DDA5001 Machine Learning

Gradient-based Optimization Algorithm (Part II)

Xiao Li

School of Data Science The Chinese University of Hong Kong, Shenzhen

Recap: Convex Instances in Machine Learning

We have the following functions are convex:

Least squares:

$$\mathcal{L}(\boldsymbol{\theta}) = \|\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y}\|_2^2.$$

- ► Robust linear regression (HW1).
- ► Logistic regression:

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp \left(-y_i \cdot \boldsymbol{\theta}^{\top} \boldsymbol{x}_i \right) \right).$$

► Multi-class logistic regression:

$$\mathcal{L}(\boldsymbol{\Theta}) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{\ell=1}^{K} 1_{\{y_i = \ell\}} \log \left(\frac{\exp(\boldsymbol{\theta}_{\ell}^{\top} \boldsymbol{x}_i)}{\sum_{j=1}^{K} \exp(\boldsymbol{\theta}_{j}^{\top} \boldsymbol{x}_i)} \right).$$

► SVM learning problem (later).

Recap: Gradient Descent

Gradient descent (GD)

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \mu_k \nabla \mathcal{L}(\boldsymbol{\theta}_k)$$

 $\blacktriangleright \mu_k$ is the learning rate / stepsize.

GD is equivalent to

$$\boldsymbol{\theta}_{k+1} = \operatorname*{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^d} \ l_k(\boldsymbol{\theta}) := \mathcal{L}(\boldsymbol{\theta}_k) + \nabla \mathcal{L}(\boldsymbol{\theta}_k)^\top (\boldsymbol{\theta} - \boldsymbol{\theta}_k) + \frac{1}{2\mu_k} \|\boldsymbol{\theta} - \boldsymbol{\theta}_k\|_2^2$$

- $ightharpoonup \mathcal{L}(\theta_k) + \nabla \mathcal{L}(\theta_k)^{\top}(\theta \theta_k)$ is linear approximation of \mathcal{L} at θ_k .
- $ightharpoonup rac{1}{2\mu_k} \|m{\theta} m{\theta}_k\|_2^2$ is proximal term related to learning rate μ_k .
- $ightharpoonup l_k(\theta)$ is a quadratic function to be minimized at each iteration.

More on Gradient Descent

Gradient Descent with Acceleration

A Useful Algorithm Design Framework

Suppose the task is $\min_{m{ heta} \in \mathbb{R}^d} \mathcal{L}(m{ heta})$, we can design an algorithm as

$$oldsymbol{ heta}_{k+1} = \mathop{\mathsf{argmin}}_{oldsymbol{ heta} \in \mathbb{R}^d} \ \left\{ q_k(oldsymbol{ heta}) + rac{1}{2\mu_k} \|oldsymbol{ heta} - oldsymbol{ heta}_k\|_2^2
ight\}$$

 μ_k is learning rate-like quantity.

- ▶ When $q_k(\theta)$ is linear approximation of $\mathcal{L} \Longrightarrow$ gradient descent
- ▶ When $q_k(\theta)$ is second-order approximation of \mathcal{L} \Longrightarrow **Newton's** method
- ▶ When $q_k(\theta)$ is \mathcal{L} itself \Longrightarrow proximal point method
- ▶ When $q_k(\theta)$ is single component linear approximation of $\mathcal{L} \Longrightarrow$ stochastic gradient descent (SGD)
- **.**...

Many optimization algorithms follow this designing framework.

Convergence Issue

Convergence of Iterative Algorithm

- ▶ To solve $\min_{\theta \in \mathbb{R}^d} \mathcal{L}(\theta)$, we cannot obtain the solution $\widehat{\theta}$ analytically.
- lacktriangle Design an iterative algorithm, start with $m{ heta}_0$, it will generate

$$\{\boldsymbol{\theta}_0, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_k, \dots\}.$$

Convergence analysis of an algorithm concerns:

 $lackbox{ Will } oldsymbol{ heta}_k$ converge to the solution $\widehat{oldsymbol{ heta}}$? That is

$$\lim_{k\to\infty} \boldsymbol{\theta}_k \stackrel{?}{=} \widehat{\boldsymbol{\theta}}.$$

► If yes, what is the speed of this convergence?

Convergence of GD

▶ Suppose that \mathcal{L} is convex and differentiable and has Lipschitz continuous gradient with parameter L,

$$\|\nabla \mathcal{L}(\boldsymbol{w}) - \nabla \mathcal{L}(\boldsymbol{u})\|_2 \le L\|\boldsymbol{w} - \boldsymbol{u}\|_2, \quad \forall \boldsymbol{w}, \boldsymbol{u}$$

→ Both convexity and Lipschitz gradient are satisfied in LR.

Theorem: Convergence and Convergence rate of GD

Gradient descent with constant learning rate $\mu_k = \mu = 1/L$ satisfies

$$\mathcal{L}(\boldsymbol{\theta}_k) - \mathcal{L}(\widehat{\boldsymbol{\theta}}) \leq \frac{L\|\boldsymbol{\theta}_0 - \widehat{\boldsymbol{\theta}}\|_2^2}{2k}$$

- \blacktriangleright $\mathcal{L}(\theta_k)$ converges to $\mathcal{L}(\widehat{\theta})$ at the rate of $\mathcal{O}(1/k)$.
- ▶ It does not mean $\{\theta_k\}$ converges to $\widehat{\theta}$ at a certain rate.
- $ightharpoonup \mathcal{L}(\boldsymbol{\theta}_k) \mathcal{L}(\widehat{\boldsymbol{\theta}})$ is called sub-optimality gap.
- ▶ Proof is put in the supplementary material.

Learning Rate, Stopping Criterion, and Applying GD to LR

The Choice of Learning Rate

Gradient descent:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \boldsymbol{\mu_k} \nabla \mathcal{L}(\boldsymbol{\theta}_k)$$

- In practice, the simplest choice for the learning rate is to use a constant learning rate, i.e., $\mu_k = \mu$ for $k = 0, 1, \ldots$ for some relatively small μ . Some typical guess: 0.05, 0.01, 0.005...
 - → Typically, a larger model often needs a smaller constant learning rate.
- In optimization, one can also use certain kind of line-search method for choosing μ_k in an adaptive manner.
 - Whowever, in machine learning, line-search is not used as it wastes too many computations.
- ► We will introduce decaying learning rate schedules when we study stochastic gradient descent (~> later).

Stopping Criterion for GD

A practical question: Run GD, when to stop?

- ▶ We cannot let *k* go to infinity in practice since the algorithm will never stop in this way.
- ▶ We need a practical stopping criterion.

Typical stopping criteria:

- \blacktriangleright Fix the total number of iterations as K.
- ▶ Stop when $\|\nabla \mathcal{L}(\boldsymbol{\theta}_k)\|_2$ is small, say $\|\nabla \mathcal{L}(\boldsymbol{\theta}_k)\|_2 \leq \varepsilon$.
 - since $\|\nabla \mathcal{L}(\widehat{\boldsymbol{\theta}})\|_2 = 0$ at minimum $\widehat{\boldsymbol{\theta}}$.
- ▶ Stop when $\|\boldsymbol{\theta}_{k+1} \boldsymbol{\theta}_k\|_2$ is small, say $\|\boldsymbol{\theta}_{k+1} \boldsymbol{\theta}_k\|_2 \le \varepsilon$.
- In machine learning, stop when validation error is going to increase. (→Later)

Applying GD to LR

Given a set of training data points: $\{(x_1,y_1),\ldots,(x_n,y_n)\}$, the learning problem of binary LR is:

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \mathbb{R}^d}{\operatorname{argmin}} \ \left\{ \mathcal{L}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp \left(-y_i \cdot \boldsymbol{\theta}^\top \boldsymbol{x}_i \right) \right) \right\}.$$

- \triangleright \mathcal{L} is convex and has Lipschitz gradient.
- ► We can apply GD:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \mu_k \nabla \mathcal{L}(\boldsymbol{\theta}_k)$$

and it has convergence guarantee of $\mathcal{L}(\boldsymbol{\theta}_k) - \mathcal{L}(\widehat{\boldsymbol{\theta}}) \leq \mathcal{O}(1/k)$ if the learning rate is chosen properly.

- ► The main elements are: 1. Compute the gradient and form the search direction. 2. Determine learning rate (usually a small constant). 3. Stop when the stopping criterion is satisfied.
- ▶ Need to know how to compute the gradient by chain rule.

Some Pros and Cons for GD

Pros:

- GD has simple implementation.
- It works well for almost all differentiable convex problems.

Cons:

▶ The convergence speed of GD is relatively slow.

Is there an method that simultaneously has simple implementation and fast convergence speed? \rightsquigarrow Acceleration technique.

More on Gradient Descent

Gradient Descent with Acceleration

Gradient Descent with Momentum

Gradient Descent with Momentum

GD:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \mu_k \nabla \mathcal{L}(\boldsymbol{\theta}_k)$$

► GD forces sufficient decrease at each iteration, leaving the possibility of exploring more efficient search direction.

A quite popular technique for accelerating gradient descent method is the momentum technique:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \mu_k \nabla \mathcal{L}(\boldsymbol{\theta}_k) + \beta_k \underbrace{(\boldsymbol{\theta}_k - \boldsymbol{\theta}_{k-1})}_{\text{momentum}}$$

An equivalent form:

$$egin{aligned} oldsymbol{ heta}_{k+1} &= oldsymbol{ heta}_k - oldsymbol{m}_k \ oldsymbol{m}_k &= \mu_k
abla \mathcal{L}(oldsymbol{ heta}_k) + eta_k oldsymbol{m}_{k-1} \end{aligned}$$

- Due to Boris T. Polyak.
- ▶ Each iteration takes nearly the same time cost as GD.
- ▶ Widely used in practice, notably in Adam algorithm.

Momentum Acceleration: Geometric Interpretation

GD:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \mu_k \nabla \mathcal{L}(\boldsymbol{\theta}_k)$$

GD with momentum:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \mu_k \nabla \mathcal{L}(\boldsymbol{\theta}_k) + \beta_k (\boldsymbol{\theta}_k - \boldsymbol{\theta}_{k-1})$$

Nesterov's Accelerated Gradient Descent

Nesterov's Acceleration

GD:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \mu_k \nabla \mathcal{L}(\boldsymbol{\theta}_k)$$

Another very useful technique to accelerate GD is Nesterov's accelerated gradient descent (AGD):

$$egin{aligned} oldsymbol{ heta}_{k+1} &= oldsymbol{w}_k - \mu_k
abla \mathcal{L}(oldsymbol{w}_k) \ oldsymbol{w}_k &= oldsymbol{ heta}_k + rac{k-1}{k+2} (oldsymbol{ heta}_k - oldsymbol{ heta}_{k-1}) \end{aligned}$$

- Nesterov's acceleration is motivated by momentum but with gradient evaluated at the extrapolated point and a specific choice of β_k .
- ► Each iteration takes nearly the same time cost as GD.
- Widely used in practice.

Nesterov's Acceleration: Geometric Interpretation

GD:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \mu_k \nabla \mathcal{L}(\boldsymbol{\theta}_k)$$

AGD:

$$egin{aligned} oldsymbol{ heta}_{k+1} &= oldsymbol{w}_k - \mu_k
abla \mathcal{L}(oldsymbol{w}_k) \ oldsymbol{w}_k &= oldsymbol{ heta}_k + rac{k-1}{k+2} (oldsymbol{ heta}_k - oldsymbol{ heta}_{k-1}) \end{aligned}$$

Convergence of AGD

Suppose that \mathcal{L} is convex and differentiable and has Lipschitz continuous gradient with parameter L (For example, LR problem).

Theorem: Convergence of AGD

Accelerated gradient descent with constant learning rate $\mu_k=\mu=1/L$ satisfies

$$\mathcal{L}(\boldsymbol{\theta}_k) - \mathcal{L}(\widehat{\boldsymbol{\theta}}) \leq \frac{2L\|\boldsymbol{\theta}_0 - \widehat{\boldsymbol{\theta}}\|_2^2}{(k+1)^2}$$

- $ightharpoonup \mathcal{L}(\boldsymbol{\theta}_k)$ converges to $\mathcal{L}(\widehat{\boldsymbol{\theta}})$ at the rate of $\mathcal{O}(1/k^2)$.
- ▶ This rate is much faster than GD, which only has $\mathcal{O}(1/k)$ convergence rate.

Solving Logistic Regression

Learning problem: Multi-class logistic regression

$$\widehat{\boldsymbol{\Theta}} = \underset{\boldsymbol{\Theta} \in \mathbb{R}^{(d+1) \times K}}{\operatorname{argmin}} \ -\frac{1}{n} \sum_{i=1}^{n} \sum_{\ell=1}^{K} 1_{\{y_i = \ell\}} \log \left(\frac{\exp(\boldsymbol{\theta}_{\ell}^{\top} \boldsymbol{x}_i)}{\sum_{j=1}^{K} \exp(\boldsymbol{\theta}_{j}^{\top} \boldsymbol{x}_i)} \right)$$

Setup:

- ▶ MNIST classification. n = 60000, d = 784, K = 10.
- \triangleright $\beta_k = 0.98$ in GD with momentum.
- ▶ Learning rate $\mu_k = 2 \times 10^{-2}$.

- → We will implement in HW2.
- → Next lectures: Overfitting.