ЛАБОРАТОРНАЯ РАБОТА № 1

«Базовые конструкции языка С++. Управляющие конструкции»

Задание 1

Найти значение алгебраического выражения, соответствующего варианту задания. Вывести результаты на печать. Все результаты выводить в развернутом виде (например: «Сумма чисел А и В равна 3.7854»).

Значения вводимых величин должны иметь не менее четырех значащих цифр и задаются студентом самостоятельно.

Варианты

Через а и b обозначены подлежащие вводу числа с плавающей точкой.

1)
$$\sin^2(a+b^3)\sqrt{\frac{e^{a^2-9,4}}{(a+b)^3}}$$

2)
$$\ln \left(\frac{\sin a^2 + \cos b}{\sqrt{1 + \frac{e}{a^3 + 3,4b}}} \right)$$

3)
$$\frac{arctg\left(\frac{\sin(a+\pi)}{\cos(b+2,87)}\right)}{\sqrt{a+\cos^2 b}}$$

4)
$$arctg \left(\frac{\sin a^2 + b^3}{\sqrt{1 + \frac{b}{a + \cos(\pi \cdot b^2)}}} \right)$$

5)
$$\sqrt{\frac{\sin(\pi + b^2)}{a^2(\sin a + b^2\cos 7, 2)}}$$

6)
$$\frac{17,8a + \cos^2(13,2b^2 + 2,4b + 3,7)}{\sqrt{e + \frac{13,7 - \sin(a^2 + b)}{-17,478a + 13,2b}}}$$

7)
$$\cos^3(a+b^2)\sqrt{\frac{e^{a^2-13,4b}}{(a+b)^3}}$$

8)
$$\ln \left(\frac{\cos(a^2 + 8,72) + \sin^2(\pi \cdot b)}{\sqrt{1,2 + \frac{a}{a^3 + 3,47b}}} \right)$$

9)
$$arctg \left(\frac{\cos(2\pi \cdot b^2) + a^3}{\sqrt{1,87 + \frac{a^2}{b + \cos(3,42b^2)}}} \right)$$

10)
$$\sqrt{\frac{\cos(\pi \cdot a) - 1,2b^2}{b^2(\cos a^2 + b^2\cos(13,4b))}}$$

11)
$$\sqrt{\frac{e^{-\frac{a^2+e}{a^3+b}}(1,7a^2+b^3)}{\sin(b+a^2)+\cos(1,92b/a)}}$$

12)
$$\cos a^2 \frac{(a+b)^3 - \cos^2(a^2+b)}{\sqrt{\sin^2 b + \cos^2(\pi-a)^3}}$$

13)
$$\cos^2(a^3 - \pi) \sqrt{\frac{e^{-b^2 + 4,9}}{(a-b)^3}}$$

14)
$$e^{\frac{\cos b^2 + \sin a}{\sqrt{(a+b)^3}}} tg \left(\frac{\sin(\pi + b^2)}{\cos(b-a)^2} \right)$$

15)
$$ctg\left(\frac{\sqrt{e+\frac{a+4,8}{b-a^2}}}{\sqrt{a+\cos^2(a+b)}}\right) \cdot e^{\frac{\sin a}{\cos b}}$$
19) $\ln\left(\frac{\cos(a^2+b)+\sin^2(7,6b)}{\sqrt{2,2e+\frac{b}{a-\cos^2(b^2+a^2)}}}\right)$
10) $\ln\left(\frac{\cos(a^2+b)+\sin^2(7,6b)}{\sqrt{2,2e+\frac{b}{a-\cos^2(b^2+a^2)}}}\right)$
11) $\frac{\cos(a-b)^3}{\sin(a+b)^3}$
22) $\arctan\left(\frac{\sin(2,48a^2)-b^3}{\sqrt{1,8+\frac{\pi}{a+\cos(3,45b^2)}}}\right)$
15) $\frac{7,8b+\sin^2(8,5a^2-2ab+4,7b)}{\sqrt{2,6+\frac{1,3\pi-\cos(b^2-a)}{18,87b+7,85a}}}$
18) $\cos^3(b^2-a^2)\sqrt{\frac{e^{(-a^2+2ab-b^2)}}{(\pi-b)+(a+\pi)^3}}$

Задание 2

Составить программу вычисления функции F(x), разложенной в ряд, сходящийся в заданной области.

Вычисления проводить до тех пор, пока модуль разности между последующим и предыдущим членами ряда не будет меньше или равен є. Значение є задается константой и для всех вариантов составляет 0,001.

Решить задачу для различных значений х. При решении задач массивы не использовать. Специальные функции для возведения в степень не использовать.

Варианты

№ п/п	Функция F(х)	Область сходимо- сти	x
1	$1-x+x^2+(-1)^{n-1}x^{n-1}+$	x <1	$x_1 = 0,07$ $x_2 = 0,95$ $x_3 = -0,5$
2	$1-2x+3x^2+(-1)^{n-1}nx^{n-1}+$	x <1	$x_1 = 0.1$ $x_2 = 0.77$ $x_3 = -0.9$

№ п/п	Функция F(x)	Область сходимо- сти	x
3	$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$	-1< <i>x</i> ≤1	$x_1 = 0, 1$ $x_2 = 0, 8$ $x_3 = -0, 62$
4	$x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{2n-1} + \dots$	<i>x</i> ≤1	$x_1 = 1$ $x_2 = 0,005$ $x_3 = -0,65$
5	$2x + \frac{(2x)^2}{2!} + \dots + \frac{(2x)^n}{n!} + \dots$	x < ∞	$x_1 = 1$ $x_2 = 17,5$ $x_3 = -0,35$
6	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$	x < ∞	$x_1 = -2, 2$ $x_2 = 0, 75$ $x_3 = 5, 6$
7	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^{n-1} \frac{x^{2n}}{(2n)!} + \dots$	x <∞	$x_1 = -2$ $x_2 = 0.98$ $x_3 = 15$
8	$\frac{\pi}{2} - \left[\frac{1}{x} - \frac{1}{3x^3} + \dots + (-1)^{n-1} \frac{1}{(2n-1)x^{2n-1}} + \dots \right]$	x >1	$x_1 = 10$ $x_2 = 1,5$ $x_3 = -5$
9	$x \left[\frac{x^2}{1!3} - \frac{x^4}{2!5} + \dots + (-1)^{n-1} \frac{x^{2n}}{n!(2n+1)} + \dots \right]$	x < ∞	$x_1 = 1$ $x_2 = 7, 5$ $x_3 = -2, 1$
10	$\cos x + \frac{1}{2}\cos 2x + \dots + \frac{1}{n}\cos nx + \dots$	$0 < x \le \pi$	$x_1 = 1$ $x_2 = \frac{\pi}{5}$ $x_3 = 2, 5$
11	$\cos x + \frac{1}{3}\cos 3x + \dots + \frac{1}{2n-1}\cos(2n-1)x + \dots$	$0 < x \le \pi$	$x_1 = \frac{\pi}{4}$ $x_2 = 1$ $x_3 = \frac{\pi}{2}$

33		0	$x_1 = 1$
12	$\frac{\sin x}{2} + \frac{\sin 2x}{2^2} + \dots + \frac{\sin nx}{2^n} + \dots$	$ x < \infty$	$x_1 = 1$ $x_2 = 3\pi$
	2 2 2 2"	62 62	$x_3 = -4,1$
- 8	[_3 _2n-1]		$x_1 = 0,1$
13	$2\left[x+\frac{x^3}{3}++\frac{x^{2n-1}}{2n-1}+\right]$	x < 1	$x_2 = -0.73$
			$x_3 = 0.81$
	78 April 1	,	$x_1 = 5$
14	$\frac{18}{\pi} \left(\sin x + \dots + \frac{1}{(2n-1)^3} \sin(2n-1)x + \dots \right)$	$0 < x \le 2\pi$	$x_2 = \frac{2\pi}{3}$
			$x_3 = \frac{\pi}{6}$
- 33	[, , ,]		$x_1 = 2$
15	$2\left \frac{1}{x} + \frac{1}{3x^3} + \dots + \frac{1}{(2n-1)x^{2n-1}} + \dots\right $	x > 1	$x_2 = -3,15$
	$\begin{bmatrix} x & 3x^2 & (2n-1)x^{2n-1} \end{bmatrix}$		$x_3 = 1,45$
	$\frac{4a}{\pi} \left(\sin x + \frac{\sin 3x}{3} + \dots + \frac{\sin(2n-1)x}{2n-1} + \dots \right)$	$0 < x \le \pi$	$x_1 = \frac{\pi}{3}$
16			$x_2 = 2$
10			$x_3 = \frac{\pi}{4}$
			-
		2	$a = 12$ $x_1 = 0, 5$
	$\cos x - \frac{1}{2}\cos 2x + \dots + (-1)^{n-1}\frac{1}{n}\cos nx + \dots$	$0 \le x < \pi$	224
17			$x_2 = \frac{\pi}{3}$
			$x_3 = 1$
- 33	π^2 ($\cos 2x$ $-1\cos nx$)		$x_1 = 0,1$
18	$\frac{\pi^2}{3} - 4 \left(\cos x - \frac{\cos 2x}{2^2} + \dots + (-1)^{n-1} \frac{\cos nx}{n^2} + \dots \right)$	$ x \le \pi$	$x_2 = -3$
	888 977 57 889		$x_3 = 1,5$
	$4\left(\sin x + \sin 3x + \cos (2n-1)x\right)$	7	$x_1 = 0.15$
19	$\frac{4}{\pi} \left(\sin x + \frac{\sin 3x}{3^2} + \dots + (-1)^{n-1} \frac{\sin (2n-1)x}{(2n-1)^2} + \dots \right)$	$ x \le \frac{\pi}{2}$	$x_2 = 1,25$
			$x_3 = -0.85$
20	$(x-1) - \frac{(x-1)^2}{2} + \dots + (-1)^{n-1} \frac{(x-1)^n}{n} + \dots$	0 < x ≤ 2	$x_1 = 1$
			$x_2 = 0.13$
			$x_3 = 1,85$

Задание 3

В задании всего 2 варианта: вариант 1 выполняют те, у кого основной вариант нечетный, вариант 2 выполняют те, у кого основной вариант четный. Каждый вариант содержит 15 задач, содержащих те или иные ошибки (логические, ошибки синтаксиса и т.п.). Задача состоит в следующем: используя

средства отладчика среды, обнаружить все ошибки и сделать программу работоспособной (т.е. выполняющей то, что от нее требуется).

Для отчета по данному заданию необходимо:

- показать работающие программы;
- код программ должен быть структурированным;
- к каждой программе необходимо составить список обнаруженных ошибок (согласно сообщениям отладчика), а также пояснения того, как вы исправляли эти ошибки.

```
Вариант 1
                                                           Вариант 2
Задача 1. Дано натуральное число п. Получить все его натуральные делители.
Main()
                                           #include <iostream>
  { Int n,j;
                                           main()
  Cout>>'n'>>endl;
                                           for (i=1, n \text{ div } 2, i++);
                                           if n % i =0
  Cin<<n;
  While j<n
                                           cout<<i
   { if (n/i = 0) and (n <> j)
   cout>>j>>endl; }
Задача 2. Дано 100 вещественных чисел. Вы-
                                           Задача 2. Вычислить величину у, равную (п!!)
числить разность между максимальным и ми-
                                               [1 \cdot 2 \cdot 3...n, если n - нечетное]
нимальным из них.
                                                2 \cdot 4 \cdot 6... n, ecлu n - четное
                                           main()
{float a, min, max, res; i:int;
                                           {int I, fn, n, y;
cout << 'n=, a1= , a2= ' << end1;
                                           cout << n; fn=1; y=1;
cin>>n,a1,a2;
                                           if (n % 2 <> 0)
if (a1>a2)
                                           {for (i=1; n;) { fn*=i; } }
{a1=max; a2=min };
                                           for (i=1, fn;)
else a2=max; a1=min; }
                                           {y+=fn; } }
                                           else { for (i=2; n;)
while i<100
                                           if I % 2 == 0 fn*=I else fn=fn*(i+1);
{cout<<'a', I, '= '<<endl; cin>>a;
if (a<min) min=a;
                                           for (i=1; fn)
if (a>max) max=a; i++;
                                           { y+=fn }
res=max-min;
                                           cout << y; }
cout << res; }
```

```
Задача 3. Вычислить величину у, равную (n!!) Y = \begin{cases} 1 \cdot 3 \cdot 5...n, ecnu & n-нечетное \\ 2 \cdot 4 \cdot 6...n, ecnu & n-четное \end{cases} if n%1 <> 0 for (i=1; n; i++;) y^* = y^* I; else for (i=1; n; i+=2;) y:=y^* I; cout<<y<<endl;
```

Задача 3. Дано натуральное число n. Вычислить произведение первых n сомножителей:

```
\frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7} \dots
( For (i=2; n, i+=2)
( P=p*(i/(i+1)); )
For (i=1; n; i+=2)
(P=p*((i+1)/i);)
cout<<p;
```

Задача 4. Вычислить $\sum_{k=1}^{n} \sum_{m=k}^{n} \frac{x+k}{m}$.

```
Main()
                                          int n, j: integer;
                                          { cout << 'n';
{ int k, x, m, n;
float s,rez=rezs=0;
                                          cin>>n; cout<<'x';
cout<<('n:, x:'); cin>>(n,x);
                                         cin>>x; r=res=0;
for (k=1; n;) for (m=k; n;)
                                         for (k=1; n) for (m=k, n)
s := (x+k)/m;
                                         (s=(x+k)/m;
rez+=s; } rezs:=rezs+rez;
                                          r=r+s; } } res+=r; }
} cout<<rezs:8:3<<\n; }
                                       cout<<res; }
```

Задача 5. Вычислить $\sum_{i=1}^{n} \sum_{j=1}^{i} \frac{1}{i+2j}$.

Задача 6. Вычислить $\sum_{k=1}^{n} \frac{\sum_{n=1}^{k} \sin kn}{k!}$.

```
fac=1; s=0;
for (k=1; 10)
{ s=0;
for (n=1, k)
s=s+sin(1+k);
fac*=k;
zn=s/fac;
s=s+zn;}
```

Задача 6. Дано 200 вещественных чисел. Определить, сколько из них больше своих «соседей», т.е. предыдущего и последующего чисел.

```
{ cout<< 'al='; cin>>b;
cout<< 'a2='; cin>>c
n=0;
for (i=1; 200)
{ cout<< 'a', I, '='; cin>>(a);
if (c>b) and (a<c)
n=n++; b=c; c=a; }
cout<<n; }</pre>
```

```
Задач а 7. Вычислить \prod_{i,\,j=1}^{20} \frac{1}{\pmb{i}^{-}} + \pmb{j}^2.
Задача 7. Дано натуральное число п. Полу-
чить сумму тех чисел вида i^3 - 3*i*n^2 + n (i =
1, 2, ..., n), которые являются угроенными
нечетными.
                                                 Main()
Main()
                                                 ( int I, j;
( int n, I, k, 1; S: float;
                                                 float P;
Cuot<< 'Enter n'
                                                 For (i=1; 20)
Cin>>n
                                                 ( p=1;
For (i=1, n)
                                                 For (j=1; 20)
S=sqr(i)*i-3*i+sqr(n)+n
                                                 P=p+1/(i+Sqr(j)); }
\{ \text{ If s } \% \ 3 = 0 \}
                                                 cout<<p; }
K=s % 3;
If k % <>0 L=1+s; }
cout << 'Result=';
cout1;}
```

Задание 4

Вариант	Условный оператор
1, 11	Написать программу вычисления модуля введенного числа
2, 12	Написать программу проверки попадания введенного числа в диапазон от -2 до 2
3, 13	Написать программу проверки не вхождения введенного числа в диапазон от 0 до 5
4, 14	Написать программу проверки на положительность введенного числа
5, 15	Написать программу проверки на отрицательность введенного числа
6, 16	Написать программу определения знака введенного числа
7, 17	Написать программу проверки попадания введенного числа в диапазон от -6 до -2
8, 18	Написать программу проверки не вхождения введенного числа в диапазон от -5 до -1
9, 19	Написать программу вычисления суммы модулей двух введенных чисел
10, 20	Написать программу вычисления $1/$ а с проверкой а $\neq 0$

С помощью оператора выбора реализовать меню (возможность выбора номера нужной задачи для ее проверки преподавателем).