UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

DETEKCIA VÝZNAMNÝCH OBLASTÍ VO VIDEU

Diplomová práca

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

DETEKCIA VÝZNAMNÝCH OBLASTÍ VO VIDEU

Diplomová práca

Študijný program: Aplikovaná informatika

Študijný odbor: 9.2.9. aplikovaná informatika Školiace pracovisko: Katedra Aplikovanej Informatiky

Školiteľ: RNDr. Elena Šikudová, PhD.

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta:

Bc. Martin Kuchyňár

Študijný program:

aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)

Študijný odbor:

9.2.9. aplikovaná informatika

Typ záverečnej práce:

diplomová

Jazyk záverečnej práce: Sekundárny jazyk: slovenský anglický

Názov:

Detekcia významných oblastí vo videu Spatio-temporal salient object detection

Ciel':

Metódy na detekciu významných oblastí vo videu:

Naštudovanie
 Návrh zlepšenia
 Implementácia

4. Porovnanie výsledkov

Vedúci:

RNDr. Elena Šikudová, PhD.

Katedra:

FMFI.KAI - Katedra aplikovanej informatiky

Vedúci katedry:

doc. PhDr. Ján Rybár, PhD.

Dátum zadania:

20.10.2014

Dátum schválenia: 24.10.2014

04 10 0014

prof. RNDr. Roman Ďurikovič, PhD.

garant študijného programu

študent

vedúci práce

Čestné vyhlásenie	
Čestne prehlasujem, že som túto diplomovú prácu vypracov uvedených zdrojov.	val samostatne s použitím
V Bratislave	

Poďakovanie

Ďakujem svojmu vedúcemu práce za...

Abstrakt

Tu je text slovenskej verzie abstraktu

Kľúčové slová: slovo1, slovo2, slovo3, slovo4

Abstract

Text anglickej verzie abstraktu

Keywords: word1, word2, word3, word4

Obsah

1	Úvo	vod							
2	Prehlad literatúry								
	2.1	Úvod	lo problematiky	20					
	2.2	Metod	y pre statické obrázky	20					
		2.2.1	Baseline Center	20					
		2.2.2	Hrany	20					
		2.2.3	Ittiho model	21					
		2.2.4	Spektralne rezidua	21					
		2.2.5	Sun Model	22					
		2.2.6	Rare Model	22					
	2.3	Metody	y pre videá	23					
		2.3.1	Zohladnenie audio informácie	23					
		2.3.2	Detekcia pohybu	25					
		2.3.3	Lucas Kanande	25					
		2.3.4	Horn-Schunck	27					
	y úspešnosti	27							
		2.4.1	NSS	28					
		2.4.2	AUC-Judd	28					
		2.4.3	KL-Div	29					
	2.5	Refenč	ené datasety	29					
		2.5.1	RSD	29					
		2.5.2	SAVAM	30					
		2.5.3	AUDITORY DATASET	30					
	2.6	Porovn	anie štandardných Metód	30					
3	Špec	ifikácia		32					
	3.1	Platforma pre riešenie							
	3.2	Očakás	vané výsledky	32					

Zo	znam	n použit	ej literatú	ry	40	
	Závo	er			37	
	4.5	Diskus	sia		36	
	4.4			pšenie	36	
	4.3	Validácia výsledkov				
	4.2	Impler	nentácia ri	ešenia	36	
		4.1.4	Pipeline	metódy	36	
		4.1.3	Výsledné	é spojenie príznakov	36	
		4.1.2	Statické	príznaky videa	35	
			4.1.1.5	Starnutie objektov na scéne	35	
			4.1.1.4	Spájanie regiónov	35	
			4.1.1.3	Rozdiel vo vzdialenosti	34	
			4.1.1.2	Rozdiel smerových vektorov v vertikálnom smere	34	
			4.1.1.1	Rozdiel smerových vektorov v horizontálnom smere	34	
		4.1.1	Dynamic	ké príznaky videa	33	
	4.1	Návrh	metódy .		33	
	Imp	lementá	ícia		33	
	3.4	Problé	mové Príp	ady	32	
					32	
	3.3	Ideáln	e Prípady			

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

DETEKCIA VÝZNAMNÝCH OBLASTÍ VO VIDEU

Diplomová práca

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

DETEKCIA VÝZNAMNÝCH OBLASTÍ VO VIDEU

Diplomová práca

Študijný program: Aplikovaná informatika

Študijný odbor: 9.2.9. aplikovaná informatika Školiace pracovisko: Katedra Aplikovanej Informatiky Školiteľ: RNDr. Elena Šikudová, PhD.

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta:

Bc. Martin Kuchyňár

Študijný program:

aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)

Študijný odbor:

9.2.9. aplikovaná informatika

Typ záverečnej práce:

diplomová

Jazyk záverečnej práce: Sekundárny jazyk: slovenský anglický

Názov:

Detekcia významných oblastí vo videu Spatio-temporal salient object detection

Ciel':

Metódy na detekciu významných oblastí vo videu:

Naštudovanie
 Návrh zlepšenia
 Implementácia

4. Porovnanie výsledkov

Vedúci:

RNDr. Elena Šikudová, PhD.

Katedra:

FMFI.KAI - Katedra aplikovanej informatiky

Vedúci katedry:

doc. PhDr. Ján Rybár, PhD.

Dátum zadania:

20.10.2014

Dátum schválenia: 24.10.2014

04 10 0014

prof. RNDr. Roman Ďurikovič, PhD.

garant študijného programu

študent

vedúci práce

Čestné vyhlásenie				
Čestne prehlasujem, že som túto di uvedených zdrojov.	iplomovú prácu	vypracoval	samostatne s	s použitím
V Bratislave				

Poďakovanie

Ďakujem svojmu vedúcemu práce za...

Abstrakt

Tu je text slovenskej verzie abstraktu

Kľúčové slová: slovo1, slovo2, slovo3, slovo4

Abstract

Text anglickej verzie abstraktu

Keywords: word1, word2, word3, word4

Obsah

1. Úvod

Ľudské oko je schopné spracovať 10^8 až 10^9 bitov obrazových dát za sekundu. Ludský mozog nie je schopný spracovať také možstov dát naraz, preto sa získané informácie filtrujú pomocou ľudského vizuálneho systému[19]. Ľudský vizuálny systém je pravdepodobne najzložitejším mechanizom akým človek disponuje. Je natoľko klúčovým pre fungovanie spoločnosti či jedinca, že psychológovia sa zaoberajú jeho výskumom. Už viacero dekád študujú vlastnosti tohoto mechanizmu z pohladu psychológie, fyziológie alebo neurobiológie.

Vyfiltrované oblasti obrazu už je možne spracovať v výrazne rýchlejšie ako nefiltrované, ideálne v reálnom čase. Takéto oblasti sa nazívajú význammné alebo charakteristické (v literatúre salient - prebrané v angličtiny). Významné oblasti su vyberané pomocou mnoha faktorov. Najznámejšímy su prechody vo farbe, intenzite alebo orientácií. Ľudský vizuálný systém taktiež využíva skúsenosti pri pozorovaní. Oblasti takto vyfiltrované nesú pre pozorovateľa viac potencionálnych informácií ako ostatné oblasti obrazu a preto sa stávajú salietnýmy.

V systémoch počítačového videnia sa snažíme využívať primárne tieto oblasti pre pridelenie väčšej časti zdrojov. Z tohoto dôvodu je zistenie zaujímavých oblasti častým prvým krokom mnohých algoritmov v oblasti počítačového videnia.

Algoritmy na detekciu význammných oblastí sa delia do 3 skupín podľa princípu akým spracovávajú dáta[10]

- 1. Zdola-nahor: Prístup je cielený na nezávyslosť od používateľa. Zameriava sa fyziologicky významné oblasti vizuálneho systému ako výrazné zmeny v tvare, jase alebo farbe.
- 2. Zhora-nadol: Prístup je založený na čiastočnom riadení zo strany používateľa (konanie je podmienené úlohou). Riadenie je prínosom pretože obsajuhe aj informáciu používatela a jeho prechádzajúcich vedomostí či skúsenosti, ktoré ovplyvnujú vnímanie.
- 3. Algoritmy využívajúce neurónové siete.

Cieľom práce je štúdium a výskum nových metód na detekciu významných oblastí vo videu. Následne porovnanie nových métod s existujúcimi v rôznych štandardnych oblastiach ako aj

v rýchlosti výpočtu.

V prvej časti sa nachádza prehľad metód na detekciu významných oblastí vo videu, alebo metód na detekciu v statických obrazoch ktoré majú potenciál pre použitie aj vo videu. Ďalej detailné vysvetlenie fungovania metód ktoré budú použité v implementácií zlepšenia.

V druhej časti je popísaný postup a princíp zlepšenia. Následne porovnanie s metódamy uvedenýmy v prvej časti.

V závere....

2. Prehlad literatúry

2.1 Úvod do problematiky

Saliency a teda detekcia významných oblastí je využívaná v rôznych oblastiach. Počínajúc automatizáciou, modely významných oblastí (anglicky saliency modelov) sú tažiskom pri segmentácií obrazu alebo detekcií špecifických objektov. Od saliency modelov sú taktiež závislé aj programi ovládajúce zabezpečovacie zariadenia. Tu saliecny modely zužujú možnosti a proaktívne upozorňujú na podozrivé situácie. Až po reklamu, kde je vyzuálna pozornosť klúčovým parametrom, čo môže rozhodnúť o úspechu produktu, veď aký význam by mala reklama, kde si nevšimnete prezentovaný produkt alebo si všimnete iba jeho "menej"dokonalé časti.

2.2 Metody pre statické obrázky

Algoritmy pre statické obrazy tvoria základ všetkých saliency modelov a tvoria najstaršiu oblasť výskumu. V tejto časti uvediem prehľad algoritmov pre výpočet saliency modelov od najjednoduchších cez najznámejšie až po nejefektívnejšie. Na záver uvediem porovnanie všetkých metód pomocou všeobecne uznávaných metrík a dát získaných zo zariadení merajúcich pohyb očí používateľa (eyetrackera).

2.2.1 Baseline Center

Baseline center je triviálny model, ktorý sa vypočítava pomocou Gaussovej krivky vzľadom na pomer strán čím, predpokladá salientné oblasti presne v strede obrazu. Nezachytáva však žiadne sémantické aspekty videa ako ani podvedomé informácie vnímanania obrazu iba rozlíšenie dané optikou skenujúcou scénu.

2.2.2 Hrany

Skupina algoritmov využívajúca význačné prechody v obraze inak nazývane hrany. Metódy tohoto typu sú vyžívané hlavne v prírodných scénach, kde nie je (hlavne sémanticky) význačný objekt. Takéto metódy sa zakladajú priamo na štúdiu fyziologických vlastností

ľudského vyzuálneho systému. Následná imitácia procesov odohrávajúcih sa na sietnici viedla ku vzniku saliency modelov, generujúcich plausibilné výsledky[3].

2.2.3 Ittiho model

Najznámejším modelom pre výpočet významných oblastí pre statické farebné obrazy je ittiho model navrhnutý v roku 1998. Model zakladá na rozložení obrazu na 3 základné charakteristiky obrazu a to farbu, intenzitu, orientáciu.

Obr. 2.1: Itti model general workflow.

Chrakteristika farby obsahuje 12 máp (šedotónové obrazy), pričom model používa farebný model RGB. Nazačiatku sa vypočíta intenzita podľa vzťahu I=(R+G+B)/3. Pomocou mapy I sa následne normalizujú všetky farebné kanály modelu RGB. Model extrahuje 4 farebné kanály červený (r), zelený (g), modrý (b), zltý (y) a pomocou Gausvých pyramíd vytvorí 3 rôzne mapy každej farebnej zložky separátne. Červená zložka sa počíta difenčným spôsobom ako R=r-(g+b)/2, zelená ako G=g-(r+b)/2, modrá ako B=b-(r+g)/2 a žltá ako Y=(r+g)/2-|r-g|/2-b. Chrakteristika intenzity obsahuje 6 máp. Získaná je pomocou orientovaných gáborových filtrov s orientáciou 0° , 45° , 90° , 135° . Dokopy 42 máp charakteristík je následne linárne skombinovaných do jednej saliency mapy[13].

2.2.4 Spektralne rezidua

Medtóda využíva princím, že potláča štatisticky často opakujúce sa časti obrazu a do popredia stavia časti obrazu ktoré sa štatisticky odlišujú od ostatných. Na detekciu používa rýchlu fourierovu transformáciu. Pomocou nej rozdelí obrázok na amplitúdovú čast a fázovú čast.

Obr. 2.2: Príklad rozloženia typovo rôznych obrázkov

Amplitúdová zložka sa následne vyhladí, čím sa do popredia dostanú iba informácie, ktoré sa vymykajú z priemeru. Odčítaním od pôvodnej amplitúdoje zložky dostaneme iba časti obrazu, ktoré sú významné [12].

2.2.5 Sun Model

Sun model (Saliency Using Natural statistics) sa snaží symulovať potencionálne ciele sledovania ludského vyzuálneho systému. Model aktívne ohodnocuje tieto ciele odhadom pravdepodobnosti vzhľadom na všetky pozorované charakteristiky. Charakteristiky sú spracovávané separátne a teda model nepočíta s chrakteristikami navzájom sa ovplynujúcimi. Údaje získané zo všetkéyh charakteristík následne spracuje šatisticky. Model zakladá hlavne na Bayesovom pravidle[TODO referencia?]. Za výsledok hľadania potom udáva asimetrie v týchto štatistických štruktúrach[20].

2.2.6 Rare Model

Výrazná vätšina modelov pozornosti typy bottom-up funguje ustáleným postupom, kde sa z pôvodného obrazu extrahuje definovaná množina chrakteristík paralelne a tie následne kombinujú alebo inak použiju na výpočet výslednej mapy pozonosti. Rare model narvhuje sekvenčnú architektúru, kde z pôvodného obrázku extrahuje nízko úrovňové príznaky. Následne na výsledkoch sériovo vykonáva extrakciu dalších príznakov (v literatúre nazívané mid-level). Nakoniec ako posledný krok spojí a normalizuje výsledné chrakteristiky do konečnej mapy významných oblastí. Rare model ako nízko úrovnové chrakteristiky používa jas a colorimetrické rozdieli (ako farebný model používa YCbCr) a následne na mapách

rozložených žložiek farebného modelu detekuje orientáciu pomocou gáborových filtrov[17]. Po extrakcii všetkých charakteristík použije iteratívnu metódu pre optimálne kvantovanie založenú na metóde Otsu[1]. Na takto upravenom vstupe sa následne vyhľadávajú vzácne (z angl. rare) oblasti obrazu. Metóda preskúmala možnosti nesekvenčnej extrakcie príznakov z obrazu bol novým prístupom v oblasti modelov pozornosti.

Obr. 2.3: Rare model workflow

2.3 Metody pre videá

Video obsahuje rozsiahlejšie možnosti ako iba obrazová informácia, pribúdajú ďalšie rozmery ako je pohyb objektov na obraze alebo vplyv zvuku na ľudské vnímanie. Avšak oproti obrazu obsahuje je potrebné spracovávať vedšie množtvo dát. Navyše vo vetšine algoritmov využívajúcich saliency modely je potrebné aby model dával výsledky v reálnom čase. Používané hlavne v oblasti zabezpečovacej techniky.

2.3.1 Zohladnenie audio informácie

Saliency modely využívaju rôznorodé druhy príznakov a to od geneticky zakorenených ako sú prechody farieb, alebo intenzít, až po sémantické príznaky ako je detekcia tváre [18]. Majoritná vedšina saliency modelov využíva iba obrazovú zložku ale zvuková stopa býva ponechaná stranou ale úplne zanedbaná. Použitie zvuku je známimtrikom filmovej scény uz desatročia, kde režiséri posilňujú kontrolu nad diváckou pozornosťou práve pomocou zvukového doprovodu. Prvé štúdie sa zaoberali detekciou reči a tváre, kde je spojitosť jednoznačná [8]. Neskoršie štúdie dokazujú korelácie aj na všeobecnejšej úrovni a pokusy o

extrakciu samotnej charakteristiky zo zvukovej stopy[9]. Tieto pokusy viedli aj k zostaveniu modelov zohladňujúc zvukovú stopu ako samostatnú charakteristiku spolu s kombináciou s nízko-urovnovými príznakmi obrazu [6].

Obr. 2.4: Audiovisual model workflow.[6]

Model extrahuje video na sekvenciu obrazov (framy) a audio stopu v tvare grafu vlnovej dĺžky. Potom extrahuje 3 typy rôznych chrakteristík. Nízko-úrovňové príznaky založené na biologicky inširovaných saliency modeloch rozdelených na dynamickú časť a satickú časť. Statická časť sa zameriava na najasnejšie a najkontrastnejšie časti obrazu. Dynamická časť sa zameriava na relatívny pohyb objektov vhľadom na pozadie (eliminácia pohybu kamery). Tieto 2 časti sa nakoniec spoja Dalšou chrakteritikou použitou v tomto modeli je detekcia tváre. Každý objekt klasifikovaný ako tvár je v saliency mape nahradený oválnym objektom, intenzita daných objektov je daná pomocou metódy Speaker Diarization, ktorá detekuje podľa zvukovej stopy objekt ktorý generuje zvuk. Metóda predpokladá striedavú konverzáciu n objektov oddelenú pauzou. Následne spojí vyššie spomínané charakteristiky do jednej

výslednej mapy. Ako posledný krok preloží cez celú mapu baseline center model popísaný v časti 2.2.1.

2.3.2 Detekcia pohybu

V tejto časti sa zmeriame na segmentáciu objektov ktoré sa na scéne pohybujú. Metódy tohoto typu sa snažia vyzualizovať 3D prostredia (v našom prípade disponujeme výskou, širkou, časom) na 2D výstup (obrazový výstup). Takáto informácia dokáže priblížíť výpočtové modely bližšie k realite. Ľudský vyzuálny systém totiž nepoužíva iba 2d vstup (ako to prebieha vo drvivej vetšine metód na výpočet významných oblastí). Taktéto obrazy sú v ľudskom vyzuálnom systéme vysoko hodnotené. Dôvody, prečo takto ľudský vyzuálny systém pridáva prijoritu práve takýmto oblastiam možeme nájsť v antropológií (citacia?). Vysvetlenie je jednoduché a to snaha zabezpečit bezpečné prostredie okolo seba a všetko pohybujúce sa narušuje pocit bezpečnosti. V nasledujúcom texte rozoberieme 2 najpožívanejšie algoritmy používané na detekciu oblastí pohybu v obraze a výpočet vektoru posunu. Výpočet vektoru pohybu je však iba projekcia 3D vstupných dát do 2D obrazu, nemusí vždy reprezentovať iba pohyb. Prvým z nich bude LUCAS KANADE[4], a druhým Horn Schunck[2]. Oba tieto algoritmi používajú jeden spoločný predpoklad a to, že jas daného objektu sa časom nemení. To značí, že objekt sa na scéne može presunúť ale svoj jas nemôže zmeniť. Matematicky vyjadrené I(x(t),y(t),t) je obrazová dvojrozmerná funkcia, ktorá sa mení vzhľadom na čas. Kedže sa jas obrazu nemení môžeme povedať, že platí:

$$I(x + dx/dt, y + dy/dt, t+) = I(x, y, t)$$
 (2.1)

Z čoho je ľahko odvoditeľné, že:

$$dI/dt = /dx/dt + /dy/dt + dI/dt = 0$$
(2.2)

2.3.3 Lucas Kanande

Algoritmus prvotne vznikol ako návrh pre časovú optimalizáciu problému výpočtu vektoru posunu medzi dvomi krivkami. Povodné intitívne riešenie vyžadovalo $O(M^2 * N^2)$ času pre výpočet daného vektoru ak M,N bolo rozlíšenie daného obrazového vzoru. Vtedy nahvrhovaná optimalizácia vyžadovala zadanie rozsahu hladania, pomocou ktorého sa vypočítali diferencie pre celý obraz a pre ďalšiu iteráciu sa rozsah vypočítal pomocou horolezeckého algoritmu. Metóda Lucas Kanade využíva priestorový gradient pre výpočet nových hodnôt a zároveň upravuje hodnotu rozsahu pri výpočte kažkého obrazového pixelu v obraze a nie iba po výpočte celého obrazu. Pomocou takejto úpravu naivného algortimu sa časová zložitosť zlepšila na $O(M^2logN)$ [4].

Obr. 2.5: Vyzualizacie výsledkov algoritmu Lucas-Kanade vždy po 1 iterácíí

2.3.4 Horn-Schunck

Metóda Horn-Schunck bola prvá, kde bola použitá metóda variácie na výpočet optického toku. Táto globálna metóda priniesla výpočet konštanty pre obmedzenie plynulosti optického toku. Algoritmus používa 2 základné parametre: Počet iterácií a vyhladzovaciu konštantu. Počet iterácií určuje dĺžku (počet cyklov) simulácie, vyhladzovacia konštanta je použitá po každom cykle simulácie kvôli zjemneniu prechodov a výpočet optimálneho optického toku.

Obr. 2.6: Vyzualizácia pracovného postupu metódy Horn-Schunck

2.4 Metriky úspešnosti

Metriky úspešnosti sú algoritmy pre čo najpresnejšie vyjadrenie presnosti modelov v meratelných jednotkách. Takýto algoritmus dostáva na vstupe čisté dáta z eye trackera. Tieto je potrebné predspracovať z dôvodu, že každý výrobca poskytuje iné zariadenia na hardwarovej úrovni a výrobcovia neštandardizujú výstup do jednotnej formy. Následne je potrebné vytvoriť mapy fixácií ktorá sa používa ako jeden zo vstupných parametrov v algoritmoch rátajúcich metriky úspešnosti.

Metriky úspešnosti možno rozdeliť do 3 štandardných skupín podľa druhu hodnôt na ktorý porovnávajú reálne dáta (v literatúre nazívané ground truth) s vygenerovanýmy mapamy význačných oblastí[16].

- 1. Založené na porovnávaní hodnôt NSS, Percentile, Pf
- Založené na vyhodnocovaní vzdialenistí AUC-Judd, AUC-Zhao, AUC Borji, AUC-Li

3. Založeneé na distribúcií - KL-Div, EMD, CC, SRCC

2.4.1 NSS

NSS (Normalized Scanpath Saliency) metrika narvrhnutá v roku 2005 ktorej autormi sú R. J. Peters a L. Itti. Metrika zakladá na ohodnotení salientných oblastí vzľadom na pozíciu fixácií samostatne a následná normalizácia podľa počtu fixácií.

Pre každú fixáciu používa vzťah

$$NSS(p) = (SM(p) - \mu_{SM})/\sigma_{SM} \tag{2.3}$$

Obr. 2.7: kde SM je mapa význačných oblastí a p je bod danej fixácie pre ktorú sa hodnota vypočítava.

Pričom mapa fixácií SM je normalizovaná tak aby nadobúdala nulovú strednú hodnotu a zároveň jednotkovú štandardnú dochýlku. Metrika NSS nadhodnocuje ak je saliency mape minimálna rozmanitosť hodnôt (malý rozdiel medzi hodnotami fixácií a strednou hodnotou), pretože v takomto prípade nebude model dostatocne odhonotený, ak nájde presné pozície v prípade, že odchýlka je malá, alebo rozdiel medzi hodnotami fixácie a strednou hodnotou je vysoké. Finálna hodnota NSS metriky je určená priemerom hodnôt pre všetky fixácie[16].

$$NSS = 1/N * \sum_{p=1}^{N} NSS(p)$$
 (2.4)

Obr. 2.8: normalizácia vzľadom na počet fixácií

2.4.2 AUC-Judd

Metrika je clasická AUC ktorú navrhol Judd [auc-judd]. Ako prvé sa pixely označené ako fixácie spočítajú s rovnakým počtom náhodných pixelov vybraných z mapy význačných oblastí a pixely sú nakoniec považované za klasifikátor úspešnosti. Následuje prahovanie zvolenou hodnotou, pixely ktoré sú menšie ako prahovacia hodnota sú pokladané za pozadie obrazu a pixely ktoré majú hodnotu vyššiu sú pokladané ako fixácie. Pre ľubovolne zvolenú prahovaciu hodnotu sú niektoré výsledné oblasti manuálne označené ako pozitívne (True Positives), pobobne niektoré oblasti ktoré nie sú označené ako fixácie sú manuálne označené ako falošne pozitívne (False Positive). Tieto operácie sú zopakované tisíc krát, nakoniec sa vyzualizuje pomocou ROC krivky a plocha pod pod krivkou (Area Under the Curve preto AUC) je výsledným klasifikátorom, ktorého ideálna hodnota je 1. Hodnota náhodného výberu je 0.5.

2.4.3 KL-Div

Každý projekt vytvárajúci model významných oblastí si volí vlastné metriky úspešnosti, podľa ktorých sa určuje úspešnosť daného modelu. Pre meranie úspešnosti modelov je okrem samotných algoritmov pre meranie úspešnosti potrebné zabezpečiť dostatočne rôznorodú skupinu testovacích dát tkz. datasetov.

2.5 Refenčné datasety

Dataset je testovacia množina, ktorá sa snaží obsiahnuť dostatočne rôznorodé vzorky vhodné pre komplexné testovanie. Pri zostavovaní datasetov sú dôležité nielen videá ale eyetracker data alebo nejakým spôsobom zverejnené fixácie, aby bolo možné výsledky validovať pomocou vyššie uvedených metrík. Poslednou charakteristikou datasetu je množsto ľudí na ktorých boli dané viedeá nahrávané.

Príklady datasetov:

- **RSD**[14]
- **SAVAM**[11]
- AUDITORY DATASET[7]

2.5.1 RSD

Regional Saliency Dataset je zaujímavý o čo najobšírnejšie testovanie je rozdelený do 4 hlavných kategórií:

- **bezpečnostné záznamy** Štadardné záznamy z bezpečnostných kamier obsahujú statické pozadie a salientné pohybujúce sa objekty. Pre túto čast datasetu vyžili záznamy z projektu CAVIAR[15].
- Grafika Použité animované filmy/seriáli ktoré obsahujú 2D aj 3D grafiku.
- Prirodzené videá s prvkami grafiky Prirodzené videá podobné bezpečnostným ale s prvkami umelo vložených priamo do obrazového kanálu.
- Prirodzené videá Videá bez pridaných grafických prvkov, tak ako boli nasnímané kamerou.

Na vyznačenie zaujímavých oblastí nezvolili techniku (eyetracke) ale manuálne vyznačovanie zaujímavých oblastí pomocou používateľov. Výskumu sa zúčastnilo 17 mužov 6 žien medzi 10-23 rokov, na označení každého z videa sa podielalo 10-23 ludí.

Obr. 2.9: Ukážka z každej kategórie videa s oznčenými významnými oblastami

2.5.2 SAVAM

SAVAM (Semiautomatic Visual-Attention Modeling) je dataset nahrávaný priamo pomocou eyetrackera pri sledovaní videí v HD rozlíšení pričom každému nahrávanému používateľovy sú pridelené dáta separátne pre kažké oko. Dokopy obsahuje 13minút videa, ktoré bolo otestované na 50 používateľoch rôzneho veku. Dataset je rozdelený na videá z filmov, ukážky z komerčných videí a stereoskopické videá. SAVAM taktiež poskytuje všetky raw dáta z eyetrackere ako aj vizualizácie daných dát[11].

2.5.3 AUDITORY DATASET

Posledný dataset ako jediný poskytuje aj audio informácie ktoré je možné ďalej spracovávať.

2.6 Porovnanie štandardných Metód

Porovnávanie metód je štandardne publikované formou ucelených benchmarkov. Príkladom takéhoto banchmarku je mit saliency benchmark[5], ktorý sa snaží zgrupovať a porovnávať obrazové modeli pozornosti. V tejto sekcií ďalej uvedieme iba vyualizácie všetkých vyššie uvedených metód, pomocou obrázkov z testovaného videa (vybrané z vyššie uvedených datasetov) a im prislúchajúcich saliency máp vygenerovaných pomocou popísaných modelov alebo metód. Ďalej ich porovnanie pomocou výpočtových parametrov v tabulke.

Obr. 2.10: Porovnanie vybraných algorithov na videu z datasetu RSD.

3. Špecifikácia

3.1 Platforma pre riešenie

Ako platfoma pre implementáciu budeme používať programovací jazyk Matlab(uviest citaciu?).

3.2 Očakávané výsledky

Výsledkom práce bude model pozornosti ktorý, zohladnuje príznaky extrahovateľné iba z videa a nie z čisto obrazovej inforácie. Pôjde hlavne o pohyb objektov na scéne a iné sémantické informácie ktorímy sa video odlišuje od statickej scény. Príkladom nového rozmenu videa okrem možnosti pohybu objektov je napríklad aj pameť užívateľa s ktorou musíme počítať pri tvorbe mapy pozornosti. Ide o jednoduchý princíp a to ten, že objekty nachádzajúce sa na scéne "príliš dlho"scéne strácajú výnimočnosť a z toho vyplýva aj rozdielnosť oproti štandardným modelom pozornosti. Sekundárnym prínosom práce bude vytvorenie jednotnej applikácie pre vizuálne porovnávanie modelov, kde používateľ bude môcť jednoducho pridávať modeli, ideálne priamo použíť ukážkové zdrojové kódy zverejnené autormy jednotlivých modelov alebo úpravou ktorá nevyžduje znalosť logiky stojacej za daným modelom. Následne automatický výpočet štadardných metrík na implementovanom datasete pre jednoduchú validáciu výsledkov na rovnakých dátach spolu s konkurečnýmy modelmy z dôvodu jednoduchého ladenia počas vývoja modelu.

3.3 Ideálne Prípady

Idealny priklad modelu (obrazok)

3.4 Problémové Prípady

Predpokladané problematické úseky

4. Implementácia

4.1 Návrh metódy

Navrhovaná metóda zohľadnuje vlastnosti ktoré nie je možné získať iba z videa, budeme ich nazívať dynamické príznaky videa. Avšak metóda stále zohľadnuje v pozorovanom videu aj aspekty statického obrazu, tieto budeme nazívať statické príznaky videa. Tieto príznaky sú vypočítavané seprátne a nakoniec ich metóda spája do jednej výslednej mapy pozornosti. Výsledkom je postupnosť máp pozornosti pre každý frame videa (podľa vstupnej konfigurácie), ktorý možno spojiť do videa pozornosti pre vstupné video.

4.1.1 Dynamické príznaky videa

Dynamické príznaky metóda najprv extrahuje pomocou štadardnej metódy Horn-Schunck, (referencia na 2 kapitolu alebo na článok?) ktorá vypočíta optický tok na 2 rozdielnych framoch videa čím vzniká sémantický príznak pohybu rôznych objektov po scéne spolu s smerovýmy vektormy pohybu daných vektorov. Získané smerové vektory okamžite spočítavame aby sme získali celkový obraz optického toku pre danú dvojicu obrazov. Obraz sa následne prahuje statickou konštantou kôli ostráneniu šumu. V našej implementácií sme použili prah v absolútnej hodnote (0.2) pre každý obrazový pixel vo výslednom optikom toku. Pixeli s valídnou honotou sa rozdelia na regióny podľa spojitosti a podobnosti štandardným spôsobom. Pripomenme, že v tomto obraze sa spočítali hodnoty posunu v oboch smeroch aritmeticky do jednej hodnotiacej konštanty (pre každý pixel obrazu), ktorá už nereprezentuje smer posunu daného obrazového pixelu, ale iba hodnotí celkový posun pixelu. Takto získané regóny budeme vyhodnocovať a spájať podľa pôvodných výsledkov metódy Horn-Schunck. Vďaka využitiu pôvodných vektorov z výsledku metódy Horn-Schunck, vieme rozlíšiť pohyb horizontálny aj vertikálny separátne. Pre všetky dvojice regiónov v obraze zistujeme nasledovné charakteristiky:

- 1. Rozdiel smerových vektorov v horizontálnom smere
- 2. Rozdiel smerových vektorov v vertikálnom smere
- 3. Rozdiel vo vzdialenosti

4.1.1.1 Rozdiel smerových vektorov v horizontálnom smere

Charakteristika sa vypočítava zo smerových horizontálnych vektorov metódy Horn-Schunck. Prekazdý región sa vypočíta maximálna hodnota z indexov daného regiónu. Následne sa za hodnotu chrakteristiky sa považuje absolútna hodnota rozdielu týchto hodnôt.

$$hodnota_A = max(hor_{vektory}(indexy_A))$$
 (4.1)

$$hodnota_B = max(hor_{vektory}(indexy_B))$$
 (4.2)

$$rozdiel_{horizontalny} = abs(hodnota_A - hodnota_B)$$
 (4.3)

Obr. 4.1: vypočet hodnôt pre dvojicu regiónov

4.1.1.2 Rozdiel smerových vektorov v vertikálnom smere

Charakteristika sa vypočítava zo smerových vertikálnych vektorov metódy Horn-Schunck. Prekazdý región sa vypočíta maximálna hodnota z indexov daného regiónu. Následne sa za hodnotu chrakteristiky sa považuje absolútna hodnota rozdielu týchto hodnôt.

$$hodnota_A = max(ver_{vektory}(indexy_A))$$
 (4.4)

$$hodnota_B = max(ver_{vektory}(indexy_B))$$
 (4.5)

$$rozdiel_{vertikalny} = abs(hodnota_A - hodnota_B)$$
 (4.6)

Obr. 4.2: vypočet hodnôt pre dvojicu regiónov

4.1.1.3 Rozdiel vo vzdialenosti

Chrakteristika sa vypočítava ako minimálna hodnota vzdialenosti medzi dvojicou regiónov. Hodnota je počítaná euklidovskou metódou.

```
forall the rohA ako každý extrém regiónu A do

forall the rohB ako každý extrém regiónu b do

vzdialenost = sqrt( (corner2(1,1)-rohB(1,1))^2 + (rohB(1,2)-rohA(1,2))^2 )
end

end
```

Algorithm 1: Výpočet minimálnej vzdialenosti euklidovskou metódou

4.1.1.4 Spájanie regiónov

Po výpočte všetkých 3 charakteristík spojíme všetky dovjice regionov, pre ktoré su všetky chrakteristyky nižšie ako zadefinovaná konštanta. Regióny spájame pomocou konvexného obalu zjednotenia bodov ležiacich v oboch regiónoch.

Obr. 4.3: Vyzualizácia spojenia regiónov pomocou konvexného obalu

4.1.1.5 Starnutie objektov na scéne

Do vypočitavnia dynamických príznakov započítavame predpoklad, že aj pohybujúce sa objekty postupne strácajú pozornosť používateľov. A to v prípade kedy sa síce daný objekt na scéne pohybuje, ale na identickom mieste. do metóty zabudujeme mechanizmus kde pixelom s dlhodobo vysokým hodnotením pozornosti, zmenšíme toto hodnotenie pomocou vynásobenia koeficientom hodnoty 0 to 1.

4.1.2 Statické príznaky videa

Pri videách kde sa pohybuje celá scéna (kamera je v pohybe) nedávajú dynamické príznaky dobré výsledky kdeže logicky označia celú scénu alebo jej vädšinovú časť scény za výrazne salientnú. Preto je vhodné dynamické príznaky vhodne kombinovať s klasickýmy modelmy pozornosti ktoré síce zanedbajú postupnosť obrazov, ale nezlyhajú ako dynamické príznaky. Pre extrakciu statických obrázkov sme zvolili metódu založnú na spektralnych

reziduach[12]. Vďaka svojmu príncípu potlačovania štatisticky opakujúcich sa predmetov na scéne, sa dá predpokladaď vhodné doplnenie statických objektov ktoré možu zaujať pozornosť na videu ak zlyhávajú dynamické príznaky.

4.1.3 Výsledné spojenie príznakov

Spájanie dynamických a statických príznakov bude prebiehat pomocou sčítania oboch máp, pričom vždy s použijú u určitom pomere. Výpočet pomeru bude určovať pomer výskytu salientných pixelov v mape dynamických príznakov.

pomer = (sum(dynamickéPríznaky > 0))/početElementov(dynamickéPríznaky)(4.7)

Obr. 4.4: vypočet pomeru salientných pixelov v obraze

Ak je vysoký výskyt salientých pixelov, potrebujeme utlmit zobrazovanie tejto časti príznakov a prioritizovať zobrazovanie statických priznakov preto zmišavacia funkcia vyzerá nasledovne:

 $mapa_{pozornosti} = (dynamickéPríznaky * (1 - pomer)) + (statickéPríznaky * pomer)(4.8)$

Obr. 4.5: zmiešavacia funkcia statických a dynamických príznakov

4.1.4 Pipeline metódy

TODO nakoniec wokflow diagram.

- 4.2 Implementácia riešenia
- 4.3 Validácia výsledkov
- 4.4 Možnosti pre zlepšenie
- 4.5 Diskusia

5. Záver

Cieľom diplomovej práce bolo...

V práci som.....

Ďalší možný rozvoj....

Zoznam použitej literatúry

- [1] "A threshold selection method from gray-level histograms", *Systems, Man and Cybernetics, IEEE Transactions on*, vol. 9, no. 1, s. 62–66, Jan. 1979, ISSN: 0018-9472. DOI: 10.1109/TSMC.1979.4310076.
- [2] AL KANAWATHI, J. MOKRI, S.S. IBRAHIM, N. HUSSAIN, A. MUSTAFA, M.M. "Motion detection using horn schunck algorithm and implementation", in *Electrical Engineering and Informatics*, 2009. ICEEI '09. International Conference on, vol. 01: Aug. 2009. S. 83–87. DOI: 10.1109/ICEEI.2009.5254812.
- [3] AN, Kwang-Hwan LEE, Minho SHIN, Jang-Kyoo, "Saliency map model based on the edge images of natural scenes", in *Neural Networks*, 2002. *IJCNN* '02. *Proceedings of the 2002 International Joint Conference on*, vol. 1: 2002. S. 1023–1027. DOI: 10.1109/IJCNN.2002.1005616.
- [4] B.D. LUCAS, & Kanade. 1981. An Interative Image Registration Technique with an Application to Stereo Vision. [online]. : 1981. [cit. 8.4.2013]. Dostupné na internete: https://www.ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_1/lucas_bruce_d_1981_1.pdf.
- [5] BYLINSKII, Zoya JUDD, Tilke BORJI, Ali ITTI, Laurent DURAND, Frédo OLIVA, Aude TORRALBA, Antonio, *Mit saliency benchmark*.
- [6] COUTROT, A. GUYADER, N. "An audiovisual attention model for natural conversation scenes", in *Image Processing (ICIP)*, 2014 IEEE International Conference on: Oct. 2014. S. 1100–1104. DOI: 10.1109/ICIP.2014.7025219.
- [7] —, "Toward the introduction of auditory information in dynamic visual attention models", in *Image Analysis for Multimedia Interactive Services (WIAMIS)*, 2013 14th *International Workshop on*: Jul. 2013. S. 1–4. DOI: 10.1109/WIAMIS.2013.6616164.
- [8] COUTROT, Antoine GUYADER, Nathalie, "How saliency, faces, and sound influence gaze in dynamic social scenesshort title??", *Journal of Vision*, vol. 14, no. 8, p. 5, 2014. DOI: 10.1167/14.8.5. eprint: /data/Journals/JOV/

- 933549/i1534-7362-14-8-5.pdf. **Dostupné na internete**: +%20http://dx.doi.org/10.1167/14.8.5.
- [9] COUTROT, Antoine GUYADER, Nathalie IONESCU, Gelu CAPLIER, Alice, "Video viewing: do auditory salient events capture visual attention?", *annals of telecommunications-annales des télécommunications*, vol. 69, no. 1-2, s. 89–97, 2014.
- [10] DUNCAN, K. SARKAR, S. "Saliency in images and video: a brief survey", *Computer Vision, IET*, vol. 6, no. 6, s. 514–523, Nov. 2012, ISSN: 1751-9632. DOI: 10.1049/iet-cvi.2012.0032.
- [11] GITMAN, Y. EROFEEV, M. VATOLIN, D. ANDREY, B. ALEXEY, F. "Semiautomatic visual-attention modeling and its application to video compression", in *Image Processing (ICIP)*, 2014 IEEE International Conference on: Oct. 2014. S. 1105–1109. DOI: 10.1109/ICIP.2014.7025220.
- [12] HOU, Xiaodi ZHANG, Liqing, "Saliency detection: a spectral residual approach", in *Computer Vision and Pattern Recognition*, 2007. CVPR '07. IEEE Conference on: Jun. 2007. S. 1–8. DOI: 10.1109/CVPR.2007.383267.
- [13] ITTI, L. KOCH, C. NIEBUR, E. "A model of saliency-based visual attention for rapid scene analysis", *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, vol. 20, no. 11, s. 1254–1259, Nov. 1998, ISSN: 0162-8828. DOI: 10.1109/34.730558.
- [14] LI, Jia TIAN, Yonghong HUANG, Tiejun GAO, Wen, "A dataset and evaluation methodology for visual saliency in video", in *Proceedings of the 2009 IEEE International Conference on Multimedia and Expo*, ICME'09, New York, NY, USA: IEEE Press, 2009. S. 442–445, ISBN: 978-1-4244-4290-4. Dostupné na internete: http://dl.acm.org/citation.cfm?id=1698924.1699033.
- [15] PROF. ROBERT FISHER, Prof. James Crowley. 2005. CAVIAR. [online].: 2005. [cit. 8.4.2013]. Dostupné na internete: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
- [16] RICHE, N. DUVINAGE, M. MANCAS, M. GOSSELIN, B. DUTOIT, T. "Saliency and human fixations: state-of-the-art and study of comparison metrics", in *Computer Vision (ICCV)*, 2013 IEEE International Conference on: Dec. 2013. S. 1153–1160. DOI: 10.1109/ICCV.2013.147.
- [17] RICHE, N. MANCAS, M. GOSSELIN, B. DUTOIT, T. "Rare: a new bottom-up saliency model", in *Image Processing (ICIP)*, 2012 19th IEEE International Conference on: Sep. 2012. S. 641–644. DOI: 10.1109/ICIP.2012.6466941.

- [18] SHARMA, P. CHEIKH, F.A. HARDEBERG, J.Y. "Face saliency in various human visual saliency models", in *Image and Signal Processing and Analysis*, 2009. *ISPA* 2009. *Proceedings of 6th International Symposium on*: Sep. 2009. S. 327–332. DOI: 10.1109/ISPA.2009.5297732.
- [19] ŠIKUDOVÁ, E. ČERNEKOVÁ, Z. BENEŠOVÁ, W. HALADOVÁ, Z. KUČEROVÁ, J. 2014. *Počítačové videnie. Detekcia a rozpoznávanie objektov*, first : Wikina, Livornská 445, 109 00 Praha 10, 2014.
- [20] ZHANG, Lingyun TONG, Matthew H. MARKS, Tim K. SHAN, Honghao COTTRELL, Garrison W. "Sun: a bayesian framework for saliency using natural statistics", *Journal of Vision*, vol. 8, no. 7, p. 32, 2008. DOI: 10.1167/8.7.32. eprint: /data/Journals/JOV/933536/jov-8-7-32.pdf. Dostupné na internete: +%20http://dx.doi.org/10.1167/8.7.32.

Prílohy

CD obsahujúce:

- Elektronickú verziu
- Zdrojáky
- atď