Álgebra Moderna Tarea 2.5

Tomás Ricardo Basile Álvarez 316617194

22 de octubre de 2020

■ 1. Sean G grupo y $H \leq G$. Si [G:H] = 3, entonces $H \subseteq G$

No es cierto. Para un contraejemplo, consideramos el grupo $S_3 = \{(1), (12), (13), (23), (123), (132)\}$ Y consideramos ahora el conjunto $H = \langle (23) \rangle = \{(1), (23)\}$ H claramente es un subgrupo de índice 3, ya que por el teorema de Lagrange [G:H] = |G|/|H| = 6/2 = 3.

Ahora consideramos las siguientes clases laterales de H en G:

- $(123)H = \{(123)(1), (123)(23)\} = \{(123), (12)\}$
- $H(123) = \{(1)(123), (23)(123)\} = \{(123), (13)\}$

Con lo que notamos que $(123)H \neq H(123)$. Por lo tanto, H no es un grupo normal.

■ Si $D_{2(n)}$ es el grupo diédrico y $R_n \leq D_{2(n)}$ es el subgrupo de las rotaciones, entonces $R_n \leq D_{2(n)}$

Como $D_{2(n)}=\{1,r,r^2,...,r^{n-1},s,sr,sr^2,...,sr^{n-1}\}$ tiene 2n elementos y $R_n=\{1,r,r^2,...,r^n\}$ es un subgrupo de n elementos, entonces $[D_{2(n)}:R_n]=|D_{2(n)}|/|R_n|=(2n)/n=2$. Pero en clase vimos que cualquier grupo de índice 2 es normal, por lo que R_n es normal.

Alternativamente, se puede utilizar el corolario 14.5 de las notas. Que dice que si $G = \langle X \rangle$ (con X un conjunto), y $H = \langle Y \rangle$, entonces $H \leq G$ si y sólo si $xyx^{-1} \in H \ \forall x \in X, \forall y \in Y$.

En nuestro caso tenemos que $D_{2(n)} = \langle r, s \rangle$ y $R_n = \langle r \rangle$. Entonces $R_n \subseteq D_{2(n)}$ si y sólo si se cumple lo siguiente:

- $r(r)r^{-1} \in R_n$ Esto se cumple claramente porque R_n es el generado de r y es cerrado bajo inversos y productos.
- $s(r)s^{-1} \in R_n$ Esto se cumple porque $s(r)s^{-1} = srs = s(rs) = s(sr^{-1}) = s^2r^{-1} = r^{-1}$

Pero claramente $r^{-1} \in R_n$

• $K \subseteq H \subseteq G$, entonces $K \subseteq G$.

No. Como contraejemplo consideramos al grupo $D_{2(n)} = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$. Sea $B = \{1, r^2, s, sr^2\}$, que ya hemos probado varias veces que es un subgrupo de $D_{2(n)}$. Además, como $[D_{(2n)}:B] = |D_{2(n)}|/|B| = 8/4 = 2$, eso implica que $B \leq D_{2(n)}$ porque todo subgrupo de índice 2 es normal.

Y sea $A = \{1, s\}$, que claramente es un subgrupo de B. Y como [B : A] = |B|/|A| = 4/2 = 2, entonces A es normal en B.

Por lo tanto, tenemos que $A \subseteq B \subseteq D_{2(n)}$.

Sin embargo, veremos que no se cumple que $A \leq D_{2(n)}$, pues si consideramos $r \in D_{2(n)}$, tenemos las dos siguientes clases laterales de A:

•
$$rA = (r)\{1, s\} = \{r, rs\} = \{r, sr^{-1}\} = \{r, sr^3\}$$

•
$$Ar = \{1, s\}(r) = \{1, rs\}$$

Lo que prueba que estas dos clases no son iguales y por tanto A no es normal.

■ Sea $Z(G) = \{g \in G | gx = xg \text{ para todo } x \in G\}$, es un subgrupo de G al que llamaremos centro de G. Entonces $Z(G) \subseteq G$

Probaremos que para todo $a \in G$ se cumple que $aZ(G)a^{-1} \subset Z(G)$, con lo cual quedará probado que $Z(G) \leq G$ según el lema 14.3

Para esto, sea $g \in Z(G)$, tenemos que aga^{-1} es un elemento arbitrario de $aZ(G)a^{-1}$ y que:

$$aga^{-1} = (ag)a^{-1}$$

= $(ga)a^{-1}$ Por la propiedad que define a $Z(G)$
= $g(aa^{-1})$
= g

Y como $g \in Z(G)$, concluimos que $aZ(G)a^{-1} \subset Z(G)$ para toda $a \in G$ y por tanto Z(G) es normal en G.

• Si $H \subseteq G$ y es de orden 2, entonces $H \subset Z(G)$

Como H es de orden 2 y debe de incluir necesariamente al elemento neutro (porque es un grupo), entonces H se ve como $\{1, h\}$.

Luego, tenemos claramente que $1 \in Z(G)$ porque 1x = x1 para todo $x \in G$.

Ya solamente hace falta probar que $h \in Z(G)$. Como H es normal en G, entonces se

cumple que para todo $x \in G$:

$$xH = Hx$$

$$\Rightarrow (x)\{1, h\} = \{1, h\}(x)$$

$$\Rightarrow \{x, xh\} = \{x, hx\}$$

Lo cual claramente implica que xh=hx. Entonces, para todo $x\in G$ se tiene que xh=hx, lo que implica que $h\in Z(G)$. Así concluimos que $\{1,h\}\subset Z(G)$