CO: Computer Organization

Day3

Indian Institute of Information Technology, Sri City

Jan - May - 2018

http://co-iiits.blogspot.in/

Arithmetic Operations on Integers

- Addition
 - ► Two 1-bit numbers
 - Two 4-bit numbers
 - Two 16-bit numbers
 - ► Two 64-bit numbers

Half Adder Truth Table

Α	В	Carry(C)	Sum(S)	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

$$Sum(S) = A \bigoplus B$$

 $Carry(C) = AB$

If each gate delay is $1\mathcal{T}$, S and C are available after $1\mathcal{T}$.

Full Adder Truth Table

Cin	Α	В	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = C_{in}^{1}(A \bigoplus B) + C_{in}(A \bigoplus B)^{1} = C_{in} \bigoplus (A \bigoplus B)$$
$$C_{out} = AB + C_{in}(A \bigoplus B)$$

Full Adder Circuit

$$S = C_{in}^{1}(A \bigoplus B) + C_{in}(A \bigoplus B)^{1} = C_{in} \bigoplus (A \bigoplus B)$$
$$C_{out} = AB + C_{in}(A \bigoplus B)$$

if each gate delay is $1\mathcal{T}$, then S is available after $2\mathcal{T}$ and C_{out} is available after 3T.

Praveen (IIT Madras) CO-IIITS-2018 ICS-110

5 / 13

Input $A = A_3A_2A_1A_0$ Input $B = B_3B_2B_1B_0$ Carry $C = C_3C_2C_1C_0$ (initial carry) Sum $S = C_4S_3S_2S_1S_0$

- $ightharpoonup C_1$ is available after $3\mathcal{T}$.
- $ightharpoonup C_2$ is available after $5\mathcal{T}$.
- $ightharpoonup C_3$ is available after 7T.
- $ightharpoonup C_4$ is available after $9\mathcal{T}$.

So the delay of 4-bit ripple carry adder is $9\mathcal{T}$.

- $ightharpoonup C_1$ is available after $3\mathcal{T}$.
- $ightharpoonup C_2$ is available after $5\mathcal{T}$.
- $ightharpoonup C_3$ is available after 7T.
- $ightharpoonup C_4$ is available after $9\mathcal{T}$.

So the delay of 4-bit ripple carry adder is $9\mathcal{T}$.

- $ightharpoonup C_1$ is available after $3\mathcal{T}$.
- $ightharpoonup C_2$ is available after $5\mathcal{T}$.
- $ightharpoonup C_3$ is available after $7\mathcal{T}$.
- $ightharpoonup C_4$ is available after $9\mathcal{T}$.

So the delay of 4-bit ripple carry adder is $9\mathcal{T}$

- $ightharpoonup C_1$ is available after $3\mathcal{T}$.
- $ightharpoonup C_2$ is available after $5\mathcal{T}$.
- $ightharpoonup C_3$ is available after $7\mathcal{T}$.
- $ightharpoonup C_4$ is available after $9\mathcal{T}$.

So the delay of 4-bit ripple carry adder is $9\mathcal{T}$

- $ightharpoonup C_1$ is available after $3\mathcal{T}$.
- $ightharpoonup C_2$ is available after $5\mathcal{T}$.
- $ightharpoonup C_3$ is available after $7\mathcal{T}$.
- $ightharpoonup C_4$ is available after $9\mathcal{T}$.

So the delay of 4-bit ripple carry adder is $9\mathcal{T}$.

Carry Look Ahead Logic

$$S_i = C_i \bigoplus (A_i \bigoplus B_i)$$

 $C_{i+1} = A_i B_i + C_i (A_i \bigoplus B_i)$
Let $G_i = A_i . B_i$ and $P_i = A_i \bigoplus B_i$
then $S_i = C_i \bigoplus P_i$
 $C_{i+1} = G_i + C_i P_i$
So the value of C_1, C_2, C_3, C_4 are:
 $C_1 = G_0 + C_0 P_0$
 $C_2 = G_1 + C_1 P_1 = G_1 + G_0 P_1 + C_0 P_0 P_1$
 $C_3 = G_2 + C_2 P_2 = G_2 + G_1 P_2 + C_1 P_1 P_2 = G_2 + G_1 P_2 + G_0 P_1 P_2 + C_0 P_0 P_1 P_2$
 $C_4 = G_3 + C_3 P_3$
 $= G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + C_0 P_0 P_1 P_2 P_3$

Thereafter C_1 , C_2 , C_3 , C_4 are available in $2\mathcal{T}$

Thereafter S_0, S_1, S_2, S_3 are available in $1\mathcal{T}$

∴ Delay of CLA is 4*T*.

Carry Look Ahead Logic

$$S_i = C_i \bigoplus (A_i \bigoplus B_i)$$

 $C_{i+1} = A_i B_i + C_i (A_i \bigoplus B_i)$
Let $G_i = A_i . B_i$ and $P_i = A_i \bigoplus B_i$
then $S_i = C_i \bigoplus P_i$
 $C_{i+1} = G_i + C_i P_i$
So the value of C_1, C_2, C_3, C_4 are:
 $C_1 = G_0 + C_0 P_0$
 $C_2 = G_1 + C_1 P_1 = G_1 + G_0 P_1 + C_0 P_0 P_1$
 $C_3 = G_2 + C_2 P_2 = G_2 + G_1 P_2 + C_1 P_1 P_2 = G_2 + G_1 P_2 + G_0 P_1 P_2 + C_0 P_0 P_1 P_2$
 $C_4 = G_3 + G_3 P_3$
 $= G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + C_0 P_0 P_1 P_2 P_3$
 G_i and P_i are available after $1T$.

: Delay of CLA is $4\mathcal{T}$.

Carry Look Ahead Logic

$$S_i = C_i \bigoplus (A_i \bigoplus B_i)$$

 $C_{i+1} = A_i B_i + C_i (A_i \bigoplus B_i)$
Let $G_i = A_i . B_i$ and $P_i = A_i \bigoplus B_i$
then $S_i = C_i \bigoplus P_i$
 $C_{i+1} = G_i + C_i P_i$
So the value of C_1, C_2, C_3, C_4 are:
 $C_1 = G_0 + C_0 P_0$
 $C_2 = G_1 + C_1 P_1 = G_1 + G_0 P_1 + C_0 P_0 P_1$
 $C_3 = G_2 + C_2 P_2 = G_2 + G_1 P_2 + C_1 P_1 P_2 = G_2 + G_1 P_2 + G_0 P_1 P_2 + C_0 P_0 P_1 P_2$
 $C_4 = G_3 + C_3 P_3$
 $= G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + C_0 P_0 P_1 P_2 P_3$
 G_i and P_i are available after $1T$.
Thereafter C_1, C_2, C_3, C_4 are available in $2T$.

Carry Look Ahead Logic

$$S_i = C_i \bigoplus (A_i \bigoplus B_i)$$

 $C_{i+1} = A_i B_i + C_i (A_i \bigoplus B_i)$
Let $G_i = A_i . B_i$ and $P_i = A_i \bigoplus B_i$
then $S_i = C_i \bigoplus P_i$
 $C_{i+1} = G_i + C_i P_i$
So the value of C_1, C_2, C_3, C_4 are:
 $C_1 = G_0 + C_0 P_0$
 $C_2 = G_1 + C_1 P_1 = G_1 + G_0 P_1 + C_0 P_0 P_1$
 $C_3 = G_2 + C_2 P_2 = G_2 + G_1 P_2 + C_1 P_1 P_2 = G_2 + G_1 P_2 + G_0 P_1 P_2 + C_0 P_0 P_1 P_2$
 $C_4 = G_3 + C_3 P_3$
 $= G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + C_0 P_0 P_1 P_2 P_3$
 G_i and P_i are available after $1T$.

'. Delay of CLA is 4 / .

Carry Look Ahead Logic

$$S_i = C_i \bigoplus (A_i \bigoplus B_i)$$

 $C_{i+1} = A_i B_i + C_i (A_i \bigoplus B_i)$
Let $G_i = A_i . B_i$ and $P_i = A_i \bigoplus B_i$
then $S_i = C_i \bigoplus P_i$
 $C_{i+1} = G_i + C_i P_i$
So the value of C_1, C_2, C_3, C_4 are:
 $C_1 = G_0 + C_0 P_0$
 $C_2 = G_1 + C_1 P_1 = G_1 + G_0 P_1 + C_0 P_0 P_1$
 $C_3 = G_2 + C_2 P_2 = G_2 + G_1 P_2 + C_1 P_1 P_2 = G_2 + G_1 P_2 + G_0 P_1 P_2 + C_0 P_0 P_1 P_2$
 $C_4 = G_3 + C_3 P_3$
 $= G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + C_0 P_0 P_1 P_2 P_3$
 G_i and P_i are available after $1T$.

*, Delay of CLA is 4/.

9 / 13

Carry Look Ahead Logic

$$S_i = C_i \bigoplus (A_i \bigoplus B_i)$$

 $C_{i+1} = A_i B_i + C_i (A_i \bigoplus B_i)$
Let $G_i = A_i . B_i$ and $P_i = A_i \bigoplus B_i$
then $S_i = C_i \bigoplus P_i$
 $C_{i+1} = G_i + C_i P_i$
So the value of C_1, C_2, C_3, C_4 are:
 $C_1 = G_0 + C_0 P_0$
 $C_2 = G_1 + C_1 P_1 = G_1 + G_0 P_1 + C_0 P_0 P_1$
 $C_3 = G_2 + C_2 P_2 = G_2 + G_1 P_2 + C_1 P_1 P_2 = G_2 + G_1 P_2 + G_0 P_1 P_2 + C_0 P_0 P_1 P_2$
 $C_4 = G_3 + C_3 P_3$
 $= G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + C_0 P_0 P_1 P_2 P_3$

 G_i and P_i are available after $1\mathcal{T}$

Thereafter C_1 , C_2 , C_3 , C_4 are available in $2\mathcal{T}$.

Thereafter S_0, S_1, S_2, S_3 are available in $1\mathcal{T}$

: Delay of CLA is $4\mathcal{T}$.

Carry Look Ahead Logic

$$S_i = C_i \bigoplus (A_i \bigoplus B_i)$$

 $C_{i+1} = A_i B_i + C_i (A_i \bigoplus B_i)$
Let $G_i = A_i . B_i$ and $P_i = A_i \bigoplus B_i$
then $S_i = C_i \bigoplus P_i$
 $C_{i+1} = G_i + C_i P_i$
So the value of C_1, C_2, C_3, C_4 are:
 $C_1 = G_0 + C_0 P_0$
 $C_2 = G_1 + C_1 P_1 = G_1 + G_0 P_1 + C_0 P_0 P_1$
 $C_3 = G_2 + C_2 P_2 = G_2 + G_1 P_2 + C_1 P_1 P_2 = G_2 + G_1 P_2 + G_0 P_1 P_2 + C_0 P_0 P_1 P_2$
 $C_4 = G_3 + C_3 P_3$
 $= G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + C_0 P_0 P_1 P_2 P_3$
 G_i and P_i are available after $1T$.

Thereafter C_1 , C_2 , C_3 , C_4 are available in $2\mathcal{T}$.

Thereafter S_0, S_1, S_2, S_3 are available in $1\mathcal{T}$

: Delay of CLA is 4T.

Carry Look Ahead Logic

$$S_i = C_i \bigoplus (A_i \bigoplus B_i)$$

 $C_{i+1} = A_i B_i + C_i (A_i \bigoplus B_i)$
Let $G_i = A_i.B_i$ and $P_i = A_i \bigoplus B_i$
then $S_i = C_i \bigoplus P_i$
 $C_{i+1} = G_i + C_i P_i$
So the value of C_1, C_2, C_3, C_4 are:
 $C_1 = G_0 + C_0 P_0$
 $C_2 = G_1 + C_1 P_1 = G_1 + G_0 P_1 + C_0 P_0 P_1$
 $C_3 = G_2 + C_2 P_2 = G_2 + G_1 P_2 + C_1 P_1 P_2 = G_2 + G_1 P_2 + G_0 P_1 P_2 + C_0 P_0 P_1 P_2$
 $C_4 = G_3 + C_3 P_3$
 $= G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + C_0 P_0 P_1 P_2 P_3$
 G_i and P_i are available after $1T$.

∴ Delay of CLA is 4T.

Thereafter C_1 , C_2 , C_3 , C_4 are available in $2\mathcal{T}$. Thereafter S_0 , S_1 , S_2 , S_3 are available in $1\mathcal{T}$.

Carry Look Ahead Circuit

4-bit Adder using CLA Logic

Think and Try

- Speedup of 4-bit CLA adder as compared with 4-bit RCA(Ripple Carry Adder).
- Output Properties
 Output Properties<
- Output How to design a 16-bit adder using 4-bit CLAs.
- Latency of N-bit adder using L-bit CLAs.
- How to design a 64-bit adder using 16-bit adders. The 16-bit adders are designed using 4-bit CLAs.

A 4-bit adder or subtractor

Write equations for Carry(C) and Overflow detection.

A 4-bit adder or subtractor

Write equations for Carry(C) and Overflow detection.