THEORETICAL PART:

Definition (Exponential Functions):

Let a be a fixed, positive real number not equal to 1. The **exponential function with base** a is the function

$$f(x) = a^x$$
.

PROPERTIES (Behaviour of Exponential Functions):

Given a positive real number a not equal to 1, the function $f(x) = a^x$ is

- a decreasing function if 0 < a < 1, with $f(x) \to \infty$ as $x \to -\infty$ and $f(x) \to 0$ as $x \to \infty$, and is
- an increasing function if a > 1, with $f(x) \to 0$ as $x \to -\infty$ and $f(x) \to \infty$ as $x \to \infty$.

In either case, the point (0, 1) lies on the graph of f, the domain of f is the set of real numbers, and the range of f is the set of positive real numbers.

PROCEDURE (Solving Elementary Exponential Equations):

To solve an elementary exponential equation perform the following steps:

- Step 1. Isolate the exponential. Move the exponential containing *x* to one side of the equation and any constants or other variables in the expression to the other side. Simplify, if necessary.
- Step 2. Find a base that can be used to rewrite both sides of the equation.
- Step 3. Equate the powers, and solve the resulting equation.

PRACTICAL PART:

- 1. Sketch the graphs of the following exponential functions:
 - (a) $f(x) = 3^x$
 - (b) $g(x) = \left(\frac{1}{2}\right)^x$

- 2. Sketch the graphs of each of the following functions. State their domain and range.
 - (a) $f(x) = \left(\frac{1}{2}\right)^{x+3}$
 - (b) $g(x) = -3^x + 1$
 - (c) $h(x) = 2^{-x}$

- 3. Solve the following exponential equations.
 - (a) $25^x 125 = 0$
 - (b) $8^{y-1} = \frac{1}{2}$
 - $(c) \left(\frac{2}{3}\right) = \frac{9}{4}$