# 2進数で小数を表す(IEEE754 前編)

プログラマのためのC言語 第10回

## 概要





指数の復習

対数の復習

正規化数

非正規化数



(6 ) IEEE754とは?

#### IEEE754とは?

◯ ✔ 浮動小数点数を扱う上でのルールを定めたもの(標準規格)

#### • IEEE754とは?

- ◯ ✔ 浮動小数点数を扱う上でのルールを定めたもの(標準規格)
  - ✔ ほぼ全てのモダンなシステムで採用されている

#### IEEE754とは?

- ✔ 浮動小数点数を扱う上でのルールを定めたもの(標準規格)
- ✔ ほぼ全てのモダンなシステムで採用されている

昔はカオスじゃった



#### • IEEE754とは?

- ◇ ダ 浮動小数点数を扱う上でのルールを定めたもの(標準規格)
  - ✔ ほぼ全てのモダンなシステムで採用されている
  - ✔ IEEE754で定義されていること

#### ● IEEE754とは?

- ✔ 浮動小数点数を扱う上でのルールを定めたもの(標準規格)
  - ✔ ほぼ全てのモダンなシステムで採用されている
  - ✔ IEEE754で定義されていること
    - ・小数をどうやって表すか
    - ・Oや無限、非数(NaN)の表現方法
    - ・端数の丸め規則や、O除算などの例外時の振る舞い
    - ・四則演算
    - · etc···

#### ● IEEE754とは?

- ✔ 浮動小数点数を扱う上でのルールを定めたもの(標準規格)
- ✔ ほぼ全てのモダンなシステムで採用されている
- ✔ IEEE754で定義されていること
  - ・小数をどうやって表すか
  - ・Oや無限、非数(NaN)の表現方法
  - ・端数の丸め規則や、O除算などの例外時の振る舞い
  - ・四則演算
  - · etc···
- ✔ 全てを理解するには無職の脳ではキャパが足りな過ぎる

**39動小数点数とは?** 

## • 浮動小数点数とは

◇ ✔ 浮動小数点方式と呼ばれる方式で表された数のこと

#### • 浮動小数点数とは

- ✔ 浮動小数点方式と呼ばれる方式で表された数のこと
- ✔ 小数を 仮数部と指数部に分けて表現
  - ・つまり前回やった指数表記である

#### ● 浮動小数点数とは

- ✔ 浮動小数点方式と呼ばれる方式で表された数のこと
- ✔ 小数を 仮数部と指数部に分けて表現
  - ・つまり前回やった指数表記である

✔ 仮数部の小数点の位置が指数部によってふわ~と動くので浮動小数点と呼ぶ

#### ● 浮動小数点数とは

- ✔ 浮動小数点方式と呼ばれる方式で表された数のこと
- ✔ 小数を 仮数部と指数部に分けて表現
  - ・つまり前回やった指数表記である

- ✔ 仮数部の小数点の位置が指数部によってふわ~と動くので浮動小数点と呼ぶ
- ✔ 浮動小数点数の表現方法として IEEE754形式 が幅広く使われている

#### ● 浮動小数点数とは

- ✔ 浮動小数点方式と呼ばれる方式で表された数のこと
- ✔ 小数を 仮数部と指数部に分けて表現
  - ・つまり前回やった指数表記である

$$1111.0 = 1.111 imes 2^{3$$
  $\longrightarrow$  指数部  $\bigcirc$  仮数部  $\bigcirc$  基数

- ✔ 仮数部の小数点の位置が指数部によってふわ~と動くので浮動小数点と呼ぶ
- ✔ 浮動小数点数の表現形式として IEEE754形式 が幅広く使われている
- ✔ 浮動ではなく固定小数点数というのもある

**罗動小数点数型** 

#### ● 浮動小数点数型とIEEE754の基本形式

| 一般名    | サイズ    | 基数 | C言語の型  |
|--------|--------|----|--------|
| 単精度    | 32ビット  | 2  | float  |
| 倍精度    | 64ビット  | 2  | double |
| 四倍精度   | 128ビット | 2  |        |
| 十進倍精度  | 64ビット  | 10 |        |
| 十進四倍精度 | 128ビット | 10 |        |

- ・2進数の表現だけでなく、10進数の表現も定義されている
- ・C言語には単精度としてfloat型、倍精度としてdouble型が用意されている

# ▶ 浮動小数点数型 bitの内訳

#### float

| 1bit | 8bit | 23bit |
|------|------|-------|
| 符号部  | 指数部  | 仮数部   |

#### double

| 1bit | 11bit | 52bit |
|------|-------|-------|
|      |       |       |

仮数部

#### 符号部 指数部

| 型      | 一般名 | サイズ   | 符号部  | 指数部   | 仮数部   | 最小値(約)    | 最大値(約)   |
|--------|-----|-------|------|-------|-------|-----------|----------|
| float  | 単精度 | 32ビット | 1ビット | 8ビット  | 23ビット | -3.4e+38  | 3.4e+38  |
| double | 倍精度 | 64ビット | 1ビット | 11ビット | 52ビット | -1.8e+308 | 1.8e+308 |

## ▶ 浮動小数点数型 指数表記との対応

$$1111.0=1.111 imes2^{3}$$

| 型      | 一般名 | サイズ   | 符号部  | 指数部   | 仮数部   | 最小値(約)    | 最大値(約)   |
|--------|-----|-------|------|-------|-------|-----------|----------|
| float  | 単精度 | 32ビット | 1ビット | 8ビット  | 23ビット | -3.4e+38  | 3.4e+38  |
| double | 倍精度 | 64ビット | 1ビット | 11ビット | 52ビット | -1.8e+308 | 1.8e+308 |

## 浮動小数点数型 指数表記との対応



| 型      | 一般名 | サイズ   | 符号部  | 指数部   | 仮数部   | 最小値(約)    | 最大値(約)   |
|--------|-----|-------|------|-------|-------|-----------|----------|
| float  | 単精度 | 32ビット | 1ビット | 8ビット  | 23ビット | -3.4e+38  | 3.4e+38  |
| double | 倍精度 | 64ビット | 1ビット | 11ビット | 52ビット | -1.8e+308 | 1.8e+308 |

## ● 浮動小数点数型 最大値と最小値



| 型      | 一般名 | サイズ   | 符号部  | 指数部   | 仮数部   | 最小値(約)    | 最大値(約)   |
|--------|-----|-------|------|-------|-------|-----------|----------|
| float  | 単精度 | 32ビット | 1ビット | 8ビット  | 23ビット | -3.4e+38  | 3.4e+38  |
| double | 倍精度 | 64ビット | 1ビット | 11ビット | 52ビット | -1.8e+308 | 1.8e+308 |

















**±NaN** 





) 浮動小数点型は以下の5つのデータを表現可能

```
float normalized; // 正規化数
float denormalized; // 非正規化数
float zero; // ゼロ
float inf; // 無限大
float nan; // 非数
```

| 名前           | 值             | 種類    |
|--------------|---------------|-------|
| normalized   | 1.50000000    | float |
| denormalized | 1.401e-45#DEN | float |
|              | 0.00000000    | float |
| • inf        | inf           | float |
| • nan        | nan           | float |

↑ 浮動小数点型は以下の5つのデータを表現可能

```
float normalized; // 正規化数
float denormalized; // 非正規化数
float zero; // ゼロ
float inf; // 無限大
float nan; // 非数
```

| 正規化数              | 非正規化数             |
|-------------------|-------------------|
| $1.??? 	imes 2^n$ | $0.??? 	imes 2^n$ |

仮数部が1以上、2未満なら 正規化数 1以下の場合は 非正規化数 と呼ぶ

| 名前           | 值             | 種類    |
|--------------|---------------|-------|
| normalized   | 1.50000000    | float |
| denormalized | 1.401e-45#DEN | float |
| zero         | 0.00000000    | float |
| • inf        | inf           | float |
| 🕶 nan        | nan           | float |

ピットの扱い

指数部(8bit) 仮数部(23bit) 符号部(1bit) データ

1bit 8bit 23bit

符号部指数部

仮数部

指数部(8bit) 仮数部(23bit) 符号部(1bit) データ

1~254

0

255

1bit 8bit 23bit

符号部

指数部

仮数部





データ















「・・・ 10進数の1234.0をIEEE754形式で表す

# IEEE754形式

1bit 8bit 23bit

符号部

指数部





仮数部、数倍だー!!!

仮数部



#### IEEE754形式

1bit 8bit 23bit

符号部

指数部





仮数部、数倍だー!!!

仮数部



1.00110100100×2の10乗

IEEE754形式

1bit 8bit

23bit

符号部

指数部

仮数部





仮数部、数倍だー!!!



1.00110100100×2の 10 乗

IEEE754形式

10+127

指数部には実際の指数に127を加えた値を格納する

1bit

8bit

23bit

符号部

指数部

仮数部





仮数部、数倍だー!!!







**逆にIEEE754形式の数を10進数に戻す** 

#### 位取り記数法

# 指数表記(正規化)

#### IEEE754形式

0 1000 1001 001 1010 0100 0000 0000 0000

符号部

指数部





仮数部、数倍だー!!!

仮数部



#### 位取り記数法

指数表記(正規化)

1.00110100100

IEEE754形式

1.仮数部の形にする

0 1000 1001

001 1010 0100 0000 0000 0000

符号部

指数部

仮数部





仮数部、数倍だー!!!



#### 位取り記数法



仮数部、数倍だー!!!



練習

(1) 7.5

# ▶ 次の10進数で表された小数をIEEE754形式で表せ



| ニブル単位 | 0100 | 0000 | 1111 | 0000 | 0000 | 0000 | 0000 | 0000 | 2進数  |
|-------|------|------|------|------|------|------|------|------|------|
| ーノル単位 | 4    | 0    | F    | 0    | 0    | 0    | 0    | 0    | 16進数 |

(2) 2048.875

# **● 次の10進数で表された小数をIEEE754形式で表せ**





| ニブル単位 | 0100 | 0101 | 0000 | 0000 | 0000 | 1110 | 0000 | 0000 | 2進数  |
|-------|------|------|------|------|------|------|------|------|------|
|       | 4    | 5    | 0    | 0    | 0    | Е    | 0    | 0    | 16進数 |

**◆ 次の10進数で表された小数をIEEE754形式で表せ**

(3) 0.1

# ▶ 次の10進数で表された小数をIEEE754形式で表せ

(3) 0.1

ニブル単位



D

# **正規化数以外のデータの例**

# **● 正規化数以外のデータ例**

| 例        | bit列                                    | 16進数<br>(big) | 16進数<br>(little) |
|----------|-----------------------------------------|---------------|------------------|
| 0        | 0000 0000 0000 0000 0000 0000 0000      | 00 00 00 00   | 00 00 00 00      |
| 非正規化数    | 0000 0000 0000 0000 0000 0000 0001      | 00 00 00 01   | 01 00 00 00      |
| $\infty$ | 0111 1111 1000 0000 0000 0000 0000 0000 | 7f 80 00 00   | 00 00 80 7f      |
| NaN      | 0111 1111 1000 0000 0000 0000 0000 0001 | 7f 80 00 01   | 01 00 80 7f      |

- · 0 = 全てのbitが0
- ・非正規化数 = 指数部が0、仮数部が0以外
- ・∞ = 指数部が255、仮数部が0
- · NaN = 指数部が255、仮数部が0以外

# おしまい