Nominations for the ACM SIGCSE Top Ten Symposium Papers of All Time Award

Brief overview of the 20 nominated papers

Year	Title	Author(s)	Abstract	URL
1974	Relating Computer Science programs to the needs of industry through internships and cooperative programs	Alton R. Goddard	The purpose of this paper is to discuss some approaches for achieving more meaningful relationships between degree programs at the college level in Computer Science and the needs	(https://dl.acm.org/citation.cfm?id=810463)
1974	What should we teach in an introductory programming course?	David Gries	An introductory course (and its successor) in programming should be concerned with three aspects of programming: 1. How to solve problems, 2. How to describe an algorithmic solution to a problem, 3. How to verify that	(https://dl.acm.org/citation.cfm?id=810447)
1978	The introductory programming course in computer science: ten principles	G. Michael Schneider	The first course in the overwhelming majority of Computer Science Departments is an introductor y course in high-level language programming [1] . Because of this a number of papers	(https://dl.acm.org/citation.cfm?id=990598)
1983	A project oriented course on software engineering	Sallie Henry	This paper makes an attempt to outline Software Engineering course with particular attention on the administration of the project. Section II describes the type of students taking	(https://dl.acm.org/citation.cfm?id=952978.80 1013)

1997	Undergraduate women in computer science: experience, motivation and culture	Allan Fisher, Jane Margolis, Faye Miller	For the past year, we have been studying the experiences of undergraduate women studying computer science at Carnegie Mellon University, with a specific eye toward understanding the	(https://dl.acm.org/citation.cfm?id=268127)
1998	Conceptual models and cognitive learning styles in teaching recursion	Cheng-Chih Wu, Nell B. Dale, Lowell J. Bethel	An experimental research design was implemented in an attempt to understand how different types of conceptual models and cognitive learning styles influence novice programmers when	(https://dl.acm.org/citation.cfm?id=274315)
1998	Constructivism in computer science education	Mordechai Ben- Ari	Constructivism is a theory of learning which claims that students construct knowledge rather than merely receive and store knowledge transmitted by the teacher. Constructivism has been	(https://dl.acm.org/citation.cfm?id=274308)
1998	Design patterns: an essential component of CS curricula	Owen Astrachan, Garrett Mitchener, Geoffrey Berry, Landon Cox	The field of software patterns has seen an explosion in interest in the last three years. Work to date has been on the recognition, cataloging, and finding of patterns with little	(https://dl.acm.org/citation.cfm?id=273182)
2001	Contributing to success in an introductory computer	Brenda Cantwell Wilson, Sharon Shrock	This study was conducted to determine factors that promote success in an	(https://dl.acm.org/citation.cfm?id=364581)

2002	science course: a study of twelve factors Defensive Climate in the Computer Science Classroom	Lecia Jane Barker, Kathy Garvin- Doxas, Michele Jackson	introductory college computer science course. The model included twelve possible predictive factors includi As part of an NSF-funded IT Workforce grant, the authors conducted ethnographic research to provide deep understanding of the learning environment of computer	(https://dl.acm.org/citation.cfm?id=563354)
2003	Gender differences in computer science students	Sylvia Beyer, Kristina Rynes, Julie Perrault, Kelly Hay, Susan Haller	science classrooms We examined gender differences and differences in Computer Science (CS) majors vs. non-majors in ability in quantitative areas, educational goals and interests, experience with com	(https://dl.acm.org/citation.cfm?id=611930)
2003	Improving the CS1 experience with pair programming	Nachiappan Nagappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Kai Yang, Carol Miller, Suzanne Balik	Pair programming is a practice in which two programmers work collaboratively at one computer, on the same design, algorithm, or code. Prior research indicates that pair programmers	(https://dl.acm.org/citation.cfm?id=612006)
2003	Teaching objects-first in introductory computer science	Stephen Cooper, Wanda Dann, Randy Pausch	An objects-first strategy for teaching introductory computer science courses is receiving increased attention from CS educators. In this	(https://dl.acm.org/citation.cfm?id=611966)

			paper, we discuss the	
			challenge of the obje	
2004	Using software testing to	Stephen H.	Introductory computer	(https://dl.acm.org/citation.cfm?id=971300.97
2004	move students from trial-	Edwards		
	and-error to reflection-in-	Euwarus	science students rely on a	<u>1312</u>)
			trial and error approach to	
	action		fixing errors and debugging	
			for too long. Moving to a	
			reflection in action strategy	
			can help students	
2008	Programming by choice:	John H. Maloney,	This paper describes Scratch,	(https://dl.acm.org/citation.cfm?id=1352260)
	urban youth learning	Kylie Peppler,	a visual, block-based	
	programming with scratch	Yasmin Kafai,	programming language	
		Mitchel Resnick,	designed to facilitate media	
		Natalie Rusk	manipulation for novice	
			programmers. We report on	
			the Scratch programming	
			expe	
2010	Identifying student	Lisa C.	Computing educators are	(https://dl.acm.org/citation.cfm?id=1734299)
	misconceptions of	Kaczmarczyk,	often baffled by the	
	programming	Elizabeth R.	misconceptions that their	
		Petrick, J. Philip	CS1 students hold. We need	
		East, Geoffrey L.	to understand these	
		Herman	misconceptions more clearly	
			in order to help students	
			form cor	
2011	App inventor and real-	David Wolber	App Inventor is a visual	(https://dl.acm.org/citation.cfm?id=1953329)
	world motivation		"blocks" language for	
			creating mobile apps. As part	
			of a Google pilot program,	
			App Inventor was taught to	
1				
			university students in a core	
			1	
2012	The fairy performance	Linda Werner, Jill	university students in a core	(https://dl.acm.org/citation.cfm?id=2157200)

	computational thinking in	Campe, Damon	essential capacity to prepare	
	middle school	Chizuru	students for computer	
	Initiale school	Kawamoto	I	
		Kawamoto	science, as well as to be	
			productive members of	
			society. But efforts to eng	
2016	A Multi-institutional Study	Leo Porter, Dennis	Peer Instruction (PI) is a	(https://dl.acm.org/citation.cfm?id=2844642)
	of Peer Instruction in	Bouvier, Quintin	student-centric pedagogy in	
	Introductory Computing	Cutts, Scott	which students move from	
	, ,	Grissom, Cynthia	the role of passive listeners	
		Lee, Robert	to active participants in the	
		McCartney, Daniel	classroom. Over the past five	
		Zingaro, Beth	years, the	
		Simon		
2018	Upward Mobility for	Sathya	CSin3 is a cohort-based,	(https://dl.acm.org/citation.cfm?id=3159551)
	Underrepresented	Narayanan,	three-year computer science	
	Students: A Model for a	Kathryn	bachelor's degree program	
	Cohort-Based Bachelor's	Cunningham,	that has increased	
	Degree in Computer	Sonia Arteaga,	graduation rates of	
	Science	William J. Welch,	traditionally	
	Science	Leslie Maxwell,	underrepresented computer	
		·	· ·	
		Zechariah	science students. A co	
		Chawinga, Bude		
		Su		