Determinent

Let A be n x n matrix, $(A = (a_{ij})_{ij})$

Definition:

- det(a) = formula
 - o A_{ii} = obtained by deleting rows I and col j of matrix A

Cofactors of A

• C_{ij} = formula

Cofactor expansion across row i

• Det(A) = $a_{i1}c_{i1} + a_{i2}c_{i2} + ... + a_{in}c_{in}$

Cofactor expansion across col j

• Det(A) = $a_{1j}c_{1j} + a_{2j}c_{2j} + ... + a_{nj}c_{nj}$

Equivalent to transpose

• $Det(A) = det(A^T)$

Properties

- If [A] R_i -> R_i+cR_i [B], det(A) = det(B)
 - Row summation thing doesn't change determinant
- If [A] R_i -> R_i+R_i [B], det(A) = -det(B)
 - Swapping row flips sign of determinant
- If [A] R_i -> R_i+cR_i [B], c(det(A)) = det(B)
 - Scaling row does change determinant
- If [A] REF -> [V] has no use of row scaling
 - O Det(A) = (-1)^r det(V)
 - o R: # of row interchainging
 - V: in REF (triangular matrix)
 - Det(V) = product of the main design of entries of V
- Det(AB) = det(A) det(B) = det(B) det(A) = det(BA)
 - AB != BA
- A⁻¹ exists (det(A) != 0)
 - \circ Det(A A⁻¹) = det(I_n) = 1
 - O Det(A)det(A⁻¹) = 1 =>
 - $Det(A^{-1}) = [1 / det(A)]$

Inverse formula

- If det(A) != 0
 - o $A^{-1} = [1/det(A)] Adj A, Adj A = [C_{11} C_{21} ... C_{n1}, C_{12} C_{22} ... C_{n2}, ..., C_{1n} C_{2n} C_{nn}]$

Vector Spaces

(V, +, *) a vector space

- A subset H of V is a subspace of V if....
 - o **0** vector is in H
 - o If **u** and **v** are in H, than u+v is in H
 - o If u is in H and c is in R, then cu is in H
- Any substet W = Span $(v_1, v_2, ..., v_p)$ where $v_1 v_2 v_p$ are in V is a substapce of V
- Let A be an mxn matrix [vectors $a_1, a_2, ..., a_n$]
 - O Nul(A) = { vector x in $R^n \mid Ax = 0$ } is a subspace of R^n }
 - O Col(a) = Span($a_1, a_2,, a_n$) is a subspace of R^m
 - o Row(A) = span(rows of A) is a subspace of Rⁿ

T: Rⁿ -> R^m a linear transformation with standard matrix A

- \bullet T(x) = Ax
- $Ker(T) = \{ x \text{ in } R^n \mid T(x) = 0 \}$
 - $\bigcirc \{x \text{ in } R^n \mid Ax = 0\} = \text{Nul(A)}$
- $Im(T) = \{T(x) \mid x \text{ in } R^n\} = Col(A)$

Bases

V a vector space

- A basis for V is a spanning set of V which is linearly independent
- If x = c1v1 + c2v2 + cpvp is the parametric vector form of solution of Ax=0
 - {v1, v2, ..., vp} is basis for Nul(A)
- The pivot columns of A form a basis for Col(A)
- The non-zero rows of REF of A form a basis for Row(A)

Spanning Set Theorem

V is a vector space and H a subspace of V

H = Span(v1, v2, ..., vp)

If Vi = c1v1 + c2v2 + ... + c(i-1)v(i-1) + c(i+1)v(i+1) + + cpvp, then

H = Span(V1, v2,..., v(i-1), v(i+1), vp)

Coordinate Systems

Let $B = \{b1, b2,, bn\}$ be a basis for V

- For any u in V, there exists a unique set of scalars c1, c2, cn such that
 - U = c1b1 + c2b2 + ... + cnbn
 - \circ [u]_b = [c1,, c2, ..., cn]
 - B-coordinate vector of u

Change of Basis

• Her notes were entirely untinteligble

Things?

- Dim(V) = # vectors in a basis for V
- Dim(Nul(A)) = # free variables in Ax = 0
- Dim(Col(A) = #pivot columns of A
- Dim(row(A)) = #pivots in A

Let A be m x n matrix

- Rank(A) = dim(Col(A)) = dim(Row(A))
 - \circ Row(A) = col(A^T)
- Dim(Col(At) = dim(Row(A) = rank(A)
- Rank(A) + dim(Nul(A)) = n = #columns of A
- Rank(A) <= min(m, n)