

Летние учебно-тренировочные сборы по астрономии

Практический тур

28 июня – 12 июля 2016 года

Задача 1. Планетная система

Перед Вами график изменения видимой звездной величины далекой звезды с физическими свойствами, аналогичными Солнцу. Звезда не имеет звезд-спутников, но имеет планетную систему. Первые два графика соответствуют общему периоду наблюдений в 200 суток, на остальных графиках приведены подробные фрагменты кривой блеска для отдельных интервалов этого периода. Планеты считать тугоплавкими, их взаимное притяжение не учитывать. Исходя из графиков, определите:

- а) Расстояние до звезды (не учитывая межзвездное поглощение света);
- b) Минимальное количество планет, обращающихся вокруг этой звезды.

Для каждой из планет по возможности оцените:

- 1. Радиус орбиты в а.е.;
- 2. Эксцентриситет орбиты (в предположении, что линия апсид направлена на наблюдателя);
- 3. Минимально возможное значение наклона орбиты планеты к лучу зрения;
- 4. Радиус планеты в радиусах Юпитера;
- 5. Среднюю температуру на планете («парниковый эффект» не учитывать);
- 6. Возможность существования атмосферы из молекулярного кислорода на планете;
- 7. Высоту однородного столба кислородной атмосферы на планете (на Земле она равна 8 км).

Плотность планет считать равной плотности Земли.

Страница 2 из 5

Страница 3 из 5

Задача 2. Установка на победу

При прохождении света через оптическое стекло или другие оптические материалы наблюдается дисперсия. Это явление заключается в том, что показатель преломления среды отличается для лучей света различных длин волн: более короткие волны преломляются сильнее. Поэтому единого фокусного расстояния у линзы не существует, у луча каждой длины волны фокус свой. Возникающую в результате аберрацию оптической системы называют *хроматической*.

Оптическая установка состоит из объективной линзы L и спектрографической системы низкого разрешения (экран S с длинной и узкой щелью, линзы L_1 и L_2 , дифракционная решётка D, ΠSC -матрица C).

Расстояние между линзой и экраном соответствует фокусному расстоянию F_0 объектива для света с длиной волны $\lambda_0=520$ нм, при которой показатель преломления стекла линзы $n_0=1.520$.

В данной задаче вы рассматриваете хроматическую аберрацию этой установки. Гарантируется, что иными (монохроматическими) аберрациями в данной системе можно пренебречь.

- а) На описанной установке исследуется удалённый монохроматический источник с $\lambda \neq \lambda_0$, расположенный на её оптической оси. Как выглядит создаваемая линзой *картина на экране?* Каково распределение интенсивности в этой картине?
- ь) Как зависит вид данной картины от размера объективной линзы?

В дальнейшем будем считать, что на оптической оси установки расположен удалённый абсолютно чёрный эталонный источник с эффективной температурой $T=7200~{\rm K}.$

с) Как выглядит создаваемая линзой картина на экране в таком случае?

Щель экрана S много у́же рассмотренной вами картины. Полученное *на матрице* изображение (рис. 1) имеет две перпендикулярные оси: пространственную R, соответствующую координате точки на щели, и волновую Λ , соответствующую длине волны луча, попавшего в эту точку.

d) Укажите расположение осей R и Λ на рис. 1. Направление отсчёта не имеет значения. Рассмотрим простейшую физическую зависимость показателя преломления от длины волны:

$$n(\lambda) = n_0 + k(\lambda - \lambda_0).$$

e) Найдите коэффициент k в рамках предложенной модели.

Известно, что масштаб пространственной оси $\mu_R=22.0~\mu\text{м}/\text{см},$ волновой оси — $\mu_\lambda=6.9~\text{нм}/\text{см}.$ Диаметр объектива w=20.0~мм.

Рис. 1: Изображение, полученное с помощью описанной оптической установки (негатив).

Метод наименьших квадратов и обработка наблюдательных данных

Контрольный тест

1. Постоянная Хаббла.

В таблице приведены величины расстояний и лучевых скоростей некоторых галактик. Определите по этим данным постоянную Хаббла. Считать, что лучевые скорости определены значительно точнее расстояний.

Галактика	Расстояние, Мпк	Лучевая скорость, км/с
M 51	7.1	+463
M 66	10.7	+600
M 81	3.7	-42
M 87	16.4	+1307
M 101	8.2	+390
M 104	8.6	+900

2. Летящие Гиады (адаптировано из Всероссийской олимпиады - 2012).

Перед Вами данные о координатах, собственных движениях и лучевых скоростях некоторых звезд из созвездия Гиады. Определите экваториальные координаты апекса Гиад и найдите расстояние до этого скопления.

Номер по	α (2000.0)		δ (2000.0)		Δα·cosδ	Δδ	$v_{ m R}$		
Флемстиду									
Tau	Ч	M	c	0	'		"/год	"/год	км/с
54	04	19	47.6	+15	37	39	+0.115	-0.025	+39
57	04	19	57.7	+14	02	07	+0.116	-0.021	+42
61	04	22	56.1	+17	32	33	+0.107	-0.030	+39
68	04	25	29.4	+17	55	41	+0.108	-0.028	+35
78	04	28	39.7	+15	52	15	+0.103	-0.025	+40
83	04	30	37.3	+13	43	28	+0.106	-0.023	+39
85	04	31	51.8	+15	51	06	+0.101	-0.027	+36
89	04	38	09.4	+16	02	00	+0.093	-0.023	+38

3. Уравнение времени.

Перед Вами таблица, в которой для первого числа каждого месяца (0ч UT) 2016 года приведена гелиоцентрическая долгота Земли l (в градусах) и уравнение времени η (с точностью до одной минуты). Определите коэффициенты A и B в выражении для уравнения времени (в радианах):

$$\eta = A \cdot tg^2 \frac{\varepsilon}{2} \sin 2(l - \frac{\pi}{2}) + B \cdot e \cdot \sin(l - l_P).$$

Здесь ε - угол наклона экватора к эклиптике (23.4°), e - эксцентриситет орбиты Земли (0.0167), $l_{\rm P}$ - гелиоцентрическая долгота перигелия Земли (103°).

Дата	l,°	η, мин	Дата	l, °	η, мин	Дата	l, °	η, мин
01.01	100	+3	01.05	221	-3	01.09	339	0
01.02	131	+13	01.06	251	-2	01.10	8	-10
01.03	161	+12	01.07	280	+4	01.11	39	-16
01.04	192	+4	01.08	309	+6	01.12	69	-11

4. Линия кислорода.

Вам предложен фрагмент спектра звезды с теллурической линией кислорода О₂. Найдите эквивалентную ширину и эффективную длину волны этой линии.

λ	Ι	λ	I	λ	I	λ	I
7501.87	0.048489	7569.74	0.051669	7636.99	0.020941	7707.83	0.058087
7507.86	0.048547	7575.85	0.051768	7643.11	0.025662	7714.08	0.061796
7513.84	0.049613	7581.97	0.052703	7649.22	0.033922	7720.34	0.057717
7519.82	0.047472	7588.08	0.051333	7655.34	0.037312	7726.60	0.060458
7525.81	0.050306	7594.19	0.043182	7664.02	0.050238	7732.86	0.057390
7531.79	0.049129	7600.31	0.010381	7670.28	0.050851	7739.12	0.056646
7537.77	0.049031	7606.42	0.004478	7676.53	0.053140	7745.38	0.056874
7543.75	0.049321	7612.54	0.010866	7682.79	0.055130	7751.63	0.060164
7551.39	0.049101	7618.65	0.034225	7689.05	0.055582	7757.89	0.058865
7557.51	0.050246	7624.77	0.018115	7695.31	0.057455	7764.15	0.056600
7563.62	0.050388	7630.88	0.018080	7701.57	0.057629	7770.41	0.055617