الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطئ للامتحانات والمسابقات

دورة: 2016

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة زياحيات

الحدة: 04 سا و 30 د

اختبار في مادة: الرياضيات

على المترشح أن بختار أحد الموضوعين التاليين:

الموضوع الأول

يحتوي الموضوع الأول على 03 صفحات (من الصفحة 1 من 5 إلى الصفحة 3 من 5).

التمرين الأول: (04,5 نقطة)

 $A\left(O; \widetilde{I}, \widetilde{J}, \widetilde{K}
ight)$ القضاء منسوب إلى المعلم المتعامد و المتجانس

 $H\!\left(rac{5}{4};\!rac{7}{4};\!-rac{1}{2}
ight)$ ، $E\!\left(0;\!1;\!1
ight)$ ، $D\!\left(rac{1}{2};\!2;\!-rac{1}{2}
ight)$ ، $C\!\left(-1;\!0;\!1
ight)$ ، $B\!\left(2;\!-1;\!1
ight)$ ، $A\!\left(1;\!1;\!0
ight)$ نعتبر النقط المنظر النقط المنظر المنظر المنظلة ال

 $x=1+\alpha+\beta$ و المستوي (P) المعرّف بالتمثيل الوسيطي: $x=1+\alpha+\beta$ و $x=1+\alpha+\beta$ و ميطان حقيقيان. $x=1+2\alpha-\beta$

ا) بين أن النقط B ، A و C تُعيّن مستويا. (1

ب) شعقَق أنّ الشعاع $\vec{n}(1;3;5)$ ناظمي للمستوي (ABC) ثم اكتب معادلة بيكاركية له.

2) أ) أكتب معافلة فيكارثية للمستوي (P) اثم بين أن المستويين (ABC) و (P) متقاطعان.

 (\mathbf{P}) مستقيم تقاطع المستويين (ABC) و (\mathbf{P}) ،

م تعقق أنَّ اللقطة D تنتمي إلى المستقيم (Δ) و أنَّ (3;1;0) شعاع توجيه المستقيم D.

ج.) اکتب تمثیلا وسیطیا للمستنیم (Δ) .

 Δ) بنين أنّ انتقطة H هي المسقط العمودي للنقطة Δ على المستقيم Δ) ثم استنتج المسافة ببين إ λ و Δ

 $\{(A,2);(B,-3);(C,2)\}$ مرجح الجملة المثقلة: $\{(A,2);(B,-3);(C,2)\}$ مرجع الجملة المثقلة:

 $\overline{EM}\cdot\overline{GM}=11$ مجموعة النقط M من الفضاء الذي تُحقَق: Γ

أ) عنن إحداثيات النقطة G.

ب) اكتب معادلة ديكارتية المجموعة (1) ثم بيّن أنّها سطح كرة يطلب تعيين مركزها و نصف قطرها.

 $\cdot (\Gamma)$ جنَّد الرضعية النسبية للمستوي (BC) و المجموعة (Γ)

التمرين إنتاتي: (04,5 نقطة)

 $\begin{cases} \ln(u_1) + \ln(u_2) - 11 \\ u_1 + u_2 = e^4 \left(1 + e^3\right) \end{cases}$ حيث: q مثالية هندسية متزايدة تماماء حدودها موجية تماماء حدّها الأزن u_0 و أساسها q حيث:

الحسب ١٤ و ٤٤ ثم استنتج قيمة الأساس ۾ .

 $u_{\rm l}=e^3$, $u_{\rm l}=e^4$: نظمع (2

 u_n غير عن u_n بدلالة u_n

ب نضع : $S_n = \ln(u_0) + \ln(u_1) + \ln(u_2) + ... + \ln(u_n)$ بدلالة $S_n = \ln(u_0) + \ln(u_0) + \ln(u_0)$

 $a_n = n+3$: من أجل كل عدد طبيعي n نضيع (3)

 $.PGCD(2S_n, a_n) = PGCD(a_n, 14) : نین آن (i$

 $PGCD(2S_n,a_n):$ ب) عين القيم الممكلة i:

 $PGCD(2S_n,a_n)=7:$ جين کيم الأعداد الطبيعية n الذي من أجلها

4) ادرس تبعا لقيم الحد الطبيعي 1 باكي القسمة الإقلينية للحد 2 على 7.

. $b_n = 3na_n - 2S_n + 1437^{2016} + 1$ نضع: (5

 $b_n\equiv 0$ [7] جين قيم العدد الطبيعي n التي من أجلها يكون : $n\equiv 0$ [5] $n\equiv 0$ $n\equiv 0$ يقيل القسمة على 7. (6 $n\equiv 0$ ين أجل كل عدد طبيعي n ، العدد $n\equiv 0$ بين أنّه من أجل كل عدد طبيعي n ، العدد $n\equiv 0$ بين أنّه من أجل كل عدد طبيعي n ، العدد $n\equiv 0$

التمرين الذالك: (5,40 نقطة)

 $z^2-4z+5=0$: المعادلة : $z^2-4z+5=0$ المعادلة : $z^2-4z+5=0$

 $-(z-1+i(1-\sqrt{3}))^2-4z+1-4i(1-\sqrt{3})=0$ الأثلية: $z=1+i(1-\sqrt{3})^2-4z+1-4i(1-\sqrt{3})=0$ المنتقح حطول المعادلة إذات المجهول المركب $z=1+i(1-\sqrt{3})$

. عدد حقیقی حیث : $rac{\pi}{2} \geq heta \leq 0$ و رو z_0 صدد مرکب طویلته 1 و heta عمدهٔ له heta

أ) الكتب الحدد المركب $\sqrt{3} + i + 1$ على الشكل الأسىء

.(
$$z_0$$
 عِيْن θ عِيْن θ عِيْن z_0 المركب z_0 . $\frac{z_0\left(1\pm i\sqrt{3}\right)}{z_0}=2e^{\frac{iZ}{2}}$: z_0 عيْن z_0 عيْن z_0 عيْن z_0

ج) σ حدد طبیعی، من أجل قیمة heta المتحصل علیها، لکتب العند المرکب $\left[rac{z_0\left(1+i\sqrt{3}
ight)}{2}
ight]^n$ علی الشکل المثلثی، σ

د) حين قيم العدد الطبيعي n التي من أجلها يكون $\left[\frac{z_0 \left(1+i\sqrt{3}\right)}{2}\right]^n$ عدد حقيقها موجها تماما.

3) الممشوي المربكب منسوب إلى المعلم المتعامد و المشهانس $igl(O; \overline{u}, \overline{v}igr)$. نعتبر النقط B: A و C الثني لاحقاشها

 $z_{C}=1+i\sqrt{3}$ و $z_{B}=2+i$ ، $z_{A}=2-i$ و $z_{C}=z_{B}$ ، $z_{A}=z_{C}$ علمي الترتيب: z_{B} ، z_{A} $\{(A,1);(B,-1);(C,1)\}$ عَيْنَ z_D لَاحَفَة النقطة D مرجح الجملة المثقلة z_D

يب) لِمتنتج أَنَّ الرباعي ABCD متوازي أضلاع.

 $z_{\mathbb{Z}} = \frac{14}{5} + \frac{3}{5}i$: وَيُنَ أَنْ

- بيّن أنّ النقطة A أهي صورة النقطة B بنشابه مباشر يطلب تعيين عناصره المميزة. -

4) M نقطة من المستوي المركب الحقتها z ، النقطة I منتصف القطعة المستقيمة Mأ) حين z, الاحقة النقطة 1.

 $z-z_{j}=arepsilon^{ilpha}$. عدد حقيقي، نسمي (1) مجموعة النقط M من المستوي المركب التي تُحتَّق: $lpha=arepsilon^{ilpha}$

 \cdot تحقّق أنّ النقطة E تنتعى إلى المجموعة (T) .

- عين طبيعة المجموعة (Γ) و عناصبرها الممهزة علاما يتغير lpha في $rak{H}$.

التمرين الرابع: (06,5 نقطة)

- . $g\left(x\right)$ = $1+x^2+2\ln x$ بالدالة العددية المعزفة على المجاث $\left[0;+\infty\right]$ ب و الدالة العددية المعزفة على المجاث $g\left(1\right)$
 - ادرس انجاد تغيّر اندالة ع.
 - x = (x) = 0 بَيْنَ أَنَ الْمُعَامِّلَةِ g(x) = 0 تقبل في الْمَجِالُ g(x) = 0 حَمَّ وحِودًا x = 0
 - .]0;+ ∞ [استنج إشارة g(x) على المجال (3
- $f(x) = -x + rac{3 + 2 \ln x}{x}$: بالدائة العدبية المعرّفة على المجال $f(x) = -x + rac{3 + 2 \ln x}{x}$ الدائة العدبية المعرّفة على المجال ا
- $A\left(O, ec{i}, ec{j}
 ight)$ تمثيلها البيائي في المستوي المنسوب إلى المعلم المتعامد و المتجانس $A\left(C_{f}
 ight)$
 - $\lim_{x\to\infty} f(x) = \lim_{x\to^2\to 0} f(x) \pmod{1}$
 - $f'(x) = \frac{-g(x)}{x^2}:]0; +\infty[$ بين اتّه من أجل كل عند حقيقي x من المجال (1/2)
 - ب) شكّل جدول تغيّرات الدانة ﴿ رَ
 - ج) تحقق أنْ : $f(\alpha) = 2\left(\frac{1}{\alpha} \alpha\right)$: ثم عين حصيرا له.
 - الصب $\lim_{x\to\infty} f(x) + x$ مصب التهجة هنسية. المسب
 - $_{*}(\Delta)$ انرس وضعية (C_{+}) بالنسبة إلى مستقيمه المقارب المائل $(\Delta)_{+}$
 - ج) بقن أنّ (C_f) يقبل معاملاً (T) بوازي (Δ) يطلب كتابة معاملة ديكارتية له.
 - ديث: $x_0 = x_0 + x_0$ يقطع حامل محور الغواصل في نقطتين فاصطفهما $x_0 = x_0 + x_0$ عيث:
 - $2.11 < x_i < 2.13$ و $0.22 < x_0 < 0.23$
 - (C_f) و (Δ) ، (T) انشئ
- $3+2\ln x-mx=0$: مبيط حقيقي ، ناقش بولايا و حميب قيم m عند حاول المعادلة m (5
 - . $u_n = \int_{a}^{b^{n+1}} [f(x) + x] dx$: من أجل كل عند طبيعي n نضع (III) من أجل كل عند طبيعي
 - . $y_n > 0$ بنین آنه من أجل كان عند طبيعي $n: 0 < y_n$.
 - بين تعميرا منسيا المحد على المحد على المحد المحدد المح
 - احسب علا بدلالة n.
 - $S_n = u_0 + u_1 + u_2 + ... + u_n$ نضع: $S_n = u_0 + u_1 + u_2 + ... + u_n$ نضع: (4

الموضوع للثانى

يحتوي الموضوع الدَّاني على صفحتين (الصفحة 4 من 5 والصفحة 5 من 5).

التعربان الأول: (05 نقاط)

- ا الفضاء منسوب إلى المعلم المتعامد والمتجانس $\left(O; \overline{i}, \overline{j}, \overline{k}
 ight)$ ، نعتبر النقط C، B، A و C حيث: D(3;4;1) و C(0;0;2) ، B(1;2;4)، A(1;0;3)
 - اً) عين العددين الحقيقيين lpha و eta حتى يكون الشعاع $ec{n}(2;lpha;-eta)$ ناظميا للمستوي lpha . lpha بعين العددية ديكاريّية للمستوي lpha .
 - و (Q) على الترتيب، $z=2\cdot x$ معادلتان ديكارنيتان للمستوبين (P) و $z=2\cdot x$ ر
 - ل) بيّن أنّ المستويين (P) و (Q) مثعامدان.
 - (Q) و (P) تقاطع المستويين (Δ) و المستويين (P) و المستويين (P)
 - ج) احسب المسافة بين النقطة D و المستقيم (Δ) .
 - (S) ((S) بسطح الكرة الذي مركزها (S) و معالين المستوي (S)
 - أ) اكتب معادلة نيكارتية اسطح الكرة (S).
 - $_{*}(S)$ ب $_{*}(P)$ جد الطبيعة والعناصر المميّزة لنقاطع
- (4 2MA MB + MC) عند حقیقی، (7) نقطة من الفضاء حیث: (7) خین (7) عند حقیقی، (7) نقطة من الفضاء عند: (7) مجموعة النقط (7) من الفضاء الذي تُحقَّى: (7) عن (7) مجموعة النقط (7) من الفضاء الذي تُحقَّى: (7) عند (7) مجموعة النقط (7) من الفضاء الذي تُحقَّى: (7) من الفضاء الفضاء
 - \mathbb{R} عَيْنَ مجموعة النقط G لمّا يتغيّر \hat{x} في المجموعة \mathbb{R} .
 - . [CH] د قیمهٔ λ الثی تکون من أجلها رG منتصف القطعه (A

التمرين الثاني: (04 نقاط)

- $z^2 2z + 2 = 0$ المعادلة: $z^2 2z + 2 = 0$ المعادلة: $z^2 2z + 2z + 2 = 0$
 - . $\begin{cases} 2z_1 3z_2 = 5i\sqrt{2} \\ z_1 + 3z_2 = -2i\sqrt{2} \end{cases}$ جد العددين العركبين z_1 و $z_2 = z_1 = 2i\sqrt{2}$
- المستوي المركب منسوب إلى المعلم المتعامد والمتجانس $\left(\widehat{O},\widehat{u},v
 ight)$. النقط C ، B ، C و B الاجقائها على D
 - الثريّب : $z_B=i\sqrt{2}$ ، $z_B=i+i$ ، $z_B=i\sqrt{2}$ ، $z_A=i\sqrt{2}$: الثريّب : $D\widetilde{E}=2\overline{DO}$. $D\widetilde{E}=2\overline{DO}$
 - ABEC على الشكل الأسي و استنتج نوع المنتث z_{H} اكتب z_{H}
- $Z'=Z_{\chi}Z+Z_{g}$ حيث: $Z'=Z_{\chi}Z+Z_{g}$ ما هي طبيعة التحريل $Z'=Z_{\chi}Z+Z_{g}$ و ما هي طبيعة التحريل $Z'=Z_{\chi}Z+Z_{g}$ و ما هي طالعسره المميزة $Z'=Z_{\chi}Z+Z_{g}$
 - CD التي مركزها C و نصف قطرها C التي مركزها الجنب مساحة الدائرة (γ)
 - ج) عِنَ (γ') صورة (γ) بالتحريل S ر استنج مساحتها.
 - عَيْنَ (δ) مجموعة النقط M من المستوي M تختلف عن B و C ذات اللاحقات z التي يكون من أجلها z=z
 - العدد $\frac{z_B z}{z_A z}$ حقيقيا سالبا تماما.

التمرين <u>الثالث</u>: (04 ن**فاط**)

1) أ) ادرين حصب غيم العدد الطبيعي n، بواقي القسمة الإقليدية لكل من العدنين 3^n و 7^n على 11. ب) يرهن أنّه من أجل كل عند طبيعي π ، العند $^{1437^{10n+4}}$ + 1437^{2n+4} مضاعف العند 11 .

ي يعتبر المعادلة (E) ذات المجهول (x;y) : (x;y) عندان طبيعيان، (2) يعتبر المعادلة (E) $\cdot(E)$ المعادلة (E).

. (E) القاسم المشترك الأكبر العددين x و y حيث الشانية (x;y) حلا للمعادلة d

_ ما هي القيم الممكنة للعند * £ *

d=4 من أجل (x;y) عين الثنائيات (x;y) حلول المعانلة

 $-2016^{7z} + 1437^{3y} \equiv 0 [11]$ جد الثقائيات $\{x;y\}$ حلول المعاملة $\{E\}$ التي تحقق:

التمرين إلرابع: (07) نقاط)

 $\cdot arphi(x) = \left(x^{\lambda} - x + 1\right)e^{-x+1} - 1$ اثدالة السدية المعرقة على $\mathbb R$ كما يئي: -1

 $\lim_{x \to \infty} \varphi(x)$ و $\lim_{x \to x} \varphi(x)$ احمد (1 (1

ب) الرس انجاه تغير الدالة ﴿ تُم شَكُّلُ جِدرِنْ تَغَيَّرَانَهِا .

lpha ، يَهِنَ أَنَّ المعادلة $\, oldsymbol{arphi} \, (x) = 0 \,$ ، عنلاً $\, oldsymbol{lpha} \,$ يَهِن أَنَّ المعادلة $\, oldsymbol{arphi} \, (x) = 0 \,$ ، عنلاً $\, oldsymbol{lpha} \,$ يَهِن أَنَّ المعادلة $\, oldsymbol{arphi} \, (x) = 0 \,$

 \cdot آن استنتج إشارة $\varphi(\mathbf{x})$ على Θ

 $g(x) = \frac{2x-1}{x^2-x+1}$ و $g(x) = (2x-1)e^{-x-1}$ يلي: $f(x) = (2x-1)e^{-x-1}$ و $g(x) = \frac{2x-1}{x^2-x+1}$ و الدالة أن المعتبتان المعتبتان علي $g(x) = \frac{2x-1}{x^2-x+1}$ C_j و C_g تمثيلاهما البياتيان في المستوي المنسوب إلى المعلم المتعامد والمتجانس C_j .

 $\lim_{x\to\infty}f(x)$ و $\lim_{x\to\infty}f(x)$ الصبب (i (1 $\int_{\infty}f(x)$ برين اتجاد تغير الدالة f تم شكّل جدول تغيراتيا .

ين أنّ للمتحنيين (C_f) و (C_g) مماسا مشتركا (T) في النقطة ذات القاصلة 1 ثم جد معادلة له. (2)

 (C_{I}) ارميم المماس(T) و المنطقي (C_{I}) .

 $f(x) - g(x) = \frac{(2x-1)\varphi(x)}{x^2 - x} \circ \pi$ بين أنه من أجل كل عدد حقيقي $\pi \circ \pi$

 $-(C_g)$ ب (C_f) برس إشارة الفرق (x)-g(x) على \mathbb{R} ثم استنج الوضاع النسبي المنحنيين (C_f) و

 $+\int_0^t f(t)dt + x$ ج) بالمتعمال مكاملة بالتجزئة ، الحسب بدلالة العند الحقيقي

د) احسب مساحة الحير المستوي للمحدّد بالمنجليين $\left(C_{f}
ight)$ و المستقيمين اللذين معادلةيهما: x = 2 x = 1

، احسب $f^{(n)}(x)$ عدد طبيعي څور معنوم $f^{(n)}(x)$ احسب $f^{(n)}(x)$ عدد طبيعي څور معنوم $f^{(n)}(x)$ احسب $f^{(n)}(x)$.(f الدائة المشتقة من المرتبة n الحالة $f^{(n)}$).

 $-f^{(n)}(x)$ بريهن بالتراجع أنَّه من أجل كل عدد طبيعي غير معدوم n معدوم (2n+1) وريهن بالتراجع أنَّه من أجل كل عدد طبيعي غير معدوم n

 $u_n=f^{(n)}(1)$ المنتائية العددية المعزفة من أجل كل عدد طبيعي غير معدوم n ، كما يلي: $u_n=f^{(n)}(1)$ $-u_k + u_{k+1}$: الحسب بدلالة العدد الطبيعي غير المعدوم k ، المجموع : $\frac{1}{k}$

 $u_1 + u_2 + ... + u_{2n}$: المجموع المجموع المنتج بدلالة الم

انتهى العوضوع الثاني