Física Experimental - LEI 2023-2024 - 1.º Semestre

Circuitos Digitais

Bibliografia:

- 1) Digital Fundamentals Global Edition, Floyd, 11th Edition, Pearson Education, 2015.
- 2) Sistemas Digitais: Fundamentos e Aplicações, 9ª edição, Floyd, Bookman, Brasil, 2007.
- 3) Digital Electronic: A Practical Approach with VHDL, W. Kleitz, 9th Edition, Pearson Education, 2012.
- 4) Logic and Computer Design Fundamentals, Morris, Kime, 4th Edition, Pearson Education Limited.

Sistema analógico

Sistema digital

Ver: https://pt.wikipedia.org/wiki/Ficheiro:ABC Clarke predicts internet and PC.ogv

Sistemas digitais e sistemas analógicos

optics of a laser beam to look for pits or nonpits on the CD as it spins beneath it. These pits, which are burned into the CD by the CD recorder, represent the 1s and 0s of the digital information the player needs to recreate the original data. A CD contains up to 650 million bytes of digital 1s and 0s (1 byte = 8 bits).

Another optical storage medium is the digital versatile disk (DVD). A DVD is much denser than a CD. It can hold up to 17 billion bytes of data! One of the more interesting uses of analog-to-digital (A-to-D) and digital-to-analog (D-to-A) conversion is in CD audio systems. Also, several A-to-D and D-to-A examples are given in Chapter 15.

Digital Electronic: A Practical Approach, W. Kleitz, Pearson Education, 2012

Eletrónica analógica vs eletrónica digital

Os circuitos/componentes analisados até aqui são circuitos de Electrónica Analógica.

Os componentes (portas lógicas, etc.) e os circuitos (circuitos digitais) que iremos estudar nas próximas aulas pertencem ao ramo da Electrónica Digital. Os circuitos digitais são aplicados, em sistemas de comunicação, controlo, instrumentação, e, claro, em computação.

A grande diferença entre circuitos analógicos e circuitos digitais reside, essencialmente, no seguinte especto: enquanto na Eletrónica Analógica os sinais (quer de entrada, quer de saída) podem variar de um modo contínuo dentro de limites relativamente largos.

Na **Eletrónica Digital** os sinais (**tensões** quer nas entradas, quer nas saídas) apenas podem pertencer a duas gamas de valores, i.e., as tensões permitidas pertence a duas gamas/bandas de valores: por exemplo, entre 2.0 V e 5 V; e entre 0 V e 0.8 V.

É costume designar o intervalo de tensão 2.0 V - 5 V por um (1) ou ALTO ("High") ou verdadeiro, e o intervalo 0 V - 0.8 V é referido por zero (0) ou BAIXO ("Low"), ou falso.

A unidade elementar de medida de informação é o bit (binary digit): um bit apenas pode tomar dois valores distintos, geralmente representados por, por exemplo, 1 (verdadeiro) e 0 (falso).

A complexidade de um circuito digital vai desde de um número pequeno de portas lógicas ou circuitos lógicos até computadores completos (microprocessador + memoria + etc.) ou memórias de milhões de bits.

Lógica Positiva

Em circuitos binários, dois valores distintos de tensão podem representar os dois valores das variáveis binárias. Contudo, em virtude das inevitáveis tolerâncias dos componentes e efeito do ruído, que alteram por vezes os níveis de tensão, dois intervalos distintos de tensão são usualmente **Tensão** definidos.

Como mostra a figura ao lado, se o valor do sinal de tensão está compreendido no intervalo $[V_{L1}, V_{L2}]$, o sinal é interpretado (pelo circuito digital) como um 0 (zero) lógico. Se, por outro lado, o sinal pertence ao intervalo [V_{H1} , V_{H2}], é interpretado como 1 (um) lógico.

As duas regiões de tensão são separadas por uma região à qual não é suposto os sinais lógico (em tensão) pertencerem.

Esta banda proibida representa a zona indefinida ou excluída.

Uma vez que as tensões correspondentes ao 1 lógico são superiores àquelas que representam o 0 lógico, diz que os sistemas assim implementados usam lógica positiva.

Invertendo as definições e obtém-se sistemas de **lógica negativa**.

Dígitos binários, níveis lógicos e código binário

Bit (for **b**inary dig**it**):

0 corresponde a tensão "baixa", entre 0 V e ~0.8 V)

ou

corresponde a tensão "alta", entre ~2 V e 5 V)

Uma palavra "binária"/código binário é formada por uma sequência de zeros (0) e uns (1).

Exemplo: o número decimal 9 em binário é representada por 1001

(em valores de tensão tem-se: "5 V" "0 V" "0 V" "5 V")

Vantagens dos sinais digitais

Exemplo: sinal áudio

Exemplos de sinais digitais

Ondas pulsadas não periódicas

Ondas pulsadas periódicas

Sinal de relógio num circuito digital: sinal periódico (geralmente é uma onda quadrada)

Formas de onda digitais: trem de pulsos

Uma onda pulsada é descrita pelo período T (ou frequência, f), pela amplitude (A), pela largura do pulso t_W (W: "width"; tempo, em cada período, durante o qual que o sinal "está ligado/alto") e pelo "duty cycle" (razão entre t_W to T).

"Duty cycle" é a razão entre t_W to T, normalmente expressa em percentagem.

"Duty cycle"

"Duty cycle:" fração do período em que o sinal está ativo.

"Duty cycle"

"Duty cycle:" fração do período em que o sinal está ativo.

Formas de onda com pulsos de arcada ascendente/descente

Pulsos de arcada ascendente: passa de Baixo para ALTO e depois volta a BAIXO

Pulso de arcada descente: passa de ALTO para BAIXO e depois volta a ALTO.

Tempos de subida, de descida, amplitude, duração do pulso, e período.

Circuitos lógicos diagramas temporais ou de temporização

Circuito lógico

Seja o circuito lógico abaixo representado composto por N entradas (A, B, C, ...), e uma saída Z:

As entradas A, B, C, ..., podem tomar os valores 0 ou 1; a saída Z pode tomar os valores 0 ou 1.

Como veremos adiante, a álgebra de Boole permite relacionar a saída do circuito com as suas entradas:

$$Z=f(A, B, C, ...)$$

A expressão algébrica que define a função f designa-se expressão booleana, que recorre a três operações básicas: i) multiplicação; ii) adição; iii) inversão (negação).

Circuito lógico

a saída Z é função das entradas A, B, e C

Z: f(A, B, C) determinará o valor lógico de Z para cada conjunto de valores A, B, e C, em cada instante (pulso do relógio).

Diagramas temporais ou de temporização

Equipamentos de teste e análise de circuitos digitais

(a) Arbitrary waveform generator

(b) Function generator

Analisador lógico

Informação disponibilizada por um analisador lógico (exemplo)

Diagramas temporais ou de temporização

Representações binária e hexadecimal

(b) Listing display

Portas lógicas e combinação de portas lógicas

https://pt.wikipedia.org/wiki/George Boole

Em 1854 publicou a obra *An investigation into the laws of thought, on which are founded the Mathematical Theories of Logic and Probabilities*. Este brilhante matemático fez uma nova abordagem da lógica reduzindo-a a simples álgebra, incorporando-a na matemática. Ele criou a analogia entre símbolos algébricos e aqueles que representavam formas lógicas. Esta originou a álgebra da lógica, chamada *Boolean Algebra* (Álgebra Booleana), que tem aplicações na construção e desenho de computadores, comutação de circuitos, *software* informático, sistemas telefónicos e comunicações, etc.

Como referenciar: *George Boole* in Infopédia [em linha]. Porto: Porto Editora, 2003-2020. [consult. 2020-11-27 13:01:48]. Disponível na Internet: https://www.infopedia.pt/\$george-boole

Funções lógicas básicas

E / AND

A saída é ALTA se as entradas estiveram todas ALTAS

A saída é ALTA se pelo menos uma entrada estiver Al TA

NÃO / NOT

NEGA a entrada, isto é, a saída produz o inverso da entrada:

Se a entrada for 1 a saída é 0;

Se a entrada for 0 a saída é 1

Função E / AND The AND operation

A operação E é executada por circuitos chamados portas E / AND.

Porta EThe AND Gate

Símbolo norma ANSI

Símbolo norma CEI

Formas de onda:

CEI: Comissão Eletrotécnica Internacional

ANSI: American National Standards Institute

Porta E

The AND Gate

Símbolo norma ANSI

Símbolo norma CEI

Tabela de verdade

Output X
0
0
0
1

Função E com dois

interruptores em série

Função E implementada

com díodos

$$V_{CC}=5 V$$

$$D_{1} \geqslant R=5 k\Omega$$

$$A \sim D_{2} \qquad Z$$

$$D_{2} \qquad D_{2} \qquad D_{3} \qquad Z$$

Expressão Booleana:

$$X = A \cdot B$$

$$X = A \cdot B$$
 ou $X = AB$ ou $X = A \wedge B$.

CEI: Comissão Eletrotécnica Internacional

ANSI: American National Standards Institute

conjunção

Função OU The OR operation

A operação OU é executada por circuitos chamados portas OU / OR.

Porta OU

The OR Gate

Símbolo norma ANSI

Símbolo norma CEI

Formas de onda:

Porta OU

The OR Gate

Símbolo norma ANSI

Símbolo norma CEI

Tabela de verdade

Inp	uts	Output
A	В	X
0	0	0
0	1	1
1	0	1
1	1	1

Função OU com dois

interruptores em paralelo

Função OU implementada

com díodos

Expressão Booleana: X = A + B ou $X = A \lor B$.

+ disjunção

Implementação das funções E e OU usando díodos

(como iremos ver, E e OU são duas operações elementares em eletrónica digital/sistemas digitais)

Em eletróncia digital/sistemas digitais as tensões nas entradas e nas saídas só podem estra compreendidas em duas gamas de tensão correspondentes aos valores lógicos ZERO (BAIXO, FALSO) e UM (ALTO, VERDADEIRO): "ZERO", 0.V e < 0.8 V; "UM", 2.0 V e 5 V.

Seja a função E com duas entradas A e B, e a saída Z:

Tabela de verdade da função E

<i>A</i> (V)	<i>B</i> (V)	Z
0	0	0
1	0	0
0	1	0
1	1	1

<i>A</i> (V)	B(V)	<i>Z</i> (V)	Valor lógico
0	0	0.7	0
5	0	0.7	0
0	5	0.7	0
5	5	5	1

Seja a função OU com duas entradas A e B, e a saída Z:

Tabela de verdade da função OU

A(V)	B(V)	Z
0	0	0
1	0	1
0	1	1
1	1	1

<i>A</i> (V)	B(V)	<i>Z</i> (V)	Valor Iógico
0	0	0	0
5	0	4.3	1
0	5	4.3	1
5	5	4.3	1

Implementação da porta NÃO

Com os componentes (resistências, condensadores, bobines, transformadores, díodos, LEDs,) ou com circuitos neles baseados, não é possível implementar a função lógica de negação (porta lógica inversora ou porta NÃO).

Implementação mais prática/realista com frequências de comutação elevada, acima de quilohertz emprega um novo componente baseados em junções PN, **o transístor**. Na versão mais simples um transístor (bipolar) é formado por duas junções p-n, formando estruturas pnp ou npn. Ver invenção do transístor https://www.youtube.com/watch?v=phY6mXnHFIY

O transístor é o exemplo de um componente cujo tamanho é inversamente proporcional ao seu impacto tecnológico.

Os computadores, os telemóveis e as máquinas fotográficas digitais são apenas alguns dos inúmeros exemplos de aparelhos que diminuem em tamanho e cresceram em tecnologia de forma a poderem satisfazer a demanda, cada vez maior, por mobilidade e eficiência.

Porta NÃO

O transistor

Inversor – operação negação

The NOT Operation

O circuito que executa a função/operação NÃO chama-se inversor.

Inversor ou porta Não

The Inverter

Realiza a operação booleana NÃO

Input	Output
\overline{A}	X
LOW (0)	HIGH (1)
HIGH (1)	LOW (0)
	<u> </u>

A operação NÃO (também conhecida como complemento) é representada pelo símbolo que representa a entrada (e.g. A) com uma barra ligeiramente acima desse símbolo, \overline{A} .

A expressão booleana para o NÃO é: $X = \overline{A}$.

Função Não ou Inversora

Implementação "simples": um interruptor (A: aberto = 0; fechado = 1) e uma resistência em série, com a saída aos terminais do interruptor. Implementação prática em eletrónica (frequência de comutação elevada): usa transístores – não se consegue obter portas "não" com díodos. Ver invenção do transístor

https://www.youtube.com/watch?v=phY6mXnHFIY

Funcionamento do transístor

Não é possível implementar a porta não usando díodos de junção pn.

Para implementar portas NÃO baratas e eficientes são usados transístores: dispositivos semicondutores (bipolares) que tiram partido do comportamento dos portadores de carga (eletrões e lacunas – dai a designação bipolar) em junções p-n adjuntas. Existem dois tipos de transístores bipolares: transístor npn e transístor pnp. Há ainda transístores de efeito de campo (Field Effect Transistors, FET), transístor MOSFET (metal-oxidesemiconductor field-effect transistor), etc etc.....

Transístores bipolares npn e pnp: em qualquer deles $I_E = I_C + I_B$.

Ver, por exemplo,

https://www.youtube.com/watch?v=phY6mXnHFIY

Funcionamento (resumidamente): seja VA = entrada e VZ = saída Se VA=0 V (0 lógico), IB é 0, e IC é 0. Logo VZ=VCC (5 V, 1 lógico). Se VA>0.7 (e.g., 5 V, 1 lógico), IC é tal que VZ<0.8 V. Logo, a saída é um 0 lógico. Resumindo: temos uma porta inversora.

Implementação da função NÃO com transístores

Consideremos que a tensão aplicada à base do transístor base $V_{\rm BB}$ (que representará a entrada da porta

NÃO) é 0 V.

$$I_B = (V_A - 0.7 \text{ V})/R_{BB} > = 0$$

$$I_{\rm E} = I_{\rm C} + I_{\rm B}$$

$$V_{CE}=V_{CC}-R_CI_C$$

Transístor em corte:

- (a) circuito e
- (b) modelo simplificado.

Consideremos agora que a tensão aplicada à base $V_{\rm BB}$ do transístor é tal que $V_{\rm CE} = V_{\rm CC}$ - $R_{\rm C}I_{\rm C}$ < 0.8 V.

Transístor na saturação:

- (a) circuito e
- (b) modelo simplificado.

Funcionamento (resumidamente): seja VBB = entrada e VCE = saída

- Se VBB=0 V (0 lógico), IB é 0, e IC é 0. Logo VCE=VCC (5 V, 1 lógico).
- Se VBB=5 V (1 lógico), IC é tal que VCE<0.8 V. Logo, a saída é um 0 lógico. Resumindo: temos uma porta inversora.

Função/operação identidade

Função/operação Identidade

Porta "Seguidor" ou "buffer"/"Buffer" operation

Os buffers são usados para permitirem aos circuitos comunicarem entre si, isolando a entradas de um circuito das saídas de outro circuito.

Formas de onda
$$A \setminus X$$

Exemplo de aplicação da operação Identidade/"buffer"

Não altera o valor lógico (serve como "tampão" ou "buffer" entre diferentes partes de circuito)

Porta "Seguidor" ou "buffer"

Porta "Seguidor" ou "buffer" de "três estados"

Portas lógicas universais:

Porta Não-E e porta Não-OU

Porta Não-E

The NAND Gate

Símbolo norma ANSI

Símbolo norma CEI

Inputs	Output
A B	X
0 0	1
0 1	1
1 0	1
1 1	0

Expressão Booleana: $X = A \cdot B$ ou X = AB

$$X = \overline{A \cdot B}$$

$$X = AB$$

39

Porta NÃO-E

Sinais digitais:

A porta NÃO-E é uma porta "universal".

Exemplo: porta NÃO

Porta Não-Ou

The NOR Gate

Símbolo norma ANSI

Símbolo norma CEI

Inputs		Output
\overline{A}	В	X
0	0	1
0	1	0
1	0	0
1	1	0

Expressão Booleana: $X = \overline{A + B}$.

$$X = \overline{A + B}$$

Porta NÃO-OU

The NOR Gate

Sinais digitais:

No circuito ao lado, quando é que o LED emite luz?

O LED "liga" se pelo menos uma das quatro entradas estiver ALTA (5 V).

As portas NAND (NÃO-E) são portas universais

As portas NOR (NÃO-OU) são portas universais

Circuitos integrados com funções lógicas pré-definidas

Famílias lógicas TTL e CMOS

<u>Circuitos digitais</u> da família TTL (transistor – transistor logic)

A **complementary metal-oxide semiconductor** (CMOS) is the semiconductor technology used in most of today's integrated circuits (ICs), also known as chips or microchips. CMOS transistors are based on metal-oxide semiconductor field-effect transistor (MOSFET) technology.

Famílias lógicas TTL e CMOS

Tecnologias mais comuns de portas lógicas são TTL e CMOS. A tecnologia BiCMOS combina as duas anteriores.

Encapsulamento:

Dual in-line package (DIP)

Encapsulamento DIP

- 0.335 - 0.334 in.-0.228 - 0.244 in Lead no.1 identifier

Encapsulamento SOIC

Small Outline Integrated Circuit (SOIC)

https://en.wikipedia.org/wiki/Integrated circuit

Circuitos integrados

Cutaway view of DIP (<u>Dual-In-line Pins</u>) chip:

The TTL series, available as DIPs are popular for laboratory experiments with logic.

Circuitos integrados com funções lógicas pré-definidas

<u>Circuitos digitais</u> da família TTL (transistor – transistor logic)

Electronic_component_ttl Czechoslovak MH74S00, Texas Instruments SN74S251N (Portugal), East German DL004D (74LS04), Soviet K155LA13 (7438)

https://en.wikipedia.org/w/index.php?title=7400-series integrated circuits&oldid=0

Exemplo do integrado 74XX00 (4 portas NAND)

Os símbolos lógicos mostram as portas e os pinos associados.

Circuitos integrados que executam as funções NÃO, E e OU

Três funções lógicas básicas:

porta NÃO (NOT; INVERSORA), a porta OU (OR), e a porta E (AND).

A operação de circuitos com portas digitais é descrita usando Álgebra de Boole.

Circuitos integrados da família TTL (transistor – transistor logic) com portas NÃO, E e OU

Circuitos de teste das portas E e OU

Ver guia do trabalho n.º 10.

(a)

Folha de dados do componente 74XX00

As folhas de especificações ("Data sheet") incluem os limites e as condições de operação definidas pelo fabricante, bem como as características do e ac.

O exemplo abaixo foi extraído da folga de especificações do 74HC00A:

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to + 7.0 V	V
V _{in}	DC InputVoltage (Referenced to GND)	-0.5 to $\sqrt{_{CC}}$ +0.5 V	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to $\sqrt{_{CC}}$ +0.5 V	V
I _{in}	DC Input Current, per pin	±20	mA
lout	DC Output Current, per pin	±25	mA
I _{CC}	DC Supply Current, V _C and GND pins	±50	mA
Ръ	Power Dissipation in Still Air, Plastic or Ceramic DIP +	750	mW
	SOIC Package †	500	
	TSSOP Package †	450	
T _{stg}	Storage Temperature	-65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds		°C
	Plastic DIP, SOIC, or TSSOP Package	260	
	Ceramic DIP	300	

Níveis de tensão e margens de ruído

Lógica positiva. Os vocábulos "alto" e "baixo" serão equivalentes a **1** e **0**, respetivamente. O intervalo de valores de tensão correspondente ao valor lógico 1 é [0, 0.8] V.

O valor lógico 1 refere-se a tensões compreendidas entre 2 e 5 V. Tensões entre 0.8V e 2 V são proibidas, i.e., os circuitos não "sabem" como interpretá-las.

Nota: Quando se diz que uma tensão de entrada é zero, está-se a admitir que há uma ligação à massa, e não uma entrada flutuante.

TABLE 9-1	Standard 74XX Series Voltage Levels				
Parameter	Minimum	Typical	Maximum		
$V_{ m OL}$		0.2 V	0.4 V 0.8 V	}	Noise margin = 0.4 V
$V_{ m IL} \ V_{ m OH} \ V_{ m IH}$	2.4 V 2.0 V	3.4 V		}	Noise margin = 0.4 V

Noise margin (HIGH) = V_{OH} (min) - V_{IH} (min) Noise margin (LOW) = V_{IL} (max) - V_{OL} (max)

Computador implementado com portas lógicas TTL 74YYXX

A 4-bit, 2 register, six-instruction computer made entirely of 74-series chips

https://en.wikipedia.org/w/index.php?title=7400-series integrated circuits&oldid=0

Porta OU-Exclusivo (XOR)

e

Porta Não-OU-Exclusivo (XNOR)

Porta OU-Exclusivo (XOR)

The XOR Gate

Símbolo norma ANSI

Símbolo norma CEI

Tabela de verdade da porta OU-Exclusivo com duas entradas

Inputs	Output
A B	X
0 (0
0	1
1 (1
1 -	0

Expressão Booleana:

$$X = \overline{AB} + A\overline{B}$$
 ou $X = A \oplus B$.

disjunção exclusiva

Porta OU-Exclusivo (XOR)

The XOR Gate

Inp	uts	Output
\overline{A}	В	X
0	0	0
0	1	1
1	0	1
1	1	0

Sinais digitais

Se invertermos as formas de onda acima para as entradas A e B, como é que a saída será afetada?

A saída não se altera.

Lógica OU-Exclusivo (XOR)

Expressão Booleana $X = \overline{AB} + A\overline{B}$

Em regra a porta XOR tem apenas duas entradas. É possível obter configurações com mais entradas.*

TABLE 4–2 • Truth table for an exclusive-OR.			
A	В	X	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

*A disjunção exclusiva (escrito como ⊕) é uma operação sobre dois ou mais valores lógicos, tipicamente os valores de duas proposições, que produz um valor verdadeiro apenas se a quantidade de operadores verdadeiros for ímpar.

Porta Não-OU-Exclusivo

The XNOR Gate

Inputs	Output
A B	X
0 0	1
0 1	0
1 0	0
1 1	1

$$X = \overline{AB} + AB$$
 ou $X = A \odot B$.

A **porta lógica XNOR**, também conhecida pelo termo *função coincidência*, é a operação inversa da <u>porta XOR</u> (ou exclusivo).

Porta NÃO-OU-Exclusivo

The XNOR Gate

Inp	uts	Output
A	В	X
0	0	1
0	1	0
1	0	0
1	1	1

Sinais digitais

Se invertermos as formas de onda acima para as entradas A e B, como é que a saída será afetada?

Lógica Não-XOR

Exclusive-NOR (XNOR) Logic

Expressão Booleana $X = \overline{AB} + AB$

Em regra a porta XNOR tem apenas duas entradas. É possível obter configurações com mais entradas.*

TABLE 3–16 • Truth table for an exclusive-NOR gate.					
INP	INPUTS OUTPUT				
\boldsymbol{A}	В	X			
0	0	1			
0	1	0			
1	0	0			
1	1	1			

*A XNOR é uma operação sobre dois ou mais valores lógicos, tipicamente os valores de duas proposições, que retornará valores iguais a um quando os valores de entrada forem todos iguais ou iguais em número par, ou seja, quando coincidirem em número par.

Exercícios: portas XOR e XNOR

Para cada circuito, determinar se o LED está "ligado" ou desligado"

Circuito (a): XOR, ambas as entradas estão ALTAS, saída está BAIXA, o LED está ligado.

Circuito (b): XNOR, entradas opostas, saída está BAIXA, o LED está ligado.

Circuito (c): XOR, entradas opostas, saída está ALTA, o LED está desligado.