

Unsupervised Learning (1)

Never Stand Still

COMP9417 Machine Learning & Data Mining
Term 3, 2019

Aims

This lecture will develop your understanding of unsupervised learning methods. Following it you should be able to:

- compare supervised with unsupervised learning
- describe the problem of unsupervised learning
- describe k-means clustering
- outline the role of the EM algorithm in k-means clustering
- understand the use of clustering in several applications

Supervised vs. Unsupervised Learning

Supervised learning — classes are *known* and need a "definition", in terms of the data. Methods are known as: classification, discriminant analysis, class prediction, supervised pattern recognition.

Unsupervised learning — classes are initially *unknown* and need to be "discovered" with their definitions from the data. Methods are known as: cluster analysis, class discovery, unsupervised pattern recognition.

So: unsupervised learning methods, such as clustering, address the problem of assigning instances to classes given only observations about the instances, i.e., without being given class "labels" for instances by a "teacher".

Unsupervised Learning

Why do we need unsupervised learning?

- most of the world's data is unlabelled
- getting a human to label data is often
 - difficult (what are the classes?)
 - time-consuming (labelling requires thinking)
 - expensive (see above)
 - error-prone (mistakes, ambiguity)
- in principle, can use any feature as the "label"
- unfortunately, often the class is not a known feature

Unsupervised Learning

What is unsupervised learning good for ?

- simplifying a problem, e.g., by dimensionality reduction
- exploratory data analysis, e.g., with visualization
- data transformation to simplify a classification problem
- to group data instances into subsets
- to discover structure, like hierarchies of subconcepts
- to learn new "features" for later use in classification
- to track "concept drift" over time
- to learn generative models for images, text, video, speech, etc.

Clustering

Finding groups of items that are similar

Clustering is unsupervised

the class of any data instance is not known

Success of clustering often measured subjectively

- OK for exploratory data analysis (EDA) . . .
- but problematic if you need quantitive results . . .
- some visual and statistical approaches

A dataset for clustering is just like a dataset for classification, but without the class labels

Simple 2D representations of clustering

Clusters form a partition

Venn diagram (overlapping clusters)

Other representations of clustering

Probabilistic assignment

	1	2	3	
a	0.4	0.1	0.5	
b	0.1	0.8	0.1	
c	0.3	0.3	0.4	
d	0.1	0.1	0.8	
e	0.4	0.2	0.4	
f	0.1	0.4	0.5	
g	0.7	0.2	0.1	
h	0.5	0.4	0.1	

Dendrogram

Cluster Analysis

Clustering algorithms form two broad categories:

hierarchical methods and partitioning methods

Hierarchical algorithms are either **agglomerative** i.e. bottom-up or **divisive** i.e. top-down.

In practice, hierarchical agglomerative methods often used - efficient exact algorithms available, but more importantly to users the *dendrogram*, or tree, can be visualized.

Partitioning methods usually require specification of the number of clusters, then try to construct the clusters and fit objects to them.

Representation

Let $N = \{e_1, \ldots, e_n\}$ be a set of elements, i.e. instances.

Let $C = (C_1, \ldots, C_l)$ be a *partition* of N into subsets.

Each subset is called a *cluster*, and C is called a *clustering*.

Input data can have two forms:

- each element is associated with a real-valued vector of p features e.g.
 measurement levels for different features
- pairwise similarity data between elements, e.g. correlation, distance (dissimilarity)

Feature-vectors have more information, but similarity is generic (given the appropriate function). Feature-vector matrix: $N \times p$, similarity matrix $N \times N$. In general, often $N \gg p$.

Clustering Framework

- Goal of clustering: find a partition of N elements (instances) into homogeneous and well-separated clusters
- Elements from same cluster should have high similarity, i.e, form a homogeneous cluster, while elements from different clusters should have low similarity, i.e., be well-separated
- Note: homogeneity and separation need to be defined
- In practice, use a distance measure appropriate to the problem
- Also note: typically there are interactions between homogeneity and separation – usually, high homogeneity is linked with low separation, and vice versa, unless there is clear structure in the data

A bad clustering

This clustering violates both homogeneity and separation principles

A good clustering

This clustering satisfies both homogeneity and separation principles

Set value for k, the number of clusters (by prior knowledge or via search)

Initialise: choose points for centres (means) of k clusters (at random)

Procedure:

- assign each instance x to the closest of the k points to form k clusters
- re-assign the k points to be the means of each of the k clusters
- 3) repeat 1 and 2 until convergence to a reasonably stable clustering

Example: one variable 2-means

A	51	В	62	В	64	A	48	Α	39	A	51
A	43	A	47	A	51	В	64	В	62	A	48
В	62	A	52	A	52	A	51	В	64	В	64
В	64	В	64	В	62	В	63	A	52	A	42
A	45	A	51	A	49	A	43	В	63	A	48
A	42	В	65	A	48	В	65	В	64	A	41
A	46	A	48	В	62	В	66	A	48		
A	45	A	49	A	43	В	65	В	64		
A	45	A	46	A	40	A	46	A	48		

P(i) is the cluster assigned to element i, c(j) is the centroid of cluster j, $d(v_1,v_2)$ is the Euclidean distance between feature vectors v_1 and v_2 .

The goal is to find a partition P for which the error (distance) function is minimum: $E_P = \sum_{i=1}^n d(i, c(P(i)))$

Centroid is the mean or weighted average of the points in the cluster.

k-means is an important clustering method, widely-used in many different areas, that can be viewed in terms of the EM (Expectation-Maximization) algorithm.

Algorithm k-means

```
/* feature-vector matrix M(ij) is given */
```

- $oldsymbol{1}$ Start with an arbitrary partition P of N into k clusters
- 2 for each element i and cluster $j \neq P(i)$ let E_P^{ij} be the cost of a solution in which i is moved to j:
 - 1 if $E_P^{i^*j^*} = \min_{ij} E_P^{ij} < E_P$ then move i^* to cluster j^* and repeat step 2 else halt.

Previous diagram shows three steps to convergence in k-means with k=3

- means move to minimize squared-error criterion
- approximate method of obtaining maximum-likelihood estimates for means
- each point assumed to be in exactly one cluster
- if clusters "blend", fuzzy k-means (i.e., overlapping clusters)

k-means Clustering: initialisation

X_1	X_2	Centroid
1	4	-
1	6	-
2 3	5	-
	4	-
3	6	-
5	1	-
5 6	2	-
6	1	-
6	2	-
6	3	-
7	2	-

Centroid locations

centroid 1: (3.2, 9.8)centroid 2: (9.3, 7.1)

k-means Clustering: assign to centroids

X_1	X_2	Centroid
1	4	1
1	6	1
2	5 4	1
2 3	4	1
3 5	6	1
5	1	2
5	2	2 2 2
6	1	2
6	2	2
6	3	2
7	2	2

Centroid locations centroid 1: (3.2, 9.8)

centroid 2: (9.3, 7.1)

k-means Clustering: recompute centroids

X_1	X_2	Centroid
1	4	1
1	6	1
2	6 5 4	1
2	4	1
3	6	1
5	1	2
5	2	2
6	1	2
6	2	2
6	2 3 2	2
7	2	2

Centroid locations
centroid 1: $(2.0, 5.0)$
centroid 2: $(5.8, 1.8)$

k-means Clustering: solution found

Shown on the 3 previous slides are the initialization and the two main steps of the k-means algorithm on the given dataset.

In this simple example *k*-means clustering has found a solution (the two centroids) after a single iteration, and the algorithm will not change it on further iterations.

By inspection, we can see the solution is a "good clustering", in the sense that the two "natural" clusters in the dataset have been identified.

In general, the quality of the solution will depend on

- the distribution of the points in the dataset
- the choice of k
- the choice of the location to initialise the centroids.

k-means Clustering: parameter

What about the number of clusters k?

Next diagrams show convergence in k-means clustering with k = 3 for data with two clusters not well separated.

k-means Clustering: parameter

k-means Clustering: parameter

k-means Clustering: outliers

(A): Undesirable clusters

k-means Clustering: outliers

Deal with outliers:

- Remove some data points that are much further away from the centroids than other data points
 - To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.
- Perform random sampling: by choosing a small subset of the data points, the chance of selecting an outlier is much smaller
 - Assign the rest of the data points to the clusters by distance or similarity comparison, or classification

k-means Clustering: initial seeds

Random selection of seeds (centroids)

Random selection of seeds (centroids)

Iteration 2

Iteration 2

In Practice

Algorithm can get trapped in a local minimum, toy example:

- Place four instances at the vertices of a two-dimensional rectangle
- Local minimum: two cluster centers at the midpoints of the rectangle's long sides

Result can vary significantly based on initial choice of seeds

Simple way to increase chance of finding a global optimum: restart with different random seeds

can be time-consuming

Or use the k-means++ algorithm, which initialises k centroids to be maximally distant from each other

Remarks

Despite weaknesses, k-means is still the most popular algorithm due to its simplicity and efficiency

No clear evidence that any other clustering algorithm performs better in general

Comparing different clustering algorithms is a difficult task. No one knows the correct clusters!

Example: Image Segmentation

Goal of Segmentation is to partition an image into regions each of which has reasonably homogenous visual appearance.

Example: Image Segmentation

Example: Bag of Words

Feature extraction

Example: Bag of Words

Dictionary learning

Example: Bag of Words

Dictionary learning

Example: Bag of Words

Example visual words

Example: Bag of Words

Image representation

Example: Bag of Words

Application – image retrieval

Expectation Maximization (EM)

When to use:

- Data is only partially observable
- Unsupervised learning, e.g., clustering (class value "unobservable")
- Supervised learning (some instance attributes unobservable)

Some uses:

- Train Bayesian Belief Networks
- Unsupervised clustering (k-means, AUTOCLASS)
- Learning Hidden Markov Models (Baum-Welch algorithm)

Finite Mixtures

Each instance x generated by

- Choosing one of the k Gaussians with uniform probability
- Generating an instance at random according to that Gaussian

Called *finite mixtures* because there is only a finite number of *generating distributions* being represented.

Generate data from mixture of k Gaussians

Given:

- Instances from X generated by mixture of k Gaussian distributions
- Unknown means (μ_1, \ldots, μ_k) of the k Gaussians
- Don't know which instance x_i was generated by which Gaussian

Determine:

• Maximum likelihood estimates of (μ_1, \ldots, μ_k)

• If you fit a Gaussian to data:

• Now, we are trying to fit a GMM (with K=2 in this example):

Think of full description of each instance as $y_i = (x_i, z_{i1}, z_{i2})$, where

- z_{ij} is 1 if x_i generated by jth Gaussian, otherwise zero
- x_i is observable, from instance set x_1, x_2, \ldots, x_m
- z_{ij} is unobservable

Initialise: Pick random initial $h = \langle \mu_1, \mu_2 \rangle$

Iterate:

E step:

Calculate expected value $E[z_{ij}]$ of each hidden variable z_{ij} , assuming current hypothesis $h = \langle \mu_1, \mu_2 \rangle$ holds:

$$E[z_{ij}] = \frac{p(x = x_i | \mu = \mu_j)}{\sum_{n=1}^{2} p(x = x_i | \mu = \mu_n)}$$
$$= \frac{e^{-\frac{1}{2\sigma^2}(x_i - \mu_j)^2}}{\sum_{n=1}^{2} e^{-\frac{1}{2\sigma^2}(x_i - \mu_n)^2}}$$

M step:

Calculate new maximum likelihood hypothesis $h' = \langle \mu'_1, \mu'_2 \rangle$, assuming value taken on by each hidden variable z_{ij} is the expected value $E[z_{ij}]$ calculated before.

Replace
$$h = \langle \mu_1, \mu_2 \rangle$$
 by $h' = \langle \mu'_1, \mu'_2 \rangle$.

$$\mu_j \leftarrow \frac{\sum_{i=1}^m E[z_{ij}] \ x_i}{\sum_{i=1}^m E[z_{ij}]}$$

$$\mu_j \leftarrow \frac{1}{m} \sum_{i=1}^m E[z_{ij}] x_i$$

E step: Calculate probabilities for unknown parameters for each instance

M step: Estimate parameters based on the probabilities

In *k*-means the probabilities are stored as instance weights.

EM produces soft assignments (probabilities) of data points into clusters.

EM Algorithm

Converges to local maximum likelihood h and provides estimates of hidden variables z_{ij}

In fact, local maximum in $E[\ln P(Y|h)]$

- Y is complete (observable plus unobservable variables) data
- Expected value taken over possible values of unobserved variables in Y

Clustering in EM

https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.html.

k-means clustering vs. EM

Different cluster analysis results on "mouse" data set:

https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm

Extending the mixture model

- Using more than two distributions
- Several attributes: easy if independence assumed
- Correlated attributes: difficult
 - Modeled jointly using a bivariate normal distribution with a (symmetric) covariance matrix
 - With n attributes this requires estimating n + n(n + 1)/2 parameters

Extending the mixture model

- Nominal attributes: easy if independence assumed
- Correlated nominal attributes: difficult
 - Two correlated attributes result in $v_1 \times v_2$ parameters
- Missing values: easy
- Distributions other than the normal distribution can be used:
 - "log-normal" if predetermined minimum is given
 - "log-odds" if bounded from above and below
 - Poisson for attributes that are integer counts
- Cross-validation can be used to estimate k time consuming!

General EM Problem

Given:

- Observed data $X = \{x_1, \ldots, x_m\}$
- Unobserved data $Z = \{z_1, \ldots, z_m\}$
- Parameterized probability distribution P(Y | h), where
 - $Y = \{y_1, \ldots, y_m\}$ is the full data $y_i = x_i \cup z_i$
 - h are the parameters

Determine:

• h that (locally) maximises E [ln P(Y | h)]

General GM Method

Define likelihood function Q(h'|h) which calculates $Y = X \cup Z$ using observed X and current parameters h to estimate Z

$$Q(h'|h) \leftarrow E[\ln P(Y|h')|h,X]$$

General GM Method

• Estimation (E) step: Calculate Q(h'|h) using the current hypothesis h and the observed data X to estimate the probability distribution over Y.

$$Q(h'|h) \leftarrow E[\ln P(Y|h')|h, X]$$

• *Maximization (M)* step: Replace hypothesis h by the hypothesis h' that maximises this Q function.

$$h \leftarrow \underset{h'}{\operatorname{arg max}} Q(h' | h)$$

Example: WSI Analysis

Tumour classification in WSI

Example: WSI Analysis

Discriminative patch-based CNN

Source: C. Zhang et al. Whole slide image classification via iterative patch labelling. ICIP, 2018.

Example: WSI Analysis

Discriminative patch-based CNN

(a) Testing oligodendroglioma instance

(b) Testing astrocytoma instance

Source: C. Zhang et al. Whole slide image classification via iterative patch labelling. ICIP, 2018.

Summary

Clustering is a typical unsupervised learning method

k-means clustering is one of the most well-known clustering techniques

EM algorithm can be used to estimate k-means

Next lecture:

hierarchical clustering, dimensionality reduction, semi-supervised learning

Acknowledgement

Material derived from slides for the book

"Elements of Statistical Learning (2nd Ed.)" by T. Hastie,

R. Tibshirani & J. Friedman. Springer (2009)

http://statweb.stanford.edu/~tibs/ElemStatLearn/

Material derived from slides for the book

"Machine Learning: A Probabilistic Perspective" by P. Murphy MIT Press (2012)

http://www.cs.ubc.ca/~murphyk/MLbook

Material derived from slides for the book "Machine Learning" by P. Flach Cambridge University Press (2012)

http://cs.bris.ac.uk/~flach/mlbook

Material derived from slides for the book

"Bayesian Reasoning and Machine Learning" by D. Barber Cambridge University Press (2012)

http://www.cs.ucl.ac.uk/staff/d.barber/brml

Material derived from figures for the book

"Python Data Science Handbook" by J. VanderPlas O'Reilly Media (2017)

http://shop.oreilly.com/product/0636920034919.do

Material derived from slides for the course "Machine Learning" by A. Srinivasan BITS Pilani, Goa, India (2016)

http://people.csail.mit.edu/dsontag/courses/ml12/slides/lecture14.pdf

http://www.mit.edu/~9.54/fall14/slides/Class13.pdf

http://vision.stanford.edu/teaching/cs131_fall1718/files/14_BoW_bayes.pdf

https://www.cs.toronto.edu/~jlucas/teaching/csc411/lectures/lec15_16_handout.pdf

