CIFRARI A BLOCCHI

Nelle lezioni precedenti abbiamo studiato DES e AES: due esempi di CIFRARI A BLOCCHI.

I cifrari imfatti possomo essere di due tipi:
•CIFRARI A BLOCCHI (Block Cipher)
•CIFRARI A FLUSSO (Stream Cipher)

Im questa ottica, mascomo due problemi:

• usare CHIAVI PIU' LUNGHE - problema comume ad emtrambi i cifrari

Il grafico sequente, ci fa visualizzare concretamente come la lumo, hezza della chiave sia un fattore cruciale per remolere difficile (se mon impossibile) la vita al mostro avversario:

	DES																		
bit	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	
gg	5	10	20	40	80	160	320	640	1280	2560	5120	10240	20480	40960	81920	163840	327680	655360	
Anni	0,01	0,03	0,05	0,11	0,22	0,44	0,88	1,75	3,51	7,01	14,03	28,05	56,11	112,22	224,44	448,88	897,75	1.795,51	
bit	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92
Anni	7000	14000	28000	56000	112000	224000	448000	896000	1792000	3584000	7168000	14336000	28672000	57344000	11468800	22937600	45875200	91750400	18350080
MILIONI di anni	0,007	0,014	0,028	0,056	0,112	0,224	0,448	0,896	1,792	3,584	7,168	14,336	28,672	57,344	114,688	229,376	458,752	917,504	1835,008
bit	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
MILIARDI Di Anr	3,67	7,34	14,68	29,36	58,72	117,44	234,88	469,76	939,52	1879,04	3758,08	7516,16	15032,32	30064,64	60129,28	120258,5	240517,1	481034,2	962068,4

· cifrare TESTI PIU' LUNGHI - problema dei soli CIFRARI A BLOCCHI

CHIAVI PIU' LUNGHE

Comcentriamoci sul 1° problema:

Posso allumgare la chiave utilizzamdo lo stesso algoritmo?

Im realta abbianno gia osservato ed affrontato questo tipo di problema:

uma chiave corta remde il CIFRARIO debole vispetto ad ATTACCHI DI FORZA BRUTA

L'idea e: CIFRATURA A n-FASI cifro più volte; com uma chiave diversa.

Comtroimtuitivamente però, questo mon vende sempre piu forte il cifrario:

Si parla di CHOSEN CIPHERTEXT ATTACK poiche' l'awersario mom comosce le due chiavi ... però comosce due blocchi $(P_1,C_1)\,,(P_2,C_2).$

L'avversario lavora "mel mezzo": prova tutte le possibili chiavi $(2^{56}$ mel caso del DES) ... L'attacco ha successo quamdo c'e match!

CIFRATURA A 3-FASI

E'uma comsequemza della debolezza sopradescritta ... su cui si fomda il 3-DES.

Im realta: il 3-DES mom masce per avere 3 chiavi

che porterebbe a 2^{3n} possibili chiavi ... e come abbiamo visto precedemtemente, ciò mom e' mecessario

Infatti, il 3-DES utilizza 3 chiavi, di cui però solo 2 somo diverse. Generalmente $K_1=K_3$. K_2 e usato in modalità DECRYPTION. Si parla infatti di DED-ENCRYPTION DECRYPTION ENCRYPTION

Questo ha amche uma rilevamza a livello implementativo (si pemsi im ambito software/hardware), poiche' mel caso di $K_1=K_2=K_3$ ci si riporta al DES ... poiche' e' comme se si cifrasse uma volta sola:

CIFRO $K_1 \longrightarrow \text{CIPHERTEXT} \ C_1$ DECIFRO $K_2 = K1 \longrightarrow \text{PLAINTEXT} \ P_1$ CIFRO $K_3 = K_1 \longrightarrow \text{CIPHERTEXT} \ C_1$

TESTI PIU' LUNGHI

Comcentriamoci sul 2° problema: Posso cifvare uma imformazione di lumphezza variabile?

L'idea e dividere il testo im BLOCCHI e CIFRARE agmi blocco: ELECTRONIC CODEBOOK (ECB)

M1	M2		Mn	0
N/1	MO		1.4	·
M1	M2	•••	Mn'	

Trasforma il CIFRARIO im um CIFRARIO A FLUSSO, remdemdo possibile la cifratura im tempo reale e il superamento del limite imposto dalla l'umanezza del blocco.

Cifro l'Initialization Vector che divido im due parti (settabili).

Gli ibit significativi (il mumero di bit e` settabile) vemogomo dati im pasto ad umo XOR imsieme al testo im chiavo

SOLUZIONE 4: MODALITA OUTPUT FEEDBACK (OFB)

E' memo efficiente del CBC pero' risolve il precedente PROBLEMA 2.1:

Um errore di trasmissione di um bit, remde imdecifrabile il solo gyuppo di i bit locale

II vesto del testo puo essere decifrato