Basic indirect sampling methods

Outline

- Rejection Sampling
- ► Importance Sampling
 - estimating integrals and normalising constants
 - basic properties

Monte Carlo

Consider an arbitrary distribution on $\mathcal X$ with a density π w.r.t to dx, such that

$$\pi(x) = \frac{\gamma(x)}{Z}$$

and is Z unknown

- ▶ Let $\varphi: \mathcal{X} \longrightarrow \mathbb{R}^{n_{\mathsf{x}}}$, with $\overline{\varphi} = \sup \varphi < +\infty$
- We want to compute

$$\pi(\varphi) = \mathbb{E}_{\pi}[\varphi(X)] = \langle \pi, \varphi \rangle = \int_{\mathcal{X}} \varphi(x) \pi(dx)$$
 (1)

and Z.

Indirect sampling

- ightharpoonup There are indirect ways for sampling perfectly from π using
 - rejection sampling
 - importance sampling
 - Markov Chains
 - particle systems & methods

- ► Basic idea:
 - sample from other proposal distribution q
 - lacktriangle accept or reject with a probability lpha (details below)
- Proposal distribution property 1
 - ▶ absolute continuity, $\frac{d\pi}{da}(x)$ exists and is bounded
 - Let q also denote density, then $\pi \ll q$: $\gamma(x) > 0 \Rightarrow q(x) > 0$
 - i.e. q has heavier tails

- Proposal distribution property 2
 - assume you know M such that for all x:

$$w(x) = \frac{\gamma(x)}{q(x)} < M$$

ightharpoonup Acceptance probability for a sample x' from q should be

$$\alpha = \frac{w(x')}{M}$$

Accept Reject Procedure:

- ▶ Sample $X \sim q$
- ▶ Sample $U \sim U[0,1)$
- ▶ **Accept** sample, Y = X if $U < \frac{w(X)}{M}$

ightharpoonup Procedure generates samples from π based on simple conditioning argument

$$\mathbb{P}[Y \in A] = \mathbb{P}\left[X \in A \mid U < \frac{w(X)}{M}\right]$$

$$= \frac{\mathbb{P}\left[X \in A, U < \frac{w(X)}{M}\right]}{\mathbb{P}\left[U < \frac{w(X)}{M}\right]}$$

$$= \frac{\int_{A} \int_{0}^{1} q(x) 1_{u < w(x)/M} du dx}{\int_{\mathcal{X}} q(x) \left(\int_{0}^{w(x)/M} du\right) dx}$$

$$= \frac{\int_{A} q(x) \frac{w(x)}{M} dx}{\int_{\mathcal{X}} q(x) \frac{w(x)}{M} dx}$$

$$= \frac{\int_{A} \gamma(x) dx}{\int_{\mathcal{X}} \gamma(x) dx} = \pi(A)$$

Issue is that

$$\mathbb{P}\left[U < \frac{w(X)}{M}\right] = \mathbb{E}_q\left[\mathbb{P}\left[U < \frac{w(X)}{M} \middle| X\right]\right] = \ldots = \frac{Z}{M}$$

so method might not be very efficient if *M* high!

- ▶ So in practice need $M \approx Z$ i.e. $\pi \approx q$ which is not easy or realistic often
- There are also more advanced rejection methods
 - envelopes, adaptive accept-reject,...

Importance Sampling (IS)

• Will use a similar proposal q such that $\pi \ll q$. Recall $\pi(dx) = \frac{\gamma(x)dx}{Z}$ so

$$\pi(dx) = \frac{d\pi}{dq}(x)q(dx)$$
$$= \frac{1}{Z}w(x)q(dx)$$

▶ *q* importance distribution

► When usual densities exist, the un-normalised importance weight is:

$$w(x) = \frac{\gamma(x)}{q(x)}$$

and

$$\pi(x) = \frac{w(x)q(x)}{\int w(x)q(x)dx}$$

Importance Sampling: known normalising constant

▶ When Z known, the following Monte Carlo approximation can be used

$$\widehat{\pi}(dx) = \frac{1}{N} \sum_{i=1}^{N} W^{i} \delta_{X^{i}}(dx)$$

where

$$W^i = \frac{w(X^i)}{Z}$$

• Approximate $\pi(\varphi)$ with

$$\widehat{\pi}(\varphi) = \frac{1}{N} \sum_{i=1}^{N} W^{i} \varphi(X^{i})$$

Estimating normalising constant

Note

$$\mathbb{E}_q\left[\sum_{i=1}^N W^i\right] = \mathbb{E}_q\left[\sum_{i=1}^N \frac{\gamma(X^i)}{Zq(X^i)}\right] = \sum_{i=1}^N \frac{\int \gamma(x^1)dx^1}{Z} = N$$

In other words

$$\mathbb{E}_q\left[\frac{1}{N}\sum_{i=1}^N w(X^i)\right] = Z$$

So $\frac{1}{N} \sum_{i=1}^{N} w(X^i)$ is an unbiased estimator of Z.

QUIZ: Is $\hat{\pi}(\varphi)$ unbiased?

Variance of $\widehat{\pi}(\varphi)$

Importance Sampling: self normalising case

When Z unknown (most interesting cases), the following Monte Carlo approximation can be used

$$\widehat{\pi}(dx) = \sum_{i=1}^{N} W^{i} \delta_{X^{i}}(dx)$$

where

$$W^{i} = \frac{w(X^{i})}{\sum_{i'=1}^{N} w(X^{i'})}$$

such that $\sum_{i=1}^{N} W^{i} = 1$, so for the integral:

$$\widehat{\pi}(\varphi) = \sum_{i=1}^{N} W^{i} \varphi(X^{i})$$

Importance Sampling: self normalising case

- ► Z can be estimated **unbiasedly** <u>as before</u> using $\frac{1}{N} \sum_{i'=1}^{N} w(X^{i'})$
- ► Asymptotically the self normalising case behaves as the known *Z* case

QUIZ: Is $\hat{\pi}(\varphi)$ this time unbiased?

Self normalising case: some asymptotics

lacktriangle Asymptotically consistent as $N o \infty$. Asymptotic bias

$$(\widehat{\pi}(\varphi) - \pi(\varphi)) = -\frac{1}{N} \int_{\mathcal{X}} \frac{\pi^2(x)}{q(x)} (\varphi(x) - \pi(\varphi)) dx$$

Central Limit Theorem (CLT) holds:

$$\sqrt{N}(\widehat{\pi}(\varphi) - \pi(\varphi)) \Rightarrow \mathcal{N}\left(0, \sigma_{IS}^2\right)$$

where

$$\sigma_{IS}^2 = \left(\int_{\mathcal{X}} \frac{\pi^2(x)}{q(x)} \left(\varphi(x) - \pi(\varphi) \right)^2 dx \right)$$

Importance Sampling: choosing proposals

The asymptotic variance of the estimator $\hat{\pi}(\varphi)$ is minimised by

$$q(x) = \frac{|\varphi(x)| \pi(x)}{\int\limits_{\mathcal{X}} |\varphi(x)| \pi(x) dx}.$$

but this is **not** very easy in practice!

QUIZ: Can you prove this? Hint: in variance calculation earlier consider only part that depends on q and apply Jensen's inequality.

A very simple example

How important is absolute continuity? Consider $p=\mathcal{N}(0,1)$, $q=\mathcal{N}(0,2)$

Tail estimation example: variance reduction

Problem: Consider the tail $A = \{x : x \le c\}$ of a given density p. Estimate $p^* = \int_{\Delta} p(x) dx$.

- Procedure 1:
 - Use perfect Monte Carlo (with $\pi = p$ and $\varphi = 1_A$)
 - Sample $X^i \sim p$ and $\widehat{p^*} = \frac{1}{N} \sum_{i=1}^{N} 1_A(X^i)$ Variance of estimator $\frac{p^* p^{*^2}}{N}$

Tail estimation example: variance reduction

- Procedure 2:
 - change target distribution to

$$\pi = \frac{p(x)1_{\mathsf{A}}(x)}{p^*} \quad p^* = \int_{\mathcal{A}} p(x)dx$$

and estimate normalising constant

Sampling directly from π unrealistic so aim is to find q with $w(x) < \infty$ and more "mass" in rare region A.

QUIZ: Can you write an expression for the Monte Carlo variance for Procedure 2? Can you use π above as a proposal for p?

Discussion

- We are typically interested in the expectations of several test functions
 - moments, simple functions for histograms or probabilities
- ightharpoonup Results on with φ useful for understanding what types of functions will lead to good estimators
 - ▶ But not very useful in practice except when interested in specific test functions as in tail estimation above
- Can assess efficiency by looking at estimation of normalising constant

Importance Sampling: normalising constant

Estimate normalising constant Z,

$$\widehat{Z} = \frac{1}{N} \sum_{i=1}^{N} \frac{\gamma(X^{i})}{q(X^{i})}$$

Variance:

$$\mathbb{V}ar\left[\widehat{Z}\right] = \frac{Z^2}{N} \left(\int \frac{\pi^2(x)}{q(x)} dx - 1 \right)$$

Choosing importance proposals

- We can attempt to select q which minimises either
 - the variance of the importance weights.
 - ightharpoonup the relative variance of \hat{Z}
 - ightharpoonup in both cases q should be π .
- ▶ So one could **construct** q **similar or close** to π
- Can use other methods/approximations:
 - Laplace principle, Gaussian, Saddlepoint approximations etc.

The effective sample size (ESS)

▶ We can rescale the relative variance of the importance weights

$$ESS = \frac{N}{1 + \mathbb{V}ar_q\left[\frac{w(X)}{Z}\right]}$$

- ► The higher the ESS the better
 - ESS/N can be interpreted as an "efficiency" number compared to perfect Monte Carlo
- Can be monitored using Monte Carlo approximations:

$$ESS^{N} = \frac{1}{\sum_{i=1}^{N} (W^{i})^{2}} = \frac{\left(\sum_{i=1}^{N} w(X^{i})\right)^{2}}{\sum_{i=1}^{N} w(X^{i})^{2}}$$

to get a number in [1, N].

Discussion

- It is crucial to find a good q
 - cannot be easily automated and requires good understanding of the problem
 - **b** key is to minimise dissimilarity between π and q
- Approach will degenerate for hard problems
 - ▶ high dimensional x or low p^* in tail estimation
 - this results to very low weights and high weight variance