2018/2019 SEMESTER 2

5. Let B be any $m \times m$ matrix. Suppose P is an invertible $m \times m$ matrix and that $C = P^{-1}BP$.

- (a) Show that if $\{v_1,...,v_k\}$ is a basis for the nullspace of C, then $\{Pv_1,...,Pv_k\}$ is a basis for the nullspace of B.
- (b) Prove that rank(B) = rank(C).
- (c) Let A be any $m \times p$ matrix. Suppose that the linear system Ax = b is consistent for every $b \in \mathbb{R}^m$. Prove that the linear system $A^Ty = 0$ has only the trivial solution.

Proof. (a) If v belongs to the nullspace of B, i.e., Bv = 0. Then

$$CP^{-1}v = P^{-1}Bv = P^{-1}0 = 0$$
,

i.e., $P^{-1}v$ belongs to the nullspace of C. There exist unique constants c_1, \ldots, c_k such that

$$c_1 \boldsymbol{v}_1 + \cdots + c_k \boldsymbol{v}_k = \boldsymbol{P}^{-1} \boldsymbol{v}.$$

Hence,

$$\mathbf{v} = \mathbf{P}(c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k) = c_1\mathbf{P}\mathbf{v}_1 + \dots + c_k\mathbf{P}\mathbf{v}_k.$$

On the other hand, if there exist $d_1, ..., d_k \in \mathbb{R}$ such that

$$\boldsymbol{v} = d_1 \boldsymbol{P} \boldsymbol{v}_1 + \dots + d_k \boldsymbol{P} \boldsymbol{v}_k,$$

then

$$P^{-1}v = P^{-1}(d_1Pv_1 + \cdots + d_kPv_k) = d_1v_1 + \cdots + d_kv_k.$$

Since $\{v_1, ..., v_k\}$ is a basis for the nullspace of C, the two representations of $P^{-1}v$ are the same, i.e., $c_i = d_i$, i = 1, ..., k.

Since every vector in the nullspace of B can be uniquely written as a linear combination of $\{Pv_1, ..., Pv_k\}$, we conclude that $\{Pv_1, ..., Pv_k\}$ is a basis for the nullspace of B.

- (b) By (a), if $\operatorname{nullity}(C) = k$, then $\operatorname{nullity}(B) = k$; so $\operatorname{rank}(B) = m k = \operatorname{rank}(C)$.
- (c) The system Ax = b is consistent if and only if b belongs to the column space of A. If Ax = b is consistent for all $b \in \mathbb{R}^m$, then the column space of A is \mathbb{R}^m . So

$$\operatorname{nullity}(\boldsymbol{A}^{\mathrm{T}}) = m - \operatorname{rank}(\boldsymbol{A}^{\mathrm{T}}) = m - \operatorname{rank}(\boldsymbol{A}) = m - m = 0.$$

Therefore, $A^T y = 0$ has only the trivial solution.

- **6.** Let **A** and **B** be $n \times n$ matrices.
- (a) Show that if there is an invertible $n \times n$ matrix P such that $P^{-1}AP$ and $P^{-1}BP$ are both diagonal matrices, then AB = BA.

- (b) Assume that A has n distinct eigenvalues. Show that if every eigenvector of A is an eigenvector of B (possibly associated with a different eigenvalue), then AB = BA.
- (c) Assume again that A has n distinct eigenvalues. Show that if AB = BA, then every eigenvector of A is an eigenvector of B (possibly associated with a different eigenvalue).

Proof. (a) Suppose that $P^{-1}AP = D_1$ and $P^{-1}BP = D_2$ are diagonal matrices. Then

$$AB = (PD_1P^{-1})(PD_2P^{-1}) = PD_1D_2P^{-1} = PD_2D_1P^{-1}$$

= $(PD_2P^{-1})(PD_1P^{-1}) = BA$.

(b) Let $v_1, ..., v_n$ be eigenvectors of A associated to the n distinct eigenvalues. Then they are linearly independent. Let

$$P = (v_1 \quad \cdots \quad v_n).$$

Then P is invertible and $P^{-1}AP$ is a diagonal matrix. By assumption, v_1, \ldots, v_n are also eigenvectors of B. Then $P^{-1}BP$ is also a diagonal matrix. By (a), AB = BA.

(c) Let v be an eigenvector of A associated to the eigenvalue λ , i.e., $Av = \lambda v$ with $v \neq 0$. Since AB = BA, we have

$$A(Bv) = BAv = B(\lambda v) = \lambda(Bv).$$

Then Bv belongs to the eigenspace of A associated to λ .

Since A has n distinct eigenvalues, the dimension of each eigenspace is 1. In particular, the eigenspace of A associated to λ is span{v}. Hence, $Bv = \mu v$ for some constant μ .

Note that $v \neq 0$. Then v is an eigenvector of B associated to the eigenvalue μ .

2018/2019 SEMESTER 1

- **1(b)** Suppose D is a matrix with k columns such that the linear system Dx = r is consistent for all vectors $r \in \mathbb{R}^n$. For each of the statements below, determine if the statement is true. Justify your answer.
 - (i) D has n rows.
 - (ii) k is at least n.
- (iii) D is of full rank.

Solution. Note that D and Dx = r have the same number of rows. Then D has n rows.

The system Dx = r is consistent if and only if r belongs to the column space of D. Since Dx = r is consistent for all $r \in \mathbb{R}^n$, the column space of D is \mathbb{R}^n . So rank(D) = n.

From rank(D) $\leq k$, we have $n \leq k$.

Therefore, (i), (ii) and (iii) are all true.

- 2(c) Let X, Y be square matrices of the same order. Prove the following statements.
 - (i) $X^TX = 0$ if and only if X = 0.
 - (ii) XY = 0 if and only if $X^TXY = 0$.

Proof. (i) If X = 0, it is clear that $X^TX = 0$.

Conversely, suppose $X^TX = 0$. Let v_i be the i^{th} column of X. Then the (i, j)-entry of X^TX is $v_i^Tv_j$. In particular, its (i, i)-entries $v_i^Tv_i = \|v_i\|^2 = 0$. Hence, $v_i = 0$ for all i. So X = 0.

(ii) If XY = 0, it is clear that $X^TXY = 0$.

Conversely, if
$$X^TXY = 0$$
, then $(XY)^T(XY) = Y^TX^TXY = 0$; by (i) $XY = 0$.

- **5(b)** Let A and B be square matrices of order n. Suppose AB = BA and A has n distinct eigenvalues.
 - (i) Show that each eigenspace of A has dimension 1.
- (ii) Show that if u is an eigenvector of A, then u is also an eigenvector of B.
- (iii) Show that A and B are simultaneously diagonalizable, i.e., there exists an invertible matrix P such that PAP^{-1} and PBP^{-1} are diagonal.

Proof. (i) Suppose A has n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Then dim $E_{\lambda_i} \ge 1$, $i = 1, \ldots, n$. On the other hand,

$$n \ge \dim E_{\lambda_1} + \dots + \dim E_{\lambda_n} \ge \underbrace{1 + \dots + 1}_n = n.$$

We must have dim $E_{\lambda_i} = 1$ for all i = 1, ..., n.

(ii) If u is an eigenvector of A associated to the eigenvalue λ , then $Au = \lambda u$ with $u \neq 0$. So

$$A(Bu) = BAu = B(\lambda u) = \lambda(Bu).$$

It follows that Bu belongs to the eigenspace $E_{A,\lambda}$ of A associated to the eigenvalue λ . By (i) $\dim E_{A,\lambda} = 1$; so $E_{A,\lambda} = \operatorname{span}\{u\}$. Then $Bu = \mu u$ for some constant μ . We conclude that u is an eigenvector of B associated to the eigenvalue μ .

(iii) Let v_i be an eigenvector of A associated to λ_i , i = 1, ..., n. Then $v_1, ..., v_n$ are linearly independent. Let

$$Q = (v_1 \quad \cdots \quad v_n).$$

Then Q is invertible and $Q^{-1}AQ$ is a diagonal matrix. By (ii), each v_i is also an eigenvector of B. Then $Q^{-1}BQ$ is also a diagonal matrix. Let $P = Q^{-1}$. Then P is invertible and both PAP^{-1} and PBP^{-1} are diagonal matrices.

- **5.** Let *A* be an $n \times n$ matrix.
- (a) Show that for any $u, w \in \mathbb{R}^n$, $(Au) \cdot w = u \cdot (A^T w)$.
- (c) Let v_1, v_2, v_3 be orthonormal vectors in \mathbb{R}^n . Suppose $w \in \mathbb{R}^n$. Define

$$b_1 = (Av_1) \cdot w$$
, $b_2 = (Av_2) \cdot w$, $b_3 = (Av_3) \cdot w$, $q = b_1v_1 + b_2v_2 + b_3v_3$.

Calculate $v_1 \cdot q$, $v_2 \cdot q$ and $v_3 \cdot q$.

(d) Using the same definitions as in Part(c), show that for every $v \in \text{span}\{v_1, v_2, v_3\}$, $(Av) \cdot w = v \cdot q$.

Proof. (a)
$$(Au) \cdot w = (uA)^{T}w = (u^{T}A^{T})w = u^{T}(A^{T}w) = u \cdot (A^{T}w)$$
.

(c) Note that $v_i \cdot v_i = 1$ and $v_i \cdot v_j = 0$ for $i \neq j$. Then

$$v_i \cdot q = v_i \cdot (b_1 v_1 + b_2 v_2 + b_3 v_3) = b_1 (v_i \cdot v_1) + c_2 (v_i \cdot v_2) + c_3 (v_i \cdot v_3) = b_i, \quad i = 1, 2, 3.$$

(d) Let $v \in \text{span}\{v_1, v_2, v_3\}$. Then there exist constant c_1, c_2, c_3 such that

$$v = c_1 v_1 + c_2 v_2 + c_3 v_3$$
.

Recall that $v_i \cdot q = b_i = (Av_i) \cdot w = v_i \cdot (A^Tw)$. Then

$$v \cdot q = (c_1 v_1 + c_2 v_2 + c_3 v_3) \cdot q = c_1 (v_1 \cdot q) + c_2 (v_2 \cdot q) + c_3 (v_3 \cdot q)$$

$$= c_1 [v_1 \cdot (A^T w)] + c_2 [v_2 \cdot (A^T w)] + c_3 [v_3 \cdot (A^T w)]$$

$$= (c_1 v_1) \cdot (A^T w) + (c_2 v_2) \cdot (A^T w) + (c_3 v_3) \cdot (A^T w)$$

$$= (c_1 v_1 + c_2 v_2 + c_3 v_3) \cdot (A^T w)$$

$$= v \cdot (A^T w) = (Av) \cdot w.$$

- **6.** Let A be an $n \times n$ matrix.
- (a) Suppose λ is an eigenvalue of A and suppose v is an eigenvector associated with λ . Show that for any m > 0, $A^m v = \lambda^m v$.
- (b) Let λ be a real number which is an eigenvalue of \boldsymbol{A} . Show that if m > 0 and $\boldsymbol{A}^m = \boldsymbol{I}$, then $\lambda = \pm 1$.
- (c) Suppose P and B are $n \times n$ matrices such that P is invertible and $P^{-1}AP = B$. Show that if $B^2 = I$, then $A^2 = I$.
- (d) Assume that A is a symmetric matrix. Show that if m > 0 and $A^m = I$, then $A^2 = I$.

Proof. (a) By definition, $Av = \lambda v$. Suppose that $A^k v = \lambda^k v$ for some k > 0. Then

$$\boldsymbol{A}^{k+1}\boldsymbol{v} = \boldsymbol{A}(\boldsymbol{A}^k\boldsymbol{v}) = \boldsymbol{A}(\lambda^k\boldsymbol{v}) = \lambda^k(\boldsymbol{A}\boldsymbol{v}) = \lambda^k(\lambda\boldsymbol{v}) = \lambda^{k+1}\boldsymbol{v}.$$

By induction, $A^m v = \lambda^m v$ for every positive integer m.

(b) Let v be an eigenvector of A associated to the eigenvalue λ . Then $Av = \lambda v$. By (a),

$$\lambda^m \mathbf{v} = \mathbf{A}^m \mathbf{v} = \mathbf{I} \mathbf{v} = \mathbf{v}.$$

Note that $v \neq 0$. We must have $\lambda^m = 1$. Since $\lambda \in \mathbb{R}$, $\lambda = \pm 1$.

(c) If $B^2 = I$, then

$$A^2 = (PBP^{-1})^2 = PB^2P^{-1} = PIP^{-1} = PP^{-1} = I.$$

(d) Suppose that A is symmetric. Then A is diagonalizable. There exists an invertible matrix P such that $P^{-1}AP = D$, where D is a diagonal matrix whose diagonal entries are the eigenvalues of A. If $A^m = I$ for some m > 0, then by (b) the eigenvalues of A are ± 1 . It follows that $D^2 = I$. By (c), $A^2 = I$.

2017/2018 SEMESTER 1

- **5.** Let C be a square matrix.
- (a) Show that the nullspace of C is a subset of the nullspace of C^2 .
- (b) If $rank(C^2) = rank(C)$, show that the nullspace of C^2 is equal to the nullspace of C.

Proof. (a) Let v be a vector in the nullspace of C. Then Cv = 0 and thus

$$C^2v = (CC)v = C(Cv) = C0 = 0.$$

So v is also a vector in the nullspace of C^2 .

(b) By (a), the nullspace of C is a subspace of the nullspace of C^2 . Suppose C has order n. Then

$$\operatorname{nullity}(C) = n - \operatorname{rank}(C) = n - \operatorname{rank}(C^2) = \operatorname{nullity}(C^2).$$

We conclude that the nullspace of C equals the nullspace of C^2 .

6. Let A be an $n \times n$ matrix. For each $\lambda \in \mathbb{R}$, we define a linear transformation $T_{\lambda} : \mathbb{R}^n \to \mathbb{R}^n$ such that

$$T_{\lambda}(\boldsymbol{u}) = \boldsymbol{A}\boldsymbol{u} - \lambda \boldsymbol{u} \quad \text{for} \quad \boldsymbol{u} \in \mathbb{R}^{n}.$$

- (a) Write down the standard matrix for T_{λ} .
- (b) For any $\lambda, \mu \in \mathbb{R}$, show that

$$(\mathbf{A} - \lambda \mathbf{I})(\mathbf{A} - \mu \mathbf{I}) = (\mathbf{A} - \mu \mathbf{I})(\mathbf{A} - \lambda \mathbf{I}).$$

- (c) Suppose A is diagonalizable and the eigenvalues of A are $\lambda_1, \lambda_2, ..., \lambda_k$.
 - (i) If v is an eigenvector of A, say, $Av = \lambda_i v$ for some i, show that

$$(\boldsymbol{A} - \lambda_1 \boldsymbol{I})(\boldsymbol{A} - \lambda_2 \boldsymbol{I}) \cdots (\boldsymbol{A} - \lambda_k \boldsymbol{I}) \boldsymbol{v} = \boldsymbol{0}.$$

(ii) Define $S = T_{\lambda_1} \circ T_{\lambda_2} \circ \cdots \circ T_{\lambda_k}$. Prove that S is the zero transformation.

Proof. (a) $T_{\lambda}(u) = Au - \lambda u = Au - \lambda Iu = (A - \lambda I)u$ for every $u \in \mathbb{R}^n$. Then the standard matrix for T_{λ} is $A - \lambda I$.

(b)
$$(A - \lambda I)(A - \mu I) = A^2 - A(\mu I) - (\lambda I)A + (\lambda I)(\mu I) = A^2 - (\lambda + \mu)A + \lambda \mu I.$$

 $(A - \mu I)(A - \lambda I) = A^2 - A(\lambda I) - (\mu I)A + (\mu I)(\lambda I) = A^2 - (\lambda + \mu)A + \lambda \mu I.$ Therefore,
 $(A - \lambda I)(A - \mu I) = (A - \mu I)(A - \lambda I).$

(c) If
$$Av = \lambda_i v$$
, then $(A - \lambda_i I)v = Av - \lambda_i v = 0$. By (b),
$$(A - \lambda_1 I)(A - \lambda_2 I) \cdots (A - \lambda_k I)v$$

$$= (\mathbf{A} - \lambda_1 \mathbf{I}) \cdots (\mathbf{A} - \lambda_{i-1} \mathbf{I}) (\mathbf{A} - \lambda_{i+1} \mathbf{I}) \cdots (\mathbf{A} - \lambda_k \mathbf{I}) (\mathbf{A} - \lambda_i \mathbf{I}) \mathbf{v}$$
$$= (\mathbf{A} - \lambda_1 \mathbf{I}) \cdots (\mathbf{A} - \lambda_{i-1} \mathbf{I}) (\mathbf{A} - \lambda_{i+1} \mathbf{I}) \cdots (\mathbf{A} - \lambda_k \mathbf{I}) \mathbf{0} = \mathbf{0}.$$

Since A is diagonalizable, it has n linearly independent eigenvectors v_1, \ldots, v_n .

The standard matrix for *S* is $(A - \lambda_1 I) \cdots (A - \lambda_k I)$. Then for each v_i ,

$$S(v_i) = (A - \lambda_1 I) \cdots (A - \lambda_k I) v_i = 0.$$

For any $v \in \mathbb{R}^n$, there exist constant c_1, \ldots, c_n such that $v = c_1 v_1 + \cdots + c_n v_n$. Then

$$S(v) = c_1 S(v_1) + \cdots + c_n S(v_n) = 0.$$

Therefore, *S* is the zero transformation.

2016/2017 SEMESTER 2

6(a) Let A be a square matrix of order n. Let M_{ij} be the matrix of order n-1 obtained from A by deleting the i^{th} row and the j^{th} column. Prove that if A is invertible, then at least n of the matrices M_{ij} are invertible.

Proof. Method 1: Let $A = (a_{ij})$. Then det(A) can be found by expansion along the i^{th} row:

$$\det(\mathbf{A}) = (-1)^{i+1} a_{i1} \det(\mathbf{M}_{i1}) + \dots + (-1)^{i+n} a_{in} \det(\mathbf{M}_{in}).$$

Since *A* is invertible, $det(A) \neq 0$; so at least one of $det(M_{i,i}) \neq 0$.

For each i = 1,...,n, there exists one invertible submatrix M_{ij} . So there are in total at least n invertible submatrices M_{ij} .

Method 2: Note that A[adj(A)] = det(A)I. If A is invertible, then adj(A) is also invertible. In particular, adj(A) does not have zero columns.

Since the (j,i)-entry of $\operatorname{adj}(A)$ is $(-1)^{i+j} \det(M_{ij})$, for each $i=1,\ldots,n$, there exists at least one M_{ij} such that $\det(M_{ij}) \neq 0$. Therefore, there are at least n invertible submatrices M_{ij} .

- **6(b)** Let A and B be square matrices of the same order.
 - (i) Prove that the nullspace of B is a subspace of the nullspace of AB.
 - (ii) Using (i) prove that

$$\operatorname{nullity}(A) + \operatorname{nullity}(B) \ge \operatorname{nullity}(AB)$$
.

Proof. (i) Let v be a vector in the nullspace of B, i.e., Bv = 0. Then (AB)v = A(Bv) = A0 = 0. So v is also a vector in the nullspace of AB. Therefore, the nullspace of B is a subspace of the nullspace of AB.

(ii) Suppose A and B have order n. Let $\{v_1, ..., v_k\}$ be a basis for the nullspace of B and extend it to a basis $\{v_1, ..., v_k, w_1, ..., w_m\}$ for the nullspace of AB.

If $c_1 B w_1 + \cdots + c_m B w_m = 0$ for some constants c_1, \dots, c_m , then

$$\boldsymbol{B}(c_1\boldsymbol{w}_1+\cdots+c_m\boldsymbol{w}_m)=\boldsymbol{0},$$

which implies that $c_1w_1 + \cdots + c_mw_m$ belongs to the nullspace of B, that is,

$$c_1 \mathbf{w}_1 + \cdots + c_m \mathbf{w}_m = d_1 \mathbf{v}_1 + \cdots + d_k \mathbf{v}_k$$

for some constants d_1, \ldots, d_k . Since $\{v_1, \ldots, v_k, w_1, \ldots, w_m\}$ is linearly independent, we must have $c_1 = \cdots = c_m = d_1 = \cdots = d_k = 0$. Hence, $\{Bw_1, \ldots, Bw_m\}$ is linearly independent.

Note that $A(Bw_i) = (AB)w_i = 0$, Bw_i belongs to the nullspace of A. Hence,

$$\operatorname{span}\{Bw_1,\ldots,Bw_m\}\subseteq\operatorname{nullspace}\ \operatorname{of}\ A.$$

Therefore, $\operatorname{nullity}(A) \geq m$, and thus

$$\operatorname{nullity}(A) + \operatorname{nullity}(B) \ge m + k = \operatorname{nullity}(AB).$$

2016/2017 SEMESTER 1

- **5.** Let A be a square matrix of order n.
- (a) Let $E = \{e_1, ..., e_n\}$ be the standard basis for \mathbb{R}^n . Show that $Ae_j = \text{the } j^{\text{th}}$ column of A.
- (b) Suppose $A^m = 0$ and $A^{m-1} \neq 0$ for some integer $m \geq 2$.
 - (i) Show that there exists at least one vector $u \in \mathbb{R}^n$ such that $A^{m-1}u \neq 0$.
 - (ii) Show that $\{u, Au, ..., A^{m-1}u\}$ is linearly independent where u is the vector obtained in Part (i).
- (c) Prove that if $A^{n+1} = 0$, then $A^n = 0$.

Proof. (a) Let v_j be the j^{th} column of A. Then $A = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$.

On the other hand,
$$\mathbf{A} = \mathbf{A}\mathbf{I} = \mathbf{A}(\mathbf{e}_1 \cdots \mathbf{e}_n) = (\mathbf{A}\mathbf{e}_1 \cdots \mathbf{A}\mathbf{e}_n)$$
. Therefore, $\mathbf{A}\mathbf{e}_j = \mathbf{v}_j$.

(b) Since $A^{m-1} \neq 0$, not all columns of A^{m-1} are zero vectors. Suppose that the j^{th} column of A^{m-1} is nonzero. Then $A^{m-1}u\neq 0$ by taking $u=e_j$.

Assume that $u, Au, ..., A^{m-1}u$ are linearly dependent. Then there exist constant $c_1, ..., c_m$ which are not all zero such that

$$c_1 u + c_2 A u + \cdots + c_m A^{m-1} u = 0.$$

Suppose that $c_1 = \cdots = c_{k-1} = 0$ and $c_k \neq 0$. Then

$$c_k A^{k-1} u + c_{k+1} A^k u + \dots + c_m A^{m-1} u = 0.$$

So

$$0 = A^{m-k}(c_k A^{k-1} u + c_{k+1} A^k u + \dots + c_m A^{m-1} u)$$

$$= c_k A^{m-1} u + c_{k+1} A^m u + \dots + c_m A^{2m-k-1} u$$

$$= c_k A^{m-1} u + 0 + \dots + 0$$

$$= c_k A^{m-1} u.$$

Since $A^{m-1}u \neq 0$, we must have $c_k \neq 0$, contradicting our assumption.

Therefore, $u, Au, ..., A^{m-1}u$ are linearly independent.

- (c) Suppose that $A^{n+1}=0$. Assume that $A^n\neq 0$. Then by (b), there exists $u\in \mathbb{R}^n$ such that $\{u,Au,\ldots,A^nu\}$ is linearly independent. However, in \mathbb{R}^n any set of n+1 vectors must be linearly dependent. We obtain a contradiction. Therefore, $A^n=0$.
- **6(b)** Let C be a symmetric matrix of order n with a characteristic polynomial

$$(\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$
,

where $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Prove that for any nonzero vector $\boldsymbol{x} \in \mathbb{R}^n$, $\lambda_1 \leq \frac{\boldsymbol{x}^T \boldsymbol{C} \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{x}} \leq \lambda_n$.

Proof. Since C is symmetric, there exists an orthonormal basis $\{v_1, ..., v_n\}$ for \mathbb{R}^n such that v_i is an eigenvector of C associated to the eigenvalue λ_i .

Let $x \in \mathbb{R}^n$. Then

$$x = (x \cdot v_1)v_1 + \cdots + (x \cdot v_n)v_n$$

and

$$\boldsymbol{x}^{\mathrm{T}}\boldsymbol{x} = \boldsymbol{x} \cdot \boldsymbol{x} = (\boldsymbol{x} \cdot \boldsymbol{v}_1)^2 + \dots + (\boldsymbol{x} \cdot \boldsymbol{v}_n)^2.$$

We also have

$$Cx = (x \cdot v_1)Cv_1 + \dots + (x \cdot v_1)Cv_n = \lambda_1(x \cdot v_1)v_1 + \dots + \lambda_n(x \cdot v_n)v_n,$$

and

$$\boldsymbol{x}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{x} = \boldsymbol{x}\cdot(\boldsymbol{C}\boldsymbol{x}) = \lambda_{1}(\boldsymbol{x}\cdot\boldsymbol{v}_{1})^{2} + \dots + \lambda_{n}(\boldsymbol{x}\cdot\boldsymbol{v}_{n})^{2}.$$

Therefore,

$$\lambda_1(\boldsymbol{x}^{\mathrm{T}}\boldsymbol{x}) = \lambda_1(\boldsymbol{x} \cdot \boldsymbol{v}_1)^2 + \dots + \lambda_1(\boldsymbol{x} \cdot \boldsymbol{v}_n)^2 \leq \boldsymbol{x}^{\mathrm{T}}\boldsymbol{C}\boldsymbol{x} \leq \lambda_n(\boldsymbol{x} \cdot \boldsymbol{v}_1)^2 + \dots + \lambda_n(\boldsymbol{x} \cdot \boldsymbol{v}_n)^2 = \lambda_n(\boldsymbol{x}^{\mathrm{T}}\boldsymbol{x}).$$

If $x \neq 0$, then $x^{T}x \neq 0$, and we have

$$\lambda_1 \leq \frac{x^{\mathrm{T}} C x}{x^{\mathrm{T}} x} \leq \lambda_n.$$

2015/2016 SEMESTER 2

5(b) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator such that its standard matrix is diagonalizable. Prove that $R(T) = R(T \circ T)$ and $Ker(T) = Ker(T \circ T)$.

Proof. If the standard matrix A is diagonalizable, then there exists a basis $\{v_1, ..., v_n\}$ for \mathbb{R}^n consisting of eigenvectors of A, i.e., $Av_i = \lambda_i v_i$ for eigenvalue λ_i of A.

If $v \in \text{Ker}(T)$, then T(v) = 0, and thus $T \circ T(v) = T(T(v)) = T(0) = 0$, i.e., $v \in \text{Ker}(T \circ T)$.

Conversely, let $v \in \text{Ker}(T \circ T)$, there exist unique constants c_1, \ldots, c_n such that $v = c_1v_1 + \cdots + c_nv_n$. So

$$T(\mathbf{v}) = c_1 T(\mathbf{v}_1) + \dots + c_n T(\mathbf{v}_n) = c_1 \lambda_1 \mathbf{v}_1 + \dots + c_n \lambda_n \mathbf{v}_n,$$

and

$$T \circ T(\boldsymbol{v}) = T(T(\boldsymbol{v})) = c_1 \lambda_1 T(\boldsymbol{v}_1) + \dots + c_n \lambda_n T(\boldsymbol{v}_n) = c_1 \lambda_1^2 \boldsymbol{v}_1 + \dots + c_n \lambda_n^2 \boldsymbol{v}_n = 0.$$

It follows that $c_i\lambda_i^2=0$ for all i. Hence, $(c_i\lambda_i)^2=c_i(c_i\lambda_i^2)=0$, and thus $c_i\lambda_i=0$ for all i. So

$$T(\mathbf{v}) = c_1 \lambda_1 \mathbf{v}_1 + \dots + c_n \lambda_n \mathbf{v}_n = \mathbf{0};$$

that is, $v \in \text{Ker}(T)$. Therefore, $\text{Ker}(T) = \text{Ker}(T \circ T)$. In particular, $\text{nullity}(T) = \text{nullity}(T \circ T)$.

If $v \in R(T \circ T)$, then there exists $u \in \mathbb{R}^n$ such that $v = T \circ T(v) = T(T(v))$, and thus $v \in R(T)$. Hence, $R(T \circ T) \subseteq R(T)$. Moreover, since

$$\dim R(T \circ T) = \operatorname{rank}(T \circ T) = n - \operatorname{nullity}(T \circ T) = n - \operatorname{nullity}(T) = \operatorname{rank}(T) = \dim R(T),$$

we conclude that
$$R(T \circ T) = R(T)$$
.

- **6(b)** Let $V = \text{span}\{v_1, v_2, v_3, v_4\}$ be a vector space such that v_i are unit vectors for all i and $v_i \cdot v_j < 0$ if $i \neq j$.
 - (i) Show that no two vectors among $\{v_1, v_2, v_3, v_4\}$ are linearly dependent.
 - (ii) Prove that $\dim(V) \ge 3$.

Proof. (i) Assume that v_i and v_j are linearly dependent $(i \neq j)$. Then $v_j = cv_i$ for a constant c. By assumption, $v_i \cdot v_j = c < 0$.

Choose $k \neq i, j$. Then $v_i \cdot v_k < 0$, but this would imply that $v_j \cdot v_k = c(v_i \cdot v_k) > 0$, contradicting the assumption. Hence, v_i and v_j are linearly dependent.

(ii) Assume that $\dim(V) \leq 2$. By (i), v_1 and v_2 are linearly independent; so $\dim(V) \geq 2$. Hence, $\dim(V) = 2$, and $\{v_1, v_2\}$ is a basis for V.

Write $v_3 = c_1v_1 + c_2v_2$ for constants c_1 and c_2 . Then $c_1 \neq 0$, $c_2 \neq 0$, and

$$v_1 \cdot v_3 = c_1 + c_2(v_1 \cdot v_2) < 0$$
 and $v_2 \cdot v_3 = c_1(v_1 \cdot v_2) + c_2 < 0$.

Multiply the first inequality by $v_1 \cdot v_2 < 0$ to get

$$c_1(v_1 \cdot v_2) + c_2(v_1 \cdot v_2)^2 > 0.$$

So

$$c_2(v_1 \cdot v_2)^2 > -c_1(v_1 \cdot v_2) > c_2;$$

that is, $c_2[(v_1 \cdot v_2)^2 - 1] > 0$. By Cauchy-Schwarz inequality, $|v_1 \cdot v_2| \le ||v_1|| ||v_2|| = 1$; so $c_2 < 0$. Then $c_1(v_1 \cdot v_2) > -c_2 > 0$ implies that $c_1 < 0$. However, we would have

$$v_3 \cdot v_4 = c_1(v_1 \cdot v_4) + c_2(v_2 \cdot v_4) > 0$$
,

a contradiction. Therefore, $\dim(V) \ge 3$.

2015/2016 SEMESTER 1

4(b) Let W be a subspace of \mathbb{R}^n and $W^{\perp} = \{ w \in \mathbb{R}^n \mid w \text{ is orthogonal to } W \}$. Prove that $\dim(W) + \dim(W^{\perp}) = W$.

Proof. Suppose $W = \text{span}\{v_1, \dots, v_k\}$. View each v_i as a row vector and set $A = \begin{pmatrix} v_1 \\ \vdots \\ w_k \end{pmatrix}$. Then

W is the row space of A.

View \boldsymbol{w} as a column vector. Then

$$w \in W^{\perp} \Leftrightarrow w$$
 is orthogonal to v_i for all $i = 1, ..., k$
 $\Leftrightarrow v_i \cdot w = v_i w = 0$ for all $i = 1, ..., k$

$$\Leftrightarrow Aw = \begin{pmatrix} v_1 \\ \vdots \\ v_k \end{pmatrix} w = 0$$

 $\Leftrightarrow w \in \text{nullspace of } A.$

In other words, W^{\perp} is the nullspace of A. Therefore,

$$\dim(W) + \dim(W^{\perp}) = \operatorname{rank}(A) + \operatorname{nullity}(A) = n.$$

- **5.** Let A be an $n \times n$ matrix such that $A^n = 0$. Suppose there exists a nonzero vector $v \in \mathbb{R}^n$ such that $A^{n-1}v \neq 0$.
- (b) Prove that $\{v, Av, ..., A^{n-1}v\}$ is a basis for \mathbb{R}^n .
- (c) Let $P = (A^{n-1}v \cdots Av v)$ which is an invertible matrix of order n. Show that

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \ddots & 1 \\ 0 & 0 & \cdots & \cdots & 0 \end{pmatrix}.$$

Proof. (b) Assume that $v, Av, ..., A^{n-1}v$ are linearly independent. Then there exists constants $c_1, ..., c_n$ which are not all zero such that

$$c_1\boldsymbol{v}_1 + c_2\boldsymbol{A}\boldsymbol{v} + \dots + c_n\boldsymbol{A}^{n-1}\boldsymbol{v} = 0.$$

Let *k* be the smallest index such that $c_k \neq 0$. Then

$$c_k A^{k-1} v + c_{k+1} A^k v + \dots + c_n A^{n-1} v = 0.$$

Pre-multiplication of A^{n-k} yields

$$0 = c_k A^{n-1} v + c_{k+1} A^n v + \dots + c_n A^{2n-k-1} v = c_k A^{n-1} v.$$

Since $A^{n-1}v \neq 0$, we must have $c_k = 0$, a contradiction.

Therefore, $\{v, Av, ..., A^{n-1}v\}$ is a linearly independent subset of \mathbb{R}^n with exactly n vectors. Hence, it is a basis for \mathbb{R}^n .

(c) We have proved that $S = \{A^{n-1}v, ..., Av, v\}$ is a basis for \mathbb{R}^n . Then P is the transition matrix from S to the standard basis E. For any $u \in \mathbb{R}^n$,

$$P[u]_S = u$$
 and $P[Au]_S = Au$.

Then

$$P^{-1}AP[u]_S = P^{-1}Au = [Au]_S.$$

Note that for each k = 1, ..., n, $[A^{n-k}v]_S = e_k$. Then

$$P^{-1}AP = P^{-1}AP \begin{pmatrix} e_1 & e_2 & \cdots & e_n \end{pmatrix}$$

$$= \begin{pmatrix} P^{-1}AP[A^{n-1}v]_S & P^{-1}AP[A^{n-2}v] & \cdots & P^{-1}AP[v]_S \end{pmatrix}$$

$$= \begin{pmatrix} [A^nv]_S & [A^{n-1}v]_S & \cdots & [Av]_S \end{pmatrix}$$

$$= \begin{pmatrix} 0 & e_1 & \cdots & e_{n-1} \end{pmatrix}.$$

6. Let A be an invertible matrix of order n such that for any nonzero vectors $u, v \in \mathbb{R}^n$, the angle between u and v is always equal to the angle between Au and Av.

- (a) Let $A = (a_1 \ a_2 \ \cdots \ a_n)$, where a_i is the ith column of A. Show that $\{a_1, a_2, \dots, a_n\}$ is an orthogonal basis for \mathbb{R}^n .
- (b) Prove that A = cP for some scalar c and orthogonal matrix P.

Proof. (a) Since A is invertible, $a_i \neq 0$ for all i. For $i \neq j$, the angle between e_i and e_j is 90° . Hence, the angle between $Ae_i = a_i$ and $Ae_j = a_j$ is also 90° . Then

$$\frac{a_i \cdot a_j}{\|a_i\| \|a_i\|} = \cos(90^\circ) = 0,$$

which implies that $a_i \cdot a_j = 0$. Therefore, $\{a_1, ..., a_n\}$ is an orthogonal basis for \mathbb{R}^n .

(b) For $i \neq j$, $(e_i + e_j) \cdot (e_i - e_j) = 0$, i.e., the angle between $e_i + e_j$ and $e_i - e_j$ is 90° . By assumption, the angle between

$$A(e_i + e_j) = a_i + a_j$$
 and $A(e_i - e_j) = a_i - a_j$

is also 90°. Hence,

$$\frac{(a_i + a_j) \cdot (a_i - a_j)}{\|a_i + a_j\| \|a_i - a_j\|} = \cos(90^\circ) = 0.$$

It follows that

$$(a_i + a_j) \cdot (a_i - a_j) = ||a_i||^2 - ||a_j||^2 = 0,$$

that is, $\|a_i\| = \|a_j\|$. Let $c = \|a_i\|$ and $v_i = \|a_i\|/c$. Then $\{v_1, \dots, v_n\}$ is an orthonormal basis for \mathbb{R}^n . Let $P = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$. Then P is an orthogonal matrix and

$$A = (cv_1 \cdots cv_n) = c(v_1 \cdots cv_n) = cP.$$

2014/2015 SEMESTER 2

4(b) Let M and N be two $n \times n$ matrices. Suppose $\{v_1, v_2, ..., v_n\}$ is a set of linearly independent eigenvectors for both M and N. Then MN = NM.

Proof. Let $P = (v_1 \cdots v_n)$. Then P is invertible such that $P^{-1}MP = D_1$ and $P^{-1}NP = D_2$ are diagonal matrices. Then

$$MN = (PD_1P^{-1})(PD_2P^{-1}) = PD_1D_2P^{-1}$$

= $PD_2D_1P^{-1} = (PD_2P^{-1})(PD_1P^{-1}) = NM$.

2014/2015 SEMESTER 1

5(b) Given hat $F : \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation, P is a plane in \mathbb{R}^3 given by the equation x + y + z = 0, and ℓ is a line in \mathbb{R}^3 given by the set $\{(t, t, t) \mid t \in \mathbb{R}\}$.

Suppose F maps the plane P onto the line ℓ and maps the line ℓ to the origin. Show that the linear transformation F^2 (i.e., $F \circ F$) is the zero transformation.

Proof. Note that *P* has a basis $\{(-1,1,0),(-1,0,1)\}$ and ℓ has a basis $\{(1,1,1)\}$, Let

$$v_1 = (-1, 1, 0), \quad v_2 = (-1, 0, 1) \quad \text{and} \quad v_3 = (1, 1, 1).$$

Since det
$$\begin{pmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} = 3 \neq 0, \{v_1, v_2, v_3\}$$
 is a basis for \mathbb{R}^3 .

By assumption, $F(v_i) \in \ell$, and thus $F \circ F(v_i) = F(F(v_i)) = 0$, i = 1, 2. We also have

$$F \circ F(v_3) = F(F(v_3)) = F(0) = 0.$$

Any vector $v \in \mathbb{R}^3$ can be written as $v = c_1v_1 + c_2v_2 + c_3v_3$ for some constants c_1, c_2, c_3 . Then

$$F \circ F(v) = c_1 F \circ F(v_1) + c_2 F \circ F(v_2) + c_3 F \circ F(v_3) = 0.$$

Therefore, $F \circ F$ is the zero transformation.

5(c) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation. Suppose $\{u_1, u_2, u_3\}$ is a basis for \mathbb{R}^3 , and $\{T(u_1), T(u_2), T(u_3)\}$ spans \mathbb{R}^2 . Show that the standard matrix of T is of full rank.

Proof. Let A be the standard matrix for T. Then A is of size 2×3 .

Note that $R(T) \supseteq \text{span}\{T(u_1), T(u_2), T(u_3)\} = \mathbb{R}^2$. We have $R(T) = \mathbb{R}^2$. Then

$$rank(A) = rank(T) = 2$$
.

It follows that *A* has full rank.

2013/2014 SEMESTER 2

2(a)(iii) Suppose Ax = b is an inconsistent linear system. Prove that for all $k \neq 0$, $k \in \mathbb{R}$, the linear system Ax = kb is also inconsistent. If v is a least squares solution for Ax = b, is kv a least squares solution for Ax = kb? Justify your answer.

Proof. Assume that Ax = kb is consistent for some $k \neq 0$. Then there exists a vector v such that Av = kb. But then

$$A(k^{-1}v) = k^{-1}(Av) = k^{-1}(kv) = v.$$

So $k^{-1}v$ is a solution to Ax = b, contradicting the inconsistency of the system.

Suppose that v is a least squares solution for Ax = b. Then $A^{T}Av = b$. So

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}(k\boldsymbol{v}) = k(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{v}) = k(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{b}) = \boldsymbol{A}^{\mathrm{T}}(k\boldsymbol{b}).$$

Hence, kv is a least squares solution to Ax = kb.

2013/2014 SEMESTER 1

Let Y be a diagonalizable matrix of order n. Suppose $\lambda_1, \lambda_2, ..., \lambda_k$ are the distinct eigenvalues of Y with eigenspaces $E_{\lambda_1}, E_{\lambda_2}, ..., E_{\lambda_k}$ and $S_{\lambda_1}, S_{\lambda_2}, ..., S_{\lambda_k}$ are the corresponding bases for $E_{\lambda_1}, E_{\lambda_2}, ..., E_{\lambda_k}$. Prove that

$$E_{\lambda_1} + E_{\lambda_2} + \dots + E_{\lambda_k} = \mathbb{R}^n.$$

Proof. If $d_i = \dim(E_{\lambda_i})$, write $S_{\lambda_i} = \{v_{i1}, \dots, v_{id_i}\}$.

Suppose that Y is diagonalizable. Then $d_1 + \cdots + d_k = n$, and $S = S_{\lambda_1} \cup \cdots \cup S_{\lambda_k}$ is a basis for \mathbb{R}^n . Every vector $\mathbf{u} \in \mathbb{R}^n$ can be written as

$$u = c_{11}v_{11} + \cdots + c_{1d_1}v_{1d_1} + \cdots + c_{k1}v_{k1} + \cdots + c_{kd_k}v_{kd_k},$$

for some constants c_{ij} . Let $v_i = c_{i1}v_{i1} + \cdots + c_{id_i}v_{id_i}$. Then $v_i \in E_{\lambda_i}$ and

$$u = v_1 + \cdots + v_k$$
.

Therefore, $\mathbb{R}^n = E_{\lambda_1} + \cdots + E_{\lambda_k}$.

2012/2013 SEMESTER 2

- **3.** Let A and B be square matrices of the same order. Let x be an eigenvector of AB associated with eigenvalue λ .
 - (i) If $\lambda \neq 0$, show that Bx is an eigenvector of BA with eigenvalue λ .
- (ii) If $\lambda = 0$, is Bx an eigenvector of BA with eigenvalue λ ? Justify your answer.

Proof. (i) It is given that $ABx = \lambda x$ with $x \neq 0$. Then

$$(BA)(Bx) = B(ABx) = B(\lambda x) = \lambda(Bx).$$

If $\lambda \neq 0$, then $ABx = \lambda x \neq 0$, and thus $Bx \neq 0$. Hence, Bx is an eigenvector of BA associated to the eigenvalue λ .

- (ii) If $\lambda = 0$, the statement may not be true. For example, let B = 0, then Bx = 0 for any x; in particular, Bx cannot be an eigenvector.
- **4(b)** Let *A* be a square matrix of order *n* such that for any $u \in \mathbb{R}^n$,

$$||Au|| = ||u||.$$

- (i) Prove that $Au \cdot Av = u \cdot v$ for any $u, v \in \mathbb{R}^n$.
- (ii) Using (i) or otherwise, prove that A is an orthogonal matrix.

Proof. (i) For any vectors $u, v \in \mathbb{R}^n$,

$$\|u + v\|^2 = (u + v) \cdot (u + v) = \|u\|^2 + \|v\|^2 + 2(u \cdot v),$$

 $\|u - v\|^2 = (u - v) \cdot (u - v) = \|v\|^2 + \|v\|^2 - 2(u \cdot v).$

Subtraction yields

$$4(u \cdot v) = ||u + v||^2 - ||u - v||^2$$

For any $u, v \in \mathbb{R}^n$,

$$egin{aligned} m{A}m{u}\cdotm{A}m{v} &= rac{1}{4}\left(\|m{A}m{u}+m{A}m{v}\|^2 - \|m{A}m{u}-m{A}m{v}\|^2
ight) \ &= rac{1}{4}\left(\|m{A}(m{u}+m{v})\|^2 - \|m{A}(m{u}-m{v})\|^2
ight) \ &= rac{1}{4}\left(\|m{u}+m{v}\|^2 - \|m{u}-m{v}\|^2
ight) = m{u}\cdotm{v}. \end{aligned}$$

(ii) Note that the i^{th} column of A is Ae_i . We have $||Ae_i|| = ||e_i|| = 1$, and for $i \neq j$,

$$Ae_i \cdot Ae_j = e_i \cdot e_j = 0.$$

Then the columns of A form an orthonormal basis for \mathbb{R} . Hence, A is an orthogonal matrix.

- (i) Prove that A is diagonalizable.
- (ii) Prove that rank(A) = tr(A).

Proof. (i) If λ is an eigenvalue of A, and v an associated eigenvector, then $Av = \lambda v$; so

$$\lambda v = Av = A^2v = A(\lambda v) = \lambda(Av) = \lambda(\lambda v) = \lambda^2 v.$$

Since $v \neq 0$, $\lambda = \lambda^2$, and thus $\lambda = 0$ or $\lambda = 1$.

If 0 is not an eigenvalue of A, then A is invertible; $A^2 = A$ implies that A = I, which is diagonalizable.

If 1 is not an eigenvalue of A, then I - A is invertible. Since $A^2 = A$ implies

$$(I - A)^2 = I - 2A + A^2 = I - 2A + A = I - A$$

we have I - A = I, i.e., A = 0, which is diagonalizable.

Suppose 0 and 1 are both eigenvalues of A. For any $v \in \mathbb{R}^n$,

4(c) Let A be a square matrix of order n such that $A^2 = A$.

$$(I - A)(Av) = (A - A^2)v = 0v = 0,$$

which implies that $Av \in E_1$, the eigenspace of A associated to the eigenvalue 1. We also have

$$A(v-Av) = A(I-A)v = (A-A^2)v = 0,$$

which implies that $v - Av \in E_0$, the eigenspace of A associated to the eigenvalue 0. Since

$$v = (v - Av) + Av,$$

we conclude that $\dim E_0 + \dim E_1 \ge n$. On the other hand, $\dim E_0 + \dim E_1 \le n$. Then we must have

$$\dim E_0 + \dim E_1 = n.$$

and A is diagonalizable.

(ii) Let r = rank(A). Since nullity $(A) = \dim E_0$, $r = n - \dim E_0 = \dim E_1$.

Since A is diagonalizable, there exists an invertible matrix P such that $P^{-1}AP = D$ is a diagonal matrix whose first r diagonal entries are 1, and the remaining are 0. Therefore,

$$tr(A) = tr(APP^{-1}) = tr(P^{-1}AP) = tr(D) = r = rank(A).$$

2012/2013 SEMESTER 1

2(b)(ii) Let *V* and *W* be subspaces of \mathbb{R}^n . Recall the definition of V + W as follows

$$V + W = \{ v + w \mid v \in V, w \in W \}.$$

Define V - W by

$$V - W = \{ \boldsymbol{v} - \boldsymbol{w} \mid \boldsymbol{v} \in V, \ \boldsymbol{w} \in W \}.$$

Prove that in general, V - W = V + W.

Proof. Every vector in V + W is of the form v + w for $v \in V$, $w \in W$, which can be written as

$$v - (-w), \quad v \in V, -w \in W;$$

so $v + w \in V - W$. Conversely, every vector in V - W is of the form v - w for $v \in V$ and $w \in W$, which can be written as

$$v + (-w), v \in V, -w \in W$$
;

so
$$v - w \in V + W$$
. Therefore, $V - W = V + W$.

4(b)(ii) Prove that an $m \times n$ matrix A has rank 1 if and only if $A = ab^{T}$ for some nonzero column vectors a and b.

Proof. Suppose that $A = ab^{T}$ for some nonzero column vectors a and b. Let a_i and b_i be the i^{th} components of a and b respectively. Since $a \neq 0$ and $b \neq 0$, $a_i \neq 0$ and $b_j \neq 0$ for some i, j. So the (i, j)-entry of A is $a_i b_j \neq 0$. In particular, $A \neq 0$, and thus $\operatorname{rank}(A) \geq 1$.

On the other hand, $rank(A) \le rank(a) = 1$. Hence, rank(A) = 1.

Conversely, suppose that rank(A) = 1, i.e., the column space of A has dimension 1. Let $\{a\}$ be a basis for the column space of A. Then the jth column of A is $c_i = c_i a$ for some constant c_i . Hence,

$$A = (c_1 a \cdots c_n a) = a(c_1 \cdots c_n) = ab^T$$
,

where $b = (c_1, ..., c_n)^T$. It is clear that $a \neq 0$ and $b \neq 0$; otherwise A = 0.