Investigating Motor Control

KEVIN COLLINS

CALIFORNIA STATE UNIVERSITY SAN BERNARDINO

JUNIOR

PHYSICS

MENTOR: KURT KLOESEL & YOHAN LIN

TEAM: JOSEPH MARTINEZ, TROY KUHNS, MICHAEL ARREOLA-ZAMORA, MICHAEL BUTROS, TOMMY PESTOLESI

Why motor control?

- Industrial and commercial applications
 - ► Machinery and infrastructure
- ► Electric vehicles
- Heist Hybrid electric integrated system test-bed
 - ▶ Need for custom motor controller

Overview of motor control system

- ▶ H-bridge
- 3 phase inductor motor
- Microcontroller
- Gate driver
- MOSFETs / Transistors
- Sine wave output
- Current sensing for feedback and PID

Microcontroller (F28335)

- ▶ F28335
 - ► CPU
 - Math units
 - Memory
 - Analogue to digital converter (ADC) and DAC
 - ► Timer and counters
 - Digital input and output
 - ▶ Pulse width modulation (PWM) -IMPORTANT-
- Texas Instruments explorer board

What is PWM?

- Method of approximating an analogue signal on a digital output
- Features
 - Period
 - Duty cycle / pulse width
 - Switching frequency

PWM resolution comparison

- ▶ Faster switching frequency = more steps in the PWM period
- More steps in the PWM period = smaller voltage step size

PWM sine wave

- Method for controlling motors
- On-the-fly changes to duty cycle
- ▶ F28335 has sine wave lookup table

Success – Sine wave output

- Ready to try controlling MOSFETs
- ► Found correct resolution

Gate driver

- ▶ Gate driver is like an amplifier
- Needed to control MOSFET
- Controlling CREE silicon-carbide MOSFETs
 - Faster switching
 - Better thermal conductor
 - High voltages

Experimental setup

Experimental Results

- Successfully controlled MOSFET
- Switched 150V DC using 5V signal
- Not perfect output
 - ▶ Ringing

SPICE simulation results

Summery of gate driver experiment

- ▶ SPICE output close, but not close enough
 - ▶ Need to make more accurate model representation
 - Use model to reduce parasitic components in gate driver output

Future work - DRV8301

- ► Three-phase gate driver IC
- Hand-shaking to prevent current shoot-through
- Current shunt amplifiers for low-side current measurement
- Already have code that works with the chip

Already on my way!

- Started by connecting bare minimum
 - ▶ Power
 - ▶ Filter capacitors
 - Charge pump capacitors
 - Boot strap capacitors
- Testing was inconclusive
- Continue work

Acknowledgment

- Kurt Kloesel and Yohan Lin
- Michael Butros
- ▶ Becky Flick
- ▶ NSF Crest Grant 1345163
- NASA Armstrong
- Dr. Usher and the CSUSB Physics department
- ▶ All the members of the K.A.R.A.T.E. Squad

Questions?

