CRAG

GdlZd

Generating Functions

Functions

CRAG

The Weil Conjectures

D. Zack Garza

April 2020

CDAG

D. Zack Garza

Background Generating Functions

Zeta Functions

Examples

Background: Generating Functions

Varieties

CRAG

D. Zack Garza

Background Generating Functions

Function

Fix q a prime and $\mathbb{F} := \mathbb{F}_q$ the (unique) finite field with q elements, along with its (unique) degree n extensions

$$\mathbb{F}_{q^n} = \left\{ x \in \overline{\mathbb{F}}_q \mid x^{q^n} - x = 0 \right\} \quad \forall \ n \in \mathbb{Z}^{\geq 2}$$

Definition (Projective Algebraic Varieties)

Let $J=\langle f_1,\cdots,f_M\rangle \leq k[x_0,\cdots,x_n]$ be an ideal, then a *projective algebraic* variety $X\subset \mathbb{P}^n_{\mathbb{F}}$ can be described as

$$X = V(J) = \left\{ \mathbf{x} \in \mathbb{P}_{\mathbb{F}}^{n} \mid f_{1}(\mathbf{x}) = \cdots = f_{M}(\mathbf{x}) = \mathbf{0} \right\}$$

where J is generated by homogeneous polynomials in n+1 variables, i.e. there is a fixed $d=\deg f_i\in\mathbb{Z}^{\geq 1}$ such that

$$f(\mathbf{x}) = \sum_{\substack{\mathbf{i} = (i_1, \cdots, i_n) \\ \sum_i i_i = d}} \alpha_{\mathbf{i}} \cdot x_0^{i_1} \cdots x_n^{i_n} \quad \text{ and } \quad f(\lambda \cdot \mathbf{x}) = \lambda^d f(\mathbf{x}), \lambda \in \mathbb{F}^{\times}.$$

2

- For a fixed variety X, we can consider its \mathbb{F} -points $X(\mathbb{F})$.
 - Note that $\#X(\mathbb{F})<\infty$ is an integer
- For any L/\mathbb{F} , we can also consider X(L)
 - In particular, we can consider $X(\mathbb{F}_{q^n})$ for any $n \geq 2$.
 - We again have $\#X(\mathbb{F}_{q^n})<\infty$ and are integers for every such n.
- So we can consider the sequence

$$[N_1, N_2, \cdots, N_n, \cdots] := [\#X(\mathbb{F}), \#X(\mathbb{F}_{q^2}), \cdots, \#X(\mathbb{F}_{q^n}), \cdots].$$

 Idea: associate some generating function (a formal power series) encoding sequence, e.g.

$$F(z) = \sum_{n=1}^{\infty} N_n z^n = N_1 z + N_2 z^2 + \cdots$$

Why Generating Functions?

CRAG

D. Zac Garza

Background Generating Functions

Zeta Functions Note that for such an ordinary generating functions, the coefficients are related to the real-analytic properties of F: we can easily recover the coefficients in the following way:

$$[z^n] \cdot F(z) = [z^n] \cdot T_{F,z=0}(z) = \frac{1}{n!} \left(\frac{\partial}{\partial z}\right)^n F(z) \bigg|_{z=0} = N_n.$$

They are also related to the complex analytic properties: using the Residue theorem,

$$[z^n] \cdot F(z) := \frac{1}{2\pi i} \oint_{\mathbb{S}^1} \frac{F(z)}{z^{n+1}} dz = \frac{1}{2\pi i} \oint_{\mathbb{S}^1} \frac{N_n}{z} dz = N_n.$$

The latter form is very amenable to computer calculation.

Why Generating Functions?

CRAG

D. Zack

Background Generating Functions

Zeta Functions An OGF is an infinite series, which we can interpret as an analytic function $\mathbb{C} \longrightarrow \mathbb{C}$ – in nice situations, we can hope for a closed-form representation.

A useful example: by integrating a geometric series we can derive

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \qquad (= 1 + z + z^2 + \cdots)$$

$$\implies \int \frac{1}{1-z} = \int \sum_{n=0}^{\infty} z^n$$

$$= \sum_{n=0}^{\infty} \int z^n \quad for|z| < 1 \quad \text{by uniform convergence}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n+1} z^{n+1}$$

$$\implies -\log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n} \qquad \left(= z + \frac{z^2}{2} + \frac{z^3}{3} + \cdots\right).$$

For completeness, also recall that

$$\exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

CDAG

D. Zack Garza

Background Generating Functions

Zeta Functions

Examples

Zeta Functions

Definition: Local Zeta Function

CRAG

D. Zack Garza

Backgrour Generating Functions

Zeta Functions Problem: count points of a (smooth?) projective variety X/\mathbb{F} in all (finite) degree n extensions of \mathbb{F} .

Definition (Local Zeta Function)

The *local zeta function* of an algebraic variety X is the following formal power series:

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} N_n \frac{z^n}{n}\right) \in \mathbb{Q}[[z]] \text{ where } N_n := \#X(\mathbb{F}_n).$$

Note that

$$z\left(\frac{\partial}{\partial z}\right)\log Z_X(z) = z\frac{\partial}{\partial z}\left(N_1z + N_2\frac{z^2}{2} + N_3\frac{z^3}{3} + \cdots\right)$$

$$= z\left(N_1 + N_2z + N_3z^2 + \cdots\right) \qquad \text{(unif. conv.)}$$

$$= N_1z + N_2z^2 + \cdots = \sum_{n=1}^{\infty} N_nz^n,$$

which is an *ordinary* generating function for the sequence (N_n) .

CBAC

D. Zack Garza

Backgroun Generating Functions

Zeta Functions

Examples

Examples

Example: A Point

CRAG

D. Zack Garza

Generating Functions

Functions

Take
$$X=\{\mathrm{pt}\}=V(\{f(x)=0\})/\mathbb{F}$$
 a single point over \mathbb{F} , then
$$\#X(\mathbb{F}_q):=N_1=1$$

$$\#X(\mathbb{F}_{q^2}):=N_2=1$$

$$\vdots$$

$$\#X(\mathbb{F}_{q^n}):=N_n=1$$

and so

$$Z_{\{pt\}}(z) = \exp\left(1 \cdot z + 1 \cdot \frac{z^2}{2} + 1 \cdot \frac{z^3}{3} + \cdots\right)$$
$$= \exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n}\right)$$
$$= \exp\left(-\log\left(1 - z\right)\right)$$
$$= \frac{1}{1 - z}.$$

Notice: Z admits a closed form and is a rational function.

Example: The Affine Line

CRAG

D. Zack Garza

Backgrour Benerating Functions

Zeta Functions Examples Take $X = \mathbb{A}^1/\mathbb{F}$ the affine line over \mathbb{F} , then We can write

$$\mathbb{A}^1(\mathbb{F}_{q^n}) = \left\{ \mathbf{x} = [x_1] \mid x_1 \in \mathbb{F}_{q^n} \right\}$$

as the set of one-component vectors with entries in \mathbb{F}_n , so

$$X(\mathbb{F}_q) = q$$
 $X(\mathbb{F}_{q^2}) = q^2$
 \vdots
 $X(\mathbb{F}_{q^n}) = q^n.$

Then

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} q^n \frac{z^n}{n}\right)$$
$$= \exp\left(\sum_{n=1}^{\infty} \frac{(qz)^n}{n}\right)$$
$$= \exp(-\log(1 - qz))$$
$$= \frac{1}{1 - qz}.$$

Example: Affine m-space

CRAG

D. Zack Garza

ackgroun ienerating unctions

Functions

Take $X = \mathbb{A}^m/\mathbb{F}$ the affine line over \mathbb{F} , then We can write

$$\mathbb{A}^m(\mathbb{F}_{q^n}) = \left\{ \mathbf{x} = [x_1, \cdots, x_m] \mid x_i \in \mathbb{F}_{q^n} \right\}$$

as the set of one-component vectors with entries in \mathbb{F}_n , so

$$X(\mathbb{F}_q) = q^m$$

$$X(\mathbb{F}_{q^2}) = (q^2)^m$$

$$\vdots$$

$$X(\mathbb{F}_{q^n}) = q^{nm}.$$

Figure: $\mathbb{A}^2/\mathbb{F}_3$ (q = 3, m = 2, n = 1)

Then

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} q^{nm} \frac{z^n}{n}\right) = \exp\left(\sum_{n=1}^{\infty} \frac{(q^m z)^n}{n}\right)$$
$$= \exp(-\log(1 - q^m z))$$
$$= \frac{1}{1 - q^m z}.$$

Example: Projective Line

CRAG

Garza

Background Generating Functions

Functions

Take $X = \mathbb{P}^1/\mathbb{F}$, we can still count by enumerating coordinates:

$$\mathbb{P}^{1}(\mathbb{F}_{q^{n}}) = \left\{ [x_{1} : x_{2}] \mid x_{1}, x_{2} \neq 0 \in \mathbb{F}_{q^{n}} \right\} / \sim = \left\{ [x_{1} : 1] \mid x_{1} \in \mathbb{F}_{q^{n}} \right\} \coprod \left\{ [1 : 0] \right\}.$$

Thus

$$X(\mathbb{F}_q) = q+1$$

$$X(\mathbb{F}_{q^2}) = q^2 + 1$$

$$\vdots$$

$$X(\mathbb{F}_{q^n}) = q^n + 1.$$

Figure: $\mathbb{P}^1/\mathbb{F}_3$ (q=3, n=1)

Thus

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} (q^n + 1) \frac{z^n}{n}\right)$$
$$= \exp\left(\sum_{n=1}^{\infty} q^n \frac{z^n}{n} + \sum_{n=1}^{\infty} 1 \cdot \frac{z^n}{n}\right)$$
$$= \frac{1}{(1 - qz)(1 - z)}.$$

A Small Theorem

CRAG

D. Zack Garza

Generating Functions

Examples

Quick recap:

$$Z_{\{pt\}} = \frac{1}{1-z}$$
 $Z_{\mathbb{P}^1}(z) = \frac{1}{1-qz}$ $Z_{\mathbb{A}^1}(z) = \frac{1}{(1-z)(1-qz)}$.

Note that $\mathbb{P}^1 = \mathbb{A}^1 \coprod \{\infty\}$ and correspondingly $Z_{\mathbb{P}^1}(z) = Z_{\mathbb{A}^1}(z) \cdot Z_{\{\text{pt}\}}(z)$. This works in general:

Lemma (Excision)

If
$$Y/\mathbb{F}_q \subset X/\mathbb{F}_q$$
 is a closed subvariety, for $U = X \setminus Y$, $Z_X(z) = Z_Y(z) \cdot Z_U(z)$.

Proof: Let $N_n = \#Y(\mathbb{F}_{q^n})$ and $M_n = \#U(\mathbb{F}_{q^n})$, then

$$\zeta_X(z) = \exp\left(\sum_{n=1}^{\infty} (N_n + M_n) \frac{z^n}{n}\right)$$

$$= \exp\left(\sum_{n=1}^{\infty} N_n \cdot \frac{z^n}{n} + \sum_{n=1}^{\infty} M_n \cdot \frac{z^n}{n}\right)$$

$$= \exp\left(\sum_{n=1}^{\infty} N_n \cdot \frac{z^n}{n}\right) \cdot \exp\left(\sum_{n=1}^{\infty} M_n \cdot \frac{z^n}{n}\right) = \zeta_Y(z) \cdot \zeta_U(z).$$

Example: Projective m-space

CRAG

D. Zack Garza

Examples

Take $X = \mathbb{P}^m/\mathbb{F}$ We can write

$$\mathbb{P}^{m}(\mathbb{F}_{q^{n}}) = \mathbb{A}^{m+1}(\mathbb{F}_{q^{n}}) \setminus \{\mathbf{0}\} / \sim = \left\{\mathbf{x} = [x_{0}, \cdots, x_{m}] \mid x_{i} \in \mathbb{F}_{q^{n}}\right\} / \sim$$

But how many points are actually in this space?

Figure: Points and Lines in $\mathbb{P}^2/\mathbb{F}_3$

A nontrivial combinatorial problem!

Example: Projective m-space

CRAG

D. Zack Garza

Backgrour Generating Functions

Zeta Functions Examples To illustrate, this can be done combinatorially: identify $\mathbb{P}^m_{\mathbb{F}} = \mathsf{Gr}_{\mathbb{F}}(1,m)$ as the space of lines in $\mathbb{A}^{m+1}_{\mathbb{F}}$.

Theorem

The number of k-dimensional subspaces of $\mathbb{A}_{\mathbb{F}_q}^N$ is the q-binomial coefficient:

$$\begin{bmatrix} N \\ k \end{bmatrix}_q := \frac{(q^N - 1)(q^{N-1} - 1) \cdots (q^{N-(k-1)} - 1)}{(q^k - 1)(q^{k-1} - 1) \cdots (q - 1)}.$$

Proof: To choose a *k*-dimensional subspace,

- Choose a nonzero vector $\mathbf{v}_1 \in \mathbb{A}^n_{\mathbb{R}}$ in $q^N 1$ ways.
 - Note that $\#\mathrm{span}\,\{\mathsf{v}_1\}=\#\left\{\lambda\mathsf{v}_1\;\middle|\;\lambda\in\mathbb{F}_q\right\}=\#\mathbb{F}_q=q.$
- Choose a nonzero vector \mathbf{v}_2 not in the span of \mathbf{v}_1 in q^m-q ways.
 - Identify $\#\mathrm{span}\left\{\mathsf{v}_1,\mathsf{v}_2\right\} = \#\left\{\lambda_1\mathsf{v}_1 + \lambda_2\mathsf{v}_2 \mid \lambda_i \in \mathbb{F}\right\} = q \cdot q = q^2.$
- Choose a nonzero vector \mathbf{v}_3 not in the span of $\hat{\mathbf{v}}_1$, \mathbf{v}_2 in

$$q^m - q^2$$

ways.

 $-\cdots$ until \mathbf{v}_k is chosen in

$$(a^m - 1)(a^m - a) = (a^m - a^{k-1})$$