→ Install Conda on Google Colab

condacolab simplifies the setup as much as possible, but there are some gotchas.

Read this before continuing!

- The condacolab commands need to be run as the first Code cell!
- Once you run condacolab.install(), the Python kernel will be restarted. This is **normal and expected**. After that, you can continue running the cells below like normal.
- Do not use the Run all option. Run the condacolab cell *individually* and wait for the kernel to restart. **Only then**, you can run all cells if you want.
- You can only use the base environment. Do not try to create new ones; instead update base with either:
 - o conda install <packages>

- ∘ conda env update -n base -f environment.yml
- If you want to use GPUs, make sure you are using such an instance before starting!
- If you get an error, please raise an issue here.

```
!pip install -q condacolab
import condacolab
condacolab.install()

Downloading https://github.com/jaimergp/miniforge/releases/latest/download/Mambaforge-colab-Linux-x86_64.sh...
Installing...
Adjusting configuration...
Patching environment...
Done in 0:00:15
Restarting kernel...
import condacolab
condacolab.check()
```

!mamba install -q openmm

	Version	Build	Channel	Size
Install:				
cudatoolkit	11.0.3	h15472ef 8	conda-forge/linux-64	952 MB
fftw	3.3.9	nompi hcdd671c 101	conda-forge/linux-64	6 MB
libblas	3.9.0		conda-forge/linux-64	11 KB
libcblas	3.9.0		conda-forge/linux-64	11 KB
libgfortran-ng	9.3.0	hff62375 18	conda-forge/linux-64	22 KB
libgfortran5	9.3.0	hff62375 18	conda-forge/linux-64	2 MB
liblapack	3.9.0	-	conda-forge/linux-64	11 KB
libopenblas	0.3.12	pthreads_h4812303_1	conda-forge/linux-64	9 MB
numpy	1.20.1	py37haa41c4c_0	conda-forge/linux-64	6 MB
ocl-icd	2.2.14	h7f98852_0	conda-forge/linux-64	118 KB
ocl-icd-system	1.0.0	1	conda-forge/linux-64	4 KB
openmm	7.5.0	py37h01de88b_6	conda-forge/linux-64	11 MB
Summary:				
Install: 12 pag	kages			
Total download:	986 MB			

For the CUDA platform to be available, make sure you are using a GPU environment.

```
from simtk.testInstallation import main
main()
```

OpenMM Version: 7.5

Git Revision: b49b82efb5a253a7c891ca084b3370e181de2ea3

There are 4 Platforms available:

```
1 Reference - Successfully computed forces
```

- 2 CPU Successfully computed forces
- 3 CUDA Successfully computed forces
- 4 OpenCL Successfully computed forces

Median difference in forces between platforms:

Reference vs. CPU: 6.29199e-06 Reference vs. CUDA: 6.73078e-06

CPU vs. CUDA: 7.48056e-07

Reference vs. OpenCL: 6.75891e-06 CPU vs. OpenCL: 8.11491e-07 CUDA vs. OpenCL: 2.68874e-07

All differences are within tolerance.

→ Step 1. IMPORT Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

→ Step 2. IMPORT DATASET

```
coupon=pd.read_csv("COUPON.CSV")
coupon.isnull()
```

	Gender	Item1	Item2	Item3	transactions	Coupon	coupon_discount	
0	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	

coupon.head()

Ē	coupon_discoun	Coupon	transactions	Item3	Item2	Item1	Gender	
1	117.27686	Kids Apparel	436274.446700	Educational Products	Toys	Computer Games	Male	0
3	70.88504	Womens Apparel	5323.510000	Kids Wear	Womens Wear	Cosmetics	Female	1
5	342.82619	Womens Apparel	48980.998330	Candy	Womens Wear	Cosmetics	Female	2
	00.00400	8.4 A I	0007 70000		0 0	Computer		^

coupon.tail()

	Gender	Item1	Item2	Item3	transactions	Coupon	coupon_discount
145	Female	Handbag	Movies	Tie	47223.323000	Womens Apparel	76.259010
146	Male	Computer Games	Toys	Educational Products	70553.563330	Kids Apparel	109.160070
147	Male	Cosmetics	Womens Wear	Candy	56510.570000	Womens Apparel	103.032016
		Computer	Womens	Educational	0050 400000	12:1 4	E7 00EE00

coupon[20:30]

	Gender	Item1	Item2	Item3	transactions	Coupon	coupon_discount
20	Male	Cosmetics	Movies	Candy	147023.28500	Womens Apparel	109.857869
21	Female	Mens Wear	Womens Wear	Educational Products	54049.13833	Womens Apparel	89.472987
22	Female	Computer Games	Movies	Kids Wear	56796.97833	Kids Apparel	91.595460
23	Female	Mens Wear	Gym Shoes	Tie	32494.81750	Mens Apparel	128.950956
24	Female	Mens Wear	Board Games	Candy	33872.26448	Kids Apparel	42.769784
25	Male	Cosmetics	Movies	Tie	15031.82000	Mens Apparel	43.621101
26	Female	Mens Wear	Board	Tie	21758.84167	Mens Apparel	83.423357

coupon.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Gender	150 non-null	object
1	Item1	150 non-null	object
2	Item2	150 non-null	object
3	Item3	150 non-null	object
4	transactions	150 non-null	float64
5	Coupon	150 non-null	object
6	coupon discount	150 non-null	float64

dtypes: float64(2), object(5)

memory usage: 8.3+ KB

coupon.describe()

	transactions	coupon_discount
count	1.500000e+02	150.000000
mean	4.643452e+05	165.435743
std	2.194338e+06	136.299236

▼ Step 3.VISUALIZE DATASET

coupon.count().plot.bar()

<Axes: xlabel='transactions', ylabel='coupon_discount'>

sns.stripplot(x=coupon.transactions,y=coupon.coupon_discount,data=coupon)

<Axes: xlabel='transactions', ylabel='coupon_discount'>

sns.pointplot(x='transactions',y='coupon_discount',data=coupon)

<Axes: xlabel='transactions', ylabel='coupon_discount'>

sns.pairplot(coupon,hue = 'Gender',diag_kind = "kde",kind = "scatter",palette = "husl") plt.show()

- Step 4. CREATE TESTING AND TRAINING DATASET

```
y = coupon['coupon_discount']
X = coupon[['transactions']]
```

Χ

```
transactions
           436274.446700
             5323.510000
            48980.998330
             3697.783333
           289181.848300
У
     0
            117.276864
     1
             70.885046
     2
            342.826195
     3
             88.694903
     4
            200.991719
     145
             76.259010
     146
            109.160070
     147
            103.032016
             57.905532
     148
     149
             53.048012
     Name: coupon_discount, Length: 150, dtype: float64
from sklearn.model_selection import train_test_split
X train, X test, y train, y test = train test split(X, y, test size=0.25)
```

→ Step 5. TRAIN THE MODEL

```
X_train.shape
from sklearn.linear_model import LinearRegression

regressor = LinearRegression(fit_intercept = True)
regressor.fit(X_train,y_train)
```

```
print('Linear Model Coefficient (m): ', regressor.coef_)
print('Linear Model Coefficient (b): ', regressor.intercept_)

Linear Model Coefficient (m): [-2.55172129e-07]
Linear Model Coefficient (b): 158.14091228970713
```

Step 6. TEST THE MODEL

```
y predict = regressor.predict( X test)
v predict
     array([158.13795975, 158.13984167, 158.09633953, 158.00748046,
            154.74970747, 158.12433081, 158.13856235, 158.14058008,
            158.12929589, 158.13672825, 158.12541738, 158.07733488,
            158.13856235, 158.14028724, 158.12886221, 158.12962791,
            158.13573854, 158.0871217 , 158.12290899, 158.13820093,
            158.05184326, 158.13280224, 158.0871217 , 158.11647716,
            158.04896804, 158.11163386, 158.04449861, 158.14073824,
            158.13216133, 158.12398963, 158.13280224, 158.00748046,
            158.14044211, 158.13879097, 156.93136694, 158.12641928,
            158.13226144, 158.1224741 ])
y_test
            140.762111
     44
     43
            387.012500
     132
             72.370757
     17
            524.907167
     74
            185.438313
     29
            495.274445
     142
             45.881078
     121
            275.251875
     119
            296.931289
     61
            124.176118
     109
             45.543524
     99
             77.790561
     7
             45.881078
     45
             72.850639
             76.259010
     145
            366.898471
     95
     134
             97.768613
```

```
77
             28.273801
     146
            109.160070
     136
            178.931493
     126
            152.791425
     107
            232.083176
     79
             28.273801
     110
             81.821518
     9
            284.346347
     123
            169.525695
     53
            145.603602
     47
            124.310000
     87
            108.356342
     92
            133.806810
     42
            232,083176
     127
            524.907167
     36
            107.986250
     48
            302.470667
     93
            135.619609
     22
            91.595460
     58
            224.054986
     65
            388.746037
     Name: coupon discount, dtype: float64
plt.scatter(X_train, y_train, color = 'gray')
plt.plot(X_train, regressor.predict(X_train), color = 'red')
plt.ylabel('transactions [dollars]')
plt.xlabel('coupon_discounts[dollars]')
plt.title('transactions vs coupon_discount @chennai shopping mall(Training dataset)')
```

Text(0.5, 1.0, 'transactions vs coupon_discount @chennai shopping mall(Training dataset)')
transactions vs coupon discount @chennai shopping mall(Training dataset)

800 -

Step 7.Evaluate the model

```
from sklearn.metrics import mean_squared_error

acc = mean_squared_error(y_test,y_predict)

print("Mean Square Error : ",acc)

wts = regressor.coef_
incpt = regressor.intercept_

print("Slope : ",wts,"\nIntercept ",incpt)

Mean Square Error : 19554.45459775169

Slope : [-2.55172129e-07]
Intercept 158.14091228970713
```

✓ 0s completed at 11:36 PM

×