IRF7425PbF

\mathbf{V}_{DS} -20 ٧ $R_{DS(on)\;max}$ 8.2 $(@V_{GS} = -4.5V)$ $\mathbf{m}\Omega$ R_{DS(on) max} 13 $(@V_{GS} = -2.5V)$ Q_{g (typical)} 87 nC I_D -15 Α $(@T_A = 25^{\circ}C)$

S 1 D S D G 4 Top View

Features

Industry-standard pinout SO-8 Package
Compatible with Existing Surface Mount Techniques
RoHS Compliant, Halogen-Free
MSL1,Consumer qualification

Benefits

Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability

Page Part Number	Dookogo Typo	Standard Pac	Orderable Part Number	
Base Part Number	Package Type	Form	Quantity	Orderable Part Number
IRF7425PbF	SO-8	Tube/Bulk	95	IRF7425PbF
IRF/425F0F	50-8	Tape and Reel	4000	IRF7425TRPbF

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS} Drain- Source Voltage		-20	V
$I_D @ T_A = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ -4.5V	-15	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	-12	Α
I _{DM}	Pulsed Drain Current ①	-60	
$P_D @ T_A = 25^{\circ}C$	Power Dissipation ③	2.5	W
$P_D @ T_A = 70^{\circ}C$	Power Dissipation ③	1.6	• • •
	Linear Derating Factor	20	mW/°C
V_{GS}	Gate-to-Source Voltage	± 12	V
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	50	°C/W

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.010		V/°C	Reference to 25°C, I _D = -1mA
P	Static Drain-to-Source On-Resistance			8.2	0	V _{GS} = -4.5V, I _D = -15A ②
R _{DS(on)}	Static Brain to Godice Off resistance			13	mΩ	V _{GS} = -2.5V, I _D = -13A ②
V _{GS(th)}	Gate Threshold Voltage	-0.45		-1.2	V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$
g _{fs}	Forward Transconductance	44			S	V _{DS} = -10V, I _D = -15A
1	Drain to Source Leakage Current			-1.0		$V_{DS} = -16V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			-25	μΑ	$V_{DS} = -16V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
lass	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V
I _{GSS}	Gate-to-Source Reverse Leakage			100	IIA I	V _{GS} = 12V
Qg	Total Gate Charge		87	130		$I_D = -15A$
Q _{gs}	Gate-to-Source Charge		18	27	nC	$V_{DS} = -10V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		21	32		$V_{GS} = -4.5V$
t _{d(on)}	Turn-On Delay Time		13			V _{DD} = -10V ②
t _r	Rise Time		20		ns	$I_D = -1.0A$
t _{d(off)}	Turn-Off Delay Time		230		115	$R_G = 6.0\Omega$
t _f	Fall Time		160			$V_{GS} = -4.5V$
C _{iss}	Input Capacitance		7980			$V_{GS} = 0V$
Coss	Output Capacitance		1480		pF	$V_{DS} = -15V$
C _{rss}	Reverse Transfer Capacitance		980			f = 1.0kHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			0.5		MOSFET symbol
	(Body Diode)			-2.5	A	showing the
I _{SM}	Pulsed Source Current			-60	1 ^	integral reverse
	(Body Diode) ①			-60		p-n junction diode.
V _{SD}	Diode Forward Voltage	I		-1.2	V	$T_J = 25^{\circ}C$, $I_S = -2.5A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		120	180	ns	$T_J = 25^{\circ}C, I_F = -2.5A$
Q _{rr}	Reverse Recovery Charge		160	240	nC	di/dt = -100A/µs ②

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

Fig 15. Typical Vgs(th) Variance Vs. Juction Temperature

Fig 16. Typical Power Vs. Time

MILLIMETERS

MAX

1.75

0.25

0.51

0.25

5.00

4.00

6.20

0.50

1.27

8°

1.27 BASIC

0.635 BASIC

MIN

1.35

0.10

0.33

0.19

4.80

3.80

5.80

0.25

0.40

INCHES

MAX

.0688

.0098

.0098

.1968

.1574

.2440

.0196

050

8°

.020

MIN

.0532

.0075

.1497

e 1 | .025 BASIC

.0099

.016

.050 BASIC

A1 .0040

b .013

С D .189

е

Н .2284

У 0°

DIM

SO-8 Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO ASUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

SO-8 Tape and Reel (Dimensions are shown in millimeters (inches))

- NOTES:

 1. CONTROLLING DIMENSION: MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:
1. CONTROLLING DIMENSION: MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Qualification level	Consumer (per JEDEC JESD47F ^{††} guidelines)		
Moisture Sensitivity Level	SO-8	M6L1 (per JEDEC J-STD-020D ^{††})	
RoHS compliant		Yes	

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release

Revision History

Date	Comments
10/29/2013	Added ordering information on page 1.
10/29/2013	Updated datasheet with new IR corporate template.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/