

Lineare Algebra für Informatik - Woche 2

Cosmin Aprodu

Technische Universität München

Online, 22 Apr 2021

Lineare Gleichungssysteme (LGS)

Eine Gleichung der Form $A \cdot x = b$ mit $A \in K^{m \times n}$ und $b \in K^m$ heißt ein **Lineares Gleichungssystem**. *Beispiel:* Sein ein Gleichungssystem folgender Art:

$$\begin{array}{rcl}
x_1 & +2x_3 + x_4 = -3 \\
2x_1 & +4x_3 - 2x_4 = 2 \\
x_2 & -x_4 = 2 \\
x_1 & +2x_3 + 2x_4 = -5
\end{array}$$

Dann formulieren wir dieses in eine Matrixgleichung um:

$$A \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = b \quad \text{mit} \quad A = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 2 & 0 & 4 & -2 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 2 & 2 \end{pmatrix} \quad \text{und} \quad b = \begin{pmatrix} -3 \\ 2 \\ 2 \\ -5 \end{pmatrix}$$

A heißt Koeffizientenmatrix und $(A|b) \in K^{m \times (n+1)}$ heißt erweiterte Koeffizientenmatrix ((n+1)-te Spalte gleich Vektor b)

Lineare Gleichungssysteme (2)

Ein LGS heißt **homogen**, falls
$$b = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$
, sonst **inhomogen**. Homogene LGS sind *immer lösbar*.

Elementare Zeilenoperationen:

- Typ I Vertauschen zweier Zeilen.
- **Typ II** Multiplizieren einer Zeile mit einem Skalar $s \in K \setminus \{0\}$.
- **Typ III** Addieren des *s*-fachen einer Zeile zu einer anderen, wobei $s \in K$.

Zeilenstufenform

Sei eine Matrix $A \in K^{m \times n}$. Wir sagen, dass A in **Zeilenstufenform** ist, falls gelten:

- (1) Beginnt eine Zeile mit *k* Nullen, so stehen unter diesen Nullen lauter weitere Nullen.
- (2) Unter dem ersten Eintrag \neq 0 einer Zeile (falls diese nicht nur aus Nullen besteht) stehen lauter Nullen.

A ist in strenger Zeilenstufenform, falls zusätzlich gilt:

(3) Über dem ersten Eintrag \neq 0 einer Zeile (falls diese nicht nur aus Nullen besteht) stehen lauter Nullen.

A ist in **reduzierter Zeilenstufenform**, falls *zusätzlich* gilt:

(4) Jeder führende Eintrag ist eine 1.

Beispiel:

$$\begin{pmatrix} 1 & 2 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \text{ ist in } \mathbf{Zsf}, \ \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \text{ ist in } \mathbf{strenger} \ \mathbf{Zsf}, \ \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \text{ ist in } \mathbf{reduzierter} \ \mathbf{Zsf}$$

Gauß Algorithmus

Eingabe: Eine Matrix $A \in K^{m \times n}$.

Ausgabe: Eine Matrix in *reduzierter* Zeilenstufenform.

Für r = 0, ..., m:

- Wähle eine der Zeilen $\{r+1,\ldots,m\}$ von A mit führenden Eintrag am weitesten links. Falls es keine gibt: **Ende**
- Bringe diese Zeile in die (r+1)-te Zeile (durch Vertauschen).
- Falls nötig, erzeuge in dieser Zeile eine führende 1 (durch Multiplizieren).
- Erzeuge unterhalb (und überhalb, falls nötig) des führenden Eintrags lauter Nullen (durch Addieren).

Lösen von LGS

Eingabe: Ein LGS $A \cdot x = b$ mit $(A|b) \in K^{m \times (n+1)}$ in *reduzierter* Zeilenstufenform.

Ausgabe: Die Lösungsmenge L.

- Falls die Spalte *b* eine führende 1 hat (alle linksstehende Elemente sind 0), tritt die Gleichung 0 = 1 auf $\Rightarrow L = \emptyset$.
- Andernfalls:
 - Sei r = 1, ..., n. Eine Lösung ist gegeben durch $x = (x_1 \cdots x_n)^T \in K^n$ mit: $x_{k_l} = 0$ für $\{k_1, ..., k_{n-r}\}$: Indizes der Spalten ohne führenden Eintrag. $x_{j_i} = b_j$ für $\{j_1, ..., j_r\}$: Indizes der Spalten mit führenden Eintrag a_{i,j_i} (erste Eintrag $\neq 0$).
 - Die gesamte Lösungsmenge ist:

$$L = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^n \middle| x_{j_i} = b_i - \sum_{l=1}^{n-r} a_{i,k_l} \cdot x_{k_l}, \ \forall i = 1, \dots, r \right\}$$

Bemerkung: x_{k_l} können frei gewählt werden.