1. Hugepage簡介

Page Table的限制

OS透過Virtual Address的技術,使得Logic Memory可以比Physical Memory大很多。每個Proccess擁有從0開始的Virtual Address,不僅可以讓program脫離實際記憶體限制的考量,也可以保護不同process間的資料。而Virtual Address與Physical Address間的轉換則透過存放在記憶體中的page table完成,透過查表找出對應的Physical Address,然而,每次存取記憶體都要透過page table查表會產生過多的overhead,因此系統透過Translation Look-aside Buffers(TLBs),將常用的page mapping儲存在CPU內,透過hardware support提高效率。問題是,TLBs大小有限,是相當珍貴的資源,不可能將整個page table放在裏面,因此若要更加提升效率必須有其他機制。

Regular page

標準的page size為4K,假如現有的TLB Cache只能存放64bit的mapping,那麼TLB只能涵蓋4K*64=256K的hot address mapping。

Huge page

為了增加hot address mapping所能涵蓋的address範圍,有兩個方向進行突破:一是擴大TLB的大小,二是增加page size。前者由於hardware工藝技術以及設計成本,較為困難。而後者就是本文所介紹的Huge page。

Linux Kernel 2.6之後,Huge page便成為Linux系統的一部份。在使用huge page的系統中,huge page size有不同大小(2MB到256MB),page table增加了"Hugepage" 屬性,因此page可以被紀錄為regular page或是huge page。以下羅列huge page的幾個主要特色。

- a. 使用Huge page減少了page的總數量,使得page table的查找更有效率。
- b. 使用Huge page可以讓TLB覆蓋日漸龐大的Physical Address, 讓更多address 可以被hot mapping。
- c. Huge page會在系統啟動時,直接分配並保留相應大小的記憶體,若沒有系統管理員介入,系統不會釋放或改變huge page。
- d. Huge page不會被swap, 也就是不會page in/out, 會一直被pin在memory中, 不會被page或swap到secondary storage。

Transparent Huge Page(THP)

THP是RHEL 6後引入的功能,標準的Huge Page是預先分配的,開機後便不再更動,而THP是動態分配。THP和傳統Huge Page若同時使用會造成性能問題和系統重啟,因此在部份版本後刪除THP(Oracle Linux6.5)。傳統Huge Page很難手動管理,於是Red Hat在Linux 6後加入THP,(但是THP不建議在資料庫系統中使用),THP是抽象層(Abstraction Layer)可以自動產生、管理。

Application

Huge page可以改善TLBs Cache Miss所造成的Page table lookup,也就是hot mapping分散,以及process超過TLBs size的系統。例如在資料庫系統中,經常會使用 huge page技術加速連續資料的存取。在Main Memory為數十甚至數百G的大型server或cluster中,也常會用Huge Page來增加TLBs的覆蓋範圍。

Some Bad Effect

在使用NUMA的系統,若是寫入操作密集的程式運作,那會使得Cache寫入衝突的機率大幅增加,比喻來說,就是原本用來保護10行數據的鎖現在用來保護1000行數據,導致鎖在各個process間的搶奪機率就大幅增加。此外,也會導致某些連續數據原本應該是透過hot mapping存取,結果因為數據被迫分佈在兩個page間,並且因為CPU親和力權重被迫分配在兩個不同CPU,導致CPU不得不通過CPU inter-connect去remote CPU存取數據。因此在NUMA的系統Huge page若使用不當可能帶來負面影響。

2. 參考資料

- a. Huge Page 是否是拯救性能的萬能良藥? http://cenalulu.github.io/linux/huge-page-on-numa/
- b. Linux傳統Huge Pages與Transparent Huge Pages再次學習總結 http://www.zendei.com/article/37419.html