EEE422/6082 Computational Vision

Feature Detectors and Descriptors

Ling Shao

Many keypoint slides from Grauman&Leibe

Overview of Keypoint Matching

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Main challenges

- Change in position and scale
- Change in viewpoint
- Occlusion
- Articulation

Goals for Keypoints

Detect points that are repeatable and distinctive

Choosing interest points

- If you wanted to meet a friend would you say
 - a) "Let's meet on campus."
 - b) "Let's meet on Green street."
 - c) "Let's meet at Green and Wright."
 - Corner detection
- Or if you were in a secluded area:
 - a) "Let's meet in the Plains of Akbar."
 - b) "Let's meet on the side of Mt. Doom."
 - c) "Let's meet on top of Mt. Doom."
 - Blob (valley/peak) detection

Choosing interest points

- Corners
 - "Let's meet at Green and Wright."
- Peaks/Valleys
 - "Let's meet on top of Mt. Doom."

Many Existing Detectors Available

Hessian & Harris Laplacian, DoG Harris-/Hessian-Laplace Harris-/Hessian-Affine EBR and IBR MSER Salient Regions

Others...

[Beaudet '78], [Harris '88] [Lindeberg '98], [Lowe 1999] [Mikolajczyk & Schmid '01] [Mikolajczyk & Schmid '04] [Tuytelaars & Van Gool '04] [Matas '02] [Kadir & Brady '01]

K. Grauman, B. Leibe

Harris Detector – Responses [Harris88]

So far: can localize in x-y, but not scale

Automatic Scale Selection

How to find corresponding patch sizes?

K. Grauman, B. Leibe

Automatic Scale Selection

• Function responses for increasing scale (scale signature)

Automatic Scale Selection

• Function responses for increasing scale (scale signature)

Automatic Scale Selection

• Function responses for increasing scale (scale signature)

Automatic Scale Selection

• Function responses for increasing scale (scale signature)

Automatic Scale Selection

• Function responses for increasing scale (scale signature)

Automatic Scale Selection

• Function responses for increasing scale (scale signature)

What Is A Useful Signature Function?

• Laplacian-of-Gaussian = "blob" detector

Laplacian-of-Gaussian (LoG)

Results: Laplacian-of-Gaussian

K. Grauman, B. Leibe

Difference-of-Gaussian (DoG)

• Difference of Gaussians as approximation of the Laplacian-of-Gaussian

K Grauman B Leihe

DoG – Efficient Computation

• Computation in Gaussian scale pyramid

Results: Lowe's DoG

K. Grauman, B. Leibe

Orientation Normalization

- Compute orientation histogram
- [Lowe, SIFT, 1999]
- · Select dominant orientation
- Normalize: rotate to fixed orientation

Harris-Laplace [Mikolajczyk '01]

1. Initialization: Multiscale Harris corner detection

Computing Harris function Detecting local maxima

Harris-Laplace [Mikolajczyk '01]

- 1. Initialization: Multiscale Harris corner detection
- Scale selection based on Laplacian (same procedure with Hessian ⇒ Hessian-Laplace)

Maximally Stable Extremal Regions [Matas '02]

- Based on Watershed segmentation algorithm
- Select regions that stay stable over a large parameter range

K. Grauman, B. Leibe

Example Results: MSER

Available at a web site near you...

- For most local feature detectors, executables are available online:
 - http://robots.ox.ac.uk/~vgg/research/affine
 - http://www.cs.ubc.ca/~lowe/keypoints/
 - http://www.vision.ee.ethz.ch/~surf

K. Grauman, B. Leibe

Local Descriptors

- · The ideal descriptor should be
 - Robust
 - Distinctive
 - Compact
 - Efficient
- Most available descriptors focus on edge/gradient information
 - Capture texture information
 - Color rarely used

K. Grauman, B. Leibe

Local Descriptors: SIFT Descriptor

Details of Lowe's SIFT algorithm

- Run DoG detector
 - Find maxima in location/scale space
 - Remove edge points
- · Find all major orientations
 - Bin orientations into 36 bin histogram
 - Weight by gradient magnitude
 - Weight by distance to center (Gaussian-weighted mean)
- For each (x,y,scale,orientation), create descriptor:
 - Sample 16x16 gradient mag. and rel. orientation
 - Bin 4x4 samples into 4x4 histograms
 - Threshold values to max of 0.2, divide by L2 norm
 - Final descriptor: 4x4x8 normalized histograms

Lowe IJCV 2004

Matching SIFT Descriptors

- Nearest neighbor (Euclidean distance)
- Threshold ratio of nearest to 2nd nearest descriptor

SIFT Repeatability

Lowe IJCV 2004

SIFT Repeatability

SIFT Repeatability

Lowe IJCV 2004

Local Descriptors: SURF

Fast approximation of SIFT idea

Efficient computation by 2D box filters & integral images
⇒ 6 times faster than SIFT
Equivalent quality for object identification

GPU implementation available

Feature extraction @ 200Hz (detector + descriptor, 640×480 img) http://www.vision.ee.ethz.ch/~surf

[Bay, ECCV'06], [Cornelis, CVGPU'08]

K. Grauman, B. Leibe

Local Descriptors: Shape Context

Belongie & Malik, ICCV 2001

K Grauman B Leih

Choosing a detector

- What do you want it for?
 - Precise localization in x-y: Harris
 - Good localization in scale: Difference of Gaussian
 - Flexible region shape: MSER
- Best choice often application dependent
 - Harris-/Hessian-Laplace/DoG work well for many natural categories
 - MSER works well for buildings and printed things
- Why choose?
 - Get more points with more detectors
- · There have been extensive evaluations/comparisons
 - [Mikolajczyk et al., IJCV'05, PAMI'05]
 - All detectors/descriptors shown here work well

Comparison of Keypoint Detectors

				Rotation	Scale	Affine	Localization			
Feature Detector	Corner	Blob	Region	invariant	invariant	invariant	Repeatability	accuracy	Robustness	Efficiency
Harris	V			V			+++	+++	+++	++
Hessian		√		√			++	++	++	+
SUSAN	✓			V			++	++	++	+++
Harris-Laplace	_	(√)					+++	+++	++	+
Hessian-Laplace	(√)	V		√	V		+++	+++	+++	+
DoG	(√)	V		V	V		++	++	++	++
SURF	(√)	√		√	√		++	++	++	+++
Harris-Affine		(v)		V	V		+++	+++	++	++
Hessian-Affine	(√)	V		√	√	√	+++	+++	+++	++
Salient Regions	(√)	V		√	√	(√)	+	+	++	+
Edge-based	V			V	V	V	+++	+++	+	+
MSER			- √	V	- V		+++	+++	++	+++
Intensity-based			√	V	V	V	++	++	++	++
Superpixels			√	V	(v)	(v)	+	+	+	+

Tuytelaars Mikolajczyk 2008

Choosing a descriptor

- Again, need not stick to one
- For object instance recognition or stitching, SIFT or variant is a good choice

Things to remember

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG

- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT

