LETS GROW MORE(LGM) INTERNSHIP AUGUST-2021

IRIS FLOWERS CLASSIFICATION MACHINE LEARNING

Step1 Defining objectives

```
In [54]: import numpy as np
    import pandas as pd
    import os
    import seaborn as sns
    import matplotlib.pyplot as plt

In [55]: from sklearn.metrics import confusion_matrix
```

Step2 importing dataset

```
In [56]: df = pd.read_csv('Iris.csv')
    df.head()
```

Out[56]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

Step 3 Data Preprocessing

```
In [40]:
         # to basic info about datatype
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 150 entries, 0 to 149
         Data columns (total 6 columns):
          #
              Column
                             Non-Null Count Dtype
              ----
          0
              Ιd
                              150 non-null
                                              int64
          1
              SepalLengthCm 150 non-null
                                              float64
              SepalWidthCm
                                              float64
          2
                             150 non-null
          3
              PetalLengthCm 150 non-null
                                              float64
              PetalWidthCm
          4
                             150 non-null
                                              float64
          5
              Species
                             150 non-null
                                              object
         dtypes: float64(4), int64(1), object(1)
         memory usage: 7.2+ KB
In [41]: # to display no. of samples on each class
         df['Species'].value_counts()
Out[41]: Iris-versicolor
                             50
         Iris-virginica
                             50
         Iris-setosa
                             50
         Name: Species, dtype: int64
In [42]: # check for null values
         df.isnull().sum()
Out[42]: Id
                           0
         SepalLengthCm
                          0
         SepalWidthCm
                          0
         PetalLengthCm
                           0
         PetalWidthCm
                          0
         Species
                           0
         dtype: int64
In [43]: df.describe()
Out[43]:
```

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

Step4 Data Visualization

```
In [44]: plt.plot(x[:,0][y==0],x[:,1][y==0],'r.',label="setosa")
    plt.plot(x[:,0][y==1],x[:,1][y==1],'g.',label="versicolor")
    plt.plot(x[:,0][y==2],x[:,1][y==2],'b.',label="virginica")
    plt.legend()
    plt.show()
```



```
In [45]: df['SepalLengthCm'].hist()
```

Out[45]: <AxesSubplot:>

In [46]: df['SepalWidthCm'].hist()

Out[46]: <AxesSubplot:>

In [47]: df['PetalLengthCm'].hist()

Out[47]: <AxesSubplot:>

In [48]: df['PetalWidthCm'].hist()

Out[48]: <AxesSubplot:>

Step 5 Finding Co-relation

In [49]: df.corr()

Out[49]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
ld	1.000000	0.716676	-0.397729	0.882747	0.899759
SepalLengthCm	0.716676	1.000000	-0.109369	0.871754	0.817954
SepalWidthCm	-0.397729	-0.109369	1.000000	-0.420516	-0.356544
PetalLengthCm	0.882747	0.871754	-0.420516	1.000000	0.962757
PetalWidthCm	0.899759	0.817954	-0.356544	0.962757	1.000000

```
In [50]: corr = df.corr()
fig, ax = plt.subplots(figsize=(5,4))
sns.heatmap(corr, annot=True, ax=ax, cmap = 'coolwarm')
```

Out[50]: <AxesSubplot:>

Step 6 Model Building

```
In [51]: from sklearn.preprocessing import StandardScaler
    x=StandardScaler().fit_transform(x)
```

```
In [52]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=1)
```

In [53]: from sklearn.linear_model import LogisticRegression

Confusion Matrix

Thank You

```
In [ ]:
```