Qui use Euclidean Algorithm to find ged

or applying division Algorithm.

$$227 = 143 \times 1 + 84$$
.
 $143 = 84 \times 1 + 59$
 $84 \sim 69 \times 1 + 25$
 $59 = 25 \times 2 + 9$
 $25 = 9 \times 2 + 7$
 $9 = 7 \times 1 + 2$.
 $7 = 2 \times 3 + 1 \leftarrow 9 \text{ cd}$.

2 = 1 × 2 + 0

By applying division algorithm. $10920 = 8316 \times 1 + 2604$ $8316 = 2604 \times 3 + 504$ $2604 = 504 \times 5 + 18942.84$ $504 = 84. \times 6 + 0$

$$249 = 37 \times 6 + 27$$

Q2 Find integers
$$x + y$$
 S. E. 6
i) $6x + 10y = 2$.

$$2 = 6 - 4 \times 1$$

$$2 = 6 - 10 \times 1 + 6 \times 1$$

$$128 \times +58 = 2$$

$$128 = 58 \times 2 + 12 \qquad -(i)$$

$$58 = 12 \times 4 + 10 \qquad -(ii)$$

$$12 = 10 \times 1 + 2 \qquad -(iii)$$

$$10 = 2 \times 5 + 0 -(iv)$$

From Step Lili)

$$2 = 12 - 10 \times 1$$

$$2 = 12 - (58 - 12 \times 4) \times 1$$

$$2 = (128 - 58 \times 2) \times 5 - 58 \times 1$$

Basic Properties of prime	factols.
Property It two integers a & b	
prime i.e. gcd(a,b)=1 and a	divides be then
a divides c.	3
-> Since integers a 4 b are e	elafively
Prime, there exist integers	
that	
$ax + by = 1 \Rightarrow acx +$	bcy = C (Multiply
	by c)
Giren a divides be ie	albc
=> a bcy also a	Jacx
=> a c { c	is c = acx + bcy]
(hence pro	rd)
Note if a 4 b are not 12	zime then
this property may not h	oold.
	teger à divides
ab, where a 4 b are integer	s then either
p divides a or p divides b	
-> suppose p is not divisor of a.	
then let, gcd (P, a) = 5.	
$\Rightarrow s p + s a$	
Since p is prime in	teger the only
positive divisor of pare	
=> either 5 = 1 BR S = P	
Dis pot divisor of a.	D D D 03
$\Rightarrow 5z1 \cdot := qcd(P,a)z1$	ic P& O THO
letalively prime. by properly 1 blab	NMIET, TALEGAON DABHADE, PUNE
, , , ρ α Β	=) 1/16

Property 3:- If p is prime number, divides

the product $a_1 \cdot a_2 \cdot a_3 \cdot \cdots \cdot a_n$ of Certain integers,

then p must divide at least one of the

integers $a_1, a_2, a_3, \cdots, a_n$.

Integers $a_1, a_2, a_3, \cdots, a_n$.

P | a, a2 - an

If Pla, then we need not to prove further. But if Pla, ie pis not divisor of a, then pis relatively prime to a.

: P/a, (a2 a3 -- an)

=) P | a2 a3 -- an

If Plaz then proof ends.

But if Plazic Pis not divisor of az.

then paaz are relatively prime.

50 P | 92 (93 04 --- an)

=) p | 03 a4-40

Repeating this process till at least plan implying that p does not divide any ofthe integers a, a2--- an.

1 pact	common Multiple :-	
	The least common multiple (or lcm) of	
two po	sitive integers a, b is denoted by	
1000	a,b) 02 [a,b] & is defined as to be a	
positi	re integer h such that	
	alh & blh And,	
1i)	alc & blc => hlc.	
Mol	e Lcm of adb is unique if it exist.	
Relati	on between LCM 4 9Cd.	
	a d b are two positive integers then	
•	gcd (a,b) x ecm (a,b) = ab.	
<i>y</i> .		
Fund	mental Jhm. of Arithmetic Or	
Unego	le factorisation.	
,	Every positive integer a>1 can be	
expre	ssed as a product of a finite no.	
	times not necessarily distinct and	
	ocpression is unique apart from the	
03 dc2	of the factors.	
	4 1 2	
Ex.	$1200 = 2^{4} \times 3^{1} \times 5^{2} = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 5 \times 5$	
	$= 5 \times 2 \times 5 \times 2 \times 3 \times 2 \times 2$	
	(OLSays) =	
50	thm states that, 1200 can be represente	
dov.	three will allows be exactly love 220	
One 3 4 two 5's & NO other primes in the product		
	the product	

The Let,
$$m = p_1^{a_1} p_2^{a_2} - - p_{lc}^{a_k} \xi$$

 $D = p_1^{b_1} p_2^{b_2} - p_{lc}^{b_k}$ Then,
 $gcd(m_1 n) = p_1^{m_1 n(a_1 b_1)} p_2^{m_1 n(a_2 b_2)} - p_k^{m_1 n(a_k b_k)}$.
 $= \pi p_i^{m_1 n(a_1 b_1)} p_i^{m_2 n(a_2 b_2)}$

two nors a 4 b.

= T p;

Ex Find LCM 4 9cd of 340 4304.

$$\rightarrow$$
 340 = $2^2 \times 5' \times 17'$ ie 340 = $2^2 \times 5' \times 17' \times 19^\circ$

.:
$$gcd(340,304) = 2^{min(2,4)} = 5^{min(1,0)} = 17^{min(1,0)}$$

$$= 2^2 \times 5^0 \times 17^0 \times 19^0 = 4 \times 1 \times 1 \times 1$$

$$LCH \neq 340,304) = 2^{max(2,4)} \leq max(1,0) + max(1,0) = \frac{4}{max(0,1)}$$

$$= 2^{4} \times 5^{1} \times 17^{1} \times 19^{1} = 25840$$