Algebra Boole'a

Metoda wnioskowania boolowskiego pochodzi z 1847 roku od Boole'a i była rozwijana przez innych matematyków końca XIX-go wieku. Idee te zostały ponownie odkryte w kontekście nowych zastosowań w naukach przyrodniczych końca XX-go wieku.

Definicja 1. Niech X będzie dowolnym zbiorem, a n dowolną, ustaloną liczbą naturalną. Dowolne przekształcenie $d:X^n\to X$ nazywamy n-argumentowym działaniem określonym w zbiorze X, przy czym działaniem zero-argumentowym nazywamy dowolnie ustalony element zbioru X.

Definicja 2. Niech X będzie dowolnym zbiorem, a n dowolną, ustaloną liczbą naturalną. *Strukturą algebraiczną* nazywamy strukturę składającą się ze zbioru X wraz z pewną liczbą działań d_i $(i=1,\ldots,n)$ określonych w tym zbiorze. Strukturę algebraiczną zapisujemy w postaci układu (X,d_1,\ldots,d_n) .

Definicja 3. Niech $(B, \vee, \wedge, \neg, 0, 1)$ będzie strukturą algebraiczną, w której B jest niepustym zbiorem, \vee i \wedge są działaniami dwuargumentowymi, \neg jest działaniem jednoargumentowym, a 0 i 1 działaniami zero-argumentowymi. Strukturę tę nazywamy *algebrą Boole'a*, jeżeli działania $\vee, \wedge, \neg, 0, 1$ są tak określone, że spełniają następujące cztery warunki:

- 1. Działania ∨ i ∧ są łączne i przemienne.
- 2. Działanie ∨ jest rozdzielne względem ∧ i odwrotnie.
- 3. Dla dowolnego $a \in B$:

```
a \lor (\neg a) = 1,

a \land (\neg a) = 0,

a \lor 0 = a,

a \land 1 = a.
```

4. Elementy 0 i 1 są różne.

Elementy zbioru *B* nazywamy *stałymi boolowskimi*, zaś każdą zmienną przyjmującą wartości ze zbioru *B* nazywamy *zmienną boolowską*.

Prawa pochłaniania:

```
\begin{aligned} a \lor a &= a, \\ a \lor (a) &= a, \\ a \land a &= a, \\ a \land (a \lor b) &= a. \end{aligned}
```

Prawa de Morgana:

$$\neg(a \lor b) = (\neg a) \land (\neg b),$$

$$\neg(a \land b) = (\neg a) \lor (\neg b).$$

Dwuwartościową algebrą Boole'a (BA) nazywamy algebrę Boole'a dla której $B = \{0, 1\}$, zaś działania \vee, \wedge, \neg odpowiadają logicznej alternatywie, koniunkcji i negacji.

Stałe boolowskie 0 i 1 wraz ze wszystkimi zmiennymi boolowskimi algebry BA i ich zaprzeczeniami nazywamy literałami boolowskimi.

Definicja 4. Niech $BA = (B, \lor, \land, \neg, 0, 1)$ będzie dwuwartościową algebrą Boole'a. Zbiór wyrażeń (formuł) boolowskich algebry BA jest najmniejszym zbiorem spełniającym następujące dwa warunki:

- 1. Dowolna stała lub zmienna boolowska algebry BA należy do zbioru formuł boolowskich algebry BA.
- 2. Jeśli a, b są formułami boolowskimi algebry BA, to również $\neg a, a \land b$ i $a \lor b$ są formułami boolowskimi algebry BA.

Wartościowanie W wyrażeń (formuł) boolowskich algebry BA jest funkcją przyporządkowującą każdemu wyrażeniu boolowskiemu liczbę ze zbioru $\{0,1\}$. Dla dowolnego wyrażenia boolowskiego b, liczbę W(b) nazywamy wartością wyrażenia b i obliczamy ją w zwykły sposób, tzn. poprzez wykonanie wszystkich działań występujących w wyrażeniu b zgodnie z ich określeniem oraz w kolejności wskazywanej przez nawiasy występujące w wyrażeniu b.

Definicja 5. Niech $BA = (B, \lor, \land, \neg, 0, 1)$ będzie dwuwartościową algebrą Boole'a, a n dowolną, ustaloną liczbą naturalną. Dowolną funkcję $f: B^n \to B$ nazywamy funkcją boolowską n zmiennych.

Funkcję boolowską określamy za pomocą odpowiedniego wyrażenia boolowskiego. Można także opisywać funkcję boolowską za pomocą tabelki zawierającej wszystkie możliwe argumenty ze zbioru $\{0,1\}^n$ wraz z odpowiadającymi im wartościami ze zbioru $\{0,1\}$.

Przykład: $f(x_1, x_2, x_3) = (x_1 \lor x_2) \land (\neg x_2 \lor x_3)$.

Twierdzenie 1. Funkcję boolowską n-zmiennych f można przedstawić w dwóch postaciach:

- 1. $f(x) = \bigvee (x_1^{a_1} \wedge \ldots \wedge x_n^{a_n})$, gdzie $a = (a_1, \ldots, a_n)$ przebiega zbiór $f^{-1}(1) \subseteq \{0, 1\}^n$,
- 2. $f(x) = \bigwedge(x_1^{a_1} \vee \ldots \vee x_n^{a_n})$, gdzie $a = (a_1, \ldots, a_n)$ przebiega zbiór $f^{-1}(0) \subseteq \{0, 1\}^n$,

przy czym oznaczenie $x_i^{a_i}$ jest równe x_i , jeśli $a_i = 1$ i $\neg x_i$, jeśli $a_i = 0$.

Postać pierwszą nazywamy alternatywną postacią normalną (disjunctive normal form) i oznaczamy przez DNF_f . Postać drugą nazywamy koniunkcyjną postacią normalną (conjunctive normal form) i oznaczamy przez CNF_f .

Z powodów technicznych szczególnie atrakcyjna jest sytuacja, gdy do przedstawienia funkcji boolowskiej wystarczą dwa tzw. poziomy logiczne: poziom koniunkcji (na którym występuje koniunkcja stałych lub zmiennych boolowskich) i poziom alternatywy (gdzie wyrażenia koniunkcyjne z pierwszego poziomu tworzą alternatywę). Taką postać funkcji boolowskiej nazywamy wielomianem boolowskim.

Definicja 6. Niech f będzie funkcją boolowską n-zmiennych.

- 1. *Jednomianem boolowskim* (monom) nazywamy dowolne wyrażenie boolowskie będące koniunkcją literałów boolowskich. *Kosztem obliczeniowym* jednomianu boolowskiego nazywamy liczbę literałów boolowskich two-rzących jednomian boolowski.
- 2. Wielomianem boolowskim (polynomial) nazywamy dowolne wyrażenie boolowskie będące alternatywą jednomianów boolowskich. Kosztem obliczeniowym wielomianu boolowskiego nazywamy sumę arytmetyczną kosztów obliczeniowych wszystkich jednomianów boolowskich tworzących wielomian boolowski.
- 3. Wielomian boolowski p oblicza funkcję boolowską f wtedy i tylko wtedy, gdy $\forall x \in f^{-1}(B): p(x) = f(x)$.
- 4. Wielomian boolowski p nazywamy wielomianem boolowskim o najmniejszym koszcie obliczeniowym dla funkcji boolowskiej f wtedy i tylko wtedy, gdy p oblicza f i nie istnieje inny wielomian boolowski obliczający f i mający mniejszy koszt obliczeniowy niż p.

Proces prowadzący do przedstawienia funkcji boolowskiej w postaci wielomianu boolowskiego o najmniejszym koszcie obliczeniowym nazywamy *minimalizacją funkcji boolowskiej*. Definicję wielomianu boolowskiego obliczającego daną funkcje boolowską spełnia postać DNF tej funkcji, a zatem dla każdej funkcji boolowskiej istnieje chociaż jeden wielomian boolowski obliczający tę funkcję. Zatem istnieje również wielomian o najmniejszym koszcie obliczeniowym.

Definicja 7. Niech f będzie funkcją boolowską n-zmiennych.

Funkcję boolowską $f_{imp}(x_1,\ldots,x_n)=x_{i_1}^{a_1}\wedge\ldots\wedge x_{i_k}^{a_k}$, gdzie $\{x_{i_1},\ldots,x_{i_k}\}\subseteq\{x_1,\ldots,x_n\}$ oraz $a_i\in\{0,1\}$ (dla $i=1,\ldots,k$), nazywamy implikantem funkcji boolowskiej f wtedy i tylko wtedy, gdy spełniony jest następujący warunek: $\forall x\in B^n$: $(f_{imp}(x)=1\Rightarrow f(x)=1)$.

Zbiór wszystkich implikantów funkcji f oznaczamy przez I(f).

Definicja 8. Niech f będzie funkcją boolowską n-zmiennych i niech implikant $g \in I(f)$. Implikant g nazywamy implikantem pierwszym, jeśli jest implikantem minimalnym ze względu na liczbę czynników. Zbiór wszystkich implikantów pierwszych funkcji f oznaczamy przez PI(f).

Implikant pierwszy danej funkcji boolowskiej ma taką własność, że odrzucenie z niego dowolnego czynnika powoduje, że powstała w ten sposób funkcja nie jest już implikantem.

Twierdzenie 2. Wielomian boolowski o najmniejszym koszcie obliczeniowym dla funkcji boolowskiej f jest zbudowany tylko z implikantów funkcji f.