Iniciado em segunda-feira, 12 jun. 2023, 15:08

Estado Finalizada

Concluída em sábado, 17 jun. 2023, 16:11

Tempo 5 dias 1 hora

empregado

Avaliar 5,00 de um máximo de 10,00(50%)

Questão 1

Correto

Atingiu 1,00 de 1,00

Utilize a integral de superfície no teorema de Stokes para calcular a circulação do campo $\vec{\mathbf{F}}$ ao redor da curva C na direção indicada.

 $\vec{\mathbf{F}}=x^2y^3\mathbf{i}+\mathbf{j}+z\mathbf{k}$, onde C é a interseção do cilindro $x^2+y^2=4$ e o hemisfério $x^2+y^2+z^2=16$, $z\geq 0$, no sentido anti-horário quando vista de cima.

 \bigcirc a. 3π

 \odot b. 4π

 \circ c. 8π

 \odot d. -8π

 \odot e. -4π

Sua resposta está correta.

Solução: Primeiro, calculamos o rotacional: $\operatorname{rot} \vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 y^3 & 1 & z \end{vmatrix} = 0\mathbf{i} + 0\mathbf{j} - 3x^2 y^2 \mathbf{k}$. Como $\vec{\mathbf{n}} = \frac{2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}}{2\sqrt{x^2 + y^2 + z^2}} = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{4}$,

então $ec{\mathbf{F}}\cdot ec{\mathbf{n}}=-rac{3}{4}x^2y^2z$. Dessa forma, $d\sigma=rac{4}{z}\,dA$. Portanto,

$$\oint\limits_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} \, = \int \int\limits_{R} \left(-\frac{3}{4} x^2 y^2 z \right) \left(\frac{4}{z} \right) \, dA \, = -3 \int_0^{2\pi} \int_0^2 (r^2 \cos^2 \theta) (r^2 \sin^2 \theta) \, r \, dr \, d\theta = -3 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \frac{1}{4} \sin^2 \theta \, d\theta = -3 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^2 (\cos \theta \, \sin \theta)^2 \, d\theta = -32 \int_0^{2\pi} \left[\frac{r^6}{6} \right]_0^$$

A resposta correta é:

 -8π

Correto

Atingiu 1,00 de 1,00

Utilize a integral de superfície no teorema de Stokes para calcular a circulação do campo $\vec{\mathbf{F}}$ ao redor da curva C na direção indicada.

 $\vec{\mathbf{F}}=(y^2+z^2)\mathbf{i}+(x^2+y^2)\mathbf{j}+(x^2+y^2)\mathbf{k}$, onde C é o quadrado limitado pelas retas $x=\pm 1$ e $y=\pm 1$ no plano xy, no sentido anti-horário quando visto de cima.

- a. 0
- b. 1.5
- \bigcirc c. -1
- \bigcirc d. 1
- e. 2

Sua resposta está correta.

Solução: Primeiro, calculamos o rotacional: $\operatorname{rot} \vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 + z^2 & x^2 + y^2 & x^2 + y^2 \end{vmatrix} = (2y)\mathbf{i} + (2z - 2x)\mathbf{j} + (2x - 2y)\mathbf{k}$. Como $\vec{\mathbf{n}} = \mathbf{k}$, então $\vec{\mathbf{F}} \cdot \vec{\mathbf{n}} = 2x - 2y$. Dessa forma, $d\sigma = dx \, dy$. Portanto, $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{-1}^1 \int_{-1}^1 (2x - 2y) dx dy = \int_{-1}^1 -4y dy = 0$.

A resposta correta é:

0

Questão 3

Incorreto

Atingiu 0,00 de 1,00

Seja S o cilindro $x^2+y^2=a^2$, $0\leq z\leq h$, juntamente com seu topo, $x^2+y^2\leq a^2$, z=h. Seja $\vec{\mathbf{F}}=-y\mathbf{i}+x\mathbf{j}+x^2\mathbf{k}$. Utilize o teorema de Stokes para encontrar o fluxo exterior de $\nabla\times\vec{\mathbf{F}}$ através de S.

- \odot a. $-\pi a^2$
- \odot b. $-3\pi a^2$
- \odot c. $2\pi a^2$
- \odot d. $3\pi a^2$
- \odot e. πa^2

Sua resposta está incorreta.

Solução: O fluxo de $\nabla imes \vec{\mathbf{F}} = \int\!\int_S \nabla imes \vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \, d\sigma = \oint\limits_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, então $\vec{\mathbf{r}} = (a \, \cos \, t) \mathbf{i} + (a \, \sin \, t) \mathbf{j}$, $0 \leq t \leq 2\pi$,

 $\frac{d\mathbf{r}}{dt} = (-a \sin t)\mathbf{i} + (a \cos t)\mathbf{j}$. Portanto, $\vec{\mathbf{F}} \cdot \frac{d\mathbf{r}}{dt} = ay \sin t + ax \cos t = a^2 \sin^2 t + a^2 \cos^2 t = a^2$

O fluxo de $abla imes ec{\mathbf{F}}=\oint\limits_{C}ec{\mathbf{F}}\cdot dec{\mathbf{r}}=\int_{0}^{2\pi}a^{2}\,dt=2\pi a^{2}$

A resposta correta é:

 $2\pi a^2$

Incorreto

Atingiu 0,00 de 1,00

Seja $\vec{\mathbf{n}}$ a normal unitária exterior (normal para longe da origem) da casca parabólica S: $4x^2+y+z^2=4$, $y\geq 0$, e seja $\vec{\mathbf{F}}=\left(-z+\frac{1}{2+x}\right)\mathbf{i}+(tg^{-1}y)\mathbf{j}+\left(x+\frac{1}{4+z}\right)\mathbf{k}$. Encontre o valor de $\int\int_S \nabla \times \vec{\mathbf{F}}\cdot\vec{\mathbf{n}}\,d\sigma$.

- a. 2π ×
- \odot b. -4π
- \odot c. π
- \odot d. 4π
- \odot e. -2π

Sua resposta está incorreta.

Solução: Primeiro, calculamos o rotacional:
$$\operatorname{rot} \vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -z + \frac{1}{2+x} & tag^{-1} & x + \frac{1}{4+z} \end{vmatrix} = -2\mathbf{j}.$$

Se
$$f(x,y,z)=4x^2+y+z^2$$
, então $abla f=8x\mathbf{i}+\mathbf{j}+2z\mathbf{k}$.

$$\mathsf{Como}\,\,\vec{\mathbf{n}} = \frac{\nabla f}{|\nabla f|}\,\mathsf{e}\,\,\vec{\mathbf{p}} = \mathbf{j}, \, |\nabla f\cdot\vec{\mathbf{p}}| = 1, \, d\sigma = \frac{|\nabla f|}{|\nabla f\cdot\vec{\mathbf{p}}|}\,dA = |\nabla f|\,dA, \, \mathsf{então}\,\,\nabla\times\vec{\mathbf{F}}\cdot\vec{\mathbf{n}} = \frac{1}{|\nabla f|}(-2\mathbf{j}\cdot\nabla\mathbf{f}) = \frac{-2}{|\nabla f|}(-2\mathbf{j}\cdot\nabla\mathbf{f}) = \frac{-2}{|\nabla f|}(-2\mathbf{j}\cdot\nabla\mathbf{f}) = \frac{1}{|\nabla f|}($$

Então podemos escrever $\nabla imes ec{\mathbf{F}} \cdot ec{\mathbf{n}} \, d\sigma = -2 \, dA$

Portanto,
$$\int\int_S
abla imes \vec{{f r}} \cdot \vec{{f n}} \, d\sigma = \int\int_R -2 \, dA = -2$$
 (Area de R)= $-2(\pi)(1)(2) = -4\pi$.

A resposta correta é:

 -4π

Incorreto

Atingiu 0,00 de 1,00

Utilize a integral de superfície no teorema de Stokes para calcular a circulação do campo $\vec{\mathbf{F}}$ ao redor da curva C na direção indicada.

 $ec{f F}=x^2{f i}+2x{f j}+z^2{f k}$, onde C é a elipse $4x^2+y^2=4$ no plano xy, no sentido anti-horário quando vista de cima.

- \odot a. 3π
- \odot b. 4π
- \odot c. π
- \odot d. 2π
- e. 0 ×

Sua resposta está incorreta.

Solução: Primeiro, calculamos o rotacional:
$$\mathrm{rot}\vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 & 2x & z^2 \end{vmatrix} = 0\mathbf{i} + 0\mathbf{j} + (2 - 0)\mathbf{k} = 2\mathbf{k}$$
. Como $\vec{\mathbf{n}} = \mathbf{k}$, então $\mathrm{rot}\vec{\mathbf{F}} \cdot \vec{\mathbf{n}} = 2$. Dessa forma, $d\sigma = dx\,dy$. Portanto, $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_S 2\,dA = 2$ (Área da elipse) $= 4\pi$.

A resposta correta é:

 4π

Correto

Atingiu 1,00 de 1,00

Encontre a divergência do campo de velocidade da figura abaixo,

onde a equação do campo é dada por $\vec{\mathbf{v}}=(a^2-x^2-y^2)\mathbf{k}$, onde a base desses vetores encontra-se no plano xy e extremidades está no parabolóide $z=a^2-r^2$.

- a. 4
- \bigcirc b. 1
- oc. 3
- \bigcirc d. 2
- e. 0

Sua resposta está correta.

Solução: Temos $z=a^2-r^2$ em coordenadas cilíndricas, como $r^2=x^2+y^2$, substituímos e obtemos $z=a^2-(x^2+y^2)$

 $ec{\mathbf{v}} = (a^2 - x^2 - y^2)\mathbf{k}$, assim \(div\,{\bf\vec v}=0\0

A resposta correta é:

0

Incorreto

Atingiu 0,00 de 1,00

Utilize o teorema da divergência para encontrar o fluxo exterior de $\vec{\mathbf{F}}$ através da fronteira da região D.

Cubo $\vec{\mathbf{F}}=(y-x)\mathbf{i}+(z-y)\mathbf{j}+(y-x)\mathbf{k}$, D: O cubo limitado pelos planos $x=\pm 1$, $y=\pm 1$ e $z=\pm 1$.

- a. 15

 ★
- b. 16
- \odot c. -15
- \odot d. -16
- e. 11

Sua resposta está incorreta.

Solução: Primeiro calculamos as derivadas parciais

$$rac{\partial}{\partial x}(y-x)=-1, rac{\partial}{\partial y}(z-y)=-1,$$
 , $rac{\partial}{\partial z}(y-x)=0$

Obtemos $abla \cdot \vec{F} = -2$ como a divergência, então podemos calcular o fluxo

$$flux = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} -2 \, dx \, dy \, dz = -2(2^3) = -16$$

A resposta correta é:

-16

Questão 8

Correto

Atingiu 1,00 de 1,00

Utilize o teorema da divergência para encontrar o fluxo exterior de $\vec{\mathbf{F}}$ através da fronteira da região D.

Lata cilíndrica $\vec{\mathbf{F}} = (6x^2 + 2xy)\mathbf{i} + (2y + x^2z)\mathbf{j} + 4x^2y^3\mathbf{k}$, D: A região cortada do primeiro octante pelo cilindro $x^2 + y^2 = 4$ e pelo plano z = 3

- \odot a. $112 + 6\pi$
- \odot b. $-111-6\pi$
- \odot c. $115-6\pi$
- \odot d. $114-6\pi$
- \circ e. $-113 + 6\pi$

Sua resposta está correta.

Solução: Primeiro fazemos a derivada parcial

$$\frac{\partial}{\partial x} (6x^2 + 2xy) = 12x + 2y, \\ \frac{\partial}{\partial y} (2y + x^2z) = 2, \\ \\ \frac{\partial}{\partial z} (4x^2y^3) = 0. \text{ Obtemos } \nabla \cdot \vec{\mathbf{F}} = 12x + 2y + 2. \text{ Então calculamos o fluxo: } \vec{\mathbf{F}} = 12x + 2y + 2 = 2, \\ \frac{\partial}{\partial z} (4x^2y^3) = 0. \\ \frac{\partial}{\partial z} (4x$$

 $flux = \int \int_{D} \int (12x + 2y + 2) \, d\vec{\mathbf{V}} = \int_{0}^{3} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} (12r \cos \theta + 2r \sin \theta + 2) \, r \, dr \, d\theta \, dz = \int_{0}^{3} \int_{0}^{\frac{\pi}{2}} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 + 2 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \int_{0}^{\frac{\pi}{2}} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta \, dz = \int_{0}^{3} \left(32 \cos \theta + \frac{16}{3} \sin \theta + 4 \right) \, d\theta$

A resposta correta é:

 $112 + 6\pi$

Incorreto

Atingiu 0,00 de 1,00

Utilize o teorema da divergência para encontrar o fluxo exterior de $\vec{\mathbf{F}}$ através da fronteira da região D.

Esfera espessa $\vec{\mathbf{F}}=x\mathbf{i}+y\mathbf{j}+z\mathbf{k}/\sqrt{x^2+y^2+z^2}$, D: A região $1\leq x^2+y^2+z^2\leq 4$.

- \odot a. 14π
- \odot b. 15π
- \odot c. 12π
- \odot d. 11π \times
- \odot e. 13π

Sua resposta está incorreta.

Solução: Temos $ho=\sqrt{x^2+y^2+z^2}$, fazemos:

 $\frac{\partial \rho}{\partial x} = \frac{x}{\rho}, \ \frac{\partial \rho}{\partial y} = \frac{y}{\rho}, \ \frac{\partial \rho}{\partial z} = \frac{z}{\rho}.$ Dando continuidade

$$\frac{\partial}{\partial x} \left(\frac{x}{\rho} \right) = \frac{1}{\rho} - \left(\frac{x}{\rho^2} \right) \frac{\partial \rho}{\partial x} = \frac{1}{\rho} - \frac{x^2}{\rho^3}. \text{ Similar } \frac{\partial}{\partial y} \left(\frac{y}{\rho} \right) = \frac{1}{\rho} - \frac{y^2}{\rho^3} \text{ e } \frac{\partial}{\partial z} \left(\frac{z}{\rho} \right) = \frac{1}{\rho} - \frac{z^2}{\rho^3}. \text{ Obtemos } \nabla \cdot \vec{\mathbf{F}} = \frac{3}{\rho} - \frac{x^2 + y^2 + z^2}{\rho^3} = \frac{2}{\rho}. \text{ Então calculamos o fluxo:}$$

$$flux = \int \int_D \int \frac{2}{\rho} \, d\vec{\mathbf{V}} = \int_0^{2\pi} \int_0^{\pi} \int_1^2 \left(\frac{2}{\rho}\right) \, \left(\rho^2 \, \sin \, \phi\right) \, d\rho \, d\phi \, d\theta = \int_0^{2\pi} \int_0^{\pi} 3 \sin \, \phi \, d\phi \, d\theta = \int_0^{2\pi} 6 \, d\theta = 12\pi$$

A resposta correta é:

 12π

Correto

Atingiu 1,00 de 1,00

Utilize o teorema da divergência para encontrar o fluxo exterior de $\vec{\mathbf{F}}$ através da fronteira da região D.

Cilindro e paraboloide $\vec{\mathbf{F}} = y\mathbf{i} + xy\mathbf{j} - z\mathbf{k}$, D: A região dentro do cilindro sólido $x^2 + y^2 \le 4$ entre o plano z = 0 e o paraboloide $z = x^2 + y^2$.

- \bigcirc a. -14
- \odot b. -16
- oc. 14
- \bigcirc d. 16
- \odot e. -8π

Sua resposta está correta.

Solução: Inicialmente calculamos a derivada parcial

 $\frac{\partial}{\partial x}(y)=0, \frac{\partial}{\partial y}(xy)=x, \\ \\ \frac{\partial}{\partial z}(-z)=-1.$ Obtemos $\nabla\cdot\vec{\mathbf{F}}=x-1,$ como $z=x^2+y^2,$ em que $z=r^2$ em coordenadas cilíndricas. Seguimos calculando a integral tripla da divergência para encontrarmos o fluxo:

 $Flux = \int \int_D \int (x-1) \, dz \, dy \, dx = \int_0^{2\pi} \int_0^2 \int_0^{r^2} (r \, \cos \, \theta - 1) \, dz \, r \, dr \, d\theta = \int_0^{2\pi} \int_0^2 (r^3 \, \cos \, \theta - r^2) \, r \, dr \, d\theta = \int_0^{2\pi} \left[\frac{r^5}{5} \cos \, \theta - \frac{r^4}{4} \right]_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4} \right)_0^2 \, d\theta = \int_0^{2\pi} \left(\frac{32}{5} \cos \, \theta - \frac{r^4}{4$

A resposta correta é

 -8π