Logistic Regression Project

January 24, 2018

1 Logistic Regression Project - Solutions

In this project we will be working with a fake advertising data set, indicating whether or not a particular internet user clicked on an Advertisement on a company website. We will try to create a model that will predict whether or not they will click on an ad based off the features of that user.

This data set contains the following features:

- 'Daily Time Spent on Site': consumer time on site in minutes
- 'Age': cutomer age in years
- 'Area Income': Avg. Income of geographical area of consumer
- 'Daily Internet Usage': Avg. minutes a day consumer is on the internet
- 'Ad Topic Line': Headline of the advertisement
- 'City': City of consumer
- 'Male': Whether or not consumer was male
- 'Country': Country of consumer
- 'Timestamp': Time at which consumer clicked on Ad or closed window
- 'Clicked on Ad': 0 or 1 indicated clicking on Ad

1.1 Import Libraries

Import a few libraries you think you'll need (Or just import them as you go along!)

```
In [97]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        //matplotlib inline
```

1.2 Get the Data

Read in the advertising.csv file and set it to a data frame called ad_data.

```
In [98]: ad_data = pd.read_csv('advertising.csv')
    Check the head of ad_data
In [40]: ad_data.head()
```

```
Out [40]:
            Daily Time Spent on Site
                                                          Daily Internet Usage \
                                       Age
                                            Area Income
                                                                         256.09
         0
                                68.95
                                        35
                                                61833.90
         1
                                80.23
                                        31
                                                68441.85
                                                                         193.77
         2
                                69.47
                                        26
                                                59785.94
                                                                         236.50
                                                54806.18
         3
                                74.15
                                        29
                                                                         245.89
         4
                                68.37
                                        35
                                                73889.99
                                                                         225.58
                                                               City Male
                                     Ad Topic Line
                                                                               Country \
         0
                                                                               Tunisia
               Cloned 5thgeneration orchestration
                                                        Wrightburgh
                                                                         0
                                                          West Jodi
         1
               Monitored national standardization
                                                                         1
                                                                                 Nauru
         2
                                                                         0
                 Organic bottom-line service-desk
                                                           Davidton
                                                                            San Marino
         3
            Triple-buffered reciprocal time-frame
                                                     West Terrifurt
                                                                         1
                                                                                 Italy
                    Robust logistical utilization
                                                       South Manuel
                                                                               Iceland
                                                                         0
                       Timestamp
                                  Clicked on Ad
           2016-03-27 00:53:11
           2016-04-04 01:39:02
                                              0
         2 2016-03-13 20:35:42
                                              0
         3 2016-01-10 02:31:19
                                              0
         4 2016-06-03 03:36:18
                                              0
   ** Use info and describe() on ad_data**
In [41]: ad_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 10 columns):
Daily Time Spent on Site
                             1000 non-null float64
Age
                             1000 non-null int64
Area Income
                             1000 non-null float64
                             1000 non-null float64
Daily Internet Usage
Ad Topic Line
                             1000 non-null object
                             1000 non-null object
City
Male
                             1000 non-null int64
                             1000 non-null object
Country
Timestamp
                             1000 non-null object
Clicked on Ad
                             1000 non-null int64
dtypes: float64(3), int64(3), object(4)
memory usage: 78.2+ KB
In [42]: ad_data.describe()
Out [42]:
                Daily Time Spent on Site
                                                    Age
                                                          Area Income
                              1000.000000
                                           1000.000000
                                                          1000.000000
         count
                                65.000200
                                             36.009000
                                                         55000.000080
         mean
         std
                                15.853615
                                              8.785562
                                                         13414.634022
                                32.600000
                                             19.000000 13996.500000
```

min

25%	51.360	000 29.000	000 47031.802500
50%	68.215	000 35.000	0000 57012.300000
75%	78.547	500 42.000	0000 65470.635000
max	91.430	000 61.000	79484.800000
	Daily Internet Usage	Male	Clicked on Ad
count	1000.000000	1000.000000	1000.00000
mean	180.000100	0.481000	0.50000
std	43.902339	0.499889	0.50025

0.000000

0.000000

0.000000

1.000000

1.000000

0.00000

0.00000

0.50000

1.00000

1.00000

104.780000

138.830000

183.130000

218.792500

269.960000

1.3 Exploratory Data Analysis

min 25%

50%

75%

max

Let's use seaborn to explore the data!

Try recreating the plots shown below!

** Create a histogram of the Age**

```
In [48]: sns.set_style('whitegrid')
          ad_data['Age'].hist(bins=30)
          plt.xlabel('Age')
```

Out[48]: <matplotlib.text.Text at 0x11a05b908>

Create a jointplot showing Area Income versus Age.

In [64]: sns.jointplot(x='Age',y='Area Income',data=ad_data)

Out[64]: <seaborn.axisgrid.JointGrid at 0x120bbb390>

Create a jointplot showing the kde distributions of Daily Time spent on site vs. Age.

In [66]: sns.jointplot(x='Age',y='Daily Time Spent on Site',data=ad_data,color='red',kind='kde

^{**} Create a jointplot of 'Daily Time Spent on Site' vs. 'Daily Internet Usage'**

In [72]: sns.jointplot(x='Daily Time Spent on Site',y='Daily Internet Usage',data=ad_data,color
Out[72]: <seaborn.axisgrid.JointGrid at 0x121e8cb00>

^{**} Finally, create a pairplot with the hue defined by the 'Clicked on Ad' column feature.**

In [84]: sns.pairplot(ad_data,hue='Clicked on Ad',palette='bwr')

Out[84]: <seaborn.axisgrid.PairGrid at 0x12a97fdd8>

2 Logistic Regression

Now it's time to do a train test split, and train our model!
You'll have the freedom here to choose columns that you want to train on!
** Split the data into training set and testing set using train_test_split**

In [91]: from sklearn.linear_model import LogisticRegression

2.1 Predictions and Evaluations

** Now predict values for the testing data.**

```
In [94]: predictions = logmodel.predict(X_test)
```

```
In [95]: from sklearn.metrics import classification_report
```

In [96]: print(classification_report(y_test,predictions))

support	f1-score	recall	precision	
162	0.91	0.96	0.87	0
168	0.91	0.86	0.96	1
330	0.91	0.91	0.91	avg / total

2.2 Great Job!

^{**} Create a classification report for the model.**