Examenul național de bacalaureat 2024 Proba E. c)

Matematică M mate-info

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Arătați că $\left(3 + \lg \frac{1}{10}\right) \cdot \lg \sqrt{10} = 1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + ax 1$, unde a este număr real. Determinați numerele reale a pentru care $(f \circ f)(1) = 1$.
- **5p** 3. Rezolvați în multimea numerelor reale ecuatia $2^{x+1} \cdot 8^x = 32$.
- **5p 4.** Determinați probabilitatea ca, alegând un număr n din mulțimea numerelor naturale de două cifre, numărul $\sqrt{n+100}$ să fie natural.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,4), B(4,6) și C(4,2). Determinați coordonatele punctului D, știind că $\overrightarrow{OD} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right)$.
- **5p** 6. Se consideră expresia $E(x) = \operatorname{tg} x 4\cos\frac{x}{2} \cdot \cos x$, unde $x \in \left(0, \frac{\pi}{2}\right)$. Arătați că $E\left(\frac{\pi}{3}\right) = 0$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $A(x) = \begin{pmatrix} 1 & -1 & x \\ -1 & 0 & 0 \\ x & 0 & -1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(0))=1$.
- **5p b)** Arătați că $\det(A(x) \cdot A(x) I_3) \le 0$, pentru orice număr real x.
- **5p** c) Se consideră matricea $B \in \mathcal{M}_{2,3}(\mathbb{R})$, $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Determinați matricea $X \in \mathcal{M}_{2,3}(\mathbb{R})$ pentru care $X \cdot (A(0))^{-1} = B \cdot A(0)$, unde $(A(0))^{-1}$ este inversa matricei A(0).
 - **2.** Pe mulțimea $M = [0, +\infty)$ se definește legea de compoziție $x * y = \frac{x^2 + y^2 + x + y}{x + y + 1}$.
- **5p** | **a**) Arătați că 1*2=2.
- **5p** | **b**) Arătați că e = 0 este elementul neutru al legii de compoziție "*".
- **5p** c) Determinați perechile (m,n) de numere naturale pentru care m*n=5.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x+6)\sqrt{x^2+4}$.
- **5p** a) Arătați că $f'(x) = \frac{2(x^2 + 3x + 2)}{\sqrt{x^2 + 4}}, x \in \mathbb{R}$.
- **5p b**) Determinați intervalele de monotonie a funcției f.
- **5p** | **c**) Demonstrați că ecuația f(x) = m are soluție unică, pentru orice număr întreg m.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x+1}{e^x}$.
- 5p a) Arătați că $\int_{0}^{4} e^{x} f(x) dx = 12$. 5p b) Arătați că $\int_{0}^{1} f(x) dx = \frac{2e-3}{e}$.
- **5p** c) Pentru fiecare număr natural $n, n \ge 2$, se consideră numărul $I_n = \int_0^1 \frac{x^{n-1}}{f(x^n)} dx$. Demonstrați că

$$\frac{\ln 2}{n} \le I_n \le \frac{e-1}{n}$$
, pentru orice număr natural $n, n \ge 2$.