- (3) Дерево отрезков с операциями снизу. Выражение += на отрезке через изменение в точке.
- (4) Потоки: основные определения, теорема и алгоритм Форда-Фалкерсона.
- (5) Суффиксное дерево Укконеном за $\mathcal{O}(n)$. Массив \leftrightarrow дерево за $\mathcal{O}(n)$.

Билет #2

- (3) Sparse table. Disjoint версия. Улучшение до $\langle n \log \log n, 1 \rangle$ и $\langle n, \log \log n \rangle$.
- (4) Алгоритмы для выпуклых многоугольников: локализация точки, поиск опорной прямой, пересечение с прямой, поиск касательных от точки, расстояние от точки; всё за $\mathcal{O}(\log n)$.
- (5) Mincost circultation: сведенией к ней k-flow, алгоритм Клейна, capacity scaling. Mincost-LR-flow.

Билет #3

- (3) Число различных на отрезке, k-я статистика на отрезке.
- (4) Алгоритм Эдмондса-Карпа. Масштабирование.
- (5) Комплексные числа. FFT: прямое и обратное. Двоичная арифметика: mul/div/gcd.

Билет #4

- (3) Персистентность: стек, дерево отрезков, декартово дерево, СНМ.
- (4) LR-циркуляция, LR-поток.
- (5) Динамическая выпуклая оболочка: добавление и опорные прямые за $\mathcal{O}(\log n)$; Динамическая выпуклая оболочка: добавление и удаление за $\mathcal{O}(\log^3 n)$.

- (3) Корневая: split/rebuild, split/merge, отложенные операции.
- (4) Алгоритм Диница. Диниц с масштабированием. Диниц с link-cut.
- (5) Динамическая выпуклая оболочка: добавление и опорные прямые за $\mathcal{O}(\log n)$; Динамическая выпуклая оболочка: добавление и удаление за $\mathcal{O}(\log^3 n)$.

- (3) ДО отсортированных массивов. Частичное каскадирование для дерева и массива.
- (4) Mincost k-flow: решение Форд-Беллманом, Дейкстрой с потенциалами. Алгоритм Джонсона.
- (5) Очередь и дек с минимумом. Персистентная очередь за $\mathcal{O}(1)$.

Билет #7

- (3) Две самые дальние. Общая касательная двух многоугольников за $\mathcal{O}(n+m)$.
- (4) RMQ \rightarrow LCA \rightarrow RMQ ± 1 , решение последнего за $\langle n, 1 \rangle$.

Билет #8

- (3) Сжатый и не сжатый бор способы хранения. Алгоритм Ахо-Корасика. Задача: для каждого словарного слова найти количество вхождений в текст.
- (4) Алгоритм Мо. 3D Мо (запросы изменения). Избавление от \log n в некоторых задачах. Задача: тех на отрезке с изменением за $\mathcal{O}(n^{2/3})$.
- (5) Теорема Карзанова. Хопкрофт-Карп. Диниц на единичных сетях.

Билет #9

- (3) Суффиксный массив за $\mathcal{O}(n \log n)$. LCP за $\mathcal{O}(n)$.
- (4) Splay-дерево. Доказательство времени работы.
- (5) Сканирующая прямая: локализация точки в произвольном многоугольнике. Сумма в полуплоскости в online за $\mathcal{O}(\log n)$ и $\mathcal{O}(\sqrt{n}\log n)$.

- (3) Рюкзак на отрезке. Рюкзак, когда предметов веса w_i можно брать c_i . Рюкзак за $\mathcal{O}(s\sqrt{s})$.
- (4) Оптимизация разделяй и властвуй за $\mathcal{O}(kn\log n)$, оптимизация Кнута за $\mathcal{O}((k+n)n)$. Пример задачи: разбить n точек на k отрезков, минимизируя сумму квадратов длин.
- (5) Link-cut. Доказательство времени $\mathcal{O}(n\log^2 n)$, $\mathcal{O}(n\log n)$.

- (3) Сумма Минковского, вычисление за $\mathcal{O}(n+m)$. Применение: расстояние между выпуклыми многоугольниками.
- (4) Convex hull trick, лямбда-оптимизация. Пример задачи: разбить n точек на k отрезков, минимизируя сумму квадратов длин. $\mathcal{O}(nk\log n)$, улучшение до $\mathcal{O}(nk)$.
- (5) Комплексные числа. FFT: прямое и обратное. Вычисление по произвольному модулю. Два в одном.

Билет #12

- (3) Игры. Ацикличный граф через DP. Граф с циклами и длина игры через ретроанализ. $\alpha\beta$ -отсечение.
- (4) LA за $\langle n, \log n \rangle$ (Вишкин), за $\langle n \log n, 1 \rangle$ (лестничная декомпозиция).
- (5) Link-cut. Доказательство времени $\mathcal{O}(n \log^2 n)$, $\mathcal{O}(n \log n)$.

Билет #13

- (3) Для каждого множества посчитать сумму по подмножествам. Обратная задача.
- (4) DCP в offline за $\mathcal{O}(m^{3/2})$, за $\mathcal{O}(m \log^2 m)$, за $\mathcal{O}(m \log m)$.
- (5) Сканирующая прямая: локализация точки в произвольном многоугольнике. Сумма в полуплоскости в online за $\mathcal{O}(\log n)$ и $\mathcal{O}(\sqrt{n}\log n)$.

Билет #14

- (3) Гамильтонов путь за $\mathcal{O}(2^n n)$. Сумма элементов для каждого множества за $\mathcal{O}(2^n)$. 0-1-игра на дереве.
- (4) Вычисление Функции Гранди за $\mathcal{O}(E)$. Ним. Прямая сумма игр с доказательством.
- (5) Очередь и дек с минимумом. Персистентная очередь за $\mathcal{O}(1)$. темточе за $\mathcal{O}(\log n)$.

- (3) Sparse table. Disjoint версия. Улучшение до $\langle n \log \log n, 1 \rangle$ и $\langle n, \log \log n \rangle$.
- (4) Алгоритм Диница. Масштабирование. Диниц с link-cut.
- (5) Комплексные числа. FFT: прямое и обратное. Поиск шаблона с вопросами в тексте.

- (3) Для каждого множества посчитать сумму по подмножествам. Обратная задача.
- (4) Convex hull trick. Пример задачи: разбить n точек на k отрезков, минимизируя сумму квадратов длин. $\mathcal{O}(nk\log n)$, улучшение до $\mathcal{O}(nk)$. Дерево Ли-Чао. (dynamic convex hull trick).
- (5) Теорема Карзанова. Хопкрофт-Карп. Диниц на единичных сетях.

- (3) Рюкзак на отрезке. Рюкзак, когда предметов веса w_i можно брать c_i . Рюкзак за $\mathcal{O}(s\sqrt{s})$.
- (4) Splay-дерево. Доказательство времени работы. Площадь ∪ прямоугольников.
- (5) Дерево палиндромов, число различных палиндромов. Суффиксные массив \leftrightarrow дерево за $\mathcal{O}(n)$.