华中科技大学 2019-2020 学年第二学期

Signals and Systems

Examination Paper A for Students of Grade 2018

Class_____Name____Name_____

Problem	1	2	3	4	5	6	7	8	9	Total Scores
Scores	10	12	10	12	10	8	12	10	16	100
Get Scores										

1. (10 scores) The signal x(t) is shown in Fig.1, please—sketch the waveform y(t) = x(-2t+6).

2. (12 scores) A system is described by $y(t) = \cos\left(3t - \frac{\pi}{2}\right)x(t)$, please judge the properties of the system and give your reasons.

(1) memory?; (2) linear?; (4) time-invariant?; (3) causal?

3. (10 scores)The differential equation of a system is

$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = x(t)$$

Please calculate:

(1) the impulse response h(t);

(2) if $x(t) = e^{-t}u(t)$, calculate the zero-state response y(t).

- 4. (12 scores) Please calculate the following convolutions:
 - (1) x(t) and h(t) are shown in Fig.2.a and Fig.2.b, please calculate y(t)=x(t)*h(t).

- (2) $x[n] = \delta[n+1] + 2\delta[n] + \delta[n-1]$, $v[n] = \delta[n-1] + 2\delta[n-2]$, y[n] = x[n] * v[n] = ? (convolution sum)
- (3) $x[n] = 2\delta[n] + \delta[n-1] \delta[n-2] + 3\delta[n-3], \quad v[n] = \delta[n] + 2\delta[n-1]$ y[n] = x[n] 0 v[n] = ? or expressed as y[n] = x[n] * v[n] = ?N=4,4-point circular convolution
- 5. (10 scores) A periodic signal is shown in Fig.3, Please calculate:
 - (1) trigonometric Fourier series;
 - (2) exponential Fourier series.

Fig.3

- 6. (8 scores) A continuous-time signal x(t) has Fourier transform $X(\omega)$. Please calculate the Fourier transforms for the following signals:
 - (1) $f_1(t) = tx(2t)$
 - (2) $f_2(t) = (1-t)x(1-t)$

7. (12 scores) A circuit is shown in Fig.4. Assuming that the circuit is in steady state at t < 0, and the switch is opened at t = 0, Please calculate the current i(t), $t \ge 0$.

- 8. (10 scores) A continuous time signal is $x(t) = \cos(2\pi f t)$, if f = 1 Hz, the sampling interval $T_S = \frac{1}{4}$ seconds, the sampled signal is x[n], please calculate:
- (1) the discrete values of the 4 points;
- (2) four-point DFT of x[n];
- (3) four-point DTFT of x[n].
- 9. (16 scores) A causal linear time invariant system is described by following difference equation

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = x[n]$$

- (1) calculate the transfer function (or system function) H(z);
- (2) calculate the unit pulse response h[n];
- (3) calculate the unit step response y[n];
- (4) judge the stability of the system, and give your reason.