The Foundations of Data Science Assignment Title Page:

Taslima Akter

Artificial Intelligence Diploma, PACE, University of Winnipeg

Course Name: Foundations of Data Science

Assignment 2: Collecting Initial Data

Student ID: 3040384

Professor's Name: Yelena Kropivnitskaya

March 14, 2022

Business/Research Objectives:

Already a major portion of the US citizens has been vaccinated by different brands.

• The main focus of the project is to measure the effectiveness of the Covid-19 vaccine in the USA.

Business Success Criteria:

• Effectiveness will be measured by comparing the death ratio of USA citizens before and after vaccination.

1.1 Data Collection Report:

Sl No.	Dataset Name	Location/Source	Acquisition Method	Data Issued Noted	Resolutions Achieved
1.	-Data on COVID-19 vaccinations of United States of America -In the pyhton program, dataset is stored in variable "dfUSVacc"	-Dataset Based on the data of United States of AmericaURL- https://raw.githubusercont ent.com/owid/covid-19- data/master/public/data/va ccinations/country_data/U nited%20States.csv	-I extracted dataset from website through pandas Data file was in CSV format.	-Dataset is cleanMentioned data are up to dateDate wise fully- vaccination data are available in the dataset No missing data are noted in the fully vaccination column.	-Unnecessary columns are removed after loading dataset from website for the convenience of analysis Fully Vaccination data is grouped by months for analysis.
2.	-Covid-19 Data -In the python program, dataset is stored in variable "dfUSCovid19 Data".	-Dataset Based on the data of worldwideURL- https://raw.githubusercont ent.com/datasets/covid- 19/master/data/countries- aggregated.csv - After loading data file from the website I extracted only the USA data.	-I extracted dataset from website through pandas Data file was in CSV format.	-Data is updatedDate wise Covid- 19 confirmed cases and death rates are availableNo missing data.	-Only data of USA has been taken form the initial extracted file by applying filtering method Unnecessary columns are droppedConfirmed cases and deaths percentage are grouped by dates.

1.2 Data Description of Dataset-1 (COVID-19 vaccinations):

Dataset Contents: This dataset contains the data of COVID-19 vaccinations of United States of America. In the python program, dataset is stored in variable "dfUSVacc".

Column Details:

- -Initially there were total eight columns. Name of these eight columns are 'location', 'date', 'vaccine', 'source_url', 'total_vaccinations', 'people_vaccinated', 'people_fully_vaccinated', 'total boosters'.
- -Total two columns are considered for the analysis among these eight columns. Name of these two selected columns are 'date', 'people_fully_vaccinated'.

Datatypes of the Columns:

Observations:

- -There are total 454 observations in the dataset.
- After summation of month wise data the total observations are 16.

Data Quality:

- -Data is clear.
- -No missing value.
- -Desired data (date wise number of fully vaccination) are available for the analysis.

Remarks:

Details of the data are visible in the python program output, which is attached with the report.

1.3 Data Description of Dataset-2 (Covid-19 Data):

Dataset Contents: This dataset contains the data of Covid-19 Data of worldwide. In the python program, dataset is stored in variable "dfUSCovid19Data".

Column Details:

- -Initially there were total five columns. Name of the eight columns are 'date', 'Country', 'Confirmed', 'Recovered', 'Deaths'.
- -Total two columns are considered for the analysis among these eight columns. Name of the two selected columns are 'date', 'Deaths'.

Datatypes of the Columns:

```
In [325]: dfUSCovid19Data.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 759 entries, 142933 to 143691
        Data columns (total 5 columns):
         # Column Non-Null Count Dtype
         ____
                      0 date
                      759 non-null
                                    object
         1 Country 759 non-null object
         2 Confirmed 759 non-null int64
         3 Recovered 759 non-null int64
         4 Deaths 759 non-null int64
        dtypes: int64(3), object(2)
        memory usage: 35.6+ KB
```

Observations:

- -There are total 759 observations in the dataset.
- After summation of month wise data the observation becomes 25.

Data Quality:

- -Data is clear.
- -No missing value.
- -Desired data are available (date wise confirmed positive cases and deaths are available, date rates has been calculated from the positive cases and number of deaths) for the analysis.

Remarks:

Details of the data are visible in the python program output, which is attached with the report.

2.1 Descriptive Analytics for Dataset-1(COVID-19 vaccinations):

As a part of the Descriptive analytics mean, standard deviation, minimum and maximum values are calculated for the dataset-1.

Descriptive Analytics:

dfUSVacc.	describe()
peo	ple_fully_vaccinated
count	4.540000e+02
mean	1.385327e+08
std	7.509866e+07
min	5.621000e+03
25%	7.185233e+07
50%	1.689962e+08
75%	1.985548e+08
max	2.165880e+08

Analysis:

- A total of 454 observations of vaccinations data in USA are considered. After loading the raw dataset, data are grouped my month wise and get 16 observations. The data is up to date, and represents total number of fully covid-19 vaccinations in the entire USA.
- High difference between mean and std are noted, which is normal for this dataset. Vaccination is a continuous process and the number of vaccination is increased over the time, which is the reason of this variance.
- The aforementioned cause is also true for the high difference of minimum and maximum value.

2.2 Descriptive Analytics for Dataset-2 (Covid-19 Data):

As a part of the Descriptive analytics mean, standard deviation, minimum and maximum values are calculated for the dataset-2.

Descriptive Analytics:

Analysis:

- A total of 759 observations of USA covid-19 data are considered. Later, data are grouped my month wise and get total 25 observations. The data is up to date and presents total number of deaths in the entire USA because of Covid-19 infection.
- A mentionable difference between mean and std values is noted. This distance happens because in the dataset, in 2020, the death rate was significantly higher, and after that the death rates gradually get down. In this dataset, such variation is normal and acceptable.
- The aforementioned cause is also true for the difference of minimum and maximum value.

3.1 Data Exploration:

- This part of the project is to collect and analyze initial data. I have selected two datasets, and have performed statistical techniques in both datasets.
- Data are numeric, I performed mathematical calculations in the datasets for the convenience of the analysis.
- I also calculated mean, median, maximum, minimum values of the datasets as part of the descriptive analysis to observe how the data are distributed.
- Graphs are also provided to visualize the correlation of the variables.

3.2 Statistical Techniques and Mathematical Calculations Details of Dataset-1 (COVID-19 vaccinations):

- A dataset containing information of the date wise total number of vaccinations of the entire USA has been loaded.

- The unnecessary columns are removed from the dataset.

memory usage: 28.5+ KB

- Data are grouped by month wise.

```
In [346]: #Monthly grouping
          dfUSVacc['date'] = pd.to datetime(dfUSVacc['date'])
          dfUSVacc = dfUSVacc.sort values(by='date')
          dfUSVacc=dfUSVacc.groupby(pd.DatetimeIndex(dfUSVacc.date).to period('M')).nth([-1])
          dfUSVacc.set index('date', inplace=True)
           #dfUSVacc.to csv('dfUSVacc.csv')
           #dfUSVacc
In [347]: dfUSVacc
Out[347]:
                     people_fully_vaccinated
                date
            2020-12-31
                                   40563
            2021-01-31
                                 7348534
            2021-02-28
                                29856080
            2021 03 31
                                6/15/10/1
```

3.3 Statistical Techniques and Mathematical Calculations Details of Dataset2 (Covid-19 Data):

- This dataset containing information of the number of Covid-19 positive cases and deaths of the many countries has been loaded.

- Later, only the rows of USA has extracted from the dataset and unnecessary columns are removed.

- The deaths percentage has been calculated by dividing number of deaths and the number of confirmed positive Covid-cases. Data are grouped by month wise.

```
In [354]: #removed unnecessary columns, calculating death rate, and grouping
    dfUSCovid19Data.drop(['Recovered'],axis=1,inplace=True)
    dfUSCovid19Data['Deaths'] = (dfUSCovid19Data['Deaths']/dfUSCovid19Data['Confirmed'])*1
    dfUSCovid19Data['date'] = pd.to_datetime(dfUSCovid19Data['date'])
    dfUSCovid19Data=dfUSCovid19Data.groupby(pd.Grouper(key='date', axis=0, freq='M')).sum()
```

3.4 Data Quality, Variables and Correlations:

Data Sampling: Numbers of data that are required to justify the hypothesis are available in the datasets. These two datasets represent the updated number of fully vaccinated people and percentage of deaths because of Covid-19 in the USA. Fortunately there are no missing data in the two datasets.

Variables: Variables of the datasets has been selected very carefully to serve the purpose of the project. From the Vaccination dataset 'date' and 'people_fully_vaccinated' variables are selected. From the Covid-19 dataset 'date' and 'Deaths' (Covid-19 infected) variables are selected. These variable are relevant and significantly important to justify the efficacy of the Covid-19 vaccine.

Correlations of Variables: Variables of these two datasets are strongly co-related. In the first dataset (Vaccination), it has been noted that with the progress of time, the number of vaccination is increased in USA.

Graph- Number of Fully Vaccinated People with Time:

Whereas, in the second dataset (Covid-19), it has been observed that at first the death rate became higher, and gradually has been decreased with time.

Graph-Date Rate of Covid-19 Infected People with Time:

Based on the analysis, it can be assumed that with the increase of vaccination, the death rate of Covid-19 infected people get down.

4. Python Code:

In [421]: import pandas as pd import matplotlib.pyplot as plt

> #first download csv file from URL #local path of csv file

USVaccURL="https://raw.githubusercontent.com/owid/covid-19-data/master/pu #read CSV file to pandas dataframe

dfUSVacc=pd.read csv(USVaccURL)

#print dataframe

dfUSVacc

Out[421]:

	location	date	vaccine	source_url	total_vaccinations	people_vaccina
0	United States	2020-12-13	Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	29326	24
1	United States	2020-12-14	Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	33886	28
2	United States	2020-12-15	Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	83579	76
3	United States	2020-12-16	Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	243356	230
4	United States	2020-12-17	Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	515783	495
449	United States	2022-03-07	Johnson&Johnson, Moderna, Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	556258145	254356
450	United States	2022-03-08	Johnson&Johnson, Moderna, Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	556451963	254407
451	United States	2022-03-09	Johnson&Johnson, Moderna, Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	556631018	254455
452	United States	2022-03-10	Johnson&Johnson, Moderna, Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	556756401	254486
453	United States	2022-03-11	Johnson&Johnson, Moderna, Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	556777608	254492

454 rows × 8 columns

In [422]: dfUSVacc.columns

Out[422]:

Index(['location', 'date', 'vaccine', 'source_url', 'total_vaccination 'people_vaccinated', 'people_fully_vaccinated', 'total_boosters

In [423]: #Inspect data

dfUSVacc.head(10)

Out[423]:

	location	date	vaccine	source_url	total_vaccinations	people_vaccinated
0	United States	2020-12-13	Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	29326	24448
1	United States	2020-12-14	Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	33886	28849
2	United States	2020-12-15	Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	83579	76213
3	United States	2020-12-16	Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	243356	230601
4	United States	2020-12-17	Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	515783	495911
5	United States	2020-12-18	Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	931898	903477
6	United States	2020-12-19	Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	1113670	1081326
7	United States	2020-12-20	Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	1218868	1184589
8	United States	2020-12-21	Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	1600537	1559731
9	United States	2020-12-22	Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	2047964	1998672

In [424]: dfUSVacc.tail(10)

Out[424]:

	location	date	vaccine	source_url	total_vaccinations	people_vaccina
444	United States	2022-03-02	Johnson&Johnson, Moderna, Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	555288308	254093
445	United States	2022-03-03	Johnson&Johnson, Moderna, Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	555520897	254154

	location	date	vaccine	source_url	total_vaccinations	people_vaccina
446	United States	2022-03-04	Johnson&Johnson, Moderna, Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	555812647	254228
447	United States	2022-03-05	Johnson&Johnson, Moderna, Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	555981876	254276
448	United States	2022-03-06	Johnson&Johnson, Moderna, Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	556064969	254302
449	United States	2022-03-07	Johnson&Johnson, Moderna, Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	556258145	254356
450	United States	2022-03-08	Johnson&Johnson, Moderna, Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	556451963	254407
451	United States	2022-03-09	Johnson&Johnson, Moderna, Pfizer/BioNTech	https://data.cdc.gov /Vaccinations /COVID-19-Vac	556631018	254455
452	United States	2022-03-10	Johnson&Johnson, Moderna, Pfizer/RioNTech	https://data.cdc.gov /Vaccinations /COV/ID-19-Vac	556756401	254486

In [425]: #to get information about column of dataset
dfUSVacc.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 454 entries, 0 to 453
Data columns (total 8 columns):
```

#	Column	Non-Null Count	Dtype
0	location	454 non-null	object
1	date	454 non-null	object
2	vaccine	454 non-null	object
3	source_url	454 non-null	object
4	total_vaccinations	454 non-null	int64
5	people_vaccinated	454 non-null	int64
6	<pre>people_fully_vaccinated</pre>	454 non-null	int64
7	total_boosters	454 non-null	int64
.11	· · · · · · · · · · · · · · · · · · ·		

dtypes: int64(4), object(4)
memory usage: 28.5+ KB

```
In [426]: #removed unecessary columns (vaccine, source_url)
dfUSVacc.drop(['location','vaccine','source_url','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations','total_vaccinations',
```

```
In [427]: #Columns after removed unecessary columns dfUSVacc.columns
```

```
Out[427]: Index(['date', 'people fully vaccinated'], dtype='object')
```

```
In [428]: plt.style.use('seaborn-whitegrid')
dfUSVacc.plot.line(x='date', y=['people_fully_vaccinated'])
```

Out[428]: <AxesSubplot:xlabel='date'>


```
In [429]: #Columns information after removed unecessary columns
    dfUSVacc.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 454 entries, 0 to 453
Data columns (total 2 columns):
```

#	Column	Non-Null Count	Dtype
0	date	454 non-null	object
1	<pre>people_fully_vaccinated</pre>	454 non-null	int64
d+110	on $in+64(1)$ object (1)		

dtypes: int64(1), object(1)

memory usage: 7.2+ KB

In [430]: dfUSVacc

Out[430]:

	date	people_fully_vaccinated
0	2020-12-13	5621
1	2020-12-14	5740
2	2020-12-15	6000
3	2020-12-16	6472
4	2020-12-17	7216
449	2022-03-07	216443742
450	2022-03-08	216496541
451	2022-03-09	216546240
452	2022-03-10	216581385
453	2022-03-11	216587984

454 rows × 2 columns

```
In [431]: dfUSVacc.describe()
```

Out[431]:

	people_fully_vaccinated
count	4.540000e+02
mean	1.385327e+08
std	7.509866e+07
min	5.621000e+03
25%	7.185233e+07
50%	1.689962e+08
75%	1.985548e+08
max	2.165880e+08

```
In [432]: #Monthly grouping
    dfUSVacc['date'] = pd.to_datetime(dfUSVacc['date'])
    dfUSVacc = dfUSVacc.sort_values(by='date')
    dfUSVacc=dfUSVacc.groupby(pd.DatetimeIndex(dfUSVacc.date).to_period('M'))
    dfUSVacc.set_index('date', inplace=True)
    #dfUSVacc.to_csv('dfUSVacc.csv')
    #dfUSVacc
```

```
In [433]: dfUSVacc
```

Out[433]:

people_fully_vaccinated

date	
2020-12-31	40563
2021-01-31	7348534
2021-02-28	29856080
2021-03-31	64151041
2021-04-30	114113909
2021-05-31	145930115
2021-06-30	162437860
2021-07-31	169848427
2021-08-31	179605883
2021-09-30	189456150
2021-10-31	195708071
2021-11-30	200716297
2021-12-31	208368699
2022-01-31	213083575

people_fully_vaccinated

date

Out[434]:

	date	Country	Confirmed	Recovered	Deaths
0	2020-01-22	Afghanistan	0	0	0
1	2020-01-23	Afghanistan	0	0	0
2	2020-01-24	Afghanistan	0	0	0
3	2020-01-25	Afghanistan	0	0	0
4	2020-01-26	Afghanistan	0	0	0
154633	2022-03-08	Zimbabwe	240343	0	5400
154634	2022-03-09	Zimbabwe	240343	0	5400
154635	2022-03-10	Zimbabwe	241548	0	5408
154636	2022-03-11	Zimbabwe	241548	0	5408
154637	2022-03-12	Zimbabwe	242069	0	5412

154638 rows × 5 columns

```
In [435]: #Initial total columns of dfUSCovid19Data dataset dfUSCovid19Data.columns
```


RangeIndex: 154638 entries, 0 to 154637

Data columns (total 5 columns):

Column Non-Null Count Dtype
--- 0 date 154638 non-null object
1 Country 154638 non-null object
2 Confirmed 154638 non-null int64
3 Recovered 154638 non-null int64
4 Deaths 154638 non-null int64
dtypes: int64(3), object(2)
memory usage: 5.9+ MB

<class 'pandas.core.frame.DataFrame'>

```
In [437]: #filtering data for considering only USA data
          dfUSCovid19Data=dfUSCovid19Data.loc[(dfUSCovid19Data['Country'] == 'US')
```

In [438]: # Printing Covid-19 USA Data dfUSCovid19Data

Out[438]:

	date	Country	Confirmed	Recovered	Deaths
142933	2020-02-01	US	8	0	0
142934	2020-02-02	US	8	0	0
142935	2020-02-03	US	11	0	0
142936	2020-02-04	US	11	0	0
142937	2020-02-05	US	11	0	0
143687	2022-02-24	US	78812640	0	946099
143688	2022-02-25	US	78887236	0	948130
143689	2022-02-26	US	78934671	0	948826
143690	2022-02-27	US	78950518	0	949018
143691	2022-02-28	US	79047371	0	951114

759 rows × 5 columns

In [439]: |dfUSCovid19Data.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 759 entries, 142933 to 143691
```

Data columns (total 5 columns):

memory usage: 35.6+ KB

Data	COLUMNIS (CC	Juan	J COLUMNIS).	
#	Column	Non-	-Null Count	Dtype
0	date	759	non-null	object
1	Country	759	non-null	object
2	Confirmed	759	non-null	int64
3	Recovered	759	non-null	int64
4	Deaths	759	non-null	int64
dtype	es: int64(3)	, ok	oject(2)	

```
In [440]: #removed unnecessary columns, calculating death rate, and grouping
          dfUSCovid19Data.drop(['Recovered'],axis=1,inplace=True)
          dfUSCovid19Data['Deaths'] = (dfUSCovid19Data['Deaths']/dfUSCovid19Data['
          dfUSCovid19Data['date'] = pd.to datetime(dfUSCovid19Data['date'])
          dfUSCovid19Data=dfUSCovid19Data.groupby(pd.Grouper(key='date', axis=0, fr
```

C:\Users\Taslima Akter\anaconda3\lib\site-packages\pandas\core\frame.p y:4906: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas -docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html #returning-a-view-versus-a-copy)

return super().drop(

C:\Users\TASLIM~1\AppData\Local\Temp/ipykernel 19284/1664610843.py:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas -docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html #returning-a-view-versus-a-copy)

dfUSCovid19Data['Deaths'] = (dfUSCovid19Data['Deaths']/dfUSCovid19D ata['Confirmed'])*1

C:\Users\TASLIM~1\AppData\Local\Temp/ipykernel 19284/1664610843.py:4: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

. . .

In [441]: # Printing covid-19 Data of USA after removing unnecessary columns and gr dfUSCovid19Data

Out[441]:

	Confirmed	Deaths
date		
2020-02-29	402	0.040000
2020-03-31	1121455	1.073644
2020-04-30	19835424	1.508744
2020-05-31	45294659	1.917086
2020-06-30	64822529	1.663059
2020-07-31	111086834	1.225709
2020-08-31	166531654	0.981105
2020-09-30	199608857	0.884212
2020-10-31	251226672	0.839544
2020-11-30	338160262	0.671164
2020-12-31	527988498	0.570083
2021-01-31	733787758	0.524889
2021-02-28	776848931	0.490191
2021-03-31	919661679	0.559992
2021-04-30	947668934	0.536053

C - -- fi ---- - - -

```
Confirmed
                                Deaths
                date
           2021-05-31 1023439204 0.549538
           2021-06-30 1007947426 0.535629
           2021-07-31 1061524357 0.550731
           2021-08-31 1151033303 0.521806
           2021-09-30 1250238382 0.482108
           2021-10-31 1392850378 0.500566
           2021-11-30 1419741886 0.485748
           2021-12-31 1578107825 0.491237
In [442]: | #before vaccination in the year 2020 , death rate
           dfUSCovid19Data.drop(['Confirmed'],axis=1,inplace=True)
          print(dfUSCovid19Data)
           #dfUSCovid19Data.to csv('dfUSCovid19Data.csv')
           #dfUSCovid19Data.rename(columns={'Confirmed': 'covid postive'}, inplace=T
                         Deaths
           date
           2020-02-29 0.040000
           2020-03-31 1.073644
           2020-04-30 1.508744
           2020-05-31 1.917086
           2020-06-30 1.663059
           2020-07-31 1.225709
           2020-08-31 0.981105
           2020-09-30 0.884212
           2020-10-31 0.839544
           2020-11-30 0.671164
           2020-12-31 0.570083
           2021-01-31 0.524889
           2021-02-28 0.490191
           2021-03-31 0.559992
           2021-04-30 0.536053
           2021-05-31 0.549538
           2021-06-30 0.535629
           2021-07-31 0.550731
           2021-08-31 0.521806
           2021-09-30 0.482108
           2021-10-31 0.500566
           2021-11-30 0.485748
           2021-12-31 0.491237
           2022-01-31 0.406118
           2022-02-28 0.333173
In [443]: | dfUSCovid19Data.describe()
Out[443]:
                   Deaths
           count 25.000000
```

Deathsmean0.733685std0.440583min0.04000025%0.49123750%0.54953875%0.884212

```
In [447]: plt.style.use('seaborn-whitegrid')
dfUSCovid19Data.plot.bar()
```

Out[447]: <AxesSubplot:xlabel='date'>

Future Assumptions:

The purpose of this project is to measure the effectiveness of the Covid-19 vaccine in the USA by comparing the death ratio of USA citizens before and after fully vaccination. To get the final output in further part of the project, I will merged these datasets, and justify the hypothesis.

Limitations of the Analysis:

Because of the shortage of time the analysis has been made to some variables (death rates of Covid-19 infected people and number of vaccination) to measure the effectiveness of the Covid-19 vaccine in the USA. Some other variables, such as the rate of hospitalization of Covid-19 infected people, which are also related to prove the hypothesis are not considered.

Reference:

- Class Lecture-4.
- Examples of Assignment provided in the class.
- Lab Materials-3 and 4 provided in the class.
- https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/vaccinations/country_data/United%20States.csv
- https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv
- https://www.scribbr.com/category/statistics