

Please write clearly in	ı block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM03) Unit FP2 Pure Mathematics

Tuesday 11 January 2022 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
TOTAL		

FM03

Answer all questions	in the spaces	provided.
-----------------------------	---------------	-----------

				0	1	0
1	(a)	The matrix	$\mathbf{A} =$	1	0	0
				0	0	1

[0 0 .]	
Describe fully the single transformation represented by the matrix	A [2 marks]

State the line of invariant points for the transformation represented by the matrix B
[1 mark]

Answer

The vectors u , v and w are such that	
$\mathbf{v} \times \mathbf{w} = 5\mathbf{i}$ and $\mathbf{u} \times \mathbf{v} = 2\mathbf{j}$	
Simplify	
$(4\mathbf{u}+3\mathbf{v}+6\mathbf{w})\times(2\mathbf{u}-4\mathbf{v}+3\mathbf{w})$	
giving your answer in the form $a\mathbf{i}+b\mathbf{j}$ where a and b are integers.	
	[5

The sequence u_1 , u_2 , u_3 , is defined by
$u_1 = 3$ and $u_{n+1} = \frac{9u_n - 5}{5u_n - 1}$
Prove by induction that for all integers $n \ge 1$
$u_n = \frac{5n+1}{5n-3}$ [6 marks]

	heral solution of the differential equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 2\sin 2x + 14\cos 2x$	
	$\frac{dx^2}{dx^2} + 3\frac{dx}{dx} + 2y - 2\sin 2x + 14\cos 2x$	[7 mark
-		
-		
	<i>y</i> =	

5	(a)	Use the trigonometric identity
•	(∽)	occ and angenomicano lacinary

$$\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

to show that

$$\frac{1}{2} \Big[\sin(2r+1)x - \sin(2r-1)x \Big] = \cos 2rx \sin x$$

[1 mark]

5	(b)	Hence use the method of differences to show tha
ິວ	וטו	TIETICE USE THE THETHOU OF UNITED FILES TO SHOW THA

$$\sum_{r=1}^{n} \sin^2 rx = \frac{n}{2} - \frac{\sin nx \cos(n+1)x}{2\sin x}$$

[6 marks]

	'	
		Do not write outside the
		box
		7
Turn ove	er for the next question	

$\int_0^\infty \left(x^2 + 1\right) e^{-x} \mathrm{d}x$	
showing the limiting process used.	8]
	Į

	Do not write
	outside the box
	
Answer	8
Turn over for the next question	

7		A curve C is defined for $x > 0$
		All points (x,y) on the curve satisfy the differential equation
		$\frac{\mathrm{d}y}{\mathrm{d}x} + \left(\frac{1}{x} - \frac{1}{x+2}\right)y = x$
7	(a)	Use an integrating factor to find the general solution of this differential equation. [7 marks]

Answer
The cum is C. has a station on a maintain by an O
The curve C has a stationary point when $x = 2$
Find the equation of the curve C giving your answer in the form $y = f(x)$
[3 marks]

8		The plane $\ \Pi_1$ has vector equation $ \mathbf{r} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 14 $	
8	(a)	Find the shortest distance from the origin to the plane $\ \Pi_1$ giving your answer in an exact form.	[2 marks]
		Answer	
8	(b)	The line L has Cartesian equations $\frac{x-2}{3}=\frac{y+1}{2}=2z-4$ The line L intersects the plane Π_1 at the point P	
8	(b) (i)	Find the coordinates of <i>P</i>	[3 marks]
		Answer	

8	(b) (ii)	Calculate the acute angle between the line L and the plane Π_1 giving your answer to
		the nearest 0.1°
		[4 marks]
		Answer
		[م]
8	(c)	The plane Π_2 has vector equation $\mathbf{r} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 4$
Ū	(0)	
		Г.Л
		Find direction cosines for the line of intersection of the planes $~\Pi_1~$ and $~\Pi_2~$
		[3 marks]
		Answer
		/ \(\tau\)

Do not write outside the box

9		The matrix M is defined as
		$\mathbf{M} = \begin{bmatrix} 4 & 3 & k \\ 5 & 4 & k+1 \\ 1 & 1 & 3 \end{bmatrix}$
		$\mathbf{M} = \begin{vmatrix} 5 & 4 & k+1 \end{vmatrix}$
		[1 1 3]
		where k is a constant.
9	(a)	Show that M is a non-singular matrix.
		[2 marks]
9	(b)	Find \mathbf{M}^{-1} in terms of k
		[5 marks]
		Angwor
		Answer

Do not write outside the

			4	3	5		
9	(c)	The transformation represented by the matrix	5	4	6	maps the straight line	L
			1	1	3		

onto the straight line whose vector equation is
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$$

Find the vector equation of the line	L	giving your answer in the form $(\mathbf{r} - \mathbf{a}) \times$	b = 0 [5 marks]

Answer			

12

10	(a)	Use the Maclaurin series for $\ln(1+x)$ to show that the first three non-zero terms in the Maclaurin series expansion in ascending powers of x of						
					$x + \frac{x^3}{3} + \frac{x^3}{3}$		Oi	
					-			[3 marks]
10	(b)	It is given that $y = \tan x$						
40	/I- \	Ob and the standard of						
10	(D) (I)	Show that when $x = 0$		$\frac{\mathrm{d}^5 y}{\mathrm{d}x^5} =$	= 16			
				dx^5	- 10			[4 marks]
								_

10	(b) (ii)	Show that the first non-zero term in the Maclaurin series expansion in ascending powers of x of
		$\tanh^{-1}x - \tan x \text{is} \frac{x^5}{15}$
		15 [3 marks]
		[5 marks]
10	(c)	Hence show that
	(-)	
		$\lim_{x \to 0} \left[\frac{\tan x + \tanh^{-1} x - 2x}{x \left(1 - \cos 2x \right)} \right]$
		exists and find its value.
		[4 marks]
		A
		Answer

11	A curve C is given parametrically by the equations
	$x = t^2$ $y = 2t$ where $t \ge 0$
	The origin O and the point P lie on the curve C
	The x -coordinate of P is 3
	The x-coordinate of P is 3
11 (a)	The arc OP of the curve C is rotated through 2π radians about the x -axis.
. ,	
	Show that the area of the curved surface generated is $\frac{56}{3}\pi$
	[5 marks]

11 (b)	Show that the length of the arc <i>OP</i> of the curve <i>C</i> is $2\sqrt{3} + \sinh^{-1}(\sqrt{3})$	
		[7 marks]
		

12	(a) (i)	Use de Moivre's theorem to show that if $z = \cos \theta + i \sin \theta$ then	
		$z^n + \frac{1}{z^n} = 2\cos n\theta$	
			[3 marks]
12	(a) (ii)	Given that	
	(-, (,	$(2 i \sin \theta)^6 (2 \cos \theta)^2 = \left(z - \frac{1}{z}\right)^4 \left(z^2 - \frac{1}{z^2}\right)^2$	
		use the result in part (a)(i) to show that	
		128 $\sin^6 \theta \cos^2 \theta = 5 - 4 \cos 2\theta - 4 \cos 4\theta + 4 \cos 6\theta - \cos 8\theta$	[4 marks]

	Do not write outside the
	box
Question 12 continues on the next page	

12 (b) The diagram shows a curve, the pole O, the initial line and a point P which lies on the curve.

P is the point on the curve that is furthest from the pole O

The curve has polar equation $r = 32 \sin^3 \theta \cos \theta$ where $0 \le \theta \le \frac{\pi}{2}$

Answer

12 (b) (i) By differentiating r with respect to θ find the polar coordinates of the point P **[4 marks]**

12	(b) (ii)	Find the area of the shaded region bounded by the line <i>OP</i> and the upper part of the curve.
		Give your answer in the form $a\pi + b\sqrt{n}$ where a and b are rational and n is a prime number.
		[4 marks]
		Answer

13	The cubic equation $tx^3 + ux^2 + vx + w = 0$
	has coefficients t , u , v and w which are all real constants.
	The three roots of this cubic equation can be arranged as successive terms of an
	arithmetic sequence.
13 (a)	Show that $2u^3 - 9tuv + 27t^2w = 0 \label{eq:continuous}$ [3 marks]

13	(b)	It is given that the roots of the cubic equation
		$kx^3 - 36x^2 + mx - 3 = 0$
		where $\it k$ and $\it m$ are real constants, can be arranged as three successive terms of an arithmetic sequence with common difference $\it d$
13	(b) (i)	Find an expression for d^2 in terms of k [2 marks]
		Answer
13	(b) (ii)	Given that $m = 38$ find the possible values for d giving your values in an exact form. [4 marks]

	Do not write outside the
	box
Answer	9
Answer	
END OF CUESTIONS	
END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

32 There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the

Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

Do not write outside the