A Timeline for Logic, λ-Calculus, and Programming Language Theory

Dana S. Scott

University Professor Emeritus

Carnegie Mellon University

Visiting Scholar

University of California, Berkeley

dana.scott@cs.cmu.edu

Taken from talks prepared for:

TURING CENTENNIAL CELEBRATION Princeton University, May 10-12, 2012

ACM TURING CENTENARY CELEBRATION San Francisco, June 15-16, 2012

A Quick Look Back to Beginnings

1870s Begriffsschrift 1880s	Frege (1879)
What are numbers? Number-theoretic axioms	Dedekind (1888) Peano (1889)
1890s Vorlesungen über die Algebra der Logik Grundgesetze der Arithmetik Formulario Mathematico Grundlagen der Geometrie	Schröder (1890–1905) Frege (1893-1903) Peano (1895-1901) Hilbert (1899)
1900s Diophantine problem Russell's Paradox Principles of Mathematics Richard's Paradox Theory of Types	Hilbert (1900) Russell (1901) Russell (1903) Richard (1905) Russell (1908)
1910s Principia Mathematica Calculus of relatives	Whitehead-Russell (1910-12-13) Löwenheim (1915)
WW I	
Löwenheim-Skolem Theorem Propositional calculus completeness Monadic predicate calculus decidable Abstract proof rules Primitive recursive arithmetic Combinators Function-based set theory "Conceptual" undecidability Epsilon operator Combinators (again) Ackermann function Entscheidungsproblem Abriss der Logistik & simple type theory	Skolem (1920)

It was very reasonable for Hilbert and Ackermann to emphasize the Decision Problem, as special cases had been solved.

A Very Busy Decade

1930s

Combinatory logic	Curry (1930-32)
Herbrand's Theorem	Herbrand (1930)
Completeness proof	Gödel (1930)
Partial consistency proof	Herbrand (1931)
Incompleteness	Gödel (1931)
Untyped λ-calculus	Church (1932-33-41)
Studies of primitive recursion	Péter (1932-36)
Non-standard models	Skolem (1933)
Functionality in Combinatory Logic	Curry (1934)
Grundlagen der Mathematik	Hilbert-Bernays (1934-39)
Natural deduction	Gentzen (1934)
Number-theoretic consistency & ε ₀ -in-	duction Gentzen (1934)
Inconsistency of Church's System	Kleene-Rosser (1936)
Confluence theorem	Church-Rosser (1936)
Finite combinatory processes	Post (1936)
Turing machines	Turing (1936-37)
Recursive undecidability	Church-Turing (1936)
General recursive functions	Kleene (1936)
Further completeness proofs	Maltsev (1936)
Improving incompleteness theorems	Rosser (1936)
Fixed-point combinator	Turing (1937)
Computability and λ-definability	Turing (1937)

Starting out with Gödel and ending up with Turing, it would take a long time to comprehend and apply all the developments in this period.

What's Happened Since the 1930s?

The 1940s

Simple type theory & λ -calculus Church (1940)

Primitive recursive functionals Gödel (1941-58)

WW II -----

Recursive hierarchies Kleene (1943)

Theory of categories Eilenberg-Mac Lane (1945)

New completeness proofs Henkin (1949-50)

The 1950s

Computing and Intelligence Turing (1950)

Rethinking combinators Rosenbloom (1950)

IAS Computer (MANIAC) von Neumann (1951)

Introduction to Metamathematics Kleene (1952)

IBM 701 Thomas Watson, Jr. (1952)

Arithmetical predicates Kleene (1955)

FORTRAN Backus et al. (1956-57)

ALGOL 58 Bauer et al. (1958)

LISP McCarthy (1958)

Combinatory Logic. Volume I. Curry-Feys-Craig (1958)

Adjoint functors Kan (1958)

Recursive functionals & quantifiers, I.&II. Kleene (1959-63)

Countable functionals Kleene-Kreisel (1959)

The 1960s

Recursive procedures	Dijkstra (1960)
ALGOL 60	Backus et al. (1960)
Elementary formal systems	Smullyan (1961)
Grothendieck topologies	M.Artin (1962)
Higher-type λ-definability	Kleene (1962)
Grothendieck topoi Grothendiec	ck et al. SGA 4 (1963-64-72)
CPL	Strachey, et al. (1963)
Functorial semantics	Lawvere (1963)
Continuations (1)	van Wijngaarden (1964)
Adjoint functors & triples	Eilenberg-Moore (1965)
•Cartesian closed categories•	Eilenberg-Kelly (1966)
ISWIM & SECD machine	Landin (1966)
CUCH & combinator programming	Böhm (1966)
New foundations of recursion theory	Platek (1966)
Normalization Theorem	Tait (1967)
AUTOMATH & dependent types	de Bruijn (1967)
Finite-type computable functionals	Gandy (1967)
ALGOL 68	van Wijngaarden (1968)
Normal-form discrimination	Böhm (1968)
Category of sets	Lawvere (1969)
Typed domain logic	Scott (1969-93)
Domain-theoretic λ-models	Scott (1969)
Formulae-as-types	Howard (1969 -1980)
Adjointness in foundations	Lawvere (1969)

Theorem. The category of **T**₀-topological spaces and continuous functions is *not* cartesian closed.

Theorem. The category of **T**₀-topological spaces *with* an equivalence relation and continuous functions *respecting* equivalences *is* cartesian closed.

Cartesian closed categories give us the algebraic version of typed λ -calculus.

The 1970s

Continuations (2)	Mazurkiewicz (1970)
* *	` '
Continuations (3)	F. Lockwood Morris (1970)
Continuations (4)	Wadsworth (1970)
Categorical logic	Joyal (1970+)
Elementary topoi	Lawvere-Tierney (1970)
Denotational semantics	Scott-Strachey (1970)
Coherence in closed categories	Kelly (1971)
Quantifiers and sheaves	Lawvere (1971)
Martin-Löf type theory	Martin-Löf (1971)
System F, Fω	Girard (1971)
Logic for Computable Functions	Milner (1972)
From sheaves to logic	Reyes (1974)
Polymorphic λ-calculus	Reynolds (1974)
Call-by-name, call-by-value	Plotkin (1975)
Modeling Processes	Milner (1975)
SASL	Turner (1975)
Scheme	Sussman-Steele (1975-80)
Functional programming & FP	Backus (1977)
First-order categorical logic	Makkai-Reyes (1977)
Edinburgh LCF	Milner et al. (1978)
Let-polymorphic type inference	Milner (1978)
Intersection types	Coppo-Dezani (1978)
ML	Milner et al. (1979)
*-Autonomous categories	Barr (1979)
Sheaves and logic	Fourman-Scott (1979)

This decade saw the importance of constructive logic, the applications to language design and semantics, and the connections to category theory become much clearer.

The 1980s

Frege structures	Aczel (1980)
HOPE	Burstall et al. (1980)
The Lambda Calculus Book	Barendregt (1981-84)
Structural Operational Semantics	Plotkin (1981)
Effective Topos	Hyland (1982)
Dependent types & modularity	Burstall-Lampson (1984)
Locally CCC & type theory	Seely (1984)
Calculus of Constructions	Coquand-Huet (1985)
Bounded quantification	Cardelli-Wegner (1985)
NUPRL	Constable et al. (1986)
Higher-order categorical logic	Lambek-P.J.Scott (1986)
Cambridge LCF	Paulson (1987)
Linear logic	Girard et al. (1987-89)
HOL	Gordon (1988)
FORSYTHE	Reynolds (1988)
Proofs and Types	Girard et al. (1989)
Integrating logical & categorical typ	es Gray (1989)
Computational λ-calculus & monad	s Moggi (1989)

Type theory, resource logic, and computerassisted theorem proving finally became practical during these years.

The 1990s

HASKELL Hudak-Hughes	s-Peyton Jones-Wadler (1990)
Higher-type recursion theory	Sacks (1990)
STANDARD ML	Milner, et al. (1990-97)
Lazy λ-calculus	Abramsky (1990)
Higher-order subtyping	Cardelli-Longo (1991)
Categories, Types and Structur	e Asperti-Longo (1991)
STANDARD ML of NJ	MacQueen-Appel (1991-98)
QUEST	Cardelli (1991)
Edinburgh LF	Harper, et al. (1992)
Pi-Calculus	Milner-Parrow-Walker (1992)
Categorical combinators	Curien (1993)
Translucent types & modular	Harper-Lillibridge (1994)
Full abstraction for PCF Hylan	d-Ong/Abramsky, et al. (1995)
Algebraic set theory	Joyal-Moerdijk (1995)
Object Calculus	Abadi-Cardelli (1996)
Typed intermediate languages	Tarditi, Morrisett, et al. (1996)
Proof-carrying code	Necula-Lee (1996)
Computability and totality in do	mains Berger (1997)
Typed assembly language	Morrisett, et al. (1998)
Type theory via exact categorie	es Birkedal, et al. (1998)
Categorification	Baez (1998)

Abstract ideas now found many applications in language implementation and in compiling.

The New Millennium

Predicative topos Moerdijk-Palmgren (2000)

Sketches of an Elephant Johnstone (2002+)

Differential λ-calculus Ehrhard/Regnier (2003)

Modular Structural Operational Semantics Mosses (2004)

A λ -calculus for real analysis Taylor (2005+)

Homotopy type theory Awodey-Warren (2006)

Univalence axiom Voevodsky (2006+)

The safe λ -calculus Ong, et al. (2007)

Higher topos theory Lurie (2009)

Functional Reactive Programming Hudak, et al. (2010)

Univalent Foundations Program @ IAS & HoTT Book Voevodsky, et al. (2012-13)

In the natural world, convergent evolution can give creatures analogous structures — even though they cannot mate. But, in the intellectual world, analogous structures can be taken advantage of through interfertilization of areas and in finding new applications.

And that we have seen happen with the λ -calculus many, many times over the years.