DNS

Mobile Computing

Prof. Jongwon Yoon

Host names vs. IP addresses

Host names

- Memonic name appreciated by humans
- Variable length, full alphabet of characters
- Provide little (if any) information about location
- Examples: www.cnn.com and bbc.co.uk

IP addresses

- Numerical address appreciated by routers
- Fixed length, binary number
- Hierarchical, related to host location
- Examples: 64.236.16.20 and 212.58.224.131

Separating naming and addressing

- Names are easier to remember
 - www.cnn.com vs. 64.236.16.20
- Addresses can change underneath
 - Move www.cnn.com to 4.125.91.21
 - E.g., renumbering when changing providers
- Name could map to multiple IP addresses
 - www.cnn.com to multiple (8) replicas of the Web site
 - Enables
 - Load-balancing
 - Reducing latency by picking nearby servers
 - Tailoring content based on requester's location/identity
- Multiple names for the same address
 - E.g., aliases like www.cnn.com and cnn.com

Before there was DNS

.... there was the **HOSTS.TXT** file

- Before DNS (until 1985), the name-to-IP address was done by downloading a single file (hosts.txt) from a central server with FTP.
 - Names in hosts.txt are not structured.
 - The hosts.txt file still works on most operating systems.
 - It can be used to define local names.

Domain Name System (DNS)

- Properties of DNS
 - Hierarchical name space divided into zones
 - Zones distributed over collection of DNS servers
- Hierarchy of DNS servers
 - Root (hardwired into other servers)
 - Top-level domain (TLD) servers
 - Authoritative DNS servers
- Performing the translations
 - Local DNS servers
 - Resolver software

Resolver and name server

- An application program on a host accesses the domain system through a DNS client, called the resolver
- Resolver contacts DNS server, called name server
- DNS server returns IP address to resolver which passes the IP address to application

 Reverse lookups are also possible, i.e., find the hostname given an IP address

Distributed Hierarchical Database

Top-level domains

- Three types of top-level domains:
 - Generic Top Level Domains (gTLD): 3-character code indicates the function of the organization
 - Used primarily within the US
 - Examples: gov, mil, edu, org, com, net
 - Country Code Top Level Domain (ccTLD): 2-character country or region code
 - Examples: us, va, jp, de
 - Reverse domains: A special domain (in-addr.arpa) used for IP address-to-name mapping

There are more than 200 top-level domains.

Generic Top Level Domains (gTLD)

com	Commercial organizations
edu	Educational institutions
gov	Government institutions
int	International organizations
mil	U.S. military institutions
net	Networking organizations
org	Non-profit organizations

- gTLDs are authoritatively administered by the Internet central name registration authority ICANN
- FQDN (fully qualified domain name): host name + domain name
 e.g., cse.hanyang.ac.kr

DNS Root

- Located in Virginia, USA
- How do we make the root scale?

DNS Root Servers

- 13 root servers (see http://www.root-servers.org/)
 - Labeled A through M
- Does this scale?

DNS Root Servers

- 13 root servers (see http://www.root-servers.org/)
 - Labeled A through M
- Replication via any-casting (localized routing for addresses)

Example

root DNS server Host at cse.hanyang.ac.kr wants IP address for wings.cs.wisc.edu TLD DNS server local DNS server dns.hanyang.ac.kr authoritative DNS server dns.cs.wisc.edu requesting host cse.hanyang.ac.kr wings.cs.wisc.edu

Reverse Mapping (Address -> Host)

- How do we go the other direction, from an IP address to the corresponding hostname?
- Addresses already have natural "quad" hierarchy:
 12,34.56.78
- But: quad notation has most-sig. hierarchy element on left, while www.cnn.com has it on the right
- Idea: reverse the quads = 78.56.34.12 ...
 - ... and look that up in the DNS
- Under what TLD?
 - Convention: in-addr.arpa
 - So lookup is for 78.56.34.12.in-addr.arpa

Distributed Hierarchical Database

DNS Caching

- Performing all these queries takes time
 - And all this before actual communication takes place
 - E.g., 1-second latency before starting Web download
- Caching can greatly reduce overhead
 - The top-level servers very rarely change
 - Popular sites (e.g., www.cnn.com) visited often
 - Local DNS server often has the information cached
- Note: If an entry is sent from a cache, the reply from the server is marked as "unauthoritative"

DNS Protocol

DNS protocol: *query* and *reply* messages, both with same *message format*

Message header:

- Identification: 16 bit # for query, reply to query uses same #
- Flags:
 - Query or reply
 - Recursion desired
 - Recursion available
 - Reply is authoritative
- Plus fields indicating size (0 or more) of optional header elements

16 bits	16 bits			
Identification	Flags			
# Questions	# Answer RRs			
# Authority RRs	# Additional RRs			
Questions (variable # of resource records)				
Answers (variable # of resource records)				
Authority (variable # of resource records)				
Additional information (variable # of resource records)				

OpCode AA|TC|RD|RA| MAC header Protocol=17 (UDP), =6 (TCP) Port 53 (DNS) Identification Flags Numbers of questions Numbers of answer RRs Numbers of authority RRs 2 Numbers of additional RRs Questions n **Answer RRs** n n **Authority RRs** Additional information RRs n

- Identification : DNS 메시지 순서 번호. resolver에 의해 설정, 서버는 동일한 번호 사용

rCode

- Flags
- (1) Q/R : Query (0), response (1)

Three 0s

- (2) opcode : 질의나 응답의 종류 0 : 표준 query (기본값)
- (3) AA: authoritative answer. RR의 내용이 공인된 네임서버가 작성한 것임
- (4) TC: truncated 표시, 512 바이트 초과된 응답인 경우에 내용이 잘려있음을 표시
- (5) RD (recursion desired)

클라이언트로 부터 질의 메시지를 수신한 네임 서버는 자신의 DB 에 질의 받은 내용이 없을때 다른 서버에 다시 질의하여 얻어지는 결과를 전

(6) RA (recursion available)

RA=1 네임서버가 recursive방식 응답 가능함

(7) rcode (return code) 요청에 대한 처리 결과를 표시, 0 -> Ack 의미, 다른 값은 모두 오류를 의미

Question format

admin.atc.fhda.edu

Query Type

1	A	IP address (IPv4)		
2	NS	Name server record		
5	CNAME	Canonical name		
6	SOA	Mark of the start of a zone		
0xC	PTR	Authority pointer record		
0xD	HINFO	Host info		
0xF	MX	Mail exchange record request		
0xFC	AFXR	Zone transfer request for all records		
0xFF	ANY	request for all records		
	AAAA	IP address (IPv6)		

DNS resource records

DNS: distributed DB storing resource records (RR)

RR format: (name, value, type, ttl)

- Type=A
 - name is hostname
 - value is IP address
- Type=NS
 - name is domain (e.g. foo.com)
 - value is hostname of authoritative name server for this domain
- Type=PTR
 - name is reversed IP quads
 - E.g. 78.56.34.12.in-addr.arpa
 - value is corresponding hostname

- Type=CNAME
 - name is alias name for some "canonical" name

E.g., www.cs.mit.edu is really eecsweb.mit.edu

value is canonical name

- Type=MX
 - value is name of mailserver associated with name
 - Also includes a weight/preference

Resource record (RR) format

(answer, authority, additional information fields)

		,
Domain name string (name string ends 0x00)	n	
Type	2	TTL: number of seconds that the RR can be cached by the client (2 days)
Time-to-live (TTL)	2	- Resource data length
Resource data length Resource data	2 n	 Resource data: depends on the type. e.g., A type (Internet) -> IP address (4bytes)

same as Question area

Summary

- Domain Name System (DNS)
 - Distributed, hierarchical database
 - Distributed collection of servers
 - Caching to improve performance
- DNS lacks authentication
 - Can't tell if reply comes from the correct source
 - Can't tell if correct source tells the truth
 - Malicious source can insert extra (mis)information
 - Malicious bystander can spoof (mis)information
 - Playing with caching lifetimes adds extra power to attacks