	<pre>import warnings warnings.filterwarnings('ignore') from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.svm import SVR from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error import matplotlib.pyplot as plt import seaborn as sns</pre>
	### Common
	201
	1
Out[13]:	
Out[19]:	<pre>df.shape (205, 26) missing_values = df.isnull().sum() print(missing_values) car_ID 0</pre>
	symboling 0 fueltype 0 aspiration 0 doornumber 0 controlly 0 drivesheel 0 earsidh 0 carsidh 0 compressionatio 0 bacaratio 0 carsidh 0 compressionatio 0 bacaratio 0 drivery 0 compressionatio 0 bataratio 0 drivery 0 drivery 0 drivery 0 drivery 0 drivery 1 dr
	<pre>for col in df.select_dtypes(include=np.number).columns: df[col].fillna(df[col].mean(), inplace=True) # Or median, or dropna, etc. # One-Hot Encode CATEGORICAL features FIRST categorical_cols = df.select_dtypes(exclude=np.number).columns df = pd.get_dummies(df, columns=categorical_cols, drop_first=True) # Key change!</pre>
In [99]: In [101	# Feature Scaling for NUMERICAL Features SECOND numerical_cols = dd.select_dtypes(includempn.cmmber).columns scaler = StandardScaler() # Convert categorical features to numerical using Label Encoding or One-Hot Encoding scategorical_cois = dd.select_dtypes(exclude=np.number).columns for col in categorical_cois = dd.select_dtypes(exclude=np.number).columns for col in categorical_cois = dd.select_dtypes(exclude=np.number).columns # Feature Scaling for numerical features (important for SVR and Gradient Scosting) numerical_cols = dd.select_dtypes(include=np.number).columns scaler = StandardScaler() # Define features (X) and target (y) # Selive features (X) and target (y) # Selive features (X) and target (y) # Selive data into training and testing sets # K, train, X, test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Adjust rest size as needed # 2. Node: Implementation models = ("times Regression": LinearRegression(), "Random Forest": RandomScorten() "Random Forest": RandomScorten(), "Random Forest": StandardScaler(), "Standard Forest": StandardScaler(), "Support Vector Regression": STAN()
	<pre>results = {} for name, model in models.items(): model.fit(X_train, y_train) y_pred = model.predict(X_test) r2 = r2_score(y_test, y_pred) mse = mean_squared_error(y_test, y_pred) mae = mean_absolute_error(y_test, y_pred)</pre>
In [113	<pre>results[name] = {'r2': r2, 'mse': mse, 'mae': mae} # 3. Model Evaluation print("Model Evaluation:") for name, metrics in results.items(): print(f"(name):") for metric, value in metrics.items(): print(f" {metric}: {value}")</pre>
	print("-" * 20) Model Evaluation: Linear Regression: r2: -0.187310081800956e+25 mae: 1.08153985733317e+25 mae: 1080938811689.398 Decision Tree: r2: 0.0868457733142739 mue: 0.16927444179949937 mae: 0.25369065521628487 Random Forces: r2: 0.0896845713342739 mue: 0.08004200398613472 mae: 0.08004200398613472 mae: 0.08004200398613473 Gradient Boosting: r2: 0.9326100142072609 mae: 0.0876633401890379 mae: 0.0267109922891758 Suppost Vector Regression: r2: 0.0743504380218821 mae: 0.7443504380218821 mae: 0.7443504380218821 mae: 0.7443504380218821 mae: 0.55519018324004277
In [117	### Section of the American performing model (example - based on highest R-squared) ### Section of maximustus, key lambak it results[k]['r2']) print("Sect Performing Model: (best_model)") ### Section Importance Analysis (Example using Random Forest - adapt for other models) ### Section Importance Analysis (Example using Random Forest - adapt for other models) ### Section Importance Analysis (Example using Random Forest - adapt for other models) ### Section Importance (Dest_model_instance, Random Forest): / Sect the instance of the best model. ### Section Importance (Dest_model_instance, Random Forest): / Sect the instance of the best model. ### Section Importance (Dest_model_instance, Random Forest): / Section Importance (Dest_model_instance, Page 1 and Page 2 an
	6 curbweight 0.295807 14 highwaympg 0.042438 11 horsepower 0.036676 0 car_ID 0.020347 71 CarName_mazda glc custom 1 0.000000 131 CarName_toyota corolla 1600 (sw) 0.000000 60 CarName_isuzu D-Max V-Cross 0.000000 148 CarName_volkswagen rabbit 0.000000 149 CarName_volkswagen rabbit 0.000000 150 CarName_subaru baja 0.000000
	enginesize - curbweight - highwaympg -
	horsepower
In [119	Importance # 5. Hyperparameter Tuning (Example using GridSearchCV with Random Forest) if isinstance (best_model_instance, RandomForestRegressor): param_grid = { # Example parameter grid - adjust based on the model 'n_estimators': [50, 100, 200], 'max_depth': [None, 10, 20], 'min_samples_split': [2, 5, 10] }
	<pre>grid_search = GridSearchCV(RandomForestRegressor(random_state=42), param_grid, cv=3, scoring='r2', n_jobs=-1) grid_search.fit(X_train, y_train) best_rf_model = grid_search.best_estimator_ y_pred_tuned = best_rf_model.predict(X_test) r2_tuned = r2_score(y_test, y_pred_tuned) print(f"\nHyperparameter Tuned Random Forest R-squared: {r2_tuned}") print(f"Best parameters: {grid_search.best_params_}")</pre>
	<pre># Compare performance after tuning print(f"Original Random Forest R-squared: {results['Random Forest']['r2'])") elif isinstance(best_model_instance, GradientBoostingRegressor): # Example for GradientBoosting param_grid = { 'n_estimators': [50, 100, 200], 'learning_rate': [0.01, 0.1, 0.5], 'max_depth': [3, 5, 7] } grid_search = GridSearchCV(GradientBoostingRegressor(random_state=42), param_grid, cv=3, scoring='r2', n_jobs=-1) grid_search.fit(X_train, y_train) best_gb_model = grid_search.best_estimator_ y_pred_tuned = best_gb_model.predict(X_test) r2_tuned = r2_score(y_test, y_pred_tuned)</pre>

print(f"\nHyperparameter Tuned Gradient Boosting R-squared: {r2_tuned}")

print(f"Hyperparameter tuning not implemented for {best_model}")

print(f"Original Gradient Boosting R-squared: {results['Gradient Boosting']['r2']}")

print(f"Best parameters: {grid_search.best_params_}")

else:

Machine Learning project

In [46]: import pandas as pd

import numpy as np