

ECOLE INTER-ETATS DES TECHNICIENS SUPERIEURS DE L'HYDRAULIQUE ET DE L'EQUIPEMENT RURAL

01 BP 594 Ouagadougou 01 Burkina Faso Tél : (226) 31 92 03 / 31 92 04 / 31 92 18

Email: etsher@etsher.org Fax: (226) 31 92 34

COURS DE TECHNOLOGIE de CONSTRUCTION

Tome I

LE GROS OEUVRE

SOMMAIRE

LA FONDATION D'UN OUVRAGE	7
Fondation: Attention à l'adaptation au sol	7
Avant propos-Définition	8
Les différents types de fondations – Définition	8
Les différents types d'excavation de terre - Définition	
LES FONDATIONS SUPERFICIELLES	10
Fondation par semelle continue.	10
Famille des semelles continue en gros béton (cas des constructions légères)	
Fondation par semelle isolée	12
Mise en oeuvre	12
Exemples de semelles isolée	
Dispositions constructives usuelle pour les semelles avec glacis	
Fonctionnement d'une semelle de fondation superficielle en béton armé	
Modélisation de la diffusion des efforts sous la semelle en béton armé selon la nature d	
et la rigidité de la semelle elle-même	
Exercice d'application :	
Cas de la semelle isolée excentrée	
Les longrines (cas des bâtiments posés sur fondations ponctuelles et dallage porté)	
Les radiers	
Les murs de soutènements	
Schémas détaillés de quelques types de murs	
Détails sur murs de soutènement (variantes)	
Les bas de murs	
Les dallages	
Pathologie associée aux bas de murs non protégés en pied par une barrière étanche	
Principe du rabattement de nappe	
LES JOINTS CONSTRUCTIFS	
Définitions	
Traitement des joints (cas les plus courants)	
Joint simple	
Joint étanche	
Couvre joint	
La fissure	
Cas des dallages sur terre plein (ou encore dallage non porté)	
Joint de dilatation (A)	
Joint de désolidarisation (B)	
Joint de retrait (C)	
Joint d'exécution (D)	30
Joint de structure (E)	
Joint de retrait – Mise en oeuvre	
Joint de structure - Mise en oeuvre	31
LES MURS DE FAÇADE	32
Désignation des murs selon leur position ou leur fonction	32

Classement des murs de façade en fonction de leur résistance à la pluie	
Mur du type I	
Murs du type II	
Murs du type III	
Mur du type IV	
Critères pour choisir un mur	
MISE EN ŒUVRE DES MAÇONNERIES	
Avant-propos	40
Harpage de maçonnerie	
Les joints de maçonnerie	
Epaisseur des Joints	
Disposition des joints	
Appui ou trumeau&Maçonnerie	
Parements de pose	
Appareillage des maçonneries en moellon – Règles de l'art	
LES ELEMENTS DE FAÇADE	
Baies et encadrements - Vocabulaire	
Différent type de linteau Différents types de linteaux préfabriqués	44
Les balcons	
Les planelles (traitement des liaisons façade/plancher)	
Les Gardes corps (principales règles de dimensionnements et de sécurités)	
Disposition constructives	
Sorties de secours des Etablissements Recevant du Publics – Unité de passage	46
Les corniches (liaison toiture/façade et lieux du chaînage haut en général) Les bandeaux de façade (prévenir le ruissellement de l'eau e pluie sur tout le long de la	l
façade)	
Les acrotères (liaison Toiture-terrasse/Façade) en béton armé	
Dispositions constructives (ferraillage Fe 400)	
Cas des acrotères massives non isolée tandis que la toiture terrasse est isolée	
LE CHAINAGE D'UN BATIMENT	
Les chaînages horizontaux	
Chaînage horizontal des maçonneries	
Les chaînage horizontaux en béton armé	
Les chaînages verticaux	
La distance entre chaînage verticaux	
LES ENDUITS DE FAÇADE	57
Dosage progressif des couches de mortier pour l'enduit	57
GOBETIS	57
CORPS DE L'ENDUIT	
COUCHE DE FINITION	
Finition des enduits	
Phases de retournement d'un enduit	
ramoiogie des enduris	59

LE BETON ARME	61
Les Armatures à béton	61
Principaux éléments	61
Les différents types de fer à béton	61
Utilisation des armatures : vocabulaire	62
Les treillis soudé	
Composition type des mortiers et bétons	63
Mortiers	63
Bétons	
Mortiers spéciaux pour maçonnerie en BTC	
Vibration et mise en œuvre des bétons	
Pathologie des bétons : la corrosion des armatures	
Les cales d'enrobage	66
LES PLANCHERS	67
Plancher Bois traditionnel	67
Les Planchers en béton armé	
Plancher coffré et coulé à dalle pleine sur coffrage	67
Plancher à hourdis + poutrelles préfabriquées	68
Plancher à pré-dalles	70
Plancher préfabriqué nervuré	71
Plancher nervuré	
Plancher à champignon	
Les planchers à poussée horizontale	72
Les planchers à voûtains	72
Les planchers par voûte en berceau.	72
LES POUTRES	73
Vocabulaire	73
Les Poutres bois	73
Les Poutres métallique	
LES ESCALIERS	74
Définition&vocabulaire	74
Formule de BLONDEL	
Exemple d'escaliers.	
Les escaliers suspendus	
Les escaliers à vis	
LES OUVERTURES (PORTE&FENETRE)	
Fenêtres	
Détails constructifs	
Feuillures et contre-feuillures.	
Huisserie (dormant)	
Parcloses (les différents types)	
Porte et sens d'ouverture	
Cas particulier de portes	
Constitution d'une porte (ouvrant)	
•	
LES CHARPENTES	81

Charpentes traditionnelles	81
Charpente industrialisé légère (dit à fermette)	82
Charpente lamellé-collé	83
LES FERMES DE CHARPENTE	84
Types de ferme	84
Quelle ferme pour quel type de charge	
Ferme en "W"	85
Ferme en double W	
Ferme monopente	
Ferme en " M "	
Ferme en éventail	
Ferme de combles habitables en "A"	
Ferme de combles habitables à encuvement	
Ferme "boiteuse" pour chien assis	
Comment réaliser une croupe	
Les fermes à faible pente.	
Détail de fermes	
Exemples d'assemblages	
Détails grille porteuse secondaire pour couverture en petit éléments	
Détail sur faîtage	
LES COUVERTURES	
Formes et éléments constitutifs d'une couverture - Vocabulaire	89
Couverture en grand éléments	90
Tôle nervuré (alu ou acier)	90
Tôle ondulée	90
Fixation et pose	90
Types de fixations des plaques nervurées à la structure	91
Pentes minimales (en %) des couvertures en grands éléments	92
Couvertures en petits éléments	93
Tuiles plates	93
Tuiles canal	94
Tuiles à emboîtement	94
Tuiles à glissement	95
Les bardeaux d'asphalte (Shingle)	95
Les accessoires de couverture	96
Pentes minimales (en %) des couvertures en petits éléments	97
Choisir une couverture	98
Matériaux traditionnels	98
Matériaux en béton	98
Matériaux ondulés	99
Matériaux nervurés	100
LES TOITURES TERRASSES	101
Paramètres d'une toiture-terrasse	101
La pente	
L'ACCESSIBILITE	
Le revêtement d'étanchéité (dit « étanchéité »)	
La protection de l'étanchéité	
Le Liaisonnement du revêtement au support d'étanchéité	

L'élément porteur	101
Le support d'étanchéité	
Exemple de toiture-terrasse	
Les revêtements d'étanchéité en feuille de bitume – mise en oeuvre	
Toitures-terrasses sur éléments porteurs rigides	103
Les toitures terrasses et leur isolation thermique	104
La position de l'isolant par rapport à l'étanchéité	104
La pose de l'isolant - dispositions usuelles	
Les éléments porteurs rigides supports d'étanchéité	105
Les protections rapportées sur toiture-terrasse piétonne	106
Asphalte	106
Chape ou dallage avec carrelage	
Dalles sur plots	
Dallettes préfabriquées	
Briques de pavage	
Pavés	
Détails constructifs au doit des relevés d'étanchéité sur maçonnerie ou béton	107
Les relevés d'étanchéité sur toiture en bac métallique par relief en métal	
Les seuils	

LA FONDATION D'UN OUVRAGE

Fondation: Attention à l'adaptation au sol

Se renseigner au préalable :

Avant de choisir un parti de fondations, il convient de se renseigner sur la configuration et la nature du terrain.

✓ Visite sur place

Cette visite a pour objet de recenser les risques : terrain marécageux ou inondable, terrain dans une cuvette, traces de glissements, présence d'anciennes carrières ou d'anciennes décharges publiques, état des constructions voisines, etc.

✓ Consultation des services compétents

Se renseigner auprès des Services Techniques de la commune pour savoir si le terrain a été concerné par des activités antérieures, et connaÎtre, le cas échéant, la fréquence et le niveau des crues.

✓ Consultation des documents relatifs au site

La consultation des cartes géologiques et, éventuellement, des atlas des carrières permet de se faire une idée approximative des risques encourus.

Reconnaître le sol:

Si l'enquête précédente n'a pas permis d'acquérir une connaissance suffisante du terrain de fondation, ou si elle a mis en évidence des risques potentiels, il convient d'effectuer une reconnaissance de sol.

Parmi les renseignements fournis par cette reconnaissance de sol doivent figurer le niveau de l'eau et, si possible, ses

variations

Choisir un type de fondation adapté :

En fonction des indications fournies par la reconnaissance de sol (nature, épaisseur, résistance mécanique et compressibilité des diverses couches de terrain rencontrées, niveau de l'eau, etc.), il conviendra de choisir le mode de fondations le plus adapté pour limiter l'amplitude des tassements: rigoles en gros béton, semelles en béton armé rigidifiées ou non par des longrines, radier (les fondations profondes par pieux ou puits sont réservées aux bâtiments plus lourds que les maisons individuelles). Le bon comportement du bâtiment peut nécessiter une adaptation de la structure (en général rigidification).

Avant propos-Définition

Les différents types de fondations – Définition

Le présent cours ne traite que des fondations superficielles

Les différents types d'excavation de terre - Définition

A noter:

Au sujet des fouilles : question de sécurité Il est important de noter que selon :

- La nature du sol,
- Sa cohésion (si sable blindage obligatoire quelque soit la profondeur de fouille),
- La présence d'eau ou non,
- La présence de charge importante à proximité ou non (cas des routes, talus de déblais)
- , détermine la nécessité ou non d'un blindage.

Blindage à boisage horizontal

Blindage à boisage vertical

LES FONDATIONS SUPERFICIELLES

Fondation par semelle continue

semelle filante sous mur (la semelle est armée si la stabilité du sol n'est pas certaine)

Famille des semelles continues en Béton armé

Semelle continue en BA avec glacis

Semelle continue en BA avec armature renforcée

Dispositions constructives usuelle pour les semelles continues en béton armé :

 $\bullet~$ Si la charge linéaire à supporter est P , et la contrainte admissible du sol est σ : il faut

$$\sigma \geq \frac{P}{B}$$

alors avoir

• La hauteur des semelles est au moins égale à : $h_t = 5 \text{ cm} + \frac{B_x - b_x}{4}$ (la **semelle** est dite alors **rigide**)

♦ Enfin la hauteur e doit être telle que $e \ge 6.\phi + 6$ cm avec ϕ diamètre de l'armature porteuse (prendre 1 cm en pratique)

Armature porteuse

A noter:

- Pourquoi faire un glacis?
- Pourquoi parle-t-on de semelle Rigide ?

Famille des semelles continue en gros béton (cas des constructions légères)

Dispositions constructives usuelles pour les semelles continues en gros béton

<u>A noter</u>: Variante possible : Fondation en gradin (économique mais compliqué à faire)

- 1. Si la charge linéaire à supporter est P, et la contrainte admissible du sol est σ : il faut alors avoir $\sigma \geq \frac{P}{I}$
- 2. Avec $d \le h/2$

A noter:

Si le critère n° 2 n'est pas vérifié, la semelle en gros béton devra être nécessairement armé

11

Fondation par semelle isolée Mise en oeuvre Armature de liaison poteau-semelle Implantation - tracé Enrobage béton du 9 poteau BA Terrassement Bétonnage semelle 8 Quadrillage semelle Enrobage, 4 à 5 cm à prévoir (cales béton ou distanciers) Piquet - repere Béton de propreté et tracé des axes du poteau

Exemples de semelles isolée

A noter:

La charge imposée à chaque poteau est différente.

La forme trapézoïdale de la semelle est dans le sens de l'égalisation des pressions sur le terrain.

Dispositions constructives usuelle pour les semelles avec glacis

- 1. Autant que possible avoir des sections homothétiques, soit : $\frac{B_x}{b_x} = \frac{B_y}{b_y}$
- 2. Si la charge à supporter est P, la contrainte admissible du sol est σ : il faut alors avoir $\sigma \geq \frac{P}{B_x.B_y}$
- 3. La hauteur des semelles est au moins égale à : $h_t = 5 \text{ cm} + \frac{B_x b_x}{4}$ (la **semelle** est dite alors **rigide**)
- 4. Enfin la hauteur e doit être telle que $e \ge 6.\phi + 6$ cm avec ϕ diamètre de l'armature porteuse (prendre 1 cm en pratique)

Exercice

Pourquoi faire un glacis?

Fonctionnement d'une semelle de fondation superficielle en béton armé

Mode de fonctionnement :

- ✓ La transmission des charges verticales qui agissent à la partie supérieure de la semelle est assurée par des « bielles de compression », symétriques par rapport à l'axe.
- ✓ Les bielles obliques ont tendance à provoquer un effort de traction sur le béton à la partie inférieure de la semelle.
- ✓ L'armature transversale de la semelle a pour fonction d'équilibrer les efforts de traction dans le béton

Modélisation de la diffusion des efforts sous la semelle en béton armé selon la nature du sol et la rigidité de la semelle elle-même

Le ferraillage à associer pour les armatures porteuses d'une semelle de fondation est fonction :

- ✓ De la rigidité ou non de la semelle dans le sens considéré,
- ✓ De la cohérence ou non du sol.

Diagrammes réels (réaction du sol)	Cas rencontrés	Diagrammes théoriques (modélisation de la réaction du sol)	Section d'armature (cas des semelles armées ; concerne la section de l'armature porteuse)	Section d'armature de répartition (cas des semelles filantes armées)	Remarques
	Semelles rigides $(H_t \ge 5 \text{ cm} + \frac{B_x - b_x}{4})$ $\checkmark \text{ Sols cohérents}$	2 modélisations possibles :	$A = \frac{1}{24} \cdot P \cdot \frac{(4.B - 3.b)}{(h_t - d)} \cdot \frac{1,15}{f_e}$ (voir A _x ou A _Y si semelle isolée avec respectivement B _x et b _x , et B _y et b _y) $A = \frac{1}{8} \cdot P \cdot \frac{(B - b)}{(h_t - d)} \cdot \frac{1,15}{f_e}$ (voir A _x ou A _Y si semelle isolée avec respectivement B _x et b _x , et B _y et b _y)	$\mathbf{A}_{r\text{épartion}} = 1/3$. $\mathbf{A}_{porteur}$ $\mathbf{A}_{r\text{épartion}} = 1/3$. $\mathbf{A}_{porteur}$	La modélisation triangle ainsi prise est plus défavorable que la réalité. L'expérience montre que la modélisation rectangle reste acceptable (et c'est ce que le DTU impose)

Diagrammes réels (réaction du sol)	Cas rencontrés	Diagrammes théoriques (modélisation de la réaction du sol)	Section d'armature (cas des semelles armées ; concerne la section de l'armature porteuse)	Section d'armature de répartition (cas des semelles filantes armées)	Remarques
	Semelles rigides $(H_t \ge 5 \text{ cm} + \frac{B_x - b_x}{4})$ $\checkmark \text{ Sols}$ pulvérulents	Communication Communicatio	$A = \frac{1}{8} \cdot P \cdot \frac{(B - b)}{(h_t - d)} \cdot \frac{1,15}{f_e}$ (voir A _x ou A _Y si semelle isolée avec respectivement B _x et b _x , et B _y et b _y)	$\mathbf{A}_{ ext{répartion}} = 1/3$. $\mathbf{A}_{ ext{porteur}}$	Semelle rigide indispensable pour les sols pulvérulents
	✓ Semelles flexibles $(H_t < 5 \text{ cm} + \frac{B_x - b_x}{4})$ ✓ Sols cohérents		$A = \frac{1}{8} \cdot P \cdot \frac{(B - b)}{(h_t - d)} \cdot \frac{1,15}{f_e}$ (voir A _x ou A _Y si semelle isolée avec respectivement B _x et b _x , et B _y et b _y)	$\mathbf{A}_{\text{répartion}} = 1/3$. $\mathbf{A}_{\text{porteur}}$	
	Semelles flexibles $(H_t < 5 \text{ cm} + \frac{B_x - b_x}{4})$ $\checkmark \text{ Sols }$ pulvérulents		$A = \frac{1}{24} \cdot P \cdot \frac{(2.B - 3.b)}{(h_t - d)} \cdot \frac{1,15}{f_e}$ (voir A _x ou A _Y si semelle isolée avec respectivement B _x et b _x , et B _y et b _y)	$\mathbf{A}_{\text{répartion}} = 1/3$. $\mathbf{A}_{\text{porteur}}$	On constate que pour certaines valeurs de (b;B) on peut avoir une section d'acier négative

A noter:

Sur **sol cohérent**, une semelle flexible est préférable à une semelle rigide (meilleur utilisation du sol) Sur sol pulvérulents, une semelle rigide est préférable à une semelle flexible (meilleur utilisation du sol)

Exercice d'application : Considérons une semelle continue.

- 1. Quelle est la largeur B de semelle à choisir pour supporter 30 000 daN/ml (charge ultime soit 30 000 daN/ml = 1,35.G + 1,5 Q, cf. cours de dimensionnement des éléments de structure), sachant que la contrainte admissible pour le sol est de σ = 2 daN/cm² ? (σ = Contrainte de calcul qu divisée par 2, cf. cours de géotechnique)
- 2. En fonction de la largeur de semelle B juste calculé ci-avant, et en sachant que b = 30 cm, calculer la hauteur de semelle h_t nécessaire pour obtenir une semelle rigide
- 3. Quel est la section d'acier nécessaire pour supporter la charge de 30 000 daN/ml avec B = 150 cm, b = 30 cm, $h_t = 35$ cm , d = 5 cm et fe = 400 (on suppose donc que pour cette largeur B, le sol est suffisamment porteur). Le sol est considéré comme cohérent.
- 4. Quelle est alors la section d'acier de répartition ?
- 5. Est-il possible de remplacer cette semelle filante en semelle en gros béton non armé et sous quelles conditions ?
- 6. Le prix du gros béton est de 80 000 CFA/m3; le prix du béton armé de 100 000 CFA/m3. Quel est le partie le plus économique entre une semelle filante en gros béton ou en béton armé dans notre contexte?

Réponse :

- 1. $h_t = 35 \text{ cm}$
- 2. B = 150 cm
- 3. $A_{porteur} = 4.31 \text{ cm}^2$
- 4. $A_{\text{répartion}} = 1,44 \text{ cm}^2 \implies \text{faible donc chaînage minimal soit } A_{\text{répartion}} = 2 \text{ cm}^2$
- 5. Si le débord d de la semelle est inférieur à la moitié de la hauteur (un chaînage filant à la base pouvant être nécessaires)

Cas de la semelle isolée excentrée

On rencontre un tel cas le plus souvent pour des semelles sous poteaux.

Implantées en rive de propriété ou contre un mur existant.

Le diagramme des pressions est alors tel que l'on peut rapidement dépasser la limite élastique du sol, sans parler tout simplement d'une rotation de la semelle qui pour un bâtiment en hauteur peut avoir des conséquences fâcheuses.

Il convient donc de chercher à ré-obtenir un diagramme uniforme des pression sous la semelle (ie rectangle).

La solution consiste à adjoindre une poutre de redressement, dont le mode de fonctionnement est le suivant :

Diagramme des pressions sous la semelle non uniforme (différent cas selon l'excentrent de la charge)

Les longrines (cas des bâtiments posés sur fondations ponctuelles et dallage porté)

Les radiers

Si le sol est très mauvais, les semelles deviennent très larges et tendent à occuper tout l'entre-axe des poteaux. On a alors affaire à un radier. Un radier est donc :

- Un dalle en béton armé posé à même le sol sous toute l'emprise du bâtiment,
- Une dalle de forte épaisseur (0,5 à 1 mètre d'épaisseur),
- Une dalle nervurée ou non (poutre incluse ou non dans l'épaisseur du radier, en particulier au droit des appuis de poteau)
- Une dalle lestée ou non avec des granulats lourds (scories de haut fourneaux : densité 7, 8 au lieux de 2,5 pour des cailloux usuels)

On distingue deux utilisations des radiers :

- Les radiers sur mauvais sol,
- Les radiers formant cuvelage pour lester un ouvrage en particulier face aux poussées hydrostatique (exemple de l'ambassade d'Afrique du Sud à Paris en bords de Seine qui à défaut d'être lester est un bâtiment qui flotte avec une variation de hauteur sur l'année : ± 15 cm ; cas des piscines, fosses, cales sèche pour navire...)

A noter:

- 1. Un radier se calcul comme un plancher renversé (hypothèse de calcul d'une répartition uniforme des pressions sur le sol; mêmes valeurs de pré-dimensionnement que les poutres et planchers).
- 2. Si le radier doit servir de leste, on prend habituellement un coefficient de sécurité de 1,5. vis-à-vis du risque de soulèvement et on vérifie que : $P \ge 1,5.S.z$

Z = pression hydrostatique en t/m2

S = surface du sol en m2

P = poids total du bâtiment en tonnes

Les murs de soutènements

Ce sont des ouvrages indépendants fondés presque toujours superficiellement et dont la seule fonction est de reprendre la poussée des terres. Ils sont de différents types suivant la hauteur à soutenir et suivant qu'on se trouve ou non en limite de propriété.

Schémas détaillés de quelques types de murs

Il s'agit des dispositions constructives ou encore solutions, le plus usuellement adoptées.

Voile de soutènement fonctionnant en console sur sa semelle

Cette solution ne convient que pour de faibles hauteurs (inférieures à 3 ou 4 m).

Voile de soutènement avec contreforts

C'est la solution la plus courante pour des hauteurs moyennes et même relativement importantes (supérieures à 3 ou 4 m).

Cependant pour de telle hauteur on préféra l'utilisation de tirant d'ancrage (voir principe rabattement de nappe ciaprès)

A noter:

Attention à ne pas oublier les barbacanes si nécessaire

B pour barbacanes (écoulement de l'eau)

L'eau et les fondations

Les bas de murs

Coupure de capillarité

Drainage de sol en pied de mur (cas général)

Les dallages

Détail constructif d'un hérisson (sous couche drainante sous dallage, route, ...)

Pathologie associée aux bas de murs non protégés en pied par une barrière étanche

- 1. carbonatation normale accompagnant la prise du mortier hydraulique.
- 2. par temps froid et humide, le carbonate de chaux est entraîné par l'eau de gâchage vers l'orifice des capillaires, où il se dépose en petits cristaux blancs insolubles : dans ce cas, la carbonatation est visible.

Cas extrême : décollement de l'enduit

Principe du rabattement de nappe

1 – Installation d'une enceinte (palplanche, paroi moulée ...)

Exemples de palplanches

2 – Rabattement de la nappe

LES JOINTS CONSTRUCTIFS

Définitions

Les joints de rupture sont indispensables lorsque :

- Deux bâtiments/ouvrages sont de nature différentes (poids propre, charge d'exploitation),
- Il existe des terrains avec changement brusque de compression
- Un nouveaux bâtiment est accolé à un ancien (tassement du bâtiment le plus récent).

A noter:

La fondation d'un nouveau bâtiment accolé à un ancien, se met toujours à la même profondeur que celle du bâtiment ancien.

En Afrique : joint de dilatation tous les 20 m

Traitement des joints (cas les plus courants)

Joint simple

1 . Polystyrène (joint non étanche)

Joint étanche

- 1 . mastic élastomère sur fond de joint
- 2. idem, avec profilé élastomère incorporé
- 3. joint profilé plastique incorporé

Couvre joint

en profil élastomère compressible

en tôle profilée formant ressort, et profilé rigide de surface

La fissure

La fissure est l'expression d'un joint qui a été oublié quelque part.

Le traitement de ce joint particulier nécessite d'abords que la cause en soit maîtrisée.

Il existe deux types de fissure :

- Fissure morte (retrait, tassement)
- Fissure vivante (dilatation thermique ou hydrique)

fissure à masquer

- 1. Ouverture en V de la fissure
- 2. Obturation
- 3. Pose d'un calicot débordant
- 4. Enduction de finition

Traitement d'une fissure morte

Cas des dallages sur terre plein (ou encore dallage non porté)

Sur un dallage on rencontre :

Joint de dilatation (A)

Il reprend la dilatation du dallage ; il traverse le dallage sur toute son épaisseur.

Joint de désolidarisation (B)

Il permet les mouvements différentiels du dallage par rapport à des points fixes et assure une isolation acoustique; il traverse le dallage sur toute son épaisseur.

Joint de retrait (C)

Il canalise la fissure de retrait lié au séchage du dallage ; il ne traverse pas l'épaisseur du dallage (1/4 seulement de son épaisseur).

Joint d'exécution (D)

Il résulte du travail en bandes ou en panneaux ou de l'arrêt de travail en fin de journée ; il traverse le dallage sur toute son épaisseur.

Joint de structure (E)

Il correspond à des interruptions de continuité/changement de portance du support (exemple passage du terre plein à la semelle de fondation) ; il ne traverse pas l'épaisseur du dallage (1/4 seulement de son épaisseur).

Exemple

- 1 = joint de désolidarisation
- 2 = poteau/longrine/mur
- 3 = caniveau technique (par exemple)

A noter :

Un dallage sur terre plein est en béton armé de 8 à 15 cm (maison individuelle : 8 cm mini et conseillé 10 cm ; dallage industriel 12 cm mini et 15 cm conseillé). Il se calcul en appliquant la théorie des plaques.

La dalle est armée à l'aide d'un treillis soudé dont le diamètre des armatures est toujours $\leq h/10$ L'écartement entre acier S_t est de :

Charge répartie : S_t ≤ 3,5.H
 Charge concentrée : S_t ≤ 2.H

Densité d'armature usuelle : 1,10 Kg/m² (charge d'exploitation 250 Kg/m²)

Joint de retrait – Mise en oeuvre

- 1 = joint de retrait
- 2 = dallage
- 3 = bombement possible par gradient thermique (mise en charge) ⇒ systématiquement un joint de dilatation en périphérie des murs (pour éviter la mise en charge)

Vue de dessus d'un dallage : joint de construction et de retrait

Coulage par bandes

A noter:

Dans tous les cas les joints de retrait doivent être en vis-à-vis. Maillage des joints de retrait : 5x5 à 8x8 m²

LES MURS DE FAÇADE

Désignation des murs selon leur position ou leur fonction

Classement des murs de façade en fonction de leur résistance à la pluie

On distingue 4 types de murs selon l'importance du rôle dévolu à la paroi de maçonnerie dans l'étanchéité du mur complet à la pluie.

Mur du type I

Un mur du type I est un mur ne comportant :

- Ni revêtement étanche sur son parement extérieur,
- Ni coupure de capillarité dans son épaisseur.

Exemples de murs du type I: matériau plein

Exemples de murs du type I : bloc creux avec côté extérieur par un enduit ou un revêtement adhérent

Murs du type II

Un mur du type II est un mur ne comportant aucun revêtement étanche sur son parement extérieur mais comportant, dans son épaisseur, une coupure de capillarité continue.

Suivant le mode de réalisation de cette coupure de capillarité, le type II se divise en deux catégories :

Type IIa

Dans ce type de mur, la coupure de capillarité est constituée par des panneaux isolants non hydrophiles .

Exemples de murs du type IIa

Type IIb

Dans ce type de mur, la coupure de capillarité est constituée par une lame d'air continue.

Par assimilation, cette lame d'air est encore considérée comme continue si elle est traversée seulement par des agrafes métalliques ou par d'autres dispositifs de faibles dimensions, en matériaux non hydrophiles et imputrescibles.

Exemples de murs du type IIb

Murs du type III

Les murs du type III sont des murs dans lesquels la paroi extérieure en maçonnerie, non protégée par un revêtement étanche, est doublée par une seconde paroi séparée de la première par une lame d'air continue à la base de laquelle sont prévus des dispositifs de collecte et d'évacuation vers l'extérieur des eaux d'infiltration éventuelles.

Exemples de murs du type III

Mur du type IV

Un mur du type IV est un mur dont l'étanchéité à la pluie est assurée par un revêtement étanche situé en avant de la paroi en maçonnerie.

Exemple de murs du type IV (bardage extérieur traditionnel rapporté)

Critères pour choisir un mur

En résumé les types de mur extérieurs sont :

Le choix est fonction:

- De l'exposition à la pluie (façade abrité ou au vent),
- Du vent (Région, site, hauteur du bâtiment, ...⇒ Voir NV66.cours de dimensionnement des structures)

L'objectif étant d'obtenir un mur de façade étanche à l'eau. Les tableau et schémas ci-après définissent et illustrent ce choix.

A noter: S'il ne pleut pas (désert), cette question n'a pas de sens!

Hauteur du mur au-dessus du sol (m)	Situation a, b, ou c		Situation d		
	Façades abritées Façades non abritées		Façades abritées	Façades non abritées	
				Zone littorale sauf front de mer	Front de mer
< 6	lla (Cf note 1)	lla (Cf note 2) (Cf note 5)	IIa (Cf note 1)	IIb (Cf note 2) (Cf note 5) ou III (Cf note 3)	III
6-18	lla (Cf note 1)	lla (Cf note 2) (Cf note 5)	IIa (Cf note 1)	IIb (Cf note 2) (Cf note 5) ou III (Cf note 3)	III
18-28	lla (Cf note 1)	IIb (Cf note 2) (Cf note 5) ou III (Cf note 3)	IIa (Cf note 1)	III	III (Cf note 2)
28-50		(Cf note 4)		(Cf note 4)	(Cf note 4)
50-100		(Cf note 4)		(Cf note 4)	(Cf note 4)

(note 1) Pour ces cas d'exposition, il est possible, exceptionnellement et sur justifications (référence à l'expérience locale...), d'utiliser des murs du type I en pierres apparentes (pierres de taille ou moellons), sous réserve de respecter les épaisseurs minimales fixées par les Règles de calcul DTU n° 20,1 (REF).

(note 2) Pour ces cas d'exposition, ce type de mur nécessite, pour certaines maçonneries, des dispositions complémentaires explicitées dans le chapitre correspondant aux matériaux constitutifs du cahier des clauses techniques d'exécution DTU n° 20.1 enduit côté intérieur (art. 3.2.2.3) ou jointement après coup (art. 3.2.2.2.3) (REF).

(note 3) Dans les cas courants, le mur du type IIb moyennant les dispositions complémentaires visées au renvoi (Cf note 2) est suffisant ; toutefois, en fonction des connaissances de la sévérité des conditions climatiques de lieu, le concepteur peut demander l'exécution d'un mur de type III.

(note 4) Ces cases correspondent à des utilisations exceptionnelles non visées par le présent document et devant faire l'objet d'une étude particulière.

(note 5) Dans le cas d'utilisation de blocs en béton apparent à alvéoles débouchant et pour toutes les façades non abritées, il convient d'utiliser des murs de type III.

Cas des maçonneries destinées à rester apparentes

les flèches indiquent la direction des vents de

les flèches indiquent la direction des vents de pluie

Hauteur du mur au-dessus du sol (m)	Situation a, b ou c		Situation d		
	Façades abritées	Façades non abritées	Façades abritées	Façades non abritées	
				Zone littorale sauf front de mer	Front de mer
< 6	l	l ou lla (Cf note 2)		l ou lla (Cf note 5)	ПР
6-18	I	l ou lla (Cf note 3)	l	lla	ПР
18-28	I (Cf note 1)	l ou lla (Cf note 4)	I (Cf note 1)	llb	IIb (Cf note 6) ou III
28-50		lla ou llb (Cf note 2)		III	III
50-100		III ou IV (Cf note 2)		IV	IV

(note 1) Pour ces conditions d'exposition, les façades comportant des balcons et loggias ne peuvent, en règle générale, être considérées comme abritées (voir art. 3.2.3.1.5 REP).
(note 2) Excepté pour les murs du type IV, il n'a pas été tenu compte, dans l'analyse qui précède, de la nature du revêtement extérieur, qui peut cependant contribuer à la résistance à la pénétration de l'eau de pluie. Il reste, bien entendu, possible au concepteur d'user de ce paramètre pour préciser son choix en considération de la situation particulière de l'ouvrage.
(note 3) Le mur du type I ne peut, dans ces conditions d'exposition, être utilisé que lorsque l'épaisseur brute de la paroi en maçonnerie est supérieure ou égale à 27,5 cm.
Dans les autres cas, la solution minimale est le mur du type IIa.

(note 4) Le mur du type I peut, dans ces conditions d'exposition, être admis en fonction des conditions climatiques particulières du lieu et sous réserve de justifications résultant d'expériences locales satisfaisantes, lorsque l'épaisseur brute de la paroi en maçonnerie est supérieure ou égale à 32,5 cm, en blocs perforés de terre cuite et blocs de béton de granulats courants.

Dans les autres cas, la solution minimale est le mur de type IIa.

(note 5) Le mur du type I peut, dans ces conditions d'exposition, être admis en fonction des conditions climatiques particulières du lieu et sous réserve de justifications résultant d'expériences locales satisfaisantes, lorsque l'épaisseur brute de la paroi en maconnerie est supérieure ou égale à :

- 37.5 cm en blocs perforés de terre cuite.
- 27,5 cm en blocs de béton,
- 27,5 cm en blocs de béton cellulaire autoclavé.

Dans les autre cas, la solution minimale est le mur de type lla.

(note 6) Le mur de type II b peut, dans ces conditions d'exposition, être admis en fonction des conditions climatiques particulières du lieu et sous réserve de justifications résultant d'expériences locales satisfaisantes.

Dans les autres cas, la solution minimale est le mur de type III.

Cas des maçonneries destinées à recevoir un enduit ou un revêtement traditionnel ...

Les flèches indiquent la direction des vents de pluie

Les flèches indiquent la direction des vents de pluie

Cas particulier des Bardages :

MISE EN ŒUVRE DES MAÇONNERIES

Avant-propos

Harpage de maçonnerie

Harpage formant tête de mur de refend ou séparatif

Harpage formant chaînage verticale

Les joints de maçonnerie

Les joints verticaux et horizontaux sont en moyenne de 10 à 15 mm d'épaisseur. Ils ne devront jamais dépassés :

8 mm < e < 20 mm.

Disposition des joints

Appui ou trumeau&Maçonnerie

Parements de pose

Parement panneresse (pose)

Pose de briques sur chant (autorisé uniquement en cloison intérieure)

Appareillage des maçonneries en moellon - Règles de l'art

LES ELEMENTS DE FAÇADE

Baies et encadrements - Vocabulaire

Différent type de linteau

linteau rustique en bois

linteau de pierre en bâtière

linteau isolant, à âme de béton armé coffré dans des prélinteaux de brique alvéolaire

linteau métallique, sous un arc de décharge en briques

linteau de pan de bois

linteau préfabriqué, en béton armé ou béton cellulaire armé

Différents types de linteaux préfabriqués

en béton précontraint

en béton moulé formant coffrage

Les balcons

Les planelles (traitement des liaisons façade/plancher)

Utilisation d'une brique **planelle** en nez de dallage pour prévenir la fissure horizontale (lieux d'infiltration d'eau)

Les Gardes corps (principales règles de dimensionnements et de sécurités)

Disposition constructives

A noter:

- Le gabarit représente les dimensions de la tête d'un enfant (1 ans).
- La fixation au support d'un garde de corps doit être tel qu'une personne tombante ne puisse l'arracher (essai de la belle-mère ©)

Sorties de secours des Etablissements Recevant du Publics – Unité de passage

Largeur des unités de passage (Textes Généraux Sécurité Incendie – Articles CO) :

1 unité : 0,80 m 2 unités : 1,40 m 3 unités : 1,80 m n unités nx0,60 m $n \ge 3$

A noter:

Il s'agit ici des dispositions réglementaires Françaises. En la matière vous devez vous soumettre à la réglementation en vigueur du pays où vous construisez. A défaut consulter les compagnies d'assurance locales (les exigences de l'assureur).

Nombre de sorties et unités de passage en fonction du nombre de personnes pouvant être reçues dans un local :

EFFECTIF	NOMBRE MINIMAL D'ISSUES	DIMENSIONS	
20 à 50	2	1 unité chaque	
51 à 100	2	1 unité chaque ou 2 unités +	
		sortie accessoire de 0,60 m	
101 à 200	2	1 unité + 2 unités	
201 à 300	2	2 unités chaque	
301 à 400	2	2 unités + 3 unités	
401 500	2	2 unités + 4 unités	
		ou	
		3 unités + 3 unité	

Distances maximales à parcourir

- 40 mètres si le choix existe entre plusieurs sorties,
- 30 mètres dans le cas contraire.

A noter:

En ce qui concerne la position des sorties les unes par rapport aux autres, le bon sens est de rigueur.

Une sortie d'un ERP s'ouvre toujours vers l'extérieur.

Exercices:

Les corniches (liaison toiture/façade et lieux du chaînage haut en général)

<u>Les bandeaux de façade (prévenir le ruissellement de l'eau e pluie sur tout le long de la façade)</u>

..... et en particulier prévenir les « moustaches »

Les acrotères (liaison Toiture-terrasse/Façade) en béton armé

Dispositions constructives (ferraillage Fe 400)

Cas des acrotères massives non isolée tandis que la toiture terrasse est isolée

Autres solutions technique possibles:

Coulée en deux temps

Préfabrication

LE CHAINAGE D'UN BATIMENT

Les chaînages horizontaux

Chaînage horizontal des maçonneries

Les chaînage horizontaux en béton armé

Dispositions constructives minimal pour les chaînages horizontaux en BA (Fe 400)

Détail au droit des angles : bien assurer la continuité du chaînage

Les chaînage horizontaux et leurs liaisons entre plancher/façade

A noter :

- 1. Dans la pratique l'absence de planelle est tolérée pour une hauteur de chaînage/plancher inférieure ou égale à **15 cm**. Un traitement dans l'épaisseur d'enduit par addition d'un grillage est alors à prévoir.
- 2. La profondeur d'appui d'un plancher doit être d'au moins égale au 2/3 de l'épaisseur du mur porteur.

Cas particulier d'un chaînage horizontal haut fait dans l'épaisseur de la corniche

corniche en éléments préfabriqués formant coffrage de chaînage

Cas des corniches, créé à partir d'un chaînage horizontal à la suite d'un plancher

Eviter les pièces massives ⇒ désordres

Avec pour ferraillage de la casquette (Fe 400) :

A noter:

Attention au détail constructif pour créer une corniche à partir d'un plancher. L'utilisation d'une planelle est là aussi indispensable pour éviter les désordres en façade (fissuration horizontale; infiltration d'eau, ..); mais aussi des joints de fractionnement tous les 3 mètres en angle et 6 mètre en partie courante.

Pathologie associée aux insuffisances de chaînage de corniche

Les chaînages verticaux

Chaînage vertical plein mur et d'angle

Le chaînage vertical est indispensable lorsque :

- Il est nécessaire de raidir le mur (poteau raidisseur)
- Le dernier plancher est en béton armé (exemple : toiture-terrasse)
- Le terrain sur lequel est construit le bâtiment est de très mauvaises qualités

Pour réaliser un chaînage vertical ou poteau raidisseur on pourra le faire à raison de la section minimale de 1,6 cm 2 (FE 400 , Cf. DTU, soit 2 ϕ 10 et épingles ϕ 6 espacés 20 cm, ou encore 4 HA 8 et étrier ϕ 6 espacés 15 cm).

La distance entre chaînage verticaux

Cette distance est fonction de la hauteur du mur, de son épaisseur et s'il est tenu en tête ou non. On peut utiliser les formules suivantes, en supposant que le mur est tenu en tête :

□ Disposition minimale, quelque soit le cas :

• $L \le 5 \text{ m}$; $S \le 20 \text{ m}^2$ (surface du mur); $\frac{h}{e} \le 20$ (élancement du mur)

□ Dispositions particulière selon le matériaux utilisé :

- Murs en éléments pleins ou BA $\begin{cases} e \ge 10 \ cm \\ d \le 40.e \end{cases}$
- Murs en éléménts creux $\begin{cases} e \ge 20 \text{ cm} \\ d \le 25.e \end{cases}$

A noter :

E = épaisseur <u>totale</u> du mur (parpaing+enduit par exemple, soit un parpaing de 15 cm enduit 2 faces en enduit traditionnel)

Exercices

- 1. Distance entre deux raidisseurs pour un mur en parpaing creux de 15 enduit 2 face et de 3 m de hauteur ?
- 2. Hauteur autorisée pour un mur de clôture en pierre maçonnée de 14 cm avec raidisseurs tous les 3 m?
- 3. Hauteur autorisée pour un mur de clôture en parpaing de 15 cm sans enduit avec raidisseurs tous les 3 m?

55

Exercice sur plan

LES ENDUITS DE FAÇADE

Dosage progressif des couches de mortier pour l'enduit

GOBETIS

Fonction: Couche mince d'accrochage au support

Temps d'application : une fois le tassement du bâtiment fait (1 mois au moins

après la maçonerie)

Epaisseur: 2 à 5 mm

Dossage en ciment : 500 à 600 Kg de ciment de la classe 35 par m3 de sable sec

Granulométrie du sable : 0,25/3,15

Particularité: humidification du support avant application indispensable

CORPS DE L'ENDUIT

Fonction: Couche épaisse dressée, pour l'imperméabilisation et planitude

Temps d'application : 48 h minimum après le gobetis

Epaisseur: 8 à 12 mm

Dossage en ciment: 400 à 500 Kg de ciment de la classe 35 par m3 de sable sec

Granulométrie du sable : 0,1/3,15

Particularité : Sensible à un séchage trop rapide (soleil et surtout vent)

COUCHE DE FINITION

Fonction : Couche de parement pour la décoration et protection de surface

Temps d'application : 4 à 7 jours après le corps d'enduit

Epaisseur: 5 à 7 mm

Dossage en ciment : 300 à 400 Kg de ciment de la classe 35 par m3 de sable sec

Granulométrie du sable : 0,1/0,2

Particularité: humidification du support avant application indispensable

$$\sum$$
 épaisseur = 20 à 25 mm

Finition des enduits

Phases de retournement d'un enduit

Pathologie des enduits

Lorsqu'un enduit est mis en œuvre sur un support trop absorbant ou dans des conditions climatiques défavorables, il se dessèche prématurément avant la prise du liant, ce qui peut se traduire par des décollements ou une friabilité excessive.

En outre, des fissurations résultent souvent du mauvais dosage d'une couches, ou de délais de séchage insuffisants entre chaque couche

Enfin, en couche de finition il est indispensable de choisir des teintes claires (coef. d'absorption solaire >0,7), ou encore d'éviter de juxtaposer des teintes trop contrastées, sous peine d'obtenir des fissurations de l'enduit (choc thermique&dilatation différentielles).

Faïençage des mortiers hydrauliques

Fissuration et décollement

A noter : plus le maillage du faïençage est faible plus c'est l'expression d'un enduit fragile.

Par ailleurs, si malgré tout le chaînage horizontal ou plancher est mi en œuvre sans planelle, il convient alors d'incorporer un grillage dans l'épaisseur de l'enduit.

LE BETON ARME

Les Armatures à béton

Principaux éléments

Les différents types de fer à béton

(V. détails de caractéristiques, diamètres, sections et masse dans un ouvrage tel que le Technor ou un traité de béton armé)

Utilisation des armatures : vocabulaire

Epingle (d'armature de béton)

Etrier d'armature du béton

Ligature d'armature

Armature en attente

Les treillis soudé

Composition type des mortiers et bétons

Mortiers

Désignation des mortiers	Poids de ciment pour 1000 litres de sables
Mortier n°1 : maçonnerie, hourdage,	300 kg / classe 45
Mortier n° 2 : enduits extérieurs et intérieurs	300 à 500 kg (selon couche)/ classe 35
Mortier n°3: chape ordinaire, jointoiement	250 kg / classe 35
Mortier n°4 : scellements	750 kg / classe 45

<u>Bétons</u>

Désignation des bétons	Dosage en gravier (5/25)	Dosage en sable (0/5)	Dosage en ciment par m3 de béton en place
Béton n°1 : (propreté)	800 Litres	400 Litres	150 Kg / classe 45
Béton n°2 : (gros béton de fondation)	800 Litres	400 Litres	250 Kg / classe 45
Béton n°3 : (forme de sols, agglomérés ⇔ chapes et parpaings)	800 Litres	400 Litres	250 Kg / classe 45
Béton n°4 : (béton armé)	800 Litres	400 Litres	350 Kg / classe 45

Mortiers spéciaux pour maçonnerie en BTC

Désignation du mortier BTC	Dosage en ciment en % de Poids de terre latéritique
Mortier BTC	Le double du dosage utilisé pour la fabrication du bloc BTC

A noter:

Il existe dans la pratique deux types de BTC:

- ✓ BTC pour maçonnerie **intérieure** : dosage en ciment = 6 %
- ✓ BTC pour maçonnerie extérieure : dosage en ciment = 8 %
- ✓ BTC pour maçonnerie extérieure façade exposée : dosage en ciment = 12 %

D'où le dosage du mortier de pose.

Vibration et mise en œuvre des bétons

Rayon d'action d'une aiguille vibrante

Utilisation de l'aiguille vibrante

<u>Vitesse de bétonnage à ne pas dépasser pour</u> un béton courant

Pathologie des bétons : la corrosion des armatures

Le béton est un matériau basique, dont le Ph, tout au moins aux premiers âges, se situe entre 12 et 14

C'est aussi un matériau relativement étanche qui joue un rôle de barrière vis à vis de l'environnement.

La protection des armatures est donc à la fois chimique (du fait de l'alcalinité de la solution interstitielle et de la passivité de l'acier dans ce milieu) et physique (par l'enrobage).

Sous l'action d'un certain nombre d'agents extérieurs, atmosphériques et chimiques, le béton entame un processus de carbonatation et perd petit à petit son caractère basique, de sorte que son Ph peut descendre au dessous de 10.

La protection de l'acier n'est plus assurée et la corrosion devient donc possible.

Le béton se trouve alors soumis à des contraintes très importantes qui résultent du gonflement des armatures sous l'effet de la rouille (le volume d'une armature peut quadrupler sous l'effet de l'oxydation), ce qui se traduit par une poussée au vide qui conduit à l'éclatement du béton au droit de l'armature qui se trouve ainsi mise à nu.

Ce phénomène est particulièrement visible dans le cas des nez de balcons, des bandeaux et dans certains voiles de façades dans lesquels les armatures ne sont pas correctement positionnées, ainsi que dans des ouvrages soumis à l'action des embruns ou de sels.

D'où l'enrobage des armatures, à savoir :

Les cales d'enrobage

LES PLANCHERS

Plancher Bois traditionnel

Platelage bois sur solives

Plancher sahélien

Les Planchers en béton armé

Plancher coffré et coulé à dalle pleine sur coffrage

Plancher à hourdis + poutrelles préfabriquées

Différent type de poutrelle

Les différents types d'Hourdis

Les dispositions constructives des plancher poutrelles+ hourdis

Plancher à pré-dalles

Les différents types de pré-dalle

Plancher préfabriqué nervuré

Plancher nervuré

Plancher à champignon

2 sens

"plancher-champignon sans champignon"

Les planchers à poussée horizontale

Les planchers à voûtains

Les planchers par voûte en berceau

LES POUTRES

Vocabulaire

Les Poutres bois

Les Poutres métallique

LES ESCALIERS

Définition&vocabulaire

Formule de BLONDEL

2.H + G = 60 à 64 cm

(avec G entre 25 et 32 cm; 28 cm en générale)

Prendre pour largeur de palier ou de repos L=1,2 E (E largeur de l'escalier = emmarchement)

Exemple d'escaliers

Les escaliers suspendus

Les escaliers à vis

LES OUVERTURES (PORTE&FENETRE)

Fenêtres

Détails constructifs

<u>Feuillures</u> et contre-feuillures

Huisserie (dormant)

Parcloses (les différents types)

Porte et sens d'ouverture

à gauche en poussant, ou à droite en tirant (6)

à droite en poussant, ou à gauche en tirant (5)

NB - Suivant la convention internationale ISO (ISO-R-1220), les chiffres 0 et 1 désignent les faces d'ouverture (0) et de fermeture (1).

La convention désigne par le chiffre 5 le sens d'ouverture par rotation, vue de dessus, dans les sens des aiguilles d'une horloge, et par 6 la rotation dans le sens inverse.

Cas particulier de portes

Porte va-et-vient (ici à deux vantaux)

Porte coulissante

Constitution d'une porte (ouvrant)

Porte isoplane

80

Porte pleine

LES CHARPENTES

Charpentes traditionnelles

Charpente industrialisé légère (dit à fermette)

<u>A noter</u>: L'étaiement provisoire en phase de construction (de mur, charpente ...) et en particulier contre les effets du vent = **SECURITE**

Charpente lamellé-collé

LES FERMES DE CHARPENTE

Types de ferme

Quelle ferme pour quel type de charge

Il existe deux grandes familles de fermes

Fermes avec entrait

Ces fermes sont courantes et leur mise en œuvre présente peu de difficultés. L'entrait ayant pour conséquence de "refermer" les forces sur la ferme. Elles transmetent des efforts horizontaux réduits à ses appui et facilite ainsi l'étude et la réalisation des ancrages

Ferme en "W"

Ferme en double W

Elle est équilibrée et convient aux grandes portées et aux charges importantes

Ferme monopente

Ferme en "M"

Elle convient aux plafonds lourds et aux couvertures légères

Ferme en éventail

Elle convient aux plafonds légers et aux couvertures lourdes

Fermes sans entrait

Ces fermes sont non courantes et posent des problèmes de calcul complexes (attaches au droit des noeuds, point d'appui, stabilité ...) Leur emploi est donc réserver à des cas particuliers et aux professionnels.

Ferme de combles habitables en "A"

Ce type de ferme soumet le plancher à une légère traction et nécessite des appuis bloqués.

Ferme de combles habitables à encuvement

Ce type de ferme soumet le mur porteur à **une traction considérable**. Ces fermes nécessitent des ancrages très résistants (chevilles à expansion, scellement) fixés sur un support renforcé (ferraillage du béton support).

Ferme "boiteuse" pour chien assis

Le mur soutenant l'appui supérieur de la ferme ne peut généralement pas encaisser à lui seul la poussée horizontale importante de ce type de ferme. Une poutre de poussée est généralement nécessaire.

Comment réaliser une croupe

Il existe trois solutions:

- Croupes à empagnons porteurs
- Croupe à fermes tronquées
- Croupe à ferme d'arêtier

Les fermes à faible pente

Une ferme à faible pente présente une grande souplesse. Il faut donc prévoir à la conception la rehausse de ses extrémités pour améliorer sa rigidité

Détail de fermes

Exemples d'assemblages

Détails grille porteuse secondaire pour couverture en petit éléments

Détail sur faîtage

(L pour lisse de faîtage)

LES COUVERTURES

Formes et éléments constitutifs d'une couverture - Vocabulaire

Couverture en grand éléments

Tôle nervuré (alu ou acier)

<u>Tôle ondulée</u>

On peut citer en particulier :

- Fibre-ciment
- Onduline (carton/bitume)

Fixation et pose

Types de fixations des plaques nervurées à la structure

Le Serrage des vis

Pentes minimales (en %) des couvertures en grands éléments

Réf.		Type de couve	erture	Longueur de rampant (suivant la		ZONE I		ZONE II			ZONE III		
				pente) (en m)		Situation			Situation		Situation		
				10	Protégée	Normale	Exposée	Protégée	Normale	Exposée	Protégée	Normale	Exposée
DTU 40.31	Plaques ondulées D'amiante-ciment (a)		<10 10 à 12 12 à 15 15 à 20 20 à 25 25 à 30 30 à 35 35 à 40	9 9 9 10 13 16 21 26	9 9 9 10 13 16 21 26	9 9 9 10 13 16 21 26	9 9 10 13 16 21 26	9 9 10 13 16 21 26	9 9 10 13 16 21 26	9 9 10 13 16 21	9 9 10 13 16 21	9 9 10 13 16 21	
Avis Technique	Plaques d'amiante- ciment, support de tuiles (b)	Pose class	ique des plaques	9 à 31 (suivant longueur de rampant)									
Avis	Plaques	Coque	autoportante				1 (3 si	recouvreme	nts transvers	aux)			
Technique	Diverses et coques			< 20	5	5	5	5	5	5	10	10	10
	d'amiante- ciment,	à nervures de 120 mm	,	20 à 25 25 à 30 30 à 35 35 à 40 40 à 45	5 10 15 15 26	5 10 15 15 26	5 10 15 15 26	10 15 15 26	10 15 15 26	10 15 15 26	15 15 26 -	15 15 26	15 15 26 -
		à nervu	res de 205 mm					s de recouvre	ements trans	versaux)			
DTU 40.32	Plaques ondulées métalliques			< 20 20 à 25 25 à 30 > 30	25 25 25 30	25 25 25 30	25 25 25 25 30	25 25 30 40	25 25 30 40	25 25 30 40	25 30 40 40	25 30 40 40	25 30 40 40
DTU 40.35	Plaques nervu Prélaqué ou n	on (c) (d)	alvanisé,	= tôle > tôle	5 7	5 7	5 10	5 7	5 10	5 10	5 15	5 15	5 15
Avis Technique	Panneaux sandwich nervurés en acier				5 à 10 (suivant longueur et joints) (e)								
Avis Technique	Plaques en acier et isolant				7 (e) (f)								
Avis	Coques	à ossature sen	ni-circulaire		5 (e)								
Technique	en acier et isolant	à ossature en	V renversé			2 (e)							
Avis Technique	Tuiles métalliques				25	30 (g)	50	25	30 (g)	50	25	30 (g)	50
DTU 40.36	Plaques nervurées en aluminium	à nervures >	35 mm	= tôle > tôle	5 7	5 7	5 10	5 7	5 10	5 10	5 15	5 15	5 15
		à nervures <	35 mm	= tôle > tôle	10 15	10 15	10 15	10 15	10 15	10 15	15 20	15 20	15 20
	1	à nervures de	e 60 mm	= tôle	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
Avis Technique		à joints sertis		= tôle				2 ou	3 suivant pro	océdé			
DTU en	Feuilles	à agrafure simple		1	20	20	25	20	25	25	20	25	25
(vigueur)	Et bandes	à Tasseaux	à agrafure double à ressauts de 10 cm	- '		10 5	14 6	10 5	12 5	16 8	10 5	14 6	20 10
40.41	- zinc	a travees contr		3	5	5	6	5	5	8	5	6	10
40.42	- aluminium		à agrafure simple		47	47	47	47	47	47	47	47	47
40.43	- acier inox	à joints debouts	à agrafure double		20	20	20	20	20	20	20	20	20
40.44 40.45	- cuivre - galvanisé	à j del	à ressauts de 10 cr à travées continues		5 5	5 5	5 5	5 5	5 5	5 5	5 5	5 5	5 5

Avec complément d'étanchéité pour les pentes inférieures à 16.21 ou 16 % selon la zone ou la (a) situation

- (b) La plaque n'est pas celle normalisée ; les tuiles associées sont les tuiles canal normalisées.
- Pour les hauteurs de nervure < 35 mm :

 - . 5 est porté à 7 ; . 7 est porté à 10 ; . 10 est porté à 15
- (d) De 7 à 10 %, compléments d'étanchéité transversaux ou recouvrements de 300 mm.

- (a) Restrictions d'emploi :
 - montagne ;
 - hygrométrie des locaux
- (b) Pente 2 à 7 %, si:
 - pas de translucitdes ;
 - $\hbox{-} \textit{ forme simple };\\$
 - double complément d'étanchéité transversal
- (c) La pente de 30 % peut être ramenée à 25 % selon le procédé.

Couvertures en petits éléments

Tuiles plates

Définition des recouvrements

Nomenclature:

R ⇔ Recouvrement

F ⇔ Faux-pureau

P ⇔ Pureau

A noter

Les valeurs de recouvrement (en cm, entre 6 et 15 cm) sont fonctions :

- Du type de tuile,
- De la pente de la couverture,
- De la région, site et exposition
- De la longueur du rampant de couverture

Tuiles canal

Tuiles à emboîtement

modèles de tuiles romanes simple et double, à emboîtement

Tuiles à glissement

Les bardeaux d'asphalte (Shingle)

A noter:

La pose se fait nécessairement sur volige ou panneau bois. Jamais sur tasseau.

Les accessoires de couverture

Les chatières (ventilation de la couverture)

Les tuiles faîtière

Traitement des noues

noue ouverte <u>GB</u>: open valley (pour tuiles ou ardoises)

Ligaturage des tuiles

A noter:

Le ligaturage des tuiles est en Afrique indispensable compte tenu des vents violents/tourbillonnants

Pentes minimales (en %) des couvertures en petits éléments

Réf.	Type de couverture				Longueur de rampant (projection		ZONE I			ZONE II		ZONE III			
			horizontale) (en m)		Situation		Situation			Situation					
					Protégée	Normale	Exposée	Protégée	Normale	Exposée	Protégée	Normale	Exposée		
DTU 40.11	Ardoises naturelles	à pure	eau entier			< 5,5 5,5 à 11 11 à 16,5	20 25 30	20 25 30	- - -	27,5 32,5 37,5	275 32,5 37,5	- - -	35 40 45	35 40- 45	- - -
			à pureau dé	veloppé		< 16,5	50	50	-	50	50	-	50	50	-
DTU 40.12	Ardoises en amiante-		En modèles	losangés			57	57	-	73	73	-	-	-	-
(révisé)	ciment		à claire voi	rie (a)		< 5,5	60	60	-	60	60	-	-	-	-
	normalisées	au r		clous et crar	npons	< 8	25	25	28	28	28	35	35	35	-
		à pureau entier		Crochet		< 8	25	25	35	35	35	45	45	45	-
		à		Clous		< 8	30	30	35	35	35	45	45	45	-
		en mo	odèles losan	gés		< 8	90 (b)	90	120	120	120	140	140	140	-
		à clai	ire –voie			< 8	100	100	100	100	100	100	200	200	-
Avis Technique	ardoises en amiante- ciment épaisses	Modèle 50 x 30 Modèle 40 x 24			< 8 < 8	25 30	25 30	28 40	28 40	28 40	40 50	40 50	40 50	40 50	
Usages	Bardeaux	Châtaignier (Limousin) de 0,30 m Épicéa (esandoles) de 1 à 2 m				es (sciés) (fendus)	25 35								
Locaux	De bois				0 m						88				
							Fortes pentes								
DTH		Ipicéa (travaillons) de0,45 m								F	aibles pente	·S	1		
DTU 40.14	Bardeaux Bitumés		Sur support Continu Sur support Discontinu			< 5,5 5,5 à 11 11 à 16,5	20 20 25			20 20 25			20 25 25		
Avis Technique	Normalisés					< 5,5 5,5 à 11 11 à 16,5 16,5 à 30	32,5 35 40 45			32,5 35 40 45			35 40 45 50		
Avis Technique	Bardeaux Bitumés épais	Sur su	upport conti	nu		< 5,5 5,5 à 11 11 à 16,5 16,5 à 30	30 32,5 35 45			30 32,5 35 45			32,5 35 37,5 45		
	cpuis	Sur support discontinu			< 5,5 5,5 à 11 11 à 16,5 16,5 à 30	40 42,5 45 52,5		40 42,5 45 52,5			42,5 45 47,5 55				
DTU			Modèle gr Modèle pe			< 12 < 12	35 40	40 50	60 70	35 50	50 60	70 80	50 60	60 70	80 90
40.21		'nt	Modèle	Type A	A	< 12	29	35	50	29	40	60	40	50	65
	cuite	À emboîtement	à faible Pente	Type E	3 (c)	< 6,5 6,5 à 9,5 9,5 à 12	22 26 27	25 28 32	33 35 42	24 28 30	27 32 35	37 39 45	27 30 35	30 36 40	40 42 50
Avis Technique	Tuiles de terre cuite	À	Modèle à très faible pente			< 6,5 6,5 à 9,5 9,5 à 12	18 20 26	21 22 26	- - -	21 23 26	23 25 28	-	25 27 30	27 29 32	
DTU	T.		Can			< 12	24	27	30	27	30	33	30	33	35
Avis Technique	Car		Canal (d) Canal à épaulements (d)			< 8	24	27	30	27	30	33	30	35	40
DTU 40.23		Plates			< 8	80	90	110	80	100	120	90	110	125	
DTU 40.24	Tuiles	Embo	oîtement sur	elevé		< 12	29	29	29	29	29	29	29	29	29
40.24 DTU 40.241	De béton	Plane				< 8	40	40	40	40	40	40	40	40	40
DTU 40.25		Plates	3			< 8	80	90	110	80	100	120	90	110	125

⁽a) Interdit sur littoral et au-dessus de 300 m d'altitude (b) Pentes pouvant être abaissées à 50 ou 60 %, suivant le type de fixation (c) Le classement en type B est établi par constat de traditionalité.

⁽d) La région méditerranéenne est incluse en zone II (e) Ou tuiles à emboîtement à mi-épaisseur (ne pas confondre avec les tuiles plates, objet de la norme NFP 31-312).

Choisir une couverture

Pente (en °)	Matériaux de co	ouverture	Poids propre (kg/m²)	Entre axe entre appuis (m)	Configuration	Surcharge D'exploitation admissible (Kg/m²)
22 à 30		Tuile	40 à 60	0,3	Couverture pour forte pente.	30
90 et plus	Matériaux traditionnels	Ardoise	30 à 40	à	Nécessite la pose de liteaux (grille porteuse secondaire)	à 100
1		Poutrelle+ourdis	150 à 330	0,8	Penser à l'étanchéité car pente faible.	100
à	Matériaux en béton (Toiture terrasse)	(catégorie A cf. cours de construction)	130 4 330	à 6	Le poids propre est fonction de l'épaisseur du plancher (et donc de la résistance mécanique recherchée).	à
3		Dalle	370 à 500		En particulier les planchers de type poutrelle+ourdis dépendent fortement du type d'ourdis utilisé (ex : si ourdis en polystyrène : $(P_{\text{Pr}opre} \ _{plancher} \in [150;210]$; si en béton $P_{\text{Pr}opre} \ _{plancher} \in [220;310]$)	500

En Afrique, compte tenu des pluies violentes il est vivement conseillé pour les matériaux traditionnels un complément d'étanchéité au moyen d'un polyane continue de 150 microns minimum en sous-face de la couverture ; de même la ligature de chaque élément est obligatoire.

Pour les matériaux en béton une pente de 3 % est vivement conseillé afin d'éviter la stagnation d'eau.

Pente (en °)	Matériaux de couverture		Poids propre (kg/m²)	Entre axe entre appuis (m)	Configuration	Surcharge D'exploitation admissible (Kg/m²)
4*/11		Aciers	7 à 10	1,70 à 3,20	4 chiffres pour caractériser le produit :	
4*/11	Matériaux ondulés	Alu	2 à 3	1,6 à 2,2	✓ e : épaisseur (de 0,4 à 1,25 mm pour acier, 0,6 à 1,25 pour l'alu, et 1,5 à 3 mm pour le polyester)	
à	*: 4° pour les plaques fibro-ciment, et 11 pour	Onduline	6,5	0,5 à 0,6	✓ L : longueur d'onde (7 à 8 cm, sauf pour le fibro-ciment ayant 17,7 cm))	50
25	les autres plaques	Polyester	2,5	1,6 à 3,20	✓ H : hauteur d'onde (2 cm environ)✓ L : Largeur : 0,90 m	à
	e d	Fribo-ciment	16	1,38 ou 1,44	L'entraxe entre appuis dépend des conditions climatiques (vent : région, site), des 3 chiffres du produit (e, 1 et h), des dimensions de plaques et des recouvrements nécessaires (10 à 15 cm selon pente) ⇒ dans la pratique voir la fiche technique du fabricant	

En Afrique, compte tenu des pluies violentes il est vivement conseillé pour les matériaux ondulés une pente minimal de 11° (25 %), et de 7° (15%) pour les plaques fibre-ciment

A noter:

Dans le cas de couverture ondulée, vérifier si nécessaire le taux de travail au moyen de la formule suivant et en particulier sous une charge ponctuelle de 100 daN (poids d'un homme) :

$$\frac{I}{v} = \left(196 + 354 \cdot \frac{h}{L}\right) \cdot h \cdot d \quad \text{(cotes en mm ; résultat en cm}^3\text{)}$$

Pente (en °)	Matériaux de couverture	Poids propre (kg/m²)	Entre axe entre appuis (m)	Configuration	Surcharge D'exploitation admissible (Kg/m²)
0 à	Acier <u>Matériaux nervurés</u>		2,5 à 4	3 chiffres pour caractériser le produit : ✓ e : épaisseur (de 0,6 à 1 mm environ)	50
25	(autoportant) Alu	7	0,8 à 2,5	✓ L: longueur d'onde (30 à 40 cm) ✓ H: hauteur d'onde (38 mm mini) ✓ L: largeur: 1 m environ	à 100
	h L			L'entraxe entre appuis dépend des conditions climatiques (vent : région, site), des 3 chiffres du produit (e, 1 et h), des dimensions de plaques et des recouvrements nécessaires (10 à 15 cm selon pente) ⇒ dans la pratique voir la fiche technique du fabricant	

En Afrique, compte tenu des pluies violentes il est vivement conseillé pour les matériaux nervurés une pente minimale de 7° (15%)

De façon générale, en construction métallique préférer les matériaux nervurés et consulter la fiche technique du fabricant pour déterminer l'entraxe entre appuis. Souvenez-vous : on ne construit pas sans le matériaux

Par ailleurs, avant de se lancer dans des calculs de structures :

- ✓ Penser aux pentes qui implique un type de matériaux préféré et des entraxes entre appuis
- ✓ Penser aux évacuation des eaux pluviales (positions)
- ✓ Penser à l'éclairage naturel le cas échéant (shed, plaque transparente ...)
- ✓ Penser à la ventilation des locaux (poids en plus et aménagements à prévoir)

LES TOITURES TERRASSES

Paramètres d'une toiture-terrasse

La pente

Appellation de la	Pente correspondante				
toiture					
Toiture-terrasse à pente nulle	0 % (tolérance de planéité : 2 cm)				
Toiture-terrasse plate	1 à 5 % sur béton et bois 1 à 3 % sur acier				
Toiture rampante	5 à 15 % sur béton et bois 3 à 7 % sur acier				
Toiture inclinée	≥ 15 % sur béton et bois ≥ 7 % sur acier				
Nota : Les valeurs limites sont incluses dans chaque catégorie, sauf les limites inférieures de 3 % et 7 % sur acier.					

⁻ Classification, selon les DTU, des pentes des toitures-terrasses.

Classe I	La pente conduit à la stagnation de l'eau et permet une protection lourde.
Classe II	La pente permet l'écoulement de l'eau et une protection lourde.
Classe III	La pente permet l'écoulement de l'eau, mais pas de protection lourde.
Classe IV	La pente impose des mesures particulières lors de la mise en œuvre.

⁻ Classification des pentes des toitures-terrasses selon les directives UEAtc.

L'ACCESSIBILITE

Classification selon les directives UEAtc	Classification selon les DTU 43.1 à 43.4
Architecturales	Inaccessibles
Accessibles à l'entretien	Inaccessibles
Accessibles aux piétons	Piétons
Accessibles aux véhicules	Parc VL ou PL
Spéciales	Jardins
	Techniques

 ${\it Classification \ de \ l'accessibilit\'e \ des \ toitures-terrasses}.$

L'élément porteur

Le support d'étanchéité

<u>Le revêtement d'étanchéité (dit « étanchéité »)</u>

La protection de l'étanchéité

<u>Le Liaisonnement du revêtement au support d'étanchéité</u>

Classification selon les Directives UEAtc	Classification selon les DTU 43.1 à 43.4
Adhérence	Adhérence
Adhérence partielle	Semi-indépendance
Fixation mécanique	Semi-indépendance
Collage et fixation	Semi-indépendance
Indépendance avec lestage	Indépendance

Modes de liaisonnement du revêtement d'étanchéité au support.

Exemple de toiture-terrasse

Les revêtements d'étanchéité en feuille de bitume – mise en oeuvre

	<u>Toi</u> t	tures-terrasses su	r éléments porteurs rig	ides				
CLASSIFICATION	Pente	PROTECTION						
des toitures-terrasses	minimale (en %)	sur asphalte	Sur mu	ılticouches				
		p ≤ 3 %	p ≤ 5 %	P > 5 %				
Inaccessible	0	Gravier (a)	gravier (d)	Autoprotection				
Technique	0	Dallettes en béton	dallettes en béton	matériau spécial				
Piétonne	1	Asphalte gravillonné (b)						
	1	Mortier ou béton (+ carrelage)	mortier ou béton (+ carrelage)					
	1	dallettes, pierre, briques, pavés	dallettes, pierre, briques, pavés					
	0	dalles sur plots sur asphalte gravillonné de type P (c)	dalles sur plots sur forme en béton ou étanchéité adaptée (voir Avis techniques)					
Parc VL	1	Asphalte gravillonné de type P (b)						
	1	béton	béton					
Parc VL	1	Béton épais	béton épais					
Jardin	0	Asphalte gravillonné						
	0	Mortier ou béton	mortier ou béton ou étanchéité adaptée					
		Toitures-terrasses su	r éléments porteurs flexibles					
CLASSIFICATION des toitures-terrasses	Pente Minimale (en %)		PROTECTION					
tottures-terrasses	(611 /0)	sur asphalte	Sur mu	ulticouches				
		p ≤ 3 %	$p \le 3$ % sur bacs métalliques $p \le 5$ % sur autres	P > 3 % sur bacs métalliques p > 5 % sur autres				
Inaccessible	1 (e)	Gravier	gravier (d)	autoprotection				
Technique	1 (e)		dallettes en béton	matériau spécial				

- (d) Asphalte nu seulement sur béton, en région n'ayant pas à subir de fortes oppositions de température
- (e) Interdit sur isolant

- (f) Surface limitée à 100 m² en pente nulle
 (g) En toiture inaccessible, les multicouches non normalisées peuvent généralement rester sans protection rapportée (voir Avis technique).

(e) Pente en tout point, compte-tenu des flèches dues aux actions diverses.

Caractéristiques de la protection d'une toiture-terrasse en fonction de sa pente et de son accessibilité.

Les toitures terrasses et leur isolation thermique

La position de l'isolant par rapport à l'étanchéité

La pose de l'isolant - dispositions usuelles

Le calpinage des panneaux isolant

Il existe 4 modes de pose de l'isolant :

- Pose collée (panneau collé au support par du bitume chaud ; uniquement réservée pour les isolants type laine de roche ou verre cellulaire, soit ayant une faible dilatation),
- La pose semi-indépendante (panneau collé par point ; réservée aux isolants en matière plastique, de type polyuréthane),
- La pose en indépendance (réservée aux isolants type polystyrène ou polyuréthane),
- La pose fixée mécaniquement (principalement pour les couvertures en pente).

A noter:

« Plus l'isolant bouge (sensible à la dilatation thermique) plus il faut le désolidariser de son support »

Le polystyrène est un isolant nécessitant obligatoirement une pose en indépendance.

Les éléments porteurs rigides supports d'étanchéité

Pathologie : Inconvénients relatifs aux dalles en béton de type D

Les protections rapportées sur toiture-terrasse piétonne

Protection	Schéma	Constitution	Fractionnement
<u>Asphalte</u>		Asphalte gravillonné (20 mm)	
Chape ou dallage avec carrelage (pose scellée ou collée)	C C C C C C C C C C C C C C C C C C C	 Carrelage 10x10 (1 cm) Mortier de pose (3 cm mini ; pose scellée) Ou si pose collée Mortier colle (1 cm)+ support mortier ou béton Papier Kraft Sable (2 cm) 	Tous les 6 m: Joints souples (2 cm) Tous les 3 m: Joints secs
<u>Dalles sur plots</u> (sur chape ou dallage)		■ Dalettes 40 à 50 cm ■ Plots h > 5 cm S = 100 cm² R = 250 à 500 daN ■ Mortier ou béton sur papier Kraft ■ Sable (2 cm)	Entre dalettes: 1 cm (0,5 si S > 30 cm2) Dans le dallage: Voir ci-dessus
Dalles sur plots (sur asphalte type P)		Dalettes 40 à 50 cm Plots h > 5 cm S = 100 cm ² (haut) S = 300 cm ² (bas) P = 0.2 bar	Entre dallettes : 1 cm
<u>Dallettes</u> <u>préfabriquées</u>	ode	 Dallettes 25 à 50 (4 cm) Sable ou gravier (3 cm) (+ mortier maigre si joint sec) 	Entre dallettes : Mortier (1 cm) Ou Joints secs
Briques de pavage	C	BriquesSable (3 cm) stabiliséPapier Kraft	Entre brique (0,5 à 1 cm) : Sable fin Ou Sable stabilisé Ou mortier
<u>Pavés</u>		Pavés (6 cm) Sable (4 cm)	Au pourtour

<u>A noter</u>: Vous avez ici en enlevant l'étanchéité, les dispositions constructives pour créer un pavage piéton (trottoir).

Détails constructifs au doit des relevés d'étanchéité sur maçonnerie ou béton

Relief de terrasse accessible

Relief de terrasse à pente nulle

Les principaux dispositifs de protection des hauts de relevé

Pathologie des bandeaux rapporté en béton

Les relevés d'étanchéité sur toiture en bac métallique par relief en métal

Rive latérale

Différents cas de noue de rive

Costières métalliques

Les seuils

Exemples de seuils

Exemples de seuils à niveau

