Zero-Knowledge Proofs - II

CS 601.642/442 Modern Cryptography

Fall 2019

Theorem

<u>Theorem</u>

If one-way permutations exist, then every language in **NP** has a zero-knowledge interactive proof.

• The assumption can in fact be relaxed to just one-way functions

<u>Theorem</u>

- The assumption can in fact be relaxed to just one-way functions
- <u>Think</u>: How to prove the theorem?

Theorem

- The assumption can in fact be relaxed to just one-way functions
- <u>Think</u>: How to prove the theorem?
- Construct ZK proof for every **NP** language?

Theorem

- The assumption can in fact be relaxed to just one-way functions
- <u>Think</u>: How to prove the theorem?
- Construct ZK proof for every **NP** language?
- Not efficient!

Proof Strategy:

Step 1: Construct a ZK proof for an **NP**-complete language. We will consider *Graph 3-Coloring*: language of all graphs whose vertices can be colored using only three colors s.t. no two connected vertices have the same color

- Step 1: Construct a ZK proof for an **NP**-complete language. We will consider *Graph 3-Coloring*: language of all graphs whose vertices can be colored using only three colors s.t. no two connected vertices have the same color
- Step 2: To construct ZK proof for any **NP** language L, do the following:

- Step 1: Construct a ZK proof for an **NP**-complete language. We will consider *Graph 3-Coloring*: language of all graphs whose vertices can be colored using only three colors s.t. no two connected vertices have the same color
- Step 2: To construct ZK proof for any **NP** language L, do the following:
 - Given instance x and witness w, P and V reduce x into an instance x' of Graph 3-coloring using Cook's (deterministic) reduction

- Step 1: Construct a ZK proof for an **NP**-complete language. We will consider *Graph 3-Coloring*: language of all graphs whose vertices can be colored using only three colors s.t. no two connected vertices have the same color
- Step 2: To construct ZK proof for any **NP** language L, do the following:
 - Given instance x and witness w, P and V reduce x into an instance x' of Graph 3-coloring using Cook's (deterministic) reduction
 - P also applies the reduction to witness w to obtain witness w' for x'

- Step 1: Construct a ZK proof for an **NP**-complete language. We will consider *Graph 3-Coloring*: language of all graphs whose vertices can be colored using only three colors s.t. no two connected vertices have the same color
- Step 2: To construct ZK proof for any **NP** language L, do the following:
 - Given instance x and witness w, P and V reduce x into an instance x' of Graph 3-coloring using Cook's (deterministic) reduction
 - P also applies the reduction to witness w to obtain witness w' for x'
 - Now, P and V can run the ZK proof from Step 1 on common input x'

• Consider graph G = (V, E). Let C be a 3-coloring of V given to P

- Consider graph G = (V, E). Let C be a 3-coloring of V given to P
- P picks a random permutation π over colors $\{1, 2, 3\}$ and colors G according to $\pi(C)$. It hides each vertex in V inside a locked box

- Consider graph G = (V, E). Let C be a 3-coloring of V given to P
- P picks a random permutation π over colors $\{1,2,3\}$ and colors G according to $\pi(C)$. It hides each vertex in V inside a locked box
- V picks a random edge (u, v) in E

- Consider graph G = (V, E). Let C be a 3-coloring of V given to P
- P picks a random permutation π over colors $\{1, 2, 3\}$ and colors G according to $\pi(C)$. It hides each vertex in V inside a locked box
- V picks a random edge (u, v) in E
- P opens the boxes corresponding to u, v. V accepts if u and v have different colors, and rejects otherwise

- Consider graph G = (V, E). Let C be a 3-coloring of V given to P
- P picks a random permutation π over colors $\{1, 2, 3\}$ and colors G according to $\pi(C)$. It hides each vertex in V inside a locked box
- V picks a random edge (u, v) in E
- P opens the boxes corresponding to u, v. V accepts if u and v have different colors, and rejects otherwise
- The above process is repeated n|E| times

- Consider graph G = (V, E). Let C be a 3-coloring of V given to P
- P picks a random permutation π over colors $\{1, 2, 3\}$ and colors G according to $\pi(C)$. It hides each vertex in V inside a locked box
- V picks a random edge (u, v) in E
- P opens the boxes corresponding to u, v. V accepts if u and v have different colors, and rejects otherwise
- The above process is repeated n|E| times
- Intuition for Soundness: In each iteration, cheating prover is caught with probability $\frac{1}{|E|}$

- Consider graph G = (V, E). Let C be a 3-coloring of V given to P
- P picks a random permutation π over colors $\{1, 2, 3\}$ and colors G according to $\pi(C)$. It hides each vertex in V inside a locked box
- V picks a random edge (u, v) in E
- P opens the boxes corresponding to u, v. V accepts if u and v have different colors, and rejects otherwise
- The above process is repeated n|E| times
- Intuition for Soundness: In each iteration, cheating prover is caught with probability $\frac{1}{|E|}$
- Intuition for ZK: In each iteration, V only sees something it knew before two random (but different) colors

• To "digitze" the above proof, we need to implement locked boxes

- To "digitze" the above proof, we need to implement locked boxes
- Need two properties from digital locked boxes:

- To "digitze" the above proof, we need to implement locked boxes
- Need two properties from digital locked boxes:
 - ullet Hiding: V should not be able to see the content inside a locked box

- To "digitze" the above proof, we need to implement locked boxes
- Need two properties from digital locked boxes:
 - Hiding: V should not be able to see the content inside a locked box
 - **Binding**: *P* should not be able to modify the content inside a box once its locked

• Digital analogue of locked boxes

- Digital analogue of locked boxes
- Two phases:

- Digital analogue of locked boxes
- Two phases:

Commit phase: Sender locks a value v inside a box

- Digital analogue of locked boxes
- Two phases:

Commit phase: Sender locks a value v inside a box Open phase: Sender unlocks the box and reveals v

- Digital analogue of locked boxes
- Two phases:

Commit phase: Sender locks a value v inside a box Open phase: Sender unlocks the box and reveals v

• Can be implemented using interactive protocols, but we will consider non-interactive case. Both commit and reveal phases will consist of single messages

Definition (Commitment)

A randomized polynomial-time algorithm Com is called a *commitment* scheme for n-bit strings if it satisfies the following properties:

• **Binding:** For all $v_0, v_1 \in \{0, 1\}^n$ and $r_0, r_1 \in \{0, 1\}^n$, it holds that $Com(v_0; r_0) \neq Com(v_1; r_1)$

Definition (Commitment)

A randomized polynomial-time algorithm Com is called a commitment scheme for n-bit strings if it satisfies the following properties:

- **Binding:** For all $v_0, v_1 \in \{0, 1\}^n$ and $r_0, r_1 \in \{0, 1\}^n$, it holds that $Com(v_0; r_0) \neq Com(v_1; r_1)$
- **Hiding:** For every non-uniform PPT distinguisher D, there exists a negligible function $\nu(\cdot)$ s.t. for every $v_0, v_1 \in \{0, 1\}^n$, D distinguishes between the following distributions with probability at most $\nu(n)$

Definition (Commitment)

A randomized polynomial-time algorithm Com is called a commitment scheme for n-bit strings if it satisfies the following properties:

- **Binding:** For all $v_0, v_1 \in \{0, 1\}^n$ and $r_0, r_1 \in \{0, 1\}^n$, it holds that $Com(v_0; r_0) \neq Com(v_1; r_1)$
- **Hiding:** For every non-uniform PPT distinguisher D, there exists a negligible function $\nu(\cdot)$ s.t. for every $v_0, v_1 \in \{0, 1\}^n$, D distinguishes between the following distributions with probability at most $\nu(n)$

Definition (Commitment)

A randomized polynomial-time algorithm Com is called a *commitment* scheme for n-bit strings if it satisfies the following properties:

- **Binding:** For all $v_0, v_1 \in \{0, 1\}^n$ and $r_0, r_1 \in \{0, 1\}^n$, it holds that $Com(v_0; r_0) \neq Com(v_1; r_1)$
- **Hiding:** For every non-uniform PPT distinguisher D, there exists a negligible function $\nu(\cdot)$ s.t. for every $v_0, v_1 \in \{0, 1\}^n$, D distinguishes between the following distributions with probability at most $\nu(n)$

 \bullet The previous definition only guarantees hiding for one commitment

- The previous definition only guarantees hiding for one commitment
- Multi-value Hiding: Just like encryption, we can define multi-value hiding property for commitment schemes

- The previous definition only guarantees hiding for one commitment
- Multi-value Hiding: Just like encryption, we can define multi-value hiding property for commitment schemes
- Using hybrid argument (as for public-key encryption), we can prove that any commitment scheme satisfies multi-value hiding

- The previous definition only guarantees hiding for one commitment
- Multi-value Hiding: Just like encryption, we can define multi-value hiding property for commitment schemes
- Using hybrid argument (as for public-key encryption), we can prove that any commitment scheme satisfies multi-value hiding
- Corollary: One-bit commitment implies string commitment

Construction: Let f be a OWP, h be the hard core predicate for f

Construction: Let f be a OWP, h be the hard core predicate for f

Commit phase: Sender computes $Com(b; r) = f(r), b \oplus h(r)$. Let C denote the commitment.

Construction: Let f be a OWP, h be the hard core predicate for f

Commit phase: Sender computes $Com(b; r) = f(r), b \oplus h(r)$. Let C denote the commitment.

Open phase: Sender reveals (b,r). Receiver accepts if $C = (f(r), b \oplus h(r))$, and rejects otherwise

Construction: Let f be a OWP, h be the hard core predicate for f

Commit phase: Sender computes $Com(b; r) = f(r), b \oplus h(r)$. Let C denote the commitment.

Open phase: Sender reveals (b,r). Receiver accepts if $C = (f(r), b \oplus h(r))$, and rejects otherwise

Security:

Construction: Let f be a OWP, h be the hard core predicate for f

Commit phase: Sender computes $Com(b; r) = f(r), b \oplus h(r)$. Let C denote the commitment.

Open phase: Sender reveals (b,r). Receiver accepts if $C = (f(r), b \oplus h(r))$, and rejects otherwise

Security:

 \bullet Binding follows from construction since f is a permutation

Construction: Let f be a OWP, h be the hard core predicate for f

Commit phase: Sender computes $Com(b; r) = f(r), b \oplus h(r)$. Let C denote the commitment.

Open phase: Sender reveals (b,r). Receiver accepts if $C = (f(r), b \oplus h(r))$, and rejects otherwise

Security:

- ullet Binding follows from construction since f is a permutation
- Hiding follows in the same manner as IND-CPA security of public-key encryption scheme constructed from trapdoor permutations

ZK Proof for Graph 3-Coloring

Common Input: G = (V, E), where |V| = n

P's witness: Colors $color_1, \ldots, color_n \in \{1, 2, 3\}$

Protocol (P, V): Repeat the following procedure n|E| times using fresh randomness

- $P \to V$: P chooses a random permutation π over $\{1, 2, 3\}$. For every $i \in [n]$, it computes $C_i = \mathsf{Com}(\widetilde{\mathsf{color}}_i)$ where $\widetilde{\mathsf{color}}_i = \pi(\mathsf{color}_i)$. It sends (C_1, \ldots, C_n) to V
- $V \to P$: V chooses a random edge $(i, j) \in E$ and sends it to P
- $P \to V$: Prover opens C_i and C_j to reveal $(\mathsf{color}_i, \mathsf{color}_j)$
 - V: If the openings of C_i , C_j are valid and $\operatorname{color}_i \neq \operatorname{color}_j$, then V accepts the proof. Otherwise, it rejects.

• If G is not 3-colorable, then for any coloring $\operatorname{color}_1, \ldots, \operatorname{color}_n$, there exists at least one edge which has the same colors on both endpoints

- If G is not 3-colorable, then for any coloring $\operatorname{color}_1, \ldots, \operatorname{color}_n$, there exists at least one edge which has the same colors on both endpoints
- From the binding property of Com, it follows that C_1, \ldots, C_n have unique openings $\widetilde{\mathsf{color}}_1, \ldots, \widetilde{\mathsf{color}}_n$

- If G is not 3-colorable, then for any coloring $\operatorname{color}_1, \ldots, \operatorname{color}_n$, there exists at least one edge which has the same colors on both endpoints
- From the binding property of Com, it follows that C_1, \ldots, C_n have unique openings $\widehat{\mathsf{color}}_1, \ldots, \widehat{\mathsf{color}}_n$
- Combining the above, let $(i^*, j^*) \in E$ be s.t. $\mathsf{color}_{i^*} = \mathsf{color}_{j^*}$

- If G is not 3-colorable, then for any coloring $\operatorname{color}_1, \ldots, \operatorname{color}_n$, there exists at least one edge which has the same colors on both endpoints
- From the binding property of Com, it follows that C_1, \ldots, C_n have unique openings $\widetilde{\mathsf{color}}_1, \ldots, \widetilde{\mathsf{color}}_n$
- Combining the above, let $(i^*, j^*) \in E$ be s.t. $\mathsf{color}_{i^*} = \mathsf{color}_{j^*}$
- Then, with probability $\frac{1}{|E|}$, V chooses $i = i^*, j = j^*$ and catches P

- If G is not 3-colorable, then for any coloring $\operatorname{color}_1, \ldots, \operatorname{color}_n$, there exists at least one edge which has the same colors on both endpoints
- From the binding property of Com, it follows that C_1, \ldots, C_n have unique openings $\widehat{\mathsf{color}}_1, \ldots, \widehat{\mathsf{color}}_n$
- Combining the above, let $(i^*, j^*) \in E$ be s.t. $\mathsf{color}_{i^*} = \mathsf{color}_{j^*}$
- Then, with probability $\frac{1}{|E|}$, V chooses $i=i^*, j=j^*$ and catches P
- In n|E| independent repetitions, P successfully cheats in all repetitions with probability at most

$$\left(1 - \frac{1}{|E|}\right)^{n|E|} \approx e^{-n}$$

Proving Zero Knowledge: Strategy

- Will prove that a single iteration of (P, V) is zero knowledge
- For the full protocol, use the following (read proof online):

Theorem

Sequential repetition of any ZK protocol is also ZK

- To prove that a single iteration of (P, V) is ZK, we need to do the following:
 - Construct a Simulator S for every PPT V^*
 - ullet Prove that expected runtime of S is polynomial
 - Prove that the output distribution of S is correct (i.e., indistinguishable from real execution)
- Intuition for proving ZK for a single iteration: V only sees two random colors. Hiding property of Com guarantees that everything else remains hidden from V.

Simulator S(x = G, z):

• Choose a random edge $(i',j') \stackrel{\$}{\leftarrow} E$ and pick random colors $\mathsf{color}'_{i'}, \mathsf{color}'_{j'} \stackrel{\$}{\leftarrow} \{1,2,3\} \text{ s.t. } \mathsf{color}'_{i'} \neq \mathsf{color}'_{j'}.$ For every other $k \in [n] \setminus \{i',j'\}$, set $\mathsf{color}'_k = 1$

- Choose a random edge $(i',j') \stackrel{\$}{\leftarrow} E$ and pick random colors $\operatorname{color}'_{i'}, \operatorname{color}'_{j'} \stackrel{\$}{\leftarrow} \{1,2,3\} \text{ s.t. } \operatorname{color}'_{i'} \neq \operatorname{color}'_{j'}.$ For every other $k \in [n] \setminus \{i',j'\}$, set $\operatorname{color}'_k = 1$
- For every $\ell \in [n]$, compute $C_{\ell} = \mathsf{Com}(\mathsf{color}'_{\ell})$

- Choose a random edge $(i',j') \stackrel{\$}{\leftarrow} E$ and pick random colors $\operatorname{color}'_{i'}, \operatorname{color}'_{j'} \stackrel{\$}{\leftarrow} \{1,2,3\} \text{ s.t. } \operatorname{color}'_{i'} \neq \operatorname{color}'_{j'}.$ For every other $k \in [n] \setminus \{i',j'\}$, set $\operatorname{color}'_k = 1$
- For every $\ell \in [n]$, compute $C_{\ell} = \mathsf{Com}(\mathsf{color}'_{\ell})$
- Emulate execution of $V^*(x,z)$ by feeding it (C_1,\ldots,C_n) . Let (i,j) denote its response

- Choose a random edge $(i',j') \stackrel{\$}{\leftarrow} E$ and pick random colors $\operatorname{color}'_{i'}, \operatorname{color}'_{j'} \stackrel{\$}{\leftarrow} \{1,2,3\} \text{ s.t. } \operatorname{color}'_{i'} \neq \operatorname{color}'_{j'}.$ For every other $k \in [n] \setminus \{i',j'\}$, set $\operatorname{color}'_k = 1$
- For every $\ell \in [n]$, compute $C_{\ell} = \mathsf{Com}(\mathsf{color}'_{\ell})$
- Emulate execution of $V^*(x,z)$ by feeding it (C_1,\ldots,C_n) . Let (i,j) denote its response
- If (i, j) = (i', j'), then feed the openings of C_i, C_j to V^* and output its view. Otherwise, restart the above procedure, at most n|E| times

- Choose a random edge $(i',j') \stackrel{\$}{\leftarrow} E$ and pick random colors $\operatorname{color}'_{i'}, \operatorname{color}'_{j'} \stackrel{\$}{\leftarrow} \{1,2,3\} \text{ s.t. } \operatorname{color}'_{i'} \neq \operatorname{color}'_{j'}.$ For every other $k \in [n] \setminus \{i',j'\}$, set $\operatorname{color}'_k = 1$
- For every $\ell \in [n]$, compute $C_{\ell} = \mathsf{Com}(\mathsf{color}'_{\ell})$
- Emulate execution of $V^*(x,z)$ by feeding it (C_1,\ldots,C_n) . Let (i,j) denote its response
- If (i, j) = (i', j'), then feed the openings of C_i, C_j to V^* and output its view. Otherwise, restart the above procedure, at most n|E| times
- If simulation has not succeeded after n|E| attempts, then output fail

Correctness of Simulation

Hybrid Experiments:

• H_0 : Real execution

Correctness of Simulation

Hybrid Experiments:

- H_0 : Real execution
- H_1 : Hybrid simulator S' that acts like the real prover (using witness $\mathsf{color}_1, \ldots, \mathsf{color}_n$), except that it also chooses $(i', j') \overset{\$}{\leftarrow} E$ at random and if $(i', j') \neq (i, j)$, then it outputs fail

Correctness of Simulation

Hybrid Experiments:

- H_0 : Real execution
- H_1 : Hybrid simulator S' that acts like the real prover (using witness $\mathsf{color}_1, \ldots, \mathsf{color}_n$), except that it also chooses $(i', j') \overset{\$}{\leftarrow} E$ at random and if $(i', j') \neq (i, j)$, then it outputs fail
- H_2 : Simulator S

Correctness of Simulation (contd.)

• $H_0 \approx H_1$: If S' does not output fail, then H_0 and H_1 are identical. Since (i,j) and (i',j') are independently chosen, S' fails with probability at most:

$$\left(1 - \frac{1}{|E|}\right)^{n|E|} \approx e^{-n}$$

Therefore, H_0 and H_1 are statistically indistinguishable

Correctness of Simulation (contd.)

• $H_0 \approx H_1$: If S' does not output fail, then H_0 and H_1 are identical. Since (i,j) and (i',j') are independently chosen, S' fails with probability at most:

$$\left(1 - \frac{1}{|E|}\right)^{n|E|} \approx e^{-n}$$

Therefore, H_0 and H_1 are statistically indistinguishable

• $H_1 \approx H_2$: The only difference between H_1 and H_2 is that for all $k \in [n] \setminus \{i', j'\}$, C_k is a commitment to $\pi(\mathsf{color}_k)$ in H_1 and a commitment to 1 in H_2 . Then, from the multi-value hiding property of Com , it follows that $H_1 \approx H_2$

• Zero-knowledge Proofs for Nuclear Disarmament [Glaser-Barak-Goldston'14]

- Zero-knowledge Proofs for Nuclear Disarmament [Glaser-Barak-Goldston'14]
- Non-black-box Simulation [Barak'01]

- Zero-knowledge Proofs for Nuclear Disarmament [Glaser-Barak-Goldston'14]
- Non-black-box Simulation [Barak'01]
- Concurrent Composition of Zero-Knowledge Proofs [Dwork-Naor-Sahai'98, Richardson-Kilian'99, Kilian-Petrank'01, Prabhakaran-Rosen-Sahai'02]

- Zero-knowledge Proofs for Nuclear Disarmament [Glaser-Barak-Goldston'14]
- Non-black-box Simulation [Barak'01]
- Concurrent Composition of Zero-Knowledge Proofs [Dwork-Naor-Sahai'98, Richardson-Kilian'99, Kilian-Petrank'01, Prabhakaran-Rosen-Sahai'02]
- Non-malleable Commitments and ZK Proofs [Dolev-Dwork-Naor'91]