June, 2010

MPC563xM/MPC564xA Low-End Engine Control Hardware Design

FTF-AUT-F0679

Randy Dees

MSG Automotive Applications

Agenda

- **▶** Session objectives
- System block diagram and overview
- MPC563xM powertrain advantages and overview
- Secondary safety MCU
- ▶SmartMOS devices
- ▶ Pressure sensor
- Software drivers and libraries
- ▶ Mechanics
- ▶Summary

Objective

▶ This seminar presents the minimum hardware requirements (power supply and external components) for designing an engine controller using MPC5634M Power Architecture microcontrollers, including interfacing to Freescale Analog SmartMOS devices. This seminar covers the MPC5634M Reference Design module for a 4-cylinder MPC5634M engine control module (ECM), including an overview of the software (AutoSAR-based, eTPU driver overview) that will be available from Freescale to support this design.

Note: Not all slides in this presentation can be presented during a 1 hour training session. A reduced set will be covered that covers the objective listed above. The additional slides provide additional information that may be useful in designing a system.

MPC563xM-based Four-cylinder Engine Reference Design

- ▶ Basic but fully functional Engine Control Unit
- ▶ Capable of running a four-cylinder gasoline engine
 - Meeting stringent emissions standards
- ► Robust enclosure
 - · Permits customer evaluation on dynamometer and in vehicle
- Low-level software provided
 - Simple maps for fuel and spark
 - Closed loop idle control
 - Enough to run an engine but not to meet emissions standards
 - Not production quality
- ▶ Calibration using CCP/XCP
- ► Basic on board diagnostics using Freescale analog devices
- ▶ Documentation package

Agenda

- Session objectives
- ► System block diagram and overview
- MPC563xM powertrain advantages and overview
- ► Secondary safety MCU
- ▶SmartMOS devices
- ▶ Pressure sensor
- Software drivers and libraries
- ▶ Mechanics
- **►**Summary

MPC5634M ECU Block Diagram

MPC563xM Engine Control Unit Components

- MPC563xM Power Architecture MCU
 - System control
- S08SG8 8-bit MCU
 - · Safety MCU Redundant signal capabilities
- ▶ MC33905 System Basis Chip
 - 5V power supply
 - CAN driver
 - LIN driver
 - K-Line driver
- ► MC33810 4-Cylinder Ignition/Injection Driver
 - Ignition drivers (spark plugs)
 - Injection drivers (injector solenoids)
- ► MC33926 5A H-Bridge
 - DC motor (throttle control)
- ▶ MC33932 Dual 5A H-Bridge
 - Stepper motor for control of exhaust gas recirculation (EGR)
- ▶ MC33879 High/Low Side Drivers
 - Alternate control for ETC
- MC33800 Low Side Drivers/Octal Switch
 - Controls relays, fuel pump, coolant temperature monitor, coolant fan, oxygen sensor heater control, etc.

Agenda

- Session objectives
- System block diagram and overview
- ► MPC563xM powertrain advantages and overview
- Secondary safety MCU
- ▶SmartMOS devices
- ▶ Pressure sensor
- Software drivers and libraries
- ▶ Mechanics
- **►**Summary

MPC5634M ECU Block Diagram

Core

▶ 40, 60 and 80 MHz options PowerPCTM ISA e200z335 Core + VLE

- Binary user mode compatible with RCPU (MPC500) and e200z6
- · Signal Processing Engine for DSP and floating point features
- Variable Length Encoding instruction set supports smaller code size
 - •EABI Interrupt instructions
- 16-entry Memory Management Unit

Memory

- ▶ 1.5 Mbyte RWW Flash with ECC
- ▶ 111k SRAM
 - 94k Data RAM (also has 32K/24K for standby) with ECC
 - 17k for eTPU2 (14k code & 3k parameters)

I/O

- ▶ Timed I/O Channels
 - 32 channel eTPU2
 - 16 channel eMIOS
- ▶ 2 x FlexCAN: 64 + 32 buffers
- ▶ 2 x eSCI
- ▶ 2 x DSPI 16 bits wide up to 6 chip selects each
 - · Supports 32-bit Micro Second Bus
- ▶ 34-channel dual ADC : up to 12 bit and less than 1us conversions, 6 queues with triggering and DMA support.
 - Variable gain amplifier (X1, X2, X4)
 - Decimation filter (4th order IIR or 8th order FIR with prog.coeff.)
 - · 4 pairs differentials inputs with selectable pull ups and downs

System

- ► FM-PLL
- Junction temperature sensor
- ▶ 32 channel DMA controller
- ▶ Nexus IEEE-ISTO 5001-2003 Class 2+ (eTPU2 Class 1)
- ▶ Single 5V power supply
- ▶ EBI for calibration (16bit, CSP only)
- ▶ 144 LQFP package (32 ADC)
- ▶ 176 LQFP package
- ▶ 208 MAPBGA (no bus, 34 ADC)
- ▶ 496 CSP Calibration Bus (used in VertiCal emulation devices)

MPC5634M (1.5M)

MPC563xM Family

▶ Designed for entry-level powertrain applications

- Freescale's first 32-bit, 90 nm powertrain MCU family built on Power Architecture[®] technology designed for up to 4-cylinder engines
 - 1–4-cylinder gasoline direct injection engines
 - Entry-level diesel engines
 - Entry-level transmission control

► Enables suppliers to go beyond 16-bit capabilities

- Code density, includes VLE instruction set
- Flash up to 1.5 MB
- RAM up to 94 KB
- CPU performance up to 80 MHz

Offers enhanced powertrain functionality such as:

- On-chip emission control/knock system
- Hardware decimator to offload DSP calculations from CPU
- eTPU2 to handle complex timer applications and offload CPU

► Addresses aggressive cost constraints of emerging markets

- Engine and transmission suppliers focused on emerging markets
- All global suppliers selling into emerging markets (e.g., China, India)
- All global suppliers selling to entry-level powertrain markets (e.g. Japan, EMEA)

Why Use the MPC563xM?

- ► Powerful Power Architecture CPU and peripherals
- ▶ 144-lead QFP package (176/208 also available)
- ► Features all designed for powertrain, e.g. eTPU, ADC
- Integrated knock solution eliminates external ASIC
- ▶ Don't need as much optimization of software (to make it fit/run)
- ► Floating point support for model-based code
- Expansion available for flash/RAM
- ► Compatible CPU/device/pinout roadmap with headroom
- ► Calibration solution developed and available
- ► Engine software components developed and available
- ► Significant Freescale support/expertise in powertrain on 32-bit

eTPU2 Change Highlights

- ▶ 100% compatible with the eTPU used on the MPC55xx Family devices
 - No changes required to hardware or software if only eTPU features are used
- ► Supports a wider range of frequencies
 - Supports higher frequency operation and full system clock resolution which is most useful at lower frequencies
- ▶ New channel features
 - Main change is programmable channel modes to provide additional flexibility and control
 of timer channels
- ▶ New programming features
 - Biggest change is engine relative addressing mode to allow more efficient C code
- Safety related enhancements
 - New software watchdog and memory error detection features
- ► Enhancements for motor control
 - This is not a change to the eTPU itself but a change in integration
 - More eTPU channels have separate input and output signals to allow an eTPU to control 4 BLDC motors

DMA Channels

For more information, attend the following session: FTF-AUT-F0451 Tips and Tricks with DMA on MPC56xx

Enhanced Time Processor Unit: eTPU

Microengine cannot

► A programmable 322 wheen intel rtime and angle co-broces bardware

► Performs complex timing and I/O management without CPU intervention Scheduler allows xample follows NT flag service of EVENT

It is also programmed

For more information, attend the following session: FTF-AUT-F0447 Using Enhanced Time Processing Unit (eTPU/eTPU2) for Combustion Engine Management and Electric Motor Control

Example eTPU Operation

Analog Specifications

- Two independent on-chip ADCs
- 12-bit resolution
- 1µs conversion time
 (1 M sample/second) for 12-bit
 differential result
- 1.06 us for 12-bit single ended result
- 10-bit and 8-bit conversions for up to
 1.4 M sample/second
- Sample times of 2 (default), 8, 64 or 128 ADC clock cycles
- Single-ended signal range from 0 to 5V
- Variable gain amplifier for X1, X2, X4
- 40 single ended channels available to both ADCs in 324BGA and 416BGA
- 34 channels in 208BGA
- 4 pairs of differential analog input channels
- Programmable pull ups, pull downs for each differential input (5k, 100k, 200k)

eQADC Digital Block Diagram

- CFIFO local buffers: store the next few commands fetched by DMA from command queues
- CFIFO queue triggers from timers or pins
- Priority logic: presents the analog block with the next conversion
- Calibration module: trims results to improve accuracy
- Decimator: filters a data stream, can downsample, rectify and integrate
- DMA: allows decimator to be used as stand alone filter
- ► RFIFO local buffers: stores the last few results prior to DMA transfer to results queues

eQADC Feature Enhancements Summary

- ▶8-bit, 10-bit and 12-bit conversion modes for increased speed
- ► Increased conversion speed:
 - 12-bit resolution at 1M samples / sec
 - 1 usec conversion time
 - 8-bit resolution at 1.36M samples / sec
 - 730 nsec conversion time
- ► ADC queue 0 preempt for reduced conversion jitter
- ▶ 4 pairs of differential analog input channels
 - Variable gain amplifier for X1, X2, X4
 - · Programmable pull ups, pull downs for each diff. input for piezo sensor diagnostic
- Configurable decimation filter
- Custom calibration variables
- ▶ Queue triggers from PIT
- ADC streaming without commands

Software DSP Solution using MPC563xM

For more information, attend the following session: FTF-AUT-F0354 Reducing System Cost with Integrated MCU Solutions for Engine and Transmission Applications

Power Supply Monitor ADC Channels

- Internal ADC channels for monitoring power supply voltages for diagnostic purposes
- ► Temperature sensor accuracy of +/- 10C

Channel ADC MPC553xM Definition 128 ADC0/ADC1 Temperature Sensor 144 ADC0 Buffered Band Gap 145 ADC0 Reference Voltage for 1.2V LVD 146 ADC0 Reference for 1.2V Regulator 147 ADC0 Reference Voltage for 3.3V LVD 162 ADC0 50% VDDEH1B 163 ADC0 50% VDDEH6A 164 ADC0 50% VDDEH6A 165 ADC0 50% VDDEH6B 167 ADC0 50% VDDEH7 180 ADC0 Reference Voltage for 5.0V LVD 181 ADC0 Reference Voltage for 3.3V LVD 182 ADC0 Reference for 3.3V Regulator 196 ADC1 VRC33 197 ADC1 VRC33 198 ADC1 VDD12 199 ADC1 50% VDDEH1A	11 7						
144 ADC0 Buffered Band Gap 145 ADC0 Reference Voltage for 1.2V LVD 146 ADC0 Reference for 1.2V Regulator 147 ADC0 Reference Voltage for 3.3V LVD 162 ADC0 50% VDDEH1B 163 ADC0 50% VDDEH6A 164 ADC0 50% VDDEH6A 165 ADC0 50% VDDEH6A 166 ADC0 50% VDDEH6B 167 ADC0 50% * VDDEH7 180 ADC0 Reference Voltage for 5.0V LVD 181 ADC0 Reference Voltage for 3.3V LVD 182 ADC0 Reference for 3.3V Regulator 196 ADC1 VRC33 197 ADC1 VRC33 198 ADC1 VDD12	Channel	ADC	MPC553xM Definition				
145 ADC0 Reference Voltage for 1.2V LVD 146 ADC0 Reference for 1.2V Regulator 147 ADC0 Reference Voltage for 3.3V LVD 162 ADC0 50% VDDEH1B 163 ADC0 50% VDDEH6B 164 ADC0 50% VDDEH6A 165 ADC0 50% VDDEH6B 167 ADC0 50% VDDEH7 180 ADC0 Reference Voltage for 5.0V LVD 181 ADC0 Reference Voltage for 3.3V LVD 182 ADC0 Reference for 3.3V Regulator 196 ADC1 VRC33 197 ADC1 VRC33 198 ADC1 VDD12	128	ADC0/ADC1	Temperature Sensor				
146 ADC0 Reference for 1.2V Regulator 147 ADC0 Reference Voltage for 3.3V LVD 162 ADC0 50% VDDEH1B 163 ADC0 50% VDDEH1B 164 ADC0 50% VDDEH6A 165 ADC0 50% VDDEH6A 166 ADC0 50% VDDEH6B 167 ADC0 50% * VDDEH7 180 ADC0 Reference Voltage for 5.0V LVD 181 ADC0 Reference Voltage for 3.3V LVD 182 ADC0 Reference for 3.3V Regulator 196 ADC1 VRC33 197 ADC1 VRC33 198 ADC1 VDD12	144	ADC0	Buffered Band Gap				
147 ADC0 Reference Voltage for 3.3V LVD 162 ADC0 50% VDDEH1B 163 ADC0 50% VDDEH1B 164 ADC0 50% VDDEH6A 165 ADC0 50% VDDEH6A 166 ADC0 50% VDDEH6B 167 ADC0 50% * VDDEH7 180 ADC0 Reference Voltage for 5.0V LVD 181 ADC0 Reference Voltage for 3.3V LVD 182 ADC0 Reference for 3.3V Regulator 196 ADC1 VRC33 197 ADC1 VRC33 198 ADC1 VDD12	145	ADC0	Reference Voltage for 1.2V LVD				
162 ADC0 50% VDDEH1B 163 ADC0 50% VDDEH1B 164 ADC0 50% VDDEH6A 165 ADC0 50% VDDEH6A 166 ADC0 50% VDDEH6B 167 ADC0 50% * VDDEH7 180 ADC0 Reference Voltage for 5.0V LVD 181 ADC0 Reference Voltage for 3.3V LVD 182 ADC0 Reference for 3.3V Regulator 196 ADC1 VRC33 197 ADC1 VRC33 198 ADC1 VDD12	146	ADC0	Reference for 1.2V Regulator				
163 ADC0 50% VDDEH1B 164 ADC0 50% VDDEH6A 165 ADC0 50% VDDEH6A 166 ADC0 50% VDDEH6B 167 ADC0 50% * VDDEH7 180 ADC0 Reference Voltage for 5.0V LVD 181 ADC0 Reference Voltage for 3.3V LVD 182 ADC0 Reference for 3.3V Regulator 196 ADC1 VRC33 197 ADC1 VRC33 198 ADC1 VDD12	147	ADC0	Reference Voltage for 3.3V LVD				
164 ADC0 50% VDDEH6A 165 ADC0 50% VDDEH6A 166 ADC0 50% VDDEH6B 167 ADC0 50% * VDDEH7 180 ADC0 Reference Voltage for 5.0V LVD 181 ADC0 Reference Voltage for 3.3V LVD 182 ADC0 Reference for 3.3V Regulator 196 ADC1 VRC33 197 ADC1 VRC33 198 ADC1 VDD12	162	ADC0	50% VDDEH1B				
165 ADC0 50% VDDEH6A 166 ADC0 50% VDDEH6B 167 ADC0 50% * VDDEH7 180 ADC0 Reference Voltage for 5.0V LVD 181 ADC0 Reference Voltage for 3.3V LVD 182 ADC0 Reference for 3.3V Regulator 196 ADC1 VRC33 197 ADC1 VRC33 198 ADC1 VDD12	163	ADC0	50% VDDEH1B				
166 ADC0 50% VDDEH6B 167 ADC0 50% * VDDEH7 180 ADC0 Reference Voltage for 5.0V LVD 181 ADC0 Reference Voltage for 3.3V LVD 182 ADC0 Reference for 3.3V Regulator 196 ADC1 VRC33 197 ADC1 VRC33 198 ADC1 VDD12	164	ADC0	50% VDDEH6A				
167 ADC0 50% * VDDEH7 180 ADC0 Reference Voltage for 5.0V LVD 181 ADC0 Reference Voltage for 3.3V LVD 182 ADC0 Reference for 3.3V Regulator 196 ADC1 VRC33 197 ADC1 VRC33 198 ADC1 VDD12	165	ADC0	50% VDDEH6A				
180ADC0Reference Voltage for 5.0V LVD181ADC0Reference Voltage for 3.3V LVD182ADC0Reference for 3.3V Regulator196ADC1VRC33197ADC1VRC33198ADC1VDD12	166	ADC0	50% VDDEH6B				
181 ADC0 Reference Voltage for 3.3V LVD 182 ADC0 Reference for 3.3V Regulator 196 ADC1 VRC33 197 ADC1 VRC33 198 ADC1 VDD12	167	ADC0	50% * VDDEH7				
182 ADC0 Reference for 3.3V Regulator 196 ADC1 VRC33 197 ADC1 VRC33 198 ADC1 VDD12	180	ADC0	Reference Voltage for 5.0V LVD				
196 ADC1 VRC33 197 ADC1 VRC33 198 ADC1 VDD12	181	ADC0	Reference Voltage for 3.3V LVD				
197 ADC1 VRC33 198 ADC1 VDD12	182	ADC0	Reference for 3.3V Regulator				
198 ADC1 VDD12	196	ADC1	VRC33				
	197	ADC1	VRC33				
199 ADC1 50% VDDEH1A	198	ADC1	VDD12				
	199	ADC1	50% VDDEH1A				

eMIOS Features

- Provides various hardware timing modes to create or measure real-time signals
- ▶ 32 channels, 24 bit resolution, 200 MHz max operation
- Programmers model is consistent with MPC5500 family eMIOS implementations
- Programmable clock prescalers (global and per-channel)
- DMA request for each channel
- Programmable input filter
- Channels can be individually disabled to assist with power saving
- ▶ Four channels provide high speed hardware shut-down of other timed I/O
 - e.g. to shut down power drivers in the event of over current or temperature

Channel Type Definitions

Channel Type	GPIO	SAIC	SAOC	OPWMB	IPM	IPWM	DAOC	OPWFMB	MCB
Small	X	Х	Х						
Medium	Х	Х	Х	Х					
Big	Х	Х	Х	Х	Х	Х	Х	Х	Х

- GPIO General purpose input/output
- SAOC Single Action Output Compare
- IPWM Input Pulse Width Measurement
- DAOC Double Action Output Compare
- OPWFMB Output Pulse Width and Frequency Modulation Buffered
- OPWMB Output Pulse Width Modulation Buffered

- SAIC Single Action Input Capture
- IPM Input Period Measurement
- MCB Modulus Counter Buffered

eMIOS200: OPWMFMB

- ► Generates a simple output PWM signal
 - Requires INTERNAL Counter
 - EDPOL allows selection between active HIGH or active LOW duty cycle.

Communication Peripherals

- ►eSCI Provides serial communications such as LIN, K-Line and RS232
 - Two modules are available in the MPC563xM
 - Only one (eSCI_B) is used in the demo ECU for K-line (driver built into the MC33905)
- ► FlexCAN Controller Area Network interface provides up to 1 Mbps automotive
 - Two modules available in the MPC563xM
 - Both are available in the demo ECU. One uses the driver in the MC33905 (CAN_A, 64 message buffers) and is transformer isolated, the other (CAN_B, 32 message buffers) uses the MC33902 driver
- ►DSPI Serial Peripheral Interface (SPI) is used to communicate to the external analog devices, as well as the S08SG8 secondary MCU

MPC563xM

VRC: On Chip Voltage Regulator Controller with External Transistor

The VRCCTL pin controls the current on the base of the transistor. Current is increased to raise the voltage on VDD. Current is decreased 5V from to lower the voltage. The gain of the transistor power supply **VDDRFG** controls the maximum current available on VDD from the 5.0V supply. 1.1* VDDSense is compared to an internal reference. BCP68 The 1.1 ohm series collector resistor is not required in most cases. MPC563xM **VRCCTL VDDSense VDDSense** 15 is internal to **VDD** the package and is not a 680nF separate pin on the **VSS** package. 4 x 6.8 uF 4 x 220nF - Locate 1 at each side near the device

Frequency Modulation PLL

2% modulation

System Timer Module

- AutoSAR Task Monitor timer
- ▶1 x 32 bit up counter
- ▶8 bit prescale from system clock (/1 to /256)
- 4 x independent comparators
- Each comparator has unique interrupt vector
- Counter can be stopped during debug mode

Periodic Interrupt Timer (PIT) and Realtime Interrupt (RTI)

- ►5 timer channels down counting with auto reload
- ▶32 bits wide
- 4 channels clocked by system clock
- ▶ 1 channel clocked by crystal clock
 - · Operates in stop mode
 - Used to wake-up CPU
- Interrupt and trigger on each channel
 - Ideal tick source for operating system
- Channel outputs can trigger eQADC queues

Agenda

- ► Session objectives
- System block diagram and overview
- ►MPC563xM powertrain advantages and overview
- ► Secondary safety MCU
- ▶SmartMOS devices
- ▶ Pressure sensor
- Software drivers and libraries
- ▶ Mechanics
- ▶Summary

MPC5634M ECU Block Diagram

MC9S08SG8 Example

- Redundant signals to both main MCU and secondary MCU allows secondary MCU to calculate in parallel
 - Coolant_Temp_I (analog signal) Temperature of the "engine"
 - THR_POS_A_I (analog signal) Throttle Control A
 - THR_POS_B_I (analog signal) Throttle Control B
 - PEDAL_A_I (analog signal)
 - PEDAL_B_I (analog signal)
 - INTAKE_PRESS (analog signal) Intake pressure

MC9S08SG8 Example

Connections between MCUs

- TPU_MON allows secondary MCU to monitor some activity on the eTPU
- SPI interface
 - Connected to DSPI_B
 - Can be used to communicate challenge response and for comparing results based on the sensor inputs to both devices
- Secondary MCU can drive reset of the main MCU

Agenda

- ► Session objectives
- System block diagram and overview
- ►MPC563xM powertrain advantages and overview
- Secondary safety MCU
- **►** SmartMOS devices
- ▶ Pressure sensor
- ▶ Software drivers and libraries
- ▶ Mechanics
- ▶Summary

MPC5634M ECU Block Diagram

MC33905 System Basis Chip

Scalability

- Low drop out split regulators for adaptable application power and configuration
- Power sharing to lower thermal effects

Safety

- Failsafe state machine accessible by SAFE pin
- Secured SPI with watchdog capabilities
- High protection on outputs

Diagnostics

- Feedback on feature health
- Multiple analog monitoring to MUX output
- High precision VSupply voltage monitoring via SENSE pin

MC33905 System Basis Chip

Energy Savings & Low Power Modes

- Integrated CAN regulator for wake up
- Configurable dual I/O with wake up capability
- Undervoltage management for cranking

Easy to use

Software libraries to lower development time

Flexibility

1 or 2 LIN options (905S and 905D)

Compatibility

- CAN, ISO11898-2 and 11898-5 compliant
- LIN 2.0, 1.3 compliant and SAE J2602 compatible

33905 Enhancing Linear Power Supply Capability

Internal Regulator

- 5.0V / 3.3V option
- Supply up to 150 mA
- LDO +/- 2%

Power Sharing

- Optional
- Derivation of 2/3 lvdd
- 2/3 power dissipation
- Current limitation
- Over voltage protect

Control of External Ballast Transistor

- 5.0 / 3.3 V configurable
- Control of regulation (LDO +/-2%)
- Power dissipation on external PNP
- Current limitation
- Over voltage protect

Example Schematic: MC33905 SBC

MC33810: Eight Channel Ignition and Injector Driver

Features

- 8-channels with 4 low-side drivers and 4 pre-drivers
- Pre-drivers with three different modes:
- Ignition
- General purpose gate drive
- 2 devices can support up to ten cylinders
- Ignition current and spark detection with programmable thresholds
- MCU SPI and parallel interface
- Power supply/oscillator/band gap reference/POR
- · Diagnostic and error detection logic
- Self protection for:
 - Shorts to battery
 - Over current and over temperature detection
- Low power (30 µA) "sleep mode"

Benefits

- Highly integrated solution minimizes the need for additional external discrete components
- · Reduced parts count
- · Reduced manufacturing and test cost
- · Improved reliability
- · Reduced current consumption lowers battery drain during key off
- Small footprint, reduces printed circuit board area
- Simple MCU parallel interface
- · Protected against common failure conditions

EK (Pb-FREE) SUFFIX 32-PIN SOICW EP

MC33810: Ignition Pre-Driver Mode

1 to 4 Ignition Pre-Drivers

- ► Parallel input only (GIN[1:4])
- ► Low voltage clamp
- ► Coil current detection
 - NOMI Nominal current
 - MAXI Maximum currentu
- ► Max dwell timer
- (GIN1:4)
- ► Overlapping dwell
- ► Spark duration
- ► Open secondary detect
- ► Only one sense resistor needed per bank
- ► Can also be individually selected to be GPGD predrivers via SPI

MC33810: Injector Driver

1 of 4 Identical Injector Drivers **VBAT** Control via SPI or Parallel (INJ[1:4]) OUTPUT Clamp circuit PIN Open load detect 53V **INJECTOR** CLAMP Over current detection DIODE Over temperature detection OUTPUT MOSFET Self-protection by shutdown on over temperature, over voltage, or both. **OPEN LOAD** DETECT **GATE CONTROL** CURRENT **CURRENT LIMIT** To Logic **TEMPERATURE** Block of I IMIT OPEN LOAD MC33810 DETECT SHORT/OPEN ON/OFF CIRCUIT DETECT I LIMIT EXPOSE PAD

Example Schematic: MC33810 Ignition/Injector Driver

MCZ33800 Multi-Function Driver: Block Diagram

- Power supply/oscillator/band gap reference/power-on-reset (POR)
- ▶ 8 switches—2 high current (OUTx)
- ▶ 2 constant current drivers with programmable dithering (CCDx)
- ► 6 MOSFET pre-drivers (GDx)
- MCU SPI interface
- ▶ MCU parallel interface
- ► PWM generator for pre-drivers
- Diagnostic and error detection logic
- Ohmmeter function to measure HEGO resistance
- ► Low power sleep mode (~10 µA)
- Over temperature, over voltage and over current protection

MC33800 Octal Serial Switch

1 of 8 similar low side switches

- ► Control via SPI or parallel
- ► Clamp circuit for inductive loads
- ► Open load detection
- ▶ Over current detection
- ▶ Over temperature detection
- ► Thermal and short protection
- ▶ OSS 1 & 2 have higher current
- capability
- ► Can be paralleled for increased
- current drive

To logic block of MC33800

MC33800: Constant Current Drivers

2 Constant Current Drivers CCD1 and CCD2

- ▶ Both CCDs controlled via SPI
- ► Clamp circuit for inductive loads
- ► Open load detection
- ▶ Over current detection
- ► Over temperature detection
- ► Thermal and short protection
- ► CCD 1 0 to 1075 mA via SPI word
- ► CCD 2 0 to 232 mA via SPI word
- ▶ 9 bit D/A for setting current
- ► Built-in "dither" generator
- ► Dither frequency and amplitude are
- programmable via SPI
- ► CCD1 can also be used as a simple
- ► 1 amp low side driver
- ▶ Open load detect current source
- can be enabled or disabled via SPI

MC33800: General Purpose Gate Pre-Driver

1 to 6 General Purpose Pre-Drivers

- ► Control by parallel, SPI, AND/OR of both
- ▶ Off state open load detect
- ▶ On state shorted load detect
- ▶ Programmable drain threshold and timer
- for short fault detection
- ► Load resistance ohmmeter function
- ▶ Built-in PWM function with
- programmable frequency and duty-cycle

Table 9. Frequency Select

Frequency Select Bits 987	Frequency Hz
000	10 Hz
001	20 Hz
010	40 Hz
011	80 Hz
100	160 Hz
101	320 Hz
110	640 Hz
111	1.28 kHz

MC33800: Ohmmeter Function

To read the resistance of the HEGO heater, R_{HEGO} :

- 1. Open switch 1B and 2A (via SPI)
- 2. Close switches 1A and 2B
- 3. 100 mA is drawn through R_{HEGO}
- 4. $V_B = VBAT-(100 \text{ mA. } X R_{HEGO})$
- 5. $V_{\Delta} = VBAT$
- 6. $V_{LRFDBK} = 2.5 \text{ X (VBAT} V_B)$
- 7. $R_{HEGO} = V_{LRFDBK}/(100 \text{ mA. X } 2.5)$
- 8. $R_{HFGO} = V_{IRFDBK} / .25$

Additional accuracy can be obtained by reading R_{CAL} first and using the value read divided by the actual R_{CAL} value as a correction factor.

5 Ampere H-Bridge Family

MC33926 H-Bridge: Block Diagram

▶ 5 amp throttle control H-bridge

- 8.0V to 28V continuous operation
- Transient operation from 5V to 36V
- 225 mΩ maximum RDS(ON) @ 150°C (each H-bridge MOSFET)
- 3.0V and 5.0V TTL/CMOS logic compatible Inputs
- Overcurrent limiting (regulation) via internal constant-off-time PWM
- Output short circuit protection (short to vpwr or ground)
- Temperature-dependent current-limit threshold reduction
- All inputs are Schmidt triggers with internal source/sink to define the
- Default (floating input) states
- Sleep mode with current draw < 50 µa (with inputs floating or set to match default logic states)

MC33879 Configurable Low/High Side Driver

- ► Eight floating MOSFETS
- ► Configure as high side or low side
- Combine to increase current
- ▶ Pair up for bridge driver
- ▶ Protection
- ▶ Diagnostics

MC33879 as a 24V Switch Detector and Override

Example:

MC33902 High Speed CAN with Diagnostics: Block Diagram

- High-speed CAN interface for baud rates of 40 kb/s to 1 Mb/s
- ► Embedded 5V supply
- Compatible to ISO11898 standard
- Single supply from battery; no need for 5 supply
- I/O compatible from 2.75V to 5V via a dedicated input pin
- Low power mode with remote CAN wake up and local wake-up recognition and reporting
- CAN bus failure diagnostic and TXD/RXD pin monitoring, cold start detection, wake up sources reported through the NERR pin
- Enhanced diagnostic for bus, TXD, RXD and supply pins available through a pseudo SPI using EN, NSTB and NERR existing pins
- Split pin for bus recessive level stabilization
- INH output to control external power supply

Example Schematic: MC33902 HS CAN

- ► Non-isolated, terminated CAN bus
- ► NERR, NSTB, EN can be used a a quasi-SPI interface to the MCU for error diagnostics.

Agenda

- ► Session objectives
- System block diagram and overview
- ►MPC563xM powertrain advantages and overview
- Secondary safety MCU
- ▶SmartMOS devices
- **▶**Pressure sensor
- ▶ Software drivers and libraries
- ▶ Mechanics
- **►**Summary

MPXH9005 Barometric Pressure sensor

► Key Characteristics

- · Ratiometric analog output
- Piezoresistive Transducer (PRT)
- Compensated digital IC provides calibrated output over temperature
- Output diagnostics and clipping
- Drop-In replacement (pin compatible) to MPX6115A

▶ Features

- 1.5% accuracy
- 1ms response time
- Pressure range = 15 115 kPa
- 5V operating voltage
- FSL-programmable clipping level from 0 – 0.5V and 4.5 – 5V

Package

- SSOP-type pkg standard
- ► Used to sense air pressure for air to fuel ratio calculations

Agenda

- ► Session objectives
- System block diagram and overview
- ►MPC563xM powertrain advantages and overview
- Secondary safety MCU
- ▶SmartMOS devices
- ▶ Pressure sensor
- **►** Software drivers and libraries
- ▶ Mechanics
- ▶Summary

Freescale Run-time Software Solutions

► For More Information Visit: http://www.freescale.com/webapp/sps/site/overview.jsp?nodeld=02Wcbf148A

Software to be Provided with Reference Design

- ► OSEK (license applies)
- eTPU function set 2
 - Crank
 - Cam
 - Fuel
 - Ignition
 - Knock window
 - Tooth generator to simulate crank and cam signals
- ►MC33905 driver
 - Set up of voltage regulator
 - LIN and CAN transceiver
 - · Simple watchdog operation
- ►MC33810 driver
 - Injectors
 - Ignition

- ► MC33800 driver
 - Low side outputs relays, lamps, gauges
 - HEGO heater
- ► MC33932 driver
 - Electronic throttle stepper motor
- Knock function
 - Setup of eQADC, eDMA, PIT, eMIOS together with eTPU set 2
- Freemaster CAN/serial driver
- XCP on CAN driver
 - Vektor or FTAS
- ► MC9S08 safety micro software

eTPU Automotive Functions

- ► Designated 'set2'
- ► AN3768SW
- ► Binary TPU code plus source API

Table 1. eTPU Functions

Function	Description	Related Application Note
CAM & CRANK	Engine position functions	AN3769
KNOCK_WINDOW	Knock window function	AN3772
FUEL	Fuel function	AN3770
SPARK	Spark function	AN3771
TOOTHGEN	Tooth generator function	AN3801

eTPU Automotive (Set 2) Functions

- ► Application notes available that include:
 - ► Binary eTPU code plus source API
- ► Download as AN3768SW from the Freescale website

- ► CamDecode Engine position synchronization based on the cam signal (AN3769)
- ► FuelControl Control the fuel pulse delivery. (AN3770)
- SparkControl Control the spark firing angle and dwell time (AN3771)
- Knock Window Generates windows for capturing the knock signal (AN3772)
- ► TOOTHGEN Generate a simulated toothed wheel without real hardware (AN3801)

Online Tool for Compiling Libraries of Selected Functions

Select device

Select desired functions

Tool compiles the functions in real time

ZIP file provided for download

Agenda

- ► Session objectives
- System block diagram and overview
- ►MPC563xM powertrain advantages and overview
- Secondary safety MCU
- ▶SmartMOS devices
- ▶ Pressure sensor
- Software drivers and libraries
- **►**Mechanics
- ▶Summary

Revision 2 Module Photo

Enclosure and Connector

► Cinch enclosure

- 60 pin connector
- 2x keyed 30 pin headers

Environmental

Operating Temperature: -40°C to + 85°C

Sealing: IP65, IP66, IP67, IP69

Vibration/Shock: 0-2000-10 Hz, 15 g's for 24 hrs - 8 hrs each

perpendicular axis

Current Cycling: 500 hrs at rated current (45 min on – 15 min off)

Temperature Life: 1008 hrs @ 125°C

Temperature / Humidity Cycling: 40 – 8 hrs cycles between -

40°C to + 125°C, relative humidity 0 to 85%

Salt spray: 96 hrs @ 5% NaCl

High Pressure Wash: 200°F steam / detergent spray at 200 psig for 30 sec. - 100°F water / detergent spray at 750 psig for 30 sec

Agenda

- ► Session objectives
- System block diagram and overview
- ►MPC563xM powertrain advantages and overview
- Secondary safety MCU
- ▶SmartMOS devices
- ▶ Pressure sensor
- Software drivers and libraries
- ▶ Mechanics
- **►**Summary

Core

- 150 MHz Power Architecture™ e200z4d Core + VLE
 - · Dual Issue Core with SPE Module for Floating Point & DSP
 - 8kB Instruction Cache 2 or 4 way with error detection
 - 24 Entry MMU, NMI, Power Saving mode

Memory

- 4MB Byte RWW Flash with ECC
- 217kB Total SRAM
 - 192kB on chip static RAM (including 32kB standby) with ECC
 - · 8kB unified-cache (with line locking)
 - 17kB for eTPU (14kB code & 3kB data)

<u>I/O</u>

- · Timed I/O Channels
 - 32 channel eTPU2
 - 24 channel eMIOS
- FlexRay
 - Dual Channel (10MB/s)
- Reaction Module 6 channel support
- 3 x FlexCAN Compatible with TouCAN, 64 Message Buffers Each
- 3 x eSCI
- 3 x DSPI 16 bits wide up to 6 chip selects each
 - · SPI with continuous mode and DMA support
 - Supporting Micro Second Bus, optionally using LVDS
- 1 x CRC unit
- 40 channel Dual ADC up to 12 bit and up to 670ns conversions
 - · 6 Queues with triggering and DMA support
 - Variable Gain Amplifier (X1, X2, X4)
 - · Dual Decimation Filters
 - · Temperature sensor and Absolute voltage reference

System

- FM-PLL
- 64 Channel enhanced DMA Controller
- Peripheral Interrupt Timer (PIT) (capable of queue triggering)
- System Timer Module (STiM) (for AutoSAR task monitor function)
- Software Watchdog (SWaT) (windowing watchdog)
- · 378 source Interrupt Controller (plus NMI)
- · Nexus IEEE-ISTO 5001-2003 Class 3+ (ETPU Class 1)
- · Single 5V Power supply is optional for 208 and 176 QFP packages only
- · EBI and calibration busses (16/32bit)
- 176 LQFP / 208MapBGA / 324PBGA (bus, 40ADC)

MPC5644A

MPC5633M Rev2 ECU Block Diagram

Related Sessions

Session Code	Session Title	Class Level
FTF-AUT-F0341	Automotive MCU Architectures for the Future	Basic
FTF-AUT-F0553	Freescale Solutions for Powertrain and Hybrid	Basic
FTF-AUT-F0556	Analog Mixed Signal and Power Products for Automotive	Basic
FTF-AUT-F0732	SBCs: Power Management Solutions for 16- and 32-bit MCUs in Automotive Applications	Basic
FTF-AUT-F0819	Rapid Software Development on 32-bit Automotive MPC56xx Family of MCUs	Basic
FTF-AUT-F0354	Reducing System Cost with Integrated MCU Solutions for Engine and Transmission Applications	Intermediate
FTF-AUT-F0678	MPC5674F Optimizing Software for Performance	Intermediate
FTF-AUT-F0679	MPC563xM Low-End Engine Control Hardware Design	Intermediate
FTF-AUT-F0680	MPC567xF Powertrain System Hardware Design	Intermediate
FTF-AUT-F0684	Hands-on Workshop: An Overview of Freescale's Analog Standard Products for the Powertrain Market with Emphasis on the Newest and Most Versatile	Intermediate
FTF-AUT-F0730	Automotive Networking Protocol Overview	Intermediate
FTF-AUT-F0764	Hands-on Workshop: AUTOSAR	Intermediate
FTF-AUT-F0447	Using Enhanced Time Processing Unit (eTPU/eTPU2) for Combustion Engine Management and Electric Motor Control	Advanced
FTF-AUT-F0451	Tips and Tricks with DMA on MPC56xx	Advanced
FTF-AUT-F0737	MCU Solutions for Hybrid Drive Train	Advanced

Bolded sessions are highly recommended.

Back-up

Agenda

- Project objectives
- ► Block diagram
- Monaco powertrain advantages
- ➤ SmartMOS devices
- ► Pressure sensor
- Software drivers and libraries
- ► Application model

Application Code

► Simulink model autocoded with Real Time Workshop (RTW)

