Introductory Analysis

Proof Techniques

Proof of uniquesness

Assume two seperate elements with the requiered property and than proove that they must be equal to eachother.

Proof by contradiction

Assume that a false stament is true and show that this results in a contradiction

Reals 1

Axioms of the reals

The real numbers are a field which also has ordered and diedekin complete

Field A set *F* of with two opperators + and \cdot such that $\forall f_1, f_2, f_3 \in F$

- Addition
 - (A1) $(f_1 + f_2) + f_3 = f_1 + (f_2 + f_3)$ Addition is associative
 - **(A2)** $f_1 + f_2 = f_1 + f_2$ Addition is comutitive
 - (A₃) $\exists 0|f_1+0=f_1$ Indentity of addition
 - (A₃) $\exists -f_1|f_1+(-f_1)=0$
- Multiplication
 - (M1) $(f_1f_2)f_3 = f_1(f_2f_3)$ Multiplication is associative
 - (M2) $f_1f_2 = f_1f_2$ Multiplication is comutitive
 - (M₃) $\exists 1 \neq 0 | f_1 \dot{1} = f_1$ Indentity of addition
 - (M4) $(\forall f_1 \in F | f_1 \neq 0) \exists f_1^{-1} | f_1(f_1^{-1}) = 1$
- Distrabution
 - **(D1)** $f_1(f_2 + f_3) = f_1f_2 + f_1f_2$ multiplication is distributive over addition

AXIOMS OF COMPARISON

- Order
 - (O1) The trichotomy property of reals.
 - * $(\forall r \in \mathbb{R})$ exactly one is true
 - * a > 0 a = 0 a < 0

Let $r_1r_2\in\mathbb{R}$ then r_1 is called larger than r_2 written $r_1>r_2$ if $r_1-r_2>0$

- **(O2)** $a > 0 \land b > 0 \rightarrow a + b > 0$
- (O₃) $a > 0 \land b > 0 \rightarrow ab > 0$

DIEDEKIN COMPLETENESS AXIOM

- Completeness
 - (C) All bounded sets have superium and infamium

Find the defintion of a monotonic transformation

Collararies

b) $a < b \land b < c \rightarrow a < c$ transitivty

Proof

sort of

- $r_1 \ge b \Leftrightarrow a > b \land a = b$
- $a \le b \Leftrightarrow a = b \land a < b$

• $(S_s + \epsilon)^2 < a$

rl@!

!