Работа 2.2.6 Определение энергии активации по температурной зависимости вязкости жидкости

18 февраля 2022 г.

1 Аннотация

В работе проводится измерение скорости падения шариков из разных материалов в жидкости (глицерин) различной температуры. Затем по установившейся скорости при помощи формулы Стокса определяется вязкость жидкости и энергия активации молекул.

2 Теоретические сведения

Для перехода в новое состояние молекула должна получить энергию активации W. По формуле Больцмана

$$\eta \sim Ae^{W/kT}$$
(1)

Тогда график $Ln(\eta)$ в зависимости от (1/T) - прямая, по угл. коэфф. можно определить W. Для определения вязкости жидкости применим формулу Стокса:

$$F = 6\pi \eta r v \tag{2}$$

Найдём уравнение движения шарика в жидкости:

$$v(t) = v_y - [v_y - v(0)]e^{-t/\tau}$$
(3)

$$v_y = \frac{2}{9}gr^2\frac{\rho - \rho_{\text{m}}}{\eta} \tag{4}$$

Отсюда вязкость равна

$$\eta = \frac{2}{9}gr^2 \frac{\rho - \rho_{\mathsf{x}}}{v_y} \tag{5}$$

Энергию активации молекул можно найти из равенства

$$W = k \frac{dln(\eta)}{d(1/T)} \tag{6}$$

где $k=1,38*10^{-23}$ - постоянная Больцмана

3 Оборудование и инструментальные погрешности

Линейка: $\Delta = \pm 1$ мм

Микроскоп с градуировкой: $\Delta=\pm0,05~{
m MM}$ Термометр на термостате: $\Delta=\pm0,1~{
m K}$

Секундомер: $\Delta = \pm 0, 1$ с

Схема установки изображена на рисунке 1

Рис. 1: Установка для определения вязкости жидкости

4 Результаты измерений и обработка данных

4.1 Определение вязкости

С помощью формулы 5 определим вязкость жидкости в зависимости от температуры. При расчётах учтём зависимость плотности глицерина от температуры. При оценке погрешностей используем формулу:

$$\sigma_{\eta} = \eta \sqrt{\left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2 + 4\left(\frac{\sigma_r}{r}\right)^2} \tag{7}$$

Расчёты проведены в системе единиц СГС: 1 $\Pi a^*c = 10$ пуаз.

Температура, С	23.2	30.1	40.0	50.0	60.0
Вязкость 1 опыт, пуаз	4.5 ± 0.2	2.7 ± 0.1	1.6 ± 0.1	0.94 ± 0.05	0.58 ± 0.03
Вязкость 2 опыт, пуаз	3.9 ± 0.5	2.±.1	1.4 ± 0.1	0.91 ± 0.05	0.50 ± 0.03
Вязкость 3 опыт, пуаз	4.3 ± 0.5	$2.5{\pm}0.3$	1.2 ± 0.2	0.8 ± 0.1	$0.40 {\pm} 0.05$
Вязкость 4 опыт, пуаз	4.6 ± 0.2	2.4 ± 0.4	0.9 ± 0.1	0.8 ± 0.1	0.46 ± 0.06
Средняя вязкость, пуаз	4.24	2.57	1.29	0.845	0.475

Можно заметить, что более высокие погрешности в 3-м и 4-м опытах; это связано с малым размером металлического шарика.

4.2 Определение чисел Рейнольдса; оценка времени и пути релаксации

Число Рейнольдса можно определить следующим образом:

$$Re = \frac{vR\rho}{\eta} \tag{8}$$

, где v - характерная скорость течения, R - радиус шарика, ρ - плотность жидкости, а η - вычисленный нами коэффициент вязкости. Найдём Re для каждой температуры. Результаты в таблице 1.

Далее в таблице 2 оценим время и путь релаксации по формулам

$$\tau = \frac{V\rho}{6\pi\eta r} = \frac{2r^2\rho}{9\eta} \tag{9}$$

$$S_{\text{VCT}} = V_{\text{VCT}} * \tau \tag{10}$$

Температура, С	23.2	30.1	40.0	50.0	60.0
Re, опыт 1	0.024	0.057	0.18	0.48	1.4
Re, опыт 2	0.0072	0.059	0.21	0.59	1.4
Re, опыт 3	0.0086	0.025	0.070	0.23	0.82
Re, опыт 4	0.023	0.013	0.077	0.12	0.53

Таблица 1: Числа Рейнольдса в каждом опыте

Температура, С	№ опыта	Время релаксации, $10^{-4} \ c$	Путь релаксации, $10^{-4}\;{ m cm}$
23.2	1	15	12
	2	7	4
	3	8	5
	4	15	12
30.1	1	23	28
	2	24	30
	3	14	15
	4	8.5	6
40.0	1	43	93
	2	45	101
	3	22	38
	4	21	37
50.0	1	68	233
	2	77	300
	3	42	144
	4	26	57
60.0	1	119	729
	2	114	662
	3	76	480
	4	59	289

Таблица 2: Время и путь релаксации в разных опытах

4.3 Применимость формулы Стокса

Формула 2 применима только к ламинарному течению жидкости. В таком случае $Re \leq 10$. Это условие выполено во всех опытах. В теории, формула Стокса применима в этих опытах. На практике, η в пределах погрешности опыта зависит от формы шариков.

Путь релаксации должен быть значительно меньше расстояния от поверхности до первой риски - выполнено во всех опытах.

4.4 Определение энергии активации

При помощи метода наименьших квадратов построим прямую y=kx+b. Как видно из информации на графике 2, $k=5784\pm223$. Тогда определим энергию активации из формулы 6, а погрешность найдём по формуле

$$\sigma_W = W \frac{\sigma_k}{k} \tag{11}$$

Таким образом, $W = 79*10^{-21} \pm 3*10^{-21}$

5 Вывод

В ходе этой работы по установившейся скорости падения шариков в жидкости установили её вязкость по формуле Стокса, в зависимости от температуры, проанализировав применимость формулы в каждом опыте; а также определили энергию активации молекул глицерина.

Рис. 2: График зависимости $Ln(\eta)$ от 1/T