■ Final Report – Food Delivery Classification Models

V Reporting and Insights

♦ Model Comparison: Naive Bayes vs KNN vs Decision Tree

We evaluated three classification models using performance metrics such as accuracy, precision, recall, and F1-score. Below is the detailed comparison.

M Naive Bayes Classifier

Metric Value

Accuracy 98.33%

Precision 0.93 (class 0), 1.00 (class 1)

Recall 1.00 (class 0), 0.98 (class 1)

F1 Score 0.97 (class 0), 0.99 (class 1)

Confusion Matrix:

```
[[14 0]
```

[1 45]]

W Highlights:

- Highest accuracy and balance across all metrics.
- Excellent at predicting both classes.
- Only 1 misclassification.

III K-Nearest Nighbour (KNN) -k = 9

Metric Value

Accuracy 96.67%

Precision 1.00

Recall 95.65%

Metric Value

F1 Score 97.78%

Confusion Matrix:

```
[[14 0]
[2 44]]
```

W Highlights:

- Very high precision (no false positives).
- Slight drop in recall due to 2 false negatives.
- Very strong overall performance, sensitive to choice of k.

Decision Tree Classifier

Metric Value

Accuracy 76.67%

Precision 0.7667

Recall 100.00%

F1 Score 86.79%

Confusion Matrix:

```
[[ 0 14]
[ 0 46]]
```

⚠ Concerns:

- **Completely failed** to classify class 0.
- Recall = 100% because it predicted all instances as class 1.
- Biased and **not generalizing well** for imbalanced classes.

▼ Visual Results to Include in Notebook

- ♥ Confusion Matrix heatmaps (for all 3 models).
- ≪ ROC Curves for Naive Bayes and KNN.
- X Decision Tree not suitable for ROC due to poor performance.

? Actionable Insights

Q Strengths and Weaknesses of Each Model:

Model	Strengths	Weaknesses		
Naive Bayes	Fast, simple, highly accurate, interpretable	Assumes feature independence (may not hold)		
KNN (k=9)	High precision, non-parametric	Slower with large datasets, sensitive to k		
Decision Tree	Interpretable, easy to visualize	Severe overfitting, class bias		

Recommended Model:

□ **Naive Bayes** is recommended because:

- It gives the best accuracy (98.33%).
- Low error rate, especially important in critical decisions.
- Balanced classification across both classes.
- Interpretable and lightweight, suitable for deployment.
- \square KNN is a good backup option if dataset changes, but slower in real-time use.
- **Decision Tree** should be avoided in current form due to biased predictions.

Final Summary Table

Model	Accuracy	Precision	Recall	F1 Score	Recommendation
Naive Bayes	98.33%	0.93/1.00	1.00/0.98	0.97/0.99	✓ Best overall
KNN (k=9)	96.67%	1.00	95.65%	97.78%	▲ Strong second
Decision Tree	76.67%	0.7667	100%	86.79%	X Not suitable