14. Algebraisch abgeschlossene Körper

Ziel:

Konstruktion einer kleinsten algebraisch abgeschlossenen Körpererweiterung \bar{K} des Körpers K und Eindeutigkeit von \bar{K} bis auf K-Isomorphie.

14.1. Definition:

Ein Körper K heißt algebraisch abgeschlossen, wenn gilt:

- i. Jedes Polynom $f \in K[X]$ vom Grad $d \ge 1$ hat mindestens eine Nullstelle α in K. oder äquivalent dazu:
- ii. Jedes $f \in K[X]$ vom Grad $d \ge 1$ zerfällt in K[X] vollständig in Linearfaktoren.

14.2. Definition:

Die Körpererweiterung \bar{K} des Körpers K heißt <u>algebraischer Abschluss</u> von K, wenn eine der äquivalenten Bedingungen erfüllt ist: ¹

- i. $\bar{K}|K$ ist algebraisch und \bar{K} ist algebraisch abgeschlossen
- ii. $\bar{K} | K$ ist algebraisch und \bar{K} ist maximal mit dieser Eigenschaft (Mit anderen Worten: Ist $K \subset \bar{K} \subset L, L | K$ algebraisch, so ist $\bar{K} = L$)
- iii. \bar{K} ist algebraisch abgeschlossen und minimale Erweiterung von K mit dieser Eigenschaft (Mit anderen Worten: Ist $K \subset L \subset \bar{K}$, L algebraisch abgeschlossen, so ist $L = \bar{K}$)

Beweis.

Übung! □

14.3. Lemma:

R sei ein Ring (kommutativ) und $\mathfrak{a} \subseteq R$ ein Ideal:

Dann existiert ein maximales Ideal \mathfrak{m} von R mit $\mathfrak{a} \subset \mathfrak{m} \subseteq R$.

Erinnerung:

Lemma von Zorn:

Ist (Σ, \prec) eine nichtleere, induktiv geordnete Menge, so besitzt Σ maximale Elemente.

^{1.} Vergleiche hierzu die Definition einer Basis eines Vektorraums: (maximale linear unabhängige Menge, minimales Erzeugendensystem, oder linear unabhängiges Erzeugendensystem)

induktiv geordnet: Jede vollständig geordnete Teilmenge von Σ besitzt in Σ eine obere Schranke.

Beweis.

Sei $\Sigma := \{ \mathfrak{b} \mid \mathfrak{b} \text{ ist Ideal von } R \text{ und } \mathfrak{a} \subset \mathfrak{b} \subsetneq R \}$

- geordnet durch Inklusion
- nichtleer, da $\mathfrak{a} \in \Sigma$
- induktiv geordnet:

Ist $\{\mathfrak{b}_i|i\in I\}$ eine vollständig geordnete Teilmenge von Σ , so ist $\mathfrak{b}:=\bigcup_{i\in I}\mathfrak{b}_i$ ein Ideal mit $\mathfrak{b}\supset\mathfrak{a}$ und $\mathfrak{b}\neq R$ (sonst $1\in\mathfrak{b}_i$ für ein i, also $\mathfrak{b}_i=R$ Widerspruch).

Nach dem Lemma von Zorn existiert \mathfrak{m} wie verlangt.

14.4. Definition:

Es sei S eine beliebige nichtleere Indexmenge und für jedes $s \in S$ sei X_s eine Unbestimmte. Setze:

$$K[X_s \mid s \in S]$$

für den Polynomring in S Variablen X_s . Dies ist ein kommutativer, nullteilerfreier Ring.

Beispiel:

$$\begin{array}{lll} S = \{1\} & X_1 = X & , K[X_s \mid s \in S] & = & K[X] \\ S = \{1, 2, ..., n\} & , K[X_s \mid s \in S] & = & K[X_1, X_2, ..., X_n] \\ S = \mathbb{N} & , K[X_s \mid s \in S] & = & K[X_1, X_2, ...] \\ S & \text{allgemein} & , K[X_s \mid s \in S] & = & \bigcup_{\substack{S' \subset S \\ \text{endlich}}} K[X_s \mid s \in S'] \end{array}$$

14.5. Satz:

Zu jedem Körper K existiert ein algebraischer Abschluss.

Beweis.

- i. Wir konstruieren:
 - zu K eine algebraische Erweiterung K_1 , so dass alle nichtkonstanten Polynome $f \in K[X]$ über K_1 eine Nullstelle bekommen.

- zu K_1 eine algebraische Erweiterung K_2 , so dass alle nichtkonstanten Polynome $f \in K_1[X]$ über K_2 eine Nullstelle bekommen.
- •
- zu K_i eine algebraische Erweiterung K_{i+1} , so dass alle nichtkonstanten Polynome $f \in K_i[X]$ über K_{i+1} eine Nullstelle bekommen. $(i \in \mathbb{N})$

Dann ist:

- $K_i|K$ algebraisch $\forall i \in \mathbb{N}$
- $\bar{K} := \bigcup_{i \in \mathbb{N}} K_i$ ist Körpererweiterung von K, algebraisch und jedes $f \in \bar{K}[X]$ mit $\deg f \geqslant 1$ hat in \bar{K} eine Nullstelle.

Also ist dieses \bar{K} der gesuchte algebraische Abschluss von K.

Bleibt also die Konstruktion K_1 zu K zu zeigen.

(Diese muss universell sein, d.h. anwendbar auf jeden Körper K)

ii. Konstruktion dieses $K_1|K$:

Sei
$$S := \{ f \in K[X] | d(f) \ge 1, f \text{ normiert} \}.$$

Für jedes $f \in S$ sei X_f eine Unbestimmte. Setze:

$$R := K[X_f \mid f \in S]$$

und $\mathfrak{a} \subset R$ sei das Ideal, das von allen $f(X_f)$ $(f \in S)$ erzeugt wird.

iii. Es ist $\mathfrak{a} \subsetneq R$.

Annahme: $\mathfrak{a} = R$. Dann ist $1 \in \mathfrak{a}$.

$$(\star) \quad 1 = \sum_{1 \leqslant i \leqslant n} g_i f_i(X_{f_i})$$

Für jedes i = 1, 2, ..., n sei:

$$S_i := \{ s \in S \mid X_s \text{ kommt in } g_i \text{ vor} \}, \# S_i < \infty \}$$

Weiter sei

$$T := \bigcup_{1 \leqslant i \leqslant n} S_i \cup \{ f_i \mid 1 \leqslant i \leqslant n \}, \quad \#T < \infty$$

und L|K eine algebraische Körpererweiterung, über der jedes der f_i eine Nullstelle α_i besitzt (13.2.).

Setze jetzt für alle $s \in T$ in (\star) Werte für die Variablen X_s ein:

$$s = f_i: X_{f_i} \leadsto \alpha_i$$

$$s \neq f_i: X_s \leadsto 0$$

In L gilt dann:

$$1 = \sum_{i} g_{i}(\dots) \underbrace{f_{i}(\alpha_{i})}_{=0} = 0 \quad Widerspruch!$$

Also ist $\mathfrak{a} \subsetneq R$.

iv. Sei jetzt \mathfrak{m} ein maximales Ideal oberhalb von \mathfrak{a} , d.h. $\mathfrak{a} \subset \mathfrak{m} \subsetneq R$. (14.3.)

Dann ist $K_1 := R/\mathfrak{m}$ ein Körper, der K enthält durch 2

$$K \hookrightarrow R = K[X_f \mid f \in S] \longrightarrow R/\mathfrak{m} = : K_1$$

Da R über K von den X_f erzeugt wird, wird K_1 über K von

 $\alpha_f := \text{Restklasse von } X_f \text{ modulo } \mathfrak{m} \text{ erzeugt.}$

Es gilt: $f(\alpha_f) \equiv f(X_f) \equiv 0 \pmod{\mathfrak{m}}$. Damit ist $K_1|K$ algebraisch, und $K_1|K$ hat die benötigte Nullstelleneigenschaft.

14.6. Situation:

K Körper, \bar{K} ein algebraischer Abschluss, L|K eine einfache algebraische Erweiterung von K, $L=K(\alpha),\ m(X)=m_{K,f}(X)$. Betrachte K-Einbettungen von L in \bar{K} , d.h. Ringhomomorphismen:

Es ist

$$K[X]/(m) \stackrel{X \longmapsto \alpha}{\stackrel{\cong}{\longrightarrow}} L \quad \text{(Isomorphiesatz)}$$

Da \bar{K} algebraisch abgeschlossen ist, \exists Nullstelle β von m in \bar{K} . Der Ringhomomorphismus

hat Kern (m) und faktorisiert also über $L = K(\alpha)$, d.h. $\exists ! \sigma$ wie oben. D.h. σ ist eine K-Einbettung von L in \bar{K} , die durch die Wahl der Nullstelle $\beta \in \bar{K}$ von m wohlbestimmt ist.

^{2.} Die Hintereinanderausführung von Ringhomomorphismen ist wieder ein Ringhomomorphismus. Ein Homomorphismus von einem Körper in einen Ring ist injektiv \leadsto "Einbettung".

Damit ist bewiesen:

14.7. Proposition:

Sei L|K einfach, $L=K(\alpha),\ m=m_{K,\alpha}$ das Minimalpoynom. $\bar{K}|K$ ein algebraischer Abschluss. Dann $\exists K$ -Einbettungen $\sigma\colon L \hookrightarrow \bar{K}$. Sie entsprechen eineindeutig den Nullstellen β von m in \bar{K} .

14.8. Satz:

K Körper, $\overline{K}|K$ algebraischer Abschluss, L|K algebraische Erweiterung. Dann

- i. $\exists K$ -Einbettung $\sigma: L \longrightarrow \bar{K}$;
- ii. ist auch L algebraisch abgeschlossen, so ist jedes σ wie in (i) ein K-Isomorphismus.

Beweis.

i. ist gezeigt, falls $L=K(\alpha)$ ist. Daraus erhält man (i) auch für L von der Form $L=K(\alpha_1,\alpha_2,...,\alpha_n)$, schließlich für L von der Form $L=K(\alpha_1,\alpha_2,...,\alpha_i \mid i \in \mathbb{N})$ Allgemeiner Fall:

Anwendung des Lemmas von Zorn. Setze:

$$S := \left\{ (M,\tau) \left| \begin{array}{c} M \text{ ist Zwischenerweiterung von } L|K \\ K \subset M \subset L \\ \text{und } \tau \text{: } M \longrightarrow \bar{K} \text{ ist eine K-Einbettung} \end{array} \right. \right\}$$

S ist

• geordnet bzgl. "≺",

$$(M,\tau) \prec (M',\tau') : \Leftrightarrow M \subset M',\tau'|_M = \tau$$

- nichtleer (alle endlich erzeugten M|K gehören zusammen mit ihren $\tau's$ zu S)
- S ist induktiv geordnet³ (!)

Deshalb \exists maximales Element (M, τ) in S, und es muss M = L sein.

ii. Sei L algebraisch abgeschlossen, $\sigma: L \longrightarrow K$ eine K-Einbettung.

Zu zeigen ist: σ ist surjektiv.

Sei $\beta \in \overline{K}$, $f = m_{K,\beta} \in K[X]$, β_i (i = 1, ..., n) die Nullstellen von f in \overline{K} , $\beta = \beta_1$. Weil auch L algebraisch abgeschlossen ist, zerfällt f in L[X] in Linearfaktoren,

^{3.} Man beachte, dass die (M_i, τ_i) eine aufsteigende Kette von Körpern bilden. Wobei für zwei solcher, (M_i, τ_i) , (M_j, τ_j) gilt: $(M_i, \tau_i) \prec (M_j, \tau_j)$ oder $(M_i, \tau_i) \succ (M_j, \tau_j)$. $\leadsto \bigcup_{i \in I} (M_i, \tau_i)$ ist auch Körper und ist eine obere Schranke für die (M_i, τ_i) . Also ist "induktiv geordnet.

$$f(X) = \prod_{1 \leqslant i \leqslant n} (X - \alpha_i).$$

Setze:

$$L' := K(\alpha_1, \alpha_2, ..., \alpha_n) \subset L$$

$$K' := K(\beta_1, \beta_2, ..., \beta_n) \subset \bar{K}$$

Es gilt: $\sigma(L') \subset K'$ und es muss $\sigma(L') = K'$ gelten.

(!)

(!!)

Insbesondere ist $\beta \in \sigma(L)$, d.h. σ surjektiv.

Beispiel:

$$K=\mathbb{Q},\quad f(X)=X^3-2,\qquad N=N_{\mathbb{Q}\,,f}\ ,\qquad Z=Z_{\mathbb{Q}\,,f}.$$

 $[Z \colon \mathbb{Q}] = 6$ und es existieren genau 6 verschiedene $\mathbb{Q}\text{-Einbettungen}$

 $\sigma{:}\,Z \longrightarrow \bar{\mathbb{Q}} = \big\{z \in \mathbb{C}|z \text{ ist algebraisch \"{u}ber }\mathbb{Q} \big\}$

$$Z = \mathbb{Q}(\eta, i) = \mathbb{Q}(\eta, \sqrt{-1}); \qquad \qquad N = \mathbb{Q}(\eta)$$

$$\eta^3 = 2, \sqrt{-1}^2 = -1$$

14.10. Satz/ Definition:

Es sei \bar{K} "der" algebraische Abschluss von K, und L sei eine Zwischenerweiterung $K \subset L \subset \bar{K}$. Dann sind äquivalent:

i. Jede K-Einbettung von L nach \bar{K} ist ein Automorphismus.

(d.h.
$$\forall \sigma: L \longrightarrow \bar{K} \text{ ist } \sigma(L) = L$$
)

- ii. L ist Zerfällungskörper einer Menge S von Polynomen aus K[X].
- iii. Jedes irreduzible $f \in K[X]$, das in L eine Nullstelle besitzt, zerfällt vollständig über L.

Sind (i),(ii),(iii) für L|K erfüllt, so heißt L|K normal.

Gegenbeispiel:

$$K = \mathbb{Q}, L = Z_{\mathbb{Q}, f}, \quad f = X^3 - 2,$$

$$L = \mathbb{Q}(\eta)$$
 mit $\eta^3 = 2$.

(i) verletzt (aus mengentheoretischen Gründen)

(iii) verletzt, da
$$f(X) = m_{\eta}(X)$$
. In $\bar{\mathbb{Q}}[X]$ ist $f(X) = (X - \eta) \underbrace{(X - \rho \eta)(X - \rho^2 \eta)}_{=X^2 + \eta X + \eta^2 \text{ irreduzibel ""uber } L}$, $\rho = e^{2\frac{\pi i}{3}}$ $\Rightarrow f(X) = (X - \eta)(X^2 + \eta X + \eta^2)$ Primzerlegung in $L[X]$.

Beweis.

Wir geben eine passende Menge $S \subset K[X]$ an:

$$S := \{ f \in K[X] \mid \exists \alpha \in L \text{ mit } f(X) = m_{\alpha}(X) \}$$

Ist $f \in S$, $f = m_{\alpha}$ mit $\alpha \in L$ und $\beta \in \bar{K}$ eine Nullstelle von f, so $\exists K$ -Einbettung σ_0 : $K(\alpha) \longrightarrow \bar{K}$. Setze σ_0 zu einer K-Einbettung σ von L nach \bar{K} fort (14.8.)

Nach (i) ist
$$\sigma(L) = L \implies \text{Jede Nullstelle } \beta' \text{ von } f \text{ in } \bar{K} \text{ liegt in } L$$
 $\implies f \text{ in } L[X] \text{ zerf\"{a}llt vollst\"{a}ndig}$ $\implies \text{In } L \text{ zerfallen alle } f \in S \text{ vollst\"{a}ndig, und } L \text{ ist }$ $\text{minimal mit dieser Eigenschaft}$ $\implies L = Z_{K,S}$

Genau dasselbe Argument zeigt auch "(i) ⇒ (iii)"

Sei σ eine K-Einbettung von L nach \bar{K} , $L = Z_{K,S}$.

$$S = \{ f_i \in K[X] | i \in I \}, \quad L = Z_{K,S} = K(\alpha_{ij} | \alpha_{ij} = \text{Nullstelle von } f_i) \}$$

Da α_{ij} Nullstelle von f_i ist, ist $\sigma(\alpha_{ij})$ auch Nullstelle von f_i , also $L = K(\alpha_{ij})$

$$\rightarrow \sigma(L) = K(\sigma(\alpha_{ij})) = K(\alpha_{ij}) = L$$
, d.h. (i).

Wieder dasselbe Argument zeigt auch "(iii) \Rightarrow (i)"

14.11. Proposition:

L|Kalgebraische Erweiterung, $\sigma \colon L \longrightarrow L$ eine K-Einbettung. Dann ist σ auch surjektiv, d.h. ein Automorphismus.

Beweis.

 $\alpha \in L, f(X) = m_{K,\alpha}(X), L' := K(\beta | \beta \in L \text{ Nullstelle von } f)$

Dann ist $[L':K] < \infty$ und $\sigma(L') \subset L'$, also ist $\sigma|_{L'}$ surjektiv, insbesondere $\alpha \in \sigma(L)$ und σ ist surjektiv.

14.12. Beispiele:

i. Ist [L:K] = 2, so ist L|K normal.

ii. $\mathbb{Q}(\eta)|\mathbb{Q}$, $\eta^3 = 2$ ist nicht normal.

iii. Die Erweiterungen $\mathbb{Q}(\alpha)|\mathbb{Q}, \mathbb{Q}(\beta)|\mathbb{Q}$ mit $\alpha :=$ primitive 9. Einheitswurzel, $\beta := \alpha + \bar{\alpha}$ (Beispiel (13.4.(ii))) sind normal.

iv. Die Erweiterung $N \mid \mathbb{F}_2$ von 13.4. (iii) $N = N_{\mathbb{F}_2,f}, \ f(X) = X^5 + X^2 + 1$ ist normal.

14.13. Proposition:

Es sei K ein Körper mit algebraischem Abschluss \bar{K} .

i. Sind K', L Teilerweiterungen von $\bar{K}|K$ und ist L|K normal, so ist auch LK'|K' normal.

ii. $K \subset K' \subset L \subset \overline{K}$, $L|K \text{ normal } \Rightarrow L|K' \text{ normal}$ (Spezialfall von (i)) .

iii. $K \subset L_i \subset \bar{K} \ (i=1,2)$. $L_i|K \text{ normal } \Rightarrow \left\{ \begin{array}{c} L_1L_2|K \text{ normal } \\ L_1 \cap L_2|K \text{ normal } \end{array} \right.$

----:= normal

Beweis.

i. L|K normal, $L = Z_{K,S}$, $S \subset K[X]$, $S = \{f_i | i \in I\}$,

 $\{\alpha_{ij}\}$ Nullstellenmenge von f_i in L bzw. \bar{K}

 $\rightsquigarrow L = K(\alpha_{ij}), LK' = K'(\alpha_{ij}) = Z_{K',S}$ normal über K'.

ii. √

iii. Sei $\sigma: L_1L_2 \longrightarrow \bar{K}$ eine K-Einbettung.

Dann ist $\begin{cases} \sigma(L_1) = L_1 \\ \sigma(L_2) = L_2 \end{cases}$, da $L_i|K$ normal. (i=1,2)

Deshalb $\sigma(L_1L_2) = \sigma(L_1) \, \sigma(L_2) = L_1L_2 \rightsquigarrow L_1L_2|K$ normal.

Ist σ_0 : $L_1 \cap L_2 \longrightarrow \bar{K}$ eine K-Einbettung, σ : $L_1L_2 \longrightarrow \bar{K}$ eine Fortsetzung (!), dann ist $\sigma_0(L_1 \cap L_2) = \sigma(L_1 \cap L_2) = \sigma(L_1) \cap \sigma(L_2) = L_1 \cap L_2 \longrightarrow L_1 \cap L_2 |_{K}$ normal.

14.14. Warnung:

Im all gemeinen gilt **nicht:** $M|L \atop L|K$ and an all an a

Gegenbeispiel:

$$\begin{array}{ccc} K = \mathbb{Q}, L = & \mathbb{Q}(\sqrt{2}) &, \, M = & L\mathbb{Q}(\sqrt{\sqrt{2}}) \\ & \mathbb{Q}(\alpha) \ \mathrm{mit} \ \alpha^2 = 2 & = L(\eta), \, \, \eta^2 = \alpha \Leftrightarrow \eta^4 = 2 \end{array}$$

$$M = \mathbb{Q}(\eta)$$

2

Ĺ

2

Q

 $f=m_{\mathbb{Q},\eta}=X^4-2$. Die drei weiteren Nullstellen von $m_{\mathbb{Q},\eta}$ sind $-\eta,\pm i\eta$, also ist $Z_{\mathbb{Q},f}=\mathbb{Q}(\eta,i)\supsetneq \mathbb{Q}(\eta)=M$

M besitzt eine Q-Einbettung $\sigma{:}\,M \longrightarrow \mathbb{C}$ mit Bild in R, nämlich

 $\eta \longmapsto \text{ die } \begin{array}{l} \text{positive} \\ \text{negative} \end{array} ^4$ 4. Wurzel von 2 in $\mathbb R.$

Deshalb enthält M keine primitive 4. Einheitswurzel, also ist $\mathbb{Q}(\eta, i) \neq \mathbb{Q}(\eta)$.

^{4.} Die Wahl der positiven oder der negativen 4. Wurzel ist vollkommen willkürlich.