1. Wann heißt eine Funktion f in einem Punkt x_0 stetig? Welche äquivalente Definitionen der Stetigkeit gibt es (wenigstens drei verschiedene)?

f is continuous in x_0 whenever one of the following equivalent conditions holds

- $\forall (x_n) \in D$: $\lim_{n \to \infty} x_n = x \Rightarrow f(\lim_{n \to \infty} x_n) = f(x) = \lim_{n \to \infty} f(x_n)$
- $\forall \epsilon > 0 \colon \exists \delta > 0 \colon \forall x \in D, |x x_0| < \delta \colon |f(x) f(x_0)| < \epsilon$
- for any neighbourhood V of $f(x_0)$ there is a neighbourhood U of x_0 in D such that $f(U) \subset V$
- 2. Wann heißt eine Funktion f auf einer Menge $D \subseteq \mathbb{R}$ bzw. $D \subseteq \mathbb{C}$ stetig? f is continuous on the set D whenever f is continuous at all points $a \in D$
- 3. **TODO** Sei $U = \{a_1, a_2, \dots, a_N\} \subset \mathbb{R}$ eine endliche Menge reeller Zahlen. Gib eine Funktion $f \colon \mathbb{R} \to \mathbb{R}$ an, die auf $D = \mathbb{R} \setminus U$ stetig, auf U aber unstetig ist.

$$f(x) = \begin{cases} 1 & x \in U \\ 0 & \text{otherwise} \end{cases}$$

Since any convergent $(x_n) \in \mathbb{R}$ will only contain at most finitely many element from U, and consequently if $x = \lim_{n \to \infty} x_n$, then $\lim_{n \to \infty} x_n$

4. Gib eine Fuktion $f: \mathbb{R} \to \mathbb{R}$ an, die nirgends stetig ist.

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$$

5. Wie lautet der Zwischenwertsatz?

Consider any $D = [a, b] \subset R$ interval, and let $f: D \to \mathbb{R}$ be continuous. Then f takes on any value in $[f(a), f(b)] \cup [f(b), f(a)]$

- 6. **TODO** Warum hat jede durch eine stetige Funktion $g: [0,1] \to [0,1]$ gegebene Iteration $x_{n+1} = g(x_n)$ (mindestens) einen Fixpunkt?
- 7. Wie lässt sich unter Benutzung des Zwischenwertsatzes zeigen, dass die Gleichung $\exp(x) = -x$ eine reelle Lösung besitzt?

Answer: Consider the $g(x) = e^x - x$ function on the [1/e, 1] interval. $g(1/e) = e^{1/e} - e < e^1 - e = 0$ and $g(1) = e^1 - 1 > 2 - 1 > 0$, thus from the intermediate value theorem there must be some $c \in [1/e, 1]$: g(c) = 0.

8. Wann heißt eine Funktion $f: D \to \mathbb{R}, D \subseteq \mathbb{R}$, gleichmäßig stetig? Unter welcher (hinreichenden) Bedingung sind stetige Funktionen gleichmäßig stetig?

Answer: f is uniformly continuous if $\forall \epsilon > 0 \colon \exists \delta > 0 \colon \forall x,y \in D \colon |x-y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$

If D is closed and bounded, and f is continuous on D, then f is also uniformly continuous on D.

9. **TODO** Welche dieser Funktionen $f: \mathbb{R} \to \mathbb{R}$ sind stetig, welche gleichmäßig stetig?

$$|x|, \exp(x), x^2, \sin(x), \frac{x^3+1}{x^4-1}, \lceil x \rceil - x$$

Hierbei bezeichnet die Gauß-Klammer, $\lceil x \rceil$, die größte ganze Zahl, die kleiner oder gleich x ist.

Answer:

- (a) |x| is continuous and furthermore is absolute continuous: consider $\epsilon > 0$ and some $x,y \in \mathbb{R}$: $|x-y| < \epsilon$ then $\epsilon > |x-y| > |x| |y|$ and $\epsilon > |y-x| > |y| |x|$ and thus $||x| |y|| < \epsilon$. So $|f(x) f(y)| = ||x| |y|| < \epsilon$ and consequently it's absolute continuous.
- (b) $\exp(x)$ is continuous, since it's defined by a powerseries with convergence radius $\rho = \infty$. A powerseries is continuous at every point inside it's convergence radius. It's not absolutely continuous: consider some $\epsilon > 0$ and any point $a \in \mathbb{R}$. $\exp(a+h) \in (e^a \epsilon, e^a + \epsilon)$
- (c) x^2 is continuous, since x is continuous, and since the multiple of two continuous function is continuous, thus so is x^2 . On the other hand it's not
- 10. Gib stetige Funktionen $f: D \to \mathbb{R}, D \subseteq \mathbb{R}$ an, die ihr Supremum annehmen, und solche, die ihr Supremum nicht annehmen. Unter welcher (hinreichenden) Bedingung nimmt eine stetige Funktion ihr Supremum an?

Answer: Let D = [0,1) and $f: D \to \mathbb{R}$, $f(x) = x^2$. supf = 1, but f does not take on it's supremum (because $f(x) = 1 \Leftrightarrow x = \pm 1 \notin D$).

Let D = [0,1] and $f: D \to \mathbb{R}$, $f(x) = x^2$. sup $f = \max f = 1$, thus f takes on it's supremum.

If D is bounded and closed, then $f: D \to \mathbb{R}$ takes on its supremum.

11. **Answer:** Sind die Bilder von Intervallen unter stetigen Abbildungen $f: \mathbb{R} \to \mathbb{R}$ wieder Intervalle? Sind stetige Bilder offener Intervalle wieder offene Intervalle?

Answer: Yes (Why?). The image of $f:(0,1) \to R$ with f(x) = 1 is a closed inteval [1,1].

12. Wo sind Potenzreihen stetig? Wo sind sie gleichmäßig stetig?

Answer: Consider p(x) powerseries centered at 0 with convergence radius of $\rho \in [0, \infty)$, and circle of convergence $C = \{x : |x| < \rho\}$. p is continuous at each point of C. Consider any $D \subset C$ that is closed and bounded. Then f is uniformly continuous on D. Contrary to the normal continuity, uniform continuity cannot be extended to the whole C by considering a closed circle of radius $0 \le r < \rho$ inside C, and taking the limit $r \to \rho$.

13. Wann existiert die Inverse f^{-1} einer stetigen Funktion $f:[a,b] \to \mathbb{R}$? Wann ist die Inverse stetig?

Answer: f^{-1} exists exactly when f is strictly monotonous. Whenever the inverse of a continuous function exists, it's always continuous.

14. Was ist ein normierter Vektorraum über \mathbb{R} bzw. \mathbb{C} ? Was ist ein Banachraum?

Answer: Consider V vectorspace over \mathbb{K} . Then the $\|.\|: V \to \mathbb{R}$ function is a norm, if it satisfies the following conditions $(\forall x, y \in V, \lambda \in \mathbb{K})$:

- $||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0$
- $\bullet \|\lambda x\| = |\lambda| \|x\|$
- $||x + y|| \le ||x|| + ||y||$

A normed vectorspace is complete, if every Cauchy-sequence is convergent (both property considered under the norm). A Banach-space is a complete normed vectorspace.

15. Was bedeutet Konvergenz in einem normierten Vektorraum?

Answer: Let V is a vectorspace with norm $\|.\|: V \to \mathbb{R}$. We say that $(x_n) \in V$ converges if $\exists v \in V : \lim_{n \to \infty} \|v_n - v\| = 0$

16. Wie ist die Supremums-Norm für beschränkte, stetige Funktionen $f: D \to \mathbb{R}, D \subseteq \mathbb{R}$, definiert? Warum ist sie tatsächlich eine Norm?

Answer: $||f||_{sup} = \sup\{|f(x)| : x \in D\}.$

The above defined $\|.\|_{sup}$ function satisfies the norm properties:

 $\forall f, g: D \to \mathbb{R}, \forall \lambda \in \mathbb{R}$:

- $||f|| \ge 0$, $||f|| = 0 \Leftrightarrow f = 0$
- $\|\lambda f\| = \sup\{|\lambda f(x)| : x \in D\} = \sup\{|\lambda||f(x)| : x \in D\}$ = $|\lambda| \sup\{|f(x)| : x \in D\} = |\lambda| \|f\|$
- $||f + g|| = \sup\{|f(x) + g(x)| : x \in D\} \le \sup\{|f(x)| + |g(x)| : x \in D\} \le \sup\{|f(x)| + \sup\{|g(y)| : y \in D\} : x \in D\} = \sup\{|f(x)| + ||g|| : x \in D\} = \sup\{|f(x)| : x \in D\} + ||g|| = ||f|| + ||g||$
- 17. **TODO**Warum ist der Raum der beschränkten, stetigen Funktionen, $\mathcal{BC}(D, \mathbb{R})$, mit der Supremums-Norm ein Banachraum?

Answer:

18. Gib ein Beispiel einer Funktionenfolge $f_n: [0,1] \to [0,1]$ an, die punktweise aber nicht gleichmäßig konvergiert.

Answer: $f_n(x) = x^n$

19. Auf welchen (möglichst großen) Intervallen konvergieren folgende Funktionenfolgen gleichmäßig?

$$f_n(x) = \frac{1}{1+n^2x^2}, f_n(x) = \exp(-nx^2), f_n(x) = \sum_{k=0}^n (-1)^k x^k$$

Answer:

20. Was ist die Umkehrfunktion von $\exp(x)$. Welche Funktionalgleichung erfüllt sie? Wo ist sie definiert? Wo ist sie stetig?

Answer: Since exp is strictly monotonous and continuous, it's inverse exists and it's also continuous at its respective domain of definition:

$$\log \colon \mathbb{R}^+ \to \mathbb{R}, \log := \exp^{-1}$$

Since it's the inverse of a continuous function, it's continuous everywhere.

21. Wie ist die allgemeine Potenz x^{α} für $\alpha \in \mathbb{C}$ und $x \in \mathbb{R}^+$ definiert?

Answer: $x^{\alpha} = e^{\log x\alpha}$