Problem: Trigonometric Equation – Bài Tập: Phương Trình Lượng Giác

Nguyễn Quản Bá Hồng*

Ngày 17 tháng 9 năm 2023

Muc luc

1	Giá Trị Lượng Giác của Góc Lượng Giác	1
2	Trigonometrical Formulas – Công Thức Lượng Giác	2
3	Trigonometrical Function – Hàm Số Lượng Giác	3
Тà	i liên	3

1 Giá Tri Lương Giác của Góc Lương Giác

Bài toán 1 ([Hùn+23], Ví dụ 1, p. 8). Cho hình vuông $A_0A_1A_2A_3$ nội tiếp đường tròn tâm O (4 đỉnh được sắp xếp theo chiều ngược chiều quay của kim đồng hồ). Tính số đo của các góc lượng giác (OA_0,OA_i) , (OA_i,OA_j) , i,j=0,1,2,3, $i\neq j$.

Bài toán 2 ([Hùn+23], Ví dụ 2, p. 9). Tính giá trị biểu thức: (a) $A = \sin \frac{7\pi}{6} + \cos 9\pi + \tan \left(-\frac{5\pi}{4}\right) + \cot \frac{7\pi}{2}$. (b) $B = \cos 9\pi + \sin \frac{\pi}{6} + \cos \frac{\pi}{6} +$ $\frac{1}{\tan 368^{\circ}} + \frac{2\sin 2550^{\circ}\cos(-188^{\circ})}{2\cos 638^{\circ} + \cos 98^{\circ}}. \ (c) \ C = \sin^{2} 25^{\circ} + \sin^{2} 45^{\circ} + \sin^{2} 60^{\circ} + \sin^{2} 65^{\circ}. \ (d) \ D = \tan^{2} \frac{\pi}{8} \tan \frac{3\pi}{8} \tan \frac{5\pi}{8}.$

Bài toán 3 ([Hùn+23], Ví dụ 3, p. 9). Chứng minh đẳng thức (giả sử các đẳng thức sau đều có nghĩa): (a) $\cos^4 + 2\sin^2 x = 1 + \sin^4 x$. (b) $\frac{\sin x + \cos x}{\sin^3 x} = \cot^3 x + \cot^2 x + \cot x + 1$. (c) $\frac{\cot^2 x - \cot^2 y}{\cot^2 x \cot^2 y} = \frac{\cos^2 x - \cos^2 y}{\cos^2 x \cos^2 y}$. (d) $\sqrt{\sin^4 x + 4\cos^2 x} + \cos^2 x + \cos^2 x$ $\sqrt{\cos^4 x + 4\sin^2 x} = 3\tan\left(x + \frac{\pi}{2}\right)\tan\left(\frac{\pi}{\alpha} - x\right).$

Bài toán 4 ([Hùn+23], Ví dụ 4, p. 10). Đơn giản biểu thức (giả sử các đẳng thức sau đều có nghĩa): (a) $A = \cos(5\pi - x) - \sin\left(\frac{3\pi}{2} + x\right) + \tan\left(\frac{3\pi}{2} - x\right) + \cot(3\pi - x)$. (b) $B = \frac{\sin(900^\circ + x) - \cos(450^\circ - x) + \cot(1080^\circ - x) + \tan(630^\circ - x)}{\cos(450^\circ - x) + \sin(x - 630^\circ) - \tan(810^\circ + x) - \tan(810^\circ - x)}$. (c) $C = \sqrt{2} - \frac{1}{\sin(x + 2013\pi)} \sqrt{\frac{1}{1 + \cos x} + \frac{1}{1 - \cos x}}$ với $\pi < x < 2\pi$.

Bài toán 5 ([Hùn+23], Ví dụ 5, p. 11). Chứng minh biểu thức không phụ thuộc vào x (i.e., độc lập với biến x) (giả sử các biểu thức $\vec{\text{deu}} \ \ \vec{\text{co}} \ \ nghĩa): \ (a) \ \ A = \frac{\sin^6 x + \cos^6 x + 2}{\sin^4 x + \cos^4 x + 1}. \ \ (b) \ \ B = \frac{1 + \cot x}{1 - \cot x} - \frac{2 + 2\cot^2 x}{(\tan x - 1)(\tan^2 x + 1)}. \ \ (c) \ \ C = \sqrt{\sin^4 x + 6\cos^2 x + 3\cos^4 x} + \frac{1}{\cos^4 x + \cos^4 x + 1}.$

Bài toán 6 ([Hùn+23], 1.1., p. 12). Tìm số đo a° của góc lượng giác (Ou, Ov) với $0 \le a \le 360$, biết 1 góc lượng giác cùng tia $d\hat{a}u$, tia cuối với góc đó có số đo là: (a) 395° . (b) -1052° . (c) $(20\pi)^{\circ}$.

Bài toán 7 ([Hùn+23], 1.2., p. 12). Không dùng máy tính bổ túi, tính giá trị biểu thức: (a) $A = 5\sin^2\frac{151\pi}{6} + 3\cos^2\frac{85\pi}{3} - 4\tan^2\frac{193\pi}{6} + 7\cot^2\frac{37\pi}{3}$. (b) $B = \cos^2\frac{\pi}{5} + \cos^2\frac{2\pi}{5} + \cos^2\frac{\pi}{10} + \cos^2\frac{3\pi}{10}$. (c) $C = \tan\frac{\pi}{9}\tan\frac{2\pi}{9}\tan\frac{5\pi}{18}\tan\frac{7\pi}{18}$.

Bài toán 8 ([Hùn+23], 1.3., p. 12). Rút gọn biểu thức: (a) $A = \cos\left(\frac{\pi}{2} + x\right) + \cos(2\pi - x) + \cos(3\pi + x)$. (b) $B = 2\cos x - \cos(2\pi - x)$ $3\cos(\pi - x) + 5\sin\left(\frac{7x}{2} - x\right) + \cot\left(\frac{3\pi}{2} - x\right). \quad (c) \quad C = 2\sin(90^\circ + x) + \sin(900^\circ - x) + \sin(270^\circ + x) - \cos(90^\circ - x). \quad (d) = 2\sin(90^\circ + x) + \sin(900^\circ - x) + \sin(270^\circ + x) - \cos(90^\circ - x).$

$$D = \frac{\sin(5\pi + x)\cos\left(x - \frac{9\pi}{2}\right)\tan(10\pi + x)}{\cos(5\pi - x)\sin\left(\frac{11\pi}{2} + x\right)\tan(7\pi - x)}.$$

^{*}Independent Researcher, Ben Tre City, Vietnam e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

Bài toán 9 ([Hùn+23], 1.4., p. 12). Chứng minh đẳng thức (giả sử các biểu thức đều có nghĩa): (a) $\tan^2 x - \sin^2 x = \tan^2 x \sin^2 x$. (b) $\frac{\tan^3 x}{\sin^2 x} - \frac{1}{\sin x \cos x} + \frac{\cot^3 x}{\cos^2 x} = \tan^3 x + \cot^3 x$. (c) $\sin^2 x - \tan^2 x = \tan^6 x (\cos^2 x - \cot^2 x)$. (d) $\frac{\tan^2 a - \tan^2 b}{\tan^2 a \tan^2 b} = \frac{\sin^2 a - \sin^2 b}{\sin^2 a \sin^2 b}$.

Bài toán 10 ([Hùn+23], 1.5., p. 12). Chứng minh biểu thức không phụ thuộc vào α : (a) $(\tan \alpha + \cot \alpha)^2 - (\tan \alpha - \cot \alpha)^2$. (b) $2(\sin^6 \alpha + \cos^6 \alpha) - 3(\sin^4 \alpha + \cos^4 \alpha)$. (c) $\cot^2 30^\circ (\sin^8 \alpha - \cos^8 \alpha) + 4\cos 60^\circ (\cos^6 \alpha - \sin^6 \alpha) - \sin^6 (90^\circ - \alpha)(\tan^2 \alpha - 1)^3$. (d) $(\sin^4 \alpha + \cos^4 \alpha - 1)(\tan^2 \alpha + \cot^2 \alpha + 2)$.

Bài toán 11 ([Hùn+23], 1.6., p. 13). $Bi\acute{e}t \tan x + \cot x = m$. Tính: (a) $\tan^2 x + \cot^2 x$. (b) $\frac{\tan^6 x + \cot^6 x}{\tan^4 x + \cot^4 x}$. (c) $Ch\acute{u}ng minh$ $|m| \geq 2$. (d) $Bi\acute{e}n luận theo tham số <math>m$ $d\acute{e}$ tìm x thỏa mãn phương trình $\tan x + \cot x = m$.

Bài toán 12 ([Hùn+23], 1.7., p. 13). (a) Cho $\cos a = \frac{2}{3}$. Tính $A = \frac{\cot a + 3\tan a}{2\cot a + \tan a}$. (b) Cho $\sin a = \frac{1}{3}$. Tính $B = \frac{3\cot a + 2\tan a + 1}{\cot a + \tan a}$. (c) Cho $\tan a = 2$. Tính $C = \frac{2\sin a + 3\cos a}{\sin a + \cos a}$. (d) Cho $\cot a = 5$. Tính $D = 2\cos^2 a + 5\sin a\cos a + 1$.

2 Trigonometrical Formulas – Công Thức Lượng Giác

Bài toán 13 ([Hùn+23], Ví dụ 1, p. 14). Tính giá trị biểu thức lượng giác: (a) $A = \sin 22^{\circ}33' \cos 202^{\circ}30'$. (b) $B = 4\sin^4\frac{\pi}{16} + 2\cos\frac{\pi}{8}$. (c) $C = \frac{\sin\frac{\pi}{5} - \sin\frac{2\pi}{15}}{\cos\frac{\pi}{5} - \cos\frac{2\pi}{15}}$. (d) $D = \sin\frac{\pi}{9} - \sin\frac{5\pi}{9} + \sin\frac{7\pi}{9}$.

Bài toán 14 ([Hùn+23], Ví dụ 2, p. 14). Tính giá trị biểu thức lượng giác: (a) $A = \frac{1}{\cos 290^{\circ}} + \frac{1}{\sqrt{3}\sin 250^{\circ}}$. (b) $B = (1 + \tan 20^{\circ})(1 + \tan 25^{\circ})$. (c) $C = \tan 9^{\circ} - \tan 27^{\circ} - \tan 63^{\circ} + \tan 81^{\circ}$. (d) $D = \sin^{2}\frac{\pi}{9} + \sin^{2}\frac{2\pi}{9} + \sin\frac{\pi}{9}\sin\frac{2\pi}{9}$.

Bài toán 15 ([Hùn+23], Ví dụ 3, p. 15). Tính giá trị biểu thức lượng giác: (a) $A = \sin \frac{\pi}{32} \cos \frac{\pi}{32} \cos \frac{\pi}{16} \cos \frac{\pi}{8}$. (b) $B = \sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}$. (c) $C = \cos \frac{\pi}{5} + \cos \frac{3\pi}{5}$. (d) $D = \cos^2 \frac{\pi}{7} + \cos^2 \frac{2\pi}{7} + \cos^2 \frac{3\pi}{7}$.

 $\textbf{Bài toán 16} \; \big([\textbf{Hùn+23}], \, \textbf{V\'i} \; \textbf{dụ} \; \textbf{4}, \, \textbf{p. 16} \big). \; \textit{Cho} \; \alpha, \beta \; \textit{thỏa} \; \textit{m\~an} \\ \sin \alpha + \sin \beta = \frac{\sqrt{2}}{2} \; \mathcal{C} \\ \cos \alpha + \cos \beta = \frac{\sqrt{6}}{2}. \; \textit{T\'inh} \\ \cos (\alpha - \beta), \\ \sin (\alpha + \beta). \\ \text{T\'inh} \\ \cos (\alpha - \beta), \\ \sin (\alpha + \beta). \\ \text{T\'inh} \\ \cos (\alpha - \beta), \\ \sin (\alpha + \beta). \\ \text{T\'inh} \\ \cos (\alpha - \beta), \\ \sin (\alpha + \beta). \\ \text{T\'inh} \\ \cos (\alpha - \beta), \\ \sin (\alpha + \beta). \\ \text{T\'inh} \\ \cos (\alpha - \beta), \\ \sin (\alpha + \beta). \\ \text{T\'inh} \\ \cos (\alpha - \beta), \\ \sin (\alpha + \beta). \\ \text{T\'inh} \\ \cos (\alpha - \beta), \\ \sin (\alpha + \beta). \\ \text{T\'inh} \\ \cos (\alpha - \beta), \\ \sin (\alpha + \beta). \\ \text{T\'inh} \\ \cos (\alpha - \beta), \\ \sin (\alpha + \beta). \\ \text{T\'inh} \\ \cos (\alpha - \beta), \\$

Bài toán 17 ([Hùn+23], Ví dụ 5, p. 17). Cho $\frac{1}{\tan^2 \alpha} + \frac{1}{\cot^2 \alpha} + \frac{1}{\sin^2 \alpha} + \frac{1}{\cos^2 \alpha} = 7$. Tính $\cos 4\alpha$.

Bài toán 18 ([Hùn+23], Ví dụ 6, p. 17). Chứng minh: (a) $\sin 3\alpha = 3 \sin \alpha - 4 \sin^3 \alpha = 4 \sin \alpha \sin \left(\frac{\pi}{3} - \alpha\right) \sin \left(\frac{\pi}{3} + \alpha\right)$. (b) $\sum_{i=1}^{n} 3^{i-1} \sin^3 \frac{\alpha}{3^i} = \sin^3 \frac{\alpha}{3} + 3 \sin^3 \frac{\alpha}{3^2} + \dots + 3^{n-1} \sin^3 \frac{\alpha}{3^n} = \frac{1}{4} \left(3^n \sin \frac{\alpha}{3^n} - \sin \alpha\right)$.

Bài toán 19 (Công thức nhân 3). Chứng minh: (a) $\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$. (b) $\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$.

Bài toán 20 ([Hùn+23], 2.1., p. 18). *Tính giá trị của biểu thức:* (a) $A = \cos^2 73^\circ + \cos^2 47^\circ + \cos 74^\circ \cos 47^\circ$. (b) $B = \sin 6^\circ \sin 42^\circ \sin 66^\circ \sin 78^\circ$.

Bài toán 21 ([Hùn+23], 2.2., p. 18). *Tính giá trị của biểu thức:* (a) $A = \sin^2 50^\circ + \sin^2 70^\circ - \cos 50^\circ \cos 70^\circ$.

Bài toán 22 ([Hùn+23], 2.3., p. 18). *Tính giá trị của biểu thức:* (a) $A = \cos \frac{\pi}{7} \cos \frac{4\pi}{7} \cos \frac{5\pi}{7}$. (b) $B = \cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$.

Bài toán 23 ([Hùn+23], 2.4., p. 18). Tính giá trị của biểu thức: (a) $A = \cos\frac{\pi}{7} + \cos\frac{3\pi}{7} + \cos\frac{5\pi}{7}$. (b) $B = \cos\frac{\pi}{7}\cos\frac{3\pi}{7} + \cos\frac{3\pi}{7}\cos\frac{5\pi}{7}$. (c) $C = \cos\frac{\pi}{7}\cos\frac{3\pi}{7}\cos\frac{5\pi}{7}$.

Bài toán 24 ([Hùn+23], 2.5., p. 18, Đề nghị Olympic 30.4 2006). Chứng minh $\sqrt[3]{\cos\frac{2\pi}{7}} + \sqrt[3]{\cos\frac{4\pi}{7}} + \sqrt[3]{\cos\frac{8\pi}{7}} = \sqrt[3]{\frac{5-3\sqrt[3]{7}}{2}}$.

Bài toán 25 ([Hùn+23], 2.6., p. 18). Cho α, β thỏa mãn $\sin \alpha + \sin \beta = m \ \mathcal{E} \cos \alpha + \cos \beta = n$, $mn \neq 0$. Tính $\cos(\alpha - \beta), \cos(\alpha + \beta), \sin(\alpha + \beta)$.

Bài toán 26 ([Hùn+23], 2.7., p. 18). $Tinh A = \prod_{i=1}^{45} (1 + \tan i^{\circ}) = (1 + \tan 1^{\circ})(1 + \tan 2^{\circ}) \cdots (1 + \tan 45^{\circ})$.

Bài toán 27 ([Hùn+23], 2.8., p. 18). $Tinh \ A = \prod_{i=1}^{999} \cos i\alpha = \cos \alpha \cos 2\alpha \cos 3\alpha \cdots \cos 999\alpha \ v \acute{\sigma}i \ \alpha = \frac{2\pi}{999}$.

Bài toán 28 ([Hùn+23], 2.9., p. 18). Chứng minh $\sin \frac{\pi}{9} \sin \frac{2\pi}{9} \sin \frac{4\pi}{9} = \cos \frac{\pi}{18} \cos \frac{5\pi}{18} \cos \frac{7\pi}{18} = \frac{\sqrt{3}}{8}$.

Bài toán 29 ([Hùn+23], 2.10., p. 18). Chứng minh: (a) $\cos x = \frac{\sin 2x}{2\sin x}$. (b) $\prod_{i=1}^{n} \cos \frac{x}{2^{i}} = \cos \frac{x}{2} \cos \frac{x}{2^{2}} \cdots \cos \frac{x}{2^{n}} = \frac{\sin x}{2^{n} \sin \frac{x}{2^{n}}}$.

Bài toán 30 ([Hùn+23], 2.11., p. 18). Chứng minh: (a) $\frac{1}{\sin x} = \cot \frac{x}{2} - \cot x$. (b) $\sum_{i=1}^{n} \frac{1}{\sin 2^{i-1}\alpha} = \frac{1}{\sin \alpha} + \frac{1}{\sin 2\alpha} + \cdots + \frac{1}{\sin 2^{n-1}\alpha} = \cot \frac{\alpha}{2} - \cot 2^{n-1}\alpha$ với $2^{n-1}\alpha \neq k\pi$, $\forall k \in \mathbb{Z}$.

Bài toán 31 ([Hùn+23], 2.12., p. 18). Chứng minh: (a) $\tan x = \cot x - 2 \cot 2x$. (b) $\sum_{i=1}^{n} \frac{1}{2^{i}} \tan \frac{a}{2^{i}} = \frac{1}{2} \tan \frac{a}{2} + \frac{1}{2^{2}} \tan \frac{a}{2^{2}} + \cdots + \frac{1}{2^{n}} \tan \frac{a}{2^{n}} = \frac{1}{2^{n}} \cot \frac{a}{2^{n}} - \cot a$.

Bài toán 32 ([Hùn+23], 2.13., p. 18). Cho $n \in \mathbb{N}^*$. Chứng minh: $\sum_{i=1}^{n-1} \frac{1}{\sin i^\circ \sin(i+1)^\circ} = \frac{1}{\sin 1^\circ \sin 2^\circ} + \frac{1}{\sin 2^\circ \sin 3^\circ} + \cdots + \frac{1}{\sin(n-1)^\circ \sin n^\circ} = \cot 1^\circ - \cot n^\circ$.

Bài toán 33 ([Hùn+23], 2.14., p. 18). Chứng minh $\sum_{i=1}^{89} 2i \sin 2i^{\circ} = 2 \sin 2^{\circ} + 4 \sin 4^{\circ} + \cdots + 178 \sin 178^{\circ} = 90 \cot 1^{\circ}$.

3 Trigonometrical Function – Hàm Số Lượng Giác

Tài liêu

[Hùn+23] Trần Quang Hùng, Lê Thị Việt Anh, Phạm Việt Hải, Khiếu Thị Hương, Tạ Công Sơn, Nguyễn Xuân Thọ, Ninh Văn Thu, and Phạm Đình Tùng. Nâng Cao & Phát Triển Toán 11 Tập 1. Tái bản lần thứ 13. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 176.