

planetmath.org

Math for the people, by the people.

conditional expectation

Canonical name ConditionalExpectation
Date of creation 2013-03-22 15:43:45
Last modified on 2013-03-22 15:43:45
Owner georgiosl (7242)
Last modified by georgiosl (7242)

Numerical id 13

Author georgiosl (7242)

Entry type Definition
Classification msc 60-00
Classification msc 60A10

Related topic Conditional Probability

Related topic ConditionalExpectationUnderChangeOfMeasure Related topic ConditionalExpectationsAreUniformlyIntegrable

Let (Ω, \mathcal{F}, P) be a probability space and $X : \Omega \to \mathbb{R}$ a real random variable with $E[|X|] < \infty$.

Conditional Expectation Given an Event

Given an event $B \in \mathcal{F}$ such that P(B) > 0, then we define the *conditional* expectation of X given B, denoted by E[X|B] to be

$$E[X|B] := \frac{1}{P(B)} \int_{B} XdP.$$

When P(B) = 0, E[X|B] is sometimes defaulted to 0.

If X is discrete, then we can write $X = \sum_{i=1}^{\infty} w_i 1_{B_i}$, where 1_{B_i} are the indicator functions, $B_i = X^{-1}(\{w_i\})$ and $w_i \in \mathbb{R}$, then conditional expectation of X given B becomes

$$E[X|B] = \frac{1}{P(B)} \int_{B} \left(\sum_{i=1}^{\infty} w_{i} 1_{B_{i}} \right) dP = \frac{1}{P(B)} \left(\sum_{i=1}^{\infty} w_{i} \int_{B} 1_{B_{i}} dP \right)$$
$$= \frac{1}{P(B)} \left(\sum_{i=1}^{\infty} w_{i} P(B_{i} \cap B) \right) = \sum_{i=1}^{\infty} w_{i} P(B_{i}|B),$$

where $P(B_i|B)$ is the conditional probability of B_i given B.

Conditional Expectation Given a Sigma Algebra

If $\mathcal{D} \subset \mathcal{F}$ is a sub σ -algebra, then the *conditional expectation of* X *given* \mathcal{D} , denoted by $E[X|\mathcal{D}]$ is defined as follows:

Definition $E[X|\mathcal{D}]$ is the function from Ω to \mathbb{R} satisfying :

1. $E[X|\mathcal{D}]$ is \mathcal{D} -measurable

2.
$$\int_A E[X|\mathcal{D}]dP = \int_A XdP$$
, for all $A \in \mathcal{D}$.

It can be shown, via Radon-Nikodym Theorem, that $E[X|\mathcal{D}]$ always exists and is unique almost everywhere: any two \mathcal{D} -measurable random variables Y, Z with

$$\int_{A} Y dP = \int_{A} Z dP = \int_{A} X dP$$

differ by a null event in \mathcal{D} . We can in fact set up an equivalence relation on the set of all integrable \mathcal{D} -measurable functions satisfying condition 2 above. In this sense, $E[X|\mathcal{D}]$ is an equivalence class of random variables, and any two members in $E[X|\mathcal{D}]$ may qualify as conditional expectations of X given \mathcal{D} (they are often called *versions* of the conditional expectation). In practice, however, we often think of $E[X|\mathcal{D}]$ as a function rather than a set of functions. As long as we realize that any two such functions are equal almost surely, we may blur such differences and abuse the language.

Suppose $Y: \Omega \to \mathbb{R}$ is another random variable with $E[|Y|] < \infty$ and let $\alpha, \beta \in \mathbb{R}$. Then

- 1. $E[\alpha X + \beta Y | \mathcal{D}] = \alpha E[X | \mathcal{D}] + \beta E[X | \mathcal{D}]$
- 2. $E[E[X|\mathcal{D}]] = E[X]$
- 3. $E[X|\mathcal{D}] = X$ if X is \mathcal{D} -measurable
- 4. $E[X|\mathcal{D}] = E[X]$ if X is http://planetmath.org/IndependentSigmaAlgebrasindependent of \mathcal{D}
- 5. $E[YX|\mathcal{D}] = YE[X|\mathcal{D}]$ if Y is \mathcal{D} -measurable

Conditional Expectation Given a Random Variable

Given any real random variable $Y: \Omega \to \mathbb{R}$, we define the *conditional expectation of* X *given* Y to be the conditional expectation of X given \mathcal{F}_Y , the http://planetmath.org/MathcalFMeasurableFunctionsigma algebra generated by Y.