

CSE211 - Formal Languages and Automata Theory

U1L6 – Types of Grammar and Chomsky Hierarchy

Dr. P. Saravanan

School of Computing SASTRA Deemed University

Agenda

- Recap of previous session
- Types of Grammar
- Comparison of Grammars
- Chomsky Hierarchy of Grammars

Types of Grammar

- According to Noam Chomosky, an American linguist, philosopher, cognitive scientist and social activist, there are four types of grammars:
 - Type 3 Regular grammars
 - Type 2 Context-free grammars
 - Type 1 *Context-sensitive grammars*
 - Type 0 *Recursively enumerable grammar*

Type 3 Grammar:

- Type 3 Grammar is known as Regular Grammar
- Regular languages are those languages which can be described using regular expressions
- These languages can be modeled by NFA or DFA
- Type 3 should be in the form of

$$V \rightarrow T^*V/T^*$$

- The rule $S \rightarrow \varepsilon$ is also allowed here if S does not appear on the right side of any rule.
- Used to define search patterns and the lexical structure of programming languages.

Dr.PS

Type 2 Grammar

- Type 2 Grammar is known as Context Free Grammar
- Context Free Languages are represented by the context free grammar (CFG)
- The production rule is of the form

$$A \rightarrow \alpha$$

where $A \in V$ and $\alpha \in (V \cup T)^*$

- Recognized by a Non-Deterministic Pushdown Automaton (PDA)
- Context-free languages are the theoretical basis for the syntax of most programming languages.

SASTRA ENGINEERING MANAGEMENT-LAW-SCENCES-HUMANTIES-EDUCATION DEEMED TO BE UNIVERSITY (U/S 3 OF THE UGC ACT, 1956) THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

Type 1 Grammar

- Type-1 grammar is known as Context Sensitive Grammar
- Used to represent context sensitive language
- The productions must be in the form

 $A \rightarrow B$ Where A,B $\mathcal{C}(V \cup T)^{\dagger}$ and the count of symbol in A is less than or equal to B

- May have more than one symbol on the left hand side of their production rules.
- The number of symbols on the left-hand side must not exceed the number of symbols on the right-hand side.
- The rule of the form $A \rightarrow \epsilon$ is not allowed unless A is a Dr.PS start symbol

Type O Grammar

- Type 0 grammar is known as Unrestricted grammar
- The languages are known as the recursively enumerable languages
- There is no restriction on the grammar rules of these types of languages
- These languages can be efficiently modeled by Turing machines
- They are too general to describe the syntax of programming languages and natural languages.

Comparison of Grammars

Grammar Type	Grammar Accepted	Language Accepted	Automaton
Type 0	Unrestricted grammar	Recursively enumerable language	Turing Machine
Type 1	Context-sensitive grammar	Context-sensitive language	Linear-bounded automaton
Type 2	Context-free grammar	Context-free language	Pushdown automaton
Type 3	Regular grammar	Regular language	Finite state automaton

Dr.PS

Chomsky Hierarchy

SASTRA ENGINEERING MANAGERINT LAW SCIENCES HUMANTES EDUCATION DEEMED TO BE UNIVERSITY (U/S 3 OF THE UGC ACT. 1956) THINK MERIT | THINK TRANSPARENCY | THINK SASTRA

Summary

- Types of Grammar
- Comparison of Grammars
- Chomsky Hierarchy of Grammars

References

- John E. Hopcroft, Rajeev Motwani and Jeffrey D.
 Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson, 3rd Edition, 2011.
- Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.
- https://www.tutorialspoint.com/automata_theory/ch omsky_classification_of_grammars.htm

Next Class:

Deterministic Finite Automata

THANK YOU.