Actividad 1

Realizar un cuadro comparativo de las siguientes arquitecturas. Identificando tópicos referentes a los temas de la primer unidad (Por ejemplo ALU, Buses de direcciones, etc). Además, generar un diagrama de bloques para la arquitectura de cada uno (El diagrama de bloques puede quedar anexo al cuadro comparativo).

_	1 1 1 ,
	Arquitectura de Von Neumann.
	Arquitectura Harvard.
	Arquitectura RISC (Reduced Instruction Set Computer).
	Arquitectura CISC (Complex Instruction Set Computer).
	Arquitectura paralela.
	Arquitectura de la computación en la nube.

Cuadro comparativo

Arquitectura	ALU	Buses de direcciones	Memoria	Ejecución de programas
Von Neumann	Ejecuta operaciones aritméticas y lógicas	Un único bus para datos e instrucciones	Unificada para datos e instrucciones	Secuencial
Harvard	Similar a Von Neumann, pero optimizada para operaciones específicas	Separados para datos e instrucciones, permite la carga simultánea	Separada para datos e instrucciones, mejora el rendimiento	Puede ser más eficiente debido a la separación de memoria
RISC	Diseñada para ejecutar un número reducido de tipos de instrucciones	Eficientizados para instrucciones simples	Acceso optimizado para instrucciones simples y rápidas	Eficiencia a través de la simplificación y velocidad de ejecución
CISC	Capaz de ejecutar instrucciones complejas directamente	Diseñados para soportar instrucciones complejas	Puede requerir más accesos para ejecutar instrucciones complejas	Flexibilidad a costa de velocidad y complejidad
Paralela	Múltiples ALUs trabajando en paralelo	Pueden existir múltiples buses operando en paralelo	Distribuida o compartida para soportar el acceso paralelo	Múltiples instrucciones ejecutándose simultáneamente
Computación en la Nube	Potencialmente distribuida y escalable	Comunicación a través de redes	Almacenamiento y procesamiento distribuidos	Recursos computacionales ofrecidos como servicio, escalabilidad