

東京には、日本のでは、これのでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、「Anderson Taranta Control of the Property of the Pro

Figure 1 (A-F)

Construct Forms Comprising at Least one Single-Stranded Region

Figure 2 (A-F)

Functional Forms of the Construct

Figure 3 (A-C)

Three Constructs with an RNA Polymerase Covalently Attached to a Transcribing Cassette

(日本は一大変の大学)

職者のはあるでは、ないのであるのはない。

第八十八百天 有以一次安丁軍軍軍

Figure 4 (A-C)

Three Constructs with Promoters for Endogenous RNA Polymerase

M13mp18. Seq Length: 7250 AATGCTACTA CTATTAGTAG AATTGATGCC ACCTITICAG **AATGTATCTA** ATAGCTAAAC AGGITATIGA CCATTIGCGA AAATGAAAAT 51. OGTTOGCAGA . ATTGGGAATC TAAATCTACT 101. ATGGTCAAAC **GTTGCATATT** TAAAACATGT COGTACTITA CTTOCAGACA TGGAATGAAA 151. CTCTAAGCCA TOOGCAAAAA AGCAATTAAG **TGAGCTACAG** CACCAGATTC 201 TOCTGACCTG CAATTAAAGG **TACTCTCTAA TGACCTCTTA** TCAAAAGGAG 251 GAAGCTCGAA TTAAAACGCG CTTCCCGTCT GGTTCGCTTT TTGGAGTTTG 301. **GCAATCCGCT TCTTTTTGAT** TCTTTCGGGC TTCCTCTTAA **ATATTTGAAG** CTATAATAGT CAGGGTAAAG **ACCTGATTIT TGATTTATGG** TTGCTTCTGA 401. **GTTTAAAGCA** TTTGAGGGGG **ATTCAATGAA** TTTCTGAACT **TCATTCTCGT** 451. TATTGGACGC TATOCAGTCT AAACATTITA **TATTTATGAC** GATTCCCCAG 501. **ACTICITITIE** CAAAAGOCTC TOGCTATITT CTCTGGCAAA CTATTACCCC TATGATAGIG TIGCICTIAC AAAOGAGGGT GIOGICICGI **GGTTTTTATC** GITGAATGTG **GCCGTTATGT ATCTGCATTA AATTCCTTTT** TATGCCTCGT 651. TAATGTTGTT **ATCTCAACTG ATGAATCTTT** CTACCTGTAA **GTATTCCTAA** 701. GTOCTGACTG **GTTTTATTAA CGTAGATTTT** TCTTCCCAAC COGTTAGTTC **CCAGTTCTTA AAATOGCATA AGGTAATTCA** CAATGATTAA **GTATAATGAG TACTACTOGT** TCTGGTGTTC AACCCCAATT AAACCATCTC **AGTTGAAATT** CACTGAATGA **GCAGCTTTGT** TACGTTGATT **AAGCTTATT** TOGTCAGGGC 901. ATTACTCTTG **ATGAAGGTCA** CTTGTCGAAG TGGGTAATGA ATATOOGGTT TCTTTCAAAG TGTACACCGT TCATCTGTCC 1001 GOCAGOCTAT **COCCUTEGIC** GICIGOGOCT **ATGATTGACC COGTITICALITY** 1051 TTGGTCAGTT GAGCAGGTCG CACAATTTAT 1101 AAGTAACATG **CCGATTTCGA** TTGGTATAAT COCTREGERE CGTTGTACCTT TGTTTCGCCCC 1151 TACAAATCTC TGTTTTAGTG TATTCTTTCG CCTCTTTCGT TTTAGGTTCG 1201 CAAAGATGAG

Figure 5

M13mp18 Nucleic Acid Sequence

1251	TGCCTTCGTA	GTGGCATTAC	GTATITTACC	CGTTTAATGG	AAACTTCCTC
1301	ATGAAAAAGT	CTTTAGTCCT	CAAAGCCTCT	GTAGCCGTTG	CTACCCTCGT
1351	TOOGATGCTG	TCTTTCGCTG	CTGAGGGTGA	CGATCCCCCA	AAAGCGGCCT
1401	TTAACTCCCT	GCAAGOCTCA	COCACCGAAT	ATATOGGTTA	TECCTICCCCC
1451	ATEGITGITG	TCATTGTCGG	OCCAACTATO	GGTATCAAGC	TGTTTAAGAA
1501	ATTCACCTCG	AAAGCAAGCT	GATAAACOGA	TACAATTAAA	GECTECTITT
1551	GGAGCCTTTT	TTTTTGGAGA	TTTTCAACGT	GAAAAAATTA	TTATTCGCAA
1601	TTCCTTTAGT	TGTTCCTTTC	TATTCTCACT	COCCTGAVAC	TGTTGAAAGT
1651	TGTTTAGCAA	AACCCCATAC	AGAAAATTCA	TTTACTAACG	TCTGGAAAGA
1701	CGACAAAACT	TTAGATCGTT	ACGCTAACTA	TGAGGGTTGT	CTGTGGAATG
1751	CTACAGGCGT	TGTAGTTTGT	ACTOGTGACG	AAACTCAGTG	TTACGGTACA
1801	TEGETTECTA	песеспес	TATCCCTGAA	AATGAGGGTG	GTEGCTCTGA
1851	œgiœœgi	TCTGAGGGTG	GOOGTTCTGA	CECTICECCECT	ACTAAACCTC
1901	CTGAGTACGG	TGATACACCT	ATTOOGGGCT	ATACTTATAT	CAACCCTCTC
1951	GACCECACTT	ATCCCCCTCGG	TACTGAGCAA	AACCCCCTA	ATOCTAATOC
2001	TTCTCTTGĀG	GAGTICTICAGC	CTCTTAATAC	TTTCATGTTT	CAGAATA
2051	CGTTCCCAAA	TA030A0333	GCATTAACTG	TTTATACGGC	CACTGTTACT
2101	CAAGGCACTG	ACCOCCUTTAA	AACTTATTAC	CAGTACACTC	CTGTATCATC
2151	AAAAGCCATG	TATGACGCTT	ACTEGAACEG	TAAATTCAGA	GACTEXX:CTT
2201	CAAGGCACTG	ACCCCGTTAA	AACTTATTAC	CAGTACACTC	CTGTATCATC
2151	AAAAGOCATG	TECCTCAACC	TOCTGTCAAT	GC16303303	ecticlegies
220	TOCATTCTGG	CTTTAATCAA	GATOCATTOG	TTTGTGAATA	TCAAGGCCAA
225	TOGTCTGACC	TGCCTCAACC	TOCTGTCAAT	6016303303	eciciegieg
230	тесттетест	GEOGRATICIG	AGGGTGGTGG	CICTGAGGGT	GGOGGTTCTG
235	AGGGTGGCGG	CTCTGAGGGA	CECCETTOCC	GIGGIGGCIC	TEGTTOCEGT
240	1 GATTITGATT	ATGAAAAGAT	GGCAAACGCT	AATAAGGGGG	CTATGACCGA
245	1 AAATGOOGAT	GAAAAQGQGC	TACAGTCTGA	COCTAMAGEC	AAACTTGATT
			Figure 5		

M13mp18 Nucleic Acid Sequence

		~~.~~.	~~~~~	ATCOTTTCAT	TEGTGACGIT
2501	CTGTOGCTAC	TGATTAOGGT	CCTCCTATCG	ATGGTTTCAT	
2551	TOOGGOOTIG	CTAATGGTAA	TEGTECTACT	GGTGATTTTG	CTGGCTCTAA
2601	TTOCCAAATG	CCTCAAGTOG	GTGACCGTGA	TAATTCACCT	TTAATGAATA
2651	ATTTCCGTCA	ATATTTACCT	TOOCTOOCTC	AATCOGTTGA	ATGTCGCCCT
2701	TTTGTCTTTA	COCCTOCATAA	ACCATATGAA	TTTTCTATTG	ATTGTGACAA
2751	AATAAACTTA	TTCCGTCGTG	TCTTTGCGTT	TCTTTTATAT	GTTGCCACCT
2801	TTATGTATGT	ATTITCTACG	TTTGCTAACA	TACTGOGTAA	TAAGGAGTCT
2851	TTATCATGCC	AGTICTITIG	GGTATTCCGT	TATTATTGCG	THOCTOGGT
2901	TTCCTTCTGG	TAACTTTGTT	COOCTATCTG	CTTACTTTTC	TTAMAMGGG
2951	CTTCGGTAAG	ATAGCTATTG	CTATTTCATT	GTTCTTGCT	CTTATTATTG
3001	GGCTTAACTC	AATTCTTGTG	G GTTATCTCT	CTGATATTAG	COCTCAATTA
3051	COCTCTGACT	TTGTTCAGGG	TGTTCAGTTA	ATTCTCCCCGT	CTAATGOGCT
3101	тссстаттт	TATGTTATTC	TCTCTGTAAA	GGCTGCTATT	TTCATTTTTG
3151	ACGTTAAACA	AAAAATCGTT	TCTTATTTGG	ATTOGGATAA	ATAATATGGC
3201	TGTTTATTTT	GTAACTGGCA	AATTAGGCTC	TOGAMAGACG	CTOGTTAGOG
3251	TTGGTAAGAT	TCAGGATAAA	ATTGTAGCTG	GGTGCAAAAT	AGCAACTAAT
3301	CTTGATTTAA	GGCTTCAAAA	OCTIOCOGCAA	GTCCGGAGGT	TOGCTAAAAC
3351	COCTOCOGTT	CTTAGAATAC	COGATAACCC	TTCTATATCT	GATTTGCTTG
3401	CTATTGGGGG	COGTAATGAT	TOCTAGGAATG	AAAATAAAA	COOCTION
3451	GITCTCGATG	AGTGCGGTAC	TTGGTTTAAT	ACCOGNICT	GGAATGATAA
3501	I GGAAAGACAG	COGATTATTG	ATTGGTTTCT	ACTOCTOGT	AAATTAGGAT
3551	I GGGATATTAT	ттстст	CAGGACTTAT	CTATTGTTGA	TAMACAGGOG
360	1 OGTTCTGCAT	TAGCTGAACA	TGTTGTTTAT	TGTCGTCGTC	TOGACAGAAT
365	1 TACTITACCT	TTTGTCGGTA	CTTTATATTC	TCTTATTACT	GOCTOGAAAA
370	1 TEOCTICTECC	TAAATTACAT	сптеесств	TTAAATATGG	CGATTCTCAA
375	1 TTAAGCOCTA	CTGTTGAGCG	TTGGCTTTAT	ACTOGTAAGA	ATTTGTATAA
380	1 CGCATATGAT	ACTAMACAGG	CTTTTCTAG	TAATTATGAT	TOOGGIGITT

' Figure 5

3851	ATTCTTATTT	AACGCCTTAT	TTATCACACG	GIOGGIATTI	CAAACCATTA
3901	AATTTAGGTC	AGAAGATGAA	ATTAACTAAA	ATAATATTGA	AAAAGTTTTC
3951	TOGOGTTCTT	TGTCTTGCGA	TTGGATTTGC	ATCAGCATTT	ACATATAGTT
4001	ATATAACCCA	ACCTAAGOOG	GAGGTTAAAA	AGGTAGTCTC	TCAGACCTAT
4051	GATTTTGATA	AATTCACTAT	TGACTCTTCT	CAGOGTICTTA	ATCTAAGCTA
4101	TOGCTATGTT	TTCAAGGATT	CTAAGGGAAA	ATTAATTAAT	AGOGAOGATT
4151	TACAGAAGCA	AGGTTATTCA	CTCACATATA	TIGATITATG	TACTGTTTCC
4201	ATTAAAAAAG	GTAATTCAAA	TGAAATTGTT	AAATGTAATT	AATTTTGTTT
4251	TCTTGATGTT	TGTTTCATCA	TCTTCTTTTG	CTCAGGTAAT	TGAAATGAAT
4301	AATTOCCCTC	TGCGCGATTT	TGTAACTTGG	TATTCAAAGC	AATCAGGCGA
4351	AATCCGTTATT	GTTICTCCCCG	ATGTAAAAGG	TACTGTTACT	GTATATTCAT
4401	CTGACGTTAA	ACCTGAAAAT	CTACGCAATT	TCTTTATTTC	TGTTTTACGT
4451	GCTAATAATT	TTGATAATGGT	TGGTTCAATT	CCTTCCATAA	TTCAGAAGTA
4501	TAATCCAAAC	AATCAGGATT	ATATTGATGA	ATTGCCATCA	TCTGATAATC
4551	AGGAATATGA	TGATAATTCC	e CTCCTTCTG	GIGGITICIT	TGTTCCCCAA
4601	AATGATAATG	TTACTCAAAC	TTTTAAAATTT	AATAAOGTTC	GGGCAAAGGA
4651	TTTAATACGA	GTTGTCGAAT	TGTTTGTAAA	GTCTAATACT	TCTAAATCCT
4701	CAAATGTATT	ATCTATTGAC	GOCTICTAATC	TATTAGTTGT	TAGTGCTCCT
4751	AAAGATATTT	TAGATAACCT	TOCTCAATTC	CTTTCTACTG	TTGATTTGCC
4801	AACTGACCAG	ATATTGATTG	AGGGTTTGAT	ATTTGAGGTT	CAGCAAGGTG
4851	ATGCTTTAGA	TTTTCATTT	ectecteect	CTCAGOGTGG	CACTGTTGCA
4901	GGCGGTGTTA	ATACTGACOG	OCTCACCTCT	GTTTTATCTT	CTECTEGTEG
4951	TTOGTTOGGT	ATTTTTAATG	GOGATGTTTT	AGGGCTATCA	GTTOGOGCAT
5001	TAAAGACTAA	TAGCCATTCA	AAAATATTGT	CTGTGCCACG	TATTCTTACG
5051	CTTTCAGGTC	AGAAGGGTTC	TATCTCTGTT	GEOCAGAATG	TCCCTTTTAT
5101	TAAAGACTAA	TAGCCATTCA	AAAATATTGT	CTGTGCCACG	TATTCTTACG
5151	CGATTGAGCG	TCAAAATGTA	GGTATTTCCA	TGAGCGITTT	TOCTGTTGCA

Figure 5

M13mp18 Nucleic Acid Sequence

5201	ATGGCTGGCG	GTAATATTGT	TCTGGATATT	ACCAGCAAGG	COGATAGTTT
5251	GAGTTCTCT	ACTCAGGCAA	GTGATGTTAT	TACTAATCAA	AGAAGTATTG
5301	CTACAACGGT	TAATTTGOGT	GATEGACAGA	CTCTTTTACT	COGIICOCCIC
5351	ACTGATTATA	AAAACACTTC	TCAAGATTCT	GGOGTACOGT	TOCTGTCTAA
5401	AATCCCTTTA	ATCOGCCTCC	TGTTTAGCTC	COECTICIGAT	TOCANOGAGG
5451	AAAGCACGTT	ATACGTGCTC	GTCAAAGCAA	CCATAGTACG	COCCTGTAG
5501	CCCCCCATTA	ACCOCCCCCCCC	GIGIGGIGGI	TACGCCCAGC	GTGACCGCTA
5551	CACTTGCCAG	CCCCTACCC		тосттст	остостт
5601	CTCCCCACCT	TOCOCCOCCTT	TOCCOGTICAA	GCTCTAAATC	GEGGECTOCC
5651	TITAGGGTTC	CGATTTAGTG	CTTTACGGCA	CCTCCGACCCC	AAAAAACTTG
5701	ATTTGGGTGA	TOGTTCACGT	AGTGGGCCAT	COCCTGATA	GACGGTTTTT
5751	OGCCCTTTGA	OGTIGGAGTC	CACGITCITT	AATAGTGGAC	TCTTGTTCCA
5801	AACTGGAACA	ACACTCAACC	CTATCTOGGG	CTATTCTTTT	GATTTATAAG
5851	GGATTTTGCC	GATTTCGGAA	CCACCATCAA	ACAGGATTTT	CCCCTCCTCC
5901	GGCAAACCAG	CGT(77400GC	TTGCTGCAAC	TCTCTCAGGG	OCAGGGGGTG
5951	AAGGGCAATC	AGCIGITICOC	व्याटाख्टांढ	GTGAAAAGAA	AAACCACCCT
6001	CCCCCCCAAT	ACCICAMACCC	CCTCTCCCCCG	COCCTTOCCC	GATTCATTAA
6051	TECACCTECC	ACGACAGGTT	TOOOGACTOG	AMGOGGGCA	GTGAGCGCAA
6101	CCCAATTAAT	GTGAGTTAGC	TCACTCATTA	GGCACCCAG	GCTTTACACT
6151	TTATGCTTCC	GECTOSTATG	TTGTGTGGAA	TTGTGAGCGG	ATAACAATTT
6201	CACACAGGAA	ACAGCTATGA	CCATGATTAC	GAATTOGAGC	TOGGTACCOG
6251	GOGATOCTOT	AGAGTOGACO	TGCAGGCATG	CAAGCTTGGC	ACTEGEOCGTC
6301	GTTTTACAAC	GTOGTGACTG	GGAAAACCCT	GGOGTTACCC	AACTTAATOG
6351	CCTTGCAGCA	CAATCCCCTT	TOGOCAGCTG	COCTAATACC	GAAGAGGCCCC
6401	GCACOGATOG	COCTITOCCAA	CAGTTGCCCA	GOCTGAATGG	CGAATGGCCC
6451	THECCICAT.	TTCCCGCCACC	AGA4GCGGTG	CCCGGAAAGCT	COCTIGGAGTG
6501	CONTINUE	GAGGCCGATA	व्यवाव्याव्या	CCCTCAAAC	TEGCAGATEC

Figure 5

M13mp18 Nucleic Acid Sequence

6551	ACGGTTACGA	TGOGCOCCATC	TACACCAACG	TAACCTATCC	CATTACGGTC
6601	AATCCCCCCGT	TIGTTCCCAC	GGAGAATOOG	ACCECTION	ACTOGCTCAC
6651	ATTTAATGTT	GATGAAAGCT	GGCTACAGGA	AGGCCAGACG	CGAATTATTT
6701	TTGATGGGGT	TOCTATTGGT	TAAAAAATGA	GCTGATTTAA	CAAAAATTTA
6751	ACGCGAATTT	TAACAAAATA	TTAACGTTTA	CAATTTAAAT	ATTTGCTTAT
6801	ACAATCTTCC	TGTTTTTEGG	GCTTTTCTGA	TTATCAACOG	GGGTACATAT
6851	GATTGACATG	CTAGTTTTAC	GATTACCGTT	CATCGATTCT	спаптаст
6901	CCAGACTCTC	AGGICAATGAC	CTGATAGOCT	TTGTAGATCT	CTCAAAAATA
6951	GCTACCC_TCT	COCCECATIGAA	TITATCAGCT	AGAACGGTTG	AATATCATAT
7001	TGATGGTGAT	TTGACTGTCT	COCCCTTTC	TCACCCTTTT	GAATCTTTAC
7051	CTACACATTA	CTCAGGCATT	GCATTTAAAA	TATATGAGGG	TTCTAAAAAT
7101	TTTIATCCTT	GCGTTGAAAT	AAAGGCTTCT	CCCCCANANG	TATTACAGGG
7151	TCATAATGTT	TTTGGTACAA	COGATTTAGC	TTTATGCTCT	GAGGCTTTAT

Figure 5

COMPLEMENTARY TO M₁₃

POSITION 645	5 ' 3' AGCAACACTATCATA	POSITION 631	M ₁₃ /1
615	ACGACGATAAAAACC	601	M ₁₃ /2
585	TTTTGCAAAAGAAGT	571	M ₁₃ /3
555	AATAGTAAAATGTTT	541	M ₁₃ /4
525	CAATACTGCGGAATG	511	M ₁₃ /5
495	TGAATCCCCCTCAAA	481	M ₁₃ /6
465	AGAAAACGAGAATGA	451	M ₁₃ /7
435	CAGGICTITACCCTG	421	M ₁₃ /8
405	AGGAAAGOGGATTGC	391	M ₁₃ /9
375	AGGAAGOOOGAAAGA	361	M ₁₃ /10

COMPLEMENTARY TO SS PHAGE DNA

POSITION	5' * 3'	POSITION	***
351	ATATTTGAAGTCTTT	366	M ₁₃ /11
371	TCTTTTTGATGCAAT	386	M ₁₃ /12
391	CTATAATACTCAGGG	406	M ₁₃ /13
411	TGATTTATGGTCATT	426	M ₁₃ /14
431	GTTTAAAGCATTTGA	446	M ₁₃ /15
451	TATTTATGACGATTC	466	M ₁₃ /16
471	TATOCAGTCTAAACA	486	M ₁₃ /17
491	CTCTGGCAAAACTTC	506	M ₁₃ /18
511	TCGCTATTTTGGTTT	526	M ₁₃ /19
531	AAACGAGGGTTATGA	546	M _{13/2} 0

Figure 6

Primers for Nucleic Acid Production
Derived from M13mp18 Sequence

Figure 7

Appropriate M13mp18 Restriction Sites

Lane 1: from calf thymus + Taq digested mp18 amplification reaction

Lane 2: from Taq digested mp18 amplification reaction

Lane 3: from calf thymus amplification reaction

Lane 4: øX174 Hinf1 size marker

Figure 8

Lane 1: no template

Lane 2: mp18 template, phosphate buffer

Lane 3: Mspl/pBR322 size marker Lane 4: mp18 template, MOPS buffer

Figure 9

あることには、日の大名のある、明しまうてまたのでは、 一番には、日本は

Top= (+) Template
Bottom= (-) Template

Lane 1: phosphate buffer

Lane 2: MES Lane 3: MOPS Lane 4: DMAB Lane 5: DMG

Lane 6: pBR322/Mspl size marker

Figure 10

1978年の東京教育の大学の教育を持ちている。

Lane 1: DMAB buffer, no template

Lane 2: DMAB buffer, mp18 template

Lane 3: DMG buffer, no template

Lane 4: DMG buffer, mp18 template

Lane 5: No reaction

Lane 6: 200 ng Taq I digested mp18 size marker/positive control

Figure 11

First Time Interval Second Time Interval

Agarose Gel Analysis

Lane 1: lambda Hind III marker

Lane 2: Amp/Untreated

Lane 3: Amp/Kinased

Lane 4: Amp/Kinased/Ligated

Lane 5: PCR/Untreated

Lane 6: PCR/Kinased

Lane 7: PCR/Kinased/Ligated

Lane 8: øX174/Hinf1 marker

小 英語とは、 はいというというないできる

というななを持ちているとのところとのできるというないというとは日本の教をとれているというとは日本の教をとれているというというとは日本の教をとれているというというというというというというというというという

Figure 13

1 2 3 4 5 6

Lane 1: Primers alone

Lane 2: Primers + taq digested M13 DNA

Lane 3: Molecular weight markers

Lane 4: Primers + RNA

Lane 5: Primers alone

Lane 6: M13 digested DNA

Buffer was dimethyl amino glycine, pH 8.6

Figure 14

Lane 1: Primers alone

Lane 2: Primers + taq digested M13 DNA

Lane 3: Molecular weight markers

Lane 4: Primers + RNA

Lane 5: Primers alone

Lane 6: M13 digested DNA

Buffer was dimethyl amino glycine, pH 8.6

Figure 15

Figure 16

Figure 17

pIBI 31-BH5-2

fmet AUG of Lac z (T7 Promotor region.... LAC PROMOTOR.ATG ACC ATG ATT ACG CCA GAT ATC AAA TTA ATA CGA CTC ACT ATA

oligo 50-mer

3'- tac t'aa t'gc ggt' ct'a t'ag t'Vt aat' tat' gct' gag t'ga t'at' c-5'
10 base insert

pIBI 31 BSII/HCV

{"- T7 Promotor Region } MULTIPLE CLONING SITE + 390 BASE INSERT CTA /TAG TGA GTC CGT ATT AAT.... "- T7 Start Signal 5'-ct'a t'ag t'ga gt'c gt'a tt'a at'......