Discrete Shells

E. Grinspun A. Hirani M. Desbrun P. Schroder

University of Waterloo CS888

Junnan Chen

Content

- Overview
- Previous Work
- Discrete Shell Model
 - Membrane Energy
 - Flexure Energy
 - Dynamics
- Implementation
- Results
- Conclusion

1.Overview

- What is the problem?
 - Simulate the thin flexible structures
- Basic Concepts
 - Thin Shell v.s. Thin Plate
- Why is it difficult?
 - The "thinness" -- cannot apply 3-D models
 - The structural rigidity -- cannot apply Thin plate Model
- Solution?
 - Small change in the existing cloth animation algorithms

1.1 What is the problem?

• Simulate the thin flexible structures which are characterized by a curved undeformed configuration.

1.2Thin flexible objects

Thin Shell

- Thin flexible structure
- High ratio of width to thickness (>100)
- Curved, non-flat rest configuration
- Naturally curved

Thin plate

- Similar to shell
- Main difference: flat rest configuration
- Successfully modeled by mass-spring network
- Naturally flat

1.3 Why is it hard?

"thinness"

- Degeneracy in one dimension
- Not admit to straightforward tessellation
- Cannot model as 3-D solid

Structural Rigidity

- Thin plate modeled by massspring network
- Resistance to bending is effected by diagonal springs
- diagonal springs are insensitive to dihedral angles between faces

2. Previous Work

- Continuum-based Approaches
 - Kirchoff-Love consitutive equations
 - F. Cirak et al. 2000, Subdivision surfaces: A new paradigm for thinshell finite-element analysis
 - Seth Green et al. 2002, Subdivision-based multilevel methods for large scale engineering simulation of thin shells
 - Grinspun et al. 2002, CHARMS
- Complex, computational expensive
- Challenging & costly to simulate

3. Discrete Shell Model

- Arbitrary 2-manifold triangle mesh
- Governed by non-linear two energies:
 - Membrane
 - Intrinsic deformations
 - Resist shearing and stretching
 - Flexural
- Deformation defined by piecewise-affine deformation map
 - every vertex of the undeformed mesh -> corresponding vertex of the deformed mesh

3.1 Membrane

Elastic surfaces resist change in area and shearing

Energy stored by edges

One-Dimensional Spring:

$$W = \frac{(||e|| - ||\bar{e}||)^2}{||\bar{e}||}$$

$$||e|| = ||\varphi(\bar{e})||$$

- Two-Dimensional Energy:
 - energy stored by mesh edges

$$W_L(x) = \frac{1}{2} \sum_{\bar{e}} \frac{(||e|| - ||\bar{e}||)^2}{||\bar{e}||}$$

- ||e|| is the deformed edge length
- ||e|| bar is the undeformed edge length

Energy stored by faces

- Two-Dimensional Energy:
 - energy stored by mesh faces

$$W_A(x) = \frac{1}{2} \sum_{\bar{f}} \frac{(||f|| - ||\bar{f}||)^2}{||\bar{f}||}$$

- ||f|| is the deformed area
- ||f|| bar is the undeformed area

3.2 Flexure Bending Energy

- · Ciarlet, 2000
 - The stored energy function of a nonlinearly elastic flexural shell is thus remarkably simple: it is a quadratic and positive definite expression in terms of the exact difference between the curvature tensor of the deformed middle surface and that of the undeformed one
- Bending Energy
 - Measure of the difference in curvature
- Curvature
 - Differential of the Gauss map -- Shape operator
- Gauss Map
 - Maps a surface Omega in Euclidean space R³ to the unit sphere S².

3.2.2 Bending Energy

- Principle curvature:
 - eigenvectors of the differential of the gauss map
 - the diagonal elements of the shape operator
- Mean curvature:
 - half of the principle curvature
 - $H(p) = \frac{1}{2}Tr(S(p))$ -- Tr(S) is the matrix trace (sum of diagonal elements)
- Bending Energy: the squared difference of mean curvature

3.2.2 Bending Energy

The squared difference of mean curvature

$$[Tr(\varphi^*S)-Tr(\bar{S})]^2=(2H-2\bar{H})^2$$

- S and S bar are the shape operators evaluated over the undeformed and deformed configurations.
- H and H bar are the mean curvatures
- phi is a diffeomorphism which is a map between topological space that is differentiable and has a differentiable inverse.
 Used here for the consistent basis of coordinates.
- phi*S is the pull-back of S onto Omega bar.
- Tr is the matrix trace

3.2.3 Flexural Energy

- To use the above formula, we should….?
- Discrete the area integral over the reference domain

$$\int_{\bar{\Omega}} (2H - 2\bar{H})^2 \mathrm{d}\bar{A}$$

- Consider two adjacent triangles
 - theta_e is the dihedral angle between the faces.
 - we have pointwise:

$$(2H-2\bar{H})^2=(\theta_e-\bar{\theta_e})^2$$

summation over edge -> flexural energy

$$W_B(x) = \sum_{\bar{e}} (\theta_e - \bar{\theta_e})^2 ||\bar{e}||$$

3.3 Dynamics

Shell model is sum of membrane and flexural energies.

$$W = K_L W_L + K_A W_A + K_B W_B$$

• K_L: stretching stiffness

K_A: shearing stiffness

K_B: fexural stiffness

• Go from elastic sheets to aluminum-like sheets by tuning these parameters.

4. Implementation

- Simply take the existed code for cloth simulation
- Replace the bending energy:

$$W_B(x) = \sum_{\bar{e}} (\bar{\theta_e})^2 ||\bar{e}||$$
 $W_B(x) = \sum_{\bar{e}} (\theta_e - \bar{\theta_e})^2 ||\bar{e}||$

5. Results

6. Conclusion

- Simple discrete bending energy
- fast computation
- simplicity of implementation

Questions?

•Thank you!