Interactions et modifications d'effet en Epidémiologie

CERPOP, INSERM, EQUITY Team

Last compiled on $04~\mathrm{mai},\,2023$

Contents

1	Pré	sentation	7
2	Inti	$\mathbf{roduction}$	9
	2.1	Quand étudier les interactions ?	9
	2.2	Les points les plus importants	11
Ι	$\mathbf{S}\mathbf{y}$	nthèse de la littérature	13
3	Not	cations	15
	3.1	Variables et probabilités	15
	3.2	Mesures d'effets	16
4	Inte	eraction vs modification d'effets	19
	4.1	Modification d'effets	19
	4.2	Interaction	20
	4.3	Synthèse	21
5	La	question des échelles	23
	5.1	Mesures des interactions	23
	5.2	Lien entre les deux échelles	24
	5.3	Synthèse	27

4		CONTENTS

6	Typ	es de paramètres	29
	6.1	Avec les différences de risques (DR)	29
	6.2	Avec les risques relatifs (RR) \dots	29
	6.3	Avec les Odds Ration (OR)	29
	6.4	Excès de risque à partir des RR (RERI)	30
	6.5	Autres	30
II	Es	stimations	33
7	Esti	imations	35
	7.1	Simulations	35
	7.2	Estimation par régression	37
	7.3	Estimation par G-computation	37
	7.4	Estimation par Modèle Structurel Marginal	43
	7.5	Estimation avec TMLE	45
8	Rep	résentations graphiques	63
9	Pré	sentation des résultats	65
	9.1	Modification d'effet	65
	9.2	Interaction	65
	9.3	Proposition	66
II	I E	En pratique	67
10	Ste	os	69
11	Exe	mple 1 - Y binaire	71
12	Exe	mple 2 - Y quantitatif	73
13	Syn	thèse générale	7 5

5

14 Pour aller plus loin	77
14.1 Ajouter de la complexité	77
14.2 Interaction avec confusion intermédiaire $\dots \dots \dots \dots$	77
14.3 Interaction et médiation	77
15 Références	79

6 CONTENTS

Présentation

Ce document a été rédigé en tant que document de synthèse du travail du groupe "Interaction" de l'équipe EQUITY, CERPOP. Ce travail a consisté en une revue de la littérature et en une application détaillée des méthodes sur des analyses illustratives, dans un but d'auto-formation et pédagogique.

Les participant.e.s du groupe de travail sont :

- Hélène COLINEAUX
- Léna BONIN
- Camille JOANNES
- Benoit LEPAGE
- Lola NEUFCOURT
- Ainhoa UGARTECHE

The online version of this book is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Introduction

Comment telle prédisposition génétique et telle exposition environnementale *inter-agissent*-elles ? L'effet de tel traitement varie-t-il selon les circonstances ? Selon les caractéristiques du patient ? Telle intervention peut-elle être bénéfique pour un groupe social et délétère pour un autre ?

De nombreuses questions épidémiologiques impliquent des mécanismes d'interactions ou de modifications d'effet. Pourtant, étudier ces mécanismes restent encore complexe aujourd'hui sur le plan méthodologique : quelle démarche adopter ? sur quelle échelle mesurer cette interaction ? comment interpréter les coefficients ? et cetera.

Dans ce document, nous proposons une synthèse de la littérature et une démarche progressive et appliquée pour explorer ces questions.

2.1 Quand étudier les interactions?

2.1.1 Prediction versus causalité

La science des données cherche à répondre à 3 types d'objectifs Hernán et al. $\left[2019\right]$:

Description

Résumer, décrire, visualiser

Axé sur les données : calculs simples +/- apprentissage non supervisé

Objectif: synthétiser l'information

Prédiction

Reconnaissance des schémas et prévision

Axé sur les données : modélisation statistique +/apprentissage supervisé

Objectif : Prédire la valeur de l'outcome

Inférence causale

Compréhension

Non uniquement axé sur les données : implique la combinaison de connaissances externes avec la modélisation statistique +/- apprentissage supervisé

Objectif : Estimer un effet causal

Selon le type d'objectif, la démarche d'analyse et les enjeux méthodologiques ne vont pas être les mêmes. Si l'objectif est prédictif, la démarche va être centrée sur la prédiction de l'outcome, à partir de covariables sélectionnées afin d'optimiser la précision de l'estimation, tout en prenant en compte leur disponibilité en pratique et la parcimonie du modèle.

Dans une démarche explicative, ou étiologique, au contraire, la démarche va être centré sur l'estimation d'un effet causal, en prenant en compte les covariables en fonction de leur rôle vis-à-vis de l'effet d'intérêt (facteurs de confusion, colliders, médiateurs...).

En épidémiologie, à l'exception des cas où l'on souhaite développer un test ou score diagnostic ou pronostic, les objectifs sont le plus souvent explicatifs. On cherche en effet, la plupart du temps, à identifier des liens de cause à effet, afin de pouvoir agir sur les causes pour modifier les effets.

Finalement, pour répondre à la question "quand doit-on prendre en compte les interactions ?", il est d'abord nécessaire d'identifier dans quel type de démarche l'on s'inscrit :

- **Démarche prédictive**: on ajoutera alors les interactions dans le modèle de prédiction, pour le rendre plus *flexible*, si cela améliore la précision de l'estimation VanderWeele and Knol [2014].
- Démarche explicative/étiologique : on étudiera les interactions ou modifications d'effet, si cela répond directement à l'objectif. Par exemple :
 - Si l'objectif est du type "l'effet de X sur Y varie-t-il en fonction de V ?", on prendra en compte l'interactions entre X et V.
 - Les objectifs qui nécessitent la prise en compte de l'interaction peuvent aussi être du type : "Quel est l'effet conjoint de X et V sur Y ?" ou "Quel part de l'effet de X sur Y disparaît quand V est modifié ?", etc.
 - Par contre, si l'objectif est simplement d'estimer l'effet de X sur Y,
 ou l'effet médié par M, la prise en compte des interactions entre X
 et des covariables (facteurs de confusion ou médiateurs) n'est pas

indispensable. C'est l'effet "moyen" qui sera estimé. Des termes d'interactions peuvent cependant être ajoutés (mais non interprétés), si cela améliore la précision de l'estimation (enjeu d'optimisation du modèle).

2.1.2 Types d'objectifs

Dans ce document, nous nous intéresserons principalement aux interactions et modifications d'effet dans une démarche étiologique/ explicative.

Les objectifs pouvant nécessiter l'étude de l'interaction/modification d'effet sont VanderWeele and Knol [2014] :

- Cibler des sous-groupes. Par exemple, identifier des sous-groupes pour lesquels l'intervention aura le plus d'effet afin de pouvoir cibler l'intervention en cas de ressources limitées, ou s'assurer que l'intervention est bénéfice pour tous les groupes et pas délétères pour certains groupes.
- Explorer les mécanismes d'un effet. Par exemple, en cas d'intervention qui n'a d'effet qu'en présence ou absence d'une caractéristiques particulière (définition mécanistique de l'interaction) ou seulement conjointement à une autre intervention.
- Etudier l'effet d'une intervention pour éliminer une partie de l'effet d'une exposition non modifiable. Par exemple, quelle part de l'effet du niveau d'éducation des parents sur la mortalité disparaîtrait si on intervenait sur le tabagisme à l'adolescence ?

2.2 Les points les plus importants

La première étape importante consiste à définir précisément l'objectif :

- L'objectif est-il de type descriptif, prédictif ou explicatif ?
- Si l'on est dans une démarche explicative, d'inférence causale, est-ce que la mesure d'un effet d'interaction est nécessaire pour y répondre ? (identifier précisément l'effet que l'on cherche à estimer, ou estimand).

Ensuite, de **nombreuses questions** se posent pour réaliser une analyse d'interaction, auxquelles nous tentons de répondre dans ce document :

- S'agit-il d'une interaction ou une modification d'effet ?
- Sur quelle échelle la mesure-t-on? Un effet d'interaction peut en effet être défini sur une échelle multiplicative ou additive, et les résultats entre ces échelles peuvent être contradictoires.

- $\bullet\,$ Comment estimer cette interaction ? Quels paramètres présenter et comment les interpréter ?
- Comment la représenter graphiquement ?

Part I Synthèse de la littérature

Notations

3.1 Variables et probabilités

On note:

• un outcome : Y,

- deux expositions : X et V

La probabilité de l'outcome Y dans chaque strate définie par les 2 expositions est notée :

$$\bullet \quad p_{xv} = P(Y=1|X=x,V=v)$$

Exemple

On a deux exposition X, le tabagisme actif à 20 ans, et V, le fait d'avoir vécu un évènement traumatique pendant l'enfance. L'outcome Y est binaire et représente le fait d'avoir au moins une pathologie chronique à 60 ans Y=1 ou aucune Y=0.

On décrit (données complètement fictives):

X \ V	V = 0	V = 1
X = 0	$P_{00} = 0.1$	$P_{10} = 0.2$
X = 1	P ₀₁ = 0,4	P ₁₁ = 0,9

Interprétation : La probabilité d'avoir au moins une pathologie chronique à 60 ans quand on n'a pas vécu d'événement traumatique pendant l'enfance et pas fumé à 20 ans est de 10%, tandis qu'elle est de 90% quand on a vécu un événement traumatique et fumé.

3.2 Mesures d'effets

L'effet d'une variable X sur Y peut être mesuré sur deux échelles : additive (différence de risque/probabilité) ou multiplicative (rapport de risque/probabilité).

Concernant les différences de risques (DR, effets additifs)

On a donc:

- L'effet d'un X binaire sur Y est : DR(X) = P(Y=1|do(X=1)) P(Y=1|do(X=0))
 - qu'on peut estimer, si les conditions d'identifiabilité sont réunies, par $P(Y=1|X=1)-P(Y=1|X=0)=p_1-p_0$
- L'effet conjoint de X et V est : $DR(X,V) = p_{11} p_{00}$
- L'effet de X sur Y dans chaque strate de V est : $DR(X|V=0)=p_{10}-p_{00}$ et $DR(X|V=1)=p_{11}-p_{01}$

Exemple

Différences de risques pour l'exemple 1

- $DR(X \cap V) = p_{11} p_{00} = 0, 9 0, 1 = +0, 8$
- $\bullet \ DR(X|V=0)=p_{10}-p_{00}=0, 4-0, 1=+0, 3$
- $DR(X|V=1) = p_{11} p_{01} = 0, 9 0, 2 = +0, 7$

Le fait d'être doublement exposé par rapport à pas du tout augmente le risque de +80%. Parmi les personnes n'ayant pas vécu d'événement traumatique, le fait de fumer à 20 augmente le risque de +30%, alors que parmi les personnes ayant vécu un événement traumatique, il est augmenté de +70%.

Concernant, les rapports de risque (effets multiplicatifs)

on peut notamment utiliser les risques relatifs (RR). On donc :

- L'effet d'un X binaire sur Y est : RR(X) = P(Y=1|do(X=1))/P(Y=1|do(X=0))
 - qu'on peut estimer, si les conditions d'identifiabilité sont réunies, par $P(Y=1|do(X=1))/P(Y=1|do(X=0))=p_1/p_0$
- L'effet conjoint de X et V est : $RR(X, V) = p_{11}/p_{00}$
- L'effet de X sur Y dans chaque strate de V est : $RR(X|V=0)=p_{10}/p_{00}$ et $RR(X|V=1)=p_{11}/p_{01}$

Exemple

Risques relatifs pour l'exemple 1

- $RR(X \cap V) = 0,9/0,1 = \times 9$
- $RR(X|V=0) = 0, 4/0, 1 = \times 4$
- $RR(X|V=1) = 0.9/0.2 = \times 4.5$

Le risque quand on est doublement exposé par rapport à pas du tout est multiplié par 9. Parmi les personnes n'ayant pas vécu d'événement traumatique, le fait de fumer à 20 multiplie le risque par 4, alors que parmi les personnes ayant vécu un événement traumatique, il est multiplié par 4,5.

Interaction vs modification d'effets

4.1 Modification d'effets

La question de la modification d'effet consiste à d'identifier si l'effet du traitement ou de l'exposition est différent dans différents groupes de patients ayant des caractéristiques différentes (estimer l'effet d'une exposition séparément en fonction d'une autre variable) Corraini et al. [2017].

Si l'on compare avec un essai d'intervention, c'est comme s'il y avait 1 seule intervention mais que l'analyse est stratifiée sur V. On analyse donc l'effet du scénario do(X) dans chaque groupe de V.

En observationnel, l'effet causal qui nous intéresse est donc celui de X mais pas celui de V. On ajustera sur les facteurs de confusion de $X \to Y$.

On ne fait pas d'hypothèse sur les mécanismes de la modification d'effet, qui peut être causale, de façon directe ou indirecte, ou pas du tout (par proxy ou cause commune) VanderWeele and Robins [2007].

Exemples d'objectifs : identifier des groupes pour lesquels le traitement ne serait pas utile, ou si l'effet du traitement est homogène/hétérogène en fonction de l'âge, du sexe, etc.

On a une modification de l'effet de X par V si l'effet de X est différent dans chaque strate définie par V:

• en additif : $DR(X|V=0) \neq DR(X|V=1)$

- soit
$$p_{10} - p_{00} \neq p_{11} - p_{01}$$

• en multiplicatif : $RR(X|V=0) \neq RR(X|V=1)$

- soit
$$p_{10}/p_{00} \neq p_{11}/p_{01}1$$

Exemple

Modification d'effet dans l'exemple 1

En additif:

- effet quand V=0 : DR(X|V=0) = 0, 4-0, 1 = +0, 3
- effet quand V=1 : DR(X|V=1) = 0, 9-0, 2 = +0, 7
- donc $DR(X|V=0) \neq DR(X|V=1)$

En multiplicatif:

- effet quand V=0 : $RR(X|V=0) = 0, 4/0, 1 = \times 4$
- effet quand V=1 : $RR(X|V=1) = 0,9/0,2 = \times 4,5$
- donc $RR(X|V=0) \neq RR(X|V=1)$

Ici l'effet du tabagisme est différent selon que les personnes ont vécu un événement traumatique ou non, sur l'échelle additive et multiplicative. On peut donc dire que le fait d'avoir vécu un événement traumatique modifie l'effet du tabac. Attention, on fait l'hypothèse de l'absence de facteurs de confusion entre le tabagisme et l'outcome, ce qui est en réalité peu probable.

4.2 Interaction

Quand on s'intéresse à l'interaction, on s'intéresse plutôt à l'effet conjoints de 2 expositions (ou plus) sur un outcome. Il y a une interaction synergique si l'effet conjoint est supérieur à l'effet de la somme des individuels. Il y a une interaction antagoniste lorsque l'effet conjoint est inférieur à la somme des effets individuels Corraini et al. [2017].

Si l'on compare avec un essai d'intervention, c'est comme s'il y a plusieurs interventions selon le nombre de combinaison. On analyse donc l'effet du scénario do(X, V). Ici l'effet causal d'interêt est vraiment l'effet conjoint des deux variables.

Dans un schéma observationnel, l'effet causal qui nous intéresse est donc celui de X*V. On ajustera sur les facteurs de confusion de $X.V \to Y$. On fait l'hypothèse que les mécanismes de l'effet conjoint de X et V sont causaux.

On a une interaction si:

4.3. SYNTHÈSE 21

- en additif : $DR(X \cap V) \neq DR(X|V=0) + DR(V|X=0)$ $-\ p_{11}-p_{00}\neq (p_{10}-p_{00})+(p_{01}-p_{00})$ $-p_{11} \neq p_{10} + p_{01} - p_{00}$
- en multiplicatif $RR(X \cap V) \neq RR(X|V=0) + RR(V|X=0)$

$$- p_{11}/p_{00} \neq (p_{10}/p_{00}) + (p_{01}/p_{00}) - p_{11} \neq (p_{10} + p_{01})/p_{00}$$

Exemple

Interaction dans l'exemple 1

En additif:

- effet joint : $DR(X \cap V) = 0, 9 0, 1 = +0.8$
- somme des effets individuel : DR(X|V=0) + DR(V|X=0) =+0.3+0.1=+0.4
- donc $DR(X \cap V) \neq DR(X|V=0) + DR(V|X=0)$

En multiplicatif:

- effet joint : $RR(X \cap V) = 0,9/0,1 = \times 9$
- produit des effets individuel : $RR(X|V=0) \times RR(V|X=0) =$ $4 \times 2 = \times 8$
- donc $DR(X \cap V) \neq DR(X|V=0) \times DR(V|X=0)$

Ici l'effet joint des 2 expositions est supérieur à la somme ou au produit des effets individuels, il y a donc une interaction synergique entre les deux expositions.

Synthèse 4.3

Mathématiquement, les formulations sont équivalentes :

- échelle additive: $p_{10} p_{00} \neq p_{11} p_{01} \Leftrightarrow p_{11} \neq (p_{10} + p_{01}) p_{00}$ échelle multiplicative : $p_{10}/p_{00} \neq p_{11}/p_{01} \Leftrightarrow p_{11} \neq (p_{10} \times p_{01})/p_{00}$

La différence se joue plutôt sur :

- la façon dont la question est posée (effet de X selon V ou effet conjoint de X et V),
- sur les hypothèses causales formulées (scénarii do(X) ou do(X,V))
- et donc sur les sets de facteurs de confusion à considérer (seulement sur $X \to Y$ ou $X.V \to Y$).

Il existe des cas où l'identification d'une interaction ou d'une modification d'effet ne conduira pas à la même démarche et donc au même résultat VanderWeele [2009]. Prenons le DAG suivant :

Dans ce cas, il n'y a pas d'interaction entre A1 et A2, car si on intervient sur les 2 (do(A1,A2)), il n'y a plus de chemin entre A2 et Y. Il peut par contre y avoir une modification de l'effet $A1 \rightarrow Y$ par A2 (do(A1)). Dans ce cas, pour estimer cet effet, L1 et L2 seront considérés comme des facteurs de confusion, mais pas L3.

La question des échelles

Mesures des interactions

Echelle additive

Une façon simple de mesurer l'interaction est de mesurer à quel point l'effet conjoint de deux facteurs est différents de la somme de leurs effets individuels VanderWeele and Knol [2014]:

- $DR(X \cap V) (DR(X|V=0) + DR(V|X=0))$
- $\bullet \ \ (p_{11}-p_{00})-[(p_{10}-p_{00})+(p_{01}-p_{00})]$
- $\bullet \ \ {\rm soit} \ p_{11}-p_{10}-p_{01}+p_{00}$

Exemple

Mesure de l'interaction dans l'exemple 1

- $DR(X \cap V) (DR(X|V=0) + DR(V|X=0)) = 0.8 (0,3 + 0.00)$ (0,1) = +0,4
- soit $p_{11}-p_{10}-p_{01}+p_{00}=0, 9-0, 4-0, 2+0, 1=+0, 4$ ou $(p_{11}-p_{01})-(p_{10}-p_{00})=(0, 9-0, 2)-(0, 4-0, 1)=$ 0, 7 - 0, 3 = +0, 4
- ou $(p_{11}-p_{10})-(p_{01}-p_{00})=(0,9-0,4)-(0,2-0,1)=0,5-0,1=+0,4$

soit:

Echelle multiplicative

En cas d'outcome binaire, c'est souvent le RR ou l'OR qui est utilisé pour mesurer les effets. La mesure de l'interaction sur une échelle multiplicative serait donc VanderWeele and Knol [2014]:

- $\frac{RR11}{RR10 \times RR01}$ soit $\frac{p_{11}/p_{00}}{(p_{10}/p_{00})\times(p_{01}/p_{00})}$ soit $\frac{p_{11}\times p_{00}}{p_{10}\times p_{01}}$

Exemple

Mesure de l'interaction dans l'exemple 1

$$\begin{array}{l} \bullet \quad \frac{RR(X\cap V)}{RR(X|V=0)*RR(V|X=0)} = 9/(4\times 2) = \times 1, 1 \\ \bullet \quad \text{soit} \quad \frac{p_{11}/p_{00}}{(p_{10}+p_{01})/p_{00}} = \frac{0,9/0,1}{(0,4\times0,2)/0,1} = \times 1, 1 \\ \bullet \quad \text{ou} \quad \frac{p_{11}/p_{01}}{p_{10}/p_{00}} = \frac{0,9/0,2}{0,4/0,1} = \times 4, 5/\times 4 = \times 1, 1 \\ \bullet \quad \text{ou} \quad \frac{p_{11}/p_{10}}{p_{01}/p_{00}} = \frac{0,9/0,4}{0,2/0,1} = \times 2, 25 - \times 2 = \times 1, 1 \end{array}$$

ou:

x \ v	V = 0	V = 1	Effet V		
X = 0	P00 = +0,1	P01 = +0,2	x2 🛖		
X = 1	P10 = +0,4	P11 = +0,9	X2,25	+1	
Effet X	x4 ~	→ X4,5 +1	,1 (x8)		
+1,1					

5.2 Lien entre les deux échelles

Un apparent paradoxe

Mesurer l'interaction sur une seule échelle peut être trompeur Mathur and Vander Weele [2018]. On peut fréquemment observer une interaction positive dans une échelle (par exemple p11 - p10 - p01 + p00 > 0) et négative dans l'autre (par exemple p11.p00/p10.p01 < 1).

Exemple

Dans cet exemple (on a juste modifié la probabilité p_{11} , on observe une interaction additive positive (l'effet de X augmente de +20% quand V=1 par rapport à V=0) mais une interaction multiplicative négative (l'effet de X est multiplié par 0,9 - donc diminue - quand V=1 par rapport à V=0).

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	+0,1 👚
X = 1	P10 = +0,4	P11 = +0,7	+0,3 +0,2
Effet X	+0,3 +0,2	+0,5 +0	,2 (+0,5)

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	x2 🛖
X = 1	P10 = +0,4	P11 = +0,7	x1,75 <mark>x0,9</mark>
Effet X	x4 _{x0,9}	🔷 x3,5	(0,9 (x8)

Il a même été démontré que si on n'observe pas d'interaction sur une échelle, alors on en observera obligatoirement sur l'autre échelle... VanderWeele and Knol [2014].

Exemple

Dans cet exemple, il n'y a pas d'interaction multiplicative (effet de X identique quelque soit V), mais sur l'echelle additive, on observe une interaction positive.

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	+0,1 🔷
X = 1	P10 = +0,4	P11 = +0,8	+0,4 +0,3
Effet X	+0,3+0,3	+0,6 +0	,3 (+0,5)

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	x2 🛖
X = 1	P10 = +0,4	P11 = +0,8	x2 x1
Effet X	x4 _{x1} -	🔷 x4	(1 (x8)

et dans cet autre exemple, il n'y a pas d'interaction additive (effet de X identique quelque soit V), mais sur l'echelle multiplicative, on observe une interaction négative.

x\v	V = 0	V = 1	Effet V	
X = 0	P00 = +0,1	P01 = +0,2	+0,1 🔷	
X = 1	P10 = +0,4	P11 = +0,5	+0,1 +0	
Effet X	+0,3 +0	+0,3	+0 (+0,5)	

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	x2 🛖
X = 1	P10 = +0,4	P11 = +0,5	X1,25 <mark>x0,6</mark>
Effet X	^{x4} x0,6	X2,5	KO,6 (x8)

Le continuum

Dans un article de 2019 VanderWeele [2019], Vanderweele décrit le continuum existant entre les 2 échelles.

Par exemple, avec deux expositions ayant un effet positif (qui augmentent le risque) sur l'outcome en l'absence de l'autre exposition, lorsque l'effet joint est

très important, l'interaction est positive sur les 2 échelles. Mais lorsque la taille de l'effet joint diminue, l'interaction multiplicative devient négative alors que l'interaction additive reste positive. Puis, lorsque la taille de l'effet joint diminue encore, l'interaction devient négative sur les deux échelles.

Х	X1 \ X2 X2		X2 = 0	X2 =	1	Effet X2		X1 \ X2	X2 =	= O	X2 = 1	Effet X2
7	X1 = 0 P00 = +0,1		P01 = +	-0,2	+0,1 X1		X1 = 0	P00 =	+0,1	P01 = +0,2	x2	
7	X1 = 1	. Р	10 = +0,4	P11 =	+Δ	E(X2 X1=1) X1 = 1		X1 = 1	P10 =	+0,4	P11 = +Δ	RR(X2 X1=1)
E	ffet X	1	+0,3	E(X1 X	2=1)	(+0,5)	(+0,5) Effet X1 x4		RR(X1 X2=1)	(+0,8)		
		P11	MI	Al						•	. ,	R(X2 X1=1) (X2 X1=1)
	1	0.9	1.1	+0.4	M+ A+			nultiplicati additive		4.5 +0.7	2. +(3 0.5
	2	0.8	1.0	+0.3	M₀ A+			licative additive		4 +0.6	2 +(0.4
	3	0.7	0.9	+0.2	M- A+			multiplicat additive		3.5 +0.5		75 0.3
	4	0.5	0.6	+0.0	M- A ₀	negat zero-a		multiplicat itive		2.5 +0.3		25 0.1
	5	0.45	0.56	-0.05	M- A-	3		multiplicat additive		2.3 +0.25	1. ; +(1 0.05
	6	0.4	0.5	-0.1	M- A-			raction		2 +0.2	1 0.	0
	7	0.3	0.4	-0.2	M- A-			e interactio		1.5 +0.1		75).1
	8	0.2	0.3	-0.3	M- A-			alitative re interact		1 0.0	0. -0	5 .2
	9	0.15	0.2	-0.35	M- A-	doubl qualit	_	e interactio		0.8 -0.05	0. -0	4).25
	10	0.1	0.1	-0.4	M- A-	perfe	ct aı	ntagonism		0.5 -0.1	0. -0	3).3

inverted interaction

Interaction pure et qualitative

0.06

11

0.05

Dans ce continuum, deux cas particuliers d'interaction peuvent être retrouvées :

• Interaction pure de X en fonction de V, si X n'a un effet que dans une strate de V. Par exemple, $p_{10}=p_{00}$ et $p_{11}\neq p_{01}$

Par exemple ici, V a un effet si X=0 mais pas si X=1:

x\v	V = 0	V = 1	Effet V	
X = 0	P00 = +0,1	P01 = +0,2	+0,1	
X = 1 P10 = +0,4		P11 = +0,4	+0,0	
Effet X	+0,3	+0,2	(+0,5)	

x\v	V = 0	V = 1	Effet V	
X = 0	P00 = +0,1	P01 = +0,2	x2	
X = 1	X = 1 P10 = +0,4		x1	
Effet X	x4	x2	(x8)	

0.3

-0.15

0.1

-0.35

• Interaction qualitative de X1 en fonction de X2, , si l'effet de X1 dans une strate de X2 va dans la direction opposée de l'autre strate de X2

Par exemple ici, V a un effet positif si X=0 mais négatif si X=1:

x\v	V = 0	V = 1	Effet V	
X = 0	P00 = +0,1	P01 = +0,2	+0,1	
X = 1	P10 = +0,4	P11 = +0,3	-0,1	
Effet X	+0,3	+0,1	(+0,5)	

x\v	V = 0	V = 1	Effet V	
X = 0	P00 = +0,1	P01 = +0,2	x2	
X = 1 P10 = +0,4		P11 = +0,3	X0,75	
Effet X	x4	X1,5	(x8)	

5.3 Synthèse

Quelle échelle choisir pour mesurer un effet d'interaction ?

Même si en pratique l'échelle multiplicative est plus utilisée en raison de l'utilisation des modèles logistiques Knol and VanderWeele [2012], il semble y avoir un consensus pour privilégier l'échelle additive, plus appropriée pour évaluer l'utilité en santé publique VanderWeele and Knol [2014] Knol and VanderWeele [2012].

Si on reprend l'exemple ci dessous :

x\v	V = 0	V = 1	Effet V	
X = 0	P00 = +0,1	P01 = +0,2	+0,1 👚	
X = 1	P10 = +0,4	P11 = +0,7	+0,3 +0,2	
Effet X	+0,3 +0,2	+0,5 +0	,2 (+0,5)	

x\v	V = 0	V = 1	Effet V
X = 0	P00 = +0,1	P01 = +0,2	x2 🛖
X = 1	P10 = +0,4	P11 = +0,7	x1,75 _{x0,9}
Effet X	x4 _{x0,9}	x 3,5	(0,9 (x8)

X représente un traitement dont on ne dispose que de 100 doses et Y un outcome de santé favorable (guérison). Il faut choisir si on donne 100 doses au groupe V = 0 ou au groupe V = 1.

Si on donne 100 doses au groupe V=0, 30 personnes seront guéries grace au traitement (30 personnes de plus que l'évolution naturelle, X=0) contre 50 personnes si on les donne au groupe V=1. Donc il est préférable d'allouer les doses au groupe V=1.

Pour tant si on avait réfléchi à partir de l'échelle multiplicative, on au rait choisi le groupe V=0 car l'effet du traitement est de RR=4 dans le groupe V=0 et RR=3,5 dans le groupe v=1...

On peut donc conclure à un effet multiplicatif plus fort d'un traitement dans un groupe alors qu'en terme d'utilité (nombre de personnes favorablement impactées), l'échelle additive nous conduirait à choisir l'autre groupe...

Idéalement, les interactions devraient cependant être reportées sur les 2 échelles Knol and VanderWeele [2012] VanderWeele and Knol [2014].

Types de paramètres

Avec les différences de risques (DR)

On a déjà défini un paramètre d'interaction sur l'échelle additive (AI) à partir des différences d'effets VanderWeele and Knol [2014] :

- $AI = DR(X \cap V) (DR(X|V=0) + DR(V|X=0))$
- $\bullet \ \ AI = (p_{11} p_{00}) [(p_{10} p_{00}) + (p_{01} p_{00})]$
- soit $AI = p_{11} p_{10} p_{01} + p_{00}$

Avec les risques relatifs (RR) 6.2

On a aussi défini un paramètre d'interaction sur l'échelle multiplicative (MI) à partir des risques relatifs VanderWeele and Knol [2014]:

- $$\begin{split} \bullet & \ MI = \frac{RR_{11}}{RR_{10} \times RR_{01}} \\ \bullet & \ \text{soit} \ MI = \frac{p_{11}/p_{00}}{(p_{10}/p_{00}) \times (p_{01}/p_{00})} \\ \bullet & \ \text{soit} \ MI = \frac{p_{11} \times p_{00}}{p_{10} \times p_{01}} \\ \end{split}$$

Avec les Odds Ration (OR) 6.3

Souvent en épidémiologie, lorsque l'outcome Y est binaire, les effets sont mesurés par des odds ratio estimé à partir de modèle de régression logistique.

Un paramètre d'interaction sur l'echelle multiplicative (MI_{OR}) peut être estimé à partir de ces OR VanderWeele and Knol [2014] :

•
$$MI_{OR} = \frac{OR_{11}}{OR_{10} \times OR_{01}}$$

En général, la mesure MI_{OR} et MI_{RR} seront proches si l'outcome est rare VanderWeele and Knol [2014].

6.4 Excès de risque à partir des RR (RERI)

Lorsque seulement les risques relatifs sont donnés mais que l'on souhaite évaluer l'interaction sur l'échelle additive, "l'excès de risque du à l'interaction" (RERI) ou "interaction contrast ratio" (ICR), peut être estimé à partir des risques relatifs VanderWeele and Knol [2014]:

•
$$RERI = RR_{11} - RR_{10} - RR_{01} + 1$$

Il faut noter que, bien que le RERI donne la direction direction (positive, négative ou nulle) de l'interaction additive, nous ne pouvons pas utiliser le RERI pour évaluer l'ampleur de l'interaction additive, à moins de connaître au moins p_{00} .

Si l'on a seulement l'OR et que l'outcome est rare, les OR peuvent approximé les RR, on a donc :

•
$$RERI_{OR} = OR_{11} - OR_{10} - OR_{01} + 1 \approx RERI_{RR}$$

6.5 Autres

D'autres paramètres ont aussi été proposé Vander Weele and Knol [2014], tels que :

Le "Synergie index" (SI)

Il s'agit d'un paramètre explorant l'interaction additive :

$$\bullet \ \ S = \tfrac{RR_{11}-1}{(RR_{10}-1)+(RR_{01}-1)}.$$

Il mesure à quel point le rapport de risque joint dépasse 1, et si cette mesure est supérieure à la somme de "à quel point" les rapports de risque de chaque exposition dépasse 1.

Si le dénominateur est positif:

6.5. AUTRES 31

- $\begin{array}{l} \bullet \ \ {\rm si\ S} > 1, \ {\rm alors}\ RERI_{RR} > 0 \\ \bullet \ \ {\rm si\ S} < 1, \ {\rm alors}\ RERI_{RR} < 0 \\ \end{array}$

L'interprétation de l'indice de synergie devient difficile dans les cas où l'effet de l'une des expositions est négatif et que le dénominateur de S est donc inférieur à 1.

Proportion attribuable (AP) 6.5.1

Il s'agit aussi d'un paramètre explorant l'interaction additive :

•
$$AP = \frac{RR_{11} - RR_{10} - RR_{01} + 1}{RR_{11}}$$
.

Ce paramètre mesure la proportion du risque dans le groupe doublement exposé qui est due à l'interaction.

L'AP est en lien avec le $RERI_{RR}$:

- $\begin{array}{l} \bullet \quad {\rm AP}>0 \ {\rm si} \ {\rm et} \ {\rm seulement} \ {\rm si} \ RERI_{RR}>0 \\ \bullet \quad {\rm AP}<0 \ {\rm si} \ {\rm et} \ {\rm seulement} \ {\rm si} \ RERI_{RR}<0. \end{array}$

En fait
$$AP = \frac{RERI_{RR}}{RR_{11}-1}$$
.

Part II Estimations

Estimations

7.1 Simulations

On simule des données selon le DAG suivant (toutes les variables sont binaires):


```
b_{L2}Y = 0.02,
                                  b_L3_Y = -0.02,
                                  b_A1_Y = 0.3,
                                  b_A2_Y = 0.1,
                                  b_A1A2_Y = 0.4 ) { # <- effet d'interaction Delta)</pre>
  # coefficients pour simuler l'exposition
  # exposition A1 # vérif
 try(if(b_A1 + b_L1_A1 + b_L1_A1 > 1)
    stop("la somme des coefficient du modèle A1 dépasse 100%"))
  # exposition A2 # vérif
  try(if(b_A2 + b_L1_A2 + b_L3_A2 > 1)
    stop("la somme des coefficients du modèle A2 dépasse 100%"))
  # coefficients pour simuler l'outcome, vérif
 try(if(b_Y + b_L1_Y + b_L2_Y + b_L3_Y + b_A1_Y + b_A2_Y + b_A1A2_Y > 1)
    stop("la somme des coefficients du modèle Y dépasse 100%"))
 try(if(b_Y + b_L1_Y + b_L2_Y + b_L3_Y + b_A1_Y + b_A2_Y + b_A1A2_Y < 0)
    stop("la somme des coefficients du modèle Y est inférieure à 0%"))
 coef \leftarrow list(c(p_L1 = p_L1, p_L2 = p_L2, p_L3 = p_L3),
               c(b_A1 = b_A1, b_L1_A1 = b_L1_A1, b_L2_A1 = b_L2_A1),
               c(b_A2 = b_A2, b_L1_A2 = b_L1_A2, b_L3_A2 = b_L3_A2),
               c(b_Y = b_Y, b_{L1}Y = b_{L1}Y, b_{L2}Y = b_{L2}Y, b_{L3}Y = b_{L3}Y,
                 b_A1_Y = b_A1_Y, b_A2_Y = b_A2_Y, b_A1A2_Y = b_A1A2_Y)
 return(coef)
generate.data <- function(N, b = param.causal.model()) {</pre>
 L1 \leftarrow rbinom(N, size = 1, prob = b[[1]]["p_L1"])
 L2 \leftarrow rbinom(N, size = 1, prob = b[[1]]["p_L2"])
 L3 \leftarrow rbinom(N, size = 1, prob = b[[1]]["p_L3"])
 A1 \leftarrow rbinom(N, size = 1, prob = b[[2]]["b_A1"] +
                  (b[[2]]["b_L1_A1"] * L1) + (b[[2]]["b_L2_A1"] * L2))
 A2 \leftarrow rbinom(N, size = 1, prob = b[[3]]["b_A2"] +
                  (b[[3]]["b_L1_A2"] * L1) + (b[[3]]["b_L3_A2"] * L3))
 Y \leftarrow rbinom(N, size = 1, prob = (b[[4]]["b_Y"] +
                                       (b[[4]]["b_L1_Y"] * L1) +
                                       (b[[4]]["b_L2_Y"] * L2) +
                                       (b[[4]]["b_L3_Y"] * L3) +
                                       (b[[4]]["b A1 Y"] * A1) +
                                       (b[[4]]["b_A2_Y"] * A2) +
                                       (b[[4]]["b_A1A2_Y"] * A1 * A2)))
```

```
data.sim <- data.frame(L1, L2, L3, A1, A2, Y)
  return(data.sim)
}

#### On simule une base de données
  set.seed(12345)
  # b = param.causal.model(b_A1A2_Y = -0.45)
  b = param.causal.model()
  df <- generate.data(N = 10000, b = b)
  summary(df)
  prop.table(table(df$Y, df$A1, df$A2, deparse.level = 2))</pre>
```

Au final, on a comme P(Y==1) dans chaque catégorie :

A2	label	levels	value
0	A1	0	0.10 (0.30)
0		1	0.41(0.49)
1	A1	0	0.20(0.40)
1		1	$0.90 \ (0.30)$

7.2 Estimation par régression

7.2.1 Multiplicatif (régression logistique)

Attention, les modèles de régressions logistiques sont biaisés car les données sont générées à partir de modèles additifs.

7.2.2 Additif (régression lineaire)

7.3 Estimation par G-computation

Il s'agit d'une "G-methods" aussi appelée "standardisation" par Hernàn.

names	DR
A1 A2=0	5.79 (4.99-6.72, p<0.001)
A2 A1=0	2.12 (1.86-2.43, p<0.001)
Interaction	5.96 (4.54-7.90, p<0.001)

names	OR
A1 A2=0	0.30 (0.28 to 0.32, p<0.001)
A2 A1=0	0.09 (0.08 to 0.11, p<0.001)
Interaction	0.39 (0.36 to 0.43, p<0.001)

```
## 1.a) on crée 4 tables correspondant aux 4 interventions contrefactuelles
    df.A1_0.A2_0 \leftarrow df.A1_1.A2_0 \leftarrow df.A1_0.A2_1 \leftarrow df.A1_1.A2_1 \leftarrow df
    df.A1_0.A2_0$A1 <- df.A1_0.A2_0$A2 <- rep(0, nrow(df))
    df.A1_1.A2_0$A1 <- rep(1, nrow(df))</pre>
    df.A1_1.A2_0$A2 <- rep(0, nrow(df))
    df.A1 \ 0.A2 \ 1$A1 \leftarrow rep(0, nrow(df))
    df.A1_0.A2_1$A2 <- rep(1, nrow(df))
    df.A1_1.A2_1$A1 <- df.A1_1.A2_1$A2 <- rep(1, nrow(df))
## 1.b) on modélise le critère de jugement
    \# \ model.Y \leftarrow glm(Y \sim L1 + L2 + L3 + A1 + A2 + A1:A2, \ data = df, \ family = "binomial"
    # modèle logistique biaisé (il y a des interactions avec les baseline)
    model.Y \leftarrow glm(Y \sim L1 + L2 + L3 + A1 + A2 + A1:A2, data = df,
                    family = "gaussian") # modèle non biaisé
    # en pratique la régression logistique n'est pas tellement biaisée,
    # mais peut être car il n'y a pas la place de mettre beaucoup de confusion
    # par rapport aux effets importants de A1 et A2 ? (10 fois plus grands)
## 1.c) on prédit le critère de jugement sous les interventions contrefactuelles
    Y.A1_0.A2_0 <- predict(model.Y, newdata = df.A1_0.A2_0, type = "response")
    Y.A1_1.A2_0 <- predict(model.Y, newdata = df.A1_1.A2_0, type = "response")
    Y.A1_0.A2_1 <- predict(model.Y, newdata = df.A1_0.A2_1, type = "response")
    Y.A1_1.A2_1 <- predict(model.Y, newdata = df.A1_1.A2_1, type = "response")
## 1.d) on va enregistrer l'ensemble des résultats pertinents dans une table de longue
    int.r <- matrix(NA,</pre>
                     ncol = 26,
                     nrow = nlevels(as.factor(df$A1)) * nlevels(as.factor(df$A2)))
    int.r <- as.data.frame(int.r)</pre>
    names(int.r) <- c("A1", "A2", "p", "p.lo", "p.up",</pre>
                       "RD.A1", "RD.A1.lo", "RD.A1.up", "RD.A2", "RD.A2.lo", "RD.A2.up",
                       "RR.A1", "RR.A1.lo", "RR.A1.up", "RR.A2", "RR.A2.lo", "RR.A2.up",
                       "a.INT", "a.INT.lo", "a.INT.up", "RERI", "RERI.lo", "RERI.up",
                       "m.INT", "m.INT.lo", "m.INT.up" )
    int.r[,c("A1","A2")] \leftarrow expand.grid(c(0,1), c(0,1))
```

```
# marginal effects in the k1 x k2 table
    # A1 = 0 et A2 = 0
    int.r$p[int.r$A1 == 0 & int.r$A2 == 0] \leftarrow mean(Y.A1_0.A2_0)
    # A1 = 1 et A2 = 0
    int.r$p[int.r$A1 == 1 & int.r$A2 == 0] \leftarrow mean(Y.A1_1.A2_0)
    # A1 = 0 et A2 = 1
    int.r$p[int.r$A1 == 0 \& int.r$A2 == 1] \leftarrow mean(Y.A1_0.A2_1)
    # A1 = 1 et A2 = 1
    int.r$p[int.r$A1 == 1 & int.r$A2 == 1] \leftarrow mean(Y.A1_1.A2_1)
# risk difference
    # RD.A1.A2is0
    int.r$RD.A1[int.r$A1 == 1 \& int.r$A2 == 0] <- mean(Y.A1_1.A2_0) - mean(Y.A1_0.A2_0)
    # RD.A1.A2is1
    int.r$RD.A1[int.r$A1 == 1 \& int.r$A2 == 1] <- mean(Y.A1_1.A2_1) - mean(Y.A1_0.A2_1)
    # RD.A2.A1is0
   int.r$RD.A2[int.r$A1 == 0 \& int.r$A2 == 1] <- mean(Y.A1_0.A2_1) - mean(Y.A1_0.A2_0)
    # RD.A2.A1is1
   int.r$RD.A2[int.r$A1 == 1 \& int.r$A2 == 1] \leftarrow mean(Y.A1_1.A2_1) - mean(Y.A1_1.A2_0)
# relative risk
    # RR.A1.A2is0
    int.r$RR.A1[int.r$A1 == 1 \& int.r$A2 == 0] \leftarrow mean(Y.A1_1.A2_0) / mean(Y.A1_0.A2_0)
    # RR.A1.A2is1
    int.r$RR.A1[int.r$A1 == 1 \& int.r$A2 == 1] <- mean(Y.A1_1.A2_1) / mean(Y.A1_0.A2_1)
    # RR.A2.A1is0
    int.r$RR.A2[int.r$A1 == 0 \& int.r$A2 == 1] <- mean(Y.A1_0.A2_1) / mean(Y.A1_0.A2_0)
    # RR.A2.A1is1
    int.r$RR.A2[int.r$A1 == 1 \& int.r$A2 == 1] <- mean(Y.A1 1.A2 1) / mean(Y.A1 1.A2 0)
# additive interaction
    int.r$a.INT[int.r$A1 == 1 & int.r$A2 == 1] <- mean(Y.A1_1.A2_1) -
                                                    mean(Y.A1_1.A2_0) -
                                                    mean(Y.A1_0.A2_1) +
      mean(Y.A1_0.A2_0)
    # RERI
    int.rRERI[int.r$A1 == 1 & int.r$A2 == 1] <- (mean(Y.A1_1.A2_1) -
                                                      mean(Y.A1_1.A2_0) -
                                                      mean(Y.A1_0.A2_1) +
                                                      mean(Y.A1_0.A2_0)) /
                                                      mean(Y.A1_0.A2_0)
    # multiplicative interaction
    int.r$m.INT[int.r$A1 == 1 & int.r$A2 == 1] <- (mean(Y.A1 1.A2 1) *
                                                       mean(Y.A1_0.A2_0)) /
                                                        (mean(Y.A1_1.A2_0) *
```

```
mean(Y.A1_0.A2_1))
## 1.e) Intervalles de confiance par bootstrap
   set.seed(5678)
   B <- 2000
   bootstrap.est <- data.frame(matrix(NA, nrow = B, ncol = 15))</pre>
    colnames(bootstrap.est) <- c("p.A1is0.A2is0", "p.A1is1.A2is0", "p.A1is0.A2is1", "p
                                  "RD.A1.A2is0", "RD.A1.A2is1", "RD.A2.A1is0", "RD.A2.A
                                  "lnRR.A1.A2is0", "lnRR.A1.A2is1", "lnRR.A2.A1is0", "l:
                                  "INT.a", "lnRERI", "lnINT.m")
   for (b in 1:B){
      # sample the indices 1 to n with replacement
     bootIndices <- sample(1:nrow(df), replace=T)</pre>
     bootData <- df[bootIndices,]</pre>
     if ( round(b/100, 0) == b/100 ) print(paste0("bootstrap number ",b))
      # model (unbiased in this case)
     model.Y <- glm(Y ~ L1 + L2 + L3 + A1 + A2 + A1:A2,
                     data = bootData,
                                                           # use BootData here +++
                     family = "gaussian")
     # conterfactual data sets
      boot.A1_0.A2_0 <- boot.A1_1.A2_0 <- boot.A1_0.A2_1 <- boot.A1_1.A2_1 <- bootData
      boot.A1_0.A2_0$A1 <- boot.A1_0.A2_0$A2 <- rep(0, nrow(df))
     boot.A1_1.A2_0$A1 <- rep(1, nrow(df))
     boot.A1_1.A2_0$A2 <- rep(0, nrow(df))
     boot.A1_0.A2_1$A1 <- rep(0, nrow(df))
      boot.A1_0.A2_1$A2 \leftarrow rep(1, nrow(df))
      boot.A1_1.A2_1$A1 <- boot.A1_1.A2_1$A2 <- rep(1, nrow(df))
      # predict potential outcomes under counterfactual scenarios
      Y.A1_0.A2_0 <- predict(model.Y, newdata = boot.A1_0.A2_0, type = "response")
     Y.A1_1.A2_0 <- predict(model.Y, newdata = boot.A1_1.A2_0, type = "response")
      Y.A1_0.A2_1 <- predict(model.Y, newdata = boot.A1_0.A2_1, type = "response")
     Y.A1_1.A2_1 <- predict(model.Y, newdata = boot.A1_1.A2_1, type = "response")
      # save results in the bootstrap table
      bootstrap.est[b,"p.A1is0.A2is0"] <- mean(Y.A1_0.A2_0)</pre>
     bootstrap.est[b,"p.A1is1.A2is0"] <- mean(Y.A1_1.A2_0)
      bootstrap.est[b,"p.A1is0.A2is1"] <- mean(Y.A1_0.A2_1)</pre>
      bootstrap.est[b,"p.A1is1.A2is1"] <- mean(Y.A1_1.A2_1)</pre>
```

```
bootstrap.est[b,"RD.A1.A2is0"] <- mean(Y.A1_1.A2_0) - mean(Y.A1_0.A2_0)
     bootstrap.est[b,"RD.A1.A2is1"] \leftarrow mean(Y.A1_1.A2_1) - mean(Y.A1_0.A2_1)
     bootstrap.est[b,"RD.A2.A1is0"] \leftarrow mean(Y.A1_0.A2_1) - mean(Y.A1_0.A2_0)
     bootstrap.est[b,"RD.A2.A1is1"] \leftarrow mean(Y.A1_1.A2_1) - mean(Y.A1_1.A2_0)
     bootstrap.est[b,"lnRR.A1.A2is0"] < log(mean(Y.A1_1.A2_0) / mean(Y.A1_0.A2_0))
     bootstrap.est[b,"lnRR.A1.A2is1"] <- log(mean(Y.A1_1.A2_1) / mean(Y.A1_0.A2_1))
     bootstrap.est[b,"lnRR.A2.A1is0"] <- log(mean(Y.A1_0.A2_1) / mean(Y.A1_0.A2_0))
     bootstrap.est[b,"lnRR.A2.A1is1"] <- log(mean(Y.A1_1.A2_1) / mean(Y.A1_1.A2_0))
     bootstrap.est[b,"INT.a"] <- mean(Y.A1_1.A2_1) -</pre>
       mean(Y.A1 \ 1.A2 \ 0) - mean(Y.A1 \ 0.A2 \ 1) + mean(Y.A1 \ 0.A2 \ 0)
     bootstrap.est[b,"lnRERI"] <- log((mean(Y.A1_1.A2_1) -</pre>
        mean(Y.A1_1.A2_0) - mean(Y.A1_0.A2_1) + mean(Y.A1_0.A2_0)) / mean(Y.A1_0.A2_0))
     bootstrap.est[b,"lnINT.m"] <- log( (mean(Y.A1_1.A2_1) *</pre>
       mean(Y.A1_0.A2_0)) / (mean(Y.A1_1.A2_0) * mean(Y.A1_0.A2_1)))
   }
    # head(bootstrap.est)
    # summary(bootstrap.est)
    \# par(mfrow = c(4,4))
    # for(c in 1:ncol(bootstrap.est)) {
       hist(bootstrap.est[,c], freq = FALSE, main = names(bootstrap.est)[c])
       lines(density(bootstrap.est[,c]), col = 2, lwd = 3)
        curve(1/sqrt(var(bootstrap.est[,c]) * 2 * pi) *
                exp(-1/2 * ((x-mean(bootstrap.est[,c])) / sd(bootstrap.est[,c]))^2),
              col = 1, lwd = 2, lty = 2, add = TRUE)
    \# par(mfrow = c(1,1))
    # ok, on a des belles lois normales dans les distributions bootstrap, tout va bien !
    # pour les IC95%, je peux utiliser la déviation standard des distributions
    # pour des distributions plus asymétriques, on utiliserait plutôt les percentiles 2.5% et 97
    # }
# marginal effects in the k1 x k2 table
    # A1 = 0 et A2 = 0
    int.r$p.lo[int.r$A1 == 0 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 0] -
      qnorm(0.975) * sd(bootstrap.est$p.A1is0.A2is0)
    int.r$p.up[int.r$A1 == 0 \& int.r$A2 == 0] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 0] +
      qnorm(0.975) * sd(bootstrap.est$p.A1is0.A2is0)
    # A1 = 1 et A2 = 0
   int.r$p.lo[int.r$A1 == 1 & int.r$A2 == 0] \leftarrow int.r$p[int.r$A1 == 1 & int.r$A2 == 0] -
      qnorm(0.975) * sd(bootstrap.est$p.A1is1.A2is0)
   int.r$p.up[int.r$A1 == 1 & int.r$A2 == 0] \leftarrow int.r$p[int.r$A1 == 1 & int.r$A2 == 0] +
      qnorm(0.975) * sd(bootstrap.est$p.A1is1.A2is0)
    \# A1 = 0 \ et \ A2 = 1
```

```
int.r$p.lo[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 1
     qnorm(0.975) * sd(bootstrap.est$p.A1is0.A2is1)
   int.r$p.up[int.r$A1 == 0 & int.r$A2 == 1] \leftarrow int.r$p[int.r$A1 == 0 & int.r$A2 == 1]
     qnorm(0.975) * sd(bootstrap.est$p.A1is0.A2is1)
    # A1 = 1 et A2 = 1
   int.r$p.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1
     qnorm(0.975) * sd(bootstrap.est$p.A1is1.A2is1)
   int.r$p.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1
     qnorm(0.975) * sd(bootstrap.est$p.A1is1.A2is1)
# risk difference
   # RD.A1.A2is0
   int.r$RD.A1.lo[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$RD.A1[int.r$A1 == 1 & int.r
     qnorm(0.975) * sd(bootstrap.est$RD.A1.A2is0)
   int.r$RD.A1.up[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$RD.A1[int.r$A1 == 1 & int.r
     qnorm(0.975) * sd(bootstrap.est$RD.A1.A2is0)
   # RD.A1.A2is1
   int.r$RD.A1.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A1[int.r$A1 == 1 & int.r
     qnorm(0.975) * sd(bootstrap.est$RD.A1.A2is1)
   int.r$RD.A1.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A1[int.r$A1 == 1 & int.r
     qnorm(0.975) * sd(bootstrap.est$RD.A1.A2is1)
   # RD.A2.A1is0
   int.r$RD.A2.lo[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 0 & int.r
     qnorm(0.975) * sd(bootstrap.est$RD.A2.A1is0)
   int.r$RD.A2.up[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 0 & int.r
     qnorm(0.975) * sd(bootstrap.est$RD.A2.A1is0)
   # RD.A2.A1is1
   int.r$RD.A2.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 1 & int.r
     qnorm(0.975) * sd(bootstrap.est$RD.A2.A1is1)
   int.r$RD.A2.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 1 & int.r
     qnorm(0.975) * sd(bootstrap.est$RD.A2.A1is1)
# relative risk
   # RR.A1.A2is0
   int.r$RR.A1.lo[int.r$A1 == 1 & int.r$A2 == 0] <- exp(log(int.r$RR.A1[int.r$A1 == 1])
                                                         qnorm(0.975) * sd(bootstrap)
   qnorm(0.975) * sd(bootstrap
   # RR.A1.A2is1
   int.r$RR.A1.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A1[int.r$A1 == 1
                                                         qnorm(0.975) * sd(bootstrap
   int.r$RR.A1.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A1[int.r$A1 == 1
                                                         qnorm(0.975) * sd(bootstrap
   # RR.A2.A1is0
   int.r$RR.A2.lo[int.r$A1 == 0 \& int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 0])
```

	A2=0	A2=1	RD.A2 A1	RR.A2 A1
A1=0	\$p_{00}\$=0.104 [0.095,0.113]	\$p_{01}\$=0.197 [0.183,0.211]	0.092 [0.076,0.109]	1.89 [1.68,2.11]
A1=1	\$p_{10}\$=0.405 [0.379,0.431]	\$p_{11}\$=0.891 [0.87,0.912]	0.486 [0.453,0.519]	2.2 [2.06,2.36]
RD.A1 A2	0.301 [0.273,0.329]	0.695 [0.67,0.72]		
RR.A1 A2	3.89 [3.48,4.34]	4.54 [4.21,4.89]		

```
Note:
```

additive Interaction = 0.394 [0.358;0.43]

RERI = 3.78 [3.38;4.23]

multiplicative Interaction = 1.17 [1.02;1.33]

```
qnorm(0.975) * sd(bootstrap.est$lnRR.A
   int.r$RR.A2.up[int.r$A1 == 0 & int.r$A2 == 1] \leftarrow exp(log(int.r$RR.A2[int.r$A1 == 0 & int.r$A2
                                                        qnorm(0.975) * sd(bootstrap.est$lnRR.A)
   # RR.A2.A1is1
   int.r$RR.A2.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 1 & int.r$A2
                                                       qnorm(0.975) * sd(bootstrap.est$lnRR.A
   int.r$RR.A2.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 1 & int.r$A2
                                                       qnorm(0.975) * sd(bootstrap.est$lnRR.A
# additive interaction
   int.r$a.INT.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$a.INT[int.r$A1 == 1 & int.r$A2 == 1] -
     qnorm(0.975) * sd(bootstrap.est$INT.a)
   int.r$a.INT.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$a.INT[int.r$A1 == 1 & int.r$A2 == 1] +
     qnorm(0.975) * sd(bootstrap.est$INT.a)
   int.r$RERI.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RERI[int.r$A1 == 1 & int.r$A2 =
                                                       qnorm(0.975) * sd(bootstrap.est$lnRERI)
   qnorm(0.975) * sd(bootstrap.est$lnRERI)
   # multiplicative interaction
   int.r$m.INT.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$m.INT[int.r$A1 == 1 & int.r$A2
                                                       qnorm(0.975) * sd(bootstrap.est$lnINT.
   int.r$m.INT.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$m.INT[int.r$A1 == 1 & int.r$A2
                                                       qnorm(0.975) * sd(bootstrap.est$lnINT.
```

Au final, on a:

7.4 Estimation par Modèle Structurel Marginal

```
# On récupère les Y prédit précédents, que l'on fusionne
Y <- c(Y.A1_0.A2_0, Y.A1_1.A2_0, Y.A1_0.A2_1, Y.A1_1.A2_1)
```

```
length(Y)
    # on aura une base de données de 40000 lignes
# On récupère les valeurs d'exposition qui ont servi dans les scénarios contrefactuels
    # (garder le même ordre que pour les Y.A1.A2)
    X \leftarrow rbind(subset(df.A1_0.A2_0, select = c("A1", "A2")),
               subset(df.A1_1.A2_0, select = c("A1", "A2")),
               subset(df.A1_0.A2_1, select = c("A1", "A2")),
               subset(df.A1_1.A2_1, select = c("A1", "A2")))
   \# dim(X)
## Modèle structurel marginal
   msm.RD \leftarrow glm(Y \sim A1 + A2 + A1:A2,
                  data = data.frame(Y,X),
                  family = "gaussian") # ne pas ajuster sur les facteurs de confusion
    msm.RD
## tableau des effets marignaux
    results.MSM <- matrix(NA, ncol = 4, nrow = 4)
    colnames(results.MSM) \leftarrow c("A2 = 0", "A2 = 1",
                                "RD within strata of A1",
                                "RR within strata of A1")
    rownames(results.MSM) \leftarrow c("A1 = 0", "A1 = 1",
                                "RD within strata of A2",
                                "RR within strata of A2")
# 4 risques marginaux
   results.MSM["A1 = 0","A2 = 0"] <- msm.RD$coefficients["(Intercept)"]</pre>
   results.MSM["A1 = 0","A2 = 1"] <- msm.RD$coefficients["(Intercept)"] +</pre>
      msm.RD$coefficients["A2"]
   results.MSM["A1 = 1", "A2 = 0"] <- msm.RD$coefficients["(Intercept)"] +
      msm.RD$coefficients["A1"]
   results.MSM["A1 = 1","A2 = 1"] <- msm.RD$coefficients["(Intercept)"] +
      msm.RD$coefficients["A2"] + msm.RD$coefficients["A1"] + msm.RD$coefficients["A1:
# within strata of A2
    results.MSM["RR within strata of A2", "A2 = 0"] <- results.MSM["A1 = 1", "A2 = 0"]
      results.MSM["A1 = 0", "A2 = 0"]
   results.MSM["RD within strata of A2", "A2 = 0"] <- results.MSM["A1 = 1", "A2 = 0"]
      results.MSM["A1 = 0", "A2 = 0"]
   results.MSM["RR within strata of A2", "A2 = 1"] \leftarrow results.MSM["A1 = 1", "A2 = 1"]
      results.MSM["A1 = 0", "A2 = 1"]
   results.MSM["RD within strata of A2", "A2 = 1"] <- results.MSM["A1 = 1", "A2 = 1"]
      results.MSM["A1 = 0", "A2 = 1"]
```

	A2 = 0	A2 = 1	RD within strata of A1	RR within strata of A1
A1 = 0	0.099	0.198	0.099	2.008
A1 = 1	0.409	0.904	0.494	2.208
RD within strata of A2	0.311	0.705	NA	NA
RR within strata of A2	4.146	4.560	NA	NA

Note:

```
additive Interaction = 0.395
multiplicative Interaction = 1.11
```

Au final, on a (sans les IC):

7.5 Estimation avec TMLE

```
g="SL.glm"),
                       gcomp = gcomp,
                       iptw.only = iptw.only,
                       survivalOutcome = FALSE,
                       variance.method = "ic",
                       B = 2000.
                       boot.seed = 12345) {
# regime=
# binary array: n x numAnodes x numRegimes of counterfactual treatment or a list of
regimes.MSM <- array(NA, dim = c(nrow(data), 2, 4)) # 2 variables d'exposition (A1,
regimes.MSM[,,1] <- matrix(c(0,0), ncol = 2, nrow = nrow(data), byrow = TRUE) # expo
regimes.MSM[,,2] <- matrix(c(1,0), ncol = 2, nrow = nrow(data), byrow = TRUE) # expo
regimes.MSM[,,3] <- matrix(c(0,1), ncol = 2, nrow = nrow(data), byrow = TRUE) # expo
regimes.MSM[,,4] <- matrix(c(1,1), ncol = 2, nrow = nrow(data), byrow = TRUE) # expo
# summary.measures = valeurs des coefficients du MSM associés à chaque régime
# array: num.regimes x num.summary.measures x num.final.Ynodes -
# measures summarizing the regimes that will be used on the right hand side of worki
# (baseline covariates may also be used in the right hand side of working.msm and do
summary.measures.reg \leftarrow array(NA, dim = c(4, 3, 1))
summary.measures.reg[,,1] <- matrix(c(0, 0, 0, # aucun effet ni de A1, ni de A2
                                      1, 0, 0, # effet de A1 isolé
                                       0, 1, 0, # effet de A2 isolé
                                      1, 1, 1), # effet de A1 + A2 + A1:A2
                                    ncol = 3, nrow = 4, byrow = TRUE)
colnames(summary.measures.reg) <- c("A1", "A2", "A1:A2")</pre>
if(gcomp == TRUE) {
  # test length SL.library$Q
  SL.library$Q <- ifelse(length(SL.library$Q) > 1, "SL.glm", SL.library$Q)
  \# simplify SL.library$g because g functions are useless with g-computation
  SL.library$g <- "SL.mean"
  iptw.only <- FALSE
}
ltmle_MSM <- ltmleMSM(data = data,</pre>
                      Anodes = Anodes,
                      Lnodes = Lnodes,
                      Ynodes = Ynodes,
                      Qform = Q_formulas,
                      gform = g_formulas,
                      #deterministic.g.function = det.g,
```

```
regimes = regimes.MSM, # à la place de abar
                       working.msm= "Y ~ A1 + A2 + A1:A2",
                       summary.measures = summary.measures.reg,
                       final.Ynodes = final.Ynodes,
                      msm.weights = NULL,
                       SL.library = SL.library,
                       gcomp = gcomp,
                       iptw.only = iptw.only,
                       survivalOutcome = survivalOutcome,
                       estimate.time = FALSE,
                       variance.method = variance.method)
bootstrap.res <- data.frame("beta.Intercept" = rep(NA, B),</pre>
                             "beta.A1" = rep(NA, B),
                             "beta.A2" = rep(NA, B),
                             "beta.A1A2" = rep(NA, B))
if(gcomp == TRUE) {
  set.seed <- boot.seed</pre>
 for (b in 1:B){
    # sample the indices 1 to n with replacement
    bootIndices <- sample(1:nrow(data), replace=T)</pre>
    bootData <- data[bootIndices,]</pre>
    if ( round(b/100, 0) == b/100 ) print(paste0("bootstrap number ",b))
    boot_ltmle_MSM <- ltmleMSM(data = bootData,</pre>
                                Anodes = Anodes,
                                Lnodes = Lnodes,
                                Ynodes = Ynodes,
                                Qform = Q_formulas,
                                gform = g_formulas,
                                #deterministic.g.function = det.g,
                                regimes = regimes.MSM, # à la place de abar
                                working.msm= "Y ~ A1 + A2 + A1:A2",
                                summary.measures = summary.measures.reg,
                                final.Ynodes = final.Ynodes,
                                msm.weights = NULL,
                                SL.library = SL.library,
                                gcomp = gcomp,
                                iptw.only = iptw.only,
                                survivalOutcome = survivalOutcome,
                                estimate.time = FALSE,
                                variance.method = variance.method)
```

```
bootstrap.res$beta.Intercept[b] <- boot_ltmle_MSM$beta["(Intercept)"]
      bootstrap.res$beta.A1[b] <- boot_ltmle_MSM$beta["A1"]</pre>
      bootstrap.res$beta.A2[b] <- boot_ltmle_MSM$beta["A2"]</pre>
      bootstrap.res$beta.A1A2[b] <- boot_ltmle_MSM$beta["A1:A2"]
  }
  return(list(ltmle_MSM = ltmle_MSM,
              bootstrap.res = bootstrap.res))
}
### 4- summary.int()
                         pour enregistrer l'ensemble des estimations
summary.int <- function(data = data,</pre>
                         ltmle_MSM = ltmle_MSM,
                         estimator = c("gcomp", "iptw", "tmle")) {
  if(estimator == "gcomp") {
    try(if(ltmle_MSM$ltmle_MSM$gcomp == FALSE)
      stop("The ltmle function did not use the gcomp estimator, but the iptw +/- tmle
    beta <- ltmle_MSM$ltmle_MSM$beta
  }
  if(estimator == "iptw") {
    try(if(ltmle_MSM$ltmle_MSM$gcomp == TRUE)
      stop("The ltmle function used the gcomp estimator, iptw is not available"))
    beta <- ltmle_MSM$ltmle_MSM$beta.iptw</pre>
    IC <- ltmle_MSM$ltmle_MSM$IC.iptw</pre>
  }
  if(estimator == "tmle") {
    try(if(ltmle_MSM$ltmle_MSM$gcomp == TRUE) stop("The ltmle function used the gcomp
    beta <- ltmle_MSM$ltmle_MSM$beta</pre>
    IC <- ltmle_MSM$ltmle_MSM$IC</pre>
  }
  # on va enregitrer l'ensemble des résultats pertinent dans une table de longueur k1
  int.r <- matrix(NA,</pre>
                   ncol = 34,
                   nrow = nlevels(as.factor(data$A1)) * nlevels(as.factor(data$A2)))
  int.r <- as.data.frame(int.r)</pre>
```

```
names(int.r) <- c("A1", "A2", "p", "sd.p", "p.lo", "p.up",
                                                                         "RD.A1", "sd.RD.A1", "RD.A1.lo", "RD.A1.up",
                                                                         "RD.A2", "sd.RD.A2", "RD.A2.10", "RD.A2.up",
                                                                         "RR.A1", "sd.lnRR.A1", "RR.A1.lo", "RR.A1.up",
                                                                         "RR.A2", "sd.lnRR.A2", "RR.A2.lo", "RR.A2.up",
                                                                         "a.INT", "sd.a.INT", "a.INT.lo", "a.INT.up", "RERI", "sd.lnRERI", "RERI.lo", "REFI
                                                                         "m.INT", "sd.ln.m.INT", "m.INT.lo", "m.INT.up" )
int.r[,c("A1","A2")] \leftarrow expand.grid(c(0,1), c(0,1))
# on peut retrouver les IC95% par delta method
# A1 = 0 et A2 = 0
int.r$p[int.r$A1 == 0 & int.r$A2 == 0] <- plogis(beta["(Intercept)"])</pre>
int.r$p[int.r$A1 == 1 \& int.r$A2 == 0] \leftarrow plogis(beta["(Intercept)"] +
                                                                                                                                                                                                              beta["A1"])
# A1 = 0 et A2 = 1
int.r$p[int.r$A1 == 0 \& int.r$A2 == 1] <- plogis(beta["(Intercept)"] +
                                                                                                                                                                                                              beta["A2"])
# A1 = 1 et A2 = 1
int.r$p[int.r$A1 == 1 & int.r$A2 == 1] <- plogis(beta["(Intercept)"] +
                                                                                                                                                                                                              beta["A1"] +
                                                                                                                                                                                                              beta["A2"] +
                                                                                                                                                                                                              beta["A1:A2"])
# RD.A1.A2is0
int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 0] - int.r$p
# RD.A1.A2is1
int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - int.r$p
# RD.A2.A1is0
int.r$RD.A2[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 1] - int.r$p
int.r$RD.A2[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - int.r$p
# RR.A1.A2is0
int.r$RR.A1[int.r$A1 == 1 \& int.r$A2 == 0] \leftarrow exp(log(int.r$p[int.r$A1 == 1 \& int.r$A2 == 0]) \rightarrow exp(log(int.r$p[int.r$A1 == 1 & int.r$A1 == 0]) \rightarrow exp(log(int.r$p[int.r$A1 == 0]) \rightarrow exp(log(int.r$p[int.r$A1 == 0])) \rightarrow exp(log(int.r$p[int.r$A1 == 0])) \rightarrow exp(log(int.r$A1 == 0]) \rightarrow exp(log(int.r$A1 ==
# RR.A1.A2is1
int.r$RR.A1[int.r$A1 == 1 \& int.r$A2 == 1] <- exp(log(int.r$p[int.r$A1 == 1 & int.r$A2 == 1]) -- exp(log(int.r$p[int.r$A1 == 1 & int.r$A1 == 1
```

int.r\$RR.A2[int.r\$A1 == 0 & int.r\$A2 == 1] <- exp(log(int.r\$p[int.r\$A1 == 0 & int.r\$.

RR.A2.A1is0

```
# RR.A2.A1is1
int.r$RR.A2[int.r$A1 == 1 \& int.r$A2 == 1] <- exp(log(int.r$p[int.r$A1 == 1 & int.r$.
 # additive interaction
int.r$a.INT[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1]
             int.r$p[int.r$A1 == 0 & int.r$A2 == 1] + int.r$p[int.r$A1 == 0 & int.r$A2 == 0]
int.rRERI[int.r$A1 == 1 \& int.r$A2 == 1] <- exp(log(int.r$p[int.r$A1 == 1 & int.r$A])
                                                                                                                                                                                                                                                                                                                                                                 int.r$p[int.r$A1 == 0 & int.r]
                                                                                                                                                                                                                                                                                                                                       log(int.r$p[int.r$A1 == 0 & int.r]
 # multiplicative interaction
int.r$m.INT[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$p[int.r$A1 == 1 & int.r$.
                                                                                                                                                                                                                                                                                                                                              log(int.r$p[int.r$A1 == 0 \& int.s]
 ## IC95%
if(estimator == "iptw" | estimator == "tmle") {
              \# A1 = 0 \ et \ A2 = 0
             grad \leftarrow c(int.r$p[int.r$A1 == 0 \& int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 0 & int.r$p[int.r$A1 == 0
            v <- t(grad) %*% var(IC) %*% grad</pre>
             int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 0] <- sqrt(v / nrow(data))
             int.r$p.lo[int.r$A1 == 0 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 0
                           qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 0]
             int.r$p.up[int.r$A1 == 0 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 0]
                          qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 0]
              # A1 = 1 et A2 = 0
             grad \leftarrow c(int.r$p[int.r$A1 == 1 \& int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$p[int.r$A1 == 1
                                                                              int.r$p[int.r$A1 == 1 \& int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$
             v <- t(grad) %*% var(IC) %*% grad
             int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 0] <- sqrt(v / nrow(data))
             int.r$p.lo[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 0
                           qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 0]
              int.r$p.up[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 0
                           qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 0]
              # A1 = 0 et A2 = 1
             grad \leftarrow c(int.r$p[int.r$A1 == 0 \& int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$p[int.r$p[int.r$A1 == 0 & int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r
                                                                              int.r$p[int.r$A1 == 0 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$
```

```
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 1] \leftarrow sqrt(v / nrow(data))
int.r$p.lo[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 1] -
   qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 1]
int.r$p.up[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 1] +
   qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 1]
# A1 = 1 et A2 = 1
grad <- rep(int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 ==
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 1] <- sqrt(v / nrow(data))
int.r$p.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1] -
   qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 1]
int.r$p.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1] +
   qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 1]
# RD.A1.A2is0
grad \leftarrow c(int.r\$p[int.r\$A1 == 1 \& int.r\$A2 == 0] * (1 - int.r\$p[int.r\$A1 == 1 \& int.r\$A2 == 0]
                      int.r$p[int.r$A1 == 0 \& int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 0 \& int.r$A2 == 0]
                  int.r$p[int.r$A1 == 1 \& int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 \& int.r$A2 == 0]
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 0] <- sqrt(v / nrow(data))
int.r$RD.A1.lo[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 0] -
   qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 0]
int.r$RD.A1.up[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 0] +
   qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 0]
# RD.A1.A2is1
grad \leftarrow c(int.r$p[int.r$A1 == 1 \& int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1]
                      int.r$p[int.r$A1 == 0 \& int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$A2 == 0 & int.r$
                  int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1]
                  int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1]
                      int.r$p[int.r$A1 == 0 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$A2 ==
                  int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 1] <- sqrt(v / nrow(data))
int.r$RD.A1.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 1] -
   qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 1]
int.r$RD.A1.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A1[int.r$A1 == 1 & int.r$A2 == 1] +
    qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 1]
```

```
# RD.A2.A1is0
grad \leftarrow c(int.r$p[int.r$A1 == 0 \& int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$p[int.r$A1 == 0
                                                                                     int.r$p[int.r$A1 == 0 & int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 0 & int.r$
                                                                       int.r$p[int.r$A1 == 0 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & in
v <- t(grad) %*% var(IC) %*% grad</pre>
 int.r$sd.RD.A2[int.r$A1 == 0 & int.r$A2 == 1] <- sqrt(v / nrow(data))
int.r$RD.A2.lo[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 0 & int.r
               qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 0 & int.r$A2 == 1]
 int.r$RD.A2.up[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 0 & int.r
               qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 0 & int.r$A2 == 1]
 # RD.A2.A1is1
 grad <- c(int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & in
                                                                                     int.r$p[int.r$A1 == 1 & int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$
                                                                      int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$
                                                                                    int.r$p[int.r$A1 == 1 & int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$
                                                                      int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A1 == 1 & int.r$
                                                                      int.r$p[int.r$A1 == 1 \& int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$
v <- t(grad) %*% var(IC) %*% grad</pre>
 int.r$sd.RD.A2[int.r$A1 == 1 & int.r$A2 == 1] \leftarrow sqrt(v / nrow(data))
 int.r$RD.A2.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 1 & int.r
              qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 1 & int.r$A2 == 1]
 int.r$RD.A2.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 1 & int.r
              qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 1 & int.r$A2 == 1]
 # RR.A1.A2is0
grad <- c(int.r$p[int.r$A1 == 0 & int.r$A2 == 0] - int.r$p[int.r$A1 == 1 & int.r$A
                                                                       1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 0], 0, 0)
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.lnRR.A1[int.r$A1 == 1 & int.r$A2 == 0] \leftarrow sqrt(v / nrow(data))
int.r$RR.A1.lo[int.r$A1 == 1 & int.r$A2 == 0] <- exp(log(int.r$RR.A1[int.r$A1 == 1])
                                                                                                                                                                                                                                                                                                                                                                                                   qnorm(0.975) * int.r$sd.lnR
int.r$RR.A1.up[int.r$A1 == 1 & int.r$A2 == 0] <- exp(log(int.r$RR.A1[int.r$A1 == 1
                                                                                                                                                                                                                                                                                                                                                                                                   qnorm(0.975) * int.r$sd.lnR
 # RR.A1.A2is1
grad <- c(int.r$p[int.r$A1 == 0 & int.r$A2 == 1] - int.r$p[int.r$A1 == 1 & int.r$A
                                                                      1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1],
                                                                      int.r$p[int.r$A1 == 0 & int.r$A2 == 1] - int.r$p[int.r$A1 == 1 & int.r$A
                                                                      1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1])
v <- t(grad) %*% var(IC) %*% grad</pre>
 int.r$sd.lnRR.A1[int.r$A1 == 1 & int.r$A2 == 1] <- sqrt(v / nrow(data))
```

```
int.r$RR.A1.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A1[int.r$A1 == 1 & int.r$A2
                                                              qnorm(0.975) * int.r$sd.lnRR.A1[in]
int.r$RR.A1.up[int.r$A1 == 1 \& int.r$A2 == 1] \leftarrow exp(log(int.r$RR.A1[int.r$A1 == 1 \& int.r$A2 == 1])
                                                              qnorm(0.975) * int.r$sd.lnRR.A1[in
# RR.A2.A1is0
grad \leftarrow c(int.r$p[int.r$A1 == 0 \& int.r$A2 == 0] - int.r$p[int.r$A1 == 0 \& int.r$A2 == 1], 0
          1 - int.r$p[int.r$A1 == 0 & int.r$A2 == 1], 0)
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.lnRR.A2[int.r$A1 == 0 & int.r$A2 == 1] <- sqrt(v / nrow(data))
int.r$RR.A2.lo[int.r$A1 == 0 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 0 & int.r$A2
                                                         qnorm(0.975) * int.r$sd.lnRR.A2[int.r$
int.r$RR.A2.up[int.r$A1 == 0 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 0 & int.r$A2
                                                         qnorm(0.975) * int.r$sd.lnRR.A2[int.r$
# RR.A2.A1is1
grad \leftarrow c(int.r$p[int.r$A1 == 1 \& int.r$A2 == 0] - int.r$p[int.r$A1 == 1 \& int.r$A2 == 1],
          int.r$p[int.r$A1 == 1 & int.r$A2 == 0] - int.r$p[int.r$A1 == 1 & int.r$A2 == 1],
          1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1],
          1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1])
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.lnRR.A2[int.r$A1 == 1 & int.r$A2 == 1] \leftarrow sqrt(v / nrow(data))
int.r$RR.A2.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 1 & int.r$A2
                                                         qnorm(0.975) * int.r$sd.lnRR.A2[int.r$
int.r$RR.A2.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 1 & int.r$A2
                                                         qnorm(0.975) * int.r$sd.lnRR.A2[int.r$
# additive interaction
grad \leftarrow c(int.r\$p[int.r\$A1 == 1 \& int.r\$A2 == 1] * (1 - int.r\$p[int.r\$A1 == 1 \& int.r\$A2 == 1]
            int.r$p[int.r$A1 == 1 & int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 ==
            int.r$p[int.r$A1 == 0 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$A2 ==
            int.r$p[int.r$A1 == 0 \& int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 0 & int.r$A2 == 0]
          int.r$p[int.r$A1 == 1 \& int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 \& int.r$A2 == 1]
            int.r$p[int.r$A1 == 1 & int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 ==
          int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1
            int.r$p[int.r$A1 == 0 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$A2 ==
          int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1
v <- t(grad) %*% var(IC) %*% grad</pre>
int.r$sd.a.INT[int.r$A1 == 1 & int.r$A2 == 1] <- sqrt(v / nrow(data))
int.r$a.INT.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$a.INT[int.r$A1 == 1 & int.r$A2 == 1] -
  qnorm(0.975) * int.r$sd.a.INT[int.r$A1 == 1 & int.r$A2 == 1]
int.r$a.INT.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$a.INT[int.r$A1 == 1 & int.r$A2 == 1] +
```

```
qnorm(0.975) * int.r$sd.a.INT[int.r$A1 == 1 & int.r$A2 == 1]
 # RERI
grad \leftarrow c((int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$A1 == 1 
                                                                                                                          int.r$p[int.r$A1 == 1 & int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 & int.r$
                                                                                                                          int.r$p[int.r$A1 == 0 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$
                                                                                                                          int.r$p[int.r$A1 == 0 & int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 0 & int.r$
                                                                                                                   (int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - int.r$p[int.r$A1 == 1 & int.
                                                                                                                                              int.r$p[int.r$A1 == 0 & int.r$A2 == 1] + int.r$p[int.r$A1 == 0 & in
                                                                                                                   (1 - int.r$p[int.r$A1 == 0 & int.r$A2 == 0]),
                                                                                                (int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$p[int.r$A1 == 1 & int.r$A1 == 1
                                                                                                                          int.r$p[int.r$A1 == 1 \& int.r$A2 == 0] * (1 - int.r$p[int.r$A1 == 1 &
                                                                                                                  (int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - int.r$p[int.r$A1 == 1 & int.r
                                                                                                                                              int.r$p[int.r$A1 == 0 & int.r$A2 == 1] + int.r$p[int.r$A1 == 0 & in
                                                                                                (int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$p[int.r$A1 == 1 & int.r$A1 == 1
                                                                                                                          int.r$p[int.r$A1 == 0 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 0 & int.r$
                                                                                                                  (int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - int.r$p[int.r$A1 == 1 & int.r
                                                                                                                                            int.r$p[int.r$A1 == 0 \& int.r$A2 == 1] + int.r$p[int.r$A1 == 0 \& int.r$p[int.r$A1 == 0 & int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int.r$p[int
                                                                                                (int.r$p[int.r$A1 == 1 & int.r$A2 == 1] * (1 - int.r$p[int.r$A1 == 1 & int.r$p[int.r$A1 == 1 & int.r$A1 == 1
                                                                                                                   (int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - int.r$p[int.r$A1 == 1 & int.r$A1 == 1 & int.r$p[int.r$A1 == 1 & int.r$p[int.r$A1 == 1 & int.r$A1 == 1 & in
                                                                                                                                              int.r$p[int.r$A1 == 0 & int.r$A2 == 1] + int.r$p[int.r$A1 == 0 & in
v <- t(grad) %*% var(IC) %*% grad</pre>
 int.r$sd.lnRERI[int.r$A1 == 1 & int.r$A2 == 1] <- sqrt(v / nrow(data))
int.r$RERI.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RERI[int.r$A1 == 1 &
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        qnorm(0.975) * int.r$sd.lnRE
int.r$RERI.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RERI[int.r$A1 == 1 &
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        qnorm(0.975) * int.r$sd.lnRE
 # multiplicative interaction
grad \leftarrow c(int.r\$p[int.r\$A1 == 1 \& int.r\$A2 == 0] + int.r\$p[int.r\$A1 == 0 \& int.r\$A]
                                                                                                                  int.r$p[int.r$A1 == 1 & int.r$A2 == 1] - int.r$p[int.r$A1 == 0 & int.r
                                                                                             int.r$p[int.r$A1 == 1 & int.r$A2 == 0] - int.r$p[int.r$A1 == 1 & int.r$A
                                                                                             int.r$p[int.r$A1 == 0 & int.r$A2 == 1] - int.r$p[int.r$A1 == 1 & int.r$A
                                                                                             1 - int.r$p[int.r$A1 == 1 & int.r$A2 == 1])
v <- t(grad) %*% var(IC) %*% grad</pre>
 int.rsd.ln.m.INT[int.r$A1 == 1 & int.r$A2 == 1] <- sqrt(v / nrow(data))
int.r$m.INT.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$m.INT[int.r$A1 == 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   qnorm(0.975) * int.r$sd.ln.
int.r$m.INT.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$m.INT[int.r$A1 == 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   qnorm(0.975) * int.r$sd.ln.
bootstrap.res <- ltmle_MSM$bootstrap.res</pre>
```

```
if(estimator == "gcomp") {
      ltmle_MSM$bootstrap.res$p.A1_0.A2_0 <- plogis(ltmle_MSM$bootstrap.res$beta.Intercept)
      ltmle_MSM$bootstrap.res$p.A1_1.A2_0 <- plogis(ltmle_MSM$bootstrap.res$beta.Intercept +
                                                                                                                                                      ltmle_MSM$bootstrap.res$beta.A1)
      ltmle_MSM$bootstrap.res$p.A1_0.A2_1 <- plogis(ltmle_MSM$bootstrap.res$beta.Intercept +
                                                                                                                                                      ltmle_MSM$bootstrap.res$beta.A2)
      ltmle_MSM$bootstrap.res$p.A1_1.A2_1 <- plogis(ltmle_MSM$bootstrap.res$beta.Intercept +
                                                                                                                                                      ltmle_MSM$bootstrap.res$beta.A1 +
                                                                                                                                                      ltmle_MSM$bootstrap.res$beta.A2 +
                                                                                                                                                      ltmle_MSM$bootstrap.res$beta.A1A2)
      ltmle_MSM$bootstrap.res$RD.A1.A2_0 <- ltmle_MSM$bootstrap.res$p.A1_1.A2_0 - ltmle_MSM$bootstrap.res$p.A1_0.A2_0 - ltmle_MSM$bootstrap.res$p.A1_0.A2_0 - ltmle_MSM$bootstrap.res$p.A1_0.A2_0 - ltmle_MSM$bootstrap.res$p.A1_0.A2_0 - ltmle_MSM$bootstrap.res$p.A1_0.A2_0 - ltmle_MSM$bootstrap.res$p.A1_0.A
      ltmle_MSM$bootstrap.res$RD.A1.A2_1 <- ltmle_MSM$bootstrap.res$p.A1_1.A2_1 - ltmle_MSM$bootstrap.res$p.A1_1.A
      ltmle_MSM$bootstrap.res$RD.A2.A1_0 <- ltmle_MSM$bootstrap.res$p.A1_0.A2_1 - ltmle_MSM$bootstrap.res
      ltmle_MSM$bootstrap.res$RD.A2.A1_1 <- ltmle_MSM$bootstrap.res$p.A1_1.A2_1 - ltmle_MSM$bootstrap.res
      ltmle_MSM$bootstrap.res$lnRR.A1.A2_0 <- log(ltmle_MSM$bootstrap.res$p.A1_1.A2_0 / ltmle_MSM$b
     ltmle_MSM$bootstrap.res$lnRR.A1.A2_1 <- log(ltmle_MSM$bootstrap.res$p.A1_1.A2_1 / ltmle_MSM$b
      ltmle_MSM$bootstrap.res$lnRR.A2.A1_0 <- log(ltmle_MSM$bootstrap.res$p.A1_0.A2_1 / ltmle_MSM$b
      ltmle_MSM$bootstrap.res$lnRR.A2.A1_1 <- log(ltmle_MSM$bootstrap.res$p.A1_1.A2_1 / ltmle_MSM$b
      ltmle_MSM$bootstrap.res$a.INT <- ltmle_MSM$bootstrap.res$p.A1_1.A2_1 -</pre>
                                                                                                                                 ltmle_MSM$bootstrap.res$p.A1_1.A2_0 -
                                                                                                                                 ltmle_MSM$bootstrap.res$p.A1_0.A2_1 +
                                                                                                                                 ltmle_MSM$bootstrap.res$p.A1_0.A2_0
      ltmle_MSM$bootstrap.res$lnRERI <- log((ltmle_MSM$bootstrap.res$p.A1_1.A2_1 -
                                                                                                                                                  ltmle_MSM$bootstrap.res$p.A1_1.A2_0 -
                                                                                                                                                  ltmle_MSM$bootstrap.res$p.A1_0.A2_1 +
                                                                                                                                                  ltmle_MSM$bootstrap.res$p.A1_0.A2_0) / ltmle_MSM$boo
      ltmle_MSM$bootstrap.res$ln.m.INT <- log((ltmle_MSM$bootstrap.res$p.A1_1.A2_1 * ltmle_MSM$bootstrap.res$p.A1_1.A2_1 * ltmle_MSM$bootstrap.res$p.A1_1.A1_1 * ltmle_MSM$bootstrap.res$p.A1_1.A1_1 * ltmle_MSM$bootstrap.res$p.A1_1.A1_1 * ltmle_MSM$bootstrap.res$p.A1_1.A1_1 * ltmle_MSM$bootstrap.res$p.A1_1.A1_1 * ltmle_MSM$bootstrap.res$p.A1_1.A1_1 * ltmle_MSM$bootstrap.res$p.A1_1 * ltmle_MSM$bootstrap.res$p.
                                                                                                                                                       (ltmle_MSM$bootstrap.res$p.A1_1.A2_0 * ltmle_MSM$bo
       # A1 = 0 et A2 = 0
      int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 0] <- sd(ltmle_MSM$bootstrap.res$p.A1_0.A2_0)
      int.r$p.lo[int.r$A1 == 0 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 0] -
             qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 0]
      int.r$p.up[int.r$A1 == 0 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 0] +
             qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 0]
       # A1 = 1 et A2 = 0
      int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 0] <- sd(ltmle_MSM$bootstrap.res$p.A1_1.A2_0)
      int.r$p.lo[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 0] -
             qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 0]
```

int.rp.up[int.r\$A1 == 1 & int.r\$A2 == 0] <- int.r\$p[int.r\$A1 == 1 & int.r\$A2 == 0

```
qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 0]
\# A1 = 0 \ et \ A2 = 1
int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$p.A1_0.A2_
int.r$p.lo[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 1
  qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 1]
int.r$p.up[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 0 & int.r$A2 == 1
  qnorm(0.975) * int.r$sd.p[int.r$A1 == 0 & int.r$A2 == 1]
# A1 = 1 et A2 = 1
int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$p.A1_1.A2_
int.r$p.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1
  qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 1]
int.r$p.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$p[int.r$A1 == 1 & int.r$A2 == 1]
  qnorm(0.975) * int.r$sd.p[int.r$A1 == 1 & int.r$A2 == 1]
# RD.A1.A2is0
int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 0] <- sd(ltmle_MSM$bootstrap.res$RD.A1..
int.r$RD.A1.lo[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$RD.A1[int.r$A1 == 1 & int.r
  qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 0]
int.r$RD.A1.up[int.r$A1 == 1 & int.r$A2 == 0] <- int.r$RD.A1[int.r$A1 == 1 & int.r
  qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 0]
# RD.A1.A2is1
int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$RD.A1..
int.r$RD.A1.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A1[int.r$A1 == 1 & int.r
  qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 1]
int.r$RD.A1.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A1[int.r$A1 == 1 & int.r
  qnorm(0.975) * int.r$sd.RD.A1[int.r$A1 == 1 & int.r$A2 == 1]
# RD.A2.A1is0
int.r$sd.RD.A2[int.r$A1 == 0 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$RD.A2..
int.r$RD.A2.lo[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 0 & int.r
  qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 0 & int.r$A2 == 1]
int.r$RD.A2.up[int.r$A1 == 0 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 0 & int.r
  qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 0 & int.r$A2 == 1]
# RD.A2.A1is1
int.r$sd.RD.A2[int.r$A1 == 1 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$RD.A2..
int.r$RD.A2.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 1 & int.r
  qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 1 & int.r$A2 == 1]
int.r$RD.A2.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$RD.A2[int.r$A1 == 1 & int.r
  qnorm(0.975) * int.r$sd.RD.A2[int.r$A1 == 1 & int.r$A2 == 1]
```

```
# RR.A1.A2is0
int.r$sd.lnRR.A1[int.r$A1 == 1 & int.r$A2 == 0] <- sd(ltmle_MSM$bootstrap.res$lnRR.A1.A2_0)
int.r$RR.A1.lo[int.r$A1 == 1 & int.r$A2 == 0] <- exp(log(int.r$RR.A1[int.r$A1 == 1 & int.r$A2
                                                     qnorm(0.975) * int.r$sd.lnRR.A1[int.r$
int.r$RR.A1.up[int.r$A1 == 1 & int.r$A2 == 0] <- exp(log(int.r$RR.A1[int.r$A1 == 1 & int.r$A2
                                                     qnorm(0.975) * int.r$sd.lnRR.A1[int.r$
# RR.A1.A2is1
int.r$sd.lnRR.A1[int.r$A1 == 1 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$lnRR.A1.A2_1)</pre>
int.r$RR.A1.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A1[int.r$A1 == 1 & int.r$A2
                                                         qnorm(0.975) * int.r$sd.lnRR.A1[in
int.r$RR.A1.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A1[int.r$A1 == 1 & int.r$A2
                                                         qnorm(0.975) * int.r$sd.lnRR.A1[in
# RR.A2.A1is0
int.r$sd.lnRR.A2[int.r$A1 == 0 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$lnRR.A2.A1_0)
int.r$RR.A2.lo[int.r$A1 == 0 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 0 & int.r$A2
                                                     qnorm(0.975) * int.r$sd.lnRR.A2[int.r$
int.r$RR.A2.up[int.r$A1 == 0 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 0 & int.r$A2
                                                     qnorm(0.975) * int.r$sd.lnRR.A2[int.r$
# RR.A2.A1is1
int.r$sd.lnRR.A2[int.r$A1 == 1 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$lnRR.A2.A1_1)
int.r$RR.A2.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 1 & int.r$A2
                                                     qnorm(0.975) * int.r$sd.lnRR.A2[int.r$
int.r$RR.A2.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RR.A2[int.r$A1 == 1 & int.r$A2
                                                     qnorm(0.975) * int.r$sd.lnRR.A2[int.r$
# additive interaction
int.r$sd.a.INT[int.r$A1 == 1 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$a.INT)
int.r$a.INT.lo[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$a.INT[int.r$A1 == 1 & int.r$A2 == 1] -
 qnorm(0.975) * int.r$sd.a.INT[int.r$A1 == 1 & int.r$A2 == 1]
int.r$a.INT.up[int.r$A1 == 1 & int.r$A2 == 1] <- int.r$a.INT[int.r$A1 == 1 & int.r$A2 == 1] +
 qnorm(0.975) * int.r$sd.a.INT[int.r$A1 == 1 & int.r$A2 == 1]
# RERI
int.r$sd.lnRERI[int.r$A1 == 1 & int.r$A2 == 1] <- sd(ltmle_MSM$bootstrap.res$lnRERI)
int.r$RERI.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$RERI[int.r$A1 == 1 & int.r$A2 =
                                                     qnorm(0.975) * int.r$sd.lnRERI[int.r$A1
qnorm(0.975) * int.r$sd.lnRERI[int.r$A
# multiplicative interaction
int.r$sd.ln.m.INT[int.r$A1 == 1 & int.r$A2 == 1] \leftarrow sd(ltmle_MSM$bootstrap.res$ln.m.INT)
int.r$m.INT.lo[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$m.INT[int.r$A1 == 1 & int.r$A2
```

```
qnorm(0.975) * int.r$sd.ln.
    int.r m.INT.up[int.r$A1 == 1 & int.r$A2 == 1] <- exp(log(int.r$m.INT[int.r$A1 == 1
                                                             qnorm(0.975) * int.r$sd.ln.
    bootstrap.res <- ltmle_MSM$bootstrap.res</pre>
 }
 return(list(int.r = int.r,
              bootstrap.res = bootstrap.res))
### Obtention du MSM par la fonction ltmle, estimation par gcomp, iptw ou tmle
# avec la fonction int.ltmleMSM()
# on définit les arguments de la fonction ltmleMSM du package ltmle
library(ltmle)
library(SuperLearner)
## arguments à renseigner
Q_{formulas} = c(Y="Q.kplus1 \sim L1 + L2 + L3 + A1 * A2") # useful to add A1 * A2 interact
g_formulas = c("A1 \sim L1 + L2",
               "A2 \sim L1 + L3")
SL.library = list(Q=list("SL.glm", c("SL.glm", "screen.corP"),
                          "SL.xgboost", "SL.rpartPrune", #"SL.randomForest",
                          "SL.step.interaction", c("SL.step.interaction", "screen.corP")
                          "SL.glmnet", "SL.stepAIC",
                          "SL.mean"),
                  g=list("SL.glm", c("SL.glm", "screen.corP"),
                          "SL.xgboost", "SL.rpartPrune", #"SL.randomForest",
                          "SL.step.interaction", c("SL.step.interaction", "screen.corP")
                          "SL.glmnet", "SL.stepAIC",
                          "SL.mean"))
### estimation par IPTW et TMLE
  interaction.ltmle <- int.ltmleMSM(data = df,</pre>
                                   Q_formulas = Q_formulas,
                                   g_formulas = g_formulas,
                                   Anodes = c("A1", "A2"),
                                   Lnodes = c("L1", "L2", "L3"),
                                   Ynodes = c("Y"),
                                   final.Ynodes = "Y",
                                   SL.library = SL.library,
                                   gcomp = FALSE,
                                                             # si FALSE, fait tmle + IP
                                   iptw.only = FALSE,
                                   # si (gcomp = FALSE et iptw.only = TRUE), fait uniqu
```

```
survivalOutcome = FALSE,
                                   variance.method = "ic")
### estimation par g-computation
  # par défaut, il fait une régression logistique à partir de la formule Q_formulas
  # si on veut faire un régression linéaire pour le modèle additif, on peut créer une fonction de
  # à partir de la fonction SL.qlm
  SL.glm.gaussian <- function (Y, X, newX,
                                family = "gaussian",
                                # tout est comme SL.glm, sauf cette famille "gaussian"
                                obsWeights, model = TRUE, ...) {
  if (is.matrix(X)) {
    X = as.data.frame(X)
  fit.glm <- glm(Y ~ ., data = X, family = family, weights = obsWeights,</pre>
                 model = model)
  if (is.matrix(newX)) {
    newX = as.data.frame(newX)
  pred <- predict(fit.glm, newdata = newX, type = "response")</pre>
  fit <- list(object = fit.glm)</pre>
  class(fit) <- "SL.glm"</pre>
  out <- list(pred = pred, fit = fit)</pre>
 return(out)
}
environment(SL.glm.gaussian) <-asNamespace("SuperLearner")</pre>
interaction.gcomp <- int.ltmleMSM(data = df,</pre>
                                   Q_formulas = Q_formulas,
                                   g_formulas = g_formulas,
                                   Anodes = c("A1", "A2"),
                                   Lnodes = c("L1", "L2", "L3"),
                                   Ynodes = c("Y"),
                                   final.Ynodes = "Y",
                                   # SL.library = SL.library,
                                   SL.library = list(Q="SL.glm.gaussian", #
                                                      g="SL.mean"),
                                                             # si FALSE, fait tmle + IPTW
                                   gcomp = TRUE,
                                   iptw.only = FALSE,
                                   # si (qcomp = FALSE et iptw.only = TRUE), fait uniquement iptw
                                   survivalOutcome = FALSE,
                                   variance.method = "ic",
                                   B = 1000, # nombre d'échantillons bootstrap
                                   boot.seed = 54321) # seed pour l'échantillonnage bootstrap
```

```
### 3) Calcul des paramètres utiles pour l'analyse de l'interaction
          # avec la fonction summary.int()
          ### récupération des résultats tmle
          summary.tmle <- summary.int(data = df,</pre>
                                                                                     ltmle MSM = interaction.ltmle,
                                                                                     estimator = c("tmle"))
          # summary.tmle$int.r
          ### récupération des résultats iptw
          summary.iptw <- summary.int(data = df,</pre>
                                                                                     ltmle_MSM = interaction.ltmle,
                                                                                     estimator = c("iptw"))
          # summary.iptw$int.r
          ### récupération des résultats gcomputation
          summary.gcomp <- summary.int(data = df,</pre>
                                                                                     ltmle_MSM = interaction.gcomp,
                                                                                     estimator = c("gcomp"))
          # summary.gcomp$int.r
          # head(summary.gcomp$bootstrap.res)
          # # vérifier la normalité des estimations bootstrap
                          bootstrap.est <- subset(summary.gcomp$bootstrap.res,</pre>
                                                                                          select =
          #
                                                                                                c("p.A1_0.A2_0",
          #
                                                                                                      "p.A1_1.A2_0",
          #
                                                                                                     "p.A1_0.A2_1",
          #
                                                                                                     "p.A1_1.A2_1",
                                                                                                     "RD.A1.A2_0",
                                                                                                     "RD.A1.A2_1",
          #
                                                                                                     "RD. A2. A1_0",
                                                                                                     "RD.A2.A1_1",
                                                                                                     "lnRR.A1.A2_0",
                                                                                                     "lnRR.A1.A2_1",
          #
                                                                                                     "lnRR.A2.A1_0",
                                                                                                     "lnRR.A2.A1_1",
                                                                                                      "a.INT",
          #
                                                                                                     "lnRERI",
                                                                                                     "ln.m.INT"))
          \# par(mfrow = c(4,4))
          # for(c in 1:ncol(bootstrap.est)) {
                   hist(bootstrap.est[,c], freq = FALSE, main = names(bootstrap.est)[c])
                   lines(density(bootstrap.est[,c]), col = 2, lwd = 3)
                    curve(1/sqrt(var(bootstrap.est[,c]) * 2 * pi) * exp(-1/2*((x-mean(bootstrap.est[,c]) * pi) * ex
                col = 1, lwd = 2, lty = 2, add = TRUE)
```

```
# par(mfrow = c(1,1))
# }
```

Au final, on a (présentation selon recommandation Knol et al. Knol and VanderWeele [2012]):

7.5.1 TMLE

```
## $out.table
##
                                     A2 = 0
                                                                  A2 = 1
## A1=0
            $p_{00}$=0.104 [0.095,0.113] $p_{01}$=0.195 [0.18,0.21]
## A1=1
            $p_{10}$=0.408 [0.378,0.439] $p_{11}$=0.903 [0.88,0.927]
## RD.A1|A2
                                                   0.708 [0.68, 0.737]
                     0.304 [0.272,0.336]
                                                     4.63 [4.55, 4.72]
## RR.A1|A2
                         3.93 [3.5,4.41]
##
                       RD.A2|A1
                                         RR.A2|A1
## A1=0
            0.091 [0.073,0.109] 1.88 [1.67,2.11]
            0.495 [0.457,0.534] 2.21 [2.04,2.4]
## RD.A1|A2
## RR.A1|A2
##
## $interaction.effects
## [1] "additive Interaction = 0.404 [0.362;0.447]"
## [2] "RERI = 3.89 [3.45;4.4]"
## [3] "multiplicative Interaction = 1.18 [1.02;1.36]"
```

7.5.2 IPTW

```
## $out.table
##
                                     A2=0
            $p_{00}$=0.104 [0.095,0.113] $p_{01}$=0.195 [0.18,0.21]
## A1=0
            $p_{10}$=0.408 [0.377,0.439] $p_{11}$=0.904 [0.88,0.927]
## A1=1
## RD.A1|A2
                     0.304 [0.272,0.336]
                                                   0.709 [0.68, 0.737]
## RR.A1|A2
                         3.93 [3.5,4.41]
                                                     4.63 [4.55, 4.72]
##
                       RD.A2|A1
                                         RR.A2|A1
## A1=0
            0.091 [0.073,0.109] 1.88 [1.67,2.11]
## A1=1
            0.496 [0.457,0.535] 2.22 [2.05,2.4]
## RD.A1|A2
## RR.A1 | A2
##
## $interaction.effects
## [1] "additive Interaction = 0.405 [0.362;0.447]"
## [2] "RERI = 3.9 [3.45;4.4]"
## [3] "multiplicative Interaction = 1.18 [1.02;1.36]"
```

7.5.3 G-computation

```
## $out.table
                                    A2=0
                                                                 A2=1
            p_{00}=0.104 [0.095,0.112] p_{01}=0.197 [0.183,0.211]
## A1=0
## A1=1
              $p_{10}$=0.4 [0.373,0.427] $p_{11}$=0.893 [0.872,0.915]
## RD.A1|A2
                     0.296 [0.267,0.325]
                                                  0.697 [0.671,0.722]
## RR.A1|A2
                        3.86 [3.45,4.32]
                                                     4.54 [4.46,4.61]
                       RD.A2|A1
                                       RR.A2|A1
##
            0.093 [0.076,0.11] 1.9 [1.69,2.13]
## A1=0
## A1=1
            0.494 [0.459,0.528] 2.23 [2.08,2.4]
## RD.A1|A2
## RR.A1|A2
##
## $interaction.effects
## [1] "additive Interaction = 0.4 [0.362;0.439]"
## [2] "RERI = 3.86 [3.46;4.31]"
## [3] "multiplicative Interaction = 1.18 [1.02;1.35]"
```

Représentations graphiques

Présentation des résultats

Les recommandation de Knol et al. Knol and VanderWeele [2012] sont :

9.1 Modification d'effet

- Présenter les risques relatifs (RR), les OR ou les différences de risque (RD) avec les IC pour chaque strate de A1 et de A2 avec une seule catégorie de référence (éventuellement prise comme la strate présentant le plus faible risque de Y).
- Présenter les RR, OR ou RD avec les IC pour A1 dans les strates de A2.
- Présenter les mesures de la modification de l'effet sur des échelles additives (par exemple, RERI) et multiplicatives avec les IC.
- Énumérez les facteurs de confusion pour lesquels la relation entre A1 et Y a été ajustée.

9.2 Interaction

- Présenter les risques relatifs (RR), les OR ou les différences de risque (RD) avec les IC pour chaque strate de A1 et de A2 avec une seule catégorie de référence (éventuellement prise comme la strate présentant le plus faible risque de Y).
- Présenter les RR, OR ou RD avec les IC de l'effet de A1 sur Y dans les strates de A2 et de A2 sur Y dans les strates de A1.
- Présenter les mesures de la modification de l'effet sur des échelles additives (par exemple, RERI) et multiplicatives avec les IC.
- Énumérez les facteurs de confusion pour lesquels la relation entre A1 et Y et la relation entre A2 et Y ont été ajustées.

9.3 Proposition

- $\bullet\,$ Présenter les effets marginaux ou les proportions dans chaque strate
- présenter les effets dans chaque strate dans une échelle multiplicative et additive

Part III En pratique

Steps

- 1. formuler l'objectif
 - predictif ou explicatif
 - interaction ou modification d'effet?
- 2. DAG, estimand, estimateur
- 3. Description
 - tableau croisé
- 4. Analyses exploratoires
 - régressions avec terme d'interaction
 - analyses stratifiées
 - marge
- 5. Analyses confirmatoire
 - g computation
 - MSM

Exemple 1 - Y binaire

Exemple 2 - Y quantitatif

1. Objectifs

Dans cette étude [ref], on s'est intéressé, de façon explicative, à l'effet de la défavorisation sociale précoce sur le taux de cholestérol LDL vers 45 ans; mais aussi à l'effet du sexe sur ce taux de cholestérol en fonction de la défavorisation sociale précoce.

Ici on s'intéresse donc à deux modifications d'effet.

2. DAG, estimand, estimateur

Le DAG (sans les médiateurs) était :

Les estimands étaient définis sur l'échelle additive par :

$$\begin{array}{ll} \bullet & (Y_{s=1|d=0}-Y_{s=0|d=0})-(Y_{s=1|d=1}-Y_{s=0|d=1}) \\ \bullet & (Y_{d=1|s=0}-Y_{d=0|s=0})-(Y_{d=1|s=1}-Y_{d=0|s=1}) \end{array}$$

Ils sont ici équivalents car il n'y pas de facteurs de confusion, donc, par exemple, $Y_{d=1|s=0}=Y_{s=0|d=1}=Y_{d=1,s=0}$

Les effets ont été estimés par g-computation (standardisation).

3. Résultats

Synthèse générale

La première étape importantes consiste à **définir précisément l'objectif**. Et, si l'on est dans une démarche explicative, d'inférence causale, il s'agit de définir si la mesure d'un effet d'interaction est nécessaire pour y répondre (identifier précisément l'effet que l'on cherche à estimer, ou *estimand*).

Le fait de choisir une **démarche d'analyse d'interaction ou de modification d'effet** repose sur :

- la façon dont la question est posée (effet de X selon V ou effet conjoint de X et V).
- sur les hypothèses causales formulées (scénarii do(X) ou do(X,V))
- et donc sur les sets de facteurs de confusion à considérer (seulement sur $X \to Y$ ou $X.V \to Y$).

Concernant le **choix de l'échelle**, idéalement, les interactions devraient être reportées sur les 2 échelles Knol and VanderWeele [2012] VanderWeele and Knol [2014]. Cependant, l'échelle additive est plus appropriée pour évaluer l'utilité en santé publique VanderWeele and Knol [2014] Knol and VanderWeele [2012].

Concernant les paramètres,

Pour aller plus loin...

14.1 Ajouter de la complexité

A1 et A2 sont rarement indépendants. Scénario plus probable :

14.2 Interaction avec confusion intermédiaire

14.3 Interaction et médiation

VanderWeele [2013]

VanderWeele [2014]

Références

Bibliography

- Priscila Corraini, Morten Olsen, Lars Pedersen, Olaf M Dekkers, and Jan P Vandenbroucke. Effect modification, interaction and mediation: an overview of theoretical insights for clinical investigators. *Clinical Epidemiology*, 9:331–338, June 2017. ISSN 1179-1349. doi: 10.2147/CLEP.S129728.
- Miguel A Hernán, John Hsu, and Brian Healy. A second chance to get causal inference right: a classification of data science tasks. *Chance*, 32(1):42–49, 2019.
- Mirjam J. Knol and Tyler J. VanderWeele. Recommendations for presenting analyses of effect modification and interaction. *International Journal of Epidemiology*, 41(2):514–520, April 2012. ISSN 1464-3685. doi: 10.1093/ije/dyr218.
- Maya B Mathur and Tyler J VanderWeele. R function for additive interaction measures. *Epidemiology (Cambridge, Mass.)*, 29(1):e5, 2018.
- Tyler J. VanderWeele. On the distinction between interaction and effect modification. *Epidemiology (Cambridge, Mass.)*, 20(6):863–871, November 2009. ISSN 1531-5487. doi: 10.1097/EDE.0b013e3181ba333c.
- Tyler J. VanderWeele. A Three-way Decomposition of a Total Effect into Direct, Indirect, and Interactive Effects. *Epidemiology*, 24(2):224–232, March 2013. ISSN 1044-3983. doi: 10.1097/EDE.0b013e318281a64e.
- Tyler J. VanderWeele. A unification of mediation and interaction: a 4-way decomposition. *Epidemiology (Cambridge, Mass.)*, 25(5):749–761, September 2014. ISSN 1531-5487. doi: 10.1097/EDE.000000000000121.
- Tyler J. VanderWeele. The Interaction Continuum. *Epidemiology*, 30(5):648–658, September 2019. ISSN 1044-3983. doi: 10.1097/EDE.000000000001054.
- Tyler J. VanderWeele and Mirjam J. Knol. A Tutorial on Interaction. *Epidemiologic Methods*, 3(1):33–72, December 2014. ISSN 2161-962X. doi: 10.1515/em-2013-0005. Publisher: De Gruyter.

82 BIBLIOGRAPHY

Tyler J. VanderWeele and James M. Robins. Four types of effect modification: a classification based on directed acyclic graphs. *Epidemiology (Cambridge, Mass.)*, 18(5):561-568, September 2007. ISSN 1044-3983. doi: 10.1097/EDE. 0b013e318127181b.