Machine Intelligence

4. Reasoning under Uncertainty, Part I: Basics

(Our Machinery for) Thinking About What is Likely to be True

Álvaro Torralba

Fall 2022

Thanks to Thomas D. Nielsen and Jörg Hoffmann for slide sources

The Wumpus World

- Actions: GoForward, TurnRight (by 90°), TurnLeft (by 90°), Grab object in current cell, Shoot arrow in direction you're facing (you got exactly one arrow), Leave cave if you're in cell [1,1].
 - → Fall down *Pit*, meet live *Wumpus*: Game Over.
- Initial knowledge: You're in cell [1,1] facing east. There's a Wumpus, and there's gold.
- Goal: Have the gold and be outside the cave.

Percepts: [Stench, Breeze, Glitter, Bump, Scream]

Reasoning in the Wumpus World

A: Agent, V: Visited, OK: Safe, P: Pit, W: Wumpus, B: Breeze, S: Stench, G: Gold

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
ОК			
1,1	2,1 A	3,1 P ?	4,1
V	В		
OK	ОК		

1,4	2,4	3,4	4,4
1,3 W!	2,3	3,3	4,3
1,2 A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

(1) Initial state

(2) One step to right

(3) Back, and up to [1,2]

- \rightarrow The Wumpus is in [1,3]! How do we know?
- \rightarrow There's a Pit in [3,1]! How do we know?

Agents that Think Rationally

Think Before You Act!

```
function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base
t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence(percept, t))
action \leftarrow Ask(KB, Make-Action-Query(t))
Tell(KB, Make-Action-Sentence(action, t))
t \leftarrow t + 1
return action
```

 \rightarrow "Thinking" = Reasoning about knowledge represented using logic.

Our Agenda for This Chapter

- Propositional Logic: What's the syntax and semantics? How can we capture deduction?
 - \rightarrow A brief introduction to logical reasoning.
- Quantifying Uncertainty: What to do when all we know is we don't know.
 - \rightarrow A bit of motivation for what comes next.
- Unconditional Probabilities and Conditional Probabilities: Which concepts and properties of probabilities will be used?
 - → Mostly a recap of things you're familiar with from school.
- Independence and Basic Probabilistic Reasoning Methods: What simple methods are there to avoid enumeration and to deduce probabilities from other probabilities?
 - \rightarrow A basic tool set we'll need. (Still familiar from school?)
- Bayes' Rule: What's that "Bayes"? How is it used and why is it important?
 - → The basic insight about how to invert the "direction" of conditional probabilities.
- **Conditional Independence:** How to capture and exploit complex relations between random variables?
 - → Explains the difficulties arising when using Bayes' rule on multiple evidences. Conditional independence is used to ameliorate these difficulties.

Propositional Logic: Syntax

Atomic Propositions

Boolean variables are now seen as atomic propositions. Convention: start with lowercase letter.

Constraints	Logic
A = true	a
$A=\mathit{false}$	$\neg a$

Propositions (Formulas)

Using **logical connectives** more complex propositions are constructed:

$\neg p$	not p
$(p \wedge q)$	p and q
$(p \lor q)$	p or q
$(p \to q)$	p implies q

Example: "If it rains I'll take my umbrella, or I'll stay home"

$$rains \rightarrow (umbrella \lor home)$$

Propositional Logic: Semantics I

An **interpretation** π for a set of atomic propositions a_1, a_2, \ldots, a_n is an assignment of a truth value to each proposition (= possible world when atomic propositions seen as boolean variables):

$$\pi(a_i) \in \{ \text{true}, \text{false} \}$$

An interpretation defines a truth value for all propositions:

$\pi(p)$	$\pi(\neg p)$
true	false
false	true

$\pi(p)$	$\pi(q)$	$\pi(p \wedge q)$
true	true	true
true	false	false
false	true	false
false	false	false

$\pi(p)$	$\pi(q)$	$\pi(p \lor q)$
true	true	true
true	false	true
false	true	true
false	false	false

Introduction Logic Uncertainty Probabilities Cond. Prob. Independence Basic Methods Bayes' Cond. Indep. Conclusion

Knowledge as Propositional Formulas

Satisfiability

A formula φ is:

- satisfiable if there exists I that satisfies φ .
- unsatisfiable if φ is not satisfiable.
- falsifiable if there exists I that doesn't satisfy φ .
- valid if $I \models \varphi$ holds for all I. We also call φ a tautology.

Knowledge Base

A Knowledge Base (KB) is a set of formulas that describe the agent's knowledge.

 \rightarrow Knowledge Base = set of formulas, interpreted as a conjunction.

Definition (Model). A model of a a knowledge base KB is an interpretation I in which all the formulas in the knowledge base are true: $I \models \varphi$ for all $\varphi \in \mathsf{KB}$.

 \rightarrow a model is a possible world that satisfies the constraint.

We denote by $M(\varphi)$ the set of all models of φ (i.e., the set of possible worlds where the formula is true).

Logic Introduction Uncertainty **Probabilities** Cond. Prob Independence Bayes' Conclusion 00000 0000 00 000000 000 0000000 0000000 0000 00000 000

Deduction

Deduction

deriving of a conclusion by reasoning

Remember (slide 4)? Does our knowledge of the cave entail a definite Wumpus position?

→ We don't know everything; what can we conclude from the things we do know?

Logical consequence (entailment)

Definition (Entailment). Let Σ be a set of atomic propositions. We say that a set of formulas KB entails a formula φ , written $KB \models \varphi$, if φ is true in all models of KB, i.e., $M(\bigwedge_{\psi \in KB}) \subseteq M(\varphi)$. In this case, we also say that φ follows from KB.

A formula φ is a **logical consequence** of a knowledge base KB, if every model of KB is a model of φ . Written:

$$KB \models g$$

(whenever KB is true, then φ also is true).

Example: $KB = \{man \rightarrow mortal, man\}$. Then

Simple Example

$$KB = \begin{cases} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{cases}$$

	p	q	r	s
$\overline{I_1}$	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
I_5	true	true	false	true

Model? is a model of KB not a model of KB is a model of KB is a model of KB not a model of KB

. . .

Which of p, q, r, q logically follow from KB?

$$KB \models p$$
, $KB \models q$, $KB \not\models r$, $KB \not\models s$

Logic **Probabilities** Cond. Prob. Independence Basic Methods Cond. Indep. Conclusion Introduction Uncertainty Bayes' 00000 00 000 000 0000 000000 0000000 0000000 0000 00000

Proof by Contradiction

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
ок			
1,1 A	2,1	3,1	4,1
ок	ок		

Question!

Suppose that there exists an interpretation I in M(KB) where the Wumpus is not at cell (2,2). Can we conclude the cell (2,2) is free?

(A): Yes

(B): No

Uncertainty and Logic

Diagnosis: We want to build an expert dental diagnosis system, that deduces the cause (the disease) from the symptoms.

 \rightarrow Can we base this on logic?

Attempt 1: Say we have a toothache. How's about: $toothache \rightarrow cavity$ \rightarrow Is this rule correct?

Attempt 2: So what about this: $toothache \rightarrow cavity \lor gum_disease \lor \dots$

Attempt 3: Perhaps a *causal* rule is better? $cavity \rightarrow toothache$

- Is this rule correct?
- Does this rule allow to deduce a cause from a symptom?

Introduction Logic Uncertainty **Probabilities** Cond. Prob Independence Basic Methods Bayes Conclusion 000000 000000 0000 000 0000000 0000000 0000 00000 000

Beliefs and Probabilities

What do we model with probabilities? Incomplete knowledge! We are not 100% sure, but we believe to a certain degree that something is true.

 \rightarrow Probability \approx Our degree of belief, given our current knowledge.

Example (Diagnosis)

- $toothache \rightarrow cavity$ with 80% probability.
- But, for any given p, in reality we do, or do not, have cavity: 1 or 0!

→ Probabilities represent and measure the uncertainty that stems from lack of knowledge.

Probability Measures

Probability theory is built on the foundation of variables and worlds.

Worlds described by the variables:

- Filled: {true, false}
- Shape: {circle, triangle, star}as well as position.

Probability measures

 Ω : set of all possible worlds (for a given, fixed set of variables). A **probability** measure over Ω , is a function P, that assigns **probability values**

$$P(\Omega') \in [0,1]$$

to subsets $\Omega' \subseteq \Omega$, such that

Axiom 1: $P(\Omega) = 1$.

Axiom 2: if $\Omega_1 \cap \Omega_2 = \emptyset$, then $P(\Omega_1 \cup \Omega_2) = P(\Omega_1) + P(\Omega_2)$.

Simplification for finite Ω

If all variables have a finite domain, then

- ullet Ω is finite, and
- a probability distribution is defined by assigning a probability value $P(\omega)$ to each individual possible world $\omega \in \Omega$.

For any $\Omega' \subseteq \Omega$ then

$$P(\Omega') = \sum_{\omega \in \Omega'} P(\omega)$$

$$P(\Omega') = 0.08 + 0.13 + 0.03 + 0.21 = 0.45$$

Note: In general, random variables can have arbitrary domains. Here, we consider finite-domain random variables only, and Boolean random variables most of the time.

Random Variables and Distributions

Definition (Random Variables). Variables defining possible worlds on which probabilities are defined are called random variables.

Distributions

For a random variable A, and $a \in D_A$ we have the probability

$$P(A = a) = P(\{\omega \in \Omega \mid A = a \text{ in } \omega\})$$

The **probability distribution of** A (written P(A)) is the function on D_A that maps each a to its probability P(A=a).

Example:

$$\mathbf{P}(Headache) = \langle F \mapsto 0.1, T \mapsto 0.9 \rangle$$

$$\mathbf{P}(\textit{Weather}) = \langle \textit{sunny} \mapsto 0.7, \textit{rain} \mapsto 0.2, \textit{cloudy} \mapsto 0.08, \textit{snow} \mapsto 0.02 \rangle$$

Joint Probability Distributions

Extension to several random variables:

$$P(A_1,\ldots,A_k)$$

is the joint distribution of A_1, \ldots, A_k . The joint distribution maps tuples (a_1, \ldots, a_k) with $a_i \in D_{A_i}$ to the probability

$$P(A_1 = a_1, \dots, A_k = a_k)$$

Example: P(Headache, Weather) =

	Headache = true	Headache = false
Weather = sunny	$P(W = sunny \land headache)$	$P(W = sunny \land \neg headache)$
Weather = rain		
Weather = cloudy		
Weather = snow		

Terminology:

- Given random variables $\{X_1, \ldots, X_n\}$, an atomic event (world) is an assignment of values to all variables.
- Given random variables $\{X_1, \ldots, X_n\}$, the full joint probability distribution, denoted $\mathbf{P}(X_1, \ldots, X_n)$, lists the probabilities of all atomic events.
- \rightarrow All worlds are disjoint (their pairwise conjunctions all are \perp); the sum of all fields is 1 (corresponds to their disjunction \top).

Probabilities of propositions

A probability distribution over possible worlds defines probabilities for formulas φ :

$$P(\alpha) = \sum_{\omega \in \Omega : \omega \in M(\varphi)} P(\omega)$$

ightarrow Propositions represent sets of atomic events: the interpretations satisfying the formula.

Notation: Instead of $P(a \wedge b)$, we often write P(a, b).

Example

Assume probability for each world is 0.1:

- P(Shape = circle) =
- P(Filled = false) =
- $P(Shape = c \land Filled = f) =$

Another example

Basic probability axioms

Axiom

If \mathcal{A} and \mathcal{B} are disjoint, then $P(\mathcal{A} \cup \mathcal{B}) = P(\mathcal{A}) + P(\mathcal{B})$.

Example

Consider a deck with 52 cards. If $\mathcal{A}=\{2,3,4,5\}$ and $\mathcal{B}=\{7,8\}$, then

$$P(A \cup B) = P(A) + P(B) = \frac{4}{13} + \frac{2}{13} = \frac{6}{13}.$$

More generally

If \mathcal{C} and \mathcal{D} are not disjoint, then $P(\mathcal{C} \cup \mathcal{D}) = P(\mathcal{C}) + P(\mathcal{D}) - P(\mathcal{C} \cap \mathcal{D})$.

Example

If
$$C = \{2, 3, 4, 5\}$$
 and $D = \{\spadesuit\}$, then

$$P(\mathcal{C} \cup \mathcal{D}) = \frac{4}{13} + \frac{1}{4} - \frac{4}{52} = \frac{25}{52}.$$

Probabilities Cond. Prob. Introduction Logic Uncertainty Independence Basic Methods Bayes' Cond. Indep. Conclusion 000000 0000 00 000000 •00 0000000 0000000 0000 00000 000

Updating Your Beliefs

 \rightarrow Do probabilities change as we gather new knowledge?

Conditional Probabilities

Definition. Given propositions p and e where $P(e) \neq 0$, the conditional probability, or posterior probability, of p given e, written $P(p \mid e)$, is defined as:

$$P(p \mid e) = \frac{P(p \land e)}{P(e)}$$

 \rightarrow The likelihood of having p and e, within the set of outcomes where we have e.

Example

(probability for each world is 0.1)

$$P(\textit{S=circ.} \mid \textit{Fill} = f) = \frac{P(\textit{S=circ.} \land \textit{Fill} = f)}{P(\textit{Fill} = f)}$$

$$= \frac{0.1}{0.4} = 0.25E$$

What is the probability of P(S=star | Fill = f)?

Machine Intelligence

Another example

- ullet e and p are represented by possible worlds Ω_1 and Ω_2
- division by $P(\Omega_1)$ already in green numbers

$$P(\Omega_2 \mid \Omega_1) = 0.18 + 0.29$$

Chapter 4: Reasoning under Uncertainty

Conditional Probability Distributions

Definition. Given random variables X and Y, the conditional probability distribution of X given Y, written $\mathbf{P}(X \mid Y)$, is the table of all conditional probabilities of values of X given values of Y.

 \rightarrow For sets of variables: $\mathbf{P}(X_1,\ldots,X_n\mid Y_1,\ldots,Y_m)$.

Example: $P(Weather \mid Headache) =$

	Headache=true	Headache = false
Weather = sunny	$P(W = sunny \mid headache)$	$P(W = sunny \mid \neg headache)$
Weather = rain		
Weather = cloudy		
Weather = snow		

→ "The probability of sunshine given that I have a headache?"

Working with the Full Joint Probability Distribution

Example:

	toothache	$\neg toothache$
cavity	0.12	0.08
$\neg cavity$	0.08	0.72

- \rightarrow How to compute P(cavity)?
- \rightarrow How to compute $P(cavity \lor toothache)$?
- \rightarrow How to compute $P(cavity \mid toothache)$?
- → All relevant probabilities can be computed using the full joint probability distribution, by expressing propositions as disjunctions of atomic events.

Working with the Full Joint Probability Distribution??

 \rightarrow So, is it a good idea to use the full joint probability distribution?

- \rightarrow So, is there a compact way to represent the full joint probability distribution? Is there an efficient method to work with that representation?
- → Not in general, but it works in many cases. We can work directly with conditional probabilities, and exploit (conditional) independence.
- \rightarrow Bayesian networks. (First, we do the simple case.)

Independence

Definition. Events a and b are independent if $P(a \wedge b) = P(a)P(b)$.

Proposition. Given independent events a and b where $P(b) \neq 0$, we have $P(a \mid b) = P(a)$.

Proof. By definition, $P(a \mid b) = \frac{P(a \land b)}{P(b)}$,

Examples:

- $P(Dice1 = 6 \land Dice2 = 6) = 1/36.$
- $P(W = sunny \mid headache) = P(W = sunny)$ unless you're weather-sensitive (cf. slide 26).
- But toothache and cavity are NOT independent. The fraction of "cavity" is higher within "toothache" than within " $\neg toothache$ ". P(toothache) = 0.2 and P(cavity) = 0.2, but $P(toothache \land cavity) = 0.12 > 0.04$.

Definition. Random variables X and Y are independent if $\mathbf{P}(X,Y) = \mathbf{P}(X)\mathbf{P}(Y)$. (System of equations!)

Logic Independence Introduction Uncertainty **Probabilities** Cond. Prob Basic Methods Bayes' Cond. Indep. Conclusion 000000 0000 00 000000 000 000000 0000 0000000 00000 000

Example: Football statistics

Results for Bayern Munich and SC Freiburg in seasons 2001/02 and 2003/04. (Not counting the matches Munich vs. Freiburg):

$$D_{\mathit{Munich}}) = D_{\mathit{Freiburg}} = \{\mathit{Win, Draw, Loss}\}$$

2001/02

Munich: LWDWWWWWWWWLDLDLDLWLDWWWDWDDWWWW

Freiburg: WLLDDWLDWDWLLLDDLWDDLLDLLLLLLWLW

2003/04

Munich: WDWWLDWWDWLWWDDWDWLWWWDDWWWLWWLL

Freiburg: LDDWDWLWLLLWWLWLWLDDWDLLLWLD

Summary:

	Freiburg			
Munich	W	D	L	
W	12	9	15	36
D	3	4	9	16
L	6	4	2	12
	21	17	26	

Logic **Probabilities** Independence Introduction Uncertainty Cond. Prob Basic Methods Bayes' Cond. Indep. Conclusion 000000 000000 000 000000 0000 0000 0000000 00000 000

Independence of Outcomes

The joint distribution of *Munich* and *Freiburg*:

P(Munich, Freiburg):

		Freiburg	-	
Munich	W	D	L	$P(\mathit{Munich})$
W	.1875	.1406	.2344	.5625
	.571	.529	.577	
D	.0468	.0625	.1406	.25
	.143	.235	.346	
L	.0937	.0625	.0312	.1875
	.285	.235	.077	
P(Freiburg)	.3281	.2656	.4062	

Conditional distribution: P(Munich | Freiburg)

We have (almost):

$$P(Munich \mid Freiburg) = P(Munich)$$

The variables *Munich* and *Freiburg* are **independent**.

Independent Variables

Definition of Independence

The variables A_1, \ldots, A_k and B_1, \ldots, B_m are **independent** if

$$P(A_1,...,A_k \mid B_1,...,B_m) = P(A_1,...,A_k)$$

This is equivalent to:

$$P(B_1, \ldots, B_m \mid A_1, \ldots, A_k) = P(B_1, \ldots, B_m)$$

and also to:

$$P(A_1, ..., A_k, B_1, ..., B_m) = P(A_1, ..., A_k) \cdot P(B_1, ..., B_m)$$

Compact Specifications by Independence

Independence properties can greatly simplify the specification of a joint distribution:

	F =			
M =	W	D	L	P(M)
W			andent	.5625
D	,	F are inde	epend	.25
L	$_{ m M}$ and	1		.1875
P(F)	.3281	.2656	.4062	

The probability for each possible world then is defined, e.g.

$$P(M = D, F = L) = 0.25 \cdot 0.4062 = 0.10155$$

- ightarrow Independence can be exploited to represent the full joint probability distribution more compactly.
- → Usually, random variables are independent only under particular conditions: conditional independence, see later.

The Product Rule

Proposition (Product Rule). Given propositions A and B, $P(a \land b) = P(a \mid b)P(b)$. (Direct from definition.)

Example: $P(cavity \land toothache) = P(toothache \mid cavity)P(cavity).$

- \rightarrow If we know the values of $P(a \mid b)$ and P(b), then we can compute $P(a \land b)$.
- \rightarrow Similarly, $P(a \land b) = P(b \mid a)P(a)$.

Notation: $P(X,Y) = P(X \mid Y)P(Y)$ is a system of equations:

```
P(W = sunny \land headache) = P(W = sunny \mid headache)P(headache)

P(W = rain \land headache) = P(W = rain \mid headache)P(headache)

... = P(W = snow \land \neg headache) = P(W = snow \mid \neg headache)P(\neg headache)
```

 \rightarrow Similar for unconditional distributions, $\mathbf{P}(X,Y) = \mathbf{P}(X)\mathbf{P}(Y)$.

The Chain Rule

Proposition (Chain Rule). Given random variables X_1, \ldots, X_n , we have $\mathbf{P}(X_1, \ldots, X_n) = \mathbf{P}(X_n \mid X_{n-1}, \ldots, X_1) * \mathbf{P}(X_{n-1} \mid X_{n-2}, \ldots, X_1) * \cdots * \mathbf{P}(X_2 \mid X_1) * \mathbf{P}(X_1)$.

Example: $P(\neg brush \land cavity \land toothache)$ = $P(toothache \mid cavity, \neg brush)P(cavity, \neg brush)$ = $P(toothache \mid cavity, \neg brush)P(cavity \mid \neg brush)P(\neg brush)$.

Proof. Iterated application of Product Rule.

Note: This works for any ordering of the variables.

- \rightarrow We can recover the probability of atomic events from sequenced conditional probabilities for any ordering of the variables.
- → First of the four basic techniques in Bayesian networks.

Marginalization

→ Extracting a sub-distribution from a larger joint distribution:

Proposition (Marginalization). Given sets X and Y of random variables, we have:

$$\mathbf{P}(\mathbf{X}) = \sum_{\mathbf{y} \in \mathbf{Y}} \mathbf{P}(\mathbf{X}, \mathbf{y})$$

where $\sum_{\mathbf{y} \in \mathbf{Y}}$ sums over all possible value combinations of \mathbf{Y} .

Example: (Note: Equation system!)

$$\mathbf{P}(Cavity) = \sum_{y \in Toothache} \mathbf{P}(Cavity, y)$$

$$P(cavity) = P(cavity, toothache) + P(cavity, \neg toothache)$$

$$P(\neg cavity) = P(\neg cavity, toothache) + P(\neg cavity, \neg toothache)$$

Logic **Probabilities** Independence Basic Methods Introduction Uncertainty Cond. Prob Bayes' Cond. Indep. Conclusion 000000 000000 0000 00 000 0000000 0000000 0000 00000 000

Questionnaire

Question!

Say P(dog) = 0.4, $\neg dog \leftrightarrow cat$, and $P(likeslasagna \mid cat) = 0.5$. Then $P(likeslasagna \wedge cat) =$

(A): 0.2

(B): 0.5

(C): 0.475

(D): 0.3

Question!

Can we compute the value of P(likeslasagna), given the above informations?

(A): Yes.

Normalization: Idea

Problem: We know $P(cavity \land toothache)$ but don't know P(toothache):

$$P(cavity \mid toothache) = \frac{P(cavity \land toothache)}{P(toothache)} = \frac{0.12}{P(toothache)}$$

Step 1: Case distinction over the values of *Cavity*:

$$P(\neg cavity \mid toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)} = \frac{0.08}{P(toothache)}$$

Step 2: Assuming placeholder $\alpha := 1/P(toothache)$:

$$P(cavity \mid toothache) = \frac{\alpha P(cavity \land toothache)}{\alpha P(\neg cavity \mid toothache)} = \frac{\alpha O.12}{\alpha P(\neg cavity \land toothache)} = \frac{\alpha O.08}{\alpha O.08}$$

Step 3: Fixing toothache to be true, view $P(cavity \land toothache)$ vs. $P(\neg cavity \land toothache)$ as the relative weights of P(cavity) vs. $P(\neg cavity)$ within toothache. Then normalize their summed-up weight to 1:

$$1 = \alpha(0.12 + 0.08) \Rightarrow \alpha = 1/(0.12 + 0.08) = 1/0.2 = 5$$

 $\rightarrow \alpha$ is the normalization constant scaling the sum of relative weights to 1.

Basic Methods Introduction Logic Uncertainty **Probabilities** Cond. Prob Independence Bayes' Conclusion 000000 0000 000000 000 0000000 000000 0000 00000 000

Normalization: Formal

Definition. Given a vector $\langle w_1, \ldots, w_k \rangle$ of numbers in [0,1] where $\sum_{i=1}^k w_i \leq 1$, the normalization constant α is $\alpha \langle w_1, \ldots, w_k \rangle := 1/\sum_{i=1}^k w_i$.

Example: $\alpha \langle 0.12, 0.08 \rangle = 5 \langle 0.12, 0.08 \rangle = \langle 0.6, 0.4 \rangle$.

Proposition (Normalization). Given a random variable X and an event \mathbf{e} , we have $\mathbf{P}(X \mid \mathbf{e}) = \alpha \mathbf{P}(X, \mathbf{e})$.

Proof.

Example: $\alpha \langle P(cavity \wedge toothache), P(\neg cavity \wedge toothache) \rangle = \alpha \langle 0.12, 0.08 \rangle$, so $P(cavity \mid toothache) = 0.6$, and $P(\neg cavity \mid toothache) = 0.4$.

Normalization+Marginalization: Given "query variable" X, "observed event" \mathbf{e} , and "hidden variables" set \mathbf{Y} : $\mathbf{P}(X \mid \mathbf{e}) = \alpha \mathbf{P}(X, \mathbf{e}) = \alpha \sum_{\mathbf{v} \in \mathbf{Y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$.

→ Second of the four basic techniques in Bayesian networks.

Introduction Logic Uncertainty **Probabilities** Cond. Prob. Independence Basic Methods Bayes' Cond. Indep. Conclusion 000000 00 000000 000 0000000 000000 0000 00000 000 0000

Questionnaire

Question!

Say we know $P(likeschappi \land dog) = 0.32$ and $P(\neg likeschappi \land dog) = 0.08$. Can we compute $P(likeschappi \mid dog)$?

(A): Yes.

(B): No.

Probabilities Introduction Logic Uncertainty Cond. Prob Independence Basic Methods Bayes' Cond. Indep. Conclusion 000000 000000 •000 0000 00 000 0000000 0000000 00000 000

Bayes' Rule

Proposition (Bayes' Rule). Given propositions A and B where $P(a) \neq 0$ and $P(b) \neq 0$, we have:

$$P(a \mid b) = \frac{P(b \mid a)P(a)}{P(b)}$$

Proof. By definition, $P(a \mid b) = \frac{P(a \wedge b)}{P(b)}$

Notation: (System of equations)

$$\mathbf{P}(X \mid Y) = \frac{\mathbf{P}(Y \mid X)\mathbf{P}(X)}{\mathbf{P}(Y)}$$

Applying Bayes' Rule

Example: Say we know that $P(toothache \mid cavity) = 0.6$, P(cavity) = 0.2, and P(toothache) = 0.2.

 \rightarrow We can compute $P(cavity \mid toothache)$:

Ok, but: Why don't we simply assess $P(cavity \mid toothache)$ directly?

- $P(toothache \mid cavity)$ is causal, $P(cavity \mid toothache)$ is diagnostic.
- Causal dependencies are robust over frequency of the causes.
 - \rightarrow Example: If there is a cavity epidemic then $P(cavity \mid toothache)$ increases, but $P(toothache \mid cavity)$ remains the same.
- Also, causal dependencies are often easier to assess.
- \rightarrow Bayes' rule allows to perform diagnosis (observing a symptom, what is the cause?) based on prior probabilities and causal dependencies.

Introduction Logic **Probabilities** Cond. Prob. Independence Basic Methods Bayes' Cond. Indep. Conclusion Uncertainty 000000 00 000000 000 0000000 0000000 0000 00000 000 0000

Questionnaire

Question!

Say P(dog) = 0.4, $P(likeschappi \mid dog) = 0.8$, and P(likeschappi) = 0.5. What is $P(dog \mid likeschappi)$?

(A): 0.8 (B): 0.64

(C): 0.9 (D): 0.32

Bayes' rule for variables

Bayes' rule can also be written for variables:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{\sum_{A} P(A,B)} = \frac{P(B|A)P(A)}{\sum_{A} P(B|A)P(A)}$$

Logic **Probabilities** Cond. Prob. Cond. Indep. Conclusion Introduction Independence Basic Methods Uncertainty Bayes' 0000 000000 00 000000 000 0000000 0000 •0000 000

Questionnaire

Probabilities Bayes Cond. Indep. Introduction Logic Uncertainty Cond. Prob Independence Basic Methods Conclusion 000000 000000 0000 000 0000000 0000000 0000 00000 000

Conditional Independence

Definition. Given sets of random variables \mathbb{Z}_1 , \mathbb{Z}_2 , \mathbb{Z} , we say that \mathbb{Z}_1 and \mathbb{Z}_2 are conditionally independent given \mathbb{Z} if:

$$\mathbf{P}(\mathbf{Z}_1, \mathbf{Z}_2 \mid \mathbf{Z}) = \mathbf{P}(\mathbf{Z}_1 \mid \mathbf{Z})\mathbf{P}(\mathbf{Z}_2 \mid \mathbf{Z})$$

We alternatively say that \mathbb{Z}_1 is conditionally independent of \mathbb{Z}_2 given \mathbb{Z} .

Note: The definition is symmetric regarding the roles of \mathbb{Z}_1 and \mathbb{Z}_2 : hairlength is conditionally independent of height, and vice versa.

Bayes' Rule with Multiple Evidence

Example: Say we know from medicinical studies that P(cavity) = 0.2, $P(toothache \mid cavity) = 0.6$, $P(toothache \mid \neg cavity) = 0.1$, $P(catch \mid cavity) = 0.9$, and $P(catch \mid \neg cavity) = 0.2$. Now, in case we did observe the symptoms toothache and catch (the dentist's probe catches in the aching tooth), what would be the likelihood of having a cavity? What is $P(cavity \mid catch, toothache)$?

By Bayes' rule we get:

$$P(cavity \mid catch, toothache) = \frac{P(catch, toothache \mid cavity)P(cavity)}{P(catch, toothache)}$$

Question!

So, is everything fine? Do we just need some more medicinical studies?

(A): Yes.

(B): No.

Bayes' Rule with Multiple Evidence, ctd.

Second attempt: First Normalization (slide 42), then Chain Rule (slide 38) using ordering $X_1 = Cavity, X_2 = Catch, X_3 = Toothache$:

```
\mathbf{P}(Cavity \mid catch, toothache) =
\alpha \mathbf{P}(Cavity, catch, toothache) =
\alpha \mathbf{P}(toothache \mid catch, Cavity) \mathbf{P}(catch \mid Cavity) \mathbf{P}(Cavity)
```

Close, but no Banana: Less red (i.e.unknown) probabilities, but still $\mathbf{P}(toothache \mid catch, Cavity)$.

But: Are *Toothache* and *Catch* independent?

Introduction Logic Uncertainty **Probabilities** Prob Independence Bayes Conclusion 000000 0000 000000 000 0000000 0000000 0000 0000 000

Conditional Independence, ctd.

Proposition. If \mathbf{Z}_1 and \mathbf{Z}_2 are conditionally independent given \mathbf{Z} , then $\mathbf{P}(\mathbf{Z}_1 \mid \mathbf{Z}_2, \mathbf{Z}) = \mathbf{P}(\mathbf{Z}_1 \mid \mathbf{Z})$.

Proof. By definition, $\mathbf{P}(\mathbf{Z}_1 \mid \mathbf{Z}_2, \mathbf{Z}) = \frac{\mathbf{P}(\mathbf{Z}_1, \mathbf{Z}_2, \mathbf{Z})}{\mathbf{P}(\mathbf{Z}_2, \mathbf{Z})}$

Example: Using $\{Toothache\}$ as \mathbf{Z}_1 , $\{Catch\}$ as \mathbf{Z}_2 , and $\{Cavity\}$ as \mathbf{Z} : $\mathbf{P}(Toothache \mid Catch, Cavity) = \mathbf{P}(Toothache \mid Cavity)$.

- \rightarrow In the presence of conditional independence, we can drop variables from the right-hand side of conditional probabilities.
- \rightarrow Third of the four basic techniques in Bayesian networks. Last missing technique: "Capture variable dependencies in a graph"; illustration see Conclusions, details see Next Chapter.

Summary

- Reasoning can be attained by a combination of logic and probability.
- Deduction is about deriving conclusions that follow logically from our knowledge base.
- Uncertainty is unavoidable in many environments, namely whenever agents do not have perfect knowledge.
- Probabilities express the degree of belief of an agent, given its knowledge, into an event.
- Conditional probabilities express the likelihood of an event given observed evidence.
- Assessing a probability means to use statistics to approximate the likelihood of an event.
- Bayes' rule allows us to derive, from probabilities that are easy to assess, probabilities that aren't easy to assess.
- Given multiple evidence, we can exploit conditional independence.
 - → Bayesian networks (up next) do this, in a comprehensive manner (see next slides for some spoilers of where are we headed).

Exploiting Conditional Independence: Overview

1. Graph captures variable dependencies: (Variables X_1, \ldots, X_n)

- \rightarrow Given evidence e, want to know $\mathbf{P}(X \mid e)$. Remaining vars: \mathbf{Y} .
- 2. Normalization+Marginalization:

$$\mathbf{P}(X \mid \mathbf{e}) = \alpha \mathbf{P}(X, \mathbf{e})$$
; if $\mathbf{Y} \neq \emptyset$ then $\mathbf{P}(X \mid \mathbf{e}) = \alpha \sum_{\mathbf{y} \in \mathbf{Y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$

- \rightarrow A sum over atomic events!
- **3. Chain rule:** Order X_1, \ldots, X_n consistently with dependency graph.

$$\mathbf{P}(X_1,\ldots,X_n) = \mathbf{P}(X_n \mid X_{n-1},\ldots,X_1) * \mathbf{P}(X_{n-1} \mid X_{n-2},\ldots,X_1) * \cdots * \mathbf{P}(X_1)$$

- **4. Exploit conditional independence:** Instead of $P(X_i | X_{i-1}, ..., X_1)$, with previous slide we can use $P(X_i | Parents(X_i))$.
- \rightarrow Bayesian networks!

Basic Methods Conclusion Introduction Logic Uncertainty Probabilities Cond. Prob. Independence Bayes' Cond. Indep. 000000 00 0000 000000 000 0000000 0000000 0000 00000 $00 \bullet$

Exploiting Conditional Independence: Example