Grenzwerte von Funktionen

Jendrik Stelzner

28. Dezember 2014

Inhaltsverzeichnis

1	Häufungspunkte	1
2	Grenzwerte von Funktionen	4
3	Grenzwerte und Stetigkeit	7
4	Links-, rechts- und beidseitige Grenzwerte	9
5	Uneigentliche Grenzwerte	13
6	Lösungen der Übungen	16

1 Häufungspunkte

Es sei $A\subseteq\mathbb{R}^n$ und $f\colon A\to\mathbb{R}^m$ (nicht notwendigerweise stetig). Wir wollen untersuchen, wie sich f an einer Stelle $x\in\mathbb{R}^n$ verhält, bzw. verhalten sollte. Um das Verhalten von f an x zu untersuchen, brauchen wir, dass f "in der Nähe" von x definiert ist. Hierfür brauchen wir, dass x "nahe" an A ist. Dies motiviert die folgende Definition:

Definition 1. Es sei $A\subseteq\mathbb{R}^n$. Ein Punkt $x\in\mathbb{R}^n$ heißt $H\ddot{a}ufungspunkt\ von\ A$, falls es für alle $\varepsilon>0$ ein $a\in A$ mit $\|x-a\|<\varepsilon$ und $x\neq a$ gibt (also $0<\|x-a\|<\varepsilon$). Wir bezeichnen die Menge aller Häufungspunkte von A mit A'.

Übung 1.

Es sei $x \in \mathbb{R}^n$. Der punktierte offene ε -Ball um x ist die Menge

$$\dot{B}_{\varepsilon}(x) := B_{\varepsilon}(x) \setminus \{x\} = \{y \in \mathbb{R}^n \mid 0 < ||x - y|| < \varepsilon\}.$$

Für eine Umgebung V von x ist $\dot{V}\coloneqq V\setminus\{x\}$ die entsprechende punktierte Umgebung von x

Es sei $A\subseteq \mathbb{R}^n$ und $x\in \mathbb{R}^n$. Zeigen Sie, dass die folgenden Bedingungen äquivalent sind:

- 1. x ist ein Häufungspunkt von A.
- 2. Für jedes $\varepsilon > 0$ gibt es ein $a \in A$ mit $a \in \dot{B}_{\varepsilon}(x)$.
- 3. Für jede punktierte Umgebung \dot{V} von x gibt es ein $a \in A$ mit $a \in \dot{V}$.

Lösung 1.

 $(1 \Leftrightarrow 2)$ 2 ist eine direkte Umformulierung der Definition von 1.

 $(2 \Leftrightarrow 3)$ Jeder punktierte ε -Ball um x ist auch eine punktierte Umgebung von x. Andererseits enthält jede punktierte Umgebung von x einen punktierten ε -Ball um x.

Vorstellungsmäßig ist $x \in \mathbb{R}^n$ ein Häufungspunkt von $A \subseteq \mathbb{R}^n$, falls sich x von außen durch Punkte aus A annähern lässt.

- **Beispiel(e).** x=0 ist ein Häufungspunkt von $A\coloneqq\{1/n\mid n\geq 1\}\subseteq\mathbb{R}$: Da $\lim_{n\to\infty}1/n=0$ gibt es für jedes $\varepsilon>0$ ein $n\geq 1$ mit $|x-1/n|<\varepsilon$, wobei klar ist, dass $1/n\neq 0$.
 - Der Punkt x=2 ist kein Häufungspunkt der Menge $A\coloneqq [0,1]\cup\{2\}\subseteq\mathbb{R}$, denn das einzige $a\in A$ mit |x-a|<1/2 ist a=2.
 - Ist $U\subseteq\mathbb{R}^n$ offen, so ist jeder Punkt $x\in U$ ein Häufungspunkt von U: Da U offen ist gibt es ein $\delta>0$ mit $B_\delta(x)\subseteq U$. Für jedes $\varepsilon>0$ gibt es für $\omega:=\min\{\varepsilon,\delta\}$ daher ein

$$y \in B_{\omega}(x) \subseteq B_{\delta}(x) \subseteq U \quad \text{mit } y \neq x,$$

und es gilt $||x - y|| < \omega \le \varepsilon$.

• Allgemeiner ergibt sich mit dieser Argumentation, dass $x \in \mathbb{R}^n$ ein Häufungspunkt von $V \subseteq \mathbb{R}^n$ ist, falls V eine Umgebung von x ist. (Es genügt bereits eine punktierte Umgebung.)

Übung 2.

Es sei $A \subseteq \mathbb{R}^m$ und $x \in \mathbb{R}^m$. Zeigen Sie, dass x genau dann ein Häufungspunkt von A ist, falls es eine Folge (a_n) auf $A \setminus \{x\}$ gibt, so dass $a_n \to x$.

Lösung 2.

Angenommen, x ist ein Häufungspunkt von A. Dann gibt es für jedes $n \geq 1$ ein $a_n \in A \setminus \{x\}$ mit $|x - a_n| < 1/n$. Die Folge $(x_n)_{n \geq 1}$ konvergiert per Konstruktion gegen x.

Angenommen, eine solche Folge $(a_n)_{n\in\mathbb{N}}$ existiert. Dann gibt es für jedes $\varepsilon>0$ ein $N\in\mathbb{N}$, so dass $|x-a_n|<\varepsilon$ für alle $n\geq N$. Inbesondere ist $a_N\in A$ mit $|x-a_N|<\varepsilon$ und $a_N\neq x$.

Übung 3.

Es sei $M \subseteq \mathbb{R}^n$ endlich. Zeigen Sie, dass $M' = \emptyset$.

Lösung 3.

Es sei $x \in \mathbb{R}^n$. Ist $x \notin M$, so ergibt sich für

$$\varepsilon\coloneqq \min_{m\in M}\|x-m\|>0,$$

dass es kein $m\in M$ mit $\|x-m\|<\varepsilon$ gibt. Also ist x dann kein Häufungspunkt von M. Ist $x\in M$, so ergibt sich für

$$\varepsilon \coloneqq \begin{cases} \min_{m \in M, m \neq x} \|x - m\| & \text{falls } |M| \geq 2, \\ 1 & \text{falls } M = \{x\}, \end{cases}$$

dass x das einzige $m \in M$ mit $\|x-m\| < \varepsilon$ ist. Also ist x auch dann kein Häufungspunkt von M.

Übung 4.

Bestimmen Sie \mathbb{Z}' .

Lösung 4.

Es sei $x \in \mathbb{R}$. Ist $x \notin \mathbb{Z}$, so gibt es für

$$\varepsilon \coloneqq \min\{\lceil x \rceil - x, x - \lceil x \rceil\}$$

kein $n\in\mathbb{Z}$ mit $\|x-n\|<\varepsilon$. Also ist x dann kein Häufungspunkt von \mathbb{Z} . Ist andererseits $x\in\mathbb{Z}$, so gibt es außer x kein $n\in\mathbb{Z}$ mit $\|x-n\|<1/2$, weshalb x auch dann kein Häufungspunkt von \mathbb{Z} ist.

Also ist kein $x \in \mathbb{R}$ ein Häufungspunkt von \mathbb{Z} , und somit $\mathbb{Z}' = \emptyset$.

Übung 5.

Es seien $A, B \subseteq \mathbb{R}$. Zeigen Sie:

- 1. Ist $A \subseteq B$, so ist $A' \subseteq B'$.
- 2. Es ist $(A \cup B)' = A' \cup B'$.

Lösung 5.

- 1. Es sei $x \in A'$. Für jedes $\varepsilon > 0$ gibt es dann ein $a \in A$ mit $||x a|| < \varepsilon$ und $a \neq x$. Da $a \in A \subseteq B$ folgt, dass es für jedes $\varepsilon > 0$ ein $b \in B$ mit $||x b|| < \varepsilon$ und $b \neq x$ gibt. Also ist x ein Häufungspunkt von B, also $x \in B'$. Aus der Beliebigkeit von $x \in A'$ folgt, dass $A' \subseteq B'$.
- 2. Da $A \subseteq A \cup B$ ist $A' \subseteq (A \cup B)'$, und da $B \subseteq A \cup B$ ist $B' \subseteq (A \cup B)'$. Also ist auch $A' \cup B' \subseteq (A \cup B)'$.

Angenommen, es ist $x \notin A' \cup B'$. Dann gibt es $\varepsilon_A, \varepsilon_B > 0$, so dass es kein $a \in A$ mit $\|x - a\| < \varepsilon_A$ und $a \neq x$ gibt, und auch kein $b \in B$ mit $\|x - b\| < \varepsilon_B$ und $b \neq x$. Für $\varepsilon \coloneqq \min\{\varepsilon_A, \varepsilon_B\}$ gibt es daher kein $c \in A \cup B$ mit $\|x - c\| < \varepsilon$ und $c \neq x$. Also ist dann $x \notin (A \cup B)'$. Das zeigt, dass auch $(A \cup B)' \subseteq A' \cup B'$.

Übung 6.

Bestimmen Sie A' für $A := [0, 1] \cup [2, 3]$.

Lösung 6.

Behauptung. Für alle $a, b \in \mathbb{R}$ mit a < b ist

$$[a, b]' = [a, b].$$

Beweis der Behauptung. Für x < a ist a - x > 0. Für alle $y \in [a,b]$ ist wegen $y \ge a$ aber

$$||x - y|| = y - x \ge a - x,$$

es gibt also kein $y \in [a,b]$ mit ||x-y|| < a-x. Daher ist $x \notin [a,b]'$. Analog ergibt sich, dass auch $x \notin [a,b]'$ für x > b. Also ist $[a,b]' \subseteq [a,b]$.

Dass $a,b \in [a,b]'$ ergibt sich durch die Folgen (x_n) auf (a,b] und (y_n) auf [a,b) mit

$$x_n \coloneqq a + \frac{b-a}{n+1}$$
 und $y_n \coloneqq b - \frac{b-a}{n+1}$ für alle $n \in \mathbb{N}$.

Dass $x \in [a, b]'$ für a < x < b ergibt sich daraus, dass [a, b] eine Umgebung für diese x ist. Damit ergibt sich, dass $[a, b] \subseteq [a, b]'$.

Aus der Behauptung ergibt sich direkt, dass

$$([0,1] \cup [2,3])' = [0,1]' \cup [2,3]' = [0,1] \cup [2,3].$$

2 Grenzwerte von Funktionen

Definition 2. Es sei $A\subseteq\mathbb{R}^n$, $f\colon A\to\mathbb{R}^m$ und $x\in\mathbb{R}^n$ ein Häufungspunkt von A. Für $y\in\mathbb{R}^m$ schreiben wir

$$\lim_{\substack{a \to x \\ a \in A}} f(a) = y,$$

falls es für jedes $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass

$$||x - a|| < \delta \Rightarrow ||y - f(a)|| < \varepsilon$$
 für alle $a \in A$ mit $a \neq x$.

Wir nennen y dann den *Grenzwert von* f *an* x *über* A. Wir schreiben auch $f(a) \to y$ für $a \to x$ über $a \in A$

Grenzwerte von Funktionen sind eindeutig:

Lemma 3. Es sei $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}^m$ und $x \in \mathbb{R}^n$ ein Häufungspunkt von A. Sind $y, y' \in \mathbb{R}^m$, so dass $f(a) \to y$ und $f(a) \to y'$ für $a \to x$ über $a \in A$, so ist y = y'.

Beweis. Es sei $\varepsilon>0$ beliebig aber fest. Da $f(a)\to y$ für $a\to x$ über $a\in A$ gibt es ein $\delta_1>0$ mit

$$\|x-a\|<\delta_1\Rightarrow \|y-f(a)\|<rac{arepsilon}{2}\quad ext{für alle }a\in A ext{ mit }a
eq x.$$

Da $f(a) \to y'$ für $a \to x$ über $a \in A$ gibt es auch ein $\delta_2 > 0$, so dass

$$||x-a|| < \delta_2 \Rightarrow ||y'-f(a)|| < \frac{\varepsilon}{2}$$
 für alle $a \in A$ mit $a \neq x$.

Da x eine Häufungspunkt von A ist, gibt es für $\delta \coloneqq \min\{\delta_1, \delta_2\} > 0$ ein $a \in A$ mit $\|x-a\| < \delta$ und $a \neq x$. Deshalb ist

$$||y-y'|| \le ||y-f(a)|| + ||y'-f(a)|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Da $||y-y'|| < \varepsilon$ für alle $\varepsilon > 0$ ist bereits ||y-y'|| = 0, also y = y'

Beispiel(e). • Wir betrachten die Signumabbildung

$$\mathrm{sgn} \colon \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} -1 & \text{falls } x < 0, \\ 0 & \text{falls } x = 0, \\ 1 & \text{falls } x > 0. \end{cases}$$

0 ist ein gemeinsamer Häufungspunkt von $(-\infty,0)$ und $(0,\infty)$, und es ist

$$\lim_{\begin{subarray}{c} x\to 0\\ x\in (-\infty,0)\end{subarray}} f(x)=-1, \quad \text{und} \quad \lim_{\begin{subarray}{c} x\to 0\\ x\in (0,\infty)\end{subarray}} f(x)=1.$$

· Wir betrachten die Abbildung

$$f \colon (0, \infty) \to \mathbb{R}, x \mapsto \sin \frac{1}{x}.$$

0 ist ein Häufungspunkt der beiden Mengen

$$A \coloneqq \left\{ \frac{1}{\frac{\pi}{2} + n \cdot 2\pi} \,\middle|\, n \in \mathbb{N} \right\} \quad \text{und} \quad B \coloneqq \left\{ \frac{1}{\frac{3\pi}{2} + n \cdot 2\pi} \,\middle|\, n \in \mathbb{N} \right\},$$

und es ist

$$\lim_{\substack{x\to 0\\x\in A}}f(x)=1\quad \text{und}\quad \lim_{\substack{x\to 0\\x\in B}}f(x)=-1.$$

0 ist auch ein Häufungspunkt der Menge $(0, \infty)$, der Grenzwert

$$\lim_{\substack{x \to 0 \\ x \in (0,\infty)}} f(x)$$

existiert jedoch nicht.

Lemma 4. Es sei $A \subseteq \mathbb{R}^m$, $f: A \to \mathbb{R}^k$ und $x \in \mathbb{R}^m$ ein Häufungspunkt von A. Für $y \in \mathbb{R}^k$ sind äquivalent:

- 1. $\lim_{a \to x, a \in A} f(a) = y$.
- 2. Für jede Folge (a_n) auf $A \setminus \{x\}$ mit $a_n \to x$ ist $f(a_n) \to y$.

(Da x ein Häufungspunkt von A ist, existiert eine entsprechende Folge.)

Beweis. $(1 \Rightarrow 2)$ Es sei (a_n) eine Folge auf $A \setminus \{x\}$ mit $a_n \to x$. Wir wollen zeigen, dass $f(a_n) \to y$. Sei hierfür $\varepsilon > 0$ beliebig aber fest. Da $\lim_{a \to x, a \in A} f(a) = y$ gibt es ein $\delta > 0$, so dass

$$||x - a|| < \delta \Rightarrow ||y - f(a)|| < \varepsilon$$
 für alle $a \in A$ mit $a \neq x$.

Da $a_n \to x$ gibt es ein $N \in \mathbb{N}$ mit $||x - a_n|| < \delta$ für alle $n \ge N$. Da $a_n \ne x$ ist deshalb $||y - f(a_n)|| < \varepsilon$ für alle $n \ge N$.

 $(2\Rightarrow 1)$ Angenommen, es ist nicht $\lim_{a\to x, a\in A} f(a)=y$. Dann gibt es ein $\varepsilon>0$, so dass es für alle $\delta>0$ ein $a\in A$ gibt, so dass zwar $a\neq x$ und $\|x-a\|<\delta$, aber $\|y-f(a)\|\geq \varepsilon$. Insbesondere gibt es deshalb für alle $n\geq 1$ ein $a_n\in A\setminus\{x\}$ mit $\|x-a_n\|<1/n$ aber $\|y-f(a_n)\|\geq \varepsilon$. Dann ist (a_n) eine Folge auf $A\setminus\{x\}$ mit $a_n\to x$, aber es gilt nicht $f(a_n)\to y$.

Aus dieser Beschreibung von Funktionsgrenzwerten durch Folgen ergeben sich direkt zwei einfache Konsequenzen: Zum einen sehen wir, dass sich Funktionsgrenzwerte auch koordinatenweise beschreiben lassen.

Lemma 5. Es sei $f: A \to \mathbb{R}^m$ mit Definitionsbereich $A \subseteq \mathbb{R}^n$ und $x \in \mathbb{R}^n$ ein Häufungspunkt von A. In Koordinaten sei $f = (f_1, \ldots, f_m)$. Für $y = (y_1, \ldots, y_m) \in \mathbb{R}^m$ ist genau dann $\lim_{a \to x, a \in A} f(a) = y$, falls $\lim_{a \to x, a \in A} f_i(a) = y_i$ für alle $1 \le i \le m$.

Beweis. Dass $\lim_{a \to x, a \in A} f(a) = y$ ist äquivalent dazu, dass für jede Folge (a_n) auf $A \setminus \{x\}$ mit $a_n \to x$ auch $f(a_n) \to y$. Dies ist äquivalent dazu, dass für jede Folge (a_n) auf $A \setminus \{x\}$ auch $f_i(a_n) \to y_i$ für alle $1 \le i \le m$. Dies bedeutet wiederum, dass $\lim_{a \to x, a \in A} f_i(a) = y_i$ für alle $1 \le i \le n$.

Ein weiteres Ergebnis ist, dass Funktionsgrenzwerte mit den üblichen Rechenregeln im \mathbb{R}^n verträglich sind.

Proposition 6. Es seien $A \subseteq \mathbb{R}^n$, $f, f_1, f_2 \colon A \to \mathbb{R}^m$, $\lambda \in \mathbb{R}$ und $x \in \mathbb{R}^n$ ein Häufungspunkt von A.

1. Existieren die Grenzwerte $\lim_{a\to x, a\in A} f_1(a)$ und $\lim_{a\to x, a\in A} f_2(a)$, so existiert auch der Grenzwert $\lim_{x\to a, a\in A} (f_1+f_2)(a)$ und es gilt

$$\lim_{\substack{a \to x \\ a \in A}} (f_1 + f_2)(a) = \left(\lim_{\substack{a \to x \\ a \in A}} f_1(a)\right) + \left(\lim_{\substack{a \to x \\ a \in A}} f_2(a)\right).$$

2. Existiert der Grenzwert $\lim_{a\to x, a\in A} f(a)$, so existiert auch $\lim_{a\to x, a\in A} (\lambda f)(a)$, und es gilt

$$\lim_{\substack{a\to x\\a\in A}}(\lambda f)(a)=\lambda\lim_{\substack{a\to x\\a\in A}}f(a).$$

Im Fall n=1, also für $\mathbb{R}^1=\mathbb{R}$, gilt auch eine Verträglichkeit mit Multiplikation und Division

3. Existieren die Grenzwerte $\lim_{a\to x, a\in A} f_1(a)$ und $\lim_{a\to x, a\in A} f_2(a)$, so existiert auch der Grenzwert $\lim_{x\to a, a\in A} (f_1\cdot f_2)(a)$ und es gilt

$$\lim_{\substack{a \to x \\ a \in A}} (f_1 \cdot f_2)(a) = \left(\lim_{\substack{a \to x \\ a \in A}} f_1(a)\right) \cdot \left(\lim_{\substack{a \to x \\ a \in A}} f_2(a)\right).$$

4. Existieren die beiden Grenzwerte $\lim_{a \to x, a \in A} f_1(a)$ und $\lim_{a \to x, a \in A} f_2(a)$, und ist $f_2(a) \neq 0$ für alle $a \in A \setminus \{x\}$ sowie $\lim_{a \to x, a \in A} f_2(a) \neq 0$, so existiert auch der Grenzwert $\lim_{a \to x, a \in A} f_1(a)/f_2(a)$ und es gilt

$$\lim_{\substack{a\to x\\a\in A}}\frac{f_1(a)}{f_2(a)}=\frac{\lim_{a\to x,a\in A}f_1(a)}{\lim_{a\to x,a\in A}f_2(a)}$$

(Sehen wir $\mathbb{R}^2 \cong \mathbb{C}$, so ergibt sich auch eine Verträglichkeit mit der Multiplikation und Division im Komplexen; hierdrauf gehen wir hier aber nicht weiter ein.)

Wie wir bereits gesehen haben, können für eine Funktion $f\colon X\to \mathbb{R}^m$ mit Definitionsbereich $X\subseteq \mathbb{R}^n$ und Teilmengen $A,B\subseteq X$ mit gemeinsamen Häufungspunkt $x\in \mathbb{R}^n$ die beiden Grenzwerte $\lim_{a\to x,a\in A}f(a)$ und $\lim_{b\to x,b\in B}f(b)$ existieren, aber dennoch

$$\lim_{\substack{a \to x \\ a \in A}} f(a) \neq \lim_{\substack{b \to x \\ b \in B}} f(b).$$

Es kann auch passieren, dass einer der beiden Grenzwerte existiert, der andere jedoch nicht. Es gibt also im Allgemeinen keinen Zusammehang zwischen dem Grenzwert von f über A und dem Grenzwert über B. Unter bestimmten Umständen lassen sich die beiden Grenzwerte aber vergleichen:

Lemma 7. Es seien $A \subseteq B \subseteq \mathbb{R}^n$ und $f : B \to \mathbb{R}^m$. Ist $x \in \mathbb{R}^n$ ein gemeinsamer Häufungspunkt von A und B, sodass der Grenzwert $\lim_{b \to x, b \in B} f(b)$ existiert, so existiert auch $\lim_{a \to x, a \in A} f(a)$, und es gilt

$$\lim_{\substack{a \to x \\ a \in A}} f(a) = \lim_{\substack{b \to x \\ b \in B}} f(b).$$

Beweis. Zur besseren Lesbarkeit setzen wir $y\coloneqq \lim_{b\to x,b\in B}f(b)$. Wir wollen zeigen, dass auch $\lim_{a\to x,x\in A}f(a)=y$. Es sei hierfür $\varepsilon>0$ beliebig aber fest. Da $y=\lim_{b\to x,b\in B}f(b)$ gibt es ein $\delta>0$, so dass

$$||x - b|| < \delta \Rightarrow ||y - f(b)|| < \varepsilon$$
 für alle $b \in B$ mit $b \neq x$.

Da $A \subseteq B$ ist daher insbesondere

$$||x - a|| < \delta \Rightarrow ||y - f(a)|| < \varepsilon$$
 für alle $a \in A$ mit $a \neq x$.

Wegen der Beliebigkeit von $\varepsilon > 0$ folgt, dass $\lim_{a \to x, a \in A} f(a) = y$.

Korollar 8. Es sei $f: X \to \mathbb{R}^m$ mit Definitionsbereich $X \subseteq \mathbb{R}^n$. Es seien $A, B \subseteq X$ Teilmengen, so dass $x \in \mathbb{R}^n$ ein gemeinsamer Häufungspunkt von A und B ist, und die beiden Grenzwerte $\lim_{a \to x, a \in A} f(a)$ und $\lim_{b \to x, b \in B} f(b)$ existieren. Ist x auch ein Häufungspunkt von $A \cap B$, so ist

$$\lim_{\substack{a\to x\\a\in A}}f(a)=\lim_{\substack{b\to x\\b\in B}}f(b).$$

Beweis. Da die beiden Grenzwerte $\lim_{a \to x, a \in A} f(a)$ und $\lim_{b \to x, b \in B} f(b)$ existieren, und $A \cap B \subseteq A$ und $A \cap B \subseteq B$, erhalten wir aus Lemma 7, dass auch der Grenzwert $\lim_{c \to x, c \in A \cap B} f(c)$ existiert und

$$\lim_{\substack{a \to x \\ a \in A}} f(a) = \lim_{\substack{c \to x \\ c \in A \cap B}} f(c) = \lim_{\substack{b \to x \\ b \in B}} f(b).$$

3 Grenzwerte und Stetigkeit

Die Definition von Funktionsgrenzwerten erinnert stark an das ε - δ -Kriterium für die Stetigkeit einer Funktion. Diese Ähnlichkeit legt die Vermutung nahe, dass sich die Stetigkeit einer Funktion durch die Betrachtung von passenden Funktionsgrenzwerten untersuchen lässt.

Lemma 9. Es sei $f: A \to \mathbb{R}^m$ mit Definitionsbereich $A \subseteq \mathbb{R}^n$. f sei auf einer Umgebung von $x \in \mathbb{R}^n$ definiert, d.h. es gebe eine Umgebung V von x mit $V \subseteq A$. Dann sind die folgenden beiden Bedingungen äquivalent:

- 1. Der Grenzwert $\lim_{a \to x, a \in V} f(a)$ existiert für eine Umgebung $V \subseteq \mathbb{R}^n$ von x mit $V \subseteq A$.
- 2. Der Grenzwert $\lim_{a\to x, a\in U} f(a)$ existiert für jede Umgebung $U\subseteq \mathbb{R}^n$ von x mit $U\subset A$.

Der Grenzwert $\lim_{a\to x, a\in U} f(a)$ ist dabei unabhängig von der Wahl der Umgebung U von x mit $U\subseteq A$.

Beweis. (2 \Rightarrow 1) Nach Annahme existiert eine Umgebung $V \subseteq \mathbb{R}^n$ von x, so dass f auf V definiert ist, also mit $V \subseteq A$; diese Implikation ist daher klar.

 $(1\Rightarrow 2)$ Es sei V eine entsprechende Umgebung von x und $y\coloneqq \lim_{a\to x, a\in V}f(a)$. Es sei $U\subseteq \mathbb{R}^n$ eine beliebige Umgebung von x mit $U\subseteq A$. Wir wollen zeigen, dass $\lim_{a\to x, a\in U}f(a)$ existiert und $\lim_{a\to x, a\in U}f(a)=y$.

Es sei hierfür $\varepsilon>0$ beliebig aber fest. Da $y=\lim_{a\to x, a\in V}f(a)$ gibt es $\delta_1>0$, so dass

$$||x - a|| < \delta_1 \Rightarrow ||y - f(a)|| < \varepsilon$$
 für alle $a \in A$ mit $a \neq x$.

Da V eine Umgebung von x ist, gibt es außerdem ein $\delta_2>0$ mit $B_{\delta_2}(x)\subseteq V$. Für $\delta'\coloneqq\min\{\delta_1,\delta_2\}$ ist deshalb $B_{\delta'}(x)\subseteq V$ und

$$||y - f(a)|| < \varepsilon$$
 für alle $a \in B_{\delta'}(x)$ mit $a \neq x$.

Da auch U eine Umgebung von x ist, gibt es ein $\delta''>0$ mit $B_{\delta''}(x)\subseteq U$. Für $\delta:=\min\{\delta',\delta''\}$ ist also $B_{\delta}(x)\subseteq U$ mit

$$||y - f(a)|| < \varepsilon$$
 für alle $a \in B_{\delta}(x)$ mit $a \neq x$.

Damit erhalten wir, dass

$$||x - a|| < \delta \Rightarrow ||y - f(a)|| < \varepsilon$$
 für alle $a \in U$ mit $a \neq x$.

Wegen der Beliebigkeit von $\varepsilon > 0$ zeigt dies, dass $\lim_{a \to x, a \in U} f(a) = y$.

Definition 10. Es sei $f \colon A \to \mathbb{R}^m$ mit Definitionsbereich $A \subseteq \mathbb{R}^n$. Ist f auf einer Umgebung V von $x \in \mathbb{R}^n$ definiert, also $V \subseteq A$, so schreiben wir

$$\lim_{a \to x} f(a) \quad \text{für} \quad \lim_{\substack{a \to x \\ a \in V}} f(a)$$

und nennen dies den Grenzwert von f an x.

Die Wohldefiniertheit, also Unabhängigkeit von V, folgt aus Lemma 9.

Proposition 11. Es sei $f: A \to \mathbb{R}^m$ mit Definitionsbereich $A \subseteq \mathbb{R}^n$ auf einer Umgebung von x definiert. Dann ist f genau dann stetig an x, wenn $\lim_{a \to x} f(a) = f(x)$.

Beweis. Angenommen f ist stetig an x. Es sei $V \subseteq \mathbb{R}^n$ eine Umgebung von x mit $V \subseteq A$. Wir wollen zeigen, dass $\lim_{a \to x, a \in V} f(a) = f(x)$. Hierfür sei $\varepsilon > 0$ beliebig aber fest. Da f stetig an x ist gibt es $\delta > 0$, so dass

$$||x - a|| < \delta \Rightarrow ||f(x) - f(a)|| < \varepsilon$$
 für alle $a \in A$.

Daher ist insbesondere

$$||x - a|| < \delta \Rightarrow ||f(x) - f(a)|| < \varepsilon$$
 für alle $a \in V$ mit $a \neq x$.

Wegen der Beliebigkeit von $\varepsilon>0$ folgt, dass $\lim_{a\to x,a\in V}f(a)=f(x).$

Angenommen, es ist $\lim_{x\to a} f(a) = f(x)$. Wir wollen zeigen, dass f stetig an x ist. Hierfür sei $\varepsilon>0$ beliebig aber fest. Es sei $V\subseteq\mathbb{R}^n$ eine Umgebung von x mit $V\subseteq A$. Da V eine Umgebung von x ist, gibt es ein $\delta_1>0$ mit $B_{\delta_1}(x)\subseteq V$. Da $\lim_{a\to x} f(a) = f(x)$ ist $\lim_{a\to x} f(a) = f(x)$, es gibt daher ein $\delta_2>0$ mit

$$\|x-a\|<\delta_2\Rightarrow \|f(x)-f(a)\|<\varepsilon\quad \text{für alle }a\in V \text{ mit }a\neq x,$$

und wir können offenbar auch a=x zulassen. Für $\delta\coloneqq\min\{\delta_1,\delta_2\}$ haben wir nun $B_\delta(x)\subseteq B_{\delta_1}(x)\subseteq V$ und $\|x-a\|<\delta\le\delta_2$ für alle $a\in B_\delta(x)$, und somit

$$||x - a|| < \delta \Rightarrow ||f(x) - f(a)|| < \varepsilon$$
 für alle $a \in A$.

Wegen der Beliebigkeit von $\varepsilon > 0$ zeigt dies die Stetigkeit von f an x.

4 Links-, rechts- und beidseitige Grenzwerte

Wir wollen uns nun einem Sonderfall von Funktionsgrenzwerten zuwenden.

Definition 12. Es sei $f: A \to \mathbb{R}^m$ mit Definitionsbereich $A \subseteq \mathbb{R}$ und $x \in \mathbb{R}$. Gibt es ein r > 0, so dass $(x - r, x) \subseteq A$, so schreiben wir

$$\lim_{a \uparrow x} f(a) \quad \text{für} \quad \lim_{\substack{a \to x \\ a \in (x-r,x)}} f(a),$$

und nennen dies den linksseitigen Grenzwert von f an x.

Gibt es ein r > 0, so dass $(x, x + r) \subseteq A$, so schreiben wir

$$\lim_{a\downarrow x} f(a) \quad \text{für} \quad \lim_{\substack{a\to x\\ a\in (x,x+r)}} f(a),$$

und nennen dies den rechtsseitigen Grenzwert von f an x.

Existiert ein r > 0, so dass $(x - r, x) \cup (x, x + r) \subseteq A$, so schreiben wir

$$\lim_{a \to x} f(a) \quad \text{für} \quad \lim_{\substack{a \to x \\ a \in (x-r,x) \cup (x,x+r)}} f(a),$$

und nennen dies den beidseitigen Grenzwert von f an x.

Die Wohldefiniertheit der jeweiligen Ausdrücke, also die Unabhängigkeit von r, ergibt sich aus Korollar 8.

Bemerkung 13. Ist $V\subseteq\mathbb{R}$ eine Umgebung von $x\in\mathbb{R}$, und $f\colon V\to\mathbb{R}^m$, so ist die Notation $\lim_{a\to x} f(a)$ doppelt belegt: Zum einen steht die Notation für $\lim_{a\to x, a\in V} f(a)$. Zum anderen gibt es, da V eine Umgebung von x ist, ein t>0 mit t=00 mit t=02. V; dann steht die Notation auch für t=03.

Die beiden Definitionen sind in diesem Fall allerdings gleichbedeutend: Per Definition ist der Grenzwertes $\lim_{a \to x, a \in (x-r,x) \cup (x,x+r)} f(a)$ gleichbedeutend zum Grenzwert $\lim_{a \to x, a \in (x-r,x+r)} f(a)$. Dieser Grenzwert ist nach Lemma 9 der gleiche wie $\lim_{a \to x} \frac{1}{a \in V} f(a)$.

Der beidseitige Grenzwert lässt sich auch als Kombination des links- und rechtsseitigen Grenzwertes definieren:

Lemma 14. Es sei $A \subseteq \mathbb{R}$ und $f: A \to \mathbb{R}^m$. Für $x \in \mathbb{R}$ und $y \in \mathbb{R}^m$ sind äquivalent:

- 1. Der beidseitige Grenzwert $\lim_{a\to x} f(a)$ existiert und $\lim_{a\to x} f(a) = y$.
- 2. Die beiden Grenzwerte $\lim_{a\uparrow x} f(a)$ und $\lim_{a\downarrow x} f(a)$ existieren und es ist

$$\lim_{a \uparrow x} f(a) = \lim_{a \downarrow x} f(a).$$

Beweis. $(1\Rightarrow 2)$ Da $\lim_{a\to x} f(a)$ existiert, gibt es ein r>0, so dass f auf $(x-r,x)\cup (x,x+r)$ definiert ist und $\lim_{a\to x,a\in (x-r,x)\cup (x,x+r)} f(a)$ existiert. Dann ist f auch auf (x-r,x) und auf (x,x+r) definiert, und nach Lemma 7 gilt

$$\lim_{a \uparrow x} f(a) = \lim_{a \to x, a \in (x-r,x)} f(a) = \lim_{a \to x, a \in (x-r,x) \cup (x,x+r)} f(a) = \lim_{a \to x} f(a).$$

Analog ergibt sich, dass auch $\lim_{a\downarrow}f(a)$ existiert und

$$\lim_{a \downarrow x} f(a) = \lim_{a \to x} f(a)$$

 $(2\Rightarrow 1)$ Da die beiden Grenzwerte $\lim_{a\uparrow x}f(a)$ und $\lim_{a\downarrow x}f(a)$ existieren gibt es $r_-,r_+>0$, so dass f auf $(x-r_-,x)$ und $(x,x+r_+)$ definiert ist. Für $r\coloneqq \min\{r_-,r_+\}$ ist also f auf $(x-r,x)\cup(x,x+r)$ definiert. Wir schreiben

$$y \coloneqq \lim_{a \uparrow x} f(a) = \lim_{a \downarrow x} f(a).$$

Wir wollen zeigen, dass auch $\lim_{a\to x} f(a)=y$. Hierfür sei $\varepsilon>0$ beliebig aber fest. Da $\lim_{a\uparrow x} f(a)=y$ gibt es ein $\delta_->0$, so dass

$$||x - a|| < \delta_- \Rightarrow ||y - f(a)|| < \varepsilon$$
 für alle $a \in (x - r, x)$,

und da $\lim_{a\downarrow x} f(a) = y$ gibt es ein $\delta_+ > 0$, so dass

$$||x - a|| < \delta_+ \Rightarrow ||y - f(a)|| < \varepsilon$$
 für alle $a \in (x, x + r)$.

Für $\delta := \min\{\delta_-, \delta_+\}$ ist daher

$$||x-a|| < \delta \Rightarrow ||y-f(a)|| < \varepsilon$$
 für alle $a \in (x-r,x) \cup (x,x+r)$.

Aus der Beliebigkeit von $\varepsilon > 0$ folgt, dass $\lim_{a \to x} f(a) = y$.

Aus unserer Untersuchung allgemeiner Funktionsgrenzwerte ergibt sich für die Sonderfälle von links-, rechts- und beidseitigen Grenzwert die Verträglichkeit mit den üblichen Rechenregeln.

Beispiel(e). • Der Grenzwert $\lim_{x\to 0}\sin(1/x)$ existiert nicht: Die beiden Folgen (a_n) und (b_n) mit

$$a_n \coloneqq \frac{1}{\frac{\pi}{2} + n \cdot 2\pi} \quad \text{und} \quad b_n \coloneqq \frac{1}{\frac{3\pi}{2} + n \cdot 2\pi}$$

konvergieren gegen 0, aber

$$\lim_{n\to\infty}\sin\frac{1}{a_n}=\lim_{n\to\infty}1=1$$

und

$$\lim_{n\to\infty}\sin\frac{1}{b_n}=\lim_{n\to\infty}-1=-1.$$

• Es ist $\lim_{x\to 0} x \sin(1/x) = 0$: Wir wissen bereits, dass die Abbildung

$$f\colon \mathbb{R} \to \mathbb{R}, f(x) := \begin{cases} \sin\frac{1}{x} & \text{für } x \neq 0, \\ 0 & \text{für } x = 0, \end{cases}$$

stetig ist. (Stetigkeit an $x \neq 0$ ist klar, und an x=0 ergibt die Stetigkeit aus dem ε - δ -Kriterium.) Daher ist

$$\lim_{x \to 0} x \sin \frac{1}{x} = \lim_{x \to 0} f(x) = f(0) = 0.$$

• Für $p,q\in\mathbb{N}$ mit $p,q\geq 1$ ist

$$\lim_{x \to 1} \frac{x^p - 1}{x^q - 1} = \frac{p}{q}.$$

Das Problem besteht darin, dass $1^q-1=1^p-1=0$. Dieses Problem beseitigen wir dadurch, dass wir aus den Polynomen x^p-1 und x^q-1 den Linearfaktor x-1 ausklammern. Wir erhalten so, dass für alle $x\neq 1$

$$\frac{x^p - 1}{x^q - 1} = \frac{(x - 1)\sum_{k=0}^{p-1} x^k}{(x - 1)\sum_{k=0}^{q-1} x^k} = \frac{\sum_{k=0}^{p-1} x^k}{\sum_{k=0}^{q-1} x^k}.$$

Daher ist

$$\lim_{x \to 1} \frac{x^p - 1}{x^q - 1} = \lim_{x \to 1} \frac{\sum_{k=0}^{p-1} x^k}{\sum_{k=0}^{q-1} x_k} = \frac{\sum_{k=0}^{p-1} 1}{\sum_{k=0}^{q-1} 1} = \frac{p}{q}.$$

• Wir wollen untersuchen, wie sich die Grenzwert von $x\sqrt{1+4/x^2}$ an x=0 verhält — von unten, oben und beidseitig. Hierfür bemerken wir, dass für alle $x\neq 0$

$$\begin{split} x\sqrt{1+\frac{4}{x^2}} &= \mathrm{sgn}(x)|x|\sqrt{1+\frac{4}{x^2}} \\ &= \mathrm{sgn}(x)\sqrt{x^2}\sqrt{1+\frac{4}{x^2}} = \mathrm{sgn}(x)\sqrt{x^2+4}. \end{split}$$

Daher ist

$$\begin{split} \lim_{x \uparrow 0} x \sqrt{1 + \frac{4}{x^2}} &= \lim_{x \uparrow 0} \mathrm{sgn}(x) \sqrt{x^2 + 4} = \lim_{x \uparrow 0} -1 \cdot \sqrt{x^2 + 4} \\ &= -\lim_{x \uparrow 0} \sqrt{x^2 + 4} = -2. \end{split}$$

Analog ergibt sich, dass

$$\lim_{x\downarrow 0} x\sqrt{1+\frac{4}{x^2}} = 2.$$

Damit kennen wir das Verhalten von Grenzwert von oben und von unten. Der beidseitige Grenzwert existiert nicht, da oberer und unterer Grenzwert verschieden sind.

• Wir wollen den Grenzwert

$$\lim_{x \uparrow 2} \frac{x^2 - 14x + 24}{|x - 2| + |x^2 - 4|}$$

untersuchen. Hierfür bemerken wir, dass für alle $x \neq 2$

$$\begin{split} \frac{x^2-14x+24}{|x-2|+|x^2-4|} &= \frac{(x-2)(x-12)}{|x-2|+|x-2||x+2|} \\ &= \frac{(x-2)(x-12)}{\mathrm{sgn}(x-2)(x-2)+\mathrm{sgn}(x-2)(x-2)|x+2|} \\ &= \frac{x-12}{\mathrm{sgn}(x-2)+\mathrm{sgn}(x-2)|x+2|} \\ &= \mathrm{sgn}(x-2)\frac{x-12}{1+|x+2|}. \end{split}$$

Daher ist

$$\begin{split} &\lim_{x\uparrow 2}\frac{x^2-14x+24}{|x-2|+|x^2-4|}=\lim_{x\uparrow 2}\mathrm{sgn}(x-2)\frac{x-12}{1+|x+2|}\\ &=\lim_{x\uparrow 2}-1\cdot\frac{x-12}{1+|x+2|}=-\lim_{x\uparrow 2}\frac{x-12}{1+|x+2|}=-\frac{2-12}{1+|2+2|}=2. \end{split}$$

Analog ergibt sich, dass auch

$$\lim_{x \downarrow 2} \frac{x^2 - 14x + 24}{|x - 2| + |x^2 - 4|} = -2.$$

Übung 7.

Zeigen Sie, dass für eine monoton steigende Funktion $f: \mathbb{R} \to \mathbb{R}$ an jeder Stelle $x \in \mathbb{R}$ sowohl der linksseitige als auch der rechtsseitige Genzwert existiert, und dass

$$\lim_{y \uparrow x} f(y) = \sup\{f(y) \mid y < x\} \quad \text{und} \quad \lim_{y \downarrow x} f(y) = \inf\{f(y) \mid y > x\}.$$

Wie sieht es für eine monoton fallende Funktion aus?

Lösung 7

Es sei f monoton steigend und $x \in \mathbb{R}$. Wir wollen zeigen, dass $a \coloneqq \sup_{y < x} f(y)$ die Eigenschaften des linksseitigen Limes erfüllt. Sei hierfür $\varepsilon > 0$ beliebig aber fest. Nach der ε -Charakterisierung des Supremums gibt es ein $y_0 < x$ mit $a - \varepsilon < f(y_0)$. Aus der Monotonie von f folgt, dass

$$a - \varepsilon < f(y_0) \le f(y) \le \sup_{y' < x} f(y') = a$$
 für alle $y_0 \le y < x$.

Für $\delta \coloneqq x-y_0>0$ ist also $|f(y)-a|<\varepsilon$ für alle $y\in (x-\delta,x)$. Wegen der Beliebigkeit von $\varepsilon>0$ zeigt dies, dass $\lim_{y\uparrow x}f(y)=a$.

Analog zeigt man, dass $\lim_{y\downarrow x} f(y) = \inf_{x < y} f(x)$. Für monoton fallende Funktionen zeigt man analog, dass obere und untere Grenzwerte an jeder Stelle existieren, und dass für alle $x \in \mathbb{R}$

$$\lim_{y \uparrow x} f(y) = \inf_{y < x} f(y) \quad \text{und} \quad \lim_{y \downarrow x} f(y) = \sup_{y > x} f(y).$$

Zusammen mit Proposition 11 ergibt sich damit die aus der Vorlesung bekannte Charakterisierung der Stetigkeit einer monotonen Funktion:

Korollar 15. Es sei $f: \mathbb{R} \to \mathbb{R}$ monoton steigend. Dann ist f genau dann stetig an der Stelle $x \in \mathbb{R}$, wenn

$$\sup_{y < x} f(y) = f(x) = \inf_{y > x} f(y).$$

Ist f monoton fallend, so ist f genau dann stetig an x, wenn

$$\inf_{y < x} f(y) = f(x) = \sup_{y > x} f(y).$$

Beweis. f ist genau dann stetig an x, wenn $\lim_{y\to x} f(y) = f(x)$. Dies ist äquivalent dazu, dass $\lim_{y\uparrow x} f(y)$ und $\lim_{y\downarrow x} f(y)$ existieren und

$$\lim_{y \uparrow x} f(y) = f(x) = \lim_{y \downarrow x} f(y). \tag{1}$$

Da f monoton steigend ist existieren die Grenzwerte $\lim_{y\uparrow x}f(y)$ und $\lim_{y\downarrow x}f(y)$ und es gilt

$$\lim_{y\uparrow x} f(y) = \sup_{y < x} f(y) \quad \text{und} \quad \lim_{y\downarrow x} f(y) = \inf_{y > x} f(y).$$

Also übersetzt sich Bedingung (1) in

$$\sup_{y < x} f(y) = f(x) = \inf_{y > x} f(y).$$

Die zweite Aussage ergibt sich analog.

5 Uneigentliche Grenzwerte

Sie wie bei Folgen kann man auch bei Funktionen uneigentliche Grenzwerte definieren.

Definition 16. Es sei $A\subseteq\mathbb{R}^n$, $f\colon A\to\mathbb{R}$ und $x\in\mathbb{R}^n$ ein Häufungspunkt von A. Wir schreiben dass $\lim_{a\to x, a\in A}f(a)=\infty$, falls es für alle R>0 ein $\delta>0$ gibt, so dass

$$\|x-a\|<\delta \Rightarrow f(a)\geq R \quad \text{für alle } a\in A \text{ mit } a\neq x.$$

Analog definieren wir $\lim_{a\to x.a\in A} f(a) = -\infty$.

Beispiel(e). • Es ist

$$\lim_{x\uparrow 0}\frac{1}{x}=-\infty\quad \text{und}\quad \lim_{x\downarrow 0}\frac{1}{x}=\infty.$$

Der Grenzwert $\lim_{x\to 0} 1/x$ exstiert nicht (auch nicht uneigentlich).

• 0 ist ein Häufungspunkt von $\mathbb{R}^n \setminus \{0\}$ und wir haben

$$\lim_{x\to 0, x\neq 0}\frac{1}{\|x\|}=\infty.$$

• Es ist

$$\lim_{x\downarrow 0}\frac{1}{\exp(x)-1}=\infty\quad \text{und}\quad \lim_{x\uparrow 0}\frac{1}{\exp(x)-1}=-\infty.$$

Definition 17. Es sei $f: X \to \mathbb{R}^m$ eine Abbildung mit Definitionsbereits $X \subseteq \mathbb{R}$. Für $y \in \mathbb{R}^m$ sagen wir, dass $\lim_{x \to \infty} f(x) = y$, falls

- 1. es gibt $r_0 \in \mathbb{R}$, so dass f(x) für alle $x \geq r_0$ definiert ist, und
- 2. für alle $\varepsilon > 0$ gibt es $r \ge r_0$, so dass $||f(x) y|| < \varepsilon$ für alle $x \ge r$.

Analog definiert man die Schreibweise $\lim_{x\to-\infty} f(x) = y$.

Beispiel(e). • Es ist

$$\lim_{x \to -\infty} \exp(x) = 0.$$

· Es ist

$$\lim_{x \to \infty} \frac{1}{x} = 0 \quad \text{und} \quad \lim_{x \to -\infty} \frac{1}{x} = 0.$$

Definition 18. Es sei $X\subseteq\mathbb{R}$ und $f\colon X\to\mathbb{R}$. Wir schreiben, dass $\lim_{x\to\infty}f(x)=\infty$, falls

- 1. es gibt $r_0 \in \mathbb{R}$, so dass f(x) für alle $x \geq r_0$ definiert ist, und
- 2. für alle R > 0 ein $r > r_0$, so dass f(x) > R für alle $x \ge r$.

Analog definiert man die Ausdrücke $\lim_{x\to\infty}f(x)=-\infty$, $\lim_{x\to-\infty}f(x)=\infty$ und $\lim_{x\to-\infty}f(x)=-\infty$.

Beispiel(e). • Es ist

$$\lim_{x \to \infty} x^2 = \infty \quad \text{und} \quad \lim_{x \to -\infty} x^2 = \infty.$$

Es ist

$$\lim_{x \to \infty} \exp(x) = \infty.$$

Beispiel(e). Es seien $a,b\in\mathbb{R}$. Wir wollen den Grenzwert

$$\lim_{x \to \infty} \sqrt{(x-a)(x-b)} - x$$

untersuchen. Hierfür bemerken wir zunächst, dass $(x-a)(x-b) \geq 0$ für alle $x \geq \max\{a,b\}$ ü; der Ausdruck $\sqrt{(x-a)(x-b)}$ ist also für alle $x \geq \max\{a,b\}$ definiert. Zur Bestimmung des Grenzwerts wollen wir den Ausdruck $\sqrt{(x-a)(x-b)}-x$ zunächst umschreiben; für alle $x > \max\{a,b,0\}$ haben wir

$$\sqrt{(x-a)(x-b)} - x = \frac{(\sqrt{(x-a)(x-b)} - x)(\sqrt{(x-a)(x-b)} + x)}{\sqrt{(x-a)(x-b)} + x}$$

$$= \frac{(x-a)(x-b) - x^2}{\sqrt{(x-a)(x-b)} + x} = \frac{(a+b)x + ab}{\sqrt{x^2 + (a+b)x + ab} + x}$$

$$= \frac{a+b+\frac{ab}{x}}{\sqrt{1+\frac{a+b}{x} + \frac{ab}{x^2}} + 1}$$

Daher ist

$$\lim_{x\to\infty}\sqrt{(x-a)(x-b)}-x=\lim_{x\to\infty}\frac{a+b+\frac{ab}{x}}{\sqrt{1+\frac{a+b}{x}+\frac{ab}{x^2}+1}}=\frac{a+b}{2}.$$

Auch für uneigentliche Grenzwerte gelten (intuitive) Rechenregeln, von denen wir hier einige angeben wollen:

- 1. Für $y \in \mathbb{R}^m$ ist genau dann $\lim_{x \to \infty} f(x) = y$, wenn $\lim_{x \downarrow 0} f(1/x) = y$. Die Aussage gilt für eine reellwertige Funktion auch für $y \in \{-\infty, \infty\}$.
- 2. Wenn $\lim_{x\to a, a\in A}f(x)=\infty$ oder $\lim_{x\to a, a\in A}f(x)=-\infty$, dann ist

$$\lim_{x \to a, a \in A} 1/f(x) = 0.$$

3. Ist $\lim_{x\to a, a\in A}f(x)=\infty$, so ist $\lim_{x\to a, a\in A}-f(x)=-\infty$. Analoges gilt für $\lim_{x\to\infty}f(x)$ und $\lim_{x\to-\infty}f(x)$.

Auch uneigentliche Grenzwerte lassen sich durch Folgen ausdrücken.

- 1. Ist $A\subseteq\mathbb{R}^n,\,f\colon A\to\mathbb{R}$ und $x\in A$ ein Häufungspunkt von A, so ist genau dann $\lim_{a\to x,a\in A}f(a)=\infty$, falls für jede Folge (a_n) auf $A\setminus\{x\}$ mit $a_n\to x$ auch $f(a_n)\to\infty$. Eine analoge Aussage gilt für $\lim_{a\to x,a\in A}f(a)=-\infty$.
- 2. Für $y\in\mathbb{R}^m$ ist genau dann $\lim_{x\to\infty}f(x)=y$, wenn für jede Folge (x_n) auf \mathbb{R} mit $x_n\to\infty$ auch $f(x_n)\to y$. Eine analoge Aussage gilt für $\lim_{x\to-\infty}f(x)$. Ist f eine reellwertige Funktion, soo gilt die Aussage auch für $y\in\{-\infty,\infty\}$.

6 Lösungen der Übungen

Lösung 1.

 $(1 \Leftrightarrow 2)$ 2 ist eine direkte Umformulierung der Definition von 1.

 $(2 \Leftrightarrow 3)$ Jeder punktierte ε -Ball um x ist auch eine punktierte Umgebung von x. Andererseits enthält jede punktierte Umgebung von x einen punktierten ε -Ball um x.

Lösung 2.

Angenommen, x ist ein Häufungspunkt von A. Dann gibt es für jedes $n \geq 1$ ein $a_n \in A \setminus \{x\}$ mit $|x - a_n| < 1/n$. Die Folge $(x_n)_{n \geq 1}$ konvergiert per Konstruktion gegen x.

Angenommen, eine solche Folge $(a_n)_{n\in\mathbb{N}}$ existiert. Dann gibt es für jedes $\varepsilon>0$ ein $N\in\mathbb{N}$, so dass $|x-a_n|<\varepsilon$ für alle $n\geq N$. Inbesondere ist $a_N\in A$ mit $|x-a_N|<\varepsilon$ und $a_N\neq x$.

Lösung 3.

Es sei $x \in \mathbb{R}^n$. Ist $x \notin M$, so ergibt sich für

$$\varepsilon \coloneqq \min_{m \in M} \|x - m\| > 0,$$

dass es kein $m\in M$ mit $\|x-m\|<\varepsilon$ gibt. Also ist x dann kein Häufungspunkt von M. Ist $x\in M$, so ergibt sich für

$$\varepsilon \coloneqq \begin{cases} \min_{m \in M, m \neq x} \|x - m\| & \text{falls } |M| \geq 2, \\ 1 & \text{falls } M = \{x\}, \end{cases}$$

dass x das einzige $m \in M$ mit $\|x-m\| < \varepsilon$ ist. Also ist x auch dann kein Häufungspunkt von M.

Lösung 4.

Es sei $x \in \mathbb{R}$. Ist $x \notin \mathbb{Z}$, so gibt es für

$$\varepsilon \coloneqq \min\{\lceil x \rceil - x, x - \lceil x \rceil\}$$

kein $n\in\mathbb{Z}$ mit $\|x-n\|<\varepsilon$. Also ist x dann kein Häufungspunkt von \mathbb{Z} . Ist andererseits $x\in\mathbb{Z}$, so gibt es außer x kein $n\in\mathbb{Z}$ mit $\|x-n\|<1/2$, weshalb x auch dann kein Häufungspunkt von \mathbb{Z} ist.

Also ist kein $x \in \mathbb{R}$ ein Häufungspunkt von \mathbb{Z} , und somit $\mathbb{Z}' = \emptyset$.

Lösung 5.

- 1. Es sei $x \in A'$. Für jedes $\varepsilon > 0$ gibt es dann ein $a \in A$ mit $\|x a\| < \varepsilon$ und $a \neq x$. Da $a \in A \subseteq B$ folgt, dass es für jedes $\varepsilon > 0$ ein $b \in B$ mit $\|x b\| < \varepsilon$ und $b \neq x$ gibt. Also ist x ein Häufungspunkt von B, also $x \in B'$. Aus der Beliebigkeit von $x \in A'$ folgt, dass $A' \subseteq B'$.
- 2. Da $A\subseteq A\cup B$ ist $A'\subseteq (A\cup B)'$, und da $B\subseteq A\cup B$ ist $B'\subseteq (A\cup B)'$. Also ist auch $A'\cup B'\subseteq (A\cup B)'$.

Angenommen, es ist $x \notin A' \cup B'$. Dann gibt es $\varepsilon_A, \varepsilon_B > 0$, so dass es kein $a \in A$ mit $\|x - a\| < \varepsilon_A$ und $a \neq x$ gibt, und auch kein $b \in B$ mit $\|x - b\| < \varepsilon_B$ und $b \neq x$. Für $\varepsilon \coloneqq \min\{\varepsilon_A, \varepsilon_B\}$ gibt es daher kein $c \in A \cup B$ mit $\|x - c\| < \varepsilon$ und $c \neq x$. Also ist dann $x \notin (A \cup B)'$. Das zeigt, dass auch $(A \cup B)' \subseteq A' \cup B'$.

Lösung 6.

Behauptung. Für alle $a, b \in \mathbb{R}$ mit a < b ist

$$[a,b]' = [a,b].$$

Beweis der Behauptung. Für x < a ist a - x > 0. Für alle $y \in [a,b]$ ist wegen $y \geq a$ aber

$$||x - y|| = y - x \ge a - x,$$

es gibt also kein $y \in [a, b]$ mit ||x - y|| < a - x. Daher ist $x \notin [a, b]'$. Analog ergibt sich, dass auch $x \notin [a, b]'$ für x > b. Also ist $[a, b]' \subseteq [a, b]$.

Dass $a,b \in [a,b]'$ ergibt sich durch die Folgen (x_n) auf (a,b] und (y_n) auf [a,b) mit

$$x_n \coloneqq a + \frac{b-a}{n+1} \quad \text{und} \quad y_n \coloneqq b - \frac{b-a}{n+1} \quad \text{für alle } n \in \mathbb{N}.$$

Dass $x \in [a, b]'$ für a < x < b ergibt sich daraus, dass [a, b] eine Umgebung für diese x ist. Damit ergibt sich, dass $[a, b] \subseteq [a, b]'$.

Aus der Behauptung ergibt sich direkt, dass

$$([0,1] \cup [2,3])' = [0,1]' \cup [2,3]' = [0,1] \cup [2,3].$$

Lösung 7.

Es sei f monoton steigend und $x \in \mathbb{R}$. Wir wollen zeigen, dass $a \coloneqq \sup_{y < x} f(y)$ die Eigenschaften des linksseitigen Limes erfüllt. Sei hierfür $\varepsilon > 0$ beliebig aber fest. Nach der ε -Charakterisierung des Supremums gibt es ein $y_0 < x$ mit $a - \varepsilon < f(y_0)$. Aus der Monotonie von f folgt, dass

$$a - \varepsilon < f(y_0) \le f(y) \le \sup_{y' < x} f(y') = a$$
 für alle $y_0 \le y < x$.

Für $\delta\coloneqq x-y_0>0$ ist also $|f(y)-a|<\varepsilon$ für alle $y\in (x-\delta,x)$. Wegen der Beliebigkeit von $\varepsilon>0$ zeigt dies, dass $\lim_{y\uparrow x}f(y)=a$.

Analog zeigt man, dass $\lim_{y\downarrow x} f(y) = \inf_{x < y} f(x)$. Für monoton fallende Funktionen zeigt man analog, dass obere und untere Grenzwerte an jeder Stelle existieren, und dass für alle $x \in \mathbb{R}$

$$\lim_{y\uparrow x} f(y) = \inf_{y < x} f(y) \quad \text{und} \quad \lim_{y \downarrow x} f(y) = \sup_{y > x} f(y).$$