EXAME DE INGRESSO — BOLSAS PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA

	CÓDIGO		NOTA		
		>			
T1				A1	
T2		IME	CC		
Т3				A2	
Т4				C1	
T5			₹.		
Т6				C2	

As respostas aos testes T1–T6 devem ser justificadas

UNICAMP

|T1| Se A e B são matrizes quadradas não nulas tais que AB = 0 (matriz nula) então: (a) A = 0 ou B = 0. (b) A e B são singulares. (c) A = 0 e B = 0.

(d) Nada podemos afirmar.

| T2 | Sejam $S = \{x \in \mathbb{R}^4 \mid x_2 = x_1 - x_3 = 0\}$ e $T \subset \mathbb{R}^4$ um subespaço tal que $S + T = \mathbb{R}^4$. Considere as seguintes afirmações: I. As dimensões de S e T são 3 e 1, respectivamente. II. A dimensão de $S \cap T$ pode ser 1. III. A dimensão de $S \cap T$ pode ser 2. Está correto o que se afirma em: (a) I, apenas. (b) II, apenas. (c) II e III, apenas. (d) I. II e III.

T3 Para todo natural n, $n^3 - n$ é um número: (a) divisível por 3. (b) impar. (c) múltiplo de 9.

(d) primo.

T4 Complete a afirmação: "Se uma função $f: \mathbb{R} \to \mathbb{R}$ é contínua no intervalo [a,b] e $f(a) \cdot f(b) < 0$ então f possui ______ neste intervalo". (a) uma descontinuidade. (b) um ponto crítico. (c) um zero. (d) uma inflexão.

T5 Sejam $A \in B$ duas matrizes quadradas de mesma ordem e semelhantes, isto é, existe uma matriz não singular T tal que TB = AT. Qual das proposições abaixo é falsa? (a) $A \in B$ têm o mesmo traço. (b) Os autovalores de A e B são os mesmos. (c) O determinante de T é diferente de zero.

(d) A e B têm o mesmo determinante.

T6 [Teorema do Valor Médio] Se $f: \mathbb{R} \to \mathbb{R}$ é uma função contínua em [a,b] e diferenciável em (a,b) então existe $c \in (a,b)$ tal que f(b) - f(a) = f'(c)(b - a).Considere as seguintes afirmações: I. Existe $d \in (a,b)$ tal que a tangente ao gráfico de f em x=d é paralela ao segmento de reta que une as extremidades do gráfico em x = a e x = b. II. Se f'(x) = 0 para todo $x \in (a, b)$ então f é constante em (a, b). III. Se f(a) = f(b) então f'(p) = 0 para algum $p \in (a, b)$. Está correto o que se afirma em: (a) I, apenas. (b) II, apenas.

(c) I e III, apenas.

(d) I, II e III.

A1 Sejam $u, v \in w$ vetores em \mathbb{R}^n , linearmente independentes. Determine todos os valores de $\lambda \in \mathbb{R}$ para os quais $\lambda u + v$, $u + \lambda v + w$ e $\lambda u + v + \lambda w$ sejam linearmente independentes.

A2 Seja A uma matriz quadrada de ordem 2 com dois autovalores reais e distintos, $\lambda \in \mu$, e considere os conjuntos $L = \{Ax - \lambda x \mid x \in \mathbb{R}^2\}$ e $U = \{ x \in \mathbb{R}^2 \mid Ax = \mu x \}.$ (a) Mostre que L e U são subcspacos vetoriais de \mathbb{R}^2 .

(b) Mostre que $L \subset U$.

C1 Considere uma função de duas variáveis, $f: \mathbb{R}^2 \to \mathbb{R}$, diferenciável, e seja $(a,b) \in \mathbb{R}^2$ um ponto de mínimo local de f. (a) A condição

 $\frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial y}(a,b) = 0$

é necessária ou suficiente? (b) Analise o ponto $(0,\pi) \in \mathbb{R}^2$ em relação à função

 $f(x,y) = x^2 \sin y + x \sin 2y.$

C2 [Teorema de Green] Seja \mathcal{D} um domínio do plano xy e seja \mathcal{C} uma curva simples, fechada, lisa por partes, contida em \mathcal{D} e cujo interior também está em \mathcal{D} . Sejam as funções P = P(x,y) e Q = Q(x,y) definidas e contínuas em \mathcal{D} , possuindo derivadas parciais primeiras contínuas. Nestas condições vale

$$\oint_{\mathcal{C}} P \, \mathrm{d}x + Q \, \mathrm{d}y = \int_{\mathcal{R}} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y,$$

onde \mathcal{R} é a região fechada limitada por \mathcal{C} .

(a) Calcule

 $\oint_{\mathcal{C}} y \sqrt{xy} \, dx + x(1 + \sqrt{xy}) \, dy,$ onde \mathcal{C} é uma curva qualquer satisfazendo as condições acima.

(b) Justifique por que o teorema de Green não pode ser aplicado à integral

$$\oint_{\mathcal{C}} \frac{y \, \mathrm{d}x - x \, \mathrm{d}y}{x^2 + y^2},$$
 onde \mathcal{C} é o quadrado de vértices em $(1,0), (0,1), (-1,0)$ e $(0,-1)$.