

QF 604 ECONOMETRICS OF FINANCIAL MARKETS

LECTURE 1

Professor Lim Kian Guan

SMU Master of Science in Quantitative Finance 2023-2024 T2

LECTURE OUTLINE

O1 PROBABILITY DISTRIBUTIONS

ORDINARY LEAST SQUARES

II3 STOCK INDEX FUTURES

04 HEDGING

O1 Probability Distributions

- Normal probability density function (pdf): $\frac{1}{\sigma\sqrt{2\pi}}exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]dx$
- R.V. X is lognormally distributed if $\ln(X) = Y \sim N(\mu, \sigma^2)$ $E(X) = E(e^Y) = e^{\mu + 1/2\sigma^2}$ $Var(X) = e^{2\mu} [e^{2\sigma^2} e^{\sigma^2}]$
- Let $X \sim N(0,1)$ be a standardized or unit normal RV. Then RV X^2 has a chi-square distribution with one degree of freedom, i.e. χ_1^2 . If $X_1, X_2, ..., X_k$ are k-independent unit normal RVs, then $\sum_{i=1}^k X_i^2$ has a chi-square distribution with k degrees of freedom, i.e. χ_k^2 . The degree of freedom here refers to the number of independent observations in the sum of squares. If Y^2 and Z^2 are two independent chi-square RVs with k_1 and k_2 degrees of freedom, then their sum $Y^2 + Z^2$ is $\chi_{k_1 + k_2}^2$. A chi-square RV is always positive, and its pdf has a right skew. The mean of χ_k^2 is k, and its variance is 2k.
- **Lemma 1.1.** If $X \sim N(\mu, \sigma^2)$, X_i for i = 1, 2, ..., n are independently identically distributed RV draws of X, and $S^2 = (n-1)^{-1} \sum_{i=1}^n (X_i \bar{X})^2$, where $\bar{X} = n^{-1} \sum_{i=1}^n X_i$, then

$$(n-1)\left(\frac{S^2}{\sigma^2}\right) \sim \chi_{n-1}^2$$

Ol Related Distributions

- Note that $\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$. Another related distribution is obtained when this unit normal RV is divided by S/σ . Then we obtain the RV $\frac{\bar{X}-\mu}{S/\sqrt{n}}$. Since $S/\sigma \sim \sqrt{\frac{\chi_{n-1}^2}{n-1}}$, then $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim N(0,1)/\sqrt{\frac{\chi_{n-1}^2}{n-1}}$.
 - The normal RV in the numerator and the chi-square RV in the denominator are statistically independent.
 - $N(0,1)/\sqrt{\frac{\chi_{n-1}^2}{n-1}} \sim t_{n-1}$
- From Lemma 1.1, taking expectations, $E[(n-1)S^2/\sigma^2] = n-1$. Hence, $E[S^2] = \sigma^2$. Therefore, $S^2 = (n-1)^{-1}\sum_{i=1}^n (X_i \bar{X})^2$ is the unbiased estimator of σ^2 .
- Suppose X, Y are independent RVs, $X \sim N(\mu X, \sigma^2)$ and $Y \sim N(\mu Y, \sigma^2)$. Observations x_i and y_i are independently drawn from these two RVs. Unbiased sample variances: $S_X^2 = \sum_{i=1}^n \frac{(X_i \bar{X})^2}{n-1}$, $S_Y^2 = \sum_{i=1}^m \frac{(Y_i \bar{Y})^2}{m-1}$, their ratio is $\frac{S_X^2}{S_Y^2} = \frac{\sum_{i=1}^n (X_i \bar{X})^2/(n-1)}{\sum_{i=1}^n (Y_i \bar{Y})^2/(m-1)} \sim F_{n,m}$.
 - Interesting relationship: $t_k^2 = F_{1,k}$

01 Estimation

Point estimate of μ : This is the sample mean of a random sample of size n = 100 drawn from $X \sim N(\mu, \sigma^2)$, $\bar{x} = 0.08$. Suppose variance of **X** is known, $\sigma^2 = 0.25$, then $z = \frac{\bar{X} - \mu}{0.5/\sqrt{100}} = \bar{X} - \mu$

$$\frac{\bar{X}-\mu}{0.05} \sim N(0,1)$$

- Suppose a > 0 such that $P(-a \le z \le +a) = 95\%$. $P(-a \le z) = 97.5\%$ and $P(z \le +a) = 97.5\% \Rightarrow a = +1.96$
- Then, $P\left(-1.96 \le \frac{\bar{x} \mu}{0.05} \le +1.96\right) = 0.95$
- Rearranging: $P(\bar{x} 1.96(0.05) \le \mu \le \bar{x} + 1.96(0.05)) = 0.95 \Rightarrow P(-0.018 \le \mu \le 0.178) = 0.95$
- Interval estimate of μ at 95% confidence level is (-0.018, 0.178). Given a sample, there is 95% probability or chance that the true μ is contained in the estimated interval.
- In the above, suppose $\operatorname{var}(X)$ is not known. Suppose S^2 is the unbiased variance estimator, then $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t_{n-1}$
 - Suppose a > 0 such that $P(-a \le t_{n-1} \le +a) = 95\%$. $P(-a \le t_{99}) = 97.5\%$ and $P(t_{99} \le +a) = 97.5\% \Rightarrow$

$$a = +1.9842$$
 (found from a t-distribution table). Then $P\left(-1.9842 \le \frac{\bar{x} - \mu}{S/\sqrt{100}} \le +1.9842\right) = 0.95$

- Rearranging: $P(\bar{x} 1.9842(S/10) \le \mu \le \bar{x} + 1.9842(S/10)) = 0.95$
- Suppose $\bar{x} = 0.08$, $S^2 = 0.36$, then $P(-0.03905 \le \mu \le 0.19905) = 0.95$
- 95% confidence interval estimate of μ is (-0.03905, 0.19905).

O1 Hypothesis Testing

- Suppose the test statistic $\sim t_{n-1}$. Statistical Hypotheses are: $H_0: \mu = 1, H_A: \mu \neq 1$
 - Define the critical region (shaded): $\{t_{n-1} < -a \text{ or } t_{n-1} > +a\}$ for a > 0
 - If test statistic falls within critical region, H_0 is rejected in favour of H_A . Null hypothesis H_0 is "named" typically in situations if the statistician expects null/no effect. Not rejecting gives strong credence to the hypothesis. Otherwise H_0 is not rejected and is "accepted"
 - \triangleright If H_0 is true, the probability of rejecting H_0 would be the area of the critical region, say 5% in this case
 - \triangleright t-distribution is symmetrical \Rightarrow each of the right and left shaded tails has an area of 2.5%
 - > This is a two-tailed test with a significance level of 5%
- **Type I error** (rejecting H_0 when it is true) is the significance level
- **Type II error** (not rejecting H_0 when it is false) is (1- significance level)
- p-value is 2 × the probability under H_0 of $|t_{99}|$ exceeding |sample t-value| in a two-tailed test
 - p-value < test significance level, reject H_0
 - Otherwise H_0 cannot be rejected

02 Simple Linear Regression

- A regression is an association between a dependent variable and other explanatory variables.
- Two major purposes:
 - provide some positive theory of how the dependent variable could be explained by other variables
 - a normative or prescriptive theory of how to use the association to predict future occurrences of the dependent variable
- The 8-parameter model is an over-fitted model with no clear economic sense.

An Association between Variables X and Y

02 Simple Linear Regression

■ The idea of a regression model (need not be linear):

$$Y = f(X; \theta) + \varepsilon$$

where ε is a random error or noise, is one where parameter(s) θ are suitably estimated as $\hat{\theta}$.

- $\hat{\theta}$ is "close to" true θ given a sample of $\{(X_i, Y_i)\}_{i=1,2,...,n}$, size n, such that $\sum_{i=1}^n g[Y_i f(X_i; \hat{\theta})]$ is small in some statistical sense where g(.) is a criterion function.
- A linear (bivariate) regression model is:

$$Y_i = a + bX_i + e_i$$

- where a and b are constants.
- Y_i : the dependent variable or regressand
- X_i : the explanatory variable or regressor
- e_i : a residual noise, disturbance, or innovation

O2 Ordinary Least Squares(OLS)

■ In a two-variable or simple linear regression model :

$$Y_i = a + bX_i + e_i$$
, $i = 1, 2, ..., N$.

(2.1)

- The random variables Y_i , X_i 's are observed as sample bivariate points
- Disturbances or residual errors e_i 's are not observed. $E(e_i) = 0$, and $Var(e_i)$ is assumed to be a constant σ_e^2 , which is also not observed.
- a, b are constants to be estimated.
- **Task**: Estimate parameters a, b and σ_e^2 .
- The **classical assumptions** (desirable conditions) for OLS regression are:
 - (A1) $E(e_i) = 0$ for every i
 - (A2) $E(e_i^2) = \sigma_e^2$, a same constant for every *i*.
 - (A3) $E(e_i e_j) = 0$ for every $i \neq j$.
 - (A4) X_i and e_j are stochastically independent for each i, j.

O2 Ordinary Least Squares(OLS)

- In addition to assumptions (A1) through (A4), we could also add a distributional assumption to the random variables, e.g. (A5) $e_i \sim N(0, \sigma_e^2)$
- The scalar value $\hat{e_i}$ indicates measure of the vertical distance between the point (X_i, Y_i) and the fitted regression line. In Figure 2.5, the solid line provides a better fit than the dotted line.
- The OLS method of estimating a and b is to find \hat{a} and \hat{b} so as to minimize the residual sum of squares (RSS), $\sum_{i=1}^{N} \widehat{e}_i^2$, which is different from minimizing the sum of squares of random variables e_i (We do not observe the e_i 's.)

Figure 2.5: OLS Regression of Observations (X_i, Y_i)

02 Ordinary Least Squares(OLS)

- The key criterion in OLS: $\min_{\hat{a},\hat{b}} \sum_{i=1}^{N} \widehat{e_i}^2 \equiv \sum_{i=1}^{N} (Y_i \hat{a} \hat{b}X_i)^2.$
- The First Order Conditions(FOC) yield the following two equations:

$$\frac{\partial \sum_{i=1}^{N} \widehat{e_i}^2}{\partial \widehat{a}} = -2 \sum_{i=1}^{N} (Y_i - \widehat{a} - \widehat{b}X_i) = 0$$

$$\frac{\partial \sum_{i=1}^{N} \widehat{e_i}^2}{\partial \widehat{b}} = -2 \sum_{i=1}^{N} (Y_i - \widehat{a} - \widehat{b}X_i) X_i = 0$$

• From the above two normal equations, we can obtain:

$$\hat{a} = \bar{Y} - \hat{b}\bar{X} \tag{2.2}$$

It also shows that the fitted OLS line $\bar{Y} = \hat{a} + \hat{b}\bar{X}$ passes through (\bar{X}, \bar{Y}) , the "centroid".

$$\hat{b} = \frac{\sum_{i=1}^{N} (X_i - \bar{X}) Y_i}{\sum_{i=1}^{N} (X_i - \bar{X})^2} = \frac{\sum_{i=1}^{N} (X_i - \bar{X}) (Y_i - \bar{Y})}{\sum_{i=1}^{N} (X_i - \bar{X})^2} = \frac{\sum_{i=1}^{N} x_i y_i}{\sum_{i=1}^{N} x_i^2}$$
(2.3)

where
$$x_i = X_i - \bar{X}$$
 and $y_i = Y_i - \bar{Y}$.

- From Eq.(2.1), with stochastic Y_i and X_i , $cov(e_i, X_i) = 0$, then $cov(Y_i, X_i) = cov(a + bX_i + e_i, X_i) = b \text{ var}(X_i) + cov(e_i, X_i) = b \text{ var}(X_i)$ In terms of population moments, $b = cov(Y_i, X_i)/\text{var}(X_i)$.
- But in Eq.(2.3), $\hat{b} = \frac{\sum_{i=1}^{N} x_i y_i}{\sum_{i=1}^{N} x_i^2} = S_{XY}/S_X^2$

Thus, when $N\to\infty$ for large sample, $\lim_{N\to\infty} \hat{b} = b$ under conditions of stationarity.

If \hat{b} is an estimator of b, and $\lim_{N\to\infty} \hat{b} = b$, \hat{b} is said to be a consistent estimator.

We can show likewise that $\lim_{N\to\infty} \hat{a} = a$, and hence \hat{a} is also consistent.

Important question is: what are the desirable properties of the OLS estimators, assuming (A1) to (A5), in finite sample?

$$\bullet \ \hat{b} = \sum_{i=1}^{N} \left(x_i / \sum_{j=1}^{N} x_j^2 \right) (a + bX_i + e_i) = b + \sum_{i=1}^{N} \left(x_i / \sum_{j=1}^{N} x_j^2 \right) e_i$$
 (2.4)

Taking unconditional expectation and invoking (A4) and (A1), then

$$E(\hat{b}) = b + \sum_{i=1}^{N} E(x_i / \sum_{j=1}^{N} x_j^2) E(e_i) = b \text{ since } E(e_i) = 0.$$

$$\hat{a} = \overline{Y} - \hat{b}\overline{X}$$

$$= \overline{Y} - \left(b + \sum_{i=1}^{N} \left(x_i / \sum_{j=1}^{N} x_j^2\right) e_i\right) \overline{X}$$

$$= \overline{Y} - b\overline{X} - \sum_{i=1}^{N} \left(x_i \overline{X} / \sum_{j=1}^{N} x_j^2\right) e_i$$

Taking unconditional expectation and invoking (A4) and (A1), then $E(\hat{a}) = E(\bar{Y}) - bE(\bar{X})$. Since $E(Y_i) = a + bE(X_i)(\forall_i)$, then $E(\bar{Y}) = a + bE(\bar{X})$. Hence $E(\hat{a}) = a$.

■ Using assumptions (A1) to (A4), the variance of \hat{b} is

$$E(\hat{b} - b)^{2} = E\left[\sum_{i=1}^{N} \left(x_{i} / \sum_{j=1}^{N} x_{j}^{2}\right) e_{i}\right]^{2}$$

$$= \sum_{i=1}^{N} \left[E\left(x_{i} / \sum_{j=1}^{N} x_{j}^{2}\right)^{2} E(e_{i}^{2})\right] = \sigma_{e}^{2} \sum_{i=1}^{N} E\left[x_{i}^{2} / \left(\sum_{j=1}^{N} x_{j}^{2}\right)^{2}\right] = \sigma_{e}^{2} E\left[1 / \left(\sum_{j=1}^{N} x_{j}^{2}\right)\right]$$

Note: the unconditional variance involves expectations of functions of RVs X_1 , X_2 , and so on. These expectations are complicated moments of X, even as the distribution of X itself is not specified. It is a similar situation in the case of the variance of \hat{a} .

For inferences and computations of estimator variances in OLS, the conditional distributions of the estimators given X (realized X_1, X_2, \ldots, X_N) are used.

From Eq.(2.4), conditional mean of \hat{b} is

•
$$E[\hat{b}|X] = b + \sum_{i=1}^{N} (x_i / \sum_{j=1}^{N} x_j^2) E[e_i | X] = b$$

Conditional Variance of \hat{b} is

•
$$E\left[\left(\hat{b}-b\right)^{2}|X\right] = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(x_{i}/\sum_{k=1}^{N} x_{k}^{2}\right) \left(x_{j}/\sum_{k=1}^{N} x_{k}^{2}\right) E\left[e_{i}e_{j}|X\right]$$

 $= \sum_{i=1}^{N} \left(x_{i}/\sum_{k=1}^{N} x_{k}^{2}\right) E\left[e_{i}^{2}|X\right]$
 $= \sigma_{e}^{2}/\sum_{i=1}^{N} x_{i}^{2}$ (2.5)

From Eq.(2.2), conditional mean of \hat{a} is

$$\bullet \ E[\hat{a}|X] = E[\overline{Y}|X] - \overline{X}E[\hat{b}|X] = (a+b\overline{X}) - \overline{X}b = a$$

Conditional Variance of \hat{a} is

•
$$Var[\hat{a}|X] = Var(\hat{Y}|X) - 2\bar{X}cov(\bar{Y},\hat{b}|X) + \bar{X}^2 var(\hat{b}|X)$$

$$= \frac{\sigma_e^2}{N} - 2\frac{\bar{X}}{N}cov + \left(\sum_{i=1}^{N} a + bX_i + e_i, b + \sum_{i=1}^{N} \frac{x_i e_i}{\sum_{j=1}^{N} x_j^2} |X\right) \bar{X}^2 \sigma_e^2 / \sum_{i=1}^{N} x_i^2$$

$$= \sigma_e^2 \left(\frac{1}{N} + \bar{X}^2 / \sum_{i=1}^{N} x_i^2\right)$$
(2.6)

since the middle term gives $\sum_{i=1}^{N} cov(e_i, \frac{x_i}{\sum_{i=1}^{N} x_i^2} e_i \mid X) = 0$ as $\sum_{i=1}^{N} x_i = 0$.

Variance of \hat{a} and \hat{b} conditional on X reduce toward 0 as $N \to \infty$.

In Summary:

- Classical assumptions (A1) to (A4) apply under the general context of stochastic X and e, in finite sample, OLS method \rightarrow unbiased estimators \hat{a} and \hat{b} .
- The unbiasedness property holds under both unconditional expectations and expectations conditional on *X*.
- As sample size N↑: estimates is accurate and forecasting can be done
- However, testing if the estimates are significantly different from some hypothesized values requires use of conditional on *X* distributions of the estimators in order to obtain conveniently computed conditional variances. Together with (A5), statistical inferences can be made.

02 Forecasting

In forecast or prediction of Y_i based on an observed X_i , a useful result is that the best forecast of Y_i , in the sense of minimum mean square error, is the conditional expectation $E(Y_i|X_i)$.

Lemma: For a bivariate distribution of RVs Y_i and X_i , for any function $g(X_i)$

$$E(Y_i - g(X_i))^2 \ge E(Y_i - E(Y_i|X_i))^2$$

Note: $E(Y_i|X_i)$ is not necessarily a linear forecast.

Proof is shown at the end of p.38 of the book.

02 Forecasting

- The best forecast of Y_{N+1} with linear regression model is $E(Y_{N+1}) = a + bX_{N+1}$
- OLS forecast of Y_{N+1} is $\hat{Y}_{N+1} = \hat{a} + \hat{b}X_{N+1}$
 - The forecast or prediction error:

$$Y_{N+1} - \hat{Y}_{N+1} = bx_{N+1} - \hat{b}x_{N+1} + e_{N+1} - \frac{1}{N} \sum_{i=1}^{N} e_i = -(\hat{b} - b)x_{N+1} + e_{N+1} - \frac{1}{N} \sum_{i=1}^{N} e_i$$
• $Var(Y_{N+1} - \hat{Y}_{N+1} | x_{N+1}) = x_{N+1}^2 Var(\hat{b}) + \sigma_e^2 + \frac{1}{N} \sigma_e^2 = \sigma_e^2 \left(1 + \frac{1}{N} + \frac{x_{N+1}^2}{\sum_{i=1}^{N} x_i^2}\right)$

- Note: $Var(\hat{b})$ is a conditional variance.
- The forecast error (conditional on x_{N+1}) under (A5) is normally distributed:

$$\frac{Y_{N+1} - \hat{Y}_{N+1}}{\hat{\sigma}_e \sqrt{\left(1 + \frac{1}{N} + \frac{x_{N+1}^2}{\sum_{i=1}^{N} x_i^2}\right)}} \sim t_{N-2}$$

02 Gauss-Markov Theorem

- Important result that justifies use of OLS in $Y_i = a + b X_i + e_i$
- Let linear estimators of a and b take the form:

$$\hat{A} = \sum_{i=1}^{N} \theta_i(X) Y_i$$
 and $\hat{B} = \sum_{i=1}^{N} \gamma_i(X) Y_i$

where θ_i and γ_i are fixed or deterministic functions of X only (and not in Y's or a or b). Note that these estimators are expressed as linear functions (conditional on X) of Y

• Gauss-Markov theorem states that amongst all linear and unbiased (conditional on X) estimators of the form in \hat{A} and \hat{B} of $Y_i = a + b X_i + e_i$, the OLS estimators \hat{a} , \hat{b} have the minimum variances, i.e.

$$Var(\hat{a}) \leq Var(\hat{A})$$

$$Var(\hat{b}) \leq Var(\hat{B})$$

given the assumptions (A1) to (A4).

Proof is shown on pp. 40 - 43 of the book.

02 Characterization of OLS estimators

• Conditional on X, \hat{b} is a linear estimator with w_i 's as fixed weights (function of X) on the Y_i 's.

$$\hat{b} = \sum_{i=1}^{N} w_i Y_i$$

where $w_i = x_i / \sum_{i=j}^N x_j^2$.

• Similarly, conditional on X, $\hat{a} = \overline{Y} - \hat{b}\overline{X}$ is a linear function of Y. The weights for \hat{a} , v_i 's, are as follows.

$$\hat{a} = \frac{1}{N} \sum_{i=1}^{N} Y_i - \sum_{i=1}^{N} w_i \bar{X} Y_i = \sum_{i=1}^{N} v_i Y_i$$

where
$$v_i = \left(\frac{1}{N} - \frac{x_i \bar{X}}{\sum_{i=1}^N x_i^2}\right)$$
.

02 Characterization of OLS estimators

• Probability distribution of \hat{b} :

$$\hat{b} \sim N\left(b, \sigma_e^2\left(\frac{1}{\sum x_i^2}\right)\right)$$

• Probability distribution of \hat{a} :

$$\widehat{a} \sim N \left(a, \sigma_e^2 \left(\frac{1}{N} + \frac{\overline{X}^2}{\sum x_i^2} \right) \right)$$

• The Covariance between the estimators \hat{a} and \hat{b} :

$$Cov(\hat{a}, \hat{b}) = E(\hat{a} - a)(\hat{b} - b) = E\left(\sum v_i e_i\right) \left(\sum w_i e_i\right) = \sigma_e^2 \sum v_i w_i = \sigma_e^2 \left(-\frac{\bar{X}^2}{\sum x_i^2}\right)$$

02 Characterization of OLS estimators

• The estimated residual:

$$\hat{e}_i = Y_i - \hat{a} - \hat{b}X_i = Y_i - (\bar{Y} - \hat{b}\bar{X}) - \hat{b}X_i = (Y_i - \bar{Y}) - \hat{b}(X_i - \bar{X}) = y_i - \hat{b}x_i$$

- Important: distinguish estimated residual $Y_i \hat{Y}_i$ from the actual unobserved e_i $\sum_{i=1}^N \hat{e}_i = 0 \quad \text{and} \quad \sum_{i=1}^N X_i \hat{e}_i = 0$
- With the Gauss- Markov theorem, OLS estimators under the classical conditions are called best linear unbiased estimators (BLUE) for the linear regression model.
- Some other estimators like the Stein estimators can be more efficient but are biased.

02 Decomposition

- Residual Sum of Squares(RSS): RSS = $\sum \hat{e}_i^2 = \sum (Y_i \hat{Y}_i)^2$
- Explained Sum of Squares (ESS): ESS = $\sum (\hat{Y}_i \bar{Y})^2 = r_{XY}^2 N S_Y^2$
- Total Sum of Squares (TSS): TSS = ESS+RSS = $\sum (Y_i \overline{Y})^2 = NS_Y^2$
- The coefficient of determination: ESS/TSS = $R^2 = r_{XY}^2$
- $R^2 = r_{XY}^2 = 1 \text{RSS/TSS}, 0 \le R^2 \le 1$

 R^2 determines the degree of fit of the linear regression line to the data points in the sample.

So,
$$\frac{\hat{b}-b}{s.e.(\hat{b})} \equiv Z \sim N(0,1)$$
.

• For testing null hypothesis H_0 : b = 1, employ sample estimate of σ_e^2 using $\hat{\sigma}_e^2$. Use

$$t_{N-2} = \frac{\hat{b} - 1}{\hat{\sigma}_e \sqrt{\frac{1}{\sum x^2}}}$$

• For testing null hypothesis H_0 : a = 0, use

$$t_{N-2} = \frac{\hat{a} - 0}{\hat{\sigma}_e \sqrt{\frac{1}{N} + \frac{\bar{X}^2}{\sum x^2}}}$$

03 Stock Index Futures

Let's take the Nikkei 225 as an example.

- A December Nikkei 225 Index futures contract
- The traded "price" in September \rightarrow an index price or a notional price
 - September: a notional price of $12,000 \rightarrow \text{buy/long } N$ of the Nikkei 225 Index December futures contracts
 - December: a notional price of 14,000
 - A big profit: 2000 points \times Yen value per point per contract \times number of contracts N
- At Maturity: the index futures notional price converges to the underlying Nikkei 225 stock index number

Assumption: a large diversified portfolio of major Japanese stocks has the same return as N225 index portfolio return

- S_t : the stock index value at current time t
- $r_{t,T}$: the effective risk-free interest rate or the cost of carry over [t, T]
- α : a constant multiplier reflecting proportionate relationship of the portfolio value to the index notional value S_t
- αS_t : cost of this portfolio
- $\alpha S_t(1 + r_{t,T})$: the portfolio cost if held till maturity T
- ullet D: an aggregate amount of dividends over the period [t, T]
- $d \times \alpha S_t$: the dividends issued to the arbitrageur's portfolio amount, assume this is perfectly anticipated. $d^* \times \alpha S_t$: the present value of these dividends
- $\bullet \quad \boldsymbol{D}^* = \boldsymbol{d}^* \boldsymbol{S}_t$
- Net cost of carry of the stocks as at time T, $\alpha[S_t D^*](1 + r_{t,T})$

- N225 index futures notional price for contract with maturity at T, at t is $F_{t,T}$
- At t, if $F_{t,T} > [S_t D^*](1 + r_{t,T})$:
 - (1) The arbitrageur would enter a buy or long position in the stocks.
 - (2) The arbitrageur sells an index futures contract at notional price $F_{t,T}$.
- Assume: the currency value per point per contract is 1. Also assume $\alpha = 1$.
- \blacksquare At T, $S_T = F_{T,T}$, the arbitrageur
 - (1) Sell the portfolio at $Y S_T$ in Yen, gaining $S_T [S_t D^*](1 + r_{t,T})$
 - (2) Cash-settle the index futures trade, gaining $F_{t,T} F_{T,T}$ or $F_{t,T} S_T$
 - (3) The net gain (arbitrage profit) is the sum of the two terms:

$$YF_{t,T} - [S_t - D^*](1 + r_{t,T}) > 0$$

Check the converse case if $F_{t,T} < [S_t - D^*](1 + r_{t,T})$

■ Suppose we add transaction costs of 0.5%. Let $\tau = T - t$ be the term-to-maturity in terms of fraction of a year. Assume

$$r_{t,T} \approx 0.005\tau$$
 , and $D^* \approx 0.01\tau S_t/(1 + 0.005\tau)$

■ Cash-and-carry arbitrage:

■ Reverse Cash-and-carry arbitrage:

$$Y[0.995S_t - D^*](1 + r_{t,T}) - 1.005S_T + S_T - F_{t,T}$$

or approximately $0.99[S_t - D^*](1 + r_{t,T}) - F_{t,T}$
Fair price: $F_{t,T} = 0.99[S_t - D^*](1 + r_{t,T})$

Implication: No arbitrage money could be made if $F_{t,T}$ falls within

$$(0.99[S_t-D^*](1+r_{t,T}), 1.01[S_t-D^*](1+r_{t,T}))$$

For a given futures price $F_{t,T}$ (without transaction costs), fair price $F_t^* = [S_t - D^*](1 + r_{t,T})$

Figure 2.6: Prices of Nikkei 225 December Futures Contract from 9/1/1999 to 10/15/1999

Percentage difference or deviation from from fair price F_t^* is $p_t = (F_{t,T} - F_t^*)/F_t^*$

Figure 2.7: possible negative serial correlat in the change of p_t within the no-arbitrage bounds.

- Most differences are within 1%.
- Practically little arbitrage, then
 - (1) deviation of p_t from zero is due to random disturbances
 - (2) change in p_t or Δp_t would display negative daily correlation

Figure 2.7: Percentage Difference between Futures Price and Fair Price

■ Instead of p_t , we also can use the variable $\ln(F_t/F_t^*)$, which can be assumed to follow a normal distribution.

Table 2.1: Regression of $\Delta \ln(F_t/F_t^*)$ on Its Lag: $\Delta q_{t+1} = a + b\Delta q_t + e_{t+1}$

Variable	Coefficien	t Std. Error	t-Statist	ic Prob.
Constant Lagged Δq_t	0.00005 -0.57340	0.0014 0.1534	0.032 -3.739	0.9751 0.0009***
R-squared Adjusted R-squared S.E. of regression	0.3497 l 0.3247 0.0076	F(d.f.1, 26)-sta Prob(F -statistic Sum squared res	e)	13.98 0.00092 0.00151

Note: *** indicates significance at the 2-tail 0.1% level.

- Estimated $\hat{a} = 0.00005$ with a two-tailed *p*-value of $0.9751 \Rightarrow$ cannot reject H_0 : a = 0 at any reasonable significance level
- Estimated coefficient of lagged Δq_t , regression slope b, $\hat{b} = -0.57340$ a two-tailed p-value of 0.0009
- The statistical evidence: $b \neq 0$ (basically b < 0 in this case). The presence of reversals in Δq_t across days
- Coefficient of Determination: $R^2 = 0.3497$ A common problem using R^2 is that its value increases when more regressors are added, regardless of whether the added variables help in fact to explain the regressand or not. To mitigate the issue, use

Adjusted
$$R^2 = 1 - \frac{(1-R^2)(N-1)}{N-k-1} = 0.3247$$

03 Quantiles

- Quantiles: RV *X* values that divide the cumulative distribution function cdf of the RV into equal intervals.
 - Deciles: if $cdf(X = x_1) = 0.10$, $cdf(X = x_2) = 0.20$, $cdf(X = x_3) = 0.30$,..., x_1, x_2, x_3 ... are called the deciles.
- Suppose there is a sample of 28 estimated residual errors \hat{e}_j for j = 1, 2, ..., 28. Order $\hat{e}_1 < \hat{e}_2 < ... < \hat{e}_{28}$. We want to check if \hat{e}_j follows a normal distribution $N(\mu, \sigma^2)$.
- Assume $\hat{e}_j \sim N(\mu, \sigma^2)$. Then empirical cdf of $\hat{e}_j = j/28 = M(\hat{e}_j) = \Phi(z_j)$ where $z_j = (\hat{e}_j \mu) / \sigma$. Hence $\hat{e}_j = M^{-1}(j/28)$, and $\hat{e}_j = \mu + \sigma \Phi^{-1}(j/28)$. Or, $M^{-1}(j/28) = \mu + \sigma \Phi^{-1}(j/28)$.
- Note cdf of z_j is $\Phi(z_j) = \int_{-\infty}^{z_j} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}} z_j^2$.
- The quantile-quantile (Q-Q) plot: a graphical technique for visually comparing two probability distributions by plotting their quantiles side by side. In above, $(\Phi^{-1}(j/28), M^{-1}(j/28))$ is a Q-Q plot. If $\hat{e}_j \sim N(\mu, \sigma^2)$ is true, then plot will lie on a straight line with intercept μ and slope σ .

03 Quantiles

Compute the Normal Q-Q plot of the estimated residuals from Table 2.1, the plot is shown in Figure 2.8.

- Two outliers with values 0.01162 and 0.02294
- Most of the other values of $\hat{e_t}$ appear to fall on the straight-line \rightarrow closeness to the normal distribution.
- Several points with $\Phi^{-1}(n/28)$ below -1 have $M^{-1}(n/28)$ values below the straight line \to a fatter left tail than that of the normal distribution. For same low cdf, sample distribution has more negative quantiles.
- Similarly, Several points with $\Phi^{-1}(n/28)$ above +1 have $M^{-1}(n/28)$ values above the straight line \rightarrow a fatter right tail. For same high cdf, sample distribution has more positive quantiles.

Figure 2.8: Normal Q-Q Plot of Residuals

04 Hedging

- \bullet V_t : a total current value of the investor's original stock position
- S_t : the N225 Index value f: a constant factor $\rightarrow \Delta V_{t+1} = f\Delta S_{t+1}$
- $\Delta V_{t+1}/V_t = \Delta S_{t+1}/S_t$: portfolio return rate
- Form a hedged portfolio comprising $\Psi P_t = \Psi f \times S_t$, and h number of short positions in N225 Index futures contracts, with maturity \mathbf{T} , notional traded price $F_{t,T}$, actual price value of $500 \times F_{t,T}$ Yen
- At the end of the risky period, **T**, hedged portfolio in Yen value change would be:

$$\Delta P_{t+1} = f imes \Delta S_{t+1} - h imes 500 imes \Delta F_{t+1,T}$$
 where $\Delta P_{t+1} = P_{t+1} + P_$

where $\Delta P_{t+1} = P_{t+1} - P_t$, $\Delta S_{t+1} = S_{t+1} - S_t$, $\Delta F_{t+1,T} = F_{t+1,T} - F_{t,T}$

$$\blacksquare Var(\Delta P_t) = f^2 \times Var(\Delta S_t) + h^2 \times 500^2 \times Var(\Delta F_{t,T}) - 2h \times 500f \times Cov(\Delta S_t, \Delta F_{t,T})$$

04 Hedging

■ The FOC for minimizing $Var(\Delta P_t)$ with respect to decision variable h yields:

$$2 \times h(500^2) Var(\Delta F_{t,T}) - 2 \times (500f) Cov(\Delta S_t, \Delta F_{t,T}) = 0$$

or a risk-minimizing "optimal" hedge of

$$h^* = \frac{f \times Cov(\Delta S_t, \Delta F_{t,T})}{500 \, Var(\Delta F_{t,T})}$$

- \blacksquare h^* : can be estimated by substituting in the sample estimates of the covariance in the numerator and of the variance in the denominator.
- The optimal hedge can also be estimated through the following linear regression employing OLS method:

$$\Delta S_t = a + b\Delta F_t + e_t$$

where e_t is residual error that is uncorrelated with ΔF_t . Short form: $F_t = F_{t,T}$

04 Hedging

•
$$b = \frac{Cov(\Delta S_t, \Delta F_t)}{Var(\Delta F_t)} = 500/f \times h^*$$

- h^* estimate is found as $\hat{b} \times f/500$ number of the futures contracts to short
- $\hat{b} = 0.71575$ with a 10 billion Yen portfolio value and spot N225 Index on September 1, 1999, at 17479, f = 10 billion/17479 = 572,115.
- The number of futures contract to short in this case is estimated as:

$$h^* = \hat{b} \times \frac{f}{500} = 0.71575 \times \frac{572,115}{500} \approx 819$$

number of N225 futures contracts.

Table 2.2: OLS Regression of Change in Nikkei Index on Change in Nikkei Futures Price: $\Delta S_t = a + b\Delta F_t + e_t$. Sample size = 29

Variable	Coefficient	Std. Error	t-Statistic	Prob.
Constant ΔF_t	$4.666338 \\ 0.715750$	$24.01950 \\ 0.092666$	0.194 7.724	0.8474 0.0000***
R-squared Adjusted R-squared S.E. of regression	0.6884 0.6769 129.325	F(d.f.1, 27)-statistic Prob(F -statistic) Sum squared resid.		59.6597 0.0000 451573.2

Practice Exercise (not graded)

N225_Hedging.ipynb N225.csv