1. Show the details to form the tri-diagonal system for n = 4.

$$-u''(x) = -e^{x}$$

$$u''(x) = \frac{u_{i+1} - 2u_{i} + u_{i-1}}{h^{2}}$$

$$u_{i-1} - 2u_{i} + u_{i+1} = he^{x_{i}}$$

$$n = 4$$

$$i = 1, 2, 3$$

$$u_{0} = u(0) = 1, u_{1} = u(1) = e$$

$$\begin{cases} u_{0} - 2u_{1} + u_{2} = he^{x_{1}} \\ u_{1} - 2u_{2} + u_{3} = he^{x_{2}} \\ u_{2} - 2u_{3} + u_{4} = he^{x_{3}} \end{cases}$$

$$\therefore \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \end{bmatrix} = \begin{bmatrix} he^{x_{1}} - u_{0} \\ he^{x_{2}} \\ he^{x_{3}} - u_{4} \end{bmatrix}$$

2. Plot the results u(x) vs. x for each n. Also plot the exact solution v(x) vs. x on the same figure for comparison purpose.

3. Compute the error for each grid using and the order of accuracy

	0 0	,
n	error	order
4	0.00079992252424295265	-
8	0.00020088630181660621	1.993481
16	5.0257888931277454e-005	1.998957
32	1.2566420588606754e-005	1.999776

Convergence history: residual vs. iteration number

Solution along the horizontal line y = 0.5

Pressure vs. x

Velocity vs. x

Density vs. x

Upwind Scheme

$$\begin{bmatrix} 3D + F & -D & & & & & & \\ -(D+F) & 2D + F & -D & & & & & \\ & -(D+F) & 2D + F & -D & & & & \\ & & -(D+F) & 2D + F & -D & & & \\ & & & -(D+F) & 2D + F & \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \\ \phi_5 \end{bmatrix} = \begin{bmatrix} (2D+F)\phi_A \\ 0 \\ 0 \\ 0 \\ 2D\phi_B \end{bmatrix}$$

QUICK Scheme

$$\begin{bmatrix} 4D + 7F/8 & -4D/3 + 3F/8 \\ -(D+F) & 2D + 3F/8 & -D + 3F/8 \\ F/8 & -(D+7F/8) & 2D + 3F/8 & -D + 3F/8 \\ F/8 & -(D+7F/8) & 2D + 3F/8 & -D + 3F/8 \\ F/8 & -(4D/3 + 3F/4) & 4D - 3F/8 \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \\ \phi_5 \end{bmatrix} = \begin{bmatrix} 8D/3 + 5F/4 \\ F/8 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Cell	Xi	exact	upwind	error	QUICK	error
1	0.1	0.96534656219	0.9558684385194	0.0094781	0.9648259863070	0.0005205
		449588	3915	24	4230	76
2	0.3	0.87132390330	0.8499526909660	0.0213712	0.8706981836152	0.0006257
		269460	9283	12	4154	2
3	0.5	0.73105857863	0.7016706443914	0.0293879	0.7308764687337	0.0001821
		000490	0792	34	2292	1
4	0.7	0.52180730306	0.4940757791868	0.0277315	0.5225679061335	0.0007606
		061474	4931	24	5342	03
5	0.9	0.20964108215	0.2034429679004	0.0061981	0.2122036860537	0.0025626
		325949	6737	14	5556	04

