PRIMER PARCIAL (T1)

ANÁLISIS MATEMÁTICO II

Junio 1 de 2022

Tiempo máximo para la realización de la evaluación: 2hs.

P1) Siendo
$$f \in C^1$$
, $f'(\overline{A}, (-0.6; 0.8)) = -2$ y $f'(\overline{A}, (0.8; 0.6)) = 1$. Hallar $f'(\overline{A}, (0.3; -0.4))$.

Indicar las direcciones en que la derivada direccional es nula en el punto \overline{A} .

- P2) Siendo $\overline{g}(x,y) = (xy+1,xy-x,xy-1)$, $\overline{\nabla} f(7,3,5) = (3,-2,1)$ y $f \in C^1$. Calcular la derivada direccional máxima de $h(x,y) = f(\overline{g}(x,y))$ en (3,2). Indicar la dirección.
- P3) Hallar la recta normal a la superficie Σ definida por la ecuación

 $x + yz + \ln(x + y^2 - z - 3) - 3 = 0$ en el punto $\overline{A} = (1, 2, z_0)$. Halar la intersección de dicha recta con el planto XZ.

- P4) Hallar la solución de la ecuación $x \frac{dy}{dx} 4y = x^6 e^x$ sujeta a la restricción y(1) = 1
- T1) **Definir** continuidad de una función escalar de "n" variables.

Determinar si la función $f(x, y) = \begin{cases} \frac{y}{x - y} & x \neq y \\ 0 & x = y \end{cases}$ es continua en (0,0)

T2) **Definir** derivada direccional de una función escalar en \Re^2

Calcular (si existen) las derivadas direccionales de $f(x, y) = \begin{cases} y^2/x & x \neq 0 \\ 0 & x = 0 \end{cases}$ en (0,0)