Supplementary Data for "Structural diversity as a predictor of ecosystem function"

Authors: Elizabeth A. LaRue¹, Brady S. Hardiman^{1,2}, Jessica M. Elliott¹, Songlin Fei¹

Affiliations:

¹Department of Forestry & Natural Resources, Purdue University, 715 W. State Street, West Lafayette, IN 47907

²Department of Ecological and Environmental Engineering, Purdue University, 715 W. State Street, West Lafayette, IN 47907

Appendix S1: Additional details on statistical methods.

To determine if D-EF were significant at a regional level while controlling for site-level heterogeneity, we resampled from the slope estimates of individual sites. Specifically, we resampled the sum of the conditional and fixed slope estimates for each site 10,000 times with a bootstrapping approach. We then calculated bias corrected, accelerated 95% confidence interval of each generated distribution (Efron and Tibshirani 1986). If the 95% CI deviated from zero, then these regional slope estimates were considered to be significantly positive or negative. We also interpreted larger 95% CI values to indicate greater environmental heterogeneity influencing the D-EF.

Supplemental Data References

Efron, B.R., & Tibshirani. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. *Stat Sci* 1, 54–75.

Figure S1. NEON sites from nine ecoclimatic domains across the USA. White triangles indicate forested sites included in this study.

 Table S1. NEON forest site locations and plot sample size

								No.
Site	Acronym	State	Ecoclimatic domain	Forest type	Latitude	Longitude	Year	plots
Talladega National Forest	TALL	AL	Ozarks	Mixed	32.95046	-87.39327	2016	31
Dead Lake	DELA	AL	Ozarks	Evergreen	32.541727	-87.803877	2016	31
Lenoir Landing	LENO	AL	Ozarks	Deciduous	31.853861	-88.161181	2016	31
Delta Junction	DEJU	AK	Taiga	Evergreen	63.8812	-145.75136	2017	22
Caribou Creek-Poker Flats	BONA	AK	Taiga	Mixed	65.15401	-147.50258	2017	22
Soaproot Saddle	SOAP	CA	Pacific Southwest	Evergreen	37.03337	-119.26219	2017	5
Lower Teakettle	TEAK	CA	Pacific Southwest	Evergreen	37.00583	-119.00602	2017	5
Ordway-Swisher Biological Station	OSBS	FL	Southeast	Evergreen	29.689282	-81.993431	2016	24
The University of Kansas Field Station	UKFS	KS	Prairie	Deciduous	39.040431	-95.19215	2017	25
Jones Ecological Research Center	JERC	GA	Southeast	Mixed	31.194839	-84.468623	2016	32
Smithsonian Environmental Center	SERC	MD	MidAtlantic	Deciduous	38.890131	-76.560014	2017	26
Harvard Forest	HARV	MA	Northeast	Mixed	42.53691	-72.17265	2016	28
UNDERC	UNDE	MI	Great Lakes	Mixed	46.23391	-89.537254	2016	31
Bartlett Experimental Forest	BART	NH	Northeast	Mixed	44.063889	-71.287375	2016	30
Great Smoky Mts. National Park	GRSM	TN	Appalachians	Mixed	35.68896	-83.50195	2016	32
Oak Ridge	ORNL	TN	Appalachians	Mixed	35.964128	-84.282588	2017	31
Mtn. Lake Biological Station	MLBS	VA	Appalachians	Deciduous	37.378314	-80.524847	2017	14
Smithsonian Conservation Biology	SCBI	VA	MidAtlantic	Mixed	38.892925	-78.139494	2017	19
Treehaven	TREE	WI	Great Lakes	Mixed	45.49369	-89.58571	2017	17

Table S2. Data products from the National Ecological Observatory Network (NEON) Data Portal used in data analysis (https://data.neonscience.org/home). All data was accessed in April 2018. Data product years can be found in Table S1.

Variable in data analysis	NEON data product	Data product ID	Sites					
Structural diversity metrics	Discrete return LiDAR point cloud	DP1.30003.001	BART, BONA, DEJU, DELA, GRSM, HARV, JERC, LENO, MLBS, ORNL, OSBS, SCBI, SERC, SOAP, TALL, TEAK, TREE, UKFS, UNDE					
Plant species richness	Plant presence and percent cover	DP1.10058.001	BART, BONA, DEJU, DELA, GRSM, HARV, JERC, LENO, MLBS, ORNL, OSBS, SCBI, SERC, SOAP, TALL, TEAK, TREE, UKFS, UNDE					
Basal area	Woody plant vegetation structure	DP1.10098.001	BART, BONA, DEJU, GRSM, HARV, LENO, ORNL, OSBS, SCBI, SERC, TALL, TREE					
Coarse woody debris	Coarse downed wood log survey	DP1.10010.001	BART, BONA, DELA, GRSM, LENO, MLBS, ORNL, OSBS, SCBI, SERC, TALL, TREE					
fPAR	fPAR — spectrometer — mosaic	DP3.30014.001	BART, BONA, DEJU, DELA, GRSM, HARV, JERC, LENO, MLBS, ORNL, OSBS, SCBI, SERC, SOAP, TALL, TEAK, UKFS, UNDE					
LAI	LAI – spectrometer - mosaic	DP3.30012.001	BART, BONA, DEJU, DELA, GRSM, HARV, JERC, LENO, MLBS, ORNL, OSBS, SCBI, SERC, SOAP, TALL, TEAK, UKFS, UNDE					
Total soil nitrogen	Soil chemical properties (Megapit)	DP1.00097.001	BART, BONA, DEJU, DELA, GRSM, HARV, JERC, LENO, MLBS, ORNL, OSBS, SCBI, SERC, SOAP, TALL, TEAK, TREE, UKFS, UNDE					

Table S3. Linear lopes and 95% bootstrapped confidence intervals of slopes of site-level D-EF relationships. N_{Plots} is the number of plots at a site within each univariate regression. To test for regional differences in the slope of B-EF relationships (either positive or negative) at a local scale we conducted site-level univariate linear regressions. First, we tested for significant relationships between D-EF at each site with univariate linear regressions; a standardized diversity metric was the predictor and ecosystem function the response variable in each analysis. To determine if D-EF relationships were significant, we resampled the univariate linear slope estimates 10,000 times with a bootstrapping approach. Finally, we calculated bias corrected, accelerated 95% confidence interval of each generated distribution (Efron and Tibshirani 1986) and if the 95% confidence interval did not overlap with zero, then it was considered to be significant (indicated as a bolded slope and 95% confidence interval).

95% confider	ice mici v					_								inci vai			WIUI ZCI									Jidea		e PSR	Omituei	lice iii		e PSV	
Function	Site		ternal h		•			eterogen	•		Mean car			N	Gap .	raction	CI		ıve spec	cies rich			ee spec	ies richr		NI			CI	NT.	nauv		6 CI
	DADT	N _{plots}	P 0.50		6 CI	N _{plots}	β	95%		N _{plots}	р 0.04	95%		N _{plots}	0.024	95%		N _{plots}	P 40	95%		N _{plots}	P 20	95%		N _{plots}		95%		N _{plots}	P 0.45		
	BART	15	0.58	-0.20	1.18	15	0.6	-0.48		15	-0.84	-2.09	0.24	15	0.834	-0.14	1.54	15	0.40	-1.18		15	-0.29	-1.00	1.45	15	0.299	-0.22		15	0.45	0.18	0.70
	BONA	9	0.39	0.02	0.81	9		-0.31		9	1.67	0.55	2.64	9	-0.61	-1.17	0.31	9	0.03	-2.89		9	0.27	-1.74	1.57	9	1.488			9	0.09	-0.41	0.29
	DEJU	10	2.41	0.63	4.56	10		0.299		10	15.91	2.68	64.36	10	0.163	-0.66	1.51	10	0.53			10	0.38	-0.19	1.49	10		-0.213		10	-0.07		-0.01
	GRSM	22	0.40	-0.58	1.59	22		-0.15		22	0.23	-0.33	0.91	22	-0.13	-1.52	1.10	22	0.03	-0.28	0.55	22	-0.31	-0.53	-0.05	22		-0.297	0.72	22	0.15	-0.29	0.40
	HARV	20	0.61	-0.37	1.27	20	_		1.26	20	0.81	0.27	1.63	20	-0.6	-1.40	-0.09	20	-0.10		0.55	20	0.02	-0.89	0.91	20	0.017		0.38	20	0.73	-0.43	1.40
Basal area	LENO	21	0.51	-0.39	1.18	21	_	0.131		21	0.91	0.44	1.55	21	-1.84	-4.38	-0.64	21	0.36	-0.96	0.99	21	0.57	-0.58	1.31	21		-0.526		21	-0.03		0.75
	ORNL	21	0.55	0.26	0.92	21			0.86	21	0.44	0.13	0.85	21	-0.45	-0.74	0.39	21	0.12	-0.24	0.48	21	0.30	-0.08	0.51		0.143		0.7	21	0.62	-0.43	2.22
	OSBS	18	0.23	-0.03	0.40	18		0.043		17	0.54	-0.01	0.86	17	-0.25	-0.46	0.05	18	0.10	-0.03	0.25	17	0.54	0.01	0.83	18		-0.017		17	0.06	-0.48	0.58
	SCBI	14	-0.08	-0.96	0.61	14	0.21			14	0.39	-0.02	0.85	14	-2.28	-4.69	-1.09	14	-0.22		1.33	14	0.14	-1.61	1.33	14		-1.233	1.02	14	0.06	-0.85	0.82
	SERC	20	-0.16		0.35	20			0.82	20	0.47	-0.14	1.24	20	-0.77	-2.19	0.42	20	0.12	-0.52	1.05	20	0.40	-0.32	1.29	20		-0.794		20		-1.63	0.30
	TALL	22	0.06	-0.21	0.30	22	-0.1			21	0.09	-0.31	0.49	21	-0.07	-0.35	0.21	22	-0.14		0.26	21	-0.08	-0.67	0.39	22		-0.372		21	0.44	0.15	0.70
	TREE	12	0.89	0.36	1.55	12	_	-0.77		12	1.15	0.51	1.51	12	-0.51	-1.39	0.40	12	0.13	-0.70	1.66	12	0.25	-0.41	1.09	12			1.11	12			0.28
	BART	30	-0.50	-0.85	-0.10	30	-0.9			30	1.01	0.10	1.82	30	-1.04	-1.58	-0.52	30	0.37	-0.71	1.08	30	-0.04	-0.64	0.53	30	0.025		0.27	30	-0.28	-0.52	0.00
	BONA	22	0.18	-0.17	0.41	22	0	-0.42		22	0.70	-0.26	1.41	22	-0.56	-0.86	-0.33	22	-0.97		0.39	22	-0.27	-0.77	0.82	22		-0.888	1.88	22	0.06	-0.07	0.34
	DEJU	24	-0.07	-1.43	1.14	24	-0.4			28	5.75	-5.86	23.33	28	-1.85	-3.30	-0.85	24	-0.26		-0.01	24	0.02	-0.16	0.27	24		-0.807	0	28	0.01	-0.18	0.09
	DELA	33	-0.62	-1.12	-0.02	33	-0.7	-0.96		37	0.59	0.19	1.15	37	-1.29	-1.60	-0.92	33	-0.13		0.35	33	0.11	-0.51	0.46	33		-0.691		37	0.52	-0.13	1.52
	GRSM	32	0.34	0.13	0.55	32		0.286		32	0.42	0.33	0.53	32	-0.87	-1.29	-0.56	32	0.22	0.06	0.33	32	0.21	0.07	0.34	32		0.0245		32		-0.17	0.13
	HARV	28	-0.58	-0.94	-0.06	28	-0.4	-0.68	-0.1	28	-0.20	-0.60	0.21	28	-0.03	-0.36	0.29	28	-0.17	-0.50	0.13	28	-0.24	-0.73	0.35	28	-0.08		0.09	28	-0.17	-0.71	0.24
	JERC	32	0.15	-0.15	0.51	32	0.04		0.23	32	0.00	-0.45	0.89	32	0.04	-0.37	0.40	32	0.02	-0.11	0.18	32	-0.02	-0.18	0.18	32	0.005	-0.2	0.2	32	0.52	-0.33	1.07
LAI	LENO	31	0.00	-0.28	0.60	31	0		0.21	31	-0.09	-0.42	0.17	31	0.84	0.21	3.06	31	-0.32		-0.07	31	-0.17	-1.03	0.24	31	-0.19		-0.03	31		_	0.26
	MLBS	14	-0.14	-0.35	0.05	14	-0.2	-0.43		14	-0.03	-0.46	0.48	14	-0.26	-0.51	-0.05	14	-0.24		0.06	14	-0.06	-0.29	0.11	14			0.29	14	0.23	0.10	0.35
	ORNL	62	0.07	-0.08	0.21	62	0.12			62	0.18	0.02	0.33	62	-0.01	-0.14	0.12	62	-0.29	-0.40	-0.17	62	-0.12	-0.23	-0.03	62			-0.18	62			0.66
	OSBS	24	0.09	-0.25	0.32	24	-0.1			23	0.24	-0.61	0.68	23	-0.21	-0.44	0.20	24	0.02	-0.20	0.23	24	0.24	-0.02	0.45	24	-0		0.22	23	0.07	-0.50	0.42
	SCBI	19	-0.13	-0.22	0.06	19	-0.1	-0.18	-0.09	19	-0.09	-0.16	0.02	19	0.06	-0.22	0.47	19	-0.05	-0.35	0.40	19	-0.05	-0.17	0.20	19			0.26	19			0.01
	SERC	26	-0.10	-0.18	0.02	26	-0.1	-0.2	-0.03	26	-0.10	-0.18	0.00	26	0.15	0.03	0.26	26	-0.09	-0.20	0.12	26	-0.07	-0.17	0.15	26		-0.156		26			0.05
	TALL	31	0.42	0.32	0.51	31	0.01		0.36	30	0.56	0.42	0.73	30	-0.50	-0.64	-0.34	31	-0.19		0.09	30	-0.03	-0.48	0.54	31		0.0206		30	0.36	0.06	0.76
	UKFS	25	0.26	-0.19	0.83	25	0.13			25	0.37	0.03	0.82	25	-0.44	-0.64	-0.16	25	-0.21		-0.11	25	0.19	-0.30	0.99	25		-0.291		25		-1.49	0.37
	UNDE	31	0.34	0.20	0.49	31		0.065		31	0.49	0.35	0.67	31	-0.24	-0.40	-0.13	31	0.00	-0.22	0.22	31	0.07	-0.13	0.25	31		-0.247	0.1	31	0.00	-0.10	0.12
	BART	30	-0.09	-0.15	-0.03	30	-0.2		-0.08	30	0.17	0.00	0.32	30	-0.19	-0.29	-0.10	30	0.06	-0.14	0.17	30	0.00	-0.10	0.10	30			0.04	30	-0.05	-0.09	0.00
	BONA	22	0.04	-0.03	0.09	22	0	-0.08	0.07	22	0.15	-0.03	0.30	22	-0.12	-0.18	-0.07	22	-0.17		0.11	22	-0.06	-0.16	0.14	22			0.38	22	0.01	-0.01	0.06
	DEJU	24	-0.03	-0.42	0.27	24	-0.1	-0.29	-0.03	28	1.50	-1.73	6.23	28	-0.50	-0.90	-0.26	24	-0.07	-0.17	0.00	24	0.00	-0.04	0.07	24		-0.219	0	28	0.01	-0.04	0.03
	DELA	33	-0.10	-0.18	0.00	33	-0.1			37	0.10	0.04	0.20	37	-0.21	-0.27	-0.15	33	-0.02		0.06	33	0.02	-0.07	0.07	33		-0.114		37	0.08	-0.03	0.24
	GRSM	32	0.07	0.03	0.12	32				32	0.09	0.07	0.12	32	-0.20	-0.31	-0.13	32	0.05	0.01	0.08	32	0.05	0.02	0.07	32		0.0018		32	-0.01	-0.04	0.03
	HARV	28	-0.10	-0.18	0.00	28	-0.1			28	-0.04	-0.11	0.04	28	0.00	-0.07	0.07	28	-0.04	-0.11	0.03	28	-0.04	-0.13	0.06	28			0.02	28	-0.03		0.06
	JERC	32	0.03	-0.01	0.05	32	0.01		0.03	32	0.03	-0.15	0.08	32	-0.01	-0.04	0.13	32	0.01	-0.01	0.02	32	0.01	-0.02	0.03	32		-0.012		32	0.00	-0.15	0.09
fPAR	LENO	31	0.01	-0.03	0.13	31	0	-0.02		31	-0.01	-0.06	0.03	31	0.14	0.03	0.57	31	-0.05			31	-0.03	-0.18	0.03	31		-0.049	-0	31	-0.01	-0.06	0.05
	MLBS	14	-0.02	-0.05	0.01	14	-0	-0.06	0	14	0.00	-0.05	0.07	14	-0.04	-0.07	-0.01	14	-0.03		0.01	14	-0.01	-0.04	0.01	14		-0.052		14	0.03	0.01	0.05
	ORNL	31	0.01	-0.02	0.05	31	0.02			31	0.03	0.00	0.07	31	0.00	-0.03	0.03	31	-0.05		-0.01	31	-0.02	-0.04	0.00	31			-0.01	31	0.00	-0.11	0.22
	OSBS	24	0.02	-0.07	0.08	24	-0	-0.09	0.05	23	0.06	-0.18	0.17	23	-0.05	-0.11	0.07	24	0.01	-0.05	0.07	23	0.05	-0.03	0.13	24			0.07	23	0.01	-0.15	0.10
	SCBI	19	-0.02	-0.03	0.00	19	-0	-0.03	-0.01	19	-0.01	-0.02	0.01	19	0.00	-0.04	0.06	19	-0.01	-0.06	0.06	19	0.00	-0.02	0.03	19		-0.037		19	-0.03	-0.05	0.00
	SERC	26	-0.01	-0.02	0.00	26	-0	-0.03	-0	26	-0.01	-0.02	0.01	26	0.02	0.00	0.04	26	-0.01	-0.03	0.02	26	-0.01	-0.02	0.03	26		-0.021		26	-0.02	-0.05	0.01
	TALL	31	0.08	0.06	0.10	31	0.01	-0.05	0.08	30	0.10	0.08	0.14	30	-0.09	-0.12	-0.06	31	-0.04	-0.09	0.02	30	0.00	-0.09	0.11	31		0.0026		30	0.07	0.02	0.15
	UKFS	25	0.01	-0.04	0.07	25	0.01	-0.03	0.06	25	-0.01	-0.04	0.05	25	0.02	-0.05	0.05	25	-0.01	-0.04	0.06	25	-0.02	-0.06	0.05	25	-0	-0.069	0.06	25	-0.06	-0.17	0.05
	UNDE	31	0.05	0.00	0.08	31	0.04	-0.02	0.08	31	0.11	0.07	0.16	31	-0.06	-0.10	-0.03	31	0.01	-0.04	0.06	31	0.00	-0.04	0.04	31	-0.02	-0.059	0.02	31	-0.01	-0.04	0.02

Structural diversity and function

Table S3 cont.

	D. D.	21	0.24	0.22	0.77	21	0.25	0.7	1.16	21	0.17	0.46	1.21	21	0.24	0.47	1.01	21	0.02	0.17	1.05	21	0.00	0.97	0.70	21	0.277	0.002	0.70	21	0.10	0.16	0.21
	BART	21		-0.22		21				21	0.17	-0.46	1.21	21	0.24	-0.47	1.01	21	0.83	0.17		21	-0.08	-0.87	0.79				0.69	21	0.10	-0.16	
	BONA	10	-0.31		-0.04	10	-0.3	-0.83	-0.03	10	-0.97	-3.02	-0.12	10	0.03	-0.55	0.36	10	0.49	-1.45		10	0.04	0.44	2.06			-0.634		10	0.04	-0.04	
	DELA	18	-0.55		0.17	18	-0.7	-1.09	-0.3	18	-0.33	-1.00	0.61	18	-1.25	-2.49	-0.58	18	0.83	-0.04	1.77	18	0.84	-0.44	2.06	18		0.0886		18	0.67	-0.52	
	GRSM	20		-0.84	0.74	20	-0.1	-1.08	0.51	20	-0.17	-0.80	0.34	20	0.73	-0.34	2.09	20	-0.33	-0.69	-0.01	20	-0.40	-0.84	-0.11	20		-0.694		20	0.15	-0.39	0.43
Ln(1 +	LENO	21	0.66	-0.20	1.70	21		0.225		21	0.54	-0.27	1.50	21	-1.20	-5.70	0.57	21	0.59	-0.54	1.15	21	0.96	-0.48	1.78	21			0.59	21	-1.01	-1.75	
CWD)	ORNL	18	0.45	-0.24	1.08	18				18	0.45	-0.13	1.08	18	-0.50	-1.93	0.54	18	-0.01	-0.35	0.47	18	-0.17	-0.71	0.46	18			0.49	18	-0.21	-1.35	
	OSBS	11	0.60	0.18	0.87	11		0.413		11	1.28	0.48	1.77	11	-0.62	-0.96	-0.19	11	-0.16	-0.69	0.57	11	1.47	0.20	2.07	11		-0.356		11	0.71	0.08	2.03
	SCBI	14	0.34	-0.29	0.85	14		-0.33		14	0.28	-0.17	0.69	14	-0.17	-0.72	1.16	14	-0.30		0.92	14	0.24	-0.64	1.02	14		-0.913	0.4	14	-0.11	-0.95	0.99
	SERC	19	0.19	-0.34	0.68	19	0.65		1.1	19	0.65	-0.05	1.09	19	-0.16	-1.80	1.03	19	-0.16			19	-0.23	-1.05	0.39	19		-0.574	0.42	19	-0.13	-0.96	
	TALL	21	0.43	0.04	0.74	21	0.21	-0.49	0.82	20	0.50	-0.09	1.23	20	-0.30	-0.82	0.11	21	0.44	-0.14	0.92	20	0.46	-0.52	1.94	21	0.589	0.019	1.08	20	-0.20	-0.84	0.36
	TREE	10	0.12	-0.73	1.02	10	0.03	-0.6	0.84	10	0.38	-0.99	1.71	10	-0.53	-1.23	0.30	10	0.29	-0.38	1.43	10	0.14	-0.48	1.00	10	0.147	-1.162	0.9	10	0.10	-0.71	0.39
	BART	30	1.13	-3.31	4.37	30	2.35	-5.57	6.20	30	0.52	-7.74	8.45	30	0.93	-3.18	4.88	30	0.15	-4.39	3.64	30	0.03	-0.23	0.37	30	0.28	-0.48	1.20	30	0.84	-0.35	2.80
	BONA	22	-1.07	-2.85	0.22	22	-1.28	-4.11	0.04	22	-3.49	-11.54	0.76	22	0.06	-1.39	1.38	22	0.07	-4.80	5.67	22	0.33	-1.01	0.89	22	-3.44	-9.41	1.74	22	-0.21	-0.65	0.89
	DEJU	22	0.04	-1.60	12.45	22	2.41	0.00	9.72	24	-1.69	-55.79	8.07	24	0.86	-0.47	7.12	22	-0.51	-3.45	0.01	22	0.02	-0.01	0.16	22	-3.30	-62.80	0.00	24	0.42	0.00	4.54
	DELA	31	0.10	-0.18	0.39	31	0.00	-0.18	0.22	33	0.29	-0.15	0.70	33	-0.24	-0.53	0.08	31	0.57	0.34	0.86	31	1.41	0.73	2.92	31	0.32	0.05	0.68	33	-0.16	-0.43	0.26
	GRSM	32	0.61	-1.30	2.11	32	1.11	-1.39	2.60	32	0.97	-1.03	4.43	32	-6.03	-14.05	0.00	32	1.44	0.00	4.34	32	0.11	0.03	0.30	32	0.90	0.00	2.22	32	-0.06	-0.66	0.26
	HARV	28	0.54	-0.50	1.98	28	0.17	-0.66	1.17	28	0.30	-0.45	1.17	28	-0.63	-1.30	0.06	28	0.62	-0.46	1.18	28	1.21	0.31	2.37	28	0.31	-0.16	0.60	28	0.22	-0.78	1.35
	JERC	32	-0.31	-0.65	0.04	32	-0.23	-0.41	-0.02	32	-0.26	-1.51	0.37	32	0.09	-0.33	0.78	32	-0.27	-0.40	-0.13	32	-1.07	-2.04	-0.25	32	-0.32	-0.50	-0.07	32	-1.07	-2.00	-0.44
Exotic	LENO	31	-0.18	-0.67	0.47	31	-0.37	-0.73	0.06	31	-0.33	-0.78	0.14	31	0.00	-1.27	1.87	31	0.53	0.02	1.16	31	0.46	-1.06	2.03	31	0.03	-0.43	0.45	31	-0.27	-0.87	0.34
species	MLBS	14	0.27	-2.48	2.19	14	0.34	-2.17	2.95	14	-0.71	-7.86	3.22	14	1.10	-1.27	3.90	14	-0.64	-3.86	3.69	14	-0.34	-0.59	0.23	14	0.41	-4.44	5.45	14	1.22	-0.39	3.57
richness	ORNL	31	-0.45	-0.71	-0.21	31	-0.46	-0.91	-0.19	31	-0.54	-0.83	-0.29	31	0.38	0.11	0.71	31	0.28	-0.22	0.72	31	-1.01	-3.10	0.66	31	0.34	-0.23	0.79	31	-1.10	-3.19	-0.24
	OSBS	24	-0.51	-1.44	0.21	24	0.31	-0.34	1.02	23	-1.44	-5.89	0.70	23	0.79	-0.32	2.85	24	0.68	0.06	1.30	23	0.14	-0.24	0.39	24	0.68	0.00	1.33	23	-1.39	-2.57	-0.26
	SCBI	19	-0.15	-0.33	0.05	19	-0.17	-0.31	-0.01	19	-0.24	-0.40	-0.12	19	0.42	0.12	0.99	19	-0.13	-0.67	0.78	19	-0.01	-1.76	3.39	19	-0.10	-0.49	0.45	19	0.00	-0.35	0.51
	SERC	26	0.09	0.00	0.19	26	0.07	-0.02	0.20	26	0.02	-0.17	0.09	26	-0.08	-0.14	0.24	26	0.20	0.10	0.38	26	0.93	0.26	3.11	26	0.16	0.08	0.30	26	0.09	-0.17	0.24
	TALL	31	0.11	-0.22	0.50	31	-0.05	-0.60	0.50	30	0.13	-0.30	0.58	30	-0.19	-0.60	0.18	31	0.25	-0.33	0.76	30	0.36	-0.22	0.94	31	0.29	-0.31	0.89	30	0.27	-0.32	0.70
	TREE	17	0.07	-0.31	0.81	17	-0.12	-0.85	0.17	17	0.14	-0.67	0.77	17	0.04	-0.99	0.65	17	1.80	0.48	3.20	17	-0.51	-2.70	3.43	17	0.48	0.10	1.20	17	0.29	-0.03	0.96
	UKFS	25	-0.40	-0.66	0.05	25	-0.39	-0.75	0.01	25	-0.79	-1.18	-0.51	25	0.54	0.30	0.90	25	0.41	0.25	1.28	25	-1.96	-7.24	3.71	25	0.49	-0.16	0.90	25	0.25	-1.59	2.33
	UNDE	31	0.67	0.16	1.26	31	0.30	-0.08	0.85	31	0.73	0.10	1.40	31	-0.65	-1.21	-0.09					31	1.88	1.27	2.73					31	0.07	-0.21	0.32
	DELA	25	0.09	-0.10	0.33	25	0.01	-0.09	0.2	25	0.32	-0.39	0.72	25	-0.05	-0.49	0.33	25	0.28	0.04	0.51	25	0.24	0.07	0.41	25	0.113	-0.064	0.38	25	-0.18	-0.49	0.09
	JERC	19	-0.05	-0.18	0.14	19	-0	-0.14	0.08	19	0.08	-0.60	0.52	19	-0.09	-0.42	0.26	19	-0.06	-0.12	0.03	19	-0.03	-0.11	0.08	19	-0.06	-0.151	0.06	19	-0.25	-0.58	0.39
	LENO	16	0.02	-0.36	0.38	16	0.09	-0.17	0.39	16	-0.22	-0.52	0.22	16	-0.22	-1.13	1.57	16	0.30	0.01	0.59	16	0.38	0.09	0.68	16	0.112	-0.147	0.46	16	0.00	-0.43	0.71
Ln(1 +	ORNL	17	-0.15	-0.28	-0.03	17	-0.2	-0.34	-0.03	17	-0.39	-0.53	-0.26	17	0.29	0.15	0.45	17	0.02	-0.18	0.20	17	-0.05	-0.16	0.05	17	0.015	-0.221	0.23	17	-0.42	-1.14	0.00
Exotic PSR)	SCBI	19	-0.08	-0.25	0.08	19	-0.1	-0.23	0.03	19	-0.20	-0.28	-0.11	19	0.42	0.20	0.79	19	-0.22	-0.59	0.31	19	-0.05	-0.27	0.25	19	-0.15	-0.431	0.18	19	-0.11	-0.41	0.25
	SERC	26	0.07	0.00	0.16	26	0.05	-0.02	0.15	26	0.01	-0.16	0.06	26	-0.05	-0.09	0.28	26	0.14	0.06	0.32	26	0.06	-0.01	0.18	26	0.13	0.0627	0.26	26	0.09	-0.13	0.24
	UKFS	23	-0.19	-0.38	0.05	23	-0.1	-0.38	0.05	23	-0.45	-0.66	-0.28	23	0.35	0.21	0.67	23	0.24	0.10	0.68	23	0.01	-0.29	0.39	23	0.124	-0.329	0.36	23	-0.12	-1.35	0.56
	UNDE	13	-0.10	-0.29	0.15	13	0.09	-0.11	0.3	13	0.07	-0.12	0.21	13	-0.08	-0.18	0.04	13	0.04	-0.13	0.19	13	-0.06	-0.24	0.20	13	0.035	-0.058	0.3	13	0.17	0.06	0.26

Table S4. Environmental context dependency of diversity - ecosystem function relationships. The bolded terms are 95 % bootstrapped confidence intervals of the slope of the linear regression between site-level D-EF slopes and environmental context variables (maximum tree height, mean annual temperature, mean annual precipitation, total nitrogen in the O and A soil horizons).

			tree height	MA		MA		Soil Total	Nitrogen	
Function	Diversity	Bca 9	_		5% CI	Bca 95	5% CI	Bca 95% CI		
	External heterogeneity	-0.085666		-0.129136		-0.002126		-0.093045	0.041353	
	Internal heterogeneity	-0.029852	0.013266	-0.042650	0.009876	-0.000732		-0.030451	0.047154	
	Mean canopy height	-0.637201	-0.009958	-0.889519	0.017860	-0.015388		-1.044897	0.077167	
Basal	Gap fraction	-0.119693	0.006357	-0.107401	0.012977	-0.001144		-0.159369	0.136664	
area	Native species richness	-0.022685	0.007034	-0.030424	0.010236	-0.000503	0.000253	-0.034859	0.029484	
	Tree species richness	-0.027169	0.013209	-0.018512	0.042496	-0.000767	0.000104	-0.053266	0.025168	
	Native PSR	-0.069437	-0.012392	-0.087805	-0.011870	-0.001542	-0.000183	-0.013553	0.166630	
	Native PSV	-0.029928	0.019751	-0.022645	0.026520	0.000066	0.000935	-0.002971	0.094239	
	External heterogeneity	-0.017768	0.010901	-0.019622	0.027726	-0.000646	0.000291	-0.063899	0.005558	
	Internal heterogeneity	-0.010852	0.019679	-0.016012	0.035952	-0.000711	0.000476	-0.075123	0.007475	
	Mean canopy height	-0.219744	-0.004686	-0.284836	-0.006938	-0.005311	0.000293	-0.172147	0.050044	
LAI	Gap fraction	-0.000257	0.072412	-0.001921	0.093271	-0.000811	0.001705	-0.070431	0.060408	
LAI	Native species richness	-0.001576	0.042602	-0.013144	0.043189	0.000039	0.001001	-0.073672	0.034619	
	Tree species richness	-0.009953	0.011266	-0.003506	0.018357	-0.000130	0.000359	-0.041074	-0.002035	
	Native PSR	-0.013233	0.013477	-0.017230	0.015333	-0.000384	0.000364	-0.027683	0.025518	
	Native PSV	-0.014267	0.008173	-0.001574	0.037089	-0.000103	0.000521	-0.063145	-0.004769	
	External heterogeneity	-0.002472	0.002868	-0.002860	0.005681	-0.000098	0.000078	-0.011964	0.000335	
	Internal heterogeneity	-0.001394	0.005124	-0.002613	0.007827	-0.000108	0.000133	-0.014004	0.001063	
	Mean canopy height	-0.057382	-0.000305	-0.074183	-0.001178	-0.001412	0.000066	-0.055166	0.007036	
fPAR	Gap fraction	-0.000896	0.018832	0.001023	0.025415	-0.000203	0.000452	-0.011921	0.016055	
IIAK	Native species richness	-0.000601	0.007653	-0.001817	0.007944	0.000015	0.000184	-0.013278	0.005774	
	Tree species richness	-0.001296	0.002687	-0.000541	0.003651	-0.000012	0.000078	-0.008314	0.000319	
	Native PSR	-0.002868	0.003537	-0.003595	0.004230	-0.000084	0.000091	-0.004786	0.006155	
	Native PSV	-0.001465	0.002407	-0.0008	0.005001	-0.000024	0.0001	-0.009256	-0.000147	
	External heterogeneity	-0.026765	0.039369	-0.031327	0.042989	-0.000577	0.000889	-0.076800	0.039650	
	Internal heterogeneity	-0.052868	0.044993	-0.034125	0.052615	-0.001050	0.000980	-0.093038	0.040473	
Coarse	Mean canopy height	-0.061255	0.067375	-0.005296	0.095894	-0.001105	0.001768	-0.194309	0.013486	
woody	Gap fraction	-0.046382	0.062089	-0.115921	-0.005142	-0.001145	0.001887	-0.028778	0.087334	
debris	Native species richness	-0.068927	0.028005	-0.049792	0.042235	-0.000695	0.001301	-0.059914	0.068854	
deons	Tree species richness	-0.113667	0.050180	0.009292	0.195195	-0.004678	0.002172	-0.216010	0.007449	
	Native PSR	-0.051481	0.015553	-0.013329	0.081199	-0.000483	0.001253	-0.093328	0.026134	
	Native PSV	-0.086777	-0.000208	-0.055632	0.042197	-0.001134	0.000495	-0.105979	0.033079	
	External heterogeneity	-0.005867	0.060205	-0.060867	0.040126	-0.000269	0.001396	-0.084760	0.080639	
	Internal heterogeneity	-0.085471	0.053999	-0.127194	0.040846	-0.002196	0.001831	-0.122592	0.154088	
Exotic	Mean canopy height	0.039408	0.177905	-0.060402	0.155156	0.000084	0.003521	-0.296130	0.067940	
species	Gap fraction		-0.013456	-0.090286	0.04005	-0.008667		0.012683	0.405948	
richness	Native species richness	-0.009727	0.058546	-0.068619	0.045353	-0.001586	0.001211	-0.152395	0.007357	
-10111000	Tree species richness	-0.007408	0.090315	-0.086571	0.031505		0.001037	-0.155729	0.068056	
	Native PSR	-0.017699	0.172599	-0.016130	0.213932	-0.000005	0.003863	-0.316733	0.052022	
	Native PSV	-0.039966	0.03508	-0.106533	-0.012507	-0.001049	0.000316	0.004321	0.180235	

Table S5. Correlations between forest structural diversity metrics and environmental conditions across 19 forested NEON sites with Spearman's correlation coefficients. Site-level means of each structural diversity was taken from plot-level LiDAR data. MAT = mean average temperature (°C), MAP = mean annual precipitation (mm), Soil N = nitrogen in the O and Z soil horizons. * indicates an $\alpha < 0.05$.

Structural diversity metric	MAT	MAP	Soil N
Mean canopy height	0.34	0.55*	0.23
Gap fraction	-0.26	-0.54*	-0.36
External heterogeneity	0.39	0.49*	0.03
Internal heterogeneity	0.55*	0.32	-0.41

Table S6. Correlations between forest structural diversity metrics across 19 forested NEON sites with Spearman's correlation coefficients. All tests were significant ($N_{Plots} = 469$).

Structural diversity metric	External heterogeneity	Internal heterogeneity	Mean canopy height
Internal heterogeneity	0.75		
Mean canopy height	-0.76	0.51	
Gap fraction	-0.50	-0.26	-0.90