Математический анализ—2

Винер Даниил, Хоранян Нарек

Версия от 19 сентября 2024 г.

Содержание

1	Kpa	атные интегралы. Брусы. Интегрируемые функции по Риману
	1.1	Брус. Мера бруса
	1.2	Свойства меры бруса в \mathbb{R}^n
	1.3	Разбиение бруса. Диаметр множества. Масштаб разбиения
	1.4	Интегральная сумма Римана. Интегрируемость по Риману
	1.5	Пример константной функции
	1.6	Неинтегрируемая функция
	1.7	Вычисление многомерного интеграла
2	Сво	ойства кратных интегралов. Условия интегрирования. Лебегова мера
	2.1	Свойства кратных интегралов
	2.2	Необходимое условие интегрирования
		Множество меры нуль по Лебегу
		Свойства множества меры нуль по Лебегу

1 Кратные интегралы. Брусы. Интегрируемые функции по Риману

1.1 Брус. Мера бруса

Определение. Замкнутый брус (координатный промежуток) в \mathbb{R}^n — множество, описываемое как

$$I = \{x \in \mathbb{R}^n \mid a_i \leqslant x_i \leqslant q_i, \ i \in \{1, n\}\}\$$

= $[a_1, b_1] \times \ldots \times [a_n, b_n]$

Примечание. $I = \{a_1, b_1\} \times \ldots \times \{a_n, b_n\}$, где $\{\}$ может быть отрезком, интервалом и т.д.

Определение. Мера бруса — его объём:

$$\mu(I) = |I| = \prod_{i=1}^{n} (b_i - a_i)$$

1.2 Свойства меры бруса в \mathbb{R}^n

- 1. Однородность: $\mu(I_{\lambda a,\lambda b}) = \lambda^n \cdot \mu(I_{a,b})$, где $\lambda \geqslant 0$
- 2. **Аддитивность:** Пусть I, I_1, \dots, I_k брусы

Тогда, если $\forall i,j\,I_i,I_j$ не имею общих внтренних точек, и $\bigcup_{i=1}^k I_i=I$, то

$$|I| = \sum_{i=1}^{k} |I_i|$$

3. Монотонность: Пусть I- брус, покрытый конечной системой брусов, то есть $I\subset \bigcup_{i=1}^k I_i$, тогда

$$|I| < \sum_{i=1}^{k} |I_i|$$

1.3 Разбиение бруса. Диаметр множества. Масштаб разбиения

Определение. I — замкнутый, невырожденный брус и $\bigcup_{i=1}^k I_i = I$, где I_i попарно не имеют общих внутренних точек. Тогда набор $\mathbb{T} = \{\mathbb{T}\}_{i=1}^k$ называется разбиением бруса I

Определение. Диаметр произвольного ограниченного множества $M\subset\mathbb{R}^n$ будем называть

$$d(M) = \sup_{1 \leqslant i \leqslant k} \|x - y\|,$$
 где
$$\|x - y\| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Определение. Масштаб разбиения $\mathbb{T}=\{I_i\}_{i=1}^k$ — число $\lambda(\mathbb{T})=\Delta_{\mathbb{T}}=\max_{1\leq i\leq k}$

Определение. Пусть $\forall \ I_i$ выбрана точка $\xi_i \in I_i$. Тогда, набор $\xi = \{\xi\}_{i=1}^k$ будем называть **отмеченными точками**

2

Определение. Размеченное разбиение — пара (\mathbb{T}, ξ)

1.4 Интегральная сумма Римана. Интегрируемость по Риману

Пусть I — невырожденный, замкнутый брус, функция $f:I\to\mathbb{R}$ определена на I Определение. Интегральная сумма Римана функции f на (\mathbb{T},ξ) — величина

$$\sigma(f, \mathbb{T}, \xi) := \sum_{i=1}^{k} f(\xi_i) \cdot |I_i|$$

Определение. Функция f интегрируема (по Риману) на замкнутом брусе I ($f: I \to \mathbb{R}$), если

$$\exists A \in \mathbb{R} : \forall \varepsilon > 0 \,\exists \delta > 0 : \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta : \\ |\sigma(f, \mathbb{T}, \xi)| - A| < \varepsilon$$

Тогда

$$A = \int_{I} f(x)dx = \int \dots \int_{I} f(x_{1}, \dots, x_{n})dx_{1} \dots dx_{n}$$

Обозначение: $f \in \mathcal{R}(I)$

1.5 Пример константной функции

Пуусть у нас есть функция f = const

$$\forall (\mathbb{T}, \xi) : \ \sigma(f, \mathbb{T}, \xi) = \sum_{i=1}^{k} \operatorname{const} \cdot |I_{i}|$$
$$= \operatorname{const} \cdot |I| \Longrightarrow \int_{I} f(x) dx = \operatorname{const} \cdot |I|$$

1.6 Неинтегрируемая функция

Имеется брус $I = [0,1]^n$, а также определена функция, такая что

$$f = \begin{cases} 1, & \forall i = \overline{1, \dots, n} \ x_i \in \mathbb{Q} \\ 0, & \text{иначе} \end{cases}$$

Доказательство. $\forall \mathbb{T}$ можно выбрать $\xi_i \in \mathbb{Q}$, тогда для такой пары $(\mathbb{T}, \overline{\xi})$:

$$\sigma(f, \mathbb{T}, \overline{\xi}) = \sum_{i=1}^{k} 1 \cdot |I_i| = |I| = 1$$

В то же время, $\forall \mathbb{T}$ можно выбрать $\xi_i \notin \mathbb{Q}$, тогда для такой пары $(\mathbb{T}, \hat{\xi})$:

$$\sigma(f, \mathbb{T}, \hat{\xi}) = \sum_{i=1}^{k} 0 \cdot |I_i| = 0 \Longrightarrow f \notin \mathcal{R}(I)$$

1.7 Вычисление многомерного интеграла

Вычислите интеграл

$$\iint_{\substack{0 \leqslant x \leqslant 1 \\ 0 \leqslant y \leqslant 1}} xy \mathrm{d}x \mathrm{d}y$$

рассматривая его как представление интегральной суммы при сеточном разбиении квадрата

$$I = [0, 1] \times [0, 1]$$

на ячейки — квадраты со сторонами, длины которых равны $\frac{1}{n}$, выбирая в качестве точек ξ_i верхние правые вершины ячеек

Имеется функция $f=xy, \ |I|=rac{1}{n^2}$

$$\sigma(f, \mathbb{T}, \xi) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{i}{n} \cdot \frac{j}{n} \cdot \frac{1}{n^2}$$

$$= \frac{1}{n^4} \sum_{i=1}^{n} \sum_{j=1}^{n} i \cdot j$$

$$= \frac{1}{n^4} \sum_{i=1}^{n} i \sum_{j=1}^{n} j$$

$$= \frac{n(n+1)}{n^4} \sum_{i=1}^{n} i$$

$$= \frac{n^2(n+1)^2}{4n^4}$$

Заметим, что
$$\lim_{n \to \infty} \frac{n^2(n+1)^2}{4n^4} = \frac{1}{4}$$

2 Свойства кратных интегралов. Условия интегрирования. Лебегова мера

2.1 Свойства кратных интегралов

1. Линейность.

$$f, g \in \mathcal{R}(I) \implies (\alpha f + \beta g) \in \mathcal{R}(I) \ \forall \alpha, \beta \in \mathbb{R}$$

И верно, что:

$$\int_{I} (\alpha f + \beta g) dx = \alpha \int_{I} f dx + \beta \int_{I} g dx$$

Доказательство.

(a)

$$f \in \mathcal{R}(I): \quad \forall \varepsilon > 0 \,\exists \delta_1 > 0 \,\, \forall (\mathbb{T}, \Xi): \,\Delta_{\mathbb{T}} < \delta_1$$

$$|\sigma(f, \mathbb{T}, \Xi) - \int_I f \mathrm{d}x| =: |\sigma_f - A_f| < \varepsilon$$

(b) По определению:

$$\begin{split} g \in \mathcal{R}(I): \quad \forall \varepsilon > 0 \, \exists \delta_2 > 0 \, \, \forall (\mathbb{T},\Xi) \colon \Delta_{\mathbb{T}} < \delta_2 \\ |\sigma(g,\mathbb{T},\Xi) - \int_I g \mathrm{d}x| =: |\sigma_g - A_g| < \varepsilon \end{split}$$

(c) Пусть $\delta = \min\{\delta_1, \delta_2\}$. Тогда (a) и (b) верно для $\delta \Longrightarrow$

$$|\sigma_{\alpha f + \beta g} - A_{\alpha f + \beta g}| = |\alpha \sigma_f + \beta \sigma_g - \alpha A_f - \beta A_g| \leqslant |\alpha| \cdot |\sigma_f - A_f| + |\beta| \cdot |\sigma_g - A_g| < (|\alpha| + |\beta|) \varepsilon$$

2. Монотонность

$$f, g \in \mathcal{R}(I); \ f|_{I} \leqslant g|_{I} \implies \int_{I} f dx \leqslant \int_{I} g dx$$

Доказательство.

$$f \in \mathcal{R}(I) \implies \exists A_f \in \mathbb{R} : |\sigma_f - A_f| < \varepsilon \, (\forall \, \varepsilon > 0 \, \exists \delta : \forall (\mathbb{T}, \Xi) : \Delta_{\mathbb{T}} < \delta)$$

Аналогично для $g \in \mathcal{R}(I)$, тогда:

$$A_f - \varepsilon < \sigma_f \leqslant \sigma_g < A_g + \varepsilon \implies A_f < A_g + 2\varepsilon \ \forall \varepsilon > 0 \implies A_f \leqslant A_g$$

3. Оценка интеграла (сверху)

$$f \in \mathcal{R}(I) \implies \left| \int_{I} f dx \right| \leqslant \sup_{I} |f| |I|$$

Доказательство. По необходимому условию для интегрируемости функции (см. ниже)

$$f \in \mathcal{R}(I) \implies f \text{ Ограничена на } I$$

$$\implies -\sup_{I} |f| \leqslant f \leqslant \sup_{I} |f|$$

Тогда,

$$-\int_{I} \sup |f| dx \leqslant \int_{I} f dx \quad \leqslant \int_{I} \sup |f| dx$$
$$-\sup_{I} |f| |I| \leqslant \int_{I} f dx \quad \leqslant \sup_{I} |f| |I|$$

2.2 Необходимое условие интегрирования.

Теорема. Пусть I — замкнутый брус.

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

Доказательство. От противного.

1. Пусть $f \in \mathcal{R}(I)$, тогда

$$\exists \underbrace{A_f}_{\text{KOHeyHoe}} \in \mathbb{R} : \forall \, \varepsilon > 0 \, \exists \delta > 0 : \forall (\mathbb{T},\Xi) : \Delta_{\mathbb{T}} < \delta \colon |\sigma_f - A_f| < \varepsilon$$

Значит, для $\varepsilon = 1$ это тоже верно, поэтому:

$$A_f - 1 < \sigma_f < A_f + 1 \implies \sigma_f$$
 — ограничена

2. Пусть f — неограничена на I, но $f \in \mathcal{R}(I) \implies \forall \mathbb{T} = \{I_i\}_i = 1^K \exists i_0 : f$ неограничена на I_{i_0} . Тогда можно представить так:

$$\sigma_f = \sum_{i \neq i_0} f(\xi_i) |I_i| + f(\xi_{i_0}) |I_{i_0}|$$

Тогда, σ_f может принимать любые сколь угодно большие (малые) значения, в зависимости от I_{i_o} **противоречие**

Из пунктов 1 и 2 следует, что

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

2.3 Множество меры нуль по Лебегу

Определение. Множество $M \subset \mathbb{R}^n$ будем называть **множеством меры 0 по Лебегу**, если $\forall \varepsilon > 0$ существует не более чем счетный набор (замкнутых) брусов $\{I_i\}$ и выполняются:

1.
$$M \subset \bigcup_i I_i$$
 и

2.
$$\sum_{i} |I_i| < \varepsilon \ \forall \varepsilon < 0$$

П

5

Пример: $x_0 \in \mathbb{R}^n$ — множество меры нуль по Лебегу в \mathbb{R}^n

Доказательство. Пусть $x_0 = (x_{01}, \dots, x_{0n})$. Покроем точку замкнутым брусом, причем

$$I = [x_{01} - d, x_{01} + d] \times \ldots \times [x_{0n} - d, x_{0n} + d]$$

$$\forall \varepsilon > 0 \ \exists I : |I| = (2d)^n < \varepsilon \implies d < \frac{\sqrt[n]{\varepsilon}}{2}$$

Значит, точка является множеством меры нуль по Лебегу

2.4 Свойства множества меры нуль по Лебегу

1. В определении множества меры 0 можно использовать открытые брусы

Доказательство. Пусть $\{I_i\}$ — открытые брусы $M\subset\bigcup_i I_i$, то есть $M\subset\mathbb{R}^n$ — множество меры 0 по Лебегу

Пусть $\{\bar{I}_i\}$ — замкнутые брусы I_i .

$$M \subset \bigcup_{i} I_{i} \subset \bigcup_{i} \bar{I}_{i}, |I_{i}| = |\bar{I}_{i}|$$

Если

$$\forall \varepsilon \; \exists \{I_i\} : M \subset \bigcup_i I_i : \sum_i |I_i| < \varepsilon$$

то

$$\forall \, \varepsilon \,\, \exists \{\bar{I}_i\} : M \subset \bigcup_i \bar{I}_i : \sum_i |\bar{I}_i| < \varepsilon$$

2. Пусть $\{I_i\}$ — набор замкнутых брусов

$$I_i = [a_1^i, b_1^i] \times \ldots \times [a_n^i, b_n^i], \quad V_i = \sum_i |I_i| < \frac{\varepsilon}{2^n}$$

Пусть

$$D_{i} = \left(\frac{a_{1}^{i} + b_{1}^{i}}{2} - (b_{1}^{i} - a_{1}^{i}); \frac{a_{1}^{i} + b_{1}^{i}}{2} + (b_{1}^{i} - a_{1}^{i})\right) \times \dots \times \left(\frac{a_{n}^{i} + b_{n}^{i}}{2} - (b_{n}^{i} - a_{n}^{i}); \frac{a_{n}^{i} + b_{n}^{i}}{2} + (b_{n}^{i} - a_{n}^{i})\right)$$

$$\implies V_{2} = \sum_{i} |D_{i}| = 2^{n} V_{1} < \varepsilon$$