Package 'BenfordTests'

June 5, 2013

Type Package	
Title Statistical Tests for Evaluating Conformity to Benford's Law	
Version 1.0.1	
Date 2013-06-05	
Depends R (>= 3.0.0)	
Author Dieter William Joenssen, with contributions from Thomas Muellerleile	
Maintainer Dieter William Joenssen < Dieter. Joenssen@TU-Ilmenau.de>	
Description This package contains seven specialized statistical tests and support functions for determining if numerical data could conform to Benford's law.	
License GPL-3	
Archs i386, x64	
R topics documented:	
<u>.</u>	15
Index	17

BenfordTests-package Statistical Tests for Benford's Law.

Description

2

This package contains seven specialized statistical tests and support functions for determining if numerical data could conform to Benford's law.

Details

Package: BenfordTests
Type: Package
Version: 1.0.1
Date: 2013-06-05
License: GPL-3

BenfordTests is the implementation of the seven most commonly used goodness-of-fit (GOF) tests to assess if data conforms to Benford's law.

Tests include:

Pearson chi-square statistic (Pearson (1900))

Kolmogorov-Smirnov D statistic (Kolmogorov (1933))

Freedman's modification of Watson's *U-square* statistic (Freedman (1981), Watson (1961))

Chebyshev distance *m* statistic (Leemis (2000))

Euclidean distance d statistic (Cho and Gaines (2007))

Judge-Schechter mean deviation *a-star* statistic (Judge and Schechter (2009))

Joenssen's *JP-square* statistic, a Shapiro-Francia type correlation test (Shapiro and Francia (1972))

All tests may be performed using more than one leading digit. All tests simulate the specific p-values required for statistical inference, while p-values for the *chi-square* and *D* statistics may also be determined using their asymptotic distributions.

Author(s)

Dieter William Joenssen

Maintainer: Dieter William Joenssen < Dieter. Joenssen @ TU-Ilmenau.de >

References

Benford F. The law of anomalous numbers. Proceedings of the American Philosophical Society. 1938;78:551-572.

Cho WKT, Gaines BJ. Breaking the (Benford) law: Statistical fraud detection in campaign finance. The American Statistician. 2007;61(4):218-223.

Freedman LS. Watson's Un2 statistic for a discrete distribution. Biometrika. 1981;68(3):708-711.

chisq.benftest 3

Judge G, Schechter L. Detecting problems in survey data using Benford's law. Journal of Human Resources. 2009:44:1-24.

Kolmogorov AN. Sulla determinazione empirica di una legge di distibuzione. Giornale dell'Istituto Italiano degli Attuari. 1933;4:83-91.

Leemis LM, Schmeiser BW, Evans DL. Survival distributions satisfying Benford's law. The American Statistician. 2000;54(4):236-241.

Newcomb S. Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics. 1881;4(1):39-40.

Pearson K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine Series 5. 1900;50(302):157-175.

Shapiro SS, Francia RS. An approximate analysis of variance test for normality. Journal of the American Statistical Association. 1972;67:215-216.

Watson GS. Goodness-of-fit tests on a circle. Biometrika. 1961;48:109-114.

Examples

```
#Set the random seed to an arbitrary number
set.seed(421)
#Create a sample satisfying Benford's law
X<-rbenf(n=20)
#Look at sample
X
#Look at the first digits of the sample
signifd(X)
#Perform a Chi-squared Test on the sample's first digits using defaults
chisq.benftest(X)
#p-value = 0.648</pre>
```

chisq.benftest

Pearsons's Chi-squared Goodness-of-Fit Test for Benford's Law

Description

chisq.benftest takes any numerical vector reduces the sample to the specified number of significant digits and performs Pearson's chi-square goodness-of-fit test to assert if the data conforms to Benford's law.

Usage

```
chisq.benftest(x = NULL, digits = 1, pvalmethod = "asymptotic", pvalsims = 10000)
```

4 chisq.benftest

Arguments

x A numeric vector.

digits An integer determining the number of first digits to use for testing, i.e. 1 for

only the first, 2 for the first two etc.

pvalmethod Method used for calculating the p-value. Either "asymptotic" or "simulate".

pvalsims An integer specifying the number of replicates to use if pvalmethod = "simulate".

Details

A chi-square goodness-of fit test is performed on signifd(x,digits) versus pbenf(digits). x is a numeric vector of arbitrary length. Values of x should be continuous, as dictated by theory, but may also be integers. digits should be chosen so that signifd(x,digits) is not influenced by previous rounding.

Value

A list with class "htest" containing the following components:

statistic the value of the chi-squared test statistic

p.value the p-value for the test

method a character string indicating the type of test performed

data.name a character string giving the name of the data

Author(s)

Dieter William Joenssen < Dieter . Joenssen@TU-Ilmenau . de>

References

Benford F. The law of anomalous numbers. Proceedings of the American Philosophical Society. 1938;78:551-572.

Pearson K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine Series 5. 1900;50(302):157-175.

See Also

pbenf

```
#Set the random seed to an arbitrary number
set.seed(421)
#Create a sample satisfying Benford's law
X<-rbenf(n=20)
#Perform a Chi-squared Test on the sample's
#first digits using defaults but determine
#the p-value by simulation
chisq.benftest(X,pvalmethod ="simulate")
#p-value = 0.6401</pre>
```

edist.benftest 5

edist.benftest	Euclidean Distance Test for Benford's Law
carsersen cest	Buenaean Bistance Test for Benjora's Ban

Description

edist.benftest takes any numerical vector reduces the sample to the specified number of significant digits and performs a goodness-of-fit test based on the Euclidean distance between the first digits' distribution and Benford's distribution to assert if the data conforms to Benford's law.

Usage

```
edist.benftest(x = NULL, digits = 1, pvalmethod = "simulate", pvalsims = 10000)
```

Arguments

x A numeric vector.

digits An integer determining the number of first digits to use for testing, i.e. 1 for

only the first, 2 for the first two etc.

pvalmethod Method used for calculating the p-value. Currently only "simulate" is avail-

able.

pvalsims An integer specifying the number of replicates used if pvalmethod = "simulate".

Details

A statistical test is performed utilizing the Euclidean distance between signifd(x,digits) and pbenf(digits). x is a numeric vector of arbitrary length. Values of x should be continuous, as dictated by theory, but may also be integers. digits should be chosen so that signifd(x,digits) is not influenced by previous rounding.

Value

A list with class "htest" containing the following components:

statistic the value of the Euclidean distance test statistic

p.value the p-value for the test

method a character string indicating the type of test performed

data.name a character string giving the name of the data

Author(s)

Dieter William Joenssen < Dieter . Joenssen@TU-Ilmenau . de>

References

Benford F. The law of anomalous numbers. Proceedings of the American Philosophical Society. 1938;78:551-572.

Cho WKT, Gaines BJ. Breaking the (Benford) law: Statistical fraud detection in campaign finance. The American Statistician. 2007;61(4):218-223.

Morrow J. Benford's law, families of distributions and a test basis. 2010. http://www.johnmorrow.info/projects/benford/benfordMain.pdf. 6 jpsq.benftest

See Also

pbenf

Examples

```
#Set the random seed to an arbitrary number
set.seed(421)
#Create a sample satisfying Benford's law
X<-rbenf(n=20)
#Perform a Euclidean Distance Test on the
#sample's first digits using defaults
edist.benftest(X,pvalmethod ="simulate")
#p-value = 0.6085</pre>
```

jpsq.benftest

Joenssen's JP-square Test for Benford's Law

Description

jpsq.benftest takes any numerical vector reduces the sample to the specified number of significant digits and performs a goodness-of-fit test based on the correlation between the first digits' distribution and Benford's distribution to assert if the data conforms to Benford's law.

Usage

```
jpsq.benftest(x = NULL, digits = 1, pvalmethod = "simulate", pvalsims = 10000)
```

Arguments

x A numeric vector.

digits An integer determining the number of first digits to use for testing, i.e. 1 for

only the first, 2 for the first two etc.

pvalmethod Method used for calculating the p-value. Currently only "simulate" is avail-

able.

pvalsims An integer specifying the number of replicates used if pvalmethod = "simulate".

Details

A statistical test is performed utilizing the sign-preserved squared correlation between signifd(x,digits) and pbenf(digits). x is a numeric vector of arbitrary length. Values of x should be continuous, as dictated by theory, but may also be integers. digits should be chosen so that signifd(x,digits) is not influenced by previous rounding.

Value

A list with class "htest" containing the following components:

statistic the value of the *JP-square* test statistic

p. value the p-value for the test

method a character string indicating the type of test performed

data.name a character string giving the name of the data

ks.benftest 7

Author(s)

Dieter William Joenssen < Dieter. Joenssen@TU-Ilmenau.de>

References

Benford F. The law of anomalous numbers. Proceedings of the American Philosophical Society. 1938;78:551-572.

Joenssen DW. A new test for Benford's distribution [abstract]. In: Abstract-proceedings of the 3rd joint Statistical Meeting DAGStat, March 18-22, 2013; Freiburg, Germany.

Shapiro SS, Francia RS. An approximate analysis of variance test for normality. Journal of the American Statistical Association. 1972;67:215-216.

See Also

pbenf

Examples

```
#Set the random seed to an arbitrary number
set.seed(421)
#Create a sample satisfying Benford's law
X<-rbenf(n=20)
#Perform Joenssen's \emph{JP-square} Test
#on the sample's first digits using defaults
jpsq.benftest(X)
#p-value = 0.3241</pre>
```

ks.benftest

Kolmogorov-Smirnov Test for Benford's Law

Description

ks.benftest takes any numerical vector reduces the sample to the specified number of significant digits and performs the Kolmogorov-Smirnov goodness-of-fit test to assert if the data conforms to Benford's law.

Usage

```
ks.benftest(x = NULL, digits = 1, pvalmethod = "simulate", pvalsims = 10000)
```

Arguments

Х	A numeric vector.
digits	An integer determining the number of first digits to use for testing, i.e. 1 for only the first, 2 for the first two etc.
pvalmethod	Method used for calculating the p-value. Currently only "simulate" is available.
pvalsims	An integer specifying the number of replicates used if pvalmethod = "simulate".

8 ks.benftest

Details

A Kolmogorov-Smirnov test is performed between signifd(x,digits) and pbenf(digits). x is a numeric vector of arbitrary length. Values of x should be continuous, as dictated by theory, but may also be integers. digits should be chosen so that signifd(x,digits) is not influenced by previous rounding.

Value

A list with class "htest" containing the following components:

statistic the value of the Kolmogorov-Smirnov D test statistic

p.value the p-value for the test

method a character string indicating the type of test performed

data.name a character string giving the name of the data

Author(s)

Dieter William Joenssen < Dieter . Joenssen@TU-Ilmenau . de>

References

Benford F. The law of anomalous numbers. Proceedings of the American Philosophical Society. 1938;78:551-572.

Kolmogorov AN. Sulla determinazione empirica di una legge di distibuzione. Giornale dell'Istituto Italiano degli Attuari. 1933;4:83-91.

See Also

pbenf

```
#Set the random seed to an arbitrary number
set.seed(421)
#Create a sample satisfying Benford's law
X<-rbenf(n=20)
#Perform a Kolmogorov-Smirnov Test on the
#sample's first digits using defaults
ks.benftest(X)
#0.7483</pre>
```

mdist.benftest 9

mdist.benftest	Chebyshev Distance Test (maximum norm) for Benford's Law
mdist.benftest	Chebyshev Distance Test (maximum norm) for Benford's Law

Description

mdist.benftest takes any numerical vector reduces the sample to the specified number of significant digits and performs a goodness-of-fit test based on the Chebyshev distance between the first digits' distribution and Benford's distribution to assert if the data conforms to Benford's law.

Usage

```
mdist.benftest(x = NULL, digits = 1, pvalmethod = "simulate", pvalsims = 10000)
```

Arguments

x A numeric vector.

digits An integer determining the number of first digits to use for testing, i.e. 1 for

only the first, 2 for the first two etc.

pvalmethod Method used for calculating the p-value. Currently only "simulate" is avail-

able.

pvalsims An integer specifying the number of replicates used if pvalmethod = "simulate".

Details

A statistical test is performed utilizing the Chebyshev distance between signifd(x,digits) and pbenf(digits). x is a numeric vector of arbitrary length. Values of x should be continuous, as dictated by theory, but may also be integers. digits should be chosen so that signifd(x,digits) is not influenced by previous rounding.

Value

A list with class "htest" containing the following components:

statistic the value of the Chebyshev distance (maximum norm) test statistic

p.value the p-value for the test

method a character string indicating the type of test performed

data.name a character string giving the name of the data

Author(s)

Dieter William Joenssen < Dieter . Joenssen@TU-Ilmenau . de>

References

Benford F. The law of anomalous numbers. Proceedings of the American Philosophical Society. 1938;78:551-572.

Leemis LM, Schmeiser BW, Evans DL. Survival distributions satisfying Benford's law. The American Statistician. 2000;54(4):236-241.

Morrow J. Benford's law, families of distributions and a test basis. 2010. http://www.johnmorrow.info/projects/benford/benfordMain.pdf. 10 meandigit.benftest

See Also

pbenf

Examples

```
#Set the random seed to an arbitrary number
set.seed(421)
#Create a sample satisfying Benford's law
X<-rbenf(n=20)
#Perform a Chebyshev Distance Test on the
#sample's first digits using defaults
mdist.benftest(X)
#p-value = 0.6421</pre>
```

meandigit.benftest

Judge-Schechter Mean Deviation Test for Benford's Law

Description

meandigit.benftest takes any numerical vector reduces the sample to the specified number of significant digits and performs a goodness-of-fit test based on the deviation in means of the first digits' distribution and Benford's distribution to assert if the data conforms to Benford's law.

Usage

```
meandigit.benftest(x = NULL, digits = 1, pvalmethod = "simulate", pvalsims = 10000)
```

Arguments

x A numeric vector.

digits An integer determining the number of first digits to use for testing, i.e. 1 for

only the first, 2 for the first two etc.

pvalmethod Method used for calculating the p-value. Currently only "simulate" is avail-

able.

pvalsims An integer specifying the number of replicates used if pvalmethod = "simulate".

Details

A statistical test is performed utilizing the deviation beteen the mean digit of signifd(x,digits) and pbenf(digits). The resulting statistic is normalized to [0,1]. x is a numeric vector of arbitrary length. Values of x should be continuous, as dictated by theory, but may also be integers. digits should be chosen so that signifd(x,digits) is not influenced by previous rounding.

Value

A list with class "htest" containing the following components:

statistic the value of the *a-star* test statistic

p. value the p-value for the test

method a character string indicating the type of test performed

data.name a character string giving the name of the data

pbenf 11

Author(s)

Dieter William Joenssen < Dieter . Joenssen@TU-Ilmenau . de>

References

Benford F. The law of anomalous numbers. Proceedings of the American Philosophical Society. 1938;78:551-572.

Judge G, Schechter L. Detecting problems in survey data using Benford's law. Journal of Human Resources. 2009;44:1-24.

See Also

pbenf

Examples

```
#Set the random seed to an arbitrary number
set.seed(421)
#Create a sample satisfying Benford's law
X<-rbenf(n=20)
#Perform a Judge-Schechter Mean Deviation Test
#on the sample's first digits using defaults
meandigit.benftest(X)
#p-value = 0.1458</pre>
```

pbenf

Distribution Function for Benford's Distribution

Description

Returns the complete Benford distribution function for a given number of first digits.

Usage

```
pbenf(digits = 1)
```

Arguments

digits

An integer determining the number of first digits for which the pdf is returned, i.e. 1 for 1:9, 2 for 10:99 etc.

Value

Returns an object of class "table" containing the expected density of Benford's distribution for the given number of digits.

Author(s)

Dieter William Joenssen < Dieter . Joenssen @TU-Ilmenau . de>

12 qbenf

References

Benford F. The law of anomalous numbers. Proceedings of the American Philosophical Society. 1938;78:551-572.

See Also

```
qbenf; rbenf
```

Examples

```
\#show Benford's predictions for the frequencies of the first digit values pbenf(1)
```

qbenf

Quantile Function for Benford's Distribution

Description

Returns the complete quantile function for Benford's distribution with a given number of first digits.

Usage

```
qbenf(digits = 1)
```

Arguments

digits

An integer determining the number of first digits for which the qdf is returned, i.e. 1 for 1:9, 2 for 10:99 etc.

Value

Returns an object of class "table" containing the expected quantile function of Benford's distribution with a given number of digits.

Author(s)

Dieter William Joenssen < Dieter. Joenssen@TU-Ilmenau.de>

References

Benford F. The law of anomalous numbers. Proceedings of the American Philosophical Society. 1938;78:551-572.

See Also

```
pbenf; rbenf
```

```
qbenf(1)
qbenf(1)==cumsum(pbenf(1))
```

rbenf 13

rbenf

Random Sample Satisfying Benford's Law

Description

Returns a random sample with length n satisfying Benford's law.

Usage

```
rbenf(n)
```

Arguments

n

Number of observations.

Value

Returns a random sample with length n satisfying Benford's law.

Author(s)

Dieter William Joenssen < Dieter. Joenssen@TU-Ilmenau.de>

References

Benford F. The law of anomalous numbers. Proceedings of the American Philosophical Society. 1938;78:551-572.

See Also

```
qbenf; pbenf
```

```
#Set the random seed to an arbitrary number set.seed(421)

#Create a sample satisfying Benford's law

X<-rbenf(n=20)

#Look at sample

X

#should be

# [1] 6.159420 1.396476 5.193371 2.064033 7.001284 5.006184

#7.950332 4.822725 3.386809 1.619609 2.080063 2.242473 1.944697 5.460581

#[15] 6.443031 2.662821 2.079283 3.703353 1.364175 3.354136
```

14 signifd

signifd

Leading Digits

Description

Returns the specified number of significant digits for each element of a given vector.

Usage

```
signifd(x = NULL, digits = 1)
```

Arguments

x A numeric vector.

digits An integer determining the number of first digits to use for testing, i.e. 1 for

only the first, 2 for the first two etc.

Details

x is a numeric vector of arbitrary length. Unlike other solutions, this function will work reliably with all real numbers.

Value

Returns a vector of integers the same length as the input vector x.

Author(s)

Dieter William Joenssen < Dieter. Joenssen@TU-Ilmenau.de>

See Also

chisq.benftest; ks.benftest; usq.benftest; mdist.benftest; edist.benftest; meandigit.benftest;
jpsq.benftest

```
#Set the random seed to an arbitrary number
set.seed(421)
#Create a sample satisfying Benford's law
X<-rbenf(n=20)
#Look at the first digits of the sample
signifd(X)
#should be:
#[1] 6 1 5 2 7 5 7 4 3 1 2 2 1 5 6 2 2 3 1 3</pre>
```

signifd.seq 15

signifd.seq

Sequence of Possible Leading Digits

Description

Returns a vector containing all possible significant digits for a given number of places.

Usage

```
signifd.seq(digits = 1)
```

Arguments

digits

An integer determining the number of first digits to be returned, i.e. 1 for 1:9, 2 for 10:99 etc.

Value

Returns an integer vector.

Author(s)

Dieter William Joenssen < Dieter . Joenssen@TU-Ilmenau . de>

Examples

```
signifd.seq(1)
seq(from=1,to=9)==signifd.seq(1)
signifd.seq(2)
seq(from=10,to=99)==signifd.seq(2)
```

usq.benftest

Freedman-Watson U-squared Test for Benford's Law

Description

usq.benftest takes any numerical vector reduces the sample to the specified number of significant digits and performs the Freedman-Watson test for discreet distributions between the first digits' distribution and Benford's distribution to assert if the data conforms to Benford's law.

Usage

```
usq.benftest(x = NULL, digits = 1, pvalmethod = "simulate", pvalsims = 10000)
```

16 usq.benftest

Arguments

x A numeric vector.

digits An integer determining the number of first digits to use for testing, i.e. 1 for

only the first, 2 for the first two etc.

pvalmethod Method used for calculating the p-value. Currently only "simulate" is avail-

able.

pvalsims An integer specifying the number of replicates used if pvalmethod = "simulate".

Details

A Freedman-Watson test for discreet distributions is performed between signifd(x,digits) and pbenf(digits). x is a numeric vector of arbitrary length. Values of x should be continuous, as dictated by theory, but may also be integers. digits should be chosen so that signifd(x,digits) is not influenced by previous rounding.

Value

A list with class "htest" containing the following components:

statistic the value of the *U-square* test statistic

p. value the p-value for the test

method a character string indicating the type of test performed

data.name a character string giving the name of the data

Author(s)

Dieter William Joenssen < Dieter . Joenssen@TU-Ilmenau . de>

References

Benford F. The law of anomalous numbers. Proceedings of the American Philosophical Society. 1938;78:551-572.

Freedman LS. Watson's Un2 statistic for a discrete distribution. Biometrika. 1981;68(3):708-711.

Watson GS. Goodness-of-fit tests on a circle. Biometrika. 1961;48:109-114.

See Also

pbenf

```
#Set the random seed to an arbitrary number
set.seed(421)
#Create a sample satisfying Benford's law
X<-rbenf(n=20)
#Perform Freedman-Watson U-squared Test on
#the sample's first digits using defaults
usq.benftest(X)
#p-value = 0.4847</pre>
```

Index

```
*Topic datagen
    BenfordTests-package, 2
    rbenf, 13
*Topic distribution
    BenfordTests-package, 2
    pbenf, 11
    qbenf, 12
    rbenf, 13
*Topic htest
    BenfordTests-package, 2
    \verb|chisq.benftest|, 3
    edist.benftest, 5
    jpsq.benftest, 6
    ks.benftest, 7
    meandigit.benftest, 10
    usq.benftest, 15
*Topic manip
    BenfordTests-package, 2
    signifd, 14
BenfordTests (BenfordTests-package), 2
BenfordTests-package, 2
chisq.benftest, 3, 14
edist.benftest, 5, 14
jpsq.benftest, 6, 14
ks.benftest, 7, 14
mdist.benftest, 9, 14
meandigit.benftest, 10, 14
pbenf, 4, 6-8, 10, 11, 11, 12, 13, 16
qbenf, 12, 12, 13
rbenf, 12, 13
signifd, 14
signifd.seq, 15
usq.benftest, 14, 15
```