Reading group mathematical foundations of statistics

Chapter 3.6: Random Sample Size, Poissonization, and Kac Processes

Stefan Franssen, Msc

October 5, 2020

Set up

Suppose we have an infinite collection of random variables

$$X_1, X_2, \ldots \stackrel{\mathsf{iid}}{\sim} P.$$

Now suppose we observe some random number of observations N_n , possibly dependent on the observations, will we still get the Donsker theorems?

Random Sample Size

Theorem

Let $\mathcal F$ be a Donsker class of measurable functions. Suppose that N_n is a sequence of positive, integer valued random variables such that $N_n/c_n\to \nu$ in probability, for a random variable ν with $P(\nu>0)=1$ and a deterministic sequence $c_n\to\infty$. Then the sequence $\mathbb G_{N_n}$ converges in distribution in $\ell^\infty(\mathcal F)$ to a tight Brownian bridge as $n\to\infty$.

First assume $c_n = n$ and $N_n/n \le M$ for some number M.

First assume $c_n = n$ and $N_n/n \le M$ for some number M. Define

$$\mathbb{Z}_n(s,f) = n^{-1/2} \sum_{i=1}^{\lfloor ns \rfloor} (\delta_{X_i} - P)$$

for $s \in [0, M]$.

First assume $c_n = n$ and $N_n/n \le M$ for some number M. Define

$$\mathbb{Z}_n(s,f) = n^{-1/2} \sum_{i=1}^{\lfloor ns \rfloor} (\delta_{X_i} - P)$$

for $s \in [0, M]$. This is again a partial sum process, so we can apply the same tools as in 2.12, namely a small extension of theorem 2.12.1, to conclude that this converges to a Kiefer-Muller process \mathbb{Z} .

Then by an upcoming lemma, when $c_n = n$ and $0 \le \frac{N_n}{n} \le M$, the sequence $(\mathbb{Z}_n, \frac{N_n}{n})$ converges weakly in $\ell([0, M] \times \mathcal{F}) \times \mathbb{R}$ to a pair (\mathbb{Z}, ν) of independent random elements \mathbb{Z} and ν .

Then by an upcoming lemma, when $c_n = n$ and $0 \le \frac{N_n}{n} \le M$, the sequence $(\mathbb{Z}_n, \frac{N_n}{n})$ converges weakly in $\ell([0, M] \times \mathcal{F}) \times \mathbb{R}$ to a pair (\mathbb{Z}, ν) of independent random elements \mathbb{Z} and ν . So conclude

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{N_n}(\delta_{X_i}-P)f=\mathbb{Z}\left(\frac{N_n}{n},f\right)=:g\left(\mathbb{Z}_n,\frac{N_n}{n}\right)f.$$

Then by an upcoming lemma, when $c_n = n$ and $0 \le \frac{N_n}{n} \le M$, the sequence $(\mathbb{Z}_n, \frac{N_n}{n})$ converges weakly in $\ell([0, M] \times \mathcal{F}) \times \mathbb{R}$ to a pair (\mathbb{Z}, ν) of independent random elements \mathbb{Z} and ν . So conclude

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{N_n}(\delta_{X_i}-P)f=\mathbb{Z}\left(\frac{N_n}{n},f\right)=:g\left(\mathbb{Z}_n,\frac{N_n}{n}\right)f.$$

Then the map g is continuous almost surely. So we can apply the continuous mapping theorem, and conclude that

$$G_{N_n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{N_n} (\delta_{X_i} - P) \leadsto \frac{1}{\sqrt{\nu}} \mathbb{Z}(\nu, \dot{)}.$$

Then by an upcoming lemma, when $c_n = n$ and $0 \le \frac{N_n}{n} \le M$, the sequence $(\mathbb{Z}_n, \frac{N_n}{n})$ converges weakly in $\ell([0, M] \times \mathcal{F}) \times \mathbb{R}$ to a pair (\mathbb{Z}, ν) of independent random elements \mathbb{Z} and ν . So conclude

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{N_n}(\delta_{X_i}-P)f=\mathbb{Z}\left(\frac{N_n}{n},f\right)=:g\left(\mathbb{Z}_n,\frac{N_n}{n}\right)f.$$

Then the map g is continuous almost surely. So we can apply the continuous mapping theorem, and conclude that

$$G_{N_n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{N_n} (\delta_{X_i} - P) \rightsquigarrow \frac{1}{\sqrt{\nu}} \mathbb{Z}(\nu, \dot{)}.$$

Since ν and \mathbb{Z} are independent, and $\nu^{-1/2}\mathbb{Z}(\nu,\cdot)$ is distributed as a Brownian bridge for every deterministic ν , the variable on the right hand side of the display is distributed as a Brownian bridge,

If $\frac{N_n}{n}$ is not bounded, define $M_{n,M}=N_n\wedge (Mn)$. Then $N_{n,M}$ is bounded, so we can apply the previous argument to $\mathbb{G}_{N_{n,M}}$ to conclude that $\mathbb{G}_{N_nM} \rightsquigarrow \mathbb{G}$.

If $\frac{N_n}{n}$ is not bounded, define $M_{n,M}=N_n\wedge (Mn)$. Then $N_{n,M}$ is bounded, so we can apply the previous argument to $\mathbb{G}_{N_{n,M}}$ to conclude that $\mathbb{G}_{N_{n,M}} \leadsto \mathbb{G}$. The probability that $N_{n,M}$ is different from N_n can be made arbitrarily small by increasing M, thus the result also follows in case of unbounded N_n/n .

If $\frac{N_n}{n}$ is not bounded, define $M_{n,M}=N_n\wedge (Mn)$. Then $N_{n,M}$ is bounded, so we can apply the previous argument to $\mathbb{G}_{N_{n,M}}$ to conclude that $\mathbb{G}_{N_{n,M}}\leadsto \mathbb{G}$. The probability that $N_{n,M}$ is different from N_n can be made arbitrarily small by increasing M, thus the result also follows in case of unbounded N_n/n . The case where c_n is not equal to n can be done by relabeling. If c_n is not an integer, we can study $\lfloor c_n \rfloor$ instead. Therefore, assume each c_n is an integer.

If $\frac{N_n}{n}$ is not bounded, define $M_{n,M}=N_n\wedge (Mn)$. Then $N_{n,M}$ is bounded, so we can apply the previous argument to $\mathbb{G}_{N_{n,M}}$ to conclude that $\mathbb{G}_{N_{n,M}} \leadsto \mathbb{G}$. The probability that $N_{n,M}$ is different from N_n can be made arbitrarily small by increasing M, thus the result also follows in case of unbounded N_n/n . The case where c_n is not equal to n can be done by relabeling. If c_n is not an integer, we can study $\lfloor c_n \rfloor$ instead. Therefore, assume each c_n is an integer. For every subsequence of (c_n) , we find a further subsequence c_n' which is strictly increasing. So without loss of generality assume c_n is strictly increasing.

If $\frac{N_n}{n}$ is not bounded, define $M_{n,M} = N_n \wedge (Mn)$. Then $N_{n,M}$ is bounded, so we can apply the previous argument to $\mathbb{G}_{N_{n,M}}$ to conclude that $\mathbb{G}_{N_{n,M}} \rightsquigarrow \mathbb{G}$. The probability that $N_{n,M}$ is different from N_n can be made arbitrarily small by increasing M, thus the result also follows in case of unbounded N_n/n . The case where c_n is not equal to n can be done by relabeling. If c_n is not an integer, we can study $|c_n|$ instead. Therefore, assume each c_n is an integer. For every subsequence of (c_n) , we find a further subsequence c'_n which is strictly increasing. So without loss of generality assume c_n is strictly increasing. Then define $N'_{k} = N_n$ if $c_n = k$ and $N'_k = k\nu$ if $k \neq c_n$ for every n. Then $N'_k/k \stackrel{P}{\to} \nu$, hence $G_{N'_{l}} \rightsquigarrow G$. The sequence $\mathbb{G}_{N_{n}}$ is a subsequence.

The Lemma

Lemma

Let \mathcal{F} be a Donsker class and ν_n a sequence of random variables such that $\nu_n \stackrel{P}{\to} \nu$ for a random variable ν . Then the sequence of sequential empirical processes \mathbb{Z}_n satisfies $(\mathbb{Z}_n, \nu_n) \rightsquigarrow (\mathbb{Z}, \nu)$ in $\ell^\infty([0, M] \times \mathcal{F}) \times \mathbb{R}$, where \mathbb{Z} and ν are independent.

proof Part 1

Let $k_n \to \infty$ slowly enough that $k_n = o(\sqrt{n})$. Set

$$\mathbb{Z}'_n(s,f) = \frac{1}{\sqrt{n}} \sum_{i=k_n+1}^{\lfloor ns \rfloor} (\delta_{X_i} - P).$$

proof Part 1

Let $k_n \to \infty$ slowly enough that $k_n = o(\sqrt{n})$. Set

$$\mathbb{Z}_n'(s,f) = \frac{1}{\sqrt{n}} \sum_{i=k_n+1}^{\lfloor ns \rfloor} (\delta_{X_i} - P).$$

Then $\mathbb{Z}_n - \mathbb{Z}'_n$ converges, in ℓ^{∞} ([0, M] \times \mathcal{F}), to zero by Slutsky's Lemma.

proof Part 1

Let $k_n \to \infty$ slowly enough that $k_n = o(\sqrt{n})$. Set

$$\mathbb{Z}'_n(s,f) = \frac{1}{\sqrt{n}} \sum_{i=k_n+1}^{\lfloor ns \rfloor} (\delta_{X_i} - P).$$

Then $\mathbb{Z}_n - \mathbb{Z}'_n$ converges, in ℓ^{∞} ($[0, M] \times \mathcal{F}$), to zero by Slutsky's Lemma. Thus again by Slutsky's Lemma, \mathbb{Z}'_n has the same limit as \mathbb{Z}_n .

By Doobs martingale convergence theorem,

$$\mathbb{P}(\nu \in B|X_1,\ldots,X_k) \to \mathbb{P}(\nu \in B|X_1,X_2,\ldots)$$

in mean as $k \to \infty$.

By Doobs martingale convergence theorem,

$$\mathbb{P}(\nu \in B|X_1,\ldots,X_k) \to \mathbb{P}(\nu \in B|X_1,X_2,\ldots)$$

in mean as $k \to \infty$. Therefore

$$\lim_{n\to\infty}\mathbb{P}^*\left(\mathbb{Z}'_n\in A,\nu\in B\right)=\lim_{n\to\infty}\mathbb{E}\left(\mathbb{1}_A(\mathbb{Z}'_n)^*\mathbb{P}(\nu\in B|X_1,\ldots,X_{k_n})\right).$$

Since \mathbb{Z}'_n is independent of X_1, \ldots, X_{K_n} , we can factorize this expectation as

$$\mathbb{P}(\mathbb{Z}'_n \in A)\mathbb{P}(\nu \in B).$$

This converges to $\mathbb{P}(\mathbb{Z} \in A)\mathbb{P}(\nu \in B)$ for every continuity set A, which concludes the proof.

Equivalence of limits in probability

Lemma

Let \mathcal{F} be a Donsker class of measurable functions. Suppose that N_n is a sequence of positive, integer-valued random variables such that $N_n/n \stackrel{P}{\to} 1$. Then the sequence $G_{N_n} - G_n$ converges in outer probability to zero in $\ell^{\infty}(\mathcal{F})$ as $n \to \infty$.

proof

With the same notation in the previous proofs, the sequence $(\mathbb{Z}_n, \frac{N_n}{n})$ converges in distribution to $(\mathbb{Z},1)$. By the continuous mapping hteorem, $\mathbb{Z}_n(\frac{N_n}{n},\cdot) - \mathbb{Z}_n(1,\cdot) \leadsto \mathbb{Z}(1,\cdot) - \mathbb{Z}(1,\cdot) = 0$. Convergence in distribution and in outer probability to degenerate limit are equivalent.

Break

Let the sample size N_n be a Poisson random variable with mean n, independent of the i.i.d. observations X_1, X_2, \ldots

Let the sample size N_n be a Poisson random variable with mean n, independent of the i.i.d. observations X_1, X_2, \ldots The Kac empirical point process is the random measure given by

$$\mathbb{N} = \sum_{i=1}^{N_n} \delta_{X_i}.$$

Let the sample size N_n be a Poisson random variable with mean n, independent of the i.i.d. observations X_1, X_2, \ldots The Kac empirical point process is the random measure given by

$$\mathbb{N}=\sum_{i=1}^{N_n}\delta_{X_i}.$$

For every measurable set C, the random variable $\mathbb{N}_n(C)$ is poisson distributed with mean nP(c).

Let the sample size N_n be a Poisson random variable with mean n, independent of the i.i.d. observations X_1, X_2, \ldots The Kac empirical point process is the random measure given by

$$\mathbb{N} = \sum_{i=1}^{N_n} \delta_{X_i}.$$

For every measurable set C, the random variable $\mathbb{N}_n(C)$ is poisson distributed with mean nP(c). For disjoint C_1, \ldots, C_k , the random variables $\mathbb{N}_n(C_1), \ldots, \mathbb{N}_n(C_k)$ are indepedent.

For a class of measurable functions \mathcal{F} , consider

$$\{\mathbb{N}_n(f): f \in \mathcal{F}\}.$$

For a class of measurable functions \mathcal{F} , consider

$$\{\mathbb{N}_n(f): f \in \mathcal{F}\}.$$

The mean and variance of this proces satisfy

$$\mathbb{E}[\mathbb{N}_n(f)] = nPf = \mathsf{Var}(\mathbb{N}_n(f)).$$

For a class of measurable functions \mathcal{F} , consider

$$\{\mathbb{N}_n(f): f \in \mathcal{F}\}.$$

The mean and variance of this proces satisfy

$$\mathbb{E}[\mathbb{N}_n(f)] = nPf = \mathsf{Var}(\mathbb{N}_n(f)).$$

So we can standardize in the following way

$$\mathbb{Z}_n = \frac{1}{\sqrt{n}} \left(\mathbb{N}_n - nP \right) = \sqrt{\frac{N_n}{n}} \mathbb{G}_{N_n} + \sqrt{n} \left(\frac{N_n}{n} - 1 \right) P.$$

For a class of measurable functions \mathcal{F} , consider

$$\{\mathbb{N}_n(f): f \in \mathcal{F}\}.$$

The mean and variance of this proces satisfy

$$\mathbb{E}[\mathbb{N}_n(f)] = nPf = \text{Var}(\mathbb{N}_n(f)).$$

So we can standardize in the following way

$$\mathbb{Z}_n = \frac{1}{\sqrt{n}} \left(\mathbb{N}_n - nP \right) = \sqrt{\frac{N_n}{n}} \mathbb{G}_{N_n} + \sqrt{n} \left(\frac{N_n}{n} - 1 \right) P.$$

A collection of functions \mathcal{F} is called P-Kac if the sequence \mathbb{Z}_n converges in distribution to a tight limit process in $\ell^{\infty}(\mathcal{F})$.

Since N_n converges weakly and thus in probability to 1, we can apply the last theoremm which implies

$$\mathbb{G}_{N_n}-\mathbb{G}_n\stackrel{P}{\to}0,$$

if \mathcal{F} is Donsker.

Since N_n converges weakly and thus in probability to 1, we can apply the last theoremm which implies

$$\mathbb{G}_{N_n} - \mathbb{G}_n \stackrel{P}{\to} 0,$$

if $\mathcal F$ is Donsker. By Slutsky's Lemma, this means that the standardized process converges in case $\sqrt{n}\left(\frac{N_n}{n}-1\right)P$ converges.

Since N_n converges weakly and thus in probability to 1, we can apply the last theoremm which implies

$$\mathbb{G}_{N_n}-\mathbb{G}_n\stackrel{P}{\to} 0,$$

if $\mathcal F$ is Donsker. By Slutsky's Lemma, this means that the standardized process converges in case $\sqrt{n}\left(\frac{N_n}{n}-1\right)P$ converges. The latter limit exists as soon as $\|P\|_{\mathcal F}$ is finite.

Since N_n converges weakly and thus in probability to 1, we can apply the last theoremm which implies

$$\mathbb{G}_{N_n} - \mathbb{G}_n \stackrel{P}{\to} 0,$$

if $\mathcal F$ is Donsker. By Slutsky's Lemma, this means that the standardized process converges in case $\sqrt{n}\left(\frac{N_n}{n}-1\right)P$ converges. The latter limit exists as soon as $\|P\|_{\mathcal F}$ is finite. The limit of this process is given by

$$\mathbb{G} + ZP$$

For a Brownian bridge $\mathbb G$ and an independent standard gaussian random variable Z.

Since \mathbb{N}_n is a Poisson process with intensity measure nP, it can be written as the sum of n i.i.d. Poisson processes of intensity measure P. Let Y_1, Y_2, \ldots be an i.i.d. sequence of Poisson(1) variables, and let $X_{i,j}$ be an array of i.i.d. copies of X_1 .

Since \mathbb{N}_n is a Poisson process with intensity measure nP, it can be written as the sum of n i.i.d. Poisson processes of intensity measure P. Let Y_1, Y_2, \ldots be an i.i.d. sequence of Poisson(1) variables, and let $X_{i,j}$ be an array of i.i.d. copies of X_1 . Then the process

$$H_n = \sum_{i=1}^n (\delta_{X_{i,j}} - P)$$

is equal in distribution to $H'_n = \sum_{i=1}^{N_n} (\delta_{X_i} - P)$.

Since \mathbb{N}_n is a Poisson process with intensity measure nP, it can be written as the sum of n i.i.d. Poisson processes of intensity measure P. Let Y_1, Y_2, \ldots be an i.i.d. sequence of Poisson(1) variables, and let $X_{i,j}$ be an array of i.i.d. copies of X_1 . Then the process

$$H_n = \sum_{i=1}^n (\delta_{X_{i,j}} - P)$$

is equal in distribution to $H_n' = \sum_{i=1}^{N_n} (\delta_{X_i} - P)$. It follows therefore that the random-sample central limit theorem for \mathbb{G}_{N_n} is equivalent to the central limit theorem for a deterministic number of Poisson processes of the type $\sum_{i=1}^{Y_i} (\delta_{X_{i,j}} - P)$.

Since \mathbb{N}_n is a Poisson process with intensity measure nP, it can be written as the sum of n i.i.d. Poisson processes of intensity measure P. Let Y_1, Y_2, \ldots be an i.i.d. sequence of Poisson(1) variables, and let $X_{i,j}$ be an array of i.i.d. copies of X_1 . Then the process

$$H_n = \sum_{i=1}^n (\delta_{X_{i,j}} - P)$$

is equal in distribution to $H_n' = \sum_{i=1}^{N_n} (\delta_{X_i} - P)$. It follows therefore that the random-sample central limit theorem for \mathbb{G}_{N_n} is equivalent to the central limit theorem for a deterministic number of Poisson processes of the type $\sum_{i=1}^{Y_i} (\delta_{X_{i,j}} - P)$. Le Cam's Lemma compares the concentration of these processes with the concentration of the empirical process.

le Cam's Lemma

Lemma

Let N_n be poisson distributed with mean n and independent of the i.i.d. stochastic processes Z_1, Z_2, \ldots Then for any class of functions \mathcal{F} :

$$(1-\frac{1}{e})\mathbb{E}^* \|\sum_{i=1}^n Z_i\|_{\mathcal{F}} \leq \mathbb{E}^* \|\sum_{i=1}^{N_n} Z_i\|_{\mathcal{F}}$$

$$(1-\frac{1}{e})\mathbb{E}^*\|\sum_{i=1}^n Z_i\|$$

$$(1-rac{1}{e})\mathbb{E}^*\|\sum_{i=1}^n Z_i\| = \mathbb{E}_Z^*\|\mathbb{E}_Y\sum_{i=1}^n \max(Y_i,1)Z_i\|_{\mathcal{F}}$$

$$(1-rac{1}{e})\mathbb{E}^*\|\sum_{i=1}^n Z_i\|=\mathbb{E}_Z^*\|\mathbb{E}_Y\sum_{i=1}^n \max(Y_i,1)Z_i\|_{\mathcal{F}}$$
 $\leq \mathbb{E}^*\|\sum_{i=1}^n \max(Y_i,1)Z_i\|_{\mathcal{F}}$

$$(1-rac{1}{e})\mathbb{E}^*\|\sum_{i=1}^n Z_i\| = \mathbb{E}_Z^*\|\mathbb{E}_Y\sum_{i=1}^n \max(Y_i,1)Z_i\|_{\mathcal{F}}$$

$$\leq \mathbb{E}^*\|\sum_{i=1}^n \max(Y_i,1)Z_i\|_{\mathcal{F}}$$

$$\leq \mathbb{E}_Y\mathbb{E}_Z^*\|\sum_{i=1}^n \sum_{i=1}^{Y_i} Z_{i,j}\|_{\mathcal{F}}$$

$$(1 - \frac{1}{e})\mathbb{E}^* \| \sum_{i=1}^n Z_i \| = \mathbb{E}_Z^* \| \mathbb{E}_Y \sum_{i=1}^n \max(Y_i, 1) Z_i \|_{\mathcal{F}}$$

$$\leq \mathbb{E}^* \| \sum_{i=1}^n \max(Y_i, 1) Z_i \|_{\mathcal{F}}$$

$$\leq \mathbb{E}_Y \mathbb{E}_Z^* \| \sum_{i=1}^n \sum_{j=1}^{Y_i} Z_{i,j} \|_{\mathcal{F}}$$

$$= \mathbb{E}^* \| \sum_{i=1}^{N_n} Z_i \|_{\mathcal{F}}$$

Equivalence Kac and Donsker

Theorem

A class $\mathcal F$ of measurable functions with $\|P\|_{\mathcal F}<\infty$ is Kac if and only if it is Donsker. In that case,

$$\|\mathbb{G}_{N_n} - \mathbb{G}_n\|_{\mathcal{F}}^* = O_P(n^{-1/4})$$

Define
$$\mathcal{G}'_n = n^{-1/2} \sum_{i=1}^{N_n} (\delta_{X_i} - P)$$
.

Define $\mathcal{G}'_n = n^{-1/2} \sum_{i=1}^{N_n} (\delta_{X_i} - P)$. Define $k = N_n - n$. Then the difference between G'_n and G_n will be k terms $n^{-1/2}(\delta_{X_i} - P)$.

Define $\mathcal{G}_n' = n^{-1/2} \sum_{i=1}^{N_n} (\delta_{X_i} - P)$. Define $k = N_n - n$. Then the difference between G_n' and G_n will be k terms $n^{-1/2}(\delta_{X_i} - P)$. By chebyshev's inequality, we have $\mathbb{P}(|N_n - n| \geq M\sqrt{n}) \leq M^{-2}$.

Define $\mathcal{G}_n'=n^{-1/2}\sum_{i=1}^{N_n}(\delta_{X_i}-P)$. Define $k=N_n-n$. Then the difference between G_n' and G_n will be k terms $n^{-1/2}(\delta_{X_i}-P)$. By chebyshev's inequality, we have $\mathbb{P}(|N_n-n|\geq M\sqrt{n})\leq M^{-2}$. Therefore, for every $\epsilon>0$ we get

$$\mathbb{P}^*(\|\mathbb{G}_n - \mathbb{G}'_n|_{\mathcal{F}} > \epsilon)$$

Define $\mathcal{G}_n'=n^{-1/2}\sum_{i=1}^{N_n}(\delta_{X_i}-P)$. Define $k=N_n-n$. Then the difference between G_n' and G_n will be k terms $n^{-1/2}(\delta_{X_i}-P)$. By chebyshev's inequality, we have $\mathbb{P}(|N_n-n|\geq M\sqrt{n})\leq M^{-2}$. Therefore, for every $\epsilon>0$ we get

$$\mathbb{P}^*(\|\mathbb{G}_n - \mathbb{G}'_n|_{\mathcal{F}} > \epsilon)$$

$$\leq \frac{1}{M^2} + \frac{1}{\epsilon} \sum_{|k| \leq M\sqrt{n}} \mathbb{P}(N_n = n + k) \mathbb{E}^* \|\frac{1}{\sqrt{n}} \sum_{i=1}^{|k|} (\delta_{X_i} - P) \|_{\mathcal{F}}$$

Define $\mathcal{G}_n'=n^{-1/2}\sum_{i=1}^{N_n}(\delta_{X_i}-P)$. Define $k=N_n-n$. Then the difference between G_n' and G_n will be k terms $n^{-1/2}(\delta_{X_i}-P)$. By chebyshev's inequality, we have $\mathbb{P}(|N_n-n|\geq M\sqrt{n})\leq M^{-2}$. Therefore, for every $\epsilon>0$ we get

$$\begin{split} & \mathbb{P}^*(\|\mathbb{G}_n - \mathbb{G}'_n|_{\mathcal{F}} > \epsilon) \\ & \leq \frac{1}{M^2} + \frac{1}{\epsilon} \sum_{|k| \leq M\sqrt{n}} \mathbb{P}(N_n = n + k) \mathbb{E}^* \|\frac{1}{\sqrt{n}} \sum_{i=1}^{|k|} (\delta_{X_i} - P) \|_{\mathcal{F}} \\ & \leq \frac{1}{M^2} + \frac{1}{\epsilon\sqrt{n}} \mathbb{E}^* \|\sum_{i=1}^{\lfloor M\sqrt{n} \rfloor} (\delta_{X_i} - P) \|_{\mathcal{F}}. \end{split}$$

If $\mathcal F$ is Donsker, then the sequence $n^{-1/4}\mathbb E^*\|\sum_{i=1}^{M\sqrt n}(\delta_{X_i}-P)\|_{\mathcal F}$ is bounded by Lemma 2.3.11.

If \mathcal{F} is Donsker, then the sequence $n^{-1/4}\mathbb{E}^*\|\sum_{i=1}^{M\sqrt{n}}(\delta_{X_i}-P)\|_{\mathcal{F}}$ is bounded by Lemma 2.3.11. Then by the previous slide, $\mathbb{P}*(\|\mathbb{G}_n-\mathbb{G}_n'\|_{\mathcal{F}}>Kn^{-1/4})$ is bounded by $M^{-2}+K^{-1}O(1)$.

If \mathcal{F} is Donsker, then the sequence $n^{-1/4}\mathbb{E}^*\|\sum_{i=1}^{M\sqrt{n}}(\delta_{X_i}-P)\|_{\mathcal{F}}$ is bounded by Lemma 2.3.11. Then by the previous slide, $\mathbb{P}*(\|\mathbb{G}_n-\mathbb{G}_n'\|_{\mathcal{F}}>Kn^{-1/4})$ is bounded by $M^{-2}+K^{-1}O(1)$. We can bound its limsup by choosing M and K large enough.

If \mathcal{F} is Donsker, then the sequence $n^{-1/4}\mathbb{E}^*\|\sum_{i=1}^{M\sqrt{n}}(\delta_{X_i}-P)\|_{\mathcal{F}}$ is bounded by Lemma 2.3.11. Then by the previous slide, $\mathbb{P}*(\|\mathbb{G}_n-\mathbb{G}'_n\|_{\mathcal{F}}>Kn^{-1/4})$ is bounded by $M^{-2}+K^{-1}O(1)$. We can bound its limsup by choosing M and K large enough. Therefore $\|\mathbb{G}_n-\mathbb{G}'_n\|_{\mathcal{F}}^*=O_P(n^{-1/4})$.

If \mathcal{F} is Donsker, then the sequence $n^{-1/4}\mathbb{E}^*\|\sum_{i=1}^{M\sqrt{n}}(\delta_{X_i}-P)\|_{\mathcal{F}}$ is bounded by Lemma 2.3.11. Then by the previous slide, $\mathbb{P}*(\|\mathbb{G}_n-\mathbb{G}'_n\|_{\mathcal{F}}>Kn^{-1/4})$ is bounded by $M^{-2}+K^{-1}O(1)$. We can bound its limsup by choosing M and K large enough. Therefore $\|\mathbb{G}_n-\mathbb{G}'_n\|_{\mathcal{F}}^*=O_P(n^{-1/4})$. Since $\|\mathbb{G}'_n-\mathbb{G}_{N_n}\|=(1-\sqrt{\frac{N_n}{n}})\|\mathbb{G}'_n\|_{\mathcal{F}}$, we see that this is $O_P(n^{-1/2})$, and therefore the first direction follows.

If \mathcal{F} is Kac, then $\mathbb{G}'_n = n^{-1/2}(\mathbb{N}_n - N_n P)$ converges in distribution to a tight limit process.

If \mathcal{F} is Kac, then $\mathbb{G}'_n = n^{-1/2}(\mathbb{N}_n - N_n P)$ converges in distribution to a tight limit process. This means the standardized processes $Z_i = \sum_{j=1}^{Y_i} (\delta_{X_{i,j}} - P)$ satisfying the central limit theorem.

If \mathcal{F} is Kac, then $\mathbb{G}'_n = n^{-1/2}(\mathbb{N}_n - N_n P)$ converges in distribution to a tight limit process. This means the standardized processes $Z_i = \sum_{j=1}^{Y_i} (\delta_{X_{i,j}} - P)$ satisfying the central limit theorem. Thus $n^{-1/2}\mathbb{E}^* \| \sum_{i=1}^n Z_i \|$ is bounded by Lemma 2.3.11.

If \mathcal{F} is Kac, then $\mathbb{G}'_n = n^{-1/2}(\mathbb{N}_n - N_n P)$ converges in distribution to a tight limit process. This means the standardized processes $Z_i = \sum_{j=1}^{Y_i} (\delta_{X_{i,j}} - P)$ satisfying the central limit theorem. Thus $n^{-1/2}\mathbb{E}^* \| \sum_{i=1}^n Z_i \|$ is bounded by Lemma 2.3.11. By Le Cams Lemma these expectations give an upper bound, up to a positive constant factor, of $n^{-1/2}\mathbb{E}^* \| \sum_{i=1}^n (\delta_{x_i} - P) \|$.

If \mathcal{F} is Kac, then $\mathbb{G}'_n = n^{-1/2}(\mathbb{N}_n - N_n P)$ converges in distribution to a tight limit process. This means the standardized processes $Z_i = \sum_{j=1}^{Y_i} (\delta_{X_{i,j}} - P)$ satisfying the central limit theorem. Thus $n^{-1/2}\mathbb{E}^* \| \sum_{i=1}^n Z_i \|$ is bounded by Lemma 2.3.11. By Le Cams Lemma these expectations give an upper bound, up to a positive constant factor, of $n^{-1/2}\mathbb{E}^* \| \sum_{i=1}^n (\delta_{x_i} - P) \|$. Then finish the proof as in the reverse direction and we are done.

The end