5주차 결과 보고서

20191621 이민영

- 1. De-Morgan의 제 1,2 법칙의 simulation 결과 및 과정에 대해서 설명하시오. (NAND, NOR과 비교 포함)
- 드 모르간(De-Morgan)의 제 1 법칙

<제 1 법칙의 (A) Simulation>

<제 1 법칙의 (A) Schematic>

<제 1 법칙의 (B) Schematic>

Simulation 결과를 보면, 각각의 입력에 맞추어 나온 값을 통해 $\overline{A+B}=\overline{A} \cdot \overline{B}$ 가 성립한 다는 것을 알 수 있다. 즉, 드모르간의 제 1법칙이 성립한다.

또한 NOR를 실행한 결과와도 동일한 것을 알 수 있다.

즉, NOR = $\overline{A+B} = \overline{A} \cdot \overline{B}$ 이다.

위의 결과를 통해서 A와 B의 합의 부정이 A의 부정과 B의 부정의 곱과 같다는 것을 알 수 있다.

Simulation 결과를 자세히 살펴보면 A가 0이고 B가 0일 때 결과 값은 (0+0)' = 1, 0'*0' = 1 로 결과 값이 1로 동일하게 나온다는 것을 알 수 있다. 이와 마찬가지로 A와 B의 모든 값이 (A+B)'와 A'*B'가 같다는 것을 알 수 있다.

드 모르간(De-Morgan)의 제 2 법칙

<제 2 법칙의 (A) Schematic>

<제 2 법칙의 (B) Simulation>

<제 2 법칙의 (B) Schematic>

Simulation결과를 비교해보면, $\overline{A \cdot B} = \overline{A} + \overline{B}$ 가 성립함을 알 수 있다. 즉, 드모르간의 제 2 법칙이 성립한다.

또한 NAND의 값과도 동일한 것을 Simulation결과를 통해서 알 수 있다.

즉, $\overline{A \cdot B} = \overline{A} + \overline{B} = NAND$ 이다.

이를 통해서 곱에 보수를 취한 것이 보수끼리의 합과 같으며, 합에 보수를 취한 것이 보수끼리의 곱과 같다는 것을 알 수 있다.

Simulation 결과를 자세히 살펴보면 A가 0이고 B가 0일 때 결과 값은 (0*0)' = 1, 0'+0' = 1로 결과 값이 1로 동일하게 나온다는 것을 알 수 있다. 이와 마찬가지로 A와 B의 모든 값이 (A*B)'와 A'+B'가 같다는 것을 알 수 있다.

- 2. (A'+B')*C' = ((A*B)+C)' 의 simulation 결과 및 과정에 대해서 설명하시오. [+ 및 * 위치 바꾼 모양도 수행]
- 1) (A'+B')*C' = ((A*B)+C)'

(A) (A'+B')*C'

< (A'+B')*C'의 Simulation 결과>

(B) ((A*B)+C)'

< ((A*B)+C)' 의 Simulation 결과>

Simulation 결과를 비교해보면, (A'+B')*C' = ((A*B)+C)' 가 성립함을 알 수 있다. Simulation 결과를 자세히 살펴보면 A가 0이고 B가 0이고 C가 0일 때 결과 값은 (0'+0')*0' = 1, ((0*0)+0)' = 1 로 결과 값이 1로 동일하게 나온다는 것을 알 수 있다. 이와 마찬가지로 A와 B의 모든 값이 (A'+B')*C' = ((A*B)+C)' 가 같다는 것을 알 수 있다.

2) (A'*B')+C' = ((A+B)*C)'

(A) (A'*B')+C'

< (A'*B')+C'의 Simulation결과>

(B) ((A+B)*C)'

< ((A+B)*C)' 의 Simulation 결과>

Simulation 결과를 비교해보면, (A'*B')+C' = ((A+B)*C)' 가 성립함을 알 수 있다. Simulation 결과를 자세히 살펴보면 A가 0이고 B가 0이고 C가 0일 때 결과 값은 (0'*0')+0' = 1, ((0+0)*0)' = 1 로 결과 값이 1로 동일하게 나온다는 것을 알 수 있다. 이와 마찬가지로 A와 B의 모든 값이 (A'*B')+C' = ((A+B)*C)' 가 같다는 것을 알 수 있다.

3. 1Bit 비교기의 simulation 결과 및 과정에 대해서 설명하시오. (2 input, 4 output) [진리표 작성]

input A	input B	A=B	A≠B	A>B	A <b< th=""></b<>
0	0	1	0	0	0
0	1	0	1	0	1
1	0	0	1	1	0
1	1	1	0	0	0

One_Bit_Comp		One_Bit_Comp_tb	
`timescale 1ns / 1ps		`timescale 1ns / 1ps	
		module One_Bit_Comp_tb;	
	module One_Bit_Comp(reg aa;	
	input a,	reg bb;	

```
wire eq;
                                           wire neq;
                                           wire bbig;
                                           wire ssma;
                                           One_Bit_Comp
                                           u_One_Bit_Comp(
   input b,
                                               .a(aa),
                                               .b(bb),
    output equal,
    output notequal,
                                               .equal(eq),
    output big,
                                               .notequal(neq),
    output sma
                                               .big(bbig),
    );
                                               .sma(ssma)
    assign equal = (a==b);
                                          );
    assign notequal = (a!=b);
                                          initial aa = 1'b0;
    assign big = (a>b);
                                           initial bb = 1'b0;
    assign sma = (a<b);
endmodule
                                           always aa = #100 ~aa;
                                           always bb = #50 \sim bb;
                                          initial begin
                                               #1000
                                               $finish;
                                           end
                                           endmodule
```


<Simulation 결과>

<Schematic>

Simulation의 결과, input에 따른 output의 결과가 진리표와 동일하게 나오는 것을 확인할 수 있다.

a가 0, b가 0으로 입력되었을 때 a와 b는 같은 값이기 때문에 a==b를 나타내는 eq는 1을 가르키며, 동시에 a와 b는 같은 값이므로 a!=b를 나타내는 notequl는 0을 나타낸다. 또한 a>b, a<b 모두 거짓이므로 0을 나타낸다.

이와 같은 방식으로 a와 b의 값을 비교한 결과를 얻어낼 수 있었다.