Noções Básicas de Grafos

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

03 de maio de 2015

Plano de Aula

- Pensamento
- 2 Sorteio para o Bônus
- Noções Básicas de Grafos
 - Preliminares
 - Grafo
 - Outras terminologias

Sumário

- Pensamento
- 2 Sorteio para o Bônus
- Noções Básicas de Grafos
 - Preliminares
 - Grafo
 - Outras terminologias

Pensamento

Pensamento

Frase

Em estado de dúvida, suspende o juízo.

Quem?

Pitagoras (571 a.C - 496 a.C) Filósofo e matemático grego

Sumário

- Pensamento
- 2 Sorteio para o Bônus
- Noções Básicas de Grafos
 - Preliminares
 - Grafo
 - Outras terminologias

Bônus (0,5 pt)

Desafio

- Mostre que $\sqrt{2}$ é um irracional;
- Candidaturas até amanhã (03 de maio, 13h30);
- Apresentação e resposta por escrito → segunda (10 de maio, 15h30);
- 20 minutos de apresentação.

Sorteado

???

Sumário

- Pensamento
- 2 Sorteio para o Bônus
- Noções Básicas de Grafos
 - Preliminares
 - Grafo
 - Outras terminologias

$V^{(2)}$

Para qualquer conjunto V, denotaremos por $V^{(2)}$ o conjunto de todos os pares não-ordenados de elementos distintos de V.

$V^{(2)}$

Para qualquer conjunto V, denotaremos por $V^{(2)}$ o conjunto de todos os pares não-ordenados de elementos distintos de V.

Corolário 1

Se V tem n elementos, então $V^{(2)}$ tem $\binom{n}{2}:=\frac{n(n-1)}{2}$ elementos.

Corolário 2

Os elementos de $V^{(2)}$ serão identificados com os subconjuntos de V que têm cardinalidade 2.

Corolário 2

Os elementos de $V^{(2)}$ serão identificados com os subconjuntos de V que têm cardinalidade 2.

Corolário 3

Assim, cada elemento de $V^{(2)}$ terá a forma $\{v,w\}$, sendo v e w dois elementos distintos de V.

Grafo

Grafo

Um **grafo** é um par (V, A) em que V é um conjunto arbitrário e A é um subconjunto de $V^{(2)}$.

Grafo

Grafo

Um grafo é um par (V, A) em que V é um conjunto arbitrário e A é um subconjunto de $V^{(2)}$.

Vértices

São todos os elementos que pertencem a V.

Grafo

Grafo

Um grafo é um par (V, A) em que V é um conjunto arbitrário e A é um subconjunto de $V^{(2)}$.

Vértices

São todos os elementos que pertencem a V.

Arestas

São todos os elementos que pertencem a A.

$$\{v,w\} \equiv vw$$

Uma aresta como $\{v, w\}$ será denotada simplesmente por vw ou por wv.

$\{v, w\} \equiv vw$

Uma aresta como $\{v, w\}$ será denotada simplesmente por vw ou por wv.

Incidência

Diremos que a aresta vw incide em v e em w. Também diremos que v e w são as **pontas** da aresta.

Ponta

Diremos que para uma aresta vw, v e w são as **pontas** da aresta.

Ponta

Diremos que para uma aresta vw, v e w são as **pontas** da aresta.

Adjacência

Se vw é uma aresta, diremos que os vértices v e w são vizinhos ou adjacentes.

Ponta

Diremos que para uma aresta vw, v e w são as **pontas** da aresta.

Adjacência

Se vw é uma aresta, diremos que os vértices v e w são vizinhos ou adjacentes.

Observação

Nossa definição de grafo não admite que arestas tenham pontas coincidentes (i.e. laços). Existem autores que denotam este aspecto da definição dizendo que o grafo é "simples".

$V(G) \in A(G)$

Se o nome de um grafo for G, então o conjunto de seus vértices será denotado por V(G) e o conjunto de suas arestas por A(G).

$V(G) \in A(G)$

Se o nome de um grafo for G, então o conjunto de seus vértices será denotado por V(G) e o conjunto de suas arestas por A(G).

$n(G) \in m(G)$

O número de vértices de G é denotado por n(G) e o número de arestas por m(G).

$V(G) \in A(G)$

Se o nome de um grafo for G, então o conjunto de seus vértices será denotado por V(G) e o conjunto de suas arestas por A(G).

$n(G) \in m(G)$

O número de vértices de G é denotado por n(G) e o número de arestas por m(G).

Corolário

$$n(G) = |V(G)| \in m(G) = |A(G)|.$$

 \overline{G}

O complemento de um grafo (V,A) é o grafo $(V,V^{(2)}\setminus A)$.

\overline{G}

O complemento de um grafo (V, A) é o grafo $(V, V^{(2)} \setminus A)$.

K_n

O grafo G é **completo** se $A(G) = V(G)^{(2)}$. A expressão "G é um K_n " é uma abreviatura de "G é um grafo completo com n vértices".

\overline{G}

O complemento de um grafo (V, A) é o grafo $(V, V^{(2)} \setminus A)$.

K_n

O grafo G é completo se $A(G) = V(G)^{(2)}$. A expressão "G é um K_n " é uma abreviatura de "G é um grafo completo com n vértices".

$\overline{K_n}$

O grafo G é vazio se $A(G) = \emptyset$. A expressão "G é um $\overline{K_n}$ " é uma abreviatura de "G é um grafo vazio com n vértices".

Noções Básicas de Grafos

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

03 de maio de 2015

