Pontes e Trilhas

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

21 de junho de 2016

Plano de Aula

- Pensamento
- Revisão
 - Caminhos e circuitos em grafos
 - Cortes
- Ontes
- 4 Trilhas

Bônus (0,5 pt)

Desafio

- E 1 151
- Candidaturas até amanhã (21 de junho, 13h30);
- Apresentação e resposta por escrito → Terça (28 de junho, 15h30);
- 20 minutos de apresentação.

Referência

FEOFILOFF, P. Exercícios de Teoria dos Grafos, BCC, IME-USP, 2012.

Sumário

- Pensamento
- 2 Revisão
 - Caminhos e circuitos em grafos
 - Cortes
- 3 Pontes
- 4 Trilhas

Pensamento

Pensamento

Frase

A árvore quando está sendo cortada, observa com tristeza que o cabo do machado é de madeira.

Quem?

Provérbio Árabe

Sumário

- Pensamento
- 2 Revisão
 - Caminhos e circuitos em grafos
 - Cortes
- 3 Pontes
- 4 Trilhas

Caminhos e circuitos em grafos

Caminho em um grafo

Se um caminho $v_1 ldots v_p$ é subgrafo de G, dizemos simplesmente que $v_1 ldots v_p$ é um caminho em G ou que G contém o caminho $v_1 ldots v_p$.

Circuitos em um grafo

Aplica-se identicamente a circuitos.

Caminhos e circuitos em grafos

Nomenclatura

Se v e w são os dois extremos de um caminho em G, é cômodo dizer que o caminho vai de v a w ou que começa em v e termina em w.

Cuidado!

Use estas expressões com cautela pois caminhos são objetos estáticos e não têm orientação.

Caminhos e circuitos em grafos

Caminho máximo em G

Um caminho P em um grafo G é máximo se G não contém um caminho de comprimento maior que o de P.

Caminho <u>maximal em *G*</u>

Um caminho P em G é maximal se não existe caminho P' em G tal que $P \subset P'$.

Caminho Hamiltoniano

Um caminho é **hamiltoniano** se contém todos os vértices do grafo.

Cortes

Definição

- Suponha que X é um conjunto de vértices de um grafo G.
- O corte associado a X (ou franja de X) é o conjunto de todas as arestas que têm uma ponta em X e outra em $V_G \setminus X$.

Notação

O corte associado a X será denotado por

$$\partial_G(X)$$

Outros autores...

Alguns preferem escrever $\delta(X)$ ou $\nabla(X)$.

Cortes

Cortes triviais

- ∂(∅);
- $\partial(V_G)$.

Corolário

$$|\partial(\{v\})| = d(v)$$

Grau de um conjunto

- Diremos que $|\partial(X)|$ é o grau de X;
- Denotamos este número como se segue:

$$d(X) := |\partial(X)|$$

Cortes

Corte - Definicão

Um **corte** (= cut = coboundary) em um grafo G é qualquer conjunto da forma $\partial(X)$, em que X é um subconjunto de V_G .

Cuidado

Um corte é um conjunto de arestas, não de vértices.

Sumário

- Pensamento
- Revisão
 - Caminhos e circuitos em grafos
 - Cortes
- Ontes
- 4 Trilhas

Definição

Uma ponte (bridge) em um grafo G é qualquer aresta e tal que

$$c(G-e)>c(G),$$

ou seja, G - e tem mais componentes que G.

Definição

Uma ponte (bridge) em um grafo G é qualquer aresta e tal que

$$c(G-e)>c(G),$$

ou seja, G - e tem mais componentes que G.

Outros nomes

- istmo (isthmus), ou
- aresta de corte (cut edge).

Corolário

Uma aresta a é ponte se e somente se o conjunto $\{a\}$ é um corte do um grafo.

Corolário

Uma aresta a é ponte se e somente se o conjunto $\{a\}$ é um corte do um grafo.

Pontes × Circuitos

Em qualquer grafo, toda aresta é uma ponte ou pertence a um circuito, mas não ambos (E. 1.199).

Sumário

- Pensamento
- Revisão
 - Caminhos e circuitos em grafos
 - Cortes
- 3 Pontes
- 4 Trilhas

Passeio

Um **passeio** (walk) em um grafo é qualquer sequência finita $(v_0, v_1, v_2, \ldots, v_{k-1}, v_k)$ de vértices tal que v_i é adjacente a v_{i-1} para todo i entre 1 e k.

Passeio

Um **passeio** (walk) em um grafo é qualquer sequência finita $(v_0, v_1, v_2, \ldots, v_{k-1}, v_k)$ de vértices tal que v_i é adjacente a v_{i-1} para todo i entre 1 e k.

Detalhe

Os vértices do passeio podem não ser distintos dois a dois.

Passeio

Um **passeio** (walk) em um grafo é qualquer sequência finita $(v_0, v_1, v_2, \ldots, v_{k-1}, v_k)$ de vértices tal que v_i é adjacente a v_{i-1} para todo i entre 1 e k.

Detalhe

Os vértices do passeio podem não ser distintos dois a dois.

Trilha

Uma trilha (trail) é um passeio sem arestas repetidas.

Passeio ou trilha fechados

- Um passeio é fechado se $v_0 = v_k$;
- Uma trilha é fechada se $v_0 = v_k$;

Passeio ou trilha fechados

- Um passeio é fechado se $v_0 = v_k$;
- Uma trilha é fechada se $v_0 = v_k$;

Expressões comuns

- v_0 é a **origem** do passeio;
- v_k é o **término** do passeio;
- o passeio vai de v_0 a v_k ;
- o passeio **liga** v_0 a v_k ;

Passeio simples

Um passeio é **simples** se os seus vértices são distintos dois a dois.

Passeio simples

Um passeio é **simples** se os seus vértices são distintos dois a dois.

Ciclo

Um ciclo é uma trilha fechada.

Passeio simples

Um passeio é **simples** se os seus vértices são distintos dois a dois.

Ciclo

Um ciclo é uma trilha fechada.

Ciclo Euleriano

Um ciclo é **euleriano** se e somente se passa por todas as arestas do grafo.

Pontes e Trilhas

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

21 de junho de 2016

