ASSIGNMENT

APPLIED DATA SCIENCE

ASSIGNMENT 1

Assignment Date	12 September 2022
Student Name	Ms. Dharshana R
Student Roll Number	713319EC024
Maximum Marks	2 Marks

Basic Python

- 1. Split the String
- 2. Use .format() to print the following string.
 Output should be: The diameter of Earth is 12742 kilometers.
- 3. In this nest dictionary grab the word "hello"
- 4. NUMPY
 - 4.1 Create an array of 10 Zeros
 - 4.2 Create an array of 10 fives
- 5. Create an array of all the even integers from 20 to 35
- 6. Create a 3x3 matrix with values ranging from 0 to 8
- 7. Concatenate a and b
 - a = np.array([1,2,3]), b = np.array([4,5,6])

PANDAS

- 8. Create a dataframe with 3 rows and 2 columns
- 9. Generate the series of dates from 1st Jan, 2023 to 10th Feb, 2023
- 10. Create 2D list to DataFrame Lists = [[1, 'aaa', 22],[2,'bbb',25],[3,'ccc',24]]

SOLUTION:

ASSIGNMENT – 2

Assignment Date	22 September 2022					
Student Name	Ms. Dharshana R					
Student Roll Number	713319EC024					
Maximum Marks	2 Marks					

Data Visualization and Pre-Processing

Tasks:

- 1. Download the dataset
- 2. Load the dataset
- 3. Perform Below Visualizations.
 - a. Univariate Analysis
 - b. Bi Variate Analysis
 - c. Multi Variate Analysis
- 4. Perform descriptive statistics on the dataset
- 5. Handle the Missing values
- 6. Find the outliers and replace the outliers
- 7. Check for Categorical columns and perform encoding
- 8. Split the data into dependent and independent variables
- 9. Scale the independent variables
- 10. Split the data into training and testing

SOLUTIONS:

```
| Import pendes as ad | Import pendes as a port | Import pendes as a port pendes as a port
```


UNIVARIATE ANALYSIS

DESCRIPTIVE STATISTIC ANALYSIS

data	a.describe()										
V 0.21											
	RowNumber	Customerid	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

	ita['CreditSc
V 0	l.4s
	CreditScore
850	233
678	63
655	54
705	53
667	53
404	1
351	1
365	1
417	1
419	1

```
Creditscore_counts-data['CreditScore'].value_counts().to_frame()
Creditscore_counts.rename(columns*{CreditScore': 'value counts'},inplace=True)
Creditscore_counts
Creditscore_counts.index.name='Nodel'
Creditscore_counts.index.name='Nodel'
Creditscore_counts

✓ 0.45

Pythc
```

	value counts
Model	
850	233
678	63
655	54
705	53
667	53
	_
404	1
351	1
365	1
417	1
419	1

460 rows × 1 columns

HANDLE MISSING DATA

DETECTING AND REPLACING OUTLIERS

max_thresoldndata['CreditScore'].quantile(0.95)
max_thresold
data[data['CreditScore']>max_thresold]
min_thresoldndata['CreditScore'].quantile(0.05)
min_thresold
data[data['CreditScore']cmin_thresold] RowNumber Customerid Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited 7 8 1565424 Obina 376 Germany Female 29 4 115046.74
12 13 1563224 Kay 476 France Female 34 10 0.00
29 30 15656300 Lucciano 411 France Male 29 0 59697.17
35 36 15794171 Lombardo 475 France Female 45 0 134254.04 119346.88 26260.98 53483.21 0.00 40 41 15619360 19360 Hsiao 472 Spain Male 40 70154.22 9879 9880 15669414 Pisano 486 Germany Male 62 9 118356.89 9907 9908 15611247 McKenzie 481 France Female 28 10 0.00 9930 9931 15713604 Rossi 425 Germany Male 40 9 166776.60 9964 9965 15642285 Douglas 479 France Male 34 5 177593.48 168034.83 145215.96 172646.88 113308.29 9966 9967 15590213 Ch'en Male 35 4 125920.98 20393.44

	ata[(data['Cre	ditScore'] <ma< th=""><th>ax_thresolo</th><th>d) & (data['(</th><th>reditScore'</th><th>]>min_th</th><th>esold</th><th>)]</th><th></th><th></th><th></th><th></th><th></th><th></th></ma<>	ax_thresolo	d) & (data['(reditScore']>min_th	esold)]						
2] 🗸 (_						
	RowNumber	Customerid	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
5	6	15574012	Chu	645	Spain	Male	44	8	113755.78	2	1	0	149756.71	1
								-		_	_	-	_	
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64	0
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	0
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	1
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	1
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	38190.78	0
8987	rows × 14 column	ıs												

ASSIGNMENT – 3

Assignment Date	4 October 2022
Student Name	Ms. Dharshana R
Student Roll Number	713319EC024
Maximum Marks	2 Marks

Abalone Age Prediction

Description:- Predicting the age of abalone from physical measurements. The age of abalone is determined by cutting the shell through the cone, staining it, and counting the number of rings through a microscope – a boring and time-consuming task. Other measurements, which are easier to obtain, are used to predict age. Further information, such as weather patterns and locations (hence food availability) may be required to solve the problem.

Attribute Information:

Given is the attribute name, attribute type, measurement unit, and a brief description. The number of rings is the value to predict: either as a continuous value or as a classification problem.

Name / Data Type / Measurement Unit / Description

- 1- Sex / nominal / -- / M, F, and I (infant)
- 2- Length / continuous / mm / Longest shell measurement
- 3- Diameter / continuous / mm / perpendicular to length
- 4- Height / continuous / mm / with meat in shell
- 5- Whole weight / continuous / grams / whole abalone
- 6- Shucked weight / continuous / grams / weight of meat
- 7- Viscera weight / continuous / grams / gut weight (after bleeding)
- 8- Shell weight / continuous / grams / after being dried
- 9- Rings / integer / -- / +1.5 gives the age in years

Building a Regression Model

- 1. Download the dataset:
- 2. Load the dataset into the tool.
- 3. Perform Below Visualizations.
 - · Univariate Analysis
 - · Bi-Variate Analysis
 - · Multi-Variate Analysis
- 4. Perform descriptive statistics on the dataset.
- 5. Check for Missing values and deal with them.
- 6. Find the outliers and replace them outliers
- 7. Check for Categorical columns and perform encoding.
- 8. Split the data into dependent and independent variables.
- 9. Scale the independent variables
- 10. Split the data into training and testing
- 11. Build the Model
- 12. Train the Model
- 13. Test the Model
- 14. Measure the performance using Metrics.

SOLUTIONS:

BUILD THE MODEL

... 1.7786226498273756

from sklearn_ensemble_import_RandemforestRegressor
repshadomforestRegressor()

TRAIN THE MODEL

reg.fit(v_train_v_train)

reg.fit(v_train_v_train)

reg.fit(v_train_v_train)

res. RandomforestRegressor()

TEST THE MODEL

preferreg.predict(v_test)

PRRFORMANCE MEASUREMENT USING METRICS

from sklearn_entrics_import_neath_operate_error
import_neath_optices_train_v_train_operate_error
import_neath_optices_train_v_train_operate_error
import_neath_optices_train_v_train_operate_error
import_neath_optices_train_v_train_optices_train_v_train_optices_train_v_train_optices_train_v_train_optices_train_v_train_optices_train_v_train_optices_train_v_train_v_train_optices_train_v_train_