Generating Connector Laws — WORK IN PROGRESS —

Dave Clarke (CWI)

Goal: Axiomatize Component Connectors

What are laws of component connectors (e.g., Reo)?

$$sync; fifo1 = fifo1$$

 $repl; merge = 0; \overline{0}$

Ideal: a finite collection of equational laws which completely characterize some class of component connectors.

A complete axiomatization in terms of equational laws tells us all we need to know about equivalence, and can form basis of verification tools and theorem provers.

Basis: Algebra of *Stateless* **Connectors**

- Bruni, Lanese & Montanari's Basic algebra of stateless connectors present a complete axiomatization of a notion of stateless connector.
- Connectors are approximately Reo connectors without filters or buffers, over a unit data type.
- Semantics are in terms of tick-tables which give synchronization possibilities.

Tick Tables

The following is a tick-table for a connector of arity $2 \rightarrow 1$, that is, two input ports and one output port:

?	0	1
00		
01		
10		
11		

Ticks denote that the given input/output combination is possible, synchronously.

The (0,0) entry is always $\sqrt{\ }$ — always possible to do nothing.

Primitives Connectors

Ordinary Structure		Dual Structure		
name	symbolic	name symboli		
id	$id:1 \rightarrow 1$			
symmetry	$\gamma:2 o 2$			
duplicator	$\nabla: 1 \rightarrow 2$	coduplucator	$\Delta: 2 \rightarrow 1$	
bang	$!:1 \rightarrow 0$	cobang	$j:0 \rightarrow 1$	
mex	$\nabla : 1 \rightarrow 2$	comex	$\stackrel{ullet}{\Delta}:2 o 1$	
zero	$0: 1 \rightarrow 0$	cozero	$\overline{0}:0\to 1$	

id is Reo's synchronous channel.

duplicator is the replicate behaviour of Reo's nodes.

comex is the merge behaviour of Reo's nodes.

mex is Reo's exclusive router.

bang is a half-spout. cobang is a half-drain.

Semantics of Primitives I

sync				
id	0	1		
0				
1				

symmetry					
γ	00	01	10	11	
00					
01					
10					
11					

duplicate					
$\nabla \parallel 00 \mid 01 \mid 10 \mid 11$					
0					
1				$\sqrt{}$	

coduplicate				
Δ	0	1		
00				
01				
10				
11				

Semantics of Primitives II

bang				
! Ø				
0				
1				

cobang						
i 0 1						
$\emptyset \parallel \sqrt{ \mid \sqrt{ \mid } }$						

IIIex						
$\overset{ullet}{ abla}$	00	01	10	11		
0						
1						

cozero				
0	0	1		
Ø				

Operations

ullet Parallel composition \otimes — shuffle product for matrices

$\stackrel{ullet}{ abla} \otimes !: 2 ightarrow 2$	00	01	10	11
00				
01				
10				
11				

• Sequential composition ; — matrix multiplication.

$j; \stackrel{\bullet}{\Delta}: 0 \rightarrow 1$	00	01	10	11
Ø				

Axiomatization I

Axioms of a strict symmetric monoidal category. Plus...

The so-called gs-monoidal axioms for ∇ and !:

$$\nabla; id \otimes ! = id$$

$$\nabla; \gamma = \nabla$$

$$\nabla; \nabla \otimes id = \nabla; id \otimes \nabla$$

and their duals (cogs-monoidal structure):

$$id \otimes_{i}; \Delta = id$$

 $\gamma; \Delta = \Delta$
 $\Delta \otimes id; \Delta = id \otimes \Delta; \Delta$

Axiomatization II

The match-share axioms:

$$\begin{array}{rcl} \nabla; \Delta & = & id \\ \Delta; \nabla & = & id \otimes \nabla; \Delta \otimes id \\ \Delta; \nabla & = & \nabla \otimes id; id \otimes \Delta \end{array}$$

Also new-bang (garbage collection):

$$i$$
;! = id_0

Axiomatization III

$$\begin{array}{rcl}
\mathring{\nabla}; \mathring{\Delta} &=& id \\
\nabla; \mathring{\Delta} &=& \mathbf{0}; \overline{\mathbf{0}} \\
\mathring{\Delta}; \nabla &=& \nabla_2; \mathring{\Delta} \otimes \mathring{\Delta} \\
\mathring{\Delta}; \mathbf{0} &=& \mathbf{0} \otimes \mathbf{0} \\
\nabla; id \otimes \mathbf{0} &=& \mathbf{0}; \overline{\mathbf{0}} \\
\Delta; \mathbf{0} &=& \mathbf{0} \otimes \mathbf{0} \\
\nabla; id \otimes \mathbf{0} &=& \mathbf{0} \otimes \mathbf{0} \\
\mathring{\nabla}; id \otimes \mathbf{0} &=& \nabla; \nabla \otimes \nabla; id \otimes \mathring{\Delta} \otimes id; id \otimes \gamma \\
\mathring{\nabla}; \mathring{\nabla} \otimes id &=& \nabla; \nabla \otimes \nabla; id \otimes \mathring{\Delta} \otimes id; id \otimes \gamma \\
\mathring{\nabla}; \nabla \otimes id &=& \nabla; \mathring{\nabla} \otimes \nabla; id \otimes \Delta \otimes id; id \otimes \gamma
\end{array}$$

Axiomatization IV

$$\begin{array}{lcl} \mathring{\Delta}; \mathring{\nabla} & = & \mathring{\nabla}_{2}; \nabla \otimes \nabla \otimes \nabla \otimes \nabla; \\ & id \otimes \mathring{\Delta} \otimes (\mathring{\Delta}; !) \otimes \mathring{\Delta} \otimes id; \gamma \otimes \gamma; id \otimes (\mathring{\Delta}; !) \otimes id \end{array}$$

$$id_{2} = \overset{\bullet}{\nabla} \otimes \overset{\bullet}{\nabla} \otimes \overset{\bullet}{\nabla} \otimes \overset{\bullet}{\nabla} \otimes \overset{\bullet}{\nabla}; id \otimes \gamma \otimes \gamma \otimes id; \Delta \otimes \Delta \otimes \Delta$$

$$id_{2} = \overset{\bullet}{\nabla} \otimes \overset{\bullet}{\nabla}; id \otimes \Delta \otimes id; id \otimes \nabla \otimes id; \overset{\bullet}{\Delta} \otimes \overset{\bullet}{\Delta}$$

$$id_{2} = \overset{\bullet}{\nabla} \otimes (_{i}; \overset{\bullet}{\nabla}) \otimes \overset{\bullet}{\nabla}; id \otimes \gamma \otimes \gamma \otimes id;$$

$$\Delta \otimes \Delta \otimes \Delta; id \otimes \nabla \otimes id; \overset{\bullet}{\Delta} \otimes \overset{\bullet}{\Delta}$$

$$!_{n} = id_{n} \otimes _{i}; id_{n} \otimes \overset{\bullet}{\nabla}^{n}; \overset{\bullet}{\Delta}_{n}; !_{n}$$

Plus their duals. Complete, but not finite, due to last rule. $\stackrel{\bullet}{\Lambda}_n$ is a tree of $\stackrel{\bullet}{\Lambda}$ s.

Axiomatization Visually

Towards an algebra of stateful connectors

- Requires a new model—tick-automata: automata where transitions are tick-tables
- Want to add FIFO1 buffers and loops.
- Need to avoid causality problems due to synchronous loops.

Tick Automaton for a FIFO1: $1 \rightarrow 1$

FIFOs and Loops

Avoid causality problems: make each loop contains a buffer.

Thus connector consists of a synchronous connector, plus an array of FIFO buffers in the feedback loop.

Conjecture: sufficient to model all casual connectors

Generating Connector Laws

- Find laws by automatically generating connectors and testing equivalence.
- Examine results, manually, to find concise laws.
- Test independence of laws.

Problems:

- Massive number of connectors: how to generate systematically with little repetition?
- How to extract useful laws?
- Finite axiomatization? When do I stop?

Generating Tick-tables (representing connectors)

Pick 0 or 1 for each entry of the following (1 \rightarrow 1 and 2 \rightarrow 2):

$$\begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7 \\ 8 & 9 & 10 & 11 \\ 12 & 13 & 14 & 15 \end{bmatrix}$$

Given n inputs, m outputs, and d buffers, there are $2^{2^{n+m+2d}-1}$ combinations (entry 0 is always 1).

1-input, 1-output, 1-buffer has $2^{15} = 32,768$ possibilities.

2-input, 3-output, 0-buffer: $2^{2^5-1} = 2^{31} = 2,147,483,648$.

A Simplification

							mt			full			
	00	01	10	11					0	1		0	1
	00	01	10	11]	mt (00			10		
00	а	b	С	d			0		а	$b \parallel$		i	i
01	е	f	g	h	\implies		1					ι	J
10	i	;	-	1			1		e	J		m	n
10	1	J	k	ι				01			00		
11	m	n	0	p		C 11		01		,	00		1
			I		J	full	0		С	d		а	ь
							1		g	h		e	f

Can generate a smaller number of connectors.

Connectors which are the same except for the values of k, l, o, p form an equivalence class.

Generating and Reducing (Mega) Automata

Tom's Trick! (which is Simona's trick (...)). Gives equivalence classes.

Two Spaces of Equivalences

Two spaces to explore:

• *obvious* equivalences resulting from tick-tables that differ in only in their fourth quadrant.

equivalence classes across generated by ltsmin.

These equivalence classes can be explored to find laws.

Demo — Steps

- 1. generate: builds mega-automaton for *all* connectors of some given arity and number of FIFOS.
- 2. ltsmin: reduce mega-automaton modulo bisimulation.
- separate: splits reduced mega-automaton into
 equivalence classes and (2) representative elements.
- 4. Test candidate rules using Maude. (*manual*, *incomplete*).
- 5. If rule passes, add to Maude code.
- 6. Continue (step 1.) for larger connectors.

References

Bruni, Lanese, Montanari: A basic algebra of stateless connectors.

Arbab: Reo: a channel-based coordination model for component composition.

Baier, Sirjani, Arbab, Rutten: Modeling component connectors in Reo by constraint automata.

Bloom, Sabadini, Walters: Matrices, Machines, Behaviour.

Katis, Sabadini, Walters: Bicategories of Processes.

Lafont: Towards an Algebraic Theory of Boolean Circuits.

Joyal, Street, Verity: Traced Monoidal Categories.

μCRL: http://www.cwi.nl/~mcrl