層とコホモロジー

Hans

定義

- Sを Riemann 面とする.
- $p \in S$ について, \mathfrak{O}_p を, p の周りで正則な関数全体からなる (局所) 環とする. また, S の開集合 U について, U 上の正則関数全体からなる環を $\mathfrak{O}(U)$ とおく.
- $p \in S$ について、 \mathfrak{M}_p を、p の周りで定義された有理関数全体からなる体とする。 また、S の開集合 U について、U 上の有理関数全体からなる体を $\mathfrak{M}(U)$ とおく。

Mittag-Leffler 問題

 $\{p_n\}\subset S$ を, S の離散部分集合とする. 各々の p_i で, 指定された Laurent 主要部を持つ S 上の有理関数で, $S\setminus\{p_n\}$ では正則な関数 は存在するか?

Čech によるアプローチ

 $\underline{U}:=\{U_{\alpha}\}_{\alpha\in A}$ を S の開被覆で、 $\#(\{p_n\}\cap U_{\alpha})\leq 1$ が任意の α で成立しているものとする.この時, U_{α} 上では Mittag-Leffler 問題の局所的な解が取れる.ここで,その解を $\{f_{\alpha}\in\mathfrak{M}(U_{\alpha})\}$ とすると, $U_{\alpha\beta}:=U_{\alpha}\cap U_{\beta}$ 上の正則関数 $f_{\alpha\beta}$ を,

$$f_{\alpha\beta} = f_{\alpha} - f_{\beta}$$

と置くと, 任意の $\alpha, \beta, \gamma \in A$ について, $U_{\alpha\beta\gamma}$ 上でコサイクル条件

$$f_{\alpha\beta} + f_{\beta\gamma} + f_{\gamma\alpha} = 0$$

が成立する. ここで, 正則関数族 $\{g_{\alpha} \in \mathfrak{O}(U_{\alpha})\}$ で,

$$f_{\alpha\beta} = g_{\beta} - g_{\alpha}$$

なるものが見つかれば、 $\{f_{\alpha}+g_{\alpha}\}$ は大域的に "張り合い",それを f と置くと,これが題意を満たす関数になる.

問題: $\{f_{\alpha}+g_{\alpha}\}$ は大域的に張り合う,つまり, $f_{\alpha}+g_{\alpha}=f_{\beta}+g_{\beta}$ が $U_{\alpha\beta}$ 上で成立することを示せ.

Čech の理論から,

$$\{\{f_{\alpha\beta}\}\mid f_{\alpha\beta}+f_{\beta\gamma}+f_{\gamma\alpha}=0\}=Z^{1}(\underline{U},\mathfrak{O})$$

$$\{\{f_{\alpha\beta}\} \mid$$
ある $\{g_{\alpha} \in \mathfrak{O}(U_{\alpha})\}$ で $,f_{\alpha\beta} = g_{\beta} - g_{\alpha}\}$
 $= \delta C^{0}(\underline{U},\mathfrak{O}) = B^{1}(\underline{U},\mathfrak{O})$

となるので、一次 Čech コホモロジー

$$H^1(\underline{U},\mathfrak{O}):=rac{Z^1(\underline{U},\mathfrak{O})}{B^1(\underline{U},\mathfrak{O})}$$

を考えればいいことになる。

Čech コホモロジー

定義

 \mathfrak{F} を多様体 M 上の層とする. この時, $\underline{U} = \{U_{\alpha}\}_{{\alpha}\in A}$ を M の開被覆として,

$$C^{0}(\underline{U}, \mathfrak{F}) := \prod_{lpha} \mathfrak{F}(U_{lpha})$$
 $C^{1}(\underline{U}, \mathfrak{F}) := \prod_{lpha_0
eq lpha_1} \mathfrak{F}(U_{lpha_0 lpha_1})$
 \vdots
 $C^{p}(\underline{U}, \mathfrak{F}) := \prod_{\#I = p+1, \ I \subset A} \mathfrak{F}(U_I)$

とする. $C^p(\underline{U},\mathfrak{F})$ の元を p-コチェインという.

定義 (続き)

射

$$\delta: C^p(\underline{U},\mathfrak{F}) \to C^{p+1}(\underline{U},\mathfrak{F})$$

 $\epsilon, I = (\alpha_0, \alpha_1, \dots, \alpha_{p+1}), \sigma \in C^p(U, \mathfrak{F})$ に関して,

$$(\delta\sigma)_I = \sum_{j=0}^{p+1} (-1)^j \sigma_{I\setminus\{\alpha_j\}}\mid_{U_I}$$

で定義して, これをコバウンダリ作用素という. p-コチェインであり, さ らに ker δ の元となるものを ρ -コサイクルといい、 $\text{Im}\delta$ の元となるもの を p-コバウンダリという.

定義

p-コサイクル全体からなる Abel 群を, $Z^p(\underline{U},\mathfrak{F})$ と書き, p-コバウンダリ全体からなる Abel 群を $B^p(\underline{U},\mathfrak{F})$ と書く. この時, $\delta^2=0$ なので,

$$H^p(\underline{U},\mathfrak{F})=rac{Z^p(\underline{U},\mathfrak{F})}{B^p(\underline{U},\mathfrak{F})}$$

が定義できて、これを p次 Čech コホモロジー群という.

M の開被覆 U の細分 U' について, $U_{\alpha} \in U$ に対して, $\underline{U'}
ightarrow U'_eta\subset U_lpha$ なる eta を一つ対応づける写像を arphi と置くと, 制限写 像 $\rho_{U_{\alpha}}^{U_{\alpha}}$ を各 α に対応づけることで,

$$\rho_{\varphi}: C^p(\underline{U}, \mathfrak{F}) \to C^p(\underline{U}', \mathfrak{F})$$

が定義される. ここで, $\delta \circ \rho_{\varphi} = \rho_{\varphi} \circ \delta$ なので, ψ を今ひとつの上 のような写像とすると, $\sigma \in Z^p(\underline{U},\mathfrak{F})$ について, $\delta \circ \rho_{\varphi}(\sigma) = 0$ か つ $\delta \circ \rho_{v_{0}}(\sigma) = 0$ が成立する. 故に, φ によらない写像

$$\rho: H^p(\underline{U},\mathfrak{F}) \to H^p(\underline{U}',\mathfrak{F})$$

が定義される。よって、極限

$$\varinjlim_{\underline{U}} H^p(\underline{U}',\mathfrak{F})$$

趣味

を、 $H^p(M,\mathfrak{F})$ といい、M 上の p 次 Čech コホモロジー群という。

Leray の定理

上の定義は確かに well-defined であるものの、実用上は扱いにく い. ここで, ある \underline{U} で, $H^*(\underline{U},\mathfrak{F})=H^*(M,\mathfrak{F})$ が成り立っていて欲 しい.

定理: Leray の定理

M の被覆 $U = \{U_i\}_{i \in A}$ が、非輪状である、つまり、ある ρ が存在し て. 任意の q > 0, $I \subset A$, #I = p + 1 で.

$$H^{q}\left(U_{I},\mathfrak{F}\right)=0$$

が成立するならば, $H^*(\underline{U},\mathfrak{F})=H^*(M,\mathfrak{F})$ が成立する.

準備

Abel 群の層の完全列

$$0 \longrightarrow \mathfrak{F} \xrightarrow{\alpha} \mathfrak{G} \xrightarrow{\beta} \mathfrak{H} \longrightarrow 0$$

について、自然に、射

$$C^p(\underline{U},\mathfrak{F}) \stackrel{\alpha}{\longrightarrow} C^p(\underline{U},\mathfrak{G})$$

$$C^p(\underline{U},\mathfrak{G}) \xrightarrow{\beta} C^p(\underline{U},\mathfrak{H})$$

が誘導される. コバウンダリ δ と α , β は可換なので, さらに

$$H^p(\underline{U},\mathfrak{F}) \xrightarrow{\alpha^*} H^p(\underline{U},\mathfrak{G})$$

$$H^p(\underline{U},\mathfrak{G}) \xrightarrow{\beta^*} H^p(\underline{U},\mathfrak{H})$$

趣味

が誘導される.

 $\sigma \in C^p(\underline{U}, \mathfrak{H})$ で, $\delta \sigma = 0$ を満たすものをとってくる. この時, β の 全射性から、U のある細分 U' と、 σ の制限写像による分割 $\rho\sigma$ で、 ある $\tau \in C^p(U',\mathfrak{G})$ で, $\beta \tau = \rho \sigma$ なるものがとってこれる. さらに, $\beta\delta\tau = \delta\beta\tau = \delta\rho\sigma = \rho\delta\sigma = 0$ なので、 $0 \to \mathfrak{F} \to \mathfrak{G} \to \mathfrak{H} \to 0$ の完 全性から、 さらに細かい細分 U'' と、 $\mu \in C^{p+1}(U,\mathfrak{F})$ で、 $\alpha\mu = \rho\delta\tau$ を満たすものが唯一 (i.e. α が単射) 存在する. ここで, τ に自由度 があるが、異なる τ' をとってきた時でも、 $\beta(\tau - \tau') = 0$ から、ある $\kappa \in C^{p-1}(U,\mathfrak{H}), \ \delta\kappa = 0$ なるものが取れて、さらに細かい被覆 U'で見ると, β と δ の可換性から, ある $\lambda \in C^{p-1}(U',\mathfrak{G})$ で, $\beta\lambda = \kappa$ かつ $\delta\lambda = \rho(\tau - \tau')$ となるものが取れて, $\delta(\tau - \tau') = \delta^2\lambda = 0$ と なり、 μ は τ の選び方によらず決まることがわかった. よって、

$$\delta^*: H^p(M,\mathfrak{H}) \to H^{p+1}(M,\mathfrak{G})$$

が定義できた.

補題

Abel 群の層の完全列

$$0 \longrightarrow \mathfrak{F} \xrightarrow{\alpha} \mathfrak{G} \xrightarrow{\beta} \mathfrak{H} \longrightarrow 0$$

について,

$$0 \longrightarrow H^{0}(M, \mathfrak{F}) \xrightarrow{\alpha^{*}} H^{0}(M, \mathfrak{G}) \xrightarrow{\beta^{*}} H^{0}(M, \mathfrak{H})$$

$$\xrightarrow{\delta^{*}} \longrightarrow \cdots$$

$$\xrightarrow{\delta^{*}} H^{p}(M, \mathfrak{F}) \xrightarrow{\alpha^{*}} H^{p}(M, \mathfrak{G}) \xrightarrow{\beta^{*}} H^{p}(M, \mathfrak{H})$$

$$\delta^{*}$$

は完全列である.

ここで、U の任意の p-単体 $U = U_1$ について、

$$0 o \mathfrak{F}(U) o \mathfrak{G}(U) o \mathfrak{H}(U) o 0$$

が完全ならば、十分細かい開被覆 Uで、

$$C^p(\underline{U}, \mathfrak{F}) \xrightarrow{\alpha} C^p(\underline{U}, \mathfrak{G}) \xrightarrow{\beta} C^p(\underline{U}, \mathfrak{H})$$

が完全になるので、図式を追うことで、

$$H^p(\underline{U},\mathfrak{G}) \xrightarrow{\beta^*} H^p(\underline{U},\mathfrak{H}) \xrightarrow{\delta^*} H^{p+1}(\underline{U},\mathfrak{F})$$

が完全になることがわかる。

Mittag-Leffler 問題再び

問題に戻る. $\mathfrak{PP} := \mathfrak{M}/\mathfrak{Q}$ とする. この時, 完全列

$$0 \longrightarrow \mathfrak{O} \xrightarrow{\alpha} \mathfrak{M} \xrightarrow{\beta} \mathfrak{PP} \longrightarrow 0$$

を得る。この時、先の完全列の議論から、

$$H^0(S,\mathfrak{M}) \to H^0(S,\mathfrak{PP}) \to H^1(S,\mathfrak{O})$$

が完全になる. よって, Mittag-Leffler 問題について, 大域切断 $g \in \mathfrak{PP}(S) = H^0(S, \mathfrak{PP})$ が与えられた時に (これは, $g_{\alpha\beta}=-g_{\alpha}+g_{\beta}\in\mathfrak{O}(U_{\alpha\beta})$ となるので \mathfrak{PP} で見た時に, 0 にな る), $f \in H^0(S,\mathfrak{M})$ で, $\beta^* f = g$ となるものがあれば, 自動的に, $\delta^* g = (-f_{IJ} + f_{V})_{IJV} = 0$ となり, f が求める答えとなる.