W05-Lab1

Boolean Logic and Gates

Assembled for 204111 by Ratsameetip Wita

204111: Fundamentals of Computer Science

Logic Gates

 Gate เป็นอุปกรณ์อิเลคทรอนิกส์ที่ทำงานตาม Boolean
Logic ในอุปกรณ์คอมพิวเตอร์ ปัจจุบัน Gate จำนวน มหาศาล จะบรรจุอยู่ใน Transistor 1 ตัว

Boolean Logic (Algebra)

• การประมวลผลระดับวงจร ของคอมพิวเตอร์ อยู่บน พื้นฐานของ Boolean Logic (Algebra) True (1) False (0)

A	В	A ∧ B (A AND B) (conjunction)	A∨B (A or B) (disjunction)
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Α	¬A (NOT A) (negation)
0	1
1	0

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

Logic Gates [2]

2

AND, OR, NOT Gates

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

Academo.org

Online Logic Gate Simulator

Academo.org http://goo.gl/LMNg3G

204111: Fundamentals of Computer Science

Practice 0

• จาก A ∧ B, A ∨ B และ ¬A ให้ทำการวาดแผงวงจร เพื่อทดสอบว่า Truth table ด้านล่างเป็นจริง

A	В	A ∧ B (A AND B) (conjunction)	A∨B (A or B) (disjunction)	Α	¬A (NOT A) (negation)
0	0	0	0	0	1
0	1	0	1	1	0
1	0	0	1		
1	1	1	1		

Practice 0 (Key)

204111: Fundamentals of Computer Science

Combinational Circuits

• ในการทำงานจริง จะมีการประกอบกันของ Gate หลายตัว เพื่อประมวลผลข้อมูลต่าง ๆ

 $Q=(A \wedge B) \vee ((B \vee C) \wedge (B \wedge C))$

Combinational Circuits

• ในการทำงานจริง จะมีการประกอบกันของ Gate หลายตัว เพื่อประมวลผลข้อมูลต่าง ๆ

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

Manipulating circuits

- Boolean expressions
- Circuit diagrams

Equivalent notations

- Truth tables
- ในการออกแบบแผงวงจร อาจสามารถทำได้หลาย รูปแบบ โดยที่ให้ผลลัพธ์เหมือนกัน
- Boolean algebra ถูกใช้ในการออกแบบของแผงวงจร ให้ ทำงานได้ตามลอจิกที่ต้องการ และใช้จำนวน Gate น้อย ที่สุด และมีความซับซ้อนน้อยที่สุด

10

Practice I

• จาก Boolean Algebra ให้เติมค่าที่เป็นไปได้ของ Q ใน Truth Table ตามเงื่อนไขของ A, B, C ตามที่กำหนด จากนั้นให้ใช้โปรแกรม Logic Gate Simulator เพื่อตรวจสอบคำตอบ

В	С	Q
0	0	
0	1	
1	0	
1	1	
0	0	
0	1	
1	0	
1	1	
	0 0 1 1 0 0	0 0 0 1 1 1 0 0 0 0 1 1 1 0

 $Q=(A \wedge B) \vee ((B \vee C) \wedge (B \wedge C))$

13

Practice II

204111: Fundamentals of Computer Science

Lab04 204111 Sec

• Q = (A \wedge B) \vee ((B \vee C) \wedge (B \wedge C)) ให้ใช้กฎของ Boolean Algebra ใน การลดรูป จากนั้นให้ใช้โปรแกรม Logic Gate Simulator เพื่อ ตรวจสอบคำตอบ

Computer Systems: A Programmer's Perspective, 2nd Edition

Laws for the Logical Operators ∧ and ∨

Rule	AND	OR	
Commutative	$A \wedge B = B \wedge A$	A V B = B V A	
Associative	$A \triangle B \triangle C = (A \land B) \land C = A \land (B \land C)$ $A \underline{\lor} B \underline{\lor} C = (A \lor B) \lor C = A \lor (B \lor C)$		
Distributive	$A \triangle (B \lor C) = (A \land B) \lor (A \land C)$ $A \lor (B \triangle C) = (A \lor B) \land (A \lor C)$		
Identity	A	A V 0 = A	
Dominance	A ∧ 0 = 0	A V 1 = 1	
Idempotence	$A \wedge A = A$	A V A = A	
Complementation	A ^ ¬A = 0	A V ¬A = 1	
Double Negation	¬ ¬ A = A		

Computer Systems: A Programmer's Perspective, 2nd Edition

14

204111: Fundamentals of Computer Science

Computer Systems: A Programmer's Perspective, 2nd Edition

Practice II

Original

Simplified

A	В	С	$(A \land B) \lor ((B \lor C) \land (B \land C)) \blacksquare$	
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

A NAND B A NOR B A XOR B

More gates (NAND, NOR, XOR)

• NAND ("not and"):

_	_	_	_			_	
•	Α	nand	В=	= not	(A	and	B)

- NOR ("no
 - A nor B

B = not (A and B)	0	0	1	1	0
ot or"):	0	1	1	0	1
,	1	0	1	0	1
B = not (A or B)	1	1	0	0	0

- XOR ("exclusive or"):
 - A xor B = (A and not B) or (B and not A)

Computer Systems: A Programmer's Perspective, 2nd Edition

17

204111: Fundamentals of Computer Science

Practice III

• (Lab05_1_5XXXXXXXX.py) ยู่นเป็นผื่นที่เกิดจากการโหมงานหนัก หมออิมจึงแนะนำยุ่นว่าควรหยดพักผ่อนในช่วงสงกรานต์ที่จะถึง ให้ เขียนฟังก์ชัน count down to songkran(d, m, y) เพื่อช่วยยุ่น คำนวณว่าวันที่กำหนดห่างจากวันสงกรานต์ (13 เมษายน) ครั้ง กัดไปกี่วัน (แน่นอนว่าฟังก์ชันนี้ต้องใช้ได้ในปีอธิกสุรทินด้วย)

Hint: เทียบคำตอบได้จากเวบ http://www.timeanddate.com/date/duration.html

<u>Input</u>	Output
1	72
2	
2016	
13	0
4	
2016	

19

Conclusions

- Identify basic gates.
- Describe the behavior of a gate or circuit using Boolean expressions, truth tables, and logic diagrams.
- Transform one Boolean expression into another given the laws of Boolean algebra.

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

Practice IV

• (Lab05_2_5XXXXXXXX.py) ทันใดนั้นเองเจ๋โทรศัพท์ด่วนเข้ามา ขอให้ยุ่นรับงานใหม่ มีกำหนดส่งภาย x วัน ให้เขียนฟังก์ชัน Boolean take_this_job(d, m, y, x) เพื่อช่วยยุ่นตัดสินใจว่า จะรับงานจากเจ๋หรือไม่

<u>Input</u>	Output
1 2 2016 75	False
1 2 2016 45	True

18