/4)

• Draw out final circuit: -D = B'C + AB' = B'(A + C)How many gates do we need for each?

Simplified Circuit:

- Reduction from 6 gates to 3!

Karnaugh Maps

- Again, this is completely OPTIONAL material
 - Recommended you use .pptx to view animations
- Karnaugh Maps (K-maps) are an alternate way to simplify Boolean Algebra
 - This technique is normally taught in CS150
 - We will never ask you to use a K-map to solve a problem, but you may find it faster/easier if you choose to learn how to use it
- For more info, see: http://en.wikipedia.org/wiki/Karnaugh map

Underlying Idea

- Using Sum of Products, "neighboring" input combinations simplify
 - "Neighboring": inputs that differ by a single signal
 - e.g. ab + a'b = b, a'bc + a'bc' = a'b, etc.
 - Recall: Each product only appears where there is a 1 in the output column
- Idea: Let's write out our Truth Table such that the neighbors become apparent!
 - Need a Karnaugh map for EACH output

Reorganizing the Truth Table

- Split inputs into 2 evenly-sized groups
 - One group will have an extra if an odd # of inputs
- Write out all combinations of one group horizontally and all combinations of the other group vertically
 - Group of n inputs \rightarrow 2ⁿ combinations
 - Successive combinations change only 1 input

2 Inputs:

3 Inputs:

K-map: Majority Circuit (1/2)

Filling in the Karnaugh map:

a	b	С	у
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

ab c \	00	01	11	10
0	0	0	1	0
1	0	1	1	1

- Each row of truth table corresponds to ONE cell of Karnaugh map
- Recommended you view the animation on this slide on the Powerpoint (pptx)
- Note the funny jump when you go from input 011 to 100 (most mistakes made here)

K-map: Majority Circuit (2/2)

- Group neighboring 1's so all are accounted for:
 - Each group of neighbors becomes a product term in output

- y = bc + ab + ac
- Larger groups become smaller terms
 - The single 1 in top row → abc'
 - Vertical group of two 1's → ab
 - If entire lower row was 1's \rightarrow c

Single cell can be part of many groups

Q: 为什么某项 可以被多次重复 使用?

General K-map Rules

Q: 为什么最 简表达式不唯 —?

- Only group in powers of 2
 - Grouping should be of size $2^i \times 2^j$
 - Applies for both directions
- Wraps around in all directions
 - "Corners" case is extreme example
- Always choose largest groupings possible
 - Avoid single cells whenever possible

- 1) NOT a valid group
- 2) IS a valid group
- 3) IS a valid group
- 4) "Corners" case
- 5) 1 of 2 good choices here (spot the other?)

提纲

- 内容主要取材: CS61C的17讲、18讲
 - http://inst.eecs.berkeley.edu/~cs61c/su12
- 晶体管
- 门电路
- 运算
 - □ 加法、减法、乘法、除法

Adder/Subtractor: 1-bit LSB Adder

$$s_0 = a_0 \text{ XOR } b_0$$

 $c_1 = a_0 \text{ AND } b_0$

Adder/Subtractor: 1-bit Adder

a_i	b_i	c_i	s_i	c_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S_{i} = \overline{A_{i}B_{i}C_{i}} + \overline{A_{i}B_{i}C_{i}} + A_{i}\overline{B_{i}C_{i}} + A_{i}\overline{B_{i}C_{i}}$$

$$C_{i+1} = A_{i}B_{i} + A_{i}C_{i} + B_{i}C_{i}$$
Summer 2012 -- Lecture #19

7/19/2012

加减法运算

❖加法单元(全加器)

$$S_{i} = \overline{A}_{i} \overline{B}_{i} C_{i} + \overline{A}_{i} B_{i} \overline{C}_{i} + A_{i} \overline{B}_{i} \overline{C}_{i} + A_{i} B_{i} \overline{C}_{i}$$

$$C_{i+1} = A_{i} B_{i} + A_{i} C_{i} + B_{i} C_{i}$$

N x 1-bit Adders \rightarrow N-bit Adder

Connect CarryOut_{i-1} to CarryIn_i to chain adders:

作业

- ▶ 参考书: 数字设计和计算机体系结构
- WORD: 1.32、1.34、1.48、1.51、1.62、1.63、2.1(e)、2.9(c)、2.16、2.19
 - □ 2.16、2.19: 要求用卡诺图化简
- LogiSim(不提交)
 - □ 构造并模拟1位加法器
 - □ 构造并模拟4位加法器
 - ◆ 学习使用层次设计
- 作业提交: 学校course平台
- 截止时间: 10.9的23:59