Lecture 9 Algorithms & Data Structures

Goldsmiths Computing

December 3, 2018

Outline

Introduction

String matching

Rabin-Karp matching

Knuth-Morris-Pratt matching

Boyer-Moore matching

Outline

Introduction

String matching

Rabin-Karp matching

Knuth-Morris-Pratt matching

Boyer-Moore matching

Lecture

- · Hash tables
 - · collision resolution
 - · deletion: tombstones vs backward-shift
 - Robin Hood hashing
- Characters
 - · symbols, graphemes, grapheme clusters
 - code points
- Strings
 - · ordered collections of code points
 - · new operation: matching

Lab

- · Be a data structure implementor
 - 1. Hash tables!
 - · basics: insert, find
 - loadFactor
 - · delete, extend/rehash

VLE activities

Recursive algorithms quiz

Statistics so far:

- 135 attempts: average mark 5.57
- 74 students: average mark 5.67
 - 26 under 4.00, 32 over 6.99, 15 at 10.00

Quiz closes at 16:00 on Friday 7th December

- · no extensions
- · grade is
 - 0 (for no attempt)
 - $30 + 70 \times (\text{score}/10)^2$

VLE activities (cont'd)

Recurrence relations quiz

- 575 attempts: average mark 4.82
- 130 students: average mark 6.78
 - 24 under 4.00, 75 above 6.99, 24 at 10

VLE activities (cont'd)

List visualiser

- 127 submissions
- · assessment phase:
 - assess according to questions (use my provided driver program!)
 - differences of interpretation
 - · assume good intent
 - · read submitted code
 - · give written feedback!

Assessment phase closes at 16:00 on Friday 7th December

- no extensions
- grade is
 - 0 (for incomplete assessments)
 - 30 + score

VLE activities (cont'd)

First term questionnaire

non-anonymous survey (for my benefit):

- · what's gone well;
- · what you've enjoyed;
- · what has most helped you learn

https://learn.gold.ac.uk/mod/feedback/view.php?id=613718

Introduction

String matching

Rabin-Karp matching

Knuth-Morris-Pratt matching

Boyer-Moore matching

Motivation

- generalisation of search operation (sequences, not just single elements)
- applications include text editors, classifiers, information retrieval systems
- · extensions used in
 - · spelling checkers
 - · DNA sequence matching
 - · protein structure representations

Definition

String matching returns the smallest index at which the *pattern*, P, is found exactly in the *text*, T, or false if the pattern is not present in the text at all.

```
C++ std::string::find()
Java java.lang.String.indexOf()
```

String matching algorithm

```
function MATCH(T,P)

m ← LENGTH(P)

for 0 ≤ s ≤ LENGTH(T) - m do

if T[s...s+m] = P[0...m] then

return s

end if

end for

return false

end function
```

Naïve algorithm

```
function MATCH(T,P)
    m \leftarrow length(P)
   for 0 \le s \le LENGTH(T) - m do
       found ← true
       for 0 \le j < m do
           if T[s+j] \neq P[j] then
               found ← false: break
           end if
       end for
       if found then
           return s
       end if
   end for
    return false
end function
```

a a b

b a a

b a a a a а С

Complexity analysis

space

no particular requirements for additional storage

$$\Rightarrow \Theta(1)$$

time

- outer loop happens n m + 1 times (worst case)
- inner loop m times (worst case)

$$\Rightarrow \Theta((n+1)m-m^2) \sim \Theta(nm)$$

For particular sizes of pattern:

small
$$m \sim c \Rightarrow \Theta(n)$$

large
$$m \sim n \Rightarrow \Theta(n)$$

intermediate
$$m \sim \frac{n}{2} \Rightarrow \Theta(n^2)$$

1. Reading

- CLRS, section 32.1
- Drozdek, section 13.1.1 "Straightforward Algorithms"

2. Questions from CLRS

Exercises 32.1-1, 32.1-2

- 3. Lab work
 - (week of 3rd December) implement naïve string match for strings of characters. Use OpCounter (remember that?) to count how many character comparisons happen in the worst case. Construct a table and verify the theoretical results in this lecture.

Outline

Introduction

String matching

Rabin-Karp matching

Knuth-Morris-Pratt matching

Boyer-Moore matching

Motivation

- naïve string matching takes time in $\Theta(mn)$
- · lots of wasted work

Naïve algorithm

```
function MATCH(T,P)
   m \leftarrow length(P)
   for 0 \le s \le LENGTH(T) - m do
       found ← true
       for 0 \le j < m do
           if T[s+j] \neq P[j] then
               found ← false: break
           end if
       end for
       if found then
           return s
       end if
   end for
    return false
end function
```

Less work in the inner loop

- avoid $\Theta(m)$ comparisons where possible
- · constant-time test:
 - · hash value comparison

Rabin-Karp algorithm

```
function RKMATCH(T,P)
    m \leftarrow length(P); hm \leftarrow hash(P)
   for 0 \le s \le LENGTH(T) - m do
       if HASH(T[s...s+m]) = hm then
           found ← true
           for 0 \le j < m do
               if T[s+j] \neq P[j] then
                   found ← false: break
               end if
           end for
           if found then
               return s
           end if
       end if
   end for
    return false
end function
```

Hash function

Normally:

- наsн(T[s...s+m]) takes time in $\Theta(m)$
- · no saved work in general

Rolling hash

Clever choice of hash function makes a difference!

• ROLLING-HASH(h,T[s-1],T[s+m])

Examples of suitable hash functions

modular add $\sum_i x_i \mod k$

exclusive or $\oplus_i x_i$

modular polynomial $\sum_{i} x_i p^i \mod k$

Modular add

$$\sum_{i} x_i \bmod k$$

- 21-bit characters: k might be 2^{24} or 2^{32}
 - (resist temptation to use 8-bit characters and k of 2^8)

function ROLLING-HASH(prev,remove,add)
 return (prev - remove + add) mod k
end function

- · extremely limited bit mixing
- high chance of hash collisions in typical texts
 - e.g. hash(ab) = hash(ba)

Exclusive or

 $\oplus_i x_i$

- no parameters
 - (still need to resist temptation to use 8-bit characters)

function ROLLING-HASH(prev,remove,add)
return prev ⊕ remove ⊕ add
end function

- · no bit mixing at all
- · high chance of hash collisions in typical texts
 - e.g. HASH(oboe) = HASH(bell)

Modular polynomial

$$\sum_i x_i p^i \bmod k$$

- typically choose a small(ish) prime p
- use machine word (e.g. 2^{32}) for k

 $\begin{array}{c} \textbf{function} \ \ \text{ROLLING-HASH}(\text{prev,remove,add}) \\ \quad \textbf{return} \ \left((\text{prev} - \text{remove} \times p^{m-1}) \times p + \text{add} \right) \ \text{mod} \ k \\ \textbf{end function} \end{array}$

- good mixing (e.g. for prime p = 101, character bits 0-7 affect hash bits 0-13)
- · hash collisions in typical texts rarer

Complexity analysis

space

no need for extra space that scales with any parameter

$$\Rightarrow \Theta(1)$$

time

- for good rolling hash:
 - new hash computation from old hash in $\Theta(1)$ time
 - hash collisions rare (still need to do at least two Θ(m) hash computations)

$$\Rightarrow \Theta(n) + \Theta(m)$$
 (average case)

- even for the best hash function...
 - · ...suitably adversarial input will collide a lot

$$\Rightarrow \Theta(nm)$$
 (worst case)

Work

- 1. Reading
 - CLRS, section 32.2
- 2. Questions from CLRS
 - Exercise 32.2-2
- 3. Lab work
 - (week of 3rd December) implement Rabin-Karp string match for strings of characters. Use OpCounter to count how many character comparisons happen in the best and worst case. Construct a table and verify the theoretical results in this lecture.

Outline

Knuth-Morris-Pratt matching

Motivation

• deterministically $\Theta(m+n)$ string matching

Definition

Knuth-Morris-Pratt matching uses information about the pattern P to avoid redundant work when doing string matching.

Example

Consider MATCH(abcde, text)

- · all characters in P different
- mismatch in index position k
 - matches in all previous positions [0,k)
 - can safely advance next start position to k.

a	b	С	d	е

a a a b c a b c	d
-----------------	---

		a	b	С	d	е		
							,	
a	a	a	b	С	a	b	С	d

		a	b	С	d	е		
					*	•	,	
a	a	a	b	С	a	b	С	d

a	a	a	b	С	a	b	С	d

a b	a	b	С
-----	---	---	---

a a a b a a b c d	a a a	b	a	a	b	С	d
-----------------------------------	-------	---	---	---	---	---	---

		a	b	a	ъ	С		
							,	
a	a	a	b	a	a	b	С	d

		a	b	a	ъ	С		
					*		,	
a	a	a	b	a	a	b	С	d

Prefix table

Also called "prefix function" or "failure function"

encode for each index k the length of the longest prefix of the pattern
 P which is a suffix of the subsequence of the pattern P[0..k]

a	b	С	d	е
0	0	0	0	0

Prefix table

Also called "prefix function" or "failure function"

• encode for each index *k* the length of the longest prefix of the pattern P which is a suffix of the subsequence of the pattern P[0..k]

a	b	С	d	е
0	0	0	0	0

a	b	a	b	С
0	0	1	2	0

Knuth-Morris-Pratt algorithm

```
function KMPMATCH(T,P)
    n \leftarrow length(T); m \leftarrow length(P)
    \pi \leftarrow \text{computePrefix(P)}
    q \leftarrow 0
    for 0 < i < n do
        while q > 0 \land P[q] \neq T[i] do
             q \leftarrow \pi[q-1]
        end while
        if P[q] = T[i] then
             q \leftarrow q + 1
        end if
        if q = m then
             return i - m + 1
        end if
    end for
    return false
end function
```

Knuth-Morris-Pratt algorithm: compute prefix

```
function COMPUTEPREFIX(P)
    m \leftarrow LENGTH(P)
    \pi \leftarrow \mathbf{new} \text{ Array(m)}; \pi[0] \leftarrow 0
     k \leftarrow 0
    for 1 \le q < m do
         while k > 0 \land P[k] \neq P[q] do
              k \leftarrow \pi[k-1]
         end while
         if P[k] = P[q] then
              k \leftarrow k + 1
         end if
         \pi[q] \leftarrow k
    end for
     return π
end function
```

Work

1. Reading

- · CLRS, section 32.4
- Drozdek, section 13.1.2 "The Knuth-Morris-Pratt Algorithm"
 - NB: next table in Drozdek is very slightly different from result of COMPUTEPREFIX

2. Lab work

 (week of 3rd December) implement Knuth-Morris-Pratt string match.
 Use OpCounter to count how many character comparisons happen in the best and worst cases, and verify the theoretical results in this lecture.

Outline

Introduction

String matching

Rabin-Karp matching

Knuth-Morris-Pratt matching

Boyer-Moore matching

Boyer-Moore matching

Motivation

- deterministically $\Theta(m+n)$ string matching
- can achieve $\Theta(n/m)$ for matching phase in the best case

The bad character heuristic

- previously: use the *fact* that a mismatch has occurred to save work;
- now: use the specific character in the *text* that doesn't match (the "bad character") to save work.
 - check characters backwards from the end of the pattern for maximum effect

· bad character not in pattern:

• bad character not in pattern:

· bad character not in pattern:

· bad character not in pattern:

· bad character in pattern:

· bad character in pattern:

• bad character in pattern:

· bad character in pattern:

Boyer-Moore-Horspool

```
function BMHMATCH(T,P)
    n \leftarrow length(T); m \leftarrow length(P)
    \lambda \leftarrow computeBadCharacter(P)
    s \leftarrow 0
    while s \le n - m do
        j \leftarrow m - 1
         while j \ge 0 \land P[j] = T[s+j] do
             j \leftarrow j - 1
         end while
         if j = -1 then
             return s
         else
             s \leftarrow s + \max(1,j-\lambda[T[s+j]])
         end if
    end while
    return false
end function
```

Boyer-Moore-Horspool: compute bad character

```
function COMPUTEBAD CHARACTER(P)

m \leftarrow LENGTH(P)

\lambda \leftarrow new Table(-1)

for 0 \le j < m do

\lambda[P[j]] \leftarrow j

end for

return \lambda

end function
```

Work

1. Reading

· Drozdek, section 13.1.3 "The Boyer-Moore Algorithm"

The good suffix heuristic

- · bad character heuristic can recommend zero (or negative) shift
- · not using information about any partial match
- good suffix: use knowledge that the suffix of the pattern matched must match any shifted pattern
 - · find rightmost instance of good suffix...
 - · ... not at the end of the pattern ...
 - (... preceded by a different character)

Boyer-Moore matching

Diagram

a b a b a

a b a b a

a a b b a a b c d

a b a b a

a a b b a a b c d

Boyer-Moore

```
function BMMATCH(T,P)
     n \leftarrow \text{length}(T); m \leftarrow \text{length}(P)
    \lambda \leftarrow \text{computeBadCharacter(P)}
     y \leftarrow computeGoodSuffix(P)
    s \leftarrow 0
    while s \le n - m do
         i \leftarrow m - 1
         while j \ge 0 \land P[j] = T[s+j] do
              i \leftarrow i - 1
         end while
         if j = -1 then
               return s
         else
              s \leftarrow s + \max(\gamma[j], j - \lambda[T[s+j]])
         end if
    end while
     return false
end function
```

Boyer-Moore matching

Boyer-Moore: compute good suffix

```
function COMPUTEGOODSUFFIX(P)
     m \leftarrow LENGTH(P); \pi \leftarrow COMPUTEPREFIX(P)
     P' \leftarrow REVERSE(P); \pi' \leftarrow COMPUTEPREFIX(P')
    y \leftarrow \text{new Array(m)}
    for 0 \le j < m do
         \gamma[i] \leftarrow m - \pi[m-1]
     end for
    for 0 < 1 < m do
         i \leftarrow m - \pi'[1] - 1
         if \gamma[j] > 1 + 1 - \pi'[1] then
              \gamma[j] \leftarrow I + 1 - \pi'[I]
         end if
    end for
     return y
end function
```

Galil Rule

If pattern is shifted to start at a text position after positions already checked:

· no need to recheck known-good matches

Complexity Analysis

space

 γ , λ each $\Theta(m)$

• λ is $\Theta(\Sigma)$ if implemented using an array

time

Boyer-Moore-Horspool and Boyer-Moore

- preprocessing: $\Theta(m)$
- match:
 - worst case $\Theta(mn)$
 - best case $\Theta(n/m)$

With Galil Rule:

- worst case $\Theta(m+n)$
- best case $\Theta(n/m)$

