FOUR-VARIABLE K-MAP

DLD

Four-Variable K-Map

- The map
 - 16 minterms
 - Combinations of 2, 4, 8, and 16 adjacent squares

Figure 3.8 Four-variable Map

Simplification of SOP expressions using K-map

- 4-variable K-map
 - 1 cell group yields a 4 variable product term
 - 2 cell group yields a 3 variable product term
 - 4 cell group yields a 2 variable product term
 - 8 cell group yields a 1 variable product term
 - 16 cell group yields a value of 1 for function

K-Map Examples

Four Variable K-Map: Example-1

Truth table is given and you have to drive the expression and simplify it by using k-map method

Four Variable K-Map: Example-1

Drive the expression from truth table

F=m0+m2+m4+m6+m10+m12+m13 F=A'B'C'D'+A'B'CD'+A'BC'D'+A'BCD'+ABC'D'+ABCD'

Four Variable K-Map: Example-1

Simplification by using k-map method

F=A'B'C'D'+A'B'CD'+A'BC'D'+A'BCD'+ABC'D'+ABC'D'+ABCD'

$$F=A'D'+ABC'+B'CD'$$

7

Four Variable K-Map

Example 2

■ Example 3.5: simplify $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

 $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz'$

A'B'C'<mark>D</mark> A'B'C'<mark>D'</mark>

Example 3

■ Example 3-6: simplify F = A B C' + B CD' + A B C D' + AB C'

$$F=AB'C'(D+D')+B'CD'(A+A')+AB'C'D'+AB'C'(D+D')$$

$$F = A B C' D + A B C' D' + A B C D' + A' B C D' + A B C' D' + A B C' D + A B C' D'$$

Note: A'B'C'D' + A'B'CD' = A'B'D' AB'C'D' + AB'CD' = AB'D' A'B'D' + AB'D' = B'D'A'B'C' + AB'C' = B'C'

$$F=AB'C'+B'CD'+AB'C'D'+AB'C'=B'D'+B'C'+A'CD'$$

Four Variable K-Map: Example 4

	Α	В	С	D	Z
minterm 0 →	0	0	0	0	1
minterm 1 ->	0	0	0	1	0
minterm 2 ->	0	0	1	0	0
minterm 3 ->	0	0	1	1	0
minterm 4 →	0	1	0	0	1
minterm 5 →	0	1	0	1	1
minterm 6 →	0	1	1	0	0
minterm 7 →	0	1	1	1	1
minterm 8 →	1	0	0	0	1
minterm 9 ->	1	0	0	1	1
minterm 10 →	1	0	1	0	0
minterm 11 →	1	0	1	1	0
minterm 12 →	1	1	0	0	0
minterm 13 → minterm 14 →	1	1	0	1	1
	1	1	1	0	1
minterm 15 →	1	1	1	1	1

	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$
AB	1 ₀	0 1	0 3	0 2
AB	1 4	1 5	0 7	1 ₆
AB	0 12	1 ₁₃	1 ₁₅	1 ₁₄
AB	1 8	1 9	011	010

Four Variable K-Map: Example 4

	Α	В	С	D	Z
minterm 0 →	0	0	0	0	1
minterm 1 →	0	0	0	1	0
minterm 2 🔸	0	0	1	0	0
minterm 3 ->	0	0	1	1	0
minterm 4 →	0	1	0	0	1
minterm 5 →	0	1	0	1	1
minterm 6 →	0	1	1	0	0
minterm 7 →	0	1	1	1	1
minterm 8 →	1	0	0	0	1
minterm 9 →	1	0	0	1	1
minterm 10 →	1	0	1	0	0
minterm 12 →	1	0	1	1	0
minterm 13 →	1	1	0	0	0
minterm 14 →	1	1	0	1	1
minterm 15 →	1	1	1	0	1
	1	1	1	1	1

Example 5:k-map

$$X = \overline{A}B\overline{C}D + A\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + AB\overline{C}D + AB\overline{C}D + AB\overline{C}D + ABCD$$

Example 6:k-map

$$X = B\overline{C}\overline{D} + \overline{A}B\overline{C}D + AB\overline{C}D + \overline{A}BCD + ABCD$$

Example 7:K-Map Wraparound feature

$$X = \overline{A}\overline{B}\overline{C} + A\overline{C}\overline{D} + A\overline{B} + ABC\overline{D} + \overline{A}\overline{B}C$$

Example 8:k-map

Simplify the following equation using the Karnaugh mapping procedure:

$$X = \overline{B}(CD + \overline{C}) + C\overline{D}(\overline{A + B} + AB)$$

Solution: Before filling in the K-map, an SOP expression must be formed:

$$X = \overline{B}CD + \overline{B}\overline{C} + C\overline{D}(\overline{A}\overline{B} + AB)$$

= $\overline{B}CD + \overline{B}\overline{C} + \overline{A}\overline{B}C\overline{D} + ABC\overline{D}$

Example 9:k-map

Example 10:k-map

$$X = \overline{A}\overline{D} + A\overline{B}\overline{D} + \overline{A}\overline{C}D + \overline{A}CD$$

Example 11:k-map

$$X = \overline{A}\overline{B}\overline{D} + A\overline{C}\overline{D} + \overline{A}B\overline{C} + AB\overline{C}D + A\overline{B}C\overline{D}$$

$$X = \overline{B}\,\overline{D} + B\overline{C}$$

Example 12: Use a K-Map to minimize the following standard SOP expression

$$\overline{BCD} + \overline{ABCD} + AB\overline{CD} + \overline{AB}CBD + A\overline{B}CD + \overline{AB}C\overline{D} + \overline{ABCD} + ABC\overline{D} + ABC\overline{D} + ABC\overline{D}$$

Example 13: Find the product term for the K- Map & write the minimum SOP form

K-MAP SIMPLIFICATION IN POS FORM

Digital logic design

Product of Sums Simplification

- Simplified F' in the form of sum of products
- Apply DeMorgan's theorem F = (F')'
- F': sum of products \rightarrow F: product of sums

Example 1:

Example-simplify $F = \Sigma(0, 1, 2, 5, 8, 9, 10)$ into (a) sum-of-products form, and (b) product-of-sums form:

a) Combine the 1's:

 $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D$

b) Combine the 0's:

F' = AB + CD + BD' Apply DeMorgan's theorem; F = (A' + B')(C' + D')(B' + D) Or think in terms of maxterms

Example 1: Continue...

■ Example-simplify $F = \Sigma(0, 1, 2, 5, 8, 9, 10)$ into (a) sum-of-products form, and (b) product-of-sums form:

a) Combine the 1's:

 $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D$

b) Combine the 0's:

F' = AB + CD + BD' Apply DeMorgan's theorem; F = (A' + B')(C' + D')(B' + D) Or think in terms of maxterms

Figure 3.14 Map for Example 3.8, $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D$

Example 1: Continue...

■ Example-simplify $F = \Sigma(0, 1, 2, 5, 8, 9, 10)$ into (a) sum-of-products form, and (b) product-of-sums form:

This is for F function

This is for F' function

	CD			
AB \	00	01	11	10
00	0	0	1	0
01	1	0	1	1
11	1	1	1	1
10	0	0	1	0

Figure 3.14 Map for Example 3.8, $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D$

Example 1 (cont.)

■ Gate implementation of the function of Example1

Sum-of products form

Product-of sums form

Sum-of-Minterm Procedure

■ Consider the function F=m1+m3+m4+m6.

OR F=M0.M2.M5.M7

Combine the 1's:

$$F(x, y, z) = x'z + xz'$$

- Combine the O's:

$$F(x, y, z) = xz + x'z'$$

Figure 3.16 Map for the function of Table 3.2

Thank You