

Lecture 13: Differential Equations Review

Haunter's Goals for the Day

- Calculate flux around a closed path using Stokes' Theorem
- Introduce terminology for Differential Equations (DEs)
- Review solving 1st order DEs using:
 - Separation of Variables
 - Integrating Factor Method

9,13 Stokes Theorem

Ex Haunter flies in a triangular path from (0,0,0) to (2,0,0) to (0,-2,2)

and back to the origin. A windstorm

exerts a velocity field of

 $\vec{F} = \langle y, z, x \rangle$

Calculate the work done on Haunter by the storm.

Work = 8 F. Tds

(0,0,0)

To compute directly, we would add up 3 line integrals, one for each leg of the parametrization,

Stokes' Theorem: & F. Fda = 55 (DxF). Ads

Find equation of the plane containing 3 points.

Hint: Ax+By+Cz=D where (A,B,C) are

normal to plane.

Form 2 vectors in plane.

$$\vec{x} = (2,0,0) - (0,0,0) = (2,0,0)$$

$$\vec{v} = (0, -2, 2) - (0, 0, 0) = (0, -2, 2)$$

The cross product uxv is I to the plane,

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{1} & \vec{5} & k \\ 2 & 0 & 0 \\ 0 & -2 & 2 \end{vmatrix} = \langle 0, -4, -4 \rangle$$

$$0x - 4y - 4z = D \Rightarrow -4y - 4z = D$$

To find value of D, plug in any point in plane,

$$(0,0,0) \Rightarrow -4(0)-4(0)=0=0$$

Compute SS (
$$\nabla \times \vec{F}$$
) \vec{n} dS

1) Normal vector n

$$y+z=0 \qquad VG=\langle 0,1,1\rangle$$

$$G(x,y,z) \qquad Choose \langle 0,-1,-1\rangle$$

Unit vector:
$$\vec{n} = \frac{\langle 0, -1, -1 \rangle}{\sqrt{2}}$$

$$\nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$= \left(\frac{\partial}{\partial y} \times - \frac{\partial}{\partial z} z\right) - \left(\frac{\partial}{\partial x} \times - \frac{\partial}{\partial z} y\right) \frac{\partial}{\partial x} z - \frac{\partial}{\partial y} y$$

$$(\nabla \times \vec{F}) \cdot \vec{n} = \langle -1, -1, -1 \rangle \cdot \frac{\langle 0, -1, -1 \rangle}{\sqrt{2}}$$

$$= 0 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$$

$$=\frac{2}{5}=5$$

$$\int 1+f_{x}^{2}+f_{y}^{2}=\int 1+o^{2}+(-1)^{2}=\int 2$$

(4) Shadow Region

Look at just (x,y) components of our 3 points.

$$(0,0)$$
 $(2,0)$ $(0,-2)$ $(0,-2)$ $(0,-2)$ $(0,-2)$

$$y=x-\lambda$$

Shadow is a triangle

5) Integrate

 $SS(O \times \vec{F}) \cdot \vec{n} dS = SS(\nabla \times \vec{F}) \cdot \vec{n} \sqrt{1 + f_x^2 + f_y^2} dA$

$$= \int_{0}^{2} \int_{x-2}^{0} \left(\sqrt{2} \right) \left(\sqrt{2} \right) dy dx$$

$$= 2 \int_0^2 \int_{x-2}^{\infty} dy dx$$

$$=250^{2}y/_{x-2}dx$$

$$= 2 \int_{0}^{2} - x + 2 dx$$

$$= 2 \left[-\frac{1}{2} x^{2} + 2x \right]_{0}^{2}$$

$$= 2 \left[-\frac{1}{2} (4) + 2(2) \right]$$

$$= 2 \left[2 \right]$$
Positive work means force
is in same direction as
Haunter's motion.

We use Stokes' Theorem to calculate work/flux line integrals along complicated paths.

In this example, we could have computed the total work by summing 3 line integrals. It should give the same final answer of 4.

Instead of computing 3 line integrals, we chose to use Stokes' Theorem to compute one surface integral. Surface integrals are always nasty to compute, so it was a marginal improvement.

Stokes' Theorem problems are quite frankly too long to include on an in-class midterm exam.

But you have 3 hours for the final exam, so I could put a Stokes' Theorem problem on the final.

. Mwaa-ha-ha! Chapter S: Power Series Method

Def A differential equation (DE) is an equation which contains a derivative, The order of a DE is the number of the highest derivative in the equation. $y''' + 5x^2y' - x'' = 2$ order = 3

Notation for Derivatives

Denton $f'(x), f''(x), \dots, f''(x)$ $y'' + \lambda y' = x$ Deleibnitz $\frac{df}{dx}, \frac{d^{2}f}{dx^{2}}, \dots, \frac{d^{n}f}{dx^{n}}$ $\frac{d^{2}y}{dx^{2}} + 2\frac{dy}{dx} = x$ 3) Subscript $f_{x}, f_{xx}, \dots, f_{xxxxx}$ $y_{xx} + \lambda y_{x} = x$

Def An ordinary DE (ODE) has all derivatives with respect to one independent variable,

A partial DE (PPE) has derivatives in more than one independent variables,

Ex Heat Equation
$$u(x,t)$$
 $U_t = K u_{xx}$

And-order PDE

 $U_t = K u_{xx}$

Def Algebraic terms occur linearly if all terms are separate and to the first power.

xty both linear: x+y, 2x-3y

not linear in both xty: x2+y3, ex+cosy, xy

Linear in y: x2+y, x3y

Def A DE is <u>linear</u> if the dependent variable and all its derivatives occur linearly,

Ex Class if y each DE,

ai)
$$y'' + y' \cos x = 3$$
 $2nd\text{-}order ODE$ Linear

bi) $f_{xx} + f_x f_y = x + y$
 $2nd\text{-}order PDE$ Nonlinear (because of fify)

c.) $\frac{\partial^2 f}{\partial y^2} = tanx + xy^2$
 $2nd\text{-}order ODE$ Linear

Solving 1st-Order ODEs

Deparation of Variables

Distegrating Factor Method

Separation of Variables

we say a 1st-order ODE is separable if we can write it as

$$\frac{dy}{dx} = P(x) Q(y)$$

Move xty terms to separate sides,

$$\frac{1}{Q(y)} dy = P(x) dx$$

Integrate both sides

$$S_{\overline{\alpha(y)}}dy = SP(x)dx$$

$$\frac{dy}{dx}$$
 secx = $\times (1+y^2)$

$$\int \frac{1}{1+y^2} \, dy = \int \times \cos x \, dx$$

$$arctan(y) = xsinx + cosx + C$$

$$y = tan(xsinx + cosx + C)$$

Implicit Solution Explicit Solution

Ex Solve
$$y' = \lambda y$$
,

 $\frac{dy}{dx} = \lambda y$
 $\int_{y}^{1} dy = \int_{\lambda}^{1} dx$
 $lny = \lambda x + C$
 $y = e^{\lambda x + C} = e^{\lambda x}e^{C} = Ke^{\lambda x}$

Integrating Factor Method

To solve a linear 1st-order DE

 $y' + P(x) y = Q(x)$

Multiply both sides by integrating factor $e^{\sum P(x)dx} \left(y' + P(x) y \right) = e^{\sum P(x)dx} Q(x)$

The left side becomes the derivative of the integrating factor times y .

 $\frac{d}{dx} \left(e^{\sum P(x)dx} y \right) = e^{\sum P(x)dx} Q(x)$

Integrate both sides.

Ex Solve
$$x^{2}y' + 3xy = x^{5} - 2$$
.

Rewrite so coefficient of y' is one.

 $y' + \frac{3}{x}y = x^{3} - \frac{2}{x^{2}}$

I.f. $e^{5\frac{3}{x}}dx = e^{3\ln x} = e^{\ln x^{3}} = x^{3}$
 $x^{3}\left[y' + \frac{3}{x}y\right] = x^{3}\left[x^{3} - \frac{2}{x^{2}}\right]$
 $\left(\frac{d}{dx}\left[x^{3}y\right] = \left[x^{6} - 2x\right]dx$
 $x^{3}y = \frac{1}{7}x^{7} - x^{2} + C$
 $y = \frac{1}{7}x^{4} - \frac{1}{x} + \frac{C}{x^{3}}$

You should be good at solving simple 1st-order ODEs.

In some problems in this course, we will have to solve several 1st-order DEs just as part of one problem.