Catalog of Definitions

Section 4: First Examples of Mathematical Proofs.

Definition (p. 40). To say that x is an even number means that there exists an integer k such that x = 2k.

Definition (p. 40). To say that x is an odd number means that there exists an integer k such that x = 2k+1.

Definition (p. 43). To say that x is a rational number means that there exist integers m and n such that $n \neq 0$ and x = m/n.

Definition (p. 44). To say that x is an irrational number means that x is a real number and x is not a rational number.

Definition (p. 45). Let d and x be integers. To say that d divides x means that there exists an integer k such that x = kd.

Definition (p. 47). To say that x is a prime number means that $x \in \mathbb{N}$ and $x \neq 1$ and for each $a \in \mathbb{N}$, for each $b \in \mathbb{N}$, if x = ab, then a = 1 or b = 1.

Definition (p. 51). Let a, b, and m be integers. To say that a is congruent to b modulo m (written $a \equiv b \mod m$) means that m divides b-a.

Section 10: Sets.

Definition (p. 106). The *empty set* is the set that has no elements, usually denoted by \emptyset .

Definition (p. 106). Let A and B be sets.

- To say that A is a subset of B (denoted $A \subseteq B$) means that for each x, if $x \in A$, then $x \in B$.
- To say that A is a proper subset of B (denoted $A \subseteq B$) means that $A \subseteq B$ and $A \neq B$.

Definition (p. 108). Let A and B be sets.

• The union of A and B (denoted $A \cup B$) is the set of all things that belong to at least one of the sets A and B; in other words,

$$A \cup B = \{x : x \in A \text{ or } x \in B\}.$$

• The intersection of A and B (denoted $A \cap B$) is the set of all things that belong to both of the sets A and B; in other words,

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

• The relative complement of B in A (denoted $A \setminus B$) is the set of all things that belong to A but not to B; in other words,

$$A \setminus B = \{x : x \in A \text{ and } x \notin B\}.$$

Definition (p. 111). To say that two sets A and B are disjoint means that $A \cap B = \emptyset$.

Definition (p. 115). Let \mathcal{A} be a set of sets. Then the union of \mathcal{A} (denoted $\bigcup \mathcal{A}$) is the set of all things that belong to at least one of the sets in \mathcal{A} ; in other words,

$$\bigcup \mathcal{A} = \{x : x \in A \text{ for some } A \in \mathcal{A}\}.$$

Definition (p. 115). Let \mathcal{A} be a <u>nonempty</u> set of sets. Then the intersection of \mathcal{A} (denoted $\bigcap \mathcal{A}$) is the set of all things that belong to all of the sets in \mathcal{A} ; in other words,

$$\bigcap \mathcal{A} = \{x : x \in A \text{ for each } A \in \mathcal{A}\}.$$

Definition (p. 116). Let A be a set. The *power set of* A (denoted $\mathcal{P}(A)$) is the set of all subsets of A; in other words, $\mathcal{P}(A) = \{S : S \subseteq A\}$.

Definition (p. 117). Let a and b be any objects. The ordered pair (a, b) is the set $\{\{a\}, \{a, b\}\}$.

Definition (p. 118). Let A and B be sets. Then the Cartesian product of A and B (denoted $A \times B$) is the set of all ordered pairs (x, y) such that $x \in A$ and $y \in B$; in other words,

$$A \times B = \{(x, y) : x \in A \text{ and } y \in B.$$

Section 11: Functions.

Definition (p. 121). Let A and B be sets.

- To say that f is a function on A means that f is a function and Dom(f) = A.
- To say that f is a function from A to B (denoted $f: A \to B$) means that f is a function, Dom(f) = A, and for each x, if $x \in A$, then $f(x) \in B$.

Definition (p. 126). Let f be a function. The range of f (denoted Rng(f)) is the set of all values of f; in other words,

$$\begin{aligned} \operatorname{Rng}(f) &= \{ f(x) : x \in \operatorname{Dom}(f) \} \\ &= \{ y : y = f(x) \text{ for some } x \in \operatorname{Dom}(f) \}. \end{aligned}$$

Definition (p. 127). Let f and g be functions. Then the composition of g with f is the function, denoted $g \circ f$, that is defined by

$$(g \circ f)(x) = g(f(x))$$

for all $x \in \text{Dom}(f)$ such that $f(x) \in \text{Dom}(g)$.

Definition (p. 128). Let A and B be sets. To say that f is a surjection from A to B means that f is a function from A to B and for each $y \in B$, there exists $x \in A$ such that f(x) = y.

Definition (p. 128). To say that f is an injection means that f is a function and for all $x_1, x_2 \in \text{Dom}(f)$, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Definition (p. 129). Let f be an injection. Then for each $y \in \text{Rng}(f)$, we shall write $f^{-1}(y)$ for the unique $x \in \text{Dom}(f)$ such that f(x) = y. This defines a function f^{-1} from Rng(f) to Dom(f). The function f^{-1} is called the *inverse of the function* f.

Definition (p. 130). Let A and B be sets. To say that f is a bijection from A to B means that f is both a surjection from A to B and an injection.

Section 13: The Fundamental Principles of Counting.

Definition (p. 147). Let A and B be sets. To say that A is equinumerous to B (denoted $A \approx B$) means that there exists a bijection from A to B.

Definition (p. 148). Let A be a set and let $n \in \omega$. To say that A has n elements means that A is equinumerous to $\{1, \ldots, n\}$.

Definition (p. 148). Let A be a set.

- To say that A is finite means that there exists $n \in \omega$ such that A has n elements.
- To say that A is infinite means that A is not finite.

Section 15: Infinite Sets.

Definition (p. 167). Let A be a set.

- To say that A is denumerable means that A is equinumerous to \mathbb{N} .
- To say that A is countable means that A is finite or denumerable.
- To say that A is uncountable means that A is not countable.