IPESUP 2023/2024

Colle 24 MPSI/MP2I Jeudi 16 mai 2024

Planche 1

- 1. Énoncer un résultat sur les matrices de composées d'applications linéaires. Le démontrer.
- 2. Montrer que les matrices $\begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}$ et $\begin{pmatrix} 0 & 1 \\ -1 & 6 \end{pmatrix}$ sont semblables.
- 3. Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$. Déterminer l'ensemble des matrices $X \in \mathcal{M}_n(\mathbb{C})$ telles que

$$X + Tr(X)A = B$$

Planche 2

- 1. Caractérisation de l'inversibilité d'une matrice carrée à l'aide du noyau, de l'image, et/ou des colonnes.
- 2. Soit $A \in \mathcal{M}_2(\mathbb{R})$. On note $\psi : \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$, $M \mapsto AM + MA$. Déterminer une matrice de ψ , puis calculer sa trace.
- 3. Soit $f: \mathcal{M}_n(\mathbb{C}) \to \mathbb{C}$ une application non constante. On suppose que

$$\forall (A,B) \in \mathcal{M}_n(\mathbb{C})^2, f(AB) = f(A)f(B)$$

Démontrer alors

$$\forall A \in \mathcal{M}_n(\mathbb{C}), [f(A) = 0 \iff A \in GL_n(\mathbb{C})]$$

Planche 3

- 1. Soit $u \in \mathcal{L}(E, F)$ de rang r. Construire deux bases pour former une matrice simple de u.
- 2. Soit $A \in GL_n(\mathbb{R})$ et $B \in \mathcal{M}_n(\mathbb{R})$ telle que rg(B) = 1. Montrer que A + B est inversible si et seulement si $1 + Tr(A^{-1}B)$ est non nul.
- 3. Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$. On note, à l'aide de matrices par blocs, $M = \begin{pmatrix} A & A \\ A & B \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{C})$.
 - (a) Calculer le rang de *M* en fonction de *A* et *B*.
 - (b) Déterminer une CNS pour que *M* soit inversible et calculer son inverse le cas échéant.

Bonus

Montrer que toute matrice carrée est semblable à sa transposée.