Algèbre et théorie de Galois

Feuille d'exercices 1

Exercice 1. (Rappels) Soit G un groupe. Pour X et Y des parties de G, on pose

$$XY = \{xy, x \in X, y \in Y\} \subset G.$$

Soit $H \subset G$ un sous-groupe de G. Si $g \in G$, on note $gH = \{g\}H$ le translaté de H à gauche par g et on désigne par $G/H \subset \mathcal{P}(G)$ l'ensemble des gH, $g \in G$. On a une définition analogue pour Hg. On rappelle que H est dit distingué (ou normal) dans G si gH = Hg pour tout g dans G, on note $H \triangleleft G$.

- (i) Montrer que $H \triangleleft G$ si, et seulement si, $\forall g, g' \in G$, (gH)(g'H) = gg'H.
- (ii) En déduire que si $H \triangleleft G$, la loi de composition sur G/H définie par $(gH, g'H) \mapsto gg'H$ est une loi de groupe de neutre H. De plus, l'application $\pi: G \to G/H$, $g \mapsto gH$, est un morphisme de groupes, surjectif et de noyau H.
- (iii) Supposons $H \triangleleft G$. Montrer que l'application qui à un sous-groupe $X \subset G/H$ associe le sous-groupe $\pi^{-1}(X) \subset G$ est une bijection de l'ensemble des sous-groupes de G/H dans ceux de G contenant H. Si G est fini, vérifier que $|\pi^{-1}(X)| = |X||H|$.
- (iv) Montrer qu'un sous-groupe H de G est distingué dans G si, et seulement si, il existe un morphisme $\varphi: G \to G'$ vers un autre groupe G' tel que $H = \text{Ker}(\varphi)$.

Si $n \geq 1$, on note S_n le groupe des bijections de $\{1, \ldots, n\}$ dans lui-même (pour la composition). Si $\sigma \in S_n$, on rappelle que le *support* de σ est l'ensemble des $i \in \{1, \ldots, n\}$ tels que $\sigma(i) \neq i$. Si $I = \{i_1, i_2, \ldots, i_k\} \subset \{1, \ldots, n\}$ et |I| = k, on note (i_1, i_2, \cdots, i_k) le k-cycle $\sigma \in S_n$ fixant $\{1, \ldots, n\} \setminus I$ et tel que $\sigma(i_s) = i_{s+1}$ pour $1 \leq s < k$ et $\sigma(i_k) = i_1$.

- **Exercice 2.** (i) Pour $\sigma \in S_n$, montrer que $\sigma(i_1, \dots, i_k)\sigma^{-1} = (\sigma(i_1), \dots, \sigma(i_k))$. En déduire que tous les k-cycles sont conjugués.
 - (ii) Vérifier que deux permutations à supports disjoints commutent. Remarquer que la réciproque est fausse : (1,2)(3,4) et (1,3)(2,4) commutent dans S_4 .
 - (iii) Exprimer l'ordre d'une permutation σ en terme des longueurs des cycles intervenant dans sa décomposition en cycles.
 - (iv) Donner un exemple de cycle dont le carré n'est pas un cycle.

Exercice 3. On suppose dans cet exercice que $n \geq 2$.

- (i) Montrer que les transpositions engendrent S_n .
- (ii) Montrer qu'il existe exactement deux morphismes de groupes $S_n \to \mathbf{C}^*$: le morphisme constant et la signature ϵ .
- (iii) Soit $A_n = \{ \sigma \in S_n | \epsilon(\sigma) = 1 \}$. Montrer que A_n est un sous-groupe distingué de S_n et écrire une suite exacte faisant intervenir S_n et A_n .

Exercice 4.

Soit p un nombre premier impair. On identifie le groupe symétrique S_p aux bijections de $\mathbf{Z}/p\mathbf{Z}$ et on note \bar{m} la classe de l'entier m dans $\mathbf{Z}/p\mathbf{Z}$. Soient i,j deux entiers avec $1 \leq i < j \leq p$ et G le sous-groupe de S_p engendré par le cycle $(\bar{1},\bar{2},\cdots,\bar{p})$ et la transposition (\bar{i},\bar{j}) .

(i) Montrer que pour tout $k \in \mathbf{Z}$, on a $(\bar{i} + \bar{k}, \bar{j} + \bar{k}) \in G$ puis que

$$(\overline{i} + k\overline{(j-i)}, \overline{i} + (k+1)\overline{(j-i)}) \in G.$$

- (ii) Montrer par récurrence sur $k \in [1, \cdots, p-1]$ que $(\overline{i}, \overline{i} + k\overline{(j-i)}) \in G$.
- (iii) Montrer que l'équation $\bar{i} + \bar{k}(\bar{j} i) = \bar{i} + 1$ a une solution $\bar{k} \in (\mathbf{Z}/p\mathbf{Z})^*$.
- (iv) Montrer que $(\bar{i}, \bar{i}+1) \in G$ puis $\forall \bar{t} \in \mathbf{Z}/p\mathbf{Z}, \ (\bar{t}, \bar{t}+1) \in G$.
- (v) Montrer $G = S_p$.
- (vi) Soit c un p-cycle et τ une transposition de S_p . Montrer que S_p est engendré par c et τ .
 - (vii) Montrer que le résultat précédent tombe en défaut si on ne suppose pas p premier.
- Exercice 5. On munit C de sa structure de plan euclidien orienté dans le sens trigonométrique. Soit C l'ensemble des 4 sommets d'un carré et ω son centre. On note Γ le sous-groupe des bijections q de C telles

$$\forall x, y \in C, \ |g(x) - g(y)| = |x - y|.$$

Soit ρ la rotation de centre ω et d'angle $\frac{\pi}{2}$ et σ une symétrie par rapport à une diagonale de C (ou plutôt leurs restrictions à C).

- (i) Montrer que si $g \in \Gamma$ fixe deux sommets consécutifs de C, alors $g = \mathrm{Id}$.
- (ii) Montrer l'égalité

$$\Gamma = \{ \rho^{\alpha}, \rho^{\beta} \sigma, \ \alpha, \beta \in \{1, \cdots, 4\} \}$$

et qu'on a la formule $\sigma \rho \sigma = \rho^{-1}$.

(iii) Montrer que Γ est un groupe d'ordre 8 non abélien et qu'on a une suite exacte de groupes

$$1 \to \mathbf{Z}/4\mathbf{Z} \to \Gamma \to \mathbf{Z}/2\mathbf{Z} \to 1.$$

- (iv) Donner tous les sous-groupes de Γ . Les quels sont distingués ? En particulier, combien Γ a-t-il de sous-groupes d'ordre 2 ? 4 ?
- **Exercice 6.** Soient $n \geq 1$ et K un corps. Pour $k \geq 0$, on considère l'ensemble \mathcal{T}_k des éléments de $GL_n(K)$ de la forme $I_n + N$ avec $N_{i,j} = 0$ pour i > j k. Montrer que \mathcal{T}_k est un sous-groupe de $GL_n(K)$ et écrire une suite exacte faisant intervenir \mathcal{T}_k et \mathcal{T}_{k+1} .
- **Exercice 7.** (i) Soit X l'ensemble des partitions en deux parties égales de l'ensemble $\{1, 2, 3, 4\}$, c'est à dire des paires $P, Q \in \mathcal{P}(\{1, 2, 3, 4\})$ telles que |P| = |Q| = 2 et $P \cap Q = \emptyset$. Vérifier que |X| = 3 et que S_4 agit sur X par $\sigma \cdot \{P, Q\} = \{\sigma(P), \sigma(Q)\}$.
 - (ii) Soit $K \subset S_4$ le sous-groupe engendré par les trois doubles transpositions dans S_4 (groupe de Klein). Montrer que $K \simeq (\mathbf{Z}/2\mathbf{Z})^2$ et que K est distingué dans S_4 .
 - (iii) Soit $\varphi: S_4 \longrightarrow S(X) \simeq S_3$ le morphisme de groupes associé à l'action du (i). Montrer que φ est surjectif, que $\operatorname{Ker}(\varphi) = K$, et en déduire l'existence d'une suite exacte

$$1 \longrightarrow K \longrightarrow S_4 \longrightarrow S_3 \longrightarrow 1.$$

Exercice 8. Soit G un groupe et H un sous-groupe d'indice 2 (i. e. tel que |G/H| = 2). Montrer que H est distingué dans G. En utilisant l'exercice 3, en déduire que A_n est le seul sous-groupe d'indice 2 de S_n .