神经网络是有输入,有输出,各个神经元之间有联系的一个模型。 无人车的机器学习:

输入是图片(并记录司机的操作模式,作为训练数据),输出是一排神经元简单的神经元:感知机(一个神经元,线性分类器!)-->空间的超平面

$$o(x_1,...,x_n) = \begin{cases} 1, & if \ w_0 + w_1 \cdot x_1 + \dots + w_n \cdot x_n > 0 \\ 0, & otherwise \end{cases}$$

w表示权重(n+1个权重),要与输入x做一个内积(x0始终等于一,w0可以看做是一个偏值,没有w0平面始终经过原点)

神经元的逻辑层面实现:

				_
- 1	•	n.	ш	_
	-	Г١		
				_

Inp	out	Σ	Output		
0	0	-0.8	0		
0	1	-0.3	0		
1	0	-0.3	0		
1	1	0.3	1		

OR

Inp	out	Σ	Output		
0	0	-0.3	0		
0	1	0.2	1		
1	0	0.2	1		
1	1	0.7	@Sandra		

与门、或门(不要忘记w0,如果忘记最后结果可能一直都不收敛)

感知机的权重设置:

期望将误差收敛至最小 --> 梯度下降法

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$
 Batch Learning ## @Sandra

将每个神经元的误差(期望输出-实际输出)累计起来,调整权重,1/2为了求导已知误差求偏导,可以知道该增加或减小权重

$$\nabla E(\overrightarrow{w}) \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, ..., \frac{\partial E}{\partial w_n}\right]$$

$$w_i \leftarrow w_i + \Delta w_i \quad where \quad \Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$
 Learning Ratedra

负号的含义: 当误差对w求偏导为正数 (随着w增加,误差会增加)的时候,目的是减小这个误差 (减小权重) 学习率:是为了控制每次调整的幅度,防止调整过

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \qquad o(x) = w \cdot x$$

$$= \sum_{d \in D} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - w \cdot x_d)$$

$$= \sum_{d \in D} (t_d - o_d) (-x_{id})$$

$$\text{Sign @Sandra}$$

为了好求导,假设节点是线性的(输入=输出),用代替。门线在0的地方倒数不存在,其余的地方导数是0,是不好计算的。

$\Delta\omega_i$

(调整的分量)的理解:假设现在期望输出是1,实际输出小,t-o>0,将如何修改权重呢?这取决于当前输入x,若x>0,还想让其更大,所以要增加权重 GRADIENT_DESCENT ($training_examples$, η)

- Initialize each w_i to some small random value.
- Until the termination condition is met, Do
 - Initialize each ∆w_i to zero.
 - For each <x, t> in training_examples, Do
 - Input the instance x to the unit and compute the output o
 - For each linear unit weight w_i, Do
 − Δw_i ← Δw_i + η(t-o)x_i
 - For each linear unit weight w_i, Do

知乎 @Sandra

是一种批处理的学习! 他只是调整了调整的分量(修改分量,不修改w), 累积起来,最后 整体做一次更新

$$w_i \leftarrow w_i + \Delta w_i$$
 where $\Delta w_i = \eta(t - o)x_i$

For example, if x_i =0.8, η =0.1, t=1 and o=0

$$\Delta w_i = \eta(t-o)x_i = 0.1 \times (1-0) \times 0.8 = 0.08$$

知乎 @Sandra

及时更新

但图二的方式是无论如何都训练不出一个分界面的: 线性不可分

例子: (一行一行的看,最后收敛至最终一个solution)

Input		Tar	1	Initial Output								Final				
		Tar get	Weights		Individual			Sum	Final Output	Error	Correction	Weights				
X ₀	X1	X ₂	t	W ₀	W ₁	W ₂	Co	C_1	C ₂	S	0	E	R	W ₀	W_1	W ₂
							X ₀ · W ₀	× ₁ ·	x ₂ w ₂	C ₁ +		t-o	LR x E			
1	0	0	1	0	0	0	0	0	0	0	0	1	+0.1	0.1	0	0
1	0	1	1	0.1	0	0	0.1	0	0	0.1	0	1	+0.1	0.2	0	0.1
1	1	0	1	0.2	0	0.1	0.2	0	0	0.2	0	1	+0.1	0.3	0.1	0.1
1	1	1	0	0.3	0.1	0.1	0.3	0.1	0.1	0.5	0	0	0	0.3	0.1	0.1
1	0	0	1	0.3	0.1	0.1	0.3	0	0	0.3	0	1	+0.1	0.4	0.1	0.1
1	0	1	1	0.4	0.1	0.1	0.4	0	0.1	0.5	0	1	+0.1	0.5	0.1	0.2
1	1	0	1	0.5	0.1	0.2	0.5	0.1	0	0.6	1	0	0	0.5	0.1	0.2
1	1	1	0	0.5	0.1	0.2	0.5	0.1	0.2	0.8	1	-1	-0.1	0.4	0	0.1
1	0	0	1	0.4	0	0.1	0.4	0	0	0.4	0	1	+0.1	0.5	0	0.1
		40			27			·		100		a l		4	gr.	
1	1	0	1	0.8	2	1	0.8	2	0	0.6	1	0	0	0.8	2	1

threshold=0.5 learning rate=0.1

知乎 @Sandra