Name:

Rhodes (F01) | Bueler (F02) | Jurkowski (F03) Circle one:

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [4 points] In successive weeks, the amount of heating oil in a tank is recorded, as shown in the

t (weeks)	1	2	3	4	5	6
A (gallons)	321	284	258	197	154	87

a. Find the average rate at which the amount changed over the entire period. Specify units.

$$M_{av} = \frac{87 - 321}{6 - 1} = \frac{-234}{5} \quad \text{gal}$$

$$Week$$

b. Find the average rate of change from week 2 to week 4.

id the average rate of change from week 2 to week 4.

$$M_{av} = \frac{197 - 284}{4 - 2} = \frac{-87}{2} \quad \text{gal}$$
week

2. [6 points] On the axes below, sketch the graph of the function

$$f(x) = \begin{cases} 1+x & x < 1 \\ -2 & x = 1 \\ \frac{1}{1-x} & x > 1. \end{cases}$$

Then compute, with brief justification, the requested values in the table.

Value	Justification
f(1) = -2	-2 given
$\lim_{x \to 1^{-}} f(x) =$	lin & (x) = lin +x = 2
$\lim_{x \to 1} f(x) =$	one-sided limits are not equal

3. [6 points] Compute the following limits. For each limit, justify your answer with a sentence or two.

$$\mathbf{a.} \lim_{x \to \pi^+} \frac{\sqrt{7}}{\sin(x)} = \boxed{-\infty}$$

a.
$$\lim_{x \to \pi^+} \frac{\sqrt{7}}{\sin(x)} = -\infty$$
As $x \to \pi^-$ from the right, $\sin(x) \to 0$
but is negative. $\sqrt{7}$ divided by

negative number approach of organization magnitude.

b.
$$\lim_{x \to 3^+} \frac{x+2}{(x-3)^3} = \boxed{\bigcirc}$$

4. [9 points] Use the graph of the function of f(x) to answer the following questions.

b.
$$f(0) =$$
 c. $f(5) =$

c.
$$f(5) = 4$$

d.
$$\lim_{x\to 0^+} f(x) = \underline{\qquad}$$
 e. $\lim_{x\to 0^-} f(x) = \underline{\qquad}$ f. $\lim_{x\to 0} f(x) = \underline{\qquad}$

e.
$$\lim_{x \to 0^{-}} f(x) =$$

$$f. \lim_{x \to 0} f(x) = \underline{DNE}$$

g.
$$\lim_{x \to -4^+} f(x) = \frac{-\infty}{1}$$

h.
$$\lim_{x \to 5} f(x) = 6$$

g.
$$\lim_{x \to -4^+} f(x) = \frac{-\infty}{}$$
 h. $\lim_{x \to 5} f(x) = \frac{}{}$ i. $\lim_{x \to -6} f(x) = \frac{}{}$