INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT40247-stage binary ripple counter

Product specification
File under Integrated Circuits, IC06

December 1990

7-stage binary ripple counter

74HC/HCT4024

FEATURES

· Output capability: standard

I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4024 are high-speed Si-gate CMOS devices and are pin compatible with the "4024" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4024 are 7-stage binary ripple counters with a clock input (\overline{CP}) , an overriding asynchronous master reset input (MR) and seven fully buffered parallel outputs (Q₀ to Q₆).

The counter advances on the HIGH-to-LOW transition of $\overline{\text{CP}}$.

A HIGH on MR clears all counter stages and forces all outputs LOW, independent of the state of $\overline{\text{CP}}$.

Each counter stage is a static toggle flip-flop.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

APPLICATIONS

- Frequency dividing circuits
- Time delay circuits

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYF	UNIT	
STWIDOL	PARAWETER	CONDITIONS	нс	нст	CINII
t _{PHL} / t _{PLH}	propagation delay \overline{CP} to Q_0	C _L = 15 pF; V _{CC} = 5 V	14	14	ns
f _{max}	maximum clock frequency		90	70	MHz
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	25	27	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

 f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

 V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

7-stage binary ripple counter

74HC/HCT4024

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION			
1	CP	ock input (HIGH-to-LOW, edge-triggered)			
2	MR	aster reset input (active HIGH)			
12, 11, 9, 6, 5, 4, 3	Q_0 to Q_6	parallel outputs			
7	GND	ground (0 V)			
8, 10, 13	n.c.	not connected			
14	V_{CC}	positive supply voltage			

7-stage binary ripple counter

74HC/HCT4024

FUNCTION TABLE

INP	UTS	OUTPUTS				
CP	MR	Q _n				
1	L	no change				
↓ ↓	L	count				
X	Н	L				

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

↑ = LOW-to-HIGH clock transition

 \downarrow = HIGH-to-LOW clock transition

Philips Semiconductors Product specification

7-stage binary ripple counter

74HC/HCT4024

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL			74HC								
		+25			-40 to +125		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(")	
t _{PHL} / t _{PLH}	propagation delay CP to Q ₀		47 17 14	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig.6
t _{PHL}	propagation delay MR to Q ₀		63 23 18	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay Q _n to Q _{n+1}		25 9 7	80 16 14		100 20 17		120 24 20	ns	2.0 4.5 6.0	Fig.6
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6
t _W	clock pulse width HIGH or LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6
t _W	master reset pulse width HIGH	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6
t _{rem}	removal time MR to CP	50 10 9	6 2 2		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.6
f _{max}	maximum clock pulse frequency	6.0 30 35	27 82 98		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.6

Philips Semiconductors Product specification

7-stage binary ripple counter

74HC/HCT4024

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT						
CP	0.75						
MR	0.85						

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER		T _{amb} (°C)							TEST CONDITIONS		
			74HCT								WAVEFORMS	
		+25			-40 to +125		-40 to +125		UNIT	V _{CC} (V)	WAVEFORING	
		min.	typ.	max.	min.	max.	min.	max.		(
t _{PHL} / t _{PLH}	propagation delay CP to Q ₀		17	35		44		53	ns	4.5	Fig.6	
t _{PHL}	propagation delay MR to Q ₀		21	40		50		60	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay Q _n to Q _{n+1}		9	16		20		24	ns	4.5	Fig.6	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6	
t _W	clock pulse width HIGH or LOW	16	9		20		24		ns	4.5	Fig.6	
t _W	master reset pulse width HIGH	16	6		20		24		ns	4.5	Fig.6	
t _{rem}	removal time MR to CP	10	0		13		15		ns	4.5	Fig.6	
f _{max}	maximum clock pulse frequency	30	64		24		20		MHz	4.5	Fig.6	

Philips Semiconductors Product specification

7-stage binary ripple counter

74HC/HCT4024

AC WAVEFORMS

Also showing the master reset (MR) pulse width, the master reset to output (\underline{Q}_n) propagation delays and the master reset to clock (\overline{CP}) removal time.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.6 Waveforms showing the clock (\overline{CP}) to output (Q_n) propagation delays, the clock pulse width, the output transition times and the maximum clock frequency.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".