Petrucci • Harwood • Herring • Madura

Ninth GENERAL CHEMISTRY Principles and Modern Applications

Chapter 3: Chemical Compounds

Philip Dutton
University of Windsor, Canada
Prentice-Hall © 2007

Contents

- 3-1 Types of Chemical Compounds and Their Formulas
- 3-2 The Mole Concept and Chemical Compounds
- 3-3 The Composition of Chemical Compounds
- 3-4 Oxidation States: A Useful Tool in Describing Chemical Compounds
- 3-5 Naming Compounds: Organic and Inorganic Compounds

Contents

- 3-6 Names and Formulas of Inorganic Compounds
- 3-7 Names and Formulas of Organic Compounds

Focus On Mass Spectrometry-Determining Molecular Formulas

3-1 Types of Chemical Compounds and Their Formulas

Molecular Compounds

The two elements present

Lack of subscript means one atom of O per molecule Two H atoms per molecule

Molecular compounds

Molecular model: ("ball-and-stick")

1 %/inch 0.4 %/cm Empirical formula: CH₂O

Molecular formula: $C_2H_4O_2$

Structural formula: H—C—C—O—H

Molecular model: ("space-filling")

Standard Color Scheme

Slide 6 of 43 General Chemistry: Chapter 3

Prentice-Hall © 2007

Some Organic and Inorganic Molecules

Organic Compounds

Ionic Compounds

- **X** Atoms of almost all elements can gain *or* lose electrons to form charged species called **ions**.
- **Compounds** composed of ions are known as **ionic** compounds.

- Metals tend to lose electrons to form positively charged ions called cations.
- Non-metals tend to gain electrons to form negatively charged ions called **anions**.

Sodium Chloride

An extended array of Na⁺ and Cl⁻ ions

The simplest formula unit is NaCl

3-2 The Mole Concept and Chemical Calculations

- Formula mass
 - the mass of a formula unit in atomic mass units (u)
- Molecular mass
 - a formula mass of a *molecular compound*
- Weighted average mass
 - add up the weighted average atomic masses
- Exact Mass
 - add up the isotopic masses (see mass spectrometry)

Combining Several Factors in a Calculation Involving Molar Mass. The volatile liquid ethyl mercaptan, C_2H_5SH is one of the most odoriferous substances known. It is sometimes added to natural gas to make gas leaks detectable. How many C_2H_5SH molecules are contained in a 1.0 μ L sample given the following information?

The density is 0.84 g/mL, a drop of liquid is about 0.05 mL and 1.0 μ L is only 0.02 of a drop.

EXAMPLE 7-3

Solution.

The strategy to follow can be laid out in a flow diagram.

The factors in each conversion may be added above the arrows.

Don't worry if your conversion factors are upside down, fix them when you write the equations by making sure the units cancel properly.

Using the strategy and the conversion factors, write the equation:

$$1 \text{ ML} \times 10^{-6} \text{ L/ML} \times 10^{3} \text{ mL/L} \times 0.84 \text{ g/mL} \times \frac{1 \text{ mol}}{62.1 \text{ g}} \times 6.02 \times 10^{23} \text{ molec/mol}$$

Check the units cancel and *only then* calculate. $= 8.1 \times 10^{18}$ molecules

Inorganic Molecules

Slide 14 of 43 General Chemistry: Chapter 3 Prentice-Hall © 2007

Molecular Mass

Glucose

Molecular formula $C_6H_{12}O_6$ Empirical formula CH_2O

Molecular Mass: Use the naturally occurring mixture of isotopes,

$$6 \times 12.01 + 12 \times 1.01 + 6 \times 16.00 = 180.18$$

Exact Mass: Use the most abundant isotopes,

$$6 \times 12.000000 + 12 \times 1.007825 + 6 \times 15.994915$$

= 180.06339

3-3 Composition of Chemical Compounds

C₂HBrClF₃

Mole ratio

 $n_{\rm C}/n_{\rm halothane}$

Mass ratio

 $m m_{C}/m_{halothane}$

$$M(C_2HBrClF_3) = 2M_C + M_H + M_{Br} + M_{Cl} + 3M_F$$

= $(2 \times 12.01) + 1.01 + 79.90 + 35.45 + (3 \times 19.00)$
= 197.38 g/mol

EXAMPLE 7-3

Calculating the Mass Percent Composition of a Compound

What is the mass percent composition of halothane, C₂HBrClF₃?

Calculate the molecular mass

$$M(C_2HBrClF_3) = 197.38 \text{ g/mol}$$

For one mole of compound, formulate the mass ratio and convert to percent:

$$\%C = \frac{\left(2 \text{ mol C} \times \left(\frac{12.01 \text{ g C}}{1 \text{ mol C}}\right)\right)}{197.38 \text{ g C}_{2} \text{HBrClF}_{3}} \times 100\% = 12.17\%$$

EXAMPLE 7-3

$$\%H = \frac{\left(1 \text{ mol H} \times \left(\frac{1.01 \text{ g H}}{1 \text{ mol H}}\right)\right)}{197.38 \text{ g C}_2 \text{HBrClF}_3} \times 100\% = 0.51\% \text{ H}$$

$$\%Br = \frac{\left(1 \text{ mol Br} \times \left(\frac{79.90 \text{ g Br}}{1 \text{ mol Br}}\right)\right)}{197.38 \text{ g C}_2 \text{HBrClF}_3} \times 100\% = 40.48\% \text{ Br}$$

$$\%Cl = \frac{\left(1 \text{ mol C} \times \left(\frac{35.45 \text{ g Cl}}{1 \text{ mol Cl}}\right)\right)}{197.38 \text{ g C}_2 \text{HBrClF}_3} \times 100\% = 17.96\% \text{ Cl}$$

%F =
$$\frac{\left(3 \text{ mol C} \times \left(\frac{19.00 \text{ g F}}{1 \text{ mol F}}\right)\right)}{197.38 \text{ g C}_{2}\text{HBrClF}_{3}} \times 100\% = 28.88\% \text{ F}$$

Establishing Formulas from Experimentally Determined Percent Composition

5 Step approach:

- 1. Choose an arbitrary sample size (100g).
- 2. Convert masses to amounts in moles.
- 3. Write a formula.
- 4. Convert formula to small whole numbers.
- 5. Multiply all subscripts by a small whole number to make the subscripts integral.

Determining the Empirical and Molecular Formulas of a Compound from Its Mass Percent Composition

Dibutyl succinate is an insect repellent used against household ants and roaches. Its composition is 62.58% C, 9.63% H and 27.79% O. Its experimentally determined molecular mass is 230 u. What are the empirical and molecular formulas of dibutyl succinate?

Step 1: Determine the mass of each element in a 100g sample.

C 62.58 g H 9.63 g O 27.79 g

Step 2: Convert masses to amounts in moles.

$$n_{C} = 62.58 gC \times \frac{1 mol C}{12.011 gC} = 5.210 mol C$$
 $n_{H} = 9.63 gH \times \frac{1 mol H}{1.008 gH} = 9.55 mol H$
 $n_{O} = 27.79 gO \times \frac{1 mol O}{15.999 gO} = 1.737 mol O$

Step 3: Write a tentative formula.

 $C_{5.21}H_{9.55}O_{1.74}$

Step 4: Convert to small whole numbers.

 $C_{2.99}H_{5.49}O$

Step 5: Convert to a small whole number ratio.

Multiply \times 2 to get $C_{5.98}H_{10.98}O_2$

The empirical formula is $C_6H_{11}O_2$

Step 6: Determine the molecular formula.

Empirical formula mass is 115 u. Molecular formula mass is 230 u.

The molecular formula is $C_{12}H_{22}O_4$

Combustion Analysis

3-4 Oxidation States: A Useful Tool in Describing Chemical Compounds

Metals tend to lose electrons.

Na $8 \text{ Na}^+ + e^-$

1																	18
1A																	8A
1 H 1.00794	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.00260
3 Li 6.941	4 Be 9.01218											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18,9984	10 Ne 20.1797
11 Na 22.9898	12 Mg 24.3050	3 3B	4 4B	5 5B	6 6B	7 7B	8	$-\frac{9}{8B}$	10	11 1B	12 2B	13 Al 26.9815	14 Si 28.0855	15 P 30.9738	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.88	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9381	26 Fe 55.847	27 Co 58.9332	28 Ni 58.693	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.9059	40 Zr 91.224	41 Nb 92,9064	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.906	46 Pd 106.42	47 Ag 107.868	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.757	52 Te 127.60	53 I 126.904	54 Xe 131.29
55 Cs 132.905	56 Ba 137.327	57 *La 138.906	72 Hf 178.49	73 Ta 180.948	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.967	80 Hg 200.59	81 T1 204.383	82 Pb 207.2	83 Bi 208.980	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.025	89 †Ac 227.028	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	111 (272)	112 (272)		114 (287)		116 (289)		118 (293)
*Lanthanide series			58 Ce 140.115	59 Pr 140.908	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.965	64 Gd 157.25	65 Tb 158.925	66 Dy 162.50	67 Ho 164.930	68 Er 167.26	69 Tm 168.934	70 Yb 173.04	71 Lu 174.967	
[†] Actinide series			90 Th 232.038	91 Pa 231.036	92 U 238.029	93 Np 237.048	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	

Non-metals tend to gain electrons.

$$Cl + e^{-}$$
 Cl^{-}

Reducing agents

Oxidizing agents

We use the Oxidation State to keep track of the number of electrons that have been gained or lost by an element.

Rules for Oxidation States

- 1. The oxidation state (OS) of an individual atom in a free element is 0.
- 2. The total of the OS in all atoms in:
 - i. Neutral species is 0.
 - ii. Ionic species is equal to the charge on the ion.
- 3. In their compounds, the alkali metals and the alkaline earths have OS of +1 and +2 respectively.
- 4. In compounds the OS of fluorine is *always* −1

Rules for Oxidation States

- 5. In compounds, the OS of hydrogen is *usually* +1
- 6. In compounds, the OS of oxygen is usually –2.
- 7. In binary (two-element) compounds with metals:
 - i. Halogens have OS of -1,
 - ii. Group 16 have OS of –2 and
 - iii. Group 15 have OS of -3.

Assigning Oxidation States What is the oxidation state of the underlined element in each of the following? a) P_4 ; b) Al_2O_3 ; c) MnO_4^- ; d) NaH.

- a) P_4 is an element. POS = 0
- b) Al_2O_3 : O is -2. O_3 is -6. Since (+6)/2=(+3), $Al_2O_3 = +3$.
- c) MnO_4^- : net OS = -1, O_4 is -8. MnOS = +7.
- d) NaH: net OS = 0, rule 3 beats rule 5, Na OS = +1 and H OS = -1.

3-5 Naming Compounds: Organic and Inorganic Compounds

Trivial names are used for common compounds.

A systematic method of naming compounds is known as a system of *nomenclature*.

Organic compounds
Inorganic compounds

Lead (IV) oxide

Lead (II) oxide

3-6 Names and Formulas of Inorganic Compounds

Binary Compounds of Metals and Nonmetals

TABLE 3.1 Some Simple Ions							
Name	Symbol	Name	Symbol				
Positive ions (cations)							
Lithium ion	Li ⁺	Chromium(II) ion	Cr ²⁺				
Sodium ion	Na ⁺	Chromium(III) ion	Cr ³⁺				
Potassium ion	K^+	Iron(II) ion	Fe ²⁺				
Rubidium ion	Rb ⁺	Iron(III) ion	Fe ³⁺				
Cesium ion	Cs ⁺	Cobalt(II) ion	Co ²⁺				
Magnesium ion	Mg^{2+}	Cobalt(III) ion	Co ³⁺				
Calcium ion	Ca ²⁺	Copper(I) ion	Cu ⁺				
Strontium ion	Sr ²⁺	Copper(II) ion	Cu ²⁺				
Barium ion	Ba ²⁺	Mercury(I) ion	Hg_2^{2+}				
Aluminum ion	Al^{3+}	Mercury(II) ion	Hg^{2+}				
Zinc ion	Zn^{2+}	Tin(II) ion	Sn ²⁺				
Silver ion	Ag^+	Lead(II) ion	Pb ²⁺				
Negative ions (anions)							
Hydride ion	H^-	Iodide ion	I-				
Fluoride ion	F^-	Oxide ion	O^{2-}				
Chloride ion	Cl ⁻	Sulfide ion	S^{2-}				
Bromide ion	Br ⁻	Nitride ion	N ³⁻				

Binary Compounds of Two Non-Metals

Molecular compounds

usually write the positive OS element first. HCl hydrogen chloride

Some pairs form more than one compound

mono	1	penta	5
di	2	hexa	6
tri	3	hepta	7
tetra	4	octa	8

TABLE 3.2 Naming Binary Molecular Compounds

Formula	Name ^a
BCl ₃	Boron trichloride
CCl_4	Carbon tetrachloride
CO	Carbon monoxide
CO_2	Carbon dioxide
NO	Nitrogen monoxide
NO_2	Nitrogen dioxide
N_2O	Dinitrogen monoxide
N_2O_3	Dinitrogen trioxide
N_2O_4	Dinitrogen tetroxide
N_2O_5	Dinitrogen pentoxide
PCl ₃	Phosphorus trichloride
PCl ₅	Phosphorus pentachloride
SF ₆	Sulfur hexafluoride

^aWhen the prefix ends in *a* or *o* and the element name begins with *a* or *o*, the final vowel of the prefix is dropped for ease of pronunciation. For example, carbon *mon*oxide, not carbon *mon*oxide, and dinitrogen *tetr*oxide, not dinitrogen *tetra*oxide. However, PI₃ is phosphorus *tri*odide, not phosphorus *tri*odide.

Binary Acids

Acids produce H⁺ when dissolved in water.

They are compounds that ionize in water.

Emphasize the fact that a molecule is an acid by altering the name.

HCl hydrogen chloride hydrochloric acid

HF hydrogen fluoride hydrofluoric acid

 TABLE 3.3
 Some Common Polyatomic Ions

Name	Formula	Typical Compound	Name	Formula	Typical Compound
Cation			Anions		
Ammonium ion	$\mathrm{NH_4}^+$	NH ₄ Cl	Nitrite ion	NO_2^-	NaNO ₂
Anions			Nitrate ion	NO_3^-	NaNO ₃
Acetate ion	$C_{2}H_{3}O_{2}^{-}$	NaC ₂ H ₃ O ₂	Oxalate ion	$C_2O_4^{2-}$	$Na_2C_2O_4$
Carbonate ion	CO_3^{2-}	Na_2CO_3	Permanganate ion	$\mathrm{MnO_4}^-$	$NaMnO_4$
Hydrogen carbonate ion ^a	HCO ₃	NaHCO ₃	Phosphate ion	PO_4^{3-}	Na_3PO_4
(or bicarbonate ion)	•	-	Hydrogen phosphate ion ^a	$\mathrm{HPO_4}^{2-}$	Na ₂ HPO ₄
Hypochlorite ion	ClO ⁻	NaClO	Dihydrogen phosphate ion ^a	$\mathrm{H_2PO_4}^-$	NaH ₂ PO ₄
Chlorite ion	ClO_2^-	NaClO ₂	Sulfite ion	SO_3^{2-}	Na_2SO_3
Chlorate ion	ClO_3^-	NaClO ₃	Hydrogen sulfite ion ^a	HSO_3^-	NaHSO ₃
Perchlorate ion	${\rm ClO_4}^-$	NaClO ₄	(or bisulfite ion)		
Chromate ion	CrO_4^{2-}	Na ₂ CrO ₄	Sulfate ion	50_4^{2-}	Na ₂ SO ₄
Dichromate ion	$Cr_2O_7^{2-}$	Na ₂ Cr ₂ O ₇	Hydrogen sulfate ion ^a	${\rm HSO_4}^-$	NaHSO ₄
Cyanide ion	CN^-	NaCN	(or bisulfate ion)		
Hydroxide ion	OH^-	NaOH	Thiosulfate ion	$S_2O_3^{2-}$	$Na_2S_2O_3$

^aThese anion names are sometimes written as a single word—for example, hydrogencarbonate, hydrogenphosphate, and so forth.

TABLE 3.4 Nomenclature of Some Oxoacids and Their Salts

Oxidation State	Formula of Acid ^a	Name of Acid ^b	Formula of Salt ^b	Name of Salt
Cl: +1	HClO	<i>Hypo</i> chlo <i>rous</i> acid	NaClO	Sodium <i>hypo</i> chlor <i>ite</i>
Cl: +3	HClO ₂	Chlorous acid	NaClO ₂	Sodium chlorite
Cl: +5	$HClO_3$	Chloric acid	$NaClO_3$	Sodium chlorate
Cl: +7	$HClO_4$	Perchloric acid	$NaClO_4$	Sodium <i>per</i> chlorate
N: +3	HNO_2	Nitrous acid	NaNO ₂	Sodium nitrite
N: +5	HNO_3	Nitric acid	$NaNO_3$	Sodium nitrate
S: +4	H_2SO_3	Sulfurous acid	Na_2SO_3	Sodium sulfite
S: +6	H_2SO_4	Sulfuric acid	Na ₂ SO ₄	Sodium sulfate

^aIn all these acids, H atoms are bonded to O atoms, not the central nonmetal atom. Often formulas are written to reflect this fact, for instance, HOCl instead of HClO and HOClO instead of HClO₂.

^bIn general, the -ic and -ate names are assigned to compounds in which the central nonmetal atom has an oxidation state equal to the periodic table group number minus 10. Halogen compounds are exceptional in that the -ic and -ate names are assigned to compounds in which the halogen has an oxidation state of +5 (even though the group number is 17).

Some Compounds of Greater Complexity

- ◆ Effect of Moisture
 - Blue anhydrous
 - CoCl₂
 - Pink hexahydrate
 - CoCl₂• 6 H₂O

$$\% H_2O = \frac{6 \text{ mol } H_2O \times \left[\frac{18.02 \text{ g } H_2O}{1 \text{ mol } H_2O}\right]}{237.9 \text{ g } \text{CoCl}_2 \cdot 6 \text{ H}_2O} \times 100\%$$

 $=45.45\% \text{ H}_2\text{O}$

3-7 Names and Formulas of Organic Compounds

Organic compounds abound in nature

Fats, carbohydrates and proteins are foods.

Propane, gasoline, kerosene, oil.

Drugs and plastics

Carbon atoms form chains and rings and act as the framework of molecules.

TABLE 3.5 Word stem (or prefix) indicating the number of carbon atoms in simple organic molecules

Stem	Number of
(or prefix)	C Atoms
Meth- Eth- Prop- But- Pent- Hex-	1 2 3 4 5 6
Hept-	7
Oct-	8
Non-	9
Dec-	10

Visualizations of some Hydrocarbons

Isomers

Isomers have the same molecular formula but have different arrangements of atoms in space. Are the following pairs isomers?

(a)
$$CH_2$$
— CH_2 H_2C — CH_2 CH_3 CH_3 CH_4 CH_3 CH_4 CH_5 $CH_$

(c)
$$CH_3$$
 $C=C$ CH_3 CH_3 $C=C$ CH_3 $C=C$

Functional Groups – Alcohols

(b) Methanol, or Methyl alcohol

(c) 1-Propanol, or Propyl alcohol

(d) 2-Propanol, or Isopropyl alcohol

Functional Groups – Carboxylic Acid

Slide 42 of 43 General Chemistry: Chapter 3 Prentice-Hall © 2007

End of Chapter Questions

- ◆ Individuals have individual learning styles.
 - You may have more than one style for different types of learning.
 - Seeing

Reading

Listening

Writing

- ◆ Take notes and actively listen.
- Participate in your learning process!