Valós függvények folytonossága és határértéke

Előadásjegyzet

Valós függvények folytonossága

Alapfogalmak és kapcsolatuk

- **1. Definíció.** Legyen $D \subset \mathbb{R}$ nemüres halmaz, ekkor az $f: D \to \mathbb{R}$ függvényt valós függvénynek nevezzük.
- **2. Definíció.** Legyen $D \subset \mathbb{R}$ nemüres halmaz, $f: D \to \mathbb{R}$ függvény. Azt mondjuk, hogy az f függvény **folytonos** az $x_0 \in D$ pontban, ha bármely $\varepsilon > 0$ esetén létezik olyan $\delta > 0$, hogy ha $x \in D$ olyan, hogy $|x x_0| < \delta$, akkor

$$|f(x) - f(x_0)| < \varepsilon$$
.

Ha az f függvény a D halmaz minden pontjában folytonos, akkor azt mondjuk, hogy az f függvény **folytonos** a D halmazon.

1. Példa. A

$$sign(x) = \begin{cases} 1, & ha \ x > 0 \\ 0, & ha \ x = 0 \\ -1, & ha \ x < 0 \end{cases}$$

signum függvény nem folytonos az $x_0 = 0$ pontban.

2. Példa. Az

$$f(x) = x \qquad (x \in \mathbb{R})$$

identikus függvény minden pontban folytonos.

3. Példa. Az

$$f(x) = \begin{cases} 1, & ha \ x \in \mathbb{Q} \\ 0, & ha \ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

úgynevezett Dirichlet-függvény egyetlen pontban sem folytonos.

- **1. Tétel** (Átviteli elv). Legyen $D \subset \mathbb{R}$ nemüres halmaz, $f: D \to \mathbb{R}$. Az f függvény akkor és csakis akkor folytonos az $x_0 \in D$ pontban, ha tetszőleges $(x_n)_{n \in \mathbb{N}}$ D halmazbeli elemekből álló, x_0 -hoz konvergáló sorozat esetén az $(f(x_n))_{n \in \mathbb{N}}$ sorozat $f(x_0)$ -hoz konvergál.
- **1. Megjegyzés.** Legyen $D \subset \mathbb{R}$ nemüres halmaz, $f: D \to \mathbb{R}$. Az f függvény akkor és csakis akkor nem folytonos az $x_0 \in D$ pontban, ha van olyan $(x_n)_{n \in \mathbb{N}}$ D halmazbeli elemekből álló, x_0 -hoz konvergáló sorozat, melyre az $(f(x_n))_{n \in \mathbb{N}}$ sorozat nem $f(x_0)$ -hoz konvergál.

Folytonosság és műveletek

- **2. Tétel.** Legyen $D \subset \mathbb{R}$ nemüres halmaz. Ha az $f,g:D \to \mathbb{R}$ függvények folytonosak az $x_0 \in D$ pontban, akkor
 - (i) $az f + g f \ddot{u} g y \acute{e} n y$ is folytonos $az x_0$ pontban;
- (ii) tetszőleges $\lambda \in \mathbb{R}$ esetén a λf függvény is folytonos az x_0 pontban;
- (iii) az $f \cdot g$ függvény is folytonos az x_0 pontban;

- (iv) ha tetszőleges $x \in D$ esetén $g(x) \neq 0$, akkor az $\frac{f}{g}$ függvény is folytonos az x_0 pontban.
- **3. Tétel (Az összetett függvény folytonossága).** Legyen $D \subset \mathbb{R}$ nemüres halmaz és legyenek $f: D \to \mathbb{R}$ és $g: f(D) \to \mathbb{R}$ adott függvények. Ha az f függvény folytonos az $x_0 \in D$ pontban, a g pedig az $f(x_0) \in f(D)$ pontban, akkor a $g \circ f$ függvény folytonos az x_0 pontban.
- **4. Tétel.** Legyen $I \subset \mathbb{R}$ egy korlátos intervallum, $f: I \to \mathbb{R}$ folytonos függvény. Ekkor az $f(I) \subset \mathbb{R}$ halmaz is egy korlátos intervallum.
- **1. Következmény** (Bolzano-féle középértéktétel). Legyenek $a,b \in \mathbb{R}$, a < b, $f : [a,b] \to \mathbb{R}$ folytonos függvény. Ha f(a) < f(b) és $\eta \in \mathbb{R}$ olyan, hogy $f(a) < \eta < f(b)$, akkor van olyan $\xi \in]a,b[$, melyre $f(\xi) = \eta$ teljesül.

Folytonosság és monotonitás

- **3. Definíció.** Legyen $D \subset \mathbb{R}$ nemüres halmaz, $f: D \to \mathbb{R}$ függvény. Ha az f függvény az $x_0 \in D$ pontban nem folytonos, akkor azt mondjuk, hogy az $x_0 \in D$ pont az f függvénynek **szakadási hely**e.
- **5. Tétel.** Legyen $D \subset \mathbb{R}$ nemüres halmaz, $f \colon D \to \mathbb{R}$ monoton függvény. Ekkor azoknak a pontoknak a halmaza, melyek az f függvénynek szakadási helyei, megszámlálható számosságú.

Függvények határértéke

Alapfogalmak

- **4. Definíció.** Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D'$ és $\alpha \in \mathbb{R}$. Azt mondjuk, hogy az f függvénynek **az** x_0 **pontban a határértéke** α , ha tetszőleges $\varepsilon > 0$ esetén létezik olyan $\delta > 0$, hogy ha $x \in D$ és $|x x_0| < \delta$, akkor $|f(x) \alpha| < \varepsilon$. Erre a $\lim_{x \to x_0} f(x) = \alpha$ jelölést alkalmazzuk.
- **5. Definíció.** Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D'$. az f függvénynek **az** x_0 **pontban a határértéke** $+\infty$, ha tetszőleges $K \in \mathbb{R}$ esetén létezik olyan $\delta > 0$, hogy ha $x \in D$ és $|x x_0| < \delta$, akkor f(x) > K. Erre a $\lim_{x \to x_0} f(x) = +\infty$ jelölést alkalmazzuk.
- **6. Definíció.** Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D'$. Azt mondjuk, hogy az f függvénynek **az** x_0 **pontban a határértéke** $-\infty$, ha tetszőleges $k \in \mathbb{R}$ esetén létezik olyan $\delta > 0$, hogy ha $x \in D$ és $|x x_0| < \delta$, akkor f(x) < k. Erre $a \lim_{x \to x_0} f(x) = -\infty$ jelölést alkalmazzuk.
- **4. Példa.** Tekintsük az

$$f(x) = 2x + 1 \qquad (x \in \mathbb{R})$$

módon megadott $f: \mathbb{R} \to \mathbb{R}$ függvényt. Ekkor

$$\lim_{x \to 1} f(x) = 3$$

5. Példa. Legyen

$$f(x) = \frac{1}{(x-2)^2}$$
 $(x \in \mathbb{R} \setminus \{0\}).$

Ekkor

$$\lim_{x\to 2} f(x) = +\infty.$$

- **7. Definíció.** Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely felülről nem korlátos, $f: D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} + \infty$ -ben a határértéke α , ha tetszőleges $\varepsilon > 0$ esetén létezik olyan $K \in \mathbb{R}$, hogy ha $x \in D$ és $x \geqslant K$, akkor $|f(x) \alpha| < \varepsilon$. Erre a $\lim_{x \to +\infty} f(x) = \alpha$ jelölést alkalmazzuk.
- **8. Definíció.** Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely alulról nem korlátos, $f: D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} \infty$ -ben a határértéke α , ha tetszőleges $\varepsilon > 0$ esetén létezik olyan $k \in \mathbb{R}$, hogy ha $x \in D$ és $x \leq k$, akkor $|f(x) \alpha| < \varepsilon$. Erre a $\lim_{x \to -\infty} f(x) = \alpha$ jelölést alkalmazzuk.
- **9. Definíció.** Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely felülről nem korlátos, $f:D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} + \infty$ -ben \mathbf{a} határértéke $+\infty$, ha tetszőleges $K \in \mathbb{R}$ esetén létezik olyan $K^* \in \mathbb{R}$, hogy ha $x \in D$ és $x \geqslant K^*$, akkor $f(x) \geqslant K$. Erre $a \lim_{x \to +\infty} f(x) = +\infty$ jelölést alkalmazzuk.

- **10. Definíció.** Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely felülről nem korlátos, $f:D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} + \infty$ -ben a határértéke $-\infty$, ha tetszőleges $k \in \mathbb{R}$ esetén létezik olyan $K^* \in \mathbb{R}$, hogy ha $x \in D$ és $x \geqslant K^*$, akkor $f(x) \leqslant k$. Erre a $\lim_{x \to +\infty} f(x) = -\infty$ jelölést alkalmazzuk.
- **11. Definíció.** Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely alulról nem korlátos, $f: D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} \infty$ -ben a határértéke $+\infty$, ha tetszőleges $K \in \mathbb{R}$ esetén létezik olyan $k^* \in \mathbb{R}$, hogy ha $x \in D$ és $x \leq k^*$, akkor $f(x) \geq K$. Erre a $\lim_{x \to -\infty} f(x) = +\infty$ jelölést alkalmazzuk.
- **12. Definíció.** Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely alulról nem korlátos, $f: D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} \infty$ -ben a határértéke $-\infty$, ha tetszőleges $k \in \mathbb{R}$ esetén létezik olyan $k^* \in \mathbb{R}$, hogy ha $x \in D$ és $x \leq k^*$, akkor $f(x) \leq k$. Erre a $\lim_{x \to -\infty} f(x) = -\infty$ jelölést alkalmazzuk.
- 6. Példa. Legyen

$$f(x) = e^x \qquad (x \in \mathbb{R}),$$

ekkor

$$\lim_{x \to +\infty} f(x) = +\infty \qquad \lim_{x \to -\infty} f(x) = 0$$

7. Példa. Tekintsük az

$$f(x) = x^3 \qquad (x \in \mathbb{R})$$

módon megadott $f: \mathbb{R} \to \mathbb{R}$ függvényt. Ekkor

$$\lim_{x \to +\infty} f(x) = +\infty \quad \text{\'es} \quad \lim_{x \to -\infty} f(x) = -\infty.$$

6. Tétel (Átviteli elv). Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, illetve $x_0 \in D'$ és $\alpha \in \mathbb{R} \cup \{-\infty, +\infty\}$. Ekkor $\lim_{x \to x_0} f(x) = \alpha$ pontosan akkor teljesül, ha tetszőleges $(x_n)_{n \in \mathbb{N}}$ D-beli, x_0 -hoz konvergáló sorozat esetén $\lim_{n \to \infty} f(x_n) = \alpha$ teljesül.

Határértéke és folytonosság kapcsolata

7. Tétel. Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$ és $x_0 \in D$. Ekkor az f függvény pontosan akkor folytonos az x_0 pontban, ha létezik a $\lim_{x\to x_0} f(x)$ határérték, és

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Határérték és műveletek

8. Tétel. Legyen $\emptyset \neq D \subset \mathbb{R}$, $x_0 \in D'$ $f, g : D \to \mathbb{R}$, illetve $\alpha, \beta \in \mathbb{R}$. Ha az f és g függvényeknek létezik a határértéke az x_0 pontban és

$$\lim_{x \to x_0} f(x) = \alpha \quad \text{\'es} \quad \lim_{x \to x_0} g(x) = \beta,$$

akkor

(i) az f + g függvénynek is létezik az x_0 pontban a határértéke

$$\lim_{x \to x_0} (f(x) + g(x)) = \alpha + \beta;$$

(ii) tetszőleges $\lambda \in \mathbb{R}$ esetén a $\lambda \cdot f$ függvénynek is létezik az x_0 pontban a határértéke és

$$\lim_{x \to x_0} \lambda \cdot f(x) = \lambda \cdot \alpha;$$

(iii) az $f \cdot g$ függvénynek is létezik az x_0 pontban a határértéke és

$$\lim_{x \to x_0} f(x) \cdot g(x) = \alpha \cdot \beta$$

(iv) az $\frac{f}{g}$ függvénynek is létezik a határértéke az x_0 pontban és

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\alpha}{\beta},$$

feltéve, hogy $\beta \neq 0$ és $g(x) \neq 0$ teljesül minden $x \in D$ esetén.

13. Definíció. Legyen $\emptyset \neq D \subset \mathbb{R}$, $x_0 \in D'$ $f: D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek az x_0 pontban létezik a **jobboldali határérték**e, ha van olyan $\alpha \in \mathbb{R}$, hogy bármely $\varepsilon > 0$ esetén létezik olyan $\delta > 0$, hogy ha $x \in D$ olyan, hogy $x_0 < x < x_0 + \delta$, akkor $|f(x) - \alpha| < \varepsilon$ teljesül.

Erre a $\lim_{x\to x_0+0} f(x) = \alpha$ jelölést fogjuk használni.

14. Definíció. Legyen $\emptyset \neq D \subset \mathbb{R}$, $x_0 \in D'$ $f: D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek az x_0 pontban létezik a **baloldali határérték**e, ha van olyan $\alpha \in \mathbb{R}$, hogy bármely $\varepsilon > 0$ esetén létezik olyan $\delta > 0$, hogy ha $x \in D$ olyan, hogy $x_0 - \delta < x < x_0$, akkor $|f(x) - \alpha| < \varepsilon$ teljesül.

Erre a $\lim_{x\to x_0-0} f(x) = \alpha$ jelölést fogjuk használni.

8. Példa. Tekintsük a

$$sign(x) = \begin{cases} 1, & ha \ x > 0 \\ 0, & ha \ x = 0 \\ -1, & ha \ x < 0 \end{cases}$$

módon megadott sign: $\mathbb{R} \to \mathbb{R}$ függvényt. Ekkor

$$\lim_{x \to 0+0} \operatorname{sign}(x) = 1 \qquad \lim_{x \to 0-0} \operatorname{sign}(x) = -1$$

1. Állítás. Legyen $\emptyset \neq D \subset \mathbb{R}$, $x_0 \in D'$ $f: D \to \mathbb{R}$. Ha az f függvénynek létezik az x_0 pontban a határértéke, akkor f-nek az x_0 pontban létezik a bal- és a jobboldali határértéke is és

$$\lim_{x \to x_0 + 0} f(x) = \lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0} f(x)$$

Szakadási helyek osztályozása

15. Definíció. Legyen $D \subset \mathbb{R}$ nyílt halmaz, $x_0 \in D$, $f: D \to \mathbb{R}$. Ha az x_0 pont az f függvénynek szakadási helye és léteznek a $\lim_{x\to x_0-0} f(x)$ és $\lim_{x\to x_0+0} f(x)$ bal- és jobboldali határértékei az f függvénynek az x_0 pontban, akkor azt mondjuk, hogy az f függvénynek az x_0 pontban **elsőfajú szakadás** van.

Ha még az is teljesül, hogy

$$\lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x),$$

akkor azt mondjuk, hogy az f függvénynek az x_0 pontban **megszüntethető szakadás**a van.

Ha az f függvénynek az x_0 pontban szakadása van és az nem elsőfajú, akkor azt mondjuk, hogy az f függvénynek az x_0 pontban **másodfajú szakadás**a van.

9. Példa. Az

$$f(x) = \begin{cases} x, & ha \ x \neq 2 \\ 4, & ha \ x = 2 \end{cases}$$

módon megadott $f: \mathbb{R} \to \mathbb{R}$ függvénynek az $x_0 = 2$ pontban megszüntethető szakadása van.

10. Példa. Az

$$f(x) = \begin{cases} x^2, & ha \ x < 1 \\ 0, & ha \ x = 1 \\ 2 - (x - 1)^2, & ha \ x > 1 \end{cases}$$

módon megadott $f: \mathbb{R} \to \mathbb{R}$ függvénynek az $x_0 = 1$ pontban elsőfajú, nem megszüntethető szakadása van.

11. Példa. *Az*

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & ha \ x \neq 0 \\ 0, & ha \ x = 0 \end{cases}$$

módon megadott $f: \mathbb{R} \to \mathbb{R}$ függvénynek az $x_0 = 0$ pontban másodfajú szakadása van.

