Problem

Let SET-SPLITTING = $\{\langle S, C \rangle | S \text{ is a finite set and } C = \{C_1, \dots, C_k\}$

collection of subsets of S, for some k > 0, such that elements of S can be colored *red* or *blue* so that no C_i has all its elements colored with the same color}. Show that *SET-SPLITTING* is NP-complete.

Step-by-step solution

Step 1 of 3

NP -Complete:

A language B is NP-complete if it satisfies 2 conditions

- 1. B is in NP
- 2. Every A in NP is polynomial time reducible to B.

Comment

Step 2 of 3

1. SET - SPLITING is in NP:

SET – SPLITING is in NP because we can verify in polynomial time that no subset C_i is monochromatic.

2. $3 SAT \leq_{P} SET - SPLITING$:

To prove that the problem is NP complete, we give a polynomial time reduction from 3SAT to SET-SPLITING.

Given an instance of 3SAT ϕ , set $S = \left\{x_1, x_1, \dots, x_n, x_n, y\right\}$, where x_i 's are the variables and y is a special color variable.

Comment

Step 3 of 3

The splitting is done as follows:

For every clause C_i in ϕ , Let C_i be a subset of S containing the elements corresponding to the literally, in C_i and the special elements $y \in s$, Then $C = C_1, ..., C_k$

If ϕ is satisfiable, consider a satisfying assignment.

If we color all the true literals red, all the false ones are blue, and y blue, then every subset C_i of S has at least one red element (because it is satisfiable and it also contain one blue element y.

In addition, for a given splitting $\langle S,C \rangle$, we can able to set the literals that are colored differently from y to true.

In the same way, we can able to set the literals that have the same color as y to false.

This concludes that satisfying assignment for ϕ .

Thus, SET - SPLITTING is NP-Complete.

Comment