Obliczenia Naukowe

Laboratorium Lista Nr 5 Piotr Popis 245162

6 grudzień 2019

1 Wstęp

1.1 Streszczenie

Problemem jest rozwiązanie równania liniowego Ax=b,
gdzie $A\epsilon R^{nxn}$ jest podaną macierzą, a $b\epsilon R^n$ zadanym wektorem prawych stron
(przy założeniu, iż $n\geq 4$). Dodatkowo macierz A jest macierzą rzadką- taką, która ma
 dużo elementów zerowych oraz blokową.

$$A = \begin{bmatrix} A_1 & C_1 & 0 & \dots & 0 \\ B_2 & A_2 & C_2 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & B_{v-1} & A_{v-1} & C_{v-1} \\ 0 & \dots & 0 & B_v & A_v \end{bmatrix}$$

, gdzie $v = \frac{n}{l}$ przy założeniu iż l zawsze dzieli n(n jest podzielne przez l) oraz $l \ge 2$. l jest rozmiarem wszystkich kwadratowych macierzy wewnętrznych - bloków: A_k, B_k, C_k . Mianowicie:

$$A_k \epsilon R^{lxl}, k = 1, ..., v,$$

A jest macierzą gęstą,

0 jest kwadratową macierzą zerową stopnia l,

Natomiast macierz

$$B_k \epsilon R^{lxl}, k = 2, ..., v,$$

 B_k ma tylko dwie ostatnie kolumny niezerowe i jest postaci:

$$B_k = \begin{bmatrix} 0 & \dots & 0 & b_{1l-1}^k & b_{1l}^k \\ 0 & \dots & 0 & b_{2l-1}^k & b_{2l}^k \\ \vdots & & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & b_{ll-1}^k & b_{ll}^k \end{bmatrix}$$

Ostani z bloków

$$C_k \epsilon R^{lxl}, k = 1, ..., v - 1,$$

 C_k jest macierzą diagonalną i jest postaci:

$$C_k = \begin{bmatrix} c_1^k & 0 & 0 & \dots & 0 \\ 0 & c_2^k & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & c_{l-1}^k & 0 \\ 0 & \dots & 0 & 0 & c_l^k \end{bmatrix}$$

Z treści n jest ogromne co wiąże się dużym obciążeniem pamięciowym jak i czasowym w przypadku zwykłej tablicy. Należy skorzystać z pakietu SparseArrays, która zawiera specjalną strukturę efektywnie pamiętająca specyficznie macierze, tj rzadkość lub regularność występowania elementów zerowych i niezerowych. Istniejące algorytmy do rozwiązywania takich problemów trzeba po prostu zmodyfikować do użycia tej spejcalnej struktury. Jeśli l jest stałe Algorytmy da się zoptymalizować czasowo z $\mathcal{O}(n^3)$ do $\mathcal{O}(n)$.

1.2 Treść

Zadanie 1 Należy stworzyć funkcję rozwiązującą układ Ax = b metodą eliminacji Gaussa uwzględniającą postać macierzy A zadanej w streszczeniu dla dwóch wariantów

- (a) bez wyboru elementu głównego
- (b)z częściowym wyborem elementu głównego

Zadanie 2 Należy napisać funkcję wyznaczającą rozkład LU macierzy A metodą eliminacji Gauss'a uwzględniającą specyficzną postać macierzy A dla

- (a) bez wyboru elementu głównego
- (b)z częściowym wyborem elementu głównego

Zadanie 3 Należy napisać funkcję rozwiązującą układ równań Ax = b (uwzgledniającą specyficzną postać macierzy A).

Wszystkie funkcje powinny byc umieszczone w module o nazwie blocksys. Należy przeczytać Sparse Arrays manual Julia. Założyć, że dostęp do elementu macierzy jest w czasie stałym. Nie można używać $x=\frac{A}{b}$ oraz lu z modułu LinearAlgebra.

2 Zadanie 1

2.1 Wprowadzenie do zadania

Na czym polega metoda eliminacji Gauss'a? Metoda ta polega na sprowadzeniu układu równań (macierzy) do równoważnego układu z wykorzystaniem macierzy trójkątnej górnej, następnie rozwiązaniu tego układu przy pomocy algorytmu podstawiania wstecz.

Na czym polega algorytm podstawiania wstecz? Algorytm ten bazuje na zerowaniu kolejnych elementów macierzy poniżej diagonali(czyli tej niezerowej przekatnej).

Przebieg procedury 1. Zerowanie elementów poniżej pierwszego wiersza w pierwszej kolumnie.

- 2. Ogólnie, aby wyzerować a_{i1} od wiersza i-tego odejmowany jest wyraz pierwszy pomnżony przez liczbę $\frac{a_{i1}}{a_{11}}$
- 3. Następnie przechodzimy do kolejnej kolumny (tutaj drugiej itd) i powtarzamy powyższe procedury z taką zmianą, że teraz odejmowany wiersz i (tutaj drugi a_{22} itd).

Niestety procedura nie zadziała jeśli którtkolwiek z diagonalnych elementów będzie zerem (jak widać we wzorze). Aby rozwiązać ten problem należy przeprowadzić odpowiednią modyfikację. W i-tym kroku , w i-tej kolumnie należy wyszukać w kolejnych wierszach j-ty element o wartości co do modułu największej i zamienić wtedy a_{ii} z a_{ji} (wzór: $a_{wierszkolumna}$).

Następnie korzystamy z algorytmu wstecz, czyli matematycznie wzoru: $x_i = \frac{b_i - \sum_{j=i+1}^n a_{ij}}{a_{ii}}$.

Począwszy od ostatniego indeksu.(n)

Zakładając, że n jest rozmiarem macierzy złożonośc obliczeniowa eliminacji Gaussa wynosi co najwyżej $\mathcal{O}(n^3)$, a algorytm podstawiania wstecz $\mathcal{O}(n^2)$. Łącznie, aby rowiązać układ należy wykonać $\mathcal{O}(n^3)$ operacji.

- 2.2 Opis implementacji wraz z analiza złożoności algorytmu
- 2.3 Wyniki eksperymentów porównujących zaimplementowane algorytmy dla danych testowych (tabele, wykresy) oraz interpretacja
- 2.4 Wnioski