Possible Research Topics USRA 2025

Atishaya Maharjan

University of Manitoba Geometric, Approximation, and Distributed Algorithms (GADA) lab

May 12, 2025

Possible Research Topics

Geometric Spanning Trees and Hypergraphs that Minimizes the Wiener Index

2 Inside-Out Dissection

Wiener Index in Graphs

• Let G = (V, E) be a weighted undirected graph and let $\delta_G(u, v)$ denote the **shortest** (minimum-weight) path between vertices u and v in G.

Wiener Index in Graphs

- Let G = (V, E) be a weighted undirected graph and let $\delta_G(u, v)$ denote the **shortest** (minimum-weight) path between vertices u and v in G.
- The Wiener index is defined as:

$$W(G) = \sum_{u,v \in V} \delta_G(u,v)$$

Wiener Index in Graphs

- Let G = (V, E) be a weighted undirected graph and let $\delta_G(u, v)$ denote the **shortest** (minimum-weight) path between vertices u and v in G.
- The Wiener index is defined as:

$$W(G) = \sum_{u,v \in V} \delta_G(u,v)$$

• Given an undirected graph G = (V, E) and a non-negative weight function $w : E \to \mathbb{R}^+$, the goal is to find a spanning tree T of G that minimizes the Wiener index.

- Given an undirected graph G = (V, E) and a non-negative weight function $w : E \to \mathbb{R}^+$, the goal is to find a spanning tree T of G that minimizes the Wiener index.
- The routing cost c(T) of a spanning tree T of G is:

$$c(T) = \sum_{u,v \in V} \delta_T(u,v)$$

- Given an undirected graph G = (V, E) and a non-negative weight function $w : E \to \mathbb{R}^+$, the goal is to find a spanning tree T of G that minimizes the Wiener index.
- The routing cost c(T) of a spanning tree T of G is:

$$c(T) = \sum_{u,v \in V} \delta_T(u,v)$$

The Minimum Routing Cost Spanning Tree (MRCST) problem

- Input: A graph G = (V, E) with a non-negative weight function $w: E \to \mathbb{R}^+$.
- Output: A spanning tree T of G that minimizes the routing cost c(T).

- Given an undirected graph G = (V, E) and a non-negative weight function $w : E \to \mathbb{R}^+$, the goal is to find a spanning tree T of G that minimizes the Wiener index.
- The routing cost c(T) of a spanning tree T of G is:

$$c(T) = \sum_{u,v \in V} \delta_T(u,v)$$

The Minimum Routing Cost Spanning Tree (MRCST) problem

- Input: A graph G = (V, E) with a non-negative weight function $w: E \to \mathbb{R}^+$.
- Output: A spanning tree T of G that minimizes the routing cost c(T).
- The MRCST problem is NP-Complete. There exists a PTAS for MRCST.

Problem Statement: Geometric Spanning Trees

Reference: WADS 2023 [Abu-Affash et al., 2023]

• Input: A set P of n points in the plane.

Problem Statement: Geometric Spanning Trees

Reference: WADS 2023 [Abu-Affash et al., 2023]

- Input: A set P of n points in the plane.
- Goal: Construct a spanning tree on P that minimizes the Wiener index.

Problem Statement: Geometric Spanning Trees

Reference: WADS 2023 [Abu-Affash et al., 2023]

- Input: A set P of n points in the plane.
- Goal: Construct a spanning tree on P that minimizes the Wiener index.
- The weight function is defined as the Euclidean distance between points.

 \bullet Spanning tree of P that minimizes the Wiener index is planar.

- \bullet Spanning tree of P that minimizes the Wiener index is planar.
- When P is in convex position, this can be solved in polynomial time.

- ullet Spanning tree of P that minimizes the Wiener index is planar.
- When P is in convex position, this can be solved in polynomial time.
- The hamiltonian path of *P* that minimizes the Wiener index is not necessarily planar.

- ullet Spanning tree of P that minimizes the Wiener index is planar.
- When P is in convex position, this can be solved in polynomial time.
- The hamiltonian path of P that minimizes the Wiener index is not necessarily planar.
- Computing such a hamiltonian path is NP-Hard.

Hypergraph

A hypergraph H = (V, E) is a pair where V is a set of vertices and E is a set of hyperedges, each of which is a subset of V.

Hypergraph

A hypergraph H = (V, E) is a pair where V is a set of vertices and E is a set of hyperedges, each of which is a subset of V.

Distance in Hypergraphs

The **distance** between two vertices u and v in a hypergraph H is defined as the minimum number of hyperedges in a chain connecting u and v.

- A **chain** is a sequence of hyperedges where each consecutive pair shares at least one vertex.
- The distance is denoted as $\delta_H(u, v)$.

Hypergraph

A hypergraph H = (V, E) is a pair where V is a set of vertices and E is a set of hyperedges, each of which is a subset of V.

Distance in Hypergraphs

The **distance** between two vertices u and v in a hypergraph H is defined as the minimum number of hyperedges in a chain connecting u and v.

- A **chain** is a sequence of hyperedges where each consecutive pair shares at least one vertex.
- The distance is denoted as $\delta_H(u, v)$.

k-uniform hypergraph

A hypergraph is **k-uniform** if every hyperedge has cardinality k.

Wiener Index in Hypergraphs

Wiener Index in Hypergraphs

Wiener Index in Hypergraphs

The **Wiener index** of a hypergraph H is defined as:

$$W(H) = \sum_{u,v \in V} \delta_H(u,v)$$

Some facts about HyperGraphs

Some facts about HyperGraphs

• Finding a spanning tree of general hypergraphs is NP-Complete, while spanning tree of 3-uniform hypergraphs has a polynomial time algorithm using matroid matching.

[Goodall and de Mier, 2011]

Some facts about HyperGraphs

- Finding a spanning tree of general hypergraphs is NP-Complete, while spanning tree of 3-uniform hypergraphs has a polynomial time algorithm using matroid matching.

 [Goodall and de Mier, 2011]
- Finding a spanning tree of a k-uniform 2-regular hypergraph is NP-Complete for any $k \geq 4$. [Demaine and Rudoy, 2018]

• Focus: Define and study the **Wiener index** in various classes of hypergraphs.

- Focus: Define and study the **Wiener index** in various classes of hypergraphs.
- Distance: Find a suitable weighted/unweighted distance metric for hypergraphs.

- Focus: Define and study the **Wiener index** in various classes of hypergraphs.
- Distance: Find a suitable weighted/unweighted distance metric for hypergraphs.
- Goal: Characterize structures that minimize/maximize the Wiener index.

- Focus: Define and study the **Wiener index** in various classes of hypergraphs.
- Distance: Find a suitable weighted/unweighted distance metric for hypergraphs.
- Goal: Characterize structures that minimize/maximize the Wiener index.

Side note: We could also explore **spatially embedded hypergraphs**, drawing inspiration from [Abu-Affash et al., 2023], and their Wiener index.

Problem Statement: Inside-Out Dissection

Reference: Open problem was mentioned in CCCG 2024. [Akpanya et al., 2024] answered the open problem and raised some new questions.

Problem Statement: Inside-Out Dissection

Reference: Open problem was mentioned in CCCG 2024. [Akpanya et al., 2024] answered the open problem and raised some new questions.

Inside-out dissection

Let P be a polygon (polyhedron). An **inside-out dissection** of P is a decomposition of P into finitely many polygons (polyhedra) P_1, \ldots, P_k such that:

- $P_1, \ldots P_k$ can be rearranged by only applying rotations and translations to form a polygon (polyhedron) P' that is congruent to P.
- The boundary of P' is composed of internal cuts of P.

Visualizing the Problem

Visualizing the Problem

Chalk and Talk

• General n-gon: inside-out dissection possible with at most 2n + 1 pieces.

- General n-gon: inside-out dissection possible with at most 2n + 1 pieces.
- Regular polygons (e.g., equilateral triangle, square, regular pentagon): at most 6 pieces suffice.

- General n-gon: inside-out dissection possible with at most 2n + 1 pieces.
- Regular polygons (e.g., equilateral triangle, square, regular pentagon): at most 6 pieces suffice.
- Extension to 3D:
 - If a polyhedron can be tiled with regular tetrahedra and octahedra, it can be inside-out dissected.

- General n-gon: inside-out dissection possible with at most 2n + 1 pieces.
- Regular polygons (e.g., equilateral triangle, square, regular pentagon): at most 6 pieces suffice.
- Extension to 3D:
 - If a polyhedron can be tiled with regular tetrahedra and octahedra, it can be inside-out dissected.
- Tools used include symmetry arguments and constructive dissections.

• Can a triangle be inside-out dissected with 3 pieces?

- Can a triangle be inside-out dissected with 3 pieces?
- Can general n-gons be inside-out dissected with lesser than 2n + 1 pieces? Maybe convex polygons can be done with constant pieces like regular polygons?

- Can a triangle be inside-out dissected with 3 pieces?
- Can general n-gons be inside-out dissected with lesser than 2n+1 pieces? Maybe convex polygons can be done with constant pieces like regular polygons?
- They have a method of general polyhedra, but the number of pieces required is quite large. Therefore, an efficient method for inside-out dissections of polyhedra is still open.

References I

Abu-Affash, A. K., Carmi, P., Luwisch, O., and Mitchell, J. S. B. (2023).

Geometric spanning trees minimizing the wiener index.

- Akpanya, R., Rivkin, A., and Stock, F. (2024). On inside-out dissections of polygons and polyhedra.
- Demaine, E. D. and Rudoy, M. (2018). Tree-residue vertex-breaking: a new tool for proving hardness.
- Goodall, A. and de Mier, A. (2011).
 Spanning trees of 3-uniform hypergraphs.
 Advances in Applied Mathematics, 47(4):840–868.

 $\label{eq:theorem} The \ end. \\ maharjaa@umanitoba.ca$