DIMENSION AND MEASURE OF BAKER-LIKE SKEW-PRODUCTS OF β -TRANSFORMATIONS

DAVID FÄRM AND TOMAS PERSSON

ABSTRACT. We consider a generalisation of the baker's transformation, consisting of a skew-product of contractions and a β -transformation. The Hausdorff dimension and Lebesgue measure of the attractor is calculated for a set of parameters with positive measure. The proofs use a new transversality lemma similar to Solomyak's [11]. This transversality, which is applicable to the considered class of maps holds for a larger set of parameters than Solomyak's transversality.

1. Introduction

In [1], Alexander and Yorke considered fat baker's transformations. These are maps on the square $[0,1) \times [0,1)$, defined by

$$(x,y) \mapsto \begin{cases} (\lambda x, 2y) & \text{if } y < 1/2 \\ (\lambda x + 1 - \lambda, 2y - 1) & \text{if } y \ge 1/2 \end{cases}$$

where $\frac{1}{2} < \lambda < 1$ is a parameter, see Figure 1. They showed that the SRB-measure of this map is the product of Lebesgue-measure and (a rescaled version of) the distribution of the corresponding Bernoulli convolution

$$\sum_{k=1}^{\infty} \pm \lambda^k.$$

Together with Erdős' result [3], this implies that if λ is the inverse of a Pisot-number, then the SRB-measure is singular with respect to the Lebesgue measure on $[0,1) \times [0,1)$.

Both authors were supported by EC FP6 Marie Curie ToK programme CODY. Part of the paper was written when the authors were visiting institut Mittag-Leffler in Djursholm. The authors are grateful for the hospitality of the institute. The authors would like to thank Lingmin Liao for pointing out the articles [2] and [4].

FIGURE 1. The fat baker's transformation for $\lambda = 0.6$.

²⁰¹⁰ Mathematics Subject Classification. Primary 37D50, 37C40, 37C45.

FIGURE 2. The map (2) for $\beta = 1.2$ and $\lambda = 0.8$

In [11], Solomyak proved that for almost all $\lambda \in (\frac{1}{2}, 1)$, the distribution of the corresponding Bernoulli convolution $\sum_{k=1}^{\infty} \pm \lambda^k$ is absolutely continuous with respect to Lebesgue measure. Hence this implies that the SRB-measure of the fat baker's transformation is absolutely continuous for almost all $\lambda \in (\frac{1}{2}, 1)$. Solomyak's proof used a transversality property of power series of the form $g(x) = 1 + \sum_{k=1}^{\infty} a_k x^k$, where $a_k \in \{-1, 0, 1\}$. More precisely, Solomyak proved that there exists a $\delta > 0$ such that if $x \in (0, 0.64)$ then

$$(1) |g(x)| < \delta \implies g'(x) < -\delta.$$

This property ensures that if the graph of g(x) intersects the x-axis it does so at an angle which is bounded away from 0, thereby the name transversality. The constant 0.64 is an approximation of a root to a power series and cannot be improved to something larger than this root. A simplified version of Solomyak's proof appeared in the paper [6], by Peres and Solomyak. We will make use of the method from this simpler version.

In this paper we consider maps of the form

(2)
$$(x,y) \mapsto \begin{cases} (\lambda x, \beta y) & \text{if } y < 1/\beta \\ (\lambda x + 1 - \lambda, \beta y - 1) & \text{if } y \ge 1/\beta \end{cases},$$

where $0 < \lambda < 1$ and $1 < \beta < 2$, see Figure 2. Using the above mentioned transversality of Solomyak one can prove that for almost all $\lambda \in (0,0.64)$ and $\beta \in (1,2)$ the SRB-measure is absolutely continuous with respect to Lebesgue measure provided $\lambda \beta > 1$, and the Hausdorff dimension of the SRB-measure is $1 + \frac{\log \beta}{\log 1/\lambda}$ provided $\lambda \beta < 1$.

A problem with this approach is that the condition $\lambda < 0.64$ is very restrictive when β is close to 1. Then the above method yields no λ for which the SRB-measure is absolutely continuous, and it does not give the dimension of the SRB-measure for any $\lambda \in (0.64, 1/\beta)$.

We prove that these results about absolute continuity and dimension of the SRB-measure hold for sets of (β, λ) of positive Lebesgue measure, even when $\lambda > 0.64$. This is done by extending the interval on which the transversality property (1) holds. This can be done in our setting, since in our class of maps, not every sequence $(a_k)_{k=1}^{\infty}$ with $a_k \in \{-1,0,1\}$ occurs in the power series $g(x) = 1 + \sum_{k=1}^{\infty} a_k x^k$ that we need to consider in the proof. To control which sequences that occur, we will use some results of Brown and Yin [2] and Kwon [4] on natural extensions of β -shifts.

The paper is organised as follows. In Section 2 we recall some facts about β -transformations and β -shifts. We then present the results of Brown and

Yin, and Kwon in Section 3. In Section 4 we state our results, and give the proofs in Section 6. The transversality property is stated and proved in Section 5.

2. β -SHIFTS

Let $\beta > 1$ and define $f_{\beta} : [0,1] \to [0,1)$ by $f_{\beta}(x) = \beta x$ modulo 1. For $x \in [0,1]$ we associate a sequence $d(x,\beta) = (d_k(x,\beta))_{k=1}^{\infty}$ defined by $d_k(x,\beta) = [\beta f_{\beta}^{k-1}(x)]$ where [x] denotes the integer part of x. If $x \in [0,1]$, then $x = \phi_{\beta}(d(x,\beta))$, where

$$\phi_{\beta}(i_1, i_2, \ldots) = \sum_{k=1}^{\infty} \frac{i_k}{\beta^k}$$

This representation, among others, of real numbers was studied by Rényi [8]. He proved that there is a unique probability measure μ_{β} on [0,1] invariant under f_{β} and equivalent to Lebesgue measure. We will use this measure in Section 6.

We let S_{β}^+ denote the closure in the product topology of the set $\{d(x,\beta): x \in [0,1)\}$. The compact symbolic space S_{β}^+ together with the left shift σ is called a β -shift. If we define $d_-(1,\beta)$ to be the limit in the product topology of $d(x,\beta)$ as x approaches 1 from the left, we have the equality

(3)
$$S_{\beta}^{+} = \{ (a_1, a_2, \ldots) \in \{0, 1, \ldots, [\beta] \}^{\mathbb{N}} :$$

$$\sigma^k(a_1, a_2, \ldots) \leq d_{-}(1, \beta) \ \forall k \geq 0 \},$$

where σ is the left-shift. This was proved by Parry in [5], where he studied the β -shifts and their invariant measures. Note that $d_{-}(1,\beta) = d(1,\beta)$ if and only if $d(1,\beta)$ contains infinitely many non-zero digits. A particularly useful property of the β -shift is that $\beta < \beta'$ implies $S_{\beta}^{+} \subset S_{\beta'}^{+}$. The map $\phi_{\beta} \colon S_{\beta}^{+} \to [0,1]$ is not necessarily injective, but we have $d(\cdot,\beta) \circ f_{\beta} = \sigma \circ d(\cdot,\beta)$.

3. Symmetric β -shifts

Let $\beta > 1$ and consider S_{β}^+ . The natural extension of (S_{β}^+, σ) can be realised as (S_{β}, σ) , with

$$S_{\beta} = \{ (\dots, a_{-1}, a_0, a_1, \dots) : (a_n, a_{n+1}, \dots) \in S_{\beta}^+ \ \forall n \in \mathbb{Z} \},$$

where σ is the left shift on bi-infinite sequences. We will use the concept of cylinder sets only in S_{β} . A cylinder set is a subset of S_{β} of the form

$$[a_{-n}, a_{-n+1}, \dots, a_0] = \{ (\dots, b_{-1}, b_0, b_1, \dots) \in S_\beta : a_k = b_k \ \forall k = -n, \dots, 0 \}.$$

We define S_{β}^{-} to be the set

$$S_{\beta}^{-} = \{ (b_1, b_2, \dots) : \exists (a_1, a_2, \dots) \in S_{\beta}^{+} \text{ s.t. } (\dots, b_2, b_1, a_1, a_2, \dots) \in S_{\beta} \}$$

$$= \{ (b_1, b_2, \dots) : (\dots, b_2, b_1, 0, 0, \dots) \in S_{\beta} \}.$$

We will be interested in the set S of β for which $S_{\beta}^{+} = S_{\beta}^{-}$. This set was considered by Brown and Yin in [2]. We now describe the properties of S that we will use later on.

Consider a sequence of the digits a and b. Any such sequence can be written in the form

$$(a^{n_1}, b, a^{n_2}, b, \ldots),$$

where each n_k is a non-negative integer or ∞ . We say that such a sequence is allowable if $a \in \mathbb{N}$, b = a - 1, and $n_1 \geq 1$. If the sequence (n_1, n_2, \ldots) is also allowable, we say that $(a^{n_1}, b, a^{n_2}, b, \ldots)$ is derivable, and we call (n_1, n_2, \ldots) the derived sequence of $(a^{n_1}, b, a^{n_2}, b, \ldots)$. For some sequences, this operation can be carried out over and over again, generating derived sequences out of derived sequences. We have the following theorem.

Theorem 1 (Brown–Yin [2], Kwon [4]). $\beta \in S$ if and only if $d(1,\beta)$ is derivable infinitely many times.

The "only if"-part was proved by Brown and Yin in [2] and the "if"-part was proved by Kwon in [4]. Using this characterisation of S, Brown and Yin proved that S has the cardinality of the continuum, but its Hausdorff dimension is zero.

There is a connection between numbers in S and Sturmian sequences. We will not make any use of the connection in this paper, but refer the interested reader to Kwon's paper [4] for details.

For our main results in the next section, it is nice to know whether S contains numbers arbirarily close to 1. The following proposition is easily proved using Theorem 1.

Proposition 1. inf S = 1.

Proof. We prove this statement by explicitely choosing sequences $d(1,\beta)$ corresponding to numbers $\beta \in S$ arbitrarily close to 1. We do this by first finding some sequences that are infinitely derivable, and then we find the corresponding β by solving the equation $1 = \phi_{\beta}(d(1,\beta))$. Let us first remark that the sequence $(1,0,0,\ldots)$ is its own derived sequence.

The sequence $d(1,\beta) = (1,1,0,(1,0)^{\infty})$ is clearly derivable infinitely many times. It's derived sequence is $(2,1,1,\ldots)$, and the derived sequence of this sequence is $(1,0,0,\ldots)$. One finds numerically that the corresponding β is given by $\beta = 1.801938\ldots$ and that $1/\beta = 0.554958\ldots$

There are however smaller numbers in the set S. Consider the sequence $d(1,\beta) = (1,0,(1,0,0)^{\infty})$. It's derived sequence is $(1,1,0,(1,0)^{\infty})$, which derives to $(2,1,1,\ldots)$, and so on. Solving for β we find that $\beta = 1.558980\ldots$ and $1/\beta = 0.641445\ldots$ Now, for all natural n, let β_n be such that

$$d(1, \beta_n) = (1, 0^n, (1, 0^{n+1})^{\infty}).$$

Then, for $n \geq 2$, the derived sequence of $d(1, \beta_n)$ is the sequence $d(1, \beta_{n-1})$. Hence all sequences $d(1, \beta_n)$ are infinitely derivable, and so $\beta_n \in S$. Moreover it is clear that $\beta_n \to 1$ as $n \to \infty$. See Table 1.

4. Results

Let $0<\lambda<1$ and $1<\beta<2$. Put $Q=[0,1)\times[0,1)$ and define $T_{\beta,\lambda}\colon Q\to Q$ by

$$T_{\beta,\lambda}(x,y) = \begin{cases} (\lambda x, \beta y) & \text{if } y < 1/\beta \\ (\lambda x + 1 - \lambda, \beta y - 1) & \text{if } y \ge 1/\beta \end{cases}.$$

n	β_n	$1/\beta_n$
1	1.558980	0.641445
2	1.438417	0.695209
3	1.365039	0.732580
4	1.315114	0.760390
5	1.278665	0.782066

Table 1. Some numerical values of β_n .

FIGURE 3. The set Λ for $\beta=1.2$ and $\lambda=0.8$ (left) and $\beta=1.8$ and $\lambda=0.4$ (right).

Denote by ν the 2-dimensional Lebesgue measure on Q. For any $n \in \mathbb{N}$ we define the measure

$$\nu_n = \frac{1}{n} \sum_{k=0}^{n-1} \nu \circ T_{\beta,\lambda}^{-n}.$$

The SRB-measure (it is unique as noted below) of $T_{\beta,\lambda}$ is the weak limit of ν_n as $n \to \infty$.

The SRB-measures are characterised by the property that their conditional measures along unstable manifolds are equivalent to Lebesgue measure. The existence of such measures was established for invertible maps by Pesin [7] and extended to non-invertible maps by Schmeling and Troubetzkoy [10]. We denote the SRB-measure of $T_{\beta,\lambda}$ by μ_{SRB} . Using the Hopf-argument used by Sataev in [9] one proves that the SRB-measure is unique. (Sataev's paper is about a somewhat different map, but the argument goes through without changes.)

The support of μ_{SRB} is the set

$$\Lambda = \text{closure} \bigcap_{n=0}^{\infty} T_{\beta,\lambda}^n(Q)$$

of which we have examples in Figure 3. One can estimate the dimension from above by covering the set Λ with the natural covers, consisting of the pieces of $T^n_{\beta,\lambda}(Q)$. This gives us the upper bound, that the Hausdorff dimension of Λ is at most $1 + \frac{\log \beta}{\log 1/\lambda}$. If $\lambda \beta > 1$ this is a trivial estimate, since then $1 + \frac{\log \beta}{\log 1/\lambda} > 2$.

The following theorem states that in the case when $\lambda\beta < 1$, there is a set of parameters of positive Lebesgue measure for which the estimate above is optimal.

Theorem 2. Let $1 < \beta < 2$ and $\gamma = \inf\{\beta' \in S : \beta' \geq \beta\}$. Then for Lebesgue almost every $\lambda \in (0, 1/\gamma)$ the Hausdorff dimension of the SRB-measure of $T_{\beta,\lambda}$ is $1 + \frac{\log \beta}{\log 1/\lambda}$.

Recall from Proposition 1 that inf S=1. This implies that when β gets close to 1, Theorem 2 gives the dimension of the SRB-measure for a large set of $\lambda > 0.64$, which is not obtainable using Solomyak's transversality from [11], described in the introduction.

In the area-expanding case, when $\lambda\beta > 1$, we have the following theorem.

Theorem 3. For any $\gamma \in S$, there is an $\varepsilon > 0$ such that for all β with $1/\beta \in [1/\gamma, 1/\gamma + \varepsilon)$, and Lebesgue almost every $\lambda \in (1/\beta, 1/\gamma + \varepsilon)$ the SRB-measure of $T_{\beta,\lambda}$ is absolutely continuous with respect to Lebesgue measure.

Since inf S=1 by Proposition 1, there are β arbitrarily close to 1 for which we have a set of λ of positive Lebesgue measure, where the SRB-measure is absolutely continuous. In particular, this means that for these parameters, the set Λ has positive 2-dimensional Lebesgue measure.

Let us comment on the relation between Theorem 3 and the results of Brown and Yin in [2]. Brown and Yin considers any $\beta > 1$. In the case $1 < \beta < 2$ their result is the following. They consider the map

$$(x,y) \mapsto \left\{ \begin{array}{ll} (\frac{1}{\beta}x,\beta y) & \text{if } y < \frac{1}{\beta}, \\ (\frac{1}{\beta}x + \frac{1}{\beta},\beta y - 1) & \text{if } y \ge \frac{1}{\beta}. \end{array} \right.$$

Hence their map is similar to ours when $\lambda = \frac{1}{\beta}$. They proved that the Lebesgue measure restricted to the set Λ is invariant if $\beta \in S$.

5. Transversality

The main results of this paper, Theorem 2 and Theorem 3, only deal with $1 < \beta < 2$. However, the arguments in this section work just as well for larger β , so for the rest of this section we will be working with a fixed $\beta > 1$.

Consider the set of power series of the form

(4)
$$g(x) = 1 + \sum_{k=1}^{\infty} (a_k - b_k) x^k,$$

where $(a_1, a_2, ...)$ and $(b_1, b_2, ...)$ are sequences in S_{β}^+ .

Lemma 1. There exist $\varepsilon > 0$ and $\delta > 0$ such that for any power series g of the form (4), $x \in [0, 1/\beta + \varepsilon]$ and $|g(x)| < \delta$ implies that $g'(x) < -\delta$.

Proof. Let

(5)
$$0 < \varepsilon < \min\left\{\frac{1 - 1/\beta}{2}, \frac{1}{[\beta]}\right\}$$

and assume that no such δ exists. We will show that if ε is too small, then we get a contradiction.

By assumption, there is a sequence g_n of power series of the form (4) and a sequence of numbers $x_n \in [0, 1/\beta + \varepsilon]$, such that $\lim_{n\to\infty} g_n(x_n) = 0$ and $\lim\inf_{n\to\infty} g'_n(x_n) \geq 0$. We can take a subsequence such that g_n converges term-wise to a series

$$g(x) = 1 + \sum_{k=1}^{\infty} (a_k - b_k) x^k$$

with $(a_1, a_2, ...), (b_1, b_2, ...) \in S_{\beta}^+$, and such that x_n converges to some number $x_0 \in [0, 1/\beta + \varepsilon]$. Clearly, $g(x_0) = 0$ and $g'(x_0) \geq 0$, so looking at (4) we note that $x_0 \neq 0$.

Assume first that $x_0 \in (0, 1/\beta]$. Let $\beta_0 = 1/x_0 \ge \beta$. Then $g(x_0) = 0$ and $(a_1, a_2, ...), (b_1, b_2, ...) \in S_{\beta_0}^+$ implies that

(6)
$$\phi_{\beta_0}(a_1, a_2, \dots) - \phi_{\beta_0}(b_1, b_2, \dots) = \sum_{k=1}^{\infty} \frac{a_k}{\beta_0^k} - \sum_{k=1}^{\infty} \frac{b_k}{\beta_0^k} = -1.$$

Both of the sums in (6) are in [0,1], since they equal $\phi_{\beta_0}(a_1, a_2, ...)$ and $\phi_{\beta_0}(b_1, b_2, ...)$ respectively. We conclude that

$$\sum_{k=1}^{\infty} \frac{a_k}{\beta_0^k} = 0 \quad \text{and} \quad \sum_{k=1}^{\infty} \frac{b_k}{\beta_0^k} = 1.$$

We must therefore have $(a_1, a_2, \ldots) = (0, 0, \ldots)$, and b_k must be nonzero for at least some k. From (4) we then get $g'(x) = -\sum_{k=1}^{\infty} k b_k x^{k-1} < 0$ for all $x \in (0, 1/\beta]$, contradicting the fact that $g'(x_0) \geq 0$.

Assume instead that $x_0 \in (1/\beta, 1/\beta + \varepsilon]$. We write

(7)
$$g(x) = 1 + h_1(x) - h_2(x),$$

where

(8)
$$h_1(x) = \sum_{k=1}^{\infty} a_k x^k$$
 and $h_2(x) = \sum_{k=1}^{\infty} b_k x^k$.

Since $(b_1, b_2, \dots) \in S_{\beta}^+$, we have $h_2(1/\beta) \leq 1$. Moreover, for $x \geq 0$ we have $0 \leq h_2'(x) \leq \sum_{k=1}^{\infty} [\beta] k x^{k-1} = \frac{[\beta]}{(1-x)^2}$. Therefore we have

(9)
$$h_2(x_0) \le 1 + \int_{1/\beta}^{1/\beta + \varepsilon} \frac{[\beta]}{(1-x)^2} dx = 1 + \frac{[\beta]\varepsilon}{(1-1/\beta - \varepsilon)(1-1/\beta)}.$$

Since $g(x_0) = 0$ we see from (7) and (9) that

$$h_1(x_0) \le \frac{[\beta]\varepsilon}{(1 - 1/\beta - \varepsilon)(1 - 1/\beta)}.$$

If we have $\frac{[\beta]\varepsilon}{(1-1/\beta-\varepsilon)(1-1/\beta)} \geq x_0$, then let k=0. Otherwise, let k be the largest integer such that $x_0^k > \frac{[\beta]\varepsilon}{(1-1/\beta-\varepsilon)(1-1/\beta)}$. Since $h_1(x)$ is of the form (8) and all its terms are non-negative we must have $a_i = 0$ for $i \leq k$. This implies that

$$(10) \quad h_1'(x) \le \sum_{i=k+1}^{\infty} [\beta] i x^{i-1} \le [\beta] \frac{(k+1)x^k + kx^{k+1}}{(1-x)^2} = x^{k+1} [\beta] \frac{k+1+kx}{x(1-x)^2}.$$

By the maximality of k, we have $x_0^{k+1} \leq \frac{[\beta]\varepsilon}{(1-1/\beta-\varepsilon)(1-1/\beta)}$, so (10) and (5) implies

$$(11) \quad h_1'(x_0) \le \frac{[\beta]^2 \varepsilon}{(1 - 1/\beta - \varepsilon)(1 - 1/\beta)} \frac{k + 1 + kx_0}{x_0(1 - x_0)^2} \le \frac{[\beta]^2 \varepsilon(2k + 1)}{(1 - 1/\beta - \varepsilon)^4 x_0}.$$

To estimate $h_2'(x_0)$ from below, we note that since $h_2(x)$ is of the form (8), we must have $h_2''(x) \geq 0$ for all x. We also have $h_2(x_0) \geq 1$ since $0 = g(x_0) = h_1(x_0) - h_2(x_0)$. Since $h_2(0) = 0$, this implies

(12)
$$h_2'(x_0) \ge \frac{h_2(x_0)}{x_0} \ge \frac{1}{x_0}.$$

Now, if we can choose ε so small that $g'(x_0) = h'_1(x_0) - h'_2(x_0) < 0$, we get a contradiction to the fact that $g'(x_0) \ge 0$. By (11) and (12) we see that it is enough to choose ε so small that

$$\frac{[\beta]^2 \varepsilon (2k+1)}{(1-1/\beta-\varepsilon)^4 x_0} - \frac{1}{x_0} < 0 \quad \Longleftrightarrow \quad \varepsilon < \frac{(1-1/\beta-\varepsilon)^4}{[\beta]^2 (2k+1)}.$$

So, by (5) it is sufficient to choose

(13)
$$\varepsilon < \frac{(1 - 1/\beta)^4}{2^4 [\beta]^2 (2k + 1)}.$$

To get a bound on k recall that by definition, either k=0 or it satisfies

$$x_0^k > \frac{[\beta]\varepsilon}{(1 - 1/\beta - \varepsilon)(1 - 1/\beta)}.$$

By (5) we get

$$k < \frac{\log([\beta]\varepsilon) - \log(1 - 1/\beta - \varepsilon) - \log(1 - 1/\beta)}{\log(x_0)}$$
$$< \frac{\log([\beta]\varepsilon)}{\log(1/\beta + \varepsilon)} \le \frac{\log([\beta]\varepsilon)}{\log(\frac{1 + 1/\beta}{2})}.$$

Inserting this estimate into (13), we get the sufficient condition (14)

$$\varepsilon < \frac{\left(1 - 1/\beta\right)^4}{2^4 [\beta]^2 \frac{2 \log([\beta]\varepsilon)}{\log \frac{1 + 1/\beta}{2}} + 2^4 [\beta]^2} \Leftrightarrow \frac{2^5 [\beta]^2}{\log \frac{1 + 1/\beta}{2}} \varepsilon \log([\beta]\varepsilon) + 2^4 [\beta]^2 \varepsilon < \left(1 - 1/\beta\right)^4.$$

But $\varepsilon \log \varepsilon \to 0$ as ε shrinks to 0, so it is clear that we can find an $\varepsilon > 0$ satisfing (14).

Remark 1. Let us give an explicit formula for which ε we can choose in the case $1 < \beta < 2$. For such β we have $[\beta] = 1$. By (5) we have $\varepsilon \leq \frac{1-1/\beta}{2}$, so it follows that $\varepsilon \leq \frac{-\varepsilon \log \varepsilon}{\log \frac{2}{1-1/\beta}}$. This implies that (14) is satisfied if

$$-\varepsilon \log \varepsilon \left(\frac{2^5}{\log \frac{2}{1+1/\beta}} + \frac{2^4}{\log \frac{2}{1-1/\beta}}\right) < \left(1 - 1/\beta\right)^4.$$

Finally we use that $-\varepsilon \log \varepsilon < \frac{3}{4}\sqrt{\varepsilon}$ and conclude that it is sufficient to pick any

$$\varepsilon \le \frac{16}{9} \frac{\left(1 - 1/\beta\right)^8}{\left(\frac{2^5}{\log\frac{2}{1 + 1/\beta}} + \frac{2^4}{\log\frac{2}{1 - 1/\beta}}\right)^2}.$$

6. Proofs

Before we give the proofs of Theorems 2 and 3, we make some preparations that will be used in both proofs.

For fixed $1 < \beta < 2$ and $0 < \lambda < 1$, the set Λ satisfies

(15)
$$\Lambda = \{ (x, y) : \exists \boldsymbol{a} \in S_{\beta} \text{ such that } x = \pi_1(\boldsymbol{a}, \lambda), \ y = \pi_2(\boldsymbol{a}, \beta) \},$$

where

$$\pi_1(\boldsymbol{a}, \lambda) = (1 - \lambda) \sum_{k=0}^{\infty} a_{-k} \lambda^k,$$

$$\pi_2(\boldsymbol{a},\beta) = \sum_{k=1}^{\infty} a_k \beta^{-k}.$$

To see this one can argue as follows. Recall that Λ is the closure of the set $\bigcap_{n=0}^{\infty} T_{\beta,\lambda}^n(Q)$. For each $(x,y) \in \bigcap_{n=0}^{\infty} T_{\beta,\lambda}^n(Q)$, we have that $(x,y) = T_{\beta,\lambda}^n(x_n,y_n)$ for some sequence $(x_n,y_n) \in Q$ with $T_{\beta,\lambda}(x_{n+1},y_{n+1}) = (x_n,y_n)$. This means that there is a sequence $\mathbf{a} \in S_{\beta}$ such that

$$(x,y) = T_{\beta,\lambda}^n(x_n, y_n) = \left(\lambda^n x_n + (1-\lambda) \sum_{k=0}^{n-1} a_{-k} \lambda^k, y\right),$$

and

$$T_{\beta,\lambda}^n(x,y) = (x_{-n}, y_{-n}) = \left(x_{-n}, \beta^n y - \sum_{k=1}^n \beta^{n-k} a_k\right).$$

Hence

$$x = \lambda^{n} x_{n} + (1 - \lambda) \sum_{k=0}^{n-1} a_{-k} \lambda^{k},$$
$$y = \beta^{-n} y_{-n} + \sum_{k=1}^{n} \beta^{-k} a_{k}.$$

Letting $n \to \infty$ we get that all points $(x, y) \in \bigcap_{n=0}^{\infty} T_{\beta, \lambda}^n(Q)$ are of the form $(\pi_1(\boldsymbol{a}, \lambda), \pi_2(\boldsymbol{a}, \beta))$.

For any point $(x,y) \in \Lambda$, there is sequence $(x^{(k)},y^{(k)})$ of points from $\bigcap_{n=0}^{\infty} T_{\beta,\lambda}^n(Q)$ that converges to (x,y). But each of the points $(x^{(k)},y^{(k)})$ is of the form $(\pi_1(\boldsymbol{a}^{(k)},\lambda),\pi_2(\boldsymbol{a}^{(k)},\beta))$ for some $\boldsymbol{a}^{(k)} \in S_{\beta}$. Since the space S_{β} is closed we conclude that $(x,y) \in \Lambda$ is also of this form.

On the other hand, $T_{\beta,\lambda}(\pi_1(\boldsymbol{a},\lambda),\pi_2(\boldsymbol{a},\beta)) = (\pi_1(\sigma\boldsymbol{a},\lambda),\pi_2(\sigma\boldsymbol{a},\beta))$, so the set of points of the form $(\pi_1(\boldsymbol{a},\lambda),\pi_2(\boldsymbol{a},\beta))$ is contained in Λ . This proves (15).

We are now going to describe the unstable manifolds using the symbolic representation. Let

(16)
$$\pi(\boldsymbol{a}, \beta, \lambda) = (\pi_1(\boldsymbol{a}, \lambda), \pi_2(\boldsymbol{a}, \beta)).$$

Consider a sequence $\mathbf{a} \in S_{\beta}$ and the corresponding point $p = \pi(\mathbf{a}, \beta, \lambda)$. In the symbolic space, $T_{\beta,\lambda}$ acts as the left-shift, so the local unstable manifold of p corresponds to the set of sequences \mathbf{b} such that $a_k = b_k$ for $k \leq 0$.

For $\lambda \leq 1/2$, π is injective on S_{β} so the local unstable manifold of p is unique. If $\lambda > 1/2$, then π need not be injective on S_{β} , so the local unstable manifold of p need not be unique. Indeed, when π is not injective there are $a \neq b$ such that $p = \pi(a, \beta, \lambda) = \pi(b, \beta, \lambda)$, giving rise to different unstable manifolds.

Because of the description (3) we have that $\pi(\boldsymbol{b}, \beta, \lambda)$ is in the unstable manifold of $\pi(\boldsymbol{a}, \beta, \lambda)$ if $(b_1, b_2, \ldots) \leq (a_1, a_2, \ldots)$. Hence for the unstable manifold of $\pi(\boldsymbol{a}, \beta, \lambda)$, there is a maximal \boldsymbol{c} , with $c_k = a_k$ for all $k \leq 0$, such that $\pi(\boldsymbol{c}, \beta, \lambda)$ is contained in the unstable manifold. For this \boldsymbol{c} we have that the unstable manifold is the set

$$\{(x,y): x = \pi_1(a,\lambda), y \leq \pi_2(c,\beta)\},\$$

i.e. a vertical line. So, if a is such that $(a_1, a_2, ...)$ does not end with a sequence of zeros, then the unstable manifold has positive length. Since Λ is a union of unstable manifolds, we conclude that Λ is the union of line-segments of the form $\{(x,y): x \text{ fixed}, 0 \leq y \leq c\}$.

We will be using the symbolic representation of Λ given by (15), so we transfer the measure μ_{SRB} to a measure η on S_{β} by $\eta = \mu_{\text{SRB}} \circ \pi(\cdot, \beta, \lambda)$. We take a closer look at this measure η before we start the proofs. Recall, from Section 2, the probability measure μ_{β} on [0, 1] that is invariant under f_{β} and equivalent to Lebesgue measure. We get a shift-invariant measure on S_{β}^+ by taking $\mu_{\beta} \circ \phi_{\beta}$ and it can be extended in the natural way to a shift-invariant measure η_{β} on S_{β} .

Since μ_{SRB} and μ_{β} are the unique SRB-measures for $T_{\beta,\lambda}$ and f_{β} respectively, we conclude that μ_{β} is the projection of μ_{SRB} to the second coordinate. Thus η and η_{β} coincide on sets of the form $\{a: a_k = b_k, k = 1, \ldots, n\}$. By invariance η and η_{β} will coincide. Since η_{β} does not depend on λ by construction, η does not depend on λ . We now get the following estimates using the relation between η and μ_{β} .

$$\eta([a_{-n} \dots a_0]) = \mu_{\beta} \Big(\phi_{\beta} \Big(\{ (x_i)_{i=1}^{\infty} \in S_{\beta}^+ : x_1 \dots x_{n+1} = a_{-n} \dots a_0 \} \Big) \Big) \\
\leq K \operatorname{diamater} \Big(\phi_{\beta} \Big(\{ (x_i)_{i=1}^{\infty} \in S_{\beta}^+ : x_1 \dots x_{n+1} = a_{-n} \dots a_0 \} \Big) \Big) \\
(17) \qquad \leq K \beta^{-(n+1)},$$

where $K < \infty$ is a constant. It follows from (17) that for η almost all $a \in S_{\beta}$, the sequence $(a_1, a_2, ...)$ does not end with a sequence of zeros. As already noted, this means that the unstable manifold is a vertical line segment of positive length. Hence for η almost all a the corresponding unstable manifold is of positive length. We will use this fact in the proofs that follow.

Proof of Theorem 2. Let $\beta > 1$ and pick any $\beta' \geq \beta$ such that $\beta' \in S$. For η almost every sequence \boldsymbol{a} , the local unstable manifold of $\pi(\boldsymbol{a}, \beta, \lambda)$ corresponding to \boldsymbol{a} , contains a vertical line segment of positive length. Note that this length does not depend on λ . Let ω_{δ} be the set of sequences \boldsymbol{a} , such that the corresponding local unstable manifold of $\pi(\boldsymbol{a}, \beta, \lambda)$ has a length of at least $\delta > 0$. Take $\delta > 0$ so that ω_{δ} has positive η -measure. Then the set $\Omega_{\delta} = \pi(\omega_{\delta}, \beta, \lambda)$ has the same positive μ_{SRB} -measure. Consider the restriction of μ_{SRB} to Ω_{δ} and project this measure to $[0,1) \times \{0\}$. Let $\mu_{\text{SRB}}^{\text{S}}$ denote this projection.

Take an interval I = (c, d) with $0 < c < d < 1/\beta'$. Let t be a number in (0, 1). We estimate the quantity

$$J(t) = \int_{I} \int_{\Omega_s} \int_{\Omega_s} \frac{1}{|x_1 - x_2|^t} d\mu_{SRB}^{\mathbf{s}}(x_1) d\mu_{SRB}^{\mathbf{s}}(x_2) d\lambda.$$

If this integral converges, then for Lebesgue almost every $\lambda \in I$, the dimension of $\mu_{\text{SRB}}^{\text{s}}$ is at least t, and so the dimension of μ_{SRB} is at least 1+t. Writing J(t) as an integral over the symbolic space we have that

$$J(t) = \int_{I} \int_{\omega_{\delta}} \int_{\omega_{\delta}} \frac{1}{|\pi_{1}(\boldsymbol{a},\lambda) - \pi_{1}(\boldsymbol{b},\lambda)|^{t}} d\eta(\boldsymbol{a}) d\eta(\boldsymbol{b}) d\lambda.$$

Since η does not depend on λ we can change order of integration and write

$$J(t) = \int_{\mathcal{U}_{s}} \int_{\mathcal{U}_{s}} \int_{I} \frac{1}{|\pi_{1}(\boldsymbol{a},\lambda) - \pi_{1}(\boldsymbol{b},\lambda)|^{t}} d\lambda d\eta(\boldsymbol{a}) d\eta(\boldsymbol{b}).$$

Now, $\boldsymbol{a}, \boldsymbol{b} \in S_{\beta} \subset S_{\beta'}$, so for \boldsymbol{a} and \boldsymbol{b} with $a_j = b_j$ for $j = -k+1, \ldots, 0$ and $a_{-k} \neq b_{-k}$, we have

$$|\pi_1(\boldsymbol{a},\lambda) - \pi_1(\boldsymbol{b},\lambda)|^t = \lambda^{kt}|\pi_1(\sigma^{-k}\boldsymbol{a},\lambda) - \pi_1(\sigma^{-k}\boldsymbol{b},\lambda)|^t = \lambda^{kt}|g(\lambda)|^t,$$

where g is of the form (4). Since $I = [c, d] \subset [0, 1/\beta']$, we can use the transversality from Lemma 1 to conclude that

(18)
$$\int_{I} \frac{d\lambda}{|\pi_{1}(\boldsymbol{a},\lambda) - \pi_{1}(\boldsymbol{b},\lambda)|^{t}} \leq c^{-kt} \int_{I} \frac{d\lambda}{|g(\lambda)|^{t}} \leq Cc^{-kt}$$

for some constant C. We can write $S_{\beta} \times S_{\beta} = A \cup B$, where

$$A = \bigcup_{k=1}^{\infty} \bigcup_{[a_{-k+1},\dots,a_0]} [0,a_{-k+1},\dots,a_0] \times [1,a_{-k+1},\dots,a_0]$$

$$\cup \bigcup_{k=1}^{\infty} \bigcup_{[a_{-k+1},\dots,a_0]} [1,a_{-k+1},\dots,a_0] \times [0,a_{-k+1},\dots,a_0],$$

and

$$B = \bigcup_{\boldsymbol{a} \in S_{\beta}} \{\boldsymbol{a}\} \times \{\boldsymbol{a}\}.$$

Since $\eta(\mathbf{a}) = 0$ for all $\mathbf{a} \in S_{\beta}$, we can replace $\omega_{\delta} \times \omega_{\delta}$ by A in the estimates, so after using (18) we get

$$J(t) \leq \sum_{k=1}^{\infty} \sum_{[a_{-k+1},\dots,a_0]} 2Cc^{-kt} \int_{[0,a_{-k+1},\dots,a_0]} \int_{[1,a_{-k+1},\dots,a_0]} d\eta d\eta$$

$$\leq \sum_{k=1}^{\infty} \sum_{[a_{-k+1},\dots,a_0]} 2CKc^{-kt}\beta^{-k} \int_{[1,a_{-k+1},\dots,a_0]} d\eta$$

$$\leq 2CK \sum_{k=0}^{\infty} c^{-kt}\beta^{-k},$$

by (17) and the fact that η is a probability measure. This series converges provided that $t < \frac{\log \beta}{\log 1/c}$.

We have now proved that for a.e. λ in I=(c,d), the dimension of the SRB-measure is at least $1+\frac{\log\beta}{\log 1/c}$. To get the result of the theorem, we let $\varepsilon>0$ and write $I=(0,1/\beta')$ as a union of intervals $I_n=(c_n,d_n)$ such that $\frac{\log\beta}{\log 1/c_n}>\frac{\log\beta}{\log 1/d_n}-\varepsilon$. Then the dimension is at least $1+\frac{\log\beta}{\log c_n}\geq 1+\frac{\log\beta}{\log 1/\lambda}-\varepsilon$ for a.e. $\lambda\in I$. Since ε and β' was arbitrary this proves the theorem. \square

Proof of Theorem 3. In [6], Peres and Solomyak gave a simplified proof of Solomyak's result from [11], about the absolute continuity of the Bernoulli convolution $\sum_{k=1}^{\infty} \pm \lambda^k$. The proof that follows uses the method from [6] and we refer to that paper for omitted details.

Let $\gamma \in S$, pick ε according to Lemma 1 and let β be such that $1/\beta \in [1/\gamma, 1/\gamma + \varepsilon)$. Let $\mu_{\text{SRB}}^{\text{s}}$ be the projection of μ_{SRB} to $[0, 1] \times \{0\}$. We form

$$\underline{D}(\mu_{\text{SRB}}^{\text{s}}, x) = \liminf_{r \to 0} \frac{\mu_{\text{SRB}}^{\text{s}}(B_r(x))}{2r},$$

where $B_r(x) = (x-r, x+r)$, and note that $\mu_{\text{SRB}}^{\text{s}}$ is absolutely continuous with respect to Lebesgue measure if $\underline{D}(\mu_{\text{SRB}}^{\text{s}}, x) < \infty$ for $\mu_{\text{SRB}}^{\text{s}}$ almost all x. Since we already have absolute continuity in the vertical direction, it would then follow that μ_{SRB} is absolutely continuous with respect to the two-dimensional Lebesgue measure. If

$$S = \int_{I} \int_{[0,1]} \underline{D}(\mu_{\text{SRB}}^{\text{s}}, x) d\mu_{\text{SRB}}^{\text{s}}(x) d\lambda < \infty,$$

for an interval I, then $\mu_{\text{SRB}}^{\text{s}}$ is absolutely continuous for almost all $\lambda \in I$. So if we prove that S is bounded for $I = [c, 1/\gamma + \varepsilon]$, where $c > 1/\beta$ is arbitrary, then we are done.

Let $I = [c, 1/\gamma + \varepsilon]$ for some fixed $c > 1/\beta$. By Fatou's Lemma we get

$$S \leq \liminf_{r \to 0} (2r)^{-1} \int_{I} \int_{[0,1]} \mu_{\text{SRB}}^{\text{s}}(B_{r}(x)) \, d\mu_{\text{SRB}}^{\text{s}}(x) d\lambda$$
$$= \liminf_{r \to 0} (2r)^{-1} \int_{I} \int_{S_{\gamma}} \eta(B_{r}(\boldsymbol{a}, \lambda)) \, d\eta(\boldsymbol{a}) d\lambda.$$

where $B_r(\boldsymbol{a}, \lambda) = \{ \boldsymbol{b} : |\pi_1(\boldsymbol{a}, \lambda) - \pi_1(\boldsymbol{b}, \lambda)| < r \}$. We have

$$\eta(B_r(\boldsymbol{a},\lambda)) = \int_{S_{\gamma}} \chi_{\{\boldsymbol{b} \in S_{\gamma} : |\pi_1(\boldsymbol{a},\lambda) - \pi_1(\boldsymbol{b},\lambda)| \le r\}}(\boldsymbol{a}) \, \mathrm{d}\eta(\boldsymbol{b}),$$

where χ is the characteristic function. Since η is independent of λ , we can change the order of integration and we get

$$S \leq \liminf_{r \to 0} (2r)^{-1} \int_{S_{\gamma}} \int_{S_{\gamma}} \mu_{\text{Leb}} \{ \lambda \in I : |\pi_1(\boldsymbol{a}, \lambda) - \pi_1(\boldsymbol{b}, \lambda)| \leq r \} \, d\eta(\boldsymbol{a}) d\eta(\boldsymbol{b}),$$

where μ_{Leb} is the one-dimensional Lebesgue measure. Now, $\boldsymbol{a}, \boldsymbol{b} \in S_{\gamma}$, so for \boldsymbol{a} and \boldsymbol{b} with $a_j = b_j$ for $j = -k + 1, \dots, 0$ and $a_{-k} \neq b_{-k}$, we have

$$|\pi_1(\boldsymbol{a},\lambda) - \pi_1(\boldsymbol{b},\lambda)| = \lambda^k |\pi_1(\sigma^{-k}\boldsymbol{a},\lambda) - \pi_1(\sigma^{-k}\boldsymbol{b},\lambda)| = \lambda^k |g(\lambda)|,$$

where g is of the form (4). Since $I = [c, 1/\gamma + \varepsilon]$ we can use the transversality from Lemma 1 and we get

$$\mu_{\text{Leb}}\{\lambda \in I : |\pi_1(\boldsymbol{a}, \lambda) - \pi_1(\boldsymbol{b}, \lambda)| \le r\} \le \mu_{\text{Leb}}\{\lambda \in I : |g(\lambda)| \le rc^{-k}\}$$

$$\le \tilde{K}rc^{-k},$$

for some constant $\tilde{K} < \infty$. As in the proof of Theorem 2, we can disregard the set

$$B = \bigcup_{\boldsymbol{a} \in S_{\beta}} \{\boldsymbol{a}\} \times \{\boldsymbol{a}\}.$$

and after using (17) we get

$$\begin{split} S &\leq \liminf_{r \to 0} (2r)^{-1} \sum_{k=1}^{\infty} \sum_{[a_{-k+1}, \dots, a_0]} 2\tilde{K} r c^{-k} \int_{[0, a_{-k+1}, \dots, a_0]} \int_{[1, a_{-k+1}, \dots, a_0]} \mathrm{d} \eta \mathrm{d} \eta \\ &\leq \sum_{k=1}^{\infty} \sum_{[a_{-k+1}, \dots, a_0]} \tilde{K} K c^{-k} \beta^{-k} \int_{[1, a_{-k+1}, \dots, a_0]} \mathrm{d} \eta \\ &\leq \tilde{K} K \sum_{l=0}^{\infty} (c\beta)^{-k}, \end{split}$$

which converges since $c\beta > 1$. Since $c > 1/\beta$ was arbitrary, we are done. \Box

References

- [1] J. C. Alexander, J. A. Yorke, Fat baker's transformations, Ergodic Theory & Dynamical Systems 4 (1984), 1–23.
- [2] G. Brown, Q. Yin, β -transformation, natural extension and invariant measure, Ergodic Theory and Dynamical Systems, 20 (2000), 1271–1285.
- [3] P. Erdős, On a family of symmetric Bernoulli convolutions, American Journal of Mathematics 61 (1939), 974–976.
- [4] D. Kwon, The natural extensions of β-transformations which generalize baker's transformations, Nonlinearity, 22 (2009), 301–310.
- [5] W. Parry, On the β -expansion of real numbers, Acta Mathematica Academiae Scientiarum Hungaricae 11 (1960), 401–416.
- [6] Y. Peres, B. Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof, Mathematical Research Letters 3 (1996), no. 2, 231–239.
- [7] Ya. Pesin, Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties, Ergodic Theory and Dynamical Systems 12 (1992), no. 1, 123–151.
- [8] A. Rényi, Representations for real numbers and their ergodic properties, Acta Mathematica Academiae Scientiarum Hungaricae 8 (1957), 477–493.
- [9] E. Sataev, Ergodic properties of the Belykh map, Journal of Mathematical Sciences, 95 (1999), 2564–2575.

- [10] J. Schmeling, S. Troubetzkoy, Dimension and invertibility of hyperbolic endomorphisms with singularities, Ergodic Theory and Dynamical Systems 18 (1998), no. 5, 1257–1282.
- [11] B. Solomyak, On the random series $\sum \pm \lambda^n$ (an Erdös problem), Annals of Mathematics 142:3 (1995), 611–625.

David Färm, Institute of Mathematics, Polish Academy of Sciences ulica Śniadeckich 8, P.O. Box 21, 00-956 Warszawa, Poland

Current address: Centre for Mathematical Sciences, Box 118, 22 100 Lund, Sweden $E\text{-}mail\ address$: david@maths.lth.se

Tomas Persson, Institute of Mathematics, Polish Academy of Sciences ulica Śniadeckich 8, P.O. Box 21, 00-956 Warszawa, Poland

Current address: Centre for Mathematical Sciences, Box 118, 22 100 Lund, Sweden $E\text{-}mail\ address$: tomasp@maths.lth.se