INTELIGENCIA ARTIFICIAL PARA JUEGOS

SESION 1

Dr. Edwin Villanueva Talavera

Contenido

- Revisión de IA
- IA en Juegos
- Agentes Inteligentes y Entornos

Bibliografía:

- Stuart Russell & Peter Norvig "Artificial Intelligence: A modern Approach",
 Prentice Hall, Third Edition, 2010
- Georgios N. Yannakakis and Julian Togelius: Artificial Intelligence and Games: Springer, 2018,

Definición de IA

- Área de las ciencias de la computación que estudia la automatización del comportamiento inteligente
- A diferencia de la filosofía, psicología y neurociencia, que intentan comprender el cerebro y el comportamiento inteligente, la IA busca construir entidades inteligentes

Definición de IA

Capacidades de una entidad inteligente

Inteligencia Computacional

Inteligencia Artificial

- Percepción
- Reconocimiento de Patrones
- Aprendizaje
- Conocimiento
- Raciocinio

Enfoques de estudio de IA:

Sistemas que actúan como humanos: "Test de Turing"

• En 1950 Turing propuso el famoso "Test de Turing" como forma de definir inteligencia (articulo "Computing machinery and intelligence"):

Un sistema es inteligente si un interrogador humano, después de hacer algunas preguntas por escrito, no es capaz de distinguirlo de otro humano.

Sistemas que actúan como humanos: "Test de Turing"

- Para pasar el "Test de Turing" se requiere las siguientes capacidades:
 - Procesamiento de lenguaje natural
 - Representación del conocimiento
 - Raciocinio automatizado
 - Aprendizaje de máquina
- La critica del Test de Turing es que no esta basada en principios básicos, sino en la imitación.
 - Sería similar a intentar construir un avión imitando el vuelo de un pájaro

Sistemas que actúan racionalmente: "El agente racional"

- Comportamiento racional = hacer lo que es esperado en el momento preciso para alcanzar los objetivos, dada la información disponible
- No necesariamente involucran raciocinios lógicos
- ☐ En este enfoque, una maquina inteligente ideal es un agente racional:

entidad computacional que percibe su entorno y actúa maximizando sus posibilidades de éxito en algún objetivo o tarea

Evolución histórica de la IA

Áreas de IA con investigación acelerada

- Deep learning
- Aprendizaje reforzado profundo
- Redes adversariales generativas
- Modelos Híbridos
- ☐ Aprendizaje de Maquina automático
- ☐IA explicable

Etapa Actual: Deep Reinforcement Learning

- \square Volodymir Mnih et al., Nature 02/2015
 - Algoritmo Deep Q-learning utilizado con 49 juegos del Atari 2600
 - Entrada: 84x84 pixeles y score del juego
 - Nivel comparable al de un testador profesional de juegos (mismo algoritmo, arquitectura y híper-parámetros)

Etapa Actual: IBM Watson

- ☐ Sistema capaz de entender lenguaje natural y responder preguntas de una determinada área
 - Ganador del juego Jeopardy en 2011 (tubo acceso a 200 millones de paginas de contenido estructurado y no estructurado, incluyendo Wikipedia)

Desde el 2014 esta comercialmente disponible como sistema consejero.

Etapa Actual: Pasamos el test de Turing?

- ☐ Algunos sistemas claman que ya pasamos
 - ☐ IBM Ask Watson
 - ☐ Chatbot 'Mitsuku', Cleverbot, etc

Type your message to Mitsuku

enter

You: Hi, Mitsuku! Mitsuku: Hi there.

You: I'm writing an article about

chatbots.

Mitsuku: Will you include me in your

essay?

You: Yes, of course I will!

Mitsuku: I am very happy for you. Go

ahead.

Futuro de la IA

Proyección de ganancias del mercado de IA en el mundo

Futuro de la IA

Proyección del mercado de trabajo en IA (USA, UK)

Total Job Postings Referencing AI Skills

¿Por qué estudiar IA para juegos?

□ Aprender IA usando entornos de juegos es estimulante y divertido
 □ Juegos son excelentes laboratorios para probar las capacidades de técnicas de IA
 □ Los grandes desafíos de IA son comúnmente encontrados en juegos
 □ La industria de Juegos necesita de la IA y viceversa

¿Que hacen los humanos con juegos?

- Jugarlos
- □ Desarrollarlos
- ☐ Crear contenido
- □ Aprender
- **□** Distraerse
- ☐ Hacer dinero!

¿Por qué son relevantes los juegos?

- ☐ Entornos interesantes y desafiantes
- ☐ Enormes espacios de estados
- ☐ Son en tiempo real
- ☐ Juegos siempre han motivado grandes avances em IA (Deep Blue, Kinect, Jeopardy, Chinook-Checkers, AlphaGo, ...)

¿Por qué son relevantes los juegos?

- ☐ Son populares
- ☐ Pueden usarse para fines educativos, salud, capacitación, etc.
- ☐ Para entender las habilidades cognitivas y emocionales humanas
- Ricos em contenido audiovisual

Áreas de IA en Juegos

☐ Procesamiento de señales ☐ Percepción (speech recognition, computer vision) ☐ Búsqueda y planificación Representación de conocimiento Razonamiento ■ Procesamiento de lenguaje natural ☐ Machine Learning, etc

Historia de IA en juegos

Inicios:

- □ 1951: Alan Turing crea el algoritmo Minimax y lo usó para jugar Chess
- ☐ 1952: Alexander Douglas desarrolla el primer software que domina el juego Tic-Tac-Toe
- □ 1959: Arthur Samuel ideó el primer algoritmo basado en aprendizaje por refuerzo que aprende a jugar Damas

Historia de IA en juegos

Hitos de IA em juegos de mesa:

- 1992: Se propone TD-Gammon para jugar backgammon, una red neuronal entrenada con diferencias temporales
- □ 1994: Chinook, un método basado en búsqueda en arboles pudo ganar al campeon mundial de damas
- ☐ 1997: El sistema Deep Blue de IBM (con algoritmo Minimax) le gana al campeón mundial de ajedrez Kasparov
- □ 2017: AlphaGo (deep RL) gana al campeon mundial de Go

Historia de IA en juegos

Hitos de IA en videojuegos:

- 2012: El Test de Turing de juegos fue pasado por dos bots de IA en el "Unreal Tournament 2004". Se usó neuroevolución
- 2014: Google DeepMind propone un algoritmo (DQN) que aprendió a jugar + de 40 juegos de Atari 2600 con desempeño super-humano solo desde la entrada de píxeles de la pantalla del juego
- ☐ 2017: Ms Pac-Man is practicamente resuelto por el equipo Microsoft Maluuba usando una arquitectura hibrida de RL

Game-Al en la academia

Hitos de Game Al en la academia:

- ☐ 2001: Fue el nacimiento del área Game-Al con el articulo de Laird & Lent "Human-level Al's killer application: Interactive Computer games"
- ☐ 2005: Nacen las conferencias IEEE CIG y AIIDE
- □ 2009: IEEE Transactions on Computational Intelligence and Al Games
- □ 2018: IEEE Transactions on Games

Game-Al en la academia

Dos principales área de investigación en Game IA:

- ☐ Juegos como entornos para Al: entre 2005 a 2012 el 54% de papers han sido em esta área relativos a agentes para controlar, rutear, tomar decisiones, etc. de NPCs
- □ IA para mejorar juegos: El 46 % de trabajos han sido em esta area para mejorar el diseño del juego o la experiencia del usuario

Interacción Academia-Industria en Game-Al

Gap Histórico:

- ☐ Academia: "La industria no usa nuestras herramientas"
- ☐ Industry: "Academicos no tienen conocimiento del dominio e ignoran nuestros problemas"

Roles actuales de la IA en juegos

G. N. Yannakakis and J. Togelius, "Artificial Intelligence and Games," Springer Nature, 2018

lA para generación de contenido de juegos

G. N. Yannakakis and J. Togelius, "Artificial Intelligence and Games," Springer Nature, 2018

lA para generación de contenido de juegos

	Procedural Content Generation (PCG): Producción atutomática o semiautomática de contenido de juego		
☐ Beneficios de PCG:			
	☐ Disminuye costos de desarrollo		
	☐ Posibilita juegos adaptables		
	☐ Aumenta la re-jugabilidad		
	☐ Abre camino a la cretividad mas alla del humano		

IA para modelar jugadores

G. N. Yannakakis and J. Togelius, "Artificial Intelligence and Games," Springer Nature, 2018

IA para modelar jugadores

Y	'Games cannot be dissociated from emotion and learning". G.N. 'annakakis and A. Paiva "Emotion in Games", in Oxford Handbook of Affective Computing, 2014		
□ ¿Cuál es la sociación entre juegos, emociones y aprendizaje?			
	☐ Los juegos desafían nuestras capacidades cognitivas - aprendemos		
	☐ Al jugar experimentamos emociones pos/neg, y de forma voluntaria!		
	☐ Podemos controlar la experiencia (diferente de TV, peliculas, etc.)		
□ ¿Por que es importante modelar al jugador?			
	☐ Jugadores tienen comportamientos diferentes		
	☐ Jugadores cambian con el tiempo		
	☐ Tener un modelo del jugador es el santo grial para desarrollar juegos con gran potencial de re-jugabilidad		

IA para Jugar (enfoque del curso)

¿Para qué crear agentes de lA que juegan?

http://gameaibook.org

Qué tipos de lA se usan en agentes jugadores

Random				
□Comportamiento pre-especificado				
☐ Búsqueda:				
☐Sin informacion	Se estudiaran en el curso			
□Com informacion (A*)				
□Adversarial				
□Aprendizaje supervisado				
☐Aprendizaje por refuerzo				
□ADP				
☐Diferencias temporales (Qlearning)				

Contenido

- Agentes Inteligentes
- Ambiente de Trabajo (PEAS)

Bibliografía:

Capitulo 2.1 y 2.2 del libro:

Stuart Russell & Peter Norvig "Artificial Intelligence: A modern Approach", Prentice Hall, Third Edition, 2010

Un agente es algo capaz de percibir su ambiente por medio de sensores e de actuar sobre ese ambiente por medio de actuadores.

Ejemplos:

- Agente humano
 - Sensores: Ojos, oídos y otros órganos.
 - Actuadores: Manos, piernas, boca y otras partes del cuerpo.
- Agente robótico
 - Sensores: cámaras y detectores de infrarrojo.
 - Actuadores: varios motores.
- Agente de software
 - Sensores: entrada por teclado, contenido de archivos y paquetes de red.
 - Actuadores: pantalla, disco, envío de paquetes por la red.

 El comportamiento del agente puede ser abstraído matemáticamente por la función del agente:

[f:
$$\mathcal{P}^{\star} \rightarrow \mathcal{A}$$
]

donde:

- $\square \mathcal{P}^*$ es una secuencia de percepciones (historia de todo lo que el agente percibió hasta el momento)
- \square $\mathcal A$ es una acción.
- El programa del agente se ejecuta en una arquitectura física para producir f.
- □ Agente = arquitectura + programa.

Ejemplo: Aspiradora en 2 posiciones

- □ Percepciones: ubicación y estado
 - Ejemplo: [A, sucio]
- Acciones: Izquierda, Derecha, Aspirar, No hacer nada

Ejemplo: Aspiradora en 2 posiciones

Función de agente:

Secuencia de Percepciones	Acción
[A, Limpio]	Derecha
[A, Sucio]	Aspirar
[B, Limpio]	Izquierda
[B, Sucio]	Aspirar
[A, Limpio], [A, Limpio]	Derecha
[A, Limpio], [A, Sucio]	Aspirar
•••	
[A, Limpio], [B, Limpio], [A, Limpio]	Derecha
[A, Limpio], [A, Limpio], [A, Sucio]	Aspirar

Programa de agente:

Si la posición actual está sucia, entonces Aspirar, caso contrario moverse al otro lado.

- Como llenar correctamente la tabla de acciones del agente para cada situación?
- Un agente racional toma la acción "conveniente" basado en aquello que él percibe que le dará éxito.
 - La noción de éxito es capturada por una medida de desempeño.
 - Ejemplos: cantidad de suciedad aspirada, gasto de energía, gasto de tiempo, cantidad de ruido generado, etc.
 - La medida de desempeño debe reflejar el resultado deseado.

Agente racional: es aquel que para cada secuencia de percepciones posible selecciona una acción que se espera venga a maximizar su medida de desempeño, dada la secuencia de percepciones y algún conocimiento interno incorporado al diseñar el agente.

■ Ejercicio: para que medida de desempeño el agente aspirador es racional?

- Racionalidad es diferente de perfección.
 - La racionalidad maximiza el desempeño esperado, mientras la perfección maximiza el desempeño real.
 - La acciones de un agente racional solo dependen de las percepciones obtenidas hasta el momento.
- Los agentes pueden (y deben!) ejecutar acciones para colectar informaciones
 - Un tipo importante de colecta de información es la exploración de un ambiente desconocido.

- El agente también puede (y debe!) aprender, osea, modificar su comportamiento dependiendo de lo que él percibe a lo largo del tiempo.
 - En este caso un agente es llamado de autónomo.
 - Un agente que aprende se adapta a una variedad de ambientes.

Ambiente de Trabajo - PEAS

- Los agentes racionales actúan sobre ambientes de trabajo (problemas).
- Al crear un agente, la primera etapa debe ser siempre especificar el ambiente de trabajo (PEAS).
 - Performance = Medida de desempeño
 - Environment = Ambiente
 - Actuators = Actuadores
 - Sensors = Sensores

Ambiente de Trabajo - PEAS

Ejemplo: Chofer de un taxi automatizado

- Medida de desempeño: viaje seguro, rápido, sin infracciones a las leyes de tránsito, confortable para los pasajeros, maximizando los lucros.
- Ambiente: avenidas, pasajes, otros vehículos, peatones, pasajeros.
- Actuadores: dirección, acelerador, freno, embriague, bocina, palanca de cambio, luces de señalización.
- Sensores: cámara, espejos, sonar, velocímetro, GPS, tacómetro, hodómetro, acelerómetro, sensores del motor (parámetros del motor).

Ambiente de Trabajo - PEAS

Ejemplo: Robot que selecciona piezas defectuosas

- Medida de desempeño: porcentaje de piezas defectuosas correctamente detectadas.
- Ambiente: correa transportadora con piezas; bandejas.
- Actuadores: brazo robótico.
- Sensores: cámara, sensores articulados.

Propiedades del Ambiente de Trabajo

- Completamente observable (vs. Parcialmente Observable)
 - Los sensores del agente dan acceso al estado completo del ambiente en cada instante.
 - Todos los aspectos relevantes del ambiente son accesibles.
- □ Determinístico (vs. Estocástico)
 - El próximo estado del ambiente es completamente determinado por el estado actual y por la acción ejecutada por el agente.
- Episódico (vs. Secuencial)
 - La experiencia del agente puede ser dividida en episodios atómicos (percepción-ejecución de una única acción).
 - La elección de la acción en cada episodio solo depende del proprio episodio.

Propiedades del Ambiente de Trabajo

- □ Estático (vs. dinâmico)
 - El ambiente no cambia mientras el agente delibera.
 - El ambiente es semi-dinámico si este no cambia con el paso del tiempo, pero el desempeño del agente si lo hace.
- □ Discreto (vs. contínuo)
 - Un número limitado y definido de percepciones y acciones.
- Agente único (vs. multi-agente)
 - Un único agente opera solo en el ambiente
 - En ambientes multi-agentes podemos tener
 - Multi-agentes cooperativos
 - Multi-agentes competitivos

Propiedades Específicas de Ambiente de Juegos

- Numero de jugadores: 1 player/ 2 players / multiplayer
- Espacio de acciones y factor de ramificación

- □ Granularidad de tiempo:
 - □ Por turnos (ply)
 - Tiempo real (ticks)

Propiedades Específicas de Ambiente de Juegos

Ejemplos de Ambiente de Trabajo - Juegos

- Ajedrez: 2 jugadores, adversarial, deterministico, completamente observable, bf ~35, ~70 turnos
- \square Go: 2 jugadores, adversarial, deterministico, completamente observable, bf \sim 350, \sim 150 turnos
- □ Backgammon: 2 jugadores, adversarial, estocástico, completamente observable, bf \sim 250, \sim 55 turnos

Tablero de Go

Tablero de Backgamon

Ejemplos de Ambiente de Trabajo - Juegos

- □ Frogger (Atari 2600): 1 jugador, determinístico, totalmente observable, bf=6
- Montezuma's revenge (Atari 2600): 1 jugador, determinístico, totalmente observable, bf=6

Ejemplos de Ambiente de Trabajo - Juegos

 StarCraft: 2-4 jugadores, estocástico, parcialmente observable, bf>millon

- Un agente queda completamente especificado si se define la función del agente (mapeamiento de secuencias de percepciones en acciones)
- En la práctica es difícil especificar explícitamente la función del agente
- Al diseñar agentes se busca entonces encontrar una forma de representar concisamente la función racional del agente, esto es, se busca implementar un programa de agente para una arquitectura dada

Agente = arquitectura + programa

Agente Dirigido por Tabla

Function TABLE_DRIVEN_AGENT(percept) return action
Variables estáticas:

- percepts, una secuencia, inicialmente vacía
- *table*, tabla de acciones, indexada por secuencias de percepciones, de inicio completamente especificada

append **percept** to the end of **percepts**action ← LOOKUP(**percepts**, table)

return action

Desventajas:

- Tabla gigante (ajedrez = 10^{150} entradas)
- Mucho tiempo para construir la tabla
- No tiene autonomía
- Aunque use aprendizaje automático, tardaría mucho en aprender la tabla.

Tipos básicos de agentes

- Agentes reactivos simples
- Agentes reactivos basados en modelos
- Agentes basados en objetivos
- Agentes basados en utilidad

Agente Reactivo Simple

Programa del Agente Reactivo Simple

```
function SIMPLE-REFLEX-AGENT(percept) returns an action persistent: rules, a set of condition—action rules state \leftarrow \text{INTERPRET-INPUT}(percept) \\ rule \leftarrow \text{RULE-MATCH}(state, rules) \\ action \leftarrow rule. \text{ACTION} \\ \text{return } action
```

 El agente funciona apenas si el ambiente fuese completamente observable y la decisión correcta pudiese ser tomada basada apenas en la percepción actual.

Agente reactivo basado en modelo

Programa del Agente Reactivo Basado en Modelo

```
function MODEL-BASED-REFLEX-AGENT(percept) returns an action persistent: state, the agent's current conception of the world state model, a description of how the next state depends on current state and action rules, a set of condition—action rules action, the most recent action, initially none state \leftarrow \text{UPDATE-STATE}(state, action, percept, model)
rule \leftarrow \text{RULE-MATCH}(state, rules)
action \leftarrow rule.\text{ACTION}
return\ action
```

Agente basado en objetivo

Agente basado en utilidad

Representación de estados en agentes

Tipos de Representación de Estados:

Atómica

Estructurada

Factorada

Representación de estados en agentes

Consideraciones para representacion de estados en juegos:

- Representación depende del tipo de salida del juego:
 - juegos textuales -> strings,
 - Juegos de tableros -> matriz de posiciones, etc)
- El mismo juego puede ser representado en varias formas. Por ejemplo, un juego de carreras de carros:
 - Lista de posiciones y velocidades de todos los carros (vista externa)
 - Lista de distancias y ángulos a todos los otros carros (vista interna)
- Representación es crucial para el resto del diseño del agente

Preguntas?