Wydział	Imię i Nazwisko	Rok	Grupa
WIMilP	Mateusz Witkowski	II	4
Kierunek	Temat	Prowadzący	
IS	Interpolacja Lagrange'a	dr hab. inż. Hojny Marcin, prof. AGH	
Data ćwiczenia	Data oddania	Data zaliczenia	Ocena
05.03.20	18.03.20		

1. Cel ćwiczenia:

Celem ćwiczenia było napisanie implementacji metody numerycznej - interpolacji Lagrange'a pozwalającej na znalezienie wartości funkcji w dowolnym punkcie.

2. Wprowadzenie do Interpolacji Lagrange'a

Interpolacja Lagrange'a (lub też interpolacja wielomianowa) jest to metoda numeryczna wykorzystywana do przybliżania przebiegu funkcji przy pomocy tak zwanego "wielomianu Lagrange'a" stopnia n. Wybieranych jest n+1 punktów zwanych węzłami interpolacji, należących do dziedziny danej funkcji. W punktach tych funkcja(wielomian) przyjmuje wartości takie same jak przybliżana funkcja.

Wielomian wylicza się przy pomocy wzoru:

$$L(x) = \sum_{i=1}^{n} y_i l_i(x)$$

Gdzie:

X – argument dla którego chcemy znaleźć wartość

yi - wartość funkcji odpowiadająca xi

Wzór na współczynniki li:

$$l_i(x) = \prod_{0 < j \le n \land j \ne i} \frac{x - x_j}{x_i - x_j}$$

3. Kod źródłowy programu

```
=
#include <iostream>
 #include <vector>
 #include <fstream>
 #include <sstream>
 #include <cstdlib>
 #include <string>
 using namespace std;
📮 double lagrange(int liczba_punktow, double* X, double* Y, double szukana) { //funkcja realizująca Interpolacje Lagrange'a.
     double wspolczynnik_1 = 0; //zmienna przechowująca wartość pojedynczego iloczynu Y[i]*L[i](x)
     double wynik = 0;
     for (int i = 0; i < liczba_punktow; i++) {</pre>
                                                     //zapisanie wartości kolejnych Y[i](x)
         wspolczynnik_1 = Y[i];
          for (int j = 0; j < liczba_punktow; <math>j++)
              if (j != i) {
                  wspolczynnik_1 *= (szukana - X[j]) / (X[i] - X[j]); //obliczenie współczynnika L[i](x)
         wynik += wspolczynnik_1;
     return wynik;
 l<mark>int pobranie_z_pliku(vector <double>* data, string fileName) {</mark>  //Funkcja pobierjąca dane z pliku tekstowego i zapisujące je do wektora.
     string linia;
     fstream plik;
     plik.open(fileName, ios::in);
     if (plik.good() == true)
         while (!plik.eof())
             getline(plik, linia, ',');
             double d = atof(linia.c_str());
             data->push_back(d);
         plik.close();
     if (data->size() % 2 == 1) { //zabezpiecznie w razie źle wypełnionego pliku tekstowego
        cout << "bledne dane w pliku" << endl;</pre>
         return -1;
     return data->size();
```

```
nt main() {
  vector < double > dane;
  string nazwaPliku = "punkty.txt";
  int wielkosc_wektora = pobranie_z_pliku(&dane, nazwaPliku);
  if (wielkosc_wektora == -1) //program zostanie przerwany jesli plik tekstowy był błędny
  int liczba_punktow = wielkosc_wektora / 2; //wielkosc wektora podzielona przez 2 powinna nam dać iloś punktów zapisanych w pliku
  int j = 0;
  for (size_t i = 0; i < dane.size(); i++) //wypełanienie tablic</pre>
      if (i % 2 == 0) {
          X[j] = dane[i];
          cout << "f(" << X[j] << ") = ";
          Y[j] = dane[i];
          cout << Y[j] << endl;</pre>
  double szukana;
  cout << "Podaj wartosc szukanego x: ";</pre>
  cin >> szukana;
  cout << endl;</pre>
   cout << "Wartosc dla podanego x to: " << lagrange(liczba_punktow, X, Y, szukana) << endl;
   return 0;
```

4. Testy poprawności działania algorytmu

Testy wykonano przy pomocy programu WolframAlpha. Do programu wprowadzono losowo wybrane punkty w celu uzyskanie wykresu oraz wzoru funkcji. Dzięki czemu można było łatwo podstawić szukane wartości i porównać wyniki z Wolframa i mojego programu.

Szukana wartość dla x = 17

Wolfram:

Wynik po podstawieniu 12.2

Mój program:

Konsola debugowania programu Microsoft Visual Studio

```
f(1) = 13
f(4) = 7
f(9) = 3
Podaj wartosc szukanego x: 17
Wartosc dla podanego x to: 12.2
```

Szukana wartość dla x = 5.5

Wolfram:

Wynik po podstawieniu 14.85

Mój program:

```
punkty.txt + X Źródło.cpp

1 5, 12,
2 6, 17,
3 10, 9
```

```
Konsola debugowania programu Microsoft Visual Studio

f(5) = 12

f(6) = 17

f(10) = 9

Podaj wartosc szukanego x: 5.5

Wartosc dla podanego x to: 14.85
```

5.Wnioski

Interpolacja Lagrange'a jest jedną z najprostszych metod interpolacyjnych, umożliwia znalezienie jednoznacznego rozwiązania, gdy posiadamy wiedze o należących do funkcji punktach i ich wartościach. Większa ilość znanych punktów zapewnia większa dokładność. Program nie pokaże nam przybliżonej postaci, jedynie wartość dla konkretnego x'a. Testy potwierdziły poprawność programu zarówno względem wyników z Wolframa jak i tych obliczonych w tradycyjny sposób.