Exercise 1 Complete the following table. Use **exact** values.

$\frac{x}{\frac{\pi}{}}$	$\frac{1}{3}$ 3π	$ \begin{array}{r} -1 \\ \hline 30 \\ -30\pi \end{array} $	$\frac{1}{300}$ 300π	$ \begin{array}{r} -1 \\ \hline 301 \\ -301\pi \end{array} $	$\frac{1}{1000}$ 1000π	$\frac{1}{1001}$ 1001π	$\frac{1}{50000}$ 50000π	$ \begin{array}{r} -1 \\ \hline 100004 \\ -100004\pi \end{array} $
$\frac{x}{\cos\left(\frac{\pi}{x}\right)}$	-1	1	1	-1	1	-1	1	1

Exercise 1.1 Based on the table above, make a conjecture about $\lim_{x\to 0} \cos\left(\frac{\pi}{x}\right)$. Does it exist? Explain.

Free Response: It seems like the limit does not exist. $\cos\left(\frac{\pi}{x}\right)$ doesn't seem to approach 1, -1, or any value in between even when x is very close to 0. It seems to oscillate in between.