

Mục tiêu học tập

- 1. Mô tả được chỉ định khí máu động mạch
- 2. Đánh giá được tiêu chuẩn khí máu động mạch
- 3. Mô tả được giới hạn bình thường của PaO_2 , $PaCO_2$, pH.
- 4. Phân tích được oxy hóa máu
- 5. Phân tích được PaCO₂
- 6. Phân tích được cân bằng toan kiềm

Nội dung bài giảng

- 2. Chỉ định khí máu động mạch
- 3. Sự phù hợp pH máu và [H+]
- 4. Chỉ số PaO₂
- 5. Chỉ số PaCO₂
- 6. Chỉ số AaDO₂
- 7. Chỉ số pH
- 8. Phân tích thăng bằng toan kiềm

Đại cương

- Các chỉ số đo trực tiếp: $P_{\rm O2}$, $P_{\rm CO2}$ và pH
- Các chỉ số tính toán được: HCO₃-A, HCO₃-st, BB, BE, BEecf, CO₂T, AaDPO₂
- Các chỉ số đọc trên toán đồ: Q_{SP}/Q_T , V_D/V_T

Đại cương

- Khả năng oxy hoá máu từ phổi: PaO₂, AaDPO₂ và Shunt Q_{SP}/Q_T
- Khả năng thông khí của phổi: P_{CO2} và pH, V_D/V_T
- Tình trạng thăng bằng toan kiềm: P_{CO2}, và pH, HCO₃-A, HCO₃-st, BB, BE, BEecf, CO₂T

Chỉ định của khí máu động mạch

- Khi sử dụng oxy: để cho chỉ định, định mức độ và theo dõi hiệu quả.
- Để theo dõi mức thông khí phế nang, thông khí khoảng chết.
- · Khi thở máy: để cài đặt các thông số máy thở, theo dõi hiệu quả và quyết định cai máy.

Chỉ định của khí máu động mạch

- Đánh giá chức năng hô hấp trước khi giải phẫu lồng ngực hay vùng bụng cao.
- Trong hồi sức cấp cứu và các tình trạng nguy kich khác để theo dõi tình trang cung cấp oxy cho mô.

Phân áp oxy trong máu động mạch - PaO₂

- Phân áp oxy (P_{O2}) trong máu là áp suất phần của khí oxy đã cân bằng với máu.
- PO₂ trong phế nang ký hiệu là PAO₂
- PO₂ trong máu động mạch ký hiệu là PaO₂.
- PO₂ trong máu tĩnh mạch trộn ký hiệu là PūO₂

Phân áp oxy trong máu động mạch - PaO₂

 Giá trị dự đoán của PaO₂ khi cho thở oxy, P_B = 760 mmHg

FiO ₂	PaO ₂
	(mmHg)
0,30	> 150
0,40	> 200
0,50	> 250
1,00	> 500

PaO₂ để đánh giá hiệu quả khi cho thở oxy

PaO ₂ (mmHg)	Ý nghĩa và cách xử lý	
PaO ₂ < 60	 Giảm oxy máu chưa điều chỉnh được, nếu PaO₂ vẫn nhỏ hơn 60 mmHg dù có tăng FiO₂. 	
60 < PaO ₂ < 100	 Giảm oxy máu đã điều chỉnh được. Nhưng bệnh nhân sẽ bị giảm oxy trong máu nếu giảm FiO₂. 	
100 < PaO ₂ < PaO ₂ dự đoán (bảng 6)	 Bệnh nhân sẽ bị giảm oxy máu nếu ngừng oxy, nhưng có thể giảm FiO₂ được. 	
PaO ₂ > PaO ₂ dự đoán	 Giảm oxy máu đã điều chỉnh quá dư. Có thể không giảm oxy máu khi ngưng oxy, nhưng phải giảm FiO₂ dần dần. 	

Khuynh áp oxy giữa phế nang và máu động mạch (AaDPO₂)

 - AaDPO₂ là sự chênh lệch giữa phân áp oxy trong phế nang và trong máu động mạch.

 $AaDPO_2 = P_AO_2 - PaO_2$

 $= FiO_2(P_B - 47) - PaCO_2/RQ - PaO_2$

= 150 - PaCO₂/ RQ - PaO₂

- Trị số bình thường của AaDPO₂ theo FiO₂

FiO ₂	AaDPO₂ (mmHg)			
0,21	< 10, ở người 20 tuổi			
> 0,3	20-30, ở người trên 60 tuổi			
1	< 50, ở người 30-60 tuổi			

Phân áp carbon dioxide trong máu động mạch – PaCO₂

- PCO₂ trong phế nang ký hiệu là PACO₂
- PCO₂ trong máu động mạch ký hiệu là PaCO₂
- PCO₂ trong máu tĩnh mạch trộn ký hiệu là PūCO₂

Khuynh áp oxy giữa phế nang và máu động mạch (AaDPO₂)

Ý nghĩa

- Không thay đổi theo FiO₂
- Bình thường > 0,75
- Chỉ chính xác khi FiO₂ > 0,30 và PaO₂ <100mmHg
- AaDPO₂ gia tăng có thể do sự bất thường trong oxy hóa máu động mạch do phổi hoặc tim.
- Nếu PaO₂, PaCO₂, và pH bất thường, mà AaDPO₂ bình thường, thì các rối loạn này không do bệnh lý của nhu mô phổi.

Phân áp carbon dioxide trong máu động mạch – PaCO₂

• Giới hạn bình thường của PaCO₂

	PaCO ₂ (mmHg)
Khoảng trị số bình thường	40 ± 5
Khoảng giới hạn chấp nhận được	40 ± 10

- PaCO₂ không thay đổi theo tuổi tác.
- PaCO₂ có thể giảm khi đối tượng gia tăng thông khí
- PaCO₂ cao (hypercapnia) khi lượng CO₂ trong máu động mạch trên 45 mmHg.
- PaCO₂ thấp (hypocapnia) khi lượng CO₂ trong máu động mạch dưới 35 mmHg.

Phân áp carbon dioxide trong máu động mạch – PaCO₂

- Ý nghĩa: PaCO₂ phản ánh trực tiếp việc mức độ thông khí phế nang có phù hợp với tốc độ chuyển hóa của cơ thể hay không.
- Dùng PaCO₂ để đánh giá tình trạng thông khí phế nang

PaCO ₂ Tình trạng thông (mmHg) khí		Ý nghĩa	
40 ± 5	Bình thường	Mức thông khí phù hợp với tình trạng chuyển hóa của cơ thể.	
> 45 Giảm thông khí phế nang		Mức thông khí thấp hơn nhu cầu thải CO ₂ của cơ thể.	
< 35	Tăng thông khí phế nang	Mức thông khí cao hơn nhu cầu thải CO ₂ của cơ thể.	

Chỉ số pH máu

- Nồng độ H⁺ trong huyết tương là 0,0000004 mol/L.
- pH huyết tương = -log[H+] = 7,40.
- pHa là pH của huyết tương máu động mạch.
- Giới hạn bình thường và chấp nhận được của pH huyết tương máu động mạch (pHa)

Giới hạn	рНа
Bình thường	$7,40 \pm 0,05$
Chấp nhận được	$7,40 \pm 0,10$

Chỉ số pH máu

pН	Trạng thái toan kiềm
< 7,35	Toan
> 7,45	Kiềm

 pH trong giới hạn bình thường thì trạng thái thăng bằng toan kiềm bình thường. Nhưng cần lưu ý tình trạng rối loạn thăng bằng toan kiềm hỗn hợp đưa đến pH bình thường.

Chỉ số bicarbonate

- HCO₃- phản ánh nồng độ bicarbonate trong huyết tương
- Khoảng giới hạn của HCO₃-

Giới hạn	HCO ₃ -A (mmol/L)
Bình thường	24 ± 2
Chấp nhận được	24 ± 4

Chỉ số bicarbonate HCO₃-

- HCO₃- dùng trong chẩn đoán, phân loại và định nguyên nhân rối loạn thăng bằng toan kiềm.
- Phải luôn luôn phân tích HCO₃-A cùng với pH và pCO₂.

HCO₃⁻ tăng do	HCO₃⁻ giảm do
 Kiềm chuyển hóa hoặc 	 Toan chuyển hóa hoặc
- Đáp ứng bù cho toan hô	 Đáp ứng bù cho kiềm hô
hấp	hấp

Phân tích thăng bằng kiềm toan					
Rối loạn	H⁺	рН	HCO ₃ -	PaCO ₂	Bù trừ
Toan chuyển hóa	1	\	\	\	11–15 mmHg PaCO ₂ / -10 mmol HCO ₃ -
Kiềm chuyển hoá	1	1	1	1	+6 → 7mmHg PaCO ₂ /+10 mmol HCO ₃ -
Toan hô hấp	1	\	1	1	- Cấp: +1 mmol HCO ₃ -/ +10 mmHg PaCO ₂ - Mạn: +3,5 mmol HCO ₃ - /+10mmHg PaCO ₂
Kiềm hô hấp	1	1	\	\	- Cấp: -2,5 mmol HCO ₃ -/ -10 mmHg PaCO ₂ - Mạn: -5 mmol HCO ₃ -/- 10mmHg PaCO ₂

Phân tích thăng bằng kiềm toan

• pH = pK + log $\frac{[HCO_3]-}{H_2CO_3}$

• pK: hằng số phân ly của H₂CO₃

рН	Trạng thái toan kiềm
< 7,35	Toan
> 7,45	Kiềm

Phân tích thăng bằng kiềm toan

- Toan do hô hấp: ứ CO₂
 - Giảm thông khí
 - V/Q bất xứng
- Kiềm hóa do hô hấp : giảm CO₂
 - Giảm O₂
 - Cao độ
 - pH giảm
 - CNS

Phân tích thăng bằng kiềm toan

- Toan hoá do chuyển hóa (không do CO₂)
 - CO₂→ H₂CO₃: respiratory acid
 - Các acid khác : metabolic acid hay Fied acid
 - Metabolic acid tăng : thận, đưa vào, tạo ra
 - Mất bases
- Kiềm do chuyển hóa
 - Thuốc
 - Ói
 - Lợi tiếu

Các bước phân tích kết quả khí máu

- 2. Kiểm tra xem kết quả phân tích khí trong máu có chính xác không?
 - HCO3- máu tĩnh mạch (đo từ total CO2) = HCO3- A máu động mạch (đo từ phương trình Henderson Hassebach) ± 3 mmol/L.
- 3. Tính A-aDO₂ : ñaùnh giaù söï trao ñoåi khí taïi phoåi

Các bước phân tích kết quả khí máu

- 5. Xem PaCO2: đánh giá tình trạng thông khí.
- 6. Đánh giá tình trạng thăng bằng toan kiềm.
- Xác định nguyên nhân gây rối loạn PaO2, PaCO2 và thăng bằng toan kiềm (cần có anion gap, osmotal gap, Cl- nước tiểu, K+ huyết tương...)

Các điểm cần nhớ

- Xác định nguyên nhân rối loạn thăng bằng toan kiềm: anion gap, osmolal gap, K⁺ huyết tương, Cl⁻ nước tiểu, urine anion gap...
- Điện giải và thăng bằng toan kiềm

CÁM ƠN SỰ THEO DÕI CỦA QUÍ VỊ

