LITERATURE SURVEY

S.NO	TITLE	AUTHOR	ADVANTAGE	DISADVANTAGE
1	Video smoke	Yuan F N,	In this paper,	There is
	detection	Zhang Y M, Liu	smoke	variation in
	based on	S X.	detection for	uneven density
	accumulation		the integration	distribution and
	and main		of features,	smoke contour
	motion		they used a	irregularity in
	orientation.		SVM (support	graph and
	Journal of		vector	system
	Image and		machine),	
	Graphics		which classifies	
	(Block motion		smoke and	
	algorithm)		non-smoke	
			pixels.	
2	Motion	Yuan F.	In this used	There is no
	accumulation		texture, the	disadavntages
	and		feature for	because this
	translucence		smoke	algorithm is
	based model		detection and it	good and
	for video		is based on	efficient to find
	smoke		GLCM (gray	the smoke.
	detection.		level	
	Journal of Data		cooccurrence	
	Acquisition and		matrices). The	
	Processing		neural network	
			is utilized to	
			classify smoke	
			and non-smoke	
			pixels	
3	Autonomous	E.Den Breejen	In this paper	In some
	Forest Fire	et al	the algorithm	situation
	Detection.		uses human	human errors
	Proc. Third Int'l		judgment for	take place and
	Conf. Forest		updating the	in conclusion
	Fire (B&W		decision. Its	there are no
	Saptio		four sub	other

	temporal algorithm)		algorithms uses adaptive background subtraction to detect slowmoving objects, use of YUV color space for gray as a smoke color.	disadvantages
4	An early firedetection method based on image processing. (Early fire- detection algorithm)	Chen, T.H., Wu, P.H. and Chiou, Y.C.	This paper presents an early fire-alarm raising method based on video processing. The basic idea of the proposed fire-detection is to adopt a RGB (red, green, blue) model based chromatic and disorder measurement for extracting firepixels and smokepixels	The main disadvantage is the decision function of fire-pixels is mainly deduced by the intensity and saturation of R component
5	A fire-alarming method based on video processing. Proceeding of 2006 International	Huang, P.H., Su, J.Y. and Lu, Z.M.	In this paper they used wavelet decomposition and optical flow method for smoke	In this paper, the main drawback is high computational cost

Conference on	detection of
Intelligent	wildfires. The
Information	algorithm is
Hiding and	useful for
Multimedia	extracting
Signal	many smoke
Processing,	features .
Pasadena. (Fire	
alarming	
algorithm	
based on RGB	
colour)	