Ingénierie des systèmes d'information Systèmes d'information et outils

Manon Ansart

ESIREM, LEAD

2023

Sommaire

- 1 Introduction
 - Description du cours
 - Qu'est-ce qu'un système d'information?
 - Systèmes d'information de bonne qualité
- 2 Pré-requis
- 3 Outils pour les bases de données
 - SQL et transactions
 - SGBD
 - Extensions procédurales de SQL
 - ORM

Plan

- 1 Introduction
 - Description du cours
 - Qu'est-ce qu'un système d'information?
 - Systèmes d'information de bonne qualité
- 2 Pré-requis
- 3 Outils pour les bases de données
 - SQL et transactions
 - SGBD
 - Extensions procédurales de SQL
 - ORM

Structure du module

- 5 CM avec Manon Ansart1 CM avec Antoine Augusti
- 6 TD avec Manon Ansart 2 TD avec Antoine Augusti
- 4 TP avec Manon Ansart

2 CM avec Arnaud DA COSTA 6 TP avec Arnaud DA COSTA

Evaluation du module

- Une évaluation théorique (examen papier) :
 - le 29/03
 - 2h
 - aucun document autorisé
 - coeff 2
- Une évaluation pratique (examen machine) :
 - le 28/03
 - 2h
 - tous documents autorisés
 - coeff 1

Reflexion

Qu'est-ce qu'un système d'information?

Définition

Wikipédia: Le système d'information est un ensemble organisé de ressources (personnel, données, procédures, matériel, logiciel) qui permet de collecter, stocker, traiter et distribuer de l'information, en général grâce à un réseau d'ordinateurs

Exemples

Connaissez-vous des exemples de systèmes d'information?

Exemples

Milieu médical

- Planning de vacances du personnel
- Reservation des salles d'opération
- Gestions des dossiers patients : historiques médicaux, visites, notes du médedecin, diagnostic, traitements prescrits
- Systèmes d'aide au diagnostic

Il y en a partout!

Typologie des systèmes d'informations

On distingue 2 grandes familles :

- systèmes d'information supports d'opérations :
 - fait partie du produit, nécessaire pour l'activité
- systèmes d'information supports de gestion
 - renseigne sur l'activité et aide les administrateurs

SI supports d'opérations

Systèmes de traitement de transactions :

- Objectif : aider les entreprises dans la réalisation des opérations commerciales et logistiques.
- Transaction : activité élémentaire exécutée durant une opération commerciale.
- Exemples : réservation des billets d'avion, vente des produits, un achat des ressources, un inventaire des stocks, une livraison

SI supports d'opérations

Systèmes d'information bureautique :

- Objectif : faciliter la communication :
 - entre les membres d'une organisation
 - entre l'organisation et son environnement
- Les SI bureautique aident à :
 - gérer différents moyens de communication : mails, messagerie, visio
 - réaliser un objectif collaboratif : gestion de projet, edition de document, partage de l'information

SI supports de gestion

Systèmes de rapports de gestion

- Objectif : offrir des informations sous forme de rapports de performance. Un rapport décrit une situation passée ou actuelle, mais il ne prévoit pas le futur.
- Pour qui : administrateurs
- Exemples :
 - vente de l'année passée,
 - chiffre d'affaire classé par produit vendu,
 - chiffre d'affaire par client,
 - pourcentage de livraisons en retard.

SI supports de gestion

Systèmes d'aide à la décision

- Objectif : aider les administrateurs des entreprises dans les processus de prise de décisions.
- Le système propose des modèles de base permettant de résoudre certains problèmes, exemples :
 - modèle de prévision des ventes
 - modèle de définition des prix
 - modèle de planification de la production

Composants

Quels sont les composants d'un système d'information?

Composants

- Applications métiers
- Procédures
- Données, bases de données, serveurs de données et systèmes de stockage
- Utilisateurs

- Contrôle d'accès
- Dispositifs de sécurité
- Infrastructure réseau
- Outils de groupware (agenda, partage de document...)

Schéma

Liens avec les autres cours

Systèmes d'information de bonne qualité

Propriétés souhaitées :

- **Cohérence**: pas des réponses contradictoires
- **Disponibilité** : vitesse de chargement, latence
- Robustesse : persistance des données dans le temps même face aux erreurs utilisateurs
- Confidentialité, sécurité : accès non autorisé impossible

Comment assurer ces propriétés?

wooclap.com/ISI1

Objectifs d'apprentissage

- Concevoir logiquement une base de données (relationnelle ou non) répondant aux besoins d'un projet
- Implémenter la base de données et l'intégrer dans une stack pertinente
- Comprendre l'organisation physique des bases
- Appréhender les principaux risques liés à la sauvegarde des données
- Déployer les solutions garantissant une intégrité des données et une robustesse aux panes matérielles

Plan

- 1 Introduction
 - Description du cours
 - Qu'est-ce qu'un système d'information?
 - Systèmes d'information de bonne qualité
- 2 Pré-requis
- 3 Outils pour les bases de données
 - SQL et transactions
 - SGBD
 - Extensions procédurales de SQL
 - ORM

Fiche de pré-requis

En groupe de 2 ou plus (de préférence 3 ou 4), discutez de vos réponses à la fiche de pré-requis.

Pré-requis 2023 23 / 40

Plan

- 1 Introduction
 - Description du cours
 - Qu'est-ce qu'un système d'information?
 - Systèmes d'information de bonne qualité
- 2 Pré-requis
- 3 Outils pour les bases de données
 - SQL et transactions
 - SGBD
 - Extensions procédurales de SQL
 - ORM

SQL

SQL est un langage informatique **normalisé** servant à exploiter des bases de données relationnelles.

- Langage de définition des données : gère l'organisation des données dans la base
- Langage de manipulation des données : insertion, suppression, recherche, modification
- Langage de contrôle des données : gestion des accès
- Langage de contrôle des transactions

Transactions

Transactions:

- Élément de base en SQL.
- Suite d'opérations qui fait passer la base d'un état à un autre

Transactions

Propriétés (ACID) :

- Atomicité : Exécuter tout ou rien! Revenir à l'état de départ en cas d'erreur.
- Cohérence : La base passe d'un état cohérent à un autre état cohérent.
- Isolation : Si les transactions s'exécutent simultanément, alors chacune doit demeurer indépendante de l'autre.
- Durabilité: Une fois confirmée, la transaction demeure enregistrée même en cas de panne ou problème matériel.

- SGBD : Système de gestion de base de données
- Définition Wikipédia : logiciel système servant à stocker, à manipuler ou gérer, et à partager des données dans une base de données, en garantissant la qualité, la pérennité et la confidentialité des informations
- Système d'information : ensemble organisé de ressources (personnel, données, procédures, matériel, logiciel) qui permet de collecter, stocker, traiter et distribuer de l'information

SEULE, LA BASE DE DONNÉES N'EST QU'UN FICHIER MIEUX STRUCTURÉ

Charles Meunier - cours BD

Exemples de SGBD

Rank					Score		
Feb 2022	Jan 2022	Feb 2021	DBMS	Database Model	Feb 2022	Jan 2022	Feb 2021
1.	1.	1.	Oracle 🖽	Relational, Multi-model 🛐	1256.83	-10.05	-59.84
2.	2.	2.	MySQL [1]	Relational, Multi-model 🛐	1214.68	+8.63	-28.69
3.	3.	3.	Microsoft SQL Server	Relational, Multi-model 🛐	949.05	+4.24	-73.88
4.	4.	4.	PostgreSQL 🖽 🗐	Relational, Multi-model 🛐	609.38	+2.83	+58.42
5.	5.	5.	IBM Db2	Relational, Multi-model 🛐	162.88	-1.32	+5.26
6.	6.	↑ 7.	Microsoft Access	Relational	131.26	+2.31	+17.09
7.	7.	4 6.	SQLite #	Relational	128.37	+0.94	+5.20
8.	8.	8.	MariaDB 🖽	Relational, Multi-model 🛐	107.11	+0.69	+13.22
9.	9.	1 0.	Microsoft Azure SQL Database	Relational, Multi-model 🛐	84.95	-1.37	+13.67

https://db-engines.com/en/ranking/relational+dbms

SQLite

SQLite:

- système de gestion de base de données embarquée
- ne s'intègre pas dans une architecture client-serveur

Pourquoi utiliser SQLite:

- systèmes embarqué, loT
- sites web avec volumes moyens
- bases de données locales
- simplicité

SQLite

Quand utiliser un autre SGBD :

- applications client-serveur
- site web avec gros volumes (écriture, plusieurs serveurs)
- grosses bases de données
- accès conccurents nombreux

Un SGBD contient

- une interface graphique et/ou un language de programmation (basé sur du SQL)
- un moteur de base de données : manipule les fichiers pour enregistrement et récupération des données
 - Souvent : un seul moteur inclu dans le SGBD
 - Exception : MySQL (MyISAM, InnoDB...)

Extensions procédurales de SQL

À quoi ça sert?

Rajoute les conditions, boucles, constantes, variables, fonctions, tupes...

- Standard : SQL/PSM
- Oracle : PL/SQL
- MySQL : inclus

- Microsoft : Transact-SQL
- IBM : SQL PL
- SQLite : inclus

ORM

Définition: ORM

L'Object-Relationnal Mapping est une technique qui simule une base de données orientée objet à partir d'une base de données relationnelle.

- Fait la liaison entre le monde relationnel dans la couche stockage et le monde objet dans l'application;
- Facilité de développement : pas besoin d'une connaissance poussée du SQL;
- Facilite les interactions avec la base de données pour les développeurs.

Les limites des ORM

Toujours **beaucoup** moins performant que des requêtes SQL optimisées dans les cas complexes.

Exemple d'ORM

```
// Création d'un utilisateur
Map<String, String> userData = new HashMap<String, String>();
userData.put("prenom", "Antoine");
userData.put("nom", "Augusti");
User user = User.create(userData):
// Sélection des utilisateurs majeurs et articles qu'ils ont écrits
ArrayList<User> users = User.with("articles")
    .where("age", ">=", 18)
    .qet();
// Suppression des utilisateurs vivant à Paris
User.where("ville", "Paris").delete():
// Les derniers articles d'un utilisateur (3ème page)
final int NOMBRE ARTICLES PAR PAGE = 10:
ArrayList<Article> articles = Article.whereUserId(user.getId())
    .latest()
    .skip(2*NOMBRE ARTICLES PAR PAGE)
    .take(NOMBRE ARTICLES PAR PAGE)
    .qet();
```

Sources

- Sergey Kirgizov Ingénierie des systèmes d'information (cours ESIREM 2021)
- Gerladine Del Mondo Bases de données (cours INSA 2013)
- Wikipédia Système d'information

Wooclap

wooclap.com/ISI1