Recherche exacte de motifs Synthèse et conclusion

Sèverine Bérard

8 octobre 2020

ISE-M – FDS, Université de Montpellier

Plan du cours

- Plan du cours
- Recherche exacte avec automates finis
- Algorithme Shift-Or
- Synthèse recherche exacte

Plan du cours

- Survol rapide de deux autres méthodes de recherche exacte de motif :
 - Recherche au moyen d'automates finis (Réf. Intro algo)
 - Algorithme Shift-Or (Réf. Gusfield)
- Synthèse basée sur un article de review de Faro et Lecroq

Plan du cours

- Plan du cours
- Recherche exacte avec automates finis
- Algorithme Shift-Or
- Synthèse recherche exacte

 Construire un automate fini qui balaye le texte T à la recherche de toutes les occurrences du motif P

 Construire un automate fini qui balaye le texte T à la recherche de toutes les occurrences du motif P

 Efficace : besoin d'examiner chaque caractère du texte une et une seule fois

 Construire un automate fini qui balaye le texte T à la recherche de toutes les occurrences du motif P

 Efficace : besoin d'examiner chaque caractère du texte une et une seule fois

• Recherche en O(n)

 Construire un automate fini qui balaye le texte T à la recherche de toutes les occurrences du motif P

 Efficace : besoin d'examiner chaque caractère du texte une et une seule fois

• Recherche en O(n)

 Mais il faut construire l'automate avant, temps potentiellement grand si l'alphabet est grand

Automate fini

Un automate fini M est un quintuplet $(Q, q_0, A, \Sigma, \delta)$ où :

- Q est un ensemble fini d'états
- $q_o \in Q$ est l'état initial
- $A \subseteq Q$ est un ensemble distingués d'états terminaux
- Σ est un alphabet fini
- δ est une fonction de $Q \times \Sigma$ vers Q, appelée fonction de transition de M

Automate fini

Un automate fini M est un quintuplet $(Q, q_0, A, \Sigma, \delta)$ où :

- Q est un ensemble fini d'états
- $q_o \in Q$ est l'état initial
- $A \subseteq Q$ est un ensemble distingués d'états terminaux
- Σ est un alphabet fini
- δ est une fonction de $Q \times \Sigma$ vers Q, appelée fonction de transition de M

L'automate en action

- L'automate fini démarre à l'état q₀ et lit les caractères de la chaîne d'entrée un par un
- S'il se trouve dans l'état q et lit le caractère a, il passe à l'état $\delta(q,a)$
- À chaque fois que l'état courant q ∈ A, on dit que M a accepté la chaîne lue (sinon elle est rejetée)

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, ...$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

$$w_1 = bba$$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

$$w_1 = bba$$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

$$w_1 = bba$$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

$$w_1 = bba$$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

$$w_1 = bba$$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

$$w_1 = bba$$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

$$w_1 = bba$$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

 $w_1 = bba : rejetée$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_2, \dots$

 w_1 = bba : rejetée w_2 = aaa : acceptée

•
$$Q = \{q_1, q_2, q_3\}$$

q₁ est l'état initial

•
$$A = \{q_3\}$$

•
$$\Sigma = \{a, b\}$$

$$\delta(q_1,a) = q_3, \delta(q_1,b) = q_2, \dots$$

 w_1 = bba : rejetée w_2 = aaa : acceptée

Fonction d'état final

Fonction Φ de Σ^* vers Q telle que $\Phi(w)$ est l'état dans lequel se trouve M après avoir traité la chaîne w. Définition récursive :

•
$$\Phi(\varepsilon) = q_0$$

•
$$\Phi(wa) = \delta(\Phi(w), a)$$
, pour $w \in \Sigma^*$, $a \in \Sigma$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1,a) = q_3, \\ \delta(q_1,b) = q_2, \dots$

$$\Phi(w_1)=q_1$$

 w_1 = bba : rejetée

 w_2 = aaa : acceptée

Fonction d'état final

Fonction Φ de Σ^* vers Q telle que $\Phi(w)$ est l'état dans lequel se trouve M après avoir traité la chaîne w. Définition récursive :

- $\Phi(\varepsilon) = q_0$
- $\Phi(wa) = \delta(\Phi(w), a)$, pour $w \in \Sigma^*$, $a \in \Sigma$

- $Q = \{q_1, q_2, q_3\}$
- q₁ est l'état initial
- $A = \{q_3\}$
- $\Sigma = \{a, b\}$
- $\delta(q_1,a) = q_3, \\ \delta(q_1,b) = q_2, \dots$

$$w_1 = bba : rejetée$$

$$w_2$$
 = aaa : acceptée

$$\Phi(w_1) = q_1 \\
\Phi(w_2) = q_3$$

Fonction d'état final

Fonction Φ de Σ^* vers Q telle que $\Phi(w)$ est l'état dans lequel se trouve M après avoir traité la chaîne w. Définition récursive :

- $\Phi(\varepsilon) = q_0$
- $\Phi(wa) = \delta(\Phi(w), a)$, pour $w \in \Sigma^*$, $a \in \Sigma$

But : construire un automate pour un motif P = ababaca

But : construire un automate pour un motif P = ababaca

Tous les arcs non montrés pointent vers l'état initial

But : construire un automate pour un motif P = ababaca

Tous les arcs non montrés pointent vers l'état initial

Cet automate accepte toutes les chaînes finissant par P

But : construire un automate pour un motif P = ababaca

Tous les arcs non montrés pointent vers l'état initial

Cet automate accepte toutes les chaînes finissant par P

Exemple avec le texte T = abababacaba

$$i$$
 - 1 2 3 4 5 6 7 8 9 10 11 $T[i]$ - a b a b a b a c a b a état $\Phi(T[1...i])$ 0 1 2 3 4 5 4 5 6 7 2 3

Construire l'automate pour un motif P

La fonction suffixe σ associée à P

C'est une application de Σ^* vers [0..m] telle que $\sigma(w)$ est la longueur du plus long préfixe de P qui est un suffixe de w.

Pour une chaîne P de longueur m, on a $\sigma(w) = m$ ssi P est suffixe de w. Si v est suffixe de w, alors $\sigma(v) \leq \sigma(w)$

Construire l'automate pour un motif *P*

La fonction suffixe σ associée à P

C'est une application de Σ^* vers [0..m] telle que $\sigma(w)$ est la longueur du plus long préfixe de P qui est un suffixe de w.

Pour une chaîne P de longueur m, on a $\sigma(w) = m$ ssi P est suffixe de w Si v est suffixe de w, alors $\sigma(v) \leq \sigma(w)$

Définition de l'automate de recherche de P :

- L'ensemble de états Q est [0..m]
- L'état initial est l'état 0 et le seul état final est m
- Fonction de transition : $\forall q \in Q, \ \forall a \in \Sigma, \ \delta(q, a) = \sigma(P[1..q].a)$

Construire l'automate pour un motif *P*

La fonction suffixe σ associée à P

C'est une application de Σ^* vers [0..m] telle que $\sigma(w)$ est la longueur du plus long préfixe de P qui est un suffixe de w.

Pour une chaîne P de longueur m, on a $\sigma(w) = m$ ssi P est suffixe de w Si v est suffixe de w, alors $\sigma(v) \leq \sigma(w)$

Définition de l'automate de recherche de P :

- L'ensemble de états Q est [0..m]
- L'état initial est l'état 0 et le seul état final est m
- Fonction de transition : $\forall q \in Q, \ \forall a \in \Sigma, \ \delta(q,a) = \sigma(P[1..q].a)$

Invariant

$$\Phi(T[1..i]) = \sigma(T[1..i])$$

Algorithme: Calcul de la fonction de transition

Données : P de longueur m et Σ l'alphabet

```
\begin{array}{c|c} \textbf{pour } (q \ de \ 0 \ \grave{a} \ m) \ \textbf{faire} \\ \hline & \textbf{pour chaque } a \in \Sigma \ \textbf{faire} \\ & k := \min(m+1,q+2); \\ & \textbf{répéter} \\ & k := k-1; \\ & \textbf{jusqu'\grave{a}} \ (P[1..k] \ \textit{suffixe de P}[1..q].a); \\ & \delta(q,a) := k; \end{array}
```

Retourner δ ;

Algorithme: Calcul de la fonction de transition

Données : P de longueur m et Σ l'alphabet

Retourner δ ;

• Complexité en temps de cet algorithme :

Algorithme: Calcul de la fonction de transition

Données : P de longueur m et Σ l'alphabet

```
\begin{array}{c|c} \textbf{pour } (q \ de \ 0 \ \grave{a} \ m) \ \textbf{faire} \\ \hline & \textbf{pour chaque } a \in \Sigma \ \textbf{faire} \\ & k := \min(m+1,q+2); \\ & \textbf{répéter} \\ & | k := k-1; \\ & \textbf{jusqu'à } (P[1..k] \ \textit{suffixe de } P[1..q].a); \\ & \delta(q,a) := k; \end{array}
```

Retourner δ ;

• Complexité en temps de cet algorithme : $O(m^3|\Sigma|)$

Prétraitement

Algorithme: Calcul de la fonction de transition

Données : P de longueur m et Σ l'alphabet

Retourner δ ;

- Complexité en temps de cet algorithme : $O(m^3|\Sigma|)$
- Des procédures plus rapides existent en $O(m|\Sigma|)$

10/25

Algorithme: Recherche avec automate fini

Données : T de longueur n, δ la fonction de transition associée à P de longueur m

```
q := 0;

pour (i de 1 à n) faire
q := \delta(q, T[i]);

si q = m alors
s := i - m;
\text{Écrire}("P \text{ apparaît à la position ", s});
```

11/25

Algorithme: Recherche avec automate fini

Données : T de longueur n, δ la fonction de transition associée à P de longueur m

```
q := 0;

pour (i de 1 à n) faire
q := \delta(q, T[i]);

si q = m alors
s := i - m;
\text{Écrire}("P \text{ apparaît à la position ", s});
```

Complexité en temps de cet algorithme :

Algorithme: Recherche avec automate fini

Données : T de longueur n, δ la fonction de transition associée à P de longueur m

```
q := 0;

pour (i de 1 à n) faire
q := \delta(q, T[i]);

si q = m alors
s := i - m;
\text{Écrire}("P \text{ apparaît à la position ", s});
```

Complexité en temps de cet algorithme : O(n)

Algorithme: Recherche avec automate fini

Données : T de longueur n, δ la fonction de transition associée à P de longueur m

```
q := 0;

pour (i de 1 à n) faire

q := \delta(q, T[i]);

si q = m alors

s := i - m;

Écrire("P apparaît à la position ", s);
```

- Complexité en temps de cet algorithme : O(n)
- Ne prend pas en compte le temps de pré-traitement

Plan du cours

- Plan du cours
- 2 Recherche exacte avec automates finis
- Algorithme Shift-Or
- Synthèse recherche exacte

Algorithme Shift-Or (S0)

- R. Baeza-Yates and G. H. Gonnet. A new approach to text searching.
 Commun. ACM, 35(10):74–82, 1992 (Gusfield préfère "Shift-And")
- Méthode simple, basée sur la comparaison de bits, très efficace pour les motifs courts

13/25

Algorithme Shift-Or (S0)

- R. Baeza-Yates and G. H. Gonnet. A new approach to text searching.
 Commun. ACM, 35(10):74–82, 1992 (Gusfield préfère "Shift-And")
- Méthode simple, basée sur la comparaison de bits, très efficace pour les motifs courts

Matrice M de $m \times n$ valeurs binaires

- M(i,j) = 1 ssi les i premiers caractères de P sont identiques aux i caractères de T terminant au caractère j
- Sinon, M(i,j) = 0

Autrement dit M(i,j) = 1 ssi P[1..i] matche exactement T[j-i+1..j]

Algorithme Shift-Or (S0)

- R. Baeza-Yates and G. H. Gonnet. A new approach to text searching.
 Commun. ACM, 35(10):74–82, 1992 (Gusfield préfère "Shift-And")
- Méthode simple, basée sur la comparaison de bits, très efficace pour les motifs courts

Matrice M de $m \times n$ valeurs binaires

- M(i,j) = 1 ssi les i premiers caractères de P sont identiques aux i caractères de T terminant au caractère j
- Sinon, M(i,j) = 0

Autrement dit M(i,j) = 1 ssi P[1..i] matche exactement T[j-i+1..j]

- Calculer la dernière ligne de M résout exactement le problème de recherche de P dans T
- Comment va-t-on procéder pour construire M?

13/25

P = for et T = california, alors M:

	С	а	1	i	f	0	r	n	i	a
f	0	0	0	0	1	0	0	0	0	C
0	0	0	0	0	0	1	0	0	0	C
r	0	0	0	0	0	0	1	0	0	C

P = for et T = california, alors M:

```
    c
    a
    l
    i
    f
    o
    r
    n
    i
    a

    f
    0
    0
    0
    0
    1
    0
    0
    0
    0
    0

    o
    0
    0
    0
    0
    0
    1
    0
    0
    0
    0

    r
    0
    0
    0
    0
    0
    1
    0
    0
    0
```

• U(a), vecteurs binaires de longueur m pour chaque $a \in \Sigma$, U(a) est mis à 1 aux positions de P où a apparaît

P = for et T = california, alors M:

• U(a), vecteurs binaires de longueur m pour chaque $a \in \Sigma$, U(a) est mis à 1 aux positions de P où a apparaît

```
Ex : U(f) = 100 et U(g) = 000
```

P = for et T = california, alors M:

• U(a), vecteurs binaires de longueur m pour chaque $a \in \Sigma$, U(a) est mis à 1 aux positions de P où a apparaît

```
Ex : U(f) = 100 et U(g) = 000
```

 Opération Bit-Shift décale tous les bits d'un vecteur d'une position vers la fin et positionne le 1^{er} bit à 1

P = for et T = california, alors M:

• U(a), vecteurs binaires de longueur m pour chaque $a \in \Sigma$, U(a) est mis à 1 aux positions de P où a apparaît

```
Ex: U(f) = 100 et U(g) = 000
```

 Opération Bit-Shift décale tous les bits d'un vecteur d'une position vers la fin et positionne le 1^{er} bit à 1

```
Ex: Bit-Shift(U(f)) = 110
```

P = for et T = california, alors M:

• U(a), vecteurs binaires de longueur m pour chaque $a \in \Sigma$, U(a) est mis à 1 aux positions de P où a apparaît

Ex : U(f) = 100 et U(g) = 000

 Opération Bit-Shift décale tous les bits d'un vecteur d'une position vers la fin et positionne le 1 er bit à 1 Ex:Bit-Shift(U(f)) = 110

• Notation : M(i) est la i^e colonne de M. Bit-Shift(M(6)) = 101

On procède colonne par colonne :

• Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0

On procède colonne par colonne :

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

15/25

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

```
california
f
o
r
```

On procède colonne par colonne :

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple:
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$
 $C = a \quad l \quad i \quad f \quad o \quad r \quad n \quad i \quad a$

f o r

Initialisation : $P[1] = f \neq T[1] = c$

On procède colonne par colonne :

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

alifornia

Initialisation : $P[1] = f \neq T[1] = c$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

$$M(2) = (Bit-Shift(M(1)) ET U(a)) = (100 ET 000)$$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

$$M(2) = (Bit-Shift(M(1)) ET U(a)) = (100 ET 000)$$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

$$M(3) = (Bit-Shift(M(2)) ET U(I)) = (100 ET 000)$$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

$$M(3) = (Bit-Shift(M(2)) ET U(I)) = (100 ET 000)$$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

$$M(4) = (Bit-Shift(M(3)) ET U(i)) = (100 ET 000)$$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

$$M(4) = (Bit-Shift(M(3)) ET U(i)) = (100 ET 000)$$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

$$M(5) = (Bit-Shift(M(4)) ET U(f)) = (100 ET 100)$$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

$$M(5) = (Bit-Shift(M(4)) ET U(f)) = (100 ET 100)$$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

$$M(6) = (Bit-Shift(M(5)) ET U(o)) = (110 ET 010)$$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

$$M(6) = (Bit-Shift(M(5)) ET U(o)) = (110 ET 010)$$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

$$M(7) = (Bit-Shift(M(6)) ET U(r)) = (101 ET 001)$$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

$$M(7) = (Bit-Shift(M(6)) ET U(r)) = (101 ET 001)$$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

$$M(8) = (Bit-Shift(M(7)) ET U(n)) = (100 ET 000)$$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

$$M(8) = (Bit-Shift(M(7)) ET U(n)) = (100 ET 000)$$

- Colonne 1 : que des 0 si $T[1] \neq P[1]$, sinon M(1,1) = 1 et le reste à 0
- Les autres colonnes j > 1 sont obtenues par une opération ET bit à bit entre Bit-Shift(M(j-1)) et U(T[j])

Exemple :
$$P = for$$
, $T = california$, $U(a) = U(c) = U(i) = U(l) = 000$, $U(f) = 100$, $U(o) = 010$, $U(r) = 001$

$$M(9) = ...$$

Shift-Or conclusion

• Complexité dans le pire des cas $O(m \times n)$

Shift-Or conclusion

• Complexité dans le pire des cas $O(m \times n)$

- Mais devient très efficace si la taille des motifs est inférieure à la longueur d'un mot machine :
 - Chaque colonne de M et chaque vecteur U sont encodés par un seul mot machine
 - Bit-Shift et ET deviennent des opérations sur un seul mot machine
 - ---- quasi-linéaire en pratique

Shift-Or conclusion

• Complexité dans le pire des cas $O(m \times n)$

- Mais devient très efficace si la taille des motifs est inférieure à la longueur d'un mot machine :
 - Chaque colonne de M et chaque vecteur U sont encodés par un seul mot machine
 - Bit-Shift et ET deviennent des opérations sur un seul mot machine
 - ---- quasi-linéaire en pratique

- Seules 2 colonnes de *M* ont besoin d'être gardées en mémoire
 - ---- efficace aussi en espace

Plan du cours

- Plan du cours
- 2 Recherche exacte avec automates finis
- Algorithme Shift-Or
- Synthèse recherche exacte

 The exact string matching problem: a comprehensive experimental evaluation, S. Faro, T. Lecroq. arXiv preprint arXiv:1012.2547, 2010.

> The Exact String Matching Problem: a Comprehensive Experimental Evaluation

> > Simone Faro[†] and Thierry Lecroq[‡]

[†]Università degli Studi di Catania, Dipartimento di Matematica e Informatica Viale Andrea Doria 6, 1-95125, Catania, Italy faro@dmi.unict.it

[‡]Université de Rouen, LITIS EA 4108, 76821 Mont-Saint-Aignan Cedex, France thierry.lecroq@univ-rouen.fr

 The exact online string matching problem: A review of the most recent results, S. Faro, T. Lecroq. Journal ACM Computing Surveys (CSUR) Volume 45 Issue 2, February 2013.

The Exact Online String Matching Problem: a Review of the Most Recent Results

SIMONE FARO, Università di Catania THIERRY LECROQ, Université de Rouen

 The exact string matching problem: a comprehensive experimental evaluation, S. Faro, T. Lecroq. arXiv preprint arXiv:1012.2547, 2010.

> The Exact String Matching Problem: a Comprehensive Experimental Evaluation

> > Simone Faro[†] and Thierry Lecroq[‡]

[†]Università degli Studi di Catania, Dipartimento di Matematica e Informatica Viale Andrea Doria 6, 1-95125, Catania, Italy faro@dmi.unict.it

[‡]Université de Rouen, LITIS EA 4108, 76821 Mont-Saint-Aignan Cedex, France thierry.lecroq@univ-rouen.fr

 The exact online string matching problem: A review of the most recent results, S. Faro, T. Lecroq. Journal ACM Computing Surveys (CSUR) Volume 45 Issue 2, February 2013.

Α

The Exact Online String Matching Problem: a Review of the Most Recent Results

SIMONE FARO, Università di Catania THIERRY LECROQ. Université de Rouen

 The exact string matching problem: a comprehensive experimental evaluation, S. Faro, T. Lecroq. arXiv preprint arXiv:1012.2547, 2010.

The Exact String Matching Problem: a Comprehensive Experimental Evaluation

Simone Faro† and Thierry Lecroq‡

[†]Università degli Studi di Catania, Dipartimento di Matematica e Informatica Viale Andrea Doria 6, I-95125, Catania, Italy faro@fmi.unict.it

[‡]Université de Rouen, LITIS EA 4108, 76821 Mont-Saint-Aignan Cedex, France thierry.lecroq@univ-rouen.fr

 The exact online string matching problem: A review of the most recent results, S. Faro, T. Lecroq. Journal ACM Computing Surveys (CSUR) Volume 45 Issue 2, February 2013.

Α

The Exact Online String Matching Problem: a Review of the Most Recent Results

SIMONE FARO, Università di Catania THIERRY LECROQ, Université de Rouen

 The exact string matching problem: a comprehensive experimental evaluation, S. Faro, T. Lecroq. arXiv preprint arXiv:1012.2547, 2010.

The Exact String Matching Problem: a Comprehensive Experimental Evaluation

Simone Faro† and Thierry Lecroq‡

[†]Università degli Studi di Catania, Dipartimento di Matematica e Informatica Viale Andrea Doria 6, 1-95125, Catania, Italy faro©dmi.umict.it

[‡]Université de Rouen, LITIS EA 4108, 76821 Mont-Saint-Aignan Cedex, France thierry.lecroq@univ-rouen.fr

 The exact online string matching problem: A review of the most recent results, S. Faro, T. Lecroq. Journal ACM Computing Surveys (CSUR) Volume 45 Issue 2, February 2013.

The Exact Online String Matching Problem: a Review of the Most Recent Results

SIMONE FARO, Università di Catania THIERRY LECROQ, Université de Rouen

 Depuis 1970, plus de 80 algorithmes de recherche exacte de motif (≥ 50 % après 2000)

- Depuis 1970, plus de 80 algorithmes de recherche exacte de motif (≥ 50 % après 2000)
- Idée : faire la liste et comparer expérimentalement les performances

- Depuis 1970, plus de 80 algorithmes de recherche exacte de motif (≥ 50 % après 2000)
- Idée : faire la liste et comparer expérimentalement les performances

String matching problem

- Depuis 1970, plus de 80 algorithmes de recherche exacte de motif (≥ 50 % après 2000)
- Idée : faire la liste et comparer expérimentalement les performances

String matching problem

Étant donnés un texte T de longueur n et un motif P de longueur m sur un alphabet Σ , trouver toutes les occurrences de P dans T

• Énormément d'applications qui nécessitent des solutions différentes selon qui du motif ou du texte est donné en premier :

- Depuis 1970, plus de 80 algorithmes de recherche exacte de motif (≥ 50 % après 2000)
- Idée : faire la liste et comparer expérimentalement les performances

String matching problem

- Énormément d'applications qui nécessitent des solutions différentes selon qui du motif ou du texte est donné en premier :
 - Online string matching : motif donné en premier et généralement prétraité

- Depuis 1970, plus de 80 algorithmes de recherche exacte de motif (≥ 50 % après 2000)
- Idée : faire la liste et comparer expérimentalement les performances

String matching problem

- Énormément d'applications qui nécessitent des solutions différentes selon qui du motif ou du texte est donné en premier :
 - Online string matching : motif donné en premier et généralement prétraité
 - Offline string matching: texte donné en premier et généralement indexé

- Depuis 1970, plus de 80 algorithmes de recherche exacte de motif (\$\geq\$ 50 \% après 2000)
- Idée : faire la liste et comparer expérimentalement les performances

String matching problem

- Énormément d'applications qui nécessitent des solutions différentes selon qui du motif ou du texte est donné en premier :
 - Online string matching: motif donné en premier et généralement prétraité
 - Offline string matching: texte donné en premier et généralement indexé

- Depuis 1970, plus de 80 algorithmes de recherche exacte de motif (≥ 50 % après 2000)
- Idée : faire la liste et comparer expérimentalement les performances

String matching problem

- Énormément d'applications qui nécessitent des solutions différentes selon qui du motif ou du texte est donné en premier :
 - Online string matching: motif donné en premier et généralement prétraité
 - Offline string matching: texte donné en premier et généralement indexé
- Borne de complexité inférieure : O(n) atteinte par [MP70]

- Depuis 1970, plus de 80 algorithmes de recherche exacte de motif (≥ 50 % après 2000)
- Idée : faire la liste et comparer expérimentalement les performances

String matching problem

- Énormément d'applications qui nécessitent des solutions différentes selon qui du motif ou du texte est donné en premier :
 - Online string matching: motif donné en premier et généralement prétraité
 - Offline string matching: texte donné en premier et généralement indexé
- Borne de complexité inférieure : O(n) atteinte par [MP70] Borne inférieure en moyenne : $O(n\log_{|\Sigma|}(m)/m)$ [Yao79]

85 algorithmes testés

- Répartis en 3 classes, selon que les algorithmes sont basés sur
 - les comparaisons de caractères (42)
 - les automates (17)
 - le parallélisme de bits (26)

85 algorithmes testés

- Répartis en 3 classes, selon que les algorithmes sont basés sur
 - les comparaisons de caractères (42)
 - les automates (17)
 - 3 le parallélisme de bits (26)
- Répartition en 1990 et 2010 :

Algorithmes basés sur les comparaisons de caractères

Algorithms based on characters comparison					
BF	Brute-Force	[CLRS01]			
MP	Morris-Pratt	[MP70]	1970		
KMP	Knuth-Morris-Pratt	[KMP77]	1977		
BM	Boyer-Moore	[BM77]	1977		
HOR	Horspool	[Hor80]	1980		
GS	Galil-Seiferas	[GS83]	1983		
AG	Apostolico-Giancarlo	[AG86]	1986		
KR	Karp-Rabin	[KR87]	1987		
ZT	Zhu-Takaoka	[ZT87]	1987		
OM	Optimal-Mismatch	[Sun90]	1990		
MS	Maximal-Shift	[Sun90]	1990		
QS	Quick-Search	[Sun90]	1990		
AC	Apostolico-Crochemore	[AC91]	1991		
TW	Two-Way	[CP91]	1991		
TunBM	Tuned-Boyer-Moore	[HS91]	1991		
COL	Colussi	[Col91]	1991		
SMITH	Smith	[Smi91]	1991		
GG	Galil-Giancarlo	[GG92]	1992		
RAITA	Raita	[Rai92]	1992		
SMOA	String-Matching on Ordered ALphabet	[Cro92]	1992		
NSN	Not-So-Naive	[Han93]	1993		
TBM	Turbo-Boyer-Moore	[CCG ⁺ 94]	1994		
RCOL	Reverse-Colussi	[Col94]	1994		
SKIP	Skip-Search	[CLP98]	1998		
ASKIP	Alpha-Skip-Search	[CLP98]	1998		
KMPS	KMP-Skip-Search	[CLP98]	1998		
BR	Berry-Ravindran	[BR99]	1999		
AKC	Ahmed-Kaykobad-Chowdhury	[AKC03]	2003		
FS	Fast-Search	[CF03]	2003		

Sèverine Bérard

Algorithmes basés sur les automates

DFA	Deterministic-Finite-Automaton	[CLRS01]	
RF	Reverse-Factor	[Lec92]	1992
SIM	Simon	[Sim93]	1993
TRF	Turbo-Reverse-Factor	[CCG ⁺ 94]	1994
FDM	Forward-DAWG-Matching	[CR94]	1994
BDM	Backward-DAWG-Matching	[CR94]	1994
BOM	Backward-Oracle-Matching	[ACR99]	1999
DFDM	Double Forward DAWG Matching	[AR00]	2000
WW	Wide Window	[HFS05]	2005
LDM	Linear DAWG Matching	[HFS05]	2005
ILDM1	Improved Linear DAWG Matching	[LWLL06]	2006
ILDM2	Improved Linear DAWG Matching 2	[LWLL06]	2006
EBOM	Extended Backward Oracle Matching	[FL08]	2009
FBOM	Forward Backward Oracle Matching	[FL08]	2009
SEBOM	Simplified Extended Backward Oracle Matching	[FYM09]	2009
SFBOM	Simplified Forward Backward Oracle Matching	[FYM09]	2009
SBDM	Succint Backward DAWG Matching	[Fre09]	2009

Algorithmes basés sur le parallélisme de bits

Algorithms based on bit-parallelism

SO	Shift-Or	[BYR92]	1992
SA	Shift-And		1992
BNDM		[BYR92]	
	Backward-Nondeterministic-DAWG-Matching	[NR98a]	1998
BNDM-L	BNDM for Long patterns	[NR00]	2000
SBNDM	Simplified BNDM	[PT03,Nav01]	2003
TNDM	Two-Way Nondeterministic DAWG Matching	[PT03]	2003
LBNDM	Long patterns BNDM	[PT03]	2003
SVM	Shift Vector Matching	[PT03]	2003
BNDM2	BNDM with loop-unrolling	[HD05]	2005
SBNDM2	Simplified BNDM with loop-unrolling	[HD05]	2005
BNDM-BMH	BNDM with Horspool Shift	[HD05]	2005
BMH-BNDM	Horspool with BNDM test	[HD05]	2005
FNDM	Forward Nondeterministic DAWG Matching	[HD05]	2005
BWW	Bit parallel Wide Window	[HFS05]	2005
FAOSO	Fast Average Optimal Shift-Or	[FG05]	2005
AOSO	Average Optimal Shift-Or	[FG05]	2005
BLIM	Bit-Parallel Length Invariant Matcher	[Kül08]	2008
FSBNDM	Forward SBNDM	[FL08]	2009
BNDMq	BNDM with q -grams	[POTHH]	2009
SBNDMq	Simplified BNDM with q-grams	DHPT09	2009
$UFNDM_q^{\hat{q}}$	Shift-Or with q-grams	DHPT09	2009
SABP	Small Alphabet Bit-Parallel	ZZMY09	2009
BP2WW	Bit-Parallel ² Wide-Window	[CFG10a]	2010
BPWW2	Bit-Parallel Wide-Window ²	[CFG10a]	2010
KBNDM	Factorized BNDM	[CFG10a]	2010
KSA	Factorized Shift-And	[CFG10b]	2010
NOA	ractorized Sinti-And	[01:0100]	2010

 Tous les algorithmes ré-implémentés en C et testés sur le même ordinateur

 Tous les algorithmes ré-implémentés en C et testés sur le même ordinateur

- 12 textes
 - 8 Rand σ pour $\sigma \in [2,4,8,16,32,64,128,256]$, où chaque Rand σ est un texte de 5*Mb* sur un alphabet de taille σ , avec distribution uniforme des caractères

 Tous les algorithmes ré-implémentés en C et testés sur le même ordinateur

12 textes

- 8 Rand σ pour $\sigma \in [2,4,8,16,32,64,128,256]$, où chaque Rand σ est un texte de 5*Mb* sur un alphabet de taille σ , avec distribution uniforme des caractères
- une séquence de génome de 4 638 690 pb d'*Escherichia coli* ($\sigma = 4$)

8 octobre 2020

 Tous les algorithmes ré-implémentés en C et testés sur le même ordinateur

12 textes

- 8 Rand σ pour $\sigma \in [2,4,8,16,32,64,128,256]$, où chaque Rand σ est un texte de 5*Mb* sur un alphabet de taille σ , avec distribution uniforme des caractères
- une séquence de génome de 4 638 690 pb d'*Escherichia coli* ($\sigma = 4$)

8 octobre 2020

24/25

• protéines de Saccharomyces cerevisiae de lg 3 295 751 ($\sigma = 20$)

 Tous les algorithmes ré-implémentés en C et testés sur le même ordinateur

12 textes

- 8 Rand σ pour $\sigma \in [2,4,8,16,32,64,128,256]$, où chaque Rand σ est un texte de 5*Mb* sur un alphabet de taille σ , avec distribution uniforme des caractères
- une séquence de génome de 4 638 690 pb d'*Escherichia coli* ($\sigma = 4$)
- protéines de Saccharomyces cerevisiae de lg 3 295 751 ($\sigma = 20$)
- une version de la bible de 4 047 392 caractères ($\sigma = 63$)

 Tous les algorithmes ré-implémentés en C et testés sur le même ordinateur

12 textes

- 8 Rand σ pour $\sigma \in [2,4,8,16,32,64,128,256]$, où chaque Rand σ est un texte de 5*Mb* sur un alphabet de taille σ , avec distribution uniforme des caractères
- une séquence de génome de 4 638 690 pb d'*Escherichia coli* ($\sigma = 4$)
- protéines de Saccharomyces cerevisiae de lg 3 295 751 (σ = 20)
- une version de la bible de 4 047 392 caractères ($\sigma = 63$)
- le fichier world192.txt (The CIA World Fact Book) de 2 473 400 caractères ($\sigma = 94$)

 Tous les algorithmes ré-implémentés en C et testés sur le même ordinateur

12 textes

- 8 Rand σ pour $\sigma \in [2, 4, 8, 16, 32, 64, 128, 256], où chaque Rand<math>\sigma$ est un texte de 5Mb sur un alphabet de taille σ , avec distribution uniforme des caractères
- une séquence de génome de 4 638 690 pb d'*Escherichia coli* ($\sigma = 4$)
- protéines de Saccharomyces cerevisiae de lg 3 295 751 ($\sigma = 20$)
- une version de la bible de 4 047 392 caractères ($\sigma = 63$)
- le fichier world192.txt (The CIA World Fact Book) de 2 473 400 caractères $(\sigma = 94)$
- Pour chaque texte, un ensemble de 400 motifs de taille m extraits aléatoirement des textes, avec $m \in [2,4,8,16,32,64,128,256,512,1024]$

 Tous les algorithmes ré-implémentés en C et testés sur le même ordinateur

12 textes

- 8 Rand σ pour $\sigma \in [2,4,8,16,32,64,128,256]$, où chaque Rand σ est un texte de 5*Mb* sur un alphabet de taille σ , avec distribution uniforme des caractères
- une séquence de génome de 4 638 690 pb d'*Escherichia coli* ($\sigma = 4$)
- protéines de Saccharomyces cerevisiae de lg 3 295 751 (σ = 20)
- une version de la bible de 4 047 392 caractères ($\sigma = 63$)
- le fichier world192.txt (The CIA World Fact Book) de 2 473 400 caractères ($\sigma = 94$)
- Pour chaque texte, un ensemble de 400 motifs de taille m extraits aléatoirement des textes, avec $m \in [2,4,8,16,32,64,128,256,512,1024]$
- Pour chaque ensemble de motifs, 400 runs pour calculer le temps moyen

Résultats

Résultats

 Les performances dépendent des tailles d'alphabet et des longueurs de motif