浙江工业大学 2010 - 2011 学年第二学期 概率论与数理统计试卷

姓名	:学号: _	班级	t:	_任课教师:	
一. 填空题 (每空 2 分, 共 30 分)					
1.	已知 $P(A) = 0.5$,	P(B) = 0.6,	$P(A \cup B) =$	0.7, 则 $P(I)$	B A) =
	o				
2.	将 5 颗球放入 5 个 ,恰好有一个			^议 数恰为3的	概率为
3.	设随机变量 X 服从	. [-a, a] 上均匀	分布, 且 <i>P</i> (X	$(7 > 1) = \frac{1}{3},$	则 $a =$
	o				
4.	设随机变量 X 服从 2),则 $\lambda = $,				
	$P(-2 < X < 4) \ge _{-}$	o			
5.	设连续型随机变量	X 的分布函数:	$ h F(x) = \begin{cases} A \\ 0 \end{cases} $	$A + Be^{-x^2},$ 0,	$x > 0,$ $x \le 0$
	则 $A =$, $B =$, <i>X</i> 的密	医函数为		_0
6.	设某年龄段女童的节随机选取 16 名女童约为。($\Phi(1)$ =	,则她们的平均			
7.	设随机变量 X, Y 相 Y_1, Y_2, \cdots, Y_9 分别 $c \frac{X_1 + \cdots + X_9}{\sqrt{Y_1^2 + \cdots + Y_9^2}}$ 服从 t-	是来自总体 X,	Y 的简单样本	、 已知统计	
8.	设 X_1, \dots, X_9 是来 值为 $\overline{x} = 5$,则 μ 的 (分位点数据参见计	置信度为 0.95 自			
9.	设 (<i>X</i> , <i>Y</i>) 服从二维 度函数为	•	$(1^2,1,2^2;0)$,贝	リ $2X + 3Y$ 的	概率密

二. 选择题 (每题 2 分, 共 10 分)

- 1. 设随机变量 $X \sim N(\mu, 4^2)$, $Y \sim N(\mu, 5^2)$, $\diamondsuit p_1 = P(X < \mu 4)$, $p_2 = P(Y > \mu + 5), \text{ } \emptyset \text{ } ($
 - A) 对任何 μ , $p_1 = p_2$ B) 对任何 μ , $p_1 < p_2$

 - C) 对任何 μ , $p_1 > p_2$ D) 仅对一个 μ , $p_1 = p_2$
- 2. 设 $F_1(x)$, $F_2(x)$ 分别为随机变量 X_1 , X_2 的分布函数, 为使得 F(x) = $aF_1(x) - bF_2(x)$ 一定也是一个分布函数,则()

- A) $a = \frac{3}{5}, b = \frac{2}{5}$ B) $a = \frac{3}{5}, b = -\frac{2}{5}$ C) $a = \frac{3}{2}, b = \frac{1}{2}$ D) $a = \frac{3}{2}, b = -\frac{1}{2}$
- 3. 设 X_1, \dots, X_n (n > 1) 是来自正态总体 N(0,1) 的简单样本, 其样本 均值为 \overline{X} ,则下列结论正确的是()

- $\begin{array}{ll} \text{A)} \sum_{i=1}^{n} X_{i}^{2} \sim \mathcal{X}^{2}(n-1) & \text{B)} \sum_{i=1}^{n} (X_{i} \overline{X})^{2} \sim \mathcal{X}^{2}(n-1) \\ \text{C)} \frac{(n-1)\sum_{i=1}^{n} X_{i}^{2}}{n \sum_{i=1}^{n} (X_{i} \overline{X})^{2}} \sim F(n,n-1) & \text{D)} \frac{(n-1)(\sum_{i=1}^{n} X_{i})^{2}}{n \sum_{i=1}^{n} (X_{i} \overline{X})^{2}} \sim F(n,n-1) \end{array}$
- 4. 设 X_1, X_2, X_3 是来自总体 X 的简单样本, $EX = \mu, Var(X) = \sigma^2$,则 下列估计中最有效的无偏估计是()
- A) $\frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$ B) $\frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3$ C) $\frac{1}{2}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3$ D) $\frac{1}{4}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3$
- 5. 设随机事件 A, B, C 两两独立,则下列条件和 A, B, C 相互独立不等价 的是()

 - A) AB 和 C 独立 B) A 和 $B \cup C$ 独立

 - C) AB 和 AC 独立 D) P(ABC) = P(A)P(B)P(C)

三. 计算题 (第一题 8 分,第四题 12 分,其余每题 10 分,共 60 分)

- 1. 某仓库有甲、乙、丙三个工厂生产的相同的产品,比例为 2:2:1,它 们的次品率分别为 0.01,0.02,0.04。从这批产品中随机选取一件,求:
 - 1)该产品为次品的概率;
 - 2) 若已知该产品为次品,求它是由丙厂生产的概率。

2. 从 5 双不同的鞋子中任取 4 只,记 X 为选取的 4 只鞋子中配成的双数。求 X 的分布律和数学期望。

3. 设随机变量 X 服从参数为 λ 的指数分布,即密度函数为

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0\\ 0, & x \le 0 \end{cases}$$

并且 $P(X > 1) = e^{-\frac{1}{2}}$,求:

- 1) P(X > 2);
- $2) EX^2;$
- $3) Y = X^2$ 的密度函数 $f_Y(y)$ 。

4. 设二维随机变量 (X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} a(x+y), & 0 \le x \le 2, 0 \le y \le 2\\ 0, & 其它 \end{cases}$$

- 1) 求常数 a;
- 2) 求概率 $P(X + Y \le 2)$;
- 3) 求 X,Y 的边缘密度。
- 4) 求相关系数 ρ_{XY} 。

5. 设总体 X 的密度函数为

$$f(x) = \begin{cases} \frac{2x}{a^2}, & 0 < x < a \\ 0, & \sharp \dot{\Xi} \end{cases}$$

其中 a > 0,求 a 的矩估计和极大似然估计。

6. 假设食盐包装机包装的每袋食盐的标准重量为 500 克,现在随机抽取 9 袋食盐,测得样本均值为 488 克,样本标准差为 6.29 克,问取显著 水平 $\alpha=0.05$ 时,能否认为该包装机包装食盐的平均重量是正常的? ($Z_{0.025}=1.96, Z_{0.05}=1.65, t_{9}(0.025)=2.262, t_{8}(0.025)=2.306$)