หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

โจทย์ชุดที่สิบสี่ วันจันทร์ที่ 24 เมษายน พ.ศ. 2566 จำนวน 6 ข้อ

ที่	เนื้อหา	โจทย์
1.	Dynamic Programming with bitmasks จำนวน 6 ข้อ	1. สวมอุปกรณ์ (Equipped)
		2. ตารางปริศนาบียูยู (BUU Puzzle)
		3. อไจล์ตึงเปรี๊ยะสาม (AG_Tension3)
		4. แอนเชียนพีทประชุมเวทมนตร์ (AP_Convoke)
		5. จิมมี่ บอนด์ (Jimmy Bond)
		6. พีทเทพดื่มน้ำ (PT_Drink Water)

1. เรื่อง Dynamic Programming with bitmasks จำนวน 6 ข้อ

1. สวมอุปกรณ์ (Equipped)

ที่มา: PeaTT~

พีทเทพเตรียมตัวไปตั้งแคมป์ในป่าเขาดงดิบกับเพื่อน ๆ เขาไปเดินเลือกซื้ออุปกรณ์ที่ห้างสรรพสินค้าโชว์ห่วย ในร้านมี อุปกรณ์ตั้งแคมป์ n ชิ้น ผลิตภัณฑ์ชิ้นที่ i มีราคา w_i บาท

พีทเทพต้องการอุปกรณ์เหล่านี้เพื่อใช้งานหลายอย่าง เช่น เหลาไม้ ขุดดิน ฟังเพลง เลื่อยไม้ กรองน้ำ ถลุงเหล็ก โม่แป้ง เป็น ต้น รวมการใช้งานทั้งหมดมีได้ k แบบ

พีทเทพมีข้อมูลว่าอุปกรณ์แต่ละชิ้นทำอะไรได้บ้าง โดยสำหรับอุปกรณ์ที่ i และการใช้งานที่ j ค่า p(i, j) จะระบุว่าอุปกรณ์ ดังกล่าวมีความสามารถใช้งานสำหรับงานที่ j หรือไม่ กล่าวคือ p(i, j) = 1 เมื่ออุปกรณ์ที่ i สามารถทำงาน j ได้ และ p(i, j) = 0 เมื่อ อุปกรณ์ชิ้นที่ i ทำงาน j ไม่ได้

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อช่วยพีทเทพเลือกเซตของอุปกรณ์ที่จะซื้อเพื่อให้สามารถใช้ทำงานได้ครบทุกงาน กล่าวคือ สำหรับการ ใช้งาน j ใด ๆ จะต้องมีอุปกรณ์ที่เลือกไปอย่างน้อย 1 อย่างที่สามารถใช้ทำงาน j ได้ นอกจากนี้ให้เลือกโดยใช้เงินน้อยที่สุดด้วย

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก มีจำนวนเต็ม n และ k โดยที่ 1 <= n <= 10,000 และ 1 <= k <= 8

อีก n บรรทัดต่อมา ในบรรทัดที่ 1+i จะมีจำนวนเต็ม k+1 จำนวน เรียงตามลำดับ ดังนี้ wi p(i, 1) p(i, 2) ... p(i, k)

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว เป็นจำนวนเงินที่น้อยที่สุดที่สามารถซื้อของที่ทำงานได้ครบทุกอย่าง

<u>ตัวอย่าง</u>

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 3	35
10 1 0 1	
30 0 1 1	
5 1 0 0	
4 0 0 1	
150 1 1 1	

+++++++++++++++++

2. ตารางปริศนาบียูยู (BUU Puzzle)

 \ddot{n} ี่มา: ข้อสอบท้ายค่ายสองคัดเลือกผู้แทนศูนย์ ม.บูรพา รุ่น 11 ออกโดย PeaTT \sim

ตารางปริศนาบียูยูเป็นตารางขนาด 5 แถว N คอลัมน์ ในแต่ละช่องจะมีมูลค่าเป็นจำนวนเต็มที่ไม่ติดลบอยู่ นายเทพ ต้องการเลือกตัวเลขในตารางปริศนานี้เพื่อให้ได้ผลรวมของตัวเลขที่เขาเลือกมีมูลค่าสูงที่สุดเท่าที่จะเป็นไปได้ โดยที่ตัวเลขที่เขาเลือก ทุกตัวจะต้องไม่ติดกันในสี่ทิศทาง ได้แก่ ด้านบน, ด้านล่าง, ด้านซ้าย และ ด้านขวาเสมอ

เช่น N=6 ตารางปริศนาบียูยูจะมีขนาด 5 แถว 6 คอลัมน์

1	0	0	0	0	0
0	1	1	10	1	0
1	10	0	0	5	10
0	1	1	10	0	0
1	0	0	0	1	10

1	0	0	0	0	0
0	1	1	10	1	0
1	10	0	0	5	10
0	1	1	10	0	0
1	0	0	0	1	10

เที่ 1 ภาพที่ 2

ภาพที่ 1 แสดงตารางปริศนาบียูยูเริ่มต้นขนาด 5 แถว 6 คอลัมน์

ภาพที่ 2 แสดงช่องที่เทพเลือก โดยจะได้มูลค่ารวมเป็น 1+10+10+10+10+1+10 = 52 ซึ่งสูงที่สุดเท่าที่จะเป็นไปได้แล้ว

<u>งานของคุณ</u>

จงเขียนโปรแกรมอย่างมีประสิทธิภาพเพื่อหาว่าเทพสามารถเลือกตัวเลขในตารางปริศนาบียูยูให้ได้ผลรวมของตัวเลขที่ เลือกมีมูลค่าสูงที่สุดเป็นเท่าใด?

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก แสดงจำนวนคำถาม Q โดยที่ Q ไม่เกิน 5 ในแต่ละคำถาม

บรรทัดแรก รับจำนวนเต็มบวก N โดยที่ 1 <= N <= 50,000

อีก 5 บรรทัดต่อมา รับตารางปริศนาบียูยู ประกอบด้วยตัวเลขจำนวนเต็มที่มีค่าตั้งแต่ 0 จนถึง 100,000 คั่นด้วย 1 ช่องว่าง

20% ของชุดข้อมูลทดสอบ จะมีค่า N ไม่เกิน 5

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด ในแต่ละบรรทัดให้แสดงผลรวมตัวเลขสูงที่สุดเท่าที่จะเป็นไปได้ในการเลือกตัวเลขจากตารางปริศนาบียูยู ตัวอย่าง

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	52
6	9
1 0 0 0 0 0	
0 1 1 10 1 0	
1 10 0 0 5 10	
0 1 1 10 0 0	
1 0 0 0 1 10	
5	
1 0 0 0 1	
0 1 1 1 0	
0 1 1 1 0	
0 1 1 1 0	
1 0 0 0 1	

คำอธิบายตัวอย่างที่ 1

คำถามแรก เป็นไปตามคำอธิบายในโจทย์

คำถามที่สอง เลือกตัวเลขในแนวเส้นทแยงมุม จะได้ผลรวมเป็น 9

+++++++++++++++++

. ที่มา: ข้อสาม Agile Programming Contest 2021 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น17

ในปี 2070 กระแสบ้านพักคนชราเกิดตึงเปรี๊ยะขึ้นมา ใคร ๆ ก็อยากสร้างบ้านพักคนชราทั้งนั้น ทำให้เกิดบ้านพักคนชราขึ้น N แห่ง โดยนันท์ก็เป็นคนชราขี้เหงาคนหนึ่งในบ้านพักคนชราที่ A (1 <= A <= N) เนื่องจากเขาเป็นคนขี้เหงามาก ในแต่ละวัน เขา จึงต้องการที่จะเดินทางไปหาเพื่อน ๆ เขาที่อยู่ที่บ้านพักคนชรา Bi (1 <= Bi <= N) แต่เพราะความแก่ทำให้การเดินเหินของเขาก็ไม่ สะดวก เขาจึงจำเป็นต้องอาศัยเจ้าหน้าที่ในการเดินทางระหว่างบ้านพักคนชราใดๆ

ในบางวัน เจ้าหน้าที่บางคนก็อาจจะไม่ได้มาทำงานเพราะเมื่อคืนเขาไปกินบุฟเฟต์มาทำให้กางเกงตึงเปรี๊ยะจนใส่ไม่ได้ทำให้ ต้องลางานในวันนั้น ทำให้ไม่สามารถใช้ทางเดินใด ๆ ที่ต้องอาศัยเจ้าหน้าที่ x ในการเดินทางได้ (ในแต่ละทางเดินจะมีเจ้าหน้าที่ x เพียงคนเดียวของทางเดินนั้น) นันท์จึงเกิดสงสัยว่า ถ้าเขารู้ก่อนว่าวันนั้นเจ้าหน้าที่คนไหนจะไม่มาทำงานบ้าง เขาจะสามารถเดินไป หาเพื่อนเขาที่บ้าน Bi ได้หรือไม่ ถ้าสามารถไปหาได้ เขาจะต้องใช้ระยะเวลาน้อยที่สุดเท่าใด

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาว่าในแต่ละวัน นันท์จะสามารถไปหาเพื่อนของเขาโดยใช้ระยะเวลาน้อยที่สุดเป็นเท่าใด

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก N M A Q แทนจำนวนบ้านพัก จำนวนทางเดิน บ้านพักที่นั้นท์อยู่ และจำนวนวันที่จะถาม ตามลำดับ (1 <= N <= 10^4 ; 1 <= M <= 10^5 ; 1 <= A <= N; 1 <= Q <= 10^5)

อีก M บรรทัดต่อมา รับ u v w x แทนทางเดินระหว่างบ้าน u และบ้าน v <u>แบบสองทาง</u> โดยที่ต้องใช้ระยะเวลา w และ อาศัยเจ้าหน้าที่ x ในการเดินทาง (1 <= u, v <= N; 1 <= w <= 10^3 ; 1 <= x <= 8)

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

จากนั้น รับคำถาม Q ชุด ในแต่ละคำถาม รับ B K แทนบ้านพักของเพื่อนที่เขาจะไปหาในวันนั้น และจำนวนเจ้าหน้าที่ที่ไม่ ได้มาทำงาน จากนั้นรับจำนวนเต็มบวก K จำนวนแทนหมายเลขของเจ้าหน้าที่ที่ไม่ได้มาทำงาน

20% ของชุดข้อมูลทดสอบจะมี N <= 10^3 และ Q <= 10^4

20% ของชุดข้อมูลทดสอบจะมีเจ้าหน้าที่เพียง 2 คนเท่านั้น

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด แต่ละบรรทัดแสดงระยะเวลาที่น้อยที่สุด หากไม่สามารถเดินทางไปถึงได้ให้แสดง -1

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 5 1 2	11
1 2 5 2	-1
1 4 8 4	
2 4 3 1	
2 3 6 1	
3 4 1 3	
3 1 3	
3 2 1 3	

คำอธิบายตัวอย่างที่ 1

คำถามแรก ไม่สามารถอาศัยเจ้าหน้าที่หมายเลข 3 ได้ จึงต้องเดินทางจาก 1 -> 2 -> 3 อาศัยเจ้าหน้าที่หมายเลข 2 และ 1 ตามลำดับ ต้องใช้ระยะเวลา 5+6=11

คำถามที่ 2 ไม่สามารถอาศัยเจ้าหน้าที่หมายเลข 1 และ 3 ได้ จึงไม่สามารถเดินทางจาก 1 ไปยัง 3 ได้

++++++++++++++++

4. แอนเชียนพีทประชุมเวทมนตร์ (AP_Convoke)

 $\dot{ec{n}}$ ม่า: ข้อสอบท้ายค่ายสองคัดเลือกผู้แทนศูนย์ ม.บูรพา รุ่น 13 ออกโดย PeaTT \sim

โลกเวทมนตร์มีทั้งสิ้น N เมือง เรียกว่าเมืองที่ 1 ถึง เมืองที่ N และ มีถนนเชื่อมระหว่างเมืองทั้งสิ้น M เส้น ถนนดังกล่าว เป็นถนนแบบสองทาง และมีค่าน้ำหนัก W หน่วย

เริ่มต้นแอนเชียนพีทอยู่ที่สำนักเวทมนตร์ ณ เมืองที่ 1 เขาต้องการเดินทางไปประชุมเวทมนตร์ที่สภาเวทมนตร์ซึ่งตั้งอยู่ใน เมืองที่ N แต่แอนเชียนพีทจะต้องเดินทางไปรับเพื่อนของเขาทั้งสิ้น K คน ซึ่งอยู่ทั้งสิ้น K เมือง แอนเชียนพีทสามารถไปรับเพื่อนคน ไหนก่อนหลังก็ได้ แต่ต้องรับเพื่อนให้ครบทั้ง K คน

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อช่วยแอนเชียนพีทหาระยะทางเดินทางรวมที่สั้นที่สุดในการเดินทางจากสำนักเวทมนตร์ไปยังสภาเวท มนตร์โดยผ่านเมืองทั้ง K เมืองที่กำหนดให้

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก N M K ตามลำดับห่างกันหนึ่งช่องว่าง โดยที่ 2 <= N <= 200, 1 <= M <= 10,000 และ 1 <= K <= 15

โจทย์พี่พีทมีลิขสิทธิ์ ห้ามนำส่วนหนึ่งส่วนใดไปดัดแปลง หรือ ใช้งานต่อ โดยเด็ดขาด หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

บรรทัดที่สอง รับจำนวนเต็ม K จำนวน แทนหมายเลขเมืองที่เพื่อนของแอนเชียนพีทอยู่ โดยจะไม่มีเมืองที่ 1 หรือ เมืองที่ N รวมอยู่ในเมืองเหล่านี้ด้วย

บรรทัดที่ 3 ถึง M+2 รับจำนวนเต็มบวก A B W ตามลำดับ แทนถนนแบบสองทางเชื่อมระหว่างเมือง A และ เมือง B ซึ่งมี ค่าน้ำหนัก W โดยที่ 1 <= A, B <= N และ 1 <= W <= 100

60% ของชุดข้อมูลทดสอบ จะมีค่า K ไม่เกิน 10

ข้อมูลส่งออก

บรรทัดเดียว ให้แสดงระยะทางที่สั้นที่สุดตามเงื่อนไขดังกล่าว รับประกันว่าในทุกชุดข้อมูลทดสอบของข้อนี้จะมีวิธีที่แอน เชียนพีทสามารถเดินทางจากเมืองที่ 1 ไปยังเมืองที่ N โดยผ่านเมืองทั้งสิ้น K เมืองนี้ได้อย่างแน่นอน

ตัวอย่าง

1800 IV			
ข้อมูลนำเข้า	ข้อมูลส่งออก		
7 10 1	4		
4			
1 2 1			
1 3 2			
4 1 2			
2 4 2			
3 4 1			
4 5 1			
4 6 3			
5 7 1			
7 6 2			
4 7 4			
7 10 2	8		
3 6			
1 2 1			
1 3 2			
4 1 2			
2 4 2			
3 4 1			
4 5 1			
4 6 3			
5 7 1			
7 6 2			
4 7 4			

โจทย์พี่พีทมีลิขสิทธิ์ ห้ามนำส่วนหนึ่งส่วนใดไปดัดแปลง หรือ ใช้งานต่อ โดยเด็ดขาด หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

5. จิมมี่ บอนด์ (Jimmy Bond)

์ ที่มา: PeaTT~

ทุกคนคงจะรู้จักสายลับศูนย์ศูนย์เจ็ด เจมส์ บอนด์ ผู้โด่งดัง แต่ก็ยังไม่มีคนทราบว่าความจริงแล้ว เขาไม่ได้ปฏิบัติภารกิจ ส่วนใหญ่ด้วยตัวเขาเอง แต่เป็นลูกพี่ลูกน้องของเขา จิมมี่ บอนด์ ต่างหาก ส่วนเจมส์ บอนด์จะเป็นคนกำหนดลำดับภารกิจสำหรับจิม มี่ บอนด์ทุกครั้งที่มีภารกิจใหม่เข้ามา ดังนั้นเขาจึงต้องการให้คุณช่วย

ทุกเดือน จะมีรายการของภารกิจเข้ามา ด้วยความอัจฉริยะและประสบการณ์ของเจมส์ เขาสามารถคาดคะเนความน่าจะ เป็นที่จิมมี่จะปฏิบัติภารกิจนั้น ๆ สำเร็จได้ เมื่อเขาลงมือปฏิบัติภารกิจนั้นเป็นลำดับที่ต่าง ๆ กันไป (ภารกิจหนึ่งอาจจะมีความน่าจะ เป็นไม่เท่ากัน เมื่อเลือกทำเป็นลำดับแรก หรือ ลำดับที่สอง หรือ ลำดับที่สาม เป็นต้น)

<u>งานของคูณ</u>

จงเขียนโปรแกรมเพื่อรับจำนวนภารกิจและความน่าจะเป็นของความสำเร็จของภารกิจต่าง ๆ และหาว่าความน่าจะเป็น สูงสุดที่จิมมี่ บอนด์จะปฏิบัติภารกิจทุกภารกิจสำเร็จเป็นเท่าใด โดยที่ความน่าจะเป็นที่จะปฏิบัติภารกิจทุกภารกิจสำเร็จคือผลคูณ ของความน่าจะเป็นของทุกภารกิจที่ปฏิบัติ

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก N (N <= 20) แทนจำนวนภารกิจที่ได้รับมอบหมาย

อีก N บรรทัดถัดมา จะประกอบด้วยจำนวนเต็ม N จำนวน คือความน่าจะเป็นที่จะปฏิบัติภารกิจ โดยในบรรทัดที่ i ตัวเลข ตัวที่ j คือความน่าจะเป็นของภารกิจที่ j เมื่อเลือกทำเป็นลำดับที่ i โดยค่านี้จะเป็นร้อยละ ซึ่งมีค่าในช่วง 0 ถึง 100

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว แสดงความน่าจะเป็นที่สูงที่สุดของการปฏิบัติภารกิจของจิมมี่ เป็นทศนิยมสองตำแหน่ง

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก	
2	50.00	
100 100		
50 50		
2	25.00	
0 50		
50 0		
3	9.10	
25 60 100		
13 0 50		
12 70 90		

คำอธิบายตัวอย่างที่ 3

จิมมี่เลือกทำภารกิจที่ 3, ภารกิจที่ 1, ภารกิจที่ 2 ตามลำดับ จะได้ความน่าจะเป็นเท่ากับ 1.00 x 0.13 x 0.70 = 0.091 = 9.1% ซึ่งเป็นรูปแบบการเลือกทำภารกิจที่มากที่สุดเท่าที่จะเป็นไปได้แล้ว

+++++++++++++++++

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

6. พีทเทพดื่มน้ำ (PT_Drink Water)

พีทเทพ (Peattaep) เป็นพระราชาปกครองดินแดน POSNBUU วันนี้เขาจะมาดื่มน้ำ

พีทเทพมีน้ำทั้งสิ้น N แก้ว แต่ละแก้วจะมีปริมาณน้ำอยู่ส่วนหนึ่ง พีทเทพอยากที่จะดื่มน้ำหมดทุกแก้ว แต่เขาไม่อยากดื่มน้ำ เกิน K แก้ว เขาจึงต้องนำแก้วมาเทน้ำรวมกันก่อน การเทน้ำจากแก้วที่ i ไปยังแก้วที่ j จะต้องใช้เงิน C_{i, j} บาท

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อช่วยพีทเทพหาว่าจะต้องใช้เงินน้อยที่สุดเท่าไหร่เพื่อให้พีทเทพดื่มน้ำที่มีอยู่ทั้งหมดได้

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q ไม่เกิน 5 ในแต่ละคำถาม ข้อมูลในแต่ละบรรทัดมีรายละเอียดดังนี้ บรรทัดแรก รับจำนวนเต็มบวก N K ตามลำดับ ห่างกันหนึ่งช่องว่าง โดยที่ 1 <= K <= N <= 20

อีก N บรรทัดต่อมา แต่ละบรรทัดรับจำนวนเต็ม N จำนวน เพื่อแสดงค่าของ $C_{i,j}$ โดยที่ $0 <= C_{i,j} <= 100,000$ รับประกัน ว่า $C_{i,j}$ จะมีค่าเป็น 0 เสมอ

20% ของชุดข้อมูลทดสอบ จะมี N ไม่เกิน 5

50% ของชุดข้อมูลทดสอบ จะมี N ไม่เกิน 10

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด แต่ละบรรทัด ให้แสดงราคาที่ต้องเสียที่น้อยที่สุดในการเทน้ำ

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
1	5
5 2	
0 5 4 3 2	
7 0 4 4 4	
3 3 0 1 2	
4 3 1 0 5	
4 5 5 5 0	

คำอธิบายตัวอย่างที่ 1

พีทเทพจะต้องเทน้ำแก้วที่ 4 ใส่แก้วที่ 3 (เสียเงิน 1 บาท) จากนั้น เทน้ำแก้วที่ 3 ใส่แก้วที่ 5 (เสียเงิน 2 บาท) และสุดท้าย เทน้ำแก้วที่ 1 ใส่แก้วที่ 5 (เสียเงิน 2 บาท) รวมทั้งสิ้นเสียเงิน 1+2+2 = 5 บาทซึ่งน้อยที่สุดเท่าที่จะเป็นไปได้แล้ว โดยสุดท้ายก็ดื่ม น้ำแก้วที่ 2 และ แก้วที่ 5 รวมแล้วไม่เกิน 2 แก้วนั่นเอง

++++++++++++++++