

Walmart Sales Forecasting

Shahbaz Masood Springboard Capstone Project 1

Problem & Motivation

- Importance of retail businesses to forecast sales especially during the Holiday season
 - Allocate human resources
 - Schedule shifts
 - Maintain stock inventory
 - Ensure customer satisfaction
 - Launch relevant offers
- Forecasting the department-wise weekly sales of 45 Walmart store across the US.
- Dataset acquired from a <u>Kaggle</u> competition

Approach

The forecasting problem is fundamentally a time series problem. I converted it into a machine learning problem by extract some features while engineering others.

The evaluation metric as posted by kaggle is Weighted Mean Absolute Error, with 5 times more weight for the Holiday weeks.

- Makes the problem hard due to less data for holiday seasons
- 7% of data is Holiday

Use algorithm which inherently provides capability to give extra weights to hard-to-train samples.

Gradient Boosting

Spoiler!

4th position out of 690 participants

Data

- 1. Available on Kaggle.
- 2. Training data
 - 415k observations
 - 2 years of data
- 3. Testing data
 - 115k observations
 - 10 months of data
- 4. 15 features
- 5. Target feature Weekly_Sales

Data Sources

- stores.csv
 stores.csv
- test.csv
 test.csv

Data Wrangling

- 1. Data was provided in 4 files. They were merged to create 2 workable tables train and test
- 2. Missing values analysis
 - a. No systematic trend
 - b. Upto 70% values missing in data
- 3. Negative Weekly_Sales?
 - a. More returns than sales

EDA

The idea was to to an extensive EDA so modeling was more informed. The keys takeaways were

- 1. Weekly_Sales trend is affected by some holidays but not all.
- 2. Target variable wasn't normally distributed and neither was the log transformation.
- 3. Each departments sales trends were consist across all stores.
- 4. Useful and redundant features identified

Statistical Analysis

- 1. Stationarity
 - a. Statistical test failed series isn't stationary
 - b. Additional transformations will need to be made if using Time-Series based techniques
- 2. Autocorrelation
 - a. Target is highly correlated with previous values

Feature Engineering / Extraction

- 1. Categorized some continuous features
- 2. Extracted features from date e.g
 - Week of year
 - Week of month
 - Month of year
 - Days since 1st week
 - 0 ...
- 3. Department_Contribution: ratio of each Department's average monthly sales with the Store's average monthly sales.
- 4. Store_dept_month_avg: average sale for that store,dept pair for that month
- 5. And a few more

Modeling Overview

- 1. Used an ensemble of 3 models
- 2. Aggregated by mean
- 3. Time-Series cross validated to tune

Models

- 1. Single Model:
 - a. Created lots of features
 - b. Did extensive hyper parameter tuning 5 days of training
 - c. Sample weights provided to algorithm to give more weightage to holiday weeks
- 2. Granular XGB Models:
 - a. Less features
 - b. A collection of models each for a Dept Store pair
 - i. If less data available then used the data for that Dept
 - c. Used log transformation on the target
 - d. Surprisingly faster to train
- 3. Granular RandomForest Model
 - a. Same as 2 but with RandomForest

Post Adjustment

- 1. After aggregating the predictions from each model I made an adjustment to the test predictions for Christmas.
- 2. Christmas sales are not ON christmas but on the days before christmas.
- 3. In the test data, christmas fell on a Tuesday which meant that the previous non-holiday week should have more sales than predicted.
- 4. Shifted the sales for these weeks

Results

Model	Mean Training WMSE	Mean CV WMSE	Test WMSE	Kaggle Leaderboard
1	1293.429	2249.225	2767.456	43rd
2	10.139	242.798	2545.701	13th
3	85.399	266.958	2606.899	20th
Ensemble Average	53.572	N/A	2504.917	10th
Post Adjustment	N/A	N/A	2424.208	4th

Some of the things that did not work

- Used FBProphet API for Time-Series forecasting
- Used rolling mean features
- Log Transforming Markdown columns
- Setting target as incremental sales relative to last year,
- Impute missing values using Linear Regression

Thank you