Contraction semigroups on $L_{\infty}(\mathbf{R})$

A.F.M. ter Elst¹ and Derek W. Robinson²

Dedicated to the memory of Günter Lumer 1929–2005

Abstract

If X is a non-degenerate vector field on \mathbf{R} and $H=-X^2$ we examine conditions for the closure of H to generate a continuous semigroup on L_{∞} which extends to the L_p -spaces. We give an example which cannot be extended and an example which extends but for which the real part of the generator on L_2 is not lower semibounded.

June 2006

AMS Subject Classification: 47B44, 58G03.

Home institutions:

- 1. Department of Mathematics University of Auckland Private bag 92019 Auckland New Zealand
- 2. Centre for Mathematics and its Applications Mathematical Sciences Institute Australian National University Canberra, ACT 0200 Australia

1 Introduction

The Lumer-Phillips theorem [LuP] is a cornerstone of the theory of continuous semigroups. The theorem characterizes the generator of a contraction semigroup with the aid of a dissipativity condition. The latter is based on the elementary properties of the operator $-d^2/dx^2$ of double differentiation acting on $C_0(\mathbf{R})$. In this note we analyze contraction semigroups S generated by squares $-X^2$ of vector fields X = a d/dx acting on $C_0(\mathbf{R})$, or $L_{\infty}(\mathbf{R})$. An integral part of the analysis consists of examining the one-parameter groups T generated by X. Throughout we assume a > 0. If a is smooth this is the one-dimensional analogue of Hörmander's condition [Hör].

First, we identify the kernel of S acting on $L_{\infty}(\mathbf{R})$. Secondly, T is defined as a weak* continuous group of contractions on L_{∞} and we derive necessary and sufficient conditions for it to extend to a continuous group on the $L_p(\mathbf{R}; \rho dx)$ -spaces with $p \in [1, \infty)$, where $\rho: \mathbf{R} \to \langle 0, \infty \rangle$ is a C^{∞} -function. These conditions also ensure that S extends to a continuous semigroup. Thirdly, we characterize those S, or T, which extend to a contraction semigroup, or group, on $L_p(\mathbf{R}; \rho dx)$ for some $p \in [1, \infty)$. Fourthly, we give an example of a smooth vector field with a uniformly bounded coefficient for which neither T nor S can be extended to any of the L_p -spaces with $p < \infty$. Fifthly, we give an example of a smooth vector field with a uniformly bounded coefficient which is uniformly bounded away from zero for which T and S extend to all the L_p -spaces but the real part of the generator of S on $L_2(\mathbf{R}; \rho dx)$ is not lower semibounded. In particular the L_2 -generator cannot satisfy a Gårding inequality. Since the Gårding inequality is the usual starting point for the analysis of elliptic divergence form operators on $L_2(\mathbf{R}; \rho dx)$, e.g., operators of the form X^*X , this example clearly demonstrates that the theory of 'non-divergent' form operators such as $-X^2$ on $L_{\infty}(\mathbf{R})$ is very different. Finally we discuss the volume doubling property for balls (intervals) whose radius (length) is measured by the distance associated with X.

2 Preliminaries

Let $a: \mathbf{R} \to \langle 0, \infty \rangle$ be a locally bounded differentiable function and assume the derivative a' is locally bounded. Further assume

$$\int_0^\infty dx \, a(x)^{-1} = \infty = \int_{-\infty}^0 dx \, a(x)^{-1} \quad . \tag{1}$$

Equip **R** with the measure ρdx where $\rho : \mathbf{R} \to \langle 0, \infty \rangle$ is a C^{∞} -function. Consider the vector field X = a d/dx and the corresponding operators X_{\min} and X_{\max} on $L_{\infty}(\mathbf{R}; \rho dx)$ with domains $D(X_{\min}) = C_c^{\infty}(\mathbf{R})$ and $D(X_{\max}) = C_c^1(\mathbf{R})$. Set $H_{\min} = -X_{\min}^2$ and $H_{\max} = -X_{\max}^2$. Since we are dealing with operators on L_{∞} it is appropriate to deal with the weak* topology.

Proposition 2.1

- I. The operators X_{\min} and X_{\max} are weak* closable and $\overline{X}_{\min} = \overline{X}_{\max}$, where the bar denotes the weak* closure.
- II. The operator H_{max} is weak* closable and its weak* closure $\overline{H}_{\text{max}}$ generates a semi-group S which is weak* continuous, positive, contractive and holomorphic in the open right half-plane.

III. $\overline{H}_{\text{max}} = -\overline{X}_{\text{max}}^2$ and in particular $\overline{X}_{\text{max}}^2$ is weak* closed.

IV. If $a \in C^{\infty}(\mathbf{R})$ then $\overline{H}_{\min} = \overline{H}_{\max}$, where \overline{H}_{\min} is the weak* closure of H_{\min} .

Proof For all $x_0 \in \mathbf{R}$ the ordinary differential equation $\dot{x} = a(x)$, with initial data $x(0) = x_0$, has a unique maximal solution which we denote by $t \mapsto e^{tX}x_0$. Since a satisfies (1) this maximal solution is defined for all $t \in \mathbf{R}$. Moreover, $e^{sX}e^{tX}x_0 = e^{(s+t)X}x_0$ and

$$\int_{x_0}^{e^{tX}x_0} dx \, a(x)^{-1} = t \tag{2}$$

for all $s, t \in \mathbf{R}$ and $x_0 \in \mathbf{R}$. In addition both the maps $t \mapsto e^{tX}x_0$ and $x \mapsto e^{sX}x$ are continuous. In particular for all $t \in \mathbf{R}$ the map $T_t: L_\infty \to L_\infty$ defined by $(T_t\varphi)(y) = \varphi(e^{-tX}y)$ is an isometry and T is a weak* continuous group on L_∞ . This group is automatically positive and we next show that its generator is the weak* closure of the operator X_{\min} on L_∞ .

Clearly $X_{\min} \subseteq X_{\max}$ and by a standard regularization argument it follows that $\overline{X}_{\min} = \overline{X}_{\max}$. Hence to simplify notation we now set $X_0 = \overline{X}_{\min} = \overline{X}_{\max}$.

One computes from (2) that

$$\frac{d}{dy}e^{tX}y = \frac{a(e^{tX}y)}{a(y)}$$

for all $t \in \mathbf{R}$ and $y \in \mathbf{R}$. Therefore

$$\frac{d}{dy}(T_t\varphi)(y) = \varphi'(e^{-tX}y) \cdot \frac{a(e^{tX}y)}{a(y)}$$

for all $\varphi \in D(X_{\text{max}})$, $y \in \mathbf{R}$ and t > 0. So $T_t(D(X_{\text{max}})) \subseteq D(X_{\text{max}})$ for all t > 0. Moreover,

$$t^{-1}(\varphi - T_t \varphi)(y) = -t^{-1} \int_0^t ds \, \frac{d}{ds} \varphi(e^{-sX} y)$$

= $t^{-1} \int_0^t ds \, \varphi'(e^{-sX} y) \, a(e^{-sX} y) = t^{-1} \int_0^t ds \, (T_s X_{\text{max}} \varphi)(y)$

for all $\varphi \in D(X_{\max})$, t > 0 and $y \in \mathbf{R}$, since φ' is continuous. So $\lim_{t\to 0} t^{-1}(I - T_t)\varphi = X_{\max}\varphi$ strongly in L_{∞} and X_{\max} is the restriction of the generator of T. Since $D(X_{\max})$ is invariant under T and weak* dense it follows from Corollary 3.1.7 of [BrR] that $X_0 = \overline{X}_{\max}$ is the generator of T.

Next define the semigroup S by the integral algorithm

$$S_t = (4\pi t)^{-1/2} \int_{-\infty}^{\infty} ds \, e^{-s^2(4t)^{-1}} T_s \quad . \tag{3}$$

Obviously S is weak* continuous, positive, contractive and holomorphic in the open right half-plane. Let H_0 denote the weak* closed generator of S. If $\varphi \in D(X_0^2)$ then

$$t^{-1} (I - S_t) \varphi = t^{-1} (4\pi t)^{-1/2} \int_{-\infty}^{\infty} ds \, e^{-s^2 (4t)^{-1}} (I - T_s) \varphi$$

$$= t^{-1} (4\pi t)^{-1/2} \int_{-\infty}^{\infty} ds \, e^{-s^2 (4t)^{-1}} \int_{0}^{s} du \, (s - u) \, T_u \, X_0^2 \varphi$$

$$= (4\pi)^{-1/2} \int_{-\infty}^{\infty} ds \, e^{-s^2/4} \int_{0}^{s} du \, (s - u) \, T_{t^{1/2}u} \, X_0^2 \varphi$$

and it follows in the weak* limit $t \to 0$ that $\varphi \in D(H_0)$. Hence $H_0 \supseteq -X_0^2$. To prove $H_0 = -X_0^2$ it suffices to establish that the range $R(I - X_0^2)$ of $I - X_0^2$ is equal to L_{∞} . But X_0 generates the continuous group T. Therefore $R(I \pm X_0) = L_{\infty}$. Moreover, $I - X_0^2 = (I - X_0)(I + X_0)$. Hence $R(I - X_0^2) = L_{\infty}$ and $H_0 = -X_0^2$.

Clearly $H_{\text{max}} \subseteq -X_0^2 = H_0$ so H_{max} is weak* closable. It remains to prove that the weak* closure $\overline{H}_{\text{max}}$ of H_{max} is equal to H_0 .

Since $T_tD(X_{\max}) \subseteq D(X_{\max})$ and $X_{\max}T_t\varphi = T_tX_{\max}\varphi$ for all $\varphi \in D(X_{\max})$ one deduces by iteration that $T_tD(X_{\max}^2) \subseteq D(X_{\max}^2)$ and $X_{\max}^2T_t\varphi = T_tX_{\max}^2\varphi$ for all $\varphi \in D(X_{\max}^2)$. Next it follows from (3), by a Riemann approximation argument, that $S_tD(X_{\max}^2) \subseteq D(\overline{X_{\max}^2})$ and $\overline{X_{\max}^2}S_t\varphi = S_tX_{\max}^2\varphi$ for all $\varphi \in D(X_{\max}^2)$ and all t > 0. Since S_t is continuous it further follows that $S_tD(\overline{X_{\max}^2}) \subseteq D(\overline{X_{\max}^2})$ for all t > 0. But $C_c^1(\mathbf{R}) \subseteq D(X_{\max}^2) \subseteq D(\overline{H_{\max}})$ is weak* dense in L_{∞} by the assumed differentiability of a. Hence by Corollary 3.1.7 of [BrR] it follows that $D(\overline{H_{\max}})$ is a core of H_0 . Therefore $\overline{H_{\max}} = H_0$.

Finally, if $a \in C^{\infty}(\mathbf{R})$ then $C_c^{\infty}(\mathbf{R})$ is a core for X_{\max}^2 . Therefore $\overline{H}_{\min} \supseteq H_{\max}$. Since $H_{\min} \subseteq H_{\max}$ this completes the proof of the proposition.

Remark 2.2 It follows by definition that $T_tC_0(\mathbf{R}) \subseteq C_0(\mathbf{R})$ for all $t \in \mathbf{R}$ and a simple estimate shows that the restriction of T to $C_0(\mathbf{R})$ is strongly continuous. Therefore $S_tC_0(\mathbf{R}) \subseteq C_0(\mathbf{R})$ for all t > 0 and the restriction of S to $C_0(\mathbf{R})$ is also strongly continuous. This is a direct consequence of the algorithm (3). Thus T is a Feller group and S is a Feller semigroup. Now let X_{00} and H_{00} denote the generators of the restricted group and the restricted semigroup, respectively. Then a slight modification of the foregoing argument allows one to obtain similar characterizations of the generators but in terms of norm closures. For example, X_{00} is the norm closure of X_{\min} which is equal to the norm closure of X_{\max} . The discussion of H_{00} can in fact be simplified. Since X_{00} generates a strongly continuous group of isometries the operator $-X_{00}^2$ is dissipative in the sense of Lumer and Phillips [LuP] and it is norm closed by standard estimates (see, for example, [Rob] Lemma III.3.3). But one again has $R(I \pm X_{00}) = L_{\infty}$. Therefore $R(I - X_{00}^2) = L_{\infty}$. Then $-X_{00}^2$ generates a strongly continuous contraction semigroup by the Lumer-Phillips theorem and it follows by uniqueness that $H_{00} = -X_{00}^2$.

One can associate a distance with the vector field X by the definition

$$d(x;y) = \sup\{|\psi(x) - \psi(y)|; \psi \in C_c^{\infty}(\mathbf{R}), \|X\psi\|_{\infty} \le 1\} \quad . \tag{4}$$

Clearly one has

$$|\psi(x) - \psi(y)| = \Big| \int_x^y dz \, \psi'(z) \Big| \le \Big| \int_x^y dz \, a(z)^{-1} \Big|$$

for all $\psi \in C_c^{\infty}(\mathbf{R})$ with $||X_{\min}\psi||_{\infty} \leq 1$. So

$$d(x;y) \le \left| \int_x^y dz \, a(z)^{-1} \right| .$$

But by regularizing a^{-1} on a compact interval one deduces that the inequality is in fact an equality, i.e.,

$$d(x;y) = \left| \int_x^y dz \, a(z)^{-1} \right|$$

for all $x, y \in \mathbf{R}$. Note that by setting $x = e^{-sX}y$ and using (2) one finds

$$d(e^{-sX}y;y) = \left| \int_{y}^{e^{-sX}y} dz \, a(z)^{-1} \right| = |s| \quad .$$
 (5)

Therefore the distance is invariant under the flow in the sense that

$$d(e^{-tX}x; e^{-tX}y) = d(x; y)$$

for all $x, y \in \mathbf{R}$ and all $t \geq 0$. This follows by setting $x = e^{-sX}y$ and

$$d(e^{-tX}x\,;e^{-tX}y) = d(e^{-sX}e^{-tX}y\,;e^{-tX}y) = |s| = d(e^{-sX}y\,;y) = d(x\,;y) \quad ,$$

where we have used (5).

Now one can calculate the kernel of the semigroup S.

Proposition 2.3 The kernel K of the semigroup S on $L_{\infty}(\mathbf{R})$ is given by

$$K_t(x;y) = (4\pi t)^{-1/2} (a(y)\rho(y))^{-1} e^{-d(x;y)^2 (4t)^{-1}}$$
(6)

for all $x, y \in \mathbf{R}$ and t > 0. Moreover, K_t is continuous and $\int dy \, \rho(y) \, K_t(x; y) = 1$ for all $x \in \mathbf{R}$.

Proof First by (3) one has

$$(S_t\varphi)(x) = (4\pi t)^{-1/2} \int_{-\infty}^{\infty} ds \, e^{-s^2(4t)^{-1}} \varphi(e^{-sX}x)$$

for all $\varphi \in C_c^{\infty}(\mathbf{R})$, t > 0 and $x \in \mathbf{R}$. Therefore by a change of variables $y = e^{-sX}x$ one deduces that

$$(S_t \varphi)(x) = (4\pi t)^{-1/2} \int_{-\infty}^{\infty} dy \, a(y)^{-1} e^{-d(x;y)^2 (4t)^{-1}} \varphi(y)$$

since |s| = d(x; y) by (5). The representation (6) follows immediately.

Clearly K_t is continuous and $H_{\max}\mathbb{1} = 0$. So $S_t\mathbb{1} = \mathbb{1}$ in L_{∞} -sense. Therefore $\int dy \, \rho(y) \, K_t(x;y) = 1$ for all t > 0 and almost every $x \in \mathbf{R}$. Moreover, the map $x \mapsto \int dy \, \rho(y) \, K_t(x;y)$ is continuous. Hence $\int dy \, \rho(y) \, K_t(x;y) = 1$ for all t > 0 and $x \in \mathbf{R}$.

3 Extension properties

Although T is defined as a group of isometries and S as a contraction semigroup on L_{∞} they do not automatically extend to the L_p -spaces. This requires extra boundedness conditions on the coefficient function a and the density function ρ . The following proposition gives necessary and sufficient conditions for T to extend to a continuous group and sufficient conditions for S to extend to a continuous semigroup.

Proposition 3.1 Let T be the group of isometries of $L_{\infty}(\mathbf{R}; \rho \, dx)$ defined by $(T_t \varphi)(y) = \varphi(e^{-tX}y)$. The following conditions are equivalent for all $C \ge 1$ and $\omega \ge 0$.

- I. There is a $p \in [1, \infty)$ such that T extends to a (strongly) continuous group on $L_p(\mathbf{R}; \rho dx)$ satisfying the bounds $||T_t||_{p\to p} \leq C^{1/p} e^{\omega |t|/p}$ for all $t \in \mathbf{R}$.
- II. For all $p \in [1, \infty)$ the group T extends to a (strongly) continuous group on $L_p(\mathbf{R}; \rho \, dx)$ satisfying the bounds $||T_t||_{p \to p} \le C^{1/p} e^{\omega |t|/p}$ for all $t \in \mathbf{R}$.

III.
$$a(y)\rho(y) \le C e^{\omega d(x;y)} a(x)\rho(x)$$
 for all $x, y \in \mathbf{R}$.

Moreover, if these conditions are satisfied then the semigroup S extends to a (strongly) continuous semigroup on all the L_p -spaces, $p \in [1, \infty)$, satisfying the bounds

$$||S_t||_{p\to p} \le \left((2C)^{1/p} e^{\omega^2 t/p} \right) \wedge \left(2C^{1/p} e^{\omega^2 t/p^2} \right)$$

if $\omega > 0$ and $||S_t||_{p\to p} \le C^{1/p}$ if $\omega = 0$, for all t > 0.

Proof First assume Condition I is satisfied. Then for all $\varphi \in L_p$ one has

$$||T_t \varphi||_p^p = \int_{\mathbf{R}} dy \, \rho(y) \, |\varphi(e^{-tX}y)|^p \quad .$$

Secondly, by a change of variables $x = e^{-tX}y$ one finds

$$||T_t \varphi||_p^p = \int_{\mathbf{R}} dx \, \frac{a(e^{tX}x)}{a(x)} \, \rho(e^{tX}x) \, |\varphi(x)|^p = \int_{\mathbf{R}} dx \, \rho(x) \left(\frac{a(e^{tX}x)\rho(e^{tX}x)}{a(x)\rho(x)} \right) |\varphi(x)|^p .$$

Therefore

$$\sup_{x \in \mathbf{R}} \left(\frac{a(e^{tX}x)\rho(e^{tX}x)}{a(x)\rho(x)} \right)^{1/p} = ||T_t||_{p \to p} \le C^{1/p} e^{\omega|t|/p}$$

for all $t \in \mathbf{R}$ and $x \in \mathbf{R}$. Hence

$$a(e^{tX}x)\rho(e^{tX}x) \le C e^{\omega|t|}a(x)\rho(x)$$

for all $t \in \mathbf{R}$ and $x \in \mathbf{R}$. Setting $y = e^{tX}x$ and noting that d(x;y) = |t| one deduces that Condition III is satisfied. Conversely, the same calculation shows that if Condition III is satisfied then

$$||T_t\varphi||_p \le C^{1/p} e^{\omega|t|/p} ||\varphi||_p \tag{7}$$

for all $p \in [1, \infty)$, $\varphi \in L_p$ and $t \in \mathbf{R}$. In addition if $\varphi \in C_c^{\infty}$ then one calculates that

$$\varphi - T_t \varphi = \int_0^t ds \, T_s X_{\min} \varphi \quad .$$

Hence using (7) and the density of C_c^{∞} in L_p one concludes that T_t extends to a continuous semigroup on L_p satisfying the bounds (7), i.e., Condition II is valid. The implication II \Rightarrow III is trivial.

If the conditions are satisfied then S extends to the L_p -spaces by (3). The estimates on the norms of S_t are established in two steps. First, if $\omega > 0$ then it follows from (3) and the estimates on $||T_s||_{1\to 1}$ that

$$||S_t||_{1\to 1} \le 2 C e^{\omega^2 t}$$

for all t>0. Since S is contractive on L_{∞} one deduces from interpolation that

$$||S_t||_{p\to p} \le (2C)^{1/p} e^{\omega^2 t/p}$$

for all $p \in \langle 1, \infty \rangle$ and t > 0. Alternatively, one can reverse the reasoning and use the interpolated bounds $||T_s||_{p\to p} \leq C^{1/p} e^{\omega |s|/p}$ together with (3) to calculate that

$$||S_t||_{p\to p} \le 2 C^{1/p} e^{\omega^2 t/p^2}$$

for all $p \in [1, \infty]$ and t > 0.

If $\omega = 0$ similar arguments apply and both lead to the bounds $||S_t||_{p \to p} \le C^{1/p}$.

The situation described by the proposition simplifies if C=1. Then Condition III together with (5) implies that

$$\pm (a\rho)'(y) a(y) = \lim_{t \downarrow 0} t^{-1} \left((a\rho)(e^{\pm tX}y) - (a\rho)(y) \right)$$
$$\leq \lim_{t \downarrow 0} \sup_{t \downarrow 0} t^{-1}(e^{\omega t} - 1)(a\rho)(y) = \omega (a\rho)(y)$$

for all $y \in \mathbf{R}$. Thus $\|\rho^{-1}(a\rho)'\|_{\infty} \leq \omega$. Conversely, if $\|\rho^{-1}(a\rho)'\|_{\infty} \leq \omega$ then

$$\rho(e^{tX}y)^{-1}\frac{d}{dt}\left(e^{-\omega t}\left(a\rho\right)\left(e^{\pm tX}y\right)\right) \le 0$$

for all $t \geq 0$. Hence Condition III is satisfied with C = 1. But the condition $\|\rho^{-1}(a\rho)'\|_{\infty} \leq \omega$ can be expressed in terms of the vector field. Therefore one has the following corollary.

Corollary 3.2 The following conditions are equivalent for all $\omega \geq 0$.

- I. There is a $p \in [1, \infty)$ such that T extends to a continuous group on $L_p(\mathbf{R}; \rho dx)$ satisfying the bounds $||T_t||_{p\to p} \leq e^{\omega|t|/p}$ for all $t \in \mathbf{R}$.
- II. For all $p \in [1, \infty)$ the group T extends to a continuous group on $L_p(\mathbf{R}; \rho dx)$ satisfying the bounds $||T_t||_{p \to p} \le e^{\omega |t|/p}$ for all $t \in \mathbf{R}$.

III.
$$\|\rho^{-1}(a\rho)'\|_{\infty} \leq \omega$$
.

IV. $|(\psi, (X+X^*)\varphi)| \leq \omega \|\psi\|_q \|\varphi\|_p$ for all $\varphi, \psi \in C_c^{\infty}(\mathbf{R})$ and for one pair (for all pairs) of dual exponents $p, q \in [1, \infty]$.

Moreover, if these conditions are satisfied then the semigroup S extends to a continuous semigroup on all the L_p -spaces, $p \in [1, \infty)$, satisfying the bounds

$$||S_t||_{p\to p} \le e^{\omega^2 t/p^2}$$

for all t > 0. In addition H_{max} satisfies a Garding inequality. Precisely,

$$\operatorname{Re}(\varphi, H_{\max}\varphi) \ge (1 - \varepsilon) \|X\varphi\|_2^2 - (4\varepsilon)^{-1} \|X + X^*\|_{2\to 2}^2 \|\varphi\|_2^2$$

for all $\varphi \in C_c^{\infty}(\mathbf{R})$ and $\varepsilon > 0$.

Proof The equivalence of the first three conditions and the existence of the extension of the semigroup S follow from Proposition 2.1 and the above discussion. Conditions III and IV are equivalent because

$$(\psi, X\varphi) + (X\psi, \varphi) = \int_{\mathbf{R}} dx \, (a\rho)(x) \Big(\psi(x) \, \varphi'(x) + \psi'(x) \, \varphi(x) \Big)$$
$$= \int_{\mathbf{R}} dx \, \rho(x) \Big(\rho(x)^{-1} (a\rho)'(x) \Big) \psi(x) \, \varphi(x)$$

for all $\varphi, \psi \in C_c^{\infty}(\mathbf{R})$. It remains to prove the Gårding inequality. If $\varepsilon > 0$ then

$$\operatorname{Re}(\varphi, H_{\max}\varphi) = -\operatorname{Re}(X^*\varphi, X\varphi)$$

$$= \|X\varphi\|_2^2 - \operatorname{Re}((X^* + X)\varphi, X\varphi)$$

$$\geq \|X\varphi\|_2^2 - \|(X^* + X)\varphi\|_2 \|X\varphi\|_2$$

$$\geq (1 - \varepsilon)\|X\varphi\|_2^2 - (4\varepsilon)^{-1}\|X + X^*\|_{2\to 2}^2 \|\varphi\|_2^2$$

for all $\varphi \in C_c^{\infty}(\mathbf{R})$.

The corollary, applied with $\omega = 0$, gives the following criteria for T or S to extend to a contraction group or semigroup on the L_p -spaces.

Proposition 3.3 The following are equivalent.

- **I.** There is a $p \in [1, \infty)$ such that T extends to a continuous contraction group on $L_p(\mathbf{R}; \rho dx)$.
- **II.** For all $p \in [1, \infty)$ the group T extends to a continuous contraction group on $L_p(\mathbf{R}; \rho dx)$.
- **III.** There is a $p \in [1, \infty)$ such that S extends to a continuous contraction group on $L_p(\mathbf{R}; \rho dx)$.
- **IV.** For all $p \in [1, \infty)$ the semigroup S extends to a continuous contraction group on $L_p(\mathbf{R}; \rho dx)$.
- **V.** The function $a\rho$ is constant.

Proof The implications $V\Leftrightarrow I\Leftrightarrow II\Rightarrow IV$ follow from Corollary 3.2 and the implication $IV\Rightarrow III$ is trivial.

The proof of the implication III \Rightarrow V relies on the reasoning of Lumer and Phillips.

If Condition III is valid for some $p \in [1,2]$ then it follows by interpolation with the contraction semigroup on L_{∞} that Condition III is valid for all p > 2. Hence it suffices to show that if $p \in \langle 2, \infty \rangle$ and S extends to a continuous contraction group on $L_p(\mathbf{R}; \rho \, dx)$ then the function $a\rho$ is constant, i.e., Condition V is valid. Fix $p \in \langle 2, \infty \rangle$ and assume S extends to a continuous contraction group on $L_p(\mathbf{R}; \rho \, dx)$. Then it follows from the Lumer-Phillips theorem, [LuP] Theorem 3.1, that the generator H of the semigroup S on $L_p(\mathbf{R}; \rho \, dx)$ is dissipative. So if $[\cdot, \cdot]$ is a semi-inner product on $L_p(\mathbf{R}; \rho \, dx)$ then $\mathrm{Re}[H\varphi, \varphi] \geq 0$ for all $\varphi \in D(H)$. If $\varphi \in C_c^2(\mathbf{R})$ is real valued then $\varphi \in D(H_{\mathrm{max}})$ and $H_{\mathrm{max}}\varphi \in L_p(\mathbf{R}; \rho \, dx)$. So $\varphi \in D(H)$ and $H_{\mathrm{max}}\varphi = H\varphi$. Moreover,

$$\int d(a \,\rho \,\varphi^{p-1}) \,a\,(d \,\varphi) = \int \rho \,\varphi^{p-1} \,H_{\max} \varphi = \int \rho \,\varphi^{p-1} \,H \varphi = \|\varphi\|_p^{p-2} [H\varphi,\varphi] \geq 0$$

where d = d/dx. Hence

$$\int d(a \,\rho \,\varphi^{p-1}) \,a \,(d \,\varphi) \ge 0 \tag{8}$$

for all real valued $\varphi \in W^{1,\infty}_c(\mathbf{R})$ by approximation.

Next fix $\tau \in C_c^{\infty}(\mathbf{R})$ such that $0 \le \tau \le 1$, $\tau(0) = 1$ and τ is decreasing on $[0, \infty)$. For all $n \in \mathbf{N}$ define $\varphi_n \in W_c^{1,\infty}(\mathbf{R})$ by

$$\varphi_n = (a\rho)^{-1/p} \left(\tau \circ \Phi_n\right)$$

where

$$\Phi_n(x) = n^{-1} d(0; x)^2 = n^{-1} \left(\int_0^x a^{-1} \right)^2$$
.

Then

$$\varphi'_n(x) = -p^{-1}(a\rho)(x)^{-1-p^{-1}} (a\rho)'(x) \tau(\Phi_n(x))$$
$$+ 2n^{-1}(a\rho)(x)^{-1/p} \tau'(\Phi_n(x)) \left(\int_0^x a^{-1}\right) a(x)^{-1}$$

and

$$(a\rho \varphi'_n)(x) = -p^{-1}(a\rho)(x)^{-1/p} (a\rho)'(x) \tau(\Phi_n(x))$$
$$+ 2n^{-1}\rho(x) (a\rho)(x)^{-1/p} \tau'(\Phi_n(x)) \left(\int_0^x a^{-1}\right)$$

Similarly, $(a\rho \varphi_n^{p-1})(x) = (a\rho)(x)^{1/p} \tau(\Phi_n(x))^{p-1}$ and

$$(a\rho \varphi_n)'(x) = p^{-1}(a\rho)(x)^{-1+p^{-1}} (a\rho)'(x) \tau(\Phi_n(x))^{p-1}$$
$$+ 2n^{-1}(p-1)\rho(x) (a\rho)(x)^{-1+p^{-1}} \tau(\Phi_n(x))^{p-2} \tau'(\Phi_n(x)) \left(\int_0^x a^{-1}\right) .$$

Then by (8) it follows that

$$0 \leq \int \rho^{-1} d(a\rho \,\varphi_n^{p-1}) \, a\rho \, (d \,\varphi_n)$$

$$= \int dx \Big(-p^{-2} \rho(x)^{-1} \, (a\rho)(x)^{-1} \, (a\rho)'(x)^2 \Big(\tau(\Phi_n(x)) \Big)^2$$

$$-2n^{-1} (1-2p^{-1}) \, (a\rho)(x)^{-1} \, (a\rho)'(x) \, \tau(\Phi_n(x))^{p-1} \, \tau'(\Phi_n(x)) \Big(\int_0^x a^{-1} \Big)$$

$$+4n^{-2} (p-1)\rho(x) \, (a\rho)(x)^{-1} \tau(\Phi_n(x))^{p-1} \Big(\tau'(\Phi_n(x)) \Big)^2 \, d(0\,;x)^2 \Big) .$$

Using the estimate $a b \leq \varepsilon a^2 + (4\varepsilon)^{-1}b^2$ for the second term, setting $\varepsilon = (2p(p-2))^{-1}$ and rearranging one finds

$$(2p^{2})^{-1} \int \rho^{-1} (a\rho)^{-1} ((a\rho)')^{2} (\tau \circ \Phi_{n})^{2}$$

$$\leq n^{-1} \int \rho (a\rho)^{-1} \Big(4(p-1)(\tau \circ \Phi_{n})^{p-2} + 2(p-2)^{2} (\tau \circ \Phi_{n})^{2p-2} \Big) (\tau' \circ \Phi_{n})^{2} \Phi_{n} \qquad (9)$$

for all $n \in \mathbb{N}$. There are b, c > 0 such that

$$y\left(4(p-1)\tau(y)^{p-2} + 2(p-2)^2\tau(y)^{2p-2}\right)(\tau'(y))^2 \le c\,e^{-(4b)^{-1}y}$$

for all $y \in [0, \infty)$. Then

$$\left((a\rho)^{-1} \Big(4(p-1)(\tau \circ \Phi_n)^{p-2} + 2(p-2)^2 (\tau \circ \Phi_n)^{2p-2} \Big) (\tau' \circ \Phi_n)^2 \Phi_n \right) (x)
\leq c (a\rho)(x)^{-1} e^{-d(0;x)^2 (4bn)^{-1}}
= c (4\pi b n)^{1/2} K_{bn}(0;x)$$

uniformly for all $x \in \mathbf{R}$ and $n \in \mathbf{N}$. Using Proposition 2.3 one deduces that

$$\int \rho (a\rho)^{-1} \Big(4(p-1)(\tau \circ \Phi_n)^{p-2} + 2(p-2)^2 (\tau \circ \Phi_n)^{2p-2} \Big) (\tau' \circ \Phi_n)^2 \Phi_n \le c (4\pi b n)^{1/2}$$

for all $n \in \mathbb{N}$. Finally (9) and the monotone convergence theorem establishes that

$$(2p^{2})^{-1} \int \rho^{-1} (a\rho)^{-1} \Big((a\rho)' \Big)^{2} = \lim_{n \to \infty} (2p^{2})^{-1} \int \rho^{-1} (a\rho)^{-1} \Big((a\rho)' \Big)^{2} (\tau \circ \Phi_{n})^{2}$$

$$\leq \lim_{n \to \infty} n^{-1} c (4\pi b n)^{1/2} = 0 .$$

Therefore $(a\rho)' = 0$ as required.

In the unweighted case, i.e., $\rho = 1$, the proposition establishes that S extends to a contraction semigroups on one of the L_p -spaces with $p < \infty$ only in the case that X is proportional to d/dx.

4 Examples

Next we give two examples of rather unexpected properties although there is nothing inherently pathological about the weight ρ or the coefficient a. In fact in both examples $\rho = 1$ and the coefficient a of the vector field is strictly positive, smooth and uniformly bounded. The first example gives a continuous group T and semigroup S which do not extend from L_{∞} to the other L_p spaces. The principal reason for this singular behaviour is the fact that $\inf a = 0$, i.e., there is a mild degeneracy at infinity.

Example 4.1 Let $\rho = 1$. For all $n \in \mathbb{N}_0$ define $h_n = n!^{-1}$. Define $y_n \in \mathbb{R}$ for all $n \in \mathbb{N}_0$ by $y_0 = 0$ and inductively

$$y_{n+1} = y_n + 4^{-1}(h_n + h_{n+1}) + 2^{-1}$$

for all $n \in \mathbb{N}$. Define $\tilde{a}: \mathbb{R} \to \langle 0, \infty \rangle$ by

$$\tilde{a}(x) = \begin{cases} h_n & \text{if } x \in [y_n - 4^{-1}h_n, y_n + 4^{-1}h_n) \quad (n \in \mathbf{N}_0) , \\ 1 & \text{if } x \in [y_n + 4^{-1}h_n, y_n + 4^{-1}h_n + 2^{-1}) \quad (n \in \mathbf{N}_0) , \\ 1 & \text{if } x \in \langle -\infty, 0] . \end{cases}$$

Then $\tilde{a}(y_n) = h_n$ and $\int_{y_n}^{y_{n+1}} dx \, \tilde{a}(x)^{-1} = 1$ for all $n \in \mathbb{N}$. Next we regularize \tilde{a}^{-1} . For all $n \in \mathbb{N}_0$ let $\chi_n \in C_c^{\infty}(\mathbf{R})$ be such that $\chi_n \geq 0$, $\int \chi_n = 1$, supp $\chi_n \subseteq [-8^{-1}h_n, 8^{-1}h_n]$ and $\chi_n(-x) = \chi_n(x)$ for all $x \in \mathbb{R}$. Define $a \in C^{\infty}(\mathbb{R})$ by

$$a(x)^{-1} = \begin{cases} (\chi_0 * \tilde{a}^{-1})(x) & \text{if } x \le 0 \\ (\chi_n * \tilde{a}^{-1})(x) & \text{if } n \in \mathbb{N}_0 \text{ and } x \in [y_n - 4^{-1}h_n - 4^{-1}, y_n + 4^{-1}h_n + 4^{-1}) \end{cases}.$$

Then $a(y) = h_n$ for all $y \in [y_n - 8^{-1}h_n, y_n + 8^{-1}h_n]$ and $\int_{y_n}^{y_{n+1}} dx \, a(x)^{-1} = 1$ for all $n \in \mathbb{N}$. Hence $d(y_n; y_{n+1}) = 1$ for all $n \in \mathbb{N}$. But $a(y_n) = (n+1) \, a(y_{n+1})$ for all $n \in \mathbb{N}$. Therefore Condition III of Proposition 3.1 is not valid. In particular the group T does not extend to

any of the other L_p spaces. Next we show that the semigroup S also does not extend to another L_p space.

Let $p \in [1, \infty)$, t > 0 and let q be the dual exponent of p. For all $n \in \mathbb{N}$ set $I_n = [y_n - 8^{-1}h_n, y_n + 8^{-1}h_n]$. Let $n \in \mathbb{N}$. Set $\varphi = \mathbb{1}_{I_{n+1}}$ and $\psi = \mathbb{1}_{I_n}$. Then $\|\varphi\|_p = |I_{n+1}|^{1/p}$ and $\|\psi\|_q = |I_n|^{1/q}$. Moreover,

$$(\psi, S_t \varphi) = (4\pi t)^{-1/2} \int_{I_n} dx \int_{I_{n+1}} dy \, a(y)^{-1} e^{-d(x;y)^2 (4t)^{-1}}$$

$$\geq (4\pi t)^{-1/2} \int_{I_n} dx \int_{I_{n+1}} dy \, a(y)^{-1} e^{-3d(x;y)^2 t^{-1}}$$

$$= (4\pi t)^{-1/2} |I_n| |I_{n+1}| h_{n+1}^{-1} e^{-3d(x;y)^2 t^{-1}}.$$

So

$$||S_t||_{p\to p} \ge (4\pi t)^{-1/2} |I_n|^{1/p} |I_{n+1}|^{1/q} h_{n+1}^{-1} e^{-3d(x;y)^2 t^{-1}} = (64\pi t)^{-1/2} (n+1)^{1/p}$$

Hence the operator S_t on L_{∞} does not extend to a continuous operator on L_p for any $p \in [1, \infty)$ or t > 0.

In the next example the coefficient a of X is uniformly bounded above and below by a positive constant but $\sup a' = \infty$ The semigroup S extends to a continuous semigroup on all the L_p -spaces but the real part of the generator of S on L_2 is not lower semibounded. This contrasts with the case of continuous self-adjoint semigroups where boundedness of the semigroup immediately implies lower semiboundedness of the generator.

Example 4.2 First, let $\rho = 1$ and let $\chi \in C_c^{\infty}(\mathbf{R})$ be such that $0 \le \chi \le 3$, $\chi' \ge 0$, $\chi(x) = 0$ if $x \le 0$, $\chi(x) = 3$ if $x \ge 3$ and $\chi(x) = x$ if $1 \le x \le 2$. Define $a: \mathbf{R} \to [1, 4]$ by

$$a(x) = 1 + \sum_{n=1}^{\infty} \left(\chi(n(x - 16n)) - \chi(n(x - (16n + 8))) \right) .$$

Thus a=1 on an infinite sequence of intervals of length almost equal to 8 spaced at distance 8 one from the other. On the intermediate intervals a increases smoothly to the value 4 and then decreases in a similar fashion to the value 1. The rate of increase and decrease, however, becomes larger with the distance of the interval from the origin. Nevertheless $a \in C^{\infty}(\mathbf{R})$ and the bounds of Proposition 3.1.III are valid with C=4 and $\omega=0$. In particular S_t extends to the L_p -spaces and $||S_t||_{p\to p} \leq 4^{1/p}$.

Secondly, let $n \in \mathbb{N}$ with $n \geq 4$. Let $\psi \in C^{\infty}(\mathbb{R})$ be such that $\psi(x) = 3$ for all $x \leq 16n + 8$, $0 \leq \psi' \leq n^{1/2}$, $\psi'(x) = 0$ for all $x \geq 16n + 8 + 4n^{-1}$ and $\psi'(x) = n^{1/2}$ for all $x \in [16n + 8 + n^{-1}, 16n + 8 + 2n^{-1}]$. Then $3 \leq \psi(16n + 8 + 4n^{-1}) \leq 5$. Now define $\varphi \in C_c^{\infty}(\mathbb{R})$ by

$$\varphi(x) = \begin{cases} \chi(x - (16n + 4)) & \text{if } x \le 16n + 8 \\ \psi(x) & \text{if } x \in [16n + 8, 16n + 8 + 4n^{-1}] \\ 3^{-1}\psi(16n + 8 + 4n^{-1}) \Big(3 - \chi(x - (16n + 8 + 4n^{-1})) & \text{if } x \ge 16n + 8 + 4n^{-1} \end{cases}$$

Then $\|\varphi\|_2 \le 5 \cdot (12)^{1/2} = (300)^{1/2}$ and

$$\|\varphi'\|_2 \le 2\|\chi'\|_{\infty} + n^{1/2}(4n^{-1})^{1/2} + 3^{-1}\psi(16n + 8 + 4n^{-1})\|\chi'\|_{\infty} \le 2 + 4\|\chi'\|_{\infty} .$$

But $a' a \varphi \varphi' \leq 0$ and

$$-(a'\varphi, X\varphi) \ge \int_{16n+8+n^{-1}}^{16n+8+2n^{-1}} (-a' \, a \, \varphi \, \varphi') \ge \int_{16n+8+n^{-1}}^{16n+8+2n^{-1}} n \cdot 2 \cdot 3 \cdot n^{1/2} = 6n^{1/2}$$

by the previous estimates. Therefore

 $\operatorname{Re}(\varphi, H_{\min}\varphi) = ||X\varphi||_2^2 + \operatorname{Re}(a'\varphi, X\varphi)$

$$\leq \|a\|_{\infty}^{2} (2+4\|\chi'\|_{\infty})^{2} - 8n^{1/2} \leq -300^{-1} \left(6n^{1/2} - 16(2+4\|\chi'\|_{\infty})^{2}\right) \|\varphi\|_{2}^{2}$$

Consequently, Re H_{\min} is not lower semibounded. This is despite the uniform boundedness of S on L_2 .

Next, since S is uniformly bounded on each of the L_p -spaces, the spectrum $\sigma(H)$ of the generator H of the semigroup on L_p is contained in the right half-plane. But $a(x) \in [1, 4]$ for all $x \in \mathbb{R}$. Therefore $4^{-1}|x-y| \leq d(x;y) \leq |x-y|$ and Proposition 2.3 implies that

$$K_t(x;y) \le (4\pi t)^{-1/2} e^{-|x-y|^2 (64t)^{-1}}$$

for all $x, y \in \mathbf{R}$ and t > 0. Hence it follows from [Kun] or [LiV] that $\sigma(H)$ is independent of $p \in [1, \infty]$. On the other hand Re H_{\min} is not lower semibounded on L_2 and the above estimates establish that $\langle -\infty, 0 \rangle \subset \Theta(H)$, the L_2 -numerical range of H. Therefore $\Theta(H) \neq \sigma(H)$ on L_2 .

In fact this example illustrates the extreme situation that the spectrum of H is contained in the right half plane but the numerical range is the whole complex plane. This follows since one can establish that the numerical range $\Theta(H) = \mathbf{C}$ by a small modification of the foregoing estimates applied to the function $\tilde{\varphi} \in C_c^{\infty}(\mathbf{R})$ defined by

$$\tilde{\varphi}(x) = e^{i\lambda x} \tau(x) + \varphi(x) \quad ,$$

where $\lambda \in \mathbf{R}$ and $\tau \in C_c^{\infty}(\langle -1, 4 \rangle)$ is fixed such that $0 \leq \tau \leq 1$ and $\tau|_{[0,3]} = 1$. One also uses the observation that the numerical range is convex.

Finally note that the semigroup S has a bounded holomorphic extension to the open right half-plane on each of the L_p -spaces, $p \in [1, \infty)$. This follows from the explicit form of the kernel given in Propositions 2.3. Therefore the operator H is of type S_{0+} . Nevertheless, since $\Theta(H) = \mathbb{C}$ the operator H is not sectorial.

5 Volume doubling

Let V(x;r) denote the measure of the ball of radius r centred at x, i.e., the set $\{y:d(x;y)< r\}=\langle e^{-rX}x,e^{rX}x\rangle$. Then V is defined, as usual, to have the volume doubling property if there is a c>0 such that

$$V(x; 2r) \le c V(x; r)$$

for all r > 0. This property can be immediately related to the conditions of Proposition 3.1 which are necessary and sufficient for the continuous extension of T to the L_p -spaces.

Proposition 5.1

I. If the equivalent conditions of Proposition 3.1 are satisfied then

$$V(x; 2r) \le 2C^2 e^{3\omega} V(x; r) \tag{10}$$

for all $x \in \mathbf{R}$ and $r \in (0,1]$ where C and ω are the parameters of Proposition 3.1. Moreover if $\omega = 0$ then (10) is valid for all $x \in \mathbf{R}$ and r > 0.

II. If there exist c > 0 and a function $v: \langle 0, \infty \rangle \to \mathbf{R}$ such that

$$c^{-1}v(r) \le V(x;r) \le cv(r)$$

for all $x \in \mathbf{R}$ and $r \in (0,1]$ then Condition III of Proposition 3.1 is satisfied with $\omega = 0$.

Proof It follows by definition that

$$V(x;r) = \int_{e^{-rX}x}^{e^{rX}x} dy \, \rho(y) \quad .$$

But

$$\frac{d}{dr}V(x;r) = (a\rho)(e^{rX}x) + (a\rho)(e^{-rX}x)$$
.

Hence

$$V(x\,;r) = \int_0^r ds \, \Big((a\rho)(e^{sX}x) + (a\rho)(e^{-sX}x) \Big) = \int_{-r}^r ds \, (a\rho)(e^{sX}x) \quad .$$

Therefore if Condition III of Proposition 3.1 is satisfied one estimates that

$$2 C^{-1} r e^{-\omega r} (a\rho)(x) \le V(x;r) \le 2 C r e^{\omega r} (a\rho)(x)$$

for all $x \in \mathbf{R}$ and r > 0. These bounds imply (10) for all $x \in \mathbf{R}$ and $r \in (0, 1]$ or, if $\omega = 0$, for all r > 0.

If, however, the assumptions of the second statement are valid then

$$c^{-1}v(r) \le V(x;r) = \int_0^r ds \, (a\rho)(e^{sX}x) + (a\rho)(e^{-sX}x) \le r \max_{y \in [e^{-X}x,e^Xx]}(a\rho)(y)$$

for all $x \in \mathbf{R}$ and $r \in (0, 1]$. Similarly

$$c v(r) \ge r \min_{y \in [e^{-X}x, e^Xx]} (a\rho)(y)$$
.

Hence there exists a $c_1 > 0$ such that $c_1^{-1} r \leq v(r) \leq c_1 r$ for all $r \in (0, 1]$. But then

$$2(a\rho)(x) = \lim_{r \downarrow 0} r^{-1} \int_0^r ds \, (a\rho)(e^{sX}x) + (a\rho)(e^{-sX}x)$$
$$= \lim_{r \downarrow 0} r^{-1} \, V(x;r) \le \limsup_{r \downarrow 0} r^{-1} \, c \, v(r) \le c \, c_1$$

for all $x \in \mathbf{R}$. Similarly $2(a\rho)(x) \ge (c\,c_1)^{-1}$. Hence $(2c\,c_1)^{-1} \le a\rho \le 2^{-1}c\,c_1$ and Condition III of Proposition 3.1 is satisfied with $\omega = 0$.

Acknowledgement

This work was completed whilst the second named author was a guest of the Department of Mathematics at the University of Auckland.

References

- [BrR] Bratteli, O., and Robinson, D.W., Operator algebras and quantum statistical mechanics, vol. 1. Second edition. Springer-Verlag, New York etc., 1987.
- [Hör] HÖRMANDER, L., Hypoelliptic second order differential equations. *Acta Math.* **119** (1967), 147–171.
- [Kun] Kunstmann, P.C., Heat kernel estimates and L^p -spectral independence of elliptic operators. Bull. London Math. Soc. **31** (1999), 345–353.
- [LiV] LISKEVICH, V., and VOGT, H., On L^p -spectra and essential spectra of second order elliptic operators. *Proc. London Math. Soc.* **80** (2000), 590–610.
- [LuP] Lumer, G., and Phillips, R.S., Dissipative operators in a Banach space. *Pacific J. Math.* **11** (1961), 679–698.
- [Rob] ROBINSON, D.W., Elliptic operators and Lie groups. Oxford Mathematical Monographs. Oxford University Press, Oxford etc., 1991.