

Square Grid Puzzle

În acest puzzle, ai la dispoziție o grilă pătrată de dimensiune N x N cu indexare de la 0, formată din numere distincte de la 0 la $N \times N - 1$, inclusiv. Obiectivul tău este să ajungi la starea ordonată în care numărul de la intersecția rândului i și coloanei j este egal cu $i \times N + j$ pentru fiecare $0 \le i, j < N$. Poți atinge acest obiectiv folosind două tipuri de mișcări:

- Mișcare **D**own (în jos): "**D** a[0] a[1] ... a[N-1]", unde a[0], a[1], ... a[N-1] este o rearanjare a numerelor din rândul cel mai de sus al grilei. Cu această mișcare, rândul cel mai de sus este eliminat, iar noul rând creat cu numerele a[0], a[1], ... a[N-1] de la stânga la dreapta este adăugat la partea de jos a grilei.
- Mișcare **R**ight (în dreapta): "**R** b[0] b[1] ... b[N-1]", unde b[0], b[1], ... b[N-1] este o oarecare rearanjare a numerelor din coloana cea mai din stânga a grilei. Cu această mișcare, coloana cea mai din stânga este eliminată, iar noua coloană creată cu numerele b[0], b[1], ... , b[N-1] de sus în jos este adăugată în partea dreaptă a grilei.

Rearanjarea se referă la schimbarea ordinii numerelor fără a adăuga sau elimina vreunul dintre ele, și poate păstra ordinea originală.

De exemplu dacă grilla curentă este:

Rândul/Coloana	0	1	2
0	2	4	6
1	8	1	5
2	7	3	0

Efectuând mișcarea "D 6 2 4", vom obține următorul grid:

Rândul/Coloana	0	1	2
0	8	1	5
1	7	3	0
2	6	2	4

Oricum, dacă în schimb executăm mutarea "R 2 8 7", am obține:

Rândul/Coloana	0	1	2
0	4	6	2
1	1	5	8
2	3	0	7

Pentru N=3, gridul țintă ar arăta astfel:

Rândul/Coloana	0	1	2
0	0	1	2
1	3	4	5
2	6	7	8

Sarcina ta este să rezolvi puzzle-ul cu mai puțin de $3 \times N$ mișcări. Cu toate acestea, puncte parțiale pot fi acordate în cazul în care utilizezi mai multe mișcări sau nu rezolvi complet puzzle-ul. Consultă secțiunea "Scoring" pentru detalii.

Input

Prima lina conține un singur număr întreg N.

Următoarele N linii descriu grid-ul inițial, cu N numere pe fiecare linie.

Output

Prima line va conține un singur număr întreg, M, numărul de mișcări. Fiecare din următoarele M linii va conține o singură mișcare.

Scoring

Fie notăm cu M numărul de mișcări din soluția ta. Suplimentar, definim A=3 imes N și $B=2 imes N^2$

Dacă output-ul tău nu este corect sau dacă M>B, obții 0 puncte. Altfel, fie C numărul de perechi (i,j), $0\leq i,j< N$, astfel încât numărul de pe linia i și coloana j este egal cu $i\times N+j$.

Dacă $C < N \times N$, atunci puzzle-ul nu este rezolvat și vei obține $(50 \times \frac{C}{N \times N})$ % puncte pe test. În caz contrar:

- Dacă M < A, vei obține 100% puncte pe test.
- Dacă $A \leq M \leq B$, vei obține $(40 imes (rac{\dot{B}-M}{B-A})^2 + 50)$ % puncte pe test.

Fiecare test valorează același număr de puncte. Scorul este determinat ca suma scorurilor pe toate testele iar scorul final este cel mai bun scor pe toate submisiile.

Exemplu 1

Standard input	Standard output
3	4
1 4 2	R 3 6 1
375	D 2 3 4
680	D 5 6 7
	R 2 5 8

Aceasta soluție obține rezultatul dorit în mai puțin de 9 mișcări, fiind punctat maxim.

Example 2

Standard input	Standard output
2	0
2 1	
0 3	

Puzzle-ul nu este rezolvat deoarece doar două numere (1 și 3) din 4 sunt pe pozitia corectă. Acest output va obține $50 \times \frac{2}{4} = 25\%$ de puncte pe testul dat.

Constrangeri

• $2 \le N \le 9$

Subtasks

- Problema dată nu are subtaskuri.
- ullet Există un număr egal de teste pentru fiecare N de la 2 la 9.