Table S14. Species traits used in the study.

Order	Genus	Species	mass	lit.sz	lit.yr	longev	torp	mig	IUCN	area	lat	sympatry	cit	viruses	zoon	refs
Chiroptera	Anoura	geoffroyi	15.100	1.000	1.000	3650	1	1	$_{\rm LC}$	8665212	5	293	25	9	6	[1, 2, 3]
Chiroptera	Antrozous	pallidus	20.800	2.000	1.000	5406	2	1	$_{ m LC}$	4506699	28	115	106	1	1	[1, 4, 2, 5, 6, 7, 8, 4]
Chiroptera	Artibeus	jamaicensis	41.800	1.000	2.000	7013	1	1	$_{ m LC}$	1997429	17	262	163	12	9	[1, 5, 2, 9, 10]
Chiroptera	Artibeus	lituratus	65.600	1.025	1.879	3979	1	1	$_{ m LC}$	15442170	9	300	77	14	12	[1, 5, 2, 9, 11, 12, 13]
Chiroptera	Barbastella	barbastellus	8.029	1.833	1.000	8401	3	1	NT	3924018	45	51	48	1	1	[1, 5, 14, 15, 16, 17, 18, 19, 20]
Chiroptera	Carollia	perspicillata	16.400	1.045	2.033	6209	1	1	$_{ m LC}$	14606378	7	287	225	15	11	[1, 5, 2, 9, 21, 22, 23]
Chiroptera	Corynorhinus	townsendii	9.920	1.000	1.000	7487	3	1	$_{ m LC}$	4849204	37	116	44	1	1	[1, 5, 24]
Chiroptera	Cynopterus	brachyotis	34.082	1.000	2.333	3689	1	1	$_{ m LC}$	2861168	9	213	41	5	2	[1, 5, 25, 26]
Chiroptera	Cynopterus	$_{ m sphinx}$	62.938	1.156	1.846	3650	2	1	$_{ m LC}$	6858556	3	266	103	3	3	[1, 14, 27, 28, 29]
Chiroptera	Desmodus	rotundus	33.041	1.056	1.263	10665	2	1	$_{ m LC}$	19150173	-3	302	246	7	4	[1, 5, 30, 31, 18, 3]
Chiroptera	Dobsonia	moluccensis	381.437	1.000	1.000	4490	1	1	$_{ m LC}$	898926	-6	141	0	1	1	[1, 25, 9, 5, 32, 33]
Chiroptera	Eidolon	dupreanum	286.563	1.000	1.000	7300	1	1	V	460031	-17	38	6	3	2	[1, 34, 35, 36]
Chiroptera	Eidolon	helvum	252.840	1.020	1.167	7961	1	3	NT	12561712	-4	200	60	7	4	[1, 37, 38, 39, 40]
Chiroptera	Eonycteris	spelaea	59.887	1.000	2.333	1825	1	1	$_{ m LC}$	3648868	7	296	21	5	3	[1, 37, 25, 26, 41]
Chiroptera	Epomophorus	gambianus	148.231	1.000	1.667	2849	1	1	$_{ m LC}$	4800140	9	132	7	1	1	[1, 5, 42]
Chiroptera	Epomophorus	wahlbergi	89.538	1.000	2.000	3689	1	1	$_{ m LC}$	5089184	-5	160	20	1	1	[1, 5, 43]
Chiroptera	Eptesicus	fuscus	17.221	1.500	1.000	7305	3	1	$_{ m LC}$	14020198	20	280	1032	7	5	[1, 5, 14, 15, 44]
Chiroptera	Eptesicus	serotinus	22.859	1.375	1.000	6940	2	1	$_{ m LC}$	27959853	46	187	104	4	3	[1, 5, 14, 45, 19, 20, 18]
Chiroptera	Glossophaga	soricina	9.400	1.000	2.000	4018	2	1	$_{ m LC}$	16158143	9	310	128	8	7	[1, 5, 2, 46, 47, 48]
Chiroptera	Hypsignathus	monstrosus	328.294	1.143	2.000	4383	1	1	$_{ m LC}$	3098273	6	150	10	2	2	[1, 5, 49, 50, 51]
Chiroptera	Lasionycteris	noctivagans	12.134	1.840	1.000	4383	2	3	$_{ m LC}$	10473443	38	65	133	1	1	[1, 5, 14, 52, 53]
Chiroptera	Lasiurus	cinereus	25.279	2.053	1.000	5115	3	3	$_{ m LC}$	23416663	6	274	168	2	2	[1, 5, 54, 53, 55]
Chiroptera	Macrotus	californicus	11.990	1.033	1.000	6209	1	1	$_{ m LC}$	644039	27	71	46	1	1	[1, 5, 56, 14, 9, 57]
Chiroptera	Megaderma	lyra	48.709	1.100	1.000	5115	1	1	$_{ m LC}$	6322216	17	218	100	2	1	[1, 5, 22]
Chiroptera	Miniopterus	schreibersii	11.609	1.001	1.000	8036	3	2	NT	4027214	29	154	161	12	6	[1, 5, 14, 58, 59, 60, 61, 62, 63, 19]
Chiroptera	Myotis	austroriparius	6.838	1.942	1.000	2190	2	1	$_{ m LC}$	835458	33	17	25	1	1	[1, 64, 65, 66]
Chiroptera	Myotis	californicus	4.600	1.000	1.000	5479	3	1	$_{ m LC}$	4188639	36	130	24	2	1	[1, 67, 68, 7, 8, 69]
Chiroptera	Myotis	daubentonii	7.373	1.125	1.000	10227	3	2	LC	34589751	53	90	175	3	2	[1, 5, 14, 70, 19, 71, 72]
Chiroptera	Myotis	evotis	6.875	1.000	1.000	8036	3	1	LC	3211018	44	34	38	2	1	[1, 5, 14, 73, 74, 75]
Chiroptera	Myotis	grisescens	10.371	1.000	1.000	6026	3	$\overline{2}$	NT	854076	36	17	40	1	1	[1, 5, 14, 76, 77]
Chiroptera	Myotis	leibii	5.210	1.000	1.000	4380	3	1	LC	1444356	42	17	18	1	1	[1, 5, 78, 79]
Chiroptera	Myotis	lucifugus	7.677	1.106	1.000	12419	3	$\overline{2}$	LC	12664800	50	37	816	8	4	[1, 5, 14, 15, 80, 81, 82, 83, 18, 84
Chiroptera	Myotis	myotis	22.925	1.375	1.000	7962	3	$\overline{2}$	LC	3981498	40	43	279	7	2	[1, 14, 15, 85, 23, 86]
Chiroptera	Myotis	mystacinus	4.988	1.167	1.000	8766	3	1	LC	5217604	50	48	38	2	1	[1, 5, 14, 76, 18, 87, 88, 19]
Chiroptera	Myotis	nattereri	7.127	1.000	1.000	7305	3	1	LC	6190453	47	52	74	6	1	[1, 5, 14, 76, 89, 90, 19]
Chiroptera	Myotis	nigricans	4.252	1.000	3.000	2557	$\overset{\circ}{2}$	1	LC	15129223	-7	289	27	3	3	[1, 5, 14, 91, 92]
Chiroptera	Myotis	septentrionalis	6.268	1.000	1.000	6940	3	2	LC	5168594	48	23	81	4	4	[1, 5, 14, 93, 83]
Chiroptera	Myotis	thysanodes	8.191	1.000	1.000	6685	3	1	LC	3661784	35	123	21	1	1	[1, 5, 14, 91, 94, 95]
Chiroptera	Myotis	velifer	10.097	1.000	1.000	4128	3	2	LC	1967504	32	139	32	1	1	[1, 5, 14, 96, 97]
Chiroptera	Myotis	volans	8.765	1.000	1.000	1159	3	1	LC	4845574	32	94	$\frac{32}{22}$	2	1	[1, 98, 99, 100, 101]
Chiroptera	Myotis	yumanensis	9.158	1.000	1.000	3217	3	1	LC	4205191	38	86	27	2	1	[1, 5, 14, 102, 103]
Chiroptera	Nyctalus	leisleri	13.280	1.667	1.000	5844	3	3	LC	5868175	42	87	63	1	0	[1, 5, 14, 102, 103]
Chiroptera	Nyctalus	noctula	27.967	1.439	1.000	4383	3	3	LC	13146436	41	173	132	9	5	[1, 5, 104, 105, 19, 22] [1, 5, 14, 54, 19, 62, 106]
Chiroptera	Nycticeius	humeralis	8.989	$\frac{1.439}{2.188}$	1.000	$\frac{4363}{2192}$	3	2	LC	2910364	35	70	62	9 1	о 1	[1, 5, 14, 54, 19, 62, 106]
-	Parastrellus			1.942	1.000	1840	3	1	LC	2680623	$\frac{35}{32}$	70 99	02 19	1	1	
Chiroptera		hesperus	3.700													[1, 68, 7, 8, 109]
Chiroptera	Perimyotis	subflavus	5.737	2.140	1.000	5406	3	2	$_{ m LC}$	4370640	40	143	105	1	1	[1, 5, 14, 76, 110]

Chiroptera	Phyllostomus	hastatus	90.022	1.000	1.000	6575	2	1	$_{\rm LC}$	13235754	2	262	73	13	10	[1, 5, 14, 111]
Chiroptera	Pipistrellus	kuhlii	5.934	1.300	1.000	2922	3	1	LC	12479184	31	115	41	1	1	[1, 5, 14, 112, 22]
Chiroptera	Pipistrellus	nathusii	7.309	1.900	1.000	4018	3	3	$_{ m LC}$	6115801	53	43	53	4	1	[1, 5, 14, 113, 19, 114, 115, 116, 106]
Chiroptera	Pipistrellus	pipistrellus	5.557	1.281	1.000	5844	3	1	$_{ m LC}$	34836390	44	168	365	8	3	[1, 5, 14, 15, 19, 20, 117, 118]
																[119, 19, 120, 121, 122]
Chiroptera	Plecotus	auritus	8.148	1.250	1.000	10958	3	1	$_{ m LC}$	6895907	53	44	209	3	2	[1, 5, 14, 76, 18, 19, 85, 123]
Chiroptera	Pteropus	alecto	686.928	1.200	1.000	7191	1	2	$_{ m LC}$	1404130	-12	172	55	7	6	[1, 5, 124]
Chiroptera	Pteropus	giganteus	842.349	1.000	1.000	14610	1	2	$_{ m LC}$	4058065	14	132	82	2	1	[1, 5, 9, 125]
Chiroptera	Pteropus	hypomelanus	421.069	1.000	1.000	7410	1	1	$_{ m LC}$	550427	4	183	27	5	5	[1, 5, 9, 126, 127, 32, 128]
Chiroptera	Pteropus	poliocephalus	718.814	1.000	1.000	8614	1	3	V	249713	-30	36	111	4	4	[1, 5, 9, 129, 22]
Chiroptera	Pteropus	scapulatus	412.179	1.000	1.000	5770	1	2	LC	3126765	-19	78	22	8	7	[1, 5, 9, 130]
Chiroptera	Pteropus	vampyrus	1027.955	1.000	1.000	7629	1	2	NT	1985718	6	219	33	1	1	[1, 5, 9, 124, 131]
Chiroptera	Rhinolophus	ferrumequinum	21.061	0.984	1.000	11140	3	1	LC	25129304	37	178	233	12	7	[1, 5, 14, 132, 18, 19, 133]
Chiroptera	Rhinolophus	hipposideros	4.958	1.137	1.000	5338	3	1	LC	7260478	39	84	69	1	0	[1, 132, 19, 134, 135, 136, 134]
Chiroptera	Rhinolophus	rouxii	11.788	1.000	1.000	1825	1	1	LC	870083	22	116	95	3	$\overset{\circ}{2}$	[1, 22]
Chiroptera	Rousettus	aegyptiacus	134.774	1.021	1.706	8359	1	2	LC	4450539	-1	211	196	10	7	[1, 9, 137]
Chiroptera	Rousettus	leschenaultii	89.181	1.040	1.875	5114	1	2	LC	7194098	9	222	55	14	9	[1, 5, 14, 138, 139, 140, 141, 142]
Chiroptera	Sturnira	lilium	19.343	1.000	2.333	4383	2	1	LC	16647201	11	303	68	8	6	[1, 5, 143, 144, 13, 145, 146]
Chiroptera	Tadarida	brasiliensis	11.978	1.031	1.000	4383	3	3	LC	15746797	18	330	300	5	5	[1, 5, 143, 144, 13, 145, 146]
Chiroptera	Taphozous	melanopogon	27.568	1.000	1.000	7300	2	2	LC	5988880	8	311	23	4	3	[1, 148, 149, 150]
Chiroptera	Vespertilio	murinus	20.786	1.375	1.000	4380	3	3	LC	29699591	57	81	38	2	2	[1, 148, 149, 150]
•	Abrothrix				2.000	360		3	LC			60		1		
Rodentia		olivaceus	23.645	5.323 3.900	2.000 2.000	300 1717	$\frac{1}{1}$		LC	$1086786 \\ 3375275$	-42 -24	99	53 53	$\frac{1}{2}$	$\frac{1}{2}$	[1]
Rodentia	Aethomys	namaquensis	55.025						LC					$\frac{2}{2}$	$\frac{2}{2}$	[1, 5]
Rodentia	Akodon	azarae	24.500	4.680	2.000	549 1460	$\frac{1}{1}$		LC	1231751	-36	93 233	$\frac{106}{223}$	8	6	[1, 156, 157]
Rodentia	Apodemus	agrarius	24.575	5.706	3.125 4.000		1		LC	14443824	41	233 22		1	-	[1]
Rodentia	Apodemus	argenteus	21.000	4.077		1826	1			367845	35		51		1	[1, 5]
Rodentia	Apodemus	flavicollis	32.260	5.367	4.875	1644			LC	6298880	57 50	122	407	11	7	[1, 5, 9]
Rodentia	Apodemus	sylvaticus	26.914	5.057	4.000	2301	1		LC	5399377	56	91	952	16	8	[1, 5]
Rodentia	Arvicanthis	niloticus	120.900	5.146	3.500	2447	1		LC	6772138	9	242	196	9	4	[1, 5]
Rodentia	Arvicola	amphibius	129.557	5.022	4.843	1338	1		LC	18522732	56	181	371	2	1	
Rodentia	Baiomys	taylori	7.475	2.623	10.000	1127	2		LC	1280182	27	166	44	2	1	[1, 15]
Rodentia	Castor	fiber	19000.000	3.208	1.000	7665	1		LC	3812235	54	79	200	1	1	
Rodentia	Coendou	prehensilis	4154.000	1.000	1.300	5268	1		LC	10484553	1	332	18	1	1	[1, 5, 158, 9]
Rodentia	Cricetomys	gambianus	1403.200	3.136	3.750	3068	1		LC	9019456	-4	263	98	4	1	[1, 5, 9]
Rodentia	Cuniculus	paca	8309.333	2.639	1.750	5954	1		LC	13382516	7	524	96	1	1	[1, 5, 9]
Rodentia	Cynomys	ludovicianus	883.587	4.536	1.000	3103	2		LC	1824941	40	114	355	1	0	[1, 159]
Rodentia	Dasyprocta	leporina	3339.300	1.800	1.300	6497	1		LC	2040718	5	81	61	3	3	[1, 160]
Rodentia	Erethizon	dorsatum	8144.400	1.032	1.000	8547	1		$_{ m LC}$	12649972	41	210	113	3	2	[1, 5, 9]
Rodentia	Funisciurus	congicus	112.120	2.200	2.000	3468	1		$_{\rm LC}$	1750122	-7	104	1	1	1	[1, 5, 9]
Rodentia	Gerbilliscus	validus	121.000	4.250	2.000	1826	1		LC	4675845	-5	186	1	1	1	[1, 5]
Rodentia	Glaucomys	volans	70.346	3.169	1.800	4137	1		$_{ m LC}$	3926064	25	175	135	1	1	[1, 9]
Rodentia	Glis	glis	166.700	4.500	1.000	3114	3		$_{ m LC}$	3811259	44	118	170	1	1	[1, 161, 15]
Rodentia	Hydromys	chrysogaster	651.125	3.437	2.209	2666	1		$_{ m LC}$	4299391	-15	127	35	1	1	[1, 5, 9]
Rodentia	Hystrix	africaeaustralis	13309.005	1.884	1.500	8437	1		$_{ m LC}$	7729424	-17	205	35	1	1	[1, 5, 9]
Rodentia	Lemniscomys	striatus	50.400	4.609	1.500	1753	1		$_{ m LC}$	4773339	8	242	30	4	2	[1, 5]
Rodentia	Marmota	monax	3795.903	4.767	1.000	5114	3		LC	8064664	50	77	347	5	3	[1, 5, 15]
Rodentia	Mesocricetus	auratus	97.125	9.076	4.500	1947	3		V	4702	37	16	1960	7	1	[1, 15]
Rodentia	Micromys	minutus	7.793	5.669	2.667	1278	1		$_{ m LC}$	24127199	39	288	94	2	1	
Rodentia	Microtus	agrestis	41.633	4.831	3.700	1753	1		$_{ m LC}$	13088085	60	112	728	10	5	[1, 5]

B 1	3.61		~~	4 0 44			_	* 0	0044045		4.00		_	_	[a = o]
Rodentia	Microtus	arvalis	25.117	4.841	6.786	1753	1	LC	8014045	50	160	629	7	5	[1, 5, 9]
Rodentia	Microtus	californicus	56.424	5.425	7.665	365	1	LC	288183	37	97	87	3	1	[1, 162]
Rodentia	Microtus	ochrogaster	43.210	4.160	4.000	1936	1	LC	3279550	36	82	967	2	0	[1, 5]
Rodentia	Microtus	oeconomus	34.647	5.709	3.413	584	1	LC	370998862	58	154	269	5	4	[1]
Rodentia	Microtus	pennsylvanicus	42.136	5.369	3.919	1423	1	LC	12643410	43	137	937	5	1	[1, 5]
Rodentia	Mus	minutoides	7.120	4.257	4.000	1571	1	LC	4269469	-11	218	37	1	0	[1, 5, 9]
Rodentia	Myocastor	coypus	6559.575	5.801	2.479	2784	1	$_{ m LC}$	46600750	18	268	242	2	2	[1, 9]
Rodentia	Myodes	gapperi	22.100	5.296	2.366	600	1	$_{ m LC}$	8792882	46	138	265	2	2	[1, 9]
Rodentia	Myodes	glareolus	22.829	4.362	3.150	1790	1	LC	9836202	56	113	1549	16	11	[1, 5, 9]
Rodentia	Myodes	rufocanus	30.333	4.930	3.750	1205	1	LC	14280106	46	102	317	2	2	[1, 5, 9]
Rodentia	Neotoma	albigula	200.258	2.144	2.000	3470	1	LC	835143	30	122	75	1	1	[1, 5, 9]
Rodentia	Neotoma	cinerea	254.125	3.590	1.773	2118	1	LC	3732149	48	146	56	2	2	[1, 5, 9]
Rodentia	Neotoma	lepida	236.000	3.083	3.333	3835	1	$_{ m LC}$	988729	27	125	72	2	1	[1, 5, 9]
Rodentia	Neotoma	micropus	247.000	2.456	1.750	1205	2	$_{ m LC}$	1066915	32	123	59	1	0	[1, 5, 163]
Rodentia	Oligoryzomys	flavescens	21.300	5.200	2.000	1403	1	$_{ m LC}$	3209722	-28	238	50	2	2	[1, 157]
Rodentia	Ondatra	zibethicus	997.121	7.051	2.601	2118	1	$_{ m LC}$	15517661	43	195	250	5	1	[1, 5, 9]
Rodentia	Onychomys	leucogaster	26.207	3.974	2.667	1825	1	$_{ m LC}$	4156363	41	185	104	1	1	[1, 164]
Rodentia	Otomys	irroratus	117.113	1.810	4.000	730	1	$_{ m LC}$	557001	-24	67	55	1	0	[1, 5, 9]
Rodentia	Pedetes	capensis	2727.500	1.001	3.600	7305	1	$_{ m LC}$	3847276	-19	117	48	1	1	[1, 5, 9]
Rodentia	Perognathus	parvus	21.400	5.140	1.440	1460	3	$_{ m LC}$	922281	42	110	42	1	1	[1, 132]
Rodentia	Peromyscus	californicus	43.606	2.021	4.375	2009	2	$_{ m LC}$	132681	34	75	206	2	0	[1, 5, 9]
Rodentia	Peromyscus	eremicus	22.636	2.509	3.250	2703	2	$_{ m LC}$	1227317	28	162	47	1	1	[1, 5, 15]
Rodentia	Peromyscus	gossypinus	27.998	4.094	4.000	300	2	$_{ m LC}$	1163524	33	39	71	3	3	[1, 132]
Rodentia	Peromyscus	leucopus	18.400	4.309	4.300	2885	2	$_{ m LC}$	6141145	37	199	1202	7	6	[1, 5, 15]
Rodentia	Peromyscus	maniculatus	19.333	4.892	3.248	3032	2	$_{ m LC}$	13623312	39	293	1528	6	6	[1, 5, 15]
Rodentia	Peromyscus	truei	25.913	3.600	3.000	1972	2	$_{ m LC}$	1567435	39	157	39	3	2	[1, 5, 9]
Rodentia	Proechimys	semispinosus	406.409	2.650	4.680	2118	1	$\stackrel{-}{ ext{LC}}$	374844	5	104	62	2	$\frac{1}{2}$	[1, 5]
Rodentia	Rattus	exulans	52.450	3.800	5.920	450	1	$\stackrel{-}{ ext{LC}}$	2279381338	-7	404	180	$\overline{4}$	1	[1]
Rodentia	Rattus	fuscipes	115.300	4.844	3.300	1936	1	$\stackrel{-}{ ext{LC}}$	524290	-33	28	145	1	0	[1, 5, 9]
Rodentia	Rattus	norvegicus	305.717	8.735	3.192	1825	1	LC	180534351	7	569	3182	20	7	[1, 5]
Rodentia	Rattus	rattus	176.612	6.394	3.117	1534	1	LC	62945738	22	993	987	15	11	[1, 5, 9]
Rodentia	Reithrodontomys	megalotis	10.968	4.545	4.500	1315	2	LC	5308921	38	280	103	2	1	[1, 5, 5]
Rodentia	Rhabdomys	pumilio	44.838	6.162	7.000	1644	1	LC	3304974	-9	170	123	1	1	[1, 5, 9]
Rodentia	Sciurus	carolinensis	527.738	3.384	1.885	8620	1	LC	4162786	39	85	333	15	8	[1, 5, 5]
Rodentia	Sciurus	granatensis	279.000	2.029	2.000	4200	1	LC	995652	10	175	13	1	1	[1, 5]
Rodentia	Sciurus	griseus	714.000	2.670	1.000	4018	1	LC	377346	40	103	24	1	1	[1, 5]
Rodentia	Sciurus	niger	810.443	3.222	1.563	5844	1	LC	4408246	38	122	$\frac{24}{147}$	4	4	[1, 5]
Rodentia	Sciurus	vulgaris	348.500	4.600	2.333	5406	1	LC	43680564	52	185	310	4	2	[1, 5]
Rodentia	Sigmodon	hispidus	114.395	5.645	7.267	1899	1	LC	2676280	$\frac{32}{31}$	126	647	18	11	[1, 5] $[1, 5, 9]$
Rodentia	Spermophilus	beecheyi	648.025	6.075	1.000	3650	3	LC	463741	39	104	139	2	1	[1, 0, 0] $[1, 132, 165]$
Rodentia	Spermophilus	citellus	290.000	6.500	1.250	2447	3	V	443576	44	45	69	$\frac{2}{2}$	0	[1, 152, 165]
	• •				1.250 1.000	3799		$^{ m v}_{ m LC}$					1	-	
Rodentia	Spermophilus	lateralis richardsonii	192.033	5.292		3199 2192	3	LC	1713233 904070	37	150	267	2	1 1	[1, 5, 15]
Rodentia	Spermophilus		329.300	6.800	1.000		3	LC		50	48	163	$\frac{2}{2}$		[1, 5, 15]
Rodentia	Spermophilus	tridecemlineatus	172.168	7.841	1.333	2885	3		3799232	37	111	304		2	[1, 5, 166]
Rodentia	Spermophilus	variegatus	673.430	4.946	1.250	3579	3	LC	2327898	31	209	33	2	1	[1, 5, 132]
Rodentia	Tamias	amoenus	49.800	5.315	1.071	1899	3	LC	1152398	43	102	89	1	1	[1, 5, 15]
Rodentia	Tamias	minimus	48.058	5.092	1.200	3653	3	LC	5585611	52	145	24	1	1	[1, 5, 166]
Rodentia	Tamias	sibiricus	92.227	5.046	1.143	3506	3	LC	16750695	47	164	51	1	0	[1, 5, 167]
Rodentia	Tamias	striatus	108.501	4.715	1.563	3470	3	$_{ m LC}$	4321942	43	53	281	5	5	[1, 5, 15]

Rodentia	Tamiasciurus	hudsonicus	215.535	4.034	1.625	3579	1	I	$^{\rm LC}$	10942922	43	147	314	4	2	[1, 5, 9]
Rodentia	Thryonomys	swinderianus	4053.347	4.144	2.250	1972	1	I	$^{\rm LC}$	8119945	-4	260	64	1	1	[1, 5]
Rodentia	Xerus	erythropus	649.133	3.417	3.000	3762	1	I	$^{\rm LC}$	10427903	15	248	12	2	1	[1, 5, 168]
Rodentia	Xerus	inauris	588.000	2.048	1.000	580	1	I	$^{\rm LC}$	1519144	-25	66	2	1	1	[1, 5, 166]

abreviations and units:

'mass' – body mass in grams

'lit.sz' – mean litter size

'lit.yr' - mean number of litters per year

'longev' - maximum longevity in days

'torp' - torpor category, 1=no evidence of torpor use; 2=some torpor use with minimum body temperature> 11°C; 3=true hibernation with min Tb< 11°C)

'mig' - migration category, 1=only local movement; 2=regional migration, 3=long distance migration (see main text)

'IUCN' - IUCN conservation status. LC= least concern; V=vulnerable; NT=near threatened

'area' – area in km² of the species' distribution

'lat' – absolute value of the latitude at the midpoint of the species distribution

'sympatry' - number of other species in the same taxonomic order whose distributions overlap with the species of interest

'cit' - number of citations on Web of Science for the species name

'viruses' - the number of viruses identified in the species in the attached database

'zoon' - the number of zoonotic viruses

All of the data for IUCN status, species distribution area, latitude and number of range overlaps (sympatry) came from ref[169].

References

- [1] Jones, K., Bielby, J., Cardillo, M., Fritz, S., O'Dell, J., Orme, C., Safi, K., Sechrest, W., Boakes, E., Carbone, C. et al., 2009 Pantheria: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648.
- [2] Eisenberg, J., 1989 Mammals of the Neotropics, Vol. 1, The Northern Neotropics: Panama, Colombia, Suriname, French Guiana. Chicago, Illinois, USA: The University of Chicago Press.
- [3] Fraser, K., McKinnon, E. & Diamond, A., 2010 Migration, diet, or molt? interpreting stable-hydrogen isotope values in neotropical bats. Biotropica 42, 512–517.
- [4] Hermanson, J. & O'Shea, T., 1983 Antrozous pallidus. Mammalian Species pp. 1–8.
- [5] de Magalhaes, J. & Costa, J., 2009 A database of vertebrate longevity records and their relation to other life-history traits. Journal of Evolutionary Biology 22, 1770–1774.
- [6] Marom, S., Korine, C., Wojciechowski, M., Tracy, C. & Pinshow, B., 2006 Energy metabolism and evaporative water loss in the european free-tailed bat and hemprich's long-eared bat (microchiroptera): Species sympatric in the negev desert. *Physiological and Biochemical Zoology* 79, 944–956.
- [7] O'Farrell, M. & Bradley, W., 1970 Activity patterns of bats over a desert spring. Journal of Mammalogy pp. 18–26.
- [8] O'Farrell, M., Bradley, W. & Jones, G., 1967 Fall and winter bat activity at a desert spring in southern nevada. The Southwestern Naturalist 12, 163–171.
- [9] McNab, B., 2008 An analysis of the factors that influence the level and scaling of mammalian bmr. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology 151, 5-28.
- [10] Ortega, J. & Castro-Arellano, I., 2001 Artibeus jamaicensis. Mammalian species 662, 1–9.
- [11] Duarte, A. & Talamoni, S., 2010 Reproduction of the large fruit-eating bat artibeus lituratus (chiroptera: Phyllostomidae) in a brazilian atlantic forest area. Mammalian Biology-Zeitschrift für Säugetierkunde 75, 320–325.
- [12] Mendes, P., Vieira, T., Oprea, M. & Ditchfield, A., 2009 Long-distance movement of artibeus lituratus (chiroptera: Phyllostomidae) in the state of espírito santo, brazil. Ecotropica 15, 43–46.
- [13] Sánchez, F., Alvarez, J., Ariza, C. & Cadena, A., 2007 Bat assemblage structure in two dry forests of colombia: Composition, species richness, and relative abundance. Mammalian Biology 72, 82–92.
- [14] Wilkinson, G. & South, J., 2002 Life history, ecology and longevity in bats. Aging Cell 1, 124–131.
- [15] Geiser, F., 2004 Metabolic rate and body temperature reduction during hibernation and daily torpor. Annual Reviews in Physiology 66, 239–274.

- [16] Gottfried, I., 2009 Use of underground hibernacula by the barbastelle (barbastella barbastellus) outside the hibernation season. Acta Chiropterologica 11, 363–373.
- [17] Rydell, J. & Bogdanowicz, W., 1997 Barbastella barbastellus. Mammalian species 557, 1–8.
- [18] Baker, R., 1978 The evolutionary ecology of animal migration. The Evolutionary Ecology of Animal Migration.
- [19] Hutterer, R., Ivanova, T., Meyer-Cords, C. & Rodrigues, L., 2005 Bat migrations in europe: A review of literature and analysis of banding data. Natur. Biol. Vielfalt 28, 1–172.
- [20] Dietz, C., von Helversen, O. & Nill, D., 2009 Bats of Britain, Europe & Northwest Africa. A & C Publishers LTD. London.
- [21] Cloutier, D. & Thomas, D., 1992 Carollia perspicillata. Mammalian species pp. 1–9.
- [22] Fleming, T. & Eby, P., 2003 Ecology of bat migration. In Bat Ecology (eds. T. Kunz & M. Fenton), pp. 156–208. University of Chicago Press, Chicago, Illinois.
- [23] Rodrigues, L., Ramos Pereira, M., Rainho, A. & Palmeirim, J., 2010 Behavioural determinants of gene flow in the bat miniopterus schreibersii. Behavioral Ecology and Sociobiology 64, 835–843.
- [24] Kunz, T. & Martin, R., 1982 Plecotus townsendii. Mammalian Species pp. 1–6.
- [25] McNab, B. & Bonaccorso, F., 2001 The metabolism of new guinean pteropodid bats. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 171, 201–214.
- [26] Hodgkison, R., Balding, S., Zubaid, A. & Kunz, T., 2004 Temporal variation in the relative abundance of fruit bats (megachiroptera: Pteropodidae) in relation to the availability of food in a lowland malaysian rain forest. Biotropica 36, 522–533.
- [27] Banerjee, A., Meenakumari, K. & Krishna, A., 2007 Relationship between delayed embryonic development and metabolic factors and fat deposition in fruit bat cynopterus sphinx. Reproduction, Fertility and Development 19, 626–633.
- [28] Storz, J. & Kunz, T., 1999 Cynopterus sphinx. Mammalian Species 613, 1–8.
- [29] Storz, J., 2002 Contrasting patterns of divergence in quantitative traits and neutral dna markers: analysis of clinal variation. Molecular Ecology 11, 2537–2551.
- [30] Lyman, C. & Wimsatt, W., 1966 Temperature regulation in the vampire bat, desmodus rotundus. Physiological Zoology 39, 101–109.
- [31] Trajano, E., 1996 Movements of cave bats in southeastern brazil, with emphasis on the population ecology of the common vampire bat, desmodus rotundus (chiroptera). Biotropica 28, 121–129.
- [32] Bonaccorso, F., 1998 Bats of Papua New Guinea. Tropical Field Guide Series. Conservation International, Washington, DC.
- [33] Mickleburgh, S., Hutson, A. & Racey, P., 1992 Old World fruit bats: an action plan for their conservation.
- [34] Goodman, S., Andriafidison, D., Andrianaivoarivelo, R., Cardiff, S., Ifticene, E., Jenkins, R., Kofoky, A., Mbohoahy, T., Rakotondravony, D., Ranivo, J. et al., 2005 The distribution and conservation of bats in the dry regions of madagascar. Animal Conservation 8, 153–165.
- [35] MacKinnon, J., Hawkins, C. & Racey, P., 2003 Pteropodidae. In The natural history of Madagascar (eds. S. Goodman & J. Benstead), pp. 1299–1302. The University of Chicago, Press, Chicago, IL.
- [36] Cardiff, S., Ratrimomanarivo, F., Rembert, G. & Goodman, S., 2009 Hunting, disturbance and roost persistence of bats in caves at ankarana, northern madagascar. African Journal of Ecology 47, 640–649.
- [37] Krutzsch, P., 1979 Male reproductive patterns in nonhibernating bats. Reproduction 56, 333.
- [38] DeFrees, S. & Wilson, D., 1988 Eidolon helvum. Mammalian species pp. 1–5.
- [39] Richter, H. & Cumming, G., 2008 First application of satellite telemetry to track african straw-coloured fruit bat migration. Journal of Zoology 275, 172–176.
- [40] Thomas, D., 1983 The annual migrations of three species of west african fruit bats (chiroptera: Pteropodidae). Canadian Journal of Zoology 61, 2266–2272.
- [41] Krutzsch, P., 2005 Reproductive anatomy and cyclicity of the bat eonycteris spelea dobson (chiroptera: Pteropodidae) in west malaysia. Acta Chiropterologica 7, 51–64.
- [42] Thomas, D. & Marshall, A., 1984 Reproduction and growth in three species of west african fruit bats. Journal of Zoology 202, 265–281.
- [43] Acharya, L., 1992 Epomophorus wahlbergi. Mammalian Species pp. 1–4.
- [44] Neubaum, D., O'Shea, T. & Wilson, K., 2006 Autumn migration and selection of rock crevices as hibernacula by big brown bats in colorado. Journal of Mammalogy 87, 470–479.
- [45] Harbusch, C. & Racey, P., 2006 The sessile serotine: the influence of roost temperature on philopatry and reproductive phenology of Eptesicus serotinus (Schreber, 1774) (Mammalia: Chiroptera).

 ACTA CHIROPTEROLOGICA 8, 213–229. ISSN 1508-1109.
- [46] Kelm, D. & von Helversen, O., 2007 How to budget metabolic energy: torpor in a small neotropical mammal. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 177, 667–677.

- [47] Alvarez, J., Willig, M., Jones Jr, J. & Webster, W., 1991 Glossophaga soricina. Mammalian Species pp. 1–7.
- [48] Fleming, T., Nuñez, R. & Sternberg, L., 1993 Seasonal changes in the diets of migrant and non-migrant nectarivorous bats as revealed by carbon stable isotope analysis. Oecologia 94, 72–75.
- [49] Bradbury, J., 1977 Lek mating behavior in the hammer-headed bat. Zeitschrift für Tierpsychologie 45, 225–255.
- [50] Langevin, P. & Barclay, R., 1990 Hypsignathus monstrosus. Mammalian Species 357, 1–4.
- [51] King, T. & Dallimer, M., 2010 The fruit bats (chiroptera: Pteropodidae) of the lesio-louna reserve, bateke plateau, republic of congo. Mammalia 74, 63–69.
- [52] Dunbar, M., 2007 Thermal energetics of torpid silver-haired batslasionycteris noctivagans. Acta theriologica 52, 65–68.
- [53] Cryan, P., 2003 Seasonal distribution of migratory tree bats (lasiurus and lasionycteris) in north america. Journal of Mammalogy 84, 579–593.
- [54] Genoud, M., 1993 Temperature regulation in subtropical tree bats. Comparative Biochemistry and Physiology Part A: Physiology 104, 321–331.
- [55] Findley, J. & Jones, C., 1964 Seasonal distribution of the hoary bat. Journal of Mammalogy pp. 461–470.
- [56] Bell, G., Bartholomew, G. & Nagy, K., 1986 The roles of energetics, water economy, foraging behavior, and geothermal refugia in the distribution of the bat, macrotus californicus. *Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology* 156, 441–450.
- [57] Anderson, S., 1969 Macrotus waterhousii. Mammalian species pp. 1–4.
- [58] HALL, L., 1982 The effect of cave microclimate on winter roosting behaviour in the bat, minipperus schreibersii blepotis. Australian Journal of Ecology 7, 129–136.
- [59] Rodrigues, L., 1999 Miniopterus schreibersii. In The Atlas of European Mammals (ed. A. e. a. Mitchell-Jones), pp. 154–155. Academic Press, London, UK.
- [60] Rodrigues, L. & Palmeirim, J., 2008 Migratory behaviour of the schreiber's bat: when, where and why do cave bats migrate in a mediterranean region? Journal of Zoology 274, 116–125.
- [61] Paunovic, M., 1998 New results of bat marking (mammalia, chiroptera) in eastern serbia vi. nauèno-struèni skup o prirodnim vrednostima i zaštiti zivotne sredine, zbornik radova. Zbornik Radova 27, 243–246.
- [62] Holland, R., 2007 Orientation and navigation in bats: known unknowns or unknown unknowns? Behavioral Ecology and Sociobiology 61, 653–660.
- [63] Serra-Cobo, J., Sanz-Trullén, V. & Martínez-Rica, J., 1998 Migratory movements of miniopterus schreibersii in the north-east of spain. order .
- [64] McNab, B., 1974 The behavior of temperate cave bats in a subtropical environment. Ecology pp. 943–958.
- [65] Jones, C. & Manning, R., 1989 Myotis austroriparius. Mammalian species pp. 1–3.
- [66] Rice, D., 1957 Life history and ecology of myotis austroriparius in florida. Journal of Mammalogy 38, 15–32.
- [67] Duke, S., Bateman, G. & Bateman, M., 1979 Longevity record for myotis californicus. The Southwestern Naturalist 24.
- [68] Hirshfeld, J. & O'Farrell, M., 1976 Comparisons of differential warming rates and tissue temperatures in some species of desert bats. Comparative Biochemistry and Physiology Part A: Physiology 55, 83 87. ISSN 0300-9629. (doi:DOI: 10.1016/0300-9629(76)90127-4).
- [69] Simpson, M., 1993 Myotis californicus. Mammalian Species 428, 1–4.
- [70] Dietz, M. & Kalko, E., 2006 Seasonal changes in daily torpor patterns of free-ranging female and male daubenton's bats (myotis daubentonii). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 176, 223–231.
- [71] Tress, J., Tress, C., Schorcht, W., BIEDERMANN, M., Koch, R. & Iffert, D., 2004 Mitteilungen zum wanderverhalten von wasserfledermäusen (myotis daubentonii) und rauhhautfledermäusen (pipistrellus nathusii) aus mecklenburg. Nyctalus (NF) 9, 236–248.
- [72] Bogdanowicz, W., 1994 Myotis daubentonii. Mammalian species pp. 1–9.
- [73] Chruszcz, B. J. & Barclay, R. M. R., 2002 Thermoregulatory ecology of a solitary bat, myotis evotis, roosting in rock crevices. Functional Ecology 16, 18–26. ISSN 1365-2435. (doi:10.1046/j.0269-8463.2001.00602.x).
- [74] Lausen, C. & Barclay, R., 2006 Winter bat activity in the canadian prairies. Canadian journal of zoology 84, 1079–1086.
- [75] Manning, R. & Jones, J., 1989 Myotis evotis. Mammalian Species pp. 1–5.
- [76] Webb, P., Speakman, J. & Racey, P., 1996 How hot is a hibernaculum? a review of the temperatures at which bats hibernate. Oecologia 98, 40–47.
- [77] Decher, J. & Choate, J., 1995 Myotis grisescens. Mammalian Species pp. 1-7.

- [78] Best, T. & Jennings, J., 1997 Myotis leibii. Mammalian species pp. 1–6.
- [79] Johnson, J. & Gates, J., 2008 Spring migration and roost selection of female myotis leibii in maryland. Northeastern Naturalist 15, 453-460.
- [80] Davis, W. & Hitchcock, H., 1965 Biology and migration of the bat, myotis lucifugus, in new england. Journal of Mammalogy pp. 296–313.
- [81] Griffin, D., 1940 Migrations of new england bats. Bulletin of The Museum of Comparative Zoology 86, 217-246.
- [82] Griffin, D., 1945 Travels of banded cave bats. Journal of Mammalogy 26, 15–23.
- [83] Britzke, E., Loeb, S., Hobson, K., Romanek, C. & Vonhof, M., 2009 Using hydrogen isotopes to assign origins of bats in the eastern united states. Journal of Mammalogy 90, 743–751.
- [84] Fenton, M. & Barclay, R., 1980 Myotis lucifugus. Mammalian Species pp. 1–8.
- [85] Furmankiewicz, J. & Altringham, J., 2007 Genetic structure in a swarming brown long-eared bat (plecotus auritus) population: evidence for mating at swarming sites. Conservation Genetics 8, 913–923.
- [86] Simon, M., Hüttenbügel, S. & Smit-Viergutz, J., 2004 Ecology and conservation of bats in villages and towns. Schriftenr. Landschaftspfl. Natursch. 77, 1–264.
- [87] Gerell, R., 1999 Myotis mystacinus (kuhl, 1817). In Atlas of European Mammals (eds. A. J. Mitchell-Jones, G. Amori, W. Bogdanowicz, B. Krystufek, P. J. H. Reijnders, F. Spitzenberger, M. Stubbe, J. B. M. Thissen, V. Vohralík & J. Zima), pp. 116–117. The Academic Press, London, UK.
- [88] Gaisler, J., Hanák, V., Hanzal, V. & Jarský, V., 2003 Výsledky kroužkování netopýru v české republice a na slovensku, 1948–2000. Vespertilio 7, 3–61.
- [89] Rivers, N., Butlin, R. & Altringham, J., 2006 Autumn swarming behaviour of natterer's bats in the uk: population size, catchment area and dispersal. Biological conservation 127, 215–226.
- [90] Masing, M., Poots, L., Randla, T. & Lutsar, L., 1999 50 years of bat-ringing in estonia: methods and the main results. Plecotus et al. Moskva 2, 20–35.
- [91] Studier, E. & O'Farrell, M., 1972 Biology of myotis thysanodes and m. lucifugus (chiroptera: Vespertilionidae)—i. thermoregulation. Comparative Biochemistry and Physiology Part A: Physiology 41, 567–595.
- [92] Wilson, D. & LaVal, R., 1974 Myotis nigricans. Mammalian Species 39, 1–3.
- [93] Caceres, M. C. & Barclay, R. M. R., 2000 Myotis septentrionalis. Mammalian Species pp. 1–4. (doi:10.1644/1545-1410(2000)634;0001:MS;2.0.CO;2).
- [94] Geluso, K., 2007 Winter activity of bats over water and along flyways in new mexico. The Southwestern Naturalist 52, 482–492.
- [95] O'Farrell, M. & Studier, E., 1980 Myotis thysanodes. Mammalian species pp. 1–5.
- [96] Reisen, W., Kennedy, M. & Reisen, N., 1976 Winter ecology of ectoparasites collected from hibernating myotis velifer (allen) in southwestern oklahoma (chiroptera: Vespertilionidae). The Journal of Parasitology pp. 628–635.
- [97] Fitch, J., Shump, K. & Shump, A., 1981 Myotis velifer. Mammalian Species pp. 1–5.
- [98] Warner, R. & Czaplewski, N., 1984 Myotis volans. Mammalian species pp. 1–4.
- [99] Armstrong, D. M., Fitzgerald, J. P. & Meaney, C. A., 2011 Mammals of Colorado. University of Colorado Press, Boulder, CO, second edition.
- [100] Schowalter, D., 1980 Swarming, reproduction, and early hibernation of myotis lucifugus and m. volans in alberta, canada. Journal of Mammalogy 61, 350–354.
- [101] CRYAN, P., BOGAN, M. & YANEGA, G., 2001 Roosting habits of four bat species in the black hills of south dakota. Acta Chiropterologica 3, 43–52.
- [102] Milligan, B. & Brigham, R., 1993 Sex ratio variation in the yuma bat (myotis yumanensis). Canadian journal of zoology 71, 937–940.
- [103] Geluso, K. & Mink, J., 2009 Use of bridges by bats (mammalia: Chiroptera) in the rio grande valley, new mexico. The Southwestern Naturalist 54, 421–429.
- [104] Nagel, A. & Nagel, R., 1991 How do bats choose optimal temperatures for hibernation? Comparative Biochemistry and Physiology Part A: Physiology 99, 323–326.
- [105] Ohlendorf, B., Hecht, B., Strassburg, D. & AGIRREMENDI, P., 2000 Fernfund eines kleinabendseglers (nyctalus leisleri) in spanien. Nyctalus 7, 239–242.
- [106] Popa-Lisseanu, A. & Voigt, C., 2009 Bats on the move. Journal of Mammalogy 90, 1283–1289.
- [107] Humphrev, S. & Cope, J., 1968 Records of migration of the evening bat, nycticeius humeralis, Journal of Mammalogy 49, 329–329.
- [108] Watkins, L., 1969 Observations on the distribution and natural history of the evening bat (nycticeius humeralis) in northwestern missouri and adjacent iowa. Transactions of the Kansas Academy of Science 72, 330–336.
- [109] Ruffner, G., Poche, R., Meierkord, M. & Neal, J., 1979 Winter bat activity over a desert wash in southwestern utah. The Southwestern Naturalist 24, 447–453.

- [110] Cryan, P. Unpublished.
- [111] Santos, M., Aguirre, L., Vázquez, L. & Ortega, J., 2003 Phyllostomus hastatus. Mammalian Species 722, 1-6.
- [112] Andreuccetti, P., Angelini, F. & Taddei, C., 1984 The interactions between spermatozoa and uterine epithelium in the hibernating bat, pipistrellus kuhli natt. Gamete research 10, 67–76.
- [113] Flaquer, C., Ruiz-Jarillo, R., Torre, I. & Arrizabalaga, A., 2005 First resident population of pipistrellus nathusii (keyserling and blasius, 1839) in the iberian peninsula. Acta Chiropterologica 7, 183–188.
- [114] Petersons, G., 2004 Seasonal migrations of north-eastern populations of nathusius' bat pipistrellus nathusii (chiroptera). Myotis 41/42, 29–56.
- [115] Bogdanowicz, W., 1999 Pipistrellus nathusii (keyserling and blasius, 1839). In *The Atlas of European Mammals* (eds. A. Mitchell-Jones, G. Amori, W. Bogdanowicz, B. Kryštufek, P. Reijders, F. Spitzenberger, M. Stubbe, J. Thissen, V. Vohralík *et al.*), pp. 124–125. The Academic Press, London, UK.
- [116] Russ, J., O'Neill, J. & Montgomery, W., 1998 Nathusius' pipistrelle bats (pipistrellus nathusii, keyserling & blasius 1839) breeding in ireland. Journal of Zoology 245, 345–349.
- [117] Avery, M., 1991 Pipistrelle. In Handbook of British Mammals (eds. G. Corbet & S. Harris), pp. 124–128. Blackwell Scientific Publications, Oxford, UK.
- [118] Bryja, J., Kaňuch, P., Fornůsková, A., Bartonička, T. & Rěhák, Z., 2009 Low population genetic structuring of two cryptic bat species suggests their migratory behaviour in continental europe. *Biol. J. Linn. Soc.* 96, 103–114.
- [119] Buresh, I., 1941 The bats (chiroptera) migrate like the migrating birds. Bulg. Akad. Nauk. Iskustv. 61, 4–72.
- [120] Benda, P., Ivanova, T., Horáček, I., Hanák, V., Červený, J., Gaisler, J., Gueorguieva, A., Petrov, B. & Vohralík, V., 2003 Bats (mammalia: Chiroptera) of the eastern mediterranean. part 3. review of bat distribution in bulgaria. Acta Soc. Zool. Bohem 67, 245–357.
- [121] Park, K., Altringham, J. & Jones, G., 1996 Assortative roosting in the two phonic types of pipistrellus pipistrellus during the mating season. Proceedings: Biological Sciences 263, 1495–1499.
- [122] Sachteleben, J. & Von Helversen, O., 2006 Songflight behaviour and mating system of the pipistrelle bat (pipistrellus pipistrellus) in an urban habitat. Acta Chiropterologica 8, 391–401.
- [123] Burland, T., Barratt, E., Beaumont, M. & Racey, P., 1999 Population genetic structure and gene flow in a gleaning bat, plecotus auritus. Proceedings of the Royal Society of London. Series B: Biological Sciences 266, 975–980.
- [124] Breed, A., Field, H., Smith, C., Edmonston, J. & Meers, J., 2010 Bats without borders: long-distance movements and implications for disease risk management. EcoHealth pp. 1–9.
- [125] Epstein, J. H. Personal communication.
- [126] Jones, D. & Kunz, T., 2000 Pteropus hypomelanus. Mammalian Species pp. 1–6.
- [127] Heideman, P. & Heaney, L., 1989 Population biology and estimates of abundance of fruit bats (pteropodidae) in philippine submontane rainforest. Journal of Zoology 218, 565–586.
- [128] McNab, B. & Armstrong, M., 2001 Sexual dimorphism and scaling of energetics in flying foxes of the genus pteropus. Journal of mammalogy 82, 709–720.
- [129] Tidemann, C. & Nelson, J., 2004 Long-distance movements of the grey-headed flying fox (pteropus poliocephalus). Journal of Zoology 263, 141–146.
- [130] Sinclair, E., Webb, N., Marchant, A. & Tidemann, C., 1996 Genetic variation in the little red flying-fox pteropus scapulatus (chiroptera: Pteropodidae): implications for management. Biological Conservation 76, 45–50.
- [131] Epstein, J., Olival, K., Pulliam, J., Smith, C., Westrum, J., Hughes, T., Dobson, A., Zubaid, A., Rahman, S., Basir, M. et al., 2009 Pteropus vampyrus, a hunted migratory species with a multinational home-range and a need for regional management. Journal of Applied Ecology 46, 991–1002.
- [132] Geiser, F. & Ruf, T., 1995 Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiological Zoology 68, 935–966.
- [133] De Paz, O., Fernández, R. & Benzal, J., 1986 El annilamiento de qirópteros en el centro de la península ibérica durante el periodo 1977-1986. Central de Ecologia 30, 113-138.
- [134] Gaisler, J. & Chytil, J., 2002 Mark-recapture results and changes in bat abundance at the cave of Na Turoldu, Czech Republic. FOLIA ZOOLOGICA 51, 1–10. ISSN 0139-7893.
- [135] Roer, H., 1995 60 years of bat-banding in europe-results and tasks for future research. Myotis 32-33, 251-261.
- [136] Schober, W. & Grimmberger, E., 1998 Die Fledermäuse Europas. Kosmos Publishing House, Stuttgart, Germany.
- [137] Kwiecinski, G. & Griffiths, T., 1999 Rousettus egyptiacus. Mammalian Species pp. 1–9.
- [138] He, L., Pan, Y., He, G., Lin, B., Liao, C., Zuo, X. & Yuan, L., 2010 Structural and functional studies of leptins from hibernating and non-hibernating bats. General and comparative endocrinology 168, 29–35.
- [139] Roberts, T., 1977 The mammals of Pakistan. Cambridge Univ Press

- [140] Advani, R., 1982 Distribution and status of chiroptera species in rajasthan, india. Saeugetierkundliche Mitteilungen 30, 49–52.
- [141] Brosset, A., 1962 The bats of central and western india. part 1. Bombay Nat. Hist. Soc. 59, 1–57.
- [142] Chen, J., Rossiter, S., Flanders, J., Sun, Y., Hua, P., Miller-Butterworth, C., Liu, X., Rajan, K. & Zhang, S., 2010 Contrasting genetic structure in two co-distributed species of old world fruit bat. PloS one 5. e13903.
- [143] Audet, D. & Thomas, D., 1997 Facultative hypothermia as a thermoregulatory strategy in the phyllostomid bats, Carollia perspicillata and Sturnira lilium. *Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology* 167, 146–152. ISSN 0174-1578.
- [144] Timm, R. & LaVal, R., 2000 Mammals. In Monteverde: ecology and conservation of a tropical cloud forest (eds. N. Nadkarni & N. Wheelwright), pp. 223-244. Oxford University Press, Oxford, UK.
- [145] Mello, M., Kalko, E. & Silva, W., 2008 Diet and abundance of the bat sturnira lilium (chiroptera) in a brazilian montane atlantic forest. Journal of Mammalogy 89, 485–492.
- [146] Giannini, N., 1999 Selection of diet and elevation by sympatric species of sturnira in an andean rainforest. Journal of Mammalogy pp. 1186–1195.
- [147] Cockrum, E., 1969 Migration in the guano bat, tadarida brasiliensis. In *Contributions in Mammalogy* (ed. J. Jones Jr), volume 51. Museum of Natural History, University of Kansas Miscellaneous Publications, Lawrence, KS.
- [148] Geiser, F. & Stawski, C., 2011 Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy. *Integrative and Comparative Biology* 51, 337–348.
- [149] Gopalakrishna, A., 1986 Migratory pattern of some indian bats. Myotis 23/24, 223-227.
- [150] Badwaik, N., 1991 Seasonal migration of two species of microchiroptera in relation to breeding cycles. Mammalia 55, 625–628.
- [151] Rydell, J. & Baagøe, H., 1994 Vespertilio murinus. Mammalian species pp. 1–6.
- [152] Kawai, K., Fukui, D., Satô, M., Harada, M. & Maeda, K., 2010 Vespertilio murinus linnaeus, 1758 confirmed in japan from morphology and mitochondrial dna. Acta Chiropterologica 12, 463–470.
- [153] Markovets, M., Zelenova, N. & Shapoval, A., 2004 Beringung von fledermäusen in der biologischen station rybachy, 1957-2001. Nyctalus (NF) 9, 259–268.
- [154] Strelkov, P., 1969 Migratory and stationary bats (chiroptera) of the european part of the soviet union. Acta Zoologica Cracoviensia 14, 393–440.
- [155] Masing, M., 1989 A long-distance flight of vespertilio murinus from estonia. Muotis 27, 147–150.
- [156] Suarez, O. V., Busch, M. & Kravetz, F. O., 2004 Reproductive strategies in akodon azarae (rodentia, muridae). Canadian Journal of Zoology 82.
- [157] Parera, A. & Erize, F., 2002 Los mamíferos de la Argentina y la región austral de Sudamérica. El Ateneo Buenos Aires.
- [158] Roberts, M., Brand, S. & Maliniak, E., 1985 The biology of captive prehensile-tailed porcupines, coendou prehensilis. Journal of mammalogy pp. 476–482.
- [159] Lehmer, E., Van Horne, B., Kulbartz, B. & Florant, G., 2001 Facultative torpor in free-ranging black-tailed prairie dogs (cynomys ludovicianus). Journal of Mammalogy 82, 551–557.
- [160] Dubost, G., Henry, O. & Comizzoli, P., 2005 Seasonality of reproduction in the three largest terrestrial rodents of french guiana forest. Mammalian Biology-Zeitschrift fur Saugetierkunde 70, 93–109.
- [161] Fietz, J., Pflug, M., Schlund, W. & Tataruch, F., 2005 Influences of the feeding ecology on body mass and possible implications for reproduction in the edible dormouse (glis glis). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 175, 45–55.
- [162] Pearson, O., 1960 Habits of microtus californicus revealed by automatic photographic recorders. Ecological Monographs 30, 232–250.
- [163] Raun, G., 1966 Rectal body temperatures of the woodrat (neotoma micropus) in southern texas. The Southwestern Naturalist 11, 467–475.
- [164] McCarty, R., 1978 Onychomys leucogaster. Mammalian species pp. 1–6.
- [165] MacClintock, D. & Ferguson, W., 1970 Squirrels of North America. Van Nostrand Reinhold New York.
- [166] Lovegrove, B. G., 2003 The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 173, 87–112.
- [167] Kawamichi, M., 1996 Ecological factors affecting annual variation in commencement of hibernation in wild chipmunks (tamias sibiricus). Journal of mammalogy 77, 731–744.
- [168] Hardouin, J., 1995 Minilivestock: from gathering to controlled production. Biodiversity and Conservation 4, 220–232. ISSN 0960-3115.
- [169] IUCN, 2010. Iucn red list of threatened species, version 2010.4, http://www.iucnredlist.org.