Assignment-2 CHAPETR-15

Matrices and Determinants

EE24BTECH11048-NITHIN.K

1 Section-B

1) Let
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
. The only correct statement about the matrix A is [2004]

- a) $A^2 = I$
- b) A = (-1)I, where I is a unit matrix
- c) A^{-1} does not exist
- d) A is a zero matrix

2) Let
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix}$$
, and $10\mathbf{B} = \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix}$. If B is the inversion of matrix A,

then α is

[2004]

- a) 5b) -1
- c) 2
- d) -2
- 3) If $a_1, a_2, a_3, \dots, a_n, \dots$ are in G.P, then the value of the determinant $\begin{vmatrix} \log a_n & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8} \end{vmatrix}$, is
 - a) -2
 - b) 1
 - c) 2
 - d) 0

4) If
$$A^2 - A + I = 0$$
, then the inverse of A is [2005]

- a) A+I
- b) A
- c) A-I
- d) I-A
- 5) The system of equations

$$\alpha x + y + z = \alpha - 1$$
$$x + \alpha y + z = \alpha - 1$$

1

$$x + y + \alpha z = \alpha - 1$$

has infinite solutions, if α is

[2005]

- a) -2
- b) either -2 or 1
- c) not -2
- d) 1
- 6) If $a^2 + b^2 + c^2 = -2$ and $f(x) = \begin{vmatrix} 1 + a^2x & (1 + b^2)x & (1 + c^2)x \\ (1 + a^2)x & 1 + b^2x & (1 + c^2)x \\ (1 + a^2)x & (1 + b^2)x & 1 + c^2x \end{vmatrix}$ then f(x) is a polynomial of degree [2005]
 - a) 1
 - b) 0
 - c) 3
 - d) 2
- 7) If $a_1, a_2, a_3, ..., a_n, ...$ are in G.P,then the determinant $\Delta = \begin{vmatrix}
 \log a_n & \log a_{n+1} & \log a_{n+2} \\
 \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\
 \log a_{n+6} & \log a_{n+7} & \log a_{n+8}
 \end{vmatrix}$ is equal to
 - a) 1
 - b) 0
 - c) 4
 - d) 2
- 8) If A and B are square matrices of size n x n such that $A^2 B^2 = (A B)(A + B)$, then which of the following will be always true? [2006]
 - a) A = B
 - b) AB = BA
 - c) either of A or B is zero matrix
 - d) either of A or B is identity matrix

9) Let
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, $a,b \in \mathbb{N}$. Then [2006]

- a) there cannot exist any B such that AB = BA
- b) there exist more than one but finite number of B's such that AB = BA
- c) there exists exactly one B such that AB = BA
- d) there exist infinitely many B's such that AB = BA

10) If D=
$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{vmatrix}$$
 for $x \neq 0$, $y \neq 0$, then D is [2007]

- a) divisible by x but not y
- b) divisible by y but not x
- c) divisible neither by x nor y
- d) divisible by both x and y

[2007]

11) Let A= $\begin{vmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{vmatrix}$. If $|A^2| = 25$, then $|\alpha|$ equals

- a) $\frac{1}{5}$ b) 5
- c) 5^2
- d) 1
- 12) Let A be a 2x2 matrix with real entries. Let I be the 2x2 identity matrix. Denote by tr(A), the sum of diagonal entries of A. Assume that $A^2 = I$. [2008]

Statement-1 : If $A \neq I$ and $A \neq -I$, then det(A)=-1

Statement-2: If $A \neq I$ and $A \neq -I$, then $tr(A) \neq 0$.

- a) Statement-1 is false. Statement-2 is true
- b) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- c) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
- d) Statement-1 is true, Statement-2 is false
- 13) Let a,b,c be any real numbers. Suppose that there are real numbers x,y,z not all zero such that x = cy + bz, y = az + cx, and z = bx + ay. Then $a^2 + b^2 + c^2 + 2abc$ is equal to
 - a) 2
 - b) -1
 - c) 0
 - d) 1
- 14) Let A be a square matrix all of whose entries are integers. Then which of the following is true? [2008]
 - a) If $det(A) \neq \pm 1$, then A^{-1} exists but all its entries are not necessarily integers
 - b) If $det(A) \neq \pm 1$, then A^{-1} exists and all its entries are non integers
 - c) If $det(A) = \pm 1$, then A^{-1} exists but all its entries are integers
 - d) If $det(A) = \pm 1$, then A^{-1} need not exists
- 15) Let A be a 2x2 matrix

Statement-1:ad i (ad iA) = A

Statement-2:|ad jA| = |A|

[2009]

- a) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
- b) Statement-1 is true. Statement-2 is false
- c) Statement-1 is false, Statement-2 is true
- d) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1