Le modèle linéaire : modélisation d'une variable quantitative en fonction de variables quantitatives ou qualitatives

Marie Laure Delignette-Muller - VetAgro Sup

2025-01-07 - diffusé sous licence CC BY-NC-ND

Introduction

Les modèles linéaires nous fournissent les briques de base pour construire de très nombreux modèles utilisés en statistique.

Mes objectifs:

- vous faire bien comprendre les principaux concepts associés aux modèles linéaires,
- vous initier à la manipulation des modèles linéaires sous R,
- développer votre lecture critique des travaux publiés utilisant les modèles linéaires.

Notre exemple fil rouge

Nous présenterons différents modèles sur un unique jeu de données extrait d'une ancienne publication décrivant le **temps de survie** (en jours) des **tiques adultes** en fonction de la **température** et de l'**humidité relative** :

Milne, A. (1950). The ecology of the sheep tick, Ixodes ricinus L.: microhabitat economy of the adult tick. Parasitology, 40(1-2), 14-34.

Importation du jeu de données

```
dtot <- read.table("DATA/Milne1950.txt", header = TRUE)</pre>
str(dtot)
  'data.frame': 100 obs. of 3 variables:
## $ rel hum : int 0 50 70 85 95 0 50 70 85 95 ...
## $ surv time : int 7 7 22 15 38 9 9 23 22 48 ...
   $ temperature: int 5 5 5 5 5 5 5 5 5 5 ...
##
# replacement of 0% humidity by 10%
# as in the paper Wongnak et al. 2022
dtot$rel hum[dtot$rel hum == 0] <- 10
# add of the log10 tranformed survival time
dtot$log10 surv time <- log10(dtot$surv time)</pre>
```

Représentation graphique des données

Représentation des données après transformation logarithmique de la variable à expliquer

```
ggplot(data = dtot, aes(x = rel_hum,
  y = log10_surv_time, col = temperature)) +
  geom_point()
```


Ajout de bruit sur l'axe des x pour voir tous les points

```
ggplot(data = dtot, aes(x = rel_hum,
y = log10_surv_time, col = temperature)) +
geom_jitter(width = 2)
```


Définition des termes de base

La variable à expliquer = la variable dépendante = le temps de survie (en jours) = une variable continue

Pas de censure ici car l'expérience a été poursuivie pour atteindre la mort pour chaque tique.

Les variables explicatives = les variables indépendantes :

- ► l'humidité relative (en %)
- la température (en degrés Celsius)

Dans cet exemple, les deux variables explicatives sont contrôlées (étude expérimentale).

Rappel sur la régression linéaire simple

Impact de la température pour des conditions d'humidité faible

en utilisant un **sous-ensemble** des données, restreint à un niveau d'humidité de 50%

```
dRH50 <- subset(dtot, rel_hum == 50); par(mar = c(4,4,0,0)) plot(log10_surv_time ~ temperature, data = dRH50, pch = 16)
```


Modèle théorique

$$Y_i = \alpha + \beta X_i + \epsilon_i \text{ avec } \epsilon_i \sim N(0, \sigma)$$

Partie déterministe : lien linéaire

Partie stochastique : modèle gaussien

en supposant des résidus aléatoires, indépendants ϵ_i suivant une distribution gaussienne (normale) de variance constante σ^2 .

Estimation des paramètres par la méthode des moindres carrés

Dans le cas de ce modèle, l'estimation du **maximum de vraisemblance** (maximisation de $Pr(Y|\alpha,\beta,\sigma)$) correspond à **l'estimation des moindres carrés** minimisant $SCE = \sum_{i=1}^{n} e_i^2$ avec $e_i = Y_i - \hat{Y}_i$

Estimation des paramètres à l'aide de la fonction lm() de R

```
(m <- lm(log10_surv_time ~ temperature, data = dRH50))

##
## Call:
## lm(formula = log10_surv_time ~ temperature, data = dRH50)
##
## Coefficients:
## (Intercept) temperature
## 1.1225 -0.0224</pre>
```

Résumé de l'ajustement du modèle linéaire

summary(m) ## ## Call: ## lm(formula = log10 surv time ~ temperature, data = dRH50) ## ## Residuals: ## Min 10 Median 30 Max ## -0.3991 -0.1127 -0.0209 0.1560 0.3443 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 1.12253 0.11411 9.84 1.1e-08 *** ## ---## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' ## ## Residual standard error: 0.231 on 18 degrees of freedom ## Multiple R-squared: 0.377, Adjusted R-squared: 0.342

F-statistic: 10.9 on 1 and 18 DF, p-value: 0.00398

Comment interpréter la valeur p associée au coefficient de régression (pente) ?

```
summary(m)$coefficients
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1225 0.11411 9.84 1.15e-08
## temperature -0.0224 0.00678 -3.30 3.98e-03
```

Il correspond au **test de significativité de la pente** avec H_0 l'hypothèse de pente nulle. Il permet donc en cas de rejet de H_0 de mettre en évidence une relation linéaire significative entre** la variable indépendante X et la variable dépendante Y.»

Représentation du modèle ajusté sur les données

```
par(mar = c(4, 4, 0, 0))
plot(log10_surv_time ~ temperature, data = dRH50, pch = 16)
abline(m)
```


Vérification des conditions d'utilisation - graphe des résidus

Résidus en fonction des valeurs prédites / ajustées

```
par(mar = c(4, 4, 0, 0))
plot(residuals(m) ~ fitted(m))
```


Graphe des résidus - attendus

Attendus : centrés sur 0, 95% dans $[-2\sigma; 2\sigma]$, variance constante, sans tendance particulière.

Vérification des conditions d'utilisation - diagramme quantile-quantile des résidus

Distribution globale gaussienne (normale) des résidus attendue : points grossièrement alignés sur le Q-Q plot des résidus

qqnorm(residuals(m))

Normal Q-Q Plot

A vous de jouer avec trois autres exemples

Ajustez un modèle linéaire simple et examinez en particulier les résidus dans les trois cas suivants :

- 1. Ajuster un modèle linéaire simple sur le même exemple sans transformation logarithmique du temps de survie
- Modéliser l'impact de l'humidité relative sur le temps de survie (après transformation logarithmique de log₁₀) à 25° C.
- 3. Modéliser l'**impact de l'humidité relative sur le temps de survie** (après log_{10} de transformation) à $19^{\circ}C$, en excluant les données dans les conditions les plus arrides.

Vous pouvez utiliser le script R "exos_intro2linmodel.R" pour vous aider si besoin.

Exemple 1 - ajustement du modèle

```
mnonlog <- lm(surv_time ~ temperature, data = dRH50)
summary(mnonlog)</pre>
```

```
##
## Call:
## lm(formula = surv_time ~ temperature, data = dRH50)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.21 -2.33 -1.30 1.85 9.29
##
## Coefficients:
            Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 13.783 2.161 6.38 5.3e-06 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.38 on 18 degrees of freedom
## Multiple R-squared: 0.368, Adjusted R-squared: 0.332
## F-statistic: 10.5 on 1 and 18 DF, p-value: 0.0046
```

Exemple 1 - tracé du modèle ajusté

```
par(mar = c(4, 4, 0, 0))
plot(surv_time ~ temperature, data = dRH50, pch = 16)
abline(mnonlog)
```


Exemple 1 - graphe des résidus

Effet entonnoir (ou bottleneck pour les anglophones) = hétéroscédasticité = σ n'est pas constant

```
plot(residuals(mnonlog) ~ fitted(mnonlog))
```


Exemple 1 - Une variante fournie dans les graphes associés à la fonction lm() pour identifier facilement ce type de problème

"Scale-Location plot"

```
par(mar = c(4, 4, 0, 0))
plot(mnonlog, which = 3)
```


Exemple 1 - diagramme quantile-quantile des résidus

Dans cet exemple, le problème n'est pas détectable sur le Q-Q plot des résidus.

Exemple 2 - construction et examen du jeu de données

```
dT25 <- subset(dtot, temperature == 25)
par(mar = c(4, 4, 0, 0))
plot(log10_surv_time ~ rel_hum, data = dT25, pch = 16)</pre>
```


Exemple 2 - ajustement du modèle

```
mnonlin <- lm(log10_surv_time ~ rel_hum, data = dT25)</pre>
summary(mnonlin)
##
## Call:
## lm(formula = log10_surv_time ~ rel_hum, data = dT25)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.780 -0.382 0.120 0.345 0.534
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.06545 0.19383 -0.34 0.74
## rel_hum 0.02068 0.00281 7.35 1.8e-07 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.423 on 23 degrees of freedom
## Multiple R-squared: 0.702, Adjusted R-squared: 0.689
## F-statistic: 54.1 on 1 and 23 DF, p-value: 1.76e-07
```

Exemple 2 - tracé du modèle

```
par(mar = c(4, 4, 0, 0))
plot(log10_surv_time ~ rel_hum, data = dT25, pch = 16)
abline(mnonlin)
```


Exemple 2 - Graphe des résidus

Tendance des résidus = les résidus ne sont pas indépendants, dans cet exemple en raison de la non linéarité de la relation

```
par(mar = c(4, 4, 0, 0))
plot(residuals(mnonlin) ~ fitted(mnonlin))
```


Exemple 2 - Une variante fournie dans les graphes associés à la fonction lm() pour identifier facilement ce type de problème

```
par(mar = c(4, 4, 0, 0))
plot(mnonlin, which = 1)
```


Exemple 2 - diagramme quantile-quantile des résidus

Dans cet exemple, le problème est également détectable sur le Q-Q plot des résidus.

qqnorm(residuals(mnonlin))

Normal Q-Q Plot

Exemple 3 - construction et examen du jeu de données

```
dT19 <- subset(dtot, temperature == 19 & rel_hum > 10)
par(mar = c(4, 4, 0, 0))
plot(log10_surv_time ~ rel_hum, data = dT19, pch = 16)
```


Exemple 3 - ajustement du modèle

```
moutlier <- lm(log10_surv_time ~ rel_hum, data = dT19)
summary(moutlier)
##
## Call:
## lm(formula = log10_surv_time ~ rel_hum, data = dT19)
##
## Residuals:
## Min 1Q Median 3Q
                                    Max
## -1.1380 -0.1377 0.0221 0.2337 0.4614
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -1.21571 0.37147 -3.27 0.0042 **
## rel_hum 0.03591 0.00483 7.43 6.9e-07 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.366 on 18 degrees of freedom
## Multiple R-squared: 0.754, Adjusted R-squared: 0.741
```

F-statistic: 55.3 on 1 and 18 DF, p-value: 6.85e-07

Exemple 3 - tracé du modèle

```
par(mar = c(4, 4, 0, 0))
plot(log10_surv_time ~ rel_hum, data = dT19, pch = 16)
abline(moutlier)
```


Exemple 3 - Graphe des résidus

Une valeur extrême apparaît nettement sur le graphe des résidus.

```
par(mar = c(4, 4, 0, 0))
plot(residuals(moutlier) ~ fitted(moutlier))
```


Exemple 3 - Une variante fournie dans les graphes associés à la fonction lm() pour identifier les valeurs extrêmes

```
par(mar = c(4, 4, 0, 0))
plot(moutlier, which = 1)
```


Exemple 3 - Distances de Cook : impact / influence des valeurs extrêmes ?

Pour identifier les **observations influentes** : impact de l'élimination de chaque observation sur les estimations des paramètres.

```
par(mar = c(4, 4, 0, 0))
plot(moutlier, which = 4)
```


Example 3 - Diagramme quantile-quantile des résidus

Dans cet exemple, le problème est également détectable sur le Q-Q plot des résidus.

```
qqnorm(residuals(moutlier))
```


Inférence à l'aide d'une régression linéaire simple

Possible si votre modèle n'est pas invalidé par l'examen des résidus.

Reprenons notre exemple initial qui respecte les conditions de la régression linéaire

Estimations avec leur intervalle de confiance

```
coef(m)

## (Intercept) temperature
## 1.1225 -0.0224

confint(m)
```

```
## 2.5 % 97.5 %
## (Intercept) 0.8828 1.36228
## temperature -0.0366 -0.00814
```

- ordonnée à l'origine (intercept) : valeur estimée de Y pour X = 0 (ne peut avoir d'interprétation biologique que si 0 se situe dans l'intervalle des valeurs observées de X)
- pente (coefficient de régression) : changement de la variable à expliquer correspondant à un changement d'une unité de la variable explicative

Prédiction à partir du modèle

Prediction de Y_0 pour $X=X_0$ choisis dans la gamme observée.

ATTENTION: pas d'extrapolation!

Intervalle de confiance sur la moyenne prédite

Incertitude sur la partie déterministe du modèle (la droite)

Intervalle de prédiction = intervalle de confiance sur une prédiction individuelle

Incertitude sur la partie déterministe + la partie stochastique

Approximation de l'intervalle de prédiction

Incertitude sur la partie déterministe + la partie stochastique souvent approchée par défaut par la seule partie stochastique $\hat{Y}_0 \pm 2 \times \sigma$

Calcul des intervalles de confiance et de prédiction avec R

Intervalle de confiance sur la moyenne

```
data4pred <- data.frame(temperature = 10)
predict(m, interval = "confidence", newdata = data4pred)

## fit lwr upr
## 1 0.899 0.769 1.03</pre>
```

Intervalle de prédiction (individuelle)

1 0.899 0.396 1.4

```
predict(m, interval = "prediction", newdata = data4pred)
## fit lwr upr
```

Statistiques d'ajustement

Interprétation du r^2 (coefficient de détermination)

Il correspond à la proportion de la variation (somme des carrés des écarts à la moyenne) de la variable à expliquer que la variable explicative explique réellement (par la relation déterministe linéaire).

Le r^2 donné en % est parfois appelé **le pourcentage de variation expliquée**.

L'écart-type σ est également une mesure de la qualité de l'ajustement, mais il doit être interprété en fonction de l'ordre de grandeur de Y.

Résumé de l'ajustement d'un modèle linéaire dans R

```
summary(m)
##
## Call:
## lm(formula = log10 surv time ~ temperature, data = dRH50)
##
## Residuals:
##
      Min 10 Median
                           30
                                 Max
## -0.3991 -0.1127 -0.0209 0.1560 0.3443
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.12253 0.11411 9.84 1.1e-08 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '
##
## Residual standard error: 0.231 on 18 degrees of freedom
## Multiple R-squared: 0.377, Adjusted R-squared: 0.342
## F-statistic: 10.9 on 1 and 18 DF, p-value: 0.00398
```

Une valeur de r^2 proche de 1 ne vous informe pas sur le respect des conditions d'utilisation du modèle.

Pour vous en convaincre, regardez les quatre exemples suivants qui partagent exactement la même valeur de r^2 , soit 62%.

extrait de R. Tomassone et al., 1992, La régression, nouveaux regards sur une ancienne méthode statistique.

A votre tour d'utiliser le modèle en inférence

Utilisez le modèle m pour répondre aux questions suivantes :

- 1. A une humidité relative de 50%, quelle est la variation attendue du taux de survie (en log_{10}) attendue pour une augmentation de la température de $1^{\circ}C$?
- 2. Traduire cette variation en un coefficient mutiplicatif sur le temps de survie et en sa diminution relative.
- 3. Donner une prédiction (avec son intervalle de confiance à 95%) de la moyenne du temps de survie en échelle logarithmique, des tiques à une humidité relative de 50% et à une température de 22° C, et sa traduction en échelle brute (en jours).
- 4. Donner une prédiction (avec son IC à 95%) du **temps de survie d'une tique** exposée à une humidité relative de 50% et à une **température de 22**° *C*.
- 5. Donner une prédiction (avec son IC à 95%) de **la durée de survie d'une tique** exposée à une humidité relative de 50% et à une **température de** 40° *C*.

A une humidité relative de 50%, quelle est la variation attendue du taux de survie (en log_{10}) attendue pour une augmentation de la température de $1^{\circ}C$?

```
coef(m)[2]
```

```
## temperature
## -0.0224
```

##

Traduire cette variation en un **coefficient mutiplicatif sur le temps de survie** et en sa **diminution relative**.

si nous nommons st_0 le temps de survie initial, et st_c le temps de survie après le changement, on attend $log_{10}(st_c) - log_{10}(st_0) = b$ avec b le coefficient de régression, donc $log_{10}(\frac{st_c}{st_0}) = b$ donc $st_c = 10^b \times st_0$.

```
# multiplication by
10^coef(m)[2]
## temperature
```

```
# so a relative diminution of 5%
```

0.95

Donner une prédiction (avec son intervalle de confiance à 95%) de la moyenne du temps de survie en échelle logarithmique, des tiques à une humidité relative de 50% et à une température de $22^{\circ}C$, et sa traduction en échelle brute (en jours).

```
# prediction in days
10^stinlog10
```

```
## fit lwr upr
## 1 4.27 3.04 5.99
```

fit lwr upr ## 1 0.63 0.483 0.777

Donner une prédiction (avec son IC à 95%) du **temps de survie d'une tique** exposée à une humidité relative de 50% et à une **température de 22^{\circ}C**.

```
## fit lwr upr
## 1 4.27 1.33 13.7
```

Donner une prédiction (avec son IC à 95%) de la durée de survie d'une tique exposée à une humidité relative de 50% et à une température de $40^{\circ}C$.

```
# Should we do that ?
data4pred <- data.frame(temperature = 40)
predict(m, interval = "prediction", newdata = data4pred)
## fit lwr upr
## 1 0.227 -0.385 0.839</pre>
```

```
# NO !!!!!!!!!!!!!!!
```

ATTENTION EXTRAPOLATION INTERDITE!

Ce jeu de données ne peut pas nous informer sur ce qui se passe au-dessus de $25^{\circ} C$!

Modélisation de l'impact de l'humidité relative et de la température hors conditions arrides

en utilisant un sous-ensemble des données dans toutes les conditions d'humidité à l'exception de la condition la plus sèche.

```
dhum <- subset(dtot, rel_hum > 10)
ggplot(data = dhum, aes(x = rel_hum, y = log10_surv_time,
col = temperature)) + geom_jitter(width = 2)
```


Le modèle théorique

Très similaire au modèle linéaire simple,

avec **plus d'une variable indépendante continue** (appelés aussi régresseurs),

donc **plus d'un coefficient de régression** (on ne parle plus de pente).

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_p X_{pi} + \epsilon_i$$
avec $\epsilon_i \sim N(0, \sigma)$

Partie déterministe : lien linéaire
Partie stochastique : modèle gaussien

en supposant des résidus **aléatoires**, **indépendants** ϵ_i suivant une distribution **gaussienne** (normale) de variance constante σ^2 .

L'estimation des paramètres par la méthode des moindres carrés

Comme dans le cas du modèle linéaire simple.

l'estimation du maximum de vraisemblance

(maximisant $Pr(Y|\beta_0, \beta_1, \dots, \beta_p, \sigma)$) correspond toujours à l'estimation des moindres carrés minimisant $SCE = \sum_{i=1}^{n} e_i^2$ avec $e_i = Y_i - \hat{Y}_i$

Estimation des paramètres à l'aide de R

Résumé de l'ajustement

summary(mm)

```
##
## Call:
## lm(formula = log10_surv_time ~ rel_hum + temperature, data = dhum)
##
## Residuals:
##
     Min 10 Median 30
                              Max
## -1.1677 -0.2040 0.0649 0.2482 0.6337
##
## Coefficients:
##
           Estimate Std. Error t value Pr(>|t|)
## rel_hum 0.03334 0.00252 13.25 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.382 on 77 degrees of freedom
## Multiple R-squared: 0.699, Adjusted R-squared: 0.691
## F-statistic: 89.3 on 2 and 77 DF, p-value: <2e-16
```

Affichage des coefficients avec leur intervalle de confiance à 95%

Comment interpréter les valeurs p associées à chaque coefficient de régression ?

summary(mm)\$coefficients

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.86084 0.21090 -4.08 1.08e-04
## rel_hum 0.03334 0.00252 13.25 1.46e-21
## temperature -0.00971 0.00560 -1.73 8.69e-02
```

Chaque valeur p correspond au **test de signification de chaque coefficient de régression** avec H_0 l'hypothèse nulle de chaque coefficient, les autres étant conservés dans le modèle. Il permet donc de mettre en évidence une relation linéaire significative entre** le régresseur X_i et le résultat Y lorsque les autres régresseurs X_j avec $j \neq i$ ont déjà été pris en compte.»

Dans cet exemple, nous voyons un impact significatif de l'humidité relative sur le taux de survie, mais l'ajout de la température comme second régresseur n'améliore pas significativement le modèle.

Une autre façon équivalente de comparer deux modèles emboîtés à l'aide d'un test F - impact de la température

```
mrel_hum <- lm(log10_surv_time ~ rel_hum, data = dhum)
anova(mm, mrel_hum)

## Analysis of Variance Table

##
## Model 1: log10_surv_time ~ rel_hum + temperature

## Model 2: log10_surv_time ~ rel_hum

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 77 11.2
```

mm <- lm(log10_surv_time ~ rel_hum + temperature, data = dhum)

L'ajout de la température dans le modèle n'améliore pas significativement l'ajustement.

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ''

2 78 11.6 -1 -0.438 3.01 0.087 .

Une autre façon de comparer deux modèles emboîtés à l'aide d'un test F - impact de l'humidité relative

```
mm <- lm(log10_surv_time ~ rel_hum + temperature, data = dhum)
mtemperature <- lm(log10_surv_time ~ temperature, data = dhum)
anova(mm, mtemperature)
## Analysis of Variance Table
##
## Model 1: log10 surv time ~ rel hum + temperature
## Model 2: log10 surv time ~ temperature
    Res.Df RSS Df Sum of Sq F Pr(>F)
##
## 1
        77 11.2
## 2 78 36.8 -1 -25.6 176 <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ''
```

L'ajout de l'humidité relative dans le modèle améliore significativement l'ajustement.

Possibilité de faire tous les tests F en enlevant les coefficients de régression un à un automatiquement

```
drop1(mm, test = "F")
## Single term deletions
##
## Model:
## log10_surv_time ~ rel_hum + temperature
              Df Sum of Sq RSS AIC F value Pr(>F)
##
                          11.2 - 151.2
## <none>
## rel hum 1 25.57 36.8 -58.2 175.69 <2e-16 ***
## temperature 1 0.44 11.6 -150.2 3.01 0.087 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ''
```

Vérification des conditions d'utilisation

Il n'est plus possible de tracer le modèle ajusté sur les données en 2D.

C'est l'une des difficultés rencontrées dans le processus de vérification de l'adéquation du modèle aux données !

Tracé des résidus en fonction des valeurs ajustées, comme dans le cas d'une régression linéaire simple

```
par(mar = c(4, 4, 0, 0))
plot(residuals(mm) ~ fitted(mm))
residuals(mm)
        0.5
                         1.0
                                         1.5
                                                          2.0
                                   fitted(mm)
```

Diagramme quantile-quantile des résidus comme dans la régression linéaire simple

qqnorm(residuals(mm))

Ajout d'un graphe des résidus en fonction de chaque variable indépendante

Particulièrement utile pour détecter la violation de l'hypothèse de relation linéaire

(le cas de l'humidité relative dans cet exemple !)

```
par(mar = c(4, 4, 0, 0), mfrow = c(1,2))
plot(residuals(mm) ~ rel_hum, data = dhum)
plot(residuals(mm) ~ temperature, data = dhum)
```


Retour sur les données

Nous aurions pu anticiper ce problème, et il aurait été pire si les données à 10% d'humidité avaient été conservées.

```
ggplot(data = dtot, aes(x = rel_hum,
  y = log10_surv_time, col = temperature)) +
  geom_jitter(width = 2)
```


Les modèles polynomiaux : une solution ?

##

##

(Intercept)

2.463772

Une façon simple de **prendre en compte la non-linéarité de la relation** entre la variable dépendante et un (ou plusieurs) régresseur(s) est d'utiliser des modèles polynomiaux.

(mm2 <- lm(log10_surv_time ~ rel_hum + I(rel_hum^2) +</pre>

-0.064501

```
##
## Call:
## lm(formula = log10_surv_time ~ rel_hum + I(rel_hum^2) + temperature,
## data = dhum)
##
## Coefficients:
```

rel_hum I(rel_hum^2) temperature

0.000679

-0.009712

Ce modèle polynomial peut être ajusté par la méthode des moindres carrés : il s'agit d'un modèle linéaire avec une variable explicative supplémentaire (le carré de l'humidité relative).

A votre tour de manipuler la régression multiple

En utilisant le jeu de données dhum qui exclut la condition la plus arride :

- 1. Examinez les **graphes des résidus** obtenus avec ce nouveau modèle. Le **problème de non-linéarité est-il résolu** ?
- 2. Regardez le résumé du nouveau modèle et essayez d'**interpréter les** valeurs p.

En utilisant l'ensemble des données dtot (avec toutes les conditions) :

- 3. Ajustez un modèle polynomial du second ordre sans prendre en compte l'impact de la température.
- 4. Regardez le résumé et les résidus.
- 5. Représentez le modèle ajusté sur les données et interrogez-vous sur la pertinence biologique de ce modèle. Pour cette question, vous devrez définir un nouveau jeu données avec des valeurs régulièrement espacées dans la gamme des conditions testées d'humidité relative et utiliser la fonction predict() directement sur ce nouveau jeu de données.

Réponse à la question 1

Il n'y a plus de tendance sur le graphe des résidus en fonction de l'humidité relative.

Réponse à la question 2

Amélioration significative de l'ajustement en ajoutant l'humidité relative au carré, mais pas d'amélioration significative en ajoutant la température.

```
summary(mm2)
##
## Call:
## lm(formula = log10_surv_time ~ rel_hum + I(rel_hum^2) + temperature,
      data = dhum)
##
##
## Residuals:
##
      Min
               10 Median
                              30
                                     Max
## -1.0802 -0.1873 0.0635 0.2185 0.4909
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                          0.904671
## (Intercept)
                2.463772
                                     2.72 0.00801 **
## rel hum -0.064501 0.026104 -2.47 0.01572 *
## I(rel_hum^2) 0.000679 0.000180 3.76 0.00033 ***
## temperature -0.009712 0.005176
                                     -1.88 0.06444 .
## ---
```

Réponse à la question 3

Réponse à la question 4 - résumé

summary(m2tot)

```
##
## Call:
## lm(formula = log10_surv_time ~ rel_hum + I(rel_hum^2), data = dtot)
##
## Residuals:
##
      Min 10 Median 30
                                    Max
## -1.0808 -0.2374 0.0636 0.2313 0.6077
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.29e-01 1.09e-01 8.55 1.8e-13 ***
## rel hum -2.47e-02 4.87e-03 -5.08 1.8e-06 ***
## I(rel_hum^2) 4.09e-04 4.58e-05 8.92 2.9e-14 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.34 on 97 degrees of freedom
## Multiple R-squared: 0.767, Adjusted R-squared: 0.762
## F-statistic: 159 on 2 and 97 DF, p-value: <2e-16
```

Réponse à la question 4 - résidus

Réponse à la question 5 - code R

```
# Tracés des points observés
plot(log10 surv time ~ rel hum,
     data = dtot, pch = 16
# Création d'un jeu de données avec 50 valeurs
# de rel hum entre 10 et 95
data4pred <- data.frame(rel_hum =</pre>
                seq(10, 95, length.out = 50))
# Utilisation du modèle en prédiction sur
# ce jeu de données
pred <- predict(mm2tot, newdata = data4pred)</pre>
# Tracé des points prédits en les reliant par
# des segments de droite
lines(pred ~ data4pred$rel hum, lwd = 2)
```

Réponse à la question 5 - le graphe

Un minimum de temps de survie entre 20% et 40% d'humidité est-il réellement attendu d'un point de vue biologique ?

Prise en compte de variable(s) explicative(s) qualitative(s)

Le modèle d'ANOVA1

Certaines variables explicatives peuvent être qualitatives (par exemple le sexe) ou peuvent être transformées en une variable qualitative pour faire face à la violation de la condition de linéarité. Les variables explicatives qualitatives sont appelées aussi des facteurs.

Imaginons que nous voulions modéliser l'**impact de l'humidité relative** sur le temps de survie (en log_{10}) en la considérant **comme un facteur à 5 modalités (= conditions testées)**, en négligeant l'impact potentiel de la température.

```
# Definition of the qualitative variable
dtot$rel_humF <- as.factor(dtot$rel_hum)
levels(dtot$rel_humF)</pre>
```

```
## [1] "10" "50" "70" "85" "95"
```

Représentation classique des données en diagrammes en boîte

Formalisation du modèle d'ANOVA1

- ► Formalisation classique: $Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$ avec $\epsilon_{ij} \sim N(0, \sigma)$ et $\sum \alpha_i = 0$
- Formalisation utilisant p-1 variables muettes X_1 à X_{p-1} codant pour l'appartenance de chaque observation aux p groupes à l'exception du groupe de référence (ici groupe \mathbf{p}): $Y_k = \beta_0 + \beta_1 X_{1,k} + \cdots + \beta_{p-1} X_{p-1,k} + \epsilon_k$ avec $\epsilon_k \sim N(0,\sigma)$
- ► lien entre les deux formalisations :
 - moyenne du groupe $1 = \mu + \alpha_1 = \beta_0 + \beta_1$
 - moyenne du groupe $2 = \mu + \alpha_2 = \beta_0 + \beta_2$
 - ▶ moyenne du groupe i = $\mu + \alpha_i = \beta_0 + \beta_i$
 - moyenne du groupe p = $\mu + \alpha_p = \beta_0$

Ainsi, chaque coefficient du modèle linéaire correspond à la différence entre la moyenne de la classe correspondante et la moyenne de la classe de référence.

Ajustement du modèle linéaire

```
(manova1 <- lm(log10_surv_time ~ rel_humF, data = dtot))

##

## Call:
## lm(formula = log10_surv_time ~ rel_humF, data = dtot)
##

## Coefficients:
## (Intercept) rel_humF50 rel_humF70 rel_humF85 rel_humF95
## 0.7084 0.0783 0.4359 1.0107 1.6188</pre>
```

On voit ici, d'après l'appellation des coefficients, que le groupe de référence choisi est le groupe à 10% d'humidité relative (il prend la première modalité du facteur comme modalité de référence).

```
levels(dtot$rel_humF)
## [1] "10" "50" "70" "85" "95"
```

Tableau d'ANOVA1

anova(manova1)

Comme attendu dans cet exemple, il montre un effet significatif de l'humidité relative sur le temps de survie (en log_{10})

Alternative pour tester l'effet du facteur

Alternative qui fonctionne même avec les modèles plus complexes pour tester l'impact du facteur (alors que l'utilisation de la fonction anova() sur un modèle plus complexe est très délicate)

```
drop1(manova1, test = "F")
## Single term deletions
##
## Model:
## log10 surv time ~ rel humF
           Df Sum of Sq RSS AIC F value Pr(>F)
##
## <none>
                       10.9 - 211.4
## rel humF 4 37.2 48.2 -71.1 81 <2e-16 ***
## ---
                  0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' '
## Signif. codes:
```

Vérification des conditions d'utilisation

```
par(mar = c(4, 4, 2, 2), mfrow = c(1,2))
plot(residuals(manova1) ~ fitted(manova1))
qqnorm(residuals(manova1))
```


Interprétation des coefficients

```
# Observed means
tapply(dtot$log10_surv_time, dtot$rel_humF, mean)

## 10 50 70 85 95

## 0.708 0.787 1.144 1.719 2.327

# estimated coefficients
coef(manova1)
```

```
## (Intercept) rel_humF50 rel_humF70 rel_humF85 rel_humF95
## 0.7084 0.0783 0.4359 1.0107 1.6188
```

Chacun correspond à la différence entre la moyenne de la classe correspondante et la moyenne de la classe de référence (premier niveau du facteur, par défaut avec classement alphabétique des niveaux).

Coefficients et intervalles de confiance à 95%

(ou estimations ponctuelles et par intervalle)

rel humF95

1.6188 1.406

1.832

"Forest plot" pour visualiser les estimations ponctuelles et par intervalle

```
library(sjPlot)
plot_model(manova1, type = "est")
```


Un modèle à deux facteurs (fixes et croisés)

Imaginons maintenant que nous voulions ajouter dans ce modèle l'impact de la température, également transformée en une variable qualitative à deux modalités, froid $(<15^{\circ}C)$ ou chaud.

```
## temperatureF

## rel_humF cold hot

## 10 10 10

## 50 10 10

## 70 10 10

## 85 10 10

## 95 10 10
```

Un graphe d'interaction utilisant ggplot2

Un graphe d'interaction utilisant graphics

Une seconde version du graphe d'interaction utilisant graphics

Modèles sans ou avec interaction entre les facteurs A et B

Deux facteurs A et B peuvent chacun avoir un effet sur la variable dépendante sans interaction. Les effets sont alors dits additifs.

L'effet de A ne dépend pas de la modalité de B, et *vice versa*.

$$Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij} \text{ avec } \epsilon_{ij} \sim N(0, \sigma)$$

Deux facteurs peuvent interagir. Le **modèle n'est plus** additif. Il incorpore des termes d'interaction γ_{ij} .

$$Y_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ij}$$
 avec $\epsilon_{ij} \sim N(0, \sigma)$

Le choix entre les deux modèles doit être guidé par les connaissances biologiques *a priori* et l'observation des données.

Ajustement du modèle sans interaction

0.7771

1.6188

rel_humF95 temperatureFhot

##

##

##

```
##
## Call:
## lm(formula = log10_surv_time ~ rel_humF + temperatureF, data = dtot)
##
## Coefficients:
## (Intercept) rel humF50 rel humF70 rel humF85
```

0.4359

1.0107

(manova2 <- lm(log10_surv_time ~ rel_humF + temperatureF,</pre>

Ex. de la moyenne prédite à 70% d'humidité et à température élevée : 0.777 + 0.436 - 0.137

0.0783

-0.1373

Interprétation assez simple des coefficients

plot_model(manova2)

Ajustement du modèle avec interaction

```
##
## Call:
## lm(formula = log10_surv_time ~ rel_humF + temperatureF + rel_humF:temperatur
##
       data = dtot)
##
## Coefficients:
##
                   (Intercept)
                                                rel humF50
                      0.838713
                                                   0.089170
##
##
                   rel humF70
                                                rel humF85
                      0.435406
                                                   0.824212
##
                   rel humF95
                                           temperatureFhot
##
##
                      1,486764
                                                  -0.260552
## rel_humF50:temperatureFhot
                                rel_humF70:temperatureFhot
##
                    -0.021829
                                                   0.000976
## rel humF85:temperatureFhot rel humF95:temperatureFhot
##
                      0.373032
                                                   0.264005
```

Ex. de la moyenne prédite à 70% d'humidité et à température élevée : 0.839 + 0.435

-0.261 + 0.001

Interprétation plus complexe des coefficients

plot_model(manova2int)

Comparaison des modèles avec et sans interaction

Ces deux modèles emboîtés (l'un étant une simplification de l'autre) peuvent être comparés à l'aide d'un test F.

```
## Analysis of Variance Table
##
## Model 1: log10_surv_time ~ rel_humF + temperatureF + rel_humF:temperatureF
## Model 2: log10_surv_time ~ rel_humF + temperatureF
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 90 9.78
## 2 94 10.45 -4 -0.667 1.53 0.2
```

Dans cet exemple, l'interaction n'est pas significative (mais ce n'est pas une raison qui à elle seule justifie le choix du modèle le plus simple). Prise en compte de variable(s) explicative(s) qualitative(s) et quantitatives(s)

Un modèle linéaire avec des variables explicatives qualitatives et quantitatives

Imaginons que nous voulions modéliser l'impact sur le temps de survie (en log_{10})

- de l'humidité relative considérée comme une variable quantitative
- ▶ et de la température comme variable qualitative à 2 modalités, froid (< 15°C) ou chaud,</p>

en excluant les données de la condition la plus arride.

Représentation graphique des données

Modèles avec ou sans interaction entre le facteur A et la covariable X

Le modèle sans interaction

La pente β ne dépend pas de la modalité de A.

$$Y_{ij} = \mu + \alpha_i + \beta \times X_{ij} + \epsilon_{ij}$$
 avec $\epsilon_{ij} \sim N(0, \sigma)$

► Le modèle avec interaction

Les pentes β_i sont différentes

$$Y_{ij} = \mu + \alpha_i + \beta_i \times X_{ij} + \epsilon_{ij}$$
 avec $\epsilon_{ij} \sim N(0, \sigma)$

Le choix entre les deux modèles doit être guidé par les connaissances biologiques *a priori* et l'observation des données.

Ajustement du modèle sans interaction

```
##
## Call:
## lm(formula = log10_surv_time ~ rel_hum + temperatureF, data = dhum)
##
## Coefficients:
## (Intercept) rel_hum temperatureFhot
## -0.9533 0.0333 -0.1065
```

Notez que l'ordonnée à l'origine n'a pas de sens biologique dans ce cas (0 n'est pas dans l'intervalle des valeurs d'humidité relative observées).

Ex. de la moyenne prédite à 65% d'humidité et température chaude :

```
-0.9533 + 0.0333 \times 65 - 0.1065.
```

Interprétation difficile des coefficients pris tels quels

plot_model(mancova)

Normalisation des coefficients de régression pour faciliter leur interprétation

Les coefficients de régression β (ou β_i) dépendent de l'ordre de grandeur de la covariable X. Pour les rendre comparables entre eux et comparables aux coefficients correspondant aux facteurs, il est recommandé de les diviser par $2 \times SD_X$ avec SD_X l'écart-type des valeurs de X.

cf. Gelman A (2008) "Scaling regression inputs by dividing by two standard deviations." Statistics in Medicine 27: 2865-2873. pour une justification théorique.

Cela peut être facilement fait en utilisant l'argument type de la fonction plot_model() comme ci-dessous.

```
plot_model(mancova, type = "std2")
```

Interprétation des coefficients standardisés du modèle sans interaction

```
plot_model(mancova, type = "std2")
```


Ajustement du modèle avec interaction

```
(mancovaint <- lm(log10_surv_time ~ rel_hum + temperatureF +</pre>
                    rel hum:temperatureF, data = dhum))
##
## Call:
## lm(formula = log10 surv time ~ rel hum + temperatureF + rel hum:temperatureF
##
       data = dhum)
##
## Coefficients:
                (Intercept)
                                              rel hum
##
                                                                temperatureFhot
                   -0.64182
                                              0.02919
                                                                       -0.72941
##
## rel hum:temperatureFhot
##
                    0.00831
```

Et pour la moyenne prédite à 65% d'humidité à température élevée ?

 $-0.6418 + 0.0292 \times 65$.

Ex. de la moyenne prédite à 65% d'humidité et à température basse :

Interprétation des coefficients standardisés du modèle avec interaction

plot_model(mancovaint, type = "std2")

A **votre tour** de manipuler variables qualitatives et quantitatives

- 1. Examinez les résidus pour chacun des deux modèle précédents (avec et sans interaction).
- 2. Prédire le temps de survie d'une tique exposée à une humidité de 65% et à une température comprise entre 15° C et 25° C avec son intervalle de confiance à 95%, en utilisant la fonction predict() avec chacun des deux modèles.
- Tracer chaque modèle sur les données à l'aide de la fonction abline().

Réponse à la question 1 - modèle sans interaction

La principale tendance observée est celle due à la non-linéarité de la relation entre le résultat et l'humidité relative.

Réponse à la question 1 - modèle avec interaction

Comme précédemment, la principale tendance observée est celle due à la non-linéarité de la relation entre le résultat et l'humidité relative.

Réponse à la question 2

```
# Definition of the new data frame for prediction
data4pred <- data.frame(rel_hum = 65, temperatureF = "hot")</pre>
# Prediction using the model without interaction
predict(mancova, newdata = data4pred, interval = "prediction")
## fit lwr upr
## 1 1.11 0.33 1.89
# Prediction using the model with interaction
predict(mancovaint, newdata = data4pred, interval = "prediction")
## fit lwr upr
## 1 1.07 0.295 1.84
```

Réponse à la question 3 - modèle sans interaction

Réponse à la question 3 - modèle avec interaction

Extensions du modèle linéaire gaussien

Extensions du modèle linéaire gaussien

Vous avez maintenant toutes les pièces de lego pour construire des modèles linéaires plus complexes.

Et vous avez les bases pour comprendre les différentes extensions du modèle linéaire.

Régression non linéaire

Si le modèle est une fonction non linéaire des paramètres.

Dans notre exemple, si vous souhaitez modéliser la relation non linéaire entre le temps de survie (en logarithme) et l'humidité relative à l'aide d'un modèle plus réaliste que le polynôme du second ordre.

Regression logistique

La **régression logistique** (cas particulier du modèle linéaire généralisé - GLM) est utilisée lorsque le résultat n'est plus continu, mais qu'il s'agit d'un **résultat binaire**.

Dans notre exemple, si vous prenez comme variable à expliquer la survie ou non à un moment spécifique.

La régression logistique est très souvent utilisée pour **identifier les facteurs de risque**, par par exemple avec comme variable à expliquer la présence ou non d'une maladie dans les élevages.

Modèles mixtes

Les **modèles mixtes** sont des modèles qui prennent en compte les **effets aléatoires** des facteurs aléatoires (\neq effets déterministes des facteurs fixes),

tels que l'effet *exploitation*, lorsqu'il y a plus d'une observation par exploitation, ou l'effet *animal*, lorsqu'il y a plus d'une observation par animal, ...,

Modèles de survie

Notre exemple était très spécifique puisque le temps de survie était connu pour tous les individus.

Plus classiquement, les données de survie incluent des données censurées (par exemple, pour les individus qui ne sont pas morts à la fin de l'étude, leur temps de survie est censuré à droite : on sait seulement qu'il est supérieur à une valeur).

De plus, la distribution des temps de survie n'est pas nécessairement log-normale (hypothèse que nous avons faire sur notre exemple fil rouge).

Ces problèmes peuvent être pris en compte en utilisant une approche semi-paramétrique (modèle de Cox) ou une approche paramétrique (voir Wongnak *et al.* 2022 sur notre exemple).

Wongnak, P., et al. (2022). A hierarchical Bayesian approach for incorporating expert opinions into parametric survival models: a case study of female Ixodes ricinus ticks exposed to various temperature and relative humidity conditions. *Ecological Modelling*, 464, 109821.

Perspectives

Dans les présentations suivantes nous aborderons ou approfondirons les points suivants :

- la stratégie de construction des modèles (notamment quelles variables indépendantes incorporer),
- la compréhension de leurs coefficients et leur présentation dans des publications scientifiques,
- quelques limites de l'approche