

Detailed Course 2.0 on Linear Algebra For IIT JAM' 23

Ace your preparation with Top Educators

Get 20% off* on IIT JAM subscriptions

Limited period offer

Unlimited access to Live and Recorded Classes

PYQs, Live Test and Quizzes

In class doubt solving by Top Educators

Structured Batches & courses

Subscribe Now

Use code GPSIR

For more details, contact: 8585858585

"TEC apply, as available on the platform.

Ace your preparation with Top Educators

Get 20% off* on CSIR-UGC NET subscriptions

Limited period offer

Unlimited access to Live and Recorded Classes

Learn from Top Educators

Comprehensive Notes and PDFs

Prepare with Unacademy Lite Subscription

Subscribe Now

Use code

For more details, contact: 8585858585

*T&C apply, as available on the platform.

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Gajendra Purohit

Enroll Now

USE CODE GPSIR FOR 10% OFF

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Orthogonal matrix: A be a matrix A is called orthogonal matrix if $AA^T = A^TA = I$

Note:

(1)
$$AA^T = I$$

 $|AA^T| = 1 \Rightarrow |A| |A^T| = 1$
 $\Rightarrow |A|^2 = 1 \Rightarrow |A| = \pm 1$

Determinant of an othrogonal matrix is ± 1 and $A^T = A^{-1}$.

(2) Sum of square of elements of each row or column are 1 and sum of the product of element of any row or column with corresponding elements of any other (column) is always zero. Q.1. Number of orthogonal matrix of order n whose entries are

0 & 1 only

(a) n

(b) n!

(c) n - 1

(d) None of these

Property:

(1) If A is orthogonal then kA is orthogonal if $k = \pm 1$

Example: If A is orthogonal then 3A is not orthogonal.

- (2) If A & B are orthogonal then A + B cannot orthogonal but AB is always orthogonal.
- (3) If A is orthogonal then Aⁿ is orthogonal.

Q.2. If A is orthogonal matrix then which of the following are true?

- (a) 2A is orthogonal
- (b) A² is orthogonal
- (c) -A is orthogonal
- (d) None of these

Q.3. The number of orthogonal matrix of order 5 whose entries are 0 & 1 only

(a) 5^2

(b) 5!

(c) 120

(d) 0

Unitary matrix: A matrix A is said to be unitory if

$$AA^{\theta} = A^{\theta}A = I$$

Q4. The matrix $M = \begin{bmatrix} \cos \alpha & \sin \alpha \\ i \sin \alpha & i \cos \alpha \end{bmatrix}$ is a unitary matrix

when α is

(a)
$$(2n+1)\frac{\pi}{2}$$
, $n \in \mathbb{Z}$ (b) $(3n+1)\frac{\pi}{3}$, $n \in \mathbb{Z}$

when
$$\alpha$$
 is

(a) $(2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$ (b) $(3n+1)\frac{\pi}{3}, n \in \mathbb{Z}$

(c) $(4n+1)\frac{\pi}{4}, n \in \mathbb{Z}$ (d) $(5n+1)\frac{\pi}{5}, n \in \mathbb{Z}$

- Q.5. If A and B are orthogonal matrix then which of the following is true?
 - (a) A + B is orthogonal (b) AB is orthogonal
 - (c) 2A is orthogonal (d) B² is orthogonal

Let <u>u</u> be a real $n \times 1$ vector satisfying $\underline{u}'\underline{u} = 1$ where \underline{u}' is Q.6. the transpose of <u>u</u>. Define A = I - 2uu' where I is the nth order identity matrix. Which of the following statements are true?

> A is singular (a)

- $A^2 = A$ (b)
- Trace (A) = n 2 (d) $A^2 = I$ (c)

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Permutation Matrix:

A matrix whose entries are either 0 or 1 and each row sum and each column sum is 1 then this matrix is called permutation matrix.

Properties :

- (1) Number of permutation matrix of order n are n!.
- (2) Permutation $\sigma \in S_n$ corresponding to permutation matrix. Let $I = [c_1 \ c_2 \ \ c_n]$ is a identity matrix where c_i are column and $A = [c_{\sigma(1)}, c_{\sigma(2)} \ \ c_{\sigma(n)}]$ is permutation matrix then permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & & \sigma(n) \end{pmatrix}.$

(3) Permutation matrix corresponding to permutation $\sigma \in S_r$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \end{pmatrix}$$

permutation then $A = [c_{\sigma(1)} \ c_{\sigma(2)} \ \ c_{\sigma(n)}]$ is a permutation matrix.

- (4) Trace of permutation matrix is number of self inverse element in permutation.
- (5) Determinant of matrix: Let A be a matrix corresponding to permutation $\sigma \in S_n$. Then $\det(A) = |A| = (-1)^d$ Where d is number of transposition.

- (6) Every permutation matrix is orthogonal/unitary matrix.
- (7) If $\sigma \in S_n$ be a permutation and $O(\sigma) = k$, then $A^k = I$

Let
$$\sigma = (1 \ 2 \ 3 \ 4) \in S_4$$

Q.7. Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$$
 and matrix A is denoted to the

one whose ith column is the

σ(i)th column of the identity matrix I. Which of the following is true?

(a)
$$A^2 = A$$

(b)
$$A^{-4} = A$$

(a)
$$A^2 = A$$
 (b) $A^{-4} = A$ (c) $A^{-5} = A$ (d) $A = A^{-1}$

(d)
$$A = A^{-1}$$

Q.8. Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 \\ 6 & 5 & 7 \end{pmatrix}$$
 and matrix A is

denoted to the one whose ith column is the $\sigma(i)$ th column of the identity matrix I. Which of the following is true?

- (a) A is involutory matrix (b) |A| = 1
- (c) Tr(A) = 1 (d) $A^2 = A^{-1}$

Q.9. Let
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

. Then which of the

following is true?

(a) A is involutory matrix

- (b) |A| = 1
- (c) A is idempotent matrix
- (d) |A| = 0

RANK BOOSTER COURSE UNIT 2 CSIR NET 2022

23rd AUGUST

Gajendra Purohit

Enroll Now

GPSIR
FOR 10% OFF

Enroll Now

GPSIR FOR 10% OFF

unacademy

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 - 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	Total ₹ 21,780
24 months	₹ 908 / mo

0 12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR