# Ţîbuliac Andrei – Udacity Data Analyst Nanodegree

## Project 1 - Explore Weather Trends

### Introduction

In my first Data Analyst project, I used in the first step the SQL query to extract the data on a "csv" file of the cities and global data. I extract in a "csv" file the temperatures data of the city Bucharest from Romania. I used Microsoft Office Excel to create an data chart of the moving averages of the city and global data.

### **Process Method**

My Weather Trend Project consisted of two steps:

## 1. The SQL part.

The SQL part of the project where I selected the Bucharest, Romania city from where I gatered the data.

I first extract the city list and countries database in order to easily find the city near me using this query:

```
SELECT * FROM city_list;
```

I then extract the global data that contain the average temperatures by year using the following query:

```
SELECT * FROM global_data;
```

In the last step I extract the average temperatures for the Bucharest city from the 1743 until 2013 using several operators like "SELECT", "FROM", "WHERE", "LIKE" in the following query:

```
SELECT *
```

### FROM city\_data

WHERE city\_data.city LIKE 'Bucharest' AND city\_data.country LIKE 'Romania';

#### 2. The Excel Method

After I have obtained the Bucharest city and global data in two separated "csv" file I created a new file in which I combined those two databases in order to calculate the Moving Averages of the Bucharest city and global temperatures. For the moving averages I used a baseline of 10 years using a "=*AVERAGE(D2:D11)*" variance formula like in the photo below:

| H11 $\rightarrow$ : $\times$ $\checkmark$ $f_x$ =AVERAGE(D2:D11) |      |           |         |          |      |          |   |         |           |
|------------------------------------------------------------------|------|-----------|---------|----------|------|----------|---|---------|-----------|
| 4                                                                | А    | В         | С       | D        | Е    | F        | G | Н       | ı         |
| 1                                                                | year | city      | country | avg_temp | year | avg_temp |   | MV_city | MV_global |
| 2                                                                | 1743 | Bucharest | Romania | 5.31     | 1750 | 8.72     |   |         |           |
| 3                                                                | 1744 | Bucharest | Romania | 12.95    | 1751 | 7.98     |   |         |           |
| 4                                                                | 1745 | Bucharest | Romania | 2.28     | 1752 | 5.78     |   |         |           |
| 5                                                                | 1750 | Bucharest | Romania | 11.48    | 1753 | 8.39     |   |         |           |
| 6                                                                | 1751 | Bucharest | Romania | 12.01    | 1754 | 8.47     |   |         |           |
| 7                                                                | 1752 | Bucharest | Romania | 5.31     | 1755 | 8.36     |   |         |           |
| 8                                                                | 1753 | Bucharest | Romania | 10.74    | 1756 | 8.85     |   |         |           |
| 9                                                                | 1754 | Bucharest | Romania | 10.81    | 1757 | 9.02     |   |         |           |
| 10                                                               | 1755 | Bucharest | Romania | 10.61    | 1758 | 6.74     |   |         |           |
| 11                                                               | 1756 | Bucharest | Romania | 11.39    | 1759 | 7.99     | 1 | 9.289   | 8.03      |
| 12                                                               | 1757 | Bucharest | Romania | 11.16    | 1760 | 7.19     |   | 9.874   | 7.877     |
| 13                                                               | 1758 | Bucharest | Romania | 9.51     | 1761 | 8.77     |   | 9.53    | 7.956     |
| 14                                                               | 1759 | Bucharest | Romania | 10.56    | 1762 | 8.61     |   | 10.358  | 8.239     |
| 15                                                               | 1760 | Bucharest | Romania | 10.09    | 1763 | 7.5      |   | 10.219  | 8.15      |
| 16                                                               | 1761 | Bucharest | Romania | 11.11    | 1764 | 8.4      |   | 10.129  | 8.143     |
| 17                                                               | 1762 | Bucharest | Romania | 10.93    | 1765 | 8.25     |   | 10.691  | 8.132     |
| 18                                                               | 1763 | Bucharest | Romania | 10.11    | 1766 | 8.41     |   | 10.628  | 8.088     |
| 19                                                               | 1764 | Bucharest | Romania | 11.13    | 1767 | 8.22     |   | 10.66   | 8.008     |
| 20                                                               | 1765 | Bucharest | Romania | 11.02    | 1768 | 6.78     |   | 10.701  | 8.012     |
| 21                                                               | 1766 | Bucharest | Romania | 10.87    | 1769 | 7.69     |   | 10.649  | 7.982     |
| 22                                                               | 1707 | DL        | D :-    | 10 51    | 1770 | 7.00     |   | 10 504  | 0.022     |

After figuring out the Moving Averages I was able to produce a graph chart of lines that better represent the cities and global temperatures in correlation to 1743 to 2015 years using an black background to better observe the lines.



## **Analysis and conclusions**

- 1. They both have a positive slope which is gradually increase from 1743, which means the global and Bucharest temperature gradually increase, both being linked to a potential global warming evolution.
- 2. The Bucharest temperatures are general higher than global average. This is due to continental climate of the Romania country.
- 3. There is a suddenly decrease of temperature from 1803 that stabilize approximately in the year 1831.

## Bonus:

I also search the internet for information regarding the graph charts that can be done in Python and by so I was able to do the same project in Python with the same results, using a 12 years period, using an orange color for global line and a green color for Bucharest line.



I done this project using Jupyter Notebook. My opinion is that Python display data in a more nicely matter giving me the possibility to observe temperature changes more easier.