Centro de Estatística Aplicada

Gustavo Kanno¹ Rodrigo Marcel Araujo² Victor Ribeiro Baião Decanini³

Junho de 2021

Sumário

Análise das séries temporais mensais	Ę
Análise Descritiva	
Funções de Autocorrelações	13
Funções de Autocorrelações para Avicultura de Corte	13
Funções de Autocorrelações para Avicultura de Postura	14
	15
	16
	17
	18
	19
	19
Correlações cruzadas da Avicultura de Corte	20
	21
•	22
	23
	24
	25
	26
Estruturando a base	26
	26
	29
	29
	29
	30
	30
	32
	36
	36
	37
	40
	40

 $^{^{1}}$ Número USP: 9795810 2 Número USP: 9299208 3 Número USP: 9790502

	Análise dos R																
Š	Seleção de va	riáveis															42
Análise das sé	ries tempor	ais anu	ais													 	46
Análise Descr	ritiva																46
Regressão LA	SSO																47
Modelo	para Bovino	cultura															47
Modelo	para o Pesca	do															49
Modelo	para a Avicu	ltura de	Со	rte													51
Modelo	oara Aviculti	ura de P	osti	ura													53
Modelo	para o Lácte	os															55
Modelo	para Suinocu	ıltura .														 	57

```
library(forecast)
library(randtests)
## Attaching package: 'randtests'
## The following object is masked from 'package:tseries':
##
       runs.test
library(zoo)
library(TSA)
## Registered S3 methods overwritten by 'TSA':
##
     method
                  from
##
     fitted.Arima forecast
##
     plot.Arima
                 forecast
##
## Attaching package: 'TSA'
## The following object is masked from 'package:GeneCycle':
##
##
       periodogram
## The following object is masked from 'package:readr':
##
##
       spec
## The following objects are masked from 'package:stats':
##
##
       acf, arima
## The following object is masked from 'package:utils':
##
##
       tar
library(gridExtra)
library(FitAR)
## Loading required package: lattice
## Attaching package: 'lattice'
## The following object is masked from 'package:faraway':
##
##
       melanoma
```

```
## Loading required package: leaps
## Loading required package: ltsa
## Loading required package: bestglm
## Attaching package: 'FitAR'
## The following object is masked from 'package:forecast':
##
##
       {\tt BoxCox}
## The following object is masked from 'package:car':
##
##
       Boot
library(glmnet)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
##
       expand, pack, unpack
## Loaded glmnet 4.1-1
library(islasso)
library(astsa)
##
## Attaching package: 'astsa'
## The following objects are masked from 'package:fma':
##
##
       chicken, sales
## The following object is masked from 'package:forecast':
##
##
       gas
## The following object is masked from 'package:fpp2':
##
##
       oil
```

```
## The following object is masked from 'package:faraway':
##
## star

## The following object is masked from 'package:gamlss.data':
##
## oil

library(lmtest)
library(forecast)
```

Análise das séries temporais mensais

Análise Descritiva

```
data$Data <- as.Date(data$Data)</pre>
head(data)
## # A tibble: 6 x 24
##
    Data
                Arroz 'Avicultura de ~ 'Avicultura de ~ Banana Batata
##
     <date>
                <dbl>
                          <dbl>
                                            <dbl> <dbl> <dbl>
## 1 2007-01-01 0.01
                                 0.295
                                                   3.43 - 2.86
                                                                0.75
## 2 2007-02-01 -0.68
                                 1.71
                                                   2.82 -1.62 -3.83
## 3 2007-03-01 -0.635
                                 2.26
                                                  10.1
                                                          1.05
                                                                7.61
## 4 2007-04-01 -0.635
                                -0.56
                                                   1.31 -2.65 36.4
## 5 2007-05-01 0.13
                                 -0.13
                                                   -1.11 -1.46 11.6
## 6 2007-06-01 0.230
                                 0.27
                                                    4.93 -1.07 -5.17
## # ... with 18 more variables: Bovinocultura <dbl>, 'Cacau e produtos' <dbl>,
      Café <dbl>, Cebola <dbl>, 'Complexo soja' <dbl>, 'Complexo
      sucroalc.' <dbl>, Feijão <dbl>, Frutas <dbl>, Hortícolas <dbl>,
      Indefinido <dbl>, 'Laranja e citros' <dbl>, Lácteos <dbl>, Mandioca <dbl>,
      Milho <dbl>, Pescado <dbl>, Suinocultura <dbl>, Tomate <dbl>, Trigo <dbl>
zt2 <- ts(data[,2], frequency = 12, start = 2007, end = 2019)
zt3 <- ts(data[,3], frequency = 12, start = 2007, end = 2019)
zt4 <- ts(data[,4], frequency = 12, start = 2007, end = 2019)
zt5 <- ts(data[,5], frequency = 12, start = 2007, end = 2019)
zt6 <- ts(data[,6], frequency = 12, start = 2007, end = 2019)
zt7 <- ts(data[,7], frequency = 12, start = 2007, end = 2019)
zt8 <- ts(data[,8], frequency = 12, start = 2007, end = 2019)
zt9 <- ts(data[,9], frequency = 12, start = 2007, end = 2019)
zt10 <- ts(data[,10], frequency = 12, start = 2007, end = 2019)
zt11 <- ts(data[,11], frequency = 12, start = 2007, end = 2019)
zt12 <- ts(data[,12], frequency = 12, start = 2007, end = 2019)
zt13 <- ts(data[,13], frequency = 12, start = 2007, end = 2019)
zt14 \leftarrow ts(data[,14], frequency = 12, start = 2007, end = 2019)
zt15 <- ts(data[,15], frequency = 12, start = 2007, end = 2019)
```

```
zt16 <- ts(data[,16], frequency = 12, start = 2007, end = 2019)
zt17 <- ts(data[,17], frequency = 12, start = 2007, end = 2019)
zt18 <- ts(data[,18], frequency = 12, start = 2007, end = 2019)
zt19 <- ts(data[,19], frequency = 12, start = 2007, end = 2019)
zt20 <- ts(data[,20], frequency = 12, start = 2007, end = 2019)
zt21 <- ts(data[,21], frequency = 12, start = 2007, end = 2019)
zt22 <- ts(data[,22], frequency = 12, start = 2007, end = 2019)
zt23 <- ts(data[,23], frequency = 12, start = 2007, end = 2019)
zt24 <- ts(data[,24], frequency = 12, start = 2007, end = 2019)</pre>
```

```
plot(zt2,main="Série Temporal do Arroz", xlab= "Anos", ylab="IPCA")
```

Série Temporal do Arroz


```
par(mfrow = c(2, 2))
plot(zt3,main="Série Temporal de Avicultura de Corte", xlab= "Anos", ylab="IPCA")
plot(zt4,main="Série Temporal de Avicultura de Postura", xlab= "Anos", ylab="IPCA")
plot(zt5,main="Série Temporal da Banana", xlab= "Anos", ylab="IPCA")
plot(zt6,main="Série Temporal da Batata", xlab= "Anos", ylab="IPCA")
```

Série Temporal de Avicultura de Corte

Série Temporal de Avicultura de Postura

Série Temporal da Banana

Série Temporal da Batata


```
par(mfrow = c(3, 2))

plot(zt7,main="Série Temporal da Bovinocultura", xlab= "Anos", ylab="IPCA")
plot(zt8,main="Série Temporal do Cacau e Produtos", xlab= "Anos", ylab="IPCA")
plot(zt9,main="Série Temporal do Café", xlab= "Anos", ylab="IPCA")
plot(zt10,main="Série Temporal da Cebola", xlab= "Anos", ylab="IPCA")
plot(zt11,main="Série Temporal do Complexo Soja", xlab= "Anos", ylab="IPCA")
plot(zt12,main="Série Temporal do Complexo Sucroalc.", xlab= "Anos", ylab="IPCA")
```

Série Temporal da Bovinocultura

Série Temporal do Cacau e Produtos

Série Temporal do Café

Série Temporal da Cebola

Série Temporal do Complexo Soja

Série Temporal do Complexo Sucroalc.


```
par(mfrow = c(3, 2))

plot(zt13,main="Série Temporal do Feijão", xlab= "Anos", ylab="IPCA")
plot(zt14,main="Série Temporal das Frutas", xlab= "Anos", ylab="IPCA")
plot(zt15,main="Série Temporal das Horticulas", xlab= "Anos", ylab="IPCA")
plot(zt16,main="Série Temporal de Indefinido", xlab= "Anos", ylab="IPCA")
plot(zt17,main="Série Temporal do Laranja e Citrus", xlab= "Anos", ylab="IPCA")
plot(zt18,main="Série Temporal da Lácteos", xlab= "Anos", ylab="IPCA")
```

Série Temporal do Feijão

2008 2010 2012 2014 2016 2018 Anos

Série Temporal das Frutas

Série Temporal das Horticulas

Série Temporal de Indefinido

Série Temporal do Laranja e Citrus

Série Temporal da Lácteos


```
par(mfrow = c(3, 2))

plot(zt19,main="Série Temporal da Mandioca", xlab= "Anos", ylab="IPCA")
plot(zt20,main="Série Temporal do Milho", xlab= "Anos", ylab="IPCA")
plot(zt21,main="Série Temporal do Pescado", xlab= "Anos", ylab="IPCA")
plot(zt22,main="Série Temporal da Suínocultura", xlab= "Anos", ylab="IPCA")
plot(zt23,main="Série Temporal do Tomate", xlab= "Anos", ylab="IPCA")
plot(zt24,main="Série Temporal do Trigo", xlab= "Anos", ylab="IPCA")
```

Série Temporal da Mandioca

Série Temporal do Milho

Série Temporal do Pescado

Série Temporal da Suínocultura

Série Temporal do Tomate

Série Temporal do Trigo


```
par(mfrow = c(2, 1))
plot(zt21,main="Série Temporal do Pescado", xlab= "Anos", ylab="IPCA")
plot(zt18,main="Série Temporal do Lácteos", xlab= "Anos", ylab="IPCA")
```

Série Temporal do Pescado

Série Temporal do Lácteos

#900#650

```
par(mfrow = c(2, 1))
plot(zt7,main="Série Temporal da Bovinocultura", xlab= "Anos", ylab="IPCA")
plot(zt22,main="Série Temporal da Suínocultura", xlab= "Anos", ylab="IPCA")
```

Série Temporal da Bovinocultura

Série Temporal da Suínocultura


```
par(mfrow = c(2, 1))
plot(zt3,main="Série Temporal de Avicultura de Corte", xlab= "Anos", ylab="IPCA")
plot(zt4,main="Série Temporal de Avicultura de Postura", xlab= "Anos", ylab="IPCA")
```

Série Temporal de Avicultura de Corte

Série Temporal de Avicultura de Postura

Funções de Autocorrelações

Funções de Autocorrelações para Avicultura de Corte

```
par(mfrow = c(1, 2))
acf(zt3, main="ACF Avicultura de Corte")
pacf(zt3, main="PACF Avicultura de Corte")
```

ACF Avicultura de Corte

PACF Avicultura de Corte

Funções de Autocorrelações para Avicultura de Postura

```
par(mfrow = c(1, 2))
acf(zt4, main="ACF Avicultura de Postura")
pacf(zt4, main="PACF Avicultura de Postura")
```

ACF Avicultura de Postura

PACF Avicultura de Postura

Funções de Autocorrelações para Suinocultura

```
par(mfrow = c(1, 2))
acf(zt22, main="ACF Suinocultura")
pacf(zt22, main="PACF Suinocultura")
```

ACF Suínocultura

PACF Suínocultura

Funções de Autocorrelações para Pescado

```
par(mfrow = c(1, 2))
acf(zt21, main="ACF Pescado")
pacf(zt21, main="PACF Pescado")
```


Funções de Autocorrelações para Lácteos

```
par(mfrow = c(1, 2))
acf(zt18, main="ACF Lácteos")
pacf(zt18, main="PACF Lácteos")
```


Funções de Autocorrelações para Bovinocultura $\,$

```
par(mfrow = c(1, 2))
acf(zt7, main="ACF Bovinocultura")
pacf(zt7, main="PACF Bovinocultura")
```

ACF Bovinocultura

PACF Bovinocultura

Análise Correlação Cruzada

Correlaões cruzadas da Bovincultura

```
#Correlaões cruzadas da Bovincultura
par(mfrow = c(3,2))
acf(zt7,main="ACF Bovinocultura")
ccf(zt7,zt3,main="Bovinocultura e Avicultura de Corte")
ccf(zt7,zt4,main="Bovinocultura e Avicultura de Postura")
ccf(zt7,zt18,main="Bovinocultura e Lácteos")
ccf(zt7,zt21,main="Bovinocultura e Pescados")
ccf(zt7,zt22,main="Bovinocultura e Suinocultura")
```

ACF Bovinocultura

0.5 1.0 1.5

Bovinocultura e Avicultura de Corte

Bovinocultura e Avicultura de Postura

Bovinocultura e Lácteos

Bovinocultura e Pescados

Bovinocultura e Suinocultura

Correlações cruzadas da Avicultura de Corte

```
#Correlações cruzadas da Avicultura de Corte
par(mfrow = c(3,2))
acf(zt3,main="ACF Avicultura de Corte")
ccf(zt3,zt4,main="Avicultura de Corte e Avicultura de Postura")
ccf(zt3,zt7,main="Avicultura de Corte e Bovinocultura")
ccf(zt3,zt18,main="Avicultura de Corte e Lácteos")
ccf(zt3,zt21,main="Avicultura de Corte e Pescados")
ccf(zt3,zt22,main="Avicultura de Corte e Suinocultura")
```

ACF Avicultura de Corte

0.5 1.0 1.5

Avicultura de Corte e Avicultura de Postura

Avicultura de Corte e Bovinocultura

Avicultura de Corte e Lácteos

Avicultura de Corte e Pescados

Avicultura de Corte e Suinocultura

Correlações cruzadas da Avicultura de Postura

```
#Correlações cruzadas da Avicultura de Postura
par(mfrow = c(3,2))
acf(zt4,main="ACF Avicultura de Postura")
ccf(zt4,zt4,main="Avicultura de Postura e Avicultura de Corte")
ccf(zt4,zt7,main="Avicultura de Postura e Bovinocultura")
ccf(zt4,zt18,main="Avicultura de Postura e Lácteos")
ccf(zt4,zt21,main="Avicultura de Postura e Pescados")
ccf(zt4,zt22,main="Avicultura de Postura e Suinocultura")
```

ACF Avicultura de Postura

Avicultura de Postura e Avicultura de Corte

Avicultura de Postura e Bovinocultura

Avicultura de Postura e Lácteos

Avicultura de Postura e Pescados

Avicultura de Postura e Suinocultura

Correlações cruzadas dos Lácteos

```
#Correlações cruzadas dos Lácteos
par(mfrow = c(3,2))
acf(zt18,main="ACF Lácteos")
ccf(zt18,zt3,main="Lácteos e Avicultura de Corte")
ccf(zt18,zt4,main="Lácteos e Avicultura de Postura ")
ccf(zt18,zt7,main="Lácteos e Bovinocultura")
ccf(zt18,zt21,main="Lácteos e Pescados")
ccf(zt18,zt22,main="Lácteos e Suinocultura")
```


Correlaões cruzadas dos Pescados

```
# Correlaões cruzadas dos Pescados
par(mfrow = c(3,2))
acf(zt21,main="ACF Pescados")
ccf(zt21,zt3,main="Pescados e Avicultura de Corte")
ccf(zt21,zt4,main="Pescados e Avicultura de Postura")
ccf(zt21,zt7,main="Pescados e Bovinocultura")
ccf(zt21,zt18,main="Pescados e Lácteos")
ccf(zt21,zt22,main="Pescados e Suinocultura")
```

ACF Pescados O.5 1.0 1.5 Lag Pescados e Avicultura de Postura

Pescados e Avicultura de Corte

Pescados e Bovinocultura

Pescados e Lácteos

Pescados e Suinocultura

Correlações cruzadas da Suinocultura

```
#Correlações cruzadas da Suinocultura
par(mfrow = c(3,2))
acf(zt22,main="ACF Suinocultura")
ccf(zt22,zt3,main="Suinocultura e Avicultura de Corte")
ccf(zt22,zt4,main="Suinocultura e Avicultura de Postura")
ccf(zt22,zt7,main="Suinocultura e Bovinocultura")
ccf(zt22,zt18,main="Suinocultura e Lacteos")
ccf(zt22,zt21,main="Suinocultura e Pescados")
```


Selecionado as variáveis de interesse do estudo

Essa função retorna a coluna com a lag a ser considerada na análise

```
funcao_lags = function(df,coluna,nome,lag){
  n = nrow(df)
  pre = rep(NA,lag)
  newcol = c(pre,coluna)
  for (k in 1:lag){
    df = rbind(df,rep(NA,ncol(df)))
  }
  df[nome] = newcol
  return (df)
}
```

A seguir vamos selecionar apenas as variáveis de interesse para análise

data_cut = data[,c("Bovinocultura","Avicultura de Corte","Avicultura de Postura","Pescado","Lácteos","S

Modelo da Bovinocultura

Estruturando a base

```
data_cut = data[,c("Bovinocultura","Avicultura de Corte","Avicultura de Postura","Pescado","Lácteos","S

df1<- funcao_lags(data_cut, data_cut$'Avicultura de Postura', 'avp9', 9)

df1 <- funcao_lags(df1, df1$Pescado, 'p3', 3)

df1 <- funcao_lags(df1, df1$Pescado, 'p10', 10)

df1 <- funcao_lags(df1, df1$Bovinocultura, 'b1', 1)</pre>

df2 <- na.omit(df1)
```

Separando variável preditora e as covariáveis

```
x = model.matrix(Bovinocultura~.,df2)[,-1]
y = df2$Bovinocultura
```

Regressão LASSO

A seguir vamos utilizar a biblioteca "glmnet"

```
set.seed(123)
cv.lasso <- cv.glmnet(x, y, alpha = 1, family = "gaussian")
summary(cv.lasso)</pre>
```

```
##
            Length Class Mode
## lambda
            66 -none- numeric
## cvm
          66
                  -none- numeric
## cvsd
          66
                 -none- numeric
          66
                  -none- numeric
## cvup
          66
## cvlo
                  -none- numeric
## nzero
          66
                  -none- numeric
## call
            5
                  -none- call
## name
             1
                  -none- character
## glmnet.fit 12
                elnet list
## lambda.min 1
                 -none- numeric
## lambda.1se 1
                  -none- numeric
## index
                  -none- numeric
print(cv.lasso)
```

```
##
## Call: cv.glmnet(x = x, y = y, alpha = 1, family = "gaussian")
##
## Measure: Mean-Squared Error
##
```

plot(cv.lasso)


```
cv.lasso$lambda.min
```

[1] 0.05043405

cv.lasso\$lambda.1se

[1] 0.7489297

coef(cv.lasso, cv.lasso\$lambda.min)

```
## Suinocultura
                         0.24605653
                         0.14932952
## avp9
## p3
                        -0.01311084
## p10
                         0.01739267
## b1
                         0.35784156
coef(cv.lasso, cv.lasso$lambda.1se)
## 10 x 1 sparse Matrix of class "dgCMatrix"
##
                                1
## (Intercept)
                        0.68566274
## 'Avicultura de Corte'
                        0.08952851
## 'Avicultura de Postura' .
## Pescado
## Lácteos
## Suinocultura
## avp9
## p3
## p10
## b1
                        0.15648256
       A seguir vamos utilizar a biblioteca "islasso"
model.islasso <- islasso(y ~ x, lambda = cv.lasso$lambda.min)</pre>
summary(model.islasso)
##
## Call:
## islasso(formula = y ~ x, lambda = cv.lasso$lambda.min)
## Residuals:
              1Q Median
                            3Q
## -3.5312 -0.9189 -0.0162 0.5589 8.5768
##
##
                         Estimate Std. Error
                                               Df z value Pr(>|z|)
                          ## (Intercept)
## x'Avicultura de Corte'
                          ## x'Avicultura de Postura' 0.04527 0.06032 1.000 0.750 0.452995
                       ## xPescado
## xLácteos
                        -0.20752
                                    0.12319 1.000 -1.685 0.092067 .
                                    0.21147 0.999 1.324 0.185555
## xSuinocultura
                         0.27996
## xavp9
                         0.17970
                                    0.05358 1.000 3.354 0.000796 ***
## xp3
                         -0.02206
                                    0.10177 0.999 -0.217 0.828397
## xp10
                          0.07148
                                    0.10156 0.999 0.704 0.481548
## xb1
                          0.37949
                                    0.09756 1.000 3.890 0.000100 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for gaussian family taken to be 2.677741)
##
      Null deviance: 630.47 on 145 degrees of freedom
## Residual deviance: 364.18 on 136 degrees of freedom
```

```
## AIC: 569.77
## Lambda: 0.050434
##
## Number of Newton-Raphson iterations: 4
```

Regressão classifica no contexto de Séries Temporais

Criando o modelo de Regressão Simples

```
set.seed(1234)
fit1 <- summary(fit <- lm(y~x))</pre>
fit1
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
##
     Min
             1Q Median
                          ЗQ
                                Max
## -3.5314 -0.9189 -0.0157 0.5586 8.5757
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                       ## x'Avicultura de Corte' 0.41328 0.11349 3.642 0.000384 ***
## x'Avicultura de Postura' 0.04542 0.06035 0.753 0.452982
## xPescado
                      ## xLácteos
                      -0.20785 0.12322 -1.687 0.093939 .
## xSuinocultura
                       ## xavp9
                        ## xp3
                       -0.02202 0.10186 -0.216 0.829147
## xp10
                        0.07166
                                 0.10163 0.705 0.481954
                                 0.09758 3.889 0.000157 ***
                        0.37950
## xb1
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.636 on 136 degrees of freedom
## Multiple R-squared: 0.4224, Adjusted R-squared: 0.3841
## F-statistic: 11.05 on 9 and 136 DF, p-value: 8.134e-13
#write.csv(fit1$coefficients, file = 'tabela_reg.csv')
```

Análise dos Resíduos

```
acf2(resid(fit))
```



```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] ## ACF 0.18 -0.04 -0.12 -0.08 0.05 0.06 0.02 0.01 -0.01 -0.05 -0.03 0.05 0.04 ## PACF 0.18 -0.07 -0.11 -0.04 0.07 0.02 0.00 0.02 0.00 -0.05 -0.01 0.06 0.01 ## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] ## ACF -0.05 -0.08 -0.07 0.03 0.07 0.00 -0.04 -0.09 0.03 0.02 ## PACF -0.07 -0.05 -0.04 0.03 0.03 -0.03 -0.06 0.07 -0.01
```

Regressão com erros autocorrelacionais

Criando o modelo de Regressão com erros autocorrelacionados

```
set.seed(12345)

fit2 <- sarima(y, 1,0,0, xreg= x)</pre>
```

```
## initial value 0.453951
## iter
         2 value 0.433468
          3 value 0.420315
## iter
## iter
          4 value 0.411120
## iter
          5 value 0.410309
## iter
          6 value 0.410165
          7 value 0.410127
## iter
## iter
          8 value 0.410120
          9 value 0.410117
## iter
```

```
## iter 10 value 0.410117
        11 value 0.410116
## iter
         12 value 0.410116
## iter
         12 value 0.410116
        12 value 0.410116
## iter
## final value 0.410116
## converged
## initial value 0.414187
## iter
          2 value 0.413832
## iter
          3 value 0.413745
## iter
          4 value 0.413714
          5 value 0.413707
## iter
## iter
          6 value 0.413704
## iter
          7 value 0.413704
## iter
          8 value 0.413704
          9 value 0.413704
## iter
## iter
        10 value 0.413704
        10 value 0.413704
## iter 10 value 0.413704
## final value 0.413704
## converged
```


fit2

\$fit

```
## Call:
## stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D,
       Q), period = S), xreg = xreg, transform.pars = trans, fixed = fixed, optim.control = list(trace =
       REPORT = 1, reltol = tol))
##
##
## Coefficients:
           ar1 intercept 'Avicultura de Corte' 'Avicultura de Postura'
##
        0.4691
                   0.4196
                                          0.5589
                                                                   0.0076
## s.e. 0.1227
                   0.2895
                                          0.1131
                                                                   0.0540
##
        Pescado Lácteos Suinocultura
                                          avp9
                                                    рЗ
                                                           p10
                                                                    b1
        -0.1639 -0.1834
                                0.3054 0.1548 0.0282 0.1139 0.0712
                                0.2012 0.0492 0.0856 0.0844 0.1194
       0.0963
                 0.1454
## s.e.
##
## sigma^2 estimated as 2.283: log likelihood = -267.57, log likelihood = -267.57
##
## $degrees_of_freedom
## [1] 135
##
## $ttable
##
                          Estimate
                                       SE t.value p.value
## ar1
                            0.4691 0.1227 3.8246 0.0002
## intercept
                            0.4196 0.2895 1.4497 0.1495
## 'Avicultura de Corte'
                            0.5589 0.1131 4.9432 0.0000
## 'Avicultura de Postura' 0.0076 0.0540 0.1400 0.8889
## Pescado
                           -0.1639 0.0963 -1.7023 0.0910
## Lácteos
                           -0.1834 0.1454 -1.2614 0.2093
## Suinocultura
                            0.3054 0.2012 1.5182 0.1313
                            0.1548 0.0492 3.1468 0.0020
## avp9
## p3
                            0.0282 0.0856 0.3290 0.7427
## p10
                            0.1139 0.0844 1.3496 0.1794
## b1
                            0.0712 0.1194 0.5960 0.5521
##
## $AIC
## [1] 3.829668
## $AICc
## [1] 3.843162
##
## $BIC
## [1] 4.074896
```

Análise dos resíduos e seleção de variáveis de acordo com p-valor

fit3 = Arima(y,order=c(1,0,0),xreg=x)

```
## 'Avicultura de Corte' 0.5588534 0.1130554 4.9432 7.686e-07 ***
## 'Avicultura de Postura' 0.0075602 0.0540004 0.1400 0.888658
## Pescado
              -0.1638517 0.0962515 -1.7023 0.088694
## Lácteos
                   ## Suinocultura
                     0.3054252 0.2011709 1.5182 0.128954
                    0.1547863 0.0491889 3.1468 0.001651 **
## avp9
## p3
                    0.0281560 0.0855908 0.3290 0.742185
                     0.1139403 0.0844258 1.3496 0.177147
## p10
## b1
                     0.0711886 0.1194340 0.5960 0.551142
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
#d = diag(fit3$var.coef)**(0.5)
#t = fit3$coef/d
#p = 2*pt(-abs(t), 144)
#p
\#max(p)
x = x[,-2]
fit3 = Arima(y, order=c(1,0,0), xreg=x)
coeftest(fit3)
##
## z test of coefficients:
##
##
                   Estimate Std. Error z value Pr(>|z|)
## ar1
                   ## intercept
                   0.424794 0.288533 1.4723 0.140952
## 'Avicultura de Corte' 0.562057 0.110669 5.0787 3.800e-07 ***
              -0.159513 0.090943 -1.7540 0.079434 .
## Pescado
## Lácteos
                  0.304150 0.200877 1.5141 0.129999
## Suinocultura
                   ## avp9
## p3
                   ## p10
                   ## b1
                   ## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
x = x[,-6]
fit3 = Arima(y, order=c(1,0,0), xreg=x)
coeftest(fit3)
##
## z test of coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## ar1
                    0.443624 0.282574 1.5699 0.116430
## intercept
## 'Avicultura de Corte' 0.560367 0.110747 5.0599 4.195e-07 ***
## Pescado -0.153605 0.089319 -1.7197 0.085480 .
## Lácteos
                  -0.173315 0.142529 -1.2160 0.223984
```

```
0.200426 1.4908 0.136024
## Suinocultura
                  0.298787
## avp9
                  ## p10
                  0.108064
                           0.082545 1.3091 0.190486
## b1
                  0.065841
                          0.116363 0.5658 0.571513
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
x = x[,-7]
fit3 = Arima(y, order=c(1,0,0), xreg=x)
coeftest(fit3)
##
## z test of coefficients:
##
##
                  Estimate Std. Error z value Pr(>|z|)
## ar1
                  ## intercept
## 'Avicultura de Corte' 0.575926 0.107139 5.3755 7.637e-08 ***
## Pescado
                 -0.141859 0.085662 -1.6560 0.097716 .
## Lácteos
                 -0.166660 0.144696 -1.1518 0.249406
                  ## Suinocultura
## avp9
                  ## p10
                  0.110441 0.081526 1.3547 0.175522
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
x = x[,-3]
fit3 = Arima(y, order=c(1,0,0), xreg=x)
coeftest(fit3)
##
## z test of coefficients:
##
##
                  Estimate Std. Error z value Pr(>|z|)
## ar1
                   ## intercept
                  ## 'Avicultura de Corte' 0.554877 0.106151 5.2272 1.721e-07 ***
                  ## Pescado
## Suinocultura
                  ## avp9
                  ## p10
                  0.116779
                         0.081127 1.4395 0.150022
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
fit3 = Arima(y,order=c(1,0,0),xreg=x,include.mean = FALSE)
coeftest(fit3)
##
## z test of coefficients:
##
##
                  Estimate Std. Error z value Pr(>|z|)
```

```
## ar1
## 'Avicultura de Corte' 0.566061 0.106554 5.3124 1.082e-07 ***
## Pescado
               -0.117841 0.084716 -1.3910 0.164221
## Suinocultura
                 ## avp9
## p10
                 0.135760 0.080474 1.6870 0.091605 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
x = x[,-2]
fit3 = Arima(y,order=c(1,0,0),xreg=x,include.mean = FALSE)
coeftest(fit3)
##
## z test of coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
##
                ## ar1
## Suinocultura
                0.378967   0.193652   1.9570   0.050353 .
                ## avp9
                ## p10
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
x = x[,-4]
fit3 = Arima(y,order=c(1,0,0),xreg=x,include.mean = FALSE)
coeftest(fit3)
##
## z test of coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
                ## Suinocultura
## avp9
                ## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
summary(fit3)
## Series: y
## Regression with ARIMA(1,0,0) errors
## Coefficients:
##
       ar1 'Avicultura de Corte' Suinocultura
                                     avp9
##
     0.5265
                     0.5417
                          0.4224 0.1331
## s.e. 0.0947
                     0.1066
                              0.1947 0.0476
## sigma^2 estimated as 2.477: log likelihood=-271.5
```

```
## AIC=553     AICc=553.43     BIC=567.92
##
## Training set error measures:
## Training set 0.1626874     1.55201     1.01952     -215.2519     535.9834     0.823407     0.004500127
```

checkresiduals(fit3)

Residuals from Regression with ARIMA(1,0,0) errors


```
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,0) errors
## Q* = 2.7751, df = 6, p-value = 0.8365
##
## Model df: 4. Total lags used: 10
```

Modelo da Avicultura de Corte

Estruturando a base

```
data_cut = data[,c("Bovinocultura","Avicultura de Corte","Avicultura de Postura","Pescado","Lácteos","S
```

```
df1<- funcao_lags(data_cut, data_cut$'Avicultura de Corte', 'cort1', 1)
df1 <- funcao_lags(df1, df1$'Avicultura de Postura', 'pos12', 12)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov1', 1)
df1 <- funcao_lags(df1, df1$Pescado, 'pes4', 4)
df1 <- funcao_lags(df1, df1$Pescado, 'pes9', 9)
df1 <- funcao_lags(df1, df1$Suinocultura, 'sui1', 1)
df1 <- funcao_lags(df1, df1$Suinocultura, 'sui6', 6)</pre>
df2 <- na.omit(df1)
```

Separando variável preditora e as covariáveis

```
x = model.matrix('Avicultura de Corte'~.,df2)[,-1]
y = df2$'Avicultura de Corte'
```

Regressão LASSO

A seguir vamos utilizar a biblioteca "glmnet"

```
set.seed(123)
cv.lasso <- cv.glmnet(x, y, alpha = 1, family = "gaussian")
summary(cv.lasso)</pre>
```

```
##
             Length Class Mode
## lambda
                   -none- numeric
## cvm
             64
                    -none- numeric
## cvsd
             64
                   -none- numeric
             64
## cvup
                   -none- numeric
## cvlo
             64
                   -none- numeric
## nzero
             64
                   -none- numeric
## call
              5
                   -none- call
## name
              1
                   -none- character
## glmnet.fit 12
                  elnet list
## lambda.min 1
                   -none- numeric
## lambda.1se 1
                    -none- numeric
## index
                    -none- numeric
```

```
print(cv.lasso)
```

```
##
## Call: cv.glmnet(x = x, y = y, alpha = 1, family = "gaussian")
##
## Measure: Mean-Squared Error
##
## Lambda Index Measure SE Nonzero
## min 0.02314 38 1.043 0.1473 11
## 1se 0.12349 20 1.188 0.2025 10
```

plot(cv.lasso)

12 12 12 12 11 11 11 11 11 11 10 7 6 3 3 2 0

cv.lasso\$lambda.min

[1] 0.0231396

cv.lasso\$lambda.1se

[1] 0.1234891

coef(cv.lasso, cv.lasso\$lambda.min)

```
## 13 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                           -0.001182139
## Bovinocultura
                            0.220213134
## 'Avicultura de Postura'
                            0.112923949
## Pescado
                            0.061583582
## Lácteos
                            0.206120348
## Suinocultura
                            0.167954058
## cort1
                            0.337723751
## pos12
                           -0.085647595
```

```
## bov1
                          0.066240159
## pes4
                         -0.044625127
## pes9
                          0.147778932
## sui1
## sui6
                         -0.405537952
coef(cv.lasso, cv.lasso$lambda.1se)
## 13 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                          0.08401313
## Bovinocultura
                          0.21028331
## 'Avicultura de Postura' 0.04114801
## Pescado
                          0.01432741
## Lácteos
                          0.05374680
## Suinocultura
                         0.07755948
## cort1
                          0.33324689
## pos12
                         -0.02031133
## bov1
                          0.04772662
## pes4
## pes9
                          0.09622631
## sui1
## sui6
                         -0.22041914
       A seguir vamos utilizar a biblioteca "islasso"
model.islasso <- islasso(y ~ x, lambda = cv.lasso$lambda.min)</pre>
summary(model.islasso)
##
## islasso(formula = y ~ x, lambda = cv.lasso$lambda.min)
##
## Residuals:
##
      Min
               1Q Median
                              3Q
                                    Max
## -1.8585 -0.5431 -0.0326 0.5124 3.4837
##
                                                Df z value Pr(>|z|)
##
                          Estimate Std. Error
## (Intercept)
                          ## xBovinocultura
                           0.03793 1.000
## x'Avicultura de Postura' 0.12987
                                                     3.424 0.000618 ***
                                     0.06224 1.000 1.141 0.253913
## xPescado
                           0.07100
                                     0.07548 1.000 3.210 0.001326 **
## xLácteos
                           0.24233
## xSuinocultura
                                     0.13940 0.999 1.408 0.159163
                           0.19626
## xcort1
                           0.33938
                                     0.07224 1.000 4.698 2.63e-06 ***
## xpos12
                                     0.03611 1.000 -2.785 0.005359 **
                         -0.10055
## xbov1
                           0.07237
                                     0.06581 1.000 1.100 0.271503
## xpes4
                                     0.06409 1.000 -0.958 0.338119
                          -0.06139
```

0.06197 1.000

0.13014 0.999 -0.135 0.892838

0.11305 1.000 -3.941 8.12e-05 ***

2.546 0.010887 *

0.15780

-0.01753

-0.44549

xpes9

xsui1

xsui6

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.9538159)
##
## Null deviance: 300.04 on 143 degrees of freedom
## Residual deviance: 124.95 on 131 degrees of freedom
## AIC: 416.22
## Lambda: 0.02314
##
## Number of Newton-Raphson iterations: 4
```

Regressão classica no contexto de Séries Temporais

Criando o modelo de Regressão Simples

```
set.seed(1234)
fit1 <- summary(fit <- lm(y~x))</pre>
fit1
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
               1Q Median
      Min
                              3Q
                                     Max
## -1.8583 -0.5435 -0.0324 0.5123 3.4823
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          -0.01212 0.13955 -0.087 0.930894
## xBovinocultura
                            0.22080 0.05196 4.249 4.05e-05 ***
## x'Avicultura de Postura' 0.12991 0.03793 3.425 0.000822 ***
                                    0.06226 1.141 0.255841
## xPescado
                            0.07105
## xLácteos
                            0.24253
                                     0.07549 3.213 0.001655 **
## xSuinocultura
                                    0.13949 1.410 0.160939
                          0.19667
## xcort1
                           0.33941
                                    0.07225 4.698 6.56e-06 ***
## xpos12
                           -0.10059
                                      0.03611 -2.785 0.006139 **
## xbov1
                           0.07239
                                      0.06584 1.099 0.273628
## xpes4
                          -0.06147
                                      0.06412 -0.959 0.339505
## xpes9
                           0.15784
                                      0.06198 2.547 0.012035 *
## xsui1
                           -0.01789
                                      0.13031 -0.137 0.891035
## xsui6
                           -0.44583
                                      0.11305 -3.944 0.000130 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.9766 on 131 degrees of freedom
## Multiple R-squared: 0.5835, Adjusted R-squared: 0.5454
## F-statistic: 15.3 on 12 and 131 DF, p-value: < 2.2e-16
```

```
#write.csv(fit1$coefficients, file = 'tabela_reg.csv')
```

Análise dos Resíduos

acf2(resid(fit))

checkresiduals(fit)

Residuals


```
##
## Breusch-Godfrey test for serial correlation of order up to 16
##
## data: Residuals
## LM test = 12.064, df = 16, p-value = 0.7396
```

Seleção de variáveis

```
set.seed(123)
fit2 <- summary(fit <- lm(y~x-1))
fit2</pre>
```

```
##
## Call:
## lm(formula = y \sim x - 1)
##
## Residuals:
      Min
                1Q Median
                               3Q
                                       Max
## -1.8723 -0.5489 -0.0374 0.5093 3.4770
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
                             0.21987
                                        0.05066 4.340 2.81e-05 ***
## xBovinocultura
## x'Avicultura de Postura'
                            0.12995
                                        0.03779
                                                  3.439 0.000782 ***
                             0.06999
                                        0.06081
                                                 1.151 0.251842
## xPescado
```

```
## xLácteos
                       0.24139
                                0.07407 3.259 0.001422 **
## xSuinocultura
                       ## xcort1
## xpos12
                      -0.10120
                              0.03528 -2.869 0.004801 **
## xbov1
                      0.07263
                               0.06554
                                       1.108 0.269802
## xpes4
                      ## xpes9
                      ## xsui1
                      -0.02063
                               0.12596 -0.164 0.870154
## xsui6
                      -0.44858
                              0.10813 -4.149 5.96e-05 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.973 on 132 degrees of freedom
## Multiple R-squared: 0.6242, Adjusted R-squared: 0.5901
## F-statistic: 18.27 on 12 and 132 DF, p-value: < 2.2e-16
x3 = x[, -11]
fit3 <- summary(fit <- lm(y~x3-1))
fit3
##
## Call:
## lm(formula = y \sim x3 - 1)
##
## Residuals:
     Min
            1Q Median
                         3Q
                               Max
## -1.8830 -0.5400 -0.0451 0.5022 3.4787
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
## x3Bovinocultura
                        ## x3'Avicultura de Postura' 0.13011
                               0.03764 3.457 0.000734 ***
                               0.06058 1.153 0.251114
## x3Pescado
                       0.06983
## x3Lácteos
                       ## x3Suinocultura
                       ## x3cort1
                       ## x3pos12
                       -0.10215
                               0.03467 -2.947 0.003795 **
## x3bov1
                       0.07035 0.06382 1.102 0.272264
## x3pes4
                       -0.06341 0.06000 -1.057 0.292466
                               0.05666
                                       2.742 0.006956 **
## x3pes9
                       0.15534
## x3sui6
                       -0.45127
                                0.10648 -4.238 4.19e-05 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9694 on 133 degrees of freedom
## Multiple R-squared: 0.6242, Adjusted R-squared: 0.5931
## F-statistic: 20.08 on 11 and 133 DF, p-value: < 2.2e-16
x3 = x3[, -9]
fit3 <- summary(fit <- lm(y~x3-1))
fit3
```

```
## Call:
## lm(formula = y \sim x3 - 1)
## Residuals:
               1Q Median
                              3Q
## -1.8976 -0.5704 -0.0741 0.4571 3.5165
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
                                    0.04982 4.588 1.02e-05 ***
## x3Bovinocultura
                            0.22857
## x3'Avicultura de Postura' 0.12391
                                       0.03719
                                                3.331 0.00112 **
## x3Pescado
                            0.07928
                                      0.05994
                                                1.323 0.18822
## x3Lácteos
                            0.21898
                                     0.07078 3.094 0.00240 **
## x3Suinocultura
                           0.15239
                                     0.12787 1.192 0.23547
## x3cort1
                                      0.06890
                                               5.049 1.42e-06 ***
                           0.34792
## x3pos12
                           -0.10034
                                      0.03464 -2.896 0.00441 **
## x3bov1
                           0.07091
                                      0.06384
                                                1.111 0.26870
## x3pes9
                            0.16315
                                      0.05620
                                                2.903 0.00432 **
## x3sui6
                           -0.47912
                                      0.10321 -4.642 8.12e-06 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.9698 on 134 degrees of freedom
## Multiple R-squared: 0.621, Adjusted R-squared: 0.5927
## F-statistic: 21.96 on 10 and 134 DF, p-value: < 2.2e-16
x3 = x3[, -8]
fit3 <- summary(fit <- lm(y~x3-1))
fit.3
##
## Call:
## lm(formula = y \sim x3 - 1)
##
## Residuals:
      Min
               1Q Median
                              3Q
                                     Max
## -1.8176 -0.5785 -0.0705 0.4667 3.4514
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## x3Bovinocultura
                            ## x3'Avicultura de Postura' 0.11915
                                     0.03698 3.222 0.00160 **
## x3Pescado
                            0.09276
                                     0.05875 1.579 0.11671
## x3Lácteos
                                      0.07079
                                                3.052 0.00274 **
                            0.21604
## x3Suinocultura
                           0.18318
                                      0.12493
                                                1.466 0.14491
## x3cort1
                           0.37548
                                      0.06433 5.836 3.77e-08 ***
## x3pos12
                           -0.09830
                                      0.03462 -2.839 0.00522 **
## x3pes9
                                                2.842 0.00518 **
                            0.15961
                                       0.05616
## x3sui6
                           -0.47677
                                      0.10328 -4.616 8.99e-06 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.9707 on 135 degrees of freedom
```

```
## Multiple R-squared: 0.6175, Adjusted R-squared: 0.592
## F-statistic: 24.22 on 9 and 135 DF, p-value: < 2.2e-16
x3 = x3[, -5]
fit3 <- summary(fit <- lm(y~x3-1))
fit3
##
## Call:
## lm(formula = y \sim x3 - 1)
## Residuals:
     Min
             1Q Median
                           3Q
                                 Max
## -1.7982 -0.6139 -0.0187 0.5330 3.4941
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
## x3Bovinocultura
                         ## x3'Avicultura de Postura' 0.11709
                                 0.03711 3.156 0.00197 **
## x3Pescado
                                 0.05886 1.675 0.09614 .
                         0.09862
## x3Lácteos
                         0.22468
                                 0.07084 3.172 0.00187 **
                                 0.05852 7.099 6.33e-11 ***
## x3cort1
                        0.41545
## x3pos12
                        -0.08983
                                 0.03428 -2.620 0.00978 **
## x3pes9
                        ## x3sui6
                        ## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.9748 on 136 degrees of freedom
## Multiple R-squared: 0.6114, Adjusted R-squared: 0.5886
## F-statistic: 26.75 on 8 and 136 DF, p-value: < 2.2e-16
```

checkresiduals(fit3)

Análise das séries temporais anuais

Análise Descritiva

```
head(data_anual)
## # A tibble: 6 x 7
      Anos 'Avicultura de ~ 'Avicultura Pos~ 'Bovinocultura ~ Lácteos Pescado
##
                                                                            <dbl>
##
     <dbl>
                       <dbl>
                                         <dbl>
                                                           <dbl>
                                                                    <dbl>
## 1
      2007
                       12.3
                                         26.0
                                                          20.5
                                                                    21.7
                                                                             1.40
## 2
      2008
                        8.33
                                          8.27
                                                          23.7
                                                                    -2.41
                                                                             9.89
## 3
      2009
                       -1.25
                                          3.77
                                                          -3.75
                                                                     4.55
                                                                             7.12
                                                                             8.02
     2010
                        9.27
                                          5.48
                                                          25.9
                                                                     4.36
## 5
      2011
                        6.21
                                          9.15
                                                           3.67
                                                                     7.51
                                                                             6.61
## 6
                       11.2
                                         18.8
                                                           0.792
                                                                    7.76
                                                                            14.2
      2012
## # ... with 1 more variable: Suinocultura <dbl>
z_avc = data_anual$'Avicultura de Corte'
z_{avc} = ts(z_{avc})
z_avp = data_anual$'Avicultura Postura'
z_{avp} = ts(z_{avp})
```

```
z_bov = data_anual$'Bovinocultura de corte'
z_bov = ts(z_bov)

z_lac = data_anual$'Lácteos'
z_lac = ts(z_lac)

z_pesc = data_anual$Pescado
z_pesc = ts(z_pesc)

z_suino = data_anual$Suinocultura
z_suino = ts(z_suino)
```

Regressão LASSO

```
library(glmnet)

colnames(data_anual) = c("ANO", "AVC", "AVP", "BOV", "LAC", "PESC", "SUIN")

data_anual = data_anual[,-1]
```

Modelo para Bovinocultura

```
# Bovinocultura

par(mfrow=c(3,2))
ccf(z_bov,z_avc)
ccf(z_bov,z_avp)
ccf(z_bov,z_lac)
ccf(z_bov,z_pesc)
ccf(z_bov,z_suino)
acf(z_bov)
```



```
x = model.matrix(BOV~ .,data=data_anual)[,-1]
y = data_anual$BOV

cv.model = cv.glmnet(x,y,alpha = 1)
par(mfrow=c(1,1))
plot(cv.model)
```



```
coef(cv.model,cv.model$lambda.min)
```

```
## 6 x 1 sparse Matrix of class "dgCMatrix"

## (Intercept) 5.49910654

## AVC 0.82215233

## AVP .

## LAC -0.07872937

## PESC -0.14629328

## SUIN 0.27886874
```

Modelo para o Pescado

```
# Pescados

par(mfrow=c(3,2))
ccf(z_pesc,z_bov)
ccf(z_pesc,z_suino)
ccf(z_pesc,z_avp)
ccf(z_pesc,z_avc)
ccf(z_pesc,z_lac)
acf(z_pesc)
```



```
x = model.matrix(PESC~ .,data=data_anual)[,-1]
y = data_anual$PESC

cv.model = cv.glmnet(x,y,alpha = 1)
par(mfrow=c(1,1))
plot(cv.model)
```



```
coef(cv.model,cv.model$lambda.min)
```

```
## 6 x 1 sparse Matrix of class "dgCMatrix"
## 1
## (Intercept) 5.438190
## AVC .
## AVP .
## BOV .
## LAC .
## SUIN 0.266876
```

Modelo para a Avicultura de Corte

```
# Avicultura de Corte

par(mfrow=c(3,2))
ccf(z_avc,z_bov)
ccf(z_avc,z_suino)
ccf(z_avc,z_avp)
ccf(z_avc,z_pesc)
ccf(z_avc,z_lac)
acf(z_avc)
```



```
x = model.matrix(AVC~ .,data=data_anual)[,-1]
y = data_anual$AVC

cv.model = cv.glmnet(x,y,alpha = 1)
par(mfrow=c(1,1))
plot(cv.model)
```



```
coef(cv.model,cv.model$lambda.min)
```

```
## 6 x 1 sparse Matrix of class "dgCMatrix"
## 1
## (Intercept) 1.1062106
## AVP 0.2630295
## BOV 0.1454421
## LAC .
## PESC .
## SUIN 0.2064983
```

Modelo oara Avicultura de Postura

```
# Avicultura de Postura

par(mfrow=c(3,2))
ccf(z_avp,z_bov)
ccf(z_avp,z_suino)
ccf(z_avp,z_avc)
ccf(z_avp,z_pesc)
ccf(z_avp,z_lac)
acf(z_avp)
```



```
x = model.matrix(AVP~ .,data=data_anual)[,-1]
y = data_anual$AVP

par(mfrow=c(1,1))
cv.model = cv.glmnet(x,y,alpha = 1)
plot(cv.model)
```



```
coef(cv.model,cv.model$lambda.min)
```

```
## 6 x 1 sparse Matrix of class "dgCMatrix"
## 1
## (Intercept) 6.3392348
## AVC 0.5007544
## BOV .
## LAC .
## PESC .
## SUIN .
```

Modelo para o Lácteos

```
# Lacteos

par(mfrow=c(3,2))
ccf(z_lac,z_bov)
ccf(z_lac,z_suino)
ccf(z_lac,z_avc)
ccf(z_lac,z_pesc)
ccf(z_lac,z_avp)
acf(z_lac)
```



```
x = model.matrix(LAC~ .,data=data_anual)[,-1]
y = data_anual$LAC

par(mfrow=c(1,1))
cv.model = cv.glmnet(x,y,alpha = 1)
plot(cv.model)
```



```
coef(cv.model,cv.model$lambda.min)
```

```
## 6 x 1 sparse Matrix of class "dgCMatrix"
## 1 1
## (Intercept) 6.91010603
## AVC .
## AVP 0.07756301
## BOV .
## PESC .
## SUIN .
```

Modelo para Suinocultura

```
# Suinocultura

par(mfrow=c(3,2))
ccf(z_suino,z_bov)
ccf(z_suino,z_avp)
ccf(z_suino,z_avc)
ccf(z_suino,z_pesc)
ccf(z_suino,z_lac)
acf(z_suino)
```



```
x = model.matrix(SUIN~ .,data=data_anual)[,-1]
y = data_anual$SUIN

par(mfrow=c(1,1))
cv.model = cv.glmnet(x,y,alpha = 1)
plot(cv.model)
```


 $\text{Log}(\lambda)$

coef(cv.model,cv.model\$lambda.min)