Diseño y Desarrollo de un Controlador de Grupo de Ascensor Inteligente Basado en Sistemas MultiAgente

¹ Maestría en Ingeniería de Sistemas Pontificia Universidad Javeriana

2 de febrero de 2013

Outline

- Motivación
 - Problema Estudiado
- Simulador De Edificio
- 3 Controlador de Grupo de Elevadores
- Experimentación

Outline

- Motivación
 - Problema Estudiado
- 2 Simulador De Edificio
- 3 Controlador de Grupo de Elevadores
- Experimentación

Introducción

- Factores que impulsan el uso de edificaciones de gran tamaño en los grandes centros urbanos:
 - Escasez de terrenos disponibles.
 - Alto precio de los terrenos.
 - Densidad poblacional.
 - Nuevas tendencias.
- Esto genera la necesidad de transportar eficientemente las personas que los habitan.

Transporte Vertical

- Objetivos en el transporte vertical:
 - Reducir el tiempo de espera de los pasajeros.
 - Reducir el tiempo de viaje.
 - Reducir el consumo de energía.
- Factores:
 - Gran demanda en horas pico.
 - Las distancias a recorrer son grandes.
 - Los patrones de tráfico cambian dependiendo del tipo de edificio.
 - Comportamiento estacional.

Objetivos

Diseñar un método distribuido de control para asignar de manera eficiente el tráfico de personas presente en una edificación, haciendo uso de técnicas de inteligencia artificial (I.A.).

- Modelar matemáticamente el problema de tráfico presentado en las edificaciones de gran altura.
- Diseño del método distribuido de control para la asignación de ascensores, haciendo uso de técnicas de control inteligente.
- Evaluar la técnica de control desarrollada y comparar su eficiencia respecto a una técnica tradicional en un ambiente simulado.

Control De Grupo De Ascensores Distribuido

Ventajas

- Tolerancia a errores.
- Separación de responsabilidades.
- Control distribuido en contraposición con el control centralizado.
- Solución escalable y adaptable.

Verificación Del Controlador

Tipos de verificación	Ventaja	Desventaja	
Verificación en un sistema real.	Efectividad garantizada	Costoso y difícil de implementar	
Verificación por simulación	No necesita desarrollo.	Poco flexible, difícilmente	
mate mática.		repetible y compleja	
Verificación por simulación en	Cercana a la realidad y	Ne cesita desarrollo	
ordenador.	visualmente comprensible.		

Outline

- Motivación
 - Problema Estudiado
- Simulador De Edificio
- 3 Controlador de Grupo de Elevadores
- Experimentación

Introducción

El proceso de simulación puede ser definido como la imitación de la operación en un proceso real o un sistema sobre el tiempo. [2]

Figura: Modelo simulación, flujo Banks [BANKS2000]

El modelo representa una versión simplificada del sistema real, permitiendo así, facilitar su estudio y análisis.

Usos Del Simulador

- Validar el desempeño de diferentes técnicas de control para grupo de elevadores
- Comparar la eficiencia de los controladores respecto a otras técnicas (tradicionales, IA).

Otros

- Medir el tiempo que toma una evacuación por medio de los elevadores. Esto depende de la naturaleza de la emergencia [1].
- Determinar si la configuración del sistema de ascensores es suficiente para servir la población del edificio.
- Simular situaciones de emergencia, como por ejemplo que un elevador quede fuera de servicio.

Clasificación de la Simulación

- Modelo por Eventos Continuos
- Modelo por Eventos Discretos
 - Avance por eventos: la simulación salta de evento en evento.
 - Basada en actividades: se debe conocer cuando una actividad empieza y otra termina.
 - Avance por unidad de tiempo
- Simulación Determinista: no existen componente aleatorios en la simulación.
- Simulación Estocástica

Procedimiento de Diseño

Figura: Procedimiento de Diseño

Flujo de Simulación Averril

Principios de Diseño

- El simulador debe ser parametrizable en los aspectos que tienen mayor relevancia en la simulación.
- La aplicación debe correr en cualquier sistema operativo, debe desarrollarse bajo un lenguaje portable.
- No se desarrollarán rutinas matemáticas o utilitarias si existe una librería de código libre que se pueda usar.
- El simulador debe ser de código libre y abierto para la comunidad científica.
- Es de gran valor presentar la dinámica del sistema gráficamente.
- Al final de cada simulación debe mostrarse un informe estadístico del desempeño del sistema.

Simuladores de Edificación

Item	Elevate	ALTS	Plan	ASMoB
License	Comercial [Peters R.]	N/A [KONE]	N/A [OTIS]	GLP
Operating system	Windows	Windows	Windows	Cross Plataform
Language programming	Visual C++	Standard C++	Borland C++ Builder 6	Java 1.6
Number of floors	100	No limit	30	No limit
Interfloor distance	Yes	Yes	Yes	Yes
Special traffic flows	Yes	Yes	Yes	Yes
Floor populations	Yes	Yes	Yes	Yes
Passengers transfer times	Yes	Yes	Yes	Yes

Cuadro: Comparación simuladores

Simuladores de Edificación (2)

Item	Elevate	ALTS	Plan	ASMoB
Elevator Configuration	Yes	Yes	Yes	Yes
Number of lifts	8	No limit	No limit	No limit
Lifts of different capacities	Yes	No	No	Yes
Floor entrance forbidden option	No	No	No	Yes
Traffic control algorithms	Coll., Nearest, Dyn,	KONE proprietary	Collective, Dyn., ETA	Collective, ABCS
Visual simulation	2 <i>d</i>	2d/3d	2 <i>d</i>	2d
Graphical report	Yes	Yes	Yes	Yes (export pdf)
Command line	No	No	No	Yes
Cost	Single User £1,823.52	n/a	n/a	Free

Cuadro: Comparación simuladores

Tráfico Vertical

Se entiende por tráfico en una edificación; el movimiento o tránsito de personas dentro del edificio, este tráfico tiene dos componentes tasa de arribo y probabilidad de destino, en donde:

- Tasa de Arribo: Es el número de usuarios que llegan al sistema en determinado espacio de tiempo. La
 tasa de arribo en una edificación cambia de acuerdo a dos factores, uno es el tiempo en el que se mide
 y otro es el piso.
- Probabilidad Destino: Es la probabilidad que tiene un pasajero de dirigirse del piso p_o , al piso p_d , en determinado instante de tiempo.

Patrones de Tráfico

Figura: Patrón de tráfico [4]

Dinámica del Tráfico

La probabilidad de tener n pasajeros en el intervalo de tiempo T para una tasa de arribo obtenida de la experiencia de λ (en llamadas por segundo) es:

$$p_r(n) = \frac{(\lambda T)^n}{n!} e^{-\lambda T}$$
, en donde

- **Densidad de arribo** $(\lambda(t))$: Número de personas esperadas por unidad de tiempo, sigue un proceso de Poisson [7].
- Tasa de servicio $(\mu(t))$: Número de personas que pueden ser servidas por unidad de tiempo, sigue un proceso de Poisson [7].
- Tasa de utilización $(\rho(t) = \frac{\lambda(t)}{\mu(t)})$: Tasa que muestra el estado de utilización del sistema, se desea que este vamos sea $\rho < 1$ [7].

Diagrama de Componentes

Figura: Componentes Simulador

Outline

- Motivación
 - Problema Estudiado
- 2 Simulador De Edificio
- Controlador de Grupo de Elevadores
- Experimentación

Familias de Técnicas

- Técnicas tradicionales [6]
 - Maniobra Universal Por Pulsadores.
 - Maniobra Duplex.
 - Maniobra Colectiva selectiva en los dos sentidos.
- Técnicas no tradicionales
 - Lógica difusa.
 - Aprendizaje reforzado.
 - Algoritmos genéticos.

Técnica Tradicional

Figura: Técnica de control tradicional

Desventajas

- Las reglas de control no están orientadas a prestar un servicio eficiente
- Las reglas son fijas.

Criterios de Desempeño

 Tiempo De Espera: Promedio del tiempo de espera de los pasajeros para ser atendidos.

Service level	Average waiting time	% of passengers served within		
	(s)	30 s	60 s	90 s
Excellent	< 20	75%	95%	99%
Good	20 – 30	65%	85%	95%
Satisfactory	30 – 40	50%	75%	90%
Acceptable	40 – 60	40%	60%	75%

Figura: Criterio de desempeño <Tiempo de Espera>

Criterios de Desempeño (2)

 Tiempo de viaje: Tiempo que el pasajero dura dentro del ascensor hasta que llegue al piso objetivo.

Service level	Average time to destination	% of passengers served within		
	(s)	90 s	120 s	150 s
Excellent	< 80	70%	85%	95%
Good	80 – 100	40%	75%	90%
Satisfactory	100 – 120	15%	50%	80%
Acceptable	120 - 150	5%	20%	55%

Figura: Criterio de desempeño < Tiempo de Viaje>

Criterios de Desempeño (3)

- Tiempos de espera muy largos: Minimizar el porcentaje de largas esperas por la llegada de un ascensor, es conocido que sicológicamente las personas pierden la paciencia pasados 3 minutos sin ser atendidas [5].
- Consumo energético del sistema: El cual se debe minimizar haciendo que el ascensor pare lo menos posible y evite los desplazamientos innecesarios.
- Capacidad del grupo de ascensores (volumen de viajeros transportados): También se le conoce como carga, entre más persona se logre llevar en la misma cabina mucho mejor.

Controlador Propuesto

Objetivo General

Transportar eficientemente el tráfico generado en una edificación de gran altura, reduciendo el tiempo de espera de los pasajeros, el tiempo de viaje y ahorrando la energía consumida por el sistema.

Objetivos Específicos

 Diseño de la estrategia de solución al problema de asignación del tráfico usado SMA y resolviendo los conflictos con técnicas de inteligencia artificial.

Modelo Multi Agente (1)

Paradigma analítico para la identificación de agentes:

- Agente Controlador de Cabina.
- Agente Arbitro del Sistema.
- Agente Estimador Patrón de Tráfico.
- Agente Estimador Tiempo Espera.
- Agente Estimador Tiempo Viaje.

Modelo Multi Agente (2)

Resolución de Conflictos MAS

Figura: Diagrama flujo vínculos cooperativos

Inferencia en el Árbitro

Figura: Inferencia en el árbitro

Inferencia en el Árbitro (2)

ld	Regla de Inferencia	Peso
R1	Si "Estimación Tiempo de Espera" es MUY BAJO entonces la prioridad es MUY ALTA	0.6
R2	Si "Estimación Tiempo de Espera" es BAJO entonces la prioridad es ALTA	0.6
R3	Si "Estimación Tiempo de Espera" es MEDIO entonces la prioridad es MEDIA	0.6
R4	Si "Estimación Tiempo de Espera" es ALTO entonces la prioridad es BAJA	0.6
R5	Si "Estimación Tiempo de Espera" es MUY ALTO entonces la prioridad es MUY BAJA	0.6
R6	Si "Estimación Tiempo de Viaje" es MUY BAJO entonces la prioridad es MUY ALTA	0.5
R7	Si "Estimación Tiempo de Viaje" es BAJO entonces la prioridad es ALTA	0.5
R8	Si "Estimación Tiempo de Viaje" es MEDIO entonces la prioridad es MEDIA	0.5
R9	Si "Estimación Tiempo de Viaje" es ALTO entonces la prioridad es BAJA	0.5
R10	Si "Estimación Tiempo de Viaje" es MUY ALTO entonces la prioridad es MUY BAJA	0.5

Cuadro: Tabla reglas de inferencia

Outline

- Motivación
 - Problema Estudiado
- Simulador De Edificio
- 3 Controlador de Grupo de Elevadores
- Experimentación

Ejemplo Numérico (1)

Figura: Ejemplo 1

Ejemplo Numérico (2)

Protocolo de Experimentación Simulación

Parámetro	Valor
Pisos	40
Elevadores	4
Capacidad Elevadores	8 personas
Acelera ción	2m/s ²
Ve lo ci da d	1 m/s
Tiempo Abrir puerta	1 segundo
Tiempo Cerrar puerta	1 segundo
Tiempo transferencia de pasajeros	1 segundo x pasajero
Distancia entre pisos	2 metros
Algoritmo de control para asignar llamada EGCS (Sim1)	Convencional
Algoritmo de control para asignar llamada EGCS (Sim 2)	AI
Tiempo de avance de la simulación	1 segundo = 10 milisegundos
Modelo de tráfico de entradas	Poisson

Cuadro: Parámetros de la simulación

Generación de Tráfico en Simulación

Resultado Tiempo de Espera

Media: 108.19802 Varianza: 5823.8716 Desviscion Estandar: 76.31429

Resultado Tiempo de Espera Convencional

Media: 148.5765 Varianza: 9625.064 Desviacion Estandar: 97.596436

Cuadro: Comparación Tiempo de Espera

Resultado Tiempo de Viaje

Media: 53.82231 Varianza: 1168.9875 Desvisoion Estandar: 34.19046

Resultado Tiempo de Servicio Convencional

Media: 69.05133 Varianza: 2310.1548 Desviacion Estandar: 48.054068

Cuadro: Comparación Tiempo de Viaje

Resultado Energía Consumida

Resultado Energía Consumida Convencional

Cuadro: Comparación Energía Consumida

Tabla Comparativa de Resultados

Controlador	Tiempo de espera (P)	Tiempo de viaje (P)	Energía Consumida (P)
Convencional	148 seg	69 seg	4748
Inteligente	108 seg	53 seg	4398
% Diferencia	27%	23%	7%

Conclusiones

- El uso de sistemas multiagente en el problema de tráfico en edificaciones de gran altura elimina la centralización en el control, esto supone una mayor robustez del sistema.
- El uso de redes neuronales para predicción de tiempos de espera y de viaje, ayudan en la determinación de que cabina de ascensor puede servir más eficientemente una llamada.
- El simulador permite no solamente replicar el comportamiento de un sistema real, sino ofrecer información estadística valiosa para comprar cuantitativa-mente que técnica de control se ajusta mejor a los objetivos de control.

Trabajo Futuro

Controlador

- Optimizar los conjuntos difusos, usando por ejemplo algoritmos genéticos.
- Modificar dinámica-mente las reglas de inferencia difusas para que sean ajustables a los objetivos de control.

Simulador

- Extenderlo para usarlo en la planificación de edificaciones de gran altura.
- Extenderlo para usarlo en simulaciones de evacuaciones.

Bibliografía l

Evacuation systems for high-rise buildings. *NATIONAL SAFETY COUNCIL*, 2011.

Banks J.

Discrete-Event System Simulation.

Prentice Hall. 2000.

Averill M. Law David Kelton.

Simulation Modeling And Analysis.

McGraw Hill 2000

Simulation Modeling And Analysis.

McGraw Hill, 2000.

Siikonen M. I.

Elevator group control with artificial intelligence. Helsinki University of Technology, Systems Analysis Laboratory, Research Reports, 1997.

Bibliografía II

A. Miravete, E. Larrodé, and Universidad de Zaragoza. Centro Politécnico Superior. Servicio de Publicaciones. El libro del transporte vertical. Universidad de Zaragoza, 1996.

Parker E. R. ARQUITECTURA DEL ASCENSOR. 1971.

🔳 Hiroshi Kise Sandor Markon, Hajime Kita and Thomas Bartz-Beielstein.

Control of Traffic Systems in Buildings.

Springer-Verlag London Limited, 2006.