Data structure and Algorithms Tree – cấu trúc cây

Thanh-Hai Tran

Electronics and Computer Engineering School of Electronics and Telecommunications

Hanoi University of Science and Technology
1 Dai Co Viet - Hanoi - Vietnam

Nội dung của bài học

- Các khái niệm
- Cây tổng quát
 - Tính chất
 - Biểu diễn cây tổng quát
 - Duyệt cây tổng quát
- Cây nhị phân
 - Định nghĩa và tính chất
 - Biểu diễn cây nhị phân
 - Duyệt cây nhị phân
 - Cây nhị phân tìm kiếm
- Một số ví dụ ứng dụng cây

Định nghĩa cây

- Cây là một cấu trúc phi tuyến
- Thiết lập trên một tập hữu hạn các "nút"
 - Tồn tại một nút đặc biệt gọi là "gốc" (root)
 - Tồn tại một quan hệ phân cấp hay gọi là quan hệ cha con giữa các nút Đầu Danh

sách

- Một nút (trừ nút gốc) chỉ có một cha
- Một nút có thể có từ 0 đến n con

Đuôi

Định nghĩa cây

- Cây có thể định nghĩa một cách đệ quy
 - Một nút tạo thành cây (nút gốc)
 - ♦ Khi có n cây: T₁, T₂, ..., T_n,
 - ⋆ mỗi cây này có các nút gốc tương ứng là r₁, r₂, ..., rn
 - ⋆ r là quan hệ cha con với r₁, r₂, ..., rո
 - * Tồn tại cây mới T nhận r là nút gốc

Ví dụ về cây

- Cấu trúc lưu trữ thư mục trong máy tính
- Cấu trúc mục lục của sách / tài liệu
- Cấu trúc các chức năng của một hệ thống thông tin

- Cấp (degree) của một nút: số các nút con của nút đó
- Cấp của một cây: cấp cao nhất của một nút trên cây

- Đường đi trên một cây:
 - ◆ dãy các nút n₁, n₂, ..., n_k
 - n_i là nút cha của n_{i+1} (i = 1..k-1)

- Độ sâu (depth level) của một nút:
 - ◆ Là độ dài đường đi từ nút gốc đến nút đó + 1
 - ◆ Ví dụ nút gốc r, nút xem xét là r_i: d(r_i) = length (r, r_i) +1

- Độ cao (height) của một nút
 - Độ dài đường đi dài nhất của nút đó đến một nút lá trong cây + 1
 - Chiều cao của cây là chiều cao của nút gốc

- Tổ tiên (ancestor): A,C, G là tổ tiên của M
- Hậu duệ (descendants): E, F, G, H, L,M ...đều là hậu duệ của A
- Anh em (siblings): E, F là một cặp anh em ; L, N là một cặp anh em

 Rừng (Forest): một tập hợp hữu hạn các cây phân biệt, không giao nhau

Các tính chất của cây

- Kích thước của cây: là tổng số nhánh + 1
- Cây có tính chất đệ quy: một cây được tạo bởi nhiều cây con
- Cấu trúc dữ liệu động: Một cây có kích thước biến đổi
- Cấu trúc cây là cấu trúc phi tuyến: phân cấp
- Chỉ tồn tại duy nhất một đường đi từ nút gốc đến nút khác

Các thao tác cơ bản trên cây

- Thao tác khởi tạo cây: Chuẩn bị cấu trúc để lưu trữ cây
- Bổ sung một nút mới vào cây:
 - Xác định vị trí cần chèn
 - Xác định quan hệ nút mới và nút tại vị trí cần bố sung
- Lấy ra một nút:
 - Xác định vị trí
 - Cấu trúc lại cây

Các thao tác cơ bản trên cây

- Các thao tác truy nhập cây
 - root(): trả ra nút gốc của cây
 - parent(Tree T, Node p): trả ra nút cha của nút p trong cây T
 - children(Tree T, Node p): trả ra danh sách các nút con của nút p trong cây T
 - left_most_child(Tree T, Node p) : trả ra nút con cực trái của nút p
 - right_most_child(Tree T, Node p) : trả ra nút con cực phải của nút p
 - left_sibling (Tree T, Node p) : trả ra nút anh em kể cận bên trái của nút p
 - right_sibling(Tree T, Node p) : trả ra nút anh em kề cận bên phải của nút p

Các thao tác cơ bản trên cây

- Các thao tác khác
 - height (Tree T)
 - size(Tree T)
 - isRoot (Tree T, Node p);
 - isLeaf (Tree T, Node p);
 - isInternal (Tree T, Node p);

Dựa trên tham chiếu đến nút cha:

- Cây T có các nút được đánh số từ 1 đến n
- Cây T được biểu diễn bằng một danh sách tuyến tính trong đó nút thứ i sẽ chứa một thành phần tham chiếu đến cha của nó
- Nếu dùng mảng, A[i] = j nếu j là cha của nút i ; nếu i là gốc thì A[i] = 0;

0	1	1	1	2	3	3	6	6
A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]	A[9]

Dựa trên danh sách các nút con:

- 1 nút trong cây có một danh sách các nút con
- Danh sách các nút con thường là danh sách móc nối
- Trong trường hợp sử dụng danh sách móc nối, các nút đầu danh sách được lưu trong một mảng

- Giả sử một cây có cấp độ d
- Cấu trúc của một nút sẽ bao gồm các thông tin sau:
 - Info: chứa thông tin của nút
 - Link: chứa d con trỏ p₁, p₂,...p_d trỏ đến các con của nó (lớn nhất là d con)

- Giả sử một cây có cấp độ d
- Tổ chức của cây tổng quát:
 - Một nút truy nhập vào nút gốc
 - Với mỗi nút, các con trỏ trỏ đến các con của nó

- Hạn chế của phương pháp biểu diễn dạng danh sách liên kết
 - Nếu cây có kích thước N, cấp d thì số con trỏ NULL là N(d-1)+1
 - Khi d >=2 thì số con trỏ NULL lớn hơn kích thước của cây => lãng phí bộ nhớ
 - Đòi hỏi phải biết trước cấp của cây (d), điều này không phải lúc nào cũng thỏa mãn.

Thông qua một cây cấp 2:

- Với một nút trong cây, chỉ quan tâm tới 2 quan hệ:
 - ★ Quan hệ 1-1 giữa nút đó và nút con cực trái của nó (con cả)
 - ⋆ Quan hệ 1-1 giữa nút đó và nút em kế cận bên phải của nó
- Dựa vào nhận định này, người ta biểu diễn được một cây tổng quát dưới dạng một cây nhị phân gọi là cây nhị phân tương đương (equivalent binary tree)
- Quy cách của 1 nút trên cây nhị phân tương đương sẽ như sau

Biểu diễn cây tương đương

Cây tổng quát \mathbf{H}

Cây nhị phân tương đương

- Luật ánh xạ giữa cây tổng quát và cây nhị phân tương đương như sau:
 - Sắp xếp lại cây tổng quát (nếu cần)
 - Với mỗi nút:
 - ★ Con cả của một nút trở thành nút trái của cây nhị phân
 - ★ Em kề cận trở thành nút phải của cây nhị phân
- Phương pháp biểu diễn này:
 - Sử dụng bộ nhớ hiệu quả
 - Tuy nhiên việc đưa thêm các luật ánh xạ sẽ làm cho các thao tác trên cây trở nên phức tạp

Duyệt cây

• **Preorder** (duyệt trước): 1, 2, 4, 3, 5, 7, 6, 8, 9

• **Inorder** (duyệt giữa): 4, 2, 3, 5, 1, 8, 6, 7, 9 : used for binary trees

• **Postorder** (duyệt sau): 4, 3, 5, 2, 8,

Duyệt cây theo thứ tự trước

- Duyệt cây là thăm các nút trên cây theo một thứ tự nhất định, mỗi nút thăm 1 lần
- Khi duyệt theo thứ tự trước, một nút sẽ được thăm trước các hậu duệ của nó
- Úng dụng: In ra các mục lục của một tài liệu
- Giải thuật:

```
Algorithm preOrder(v)
visit(v)
for each child w of v
preOrder(w)
```


Duyệt cây theo thứ tự trước

Duyệt cây theo thứ tự trước

Duyệt cây theo thứ tự sau

- Duyệt theo thứ tự sau thì một nút sẽ được thăm sau các hậu duệ của nó
- Ứng dụng: Xác định kích thước của các tệp trong một thư mục và các thư mục con của nó

```
Algorithm postOrder(v)

for each child w of v

postOrder(w)

visit(v)
```

```
Algorithm preOrder(v)
visit(v)
for each child w of v
preOrder(w)
```

Duyệt cây theo thứ tự sau

Duyệt cây theo thứ tự giữa

- Duyệt theo thứ tự giữa: một nút sẽ được thăm
 - sau các hậu duệ của nó trong cây con cực trái
 - và trước các hậu duệ trong các cây con tiếp theo

```
Algorithm inOrder(v)

if (isLeaf(v)) then visit(v)
else

inOrder(left_most_child(v))
visit(v)

for each child w of v (w is
not the left most child)
inOrder(w)
```


Duyệt cây theo thứ tự giữa

Bài tập về nhà

- Khai báo cấu trúc của cây của một mục lục quyển sách bằng C/C++ theo một trong số các cách sau
 - Mảng: quan hệ con-cha
 - Danh sách: quan hệ cha-con
 - Danh sách: quan hệ con cả em kề cận
- Khởi tạo cây
- In ra mục lục của sách theo cách duyệt cây theo thứ tự trước

Nội dung của bài học

- Các khái niệm
- Cây tổng quát
 - Tính chất
 - Biểu diễn cây tổng quát
 - Duyệt cây tổng quát
- Cây nhị phân
 - Định nghĩa và tính chất
 - Biểu diễn cây nhị phân
 - Duyệt cây nhị phân
- Một số ví dụ ứng dụng cây

Cây nhị phân

- Là cây mà mọi nút trên cây chỉ có tối đa là 2 con.
- Cây con của một nút cũng cần phải được phân biệt rõ ràng thành cây con trái (left subtree) và cây con phải (right subtree)

Ví dụ cây nhị phân

Cây biểu thức số học với các phép toán 2 ngôi

$$x - 3*y + x/z$$

Cây quyết định

Cây nhị phân

Vòng thi đấu thể thao theo từng cặp

Dạng đặc biệt của cây nhị phân

 Cây nhị phân đầy đủ: (full binary tree) Mỗi nút trong của cây đều có đầy đủ 2 con

Dạng đặc biệt của cây nhị phân

 Cây nhị phân gần đầy đủ: ở mức cuối không có đầy đủ các nút

Dạng đặc biệt của cây nhị phân

- Cây nhị phân hoàn chỉnh
 - Là cây nhị phân gần đầy
 - Tất cả các nút ở mức cuối cùng đều lệch về bên trái nhất có thể

Cây nhị phân cân đối: cây con trái và cây con phải
 lệch nhau không quá một đơn vị

Tính chất của cây nhị phân

- Số lượng tối đa của các nút ở mức i trên một cây nhị phân là 2ⁱ⁻¹ (i >= 1)
- Số lượng tối đa các nút trên một cây nhị phân có chiều cao là h là 2^h – 1 (h >= 1)
- Một cây nhị phân có n nút có chiều cao tối thiểu là
 [log, (n+1)]
- Một cây nhị phân đầy đủ có độ sâu n thì có 2ⁿ -1 nút
- Một cây nhị phân hoàn chỉnh có chiều cao h có số lượng nút nằm trong khoảng 2^{h-1} đến 2^h 1
- Trong một cây nhị phân có n₀ nút lá và n₂ nút cấp 2 thì ta có n₀ = n₂ + 1

- Biểu diễn kế tiếp sử dụng mảng:
 - Đánh số các nút trên cây theo trình tự từ mức 1, hết mức này đến mức khác, từ trái sang phải
 - Lưu trữ trong vector lưu trữ V theo nguyên tắc phần tử
 V[i] sẽ lưu thông tin của nút được đánh số i

- Cách lưu trữ kế tiếp phù hợp để lưu trữ cây nhị phân gần đầy hoặc đầy đủ
- Với các dạng khác có thể dẫn đến lãng phí bộ nhớ

- Biểu diễn móc nối sử dụng con trỏ:
 - Mỗi nút trên cây được lưu trữ bởi một phần tử có quy cách như sau:
 - ⋆ INFO: chứa dữ liệu của nút
 - ★ LPTR: chứa địa chỉ của nút gốc của cây con trái
 - * RPTR: chứa địa chỉ của nút gốc của cây con phải
 - Cần nắm một con trỏ T trỏ tới nút gốc của cây.
 - Nếu cây rỗng thì T = NULL

Lưu trữ cấu trúc cây trong bộ nhớ


```
struct Tnode{
    int info;
    struct Tnode * Iptr;
    struct Tnode * rptr;
};
typedef struct Tnode TREENODE;
typedef TREENODE *TREENODEPTR;
```


Duyệt cây nhị phân

- Phép duyệt cây nhị phân: Phép duyệt một cây là phép "thăm" lần lượt các nút trên cây đó sao cho mỗi nút chỉ được thăm một lần
- Tồn tại 3 phép duyệt khác nhau đối với 1 cây nhị phân
 - Duyệt cây theo thứ tự trước
 - Duyệt cây theo thứ tự giữa
 - Duyệt cây theo thứ tự sau:

Duyệt cây nhị phân

- Ví dụ: Thực hiện duyệt cây
- Duyệt theo thứ tự trước ABDHEIJCFGK
- Duyệt theo thứ tự giữa
 H D B I E J A F C K G
- Duyệt theo thứ tự sau H D I J E B F K G C A

Duyệt cây nhị phân theo thứ tự trước

```
void PREORDER(TREENODEPTR tree) {
    if (tree != NULL) {
        printf("%3d", tree->info;
        PREORDER(tree->lptr);
        PREORDER(tree->rptr);
    }
}
```


Duyệt cây nhị phân

- Ví dụ 2: Cho cây nhị phân biểu diễn biểu thức số học sau
 - Hãy đưa ra dãy các nút được thăm khi thực hiện các phép duyệt theo thứ tự trước, giữa và sau.
 - Nhận xét về các dãy thu được

Cây biểu thức

Biểu diễn của biểu thức:

- ◆ Biểu thức = biểu thức <toán tử> biểu thức
- Trường hợp đặc biệt: biểu thức = const
- ◆ Toán tử (phép toán): +,-,*,/,exp, !, v.v

Sử dụng cây nhị phân

- Các nút nhánh là các toán tử
- Các nút lá là các toán hạng

Duyệt cây:

- ◆ Thứ tự trước: biểu thức tiền tố
- Thứ tự giữa: biểu thức trung tố
- Thứ tự sau: biểu thức hậu tố

Cây biểu thức

- Bài toán 1: Dựng cây biểu diễn biểu thức số học:
- Cho một biểu thức số học dưới dạng hậu tố, dựng cây biểu diễn biểu thức số học đó
- Ví dụ: Cho biểu thức ((a+b)-c*d)%(f^g / (h-i)).
- Dựng được cây biểu diễn biểu thức này như sau

Ký pháp Ba Lan

Trong ký pháp trung tố:

- toán tử được đặt giữa hai toán hạng
- Việc sử dụng các dấu ngoặc để biểu diễn thứ tự ưu tiên của các toán hạng là cần thiết
- ◆ Ví dụ: (A+B)*C khác với A+B*C
- Nếu không sử dụng dấu ngoặc thi phải thực hiện theo ưu tiên của các phép toán
- Việc sử dụng ký pháp trung tố với dấu ngoặc hoặc phải theo thứ tự ưu tiên làm cho việc tính toán giá trị biểu thức trở nên cồng kềnh.
- Ký pháp Ba Lan (Polish notation): cho phép biểu diễn dạng hậu tố hoặc tiền tố

Biểu thức hậu tố

Ký pháp hậu tố: Toán tử được đặt sau toán hạng 1 và toán hạng 2

Trung tố	Hậu tố
A+B	AB+
E/F	EF/
(A+B)*C	AB+C*
A+B*C	ABC*+

Ký pháp tiền tố: Toán tử được đặt trước toán hạng 1 và 2

Trung tố	Hậu tố
E/F	/EF
A+B*C	+A*BC
(A+B)/(C-D)+E	+/+AB-CDE

- Vấn đề: việc tìm kiếm một nút trong cây nhị phân theo các cách duyệt (trước, giữa, sau) khá chậm do phải duyệt qua tất cả các nút của cây.
- Giải pháp: xây dựng một cấu trúc cây đặc biệt phục vụ cho việc tìm kiếm nhanh (cây nhị phân tìm kiếm – Binary Search Trees)

- Giả sử có một cây nhị phân T
- Mỗi nút có một trường đặc biệt gọi là khóa (key), Gọi khóa của một node p là key(p)
- Gọi r là nút gốc của T, Hai con trái và phải của r là lc và rc
- Hai cây con tương ứng với hai nút lc và rc là Lstree và Rstree
- T là cây nhị phân tìm kiếm (BST) nếu thỏa mãn:
 - key(lc) < key(r);
 - ◆ key(r) < key(rc);
 </p>
 - Lstree và Rstree là cây nhị phân tìm kiếm

Duyệt giữa: 12345678


```
struct Node {
   keytype key;
   Node *LP, *RP;
};

typedef Node* PNode;
typedef PNode BinaryTree;
typedef BinaryTree BSearchTree;
```


Cách tổ chức giống cây nhị phân thường

Binary tree

Binary search tree

Các thao tác cơ bản:

- ◆ Tìm kiếm: tìm một nút có giá trị x trong BST, trả về con trỏ đến nút tìm thấy, nếu không trả về NULL
- Lời giải:
 - ★ Base case: if (T=NULL or key(T) = x) return T;
 - * Recursive case:

otherwise if (x<key(T)) search for a node in left sub-tree of T else search for a node in right sub-tree of T

Code

```
PNode Search (BSearchTree T, keytype x) {
  if (T==NULL) return NULL;
  if (x == T->Key) return T;
  else
   if (x < T->Key) return Search(T->LP, x);
   else return Search(T->RP, x);
}
```


- Các thao tác cơ bản:
 - Chèn: chèn vào cây T một nút mới có giá trị x

- Các thao tác cơ bản:
 - Chèn: chèn vào cây T một nút mới có giá trị x

Các thao tác cơ bản:

- Bỏ một nút có khóa x của cây BST
- Giải thuật:
 - ★ Tìm nút có khóa (with key = x)
 - ★ Loại bỏ nút và xếp lại cây nếu cần. 3 trường hợp xảy ra:
 - Nếu nút loại bỏ là nút lá : không cần sắp lại cây
 - Nếu nút đó có 1 con: con sẽ thay thế nút
 - N\u00e9u n\u00fct to 2 con: LTree, RTree => thay n\u00fct d\u00f6 b\u00f3\u00fc Max(LTree) (maximal node in LTree) or Min(RTree) (minimal node in RTree)
 - * Notes:
 - Max (LTree) là nút bên phải nhất của cây LTree.
 - Min (RTree) là nút bên trái nhất của cây RTree.

a. Remove a leaf


```
void DeleteT(BSearchTree & Root, keytype x) {
   if (Root != NULL) {
      if (x < Root->Key) DeleteT(Root->LP, x);
      else if (x > Root->key) DeleteT(Root->RP, x);
      else DelNode (Root); //remove the root
   }
}
```



```
O = P;
     P = P - > LP;
   else { //Remove a double node
      O = P - > LP;
      if (O->RP == NULL) {
        P->Key = Q->Key;
         P->LP = O->LP;
      else {
         do { //R used to store parent of Q
            R = 0;
            Q = Q - > RP;
         } while (Q->RP != NULL);
         P->Key = Q->Key;
         R->RP = O->LP;
delete 0;
```

