北京邮电大学 2020-2021 学年第 | 学期

《通信原理 I》期末考试试题(B卷)

注 一、按指定座位就坐,将证件放在桌面上。

意 二、闭卷考试,不使用计算器。

事 三、试卷的背页以及最后一页可作为草稿纸。

项 四、手机关机、离身。

课号	3112100140		考试时间			2020 年 12 月 22 日		
题号	_		三		Д	五.	六	总分
满分	40	12	12	1	2	12	12	100
得分								
阅卷教师								

公式提示:

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt$$

$$\cos(\alpha)\sin(\beta) = \frac{1}{2}\left[\sin(\beta+\alpha)+\sin(\beta-\alpha)\right]$$

$$\cos(\alpha)\cos(\beta) = \frac{1}{2}\left[\cos(\beta + \alpha) + \cos(\beta - \alpha)\right]$$

一. 选择填空

在候选答案出选出最佳的一个答案写在下面的答题表中,写在别处不得分

空格号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
答案	В	C	D	D	A	A	C	В	D	C
空格号	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
答案	A	В	D	В	A	A	D	D	A	C
空格号	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)
答案	В	C	A	C	D	В	C	В	D	A
空格号	(31)	(32)	(33)	(34)	(35)	(36)	(37)	(38)	(39)	(40)
答案	С	A	В	C	D	C	D	В	В	A

1. 假设二进制调制的输入数据独立等概。下列中的(1)、(2)、(3)分别是 OOK、2FSK、2PSK 的功率谱密度图。

2. 将双极性 NRZ 信号通过 FM 调制器,输出是(4)信号。将单极性 NRZ 信号通过 DSB-SC 调制器,输出是(5)信号。

	(4)(5)	(A) OOK	(B) OQPSK	(C) 2DPSK	(D) 2FSK
--	--------	---------	-----------	-----------	----------

3. 假设数据独立等概,速率 R_0 给定,已调信号的最大幅度A给定,信道白噪声的功率谱密度 N_0 给定。下列调制方式中,误比特率最高的是(6),带宽最大的是(7)。

-					
	(6)(7)	(A) OOK	(B) 2DPSK	(C) 2FSK	(D) 2PSK

4. 在部分响应系统中,由于发送端采用了(8),使得接收端的采样值存在(9)。这样做的好处是可以将频带利用率提升到(10)Baud/Hz。

(8)	(A) 矩形脉冲	(B) 相关编码	(C) 差分编码	(D) 根升余弦滚降
(9)	(A) 非线性失真	(B) 直流分量	(C) 包络起伏	(D) 符号间干扰
(10)	(A) 1/2	(B) 1	(C) 2	(D) 4

5. 为了实现 BPSK 相干解调,接收端可以采用(11)来建立同步载波。这样得到的载波存在相位模糊问题。解决方法之一是在调制前先对数据进行(12)。相应的解调方法可以是(13)解调。

(11)	(A) 科斯塔斯环	(B) 匹配滤波	(C) 时域均衡	(D) 超前滞后门
(12)	(A) 相关编码	(B) 差分编码	(C) 格雷编码	(D) 多电平编码
(13)	(A) 包络检波	(B) 锁相鉴频	(C) 平方环法	(D) 差分相干

7. 每个 64QAM 符	` '			
专速率是 <u>(19)</u> MBaud 基带采用滚降因子				带宽是 <u>(20)</u> MHz;若
(18)(19)(20)(21) ((B) 3	(C) 4	(D) 6
8. 假设 QPSK 系统相同、比特速率相同 QPSK 接收机的误比	司、 $E_{ m b}/N_{ m 0}$ 相同			两个系统的滚降因子 22)、包络起伏 <u>(23)</u> ,
(22)(23) (24) (A)比 OQP	PSK 大 (B)比 (DQPSK 小 (C)与 OQPSK オ	相同 (D)以上都不是
9. 在给定比特速率 说法中正确的是(25	-	比 $E_{\rm b}/N_{ m 0}$ 的	条件下比较 B	PSK 与 QPSK,下列
(A) BPSK 的误	比特率与 QPS	SK相同,(B) BPSK 的带宽 比特率比 QP	宽与 QPSK 相同,误 SK 大
(25) (C) BPSK 的特 特率比 QP	帯宽比 QPSK フ SK 小	大,误比 ([) BPSK 的误比 带宽比 QPSk	SK 大 Ľ特率与 QPSK 相同, K 大
10. 若采用格雷码明	快射的 8PSK 的	误符号率是	0.0024,则其	误比特率是 <u>(26)</u> 。
(26) (A) 0.0003	(B) 0.000	08 (C) (0.0024	(D) 0.0072
11. 某 16 进制调制。 隔是 <u>(27)</u> 微秒,平均				是 1Mbit/s,其符号间
(27)(28)	(A) 1	(B) 2	(C) 4	(D) 8
价。当传输信道为(<u>30)</u> 信道时,接	K ML 准则判		P 准则与 ML 准则等 小欧氏距离判决。
(29) (A) 等能量			后验等概	
(30) (A) AWGN	(B) 无噪声	(C)	无符号间干扰	(D) 无失真
	数据速率是 4	kbit/s,则 $f_{\scriptscriptstyle 4}$		次对应四个载波频率 g(kHz)。令 $g(t)$ 表示星座
(31)(32) (A) 1	(B) 2		(C) 3	(D) 4
	(B) 2		(0) 5	(B) 1
14. 对带宽为 3kHz	1 \ /	进行理想采	1 \ /	
14. 对带宽为 $3kHz$ 若 $x(t)$ 是基带信号,	的实信号 x(t) 最低采样率		样,要求采样	
14. 对带宽为 3kHz	的实信号 x(t) 最低采样率		样,要求采样	后频谱不发生交叠。

6. 下列调制方式中,频带利用率最高的是(14),最低的是(15)。给定 $E_{\rm b}/N_{\rm 0}$ 的条

(B) 16QAM

(C) QPSK

(D) 8ASK

件下,误符号率最低的是<u>(16)</u>,最高的是<u>(17)</u>。

(14)(15)(16)(17) (A) 16FSK

姓名:

学号:

班级:

15. 某 A 律十三折线 PCM 编码器的设计输入范围是[-32,+32]V, 若采样值为+8.1V,则编码器的输出码组是(35),解码器输出的量化电平是(36)V。

Ī	(35)	(A) 11111011		(C) 11100001	(D) 11100000
	(36)	(A) 8	(B) 8.1	(C) 8.25	(D) 8.5

16. 某 8 比特均匀量化器的设计输入范围是[-A,+A]。若输入信号在[-A,+A]内均匀分布,量化信噪比为(37)dB。若输入信号在 $\left[-\frac{A}{2},+\frac{A}{2}\right]$ 内均匀分布,量化信噪比为(38)dB。

_	· · · · · · · · · · · · · · · · · · ·				
	(37)(38)	(A) 39	(B) 42	(C) 46	(D) 48

17. 下图是某数字基带传输系统在无噪声情况下,接收端采样前观察到的眼图。 该眼图说明该系统存在(39)的问题,接收端可以采用(40)来解决此问题。

((39)	(A) 非线性失真	(B) 符号间干扰	(C) 噪声过大	(D) 带宽过大
(40)	(A) 时域均衡	(B) 匹配滤波	(C) 差分译码	(D) 对数量化

二. (12 分) 设基带传输系统包括发送滤波器、信道及接收滤波器在内的总体传递函数为X(f)。若要求以 2000Baud 的符号速率传输,试判断下图中的X(f) 是否满足采样点无符号间干扰条件,如果不满足则给出相应的无符号间干扰传输最高速率。

否、是、否、否
(a)3000Baud, (c)1500Baud, (d)2250Baud

三.(12 分)某二进制调制系统在 $[0,T_b]$ 内等概发送 $s_1(t) = 2\cos\left(\frac{100\pi t}{T_b}\right)$ 和

 $s_2(t)=2\cos\left(rac{101\pi t}{T_{
m b}}
ight)$ 之一。发送信号叠加了双边功率谱密度为 $N_0/2$ 的白高斯噪声 $n_{
m w}(t)$ 后到达接收端。接收框图如下所示。试:

 $s_1(t)$ 或 $s_2(t)$ r(t) $s_1(t)-s_2(t)$ y 判决

- (1) 写出平均比特能量 $E_{\rm b}$, 信号 $s_1(t)$ 、 $s_2(t)$ 的相关系数 ρ_{12} ;
- (2) 写出发送 $s_1(t)$ 、 $s_2(t)$ 条件下判决器输入y的均值及方差;
- (3) 写出最佳判决门限及相应的系统误比特率;
- (4) 若将 $s_2(t)$ 变成 $s_2(t) = 2\sin\left(\frac{101\pi t}{T_b}\right)$, 试写出此时 $s_1(t)$ 与 $s_2(t)$ 的相关系数,并判断误比特率是增大还是减小?

$$\begin{split} &E_{b} = 2T_{b} \,, \quad \rho_{12} = 0 \\ & \hspace{-0.1cm} \hspace{-0.1cm$$

四. (12 分) 右图是某八进制调制在归一化正交基下的星座图,各星座点等概出现。按矢量表示, s_1 =(2,2)、 s_2 =(2,0), s_3 =(0,1)。发送某个星座点s \in { s_1 , s_2 ,..., s_8 },收到r = s + z ,其中噪声向量z 的元素是独立同分布的零均值高斯随机变量,方差均为0.5。试:

- (1) 求出平均符号能量 $E_{\rm s}$ 、最小星座点距离 $d_{\rm min}$;
- (2) 标出 s_1, s_2, s_3 的最佳判决域;
- (3) 写出发送 s_2 条件下接收信号r的条件概率密度 函数 $p(r|s_2)$;
- (4) 写出收到 $r = s_3$ 条件下后验概率最大的星座点。

化区间是[-3,-1)、[-1,+1)、[+1,+3],对应 的量化电平是-2,0,+2。已知量化器输入X 的概率密度函数 p(x) 如右图所示。试求:

- (1) 输入信号 X 的功率 $S = E[X^2]$;
- (2) 各量化电平的出现概率,量化输出 Y 的功率 $S_0 = E[Y^2]$;
- (3) 量化噪声功率 $N_q = E[(Y-X)^2]$;
- (4) 在Y=0条件下,量化误差的绝对值不超过 0.5 的概率。

$$S = E\left[X^{2}\right] = 2\int_{0}^{3} x^{2} p(x) dx = 2\int_{0}^{1} x^{2} \cdot \frac{x}{5} dx + 2\int_{1}^{3} x^{2} \cdot \frac{1}{5} dx = \frac{1}{10} + \frac{52}{15} = \frac{107}{30}$$

出现概率: 0.4、0.2、0.4

$$S_{q} = E[Y^{2}] = 2 \times 0.4 \times 2^{2} = 3.2$$

$$N_{q} = E\left[\left(Y - X\right)^{2}\right] = \int_{-1}^{1} (0 - x)^{2} p(x) dx + 2\int_{1}^{3} (2 - x)^{2} p(x) dx$$
$$= 2\int_{0}^{1} x^{2} \cdot \frac{x}{5} dx + 2\int_{1}^{3} (2 - x)^{2} \frac{1}{5} dx = \frac{1}{10} + \frac{4}{15} = \frac{11}{30}$$

$$\frac{P(|x| < 0.5)}{0.2} = 5 \int_{-0.5}^{0.5} p(x) dx = 10 \int_{0}^{0.5} \frac{x}{5} dx = \frac{1}{4}$$

六.(12 分)在下图所示的传输系统中,将三路速率为 R_a =10Mbit/s、一路速率为 R_b =2Mbit/s 的比特流通过时分复用合为一路后通过带宽为 20MHz 的带通信道传输。试确定该系统的总比特速率 R_c 、频带利用率(bit/s/Hz)、合理的调制方式及升余弦滚降系数,画出发送信号的功率谱密度示意图。

