# **Arbitrarily Close**

A new concept is needed to solve problems that algebra alone cannot solve: arbitrarily close.

### **Arbitrarily Large**

Infinity  $(\infty)$  is not an actual number, but instead is indicative of a process:

- 1. Select a positive number.
- 2. Now select a next number that is larger than the previous number.
- 3. Go to 2.

This is possible because the real numbers are unbounded: for every  $y \in \mathbb{R}$  there exists some  $x \in \mathbb{R}$  such that x > y.



Note that as *y* increases, *x* is pushed to the right.

### Example

# **Definition: Arbitrarily Large**

To say that a value  $x \in \mathbb{R}$  is *arbitrarily large*, denoted by  $x \to \infty$ , means that for every  $y \in \mathbb{R}$ , x > y.

This also works in the negative direction. For  $x \to -\infty$ , select a negative number and then continually select numbers that are less than the previous number. In other words, for every  $y \in \mathbb{R}, x < y$ .



Note that as *y* decreases, *x* is pushed to the left.

### Example

```
\begin{array}{c} -1 \\ -10 \\ -100 \\ -500 \\ -123,456 \\ -4,126,789 \\ -1,000,000,000,000 \\ -1,000,000,000,001 \\ \vdots \end{array}
```

# **Arbitrarily Small**

A number can also be said to be arbitrarily small. Like infinity, this is not an actual number, but is indicative of a process:

- 1. Select a positive number.
- 2. Now select a next positive number that is smaller than the previous number.
- 3. Go to 2.

This is possible because between any two real numbers there are an infinite number of real numbers. Thus, for any value y > 0 there exists some x such that 0 < x < y.



Note that as y decreases, x is squeezed between 0 and y.

### Example

```
\begin{array}{c} 100 \\ 1 \\ \frac{1}{2} \\ \frac{1}{4} \\ \frac{1}{8} \\ 0.1 \\ 0.0001 \\ 0.00005 \\ 0.000000000001 \\ \vdots \end{array}
```

### **Definition: Arbitrarily Small**

To say that a value  $x \in \mathbb{R}^+$  is arbitrarily small, denoted by  $x \to 0^+$ , means that for every  $y \in \mathbb{R}^+, 0 < x < y$ .

The Greek letters epsilon ( $\epsilon$ ) and delta ( $\delta$ ) are typically used to represent arbitrarily small values.

#### **Distance**

The first time students are introduced to the concept of absolute value, they are given a formula:

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

This is a perfectly good definition; however, it lacks meaning. Instead, consider two points on the real number line:



How does one calculate the *distance* from -2 to 3?

$$3 - (-2) = 5$$

How about from 3 to -2:

$$-2 - 3 = -5$$

But distance is an unsigned quantity (different from displacement). Furthermore, the distance from -2 to 3 should be the same as the distance from 3 to -2. Thus, we use absolute value:

$$|3 - (-2)| = |-2 - 3| = 5$$

#### **Definition: Distance**

Let  $x, y \in \mathbb{R}$ . The *distance* from x to y (and from y to x) is given by:

$$d(x,y) = |x - y| = |y - x|$$

Thus, |x| = |x - 0|, which is the distance from x to 0.

# **Arbitrarily Close**

#### **Definition: Arbitrarily Close**

To say that a value  $x \in \mathbb{R}$  is *arbitrarily close* to another value  $c \in \mathbb{R}$ , denoted by  $x \to c$ , means that for all  $\epsilon > 0$ ,  $|x - c| < \epsilon$ . In other words:  $c - \epsilon < x < c + \epsilon$ .



Thus, as  $\epsilon$  gets arbitrarily small, x gets arbitrarily close to c.

### **Definition: Neighborhood**

Let  $x, \epsilon \in \mathbb{R}$  such that  $\epsilon > 0$ . The open interval  $(c - \epsilon, c + \epsilon)$  is called an  $\epsilon$ -neighbohood of x.

Also important is the negation: To say that  $x\not\to c$  means that there exists an  $\epsilon>0$  such that  $|x-c|\ge\epsilon$ .



### **Theorem**

Arbitrarily close is equivalent to equality.

Proof.

 $\implies$  Assume that  $x \to c$ .

ABC that  $x \neq c$ . Thus, there exist some d > 0 such that  $|x - c| \geq d$ . So let  $\epsilon = d$ :

$$|x - c| \ge d = \epsilon$$

This means that there exists an  $\epsilon>0$  such that  $|x-c|\geq \epsilon$  and hence  $x\not\to c$ , contradicting the assumption.

Therefore x = c.

 $\iff$  Assume that x = c

Assume that  $\epsilon > 0$ :

$$|x - c| = 0 < \epsilon$$

Therefore  $x \to c$ .

# Example

Recall that one of the ways of representing a rational number is by using an infinite sequence of repeated decimal digits. For example:

$$\frac{1}{9} = 0.11111\dots = 0.\overline{1}$$

It is easy to mark  $\frac{1}{9}$  on the number line. But how does  $0.\overline{1}$  correspond to this point? As each repeated digit is added, the value  $0.\overline{1}$  gets *arbitrarily close* to  $\frac{1}{9}$ . For every  $\epsilon>0$ , enough digits can eventually be added so that the result is within  $\epsilon$  of  $\frac{1}{9}$ .



Furthermore:

$$\frac{1}{9} = 0.\overline{1}$$

$$\frac{2}{9} = 0.\overline{2}$$

$$\frac{3}{9} = 0.\overline{3}$$

$$\vdots$$

$$\frac{8}{9} = 0.\overline{8}$$

$$\frac{9}{9} = 0.\overline{9} = 1$$

Therefore  $0.\overline{9}$  is arbitrarily close and thus equal to 1.

# Example

This works for (and is indeed a definition) for irrational numbers, which are represented by infinite sequences of non-repeating digits. Consider  $\pi=3.1415926\ldots$  Eventually, enough digits can be added in order to get arbitrarily closed to  $\pi$  on the number line:



# Example

 $\frac{1}{7} = 0.1428571429$ 

 $\pi = 3.141592654$ 

e = 2.718281828

| $\epsilon$ | $\frac{1}{7}$ | $\pi$    | e        |
|------------|---------------|----------|----------|
| 0.001      | 0.142         | 3.141    | 2.718    |
| 0.0005     | 0.1428        | 3.1415   | 2.718    |
| 0.000001   | 0.142857      | 3.141592 | 2.718281 |