11/28/23, 10:21 AM VacationPy

#### VacationPy

### Starter Code to Import Libraries and Load the Weather and Coordinates Data

```
In [3]: # Dependencies and Setup
         import hvplot.pandas
         import pandas as pd
         import requests
         # Import API key
         from api keys import geoapify key
In [4]:
         # Load the CSV file created in Part 1 into a Pandas DataFrame
         city_data_df = pd.read_csv("output_data/cities.csv")
         # Display sample data
         city_data_df.head()
                                                                                Wind
Out[4]:
                                                    Max
                                                                                       Country
            City_ID
                           City
                                     Lat
                                                          Humidity Cloudiness
                                                                                                     Da
                                                                               Speed
                                                    Temp
         0
                 0
                         albany
                                 42.6001
                                          -73.9662
                                                   43.21
                                                                60
                                                                            27
                                                                                 3.00
                                                                                           US 170111645
         1
                                -43.9535 -176.5597
                                                   53.82
                                                                90
                                                                           100
                                                                                 3.00
                                                                                           NZ 170111651
                        waitangi
                         puerto
         2
                 2
                                  5.6639
                                          -67.6236 87.06
                                                                68
                                                                            49
                                                                                 2.10
                                                                                           VE 170111651
                       ayacucho
         3
                                                                                           GL 170111651
                         ilulissat
                                 69.2167
                                          -51.1000
                                                    26.62
                                                                80
                                                                            75
                                                                                12.66
         4
                 4 andovoranto -18.9500
                                           49.1000 74.46
                                                                89
                                                                                 6.04
                                                                                           MG 17011165
                                                                            13
```

# Step 1: Create a map that displays a point for every city in the city\_data\_df DataFrame. The size of the point should be the humidity in each city.

```
In [6]: # Configure the map
map_plot = city_data_df.hvplot.points(
    "Lng",
    "Lat",
    geo = True,
    tiles = "CartoDark",
    frame_width = 800,
    frame_height = 600,
    size = "Humidity",
```

```
color = "City"
)

# Display the map plot
map_plot
```

Out[6]:

# Step 2: Narrow down the <a href="city\_data\_df">city\_data\_df</a> DataFrame to find your ideal weather condition

In [7]: city\_data\_df.head()

Out[7]:

| • |   | City_ID | City               | Lat      | Lng       | Max<br>Temp | Humidity | Cloudiness | Wind<br>Speed | Country | Da                |
|---|---|---------|--------------------|----------|-----------|-------------|----------|------------|---------------|---------|-------------------|
|   | 0 | 0       | albany             | 42.6001  | -73.9662  | 43.21       | 60       | 27         | 3.00          | US      | 170111645         |
|   | 1 | 1       | waitangi           | -43.9535 | -176.5597 | 53.82       | 90       | 100        | 3.00          | NZ      | 170111651         |
|   | 2 | 2       | puerto<br>ayacucho | 5.6639   | -67.6236  | 87.06       | 68       | 49         | 2.10          | VE      | 17011165 <i>°</i> |
|   | 3 | 3       | ilulissat          | 69.2167  | -51.1000  | 26.62       | 80       | 75         | 12.66         | GL      | 170111651         |
|   | 4 | 4       | andovoranto        | -18.9500 | 49.1000   | 74.46       | 89       | 13         | 6.04          | MG      | 17011165°         |





```
In [8]: # Narrow down cities that fit criteria and drop any results with null values
    # temp>= 70, <80
    #wind <10 MPH
#cloudiness=0

mask=(city_data_df["Max Temp"]>=70) & (city_data_df["Max Temp"]<80) & (city_data_df["Composed of the composed of the composed
```

11/28/23, 10:21 AM VacationPy

| Out[8]: | 0   | City_ID | City      | Lat      | Lng       | Max<br>Temp | Humidity | Cloudiness | Wind<br>Speed | Country | Di       |
|---------|-----|---------|-----------|----------|-----------|-------------|----------|------------|---------------|---------|----------|
|         | 159 | 159     | inhambane | -23.8650 | 35.3833   | 73.67       | 86       | 0          | 7.43          | MZ      | 17011166 |
|         | 172 | 172     | porbandar | 21.6422  | 69.6093   | 72.63       | 70       | 0          | 11.54         | IN      | 17011166 |
|         | 181 | 181     | pisco     | -13.7000 | -76.2167  | 75.25       | 64       | 0          | 19.57         | PE      | 17011166 |
|         | 182 | 182     | lompoc    | 34.6391  | -120.4579 | 70.93       | 26       | 0          | 11.50         | US      | 17011166 |
|         | 188 | 188     | ankazoabo | -22.2833 | 44.5167   | 77.05       | 46       | 0          | 8.25          | MG      | 1701116€ |
| 4       |     |         |           |          |           |             |          |            |               |         |          |

#### Step 3: Create a new DataFrame called hotel\_df.

```
In [12]: # Use the Pandas copy function to create DataFrame called hotel_df to store the city,
hotel_df=df_sub.loc[:, ["City","Country","Lat","Lng","Humidity", "Max Temp", "Cloudine

# Add an empty column, "Hotel Name," to the DataFrame so you can store the hotel found
hotel_df["Hotel Name"]=""

# Display sample data
hotel_df.head()
```

| Out[12]: |     | City      | Country | Lat      | Lng       | Humidity | Max Temp | Cloudiness | <b>Hotel Name</b> |
|----------|-----|-----------|---------|----------|-----------|----------|----------|------------|-------------------|
|          | 159 | inhambane | MZ      | -23.8650 | 35.3833   | 86       | 73.67    | 0          |                   |
|          | 172 | porbandar | IN      | 21.6422  | 69.6093   | 70       | 72.63    | 0          |                   |
|          | 181 | pisco     | PE      | -13.7000 | -76.2167  | 64       | 75.25    | 0          |                   |
|          | 182 | lompoc    | US      | 34.6391  | -120.4579 | 26       | 70.93    | 0          |                   |
|          | 188 | ankazoabo | MG      | -22.2833 | 44.5167   | 46       | 77.05    | 0          |                   |

### Step 4: For each city, use the Geoapify API to find the first hotel located within 10,000 metres of your coordinates.

```
In [14]: # Set parameters to search for a hotel
    categories = "accommodation.hotel"
    radius = 10000
    limit=20
    params = {
        "categories":categories,
        "limit":limit,
        "apiKey":geoapify_key
    }

# Print a message to follow up the hotel search
    print("Starting hotel search")

# Iterate through the hotel_df DataFrame
    for index, row in hotel_df.iterrows():
```

11/28/23, 10:21 AM VacationPv

```
# get latitude, longitude from the DataFrame
    latitude=row.Lat
    longitude=row.Lng
    # Add filter and bias parameters with the current city's latitude and longitude to
    params["filter"] = f"circle:{longitude},{latitude},{radius}"
    params["bias"] = f"proximity:{longitude},{latitude}"
    # Set base URL
    base url = "https://api.geoapify.com/v2/places"
    # Make and API request using the params dictionaty
    response = requests.get(base url, params=params)
    # Convert the API response to JSON format
    name address = response.json()
    # Grab the first hotel from the results and store the name in the hotel df DataFra
        hotel df.loc[index, "Hotel Name"] = name address["features"][0]["properties"][
    except (KeyError, IndexError):
        # If no hotel is found, set the hotel name as "No hotel found".
        hotel df.loc[index, "Hotel Name"] = "No hotel found"
    # Log the search results
    print(f"{hotel_df.loc[index, 'City']} - nearest hotel: {hotel_df.loc[index, 'Hotel_
# Display sample data
hotel df
Starting hotel search
inhambane - nearest hotel: Hotel de Inhambane
porbandar - nearest hotel: Toran Tourist Bungalow
pisco - nearest hotel: La Portada
lompoc - nearest hotel: Embassy Suites by Hilton Lompoc Central Coast
ankazoabo - nearest hotel: No hotel found
saint-pierre - nearest hotel: Tropic Hotel
timbuktu - nearest hotel: Hotel La Maison
ormara - nearest hotel: No hotel found
yung shue wan - nearest hotel: 浪濤軒酒店 Concerto Inn
```

Out[14]:

|   | City                   | Country | Lat      | Lng       | Humidity | Max<br>Temp | Cloudiness | Hotel Name                                          |
|---|------------------------|---------|----------|-----------|----------|-------------|------------|-----------------------------------------------------|
| 1 | 59 inhambane           | MZ      | -23.8650 | 35.3833   | 86       | 73.67       | 0          | Hotel de Inhambane                                  |
| 1 | <b>72</b> porbandar    | IN      | 21.6422  | 69.6093   | 70       | 72.63       | 0          | Toran Tourist<br>Bungalow                           |
| 1 | 31 pisco               | PE      | -13.7000 | -76.2167  | 64       | 75.25       | 0          | La Portada                                          |
| 1 | 32 lompoc              | US      | 34.6391  | -120.4579 | 26       | 70.93       | 0          | Embassy Suites by<br>Hilton Lompoc<br>Central Coast |
| 1 | <b>38</b> ankazoabo    | MG      | -22.2833 | 44.5167   | 46       | 77.05       | 0          | No hotel found                                      |
| 3 | <b>70</b> saint-pierre | RE      | -21.3393 | 55.4781   | 73       | 73.08       | 0          | Tropic Hotel                                        |
| 4 | timbuktu               | ML      | 16.7735  | -3.0074   | 14       | 76.95       | 0          | Hotel La Maison                                     |
| 4 | ormara                 | PK      | 25.2088  | 64.6357   | 52       | 75.76       | 0          | No hotel found                                      |
| 5 | yung shue<br>wan       | НК      | 22.2333  | 114.1167  | 68       | 71.67       | 0          | 浪濤軒酒店<br>Concerto Inn                               |

# Step 5: Add the hotel name and the country as additional information in the hover message for each city in the map.

```
In [15]: # Configure the map
map_plot_2 = hotel_df.hvplot.points(
    "Lng",
    "Lat",
    geo = True,
    tiles = "CartoDark",
    frame_width = 800,
    frame_height = 600,
    size = "Humidity",
    color = "City",
)

# Display the map plot
map_plot_2
```

Out[15]:

In [ ]: