

Introduction to

Algorithm Design and Analysis

[7] Selection

Yu Huang

http://cs.nju.edu.cn/yuhuang Institute of Computer Software Nanjing University

In the last class...

- MergeSort
 - o Design
 - o Cost time & space
 - o MergeSort DC
- Lower bounds for comparison-based sorting
 - o Worst-case
 - o Average-case

Selection

- Selection warm-ups
 - o Finding max and min
 - o Finding the second largest key
- Lower bound and adversary argument

- Selection select the *median*
 - o Expected linear time
 - o Worst-case linear time
- A Lower Bound for Finding the Median

The Selection Problem

Problem definition

o Suppose E is an array containing n elements with keys from some linearly order set, and let k be an integer such that $1 \le k \le n$. The selection problem is to find an element with the kth smallest key in E.

Special cases

- o Find the max/min k=n or k=1
- o Find the *median* $(k = \frac{n}{2})$

Lower Bound of Finding the Max

- For any algorithm \mathcal{A} that can compare and copy numbers exclusively, in the worst case, \mathcal{A} cannot do fewer than n-1 comparisons to find the largest entry in an array with n entries.
 - o Proof: an array with *n* distinct entries is assumed. We can exclude a specific entry from being the largest entry only after it is determined to be "loser" to at least one entry. So, *n*-1 entries must be "losers" in comparisons done by the algorithm. However, each comparison has only one loser, so at least *n*-1 comparisons must be done.

Decision Tree and Lower Bound

Since the decision tree for the selection problem must have at least n leaves, the height of the tree is at least $\lceil \log n \rceil$. It is not a good lower bound.

In fact, 2^{n-1} leaves at least.

Finding max and min

The strategy

- Pair up the keys, and do *n*/2 comparisons(if *n* odd, having E[*n*] uncompared);
- Doing findMax for larger key set and findMin for small key set respectively (if *n* odd, E[*n*] included in both sets)

Number of comparisons

- o For even n: n/2+2(n/2-1)=3n/2-2
- o For odd n: (n-1)/2+2((n-1)/2+1-1)= 3n/2-2

How to prove this lower bound?

Adversary Argument!

Unit of Information

Max and Min

- o That *x* is *max* can only be known when it is sure that every key other than *x* has lost some comparison.
- o That *y* is *min* can only be known when it is sure that every key other than *y* has win some comparison.
- Each win or loss is counted as one unit of information
 - o *Any* algorithm must have at least 2*n*-2 units of information to be sure of specifying the *max* and *min*.

Adversary Strategy

Status of keys x and y			Units of new
Compared by an algorithm	Adversary response	New status	information
N,N	<i>x</i> > <i>y</i>	W,L	2
W,N or WL,N	<i>x</i> > <i>y</i>	W,L or WL,L	1
L,N	<i>x</i> < <i>y</i>	L,W	1
W,W	<i>x</i> > <i>y</i>	W,WL	1
L,L	<i>x</i> > <i>y</i>	WL,L	1
W,L or WL,L or W,WL	<i>x</i> > <i>y</i>	No change	0
WL,WL	Consistent with	No change	0
	Assigned values		

The principle: let the key win if it never lose, or, let the key lose if it never win, and

change one value if necessary

Lower Bound by the Adversary Argument

- Construct an input to force *the* algorithm to do more comparisons as possible
 - o To give away as few as possible units of new information with each comparison.
 - It can be achieved that 2 units of new information are given away only when the status is N,N.
 - It is *always* possible to give adversary response for other status so that at most one new unit of information is given away, *without any inconsistencies*.
- So, the *Lower Bound* is n/2+n-2(for even n)

$$\frac{n}{2} \times 2 + (n-2) \times 1 = 2n-2$$

An Example

	χ	1	λ	\hat{z}_2	χ	3	χ	4	χ	<i>:</i> 5	λ	6
Comparison	S	V	S	V	S	V	S	V	S	V	S	V
$x_{1,}x_{2}$		low, <i>x</i> ₃	and the same of the same		N	*	N	*	N	*	N	*
$x_{1,}x_{5}$	ALC: THE RESERVE OF	one w								5		
x_{3} , x_{4}				1.5 7.3				MOW V	ic th	o only		
x_3,x_6			8	cor	mp	aris	son	s!			,	12
The lower bound is 7.												
x_2,x_4												
x_5x_6									WL	5	L	3/
$x_{6,}x_{4}$								2			WL	3

Find the 2nd Largest Key

• Brute force - using FindMax twice

o Need 2n-3 comparisons.

For a better algorithm

 Collect some useful information from the first FindMax

Observations

- o The key which loses to a key other than max cannot be the 2nd largest key.
- o To check "whether you lose to max?"

Tournament for the 2nd Largest Key

Analysis of Finding the 2nd

- Any algorithm that finds *secondLargest* must also find *max* before. (*n*-1)
- The *secondLargest* can only be in those which lose directly to *max*.
- On its path along which bubbling up to the root of tournament tree, *max* beat \[\logn \] keys at most.
- Pick up secondLargest
- Total cost: $n + \lceil \log n \rceil 2$

 $(\lceil \log n \rceil - 1)$

Lower Bound by Adversary

Theorem

o Any algorithm (that works by comparing keys) to find the second largest in a set of n keys must do at least $n+\lceil \log n \rceil$ -2 comparisons in the worst case.

Proof

o There is an adversary strategy that can force any algorithm that finds *secondLargest* to compare *max* to $\lceil \log n \rceil$ distinct keys.

Weighted Key

- Assigning a weight w(x) to each key
 - o The initial values are all 1.
- Adversary strategy

Note: for one comparison, the weight increasing is no more than doubled.

Case	Adversary reply	Updating of weights
w(x)>w(y)	x>y	w(x):=w(x)+w(y); w(y):=0
w(x)=w(y)>0	x>y	w(x):=w(x)+w(y); w(y):=0
w(y)>w(x)	<i>y>x</i>	w(y):=w(x)+w(y); w(x):=0
w(x)=w(y)=0	Consistent with previous replies	No change

Zero loss

Lower Bound by Adversary: Details

- Note: the sum of weights is always *n*.
- Let x is max, then x is the only nonzero weighted key, that is w(x)=n.
- By the adversary rules:

$$w_k(x) \le 2w_{k-1}(x)$$

• Let *K* be the number of comparisons *x* wins against previously undefeated keys:

$$n = w_{K}(x) \le 2^{K} w_{0}(x) = 2^{K}$$

• So, $K \ge \lceil \log n \rceil$

Tracking the Losers to MAX

Finding the Median: the Strategy

Observation

o If we can partition the problem set of keys into 2 subsets: S1, S2, such that any key in S1 is smaller that that of S2, the median must located in the set with more elements.

Divide-and-Conquer

o Only one subset is needed to be processed recursively.

Adjusting the Rank

- The rank of the median (of the original set) in the subset considered can be evaluated easily.
- An example
 - o Let *n*=255
 - o The rank of median we want is 128
 - o Assuming $|S_1| = 96$, $|S_2| = 159$
 - o Then, the original median is in S_2 , and the new rank is 128-96=32

Partitioning: Larger and Smaller

• Dividing the array to be considered into two subsets: "small" and "large", the one with more elements will be processed recursively.

Selection: the Algorithm

- Input: S, a set of n keys; and k, an integer such that $1 \le k \le n$.
- Output: The *k*th smallest key in *S*.
- Note: Median selection is only a special case of the algorithm, with $k=\lceil n/2 \rceil$.
- Procedure
- Element select(SetOfElements *S*, int *k*)
 - o if ($|S| \le 5$) return direct solution; else
 - o Constructing the subsets S_1 and S_{2} ;
 - o Processing one of S_1 , S_2 with more elements, recursively.

Key issue:

How to construct the **partition**?

Partition improved: the Strategy

Constructing the Partition

- Find the m^* , the median of medians of all the groups of 5, as illustrated previously.
- Compare each key in sections A and D to m*, and

```
o Let S_1 = C \cup \{x \mid x \in A \cup D \text{ and } x < m^*\}
```

o Let $S_2=B\cup\{x\mid x\in A\cup D \text{ and } x>m^*\}$

 (m^*) is to be used as the pivot for the partition)

Divide and Conquer

```
if (k=|S_1|+1)

return m^*;

else if (k \le |S_1|)

return select(S_1,k); //recursion

else

return select(S_2,k-|S_1|-1); //recursion
```


Analysis

- For simplicity:
 - o Assuming n=5(2r+1) for all calls of *select*.

•
$$W(n) \le 6\left(\frac{n}{5}\right) + W\left(\frac{n}{5}\right) + 4r + W(7r + 2)$$

The extreme case: all the elements in A∪D in one subset.

Finding the median in every group of 5

Finding the median of the medians

Comparing all the elements in $A \cup D$ with m^*

• Note: r is about n/10, and 0.7n+2 is about 0.7n, so $W(n) \le 1.6n + W(0.2n) + W(0.7n)$

Worst Case Complexity of Select

Note: Row sums is a decreasing geometric series, so $W(n) \in \Theta(n)$

Relation to Median

Observation

o Any algorithm of selection must know the relation of every element to the *median*.

The adversary makes you wrong in either case

Crucial Comparison

- A crucial comparison
 - o Establishing the relation of some *x* to the median.
- **Definition** (for a comparison involving a key x)
 - o Crucial comparison for x: the first comparison where x>y, for some $y\ge$ median, or x<y for some $y\le$ median
 - Non-crucial comparison: the comparison between *x* and *y* where *x*>median and *y*<median, or vise versa

Adversary for Lower Bound

- Status of the key during the running of the Algorithm:
 - o *L*: Has been assigned a value *larger* than median
 - o S: Has been assigned a value **smaller** than median
 - o *N*: Has not yet been in a comparison
- Adversary rule:

Comparands Adversary's action

N,N one L, the another S

L,N or N,L change N to S S,N or N,S change N to L

(In all other cases, just keep consistency)

Notes on the Adversary Arguments

- All actions explicitly specified above make the comparisons un-crucial.
 - o At least, (n-1)/2 L or S can be assigned freely.
 - o If there are already (n-1)/2 S, a value larger than median must be assigned to the new key, and if there are already (n-1)/2 L, a value smaller than median must be assigned to the new key. The last assigned value is the median.
- So, an adversary can force the algorithm to do (n-1)/2 un-crucial comparisons at least(In the case that the algorithm start out by doing (*n*-1)/2 comparisons involving two *N*.

Lower Bound for Selection Problem

• Theorem:

o Any algorithm to find the median of n keys(for odd n) by comparison of keys must do at least 3n/2-3/2 comparisons in the worst case.

Argument:

- o There must be done n-1 crucial comparisons at least.
- o An adversary can force the algorithm to perform as many as (n-1)/2 noncrucial comparisons.
 - Note: the algorithm can always start out by doing (n-1)/2 comparisons involving 2 N-keys, so, only (n-1)/2 L or S left for the adversary to assign freely as the adversary rule.

Thank you!

Q & A

Yu Huang

http://cs.nju.edu.cn/yuhuang

