Cleveland's hierarchy

Cleveland's Graphical Features Hierarchy

Source: Presentation Graphics, Leland Wilkinson, SPSS Inc & Northwestern University

Revised 18Feb2010 tobar

http://sfew.websitetoolbox.com/post/clevelands-graphical-features-hierarchy-4598555

Scales

- ▶ The top of the hierarchy involves putting things on scales
- But what scale do we use?
 - Are our data anchored to zero?
 - If so, are we interested in differences or ratios?
 - ► Are they anchored somewhere else?

Outline

Anchors

Transformations

Golem bait call

Climate lessons

- Choosing an anchor is a scientific decision
- ▶ Remember: graphic design is communication

Magazine circulation (advertisement)

Magazine circulation (absolute amount)

Magazine circulation (trend)

Area and volume

Adapted by courtesy of STEELWAYS.

How to Lie with Statistics

Advertisement lessons

- Use area to indicate fair comparisons
 - On a physical scale
- Areas that can be compared linearly should be preferred
 - Depends on importance of feature
- Avoid using (or hinting at) volume

Outline

Anchors

Transformations

Physical quantities

- ▶ 1 is to 10 as 10 is to what?
 - ▶ * If you said 19, you are thinking on a linear scale
 - ▶ * If you said 100, you are thinking on a log scale
- ▶ The log scale is often good for physical quantities:
 - When zero means zero

Log vs. linear

Making room

Data shape

- ▶ There are a lot of different ways to show data shape
- Choices will depend on your data set:
 - Overall size
 - Number of replicates
 - Number of levels, predictor variables, etc.

Showing points

Boxplot

Violin plot

Orchard lessons

- ► Choices about log vs. linear scale are scientific choices
 - Neither is more valid, or closer to the data
- You can also make choices about
 - sending a simple message
 - providing more information about shape
- Log scales are almost never physical
 - Don't mislead with area information on a log scale

Probabilities

- ▶ 1% is to 2% as 50% is to what?
 - ► * 51% is way too small
 - ► * 100% is way too large
- ▶ The natural distance to use on a probability scale is log odds
 - ► * 1% is to 2% as 50% is to 67%
 - ▶ * ... as 2% is to 4%
 - ▶ * ... as 98% is to 99%

Odds

Odds are a ratio between the probability of something and the probability of its opposite:

•
$$o = p/(1-p)$$

Log odds give a natural distance on probability space

Extreme values

- Our transformations take extreme values to infinity.
- ► Use link functions: this is like using estimated values instead of observed; they are rarely infinite
- ▶ Extend the scale (e.g., use log(1+x) instead of log(x))
 - This usually involves arbitrary choices
 - Should often be avoided for analysis
 - Usually OK for visualization