Feuille de TD nº 4 : Equivalence langages reconnus/langages rationnels

1 Passage d'une expression rationnelle à un automate

Exercice 1: Expression Rationnelle vers Automate

Répondre aux questions suivantes pour les expressions rationnelles $(a^*b^*)^*$, $b(ab)^* + (ba)^*b$ et $(a+bb)^*(b+aa)^*$:

- 1. Donner l'automate obtenu par les constructions de Thompson correspondant à cette expression rationnelle,
- 2. Supprimer les ε -transitions. On pourra utiliser l'algorithme vu en cours, ou éliminer les ε -transitions une à une.
- 3. Déterminiser l'automate obtenu.
- 4. L'automate obtenu après déterminisation vous semble-t-il être minimal?

2 Passage d'un automate à une expression rationnelle

On rappelle le lemme d'Arden

Lemme d'Arden

Soient A et B deux langages, tels que $\varepsilon \notin A$. L'équation L = AL + B d'inconnue L a pour unique solution le langage $L = A^*B$.

Exercice 2: Echauffement

FIGURE 1 – Automate A_0

- 1. Ecrire les équations des langages L_0 , L_1 , L_2 reconnus par A_0 en commençant dans l'état 0, 1 et 2 respectivement.
- 2. Résoudre de deux façons ce système d'équations : en appliquant le lemme d'Arden au langage L_0 , puis au langage L_1 . En déduire deux expressions rationnelles pour le langage reconnu par A_0 .

Exercice 3: Automate vers Expression Rationnelle

Grâce au Lemme d'Arden, donnez une expression régulière représentant les langages reconnus par les automates suivants.

\mathcal{A}_6	0	1	2	
a	Ø	{0}	$\{1, 2\}$	
b	{2}	$\{0, 1\}$	Ø	
initial	oui	non	non	
terminal	oui	non	non	

\mathcal{A}_7	0	1	2	3	4	5
a	$\{4, 3\}$	$\{4, 2\}$	{0}	$\{1, 5\}$	Ø	{4}
b	{1}	{5}	$\{1, 2\}$	Ø	{4}	{3}
initial	oui	non	non	non	oui	non
terminal	non	non	non	oui	non	oui

3 Propriétés

Exercice 4 : Conséquences

Pourquoi peut-on dire que

- 1. L'intersection de deux langages rationnels est rationnelle?
- 2. L'ensemble des préfixes d'un langage rationnel forme un langage rationnel?
- 3. Le complémentaire d'un langage rationnel est rationnel?