(A). Solve the following elliptic partial differential equations using the Fourier transform technique

1. Dirichlet problem in the upper half plane y > 0.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, -\infty < x < \infty, y > 0$$

s.t. $u(x,0) = f(x), -\infty < x < \infty;$ both u and $\frac{\partial u}{\partial x}$ vanish as $|x| \to \infty;$ and u is bounded as $y \to \infty$. (u(x,y)) is the potential function

2. Neumann's problem in the upper half plane y > 0. Solve

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \ -\infty < x < \infty, \ y > 0$$

s.t. $\frac{\partial u}{\partial y}(x,0) = g(x), -\infty < x < \infty;$ u is bounded $y \to \infty;$ both u and $\frac{\partial u}{\partial x}$ are bounded as $|x| \to \infty$.

3. Solve

$$\nabla^2 \phi = 0, \quad y > 0$$

s.t. both $\phi(x,y)$ and $\frac{\partial \phi}{\partial x}(x,y) \to 0$ as $\sqrt{x^2 + y^2} \to \infty$;

$$\phi(x,y) = \begin{cases} 1, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$$

(B). Solve the following parabolic partial differential equations

1. Solve the following heat conduction problem using the Laplace transform technique. u(x,t) denotes the temperature at the location x at any time t.

(a)
$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
, $0 < x < \infty$, $t > 0$ subject to

i.
$$u(x,0) = 0, \ \forall \ x$$

ii.
$$u(0,t) = u_0, \ \forall \ t$$

iii. u is finite $\forall x$ and $\forall t$.

(b)
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
, $0 < x < \infty$, $t > 0$ subject to

i.
$$u(x,0) = 0, \ \forall \ x$$

ii.
$$u(0,t) = 1, \ \forall \ t$$

iii.
$$\lim_{x\to\infty} u(x,t) = 0, \ \forall \ t.$$

2. Solve 1-D heat conduction problem given by

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < \infty, \quad t > 0$$

subject to
$$u(0,t) = 0, \ \forall \ t; \ u(x,0) = \begin{cases} 1, & 0 < x < 1 \\ 0, & x > 1 \end{cases}$$
;

and u(x,t) is bounded $\forall x$ and $\forall t$ using the Fourier sine transformation technique.

3. Solve

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < \infty, \quad t > 0$$

subject to

(a)
$$\frac{\partial u}{\partial t}(0,t) = u_0, \ \forall \ t$$

(b)
$$u(x,0) = 0, \ \forall \ x$$

(c)
$$u(x,t)$$
 is bounded $\forall x$ and $\forall t$

using the Fourier cosine transform technique.

4. Solve the 1-D heat conduction problem

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \quad -\infty < x < \infty, \quad t > 0$$

subject to

(a)
$$u(x,0) = f(x), \ \forall \ x$$

(b)
$$u(x,t) \to 0$$
 as $|x| \to \infty$

(c)
$$u(x,t)$$
 is bounded $\forall x$ and $\forall t$

using the Fourier transform technique.

Take $f(x) = \begin{cases} 0, & x < 1 \\ a, & x > 1 \end{cases}$ and obtain the particular solution.

- (C). Solve the following hyperbolic partial differential equations
- 1. Solve the 1-D wave propagation equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad -\infty < x < \infty, \quad t > 0$$

subject to

(a)
$$u(x,0) = 0, \ \frac{\partial u}{\partial t}(x,0) = 0, \ \forall x;$$

(b)
$$u(0,t) = f(t), \ \forall t;$$

(c)
$$u(x,t)$$
 is bounded $\forall x$ and $\forall t$

using the Laplace transform technique.

2. Solve the 1-D wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad -\infty < x < \infty, \quad t > 0$$

subject to

(a)
$$u(x,0) = f(x)$$
 and $\frac{\partial u}{\partial t}(x,0) = g(x), \forall x;$

(b) both
$$u(x,t)$$
 and $\frac{\partial u}{\partial x}(x,t) \to 0$ as $|x| \to \infty$

using the Fourier transform technique.