Algorithmik kontinuierlicher Systeme

Felix Leitl

2. Juli 2024

Inhaltsverzeichnis

Direkte Verfahren	2
LR-Zerlegung	2
Ziel	2
Algorithmus	2
Komplexität	2
Anwendung	2
LRP-Zerlegung	2
QR-Zerlegung	2
Ziel	2
Housholder-Spiegelungen	3
Givens-Rotationen	3
Cholesky-Zerlegung	3
Lineare Ausgleichsrechnung	4
Matrizen	4
Orthogonal	4
Skalarprodukt	4
Tridiagonalmatrix	4
Diskretisierung	4
Quantisierung	4
Interpolation	4
Bezier Kurven	4
SVD	4
Iterative Verfahren	4

Direkte Verfahren

Direkte Verfahren Lösen ein Problem nach endlich vielen Schritten. Verwendung: kleine, vollbesetzte Matrizen.

LR-Zerlegung

Ziel

$$A = LR$$

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ * & 1 & & & \\ \vdots & & \ddots & \vdots \\ * & & \dots & 1 \end{pmatrix} \begin{pmatrix} * & * & \dots & * \\ 0 & * & & & \\ \vdots & & \ddots & \vdots \\ 0 & & \dots & * \end{pmatrix}$$

Algorithmus

- 1. i-te Zeile in R übertragen
- 2. i-te Spalte dividiert durch a_{ii} in L über nehmen. Erstes Element der Spalte gleich 1 setzten
- 3. Mit i-ter Zeile die i-te Spalte eliminieren

Komplexität

 $\mathcal{O}(n^3)$

Anwendung

- $det(A) = det(L) \times det(R) = 1 \times det(R)$
- Lösen mehrerer GLS:
 - -Ly = b mit Vorwärtssubstitution $\mathcal{O}(n^2)$
 - -Rx = y mit Rückwärtssubstitution $\mathcal{O}(n^2)$

LRP-Zerlegung

$$A = PLR$$

QR-Zerlegung

Ziel

$$A = QR$$

Housholder-Spiegelungen

Mit einer Housholder-Spiegelung in eriner Spalte Nullen einfügen (außer Diagonalelement) \rightarrow nach n-1 Schritten erhält man die Dreiecksmatrix R

$$R = H_{n-1} \dots H_2 H_1 A$$

$$Q = (H_{n-1} \dots H_2 H_1)^{-1} = H_1 H_2 \dots H_{n-1}$$

Givens-Rotationen

Mit einer Givens-Rotation ein Element (unterhalb der Diagonalen) zu Null machen \to nach n(n-1)/2 Schritten erhält man die Dreiecksmatrix R

$$J_{ij}(\varphi) = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & c & -s & \\ & & & \ddots & \\ & & s & c & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}$$

Wobei c_1 an Position jj ist und c_2 an Position ii

$$c = \cos(\varphi) = \frac{\sigma \cdot a_{jj}}{\sqrt{a_{jj}^2 + a_{ij}^2}}$$
$$s = \sin(\varphi) = \frac{-\sigma \cdot a_{ij}}{\sqrt{a_{jj}^2 + a_{ij}^2}}$$
$$\sigma = \operatorname{sign}(a_{ij})$$

Ergebnis:

$$R = J_{m,n^*} \dots J_{2,1} A$$

$$Q = J_{2,1}^T \dots J_{m,n^*}^T$$

$$n^* = \min\{m - 1, n\}$$

Cholesky-Zerlegung

Wenn A symmetrisch und positiv definit ist kann man A faktorisieren in

$$A = LDL^T$$

Wobei L das L der LR-Zerlegung ist und D der Diagonalanteil von R

Lineare Ausgleichsrechnung

Matrizen

Orthogonal

Eine Matrix ist orthogonal, falls eine der Bedingungen erfüllt ist:

- $Q^TQ = Id$
- $QQ^T = Id$
- Spalten oder Zeilen bilden eine Orthonomalbasis
- Die Abbildung Q ist winkel- und längentreu
- Qerhält das Skalarpr
dukt: $Qx\circ Qy=x\circ y$

Skalarprodukt

$$x \circ y = \sum_{i=1}^{n} x_i y_i$$

Tridiagonalmatrix

Die inverse einer tridiagonalen Matrix ist in der Regel voll besetzt

Diskretisierung

Quantisierung

Interpolation

Bezier Kurven

SVD

Iterative Verfahren