2 Риманов интеграл

2.1 Схема на Дарбу

2.1.1 Разделяне на интервал

Нека е даден интервал [a, b].

- $a = x_0 < x_1 < x_2 < \ldots < x_n = b$, означение \tilde{x}
- диаметър на разделянето $d\left(\tilde{x}\right) = \max_{1 \leq i \leq n} \left(x_i x_{i-1}\right)$
- по-дребно (по-фино) разделяне: $\tilde{x} \prec \tilde{y}$, ако $\{x_i, 0 \leq i \leq n\} \subset \{y_j, 0 \leq j \leq m\}$

2.1.2 Суми на Дарбу

Нека f е ограничена в интервала [a, b]. За разделяне \tilde{x} определяме

- $m_i = \inf \{ f(x) : x \in [x_{i-1}, x_i] \}$
- $M_i = \sup \{ f(x) : x \in [x_{i-1}, x_i] \}$

"Малка" сума на Дарбу

$$\mathbf{s}(f, [a, b], \tilde{x}) = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$

"Голяма" сума на Дарбу

$$S(f, [a, b], \tilde{x}) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$

Тривиално неравенство

$$s(f, [a, b], \tilde{x}) \le S(f, [a, b], \tilde{x})$$

Малките суми нарастват

$$\tilde{x} \prec \tilde{y} \Rightarrow \mathbf{s}(f, [a, b], \tilde{x}) \leq \mathbf{s}(f, [a, b], \tilde{y})$$

Големите суми намаляват

$$\tilde{x} \prec \tilde{y} \Rightarrow \mathbf{S}(f, [a, b], \tilde{y}) \leq \mathbf{S}(f, [a, b], \tilde{x})$$

2.1.3 "Горен" и "долен" интеграл на Дарбу

- 1. $\mathbf{s}(f, [a, b], \tilde{x}) \leq \mathbf{S}(f, [a, b], \tilde{y})$ за всеки две \tilde{x} и \tilde{y}
- 2. $\underline{I} = \sup_{\tilde{x}} \mathbf{s}\left(f, \; [a, \; b], \; \tilde{x}\right) \leq \mathbf{S}\left(f, \; [a, \; b], \; \tilde{y}\right)$ за всяко разделяне \tilde{y}
- 3. $\underline{I} \leq = \inf_{\tilde{y}} \mathbf{S}(f, [a, b], \tilde{y}) = \overline{I}$

2.1.4 Дефиниция на интегруема функция

Казваме, че ограничената в [a, b] функция f е интегруема в [a, b], ако $\underline{I} = \overline{I}$

Определен (Риманов) интеграл — $\int\limits_a^b f(x)\,dx \quad - \text{ единственото число между малките и}$ големите суми на Дарбу

2.1.5 Примери

- 1. $\chi_{\mathbb{Q}}$ не е интегруема в никой интервал.
- 2. Константите са интегруеми във всеки интервал и $\int_{a}^{b} C \, dx = C(b-a)$
- 3. Стъпаловидните функции са интегруеми.

2.1.6 Необходимо и достатъчно условие за интегруемост

Ограничената в [a, b] функция f е интегруема в [a, b] тогава и само тогава, когато за всяко $\varepsilon > 0$ има разделяне \tilde{x} на [a, b], за което $\mathbf{S}(f, [a, b], \tilde{x}) - \mathbf{s}(f, [a, b], \tilde{x}) < \varepsilon$ Доказателство

 \Rightarrow За $\varepsilon > 0$ има разделяния \tilde{u} и \tilde{v} на интервала $[a,\,b]$, за които $\underline{I} - \frac{\varepsilon}{2} < \mathbf{s} \, (f,\,[a,\,b],\,\tilde{u})$ и $\mathbf{S} \, (f,\,[a,\,b],\,\tilde{v}) < \overline{I} + \frac{\varepsilon}{2}$. За разделянето $\tilde{x} = \tilde{u} \cup \tilde{v}$, предвид $\underline{I} = \overline{I} = I$, имаме:

$$I - \frac{\varepsilon}{2} < \mathbf{s}\left(f,\; [a,\,b],\; \tilde{u}\right) \leq \mathbf{s}\left(f,\; [a,\,b],\; \tilde{x}\right) \leq \mathbf{S}\left(f,\; [a,\,b],\; \tilde{x}\right) \leq \mathbf{S}\left(f,\; [a,\,b],\; \tilde{v}\right) < I + \frac{\varepsilon}{2}\,, \quad \text{t.e. } \mathbf{S}\left(f,\; [a,\,b],\; \tilde{x}\right) - \mathbf{s}\left(f,\; [a,\,b],\; \tilde{x}\right) < \varepsilon\;.$$

 \Leftarrow За всяко $k \in \mathbb{N}$ има разделяне $\tilde{x}^{(k)}$ на интервала [a, b], за което $\mathbf{S}\left(f, [a, b], \tilde{x}^{(k)}\right) - \mathbf{s}\left(f, [a, b], \tilde{x}^{(k)}\right) < \frac{1}{k}$. Понеже $\overline{I} - \underline{I} \leq \mathbf{S}\left(f, [a, b], \tilde{x}^{(k)}\right) - \mathbf{s}\left(f, [a, b], \tilde{x}^{(k)}\right)$, то $\overline{I} - \underline{I} < \frac{1}{k}$ за всяко $k \in \mathbb{N}$, откъдето $\underline{I} = \overline{I}$.

2.1.7 Интегруеми функции

1. Ако f е монотонна в [a, b], то f е интегруема в [a, b].

Доказателство Нека f е растяща. Тогава $f(a) \leq f(x) \leq f(b)$. Разглеждаме разделянето $x_p = a + p \frac{b-a}{n}, \ p = 0, 1, \dots n$. Имаме

$$\mathbf{S}\left(f,\ [a,\ b],\ \tilde{x}\right) - \mathbf{s}\left(f,\ [a,\ b],\ \tilde{x}\right) = \sum_{p=1}^{n} M_{p}\left(x_{p} - x_{p-1}\right) - \sum_{p=1}^{n} m_{p}\left(x_{p} - x_{p-1}\right) = \frac{b-a}{n} \left(\sum_{p=1}^{n} f\left(x_{p}\right) - \sum_{p=1}^{n} f\left(x_{p-1}\right)\right) = \frac{(b-a)\left(f(b) - f(a)\right)}{n}.$$

За $\varepsilon > 0$ избираме $n \in \mathbb{N}$, за което $\frac{(b-a)\left(f(b)-f(a)\right)}{n} < \varepsilon$. Тогава $\mathbf{S}\left(f,\;[a,\,b],\;\tilde{x}\right) - \mathbf{s}\left(f,\;[a,\,b],\;\tilde{x}\right) < \varepsilon$, т.е. f е интегруема.

2. Ако f е непрекъсната в [a, b], то f е интегруема в [a, b].

Доказателство Съгласно теоремата на Вайерщрас, f е ограничена. Разглеждаме разделянето $x_p = a + p \frac{b-a}{n}$, $p = 0, 1, \ldots n$. Отново от теоремата на Вайерщрас $M_p = f(u_p)$, $m_p = f(u_p)$ като $u_p \in [x_{p-1}, x_p]$, $v_p \in [x_{p-1}, x_p]$.

Нека $\varepsilon>0$. Функцията f е равномерно непрекъсната в [a,b], значи съществува $\delta>0$, за което от $|x-y|<\delta$ следва $|f(x)-f(y)|<\frac{\varepsilon}{b-a}$. Избираме $n\in\mathbb{N}$ с $\frac{b-a}{n}<\delta$. Тогава $M_p-m_p<\frac{\varepsilon}{b-a}$ и

$$\mathbf{S}(f, [a, b], \tilde{x}) - \mathbf{s}(f, [a, b], \tilde{x}) = \sum_{p=0}^{n} (M_p - m_p) (x_p - x_{p-1}) < \frac{\varepsilon}{b-a} \sum_{p=0}^{n} (x_p - x_{p-1}) = \varepsilon.$$

3. Ако f е ограничена в [a, b] и точките на прекъсване на f са краен брой, то f е интегруема в [a, b].

Доказателство (случай на една вътрешна точка c) За $\varepsilon > 0$ избираме $a < b^* < c < a^* < b$ с $(M-m)(a^*-b^*)<\frac{\varepsilon}{3}$ $(M=\sup\{f(x): x\in [a,b]\}\ , \ m=\inf\{f(x): x\in [a,b]\})$.

Функцията f е непрекъсната в интервалите $[a, b^*]$ и $[a^*, b]$, значи има разделяния \tilde{x} и \tilde{y} , за които $\mathbf{S}(f, [a, b^*], \tilde{x}) - \mathbf{s}(f, [a, b^*], \tilde{x}) < \frac{\varepsilon}{3}$ и $\mathbf{S}(f, [a^*, b], \tilde{y}) - \mathbf{s}(f, [a^*, b], \tilde{y}) < \frac{\varepsilon}{3}$.

Тогава $(M^* = \sup \{f(x) : x \in [b^*, a^*]\}$, $m^* = \inf \{f(x) : x \in b^*, a^*]\}$)

 $\mathbf{S}\left(f,\;[a,\;b],\;\tilde{x}\cup\tilde{y}\right) - \mathbf{s}\left(f,\;[a,\;b],\;\tilde{x}\cup\tilde{y}\right) \; = \; \mathbf{S}\left(f,\;[a,\;b^*],\;\tilde{x}\right) - \mathbf{s}\left(f,\;[a,\;b^*],\;\tilde{x}\right) + \left(M^* - m^*\right)\left(a^* - b^*\right) + \mathbf{S}\left(f,\;[a^*,\;b],\;\tilde{y}\right) - \mathbf{s}\left(f,\;[a^*,\;b],\;\tilde{y}\right) < \; \varepsilon + \left(M^* - m^*\right)\left(a^* - b^*\right) + \left(M^* - m^*\right) + \left(M^* - m^*\right)\left(a^* - b^*\right) + \left(M^* - m^*\right) +$

2.1.8 Необходимо и достатъчно условие за интегруемост II

Ограничената в [a,b] функция f е интегруема в [a,b] тогава и само тогава, когато за всяко $\varepsilon>0$ има $\delta>0$ такова, че за всяко разделяне \tilde{x} на [a,b], за което $d\left(\tilde{x}\right)<\delta$, е изпълнено

 $\mathbf{S}(f, [a, b], \tilde{x}) - \mathbf{s}(f, [a, b], \tilde{x}) < \varepsilon$

Доказателство

"малко" нарастване

 $\mathbf{s}\,(f,\;[a,\,b],\; ilde{x}\cup ilde{y})\,-\,\mathbf{s}\,(f,\;[a,\,b],\; ilde{x})\,\leq p(M-m)d(ilde{x})\,,$ където $p=\# ilde{y}\,-2$

"малко" намаляване

$$\mathbf{S}\left(f,\;[a,\;b],\; ilde{x}
ight)\,-\,\mathbf{S}\left(f,\;[a,\;b],\; ilde{x}\cup ilde{y}
ight)\,\leq p(M-m)d(ilde{x})\,,$$
 където $p=\# ilde{y}-2$

2.2 Дефиниция на Риман

2.2.1 Риманови суми

$$\mathbf{R}(f, [a, b], \tilde{x}, \tilde{c}) = \sum_{i=1}^{n} f(c_i) (x_i - x_{i-1}), \quad c_i \in [x_{i-1}, x_i]$$

За едни и същи делящи точки, сумата на Риман е по-голяма от малката сума на Дарбу

За едни и същи делящи точки, сумата на Риман е по-малка от голямата сума на Дарбу

$$\mathbf{R}(f, [a, b], \tilde{x}, \tilde{c}) \leq \mathbf{S}(f, [a, b], \tilde{x})$$

2.2.2 Дефиниция на Риман

Казваме, че функцията f е интегруема в $[a,\,b]$, ако съществува число I такова, че за всяко $\varepsilon>0$ има $\delta>0$, за което

$$|\mathbf{R}(f, [a, b], \tilde{x}, \tilde{c}) - I| < \varepsilon$$

за всяко разделяне \tilde{x} с $d(\tilde{x}) < \delta$ и всеки набор \tilde{c} , $c_i \in [x_{i-1}, x_i]$.

2.2.3 Основно твърдение

Двете дефиниции са еквивалентни.

Доказателство

Риман ⇒ Дарбу

1. Ограниченост: в неравенството

$$|\mathbf{R}(f, [a, b], \tilde{x}, \tilde{c}) - I| < 1$$

фиксираме \tilde{x} с $d(\tilde{x}) < \delta$ и \tilde{c} , $i \neq p$.

2. За $\varepsilon > 0$ и \tilde{x} има \tilde{c} с

$$\mathbf{R}(f, [a, b], \tilde{x}, \tilde{c}) - \mathbf{s}(f, [a, b], \tilde{x}) < \varepsilon$$

3. За $\varepsilon > 0$ и \tilde{x} има \tilde{c} с

$$\mathbf{S}(f, [a, b], \tilde{x}) - \mathbf{R}(f, [a, b], \tilde{x}, \tilde{c}) < \varepsilon$$

Дарбу ⇒ Риман

Пример: За непрекъсната функция f

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + \frac{k(b-a)}{n}\right)$$

2.3 Свойства на определените интеграли

2.3.1 Линейност

1. Нека f и g са интегруеми в [a, b]. Тогава f + g е интегруема в [a, b] и

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

Доказателство $\mathbf{R}(f+g, [a, b], \tilde{x}, \tilde{c}) = \mathbf{R}(f, [a, b], \tilde{x}, \tilde{c}) + \mathbf{R}(g, [a, b], \tilde{x}, \tilde{c})$

2. Нека f е интегруема в $[a,\,b],\,C\in\mathbb{R}$. Тогава Cf е интегруема в $[a,\,b]$ и

$$\int_{a}^{b} Cf(x)dx = C \int_{a}^{b} f(x)dx$$

Доказателство $\mathbf{R}\left(Cf,\;[a,\;b],\;\tilde{x},\;\tilde{c}\right)=C\mathbf{R}\left(f,\;[a,\;b],\;\tilde{x},\;\tilde{c}\right)$

2.3.2 Позитивност

1. Нека f е интегруема в $[a,\,b]$ и $f(x)\geq 0$ за всяко $x\in [a,\,b]$. Тогава $\int\limits_a^b f(x)dx\,\geq\,0$

- 2. Ако f е интегруема в $[a,b], f(x) \geq 0$ и $\int\limits_a^b f(x) dx = 0$, то f(x) = 0 за всяка точка на непрекъснатост на f.
- 3. Интегриране на неравенства: $f(x) \leq g(x) \Rightarrow \int\limits_a^b f(x) dx \leq \int\limits_a^b g(x) dx$

2.3.3 Адитивност

Нека $c \in (a, b)$. f е интегруема в [a, b] тогава и само тогава, когато f е интегруема в [a, c] И f е интегруема в [a, b]. Изпълнено е:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

За разделяне \tilde{x} на $[a,\,b]$, за което $c\in \tilde{x}$, полагаме $\tilde{u}=\{u\in \tilde{x}\,;u\leq c\}$ и $\tilde{v}=\{v\in \tilde{x}\,;u\geq c\}$. Тогава

 \Rightarrow Нека $\varepsilon>0$. Съществува разделяне \tilde{y} на $[a,\,b]$, за което $\mathbf{S}\,(f,\,[a,\,b],\,\tilde{y})-\mathbf{s}\,(f,\,[a,\,b],\,\tilde{y})<\varepsilon$. Нека $\tilde{x}=\tilde{y}\cup\{c\}$. Тогава

$$\begin{split} \mathbf{S}\,(f,\,[a,\,c],\,\,\tilde{u}) - \mathbf{s}\,(f,\,[a,\,c],\,\,\tilde{u}) \,\,(\ \text{също и } \mathbf{S}\,(f,\,[c,\,b],\,\,\tilde{v}) - \mathbf{s}\,(f,\,[c,\,b],\,\,\tilde{v}) \,\,) \,\, \leq \\ \\ \leq \,\mathbf{S}\,(f,\,[a,\,c],\,\,\tilde{u}) - \mathbf{s}\,(f,\,[a,\,c],\,\,\tilde{u}) + \mathbf{S}\,(f,\,[c,\,b],\,\,\tilde{v}) - \mathbf{s}\,(f,\,[c,\,b],\,\,\tilde{v}) \,\,= \\ \\ = \,\mathbf{S}\,(f,\,[a,\,b],\,\,\tilde{x}) - \mathbf{s}\,(f,\,[a,\,b],\,\,\tilde{x}) \,\, \leq \,\mathbf{S}\,(f,\,[a,\,b],\,\,\tilde{y}) - \mathbf{s}\,(f,\,[a,\,b],\,\,\tilde{y}) \,\, < \,\varepsilon \,\,. \end{split}$$

За произволно разделяне \tilde{y} на [a, b] отново полагаме $\tilde{x} = \tilde{y} \cup \{c\}$. Тогава

$$\mathbf{s}(f, [a, b], \, \tilde{y}) \leq \mathbf{s}(f, [a, b], \, \tilde{x}) = \mathbf{s}(f, [a, c], \, \tilde{u}) + \mathbf{s}(f, [c, b], \, \tilde{v}) \leq \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \leq \mathbf{s}(f, [a, c], \, \tilde{u}) + \mathbf{s}(f, [c, b], \, \tilde{v}) = \mathbf{s}(f, [a, b], \, \tilde{x}) \leq \mathbf{s}(f, [a, b], \, \tilde{y}) ,$$

т.е сумата на двата интеграла е между малките и големи суми за f в [a, b], откъдето следва исканото равенство.

2.3.4 Интегруемост на модула

Ако f е интегруема в [a, b], то |f| е интегруема в [a, b]. План на доказателство

1.
$$f_{+}(x) = \max(f(x), 0), f_{-}(x) = \max(-f(x), 0)$$

2.
$$|f(x)| = f_{+}(x) + f_{-}(x), \quad f(x) = f_{+}(x) - f_{-}(x)$$

3.
$$M_i^+ - m_i^+ \le M_i - m_i$$

Следствие

$$\left| \int_{a}^{b} f(x)dx \right| \leq \int_{a}^{b} |f(x)| dx \leq (b-a) \sup_{x \in [a,b]} |f(x)|$$

2.3.5 Интегруемост на произведение

Ако f и g са интегруеми в [a, b], то f.g е интегруема в [a, b].

План на доказателство

1. Ако $f(x) \ge 0$ и f е интегруема в [a, b], то f^2 е интегруема в [a, b].

$$M_i^* = M_i^2 \,, \, m_i^* = m_i^2$$

$$S(f^2, [a, b], \tilde{x}) - s(f^2, [a, b], \tilde{x}) \le 2M(S(f, [a, b], \tilde{x}) - s(f, [a, b], \tilde{x}))$$
.

2. Ако f е интегруема в [a, b], то f^2 е интегруема в [a, b].

$$f^{2}(x) = (f(x) + C)^{2} - 2Cf(x) + C^{2}, \quad f(x) + C \ge 0$$

3.
$$f(x)g(x) = \frac{1}{4} \left((f(x) + g(x))^2 - (f(x) - g(x))^2 \right)$$

2.3.6 Първа теорема за средните стойности

Обща формулировка

Нека f и g са интегруеми в [a,b], като $g(x)\geq 0$ за всяко $x\in [a,b]$. Тогава съществува число C, за което

1.
$$\inf_{x \in [a,b]} f(x) \le C \le \sup_{x \in [a,b]} f(x)$$

2.
$$\int_{a}^{b} f(x)g(x)dx = C \int_{a}^{b} g(x)dx$$

Формулировка за непрекъсната функция

Нека f е непрекъсната, а g е интегруема в $[a,\,b]$, като $g(x)\geq 0$ за всяко $x\in [a,\,b]$. Тогава съществува число $a\leq c\leq b$, за което

$$\int_{a}^{b} f(x)g(x)dx = f(c) \int_{a}^{b} g(x)dx$$