MANOVA

Instructor: Cheng-Ying Chou

The Multivariate Analysis of Variance

- Introduction
- Review of Univariate One-way Analysis of Variance (1-way ANOVA)
- Multivariate One-way Analysis of Variance (1-way MANOVA)
- Homogeneity of Covariance Matrices
- Summary

Example

- Evaluation of four different teaching methods
- 40 pupils in a primary school were randomly assigned to one of four methods.
- After a 12-week period, the scores of the tests on reading comprehension (X1) and analytical ability (X2) were obtained (Shen, 1998)

<u>Methods</u>							
	<u>I</u>	II		III	I	V	
	<u>X1 X2</u>	<u>X1</u>	X2_	<u>X1</u>	<u>X2</u>	<u>X1</u>	<u>X2</u>
	7 9	43	21	24	14	27	17
	37 16	39	17	30	15	20	13
	44 16	21	9	17	8	25	15
	28 14	32	16	34	15	13	11
	42 16	21	9	32	16	32	17
	23 11	14	6	35	17	4	10
	45 25	24	11	19	11	3	7
	32 15	24	12	6	6	36	19
	37 16	26	12	30	14	28	16
	<u>45 19</u>	26	12	19	10	21	<u> 15</u>
mean	34.0 15.7	27.0	12.	5 24	.6 12	.6 20	.9 14.0

Univariate Questions

 Does the score of reading comprehension (or analytical ability) differ among four teaching methods.

Multivariate Questions

Is there any difference in the effectiveness as measured by reading comprehension and analytical ability among the four teaching methods?

- Dataset: Measurements of Egyptian Skull
 - Univariate Questions:
 - Is there any difference or change in each of the four measurements across time?
 - Multivariate Questions:
 - Is there any difference or change in the four measurements across time?

- Consider one treatment factor: such as teaching methods or time period
- X_{ij}: the measurement of object i in treatment j, i = 1,...,n_j; j = 1,...,m
- The model for one-way ANOVA is

$$X_{ij} = \mu + \tau_j + \epsilon_{ij}$$
, where

μ: overall mean

 τ_i : the jth treatment effect

 ε_{ij} : random error ~ N(0, σ^2)

One way ANOVA

$$\mu_1 = \mu_2 = \dots = \mu_m = \mu$$

$$X_{11}, X_{21}, \dots X_{n_1 1} \sim N(\mu_1, \Sigma)$$

$$X_{12}, X_{22}, \dots X_{n_2 2} \sim N(\mu_2, \Sigma)$$

$$X_{1m}, X_{2m}, \cdots X_{n_m m} \sim N(\mu_m, \Sigma)$$

Sums of squares for one-way ANOVA

Treatment means:
$$\overline{X}_{j.} = \sum_{i=1}^{n_j} X_{ij} / n_j$$

Overall mean:
$$\overline{\overline{X}} = \sum_{j=1}^{m} \overline{\overline{X}}_{j.} / m$$

Partition of sums of squares

$$\begin{split} \sum_{j=1}^{m} \sum_{i=1}^{n_{j}} (X_{ij} - \overline{X})^{2} &= \sum_{j=1}^{m} n_{j} (\overline{X}_{j.} - \overline{X})^{2} + \sum_{j=1}^{m} \sum_{i=1}^{n_{j}} (X_{ij} - \overline{X}_{j.})^{2} \\ SST \text{ (Total)} &= SSB \text{ (Between)} + SSW \text{ (Within)} \\ n-1 &= (m-1) &+ (n-m) \\ \text{where } n = \sum_{i=1}^{m} n_{j} \end{split}$$

 H_0 : $\tau_1 = \dots = \tau_m$ VS. H_a : $\tau_j \neq \tau_{j'}$ for at least one pair $1 = j \neq j' \leq m$

One-way ANOVA Table

SOV	df	SS	MS				
Between sample	s m-1	SSB	MSB=SSB/(m-1)				
Within samples	n-m	SSW	MSW=SSW/(n-m)				
Total	n-1	SST					
Reject the null hypothesis if $F=MSB/MSW > F_{\alpha, m-1,n-m}$							

Example: Reading Comprehension

- n=40, n1=n2=n3=n4=10, grand total is 1065
- SST = 7^2 +...+ 21^2 - $(1065)^2/40$ =4815.375 (dfT=39)
- SSB = $(340^2 + ... + 209^2)/10 (1065)^2/40$ = 914.075 (dfB=3)
- SSW = 4815.375-914.075=3901.300 (dfW=36)

R code

```
setwd("/Users/cychou/Documents/Work/Teaching/Explora
tory Multivariate Data Analysis/Lecture
Slides/R code");
methods<-read.csv("methods.csv",header=T,sep=",");</pre>
mod1<-lm(X1~method, data=methods)</pre>
anova(mod1)
  Response: X1
                          Df Sum Sq Mean Sq F value Pr(>F)
                 3 914.1 304.69 2.8116 0.0531 .
  method
  Residuals
               36 3901.3 108.37
  Signif. codes: 0 \***' 0.001 \**' 0.05 \.' 0.1 \' 1
```

ANOVA Table for Reading Comprehension

```
SOV df SS MS F
Between 3 914.075 304.692 2.81
Within 36 3901.300 108.369
Total 39 4815.375
```

□ Since F=2.81 < F0.05,3,36 = 2.90, fail to reject the null hypothesis of equal teaching effectiveness at the 5% significance level

- Consider one treatment factor: such as teaching methods or time period
- X_{ijk}: the measurement of variable k for object i in treatment j, i = 1,...,n_j; j = 1,...,m; k = 1,...,p
- The model for one-way MANOVA is

$$X_{ijk} = \mu + \tau_{jk} + \epsilon_{ijk}$$

where μ : overall mean

 T_{ik} : the jth treatment effect

One way MANOVA

.

Teaching methods I, II, III, IV

$$Y_{11} = \begin{pmatrix} Y_{111} \\ Y_{211} \\ \vdots \\ Y_{n_111} \end{pmatrix}$$

$$\cdots Y_{1p} =$$

$$Y_{m1} = \begin{pmatrix} Y_{11p} \\ Y_{21p} \\ \vdots \\ Y_{n,1p} \end{pmatrix}$$

$$\cdots \quad Y_{mp} = \left| \begin{array}{c} Y_{2mp} \\ \vdots \\ Y_{n_m mp} \end{array} \right|$$

The overall mean for variable k

$$\overline{X}_k = \sum_{i=1}^m \sum_{i=1}^{n_j} X_{ijk} / n$$

The treatment mean for treatment j of variable k

$$\overline{X}_{jk} = \sum_{i=1}^{n_j} X_{ijk} / n_j$$

Total sums of squares and cross-products

$$t_{kk} = \sum_{j=1}^{m} \sum_{i=1}^{n_j} (X_{ijk} - \overline{X}_k)^2, dfT = n-1$$

$$t_{kk'} = \sum_{i=1}^{m} \sum_{j=1}^{n_j} (X_{ijk} - \overline{X}_k)(X_{ijk'} - \overline{X}_{k'}), dfT = n-1$$

Within-sample sums of squares and cross-products

$$w_{kk} = \sum_{j=1}^{m} \sum_{i=1}^{n_j} (X_{ijk} - \overline{X}_{jk})^2, dfW = n-m$$

$$W_{kk'} = \sum_{j=1}^{m} \sum_{i=1}^{n_j} (X_{ijk} - \overline{X}_{jk})(X_{ijk'} - \overline{X}_{jk'}), dfW = n-m$$

Between-sample sums of squares and cross-products

$$b_{kk} = t_{kk} - w_{kk}$$
, dfB = m-1, and

$$b_{kk'} = t_{kk'} - w_{kk'}, dfB = m-1$$

Total sums of squares and cross-products matrix

$$\mathbf{T} = \begin{pmatrix} t_{11} & t_{12} & \dots & t_{1p} \\ t_{12} & t_{22} & \dots & t_{2p} \\ \dots & \dots & \dots & \dots \\ t_{1p} & t_{2p} & \dots & t_{pp} \end{pmatrix}, df T = \mathbf{n-1}$$

$$t_{kk'} = \sum_{j=1}^{m} \sum_{i=1}^{n_j} (X_{ijk} - \overline{X}_k)(X_{ijk'} - \overline{X}_{k'})$$

Within-sample sums of squares and cross-products matrix

$$\mathbf{W} = \begin{pmatrix} w_{11} & w_{12} & \dots & w_{1p} \\ w_{12} & w_{22} & \dots & w_{2p} \\ \dots & \dots & \dots & \dots \\ w_{1p} & w_{2p} & \dots & w_{pp} \end{pmatrix}, \mathbf{dfW = n - m} \qquad w_{kk'} = \sum_{j=1}^{m} \sum_{i=1}^{n_j} (X_{ijk} - \overline{X}_{jk})(X_{ijk'} - \overline{X}_{jk'})$$

Between-sample sums of squares and cross-products matrix

$$\mathbf{B} = \mathbf{T} - \mathbf{W}, \frac{dfB}{dfB} = m - 1$$

The Wilks' lambda statistic

$$\Lambda = \left| \mathbf{W} \right| / \left| \mathbf{T} \right| = \frac{\left| \mathbf{W} \right|}{\left| \mathbf{W} + \mathbf{B} \right|},$$

where

 $|\mathbf{W}|$ is the determinant of \mathbf{W} and $|\mathbf{T}|$ is the determinant of \mathbf{T} .

$$0 \le \Lambda \le 1$$

Small sample distribution

$$F = \frac{1 - \Lambda^{1/t}}{\Lambda^{1/t}} \frac{df_2}{df_1} \sim F_{df_1, df_2}, \text{ where } df_1 = p(m-1), df_2 = wt-(df_1/2) + 1,$$

$$w = n-1-[(p-m+2)/2]$$
, and

$$t=\sqrt{(df_1^2-4)/[p^2+(m-1)^2-5]},$$

when $df_1 = 2$, set t=1.

The Wilk's lambda statistic

Special Cases:

(1) When dfB=2 and p is arbitrary

$$F = \frac{\sqrt{\Lambda}}{1 - \sqrt{\Lambda}} \frac{dfE-p+1}{p} \sim F_{2p,2(dfE-p+1)}$$

(2) When p=2 and dfB is arbitrary

$$F = \frac{\sqrt{\Lambda}}{1 - \sqrt{\Lambda}} \frac{dfE-1}{dfB} \sim F_{2dfB,2(dfE-1)}$$

Large sample approximation

$$\chi^2$$
=-[dfE-(p-dfB+1)/2]ln $\Lambda \sim \chi^2_{pdfB}$

Transformation of Wilks' to Exact Upper Tail F tests

Parameters P, dfT	Statistic having F-distribution	Degrees of freedom
Any p, dfB=1	$\frac{1-\Lambda}{\Lambda} \frac{dfW - p + 1}{p}$	P, dfW-p+1
Any p, dfB=2	$\frac{1 - \sqrt{\Lambda}}{\sqrt{\Lambda}} \frac{dfW - p + 1}{p}$	2p, 2(dfW-p+1)
p=1, any dfB	$\frac{1-\Lambda}{\Lambda} \frac{dfW}{dfB}$	dfB,dfW
p=2, any dfB	$\frac{1 - \sqrt{\Lambda}}{\sqrt{\Lambda}} \frac{dfW - 1}{dfB}$	2dfB, 2(dfW-1)

The Roy's largest eigenvalue

Let $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p \ge 0$ of eignvalues of $\mathbf{W}^{-1}\mathbf{B}$,

the Wilk's lambda can be expressed as

$$\Lambda = \prod_{i=1}^{p} \frac{1}{(1+\lambda_i)}$$

The Roy's largest eigenvalue is λ_1

Roy's largest root test
$$\theta = \frac{\lambda_1}{1 + \lambda_1}$$

The distribution of λ_1

$$(df_2/df_1)\lambda_1 \sim F_{df_1,df_2}$$
, where

$$df_1 = d$$
, $df_2 = n - m - d - 1$, $d = max(p, m-1)$.

d=max(p,dfB)

The Pillai's trace statistic

The Pillai's statistic V is given as

$$V = \sum_{i=1}^{P} \frac{\lambda_i}{(1+\lambda_i)}$$

The distribution of V

$$(n-m-p+s)V/[d(s-V)] \sim F_{df_1,df_2}$$
, where

$$df_1 = sd, df_2 = s(n-m-p-s),$$

$$s=min(p, m-1)$$
, and $d=max(p,m-1)$.

The Lawes-Hotelling statistic

The Lawley-Hotelling statistic U is given as

$$U=\sum_{i=1}^{p}\lambda_{i}$$

The distribution of U

$$df_2U/sdf_1 \sim F_{df_1,df_2}$$
, where

$$df_1 = s(2A + s + 1), df_2 = 2(sB + 1),$$

$$A=(|m-p-1|-1)/2$$
, and $B=(n-m-p-1)/2$.

<u>Methods</u>										
	<u>I</u>		I.	I	III	I	<u>V</u>			
	<u>X1</u>	X2	<u>X1</u>	X2_	<u>X1</u>	X2	<u>X1</u>	<u>X2</u>		
	7	9	43	21	24	14	27	17		
	37	16	39	17	30	15	20	13		
	44	16	21	9	17	8	25	15		
	28	14	32	16	34	15	13	11		
	42	16	21	9	32	16	32	17		
	23	11	14	6	35	17	4	10		
	45	25	24	11	19	11	3	7		
	32	15	24	12	6	6	36	19		
	37	16	26	12	30	14	28	16		
	<u>45</u>	19	26	12	19	10	21	<u> 15</u>		
Sum	340	157	270	125	246	126	209	140	1065	548
mean	34.0	15.7	27.0	12.5	5 24.	6 12.	6 20.	9 14.	0	
$\overline{X}_1 = \begin{pmatrix} 34.0 \\ 15.7 \end{pmatrix}, \overline{X}_2 = \begin{pmatrix} 27.0 \\ 12.5 \end{pmatrix}, \overline{X}_3 = \begin{pmatrix} 24.6 \\ 12.6 \end{pmatrix}, \overline{X}_4 = \begin{pmatrix} 20.9 \\ 14.0 \end{pmatrix}$										

Example: Teaching Methods

Total sum of squares and cross-products

$$t_{11} = 7^{2} + 37^{2} + ... + 21^{2} - (1065)^{2} / 40 = 4815.375$$

$$t_{12} = 7x9 + 37x16 + ... + 21x15 - (1065)(548) / 40 = 1536.500$$

$$t_{22} = 9^{2} + 16^{2} + ... + 15^{2} - (548)^{2} / 40 = 654.400$$

$$T = \begin{pmatrix} 4815.375 & 1536.500 \\ 654.400 \end{pmatrix}, dfT = 39$$

Example: Teaching Methods

Between-sample sum of squares and cross-products

$$b_{11} = (340^{2} + 270^{2} + ... + 209^{2}) / 10 - (1065)^{2} / 40 = 914.075$$

$$b_{12} = (340x157 + 270x125 + ... + 209x140) / 10 - (1065)(548) / 40 = 148.100$$

$$b_{22} = (157^{2} + 125^{2} + ... + 140^{2}) / 10 - (548)^{2} / 40 = 67.40$$

$$\mathbf{B} = \begin{pmatrix} 914.075 & 148.10 \\ 67.40 \end{pmatrix}, dfB = 3.$$

$$\mathbf{W} = \mathbf{T} - \mathbf{B} = \begin{pmatrix} 3901.300 & 1388.400 \\ 587.000 \end{pmatrix}, dfW = 36$$

Teaching methods

```
# ANOVA
                                   # MANOVA
setwd("/Users/cychou/Documents
                                   install.packages("dplyr")
/Work/Teaching/Exploratory
                                   library(dplyr)
Multivariate Data
Analysis/Lecture
                                   combined<-
Slides/R_code");
                                   cbind(methods$X1,methods$X2)
methods<-
                                   mod2<-manova(combined~method,</pre>
read.csv("methods.csv", header=
                                   data=methods)
T, sep=",");
                                   summary(mod2, test="Pillai")
methods$method<-</pre>
                                   summary(mod2, test="Wilks")
as factor(methods$method)
                                   summary(mod2, test="Roy")
mod1 < -
lm(X1~method, data=methods)
                                   summary(mod2,
                                   test="Hotelling-Lawley")
anova(mod1)
```

Example: Teaching Methods

The Wilk's lamba statistic:

The WHK's familiar statistic.
$$|\mathbf{T}| = 730349.15, \text{ and } |\mathbf{E}| = 362408.54$$

$$\Lambda = \frac{|\mathbf{E}|}{|\mathbf{T}|} = \frac{362408.54}{730349.15} = 0.458542$$

$$p = 2$$

$$F = \frac{1 - \sqrt{0.458542}}{\sqrt{0.458542}} \frac{40 - 4 - 1}{4 - 1} = 5.5622$$

$$> F_{0.01, 6,70} = 3.07$$

$$df_1 = 2dfB = 2(4 - 1) = 6$$

$$df_2 = 2(dfW - 1) = 2(40 - 4 - 1) = 70$$

$$> \text{summary(mod2, test="Wilks")}$$

Df Wilks approx F num Df den Df Pr(>F) method 3 0.45854 5.5622 6 70 9.248e-05 ***
Residuals 36

Example: Teaching Methods

The Roy's largest eigenvalue:

The two eigenvalues of $\mathbf{W}^{-1}\mathbf{B}$ are 0.9569463 and 0.11440143 and d=max(p,m-1)=max(2,4-1)=3 $F = \frac{(40-4-3-1)0.9569463}{3} = 10.20742 > F_{0.05,3,32} = 2.90$

Reject the null hypothesis of equal effectiveness among four teaching methods at the

5% significance level.

> summary(mod2, test="Roy")

Df Roy approx F num Df den Df Pr(>F)
method 3 0.95695 11.483 3 36 1.98e-05 ***
Residuals 36

2020/10/5

Example: Egyptian Skull Mean Vectors

Sample	X1	X2	X3	<u>X4</u>
Early predynastic	131.37	133.60	99.17	50.53
Late predynastic	132.37	132.70	99.07	50.23
12th and 13th dynasties	134.47	133.80	96.03	50.57
Ptolemaic period	135.50	132.30	94.53	51.97
Roman period	136.17	130.33	93.50	51.37

Example: Egyptian Skull

Total sums of squares and cross-products

$$\mathbf{T} = \begin{pmatrix} 3563.89 - 222.81 & -615.16 & 426.73 \\ 3635.16 & 1046.28 & 346.47 \\ 4309.27 & -16.40 \\ 1533.33 \end{pmatrix}$$

dfT=149

Within-sample sums of squares and cross-products

$$\mathbf{W} = \begin{pmatrix} 3061.07 & 5.33 & 11.47 & 291.30 \\ & 3405.27 & 754.00 & 412.53 \\ & & 3505.97 & 164.33 \\ & & & 1472.13 \end{pmatrix}$$

dfW=145

Egyptian skull MANOVA

```
install.packages("HSAUR")
library(HSAUR) # load the library, must be installed
before
data("skulls", package = "HSAUR") # load into the
workspace
skulls # see the content of the data.frame
help(skulls)
summary(skulls)
#write.csv(skulls, file = "skulls.csv",row.names=FALSE)
Y<-cbind(skulls$mb, skulls$bh, skulls$bl, skulls$nh);
X<-skulls$epoch;
fit<-manova(Y~X, data=skulls)</pre>
summary(fit, test="Pillai")
summary(fit, test="Wilks")
summary(fit, test="Roy")
summary(fit, test="Hotelling-Lawley")
```

Example: Egyptian Skull

```
Pillai's trace statistic V=0.3533

d=max(p,m-1)=max(4,5-1)=4

s=min(p,m-1)=min(4,5-1)=4

df<sub>1</sub> = sd=4x4=16

df<sub>2</sub> = s(n-m-p+s)=4(150-5-4+4)=580

F=(n-m-p+s)V/[d(s-V)]

=(150-5-4+4)0.3533/[4(4-0.3533)]

=3.51 > F<sub>0.05,16,580</sub> = 1.42
```

Reject the null hypothesis of equal mean measurements over time. > summary(fit, test="Pillai")

```
Df Pillai approx F num Df den Df Pr(>F)
X 4 n0.35331 3.512 16 580 4.675e
Residuals 145
```

Example: Egyptian Skull

```
Lawley-Hotelling statistic U=0.4818 

s=min(p,m-1)=min(4,5-1)=4
A=(\left|m-p-1\right|-1)/2=(\left|5-4-1\right|-1)/2=-0.5
B=(n-m-p-1)/2=(150-5-4-1)/2=70
df_1=s(2A+s+1)=4(-1+4+1)=16
df_2=2(sB+1)=2(4x70+1)=562
F=df_2U/df_1
=562x0.4818/16
=4.23 > F_{0.05,16,562}=1.423
```

Reject the null hypothesis of equal mean measurements over time.

```
> summary(fit, test="Hotelling-Lawley")

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

X 4 0.48182 4.231 16 562 8.278e-08 ***

Residuals 145
```

In a classical experiment carried out from 1918 to 1934, apple trees of different rootstocks were compared. The data for eight trees from each of six rootstocks are given in rootstock.dat. The variables are

- y1 = trunk girth at 4 years (mm x 100)
 - y2 = extension growth at 4 years (m)
 - y3 = trunk girth at 15 years (mm x 100)
 - y4 = weight of tree above ground at 15 years (lb x 1000)

Table 6.2 Rootstock Data

Rootstock	y_1	y_2	y_3	y_4
1	1.11	2.569	3.58	.760
1	1.19	2.928	3.75	.821
1	1.09	2.865	3.93	.928
1	1.25	3.844	3.94	1.009
1	1.11	3.027	3.60	.766
1	1.08	2.336	3.51	.726
1	1.11	3.211	3.98	1.209
1	1.16	3.037	3.62	.750
2	1.05	2.074	4.09	1.036
2	1.17	2.885	4.06	1.094
2	1.11	3.378	4.87	1.635
2	1.25	3.906	4.98	1.517
2	1.17	2.782	4.38	1.197
2	1.15	3.018	4.65	1.244
2	1.17	3.383	4.69	1.495
2	1.19	3.447	4.40	1.026

The matrices \mathbf{H} , \mathbf{E} , and $\mathbf{E} + \mathbf{H}$ are given by

$$\mathbf{H} = \begin{pmatrix} .074 & .537 & .332 & .208 \\ .537 & 4.200 & 2.355 & 1.637 \\ .332 & 2.355 & 6.114 & 3.781 \\ .208 & 1.637 & 3.781 & 2.493 \end{pmatrix},$$

$$\mathbf{E} = \begin{pmatrix} .320 & 1.697 & .554 & .217 \\ 1.697 & 12.143 & 4.364 & 2.110 \\ .554 & 4.364 & 4.291 & 2.482 \\ .217 & 2.110 & 2.482 & 1.723 \end{pmatrix},$$

$$\mathbf{E} + \mathbf{H} = \begin{pmatrix} .394 & 2.234 & .886 & .426 \\ 2.234 & 16.342 & 6.719 & 3.747 \\ .886 & 6.719 & 10.405 & 6.263 \\ .426 & 3.747 & 6.263 & 4.216 \end{pmatrix}$$

Pillai's statistic

Lawley-Hotelling statistic

Roy's test statistic