80/16A SEMESTER 1 2003

THE UNIVERSITY OF SYDNEY

FACULTIES OF ARTS, ECONOMICS, EDUCATION, ENGINEERING AND SCIENCE

MATH1902

LINEAR ALGEBRA (ADVANCED)

June/July 2003

TIME ALLOWED: One and a half hours

LECTURERS: TM Gagen, DJ Ivers, N Joshi

This Examination has 3 Printed Components.

- (1) An Extended Answer Question Paper (this booklet, Green 80/16A): 4 pages numbered 1 to 4; 5 questions numbered 1 to 5.
- (2) A MULTIPLE CHOICE QUESTION PAPER (YELLOW 80/16B): 3 PAGES NUMBERED 1 TO 3; 15 QUESTIONS NUMBERED 1 TO 15.
- (3) A MULTIPLE CHOICE ANSWER SHEET (WHITE 80/16C): 1 PAGE.

Components 2 and 3 MUST NOT be removed from the examination room.

This Examination has 2 Sections: Extended Answer and Multiple Choice.

The Extended Answer Section is worth 75% of the total marks for the paper: all questions may be attempted; questions are of equal value; working must be shown.

The Multiple Choice Section is worth 25% of the total marks for the paper: all questions may be attempted; questions are of equal value; answers must be coded onto the Multiple Choice Answer Sheet.

Calculators will be supplied; no other electronic calculators are permitted.

- 1. Let p_1 and p_2 be the two planes given by 3x + 4y 2z = 5 and 2x 3y + 4z = 3, respectively, and let ℓ be their line of intersection.
 - (i) (3 marks) Write down vectors \mathbf{n}_1 and \mathbf{n}_2 which are perpendicular to p_1 and p_2 respectively, and calculate $\mathbf{n}_1 \times \mathbf{n}_2$.
 - (ii) (1 mark) Find the cosine of the angle θ between p_1 and p_2 .
 - (iii) (1 mark) Verify that the point (1,1,1) lies on ℓ .
 - (iv) (3 marks) Find equations of ℓ in
 - (a) vector parametric form
 - (b) scalar parametric form
 - (c) cartesian form.
 - (v) (2 marks) Find the cartesian equation of the plane through (1, -1, 2) perpendicular to ℓ .
- 2. (i) (4 marks) Let ABCD be a parallelogram and let $\mathbf{a} = \overrightarrow{AB}$, $\mathbf{b} = \overrightarrow{BC}$.
 - (a) Write down \overrightarrow{AC} and \overrightarrow{BD} in terms of a and b.
 - (b) Show that

$$|\overrightarrow{AC}|^2 + |\overrightarrow{BD}|^2 = 2(|\mathbf{a}|^2 + |\mathbf{b}|^2).$$

- (ii) Two faces BCD and ACD of a tetrahedron ABCD have centroids K, L, respectively. You are given that the centroid K of the face BCD satisfies $\mathbf{k} = \frac{1}{3}(\mathbf{b} + \mathbf{c} + \mathbf{d})$, and so on, where the vector $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, etc, and O is the origin.
 - (a) (4 marks) Find \overrightarrow{KL} in terms of a, b, c, d and show that $KL \parallel AB$. and that AK and BL meet at a point P with AP : PK = 3 : 1 = BP : PL.
 - (b) (2 marks) Hence show that the four 'spatial medians' AK, BL, CM, DN from each vertex to the centroid of the opposite face intersect at a point P which divides each of them in the ratio 3:1.

3. (i) Consider the system of linear equations,

$$x + 2y + z = a$$
$$2x + 5y + 3z = b$$
$$2y + 2z = c$$

- (a) (4 marks) Use Gaussian elimination without row interchanges to solve the system. What condition must a, b, c satisfy in order for the system to have a solution?
- (b) (1 mark) If the system is written in the matrix form Ax = d, show that a solution exists if and only if d is of the form

$$\mathbf{d} = a \begin{pmatrix} 1 \\ 0 \\ -4 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} .$$

- (ii) Answer true or false to each of the following giving a counter-example when the statement is false.
 - (a) (1 mark) If a system of r linear equations in n unknowns has a unique solution, then r = n.
 - (b) (1 mark) A system of r linear equations in n unknowns has no solution if r > n.
 - (c) (1 mark) A system of n equations in n unknowns $A\mathbf{x} = \mathbf{b}$ in which $\det A = 0$ always has infinitely many solutions.
 - (d) (2 marks) Suppose that a system of r linear equations in n unknowns is written as a matrix equation $A\mathbf{x} = \mathbf{b}$. If B is an $n \times r$ matrix such that $BA = I_n$, then $\mathbf{x} = B\mathbf{b}$ is a solution of the system.
- 4. (i) (3 marks) Show that if a, b, c, d are integers such that a+b=c+d, then $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ has integer eigenvalues given by $\lambda_1=a+b$ and $\lambda_2=a-c$. Find the corresponding eigenvectors.
 - (ii) (a) (3 marks) Find all matrices $X=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that AX=XA, where $A=\begin{pmatrix} -1 & 2 \\ 2 & 2 \end{pmatrix}$ and show that every such matrix has the form $\alpha A+\beta I$, for some real numbers α,β .
 - (b) (2 marks) Calculate α , β such that $A^2 = \alpha A + \beta I$, where A is the matrix in Part(a).
 - (iii) (2 marks) The matrix $Y = \begin{pmatrix} 0 & 5 & 10 \\ 1 & 4 & -2 \\ 2 & -2 & 1 \end{pmatrix}$ commutes with $B = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 2 \\ 0 & 2 & 2 \end{pmatrix}$. Show that Y is not a polynomial in B. (You do not need to show YB = BY.)

5. (i) (a) (3 marks) By expanding by cofactors down the last column, show that the characteristic polynomial $\det(M - \lambda I)$ of the $n \times n$ matrix

$$M = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & -c_0 \\ 1 & 0 & 0 & \dots & 0 & -c_1 \\ 0 & 1 & 0 & \dots & 0 & -c_2 \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -c_{n-1} \end{pmatrix}$$

is given by

$$(-1)^n(\lambda^n+c_{n-1}\lambda^{n-1}+\ldots+\lambda c_1+c_0).$$

- (b) (3 marks) Consider the case n=3 in Part (a). Suppose c_0 , c_1 , c_2 are given by symmetric combinations of a, b, c, i.e. $c_0 = -abc$, $c_1 = ab + bc + ca$, $c_2 = -(a+b+c)$, where a > b > c. Find the eigenvalues and the eigenspace belonging to the largest eigenvalue of M.
- (ii) (a) (2 marks) Suppose that $A = (a_{ij})$ is a 3×3 matrix in which $a_{11} + a_{22} + a_{33} = 0$. Show that $\det(I + A) = 1 + \det A$ if and only if

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} = 0.$$

(b) (2 marks) Give an example of a 3×3 non-zero complex symmetric matrix A such that $\det(I+A)=1+\det A$. (A matrix A is symmetric if $A^T=A$.)