Projeto: Mapas de Karnaugh + XOR/XNOR

ELEVENTH EDITION

Digital Systems

Principles and Applications

Tradução e adaptação: Profa. Denise Stringhini

Ronald J. Tocci

Monroe Community College

Neal S. Widmer

Purdue University

Gregory L. Moss

Purdue University

- Método gráfico para simplificar equações lógicas ou tabelas verdade - também chamado de mapa K.
- Teoricamente pode ser utilizado para qualquer número de variáveis de entrada - praticamente limitada a 5 ou 6 variáveis.

Os valores da tabela de verdade são colocados no mapa K. É mostrado aqui um mapa de duas variáveis.

Α	В	X
0	0	$1 \rightarrow \overline{AB}$
0	1	0
1	0	0
1	1	1 → AB

$$\left\{ x = \overline{A}\overline{B} + AB \right\}$$

Α	В	С	D	X
0	0	0	0	0
0	0	0	1	1 → ABCD
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1 → ĀBCD
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1 → ABCD
1	1	1	0	0
1	1	1	1	1 → ABCD

$$\left\{ \begin{array}{l} X = \overline{A}\overline{B}\overline{C}D + \overline{A}B\overline{C}D \\ + AB\overline{C}D + ABCD \end{array} \right\}$$

	ĒΒ	СD	CD	CD
ĀB	0	1	0	0
ĀВ	0	1	0	0
АВ	0	1	1	0
ΑĒ	0	0	0	0

Um quadrado adjacente num mapa K difere em apenas uma variável tanto horizontalmente quanto verticalmente.

Uma expressão SOP pode ser obtida por um OR com todos os quadrados que contêm um 1.

Agrupar 1s em grupos adjacentes de 2, 4, ou 8 vai resultar em uma expressão simplificada.

Looping groups of 2 (Pairs)

Groups of 4 (Quads)

Groups of 8 (Octets)

Quando os maiores grupos possíveis forem agrupados, apenas os termos comuns são colocados na expressão final.

 O agrupamento também pode ser realizado entre a parte superior, inferior e laterais.

Processo completo de simplificação por mapa-K:

- Construir o mapa-K, colocar 1s, tal como indicado na tabela de verdade.
- Marcar 1s que não são adjacentes a qualquer outro 1.
- Agrupar octetos que têm um ou mais 1s não agrupados.
- Agrupar quartetos que têm um ou mais 1s não agrupados.
- Agrupar quaisquer pares necessários para incluir 1s ainda não agrupados.
- Formar a soma de produtos de termos gerados em cada agrupamento.

Quando uma variável aparece em ambas formas (complementadas e não-complementadas) dentro de um agrupamento, essa variável é eliminada da expressão.

As variáveis que não variam dentro do grupo aparecem na expressão final.

Exemplos:

https://drive.google.com/open?id=1szjvSMFmBzwwCHeXRsxohEP6FwjsjBRB