Lab Activity

Implement a model-based kinematic controller

- PCC assumption
- 2-segments
- The soft robot must reach a target location in the space

PCC Model

Augmented Model

$$m_i(q_i) = \begin{bmatrix} \frac{q_i}{2} \\ \frac{2}{q_i} L_i \sin\left(\frac{q_i}{2}\right) \end{bmatrix} \xrightarrow{\text{P joint}}$$
P joint
$$\frac{q_i}{2} \xrightarrow{\text{P ioint}}$$
2st **R** joint

$$m(\mathbf{q}) = [m(q_1) \dots m(q_N)]$$

- Write the mapping m(q) for a 1-segment robot
- Draw the arc by increasing $oldsymbol{q}$ of steps $\Delta oldsymbol{q} = 0.1$
- Compute the position x_{ee} (i.e. the tip of the arc) from the mapping $\mathrm{m}(q)$

- Write the mapping m(q) for a 2-segment robot
- Draw the arc by increasing q of steps $\Delta q = [0.05, 0.2]^T$
- Compute the position x_{ee} (i.e. the tip of the arc) from the mapping $\mathrm{m}(q)$

- Given the Jacobian of the robot $\mathbf{J}(q)$ write a Cartesian velocity controller
- Test the controller by applying a reference velocity $\dot{x} = [0, -0.05]^T$

- Given a target position in the space $x = [0.3, 0.05]^T$, write a Cartesian controller
- The controller should minimize the distance between $m{x}$ and $m{x}_{ee}$

