Solutions to Problem Set 11

Advanced Logic 6th December 2022

Note: the scores for these problems add up to 110%, so a perfect score corresponds to 10% extra credit.

1. Let M be the theory in the language of strings axiomatized by all of the following sentences (where c may be any constant of the language of strings other than "")

M1
$$\forall x(x = "" \oplus x)$$

M2 $\forall x(x = x \oplus "")$
M3 $\forall x \forall y \forall z((x \oplus y) \oplus z = x \oplus (y \oplus z))$

Show the following:

(a) (20%) Show that for any length-one string a, if c is the constant that denotes a in the standard string structure S, then $c = \langle a \rangle$ is a theorem of M.

When a is a single character and c is the constant that denotes it, $\langle a \rangle$ is the term $c \oplus$ ", so what we are trying to show is that $M \models c = c \oplus$ ". This follows by \forall Elim from M2.

(b) (30%) Show that for any strings s_1 and s_2 , $\langle s_1 \rangle \oplus \langle s_2 \rangle = \langle s_1 \oplus s_2 \rangle$ is a theorem of M

By induction on s_1 , for a fixed s_2 .

Base case: s_1 is the empty string [], so $s_1 \oplus s_2 = s_2$ and $\langle s_1 \rangle = ""$, so we just need to show that $M \models "" \oplus \langle s_2 \rangle = \langle s_2 \rangle$. This follows by $\forall \text{Elim from M1}$.

Induction step: suppose $M \models \langle s \rangle \oplus \langle s_2 \rangle = \langle s \oplus s_2 \rangle$; we show that $M \models \langle a : s \rangle \oplus \langle s_2 \rangle = \langle (a : s) \oplus s_2 \rangle$ for each character. $(a : s) \oplus s_2 = a : (s \oplus s_2)$, so $\langle (a : s) \oplus s_2 \rangle = c \oplus \langle s \oplus s_2 \rangle$ and $\langle a : s \rangle = c \oplus \langle s \rangle$ (where c is the constant that denotes the length-one string [a] in \S), so what we want to show is that $M \models (c \oplus \langle s \rangle) \oplus \langle s_2 \rangle = c \oplus \langle s \oplus s_2 \rangle$. By M3, it suffices to show that $M \models c \oplus (\langle s \rangle \oplus \langle s_2 \rangle = c \oplus \langle s \oplus s_2 \rangle$. But this follows from the IH given that M is closed under =Intro and =Elim.

(c) (30%) Using what you showed in parts (a) and (b), prove that for any closed term t in the language of strings, $t = \langle \llbracket t \rrbracket_{S} \rangle$ is a theorem of M.

Reminder: $[t]_s$ is the denotation of t in the standard string structure.

We prove this by induction on the construction of t.

Base case: t is an individual constant: either "", in which case $\langle \llbracket t \rrbracket_{S} \rangle = \langle [] \rangle =$ "", so that the thing we are trying to show M proves is an instance of =Intro, or else it's the constant c denoting a one-character string [a], in which case $\langle \llbracket t \rrbracket_{S} \rangle = \langle [a] \rangle = c \oplus \langle [] \rangle = c \oplus$ "", so that the thing we are trying to show M

proves is $c = c \oplus$ "", which follows from M2. Induction step: t is $t_1 \oplus t_2$, where $M \models t_1 = \langle \llbracket t_1 \rrbracket_{S} \rangle$ and $M \models t_2 = \langle \llbracket t_2 \rrbracket_{S} \rangle$. Since $\llbracket t \rrbracket_{S} = \llbracket t \rrbracket_{S} \oplus \llbracket t \rrbracket_{S} = part h implies that <math>M \models \langle \llbracket t \rrbracket_{S} \rangle \oplus \langle \llbracket t \rrbracket_{S} \rangle = \langle \llbracket t \rrbracket_{S} \rangle$.

Since $\llbracket t \rrbracket_{S} = \llbracket t_{1} \rrbracket_{S} \oplus \llbracket t_{2} \rrbracket_{S}$, part b implies that $M \models \langle \llbracket t_{1} \rrbracket_{S} \rangle \oplus \langle \llbracket t_{2} \rrbracket_{S} \rangle = \langle \llbracket t \rrbracket_{S} \rangle$. But then (by =Elim), $M \models t_{1} \oplus t_{2} = \langle \llbracket t \rrbracket_{S} \rangle$, i.e. $M \models t = \langle \llbracket t \rrbracket_{S} \rangle$.

(d) (15%) Let t_1 and t_2 be any closed terms in the language of strings. Using what you showed in (c), prove that if the sentence $t_1 = t_2$ is true in S, then it is a theorem of M.

Suppose $t_1 = t_2$ is true in \S ; then $\llbracket t_1 \rrbracket_{\S} = \llbracket t_2 \rrbracket_{\S}$. But by part (c), $M \models t_1 = \langle \llbracket t_1 \rrbracket_{\S} \rangle$ and $M \models t_2 = \langle \llbracket t_2 \rrbracket_{\S} \rangle$; so by the transitivity of identity, $M \models t_1 = t_2$.

2. Let M+ be the result of adding to M:, for any two distinct constants c and c' of the language of strings other than "", each of the following axioms:

M4
$$\forall x(c \oplus x \neq "")$$

M5 $\forall x \forall y(c \oplus x = c \oplus y \rightarrow x = y)$
M6 $\forall x(c \oplus x \neq c' \oplus x)$

THERE WAS A TYPO IN THE STATEMENT OF THIS PROBLEM! A prime symbol was missing from the statement of M5, which should have been

M5'
$$\forall x \forall y (c \oplus x = c' \oplus y \rightarrow x = y)$$

My apologies. Those who struggled to solve the problem as written will receive generous credit.

(a) (5%) Show that for any two distinct strings s and t, $\langle s \rangle \neq \langle t \rangle$ is a theorem of M+.

We show by induction that every string t has the following property: for all $s \neq t$, $M \models \langle s \rangle \neq \langle t \rangle$.

Base case: t = [], so $\langle t \rangle = ""$. Then if $s \neq t$, s = (a : s') for some character a and string s', so $\langle s \rangle = c \oplus \langle s' \rangle$ (where c is the constant that denotes [a]). Thus, $\langle s \rangle \neq \langle t \rangle$ follows from M4.

Induction step: t = (a : t'), where t' has the property in question; then $\langle t \rangle = c \oplus \langle t' \rangle$, where c is the constant for a. Now suppose $s \neq t$. There are three possible cases. (i) s = []; (ii) s = (b : s') where $s' \neq t'$; (iii) s = (b : t') where $b \neq a$.

In case (i), $\langle s \rangle =$ ""; then $\langle s \rangle \neq \langle t \rangle$ follows from M4.

In case (ii), we have $M \models \langle s' \rangle \neq \langle t' \rangle$ by the induction hypothesis. Substituting $\langle s' \rangle$ and $\langle t' \rangle$ for x and y in M5', and contraposing, we have that $M \models c \oplus \langle s' \rangle \neq c' \oplus \langle t' \rangle$, where c' is the constant that denotes b in the standard string structure.

In case (iii), we have that $\langle s \rangle = c' \oplus \langle t' \rangle$, where c' is the constant for b. So by axiom M6, we have $M \models \langle s \rangle \neq \langle t \rangle$.

(b) (5%) Using what you showed in part (a) and in part (c) of the previous exercise, conclude that for any closed terms t_1 and t_2 of the language of strings, if $t_1 \neq t_2$ is true in \mathbb{S} , it is a theorem of M+.

Suppose t_1 and t_2 are terms such that $t_1 \neq t_2$ is true in S. Then $[t_1]_S \neq [t_2]_S$, so by part a, M+ proves $\langle [t_1]_S \rangle \neq \langle [t_2]_S \rangle$. By part (c) of the previous exercise, M+ also proves $t_1 = \langle [t_1]_S \rangle$ and $t_2 = \langle [t_2]_S \rangle$. So by two applications of =Elim, we can conclude that M+ proves $t_1 \neq t_2$.

(c) (5%) Using what you showed in part (b) of this exercise and part (d) of the previous exercise, conclude that if P is any sentence of the language of strings that does not include any quantifiers or the predicate \leq and is true in \mathbb{S} , P is a theorem of M+.

We show by induction that every quantifier and \leq -free formula P has the following property: whichever of P and $\neg P$ is true in \mathbb{S} is a theorem of M+. Base case: if P is an atomic formula and doesn't include \leq or any free variables, it's of the form $t_1 = t_2$ for some closed terms t_1 and t_2 . Part (d) of problem 1 says that this is a theorem of M (and hence of M+) if it's true in \mathbb{S} , and part (b) of the present problem says that its negation is a theorem of M+ if the negation is true in \mathbb{S} (i.e., if the identity formula is false in \mathbb{S}). Induction steps:

- (i) Suppose P has the property. Then $\neg P$ also has it. If it's true in \mathbb{S} , P is false, so by the IH $M+ \models \neg P$; if it's false in \mathbb{S} , P is true, so by the IH $M+ \models P$, in which case we also have $M+ \models \neg \neg P$ (since $P \models \neg \neg P$).
- (ii) Suppose P and Q have the property. Then $P \wedge Q$ also has it: if it's true in S, P and Q are too, so $M+ \models P$ and $M+ \models Q$, so $M+ \models P \wedge Q$ by \wedge Intro; if it's false in S, either P or Q is false, so either $M+ \models \neg P$ or $M+ \models \neg Q$, and in either case $M+ \models \neg (P \wedge Q)$ (since $\neg P \models \neg (P \wedge Q)$ and $\neg Q \models \neg (P \wedge Q)$.
- (iii) Similarly, if P and Q has the property, $P \to Q$ has it: if it's true in \mathbb{S} , then either P is false in \mathbb{S} (in which case $M+ \models \neg P$ and so $M+ \models P \to Q$), or Q is true in \mathbb{S} (in which case $M+ \models Q$ and so again $M+ \models P \to Q$). If it's false in \mathbb{S} , then P is true and Q is false, so $M+ \models P$ and $M+ \models \neg Q$, so $M+ \models \neg (P \to Q)$.
- (iv) The case of disjunction is similar.