Model Performance Report: Customer Attrition Prediction

Team 13

Purpose of the Models

Predict customer attrition using:

- Linear Regression
 - Used to predict a continuous outcome variable based on one or more predictor variables by fitting a linear relationship (line) to the data, which minimizes the difference between the observed and predicted values.
- Logistic Regression
 - Used to predict a binary outcome (0 or 1) based on one or more predictor variables by modeling the probability of the outcome using a logistic function, which outputs values between 0 and 1.

Data Cleaning

- Handle missing data/value
- Remove string from column Cost, Car Rental Addon, and Hotel Addon
- Add respective column in USD

```
# Function to extract numeric value and convert to USD

def convert_to_usd(value, exchange_rates):
    currency_code = value[-3:]  # Assuming the last 3 characters are the currency code
    amount = float(value[:-4])  # Convert everything except the last 3 characters and a space to a float
    # Convert to USD using the provided exchange rate, default to 1 if currency
    amount_in_usd = amount * exchange_rates.get(currency_code, 1)
    return currency_code, amount_in_usd
```

- Removing outliers
- Convert to Binary

Feature Engineering

Tenure of the Frequent Flyer

```
# Calculate tenure as the difference in days, months, or years
today = datetime.today()
df2['Tenure (Years)'] = (today - df2['Join Date']).dt.days / 365
```

Average spend yearly per Frequent Flyer for the last 2 years

```
# Group by Frequent Flier Number to calculate total spend over the two years (2024-2025)
total_spend = df2_filtered.groupby('Frequent Flier Number')['Total Spend in USD'].sum().reset_index()
total_spend.columns = ['Frequent Flier Number', 'Total Spend in USD (2024-2025)']
```

Merge two dataframes into one

```
# Select necessary columns from df1
df1_relevant = df1[['Frequent Flier Number', 'Inquiry Type', 'Lounge Used?', 'Planned Snack?'
# Merge df1 and df2 on 'Frequent Flier Number'
merged_df = pd.merge(df1_relevant, df2, on='Frequent Flier Number', how='inner')
```

One-Hot Encoding for Categorical data (Inquiry Type)

Linear Regression: Price Prediction

- Linear regression are computationally efficient, making them quick to train, even on larger datasets.
- Key Metrics:
 - Mean Squared Error (MSE)
 - Mean Absolute Error (MAE)
 - R² Score
- Features used:

'Lounge Used?', 'Planned Snack?', 'Additional Snack?', 'Flight Delayed?', 'Tenure (Years)', 'Average Yearly Spend in USD', 'Inquiry_Cancel Flight', 'Inquiry_Flight Deal', 'Inquiry_Flight Status', 'Inquiry_New Flight'

Train the Model

With test data 20%

Key metrics:

MSE	0.0823
MAE	0.4867
R ²	0.48

Higher R² implies better prediction of the model.

Mean Squared Error: 0.11931311530484429 Mean Absolute Error: 0.2843934263283781 R-squared: 0.486736037644137 Predicted Attrition Scores: [0.4285706 0.59128907 1.04334533 ... 0.94843814 0.76782185 0.37621122]

Logistic Regression: Delay Prediction

- Logistic regression provides probabilities for the predicted class and tends to perform well even when the assumptions are not fully met.
- Key Metrics:
 - Accuracy
 - Confusion Matrix
 - Classification Report
- Features used:

'Lounge Used?', 'Planned Snack?', 'Additional Snack?', 'Flight Delayed?', 'Tenure (Years)', 'Average Yearly Spend in USD', 'Inquiry_Cancel Flight', 'Inquiry_Flight Deal', 'Inquiry_Flight Status', 'Inquiry_New Flight'

Train the Model

- With test data 20%, the model demonstrate good performance with accuracy approximately is 84.8%
- True: Customer will not remain a frequent flyer
- False: Customer will remain a frequent flyer

Attrition 43563 True False 25648 Name: count, dtype: int64 Accuracy: 0.8480820631366034 Confusion Matrix: [[4461 627] [1476 7279]] Classification Report: recall f1-score precision support False 0.75 0.88 0.81 5088 True 0.92 0.83 0.87 8755 0.85 13843 accuracy 0.85 0.84 13843 0.84 macro avg

0.85

0.85

13843

0.86

weighted avg

Test Case

Based on a single frequent flyer number: 7234617746

Thresholds Used - Tenure: 18.660344836984667 | Yearly Spend: 12781.71105

Based on the predictions, Debbie Spears is likely to remain a frequent flyer.

```
Linear Regression Prediction for Debbie Spears (Attrition Score): 0.10517235352363663
R-squared: 0.4867306037644137
Based on the linear prediction, Debbie Spears is likely to remain a frequent flyer.

Logistic Regression Class Prediction for Debbie Spears (Attrition): False
Logistic Regression Probability Prediction for Debbie Spears (Inactive): 0.020566894506464917
Accuracy: 0.8480820631366034
```

Based on all data:

```
Count of Frequent Flyers by Status (Linear Regression):
Status Count
onot likely to remain a frequent flyer 1230
likely to remain a frequent flyer 770
```

Recommendations

- Rank customer attrition based on key features, such as flight counts, spending habits, and inquiry types.
- Feature Engineering
 - Customer engagement metrics
 - Loyalty program
 - Miles earned or redeemed
 - Customer feedback
- Model Improvement suggestions
 - Balance the dataset using resampling techniques
 - Use regularization
 - Use other models such as Random Forest, Neural Network