1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»							
КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>							
Лабораторная работа № <u>1</u>							
Дисциплина Математическая статистика							
Тема <u>Гистограмма и эмпирическая функция распределения</u>							
Вариант №5							
Студент Брянская Е.В.							
Группа ИУ7-62Б							
Оценка (баллы)							
Преподаватель _Саркисян П.С.							

Оглавление

Bı	Введение 3							
1	Теоретическая часть							
	1.1	Форму	улы для вычисления величин	4				
		1.1.1	Максимальное значение выборки	4				
		1.1.2	Минимальное значение выборки	4				
		1.1.3	Размах выборки	4				
		1.1.4	Выборочное среднее	4				
		1.1.5	Несмещённая оценка дисперсии (состоятельная оценка)	4				
	1.2	2 Эмпирическая плотность и гистограмма						
	1.3	Эмпирическая функция распределения						
2	Пра	ская часть	6					
	2.1	Текст	программы	6				

Введение

Цель работы: построение гистограммы и эмпирической функции распределения. **Содержание работы:**

- 1. Для выборки объёма n из генеральной совокупности M реализовать в виде программы на ЭВМ
 - а) вычисление максимального значения M_{max} и минимального значения M_{min} ;
 - б) размаха R выборки;
 - в) вычисление оценок $\hat{\mu}$ и S^2 математического ожидания МХ и дисперсии DX;
 - г) группировку значений выборки в $m = \lfloor log_2 n \rfloor + 2$ интервала;
 - д) построение на одной координатной плоскости гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 ;
 - е) построение на другой координатной плоскости графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 .
- 2. Провести вычисления и построить графики для выборки из индивидуального варианта.

1. Теоретическая часть

1.1. Формулы для вычисления величин

Выборка: $\vec{x} = (x_1, ..., x_n)$

1.1.1 Максимальное значение выборки

$$M_{max} = max\{x_1, ..., x_n\}$$
 (1.1)

1.1.2 Минимальное значение выборки

$$M_{min} = min\{x_1, ..., x_n\}$$
 (1.2)

1.1.3 Размах выборки

$$R = M_{max} - M_{min} \tag{1.3}$$

1.1.4 Выборочное среднее

$$\hat{\mu}(\vec{x}_n) = \frac{1}{n} \sum_{i=1}^n x_i \tag{1.4}$$

1.1.5 Несмещённая оценка дисперсии (состоятельная оценка)

$$S^{2}(\vec{x}_{n}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x}_{n})^{2}$$
(1.5)

1.2. Эмпирическая плотность и гистограмма

Интервальным статистическим рядом называют таблицу:

J_1	 J_i	 J_m
n_1	 n_i	 n_m

здесь n_i - число элементов выборки \vec{x} , которые попали в J_i .

Пусть для выборки \vec{x} построен интервальный статистический ряд, **эмпирической плотностью** называется функция:

$$\hat{f}(x) = \begin{cases} \frac{n_i}{n\Delta}, & x \in J_i; \\ 0, & x \notin J. \end{cases}$$
 (1.6)

График импирической плотности называется гистограммой.

1.3. Эмпирическая функция распределения

Эмпирической функцией распределения, отвечающей выборке \vec{x} , называют функцию:

$$\hat{F}(x) = \frac{n(x, \vec{x})}{n},\tag{1.7}$$

где $n(x, \vec{x})$ - число элементов вектора \vec{x} , которые имеют значение меньше, чем x; n — объём выборки.

2. Практическая часть

- 2.1. Текст программы
- 2.2. Результат работы программы
- 2.3. Графики