

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

Кафедра информатики, математического и компьютерного моделирования

ОТЧЕТ

к лабораторной работе №4 по дисциплине «Вычислительная математика»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр. Б9119-01.03.02систпро Нагорнов С.С. (ΦMO) $(\Pi o \partial nuc b)$ « 15 » января 2021 г.

Содержание

Введение	2
Дифференцирование интерполяционной формулы	2
Постановка задачи	2
Остаточный член	3
Приложения	3
Вывод	3

Введение

Дифференцирование функции с помощью многочлена Лагранжа. Вариант 16

Дифференцирование интерполяционной формулы

Постановка задачи

Продифференцировать несколько раз интерполяционную формулу Лагранжа:

$$L_n^{(k)}(x_m) \approx f^{(k)}(x_m), \quad m = 0, \quad n = 3, \quad k = 2$$

 $y = x^2 + \ln(x+5) \quad [a,b] = [0.5, 1.0]$

Дифференцирование формулы

Для начала построим полином Лагранжа 3-го порядка:

$$L_3(x) = f(x_0) \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} + f(x_1) \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} + f(x_2) \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} + f(x_3) \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)}$$

Продифференцируем данный полином дважды и получаем результат:

$$L_3''(x_0) \approx 1.9664270212160773$$

Сама вторая производная y имеет значение:

$$y''(x_0) = 1.9669421487603307$$

Сравним их:

$$L_3''(x_0) - y''(x_0) \approx -0.0005151275442534242$$

Остаточный член

Найдем остаточный член по формуле:

$$R_{n,k}(x_m) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}^{(k)}(x_m), \quad \xi \in [a, b]$$

$$R_{3,2}(x_0) \approx -1.5026284644158672e - 05$$

Приложения

Код программы, вычисляющей значения формул, приложен отдельным файлом.

Вывод

В данной лабораторной работе было произведено построение интерполяционной формулы Лагранжа, а также вычисление ее производной для нахождения заданной функции.