Jako trzeci do analizy wybrałem i zaimportowałem plik example.com-1.pcap.

sudo so-import-pcap example.com-1.pcap Ponownie zacząłem od Kibany i Squerta.

Widok zaimportowanego ruchu w Kibanie

Podsumowania alertów NIDS oraz ich podział na poszczególne kategorie

Usługi działające podczas ataku oraz wykorzystywane protokoły

Porty na których odbywała się komunikacja, oraz dodatkowe informacje na ich temat

Port(s)	Protocol	Service	Details	Source
161	udp	SNMP	Simple network management protocol (SNMP). Used by various devices and applications (including firewalls and routers) to communicate logging and management information with remote monitoring applications.	SG
			Typically, SNIMP agents listen on UDP port 161, asynchronous traps are received on port 162.	
			Apple AirPort Express prior to 6.1.1 and Extreme prior to 5.5.1, configured as a Wireless Data Service (WDS), allows remote attackers to cause a denial of service (device freeze) by connecting to UDP port 161 and before link-state change occurs. References: (CVE-Z005-Z098) [BiD-2152]	
			The Emerson DeltaV SE3006 through 11.3.1, DeltaV VE3005 through 10.3.1 and 11.x through 11.3.1, and DeltaV VE3006 through 10.3.1 and 11.x through 11.3.1 allow remote attackers to cause a denial of service (device restart) via a crafted packet on (1) TCP port 23, (2) UDP port 161, or (3) TCP port 513. References: (CVE-2012-4703)	
			Siemens SIMATIC S7-1200 PLCs 2 x and 3 x allow remote attackers to cause a denial of service (defect-mode transition and control outage) via crafted packets to UDP port 16 (aka the SNMP port). References (CVE-2013-2780)	
			Cisco Catalyst 2900 XL series switches are vulnerable to a denial of service, caused by an empty UDP packet. If SNMP is disabled, a remote attacker can connect to port 161 and send an empty UDP packet to cause the switch to crash. References (CVEZ-2001-056), [VDF-86-515]	
			A CWE-754: Improper Check for Unusual or Exceptional Conditions vulnerability exists in BMXNOR0200H Ethernet / Serial RTU module (all firmware versions) and Modicon M340 controller (all firmware versions), which could cause denial of service when truncated SNMP packets on port 161/UDP are received by the device. References; (CVE-2019-6813)	

Protocol Service	Port(s)
Protocol Service tcp microsoft-dr	Port(s) 445

Z tego diagramu wynika że nasz host komunikował się z innymi urządzeniami w sieci wewnętrznej a także zewnętrzynym adresem IP pochodzącym z UK

W Programie Network Miner uzyskałem informację o hostach, a wyodrębnione pliki z ruchu sieciowego

```
⊞. 3 72.14.235.9
<u>+</u>--
     74.125.19.99 [www.l.google.com] [www.google.com]
     74.125.19.100 [clients.l.google.com] [clients1.google.com]
<u>+</u>..
     74.125.19.101 [clients.l.google.com] [clients1.google.com]
     74.125.19.102 [clients.l.google.com] [clients1.google.com]
± 3 74.125.19.103 [www.l.google.com] [www.google.com]
     74.125.19.104 [www.l.google.com] [www.google.com]
🗓 🗐 74.125.19.113 [clients.l.google.com] [clients1.google.com]
     74.125.19.147 [www.l.google.com] [www.google.com]
± 3 74.125.45.100 [google.com]
     74.125.67.100 [google.com]
<u>+</u>--
⊞-🗐 74.125.77.9
⊕ 3 91.198.174.4
🖮 🎥 192.168.10.101 [SKYNET] (Windows)
± 91 192.168.10.120
🕁 🧗 192.168.10.127 (Windows)
🖮 🎥 192.168.10.128 (Windows)

    ⊕ 
    ⊕ 
    192.168.10.255

<u>⊕</u> ■ 199.19.53.1

<u>⊕</u> ■ 199.249.112.1

由 🐧 208.80.152.2 [rr.pmtpa.wikimedia.org] [rr.wikimedia.org] [en.wikipedia.org] (Linux)
     209.85.171.100 [google.com]
±- T 255.255.255.255
```


Sprawdziłem także widok logów w programi Sguily

