(11)Publication number:

2000-111480

(43)Date f publication of application: 21.04.2000

(51)Int.Cl.

GO1N 21/78 C09K 11/06 G01N 33/533 C07C311/19 C07C311/49 CO7D2O7/416 CO7F 5/00

(21)Application number: 10-284035

(71)Applicant:

MATSUMOTO KAZUKO

(22) Date of filing:

06.10.1998

(72)Inventor:

MATSUMOTO KAZUKO

EN HIROTOSHI

(54) NEW LABELLING REAGENT

(57) Abstract:

PROBLEM TO BE SOLVED: To generate a stable complex and at the same time achieve a fluorescent labeling method by utilizing the complex having a long fluorescent life and intense fluorescence by forming β-diketone structure shown by a specific formula for forming a rare earth ion and a complex in a molecule and a structure for containing a bonding group with a substance to be labeled and a hydrophilic group.

SOLUTION: A reagent is composed by containing β-diketone structure that is shown by formula (in which, R2 and R3 indicate r spectively β-diketone group that is bonded with the ortho or m ta position of benzene ring) for forming at least a rare earth ion and a complex in a molecule, the bonding group with a substance to b labeled, and a hydrophilic group. At least two or four βdiketone structures are included and operate as a tetradentate or octadentate ligand for the rare earth ion. In the molecule, a hydrophilic part and a bonding group for labeling an organism substance are contained. The bonding group with the substance to be labeled reacts with a substituent to form a covalent bonding group. The hydrophilic group introduces hydrophilic property for easily adjusting, storing, or using a labeling reagent in a water solution.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted r gistration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of r jection]

[Date of requesting appeal against examiner's decision of rejection]

[Dat of xtinction of right]

Copyright (C); 1998,2000 Japanes Patent Office

(19)日本國特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-111480 (P2000-111480A)

(43)公開日 平成12年4月21日(2000.4.21)

(51) IntCL'	微別記号	FΙ	デーマフート* (参考)
G01N 21/78		G 0 1 N 21/78	C 2G054
C09K 11/06		C 0 9 K 11/06	4 C 0 6 9
G01N 33/533		G 0 1 N 33/533	4 H O O 6
// C 0 7 C 311/19		C 0 7 C 311/19	4 H O 4 8
311/49		311/49	
	•	審査請求 未請求 請求項の数4 〇	L (全 24 頁) 最終頁に続く

(21)出願番号 特願平10-284035 (71)出願人 598136792 松本 和子 東京都世田谷区代沢 3-9-12-105 (72)発明者 松本 和子 東京都世田谷区代沢 3-9-12-105 (72)発明者 食 長利 東京都新宿区原町 3-76 西井方 2 階 (74)代理人 100088155 井理士 長谷川 芳樹 (外 5 名)

最終質に続く

(54) 【発明の名称】 新規標識試薬

(57)【要約】

【課題】 新規標識試薬を提供する.

【特許請求の範囲】

【請求項1】 一般式(1)で表される係識試薬。 【化1】

ここで、 R_2 及び R_3 は、ベンゼン項のオルトまたはメタ位に結合するB-ジケトン基であって、一般式(2)で表される。

【化2】

$$-R_4 - Ar_1 - C - CH_2 - C - R_5$$
 ... (2)

ここで、 R_1 は、 $-(CH_2)_n$ -、 $-NH(CH_2)_n$ -、 $-N(COCH_3)(CH_2)_1$ -、または $-(CH_2)_k$ NH-を表し、n、m、k、1は0から10までの整数を表す。 Ar_1 は、次式(3)、(4)、(5)、(6) で表される基である。

【化3】

(化4)

【化5】

(化6)

 R_5 は、炭素数 1 から10までのパーフルオロアルキル基を表す。また、 R_1 は、一般式(7)で表される基である。 【化7】

$$\begin{array}{ccc} & & \text{CH}_2\text{CO}_2\text{H} & \text{O} \\ \vdots & & & & \\ \text{R}_7-\text{CH}_2-\text{NH}-\text{CH}_2-\text{C}-\text{R}_6-& \cdots & \text{(7)} \\ \end{array}$$

ここで、 R_6 は、-NH-、-NHNH-、-NHNH $-SO_2-$ 、-NH (CH_2) $_0$ NH-、-NH (CH_2) $_0$ NH $-SO_2-$ 、または式(8)または(9)で表される基を表す。

【化8】

【化9】

R7は、一般式(10)で表される基である。 【化10】

$$HO_{2}C-CH_{2}-N-CH_{2} = \begin{bmatrix} CH_{2}CO_{2}H \\ I \\ CH_{2}-R_{8} \end{bmatrix} CH_{2} - N-CH_{2} = \begin{bmatrix} CH_{2}CO_{2}H \\ I \\ CH_{2}-N-CH_{2} \end{bmatrix} \cdots (10)$$

ここで、 R_0 は、-NCS, -NCO、 $-CO_2$ H、-COX. $-CO_2$ R₉、 $-N_2$ X、 $-N_3$ 、 $-NH_2$ 、-X、 $-CH_2$ X, -SH、 $-SO_2$ X、 $-SO_3$ H、または $-SO_3$ CF $_3$ を表し、 R_9 は、式(11)、または(12)で表される基である。

【化11】

【化12】

また、sは1から10までの整数を表す。また、Xは、F, C1、Br、I、-NH (CH $_2$) $_1$ -NCSまたは、式(13)、または(14)で表される基を表す。また、P、q、t、uは1から10の整数を表す。【化13】

【化14】

【請求項2】 一般式(15)で表される譲渡試薬。 【化15】

ここで、 R_{10} 及び R_{11} 、または R_{12} 及び R_{13} はそれぞれのベンゼン環のオルトまたはメタ位に結合するB-ジケ

トン基であって、一般式(16)で表される。 【化16】

ここで、 R_{14} は、 $-(CH_2)_n-$ 、 $-NH(CH_2)_n-$ 、 $-N(COCH_3)(CH_2)_1-$ 、または $-(CH_2)_1$ NH-を表し、n、m、k、1は0か610までの整数を表す。A r_2 は、式(3)、(4)、(5)、(6)で表される基を表す。

[(k19) ... (5)

【化17】

-(3) --(3) 【化18】

()__

... (4)

 R_{15} は、炭素数 1 から10までのパーフルオロアルキル基を表す。また、 R_{9} は、一般式(17)または(18)で表される基である。 【化2 1 】

(1621)

···(17)

【化22】

ここで、 R_{16} 、 R_{18} 、 R_{19} 、 R_{21} は、-NH-、-NH NH-、 $-NHNH-SO_2-$ 、-NH (CH_2) $NH-SO_2-$ 、または式(8)、または(9)で示される基を表す。

(化25) -N ···(11)

【化23】

- NH - (8)

【化26】

【化24】

 R_{17} 、 R_{20} は、-NCS、-NCO、 $-CO_2$ H、-COX、 $-CO_2$ R₂₁、 $-N_2$ X、 $-N_3$ 、 $-NH_2$ 、-X、 $-CH_2$ X、-SH、 $-SO_2$ X、 $-SO_3$ H、または $-SO_3$ CF $_3$ を表し、 R_{21} は、式(11)、(12)で示される基を表す。

-N SO₃Na ...(12)

【化28】

【請求項3】 請求項1または2のいずれかに記載の試薬と、希土類金属イオンとからなる錯体を含む蛍光原識剤。

【請求項4】 請求項1または2のいずれかに記載の試薬と、希土類金属イオンを用いることを特徴とする蛍光 標識方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、新規展識試薬に関する。さらに、本発明は、該試薬とランタノイド金属イオン (希土類金属イオン)とからなる錯体を含む蛍光標識剤及びその標識剤を用いた蛍光標識方法に関する。 【0002】

【従来の技術】従来から、生体試料中の微量物質の分析法として、抗体-抗原反応を利用したイムノアッセイや、DNAハイブリダイゼーションアッセイなどがよく使用されている。これらの分析方法においては、抗体、抗原、DNA、DNA塩基誘導体、DNAオリゴヌクレオチドなどを標識する標識剤を使う必要があり、高感度検出を可能とする標識剤として、蛍光による標識、放射性アイソトープによる標識、またはエンザイムによる標識等がよく用いられている。

【0003】放射性アイソトープによる標識は高感度ではあるが、貯蔵、使用、処理に際して危険を伴う欠点がある。また、エンザイム(酵素)による標識は、酵素の分子量が大きく、温度などの外的環境に影響されやすく不安定であり、再現性が低いという問題点や、酵素優識剤を被原識物に結合させることにより、酵素及び被原識物の活性が低下してしまうという欠点がある。

【0004】また蛍光による傾識方法のうち、有機蛍光色素による標識(例えば、フルオレセイン、ローダミン、ダンシルクロライド、ウンベリフェロンなど)が知られているが、励起光の散乱光によるバックグラウンドノイズやサンプル中に存在する他の共存物質の蛍光に由来するバックグラウンドノイズにより有機蛍光色素の蛍光検出を大きく妨害し、高感度の測定が困難となるという欠点がある。

【0005】一方、蛍光による標識方法のうち、無機イオンを含む錯体による標識、特に希土類イオン錯体による標識が知られている。また希土類イオン錯体は、長い蛍光寿命(普通の蛍光物質の数ナノ秒の蛍光寿命に比べて、希土類蛍光錯体は数十或いは数百マイクロ秒以上の蛍光寿命を持つ。)、大きいストークスシフト、シャー

アな蛍光ピークを有するという蛍光特性を有している。 この特性を生かして、希土類蛍光錯体をラベルとした時間分解蛍光測定法が開発されている。かかる特性により、時間分解蛍光測定を用いて、励起光や生体サンブルに由来する短寿命のバックグラウンド蛍光による妨害を除去し、高速度測定が可能となる。

【0006】これまで希土類イオン錯体による蛍光標識 剤としては、β-ジケトン錯体と、芳香族アミン錯体と が知られている。すでに商品化された希土類蛍光標識剤 の1つとしては、WallacOy社 (Finland)が開発した"DEL FIA" (Dissociation-Enhanced Lanthanide Fluoroimmun oassay)システムがある。このDELFIAシステムでは、iso thiocyanato-phenyl-EDTA5 & Vidisothiocyanatopheny 1-DTTA (DTTA= diethylenetriaminetetracetic acid) と希土類の錯体を標識剤として用い、タンパク質や核酸 などを標識し、蛍光を測定する前に、β-ジケトン-トリ オクチルホスフィンオキシド(TOPO)-Triton X-100を含 むいわゆる蛍光増強溶液を加え、非蛍光性の錯体から希 土類金属イオンを遊離させると共に、β-ジケトン-希土 類イオン-TOPO三元錯体のミセル溶液を生成させること により、蛍光測定を行う方法である(E.Soini, T.Lovgre n, CRC Crit.Rev.Anal.Chem., 18, 105-154 (1987)) . L かし、このDELFIAシステムでは、過剰のB-ジケトンとT OPOが測定溶液中に存在するため、環境からの希土類金 属イオンと反応し、強い蛍光を発することがあり、希土 類金属イオンの汚染を非常に受けやすいという大きな欠 点がある。さらに、DELFIAシステムは蛍光増強溶液を加 える必要があり、反応のステップが多いという欠点、ま た固相測定が出来ないという欠点がある。

【0007】また、すでに商品化された希土類堂光標識剤の1つとしては、Diamandisら(Canada)が開発したFIA GENシステムに用いられている標識剤がある (E.P.Diamandis, Clin.Biochem., 21,139-150(1988):E.F.G.Dickson, A.Pollak, E.P.Diamandis, Pharmac. Ther., 66, 207-235(1995)), FIAGENシステムでは、タンパク質を直接標識できる蛍光性ユウロビウム錯体 (4,7-bis(chlorosulfophenyl)-1,10-phenanthroline-2.9-dicarboxylic acid (BCPDA)-Eu³・)を用いた測定法である。このシステムは環境からのユウロビウムの汚染の問題がなく、固相測定も可能である。しかし、このシステムの標識剤の蛍光強度は上記DELFIAシステムと比べると2桁以上弱く、検出感度が低く、高感度分析が困難であるという欠点がある。

【0008】上記の他にもいくつかの芳香族アミン型と 8-ジケトン型の観識剤が知られている(G. Mathis, Cli n. Chem., 39,1953-1959(1993); D. Horiguchi, K. Sasamot o, H. Terasawa, H. Mochizuki, Y. Ohkura, Chem. Pharm. B ull., 42,972-975(1994); Y.-X. Ci, X.-D. Yang, W.-B. Chang, J. Immunol. Methods, 179, 233-241(1995))。しか し、これらの懐誠剤は従来の優識剤より幾分改良が見ら れるが、錯体の蛍光が弱い、励起極大波長が短い、タンパク質の標識反応はステップが多い、数種の架橋試薬を必要とする、数回の分離が必要であるなどの欠点がある。

[0009]

【発明が解決しようとする課題】特開平9-24123 3には、上で説明した従来の希土類イオン錯体による蛍 光標識剤が有する欠点 (不十分な蛍光強度)を解消した 標識剤として、アミノ基を持つタンパク質を直接標識で きるクロロスルホニル化4座B-ジケトン型の標識剤が 開示されている。特に、4.4°-bis(1".1".1".2",2",3". 3"-heptafluoro-4",6"-hexanedion-6"-yl)chlorosulfoo-terphenyl (BHHCT)は穏やかな条件下でタンパク質を 直接標識することができ、かつ希土類イオンと非常に安 定な蛍光錯体を生成する。これを標識剤とした時間分解 蛍光イムノアッセイにおいては、従来方法に比較して3 桁以上の高感度測定法が可能となることが開示されてい & (J. Yuan, K. Matsumoto, H. Kimura, Anal. Chem., 70.5 96-601(1998); J. Yuan, G. Wang, H. Kimura, K. Matsumot o, Anal. Biochem, 254, 283-287(1997); J. Yuan, G. Wan g. H. Kimura, K. Matsumoto, Anal. Sci., 14, 421-423 (199 8)).

【0010】一方、生体物質を標識するための標識剤としては、かかる蛍光強度が強いだけでは十分でなく、次の条件を同時に満足する必要がある。すなわち、(1)蛍光が十分強いこと、(2)標識される物質(または生体物質)と結合できる置換基を持つこと、(3)水溶液中において充分安定であること、さらに(4)蛍光寿命が長いことである。

【0011】上記BHHCTを代表とする構造を有するクロロスルホニル化4座β-ジケトン型の標識剤は一般的に水溶性が乏じいため、小さい生体物質(例えば、アミノ基を持つ分子量の小さい核酸塩基やそのほかの有機化合物)を標識すると、標識された生体物質体の水溶性が低下し、溶液中から沈殿してしまうという欠点がある。

【0012】本発明は、以上のような実情に鑑みてなされたものである。水溶液中に容易に溶解可能であり、標識される物質(または生体物質)との結合基を有し、希土類イオンと容易に錯体を形成し、さらに該錯体が水溶液中で充分安定であり、十分な蛍光強度と長い蛍光寿命を有するという特徴を有する新規な標識試薬を提供するものである。従って本発明にかかる新規な標識試薬は、水溶液に溶けやすく、アミノ基などを持つタンパク質、核酸塩基誘導体、オリゴヌクレオチド、ホルモン及びその他の有機化合物などを水溶液中で直接結合可能とする。さらに、該原識された生体物質も十分な水溶性を有する。

【0013】また、本発明は、本発明にかかる新規<equation-block>職 試薬により譲識された物質(具体的には、アミノ基やメ・ ルカプト基などを有するタンパク質、ペプチド、核酸、 核酸塩基とその誘導体、ヌクレオチド、ホルモン及びそのほかの有機化合物と本発明の標識試薬とが共有結合を 形成した物質)を希土類イオンと反応させることにより 非常に安定な錯体を生成させ、その錯体が非常に長い蛍 光寿命と強い蛍光を有することを利用した蛍光標識方法 を提供するものである。

[0014]

【課題を解決するための手段】上記課題を解決するために、本発明にかかる新規標識試薬は、分子中に少なくとも、希土類イオンと錯体を形成可能な8-ジケトン構造と、標識される物質(生体物質を含む)との結合基と、さらに親水性基を含む構造を有するものである。

【0015】該βージケトン構造は少なくとも2つ、若しくは4つ含まれ、希土類イオンに対して4座配位子若しくは8座配位子として作用するものである。また、かかる配位態様を安定させるため上記2つ若しくは4つのβージケトン構造は特定の立体配位を有する。具体的には、ベンゼン環のオルト若しくはメタ位置に結合させたものであり、従って、上記4座若しくは8座配位が容易となるように空間配置されうるものである。また、該βージケトン構造は、電子吸引性アルキル基と芳香族基を結合させることによる電子効果を特徴とするβージケトン構造を有するものである。かかる電子吸引基としては特にパーフルオロアルキル基があげられる。

【0016】該分子内には、親水性の部分と、生体物質 を標識する結合基を少なくとも有するものである。

【0017】 (原識される物質 (生体物質を含む、以下被 原識物質ということがある) との結合基は、被原識物質 が有する特定の置換基と反応し、共有結合基を形成し得 る基である。

【0018】さらに、親水性基とは、本発明にかかる新規標識試薬を水溶液中で容易に調整し、保存し、また使用可能とするべく親水性を導入するものである。従って、披標識物質が小分子であっても標識後においても十分な水溶性を有することとなる。さらに該親水性基として、広い範囲のpH条件、種々の共存成分の下においても容易に調整し、保存し、また使用可能とするべく、カルボキシル基や脂肪酸アミド、ペプチド及びEDTAとDTPA(diethylenetriamine pentaacetic acid)構造が選択される。

【0019】より具体的には、本発明は、一般式(1)で 表される標識試薬を提供するものである。

[0020]

【化29】

ここで、 R_2 及び R_3 は、ベンゼン環のオルトまたはメタ 位に結合するB-ジケトン基であって、一般式(2)で表される。

[0021]

【化30】

ここで、 R_1 は、 $-(CH_2)_n$ -、 $-NH(CH_2)_n$ -、 $-N(COCH_3)(CH_2)_1$ -、または $-(CH_2)_k$ NH-を表し、n、m、k、lは0から10までの整数を表す。

【0022】Ar₁は、次式(3)、(4)、(5)、(6) で表される。

[0023]

【化31】

【化32】

【化33】

【化34】

 R_5 は、炭素数 1 から10までのパーフルオロアルキル基 を表す。

【0024】また、R₁は、一般式(7)で表される。 【0025】

【化35】

ここで、 R_6 は、-NH-、-NHNH-、-NHNH $-SO_2-$ 、-NH (CH_2) $_0$ NH-、-NH (CH_2) $_0$ NH- SO_2- 、または式(8)または(9)で表される基を表す。

[0026]

【化3.6】

【化37】

R7は、一般式(10)で表される。

[0027]

【化38】

$$HO_2C - CH_2 - N - CH_2$$
 $CH_2 - N - CH_2$
 $CH_2 - N - CH_2$

ここで、 R_8 は、-NCS, -NCO、 $-CO_2$ H、-COX, $-CO_2$ R₉、 $-N_2$ X、 $-N_3$ 、 $-NH_2$ 、-X、 $-CH_2$ X、-SH、 $-SO_2$ X、 $-SO_3$ H、または $-SO_3$ CF $_3$ を表し、 R_9 は、式(11)、または(12)で表される基を表す。

[0028]

【化39】

【化40】

また、sは1から10までの整数を表す。また、Xは、

F, CI, Br, I, -NH (CH_2) $_1-NCS$ または、式(13)、または(14)で表される基を表すを表す。また、p, q, t, uは1から10の整数を表す。 【0029】

【化41】

【化42】

さらに、本発明は、一般式(15)で表される優識試薬を提供するものである。

- [0030]

【化43】

ここで、 R_{10} 及び R_{11} 、または R_{12} 及び R_{13} はそれぞれのベンゼン環のオルトまたはメタ位に結合する β -ジケトン基であって、一般式(16)で表される。

【0031】 【化44】

ここで、 R_{14} は、 $-(CH_2)_n-$ 、 $-NH(CH_2)_n-$ 、 $-N(COCH_3)(CH_2)_1-$ 、または $-(CH_2)_kNH-$ を表し、n、m、k、1は0から10までの整数を表す。

【0032】Ar2は、式(3)、(4)、(5)、(6)で示される基を表す。

[0033]

【化45】

【化46】

... (4)

【化47】

【化48】

...(17)

【化50】

···(18)

ここで、 R_{16} 、 R_{18} 、 R_{19} 、 R_{21} は、-NH- 、-NH NH-、-NHNH-SO₂-、-NH (CH₂) $_{9}$ NH - 、-NH (CH₂) $_{9}$ NH-SO₂-、または式(8)、または(9)で示される基を表す。

[0036]

【化51】

【化52】

Rin Riold, -NCS. -NCO. -CO2H. -C

OX、 $-CO_2R_{21}$ 、 $-N_2X$ 、 $-N_3$ 、 $-NH_2$ 、-X、 $-CH_2X$, -SH、 $-SO_2X$ 、 $-SO_3H$ 、または $-SO_3CF_3$ を表し、 R_{21} は、式(11)、(12)で示される基を表す。

[0037]

【化53】

...(11)

【化54】

また、sは1から10までの整数を表す。また、Xは、 F. C!、Br、I、-NH(CH_2), -NCS、または式(13)または(14)で示される基を表す。ここでp、q、t、uは1から10の整数を表す。

[0038]

【化55】

【化56】

また本発明は、上記の試薬と、希土類金属イオンとからなる錯体を提供するものである。好ましくは、ランタノイドイオンとの錯体を提供するものであり、特にユウロピウムイオンとの錯体を提供するものである。かかる希土類イオン錯体は上記β-ジケトンに4座若しくは8座配位するものである。また、溶液中での配位のみならず、錯体として単離されるものも含まれる。

【0039】さらに、本発明は、前記錯体を被標識物質を標識するための蛍光標識剤を提供するものである。 【0040】また、本発明は、本発明にかかる前記試薬、若しくは前記蛍光標識剤を用いることを特徴とする 蛍光標識方法を提供するものである

【発明の実施の形態】(被標識物質)本発明にかかる標識試薬、蛍光標識剤により標識される被模識物質については特に制限されることはなく、種々の生体物質、生体物質からの誘導物質、合成物質に広く適用され得る。さらに、被標識物質の分子サイズ、存在形態(溶液または固相)、単一か組成物か等には制限されない。該被標識物質の一部に、本発明にかかる標識試薬、または蛍光療識剤と共有結合し得る反応基が少なくとも1つあればよい(若しくはかかる基を導入可能であればよい)。

【0041】特に生体物質、または生体物質誘導体としては具体的には、種々の酵素、タンパク質、オリゴペプチド、糖、糖タンパク質、リピッド、核酸、核酸誘導体、オリゴヌクレオチド、細胞、脂肪類化合物、アミノ酸等が挙げられる。特にタンパク質としては、抗体及びその誘導体、抗原およびその誘導体、アビジン(ストレプトアビジンを含む)、血清アルブミン、種々のハプテン、ホルモン、プロテインA、プロテインGが挙げられる。

【0042】合成物質としては、種々の化学物質であって、生体反応活性を示すものが挙げらる。具体的には、 合成抗生物質、薬物、農薬、日用化学品、化学試薬、エ 業合成化学品等が挙げられる。

【0043】(標識試薬の構造)本発明にかかる標識試薬は、通常の水溶液条件下での反応により、被標識物質と共有結合を介して結合し、領識された物質を希土類イオンとの錯体を形成することにより蛍光性とするものである。また、かかる蛍光を測定することにより蛍光原識が可能とするものである。すなわち、分子中に少なくとも、(1)希土類イオンと錯体を形成可能なβ-ジケトン構造と、(2)親水性基を含む構造と、(3)原識される物質(生体物質を含む)との結合基とを有するものである。以下それぞれを詳細に説明する。

【0044】(1) 8-ジケトン構造(4座配位型) 本発明にかかる標識試薬の有する8-ジケトン構造は、 希土類イオンに対して4座配位子として作用して錯体を 形成させるものであるため1分子中に2つ含まれる。ま た、かかる配位態様を安定させるため、かかる2つの8 -ジケトン構造は特定の立体配位を有するべく分子中で 特定の構造を有するものである。

【0045】具体的には、2つの8ージケント構造が、ベンゼン環のオルト若しくはメタ位置にそれぞれ結合させた構造を有するものである。従って、希土類イオンと4座配位が容易に形成されるような空間配置が可能となるものである。

【0046】また、前記8-ジケトン構造は、電子吸引性アルキル基と芳香族基とを両端に結合させることにより特定の電子効果を有するものである。かかる電子効果により、希土類イオンとの配位が極めて安定となし、さらに強い蛍光が可能となるものである。かかる電子吸引基としては、フッ素置換アルキル基、フッ素置換アリール基、フッ素置換アラルキル基が好ましく、特にパーフルオロアルキル基(炭素数1から10、特に炭素数1から4が好ましい)が好ましい。

【0047】好ましい構造として、より具体的には、一般式(1)中の R_2 及び R_3 で表されるものである。なお R_1 は以下で説明する親水性基を表す。

[0048]

【化57】

より詳しくは R_2 及び R_3 は一般式(2)で表されるものが好ましい。

[0049]

[化58]

ここで、 β – ジケトン骨格の一方に芳香環A r_1 を介して R_4 が結合するが R_4 としては $-(CH_2)_n$ – 、-NH (CH_2) $_n$ – 、-N ($COCH_3$) (CH_2) $_1$ – 、または $-(CH_2)_k$ NH-(n,m,k,1は0から10までの整数を表し、好ましくは1から4までの整数である)が好ましい。また、 Ar_1 としては、種々の芳香族環のうち特に式(3)、(4)、(5)、(6)で示される基であることが好ましい。

[0050]

【化59】

【化60】

【化61】

【化62】

また、βージケトン骨格の他方にはR₅として、フッ素 置換アルキル基、フッ素置換アリール基、フッ素置換ア ラルキル基が好ましく、特にパーフルオロアルキル基 (炭素数1から10、特に炭素数1から4が特に好ましい)が好ましい。

【0051】(2)親水性基

本発明にかかる標識式薬において親水性基尺1の好ましい構造として、一般式(7)で表されるものが挙げられ

$$HO_2C - CH_2 - N - CH_2$$
 $CH_2 - N - CH_2$
 $CH_2 - N - CH_2$
 $CH_2 - R_8$
 $CH_2 - N - CH_2$
 $CH_3 - CH_2$
 $CH_3 - CH_3$
 CH_3

ここで、sは1から10までの整数 (特に好ましくは1から4までの整数)を表す。

【0055】(3)被標識物質との結合基

上で説明したように、本発明にかかる原識試薬は種々の 被顕識物質との結合のための結合基尺。を導入可能とす るものである。

【0056】好ましい R_6 は被標識物質の構造に依存する(すなわち、被係識物質と共有を形成することが好ましい)。具体的は、-NCS, -NCO, $-CO_2H$, -COX, $-CO_2R_9$, $-N_2X$, $-N_3$, $-NH_2$, -X, $-CH_2X$, -SH, $-SO_2X$, $-SO_3H$, または $-SO_3CF_3$ が好ましい。さらに、 R_9 としては、式(11)、(12)で示される基が特に好ましい。

3. {0052}

【化63】

$$CH_2CO_2H$$
 O I $R_7 - CH_2 - NH - CH_2 - C - R_6 - \cdots$ (7)

ここで、 R_1 は種々のp H条件の下でも十分な溶解性と、溶液中での安定性を保持させるために導入されるものであるが、必要ならば以下の説明するようにさらに強い親水基 R_7 を導入することも可能である。 R_6 は、具体的には、-NH-、-NHNH-、-NHNH-SO $_2$ - 、-NH (CH_2) $_0$ NH- 、-NH (CH_{2}) $_0$ NH- 、-NH (CH_{2}) $_0$ NH- SO $_2$ ~ 、 - または式(8) または(9) で示される基であることが好ましい。

[0053]

【化64】

【化65】

さらに、より強い親水性を導入し、かつ以下説明する被 標識物質との結合基を導入するためのR₇基は、具体的 には、一般式(10)で表されるものが好ましい。すなわ ち、適当な数のアミノ酸構造を連続して有する構造から なるものである。これらの基の導入に基づいて、本発明 にかかる標識試薬は広い範囲のpH条件下でも安定にか つ容易に溶解可能となり、また、種々の条件下での希土 類イオンとの錯体形成が可能となるものである。

[0054]

[1266]

【化67】

【化68】

また、Xとしては、F. CI、Br、I、または-NH (CH₂),-NCS、または、式(13)、または(14)で示される基が好ましい。また、p、q、t、uは1から1 0の整数(特に好ましくは1から4までの整数)を表

(自0))00-111480(P2000-1158

で8座配位可能となる。

有するものが好ましい。

[0059]

【化71】

となるべく4つの8-ジケトンを導入した特定の構造を

有するものが可能となる。この場合は、上の(1)で説明 した4座配位に比較してさらに安定な錯体形成が可能と なる。かかる構造については特に制限はないが、以下説

明する親水性基をはさんだ構造が好ましい。この場合、 分子全体の自由度から容易に希土類イオンに対し分子内

【0058】具体的には、一般式(15)で表される構造を

【化70】

(4) β-ジケトン構造 (8座配<u>位型</u>)

本発明にかかる8-ジケトンの他の好ましい構造として、1分子中で1つの希土類イオンに対し8座配位可能

...(15)

すなわち、 R_{10} 及び R_{11} 、または R_{12} 及び R_{13} はそれぞれのベンゼン環のオルトまたはメタ位に結合する β -ジケトン基であって上の(1)で説明した構造を有するものと同様である。

【0060】従って、R₉が十分な自由度を有する構造の場合には、分子内で1つの希土類イオンに対して4つのβ-ジケトンにより8座配位が可能となるものである。

【0061】また、R₉は、上で説明した4つの8-ジケトンを特定の構造に保持し、かつ十分な親水性を導入し、さらに被摂識物質との結合基を有するものである。 具体的には一般式(17)、若しくは(18)で表されるものが好ましい。

[0062]

【化72】

...(17)

【化73】

...(18)

ここで、 R_{16} 、, R_{18} 、, R_{19} 、 R_{21} は、-NH-、-NH NH- 、 $-NHNH-SO_2-$ 、-NH (CH_2) , $NH-SO_2-$ であることが好ましい。かかるアミノカルボン酸の構造により、本発明の 標識試薬に十分な親水性、広い範囲のPHでの反応性、 保存安定性等が得られる。

【0063】また被譲識物質への結合基である R_{17} 、 R_{20} は上の(3)で説明した構造と同様の構造が好ましく選択できる。

【0064】(標識試薬の合成)本発明にかかる標識試薬の合成方法、出発物質等については特に制限はないが、次の四工程に分けてデザインし、合成することが好

ましい、すなわち、第一の工程は、上で説明した特定構造を有する 8 - ジケトンの部分をデザインして合成し、第二の工程において、親水性基を導入するための反応基を導入し、第三の工程において特定構造の親水性基をデザインして合成導入し、さらに第四の工程においては被額識物質との結合基を導入するものである。以下各工程について具体的に説明するが、本発明がこれらの出発物質、合成方法に制限されるものでない。通常公知のデザインおよび合成方法に基づいて得られるものも本発明に含まれる。また、以下で説明する出発物質については、説明の目的でのみ選択されたものである。

【0065】第一工程は、アセチル化芳香環化合物類

と、エチルパーフルオロカルボキシレート類またはジエチルパーフルオロジカルボキシレート類とのクライゼン 縮合反応によって、βージケトン類化合物を合成するものである。アセチル化芳香環状化合物類の具体例としては、4'ーフェニルアセトフェノン、2ーアセチルジベンゾチオフェンと塩化アセチルとの反応によって合成される。)、メチルー4、4'ーテルフェニルケトンと塩化アセチルとの反応によって合成される。)、2ーアセチルチオフェン、2ーアセチルベンゾチオフェン(ベンゾチオフェンと塩化アセチルとの反応によって合成される。)、4、4'ージアセチルーローテルフェニル(ローテルフェニルと塩化アセチルとの反応によって合成される。)等が挙げられる。

【0066】エチルパーフルオロカルボキシレート類の 具体例としては、トリフルオロ酢酸エチル、ペンタフル オロプロピオン酸エチルエステル、エチルへプタフルオ ロブチレート、エチルパーフルオロペンタノエート等が 挙げられる。ジエチルパーフルオロジカルボキシレート 類の具体例としては、ジエチルジフルオロマロネート、 ジエチルテトラフルオロサクシネート、ジエチルヘキサ フルオログルタレート、ジエチルパーフルオロアジペート、ジエチルデカフルオロピメレート、ジエチルドデフルオロスペレート等が挙げられる。ここで触媒としては 特に制限はないが、NaOCHsの使用が好ましい。また好ましい溶媒としてエーテルが挙げられる。得られた生成物は必要ならば再結晶によって精製される。再結晶溶媒としてはエタノール、1、4ージオキサンまたはそれらの混合溶媒を用いることが好ましい。

【0067】なお、ここでは一例としてパーフルオロア ルキル基の場合について説明したが、これに制限され ず、上で説明した他の適当な置換基を用いる場合も同様 に合成可能である。

【0068】第二工程は、合成した β -ジケトン類化合物とクロロ硫酸とのクロロスルホニル化反応によって、 β -ジケトン分子の芳香環にクロロスルホニル基($CISO_2^-$)を導入する。クロロ硫酸と β -ジケトンとの反応が終了した後、冷水中で未反応のクロロ硫酸を加水分解させると、クロロスルホニル化 β -ジケトンは冷水中に溶解せず、沈識として得られる。

【0069】第三工程は、さらに親水性基を導入する工程である。例えば、上で示した親水性基が有するアミノ基とクロロスルホニル基との反応によるスルホンアミド結合の形成、または酸無水物とヒドラジンと、クロロスルホニル基との反応によるスルホンヒドラジンアミド結合形成が挙げられる。

【0070】第四工程は、必要ならばさらに、被原識物質との結合基を導入する工程であり、前記親水性基の特定の置換基を活性化することが好ましい。具体的には、分子内に存在するカルボン酸基を活性化し、活性エステ

ル基とすることが挙げられる。さらに、親水性基に存在 する置換メチルアミノ基の置換基を種々の活性基に置換 反応により導入することも容易である。

【0071】(希土類(ランタノイド)金属イオン錯体)前記説明した本発明にかかる摄識試薬と希土類金属イオンとからなる錯体についての構造上の制限はない。希土類金属イオンの種類としては、形成される錯体の蛍光強度、蛍光波長、蛍光寿命等を考慮して選択することは容易である。ランタノイドイオンとの錯体が好ましく、特にユウロビウムイオンとの錯体が好ましい。かかる希土類イオン錯体は本発明にかかる優識試薬により4座若しくは8座配位するものである。また、溶液中での配位のみならず、錯体として単離されるものも含まれる。

【0072】(希土類金属イオン錯体の調整、蛍光標識剤の調整) 本発明にかかる標識試薬と、種々の希土類イオンとの錯体形成については、その方法、出発物質に特に制限はなく連常公知の方法が好ましく使用可能である。さらに、調整条件として水溶液中が好ましく使用可能である。また、必要な場合は、該錯体を単離することも可能である。かかる場合の調整条件についても通常公知の方法が好ましく使用可能である(西川泰治、平木敬三者、蛍光りん光分析法、黄漢国、平木敬三、西川泰治、ユウロビウム、サマリウムーβ-ジケトン錯体の蛍光特性とその蛍光分析への応用、日本分光化学会誌、19 81年、No.1、pp66-73)。

【0073】さらに、該錯体を含む溶液、若しくは単離された錯体は、ともに本発明にかかる蛍光標識剤となる。

【0074】(蛍光標識方法)本発明にかかる蛍光標識方法は、上で得られた標識試薬、若しくは蛍光標識剤を用いて、種々の被原識物質を蛍光標識するものである。 【0075】標識試薬を用いる場合は、(i)まず被標識物質と標識試薬とを反応させ、その後に適当な希土類イオンと錯体を形成させることにより蛍光標識する方法と、(ii)まず希土類イオンと錯体を形成して蛍光標識剤を調整し、さらに被標識物質と反応させて蛍光標識する方法とが可能である。

【0076】具体的には、タンパク質の懐識反応は、クロロスルホニル基とアミノ基とのアミド形成反応によって行われる。室温で炭酸緩衝溶液(pH=9.0~9.5)中で反応が容易に進行する。本発明の標識試薬を用いる免疫測定法としては、例えば、時間分解蛍光免疫測定法としては、例えば、時間分解蛍光免疫測定法とは、長寿命の蛍光標識体(Euーキレート等)を用い、短い蛍光寿命のボックグラウンドの蛍光が消失した後に、標識体の蛍光シグナルのみを時間分解蛍光測定する高感度な蛍光免疫測定法を指す。特異的結合アッセイとは、抗原抗体反応を利用した免疫測定、レセプター・アクセプターの結合反応を利用したア

ッセイ、核酸のハイブリダイゼーションを利用したアッセイ等を指す。

【0077】以下実施例に従い、本発明をより詳しく説明するが、本発明はこれら実施例に限定されることはない。

[0078]

【実施例】(実施例1): N,N'-diacetyl-N,N'-bis{4''-(1'''.1'''.1'''.2'''.2'''.3'''.3'''-heptafluoro-4'''.6'''-hexanedion-6'''-yl)-4'-methylenebiphenyll)-3,5-diaminobenzoic acid (DBHDA) 及びそのN-hydroxysulfosuccinimide (Sulfo-NHS)の活性エステル (NHS-DBHDA) の合成

合成反応は図1に示した。

【0079】(1) 3,5-diaminobenzoic acidの還元的トアルキル化

20 mmolの3.5-diaminobenzoic acidを100 mlのメタノー ルに溶解させ、この溶液にp-phenylbenzaldehyde (40 m mol)を加えると直ちに反応が起こった。ここにすばや く、シアノ水素化ホウ素ナトリウム(NaBH₂OV)(40.5 mg ol)を加えると、直ちに反応し、水素ガスが発生した。 後、多量の沈殿が生成し、撹拌できなくなったことか ら、メタノールをさらに100 回追加した。これを室温で 一晩撹拌した。生じた沈殿をろ過して分離し、沪液に約 100 町の水を加えることで生じた沈殿をさらにろ過して 分離した(沈段は細かいので、遠心分離でもよい)。こ の沈殿を合わせて酢酸含有水(酢酸約30 mlと水50 ml) に加えると沈段の色が黄色を帯びた(この処理でプロト ン付加が完了した)。得られた沈殿をろ過し、水でよく 洗った。2-butanoneから再結晶し、N,N'-bis(4'-methy) enebiphenyl)-3,5-diaminobenzoic acid (1) を得た。 真空乾燥した後の収率は62.2%であった。 AUTO-Massで4 84のピークを確認した。C33H28N2O2 (F.W.= 484.60)。 [0080](2)-N,N'-bis(4'-methylenebiphenyl)-3, 5-diaminobenzoic acid (I) のアセチル化

5 mmolの(1)を無水酢酸(50 ml)に加え、室温で2時間 撹拌した後、オレンジ色の溶液が得られた (アミノ基の アセチル化が完了した)。後、無水酢酸を真空ボンプで 減圧留去した後、さらに無水酢酸(10 mmo!)、dichlor omethane (50 ml)を加えて溶解した。さらに、得られ た溶液を0℃に冷却し、無水AICl₃(40 mmol(8eq.))を 加えて1時間撹拌した。溶液の色は緑に変化し、不溶性 の黒い沈段が生成した。これを室温に戻し、さらに一晩 撹拌して反応を完了させた。得られた溶液に、氷冷した 15% HCI水を約50 ml加え、沈殿が溶解するまで撹拌した (約1、2時間)。 dichloromethane相を分離し、水で 洗浄し、NagSU。で乾燥させた後、減圧でdichloromethan eを留去して、N,N'-diacetyl-N,N'-bis(4''-acetyl-4'methylenebiphenyl)-3,5-diaminobenzoic acid (11)& 得た。これをさらに精製することなく次の反応に使用し た、真空乾燥した後の収率は95%以上であった。 FAB-Na

ssで653のピークを確認した。C_{4.1}H_{3.6}N₂O₆ (F.W.= 652.7 5)

(3) N.N'-diacetyl-N.N'-bis(4''-acetyl-4'-methylen ebiphenyl)-3,5-diaminobenzoic acidからβージケトン の合成

メタノール (20 mol) を、20 mol のNaHを懸濁させた 無水THF10 mlに室温で徐々に演下した。これとは別に、 (II) (2 mol) を無水THF10 mlに溶かし、8 mol (4eq.) の heptafluoro-n-butylic acid ethyl esterを加えて 溶液を調整した。この溶液を、NaHを懸濁させたTHFに室 温で徐々に滴下した。しばらくしてピンク色の沈殿が生成した。さらにそのまま室温で一晩撹拌して反応を完了 させた。反応容器を氷冷しつつ、20 mlの15% HCl水を少しづつ注ぐと、黄色の沈殿が生成した。THFを減圧留去し、沈殿をろ過して分離し、水でよく洗った。得られた 粗生成物をエタノールから再結晶して、N.N'-diacetyl-N.N'-bis{4''-(1''',1''',1''',2''',2''',3''',3'''-h eptafluoro-4''',6'''-hexanedion-6'''-yl)-4'-methyl enebiphenyl)-3,5-diaminobenzoic acid (DBHDA) (III) を得た(収率72.4%)。

【0081】元素分析結果:calc. (%) for C₄₉H₃₄N₂O₈F₁₄ (F.W.=1044.80) : C:56.33, H:3.28, N:2.68; found (%) : C:56.54, H:3.37, N:2.61。FAB-Massで1045のピークを確認した。

【0082】(4) (III)の活性エステル化ーNHS-DBHDA の合成

150 mg (0.14 mmol)の(III)と、1当量(31.2 mg)のN-hyd roxysulfosuccinimide(Sulfo-NHS)を1 mlのDMFに溶かした。0℃で撹拌しつつ、1当量(29.6 mg)のN,N'-dicycloh exyl-carbodiimide (DCC)を加え、室温に戻して一晩撹拌して反応を完了させた。生じた白沈 (DCUrea)をメンブランフィルターでろ別して除き、溶液を分離した。得られた溶液のDMFを真空ポンプで減圧留去し、NHS-DBHDAを得た。得られたNHS-DBHDAは精製せずそのままタンパク質の標識反応に用いることができた。

【0083】(実施例2):グリシルーグリシルーグリシンとBHHCTの結合体Gly3 (BHHCT)とそれとSulfo-NHSとの活性エステルNHS-Gly3 (BHHCT)の合成合成法を図2に示した。

【0084】(1)BHHCTの合成

量の沈殿を沪過によって除去し、沪液を減圧濃縮して全ての有機溶媒を除去した。得られた油状物を真空乾燥した後、黄色の粉末が得られた。収量は6.70gであり、収率は94.9%であった。 元素分析結果: 理論値: C%=51.00、H%=2.28 測定値: C%=51.22、H%=2.61¹ H NMRで生成物は目標化合物であることを確認した。

【0085】得られた β -ジケトンの β 0085】代を次のように行った。

【0086】室温において、撹拌下の3.5m1のクロロ環酸中に2mmolの上で得られたβージケトンを徐々に加えた。室温で7時間撹拌した後、注意深く反応溶液を撹拌下の150mlの水ー氷中(外部は氷ー水で冷却する。)に徐々に滴下した。生成した沈澱を早く遠心分離し、冷たい水(約5℃)で沈澱を洗浄し、2回の遠心分離を行った。少量の冷たい水で沈澱をガラスフィルターに移し、吸引戸過によって水を除去した。室温で48時間以上、生成したクロロスルホニル化βージケトンを真空乾燥した。収率は77%であった。 元素分析結果: 理論値: C%=44.76、H%=1.88 測定値: C%=44.50、H%=1.92

¹ H NMRで生成物は目標化合物であることを確認した。

【0087】(2)Glya(BHHCT)の合成

217.2 mg(1 mmol) Oglycyl-glycyl-glycine ethyl este rを、3 mlの乾燥DMFと1.0gのN(C2H5)3に溶かした後、撹 拌しつつ、805 mg (1 mmol)のBHHCTを含む3 mlのDMF溶 液を徐々に滴下した。室温で1時間撹拌した後、反応溶 液を撹拌中の100mlの10倍希釈した塩酸に徐々に滴下 し、室温で15分間撹拌した。沈殿を沪別し、純水で良 く洗った。得られた沈殿を50ml THF-20ml水-5ml濃HCl溶 液に溶かし、一晩環流した後、減圧蒸留によりTHFを除 去した。不溶性生成物を分離し、5mlのアセトンに溶か した後、アセトン溶液を撹拌下の100mlの10倍に希釈し たHCI水溶液に滴下した。沈殿を沪別し、水でよく洗っ た後、アセトンー水混合溶媒で再結晶させた。得られた 結晶を真空乾燥した(収量は610 mg、収率は63.8%)。 元素分析結果:(C₃₆ H₂₅ N₃ O₁₀ F₁₄ S), Calc.(%), C=45. 15, H=2.63, N=4.38, Found (%), C=45.45, H=2.48, N =4.12. 更に'H NMRで生成物の構造を確認した。

【0088】Gly3(BHHCT)はpH8.5以上の水溶液に溶解することができ、pH9.0の0.05MTris-HCL溶液に約10mMの溶解度があった。

【0089】(3) NHS-Gly₃ (BHHCT)の合成 191.5 mg (0.2 mmol)のGly₃ (BHHCT)と、43.4 mg (0.2 mmol)のN-hydroxysulfosuccinimide (Sulfo-NHS)を2 mlの乾燥DMFに溶かした後、室温て撹拌しつつ、41.3 mg (0.2 mmol)のN,N'-dicyclohexyl-carbodiimide (DCC)を加えた。室温で20時間撹拌した後、生じた白沈 (DCUrea) をう別し、戸液を分離した。その戸液からDMFを真空 ポンプで減圧留去した後、得られた生成物を真空で乾燥 した。ここで得られた生成物はさらに精製することな く、タンパク質や核酸の標識反応に用いることができ た。

【0090】(実施例3):4-amino-butyric acidとBHH CTの結合体BA(BHHCT)とそれとSulfo-NHSとの活性エステ ルMS-BA(BHHCT)の合成

合成法を図3に示した。

【0091】(1)BA(BHHCT)の合成

167.6 mg (1 mmol)のethyl 4-aminobutyrate塩酸塩と 1 gのN(C₁H₅)₃とを2 mlの乾燥DMFに加えた後、得られた 溶液中に、805 mg (1 mmol)のBHHCTの3 ml 乾燥DMF溶液 を徐々に滴下した。得られた溶液を室温で1時間撹拌し た後、100 町の10倍希釈した塩酸に徐々に滴下し、さら に室温で15分間撹拌した。生じた沈殿を沪別し、純水 で良く洗った。得られた沈殿を50 mlのTHFと20 mlの水 と5回の濃塩酸に溶かし、一晩環流した後、減圧蒸留に よりTHFを除去した。不溶分を分離し、5mlのアセトンに 溶かした後、アセトン溶液を攪拌下の100回の10倍希釈 した塩酸に徐々に滴下した。沈殿を沪別し、水でよく洗 った後、アセトン-水混合溶媒で再結晶し、生成物を真 空乾燥した(収量は550mg、収率は63.1%)。元素分析結 果:(C34H23NO8F14S), Calc.(%), C=46.85, H=2.66, N=1.60. Found (%), C=46.67. H=2.51, N=1.48. 更に 1H NMRで生成物の構造を確認した。

【0092】BA(BHHCT)はpHS.7以上の水溶液に溶解する ことができ、pH9.0の0.05M Tris-HC1溶液に約1回の溶解 度があった。

【0093】(2) NHS-BA(BHHCT)の合成

174.3 mg (0.2 mmol)のBA(BHHCT)と、43.4 mg (0.2 mmol)のN-hydroxysulfosuccinimide (Sulfo-NHS)を2 mlの 乾燥DMでに溶かした後、室温で撹拌しつつ、41.3mg (0.2 mmol)のN,N'-dicyclohexyl-carbodiimide (DCC)を加えた。室温で20時間撹拌した後、生じた白沈 (DCUrea)を ろ別し、デ液を分離した。得られたデ液からDMFを真空 ボンブで滅圧留去して生成物を得た。生成物はさらに精製することなくそのままタンパク質や核酸の標識反応に 用いることができた。

【0094】(実施例4): DTPA(BHHCT)₂とそれとSulfo-NHSとの活性エステルNHS-DTPA(BHHCT)₂の合成 合成法を図4に示した。

【0095】(1) DTPA(BHHCT)2の合成

4 ml の乾燥DMFと、1.5 g のNEt₃と、32 mg のNH₂M1₂ (1mmol)からなる溶液を撹拌しつつ、そこに179 mg のDT PA二無水物 (0.5 mmol)を加え、室温で2時間撹拌した。この溶液に805mg(1mmol)のBHHCT-4 ml DMFの溶液を徐々に滴下した後、室温で1時間撹拌した。得られた溶液から減圧蒸留により有機溶媒を除去して得た生成物に、100ml塩酸(90 ml H₂0と、10 ml 温塩酸から調整する)を加え、さらに室温で30分撹拌後、生じた沈殿を

デ別し、純水でよく洗った。生成物を真空乾燥後、混合溶媒(10 mlの EtOHと1.5 mlの H₂0からなる)から二回再結晶を繰り返した後得られた結晶を真空乾燥した(収量288 mg、収率29.4%)。元素分析結果:C₇₄ H₅₅ N₇O₂OF₂₈S₂, Calcd.(%)、C=45.38、H=2.83、N=5.00; Found(%)、C=46.00、H=2.98、N=4.66。

【0096】DTPA(BHHCT)2はpH8.5以上の水溶液に溶解することができ、pH9.0の0.05MTris-HCI溶液に約5mMの溶解度があった。

【0097】DTPA(BHHCT)₂を时 9.000.05 M Tris-HCl 緩衝溶液に溶かし、塩化ユウロピウムを加えて、DTPA(B HHCT)₂-Eu³・溶液の蛍光スペクトルと蛍光寿命を測定した。図5 にその蛍光スペクトルを示した。この溶液の蛍 光寿命は350μsであった。

【0098】(2) NHS-DTPA(BHHCT)2の合成

1.5 ml の乾燥DMFに、0.1 mmol (195.8 mg)のDTPA(BHHCT)₂と、0.15 mmol (32.6 mg)のSulfo-NHSとを加えて撹拌溶解した後、さらに0.15 mmolのDCC (31 mg)を加えた。得られた反応溶液を密封し、室温で20時間撹拌した後、ろ過により生成した白色の沈殿を除去することにより沪液を分離した。この沪液から減圧蒸留により有機溶媒を除去し、得られた生成物を真空乾燥してNHS-DTPA(BHHCT)₂は精製せずそのまま標識反応に用いることができた。

【0099】(実施例5): NHS-DBHDA及びNHS-DTPA(BH

HCT)zを用いたタンパク質の額識

- (1) NHS-DBHDAを用いたウシ血清アルブミン (BSA) の 懐識

13.8 mg のBSAを1.8 mlの0.1 Mの炭酸緩衝溶液 (pH = 9.2) に溶解させ、撹拌下、0.2 mlのDMFに溶かした 3 0.0 mgのNHS-DBHDAを滴下した (BSAのアミノ基に対して 2.4倍量)。室温で4.5時間撹拌した後、この溶液の1.0 mlをとり、Sephadex G-50 でゲルろ過を行った。カラムは1 x 35 cm 、溶離液は50 mMのNH, HCD3 (pH=8.0) を用いた。1 ml毎にフラクションを集め、350 nmの吸光度を測定した。残った額識剤溶液を用いて額識剤の335 nmにおけるモル吸光係数を測定したところ、 ε =4.80 x 10 M⁻¹ cm⁻¹であった。額識率を求めたところn = 27が得られた。

【0100】(i) DBHBAで観識したBSAーユウロビウム 溶液の蛍光特性の評価: 標識試薬の濃度を3.0 x 10⁻⁶ M、Euの濃度を1.0 x 10⁻⁶ Mとして励起・蛍光スペクトルを測定した。励起極大波長は334 mであり、蛍光極大波長は612 mであった。更に緩衝溶液とpHによる蛍光特性の影響を調べた。

【0101】(ii) 緩衝溶液の影響:DBHBAで原識したB SAーユウロビウムの溶液の蛍光特性に対する緩衝溶液の 影響を調べ、その結果を表1に示した。

[0102]

【表1】

BSA(DBHBA): --Eu3-溶液の蛍光に対する緩循溶液の影響

Solvent	Intensity	Lifetime,μs
0.1M-Tris-HCl (pH = 8)	85	414
0.1M-Phosphate(pH=8)	100	489
0.1M-Carbonate(pH=8)	95	432
0.1M-Carbonate(pH=8.5)		
topo+SDS	300	617

[DBHBA]=3.0 x 10-4 M. [Eu3-]=1.0 x 10-4 M

【0103】以上の結果からはリン酸が緩衝溶液としては最適ではあるが、錯体の濃度が小さくなるにつれ蛍光強度が急速に小さくなる。

【0105】(iv) 新規模識試薬の検出限界: 様々な報 衝溶液で、DBHBA観識BSA溶液を系列希釈し、時間分解蛍 光測定によりその検出限界を求めた。その際、ユウロビ ウムの濃度を1 x 10⁻⁶ M、5 x 10⁻⁷ M、1 x 10⁻⁷ M、5 x 10-8 M、のように変化させ、検出限界に与える影響を 調べた。装置はArcus 1232を用いた。

【0106】 緩衝溶液として0.1 M Tris-HCl (pH = 9.0)を用いた場合、ユウロビウムの濃度が 1.0×10^{-7} Mの時、 振識試薬の濃度で 3.2×10^{-12} Mという検出限界が得られた。この時BSAの濃度は 1.2×10^{-13} Mであった。【0107】 1.0×10^{-5} M TOPOと0.05% SDSを含む0.1 M NaHCO3を用いた場合、ユウロビウムの濃度としてはやはり 1.0×10^{-7} Mが最適で、振識試薬の濃度で 1.5×10^{-13} M、BSAの濃度で 5.6×10^{-15} Mという値が得られた。【0108】(2) NHS-DTPA(BHHCT) を用いたウシ血清アルブミンの標識: 10.0×0.08 SASAをpH9.1の5 10.0×10^{-7} Mの RMS-DTPA(BHHCT) の 10.0×10^{-7} M RMS-DTPA(B

(15))00-111480 (P2000-1158

炭酸緩衝溶液に溶解し、損拌しつつ、20 mgNiS-DTPA(B HHCT), の0.25 ml DMF溶液を徐々に滴下した。室温で2時間撹拌した後、Sephadex G-50ゲル戸過により痕識BSAと未反応のラベル剤を分離した(1 x28 cm カラム、pH-8.0の0.05 M NH, HCD3溶液で展開した)、1 mlずつフラクションを収集し、280 nmにおけるフラクションの吸光度を測定し、標識したBSAの溶液を集めた。330 nmにおけるDTPA(BHHCT)2のモル吸光係数(7.88 x 10 M l.corl)と標識BSA溶液の吸光度で標識率を求め、n=24の標識率が得られた。標識BSA溶液のpHを6.5に調節した後、4℃で保存した。

【0109】(i) BSA(DTPA(BHHCT)2)24-Eu3・溶液の蛍

光特性:

緩衝溶液の影響: BSA(DTPA(BHHCT)₂)₂₄-£u³・の Tris-HC 1、炭酸及びリン酸緩衝溶液を調製し、蛍光スペクトル、蛍光強度及び蛍光寿命を測定した。Tris-HCI溶液では329 nmの励起極大波長と612 nmの蛍光極大波長を示し、炭酸及びリン酸緩衝溶液ではそれぞれ、327 nmの励起極大波長と611 nmの蛍光極大波長を示した。0.1 M Na HCO₃-0.05% SDS-1 x 10⁻⁵ M TOPOの溶液では、332 nmの励起極大波長と613 nmの蛍光極大波長を示した。これらの緩衝溶液中の蛍光強度と蛍光寿命を表2に示した。【0110】

【表2】

BSA[DTPA(BHHCT):]::-EU' 溶液の蛍光特性に対する緩衝溶液の影響

Solvent	Intensity (a.u.)	Lifetime, µs
0.05M Tris-EC1 (pH = 9.1)	465	350
0.1M Phosphate(pB=9.2)	134	437 .
0.1H Carbonate(pH=9.0)	106	402
0.1M Carbonate(pH=8.4)	•	
10 ⁻¹ M topo+0.05%SDS	. 1103	583
[DTPA(BHHCT)2]=3.6 1	t 10 ⁻³ H. (Eu²*)=1.	0 x 10-, R

【0111】 $pHの影響: 0.05 M Tris-HCi緩衝溶液を用いて、<math>BSA(DTPA(BHHCT)_2)_{24}-Eu^{3+}$ 溶液の蛍光特性に対するpHの影響を調べ、その結果を表3に示した。表3からわかるように、<math>pHの増加につれ蛍光強度と蛍光寿命が増

加し、pHが9ぐらいになると、蛍光強度と蛍光寿命が最 大値になる (表3)。

[0112]

【表3】

BSA[DTP_A(BEHCI):]::-Eu* 溶液の蛍光特性におけるpHの影響

pH	5.5	6.5	7.0	8.0	8.5	9.1	9.8
latensity (a.u.)	76	95	240	359	426	454	441
lifetime(μ s)	246	255	297	327	339	350	346

【0113】新規標識試薬の検出限界:様々な援衝溶液で、DTPA(BHHCT)₂標識BSA溶液を系列希釈し、時間分解蛍光測定によりその検出限界を求めた。その際、ユウロピウムの濃度を1 x 10-6 M、5x 10-7 M、1 x 10-7 M、5 x 10-8 M、のように変化させ、検出限界に与える影響を調べた。装置はArcus 1232を用いた。

【0114】緩衝溶液として0.1 M Tris-HCl (pH = 9.0)を用いた場合、ユウロビウムの温度が1.0 x 10⁻⁷ Mの時、標識試薬の温度で3.6 x 10⁻¹³ Mという検出限界が得られた。この時BSAの温度は1.5 x 10⁻¹⁴ Mであった。【0115】1 x 10⁻⁵ M TOPOと0.05% SDSを含む0.1 M NaHCO₈を用いた場合、ユウロビウムの温度としてはやは

り1.0 x 10⁻⁷ Mが最適で、標識試薬の濃度で8.6 x 10⁻¹⁴ M、BSAの濃度で3.6 x 10⁻¹⁵ Mという値が得られた。

【0116】表4にDTPA(BHHCT)」とBHHCTを模識試案としたときの測定感度を示した。Tris-HCI及びTOPO-SDS-NaHOO。報衝溶液において、DTPA(BHHCT)」を用いた測定の 窓度はBHHCTを用いた測定感度より約2-3倍の高い感度があり、同時に、DTPA(BHHCT)」は水に溶けやすいというBHHCTにない優れた特徴がある(表4)。

[0117]

【表4】

(16)100-111480 (P2000-1158

DTPA(BIECT),とBHECTをラベル剤としての測定感度 ・

Label	Buffer	Detection limit (M)
DTPA(BEHCT):	0.1 K Tris-HCl	-3.6 x 10 ⁻¹³
	TOPO-SDS-NaHCO,	8.6 x 10-**
вивст	0.1 H Tris-HCl	8.4 x 10 ⁻¹³
	TOPO-SDS-NaHCO:	2.3 x 10 ⁻¹³

【0118】 (実施例6): NHS-DTPA(BHHCT); を用いた ストレプトアビジンーウシ血清アルブミン結合体の額 識:

ストレプトアビジン(SA)をより多くのラベル剤で<equation-block>はまするため、SA - BSA複合体を作り、これを標識試薬で標識した。

【0119】5 mgのBSAと5 mgのSAを2 ml のpH 7.1の0. 1 Mリン酸緩衝溶液に溶かした後、0.1 mlの1 % グルタ ルアルデヒドを加え、4 ℃で一晩反応させ、2 mgのNaBH , を加え室温で4時間放置した。これを4 Lの生理食塩水 と純水に対して2回透析した。8 mlの純水と84 mgのNaHC Ogを加えた後、NHS-DTPA(BHHCT)2により標識するため、 1 MのNaOHで溶液のpHを9.1に調節した、撹拌下、150 μ 1のDMSOに溶かした15 mgのNHS-DTPA(BHHCT)。を徐々に滴 下し、そのまま室温で1時間撹拌した。反応溶液をゲル **沪過することで、未反応の標識試薬と標識タンパク質を** 分離した。1.0 x 35 cmのSephadex G-50カラムで、0.05 H NH, HCO。溶液で展開した。 標識タンパク質溶液の330 nmにおける吸光度から標識率を計算したところ、SA(B) SA)[DTPA(BHHCT)₂]₂₅の溶液が得られた。防腐剤とし て20 mgのNaNgを、標識タンパク質の容器への吸着を防 ぐため、50 mgのBSAを加えた後、標識試薬の加水分解を 防ぐため、1 M HC1で溶液のpHを約6.5に調節し、-20 ℃ で保存した。

【0120】(実施例7): NHS-BA(BHHCT)を用いた5-(3-amino)allyl deoxyuridine 5'-triphosphate (AA-dUTP)の標識

5 mg のAA-dUTPナトリウム塩を 1 mlのpH 9.100.1 M 炭酸緩衝溶液に溶かし、撹拌しつつ、15 mgのNHS-BA(BH HCT)の0.15 ml DMSO溶液を徐々に滴下した。室温で2時 間撹拌した後、Sephadex G-50カラムで標識AA-dUTPと未 反応の懐識試薬を分離した。展開溶媒はpH7.5の0.01M T ris-HCIであった。 標識したAA-dUTP画分を集め、使用時 まで-20℃で保存した。

【0121】(実施例8): NHS-DBHDAを用いたストレプトアビジンーウシ血清アルブミン結合体の優識と優識したSA-BSAを用いたCEA (carcinoembryonic antigen)の時間分解蛍光イムノアッセイ

(i) 標識:5 mgのBSAと5 mgのSAを2 mlのpH 7.1の0.1 M

リン酸緩衝溶液に溶かした。これに0.1 mlの1 % グルタ ルアルデヒドを加え、4 ℃で一晩反応させた後、2 mgの NaBH, を加え室温で4時間放置した。これを、4 Lの生理 食塩水と純水に対して2回透析した。13 mlの純水と126 mgのNaHCO₃を加えた後、DBHDAによる標識のため、1 Mの NaOHで溶液のpHを9.1に調節した。撹拌下、160×1のDMS Oに溶かした15.5 mgのNHS-DBHDAを徐々に滴下し、その まま室温で1時間撹拌した。反応溶液をゲル沪過するこ とで、未反応の標識剤と標識タンパク質を分離した。1. 0 x 35 cmのSephadex G-50カラムで、0.05 M NH₄HCO₃溶 液で展開した。標識タンパク質溶液の335 nmにおける吸 光度から標識率を計算したところ、SA (&SA) (DBHDA)38の溶液が得られた。防腐剤として20 mgのNaNaを、 標識タンパク質の容器への吸着を防ぐため、50 mgのBSA を加えた後、標識試薬の加水分解を防ぐため、1 M HCl で溶液のpHを約6.5に調節し、-20 ℃で保存した。

【0122】(ii) 96-ウェルマイクロタイターアレートのコーティング: pH 9.6の0.1 M炭酸緩衝溶液でヤギ抗ヒトCEAポリクローナル抗体を7.5μg/mlに薄めた後、96 ウェルの透明ポリスチレンのマイクロタイターアレート (FluoroNunc plate) に100μ1ずつ分注し、4℃で24時間インキュベートした。固定用の炭酸緩衝溶液でウェルを1回洗浄した。各ウェルに5 % BSAと、0.05 % NaN₃と、0.9 % NaCIとを含むpH7.8の0.1 M Tris-HCI緩衝溶液 (Buffer 1) を100μ1ずつ分注し、室温で30 min以上インキュベートした。その後、プレートを0.2 %BSAと0.05 % NaN₃と0.9 % NaCIとを含むpH 7.8の0.1 M Tris-HCI緩衝溶液 (Buffer 2) とで洗浄し、-20℃で密封保存した。

【0123】以上の操作がプレートのコーテイングとブロッキングであり、得られたプレートは-20℃で1ヶ月間保存することができた。

【0124】(iii) 抗体のビオチン化: 0.5 ml(2.4 mg/ml)のRabbit抗ヒトCEA抗体溶液 (Dako-i munoglobulin s. Denmark)を3Lの生理食塩水に対して4℃で24時間ずつ2回透析した後、0.5 mlの純水を加えた。得られた溶液に、8.4 mgのNaHCO₃と6 mgのsulfosuccinimidyl-6-(b iotinamido)hexanoate (NHS-LC-Biotin, Pierce Chem. Co.)とを加え、室温で1時間撹拌した後、4℃で24時

(自7)100-111480 (P2000-1158

間インキュベートした。反応溶液を3Lの0.1 M NaHOO₃ − 0.25 g NaN₃溶液に対して4℃で24時間ずつ2回透析した後、10 mgのBSAを加え、イムノアッセイに使用するまで、-20℃で保存した。

【0125】(iv) ŒAのイムノアッセイ:Buffer 1で ヒトŒA原準溶液(生化学工業から購入)を希釈することにより検量線測定用標準溶液を調製した。血清サンプルは同じBuffer で2倍に薄めた後、測定に使用した。

【0126】コーテイングとブロッキング済みのウェルに50μ1ずつŒAの溶液(標準溶液あるいは血清サンプル)を分注し、37℃で2時間インキュベートした後、0.05% Tween 20を含むpH 7.8の0.1 M Tris-HCl (Buffer 3)で2回、Tween 20を含まないpH 7.8の0.1 M Tris-HCl (Buffer 4)で1回プレートを洗浄した。

【0127】Buffer 2で100倍に薄めたビオチン化ウサギ抗ヒトŒA抗体 を50μ1ずつウェルに分注し、37℃で1時間インキュベートした後、Buffer 3 (2回)とBuffer 4 (1回)でプレートを洗浄した。

【0128】2.5μg/mlになるようBuffer 2で薄めたDBH DA標識SA-BSA溶液を、50μlずつウェルに分注し、37℃ で50分間インキュベートした後、0.0% Tween 20を含む pH 9.1の0.05 M Tris-HCl (Buffer 4) でウェルを5回洗 い、更にTween 20を含まないpH 9.1の0.1 M Tris-HCl (Buffer 5) でウェルを2回洗浄した。

【0129】洗浄後のプレートはそのまま固相での時間 分解蛍光測定に使用した。

【0130】本測定に用いた時間分解蛍光測定装置はArcus 1232であり、340 nmのキセノンランプバルス光源を励起光とし、615 nm の蛍光の強度を測定した。測定条件: Delay time = 200μs, Window time = 400μs。以上のイムノアッセイで得られた検量線を図6に示し

た。

【0131】バックグラウンド+3のを検出限界とすると、この方法での検出限界は6 pg /mlであった。この値は、市販のラジオイムノアッセイ、またはエンザイムイムノアッセイなどと比べ、1000倍の高窓度であった。【0132】図7には、血清サンプルを希釈した場合の検量線の比較を示した。図は非常に良い相関を示した。このことから、血清の希釈倍率によらず正しい結果が導けることがわかった。

【0133】このアッセイの正確さ(accuracy)を調べるため、添加回収試験を行った。これは血清サンプルに 既知量の原準物質を加え、その過度を測定する方法であ る。この結果を表5に示した。いずれのサンプルでも90 -120%と良好な値が得られた。

【0134】さらにアッセイの精度(precision)を検討するため、同一プレート内の5つのウェルに同じサンプルを加え、その変動係数(coefficient of variation, C.V.)を求めた(Intra-assay)。また同様に、4つの異なるプレートに同じサンプルを加え(1つのサンプルを4つのウェルで測定した)、その変動係数を求めた(Inter-assay)。この結果を表6に示した。Intra-assayでは3-7%、Inter-assayでは6-9%と、これもまた良好な結果を与えた。

【0135】このアッセイ法と既存のエンザイムイムノアッセイ (Enyme linked immonosorbent assay , ELIS A) との相関性を検討した結果を、図8に示した。30個のサンプルを測定した結果、相関係数は0.98となり良い相関があることが示された。

[0136]

【表5】

(18)100-111480 (P2000-1158

添加回収試験

CEA	, ng / ml	
Added	found	Recovery , %
	15.5	
10.5	23.7	91.2
53	78.2	114
	3.4	
10.5	16.0	115
53	66.9	119
	4.1	
15.3	20.1	102
78.5	101	122
••••	3.1	
15.3	20.9	112
78.5	98	120

[0137]

【表6】

intre-assayとinter-assayの発度

Intra-a	ssay (n=5)	, CEA, ng/nL	inter-a	ssay (n=4), CE	A, ng/ml
Sample	Hean	CV,\$	Sample	Kean	CV, X
1	1.2	6.8	1	6.4	8.8
11	5.8	2.0	İΙ	15.4	6.8
111	53.5	3.2	н	51.3	8.7

【0138】(実施例9) NHS-DTPA(BHHCT)₂を用いた 抗ヒトa-fetoprotein (AFP)抗体の懐識と標識抗体を用 いたAFPの時間分解蛍光イムノアッセイ

抗体の標識: 0.4 回のヤギ抗ヒトAFP抗体溶液 (特異抗体濃度=0.5 呵/回)、タンパク濃度=6.3 mg/回)、日本バイオテスト研究所)を3Lの生理食塩水に対して4℃で24時間ずつ2回透析した後、純水で4 mlまでに希釈した。

【0139】34 mg NaHCO₃を加え、0.1 M NaOHで溶液の pHを9.1に調節した後、撹拌しつつ、5 mg NHS-DTPA(BHH CT)₂-0.4 mlエタノール溶液を徐々に滴下した。室温で 1 時間撹拌した後、Sephadex G-50ゲルア過により摂識 タンパクと未反応の摂識試薬を分離した。

【0140】標識タンパク溶液を集め、330 nmにおける 吸光度を測定し、標識タンパク質溶液中の標識試薬の濃 度を計算した(330 nmにおけるDTPA(BHHCT)₂のモル吸光 係数は7.88 x 10⁴ M⁺¹ cm⁻¹)。 優識タンパク質溶液に20 mg BSAと10 mg NaNgを加えた後、1 M HCIで溶液のpHを6.4に調節し、-20°Cで保存した。また、優識抗体溶液に他のタンパク質と抗体が共存していることから特異抗体の原識率を計算することは困難であった。

【 0 1 4 1 】 標識抗体溶液をイムノアッセイに使う時に、7.0 x 10-7 M EuCl₃-0.2% BSA-0.1% NaN₃-0.9% NaC 1を含むpH 7.8の0.05 M Tris-HCl で200倍希釈した後、使用した(希釈後溶液に醸識試薬DTPA(BHHCT)₂の濃度は約3.5 x 10-7 M)。

【0142】比較のため、BHHCTを用いて以上の方法と同じようにBHHCT懐識抗AFP抗体を調製した。

【0143】AFPのイムノアッセイ: pH 9.6の0.1 M 炭酸緩衝溶液で抗ヒトAFPモノクローナル抗体 (Biostrid e. Inc.)を5 μg/ml に希釈した後、96-well microtite r plate (Fluoro Nunc)の各ウェルに100μ1ずつ分注

(19)100-111480 (P2000-1158

し、4℃で24時間インキュペートした。

【0144】0.05% Tween 20を含むpH 7.8の0.05 M TrisHCI溶液 (buffer 1)でウェルを2回洗浄した後、pH 7.8の0.05 M TrisHCI溶液 (buffer 2)で更に1回ウェルを1回洗浄した。以上のようにコートしたプレートは-20℃で使用するまで保存した(1ヶ月以内の保存ができた)。

【0145】 ヒトAFP標準溶液シリーズは5% BSA-0.1% NaNa-0.9% NaClを含むpH 7.8の0.05M Tris-HCl溶液を用いて、濃いヒトAFP標準溶液 (Dakopatts, Denmark)を希釈し、調節した。

【0146】コート済みのウェルに50μ1のAFP標準溶液を分注し、37℃で1時間インキュベートした後、buffer 1で2回洗浄し、buffer 2で1回洗浄した。各ウェルに希釈した標識抗AFP抗体溶液を50μ1ずつ分注し、37℃で1時間インキュベートした後、0.05% Tween 20を含むpH 9.1の0.05 M Tris-HCI溶液で4回洗浄した後、そのまま固相での時間分解蛍光測定を行った。測定装置はArcus 1234であり、Delay time=0.2 ms、Window time=0.4 m

【0147】比較の目的で、以上の方法と全く同じで、

BHHCT-Eustで摂識した抗AFP抗体を用い、AFPの時間分解 蛍光イムノアッセイも行った。

【0148】AFPイムノアッセイの結果: 図9に、BIHICT-Eu3・で懐識した抗AFP 抗体と、DTPA(BHHCT), -Eu3・で標 識した抗AFP抗体とを用いた時間分解蛍光イムノアッセ イによるとト血清中のAFPの測定の検量線を示した。

【0149】バックグラウンドシグナルの3 SDを検出限界として求めたところ、BHHCT-Eu³・で懐識した抗AFP 抗体を用いた測定は0.07 ng/mlの検出限界が得られ、DTPA(BHICT)₂-Eu³・で懐識した抗AFP抗体を用いた測定は0.03 6 ng/mlの検出限界が得られた。この検出限界が示すように、後者の測定感度は前者より約2倍高いことが明らかである。

【0150】両測定法のシグナルとバックグラウンドの 結果を表7に示した。表7からわかるように、DTPA(BIHC T)₂-Eu³・で標識した抗AFP抗体を用いた測定の蛍光強度 はBHHCT-Eu³・で標識した抗AFP 抗体を用いた測定の蛍光 強度より4倍以上高いのに対して、バックグラウンドは ただ2.5倍高くなった。

[0151]

【表7】

BHRCT(!)とDTPA(BHHCT):(!!)で標識した抗AFP抗体を用いたAFP湖定の比較

Conc. of AFP (ng/ml)	Intensity (1)	Intensity (11)	1(11)/1(1)
100	9364	39982	4.27
10	1409	6556	4.65
0	440	1110	2.52

[0152]

【発明の効果】本発明によれば、水溶液中に容易に溶解可能であり、標識される物質(または生体物質)との結合基を有し、希土類イオンと容易に錯体を形成し、さらに該錯体が水溶液中で充分安定であり、十分な蛍光強度と長い蛍光寿命を有するという特徴を有する新規な標識試薬が得られる。従って本発明にかかる新規な標識試薬を用いることで、水溶液に溶けやすく、アミノ基などを持つタンパク質、核酸塩基誘導体、オリゴヌクレオチド、ホルモン及びその他の有機化合物などを水溶液中で直接結合可能とするものである。さらに、該原識された生体物質も十分な水溶性を有するものとなる。

【0153】また、本発明によれば、本発明にかかる新規譲試式変を用いることにより限識された物質(具体的には、アミノ基やメルカプト基などを有するタンパク質、ペプチド、核酸、核酸塩基とその誘導体、ヌクレオチド、ホルモン及びそのほかの有機化合物と共有結合形成)を希土類イオンと反応させることにより非常に安定な錯体を生成させ、その錯体が非常に長い蛍光寿命と強い蛍光を有することを利用した蛍光振識方法が可能とない蛍光を有することを利用した蛍光振識方法が可能とな

るものである。

【図面の簡単な説明】

【図1】本発明の実施例にかかるNHS-DBHDAの合成法を示す図である。

【図2】本発明の実施例にかかる、Gly3 (BHHCT)とそれの活性エステルNHS-Gly3 (BHHCT)の合成法を示す図である。

【図3】本発明の実施例にかかる、BA(BHHCT)とそれの活性エステルHIS-BA(BHHCT)の合成法を示す図である。

【図4】本発明の実施例にかかる、DTPA(BHHCT)₂とNHS-DTPA(BHHCT)₂の合成法を示す図である。

【図5】本発明の実施例にかかる、DTPA(BHHCT)₂-Eu³⁺ 溶液の励起 (Ex)と発光 (Em)スペクトルを示す図である。(DTPA(BHHCT)₂) = 3.6 x 10⁻⁷ M. (Eu³⁺) = 1.0 x 10⁻⁶ M. 0.05 M Tris-HCI buffer of pH 9.1.

【図6】本発明の実施例にかかるイムノアッセイで得らっれた検量線を示す図である。

【図7】本発明の実施例にかかる、血清サンプルを希釈 した場合の検量線と、標準サンプルを希釈した場合の検 量線の比較を示す図である。 【図8】本発明の実施例にかかる、アッセイ法と既存のエンザイムイムノアッセイ(ELISA)との相関性を検討した結果を示す図である。

【図9】BHHCT-Eu3+で懐識した抗AFP抗体とNHS-DTPA(BH

HCT)₂-Eu²・で標識した抗AFP抗体を用いた時間分解蛍光 イムノアッセイによるヒト血清中のAFP測定の検量線を 示す図である。

[図1]

COCH

(NHS-OBHDA)

[図9]

(21))00-111480 (P2000-1158

【図2】

$$C_{2}H_{5}O - \overset{\circ}{C} - CH_{2}NH - \overset{\circ}{C} - CH_{2}NH - \overset{\circ}{C} - CH_{2}NH_{2} + CISO_{2}$$

$$C_{3}F_{7}$$

$$C_{2}H_{5}O - \overset{\circ}{C} - CH_{2}NH - \overset{\circ}{C} - CH_{2}NH - \overset{\circ}{C} - CH_{2}NH - SO_{2}$$

$$C_{3}F_{7}$$

$$C_{2}H_{5}O - \overset{\circ}{C} - CH_{2}NH - \overset{\circ}{C} - CH_{2}NH - \overset{\circ}{C} - CH_{2}NH - SO_{2}$$

$$C_{3}F_{7}$$

$$HO - \overset{\circ}{C} - CH_{2}NH - \overset{\circ}{C} - CH_{2}NH - \overset{\circ}{C} - CH_{2}NH - SO_{2}$$

$$C_{3}F_{7}$$

【図4】

【図5】

(23))00-111480 (P2000-1158

7 7 . 7 . 7 . 7 . 7 . 7			
(51) Int. CI. ⁷	識別記号	FI	テーマコード(参考)
C O 7 D 207/416		C 0 7 D 207/416	
CO7E 5/00		C 0.7 E E/M	D

(24))00-111480 (P2000-1·158

F ターム(参考) 20054 AA06 CA21 CA22 CA23 CE01 CE10 EA03 4C069 AC31 AC32 BB02 BB17 BB34 BC12 BC18 4H006 AA03 AB92 4H048 AA03 AB92 VA11 VA20 VA30 VA32 VA40 VA42 VA70 VB10

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☑ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ othèr:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.