Statistical Literacy

Problem Set 5

Rémi Viné Due October 30th, 2023

1. Random variables.

- (a) Using the plot below (figure 1), what statement **could** be correct?
 - i. P(Observations in shaded area) = 1.43
 - ii. P(Observations in shaded area) = 0.55
 - iii. P(Observations in shaded area) = -0.4
 - iv. P(Observations in shaded area) = 4
- (b) Using the distribution plot below figure (2), what is the share of the observations outside the shaded area?
 - i. P(Observations outside shaded area) = 0.55
 - ii. $P(Observations \ outside \ shaded \ area) = 0.45$
 - iii. P(Observations outside shaded area) = 0
 - iv. P(Observations outside shaded area) = 0.5
- (c) Using the distribution plot below figure (2), can you conclude on the share of the observations outside of the shaded interval and on the *right* of this interval?
 - i. Yes, it is 0.45
 - ii. Yes, it is 0.225
 - iii. Yes, it is 0.1
 - iv. No, we need more information to conclude
- (d) In figure (2), if we are told that the right part of the non-shaded area accounts for a third of the non-shaded area, what is the share of all observations that are in the left part of the non-shaded area?
 - i. Yes, it is 0.45
 - ii. Yes, it is 0.67
 - iii. Yes, it is 0.3
 - iv. No, we need more information to conclude

Figure 1: First distribution

Figure 2: Second distribution

2. Normal distribution. Hint: recall the empirical rule.

Assume the (log) distance (so expressed in log of kilometers) between the hometown and Geneva of IHEID students is Normally distributed: $X \sim N(7;4)$.

Note here that the use of Log does not change the calculations, it simply changes the interpretation: for example x=6 does not mean 6 kilometers but $\log(6)$ kilometers. Without the use of \log , the distances would probably have been right skewed while it is now assumed to be Normal. For questions (a) to (e), simply do the calculations using the Empirical Rule approximation.

- (a) What is the share of students living less than 3 (log km) from Geneva?
- (b) What is the share of students living less than 1 (log km) from Geneva?
- (c) What is the share of students living more than 7 (log km) from Geneva?
- (d) What is the share of students living between 3 and 13 (log km) from Geneva?
- (e) What is the share of students living less than 5 (log km) from Geneva or more than 11 (log km) from Geneva?
- (f) What is the share of students living less than 4 (log km) from Geneva?

- 3. Z table reading. If possible (might not always be possible!), using the Z table, find
 - (a) P(Z > 1)
 - (b) P(Z < 1)
 - (c) P(Z < 2)
 - (d) P(-1.5 < Z)
 - (e) P(Z > -1.44)
 - (f) P(-1.8 < Z < -0.7)
 - (g) $P(Z < -1.9 \cup Z > 1.3)$
 - (h) P(X < 0.3)
 - (i) What is the z-score so that there are 5% of all observations above it?
 - (j) What is the z-score so that there are 2.5% of all observations below it?
 - (k) Find the two z-scores so that $P(z_1 < Z < z_2) = 0.8$.

4. Standardizing.

You are given three different variables, each is assumed to follow a Normal distribution. The first variable is the number of clients entering a given shop per hour $(X \sim N(15;1))$. The second variable is the share of vegetarians in different European districts $(X \sim N(4;0.25))$. The third variable is the change of the Cantril index put on a 0-100 scale, looking at $(Cantril_{2022}-Cantril_{2019})$, with $(X \sim N(-10;16))$.

Distributions are depicted below. Pay attention to the scale.

- (a) For each distribution, indicate the (i) average, (ii) standard deviation
- (b) For each distribution, what is the probability to have an observation below 5 (expressed in the different units clients, percent, score)?²
- (c) What if, instead, you are asked to compute the probability that the *z-score* for each distribution is lower than 1?
- (d) For each distribution, retrieve the corresponding value of X for Z=1 and interpret it in the context of each distribution.

¹Note that Cantril's book, *The pattern of human concerns*, 1965, is available at the library of IHEID.

²Here, look at the bound closer to the central indicator if the z-score is not directly put on the table and mark an inequality rather than an equality. For example, take z = 1.64 rather than 1.65 for P(Z > z) = 5%.