

Winning Space Race with Data Science

Steven Kiberd 21-12-2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data collection and data wrangling
 - EDA and interactive visual analytics
 - Predictive analysis
- Summary of all results
 - EDA with visualization
 - o EDA with SQL
 - Interactive map with folium
 - Plotly dashboard
 - Predictive analysis

Introduction

Project background and context

The purpose of this project is to predict if the Falcon 9 first stage will land successfully. SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch.

- Problems you want to find answers
 - Determining the likelihood of the first stage landing
 - Determining the cost of a launch

Methodology

Executive Summary

- Data collection methodology:
 - Data was collected from "https://api.spacexdata.com/v4/launches/past
- Perform data wrangling
 - · Cleaning, structuring and transforming the data
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

Data Collection – SpaceX API

- The data was collected in the following manner:
 - Libraries were imported and auxiliary functions were defined
 - SpaceX launch data was requested and parsed using the GET request
 - The dataframe was filtered to only include Falcon9 launches
- https://github.com/skiberd/Applied-Data-Scienc e-Capstone/blob/main/jupyter-labs-spacex-dat a-collection-api.jpynb

Data Collection - Scraping

 Present your web scraping process using key phrases and flowcharts

 Add the GitHub URL of the completed web scraping notebook, as an external reference and peer-review purpose Place your flowchart of web scraping here

Data Wrangling

- Describe how data were processed
- You need to present your data wrangling process using key phrases and flowcharts
- Add the GitHub URL of your completed data wrangling related notebooks, as an external reference and peer-review purpose

EDA with Data Visualization

- Summarize what charts were plotted and why you used those charts
- Add the GitHub URL of your completed EDA with data visualization notebook, as an external reference and peer-review purpose

EDA with SQL

- Using bullet point format, summarize the SQL queries you performed
- Add the GitHub URL of your completed EDA with SQL notebook, as an external reference and peer-review purpose

Build an Interactive Map with Folium

- Summarize what map objects such as markers, circles, lines, etc. you created and added to a folium map
- Explain why you added those objects
- Add the GitHub URL of your completed interactive map with Folium map, as an external reference and peer-review purpose

Build a Dashboard with Plotly Dash

- Summarize what plots/graphs and interactions you have added to a dashboard
- Explain why you added those plots and interactions
- Add the GitHub URL of your completed Plotly Dash lab, as an external reference and peer-review purpose

Predictive Analysis (Classification)

- Summarize how you built, evaluated, improved, and found the best performing classification model
- You need present your model development process using key phrases and flowchart
- Add the GitHub URL of your completed predictive analysis lab, as an external reference and peer-review purpose

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

 Show a scatter plot of Flight Number vs. Launch Site

Payload vs. Launch Site

 Show a scatter plot of Payload vs. Launch Site

Success Rate vs. Orbit Type

 Show a bar chart for the success rate of each orbit type

Flight Number vs. Orbit Type

 Show a scatter point of Flight number vs. Orbit type

Payload vs. Orbit Type

 Show a scatter point of payload vs. orbit type

Launch Success Yearly Trend

 Show a line chart of yearly average success rate

All Launch Site Names

- Find the names of the unique launch sites
- Present your query result with a short explanation here

Launch Site Names Begin with 'CCA'

- Find 5 records where launch sites begin with `CCA`
- Present your query result with a short explanation here

Total Payload Mass

- Calculate the total payload carried by boosters from NASA
- Present your query result with a short explanation here

Average Payload Mass by F9 v1.1

- Calculate the average payload mass carried by booster version F9 v1.1
- Present your query result with a short explanation here

First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad
- Present your query result with a short explanation here

Successful Drone Ship Landing with Payload between 4000 and 6000

 List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

Present your query result with a short explanation here

Total Number of Successful and Failure Mission Outcomes

- Calculate the total number of successful and failure mission outcomes
- Present your query result with a short explanation here

Boosters Carried Maximum Payload

- List the names of the booster which have carried the maximum payload mass
- Present your query result with a short explanation here

2015 Launch Records

 List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

Present your query result with a short explanation here

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Present your query result with a short explanation here

<Folium Map Screenshot 1>

Replace <Folium map screenshot 1> title with an appropriate title

• Explore the generated folium map and make a proper screenshot to include all launch sites' location markers on a global map

<Folium Map Screenshot 2>

Replace <Folium map screenshot 2> title with an appropriate title

• Explore the folium map and make a proper screenshot to show the color-labeled launch outcomes on the map

<Folium Map Screenshot 3>

 Replace <Folium map screenshot 3> title with an appropriate title

 Explore the generated folium map and show the screenshot of a selected launch site to its proximities such as railway, highway, coastline, with distance calculated and displayed

<Dashboard Screenshot 1>

Replace <Dashboard screenshot 1> title with an appropriate title

• Show the screenshot of launch success count for all sites, in a piechart

< Dashboard Screenshot 2>

Replace <Dashboard screenshot 2> title with an appropriate title

 Show the screenshot of the piechart for the launch site with highest launch success ratio

<Dashboard Screenshot 3>

Replace <Dashboard screenshot 3> title with an appropriate title

 Show screenshots of Payload vs. Launch Outcome scatter plot for all sites, with different payload selected in the range slider

• Explain the important elements and findings on the screenshot, such as which payload range or booster version have the largest success rate, etc.

Classification Accuracy

 Visualize the built model accuracy for all built classification models, in a bar chart

 Find which model has the highest classification accuracy

Confusion Matrix

Show the confusion matrix of the best performing model with an explanation

Conclusions

- Point 1
- Point 2
- Point 3
- Point 4
- ...

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

