MATH1902 LINEAR ALGEBRA (ADVANCED)

Semester 1

Board tutorial for Week 12

2017

Important Ideas and Useful Facts:

(i) Let M be a square matrix, \mathbf{x} a nonzero column vector and λ a scalar such that

$$M\mathbf{x} = \lambda \mathbf{x}$$
.

Then λ is called an *eigenvalue* of M and \mathbf{x} is called an *eigenvector* of M associated with the eigenvalue λ .

(ii) The eigenspace of M associated with an eigenvalue λ is the collection

$$\{ \mathbf{v} \mid M\mathbf{v} = \lambda \mathbf{v} \} = \{ \mathbf{v} \mid (M - \lambda I)\mathbf{v} = \mathbf{0} \}$$

comprising all the eigenvectors of M associated with λ and the zero vector

- (iii) A scalar λ is an eigenvalue of a square matrix M if and only if $\det(M \lambda I) = 0$.
- (iv) The expression $\det(M-\lambda I)$ is a polynomial in λ and is called the *characteristic polynomial* of M. Thus the eigenvalues of a matrix are the roots of its characteristic polynomial.
- (v) Finding the eigenspace corresponding to the eigenvalue λ of a matrix M is equivalent to solving the homogeneous system with coefficient matrix $M \lambda I$. After the eigenspace has been found, substituting particular values of the parameters yields particular eigenvectors.
- (vi) The eigenvalues of a triangular matrix are simply the diagonal entries.
- (viii) Let M be a square $n \times n$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ and corresponding eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. Then

$$MP = PD$$

where D is the diagonal matrix with eigenvalues down the diagonal and P the matrix with corresponding eigenvectors as columns. If P is invertible then

$$M = PDP^{-1}$$
 and $D = P^{-1}MP$.

In this case we say that M is diagonalisable.

- (ix) In the preceding discussion, if the eigenvalues are all different then P is invertible and M is diagonalisable.
- (x) If M is diagonalisable then powers of M can be found easily by the formula

$$M^n = PD^nP^{-1}.$$

- (xi) The Fundamental Theorem of Algebra: Every nonzero polynomial with complex number coefficients has a root in the complex numbers.
- (xii) The Cayley-Hamilton Theorem: Every square matrix is a root of its own characteristic polynomial.

Tutorial Exercises:

- Find the eigenvalues and corresponding eigenvectors for $M = \begin{bmatrix} -3 & 0 & 2 \\ -4 & -1 & 4 \\ -4 & -4 & 7 \end{bmatrix}$. **5**.
- The matrix $B = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ has eigenvalues 2 and 4 with corresponding eigenvectors $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ respectively.
 - (i) Write down an invertible matrix P and a diagonal matrix D such that

$$B = PDP^{-1}.$$

- (ii) Find a formula for B^n , and use it to find B^3 and B^4 .
- The matrix $C = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ has eigenvalues 0, 1 and 3 with corresponding eigenvectors $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ respectively.
 - (i) Write down an invertible matrix P and diagonal matrix D such that

$$C = PDP^{-1}$$
.

- (ii) Find a formula for C^n , and use it to find C^4 .
- Verify that if A is invertible and λ is an eigenvalue of A, then $\lambda \neq 0$ and λ^{-1} is an eigenvalue of A^{-1} . What can be said about eigenvalues of A^k where k is any integer?
- Suppose \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors for a matrix M corresponding to different eigen-9. values λ_1 and λ_2 . Explain why \mathbf{v}_1 cannot be a scalar multiple of \mathbf{v}_2 .
- Use the multiplicative property of the determinant to verify that if A and B are square 10. matrices of the same size, and B is invertible, then A and $B^{-1}AB$ have the same eigenvalues.
- Suppose that $0 \le \theta \le \pi$. Verify that $M = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ has real eigenvalues if and only if $\theta = 0$ or π . Interpret this result geometrical
- Let A be a square matrix with eigenvalue λ . Prove the following implications:

(i)
$$A^2 = 0 \implies \lambda = 0$$

(ii)
$$A^2 = A \implies \lambda = 0 \text{ or } \lambda = 1$$

(iii) $A^2 = I \implies \lambda = 1 \text{ or } \lambda = -1$

(iii)
$$A^2 = I \implies \lambda = 1 \text{ or } \lambda = -1$$

13.* Three vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are said to be linearly independent if

$$\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \gamma \mathbf{v}_3 = \mathbf{0} \implies \alpha = \beta = \gamma = 0$$

where α , β , γ are scalars. Explain why three eigenvectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 corresponding to three different eigenvalues λ_1 , λ_2 , λ_3 of a matrix M must be linearly independent.

2