Take-Home Quiz 4: Sequences ($\S7.1-7.2$)

Directions: This quiz is due on October 12, 2017 at the beginning of lecture. You may use whatever resources you like – e.g., other textbooks, websites, collaboration with classmates – to complete it **but YOU MUST DOCUMENT YOUR SOURCES**. Acceptable documentation is enough information for me to find the source myself. Rote copying another's work is unacceptable, regardless of whether you document it.

1. §7.1 #8 Give the first five terms of the following recursively defined sequence:

$$a_1 = 1$$
, $a_k = a_{k-1} + 2$ for $k \ge 2$.

Also, give a closed formula for the sequence.

- 2. §7.1 #24 Let $\{a_k\}$ be the sequence $a_1 = 3$, $a_2 = 3.1$, $a_3 = 3.14$, $a_4 = 3.141$, etc. That is, each term a_k contains the first k digits of π .
 - (a) Explain why a_k is a rational number for each positive integer k.
 - (b) Explain why the sequence a_k is increasing.
 - (c) Provide an upper bound for $\{a_k\}$. What is the least upper bound?
 - (d) Use this sequence to explain why the Least Upper Bound Axiom does not work for the set of rational numbers.
- 3. (a) i. §7.1 #79 Use Newton's method to derive the recursion formula

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right)$$

for approximating \sqrt{a} . Hint: Let $f(x) = x^2 - a$.

- ii. §7.1 #80 Starting with $x_0 = 1$, use this formula to approximate $\sqrt{2}$ to within ten decimal places. How many terms did you use?
- iii. Plot the points $(0, x_0)$, $(1, x_1)$, $(2, x_2)$, $(3, x_3)$, $(4, x_4)$. Tip: In desmos. com/calculator, use the window $-0.1 \le x \le 4.1$, $1.4 \le y \le 1.55$.
- (b) §7.1 #84 Explain why Newton's method will fail if you choose a value of x_0 for which $f'(x_0)$.
- 4. §7.2 #62 We may use a recursively defined sequence to approximate the current amount of a radioactive element. For example, radioactive radium changes into lead over time. The rate of decay is proportional to the amount of radium present. Experimental data suggests that a gram of radium decays into lead at a rate of $\frac{1}{2337}$ grams per year. Let a_k be the amount of radium at the end of year k. Since the decay rate is constant, if we use a linear model to approximate the amount that remains after one year has passed, we have

$$a_1 = a_0 - \frac{1}{2337} a_0 = \frac{2336}{2337} a_0.$$

More generally, we obtain the recursion formula

$$a_{k+1} = \frac{2336}{2337} a_k.$$

Use this formula to estimate how much radium remains after 100 years if we start off with $a_0 = 10$ grams of radium.