IN 406 – Théorie des Langages Cours 2 : Automate fini non-déterministe, déterministe

Franck Quessette - Franck.Quessette@uvsq.fr

Université de Versailles – Saint-Quentin

V4 2020-2021

Non déterminisme

Soit l'automate qui reconnaît les mots se terminant par ab sur l'alphabet $\Sigma = \{a, b, c\}$:

La reconnaissance du mot acab se fait avec la séquence d'états : q_0, q_0, q_0, q_1, q_2 . La séquence q_0, q_0, q_0, q_0, q_0 se termine dans un état non final.

Cet automate est **non-déterministe** : pour le couple (q_0, a) il existe deux transitions différentes : (q_0, a, q_0) et (q_0, a, q_1) .

Non déterminisme

Définition

Pour un automate $\mathcal{A} = (\Sigma, Q, q_0, F, T)$, pour tout état q et toute lettre a, on définit l'ensemble des successeurs de (q, a) par :

$$S(q,a) = \{q' \in Q, (q,a,q') \in T\}$$

Exemple

AFN - AFD

Définition

Soit un automate fini $\mathcal{A} = (\Sigma, Q, q_0, F, T)$,

- ▶ si $\exists q \in Q, \exists a \in \Sigma, |S(q, a)| > 1$
 - $\Rightarrow A$ est **non-déterministe**;
- ▶ si $\forall q \in Q, \forall a \in \Sigma, |S(q, a)| \leq 1$
- $\Rightarrow A \text{ est } | \text{déterministe} |$;
- ▶ si $\forall q \in Q, \forall a \in \Sigma, |S(q, a)| = 1$
 - $\Rightarrow \mathcal{A}$ est **déterministe complet** .

Notations

On note:

- ► AFN : A utomate F ini N on-déterministe;
- ► AFD : A utomate F ini D éterministe.

ε -transition

Définition

Une ε -transition dans un automate est une transition (q, ε, q') .

Un ε -chemin de q à q' existe s'il existe une suite d' ε -transitions permettant d'aller de q à q'.

Exemple

Automate reconnaissant le langage $L = \{a^n b^m, n \ge 0, m \ge 0\}$:

Les ε -transitions simplifient la construction d'automates. Un AFD ne contient pas d' ε -transition.

AFN avec ε -transtion \to AFN \to AFD

Théorème

Pour tout \mathcal{A}_1 AFN avec ε -transitions, il existe \mathcal{A}_2 AFN sans ε -transition,

tel que $L(A_2) = L(A_1)$.

Théorème

Pour tout \mathcal{A}_2 **AFN sans** ε -transitions, il existe \mathcal{A}_3 **AFD**, tel que $L(\mathcal{A}_3) = L(\mathcal{A}_2)$.

Théorème

Pour tout A_3 **AFD**, il existe A_4 **AFD complet**, tel que $L(A_4) = L(A_3)$.

Théorème

Pour tout A_4 **AFD**, il existe A_5 **AFD minimal complet**, tel que $L(A_5) = L(A_4)$.

Suppression des ε -transitions

Algorithme par fermeture arrière

Pour tout ε -chemin de q_1 à q_2 et pour toute transition (q_2, a, q_3) avec $a \neq \varepsilon$

Ajouter la transition (q_1, a, q_3)

Si q_2 est un état final, Ajouter q_1 dans les états finaux Supprimer toutes les ε -transitions.

Exemple

Automate reconnaissant le langage $L = \{a^n b^m, n \ge 0, m \ge 0\}$:

La suppression des ε -transitions n'augmente pas le nombre d'états de l'automate.

Parties d'un ensemble

Notation

Pour tout ensemble E, l'ensemble des parties (sous-ensembles) de E est noté : 2^E .

Exemple

Si
$$E = \{x, y, z\}$$
 alors,

$$2^{E} = \{\emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\}\}.$$

Remarque

Pour tout ensemble E, $|2^E| = 2^{|E|}$. Dans l'exemple |E| = 3, $|2^E| = 8$ et $8 = 2^3$.

Théorème

Soit $\mathcal{A} = (\Sigma, Q, q_0, F, T)$ un AFN et soit $\mathcal{A}' = (\Sigma', Q', q_0', F', T')$ un automate fini défini par :

- $\Sigma' = \Sigma$;
- ▶ $Q' = 2^Q$ (chaque élément de Q' est un sous-ensemble de Q);
- $q_0' = \{q_0\}$;
- ▶ $\forall q' \in Q'$, si $\exists q \in q'$ tel que $q \in F$, alors $q' \in F'$;
- $T' = \{ (q', a, \bigcup_{q \in q'} S(q, a)), q' \in Q', a \in \Sigma' \}.$

alors A' est déterministe et L(A') = L(A).

Étape 1 : État initial $q_0' = \{q_0\}$

$$\mathcal{A}': \longrightarrow \left(\{q_0\} \right)$$

Étape 2 :
$$S(q_0, a) = \{q_0, q_1\}$$

$$A = (\Sigma = \{a, b, c\}, Q = \{q_0, q_1, q_2\}, q_0, F = \{q_2\}, T)$$
 a, b, c
 $A : \longrightarrow q_0 \longrightarrow q_1 \longrightarrow q_2$

Étape 3 : $S(q_0, b) = \{q_0\}$

$$A = (\Sigma = \{a, b, c\}, Q = \{q_0, q_1, q_2\}, q_0, F = \{q_2\}, T)$$
 a, b, c
 $A : \longrightarrow q_0 \longrightarrow q_1 \longrightarrow q_2$

Étape 4 : $S(q_0, c) = \{q_0\}$

Étape 5 :
$$S(q_0, a) \cup S(q_1, a) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$$

Étape 6 : $S(q_0, b) \cup S(q_1, b) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$

Étape 7 : $S(q_0, c) \cup S(q_1, c) = \{q_0\} \cup \emptyset = \{q_0\}$

Étape 8 : $S(q_0, a) \cup S(q_2, a) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$

$$\mathcal{A} = (\Sigma = \{a, b, c\}, Q = \{q_0, q_1, q_2\}, q_0, F = \{q_2\}, T)$$

$$a, b, c$$

$$\mathcal{A} : \longrightarrow q_0 \longrightarrow q_1 \longrightarrow q_2$$

Étape 9 : $S(q_0, b) \cup S(q_2, b) = \{q_0\} \cup \emptyset = \{q_0\}$

$$\mathcal{A} = (\Sigma = \{a, b, c\}, Q = \{q_0, q_1, q_2\}, q_0, F = \{q_2\}, T)$$

$$a, b, c$$

$$\mathcal{A} : \longrightarrow q_0 \longrightarrow q_1 \longrightarrow q_2$$

Étape 10 : $S(q_0, c) \cup S(q_2, c) = \{q_0\} \cup \emptyset = \{q_0\}$

Étape 11 : États finaux $F = \{\{q_0, q_2\}\}$

$$A = (\Sigma = \{a, b, c\}, Q = \{q_0, q_1, q_2\}, q_0, F = \{q_2\}, T)$$
 a, b, c
 $A : \longrightarrow q_0 \longrightarrow q_1 \longrightarrow q_2$

Fin et L(A') = L(A)

Automate fini déterministe complet

Théorème

Soit $A = (\Sigma, Q, q_0, F, T)$ un AFD et soit $A' = (\Sigma', Q', q'_0, F', T')$ un automate fini défini par :

- $\Sigma' = \Sigma$;
- $ightharpoonup Q' = Q \bigcup \{Poubelle\};$
- $ightharpoonup q'_0 = q_0;$
- F' = F
- ► $T' = T \bigcup \{(q, a, \text{Poubelle}) \text{ pour } (q, a) \text{ tel que } |S(q, a)| = 0\}$ $\bigcup_{a \in \Sigma} \{(\text{Poubelle}, a, \text{Poubelle})\}.$

alors A' est déterministe et complet et L(A') = L(A).

Automate fini déterministe complet 2

Exemple

Automate reconnaissant le langage $L = \{a^n b^m, n \ge 0, m \ge 0\}$:

Déterminisme vs Non-déterminisme 1

AFN

Les caractéristiques du non-déterminisme sont :

- facilité de construction de l'automate;
- nombre d'états généralement polynomial dans la taille du problème;
- reconnaissance d'un mot moins aisée, il faut potentiellement essayer tous les chemins possibles. Peut néanmoins se faire en temps polynomial;
- certificat polynomial : si on donne la séquence des états qui reconnait un mot, la vérification est rapide.

Déterminisme vs Non-déterminisme 2

AFD

Les caractéristiques du **déterminisme** sont :

- construction de l'automate difficile;
- nombre d'états peut être exponentiel dans la taille du problème;
- reconnaissance d'un mot polynomiale;
- certificat de reconnaissance et de non reconnaissance d'un mot polynomial;
- automate minimum canonique.

Déterminisme vs Non-déterminisme 3

Comparaison

Notations:

- ► Σ l'alphabet;
- ► ED(L) nombre minimum d'état dans un AFD reconnaissant L;
- ► EN(L) nombre minimum d'état dans un AFN reconnaissant L;
- ► TD(L) nombre minimum de transitions dans un AFD reconnaissant L;
- TN(L) nombre minimum de transitions dans un AFN reconnaissant L.

On a:

$$EN(L) \le ED(L) \le 2^{EN(L)}$$
 $TD(L) = |\Sigma| \times ED(L)$ $EN(L) - 1 \le TN(L) \le |\Sigma| \times (EN(L))^2$

P vs NP

Définition

Un problème est dans classe de complexité *P* s'il existe une machine de Turing déterministe qui décide (problème de décision) en temps polynomial dans la taille de l'entrée.

Définition

Un problème est dans classe de complexité NP

- s'il existe une machine de Turing non-déterministe qui décide (problème de décision) en temps polynomial dans la taille de l'entrée; ou bien
- s'il existe une machine de Turing déterministe qui est capable de décider positivement en temps polynomial dans la taille de l'entrée. C'est la notion de certificat.

On a $P \subseteq NP$, mais on ne sait pas si $P \neq NP$.