1) Contrast Stretching:

contrast stretching is a linear transformation technique used to enhance the contrast of an image by expanding the range of intensity values.

Purpose: Improves visibility of details in image with low contrast by stretching the range of pixel intensities to utilize the full dynamic range. (e.g. 0 to 255 for 8 bit)

Equation:
$$S = \frac{(P - Pmin)}{Pmax} \times (Smax - Smin) + Smin$$

$$P = \text{original pixel intensity}, S = \text{transformed intensity}.$$

Algorithm:

- 1 Find rain & rmax for the input image
- 2. Linealy mapping these to a desired output range (eg. [0,255])

Advantage: * simple & computationally fast

* Enhances visibility in under or over exposed image.

<u>Alssues:</u> * Doesn't adapt to local image characteristics due to sensitive to outliers

* Fails if original histogram is already white.

2) Histogram Equalization:

A nonlinear method to redistribute pixel intensities to achieve a uniform histogram, improving global contrast.

Purpose: Enhances global cottast by flattening the histogram of the image.

Equation:
$$SK = T(r_K) = (L-1) \sum_{i=0}^{K} P_r(r_i)$$

| Probability of intensity r_i

| L= Number of gray levels [256]

- Algorithm: 1) compute histogram & CDF of image
 - 2) Remap pixel values using CDF as transformation
- Horantages:) Effective for global contrast enhancement.
 2) Fully automated and computationally straightforward
- Issues: 1) over amplifies noise in homogenous regions.
 - 2) Ignores local details, leading to information toss in some regions.
 - 3) May produce unnatural artifacts.

Histogram Equalization (HE)	Adaptive HE (AHE)	Contrast Limited AHE (CLAHE)
2) Global contrast enhancement via uniform histogram redistribution.	Divides image into tiles and applies HE locally	D Local contrast enhancement with histogram clipping to limit amplification.
2) Works on entrie image	1) Frahances beal small region or tiles	2) Enhances small regions/tiles (10cal)
3) uses single CDF	3) computes CDF per tiles, interpolates boundaries.	3) Clips histogram per tiles, redistributes excess, then applies AHE
4) may amplify noise globally	4) Oftenamplifies noire locally	4) Reduces noise amplification by clipping.
b) Igonés Ignores local details, overenhances noise	5) Nove amplification in flat regions.	5) Requires parameter taning, (clip limit, tile size).
6) used for basic image enhancement. (photography, eunder exposed image etc.)	6) Texture analysis (eg. satelli'te image) Enhancing fine detail in unevenly lit scenes	(Xrays, MRI) for U clear Hissue contrast.

3) Log Transformation:

A nonlinear technique used to compress dynamic range of an image.

Purpose! Enhances details in dark regions while compressing bright regions, often used for images with a wide range of intensities (eg. Fourier spectra)

Equation: S= C.log(1+n)

c: scaling constant, r= Input intensify (normalized to [0,])

Advantages:

- DEFFECTIVE for visualizing HDR images
- 2) Emphasizes low-intensity details

Issues:

- 1) May suppress details in bright regions due to compression.
- 2) Requires careful selection of c to avoid unnatural results.

4) Power Law Transformations

Adjusts intensity values using an exponential function to correct brightness/contrast.

Punpose: i) correct gamma distortion in camera/screens
2) Enhances specific intensify ranges (e.g.durk or bright regions)

Equation:

5 = C. p

7: Gamma value (γ 21 brightens dark areas, γ >1 darkens bright areas)

Applications: Display calibration, MRI/CT scan enhancement.

Advantages: Flexible control over brightness/contrast.

Issues: DRequires trial and error to choose optimal r.
2) can introduce artifacts in extreme cases.

5) Gray Level Slicing :

Highlights a specific range of gray levels in an image while suppressing or preserving others -

Purpose: Emphasizes specific intensity ranges (eg for feature extraction/visudazation).

Mathematical Approach:

1) Binary slicing: S= SA if acreb

O otherwise

* Highlights the range [a,b] as intensity A.

2) Preservation Slicing:
S= {A if a \(\text{P} \) b

S= {r otherwise}

preserves background while highligting [ab].

Advantages: I) Useful for isolating features. (eg. turnors in medical image)

2) simple to implement.

Jesuese. Dloss of information outside the selected range.

2) Binary output may oversimplify complex images.

6) Gaussian filtering:

A linear smoothing technique using a Gaussian kernel to reduce noise and blur details.

Purposer D Noise reduction

2) Preprocessing step for edge detetion/segmentation

Mathematical Equations

20 Gaussian functions
$$G(x,y) = \frac{1}{2\pi 6^2} e^{-\frac{\chi^2 + y^2}{26^2}}$$

where G= standard deviation controlling spread of kernel. output image is obtained by convalving:

Advantages: 1) Smooths noise effectively without introducing sharp artifacts.

11) Rotationally symmetric, preserving image structure.

Disadvantages:

- D Blurs edges, which may be undesirable for edge detection if implemented incorrectly.
- 2) Computationally expensive for large kernels.

