MedQDx Interim Presentation

Mai Werthaim & Maya Kimhi

Project Description

Clinical diagnosis is an interactive process that relies on asking the right questions in response to incomplete patient information.

While LLMs show promise in diagnostic tasks, existing benchmarks expose them to fully revealed cases, ignoring the role of strategic inquiry.

MedQDx is a novel benchmark that simulates realistic, partial clinical scenarios and evaluates LLMs' ability to reach a diagnosis through adaptive, question-driven reasoning.

Dataset: Diseases and their Symptoms

Labels: Prognosis

Case Preparation

Input: Diseases and their symptoms

Output: Patient cases and their diseases

Task: Patient Case Creation

Benchmark Creation

Input: Partial patient case

Output: "Doctor" questions and diagnosis

Task: Doctor & patient role playing

Model's Evaluation

Input: Doctor's questions and diagnosis, Model's questions and diagnosis

Output: Zero-Shot Diagnostic Accuracy (ZDA), Mean Questions to Correct Diagnosis (MQD), and Interrogation Sequence Efficiency (ISE)

Task: Comparing models questions and diagnosis to MedQDx benchmark

Prior Art

Name	Med-PaLM 2	AMIE	ClinicalGPT-R1					
Source	Singhal, K., et al. (2025). Toward expert-level medical question answering with large language models. Nature	Tu, T., et al. (2025). Towards conversational diagnostic artificial intelligence. Nature.	Lan, W., et al. (2025). ClinicalGPT-R1: Pushing reasoning capability of generalist disease diagnosis with large language model. arXiv.					
Goal	Enhance reasoning and grounding in long-form medical question answering through ensemble refinement and chain-of-retrieval strategies	Conduct AI-driven diagnostic dialogue by simulating clinician–patient interactions	Improve generalist disease diagnosis					
Approach	Transformer+ fine-tuning on medical data; uses prompt tuning & ensemble refinement for reliable answers	Vignette generator Dialogue simulator Self-play loops	Synthetic Data Generation Two-Stage Fine-Tuning					
Data	USMLE-style questions (MedQA), medical research (PubMedQA), MedMCQA, and clinical topics in MMLU	Real-world transcripts (~99 K conversations from MIMIC-III) and a self-play multi-agent to synthesize new case	Real EHR records with long-chain CoT prompts					
Metrics	Accuracy	Clinicians scored AMIE's history-taking and diagnostic reasoning using PACES-style criteria	Accuracy					
Results	86.5 % accuracy on MedQA (+19 % over Med-PaLM)	Generated ~12K dialogues AMIE matched or exceeded benchmarks on key axes	Outperforms GPT-4o in Chinese diagnosis tasks and matches GPT-4o in English on MedBench-Hard					

NLP Pipeline

Case Preparation	Benchmark Generation	Model Examination	Evaluation			
Input: Raw Data: 100 random sample of Symptoms and diagnoses.	Input: A table of 4 columns - Diagnosis, full patient case, 80% case, 50% case.	Input: Full patient case, 80% patient case, 50% patient case.	Input: Doctor's question & diadnosis, model's question & diagnosis			
Output: Table of 4 columns - Diagnosis, full patient case, 80% case, 50% case.	Output: K pairs of columns (doctor's question, doctor's diagnosis)	Output : K pairs of columns (model question and diagnosis)	Output: Similarity between docto questions & student questions			
Task: Patient Case Creation	Task: Doctor & patient role playing	Task: model & patient role playing.	Task: Comparing models to doct			
Model: MedLlama2	Model: Me-LLaMA 13B as doctor & DeepSeek-R1 as patient	Model: Models & DeepSeek-R1 as patient	Model: None (NLP Metrics)			
Metric: Model-based evaluation (PubMedBERT)	Metric: Zero-Shot Diagnostic, Accuracy, AUC	Metric: Zero-Shot Diagnostic, Accuracy, AUC	Metric: ZDA, MDQ, and ISE			

Data exploration

Raw data - Diseases and their Symptoms

- 2564 rows
- 400 symptoms
- 133 unique diseases
- 13 duplicate rows

	Unnamed:	pain	shortness of	dissince	acthonia	6-11	51/25020	tias	sweat sweating	1	nnadnama	humannatainamia	alcohol binge	abdomen	air fluid	catching	large-for- dates fetus	immahila	homicidal	nnomosis
	0	chest	breath		asthenia	Tall	Syncope	vertigo	increased	parbitation	 prourome	hypoproteinemia	episode	acute	level	breath	dates fetus	THHODITE	thoughts	prognosis
0	0	0	1	0	0	0	1	0	1	1	 0	0	0	0	0	0	0	0	0	hypertensive disease
1	0	0	1	0	0	0	0	0	1	0	 0	0	0	0	0	0	0	0	0	diabetes
2	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	depression mental , depressive disorder
3	0	1	1	0	0	0	0	0	1	0	 0	0	0	0	0	0	0	0	0	coronary arteriosclerosis ,coronary heart disease
4	0	0	1	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	pneumonia
2559	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	affect labile
2560	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	affect labile
2561	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	affect labile
2562	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	affect labile
2563	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	decubitus ulcer

Data exploration

Raw data statistics:

- Average rows per disease: 19.18
- Disease with most rows: bipolar disorder (43 rows)
- Disease with fewest rows: decubitus ulcer (3 rows)
- Each disease have 3-7 symptomes
- The most common symptom is pain (323 cases)
- The least common symptom is dizzy spells (1 case)

Data Treating:

- Duplicate deletion
- Removal of symptoms not associated with any disease
- Selection of cases with >=4 symptomes

Baseline

Random Sampling:

A random sample of 100 rows is selected from the original dataset. Each row represents a real disease profile with associated symptoms.

Patient Case Generation:

For each selected disease instance, a synthetic patient case is generated using a language model (MedLlama2). Each case includes:

- Full Case: All symptoms associated with the disease.
- 80% Case: Approximately 80% of the symptoms.
- 50% Case: Approximately 50% of the symptoms.

Text-Based Diagnosis Modeling as doctor:

PubMedBERT is fine-tuned on the generated case descriptions to simulate a doctor's diagnosis.

Accuracy Comparison Across Case Levels:

Accuracy is measured for each level to assess how case completeness affects diagnosis quality.

Baseline

As expected, the accuracy of the diagnosis increases as the percentage of available data in the case rises.

Insights

The data source is rich enough to provide good patient cases for diagnosis

There is a relationship between the amount of exposure and accuracy.

Recommendations

Assessment whether dataset size can be reduced.

Zero-shot diagnosis for further evaluate the robustness of the generated cases.

