Example 2.5.3

If matrix of a linear transform on R^3 relative to basis $B = \{(1,0,0),(0,1,0),(0,0,1)\}$ is $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}$. Then find the linear transform matrix *T* relative to basis $B_1 = \{(0, 1, -1), (1, -1, 1), (-1, 1, 0)\}.$

First we find linear transform.

We have

$$[T:B] = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}^{t}$$

That is transpose of coefficient matrix. So that

$$T(u_1) = T(1,0,0) = 0(1,0,0) + 1(0,1,0) - 1(0,0,1) = (0,1,-1)$$

$$T(u_2) = T(0,1,0) = 1(1,0,0) + 0(0,1,0) - 1(0,0,1) = (1,0,-1)$$

$$T(u_3) = T(0,0,1) = 1(1,0,0) - 1(0,1,0) + 0(0,0,1) = (1,-1,0)$$

 $(x, y, z) \in \mathbb{R}^3$ be any element and *B* is basis for \mathbb{R}^3

$$\therefore (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

$$T(x, y, z) = xT(1, 0, 0) + yT(0, 1, 0) + zT(0, 0, 1)$$
$$= x(0, 1, -1) + y(1, 0, -1) + z(1, -1, 0)$$
$$T(x, y, z) = (y + z, x - z, -x - y)$$

which is linear operator T on \mathbb{R}^3 .

Now we have to find a matrix of *T* relative basis.

$$B_1 = \{(0,1,-1), (1,-1,1), (-1,1,0)\}$$

Let $(a,b,c) \in \mathbb{R}^3$ be any element Let

$$(a,b,c) = l(0,1,-1) + m(1,-1,1) + n(-1,1,0)$$

 $(a,b,c) = (m-n,l-m+n,-l+m)$
 $\Rightarrow a = m-n; \ b = l-m+n; \ c = -l+m$

Now

$$l-m+n=b$$

 $l=b+m-n=b+a$ $| l-m+n=b |$ $m=a+n$
 $l=a+b$ $| n=b-l+m |$ $m=a+b+c$

$$B_1 = \{(0, 1-1), (1, -1, 1), (-1, 1, 0)\}$$

... we get

$$(a,b,c) = (a+b)(0,1,-1) + (a+b+c)(1,-1,1) + (b+c)(-1,1,0)$$

and we have

$$T(x, y, z) = (y + z, x - z, -x - y)$$

Now

$$T(0,1,-1) = (0,1,-1) = 1(0,1,-1) + 0(1,-1,1) + 0(-1,1,0)$$

$$T(1,-1,1) = (0,0,0) = 0(0,1,-1) + 0(1,-1,1) + 0(-1,1,0)$$

$$T(-1,1,0) = (1,-1,0) = 0(0,1,-1) + 0(1,-1,1) + (-1)(-1,1,0)$$

$$\therefore [T; B_1] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Example 2.5.4

Let T be linear transform on \mathbb{R}^2 and $\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$ be matrix of T with respect to usual basis of \mathbb{R}^2 . Then, find that matrix of T with respect to $B_1 = \{(1,2), (5,6)\}$.

Ans:

$$[T:B_1] = \begin{bmatrix} \frac{11}{2} & \frac{41}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix}$$

Definition 2.5.5 (Isomorphism of a vector space)

Let U(F) and V(F) are two vector spaces then a linear transformation $f:U\to V$ is called Isomorphism, if

- \bullet f is one-one
- \bigcirc f is onto

Definition 2.5.6 (Isomorphism of a vector space)

 $f: U \rightarrow V$ is called Isomorphism if

- $\mathbf{0}$ f is a linera transform
- 2 f is one-one

Problem 2.5.7

Let
$$f: V_2(\mathbb{R}) \to V_2(\mathbb{R})$$
 be $f(x, y) = (y, x)$. Prove f is Isomorpism.

To prove one-one:

Let $U, V \in V_2(\mathbb{R})$

$$f(u) = f(v)$$

$$f(x,y) = f(p,q)$$

$$(y,x) = (q,p)$$

$$y = q; x = p$$

$$(x,y) = (p,q)$$

$$u = v$$

i.e., f is one-one

To prove onto:

$$\forall (x,y) \in V_2(\mathbb{R})$$

 $\exists (y,x) \in V_2(\mathbb{R}) \text{ such that } f(x,y) = (y,x)$

To prove linear transform:

Let $u, v \in V_2(\mathbb{R})$ and $\alpha, \beta \in \mathbb{R}$, then

$$f(\alpha u + \beta v) = f[\alpha(x, y) + \beta(p, q)]$$

$$= f[\alpha x + \beta p, \alpha y + \beta q]$$

$$= (\alpha y + \beta q, \alpha x + \beta p)$$

$$= \alpha(y, x) + \beta(q, p)$$

$$= \alpha f(x, y) + \beta(p, q)$$

$$= \alpha f(u) + \beta f(v)$$

So, f is a linear transform, one-one, onto. i.e., f is an Isomorpism.

Problem 2.5.8

Let $T: P_2 \to V_3 \to \{(x_1, x_2, x_3) | x_i \in \mathbb{R}\}$ (P_2 -set of all polynomials of degree ≤ 2) $\{a_0 + a_1x + a_2x^2 | a_0, a_1, a_2 \in \mathbb{R}\}$. Prove that T is Isomorphism. $T(a_0 + a_1x + a_2x^2) = (a_0, a_1, a_2)$

To prove *T* is one-one:

$$T(p_1) = T(p_2)$$

$$T(a_0 + a_1x + a_2x^2) = T(b_0, b_1x + b_2x^2)$$

$$(a_0, a_1, a_2) = (b_0, b_1, b_2)$$

$$a_0 = b_0; a_1 = b_1; a_2 = b_2$$

$$a_0 + a_1x + a_2x^2 = b_0 + b_1x + b_2x^2$$

$$p_1(x) = p_2(x)$$

$$p_1 = p_2$$

T is one-one.

To prove *T* is onto:

 $T: p_2 \to v_3$. For every $(a_0, a_1, a_2) \in v_3$ we have a polynomial $p = a_0 + a_1x + a_2x + a_3x + a_4x + a_5x + a_5$ a_2x^2 in p_2 . Such that

$$T(p) = (a_0, a_1, a_2)$$

T is onto.

T is one-one and onto.

To prove *T* is linear.

$$T(\alpha(a_0 + a_1x + a_2x^2) + \beta(b_0 + b_1x + b_2x^2))$$

$$= T((\alpha a_0 + \beta b_0) + (\alpha a_1 + \beta b_1)x + (\alpha a_2 + \beta b_2)x^2)$$

$$= (\alpha a_0 + \beta b_0, \alpha a_1 + \beta b_1, \alpha a_2 + \beta b_2)$$

$$= (\alpha a_0, \alpha a_1, \alpha a_2) + (\beta b_0, \beta b_1, \beta b_2)$$

$$= \alpha(a_0, a_1, a_2) + \beta(b_0, b_1, b_2)$$

$$T(\alpha p_1 + \beta p_2) = \alpha T(p_1(x)) + \beta T(p_2(x))$$

This proves *T* is linear.

 \therefore *T* is an isomorphic.

To find its inverse:

$$T^{-1}: v_3 \to p_2$$

 $T^{-1}(a_0, a_1, a_2) = a_0 + a_1 x + a_2 x^2$

Example 2.5.9

$$T: v_2 \to v_2 \ T(x_1, x_2) = (x_1, -x_2)$$

