VirtualPose: Learning Generalizable 3D Human Pose Models from Virtual Data

Jiajun Su^{1,2} Chunyu Wang⁵

Xiaoxuan Ma^{2,3}

Wenjun Zeng⁶

Yizhou Wang^{2,3,4}

Center for Data Science, Peking University
 Center on Frontiers of Computing Studies, Peking University

³ Dept. of Computer Science, Peking University ⁴ Inst. for Artificial Intelligence, Peking University ⁵ Microsoft Research Asia ⁶ EIT Institute for Advanced Study

Background

Problem

• Generalization ability of monocular 3D human pose estimation.

Motivation

- Although monocular 3D pose estimation have achieved good results on the public datasets, their generalization ability is largely overlooked.
- 3D pose datasets have extremely limited variations in terms of cameras, human poses and appearance.

Projection Geometry

Generalization Study

- Systematically evaluate the robustness of the existing methods to the variations of the key factors.
- Models get notably larger errors when tested on different cameras and human poses.

Pipeline

- Abstract Geometry Representation (AGR) splits a 3D pose estimator into two successive modules.
- 1. The first module maps a raw image to AGR, can be trained on the diverse 2D datasets.
- 2. The second module maps AGR to the corresponding 3D pose, can be trained on synthesized <AGR, Pose> data.

- Loss function
 - First module

$$\mathcal{L}_{heat}^{2D} = ||oldsymbol{H}^{2D} - \widetilde{oldsymbol{H}}^{2D}||_2^2$$

$$\mathcal{L}_{bbox} = \sum_{p \in \mathcal{P}} || \boldsymbol{B}_p - \widetilde{\boldsymbol{B}}_p ||_1,$$

Second module

$$\mathcal{L}_{depth} = \sum_{p \in \mathcal{P}} \lvert oldsymbol{D}_p - oldsymbol{D}_p
vert$$

$$\mathcal{L}_{REN} = ||oldsymbol{H}_{REN} - \widetilde{oldsymbol{H}}_{REN}||_2^2$$

$$\mathcal{L}_{PEN} = \frac{1}{N} \sum_{k=1}^{N} ||\boldsymbol{J}_k - \widetilde{\boldsymbol{J}}_k||_1$$

Experiments

Method	Haggling	Mafia	Ultimatum	Pizza	Mean
RootNet	89.6	91.3	79.6	90.1	87.6
Zanfir et al.	72.4	78.8	66.8	94.3	78.1
SMAP	<u>63.1</u>	60.3	<u>56.6</u>	<u>67.1</u>	<u>61.8</u>
Ours	54.1	<u>61.6</u>	54.6	65.4	58.9
Method R	FN PFN	MRPE	MRPF		

Method	KEIN		IVITC	MKPEZ	
DE	2D	X	113.9	104.1	
REN	2D+3D	X	115.7	93.6	CMU Pan
Ours	2D+3D	$\sqrt{}$	97 N	86 O	

Method	Matched	All People	
IVICTITOU	PCK _{abs}	PCK _{root}	PCK _{abs}
RootNet	31.8	31.0	31.5
HDNet	35.2	39.4	_
SMAP	38.7	45.5	35.4
HMOR	_	_	43.8
Ours	47	52.3	44.0

Generalization ability

MuPoTS-3D

